Image Search

Peiyi Zheng

Goal:

- Accuracy
- Time Complexity
- Space Complexity

Previous Approach: Not Good Enough

- SIFT
- Bag of Words
- TF-IDF

Deep Learning: Extract Better Features

• Use ResNet for image features extraction

ResNet, 152 layers (ILSVRC 2015)

Deep Learning: Problem

Features have too many dimensions

• 3.6 GB for 150,000 images bad space complexity

• Solution: find a better representation

Similarity Preserving Binary Codes

- Idea from Iterative Quantization: A Procrustean Approach to Learning Binary Codes
- "We propose a simple and efficient alternating minimization scheme for finding a rotation of zero centered data so as to minimize the quantization error"

Iterative Quantization

- Preprocessing: dimensionality reduction via PCA \implies new matrix V
- Goal: minimize the quantization error $Q(B,R) = \|B \widetilde{V}\|_F^2$

$$\widetilde{V} = VR, B = sgn(\widetilde{V}) \longrightarrow B_{ij} \in \{-1, 1\}$$

• When Q(B,R) is smaller, B preserves more information in \widetilde{V}

Iterative Quantization

•
$$Q(B,R) = ||B - \widetilde{V}||_F^2 = nc + ||V||_F^2 - 2tr(BR^TV^T)$$

• Minimize Q(B,R) is equivalent to maximize:

$$tr(BR^{T}V^{T}) = \sum_{i=1}^{n} \sum_{j=1}^{c} B_{ij}\widetilde{V}_{ij}$$

How to maximize: $tr(BR^TV^T) = \sum_{i=1}^n \sum_{j=1}^c B_{ij}\widetilde{V}_{ij}$

- Initializing rotation matrix R to a random orthogonal matrix
- Fix R and update B: set $B_{ij}=1$ when ever $\widetilde{V}_{ij}\geq 0$ and otherwise set $B_{ij}=-1$
- Fix B and update R: compute the SVD of B^TV as $S\Omega\widehat{S}^T$ and update R to $\widehat{S}S^T$
- Iterate the procedures above for 50 times

Improvement

- The size of features database decreases to 36 MB (256 bits binary code)
- Problem: it takes about 10 seconds to perform Top-K
 similarity search(150,000 images) bad time complexity

Multi-Index Hashing

• Idea from Fast Search in Hamming Space with Multi-Index Hashing

• Basic intuition:

- Divide query b bits string into m disjoint $\frac{b}{m}$ bits substrings
- Bit strings that are close in one of the substrings might be close overall

Multi-Index Hashing

• Goal: find all images within hamming distance r from query

• Number of candidates: $N(b,r) = \sum_{k=0}^{r} {b \choose k}$

- b is the length of binary code
- $N(64,7) \approx 1$ billion \longrightarrow too many possibilities

Multi-Index Hashing: Reduce N(b, r)

• When two binary codes h and g differ by r bits or less(hamming distance), then at least one of their m substrings satisfy:

$$\parallel h^k - g^k \parallel \leq \frac{r}{m}$$

• Proof: if they differed by more than $\frac{r}{m}$ bits in each substring, then overall h and g must differ by more than r bits

Multi-Index Hashing: Reduce N(b, r)

- For each set of length $\frac{b}{m}$ substrings, find substrings of within Hamming radius of $\frac{r}{m}$
- Previously: search needed to examine N(b, r) situations

• Now need to examine only $N\left(\frac{b}{m}, \frac{r}{m}\right)$ situations in m buckets

Multi-Index Hashing: KNN Search

- Given b bits query and initialize r = m:
- For each of the *m* substrings of the query:
 - Find radius $\frac{r}{m}$ neighbors and add them to candidate set
- The candidate set is a superset of the true set of elements within hamming distance r, so compute actual set by executing full Hamming distance computation for all elements in candidate set
- Increase r in each iteration until we find more than K candidates and then return K nearest neighbors in them

Improvement

- In my implementation, b is 256 and m is 16
- We can compute the possible hamming distances between each substring offline
- Now we only need 1.5-2.0 seconds to perform a KNN search on the images database
- Further work: We can use *m* threads to accelerate the search

Result

Result

