Spring 2012: Algebra Graduate Exam

Peter Kagey

June 14, 2019

Problem 1. Let I be an ideal of $R = \mathbb{C}[x_1, \dots, x_n]$. Show that $\dim_{\mathbb{C}}(R/I)$ is finite if and only if I is contained in only finitely many maximal ideals of R.

Proof.

Problem 2. If G is a group with $ G = 7^2 \cdot 11^2 \cdot 19$, show that G must be abelian and describe the structures of G .	e possible
Proof.	

Problem 3. Let F be a finite field and G a finite group with $\gcd\{\operatorname{char} F, |G|\} = 1$. The group algebra F[G] is an algebra over F with G as an F-basis, elements $\alpha = \sum_G a_g g$ for $g \in F$, and multiplication that extends $ag \cdot bh = ab \cdot gh$. Show that any $x \in F[G]$ that is not a zero left divisor must be invertible in F[G].

Note: Since x is not a zero left divisor, if xy = 0 for $y \in F[G]$ then y = 0.

Proof.

Problem 4. If $p(x) = x^8 + 2x^6 + 3x^4 + 2x^2 + 1 \in \mathbb{Q}[x]$ and if $\mathbb{Q} \subseteq M \subseteq \mathbb{C}$ is a splitting field for p(x) over \mathbb{Q} , argue that $\operatorname{Gal}(M/\mathbb{Q})$ is solvable.

Proof.

Problem 5. Let R be a commutative ring with 1 and let $x_1, \ldots, x_n \in R$ so that $x_1y_1 + \ldots + x_ny_n = 1$ for some $y_j \in R$. Let $A = \{(r_1, r_2, \ldots, r_n) \in R^n \mid x_1r_1 + \ldots + x_nr_n = 0\}$. Show that

- (i) $R^n \cong_R A \oplus R$,
- (ii) A has n generators, and
- (iii) when R = F[x] for F a field, then A_R is free of rank n-1.

Proof. \Box

Problem 6. For p a prime, let F_p be the field of p elements and K and extension field of F_p of dimension 72.

- (i) Describe the possible structures of $\operatorname{Gal}(K/F_p)$.
- (ii) If $g(x) \in F_p[x]$ is irreducible of degree 72, argue that K is a splitting field of g(x) over F_p
- (iii) Which integers d > 0 have irreducibles in $F_p[x]$ of degree d that split in K?

Proof. \Box