# Théorie des langages : THL CM 7

Uli Fahrenberg

**EPITA Rennes** 

S5 2021

Aperçu

•00000

Aperçu

#### Programme du cours

- Langages rationnels
- Automates finis
- Parsage LL
- TP 1: flex
- Parsage LR, partie 1
- Parsage LR, partie 2

QCM 3

TP 2, 3: flex & bison

Uli Fahrenberg

#### Re: parsage ascendant: the basics

```
\begin{array}{l} \textbf{function} \ \text{BULRP}(\alpha) \\ \textbf{if} \ \alpha = S \ \textbf{then} \\ \textbf{return} \ \textbf{True} \\ \textbf{for} \ i \leftarrow 1 \ \textbf{to} \ |\alpha| \ \textbf{do} \\ \textbf{for} \ j \leftarrow i \ \textbf{to} \ |\alpha| \ \textbf{do} \\ \textbf{for} \ A \in N \ \textbf{do} \\ \textbf{if} \ A \rightarrow \alpha_i \dots \alpha_j \ \textbf{then} \\ \textbf{if} \ \text{BULRP}(\alpha_1 \dots \alpha_{i-1} A \alpha_{j+1} \dots \alpha_n) \ \textbf{then} \\ \textbf{return} \ \textbf{False} \end{array}
```

#### Définition (8.8)

Aperçu

000000

Soit G une grammaire hors-contexte. Une production pointée de G est une paire  $(A, \alpha \bullet \beta)$  telle que  $A \to \alpha \beta$  est une production de G.

Uli Fahrenberg Théorie des langages : THL 4/ 66

## Re: automate de parsage LR(0)

#### Définition (8.10)

Apercu

Soit G une grammaire hc et  $\mathcal{I}$  un ensemble de productions pointées de G. La clôture de  $\mathcal{I}$  est le plus petit ensemble cl $(\mathcal{I})$  t.q.  $\mathcal{I} \subseteq \operatorname{cl}(\mathcal{I})$  et

• si  $(A, \alpha \bullet B\beta) \in cl(\mathcal{I})$  et  $B \to \gamma$  est une production de G, alors  $(B, \bullet \gamma) \in \mathcal{I}$ .

#### Définition

L'automate de parsage LR(0) d'une grammaire hors-contexte G est l'automate fini déterministe  $(Q, q_0, F, \delta)$  avec

- $Q = \{ \operatorname{cl}(\mathcal{I}) \mid \mathcal{I} \text{ ensemble de productions pointées de } G \}$  ;
- $q_0 = cl(\{(Z, \bullet S\$)\});$
- $F = \{ q \in Q \mid \exists \text{ production } X \to w \text{ de } G \text{ t.q. } (X, w \bullet) \in q \}$
- ullet et  $\delta: Q \times V o Q$  donnée par

$$\delta(q,\beta) = \operatorname{cl}(\{(X,\alpha\beta\bullet\gamma) \mid (X,\alpha\bullet\beta\gamma) \in q\}).$$

Uli Fahrenberg

$$X \rightarrow aYc$$
 (1)

$$Y \rightarrow b$$
 (2)



Uli Fahrenberg

| Langages | rationne | ŀ |
|----------|----------|---|

2.1, 2.2, 2.3.1, 2.4, 3.1.1, 3.1.2, 3.2

Automates finis

4.1, 4.2.2

Langages algébriques, grammaires hors-contexte, automates à pile 5.1, 5.2.3, 5.2.4, 5.3.6, 6.2, plus Sipser 2.2

Parsage LL

7.8.1

Parsage LR

8.2

Parsage LR(0)

## Algorithme de parsage

- $\bigcirc$  empiler  $q_0$
- 2 repeat
  - $q \leftarrow$  état en haut de la pile
  - $oldsymbol{0}$  si q= état final  $X\to wullet$  :
    - o dépiler |w| états
    - $oldsymbol{g} g' \leftarrow$  état en haut de la pile
    - $\circ$  empiler  $\delta(q', X)$
  - sinon:
    - $a \leftarrow \text{next(input)}$
    - o empiler  $\delta(q, a)$
- ullet until q= état final  $Z o S ullet ullet ({f \checkmark})$  ou échec  $({f x})$

REDUCE

SHIFT

## Algorithme de parsage

- $\bigcirc$  empiler  $q_0$
- 2 repeat
  - $oldsymbol{g} q \leftarrow$  état en haut de la pile
  - 2 si  $q = \text{\'etat final } X \to w \bullet$  :
    - dépiler |w| états
    - $a' \leftarrow \text{ \'etat en haut de la pile}$
    - empiler  $\delta(q', X)$
    - .
  - sinon :
    - $\bullet$   $a \leftarrow \text{next(input)}$
    - $\circ$  empiler  $\delta(q, a)$
- lacksquare until q= état final Z o S\$ullet ( $\checkmark$ ) ou échec ( $\rightthreetimes$ )

REDUCE

10/66

← possible 🗡

SHIFT

← possible 🗡

← possible X

Uli Fahrenberg Théorie des langages : THL

$$S \rightarrow (S)$$
 (1)  $\mid n \mid (2)$ 





$$Z \rightarrow S$$
 (0)

$$S \rightarrow (S)$$
 (1)

$$\longrightarrow$$
  $Z \rightarrow \bullet S$ \$

$$Z \rightarrow S$$
 (0)

$$S \rightarrow (S)$$
 (1)

$$\longrightarrow \begin{array}{c}
Z \to \bullet S \\
S \to \bullet (S) \\
S \to \bullet n
\end{array}$$

$$Z \rightarrow S$$
 (0)

$$S \rightarrow (S)$$
 (1)

$$\begin{array}{c}
Z \to \bullet S \\
S \to \bullet (S) \\
S \to \bullet n
\end{array}$$

$$(S \to (\bullet S))$$

$$Z \rightarrow S$$
\$ (0)  
 $S \rightarrow (S)$  (1)

$$\longrightarrow \begin{array}{c}
Z \to \bullet S \\
S \to \bullet (S) \\
S \to \bullet n
\end{array}$$

$$(S \to (\bullet S) \\
S \to \bullet (S) \\
S \to \bullet n$$

$$Z \rightarrow S$$
\$ (0)  
 $S \rightarrow (S)$  (1)  
 $\mid n$  (2)

$$\begin{array}{c}
Z \to \bullet S\$ \\
S \to \bullet (S) \\
S \to \bullet n
\end{array}$$

$$\begin{array}{c}
S \to (\bullet S) \\
S \to \bullet (S) \\
S \to \bullet n
\end{array}$$

$$\begin{array}{c}
n \\
S \to n \bullet
\end{array}$$

Uli Fahrenberg

Théorie des langages : THL

$$Z \rightarrow S$$
 (0)

$$S \rightarrow (S)$$
 (1)



Uli Fahrenberg

$$Z \rightarrow S$$
 (0)

$$S \rightarrow (S)$$
 (1)



Uli Fahrenberg

$$Z \rightarrow S$$
 (0)

$$S \rightarrow (S)$$
 (1)



Uli Fahrenberg

$$Z \rightarrow S$$
 (0)

$$S \rightarrow (S)$$
 (1)



Uli Fahrenberg

$$Z \rightarrow S$$
 (0)

$$S \rightarrow (S)$$
 (1)



Uli Fahrenberg

#### Exemple : table de parsage



$$Z \rightarrow S$$
\$ (0)  
 $S \rightarrow S - n$  (1)  
 $\mid n$  (2)

| état | action    | n | _ | \$ | S |
|------|-----------|---|---|----|---|
| 0    | décaler   | 1 |   |    | 2 |
| 1    | réduire 2 |   |   |    |   |
| 2    | décaler   |   | 4 | 3  |   |
| 3    | accepter  |   |   |    |   |
| 4    | décaler   | 5 |   |    |   |
| 5    | réduire 1 |   |   |    |   |

Uli Fahrenberg Théorie des langages : THL 24/66

## Autre exemple

$$Z \rightarrow S\$ \qquad (0)$$

$$S \rightarrow S - n \qquad (1)$$

$$\mid n \qquad (2)$$

| état | action    | n | _ | \$ | S |
|------|-----------|---|---|----|---|
| 0    | décaler   | 1 |   |    | 2 |
| 1    | réduire 2 |   |   |    |   |
| 2    | décaler   |   | 4 | 3  |   |
| 3    | accepter  |   |   |    |   |
| 4    | décaler   | 5 |   |    |   |
| 5    | réduire 1 |   |   |    |   |
|      |           |   |   |    |   |

## Autre exemple

$$Z \rightarrow S\$ \qquad (0)$$

$$S \rightarrow S - n \qquad (1)$$

$$\mid n \qquad (2)$$

parser n - n:

| entrée       | pile  | action    |
|--------------|-------|-----------|
| n - n\$      | ⊥0    | décaler   |
| <i>−n</i> \$ | ⊥01   | réduire 2 |
| <i>−n</i> \$ | ⊥02   | décaler   |
| n\$          | ⊥024  | décaler   |
| \$           | ⊥0245 | réduire 1 |
| \$           | ⊥02   | décaler   |
|              | 1023  | 1         |

| état | action    | n | _ | \$ | S |
|------|-----------|---|---|----|---|
| 0    | décaler   | 1 |   |    | 2 |
| 1    | réduire 2 |   |   |    |   |
| 2    | décaler   |   | 4 | 3  |   |
| 3    | accepter  |   |   |    |   |
| 4    | décaler   | 5 |   |    |   |
| 5    | réduire 1 |   |   |    |   |

Uli Fahrenberg Théorie des langages

27/66

$$Z \rightarrow S$$
\$ (0)  
 $S \rightarrow S-n$  (1)  
 $\mid n$  (2)

parser 
$$n - n$$
:

| entrée       | pile  | action    |
|--------------|-------|-----------|
| n-n\$        | ⊥0    | décaler   |
| <i>−n</i> \$ | ⊥01   | réduire 2 |
| <i>−n</i> \$ | ⊥02   | décaler   |
| <i>n</i> \$  | ⊥024  | décaler   |
| \$           | ⊥0245 | réduire 1 |
| \$           | ⊥02   | décaler   |
|              | ⊥023  | 1         |

| état | action    | n | _ | \$ | S |
|------|-----------|---|---|----|---|
| 0    | décaler   | 1 |   |    | 2 |
| 1    | réduire 2 |   |   |    |   |
| 2    | décaler   |   | 4 | 3  |   |
| 3    | accepter  |   |   |    |   |
| 4    | décaler   | 5 |   |    |   |
| 5    | réduire 1 |   |   |    |   |
|      |           |   |   |    |   |

$$S \rightarrow n$$

$$S \rightarrow S-n$$

Uli Fahrenberg Théorie des langages : THL

## Autre exemple

$$Z \rightarrow S\$ \qquad (0)$$

$$S \rightarrow S - n \qquad (1)$$

$$\mid n \qquad (2)$$

Parsage LR(0)

0000000

parser n - n:

| entrée       | pile  | action    |
|--------------|-------|-----------|
| n-n\$        | ⊥0    | décaler   |
| <i>−n</i> \$ | ⊥01   | réduire 2 |
| <i>−n</i> \$ | ⊥02   | décaler   |
| n\$          | ⊥024  | décaler   |
| \$           | ⊥0245 | réduire 1 |
| \$           | ⊥02   | décaler   |
|              | ⊥023  | ✓         |

| état | action    | n | _ | \$ | S |
|------|-----------|---|---|----|---|
| 0    | décaler   | 1 |   |    | 2 |
| 1    | réduire 2 |   |   |    |   |
| 2    | décaler   |   | 4 | 3  |   |
| 3    | accepter  |   |   |    |   |
| 4    | décaler   | 5 |   |    |   |
| 5    | réduire 1 |   |   |    |   |
|      |           |   |   |    |   |

$$S \rightarrow n$$

$$S \rightarrow S-n$$



Uli Fahrenberg

- lire l'entrée de gauche à droite ( L )
- approche ascendant
- construire une dérivation droite (R)
- pas de regard avant ( 0 )

## Encore un exemple

$$Z \rightarrow S\$ \qquad (0)$$

$$S \rightarrow n-S \qquad (1)$$

$$\mid n \qquad (2)$$

| état | action             | n | _ | \$ | S |
|------|--------------------|---|---|----|---|
| 0    | décaler            | 2 |   |    | 1 |
| 1    | décaler            |   |   | 4  |   |
| 2    | réduire 2, décaler |   | 3 |    |   |
| 3    | décaler            | 2 |   |    | 5 |
| 4    | accepter           |   |   |    |   |
| 5    | réduire 1          |   |   |    |   |

Uli Fahrenberg Théorie des langages : THL 31/66

(2)

#### Encore un exemple

$$Z \rightarrow S$$
\$ (0)  
 $S \rightarrow n-S$  (1)

étatproductions pointées0
$$Z \rightarrow \bullet S\$$$
,  $S \rightarrow \bullet n - S$ ,  $S \rightarrow \bullet n$ 1 $Z \rightarrow S \bullet \$$ 2 $S \rightarrow n \bullet - S$ ,  $S \rightarrow n \bullet$ 3 $S \rightarrow n - \bullet S$ ,  $S \rightarrow \bullet n - S$ ,  $S \rightarrow \bullet n$ 4 $Z \rightarrow S\$ \bullet$ 5 $S \rightarrow n - S \bullet$ 

| état | action             | n | _ | \$ | S                    |   |
|------|--------------------|---|---|----|----------------------|---|
| 0    | décaler            | 2 |   |    | 1                    |   |
| 1    | décaler            |   |   | 4  |                      |   |
| 2    | réduire 2, décaler |   | 3 |    | conflit SHIFT/REDUCI | Ξ |
| 3    | décaler            | 2 |   |    | 5                    |   |
| 4    | accepter           |   |   |    |                      |   |
| 5    | réduire 1          |   |   |    |                      |   |

Uli Fahrenberg Théorie des langages : THL 32/66

#### Conflits

• SHIFT/REDUCE

$$X \rightarrow \mu \bullet \nu$$

- faut réduire avec  $Y \rightarrow u$
- ou décaler en attendant v?

 $Y \rightarrow u \bullet$ 

• REDUCE/REDUCE

$$X \rightarrow u$$

- faut réduire avec  $X \to u$
- ou réduire avec  $Y \rightarrow \mu$ ?

$$Y \rightarrow \mu$$

- utiliser FOLLOW pour résoudre
- ( et pourquoi des conflits SHIFT/SHIFT n'existent pas? )

#### Re: FOLLOW

Calculer des terminaux qui peuvent suivre un symbole dans une dérivation :

Parsage SLR(1)

00000

#### Définition

```
Soit x \in V, alors FOLLOW(x) \subseteq \Sigma est défini par FOLLOW(x) = \{a \in \Sigma \mid \exists B \in N, \alpha, \beta \in V^* : B \Rightarrow^* \alpha x a \beta\}.
```

#### Algorithme:

- pour chaque  $x \in V$  : FOLLOW(x) =  $\emptyset$
- répéter jusqu'au point fixe :
  - pour chaque  $B \to \alpha x \beta \gamma$  avec  $\beta \in \text{NULL}^*$ :
    - si  $\gamma \notin \text{NULL}^* : \text{FOLLOW}(x) += \text{FIRST}(\gamma)$
    - $\circ$  si  $\gamma \in \text{NULL}^* : \text{FOLLOW}(x) += \text{FOLLOW}(B)$

Uli Fahrenberg Théorie des langages : THL 34/66

## Simple LR(1)

- calculer la table LR(0)
- si conflits : conditionner l'action par le FOLLOW

Exemple: 
$$Z \rightarrow S$$
\$ (0)  $S \rightarrow n-S$  (1)  $| n$  (2)

| état | action       | n | _ | \$ | S |                   | état | n            | _   | \$  | S   |
|------|--------------|---|---|----|---|-------------------|------|--------------|-----|-----|-----|
| 0    | décaler      | 2 |   |    | 1 |                   | 0    | d.2          |     |     | d.1 |
| 1    | décaler      |   |   | 4  |   |                   | 1    |              |     | d.4 |     |
| 2    | réd. 2, déc. |   | 3 |    |   | $\Longrightarrow$ | 2    |              | d.3 | r.2 |     |
| 3    | décaler      | 2 |   |    | 5 |                   | 3    | d.2          |     |     | d.5 |
| 4    | accepter     |   |   |    |   |                   | 4    | — accepter — |     | _   |     |
| 5    | réduire 1    |   |   |    |   |                   | 5    |              |     | r.1 |     |

Uli Fahrenberg Théorie des langages : THL 35/66

36 / 66

## Simple LR(1)

- calculer la table LR(0)
- si conflits : conditionner l'action par le FOLLOW
- ullet passer du type état o action o entrée au type état o entrée o action

### Exemple

$$Z \rightarrow S$$
 (0)

$$S \rightarrow L = E$$
 (1)

$$L \rightarrow x$$
 (3)

$$E \rightarrow L$$
 (5)

manipulation des pointeurs

### Exemple

Uli Fahrenberg Théorie des langages : THL 39/66

Parsage LR(1) o●0000000

### Exemple

Uli Fahrenberg Théorie des langages : THL 40/66

### Le problème :

$$Z \rightarrow S$$
 (0)

$$S \rightarrow L=E$$
 (1)

$$L \rightarrow x$$
 (3)

$$E \rightarrow L$$
 (5)

| état | productions pointées         |
|------|------------------------------|
| 0    | $Z \rightarrow \bullet S$ \$ |

### Le problème :

$$Z \rightarrow S$$
\$ (0)

$$S \rightarrow L=E$$
 (1)

$$L \rightarrow x$$
 (3)

$$E \rightarrow L$$
 (5)

état productions pointées
$$0 Z \to \bullet S\$, S \to \bullet L = E, S \to \bullet E$$

Parsage LR(1) 00●000000

Le problème :

$$Z \rightarrow S$$
 (0)

$$S \rightarrow L=E$$
 (1)

$$L \to \mathbf{x}$$
 (3)

$$E \rightarrow L$$
 (5)

| état | productions pointées                                                                                                                                                             |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | $Z \rightarrow \bullet S$ , $S \rightarrow \bullet L = E$ , $S \rightarrow \bullet E$                                                                                            |
|      | $Z \rightarrow \bullet S$ , $S \rightarrow \bullet L = E$ , $S \rightarrow \bullet E$<br>$L \rightarrow \bullet \times$ , $L \rightarrow \bullet *E$ , $E \rightarrow \bullet L$ |
|      | '                                                                                                                                                                                |
|      |                                                                                                                                                                                  |
|      |                                                                                                                                                                                  |

Parsage LR(1) 00●000000

### Le problème :

$$Z \rightarrow S$$
 (0)

$$S \rightarrow L=E$$
 (1)

$$\mid E \mid (2)$$

$$L \rightarrow x$$
 (3)

$$E \rightarrow L$$
 (5)

| état | productions pointées                                                                                                                                                                                                                                                                  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | $Z \rightarrow \bullet S\$$ , $S \rightarrow \bullet L = E$ , $S \rightarrow \bullet E$<br>$L \rightarrow \bullet x$ , $L \rightarrow \bullet *E$ , $E \rightarrow \bullet L$<br>$Z \rightarrow S \bullet \$$<br>$S \rightarrow L \bullet = E$ , $E \rightarrow L \bullet \checkmark$ |
|      | $L \rightarrow \bullet x$ , $L \rightarrow \bullet *E$ , $E \rightarrow \bullet L$                                                                                                                                                                                                    |
| 1    | $Z \rightarrow S \bullet \$$                                                                                                                                                                                                                                                          |
| 2    | $S \rightarrow L \bullet = E, E \rightarrow L \bullet \checkmark$                                                                                                                                                                                                                     |
|      | ·                                                                                                                                                                                                                                                                                     |
|      |                                                                                                                                                                                                                                                                                       |

Parsage LR(1) 00●000000

### Le problème :

$$Z \rightarrow S$$
\$ (0)

$$S \rightarrow L=E$$
 (1)

$$L \rightarrow x$$
 (3)

$$E \rightarrow L$$
 (5)

• l'état 2 ne doit qu'accepter si le *L* est suivi d'un \$

## Regard en avant

#### Définition

Soit G une grammaire hors-contexte. Une production pointée élargie de G est un triplet  $(A, \alpha \bullet \beta, a)$  telle que  $A \to \alpha \beta$  est une production de G et  $a \in \Sigma \cup \{\varepsilon\}$ .

- noté  $A \to \alpha \bullet \beta$  [a]
- on a achevé  $\alpha$  dans la production  $A \to \alpha \beta$ ;
- il nous reste à trouver  $\beta$ ;
- la production n'est que valable si A est suivi par a dans l'entrée
- donc  $a = \varepsilon$  ( pas de contraint ) ou  $a \in FOLLOW(A)$

Uli Fahrenberg

 Parsage LR(0)
 Parsage SLR(1)
 Parsage LR(1)

 00000000
 00000000
 00000000

### Clôture

#### Définition

Soit G une grammaire hors-contexte et  $\mathcal I$  un ensemble de productions pointées élargies de G. La clôture de  $\mathcal I$  est le plus petit ensemble  $\operatorname{cl}(\mathcal I)$  tel que  $\mathcal I\subseteq\operatorname{cl}(\mathcal I)$  et

- si  $(A, \alpha \bullet B\beta, a) \in cl(\mathcal{I}), B \to \gamma$  est une production de G et  $b \in FIRST(\beta)$ , alors  $(B, \bullet \gamma, b) \in cl(\mathcal{I})$ ;
- si  $(A, \alpha \bullet B, a) \in cl(\mathcal{I})$  et  $B \to \gamma$  est une production de G, alors  $(B, \bullet \gamma, a) \in cl(\mathcal{I})$ .

Uli Fahrenberg

# Automate LR(1)

#### Définition

L'automate de parsage LR(1) d'une grammaire hors-contexte G est l'automate fini déterministe  $(Q, q_0, F, \delta)$  avec

- $Q = \{ \operatorname{cl}(\mathcal{I}) \mid \mathcal{I} \text{ ensemble de prod. pointées élargies de } G \}$  ;
- $q_0 = cl(\{(Z, \bullet S\$, \varepsilon)\});$
- $F = \{ q \in Q \mid \exists \text{ production } X \to w \text{ de } G \text{ et } a \in \Sigma \cup \{\varepsilon\} \text{ tels que } (X, w \bullet, a) \in q \}$
- et  $\delta: Q \times V \to Q$  donnée par  $\delta(q,\beta) = \operatorname{cl}(\{(X,\alpha\beta \bullet \gamma,a) \mid (X,\alpha \bullet \beta \gamma,a) \in q\}).$

Uli Fahrenberg Théorie des langages : THL

48 / 66

$$Z \rightarrow S$$
 (0)

$$S \rightarrow L = E$$
 (1)

$$L \rightarrow x$$
 (3)

$$E \rightarrow L$$
 (5)

| productions pointées élargies               |
|---------------------------------------------|
| $Z \rightarrow \bullet S$ [ $\varepsilon$ ] |
|                                             |
|                                             |
|                                             |
|                                             |
| ı                                           |
|                                             |

Parsage LR(1)

$$Z \rightarrow S$$
 (0)

$$S \rightarrow L = E$$
 (1)

$$L \rightarrow x$$
 (3)

$$E \rightarrow L$$
 (5)

| état | , , ,                                                                                                             |
|------|-------------------------------------------------------------------------------------------------------------------|
| 0    | $Z \rightarrow \bullet S$ [ $\varepsilon$ ]                                                                       |
|      | $Z \rightarrow \bullet S$ [ $\varepsilon$ ]<br>$S \rightarrow \bullet L = E$ [\$], $S \rightarrow \bullet E$ [\$] |
|      |                                                                                                                   |
|      |                                                                                                                   |
|      |                                                                                                                   |
|      |                                                                                                                   |

Parsage LR(1)

$$Z \rightarrow S$$
 (0)

$$S \rightarrow L = E$$
 (1)

$$L \rightarrow x$$
 (3)

$$E \rightarrow L$$
 (5)

| état |                                                                                                                                                  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | $Z \rightarrow \bullet S$ [ $\varepsilon$ ]                                                                                                      |
|      | $S \rightarrow \bullet L = E $ [\$], $S \rightarrow \bullet E $ [\$]                                                                             |
|      | $Z \to \bullet S $ [ $\varepsilon$ ]<br>$S \to \bullet L = E $ [\$], $S \to \bullet E $ [\$]<br>$L \to \bullet x $ [=], $L \to \bullet * E $ [=] |
|      |                                                                                                                                                  |
|      |                                                                                                                                                  |
|      |                                                                                                                                                  |

$$Z \rightarrow S$$
 (0)

$$S \rightarrow L = E$$
 (1)

$$L \rightarrow x$$
 (3)

$$E \rightarrow L$$
 (5)

| état |                                                                                                                                                                             |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | Z 	o ullet S $[arepsilon]$                                                                                                                                                  |
|      | $S \rightarrow \bullet L = E $ [\$], $S \rightarrow \bullet E $ [\$]                                                                                                        |
|      | $Z \to \bullet S $ [ $\varepsilon$ ]<br>$S \to \bullet L = E $ [\$], $S \to \bullet E $ [\$]<br>$L \to \bullet x $ [=], $L \to \bullet * E $ [=]<br>$E \to \bullet L $ [\$] |
|      | E 	o ullet L [\$]                                                                                                                                                           |
|      |                                                                                                                                                                             |
|      |                                                                                                                                                                             |

$$Z \rightarrow S$$
 (0)

$$S \rightarrow L=E$$
 (1)

$$L \rightarrow x$$
 (3)

$$E \rightarrow L$$
 (5)

| état | productions pointées élargies                                                                                                                                                                                                                                                         |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | $Z 	o ullet S_{ullet}^{ullet} [arepsilon]$                                                                                                                                                                                                                                            |
|      | $Z \rightarrow \bullet S $ [ $\varepsilon$ ] $S \rightarrow \bullet L = E $ [\$], $S \rightarrow \bullet E $ [\$] $L \rightarrow \bullet x $ [=], $L \rightarrow \bullet * E $ [=] $E \rightarrow \bullet L $ [\$] $L \rightarrow \bullet x $ [\$], $L \rightarrow \bullet * E $ [\$] |
|      | $L \rightarrow \bullet x [=], L \rightarrow \bullet *E [=]$                                                                                                                                                                                                                           |
|      | $E \rightarrow ullet L [\$]$                                                                                                                                                                                                                                                          |
|      | $L \rightarrow \bullet x$ [\$], $L \rightarrow \bullet *E$ [\$]                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                                                                                       |
|      |                                                                                                                                                                                                                                                                                       |

$$Z \to S$$
\$ (0)  
 $S \to L = E$  (1)  
 $\mid E$  (2)  
 $L \to x$  (3)  
 $\mid *E$  (4)  
 $E \to L$  (5)

| état | productions pointées élargies                                                                                                                                                                                                                                                                                                                                                                          |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | $Z 	o ullet S_{ullet}^{ullet} [arepsilon]$                                                                                                                                                                                                                                                                                                                                                             |
|      | $S \rightarrow \bullet L = E$ [\$], $S \rightarrow \bullet E$ [\$]                                                                                                                                                                                                                                                                                                                                     |
|      | $L \rightarrow \bullet \times [=], L \rightarrow \bullet *E [=]$                                                                                                                                                                                                                                                                                                                                       |
|      | $\mid E \rightarrow ullet L \ [\$]$                                                                                                                                                                                                                                                                                                                                                                    |
|      | $L \rightarrow \bullet \times [\$], L \rightarrow \bullet *E [\$]$                                                                                                                                                                                                                                                                                                                                     |
| 1    | $Z \to S ullet \{ [arepsilon] \}$                                                                                                                                                                                                                                                                                                                                                                      |
| 2    | $Z \rightarrow \bullet S\$ [\varepsilon]$ $S \rightarrow \bullet L = E [\$], S \rightarrow \bullet E [\$]$ $L \rightarrow \bullet \times [=], L \rightarrow \bullet * E [=]$ $E \rightarrow \bullet L [\$]$ $L \rightarrow \bullet \times [\$], L \rightarrow \bullet * E [\$]$ $Z \rightarrow S \bullet \$ [\varepsilon]$ $S \rightarrow L \bullet = E [\$], E \rightarrow L \bullet [\$ \checkmark]$ |

• l'état 2 n'accepte que dans un contexte \$

Uli Fahrenberg

Théorie des langages : THL

$$Z \rightarrow S$$
 (0)  $L \rightarrow x$  (3)

$$S \rightarrow L = E$$
 (1)  $|*E$  (4)

$$\mid E \quad (2) \qquad E \rightarrow L \quad (5)$$

 $Z \rightarrow \bullet S$  [ $\varepsilon$ ],  $S \rightarrow \bullet L = E$  [\$]  $S \rightarrow \bullet E$  [\$],  $L \rightarrow \bullet x$  [=]

| Aperçu<br>200000 | Parsage LR(0) | Par | état | productions pointées élargies                                                  |
|------------------|---------------|-----|------|--------------------------------------------------------------------------------|
| 300000           | 0000000       | 00. | 0    | $Z \rightarrow \bullet S$ [ $\varepsilon$ ], $S \rightarrow \bullet L = E$ [\$ |

$$Z \rightarrow S$$
\$ (0)  $L \rightarrow x$  (3)  $S \rightarrow L = E$  (1)  $|*E|$  (4)

$$\mid E \qquad (2) \qquad E \rightarrow L \qquad (5)$$

0 
$$Z \rightarrow \bullet S$$
 [ $\varepsilon$ ],  $S \rightarrow \bullet L = E$  [\$]  
 $S \rightarrow \bullet E$  [\$],  $L \rightarrow \bullet \times$  [ $=$ ]  
 $L \rightarrow \bullet * E$  [ $=$ ],  $E \rightarrow \bullet L$  [\$]  
 $L \rightarrow \bullet \times$  [\$],  $L \rightarrow \bullet * E$  [\$]  
1  $Z \rightarrow S \bullet$  [ $\varepsilon$ ]  
2  $S \rightarrow L \bullet = E$  [\$],  $E \rightarrow L \bullet$  [\$ $\checkmark$ ]

Uli Fahrenberg

Théorie des langages : THL

| Aperçu<br>000000 | Parsage LR(0) | Par | état | productions pointées élargies                                                   |
|------------------|---------------|-----|------|---------------------------------------------------------------------------------|
| 000000           | 00000000      | 00  | 0    | $Z \rightarrow \bullet S$ [ $\varepsilon$ ], $S \rightarrow \bullet L = E$ [\$] |
| —                | All and       |     | O    |                                                                                 |

d.4 d.5

0

$$Z \rightarrow S \$ \quad (0) \qquad L \rightarrow x \quad (3)$$

$$S \rightarrow L = E \quad (1) \qquad |*E \quad (4) \qquad 1$$

$$|E \quad (2) \qquad E \rightarrow L \quad (5)$$

$$\text{état} \mid x \qquad * \qquad = \qquad \$ \mid S \qquad L \qquad E \qquad 4$$

$$|L \rightarrow \bullet * E \ [=], E \rightarrow \bullet L \ [\$]$$

$$Z \rightarrow S \bullet \$ \ [\varepsilon]$$

$$S \rightarrow L \bullet = E \ [\$], E \rightarrow L \bullet \ [\$ \checkmark]$$

$$S \rightarrow E \bullet \ [\$ \checkmark]$$

$$L \rightarrow x \bullet \ [= \checkmark], L \rightarrow x \bullet \ [\$ \checkmark]$$

Uli Fahrenberg

Théorie des langages : THL

| Aperçu<br>000000 | Parsage LR(0) | Par | état | productions pointées élargies                                                   |
|------------------|---------------|-----|------|---------------------------------------------------------------------------------|
| 000000           | 00000000      | 00  | 0    | $Z \rightarrow \bullet S$ [ $\varepsilon$ ], $S \rightarrow \bullet L = E$ [\$] |
| Evenanla aco     | المامة        |     | ·    |                                                                                 |

$$Z 
ightarrow S$$
\$ (0)  $L 
ightarrow x$  (3)  $S 
ightarrow L = E$  (1)  $|*E|$  (4)  $|E|$  (5)  $|E|$  (5)  $|E|$  (7)  $|E|$  (8)  $|E|$  (9)  $|E|$  (1)  $|E|$  (1)  $|E|$  (2)  $|E|$  (3)  $|E|$  (4)  $|E|$  (5)  $|E|$ 

état Parsage LR(0) 0

## Exemple, complet

productions pointées élargies  $Z \rightarrow \bullet S$  [ $\varepsilon$ ],  $S \rightarrow \bullet L = E$  [\$]  $S \rightarrow \bullet E$  [\$],  $L \rightarrow \bullet x$  [=]  $L \rightarrow \bullet *E [=], E \rightarrow \bullet L [\$]$  $L \rightarrow \bullet \times [\$], L \rightarrow \bullet *E [\$]$  $Z \to S \bullet \S [\varepsilon]$  $\begin{array}{c|cccc}
2 & S \rightarrow L \bullet = E & \\
3 & S \rightarrow E \bullet & \\
\end{array}$  $S \rightarrow L \bullet = E$  [\$],  $E \rightarrow L \bullet$  [\$\sqrt{}] 5  $L \rightarrow * \bullet E [=], L \rightarrow * \bullet E [\$]$  $E \rightarrow \bullet L = , L \rightarrow \bullet x =$  $L \rightarrow \bullet *E [=], E \rightarrow \bullet L [\$]$  $L \rightarrow \bullet x$  [\$],  $L \rightarrow \bullet *E$  [\$]

## Exemple, complet

$$Z o S$$
\$ (0)  $L o x$  (3)  $S o L = E$  (1)  $|*E|$  (4)  $|*E|$  (5)  $|*E|$  (5)  $|*E|$  (6)  $|*E|$  (7)  $|*E|$  (8)  $|*E|$  (9)  $|*E|$  (1)  $|*E|$  (1)  $|*E|$  (2)  $|*E|$  (3)  $|*E|$  (4)  $|*E|$  (5)  $|*E|$  (6)  $|*E|$  (7)  $|*E|$  (8)  $|*E|$  (9)  $|*E|$  (1)  $|*E|$  (1)  $|*E|$  (1)  $|*E|$  (2)  $|*E|$  (3)  $|*E|$  (4)  $|*E|$  (4)  $|*E|$  (4)  $|*E|$  (5)  $|*E|$  (6)  $|*E|$  (7)  $|*E|$  (8)  $|*E|$  (9)  $|*E|$  (9)  $|*E|$  (1)  $|*E|$  (1)  $|*E|$  (2)  $|*E|$  (3)  $|*E|$  (4)  $|*E|$  (4)  $|*E|$  (5)  $|*E|$  (6)  $|*E|$  (7)  $|*E|$  (8)  $|*E|$  (9)  $|*E|$  (9)  $|*E|$  (1)  $|*E|$  (1)  $|*E|$  (2)  $|*E|$  (3)  $|*E|$  (4)  $|*E|$  (4)  $|*E|$  (5)  $|*E|$  (6)  $|*E|$  (7)  $|*E|$  (8)  $|*E|$  (9)  $|*E|$  (9)  $|*E|$  (1)  $|*E|$  (1)  $|*E|$  (1)  $|*E|$  (2)  $|*E|$  (3)  $|*E|$  (4)  $|*E|$  (4)  $|*E|$  (5)  $|*E|$  (6)  $|*E|$  (7)  $|*E|$  (8)  $|*E|$  (9)  $|*E|$  (9)  $|*E|$  (1)  $|*E|$  (1)  $|*E|$  (1)  $|*E|$  (2)  $|*E|$  (3)  $|*E|$  (4)  $|*E|$  (4)  $|*E|$  (4)  $|*E|$  (5)  $|*E|$  (6)  $|*E|$  (7)  $|*E|$  (8)  $|*E|$  (9)  $|*E|$  (9)  $|*E|$  (1)  $|*E|$  (1)  $|*E|$  (1)  $|*E|$  (2)  $|*E|$  (3)  $|*E|$  (4)  $|*E|$  (4)  $|*E|$  (5)  $|*E|$  (6)  $|*E|$  (7)  $|*E|$  (8)  $|*E|$  (8)  $|*E|$  (9)  $|*E|$  (1)  $|*E|$  (1)  $|*E|$  (1)  $|*E|$  (2)  $|*E|$  (2)  $|*E|$  (3)  $|*E|$  (4)  $|*E|$  (4)  $|*E|$  (4)  $|*E|$  (4)  $|*E|$  (5)  $|*E|$  (7)  $|*E|$  (8)  $|*E|$  (9)  $|*E|$  (9)  $|*E|$  (1)  $|*E|$  (1)  $|*E|$  (1)  $|*E|$  (1)  $|*E|$  (2)  $|*E|$  (3)  $|*E|$  (4)  $|*E|$  (4)  $|*E|$  (4)  $|*E|$  (5)  $|*E|$  (6)  $|*E|$  (7)  $|*E|$  (8)  $|*E|$  (8)

$$\begin{array}{c|c} \textbf{Est} & \textbf{etat} & \textbf{productions point\'ees \'elargies} \\ \textbf{0} & Z \rightarrow \bullet S\$ \left[ \varepsilon \right], S \rightarrow \bullet L = E \left[ \$ \right] \\ S \rightarrow \bullet E \left[ \$ \right], L \rightarrow \bullet \times \left[ \varepsilon \right] \\ L \rightarrow \bullet \times E \left[ \varepsilon \right], E \rightarrow \bullet L \left[ \$ \right] \\ L \rightarrow \bullet \times \left[ \$ \right], L \rightarrow \bullet \times E \left[ \$ \right] \\ \textbf{1} & Z \rightarrow S \bullet \$ \left[ \varepsilon \right] \\ \textbf{2} & S \rightarrow L \bullet = E \left[ \$ \right], E \rightarrow L \bullet \left[ \$ \checkmark \right] \\ \textbf{3} & S \rightarrow E \bullet \left[ \$ \checkmark \right] \\ \textbf{4} & L \rightarrow \times \bullet \left[ \varepsilon \checkmark \right], L \rightarrow \times \bullet E \left[ \$ \right] \\ E \rightarrow \bullet L \left[ \varepsilon \right], L \rightarrow \bullet \times E \left[ \$ \right] \\ E \rightarrow \bullet L \left[ \varepsilon \right], L \rightarrow \bullet \times E \left[ \$ \right] \\ L \rightarrow \bullet \times E \left[ \varepsilon \right], E \rightarrow \bullet L \left[ \$ \right] \\ L \rightarrow \bullet \times \left[ \$ \right], L \rightarrow \bullet \times E \left[ \$ \right] \\ \textbf{6} & Z \rightarrow S \$ \bullet \left[ \varepsilon \checkmark \right] \end{array}$$

# Exemple, complet

Productions pointees etaigles

$$\begin{array}{cccc}
\hline
0 & Z \rightarrow \bullet S\$ & [\varepsilon], S \rightarrow \bullet L = E & [\$] \\
S \rightarrow \bullet E & [\$], L \rightarrow \bullet \times [=] \\
L \rightarrow \bullet \times E & [=], E \rightarrow \bullet L & [\$] \\
L \rightarrow \bullet \times & [\$], L \rightarrow \bullet \times E & [\$]
\end{array}$$

$$\begin{array}{cccccc}
1 & Z \rightarrow S \bullet \$ & [\varepsilon] \\
2 & S \rightarrow L \bullet = E & [\$], E \rightarrow L \bullet & [\$\checkmark] \\
3 & S \rightarrow E \bullet & [\$\checkmark] \\
4 & L \rightarrow \times \bullet & [=\checkmark], L \rightarrow \times \bullet & [\$\checkmark] \\
5 & L \rightarrow \bullet \times E & [=], L \rightarrow \bullet \times E & [\$] \\
E \rightarrow \bullet L & [=], L \rightarrow \bullet \times E & [\$] \\
L \rightarrow \bullet \times & [\$], L \rightarrow \bullet \times E & [\$] \\
1 & L \rightarrow \bullet \times & [\$], L \rightarrow \bullet \times E & [\$]
\end{array}$$

$$\begin{array}{ccccc}
6 & Z \rightarrow S \$ \bullet & [\varepsilon\checkmark] \\
7 & S \rightarrow L = \bullet E & [\$]$$

Parsage LR(0) ergu toooooooo eta Parsage LR(0) ee feat productions pointées élargi 0 Z o •S  $[\varepsilon]$ , S o •L=E [

## Exemple, complet

productions pointées élargies  $Z \rightarrow \bullet S$  [ $\varepsilon$ ],  $S \rightarrow \bullet L = E$  [\$]  $S \rightarrow \bullet E$  [\$],  $L \rightarrow \bullet x$  [=]  $L \rightarrow \bullet *E [=], E \rightarrow \bullet L [\$]$  $L \rightarrow \bullet \times [\$], L \rightarrow \bullet *E [\$]$  $Z \to S \bullet \S [\varepsilon]$  $S \rightarrow L \bullet = E$  [\$],  $E \rightarrow L \bullet$  [\$\sqrt{}]  $S \rightarrow E \bullet [\$ \checkmark]$ 4 |  $L \rightarrow x \bullet [= \checkmark], L \rightarrow x \bullet [\$ \checkmark]$ 5  $L \rightarrow * \bullet E = , L \rightarrow * \bullet E$  $E \rightarrow \bullet L [=], L \rightarrow \bullet x [=]$  $L \rightarrow \bullet *E [=], E \rightarrow \bullet L [\$]$  $L \to \bullet \times [\$], L \to \bullet *E [\$]$  $\begin{array}{c|c} 6 & Z \rightarrow S \bullet [\varepsilon \checkmark] \\ 7 & S \rightarrow L = \bullet E \, [\$], E \rightarrow \bullet L \, [\$] \\ & L \rightarrow \bullet \times \, [\$], L \rightarrow \bullet *E \, [\$] \end{array}$ 

Parsage LR(0) Parsage Parsa

## Exemple, complet

4

r.3

r.3

$$\begin{array}{c|c} \text{état} & \text{productions point\'ees \'elargies} \\ \hline 0 & Z \rightarrow \bullet S\$ \left[ \varepsilon \right], \, S \rightarrow \bullet L = E \left[ \$ \right] \\ & S \rightarrow \bullet E \left[ \$ \right], \, L \rightarrow \bullet \times \left[ \varepsilon \right] \\ & L \rightarrow \bullet \times E \left[ \varepsilon \right], \, E \rightarrow \bullet L \left[ \$ \right] \\ & L \rightarrow \bullet \times \left[ \$ \right], \, L \rightarrow \bullet \times E \left[ \$ \right] \\ \hline 1 & Z \rightarrow S \bullet \$ \left[ \varepsilon \right] \\ \hline 2 & S \rightarrow L \bullet = E \left[ \$ \right], \, E \rightarrow L \bullet \left[ \$ \checkmark \right] \\ \hline 3 & S \rightarrow E \bullet \left[ \$ \checkmark \right] \\ -4 & L \rightarrow \times \bullet \left[ \varepsilon \checkmark \right], \, L \rightarrow \times \bullet \left[ \$ \checkmark \right] \\ \hline 5 & L \rightarrow \times \bullet E \left[ \varepsilon \right], \, L \rightarrow \bullet \times E \left[ \$ \right] \\ \hline E \rightarrow \bullet L \left[ \varepsilon \right], \, L \rightarrow \bullet \times E \left[ \$ \right] \\ & L \rightarrow \bullet \times \left[ \$ \right], \, L \rightarrow \bullet \times E \left[ \$ \right] \\ \hline 6 & Z \rightarrow S\$ \bullet \left[ \varepsilon \checkmark \right] \\ \hline 7 & S \rightarrow L = \bullet E \left[ \$ \right], \, E \rightarrow \bullet L \left[ \$ \right] \\ L \rightarrow \bullet \times \left[ \$ \right], \, L \rightarrow \bullet \times E \left[ \$ \right] \\ \hline \end{array}$$

état Parsage LR(0) productions pointées élargies 0  $Z \rightarrow \bullet S$  [ $\varepsilon$ ],  $S \rightarrow \bullet L = E$  [\$]

d.9

d.8

## Exemple, complet

4

$$Z \rightarrow S$$
 (0)  $L \rightarrow x$  (3)

$$S \rightarrow L = E \quad (1)$$
  $| *E \quad (4)$ 

$$E$$
 (2)  $E \rightarrow L$  (5)

r.3

d.5

d.4

r.3

$$S \to \bullet E$$
 [\$],  $L \to \bullet \times$  [=]  
 $L \to \bullet * E$  [=],  $E \to \bullet L$  [\$]

$$L \rightarrow \bullet \times [\$], L \rightarrow \bullet *E [\$]$$

$$Z \rightarrow S \bullet \$ [\varepsilon]$$

$$S \to L \bullet = E$$
 [\$],  $E \to L \bullet$  [\$\slime\$]

$$S \to E \bullet [\$ \checkmark]$$

$$L \to \mathsf{x} \bullet [= \checkmark], L \to \mathsf{x} \bullet [\$\checkmark]$$
$$L \to \mathsf{x} \bullet E [=], L \to \mathsf{x} \bullet E [\$]$$

$$E \rightarrow \bullet L [=], L \rightarrow \bullet x [=]$$
  
 $L \rightarrow \bullet *E [=], E \rightarrow \bullet L [\$]$ 

$$L \rightarrow \bullet \times L [=], L \rightarrow \bullet \times E [\$]$$
  
 $L \rightarrow \bullet \times [\$], L \rightarrow \bullet \times E [\$]$ 

$$Z \to S\$ \bullet [\varepsilon \checkmark]$$

$$S \to L = \bullet E \text{ [\$]}, E \to \bullet L \text{ [\$]}$$

$$L \to \bullet x \text{ [\$]}, L \to \bullet *E \text{ [\$]}$$

$$L \to *E \bullet [=\checkmark], L \to *E \bullet [\$\checkmark]$$

$$E \to L \bullet [=\checkmark], E \to L \bullet [\$\checkmark]$$

| Aperçu<br>000000        |          |                   | Parsage<br>00000 |                 |       |      | Pai  | état                          | productions pointées élargies                                                          |
|-------------------------|----------|-------------------|------------------|-----------------|-------|------|------|-------------------------------|----------------------------------------------------------------------------------------|
|                         | _        |                   |                  | J00             |       |      |      | 0                             | $Z \rightarrow \bullet S$ [ $\varepsilon$ ], $S \rightarrow \bullet L = E$ [\$]        |
| Exemple, complet        |          |                   |                  |                 |       |      |      |                               | $S \rightarrow \bullet E $ [\$], $L \rightarrow \bullet \times [=]$                    |
| 7                       | · C#     | (0)               | ,                |                 | (3)   |      |      |                               | $L \rightarrow \bullet *E$ [=], $E \rightarrow \bullet L$ [\$]                         |
| Z 	o S                  |          | (0)               | $0) 	 L \to x$   |                 |       |      |      |                               | $L \rightarrow \bullet \times [\$], L \rightarrow \bullet *E [\$]$                     |
| $S \rightarrow L=E$ (1) |          | * <i>E</i> (4)    |                  |                 |       |      | 1    | $Z \to S ullet \S[arepsilon]$ |                                                                                        |
|                         | <i>E</i> | (2)               | F                | $\rightarrow L$ | (5)   |      |      | 2                             | $S \rightarrow L \bullet = E $ [\$], $E \rightarrow L \bullet $ [\$\slime\)            |
| <i>.</i>                |          | ` '               | L                |                 | . ` ′ |      | _    | 3                             | $S \to E \bullet [\$\checkmark]$                                                       |
| état                    | X        | *                 |                  | \$              | S     | L    | E    | _4                            | $L \to x \bullet [= \checkmark], L \to x \bullet [\$ \checkmark]$                      |
| 0                       | d.4      | d.5               |                  |                 | d.1   | d.2  | d.3  | 5                             | $L \rightarrow * \bullet E [=], L \rightarrow * \bullet E [\$]$                        |
| 1                       |          |                   |                  | d.6             |       |      |      |                               | $E \rightarrow \bullet L [=], L \rightarrow \bullet x [=]$                             |
| 2                       |          |                   | d.7              | r.5             |       |      |      |                               | $L \rightarrow \bullet *E [=], E \rightarrow \bullet L [\$]$                           |
| 3                       |          |                   |                  | r.2             |       |      |      |                               | $L \rightarrow \bullet \times [\$], L \rightarrow \bullet *E [\$]$                     |
| 4                       |          |                   | r.3              | r.3             |       |      |      | 6                             | $Z \to S$ [ $\varepsilon \checkmark$ ]                                                 |
| 5                       | d.4      | d.5               |                  |                 |       | d.9  | d.8  | 7                             | $S \rightarrow L = \bullet E $ [\$], $E \rightarrow \bullet L $ [\$]                   |
| 6                       |          |                   | — accepter —     |                 |       |      |      |                               | $L \rightarrow \bullet x$ [\$], $L \rightarrow \bullet *E$ [\$]                        |
| 7                       | d.12     | d.13              |                  |                 |       | d.11 | d.10 | 8                             | $L \rightarrow *E \bullet [=\checkmark], L \rightarrow *E \bullet [$\checkmark$        |
| 8                       |          |                   | r.4              |                 |       |      |      | 9                             | $\mid E \rightarrow L \bullet [= \checkmark], E \rightarrow L \bullet [\$ \checkmark]$ |
| 9                       |          |                   | r.5              |                 |       |      |      | 10                            | $S \rightarrow L = E \bullet [\$\checkmark]$                                           |
| 10                      |          |                   |                  | r.1             |       |      |      | 11                            | $E \rightarrow L \bullet [\$ \checkmark]$                                              |
| 11                      |          |                   |                  | r.5             |       |      |      | 12                            | $L \to x \bullet [\$ \checkmark]$                                                      |
| 12                      |          |                   |                  | r.3             |       |      |      | 13                            | $L \rightarrow * \bullet E $ [\$], $E \rightarrow \bullet L $ [\$]                     |
| 13                      | d.12     | d.13              |                  |                 |       | d.11 | d.14 |                               | $L \rightarrow \bullet x$ [\$], $L \rightarrow \bullet *E$ [\$]                        |
| 14                      |          |                   |                  | r.4             |       |      |      | 14                            | $L \to *E \bullet [\$\checkmark]$                                                      |
|                         |          | Uli Fahrenberg Th |                  |                 |       |      |      | langage                       | es : THL 65/66                                                                         |

