exercícios resolvidos para a unidade curricular

Tópicos de Matemática Discreta

mestrado integrado em Engenharia Informática

Universidade do Minho 2019/2020

Cláudia Mendes Araújo Suzana Mendes Gonçalves

Capítulo 1

Noções elementares de lógica

- 1.1. Das seguintes frases indique aquelas que são proposições:
 - (a) A Terra é redonda.
 - (b) Hoje está sol.
 - (c) 2 + x = 3 e 2 é par.
 - (d) $(25 \times 2) + 7$
 - (e) 2 é impar ou 3 é múltiplo de 4.
 - (f) Qual é o conjunto de soluções inteiras da equação $x^2 1 = 0$?
 - (g) 4 < 3
 - (h) Se $x \ge 2$ então $x^3 \ge 1$.
 - (i) A U.M. é a melhor academia do país.

resolução:

Relembremos que uma proposição é uma frase declarativa sobre a qual é possível dizer objetivamente se é verdadeira ou falsa (dado um contexto fixado à partida e ainda que possamos não ser capazes de, no momento, determinar o seu valor lógico).

Das frases apresentadas são proposições as seguintes: (a), (b), (e), (g) e (h).

As frases (d) e (f) não são proposições, uma vez que não são frases declarativas. A frase (c) não é uma proposição uma vez que a sua veracidade depende do valor atribuído a x. Relativamente à frase (h), repare-se que a afirmação é verdadeira independentemente do valor da variável x. De facto, se $x \geq 2$, sabemos que $x^3 \geq 2^3$, ou seja, $x^3 \geq 8$, o que, obviamente, implica $x^3 \geq 1$. Em relação à segunda frase, subentende-se um determinado contexto (um determinado dia num dado local). Sobre a última frase da lista, note-se que não existe uma norma reconhecida para o que é efetivamente a melhor academia.

1.2. Representando as frases Eu gosto de leite, Eu não gosto de cereais e Eu sei fazer crepes por p_0 , p_1 e p_2 , respetivamente, traduza as seguintes fórmulas para linguagem corrente:

(a) $p_0 \wedge p_1$ (c) $\neg p_2$

(e) $\neg p_0 \lor \neg p_1$ (g) $(p_2 \land p_0) \lor p_1$

(b) $p_1 \vee p_2$ (d) $\neg (p_0 \vee p_1)$ (f) $p_2 \to p_0$ (h) $p_2 \wedge (p_0 \vee p_1)$

resolução:

(a) Eu gosto de leite e não gosto de cereais.

(b) Eu gosto de leite ou sei fazer crepes.

(c) Eu não sei fazer crepes.

(d) Eu não gosto de leite mas gosto de cereais. [em alternativa, Não é verdade que: eu gosto de leite ou não gosto de cereais.]

(e) Eu não gosto de leite ou gosto de cereais.

(f) Se eu sei fazer crepes então eu gosto de leite.

(g) Eu sei fazer crepes e gosto de leite ou eu não gosto de cereais.

(h) Eu sei fazer crepes e eu gosto de leite ou não gosto de cereais.

1.3. Considere as proposições 7 é um número inteiro par, 3+1=4 e 24 é divisível por 8 representadas, respetivamente, por p_0 , p_1 e p_2 .

(a) Escreva fórmulas que representem as afirmações:

(i) $3+1 \neq 4$ e 24 é divisível por 8.

(ii) Não é verdade que: 7 é ímpar ou 3 + 1 = 4.

(iii) Se 3 + 1 = 4 então 24 não é divisível por 8.

(b) Traduza por frases cada uma das seguintes fórmulas:

(i) $p_0 \vee (\neg p_2)$ (ii) $\neg (p_0 \wedge p_1)$ (iii) $(\neg p_2) \rightarrow (\neg p_1 \vee p_0)$

resolução:

(a)

(i) $\neg p_1 \wedge p_2$ (ii) $\neg (\neg p_0 \vee p_1)$ (iii) $p_1 \rightarrow \neg p_2$

(b)

(i) 7 é um inteiro par ou 24 não é divisível por 8.

(ii) 7 não é um inteiro par ou $3+1 \neq 4$. [em alternativa, Não é verdade que: 7 é um inteiro par e 3 + 1 = 4.

(iii) Se 24 não é divisível por 8, então $3+1\neq 4$ ou 7 é um inteiro par.

1.4. De entre as seguintes palavras sobre o alfabeto do Cálculo Proposicional, indique, justificando, aquelas que pertencem ao conjunto \mathcal{F}^{CP} :

(a)
$$(\neg (p_1 \lor p_2))$$

(d)
$$((p_0 \land \neg p_0) \rightarrow \bot)$$

(b)
$$((\neg p_5) \to (\neg p_6))$$

(e)
$$(\perp)$$

(c)
$$((p_3 \land p_1) \lor ($$

(f)
$$(((p_9 \to ((p_3 \lor (\neg p_8)) \land p_{12})) \leftrightarrow (\neg p_4)) \to (p_7 \lor \bot)))$$

resolução:

Recordemos que o conjunto \mathcal{F}^{CP} das fórmulas do Cálculo Proposicional é o conjunto definido indutivamente pelas seguintes regras:

- $(F_1) \perp$ é uma fórmula do CP;
- (F_2) toda a variável proposicional é uma fórmula do CP;
- (F_3) se φ é uma fórmula do CP, então $(\neg \varphi)$ é uma fórmula do CP;
- (F_4) se φ , ψ são fórmulas do CP, então $(\varphi \wedge \psi)$ é uma fórmula do CP;
- (F_5) se φ , ψ são fórmulas do CP, então $(\varphi \lor \psi)$ é uma fórmula do CP;
- (F_6) se φ , ψ são fórmulas do CP, então $(\varphi \to \psi)$ é uma fórmula do CP;
- (F_7) se φ , ψ são fórmulas do CP, então $(\varphi \leftrightarrow \psi)$ é uma fórmula do CP.

Nesta resolução vamos assumir a convenção de que os parêntesis extremos e os parêntesis à volta de negações podem ser omitidos, por simplificação de escrita.

- (a) $(\neg (p_1 \lor p_2)) \in \mathcal{F}^{CP}$, uma vez que:
 - ① $p_1, p_2 \in \mathcal{F}^{CP}$ pela regra F_2 ;
 - ② $(p_1 \lor p_2) \in \mathcal{F}^{CP}$ pela regra F_5 e por ①;
 - $(\neg (p_1 \lor p_2)) \in \mathcal{F}^{CP}$ pela regra F_3 e por (2).
- (b) $((\neg p_5) \rightarrow (\neg p_6)) \in \mathcal{F}^{CP}$, uma vez que:
 - ① $p_5, p_6 \in \mathcal{F}^{CP}$ pela regra F_2 ;
 - ② $(\neg p_5), (\neg p_6) \in \mathcal{F}^{CP}$ pela regra F_3 e por ①;
 - $(\neg p_5) \rightarrow (\neg p_6) \in \mathcal{F}^{CP}$ pela regra F_6 e por $(\neg p_6)$
- (c) Nesta palavra existe um número distinto de parêntesis direitos e de parêntesis esquerdos, o que nunca acontece numa fórmula do Cálculo Proposicional. Portanto, $((p_3 \wedge p_1) \vee (\not\in \mathcal{F}^{CP})$.
- (d) $((p_0 \land \neg p_0) \to \bot) \in \mathcal{F}^{CP}$, uma vez que:
 - ① $\bot \in \mathcal{F}^{CP}$ pela regra F_1 ;
 - ② $p_0 \in \mathcal{F}^{CP}$ pela regra F_2 ;
 - \bigcirc $\neg p_0 \in \mathcal{F}^{CP}$ pela regra F_3 e por \bigcirc ;
 - $\textcircled{4} (p_0 \land \neg p_0) \in \mathcal{F}^{CP}$ pela regra F_4 e por 2 e 3;
 - (5) $((p_0 \land \neg p_0) \to \bot) \in \mathcal{F}^{CP}$ pela regra F_6 e por (4) e (1).
- (e) Note-se que não existe nenhuma regra, na definição indutiva de \mathcal{F}^{CP} , que introduza parêntesis sem introduzir um dos conetivos \neg , \wedge , \vee , \rightarrow ou \leftrightarrow . Assim, $(\bot) \not\in \mathcal{F}^{CP}$.

(f) Nesta palavra existe um número distinto de parêntesis direitos e de parêntesis esquerdos, o que nunca acontece numa fórmula do Cálculo Proposicional.

Logo,
$$(((p_9 \to ((p_3 \lor (\neg p_8)) \land p_{12})) \leftrightarrow (\neg p_4)) \to (p_7 \lor \bot))) \notin \mathcal{F}^{CP}$$
.

- 1.5. Das seguintes proposições indique as que são verdadeiras:
 - (a) $(e < 4) \land (e^2 < 9)$
 - (b) 1 e -1 são soluções da equação $x^3 1 = 0$.
 - (c) 64 é múltiplo de 3 ou de 4.
 - (d) $\sqrt{530} < 25 \rightarrow 530 < 25^2$
 - (e) 7^4 é par se e só se $7^4 + 1$ é impar.

resolução:

- (a) Representemos por p_0 a proposição simples e<4 e por p_1 a proposição simples $e^2<9$. A proposição dada é, assim, representada por $p_0 \wedge p_1$. Sabemos que a proposição é verdadeira se e só se as proposições p_0 e p_1 são ambas verdadeiras. Como $e\sim2,7$, é verdade que e<4. Além disso, sendo e<3, $e^2<3^2=9$. Portanto, a afirmação (a) é verdadeira.
- (b) Representemos por p_0 a proposição "1 é solução da equação $x^3-1=0$ " e por p_1 a proposição "-1 é solução da equação $x^3-1=0$ ". A proposição dada, representada por $p_0 \wedge p_1$, é verdadeira se e somente se p_0 e p_1 são ambas verdadeiras. Ora, $1^3-1=0$, pelo que p_0 é verdadeira, mas $(-1)^3-1=-2$, donde p_1 é falsa. Portanto, -1 não é solução da equação $x^3-1=0$ e a afirmação é falsa.
- (c) Representemos por p_0 a proposição "64 é múltiplo de 3" e por p_1 a proposição "64 é múltiplo de 4". A proposição dada é, então, representada por $p_0 \lor p_1$ e é verdadeira se e somente se pelo menos uma das proposições p_0 , p_1 é verdadeira. Sabemos que 64 não é múltiplo de 3 mas é múltiplo de 4. Logo, a afirmação é verdadeira.
- (d) Representemos por p_0 a proposição $\sqrt{530} < 25$ e por p_1 a proposição $530 < 25^2$. A proposição dada é, assim, representada por $p_0 \to p_1$. Sabemos que, para mostrar que $p_0 \to p_1$ é verdadeira, devemos assumir a veracidade de p_0 e mostrar que, nesse caso, também p_1 é verdadeira. Admitamos, então, que $\sqrt{530} < 25$. Elevando ambos os membos ao quadrado, obtemos $(\sqrt{530})^2 < 25^2$, ou seja, $530 < 25^2$. Portanto, se p_0 é verdadeira, também p_1 é verdadeira. Verificámos, deste modo, que a afirmação dada é verdadeira.
- (e) Representemos por p_0 a proposição " 7^4 é par" e por p_1 a proposição " 7^4+1 é ímpar". Notese que p_1 pode ser reescrita na forma " $(7^4+1)-1$ é par", uma vez que um inteiro é ímpar se e somente se o seu antecessor é par. Assim, p_0 e p_1 representam frases em que se afirma precisamente o mesmo. Por isso, os valores lógicos de p_0 e de p_1 são iguais. A afirmação dada é representada por $p_0 \leftrightarrow p_1$. Como os valores lógicos de p_0 e p_1 são iguais, $p_0 \leftrightarrow p_1$ é uma proposição verdadeira.

1.6. Construa tabelas de verdade para cada uma das seguintes fórmulas do Cálculo Proposicional:

(a)
$$p_0 \vee (\neg p_0)$$

(g)
$$(p_0 \to p_1) \leftrightarrow (\neg p_0 \lor p_1)$$

(b)
$$\neg (p_0 \lor p_1)$$

(h)
$$(p_0 \to p_1) \leftrightarrow (\neg p_1 \to \neg p_0)$$

(c)
$$p_0 \wedge \neg (p_0 \vee p_1)$$

(i)
$$p_0 \to (p_1 \to p_2)$$

(d)
$$p_0 \wedge (\neg p_0 \vee p_1)$$

$$(j) p_0 \wedge \neg (p_1 \to p_2)$$

(e)
$$\neg (p_0 \rightarrow \neg p_1)$$

(k)
$$(p_0 \leftrightarrow \neg p_2) \lor (p_1 \land p_2)$$

(f)
$$p_0 \leftrightarrow (p_1 \lor p_0)$$

(1)
$$(p_0 \to (p_1 \to p_2)) \to ((p_0 \land p_1) \to p_2)$$

resolução:

(a)

p_0	$\neg p_0$	$p_0 \vee \neg p_0$
1	0	1
0	1	1

(b)

p_0	p_1	$p_0 \vee p_1$	$\neg(p_0\vee p_1)$
1	1	1	0
1	0	1	0
0	1	1	0
0	0	0	1

(c)

p_0	p_1	$p_0 \vee p_1$	$\neg(p_0\vee p_1)$	$p_0 \wedge \neg (p_0 \vee p_1)$
1	1	1	0	0
1	0	1	0	0
0	1	1	0	0
0	0	0	1	0

(d)

p_0	p_1	$\neg p_0$	$\neg p_0 \lor p_1$	$p_0 \wedge (\neg p_0 \vee p_1)$
1	1	0	1	1
1	0	0	0	0
0	1	1	1	0
0	0	1	1	0

6

(e)

p_0	p_1	$\neg p_1$	$p_0 \rightarrow \neg p_1$	$\neg (p_0 \to \neg p_1)$
1	1	0	0	1
1	0	1	1	0
0	1	0	1	0
0	0	1	1	0

(f)

p_0	p_1	$p_1 \vee p_0$	$p_0 \leftrightarrow (p_1 \lor p_0)$
1	1	1	1
1	0	1	1
0	1	1	0
0	0	0	1

(g)

p_0	p_1	$\neg p_0$	$p_0 \rightarrow p_1$	$\neg p_0 \lor p_1$	$(p_0 \to p_1) \leftrightarrow (\neg p_0 \lor p_1)$
1	1	0	1	1	1
1	0	0	0	0	1
0	1	1	1	1	1
0	0	1	1	1	1

(h)

p_0	p_1	$\neg p_0$	$\neg p_1$	$p_0 \rightarrow p_1$	$\neg p_1 \rightarrow \neg p_0$	$(p_0 \to p_1) \leftrightarrow (\neg p_1 \to \neg p_0)$
1	1	0	0	1	1	1
1	0	0	1	0	0	1
0	1	1	0	1	1	1
0	0	1	1	1	1	1

(i)

p_0	p_1	p_2	$p_1 \rightarrow p_2$	$p_0 \to (p_1 \to p_2)$
1	1	1	1	1
1	1	0	0	0
1	0	1	1	1
1	0	0	1	1
0	1	1	1	1
0	1	0	0	1
0	0	1	1	1
0	0	0	1	1

(j)

p_0	p_1	p_2	$p_1 \rightarrow p_2$	$\neg (p_1 \to p_2)$	$p_0 \wedge (p_1 \to p_2)$
1	1	1	1	0	0
1	1	0	0	1	1
1	0	1	1	0	0
1	0	0	1	0	0
0	1	1	1	0	0
0	1	0	0	1	0
0	0	1	1	0	0
0	0	0	1	0	0

(k)

p_0	p_1	p_2	$\neg p_2$	$p_0 \leftrightarrow \neg p_2$	$p_1 \wedge p_2$	$(p_0 \leftrightarrow \neg p_2) \lor (p_1 \land p_2)$
1	1	1	0	0	1	1
1	1	0	1	1	0	1
1	0	1	0	0	0	0
1	0	0	1	1	0	1
0	1	1	0	1	1	1
0	1	0	1	0	0	0
0	0	1	0	1	0	1
0	0	0	1	0	0	0

(1)

p_0	p_1	p_2	$p_1 \rightarrow p_2$	$p_0 \to (p_1 \to p_2)$	$p_0 \wedge p_1$	$(p_0 \wedge p_1) \to p_2$	$(p_0 \to (p_1 \to p_2)) \to ((p_0 \land p_1) \to p_2)$
1	1	1	1	1	1	1	1
1	1	0	0	0	1	0	1
1	0	1	1	1	0	1	1
1	0	0	1	1	0	1	1
0	1	1	1	1	0	1	1
0	1	0	0	1	0	1	1
0	0	1	1	1	0	1	1
0	0	0	1	1	0	1	1

1.7. Suponha que p_0 representa uma proposição verdadeira, p_1 uma proposição falsa, p_2 uma proposição falsa e p_3 uma proposição verdadeira. Quais das seguintes fórmulas são verdadeiras e quais são falsas?

(a)
$$p_0 \vee p_2$$

(b)
$$(p_2 \land p_3) \lor p_1$$

(c)
$$\neg (p_0 \land p_1)$$

(d)
$$\neg p_3 \lor \neg p_2$$

(e)
$$(p_3 \land p_0) \lor (p_1 \land p_2)$$

(d)
$$\neg p_3 \lor \neg p_2$$
 (e) $(p_3 \land p_0) \lor (p_1 \land p_2)$ (f) $p_2 \lor (p_3 \lor (p_0 \land p_1))$

(g)
$$p_2 \rightarrow p_1$$

(h)
$$p_0 \leftrightarrow p_2$$

(i)
$$(p_1 \leftrightarrow p_3) \land p_0$$

$$(j) p_3 \to (p_0 \to \neg p_3)$$

(j)
$$p_3 \to (p_0 \to \neg p_3)$$
 (k) $((p_1 \to p_3) \leftrightarrow p_3) \land \neg p_0$ (l) $(p_3 \to p_0) \leftrightarrow \neg (p_2 \lor p_1)$

(1)
$$(p_3 \rightarrow p_0) \leftrightarrow \neg (p_2 \lor p_1)$$

resolução:

Sabemos que os valores lógicos das variáveis proposicionais que ocorrem nas fórmulas consideradas são os seguintes:

p_0	p_1	p_2	p_3
1	0	0	1

Em cada uma das alíneas, consideraremos, apenas, a linha da tabela de verdade da fórmula correspondente a esta combinação de valores ógicos.

(a)

p_0	p_2	$p_0 \vee p_2$
1	0	1

A fórmula $p_0 \vee p_2$ é verdadeira.

(b)

p_1	p_2	p_3	$p_2 \wedge p_3$	$(p_2 \wedge p_3) \vee p_1$
0	0	1	0	0

A fórmula $(p_2 \wedge p_3) \vee p_1$ é falsa.

(c)

p_0	p_1	$p_0 \wedge p_1$	$\neg (p_0 \wedge p_1)$
1	0	0	1

A fórmula $\neg(p_0 \land p_1)$ é verdadeira.

(d)

p_2	p_3	$\neg p_2$	$\neg p_3$	$\neg p_3 \lor \neg p_2$
0	1	1	0	1

A fórmula $\neg p_3 \lor \neg p_2$ é verdadeira.

(e)

p_0	p_1	p_2	p_3	$p_3 \wedge p_0$	$p_1 \wedge p_2$	$(p_3 \wedge p_0) \vee (p_1 \wedge p_2)$
1	0	0	1	1	0	1

A fórmula $(p_3 \wedge p_0) \vee (p_1 \wedge p_2)$ é verdadeira.

(f)

					$p_3 \vee (p_0 \wedge p_1)$	$p_2 \vee (p_3 \vee (p_0 \wedge p_1))$
1	0	0	1	0	1	1

A fórmula $p_2 \lor (p_3 \lor (p_0 \land p_1))$ é verdadeira.

(g)

p_1	p_2	$p_2 \rightarrow p_1$
0	0	1

A fórmula $p_2 o p_1$ é verdadeira.

(h)

p_0	p_2	$p_0 \leftrightarrow p_2$
1	0	0

A fórmula $p_0 \leftrightarrow p_2$ é falsa.

(i)

p_0	p_1	p_3	$p_1 \leftrightarrow p_3$	$(p_1 \leftrightarrow p_3) \land p_0$
1	0	1	0	0

A fórmula $(p_1 \leftrightarrow p_3) \land p_0$ é falsa.

(j)

p_0	p_3	$\neg p_3$	$p_0 \rightarrow \neg p_3$	$p_3 \to (p_0 \to \neg p_3)$
1	1	0	0	0

A fórmula $p_3 \to (p_0 \to \neg p_3)$ é falsa.

(k)

p_0	p_1	p_3	$\neg p_0$	$p_1 \rightarrow p_3$	$(p_1 \to p_3) \leftrightarrow p_3$	$((p_1 \to p_3) \leftrightarrow p_3) \land \neg p_0$
1	0	1	0	1	1	0

A fórmula $((p_1 \to p_3) \leftrightarrow p_3) \land \neg p_0$ é falsa.

(1)

p_0	p_1	p_2	p_3	$p_3 \rightarrow p_0$	$p_2 \vee p_1$	$\neg(p_2\vee p_1)$	$(p_3 \to p_0) \leftrightarrow \neg (p_2 \lor p_1)$
1	0	0	1	1	0	1	1

A fórmula $(p_3 \to p_0) \leftrightarrow \neg (p_2 \lor p_1)$ é verdadeira.

- **1.8.** Admitindo que p_0 , p_1 e p_2 representam proposições e que $p_0 \leftrightarrow p_1$ é falsa, o que pode dizer sobre o valor lógico das seguintes fórmulas?
 - (a) $p_0 \wedge p_1$
 - (b) $p_0 \vee p_1$
 - (c) $p_0 \rightarrow p_1$
 - (d) $(p_0 \wedge p_2) \leftrightarrow (p_1 \wedge p_2)$

resolução:

Sabemos que os valores lógicos das variáveis proposicionais p_0 e p_1 são distintos, uma vez que a fórmula $p_0 \leftrightarrow p_1$ é falsa. Assim, uma dessas variáveis proposicionais é verdadeira e a outra falsa.

- (a) Sendo uma das variáveis proposicionais p_0 , p_1 falsa, podemos afirmar que $p_0 \wedge p_1$ é falsa.
- (b) Dado que uma das variáveis proposicionais p_0, p_1 é verdadeira, podemos concluir que $p_0 \lor p_1$ é verdadeira.
- (c) Sabemos que as combinações possíveis de valores lógicos de p_0 e p_1 são as seguintes:

p_0	p_1
1	0
0	1

Assim, o valor lógico de $p_0 o p_1$ em cada um desses casos é descrito na tabela que se segue:

p_0	p_1	$p_0 \rightarrow p_1$
1	0	0
0	1	1

Podemos, assim, afirmar que o valor lógico de $p_0 \rightarrow p_1$ é igual ao de p_1 .

(d) As combinações possíveis de valores lógicos de p_0 , p_1 e p_2 são

p_0	p_1	p_2	
1	0	1	
1	0	0	,
0	1	1	
0	1	0	

pelo que o valor lógico de $(p_0 \wedge p_2) \leftrightarrow (p_1 \wedge p_2)$ em cada um desses casos é descrito na tabela seguinte:

p_0	p_1	p_2	$p_0 \wedge p_2$	$p_1 \wedge p_2$	$(p_0 \wedge p_2) \leftrightarrow (p_1 \wedge p_2)$
1	0	1	1	0	0
1	0	0	0	0	1
0	1	1	0	1	0
0	1	0	0	0	1

Podemos, assim, afirmar que o valor lógico de $(p_0 \wedge p_2) \leftrightarrow (p_1 \wedge p_2)$ é contrário ao de p_2 .

- 1.9. Suponha que o Manuel gosta da cor azul, não gosta da cor vermelha, gosta da cor amarela e não gosta da cor verde. Quais das seguintes proposições são verdadeiras e quais são falsas?
 - (a) O Manuel gosta de azul e de vermelho.
 - (b) O Manuel gosta de amarelo ou verde e o Manuel não gosta de vermelho.
 - (c) O Manuel gosta de vermelho ou o Manuel gosta de azul e amarelo.
 - (d) O Manuel gosta de azul ou amarelo e o Manuel gosta de vermelho ou verde.
 - (e) Se o Manuel gosta de azul então gosta de amarelo.
 - (f) O Manuel gosta de amarelo se e só se gosta de vermelho.
 - (g) O Manuel gosta de verde e se o Manuel gosta de amarelo então gosta de azul.
 - (h) Se o Manuel gosta de amarelo então gosta de verde ou o Manuel gosta de amarelo se e só se gosta de vermelho.

resolução:

Representemos por p_0, p_1, p_2 e p_3 , respetivamente, as seguintes frases declarativas simples: "O Manuel gosta da cor azul", "O Manuel gosta da cor vermelha", "O Manuel gosta da cor amarela" e "O Manuel gosta da cor verde". Sabemos que os valores lógicos de p_0, p_1, p_2 e p_3 são como se descreve na tabela que se segue:

p_0	p_1	p_2	p_3
1	0	1	0

Em cada uma das alíneas, apresentemos a fórmula que representa a proposição dada e estudemos o seu valor l'ogico, considerando as anteriores frases declarativas simples e a sua representação por p_0, p_1, p_2 e p_3 , assim como os respetivos valores lógicos.

(a) $p_0 \wedge p_1$

p_0	p_1	$p_0 \wedge p_1$		
1	0	0		

A proposição é, portanto, falsa.

(b) $(p_2 \lor p_3) \land \neg p_1$

p_1	p_2	p_3	$\neg p_1$	$p_2 \vee p_3$	$(p_2 \vee p_3) \wedge \neg p_1$
0	1	0	1	1	1

A proposição é verdadeira.

(c) $p_1 \vee (p_0 \wedge p_2)$

	p_0	p_1	p_2	$p_0 \wedge p_2$	$p_1 \vee (p_0 \wedge p_2)$
ſ	1	0	1	1	1

Podemos, assim, afirmar que a proposição é verdadeira.

(d) $(p_0 \vee p_2) \wedge (p_1 \vee p_3)$

Ţ	00	p_1	p_2	p_3	$p_0 \vee p_2$	$p_1 \vee p_3$	$(p_0 \vee p_2) \wedge (p_1 \vee p_3)$
	1	0	1	0	1	0	0

A proposição é, portanto, falsa.

(e) $p_0 \to p_2$

p_0	p_2	$p_0 \rightarrow p_2$
1	1	1

Logo, a proposição é verdadeira.

(f) $p_2 \leftrightarrow p_1$

$$\begin{array}{c|cccc} p_1 & p_2 & p_2 \leftrightarrow p_1 \\ \hline 0 & 1 & 0 \\ \end{array}$$

Concluímos, então, que a proposição é falsa.

(g) $p_3 \wedge (p_2 \rightarrow p_0)$

p_0	p_2	p_3	$p_2 \rightarrow p_0$	$p_3 \wedge (p_2 \to p_0)$
1	1	0	1	0

Podemos, assim, afirmar que a proposição é falsa.

(h) $(p_2 \rightarrow p_3) \lor (p_2 \leftrightarrow p_1)$

p_1	p_2	p_3	$p_2 \rightarrow p_3$	$p_2 \leftrightarrow p_1$	$(p_2 \to p_3) \lor (p_2 \leftrightarrow p_1)$
0	1	0	0	0	0

A proposição é, portanto, falsa.

1.10. Considere as seguintes afirmações:

- Se há vida em Marte, então Zuzarte gosta de tarte.
- Zuzarte é um marciano ou não gosta de tarte.
- Zuzarte não é um marciano, mas há vida em Marte.
- (a) Exprima as afirmações anteriores através de fórmulas do Cálculo Proposicional, utilizando variáveis proposicionais para representar as frases simples.
- (b) Mostre que as três afirmações acima não podem ser simultaneamente verdadeiras.

resolução:

(a) Representemos por p_0 , p_1 e p_2 , respetivamente, as frases simples "Há vida em Marte", "Zuzarte gosta de tarte" e "Zuzarte é um marciano". As afirmações apresentadas podem ser expressas, então, por

$$\varphi = p_0 \to p_1$$
$$\psi = p_2 \lor \neg p_1$$
$$\sigma = \neg p_2 \land p_0$$

(b) Assumamos que as três afirmações podem ser simultaneamente verdadeiras e procuremos uma contradição. Sendo σ verdadeira, podemos afirmar que p_2 é falsa e p_0 é verdadeira. Nesse caso, dado que ψ também é verdadeira, podemos concluir que p_1 é falsa. Mas, assim, φ é falsa, o que contradiz a nossa assumpção de que as três afirmações são simultaneamente verdadeiras. Provámos, deste modo, que as três afirmações não podem ser simultaneamente verdadeiras.

NOTA: Em alternativa, podemos construir uma tabela conjunta para as três fórmulas e verificar que para nenhuma combinação possível de valores lógicos de p_0, p_1 e p_2 se tem φ, ψ e σ simultaneamente verdadeiras

p_0	p_1	p_2	$\neg p_1$	$\neg p_2$	φ	ψ	σ
1	1	1	0	0	1	1	0
1	1	0	0	1	1	0	1
1	0	1	1	0	0	1	0
1	0	0	1	1	0	1	1
0	1	1	0	0	1	1	0
0	1	0	0	1	1	0	0
0	0	1	1	0	1	1	0
0	0	0	1	1	1	1	0

1.11. De entre as seguintes fórmulas, indique aquelas que são tautologias e aquelas que são contradições:

(a)
$$p_0 \to (p_0 \vee p_1)$$

(d)
$$(p_0 \to (p_0 \lor p_1)) \land p_1$$

(b)
$$\neg (p_0 \land p_1) \to (p_0 \lor p_1)$$

(b)
$$\neg (p_0 \land p_1) \to (p_0 \lor p_1)$$
 (e) $(p_0 \lor \neg p_0) \to (p_0 \land \neg p_0)$

(c)
$$(p_0 \rightarrow p_1) \leftrightarrow (\neg p_1 \rightarrow \neg p_0)$$

$$(f) \neg (p_0 \to (p_1 \to p_0))$$

resolução:

Recordemos que uma tautologia é uma fórmula que assume sempre o valor lógico verdadeiro, independentemente dos valores lógicos das variáveis proposicionais que a compõem, e uma contradição é uma fórmula que assume sempre o valor lógico falso, independentemente dos valores lógicos das variáveis proposicionais que a compõem. Através da tabela de verdade de cada fórmula, podemos, em cada alínea, decidir se a fórmula em questão é uma tautologia, uma contradição ou nem tautologia nem contradição.

(a)

p_0	p_1	$p_0 \vee p_1$	$p_0 \to (p_0 \vee p_1)$
1	1	1	1
1	0	1	1
0	1	1	1
0	0	0	1

A fórmula $p_0 \to (p_0 \lor p_1)$ é, portanto, uma tautologia.

(b)

p_0	p_1	$p_0 \wedge p_1$	$\neg(p_0 \land p_1)$	$p_0 \vee p_1$	$\neg (p_0 \land p_1) \to (p_0 \lor p_1)$
1	1	1	0	1	1
1	0	0	1	1	1
0	1	0	1	1	1
0	0	0	1	0	0

A fórmula $\neg(p_0 \land p_1) \rightarrow (p_0 \lor p_1)$ não é nem tautologia nem contradição.

(c)

p_0	p_1	$\neg p_0$	$\neg p_1$	$p_0 \rightarrow p_1$	$\neg p_1 \rightarrow \neg p_0$	$(p_0 \to p_1) \leftrightarrow (\neg p_1 \to \neg p_0)$
1	1	0	0	1	1	1
1	0	0	1	0	0	1
0	1	1	0	1	1	1
0	0	1	1	1	1	1

A fórmula $(p_0 \to p_1) \leftrightarrow (\neg p_1 \to \neg p_0)$ é uma tautologia.

(d)

p_0	p_1	$(p_0 \vee p_1)$	$p_0 \to (p_0 \vee p_1)$	$(p_0 \to (p_0 \lor p_1)) \land p_1$
1	1	1	1	1
1	0	1	1	0
0	1	1	1	1
0	0	0	1	0

A fórmula $(p_0 o (p_0 \vee p_1)) \wedge p_1$ não é nem tautologia nem contradição.

(e)

	p_0	$\neg p_0$	$p_0 \vee \neg p_0$	$p_0 \wedge \neg p_0$	$(p_0 \vee \neg p_0) \to (p_0 \wedge \neg p_0)$		
	1	0	1	0	0		
Ì	0	1 1		0	0		

A fórmula $(p_0 \vee \neg p_0) \to (p_0 \wedge \neg p_0)$ é uma contradição.

(f)

p_0	p_1	$p_1 \rightarrow p_0$	$p_0 \to (p_1 \to p_0)$	$\neg (p_0 \to (p_1 \to p_0))$
1	1	1	1	0
1	0	1	1	0
0	1	0	1	0
0	0	1	1	0

A fórmula $\neg(p_0 \to (p_1 \to p_0))$ é uma contradição.

1.12. Indique quais dos pares de fórmulas que se seguem são logicamente equivalentes:

(a)
$$\neg (p_0 \land p_1)$$
; $\neg p_0 \land \neg p_1$

(b)
$$p_0 \to p_1$$
; $p_1 \to p_0$

$$(c) \neg (p_0 \rightarrow p_1): p_0 \land (p_1 \rightarrow (p_0 \land \neg p_0))$$

(a)
$$\neg (p_0 \land p_1); \neg p_0 \land \neg p_1$$
 (b) $p_0 \to p_1; p_1 \to p_0$
 (c) $\neg (p_0 \to p_1); p_0 \land (p_1 \to (p_0 \land \neg p_0))$ (d) $p_0 \to (p_1 \to p_2); \neg (\neg p_2 \to \neg p_1) \to \neg p_0$

resolução:

Sabemos que duas fórmulas φ e ψ são logicamente equivalentes se $\varphi \leftrightarrow \psi$ é uma tautologia. Assim, para cada par de fórmulas φ e ψ , construimos, em cada alínea, a tabela de verdade de $\varphi \leftrightarrow \psi$ e verificamos se essa fórmula assume sempre o valor lógico verdadeiro, independentemente dos valores lógicos das variáveis proposicionais que a compõem.

(a)

p_0	p_1	$\neg p_0$	$\neg p_1$	$p_0 \wedge p_1$	$\neg (p_0 \wedge p_1)$	$\neg p_0 \wedge \neg p_1$	$\neg (p_0 \land p_1) \leftrightarrow (\neg p_0 \land \neg p_1)$
1	1	0	0	1	0	0	1
1	0	0	1	0	1	0	0
0	1	1	0	0	1	0	0
0	0	1	1	0	1	1	1

Como podemos verificar pela tabela de verdade acima, a fórmula $\neg(p_0 \land p_1) \leftrightarrow (\neg p_0 \land \neg p_1)$ não é uma tautologia e, por conseguinte, as fórmulas $\neg(p_0 \land p_1)$ e $\neg p_0 \land \neg p_1$ não são logicamente equivalentes.

(b)

	p_0	p_1	$p_0 \rightarrow p_1$	$p_1 \rightarrow p_0$	$(p_0 \to p_1) \leftrightarrow (p_1 \to p_0)$
	1	1	1	1	1
ĺ	1	0	0	1	0
ĺ	0	1	1	0	0
Ì	0	0	1	1	1

Da tabela de verdade acima, sabemos que a fórmula $(p_0 \to p_1) \leftrightarrow (p_1 \to p_0)$ não é uma tautologia e, por conseguinte, as fórmulas $\neg (p_0 \land p_1)$ e $\neg p_0 \land \neg p_1$ não são logicamente equivalentes.

(c) Sejam
$$\varphi = \neg (p_0 \to p_1)$$
 e $\psi = p_0 \land (p_1 \to (p_0 \land \neg p_0))$.

p_0	p_1	$\neg p_0$	$p_0 \rightarrow p_1$	φ	$p_0 \wedge \neg p_0$	$p_1 \to (p_0 \land \neg p_0)$	ψ	$\varphi \leftrightarrow \psi$
1	1	0	1	0	0	0	0	1
1	0	0	0	1	0	1	1	1
0	1	1	1	0	0	0	0	1
0	0	1	1	0	0	1	0	1

Como podemos verificar pela tabela de verdade, a fórmula $\varphi \leftrightarrow \psi$ é uma tautologia e, portanto, as fórmulas φ e ψ são logicamente equivalentes.

NOTA: Em alternativa, podemos apresentar uma sequência de equivalências lógicas que mostre que $\varphi \Leftrightarrow \psi$:

$$\begin{split} \psi &\Leftrightarrow p_0 \wedge (p_1 \to \perp) \quad [\text{pois } p_0 \wedge \neg p_0 \Leftrightarrow \perp] \\ &\Leftrightarrow p_0 \wedge \neg p_1 \quad [\text{uma vez que } \sigma \to \perp \Leftrightarrow \neg \sigma, \text{ para qualquer } \sigma \in \mathcal{F}^{CP}] \\ &\Leftrightarrow \varphi \quad [\text{pois } \neg (\sigma \to \tau) \Leftrightarrow \sigma \wedge \neg \tau, \text{ para quaisquer } \sigma, \tau \in \mathcal{F}^{CP}] \end{split}$$

(d) Sejam
$$\varphi=p_0\to (p_1\to p_2)$$
 e $\psi=\neg(\neg p_2\to \neg p_1)\to \neg p_0.$

p_0	p_1	p_2	$\neg p_0$	$\neg p_1$	$\neg p_2$	$p_1 \rightarrow p_2$	φ	$\neg p_2 \rightarrow \neg p_1$	$\neg(\neg p_2 \to \neg p_1)$	ψ	$\varphi \leftrightarrow \psi$
1	1	1	0	0	0	1	1	1	0	1	1
1	1	0	0	0	1	0	0	0	1	0	1
1	0	1	0	1	0	1	1	1	0	1	1
1	0	0	0	1	1	1	1	1	0	1	1
0	1	1	1	0	0	1	1	1	0	1	1
0	1	0	1	0	1	0	1	0	1	1	1
0	0	1	1	1	0	1	1	1	0	1	1
0	0	0	1	1	1	1	1	1	0	1	1

Pela tabela de verdade, podemos concluir que a fórmula $\varphi \leftrightarrow \psi$ é uma tautologia e, portanto, as fórmulas φ e ψ são logicamente equivalentes.

NOTA: Em alternativa, podemos apresentar uma sequência de equivalências lógicas que mostre que $\varphi \Leftrightarrow \psi$:

$$\varphi \Leftrightarrow \neg(p_1 \to p_2) \to \neg p_0 \text{ [pois } \sigma \to \tau \Leftrightarrow \neg \tau \to \neg \sigma, \text{ para quaisquer } \sigma, \tau \in \mathcal{F}^{CP}]$$

 $\Leftrightarrow \neg(\neg p_2 \to \neg p_1) \to \neg p_0 = \psi$

1.13. Encontre uma fórmula que seja logicamente equivalente à fórmula $p_0 \lor \neg p_1$ e que envolva apenas os conetivos \land e \neg .

resolução:

Pela dupla negação, sabemos que

$$p_0 \vee \neg p_1 \Leftrightarrow \neg \neg (p_0 \vee \neg p_1)$$

e, pelas leis de De Morgan, temos

$$\neg\neg(p_0 \lor \neg p_1) \Leftrightarrow \neg(\neg p_0 \land \neg \neg p_1).$$

Assim, novamente pela dupla negação e ainda pela transitividade da relação de equivalência lógica,

$$p_0 \vee \neg p_1 \Leftrightarrow \neg (\neg p_0 \wedge p_1)$$

e esta última fórmula envolve apenas os conetivos \wedge e \neg .

- 1.14. Exprima cada uma das seguintes frases como quantificações:
 - (a) A equação $x^3=28$ tem pelo menos uma solução nos números naturais.
 - (b) 1000000 não é o maior número natural.
 - (c) A soma de três números naturais consecutivos é um múltiplo de 3.
 - (d) Entre cada dois números racionais distintos existe um outro número racional.

resolução:

(a)
$$\exists_{x \in \mathbb{N}} \ x^3 = 28$$

(b)
$$\exists_{x \in \mathbb{N}} \ x > 1000000$$

(c)
$$\forall_{n \in \mathbb{N}} \exists_{k \in \mathbb{N}} \ n + (n+1) + (n+2) = 3k$$

(c)
$$\forall_{x \in \mathbb{Q}} \forall_{y \in \mathbb{Q}} \ (x \neq y \to \exists_{z \in \mathbb{Q}} \ (x < z < y \lor y < z < x)$$

1.15. Considere a seguinte proposição:

Todos os Hobbits são criaturas pacíficas.

Indique qual ou quais das seguintes proposições equivale à negação da proposição anterior:

- (a) Todos os Hobbits são criaturas conflituosas.
- (b) Nem todos os Hobbits são criaturas pacíficas.
- (c) Existem Hobbits que são criaturas conflituosas.
- (d) Nem todos os Hobbits são criaturas conflituosas.

resolução:

Representemos por H um Hobbit arbitrário e por p(H) o predicado "H é criatura pacífica". Será seguramente aceitável assumir que "H é criatura conflituosa" corresponde à negação de p(H). Posto isto, a afirmação dada pode ser reescrita na forma

$$\forall_H \ p(H)$$

e s sua negação corresponderá a

$$\exists_H \neg p(H),$$

ou seja, "Existe pelo menos um Hobbit que é criatura conflituosa". Assim, a proposição da alínea (c) equivale, claramente, à negação da proposição dada. Relativamente às restantes proposições, note-se que a da alínea (a) pode ser reescrita como

$$\forall_H \neg p(H),$$

a da alínea (b) como

$$\neg(\forall_H \ p(H))$$

e a da alínea (d) como

$$\neg(\forall_H \neg p(H)).$$

Assim, destas três, apenas a proposição da alínea (b) equivale à negação da proposição dada.

- 1.16. Escreva quantificações equivalentes à negação de cada uma das seguintes proposições.
 - (a) Todo o OVNI tem o objetivo de conquistar alguma galáxia.
 - (b) Existem morcegos que pesam 50 ou mais quilogramas.
 - (c) A inequação $x^2 2x > 0$ verifica-se para todo o número real x.
 - (d) Existe um inteiro n tal que n^2 é um número perfeito.

resolução:

- (a) Existe pelo menos um OVNI que não tem o objetivo de conquistar alguma galáxia.
- (b) Todos os morcegos pesam menos de 50 quilogramas.
- (c) Existe pelo menos um número real x que não verifica a inequação $x^2-2x>0$.
- (d) Para qualquer inteiro n, n^2 não é um número perfeito.
- 1.17. Considere as seguintes proposições, em que o universo de cada uma das quantificações é o conjunto dos números reais.
 - (a) $\forall_x \exists_y \ x + y = 0$
 - (b) $\exists_x \forall_y \ x + y = 0$
 - (c) $\exists_x \forall_y \ x + y = y$
 - (d) $\forall_x (x > 0 \rightarrow \exists_y xy = 1)$

Para cada proposição p acima (i) indique se p é ou não verdadeira e (ii) apresente, sem recorrer ao conetivo negação, uma proposição que seja equivalente a $\neg p$.

resolução:

(a)

- (i) Em p afirma-se que, para todo o real x, existe pelo menos um real y tal que x+y=0. Ora, dado um real x, basta tomar y=-x. A afirmação p é, portanto, verdadeira.
 - (ii) Temos que

$$\neg p \Leftrightarrow \exists_x \neg (\exists_y \ x + y = 0)$$
$$\Leftrightarrow \exists_x \forall_y \ \neg (x + y = 0)$$
$$\Leftrightarrow \exists_x \forall_y \ x + y \neq 0$$

Assim, $\exists_x \forall_y \ x + y \neq 0$ é uma proposição equivalente a $\neg p$ e sem ocorrências do conetivo \neg .

(b)

- (i) Em p afirma-se que existe um real x tal que, para todo o real y, se tem x+y=0. Assim, para esse x, teríamos, por exemplo, x+1=0 e x+2=0, o que é impossível. A afirmação p é, portanto, falsa.
 - (ii) Temos que

$$\neg p \Leftrightarrow \forall_x \neg (\forall_y \ x + y = 0)$$
$$\Leftrightarrow \forall_x \exists_y \ \neg (x + y = 0)$$
$$\Leftrightarrow \forall_x \exists_y \ x + y \neq 0$$

Assim, $\forall_x \exists_y \ x+y \neq 0$ é uma proposição equivalente a $\neg p$ e sem ocorrências do conetivo \neg .

(c)

- (i) Em p afirma-se que existe um real x tal que, para todo o real y, se tem x+y=y. Consideremos x=0. Para esse valor de x, temos que x+y=0+y=y, pelo que a afirmação p é verdadeira.
 - (ii) Temos que

$$\neg p \Leftrightarrow \forall_x \neg (\forall_y \ x + y = y)$$
$$\Leftrightarrow \forall_x \exists_y \ \neg (x + y = y)$$
$$\Leftrightarrow \forall_x \exists_y \ x + y \neq y$$

Assim, $\forall_x \exists_y \ x+y \neq y$ é uma proposição equivalente a $\neg p$ e sem ocorrências do conetivo \neg .

(d)

- (i) Em p afirma-se que, para todo o real x positivo, existe um real y tal que x+y=y. Para cada real positivo x, considere-se $y=\frac{1}{x}$. Temos $xy=x\times\frac{1}{x}=1$. A afirmação p é verdadeira.
 - (ii) Temos que

$$\neg p \Leftrightarrow \exists_x \neg (x > 0 \to \exists_y \ xy = 1)$$

$$\Leftrightarrow \exists_x (x > 0 \land \neg (\exists_y \ xy = 1))$$

$$\Leftrightarrow \exists_x (x > 0 \land \forall_y \ \neg (xy = 1))$$

$$\Leftrightarrow \exists_x (x > 0 \land \forall_y \ xy \neq 1)$$

Assim, $\exists_x (x>0 \land \forall_y \ xy \neq 1)$ é uma proposição equivalente a $\neg p$ e sem ocorrências do conetivo \neg

- **1.18.** Considerando que p representa a proposição $\forall_{a \in A} \exists_{b \in B} \ (a^2 = b \lor a + b = 0),$
- (a) verifique se p é verdadeira para $A = \{-2, 0, 1, 2\}$ e $B = \{-1, 0, 4\}$.
- (b) indique em linguagem simbólica, sem recorrer ao símbolo de negação, uma proposição equivalente à negação de p.

resolução:

(a) Em p afirma-se que, para todo o elemento a de A, existe pelo menos um elemento b de B tal que $a^2 = b \lor a + b = 0$. Verifiquemos, então, para cada valor a de A, a existência de um tal b em B.

a=-2:

$$a^{2} = b \lor a + b = 0 \Leftrightarrow (-2)^{2} = b \lor -2 + b = 0$$
$$\Leftrightarrow b = 4 \lor b = 2$$

Como $4 \in B$, podemos afirmar que $\exists_{b \in B} \ (a^2 = b \lor a + b = 0)$.

 $\underline{a=0}$:

$$a^{2} = b \lor a + b = 0 \Leftrightarrow 0^{2} = b \lor 0 + b = 0$$
$$\Leftrightarrow b = 0 \lor b = 0$$

Como $0 \in B$, podemos afirmar que $\exists_{b \in B} \ (a^2 = b \lor a + b = 0)$.

 $\underline{a=1}$:

$$a^{2} = b \lor a + b = 0 \Leftrightarrow 1^{2} = b \lor 1 + b = 0$$
$$\Leftrightarrow b = 1 \lor b = -1$$

Como $-1 \in B$, podemos afirmar que $\exists_{b \in B} \ (a^2 = b \lor a + b = 0)$.

 $\underline{a=2}$:

$$a^2 = b \lor a + b = 0 \Leftrightarrow 2^2 = b \lor 2 + b = 0$$

$$\Leftrightarrow b = 4 \lor b = -2$$

Como $4 \in B$, podemos afirmar que $\exists_{b \in B} \ (a^2 = b \lor a + b = 0)$.

Assim, para todo $a \in A$, $\exists_{b \in B} \ (a^2 = b \lor a + b = 0)$. Logo, a proposição p é verdadeira.

(b) Temos que

$$\neg p \Leftrightarrow \exists_{a \in A} \neg (\exists_{b \in B} \ (a^2 = b \lor a + b = 0))$$

$$\Leftrightarrow \exists_{a \in A} \forall_{b \in B} \ \neg (a^2 = b \lor a + b = 0)$$

$$\Leftrightarrow \exists_{a \in A} \forall_{b \in B} \ (a^2 \neq b \land a + b \neq 0)$$

Assim, $\exists_{a \in A} \forall_{b \in B} \ (a^2 \neq b \land a + b \neq 0)$ é uma proposição equivalente a $\neg p$ e sem ocorrências do símbolo de negação.

1.19. Considerando que p representa a proposição

$$\exists_{y \in A} \forall_{x \in A} (x \neq y \to (xy > 0 \lor x^2 + y = 0)),$$

- (a) dê exemplo de um universo A não vazio onde:
 - (i) a proposição p é verdadeira;
 - (ii) a proposição p é falsa.
- (b) indique, sem recorrer ao conetivo negação, uma proposição equivalente a $\neg p$.

resolução:

(a) Em p afirma-se que existe um elemento y de A tal que, para qualquer outro elemento x de A, se tem xy > 0 ou $x^2 + y = 0$.

- (i) Seja $A=\{1,2\}$. Consideremos y=1. O único elemento x de A distinto de y é x=2. Temos que xy=2>0, pelo que $xy>0 \lor x^2+y=0$ é uma proposição verdadeira para esses valores de x e y. Assim, para este universo A, a proposição p é verdadeira.
- OBS: Repare-se que, se A for apenas formado por reais positivos, sabemos que, para um qualquer elemento y de A, se terá xy>0 para todos os restantes elementos x de A, o que garantirá que p é verdadeira em A. Mas existem outros exemplos de universos A, em que nem todos os elementos são reais positivos mas p é verdadeira. Consideremos, por exemplo, $A=\{-2,-1,1\}$. Consideremos y=-1. Os elementos de A distintos de y são -2 e 1. Para x=-2, temos que xy=2>0, pelo que $xy>0 \lor x^2+y=0$ é uma proposição verdadeira. Para x=1, temos que xy=-1<0, mas $x^2+y=1^2+(-1)=0$, donde $xy>0 \lor x^2+y=0$ é uma proposição verdadeira. Assim, para este universo A, a proposição p é verdadeira.
- (ii) Seja $A=\{-1,2\}$. Vejamos que não existe $y\in A$ tal que $\forall_{x\in A}(x\neq y\to (xy>0\vee x^2+y=0))$. Temos apenas dois valores possíveis para $y\colon -1$ ou 2. Consideremos y=-1. O único elemento x de A distinto de y é x=2. Temos que xy=-2<0 e $x^2+y=2^2+(-1)=3\neq 0$. Assim, para y=-1 e x=2, $xy>0\vee x^2+y=0$ é uma proposição falsa. Portanto, y não pode ser -1. Consideremos, agora, y=2. O único elemento x de A distinto de y é x=-1. Temos que xy=-2<0 e $x^2+y=(-1)^2+2=3\neq 0$. Assim, para y=2 e x=-1, $xy>0\vee x^2+y=0$ é uma proposição falsa. Portanto, y não pode ser y=2. Logo, não existe $y\in A$ tal que $\forall_{x\in A}(x\neq y\to (xy>0\vee x^2+y=0))$. Assim, para este universo y=20 falsa.
- (b) Temos que

$$\neg p \Leftrightarrow \forall_{y \in A} \neg (\forall_{x \in A} \ (x \neq y \to (xy > 0 \lor x^2 + y = 0))$$

$$\Leftrightarrow \forall_{y \in A} \exists_{x \in A} \ \neg (x \neq y \to (xy > 0 \lor x^2 + y = 0))$$

$$\Leftrightarrow \forall_{y \in A} \exists_{x \in A} \ (x \neq y \land \neg (xy > 0 \lor x^2 + y = 0))$$

$$\Leftrightarrow \forall_{y \in A} \exists_{x \in A} \ (x \neq y \land xy \leq 0 \land x^2 + y \neq 0))$$

Assim, $\forall_{y \in A} \exists_{x \in A} \ (x \neq y \land xy \leq 0 \land x^2 + y \neq 0))$ é uma proposição equivalente a $\neg p$ e sem recorrer ao conetivo negação.

1.20. Averigue a validade dos seguintes argumentos:

- (a) O João afirma: "Hoje vou ao cinema ou fico em casa a ver um filme na televisão". No dia seguinte o João comentou: "Ontem não fui ao cinema." Em resposta, a Joana concluiu: "Então viste um filme na televisão!".
- (b) A Maria afirmou: "Se hoje encontrar a Alice e estiver calor, vou à praia". No dia seguinte a Maria comentou: "Ontem esteve calor e fui à praia". Em resposta, a Rita concluiu: "Então encontraste a Alice".
- (c) O Tiago disse: "Vou almoçar no bar ou na cantina". E acrescentou: "Se comer no bar fico mal disposto e não vou ao cinema". Nesse dia, a Joana encontrou o Tiago no cinema e concluiu: "O Tiago foi almoçar à cantina".

resolução:

(a) Representemos as frases declarativas simples "Hoje vou ao cinema" e "Fico em casa a ver um filme na televisão" por p_0 e p_1 , respetivamente. A primeira afirmação de João pode ser traduzida por $p_0 \vee p_1$. A segunda afirmação de João pode ser representada por $\neg p_0$ e a conclusão de Joana por p_1 . O argumento é, então representado por

$$((p_0 \lor p_1) \land \neg p_0) \rightarrow p_1$$

O argumento será válido se esta última fórmula for uma tautologia, o que podemos averiguar através de uma tabela de verdade.

	p_0	p_1	$\neg p_0$	$p_0 \vee p_1$	$(p_0 \vee p_1) \wedge \neg p_0$	$((p_0 \vee p_1) \wedge \neg p_0) \to p_1$
	1	1	0	1	0	1
Î	1	0	0	1	0	1
	0	1	1	1	1	1
	0	0	1	0	0	1

Como podemos comprovar na tabela acima, a fórmula $((p_0 \lor p_1) \land \neg p_0) \to p_1$ é sempre verdadeira, independentemente das variáveis proposicionais que nela ocorrem. Portanto, é uma tautologia e o argumento apresentado é válido.

OBS: Outra forma de verificar se o argumento é válido é averiguar a veracidade da conclusão assumindo a veracidade de todas as premissas. Admitindo, então, que $p_0 \lor p_1$ e $\neg p_0$ são ambas proposições verdadeiras, averiguemos se p_1 é necessariamente verdadeira. Ora, se o valor lógico de $\neg p_0$ é 1, então o valor lógico de p_0 é 0. Assim, como o valor lógico de $p_0 \lor p_1$ é 1, segue-se que o valor lógico de p_1 tem de ser 1. Podemos, portanto, afirmar que o argumento é válido.

(b) Representemos as frases declarativas simples "encontrar a Alice", "estar calor" e "ir à praia" por p_0 , p_1 e p_2 , respetivamente. A primeira afirmação de Maria pode ser traduzida por $(p_0 \wedge p_1) \rightarrow p_2$. A segunda afirmação de Maria pode ser representada por $p_1 \wedge p_2$ e a conclusão de Rita por p_0 . O argumento é, então representado por

$$(((p_0 \wedge p_1) \rightarrow p_2) \wedge (p_1 \wedge p_2)) \rightarrow p_0$$

Assumindo que as premissas são ambas verdadeiras, sabemos que os valores lógicos de $(p_0 \wedge p_1) \rightarrow p_2$ e $p_1 \wedge p_2$ são iguais a 1. Sendo 1 o valor lógico de $p_1 \wedge p_2$, sabemos que os valores lógicos de p_1 e p_2 são ambos 1. Com p_2 verdadeira, nada podemos garantir sobre o valor lógico de p_0 a partir da veracidade de $(p_0 \wedge p_1) \rightarrow p_2$. De facto, p_0 tanto pode ser verdadeira como falsa, pelo que o argumento não é válido.

OBS: Claramente, o exercício pode ser resolvido fazendo a tabela de verdade da fórmula $(((p_0 \land p_1) \to p_2) \land (p_1 \land p_2)) \to p_0$, comprovando-se que não é uma tautologia.

(c) Representemos as frases declarativas simples "Vou almoçar no bar", "Vou almoçar na cantina", "Fico mal disposto" e "Vou ao cinema" por p_0 , p_1 , p_2 e p_3 , respetivamente. A primeira afirmação de Tiago pode ser traduzida por $p_0 \vee p_1$. A segunda afirmação de Tiago pode ser representada

por $p_0 \to (p_2 \land \neg p_3)$. A informação de que Joana encontrou Tiago no cinema pode ser traduzida por p_3 e a conclusão de Joana por p_1 . O argumento é, então representado por

$$(((p_0 \lor p_1) \land (p_0 \to (p_2 \land \neg p_3))) \land p_3) \to p_1$$

Assumindo que as três premissas são simultaneamente verdadeiras, sabemos que os valores lógicos de $p_0 \lor p_1$, de $p_0 \to (p_2 \land \neg p_3)$ e de p_3 são iguais a 1. Pretendemos verificar se, nesse caso, p_1 é necessariamente verdadeira. Sendo 1 o valor lógico de p_3 e de $p_0 \to (p_2 \land \neg p_3)$, segue-se que p_0 tem de ser falsa. Assim, dado que $p_0 \lor p_1$ é verdadeira, podemos afirmar que p_1 tem de ser verdadeira. Logo, o argumento é válido.

OBS: O exercício pode ser resolvido fazendo a tabela de verdade da fórmula $(((p_0 \lor p_1) \land (p_0 \to (p_2 \land \neg p_3))) \land p_3) \to p_1$, comprovando-se que é uma tautologia.

1.21. Mostre que a soma de dois números inteiros ímpares é um número par.

resolução:

Sejam n, m dois inteiros ímpares. Então, existem inteiros k, r tais que

$$n = 2k + 1$$

е

$$m = 2r + 1$$
.

Temos que

$$n + m = (2k + 1) + (2r + 1)$$
$$= 2k + 2r + 2$$
$$= 2(k + r + 1).$$

Como $k, r \in \mathbb{Z}$, segue-se que $k+r+1 \in \mathbb{Z}$. Assim, existe $s \in \mathbb{Z}$ tal que n+m=2s (basta considerar s=k+r+1), pelo que n+m é par.

1.22. Mostre que o produto de números inteiros ímpares é um número ímpar.

resolução:

Sejam n, m dois inteiros ímpares. Então, existem inteiros k, r tais que

$$n = 2k + 1$$

е

$$m = 2r + 1$$
.

Assim,

$$nm = (2k+1)(2r+1)$$
$$= 4kr + 2k + 2r + 1$$
$$= 2(2kr + k + r) + 1.$$

Como $k, r \in \mathbb{Z}$, segue-se que $2kr + k + r \in \mathbb{Z}$. Assim, existe $s \in \mathbb{Z}$ tal que nm = 2s + 1 (basta considerar s = 2kr + k + r), pelo que nm é ímpar.

1.23. Mostre que não existe $n \in \mathbb{N}$ tal que n+5=3n+2.

resolução:

Admitamos que existe $n\in\mathbb{N}$ tal que n+5=3n+2. Então, n-3n=2-5, ou seja, -2n=-3. Logo, $n=\frac{3}{2}$, o que é uma contradição pois $\frac{3}{2}\not\in\mathbb{N}$. Portanto, não existe $n\in\mathbb{N}$ tal que n+5=3n+2.

1.24. Seja n um número natural ímpar. Mostre que $n^2 + 8n - 1$ é múltiplo de 4.

resolução:

Seja n um natural ímpar. Então, existe $k \in \mathbb{N}_0$ tal que n = 2k + 1. Portanto,

$$n^{2} + 8n - 1 = (2k + 1)^{2} + 8(2k + 1) - 1$$
$$= 4k^{2} + 4k + 1 + 16k + 8 - 1$$
$$= 4k^{2} + 20k + 8$$
$$= 4(k^{2} + 5k + 2).$$

Como $k \in \mathbb{N}_0$, segue-se que $k^2 + 5k + 2 \in \mathbb{N}$. Assim, existe $s \in \mathbb{N}$ tal que $n^2 + 8n - 1 = 4s$ (basta considerar $s = k^2 + 5k + 2$), pelo que $n^2 + 8n - 1$ é múltiplo de 4.

1.25. Mostre que, para todo o natural n, se 3n + 5 é impar, então n é par.

resolução:

A prova segue por contraposição. Pretende-se provar que

$$3n+5 \text{ impar} \Rightarrow n \text{ par}$$

ou, equivalentemente, que

$$\neg (n \text{ par}) \Rightarrow \neg (3n + 5 \text{ impar}),$$

isto é.

$$n \text{ impar} \Rightarrow 3n + 5 \text{ par.}$$

Admitamos que n é ímpar. Então, existe $k \in \mathbb{N}_0$ tal que n = 2k + 1. Portanto,

$$3n + 5 = 3(2k + 1) + 5$$

= $6k + 8$
= $2(3k + 4)$.

Como $k \in \mathbb{N}_0$, segue-se que $3k+4 \in \mathbb{N}$. Assim, existe $s \in \mathbb{N}$ tal que 3n+5=2s (basta considerar s=3k+4), pelo que 3n+5 é par.

1.26. Prove que, para todo o natural n, n^2 é impar se e só se n é impar.

resolução:

Mostremos a dupla implicação

$$n \text{ impar} \Rightarrow n^2 \text{ impar}$$

е

$$n^2$$
 impar $\Rightarrow n$ impar.

A prova que apresentamos da primeira implicação é uma prova direta, ao passo que a prova que apresentamos para a segunda implicação é uma prova por contraposição.

 (\Rightarrow) Admitamos que n é ímpar. Então, existe $k \in \mathbb{N}_0$ tal que n = 2k + 1. Portanto,

$$n^{2} = (2k + 1)^{2}$$
$$= 4k^{2} + 4k + 1$$
$$= 2(2k^{2} + 2k) + 1.$$

Como $k \in \mathbb{N}_0$, segue-se que $2k^2 + 2k \in \mathbb{N}_0$. Assim, existe $s \in \mathbb{N}_0$ tal que $n^2 = 2s + 1$ (basta considerar $s = 2k^2 + 2k$), pelo que n^2 é ímpar.

(⇐) A contrarrecíproca de

$$n^2$$
 impar $\Rightarrow n$ impar.

é

$$\neg (n \text{ impar}) \Rightarrow \neg (n^2 \text{ impar}),$$

ou seja,

$$n \text{ par} \Rightarrow n^2 \text{ par.}$$

Admitamos que n é par. Então, existe $k \in \mathbb{N}$ tal que n=2k. Logo,

$$n^2 = (2k)^2$$
$$= 4k^2$$
$$= 2(2k^2).$$

Como $k\in\mathbb{N}$, segue-se que $2k^2\in\mathbb{N}$. Portanto, existe $s\in\mathbb{N}$ tal que $n^2=2s$ (basta considerar $s=2k^2$), pelo que n^2 é par.

1.27. Prove que, dado um número natural n, se n é múltiplo de 6, então n é múltiplo de 2 e de 3

resolução:

Seja n um natural múltiplo de 6. Então, existe um natural k tal que n=6k. Assim, n=2r, onde $r=3k\in\mathbb{N}$, pelo que n é múltiplo de 2. Por outro lado, temos que n=3s, onde $s=2k\in\mathbb{N}$, e, portanto, n é múltiplo de 3.

- 1.28. Encontre um contraexemplo para cada das afirmações seguintes:
 - (a) Se $n = p^2 + q^2$, com p, q primos, então n é primo.
 - (b) Se a > b, com $a, b \in \mathbb{R}$, então $a^2 > b^2$.
 - (c) Se $x^4 = 1$, com $x \in \mathbb{R}$, então x = 1.

resolução:

- (a) Consideremos p=3 e q=5, ambos primos. Temos que $n=p^2+q^2=9+25=34$ não é primo.
- (b) Consideremos a=3 e b=-4. Temos que a>b mas $a^2\not>b^2$
- (c) Consideremos x=-1. Temos que $x^4=1$ e $x\neq 1$.

Capítulo 2

Teoria elementar de conjuntos

2.1. Considere o conjunto $A=\left\{1,-1,\frac{1}{4},2,0,-\frac{1}{2}\right\}$. Indique todos os elementos de cada um dos conjuntos seguintes.

(a)
$$\{a \in A \mid a^2 \in \mathbb{Z}\}$$

(d)
$$\{a \in A \mid a \geq 0 \land \sqrt{a} \in A\}$$

(b)
$$\{a^2 \in \mathbb{R} \mid a \in A \land a^2 \in A\}$$

(b)
$$\{a^2 \in \mathbb{R} \mid a \in A \land a^2 \in A\}$$
 (e) $\{x \in \mathbb{R} \mid \exists_{a \in A} \quad (a^2 \in A \land a \ge 0 \land x = \sqrt{a})\}$

(c)
$$\{b \in \mathbb{Z} \mid \exists_{a \in A} \ b = a^2\}$$
 (f) $\{b \in \mathbb{R} \mid \exists_{a \in A} \ b^2 = a\}$

(f)
$$\{b \in \mathbb{R} \mid \exists_{a \in A} \ b^2 = a\}$$

resolução:

(a) Seja $B=\left\{a\in A\,|\,a^2\in\mathbb{Z}\right\}$. O conjunto B é o conjunto dos elementos $a\in A$ tais que $a^2\in\mathbb{Z}$, ou seja, dos elementos de A cujo quadrado é um núero inteiro.

Na seguinte tabela listamos os elementos de A e os correspondentes quadrados e averiguamos se estes pertencem ou não a \mathbb{Z} .

$a \in A$	1	-1	$\frac{1}{4}$	2	0	$-\frac{1}{2}$
a^2	1	1	$\frac{1}{16}$	4	0	$\frac{1}{4}$
$a^2 \in \mathbb{Z}$	sim	sim	não	sim	sim	não

Assim, $B = \{1, -1, 2, 0\}.$

(b) Seja $C=\left\{a^2\in\mathbb{R}\,|\,a\in A\wedge a^2\in A\right\}$. O conjunto C é o conjunto dos valores reais a^2 em que $a \in A$ e $a^2 \in A$, ou seja, C é formado pelos reais a^2 em que a é elemento de A assim como a^2 .

Na seguinte tabela listamos os elementos de A, os correspondentes quadrados e averiguamos se estes pertencem ou não a A e se são reais.

$a \in A$	1	-1	$\frac{1}{4}$	2	0	$-\frac{1}{2}$
a^2	1	1	$\frac{1}{16}$	4	0	$\frac{1}{4}$
$a^2 \in \mathbb{R}$	sim	sim	sim	sim	sim	sim
$a^2 \in A$	sim	sim	não	não	sim	sim

Assim, $C = \{1, 0, \frac{1}{4}\}.$

(c) Seja $D = \{b \in \mathbb{Z} \mid \exists_{a \in A} \ b = a^2\}$. Podemos reescrever D do seguinte modo:

$$D = \{a^2 \in \mathbb{Z} \mid a \in A\}.$$

O conjunto D é o conjunto dos valores inteiros a^2 em que $a \in A$, ou seja, D é formado pelos valores a^2 em que $a \in A$ e $a^2 \in \mathbb{Z}$.

Analisando a tabela apresentada na alínea (a), podemos concluir que $D = \{1, 4, 0\}$.

(d) Seja $E=\{a\in A\,|\, a\geq 0 \land \sqrt{a}\in A\}$. O conjunto E é o conjunto dos elementos $a\in A$ tais que $a\geq 0$ e $\sqrt{a}\in A$

Na seguinte tabela listamos os elementos a de A e as correspondentes raizes quadradas e averiguamos se $a \ge 0$ e se $\sqrt{a} \in A$.

$a \in A$	1	-1	$\frac{1}{4}$	2	0	$-\frac{1}{2}$
\sqrt{a}	1	$\sqrt{-1}$	$\frac{1}{2}$	$\sqrt{2}$	0	$\sqrt{-\frac{1}{2}}$
$a \ge 0$	sim	não	sim	sim	sim	não
$\sqrt{a} \in A$	sim	não	não	não	sim	não

Assim, $E = \{1, 0\}.$

(e) Seja $F = \{x \in \mathbb{R} \mid \exists_{a \in A} \quad (a^2 \in A \land a \ge 0 \land x = \sqrt{a})\}$. Podemos reescrever F do seguinte modo:

$$F = \{ \sqrt{a} \in \mathbb{R} \mid a \in A \land a^2 \in A \land a \ge 0 \}.$$

O conjunto F é o conjunto dos valores reais \sqrt{a} em que $a \in A$, $a^2 \in A$ e $a \ge 0$. Note-se que, exigindo que $a \ge 0$, estamos a garantir que $\sqrt{a} \in \mathbb{R}$.

Na seguinte tabela listamos os elementos a de A, as correspondentes raizes quadradas e os correspondentes quadrados e averiguamos se $a \ge 0$ e se $a^2 \in A$.

$a \in A$	1	-1	$\frac{1}{4}$	2	0	$-\frac{1}{2}$
\sqrt{a}	1	$\sqrt{-1}$	$\frac{1}{2}$	$\sqrt{2}$	0	$\sqrt{-\frac{1}{2}}$
a^2	1	1	$\frac{1}{16}$	4	0	$\frac{1}{4}$
$a \ge 0$	sim	não	sim	sim	sim	não
$a^2 \in A$	sim	sim	não	não	sim	sim

Assim, os elementos a de A que satisfazem as condições $a \ge 0$ e $a^2 \in A$ em simultâneo são 0 e 1. Portanto, F será o conjunto formado pelas raízes quadradas desses elementos, isto é, $F = \{0,1\}$.

(f) Seja
$$G = \left\{ b \in \mathbb{R} \, | \, \exists_{a \in A} \ b^2 = a \right\}$$
. Uma vez que

$$b^2 = a \Leftrightarrow b = \pm \sqrt{a},$$

podemos reescrever ${\cal G}$ do seguinte modo:

$$G = \left\{ \pm \sqrt{a} \in \mathbb{R} \mid a \in A \right\}.$$

Deste modo, G é o conjunto dos valores $\pm \sqrt{a}$ que são reais, onde $a \in A$.

Na seguinte tabela listamos os elementos a de A e as correspondentes raizes quadradas e averiguamos se estas são reais.

	$a \in A$	1	-1	$\frac{1}{4}$	2	0	$-\frac{1}{2}$
	\sqrt{a}	1	$\sqrt{-1}$	$\frac{1}{2}$	$\sqrt{2}$	0	$\sqrt{-\frac{1}{2}}$
ĺ	$\sqrt{a} \in \mathbb{R}$	sim	não	sim	sim	sim	não

Assim, $G = \{-1, 1, -\frac{1}{2}, \frac{1}{2}, -\sqrt{2}, \sqrt{2}, 0\}.$

2.2. Descreva, por compreensão, cada um dos conjuntos que se seguem:

(a)
$$A = \{-1, 1\}$$

(c)
$$B = \{3, 6, 9, 12, 15, \ldots\}$$

(b)
$$C = \{2, 3, 5, 7, 11, 13, 17, \ldots\}$$
 (d) $D = \{4, 9, 16, 25\}$

(d)
$$D = \{4, 9, 16, 25\}$$

resolução:

Para definirmos por compreensão cada um dos conjuntos dados devemos indicar uma condição que descreva totalmente os elementos do conjunto.

(a)
$$A = \{x \in \mathbb{R} \mid x^2 = 1\}$$

(b)
$$C = \{ n \in \mathbb{N} \mid n \text{ \'e primo} \}$$

(c)
$$AB = \{3k \mid k \in \mathbb{N}\}$$

(d)
$$D = \{n^2 \mid n \in \mathbb{N} \land 1 < n \le 5\}$$

2.3. De entre os conjuntos que se seguem, indique aqueles que são iguais.

(a)
$$\{x \in \mathbb{R} \mid x^2 - 3x + 2 = 0\}, \{1, 2\} \in \{n \in \mathbb{N} \mid 0 < n^2 \le 4\}$$
 (c) \emptyset , $\{0\}$, $\{\emptyset\}$ e $\{\}$

(a)
$$\{x \in \mathbb{Z} \mid x = 0\}, \{1, 2\} \in \{n \in \mathbb{N} \mid 0 < n \le 4\}$$
 (c) $\emptyset, \{0\}, \{\emptyset\} \in \{1\}$

(b)
$$\{r,t,s\}, \{s,t,r,s\}, \{t,s,t,s\}$$
 e $\{s,t,r,t\}$

(d)
$$\{1, \{-1\}\}, \{1, -1\} \in \{x \in \mathbb{R} \mid x^2 = 1\}$$

resolução:

Relembremos que dois conjuntos são iguais se têm exatamente os mesmos elementos.

(a) Temos que

$$x^{2} - 3x + 2 = 0 \Leftrightarrow x = \frac{-(-3) \pm \sqrt{(-3)^{2} - 4 \times 2 \times 1}}{2}$$
$$\Leftrightarrow x = \frac{-(-3) \pm \sqrt{(-3)^{2} - 4 \times 2 \times 1}}{2}$$
$$\Leftrightarrow x = \frac{3 \pm 1}{2}$$
$$\Leftrightarrow x = 1 \lor x = 2$$

Portanto, $\{x \in \mathbb{R} \mid x^2 - 3x + 2 = 0\} = \{1, 2\}.$

Note-se que $0 < 1^2 \le 4$, $0 < 2^2 \le 4$ e $3^2 \not< 4$. Assim, $\{n \in \mathbb{N} \mid 0 < n^2 \le 4\} = \{1, 2\}$

Assim, todos os conjuntos desta alínea são iguais.

- (b) Assumamos que $r, s \in t$ são todos distintos entre si. Assim, os elementos de $\{r, t, s\}$ são $r, t \in t$ s, os de $\{s,t,r,s\}$ são r, t e s, os de $\{t,s,t,s\}$ são t e s e os de $\{s,t,r,t\}$ são r, t e s. Assim, os conjuntos cujos elementos são r, t e s são iguais entre si, ou seja, $\{r,t,s\}=\{s,t,r,s\}=\{s,t,r,t\}$ e o conjunto $\{t, s, t, s\}$ é distinto dos demais.
- (c) Temos que $\emptyset = \{\}$, sendo estas duas formas de denotar o conjunto vazio. O conjunto $\{0\}$ tem um elemento, o número 0, e o conjunto $\{\emptyset\}$ tem um elemento, o conjunto \emptyset . Assim, cada um destes dois conjuntos é distinto dos restantes conjuntos listados.
- (d) O conjunto $\{1, \{-1\}\}$ tem dois elementos, o número 1 e o conjunto $\{-1\}$. O conjunto $\{1,-1\}$ tem dois elementos, os números 1 e -1. Como

$$x^2 = 1 \Leftrightarrow x = 1 \lor x = -1,$$

segue-se que o conjunto $\{x \in \mathbb{R} \mid x^2 = 1\}$ tem dois elementos, os números 1 e -1. Portanto, $\{1, -1\} = \{x \in \mathbb{R} \mid x^2 = 1\}$ e o conjunto $\{1, \{-1\}\}\$ é distinto dos restantes.

- **2.4.** Seja $A = \{5, 11, \{5, 11\}, \{0\}, \emptyset\}$. Diga, justificando, se cada uma das afirmações que se seguem é ou não verdadeira.
 - (a) $5 \in A$
- (b) $\{5\} \in A$ (c) $\{5,11\} \in A$ (d) $A \subseteq \mathbb{R}$

- (e) $\{5,11\} \subseteq A$ (f) $0 \in A$ (g) $\emptyset \in A$ (h) $\{0,5,11\} \subseteq A$

resolução:

Na resolução deste exercício, tenhamos em conta que, dado um objeto $x, x \in A$ se x é um dos elementos de A, e que os elementos de A são os listados de seguida:

- 5
- 11
- {5, 11}
- {0}

Recordemos, ainda, que dados dois conjuntos X e Y, dizemos que $X \subseteq Y$ se todos os elementos de X são elementos de Y.

- (a) A afirmação é verdadeira pois 5 é um dos elementos de A, como podemos verificar na lista acima.
- (b) A afirmação é falsa pois $\{5\}$ não é um dos elementos de A.

- (c) A afirmação é verdadeira pois $\{5,11\}$ é um dos elementos de A.
- (d) A afirmação é falsa pois nem todos os elementos de A são números reais. De facto, há elementos de A que são conjuntos e, portanto, não pertencem a \mathbb{R} . Tomemos, por exemplo, o objeto $\{5,11\}$. Temos que $\{5,11\} \in A$ mas $\{5,11\} \notin \mathbb{R}$. Logo, $A \not\subseteq \mathbb{R}$.
- (e) A afirmação é verdadeira. Por definição, $\{5,11\}\subseteq A$ se 5 e 11 são elementos de A, o que pode ser comprovado na lista apresentada acima.
- (f) A afirmação é falsa pois 0 não é um dos elementos de A.
- (g) A afirmação é verdadeira pois \varnothing é um dos elementos de A.
- (h) A afirmação é falsa pois nem todos os elementos de $\{0,5,11\}$ são elementos de A. Com efeito, 5 e 11 são elementos de A, mas 0 não é elemento de A. Logo, $\{0,5,11\} \not\subseteq A$.
- 2.6. Investigue a veracidade de cada uma das seguintes proposições.

(a) $\varnothing \in \{\varnothing\}$ (b) $\varnothing \subseteq \{\varnothing\}$ (c) $\varnothing \notin \varnothing$ (d) $\varnothing \in \{\{\varnothing\}\}$

resolução:

- (a) A afirmação é verdadeira pois o conjunto $\{\emptyset\}$ tem um só elemento, o conjunto \emptyset . Portanto, \emptyset é um dos elementos (o único) de $\{\emptyset\}$, pelo que $\emptyset \in \{\emptyset\}$.
- (b) A afirmação é verdadeira. De facto, sabemos que ∅ é subconjunto de qualquer conjunto.
- (c) A afirmação é verdadeira. Com efeito, pensando na afirmação $\varnothing \in \varnothing$, esta é falsa, uma vez que afirma que 🛭 tem pelo menos um elemento, o que é absurdo. Portanto, a sua negação $(\emptyset \notin \emptyset)$ é verdadeira.
- (d) A afirmação é falsa porque \varnothing não é elemento de $\{\{\varnothing\}\}$. De facto, o único elemento deste conjunto é $\{\emptyset\}$.
- **2.7.** Considere que A é um subconjunto de B e que B é um subconjunto de C. Considere ainda que $a \in A$, $b \in B$, $c \in C$ e que $d \notin A$, $e \notin B$ e $f \notin C$. Quais das afirmações seguintes são necessariamente verdadeiras?

(a) $a \in C$

(b) $b \in A$ (c) $d \in B$ (d) $c \notin A$ (e) $e \notin A$ (f) $f \notin A$

resolução:

As afirmações garantidamente verdadeiras são as das alíneas (a), (e) e (f). Designemos por U o universo em questão (ou seja, a, b, c, d, e, f são elementos de U e $A, B, C \subseteq U$).

Como $A \subseteq C$, todos os elementos de A são elementos de C. Portanto, dado que $a \in A$, podemos afirmar que $a \in C$.

Como $b \in B$ e $A \subseteq B$, sabemos que

$$b \in A \vee b \in B \setminus A.$$

No entanto, não temos garantias de que $b \in A$.

O facto de d não pertencer a A apenas nos garante que $d \in U \setminus A$. Sabemos que $d \in U \setminus A$, mas isso não garante que d pertença a B.

Como $c \in C$ e $A \subseteq C$, sabemos que

$$c \in A \lor c \in C \setminus A$$
.

Não temos, portanto, garantias de que $c \notin A$.

Se e pertencesse a A, então e pertenceria a B, dado que $A \subseteq B$. Logo, podemos afirmar que $e \not\in A$.

Se f pertencesse a A, então f pertenceria a C, uma vez que $A \subseteq C$. Assim, podemos afirmar que $f \notin A$.

2.8. Dê exemplos de conjuntos A e B tais que se tenha simultaneamente:

- (a) $A \subseteq B$ e $A \notin B$
- (b) $A \nsubseteq B \in A \in B$
- (c) $A \not\subseteq B$ e $A \notin B$ (d) $A \subseteq B$ e $A \in B$

resolução:

- (a) Sejam $A = \{1, 2\}$ e $B = \{1, 2, 3\}$. Todos os elementos de A são elementos de B, pelo que $A \subseteq B$, mas o objeto $\{1,2\}$ não é um elemento de B, donde $A \notin B$.
- (b) Sejam $A = \{1, 2\}$ e $B = \{1, 3, \{1, 2\}\}$. Nem todos os elementos de A são elementos de B, pelo que $A \not\subseteq B$. Dado que o objeto $\{1,2\}$ é um dos três elementos de B, segue-se que $A \in B$.
- (c) Sejam $A = \{1, 2\}$ e $B = \{1, 3\}$. Nem todos os elementos de A são elementos de B, pelo que $A \not\subseteq B$, e o objeto $\{1,2\}$ não é um dos dois elementos de B, pelo que $A \notin B$.
- (d) Sejam $A = \{1, 2\}$ e $B = \{1, 2, 3, \{1, 2\}\}$. Todos os elementos de A são elementos de B, pelo que $A \subseteq B$, e o objeto $\{1,2\}$ é um dos elementos de B, pelo que $A \in B$.
- **2.9.** Sejam $A = \{2, 4, 6, 8\}, B = \{x \in \mathbb{N} \mid \exists_{y \in \mathbb{N}} \ x = 2y\} \in C = \{x^2 \mid x \in A\}.$ Determine $A \cup C$, $A \cup B$, $C \cup B$, $A \cup A$, $A \cap B$, $B \cap B$, $B \cup C \cup A$, $C \setminus A$, $A \setminus B$ e $B \setminus A$.

resolução:

Note-se que os elementos de B são os naturais que podem escrever-se na forma 2y, com $y \in \mathbb{N}$. Assim, B é o conjunto dos naturais pares (i.e., $B=2\mathbb{N}$). Os elementos do conjunto C são os valores de x^2 em que $x \in A$. Logo, $C = \{2^2, 4^2, 6^2, 8^2\} = \{4, 16, 36, 64\}$. Assim,

$$A \cup C = \{2, 4, 6, 8, 16, 36, 64\}, \quad A \cup B = B, \quad C \cup B = B, \quad A \cup A = A$$

$$A \cap B = A, \quad B \cap B = B, \quad B \cup C \cup A = B, \quad C \setminus A = \{16, 36, 64\}$$

$$A \setminus B = \emptyset, \quad B \setminus A = \{2y \mid y \in \mathbb{N} \land y \ge 5\}$$

2.10. Sejam $A, B \in C$ subconjuntos de um conjunto X. Prove que

(a)
$$A \cup A = A$$

(a)
$$A \cup A = A$$
 (c) $A = (A \cap B) \cup (A \setminus B)$

(e) se
$$A \cup B = \emptyset$$
 então $A = \emptyset$ e $B = \emptyset$

(b)
$$A \setminus B \subseteq A$$

(d)
$$A \cap (B \setminus C) = (A \cap B) \setminus C$$

(b)
$$A \setminus B \subseteq A$$
 (d) $A \cap (B \setminus C) = (A \cap B) \setminus C$ (f) $(A \cup B) \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C) \cup (B \setminus C)$

resolução:

Recordemos que para mostrar que dois conjuntos X e Y são iguais basta mostrar que, para todo o objeto $x, x \in X \Leftrightarrow x \in Y$. Mais ainda, para mostrar que $X \subseteq Y$, basta provar que, para todo o objeto $X, x \in X \Rightarrow x \in Y$.

(a) Para todo o objeto x,

$$x \in A \cup A \Leftrightarrow x \in A \lor x \in A$$
 [pela definição de \cup]
$$\Leftrightarrow x \in A \quad \text{[pela equivaência lógica } \varphi \lor \varphi \Leftrightarrow \varphi \text{]}$$

Logo, $A \cup A = A$.

(b) Para todo o objeto x,

$$x \in A \setminus B \Leftrightarrow x \in A \land x \notin B$$
$$\Rightarrow x \in A$$

Assim, $A \setminus B \subseteq A$.

(c) Para todo o objeto x,

$$x \in (A \cap B) \cup (A \setminus B) \Leftrightarrow x \in A \cap B \vee x \in A \setminus B \quad \text{[pela definição de} \cup \text{]}$$

$$\Leftrightarrow (x \in A \wedge x \in B) \vee (x \in A \wedge x \notin B) \quad \text{[pela definição de} \cap \text{e de} \setminus \text{]}$$

$$\Leftrightarrow x \in A \wedge (x \in B \vee x \notin B) \quad \text{[pela distributividade de} \wedge \text{em relação a} \vee \text{]}$$

$$\Leftrightarrow x \in A \wedge \neg \bot \quad \text{[uma vez que } x \in B \vee x \notin B \text{ é uma tautologia]}$$

$$\Leftrightarrow x \in A \quad \text{[uma vez que } \varphi \wedge \neg \bot \Leftrightarrow \varphi \text{ para toda } \varphi \in \mathcal{F}^{CP} \text{]}$$

Logo, $(A \cap B) \cup (A \setminus B) = A$.

(d) Para todo o objeto x,

$$\begin{split} x \in A \cap (B \setminus C) &\Leftrightarrow x \in A \wedge x \in B \setminus C \quad \text{[pela definição de } \cap \text{]} \\ &\Leftrightarrow x \in A \wedge (x \in B \wedge x \notin C) \quad \text{[pela definição de } \setminus \text{]} \\ &\Leftrightarrow (x \in A \wedge x \in B) \wedge x \notin C \quad \text{[pela associatividade de } \wedge \text{]} \\ &\Leftrightarrow x \in A \cap B \wedge x \notin C \quad \text{[pela definição de } \cap \text{]} \\ &\Leftrightarrow x \in (A \cap B) \setminus C \quad \text{[pela definição de } \setminus \text{]} \end{split}$$

$$\mathsf{Logo},\ A\cap (B\backslash C)=(A\cap B)\backslash C.$$

(e) Pretendemos mostrar que

$$A \cup B = \emptyset \Rightarrow (A = \emptyset \land B = \emptyset).$$

Admitamos, então, que $A \cup B = \varnothing$. Queremos mostrar que $A = \varnothing \wedge B = \varnothing$. Suponhamos que $A \neq \varnothing \vee B \neq \varnothing$. Sem perda de generalidade, admitamos que $A \neq \varnothing$ (note-se que o caso em $B \neq \varnothing$ é análogo). Nesse caso, existe um elemento a de A. Mas, então, $a \in A \cup B$, o que contradiz a hipótese $A \cup B = \varnothing$. A contradição resultou de supormos que $A \neq \varnothing \vee B \neq \varnothing$. Portanto, $A = \varnothing \wedge B = \varnothing$.

(f) Para todo o objeto x,

$$x \in (A \setminus B) \cup (A \setminus C) \cup (B \setminus C) \Leftrightarrow x \in A \setminus B \vee x \in A \setminus C \vee x \in B \setminus C$$

$$\Leftrightarrow (x \in A \land x \notin B) \lor (x \in A \land x \notin C) \lor (x \in B \land x \notin C)$$

$$\Leftrightarrow (x \in A \land x \notin B) \lor ((x \in A \lor x \in B) \land x \notin C)$$

$$\Leftrightarrow ((x \in A \land x \notin B) \lor (x \in B \land x \notin B)) \lor (x \in A \cup B \land x \notin C)$$

$$\Leftrightarrow ((x \in A \lor x \in B) \land x \notin B) \lor (x \in A \cup B \land x \notin C)$$

$$\Leftrightarrow (x \in A \cup B \land x \notin B) \lor (x \in A \cup B \land x \notin C)$$

$$\Leftrightarrow (x \in A \cup B \land x \notin B) \lor (x \in A \cup B \land x \notin C)$$

$$\Leftrightarrow x \in A \cup B \land (x \notin B \lor x \notin C)$$

$$\Leftrightarrow x \in A \cup B \land x \notin B \cap C$$

$$\Leftrightarrow x \in (A \cup B) \lor (B \cap C)$$
[8]

justificações:

- [1] pela definição de reunião
- [2] pela definição de complementação
- [3] pela distributividade de ∧ em relação a ∨
- [4] pelo facto de $x \in B \land x \notin B$ ser uma contradição, pela equivalência lógica $\varphi \lor \bot \Leftrightarrow \varphi$ e pela definição de reunião
- [5] pela distributividade de ∧ em relação a ∨
- [6] pela definição de reunião
- [7] pela distributividade de ∧ em relação a ∨
- [8] pela definição de interseção [note-se que $x \in B \cap C \Leftrightarrow x \in B \wedge x \in C$; logo, $x \notin B \cap C \Leftrightarrow \neg(x \in B \wedge x \in C)$]
- [9] pela definição de complementação

2.11. Sejam A, B e C conjuntos. Mostre que se $A \cup B = A \cup C$ e $A \cap B = A \cap C$ então B = C.

resolução:

Mostremos que, nas condições do enunciado, para todo o objeto $x, x \in B \Leftrightarrow x \in C$. Provemos que, para todo o objeto $x, x \in B \Rightarrow x \in C$. A prova de que para todo o objeto $x, x \in C \Rightarrow x \in B$ é análoga.

Seja $x \in B$.

$$x \in B \Rightarrow x \in A \cup B$$

 $\Leftrightarrow x \in A \cup C$
 $\Leftrightarrow x \in A \lor x \in C$

Existem, portanto, dois casos possíveis: CASO 1: $x \in A$; CASO 2: $x \in C$.

CASO 1: Neste caso, sabemos que $x \in A$ e $x \in B$. Assim, $x \in A \cap B$. Dado que $A \cap B = A \cap C$, podemos afirmar que $x \in A \cap C$, donde $x \in C$.

CASO 2: Neste caso, é imediato o que pretendíamos provar: $x \in C$.

Provámos, deste modo, que em ambos os casos $x \in C$. Assim, se $x \in B$ então $x \in C$. Portanto, $B \subseteq C$.

- **2.12.** Dê exemplos de conjuntos $A, B \in C$ para os quais se tenha, respetivamente:
- (a) $A \cup (B \setminus C) \neq (A \cup B) \setminus (A \cup C)$ (b) $A \setminus (B \cap C) \neq (A \setminus B) \cap (A \setminus C)$

resolução:

- (a) Sejam $A = \{1, 2\}$, $B = \{1, 3\}$ e $C = \{3\}$. Temos que $A \cup (B \setminus C) = \{1, 2\} \cup \{1\} = \{1, 2\}$ e $(A \cup B) \setminus (A \cup C) = \{1, 2, 3\} \setminus \{1, 2, 3\} = \emptyset$. Assim, $A \cup (B \setminus C) \neq (A \cup B) \setminus (A \cup C)$.
- (b) Sejam $A = \{1, 2\}, B = \{2\} \in C = \{3\}.$ Temos que $A \setminus (B \cap C) = \{1, 2\} \setminus \emptyset = \{1, 2\}$ e $(A \setminus B) \cap (A \setminus C) = Assim, \{1\} \cap \{1,2\} = \{1\}.$ Portanto, $A \setminus (B \cap C) \neq (A \setminus B) \cap (A \setminus C).$
- **2.13.** Sejam A, B e C conjuntos. Diga, justificando, se é verdadeira ou falsa cada uma das afirmações seguintes.
- (a) Se $C \subseteq A \cup B$ então $C \subseteq A$ e $C \subseteq B$. (c) Se $C \subseteq A$ ou $C \subseteq B$ então $C \subseteq A \cap B$.
- (b) Se $C \subseteq A$ ou $C \subseteq B$ então $C \subseteq A \cup B$. (d) Se $C \subseteq (A \cap B)$ então $C \subseteq A$ e $C \subseteq B$.

resolução:

- (a) A afirmação é falsa. Sejam $A = \{1, 2, 3\}, B = \{4, 5, 6\}$ e $C = \{1, 5\}$. Temos que $C \subseteq A \cup B$ $\mathsf{mas}\ C \not\subseteq A \ \mathsf{e}\ C \not\subseteq B.$
- (b) A afirmação é verdadeira. Admitamos que $C \subseteq A$ ou $C \subseteq B$. Se $C \subseteq A$, dado que $A \subseteq A \cup B$, segue-se, pela transitividade da relação de inclusão, que $C \subseteq A \cup B$. Se $C \subseteq B$, como $B \subseteq A \cup B$, temos, novamente pela transitividade da relação de inclusão, que $C \subseteq A \cup B$.
- (c) A afirmação é falsa. Sejam $A = \{1, 2, 3\}$, $B = \{2, 6\}$ e $C = \{1, 2\}$. Temos que $C \subseteq A$ (pelo que a proposição " $C \subseteq A$ ou $C \subseteq B$ " é verdadeira. No entanto, $C \not\subseteq A \cap B = \{2\}$.
- (d) A afirmação é verdadeira. Admitamos que $C \subseteq (A \cap B)$. Como $C \subseteq A \cap B$ e $A \cap B \subseteq A$, podemos concluir que $C \subseteq A$. De modo análogo, dado que $C \subseteq A \cap B$ e $A \cap B \subseteq B$, segue-se que $C \subseteq B$

2.14. Sejam $A = \{1, 5, 7\}$ e $B = \{\emptyset, 7, \{1, 5, 7\}\}$. Indique $\mathcal{P}(A)$ e $\mathcal{P}(B)$ e diga, justificando, se $A \in \mathcal{P}(B)$, $A \in \mathcal{P}(\mathbb{N})$ e $\mathcal{P}(A) \subseteq \mathcal{P}(\mathbb{N})$.

resolução:

Lembremos que, dado um conjunto X, o conjunto das partes de X, $\mathcal{P}(X)$ é o conjunto dos subconjuntos de X. Assim, um conjunto Y é um elemento de $\mathcal{P}(X)$ se $Y \subseteq X$.

Temos que

$$\mathcal{P}(A) = \Big\{\varnothing, \{1\}, \{5\}, \{7\}, \{1, 5\}, \{1, 7\}, \{5, 7\}, \{1, 5, 7\}\Big\}$$

е

$$\mathcal{P}(B) = \Big\{\varnothing, \big\{\varnothing\big\}, \big\{7\big\}, \big\{\{1, 5, 7\}\big\}, \big\{\varnothing, 7\big\} \big\{\varnothing, \{1, 5, 7\}\big\}, \big\{7, \{1, 5, 7\}\big\}, \big\{\varnothing, 7, \{1, 5, 7\}\big\} \Big\}\Big\}$$

Como $\{1,5,7\}$ não é um dos elementos de $\mathcal{P}(B)$, temos que $A \notin \mathcal{P}(B)$ (OBS: poderíamos, em alternativa, referir que nem todos os elementos de A são elementos de B, pelo que $A \not\subseteq B$ e, por conseguinte, $A \notin \mathcal{P}(B)$).

Sabemos que $A \in \mathcal{P}(\mathbb{N})$ se e somente se $A \subseteq \mathbb{N}$. Ora, todos os elementos de A são números naturais, ou seja, todos os elementos de A são elementos de \mathbb{N} . Logo, $A \in \mathcal{P}(\mathbb{N})$.

Sabemos que se $X\subseteq Y$, então $\mathcal{P}(X)\subseteq \mathcal{P}(Y)$, para quaisquer conjuntos X e Y. Como $A\subseteq \mathbb{N}$, podemos concluir que $\mathcal{P}(A)\subseteq \mathcal{P}(\mathbb{N})$.

2.15. Determine $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$.

resolução:

Temos que

$$\begin{split} \mathcal{P}(\varnothing) &= \left\{\varnothing\right\} \\ \mathcal{P}(\mathcal{P}(\varnothing)) &= \mathcal{P}\left(\left\{\varnothing\right\}\right) = \left\{\varnothing, \left\{\varnothing\right\}\right\} \\ \mathcal{P}(\mathcal{P}(\mathcal{P}(\varnothing))) &= \mathcal{P}\left(\left\{\varnothing, \left\{\varnothing\right\}\right\}\right) = \left\{\varnothing, \left\{\varnothing\right\}, \left\{\left\{\varnothing\right\}\right\}, \left\{\varnothing, \left\{\varnothing\right\}\right\}\right\} \right\} \end{split}$$

2.16. Sejam A, B e C conjuntos. Diga, justificando, se é verdadeira ou falsa cada uma das afirmações seguintes: (a) $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$; (b) $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$.

resolução:

(a) A afirmação (a) é verdadeira. De facto, para todo o objeto X, $X \in \mathcal{P}(A \cap B) \Leftrightarrow X \in \mathcal{P}(A) \cap \mathcal{P}(B)$, como a seguir comprovamos:

$$X \in \mathcal{P}\left(A \cap B\right) \Leftrightarrow X \subseteq A \cap B$$
 [pela definição de conjunto das partes]
$$\Leftrightarrow X \subseteq A \wedge X \subseteq B$$
 [pela definição de \cap , pelo ex. 2.13(d) e recíproca]
$$\Leftrightarrow X \in \mathcal{P}\left(A\right) \wedge X \in \mathcal{P}\left(B\right)$$
 [pela definição de conjunto das partes]
$$\Leftrightarrow X \in \mathcal{P}\left(A\right) \cap \mathcal{P}\left(B\right)$$
 [pela definição de \cap]

Portanto, $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$

(b) A afirmação (a) é falsa. De facto, consideremos $A=\{1\}$ e $B=\{2\}$. Temos que $A\cup B=\{1,2\}$ e

$$\mathcal{P}(A) = \{\varnothing, \{1\}\},\$$

$$\mathcal{P}(B) = \{\varnothing, \{2\}\}\$$

е

$$\mathcal{P}(A \cup B) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}.$$

Para estes conjuntos,

$$\mathcal{P}(A \cup B) \neq \mathcal{P}(A) \cup \mathcal{P}(B) = \{\emptyset, \{1\}, \{2\}\}.$$

2.17. Considere os conjuntos $A = \{1, 2, 3\}$, $B = \{a, b\}$ e $C = \{5\}$. Determine $A \times C$, $C \times A$, $(A \times C) \setminus (C \times A)$, $A \times B \times C$, $A \times \emptyset \times C$, C^3 e $C^3 \times B$.

resolução:

$$A \times C = \{(x,y) \mid x \in A \land y \in C\} = \{(1,5), (2,5), (3,5)\}$$

$$C \times A = \{(x,y) \mid x \in C \land y \in A\} = \{(5,1), (5,2), (5,3)\}$$

$$(A \times C) \setminus (C \times A) = \{a \mid a \in A \times C \land a \notin C \times A\} = A \times C$$

$$A \times B \times C = \{(x,y,z) \mid x \in A \land y \in B \land z \in C\}$$

$$= \{(1,a,5), (2,a,5), (3,a,5), (1,b,5), (2,b,5), (3,b,5)\}$$

$$A \times \emptyset \times C = \{(x,y,z) \mid x \in A \land y \in \emptyset \land z \in C\} = \emptyset$$

$$C^{3} = \{(x,y,z) \mid x \in C \land y \in C \land z \in C\} = \{(5,5,5)\}$$

$$C^{3} \times B = \{(x,y) \mid x \in C^{3} \land y \in B\}$$

$$= \{((5,5,5),a), ((5,5,5),b)\}$$

2.18. Sejam $A, B \in C$ conjuntos. Prove que $C \times (A \cup B) = (C \times A) \cup (C \times B)$.

resolução:

Para todo o objeto (x, y),

$$(x,y) \in C \times (A \cup B) \Leftrightarrow x \in C \land y \in A \cup B$$

$$\Leftrightarrow x \in C \land (y \in A \lor y \in B)$$

$$\Leftrightarrow (x \in C \land y \in A) \lor (x \in C \land y \in B)$$

$$\Leftrightarrow (x,y) \in C \times A \lor (x,y) \in C \times B$$

$$\Leftrightarrow (x,y) \in (C \times A) \cup (C \times B)$$
[5]

justificações:

- [1] pela definição de produto cartesiano
- [2] pela definição de reunião
- [3] pela distributividade de ∧ em relação a ∨
- [4] pela definição de produto cartesiano
- [5] pela definição de reunião
- **2.19.** Sejam A, B e C conjuntos tais que $A \neq B$ e $A \times C = B \times C$. Mostre que $C = \emptyset$.

resolução:

A prova segue por redução ao absurdo. Admitamos que $A \neq B$ e $A \times C = B \times C$ e suponhamos que $C \neq \emptyset$.

Dado que $A \neq B$, sabemos que existe um elemento num dos conjuntos que não pertence ao outro. Sem perda de generalidade, admitamos que existe $x \in A$ tal que $x \notin B^{(*)}$. Sendo $C \neq \emptyset$, sabemos que C tem pelos menos um elemento, digamos y. Assim, $(x,y) \in A \times C$. Como $(x,y) \in A \times C$ e $A \times C = B \times C$, podemos afirmar que $(x,y) \in B \times C$. Mas, deste modo, $x \in B$, o que leva a uma contradição. A contradição resultou de supormos que $C \neq \emptyset$. Portanto, $C = \emptyset$.

- (*) Aqui, o "sem perda de generalidade" refere-se ao facto de o caso em que existe $x \in B$ tal que $x \notin A$ ser perfeitamente análogo ao caso analisado.
- **2.20.** Dê exemplo, ou justifique que não existe um exemplo, de conjuntos $A, B \in C$ tais que:

(a)
$$\{1\} \in A \in \{1\} \subseteq A$$

(d)
$$B = C \in A \cap B \neq A \cap C$$

(a)
$$\{1\} \in A \in \{1\} \subseteq A$$
 (d) $B = C \in A \cap B \neq A \cap C$ (g) $A \times (B \setminus C) = A \times C \subset B, C \neq \emptyset$

(b)
$$A \cap \emptyset = A$$

(e)
$$A \times B \subseteq B \times C \in A \nsubseteq B$$

(e)
$$A \times B \subseteq B \times C$$
 e $A \nsubseteq B$ (h) $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$ c/ $A, B \neq \emptyset$

(c)
$$A \cap B = A \cap C$$
 e $B \neq C$ (f) $A \cup B = A \cup C$ e $B \neq C$ (i) $\mathcal{P}(A) \cap A \neq \emptyset$

(f)
$$A \cup B = A \cup C \in B \neq C$$

(i)
$$\mathcal{P}(A) \cap A \neq \emptyset$$

resolução:

- (a) Consideremos $A = \{1, \{1\}\}$. Temos que $\{1\}$ é um dos elementos de A. Assim, podemos dizer que $\{1\} \in A$. Mais ainda, todos os elementos de $\{1\}$ são elementos de A (de facto, 1 é elemento de A). Portanto, $\{1\} \subseteq A$.
- (b) O único conjunto A que satisfaz $A \cap \emptyset = A$ é $A = \emptyset$.
- (c) Consideremos $A = \{1, 2, 3\}$, $B = \{1, 4\}$ e $C = \{1, 5\}$. Temos que $A \cap B = \{1\} = A \cap C$. No entanto, $B \neq C$.
- (d) Não existem tais conjuntos. De facto, se B=C, então $A\cap B=A\cap C$ (de facto, basta substituir B em $A \cap B$ por C).

(e) Só podemos ter $A \times B \subseteq B \times C$ e $A \nsubseteq B$ quando $B = \emptyset$ e A é um conjunto não vazio. Consideremos, por exemplo, $A = \{1\}$, $B = \emptyset$ e $C = \{2\}$. Temos que

$$A \times B = \{1\} \times \varnothing = \varnothing,$$

$$B \times C = \varnothing \times \{2\} = \varnothing,$$

$$A \times B = \varnothing \subset \varnothing = B \times C$$

е

$$A \not\subseteq B$$
.

- (f) Consideremos $A = \{1, 2, 3\}$, $B = \{1, 4\}$ e $C = \{2, 4\}$. Temos que $A \cup B = \{1, 2, 3, 4\} = A \cup C$. No entanto, $B \neq C$.
- (g) Consideremos, por exemplo, $A=\varnothing$, $B=\{1,2\}$ e $C=\{2\}$. Temos que

$$A \times (B \setminus C) = \varnothing \times \{1\} = \varnothing$$

е

$$A \times C = \emptyset \times \{2\} = \emptyset.$$

Note-se que $B, C \neq \emptyset$ e $A \times (B \setminus C) = \emptyset = A \times C$.

- (h) Consideremos, por exemplo, $A=B=\{1,2\}$. Temos que $A,B\neq\varnothing$ e $\mathcal{P}(A\cup B)=\mathcal{P}(\{1,2\}\cup\{1,2\})=\mathcal{P}(\{1,2\})=\mathcal{P}(\{1,2\})\cup\mathcal{P}(\{1,2\})=\mathcal{P}(A)\cup\mathcal{P}(B)$.
- (i) Consideremos $A = \{1, \{1\}\}$. Temos que

$$\mathcal{P}(A) = \{\varnothing, \{1\}, \{\{1\}\}, \{1, \{1\}\}\}\}.$$

Assim,

$$\mathcal{P}(A) \cap A = \{\{1\}\} \neq \varnothing.$$

2.21. Seja A um conjunto finito. Qual dos conjuntos $\mathcal{P}(A \times A)$ e $\mathcal{P}(A) \times \mathcal{P}(A)$ tem mais elementos?

resolução:

Seja n o número de elementos de A $(n \in \mathbb{N}_0)$. Temos que $A \times A$ tem $n \times n = n^2$ elementos e, portanto, $\mathcal{P}(A \times A)$ tem $2^{(n^2)}$ elementos. Por outro lado, $\mathcal{P}(A)$ tem 2^n elementos, pelo que $\mathcal{P}(A) \times \mathcal{P}(A)$ tem $2^n \times 2^n = 2^{(2n)}$ elementos. Portanto, se n = 1, é $\mathcal{P}(A) \times \mathcal{P}(A)$ que tem mais elementos. Se n = 2, os conjuntos em questão têm o mesmo número de elementos. Para $n \geq 3$, é $\mathcal{P}(A \times A)$ que tem mais elementos.

Capítulo 3

Indução nos naturais

3.1. Prove, por indução nos naturais, as seguintes propriedades:

- (a) 2+4+6+...+2n = n(n+1), para todo $n \ge 1$.
- (b) $1+2+3+4+...+n=\frac{n(n+1)}{2},$ para todo $n\geq 1.$
- (c) $2^0 + 2^1 + \ldots + 2^n = 2^{n+1} 1$, para todo $n \ge 1$.
- (d) $1+4+9+\ldots+n^2=\frac{n(n+1)(2n+1)}{6},$ para todo $n\geq 1.$
- (e) $n^2 > 2n + 1$, para todo $n \ge 3$.
- (f) $n! \ge n^2$, para todo $n \ge 4$.
- (g) $n^3 n$ é múltiplo de 3, para todo $n \ge 1$.
- (h) $5^n 1$ é múltiplo de 4, para todo $n \ge 1$.
- (i) $7n < 2^n$ para todo $n \ge 6$.
- (j) $2^n > n^3$, para todo $n \ge 10$.
- (k) $a^n \leq b^n$, para todo $n \geq 1$ e para todo $a, b \in \mathbb{R}$ tais que $0 \leq a \leq b$.

resolução:

(a) Mostremos que a soma dos n primeiros números naturais pares é igual a n(n+1), para todo o natural $n \in \mathbb{N}$, pelo método de indução nos naturais.

Representemos por p(n) o predicado " $2+4+6+\cdots+2n=n(n+1)$ " sobre os naturais n.

- (I) Para n=1, temos $2=1(1+1) \Leftrightarrow 2=2$, pelo que p(1) é verdadeira.
- (II) Seja $k \in \mathbb{N}$ tal que p(k) é verdadeira, ou seja,

$$2+4+6+\cdots+2k=k(k+1)$$
. (H.I.)

Pretendemos mostrar que p(k+1) é verdadeira, ou seja,

$$2+4+6+\cdots+2(k+1)=(k+1)(k+2).$$

Temos que

$$2+4+6+\cdots+2(k+1) = (2+4+6+\cdots+2k)+2(k+1)$$

$$= k(k+1)+2(k+1) \quad \text{pela (H.I.)}$$

$$= (k+1)(k+2),$$

pelo que p(k+1) é verdadeira.

Pelo Princípio de Indução para № e por (I) e (II), podemos concluir que

$$2+4+6+\ldots+2n = n(n+1),$$

para todo n > 1.

(b) Mostremos que a soma dos n primeiros números naturais é igual a $\frac{n(n+1)}{2}$, para todo o natural $n \in \mathbb{N}$, pelo método de indução nos naturais.

Representemos por p(n) o predicado " $1+2+3+4+\cdots+n=\frac{n(n+1)}{2}$ " sobre os naturais n.

- (I) Para n=1, temos $1=\frac{1(1+1)}{2}\Leftrightarrow 1=1$, pelo que p(1) é verdadeira.
- (II) Seja $k \in \mathbb{N}$ tal que p(k) é verdadeira, ou seja,

$$1+2+3+4+\cdots+k=\frac{k(k+1)}{2}$$
. (H.I.)

Pretendemos mostrar que p(k+1) é verdadeira, ou seja,

$$1+2+3+4+\cdots+(k+1)=\frac{(k+1)(k+2)}{2}$$
.

Sabemos que

$$\begin{split} 1+2+3+4+\cdots +(k+1) &= (1+2+3+4+\cdots +k) +(k+1)\\ &= \frac{k(k+1)}{2} +(k+1) \quad \text{pela (H.I.)}\\ &= \frac{k(k+1)+2(k+1)}{2}\\ &= \frac{(k+1)(k+2)}{2}, \end{split}$$

pelo que p(k+1) é verdadeira.

Pelo Princípio de Indução para N e por (I) e (II), podemos concluir que

$$1 + 2 + 3 + 4 + \dots + (k+1) = \frac{(k+1)(k+2)}{2}$$

para todo $n \geq 1$.

(c) Mostremos que $2^0 + 2^1 + \ldots + 2^n = 2^{n+1} - 1$, para todo o natural $n \in \mathbb{N}$, pelo método de indução nos naturais.

Representemos por p(n) o predicado " $2^0 + 2^1 + \ldots + 2^n = 2^{n+1} - 1$ " sobre os naturais n.

- (I) Para n=1, temos $2^0+2^1=2^{1+1}-1\Leftrightarrow 1+2=4-1\Leftrightarrow 3=3$, pelo que p(1) é verdadeira.
- (II) Seja $k \in \mathbb{N}$ tal que p(k) é verdadeira, ou seja,

$$2^0 + 2^1 + \ldots + 2^k = 2^{k+1} - 1$$
. (H.I.)

Pretendemos mostrar que p(k+1) é verdadeira, ou seja,

$$2^0 + 2^1 + \ldots + 2^{k+1} = 2^{k+2} - 1$$

Temos que

$$\begin{aligned} 2^0 + 2^1 + \ldots + 2^{k+1} &= \left(2^0 + 2^1 + \ldots + 2^k\right) + 2^{k+1} \\ &= 2^{k+1} - 1 + 2^{k+1} \quad \text{pela (H.l.)} \\ &= 2 \times 2^{k+1} - 1 \\ &= 2^{1+k+1} - 1 \\ &= 2^{k+2} - 1 \end{aligned}$$

pelo que p(k+1) é verdadeira.

Pelo Princípio de Indução para № e por (I) e (II), podemos concluir que

$$2^0 + 2^1 + \ldots + 2^n = 2^{n+1} - 1$$
,

para todo $n \ge 1$.

(d) Mostremos que a soma dos quadrados dos n primeiros números naturais é igual a $\frac{n(n+1)(2n+1)}{6}$, para todo o natural $n \in \mathbb{N}$, pelo método de indução nos naturais.

Representemos por p(n) o predicado " $1+4+9+\ldots+n^2=\frac{n(n+1)(2n+1)}{6}$ " sobre os naturais n.

- (I) Para n=1, temos $1=\frac{1(1+1)(2+1)}{6}\Leftrightarrow 1=1$, pelo que p(1) é verdadeira.
- (II) Seja $k \in \mathbb{N}$ tal que p(k) é verdadeira, ou seja,

$$1+4+9+\ldots+k^2 = \frac{k(k+1)(2k+1)}{6}$$
. (H.I.)

Pretendemos mostrar que p(k+1) é verdadeira, ou seja,

$$1 + 4 + 9 + \dots + (k+1)^2 = \frac{(k+1)(k+2)(2k+3)}{6}$$

Temos que

$$1+4+9+\cdots+(k+1)^2 = (1+4+9+\cdots+k^2)+(k+1)^2$$

$$= \frac{k(k+1)(2k+1)}{6}+(k+1)^2 \text{ pela (H.I.)}$$

$$= \frac{k(k+1)(2k+1)+6(k+1)^2}{6}$$

$$= \frac{(k+1)(k(2k+1)+6(k+1))}{6}$$

$$= \frac{(k+1)(2k^2+7k+6))}{6}$$

$$= \frac{(k+1)(k+2)(2k+3)}{6},$$

pelo que p(k+1) é verdadeira.

Pelo Princípio de Indução para № e por (I) e (II), podemos concluir que

$$1+4+9+\ldots+n^2=\frac{n(n+1)(2n+1)}{6}$$
,

para todo $n \ge 1$.

(e) Mostremos que $n^2>2n+1$, para todo $n\geq 3$, pelo método de indução simples de base 3 nos naturais.

Representemos por p(n) o predicado " $n^2 > 2n + 1$ " sobre os naturais $n \ge 3$.

- (I) Para n=3, temos $n^2>2n+1\Leftrightarrow 3^2>2\times 3+1\Leftrightarrow 9>7$, pelo que p(3) é verdadeira.
- (II) Seja $k \in \mathbb{N}$ tal que $k \geq 3$ e p(k) é verdadeira, ou seja,

$$k^2 > 2k + 1$$
 (H.I.)

Pretendemos mostrar que p(k+1) é verdadeira, ou seja,

$$(k+1)^2 > 2(k+1)+1$$
,

isto é,

$$(k+1)^2 > 2k+3.$$

Temos que

$$(k+1)^2 = k^2 + 2k + 1$$
 $> (2k+1) + 2k + 1$ (note-se que $k^2 > 2k + 1$ pela (H.I.) $= 4k + 2$ $> 2k + 3$, (uma vez que $k \ge 3$ e $4k + 2 > 2k + 3 \Leftrightarrow 2k > 1$)

pelo que p(k+1) é verdadeira.

Pelo Princípio de Indução de base 3 para os naturais e por (I) e (II), podemos concluir que $n^2 > 2n + 1$, para todo $n \ge 3$.

(f) Mostremos que $n! \ge n^2$, para todo $n \ge 4$, pelo método de indução simples de base 4 nos naturais.

Representemos por p(n) o predicado " $n! \ge n^2$ " sobre os naturais $n \ge 4$.

- (I) Para n=4, temos $n! \ge n^2 \Leftrightarrow 4! > 4^2 \Leftrightarrow 24 > 16$, pelo que p(4) é verdadeira.
- (II) Seja $k \in \mathbb{N}$ tal que $k \geq 4$ e p(k) é verdadeira, ou seja,

$$k! \ge k^2$$
 (H.I.)

Pretendemos mostrar que p(k+1) é verdadeira, ou seja, que $(k+1)! \ge (k+1)^2$. Temos que

$$(k+1)! \ge (k+1)^2 \Leftrightarrow (k+1)k! \ge (k+1)^2$$
$$\Leftrightarrow k! \ge k+1.$$

Sabemos, por H.I., que $k! \ge k^2$. Pela alínea (e), sabemos que $k^2 > 2k+1$. É claro que 2k+1 > k+1. Portanto,

$$k! > k^2 > 2k + 1 > k + 1,$$

donde é verdade que $k! \ge k+1$ e p(k+1) é verdadeira.

Pelo Princípio de Indução de base 4 para os naturais e por (I) e (II), podemos concluir que $n! \ge n^2$, para todo $n \ge 4$.

(g) Mostremos que n^3-n é múltiplo de 3, para todo o natural $n\in\mathbb{N}$, pelo método de indução nos naturais

Representemos por p(n) o predicado " $n^3 - n$ é múltiplo de 3".

- (I) Para n=1, temos $n^3-n=1^3-1=0$. Como 0 é múltiplo de 3, p(1) é verdadeira.
- (II) Seja $k\in\mathbb{N}$ tal que p(k) é verdadeira, ou seja, k^3-k é múltiplo de 3. Então, existe $q\in\mathbb{N}_0$ tal que $k^3-k=3q$.

Assim,

$$(k+1)^3 - (k+1) = (k^3 + 3k^2 + 3k + 1) - (k+1)$$

$$= k^3 + 3k^2 + 3k - k$$

$$= (k^3 - k) + (3k^2 + 3k)$$

$$= 3q + (3k^2 + 3k)$$

$$= 3(q + k^2 + k).$$

Logo, $(k+1)^3-(k+1)=3(q+k^2+k)$, sendo $q+k^2+k\in\mathbb{N}$. Portanto, k^3-k é múltiplo de 3, pelo que p(k+1) é verdadeira.

Pelo Princípio de Indução para N e por (I) e (II), podemos concluir que

$$n^3 - n$$
 é múltiplo de 3,

para todo o natural n.

(h) Mostremos que 5^n-1 é múltiplo de 4, para todo o natural $n\in\mathbb{N}$, pelo método de indução nos naturais.

Representemos por p(n) o predicado " $5^n - 1$ é múltiplo de 4".

- (I) Para n=1, temos $5^n-1=5-1=4$, que é, obviamente, múltiplo de 4. Logo, p(1) é verdadeira.
- (II) Seja $k \in \mathbb{N}$ tal que p(k) é verdadeira, ou seja, 5^k-1 é múltiplo de 4. Então, existe $r \in \mathbb{N}$ tal que $5^k-1=4r$.

Assim,

$$\begin{array}{ll} 5^{k+1}-1 &= 5\times 5^k-1\\ &= 5\times (4r+1)-1 & \text{(uma vez que } 5^k-1=4r \Leftrightarrow 5^k=4r+1\text{)}\\ &= 20r+5-1\\ &= 20r+4\\ &= 4\times (5r+1). \end{array}$$

Dado que $5r+1\in\mathbb{N}$, podemos dizer que existe $s\in\mathbb{N}$ tal que $5^{k+1}-1=4s$, ou seja, $5^{k+1}-1$ é múltiplo de 4. Assim, p(k+1) é verdadeira.

Pelo Princípio de Indução para $\mathbb N$ e por (I) e (II), podemos concluir que 5^n-1 é múltiplo de 4, para todo o natural n.

(i) Mostremos que $7n < 2^n$ para todo $n \ge 6$, pelo método de indução simples de base 6 nos naturais.

Representemos por p(n) o predicado " $7n < 2^n$ " sobre os naturais $n \ge 6$.

- (I) Para n=6, temos $7n < 2^n \Leftrightarrow 7 \times 6 < 2^6 \Leftrightarrow 42 < 64$, pelo que p(6) é verdadeira.
- (II) Seja $k \in \mathbb{N}$ tal que $k \geq 6$ e p(k) é verdadeira, ou seja,

$$7k < 2^k$$
 (H.I.)

Pretendemos mostrar que p(k+1) é verdadeira, ou seja, que $7(k+1) < 2^{k+1}$. Temos que

$$7(k+1) < 2^{k+1} \Leftrightarrow 7k+7 < 2 \times 2^k$$

 $\Leftrightarrow 7k+7 < 2^k + 2^k.$

Sabemos, por H.I., que $7k < 2^k$. Como $k \ge 6$, sabemos que $2^k \ge 2^6 = 64$. Portanto, $7 < 2^k$. Como $7k < 2^k$ e $7 < 2^k$, podemos afirmar que $7k + 7 < 2^k + 2^k$. Portanto, p(k+1) é verdadeira.

Pelo Princípio de Indução de base 6 para os naturais e por (I) e (II), podemos concluir que $7n < 2^n$, para todo $n \ge 6$.

(j) Mostremos que $2^n > n^3$, para todo $n \ge 10$, pelo método de indução simples de base 10 nos naturais.

Representemos por p(n) o predicado " $2^n > n^3$ " sobre os naturais $n \ge 10$.

- (I) Para n=10, temos $2^n > n^3 \Leftrightarrow 2^{10} > 10^3 \Leftrightarrow 1024 > 1000$, pelo que p(10) é verdadeira.
- (II) Seja $k \in \mathbb{N}$ tal que $k \ge 10$ e p(k) é verdadeira, ou seja,

$$2^k > k^3$$
 (H.I.)

Pretendemos mostrar que p(k+1) é verdadeira, ou seja, que $2^{k+1} > (k+1)^3$. Temos que

$$2^{k+1} > (k+1)^3 \Leftrightarrow 2 \times 2^k > k^3 + 3k^2 + 3k + 1$$
$$\Leftrightarrow 2^k + 2^k > k^3 + 3k^2 + 3k + 1.$$

Sabemos, por H.I., que $2^k > k^3$. Se mostrarmos que $2^k > 3k^2 + 3k + 1$, poderemos afirmar que $2^k + 2^k > k^3 + 3k^2 + 3k + 1$ e, consequentemente que p(k+1) é verdadeira. Façamos esta prova também por indução nos naturais.

Consideremos o predicado q(k): $2^k > 3k^2 + 3k + 1$, para todo o natural $k \ge 10$. Provemos que q(k) é verdadeira para todo k > 10.

- (A) Para k=10, temos que $2^k>3k^2+3k+1\Leftrightarrow 1024>3\times 100+3\times 10+1\Leftrightarrow 1024>331$, donde q(10) é verdadeira.
- (B) Seja $m\in\mathbb{N}$ tal que $m\geq 10$ e q(m) é verdadeira, ou seja, $2^m>3m^2+3m+1$. Pretendemos mostrar que q(m+1) é verdadeira, isto é, que $2^{m+1}>3(m+1)^2+3(m+1)+1$. Ora,

$$2^{m+1} > 3(m+1)^2 + 3(m+1) + 1 \Leftrightarrow 2 \times 2^m > 3m^2 + 6m + 3 + 3m + 3 + 1$$
$$\Leftrightarrow 2^m + 2^m > (3m^2 + 3m + 1) + (6m + 6).$$

Pela H.I., sabemos que $2^m>3m^2+3m+1$. Pela alínea (i), sabemos que $2^m>7m$. Mais ainda, é claro que, para $m\geq 10$, 7m>6m+6 (note-se que $7m>6m+6\Leftrightarrow 7m-6m>6\Leftrightarrow m>6$). Assim,

$$2^{m} + 2^{m} > (3m^{2} + 3m + 1) + 7m > (3m^{2} + 3m + 1) + (6m + 6).$$

Sendo $2^m + 2^m > (3m^2 + 3m + 1) + (6m + 6)$, podemos afirmar que $2^{m+1} > 3(m + 1)^2 + 3(m + 1) + 1$, ou seja, que q(m + 1) é verdadeira.

Pelo Princípio de Indução de base 10 para os naturais e por (A) e (B), podemos concluir que $2^k > 3k^2 + 3k + 1$, para todo $k \ge 10$.

Estamos, assim, em condições de afirmar que p(k+1) é verdadeira.

Pelo Princípio de Indução de base 10 para os naturais e por (I) e (II), podemos concluir que $2^n > n^3$, para todo $n \ge 10$.

(k) Sejam $a,b\in\mathbb{R}$ tais que $0\leq a\leq b$. Mostremos que $a^n\leq b^n$, para todo $n\geq 1$.

Representemos por p(n) o predicado " $a^n \leq b^n$ ".

- (I) Para n=1, temos $a^n \leq b^n \Leftrightarrow a \leq b$. Portanto, p(1) é verdadeira.
- (II) Seja $k \in \mathbb{N}$ tal que p(k) é verdadeira, ou seja, $a^k \leq b^k$. De $0 \leq a \leq b$ e de $a^k \leq b^k$, podemos concluir que

$$a \times a^k < b \times b^k$$
,

ou seja, $a^{k+1} \leq b^{k+1}$ e, consequentemente, p(k+1) é verdadeira.

Pelo Princípio de Indução para $\mathbb N$ e por (I) e (II), podemos concluir que $a^n \leq b^n$, para todo o natural n.

3.2. Seja p(n) a seguinte afirmação:

$$1+2+\ldots+n=\frac{(n-1)(n+2)}{2}.$$

- (a) Mostre que se p(k) é verdadeira (com $k \in \mathbb{N}$), então p(k+1) também é verdadeira.
- (b) Podemos concluir que p(n) é válida para todo $n \in \mathbb{N}$?

resolução:

(a) Seja $k \in \mathbb{N}$ tal que p(k) é verdadeira, ou seja,

$$1+2+\ldots+k=\frac{(k-1)(k+2)}{2}$$
. (H.I.)

Pretendemos mostrar que p(k+1) é verdadeira, ou seja, que

$$1+2+\ldots+(k+1)=\frac{k(k+3)}{2}.$$

Temos que

$$\begin{aligned} 1+2+\ldots+(k+1) &= (1+2+\ldots+k)+(k+1) \\ &= \frac{(k-1)(k+2)}{2}+(k+1) \quad \text{(pela H.l.)} \\ &= \frac{(k-1)(k+2)+2(k+1)}{2} \\ &= \frac{k^2+2k-k-2+2k+2}{2} \\ &= \frac{k^2+3k}{2} \\ &= \frac{k(k+3)}{2}, \end{aligned}$$

pelo que p(k+1) é verdadeira.

(b) Consideremos n=1. Temos que

$$1 + 2 + \ldots + n = \frac{(n-1)(n+2)}{2} \Leftrightarrow 1 = \frac{(1-1)(1+2)}{2} \Leftrightarrow 1 = 0,$$

pelo que p(1) é falsa. Logo, p(n) não é válida para todo $n \in \mathbb{N}$.

3.3. Seja X um conjunto tal que $X \subseteq \mathbb{N}$, $3 \in X$ e, para cada $n \in \mathbb{N}$,

$$n \in X \Rightarrow n + 3 \in X$$
.

Prove que $\{3n : n \in \mathbb{N}\} \subseteq X$.

resolução:

Sabemos que $\{3n : n \in \mathbb{N}\} \subseteq X$ se e somente se todos os elementos de $\{3n : n \in \mathbb{N}\}$ são elementos de X. Pretendemos, pois, provar que $3n \in X$, para todo o natural n.

Representemos por p(n) o predicado " $3n \in X$ " sobre os naturais.

- (I) Para n=1, temos 3n=3. Sabemos, pela definição de X, que $3\in X$. Portanto, p(1) é verdadeira.
- (II) Seja $k \in \mathbb{N}$ tal que p(k) é verdadeira, ou seja,

$$3k \in X$$
 (H.I.)

Pretendemos mostrar que p(k+1) é verdadeira, ou seja, que $3(k+1) \in X$. Pela definição de X, como $3k \in X$ pela H.I., podemos afirmar que $3k+3 \in X$. Portanto, $3(k+1) \in X$ e, por conseguinte, p(k+1) é verdadeira.

Pelo Princípio de Indução para \mathbb{N} e por (I) e (II), podemos concluir que $3n \in X$, para todo o natural n, donde $\{3n : n \in \mathbb{N}\} \subseteq X$.

3.4. Recorrendo ao Princípio de Indução Completa, mostre que a sequência de Fibonacci (definida por F_1 , $F_2=1$, $F_n=F_{n-1}+F_{n-2}$, para todo $n\geq 3$) satisfaz, para todo $n\in\mathbb{N}$, $F_n\geq \left(\frac{3}{2}\right)^{n-2}$.

resolução:

A prova segue por Indução Completa nos naturais. Representemos por p(n) o predicado

$$F_n \ge \left(\frac{3}{2}\right)^{n-2}$$

sobre os naturais.

(I) Como o termo F_n é definido a partir de F_{n-1} e F_{n-2} apenas para $n \ge 3$, vejamos que p(1) e p(2) são verdadeiras. Temos que Se n=1,

$$F_n \ge \left(\frac{3}{2}\right)^{n-2} \Leftrightarrow F_1 \ge \left(\frac{3}{2}\right)^{1-2}$$

 $\Leftrightarrow 1 \ge \frac{2}{3},$

pelo que p(1) é verdadeira. Se n=2,

$$F_n \ge \left(\frac{3}{2}\right)^{n-2} \Leftrightarrow F_2 \ge \left(\frac{3}{2}\right)^{2-2} \Leftrightarrow 1 \ge 1,$$

pelo que p(2) é verdadeira.

(II) Consideremos, agora, $k\in\mathbb{N}$ tal que $k\geq 3$ e tal que $p(1),p(2),\ldots,p(k)$ são verdadeiras. Sabemos, então, que

$$F_j \ge \left(\frac{3}{2}\right)^{j-2}$$
, (H.I.)

para todo $j \in \{1, 2, \dots, k\}$.

Vejamos que p(k+1) também é verdadeira. Temos que

$$\begin{split} F_{k+1} & \geq \left(\frac{3}{2}\right)^{(k+1)-2} \Leftrightarrow F_{k+1} \geq \left(\frac{3}{2}\right)^{k-1} \\ & \Leftrightarrow F_{(k+1)-1} + F_{(k+1)-2} \geq \left(\frac{3}{2}\right)^{k-1} \quad \text{(pela definição de } F_n\text{)} \\ & \Leftrightarrow F_k + F_{k-1} \geq \left(\frac{3}{2}\right)^{k-1}. \end{split}$$

Pela H.I., sabemos que

$$F_k \ge \left(\frac{3}{2}\right)^{k-2}$$

е

$$F_{k-1} \ge \left(\frac{3}{2}\right)^{(k-1)-2}$$

Portanto,

$$F_k + F_{k-1} \ge \left(\frac{3}{2}\right)^{k-2} + \left(\frac{3}{2}\right)^{(k-1)-2},$$

ou seja,

$$F_k + F_{k-1} \ge \left(\frac{3}{2}\right)^{k-2} + \left(\frac{3}{2}\right)^{k-3}.$$

Note-se que, se

$$\left(\frac{3}{2}\right)^{k-2} + \left(\frac{3}{2}\right)^{k-3} \ge \left(\frac{3}{2}\right)^{k-1},$$

então teremos

$$F_k + F_{k-1} \ge \left(\frac{3}{2}\right)^{k-2} + \left(\frac{3}{2}\right)^{k-3} \ge \left(\frac{3}{2}\right)^{k-1}$$

e poderemos concluir que

$$F_k + F_{k-1} \ge \left(\frac{3}{2}\right)^{k-1}$$

e, consequentemente, que

$$F_{k+1} \ge \left(\frac{3}{2}\right)^{(k+1)-2}$$
.

Vejamos que, de facto,

$$\left(\frac{3}{2}\right)^{k-2} + \left(\frac{3}{2}\right)^{k-3} \ge \left(\frac{3}{2}\right)^{k-1}.$$

Temos que

$$\left(\frac{3}{2}\right)^{k-2} + \left(\frac{3}{2}\right)^{k-3} \ge \left(\frac{3}{2}\right)^{k-1} \Leftrightarrow \left(\frac{3}{2}\right)^{k-3} \left(\frac{3}{2}\right)^1 + \left(\frac{3}{2}\right)^{k-3} \ge \left(\frac{3}{2}\right)^{k-3} \left(\frac{3}{2}\right)^2$$

$$\Leftrightarrow \left(\frac{3}{2}\right)^1 + 1 \ge \left(\frac{3}{2}\right)^2$$

$$\Leftrightarrow \frac{5}{2} \ge \frac{9}{4},$$

o que é verdade. Portanto,

$$\left(\frac{3}{2}\right)^{k-2} + \left(\frac{3}{2}\right)^{k-3} \ge \left(\frac{3}{2}\right)^{k-1}$$

e p(k+1) é verdadeira.

Pelo Princípio de Indução Completa para $\mathbb N$ e por (I) e (II), podemos concluir que $F_n \geq \left(\frac{3}{2}\right)^{n-2}$, para todo o natural n.