Multiple Testing Project: p-value

2.2 P-value

1. Distribution of the p-value under the null

1.1 Show that for any α , $c_{\alpha} = F_H^{-1}(1-\alpha)$

We know that $\alpha = 1 - F_H(c_\alpha)$ from the definition of c_α .

$$\alpha = 1 - F_H(c_\alpha)$$

$$\alpha - 1 = -F_H(c_\alpha)$$

$$-(\alpha - 1) = F_H(c_\alpha)$$

$$1 - \alpha = F_H(c_\alpha)$$

$$F_H^{-1}(1-\alpha) = c_\alpha$$

$$c_{\alpha} = F_H^{-1}(1 - \alpha)$$

Q.E.D.

1.2 Show that the p-value of the test, as a function of the data X used, is given by $p(X) = 1 - F_H(T(X))$.

The p-value is defined as $p-value = inf\{\alpha : T(X) \in R_{\alpha}\}\$

Which is to say that the p-value is the smallest α for which T(X) is in the region R_{α} of the probability distribution P_H

So the p-value is an instance of α , which is defined as $\alpha = 1 - F_H(c_\alpha)$ where c_α is chosen so that the equation is true. Therefore, if we replace c_α with our test statistic $T(\mathbf{X})$, we get a $p(\mathbf{X}) = 1 - F_H(\mathbf{X})$.

This matters because it highlights that the choice of α sets the minimum p-value for **X** as $p(\mathbf{X})$ such that one rejects the hypothesis that X is from the same distribution as Y when $T(\mathbf{X}) > c_{\alpha}$.

From the previous question we know, $F_H(c_\alpha) = 1 - \alpha$

$$F_H(c_\alpha) = 1 - P_H[T(\mathbf{X}) > c_\alpha]$$

$$P_H[T(\mathbf{X}) > c_{\alpha}] = 1 - F_H(c_{\alpha})$$

$$P_H[T(\mathbf{X}) > \mathbf{x}] = 1 - F_H(\mathbf{X})$$

$$p(\mathbf{X}) = 1 - F_H(\mathbf{X})$$

1.3 Show that for any univariate random variable y with continuous distribution function F, the random variables F(y) and 1 - F(y) follow the uniform distribution.

resource resource

We know a function to be uniformly distributed if it has constant probability for any input value in the range for which it is defined. Say y_i is some value for which $F_Y(y_i)$ is defined. The set of all y_i is denoted as **Y** and the probability of $F_Y(\mathbf{Y})$ is given by $P[F_Y(\mathbf{Y})]$.

 F_Y is uniformly distributed when $P[F_Y(y_1)] = P[F_Y(y_2)]$ where y_1 and y_2 are 2 distinct values in Y.

$$P[F_Y(\mathbf{Y}) \le y] = P[F^{-1}(F_Y(\mathbf{Y})) \le F^{-1}(y)] = P[\mathbf{Y} \le F^{-1}(y)]$$

We know that F_Y is strictly increasing $F_Y^{-1}(F_Y(\mathbf{Y})) = y$ by the definition of the definition of a quantile function which is the generalized inverse of a CDF. We use this property to concolude:

$$P[\mathbf{Y} \le F_Y^{-1}(y)] = F_Y(F_Y^{-1}(y)) = y$$

This is true for all values of \mathbf{Y} .

By definition if a function ${\cal F}_Y$ follows the uniform distribution, so does $1-{\cal F}_Y$

1.4 Using the above results, show that the p-value follows the uniform distribution under H.

$$\alpha = 1 - F_H(c_\alpha)$$

If $F_H(c_\alpha)$ follows a uniform distribution, $1 - F_H(c_\alpha)$ does too, as proven in the previous exercise.