Spettrofotometro monoraggio

species

Relazione

Preparazione soluzioni per retta di taratura - Beltrami Daniele

Materiali:

Vetreria	Becker	Matraccio	Pipetta
Strumentazione			
Sostanze	H ₂ O	Reattivo di Nessler (vedi scheda sicurezza)	Sol. NH ₄ ⁺

Dati:

```
\begin{split} M &= 1000ppm = 1 \ mg/L \\ V_{sol.intermedia} &= 100mL = 0.1L \\ V_{sol.1-2-3-4} &= 100mL = 0.1L \end{split}
```

formula diluizione: $M_1V_1 = M_2V_2$

Calcoli:

sol.intermedia: $M_1V_1=M_2V_2 \rightarrow 1000*x=0,1*100 \rightarrow x=(0.1*100)/1000=0.01L=10mL \rightarrow mL$ di soluzione da prelevare per preparare la sol. intermedia

```
sol.1: 100\text{mL}*10\text{ppm} = x*0.05\text{ppm} \rightarrow \mathbf{x} = \mathbf{0.5mL}

sol.2: 100\text{mL}*10\text{ppm} = x*0.1\text{ppm} \rightarrow \mathbf{x} = \mathbf{1mL}

sol.3: 100\text{mL}*10\text{ppm} = x*0.3\text{ppm} \rightarrow \mathbf{x} = \mathbf{3mL}

sol.4: 100\text{mL}*10\text{ppm} = x*0.5\text{ppm} \rightarrow \mathbf{x} = \mathbf{5mL}
```

Procedimento:

- 1) Calcolare e prelevare la quantità di soluzione di NH₄⁺ con cui preparare la soluzione intermedia con i calcoli sopra riportati.
- 2) Inserire nel matraccio il volume di soluzione prelevato e portare a volume.
- 3) Calcolare la quantità di soluzione da prelevare (da quella intermedia) per preparare le 4 soluzioni figlie che serviranno per creare la retta di taratura con i calcoli sopra riportati.
- 4) Prelevare i 4 volumi calcolati e inserirli in 4 matracci.

- 5) Aggiungere 50mL di H₂O.
 6) Aggiungere 2mL del reattivo di Nessler.
 7) Portare a volume.
 8) Aspettare 15 min.
 9) FINE

Ricerca N-ammoniacale in H₂O – Milano (via Crescenzago 110)

- Beltrami Daniele

Tipo di esperienza: Ottica, analisi spettrofotometrica.

Obiettivo: Misurare la quantità di NH₄⁺ presente nell'acqua di Via Crescenzago 110 e confrontarla con il valore misurato da Comune di Milano.

Cenni teorici: Questo tipo di analisi è utilizzato per trovare la concentrazione di un analita attraverso la creazione di una retta di taratura, grazie a delle soluzioni composte dall'analita a concentrazione nota, delle quali si misura poi l'assorbanza e una volta ricavata l'equazione della retta si è ingrado di calcolare la concentrazione dell'analita. Questo metodo di analisi lavora nello spettro visibile (430nm-770nm), per questo si deve utilizzare il reattivo di Nessler per colorare la soluzione.

L' equazione della retta di taratura non è altro che la legge di Lambert-Beer ($A = \epsilon bM$) dove A è l'assorbanza, b è il cammino ottico della cuvetta (1cm), M è la concentrazione dell'analita e ϵ è il coefficiente di assorbimento molare.

La presenza di ammonio nelle acque è un indicatore di possibile inquinamento da batteri, reflui animali o scarichi urbani. Ha effetti tossici sulla salute umana se se ne assume più di quanto l'organismo riesca a detossficarne.

Materiali:

Vetreria	Cuvette	Pipette	Matraccio
Strumentazione	Spettrofotometro		
Sostanze	H ₂ O	NH ₄ ⁺	

Procedimento:

- 1) Preparare le soluzioni standard per creare la retta di taratura (scheda 3.2).
- 2) Creare la retta di taratura.
- 3) prelevare 50mL di H₂O con il matraccio.
- 4) Inserire 2mL di reattivo di Nessler.
- 5) Portare a volume (100mL).
- 6) Utilizzare una lunghezza d'onda di 420nm.
- 7) Prendere 7 cuvette e 7 pipette.
- 8) Riempire la 1^a cuvetta con l'H₂O distillata (prendendola dalla parte zigrinata).

- 9) Inserirla nello spettrofotometro per l'azzeramento dell strumento.
- 10) Riempire un'altra cuvetta con il bianco reagenti (H₂O + Nessler).
- 11) Misurare l'assorbanza.
- 12) Ripetere il procedimento con le 4 soluzioni standard.
- 13) Creare la retta di taratura.
- 14) Riemepire una cuvetta con l'acqua di rubinetto e misurarne l'assorbanza.
- 15) Ricavare il valore della concentrazione di NH₄⁺ utilizzando la retta di taratura.

Risultati misurazioni:

	ppm	A
Sol.1	0.05	0.020
Sol.2	0.1	0.028
Sol.3	0.3	0.143
Sol.4	0.5	0.030
Bianco reagenti		0.003
H ₂ O di rubinetto	0,00045	0.001

Retta di taratura:

[NH_4^+]: [NH_4^+] = 0,001/2,21 = 0,00045ppm

Osservazioni e conclusione:

Secondo i dati misurati dal Comune di Milano riguardanti l'acqua di rubinetto di via Crescenzago 110 la concentrazione di $\mathrm{NH_4}^+$ dovrebbe essere minore di 0,1mg/L. Dalla nostra misurazione è emerso che questa concentrazione è di 0,00045 mg/L, quindi perfettamente rientrante nei limiti di legge.

Nella creazione della retta di taratura è stata esclusa la soluzione n°4, per via di un' assorbanza sicuramente errata.

Il discostamento dalla misurazione effettuata dal Comune di Milano è normale e potrebbe essere dovuto ad errori umani o strumentali.