10.1 Curves Defined by Parametric Equations

$$y = f(x)$$

$$x = g(y)$$

Suppose x and y are functions of a third variable t (called a parameter) given by the equations

$$x = f(t)$$
 $y = g(t)$

called parametric equations.

Each value of t determines a point (x,y) = (f(t),g(t)).

As t varies these points trace out a curve C, which is called a parametric curve.

Ex | Sketch and identify the curve given by para. eqns.

Eliminating the parameter:

$$x = t^{2} - 2t \qquad y = t + 1$$

$$\Rightarrow t = y - 1$$
substitute

$$X = (y-1)^{2} - Z(y-1)$$

$$X = y^{2} - 4y + 1$$

In Ex1 no restriction was placed on parameter t, but it can be restricted to an interval.

$$X = t^2 - Zt$$
 $y = t + 1$, $0 \le t \le 4$

In general,

$$x = f(t)$$
 $y = g(t)$, $a \le t \le b$
has intitial point $(f(a), g(a))$ and
terminal point $(f(b), g(b))$.

Ex 2 What curve is represented by the following para. equations

$$x = cost$$
 $y = sint$ $0 \le t \le 2\pi$

Sol

To eliminate the parameter consider the identity

$$\cos^2 t + \sin^2 t = 1$$

$$\Rightarrow x^2 + y^2 = 1$$

In general the para. eqns. for a circle centered at (h,k) with radius r are given by

Ex3 Sketch the curve with para. egns.

$$x = \sin t$$
 $y = \sin^2 t$

$$\frac{Sol}{y = (sin+)^2 = x^2}$$

Be Careful!

Since -1 \(\) \(\) \(-1 \) \(\)

Graphing using Parametric Egns

Use a graphing device to graph $x = y^4 - 3y^2$.

If we let parameter
$$t=y$$
 then we have $x = t^4 - 3t^2$ $y = t$

Practice Problems

- 1) Sketch the curve given by $x = t^3 + t$ $y = t^2 + 2$, $-2 \le t \le 2$
- 2) $x = e^{t}$ $y = e^{-zt}$
 - a) Eliminate the parameter to find a Cartesian eqn. of the curve b) Sketch the curve
- 3) Eliminate the parameter

$$X = 3 + 2 \sin t$$
 $y = -1 + 4 \cos t$

Solutions

1)
$$x = t^3 + t$$
 $y = t^2 + 2$, $-2 \le t \le 2$

+	X	4
-2	-10	6
-)	-2	3
0	0	2
1	2	3
2	10	6

2)
$$x = e^{t}$$
 $y = e^{-2t}$

a) Eliminate parameter:

$$y = e^{-zt} = (e^{t})^{-2} = x^{-2} = \frac{1}{x^{2}}$$

So $y = \frac{1}{x^2}$ but since $e^{t} > 0$ we must also have x > 0.

$$y = \frac{1}{x^2}, x > 0$$

3)
$$X = 3 + 2 \sin t$$
 $y = -1 + 4 \cos t$, $0 \le t \le \pi$

We can use identity cos2++sin2+=1 by solving each eqn cost and sint.

$$X = 3 + 2 sint$$

$$\Rightarrow$$
 sint = $\frac{x-3}{2}$

$$\Rightarrow$$
 cost = $\frac{y+1}{4}$

So
$$\sin^2 t + \cos^2 t = 1$$

$$\left(\frac{x-3}{2}\right)^2 + \left(\frac{y+1}{4}\right)^2 = 1$$

Additional Exercises (10.1) 7, 9, 11, 20