Wiederhalung * Mengen, M: X & M, X & M - Aufzählung: {3,117,9,8} = {3,3,9,8,19} - Beschreibung: Menge der ganner Zahlen - Aussondern: {x ∈ M | A(x) ist wahr} Hier: A Aussageform: ACXI, XEM Aussage { x ∈ N | x ungerade } - Abbildung: {i² | i∈ N} P, N, Z, $\underline{n} = \{1, \dots, n\}$, R, $\underline{\mathcal{L}}$ Q

A $N \subseteq M : \bigoplus V \times \in \mathbb{N} : \times \in M$. A $N = M : \bigoplus N \subseteq M \text{ and } M \subseteq N$ * MnN := {x | x ∈ M x x ∈ N} MUN := {x | x ∈ M v x ∈ N} MIN := {x ∈ M | x ¢ N} MxN = { (x,y) | x ∈ M, y ∈ M} $Pot(M) := \{S \mid S \leq M\}$ $Pot(\emptyset) = \{\emptyset\}$ * M Menge, A(x) Aussage forn -> Quantifiziate Aussage (1) Für alle x EM gilt A(x) [VX EM: A(x)] (2) E ex. ein xeM mit AQI []xeM: AQI] 7(1) Es ex. ein XEM mit 7A(X) 7(2) Fü alle x EM gilt ACXI.

Indexmengen

Definition

Es sei $n \in \mathbb{N}$. Für

Indexmenge:
$$\underline{n} = \{1, \dots, n\}$$

Zahlen a_1, \ldots, a_n ,

Mengen M_1, \ldots, M_n und

Aussagen A_1, \ldots, A_n definieren wir:

$$ightharpoonup \sum_{i=1}^{n} a_i := a_1 + \ldots + a_n$$

$$ightharpoonup \bigcup_{i=1}^n M_i := M_1 \cup \ldots \cup M_n$$

$$ightharpoonup \cap_{i=1}^n M_i := M_1 \cap \ldots \cap M_n$$

$$\bigvee_{i=1}^n A_i := A_1 \vee \ldots \vee A_n$$

$$ightharpoonup \bigwedge_{i=1}^n A_i := A_1 \wedge \ldots \wedge A_n$$

$$\sum_{i=1}^{5} 1 = 5$$

$$\sum_{i=1}^{n} a_{i} = 1 + 2 + 3 + 4 + 5$$

$$\sum_{i=1}^{n} a_{i} = 1$$

$$\sum_{i=1}^{n} a_{i} = 1$$

$$\sum_{i=1}^{n} a_{i} = 1$$

Indexmengen (Forts.)

Verallgemeinerung auf beliebige Indexmengen 1.

Definition

Für jedes $i \in I$ sei M_i eine Menge.

▶ Wir definieren $\bigcup_{i \in I} M_i$ durch

$$x \in \bigcup_{i \in I} M_i : \Leftrightarrow \text{ es gibt } i \in I \text{ mit } x \in M_i.$$

▶ Wir definieren $\bigcap_{i \in I} M_i$ durch

$$x \in \bigcap_{i \in I} M_i :\Leftrightarrow \text{ für alle } i \in I \text{ gilt } x \in M_i.$$

Indexmengen (Forts.)

Verallgemeinerung des Begriffs paarweise verschieden.

Definition

Sei I eine Menge und für jedes $i \in I$ sei x_i ein Objekt.

Die Objekte $x_i, i \in I$, heißen *paarweise verschieden*, wenn für alle $i, j \in I$ gilt: $x_i = x_j \Rightarrow i = j$.

Beispiele

- ▶ Die Zahlen n^2 , $n \in \mathbb{N}$, sind paarweise verschieden.
- ▶ Die Zahlen n^2 , $n \in \mathbb{Z}$, sind nicht paarweise verschieden.

$$(-1)^2 = 1^2$$

Mengenpartitionen

Definition

- ▶ Zwei Mengen A, B heißen *disjunkt*, wenn $A \cap B = \emptyset$.
- Sei I eine Menge und für jedes $i \in I$ sei M_i eine Menge. Die $M_i, i \in I$, heißen paarweise disjunkt, wenn für alle $i, j \in I$ mit $i \neq j$ gilt: $M_i \cap M_j = \emptyset$.
- Es sei \mathcal{M} eine Menge von Mengen. Die Elemente von \mathcal{M} heißen *paarweise disjunkt*, wenn je zwei davon disjunkt sind, d.h. wenn für alle $M, M' \in \mathcal{M}$ mit $M \neq M'$ gilt: $M \cap M' = \emptyset$.

Erinnerung P: Menge der Primzahlen in N.

Beispiel

```
Für p \in \mathbb{P} sei M_p := \{p^n \mid n \in \mathbb{N}\} (d.h. die Menge aller Potenzen von p).
```

Dann sind die Mengen M_p , $p \in \mathbb{P}$ paarweise disjunkt.

Es sei M eine Menge.

Definition

Eine Partition von M ist eine Menge \mathcal{P} nicht-leerer, paarweise disjunkter Teilmengen von M mit $M = \bigcup_{C \in \mathcal{P}} C$.

Die Elemente $C \in \mathcal{P}$ heißen *Teile* der Partition.

Bemerkung

Für jede Partition \mathcal{P} von M ist $\mathcal{P} \subseteq \operatorname{Pot}(M) \setminus \{\emptyset\}$.

Beispiele

- ▶ $\mathcal{P} = \{\{n \in \mathbb{N} \mid n \text{ gerade}\}, \{n \in \mathbb{N} \mid n \text{ ungerade}\}\}$ ist eine Partition von \mathbb{N} mit zwei Teilen. ohne führende Wallen
- ▶ $\mathcal{P} = \{\{n \in \mathbb{N} \mid n \text{ hat genau } k \text{ Dezimalstellen}\} \mid k \in \mathbb{N}\}$ ist eine Partition von \mathbb{N} mit unendlich vielen Teilen.
- ▶ Die Menge $\mathcal{P} = \{ \{p^n \mid n \in \mathbb{N}\} \mid p \in \mathbb{P} \}$ ⊆ \mathcal{P} ist keine Partition von \mathbb{N} .
- ▶ Die einzige Partition von \emptyset ist $\mathcal{P} = \emptyset$.

Bemerkungen

- ▶ Sind M, N endliche, disjunkte Mengen, so gilt $|M \cup N| = |M| + |N|$.
- ▶ Sind M_1, \ldots, M_n endliche, paarweise disjunkte Mengen, so gilt

$$|\bigcup_{i=1}^{n} M_i| = \sum_{i=1}^{n} |M_i|.$$

▶ Ist M eine endliche Menge und \mathcal{P} eine Partition von M, dann ist

$$|M| = \sum_{C \in \mathcal{P}} |C|.$$

1.3 Beweisprinzipien

Direkter Beweis

Ziel

Zeige die Implikation $A \Rightarrow B$.

[A -> B ist wah.]

Methode

Finde und verwende Implikationen

$$ightharpoonup A_1 \Rightarrow A_2$$

$$ightharpoonup A_2 \Rightarrow A_3$$

•

$$ightharpoonup A_{n-1} \Rightarrow A_n$$

für eine natürliche Zahl n mit

$$ightharpoonup A = A_1$$

$$\triangleright$$
 $B = A_n$

Direkter Beweis (Forts.)

Beispiel

Für alle $z \in \mathbb{Z}$ gilt: z ungerade $\Rightarrow z^2$ ungerade.

Sei
$$z \in \mathbb{Z}$$
 (beliebig)

Zu zeigen: \overline{z} ungerade \Longrightarrow z^2 ungerade

An $\overline{A_2}$
 \overline{z} ungerade \Longrightarrow $\overline{a_2}$ es z^2 ungerade

 $\overline{A_3}$
 $\overline{A_2}$
 $\overline{A_3}$
 $\overline{A_4}$
 $\overline{A_2}$
 $\overline{A_2}$
 $\overline{A_3}$
 $\overline{A_4}$
 $\overline{A_2}$
 $\overline{A_2}$
 $\overline{A_3}$
 $\overline{A_3}$
 $\overline{A_4}$
 $\overline{A_2}$
 $\overline{A_3}$
 $\overline{A_4}$
 $\overline{A_2}$
 $\overline{A_3}$
 $\overline{A_4}$
 $\overline{A_5}$
 $\overline{A_5}$

Kontraposition

Ziel

Zeige die Implikation $A \Rightarrow B$.

Methode

Zeige stattdessen: $\neg B \Rightarrow \neg A$.

Beruht auf der Tautologie: $(A \rightarrow B) \Leftrightarrow (\neg B \rightarrow \neg A)$.

Beispiel

Für alle $z \in \mathbb{Z}$ gilt: z^2 gerade $\Rightarrow z$ gerade.

Behauptung: Für alle z e Z gilt: z² gerade -> z gerade. Bewein: Zeiger stattdemen:

. Für alle ze Z gilt: z micht gerade =) z² micht gerade In anderen Worten:

. Für alle ze E gilt: z ungerade =) z² ungerade. Das haben wir bereits bens'eser.

Beweis einer Aquivalenz

Beispiel

$$[A \Leftrightarrow B] \Leftrightarrow [(A \Rightarrow B) \land (B \Rightarrow A)]$$

Beispiel

Beispiel $A: z^2$ gerade Für jede ganze Zahl z gilt: B: z gerade Genau dann ist z^2 gerade, wenn z gerade ist.

Widerspruchsbeweis

Ziel

Zeige

Methode

Zeige stattdessen: $\neg A \Rightarrow (B \land \neg B)$ für eine passende Aussage B.

Beweis der Methode

- ▶ $B \land \neg B$ ist falsch.
- ▶ Aus $\neg A \Rightarrow (B \land \neg B)$ folgt (per Definition):
- ▶ $\neg A \rightarrow (B \land \neg B)$ ist wahr.
- ▶ Aus der Definition von \rightarrow folgt: $\neg A$ ist falsch.
- ▶ Damit ist A wahr.

Widerspruchsbeweis (Forts.)

Beispiel

$$\sqrt{2} \notin \mathbb{Q}$$
. A

Bewein: Annahme: $\sqrt{2} \in \mathbb{Q}$ [Ausrage ^{7}A]

⇒) & ex. m.n ∈ N mit

 $(\sqrt{2}' = \frac{m}{n})$ und (m ungerade oder n ungerade)

 $\xrightarrow{\mathbb{Z}}$
 $\xrightarrow{\mathbb{Z}}$

=) $3 \text{ ke } \mathbb{N} \text{ mist } m = 2 \text{ k} \text{ (Def. non-general)}$ =) $2n^2 = m^2 = (2k)^2 = 4k^2$ =) $n^2 = 2k^2$ (durch 2 teiler) =) $n^2 \text{ general}$ (Def. non-general) =) n general (else benieve) =) n general (else benieve)

Vollständige Induktion

Ziel

Für alle $n \in \mathbb{N}$ gilt A(n).

Methode

- ► Führe die folgenden Beweisschritte durch:
 - ► Induktionsanfang: Zeige A(1) ist wahr.
 - ► Induktionsschritt: Zeige die Implikation $A(n) \Rightarrow A(n+1)$ für alle $n \in \mathbb{N}$.
- ▶ Dann ist A(n) für alle $n \in \mathbb{N}$ wahr.

Man spricht präziser von einer vollständigen Induktion über n. Im Induktionsschritt nennt man die Aussage A(n) die Induktionsvoraussetzung.

(A(n) who waken)

Vollständige Induktion (Forts.)

Beweis des Prinzips

Beruht auf der folgenden Eigenschaft von N:

Für jede Teilmenge $A \subseteq \mathbb{N}$ gilt: Ist $1 \in A$ und ist für jedes $n \in A$ auch $n+1 \in A$, dann ist $A = \mathbb{N}$.

Bei der vollständigen Induktion zeigen wir:

Die Menge $A := \{n \in \mathbb{N} \mid A(n) \text{ ist wahr}\}$ erfüllt diese Bedingung.

Damit ist $A = \mathbb{N}$.

Vollständige Induktion (Forts.)

Beispiel

Für alle $n \in \mathbb{N}$ gilt $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

Beweis

Vollständige Induktion über n.

Sei A(n) die Aussageform $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

Induktionsanfang: A(1) ist waler. Linke Seite: $\sum_{i=1}^{n} i = 1$, Rechte Seite: $\frac{1(1+1)}{2} = 1$ Induktionsannalime: A(n) ist waler, d.h. $\sum_{i=1}^{n} i = \frac{n(n+n)}{2}$ Industionnelist: A (n) => A(n+1) $\sum_{i=1}^{n} i = \sum_{i=n}^{n} i + (n+n)$ $\frac{T.A.}{=} \frac{n(n+1)}{2} + (n+1)$ $= \frac{n^2 + n + 2n + 2}{2} = \frac{n^2 + 3n + 2}{2} = \frac{(n+n)(n+2)}{2}$

Vollständige Induktion (Forts.)

Bemerkung

Es gibt verschiedene Varianten der Induktion, z.B.

- Induktionsanfang bei $n_0 \in \mathbb{N}$ statt bei 1. *Beginne un'* $A(n_0)$ Damit wird die Aussage A(n) für alle $n \geq n_0$ gezeigt.
- ▶ Induktionsvoraussetzung: $A(1) \land ... \land A(n)$ anstelle von A(n).