Hoja de Problemas 2 de Criptografía

1. Considera las variables estocásticas X,Y,Z que pueden tomar valores del conjunto $A_x = A_y = A_z = \{0,1\}$. Además $P_x = \{p,1-p\}$, $P_y = \{q,1-q\}$ y X e Y son variables de procesos estocásticos independientes. El valor de Z se determina a partir de la relación

$$Z = X + Y \mod 2$$

- a) Para un q y un p dado ¿Cuál es el valor de P_z ?
- b) Supón que no conoces P_y pero sabes que $P_z = \{l, 1-l\}$. ¿Cuál es el valor de P_y ?
- 2. Dos dados X e Y de 6 caras se lanzan
 - a) ¿Cuál es la probabilidad de la suma de sus valores?

$$Z = X + Y$$

$$b)$$

$$Z = |X - Y|$$

¿Cuál es P_z ?

3. Considera un conjunto de mensajes $P = \{0, 1\}$ un conjunto de llaves $K = \{00, 01, 10, 11\}$ y conjunto de texto cifrado $C = \{00, 01, 10, 11\}$. La transformación del cifrado es la siguiente.

K	P=0	P=1
00	00	01
00 01 10	10	11
10	01	00
11	11	10

Supóngase $P_p(0) = P_p(1) = 0.5$ y $P_k(K_i) = 0.25$.

- a) ¿Tiene este cifrado seguridad perfecta?
- b) Calcula la distancia de unicidad.
- 4. Considera un criptosistema con $P = \{a, b\}$, $K = \{k_1, k_2, k_3\}$ y $C = \{1, 2, 3\}$. Donde la matriz de cifrado es.

K	a	b
k_1	1	2
k_2	1	3
k_3	3	2

donde la distribución de probabilidad de las claves $P(k=k_1)=P(k=k_2)=1/4$, $P(k=k_3)=1/2$ y la distribución de probabilidad del texto original es P(p=a)=1/3 y P(p=b)=2/3. ¿Cuál es la probabilidad de obtener el mensaje si se conoce el texto cifrado?

5. Sea n un entero positivo. Se define el $Cuadrado\ Latino$ de orden n como la matriz L de dimensión $n \times n$ compuesta por los enteros $1 \dots n$, de tal forma que cada uno de los n enteros aparece exactamente una sola vez en cada columna. Un ejemplo de orden 3 es:

$$\begin{array}{ccccc}
1 & 2 & 3 \\
3 & 1 & 2 \\
2 & 3 & 1
\end{array}$$

Dado el el Cuadrado Latino de orden n, podemos definir el criptosistema asociado como $P = C = K = \{1...n\}$ de tal forma que la regla de cifrado sea $e_i(j) = L_{ij}$. Probar explícitamente que este criptosistema cumple la condición de seguridad perfecta si la distribución de claves es $P_k(K) = 1/n$.

- 6. Demuestra que el cifrado Afín logra seguridad perfecta.
- 7. ¿Cuál es la distancia de unicidad del cifrado por desplazamiento?
- 8. ¿Cuál es la distancia de unicidad del cifrado por el método afín?
- 9. Tenemos que el espacio del texto original y cifrado es $P = C = (Z_{26})^2$ y usamos el método afín para cifrar. ¿Cuál es la distancia de unicidad?
- 10. Considera un conjunto de mensajes $P = \{0, 1\}$ con $P_p(0) = 1/3$, $P_p(1) = 2/3$, un conjunto de llaves $K = \{00, 01, 10, 11\}$ con $P_k(00) = P_k(01) = P_k(10) = 1/5$, $P_k(11) = 2/5$, y un conjunto de texto cifrado $C = \{00, 01, 10, 11\}$. La transformación del cifrado es la siguiente:

K_i	P=0	P=1
00	00	01
01 10	10	11
10	01	00
11	11	10

- a) Define y explica qué se entiende cuando se afirma que un criptosistema tiene seguridad perfecta.
- b) Comprueba razonadamente si este criptosistema cumple la condición de seguridad perfecta. Calcula explícitamente las probabilidades $P_p(x|y)$ y $P_p(x)$.
- c) Sabiendo que el número medio de llaves espúreas para un criptosistema con $|C| \neq |P|$ y $P_k(k) = 1/k$ cumple la siguiente relación:

$$\overline{S}_n \ge |K| \left(\frac{|P|^{1-R_L}}{|C|}\right)^n - 1,$$

deduce la distancia de unicidad, n_0 para este criptosistema, suponiendo que $P_k(00) = P_k(01) = P_k(10) = P_k(11) = 1/4$.

Nota: No utilizar el teorema del cifrado perfecto para comprobar la existencia o no de seguridad perfecta en este problema.

- 11. Describe el cifrado de Vernam (one-time-pad). Demuestra explícitamente que es un cifrado perfecto, sin aplicar el teorema del cifrado perfecto. Explica razonadamente si este cifrado se puede llevar a la práctica.
- 12. Calcula la distancia de unicidad para el método de cifrado afín, mediante la función de Euler, suponiendo que estamos en un alfabeto de m símbolos. Particularizar la expresión para el inglés (m=26), español (m=27) y un lenguaje aleatorio (m=100), suponiendo que la entropía de los dos lenguajes no aleatorios es 1,25. Explica cuál es el significado de los valores numéricos que has obtenido. (NOTA: Recuerda que la función de Euler es: $\phi(N) = \prod_{i=1}^n P_i^{(e_i-1)}(P_i-1) = \prod_{i=1}^n P_i^{e_i} P_i^{(e_i-1)}$, sabiendo que $N = \prod_{i=1}^n P_i^{e_i}$).
- 13. Considera un conjunto de mensajes $P = \{0, 1, 2\}$, un conjunto de llaves $K = \{01, 02, 11, 12, 21, 22\}$, y conjunto de texto cifrado $C = \{0, 1, 2\}$. La transformación del cifrado es la siguiente.

K	P=0	P=1	P=2
01	0	1	2
02	0	2	1
11	1	2	0
12	1	0	2
21	2	0	1
22	2	1	0

- a) Explica razonadamente si esta transformación de cifrado define un criptosistema.
- b) Define y explica que se entiende que un criptosistema tenga seguridad perfecta.
- c) Comprueba razonadamente si este criptosistema cumple la condición de seguridad perfecta. Supóngase $P_k(K_i) = \frac{1}{6}$.
- 14. Explica detalladamente el concepto de llaves espúreas, poniendo un ejemplo. Sabiendo que el número medio de llaves espúreas para un criptosistema con $|C| \neq |P|$ y $P_k(k) = 1/k$ cumple la siguiente relación:

$$\overline{S}_n \ge |K| \left(\frac{|P|^{1-R_L}}{|C|}\right)^n - 1,$$

explica el concepto de distancia de unicidad y calcularla con esta expresión para las llaves espúreas. Supón que tenemos un lenguaje aleatorio con |K|=4 (con $P_k(k)=1/k$), |P|=2 y |C|=4. ¿Cuál es el significado del número que nos resulta para la distancia de unicidad?

- 15. Deduce las expresiones de $P_c(y)$ y $P_c(y|x)$ para el conjunto de de textos cifrados de un criptosistema utilizando el formalismo probabilístico. Define seguridad perfecta y razona cuál es su significado en relación a la seguridad de un criptosistema. Explicar y razonar qué relación deben cumplir $P_k(k)$ y $P_p(x)$ para que se cumpla la seguridad perfecta.
- 16. Considera un conjunto de mensajes $P = \{a, b\}$, con $P_p(a) = 1/4$ y $P_p(b) = 3/4$, un conjunto de llaves $K = \{k_1, k_2, k_3\}$ con $P_k(k_1) = 1/2$, $P_k(k_2) = P_k(k_3) = 1/4$, y un conjunto de texto cifrado $C = \{1, 2, 3, 4\}$. La transformación del cifrado es la siguiente:

	a	b
k_1	1	2
k_2	2	3
k_3	3	4

- a) Define y explica qué se entiende cuando se afirma que un criptosistema tiene seguridad perfecta.
- b) Comprueba razonadamente si este criptosistema cumple la condición de seguridad perfecta. Calcula explícitamente las probabilidades necesarias.
- c) Transforma este criptosistema en otro que no cumpla la condición de seguridad perfecta si este la cumplía, o viceversa. Razona el resultado calculando explícitamente de nuevo las probabilidades necesarias para ello.

Nota: No utilizar el teorema del cifrado perfecto para comprobar la existencia o no de seguridad perfecta en este problema.