

案例1:个人贷款违约预测模型

数据科学实战: Python篇

讲师:Ben

自我介绍

- 天善商业智能和大数据社区 讲师 -Ben
- 天善社区 ID Ben_Chang
- https://www.hellobi.com 学习过程中有任何相关的问题都可以提到 技术社区数据挖掘版块。

数据科学方法论

数据科学是一个发现和解释数据中的模式,并用于解决问题的过程

发现:

找出隐藏在数据背后的模式,这些模式能 把数据转化为知识

部署:

应用已发现的知识达成实用的目的 - 例如: 预测

数据挖掘实施路线图:CRISP-DM

1数据理解

案例背景

- 本数据为一家银行的个人金融业务数据集,可以作为银行场景下进行个人客户业务分析和数据挖掘的示例。这份数据中涉及到5300个银行客户的100万笔的交易,而且涉及700份贷款信息与近900张信用卡的数据。通过分析这份数据可以获取与银行服务相关的业务知识。例如,提供增值服务的银行客户经理,希望明确哪些客户有更多的业务需求,而风险管理的业务人员可以及早发现贷款的潜在损失。
- 可否根据客户贷款前的属性、状态信息和交易行为预测其贷款违约行为?

案例背景

- 截取自一家银行的真实客户与交易数据;
- 涉及客户主记录、帐号、交易、业务和信用卡数据;
- •一个账户只能一笔贷款,"loan"表中记录了客户贷款信息。

loan_id 🗘	account_id [‡]	date [‡]	amount *	duration [‡]	payments [‡]	status 🌻
5314	1787	1993-07-05	96396	12	8033	В
5316	1801	1993-07-11	165960	36	4610	A
6863	9188	1993-07-28	127080	60	2118	Α '
5325	1843	1993-08-03	105804	36	2939	A
7240	11013	1993-09-06	274740	60	4579	A
6687	8261	1993-09-13	87840	24	3660	A
7284	11265	1993-09-15	52788	12	4399	Α
6111	5428	1993-09-24	1747	24_	7281	B

案例背景

贷款表(Loans)		
名称	标签	说明
disp_id	权限号	
loan_id	贷款号	(主键)
account_id	账户号	
date	发放贷款日期	
amount	贷款金额	
duration	贷款期限	
payments	每月归还额	
status	还款状态	A代表合同终止,没问题;B代表合同终止,贷款没有支付;C代表合同处于执行期,至今正常;D代表合同处于执行期,欠债状态。

•根据以往的贷款数据,状态为B和D的为违约客户,A为正常客户,C的最终状态还不明确。

A B C D
203 31 403 45

数据说明

账户表(Accounts)

每条记录描述了一个账户的静态信息

▶ 条数: 4500

客户信息表 (Clients)

每条记录描述了一个客户的特征信息

▶ 条数: 5369

账户表(Accounts)

名称 标签

account_id 账户号(主键)

district_id 开户分行地区号

date 开户日期

frequency 结算频度(月,周,交易之后马上)

客户信息表 (Clients)

列名 标签

client_id 客户号(主键)

Sex 性别

birth_date 出生日期

district_id 地区号(客户所属地区)

数据说明

权限分配表(Disp)

- 每条记录描述了客户和账户之间的关系,以及客户操作账户的权限
- ▶ 条数:5369

支付命令表 (Orders)

- 每条记录代表描述了一个支付命令
- ▶ 条数: 6471

权限分配表(Disp)		
名称	标签	说明
disp_id	权限设置号	(主键)
client_id	顾客号	
account_id	账户号	
type	权限类型	只用"所有者"身份可以进行进行增值业务 操作和贷款

支付订单表 (Orders)			
名称	标签	说明	
order_id	订单号	(主键)	
account_id	发起订单的账户号		
bank_to	收款银行	每家银行用两个字母来代表, 用于脱敏信息	
account_to	收款客户号		
amount	金额		
K_symbol	支付方式		

交易表 (Trans)

▶每条记录代表每个账户上的一条交易

▶条数:1056320

贷款表(Loans)

▶每条记录代表某个账户的上的一条贷款信息

▶条数: 682

贷款表(Loans)

status

ン く 3 5 C D く (
名称	标签	说明
disp_id	权限号	
loan_id	贷款号	(主键)
account_i	d 账户号	
date	发放贷款日期	
amount	贷款金额	
duration	贷款期限	
payments	每月归还额	

还款状态

交易表 (Trans)

account

行期,至今正常; D代表合同处于执行期,欠债状态。

名称 标签 交易序号(主键) trans id 发起交易的账户号 account id

交易日期 date 借贷类型 type 交易类型 operation

金额 amount 账户余额 balance K_Symbol 交易特征 bank 对方银行

A代表合同终止,没问题;B代表合同终止,贷款没有支付;C代表合同处于执

对方账户号

数据说明

信用卡(Cards)

- 每条记录描述了一个账户上的信用卡信息
- ▶ 条数:892

人口地区统计表 (District)

▶ 每条记录描述了一个地区的人口统计学信

息

▶ 条数:77

信用卡(Cards)表

名称 标签

card_id 信用卡id(主键)

disp_id 账户权限号

type 卡类型

issued 发卡日期

人口地区统计表 (District)

名称 标签

A1 = district_id 地区号(主键)

GDP GDP总量

A4 居住人口

A10 城镇人口比例

A11 平均工资

A12 1995年失业率

A13 1996年失业率

A14 1000人中有多少企业家

A15 1995犯罪率(千人)

A16 1996犯罪率(千人)

表的关系:数据的实体-关系图(ER图)

2业务理解

什么指标有预测能力?

客户为什么不还钱?

- 有预测价值的变量基本都是衍生变量:
 - 一级衍生,比如资产余额;
 - 二级衍生,比如资产余额的波动率、平均资产余额;
 - 三级衍生,比如资产余额的变异系数。

3 数据提取

目标

- 相关与因果之间的关系
- 注意构建模型时数据选取的标准。

相关关系 vs 因果关系

上实际80年代,姚明鞋的尺寸和GDP总量明显正相关。

建立因果关系模型

- ●我们分析的变量按照时间变化情况可以分为动态变量和静态变量
- ●属性变量(比如性别、是否90后)一般是静态变量,行为、状态和利益变量均属于动态变量。
- ●动态变量还分为时点变量和区间变量,状态变量(比如当前帐户余额、是否破产)和利益变量(对某产品的诉求)均属于时点变量。行为变量(存款频次、平均帐户余额的增长率)为区间变量。

贷款违约预测的取数规则

• 模型框架

- > 根据客户基本信息、业务信息、状态信息
- > 预估履约期内贷款客户未来一段时间内发生违约的可能

4模型构建与评估

数据挖掘模型分类

关联规则

时间序列

使用逻辑回归建立行为评分卡

客户号	违约概率P
A	0.87
•••	
В	0.36
•••	
С	0.12

$$p(default) = \frac{e^{b_0 + b_1 * x_1 + b_2 * x_2 + \dots + b_n * x_n}}{1 + e^{b_0 + b_1 * x_1 + b_2 * x_2 + \dots + b_n * x_n}}$$

变量名	回归系数	相关系数
BAL_NUM_P3	0.5528	0.2886
BAL_PCT_P6	-1.3811	-0.2636
CDT_LMT_AMT	-0.1421	-0.1413
CSM_CNT	-0.0616	-0.2674
DQT_LVL_CDE_3_M1_Dummy	1.0501	0.0483
LMT_AMT_PCT_P6	0.2308	0.1477
LST_FNL_DYS	0.0067	0.3369
LST_PMT_DYS	0.0038	0.2356
MTL_STS_CDE_MARR	-0.3511	-0.1331
PMT OF BAL PCT 3	-0.3489	-0.3513

评估指标汇总

分类模型类型	统计指标
决策(Decisions、二分类器)	精确性/误分类/召回率/准确度 利润/成本
排序(Rankings、二分类器)	ROC曲线(一致性) Gini指数 K-S曲线(分离度) PR曲线 提升度曲线
估计 (Estimates、回归)	误差平方均值 R方

评分卡模型的评估指标

更多商业智能BI和大数据精品视频尽在 www.hellobi.com

BI、商业智能 数据挖掘 大数据 数据分析师 Python R语言 机器学习 深度学习 人工智能 Hadoop Hive **Tableau** FTL BIEE 数据科学家

PowerBI

