#### **Activation Functions in Neural Networks**

Sigmoid, tanh, Softmax, ReLU, Leaky ReLU EXPLAINED!!!







#### What is Activation Function?

It's just a thing function that you use to get the output of node. It is also known as **Transfer Function**.

. . .

#### Why we use Activation functions with Neural Networks?

It is used to determine the output of neural network like yes or no. It maps the resulting values in between 0 to 1 or -1 to 1 etc. (depending upon the function).

The Activation Functions can be basically divided into 2 types-

- 1. Linear Activation Function
- 2. Non-linear Activation Functions

. . .

#### **Linear or Identity Activation Function**

As you can see the function is a line or linear. Therefore, the output of the functions will not be confined between any range.



**Fig: Linear Activation Function** 

**Equation**: f(x) = x

Range: (-infinity to infinity)

It doesn't help with the complexity or various parameters of usual data that is fed to the neural networks.

#### **Non-linear Activation Function**

The Nonlinear Activation Functions are the most used activation functions. Nonlinearity helps to makes the graph look something like this

#### Nonlinear Data



**Fig: Non-linear Activation Function** 

It makes it easy for the model to generalize or adapt with variety of data and to differentiate between the output.

The main terminologies needed to understand for nonlinear functions are:

**Derivative or Differential:** Change in y-axis w.r.t. change in x-axis.It is also known as slope.

**Monotonic function:** A function which is either entirely non-increasing or non-decreasing.

The Nonlinear Activation Functions are mainly divided on the basis of their range or curves-

#### 1. Sigmoid or Logistic Activation Function

The Sigmoid Function curve looks like a S-shape.



**Fig: Sigmoid Function** 

The main reason why we use sigmoid function is because it exists between (0 to 1). Therefore, it is especially used for models where we have to **predict the probability** as an output. Since probability of anything exists only between the range of 0 and 1, sigmoid is the right choice.

The function is **differentiable**. That means, we can find the slope of the sigmoid curve at any two points.

The function is **monotonic** but function's derivative is not.

The logistic sigmoid function can cause a neural network to get stuck at the training time.

The **softmax function** is a more generalized logistic activation function which is used for multiclass classification.

#### 2. Tanh or hyperbolic tangent Activation Function

tanh is also like logistic sigmoid but better. The range of the tanh function is from (-1 to 1). tanh is also sigmoidal (s - shaped).



Fig: tanh v/s Logistic Sigmoid

The advantage is that the negative inputs will be mapped strongly negative and the zero inputs will be mapped near zero in the tanh graph.

The function is differentiable.

The function is **monotonic** while its **derivative** is **not monotonic**.

The tanh function is mainly used classification between two classes.

Both tanh and logistic sigmoid activation functions are used in feed-forward nets.

#### 3. ReLU (Rectified Linear Unit) Activation Function

The ReLU is the most used activation function in the world right now. Since, it is used in almost all the convolutional neural networks or deep learning.



Fig: ReLU v/s Logistic Sigmoid

As you can see, the ReLU is half rectified (from bottom). f(z) is zero when z is less than zero and f(z) is equal to z when z is above or equal to zero.

Range: [0 to infinity)

The function and its derivative both are monotonic.

But the issue is that all the negative values become zero immediately which decreases the ability of the model to fit or train from the data properly. That means any negative input given to the ReLU activation function turns the value into zero immediately in the graph, which in turns affects the resulting graph by not mapping the negative values appropriately.

#### 4. Leaky ReLU

It is an attempt to solve the dying ReLU problem



Can you see the Leak?



The leak helps to increase the range of the ReLU function. Usually, the value of a is 0.01 or so.

When a is not 0.01 then it is called Randomized ReLU.

Therefore the range of the Leaky ReLU is (-infinity to infinity).

Both Leaky and Randomized ReLU functions are monotonic in nature. Also, their derivatives also monotonic in nature.

#### Why derivative/differentiation is used?

When updating the curve, to know in which direction and how much to change or update the curve depending upon the slope. That is why we use differentiation in almost every part of Machine Learning and Deep Learning.

| Name                                                              | Plot | Equation                                                                                          | Derivative                                                                                       |
|-------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| Identity                                                          | /    | f(x) = x                                                                                          | f'(x) = 1                                                                                        |
| Binary step                                                       |      | $f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$               | $f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$            |
| Logistic (a.k.a<br>Soft step)                                     |      | $f(x) = \frac{1}{1 + e^{-x}}$                                                                     | f'(x) = f(x)(1 - f(x))                                                                           |
| Tanli                                                             |      | $f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$                                                     | $f'(x) = 1 - f(x)^2$                                                                             |
| ÅrcTan                                                            |      | $f(x) = \tan^{-1}(x)$                                                                             | $f'(x) = \frac{1}{x^2 + 1}$                                                                      |
| Rectified<br>Linear Unit<br>(ReLU)                                |      | $f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$               | $f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$             |
| Parameteric<br>Rectified<br>Linear Unit<br>(PReLU) <sup>[2]</sup> |      | $f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$        | $f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$        |
| Exponential<br>Linear Unit<br>(ELU) <sup>[3]</sup>                |      | $f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$ | $f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$ |
| SoftPlus                                                          |      | $f(x) = \log_e(1 + e^x)$                                                                          | $f'(x) = \frac{1}{1 + e^{-x}}$                                                                   |

**Fig: Activation Function Cheetsheet** 



**Fig: Derivative of Activation Functions** 



Happy to be helpful. Support me.



If you liked it

So, follow me on Medium, LinkedIn to see similar posts.

Any comments or if you have any questions, write them in the comment.

Clap it! Share it! Follow Me!

. . .

#### **Previous stories you will love:**

## What the Hell is "Tensor" in "TensorFlow"? I didn't know it... hackernoon.com



# Monte Carlo Tree Search MCTS For Every Data Science Enthusiast towardsdatascience.com

#### **Policy Networks vs Value Networks in Reinforcement Learning**

In Reinforcement Learning, the agents take random decisions in their environment and learns on selecting the right one...

towardsdatascience.com



#### **TensorFlow Image Recognition Python API Tutorial**

On CPU with Inception-v3(In seconds)

towardsdatascience.com



#### **How to Send Emails using Python**

Design Professional Mails using Flask!

medium.com



Machine Learning

**Activation Function** 

**Neural Networks** 

Artificial Intelligence

Deep Learning



#### Written by SAGAR SHARMA

4.1K Followers · Writer for Towards Data Science

Freelance Writer. React developer. Deep learning/AI Electronics <a href="mailto:sagarsharma4244@gmail.com">sagarsharma4244@gmail.com</a>

More from SAGAR SHARMA and Towards Data Science



#### What the Hell is Perceptron?

The Fundamentals of Neural Networks

Sep 9, 2017 **3** 3.2K **3** 8



#### Al Agents—From Concepts to Practical Implementation in Python

This will change the way you think about Al and its capabilities

→ Aug 12 W 1K ■ 13

 $\Box$ 



#### What Nobody Tells You About RAGs

A deep dive into why RAG doesn't always work as expected: an overview of the business value, the data, and the technology behind it.

→ Aug 23 \*\*\* 1.5K • 22

# **Epoch vs Batch Size vs Iterations**

#### **Epoch vs Batch Size vs Iterations**

Know your code...

Sep 23, 2017 \*\*\* 10.7K • 49

 Image: Control of the control of the

See all from SAGAR SHARMA

See all from Towards Data Science

#### **Recommended from Medium**



#### **LLM Architectures Explained: Word Embeddings (Part 2)**

Deep Dive into the architecture & building real-world applications leveraging NLP Models starting from RNN to Transformer.

→ Aug 18 W 142 Q 4

 Image: Control of the control of the



#### **Deep Dive into Softmax Regression**

Understand the math behind softmax regression and how to use it to solve an image classification task







#### Lists



#### Predictive Modeling w/ Python

20 stories · 1498 saves



#### **Natural Language Processing**

1681 stories · 1255 saves



#### Al Regulation

6 stories · 559 saves



#### **Practical Guides to Machine Learning**

10 stories · 1827 saves



#### **Perceptrons: The First Neural Network Model**

Overview and implementation in Python Perceptrons are one of the earliest computational models of neural networks (NNs), and they form the





### Activation Functions In Neural Networks—Its Components, Uses & Types

The activation function in neural network is responsible for taking in the input received by an artificial neuron and processing it to...

Mar 13 \*\*\* 53



### **Understanding Deep Learning Optimizers: Momentum, AdaGrad, RMSProp & Adam**

Gain intuition behind acceleration training techniques in neural networks

 $\Box^{+}$ 

Dec 30, 2023 **3** 429 **5** 



#### Mastering the Softmax Function: Understanding its Derivative with a **Step-by-Step Example**

This article focuses on obtaining the derivative of the softmax function by means of a simple example. It assumes that the reader is...

Apr 1 👋 10 🗨 1



 $\Box$ 

See more recommendations