ÁLGEBRA LINEAL COMPUTACIONAL

1er Cuatrimestre 2023

Práctica N° 3: Autovalores y autovectores.

Ejercicio 1. Calcular el polinomio característico, los autovalores y los autovectores de la matriz A en cada uno de los siguientes casos (analizar por separado los casos $\mathbb{K} = \mathbb{R}$ y $\mathbb{K} = \mathbb{C}$):

(a)
$$\mathbf{A} = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}$$
, $a \in \mathbb{R}$ (b) $\mathbf{A} = \begin{pmatrix} 0 & 2 & 1 \\ -2 & 0 & 2 \\ -1 & -2 & 0 \end{pmatrix}$ (c) $\mathbf{A} = \begin{pmatrix} 3 & 1 & 0 \\ -4 & -1 & 0 \\ 4 & -8 & -2 \end{pmatrix}$

(d)
$$\mathbf{A} = \begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix}, a \in \mathbb{R}$$
 (e) $\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$ (f) $\mathbf{A} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

Ejercicio 2. Para cada una de las matrices A del ejercicio anterior, sea $f : \mathbb{K}^n \to \mathbb{K}^n$ la tranformación lineal tal que $[f]_{\mathcal{E}\mathcal{E}} = A$. Decidir si es posible encontrar una base \mathcal{B} de \mathbb{K}^n tal que $[f]_{\mathcal{B}\mathcal{B}}$ sea diagonal. En caso afirmativo, calcular $\mathbf{C}_{\mathcal{B}\mathcal{E}}$.

Ejercicio 3. Considerar la sucesión de Fibonacci, dada por la recursión: $F_0 = 0$, $F_1 = 1$, $F_{n+1} = F_n + F_{n-1}$.

- (a) Hallar una matriz \boldsymbol{A} tal que $\begin{pmatrix} F_n \\ F_{n+1} \end{pmatrix} = \boldsymbol{A} \begin{pmatrix} F_{n-1} \\ F_n \end{pmatrix}$. Mostrar que $\begin{pmatrix} F_n \\ F_{n+1} \end{pmatrix} = \boldsymbol{A}^n \begin{pmatrix} F_0 \\ F_1 \end{pmatrix}$
- (b) Diagonalizar \boldsymbol{A} .
- (c) Dar una fórmula cerrada para F_n .

Ejercicio 4. Recordando que la solución de la ecuación diferencial

$$x'(t) = ax(t), \quad a \in \mathbb{R}$$

con condición inicial $x(0) = c_0$ es $x(t) = c_0 e^{at}$, resolver el siguiente sistema de ecuaciones diferenciales

$$\begin{cases} x'(t) = 6x(t) + 2y(t) \\ y'(t) = 2x(t) + 3y(t) \end{cases}$$

con condiciones iniciales x(0) = 3, y(0) = -1.

Sugerencia: Hallar una matriz C tal que $C^{-1}\begin{pmatrix} 6 & 2 \\ 2 & 3 \end{pmatrix}C$ sea diagonal y hacer el cambio de variables $\begin{pmatrix} u(t) \\ v(t) \end{pmatrix} = C^{-1} \cdot \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$.

Ejercicio 5. Sea $A \in \mathbb{C}^{n \times n}$ y λ un autovalor. Probar que:

- (a) Si \boldsymbol{A} es triangular sus autovalores son los elementos de la diagonal.
- (b) λ^k es autovalor de \mathbf{A}^k , con el mismo autovector.
- (c) $\lambda + \mu$ es autovalor de $\mathbf{A} + \mu \mathbf{I}$, con el mismo autovector.
- (d) Si p es un polinomio, $p(\lambda)$ es autovalor de $p(\mathbf{A})$.

Ejercicio 6. Sea $A \in \mathbb{R}^{n \times n}$. Probar:

- (a) Si los autovalores de \boldsymbol{A} son todos reales, sus autovectores pueden tomarse con coordenadas reales.
- (b) Si A es simétrica, entonces sus autovalores son reales.
- (c) Si \boldsymbol{A} es simétrica y definida positiva (negativa), entonces todos sus autovalores son positivos (negativos)
- (d) Si \boldsymbol{A} es simétrica y λ_1 y λ_2 son autovalores distintos, entonces sus correspondientes autovectores son ortogonales entre sí.

Ejercicio 7. Una transformación lineal $f: \mathbb{K}^n \to \mathbb{K}^n$ se llama proyector si verifica f(f(x)) = f(x) para todo $x \in \mathbb{K}^n$. Probar que los únicos autovalores de un proyector son 1 y 0.

Ejercicio 8. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal dada por:

$$[f] = \begin{pmatrix} -3 & 2 & 0 \\ -6 & 4 & 0 \\ -9 & 6 & 0 \end{pmatrix}.$$

Probar que f es un proyector y hallar una base \mathcal{B} / $[f]_{\mathcal{BB}}$ sea diagonal.

Ejercicio 9. Considerar las matrices

$$m{A} = egin{pmatrix} 1 & rac{1}{arepsilon} \ arepsilon & 1 \end{pmatrix}, \quad m{B} = egin{pmatrix} 1 & rac{1}{arepsilon} \ 0 & 1 \end{pmatrix},$$

donde $\varepsilon \ll 1$ es arbitrario. Calcular los polinomios característicos y los autovalores de \boldsymbol{A} y de \boldsymbol{B} . Concluir que pequeñas perturbaciones en los coeficientes de un polinomio pueden conducir a grandes variaciones en sus raíces (el problema está mal condicionado). En particular, esto afecta el cómputo de autovalores como raíces del polinomio característico.

Procesos de Markov

Ejercicio 10. Una matriz $\mathbf{P} = (p_{ij})_{1 \leq i,j \leq n}$ se dice estocástica (o de Markov) si sus elementos son todos no negativos y sus columnas suman uno. Los elementos p_{ij} representan la proporción de individuos que pasan del estado j al estado i en cada iteración (también pueden interpretarse como la probabilidad de pasar de j a i).

- (a) Probar que si λ es autovalor de \mathbf{P} , entonces $|\lambda| \leq 1$.
- (b) Sea 1 es el vector con todas sus coordenadas iguales a 1. Mostrar que $\mathbf{1}^t \mathbf{P} = \mathbf{1}$. De hecho: \mathbf{P} es estocástica si y sólo si sus elementos son no negativos y $\mathbf{1}^t \mathbf{P} = \mathbf{1}$.

(c) Probar que toda matriz estocástica tiene a 1 por autovalor.

Ejercicio 11. Probar que P y Q son matrices estocásticas, entonces:

- (a) **PQ** es estocástica.
- (b) \mathbf{P}^n es estocástica $(n \in \mathbb{N})$.
- (c) $\mathbf{P}^n \mathbf{Q}^m$ es estocástica $(n, m \in \mathbb{N})$.

Ejercicio 12. En el instante inicial 20 ratones se encuentran en el compartimiento I (ver Figura 1). Las puertas que separan los compartimientos permanecen cerradas salvo durante

Figure 1: El laberinto se abre unos pocos segundos cada hora.

un breve lapso cada hora, donde los ratones pueden pasar a un comportamiento adyacente o permancer en el mismo. Se supone que nada distingue un compartimento de otro, es decir que es igualmente probable que un ratón pase a cualquiera de los adyacentes o se quede en el compartimiento en el que está. Se realizan observaciones cada hora y se registra el número de ratones en cada compartimiento.

- (a) Determinar la matriz de transición del proceso P.
- (b) Determinar cuántos ratones habrá en cada celda al cabo de 4 horas.
- (c) Decidir si existe o no un estado de equilibrio.
- (d) Decidir si existe \mathbf{P}^{∞} y en tal caso calcularla. ¿Qué aspecto tiene? ¿Por qué?

Ejercicio 13. Un sujeto en evidente estado de ebriedad oscila entre su casa y el bar, separados por n pasos. En cada instante de tiempo da un paso hacia adelante (acercándose a su casa), con probabilidad p o hacia atrás (acercándose nuevamente al bar), con probabilidad 1-p. Si llega a alguno de los dos extremos, se queda allí y no vuelve a moverse.

(a) Sin hacer ninguna cuenta, mostrar que el proceso admite al menos dos estados límite linealmente independientes entre sí. Implementar un programa que reciba como input la distancia entre la casa y el bar (n) y la probabilidad p y devuelva la matriz de transición del proceso. Verificar que el resultado sea correcto corriéndolo para n=5 y p=0.5.

- (b) Para n=20, tomar p=0.5 y \boldsymbol{v}^0 el vector que corresponde a ubicar al sujeto en cualquiera de los puntos intermedios del trayecto con igual probabilidad. Realizar una simulación del proceso hasta que se estabilice. ¿Cuál es el estado límite? ¿Cómo se interpreta?
- (c) Repetir la simulación tomando como vector inicial $\mathbf{v}^0 = \mathbf{e}_2$ (el segundo canónico). Interpretar el resultado.
- (d) Repetir las simulaciones con p = 0.8. ¿Qué se observa?
- (e) Explicar los resultados de todas las simulaciones a partir del análisis de los autovalores y autovectores de la matriz.

Ejercicio 14. El movimiento anual entre 4 ciudades está regido por el siguiente diagrama de transición:

Se sabe que $v = \begin{pmatrix} 0 \\ 0 \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$ es un estado de equilibrio.

- (a) Hallar la matriz de transición P.
- (b) Determinar la distribución de población después de 10 años, si la distribución inicial es $\mathbf{v}_0 = (\frac{1}{2}, 0, \frac{1}{2}, 0)^t$.
- (c) ¿Existe un estado límite cualquiera sea el estado inicial? ¿Existe \mathbf{P}^{∞} ?
- (d) ¿Existe estado límite para $\mathbf{v}_0 = (0, 0, \frac{1}{3}, \frac{2}{3})^t$?

Método de la potencia

Ejercicio 15. Sea $A \in \mathbb{R}^{n \times n}$ tal que admite una base de autovectores $\mathcal{B} = \{v_1, \dots, v_n\}$ (que supondremos normalizados) y, además, tiene un único autovalor de máximo módulo (digamos: λ_1). Es decir, sus autovalores satisfacen:

$$|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \cdots \ge |\lambda_n|.$$

Dado $\mathbf{v}^{(0)}$ un vector cualquiera tal que sus coordenadas en base \mathcal{B} son (a_1, \ldots, a_n) , con $a_1 \neq 0$. Definimos $\mathbf{v}^{(k+1)} = \mathbf{A}\mathbf{v}^{(k)} = \mathbf{A}^k\mathbf{v}^{(0)}$.

- (a) Probar que $\mathbf{A}\mathbf{v}^{(k)} = a_1 \lambda_1^k \mathbf{v}_1 + \dots + a_n \lambda_n^k \mathbf{v}_n$.
- (b) Deducir que $\mathbf{A}\mathbf{v}^{(k)} = \lambda_1^k(a_1\mathbf{v}_1 + \boldsymbol{\varepsilon}_k)$, donde $\boldsymbol{\varepsilon}_k \to 0$ cuando $k \to \infty$.
- (c) Sea $\varphi: \mathbb{C}^n \to \mathbb{C}$ una funcional lineal tal que $\varphi(\boldsymbol{v}_1) \neq 0$. Probar que:

$$rac{arphi(oldsymbol{A}oldsymbol{v}^{(k)})}{arphi(oldsymbol{v}^{(k)})}
ightarrow \lambda_1.$$

(d) Para evitar que $\|\boldsymbol{v}^{(k)}\|$ tienda a 0 o a ∞ es usual normalizar $\boldsymbol{v}^{(k)}$ al cabo de cada iteración. Probar que en tal caso, si λ_1 es real positivo, se tiene que $\boldsymbol{v}^{(k)} \to \boldsymbol{v}_1$.

Ejercicio 16. Implementar el método de la potencia tal como está descripto en el ejercicio anterior, para calcular el autovalor de máximo módulo, con $v^{(0)}$ aleatorio y φ una funcional lineal cualquiera. Aplicarlo para calcular el autovalor de máximo módulo de

$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 1 \\ 1 & -1 & 1 \\ 1 & 5 & 1 \end{pmatrix}.$$

Comparar con el resultado arrojado por np.linalg.eig.

Ejercicio 17. Mostrar que si en el Ejercicio 15 se toma una funcional lineal φ_k distinta en cada paso, el método converge igualmente a λ_1 . Concluir que los cocientes de Raleigh:

$$r_k = rac{oldsymbol{v}^{(k)t} oldsymbol{A} oldsymbol{v}^{(k)}}{oldsymbol{v}^{(k)t} oldsymbol{v}^{(k)}},$$

convergen a λ_1 . Observar que si $\boldsymbol{v}^{(0)}$ es tal que $a_1 \neq 0$, las aplicaciones φ_k correspondientes a los cocientes de Raleigh nunca se anulan en \boldsymbol{v}_1 . Modificar el programa del ejercicio anterior de modo de utilizar el cociente de Raleigh como aproximación de λ_1 .

Ejercicio 18. Considerar las matrices:

$$A = \begin{pmatrix} -6 & 9 & 3 \\ 0 & 8 & -2 \\ 0 & -1 & 7 \end{pmatrix} \qquad B = \begin{pmatrix} 5 & 9 & 6 \\ -3 & -7 & -6 \\ 0 & 0 & -1 \end{pmatrix}$$

y, en cada caso, el Método de la Potencia dado por la siguiente iteración:

$$\begin{cases} v^{(k)} = \frac{Av^{(k-1)}}{\|Av^{(k-1)}\|} \\ r_k = \frac{(v^{(k)})^t Av^{(k)}}{(v^{(k)})^t v^{(k)}} \end{cases} \qquad \begin{cases} v^{(k)} = \frac{Bv^{(k-1)}}{\|Bv^{(k-1)}\|} \\ r_k = \frac{(v^{(k)})^t Bv^{(k)}}{(v^{(k)})^t v^{(k)}} \end{cases},$$

para $k \geq 1$.

(a) Calcular los autovalores y los autovectores de A y de B. Determinar si las matrices cumplen las hipótesis del Método de la Potencia.

5

- (b) Para la matriz A, definir un subespacio S tal que r_k converja al autovalor de módulo máximo para cualquier $v^{(0)} \in \mathbb{R}^3 S$.
- (c) Para la matriz B, hallar un $\alpha \in \mathbb{R}$ tal que el Método de la Potencia con $v^{(0)} = (-1, \alpha, -2)$ encuentre el segundo autovalor de mayor módulo.

Ejercicio 19. Método de la potencia inversa. Mostrar que si λ es autovalor de \boldsymbol{A} , y \boldsymbol{A} es inversible, entonces λ^{-1} es autovalor de \boldsymbol{A}^{-1} . En el método de la potencia inversa se define $\boldsymbol{v}^{(k+1)}$ tal que $\boldsymbol{A}\boldsymbol{v}^{(k+1)} = \boldsymbol{v}^{(k)}$. Mostrar que esta modificación del método de la potencia permite calcular el autovalor de menor módulo de \boldsymbol{A} . Implementar el método de la potencia inversa.

Ejercicio 20. Sea $A \in \mathbb{R}^{n \times n}$. Supongamos que A tiene todos autovalores de distinto módulo.

- (a) Probar que aplicar el método de la potencia a $\mathbf{A} \mu \mathbf{I}$ da como resultado el autovalor de \mathbf{A} más lejano a μ .
- (b) Probar que aplicar el método de la potencia inversa a ${\bf A}-\mu {\bf I}$ da como resultado el autovalor de ${\bf A}$ más cercano a μ

Ejercicio 21. Asumiendo que A admite un único autovalor de módulo máximo:

- (a) Usando que, $\|\mathbf{A}\|_2 = \sqrt{\rho(\mathbf{A}^t\mathbf{A})}$ para una \mathbf{A} cualquiera y $\|\mathbf{A}\|_2 = \rho(\mathbf{A})$ si \mathbf{A} es simétrica adaptar el método de la potencia para calcular la norma 2 de \mathbf{A} .
- (b) Escribir un programa que, utilizando el ítem anterior y el método de la potencia inversa, calcule $\operatorname{cond}_2(\boldsymbol{A})$.
- (c) Calcular $\operatorname{cond}_2(\boldsymbol{A})$ de las matrices del Hilbert para n=10,100,500,1000. La matriz de Hilbert de tamaño n puede calcularse como

```
import scipy as sp
# definir n
H = sp.linalg.hilbert(n)
```

Ejercicio 22. Sea
$$A = \begin{pmatrix} 4 & \alpha + 2 & 2 \\ \alpha^2 & 4 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
.

- (a) Hallar los valores de $\alpha \in \mathbb{R}$ para que A sea simétrica y $\lambda = 0$ sea autovalor de A.
- (b) Para el valor de α hallado en (a), dar una base ortonormal de \mathbb{R}^3 formada por autovectores de A.

Ejercicio 23. Hallar una matriz **simétrica** $A \in \mathbb{R}^{3\times 3}$ tal que (1,0,0) sea autovector de A+2I de autovalor -1, (0,2,-1) sea autovector de A^{-1} de autovalor 2 y tal que $\det(A) = -6$.

Ejercicio 24. Método QR: El metódo QR puede utilizarse para calcular la forma de Schur real de una matriz $\mathbf{A} \in \mathbb{R}^{n \times n}$. Consiste en, dada una matriz $\mathbf{A} \in \mathbb{R}^{n \times n}$, generar una sucesión de matrices \mathbf{A}_k definida del siguiente modo:

$$A_1 = A$$
, $Q_k R_k$ descomposición QR de A_k y $A_{k+1} = R_k Q_k$.

- a) Probar que todas las matrices A_k son todas similares a A y por lo tanto tienen los mismos autovalores.
- b) Implementar un programa que realice la iteración del método y devuelva $T=A_k$ y $\mathbf{Q}=\mathbf{Q}_1\dots\mathbf{Q}_k$
- c) Aplicar el programa a las matrices:

(a)
$$\begin{pmatrix} 1 & 2 & 4 \\ 3 & 6 & 8 \\ 1 & 7 & 2 \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 & 2 & -1 & 5 \\ 2 & 3 & 4 & -2 \\ -1 & 4 & -3 & -2 \\ 5 & -2 & -3 & 6 \end{pmatrix}$

(c)
$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
 (d) $\begin{pmatrix} 190 & 66 & -84 & 30 \\ 66 & 303 & 42 & -36 \\ 336 & -168 & 147 & -112 \\ 30 & -36 & 28 & 291 \end{pmatrix}$

Comparar los resultados con los arrojados por el comando scipy. linalg. schur. Observar que en el caso de matrices simétricas, el método diagonaliza A.