Assignment 2

Indian Institute of Science Education and Research

CHM202: Energetics and dynamics of chemical reactions

Instructor: Dr. Arijit K. De

Ques. 1 One gm mole of methane, which is a van der Waals gas, is compressed isothermally and reversibly from 1 atm to 400 atm at 0°C. What amount of heat must be removed during such compression in order to ensure isothermal nature of the process. [a= 2.264 atmL²Mol⁻²; b=0.0428LMol⁻¹]. For approximation you may use ideal gas equation for volume calculation. [1Latm=101.325J]

Ques. 2 Ten moles of an ideal monoatomic gas initially at 10 atm and 27^{0} C is allowed to expand in two ways separately (i) isothermally against a constant pressure of 1 atm and (ii) isothermally and slowly until the pressure becomes 1 atm. Calculate W, Q, Δ U, Δ H in each case. (R=8.314 JK⁻¹Mol⁻¹).

Ques. 3 The gas in a cloud chamber at a temperature of 292 K undergoes a rapid expansion. Assuming the process is adiabatic, calculate the final temperature if $\gamma = 1.40$ and the volume expansion ratio is 1.28.

Ques. 4 Joule-Thomson coefficient of a gas can be expressed as,

$$\mu_{J,T_A} = -\frac{1}{c_P} \left(\frac{\partial H}{\partial P} \right)_T$$

At 300^{0} C in the pressure range 0to 60 atm. The Joule-Thomson coefficient of N_{2} can be represented by the equation, $\mu_{J,T_{A}} = [0.0142 - 2.608 \times 10^{-4} P] \text{ K atm}^{-1}$. Calculate ΔH when ten moles of N_{2} , a van der Waals gas expands isothermally at 300^{0} C from 45 atm to 30 atm. $[\overline{C}_{P} = 7/2R]$

Ques.5 Show that the Joule-Thomson coefficient is zero for an ideal gas under all cases.