DS 8 Éléments de correction

N°	Elts de rép.	Pts	Note
00-00	Titre de l'exo	0	0
0	éléments de réponse	0	0

	Communication avec la Terre		
	Propagation dans le vide		
1	Maxwell-Gauss $\operatorname{div}(\vec{E}) = \frac{\rho}{\epsilon_0}$, Maxwell-Faraday $\operatorname{rot}(\vec{E}) = -\frac{\partial \vec{B}}{\partial t}$,	1	
	Maxwell-Flux $\operatorname{div}(\vec{B}) = 0$, Maxwell-Ampère $\overrightarrow{\operatorname{rot}}(\vec{B}) = \mu_0 \vec{j} +$		
	$\epsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}$. Dans le vide $\rho = 0$ et $\vec{j} = \vec{0}$ donc on obtient Maxwell-		
	Gauss $\operatorname{div}(\vec{E}) = 0$, Maxwell-Faraday $\overrightarrow{\operatorname{rot}}(\vec{E}) = -\frac{\partial \vec{B}}{\partial t}$, Maxwell-		
	Flux $\operatorname{div}(\vec{B}) = 0$, Maxwell-Ampère $\operatorname{rot}(\vec{B}) = \epsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}$.		
2	On calcule $\overrightarrow{\operatorname{rot}}\left(\overrightarrow{\operatorname{rot}}\left(\vec{E}\right)\right) = \overrightarrow{\operatorname{rot}}\left(-\frac{\partial \vec{B}}{\partial t}\right) \operatorname{donc} \ \overrightarrow{\operatorname{grad}}\left(\operatorname{div}\left(\vec{E}\right)\right) - \overrightarrow{\operatorname{grad}}\left(\overrightarrow{\operatorname{div}}\left(\vec{E}\right)\right)$	1	
	$\vec{\triangle} \left(\vec{E} \right) = -\frac{\partial}{\partial t} \left(\overrightarrow{\operatorname{rot}} \vec{B} \right) \operatorname{donc} 0 - \vec{\triangle} \left(\vec{E} \right) = -\frac{\partial}{\partial t} \left(\overrightarrow{\operatorname{rot}} \vec{B} \right) \operatorname{d'après}$		
	Maxwell-Gauss dans le vide ($\operatorname{div}(\vec{E}) = 0$), donc $-\vec{\triangle}(\vec{E}) = 0$		
	$-\frac{\partial}{\partial t}\left(\epsilon_0\mu_0\frac{\partial\vec{E}}{\partial t}\right)$ d'après Maxwell-Ampère dans le vide $(\overrightarrow{rot}(\vec{B}) =$		
	$\epsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}$). D'où l'équation de propagation $\triangle \vec{E} = \epsilon_0 \mu_0 \frac{\partial^2 \vec{E}}{\partial t^2}$		
3	On reconnait une équation de d'Alembert de la forme $\triangle \vec{E} =$	1	
	$\frac{1}{c^2} \frac{\partial^2 E}{\partial t^2}$ avec $c = \frac{1}{\sqrt{\epsilon_0 \mu_0}}$ dont les solutions ont des composantes		
	de la forme $f(x-ct)$ ou $f(x+ct)$ ou $f(y-ct)$ ou $f(r-ct)$ ou		
	ce sont des fonctions d'onde.		
4	\vec{E} est une fonction de $t-\frac{z}{c}$ donc l'onde se propage dans la direction $+\vec{e}_z$ dans le sens des z croissant, car si t augmente pour $t+\Delta t$ avec $\Delta t>0$ alors le champ électrique se reproduit identique à lui même en $z+\Delta z$ tel que $t+\Delta t-\frac{z+\Delta z}{c}=t-\frac{z}{c}$ donc $\Delta z=$	1	
	$c\Delta t > 0$. Le champ \vec{E} ne dépend pas de x et de y donc on peut la qualifier d'onde plane. L'onde se propage selon la direction et le sens $+\vec{e}_z$ donc il s'agit d'une onde plane progressive. L'onde a une dépendance temporelle de la forme $\cos(\omega t - \phi)$ c'est une fonction sinusoïdale de pulsation ω , il s'agit donc d'une onde plane progressive monochromatique.		

5	Son nombre d'onde k est défini par $k=\frac{2\pi}{\lambda}$, avec λ la longueur d'onde donc la périodicité spatiale de l'onde donc $\cos(\omega(t-\frac{z+\lambda}{c}))=\cos(\omega(t-\frac{z}{c}))$ donc $\omega\frac{\lambda}{c}=2\pi$ donc $k=\frac{2\pi}{\lambda}=\frac{\omega}{c}$.	1	
6	On est dans le vide donc l'équation de Maxwell-Gauss s'écrit $\operatorname{div}(\vec{E}) = 0$ donc $\frac{\partial}{\partial x}(\vec{E}.\vec{e}_x) + \frac{\partial}{\partial y}(\vec{E}.\vec{e}_y) + \frac{\partial}{\partial z}(\vec{E}.\vec{e}_z) = 0$ donc	1	
	$0+0+E_z(-k)\sin(\omega(t-\frac{z}{c}))=0$ donc $E_z=0$. D'où $\vec{E}=E_x\cos(\omega(t-\frac{z}{c}))\vec{e}_x$		
7	On a une onde plane progressive dans le vide donc on a les relation	1	
	de structure du champ $\underline{\vec{B}} = \frac{\vec{k}}{\omega} \wedge \underline{\vec{E}} = \frac{1}{c} \vec{e}_z \wedge (\underline{E} \vec{e}_x)$ donc $\vec{B} =$		
	$\frac{E_x}{c}\cos(\omega(t-\frac{z}{c}))\vec{e}_y$. D'où $B_x=0,B_y=\frac{E_x}{c},{ m et}B_z=0$		
8	E.k = 0 et $B.k = 0$ il s'agit donc d'une onde transversale.	1	
9	$\vec{\Pi} = \frac{\vec{E} \wedge \vec{B}}{\mu_0} = \frac{E_x B_y}{\mu_0} \cos^2(\omega (t - \frac{z}{c})) \vec{e}_x \wedge \vec{e}_y = \frac{E_x^2}{c\mu_0} \cos^2(\omega (t - \frac{z}{c})) \vec{e}_z. <$	1	
	$\vec{\Pi} > = \frac{E_x^2}{c\mu_0} < \cos^2(\omega(t-\frac{z}{c})) > \vec{e}_z = \frac{E_x^2}{2c\mu_0}\vec{e}_z$. Le vecteur de Poynting		
	est une puissance surfacique telle que la puissance transportée par		
	l'onde électrmagnétique à travers une surface S est donnée par le		
	flux de $\vec{\Pi}$ à travers cette surface $P = \iint_S \vec{\Pi} \cdot d\vec{S}$. Le vecteur de		
	Poynting a la même direction et le même sens que la direction de		
	propagation de l'onde k .		
	Réception du signal		
10	La célérité de l'onde dans le vide est c , on a donc $d = c\Delta t =$	1	
11	$5, 1.10^{1} 1 \text{ m}$	1	
11 12	on a $L = c\Delta t$ donc $L = c(t'_0 - t_0)$ donc $t'_0 = t_0 + \frac{L}{c}$	1	
12	L'émission du deuxième maximum aura lieu une période après donc $t_1 = t_0 + T = t_0 + \frac{1}{f}$. La sonde Rosetta se déplace à la	1	
	vitesse v donc elle a pu se rapprocher de la distance vT donc		
	$L' = L - vT = L - \frac{v}{f}$. Le deuxième maximum arrive à l'instant		
	$t_1' = t_1 + \frac{L'}{c} = t_0 + \frac{1}{f} + \frac{L - \frac{v}{f}}{c}$		
13	$t_1' = t_1 + \frac{L'}{c} = t_0 + \frac{1}{f} + \frac{L - \frac{v}{f}}{c}$ $T' = t_1' - t_0' = t_0 + \frac{1}{f} + \frac{L - \frac{v}{f}}{c} - (t_0 + \frac{L}{c}) = \frac{1}{f} - \frac{v}{fc} = \frac{1}{f}(1 - \frac{v}{c}).$	1	
13	$t'_{1} = t_{1} + \frac{L'}{c} = t_{0} + \frac{1}{f} + \frac{L - \frac{v}{f}}{c}$ $T' = t'_{1} - t'_{0} = t_{0} + \frac{1}{f} + \frac{L - \frac{v}{f}}{c} - (t_{0} + \frac{L}{c}) = \frac{1}{f} - \frac{v}{fc} = \frac{1}{f}(1 - \frac{v}{c}).$ Donc $f' = \frac{1}{T'} = \frac{f}{1 - \frac{v}{c}} \approx f(1 + \frac{v}{c})$	1	
13	Donc $f' = \frac{1}{T'} = \frac{f}{1 - \frac{v}{c}} \approx f(1 + \frac{v}{c})$ $v = c(\frac{f'_1}{f_1} - 1) \text{ donc } v = 1, 8.10^4 \text{ m.s}^{-1} \text{ et } f'_2 = f_2(1 + \frac{v}{c}) \text{ donc}$	1	
	Donc $f' = \frac{1}{T'} = \frac{f}{1 - \frac{v}{c}} \approx f(1 + \frac{v}{c})$ $v = c(\frac{f'_1}{f_1} - 1) \text{ donc } v = 1, 8.10^4 \text{ m.s}^{-1} \text{ et } f'_2 = f_2(1 + \frac{v}{c}) \text{ donc}$ $f'_2 = 8423, 65 \text{ MHz}$		
	Donc $f' = \frac{1}{T'} = \frac{f}{1 - \frac{v}{c}} \approx f(1 + \frac{v}{c})$ $v = c(\frac{f'_1}{f_1} - 1) \text{ donc } v = 1, 8.10^4 \text{ m.s}^{-1} \text{ et } f'_2 = f_2(1 + \frac{v}{c}) \text{ donc}$		
	Donc $f' = \frac{1}{T'} = \frac{f}{1 - \frac{v}{c}} \approx f(1 + \frac{v}{c})$ $v = c(\frac{f'_1}{f_1} - 1) \text{ donc } v = 1, 8.10^4 \text{ m.s}^{-1} \text{ et } f'_2 = f_2(1 + \frac{v}{c}) \text{ donc}$ $f'_2 = 8423, 65 \text{ MHz}$ Prise en compte de l'ionosphère $\vec{F} = q(\vec{E} + \vec{v} \wedge \vec{B}), \text{ et } \left \frac{q\vec{v} \wedge \vec{B}}{a\vec{E}} \right \approx \left \left \frac{vB}{E} \right \right \approx \frac{v}{c} \ll 1$		
14	Donc $f' = \frac{1}{T'} = \frac{f}{1 - \frac{v}{c}} \approx f(1 + \frac{v}{c})$ $v = c(\frac{f'_1}{f_1} - 1) \text{ donc } v = 1, 8.10^4 \text{ m.s}^{-1} \text{ et } f'_2 = f_2(1 + \frac{v}{c}) \text{ donc}$ $f'_2 = 8423, 65 \text{ MHz}$ $\overrightarrow{F} = q(\vec{E} + \vec{v} \wedge \vec{B}), \text{ et } \left\ \frac{q\vec{v} \wedge \vec{B}}{q\vec{E}} \right\ \approx \left\ \frac{vB}{E} \right\ \approx \frac{v}{c} \ll 1$ Pour les ions positifs on a $m_p \frac{d\vec{v}_p}{dt} = +e\vec{E}$ et pour les électrons	1	
14	Donc $f' = \frac{1}{T'} = \frac{f}{1 - \frac{v}{c}} \approx f(1 + \frac{v}{c})$ $v = c(\frac{f_1'}{f_1} - 1) \text{ donc } v = 1, 8.10^4 \text{ m.s}^{-1} \text{ et } f_2' = f_2(1 + \frac{v}{c}) \text{ donc}$ $f_2' = 8423, 65 \text{ MHz}$ Prise en compte de l'ionosphère	1	

17	$\vec{j} = \rho_p \vec{\underline{v}}_p + \rho_e \vec{\underline{v}}_e = ne\vec{\underline{v}}_p - ne\vec{\underline{v}}_e = ne(\vec{\underline{v}}_p - \vec{\underline{v}}_e) = \frac{ne^2}{i\omega} (\frac{1}{m_e} + \frac{1}{m_e}) \vec{\underline{E}}$	1	
	or $m_p\gg m_e$ donc $\vec{j}=-i\frac{ne^2}{\omega m_e}\vec{\underline{E}}$		
18	L'équation de Maxwell-Ampère est $\overrightarrow{rot}(\vec{B}) = \mu_0 \vec{j} + \epsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t}$ or $\vec{j} =$	1	
	$-i\frac{ne^2}{\omega m_e}\vec{E} \operatorname{donc} \vec{j} = -\frac{ne^2}{\omega^2 m_e}i\omega\vec{E} \operatorname{donc} \vec{j} = -\frac{ne^2}{\omega^2 m_e}\frac{\partial \vec{E}}{\partial t} \operatorname{donc} \vec{\operatorname{rot}}(\vec{B}) = -\frac{ne^2}{\omega^2 m_e}i\omega\vec{E}$		
	$-\mu_0 \frac{ne^2}{\omega^2 m_e} \frac{\partial \vec{E}}{\partial t} + \epsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t} \text{ donc } \overrightarrow{\text{rot}}(\vec{B}) = (1 - \frac{ne^2}{m_e \epsilon_0 \omega^2}) \epsilon_0 \mu_0 \frac{\partial \vec{E}}{\partial t} \text{ donc}$		
	$\omega_p = \sqrt{rac{ne^2}{m_e\epsilon_0}}$		
19	$\overrightarrow{\operatorname{rot}}(\vec{B}) = (1 - \frac{\omega_p^2}{\omega^2})\epsilon_0\mu_0\frac{\partial \vec{E}}{\partial t} \operatorname{donc} \overrightarrow{\operatorname{rot}}(\frac{\partial \vec{B}}{\partial t}) = (1 - \frac{\omega_p^2}{\omega^2})\epsilon_0\mu_0\frac{\partial^2 \vec{E}}{\partial t^2}$	1	
	$ \operatorname{donc} -\overrightarrow{\operatorname{rot}}(\overrightarrow{\operatorname{rot}}(\vec{E})) = (1 - \frac{\omega_p^2}{\omega^2})\epsilon_0 \mu_0 \frac{\partial^2 \vec{E}}{\partial t^2} \operatorname{donc} - \overrightarrow{\operatorname{grad}} \left(\operatorname{div}\left(\vec{E}\right)\right) +$		
	$\vec{\triangle} \left(\vec{E} \right) = (1 - \frac{\omega_p^2}{\omega^2}) \epsilon_0 \mu_0 \frac{\partial^2 \vec{E}}{\partial t^2} \text{ or } \rho = 0 \text{ donc } \vec{\triangle} \left(\vec{E} \right) = (1 - \frac{\vec{E}}{2})$		
	$\left(\frac{\omega_p^2}{\omega^2}\right)\epsilon_0\mu_0\frac{\partial^2\vec{E}}{\partial t^2}$ en notation complexe $(-ik)^2\vec{E} = (1-\frac{\omega_p^2}{\omega^2})\epsilon_0\mu_0(i\omega)^2\vec{E}$		
	donc $k^2 = (1 - \frac{\omega_p^2}{\omega^2})\epsilon_0\mu_0\omega^2$ donc $k^2 = (1 - \frac{\omega_p^2}{\omega^2})\frac{\omega^2}{c^2}$. Cette relation est nommée relation de dispersion.		
20	Pour $\omega < \omega_p$ on a $k^2 < 0$ donc k est imaginaire pur, il n'y a pas	1	
	de propagation de l'onde, on parle d'onde évanescente.		
21	Pour $\omega > \omega_p$, k est réel donc $v_{\phi} = \left \frac{\omega}{k} \right = \sqrt{\frac{\omega^2}{k^2}} = \sqrt{\frac{\omega^2 c^2}{(1 - \omega_p^2/\omega^2)\omega^2}} = 0$	1	
	$\frac{c}{\sqrt{1-\omega_p^2/\omega^2}}$. Et $k^2 = \frac{\omega^2-\omega_p^2}{c^2}$ donc $2kdk = \frac{2\omega d\omega}{c^2}$ donc $v_g = \frac{d\omega}{dk} = \frac{d\omega}{dk}$		
	$\frac{c^2k}{\omega} = \frac{c^2}{v_{\phi}} = c\sqrt{1 - \frac{\omega_p^2}{\omega^2}}$. On remarque que la vitesse de phase		
	$d\acute{e}$ pend $d\acute{e}$ la pulsation donc le milieu est dispersif, et que la vitesse		
	de groupe est inférieure à la célérité de la lumière dans le vide ce		
	qui est cohérent avec la relativité restreinte.		
22	Pour $\omega \gg \omega_p$ on a $\frac{\omega_p^2}{\omega^2} \ll 1$ donc $v_\phi \approx v_g \approx c$. On retrouve les	1	
	vitesses de phase et de groupe du vide. Par le choix des fréquences on a $\omega_p \ll f_1, f_2$ donc la ionosphère est transparente et non-		
	dispersive comme le vide à ces fréquences là.		
	Contrôle non destructif (CND) par courants de Foucault		
	Expression approchée du champ magnétique \vec{B} créé par		
	la bobine excitatrice dans la plaque		
23	Le plan $(M, \vec{e_r}, \vec{e_z})$ est un plan d'anti-symétrie de la distribution	1	
	de courant, donc c'est un plan de symétrie pour le champ \vec{B} donc		
	$\vec{B} \in (M, \vec{e_r}, \vec{e_z}) \text{ donc } \vec{B} = B_r(r, \theta, z, t)\vec{e_r} + B_z(r, \theta, z, t)\vec{e_z}$. La dis-		
	tribution de courant est invariante par rotation d'angle θ autour		
	de l'axe (Oz) donc $\vec{B} = B_r(r, z, t)\vec{e}_r + B_z(r, z, t)\vec{e}_z$.		

24	la carte 1 correspond a une bobine seule donc il n'y a pas de perturbation des lignes de champ, il s'agit de la première simulation en figure 3. La carte 3 correspond à une fréquence plus élevée que la carte 2. Or dans la limite d'une fréquence nulle, la présence d'une plaque conductrice ne modifie pas le champ magnétostatique (pas d'induction, pas de courant de Foucault, équation de Maxwell-Flux et Maxwell-Ampère en statique ne font pas intervenir \vec{E}). Donc la troisième simulation qui se rapproche le plus de la première est la carte 2. Enfin la carte 3 est associée à la deuxième simulation.	1	
25	On lit la valeur de $ B $ en $x=2,5$ cm ou en $z=6$ cm comme $B_0=0,003$ T.	1	
26	Calcul du champ sur l'axe d'un solénoïde infini, voir cour on a montré à la question 23 que $\vec{B} = B_r(0,z,t)\vec{e}_r + B_z(0,z,t)\vec{e}_z$. Or si le solénoïde est infini le plan $(M,\vec{e}_r,\vec{e}_\theta)$ est un plan de symétrie donc c'est un plan d'anti-symétrie du champ donc $\vec{B} = B_z(0,z,t)\vec{e}_z$, et il y a invariance par translation selon \vec{e}_z donc $\vec{B} = B_z(t)\vec{e}_z$. Puis on choisit un contour fermé rectangulaire de hauteur l_b et de rayon plus grand que le rayon de la bobine dont un côté passe par l'axe (Oz), le théorème d'ampère s'écrit alors sur ce contour $B_z(t)l_b + 0 + 0 = \mu_0 Ni_0 \cos(\omega t)$ avec comme hypothèse que le champ est nul à l'extérieur du solénoïde. Donc $B_z(t) = \frac{\mu_0 Ni_0}{l_b} \cos(\omega t)$. On en déduit que $B_0 \cos(\omega t) = \alpha B_z(t)$ donc $B_0 = \alpha \frac{\mu_0 Ni_0}{l_b}$. Graphiquement $\alpha = \frac{B_0 l_b}{\mu_0 Ni_0} = \frac{ B (z=6cm)}{ B (z=0cm)} = 0,5$	1	
	Courants de Foucault		
27	L'équation de Maxwell-Faraday est $\overrightarrow{rot}(\vec{E}) = -\frac{\partial \vec{B}}{\partial t}$ d'après le théorème de Stokes on obtient la forme intégrale $\oint_C \vec{E}.\vec{dl} = -\frac{d}{dt}(\iint_S \vec{B}.\vec{dS})$ avec S la surface contenue dans le contour fermé C et orientée par C . Comme contour C on choisit un cercle dans le plan d'équation $z = l_b/2$, de rayon r et de centre sur l'axe (Oz). L'énoncé indique que le champ électrique est orthoradial $\vec{E} = E(r, \theta, t)\vec{e}_{\theta}$. Par invariance par rotation d'angle θ on a $\vec{E} = E(r, t)\vec{e}_{\theta}$ donc la forme intégré de l'équation de Maxwell-Faraday donne après intégration $E(r, t) \times (2\pi r) = \frac{d}{dt} \left(-B_0 \cos(\omega t) \pi r^2 \right)$, donc $E(r, t) = \frac{r\omega B_0}{2} \sin(\omega t)$. D'où $\vec{E} = \frac{r\omega B_0}{2} \sin(\omega t)\vec{e}_{\theta}$.	1	

28	D'après la loi d'Ohm locale $\vec{j} = \gamma_0 \vec{E}$ donc $\vec{j} = \frac{\gamma_0 r \omega B_0}{2} \sin(\omega t) \vec{e}_{\theta}$	1	
	Modification de l'impédance de la bobine excitatrice		
29	L'amplificateur fonctionne en régime linéaire donc d'après l'annexe $2\ V_+ = V = Y_1$. L'amplificateur est idéal donc $i_+ = 0$ donc $R_g i_+ = 0$ donc $e(t) = V_+$ donc $Y_1 = e(t)$. L'annexe 1 décrit que l'on enregistre la réponse du filtre $(R,L) - R'$ à un échelon de tension $e(t)$. La tension de l'échelon 0 et $E = 5,00$ V est inférieur aux bornes de saturation de l'amplificateur $ V_s = 12$ V, la durée d'acquisition est de 20 ms et la période de répétition 1 ms plus grande que la durée du régime transitoire lue sur le chronogramme $5 \times 78,4$ µs. La fréquence d'échantillonnage de la carte d'acquisition est de $f_e = 50$ kHz ce qui est supérieur à $\frac{2}{\tau}$ avec $\tau = 78,4$ µs la durée du régime transitoire, donc le théorème de Shannon est respecté. En régime permanent la bobine ce comporte comme une résistance, on a donc un pont diviseur de tension $\frac{Y_2}{Y_1} = \frac{R'}{R+R'}$ donc $R = R'(\frac{E}{Y_{2,\infty}} - 1) \approx 50$ Ω . La durée du régime transitoire d'un filtre $L - R$ est donnée d'après l'équation différentielle au premier	1	
30	ordre par $\tau = \frac{L}{R}$ donc $L = R\tau = 3,9$ mH Dans le cadre de l'effet joule, la puissance cédée par le champ électromagnétique au porteur de charge est donné par $P_J = \iiint \vec{j} . \vec{E} dV$ or dans un conducteur ohmique $\vec{j} = \gamma_0 \vec{E}$ donc $P_J = \iiint \gamma_0 E^2 dV > 0$, donc la bobine cède de l'énergie aux porteurs de charge dans la plaque donc la puissance électrique moyenne reçue par le système bobine + plaque augmente par rapport à la bobine seule donc $p = \langle UI \rangle = R \langle I^2 \rangle$ augmente donc R augmente.	1	
31	En comparant la première et troisième simulation, qui sont à la même fréquence, on remarque que lorsque on ajoute la plaque, l'amplitude du champ magnétique $ B $ diminue. Donc le flux du champ magnétique à travers la section de la bobine diminue. Donc l'inductance de la bobine diminue, donc la partie imaginaire de l'impédance de la bobine diminue.	1	
32		1	
33		1	
34		1	
35		1	
36		1	
37		1	
	Évolution de Z en présence d'un défaut		
38		1	
39		1	