TRAFFIC FLOW MODEL

Sushmita Rose John

Under the Guidance of

Prof.S.Sundar

Department of Mathematics IIT Madras

Outline

- Traffic Flow Model
- 2 Traffic Signal
- Speed Breaker

Outline

- Traffic Flow Model
- 2 Traffic Signal
- Speed Breaker

Introduction

Some of the different traffic flow models are :

- LWR Model
- Greenshield's Model
- Greenberg Model
- PW Model
- Optimal Velocity Model
- Stochastic Traffic Cellular Automata

Traffic stream is treated as a 1-D compressible fluid.

Traffic stream is treated as a 1-D compressible fluid.

Conservation law

$$\rho_t + \phi_x = 0$$

where ϕ is the flux across the boundary.

Traffic stream is treated as a 1-D compressible fluid.

Conservation law

$$\rho_t + \phi_x = 0$$

where ϕ is the flux across the boundary.

In this model, $\phi=\rho v$ where ρ and v are the traffic density and velocity respectively.

Assumption

Velocity depends only on density.

Assumption

Velocity depends only on density.

• If $\rho = 0$ then $v = v_{max}$, the maximum velocity;

Assumption

Velocity depends only on density.

- If $\rho = 0$ then $v = v_{max}$, the maximum velocity;
- If $\rho = \rho_{max}$, the maximum density, then v=0;

Assumption

Velocity depends only on density.

- If $\rho = 0$ then $v = v_{max}$, the maximum velocity;
- If $\rho = \rho_{max}$, the maximum density, then v=0;
- $\frac{d\rho}{dv} \leqslant 0$.

Figure: Fundamental Diagram showing density-velocity relation

Introduction LWR Model Fundamental Diagram Greenshields Model Numerical Schemes

Greenshields Model

•
$$v = v_{max} (1 - \frac{\rho}{\rho_{max}})$$

•
$$v = v_{max}(1 - \frac{\rho}{\rho_{max}})$$

• Modified Model : $\rho_t + (\rho v_{max}(1 - \frac{\rho}{\rho_{max}}))_x = 0$ where ρ_{max} is the maximum traffic density and v_{max} is the maximum velocity of traffic.

- $v = v_{max} (1 \frac{\rho}{\rho_{max}})$
- Modified Model : $\rho_t + (\rho v_{max}(1 \frac{\rho}{\rho_{max}}))_x = 0$ where ρ_{max} is the maximum traffic density and v_{max} is the maximum velocity of traffic.
- Burgers Equation : $u_t + (\frac{u^2}{2})_x = 0$ where $u = 1 \frac{2\rho}{\rho_{max}}$.

- $v = v_{max}(1 \frac{\rho}{\rho_{max}})$
- Modified Model : $\rho_t + (\rho v_{max}(1 \frac{\rho}{\rho_{max}}))_x = 0$ where ρ_{max} is the maximum traffic density and v_{max} is the maximum velocity of traffic.
- Burgers Equation : $u_t + (\frac{u^2}{2})_x = 0$ where $u = 1 \frac{2\rho}{\rho_{max}}$.
- These models are non-linear hyperbolic p.d.e.'s, and can be solved using the method of characteristics.

Conservative Numerical Schemes

Gudonov Method : For all i,n do :

- if $f'(u_i^n) \geqslant 0$ and $f'(u_{i+1}^n) \geqslant 0$ then $u_i^* = u_i^n$;
- if $f'(u_i^n) < 0$ and $f'(u_{i+1}^n) < 0$ then $u_i^* = u_{i+1}^n$;
- if $f'(u_i^n) \geqslant 0$ and $f'(u_{i+1}^n) < 0$ then $u_i^* = u_i^n$ if $(s \geqslant 0)$ or $u_i^* = u_{i+1}^n$ if (s < 0) where $s = \frac{f(u_{i+1}^n) f(u_i^n)}{u_{i+1}^n u_i^n}$;
- if $f'(u_i^n) < 0$ and $f'(u_{i+1}^n) \ge 0$ then u_i^* is the unique solution of $f'(u_i^*) = 0$;
- Set $u_i^{n+1} = u_i^n \frac{k}{h}(f(u_i^*) f(u_{i-1}^*))$

This scheme has ben shown to be conervative, consistent and will converge to the entropy satisfying solution of the problem.

Assumptions

$$u_{max} = 1$$
 and $v_{max} = 1$

Model

$$\rho_t + (\rho(1-\rho))_x = 0.$$

Burgers Equation

$$u_t + (\frac{u^2}{2})_x = 0$$
 with $u = 1 - 2\rho$

Outline

- 1 Traffic Flow Model
- 2 Traffic Signal
- Speed Breaker

Traffic Signal

PROBLEM

How does the traffic behave near a signal?

Suppose there is a traffic signal on the road.

Suppose there is a traffic signal on the road.

• how the traffic moves when the signal is red.

Suppose there is a traffic signal on the road.

- how the traffic moves when the signal is red.
- how the traffic flow changes when signal turns from red to green.

Suppose there is a traffic signal on the road.

- how the traffic moves when the signal is red.
- 2 how the traffic flow changes when signal turns from red to green.
- how the traffic flow changes when signal turns from green to red.

Suppose the signal light is red.

Suppose the signal light is red.

Experience

Cars will pile up behind the signal as time passes.

Let us model the road from $x = x_1$ to $x = x_{15}$.

Let us model the road from $x = x_1$ to $x = x_{15}$.

Suppose that there is a signal at $x = \bar{x}$ between x_6 and x_7 which is red at t=0.

Let us model the road from $x = x_1$ to $x = x_{15}$.

Suppose that there is a signal at $x = \bar{x}$ between x_6 and x_7 which is red at t=0.

We will use the Burgers equation to solve this problem.

Let us model the road from $x = x_1$ to $x = x_{15}$.

Suppose that there is a signal at $x = \bar{x}$ between x_6 and x_7 which is red at t=0.

We will use the Burgers equation to solve this problem.

Assumption

$$u(\bar{x},t) = -1$$
 for all t.

Characteristic Curves

Characteristic Curves

Observations

Gudonov Method

t	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	X4	<i>X</i> 5	<i>x</i> ₆	X7	<i>X</i> 8	<i>X</i> 9	X10	X11	X12	X13	X14	X ₁₅
0	0.55	0.55	0.55	0.55	0.55	0.55	0	0	0	0	0	0	0	0	0

Table: Data obtained using Gudonov Method when the signal is red.

Observations

Gudonov Method

t	<i>x</i> ₁	X2	X3	X4	<i>X</i> 5	<i>x</i> ₆	X7	X8	<i>X</i> 9	X10	X11	X12	X13	X14	X ₁₅
0	0.55	0.55	0.55	0.55	0.55	0.55	0	0	0	0	0	0	0	0	0
0.1	0.55	0.55001	0.550409	0.561946	0.677687	0.904947	0	0	0	0	0	0	0	0	0

Table: Data obtained using Gudonov Method when the signal is red.

Gudonov Method

t	<i>x</i> ₁	X2	X3	X4	<i>X</i> 5	<i>x</i> ₆	X7	<i>x</i> 8	<i>X</i> 9	X10	X11	X12	X13	X14	X ₁₅
0	0.55	0.55	0.55	0.55	0.55	0.55	0	0	0	0	0	0	0	0	0
0.1	0.55	0.55001	0.550409	0.561946	0.677687	0.904947	0	0	0	0	0	0	0	0	0
0.2	0.550059	0.551451	0.576059	0.717113	0.908046	0.98727	0	0	0	0	0	0	0	0	0

Gudonov Method

t	<i>x</i> ₁	X2	X3	X4	<i>X</i> 5	<i>x</i> ₆	X7	<i>x</i> 8	<i>X</i> 9	X10	X11	X12	X13	X14	X ₁₅
0	0.55	0.55	0.55	0.55	0.55	0.55	0	0	0	0	0	0	0	0	0
0.1	0.55	0.55001	0.550409	0.561946	0.677687	0.904947	0	0	0	0	0	0	0	0	0
0.2	0.550059	0.551451	0.576059	0.717113	0.908046	0.98727	0	0	0	0	0	0	0	0	0
0.3	0.552749	0.589143	0.744626	0.915865	0.984046	0.998433	0	0	0	0	0	0	0	0	0

Gudonov Method

t	<i>x</i> ₁	X2	X3	X4	<i>X</i> 5	<i>x</i> ₆	X7	X8	<i>X</i> 9	X10	X11	X12	X13	X14	X ₁₅
0	0.55	0.55	0.55	0.55	0.55	0.55	0	0	0	0	0	0	0	0	0
0.1	0.55	0.55001	0.550409	0.561946	0.677687	0.904947	0	0	0	0	0	0	0	0	0
0.2	0.550059	0.551451	0.576059	0.717113	0.908046	0.98727	0	0	0	0	0	0	0	0	0
0.3	0.552749	0.589143	0.744626	0.915865	0.984046	0.998433	0	0	0	0	0	0	0	0	0
0.4	0.602143	0.767777	0.924342	0.983805	0.997602	0.999809	0	0	0	0	0	0	0	0	0

Gudonov Method

t	<i>x</i> ₁	X2	X3	X4	<i>X</i> 5	<i>x</i> ₆	X7	<i>x</i> 8	<i>X</i> 9	X10	X11	X12	X13	X14	X ₁₅
0	0.55	0.55	0.55	0.55	0.55	0.55	0	0	0	0	0	0	0	0	0
0.1	0.55	0.55001	0.550409	0.561946	0.677687	0.904947	0	0	0	0	0	0	0	0	0
0.2	0.550059	0.551451	0.576059	0.717113	0.908046	0.98727	0	0	0	0	0	0	0	0	0
0.3	0.552749	0.589143	0.744626	0.915865	0.984046	0.998433	0	0	0	0	0	0	0	0	0
0.4	0.602143	0.767777	0.924342	0.983805	0.997602	0.999809	0	0	0	0	0	0	0	0	0
0.5	0.788663	0.932553	0.984693	0.997289	0.999656	0.999977	0	0	0	0	0	0	0	0	0

Gudonov Method

t	<i>x</i> ₁	X2	X3	X4	<i>X</i> 5	<i>x</i> ₆	X7	<i>x</i> 8	<i>X</i> 9	X10	X11	X12	X13	X14	X ₁₅
0	0.55	0.55	0.55	0.55	0.55	0.55	0	0	0	0	0	0	0	0	0
0.1	0.55	0.55001	0.550409	0.561946	0.677687	0.904947	0	0	0	0	0	0	0	0	0
0.2	0.550059	0.551451	0.576059	0.717113	0.908046	0.98727	0	0	0	0	0	0	0	0	0
0.3	0.552749	0.589143	0.744626	0.915865	0.984046	0.998433	0	0	0	0	0	0	0	0	0
0.4	0.602143	0.767777	0.924342	0.983805	0.997602	0.999809	0	0	0	0	0	0	0	0	0
0.5	0.788663	0.932553	0.984693	0.997289	0.999656	0.999977	0	0	0	0	0	0	0	0	0

Table: Data obtained using Gudonov Method when the signal is red.

Visualization

Time:0.000

Aim

- how the traffic moves when the signal is red.
- 2 how the traffic flow changes when signal turns from red to green.
- how the traffic flow changes when signal turns from green to red.

At $t = t_1$, the signal turns green.

At $t = t_1$, the signal turns green.

Experience

Traffic density starts spreading out to the right of the signal, with the car near the signal moving at maximum velocity at $t=t_1$ as the road is empty in front of it.

At $t = t_1$, the signal turns green.

Experience

Traffic density starts spreading out to the right of the signal, with the car near the signal moving at maximum velocity at $t=t_1$ as the road is empty in front of it.

Take
$$u_0(x) = u(x, t_0)$$

Characteristic Curves

Characteristic Curves

t	x_1	x_2	<i>x</i> ₃	X4	X5	<i>x</i> ₆	x ₇	<i>x</i> ₈	X ₉	x ₁₀	x ₁₁	x ₁₂	x ₁₃	x ₁₄	X ₁₅
0.5	0.78866	0.93255	0.98469	0.99728	0.99965	0.99997	0	0	0	0	0	0	0	0	0

Gudonov Method

t	x_1	x ₂	X3	X4	<i>X</i> 5	<i>x</i> ₆	x ₇	<i>x</i> ₈	Xg	x ₁₀	x ₁₁	x ₁₂	x ₁₃	x ₁₄	X ₁₅
0.5	0.78866	0.93255	0.98469	0.99728	0.99965	0.99997	0	0	0	0	0	0	0	0	0
0.6	0.93783	0.97706	0.97021	0.93252	0.86033	0.74554	0.25444	0.13960	0.067017	0.02700	0.0089124	0.0023857	0.00051888	9.2e - 5	1.3e - 5

0.0 0.93163 0.91700 0.91021 0.93292 0.00033 0.74394 0.29444 0.13900 0.00101 0.02700 0.0009124 0.0023937 0.00031666 9.2e - 5 1.3e - 5

Gudonov Method

t	x_1	x ₂	x ₃	<i>x</i> ₄	<i>x</i> ₅	x ₆	x7	x ₈	x_9	x ₁₀	x ₁₁	x ₁₂	x ₁₃	x ₁₄	x ₁₅
0.5	0.78866	0.03255	0.08460	0 99728	0 00065	0 99997	0	0	0	0	0	0	0	0	0
-0.5	0.10000	0.55255	0.50105	0.33120	0.33303	0.55551									
0.6	0.93783	0.97706	0.97021	0.93252	0.86033	0.74554	0.25444	0.13960	0.067017	0.02700	0.0089124	0.0023857	0.00051888	9.2e - 5	1.3e - 5
0.7	0.94991	0.92946	0.88726	0.82856	0.75460	0.6635	0.33642	0.24537	0.17131	0.11213	0.067604	0.036933	0.018035	7.7e – 3	2.9e - 3

Gudonov Method

t	x_1	x ₂	x ₃	<i>x</i> ₄	X5	<i>x</i> ₆	x7	<i>x</i> ₈	X ₉	x ₁₀	x ₁₁	x ₁₂	x ₁₃	x ₁₄	x ₁₅
0.5	0.78866	0.93255	0.98469	0.99728	0.99965	0.99997	0	0	0	0	0	0	0	0	0
0.6	0.93783	0.97706	0.97021	0.93252	0.86033	0.74554	0.25444	0.13960	0.067017	0.02700	0.0089124	0.0023857	0.00051888	9.2e - 5	1.3e - 5
0.7	0.94991	0.92946	0.88726	0.82856	0.75460	0.6635	0.33642	0.24537	0.17131	0.11213	0.067604	0.036933	0.018035	7.7e – 3	2.9e – 3
0.8	0.89889	0.86061	0.81284	0.75745	0.69474	0.62281	0.37718	0.30524	0.24250	0.18696	0.13860	0.097884	0.06519	0.04054	0.02333

Gudonov Mothad

0.8 0.89889 0.86061 0.81284 0.75745 0.69474 0.62281 0.37718 0.30524

0.9 0.84302 0.80310 0.75858 0.71002 0.6572 0.59837 0.4016 0.34274 0.28995

J	GI	Juon	OV I	VICLI	iou											
Ī	t	x ₁	x ₂	<i>x</i> ₃	X4	Xs	<i>x</i> ₆	х7	х ₈	X ₉	x ₁₀	×11	x ₁₂	x ₁₃	x ₁₄	x ₁₅
	0.5	0.78866	0.93255	0.98469	0.99728	0.99965	0.99997	0	0	0	0	0	0	0	0	0
	0.6	0.93783	0.97706	0.97021	0.93252	0.86033	0.74554	0.25444	0.13960	0.067017	0.02700	0.0089124	0.0023857	0.00051888	9.2e – 5	1.3e - 5
	0.7	0.04001	0.02046	0.00706	0.00056	0.75460	0.6635	0.22642	0.24527	0.17121	0.11212	0.067604	0.036033	0.010025	77- 2	20- 2

0.24250 0.18696

Table: Data obtained using Gudonov Method when the traffic light is green.

↓□▶ ←□▶ ←□▶ ←□▶ □ ♥♀○

0.13860

0.24134 0.19663

0.097884

0.15599

0.06519

0.11982

0.04054 0.02333

0.08855 0.06254

Gı	udon	iov ľ	Vleth	nod											
t	<i>x</i> ₁	x ₂	<i>x</i> ₃	X ₄	Xs	<i>x</i> ₆	х7	<i>x</i> ₈	<i>x</i> ₉	×10	x ₁₁	x ₁₂	x ₁₃	x ₁₄	x ₁₅
0.5	0.78866	0.93255	0.98469	0.99728	0.99965	0.99997	0	0	0	0	0	0	0	0	0
0.6	0.93783	0.97706	0.97021	0.93252	0.86033	0.74554	0.25444	0.13960	0.067017	0.02700	0.0089124	0.0023857	0.00051888	9.2e - 5	1.3e - 5
0.7	0.94991	0.92946	0.88726	0.82856	0.75460	0.6635	0.33642	0.24537	0.17131	0.11213	0.067604	0.036933	0.018035	7.7e – 3	2.9e - 3
0.8	0.89889	0.86061	0.81284	0.75745	0.69474	0.62281	0.37718	0.30524	0.24250	0.18696	0.13860	0.097884	0.06519	0.04054	0.02333
0.9	0.84302	0.80310	0.75858	0.71002	0.6572	0.59837	0.4016	0.34274	0.28995	0.24134	0.19663	0.15599	0.11982	0.08855	0.06254
1	0.79631	0.75903	0.71917	0.67687	0.63174	0.58208	0.41791	0.36825	0.32311	0.28078	0.24085	0.20331	0.16833	0.13619	0.10722

We can also model the traffic already present on the road when the signal turns green.

$$u_0(x) = \begin{cases} u(x, t_0), & x \geqslant x_1 \\ 1, & x < x_1 \end{cases}$$

Gudonov Method

t	x_1	x_2	x3	<i>x</i> ₄	<i>x</i> ₅	x ₆	<i>x</i> ₇	<i>x</i> ₈	<i>x</i> ₉	×10	x ₁₁	x ₁₂	x ₁₃	x ₁₄	x ₁₅
0.5	0.78866	0.93255	0.98469	0.99728	0.99965	0.99997	0	0	0	0	0	0	0	0	0

Gudonov Method

	t	x_1	x ₂	x ₃	<i>x</i> ₄	<i>x</i> ₅	x ₆	х7	<i>x</i> ₈	x ₉	x ₁₀	x ₁₁	x ₁₂	x ₁₃	x ₁₄	x ₁₅
	0.5	0.78866	0.93255	0.98469	0.99728	0.99965	0.99997	0	0	0	0	0	0	0	0	0
_	0.6	0.71714	0.07706	0.07021	0.9325	0.8603	0.7455	0.25444	0.13060	0.067017	0.02706	0.00801	0.00338	0.00051	9.2e - 005	1 30 - 005
_	0.0	0.71714	0.97700	0.97021	0.9323	0.0003	0.7455	0.23444	0.13900	0.007017	0.02700	0.00091	0.00236	0.00031	9.26 - 003	1.36 - 003

Gudonov Method

t	x_1	x ₂	x ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	х7	<i>x</i> ₈	X ₉	x ₁₀	x ₁₁	x ₁₂	x ₁₃	x ₁₄	x ₁₅
0.5	0 30000	0.00055		0.00000											
0.5	0.78866	0.93255	0.98469	0.99728	0.99965	0.99997	0	0	0	0	0	0	0	0	
0.6	0.71714	0.97706	0.97021	0.9325	0.8603	0.7455	0.25444	0.13960	0.067017	0.02706	0.00891	0.00238	0.00051	9.2e - 005	1.3e - 005
0.7	0.63935	0.02046	0.88726	0.83856	0.75460	0.66357	0.33643	0.24537	0.17131	0.11213	0.06760	0.03603	0.01903	0.00779	0.00297
-0.7	0.03933	0.92940	0.00120	0.02030	0.73400	0.00337	0.33042	0.24337	0.17131	0.11213	0.00700	0.03093	0.01003	0.00779	0.00297

Gudonov Method

t	x_1	x2	<i>x</i> ₃	X4	X5	<i>x</i> ₆	X7	<i>x</i> ₈	Xg	x ₁₀	x ₁₁	x ₁₂	x ₁₃	x ₁₄	x ₁₅
0.5	0.78866	0.93255	0.98469	0.99728	0.99965	0.99997	0	0	0	0	0	0	0	0	0
0.6	0.71714	0.97706	0.97021	0.9325	0.8603	0.7455	0.25444	0.13960	0.067017	0.02706	0.00891	0.00238	0.00051	9.2e - 005	1.3e - 005
0.7	0.63935	0.92946	0.88726	0.82856	0.75460	0.66357	0.33642	0.24537	0.17131	0.11213	0.06760	0.03693	0.01803	0.00779	0.00297
0.75	0.56063	0.89441	0.84738	0.78927	0.72085	0.64027	0.35972	0.27913	0.21066	0.15229	0.10413	0.06649	0.03916	0.02103	0.01022

Gudonov Method

0.5 0.78866 0.93255 0.98469 0.99728 0.99965 0.99997 0 0 0 0 0 0 0 0	0
0.5 0.78866 0.93255 0.98469 0.99728 0.99965 0.99997 0 0 0 0 0 0 0 0	0
0.6 0.71714 0.97706 0.97021 0.9325 0.8603 0.7455 0.25444 0.13960 0.067017 0.02706 0.00891 0.00238 0.00051 9.2e - 0.058600 0.00891 0.00891 0.00891 0.008800 0.00891 0	1.3e - 005
0.7 0.63935 0.92946 0.88726 0.82856 0.75460 0.66357 0.33642 0.24537 0.17131 0.11213 0.06760 0.03693 0.01803 0.00779	0.00297
0.75 0.56063 0.89441 0.84738 0.78927 0.72085 0.64027 0.35972 0.27913 0.21066 0.15229 0.10413 0.06649 0.03916 0.02103	0.01022

Table: Data obtained using Gudonov Method for the density changes in the existing traffic when the signal turned green.

Visualization

Time: 0.500

Aim

- how the traffic moves when the signal is red.
- 2 how the traffic flow changes when signal turns from red to green.
- how the traffic flow changes when signal turns from green to red.

Red Light Again

At $t = t_1$, the signal changes back to red.

Red Light Again

At $t = t_1$, the signal changes back to red.

Experience

Cars before the signal will pile up near the signal and the cars beyond the signal will move ahead

Red Light Again

At $t = t_1$, the signal changes back to red.

Experience

Cars before the signal will pile up near the signal and the cars beyond the signal will move ahead

Assumptions

Divide the road into two sections at the signal. For the section before the signal we assume $u(\bar{x},t)=-1$. For the section of the road after the signal we assume $u(\bar{x},t)=1$.

Characteristic Curves

Characteristic Curves

1 0.79631 0.75903 0.71917 0.67687 0.63174 0.58208 0.41791 0.36825 0.32311 0.28078 0.24085 0.20331 0.16833 0.13619 0.10722

Gudonov Method

	t	x_1	x ₂	x ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	х7	<i>x</i> ₈	X ₉	x ₁₀	x ₁₁	x ₁₂	x ₁₃	x ₁₄	x ₁₅
	1	0.79631	0.75903	0.71917	0.67687	0.63174	0.58208	0.41791	0.36825	0.32311	0.28078	0.24085	0.20331	0.16833	0.13619	0.10722
ĺ	1.1	0.75918	0.72552	0.69219	0.67403	0.74356	0.91597	0.084022	0.25643	0.32596	0.30778	0.27442	0.24065	0.20827	0.17758	0.14881

Gudonov Method

t	x_1	x ₂	x ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	х7	<i>x</i> ₈	Xg	x ₁₀	x ₁₁	x ₁₂	x ₁₃	x ₁₄	x ₁₅
	0.70504	0.75000	0.74047	0.07007	0.50171	0.50000	0.44704	0.00005	0.00044	0.00070	0.04005	0.00004	0.45000	0.40540	0.40700
	0.79631	0.75903	0.71917	0.67687	0.63174	0.58208	0.41791	0.36825	0.32311	0.28078	0.24085	0.20331	0.16833	0.13619	0.10722
1.1	0.75918	0.72552	0.69219	0.67403	0.74356	0.91597	0.084022	0.25643	0.32596	0.30778	0.27442	0.24065	0.20827	0.17758	0.14881
1.2	0.73178	0.71025	0.72062	0.80895	0.92967	0.98887	0.011122	0.070324	0.19103	0.27936	0.28971	0.26813	0.24024	0.21204	0.18478

Gudonov Method

t	x_1	x ₂	<i>x</i> ₃	x_4	<i>x</i> ₅	<i>x</i> ₆	х7	<i>x</i> ₈	X ₉	x ₁₀	x ₁₁	x ₁₂	x ₁₃	x ₁₄	x ₁₅
1	0.79631	0.75903	0.71917	0.67687	0.63174	0.58208	0.41791	0.36825	0.32311	0.28078	0.24085	0.20331	0.16833	0.13619	0.10722
1.1	0.75918	0.72552	0.69219	0.67403	0.74356	0.91597	0.084022	0.25643	0.32596	0.30778	0.27442	0.24065	0.20827	0.17758	0.14881
1.2	0.73178	0.71025	0.72062	0.80895	0.92967	0.98887	0.011122	0.070324	0.19103	0.27936	0.28971	0.26813	0.24024	0.21204	0.18478
1.3	0.73233	0.76617	0.8561	0.94535	0.98765	0.99863	0.00136	0.01234	0.05464	0.14381	0.23380	0.26761	0.26014	0.23896	0.21476

Gudonov Method

t	x_1	x ₂	<i>x</i> ₃	x_4	<i>x</i> ₅	<i>x</i> ₆	х7	<i>x</i> ₈	X ₉	x ₁₀	x ₁₁	x ₁₂	x ₁₃	x ₁₄	x ₁₅
1	0.79631	0.75903	0.71917	0.67687	0.63174	0.58208	0.41791	0.36825	0.32311	0.28078	0.24085	0.20331	0.16833	0.13619	0.10722
1.1	0.75918	0.72552	0.69219	0.67403	0.74356	0.91597	0.084022	0.25643	0.32596	0.30778	0.27442	0.24065	0.20827	0.17758	0.14881
1.2	0.73178	0.71025	0.72062	0.80895	0.92967	0.98887	0.011122	0.070324	0.19103	0.27936	0.28971	0.26813	0.24024	0.21204	0.18478
1.3	0.73233	0.76617	0.8561	0.94535	0.98765	0.99863	0.00136	0.01234	0.05464	0.14381	0.23380	0.26761	0.26014	0.23896	0.21476
1.4	0.80972	0.89272	0.95883	0.98911	0.99810	0.99983	0.000166	0.00189	0.01089	0.04116	0.10726	0.19024	0.24091	0.2491	0.23611
1.2	0.73178	0.71025 0.76617	0.72062	0.80895 0.94535	0.92967	0.98887	0.011122	0.070324 0.01234	0.19103 0.05464	0.27936 0.14381	0.28971	0.26813	0.24024	0.21204	

Gudonov Method

t	x_1	x2	<i>x</i> ₃	x_4	<i>x</i> ₅	<i>x</i> ₆	x7	<i>x</i> ₈	x ₉	x ₁₀	x ₁₁	x ₁₂	x ₁₃	x ₁₄	x ₁₅
1	0.79631	0.75903	0.71917	0.67687	0.63174	0.58208	0.41791	0.36825	0.32311	0.28078	0.24085	0.20331	0.16833	0.13619	0.10722
1.1	0.75918	0.72552	0.69219	0.67403	0.74356	0.91597	0.084022	0.25643	0.32596	0.30778	0.27442	0.24065	0.20827	0.17758	0.14881
1.2	0.73178	0.71025	0.72062	0.80895	0.92967	0.98887	0.011122	0.070324	0.19103	0.27936	0.28971	0.26813	0.24024	0.21204	0.18478
1.3	0.73233	0.76617	0.8561	0.94535	0.98765	0.99863	0.00136	0.01234	0.05464	0.14381	0.23380	0.26761	0.26014	0.23896	0.21476
1.4	0.80972	0.89272	0.95883	0.98911	0.99810	0.99983	0.000166	0.00189	0.01089	0.04116	0.10726	0.19024	0.24091	0.2491	0.23611
1.5	0.92101	0.9695	0.99116	0.99809	0.99972	0.99998	2.0e - 005	0.000275	0.00190	0.00883	0.03042	0.07897	0.15032	0.21013	0.23389

Red Light Again

Visualizations

Incoming traffic present

Outline

- 1 Traffic Flow Model
- 2 Traffic Signal
- Speed Breaker

PROBLEM

How does the traffic behave when there is a speed breaker on the road?

Suppose there is a speed breaker on the road.

Suppose there is a speed breaker on the road.

• when the speed breaker is placed after a traffic signal.

Suppose there is a speed breaker on the road.

- when the speed breaker is placed after a traffic signal.
- ② when the speed breaker is placed before a traffic signal.

Suppose there is a speed breaker on the road.

Suppose there is a speed breaker on the road.

Experience

If there is a speed breaker on the road the cars will be forced to reduce their velocity.

Suppose there is a speed breaker on the road.

Experience

If there is a speed breaker on the road the cars will be forced to reduce their velocity.

Assumption

In the slow down section, the maximum velocity attained is

 $v_s < v_{max}$

Suppose there is a speed breaker on the road.

Experience

If there is a speed breaker on the road the cars will be forced to reduce their velocity.

Assumption

In the slow down section, the maximum velocity attained is $v_s < v_{max}$

Model

We will use $\rho_t + \rho (v_{max}(1 - \frac{\rho}{\rho_{max}}))_x = 0$ for this problem.

After Signal

Let us model the road from $x = x_1$ to $x = x_{15}$.

After Signal

Let us model the road from $x = x_1$ to $x = x_{15}$.

Suppose that there is a signal at $x = \bar{x}$ between x_6 and x_7 , and a slow down section at x_7 and x_8 . At t=0, signal becomes green.

After Signal

Let us model the road from $x = x_1$ to $x = x_{15}$.

Suppose that there is a signal at $x = \bar{x}$ between x_6 and x_7 , and a slow down section at x_7 and x_8 . At t=0, signal becomes green.

Assumption

Let $v_s = 0.1$.

Characteristic Curves

Figure: Speed Breaker after the signal

Characteristic Curves

Figure: Speed Breaker after the signal

Observations

Table: Data obtained using Gudonov method when there is no speed breaker no the road.

t	x_1	X2	<i>X</i> 3	X4	<i>X</i> 5	X6	X7	X8	X9	X10	X11	X12	X13	X14	X15
-0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
0.1	0.99761	0.99108	0.97299	0.93298	0.86039	0.74555	0.04565	0.00409	0.00172	0.00060	0.00017	4.1e - 5	8.1e - 6	1.3e - 6	1.8e - 7
0.4	0.84400	0.80336	0.75865	0.71004	0.65725	0.59838	0.14328	0.04384	0.03555	0.02800	0.02132	0.01558	0.01088	0.007215	0.00452
0.5	0.79668	0.7591	0.71921	0.6768	0.63174	0.58208	0.16711	0.06023	0.05123	0.04278	0.03495	0.02783	0.02151	0.01606	0.01153

Table: Data obtained using Gudonov method when the speed breaker is placed after a signal

Visualization

- when the speed breaker is placed after a traffic signal.
- ② when the speed breaker is placed before a traffic signal.

Before Signal

Let us model the road from $x = x_1$ to $x = x_{15}$.

Before Signal

Let us model the road from $x = x_1$ to $x = x_{15}$.

Suppose that there is a signal at $x = \bar{x}$ between x_8 and x_9 , and a slow down section at x_6 . At t=0, signal is red.

Before Signal

Let us model the road from $x = x_1$ to $x = x_{15}$.

Suppose that there is a signal at $x = \bar{x}$ between x_8 and x_9 , and a slow down section at x_6 . At t=0, signal is red.

Assumption

Let $v_s = 0.1$

Characteristic Curves

Figure: Speed Breaker before the signal

Characteristic Curves

Figure: Speed Breaker before the signal

Observations

t	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> ₈	Xg	x ₁₀	x ₁₁	X12	x ₁₃	X14	X ₁₅
0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
0.1	0.997614	0.991088	0.972994	0.932982	0.860396	0.745552	0.254448	0.245552	0	0	0	0	0	0	0
0.2	0.963067	0.932396	0.887866	0.828682	0.754628	0.663573	0.336427	0.663573	0	0	0	0	0	0	0
0.5	0.797068	0.760879	0.727441	0.716018	0.77849	0.905034	0.981652	0.999048	0	0	0	0	0	0	0

Table: Data obtained using Gudonov method when there is no speed breaker on the road

t	<i>x</i> ₁	x ₂	X3	<i>x</i> ₄	<i>X</i> 5	<i>x</i> ₆	X7	<i>x</i> ₈	Xg	X10	x ₁₁	X12	X13	X14	X ₁₅
0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
0.1	0.997614	0.991088	0.972994	0.932982	0.860396	0.745552	0.0456528	0.0434724	0	0	0	0	0	0	0
0.2	0.963067	0.932396	0.887866	0.828682	0.754628	0.663573	0.0836517	0.163483	0	0	0	0	0	0	0
0.5	0.796685	0.759141	0.719211	0.676881	0.631743	0.582083	0.167119	0.82881	0	0	0	0	0	0	0

Table: Data obtained using Gudonov method when the speed breaker is placed before a signal

Visualization

Traffic Flow Model

- Traffic Flow Model
- Traffic Signal

- Traffic Flow Model
- Traffic Signal
 - Red Light

- Traffic Flow Model
- Traffic Signal
 - Red Light
 - Green Light

- Traffic Flow Model
- Traffic Signal
 - Red Light
 - Green Light
 - Red Light again

- Traffic Flow Model
- Traffic Signal
 - Red Light
 - Green Light
 - Red Light again
- Speed Breaker

- Traffic Flow Model
- Traffic Signal
 - Red Light
 - Green Light
 - Red Light again
- Speed Breaker
 - After Signal

- Traffic Flow Model
- Traffic Signal
 - Red Light
 - Green Light
 - Red Light again
- Speed Breaker
 - After Signal
 - Before Signal

- Traffic Flow Model
- Traffic Signal
 - Red Light
 - Green Light
 - Red Light again
- Speed Breaker
 - After Signal
 - Before Signal
- Visualizations

THANK YOU