

Thapar Institute of Engineering & Technology (Deemed to be University)

Bhadson Road, Patiala, Punjab, Pin-147004

Contact No.: +91-175-2393201 Email: info@thapar.edu THAPAR INSTITUTE
OF ENGINEERING & TECHNOLOGY
(Deemed to be University)

The atoms do not necessarily lie at lattice points!!

Lattice + Basis = Crystal Structure

We can have more than one atoms, ions and molecules at each lattice point.

 $\overrightarrow{R} = n_1 \overrightarrow{a} + n_2 \overrightarrow{b}$, "a" and "b" are the repeating distance in 2-D

The repetition of translation vector R gives the crystal structure in 2-D

$$R = n_1 \vec{a} + n_2 \vec{b} + n_3 \vec{c}$$

repeating distance in 2-D

"a" and "b" and "c" are the

The repetition of translation vector R gives the crystal structure in 3-D

Lattice points

Simple cubic lattice cell

Lattice points in a unit cell: 1/8 * 8 = 1

Body-centered cubic structure

Lattice points in a unit cell: 1/8 * 8 + 1= 2

Closed packed structures

Closed packed structures have highest density in a unit cell

Hexagonal closed packed cubic (HCP)

Both FCC and HCP are closed packed structures

Showing 3 unit cells and the rhombic prism UC

Face centered cubic (FCC)

Both FCC and HCP are closed packed structures

Lattice points in a unit cell: 1/8 * 8 + 1/2 * 6 = 4

SC: a = 2r

BCC: $a\sqrt{3} = 4r$ (body diagonal)

FCC: $a\sqrt{2} = 4r$ (face diagonal)

Co-ordination number(CN)

No. of nearest neighbors (No. of atoms touching)

FCC

Atomic Packing Fraction (APF)

Packing density of the monoatomic unit cell

Atom is assumed as a hard sphere

$$APF = \frac{\text{No of atoms in a unit cell} \times \text{Volume of one atom}}{\text{Volume of the unit cell}}$$

Unit cell is cubic So a³

Structure	No. of atoms	APF
SC	1	52%
BCC	2	68%
FCC	4	74%

Density of a Material

Density of a crystalline material can be calculated by

Summary

- 1. Lattice + basis gives the crystal structure.
- 2. A lattice point can have more than one atom at its position.
- 3. Co-ordination number is the number of atoms touching to the particular atom.
- 4. CN of SC is 6, BCC is 8, and of FCC and HCP is 12.
- 5. Both FCC and HCP are closed packed structure.
- 6. In FCC, the atomic layer arrangement is like ABC ABC ABC.
- 7. In HCP, the atomic layer arrangement is like AB AB AB.
- 8. Monoatomic unit cell has equal number of atoms and lattice points.

Assignments

- 1. What is mean by monoatomic cubic crystal?
- 2. Find the APF of SC, BCC and FCC unit cells.
- 3. Gold has atomic weight 197 and the density 19.3 gm/cc. What is the spacing between atoms in solid gold?
- 4. Cu has FCC structure and its atomic radius is 1.278 Å. Calculate the theoretical density of Cu. Atomic weight of Cu is 63.54 gm/mole.
- 5. Ti undergoes a phase change from BCC to HCP at 880°C on cooling. Calculate the percentage change in the volume. Given lattice parameter a_{BCC} = 3.32 Å, a_{HCP} = 2.956 Å, c = 4.683 Å.
- 6. Iron (atomic weight 56.05 gm/mole) change from BCC to FCC at 910 °C. At this atomic radius of iron is 1.258 Å in BCC and 1.298 Å in FCC. What is the percentage of (a) volume change and (b) linear change in iron when heated through this temperature range?
- 7. Aluminum has FCC structure. Its density is 2700 Kg/m³. Calculate the unit cell dimension and the atomic diameter.

