DeepCare: A Deep Dynamic Memory Model for Predictive Medicine

Trang Pham, Truyen Tran, Dinh Phung and Svetha Venkatesh April 12, 2017

Introduction

- "What is happening?"
- "What happens next?"

Introduction

- This system needs to address four challenges:
 - Long-term dependencies in healthcare LSTM
 - Representation of admission

Vector Embedding

- Episodic recording and irregular timing
 - Modified LSTM to incorporate time intervals
- Confounding interactions between disease progression and intervention
 Modified LSTM to input diagnosis and intervention

Model Architecture

Admission Representation

Max pooling

$$m{x}_t^i = \max\left(A_i^{d_1}, A_i^{d_2}, ..., A_i^{d_h}\right)$$
 $m{p}_t^i = \max\left(B_i^{s_1}, B_i^{s_2}, ..., B_i^{s_k}\right)$

Normalized sum pooling

$$m{x}_t^i = rac{A_i^{d_1} + A_i^{d_2} + \dots + A_i^{d_h}}{\sqrt{\mid A_i^{d_1} + A_i^{d_2} + \dots + A_i^{d_h} \mid}}$$

$$\mathbf{p}_{t}^{i} = \frac{B_{i}^{s_{1}} + B_{i}^{s_{2}} + \dots + B_{i}^{s_{k}}}{\sqrt{|B_{i}^{s_{1}} + B_{i}^{s_{2}} + \dots + B_{i}^{s_{k}}|}}$$

Mean pooling

$$m{x}_t = rac{A^{d_1} + A^{d_2} + ... + A^{d_h}}{h}$$
 $m{p}_t = rac{B^{s_1} + B^{s_2} + ... + B^{s_k}}{k}$

A Recall of Standard LSTM

Modified LSTM

$$i_{t} = \frac{1}{m_{t}} \sigma \left(W_{i} \boldsymbol{x}_{t} + U_{i} \boldsymbol{h}_{t-1} + \boldsymbol{b}_{i} \right)$$

$$o_{t} = \sigma \left(W_{o} \boldsymbol{x}_{t} + U_{o} \boldsymbol{h}_{t-1} + P_{o} \boldsymbol{p}_{t} + \boldsymbol{b}_{o} \right)$$

$$\boldsymbol{f}_{t} = \sigma \left(W_{f} \boldsymbol{x}_{t} + U_{f} \boldsymbol{h}_{t-1} + P_{f} \boldsymbol{p}_{t-1} + \boldsymbol{b}_{f} \right)$$

$$\boldsymbol{x}_{t}$$

$$\boldsymbol{m}_{t}$$

$$\boldsymbol{h}_{t-1}$$

$$\boldsymbol{f}_{t} = \sigma \left(W_{f} \boldsymbol{x}_{t} + U_{f} \boldsymbol{h}_{t-1} + Q_{f} \boldsymbol{q}_{\Delta_{t-1:t}} + P_{f} \boldsymbol{p}_{t-1} + \boldsymbol{b}_{f} \right)$$

 $\boldsymbol{q}_{\Delta_{t-1:t}} = \left(\frac{\Delta_{t-1:t}}{60}, \left(\frac{\Delta_{t-1:t}}{180}\right)^2, \left(\frac{\Delta_{t-1:t}}{365}\right)^3\right)$

Multiscale Pooling and Recency Attention

Data Source and Processing

- 12 years (2002-2013) from a large regional Australian hospital
- Diabetes: 7,191 patients with 53,208 admissions
- Mental health: 6,109 patients with 52,049 admissions
- Preprocessing:
 - Collapse diagnoses that share the first 2 characters into one diagnosis
 - Collapse intervention that share the first digit into one intervention
- 247 diagnosis, 752 procedure and 319 medication codes

Results-Diagnoses Prediction

Table 1: Precision@ n_p Diagnoses Prediction.

	Diabetes			Mental		
	$n_p = 1$	$n_p = 2$	$n_p = 3$	$n_p = 1$	$n_p = 2$	$n_p = 3$
Markov	55.1	34.1	24.3	9.5	6.4	4.4
Plain RNN	63.9	58.0	52.0	50.7	45.7	39.5
DeepCare (mean adm.)	66.2	59.6	53.7	52.7	46.9	40.2
DeepCare (sum adm.)	65.5	59.3	53.5	51.7	46.2	39.8
DeepCare (max adm.)	66.1	59.2	53.2	51.5	46.7	40.2

Results—Intervention Recommendation

Table 2: Precision@ n_p intervention prediction

	Diabetes			Mental		
	$n_p = 1$	$n_p = 2$	$n_p = 3$	$n_p = 1$	$n_p = 2$	$n_p = 3$
Markov	35.0	17.6	11.7	20.7	12.2	8.1
Plain RNN	77.7	54.8	43.1	70.4	55.4	43.7
DeepCare (mean adm.)	77.8	54.9	43.3	70.3	55.7	44.1
DeepCare (sum adm.)	78.7	55.5	43.5	71.0	55.8	44.7
DeepCare (max adm.)	78.4	55.1	43.4	70.0	55.2	43.9

Results—Predicting unplanned readmission

 Risk prediction: For each patient, a discharge is randomly chosen as prediction point, from which unplanned readmission is predicted

Table 4: Results of unplanned readmission prediction in F-score (%) within 12 months for diabetes and 3 months for mental health patients (DC is DeepCare, inv. is intervention).

Model	Diabetes	Mental
1. SVM (max-pooling)	64.0	64.7
2. SVM $(sum\text{-}pooling)$	66.7	65.9
3. Random Forests (max-pooling)	68.3	63.7
4. Random Forests (sum-pooling)	71.4	67.9
5. Plain RNN (logist. regress.)	75.1	70.5
6. LSTM (logit. regress.)	75.9	71.7
7. DC $(nnets + mean \ adm.)$	76.5	72.8
8. DC ($[inv.+time\ decay]+recent.multi.pool.+nnets+mean\ adm.$)	77.1	74.5
$9. \ \mathrm{DC} \left([inv.+param. \ time] + recent.multi.pool. + nnets + mean \ adm.}\right)$	79.0	74.7

Results—Predicting high risk patients

 Risk prediction: For each patient, a discharge is randomly chosen as prediction point, from which high risk patients within X months will be predicted. X=12 for diabetes, X=3 for mental health

Figure 8: Result of high risk prediction in F-score (%) within 12 months for diabetes (a) and 3 months for mental health (b). DC is DeepCare. Mean, sum, max are 3 admission pooling methods

Summary

• Innovations:

- Embedding variable-size discrete admissions into vector space
- Parameterizing time to enable irregular timing
- Incorporating interventions to reflect their targeted influence in the course of illness and disease progression
- Maybe the first one to use LSTM to predict chronic disease