Numerical calculation potential in MOS

Assignment #5
20202010 Hyunsuk Shin

Figure 1 Schematic image for MOS structure

Numerical Results

Electrostatic potential from the depletion approximation

Figure 2. $N_{acc} = 10^{18} cm^{-3}$, N = 67 case. Each line indicates different gate voltage.

After we get the electrostatic potential, we calculate the electron density throughout the position. Note that carrier density is changed by the electrostatic potential. $n(\mathbf{r}) = n_i \exp(\phi/V_T)$

Figure 3. $N_{acc}=10^{18} cm^{-3},\,N=67$ case. Each line indicates different gate voltage.

From this electron density, the electrostatic potential is re-calculated with different gate voltage. The results are shown in figure 4.

Figure 4. $N_{acc} = 10^{18} cm^{-3}$, N = 67 case. Each line indicates different gate voltage

The figure 5 shows the difference between first calculation of electrostatic potential and second calculation of electrostatic potential.

Figure 5. $N_{acc} = 10^{18} cm^{-3}$, N = 67 case.