EMBED YOUR DATA FOR FREE OPENSOURCE EMBEDDING MODELS

BY "REIMERS, NILS AND GUREVYCH, IRYNA",

DEEP DIVE INTO CONCEPTS &

Sentence-BERT: Sentence Embeddings using Siamese **BERT-Networks**

BERT (Devlin et al., 2018) and RoBERTa (Liu et al., 2019) has set a new state-of-the-art performance on sentence-pair regression tasks like semantic textual similarity (STS). However, it requires...

x arXiv.org

CHALLENGE SOLVED: DATA PROCESSING FOR MODELING

• SENTENCE TRANSFORMERS ARE MODELS
THAT CONVERT TEXT TO VECTORS OF
NUMBERS

• USAGE:

- **O SEMANTIC SIMILARITY**
- **O SEMANTIC SEARCH**
- RETRIEVE & RE-RANK
- **CLUSTERING**
- PARAPHRASE MINING
- TRANSLATED SENTENCE MINING
- CROSS ENCODERS
- **O IMAGE SEARCH**

USAGE CONCEPTS: HOW EMBEDDINGS ARE USED?

EMBEDDINGS						
28	57	86				
14	82	95				
36	07	27				
58	68	34				
86	26	41				

QUERY EMBED • NEARER TWO SENTENCES SIMILAR THEY ARE

- PARAPHRASE MINING IS USED WHEN MULTIPLE SENTENCE TO BE CHECKED
- SEMANTIC SEARCH IS DONE BY POSITIONING THE QUERY IN VECTOR SPACE AND CHECKING THE NEAREST NEIGHBOURS
- SYMMETRIC VS ASSYMMETRIC SEARCH
- RETRIEVE AND RE-RANK WITH CROSS ENCODER SEARCH
- FAST / AGGLOMERATIVE CLUSTERING / TOPIC MODELING

COSINE SIMILARITY

?

CONCEPTS DEEP DIVE: EXPLAINING APPLICATION

- SIMILAR SENTENCE: DISTANCE METRICS IS USED FOR FINDING SIMILAR SENTENCES
- PARAPHRASE MINING: QUERY IS COMPARED WITH
 CHUNKED CORPUS RATHER THAN SINGLE SENTENCES
- SEMANTIC SEARCH: QUERY IS EMBEDDED AND THEN
 PLACED IN VECTOR SPACE AS THAT OF THE CORPUS.

 ALL NEAREST SENTENCES ARE CONSIDERED SIMILAR
- RE-RANKING: ON TOP OF RETRIEVING THE
 SENTENCES, EACH OF THE SENTENCES IS CHECKED
 USING A CROSS ENCODER WHICH CLASSIFIES
 SENTENCE AT RAPID RATE
- BI-ENCODER PRODUCES SENTENCE EMBEDDINGS AND THEN COMPARES, WHILE THE CROSS ENCODER DOES NOT PRODUCE EMBEDDINGS, AND DIRECTLY CLASSIFIES THE SENTENCES

A cat on a table
 Text Embedding
 Two dogs in the snow
 London at night

IMAGE TO TEXT SIMILARITY

CLIP MODEL FOR:

- TEXT-TO-IMAGE / IMAGE-TO-TEXT / IMAGE-TO-IMAGE / TEXT-TO-TEXT SEARCH

CUSTOM EMBEDDING: TRAINING ON OWN TEXT / IMAGE

WHY FINE-TUNING?

EMBEDDING FOR SPECIFIC TASK IMPROVES THE PERFORMANCE. THE TRAINING STRATEGY DEPENDS ON THE TASK AND THE DATA FORMAT.

PROCESS OF TUNING THE NEURAL NET

- DECIDE THE SENTENCE LENGTH
- CREATING MODEL ARCHITECTURE FROM SCRATCH USING MODULES
- DATA FOR TRAINING IS FORMULATED BASED ON THE TASK TO BE PERFORMED BY THE MODEL
- INPUT EXAMPLES WILL HAVE THE TEXT DATA ALONG WITH THE LABEL.
- LOSS FUNCTION IS ALSO DECIDED BASED ON THE TASK AND THE AVAILABLE DATASET
- EVALUATION IS PROCESS OF CHECKING MODEL PERFORMANCE IN REALITY
- MODEL.FIT(TRAIN_OBJECTIVES, EVALUATOR, EVALUTION_STEPS, EPOCHS, WARMUP_STEPS, OUTPUT_PATH)

MODEL DISTILLATION: INCREASING SIZE & SPEED

2 WAYS OF MODEL DISTILLATION

- DIMENSIONALITY REDUCTION
- PARAMETER QUANTISATION
- REDUCING NUMBER OF LAYERS

IDEA IS TO EITHER REDUCE THE
SPACE USED BY THE VECTOR
EMBEDDINGS OR THE PROCESSING
TIME

TEACHER MODEL TRANSFERS ITS
KNOWLEDGE INTO THE STUDENT
MODEL

Layers	STSbenchmark Performance	Performance Decrease	Speed (Sent. / Sec. on V100-GPU)
teacher: 12	85. 44	-	2300
8	85.54	+0.1%	3200
6	85.23	-0.2%	4000
4	84.92	-0.6%	5300
3	84.39	-1.2%	6500
2	83.32	-2.5%	7700
1	80.86	-5.4%	9200

MODEL RANKINGS: SIMILARITY & MORE

Model	Performance (14 sentence similarity tasks)				
microsoft/mpnet-base	60.99				
nghuyong/ernie-2.0-en	60.73				
microsof/deberta-base	60.21				
roberta-base	59.63				
t5-base	59.21				
bert-base-uncased	59.17				
distilbert-base-uncased	59.03				
nreimers/TinyBERT_L-6_H-768_v2	58.27				
google/t5-v1_1-base	57.63				

MTEB Leaderboard - a Hugging Face Space by mteb

Discover amazing ML apps made by the community

huggingface

Model		Sequence Length	Average (56 datasets)		Clustering Average (11 datasets)	Classification	Reranking Average (4 datasets)	Retrieval Average (15 datasets)	STS Average (10 datasets)	Summarizatio n Average (1 dataset)	
1	e5-large-v2	1024	512	62.25	75.24	44.49	86.03	56.61	50.56	82.05	30.19
2	instructor-xl	768	512	61.79	73.12	44.74	86.62	57.29	49.26	83.06	32.32
3	instructor- large	768	512	61.59	73.86	45.29	85.89	57.54	47.57	83.15	31.84
4	e5-base-v2	768	512	61.5	73.84	43.8	85.73	55.91	50.29	81.05	30.28

THANKS FOR WATCHING REMEMBER TO PRACTICE WITH EXAMPLES

LIKE SHARE SUBSCRIBE