16.1 级联放大 V. (1)

- ☑ 已知CE、CC、CB三个放大器内部都不含独立电容。它们在理想电压源驱动、负载空载时,测得指标:
 - ► CE: $A_{VO} = -10$, $R_i = 10k\Omega$, $R_0 = 2k\Omega$
 - ► CC: $A_{VO} \approx 1$, $R_i = 50k\Omega$, $R_o = 50\Omega$
 - ► CB: $A_{VO} = 10$, $R_i = 50\Omega$, $R_o = 2k\Omega$
- 図 用四个电容(均为10μF),采取电容耦合组成级联电路,而实际源 $R_s=1k\Omega$,实际负载 $R_l=1k\Omega$ 。有两种方案:
 - ▶ 方案1: 实际源 → CC → CB → CE → 实际负载
 - ▶ 方案2: 实际源 → CE → CB → CC → 实际负载
- ☑ 请计算上面两个级联方案的: 总 A_V=V_{RL}/V_S, R_i, R_o, f_L

16.2 推挽放大器

図 右图中两个BJT均为: β =100, r_b =1KΩ, r_c 非常大。 而 R_s = 1KΩ, R_1 = R_2 =193kΩ, R_L =1kΩ

 \square 在 V_{CC} =20V时,经测量, I_{EQ1} = I_{EQ2} = 100 μ A,且二极管动态电阻可以取 r_D =26mV/ I_{DQ}

☑ 请计算:

- a) 放大器的 R_i, R_o, A_V
- b) R_L上的线性动态范围是多少?
- c) 当 R_L 获得最大不失真正弦信号时,估算放大器的效率 (假设可忽略 T_1 和 T_2 在临界导通时的功耗,并忽略 R_1 - D_1 - D_2 - R_2 支路的功耗)。

16.3 差分放大器

☑ 右图两个BJT的 β=100, $r_b \approx 1KΩ$, r_c 足够大。 $R_c=10KΩ$, $R_L=10KΩ$ 。 $V_{CC}=20V$, $V_{EE}=-20V$, $R_E=19.3KΩ$ 。 信号源 V_1 和 V_2 是纯正弦电压源。

请计算:

- a) T_1 和 T_2 的的静态工作点 和 r_e
- b) 差模增益 A_{VD} = V_{RI} / (V₁-V₂)
- c) 共模增益 A_{VC} = V_{RL} / [(V₁+V₂)/2]
- d) 共模抑制比 K_{CMR} = A_{VD}/A_{VC}

【提示:在差模输入时,节点A是交流地;

在共模输入时,可以考虑把 R_E 看成两个 2R_E 电阻的并联,并利用对称性,

二者的顶端之间并无电流】

