5.1: Rontiniutel
5.) e)
$$f(x) = \frac{1}{x}$$
, i pkt. $x=1$:
La $E>0$ vare gitt. Vil finne $S>0$
S.a. når $|x-1| < \delta$, så er $|f(x)-f(1)|$
 $< E$.

 $\text{La} \quad h := \times - \left(\text{sa} \times = h + 1 \right)$

Da er:
$$|f(x)-f(1)| = |\frac{1}{x}-1|$$

 $= |\frac{1-x}{x}| = |-\frac{(x-1)}{x}| = |\frac{x-1}{x}|$
 $= |\frac{1}{h}|$
Merk: Huis $|h| < \frac{1}{2}$, sû er $|h+1| > \frac{1}{2}$
Dermed er $\frac{1}{|h+1|} < \frac{1}{2} = 2$

$$\begin{array}{l} \text{Så hvis} \left| h \right| < \frac{\mathcal{E}}{2} \text{ også, da vil} \\ \hline | h | \\ \hline | h + 1 | \\ \text{Så velg} \quad \mathcal{E} \cdot 2 = \mathcal{E}. \\ \text{Så velg} \quad \mathcal{E} = \min \left\{ \frac{\mathcal{E}}{2}, \frac{1}{2} \right\}, \text{da av dat} \\ \text{s.a. mår} \quad |x-1| = |h| < \mathcal{E}, \text{så ev} \\ \left| f(x) - f(1) \right| = \frac{|h|}{|h+1|} < \mathcal{E}. \end{array}$$

5.) g)
$$f(x) = [x]_{x=4}$$
:
La $\varepsilon > 0$ were gitt. Vil finne $\delta > 0$
s.a. når $|x-4| < \delta$, så er $|f(x)-$
 $f(4)| < \varepsilon$.
La $h := x-4$ (så $x = h+4$)
Da ev: $|f(x)-f(4)| = |\sqrt{x}-2|$

$$(x^{7,0}) = |(x^{-2})(x^{+2})|$$

$$(x^{7,0}) = |(x^{-2})(x^{+2})|$$

$$(x^{-2})(x^{+2})|$$

$$(x^{-2})(x^{+2})|$$

$$= |x^{-4}| = |h|$$

$$(x^{-2})(x^{+2})|$$

$$= |x^{-4}| = |h|$$

$$(x^{-1})(x^{-1})|$$

$$= |x^{-4}| = |h|$$

$$= |h| < \delta,$$

$$= |f(x) - f(4)| < |h| < \delta = \epsilon$$
Så f kontinuertig i $x = 4$.

Må finne E>O s.a. samme hvillen 5>6 man velger, så vildet finnes noenx s.a. selvom |x-0|=|x|<8, så ev $|f(x)-f(0)|=|f(x)-0|=|f(x)|>\epsilon$ Velg E= \frac{1}{2}. Samme hoor liken \$>0 som velges, vil f. els. $x = \frac{s}{2}$ oppfylle 1x1<5, men siden x>0, vil $|f(x)-f(0)|=x+1>1>\frac{1}{2}=\varepsilon$

Så f er ikke konhinuerlig i X=0. b) $f(X) = \int_{0}^{\infty} \cos \frac{1}{x} f(x) \times f(x)$

Velg E= 1. Samme hvor liten S som veliges vil det være mulig å finne en \times s.a. $(x-0)=|x|<\delta$, men S.a. $\frac{1}{\sqrt{2}} = 2 k \pi for en eller annen$ $k (EZ). (F.els. X = \frac{1}{2kT} \Rightarrow$ (XI) = 2kT (S Fran få til dette;

Men du er:
$$|f(x)-f(0)| = |\cos x - 0|$$

$$= |\cos x| = |\cos(2k\pi)|$$

$$= |> \frac{1}{2} = \varepsilon$$
Formed ev
$$f \text{ diskont. is}$$

$$x = 0$$

7) a)
$$\int (x) = x^2 \sin x$$
, i $x = \pi$:

 x^2 w kont overatt.

Sinx ev kont overatt.

Da produktet $x^2 \sin x$ kont overatt,

Specialt i $x = \pi$. Så $f(x)$ ev kont i

 $x = \pi$.

b) $f(x) = e^x \ln x$, $x = 2$:

 x^2 kont, overalt e^x er kont, overalt.

Derfor et den summensatte funksjonen e^{x^2} kont. overatt. In x ev kont. dev den er defi des. for alle positive x. Spes, et ln x kont. i x=2. Dermed et produkt e^{x^2} ln x=f(x) kont. i x=2.

9) a)
$$f(x)=x^3$$
: f ev ikke diskont.
Noen steder.
b) $f(x)=\begin{cases} \sqrt{x}, x>0 \\ x+1, x\leq 0 \end{cases}$; $f(x)=x$ ev kont.

so enest mulige diskont. er i X=0.

Merk: $\lim_{X\to 0_{+}} f(x) = \lim_{X\to 0_{+}} \sqrt{x} = 0$ $\lim_{X\to 0_{-}} f(x) = \lim_{X\to 0_{-}} (x+1) = 1 \neq 0$ $\lim_{X\to 0_{-}} f(x) = \lim_{X\to 0_{-}} (x+1) = 1 \neq 0$

Sû lim f(X) f lim f(X), sû f w $x \to 0_+$ $x \to 0_-$ lishont, i X = 0.

C) $\int (X) = \begin{cases} \sin \frac{1}{x} & \text{now } x \neq 0 \\ 0 & \text{now } x = 0 \end{cases}$

Sin \(\pm \) er kont, niv den er def. des, \(\pm \) \(\pm \).

Dermed er enesk mulige diskont. i \(\pm \)=0.

Vil vise at f er diskont. v/ å finne en folge \(\frac{1}{2} \) som konvergerer mot 0,

men sa.
$$\sin \frac{1}{X_n} = 1$$
 for alle n.
Vely: $\frac{1}{X_k} = \frac{1}{\frac{\pi}{2}} + 2k\pi$ ($k \in \mathbb{N}$)
 $\int (X_k) = \frac{1}{\frac{\pi}{2}} + 2k\pi$)
Da vil $X_k \rightarrow 0$ når $k \rightarrow \infty$ men
 $\sin \frac{1}{X_k} = \sin (\frac{\pi}{2} + 2k\pi) = 1$ for alle
 k . Dermed er: $\lim_{k \rightarrow \infty} f(x_k) = \lim_{k \rightarrow \infty} 1 = 1 \neq 0 = 1$