Heuristic algorithms

Heuristic algorithms

- These algorithms come with no guarantee of producing the correct answer, but in practice tend to work well.
- Often used for difficult optimization problems
 - These are problems where we seek the "best" solution among a set of possible solutions
 - Shortest path between two vertices in a graph
 - Shortest Traveling Salesperson tour
 - · Maximum value you can put in your backpack
 - Heuristics will give solution that might not be optimal, but that will hopefully be close
- You can imagine all kinds of heuristics, some better than others. Use your imagination!

Heuristics for TSP

- TSP (in its decision problem version) is NP-Complete
 - No known algorithm can give the optimal solution in polynomial time
 - Still, getting some suboptimal solution is better than getting no solution at all
 - For 50 cities, there are $49! = 6 * 10^{62}$ possible solutions
- People have come up with all kinds of approaches to get "good solutions"... We'll look at a few

Solving hard problems

- Many important problems are NP-complete
 - There most likely doesn't exist a polynomial-time algorithm that is guaranteed to give the correct solution
- Monte-Carlo algorithms can sometimes be used to produce the right answer with high probability
- In other cases, all we can do is give an algorithm that (maybe) gives a (pretty) good answer
 - Better to have an imperfect solution than no solution at all!
 - These are called heuristic algorithm

Traveling Salesperson Problem

- Given
 - A set of n cities to be visited
 - The distance matrix D, where D(i,j) is the distance between cities i and j
- Find:
 - A way to visit each city exactly once and to return to your starting point, to minimize the total distance traveled
- Example:

A B C D E
A - 8 3 4 5
B 8 - 7 8 5
C 3 7 - 2 6
D 4 8 2 - 7
E 5 5 6 7 -

Solution: ADCBE = 23

TSP heuristics - Greedy algorithm

- Greedy algorithm:
 - Start at some randomly chosen city
 - Always move to the closest unvisited city
- Example: $A C D E B \rightarrow 3 + 2 + 7 + 5 + 8$

= 25

A B C D E
A - 8 3 4 5
B 8 - 7 8 5
C 3 7 - 2 6
D 4 8 2 - 7
E 5 5 6 7 -

TSP heuristics - Greedy algorithm II

- Other greedy algorithm:
 - Repeatedly pick the pair of cities that are the closest, as long at they don't close a cycle (except for the last one)

B E A C D, score = 5+5+3+2+8

• Example:

A B C D E
A - 8 3 4 5
B 8 - 7 8 5
C 3 7 - 2 6
D 4 8 2 - 7

E 5 5 6 7 -

Avoiding local minima Randomization

 Many many approaches have been proposed to avoid falling into local minima

Randomized fastest descent:

Similar to fastest descent, but instead of choosing the "best" neighbor, add some randomization to it, so that

- Good neighbors have higher probability of being chosen than bad ones
- Even bad neighbors have a small chance of being selected

Randomization allows to escape from local minima, but slows down convergence

Start with some random solution S Repeat

Consider a set of solutions $T_1...T_k$ in the "neighborhood" of S Replace S by the solution T_i with the best score Until no improvement is possible

What does "neighborhood" mean? Many possibilities...

- T₁...T_k could be the solutions obtained from S by
 Changing the position of one city in S, or
 - Exchanging the position of two cities in S, or
 - Reverse the order in which a set of consecutive cities are visited

Fastest descent - Trade-offs

- The larger the neighborhood, the higher the chance of converging to a good solution, but the more time it takes to evaluate each neighbor
- Fastest descent heuristics will often get stuck in a local optima solution:
 - Solution that is not optimal but that doesn't have a neighbor that is better than itself

Avoiding local minima Genetic algorithm

Idea: Mimic species evolution in biology

Start with a random "population" of random solutions $S_1...S_n$ Repeat for many generations:

For k = 1...n

- Randomly pick two parent solutions S_i and S_j, with probability that depends on their score
- 2) Create a hybrid offspring T_k from S_i and S_j, which inherits some of the properties of the parents
- 3) Insert a few random "mutations" in T_k Replace solutions $S_1...S_n$ by solutions $T_1...T_k$