Complex Analysis

D. Zack Garza

February 24, 2020

Contents

1	Friday January 10	2
2	Monday January 13th	4
3	Wednesday January 15th 3.1 Topology and Algebra of $\mathbb C$	6
4	Friday January 17th 4.1 Antiholomorphic Derivative	8
5	Wednesday January 22nd 5.1 Parameterized Curves	12 12 13
6	Friday January 24th 6.1 Integral and Fourier Transform of e^{-x^2}	14 15
7	Monday January 27th 7.1 Green's Theorem	18 18
8	Wednesday January 29th 8.1 Cauchy's Integral Formula	22 22
9	Friday January 31st 9.1 Fundamental Theorem of Algebra	25 25
10	Monday February 3rd 10.1 Mean Value Theorem	28 28
11	Wednesday February 5th 11.1 Cauchy/Morera Theorems	34
12	Friday February 7th	38

13	Wednesday February 12th	42
	13.1 Singularities	42
	13.2 Spherical Projection	42
14	Friday February 14th	45
	14.1 Defining Residues	45
	14.2 Residues	
15	Monday February 17th	47
	15.1 Getting a Holomorphic Function from a Laurent Series	47
	15.2 Obtaining a Laurent Series from a Holomorphic Function	48
16	Appendix	51
	16.1 Useful Techniques	52
	16.2 Residues	

1 Friday January 10

Recall that $\mathbb C$ is a field, where

$$z = x + iy \implies \overline{z} = x - iy$$

and if $z \neq 0$ then

$$z^{-1} = \frac{\overline{z}}{|z|^2}$$

Lemma 1.1 (Triangle Inequality).

$$|z+w| \le |z| + |w|.$$

Proof.

$$(|z| + |w|)^2 - |z + w|^2 = 2(|z\overline{w}| - \Re z\overline{w}) \ge 0.$$

 ${\bf Lemma~1.2~(Reverse~Triangle~Inequality).}$

$$||z| - |w|| \le |z - w|.$$

Proof.

$$|z| = |z - w + w| \le |z - w| + |w| \implies |w| - |z| \le |z - w| = |w - z|.$$

Fact $(\mathbb{C}, |\cdot|)$ is a normed space.

Definition 1.1.

$$\lim z_n = z \iff |z_n - z| \longrightarrow 0 \in \mathbb{R}.$$

Definition 1.2.

A disc is defined as $D_r(z_0) := \{z \in \mathbb{C} \mid |z - z_0| < r\}$, and a subset is open iff it contains a disc. By convention, D_r denotes a disc about $z_0 = 0$.

Definition 1.3.

$$\sum_{k} z_k \text{ converges iff } S_N \coloneqq \sum_{|k| < N} z_k \text{ converges.}$$

Note that $z_n \longrightarrow z$ and $z_n = x_n + iy_n$, and

$$|z_n - z| = \sqrt{(x_n - x)^2 - (y_n - y)^2} < \varepsilon \implies |x - x_n|, |y - y_n| < \varepsilon.$$

Since \mathbb{R} is complete iff every Cauchy sequence converges iff every bounded monotone sequence has a limit.

Note: This is useful precisely when you don't know the limiting term.

Note that $\sum_{k} z_k$ thus converges if $\left| \sum_{k=m}^{n} z_k \right| < \varepsilon$ for m, n large enough, so sums converges iff they have small tails.

Definition 1.4

Solution 1.4.
$$S_N = \sum_{k=1}^{N} z_k$$
 converges absolutely iff $\tilde{S} := \sum_{k=1}^{N} |z_k|$ converges.

Note that the partial sums $\sum_{k=1}^{N} |z_k|$ are monotone, so \tilde{S}_N converges iff the partial sums are bounded above.

Definition 1.5.

A sum of the form $\sum_{k=0}^{\infty} a_k z_k$ is a power series.

Examples:

$$\sum x^{k} = \frac{1}{1-x}$$
$$\sum (-x^{2})^{k} = \frac{1}{1+x^{2}}.$$

Note that both of these have a radius of convergence equal to 1, since the first has a pole at x=1and the second as a pole at x = i.

2 Monday January 13th

Recall that $\sum z_k$ converges iff $s_n = \sum_{k=1}^n z_k$ converges.

Lemma 2.1.

Absolute convergence implies convergence.

The most interesting series: $f(z) = \sum a_k z^k$, i.e. power series.

Lemma 2.2 (Divergence).

If $\sum z_k$ converges, then $\lim z_k = 0$.

Corollary 2.3.

If $\sum z_k$ converges, $\{z_k\}$ is uniformly bounded by a constant C > 0, i.e. $|z_k| < C$ for all k.

Proposition: If $\sum a_k z_k$ converges at some point z_0 , then it converges for all $|z| < |z|_0$.

Note that this inequality is necessarily strict. For example, $\sum \frac{z^{n-1}}{n}$ converges at z=-1 (alternating harmonic series) but not at z = 1 (harmonic series)

Suppose $\sum a_k z_1^k$ converges. The terms are uniformly bounded, so $\left|a_k z_1^k\right| \leq C$ for all k. Then we have

$$|a_k| \le C/|z_1|^k$$

, so if $|z| < |z_1|$ we have

$$\left| a_k z^k \right| \le |z|^k \frac{C}{|z_1|^k} = C(|z|/|z_1|)^k.$$

So if $|z| < |z_1|$, the parenthesized quantity is less than 1, and the original series is bounded by a geometric series. Letting $r = |z|/|z_1|$, we have

$$\left| \sum \left| a_k z^k \right| \le \sum c r^k = \frac{c}{1 - r},$$

and so we have absolute convergence.

Exercise (future problem set) Show that $\sum \frac{1}{k} z^{k-1}$ converges for all |z| = 1 except for z = 1. (Use summation by parts.)

Definition 2.1.

The radius of convergence of a series is the real number R such that $f(z) = \sum a_k z^k$ converges precisely for |z| < R and diverges for |z| > R.

We denote a disc of radius R centered at zero by D_R . If $R = \infty$, then f is said to be entire.

Proposition 2.4.

Suppose that $\sum a_k z^k$ converges for all |z| < R. Then $f(z) = \sum a_k z^k$ is continuous on D_R , i.e. using the sequential definition of continuity, $\lim_{z \longrightarrow z_0} f(z) = f(z_0)$ for all $z_0 \in D_R$.

Recall that $S_n(z) \longrightarrow S(z)$ uniformly on Ω iff $\forall \varepsilon > 0$, there exists a $M \in \mathbb{N}$ such that

$$n > M \implies |S_n(z) - S(z)| < \varepsilon$$

for all $z \in \Omega$

Note that arbitrary limits of continuous functions may not be continuous. Counterexample: $f_n(x) = x^n$ on [0,1]; then $f_n \longrightarrow \delta(1)$. This uniformly converges on $[0,1-\varepsilon]$ for any $\varepsilon > 0$.

Exercise Show that the uniform limit of continuous functions is continuous.

Hint: Use the triangle inequality.

Proof (of proposition).

Write $f(z) = \sum_{k=0}^{N} a_k z^k + \sum_{N+1}^{\infty} a_k z^k := S_N(z) + R_N(z)$. Note that if |z| < R, then there exists a

T such that |z| < T < R where f(z) converges uniformly on D_T .

We need to show that $|R_N(z)|$ is uniformly small for |z| < s < T. Note that $\sum a_k z^k$ converges on D_T , so we can find a C such that $|a_k z^k| \leq C$ for all k. Then $|a_k| \leq C/T^k$ for all k, and so

$$\left| \sum_{k=N+1}^{\infty} a_k z^k \right| \leq \sum_{k=N+1}^{\infty} |a_k| |z|^k$$

$$\leq \sum_{k=N+1}^{\infty} (c/T^k) s^k$$

$$= c \sum_{k=N+1}^{\infty} |s/T|^k$$

$$= c \frac{r^{N+!}}{1-r} \qquad = C\varepsilon_n \longrightarrow 0,$$

which follows because 0 < r = s/T < 1.

So $S_N(z) \longrightarrow f(z)$ uniformly on |z| < s and $S_N(z)$ are all continuous, so f(z) is continuous.

There are two ways to compute the radius of convergence:

- Root test: $\lim_{k} |a_k|^{1/k} = L \implies R = \frac{1}{L}$.
- Ratio test: $\lim_{k} |a_{k+1}/a_k| = L \implies R = \frac{1}{L}$.

As long as these series converge, we can compute derivatives and integrals term-by-term, and they have the same radius of convergence.

3 Wednesday January 15th

See references: Taylor's Complex Analysis, Stein, Barry Simon (5 volume set), Hormander (technically a PDEs book, but mostly analysis)

Good Paper: Hormander 1955

We'll mostly be working from Simon Vol. 2A, most problems from from Stein's Complex.

3.1 Topology and Algebra of $\mathbb C$

To do analysis, we'll need the following notions:

- 1. Continuity of a complex-valued function $f:\Omega\longrightarrow\Omega$
- 2. Complex-differentiability: For $\Omega \subset \mathbb{C}$ open and $z_0 \in \Omega$, there exists $\varepsilon > 0$ such that $D_{\varepsilon} = \{z \mid |z z_0| < \varepsilon\} \subset \Omega$, and f is **holomorphic** (complex-differentiable) at z_0 iff

$$\lim_{h \to 0} \frac{1}{h} (f(z_0 + h) - f(z_0))$$

exists; if so we denote it by $f'(z_0)$.

Example 3.1.

f(z) = z is holomorphic, since f(z+h) - f(z) = z + h - z = h, so $f'(z_0) = \frac{h}{h} = 1$ for all z_0 .

Example 3.2.

Given $f(z) = \overline{z}$, we have $f(z+h) - f(z) = \overline{h}$, so the ratio is $\frac{\overline{h}}{h}$ and the limit doesn't exist.

Note that if $h \in \mathbb{R}$, then $\overline{h} = h$ and the ratio is identically 1, while if h is purely imaginary, then $\overline{h} = -h$ and the limit is identically -1.

We say f is holomorphic on an open set Ω iff it is holomorphic at every point, and is holomorphic on a closed set C iff there exists an open $\Omega \supset C$ such that f is holomorphic on Ω .

Fact If f is holomorphic, writing $h = h_1 + ih_2$, then the following two limits exist and are equal:

$$\lim_{h_1 \to 0} \frac{f(x_0 + iy_0 + h_1) - f(x_0 + iy_0)}{h_1} = \frac{\partial f}{\partial x}(x_0, y_0)$$

$$\lim_{h_2 \to 0} \frac{f(x_0 + iy_0 + ih_2) - f(x_0 + iy_0)}{ih_2} = \frac{1}{i} \frac{\partial f}{\partial y}(x_0, y_0)$$

$$\implies \frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y}.$$

So if we write f(z) = u(x, y) + iv(x, y), we have

$$\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} \Big|_{(x_0, y_0)} = \frac{1}{i} \left(\frac{\partial u}{\partial y} + i \frac{\partial v}{\partial y} \right) \Big|_{(x_0, y_0)},$$

and equating real and imaginary parts yields the Cauchy-Riemann equations:

$$\frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = -i \frac{\partial u}{\partial y} + \frac{\partial v}{\partial y}$$

$$\iff \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad \text{and} \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

The usual rules of derivatives apply:

$$1. \ (\sum f)' = \sum f'$$

Proof.

Direct.

2. $(\prod f)' = \text{product rule}$

Proof.

Consider (f(z+h)g(z+h)-f(z)g(z))/h and use continuity of g at z.

3. Quotient rule

Proof.

Nice trick, write

$$q = \frac{f}{g}$$

so qg = f, then f' = q'g + qg' and $q' = \frac{f'}{g} - \frac{fg'}{g^2}$.

4. Chain rule

Proof.

Use the fact that if f'(g(z)) = a, then

$$f(z+h) - f(z) = ah + r(z,h), \quad |r(z,h)| = o(|h|) \longrightarrow 0.$$

Write b = g'(z), then

$$f(g(z+h)) = f(g(z) + bh + r_1) = f(g(z)) + f'(g(z))bh + r_2$$

by considering error terms, and so

$$\frac{1}{h}(f(g(z+h)) - f(g(z))) \longrightarrow f'(g(z))g'(z)$$

.

4 Friday January 17th

4.1 Antiholomorphic Derivative

Reference: See Lang's Complex Analysis, there are plenty of solution manuals. Note: look for 13 statements equivalent to holomorphic: Springer GTM Lipman.

Let $f: \Omega \longrightarrow \mathbb{C}$ be a complex-valued function. Recall that f is complex differentiable iff the usual ratio/limit exists. Note that h = x + iy and $h \longrightarrow 0 \iff x, y \longrightarrow 0$.

We can write

$$f'(z) = \frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y}.$$

This follows from Cauchy-Riemann since $u_x = v_y$ and $u_y = -v_x$.

We want to define ∂ , $\overline{\partial}$ operators. We have the identities

$$x = \frac{z + \overline{z}}{z}$$
 $y = \frac{z - \overline{z}}{iz}$.

We can then write

$$dz = dx + idy$$
$$d\overline{z} = dx - idy.$$

We define the dual operators by $\left\langle \frac{\partial}{\partial z},\ dz \right\rangle = 1$ and similarly $\left\langle \frac{\partial}{\partial \overline{z}},\ d\overline{z} \right\rangle = 1$. By the chain rule, we can write

$$f_z = \frac{\partial f}{\partial x} \frac{\partial x}{\partial z} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial z}$$
$$= \frac{1}{2} \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{1}{2i}$$
$$= \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) f,$$

and similarly

$$f_{\overline{z}} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \overline{z}} + \frac{\partial f}{\partial y} \frac{\partial z}{\partial \overline{z}}$$
$$= \frac{1}{2} \left(\frac{\partial}{\partial x} - \frac{1}{2i} \frac{\partial}{\partial y} \right) f.$$

We thus find $\partial_x = \partial_z + \partial_{\overline{z}}$ and $\partial_y = i(\partial_z - \partial_{\overline{z}})$, so define

$$\begin{split} \partial f &\coloneqq \frac{\partial f}{\partial z} dz \\ \overline{\partial} f &\coloneqq \frac{\partial f}{\partial \overline{z}} d\overline{z} \\ &\Longrightarrow df = \frac{\partial f}{\partial z} dz + \frac{\partial f}{\partial \overline{z}} d\overline{z}. \end{split}$$

Definition 4.1 (Holomorphic and Antiholomorphic Derivatives).

$$\begin{split} \partial f &= \frac{1}{2} \bigg(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \bigg) f \\ \overline{\partial} f &= \bigg(\frac{\partial}{\partial x} - \frac{1}{2i} \frac{\partial}{\partial y} \bigg) f. \end{split}$$

Proposition 4.1 (Holomorphic Functions have vanishing antiholomorphic derivatives). f is holomorphic iff $\overline{\partial} f = 0$.

This means that f depends on z alone and not \overline{z} .

Proof.

$$\overline{\partial} f = 0 \text{ iff } \frac{1}{2}(f_x + if_y) = 0, \text{ so } (u_x - v_y) + i(v_x + u_y) = 0.$$

Application to PDEs: We can write $u_{xx} = v_{xy}$, $u_{yy} = v_{yx}$ and so $u_{xx} + u_{yy} = 0 = v_{xx} + v_{yy}$. Thus $\Delta f = 0$, and f satisfies Laplace's equation and is said to be harmonic.

Corollary 4.2 (Holomorphic Functions Have Harmonic Components).

If f is analytic, then u, v are both harmonic functions.

Theorem 4.3 (Chain Rule).

Let w = f(z) and g(w) = g(f(z)). Then

$$h_z = g_w f_z + g_{\overline{w}} \overline{f}_z$$

$$h_{\overline{z}} = g_w f_{\overline{z}} + g_{\overline{w}} \overline{f}_{\overline{z}}.$$

If f, g are holomorphic, $f_{\overline{z}} = g_{\overline{w}} = 0$, so $h_{\overline{z}} = 0$ and h is holomorphic and

$$h_z = g_w f_z.$$

Example 4.1.

Given a power series $f = \sum a_n(z-z_0)^n$. Then

- 1. There exists a radius of convergence R such that f converges precisely on $D_R(z_0)$.
- 2. f is continuous on $D_R(z_0)^{\circ}$.
- 3. By the root test, $R = (\limsup |a_n|^{1/n})^{-1} = \liminf |a_n/a_{n+1}| = (\limsup |a_{k+1}/a_k|)^{-1}$.

Recall the ratio test:

$$\sum |a_k| < \infty \iff \limsup |a_{k+1}/a_k| < 1$$

Theorem 4.4 (Holomorphic series can be differentiated term-by-term).

If $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is holomorphic on |z| < R for R > 0 then

$$f'(z) = \sum_{n=1} a_n n z^{n-1}.$$

Proof.

Given |z| < R, fix r > 0 such that |z| < r < R. Suppose that |w - z| < r - |z|, so |w| < r.

We want to show

$$|S| = \left| \frac{f(w) - f(z)}{w - z} - \sum_{n=1} a_n n z^{n-1} \right| \longrightarrow 0 \text{ as } w \longrightarrow z.$$

Idea: write everything in terms of power series. Use the fact that $a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + \cdots)$, and so $\left|(w^k - z^k)/(w - z)\right| \le kr^{k-1}$.

$$S = \sum_{n=1}^{\infty} a_n \left(\frac{w^n - z^n}{w - z} - nz^{n-1} \right)$$

$$= \sum_{n=1}^{\infty} a_n \left(w^{n-1} + w^{n-2}z + \dots + z^{n-1} + nz^{n-1} \right)$$

$$= \sum_{n=1}^{\infty} a_n \left((w^{n-1} - z^{n-1}) + (w^{n-2} - z^{n-2})z + \dots + (w - z)z^{n-2} \right) = \sum_{n=2}^{\infty} a_n (w - z) \left(\dots + z^{n-2} \right)$$

$$\leq \sum_{n=2}^{\infty} |a_n| \frac{1}{2} n(n-1) r^{n-2} |z - w|.$$

Exercise Show $\lim_{n} n^{\frac{1}{n}} = 1$.

Also tricky: show $\limsup \sin(n)$ doesn't exist, and $\sin(n)$ is dense in [-1, 1].

Proof.

Consider $\limsup |a_n n|^{\frac{1}{n}}$.

Note that an analytic function is holomorphic in its domain of convergence, so analytic implies holomorphic. The converse requires Cauchy's integral formula.

Next time: trying to prove holomorphic functions are analytic.

5 Wednesday January 22nd

5.1 Parameterized Curves

Note: multiple complex variables, see Hormander or Steven Krantz

Recall from last time that if

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

with $z_0 \neq 0$ has radius of convergence

$$R = (\limsup |a_n|^{1/n})^{-1} > 0$$

then f' exists and is obtained by differentiating term-by-term.

We know that f analytic \implies f holomorphic (and smooth), and we want to show the converse. For this, we need integration.

Definition 5.1.

A parameterized curve is a function z(t) which maps a closed interval $[a,b] \subset \mathbb{R}$ to \mathbb{C} .

Definition 5.2.

The curve is said to be *smooth* iff z' exists and is continuous on [a, b], and $z'(t) \neq 0$ for any t. At the boundary $\{a, b\}$, we define the derivative by taking one-sided limits.

Definition 5.3.

A curve is said to be *piecewise smooth* iff z(t) is continuous on [a, b] and there are $a < a_1 < \cdots < a_n = b$ with z smooth on each $[a_k, a_{k+1}]$.

Note that such a curve may fail to have tangent lines at a_i .

Definition 5.4.

Two parameterizations $z:[a,b] \longrightarrow \mathbb{C}, \tilde{z}:[c,d] \longrightarrow \mathbb{C}$ are equivalent iff there exists a C^1 bijection $s:[c,d] \longrightarrow [a,b]$ where $s \mapsto t(s)$ such that s' > 0 and $\tilde{z}(s) = z(s(t))$.

Note that s' > 0 preserves orientation and s' < 0 reverses orientation.

Definition 5.5.

A curve in reverse orientation is defined by

$$\gamma:[a,b]\longrightarrow\mathbb{C}\implies \gamma^-:[a,b]\longrightarrow\mathbb{C}$$

$$t\mapsto \gamma(a+b-t).$$

Definition 5.6.

A curve is *closed* iff z(a) = z(b), and is simple iff $z(t) \neq z_{t_1}$ for $t \neq t_1$.

Definition 5.7. For $C_r(z_0) := \{z \mid |z - z_0| = r\}$, the positive orientation is given by $z(t) = z_0 + re^{2\pi it}$ for

5.2 Definition of the Integral

Definition 5.8.

The *integral* of f over γ is defined as

$$\int_{\gamma} f \ dz = \int_{a}^{b} f(z(t))z'(t) \ dt.$$

Note: this doesn't depend on parameterization, since if t = t(s), then a change of variables yields

$$\int_{\gamma} f \ dz - \int_{c}^{d} f(z(t(s))) \ z'(t(s)) \ t'(s) \ ds = \int_{c}^{d} f(\tilde{z}(s)) \ \tilde{z}'(s) \ ds.$$

The length of γ is defined as $|\gamma| = \int |z'(t)| dt$.

Proposition 5.1. 1. We can extend this definition to piecewise smooth curves by

$$\int_{\gamma} f \ dz = \sum \int_{a_k}^{a_{k+1}} f \ dz$$

- 2. This integral is linear and $\int_{\gamma} f = -\int_{\gamma^{-}} f$.
- 3. We have an inequality

$$\left| \int_{\gamma} f \right| \le \max_{a \le t \le b} |f(z(t))| |\gamma|.$$

Definition 5.10.

A function F is a primitive for f on Ω iff F is holomorphic on Ω and F'(z) = f(z) on Ω .

Recall that in \mathbb{R} , we have

$$F(x) = \int_{a}^{x} f(t) dt$$

as an antiderivative with F'(x) = f(x), and $\int f = F(b) - F(a)$.

Theorem 5.2 (Evaluating Integrals with Primitives).

If f is continuous, has a primitive F in Ω , and γ is a curve beginning at w_0 and ending at w_1 , then $\int_{\gamma} f = F(w_1) - F(w_0)$.

Proof.

Use definitions, write z(t) where $z(a) = w_1, z(b) = w_2$. Then

$$\int_{\gamma} f = \int_{a}^{b} f(z(t))z'(t) dt$$

$$= \int_{a}^{b} F'(z(t))z'(t) dt$$

$$= \int_{a}^{b} F_{t} dt$$

$$= F(z(b)) - F(z(a)) \text{ by FTC}$$

$$= F(w_{1}) - F(w_{2}).$$

Note that if γ is piecewise smooth, the sum of the integrals telescopes to yield the same conclusion.

Corollary 5.3 (Functions with Primitives Integrate to Zero Along Loops). If f is continuous and γ is a closed curve in Ω , and f has a primitive in Ω , then

$$\oint f = 0.$$

6 Friday January 24th

Corollary 6.1.

If γ is a closed curve on Ω an open set and f is continuous with a primitive in Ω (i.e. an F holomorphic in Ω with F' = f) then $\int_{\gamma} f \ dz = 0$.

Proof (easy).

$$\int_{\gamma} f \ dz = \int_{\gamma} F' = F'(z)z(t) \ dt = F(z(b)) - F(z(a)) = 0.$$

Corollary 6.2.

If f is holomorphic with f' = 0 on Ω , then f is constant.

 $Proof\ (easy).$

Pick $w_0 \in \Omega$; we want to fix $w_0 \in \Omega$ and show $f(w) = f(w_0)$ for all $w \in \Omega$.

Take any path $\gamma: w_0 \longrightarrow w$, then

$$0 = \int_{\gamma} f' = f(w) - f(w_0).$$

6.1 Integral and Fourier Transform of e^{-x^2}

Example 6.1. Let $f(z) = e^{-z^2}$, this is holomorphic. Write

$$f(z) = \sum \frac{(-1)^n z^{2n}}{n!},$$

SO

$$\int f = \sum \frac{(-1)^n z^{2n+1}}{n!(2n+1)}.$$

Since f is entire, $\int f$ is entire, and $(\int f)' = f$ so this function has a primitive. Thus $\int_{\gamma} f(z) = 0$ for any closed curve. So take γ a rectangle with vertices $\pm a, \pm a + ib$.

So

$$\int_{\gamma} f = \int_{-a}^{a} e^{-x^{2}} dx + \int e^{-(a+iy)^{2}} i dy - \int_{-a}^{a} e^{-(x+ib)^{2}} dx - \int_{0}^{b} e^{-(a+iy)^{2}} i dy = 0.$$

 $e^{-(a+iy)^2} = e^{-(a^2+2iay-y^2)}$

We can do some estimates,

$$e^{-a^{2}+y^{2}} = e^{-a^{2}+y^{2}} e^{2iay}$$

$$\leq e^{-a^{2}+y^{2}}$$

$$\leq e^{-a^{2}+b^{2}},$$

$$\left| \int_{0}^{b} e^{-(a+ib)^{2}} i \ dy \right| \leq e^{-a^{2}+b^{2}} \cdot b$$

$$\int_{-a}^{a} e^{-(x^{2}+2ibx)-b^{2}} = e^{b^{2}} \int_{-a}^{a} e^{-x^{2}} (\cos(2bx) - i\sin(2bx))$$

$$\stackrel{\text{odd fn}}{=} e^{b^{2}} \int_{-a}^{a} e^{-x^{2}} \cos(2bx) \ dx.$$

Now take $a \longrightarrow \infty$ to obtain

$$\int_{\mathbb{R}} e^{-x^2} dx = e^{b^2} \int_{\mathbb{R}} e^{-x^2} \cos(2bx) dx.$$

We can compute

$$\int_{\mathbb{R}} e^{-x^2} = \left[\left(\int_{\mathbb{R}} e^{-x^2} \right)^2 \right]^{1/2} = \left(\int_0^{2\pi} \int_0^{\infty} e^{r^2} r \ dr \ d\theta \right) = \sqrt{\pi}.$$

and then conclude

$$\int_{\mathbb{R}} e^{-x^2} \cos(2bx) = \sqrt{\pi}e^{-b^2}.$$

Make a change of variables $2b = 2\pi \xi$, so $b = \pi \xi$, then

$$\int_{\mathbb{R}} e^{-x^2} \cos(2\pi \xi x) \ dx = \sqrt{\pi} e^{-\pi^2 \xi^2}.$$

Thus $\mathcal{F}(e^{-x^2}) = \sqrt{\pi}e^{-\pi^2\xi^2}$, allowing computation of the Fourier transform. Note that this can be used to prove the Fourier inversion formula.

Exercise Show that this is an approximate identity and prove the Fourier inversion formula.

Exercise Show $\mathcal{F}(e^{-ax^2}) = \sqrt{\pi/a}e^{-\pi^2/a\cdot\xi^2}$, and thus taking $a = \pi$ makes $e^{\pi x^2}$ is an eigenfunction of \mathcal{F} with eigenvalue 1.

Theorem 6.3 (Holomorphic Integrals Vanish).

If f has a primitive on Ω then F(z) is holomorphic and $\int_{\gamma} f = 0$. If f is holomorphic, then

$$\int_{\gamma} f = 0.$$

Theorem 6.4 (Green's).

Take $\Omega \in \mathbb{R}^2$ bounded with $\partial \Omega$ piecewise smooth. If $f, g \in C^1\overline{\Omega}$, then

$$\int_{\partial\Omega} f \ dx + g \ dy = \iint_{\Omega} (g_x - f_y) \ dA.$$

Proof.

Omitted.

Proof (that holomorphic integrals vanish).

Write $\gamma = \partial \Gamma$, and noting that $f_z = f_x = \frac{1}{i} f_y$ implies that $\frac{\partial f}{\partial \overline{z}}$, so

$$\int_{\gamma} f \ dz = \int_{\gamma} f(z) \ (dx + idy)$$

$$= \int_{\gamma} f(z) \ dx + if(z) \ dy$$

$$= \iint_{\Gamma} (if_x - f_y) \ dA$$

$$= i \iint_{\Gamma} \left(f_x - \frac{1}{i} f_y \right) dA$$

$$= i \iint_{\Gamma} 0 \ dA$$

$$= 0.$$

Next up, we'll prove that this integral over any triangle is zero by a limiting process.

7 Monday January 27th

Open question: does a PDE involving analytic functions always have solutions? Or does this hold with analytic replaced by smooth?

7.1 Green's Theorem

Fix a connected domain Ω which is bounded with a piecewise C^1 boundary.

Theorem 7.1(Green's).

Given $f, g \in C^{1}\overline{\Omega}$, we can take a vector field $F = \langle f, g \rangle$ and have

$$\int_{\partial\Omega} f \ dx + g \ dy = \iint_{\Omega} \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) dA$$

$$\int_{\partial\Omega} -f \ dx + g \ dy = \iint_{\Omega} \left(\frac{\partial g}{\partial x} + \frac{\partial f}{\partial y} \right) dA$$

$$\int_{\partial\Omega} f \ dy - g \ dy = \iint_{\Omega} \left(\frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} \right) dA$$

$$\int_{\partial\Omega} F \cdot \mathbf{n} \ ds = \iint_{\Omega} \nabla \cdot F \ dA$$

$$\int_{\partial\Omega} \operatorname{curl}(F) \ ds = \iint_{\Omega} \operatorname{div}(F) \ dA,$$

where we take **n** to be orthogonal to $\partial\Omega$. The quantities appearing on the RHS are referred to as the flux.

For $f(z) \in C^1(\Omega)$ holomorphic, we can then write

$$\int_{\partial\Omega} f \ dz = \int_{\partial\Omega} f \ (dx + idy)$$

$$= \int_{\partial\Omega} f \ dx + if \ dy$$

$$= \iint_{\Omega} (if_x - f_y) \ dA$$

$$= 0,$$

which follows since f holomorphic, we can write

$$f'(z) = f_x = \frac{1}{i} f_y,$$

so $if_x = f_y$ and thus $\frac{\partial f}{\partial \overline{z}} = 0$.

See Taylor's Introduction to Complex Analysis

Theorem 7.2 (Cauchy's Integral Formula):).

If $f \in C^1(\overline{\Omega})$ and f is holomorphic, then for any $z \in \Omega$

$$f(z) = \frac{1}{2\pi i} \int_{\partial \Omega} \frac{d(\xi)}{\xi - z} \ d\xi.$$

Proof.

Since $z \in \Omega$ an open set, we can find some r > 0 such that $D_r(z) \subset \Omega$. Then $\frac{f(\xi)}{\xi - z}$ is holomorphic on $\Omega \setminus D_r(z)$. Let $C_r = \partial D_r(z)$.

Claim:

$$\int_{\partial\Omega} \frac{f(\xi)}{\xi - z} \ d\xi = \int_{C_r} \frac{f(\xi)}{\xi - z} \ d\xi.$$

If we can differentiate through the integral, we can obtain

$$\frac{\partial}{\partial z} f(z) = \frac{1}{2\pi i} \int_{\partial \Omega} \frac{f(\xi)}{(\xi - z)^2} \ d\xi.$$

and thus inductively

$$(D_z)^n f(z) = \frac{n!}{2\pi i} \int_{\partial\Omega} \frac{f(\xi) \ d\xi}{(\xi - z)^{n+1}}.$$

To prove rigorously, need to write

$$\Delta_h f(z) = \frac{1}{h} (f(z+h) - f(z))$$

$$= \frac{1}{2\pi i h} \int_{\partial \Omega} f(\xi) \left(\frac{1}{\xi - (z+h)} - \frac{1}{\xi - z} \right) d\xi = \frac{1}{2\pi i h} \int_{\partial \Omega} f(\xi) \left(\frac{1}{(\xi - z - h)(\xi - z)} \right) d\xi,$$

and show the integrand converges uniformly, where

$$\frac{1}{(\xi - z - h)(\xi - z)} \xrightarrow{u} \frac{1}{(\xi - z)^2}.$$

Continuing inductively yields the integral formula.

Proof (of claim used in main proof).

Use the parameterization of C_r given by $\xi = z + re^{i\theta}$. Then

$$\frac{1}{2\pi i} \int_{C_r} \frac{f(\xi)}{\xi - z} d\xi = \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(z + re^{i\theta})}{re^{i\theta}} ird\theta$$
$$= \frac{1}{2\pi} \int_0^{2\pi} f(z + re^{i\theta}) d\theta$$
$$\stackrel{r \longrightarrow 0}{\longrightarrow} \frac{1}{2\pi} \int_{\partial \Omega} \frac{f(\xi)}{\xi - z}.$$

where we use the fact that

$$f(z+re^{i\theta})=f(z)+f'(z)re^{i\theta}+o(r)\stackrel{r\longrightarrow 0}{\longrightarrow} f(z)$$

Letting

$$F(\xi) = \frac{f(\xi)}{\xi - z},$$

this is holomorphic on $\Omega \setminus D_r(z)$. Let $\Omega_r = \partial \Omega \bigcup (-C_r)$. Take the following path integral:

Then

$$0 = \int_{\partial \Omega_r} F(\xi) \ d\xi = \int_{\partial \Omega} F(\xi) \ d\xi - \int_{C_r} F(\xi) \ d\xi,$$

which forces these integrals to be equal.

Corollary 7.3 (implies smooth). If f is holomorphic, then $f \in C^1(\Omega)$ implies that $f \in C^{\infty}(\Omega)$.

Theorem $7.4 (Holomorphic\ implies\ analytic)$.

If f is holomorphic in Ω , then f is equal to its Taylor series (i.e. $f(z_0)$ is analytic.)

Fix $z_0 \in \Omega$ and let $r = |z - z_0|$.

$$\frac{1}{\xi - z} = \frac{1}{\xi - z_0 - (z - z_0)}$$

$$= \frac{1}{\xi - z_0} \frac{1}{1 - \left(\frac{z - z_0}{\xi - z_0}\right)}$$

$$= \frac{1}{\xi - z_0} \sum_{n} \left(\frac{z - z_0}{\xi - z_0}\right)^n \quad \text{for } |z - z_0| < |\xi - z_0|.$$

Note that $\sum z^n$ converges uniformly for any $|z| < \delta < 1$. Thus

$$f(z) = \frac{1}{2\pi i} \int_{\xi \in \partial \Omega} f(\xi) \sum_{\xi \in \partial \Omega} \frac{(z - z_0)^n}{(\xi - z_0)^{n+1}} d\xi$$
$$= \sum_{\xi \in \partial \Omega} \left(\frac{1}{2\pi i} \int_{\xi \in \partial \Omega} \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi \right) (z - z_0)^n$$
$$= \sum_{\xi \in \partial \Omega} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n.$$

Corollary 7.5.

f is holomorphic iff f is analytic.

Counterexample to keep in mind:

$$f(x) = \begin{cases} x^2 & x > 0 \\ 0 & x \le 0 \end{cases}.$$

In the case of \mathbb{R} , smooth and analytic are very different categories of functions.

8 Wednesday January 29th

8.1 Cauchy's Integral Formula

Theorem 8.1 (Cauchy's Integral Formula).

Let $f: \Omega \longrightarrow \mathbb{C}$ be holomorphic, so $f \in C^1(\overline{\Omega})$. Then for any $z \in \Omega$,

$$f(z) = \frac{1}{2\pi i} \int_{\partial\Omega} \frac{f(\xi)}{\xi - z} d\xi.$$

In general,

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\partial\Omega} \frac{f(\xi)}{(\xi - z)^{n+1}} d\xi.$$

This implies that f is analytic, i.e.

$$f(z) = \sum a_n (z - z_0)^n$$
 where $a_n = \frac{f^{(n)}(z_0)}{n!}$.

Thus f is holomorphic iff f is analytic,

and

$$\int_{\partial\Omega} f = 0 \implies \int_{\partial\Omega_{\gamma}} \frac{f(\xi)}{\xi - z} \ d\xi = 0.$$

where $\Omega_r = \Omega \setminus D_r(z)$, and $\partial \Omega_r = \partial \Omega \bigcup (-\partial D_r)$.

We can thus shrink integrals:

$$\int_{\partial\Omega} \frac{f(\xi)}{\xi - z} \ d\xi = \int_{C_r} \frac{f(\xi)}{\xi - z} \ d\xi.$$

Proposition 8.2 (Homotopy Invariance).

Let $f \in C^1(\Omega)$ be holomorphic on Ω . Let $\gamma_s(t)$ be a family of smooth curves in Ω ; then $\int_{\gamma_s} f$ is independent of s.

Proof. Write

$$\gamma_s(t) = \gamma(s,t) : [a,b] \times [0,1] \longrightarrow \Omega.$$

We have $\gamma_s(0) = \gamma_s(1)$ so $\frac{\partial \gamma}{\partial s}(s,0) = \frac{\partial \gamma}{\partial s}(s,1)$. Then

$$\frac{\partial \gamma}{\partial s} = \int_0^1 \left(f'(r(s,t)) \frac{\partial r}{\partial s} \frac{\partial r}{\partial t} + f(r(s,t)) \frac{\partial^2 \gamma}{\partial s \partial t} \right) dt$$

$$= \int_0^1 \left(f'(r(s,t)) \frac{\partial r}{\partial s} \frac{\partial r}{\partial t} + f(r(s,t)) \frac{\partial^2 \gamma}{\partial t \partial s} \right) dt$$

$$= \int_0^1 \frac{\partial}{\partial t} (f(\gamma(s,t)) \gamma_s)$$

$$= f(\gamma(s,1)) \gamma_s(s,1) - f(\gamma(s,0)) \gamma_s(s,0)$$

$$= 0$$

where we can just take the paths $\gamma(s,t) = z_0 \in \Omega$ for all s,t.

Proposition 8.3 (Pointwise Limit of Locally Uniform is Locally Uniform).

Let $\Omega \subset \mathbb{C}$ be open and $f_v : \Omega \longrightarrow \mathbb{C}$. Suppose that each f_v is holomorphic, $f_v \longrightarrow f$ pointwise, and locally uniform, i.e. $f_v \longrightarrow f$ uniformly on every compact $K \subset \Omega$. Then f is holomorphic in Ω and f is locally uniform.

Proof.

Given a compact set $K \subset \Omega$, pick an O with smooth boundary such that $K \subset O \subset \overline{O} \subset \Omega$. We have

$$f_v(z) = \frac{1}{2\pi i} \int_{\partial O} \frac{f_v(\xi)}{\xi - z} d\xi$$
$$f_v^{(n)}(z) = \frac{n!}{2\pi i} \int_{\partial O} \frac{f_v(\xi)}{(\xi - z)^{n+1}} d\xi$$

.

Then on ∂O , we have uniform convergence

$$\frac{f_v(\xi)}{(\xi-z)^{n+1}} \xrightarrow{u} \frac{f(\xi)}{(\xi-z)^{n+1}}.$$

By moving the limits inside, we obtain

$$f(z) = \frac{1}{2\pi i} \int_{\partial O} \frac{f(\xi)}{\xi - z} d\xi$$
$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\partial O} \frac{f(\xi)}{(\xi - z)^{n+1}} d\xi$$

.

Theorem 8.4 (Cauchy's Inequality).

Given $z_0 \in \Omega$, pick the largest disc $D_R(z_0) \subset \Omega$ and let $C_R = \partial D_R$. Using the integral formula, defining $||f||_{C_R} = \max_{|z-z_0|=R} |f(z)|$

$$\left| f^{(n)}(z_0) \right| \le \frac{n!}{2\pi} \int_0^{2\pi} \frac{\|f\|_{C_R}}{R^{n+1}} R \ d\theta = \frac{n! \|f\|_{C_R}}{R^n}.$$

Corollary 8.5 (Liouville's Theorem).

If f is entire and bounded, then f is constant.

Proof.

For all $z_0 \in \mathbb{C}$, there exists an M such that $|f(z)| \leq M$. Then $|f'(z_0)| \leq \frac{M}{R}$ for any R > 0. Taking $R \longrightarrow \infty$ yields $f'(z_0) = 0$, so f is constant.

Corollary 8.6 (Weak Fundamental Theorem of Algebra).

Every non-constant polynomial $p(z) = a_0 + a_1 z + \cdots + a_n z^n$ has a root in \mathbb{C} .

Remark: A general proof technique is when proving something for f(z), consider $\frac{1}{f(z)}$ and $f(\frac{1}{z})$.

Proof.

Suppose p is nonconstant and does not have a root, $\frac{1}{p}$ is entire. Assume that $a_n \neq 0$, then

$$\frac{p(z)}{z^n} = a_n \left(\frac{a_{n-1}}{z} + \dots + \frac{a_0}{z^n} \right) := a_n + y$$

We can note that $\lim_{z \to \infty} \frac{a_{n-k}}{z^k} \to 0$, so there exists an R > 0 such that

$$\left| \frac{p(z)}{z^n} \right| \ge \frac{1}{2} |a_n| \quad \text{for } |z| > R$$

$$\implies |p(z)| \ge \frac{1}{2} |a_n| |z|^n \ge \frac{1}{2} |a_n| R^n.$$

Since p(z) is continuous and has no root in the disc $|z| \leq R$, |p(z)| is bounded from below in this disc. Since p(z) is continuous on a compact set, it attains a minimum, and so $|p(z)| \geq \min_{|z| \leq R} |p(z)| = c_2 \neq 0$. Then $|p(z)| \geq A = \min(C_2, \frac{1}{2}|a_n|R^n)$, so $\frac{1}{p}$ is bounded. Then f is constant, a contradiction.

9 Friday January 31st

9.1 Fundamental Theorem of Algebra

Recall that if f is holomorphic, we have Cauchy's integral formula.

Corollary 9.1 (Weak Fundamental Theorem of Algebra).

If P(z) is a polynomial in \mathbb{C} then P has a root in \mathbb{C} .

Proof.

See previous notes.

Corollary 9.2 (Fundamental Theorem of Algebra).

Every polynomial of degree n has precisely n roots in \mathbb{C} .

Proof.

By induction on the degree of P. From the first corollary, P has a root w_1 , so write $z = z - w_1 + w_1$. Then

$$p(z) = p(z - w_1 + w_1)$$

$$= \sum_{k=1}^{n} a_k (z - w_1 + w_1)^k$$

$$= \sum_{k=1}^{n} a_k \sum_{j=1}^{n} {k \choose j} w_1 k - j (z - w_1)^j$$

$$= \sum_{k=1}^{n} \sum_{j=1}^{n} a_k {k \choose j} w_1^{k-j} (z - w_1)^j$$

$$= \sum_{j=1}^{n} \left(\sum_{k \ge j} a_k {k \choose j} \right) (z - w_1)^j$$

$$= b_0 + b_1 (z - w_1) + \dots + b_n (z - w_1)^n.$$

Since $P(w_1) = 0$, we must have $b_0 = 0$, and thus this equals

$$b_1(z - w_1) + \dots + b_n(z - w_1)^n = (z - w_1) (b_1 + \dots + b_n(z - w_1)^{n-1})$$

$$\coloneqq (z - w_1)\phi(z),$$

where $\phi(z)$ is degree n-1, which has n-1 roots by induction.

Definition 9.1.

For a sequence $\{z_n\}$, TFAE

- 1. z is a limit point.
- 2. There exists a subsequence $\{z_{n_k}\}$ converging to z.
- 3. For every $\varepsilon > 0$, there are infinitely many z_i in $D_{\varepsilon}(z)$.

Theorem 9.3.

Suppose f is holomorphic on a bounded connected region Ω and f vanishes on a sequence of

distinct points with a limit point in Ω .

Proof.

WLOG by restricting to a subsequence, suppose that $\{w_k\} \in \Omega$ with $f(w_i) = 0$ for all i and z_0 is a limit point of $\{w_i\}$. Let $U = \{z \in \Omega \mid f(z) = 0\}$. Then

- 1. U is nonempty since $f(w_k) = f(z_0) = 0$.
- 2. Since holomorphic functions are continuous, if $w_k \longrightarrow z$ then $z \in U$, so U is closed.
- 3. (To prove) U is open.

Since U is closed and open, $U = \Omega$.

We will first show that $f(z) \equiv 0$ in a disk containing z_0 . Choose a disc D containing z_0 and contained in Ω . Since f is holomorphic on D, we can write

$$f(z) = \sum a_n n(z - z_0)^n.$$

Since $f(z_0) = 0$, we have $a_0 = 0$.

Suppose $f \not\equiv 0$. Then there exists a smallest $n \in \mathbb{Z}^+$ such that $a_n \neq 0$, so $f(z) = a_n(z-z_0)^n + \cdots$. Since $a_n \neq 0$, we can factor this as $a_n(z-z_0)^n (1+g(z-z_0))$ where

$$g(z-z_0) = \sum_{k=n+1}^{\infty} \frac{a_k}{a_n} (z-z_0)^{k-n}.$$

Note that g is holomorphic, and $g(z_0 - z_0) = 0$.

Choose some w_k such that $f(w_k) = 0$ and $|g(w_k - z_0)| \le \frac{1}{2}$ by continuity of g. Then

$$|1 + g(w_k - z_0)| > 1 - \frac{1}{2} = \frac{1}{2}.$$

So

$$|f(w_k)| = |a_n(w_k - z_0)^n (1 + g(w_k - z_0))| > |a_n| |w_k - z_0|^n \frac{1}{2} > 0,$$

a contradiction. So U is open, closed, and nonempty, so $U = \Omega$.

Corollary 9.4.

Suppose f, g are holomorphic in a region Ω with $f(z_k) = g(z_k)$ where $\{z_k\}$ has a limit point. Then $f(z) \equiv g(z)$.

Theorem 9.5 (Mean Value).

Let z_0 be a point in Ω and C_{γ} the boundary of $D_r(z_0)$. Then

$$f(z_0) = \frac{1}{2\pi i} \int_{C_{\gamma}} f(z)/(z - z_0) dz$$

$$= \frac{1}{2\pi i} \int_0^{2\pi} f(z_0 + re^{i\theta})/re^{i\theta} rie^{i\theta} d\theta \quad \text{by } z = z_0 + re^{i\theta}$$

$$= \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta$$

$$= \frac{1}{2\pi r} \int_0^{2\pi} f(z_0 + re^{i\theta}) rd\theta$$

$$= \frac{1}{|C_{\gamma}|} \int_0^{2\pi} f(z) ds,$$

which is the average value of f on the circle.

Note that there is another formula that averages over the disc (see book for derivation?)

$$f(z_0) = \frac{1}{D_s(z_0)} \int_{P_s} \int_{D_s} f(z) \ dA.$$

These imply the maximum modulus principle, since the average can not be the max or min unless f is constant. Note that |f(z)| is continuous!

Next time: maximum modulus principle.

10 Monday February 3rd

10.1 Mean Value Theorem

Theorem 10.1 (Mean Value for Holomorphic functions).

$$f(z_0) = \frac{1}{\pi r^2} \iint_{D_r(z_0)} f(z) dA$$

Proof (of MVT?).

Let $f: \Omega \longrightarrow \mathbb{C}$ be holomorphic where Ω is open and connected. Then by Cauchy's integral formula, we have $f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta$ for any $z_0 \in \Omega$.

We can consider $D_r(z_0)$, in which case we have for all 0 < s < r,

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + se^{i\theta}) d\theta$$

$$\implies s \cdot f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} s \cdot f(z_0 + se^{i\theta}) d\theta$$

$$\implies \cdot f(z_0) \int_0^r s ds = \frac{1}{2\pi} \int_0^{2\pi} \int_0^r f(z_0 + se^{i\theta}) \cdot s ds d\theta$$

$$\implies \frac{1}{2} r^2 f(z_0) = \frac{1}{2\pi} \iint_{D_r(z_0)} f(z) dA$$

$$\implies f(z_0) = \frac{1}{\pi r^2} \iint_{D_r(z_0)} f(z) dA$$

$$\implies f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta.$$

Proposition 10.2 (Maximum in Interior Implies Constant).

Let f be holomorphic on Ω be open and connected, and suppose that there is a $z_0 \in \Omega$ such that

$$|f(z_0)| = \sup_{z \in \Omega} |f(z)|,$$

i.e. z_0 is a maximal point of f. Then f is constant on Ω .

If Ω is additionally **bounded**, then f is continuous on $\overline{\Omega}$, then

$$\sup_{z \in \overline{\Omega}} |f(z)| = \max_{z \in \overline{\Omega}} |f(z)|.$$

Proof.

Since |f| is continuous and $\overline{\Omega}$ is compact, |f| attains a maximum at some point in $\overline{\Omega}$. We want to show that if $|f(z_0)| = \sup_{z \in \Omega} |f(z)|$, then f is constant.

Assume that there exists a $z_0 \in \Omega$ such that $f(z) = f(z_0)$. Let $O = \{ \xi \in \Omega \mid f(\xi) = f(z_0) \}$.

Claim. 1. O is not empty, since $z_0 \in O$.

- 2. O is closed, since if $\xi_n \longrightarrow \xi$ then $f(\xi_n) = f(z_0)$ implies $f(\xi) = f(z_0)$ since f is continuous.
- 3. (Claim) O is open.

Suppose $\xi_0 \in O$, then there exists a disc $D_{\rho}(\xi_0) \subset \Omega$ such that

$$f(\xi_0) = \frac{1}{\pi \rho^2} \int_{D_{\rho}(\xi_0)} f(z) dA.$$

Then (claim) $|f(\xi_0)| \ge |f(z)|$ for all $z \in D_\rho(\xi_0)$, which forces $f(z) = f(\xi_0)$ for all $z \in D_\rho(\xi_0)$.

Proof (of the claim):).

Suppose that $\sup_{\alpha \in \Omega} |f(z)| = |f(\xi_0)|$ and write $f(\xi_0) = Be^{i\alpha}$ for B > 0 and $\alpha \in \mathbb{R}$. Then define $g(z) = f(z)e^{-i\alpha}$; then $g(\xi_0) = B$ is real, and thus

$$0 = g(\xi_0) - B = \frac{1}{\pi \rho^2} \iint_{D_{\rho}(\xi_0)} \Re(g(z) - B) \ dA.$$

Note that $\Re(g(z)-B) \leq 0$ implies that $\Re(g(z)-B) \equiv 0$ on $D_{\rho}(z_0)$, so we can write

g(z) = B + iI(z) for some real-valued function I. But then $|g(z)|^2 = B^2 + I(z)^2 = B^2$ by the previous statement, and so I(z) = 0, forcing g(z) = B and thus $f(z) = Be^{i\alpha}$. This shows that O is open, and thus $O = \Omega$.

Proposition 10.3 (Stein 2.1, Biholomorphisms of the Open Disc are Contractions). Suppose f is holomorphic on $D_1(0)$ and $|f(z)| \le 1$ for all |z| < 1 with f(0) = 0. Then $|f(z)| \le |z|$ for all |z| < 1.

Moreover, there is a point $z_0 \in D_1(0)$ such that $|f(z_0)| = |z_0|$ iff f(z) = c(z) for some $c \in S^1$.

Proof.

Define

$$g(z) = \begin{cases} \frac{f(z)}{z} & z \neq 0\\ f'(0) & z = 0 \end{cases}.$$

Then g is holomorphic on $D_1(0)$ and $|g(z)| \leq \frac{1}{\rho}$ for all $|z| < \rho < 1$. Now apply the maximum

principle: since this is true for all $\rho < 1$, consider the limit $\rho \longrightarrow 1^-$. Then $|g(z)| \le 1$, so $\left| \frac{f(z)}{z} \right| \le 1$ and $|f(z)| \le |z|$. If $|f(z_0)| = |z_0|$ for any point, then $|g(z_0)| = 1$ implies $g(z_0) = c$ and $c \in S^1$.

Thus f(z) = cz for some $c \in S^1$.

Corollary 10.4 (Characterization of Biholomorphisms of the Disc). Recall that

$$\Phi_a(z) := \frac{z-a}{1-az}.$$

If $f: D_1(0) \longrightarrow D_1(0)$ is a biholomorphism, then

$$f(z) = c\Phi_a(z) = e^{i\theta}\Phi_a(z)$$

So every such function is a rotated form of Φ_a .

Let Ω be a connected open domain and $f:\Omega\longrightarrow\mathbb{C}$ holomorphic with $f\in C^1$. Then

$$\int_{\gamma} f(z) \ dz = 0$$

for every closed curve $\gamma \subset \Omega$, which implies that $f^{(k)}(z)$ exists for all $k \in \mathbb{N}$ and f is smooth/holomorphic.

Proof.

Fix a point $\alpha=a+ib$ and given z=x+iy, construct a rectangle R containing z. Then by assumption, $\int_{\partial R} g(z) \ dz = 0$. Let γ_{az} be the path given by traversing the bottom edge of R, and σ_{az} by the top path.

Let

$$f(z) = \int_{\gamma_{az}} g(z) dz$$

=
$$\int_a^x g(s+ib) ds + i \int_b^y g(x+it) dt.$$

Since

$$\int_{\partial R} g(z) \ dz = 0 = \int_{\gamma_{az}} \dots - \int_{\sigma_{az}} \dots ,$$

we have

$$f(z) = \int_{\sigma_{az}} g(z) dz$$

= $i \int_b^y g(a+it) dt + \int_x^a g(s+iy) ds$.

Exercise: Apply $\frac{\partial}{\partial y}$ to the first identity and $\frac{\partial}{\partial x}$ to the second.

This yields

$$\frac{\partial f}{\partial x} = g(z)$$
 and $\frac{\partial f}{\partial y} = ig(z) = i\frac{\partial f}{\partial x}$

by applying the FTC, which are precisely the Cauchy-Riemann equations for f. So f is holomorphic, and thus f(z)=g(z).

11 Wednesday February 5th

11.1 Cauchy/Morera Theorems

Recall last time: We have Cauchy's theorem, which says that if $f:\Omega\longrightarrow\mathbb{C}$ is holomorphic then

$$\int_{\gamma} f \ dz = 0.$$

We have a partial converse:

Theorem 11.1 (Morera).

If $g:\Omega\longrightarrow\mathbb{C}$ is continuous and $\int_R g\ dz=0$ for every rectangle $R\subset\Omega$ with sides parallel to the axes, then g is holomorphic.

11.2 Schwarz Reflection

Theorem 11.2(Schwarz Reflection, Extending Holomorphic Functions Across Reflected Regions).

Let $\Omega = \Omega^+ \bigcup L \bigcup \Omega^-$ be a region of the following form:

I.e., $L = \{z \in \Omega \mid \text{im } z = 0\}$, $\Omega^{\pm} = \{\pm \text{im } z > 0\}$ where Ω is symmetric about the real axis, i.e. $z \in \Omega \implies \overline{z} \in \Omega$.

Assume that $f: \Omega^+ \bigcup L \longrightarrow \mathbb{C}$ is continuous and holomorphic in Ω^+ and real-valued on L. Define

$$g(z) = \begin{cases} f(z) & z \in \Omega^+ \bigcup L \\ \overline{f(z)} & z \in \Omega^- \end{cases}.$$

Then g(z) is defined and holomorphic on Ω .

Proof (Schwarz Reflection).

Since g is C^1 in Ω^- , check that g satisfies the Cauchy-Riemann equations on Ω^- and thus holomorphic there. To see that g is holomorphic on all of Ω , we'll show the integral over every rectangle is zero.

It's clear that if $R \subset \Omega^{\pm}$, $\int_{R} g = 0$ since g is holomorphic there, so it suffices to check rectangles intersecting the real axis. Write $R = R^{+} \bigcup R^{-}$:

We then have $R^+ = \lim_{\varepsilon \to 0} R_{\varepsilon}$ and $R^- = \lim_{\varepsilon \to 0} R_{-\varepsilon}$, and $\int_{R_{\pm \varepsilon}} g = 0$ for all $\varepsilon > 0$. By continuity of f on L, we have $\lim_{\varepsilon \to 0} \int_{R_{\varepsilon}} g(z) \ dz = 0$.

11.3 Goursat's Theorem

Theorem 11.3 (Goursat, implies smooth).

If $f:\Omega\longrightarrow\mathbb{C}$ is complex differentiable at each point of Ω , then f is holomorphic. I.e.,

$$f \in C^1(\Omega) \implies f \in C^{\infty}(\Omega).$$

Proof (Goursat).

We have $\int_R f \ dz = 0$ for all rectangles R. Write $I = \int_R f \ dz$. Break R into 4 sub-rectangles:

Then rewriting the integral and applying the triangle inequality yields

$$I = \int_{R} f = \sum_{j=1}^{4} \int_{R_{j}} f = \sum_{j=1}^{4} I_{j} \implies |I| \le \sum_{j} |I_{j}|.$$

So for at least one j, we have $|I_j| \ge \frac{1}{4}|I|$; wlog call it R_1 . By continuing to subdivide, we can write

$$|I| \le 4|I_k| = 4 \left| \int_{R_1} f \right| \le 4 \left(4 \left| \int_{R_2} f \right| \right) \cdots \le 4^k \left| \int_{R_k} f \right|.$$

This is a sequence of nested compact intervals, so there is some $z_0 \in \bigcap R_k$. Write $f(z) = f(z_0) + f'(z_0)(z - z_0) + \delta(z, z_0)$, and since

$$\lim_{z \longrightarrow z_0} \frac{|\delta(z, z_0)|}{z - z_0} = 0,$$

we have $\delta(z, z_0) = o(z - z_0)$. Then $|I| \leq 4^k \frac{1}{2^k} |R|$. We then try to estimate the integral using the fact that $|\delta(z, z_0)| \leq \delta_k |z - z_0|$ for some constant $\delta_k \longrightarrow 0$ as $k \longrightarrow \infty$.

$$\begin{split} \int_{R_k} fi &= \int f(z_0) + f'(z_0)(z-z_0) + \delta(z,z_0) \\ &= \int_{R_k} \delta(z,z_0) \quad \text{since the first two terms are holomorphic} \\ &\leq \frac{1}{2^k} |R| \delta_k \frac{C}{2^k} |R| \\ &= c/4^k |R|^2 \delta_k \\ &\stackrel{k \longrightarrow \infty}{\longrightarrow} 0, \end{split}$$

where we use the fact that in R_k we have

$$\begin{split} R_k &= 2(x+y) \implies R^2/4 = x^2 + y^2 + x + y \leq_{CS} x^2 + y^2 + x^2 + y^2 = 2(x^2 + y^2) \\ &\implies x^2 + y^2 \leq R^2/8 \implies L = \sqrt{x^2 + y^2} \leq R^8/2\sqrt{2} \\ &\implies |z - z_0| \leq \sqrt{x^2 + y^2} \leq R_k/2\sqrt{2} \text{ and } R_k = \frac{1}{2^k}|R|. \end{split}$$

Note that triangles implies rectangles, but think about how to use triangles to prove it for rectangles (note that sides should be parallel to axes!)

12 Friday February 7th

Theorem 12.1(The Uniform Limit of Holomorphic Functions is Holomorphic). Suppose $\{f_n\} \longrightarrow f$ is a sequence of holomorphic functions converging uniformly on any compact subset $K \subset \Omega$. Then f is holomorphic.

Proof.

Let D be any disc such that $\overline{D} \subset \Omega$. For any rectangle $R \subset D$, we have

$$\int_{R} f_n \ dz = 0.$$

Since $f_n \longrightarrow f$ uniformly, $\int_R f \ dz = 0$ and thus f is holomorphic in D.

${\bf Theorem~12.2} ({\it Uniform~Convergence~of~Derivatives}).$

Under the same hypotheses, $f'_n \longrightarrow f$ uniformly on any compact subset $K \subset \Omega$.

Proof.

See Stein.

Corollary 12.3 (When Functions Defined by Integrals are Holomorphic). Suppose $F(z,s):\Omega\times[a,b]\longrightarrow\mathbb{C}$ and

- 1. F(z,s) is holomorphic in z for each fixed $s \in [a,b]$.
- 2. F(z,s) is continuous in $\Omega \times [a,b]$.

Then $f(z) = \int_a^b F(z, s) ds$ is holomorphic on Ω .

Proof.

Define $f_n(z) = \left(\sum_{k=1}^n F(z, s_k)\right) \frac{b-a}{n}$ where each $s_k = a + \frac{b-a}{n} k \in [a, b]$. Need to show $f_n(z)$

converges uniformly on any compact $K \subset \Omega$, i.e. it's uniformly Cauchy. Fix K compact, then by a theorem in topology $K \times [a, b]$ is again compact.

Using the fact that F is continuous on a compact set and thus uniformly continuous, fix $\varepsilon > 0$ and find $\delta > 0$ such that $\max_{z \in K} |F(z,s) - F(z,t)| < \varepsilon$ for all $s,t \in [a,b]$ with $|t-s| < \delta$.

Thus if $\frac{b-a}{n} < \delta$ and $z \in K$, we have an estimate

$$|f_n(z) - f(z)| = \left| \sum_{k=1}^n \int_{s_{k-1}}^{s_k} F(z, s_k) - F(z, s) \, ds \right|$$
$$= \sum_{k=1}^n \int_{s_{k-1}}^{s_k} |F(z, s_k) - F(z, s)| \, ds$$
$$\le \varepsilon(b - a).$$

Thus $f_n \stackrel{u}{\longrightarrow} f$.

Remark: this is useful for showing

$$\Gamma(z) = \int_0^\infty e^{-s} s^{z-1} \ ds$$

is holomorphic for $\Re z > 0$.

Question: can every function be uniformly approximated by polynomials?

Answer: in general, no. Take $f(z) = \frac{1}{z}$, which is holomorphic on $\mathbb{C} \setminus 0$, but $\int_{\gamma} P_N(z) = 0$ for any polynomial (since)hey are entire) for any loop γ around 0, but $\int_{\gamma} \frac{1}{z} = 2\pi i$.

Theorem 12.4(5.2, Uniform Approximation by Polynomials).

If f_n is a sequence of holomorphic functions converging uniformly on any compact subset K of

 Ω then f is holomorphic in Ω and if $f(z) = \sum a_n(z-z_0)^n$ then $P_N(z) = \sum_{n=0}^{N} a_n(z-z_0)^n$.

Theorem 12.5(5.7, Uniform Approximation by Rational Functions).

Any holomorphic function in a neighborhood of a compact set K can be approximated by a rational function with singularities only in K^c . If K^c is connected, it can be approximated by a polynomial.

Lemma 12.6 (5.8, ???).

Suppose f is holomorphic in an open set Ω with $K \subset \Omega$ compact. Then there exist finitely many segments $\{\gamma_i\}_{i=1}^N$ in $\Omega \setminus K$ such that for all $z \in K$, ???.

Proof (of Lemma, Idea).

Divide region into squares, take γ_i to be line segments such that they enclose K.

$$f(z) = \frac{1}{2\pi i} \sum_{n=1}^{N} \int_{\omega_n} \frac{f(\xi)}{z - \xi} d\xi$$
$$= \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\xi)}{z - \xi} d\xi.$$

where we can rewrite

$$\int_{\gamma_n} \dots = \int_0^1 \frac{f(\gamma_n(t))}{\gamma_n(t) - z_0} \gamma_n'(t) dt = \int_0^1 F(z, s) ds$$

The idea is that we can then write $\frac{1}{\xi - z} = \frac{1}{\xi} \frac{1}{1 - \frac{z}{\xi}} = \xi^{-1} \sum_{k} \left(\frac{z}{\xi}\right)^{k}$, which allows uniform approximation by polynomials.

13 Wednesday February 12th

13.1 Singularities

Let f(z) be holomorphic on Ω , then we have Cauchy's integral formula:

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi.$$

Example: Note that $f(z) = \frac{1}{z}$ is holomorphic on $\mathbb{C} \setminus 0$.

Let Ω be an open set containing a disk D and $\Omega \setminus p$ be a punctured domain.

Definition 13.1.

We say f has an isolated singularity at p iff f is defined and holomorphic on some deleted neighborhood of p.

Classification of singularities:

1. **Removable**: |f(z)| is bounded on some $D_r(p) \setminus p$.

Example: $f(z) = \sin(z)/z$. 2. Poles: $\lim_{z \to p} |f(z)| = \infty$.

Example: $f_n(z) = \frac{1}{z^n}$ at p = 03. Essential: neither 1 nor 2.

Example: $f(z) = e^{\frac{1}{z}}$ at z = 0.

Note that for singularities at ∞ , we can just make the change of variables $z\mapsto \frac{1}{z}$. Defining $F(z) = f(\frac{1}{z})$, the singularities at 0 of f correspond to singularities at infinity for F.

13.2 Spherical Projection

We can solve for a spherical projection map $S^2 \longrightarrow \mathbb{C}$. Let (0,0,1) be the North pole of the sphere; then to map to (x, y, 0) on the plane we can take the parameterization $\ell : (tx, ty, 1 - t)$. This yields

$$t \mapsto \left(\frac{2\Re(z)}{1+|z|^2}, \frac{2\Im(z)}{1+|z|^2}, 1 - \frac{2}{1+|z|^2}\right).$$

42

From this we can induce a spherical metric:

$$\phi(z_1, z_2) = \frac{z|z_1 - z_2|}{\sqrt{|z|_1^2 + 1}\sqrt{|z|_2^2 + 1}}.$$

 ${\bf Proposition}~{\bf 13.1} (Continuous~{\it Extension}~{\it Over}~{\it Removable}~{\it Singularities}).$

Let p be a removable singularity of f. Then

- 1. $\lim_{z \longrightarrow p} f(z)$ exists.
- 2. The function

$$\tilde{f}(x) = \begin{cases} f(z) & z \neq p \\ \lim_{z \to p} f(z) & z = p \end{cases}$$

is holomorphic on $D_r(p)$.

Example 13.1.

Consider

$$\frac{\sin(z)}{z} \stackrel{z}{\longrightarrow} 0$$
 1.

Proof (of Proposition).

Take p = 0 and consider $g(z) = z^2 f(z)$. We can verify directly that g satisfies the Cauchy-Riemann equations on $D_r(0)$. Then g is holomorphic on $D_r(0)$ and vanishes to order 2 at z = 0, and

$$f(z) = \frac{g(z)}{z^2}$$

is holomorphic on $D_r(0)$.

If f(z) has a pole at z_0 , then $\lim_{z \to z_0} |f(z)| \to \infty$ by definition, iff $\lim_{z \to z_0} \frac{1}{|f(z)|} = 0$ and thus the reciprocal has a zero at z = z + 0. If z_0 is a zero of a nontrivial holomorphic function f, then z_0 is isolated, i.e. there exists a punctured disc $D_r(z_0) \setminus z_0$ on which f is nonzero.

Theorem 13.2(???).

If f is holomorphic in a connected domain Ω with a zero z_0 , then there exists a non-vanishing holomorphic function g(z) and some $n \in \mathbb{N}$ such that

$$f(z) = (z - z_0)^n g(z)$$

Proof.

Since f is holomorphic, expand its power series $f(z) = \sum a_k (z - z_0)^k$. Since $f(z_0) = 0$, we have $a_0 = 0$. Choose the smallest n such that $a_n \neq 0$, so

$$f(z) = a_n (z - z_0)^n + a_{n+1} (z - z_0)^{n+1} + \cdots$$

= $(z - z_0)^n (a_n + \cdots)$
:= $(z - z_0)^n g(z)$.

Then $g(z_0) \neq 0$, so by continuity there exists an r such that $|g(z)| \geq |a_n|/2$.

Definition 13.2.

A function f defined on a deleted neighborhood of z_0 has a pole at z_0 if the function $F = \frac{1}{f}$ with $F(z_0) := 0$ is holomorphic in a full neighborhood of z_0 .

14 Friday February 14th

14.1 Defining Residues

Interesting open problems: dynamical systems on \mathbb{C}^2 .

If f is holomorphic in Ω with $f(z_0) = 0$ then there exists a disc on which $f(z) = \sum a_n(z - z_0)^n$ where $a_0 = f(z_0) = 0$. There is then a minimal k such that $f(z) = (z - z_0)^k g(z)$ where $g(z_0) \neq 0$; this k is the *order* of the zero a_0 .

Definition 14.1.

A function defined in a deleted neighborhood of z_0 has a pole at z_0 iff $F = \frac{1}{f}$ with $F(z_0) := 0$ is holomorphic in a full neighborhood of z_0 .

Theorem 14.1 (Extraction of Holomorphic Part).

If f has a pole at z_0 , then there exists a holomorphic function h and a unique k such that $f(z) = (z - z_0)^{-k} h(z)$.

Proof.

Write

$$\frac{1}{f} = (z - z_0)^k g(z)$$

with $g(z_0) \neq 0$. Then there is an r such that $|g(z)| \geq \frac{1}{2}|g(z_0)|$ in a disc about z_0 . Then

$$f(z) = \frac{1}{(z - z_0)q(z)} := (z - z_0)^{-k}h(z)$$

where h = 1/g.

We can then write

$$f(z) = \left(\sum_{i=0}^{k-1} b_k (z - z_0)^{-k}\right) + b_k + \sum_{i=1}^{\infty} b_{k+i} (z - z_0)^i$$

for some fixed k, where $\sum b_i(z-z_0)^i$ is the power series expansion of k. Write this as P(z) + G(z) where $G(z) = \sum_{i=0}^{\infty} b_{i+k}(z-z_0)^i$. Denote P the principal part of f at the pole

 $z=z_0$.

Note that

$$\int_{D_r(z_0)} f = \int_{D_r(z_0)} P(z) = 2\pi i \ a_{-1}.$$

Definition 14.2.

The coefficient a_{-1} is referred to as the *residue* of f at $z=z_0$.

14.2 Residues

Note that

$$\int \frac{1}{(z-z_0)^k} = \begin{cases} 2\pi i & k=1\\ 0 & \text{else} \end{cases}.$$

Residues can be computed using the following formula:

$$a_{-1} = \frac{1}{2\pi i} \int_{D_r(z_0)} f. \tag{1}$$

Theorem (Residue Formula):

$$\operatorname{Res}_{z=z_0} f = \lim_{z \to z_0} \frac{1}{(k-1)!} \left(\frac{\partial}{\partial z}\right)^{k-1} (z-z_0)^k f(z).$$

Proof.

Expand in power series, direct check.

A useful special case: if z_0 is a pole of order 1, then

$$\operatorname{Res}_{z=z_0} f = \lim_{z \to z_0} (z - z_0) f(z).$$

A useful formula:

$$\frac{1}{2\pi i} \int_{\Gamma(z_0)} f = \operatorname{Res}_{z=z_0} f.$$

Theorem 14.2 (Integral Residue Theorem).

Suppose that f is holomorphic in an open set containing a toy contour γ and its interior except for finitely many poles $\{z_i\}$. Then

$$\frac{1}{2\pi i} \int_{\gamma} f = \sum \operatorname{Res}_{z=z_i} f(z).$$

Proof.

Omitted to cover some material needed for homework.

Note that if f has a pole of order k, we can expand it in Laurent series as

$$\sum_{n=-k}^{1} a_n (z-z_0)^n + \sum_{n=0}^{\infty} a_n (z-z_0)^k.$$

How to determine the radius of convergence of a Laurent series: break

$$\sum_{-\infty}^{\infty} a_n z_n = \sum_{n \in \mathbb{N}} c_n z^n + \sum_{n \in \mathbb{N}} d_n z^{-n}.$$

Applying the root test,

$$\limsup_{n} |c_n(z-a)|^{1/n} < 1$$

$$\iff \limsup_{n} |c_n|^{1/n} |z-z_0|^n < 1$$

$$\iff |z-a| \le \frac{1}{\limsup_{n} |c_n|^{1/n}} := \rho_1.$$

Similarly, we need

$$\rho_2 := \limsup_{n} |d_n|^{1/n} < |z - a|.$$

If $\rho_1 > \rho_2$, this will converge on an annulus.

15 Monday February 17th

See Hans Lewy 1957 Annals, Folland and Stein 1973. Does a linear system of PDEs with analytic functions have an analytic solution? What about just C^{∞} ?

15.1 Getting a Holomorphic Function from a Laurent Series

We can write a formal series

$$f(z) = \sum_{n \in \mathbb{Z}} a_n (z - a)^n$$

= $\sum_{n \ge 0} a_n (z - z_0)^n + \sum_{n \ge 0} n \le -1 a_n (z - z_0)^n$
:= $A(z) + B(z)$.

Part A converges for

$$|z - a| < R_1 = \left(\limsup |x_n|^{1/n}\right)^{-1}.$$

Part B converges for

$$|z - a| > R_2 = \limsup |c_{-n}|^{1/n}$$
.

If $R_1 < R_2$, this does not converge. Note that if $R_1 > R_2$, then f converges and defines a holomorphic function on the annulus $R_2 < |z - a| < R_1$. Moreover, f converges uniformly on any compact subset of this annulus, so it can be differentiated term-by-term, and the derivative has the same region of convergence.

Note that if f equals its Laurent expansion, then

$$c_n = \frac{f^{(n)}(a)}{n!} = \frac{1}{2\pi i} \int_{\gamma} \frac{f(xi)}{(\xi - a)^{n+1}} dz$$

where γ is contained in the annulus of convergence, and $c_{n \leq -1}0$.

We also have

$$\frac{1}{2\pi i} \int_{\gamma} f(z)/(z-a)^m dz = \sum_{n \in \mathbb{Z}} \frac{c_n}{2\pi i} \int_{\gamma} \frac{1}{(z-a)^{m-n}} = c_{m-1},$$

since

$$\int \frac{1}{(z-a)^k} = \begin{cases} 2\pi i & k=1\\ 0 & \text{else} \end{cases},$$

so we have the following formula for the coefficients:

$$c_m = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{m+1}}.$$
 (2)

So we can start with a series and get a holomorphic function on some region.

15.2 Obtaining a Laurent Series from a Holomorphic Function

We can also start with a holomorphic function and get a Laurent series. Suppose f is holomorphic on an annulus $R_2 < |z| < R_1$. We can then write

$$f(z) = \frac{1}{2\pi i} \int_{|w-a|=R_1} \frac{f(w)}{w-z} dw - \int_{|w-z|=R_2} \frac{f(w)}{w-z} dw$$

Since |z - a|/|w - a| < 1, we have

$$\frac{1}{2\pi i} \int_{|w-a|=R_1} \frac{f(w)}{w-z} dz = \frac{1}{2\pi i} \int_{|w-a|=R_1} \frac{f(w)}{(w-a) - (z-a)} dz$$

$$= \frac{1}{2\pi i} \int_{|w-a|=R_1} \frac{f(w)}{(w-a)} \sum_{n \in \mathbb{N}} \frac{(z-a)^n}{(w-a)^n} dz$$

$$= \sum_{n \in \mathbb{N}} (z-a)^n \frac{1}{2\pi i} \int_{|w-a|=R_1} \frac{f(w)}{(w-a)^{n+1}} dw$$

$$= \sum_{n \in \mathbb{N}} c_n (z-a)^n.$$

Similarly,

$$-\frac{1}{2\pi i} \int_{|w-a|=R_2} \frac{f(w)}{w-z} dw = -\frac{1}{2\pi i} \int_{|w-a|=R_2} \frac{f(w)}{(w-a)-(z-a)} dw$$

$$= -\frac{1}{2\pi i} \frac{1}{z-a} \int_{|w-a|=R_2} \frac{f(w)}{\frac{w-a}{z-a}-1} dw$$

$$= \frac{1}{2\pi i} \frac{1}{z-a} \int_{|w-a|=R_2} \frac{f(w)}{1-\frac{w-a}{z-a}} dw$$

$$= \frac{1}{2\pi i} \frac{1}{z-a} \int_{|w-a|=R_2} f(w) \sum_{n\in\mathbb{N}} \frac{(w-a)^n}{(z-a)^n} dw$$

$$= \sum_{n\in\mathbb{N}} \frac{1}{2\pi i} \frac{1}{(z-a)^{n+1}} \int_{|w-a|=R_2} f(w)(w-a)^n dw$$

$$= \sum_{n\in\mathbb{N}} \frac{1}{2\pi i} \frac{1}{(z-a)^{n+1}} \int_{|w-a|=R_2} f(w)(w-a)^n dw$$

$$= \sum_{n=-\infty}^{-1} c_n (z-a)^n.$$

This yields a formula

$$c_m = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{m+1}} dz.$$
 (3)

In practice, we don't use this formula for extracting coefficients.

Example 15.1.

Let $f(z) = \frac{1}{z(z-1)}$. This has four Laurent series.

Let $C(a, R_1, R_2)$ be the annulus centered at a. Then at $C(0, 0, 1) = \mathbb{D} \setminus \{0\}$, we have

$$f(z) = \frac{1}{z} \frac{1}{1-z} = -\frac{1}{z} \sum_{k \in \mathbb{N}} z^k.$$

In $C(1,1,0) = \mathbb{D}(1,1) \setminus \{1\}$, we have

$$f(z) = \frac{1}{z - 1} \frac{1}{z}$$

$$= \frac{1}{z - 1} \frac{1}{1 + (z - 1)}$$

$$= \frac{1}{z - 1} \sum_{k \in \mathbb{N}} (-1)^k (z - 1)^k.$$

In $C(0,1,\infty)$, we can write

$$f(z) = \frac{1}{z^2} \frac{1}{1 - \frac{1}{z}}$$
$$= \frac{1}{z^2} \sum_{k \in \mathbb{N}} \frac{1}{z^k}.$$

And in $C(1,1,\infty)$ we have

$$f(z) = \frac{1}{z - 1} \frac{1}{z - 1 + 1}.$$

16 Appendix

$$dz = dx + i \ dy$$

$$d\overline{z} = dx - i \ dy$$

$$f_z = f_x = i^{-1} f_y$$

$$\int_0^{2\pi} e^{i\ell x} dx = \begin{cases} 2\pi & (\ell = 0) \\ 0 & (\ell \neq 0) \end{cases}.$$

- Holomorphic: once complex differentiable in neighborhoods of every point.
- Analytic: equal to its Taylor series expansion

Cauchy Inequality: Given $z_0 \in \Omega$, pick the largest disc $D_R(z_0) \subset \Omega$ and let $C_R = \partial D_R$. Using the integral formula, defining $||f||_{C_R} = \max_{|z-z_0|=R} |f(z)|$

$$\left| f^{(n)}(z_0) \right| \le \frac{n!}{2\pi} \int_0^{2\pi} \frac{\|f\|_{C_R}}{R^{n+1}} R \ d\theta = \frac{n! \|f\|_{C_R}}{R^n}.$$

Collection of facts used on problem sets

Standard forms of conic sections:

- Circle: $x^2 + y^2 = r^2$ Ellipse: $\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$
- Hyperbola: $\left(\frac{x}{a}\right)^2 \left(\frac{y}{b}\right)^2 = 1$
 - Rectangular Hyperbola: $xy = \frac{c^2}{2}$.
- Parabola: $-4ax + y^2 = 0$.

Mnemonic: Write $f(x,y) = Ax^2 + Bxy + Cy^2 + \cdots$, then consider the discriminant $\Delta =$ $B^2 - 4AC$:

- $\Delta < 0 \iff \text{ellipse}$ $-\Delta < 0$ and $A = C, B = 0 \iff$ circle
- $\Delta = 0 \iff \text{parabola}$
- $\Delta > 0 \iff$ hyperbola

Completing the square:

$$x^{2} - bx = (x - s)^{2} - s^{2}$$
 where $s = \frac{b}{2}$
 $x^{2} + bx = (x + s)^{2} - s^{2}$ where $s = \frac{b}{2}$.

Useful Properties

- $\Re(z) = \frac{1}{2}(z + \overline{z})$ and $\Im(z) = \frac{1}{2i}(z \overline{z})$. $z\overline{z} = |z|^2$
- $\cos(\theta) = \frac{1}{2} \left(e^{i\theta} + e^{-i\theta} \right)$
- $\sin(\theta) = \frac{1}{2i} \left(e^{i\theta} e^{-i\theta} \right).$

Useful Series

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$
$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}$$

Cauchy-Riemann Equations

$$u_x = v_y$$
 and $u_y = -v_x$

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta} \quad \text{and} \quad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$$

16.1 Useful Techniques

Showing a function is constant: Write f = u + iv and use Cauchy-Riemann to show $u_x, u_y = 0$, etc.

Deriving Polar Cauchy-Riemann: See walkthrough here. Take derivative along two paths, along a ray with constant angle θ_0 and along a circular arc of constant radius r_0 . Then equate real and imaginary parts. See problem set 1.

Computing Arguments: Arg(z/w) = Arg(z) - Arg(w).

The sum of the interior angles of an *n*-gon is $(n-2)\pi$, where each angle is $\frac{n-2}{n}\pi$.

16.2 Residues

If p is a simple pole, $\operatorname{Res}(p,f) = \lim_{z \longrightarrow p} (z-p) f(z)$. Example: Let $f(z) = \frac{1}{1+z^2}$, then $\operatorname{Res}(i,f) = \frac{1}{2i}$.

Green's Theorem: Todo

$$\frac{\partial}{\partial z} \sum_{j=0}^{\infty} a_j z^j = \sum_{j=0}^{\infty} a_{j+1} z^j.$$