Bank Direct Marketing

- PERFORMANCE EVALUATION
- ANALYTICS RECOMMENDATION

Agenda

- Executive Summary
- Campaign Performance and Analysis
- ML Approaches
- Final Thoughts and Next Step

Executive Summary

- The analysis is conducted using the direct marketing campaign data collected by a Portuguese retail bank from period of May 2008 to November 2010
- Data consist of 17 variables including demographic, financial status and campaign metrics
- Objective: Provide analytical solution to improve campaign targeting using ML approaches

- Overall, 11.7% of the target population responded and opened a term deposit account with the bank
- The analysis suggests there are opportunities to apply ML models to create a rule-based engine for target selection or to use a propensity model to help the callers to prioritize the call
- Propensity model approach could be expanded to a recommendation system for multiple other banking products/services

Profile Analysis - Who Responded?

Responder vs. Non-Responder

		Non-Responder	Responder
	Volume	39,922	5,289
	Avg. Age	40.8	41.7
	divorced	11.48%	11.76%
Marital Status	married	61.27%	52.09%
	single	27.25%	36.15%
	primary	15.68%	11.17%
Education	secondary	51.98%	46.32%
	tertiary	28.32%	37.74%
	admin.	11.37%	11.93%
	blue-collar	22.6%	13.39%
	entrepreneur	3.42%	2.33%
	housemaid	2.83%	2.06%
	management	20.43%	24.6%
Occupation	retired	4.38%	9.76%
	self-employed	3.49%	3.54%
	services	9.48%	6.98%
	student	1.68%	5.09%
	technician	16.93%	15.88%
	unemployed	2.76%	3.82%
	housing	58.1%	36.59%
Loans	default	1.91%	0.98%
and Balances	loan	16.93%	9.15%
Dalatices	Median Balance (\$)	\$417.0	\$733.0

- Responders are more likely to :
 - Be Single more discretionary spending
 - Have Higher Education higher salary and/or financially savvy
 - Maintain Higher Balance
- Responders are less likely to have:
 - Blue collar/service job
 - Consumer Loans/Mortgages
 - Default history

Responder Profile – Customer vs. Prospect

Customer vs. Prospect

		Customer	Prospect
	Volume	1,905	3,384
	Avg. Age	42.5	41.2
	divorced	9.66%	12.94%
Marital Status	married	55.12%	50.38%
	single	35.22%	36.67%
	primary	9.08%	12.35%
Education	secondary	44.88%	47.13%
	tertiary	41.0%	35.9%
	admin.	13.07%	11.29%
	blue-collar	9.66%	15.48%
	entrepreneur	1.42%	2.84%
	housemaid	1.78%	2.22%
	management	27.4%	23.02%
Occupation	retired	10.81%	9.16%
	self-employed	3.41%	3.61%
	services	6.25%	7.39%
	student	6.25%	4.43%
	technician	14.8%	16.49%
	unemployed	4.3%	3.55%
	housing	34.17%	37.94%
Loans	default	0.26%	1.39%
and Balances	loan	6.35%	10.73%
Dalalices	Median Balance (\$)	\$883.0	\$674.0

- From the responders, there is not much noticeable difference in profile between existing customer and prospects (* Prospect : New-to-Bank/First time Contacted)
- Slightly higher median balances from existing customers

Response rates by time of the year and preferred contact channel

- Higher response rates observed in September through December as customers tend to reevaluate their finances towards the end of the year
- March and April also shows relatively higher response rates likely due to upcoming tax season during April and May
- Across contact type, Cellular showed the highest response rates

Response rates by Education, Martial Status and Job titles

- 0.15

- 0.14

- 0.11

- 0.10

Consumer with Less Debt are more likely to subscribe to a term deposit

- have lower discretionary spend and hence are less keen to subscribe to a term deposit
 - → Consider suppressing those who have defaulted in the past

No discernable pattern from customer age or balance but call duration seems to be correlated with conversion

- People who subscribed to a term deposit tend to have a longer call duration
- No significant difference observed from the distributions of Age and Balance

Marginal Subscription Rate by Number of Contacts

	# Subscribed	# Subscribed Volume Remaining Marginal Subscription	
1	2561.0	45211.0	0.0566
2	1401.0	27667.0	0.0506
3	618.0	15162.0	0.0408
4	317.0	9641.0	0.0329
5	139.0	6119.0	0.0227
6	92.0	4355.0	0.0211
7	47.0	3064.0	0.0153
8	32.0	2329.0	0.0137
9	21.0	1789.0	0.0117
10	14.0	1462.0	0.0096
11	16.0	1196.0	0.0134
12	4.0	995.0	0.004

- Marginal Subscription Rate (%) by the number of contacts (Table) shows how much conversion opportunity remains after contacting X number of time for each target
- The Marginal Subscription Rate (%) flattens out as number of contacts per target increases
- With threshold of 7 contacts, about 98% of the responses are captured. Hence, to save time and effort, no more than 7 contacts should be attempted for each target

Segmentation Approach - Model Design

Algorithm

K-Medoids

A classical partitioning technique of clustering, which clusters data into k clusters In contrast to the K-Means, K-Medoids chooses data points within data as centers

Evaluate Metrics

Gower's Distance

Dissimilarity measure that also handles both numerical and categorical variables

Evaluate Metrics

Average Silhouette Score

Measures the quality of clustering achieved ranging from -1 and 1. Values near 0 indicate overlapping clusters (poor quality of clusters)

Resulting Silhouette Score Indicates overlapping clusters

- Average Silhouette Coefficient indicates the quality of clustering achieved
 - e.g. Higher Silhouette index indicates a better quality of clustering
- Practical threshold of reasonable quality clusters is 0.5
- However, 0.30-0.32 was the best with given data set indicating overlapping clusters.
 Although not ideal, further analysis in the next two slides is conducted based on this result.

Profiles by Segment

Target Audience		Segment 1	Segment 2	Segment 3
	Volume	19,396	11,336	12,461
	Avg. Age	45	33.5	40.7
Marital Status	divorced	11.63%	11.09%	12.17%
	married	86.42%	10.6%	64.06%
	single	1.95%	78.31%	23.78%
Education	primary	27.44%	6.19%	6.23%
	secondary	72.38%	77.38%	2.58%
	tertiary	0.19%	16.43%	91.2%
	admin.	14.14%	16.23%	3.35%
	blue-collar	39.72%	13.33%	0.51%
	entrepreneur	2.88%	1.7%	5.29%
	housemaid	3.95%	1.25%	2.3%
	management	2.54%	2.74%	67.51%
Occupation	retired	8.71%	0.68%	3.04%
	self-employed	2.71%	3.14%	5.29%
	services	12.74%	11.55%	1.8%
	student	0.1%	6.33%	0.3%
	technician	9.22%	39.83%	8.44%
	unemployed	3.29%	3.21%	2.18%
	housing	59.79%	57.89%	49.23%
Loans and	default	1.8%	2.03%	1.63%
and Balances	loan	18.75%	15.28%	13.96%
	Median Balance (\$)	\$425.0	\$367.0	\$567.0

Segment 1

- Mature lifestage Low/Medium Affluent Segment
- → Oldest segment, mostly married, less education, more loans and medium deposit balances

Segment 2

- Young/Emerging Professionals Segment
- → Youngest segment, mostly single, lowest deposit balance, majority secondary school

Segment 3

- Family/Mature lifestage Medium/High Affluence Segment
- → Pursued higher education, majority married, majority 'management' job

Responder Profiles and Response Rates by Segment

Responders		Segment 1	Segment 2	Segment
	Volume	1,815	1,486	1,720
	Avg. Age	49.5	31.9	41.3
	divorced	15.54%	7.6%	11.8%
Marital Status	married	82.42%	7.47%	57.91%
	single	2.04%	84.93%	30.29%
	primary	24.85%	5.38%	3.31%
Education	secondary	75.04%	70.52%	1.8%
	tertiary	0.11%	24.09%	94.88%
Occupation	admin.	16.53%	16.49%	3.95%
	blue-collar	27.66%	11.1%	0.47%
	entrepreneur	2.37%	1.62%	2.85%
	housemaid	3.31%	1.62%	1.22%
	management	2.42%	1.55%	68.95%
	retired	20.72%	0.47%	5.99%
	self-employed	1.93%	4.64%	4.53%
	services	10.3%	9.76%	1.05%
	student	0.28%	14.33%	0.47%
	technician	9.53%	34.05%	8.02%
	unemployed	4.96%	4.37%	2.5%
	housing	40.22%	40.11%	31.86%
Loans	default	0.83%	1.28%	0.81%
and Balances	loan	11.96%	9.22%	6.92%
	Median Balance (\$)	\$802.0	\$531.0	\$925.5

Segment 1

Mature lifestage Low/Medium Affluent Segment

→ Oldest segment, mostly married, less education, more loans and medium deposit balances

Segment 2

Young/Emerging Professionals Segment

→ Youngest segment, mostly single, lowest deposit balance, majority secondary school

Segment 3

• Family/Mature lifestage Medium/High Affluence Segment

→ Pursued higher education, majority married, majority 'management' job

Classification Model Approach - Model Design

Logistic Regression Extension of linear regression model for classification **Random Forest with SMOTE** Algorithm Bagging-based algorithm using a subset of features selected random to build a forest of trees **XGBoost** Tree-based ensemble algorithm using gradient boosting framework **AUC (Area Under Curve)** Evaluation metric that tells how much model is capable of distinguishing between classes **Evaluate Metrics Decile Lift** Predicted Probability by Decile / Average Rate **Shapley Value** Interpretation Average marginal contributions across all permutations

Model Comparison

	Logistic Regression	Random Forest with SMOTE	XGBoost
AUC (Area Under ROC Curve)	0.695	0.632	0.694
Time Took	12.1 sec	7.9 min	4.6 min
Recall	0.69	0.32	0.47
Precision	0.27	0.44	0.42

Model Comparison - Continued

Random Forest with SMOTE

- All three models show very similar patterns in both plots.
 - ~70% of the responses are captured within 3 deciles
 - ~300% lift around decile 2

Final Thoughts and Next Step

- A rule-based engine based on the responder profiles and exploratory analysis would provide the flexibility in the target selection. However, it may require some time and energy to reach the (sub-)optimal rule that satisfies ROI goals of the campaign.
- Propensity model gives the option to score each individual customers and choose how many of them we want to target (e.g. up to 20% or 30%?).
 - As the lift curve gradually flattens out around decile 3 and 4, we may want to consider incentivizing for those population to make the offer more attractive.
 - Consider expanding this to other banking products and services to help the contact center to prioritize the calling effort.
- With the limited data, segmentation approach was not very effective due to large amount of overlaps across clusters. More exploration needed to capture different response behaviors across different customer segments
 - Propensity models were fitted for each segment identified from segmentation exercise as an experiment.
 However, it did not show any noticeable improvement in the model performances