GRIP@The Spark Foundation- Data Science & Business Analytics Internship

Author - Shweta Pamane

Task 2: Prediction using Unsupervised ML

Dataset used: Iris dataset

It can be downloaded through the following link - https://bit.ly/3kXTdox)

Problem Statement(s):

*** Predict the optimum number of clusters and represent it visually.

Import necessary libraries

```
In [2]: # Importing Libraries required for data analysis
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   from sklearn.cluster import KMeans
   import seaborn as sns
   import warnings
   warnings.filterwarnings("ignore")
```

Read the data from Dataset

'Species'], dtype='object')

```
In [3]:
         #Reading the data from Dataset
          df = pd.read_csv("Iris.csv")
          df
Out[3]:
                Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
                                                                             Species
            0
                1
                             5.1
                                           3.5
                                                         1.4
                                                                      0.2
                                                                           Iris-setosa
                2
                             4.9
                                           3.0
                                                                      0.2
            1
                                                         1.4
                                                                           Iris-setosa
            2
                 3
                             4.7
                                           3.2
                                                         1.3
                                                                      0.2
                                                                           Iris-setosa
            3
                4
                             4.6
                                           3.1
                                                         1.5
                                                                      0.2
                                                                           Iris-setosa
            4
                5
                             5.0
                                           3.6
                                                         1.4
                                                                      0.2
                                                                           Iris-setosa
                              ...
                                            ...
                                                          ...
          145 146
                             6.7
                                           3.0
                                                         5.2
                                                                      2.3 Iris-virginica
          146 147
                             6.3
                                           2.5
                                                         5.0
                                                                          Iris-virginica
          147 148
                             6.5
                                           3.0
                                                         5.2
                                                                      2.0 Iris-virginica
                                           3.4
                                                                      2.3 Iris-virginica
          148 149
                             6.2
                                                         5.4
                                                                      1.8 Iris-virginica
          149 150
                             5.9
                                           3.0
                                                         5.1
         150 rows × 6 columns
In [4]:
         df.shape
Out[4]: (150, 6)
In [5]:
         df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 150 entries, 0 to 149
         Data columns (total 6 columns):
                             150 non-null int64
         SepalLengthCm
                             150 non-null float64
                             150 non-null float64
         SepalWidthCm
         PetalLengthCm
                             150 non-null float64
         PetalWidthCm
                             150 non-null float64
         Species
                             150 non-null object
         dtypes: float64(4), int64(1), object(1)
         memory usage: 7.2+ KB
In [6]:
         # dropping Id column
          df.drop('Id', axis=1, inplace=True)
          df.columns
Out[6]: Index(['SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm',
```

Drop duplicate rows

```
In [9]: # Drop duplicate rows
    df.drop_duplicates(inplace=True)
    df.shape[0] # gives number of rows. Similarly, data.shape[1] will give number o
    f columns
## now number of rows left 147, earlier there were 150 rows.
```

Out[9]: 147

In [10]: # Check for any outliers in the numeric data
for i in df.columns:
 if df[i].dtype=='float64':
 plt.figure(figsize=(6,3))
 sns.boxplot(df[i])
 plt.show()


```
In [12]: sns.boxplot(df['SepalWidthCm']);
```


Understanding the data

```
In [13]: # Target class
    print(df.Species.value_counts())
    sns.countplot(df.Species);
```

Iris-versicolor 50 Iris-virginica 49 Iris-setosa 48

Name: Species, dtype: int64

In [14]: df.describe()

Out[14]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	147.000000	147.000000	147.000000	147.000000
mean	5.856463	3.052381	3.780272	1.208844
std	0.829100	0.426331	1.759111	0.757874
min	4.300000	2.050000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.400000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.050000	6.900000	2.500000

```
In [15]: | df.Species.unique()
```

Out[15]: array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'], dtype=object)

Out[23]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
SepalLengthCm	1.000000	-0.110155	0.871305	0.817058
SepalWidthCm	-0.110155	1.000000	-0.420140	-0.355139
PetalLengthCm	0.871305	-0.420140	1.000000	0.961883
PetalWidthCm	0.817058	-0.355139	0.961883	1.000000

In [28]: plt.figure(figsize=(10,5)) sns.heatmap(abs(df.corr()), cmap='GnBu', annot=True);

K-means clustering

Finding optimal number of clusters using elbow method

```
In [31]: #find optimal number of clusters using elbow method
    plt.plot(range(1, 11), wcss, 'go-', color='red')
    plt.title('Elbow Method')
    plt.xlabel('Number of clusters')
    plt.ylabel('WCSS')
    plt.grid()
    plt.show()
```


Applying K-means clustering

Visualize clusters

```
In [44]: # visualize clusters
         plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], s = 25, c = 'red', label
         = 'Cluster 1')
         plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], S = 25, C = blue, label
         = 'Cluster 2')
         plt.scatter(X[y_kmeans == 2, 0], X[y_kmeans == 2, 1], s = 25, c = 'green', labe
         1 = 'Cluster 3')
         # Plotting the cluster centers
         plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 1
         00, c = 'yellow', label = 'Centroids')
         plt.title('Clusters of Customers')
         plt.xlabel('Annual Income (k$)')
         plt.ylabel('Spending Score (1-100)')
         plt.grid()
         plt.legend()
         plt.show()
```


In [45]: sns.pairplot(df, hue=None)

Out[45]: <seaborn.axisgrid.PairGrid at 0x215c97e9888>

In [46]: plt.figure(figsize=(10,5))
sns.heatmap(df.corr(), annot=True)

Out[46]: <matplotlib.axes._subplots.AxesSubplot at 0x215ca3928c8>

