Package 'IMIX'

October 12, 2022

Type Package
Version 1.1.5
Date 2022-07-13

Title Gaussian Mixture Model for Multi-Omics Data Integration

Description A multivariate Gaussian mixture model framework to integrate multiple types of genomic data and allow modeling of inter-data-type correlations for association analysis. 'IMIX' can be implemented to test whether a disease is associated with genes in multiple genomic data types, such as DNA methylation, copy number variation, gene expression, etc. It can also study the integration of multiple pathways. 'IMIX' uses the summary statistics of association test outputs and conduct integration analysis for two or three types of genomics data. 'IMIX' features statistically-principled model selection, global FDR control and computational efficiency. Details are described in Ziqiao Wang and Peng Wei (2020) <doi:10.1093/bioinformatics/btaa1001>.

License GPL-2
Encoding UTF-8
LazyData true
Depends R (>= 3.5)

Imports crayon,mvtnorm,mixtools,mclust,ggplot2,stats,utils,MASS

URL https://github.com/ziqiaow/IMIX

BugReports https://github.com/ziqiaow/IMIX/issues

RoxygenNote 7.1.1 **NeedsCompilation** no

Author Ziqiao Wang [aut, cre] (https://orcid.org/0000-0001-3383-8670), Peng Wei [ths] (https://orcid.org/0000-0001-7758-6116)

Maintainer Ziqiao Wang <wzqjanet@gmail.com>

Repository CRAN

Date/Publication 2022-07-13 22:10:02 UTC

R topics documented:

data	_p P value matrix of two data types	
Index		19
	plot_component	17
	model_selection_component	
	model_selection	15
	IMIX_ind	13
	IMIX_cor_twostep	12
	IMIX_cor_restrict	10
	IMIX_cor	9
	IMIX	6
	FDR_control_adaptive_imix	4
	FDR_control_adaptive	2
	data_p	2

Description

A dataset with summary statistics p values of 1000 genes for RNAseq and CNV data

Usage

data(data_p)

Format

A data matrix with 1000 rows and 2 variables:

p.rnaseq P values of data type 1 for all genesp.cnv P values of data type 2 for all genes

Description

The adaptive procedure for across-data-type FDR control based on the output from IMIX models, this can be directly performed by IMIX function, however, if the user is interested in other mixture models, alpha level or combinations of components, this function would be useful.

```
FDR_control_adaptive(lfdr, alpha)
```

Arguments

1fdr Local FDR for each gene of the mixture model results for one component or a

combination of components

alpha Prespecified FDR control level

Value

The estimated mFDR for the target component or component combinations and whether the genes is classified in this component/combination after FDR control at alpha level, 1 is yes, 0 is no.

significant_genes_with_FDRcontrol

The output of each gene ordered by the components based on FDR control and within each component ordered by the local FDR, "localFDR" is 1-posterior probability of each gene in the component based on the maximum posterior probability, "class_withoutFDRcontrol" is the classified component based on maximum posterior probability, "class_FDRcontrol" is the classified component

based on the across-data-type FDR control at alpha level

estimatedFDR The estimated marginal FDR value for each component starting from component

2 (component 1 is the global null)

alpha Prespecified nominal level for the across-data-type FDR control

References

Ziqiao Wang and Peng Wei. 2020. "IMIX: a multivariate mixture model approach to association analysis through multi-omics data integration." Bioinformatics. <doi:10.1093/bioinformatics/btaa1001>.

```
# First load the data
data("data_p")
# Specify inititial values (this step could be omitted)
mu_input <- c(0,3,0,3)
sigma_input <- rep(1,4)</pre>
p_{input} < rep(0.5,4)
test1 <- IMIX(data_input = data_p,data_type = "p",mu_ini = mu_input,sigma_ini = sigma_input,
p_ini = p_input,alpha = 0.1,model_selection_method = "AIC")
# Check the selected model based on AIC value
test1$`Selected Model`
# Below is an example for data example 1 in controlling
# the FDR at 0.2 for component 2 & component 4.
# First calculate the local FDR for component 2 & component 4:
lfdr_ge_combined <- 1 - (test1$IMIX_cor_twostep$`posterior prob`[,2] +</pre>
test1$IMIX_cor_twostep$`posterior prob`[,4]) # Class 2: (ge+,cnv-); class 4: (ge+,cnv+)
names(lfdr_ge_combined) <- rownames(test1$IMIX_cor_twostep$`posterior prob`)</pre>
# Perform the across-data-type FDR control for component 2 & component 4 at alpha level 0.2
```

```
fdr_control1 <- FDR_control_adaptive(lfdr = lfdr_ge_combined, alpha = 0.2)</pre>
```

```
FDR_control_adaptive_imix
```

The Adaptive Procedure for Across-Data-Type FDR Control for IMIX Output

Description

The adaptive procedure for across-data-type FDR control based on the output from IMIX models, this can be directly performed by IMIX function, however, if the user is interested in other alpha levels, this function would be useful to avoid rerun the IMIX().

Usage

```
FDR_control_adaptive_imix(
  imix_output,
  model = c("IMIX_ind", "IMIX_cor_twostep", "IMIX_cor_restrict", "IMIX_cor"),
  alpha
)
```

Arguments

The result output from IMIX() function, result controlled at alpha level only for imix_output

one component each time.

The target model among "IMIX_ind", "IMIX_cor_twostep", "IMIX_cor_restrict", model

and "IMIX cor". Default is IMIX ind.

alpha Prespecified FDR control level.

Value

The estimated mFDR for the target component and classify the genes in each component after FDR control at alpha level.

significant_genes_with_FDRcontrol

The output of each gene ordered by the components based on FDR control and within each component ordered by the local FDR, "localFDR" is 1-posterior probability of each gene in the component based on the maximum posterior probability, "class_withoutFDRcontrol" is the classified component based on maximum posterior probability, "class FDRcontrol" is the classified component

based on the across-data-type FDR control at alpha level

estimatedFDR The estimated marginal FDR value for each component starting from component

2 (component 1 is the global null)

alpha Prespecified nominal level for the across-data-type FDR control

References

Ziqiao Wang and Peng Wei. 2020. "IMIX: a multivariate mixture model approach to association analysis through multi-omics data integration." Bioinformatics. <doi:10.1093/bioinformatics/btaa1001>.

```
# First generate the data
library(MASS)
N <- 1000
truelabel <- sample(1:8,prob = rep(0.125, 8),size = N,replace = TRUE)</pre>
mu1 <- c(0, 5); mu2 <- c(0, 5); mu3 <- c(0, 5)
mu1_mv <- c(mu1[1], mu2[1], mu3[1]);mu2_mv <- c(mu1[2], mu2[1], mu3[1]);
mu3_mv <- c(mu1[1], mu2[2], mu3[1]);mu4_mv <- c(mu1[1], mu2[1], mu3[2]);
mu5_mv <- c(mu1[2], mu2[2], mu3[1]); mu6_mv <- c(mu1[2], mu2[1], mu3[2])
mu7_mv <- c(mu1[1], mu2[2], mu3[2]); mu8_mv <- c(mu1[2], mu2[2], mu3[2])
cov_sim <- list()</pre>
for (i in 1:8) {
  cov_sim[[i]] <- diag(3)</pre>
data_z <- array(0, c(N, 3))
data_z[which(truelabel == 1),] <- mvrnorm(n = length(which(truelabel == 1)),</pre>
mu = mu1_mv,Sigma = cov_sim[[1]],tol = 1e-6,empirical = FALSE)
data_z[which(truelabel == 2),] <- mvrnorm(n = length(which(truelabel == 2)),</pre>
mu = mu2_mv,Sigma = cov_sim[[2]],tol = 1e-6,empirical = FALSE)
data_z[which(truelabel == 3),] <- mvrnorm(n = length(which(truelabel == 3)),</pre>
mu = mu3_mv,Sigma = cov_sim[[3]],tol = 1e-6,empirical = FALSE)
data_z[which(truelabel == 4),] <- mvrnorm(n = length(which(truelabel == 4)),
mu = mu4_mv,Sigma = cov_sim[[4]],tol = 1e-6,empirical = FALSE)
data_z[which(truelabel == 5),] <- mvrnorm(n = length(which(truelabel == 5)),</pre>
mu = mu5_mv,Sigma = cov_sim[[5]],tol = 1e-6,empirical = FALSE)
data_z[which(truelabel == 6),] <- mvrnorm(n = length(which(truelabel == 6)),</pre>
mu = mu6_mv,Sigma = cov_sim[[6]],tol = 1e-6,empirical = FALSE)
data_z[which(truelabel == 7),] <- mvrnorm(n = length(which(truelabel == 7)),
mu = mu7_mv,Sigma = cov_sim[[7]],tol = 1e-6,empirical = FALSE)
data_z[which(truelabel == 8),] <- mvrnorm(n = length(which(truelabel == 8)),
mu = mu8_mv,Sigma = cov_sim[[8]],tol = 1e-6,empirical = FALSE)
rownames(data_z) <- paste0("gene", 1:N)</pre>
colnames(data_z) <- c("z.methy", "z.ge", "z.cnv")</pre>
dim(data_z)
# Fit the model
test2 <- IMIX(data_input = data_z,data_type = "z",alpha = 0.05,verbose = TRUE)
# Adaptive FDR control at alpha 0.2 for IMIX_cor model
fdr_control2 <- FDR_control_adaptive_imix(imix_output = test2, model = "IMIX_cor",
alpha = 0.2)
```

6 IMIX

IMIX IMIX

Description

Fitting a multivariate mixture model framework, model selection for the best model, and adaptive procedure for FDR control. Input of summary statistics z scores or p values of two or three data types.

Usage

```
IMIX(
  data_input,
  data_type = c("p", "z"),
 mu_ini = NULL,
  sigma_ini = NULL,
  p_ini = NULL,
  tol = 1e-06,
 maxiter = 1000,
  seed = 10,
  ini.ind = TRUE,
 model = c("all", "IMIX_ind", "IMIX_cor_twostep", "IMIX_cor_restrict", "IMIX_cor"),
 model_selection_method = c("BIC", "AIC"),
  alpha = 0.2,
  verbose = FALSE,
  sort_label = TRUE
)
```

Arguments

tol

data_input

aasa_2pas	the nubmer of genes, d is the number of data types. Each row is a gene, each column is a data type.
data_type	Whether the input data is the p values or z scores, default is p value
mu_ini	Initial values for the mean of the independent mixture model distribution. A vector of length 2*d, d is number of data types. Needs to be in a special format: for example, if d=3, needs to be in the format of (null_1,alternative_1,null_2,alternative_2,null_3,alternative_
sigma_ini	Initial values for the standard deviations of the two components in each data type. A vector of length 2*d, d is number of data types. Needs to be in a special format: for example, if d=3, needs to be in the format of (null_1,alternative_1,null_2,alternative_2,null_3,alternative_1).
p_ini	Initial values for the proportion of the distribution of the two components in each data type. A vector of length 2*d, d is number of data types. Needs to be in a special format: for example, if d=3, needs to be in the format of

The convergence criterion. Convergence is declared when the change in the

(null_1,alternative_1,null_2,alternative_2,null_3,alternative_3).

observed data log-likelihood increases by less than epsilon.

An n x d data frame or matrix of the summary statistics z score or p value, n is

IMIX 7

maxiter The maximum number of iteration, default is 1000

seed Set.seed, default is 10

ini.ind Use the parameters estimated from IMIX-ind for initial values of other IMIX

models, default is TRUE

model Which model to use to compute the data, default is all

model_selection_method

Model selection information criteria, based on AIC or BIC, default is BIC

alpha Prespecified nominal level for global FDR control, default is 0.2

verbose Whether to print the full log-likelihood for each iteration, default is FALSE

sort_label Whether to sort the component labels in case component labels switched af-

ter convergence of the initial values, default is TRUE, notice that if the users chooose not to, they might need to check the interested IMIX model for the converged mean for the true component labels and perform the adaptive FDR

control separately for an acurate result

Value

A list of results of IMIX

IMIX_ind Results of IMIX_ind, assuming all data types are independent

IMIX_cor_twostep

Results of IMIX_cor_twostep, by default the mean is the estimated value of IMIX_ind. If the users are interested to use another mean input, they could

directly use function IMIX_cor_twostep and specify the mean

IMIX_cor Results of IMIX_cor

IMIX_cor_restrict

Results of IMIX_cor_restrict

AIC/BIC The AIC and BIC values of all fitted models

Selected Model The model with the smallest AIC or BIC value, this is determined by user spec-

ifications in the function input "model_selection_method", by default is BIC

significant_genes_with_FDRcontrol

The output of each gene ordered by the components based on FDR control and within each component ordered by the local FDR, "localFDR" is 1-posterior probability of each gene in the component based on the maximum posterior probability, "class_withoutFDRcontrol" is the classified component based on maximum posterior probability, "class_FDRcontrol" is the classified component

based on the across-data-type FDR control at alpha level

estimated FDR The estimated marginal FDR value for each component starting from component

2 (component 1 is the global null)

alpha Prespecified nominal level for the across-data-type FDR control

8 IMIX

References

Ziqiao Wang and Peng Wei. 2020. "IMIX: a multivariate mixture model approach to association analysis through multi-omics data integration." Bioinformatics. <doi:10.1093/bioinformatics/btaa1001>.

Tatiana Benaglia, Didier Chauveau, David R. Hunter, and Derek Young. 2009. "mixtools: An R Package for Analyzing Finite Mixture Models." Journal of Statistical Software 32 (6): 1–29. https://www.jstatsoft.org/v32/i06/.

```
# A toy example
data("data_p")
set.seed(10)
data <- data_p[sample(1:1000,200,replace = FALSE),]</pre>
mu_input <- c(0,3,0,3)
sigma_input <- rep(1,4)</pre>
p_{input} \leftarrow rep(0.5,4)
test <- IMIX(data_input = data,data_type = "p",mu_ini = mu_input,sigma_ini = sigma_input,</pre>
             p_ini = p_input,alpha = 0.1,model_selection_method = "BIC",
             sort_label = FALSE,model = "IMIX_ind")
# The details of this example can be found in Github vignette
# First load the data
data("data_p")
# Specify initial values (this step could be omitted)
mu_input <- c(0,3,0,3)
sigma_input <- rep(1,4)</pre>
p_{input} \leftarrow rep(0.5,4)
# Fit IMIX model
test1 <- IMIX(data_input = data_p,data_type = "p",mu_ini = mu_input,sigma_ini = sigma_input,
p_ini = p_input,alpha = 0.1,model_selection_method = "AIC")
#Results
# Print the estimated across-data-type FDR for each component
test1$estimatedFDR
# The AIC and BIC values for each model
test1$'AIC/BIC'
# The best fitted model selected by AIC
test1$`Selected Model`
# The output of IMIX_cor_twostep
str(test1$IMIX_cor_twostep)
# The output of genes with local FDR values and classified components
dim(test1$significant_genes_with_FDRcontrol)
head(test1$significant_genes_with_FDRcontrol)
```

IMIX_cor

Description

Fitting a correlated multivariate mixture model. Input of summary statistics z scores or p values of two or three data types.

Usage

```
IMIX_cor(
   data_input,
   data_type = c("p", "z"),
   g = 8,
   mu_vec,
   cov,
   p,
   tol = 1e-06,
   maxiter = 1000,
   seed = 10,
   verbose = FALSE
)
```

Arguments

data_input	An n x d data frame or matrix of the summary statistics z score or p value, n is the nubmer of genes, d is the number of data types. Each row is a gene, each column is a data type.
data_type	Whether the input data is the p values or z scores, default is p value
g	The number of components, default is 8 for three data types
mu_vec	A list of initial values for the mean vectors for each component. If there are three data types and 8 components, then the initial is a list of 8 mean vectors, each vector is of length 3.
cov	A list of initial values for the covariance matrices. If there are three data types and 8 components, then the initial is a list of 8 covariance matrices, each matix is $3*3$.
р	Initial value for the proportion of the distribution in the Gaussian mixture model
tol	The convergence criterion. Convergence is declared when the change in the observed data log-likelihood increases by less than epsilon.
maxiter	The maximum number of iteration, default is 1000
seed	set.seed, default is 10
verbose	Whether to print the full log-likelihood for each iteration, default is FALSE

10 IMIX_cor_restrict

Value

A list of the results of IMIX-cor

posterior prob Posterior probability matrix of each gene for each component Full LogLik all Full log-likelihood of each iteration

Full MaxLogLik final

The final log-likelihood of the converged model

iterations Number of iterations run

pi Estimated proportion of each component, sum to 1

mu A list of estimated mean vectors of each component for each data type, each list

corresponds to one component

cov A list of estimated variance-covariance matrix of each component

g Number of components

References

Ziqiao Wang and Peng Wei. 2020. "IMIX: a multivariate mixture model approach to association analysis through multi-omics data integration." Bioinformatics. <doi:10.1093/bioinformatics/btaa1001>.

Description

Fitting a correlated multivariate mixture model with restrictions on the mean. Input of summary statistics z scores or p values of two or three data types.

```
IMIX_cor_restrict(
  data_input,
  data_type = c("p", "z"),
  mu,
  cov,
  p,
  tol = 1e-06,
  maxiter = 1000,
  seed = 10,
  verbose = FALSE
)
```

IMIX_cor_restrict 11

Arguments

An n x d data frame or matrix of the summary statistics z score or p value, n is data_input the nubmer of genes, d is the number of data types. Each row is a gene, each column is a data type. data_type Whether the input data is the p values or z scores, default is p value Initial value for the mean of the independent mixture model distribution. A mu vector of length 2*d, d is number of data types. Needs to be in a special format that corresponds to the initial value of mu, for example, if d=3, needs to be in the format of (null_1,alternative_1,null_2,alternative_2,null_3,alternative_3). A list of initial values for the covariance matrices. If there are three data types cov and 8 components, then the initial is a list of 8 covariance matrices, each matix is 3*3. Initial value for the proportion of the distribution in the Gaussian mixture model р tol The convergence criterion. Convergence is declared when the change in the observed data log-likelihood increases by less than epsilon. The maximum number of iteration, default is 1000 maxiter set.seed, default is 10 seed Whether to print the full log-likelihood for each iteration, default is FALSE

Value

verbose

A list of the results of IMIX-cor-restrict

posterior prob Posterior probability of each gene for each component

Full LogLik all Full log-likelihood of each iteration

Full MaxLogLik final

The final log-likelihood of the converged model

iterations Number of iterations run

Estimated proportion of each component, sum to 1 рi

Estimated mean for the null and alternative of each data type: for two data types mu

(mu10,mu11,mu20,mu21), three data types (mu10,mu11,mu20,mu21,mu30,mu31),

mui0 is the null for data type i, mui1 is the alternative for data type i.

A list of estimated variance-covariance matrix of each component cov

References

Ziqiao Wang and Peng Wei. 2020. "IMIX: a multivariate mixture model approach to association analysis through multi-omics data integration." Bioinformatics. <doi:10.1093/bioinformatics/btaa1001>. 12 IMIX_cor_twostep

IMIX_cor_twostep IM

IMIX-Cor-Twostep

Description

Fitting a correlated multivariate mixture model with fixed mean from estimated parameters of IMIX-ind. Input of summary statistics z scores or p values of two or three data types.

Usage

```
IMIX_cor_twostep(
  data_input,
  data_type = c("p", "z"),
  g = 8,
  mu_vec,
  cov,
  p,
  tol = 1e-06,
  maxiter = 1000,
  seed = 10,
  verbose = FALSE
)
```

Arguments

data_input	An n x d data frame or matrix of the summary statistics z score or p value, n is the nubmer of genes, d is the number of data types. Each row is a gene, each column is a data type.
data_type	Whether the input data is the p values or z scores, default is p value
g	The number of components, default is 8 for three data types
mu_vec	Input of the mean value output from IMIX-Ind result, a list of the mean vectors for each component.
cov	A list of initial values for the covariance matrices. If there are three data types and 8 components, then the initial is a list of 8 covariance matrices, each matix is 3*3.
р	Initial value for the proportion of the distribution in the Gaussian mixture model
tol	The convergence criterion. Convergence is declared when the change in the observed data log-likelihood increases by less than epsilon.
maxiter	The maximum number of iteration, default is 1000
seed	set.seed, default is 10
verbose	Whether to print the full log-likelihood for each iteration, default is FALSE

IMIX_ind

Value

A list of the results of IMIX-cor-twostep

posterior prob Posterior probability matrix of each gene for each component Full LogLik all Full log-likelihood of each iteration

Full MaxLogLik final

The final log-likelihood of the converged model

iterations Number of iterations run

pi Estimated proportion of each component, sum to 1

mu A list of mean vectors of each component for each data type, this is the prespec-

ified mean

cov A list of estimated variance-covariance matrix of each component

g Number of components

References

Ziqiao Wang and Peng Wei. 2020. "IMIX: a multivariate mixture model approach to association analysis through multi-omics data integration." Bioinformatics. <doi:10.1093/bioinformatics/btaa1001>.

Description

Fitting an independent mixture model with restrictions on mean and variance. Input of summary statistics z scores or p values of two or three data types.

```
IMIX_ind(
   data_input,
   data_type = c("p", "z"),
   mu,
   sigma,
   p,
   tol = 1e-06,
   maxiter = 1000,
   seed = 10,
   verbose = FALSE
)
```

14 IMIX_ind

Arguments

data_input An n x d data frame or matrix of the summary statistics z score or p value, n is

the nubmer of genes, d is the number of data types. Each row is a gene, each

column is a data type.

data_type Whether the input data is the p values or z scores, default is p value

mu Initial value for the mean of each component of the independent mixture model

distribution. A vector of length 2*d, d is number of data types. Needs to be in a special format that corresponds to the initial value of mu, for example, if d=3,

needs to be in the format of (null_1,alternative_1,null_2,alternative_2,null_3,alternative_3).

sigma Initial value for the standard deviation of each component of the independent

mixture model distribution. A vector of length 2*d, d is number of data types. Needs to be in a special format that corresponds to the initial value of mu, for ex-

ample, if d=3, needs to be in the format of (null_1,alternative_1,null_2,alternative_2,null_3,alternative_3).

p Initial value for the proportion of the distribution in the Gaussian mixture model

tol The convergence criterion. Convergence is declared when the change in the

observed data log-likelihood increases by less than epsilon.

maxiter The maximum number of iteration, default is 1000

seed set.seed, default is 10

verbose Whether to print the full log-likelihood for each iteration, default is FALSE

Value

A list of the results of IMIX-ind

posterior prob Posterior probability matrix of each gene for each component

Full LogLik all Full log-likelihood of each iteration

Full MaxLogLik final

The final log-likelihood of the converged model

iterations Number of iterations run

pi Estimated proportion of each component, sum to 1

mu Estimated mean for the null and alternative of each data type: for two data types

(mu10,mu11,mu20,mu21), three data types (mu10,mu11,mu20,mu21,mu30,mu31),

mui0 is the null for data type i, mui1 is the alternative for data type i.

sigma Estimated standard deviation for the null and alternative of each data type: for

two data types (sigma10,sigma11,sigma20,sigma21), three data types (sigma10,sigma11,sigma20,sigma2

sigmai0 is the null for data type i, sigmai1 is the alternative for data type i.

References

Ziqiao Wang and Peng Wei. 2020. "IMIX: a multivariate mixture model approach to association analysis through multi-omics data integration." Bioinformatics. <doi:10.1093/bioinformatics/btaa1001>.

model_selection 15

Description

Model selection for sub-model outputs in IMIX, this step is to calculate the AIC or BIC values for one model

Usage

```
model_selection(
  loglik,
  n,
  g = 4,
  d = 2,
  modelname = c("IMIX_ind", "IMIX_ind_unrestrict", "IMIX_cor_twostep", "IMIX_cor",
        "IMIX_cor_restrict")
)
```

Arguments

loglik	Full log likelihood, result output from IMIX or a sub model in IMIX: 'Full MaxLogLik final'
n	Total number of genes
g	Number of components
d	Number of data types
modelname	The model name, default is IMIX_ind

Value

AIC/BIC values of the target model

References

Ziqiao Wang and Peng Wei. 2020. "IMIX: a multivariate mixture model approach to association analysis through multi-omics data integration." Bioinformatics. <doi:10.1093/bioinformatics/btaa1001>.

```
# First load the data
data("data_p")

# Specify the initial values
mu_input <- c(0,3,0,3)
sigma_input <- rep(1,4)
p_input <- rep(0.5,4)</pre>
```

```
# Fit the IMIX model
test1 <- IMIX(data_input = data_p,data_type = "p",mu_ini = mu_input,sigma_ini = sigma_input,
p_ini = p_input,alpha = 0.1,model_selection_method = "AIC")

# Calculate the AIC and BIC values for IMIX_ind with two data types and four components
model_selection(test1$IMIX_ind$`Full MaxLogLik final`,
n=dim(test1$IMIX_ind$`posterior prob`)[1],g=4,d=2, "IMIX_ind")</pre>
```

model_selection_component

Component Selection

Description

Model selection for components based on AIC and BIC values for models in IMIX

Usage

```
model_selection_component(
  data_input,
  data_type = c("p", "z"),
  tol = 1e-06,
  maxiter = 1000,
  seed = 10,
  verbose = FALSE
)
```

Arguments

data_input	An n x d data frame or matrix of the summary statistics z score or p value, n is the nubmer of genes, d is the number of data types. Each row is a gene, each column is a data type.
data_type	Whether the input data is the p values or z scores, default is p value
tol	The convergence criterion. Convergence is declared when the change in the observed data log-likelihood increases by less than epsilon.
maxiter	The maximum number of iteration, default is 1000
seed	set.seed, default is 10
verbose	Whether to print the full log-likelihood for each iteration, default is FALSE

Value

Selected number of components based on AIC and BIC

Component_Selected_AIC

Selected number of components by AIC with the smallest AIC value among all components and models

plot_component 17

Component_Selected_BIC

Selected number of components by BIC with the smallest BIC value among all

components and models

AIC/BIC The AIC and BIC values for all components for IMIX_ind_unrestrict, IMIX_cor_twostep,

and IMIX_cor

IMIX_ind_unrestrict

A list of the IMIX_ind_unrestrict for all components 1,2,...2^d, this step was fitted using R package "Mclust", more details of the output can be found there

IMIX_cor_twostep

A list of the IMIX_cor_twostep for all components 1,2,...2^d, here, the mean is

the estimated value of IMIX_ind_unrestrict

IMIX_cor A list of the IMIX_cor_twostep for all components 1,2,...2^d

References

Ziqiao Wang and Peng Wei. 2020. "IMIX: a multivariate mixture model approach to association analysis through multi-omics data integration." Bioinformatics. <doi:10.1093/bioinformatics/btaa1001>. Luca Scrucca, Michael Fop, T. Brendan Murphy, and Adrian E. Raftery. 2016. "mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models." The R Journal 8 (1): 289–317. <doi:10.32614/RJ-2016-021>.

Examples

```
# A toy example
data("data_p")
set.seed(10)
data <- data_p[sample(1:1000,20,replace = FALSE),]
select_comp0 <- model_selection_component(data, data_type = "p", seed = 20)

# First load the data
data("data_p")

# Perform model selections on the data
select_comp1 = model_selection_component(data_p, data_type = "p", seed = 20)</pre>
```

plot_component

Plot the AIC or BIC Values for Model Selection

Description

Plot the result output of model selection for components based on AIC and BIC values in IMIX

```
plot_component(res_select, type = c("AIC", "BIC"))
```

18 plot_component

Arguments

res_select Result output from function model_selection_component()

type Which information criteria to use for plot

Value

Plot for the model selection of components

References

Ziqiao Wang and Peng Wei. 2020. "IMIX: a multivariate mixture model approach to association analysis through multi-omics data integration." Bioinformatics. <doi:10.1093/bioinformatics/btaa1001>.

```
# First load the data
data("data_p")

# Perform model selections on the data
select_comp1 <- model_selection_component(data_p, data_type = "p", seed = 20)

# Make a plot for BIC values
plot_component(select_comp1, type = "BIC")</pre>
```

Index