Surname		Othe	er Names			
Centre Number			Candid	ate Number		
Candidate Signature	·					

General Certificate of Education June 2007 Advanced Level Examination

PHYSICS (SPECIFICATION A) Unit 9 Nuclear Instability: Electronics Option

PHA9/W

Thursday 14 June 2007 9.00 am to 10.15 am

For this paper you must have:

- a calculator
- a pencil and a ruler.

Time allowed: 1 hour 15 minutes

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Answer the questions in the spaces provided.
- Show all your working.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The maximum mark for this paper is 40.
- Two of these marks will be awarded for using good English, organising information clearly and using specialist vocabulary where appropriate.
- The marks for questions are shown in brackets.
- A *Data Sheet* is provided on pages 3 and 4. You may wish to detach this perforated sheet at the start of the examination.
- You are expected to use a calculator where appropriate.
- Questions 1(a) and 5(a) should be answered in continuous prose. In these questions you will be marked on your ability to use good English, to organise information clearly and to use specialist vocabulary where appropriate.

F	or Exam	iner's Us	е
Question	Mark	Question	Mark
1			
2			
3			
4			
5			
Total (Co	lumn 1)	-	
Total (Co	lumn 2) —	-	
Quality of Communi			
TOTAL			
Examiner	's Initials		

Data Sheet

- A perforated *Data Sheet* is provided as pages 3 and 4 of this question paper.
- This sheet may be useful for answering some of the questions in the examination.
- You may wish to detach this sheet before you begin work.

Data Sheet

Fundamental constants	and valu	ies	
Quantity	Symbol	Value	Units
speed of light in vacuo	c	3.00×10^{8}	m s ⁻¹
permeability of free space	μ_0	$4\pi \times 10^{-7}$	H m ⁻¹
permittivity of free space	ϵ_0	8.85×10^{-12}	F m ⁻¹
charge of electron	e	1.60×10^{-19}	C
the Planck constant	h	6.63×10^{-34}	Js
gravitational constant	G	6.67×10^{-11}	N m ² kg ⁻²
the Avogadro constant	$N_{\rm A}$	6.02×10^{23}	mol ⁻¹
molar gas constant	R	8.31	J K ⁻¹ mol
the Boltzmann constant	k	1.38×10^{-23}	J K ⁻¹
the Stefan constant	σ	5.67×10^{-8}	W m ⁻² K
the Wien constant	α	2.90×10^{-3}	m K
electron rest mass	$m_{\rm e}$	9.11×10^{-31}	kg
(equivalent to 5.5×10^{-4} u)			
electron charge/mass ratio	e/m _e	1.76×10^{11}	C kg ⁻¹
proton rest mass	$m_{\rm p}$	1.67×10^{-27}	kg
(equivalent to 1.00728u)	-	_	
proton charge/mass ratio	e/m _p	9.58×10^{7}	C kg ⁻¹
neutron rest mass	$m_{\rm n}$	1.67×10^{-27}	kg
(equivalent to 1.00867u)			
gravitational field strength	1 -	9.81	N kg ⁻¹
acceleration due to gravity	g	9.81	m s ²
atomic mass unit	u	1.661×10^{-27}	kg
(1u is equivalent to			
931.3 MeV)			

Fundamental particles

	F		
Class	Name	Symbol	Rest energy
			/MeV
photon	photon	γ	0
lepton	neutrino	$ u_e$	0
		$ u_{\mu}$	0
	electron	$\begin{array}{c} \nu_{\mu} \\ e^{\pm} \end{array}$	0.510999
	muon	μ^{\pm}	105.659
mesons	pion	$\boldsymbol{\pi}^{\pm}$	139.576
		π^0	134.972
:	kaon	\mathbf{K}^{\pm}	493.821
		\mathbf{K}^0	497.762
baryons	proton	p	938.257
	neutron	n	939.551

Properties of quarks

Туре	Charge	Baryon number	Strangeness
u	$+\frac{2}{3}$	$+\frac{1}{3}$	0
d	$-\frac{1}{3}$	$+\frac{1}{3}$	0
S	$-\frac{1}{3}$	$+\frac{1}{3}$	-1

Geometrical equations

 $arc\ length = r\theta$ $circumference\ of\ circle = 2\pi r$ area of circle = πr^2 area of cylinder = $2\pi rh$ *volume of cylinder* = $\pi r^2 h$ area of sphere = $4\pi r^2$ *volume of sphere* = $\frac{4}{3} \pi r^3$

Mechanics and Applied Physics

$$v = u + at$$

$$s = \left(\frac{u + v}{2}\right)t$$

$$s = ut + \frac{at^2}{2}$$

$$v^2 = u^2 + 2as$$

$$F = \frac{\Delta(mv)}{\Delta t}$$

$$P = Fv$$

$$efficiency = \frac{power\ output}{power\ input}$$

$$\omega = \frac{v}{r} = 2\pi f$$

$$a = \frac{v^{-}}{r} = r\omega^{2}$$

$$E_{k} = \frac{1}{2} I \omega^{2}$$

$$\omega_2 = \omega_1 + \alpha t$$

$$\theta = \omega_1 t + \frac{1}{2} \alpha t$$

$$\omega_2^2 = \omega_1^2 + 2\alpha \theta$$

$$\theta = \frac{1}{2} (\omega_1 + \omega_2)t$$

$$T = I\alpha$$

angular momentum = $I\omega$ $W = T\theta$ $P = T\omega$

angular impulse = change of $angular\ momentum = Tt$ $\Delta Q = \Delta U + \Delta W$ $\Delta W = p \Delta V$ $pV^{\gamma} = constant$

work done per cycle = area of loop

input power = calorific value × fuel flow rate

indicated power as (area of p - V $loop) \times (no. \ of \ cycles/s) \times$ (no. of cylinders)

friction power = indicated power - brake power

efficiency =
$$\frac{W}{Q_{\text{in}}} = \frac{Q_{\text{in}} - Q_{\text{out}}}{Q_{\text{in}}}$$

maximum possible

efficiency =
$$\frac{T_{\rm H} - T_{\rm C}}{T_{\rm H}}$$

Fields, Waves, Quantum Phenomena

Phenomena
$$g = \frac{F}{m}$$

$$g = -\frac{GM}{r^2}$$

$$g = -\frac{\Delta V}{\Delta x}$$

$$V = -\frac{GM}{r}$$

$$a = -(2\pi f)^2 x$$

$$v = \pm 2\pi f \sqrt{A^2 - x^2}$$

$$x = A \cos 2\pi f t$$

$$T = 2\pi \sqrt{\frac{I}{g}}$$

$$\lambda = \frac{\omega s}{D}$$

$$d \sin \theta = n\lambda$$

$$\theta \approx \frac{\lambda}{D}$$

$$_1n_2 = \frac{\sin \theta_1}{\sin \theta_2} = \frac{c_1}{c_2}$$

$$_1n_2 = \frac{n_2}{n_1}$$

$$\sin \theta_c = \frac{1}{n}$$

$$E = hf$$

$$hf = \phi + E_k$$

$$hf = E_1 - E_2$$

Electricity

 $E = \frac{1}{2} QV$

F = BII

F = BOv

 $\Phi = BA$

 $c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$

 $\lambda = \frac{h}{p} = \frac{h}{mv}$

$$\epsilon = \frac{E}{Q}$$

$$\epsilon = I(R+r)$$

$$\frac{1}{R_{\rm T}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \cdots$$

$$R_{\rm T} = R_1 + R_2 + R_3 + \cdots$$

$$P = I^2 R$$

$$E = \frac{F}{Q} = \frac{V}{d}$$

$$E = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2}$$

 $Q = Q_0 e^{-t/RC}$ Turn over magnitude of induced emf = $N \frac{\Delta \Phi}{\Delta t}$

$$I_{\rm rms} = \frac{I_0}{\sqrt{2}}$$

$$V_{\rm rms} = \frac{V_0}{\sqrt{2}}$$

Mechanical and Thermal Properties

the Young modulus =
$$\frac{tensile\ stress}{tensile\ strain} = \frac{F}{A} \frac{l}{e}$$

energy stored = $\frac{1}{2}$ Fe

$$\Delta Q = mc \ \Delta \theta$$

$$\Delta Q = ml$$

$$pV = \frac{1}{3} Nm\overline{c^2}$$

$$\frac{1}{2}m\overline{c^2} = \frac{3}{2}kT = \frac{3RT}{2N_A}$$

Nuclear Physics and Turning Points in Physics

$$force = \frac{eV_{p}}{d}$$

$$force = Bev$$

radius of curvature =
$$\frac{mv}{Re}$$

$$\frac{eV}{d} = mg$$

 $work\ done = eV$

$$F = 6\pi \eta r v$$

$$I = k \frac{I_0}{x^2}$$

$$\frac{\Delta N}{\Delta t} = -\lambda N$$

$$\lambda = \frac{h}{\sqrt{2meV}}$$

$$N = N_0 e^{-\lambda t}$$

$$T_{\frac{1}{2}} = \frac{\ln 2}{\lambda}$$

$$R = r_0 A^{\frac{1}{3}}$$

$$E = mc^2 = \frac{m_0 c^2}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}}$$

$$l = l_0 \left(1 - \frac{v^2}{c^2} \right)^{\frac{1}{2}}$$

$$t = \frac{t_0}{\left(1 - \frac{v^2}{c^2}\right)^{\frac{1}{2}}}$$

Astrophysics and Medical Physics

Body Mass/kg Mean radius/m

Sun 2.00×10^{30} 7.00×10^{8} Earth 6.00×10^{24} 6.40×10^{6}

1 astronomical unit = 1.50×10^{11} m

1 parsec = $206265 \text{ AU} = 3.08 \times 10^{16} \text{ m} = 3.26 \text{ ly}$

1 light year = 9.45×10^{15} m

Hubble constant $(H) = 65 \text{ km s}^{-1} \text{ Mpc}^{-1}$

 $M = \frac{\text{angle subtended by image at eye}}{\text{angle subtended by object at}}$

$$M = \frac{f_{\rm o}}{f_{\rm e}}$$

$$m - M = 5 \log \frac{d}{10}$$

 $\lambda_{\text{max}}T = \text{constant} = 0.0029 \text{ m K}$

v = Hd

 $P = \sigma A T^4$

$$\frac{\Delta f}{f} = \frac{v}{c}$$

$$\frac{\Delta \lambda}{\lambda} = -\frac{\nu}{c}$$

$$R_{\rm s} \approx \frac{2GM}{c^2}$$

Medical Physics

$$power = \frac{1}{f}$$

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f} \text{ and } m = \frac{v}{u}$$

intensity level = $10 \log \frac{I}{I_0}$

 $I = I_0 e^{-\mu}$

$$\mu_{\rm m} = \frac{\mu}{\alpha}$$

Electronics

Resistors

Preferred values for resistors (E24) Series: 1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 ohms and multiples that are ten times greater

$$Z = \frac{V_{\rm rms}}{I_{\rm rms}}$$

$$\frac{1}{C_{\rm T}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$$

$$C_{\mathrm{T}} = C_1 + C_2 + C_3 + \cdots$$

$$X_{\rm C} = \frac{1}{2\pi fC}$$

Alternating Currents

$$f = \frac{1}{T}$$

Operational amplifier

$$G = \frac{V_{\text{out}}}{V_{\text{in}}} \qquad \text{voltage gain}$$

$$G = -\frac{R_{\rm f}}{R_{\rm 1}}$$
 inverting

$$G = 1 + \frac{R_{\rm f}}{R_{\rm 1}}$$
 non-inverting

$$V_{\text{out}} = -R_{\text{f}} \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right)$$
 summing

Turn over for the first question

SECTION A: NUCLEAR INSTABILITY

Answer all of this question.

1 (a) X and Y are two different β emitting sources. Initially they contain the same number of unstable nuclei. Both sources have their emissions recorded over a period of time. The *decay constant* of source X is greater than that of Y. State what is meant by decay constant and describe **two** differences in the recordings from the two sources.

You may be awarded additional marks to those shown in brackets for the quality of written communication in your answer.

(3 marks)

(b) The activity of a sample of radioactive iodine, $\frac{131}{53}$ I, is presented in the following graph.

10

(i)	Show that the decay constant of $^{131}_{53}I$ is about 1×10^{-6} s ⁻¹ .
(ii)	Calculate the half-life of $^{131}_{53}I$ in days.
(iii)	Calculate the initial number of $^{131}_{53}I$ atoms in the sample.
	(7 marks)

Turn over for the next question

Turn over ▶

SECTION B: ELECTRONICS

Answer all questions.

2 (a) On the axes below sketch the current – voltage characteristic for a 3.9 V zener diode. Show appropriate values on the voltage axis.

(b) The zener diode is used to provide a stabilised output voltage of 3.9 V. The circuit used is shown in **Figure 1**. The zener diode must have a minimum current of 10 mA flowing through it for it to function correctly.

Figure 1

Calculate the maximum current that can be provided to the output.
(3 marks)

Turn over for the next question

Turn over >

3 Figure 2 shows an amplifier circuit.

Figure 2

		(1 mark)
(a)	Name this type of amplifier circuit.	

(b)	When the inputs at A and B are at 0 V, show that the output voltage, V_{out} , is $+ 2.0 \text{ V}$.
	(1 mark)

(c) Voltage signals V_A and V_B are applied to A and B respectively. These signals are shown in **Figure 3**. The input to the 400 k Ω resistor remains at -10 V. Complete on **Figure 3** the graph of output voltage against time.

Figure 3

(5 marks)

4		n <i>negative feedback</i> is used with an amplifier, the <i>bandwidth</i> of the amplifier is eased.
	(i)	Explain what is meant by negative feedback.
	<i>(</i> ::)	
	(ii)	Give one other advantage of negative feedback.
	(iii)	State what is meant by the bandwidth of the amplifier.

(iv) The graph below shows the characteristic curve of an amplifier. Indicate the bandwidth of the amplifier on the graph.

(6 marks)

6

Turn over for the next question

5 The circuit shown in **Figure 4** was used to investigate the relationship between the reactance of the capacitor C and the frequency of the alternating voltage supply.

Figure 4

You may be awarded additional marks to those shown in brackets for the quality of written communication in your answer to part (a).

(a) State the readings which would be taken, and explain how they would be used, to determine

(i)	the frequency of the supply,
(ii)	the reactance of the capacitor.
	(6 marks)
	(O Marks)

reactance		
reactance		
0		
0 1	0	
0 The capacitor has a rea	frequency cance of 12Ω at a frequency of $2.5\mathrm{kHz}$. Cal	
0 The capacitor has a rea		(1 mark)
0		
0 The capacitor has a rea		
0 The capacitor has a rea		
The capacitor has a reacapacitance.		lculate its
The capacitor has a reacapacitance.	ectance of 12 Ω at a frequency of 2.5 kHz. Cal	lculate its
The capacitor has a reacapacitance.	ectance of 12 Ω at a frequency of 2.5 kHz. Cal	lculate its
The capacitor has a reacapacitance.	ectance of 12 Ω at a frequency of 2.5 kHz. Cal	lculate its
The capacitor has a reacapacitance.	ectance of 12 Ω at a frequency of 2.5 kHz. Cal	lculate its

END OF QUESTIONS

There are no questions printed on this page