Weakest Preconditions, v.2

Part 1: Definitions and Basic Properties

CS 536: Science of Programming, Fall 2022

A. Why

• Weakest liberal preconditions (*wlp*) and weakest preconditions (*wp*) are the most general requirements that a program must meet to be correct.

B. Objectives

At the end of today you should understand

• What wlp and wp are and how they are related to preconditions in general.

Part 1: The Deterministic Case

C. Weakening the Precondition of $\models_{tot} \{p\} S \{q\}$

- Let's assume that S is deterministic. Figure 1 illustrates how $\vDash_{tot} \{p\} S \{q\}$ works: If you take any state in p and follow the arrow by applying S, you end in a state that satisfies q.
 - (To illustrate partial correctness, we would add arrows from p to $\neg q$ or to \bot .)
- The predicate r intersects p, so states within $p \wedge r$ are guaranteed to lead (via S) to states in q.
- Now, states in $\neg p \land r$ might lead via S to p or $\neg p$ or to \bot , but if all of them lead to p, then we could extend our precondition p and we'd have $\{p \lor \neg p \land r\} S \{q\}$, which simplifies to $\{p \lor r\} S \{q\}$.
 - A shorter way to say this is if $\vDash_{tot} \{p\} S \{q\}$ and $\vDash_{tot} \{\neg p \land r\} S \{q\}$, then $\vDash_{tot} \{p \lor r\} S \{q\}$.
 - Of course, in general, we don't know $\models_{tot} \{ \neg p \land r \} S \{ q \}$, but if we can prove it, we can weaken the precondition p to r, which provides the user with more flexibility for running S.
- **Definition:** w is the weakest precondition of S and q (we write w = wp(S, q)) if w is a precondition that can't be weakened. I.e., $\models_{tot} \{ w \} S \{ q \}$ and there is no r strictly stronger than w such that $\models_{tot} \{ r \} S \{ q \}$.
 - We already know the converse; we've been calling it precondition strengthening: If $\vDash_{tot} \{ w \} S \{ q \}$, then knowing $r \to w$ lets us conclude (is **sufficient** for) $\vDash_{tot} \{ r \} S \{ q \}$.
 - Being the weakest precondition makes $r \rightarrow w$ a **necessary** condition for $\models_{tot} \{r\} S \{q\}$.
 - So if w is the weakest precondition, then $\{r\}$ S $\{q\}$ iff $w \rightarrow r$.
 - In terms of states, $wp(S, q) = \{ \sigma \in \Sigma \mid M(S, \sigma) \models q \}$

Figure 1: Extending Precondition of { p } S { q }

(Under total correctness)

- Recall that in general, $\models_{tot} \{ p \} S \{ q \}$ doesn't tell us anything about $M(S, \sigma)$ if $\sigma \not\models p$. But if p is weakest, we know $M(S, \sigma) \not\models q$.
 - For deterministic programs, we can state this using partial correctness: If w = wp(S, q) and S is deterministic then $\models \{\neg w \} S \{\neg q \}$. If $\sigma \models \neg w$ then $M(S, \sigma) = \{\tau\}$ where $\tau = \bot$ or $\tau \models \neg q$.
- We'll write wp(S, q) as a predicate, but technically wp(S, q) is a set of states (the set of all states that are preconditions of S and q under total correctness). As sets, there are wp(S, q) that don't correspond well to writable predicates, and in those cases we'll have to write predicates that approximate wp(S, q).
- Usually, we talk about "the" wp(S, q), but as a predicate, a wp is unique only "up to logical equivalence": If $u \Leftrightarrow w$, then u is also a wp. So in general if we have that the wp(S, q) is x > 0, then $x \ge 1$ and 0 < x, etc. are also wp's.
- But later, we'll see a syntactic algorithm that helps us calculate some *wp*'s; in those cases, we'll prefer the representation produced by the algorithm.

D. The Weakest Liberal Precondition, wlp

- The *weakest liberal precondition* is analogous to the *wp* but for partial correctness instead of total correctness.
- **Definition**: The **weakest liberal precondition** for S and q, written wlp(S, q), is a valid precondition for q under partial correctness where no strictly weaker valid precondition exists.
 - In symbols, w = wlp(S, q) iff $\models \{w\}$ S $\{q\}$ and for all $u, \models \{u\}$ S $\{q\}$ if and only if $\models u \rightarrow w$.
 - In terms of states, $wlp(S, q) = \{ \sigma \in \Sigma \mid M(S, \sigma) \bot \models q \}.$

$$wlp(S, q) \begin{cases} \sigma \in wp(S, q) & \text{iff} \quad M(S, \sigma) = \{\tau\} \vDash q \\ M(S, \sigma) = \{\bot\} \\ \sigma \in wp(S, \neg q) & \text{iff} \quad M(S, \sigma) = \{\tau\} \vDash \neg q \end{cases}$$

$$wlp(S, \neg q)$$

Figure 2: The Weakest Liberal Precondition for Deterministic S

Relationships Between wp and wlp

- Figure 2 illustrates the relationships between wp and wlp for deterministic programs.
- The top third shows the states in wp(S, q): For them, $M(S, \sigma)$ satisfies q.
- The bottom third shows the states in $wp(S, \neg q)$: For them, $M(S, \sigma)$ satisfies $\neg q$.
- The middle third shows that states that cause nontermination.
 - Adding the nonterminating states to wp(S, q) gives wlp(S, q).
 - Adding the nonterminating states to $wp(S, \neg q)$ gives $wlp(S, \neg q)$.
 - Subsequently, $\neg wp(S, \neg q) \Leftrightarrow wlp(S, q)$ and $\neg wp(S, q) \Leftrightarrow wlp(S, \neg q)$.
- And one more relationship: $wlp(S, q) \wedge wlp(S, \neg q)$ describes the states that cause nontermination.

Why Are wp and wlp Important?

- The reason wp and wlp are important is that if you have a precondition and can show that it's the
 weakest precondition, you have the most general solution to "What states can I start in and
 successfully end in q?
 - With wp, "successfully end" means "terminates satisfying q". With wlp, it means "if we terminate, we terminate satisfying q".
- The solution is most general in the sense that any state not satisfying the *wp* or *wlp* is guaranteed to *not* successfully end in *q*.
- Compare with non-weakest preconditions, where starting in a state not satisfying the precondition might end successfully or end not successfully (satisfying $\neg q$) or not terminate.

E. Examples of wp and wlp

- **Example 1**: The assignment y := x*x always terminates, so wp and wlp behave identically on it. $wp(y := x*x, x \ge 0 \land y \ge 4) \Leftrightarrow wlp(y := x*x, x \ge 0 \land y \ge 4) \Leftrightarrow x \ge 2$.
- **Example 2**: The wp and wlp of if $y \le x$ then m := x else skip fi and m = max(x, y) are $(y > x \rightarrow m = y)$.
 - Later, we'll see an algorithm for calculating the wp in this instance, but for now, intuitively, the true branch sets up the postcondition when $y \le x$. The false branch (implicitly *else skip*) runs when y > x but it does nothing, we need to already be in a state that satisfies the postcondition, namely m = y.
- **Example 3**: The weakest precondition of while $x \ne 0$ do x := x-1 od and x = 0 is $x \ge 0$. Starting with $x \ge 0$ terminates with x = 0, and starting with x < 0 doesn't terminate.

- The *wlp* of the loop and postcondition is simply *T*. Since we're ignoring termination, the body of the loop doesn't affect the fact that for *while* $x \ne 0$... to exit, x must be zero.
- Our loop terminates iff run with $x \ge 0$, so if W is our loop, then $wp(W, T) \Leftrightarrow x \ge 0$.
- We can verify $x \ge 0 \Leftrightarrow wp(W, x = 0) \Leftrightarrow wlp(W, x = 0) \land wp(W, T) \Leftrightarrow T \land x \ge 0 \Leftrightarrow x \ge 0$.
- **Example 4**: The weakest precondition of $W = while \, x > 0 \, do \, x := x-1 \, od \, and \, x \le 0 \, is \, T$ (true). Again, starting with $x \ge 0$ terminates with x = 0, and if we want to terminate with some particular value of x < 0, we can just start with x = 0 that value because the loop terminates immediately.
 - Since $T \Leftrightarrow wp(W, x \le 0) \Leftrightarrow wlp(W, x \le 0) \land wp(W, T)$, both $wlp(W, x \le 0)$ and $wp(W, T) \Leftrightarrow T$. Semantically, we can also justify this by arguing that $while \ x > 0$... terminates immediately iff $x \le 0$.
- **Example 5**: For any S and σ , either we terminate (in a state satisfying true) or we don't terminate. Therefore $wlp(S, T) \Leftrightarrow T$. Also, since $wlp(S, T) \Leftrightarrow \neg wp(S, \neg T) \Leftrightarrow T$, we see $wp(S, F) \Leftrightarrow F$. (In Figure 2 terms, the bottom third of the diagram is empty because running S in σ never terminates in a state satisfying false.)

Part 2: The Nondeterministic Case

- With nondeterministic programs, *wp* and *wlp* are more complicated (of course). The basic definitions are the same:
 - $\sigma \in wp(S, q)$ iff $M(S, \sigma) \models q$ or equivalently $\models_{tot} \{p\} S \{q\}$ iff $\models wp(S, q) \rightarrow p$
 - $\sigma \in wlp(S, q)$ iff $M(S, \sigma) \bot \models q$ or equivalently $\models \{p\} S \{q\}$ iff $\models wlp(S, q) \rightarrow p$
- Let $\Sigma_0 = M(S, \sigma)$ or $M(S, \sigma) \bot$ depending on whether we're discussing wp or wlp.
- Since Σ_0 satisfies q iff every individual state in Σ_0 satisfies q, nonsatisfaction only requires one counterexample state:
 - $\sigma \notin wp(S, q)$ iff for some $\tau \in M(S, \sigma)$, we have $\tau = \bot$ or $\tau \not\models q$ (and since τ is a state, $\tau \models \neg q$).
 - $\sigma \notin wlp(S, q)$ iff for some $\tau \in M(S, \sigma)$, we have $\tau \not\models q$ (and since τ is a state, $\tau \models \neg q$).
- But there are no constraints on other members of Σ_0 , so $\sigma \notin wp(S, q)$ and $\sigma \notin wlp(S, q)$ are both compatible with having $\tau \in M(S, \sigma)$ with $\tau \vDash q$.

F. Properties of wp and wlp for Deterministic and Nondeterministic Programs

- There are a number of properties connecting the wp, wlp, $\neg wp$, and $\neg wlp$ of q and $\neg q$.
- Some properties are common to both deterministic and nondeterministic programs:
 - 1. $M(S, \sigma) = \{\bot\} \Rightarrow wlp(S, q) \land wlp(S, \neg q)$
 - $M(S, \sigma) \bot = \emptyset$, so it $\models q$ and $\models \neg q$, so $\sigma \models wlp(S, q) \land wlp(S, \neg q)$.
 - 2. $M(S, \sigma) = \{\bot\} \Rightarrow \neg wp(S, q) \land \neg wp(S, \neg q)$
 - $M(S, \sigma) = \{\bot\} \not\models q \text{ and } \not\models \neg q, \text{ so } \sigma \models \neg wp(S, q) \land \neg wp(S, \neg q).$

- 3. $wlp(S, q) \land wlp(S, \neg q) \Rightarrow M(S, \sigma) = \{\bot\}$
 - For $\sigma \vDash wlp(S, q) \land wlp(S, \neg q)$, we must have $M(S, \sigma) \bot \vDash q \land \neg q$. So, $M(S, \sigma) \bot \equiv \emptyset$, so $M(S, \sigma) = \{\bot\}.$
- 4. $wp(S, q) \Rightarrow wlp(S, q)$
 - If $\sigma \models wp(S, q)$, then $M(S, \sigma) \models q$, so $M(S, \sigma) \bot \models q$, and so $\sigma \models wlp(S, q)$.
- 5. $wlp(S, q) \Rightarrow \neg wp(S, \neg q)$
 - If $\sigma \models wlp(S, q)$, then $M(S, \sigma) \bot \models q$, so for all $\tau \in M(S, \sigma) \bot$, $\tau \not\models \neg q$. If $\bot \in M(S, \sigma)$ then it $\not\models \neg q$, so $\tau \not\models \neg q$.
- 6. $wp(S, q) \Rightarrow \neg wlp(S, \neg q)$
 - If σ is in wp(S, q) then $M(S, \sigma) \models q$. For σ to be in $wlp(S, \neg q)$, we need every $\tau \in M(S, \sigma)$ to be either \bot or to satisfy $\neg q$. But every $\tau \in M(S, \sigma)$ satisfies q, so it's neither \bot nor satisfies $\neg q$. So if σ is in wp(S, q), it's not in $wlp(S, \neg q)$, it's in $\neg wlp(S, \neg q)$.
- There are also properties that hold for deterministic programs but not nondeterministic programs.
 - 7a. If S is deterministic, then $\neg wp(S, q) \land \neg wp(S, \neg q) \Rightarrow M(S, \sigma) = \{\bot\}$.
 - For deterministic *S*, $M(S, \sigma) = \text{some } \{\tau\}$, where either $\tau = \bot$, $\tau \models q$, or $\tau \models \neg q$. But $\sigma \models$ $\neg wp(S, q) \land \neg wp(S, \neg q)$ implies that $M(S, \sigma) \not\models q$ and $M(S, \sigma) \not\models \neg q$, which leaves $M(S, \sigma) =$ $\{\bot\}$ as the only possibility.
 - 7b. If S is nondeterministic, then $\neg wp(S, q) \land \neg wp(S, \neg q)$ doesn't imply $M(S, \sigma) = \{\bot\}$.
 - For a nondeterministic program, if $M(S, \sigma) \not\models g$ and $M(S, \sigma) \not\models \neg g$, it's still possible for $M(S, \sigma)$ to contain non- \bot states. A simple counterexample is $M(S, \sigma) = \{\tau_1, \tau_2\}$ where $\tau_1 = q$ and $\tau_2 \models \neg q$. Note it's possible that $\bot \notin M(S, \sigma)$, which definitely makes $M(S, \sigma) \neq \{\bot\}$.
 - 8a. If S is deterministic, then $\neg wp(S, q) \Rightarrow wlp(S, \neg q)$
 - $M(S, \sigma) = \{t\}$ where $\tau = \bot$, $\tau \models q$, or $\tau \models \neg q$. If $\sigma \models \neg wp(S, q)$, then $\tau \models q$ fails, which leaves $\tau = \bot$ or $\tau \models \neg q$, in which case $M(S, \sigma) - \bot \models \neg q$, so $\sigma \models wlp(S, \neg q)$.
 - 8b. If S is nondeterministic, then $\neg wp(S, q)$ doesn't imply $wlp(S, \neg q)$
 - When $M(S, \sigma) \not\models q$, there can still be a $\tau_1 \in M(S, \sigma)$ with $\tau_1 \models q$, in which case $\sigma \not\models wlp(S, \neg q)$.

G. Disjunctive Postconditions Behave Differently Under Nondeterminism

- For deterministic and nondeterministic both, the wp/wlp of a conjunction is the same as the conjunction of the *wp/wlp*'s.
 - $wp(S, q_1) \land wp(S, q_2) \Leftrightarrow wp(S, q_1 \land q_2)$
 - $wlp(S, q_1) \wedge wlp(S, q_2) \Leftrightarrow wlp(S, q_1 \wedge q_2)$
- Also, the disjunction of the *wp/wlp*'s implies the *wp/wlp* of the disjunction:
 - $wp(S, q_1) \vee wp(S, q_2) \Rightarrow wp(S, q_1 \vee q_2)$
 - $wlp(S, q_1) \vee wlp(S, q_2) \Rightarrow wlp(S, q_1 \vee q_2)$

- 5 -

- However, the other direction only works for deterministic programs:
 - For deterministic S only,
 - $wp(S, q_1 \vee q_2) \Rightarrow wp(S, q_1) \vee wp(S, q_2)$
 - $wlp(S, q_1 \vee q_2) \Rightarrow wlp(S, q_1) \vee wlp(S, q_2)$
- But for nondeterministic programs, $wp(S, q_1 \lor q_2) \Rightarrow wp(S, q_1) \lor wp(S, q_2)$ doesn't have to hold.
- The standard example for this property is a coin-flip program.
- **Example 11**: Let $flip = if T \rightarrow x := 0 \square T \rightarrow x := 1 fi$.
 - Let heads = x = 0 as and tails = x = 1, then $M(flip, \emptyset) = \{\{x = 0\}, \{x = 1\}\}$, which $\models heads \lor tails$ but $\not\models heads$ and $\not\models tails$. So $wp(flip, heads \lor tails) = T$ but wp(flip, heads) = wp(flip, tails)
- In general, let $M(S, \sigma) = \Sigma_1 \cup \Sigma_2$ where $\Sigma_1 \vDash q_1$ and $\Sigma_2 \vDash q_2$. If q_1 and q_2 are not \Leftrightarrow under σ . then $\Sigma_1 \neq \Sigma_2$. Also, assume Σ_1 and Σ_2 are not \varnothing . Then $\Sigma_1 \cup \Sigma_2 \vDash q_1 \vee q_2$, but since $\Sigma_1 \cup \Sigma_2$ includes elements that satisfy q_1 and q_2 , we don't have $\Sigma_1 \cup \Sigma_2 \vDash q_1$ or $\Sigma_1 \cup \Sigma_2 \vDash q_2$. separately.