Unit II: Data Modeling

Dr. Anushree Tripathi

Department of Computer Science and Engineering National Institute of Technology Patna (NITP)

Overview

- Design of an E-R database schema
- ➤ Design phases
- Database design for banking enterprise
- Reduction of an E-R schema to tables

Design of an E-R database schema

Design of an E-R database schema (contd.)

Characterization of data requirement

Select data model

Conceptual design

Logical design

Physical design

Data requirements

Characteristics	Bank branches
	Bank customers
	Bank employees
	Bank offers
	Bank loan

Entity sets designation

branch

branch_name branch_city assets

customer

customer-id, customer-name, customer-street, customer-city

employee

employee-id,
employee-name,
telephone-number
salary
manager

Savings-account checking-account

Account-number balance

Loan

loan-number amount originating branch

Loan-payment

payment-number payment-date payment-amount

Relationship sets designation

Borrower

Many-to many between customer and loan

loan-branch

many-to-one relationship set

loan-payment

one-to-many

Depositor

Many-to many between customer and account

cust-banker

many-to-one between bank employee and customer

works-for

Database design for banking enterprise E-R Diagram

- Relational database design from E-R diagram
- > Tabular representation of strong entity sets
- ➤ Tabular representation of weak entity sets
- > Tabular representation of relationship sets
- Redundancy of tables
- Combination of tables
- Composite attributes
- Multivalued attributes
- ➤ Tabular representation of generalization
- Tabular representation of aggregation

Tabular representation of strong entity sets

- E : Strong entity set
- $\triangleright a_1, a_2, ..., a_m$: Descriptive attributes of E
- E: Table with n distinct columns
- Example: *loan* entity has two attributes including *loan-number* and *amount*
- D₁ : Set of all loan numbers
- D₂: Set of all balances
- Set of all possible rows of loan as cartesian product of D₁ and D₂
 - $D_1 \times D_2$
- A table of n columns, cartesian product of D_1 , D_2 ,..., D_n $D_1 \times D_2 \times ... \times D_{n-1} \times D_n$

Tabular representation of strong entity sets (contd.)

Example of *loan* table

loan-number	amount
L-11	900
L-14	1500
L-15	1500
L-16	1300
L-17	1000
L-23	2000
L-93	500

Example of customer table

customer-id	customer-name	customer-street	customer-city
019-28-3746	Smith	North	Rye
182-73-6091	Turner	Putnam	Stamford
192-83-7465	Johnson	Alma	Palo Alto
244-66-8800	Curry	North	Rye
321-12-3123	Jones	Main	Harrison
335-57-7991	Adams	Spring	Pittsfield
336-66-9999	Lindsay	Park	Pittsfield
677-89-9011	Hayes	Main	Harrison
963-96-3963	Williams	Nassau	Princeton

Tabular representation of weak entity sets

- A: Weak entity set with attributes
- $a_1, a_2, ..., a_m$: Attributes of A
- B: Strong entity set
- b₁, b₂,..., b_n: primary key of attributes of B
- Representation of entity set A by a table A with one column for each attribute of the set:

$$\{a_1, a_2, \ldots, a_m\} \cup \{b_1, b_2, \ldots, b_n\}$$

Tabular representation of weak entity sets

- Loan-number: Primary of loan entity set, on which payment depends
- Payment: four columns, loan number, payment-number, payment-date and payment-amount

loan-number	payment-number	payment-date	payment-amount
L-11	53	7 June 2001	125
L-14	69	28 May 2001	500
L-15	22	23 May 2001	300
L-16	58	18 June 2001	135
L-17	5	10 May 2001	50
L-17	6	7 June 2001	50
L-17	7	17 June 2001	100
L-23	11	17 May 2001	75
L-93	103	3 June 2001	900
L-93	104	13 June 2001	200

Tabular representation of relationship entity sets

- R: relationship set
- a₁, a₂,..., a_m: Set of attributes formed by the union of primary keys of each entity sets participating in R
- b₁, b₂,..., b_n: Descriptive attributes of R if any
- R: Table of relationship set with one column for each attribute of set:

$$\{a_1, a_2, \ldots, a_m\} \cup \{b_1, b_2, \ldots, b_n\}$$

Tabular representation of relationship entity sets (contd.)

Example

borrower involves two entity sets:

- customer, with primary key customer-id
- ▶ loan, with primary key loan-number

customer-id	loan-number
019-28-3746	L-11
019-28-3746	L-23
244-66-8800	L-93
321-12-3123	L-17
335-57-7991	L-16
555-55-5555	L-14
677-89-9011	L-15
963-96-3963	L-17

Tabular representation of relationship entity sets Redundancy of tables

- Primary key of payment: {loan-number, payment-number}
- Primary key of *loan*: {loan-number}
- loan-payment table: {loan-number, payment-number}
- Payment table: {loan-number, payment-number, payment-date, payment-amount}
- Redundancy shown by loan-payment table

Relationship set linking weak entity to its corresponding strong entity set is redundant and need not be present in tabular representation

Tabular representation of relationship entity sets Combination of tables

- Many-to-one relationship set AB from entity set A to entity set B
- Three tables: A,B,AB
- Participation of A in the relationship is total
- Every entity a in the entity set A must participate in the relationship AB
- Combination of tables A and AB to form a single table consisting of union of columns of both tables

Tabular representation of relationship entity sets Combination of tables (contd.)

- Total participation of account in the account-branch
- Relationship set account-branch is many-to-one from account to branch
- Combine account-branch table with table for account and require only two tables:
- > account: account-number, balance and branch-name
- > branch: branch-name, branch-city and assets

Reduction of an E-R schema to tables Composite attributes

- No separate column is required for composite attribute itself
- Example
- address: Composite attribute of entity set customer include columns of address-street and address-city
- ➤ No separate column is required for *address*

Multivalued attributes

- New tables are created for each multivalued attributes
- For a M, create a T with C that corresponds to M and columns corresponding to primary key of entity set or relationship set of which M is an attribute
- M: Multivalued attribute
- ➤ T: Table
- C: Column

Multivalued attributes

Multivalued attributes

dependentname

Multivalued attribute

Relational database

Table: dependentname

Columns: dname, employee-id, primary key of entity set employee

Each dependent of employee represented as a unique row in the table

Tabular representation of generalization

Two methods

Create table for higher-level and lower-level entity set. Table includes a column for each of attributes of lower-entity set and a column for each attribute of primary key.

Example:

account: account-number and balance (attributes) savings-account: account-number and interest-rate checking-account: account-number and overdraft-amount

Create table for lower-level entity set, if generalization is joint and complete. Table includes a column for each of the attributes of that entity set and a column for each attribute of higher-level entity set

Example:

savings-account: account-number, balance and interestrate

checking-account: account-number, balance and overdraft-amount

Tabular representation of aggregation

Table for *manages*

- A column for each attribute in primary keys of entity set manager and relationship set works-on
- A column for descriptive attribute, if any