# Đồ thị: Đường đi ngắn nhất

Floyd-Warshall algorithm

### Another example of *Dynamic Programming!*

Floyd-Warshall Algorithm

Sử dụng một phần tài liệu bài giảng CS161 Stanford University

# Floyd-Warshall Algorithm

## Another example of DP

- This is an algorithm for All-Pairs Shortest Paths (APSP)
  - That is, I want to know the shortest path from u to v for ALL pairs u,v of vertices in the graph.
  - Not just from a special single source s.

| Destination |   |          |          |          |    |
|-------------|---|----------|----------|----------|----|
| Source      |   | S        | u        | V        | t  |
|             | S | 0        | 2        | 4        | 2  |
|             | u | 1        | 0        | 2        | 0  |
|             | V | $\infty$ | $\infty$ | 0        | -2 |
|             | t | $\infty$ | $\infty$ | $\infty$ | 0  |



# Floyd-Warshall Algorithm Another example of DP

- This is an algorithm for All-Pairs Shortest Paths (APSP)
  - That is, I want to know the shortest path from u to v for ALL pairs u,v of vertices in the graph.
  - Not just from a special single source s.
- Naïve solution (if we want to handle negative edge weights):
  - For all s in G:
    - Run Bellman-Ford on G starting at s.
  - Time  $O(n \cdot nm) = O(n^2m)$ ,
    - may be as bad as n<sup>4</sup> if m=n<sup>2</sup>

# Optimal substructure



## Optimal substructure

Label the vertices 1,2,...,n
(We omit some edges in the picture below – meant to be a cartoon, not an example).

#### Sub-problem(k-1):

For all pairs, u,v, find the cost of the shortest path from u to v, so that all the internal vertices on that path are in {1,...,k-1}.

Let  $D^{(k-1)}[u,v]$  be the solution to Sub-problem(k-1).

Our DP algorithm will fill in the n-by-n arrays  $D^{(0)}$ ,  $D^{(1)}$ , ...,  $D^{(n)}$  iteratively and then we'll be done.





k

This is the shortest path from u to v through the blue set. It has cost D<sup>(k-1)</sup>[u,v]

## Optimal substructure

Label the vertices 1,2,...,n

(We omit some edges in the picture below – meant to be a cartoon, not an example).

#### Sub-problem(k-1):

For all pairs, u,v, find the cost of the shortest path from u to v, so that all the internal vertices on that path are in {1,...,k-1}.

Let  $D^{(k-1)}[u,v]$  be the solution to Sub-problem(k-1).

Our DP algorithm will fill in the n-by-n arrays  $D^{(0)}$ ,  $D^{(1)}$ , ...,  $D^{(n)}$  iteratively and then we'll be done.



### Question: How can we find D<sup>(k)</sup>[u,v] using D<sup>(k-1)</sup>?

k



 $D^{(k)}[u,v]$  is the cost of the shortest path from u to v so that all internal vertices on that path are in  $\{1, ..., k\}$ .



 $D^{(k)}[u,v]$  is the cost of the shortest path from u to v so that all internal vertices on that path are in  $\{1, ..., k\}$ .



 $D^{(k)}[u,v]$  is the cost of the shortest path from u to v so that all internal vertices on that path are in  $\{1, ..., k\}$ .



## Case 2 continued

- Suppose there are no negative cycles.
  - Then WLOG the shortest path from u to v through {1,...,k} is **simple**.
- If <u>that path</u> passes through k, it must look like this:
- This path is the shortest path from u to k through {1,...,k-1}.
  - sub-paths of shortest paths are shortest paths
- Similarly for this path.

Case 2: we need vertex k.



$$D^{(k)}[u,v] = D^{(k-1)}[u,k] + D^{(k-1)}[k,v]_{11}$$

Case 1: we don't need vertex k.

Case 2: we need vertex k.



$$D^{(k)}[u,v] = D^{(k-1)}[u,v]$$

$$D^{(k)}[u,v] = D^{(k-1)}[u,k] + D^{(k-1)}[k,v]$$

•  $D^{(k)}[u,v] = \min\{D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v]\}$ 

Case 1: Cost of shortest path through {1,...,k-1}

Case 2: Cost of shortest path from u to k and then from k to v through {1,...,k-1}

- Optimal substructure:
  - We can solve the big problem using solutions to smaller problems.
- Overlapping sub-problems:
  - D<sup>(k-1)</sup>[k,v] can be used to help compute D<sup>(k)</sup>[u,v] for lots of different u's.

•  $D^{(k)}[u,v] = min\{D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v]\}$ 

Case 1: Cost of shortest path through {1,...,k-1}

Case 2: Cost of shortest path from u to k and then from k to v through {1,...,k-1}

Using our *Dynamic programming* paradigm, this immediately gives us an algorithm!

## Floyd-Warshall algorithm

- Initialize n-by-n arrays D<sup>(k)</sup> for k = 0,...,n
  - $D^{(k)}[u,u] = 0$  for all u, for all k
  - $D^{(k)}[u,v] = \infty$  for all  $u \neq v$ , for all k
  - D<sup>(0)</sup>[u,v] = weight(u,v) for all (u,v) in E.
- For k = 1, ..., n:
  - For pairs u,v in  $V^2$ :
    - $D^{(k)}[u,v] = \min\{D^{(k-1)}[u,v], D^{(k-1)}[u,k] + D^{(k-1)}[k,v]\}$
- Return D<sup>(n)</sup>

This is a bottom-up **Dynamic programming** algorithm.

The base case checks out: the only path through zero other vertices are edges directly from u to v.

## We've basically just shown

#### • Theorem:

If there are no negative cycles in a weighted directed graph G, then the Floyd-Warshall algorithm, running on G, returns a matrix D<sup>(n)</sup> so that:

 $D^{(n)}[u,v]$  = distance between u and v in G.

- Running time: O(n³)
  - Better than running Bellman-Ford n times!



#### Storage:

Need to store two n-by-n arrays, and the original graph.

## What if there are negative cycles?

- Just like Bellman-Ford, Floyd-Warshall can detect negative cycles:
  - "Negative cycle" means that there's some v so that there is a path from v to v that has cost < 0.</li>
  - Aka,  $D^{(n)}[v,v] < 0$ .

#### Algorithm:

- Run Floyd-Warshall as before.
- If there is some v so that D<sup>(n)</sup>[v,v] < 0:</li>
  - return negative cycle.

## What have we learned?

- The Floyd-Warshall algorithm is another example of dynamic programming.
- It computes All Pairs Shortest Paths in a directed weighted graph in time O(n³).

## Recap

- Two shortest-path algorithms:
  - Bellman-Ford for single-source shortest path
  - Floyd-Warshall for all-pairs shortest path
- Dynamic programming!
  - This is a fancy name for:
    - Break up an optimization problem into smaller problems
      - The optimal solutions to the sub-problems should be subsolutions to the original problem.
    - Build the optimal solution iteratively by filling in a table of sub-solutions.
      - Take advantage of overlapping sub-problems!