UNIVERSIDADE FEDERAL DE SANTA CATARINA

EMC5412 - Transferência de Calor e Mecânica dos Fluídos Computacional Professor: Antônio Fábio Carvalho da Silva

Thales Carl Lavoratti

Volumes finitos aplicados a condução e advecção bidimensional: o cilindro girante

Florianópolis 2018

Conteúdo

1	Introdução	2
2	Método dos volumes finitos com advecção2.1 Solução por Central-difference scheme (CDS)	4
3	Cálculo das velocidades nos nós	6
4	Condições de contorno	6
5	Resultados obtidos 5.1 item (a) 5.2 item (b) 5.2.1 CDS 5.2.2 UDS 5.2.3 Exponencial 5.2.4 Variando a velocidade angular 5.2.5 Refinando a malha	8 8 9 10 12
6	Conclusão	14

1 Introdução

Considere um longo tubo cilíndrico com raio interno r_i e raio externo r_e . Admita que a superfície interna do cilindro em $r=r_i$ esteja à temperatura T_i e a superfície externa em $r=r_e$ a T_e . O cilindro é longo de forma que as variações de temperatura na direção axial podem ser desprezadas. Em regime permanente, sem geração de calor, e para um material isotrópico com condutividade k constante, a temperatura do cilindro varia com o raio de acordo com a bem conhecida distribuição logarítmica.

(a) Empregando uma malha do tipo da Figura 1 e prescrevendo como condições de contorno os valores exatos da temperatura, compare a solução numérica bidimensional com a solução exata unidimensional.

Figura 1: O problema do cilindro girante

Fonte: o autor

(b) Assuma que o cilindro passe a agirar com uma velocidade angular ω . Resolva numericamente o problema e compare as soluções obtidas com o CDS, com o UDS e com o esquema exponencial para diversos valores de ω

Foram considerados os seguintes valores numéricos na solução do problema $k=15~\rm W/m^{\circ}C,~c_p=2000J/kg^{\circ}C$ e $\rho=800.0kg/m^3,~r_i=0.04m,~r_e=0.1m,~T_i=250^{\circ}C$ e $T_e=30^{\circ}C$

2 Método dos volumes finitos com advecção

Considere um volume de controle no interior da malha gerada para a solução do problema, conforme a Figura 2. Este será o modelo sobre o qual será aplicado os esquemas CDS, UDS e exponencial de solução.

 Δy Δy

Figura 2: Volume de controle central

Fonte: o autor

Partindo da equação

$$\frac{\partial}{\partial x}(\rho\phi) + \frac{\partial}{\partial y}(\rho\phi) = \frac{\partial}{\partial x}\left(\Gamma^{\phi}\frac{\partial\phi}{\partial x}\right) + \frac{\partial}{\partial y}\left(\Gamma^{\phi}\frac{\partial\phi}{\partial y}\right) \tag{1}$$

onde, neste caso, $\phi=T$ e $\Gamma^\phi=\frac{k}{cp}$ pois está sendo resolvida a equação da energia. Integrando a Equação 1 no volume e rearranjando os termos é possível chegar na já conhecida equação

$$M_e \phi_e - M_w \phi_w + M_n \phi_n - M_s \phi_s = D_e (\phi_E - \phi_P) - D_w (\phi_P - \phi_W) + D_n (\phi_E - \phi_P) - D_s (\phi_P - \phi_W)$$
(2)

onde $M_i = \rho v_i A_i$ é o fluxo de massa que atravessa uma área A_i com uma velocidade v_i perpendicular a mesma e $D_i = \frac{\Gamma A_i}{\delta x_i}$ é o coeficiente da difusão que ocorre através de uma área A_i em uma distância δx_i entre dois pontos adjacentes da malha, avaliados no centro das faces dos volumes de controle.

Novamente, note que os valores de ϕ_i são avalidados na face do volume de controle no lado esquerdo da equação 3 e tais valores devem ser aproximados de alguma forma para tornar possível a aplicação do método. Desta necessidade surgem os esquemas Central-difference scheme (CDS), Upwind-difference scheme (UDS) e exponencial, descritos a seguir.

2.1 Solução por Central-difference scheme (CDS)

A estratégia do CDS é aproximar o ϕ da interface por uma média aritmética dos pontos adjacentes, por exemplo, na interface leste do volume de controle:

$$\phi_e = \frac{\phi_E + \phi_P}{2}$$

Substituindo esta simplificação na Equação 3 obtém-se que a equação que deverá ser implementada para cada volume finito do interior do domínio discretizado será

$$a_p \phi_P = a_e \phi_E + a_w \phi_W + a_s \phi_S + a_n \phi_N \tag{3}$$

onde

$$a_e = D_e - \frac{M_e}{2} \qquad a_w = D_w + \frac{M_w}{2} \tag{4}$$

$$a_n = D_n - \frac{M_n}{2} \qquad a_s = D_s + \frac{M_s}{2} \tag{5}$$

que por sua vez, $a_p = a_e + a_w + a_s + a_n$

2.2 Solução por *Upwind-difference scheme* (UDS)

Pelo fato de a primeira abordagem resultar em sistemas lineares cuja solução divergem do esperado fisicamente do problema, foi necessário implementar meios de se obter uma solução satisfatória para a aproximação de ϕ na interface. No Upwind-difference scheme o ϕ da interface é igual ao ϕ do volume de controle a montante no escoamento. Neste caso, conforme será visto a seguir, a velocidade no eixo horizontal do problema será negativa o que implica que por UDS têm-se que $\phi_e = \phi_E$ e $\phi_w = \phi_P$. Por outro lado, a velocidade no eixo vertical será positiva então $\phi_n = \phi_P$ e $\phi_s = \phi + S$. Substituindo estas considerações na Equação 3 obtém-se que a equação que deverá ser implementada para cada volume finito do interior do domínio discretizado será

$$a_p \phi_P = a_e \phi_E + a_w \phi_W + a_s \phi_S + a_n \phi_N \tag{6}$$

onde

$$a_e = D_e - M_e a_w = D_w (7)$$

$$a_n = D_n a_s = D_s + M_s (8)$$

que por sua vez, $a_p = a_e + a_w + a_s + a_n$

2.3 Solução pela formulação exponencial

Embora o esquema UDS tenha solucionado o problema do CDS de não obter resultados fisicamente aceitáveis, tal esquema acabou por apresentar alguns resultados insatisfatórios em problemas específicos, gerando uma forma de difusão que não é observada fisicamente, tal fenômeno é denominado difusão numérica.

Uma tentativa de diminuir tal efeito é utilizar a solução analítica da equação diferencial unidimensional vinculada ao problema para estimar o ϕ na interface. Suponha uma malha unidimensional no sentido horizontal conforme a Figura 3.

Figura 3: Volume de controle central

A equação governante deste problema será

$$\frac{\partial}{\partial x}(\rho u\phi) = \frac{\partial}{\partial x} \left(\Gamma^{\phi} \frac{\partial \phi}{\partial x} \right) \tag{9}$$

Para um domínio definido entre x_P e x_E com condições de contorno $\phi(x)$ = ϕ_P em $x=x_P$ e $\phi(x)=\phi_E$ em $x=x_E,$ a solução analítica será

$$\frac{\phi(x) - \phi_P}{\phi_E - \phi_P} = \frac{1}{e^{P_e}} \left[e^{P_e \frac{x - x_P}{x_E - x_P}} - 1 \right]$$
 (10)

onde P_e é o número de Peclet na interface leste, definido como

$$P_e = \frac{\rho u \delta x_e}{\Gamma} = \frac{M_e}{D_e} \tag{11}$$

De posse desta solução analítica é possível fazer uma extrapolação para o problema bidimensional que resultará que a equação que deverá ser avaliada em todos os volumes finitos centrais do domínio do problema deverá ser

$$a_p \phi_P = a_e \phi_E + a_w \phi_W + a_s \phi_S + a_n \phi_N \tag{12}$$

onde

$$a_e = \frac{M_e}{e^{P_e} - 1} \qquad a_w = \frac{M_w e^{P_w}}{e^{P_w} - 1} \tag{13}$$

$$a_{e} = \frac{M_{e}}{e^{P_{e}} - 1} \qquad a_{w} = \frac{M_{w}e^{P_{w}}}{e^{P_{w}} - 1}$$

$$a_{n} = \frac{M_{n}}{e^{P_{n}} - 1} \qquad a_{s} = \frac{M_{s}e^{P_{s}}}{e^{P_{s}} - 1}$$

$$(13)$$

(15)

que por sua vez, $a_p = a_e + a_w + a_s + a_n$

3 Cálculo das velocidades nos nós

Suponha um volume de controle rotacionando a uma velocidade angular uniforme ω , conforme exposto na Figura 4

R ×

Figura 4: Esquema para a dedução da velocidade

Fonte: o autor

A velocidade tangencial num ponto (x, y) é dada por $v_t = \omega R$ onde $R = \sqrt{x^2 + y^2}$. As componentes horizontal e vertical desta velocidade serão dadas por $u = v_t \cdot \text{sen}(\theta)$ $u = v_t \cdot \cos(\theta)$, onde $\theta = \text{arctg}(y/x)$.

4 Condições de contorno

A distribuição de temperaturas radial de um cilindro isotrópico é conhecida e dada pela expressão

$$T(r) = T_i + (T_e - T_i) \frac{\ln(r/r_i)}{\ln(r_e/r_i)}$$
(16)

O problema proposto terá uma condição de contorno que é temperatura prescrita pela solução analítica para todos os volumes na fronteira externa da malha. Portanto, a solução pelo método dos volumes finitos será empregada somente nos nós do interior da malha.

Para temperatura prescrita o método dos volumes finitos se resume a empregar a seguinte equação

$$a_n T_P = T_{PRE} \tag{17}$$

onde $a_p = 1$ e T_{PRE} será dada pela solução analítica.

5 Resultados obtidos

5.1 item (a)

A primeira tarefa deste trabalho foi encontrar o campo de temperaturas do cilindro com ele parado empregando o método dos volumes finitos somente com difusão e comparar a solução obtida para os volumes do centro da malha com a solução analítica fornecida.

Para uma malha com 6 volumes de controle na vertical e 6 na horizontal a solução analítica do problema é apresentada na Tabela 1

Tabela 1: Solução analítica do problema

	X							
		0.0283	0.0368	0.0453	0.0537	0.0622	0.0707	
	0.0283	250.0000	214.4181	180.7780	149.7492	121.3572	95.3941	
	0.0368	214.4181	187.0067	159.5103	133.0049	107.9506	84.4802	
3.7	0.0453	180.7780	159.5103	137.1528	114.7583	92.9356	71.9982	
У	0.0537	149.7492	133.0049	114.7583	95.8919	77.0067	58.4808	
	0.0622	121.3572	107.9506	92.9356	77.0067	60.6926	44.3681	
	0.0707	95.3941	84.4802	71.9982	58.4808	44.3681	30.0000	

Fonte: o autor

A solução pelo método dos volumes finitos para a mesma malha é apresentada na Tabela $2\,$

Tabela 2: Campo de temperaturas

			X						
		0.0283	0.0368	0.0453	0.0537	0.0622	0.0707		
	0.0283	250.0000	214.4181	180.7780	149.7492	121.3572	95.3941		
	0.0368	214.4181	186.9197	159.4212	132.9400	107.9163	84.4802		
37	0.0453	180.7780	159.4212	137.0473	114.6733	92.8877	71.9982		
У	0.0537	149.7492	132.9400	114.6733	95.8182	76.9630	58.4808		
	0.0622	121.3572	107.9163	92.8877	76.9630	60.6656	44.3681		
	0.0707	95.3941	84.4802	71.9982	58.4808	44.3681	30.0000		

Fonte: o autor

O erro relativo pode ser definido como

$$ERRO = \frac{|T_{aproximada} - T_{exata}|}{T_{MAX} - T_{MIN}} \tag{18}$$

onde a temperatura aproximada é dada pelo método dos volumes finitos, a temperatura exata é dada pela solução analítica, a temperatura máxima é a temperatura do interior do cilindro e a temperatura mínima é a temperatura do exterior.

O erro relativo em cada posição da malha é exposto na Tabela 3

Tabela 3: Erro relativo com o cilindro parado

			X							
		0.0283	0.0368	0.0453	0.0537	0.0622	0.0707			
	0.0283	0.000e+00	0.000e+00	1.163e-15	1.938e-15	1.486e-15	1.292e-16			
	0.0368	2.584e-16	3.957e-04	4.047e-04	2.948e-04	1.559e-04	1.292e-16			
37	0.0453	3.359e-15	4.047e-04	4.800e-04	3.866e-04	2.180e-04	2.132e-15			
У	0.0537	2.067e-15	2.948e-04	3.866e-04	3.350e-04	1.986e-04	1.615e-16			
	0.0622	3.036e-15	1.559e-04	2.180e-04	1.986e-04	1.229e-04	0.000e+00			
	0.0707	1.292e-16	1.292e-16	0.000e+00	0.000e+00	0.000e+00	0.000e+00			

O erro relativo máximo obtido nesta solução foi de $4,8\cdot 10^-4$.

5.2 item (b)

5.2.1 CDS

Empregado uma velocidade angular $\omega=2rad/s$ na mesma malha usada anteriormente, obtém-se o campo de temperaturas da Tabela 4 utilizando o método CDS.

Tabela 4: Campo de temperaturas por CDS com $\omega = 2rad/s$

			X							
		0.0283	0.0368	0.0453	0.0537	0.0622	0.0707			
	0.0283	250.0000	214.4181	180.7780	149.7492	121.3572	95.3941			
	0.0368	214.4181	186.8585	159.3217	132.8443	107.8573	84.4802			
37	0.0453	180.7780	159.3231	136.8936	114.5386	92.7790	71.9982			
У	0.0537	149.7492	132.8495	114.5408	95.6963	76.9224	58.4808			
	0.0622	121.3572	107.8672	92.7754	76.9230	60.6366	44.3681			
	0.0707	95.3941	84.4802	71.9982	58.4808	44.3681	30.0000			

Fonte: o autor

O erro relativo em cada posição da malha é exposto na Tabela 5

Tabela 5: Erro relativo por CDS com $\omega = 2rad/s$

		X							
		0.0283	0.0368	0.0453	0.0537	0.0622	0.0707		
	0.0283	0.000e+00	2.584e-16	1.292e-16	2.584e-16	1.292e-16	1.292e-16		
	0.0368	2.584e-16	6.739e-04	8.573e-04	7.299e-04	4.238e-04	1.292e-16		
37	0.0453	1.292e-16	8.508e-04	1.178e-03	9.988e-04	7.121e-04	0.000e+00		
У	0.0537	2.584e-16	7.061e-04	9.886e-04	8.888e-04	3.834e-04	0.000e+00		
	0.0622	1.292e-16	3.790e-04	7.282e-04	3.806e-04	2.547e-04	0.000e+00		
	0.0707	1.292e-16	1.292e-16	0.000e+00	0.000e+00	0.000e+00	0.000e+00		

Fonte: o autor

Agora com uma velocidade angular $\omega=5rad/s$ na mesma malha usada anteriormente, obtém-se o campo de temperaturas da Tabela 6 utilizando o método CDS.

Tabela 6: Campo de temperaturas por CDS com $\omega = 5rad/s$

			X							
		0.0283	0.0368	0.0453	0.0537	0.0622	0.0707			
	0.0283	250.0000	214.4181	180.7780	149.7492	121.3572	95.3941			
	0.0368	214.4181	186.8585	159.3220	132.8457	107.8601	84.4802			
3.7	0.0453	180.7780	159.3225	136.8934	114.5391	92.7778	71.9982			
У	0.0537	149.7492	132.8478	114.5400	95.6961	76.9227	58.4808			
	0.0622	121.3572	107.8640	92.7763	76.9229	60.6366	44.3681			
	0.0707	95.3941	84.4802	71.9982	58.4808	44.3681	30.0000			

O erro relativo em cada posição da malha é apresentado na Tabela 7

Tabela 7: Erro relativo por CDS com $\omega = 5rad/s$

			X							
		0.0283	0.0368	0.0453	0.0537	0.0622	0.0707			
	0.0283	0.000e+00	2.584e-16	1.292e-16	2.584e-16	1.938e-16	1.292e-16			
	0.0368	2.584e-16	6.738e-04	8.559e-04	7.236e-04	4.114e-04	1.292e-16			
37	0.0453	1.292e-16	8.534e-04	1.179e-03	9.963e-04	7.177e-04	0.000e+00			
У	0.0537	2.584e-16	7.141e-04	9.922e-04	8.899e-04	3.822e-04	0.000e+00			
	0.0622	1.292e-16	3.935e-04	7.242e-04	3.811e-04	2.547e-04	0.000e+00			
	0.0707	1.292e-16	1.292e-16	0.000e+00	0.000e+00	0.000e+00	0.000e+00			

Fonte: o autor

5.2.2 UDS

Empregado uma velocidade angular $\omega=2rad/s$ na mesma malha usada anteriormente, obtém-se o campo de temperaturas da Tabela 8 utilizando o método UDS.

Tabela 8: Campo de temperaturas por UDS com $\omega = 2rad/s$

	X							
		0.0283	0.0368	0.0453	0.0537	0.0622	0.0707	
	0.0283	250.0000	214.4181	180.7780	149.7492	121.3572	95.3941	
	0.0368	214.4181	186.8124	159.2065	132.6538	107.6628	84.4802	
3.7	0.0453	180.7780	159.2130	136.7868	114.3664	92.6474	71.9982	
У	0.0537	149.7492	132.6213	114.4229	95.5906	76.8143	58.4808	
	0.0622	121.3572	107.5015	92.6482	76.8108	60.5912	44.3681	
	0.0707	95.3941	84.4802	71.9982	58.4808	44.3681	30.0000	

Fonte: o autor

O erro relativo em cada posição da malha é exposto na Tabela 9

Tabela 9: Erro relativo por UDS com $\omega = 2rad/s$

		X							
		0.0283	0.0368	0.0453	0.0537	0.0622	0.0707		
	0.0283	0.000e+00	2.584e-16	1.292e-16	2.584e-16	1.292e-16	1.292e-16		
	0.0368	2.584e-16	8.836e-04	1.381e-03	1.596e-03	1.308e-03	1.292e-16		
37	0.0453	1.292e-16	1.351e-03	1.664e-03	1.782e-03	1.310e-03	0.000e+00		
У	0.0537	2.584e-16	1.743e-03	1.525 e-03	1.369e-03	8.746e-04	0.000e+00		
	0.0622	1.292e-16	2.041e-03	1.307e-03	8.909e-04	4.610e-04	0.000e+00		
	0.0707	1.292e-16	1.292e-16	0.000e+00	0.000e+00	0.000e+00	0.000e+00		

Agora com uma velocidade angular $\omega=5rad/s$ na mesma malha usada anteriormente, obtém-se o campo de temperaturas da Tabela 10 utilizando o método UDS.

Tabela 10: Campo de temperaturas por UDS com $\omega = 5rad/s$

			X							
		0.0283	0.0368	0.0453	0.0537	0.0622	0.0707			
	0.0283	250.0000	214.4181	180.7780	149.7492	121.3572	95.3941			
	0.0368	214.4181	186.8115	159.2048	132.6518	107.6611	84.4802			
3.7	0.0453	180.7780	159.2107	136.7844	114.3638	92.6457	71.9982			
У	0.0537	149.7492	132.6178	114.4209	95.5886	76.8133	58.4808			
	0.0622	121.3572	107.4952	92.6461	76.8094	60.5907	44.3681			
	0.0707	95.3941	84.4802	71.9982	58.4808	44.3681	30.0000			

Fonte: o autor

O erro relativo em cada posição da malha é apresentado na Tabela 11

Tabela 11: Erro relativo por UDS com $\omega = 5rad/s$

			X							
		0.0283	0.0368	0.0453	0.0537	0.0622	0.0707			
	0.0283	0.000e+00	1.292e-16	3.876e-16	5.168e-16	1.938e-16	1.292e-16			
	0.0368	2.584e-16	8.876e-04	1.389e-03	1.605e-03	1.316e-03	1.292e-16			
3.7	0.0453	1.292e-16	1.362e-03	1.675e-03	1.793e-03	1.318e-03	0.000e+00			
У	0.0537	2.584e-16	1.760e-03	1.534e-03	1.378e-03	8.795e-04	0.000e+00			
	0.0622	1.292e-16	2.070e-03	1.316e-03	8.972e-04	4.634e-04	0.000e+00			
	0.0707	1.292e-16	1.292e-16	0.000e+00	0.000e+00	0.000e+00	0.000e+00			

Fonte: o autor

5.2.3 Exponencial

Empregado uma velocidade angular $\omega=2rad/s$ na mesma malha usada anteriormente, obtém-se o campo de temperaturas da Tabela 12 utilizando o método exponencial.

Tabela 12: Campo de temperaturas pelo exponencial com $\omega = 2rad/s$

		x					
		0.0283	0.0368	0.0453	0.0537	0.0622	0.0707
	0.0283	250.0000	214.4181	180.7780	149.7492	121.3572	95.3941
	0.0368	214.4181	186.8109	159.2036	132.6505	107.6600	84.4802
3.7	0.0453	180.7780	159.2092	136.7828	114.3620	92.6445	71.9982
У	0.0537	149.7492	132.6153	114.4195	95.5873	76.8125	58.4808
	0.0622	121.3572	107.4909	92.6447	76.8084	60.5903	44.3681
	0.0707	95.3941	84.4802	71.9982	58.4808	44.3681	30.0000

O erro relativo em cada posição da malha é exposto na Tabela 13

Tabela 13: Erro relativo pelo exponencial com $\omega = 2rad/s$

		X					
		0.0283	0.0368	0.0453	0.0537	0.0622	0.0707
у	0.0283	0.000e+00	2.584e-16	1.292e-16	2.584e-16	1.292e-16	1.292e-16
	0.0368	2.584e-16	8.904e-04	1.394e-03	1.611e-03	1.321e-03	1.292e-16
	0.0453	1.292e-16	1.369e-03	1.682e-03	1.801e-03	1.323e-03	0.000e+00
	0.0537	2.584e-16	1.771e-03	1.540e-03	1.384e-03	8.828e-04	0.000e+00
	0.0622	1.292e-16	2.089e-03	1.323e-03	9.015e-04	4.650e-04	0.000e+00
	0.0707	1.292e-16	1.292e-16	0.000e+00	0.000e+00	0.000e+00	0.000e+00

Fonte: o autor

Agora com uma velocidade angular $\omega=5rad/s$ na mesma malha usada anteriormente, obtém-se o campo de temperaturas da Tabela 14 utilizando o método exponencial.

Tabela 14: Campo de temperaturas pelo exponencial com $\omega = 5rad/s$

		X					
		0.0283	0.0368	0.0453	0.0537	0.0622	0.0707
	0.0283	250.0000	214.4181	180.7780	149.7492	121.3572	95.3941
	0.0368	214.4181	186.8109	159.2036	132.6505	107.6600	84.4802
17	0.0453	180.7780	159.2092	136.7828	114.3620	92.6445	71.9982
У	0.0537	149.7492	132.6153	114.4195	95.5873	76.8125	58.4808
	0.0622	121.3572	107.4909	92.6447	76.8084	60.5903	44.3681
	0.0707	95.3941	84.4802	71.9982	58.4808	44.3681	30.0000

Fonte: o autor

O erro relativo em cada posição da malha é apresentado na Tabela 15

Tabela 15: Erro relativo pelo exponencial com $\omega = 5rad/s$

		X					
		0.0283	0.0368	0.0453	0.0537	0.0622	0.0707
у	0.0283	0.000e+00	3.876e-16	2.584e-16	0.000e+00	6.459e-17	1.292e-16
	0.0368	2.584e-16	8.904e-04	1.394e-03	1.611e-03	1.321e-03	1.292e-16
	0.0453	1.292e-16	1.369e-03	1.682e-03	1.801e-03	1.323 e-03	0.000e+00
	0.0537	2.584e-16	1.771e-03	1.540e-03	1.384e-03	8.828e-04	0.000e+00
	0.0622	1.292e-16	2.089e-03	1.323 e-03	9.015e-04	4.650e-04	0.000e+00
	0.0707	1.292e-16	1.292e-16	0.000e+00	0.000e+00	0.000e+00	0.000e+00

5.2.4 Variando a velocidade angular

A fim de comparar os esquemas CDS, UDS e exponencial é apresentada na Tabela 16 o erro máximo em função da velocidade angular mantendo uma malha fixa de 6 volumes de controle nas duas direções. Tais dados são traçados no gráfico da Figura 5

É importante ressaltar que no caso do esquema exponencial, uma velocidade angular de 0 causaria uma indeterminação do tipo 0/0 no cálculo dos fluxos de massa, então nesse ponto específico a velocidade angular foi ajustada para $\omega = 0.0001 rad/s$.

Tabela 16: Erro máximo relativo variando ω

W	CDS	UDS	Exponencial
0.0	0.0004799699	0.0004799699	0.0004799780
0.1	0.0009995750	0.0014813857	0.0018372493
0.2	0.0011078769	0.0016852466	0.0020798464
0.3	0.0011426412	0.0018028236	0.0020890137
0.4	0.0011574185	0.0018674725	0.0020893362
0.5	0.0011648816	0.0019083386	0.0020893476
0.6	0.0011691259	0.0019364997	0.0020893480
0.7	0.0011717550	0.0019570812	0.0020893481
0.8	0.0011734907	0.0019727793	0.0020893481
0.9	0.0011746946	0.0019851474	0.0020893481
1.0	0.0011755626	0.0019951431	0.0020893481
1.1	0.0011762088	0.0020033893	0.0020893481
1.2	0.0011767024	0.0020103083	0.0020893481
1.3	0.0011770879	0.0020161965	0.0020893481
1.4	0.0011773946	0.0020212683	0.0020893481
1.5	0.0011776425	0.0020256824	0.0020893481
1.6	0.0011778458	0.0020295591	0.0020893481
1.7	0.0011780145	0.0020329908	0.0020893481
1.8	0.0011781561	0.0020360500	0.0020893481
1.9	0.0011782761	0.0020387941	0.0020893481

Fonte: o autor

Figura 5: Erro relativo máximo variando ω

5.2.5 Refinando a malha

Uma proposta para tentar melhorar os resultados obtidos é refinar a malha. Na Tabela 17 são aumentados o número de pontos tanto horizontal quanto verticalmente, sempre mantendo uma malha com volumes de controle quadrados, de modo a apresentar o erro relativo máximo obtido para cada malha gerada. Por sua vez, na Figura 6 é traçado os valores obtidos na Tabela 17. Neste caso a velocidade angular (ω) foi mantida constante em $\omega = 1rad/s$

Tabela 17: Erro máximo relativo refinando a malha

Nº de nós	CDS	UDS	Exponencial
4	0.0023557915	0.0023002722	0.0023292587
8	0.0005959897	0.0019152100	0.0020445359
12	0.0002460654	0.0015453400	0.0017106111
16	0.0001331350	0.0012902375	0.0014198277
20	0.0000831139	0.0010868686	0.0012034591
24	0.0000567588	0.0009300270	0.0010403292
28	0.0000412030	0.0008119130	0.0009156209
32	0.0000312630	0.0007277809	0.0008135860
36	0.0000245288	0.0006631671	0.0007280195
40	0.0000197570	0.0006090913	0.0006551264

Fonte: o autor

CDS UDS 0.0020 exponecial 0.0015 0.0010 0.0005 0.0000 Ś 15 10 20 25 30 35 40 Número de pontos

Figura 6: Erro relativo máximo refinando a malha

6 Conclusão

O objetivo deste trabalho foi comparar como se comportariam os esquemas CDS, UDS e exponencial de aproximação da temperatura da interface do volume de controle para um problema de um cilindro isotrópico girando a uma velocidade angular constante. Analisando os dados obtidos é possível chegar em alguns pontos interessantes.

Obviamente que para todos os casos as temperaturas dos pontos mais externas da malha deram o resultado exato pois a temperatura foi prescrita em tais pontos, e portanto o erro nestes pontos foi nulo ou se aproximou do zero numérico, isto é, valores da ordem de 10^{-14} ou inferior.

Tanto com o cilindro parado quanto com ele girando, o erro máximo estava sempre localizado nos volumes mais centrais da malha, isto pode estar associado ao fato de que as temperaturas das fronteiras são prescritas e assim o erro se propagou ao fazer as aproximações inerentes ao método.

Ao tomar uma malha fixa e variar a velocidade angular e comparar o erro relativo máximo nos três esquemas foi possível perceber que o erro tendeu ao valor do erro máximo com o cilindro parado quando $\omega \to 0$ e a um valor constante quando se tomou valores mais altos de ω .

No quesito do refino da malha, constatou-se que nos três métodos o erro relativo diminui quando foi aumentado o número de pontos na malha.

Dos três esquemas, o CDS foi o que apresentou melhores resultados devido ao fato de em todas as suas fronteiras ele utilizar temperaturas exatas para ponderar o valor da temperatura da interface dos nós adjacentes a fronteira, enquanto que no método UDS as temperaturas exatas somente são consideradas nas fronteiras leste e sul da malha.

O esquema exponencial teve a pior performance nas duas análises pelo fato de que a solução que este se baseia para estimar a temperatura da interface é unidimensional e foi feita somente uma extrapolação para poder utilizá-la bidimensionalmente.