Classic Co.		
		Date
	Expt. No	ge No
	C	
-	Experiment-5	
	Aim-i To find the thermal conductivity of a poor by Lee's method.	, conductor
_	Apparatus -: Copper disc apparatus two celsius steam boiler, stopuntch, specimen in the form disc, screw gauge and vernier calipers.	
_	disc, screw gangland vernier calipers.	
	Formula/Theory:	
_	Formula Theory: The coefficient of thermal conductivity Ki K=msd. (d0) Tr2(0,-0,) (dt) 0=02	s given by
	$\frac{K = msd}{\pi s^2 (\theta_1 - \theta_2)} \left(\frac{dt}{dt} \right) \theta = \theta_2$	
-		
	where m: mass of disc	
	where mi mass of disc s'specific next of material of the disc	
	riradius of specimin disc	
	d: thickness of specimen B.	
	2: steady temperatury at thermometer	2
	r: radius of specimin disc d: thickness of epscimen B. D: steady temperatury at thermometer D: steady temperature at thermometer 7	-
	do = slope at the tangent	
	Observations	
	Steady temperature at 0 = 96°C	
	Steady temperature at 0, = 96°C Steady temperature at 0, = 92°C	

Teacher's Signature:

For Funding (20) 0002

Time (b) is seconds	Temperature (0) in c
30	95
30	93
30	92
30	90
30	89
30	88
30	86
30	8.5
30	84
30	82
30	81.5
30	80
30	79.5
30	78
30	7.4
30	76
30	75
30	74
30	72.5
30	31.5

	Date
Expt. No	Page No.
Mass of disc B = 39.8409	
Specific heet of the material of disc(s Radius of the experimental disc (r) = 9.0) = 0.11cel/g °C
Radius of the experimental disc (1) = 9.0	2+5/100 = 4.975am
Thickness of the experimental disc = 0	100
Result: - The thermal conductivity of a pool Lee's method = 0.03 call cur's see	or conductor by
P. +:	
token before slanting experiment.	l disc should be
Readings for dand of the experiment a taken before sharting experiment. 2) The steady temperature should be obtained in the graph temperature waries versus time is a paper scale.	Very accurately. is platted by choosing
(1) The slope is determined at 0 = 0; carefull	y .

Teacher's Signature :

Date		_	_	_				_		

Expt. No.....

Page No.

Experiment-6

i) the conc of charge carriers, nand

if the hell coefficient Rn

A current carrying conductor (semi-conductor) is placed in the magnetic field perpendicular to the direction of current, a voltage is developed across the conductor in a direction perpendicular to both the current and magnetic field. The effect is known as Hall effect.

This effect is very useful in determining!

· Carrier concentration or the density of charge carrier.

Mobility of charge carriers.

Expression of Hall voltage and Hall coefficient.

The accumulation of positive and negative charge on the opposite faces result in the development of voltage a was the two ends called Hall voltage (Vy). The corresponding Hall electric field is denoted by En.

The force due to the electric field on a current carrier of charge is $e E_{\mu}$. while the force due to transverse magnetic field is $e V_{B}$ where V is drift velocity of current carrier

OBSERVATIONS

width of specimen, w= 4mm thickness of specimen, d= 0-5 mm B= 380 gauss

5 No	(in mA)	Hall Voltage	Hall coefficient (R)
1.	1.28	0.031	0.1376× 10-2
2	2.19	0.112	0.290X 10-7
3.	3.56	0.114	0.1819 x 10-7
ч.	4.60	0.151	0-1865 × 107
5	5.70	0.090	0.1890×10-7

Mean R = 0497 x107

Carrier Concentration:

n. 1 = 3.172×1006

where es 1-6 × 10 C

	Date
Expt. No.	Page No.
The two forces being oppositively directed condition.	for equilibrium
condition.	
$eE_H = eV_B$ =) $[E_H = V_B]$	
if w weidth and d is thickness of specimes	a, A=wd
I=neAv=nwdev	
$I = neAv = nwdev$ $V_{\mu} = E_{\mu}d = v_{B} \times I = B$	<u>r</u>
nwev nu) L
$V_{N} = B I$ new	
PROLEDURE:-	
" connect one pair of contact of specimen on t	he opposite
face to the current sources and other po	is to the
milli-voltmeter/multimeter	
2. Sweitch ON the Power supply of electroma	guet and measure
the mainetic flux density at the centre	ofw the poer
Jaces by placing the tip of hall probe	all - Man do mas
change the current in the electro magnet.	the pale faces
3) Place the specimen at the center between	pendicular in
such that the magnetic field is per	,

The etrip.

(a) Pass the current (mA) from the current source through

the specimen and measure the resulting Hall voltage in

the multimeter / millimeter. Interthese value in obs. table.

Teacher's Signature:

	Date				
Expt. No.	Page No				
(3) Increase the current through the measure the corresponding Hall vo (6) The entire process can be repeated magnetic flux density. Find the	experimen gradually and ltages. for different values of mean at difference Rn.				
RESULT:- The hall coefficient is found to concentration is 3.172 × 10 ²⁶ .					
	Teacher's Signature:				