基於康威生命模型模擬醫療情境

曾凰嘉 國立中山大學 B063022025 林家妤 國立中山大學 B063040056 陳縵欣 國立中山大學 B063040059

陳少洋 國立中山大學 B063040061

王譽鈞 國立中山大學 B065040034

摘要

1. 簡介

醫院醫生過少造成醫生經常需要於半夜值班 照料病人的緊急情況,早上在繼續替病人看診, 工作時數經常遠超出合理範圍,年輕醫師鑑於這 個情況,紛紛轉往選擇當皮膚科醫師、耳鼻喉科 醫師等較不需要高工時、高工作壓力的工作環境, 造成醫院的年輕醫生比例逐年降低,但是病人的 人數卻還是居高不下,因此醫院的排班就沒有充 足的人力可以使用,再加上台灣跟國外相比起來 有著健全的健保制度,不論大病、小病,醫院被 當成自家廚房一樣進出,小病也找醫生,大病也 找醫院,造成醫療資源耗盡,上述這些情況使得 醫師沒有足夠的休息時間,精神狀況不佳的情況 下,替病人看診或治療時容易導致錯誤的判斷, 若是沒治療好病患還可能要接受病患的指責甚至 挨告,心靈上遇到極大的打擊,長久下來,醫師 的身心狀況出現許多問題,例如:惡性腫瘤、憂 鬱症、心臟病,甚至自殺,所以透過康威人工生 命模型來模擬病毒的擴散,病毒擴散範圍若是過 大導致醫療資源不足以壓抑制病毒,最後病毒大 爆發,醫生也紛紛倒下,造成瘟疫危機。

2. 相關研究

我們決定使用康威生命遊戲當作我們的樣版,把原本的規則微做調整,來模擬醫生過勞的情形。康威生命遊戲是假設宇宙是一個無邊無際的二維網格,而且每個網格都為正方形。如下圖

所示:

圖 1.康威生命遊戲模型

以上的規則,是在模擬一個有生命的細胞會 因為孤獨而死亡、有夥伴而生存、糧食資源不足 死亡,還有生物繁殖等等各種行為,而模擬出 「人工生命」。

3. 程式設計方式 or 討論

本次程式實作以康威生命遊戲(Conway's Game of Life)為啟發,模擬台灣目前醫療人力情境。以醫院人力角色情境,主要分別有三種類型實作,以狀態分為:一般居民(Normal)、受感染的居民(Infected)(或就醫居民 Patient,本篇簡稱患者),以及醫師(Doctor)。

在描述實作之前,依據衛生福利部統計來做 為程式上的參數設定,例如患者與醫師比例 (ratio)等。

針對能夠專科治療疾病的西醫師,根據衛生福利部統計[1],合法執業醫師人數約為 47,426人,於 107 年度全台灣醫院平均每日服務量為440,535人次,其中包含門診420,283人次,與急診20,252人次。

台灣目前患者與醫師比為 440, 535/47, 426 = 9.289。此外,根據衛生福利部 107 年專科醫師核准發證人數為 1,373 位,平均一日核發 3.76 位 (1,373 人 / 365 日)醫師。

其相關參數定義如下:

normal:尚無受感染、生病,而無須就醫及看診的一般居民。

doctor:專責看診、治療的醫師。

Infected (或 Patient):突發感染或是被感染而就醫的居民(統稱患者)。

self_healing_ratio:受到某個疾病感染的痊癒機率,預設為 0.4,並期望在無須醫師的治療下痊癒。

turn:程式實作上稱為輪次,實際在模擬以時間 日為基本單位。

ratio:患者與醫師比,等同於患者除醫師之比例,即 9.289。

3.1 演算法

程式以康威生命模型為基礎的變形實作。 每一輪次(每日):

- 1. 每日隨機產生 15~25 位 由一般居民突發性 感染(就醫)。
- 2. 每日產生 "痊癒機率X目前患者人數" 患者 會自我痊癒。
- 3. 每日隨機產生 2~6 位 (由 3.76 四捨五入為 4,期望值為 4)的執業醫師。

3.2 規則

台灣目前患者與醫師比為 440,535/47,426 = 9.289,假設目前患者與醫師比能夠讓醫療達成平衡。並在實作上訂定下列規則:

規則(一):

若 ratio 大於目前每日台灣的病人與醫師人數比(即 9.289,程式實作上設為 9 人),則根據衛生福利部 107 年專科醫師核准發證人數為 1,373 人,平均一日核發 3.761 人(1,373 人/365 人,程式實作上設為 1~3 人)醫師。

透過程式模擬:台灣病人超過於一定的患者醫師比,則透過程式模擬該情境實現,則每日產生 0~7 位醫師能夠達到平衡。

規則(二):

若每位角色(醫師、居民、患者),其周圍 (實作以八方位為主)有超過 5 位患者,則受到隨 機感染及發病的情況增加,每輪增加 0~3 位醫師/ 居民/患者受到感染(患者自癒,則可能有再次感 染及就醫之情況)。

規則(三):

醫師專責治療十二方位之患者(模擬現實的 鄰近居民),假設治療後是百分之百的康復率,則 在十二方位內患者接能夠得到良好治療,由感染 狀態恢復成一般居民。

3.3 程式架構

程式實作上以 MVC 模式(Model - view - controller)作為軟體的架構設計,其中 Model 負責演算法及邏輯處理, View 負責使用者圖形介

面,而 Controller 負責請求控制及訊號控制,其中:

Model 負責規則(函式 rule),每輪日產生醫師與患者(函式 generate),計算醫師、患者、居民的邏輯處理(函式 countPeople)、處理超出邊界問題(函式 overBorder)、印出模擬世界(函式 showWorld)。

View 負責建立 1800×1000 大小之視窗、產生 canvas 畫布、加速及減速按鈕、顏色標記、Label(印出居民、醫師、患者、患者與醫師比等 相關資訊)、載入圖片。

Controllor 負責按鈕的加速及減速控制。

3.4 問題與討論

本次使用 Python3 程式語言實作,執行速度 上仍有缺陷,Python3 解譯器(Interpreter)相較於 C、C++語言,在執行方面先天性速度較編譯器 (Compiler)慢,倘若能夠透過硬體支援,便能將 模擬世界更有複雜性,更貼近台灣目前的醫療情 境。

舉例來說,每個居民之間的距離不盡不同, 患者恢復後仍有觀察期(即第四種角色狀態),擴 大模擬世界的大小(如台灣面積大小 36,193 平方 公里),以及參考人口密度等。

實作上為了簡單明確區別角色狀態及定位,程式實作上的治療者只有醫師,然而,醫師有更細分的專科類別及權屬別,如中醫師、藥師,以及協助照顧病人的護理師等。

由於設計上只考量到十二方位的治療周圍, 演算法設計上還能夠更好,舉例來說,若在方圓 幾公里內居民,能夠接受醫生的治療,就更能夠 達到預測的真實性。

4. 結論

4.1 社會議題探討

病毒的擴散往往是不可預期的,當小區域內 有數人感染時,傳染的人數就為以指數型成長, 若沒有適當的控制,病毒就會持續不斷,範圍愈 趨愈廣而一發不可收拾。此外,醫療團隊也需要 相對的時間來製造疫苗或是給予病情控制相關的 解藥,以 H1N1 為例,當年的 H1N1 除了擴散迅 速,人數過多導致醫院克流感與疫苗供不應求的 情況在剛爆發時最為顯著,一針難求且資源不 足,形成了惡性循環。

在台灣,健保機制完善,國民共同負擔,使 接受醫療服務的價格大幅下降,民眾三不五時就 找醫生,有大量的病人不斷的回診只為了一些已 經被診斷過需要時間復原的疾病,尋求醫生有更 多的協助,導致台灣醫生的高工時,產生醫生過 勞的問題,再加上醫生可能需要24小時隨傳隨 到,不一定每個醫生都能擁有適度的休息,也可 能會形成另一個惡性循環。

4.2 程式模擬

本次程式使用 Python3 程式語言實作,配合 的環境為 Ubuntu 18.04。藉由程式模擬,可以展 現醫療界的真實情況。當區域內有充足的醫療資 源時,患者的數量會控制在一定的範圍內,此時程 式中顯示綠色燈號,即患者醫師比<9。(圖一)而 當每位角色(醫師、居民、患者),其周圍(實作以 八方位為主)有超過5位患者,則受到感染及發病 的情況就會增加,導致患者人數上升,此時程式 中顯示黃色燈號提示,即患者醫師比介於9到17。 (圖二)若此時不加以想辦法如增派醫師人力資源 等就會導致患者人數持續暴增,此時程式中顯示紅 色燈號警示,即患者醫師比大於 17。(圖三)此時 病患感染數已達到無法收拾的地步,最終導致區 域內所有人都被感染。(圖四)因此,若能在患者 還未群聚感染時,調派足夠的醫師人力資源,就能 在病毒擴散前將區域內患者醫治,則能成功讓病 **毒得到控制**,進而達到區域平衡。

圖 2

圖 4

4.3 應用與未來展望

透過模擬結果,如果要掌握一個區域的醫療 機構的數量,可以參考模型的結果,在不同的地 點出現病毒擴散,不斷調整找出最佳建立位置。 藉由模擬結果也能知道一個區域最少的或最多需 要幾名醫生人力來維持一個區域的平衡,讓醫生 不至於過勞,也讓病患都能安穩的接收醫療服務。 加入地形地勢,給予不同區域不同的權重,模擬 出最真實的情況,讓一個地區在建設醫療服務時, 達成區域的平衡,使人們都能享有完整的醫療資 源,也得以解決醫生過勞問題。

5. 參考文獻

- [1]. 衛生福利部統計處 107 年醫療服務量 https://dep.mohw.gov.tw/DOS/np-1865-113.html
- [2]. Cornell Math Explorers' Club

https://www.google.com/url?sa=i&source=ima ges&cd=&ved=2ahUKEwimhOGUs8nlAhUEE 6YKHSSgC1IQjRx6BAgBEAQ&url=http%3A %2F%2Fpi.math.cornell.edu%2F~lipa%2Fmec %2Flesson6.html&psig=AOvVaw0OPAJtLDS 68OFrZZdIS5 b&ust=157271099361550

- [3]. Conway's Game of Life, 2019/10/20 https://en.wikipedia.org/wiki/Conway%27s Ga me_of_Life
- [4]. 算法描繪的「人造生命」,如同顯微鏡下的 實景 Demo·代碼, 2019/01/31.

https://kknews.cc/news/agnllnj.htmlhttps://kkne ws.cc/zh-mo/news/agnllnj.html