Vorlesung am 7.5.2015

Digital Signature Algorithm (DSA)

Sicherheit beruht auf der Schwierigkeit des Diskreten Logarithmusproblems

Schlüsselgenerierung

- 1. Wähle zwei Primzahlen p und q mit q teilt p-1
- 2. Wähle x in \mathbb{Z}_p^* und berechne $g := x^{(p-1)/q} \mod p$.
- 3. Falls g = 1, gehe zu 2.
- 4. Wähle eine Zahl $a \in \{1, \dots, q-1\}$ und setze $A := g^a$.

(p,q,g,A): öffentlicher Schlüssel, a: geheimer Schlüssel.

Bemerkung. (i) Wahl von $g: \mathbb{Z}_p^*(g) := \{g^1, g^2, ...\}$ hat genau q Elemente Übung: Zeigen Sie diese Aussage

(ii) Aus (p,q,g,A)lässt sich amittels Logarithmus bestimmen $(a=\log_g A)$ Zwei Möglichkeiten, Logarithmus zu berechnen:

In \mathbb{Z}_p^* : Laufzeit $\mathcal{O}(e^{\sqrt{\ln p \ln \ln p}})$

In $\mathbb{Z}_p^*(g)$: Laufzeit $\mathcal{O}(\sqrt{q})$

Übung Wie groß müssen p, q sein, um Sicherheitsniveau 100 Bit zu erhalten?

Signaturerzeugung Signatur (s_1, s_2) von m (genauer h = H(m))

- 1. Wähle eine zufällige Zahl 1 < s < q
- 2. Berechne $s_1 = (g^s \mod p) \mod q$ und $s_2 = s^{-1}(h + s_1 \cdot a) \mod q$

Signaturverifikation

- 1. Prüfe, ob $0 < s_1, s_2 < q$ gilt.
- 2. Berechne $w = s_2^{-1} \mod q$, $u_1 = h \cdot w \mod q$, $u_2 = s_1 \cdot w \mod q$
- 3. Berechne $v = (q^{u_1} \cdot A^{u_2} \mod p) \mod q$

4. Ist $v = s_1$, so akzeptiere die Signatur.

Satz 6.1. Es gilt: (s_1, s_2) ist korrekte Signatur genau dann, wenn $v = s_1$.

Beweis. • Ist (s_1, s_2) korrekt, dann gilt $s_2 = s^{-1}(h + s_1 \cdot a) \mod q$.

- Multiplikation mit $sw \mod q$ ergibt $s_2sw = (hw + s_1aw) \mod q$.
- Mit $w = s_2^{-1} \mod q$ also $s = (hw + s_1 aw) \mod q$.
- Wegen $u_1 = h \cdot w \mod q$, $u_2 = s_1 \cdot w \mod q$ also $s = u_1 + u_2 a \mod q$.
- Es existiert also $n \in \mathbb{N}$ mit $s + nq = u_1 + u_2a$.
- Weiter gilt $g^q = (x^{(p-1)/q})^q = x^{p-1} = 1 \mod p$ (Satz von Euler).
- Es folgt $q^s = q^{s+nq} = q^{u_1+u_2a} = q^{u_1}(q^a)^{u_2} = q^{u_1}A^{u_2} \mod p$.
- Daraus folgt nun $s_1 = (g^s \mod p) \mod q = (g^{u_1} \cdot A^{u_2} \mod p) \mod q = v$.

Bemerkung. DSA ist ein probabilistischer Algorithmus Für jede Signatur wird ein Zufall s < q genutzt

Nebenbedingungen für s:

(i) s muss geheim gehalten werden, sonst lässt sich a berechnen:

$$a = (\underbrace{(s_2 \cdot s)}_{=h(m)+s_1 \cdot a \bmod q} -h(m)) \cdot s_1^{-1} \bmod q$$

- (ii) Entropie (Unvorhersagbarkeit) von smuss 100 Bit groß sein sonst lässt sich amit Wkeit $<1/2^{100}$ bestimmen (durchprobieren von s)
- (iii) Für jede Signatur muss ein anderer Wert s genutzt werden:
 - Seien zwei Nachrichten m, m' unter Nutzung von s signiert mit zugehörigen Signaturen (s_1, s_2) und (s'_1, s'_2)
 - Dann gilt $s_1 = s_1'$, $s_2 = s^{-1}(m + s_1 a) \mod q$ und $s_2' = s^{-1}(m' + s_1' a) \mod q = s^{-1}(m' + s_1 a) \mod q$.
 - Also $s_2 s_2' = s^{-1}(m m') \mod q$. d.h. $s = (m m')(s_2 s_2')^{-1}$.
 - s lässt sich also ausrechnen und damit auch a (siehe (ii))

Elliptische Kurven Kryptographie (ECC)

Elgamal und DSA: Kryptographisch starke Gruppen (Logarithmus ist schwer) Bisher kennen wir nur die (multiplikativen) Gruppen \mathbb{Z}_p^* .

Elliptische Kurve: Lösungsmenge der Gleichung $y^2 = x^3 + ax + b$ über Körper Beispiel: $E = \{(x, y) \in \mathbb{Z}_p; y^2 = x^3 + ax + b\}$ (über Körper $(\mathbb{Z}_p, +, \cdot)$).

Wir betrachten im Folgenden elliptische Kurven über \mathbb{R} :

- Form wird durch Diskriminante des Polynoms $x^3 + ax + b$ festgelegt $(\Delta_E = -4a^3 27b^2)$
- Für $\Delta_E < 0$ besteht die Kurve aus 2 Komponenten
- Für $\Delta_E > 0$ aus einer Komponente (siehe Abbildung)

• Kurven mit Diskriminante 0 können nicht genutzt werden (siehe unten)

Rechnen in E:

• Wir benötigen zusätzlichen Punkt $O \not\in E, \, \bar{E} := E \cup \{O\}$ O ist neutrales Element in \bar{E}

• Für $P, Q \in \overline{E}$ mit $P = (x_P, y_P)$ und $Q = (x_Q, y_Q)$ sei

$$P+Q := \begin{cases} P, & \text{falls } Q = O \\ Q, & \text{falls } P = O \\ O, & \text{falls } x_P = x_Q \text{ und } y_P = -y_Q \text{ (d.h. } Q = -P) \\ O, & \text{falls } P = Q \text{ und } y_P = 0 \end{cases}$$

$$P+Q := \begin{cases} x_R = s^2 - 2x_P, & \text{falls } P = Q \text{ und } y_P \neq 0, \text{ mit } \\ y_R = -y_P + s(x_P - x_R) & s = (3x_P^2 + a)/2y_P \end{cases}$$

$$x_R = s^2 - x_P - x_Q, & \text{falls } x_P \neq x_Q, \text{ mit } \\ y_R = -y_P + s(x_P - x_R) & s = (y_P - y_Q)/(x_P - x_Q) \end{cases}$$

- Für eine geomtrische Interpretation siehe Tafelbild
- $(\bar{E}, +)$ ist eine abelsche Gruppe

Für Anwendungen in der Kryptographie: Kurven über \mathbb{Z}_p Diese sind unter betimmten Voraussetzungen kr. stark, d.h.

Diskretes Logarithmusproblem (in \bar{E}):

Gegeben: Gegeben
$$G$$
 und $n \cdot G = \underbrace{G + \cdots + G}_{n-mal}$.

Lösung: Finde n.

Dieses Problem ist in elliptischen Gruppen schwerer als DL in \mathbb{Z}_p Bester derzeit bekannter Algorithmus hat Laufzeit $\mathcal{O}(\sqrt{p})$.

Also: Für Sicherheitsniveau 100 Bit muss $p \approx 2^{200}$ gelten. Auf ell. Kurven basierende Kryptographie benötigt deutlich kürzere Schlüssellängen.

Übung: Studieren Sie den Signaturalgorithmus ECDSA. Stellen Sie insb. Schlüsselerzeugung, Signaturerzeugung und -verifikation dar. An welchen Stellen geht für die Sicherheit die Schwere des DL-Problems ein? Welche Bedingung muss für G (in der obigen Formulierung des Problems) gelten, damit das Problem tatsächlich schwer ist?