

MECH 10 - Lab 08 Series / Parallel Circuits

Name: Cayce Beames Date: October 1, 2019 Professor Steven Gillette

Abstract

In this lab, I used several resistors, a Zener diode, a breadboard and a DC power supply to simulate combination series / parallel circuits as well as to understand the behavior of a Zener diode.

Because I missed this lab in class, I substituted resources from my home lab including an 830 connection-point breadboard, a UNI-T UTP3315TFL-II regulated DC power supply and a UNI-T UT89XD digital multimeter.

Learning Objectives

- Build series / parallel circuits as per a schematic diagram
- Measure electrical values using a digital voltmeter
- Use Ohm's Law to reduce a series /parallel circuit to the simplest form
- Use a data table and schematic diagrams to capture field measurements

Notes:

- 1. Take all voltage measurements relative to ground (unless otherwise stated)
- 2. Record relevant measurements and calculation results in data tables
- 3. Record all measured values on the circuit schematics
- 4. Use all available precision in calculations, round off answers to 3 significant figures

Materials

Quantity	Description
1	DC Power Supply
1	Digital multimeter (DMM)
1	Breadboard
	Circuit 1 & 2
1	R1, R2, R3, R4, R5, R6 – choose any
	resistors between $1K\Omega$ and $5.6K\Omega$,
	each of different value
	Circuit 3
1	Zener diode, 1N4733A, 5.1V
1	$R1 - 300\Omega$
1	$R2 - 470\Omega$ and $1k\Omega$

Procedure – Series / Parallel Circuits

Circuit 1

- 1. Selected resistors for circuit 1, 2 and 3 according to the materials chart above.
- 2. Built Circuit 1 *without the voltage source connected* (i.e. left the circuit power supply leads disconnected)

SDG 03/15 Page 1 of 13

3. **Total Resistance (expected)** - *Calculated and recorded R_{Texp}*, the total circuit resistance using circuit reduction, expected resistor values and one of the R_{equiv} formulas.

	Series Resistor Value (Ω)		Branch Resistance (Ω)	Branch Conductance (g)	Expected Parallel Resistance (Ω)	Expected Total Resistance (Ω)
R1	1.00E+03	Branch 1	2.00E+03	500.00E-06	1.15E+03	2.15E+03
Vacuroo	10 00F+00	Branch 2	2 70F+03	370.37E-06		

4. **Total Resistance (measured)** – *Measured and recorded* R_T and compared the measured value to the expected value using the % Error formula.

Expected Total Resistance (Ω)	Measured Total Resistance (Ω)	% Error
2.15E+03	2.16E+03	-0.3%

- 5. Set the power supply to 10V. *Measured and recorded* V_S, the power supply voltage to three significant figures.
- 6. **Circuit Currents (expected)** *Calculated and recorded I_T*, I_{R2} , I_{R3} expected circuit currents using Ohm's Law, V_S , and R_{Texp} values. Used Kirchoff's Law to show that total current equals the sum of the branch currents.

7. **Circuit Currents (measured)** *Measured and recorded* I_T , I_{R2} , I_{R3} , circuit current using the DMM as an ammeter. Recorded the values and compare measured to expected values using the % Error formula.

	Expected Current (Amp)	Measured Current (Amp)	% Error
R_1	4.65E-03	4.61E-03	0.9%
Branch 1	2.67E-03	2.61E-03	2.4%
Branch 2	1.98E-03	1.99E-03	-0.5%

SDG 03/15 Page 2 of 13

8. **Reduction schematic** – drew the circuit reduction steps for Circuit 1 on the Circuit Reduction Worksheet

Circuit 2

- 9. Built circuit 2.
- 10. Calculated and recorded total resistance

	Series Resistor Values (Ω)		Branch Resistance (Ω)	Branch Conductanc e (g)	Expected Parallel Resistance (Ω)	Expected Total Resistance (Ω)
R1	1.00E+03	Branch 1	4.70E+03	212.77E-06	2.92E+03	8.92E+03
R6	5.00E+03	Branch 2	7.70E+03	129.87E-06		
	10.00E+0					
V_{source}	0					

11. Measured and recorded total resistance

12. Compared measured with expected

Expected		Measured Total Resistance	0/ 5
Resistan	ce (Ω)	(Ω)	% Error
8.92E+	-03	8.98E+03	-0.7%

13. Calculated and recorded total circuit current

SDG 03/15 Page 3 of 13

14. Measured and recorded total circuit current

	Measured Current (Amp)
R1	1.10E-03
R6	1.10E-03
Branch 1	679.00E-06
Branch 2	418.00E-06

15. Compared measured total with expected total

	Expected Current (Amp)	Measured Current (Amp)	% Error
R1	1.12E-03	1.10E-03	1.9%
R6	1.12E-03	1.10E-03	1.9%
Branch 1	696.27E-06	679.00E-06	2.5%
Branch 2	424.99E-06	418.00E-06	1.6%

16. Drew a circuit reduction schematic

Circuit 3

- 17. Built Circuit 3 with R_2 equal to 1000Ω . *Note*; zener diodes are operated in reverse bias, with the cathode facing the positive supply.
- 18. *Measured and recorded* V_{R1}, V_{R2}, V_{ZD}. Recorded findings in the table below.
- 19. *Calculated and record* I_T , I_{ZD} , and I_{R2} . *Note*: Zener diodes are active components and do not comply with Ohm's Law. To determine I_{ZD} , use Ohm's Law to calculate I_{R1} and I_{R2} then subtract I_{R2} from I_{R1} .
- 20. Changed R₂ to 470 Ohm
- 21. Measured and recorded VR1, VR2, VZD. Recorded findings in the table below.

SDG 03/15 Page 4 of 13

22. *Calculate and record* I_T, I_{ZD}, and I_{R2}. *Note*; The voltage drop across the Zener diode is largely unaffected changes in current through the diode. Zener diodes find application as constant voltage sources.

	Voltage Current Performance Performance						
Ω	1000	470	% Voltage Change	% Current Change	1000	470	Ω
V_{R1}	7.03E+00	7.10E+00	1.00%	1.00%	23.43E-03	23.67E-03	I _{R1}
V_{R2}	4.97E+00	4.89E+00	1.61%	109.34%	4.97E-03	10.40E-03	I _{R2}
$\textbf{V}_{\textbf{ZD}}$	4.97E+00	4.89E+00	1.61%	28.17%	18.46E-03	13.26E-03	I _{ZD}
V_{T}	12.00E+00	11.99E+00			23.43E-03	23.67E-03	I _{R2} + I _{R1}

SDG 03/15 Page 5 of 13

Formulas

Ohm's Law

$$E = IR, I = \frac{E}{R}, R = \frac{E}{I}$$

Where:

E = voltage (Volts)I = current (Amperes)R = circuit resistance (Ohms)

% Error

$$\%Error = \frac{measured - \exp ected}{\exp ected} x100\%$$

Where;

%Error = % change between measured and expected values **measured** = a value taken from direct measurement

expected = a value taken from component or process specifications

Parallel Resistance - Conductance Method

$$R_{equiv} = \frac{1}{\frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} + \frac{1}{R_n}}$$

Where;

R_{equiv} = circuit total resistance R = resistance 1/R = conductance in mho's

Parallel Resistance – Product over Sum Method

$$R_{equiv} = \frac{R1 \times R2}{R1 + R2}$$

Note; Product Over Sum may only be used when there are only 2 parallel loads.

Parallel Resistance - Equal Value Resistance

$$R_{equiv} = \frac{R_{all}}{n}$$

Note; Equal Value Resistance may only be used when there are identical resistance paths through *n* parallel loads.

Circuit 3 Calculations

$$\begin{split} I_{R1} &= \frac{(V_{R1})}{R_1} \\ I_{R2} &= \frac{V_{R2}}{R_2} \\ I_{ZD} &= I_{R1} - I_{R2} \\ I_T &= I_{R1} \end{split}$$

Where;

 I_{R1} = resistor 1 current V_{R1} = resistor 1 voltage drop R_1 = resistor 1 value

 I_{R2} = resistor 2 current V_{R2} = resistor 2 value R_2 = resistor 2 value (1000 & 470 Ω)

IzD = zener current

IT = total circuit current

Questions / Conclusions

1. What are the primary characteristics of a combination series / parallel circuit?

Any circuit having both series and parallel connected components is considered a combination series / parallel circuit. The series components of the circuit will have common current paths and the parallel components will have a common voltage supply.

2. Describe the procedure used for circuit reduction analysis for series / parallel circuits?

SDG 03/15 Page 6 of 13

Procedures for circuit reduction include first combining parallel branch resistance portions into series equivalents and then adding all series components into a total representative resistance component.

3. Using your measured values from Circuit 1, show calculations that demonstrate that Ohm's Law and Kirchhoff's Current Law provide equivalent results. (total current is equal to the sum of the branches)

R1 shows the current through the circuit relative to the source and through R1 and returning from the parallel portion. The voltage source is 10v, the total resistance measured is $2.16k\Omega$. As I = V/R, $I = 10V / 2.16 k\Omega = 4.64mA$

The sum of the currents through branch 1, and branch 2 are: 2.61mA + 1.99mA = 4.60mA

4.64mA ≈ 4.60 mA

4. In circuit 3, why did the voltage drop remain relatively constant across R2 with different value resistors? Was Ohm's Law violated?

The stable voltage drop phenomenon seen in circuit 3 is due to the behavior of the 1N4733A Zener diode that was used. When a certain voltage is present at the diode, it will start conducting. This particular diode according to the datasheet has a voltage range up to 5.1V. When the resistor was changed to the 470Ω resistor, in parallel with the diode, the same voltage was required to be dissipated at the bottom of the circuit. The diode and the 470Ω resistor, in parallel had the same voltage drop, but the current doubled through the 470Ω resistor and decreased by approximately 5mA through the diode. Ohm's law wasn't violated, the diode resistance automatically changed from approximately 269Ω to approximately 369Ω

SDG 03/15 Page 7 of 13

SIERRA	MECH 10 - Lab 08 Series / Parallel Circuits	Mechatronics Real Skills Real Jobs
Name Casce Brane		9/29/19

Learning Objectives

- Build series / parallel circuits as per a schematic diagram
- Measure electrical values using a digital voltmeter
- Use Ohm's Law to reduce a series /parallel circuit to the simplest form
- Use a data table and schematic diagrams to capture field measurements

Notes:

- 1. Take all voltage measurements relative to ground (unless otherwise stated)
- 2. Record relevant measurements and calculation results in data tables
- 3. Record all measured values on the circuit schematics
- 4. Use all available precision in calculations, round off answers to 3 significant figures

Materials

Quantity	Description
1	Global Specialties Circuit Trainer
1	Digital multimeter (DMM)
	Circuit 1 & 2
1	R1, R2, R3, R4, R5, R6 – choose any
	resistors between $1K\Omega$ and $5.6K\Omega$,
	each of different value
	Circuit 3
1	Zener diode, 1N4733A, 5.1V
1	$R1-300\Omega$
1 1	$R2-470\Omega$ and $1k\Omega$

Procedure – Series / Parallel Circuits Circuit 1

- X. Select resistors for circuit 1, 2 and 3 according to the materials chart above. Create a data table that shows;
 - **a.** Expected resistance values (from resistor color codes); use these values for *all expected value calculations*
- 2. Build Circuit 1 without the voltage source connected (i.e. leave the circuit power supply leads disconnected)
- 3. Total Resistance (expected) Calculate and record R_T , the total circuit resistance using circuit reduction, expected resistor values and one of the R_{equiv} formulas.
- \checkmark . Total Resistance (measured) Measure and record R_T and compare the measured value to the expected value using the % Error formula.

SDG 03/14 Page 1 of 4

SDG 03/15 Page 8 of 13

- 5. Set the trainer power supply to 10V. Measure and record V_S, the power supply voltage to three significant figures.
- 6. Circuit Currents (expected) Calculate and record $I_T = I_{R1}$, I_{R2} , I_{R3} expected circuit currents using Ohm's Law, V_S , and R_{Texp} values. Show that total current equals the sum of the branch currents.
- 7. Circuit Currents (measured) Measure and record $I_T = I_{R1}$, I_{R2} , I_{R3} , circuit current using the DMM as an ammeter. Record the values and compare to expected yalues using the % Error formula.
- 8. Reduction schematic draw the circuit reduction steps for Circuit 1 on the Circuit Reduction Worksheet

Circuit 2

- 9. Build circuit 2.
- 10. Calculate and record total resistance
- 1. Measure and record total resistance
- 12. Compare measured with expected
- 13. Calculate and record total circuit current
- 14. Measure and record total circuit current
- 15. Compare measured total with expected total
- 16. Draw a circuit reduction schematic

Circuit 3

- X7. Build Circuit 3. *Note*; zener diodes are operated in reverse bias, with the cathode facing the positive supply.
- 18. Measure and record VR1, VR2, VZD. Record your findings
- 19. Calculate and record I_T , I_{ZD} , and I_{R2} . Note: Zener diodes are active components and do not comply with Ohm's Law. To determine I_{ZD} , Calculate I_{R1} and I_{R2} then subtract I_{R2} from I_{R1} .
- 20. Change R2 to 470 Ohm
- 21. Measure and record V_{R1}, V_{R2}, V_{ZD}. Record your findings
- 22. Calculate and record I_T, I_{ZD}, and I_{R2}. Note; The voltage drop across the Zener diode is largely unaffected by the change in the load resistor I_{R2}. Zener diodes find application as constant voltage sources.

SDG 03/14

Page 2 of 4

SDG 03/15 Page 9 of 13

Formulas

Ohm's Law

$$E = IR, I = \frac{E}{R}, R = \frac{E}{I}$$

% Error

$$\%Error = \frac{measured - \exp ected}{\exp ected} x100\%$$

Parallel Resistance - Conductance Method

$$R_{equiv} = \frac{1}{\frac{1}{R1} + \frac{1}{R2} + \frac{1}{R3} + \frac{1}{R_n}}$$

Parallel Resistance - Product over Sum Method

$$R_{equiv} = \frac{R1 \times R2}{R1 + R2}$$

Parallel Resistance - Equal Value Resistance

$$R_{equiv} = \frac{R_{all}}{n}$$

Circuit 3 Calculations

$$I_{R1} = \frac{(V_S - V_{ZD})}{R_1}$$

$$I_{R2} = \frac{V_{ZD}}{R_2}$$

$$I_{ZD} = I_{R1} - I_{R2}$$

$$I_T = I_{R1}$$

Where;

E = voltage (Volts)
I = current (Amperes)
R = circuit resistance (Ohms)

Where:

%Error = % change between measured and expected values measured = a value taken from direct measurement expected = a value taken from component or process specifications

Where:

R_{equiv} = circuit total resistance R = resistance 1/R = conductance in mho's

Note; Product Over Sum may only be used when there are only 2 parallel loads.

Note; Equal Value Resistance may only be used when there are identical resistance paths through n parallel loads.

Where:

I_{R1} = resistor 1 current V_S = source voltage V_{ZD} = zener voltage

 I_{R2} = resistor 2 current I_{ZD} = Zener diode current I_{T} = total circuit current

Questions / Conclusions

- 1. What are the primary characteristics of a combination series / parallel circuit?
- 2. Describe the procedure used for circuit reduction analysis for series / parallel circuits?
- 3. Using your measured values from Circuit 1, show calculations that demonstrate that Ohm's Law and Kirchhoff's Current Law provide equivalent results. (total current is equal to the sum of the branches)

SDG 03/14 Page 3 of 4

SDG 03/15 Page 10 of 13

SDG 03/15 Page 11 of 13

SDG 03/15 Page 12 of 13

Grading Criteria

Craumy Critoria		Points Possible	Points Earned
Documentation	Abstract, introduction, experiment, data results, conclusions, attachments, clarity, spelling, grammar	10	
Circuit 1	Expected and measured resistance, and current recorded in data table with percent error, circuit reduction diagram complete & accurate	10	
Circuit 2	Expected and measured resistance and, current recorded in data table with percent error, circuit reduction diagram complete & accurate	10	
Circuit 3	Voltages measured, currents calculated for both R ₂ values.	10	
Critical Thinking	Questions answered completely & accurately. State conclusions drawn and lessons learned from the lab	10	
On-time submittal	Lab report is submitted in accordance with the assignment due date as posted on Canvas	5	
	Total	55	

Lab Report Format

Abstract - a summary and high-level overview of the lab and its results

Introduction - State the objectives of the laboratory and list the equipment required

Experiment - Describe the procedure used to carry out the lab

Results Data - list data taken in table or graphical format where appropriate

Critical Thinking - State the conclusions drawn and lessons learned from the laboratory activities. Answer any questions found within the lab procedure.

Attachments – grading criteria, verification signatures, circuit diagrams, lab procedures & notes

SDG 03/15 Page 13 of 13