Chapter 6

Sterling Jeppson

September 17, 2024

Lemma 6.1.a. $\forall x \in \mathbb{R}, x \neq 3 \implies x^2 - 2x + 3 \neq 0.$

Proof. Let x be any real number such that $x \neq 3$. We must show that $x^2 - 2x + 3 \neq 0$. Assume that it is equal to 0 and derive a contradiction. Completing the square of $x^2 - 2x + 3 = 0$ we obtain

$$x^{2} - 2x + 3 = 0$$

$$(x^{2} - 2x + 3) + 1 = 0 + 1$$

$$(x^{2} - 2x + 1) + 3 = 1$$

$$x^{2} - 2x + 1 = -2$$

$$(x - 1)^{2} = -2$$

which is a contradiction since $\forall y \in \mathbb{R}, y^2 \geq 0$.

Lemma 6.1.b. $\exists x \in \mathbb{C}, x \neq 3 \land x^2 - 2x + 3 = 0.$

Proof. When dealing with complex numbers the prior proposition does not hold. To show this we show that the negation is true. Let $x = 1 + i\sqrt{2}$. This is not equal to 3 because the definition of equality on complex numbers is equal real and imaginary parts and $1 \neq 3$ and $\sqrt{2} \neq 0$. Next we verify that $x^2 - 2x + 3 = 0$.

$$x^{2} - 2x + 3 = 0$$

$$(1 + i\sqrt{2})^{2} - 2(1 + i\sqrt{2}) + 3 = 0$$

$$(1 + i\sqrt{2}) \cdot (1 + i\sqrt{2}) - 2 - i \cdot 2\sqrt{2} + 3 = 0$$

$$1 + i \cdot 2\sqrt{2} + (i\sqrt{2})^{2} - i \cdot 2\sqrt{2} + 1 = 0$$

$$(1 + 1) + (i \cdot 2\sqrt{2} - i \cdot 2\sqrt{2}) + (-1 \cdot 2) = 0$$

$$2 + 0 - 2 = 0$$

$$0 = 0$$

Lemma 6.2. $\forall n \in \mathbb{N}, 2 < n < 3 \implies 7n + 3 \text{ is odd.}$

Proof. The premise is false since there are not natural numbers between 2 and 3 and n is a natural number. Therefore the conclusion follows vacuously.

Lemma 6.3. $\forall x \in \mathbb{Z}$, if x is odd then x^2 is odd.

Proof. Let x be some odd integer. Then x = 2k + 1 for some integer k. It follows that

$$x^{2} = (2k+1)^{2} = (4k^{2} + 4k + 1) = 2 \cdot (2k^{2} + 2k) + 1$$

Lemma 6.4. $\forall x \in \mathbb{Z}$, if x is even, then 7x - 5 is odd.

Proof. Let x be an even integer, so x = 2k for some integer k. It follows that

$$7x - 5 = 7(2k) - 5 = 14k - 5 = 2 \cdot (7k - 3) + 1$$

Lemma 6.5. $\forall a, b, c \in \mathbb{Z}$, if a and c are odd, then $a \cdot b + b \cdot c$ is even.

Proof. Since all integers are either even or odd b must be either even or odd. If b is even, then both $a \cdot b$ and $b \cdot c$ are even because the product of an even number with any integer is even. The sum of two even numbers is even, so $a \cdot b + b \cdot c$ is even. If b is odd, then both $a \cdot b$ and $b \cdot c$ are odd because the product of two odd numbers is odd. The sum of two odd numbers is even, so $a \cdot b + b \cdot c$ is even. Thus, in both cases, $a \cdot b + b \cdot c$ is even.

Lemma 6.6. $\forall n \in \mathbb{Z}, |n| < 1 \implies 3n - 2 \text{ is even.}$

Proof. Given |n| < 1, the only integer that satisfies this inequality is n = 0. Substituting n = 0 into the expression, we have

$$3 \cdot 0 - 2 = -2.$$

Since -2 can be written as $2 \cdot (-1)$, it is an even number.

Lemma 6.7. $\forall z \in \mathbb{Z}, z \text{ is odd} \implies \exists a, c \in \mathbb{Z}, z = a^2 - c^2.$

Proof. Since z is odd, we can write z = 2k + 1 for some integer k. Let a = k + 1 and c = k. Then,

$$a^2 - c^2 = (k+1)^2 - k^2$$
.

Expanding this, we get

$$(k+1)^2 - k^2 = (k^2 + 2k + 1) - k^2 = 2k + 1,$$

which is exactly z. Therefore, there exist integers a and c such that $z=a^2-c^2$.