L2 - Techniques mathématiques EEA - HAE304X

Feuille de TD no 3

Equations différentielles linéaires d'ordre 1

Exercice 1

Résoudre les équations différentielles :

1.
$$y'(x) + 3y(x) = 5$$
, avec $y(0) = 1$.

2.
$$y'(x) - (1+x)y(x) = -2x - x^2$$
, avec $y(0) = 2$.

3.
$$y'(x) - 2y(x) = e^{2x}x^2$$
, avec $y(0) = 0$.

4.
$$(1+x^2)y'(x) + 2xy(x) = 3x^2 + 1$$
, avec $y(0) = 3$.

5.
$$(1+x)y'(x) - y(x) = 2x^2(1+x)$$
, avec $y(0) = -3$; et ceci pour $x > 0$.

6.
$$y'(x) + y(x) = 2\sin x$$
.

7.
$$y'(x) + 3y(x) = e^{-3x} \cos x$$
.

Exercice 2

Une application

La vitesse de déplacement des ions entre deux électrodes immergées dans un électrolyte vérifie

$$\frac{dv}{dt} + \frac{R}{m}v = \frac{F}{m} \; ,$$

équation différentielle où m, F, R sont des constantes. Calculer v en fonction de t.

Equations différentielles d'ordre 2 à coefficients constants

Exercice 3

Résoudre les équations différentielles :

1.
$$y'' - 3y' + y = x$$

2.
$$y'' - 6y' - 7y = -7x^2 - 5x + 1$$

3.
$$y'' - 2y' + y = 0$$
, avec $y(0) = 1$ et $y'(0) = 0$.

4.
$$y'' + y' - y = xe^x$$
 Indication: on cherchera y_0 sous la forme $y_0(x) = (ax + b)e^x$

5.
$$y'' - 2y' + 5y = 10\cos x$$
 Ind.: on cherchera y_0 sous la forme $y_0(x) = a\cos x + b\sin x$

6.
$$y'' - 3y' + 2y = e^x \sin x$$
 Ind.: on cherchera y_0 de la forme $y_0(x) = e^x (a \cos x + b \sin x)$

Equations différentielles à variables séparables

Exercice 4

- a. Montrer que l'équation $(E): 2y' + e^{y-x} = 0$ est une équation à variables séparables.
- b. La résoudre, et trouver la solution qui vérifie y(0) = 1.

Exercice 5

Une application

La variation de la pression en fonction de l'altitude vérifie l'équation différentielle $\frac{dp}{dh} = -\frac{gM}{RT} p$ où p est la pression, h l'altitude, M le poids moléculaire de l'air, g la constante de gravité, R la constante des gaz parfaits et T la température. Sachant que pour h = 0, $p = p_0$, exprimer la pression en fonction de l'altitude et de la température (supposée constante).

Exercice 6

Une application

Le refroidissement d'un corps dans un courant d'air est proportionnel à la différence de température entre le corps (T) et l'air $(\theta): T'(t) = -\lambda(T(t) - \theta)$. Si $\theta = 30^{\circ}C$ et si T passe de 100 à $70^{\circ}C$ en 15 mn, au bout de combien de temps T vaudra-t-elle $40^{\circ}C$?