Elementi di Teoria della Computazione

Classe: Resto_2 - Prof.ssa Marcella Anselmo

Tutorato 24/06/2022 ore 15:00-17:00

Sesta Esercitazione

a cura della dott.ssa Manuela Flores

Preappello 15/06/2022: linguaggi regolari

- 1. Per ognuno dei seguenti linguaggi, indicare se sono regolari o non regolari, giustificando la risposta.
 - (a) $X = \{ww \mid w \in \{a, b\}^*\}.$
 - (b) $Pref(L) = \{x \in \Sigma^* \mid \exists y \in \Sigma^* \text{ tale che } xy \in L\}, \text{ con } L \subseteq \Sigma^* \text{ regolare.}$
 - (c) $Y = \{a^i b^j \mid i \neq j \ e \ i, j \ge 0\}.$

Pumping lemma: dimostrare la non regolarità (esempio)

Dimostriamo che $L = \{a^n b^n \mid n \ge 0\}$ non è regolare!

Dimostrazione.

Supponiamo per assurdo che L sia regolare. Allora vale il pumping lemma. Sia p la lunghezza del pumping.

Consideriamo la stringa $s = a^p b^p$.

Ovviamente $s \in L$ e |s| = 2p (soddisfa le ipotesi $|s| \ge p$).

Consideriamo **TUTTE** le possibili fattorizzazioni di $s = a^p b^p$ in 3 stringhe x, y, z con le proprietà delle condizioni: $|xy| \le p$ e $|y| \ge 1$.

Pumping lemma: dimostrare la non regolarità (esempio)

Dimostriamo che $L = \{a^n b^n \mid n \ge 0\}$ non è regolare!

Dimostrazione.

. . .

Consideriamo **TUTTE** le possibili fattorizzazioni di $s = a^p b^p$ in 3 stringhe x, y, z con le proprietà delle condizioni: $|xy| \le p$ e $|y| \ge 1$.

Quindi
$$y = a^m$$
, per $1 \le m \le p$. Per $i = 2$, $xy^2z = a^{p+m}b^p \notin L$.

Chiusura di REG rispetto a insieme suffisso e prefisso

Sia $A = (Q, \Sigma, \delta, q_0, \{q_f\})$ un NFA tale che non esista nessuna transizione entrante in q_0 e nessuna uscente da q_f (ipotesi sempre riproducibili usando ϵ -transizioni).

Descrivere il linguaggio accettato da ognuna delle seguenti varianti di A:

2. automa costruito da A aggiungendo una ϵ -transizione verso q_f da ogni stato che può raggiungere q_f (lungo cammini che possono comprendere sia simboli di Σ che ϵ)

L'automa ottenuto riconosce l'insieme dei **prefissi** di L: $\{x \in \Sigma^* \mid \exists y \in \Sigma^* : xy \in L\}$

REG è chiuso rispetto ai prefissi

Chiusura di REG rispetto a insieme suffisso e prefisso

Sia $A = (Q, \Sigma, \delta, q_0, \{q_f\})$ un NFA tale che non esista nessuna transizione entrante in q_0 e nessuna uscente da q_f (ipotesi sempre riproducibili usando ϵ -transizioni).

Descrivere il linguaggio accettato da ognuna delle seguenti varianti di A:

1. automa costruito da A aggiungendo una ϵ -transizione da q_0 verso ogni stato raggiungibile da q_0 (lungo cammini che possono comprendere sia simboli di Σ che ϵ)

L'automa ottenuto riconosce l'insieme dei **suffissi** di L: $\{y \in \Sigma^* \mid \exists x \in \Sigma^* : xy \in L\}$

REG è chiuso rispetto ai suffissi

Esercizi sui prefissi

Esercizi sui prefissi

Chiusura dei linguaggi regolari

Dimostreremo che i linguaggi regolari sono chiusi rispetto alle seguenti operazioni.

Siano L_1 e L_2 linguaggi regolari, allora:

- unione: $L_1 \cup L_2$ è regolare
- **concatenazione**: $L_1 \circ L_2$ è regolare
- star: L_1^*, L_2^* sono regolari
- reversal: L_1^R, L_2^R sono regolari
- **complemento**: $\overline{L_1}, \overline{L_2}$ sono regolari
- intersezione: $L_1 \cap L_2$ è regolare

Cosa si può fare con gli automi finiti

o Deterministici (REG) $L-M=L\cap \overline{M}$ o Nondeterministici o Determinizzazione (equivalenza dei modelli) REG REG: proprietà di chiusura (funzioni su REG) unione, concatenazione, star, complemento, : intersezione, reverse, prefisso, suffisso, differenza

Preappello 15/06/2022: da NFA a DFA

 Trasformare il seguente NFA nel DFA equivalente utilizzando la costruzione presentata nella dimostrazione del Teorema sull'equivalenza NFA-DFA. Riportare con precisione la descrizione della funzione di transizione e produrre il diagramma di stato (limitandosi agli stati raggiungibili dallo stato iniziale del DFA). Fornire una espressione regolare che descrive il linguaggio accettato dall'automa.

Subset construction: da NFA a DFA

Costruzione.

Sia $\mathbb{N} = (Q_N, \Sigma, \delta_N, q_N, F_N)$ un NFA, costruiamo il DFA $\mathbb{M} = (Q_M, \Sigma, \delta_M, q_M, F_M)$ come:

- 1. $Q_M = P(Q_N)$, insieme potenza di Q_N ; osserviamo che $|P(Q_N)| = 2^{|Q_N|}$.
 - Q_M contiene tutti i "possibili stati" in cui può terminare una transizione di \mathbb{M} , cioè tutte le combinazioni possibili di stati di Q_N .
- 2. $q_M = E(q_N)$, lo stato iniziale di $\mathbb M$ non è solo q_N ma anche tutti gli stati raggiungibili da q_N utilizzando solo ϵ -transizioni, quindi $E(q_N)$.
- 3. $F_M = \{ R \in Q_M \mid R \cap F_N \neq \emptyset \}$
- 4. $\forall R \in Q_M, \forall a \in \Sigma$:

$$\delta_M(R, a) = E(\cup_{r \in R} \delta_N(r, a)) = \cup_{r \in R} E(\delta_N(r, a))$$

NFA: computazione (HUM, 2.5.3-2.5.4)

Come per i DFA, siamo interessati a definire le computazioni di δ in termini di stringhe.

Innanzitutto, definiamo l'insieme degli stati raggiungibili da uno stato usando solo ϵ -transizioni.

Sia $\mathbb{M} = (Q, \Sigma, \delta, q_0, F)$ un **NFA** e $q \in Q$. La ϵ -chiusura E(q) di q è il sottinsieme di Q definito ricorsivamente come segue:

passo base: $q \in E(q)$

passo ricorsivo: $\forall p \in E(q), \ \delta(p, \epsilon) \subseteq E(q)$

Sia $R \subseteq Q$. La ϵ -chiusura E(R) di R è:

$$E(R) = \cup_{q \in R} E(q)$$

Subset construction: da NFA a DFA (esempio)

Consideriamo il seguente NFA $\mathbb{N} = (Q_N, \Sigma, \delta_N, 0, F_N)$

Costruiamo innanzitutto le ϵ -chiusure: $E(0) = \{0\}$, $E(1) = \{1\}$, $E(2) = \{2, 1\}$, $E(3) = \{3, 0\}$, e $E(4) = \{4, 2, 1\}$.

Subset construction: da NFA a DFA (esempio)

Costruiamo le transizioni per ogni stato:

- $\delta_M(\{0\}, a) = E(\delta_N(0, a)) = E(\{1, 3\}) = E(\{1\}) \cup E(\{3\}) = \{0, 1, 3\}$
- $\delta_M(\{0\}, b) = E(\delta_N(0, b)) = E(\emptyset) = \emptyset$

Subset construction: da NFA a DFA (esempio)

Costruiamo le transizioni per ogni stato:

- $\delta_M(\{0,1,3\},a) = E(\delta_N(0,a) \cup \delta_N(1,a) \cup \delta_N(3,a)) = E(\{1,3\} \cup \{2\} \cup \emptyset) = \{0,1,2,3\}$
- $\delta_M(\{0,1,3\},b) = E(\delta_N(0,b) \cup \delta_N(1,b) \cup \delta_N(3,b)) = E(\emptyset \cup \{4\} \cup \{4\}) = E(\{4\}) = \{1,2,4\}$

Subset construction: da NFA a DFA (esempio)

Costruiamo le transizioni per ogni stato:

- $\delta_M(\{1,2,4\},a) = E(\{2\} \cup \emptyset \cup \emptyset) = \{1,2\}$
- $\delta_M(\{1,2,4\},b) = E(\{4\} \cup \emptyset \cup \emptyset) = \{1,2,4\}$
- $\delta_M(\{0,1,2,3\},a) = E(\{1,3\} \cup \{2\} \cup \emptyset \cup \emptyset) = \{1,3,0,2\}$
- $\delta_M(\{0,1,2,3\},b) = E(\emptyset \cup \{4\} \cup \emptyset \cup \{4\}) = \{1,2,4\}$
- $\delta_M(\{1,2\},a) = E(\{2\} \cup \emptyset) = \{1,2\}$
- $\delta_M(\{1,2\},b) = E(\{4\} \cup \emptyset) = \{1,2,4\}$

Subset construction: da NFA a DFA (esempio)

Consideriamo solo le parti raggiungibili dallo stato iniziale del DFA.

Preappello 15/06/2022: da NFA a DFA

2. Trasformare il seguente NFA nel DFA equivalente utilizzando la costruzione presentata nella dimostrazione del Teorema sull'equivalenza NFA-DFA. Riportare con precisione la descrizione della funzione di transizione e produrre il diagramma di stato (limitandosi agli stati raggiungibili dallo stato iniziale del DFA). Fornire una espressione regolare che descrive il linguaggio accettato dall'automa.

Preappello 15/06/2022: MdT che riconosce

Esercizio 3 (6 punti)

Descrivere una MdT deterministica che riconosce il linguaggio $Y = \{a^i b^j \mid i \neq j \text{ e } i, j \geq 1\}$ sull'alfabeto $\Sigma = \{a, b\}$.

La descrizione deve essere fornita tramite settupla o diagramma di stato e deve essere accompagnata da una descrizione ad alto livello che ne giustifichi il funzionamento.

Cancella ripetutamente: prima occorrenza di (a) e ultima di (b) se la stringa era del tipo a^nb^n , non rimangono simboli Cinque passi

- 1. Se leggi _, vai a 5. Se leggi a, scrivi _ e vai a 2.
- Spostati a destra (R) di tutti a e b. Al primo _, muovi a sinistra (L) e vai a 3
- 3. se leggi b, scrivi _ e vai a 4.
- Spostati a sinistra (L) di tutti a e b. Leggendo _, muovi R e vai a 1.
- 5. Accept.

Le transizioni non indicate portano in uno stato di Reject (per esempio se in 1. leggi b).

Altra strategia MdT per { $0^n1^n \mid n \ge 0$ }.

Una macchina di Turing che accetta $L = \{0^n 1^n \mid n > 0\}$. (Descrizione ad alto livello)

- (passo 1) Se legge 0 lo sostituisce con X, se legge 1 rifiuta, se legge Y va al passo 4.
- (passo 2) Scorre il nastro verso destra, se trova 1 lo sostituisce con Y, altrimenti rifiuta.
- (passo 3) Scorre il nastro a sinistra fino a incontrare X, si sposta a destra e ripete dal passo 1.
- (passo 4) Scorre il nastro a destra. Se legge solo delle Y e poi il carattere □, accetta. Altrimenti rifiuta.

$$000111 \rightarrow X00111... \rightarrow X00Y11... \rightarrow XX0Y11... \rightarrow XXXYYY$$

Lezione 20 pag. 16

Esempio: MdT a 2 nastri per $\{0^n1^n \mid n > 0\}$

- 1 Scorre il primo nastro verso destra fino al primo 1: per ogni 0, scrive un 1 sul secondo nastro
- 2 Scorre il primo nastro verso destra e il secondo nastro verso sinistra: se i simboli letti non sono uguali, termina in q_{reject}
- **3** Se legge \sqcup su entrambi i nastri, termina in q_{accept}

stato attuale	simbolo letto	Valore funzione δ
q ₀	(0, ⊔)	$q_0, (\sqcup, 1), (R, R)$
90	(1, ⊔)	$q_1, (1, \sqcup), (S, L)$
q ₁	(1, 1)	$q_1, (\sqcup, \sqcup), (R, L)$
q ₁	(\sqcup, \sqcup)	$q_{\mathtt{accept}}, (\sqcup, \sqcup), (S, S)$

Nota: Se $\delta(q, \gamma, \gamma')$ non è presente nella tabella, con $q \in Q \setminus \{q_{accept}, q_{reject}\}$ allora $\delta(q, \gamma, \gamma') = (q_{reject}, \gamma, \gamma', S, S)$.

Lezione 20 pag. 17

Esempio: MdT a 2 nastri per $\{0^n1^n \mid n > 0\}$

Preappello 15/06/2022: vero, falso, non si sa

Esercizio 4 (4 punti)

Per ognuna delle seguenti affermazioni dire se è vera, falsa oppure non si sa. In ogni caso, occorre motivare la risposta, citando eventuali risultati noti utilizzati.

- a) Se L è riconosciuto da una MdT non-deterministica allora L è riconosciuto da una MdT deterministica.
- Se L è riconosciuto in tempo polinomiale da una MdT non-deterministica allora L è riconosciuto in tempo polinomiale da una MdT deterministica.
- c) Il linguaggio 3-SAT è indecidibile.
- d) Comunque si scelgano due linguaggi NP- completi A e B si ha che $A \leq_p B$ e $B \leq_p A$.

Lezione 22 pag. 38

Equivalenza tra il modello deterministico e quello non deterministico

Teorema

Per ogni macchina di Turing non deterministica N esiste una macchina di Turing deterministica D equivalente ad N, cioè tale che L(N) = L(D).

MdT non deterministiche: tempo di esecuzione

Il tempo di esecuzione di una MdT non deterministica N è la funzione $f: \mathbb{N} \to \mathbb{N}$ dove $f(n) = \text{massimo delle altezze degli alberi, ognuno dei quali$

 $f(n) = \text{massimo delle altezze degli alberi, ognuno dei quali rappresenta le possibili computazioni su input <math>w$, al variare di $w \in \Sigma^n$.

Teorema

Sia t(n) una funzione tale che $t(n) \ge n$. Per ogni macchina di Turing a nastro singolo, non deterministica N avente tempo di esecuzione t(n) esiste una macchina di Turing a nastro singolo, deterministica e di complessità di tempo $2^{O(t(n))}$, equivalente ad N.

Lezione 30 pag. 30

P, NP e co-NP

Le osservazioni precedenti si applicano a qualsiasi linguaggio in NP e pongono il problema del rapporto tra la classe NP e la classe $CONP = \{L \mid \overline{L} \in NP\}$.

Per ognuno di questi linguaggi non è noto se tale linguaggio appartenga o meno a NP.

Le risposte alle domande

$$P = NP$$
?

$$NP = coNP$$
?

danno luogo ai seguenti quattro possibili scenari.

Lezione 30 pag. 31

P, NP e co-NP

Vi sono quattro possibilità:

- $P \subsetneq NP = coNP$
- 3 $\overrightarrow{NP} \neq coNP$, $P = NP \cap coNP \subsetneq NP$ (e quindi
- $P = NP \cap coNP \subsetneq coNP$)

 4 $NP \neq coNP$, $P \subsetneq NP \cap coNP \subsetneq NP$ (e quindi $P \subsetneq NP \cap coNP' \subsetneq coNP)$

Lezione 32 pag. 24

3SAT è NP – completo

Occorre prima dimostrare che 3SAT è NP-completo.

- 3SAT ∈ NP. Infatti 3SAT è verificabile in tempo polinomiale perché è un caso particolare di SAT (che sappiamo essere in NP).
- E' possibile dimostrare poi che:

$$SAT \leq_{p} SAT_{CNF} \leq_{p} 3 SAT$$

Nota: 3SAT pur essendo un caso particolare di SAT è di «difficoltà maggiore o uguale» a SAT.

Lezione 30 pag. 16

La classe NP

Teorema 7.20

Un linguaggio L è in NP se e solo se esiste una macchina di Turing non deterministica che decide L in tempo polinomiale.

Definizione

Dunque i linguaggi della classe NP sono decidibili: 3SAT è in NP, quindi è decidibile in tempo polinomiale da una MdT non deterministica ⇒ 3SAT NON può essere indecidibile

Sia $t : \mathbb{N} \to \mathbb{R}^+$ una funzione. La classe di complessità in tempo non deterministico NTIME(t(n)) è

 $NTIME(t(n)) = \{L \mid \exists una macchina di Turing non deterministica M che decide L in tempo <math>O(t(n))\}$

Corollario 7.22

$$NP = \bigcup_{k \ge 0} NTIME(n^k)$$

Lezione 28 pag. 22

The right picture

Decidibili = Turing riconoscibili ∩ co-Turing riconoscibili

Lezione 32 pag. 17

NP - completezza

Vogliamo definire quando un linguaggio B è uno dei linguaggi «più difficili» della classe NP.

Abbiamo visto un modo per definire quando B è «più difficile» di A, ovvero quando A è di difficoltà «minore o uguale» a B:

$$A \leq_{p} B$$

Quindi B è uno dei linguaggi «più difficili» della classe NP.....

Definizione

Un linguaggio B è *NP-completo* se soddisfa le seguenti due condizioni:

- 1. B appartiene a NP
- 2. Per ogni linguaggio A in NP, A ≤ B (ovvero B è NP-hard)

Preappello 15/06/2022: A_TM e HALT_TM

Esercizio 5 (5 punti)

- a) **Definire** i linguaggi A_{TM} e HALT_{TM}.
- b) Descrivere i problemi decisionali a cui sono associati i linguaggi A_{TM} e HALT_{TM}.
- c) Siano A e B due linguaggi. Definire cosa significa che A ≤_m B, ovvero che A è riducibile mediante funzione a B.

Esercizio bonus*

d) Durante il corso abbiamo visto che $A_{TM} \leq_m HALT_{TM}$. Dimostrare adesso che $HALT_{TM} \leq_m A_{TM}$.

Lezione 25 pag. 36

Un problema indecidibile

$$A_{TM} = \{\langle M, w \rangle \mid M \text{ è una MdT e } M \text{ accetta } w\}$$

 A_{TM} è il linguaggio associato al problema decisionale dell'accettazione di una macchina di Turing.

Teorema

Il linguaggio A_{TM} non è decidibile.

Lezione 27 pag. 25

Indecidibilità del problema della fermata

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ è una MdT e } M \text{ accetta } w \}$$

$$HALT_{TM} = \{\langle M, w \rangle \mid M \text{ è una MdT e } M \text{ si arresta su } w\}$$

Teorema

 $A_{TM} \leq_m HALT_{TM}$.

Dimostrazione

Occorre definire una funzione calcolabile $f: \Sigma^* \to \Sigma^*$ tale che $f(\langle M, w \rangle) = \langle M', w \rangle$ e

$$\langle M, w \rangle \in A_{TM}$$
 sse $\langle M', w \rangle \in HALT_{TM}$

Lezione 27 pag. 17

Riducibilità mediante funzione

Definizione

Un linguaggio $A \subseteq \Sigma^*$ è riducibile mediante funzione a un linguaggio $B \subseteq \Sigma^*$, e scriveremo $A \leq_m B$, se esiste una funzione calcolabile $f: \Sigma^* \to \Sigma^*$ tale che $\forall w \in \Sigma^*$

$$w \in A \Leftrightarrow f(w) \in B$$

La funzione f è chiamata una riduzione da A a B.

Preappello 15/06/2022: A_TM e HALT_TM

Esercizio 5 (5 punti)

- a) **Definire** i linguaggi A_{TM} e HALT_{TM}.
- b) Descrivere i problemi decisionali a cui sono associati i linguaggi A_{TM} e HALT_{TM}.
- c) Siano A e B due linguaggi. Definire cosa significa che A ≤_m B, ovvero che A è riducibile mediante funzione a B.

Esercizio bonus*

d) Durante il corso abbiamo visto che $A_{TM} \leq_m HALT_{TM}$. Dimostrare adesso che $HALT_{TM} \leq_m A_{TM}$.

Lezione 27 pag. 26

Indecidibilità del problema della fermata

Consideriamo la MT F che, sull'input $\langle M, w \rangle$:

- ① Costruisce la macchina M', M' = "sull'input x
 - $\mathbf{0}$ simula M su x
 - 2 se *M* accetta, accetta
 - 3 se M rifiuta, cicla"
- **2** Fornisce in output $\langle M', w \rangle$

Nota: la macchina M' si ferma su un input x se e solo se M accetta x.

La funzione f calcolata da F, che associa a $\langle M, w \rangle$ la stringa $\langle M', w \rangle$, è una riduzione da A_{TM} a $HALT_{TM}$.

 $\langle M, w \rangle \in A_{TM} \Leftrightarrow M$ accetta $w \Leftrightarrow M'$ si arresta su w

$$\Leftrightarrow \langle M', w \rangle \in HALT_{TM}.$$

Prossimo tutorato

Prima del secondo appello di luglio: data da definire, la troverete pianificata su questo canale del Team...

... buono studio e in bocca al lupo per l'appello del 5 luglio ©

