Tables for the Jupiter-Europa and Saturn-Enceladus systems

ABSTRACT. Tables for some periodic orbits in the Jupiter-Europa system and the Saturn-Enceladus system. These tables supplement the paper "Symplectic geometry and space mission design, On the Jupiter-Europa and Saturn-Enceladus systems".

1. Tables

In this appendix, we give tables with the data associated to the various families we have considered.

Table 1. Data for g-LPO1 branch for JE.

Γ	x(0)	$\dot{y}(0)$	T	(C/B) -sign & Floquet multipliers $\mu_{CZ}^p / \mu_{CZ}^s / \mu_{CZ}$
3.01142113	1.0226290	0.10284894	0.13999	$(+/-) \varphi_p = 0.137, (+/-) \varphi_s = 0.142$ 3 / 3 / 6
3.00383366	1.00797270	0.05073828	1.17402	$(+/-)\varphi_p = 0.332, (+/-)\varphi_s = 1.290$ 3 / 3 / 6
3.00372747	1.00538715	0.07480305	1.33771	$(+/-) \varphi_p = 0.556, (+/-) \varphi_s = 1.572$ 3 / 3 / 6
3.00365597	1.00378076	0.09779235	1.59835	$(+/-) \varphi_p = 1.068, (+/-) \varphi_s = 2.089$ 3 / 3 / 6
3.00360358	1.00244635	0.12945606	2.08332	$(+/-)\varphi_p = 1.845, (+/-)\varphi_s = 3.136$ 3 / 3 / 6
3.00360326	1.00243628	0.12977936	2.08832	$(+/-)\varphi_p = 1.858, (+/+)\lambda_s = -1.03$ 3 / 3 / 6
3.00360049	1.00234732	0.13271728	2.13332	$(+/-)\varphi_p = 1.987, (+/+)\lambda_s = -1.05$ 3 / 3 / 6
3.00359960	1.00231829	0.13370950	2.14831	$(+/-)\varphi_p = 2.037, (-/+)\varphi_s = 3.166$ 3 / 3 / 6
3.00358255	1.00180287	0.15481646	2.43323	$(+/+)\lambda_p = -4.39, (-/+)\varphi_s = 3.796$ 3 / 3 / 6
3.00343430	1.00043030	0.32769866	3.13136	$(+/+)\lambda_p = -129, (-/+)\varphi_s = 5.223$ 3 / 3 / 6

Table 2. Data for DPO branch for JE.

Γ	x(0)	$\dot{y}(0)$	T		$\mu_{CZ}^p / \mu_{CZ}^s / \mu_{CZ}$
3.00374605	1.00900895	0.04460670	1.25362	$(-/-) \lambda_p = 1.29, (+/-) \varphi_s = 1.385$	2 / 3 / 5
3.00358658	1.00884026	0.04739922	1.41448	$(-/-) \lambda_p = 2.23, (+/-) \varphi_s = 1.565$	2 / 3 / 5
3.00356924	1.00889026	0.04727261	1.43426	$(-/-) \lambda_p = 2.36, (+/-) \varphi_s = 1.589$	2 / 3 / 5
3.00340053	1.00928559	0.04673515	1.64653	$(-/-) \lambda_p = 4.29, (+/-) \varphi_s = 1.829$	2 / 3 / 5
3.00323697	1.00958786	0.04684116	1.88433	$(-/-)$ $\lambda_p = 8.52, (+/-)$ $\varphi_s = 2.094$	2/3/5
3.00257321	1.00913170	0.05562606	2.88768	$(-/-) \lambda_p = 136, (+/-) \varphi_s = 3.092$	2/3/5
3.00237147	1.00863170	0.05990199	3.16288	$(-/-)$ $\lambda_p = 246, (-/+)$ $\varphi_s = 3.334$	2/3/5
3.00109352	1.00470170	0.09778837	5.12979	$(-/-)\lambda_p = 2485, (-/+)\varphi_s = 6.161$	2/3/5
3.00109192	1.00469670	0.09785369	5.13303	$(-/-)$ $\lambda_p = 2570$, $(+/+)$ $\lambda_s = 1.027$	2 / 4 / 6
3.00107109	1.00463170	0.09871030	5.17546		2/4/6

Table 3. Data for LPO2 branch for JE.

Γ	x(0)	$\dot{y}(0)$	T	(C/B) -sign & Floquet multipliers $\mu_{CZ}^p / \mu_{CZ}^s / \mu_{CZ}$
3.00374885	1.00955895	0.04118756	1.25694	$(+/-) \varphi_p = 0.190, (+/-) \varphi_s = 1.397$ 3 / 3 / 6
3.00371150	1.01150895	0.03105844	1.34143	$(+/-) \varphi_p = 0.538, (+/-) \varphi_s = 1.555$ 3 / 3 / 6
3.00369790	1.01200895	0.02882949	1.37591	$(+/-)$ $\varphi_p = 0.625, (+/-)$ $\varphi_s = 1.620$ 3 / 3 / 6
3.00363027	1.01440084	0.01977091	1.62295	$(+/-) \varphi_p = 1.101, (+/-) \varphi_s = 2.094$ 3 / 3 / 6
3.00357414	1.016776	0.0130372	2.1215	$(+/-)$ $\varphi_p = 1.878, (+/-)$ $\varphi_s = 3.131$ 3 / 3 / 6
3.00357388	1.016787	0.013014	2.12519	$(+/-)$ $\varphi_p = 1.885, (+/+)$ $\lambda_s = -1.02$ 3 / 3 / 6
3.00356878	1.01701395	0.01253366	2.20708	$(+/-)$ $\varphi_p = 2.120, (-/+)$ $\varphi_s = 3.225$ 3 / 3 / 6
3.00353952	1.01771395	0.01187914	2.65553	$(+/+)$ $\lambda_p = -9.64$, $(-/+)$ $\varphi_s = 4.144$ 3 / 3 / 6
3.00349789	1.01765259	0.01364657	2.95454	$(+/+)$ $\lambda_p = -36.3$, $(-/+)$ $\varphi_s = 4.743$ 3 / 3 / 6

Table 4. Data for DRO branch for JE.

Γ	x(0)	$\dot{y}(0)$	T	
3.00429783	0.99502455	0.07670173	0.40998	$(-/+) \varphi_p = 5.862, (-/+) \varphi_s = 5.894$ 1 / 1 / 2
3.00156431	0.99037034	0.06224607	1.02778	$(-/+) \varphi_p = 5.245, (-/+) \varphi_s = 5.406$ 1 / 1 / 2
3.00101739	0.98833167	0.06026263	1.32856	$(-/+) \varphi_p = 4.973, (-/+) \varphi_s = 5.216$ 1 / 1 / 2
3.00060753	0.98623049	0.05949811	1.64998	$(-/+) \varphi_p = 4.712, (-/+) \varphi_s = 5.050$ 1 / 1 / 2
3.00054882	0.98587513	0.05946574	1.7052	$(-/+) \varphi_p = 4.670, (-/+) \varphi_s = 5.026$ 1 / 1 / 2
2.99962388	0.97762100	0.06369886	3	$(-/+) \varphi_p = 4.001, (-/+) \varphi_s = 4.787$ 1 / 1 / 2
2.99935885	0.97409965	0.06735824	3.5	$(-/+) \varphi_p = 3.987, (-/+) \varphi_s = 4.863$ 1 / 1 / 2
2.99908502	0.97038828	0.07212000	4	$(-/+) \varphi_p = 3.995, (-/+) \varphi_s = 5.001$ 1 / 1 / 2
2.99868251	0.96488658	0.08024713	4.6003	$(-/+)$ $\varphi_p = 4.185, (-/+)$ $\varphi_s = 5.254$ $1/1/2$

Table 5. Data for one branch bifurcation from 3rd cover of the LPO2-orbit for JE. These spatial orbits are simply-symmetric w.r.t. the xz-plane and ends at collision. Its symmetric family is obtained by using the reflection at the xy-plane.

Γ	x(0)	z(0)	$\dot{y}(0)$	T	(C/B)-sign & Floquet multipliers	μ_{CZ}
3.00363027	1.01440084	0	0.01974709	4.86	$(-/+) \varphi_p^3 = 3.305, \varphi_s^3 = 0$	$14 \rightarrow 16$
3.00362881	1.01439256	0.00046114	0.01976648	4.87	$(-/+)$ $\varphi_1 = 3.300, (-/+)$ $\varphi_2 = 6.281$	14
3.00359018	1.01415816	0.00242577	0.02031752	4.90	$(-/+) \varphi_1 = 3.208, (-/+) \varphi_2 = 6.280$	14
3.00357914	1.01409052	0.00273476	0.02047842	4.91	$(+/+) \lambda = -1.05, (-/+) \varphi = 6.278$	14
3.00354287	1.01386628	0.003555363	0.02101794	4.94	$(+/+) \lambda = -1.18, (-/+) \varphi = 6.255$	14
3.00325974	1.01198527	0.00688259	0.02594794	5.2	$(+/+) \lambda = -1.62, (-/+) \varphi = 5.963$	14
3.00298774	1.00985792	0.00824897	0.03258269	5.5	$(+/-) \varphi_1 = 2.566, (-/+) \varphi_2 = 5.657$	14
3.00270453	1.00652898	0.00795347	0.04651756	5.85	$(-/+) \varphi_1 = 1.947, (-/+) \varphi_2 = 5.978$	14
3.00264234	1.00560524	0.00778449	0.05051319	5.88	$(+/+) \lambda = -1.09, (-/+) \varphi = 5.958$	14
3.00263168	1.00544296	0.00774780	0.05124733	5.88	$(-/+) \varphi_1 = 3.488, (-/+) \varphi_2 = 5.937$	14
3.00260038	1.00454296	0.00720347	0.05686831	5.86	$(-/+) \varphi_1 = 4.662, (-/+) \lambda = 1$	b-d
3.00260927	1.00399399	0.00658371	0.06201856	5.8	$(-/+) \varphi = 4.813, (+/+) \lambda = 2.278$	15
3.00266582	1.00306075	0.00521508	0.07465765	5.6	$(-/+) \varphi = 4.443, (+/+) \lambda = 3.660$	15
3.00278841	1.00150186	0.00269606	0.11584022	5	$(-/+) \varphi = 3.653, (+/+) \lambda = 1.829$	15
3.00279353	1.00129733	0.00238127	0.12512611	4.9	$(-/+) \varphi_1 = 3.540, (-/+) \lambda = 1$	b-d
3.00277937	1.00084704	0.00169978	0.15351993	4.66	$(-/+) \varphi_1 = 3.246, (-/+) \varphi_2 = 5.702$	14

TABLE 6. Data for one branch bifurcation from $LPO2^3$ -orbit for JE, ending at DRO^5 . The CZ-index is constant, and gives a bridge between the planar orbits. These spatial orbits are x-axis-symmetric. Its symmetric family is obtained by reflection at the ecliptic.

Γ	x(0)	$\dot{y}(0)$	$\dot{z}(0)$	T	(C/B)-sign & Floquet multipliers	μ_{CZ}
3.00363027	1.01440084	0.01974709	0	4.86	$(-/+) \varphi_p^3 = 3.305, \varphi_s^3 = 0$	$14 \rightarrow 16$
3.00351924	1.01408954	0.01928185	0.01342237	4.96	$(-/-) \lambda_1 = -1.24, (-/-) \lambda_2 = 1.09$	15
3.00321170	1.01314307	0.01799332	0.02676988	5.25	$(-/-) \lambda_1 = -1.62, (-/-) \lambda_2 = 1.45$	15
3.00302231	1.01246670	0.01723541	0.03300118	5.46	$(+/-) \varphi = 2.749, (-/-) \lambda = 1.78$	15
3.00273486	1.01099334	0.01657953	0.04285920	5.82	$(+/-) \varphi = 1.618, (-/-) \lambda = 1.55$	15
3.00270684	1.01077857	0.01644568	0.04412031	5.85	$(+/-) \varphi = 1.801, (-/-) \lambda = 1.40$	15
3.00266563	1.01548137	0.01548137	0.04575934	5.88	$(+/-) \varphi = 2.506, (-/-) \lambda = 1.35$	15
3.00243536	1.01068879	0.00516070	0.04995370	6	$(-/+) \varphi = 5.761, (-/-) \lambda = 8.52$	15
3.00204821	1.01119864	-0.01174966	0.05089250	6.24	$(-/+) \varphi = 5.965, (-/-) \lambda = 31.1$	15
3.00172312	1.01167768	-0.02457421	0.04793350	6.5	$(-/+) \varphi = 6.016, (-/-) \lambda = 30.0$	15
3.00147493	1.01207539	-0.03349482	0.04374826	6.75	$(-/+) \varphi = 6.070, (-/-) \lambda = 22.3$	15
3.00127220	1.01242785	-0.04020652	0.03910792	7	$(-/+) \varphi = 6.124, (-/-) \lambda = 15.2$	15
3.00096072	1.01304236	-0.04944170	0.02947258	7.5	$(-/+) \varphi = 6.201, (-/-) \lambda = 6.16$	15
3.00073221	1.01358551	-0.05528744	0.01932635	8	$(-/+) \varphi = 5.911, (-/-) \lambda = 1.14$	15
3.00055690	1.01409401	-0.05914769	0.00388381	8.5	$(-/+) \varphi = 4.550, (-/-) \lambda = 1.00$	15
3.00054882	1.01412064	-0.05930512	0	8.52	$(-/+) \varphi_p^5 = 4.500, \varphi_s^5 = 0$	$16 \rightarrow 14$

TABLE 7. Data for one branch bifurcation from $g\text{-}LPO1^3$ for JE. These spatial orbits are x-axis-symmetric and connected to one branch bifurcation from DPO^3 via b-d. Its symmetric family is obtained by reflection at the ecliptic.

	Γ	x(0)	$\dot{y}(0)$	$\dot{z}(0)$	T	(C/B)-sign & Floquet multipliers	μ_{CZ}
3.0	00365597	0.98557900	-0.01951876	0	4.79	$(-/+) \varphi_p^3 = 3.205, \varphi_s^3 = 0$	$14 \rightarrow 16$
3.0	00365338	0.98556744	-0.01945341	0.00182488	4.80	$(-/+) \varphi = 3.214, (-/-) \lambda = 1.001$	15
3.0	00363389	0.98561874	-0.01938011	0.00580611	4.82	$(-/-) \lambda_1 = -1.01, (-/-) \lambda_2 = 1.005$	15
3.0	00329911	0.98657072	-0.01815373	0.02416862	5.12	$(-/-)$ $\lambda_1 = -1.54$, $(-/-)$ $\lambda_2 = 1.378$	15
3.0	00314093	0.98708523	-0.01763006	0.02950246	5.30	$(-/-) \lambda_1 = -1.02, (-/-) \lambda_2 = 1.685$	15
3.0	00300399	0.98759083	-0.01727225	0.03377964	5.46	$(+/-) \varphi = 2.290, (-/-) \lambda = 1.977$	15
3.0	00281046	0.98856773	-0.01745284	0.04009001	5.73	$(+/-) \varphi = 0.976, (-/-) \lambda = 2.451$	15
3.0	00275889	0.98918471	-0.01885469	0.04265726	5.82	$(+/-) \varphi = 0.134, (-/-) \lambda = 4.422$	15
							b-d
3.0	00275823	0.98925887	-0.01917383	0.04284561	5.82	$(-/-) \lambda_1 = 1.041, (-/-) \lambda_2 = 5.013$	14
3.0	00276196	0.98939330	-0.01992825	0.04305515	5.83	$(-/-) \lambda_1 = 1.148, (-/-) \lambda_2 = 6.636$	14
3.0	00296320	0.98997681	-0.03157520	0.03598567	5.75	$(-/-) \lambda_1 = 1.064, (-/-) \lambda_2 = 100.2$	14
3.0	00316033	0.99025736	-0.04249067	0.02045809	5.68	$(-/-) \lambda_1 = 1.011, (-/-) \lambda_2 = 400.3$	14
3.0	00323676	0.99035914	-0.04685850	0.00096495	5.65	$(-/-) \lambda_1 = 1.0001, (-/-) \lambda_2 = 619.3$	14
3.0	00323697	0.99035942	-0.04686768	0	5.65	$\varphi_s^3 = 0, (-/-) \lambda = 620.23$	$13 \rightarrow 15$

TABLE 8. Data for one branch bifurcation from 3rd cover of the g-LPO1-orbit for JE. These spatial orbits are simply-symmetric w.r.t. the xz-plane and they are connected to one branch bifurcation from the 3rd cover of the DPO-orbit via birth-death. Its symmetric family is obtained by using the reflection at the ecliptic.

	(0)	(0)	.(0)	- T	(α/p) : 0 Dl	
Γ	x(0)	z(0)	$\dot{y}(0)$	T	(C/B)-sign & Floquet multipliers	μ_{CZ}
3.00365597	0.98557900	0	-0.01951876	4.79	$(-/+) \varphi_p^3 = 3.205, \varphi_s^3 = 0$	$14 \rightarrow 16$
3.00365461	0.98556706	-0.00036219	-0.01947401	4.80	$(-/+) \varphi_1 = 3.215, (-/+) \varphi_2 = 6.281$	14
3.00363389	0.98568597	-0.00175392	-0.01975974	4.82	$(+/+) \lambda = -1.01, (-/+) \varphi = 6.277$	14
3.00360033	0.98588066	-0.00278699	-0.02023321	4.84	$(+/+) \lambda = -1.12, (-/+) \varphi = 6.263$	14
3.00331461	0.98766211	-0.00655464	-0.02492170	5.11	$(+/+) \lambda = -1.52, (-/+) \varphi = 5.978$	14
3.00314742	0.98883839	-0.00763969	-0.02842198	5.29	$(+/-) \varphi_1 = 3.031, (-/+) \varphi_2 = 5.756$	14
3.00289637	0.99094696	-0.00836889	-0.03579903	5.61	$(+/-) \varphi_1 = 1.373, (-/+) \varphi_2 = 5.309$	14
3.00285045	0.99142732	-0.00835072	-0.03776509	5.67	$0.376 \pm 0.570i,\ 0.806 \pm 1.221i$	14
3.00277633	0.99243798	-0.00805049	-0.04244268	5.78	$0.491 \pm 0.121i, \ 1.917 \pm 0.472i$	14
3.00277358	0.99249304	-0.00802039	-0.04284315	5.79	$(+/+)$ $\lambda_1 = 1.987$, $(-/-)$ $\lambda_2 = 2.016$	14
3.00276770	0.993012244	-0.00750257	-0.04644237	5.82	$(+/+)$ $\lambda_1 = 1.000, (-/-)$ $\lambda_2 = 7.181$	14
						b-d
3.00277093	0.99302677	0.00744432	-0.04668427	5.82	$(-/+) \varphi = 6.138, (-/-) \lambda = 8.013$	13
3.00296373	0.99201168	0.00567451	-0.04755480	5.75	$(-/+) \varphi = 6.233, (-/-) \lambda = 100.3$	13
3.00316033	0.99081340	0.00306250	-0.04704925	5.68	$(-/+) \varphi = 6.263, (-/-) \lambda = 400.3$	13
3.00323697	0.99035942	0	-0.04686768	5.65	$(-/-) \lambda = 620.23, \varphi_s^3 = 0$	$13 \rightarrow 15$

Table 9. g-LPO1 branch for SE.

Γ	x(0)	$\dot{y}(0)$	T	(C/B) -sign & Floquet multipliers $\mu_{CZ}^p / \mu_{CZ}^s / \mu_{CZ}$
3.00033109	1.00061213	0.01702742	0.22681	$(+/-) \varphi_p = 0.218, (+/-) \varphi_s = 0.232$ 3 / 3 / 6
3.00015209	1.00157026	0.00982528	1.13552	$(+/-) \varphi_p = 0.421, (+/-) \varphi_s = 1.245$ 3 / 3 / 6
3.00014609	1.00109981	0.01422219	1.33077	$(+/-)\varphi_p = 0.534, (+/-)\varphi_s = 1.549$ 3 / 3 / 6
3.00014309	1.00076095	0.01889960	1.60328	$(+/-)\varphi_p = 1.118, (+/-)\varphi_s = 2.081$ 3 / 3 / 6
3.00014089	1.00047925	0.02552883	2.13798	$(+/-)$ $\varphi_p = 1.962, (+/+)$ $\lambda_s = -1.06$ 3 / 3 / 6
3.00014069	1.00044659	0.02664172	2.22579	$(+/-)\varphi_p = 2.302, (-/+)\varphi_s = 3.324$ 3 / 3 / 6
3.00014049	1.00041446	0.02785333	2.31612	$(+/+)$ $\lambda_p = -1.58$, $(-/+)$ $\varphi_s = 3.513$ 3 / 3 / 6
3.00013817	1.00020619	0.04126365	2.90065	$(+/+)$ $\lambda_n = -35.5$, $(-/+)$ $\varphi_s = 4.711$ 3 / 3 / 6

Table 10. DPO branch for SE.

Γ	x(0)	$\dot{y}(0)$	T	(C/B)-sign & Floquet multipliers	μ^p_{CZ} / μ^s_{CZ} / μ_{CZ}
3.00014744	0.99838904	-0.00977411	1.23860	$(-/-) \lambda_p = 1.188, (+/-) \varphi_s = 1.364$	2 / 3 / 5
3.00014064	0.99826971	-0.00934116	1.41906	$(-/-) \lambda_p = 2.270, (+/-) \varphi_s = 1.571$	2 / 3 / 5
3.00012744	0.99811661	-0.00917943	1.88166	$(-/-) \lambda_p = 8.463, (+/-) \varphi_s = 2.091$	2 / 3 / 5
3.00011304	0.99809959	-0.00985129	2.46619	$(-/-) \lambda_p = 46.25, (+/-) \varphi_s = 2.697$	2 / 3 / 5
3.00010524	0.99815786	-0.01051283	2.76504	$ (-/-) \lambda_p = 101.1, (+/-) \varphi_s = 2.979 $	2 / 3 / 5
3.00008192	0.99846180	-0.01309687	3.59018	$(-/-) \lambda_p = 500.3, (+/-) \varphi_s = 3.699$	2 / 3 / 5
3.00006838	0.99867270	-0.01491712	4.08764	$(-/-) \lambda_p = 911.4, (+/-) \varphi_s = 4.164$	2/3/5

Table 11. LPO2 branch for SE.

Γ	x(0)	$\dot{y}(0)$	T	(C/B)-sign & Floquet multipliers	μ^p_{CZ} / μ^s_{CZ} / μ_{CZ}
3.00014639	1.00217453	0.00646333	1.30672	$(+/-) \varphi_p = 0.451, (+/-) \varphi_s = 1.499$	3 / 3 / 6
3.00014319	1.00276240	0.00405869	1.57114	$(+/-) \varphi_p = 1.018, (+/-) \varphi_s = 2.009$	3 / 3 / 6
3.00014299	1.00279991	0.00393120	1.59627	$(+/-) \varphi_p = 1.060, (+/-) \varphi_s = 2.059$	3 / 3 / 6
3.00014075	1.00328757	0.00253817	2.11312	$(+/-) \varphi_p = 1.881, (+/+) \lambda_s = -1.03$	3 / 3 / 6
3.00014061	1.00331899	0.00247078	2.17031	$(+/-)$ $\varphi_p = 2.043, (-/+)$ $\varphi_s = 3.142$	3 / 3 / 6
					, ,
3.00014030	1.00338269	0.00235356	2.31077	$(+/+) \lambda_p = -1.22, (-/+) \varphi_s = 3.484$	3 / 3 / 6
3.00013613	1.00339866	0.00308260	3.07749	$(+/+)$ $\lambda_p = -69.2$, $(-/+)$ $\varphi_s = 5.041$	3 / 3 / 6

Table 12. DRO branch for SE.

Γ	x(0)	$\dot{y}(0)$	T	(C/B)-sign & Floquet multipliers	$\mu_{CZ}^p / \mu_{CZ}^s / \mu_{CZ}$
3.00010525	1.00137692	-0.01325298	0.67023	$(-/+) \varphi_p = 5.595, (-/+) \varphi_s = 5.673$	1 / 1 / 2
3.00004405	1.00224224	-0.01182054	1.29643	$(-/+) \varphi_p = 5.001, (-/+) \varphi_s = 5.234$	1 / 1 / 2
3.00002425	1.00276541	-0.01163206	1.70339	$(-/+) \varphi_p = 4.671, (-/+) \varphi_s = 5.027$	1 / 1 / 2
2.99999205	1.00419386	-0.01226462	2.84090	$(-/+) \varphi_p = 4.060, (-/+) \varphi_s = 4.785$	1 / 1 / 2
2.99996645	1.00592895	-0.01421020	4.06771	$(-/+) \varphi_p = 4.007, (-/+) \varphi_s = 5.025$	1 / 1 / 2
2.99995365	1.00682933	-0.01550883	4.56302	$(-/+) \varphi_p = 4.172, (-/+) \varphi_s = 5.236$	1 / 1 / 2
2.99986545	1.01156940	-0.02377257	5.79878	$(-/+) \varphi_p = 5.114, (-/+) \varphi_s = 5.951$	1 / 1 / 2

TABLE 13. Purple 14 for SE. These spatial orbits are simply-symmetric w.r.t. the xz-plane and ends at collision. Its symmetric family is obtained by using the reflection at the xy-plane.

Γ	x(0)	z(0)	$\dot{y}(0)$	T	(C/B)-sign & Floquet multipliers	μ_{CZ}
3.00014299	1.00279991	0	0.00393120	4.78	$(-/+) \varphi_p^3 = 3.182, \varphi_s^3 = 0$	$14 \rightarrow 16$
3.00014260	1.00281790	0.00019127	0.00386379	4.84	$(-/+)$ $\varphi_1 = 3.259$, $(-/+)$ $\varphi_2 = 6.282$	14
3.00014129	1.00277804	0.00047538	0.00395858	4.87	$(+/+) \lambda = 3.208, (-/+) \varphi = 6.280$	14
3.00012209	1.00211470	0.00153818	0.00578987	5.36	$(+/-) \varphi_1 = 3.111, (-/+) \varphi_2 = 5.740$	14
3.00010829	1.00137563	0.00156298	0.00875806	5.82	$(-/+) \varphi_1 = 0.776, (-/+) \varphi_2 = 5.669$	14
3.00010291	1.00087722	0.00139401	0.01128814	5.86	$(+/-) \varphi_1 = 4.665, (-/+) \varphi_2 = 6.126$	14
						b-d
3.00010295	1.00083899	0.00135458	0.01162196	5.84	$(-/+) \varphi = 4.783, (+/+) \lambda = 1.517$	15
3.00010612	1.00055789	0.00095022	0.01542803	5.53	$(-/+) \varphi = 4.334, (+/+) \lambda = 3.712$	15
3.00011036	1.00024558	0.00044664	0.02518603	4.86	$(-/+) \varphi = 3.504, (+/+) \lambda = 1.109$	15
						b-d
3.00011031	1.00021998	0.00040764	0.02663091	4.80	$(-/+) \varphi_1 = 3.424, (-/+) \varphi_2 = 5.916$	14
3.00010281	1.00003238	0.00010169	0.05878312	4.17	$(-/+) \varphi_1 = 3.781, (-/+) \varphi_2 = 5.884$	14
3.00010021	1.00001491	0.00006054	0.07739259	4.08	$(-/+)$ $\varphi_1 = 3.965, (-/+)$ $\varphi_2 = 6.041$	14

TABLE 14. Red 15 for SE. The CZ-index is constant, and gives a bridge between the planar orbits. These spatial orbits are x-axis-symmetric. Its symmetric family is obtained by reflection at the ecliptic.

	(0)	•(0)	•(0)	/T	(C/D) -: 0- El 1: 1:	
Γ	x(0)	$\dot{y}(0)$	$\dot{z}(0)$	T	(C/B)-sign & Floquet multipliers	μ_{CZ}
3.00014299	1.00279991	0.00393120	0	4.78	$(-/+) \varphi_p^3 = 3.182, \varphi_s^3 = 0$	$14 \rightarrow 16$
3.00013559	1.00272159	0.00369764	0.00343416	5.00	$(-/-)$ $\lambda_1 = -1.39$, $(-/-)$ $\lambda_2 = 1.13$	15
3.00012559	1.00256280	0.00349797	0.00541943	5.26	$(-/-) \lambda_1 = -1.53, (-/-) \lambda_2 = 1.52$	15
3.00012139	1.00248791	0.00342004	0.00611889	5.38	$(+/-) \varphi = 2.928, (-/-) \lambda = 1.73$	15
3.00011759	1.00241319	0.00335832	0.00672992	5.50	$(+/-) \varphi = 2.395, (-/-) \lambda = 1.90$	15
3.00010399	1.00204385	0.00282460	0.00925842	5.90	$(-/+) \varphi = 3.184, (-/-) \lambda = 1.41$	15
3.00009759	1.00208424	0.00127533	0.00976558	5.98	$(-/+) \varphi = 5.692, (-/-) \lambda = 6.55$	15
3.00009417	1.00210781	0.00047162	0.00992209	6.03	$(-/+) \varphi = 5.846, (-/-) \lambda = 13.5$	15
3.00009145	1.00212691	-0.00015208	0.00999912	6.07	$(-/+) \varphi = 5.888, (-/-) \lambda = 18.8$	15
3.00007425	1.00225503	-0.00382600	0.00970041	6.38	$(-/+) \varphi = 5.974, (-/-) \lambda = 32.3$	15
3.00005185	1.00244477	-0.00788343	0.00765368	7.00	$(-/+) \varphi = 6.092, (-/-) \lambda = 15.2$	15
3.00004205	1.00254154	-0.00938862	0.00615688	7.40	$(-/+) \varphi = 6.171, (-/-) \lambda = 7.51$	15
3.00003105	1.00266948	-0.01085595	0.00374582	8.01	$(-/+) \varphi = 5.829, (-/-) \lambda = 1.08$	15
3.00002425	1.00276636	-0.01162574	0.00034005	8.51	$(-/+) \varphi = 4.510, (-/-) \lambda = 1.05$	15
3.00002405	1.00277176	-0.01163165	0	8.54	$(-/+) \varphi_p^5 = 4.489, \varphi_s^5 = 0$	$16 \rightarrow 14$

TABLE 15. Blue 15 and Blue 14 for SE. These spatial orbits are x-axis-symmetric and connected to one branch bifurcation from DPO^3 via b-d. Its symmetric family is obtained by reflection at the ecliptic.

Γ	x(0)	$\dot{y}(0)$	$\dot{z}(0)$	T	(C/B)-sign & Floquet multipliers	μ_{CZ}
3.00014309	0.99718487	-0.00386895	0	4.80	$(-/+) \varphi_p^3 = 3.217, \varphi_s^3 = 0$	$14 \rightarrow 16$
3.00014289	0.99717670	-0.00383214	0.00048106	4.83	$(-/+) \varphi = 3.246, (-/-) \lambda = 1.016$	15
3.00014169	0.99719319	-0.00380810	0.00145833	4.85	$(-/-) \lambda_1 = -1.04, (-/-) \lambda_2 = 1.027$	15
3.00013425	0.99730021	-0.00365996	0.00377737	5.02	$(-/-) \lambda_1 = -1.45, (-/-) \lambda_2 = 1.183$	15
3.00012251	0.99749232	-0.00343875	0.00594605	5.34	$(-/-) \lambda_1 = -1.03, (-/-) \lambda_2 = 1.700$	15
3.00012093	0.99752153	-0.00341248	0.00620193	5.39	$(+/-) \varphi = 2.758, (-/-) \lambda = 1.782$	15
3.00011193	0.99772535	-0.00333595	0.00766874	5.69	$(+/-) \varphi = 0.976, (-/-) \lambda = 2.451$	15
3.00010800	0.99793026	-0.00365343	0.00862538	5.84	$(+/-) \varphi = 0.092, (-/-) \lambda = 2.549$	15
						b-d
3.00010820	0.99796166	-0.00381731	0.00868408	5.84	$(-/-)$ $\lambda_1 = 1.196, (-/-)$ $\lambda_2 = 3.812$	14
3.00010958	0.99799080	-0.00423992	0.00854277	5.83	$(-/-) \lambda_1 = 1.171, (-/-) \lambda_2 = 10.02$	14
3.00012042	0.99807079	-0.00718764	0.00594564	5.71	$(-/-) \lambda_1 = 1.068, (-/-) \lambda_2 = 203.9$	14
3.00012568	0.99810519	-0.00868716	0.00307711	5.66	$(-/-) \lambda_1 = 1.011, (-/-) \lambda_2 = 485.0$	14
3.00012738	0.99811615	-0.00918031	0	5.65	$\varphi_s^3 = 0, (-/-) \lambda_p = 620.1$	$13 \rightarrow 15$
	•	•	1		•	'

TABLE 16. Green 14 and Green 13 for SE. These spatial orbits are simply-symmetric w.r.t. the xz-plane and they are connected to one branch bifurcation from the 3rd cover of the DPO-orbit via b-d. Its symmetric family is obtained by using the reflection at the ecliptic.

Γ	x(0)	z(0)	$\dot{y}(0)$	T	(C/B)-sign & Floquet multipliers	μ_{CZ}
3.00014306	0.99718487	0	-0.00386895	4.80	$(-/+) \varphi_p^3 = 3.217, \varphi_s^3 = 0$	$14 \rightarrow 16$
3.00014210	0.99720294	0.00036902	-0.00390227	4.84	$(-/+)$ $\varphi_1 = 3.197, (-/+)$ $\varphi_2 = 6.282$	14
3.00014182	0.99721138	0.00041974	-0.00392247	4.85	$(+/+) \lambda = -1.01, (-/+) \varphi = 6.281$	14
3.00013324	0.99748294	0.00114054	-0.00461090	5.05	$(+/+) \lambda = -1.48, (-/+) \varphi = 6.089$	14
3.00012084	0.99793674	0.00156551	-0.00595530	5.39	$(+/-) \varphi_1 = 2.704, (-/+) \varphi_2 = 5.684$	14
3.00011446	0.99822206	0.00164295	-0.00696832	5.60	$(+/-) \varphi_1 = 1.776, (-/+) \varphi_2 = 5.499$	14
3.00011146	0.99838620	0.00163494	-0.00763914	5.71	$0.458 \pm 0.723i, \ 0.624 \pm 0.986i$	14
3.00010841	0.99863569	0.00153928	-0.00887793	5.82	$0.595 \pm 0.212i, \ 1.489 \pm 0.530i$	14
3.00010824	0.99866658	0.00151731	-0.00906541	5.83	$(+/+)$ $\lambda_1 = 1.448, (-/-)$ $\lambda_2 = 1.786$	14
3.00010818	0.99869599	0.00149114	-0.00926286	5.84	$(+/+)$ $\lambda_1 = 1.034$, $(-/-)$ $\lambda_2 = 2.566$	14
						b-d
3.00010852	0.99871851	0.00144710	-0.00949590	5.84	$(-/+) \varphi = 6.109, (-/-) \lambda = 4.479$	13
3.00010970	0.99869031	0.00139716	-0.00954957	5.83	$(-/+) \varphi = 6.135, (-/-) \lambda = 10.065$	13
3.00011700	0.99844373	0.00110062	-0.00936425	5.75	$(-/+) \varphi = 6.253, (-/-) \lambda = 102.96$	13
3.00012680	0.99813343	0.00026518	-0.00918878	5.65	$(-/+) \varphi = 6.280, (-/-) \lambda = 572.25$	13
3.00012738	0.99811615	0	-0.00918031	5.65	$\varphi_s^3 = 0, (-/-) \lambda_p = 620.1$	$13 \rightarrow 15$