	Barème et correction IE n°3 de thermodynamique – 2017 – 2018		
Partie 1		12 (+0,25)	
I		7,25	
1.	On considère que la transformation se fait à pression constante (atmosphérique) : $Q_P = \Delta H$, la chaleur échangée se comporte comme une fonction d'état, elle ne dépend que de l'état initial (eau liquide à 37 °C) et de l'état final (eau vapeur à $T_{vap} = 100$ °C). On peut donc la calculer en considérant que l'eau liquide est chauffée de 37°C à 100°C, puis qu'elle est vaporisée à 100°C :		
	$\Delta H = \int_{Ti}^{Tvap} n_{eau} \overline{C_p}_T^0(eau_{liq}) dT + n_{eau} \Delta_{vap} \overline{H}_{Tvap}^0(eau)$	0,25	
	En considérant que le Cp de l'eau est constant sur l'intervalle de température [37-100]°C :		
	$\Delta H = \frac{m_{eau}}{M_{eau}} \left(\overline{C_p}_T^0(eau_{liq}) \times \left(T_{vap} - T_i \right) + \Delta_{vap} \overline{H}_{Tvap}^0(eau) \right)$	1	
	$\Delta H = \frac{70.10^3 \times 0.65}{18} (75.3 \times (100 - 37) + 40.63.10^3)$		
	$\Delta H = 114,7 MJ$	0,25	
2.	S est également une fonction d'état, on peut donc calculer la variation d'entropie selon le même chemin que précédemment :		
	$\Delta S = \int_{Ti}^{Tvap} n_{eau} \overline{C_p}_T^0(eau_{liq}) \frac{dT}{T} + n_{eau} \frac{\Delta_{vap} \overline{H}_{Tvap}^0(eau)}{T_{vap}}$		
	$\Delta S = \frac{m_{eau}}{M_{eau}} \left(\overline{C_p}_T^0 (eau_{liq}) \times ln \frac{T_{vap}}{T_i} + \frac{\Delta_{vap} \overline{H}_{Tvap}^0 (eau)}{T_{vap}} \right)$	1	
	$\Delta S = \frac{70.10^3 \times 0.65}{18} \left(75.3 \times ln \frac{373}{310} + \frac{40.63.10^3}{373} \right)$		
	$\Delta S = 310,6 kJ. K^{-1}$	0,25	
	L'entropie du système augmente car le désordre moléculaire augmente, l'état gazeux est moins condensé et plus désordonné que l'état liquide.	0,25	
	(Impossibilité de conclure sur la réversibilité ou l'irréversibilité de la transformation sur la base du signe de $\Delta S => pénaliser -0,25$)		
3.	CH ₃ OH _(I) + 3/2 O _{2 (g)} \rightarrow CO _{2 (g)} + 2 H ₂ O _(g) $\Delta_r \overline{H}_{298}^0$	0,25	
	À P° et 298K, le méthanol est liquide (T_{eb} ° = 65°C) et le dioxygène gazeux	0,25	
4.	$\Delta_r \overline{H}_{298}^0 = \Delta_f \overline{H}_{298}^0 (CO_{2(g)}) + 2 \times \Delta_f \overline{H}_{298}^0 (H_2O_{(g)}) - \Delta_f \overline{H}_{298}^0 (CH_3OH_{(liq)}) - 3/2 \times \Delta_f \overline{H}_{298}^0 (O_{2(g)})$	0,5	
	$\Delta_r \bar{H}_{298}^0 = -393.5 + 2 \times (-241.8) - (-239.1) - 3/2 \times 0$		
	$\Delta_r \overline{H}_{298}^0 = -638,0 \ kJ. \ mol^{-1}$	0,25	
5.	$n_{CH3OH} = \frac{\Delta H}{ \Delta_{r2}\bar{H}_{298}^0 } = \frac{114,7.10^6}{638,0.10^3} = 180 \ mol$	0,25	
	$m_{CH3OH} = n_{comb} \times M_{comb} = 180 \times 32 = 5760 \ g$	0,25	
	A P° et 298 K, <u>CH₃OH est liquide</u> : $V_{CH3OH} = \frac{m_{CH3OH}}{\rho_{CH3OH}} = \frac{5760}{0,791} = 7,3 L$	3×0,25	

6.	A P° et 298 K, CH ₄ est gazeux,	0,25
	en supposant qu'il se comporte comme un gaz parfait :	-, -
	$V_{CH4} = \frac{n_{CH4}RT}{P^{\circ}} = \frac{143 \times 8,314 \times 298}{101325} = 3,5 \text{ m}^3$	2×0,25
7.	Il est peu probable que le combustible soit du méthane car le volume qu'occupe ce gaz à P° et 298 K (et même sur une grande plage de températures) est trop important pour être stocké « dans » le dragon, même si on imaginait le comprimer car pour atteindre un volume raisonnable, il faudrait atteindre une pression déraisonnable (environ 350 bars pour que le volume soit ramené à 10L), ou imaginer que le dragon stocke ce méthane dans un « réservoir » qui supporte de très importantes pressions. (Si on imagine liquéfier le méthane, il	0,5
	faudrait être à P = Pvs = 613 atm) En revanche, il est envisageable que le combustible soit du méthanol car le volume de liquide semble pourvoir être contenu «dans » le dragon compte tenu de ses dimensions.	0,5
II		4,75 + 0,25
1.	A 273K, les réactifs sont dans le même état qu'à 298K et on considère que les produits sont à l'état gazeux: $\Delta_r \overline{H}_{273}^0 = \Delta_r \overline{H}_{298}^0 \\ + \int_{298}^{273} \left(\overline{C_p}_T^0 (CO_{2(g)}) + 2 \times \overline{C_p}_T^0 (H_2O_{(g)}) - \overline{C_p}_T^0 (CH_3OH_{(liq)}) \right) \\ - 3/2 \times \overline{C_p}_T^0 (O_{2(g)}) \right) dT$ En considérant que les Cp sont indépendantes de la température : $\Delta_r \overline{H}_{273}^0 = \Delta_r \overline{H}_{298}^0 \\ + \left(\overline{C_p}_{298}^0 (CO_{2(g)}) + 2 \times \overline{C_p}_{298}^0 (H_2O_{(g)}) - \overline{C_p}_{298}^0 (CH_3OH_{(liq)}) \right)$	
	$-3/2 \times \overline{C_p}_{298}^0(O_{2(g)}) \times (273 - 298)$ $\Delta_r \overline{H}_{273}^0 = -638.0 + \left(37.1 + 2 \times 33.6 - 81.1 - \frac{3}{2} \times 29.7\right)$ $\times (298 - 273). 10^{-3}$	0,75
	$\Delta_r \overline{H}_{273}^0 = -637,5 \ kJ. \ mol^{-1}$ On remarque que $\Delta_r \overline{H}_{273}^0 \cong \Delta_r \overline{H}_{298}^0$ ce qui n'est pas surprenant car les deux	0,5 0,25
2.	températures sont relativement proches. $CH_{3}OH_{(g)} + 3/2 O_{2 (g)} + 6 N_{2(g)} \xrightarrow{\Delta_{r2} \overline{H}_{273}^{0}} CO_{2 (g)} + 2 H_{2}O_{(g)} + 6 N_{2(g)} \xrightarrow{\Delta_{r2} \overline{H}_{273}^{0}} CO_{2 (g)} + 2 H_{2}O_{(g)} + 6 N_{2(g)} \xrightarrow{\Delta_{r2} \overline{H}_{273}^{0}} CO_{2 (g)} + 2 H_{2}O_{(g)} + 6 N_{2(g)} \xrightarrow{A T_{flamme}}$	0,23
	Température maximale de la flamme = température adiabatique de flamme : $Q_{ext} = 0 \qquad (0,25)$ En considérant que la pression est constante : $Q_P = \Delta H \qquad (0,25)$ D'où : $\Delta_r \overline{H}_{273}^0 + \Delta H_{pdts} = Q_{ext} = 0 \qquad (0,25)$ $\Delta_r \overline{H}_{273}^0 + \int_{273}^{Tf} \left(\sum_i v_i \overline{C_p}_T^0\right) dT = 0 \qquad (0,25)$ $\Delta_r \overline{H}_{273}^0 + \int_{273}^{Tf} \left(\overline{C_p}_T^0 \left(CO_{2(g)}\right) + 2 \times \overline{C_p}_T^0 \left(H_2O_{(g)}\right) + 6 \times \overline{C_p}_T^0 \left(N_{2(g)}\right)\right) dT = 0$	0,75

En faisant l'hypothèse que les Cp sont constants sur l'intervalle de tempéra considéré :	ature
$\Delta_r \overline{H}_{273}^0 + \left(\overline{C_p}_{298}^0 (CO_{2(g)}) + 2 \times \overline{C_p}_{298}^0 (H_2O_{(g)}) + 6 \times \overline{C_p}_{298}^0 (N_{2(g)})\right) \times (T_2O_{273}) = 0$	T f
$T_f = \frac{-\Delta_{r_2} \overline{H}_{273}^0}{\overline{C_p}_{298}^0 (CO_{2(g)}) + 2 \times \overline{C_p}_{298}^0 (H_2O_{(g)}) + 6 \times \overline{C_p}_{298}^0 (N_{2(g)})} + 273) $ (0,75)	1
$T_f = \frac{637,5.10^3}{37,1 + 2 \times 33,6 + 6 \times 29,1} + 273) = 2559 K$	0,5
Hypothèse sur les Cp abusive : il faudrait prendre en compte la variation de avec la température car l'intervalle de température est important.	es Cp Bonus 0,25
3. $\left \Delta_{r2} \overline{H}_{273}^{0} + \left(\overline{C}_{p_{298}}^{0} (CO_{2(g)}) + 2 \times \overline{C}_{p_{298}}^{0} (H_{2}O_{(g)}) + 6 \times \overline{C}_{p_{298}}^{0} (N_{2(g)}) \right) \times -298 \right = Q_{pertes} $	$(T'_f \qquad 0,75$
$\begin{aligned} Q_{pertes} &= -637.5 + (37.1 + 2 \times 33.6 + 6 \times 29.1). (1000 - 273) \times 1. \\ Q_{pertes} &= 434.7 \ kJ \end{aligned}$	0,25
Partie 2	12
1	6,5
Immédiatement après remplissage, on considère que la poche à un v restant d'air Vg de 500 mL à θ_0 = 20°C et à P_0 = 1,01 bar.	
Application de la loi des GP : $PV_{g,0} = n_{air}RT$ donc $n_{air(0)} = 0.0207$ mol	0,5
$n_{O2} = 0.2 \times n_{air(0)} = 0.0041 \text{ mol}$ et $n_{N2} = 0.8 \times n_{air(0)} = 0.0166 \text{ mol}$	2 × 0,25
La masse volumique de l'éther liquide à 20°C est ρ = 0,714 g.cm ⁻³ Donc $n_{e,l}$ = (ρ * $V_{e,l}$)/ M_e = 4,82 mol	0,5
$\frac{\theta}{\theta}$ et V_g constants dans la poche et système fermé; l'augmentation de P_{to} la poche jusqu'à P_1 est donc liée à <u>l'augmentation du n_{gaz} total</u> et l' <u>apparit $n_{\acute{e},g}$ - <u>équilibre L/G pour l'éther dans la poche (notion de PVS)</u></u>	4 0 0 5
Calcul de $n_{gaztotal}$ à P_1 avec loi des GP : $n_{gtot,1} = 0,0329$ mol	0,25
Système fermé, donc $\underline{n_{air}}$ = 0,0207 mol et $\underline{n_{e,g1}}$ = $\underline{n_{gtot,1}}$ - $\underline{n_{air}}$ = 0,0122 mol	3 x 0,25
En fractions molaires :	
$x_{\text{é,g}} = n_{\text{é,g1}}/n_{\text{gtot,1}} = 0.370$; $x_{02} = 0.125$; $x_{N2} = 0.505$	3×0,25
Les pressions partielles :	
$P_{02} = x_{02} * P_1 \approx 0.20 \text{ bar}$; $P_{N2} \approx 0.81 \text{ bar}$; $P_{6,1} \approx 0.59 \text{ bar}$	3×0,25
Il peut être remarqué que la gté d'éther vaporisé représente :	
0,0122/4,82*100≈ 0,3% de la qté d'éther initialement créée sous forme L; l'hypothèse des vol. des phases L et G quasi inchangés est donc bien vérifi	,
A θ_1 la pression partielle précédemment calculée correspond à la PVS d'écette θ , donc : $\mathbf{P}^*(\theta_1) = \mathbf{P}_{6,1} \approx 0,59$ bar Même raisonnement que questions précédentes, avec calcul à P_2 via loi des $\mathbf{n}_{6,g}$ qui augmente (\mathbf{n}_{air} inchangé):	0,25
$P^*(\theta_2) = P_{6,2} \approx (n_{6,g2}RT_2)/V_g = P_2 - ((n_{air}RT_2)/V_g) \approx 1,02 \text{ bar}$	0,75

II		5.5
1	Sol liq gaz sublimation T vaporisation T	1,5 (- 0,25/erreur ou oubli, ou pentes aux point triple non cohérentes)
2	$dS = \frac{\delta Q_{rev}}{T}$; or vaporisation: transf. rév. à T et P constantes	
		0,5
		0,5 0,5
3	Question supprimée mais du fait que le contexte a été conservé, nous avons oublié de mettre à jour la numérotation dans le sujet	
4	à θ_3 = 0 °C, utilisation de la relation de Clapeyron pour déterminer : $P^*(\theta_3) \approx 0.25 \text{ bar}$	0,25
	Puis calcul n_{air} dans le nouv. système formé, en permanence à l'équilibre avec la pression atmosphérique $P_0 = 1,01$ (P_T), avec loi des GP : $\underline{n_{air,3}} \approx 12,22$ mol Or $P^*(\theta_3) = P_{e,g3} = x_{e,g3} * P_{T} = n_{e,g3} / (n_{e,g3} + n_{air,3}) * P_0$	0,25
	Donc $n_{\text{é,g3}} = n_{\text{air,3}} * (P_{\text{é,g3}} / (P_{0} - P_{\text{é,g3}}))$	1
	n _{é,g3} = 4,01 mol	0,25(AN)
	Et n _{é,I3} = n _{é,I} - n _{é,g3} = 4,82 - 4,01 = 0,81 mol	0,25
5	A θ ₃ = 0 °C, selon les calculs précédents, le % d'éther en vol. dans l'air est donc d'environ 32,8 %, ce qui correspond à de potentielles conditions d'inflammabilité si décharge électrique	0,25 0,25
Partie	3	16
1	1^{er} principe : $\Delta U = W + Q_1 + Q_2 = 0$	0,25
	$2^{\text{ème}}$ principe : $\Delta S' = -\frac{Q_1}{T_1} - \frac{Q_2}{T_2} = 0$ (fonct. rév. ou idéale).	0,25

	$=>Q_2=-Q_1\times\frac{T_{ext}}{T}$	
	$=> Q_{2} = -Q_{1} \times \frac{T_{ext}}{T_{1}}$ $D'où W = -Q_{1} - Q_{2} = Q_{1} \left(\frac{T_{ext}}{T_{1}} - 1\right)$	
	A.N.: $W = 80 \left(\frac{273}{1000} - 1 \right) = -58,2 \text{ MJ}$	0,5
	(1000)	0,5
2	$COP = \frac{-W}{Q_1} = 1 - \frac{T_{ext}}{T_1} = \frac{\Delta T}{T_1}.$	0,5 + 0,25
	$COP = \frac{58,2}{80}$ ou $COP = \frac{1000 - 273}{1000} = 0,727$	0,5
3	Pour satisfaire $P_{moteur} = 400.10^3$ W, il faut apporter au niveau de la source	
	chaude: $\dot{Q}_1 = \frac{\dot{W}_{\text{moteur}}}{\text{COP}} = \frac{400.10^3}{0,727} = 0,55.10^6 \text{ W}$	1
	Or la puissance d'un dragon est : $P_{dragon} = \frac{ Q_{sc} }{t} = \frac{80.10^6}{30 \times 60} = 44,4.10^3 \text{ W}$	0,5
	Soit: $n_{dragon} = \frac{P_{moteur}}{P_{dragon}} = \frac{0.55.10^6}{44,4.10^3} = 12,4 \text{ dragons}$	
	Rmq : résultat accepté si les étudiants arrondissent à 12 ou 13 indifféremment (ce serait sympa de ne pas « couper » un dragon)	0,5
4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,75 (choix) 1,25 pour signes (- 0,25 par erreur) 0,5 pour X
5	$W_{cycle} = W_{BA} + W_{AD} + W_{DC} + W_{CB}$ $W_{cycle} = 0 + \int_{A}^{D} -P_{ext} \cdot dV + 0 + \int_{C}^{B} -P_{ext} \cdot dV$	0,5
	Les transformations AD et CB sont réversibles ($P_{ext}=P$), isotherme (T_1 pour AD et T_2 pour CB) et l'air est un GP =>	0,25

		T
	$W_{cycle} = \int_{V_A}^{V_D} -\frac{nRT_1}{V}.dV + \int_{V_C}^{V_B} -\frac{nRT_2}{V}.dV$	0,25
	$W_{cycle} = -nRT_{1} \ln \left(\frac{V_{D}}{V_{A}} \right) - nRT_{2} \ln \left(\frac{V_{B}}{V_{C}} \right)$	0,5
	or $V_B = V_A$ et $V_D = V_C$	
	Soit: $W_{cycle} = nR(T_2 - T_1)In\left(\frac{V_C}{V_A}\right)$	0,5
	Comme $V_C > V_A$, $In\left(\frac{V_C}{V_A}\right) > 0$ et $\left(T_2 - T_1\right) < 0$, on obtient bien $W_{cycle} < 0$, ce qui est	0,5
	normal pour un moteur !	0,5
6	On sait que pour un cycle, la variation de toute fonction d'état est nulle. Or U est une fonction d'état, donc : $\Delta U_{cycle} = 0$	0,5
	Par ailleurs, le premier principe permet d'écrire : $\Delta U_{cycle} = W_{cycle} + Q_{cycle}$	0,5
	Donc $Q_{cycle} = -W_{cycle} = -nR(T_2 - T_1)In\left(\frac{V_c}{V_A}\right)$	0,5
	Si toutefois certains étudiants passent par le calcul direct de Q _{cycle} , compter	
	juste. (même nombre de points)	
	$Q_{cycle} = Q_{BA} + Q_{AD} + Q_{DC} + Q_{CB}$ On sait que $\delta Q_{rev} = n\overline{C}_v dT + \ell dV$	
	L'air étant un gaz parfait, $\ell = P$	
	De plus $\overline{C_v}$ ne dépend pas de la température	
	Ainsi :	
	$Q_{cycle} = \int_{B}^{A} n\overline{C}_{v} dT + \int_{A}^{D} P.dV + \int_{D}^{C} n\overline{C}_{v} dT + \int_{C}^{B} P.dV$	
	$Q_{cycle} = n\overline{C}_v \left(T_A - T_B \right) + \int_{V_A}^{V_D} \frac{nRT_1}{V} . dV + n\overline{C}_v \left(T_C - T_D \right) + \int_{V_C}^{V_B} \frac{nRT_2}{V} . dV$	
	Les transformations AD et CB sont réversibles ($P_{ext}=P$), isotherme (T_1 pour AD et T_2 pour CB) et l'air est un GP =>	
	$Q_{cycle} = \int_{V_A}^{V_D} \frac{nRT_1}{V} . dV + \int_{V_C}^{V_D} \frac{nRT_2}{V} . dV$	
	$Q_{cycle} = nRT_1 ln \left(\frac{V_D}{V_A} \right) + nRT_2 ln \left(\frac{V_B}{V_C} \right)$	
	or $V_B = V_A$ et $V_D = V_C$	
	Soit: $Q_{cycle} = nR(T_1 - T_2)In\left(\frac{V_c}{V_A}\right) = -nR(T_2 - T_1)In\left(\frac{V_c}{V_A}\right)$	
7	De la chaleur est reçue par le fluide (système) au cours des transformations BA et	
	AD.	

	_\W	
	Ainsi: $COP = \frac{-W_{cycle}}{Q_{BA} + Q_{AD}}$	0,5
	(V)	
	$nR(T_1 - T_2) ln \left(\frac{v_c}{V_c} \right)$	
	$COP = \frac{V_A}{V_C}$	0,5
	$COP = \frac{nR(T_1 - T_2)In\left(\frac{V_C}{V_A}\right)}{n\overline{C}_V(T_A - T_B) + nRT_AIn\left(\frac{V_D}{V_A}\right)}$,
	Or $T_A = T_1$, $T_B = T_2$ et $V_D = V_C$. Ainsi:	0,25
	$COP = \frac{nR(T_1 - T_2)ln(\frac{V_C}{V_A})}{\frac{nR}{\gamma - 1}(T_1 - T_2) + nRT_1ln(\frac{V_C}{V_A})}$	0,20
	$COP = \frac{nR}{nR} (T - T) + nRT \ln \left(\frac{V_c}{V_c}\right)$	
	$\frac{1}{\gamma-1} \left(\frac{1}{1} - \frac{1}{2} \right) + \frac{1}{1} \left(\frac{1}{V_A} \right)$	0,5
	$\frac{COP}{T_1 - T_2}$	
	D'où $\ln\left(\frac{V_c}{V}\right) = \frac{\frac{COP}{\gamma - 1}(T_1 - T_2)}{T_1 - T_2 - T_1 COP}$	
	$\left(V_{A} \right) I_{1} - I_{2} - I_{1}COP$	0,5
8.a.	On change la transformation CB.	0,5
8.b.	Puisque la transformation CX est adiabatique et réversible, on satisfait :	
	$T_{c}V_{c}^{\gamma-1} = T_{x}V_{x}^{\gamma-1}$	0,5
	Par ailleurs, le rapport de compression étant inchangé, on sait que $V_X = V_A$ et on	
	sait que $T_C = T_2$	0,25
	V_{c}	
	Donc $T_X = T_2 \left(\frac{V_C}{V_A} \right)^{\gamma - 1} = 273 \times 8^{0.4} = 627 \text{ K}$	0,5
	cf. diagramme	0,25 (AN)
8.c.	Le changement proposé n'est pas intéressant, le travail obtenu est plus faible.	0,5
	En effet, la surface du cycle avec une adiabatique (CXADC) est plus petite que la	
	surface du cycle initial (CBADC).	