

2923-552.ST25 SEQUENCE LISTING

<110>	Bolhuis, Reinier Woehl, Thorsten Boettger, Volker	
<120>	Method of Producing Recombinant Antibodies	
<130>	2923-552	
<140> <141>	10/635,908 2003-08-07	
<160>	29	
<170>	PatentIn version 3.3	
<210> <211> <212> <213>		
<220> <223>	Synthetic Construct	
<400> gcatgc	1 gcgc ggccgcggag gcc	23
<210> <211> <212> <213>	35	
<220> <223>	Synthetic Construct	
<400> gcatgc	2 gcgc ggccgcggag gcccccccc cccc	35
<210> <211> <212> <213>	3 48 DNA Artificial	
<220> <223>	Synthetic Construct	
<400> ctctaa	3 gctt ggctcaaaca cagcgacctc ggatacagtt ggtgcagc	48
<210> <211> <212> <213>		
<220> <223>	Synthetic Construct	
<400> ctcttc	4 taga gagtctctca gctggtagga tacagttggt gcagc	45

<210> 5 <211> 357 <212> DNA <213> Mouse												
<400> 5 gacgtgaagc tcgtggagtc tgggggaggc ttagtgaagc ttggagggtc cctgaaactc												
tcctgtgcag cctctggatt cactttcagt aactattaca tgtcttgggt tcgccagact												
ccagagaaga ggctggagtt ggtcgcagcc attaatagtg atggtggtat cacctactat												
ctagacactg tgaagggccg attcaccatt tcaagagaca atgccaagaa caccctgtac												
ctgcaaatga gcagtctgaa gtctgaggac acagccttgt tttactgtgc aagacaccgc												
tcgggctact tttctatgga ctactggggt caaggaacct cagtcaccgt ctcctca												
<210> 6 <211> 119 <212> PRT <213> Mouse												
<400> 6												
Asp Val Lys Leu Val Glu Ser Gly Gly Gly Leu Val Lys Leu Gly Gly 1 10 15												
Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr 20 25 30												
Tyr Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu Glu Leu Val 35 40 45												
Ala Ala Ile Asn Ser Asp Gly Gly Ile Thr Tyr Tyr Leu Asp Thr Val 50 55 60												
Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr 65 75 80												
Leu Gln Met Ser Ser Leu Lys Ser Glu Asp Thr Ala Leu Phe Tyr Cys 85 90 95												
Ala Arg His Arg Ser Gly Tyr Phe Ser Met Asp Tyr Trp Gly Gln Gly 100 105 110												
Thr Ser Val Thr Val Ser Ser 115												
<210> 7 <211> 321 <212> DNA												

<213> Mouse

<400> 7						
	a tgacccagtc	tcaaagattc	atgtccacaa	cagtaggaga	cagggtcagc	60
atcacctgc	a aggccagtca	gaatgtggtt	tctgctgttg	cctggtatca	acagaaacca	120
ggacaatct	c ctaaactact	gatttactca	gcatccaatc	ggtacactgg	agtccctgat	180
cgcttcaca	g gcagtggatc	tgggacagat	ttcactctca	ccattagcaa	tatgcagtct	240
gaagacctg	g ctgattttt	ctgtcaacaa	tatagcaact	atccgtggac	gttcggtgga	300
ggcaccaag	c tggaaatcaa	a				321

<210> 8

<211> 107

<212> PRT

<213> Mouse

<400> 8

Asp Ile Val Met Thr Gln Ser Gln Arg Phe Met Ser Thr Thr Val Gly
1 10 15

Asp Arg Val Ser Ile Thr Cys Lys Ala Ser Gln Asn Val Val Ser Ala 20 25 30

Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile 35 40 45

Tyr Ser Ala Ser Asn Arg Tyr Thr Gly Val Pro Asp Arg Phe Thr Gly 50 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Asn Met Gln Ser 65 70 75 80

Glu Asp Leu Ala Asp Phe Phe Cys Gln Gln Tyr Ser Asn Tyr Pro Trp 85 90 95

Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys 100 105

<210> 9

<211> 2431

<212> DNA

<213> Mouse

<400> 9

tcatgacatt aacctataaa aataggcgta tcacgaggcc ctttcgtctt caagaattct 60
tcagatacaa agaatctcta aaccctgagg acattctatc acaaataagt aaaattcaga 120
aaattctgaa tgctcccatc acagagatga atctgctatg aacagctcat aggtgtgaag 180

		2923-552			
ctctacaaaa gccatattat					240
tcatatcctg aaatacagtt	atgtgtggtt	ctatctaatt	acacatttac	actaaggaaa	300
catggcagta tgggaatgaa	gcttgttctg	tacacattaa	cagagggaaa	ctaaacaaag	360
tatggtgaat ccctaaccaa	aagtaaaaaa	aaaaaaaaa	aagaaaagaa	aagaaaaaaa	420
aagtgaaact acaatatgtt	tcaaatgctg	taactgaaat	ctggtttttt	gatgccttat	480
atctgttatc atcagtgact	tcagatttag	tccaactcca	gagcatggta	tagcaggaag	540
acatgcaaat aggtcttctc	tgtgcccatg	aaaaacacct	cggccctgac	cctgcagctc	600
tgacagagga ggcctgtcct	ggattcgatt	cccagttcct	cacattcagt	gatcagcact	660
gaacacagac ccctcaccat	gaacttcggg	ctcagattga	ttttccttgt	cctggtttta	720
aaaggtatct tattgagtat	agaggacatc	tgctgtatgc	acagaggtgc	agaaaaaatg	780
ttgtttgttt tttttagtga	caatgctcca	aacagtattc	tttctttgca	ggtgtcctgt	840
gtgacgtgaa gctcgtggag	tctgggggag	gcttagtgaa	gcttggaggg	tccctgaaac	900
tctcctgtgc agcctctgga	ttcactttca	gtaactatta	catgtcttgg	gttcgccaga	960
ctccagagaa gaggctggag	ttggtcgcag	ccattaatag	tgatggtggt	atcacctact	1020
atctagacac tgtgaagggc	cgattcacca	tttcaagaga	caatgccaag	aacaccctgt	1080
acctgcaaat gagcagtctg	aagtctgagg	acacagcctt	gttttactgt	gcaagacacc	1140
gctcgggcta cttttctatg	gactactggg	gtcaaggaac	ctcagtcacc	gtctcctcag	1200
gtaagaatgg cctctccagg	tcttttttt	aatctttgta	atggagtttt	ctgaacattg	1260
cagactaatc ttggatattt	gtccctgagg	tagccggctg	agagaaattg	ggaattaaac	1320
tgtctcggga tctcagagco	tttaggacag	attatctcca	catctttgaa	aaactgagat	1380
tctgtgtgat ggtgttggtg	gagtccctgg	atgatgggat	agggactttg	gaggctcatt	1440
tgagggagat gctaaaacaa	tcctatggct	ggagggagag	ttggggctgt	agttggagat	1500
tttcagtttt tagaataaaa	gctttagctg	cgggaaatcc	ttcaggacca	cctctgtgac	1560
agcatttata cagtatccga	tgcataggga	caaagagtgg	agtggggcac	tttctttcga	1620
tttgtgggga atgttccaca	ctagtttctg	tgaaacctca	tttgttggag	ggagagctgt	1680
cttagtgcct gagtcaaggg	agaagggcat	ctagcctcgg	tctcaaaagg	gtagttgctg	1740
tccagagagg tctggtggag	cctgcaaaag	tccagctttc	aaaggaacac	agaagtatgt	1800
gtatggaata atagaagatg	ttgcttttac	tcttaagttg	gttcatagga	aaaatagtta	1860
aaactgtgag tttaaaatgt	gagagggttt	tcaagtactc	attttttac	atgtccaaaa	1920
tttctgtcaa tcaatttgag					1980
gaggaatggg agtgaggctd	tctcataccc	tattcagaac	tgacttttaa	caataataaa	2040
ttaagtttaa aatattttta			gttggagtca		2100

tcagaaccag aacacctgca	gcagctggca	ggaagcaggt	catgtggcaa	ggctatttgg	2160
ggaagggaaa ataaaaccac	taggtaaact	tgtagctgtg	gtttgaagaa	gtggttttga	2220
aacactctgt ccagccccac	caaaccgaaa	gtccaggctg	agcaaaacac	cacctgggta	2280
atttgcattt ctaaaataag	ttgaggattc	agccgaaact	ggagaggtcc	tcttttaact	2340
tattgagttc aaccttttaa	ttttagcttg	agtagttcta	gtttccccaa	acttaagttt	2400
atcgacttct aaaatgtatt	tagaattcat	t			2431
<210> 10 <211> 5557 <212> DNA <213> Mouse					
<400> 10 aattccaagc tttgtatctt	cagatccagg	aaagccacca	ccaatatcaa	acagatacat	60
gctgaaacca acttctgttc	ttatgtcaaa	tgcacagcgg	gcatctgaca	ctgcctgcat	120
gaaggtctca ggtcaatact	tccactacac	acatggaagc	tgacaccaat	gacgtcaata	180
tttagctctt ttgcccattt	caggaggaga	ctgctggttt	tgagtgtggc	accagactta	240
acaccaagtc gacaaactgc	tttggaatca	tctgtgacaa	tccacaaaaa	caactttgtc	300
ttacaatgtg ctctgacgac	attcatcaat	tcatttcact	gtcaaaagtc	atcatctgga	360
ctccattact ggcagcatac	ttgatttgag	acacttgttt	acaaaaatgt	gcataggtaa	420
tcctctctgg aggaaccaga	agcccccgtt	ccaactgtat	ttcagtcttg	cttgcacagt	480
caaatcctgt accaatagca	gctagggtgt	taactatggc	tctgttgtcc	ttacacttga	540
ctgcacaaaa aggaataaca	ttcggaagag	cttttagcca	cctcagatgc	ttctttagaa	600
tgtctctgag gtccggaacc	tagaaagaag	agacttcatt	tattattttg	tgttcagaat	660
gtccttagca ctaaagccac	catctatgat	acagcagtca	aactcttcct	tagtatagct	720
gctcatcgtt ctccatgtgc	ctacagaaaa	cctagacatg	gaattaaatt	attgccagcc	780
ccttacaagg tcaacttatc	caagaactgt	gaatgcagac	tccttgaaat	gttggaaaca	840
ctcacagcac agggtcaaga	ctggctggac	acatggagac	actgaatcct	gaagagcact	900
tagctgtctg ttgcttcatc	atgtctactg	acctgaggtg	gcaccaagct	gcttactgag	960
ggaggactgt ggcggtgtct	gcaggaactg	acaattctcc	acaattctct	tactgcccca	1020
ctcataactc ttctcttctc	catcttcttc	tttctttcct	ctccctcct	ttttcccttt	1080
cactactttt ttcctttctt	cttttccact	tcccttttct	ttcttctttt	gctgttgctg	1140
ttgtaaagga tttattgttt	cctcgtgatt	gaaccaaagg	tagttgtact	attatttctg	1200
taaaactcat ctgttgattt	tctattaatt	aattaatttt	gtttacactc	catattttat	1260
tcaacccctc catcctccta	ctggtctaca	taccatacct Page	ccttcccaca 5	cccctgtctc	1320

cacatggatg ctgc	ccacctc ccatgccac	tgacctctca	tctccctagg	gcatctagtc	1380
tcttgaggct taga	atgcatc atttctgag	gaacacagat	ccaacaatcc	tctgctatat	1440
gtgtgttggt ggcc	ctcatag cagctggtg	atgctgcctg	tttgttgatc	cagtgtttga	1500
gaggtctcgc gggt	ttcagat taattgaga	tgttggacct	cctcagcgtc	tttcagtctt	1560
tccctgattc aaca	aacaggg ttcattgtt	ctgttcattg	gttgggtgca	aatatctgca	1620
tctgactcag ctgc	cttattg ggtcttctg	g agtgcagtca	tgctaggtcc	gtttctatga	1680
gtgctccata gcct	tcagtga tagtgtcag	g cgttgggact	gccccttgac	ctggattcta	1740
ttttggacct gtcg	gctggac cttctttc	tcaggctccc	ctccatctgt	atccctgtaa	1800
ttctttcaga cagg	gaacaaa tatgggtca	g agttgtgagt	gtggaatggc	accccttcc	1860
ctcatttaat gccc	ctgtctt cctggtgga	a gtgggctcta	taagttccca	ctccctactg	1920
ttgggcattt catc	ccctttg agtcctgag	a gtctctcacc	tcccaggtct	ctggtgcatt	1980
ctggagggtc ctcc	ccaacct cctacctcc	caggttgcct	gttgacagac	ttctgctggc	2040
ccccagtgct tcag	gtccttt tccctcacc	aatatctgat	ttggatggaa	gcctgtcatg	2100
agaacatcta tata	acttgtg gtttcagag	tttaaattgg	tccttgagct	tctattttga	2160
gttcctttcc agtg	gattact tgctgtctt	t ggtagtactt	ttgactgttt	atttaacctg	2220
gatactctca taca	agctgtg taatttact	t ccttatttga	tgactgcttt	gcatagatcc	2280
ctagaggcca gccc	cagctgc ccatgattt	a taaaccaggt	ctttgcagtg	agatctgaaa	2340
tacatcagaa cago	catgggc ttcaagatg	g agtttcatac	tcaggtcttt	gtattcgtgt	2400
ttctctggtt gtct	tggtgag aattttaaa	a gtattataac	atctcaaaag	taatttattt	2460
aaatagcttt tcct	tatagga agccaatat	t aggcagacaa	tgccattaga	taagacattt	2520
tggattctaa catt	ttgtgtc aaaaatctt	t gtatatataa	gtgtttactc	attatctatt	2580
tctgattgca ggtg	gttgatg gagacattg	t gatgacccag	tctcaaagat	tcatgtccac	2640
aacagtagga gaca	agggtca gcatcacct	g caaggccagt	cagaatgtgg	tttctgctgt	2700
tgcctggtat caac	cagaaac caggacaat	tcctaaacta	ctgatttact	cagcatccaa	2760
tcggtacact ggag	gtccctg atcgcttca	c aggcagtgga	tctgggacag	atttcactct	2820
caccattagc aata	atgcagt ctgaagacc	t ggctgatttt	ttctgtcaac	aatatagcaa	2880
ctatccgtgg acgt	ttcggtg gaggcacca	a gctggaaatc	aaacgtaaat	agaatccaaa	2940
ctctctttct tccg	gttgtct atgtctgtg	cttctatgtc	taaaaatgat	gtagatattt	3000
tttctctgag acca	agattct gtcactctc	c aaggcaaaga	tacatagtca	ctccgtaagc	3060
agagctggga atag	ggctaga catgttctc	t ggagaatgaa	tgccagtgta	ataattaaca	3120
caagtgatag ttto	cagaaat gctcaaaga	a gcagggtagc	ctgccctaga	caaaccttta	3180

		2923-552	.ST25		
cttggtgctc agaccatgct	cagtttttgt			caccagtgtg	3240
tgtatacgtt cggagggggg	accaagctgg	aaataaaacg	taagttgtct	tctcaactct	3300
tgttcactga gtctaacctt	gttactttgt	tctttgttgt	gtgtttttct	taaggagatt	3360
tcagggatgt atcaaattcc	attctcagat	caggtgttaa	ggagggaaaa	cttgtcccac	3420
aagaggttgg aatgattttc	aggctaaatt	ttaggcttct	aaaccaaagt	cattaaacta	3480
ggggaagagg gataattgtc	tgcctaggga	gggttttgtg	gaagtacagt	taaagtagat	3540
cactgtaaac cacattcaga	gatgggacca	gactggaaat	aaaacctaag	aacatttttg	3600
ctcaactgct tgtgaagttt	tggtcccatt	gtgtcctttg	tgtgagtttg	tggtgttcat	3660
tagataaatg aactattcct	tgtaacccaa	aacttaaata	gacgagaacc	aaaaatctag	3720
ctactgtata agttgagcaa	acagactgac	ctcatgtcag	atttgtggga	gaaatgagaa	3780
aggaacagtt tttctctgaa	cttggcctat	ctaactggat	cagcctcagg	caggtttttg	3840
taaagggggg cacagtgata	tgaatcactg	tgattcacgt	tcggctcggg	gacaaagttg	3900
gaaataaaac gtaagtagat	ttttgctcat	ttacttgtga	cgttttggtt	ctgtttgggt	3960
aactcgtgtg aatttgtgac	attttggcta	aatgagccat	tcctggcaac	ctgtgcatca	4020
atagaagatc ccccagaaaa	gagtcagtgt	gaaagctgag	cgaaaaactc	gtcttaggct	4080
tctgagacca gttttgtaag	gggaatgtag	aagaaagagc	tgggcttttc	ctctgaattt	4140
ggcccatcta gttggactgg	cttcacaggc	aggtttttgt	agagagggc	atgtcatagt	4200
cctcactgtg gctcacgttc	ggtgctggga	ccaagctgga	gctgaaacgt	aagtacactt	4260
ttctcatctt tttttatgtg	taagacacag	gttttcatgt	taggagttaa	agtcagttca	4320
gaaaatcttg agaaaatgga	gagggctcat	tatcagttga	cgtggcatac	agtgtcagat	4380
tttctgttta tcaagctagt	gagattaggg	gcaaaaagag	gctttagttg	agaggaaagt	4440
aattaatact atggtcacca	tccaagagat	tggaccggag	aataagcatg	agtagttatt	4500
gagatctggg tctgactgca	ggtagcgtgg	tcttctagac	gtttaagtgg	gagatttggg	4560
ggggatgagg aatgaaggaa	cttcaggata	gaaaaggtct	gaagtcaagt	tcagctccta	4620
aaatggatgt gggagcaaac	tttgaagata	aactgaatga	cccagaggat	gaaacagtgc	4680
agatcaaaga ggggcctgga	gctctgagaa	cagaaggaga	gtcattcgtg	ttgagtttcc	4740
acaaatactg tcttgagttt	tgcaataaaa	gtgggatagc	agagttgagt	gagccatagg	4800
ctgagttctc tcttttgtct	cctaagtttt	tatgactaca	aaaatcagta	gtatgtcctg	4860
aaataatcat taaactgttt	gaaagtatga	ctgcttgcca	tgtagatacc	atggcttgct	4920
gaataatcag aagaggtgtg	actcttattc	taaaatttgt	cacaaaatgt	caaaatgaga	4980
gactctgtag gaacgagtcc	ttgacagaca	gctcaagggg	ttttttcct	ttgtctcatt	5040
tctacatgaa agtaaatttg	aaatgatctt	ttttattata Page	atagtagaaa 7	tacagttggg	5100

tttgaactat atgttttaat ggccacggtt ttgtaagaca tttggccctt tgttttccca	5160
gttattactc gcttgtaatt ttatatcgcc agcaatggac tgaaacggtc cgcaacctct	5220
tctttacaac tgggtgacct cgcggctgtg ccagccattt ggcgttcacc ttgccgctaa	5280
gggccgtgtg aacccccgag gtagcatccc ttgctccgcg tggaccactt tcctgaggca	5340
cagtgatagg aacagagcca ctaatctgaa gagaacagag atgtgacaga ctacactaat	5400
gttagaaaaa caaggaaagg gtgacttatt ggagatttca gaaataaaat gcatttatta	5460
ttatattccc ttattttaat tttctattag ggaattagaa agggcataaa ctgctttatc	5520
cagtgttata ttaaaagctt ttttttttt agtgcta	5557
<210> 11 <211> 19 <212> DNA <213> Artificial	
<220> <223> Synthetic Construct	
<400> 11 gaggttcctt gaccccagt	19
<210> 12 <211> 19 <212> DNA <213> Artificial	
<220> <223> Synthetic Construct	
<400> 12 cgattcccag ttcctcaca	19
<210> 13 <211> 20 <212> DNA <213> Artificial	
<220> <223> Synthetic Construct	
<400> 13 aacgtccacg gatagttgct	20
<210> 14 <211> 19 <212> DNA <213> Artificial	
<220> <223> Synthetic Construct	
<400> 14	

<210> 15

<211> 214 <212> PRT

<213> Mouse

<400> 15

Asp Ile Val Met Thr Gln Ser Gln Arg Phe Met Ser Thr Thr Val Gly
1 10 15

Asp Arg Val Ser Ile Thr Cys Lys Ala Ser Gln Asn Val Val Ser Ala 20 25 30

Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile 35 40 45

Tyr Ser Ala Ser Asn Arg Tyr Thr Gly Val Pro Asp Arg Phe Thr Gly 50 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Asn Met Gln Ser 65 70 75 80

Glu Asp Leu Ala Asp Phe Phe Cys Gln Gln Tyr Ser Asn Tyr Pro Trp 85 90 95

Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Thr Val Ala Ala 100 105 110

Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125

Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140

Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160

Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175

Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190

Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205

Phe Asn Arg Gly Glu Cys

<210> 16

<211> 449

<212> PRT <213> Mouse

<400> 16

Asp Val Lys Leu Val Glu Ser Gly Gly Gly Leu Val Lys Leu Gly Gly 1 5 10 15

Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr 20 25 30

Tyr Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu Glu Leu Val 35 40 45

Ala Ala Ile Asn Ser Asp Gly Gly Ile Thr Tyr Tyr Leu Asp Thr Val

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr 65 70 75 80

Leu Gln Met Ser Ser Leu Lys Ser Glu Asp Thr Ala Leu Phe Tyr Cys 85 90 95

Ala Arg His Arg Ser Gly Tyr Phe Ser Met Asp Tyr Trp Gly Gln Gly 100 105 110

Thr Ser Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe 115 120 125

Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu 130 135 140

Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp 145 150 155 160

Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu 165 170 175

Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser 180 185 190

Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro 195 200 205

Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys Page 10

Lys

Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro 225 230 235 240 Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser 245 250 255 Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp 260 265 270 Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn 275 280 285 Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val 290 295 300 val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu 310 Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys 325 330 335 Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr 340 345 350 Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr 355 360 365 Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu 370 380 Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly 440

Page 11

<210> 17 <211> 214

<212> PRT <213> Mouse

<400> 17

Asp Ile Val Met Thr Gln Ser Gln Arg Phe Met Ser Thr Thr Val Gly
1 10 15

Asp Arg Val Ser Ile Thr Cys Lys Ala Ser Gln Asn Val Val Ser Ala 20 25 30

Val Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ser Pro Lys Leu Leu Ile 35 40 45

Tyr Ser Ala Ser Asn Arg Tyr Thr Gly Val Pro Asp Arg Phe Thr Gly 50 60

Ser Gly Ser Gly Thr Asp Phe Thr Leu Thr Ile Ser Asn Met Gln Ser 65 70 75 80

Glu Asp Leu Ala Asp Phe Phe Cys Gln Gln Tyr Ser Asn Tyr Pro Trp 85 90 95

Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys Arg Thr Val Ala Ala 100 105 110

Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125

Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140

Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160

Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175

Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190

Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205

Phe Asn Arg Gly Glu Cys 210 <210> 18 <211> 449 <212> PRT

<213> Mouse

<400> 18

Asp Val Lys Leu Val Glu Ser Gly Gly Gly Leu Val Lys Leu Gly Gly
1 10 15

Ser Leu Lys Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Asn Tyr 20 25 30

Tyr Met Ser Trp Val Arg Gln Thr Pro Glu Lys Arg Leu Glu Leu Val 35 40 45

Ala Ala Ile Asn Ser Asp Gly Gly Ile Thr Tyr Tyr Leu Asp Thr Val 50 60

Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Thr Leu Tyr 65 70 75 80

Leu Gln Met Ser Ser Leu Lys Ser Glu Asp Thr Ala Leu Phe Tyr Cys 85 90 95

Ala Arg His Arg Ser Gly Tyr Phe Ser Met Asp Tyr Trp Gly Gln Gly 100 105 110

Thr Ser Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe 115 120 125

Pro Leu Ala Pro Ser Ser Lys Ser Thr Ser Gly Gly Thr Ala Ala Leu 130 135 140

Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp 145 150 155 160

Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu 165 170 175

Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser 180 185 190

Ser Ser Leu Gly Thr Gln Thr Tyr Ile Cys Asn Val Asn His Lys Pro 195 200 205

Ser Asn Thr Lys Val Asp Lys Lys Val Glu Pro Lys Ser Cys Asp Lys 210 215 220

Thr 225	нis	Thr	Cys	Pro	Pro 230	Cys	Pro	Аlа	2923 Pro	-552 Glu 235	.ST2 Leu	5. Leu	Gly	Gly	Pro 240
Ser	val	Phe	Leu	Phe 245	Pro	Pro	Lys	Pro	Lys 250	Asp	Thr	Leu	Met	11e 255	Ser
Arg	Thr	Pro	G]u 260	val	Thr	Cys	٧a٦	va1 265	٧a٦	Asp	∨al	Ser	ніs 270	Glu	Asp
Pro	Glu	Val 275	Lys	Phe	Asn	Trp	Tyr 280	val	Asp	Gly	val	Glu 285	val	His	Asn
Ala	Lys 290	Thr	Lys	Pro	Arg	G]u 295	Glu	Gln	Туг	Asn	Ser 300	Thr	Туг	Arg	val
va1 305	Ser	val	Leu	Thr	val 310	Leu	His	Gln	Asp	Trp 315	Leu	Asn	Gly	Lys	Glu 320
Туг	Lys	Cys	Lys	Va1 325	Ser	Asn	Lys	Ala	Leu 330	Pro	Ala	Pro	Ile	Glu 335	Lys
Thr	Ile	Ser	Lys 340	Ala	Lys	Gly	Gln	Pro 345	Arg	Glu	Pro	Gln	va1 350	Tyr	Thr
Leu	Pro	Pro 355	Ser	Arg	Asp	Glu	Leu 360	Thr	Lys	Asn	Gln	va1 365	Ser	Leu	Thr
Cys	Leu 370	val	Lys	Gly	Phe	Tyr 375	Pro	Ser	Asp	Ile	Ala 380	val	Glu	Trp	Glu
Ser 385	Asn	Gly	Gln	Pro	G]u 390	Asn	Asn	Туг	Lys	Thr 395	Thr	Pro	Pro	٧a٦	Leu 400
Asp	Ser	Asp	Gly	Ser 405	Phe	Phe	Leu	туг	ser 410	Lys	Leu	Thr	val	Asp 415	Lys
Ser	Arg	Trp	Gln 420	Gln	Gly	Asn	val	Phe 425	Ser	Cys	Ser	val	Met 430	His	Glu
Ala	Leu	ніs 435	Asn	His	Tyr	Thr	G]n 440	Lys	Ser	Leu	Ser	Leu 445	Ser	Pro	Gly
Lve															

Lys

<210> 19 <211> 5 <212> PRT

```
<213> Artificial
<220>
<223> Synthetic Construct
<220>
<221> CARBOHYD <222> (5)..(5)
<400> 19
Glu Glu Gln Tyr Asn
<210> 20
<211> 5
<212> PRT
<213> Artificial
<220>
<223> Synthetic Construct
<220>
<221> MOD_RES
<222> (5)..(5)
<223> AMIDATION
<400> 20
Val Ser Ile Thr Cys
<210> 21
<211> 5
<212> PRT
<213> Artificial
<220>
<223> Synthetic Construct
<400> 21
Leu Ile Val Ser Leu
<210> 22
<211> 10
<212> PRT
<213> Artificial
<220>
<223> Synthetic Construct
<400> 22
Ser Gly Thr Ala Ser Val Val Cys Leu Leu
```

```
<210> 23
<211> 5
<212> PRT
<213> Artificial
<220>
<223> Synthetic Construct
<400> 23
Thr Lys Pro Arg Glu
<210> 24
<211> 5
<212> PRT
<213> Mouse
<400> 24
Asn Tyr Tyr Met Ser
<210> 25
<211> 17
<212> PRT
<213> Mouse
<400> 25
Ala Ile Asn Ser Asp Gly Gly Ile Thr Tyr Tyr Leu Asp Thr Val Lys \frac{1}{5} 10 15
Gly
<210> 26
<211> 8
<212> PRT
<213> Mouse
<400> 26
Ser Gly Tyr Phe Ser Met Asp Tyr 5
<210> 27
<211> 11
<212> PRT
<213> Mouse
<400> 27
Lys Ala Ser Gln Asn Val Val Ser Ala Val Ala
1 5 10
```