Revolutionizing Road Safety with AI-Powered Accident Detection

Introduction

Welcome to Revolutionizing Road Safety with Al-Powered Accident Detection. Discover how cuttingedge technology is transforming the way we approach road safety and accident prevention.

Problem Statement

Road accidents are a major public health concern, causing significant loss of life and economic impact. Traditional approaches to road safety are no longer sufficient to address the growing challenges.

AI-Powered Accident Detection

- GOAL: Develop an Al-powered system to detect and respond to traffic accidents in real-time.
- OBJECTIVE: Improve emergency response times, reduce accident severity, and enhance overall road safety.
- **SCOPE**: Focus on urban and highway environments, leveraging computer vision and machine learning algorithms.

Technical Details

MODULES: CV2, PIL, yoloV4
 , JS, HTML, NumPY,
 MatplotLib, Image, io

• TOOLS: Python Programming Language, Google Collab, DroidCam

Real-Time Monitoring

Detecting accidents in real-time through computer vision algorithms and live webcam detection.

Data-Driven Insights

The wealth of data collected through Al-powered accident detection systems offers valuable insights for policymakers, urban planners, and transportation authorities to make informed decisions and improve **road safety** strategies.

Technical Challenges and Solutions

- Challenge: Real-time processing of high-resolution video streams.
 Solution: Optimized algorithms for efficient inference on edge devices.
- <u>Challenge</u>: Robust detection in varying lighting and weather conditions.

<u>Solution</u>: Training models on diverse datasets and implementing adaptive algorithms.

Future Possibilities

In future we are looking forward to enhance this technology with emergency alert SOS (such as medical and fire fighters)

Visuals and Demos

```
ratio, height_ratio = darknet_helper(image, width, height)

nce, bbox in detections:
, bottom = bbox2points(bbox)
, bottom = int(left * width_ratio), int(top * height_ratio), int(right * width_ration)
age, (left, top), (right, bottom), class_colors[label], 2)

2, "{} [{:.2f}]".format(label, float(confidence)),
  (left, top - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
  class_colors[label], 2)
```



```
print('Saved to {}'.format(filename))

# Show the image which was just taken.
display(Image(filename))
xcept Exception as err:
# Errors will be thrown if the user does not have a webcam or if they do not
# grant the page permission to access it.
print(str(err))
```


Conclusion

In conclusion, the integration of Al-powered accident detection represents a monumental leap towards achieving unparalleled **road safety**. Let's harness the potential of technology to transform our roads and ensure a safer tomorrow.

Thanks!

