

CST Análise e Desenvolvimento de Sistemas AOC786201 - Fundamentos de Arquitetura e Organização de Computadores

Lógica sequencial Flip-flop

Combinacional X Sequencial

Combinacional

Apresentam as saídas, únicas e exclusivamente, dependentes das combinações das entradas.

<u>Circuitos combinacionais não possuem memória.</u>

Combinacional X Sequencial

Sequencial

Saída é uma combinação das entradas e de uma saída anterior, operaram geralmente sob o comando de uma sequência de pulsos denominadas *clock*.

Circuitos sequenciais

- São construídos a partir de portas lógicas.
- Possuem SEMPRE apenas duas saídas opostas (Q e Q').
- O objetivo é forçar as saídas assumirem os seguintes níveis lógicos:
 - Q = 1 (gravar o bit 1)
 - \circ Q = 0 (gravar o bit 0)
 - Q = Q_a (mantém o estado anterior armazena)
- As saídas são alteradas através das entradas:
 - Liga SET → grava a saída Q =1
 - Liga RESET → grava a saída Q = 0
 - Desliga SET e RESET → mantém o bit
- Podem operar sem sinal de sincronismo ou com sinal de sincronismo (pelo nível ou pela borda).

Circuitos sequenciais

Estados de saída

 $Q = 1, \overline{Q} = 0$: chamado estado ALTO ou 1; também chamado estado SET

Q = 0, $\overline{Q} = 1$: chamado estado BAIXO ou 0; também chamado estado CLEAR ou RESET

SET	RESET	Q	ব
DESLIGA	DESLIGA	MANTEM	
DESLIGA	LIGA	0	1
LIGA	DESLIGA	1	0
LIGA	LIGA	PROIBIDO	

Circuitos sequenciais sem sincronismo Latch com portas NOR - SR

S	R	Q	Q	
0	0	Q	Q	→ Mantém
0	1	0	1	> RESET
1	0	1	0	→ SET
1	1	0	0	

Não tem como saber se o LATCH comercial é feito com NANDs ou com NORs.

LATCHs: são dispositivos biestáveis (possuem dois estados estáveis (0,1)).

Diagrama de tempo Latch com portas NOR – SR

Diagrama de tempo

Considerar Q inicialmente resetado

S	R	Q	Q
0	0	Q	Q
0	1	0	1
1	0	1	0
1	1	0	0

O fato do circuito manter uma informação ao longo do tempo o caracteriza como um **dispositivo de memória**.

Latch com portas NAND

Circuitos sequenciais com sincronismo

Latch com portas NOR - SR - Enable

E	S	R	Q	Q	
0	Х	X	Qa	Qa	Mantem
1	0	0	Qa	Qa	Mantem
1	0	1	0	1	RESET
1	1	0	1	0	SET
1	1	1	Х	Х	PROIBIDO

Sinal de sincronismo

- 1. Os sinais de sincronismo são normalmente chamados de **ENABLE** (nos Latchs) e **CLOCK** (nos Flip-Flops).
- Os circuitos sequenciais utilizam um sinal de sincronismo para determinar o momento em que suas saídas mudarão de estado.
- 2. O sinal de sincronismo é comum para todas as partes do circuito.
- 3. Normalmente, o sinal de sincronismo é uma onda quadrada.
- 4. Podem operar pelo **nível** ou pela **borda**.

Sinal de sincronismo operando pelo nível

- 1. É o sinal de **ENABLE** utilizado nos **LATCHs**.
- 2. Utiliza diretamente o **nível alto ou baixo** para determinar a mudança das saídas.

Nível baixo (0)

Nível alto (1)

Sinal de sincronismo - operando pela borda

- 1. É o sinal de CLOCK utilizado nos FLIP-FLOPS.
- 1. Utiliza apenas a borda de transição do clock para determinar a mudança das saídas. Podendo ser borda de SUBIDA (0 \rightarrow 1) ou borda de DESCIDA (1 \rightarrow 0).

Características dos Flip-Flops

1. Suas **entradas de controle J e K** fazem o mesmo papel do SET e RESET respectivamente.

$$J = SET \rightarrow Q = 1$$

$$K = RESET \rightarrow Q = 0$$

- 1. O estado proibido foi substituído pelo estado **TOGGLE** (de inversão).
- 2. Sua entrada de sincronismo é chamada de CLOCK e opera pela borda.
- 3. O sinal de *sincronismo* é indicado por um pequeno triângulo na entrada do *clock;*

Flip-Flop JK

O funcionamento do flip-flop JK é semelhante ao do RS. A diferença é que o flip-flop JK não possui a condição proibida. Na situação em que J = K = ATIVO a saída é complementada.

Exercício: Obtenha a tabela verdade do Flip-Flop operando na borda de subida do clock.

J	K	CLK	Q	Q'	

Flip-Flop JK - Tabela Verdade

O funcionamento do flip-flop JK é semelhante ao do RS. A diferença é que o flip-flop JK não possui a condição proibida. Na situação em que J = K = ATIVO a saída é complementada.

Exercício: Obtenha a tabela verdade do Flip-Flop.

J (set)	K (reset)	CLK	Q	Q'	função

Flip-Flop JK - Tabela Verdade

O funcionamento do flip-flop JK é semelhante ao do RS. A diferença é que o flip-flop JK não possui a condição proibida. Na situação em que J = K = ATIVO a saída é complementada.

Exercício: Obtenha a tabela verdade do Flip-Flop operando na borda de subida do clock.

J (set)	K (reset)	CLK	Q	Q'	função
X	X	0, 1 ou ↓	Qa	Qa'	Mantém
0	0	1	Qa	Qa'	Mantém
0	1	1	0	1	RESET
1	0	1	1	0	SET
1	1	1	Qa'	Qa	Troca (TOGGLE)

Flip-Flop JK - Diagrama de tempo

Flip-Flop JK

Obter a tabela verdade do Flip-Flop abaixo sabendo que o clock é sensível a borda de descida.

J	K	CLK	Q	Q'	
X	X	0, 1 ou ↑	Qa	Qa'	Mantem
0	0	\downarrow	Qa	Qa'	Mantem
0	1	\	0	1	RESET
1	0	↓	1	0	SET
1	1	\	Qa'	Qa	TOGGLE

B

Q

Exercícios Flip-Flop JK

Obtenha a tabela verdade e diagrama de tempo do Flip-Flop. Considere a saída Q inicialmente resetada.

	3 0 0	10 18			1 10 10
1 1 1	1 1 1		1 1 1		
ПП					

J	K	Clk	Q	Q

Q

Exercícios Flip-Flop JK

Obtenha a tabela verdade e diagrama de tempo do Flip-Flop. Considere as saídas inicialmente resetadas.

П			П	

J	K	Clk	Q	Q'

Flip-Flop T ("Toggle")

É um flip-flop com uma única entrada, onde J e K são conectados em um único ponto denominado de entrada T, eliminando assim parte da tabela verdade onde as entradas J e K são diferentes .

J	K	Q
0	0	Qa
	/////	//9//
//X//	////	/////
1	1	Qa'

T	Q
0	Qa
1	Qa'

Flip-Flop T ("Toggle")

Flip-Flop T ("Toggle")

Dizemos que quando T = 1, o flip-flop está em *Toggle Mode* (Modo de Comutação) onde a cada descida do *clock*, a saída apresenta um estado complementar ao anterior. Isso será muito utilizado no estudo de contadores assíncronos que serão estudados posteriormente.

Flip-Flop D

É um flip-flop com uma única entrada, onde J e K são conectados através de um INVERSOR em um único ponto denominado de entrada D. Na presença do *clock*, o valor digital da entrada D é copiado para a saída e armazenado até a ocorrência do próximo *clock*.

Siddly de la Solaa ad Gaslac	Clock	sensível	a	borda	de	subida
------------------------------	-------	----------	---	-------	----	--------

Flip-Flop D - Diagrama de tempo

Clock sensível a borda de subida

Flip-Flop D

Utilizado para armazenar uma palavra binária nos chamados registradores de deslocamento.

Em breve estudaremos os registradores!

Exercícios Flip-Flop T e D

	Q	Q

Exercícios Flip-Flop T e D

	Q	Q

Entradas assíncronas

- Todas as entradas dos flip-flops até agora vistos dependem do sinal de sincronismo (clock).
- Estas entradas são chamadas entradas síncronas.
- Em muitos flip-flops existem outras entradas que não dependem do sinal de sincronismo para atuarem, e por isso são chamadas de entradas <u>assíncronas</u>.
- Essas entradas são usadas para alterar a qualquer instante, o estado do flip-flop para "0" ou "1".

Entradas assíncronas

Estas entradas são normalmente ativas pelo nível baixo.

Tabela verdade das entradas assíncronas PRESET e CLEAR

PRE	CLR	Q	Q
1	1	operaçã	o normal
0	1	1	0
1	0	0	1
0	0	*	*

Entradas assíncronas

PRE	CLR	J	K	Clk	Q	IQ
0	1	X	X	X	1	0
1	0	X	X	X	0	1
1	1	X	X	0	Q _o	\bar{Q}_0
1	1	0	0	1	Q _o	Q,
1	1	1	0	1	1	0
1	1	0	1	1	0	1
1	1	1	1	1	Q _n	Q ₀

Exercício

		Q	Q

PR						
CLR						
CLK						
Α						
В						
J Q						
Q'						