

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Álgebra I Examen V

Los Del DGIIM, losdeldgiim.github.io

Víctor Naranjo

Granada, 2023-2024

Asignatura Álgebra I.

Curso Académico 2023-2024.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor María del Pilar Carrasco Carrasco.

Descripción Parcial I.

Fecha 15 de noviembre de 2023.

Ejercicio 1 (1.25 puntos). Sean P, Q propiedades que pueden ser satisfechas, o no, por los elementos de un conjunto X. Demostrar que se tiene la siguiente equivalencia:

$$(P \vee \neg Q) \wedge (Q \vee \neg P) \Leftrightarrow (P \wedge Q) \vee \neg (P \vee Q).$$

Si $X_P = \{x \in X \mid x \text{ verifica la propiedad } P\}$ y $X_Q = \{x \in X \mid x \text{ verifica la propiedad } Q\}$. Se trata de demosstrar que

$$[X_P \cup c(X_Q)] \cap [X_Q \cup c(X_P)] = [X_P \cap X_Q] \cup c(X_P \cup X_Q).$$

En efecto, empezando por el miembro de la derecha

$$[X_P \cap X_Q] \cup c(X_P \cup X_Q) = [(X_P \cap X_Q) \cup c(X_P)] \cap [(X_P \cap X_Q) \cup c(X_Q)]$$

$$= [(X_P \cup c(X_P)) \cap (X_Q \cup c(X_P))] \cap [(X_P \cup c(X_Q)) \cap (X_Q \cup c(X_Q))]$$

$$= [X \cap (X_Q \cup c(X_P))] \cap [(X_P \cup c(X_Q)) \cap X]$$

$$= [X_Q \cup c(X_P)] \cap [X_P \cup c(X_Q)] = [X_P \cup c(X_Q)] \cap [X_Q \cup c(X_P)].$$

Como queríamos demostrar.

Ejercicio 2 (1.25 puntos).

- (I) Determinar si la asignación $a/b \mapsto a$ define una aplicación $f: \mathbb{Q} \to \mathbb{Z}$
- (II) Determinar si la asignación $a/b \mapsto a^2/b^2$ define una aplicación $g: \mathbb{Q} \to \mathbb{Q}$
- (I) La asignación $a/b \mapsto a$ no define una aplicación de \mathbb{Q} en \mathbb{Z} pues por ejemplo el elemento 1/2 = 2/4 tendría dos imágenes distintas.
- (II) La asignación $a/b \mapsto a^2/b^2$ sí define una aplicación de \mathbb{Q} en \mathbb{Q} . En efecto, si

$$\frac{a}{b} = \frac{c}{d} \Rightarrow ad = bc \Rightarrow a^2d^2 = (ad)^2 = (bc)^2 = b^2c^2 \Rightarrow \frac{a^2}{b^2} = \frac{c^2}{d^2}$$

Esto es, la imagen de a/b no depende del representante elegido.

Ejercicio 3 (1.25 puntos). Sea $f: S \to T$ una aplicación. Probar que, para cualesquiera subconjuntos $A \subseteq S$ y $B \subseteq T$, se verifica que $f_*(A \cap f^*(B)) = f_*(A) \cap B$. (Recordad que, si $X \subseteq S$ e $Y \subseteq T$, entonces $f_*(X) = \{f(x) \mid x \in X\}$ y $f^*(Y) = \{x \in S \mid f(x) \in Y\}$.)

Demostraremos por doble inclusión.

 \subseteq) Sea $y \in f_*(A \cap f^*(B)) \Rightarrow \exists x \in A \cap f^*(B) \mid y = f(x).$

Si
$$x \in A \cap f^*(B) \Rightarrow \left\{ \begin{array}{l} x \in A \Rightarrow y = f(x) \in f_*(A) \\ x \in f^*(B) \Rightarrow y = f(x) \in B \end{array} \right\} \Rightarrow y \in f_*(A) \cap B$$

 \supseteq) Sea $y \in f_*(A) \cap B$. Entonces:

$$y \in f_*(A) \Rightarrow \exists \ x \in A \mid y = f(x)$$

$$y = f(x) \in B \Rightarrow x \in f^*(B)$$

$$\Rightarrow y = f(x) \text{ con } x \in A \cap f^*(B) \Rightarrow y \in f_*(A \cap f^*(B))$$

Ejercicio 4 (1.25 puntos). Sea V el conjunto de los vértices de un cuadrado y $A = \{f : V \to \{1, 2, 3\} \mid f \text{ es aplicación}\}$. Definimos en A la siguiente relación binaria

$$f_1 \sim f_2 \Longleftrightarrow$$
 existe una biyección $\phi: V \to V$ tal que $f_1 = f_2 \circ \phi$

Demostrar que \sim es una relación de equivalencia. Describir las clases de equivalencia.

Reflexiva Para todo $f \in A$, sabemos que $f = f \circ id_V \Rightarrow f \sim f$.

Simétrica Sea $f_1 \sim f_2 \Rightarrow \exists \phi : V \to V$ biyectiva tal que $f_1 = f_2 \circ \phi$. Considerando ϕ^{-1} (que existe por ser ϕ biyectiva), se tendrá:

$$f_1 \circ \phi^{-1} = (f_2 \circ \phi) \circ \phi^{-1} = f_2 \circ (\phi \circ \phi^{-1}) = f_2 \circ id_V = f_2 \Rightarrow f_2 \sim f_1$$

Transitiva Sean $f_1, f_2, f_3 \in A$ tales que $f_1 \sim f_2$ y $f_2 \sim f_3$. Entonces:

$$\left. \begin{array}{l} f_1 \sim f_2 \\ f_2 \sim f_3 \end{array} \right\} \Rightarrow \begin{array}{l} \exists \ \phi : V \to V \text{ biyectiva tq } f_1 = f_2 \circ \phi \\ \exists \ \psi : V \to V \text{ biyectiva tq } f_2 = f_3 \circ \psi \end{array}$$

Entonces

$$f_1 = f_2 \circ \psi = (f_3 \circ \psi) \circ \phi = f_3 \circ (\psi \circ \phi) \Rightarrow f_1 \sim f_3$$

pues $\psi \circ \phi : V \to V$ es biyectiva por ser composición de biyectivas.

Finalmente, para $f \in A$, se tiene que su clase de equivalencia es:

$$[f] = \{g \in A \mid g \sim f\} = \{f \circ \phi \mid \phi : V \to V \text{ es biyectiva}\}\$$

Ejercicio 5 (1.25 puntos). Calcula el cociente y el resto de dividir el entero -2120 entre 19. Calcula el resto de dividir por 19 el resultado de multiplicar $4825 \cdot (-2120)$. (Deja constancia del procedimiento y cálculos que has usado)

Puesto que

$$2120 = 19 \cdot 111 + 11 \Rightarrow -2120 = 19(-111) - 11 = 19 \cdot (-111) - 19 + 19 - 11 = 19(-112) + 8$$

Por tanto el cociente es -112 y el resto es 8. Como $4825 = 19 \cdot 253 + 18 \Rightarrow \text{Res}(4825; 19) = 18$. Entonces

$$Res(4825 \cdot (-2120); 19) = Res(18 \cdot 8; 19) = Res(144; 19) = 11$$
, pues $144 = 19 \cdot 7 + 11$

Ejercicio 6 (1.25 puntos). Determina todas las unidades del anillo $\mathbb{Z}[\sqrt{-5}]$. Calcula también el inverso de $\frac{1}{2} + \frac{3}{5}\sqrt{-5}$ en el cuerpo $\mathbb{Q}[\sqrt{-5}]$. (Deja constancia del procedimiento y cálculos que has usado)

En
$$\mathbb{Z}[\sqrt{-5}]$$
, la norma de $\alpha = a + b\sqrt{-5}$ es $N(\alpha) = a^2 + 5b^2$. Entonces $a + b\sqrt{-5} \in U(\mathbb{Z}[\sqrt{-5}]) \Leftrightarrow N(\alpha) = a^2 + 5b^2 = 1 \Leftrightarrow a \pm 1 \land b = 0$

Por tanto $U(\mathbb{Z}[\sqrt{-5}]) = \{1, -1\}.$

Sabemos que $\mathbb{Q}[\sqrt{-5}]$ es un cuerpo. Para $\alpha \in \mathbb{Q}[\sqrt{-5}], \alpha \neq 0$, su inverso es $\alpha^{-1} = \frac{1}{N(\alpha)}\bar{\alpha}$. Para $\alpha = \frac{1}{2} + \frac{3}{5}\sqrt{-5} \neq 0$, $N(\alpha) = \frac{1}{4} + 5\frac{9}{25} = \frac{1}{4} + \frac{9}{5} = \frac{41}{20}$. Entonces

$$\alpha^{-1} = \frac{20}{41} (\frac{1}{2} - \frac{3}{5} \sqrt{-5}) = \frac{10}{41} - \frac{12}{41} \sqrt{-5}$$

Ejercicio 7 (1.25 puntos). Sean $n, m \ge 2$ y consíderese el conjunto $U = U(\mathbb{Z}_n \times \mathbb{Z}_m)$ de las unidades del anillo producto cartesiano. La afirmación "|U| = (n-1)(m-1)" es

- □ siempre cierta,
- □ siempre falsa
- \square a veces verdad y a veces falsa, dependiendo de n, m.

Justificar la respuesta.

Para n=2 y m=3

$$U = U(\mathbb{Z}_2 \times \mathbb{Z}_3) = U(\mathbb{Z}_2) \times U(\mathbb{Z}_3) = \{1\} \times \{1, 2\} = \{(1, 1), (1, 2)\}$$

Por tanto, $|U| = 2 = (2-1) \cdot (3-1)$ y la igualdad se tiene.

Para n=3 y m=4

$$U = U(\mathbb{Z}_3 \times \mathbb{Z}_4) = U(\mathbb{Z}_3) \times U(\mathbb{Z}_4) = \{1, 2\} \times \{1, 3\} = \{(1, 1), (1, 3), (2, 1), (2, 3)\}$$

Por tanto $|U| = 4 \neq (3-1)(4-1)$ y la igualdad no se tiene.

Ejercicio 8 (1.25 puntos). Sea $\phi : R \to \mathbb{C} \times \mathbb{C}$ la aplicación definida por $\phi(r) = (r, r)$. Demostrar que ϕ es un homomorfismo de anillos.

Para $b=(1,i)\in\mathbb{C}\times\mathbb{C}$ y haciendo uso de la propiedad universal, considérese $\phi_b:\mathbb{R}[X]\to\mathbb{C}\times\mathbb{C}$ el homomorfismo inducido por ϕ . Determinar el valor de $\phi_b(f)$ para $f=3+2x^2-3x^3$.

Puesto que, dados $r, s \in \mathbb{R}$ se tiene que

$$\phi(r+s) = (r+s, r+s) = (r, r) + (s, s) = \phi(r) + \phi(s)$$

$$\phi(rs) = (rs, rs) = (r, r) \cdot (s, s) = \phi(r) \cdot \phi(s)$$

y además, $\phi(1) = (1,1)$, el uno de $\mathbb{C} \times \mathbb{C}$. Tenemos que ϕ es un homomorfismo.

Dado b=(1,i), se tiene por la propiedad universal, el homomorfismo dado por $\phi_b: \mathbb{R}[X] \to \mathbb{C} \times \mathbb{C}$ que está definido por

$$\phi_b \left(\sum_{k=0}^n a_k x^k \right) = \sum_{k=0}^n \phi(a_k) \cdot b^k = \sum_{k=0}^n \phi(a_k) (1, i)^k.$$

Entonces

$$\phi_b(3+2x^2-3x^3) = \phi(3) + \phi(2)(1,i)^2 - \phi(3)(1,i)^3$$

= $(3,3) + (2,2)(1,-1) - (3,3)(1,-i) = (3,3) + (2,-2) - (3,-3i)$
= $(3+2-3,3-2+3i) = (2,1+3i)$.