我编写的算法 C++ 代码如下:

```
bool isSymmetric(const LString& str){
   int t = str.strLen/2;
   char arr[t+1]; // VLA
   // move to the second half
   ListPtr p = str.head;
    for (int i = 0; i < t; ++i)
        p = p->next;
   // store the second half in arr
   int idx = 0;
   for (; p; ++idx){
        arr[idx] = p->data;
        p = p->next;
   }
   // char-wise comparison
   p = str.head;
   while (idx >= 0){
       if (p->data != arr[idx])
           return false;
        p = p->next;
        --idx;
   return true;
}
```

这个算法的基本思路是: 既然单链表无法倒序遍历, 就把链表装进一个数组里, 然后再倒序遍历. 于是, 我将链表的后半部分存入一个数组, 再与前半部分逐字符比较——这是标准的判断对称性的方法.

但是,这种方法虽然时间上是 O(N) 的,却使用了 O(N) 的额外空间. 我不知道如何只使用 O(1) 的空间完成这道题目.

另外,Char arr[t+1];在标准 C++ 中是不合法的,我这里使用了 GCC 的 VLA 拓展. 为了避免误会,特此澄清.

2

将 T' 复制一份并接在其结尾,称为 S. 例如, $T'=\mathrm{car}$ 时 $S=\mathrm{carcar}$. 显然, T,T' 互为循环旋转的充分必要条件是 T,T' 长度相等且 T 是 S 的子串. 因此对 S,T 运行 KMP 算法即可得到答案.

由于复制和 KMP 都是线性时间的, 因此这个算法总体是线性时间的.

next 数组有多种常见的定义,下面只对

$$\text{next}[i] := \max\{0, \max\{0 < j < i | \text{p}[1 \sim j] = \text{p}[i - j + 1 \sim i]\}\}, 1 \le i \le N$$

进行证明. 其中 ${\bf p}$ 为模式串,有效下标从 ${\bf 1}$ 到 ${\bf N}$.

为了方便叙述,称满足 $\mathbf{p}[1 \sim j] = \mathbf{p}[i-j+1 \sim i]$ 的所有 0 < j < i 为 $\mathbf{next}[i]$ 的候选项. 特别地,也认为 0 是 $\mathbf{next}[i]$ 的侯选项. 显然, $\mathbf{next}[i]$ 是其所有候选项中最大的..

由定义, $\mathrm{next}[1]=0$. 我们只需考虑如果已经计算出了 $\mathrm{next}[1],\cdots,\mathrm{next}[i-1]$,如何高效计算 $\mathrm{next}[i]$.

首先证明两个引理.

引理

引理 1:设 $0 < j_0 < i$ 为 $\mathrm{next}[i]$ 的一个侯选项,则 $\mathrm{next}[i]$ 的候选项中,小于 j_0 的最大的一个是 $\mathrm{next}[j_0]$.

证明:

记 $k = \text{next}[j_0]$.

首先证明 k 是 next[i] 的候选项.

事实上,由于 k 是 $\operatorname{next}[j_0]$ 的候选项,有 $\operatorname{p}[1 \sim k] = \operatorname{p}[j_0 - k + 1 \sim j_0]$. 另一方面,由于 j_0 是 $\operatorname{next}[i]$ 的候选项,有 $\operatorname{p}[1 \sim j_0] = \operatorname{p}[i - j_0 + 1 \sim i]$,这隐含着 $\operatorname{p}[j_0 - k + 1 \sim j_0] = \operatorname{p}[i - k + 1 \sim i]$.于是便有 $\operatorname{p}[1 \sim k] = \operatorname{p}[i - k + 1 \sim i]$,即 k 是 $\operatorname{next}[i]$ 的候选项.

再证明 $\forall k < k_1 < j_0$ 不是 i 的候选项.

反之,有 $\mathrm{p}[1\sim k_1]=\mathrm{p}[i-k_1+1\sim i]$. 又 $\mathrm{p}[1\sim j_0]=\mathrm{p}[i-j_0+1\sim i]$ 隐含着 $\mathrm{p}[j_0-k_1+1\sim j_0]=\mathrm{p}[i-k_1+1\sim i]$,于是有 $\mathrm{p}[1\sim k_1]=\mathrm{p}[j_0-k_1+1\sim j_0]$,即 k_1 是 $\mathrm{next}[j_0]$ 的候选项. 但是 $k_1>\mathrm{next}[j_0]$,这便说明了矛盾.

证毕.

引理 2: 1 < j < i 是 $\operatorname{next}[i]$ 的候选项的充要条件是 j-1 是 $\operatorname{next}[i-1]$ 的候选项,且 $\operatorname{p}[j] = \operatorname{p}[i]$. 这个引理可以由定义直接导出,不再赘述证明.

算法实现

根据引理 1 和引理 2, $\operatorname{next}[i]$ 的候选项只可能是 $\operatorname{next}[i-1]+1, \operatorname{next}[\operatorname{next}[i-1]]+1, \cdots, 0$,称它们按顺序是 $\operatorname{next}[i]$ 的候选候选项.

因此,在计算 $\operatorname{next}[i]$ 时,只需逐个尝试这些候选候选项 j 是否也满足 $\operatorname{p}[j] = \operatorname{p}[i]$,如果满足,那么它就是 $\operatorname{next}[i]$ 的候选项. 由于 $\forall k, \operatorname{next}[k] < k$,第一个满足上述条件的候选候选项一定是 $\operatorname{next}[i]$ 的最大候选项,即 $\operatorname{next}[i]$.

其代码实现如下:

```
void getNext(){
   next[1] = 0;
   for (int i = 2, j = 0; i <= N; ++i){
       while (j && p[i] != p[j+1]) j = next[j];
       if (p[i] == p[j+1]) ++j;
       next[i] = j;
   }
}</pre>
```

优化

KMP 算法有一个经典的优化,即如果 p[next[i]+1]=p[i+1],那么如果匹配时在 i+1 处失配,那回溯后仍然会失配,在计算 next 数组时就排除这种情况,可以避免更多注定失败的回溯. 优化后的 next 数组一般称为 nextval 数组.

避免这种情况的方法很简单,在更新 $\operatorname{next}[i]$ 时判断上述条件,如果真的相等,就再次回溯,利用与前一部分证明中完全平行的方法,也可以证明这个优化的正确性,这里不再赘述.

其代码实现如下:

```
void getNextval(){
    next[1] = 0;
    for (int i = 2, j = 0; i <= N; ++i){
        while (j && p[i] != p[j+1]) j = nextval[j];
        if (p[i] == p[j+1]) ++j;
        if (i < N && p[i+1] == p[j+1]) j = nextval[j];
        nextval[i] = j;
    }
}</pre>
```

事实上,这个优化的改进并不大,因为即使有冗余的回溯,每次回溯也只是比较了一个字符而已,如果 文本串不充分长,优化效果是十分轻微的. 这个优化之所以经典,是因为其与 KMP 原版算法浑然一体, 思想高度相似,而且实现几乎没有代价——只是加了一行代码而已.