QCD VBFMET Gridpack Validation

João Pela

Imperial College London

2015-11-09

MadGraph Gridpack v2 characteristics

- A grid pack was generated following the instructions found in the TWiki below:
 - TWiki: QuickGuideMadGraph5aMCatNLO
- Patches to include custom cuts were produced and included in the gridpack generation code
- Include optimizations recommend by Josh Bendavid

Sample characteristics

- Process: $pp \rightarrow jj, jjj, jjjj$
- At least one dijet with:
 - Jets $p_{\perp} > 30 \text{ GeV}$
 - Dijet $m_{ii} > 800 \text{ GeV}$

What changed from previous studies:

- Different MAdGraph version: MG5_aMC_v2_3_0 → MG5_aMC_v2.3.2.2
- Additional CMS patches and options
 - Physics Model: sm → sm-ckm_no_b_mass
 - PDF choice: nn23lo1 → lhapdf(263000)
 - ullet Remove jet min p_{\perp} and added auto jet p_{\perp} and m_{jj} optimization option

Hadronization

Software

- Using CMSSW_7_1_19 (NEW: before was CMSSW_7_1_18. Changed to match MG production version.)
- Showering: Pythia8
- Hadronizer: Configuration/Generator/python/Hadronizer_TuneCUETP8M1_13TeV_MLM_5f_max4j_LHE_pythia8_cff.py

Results

	Events			Cross Section [pb]		
Process	Tried	Passed	accepted [%]	Before	After	
pp o jj	53110	12392	23.3 ± 0.2	$1.652 \times 10^6 \pm 9.011 \times 10^3$	$3.854 \times 10^5 \pm 3.689 \times 10^3$	
pp o jjj	114701	8253	7.2 ± 0.1	$3.629 \times 10^6 \pm 1.980 \times 10^4$	$2.611 \times 10^5 \pm 3.114 \times 10^3$	
pp o jjjj	157189	10054	6.4 ± 0.1	$4.962 \times 10^6 \pm 2.707 \times 10^4$	$3.174 \times 10^5 \pm 3.518 \times 10^3$	
Total	325000	30699	9.4 ± 0.1	$1.024 \times 10^7 \pm 3.473 \times 10^4$	$9.638 \times 10^5 \pm 5.973 \times 10^3$	

The 3 and 4 jets configurations fail more events since there is no restriction on min(jet p_{\perp}) which fails sometime the imposed hadronizer cut.

Values are almost the same as gridpack v1 only small changes observed.

Selected Di-parton I

Custom MadGraph cuts on dijet parton p_{\perp} are implemented correctly.

Selected Di-parton II

Jet η distribution looks ok. MadGraph cut is at 5.0.

Custom MadGraph cuts on dijet parton m_{jj} are implemented correctly. $\Delta\eta$ peaks over 6 showing that this variable indeed could not be used to reduce QCD.

QCD VBFMET Gridpack Validation

Parton-Generator Jet Matching procedure

Pairing Partons and Generator Jets

- Selecting all generator jets within $\Delta R < 0.4$
- ullet From those selecting the generator jet with the lowest p_{\perp} to the parton as a match.
 - ullet This avoids picking up the wrong jet from just picking lowest ΔR

Results

	Process						
n _{match}	jj	jjj	jjjjj	Total			
0	3.42%	0.30%	0.08%	1.49%			
1	25.27%	4.79%	1.02%	11.82%			
2	71.30%	28.29%	8.89%	39.30%			
3		66.61%	36.36%	29.82%			
4			53.64%	17.57%			

- Selected diparton has a match: 73.12%
- ullet Generator jet matched not lowest ΔR : 3.52%

With the current matching procedure we can find matches for the selected di-parton of the times.

All values are compatible with gridpack v1 (to the 1% level)

Migration study I

A second grid pack was create with reduced thresholds to study migrations.

Sample characteristics

- Process: $pp \rightarrow jj, jjj, jjjj$
- At least one dijet with:
 - Jets $p_{\perp} > 10$ GeV
 - Dijet $m_{jj} > 600 \text{ GeV}$

Key data

- Hard process cross section is $1.095 \times 10^8 \pm 3.924 \times 10^5$ which is 10.7 times more than for our proposed process.
- 1.45M events were produced at parton level to provide enough statistics to study migration of $\approx 1\%.$
- Hadronization was performed the same as for for v2.
 - \bullet An event efficiency of 6.7 \pm 0.5 was observed which is \approx 30% less than v2. Probably due to lower jet cuts.
 - The resulting post hadronization cross section of $6.647e+06\pm2.380e+04$ which is 6.9 higher than v2.

Migration study I

Sublead Parton-Generator Jet p_\perp

Single variable migration

- $\bullet \ \ \text{Lead jets:} \ \frac{\rho_{\perp}^{\textit{Parton}} < 30 \ \text{AND} \ \rho_{\perp}^{\textit{GenJet}} \ge 40}{\rho_{\perp}^{\textit{GenJet}} \ge 40} = 0.27\% \pm 0.04\%$
- Sublead jets: $\frac{p_{\rm L}^{Parton} < 30~{\rm AND}~p_{\rm L}^{GenJet} \ge 40}{p_{\rm L}^{GenJet} \ge 40}~=~0.56\%~\pm~0.08\%$

Parton to generator jet p_{\perp} migration are under 0.6%. Much less than the 3.5% majorated last week. This is acceptable.

Migration study I

Single variable migration

Mjj:
$$\frac{m_{jj}^{Parton} < 800 \text{ AND } m_{jj}^{GenJet} \ge 1000}{m_{jj}^{GenJet} \ge 800} = 0.13\% \pm 0.04\%$$

Double variable migration

 $\bullet \underbrace{ \frac{(p_{\perp}^{Gen,Jet} > 40 \text{ AND } m_{jj}^{Gen,Jet} > 1000) \text{ AND } (p_{\perp}^{Parton} < 30 \text{ OR } m_{jj}^{Parton} < 800)}_{p_{\perp}^{Gen,Jet} > 40 \text{ AND } m_{jj}^{Gen,Jet} > 1000} = 0.23\% \pm 0.13\% }$

Parton to generator jet m_{jj} migration are under 0.2% and global migration are under 0.25%. This is also acceptable.

10 / 11

Conclusions

Summary

- A MadGraph gridpack was produce following the CMS Generator Group recommended instructions and now includes Josh Bendavid suggestions
 - A test run was made producing 325k events where it was demonstrated that the custom proposed cuts were correctly implemented.
 - Pythia8 hadronization was performed over the parton level events with an efficiency of 9.4 \pm 0.1 and leading to a final sample cross section of 9.638 \times 10⁵ \pm 5.973 \times 10³.
- A second gridpack with lower thresholds was implemented to study variable migrations
 - A test run was made producing 1.45M events with a post hadronization cross section of $6.647 \times 10^6 \pm 2.380 \times 10^4$ which is 6.9 times more than proposed cuts.
 - A study over the key variable migration was performed showing that global events migration from below selected parton cuts to above selected generator cuts is of $0.23\% \pm 0.13\%$ of the total events that should pass the generator cuts. This is deemed to be acceptable.
- We are ready to pass this gridpack to the generator group and request our new QCD sample production.

The gridpack and the respective cards can be found at:

/afs/cern.ch/work/p/pela/public/qcd_vbf_samples/gridpack_v2/

