Recognizing Chinese Calligraphy Styles: A Cage Fight

Chen Yu-Sheng, Li Haihong, Su Guangjun {gsu2, hhli, yusheng}@stanford.edu CS229 Machine Learning, Stanford University

Confusion Covar

0.9415

Introduction

- Our goal is to recognize different Chinese Calligraphy script styles using machine learning models.
- Support Vector Machine (SVM), Softmax classification, k-Nearest Neighbors (kNN), Random Forests (RF), and Convolutional Neural Network (CNN) with different feature extraction techniques are compared in this classification problem.

Data

Figure	1: Five	different	Chinese	calligraphy	styles

Style	Train Set	Test Set
Regular	1500	505
Clerical	1500	500
Seal	1500	500
Running	1500	514
Cursive	1500	500

Table 1: Description of dataset

Experimental Results and Analysis

Algorithm

Softmax Classification + HOG

Training Accu.

96.80%

Testing Accu.

95.55%

1. CNN (11 Layers) * is the result cited from Boqi Li, "Convolution Neural Network for Traditional Chinese Calligraphy Recognition", CS 231N Final Project.

Conclusion

- For this classification problem, Softmax classifier with HOG descriptor outperforms all other ML algorithms, including CNN and SVM.
- Softmax with HOG can even beat human judgment with respect to running and cursive styles.
- Traditional ML with relevant features can be more accurate and efficient than CNN, while CNN can do excellent jobs without designing features (domain knowledge)
- Feature extraction is the key factor to this problem.

Future Works

- Train our models to classify Calligraphers' styles. (maybe new feature is needed).
- Build a more complex CNN configuration to complete the more sophisticated tasks.