Zusammenfassung Logik für Informatiker

© M Tim Baumann, http://timbaumann.info/uni-spicker

Prädikatenlogik erster Stufe

Notation. Die Symbole x_0, x_1, \dots seien reserviert für die Verwendung als Variablennamen.

Def. Eine **Signatur** ist ein Paar $(\mathcal{F}, \mathcal{P})$, wobei \mathcal{F} und \mathcal{P} disjunkte, höchstens abzählbare Zeichenmengen sind. Dabei gibt es Folgen $(\mathcal{F}^n)_{n \in \mathbb{N}_0}$ und $(\mathcal{P}^n)_{n \in \mathbb{N}_0}$, sodass gilt:

$$\mathcal{F} = \bigsqcup_{n \in \mathbb{N}_0} \mathcal{F}^n, \quad \mathcal{P} = \bigsqcup_{n \in \mathbb{N}_0} \mathcal{P}^n.$$

Wir interpretieren \mathcal{F}^n als Menge der n-stelligen Funktionssymbole, \mathcal{F}^0 als Menge von Konstanten und \mathcal{P}^n als Menge der n-stelligen Prädikatensymbole.

Def. Die Menge $\operatorname{Term}_{\mathcal{F},\mathcal{P}}$ ist die kleinste Menge mit

- $\{x_0, x_1, ...\} \subset \text{Term}$
- $\forall n \in \mathbb{N}_0 : \forall f \in \mathcal{F}^n : \forall t_1, ..., t_n \in \text{Term} : f(t_1, ..., t_n) \in \text{Term}$

Def. Die Menge der atomaren $(\mathcal{F}, \mathcal{P})$ -Formeln ist induktiv definiert als die kleinste Menge $\operatorname{At}_{\mathcal{F}, \mathcal{P}}$ mit

- $\forall t_1, t_2 \in \text{Term}_{\mathcal{F}, \mathcal{P}} : (t_1 = t_2) \in \text{At}_{\mathcal{F}, \mathcal{P}}$ (Logik mit Gleichheit)
- $\forall n \in \mathbb{N}_0 : \forall P \in \mathcal{P}^n : \forall t_1, ..., t_n \in \text{Term}_{\mathcal{F}, \mathcal{P}} : P(t_1, ..., t_n) \in \text{At}_{\mathcal{F}, \mathcal{P}}$

Notation. $true = p_0 \vee \neg p_0$, $false = \neg true$ für $p_0 \in \mathcal{P}^0$ fest.

Def. Die Menge der $(\mathcal{F}, \mathcal{P})$ -Formeln ist induktiv definiert als kleinste Menge For \mathcal{F}, \mathcal{P} mit

- At $\mathcal{F}_{\mathcal{P}} \subset \operatorname{For}_{\mathcal{F}_{\mathcal{P}}}$ $\forall A \in \operatorname{For}_{\mathcal{F}_{\mathcal{P}}} : \{ \neg A, \forall x : A, \exists x : A \} \subset \operatorname{For}_{\mathcal{F}_{\mathcal{P}}}$
- $\forall A, B \in \text{For}_{\mathcal{F}, \mathcal{D}} : \{A \land B, A \lor B, A \to B, A \leftrightarrow B\} \subset \text{For}_{\mathcal{F}, \mathcal{D}}$

Def. Eine Interpretation I einer Signatur $(\mathcal{F}, \mathcal{P})$ besteht aus einer Menge $D = D_I$ und Zuordnungen

$$-^{I}: \prod_{n \in \mathbb{N}_{0}} \prod_{f \in \mathcal{F}^{n}} (D_{I})^{n} \to D_{I}, \quad -^{I}: \prod_{n \in \mathbb{N}_{0}} \prod_{P \in \mathcal{P}^{n}} (D_{I})^{n} \to \{F, T\}$$

Def. Eine Belegung β zu einer Interpretation I ist eine Funktion

$$\beta: \{x_0, x_1, ...\} \to D_I$$
.

Notation. Sei $\beta : \{x_0, x_1, ...\} \to D_I$ eine Belegung zu einer Interpretation I, x eine Variable und $d \in D_I$. Dann setze

$$\beta_x^d : \{x_0, x_1, ...\} \to D_I, \quad y \mapsto \begin{cases} d, & \text{falls } x = y \\ \beta(y), & \text{sonst} \end{cases}$$

Def. Die Auswertung eines Terms t unter I und β (geschrieben $t_{I,\beta}$) ist induktiv definiert als

• $x_{I,\beta} = \beta(x)$ • $f(t_1,...,t_n) = f^I((t_1)_{I,\beta},...,(t_n)_{I,\beta})$

Def. Eine Interpretation I und eine Belegung β **erfüllen** eine eine Formel F, geschrieben $I, \beta \models F$, falls

$$I, \beta \vDash (t_1 = t_2) \qquad : \iff (t_1)_{I,\beta} = (t_2)_{I,\beta}$$

$$I, \beta \vDash P(t_1, ..., t_n) \qquad : \iff P^I((t_1)_{I,\beta}, ..., (t_n)_{I,\beta})$$

$$I, \beta \vDash \neg A \qquad : \iff I, \beta \not\vDash A$$

$$I, \beta \vDash A \land B \qquad : \iff (I, \beta \vDash A) \land (I, \beta \vDash B)$$

$$I, \beta \vDash A \lor B \qquad : \iff (I, \beta \vDash A) \lor (I, \beta \vDash B)$$

$$I, \beta \vDash A \to B \qquad : \iff (I, \beta \not\vDash A) \lor (I, \beta \vDash B)$$

$$I, \beta \vDash A \leftrightarrow B \qquad : \iff ((I, \beta \not\vDash A) \land (I, \beta \not\vDash B))$$

$$\lor \lor ((I, \beta \vDash A) \land (I, \beta \vDash B))$$

$$I, \beta \vDash \forall x : A \qquad : \iff \forall d \in D_I : I, \beta_x^d \vDash A$$

$$I, \beta \vDash \exists x : A \qquad : \iff \exists d \in D_I : I, \beta_x^d \vDash A$$

Prop. Es gilt für alle Interpretationen I, Belegungen β und Formeln A,B:

$$\begin{split} I,\beta &\vDash A &\iff I,\beta \not\vDash \neg A \iff I,\beta \vDash \neg \neg A \\ I,\beta &\vDash A \land B &\iff I,\beta \vDash \neg (A \to \neg B) \\ I,\beta &\vDash A \lor B &\iff I,\beta \vDash \neg A \to B \\ I,\beta &\vDash A \leftrightarrow B &\iff I,\beta \vDash (A \to B) \land (B \to A) \\ I,\beta &\vDash \exists x : A &\iff I,\beta \vDash \neg \forall x : \neg A \end{split}$$

Def. Seien $A \in \text{For}$, $M \subset \text{For}$ und I eine Interpretation. Dann heißt I ein Modell von A bzw. M, falls

$$I \vDash A :\iff$$
 für alle Belegungen β gilt $I, \beta \vDash A$, $I \vDash M :\iff \forall F \in M : I \vDash F$.

Notation. Für $M \subset \text{For}$, eine Interpretation I und eine Belegung β schreiben wir:

$$I, \beta \models M : \iff \forall F \in M : I, \beta \models F$$

Def. Seien $A, B \subset$ For. Man sagt, B folgt aus A (geschrieben $A \vDash B$), falls für alle Interpretationen I und Belegungen β gilt:

$$I, \beta \models A \implies I, \beta \models B.$$

Falls $A \vDash B$ und $B \vDash A$ gilt, so heißen A und B logisch äquivalent, geschrieben $A \rightrightarrows \vDash B$.

Notation. $A_1, ..., A_n \models A : \iff \{A_1, ..., A_n\} \models A$

Satz. Für alle Interpretationen I und $n \in \mathbb{N}$ gilt:

$$I \models \{A_1, \dots, A_n\} \iff I \models A_1 \land \dots \land A_n$$

Satz. Für alle $A, B \in \text{For und } M \subset \text{For gilt:}$

$$M \vDash A \rightarrow B \iff M \cup \{A\} \vDash B$$

Def. Eine Formel $A \in \text{For heißt } \mathbf{Tautologie}$ oder (allgemein-) gültig (geschrieben $\models A$), falls $I \models A$ für alle Interpretationen I gilt.

Def. Eine Formel $A \in$ For heißt **erfüllbar**, wenn es eine Interpretation I und eine Belegung β mit $I, \beta \models A$ gibt. Falls es dies nicht gibt, so heißt A unerfüllbar.

Satz. Für $A \in \text{For gilt}$:

 $\bullet \models A \implies A \text{ ist erfüllbar} \quad \bullet \models A \iff \emptyset \models A$

Satz. Sei $A \in \text{For und } M \subset \text{For. Dann gilt } M \vDash A$ genau dann, wenn $M \cup \{\neg A\}$ unerfüllbar ist. Insbesondere ist A genau dann gültig, wenn $\{\neg A\}$ unerfüllbar ist.

Def. Universelle Formeln sind Formeln, die sich nach den folgenden Regeln herleiten lassen:

Prop. Sei Ieine Teil-Interpretation zu $J,\,\beta$ eine Belegung zu I und Aeine universelle Formel. Dann gilt:

$$J, \beta \vDash A \implies I, \beta \vDash A.$$

Aussagenlogik

Def. Für $p \in \mathcal{P}^0$ heißen die Ausdrücke p und $\neg p$ **Literale**. Eine Disjunktion von Literalen heißt **Klausel**. Eine Formel ist in **konjunktiver Normalform** (**KNF**), wenn sie eine Konjunktion von Klauseln ist.

Problem (SAT). Gegeben sei eine Formel in konjunktiver Normalform. Frage: Ist diese Formel erfüllbar?

Def. Eine Formel ist in **Negationsnormalform** (NNF), wenn Negationen nur unmittelbar vor Atomen stehen.

Def. Der **Hilbert-Kalkül** besteht aus den Axiomen

$$Ax_1 := \{A \to (B \to A) \mid A, B \in For\}$$

$$Ax_2 := \{(A \to (B \to C)) \to ((A \to B) \to (A \to C)) \mid A, B, C \in For\}$$

$$Ax_3 := \{(\neg A \to \neg B) \to (B \to A) \mid A, B \in For\}$$

und der Schlussregel Modus Ponens (MP)

$$A \xrightarrow{B}$$

Def. Eine Formel $F \in$ For ist aus $M \subset$ For **H-herleitbar**, notiert $M \vdash_H A$, wenn es eine Folge $A_1, ..., A_n$ in For gibt mit $A_n = A$, sodass für alle $i \in \{1, ..., n\}$ gilt:

$$A_i \in Ax_1 \cup Ax_2 \cup Ax_3 \cup M$$
 oder $\exists j, k < i : A_i = A_k \rightarrow A_i$.

Def. $A \in \text{For heißt herleitbar}$, notiert $\vdash A$, falls $\varnothing \vdash A$ gilt.

Beobachtung. Präfixe und Verkettungen von Herleitungen sind ebenfalls Herleitungen.

Prop. • Aus $M \vdash A$ und $M \vdash A \rightarrow B$ folgt $M \vdash B$.

• Aus $M \vdash \neg A \rightarrow \neg B$ folgt $M \vdash B \rightarrow A$.

Satz (Deduktionstheorem). $M \vdash A \rightarrow B \iff M \cup \{A\} \vdash B$

Satz. Für alle $A, B, C \in For gilt:$

- $\bullet \vdash (A \to B) \to ((B \to C) \to (A \to C))$ $\bullet \vdash \neg A \to (A \to B)$
- $\bullet \vdash \neg \neg A \to A \qquad \bullet \vdash A \to \neg \neg A \qquad \bullet \vdash (\neg A \to A) \to A$

Prop. Es gilt:

$$\begin{array}{c|c}
A \to B & B \to C \\
\hline
A \to C & A
\end{array}$$

Satz (Korrektheitssatz). Sei $A \in \text{For und } M \subset \text{For. Dann gilt}$

$$M \vdash A \implies M \vDash A$$
.

Def. $M \subset \text{For heißt konsistent}$, wenn für kein $A \in \text{For zugleich}$ $M \vdash A$ und $M \vdash \neg A$ gilt.

Lemma. • Ist M inkonsistent, so gilt $M \vdash B$ für alle $B \in For$.

• Für $A \in \text{For gilt: } M \not\vdash A \implies M \cup \{A\} \text{ ist konsistent.}$

Lemma (Modell-Lemma). Jede konsistente Menge ist erfüllbar, d. h. sie besitzt ein Modell.

Satz (Vollständigkeitssatz). Sei $A \in \text{For und } M \subset \text{For. Dann gilt}$

$$M \models A \implies M \vdash A$$
.

Prop. Sei $M \subset \text{For.}$ Dann ist M genau dann erfüllbar, wenn M konsistent ist.

Satz (Endlichkeits- bzw. Kompaktheitssatz). Sei $A \in \text{For}$, $M \subset \text{For}$.

- Dann gilt $M \vDash A$ genau dann, wenn es eine endliche Teilmenge $M' \subset M$ mit $M' \vDash A$ gibt.
- Dann ist M genau dann erfüllbar, wenn jede endliche Teilmenge von M erfüllbar ist.

Hilbert-Kalkül für Prädikatenlogik

Prop. Es gilt für alle $A \in \text{For}$, $M \subset \text{For}$:

$$M \models A \implies (\forall \text{ Interpretationen } I : I \models M \implies I \models A)$$

Achtung. Die Umkehrung gilt nicht!

Prop. Sei $A \in \text{For. Dann gilt:}$

- $\forall x : A \models A$ $A \models \forall x : A \text{ nicht (i. A.)}$
- **Def.** Sei $A \in \text{For.}$ Dann bezeichnet FV(A) die Menge der **freien** Variablen und BV(A) die Menge der **gebundenen** Variablen in A.

Def. Eine Formel $A \in \text{For heißt geschlossen}$, falls $FV(A) = \emptyset$.

Def. • $\forall x : A \text{ heißt } \mathbf{Generalisierung} \text{ von } A \in \mathbf{For.}$

• Ist $FV(A) = \{y_1, ..., y_n\}$, so heißt jede der n! Formeln $\forall y_1 : \forall y_2 : ... \forall y_n : A$ ein **universeller Abschluss** von A.

Satz (Koinzidenzlemma). Seien $A, B \in \text{For}$, I eine Interpretation und β_1, β_2 Belegungen mit $\beta_1|_{FV(A)} = \beta_2|_{FV(A)}$. Dann gilt

$$I, \beta_1 \vDash A \iff I, \beta_2 \vDash A.$$

Korollar. Seien A, M geschlossen und β_1, β_2 Belegungen. Dann gilt

- $I, \beta_1 \models M \iff I, \beta_2 \models M$ $I, \beta_1 \models M \iff I \models M$
- M ist erfüllbar $\iff M$ hat ein Modell
- $M \models A \iff (\forall \text{ Interpretationen } I : I \models M \iff I \models A)$

Prop. • $I \models A \iff I \models \forall x : A$ • $\models A \iff \models \forall x : A$

Def. Sei x eine Variable und $t \in$ Term ein Term. Dann ist die Substitution $\lceil t/x \rceil$ für Terme und Formeln folgendermaßen definiert:

$$y[t/x] \coloneqq \begin{cases} t, & \text{falls } y = x \\ y, & \text{sonst} \end{cases}$$

$$f(t_1, ..., t_n)[t/x] \coloneqq f(t_1[t/x], ..., t_n[t/x]) & \text{für } f \in \mathcal{F}^n \\ P(t_1, ..., t_n)[t/x] \coloneqq P(t_1[t/x], ..., t_n[t/x]) & \text{für } P \in \mathcal{P}^n \end{cases}$$

$$(t_1 = t_2)[t/x] \coloneqq (t_1[t/x] = t_2[t/x])$$

$$(\neg A)[t/x] \coloneqq \neg (A[t/x])$$

$$(A \to B)[t/x] \coloneqq A[t/x] \to A[t/x]$$

$$(\forall\,y:A)[t/x]\coloneqq\begin{cases}\forall\,y:A,&\text{falls }x=y\\\forall\,y:(A[t/x]),&\text{sonst und falls }y\notin\mathrm{FV}(t)\\\forall\,z:(A[z/y][t/x]),&\text{sonst}\end{cases}$$

Im letzten Fall ist z eine frische Variable, d. h. $z \notin FV(t) \cup FV(A)$.

Def. Der **Hilbert-Kalkül** für Prädikatenlogik hat als Axiome für alle $A, B, C \in$ For und $t \in$ Term alle Generalisierungen von

 Ax_1, Ax_2, Ax_3 : wie zuvor

$$Ax_4: (\forall x: A) \rightarrow A[t/x]$$
 (SPezialisierung)
 $Ax_5: A \rightarrow \forall x: A$, falls $x \notin FV(A)$ (GEneralisierung)
 $Ax_6: (\forall x: A \rightarrow B) \rightarrow ((\forall x: A) \rightarrow (\forall x: B))$ (Distr. Allquantor)
 $Ax_7: x = x$ (REflexivität)
 $Ax_8: (x = y) \rightarrow (A \rightarrow A')$ (GLeichheit),

wobei bei der letzten Regel A quantorenfrei ist und A' aus A durch Ersetzen eines oder mehrerer Vorkommen von x durch y entsteht. Außerdem gilt die Schlussregel Modus Ponens.

Satz (Deduktionstheorem). Wir beim Hilbert-Kalkül der Aussagenlogik gilt für $M \subset$ For und $A, B \in$ For:

$$M \vdash A \to B \iff M \cup \{A\} \vdash B$$

Satz (Generalisierungstheorem). Sei $M \subset \text{For und } A \in \text{For}$. Angenommen, es gilt $\forall B \in M : x \notin \text{FV}(B)$. Dann gilt $M \vdash \forall x : A$.

Korollar. $\vdash A \Longrightarrow \vdash \forall x : A$

Prop (α -Konversion). Sei $y \in FV(\forall x : A)$. Dann gilt

$$\vdash (\forall x : A) \to (\forall y : A[y/x]).$$

Satz (Korrektheit). Es gilt für alle $M \subset For$ und $A \in For$:

$$M \vdash A \implies M \vDash A$$
.

Lemma. Für $M \subset \text{For und } A \in \text{For gilt:}$

- $M \not\vdash A \implies M \cup \{A\}$ ist konsistent.
- $M \not\vdash \forall x : A \Longrightarrow M \cup \{\neg \forall x : A, \neg A[c/x]\}$ ist konsisten für jede Variable c, die nicht in M und A vorkommt.

Lemma (Modell-Lemma). konsistent ← erfüllbar

Satz (Löwenheim-Skolem). Jede erfüllbare Menge M geschlossener Formeln hat ein höchstens abzählbares Modell bzw. im Falle von Logik ohne Gleichheit ein abzählbar unendliches Modell.

Satz (Vollständigkeit). Es gilt für alle $M \subset For$ und $A \in For$:

$$M \vDash A \implies M \vdash A$$
.

Satz (Endlichkeits- bzw. Kompaktheitssatz der Prädikatenlogik). Sei $A \in \text{For}$, $M \subseteq \text{For}$.

- Dann gilt $M \vDash A$ genau dann, wenn es eine endliche Teilmenge $M' \subset M$ mit $M' \vDash A$ gibt.
- $\bullet\,$ Dann ist Mgenau dann erfüllbar, wenn jede endliche Teilmenge von Merfüllbar ist.

Bemerkung. Die Menge der gültigen Formeln ist aufzählbar bzw. semi-entscheidbar.

Satz (Church). Das Gültigkeitsproblem der Prädikatenlogik erster Stufe ist unentscheidbar.

Korollar. Es gibt kein $A \in For mit$

- $I \models A \iff D_I$ ist endlich.
- Bei Logik ohne Gleichheit: $I = A \iff |D_I| = n$ für ein festes $n \in \mathbb{N}$.

Weitere Beweisverfahren

Def. Im Gentzen-Kalkül (\vdash_G) gelten die folgenden Schlussregeln: rechts links

$$\frac{M \cup \{A\} \vdash_G B}{M \vdash_A \to_B} \qquad \text{Imp} \qquad \frac{M \cup \{\neg C\} \vdash_G A \quad M \cup \{B\} \vdash_G C}{M \cup \{A \to B\} \vdash_G C}$$

$$\frac{M \cup \{A\} \vdash_G \neg B}{M \cup \{B\} \vdash_G \neg A} \qquad \text{Neg} \qquad \frac{M \cup \{\neg B\} \vdash_G A}{M \cup \{\neg A\} \vdash_G B}$$

$$\frac{M \vdash_G A \quad M \vdash_G B}{M \vdash_G A \land_B} \qquad \text{Kon} \qquad \frac{M \cup \{A, B\} \vdash_G C}{M \cup \{A \land_B\} \vdash_G C}$$

$$\frac{M \cup \{\neg B\} \vdash_G A}{M \cup \{A \land_B\} \vdash_G C} \qquad \frac{M \cup \{A\} \vdash_G C \quad M \cup \{B\} \vdash_G C}{M \cup \{A \lor_B\} \vdash_G C}$$

$$M \cup \{A\} \vdash_G A$$
 (Axiom)

Notation. Für ein Literal l bezeichnet \bar{l} das negierte Literal, also

$$\overline{p} := \neg p$$
, $\overline{\neg p} := p$.

Def. Sei A eine Formel in KNF mit Klauseln K und K', sodass ein Literal l existiert mit $l \in K$ und $\bar{l} \in K'$. Dann heißt

$$R = (K \setminus \{l\}) \cup (K' \setminus \{\bar{l}\})$$
 Resolvente von K und K' .

Def. Ein Resolutionsschritt fügt eine Resolvente einer Formel in KNF der Formel hinzu. Die Formel, die aus einer Formel A durch mehrere Resolutionsschritte entsteht, sodass keine weiteren Resolutionsschritte möglich sind, wird mit Res $^*(A)$ bezeichnet.

Lemma. Sei A eine Formel in KNF mit Klauseln K und K' und einer Resolvente $R = (K \setminus \{l\}) \cup (K' \setminus \{\bar{l}\})$. Dann ist A genau dann erfüllbar, wenn $A \cup R$ es ist.

Satz (Resolutionssatz). Eine KNF-Formel A ist genau dann unerfüllbar, wenn $\emptyset \in \operatorname{Res}^*(A)$.

Zusicherungskalkül

Def. Ein Hoare-Tripel hat die Form

$$\{A\}$$
 S $\{B\}$,

wobei A und B prädikatenlogische Formeln, sogenannte **Zusicherungen**, und S eine Programmanweisung ist.

- Def. Ein Hoare-Tripel {A} S {B} gilt schwach, wenn B nach Ausführung von S unter der Vorbedingung A gilt, falls S ohne Fehlerabbruch terminiert.
- Gilt das Hoare-Tripel schwach und sichert die Vorbedingung A die Terminierung ohne Fehler von S, so gilt das Tripel streng.

 $\bf Def.$ Im $\bf Zusicherungskalkül \mbox{ (Hoare-Kalkül)}$ gelten folgende Schlussregeln:

Temporale Logik

Def. Ein Ablauf $\pi = s_0, s_1, ...$ ist eine unendliche Folge von Zuständen aus einer Menge S mit einer Bewertung $L: S \to \mathfrak{P}(\mathcal{P})$.

Notation. $\pi^j = s_i, s_{i+1}, \dots$ heißt *j*-tes Suffix von π .

Def. Sei \mathcal{P} eine Menge von atomaren Formeln. Dann sind Formeln in (P)LTL (Propositional Linear Time Logic) über \mathcal{P} definiert als kleinste Menge TFor $_{\mathcal{P}}$ mit

- $\mathcal{P} \subset \mathrm{TFor}_{\mathcal{P}}$ $\forall A \in \mathrm{TFor}_{\mathcal{P}} : \{ \mathbf{G}A, \mathbf{F}A, \mathbf{X}A \} \subset \mathrm{TFor}_{\mathcal{P}}$
- $\forall A, B \in \text{TFor}_{\mathcal{D}} : \{ \neg A, A \land B, A \lor B, A \to B, A \leftrightarrow B \} \subset \text{TFor}_{\mathcal{D}}$
- $\forall A, B \in \text{TFor}_{\mathcal{D}} : (A \cup B) \in \text{TFor}_{\mathcal{D}}$

Def. Sei $\pi = s_0, s_1, ...$ ein Ablauf. Eine Formel $A \in \text{TFor gilt für } \pi$ (refüllt $A, \pi \models A$), falls gilt:

$$\pi \vDash p \qquad :\iff p \in L(s_0)$$

$$\pi \vDash \neg A \qquad :\iff \pi \not\models A$$

$$\pi \vDash A \lor B \qquad :\iff (\pi \vDash A) \lor (\pi \vDash B)$$

$$\pi \vDash \mathbf{X}A \qquad :\iff \pi^1 \vDash A$$

$$\pi \vDash \mathbf{G}A \qquad :\iff \forall j \in \mathbb{N}_0 : \pi^j \vDash A$$

$$\pi \vDash \mathbf{F}A \qquad :\iff \exists j \in \mathbb{N}_0 : \pi^j \vDash A$$

$$\pi \vDash A \cup B :\iff \exists j \in \mathbb{N}_0 : \pi^j \vDash B \land (\forall i < j : \pi^i \vDash A)$$

Def. Eine Formel $A \in T$ For heißt **gültig** / **erfüllbar**, falls alle Abläufe / ein Ablauf A erfüllt.

Prop. Für alle $A \in TF$ or gilt:

- $GA = \neg F \neg A$ FA = true U A
- $A \mathbf{U} B = \neg((\neg B) \mathbf{U} (\neg A \land \neg B)) \land \mathbf{F} B$

Satz. Für alle $A, B \in TFor gilt$:

- $\bullet \models \mathbf{G}(A \to B) \to (\mathbf{G}A \to \mathbf{G}B) \quad \bullet \models \mathbf{XG}A \leftrightarrow \mathbf{GX}A$
- $\models (A \land \mathbf{G}(A \to \mathbf{X}A)) \to \mathbf{G}A$ $\models \mathbf{X}\mathbf{F}A \to \mathbf{F}A$

Def. Eine Kripke-Struktur $K = (S, \to, L, s_0)$ besteht aus einer Menge S von Zuständen mit Startzustand s_0 , einer Bewertung $L: S \to \mathfrak{P}(\mathcal{P})$ und einer Transitionsrelation $\to \subset S \times S$, sodass $\forall s \in S: \exists s' \in S: s \to s'$ gilt.

Def. Ein Ablauf π von K ist eine unendliche Folge von Zuständen beginnend mit s_0 , also $\pi = s_0, s_1, s_2, \dots$ mit $\forall i \in \mathbb{N}_0 s_i \to s_{i+1}$. Die Zustände eines solchen Ablaufs heißen **erreichbar**.

Def. Eine Kripke-Struktur K erfüllt $A \in TFor$, falls für alle Abläufe π von K gilt $\pi \models A$.

Def. Sei \mathcal{P} eine Menge von atomaren Formeln. Dann sind Formeln in CTL (Computation Tree Logic) über \mathcal{P} definiert als kleinste Menge CTFor $_{\mathcal{P}}$ mit

- $\forall A, B \in \text{TFor}_{\mathcal{P}} : \{ \neg A, A \land B, A \lor B, A \to B, A \leftrightarrow B \} \subset \text{CTFor}_{\mathcal{P}}$
- $\mathcal{P} \subset \text{CTFor}_{\mathcal{P}}$ $\forall A, B \in \text{TFor}_{\mathcal{P}} : \{ \mathbf{A}(A \cup B), \mathbf{E}(A \cup B) \} \subset \text{TFor}_{\mathcal{P}}$
- $\forall A \in \text{TFor}_{\mathcal{P}} : \{\mathbf{AG}A, \mathbf{AF}A, \mathbf{AX}A, \mathbf{EG}A, \mathbf{EF}A, \mathbf{EX}A\} \subset \text{TFor}_{\mathcal{P}}$

Def. Sei K eine Kripke-Struktur, s ein Zustand. Eine Formel $A \in \text{CTFor gilt}$ für (K, s), falls (koinduktive Definition)

```
K, s \models p
                                :\iff p\in L(s)
K, s \vDash \neg A
                                :\iff K, s\neg \models A
K, s \models A \lor
                                :\iff (K, s \models A) \lor (K, s \models B)
                                :\iff \forall s' \in S : (s \to s') \Rightarrow K, s' \models B
K, s \models \mathbf{AX}B
                                :\iff \exists s' \in S : (s \to s') \land (K, s' \models B)
K, s \models \mathbf{EX}B
                                :\iff K, s \models B \land \forall s' \in S : (s \rightarrow s') \Rightarrow K, s' \models \mathbf{AG}B
K, s \models \mathbf{AG}B
K, s \models \mathbf{EG}B
                                :\iff K, s \models B \land \exists s' \in S : (s \rightarrow s') \land (K, s' \models \mathbf{EG}B)
                                :\iff \forall Abläufe \pi=s_0,s_1,s_2,... von K mit s_0=s:
K, s \models \mathbf{AF}B
                                          \exists i \in \mathbb{N}_0 : K, s_i \models B
K, s \models \mathbf{EF}B
                                :\iff \exists \text{ Ablauf } \pi = s_0, s_1, s_2, \dots \text{ von } K \text{ mit } s_0 = s :
                                           \exists j \in \mathbb{N}_0 : K, s_i \models B
```

 $K, s \models \mathbf{A}(B \cup C) :\iff \forall \text{Abläufe } \pi = s_0, s_1, s_2, \dots \text{ von } K \text{ mit } s_0 = s :$ $\exists j \in \mathbb{N}_0 : (K, s_j \models C) \land (\forall i < j : K, s_i \models B)$

 $K, s \models \mathbf{E}(B \cup C) :\iff \exists \text{ Ablauf } \pi = s_0, s_1, s_2, \dots \text{ von } K \text{ mit } s_0 = s : \exists j \in \mathbb{N}_0 : (K, s_i \models C) \land (\forall i < j : K, s_i \models B)$

Def. Sei $\pi = s_0, s_1, ...$ ein Ablauf. Eine Formel $A \in \text{TFor gilt für } \pi$ (π Notation. $K \models A :\iff K, s_0 \models A$, wobei s_0 Startzustand von K.

Def. Eine Formel $A \in \text{CTFor heißt } \mathbf{g\"{ultig}} / \mathbf{erf\"{ullbar}}$, wenn alle Kripke-Strukturen / eine Kripke-Struktur A erf\"{ullen} / erf\"{ullt.}

Satz. Für alle $B, C \in CTFor$ gilt:

- $\models (B \land \mathbf{AG}(B \to \mathbf{AX}B)) \to \mathbf{AG}B$
- $\models \mathbf{AX}(B \to C) \land \mathbf{AX}B \to \mathbf{AX}C$

Satz. Für alle $A, B \in \text{CTFor gilt:}$

- $\mathbf{AG}B = \neg \mathbf{EF} \neg B$ $\mathbf{EG}B = \neg \mathbf{AF} \neg B$
- $\mathbf{EF}B = \mathbf{E}(true \mathbf{U}B)$ $\mathbf{AF}B = \mathbf{A}(true \mathbf{U}B)$
- $\mathbf{A}\mathbf{X}B = -\mathbf{E}\mathbf{X}\neg B$ $\mathbf{A}(B\mathbf{U}C) = -\mathbf{E}(\neg C\mathbf{U}(\neg C \land \neg B)) \land \mathbf{AF}C$

Modale Logik

Def. Sei \mathcal{P} eine Menge von atomaren Formeln. Dann ist die Menge der Formeln in der modalen Logik definiert als kleinste Menge MFor \mathcal{P} mit

- $\forall A, B \in MFor_{\mathcal{P}} : \{ \neg A, A \land B, A \lor B, A \to B, A \leftrightarrow B \} \subset MFor_{\mathcal{P}}$
- $\mathcal{P} \subset \mathrm{MFor}_{\mathcal{P}}$ $\forall A \in \mathrm{MFor}_{\mathcal{P}} : \{ \Box A, \diamond A \} \subset \mathrm{MFor}_{\mathcal{P}}$

Def. Zustände in Kripke-Strukturen dürfen in diesem Kapitel auch keine Übergänge zu nächsten Zuständen besitzen, d. h. es muss nicht unbedingt gelten:

$$\forall s \in S : \exists s' \in S : s \to s'.$$

Def. Für eine Kripke-Struktur mit Zustand s und $A \in MF$ or wird $K, s \models A$ analog zur CTL definiert, wobei \square als \mathbf{AX} und \diamond wie \mathbf{EX} behandelt wird.

Def. Für eine Kripke-Struktur K und $A \in MFor_{\mathcal{P}}$ setzen wir

$$K \vDash A :\iff \forall \ s : K, s \vDash A.$$

Achtung. Obige Definition weicht ab von der Definition in CTL!

Bemerkung. Es gilt immer: $\bullet \models \Box(A \rightarrow B) \land \Box A \rightarrow \Box B$

- $\bullet \models \Box(A \land B) \leftrightarrow (\Box A \land \Box B) \quad \bullet \models \Diamond(A \lor B) \leftrightarrow (\Diamond A \lor \Diamond B)$
- $K, s \models \diamond true \iff \forall A \in \mathsf{MFor}_{\mathcal{P}} : K, s \models \Box A \rightarrow \diamond A$

Def. Ein Rahmen $F = (S, \rightarrow)$ besteht aus einer Menge von Welten S und einer Transitionsrelation $\rightarrow \subset S \times S$. Er **erfüllt** eine modale Formel $A \in MFor_{\mathcal{P}}$ genau dann, wenn jede Kripke-Struktur $K = (S, \rightarrow, L, s_0)$ mit $L : S \rightarrow \mathfrak{P}(\mathcal{P})$ beliebig A erfüllt.

Def. Eine Relation $\rightarrow \subset S \times S$ heißt **euklidisch**, falls gilt:

$$\forall s, s', s'' : (s \to s') \land (s \to s'') \implies (s' \to s'')$$

Satz. Für jeden Rahmen $F = (S, \rightarrow)$ und jedes Atom p gilt:

- \bullet \to reflexiv $\Leftrightarrow \forall A : F \text{ erfullt } \Box A \to A \Leftrightarrow F \text{ erfullt } \Box p \to p$
- \rightarrow transitiv $\Leftrightarrow \forall A : F \text{ erfullt } \Box A \rightarrow \Box \Box A \Leftrightarrow F \text{ erfullt } \Box p \rightarrow \Box \Box p$
- \rightarrow euklidisch $\Leftrightarrow \forall A : F \text{ erfüllt } \diamond A \rightarrow \Box \diamond A \Leftrightarrow F \text{ erfüllt } \diamond p \rightarrow \Box \diamond p.$

Der Allquantor bezieht sich dabei auf alle $A \in MFor_{\mathcal{P}}$.