汇编语言与接口技术

asm_wulian@163.com

密码: hbyyyjkjs18

解仑

E-mail: xielun@ustb.edu.cn

办公地点:信息楼822

手机: <u>13681560734</u> (微信号相同)

序

计算机基础教学分三个层次:

计算机应用

计算机技术基础

计算机文化基础

计算机基础教学三层次结构

学习本课程目的

- 1. 进一步理解计算机五个部分之间的联系,建立整机概念:
- 念; 2. 掌握汇编程序设计语言;
- 3. 掌握微机接口芯片的设计原理和接口程序编程;

汇编语言与接口技术课程特点:

内容多,学时少,进度快,难度大,应用广。

讲课内容: 微机原理、汇编语言、接口技术

(硬件组成、指令功能以及与其它设备的主要接口)

学时:

讲课48学时

学好这门课程的几点建议:

1、课程特点:

学习计算机硬件、软件的工作原理与相关知识。 理论联系实际非常紧密的课程,内容更新极快。

2、学习意义:

- •知其然,知其所以然
- •学习掌握单片机、DSP、PLC等控制芯片的基础
- •有助于学习C等语言,理解指针等概念
- •考试,毕业

3、抓住教学过程中的3个环节

●上课:主动参与、发现、探究

●作业:独立完成

●实验课:

课前要预习;课后,要总结经验和教训

4. 收获与时间成正比

推荐教材

- ·汇编语言与接口技术
 - —— 王让定,朱莹 清华大学出版社
- 微型计算机技术及其应用
 - ——戴梅萼 清华大学出版社

考核要求

闭卷考试

成绩组成:

卷面成绩 (70%) +平时成绩 (30%)

平时成绩包括: 出勤、作业、报告、小测验

第一节 计算机概述

- 一、计算机的基本组成和工作原理
- 二、有关术语
- 三、计算机发展简史
- 四、微型计算机概述

第二节 计算机中数的表示和编码

- 一、进位计数制及其表示方法
- 二、数制之间的转换
- 三、字和各种字符的编码
- 四、小结

第一节 计算机概述

- 一、计算机的基本组成和工作原理
- 二、有关术语

位 字节 字和字长 位编号 指令系统 程序 寄存器 译码器

- 三、计算机发展简史
- 四、微型计算机概述
 - 1. 微型计算机的基本结构
 - 1) 构成部件
 - (1) 总线
 - (2) 中央处理器CPU
 - (3) 内存
 - (4) 外设和输入/输出接口(I/O接口)
 - 2) 微机的工作过程
 - 2. 微处理器、微型计算机、微型计算机系统
 - 3. 微型计算机的特点
 - 4. 微型计算机的分类
 - 1) 按构成分类
 - 2) 按CPU的字长分类

一、计算机的基本组成和工作原理

ENIAC (1946)

掌上电脑(2000)

按性能可分为: 巨型机, 大型机, 中型机, 小型机, 微机

▲ 现代计算机的结构基础: 存储程序控制结构

1945年,美籍匈牙利数学家Von Neumann提出,冯诺依曼计算机

冯诺依曼计算机的工作原理可概述为:

"存储程序" + "程序控制"

要点:

- 1. 以二进制表示数据和指令(程序)
- 2. 先将程序存入存储器中,再由控制器自动读取并执行

二、有关术语

- 1. 位(Bit)
- 2. 字节 (Byte)
- 3. 字和字长 (Word)
- 4. 位编号
- 5. 指令、指令系统和程序
- 6. 寄存器
- 7. 译码器

1. 位 (Bit)

- 指计算机能表示的最基本最小的单位
- 在计算机中采用二进制表示数据和指令,故: 位就是一个二进制位,有两种状态,"0"和"1"

2. 字节 (Byte)

● 相邻的8位二进制数称为一个字节 1 Byte = 8 Bit

如: <u>1100 0011</u> <u>0101 0111</u>

是存储器系统中的最小存取单位。

3. 字和字长

字是CPU内部进行数据处理的基本单位。

字长是每一个字所包含的二进制位数。

常与CPU内部的寄存器、 运算装置、总线宽度一致

例 某CPU内含 8位运算器,则:

参加运算的数及结果均以8位表示, 最高位产生的进位或借位在8位运算器中不保存, 而将其保存到标志寄存器中

▲ 字长是衡量CPU工作性能的一个重要参数。

不同类型的CPU有不同的字长。

如: Intel 4004 是 4 位

8080 是 8 位

8088/8086/80286 是 16 位

把一个字定为16位,

1 Word = 2 Byte

一个双字定为32位,

1 DWord = 2 Word = 4

Byte

位 1或0

1位

字节 1100 0011

8位

字 <u>1100 0011 0011 1100</u> 高字节 低字节 16位

双字 1100 0011 0011 1100 1100 0011 0011 1100 32位

4. 位编号

为便于描述,对字节,字和双字中的各位进行编号。

从低位开始,从右到左依次为 0、1、2...

	7	6	5	4	3	2	1	0
字节	1	0	1	0	0	0	1	0
	D7	D6	D5	D4	D3	D2	D1	D0

← 编号

数据**D**ata 地址**A**ddress

字的编号为15~0

双字的编号依此类推,为31~0

5. 指令、指令系统和程序

一个CPU能执行什么操作, 是工程人员设计和制造好的,是固定的,用户不能改变。

•指令: CPU能执行的一个基本操作。 如: 取数、加、减、乘、除、存数等

•指令系统: CPU所能执行的全部操作。 不同的CPU,其指令系统不同。

程序是用户在使用计算机时,为要解决的问题, 用一条条指令编写的指令的序列。 构成程序的指令在存储器中一般都是顺序存放, 要破坏这种顺序性,必须由转移指令操作。

6. 寄存器

- 寄存器是用来存放数据和指令的一种基本逻辑部件。
- 根据存放信息的不同,

有指令寄存器、数据寄存器、地址寄存器等。

7. 译码器

译码器是将输入代码转换成相应输出信号的逻辑电路。

指令是CPU能执行的一个基本操作;

CPU的设计者对CPU的所有指令进行编码;

用户用编码形式的指令进行编程,程序存放在内存中;

CPU从内存取来编码形式的指令,

对指令进行译码,发出执行该指令功能所需的信号。

• 根据译码内容的不同,可分为:

指令译码器: 将指令代码转换成该指令所需的各种控制信号。

地址译码器:将地址信号转换成各地址单元相应的选通信号。

三、计算机发展简史

1. 根据使用的基本电子器件、计算机经历了四个阶段:

电子管计算机 (1946—1956)	用机器语言、汇编语言编写程序用于军事和国防尖端技术	
晶体管计算机 (1957—1964)	● 开始使用高级语言 ● 开始用于工程技术、数据处理和	主
(1737—1704)	其它科学领域————————	要
集成电路计算机 _(1965—1970)	● 采用微程序、流水线等技术, 提高运行速度	特
(1303—1370)	• 出现操作系统、诊断程序等软件	点
超大规模集成电路计算机	采用半导体存储器采用图形界面操作系统	

(1971—至今) • 器件速度更快, 软件、外设更加丰富

2. 计算机的发展方向:

- 研制高速度、强功能的巨型机和大型机 适应军事和尖端科学的需要。
- 研制价格低廉的超小型机和微型机 开拓应用领域和占领更广大的市场。
- 研制非"冯诺依曼"计算机和"神经"计算机 仿人、仿智。

微型计算机是第四代计算机的典型代表。

3. 微处理器的发展(五代)

- ➤第一代——4位或低档8位微处理器(4004、8008)
- ➤第二代——中高档8位微处理器 (8080、Z80、MC6800、8085)
- ➤第三代——16位微处理器 (8086、8088、Z8000、MC6800、80286)
- ▶第四代——32位高档微处理器(80386、80486)
- ▶第五代——64位高档微处理器(Pentium 、 Power PC)
- **▶**多核微处理器

四、微型计算机概述

- 1. 微型计算机的基本结构
- 2. 微处理器、微型计算机、微型计算机系统
- 3. 微型计算机的特点
- 4. 微型计算机的分类
- 5. IBM PC机的发展简史

1. 微型计算机的基本结构

简介 1) 构成部件 ; 2) 工作过程

1) 构成部件

地址总线 AB

微机的硬件由CPU、存储器、输入/输出设备构成;

输入/输出设备通过输入/输出接口与系统相连;

(输入/输出接口简称I/O接口)

各部件通过总线连接。

0

构成部件

(1)总线

总线是连接多个功能部件的一组公共信号线 微机中各功能部件之间的信息是通过总线传输。

• 按信号的作用, 总线分为三类:

地址总线、数据总线、控制总线 地址总线 AB 🕟 输 I/O I/O 存 出 接 接 储 **CPU** 设 设 器 备 数据总线 DB、 控制总线 CB

地址总线 AB (Address Bus): 单向

用来传送CPU输出的地址信号,

地址总线的条数 决定CPU的寻址能力。

数据总线 DB (Data Bus): 双向

用来在CPU与存储器、I/O接口之间进行数据传送。

数据总线的条数决定一次可最多传送数据的宽度。

8 根 → 一次传送 8位

16 根 → 一次传送 16位

32 根 → 一次传送 32位

64 根 → 一次传送 64位

控制总线CB(Control Bus): 用于传送各种控制信号。

有的是CPU发出,如读控制信号、写控制信号; 有的是发向CPU,如外设向CPU发出的中断申请信号。

计算机系统的四层总线结构

微机系统中的局部总线 (插板级总线)

微机系统中的外总线 (通信总线)

"10"号位置是指双绞以太网线接口,也称之为"RJ-45接口"。这要主板集成了网卡才会提供的,它是用于网络连接的双绞网线与主板中集成的网卡进行连接

"4": PS/2接口: 其鼠标的接口为绿色、键盘的接口为紫色,另外也可以从PS/2接口的相对位置来判断: 靠近主板PCB的是键盘接口,其上方的是鼠标接口

"7"号和"9"号位置都是USB接口。它也是一种串行接口,目前最新的标准是2.0版,理论传输速率可达480MB/s。目前许多上设都采用这种设备接口,如Modem、打印机、扫描仪、数码相机等。

"8":IEEE 1394接口,串行标准。 即插即用、热拨插。如数码相机、 高档扫描仪等

"6":RS-232接口:串行接口DB-9

"5":并行接口,如GPIB接口

总线的性能指标

1)宽度

总线宽度指总线一次能同时传送的数据位数,即我们常说的32位、64位等总线宽度的概念。

2) 频率

总线工作时每秒钟能传输数据的次数。总线频率越高,传输 的速度越快。

传输率指总线工作时每秒钟可传送的数据量,用MB/s表示。 传输速率=总线宽度×总线频率/8

总线宽度越宽,总线频率越高,则总线传输速率越快

例: 总线频率为33.3MHz, 总线宽度32位, 则:

传输速率=32b/8×33.3 MHz =133.2MB/s

总线性能比较

(2) 中央处理器CPU

• 计算机的核心部件

用来实现指令的自动装入和自动执行,

8088 编程结构

(3) 内存

内存是存储程序和数据的部件,

由地址译码器、内存单元等构成。

内存结构示意图

- 内存单元
- 内存单元的地址
- 内存单元的内容
- 对内存的读/写操作

• 内存单元

存储信息的基本单元。

每片内存芯片有若干个内存单元。

每个单元可存储1位或多位二进制数。

● 内存单元的地址

为区分各内存单元,每个内存单元对应有一个地址。

地址线上的数据经译码后只有唯一的内存单元被选中。

● 内存单元的内容

每个内存单元所存储的二进制数据。

- 对内存的读/写操作
- CPU发出地址信号,选中相应的内存单元。

若是读操作,CPU发出内存读控制信号,

被选中的内存单元将其内容经数据总线送入CPU。

若是<mark>写操作</mark>,CPU发出内存写控制信号,

(4) 外设和输入/输出接口(I/O接口)

外设的电信号、运行速度与CPU不匹配,

不能与CPU直接相连,必须通过I/O接口与CPU相连。

I/O接口结构示意图

CPU通过对I/O端口进行读/写操作,实现对外设的控制。

- I/O端口
- I/O端口的地址
- I/O端口的内容
- 对I/O端口的读/写操作

● I/O端口

I/O接口内部通常有一个或多个寄存器,

用以存放各种信息,称I/O寄存器或I/O端口。

● I/O端口的地址

为区分各I/O端口,每个端口对应有一个端口地址。

● I/O端口的内容

指I/O端口存放的二进制数据。

根据存放内容的不同可分为: 状态端口, 数据端口, 控制端口

- 对I/O端口的读/写操作:
- ¬CPU发出地址信号,选中相应的I/O端口。

若是读操作, CPU发出I/O端口读控制信号,

被选中的I/O端口将其内容经数据总线送入CPU。

若是写操作, CPU发出I/O端口写控制信号,

CPU将欲写的内容经数据总线、写入被选中的I/O端口中。

2) 微机的工作过程

微机的工作过程分两阶段:

• 取指令

• 执行指令

●取指令阶段 (CPU读内存操作):

- ¬由IP给出指令在内存的地址
- 地址经地址寄存器 → 地址总线 → 地址译码器, 选中指令所在的内存单元
- ® CPU发出内存读控制信号
- $^-$ 指令从内存 ightarrow 数据总线 ightarrow 数据暂存器 ightarrow 指令寄存器
- 。指令译码器对指令进行译码

●执行指令阶段:

经译码后的指令,由控制电路发出控制信号去执行。

不同的指令,CPU的具体执行过程不同。

CPU 可执行的操作通常有数据传送、算术逻辑运算等。

当一条指令需要从内存或I/O端口取得或存放数据时, CPU在执行阶段,

需对指令指定的内存单元或I/O端口进行读/写操作。

例 指令1: 将寄存器R1与R3的内容相加,结果存在R3中。

指令1在CPU 内部即可完成

例 指令2: 将内存中的数据2送至CPU的寄存器R2中

指令2的执行阶段包括一个到内存取数(即读内存)的过程。

例 指令3: 将寄存器R3的内容送至数据3的内存单元中

指令3的执行阶段包括一个向内存存数(即写内存)的过程。

当一条指令取走后,

指令指针寄存器会被修改成下一条要执行指令的地址, 这样,当一条指令执行后,又进入取指令阶段,

微机的工作过程:

取指令 → 执行指令 → 取指令 → 执行指令......

2. 微处理器、微型计算机、微型计算机系统

3. 微型计算机的特点

- 体积小, 重量轻, 耗电小
- 可靠性高,结构灵活, 价格低
- 研制周期短,产品系列化,便于选购
- 应用面广:

信息处理、实时控制、辅助设计、人工智与推进制的大型机相比:

- 速度相对低
- 功能相对低字长位数,内存容量,寻址方式,指令条数, 中断级别,及内部寄存器数量等方面

4. 微型计算机的分类

- 1) 按构成分类
- 2) 按CPU的字长分类
- 3) 按主机装置分类

1) 按构成分类 单片机、单板机、多板机

一单片机

- 将CPU、内存、I/O接口电路全部集成一块芯片上, 构成具备基本功能的计算机,称单片机。
- 特点:超小型、高可靠性、价廉
- 应用:智能仪表、工业实时控制、家用电器等
- 产品: Intel 的8051、8096/8098系列
 Motorola 的6801、6805系列
 Hitachi (日立) 的 H8S、SH系列

单板机

将CPU、内存、I/O接口及其它辅助电路 全部装在一块印刷电路板上,组成单板机。

• 特点:结构简单、价廉

应用: 过程控制、数据处理

产品: TP-801 以Z80CPU为核心的单板机80年代各院校"微机原理"的实验机

® 多板机

- 把CPU、内存、I/O接口芯片装在多块电路板上,各印刷板插在主机板的总线插槽上,通过系统总线连接起来,构成多板机。
- 特点:体积小,重量轻,耗电小,可靠性高,结构灵活 价格低,研制周期短,产品系列化,便于选购 应用面广:科学计算,数据处理,事务管理, 教学培训,计算辅助设计和制造,家庭娱乐,网络通信

● 产品: IBM PC/XT、Pentium机等 90年代以来各院校"微机原理"和计算机硬件的实验机

2) 按CPU的字长分类

CPU的性能可以用两个主要参数来描述:

速度:用CPU的工作频率表示,单

位: GHz

CPU内部寄存器宽度: 寄存器的位数

宽度: 外部数据总线宽度: 数据线的根数

地址总线宽度: 地址线的根数

CPU内部的寄存器宽度可用字长描述

● 按CPU 的字长,微机可分为:

4位机、8位机、16位机、32位机、64位机

微处理器发展过程

pentium®

EXTREME EDITION

以Intel公司生产的80x86为例:

推出年代	CPU 芯片	寄存器 位数	数据线 實 度	地址线 宽 度	最大主频 MHz
1971.11	4004	4	4		0.1
1972.4	8008	8	8	14	0.2
1974.4	8080	8	8	16	2
1978.6	8086	16	16	20	10
1979.6	8088	16	8	20	8
1982.2	80286	16	16	24	16
1985.10	80386	32	32	32	33
1989.4	80486	32	32	32	66
1993.3	Pentium	32	64	32	100
1995.11	Pentium Pro	32	64	32	200
1997.5	Pentium II	32	64	36	450
1999.2	Pentium III	32	64	36	1000

Intel 公司CPU芯片发展历程

时间	系列	DB (内/ 外)	AB	内存	备注
1978	8086	16/16	20	1MB	IBM用其制造PC机
1979	8088	16/8	20	1MB	IBM用其制造PC机
1982	80286	16/16	24	161/18	增加保护模式,处理超过1MB 的内存
1985	80386	32/32	32	4GB	内存分页,模拟多个8086同时 工作
1989	80486				倍频,使外部设备的发展跟 上CPU主频
1993	Pentium				超标量结构,具有超频性能

Intel 公司CPU芯片发展历程

时间	系列	特点
1996	Pentium pro (高能奔 腾)	片内封装了与原CPU同频运行的256KB 或512KB二级缓存 ,支持动态预测执行
1997	Pentium MMx (多能 奔腾)	一级缓存32KB,增加MMX(多媒体扩展指令)
1997	PII	Pentium pro的改进,锁定CPU的倍频数
1998	赛扬	较好的超频性能
1999	PIII	CPU序列号,支持SSE(单一指令多数据流扩展), 大大加强在三维图像和浮点运算方面的能力
2000	赛扬Ⅱ	二级缓存与CPU之间的通道扩展到256位

	Intel 酷齊i7 4770K(含)	Intel 酷會i7 4960X	Intel 酷睿i7 3960X 至尊 版(盒)	Intel 酷害i7 3770K(盒)	Intel 酷睿i7 3930K(盒)	Intel 酷容i7 4770
价格/商家	¥ 2100 2014-09-05 219商家在集	¥ 7699 2014-09-05 176商家在售	¥ 6850 2014-09-05 196商家在售	¥1920 2014-09-05 208商家在售	¥3650 2014-08-29 192商家在集	¥1940 2014-09-05 218商家在集
CPU頻2	ξ Σ					
CPU主想		3.6GHz	3.3GHz	3.5GHz	3.2GHz	3.4GHz
最大音频		4GHz	3.9GHz	3.9GHz	3.8GHz	
夕卜频	100MHz					
倍频	39倍		36倍			
不锁频				可不锁頻	可不锁频	
CPU插槽 插槽类型		LGA 2011	LGA 2011	LGA 1155	LGA 2011	LGA 1150
针脚数目		EGA 2011	2011pin	1155pin	EGA 2011	EGA 1150
CPU内核			23119111	Пооры		
		Ivy Bridge-E	Sandy Bridge-E	has Daldan	Sandy Bridge-E	Haswell
核心代号		IVy Bridge-E		Ivy Bridge	Sandy Bridge-E	Haswell
CPU架构			Sandy Bridge			
核心数量	四核心	六核心	六核心	四核心	六核心	四核心
线程数	八线程	十二线程	十二线程	八线程	十二线程	八绒程
制作工艺	22纳米	22纳米	32纳米	22纳米	32纳米	22纳米
热设计功耗(T	DP) 84W	130	130W	77W	130W	84W
CPU緩存						
二級缓存	4×256KB		6*256KB			
三级缓存	8MB	15MB	15MB	8MB	12MB	8MB
技术参数						
指令集	SSE 4.1/4.2, AVX 2.0		MMX, SSE (1, 2, 3, 3 4.1, 4.2), EM64T, VT- AES, AVX		SSE4.2, AVX	+
内存控制器	§ 双通道DDR3 1333/1600	四通道 DDR3 1866	DDR3-1066/1333/1600) 双通道DDR3 1600/133	DDR3-1600	我关注的 DDR3-1333/1600
支持最大内	存 32GB		64GB	32GB	64GB	意见反馈
超线程技术	支持	支持	支持	支持	支持	_
虚拟化技术	k Intel VT	Intel VT	Intel VT	Intel VT	Intel VT	返回顶部
64位处理器	8 是	是	是	是	是	是
		_				>

3) 按主机装置分类

桌上型: 台式电脑

便携型: 笔记本、掌上电脑等

微型计算机系统

微型计算机的基础上加上系统软件和各种外部设备。

系统软件主要包括:操作系统、诊断程序、编译程序等。

5. IBM PC机的发展简史

名称	推出年代	采用CPU	特点
IBM PC	1981	8088	准 16 位微机 内存寻址1MB DOS 操作系统
IBM PC/XT	1983	8088	比 IBM PC 多一个10MB 硬盘
IBM PC/AT	1984	80286	内存寻址增至16MB 具有虚拟存储器功能 Windows 操作系统
386 机 486 机 Pentium Pentium II Pentium III Pentium IV	1985 1990 1993 1997 1999 2000	80386 80486 Pentium Pentium II Pentium IV	内存容量更大32MB、160GB 支持虚拟8086 模式 可执行多任务 支持多媒体、网络技术

作业

4, 5