Proposta de aprimoramento para o protocolo de assinatura digital Quartz

Ewerton Rodrigues Andrade

ewe@ime.usp.br

Instituto de Matemática e Estatística - IME Universidade de São Paulo - USP

Agência de fomento:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES

Defesa de Dissertação de Mestrado

27 de agosto de 2013

Banca Examinadora:

Prof Dr Routo Terada – IME/USP Prof Dr Marco Dimas Gubitoso – IME/USP Prof^a Dr^a Denise Hideko Goya – CMCC/UFABC

Sumário

- Introdução
 - Motivação
 - Objetivos
 - Contribuições
- 2 Criptossistemas de Chave Pública Multivariada
 - Problema MQ.
 - Problema do Isomorfismo de Polinômios
 - Principais MQ-Trapdoors
 - Modificadores Genéricos
 - Hidden Field Equations HFE
- Quartz Original e Quartz Aprimorado
 - Quartz Original
 - SHA-1
 - Quartz Aprimorado
 - Quartz Aprimorado x Outros Protocolos
- 4 Testes Realizados
 - Tempos Obtidos
- Considerações Finais

Sumário

- Introdução
 - Motivação
 - Objetivos
 - Contribuições

Criptossistemas de Chave Pública Multivariada

- Problema MG
- Problema do Isomorfismo de Polinômios
- Principais MQ-Trapdoors
- Modificadores Genéricos
- Hidden Field Equations HFE

Quartz Original e Quartz Aprimorado

- Quartz Original
- SHA-
- Quartz Aprimorado
- Quartz Aprimorado x Outros Protocolos
- Testes Realizados
- Tempos Obtidos
- Considerações Finais

Criptossitemas Clássicos (Quânticos)

- Diffie e Hellman (1976) propõem "solução" para troca segura de informações sobre canal inseguro (cript. pública) [DH76];
- São criptossistemas baseados na teoria dos números;
- Estes sistemas criptográficos são os "adotados" até hoje.
 - Fatoração de Inteiros (RSA)
 - Logaritmo Discreto (ElGamal / Curvas Elípticas)

Criptossitemas Clássicos (Quânticos)

- Diffie e Hellman (1976) propõem "solução" para troca segura de informações sobre canal inseguro (cript. pública) [DH76];
- São criptossistemas baseados na teoria dos números;
- Estes sistemas criptográficos são os "adotados" até hoje.
 - Fatoração de Inteiros (RSA)
 - Logaritmo Discreto (ElGamal / Curvas Elípticas)

Origem dos Criptossitemas Modernos (Pós-Quânticos)

- Deutsch (1985) propõe opção mais poderosa que a máquina universal de Turing: O computador quântico [Deu85];
- Shor (1997) formula algoritmo polinomial quântico para fatoração de inteiros e cálculo do logaritmo discreto [Sho97].

Criptossitemas Clássicos (Quânticos)

- Diffie e Hellman (1976) propõem "solução" para troca segura de informações sobre canal inseguro (cript. pública) [DH76];
- São criptossistemas baseados na teoria dos números;
- Estes sistemas criptográficos são os "adotados" até hoje.
 - Fatoração de Inteiros (RSA)
 - Logaritmo Discreto (ElGamal / Curvas Elípticas)

Origem dos Criptossitemas Modernos (Pós-Quânticos)

- Deutsch (1985) propõe opção mais poderosa que a máquina universal de Turing: O computador quântico [Deu85];
- Shor (1997) formula algoritmo polinomial quântico para fatoração de inteiros e cálculo do logaritmo discreto [Sho97].
- Evolução natural do poder computacional e das criptoanálises.

Possíveis Abordagens da CPQ

- Desenvolver/Aprimorar sistemas criptográficos baseados em problemas intratáveis em computadores quânticos;
- Determinar a complexidade quântica das hipóteses de intratabilidade:
- Avaliar a segurança e a usabilidade de tais sistemas.

- Principais classes de criptossistemas Pós-Quânticos:
 - Códigos Corretores de Erros
 - Hash
 - Reticulados
 - Chave Pública Multivariada (MPKC)
 - Possibilitam a criação de esquemas de assinatura digital com tamanho assinaturas reduzidos [Cou04];
 - Esquemas derivados desta primitiva tem se mostrado rápidas e eficientes, tanto em software, quanto em hardware [BERW08, CCC+09];
 - Serem indicados como uma opção para sistemas embarcados com restrição de processamento [BBD09, DGS06, Hei09].

Motivação (Cont.)

Porque estudar o Quartz?

- O Quartz é baseado no HFEv-;
- HFE (Hidden Field Equations) é um criptossistema proposto por Patarin na EUROCRYPT de 96 que baseia-se nos **Problemas** \mathcal{MQ} e IP (Isomorfismo de Polinômios);
- O problema \mathcal{MQ} é NP-completo [PG97].

Os objetivos principais deste trabalho são:

- análise do esquema de assinatura digital Quartz, proposto por Patarin, Courtois e Goubin, idealizado para gerar assinaturas extremamente curtas:
- a apresentação de um novo protocolo de assinatura digital Quartz Aprimorado, com foco no aumento da segurança;
- o desenvolvimento de uma implementação do Quartz, tanto em seu modelo original quanto aprimorado;
- análise de nossa proposta de aprimoramento, através da estimativa de segurança e apreciação dos tempos obtidos durante os testes realizados a partir de nossa implementação.

Contribuições

As principais contribuições deste trabalho são:

- a apresentação de um novo protocolo de assinatura digital baseado no Quartz, logo, com assinaturas extremamente curtas e fundamentado em um problema intratável até mesmo em computadores quânticos;
- obtenção de um criptossistema resistente a ataques adaptativos que realizem chamadas ao oráculo aleatório, com um **nível de seguranca** estimado em 2^{112} , contra os 2^{50} do protocolo original;
- demonstração de que nosso aprimoramento irá testar até **4.096 vezes menos** hipóteses de utilização da chave pública durante a verificação de assinatura, quando comparado com o Quartz Original;
- implementação do Quartz Original e do Quartz Aprimorado em uma linguagem de programação altamente portável.

Sumário

- 2 Criptossistemas de Chave Pública Multivariada
 - Problema MQ.
 - Problema do Isomorfismo de Polinômios
 - Principais MQ-Trapdoors
 - Modificadores Genéricos
 - Hidden Field Equations HFE

 - Quartz Original

 - Quartz Aprimorado x Outros Protocolos

 - Tempos Obtidos

Sistema de Equações Multivariadas Quadráticas Simultâneas

Sejam:

- $n \in \mathbb{N}$, onde n é a quantidade de variáveis da equação;
- $m \in \mathbb{N}$, onde m é a quantidade de equações do sistema;
- $d \in \mathbb{N}$, onde d é o grau do sistema de equações;
- $q := |\mathbb{F}|$, ou seja, q é a quantidade de elementos de \mathbb{F} ;
- $\mathcal{P} = (p_1, ..., p_m)$, onde \mathcal{P} é um sistema sobre \mathbb{F} com m polinômios de grau dcom n variáveis:
- $y = (y_1, ..., y_m) \in \mathbb{F}^m$, onde $y \in \text{um vetor}$.
- Então o problema do Sistema de Equações Polinomiais Multivariadas Simultâneas consiste em encontrar $x=(x_1,...,x_n)\in\mathbb{F}^n$ tal que:

$$\begin{cases} p_1(x_1,...,x_n) = y_1 \\ p_2(x_1,...,x_n) = y_2 \\ \vdots \\ p_m(x_1,...,x_n) = y_m \end{cases}$$

Sistema de Equações Multivariadas Quadráticas Simultâneas

Sejam:

- $n \in \mathbb{N}$, onde n é a quantidade de variáveis da equação;
- $m \in \mathbb{N}$, onde m é a quantidade de equações do sistema;
- $d \in \mathbb{N}$, onde d é o grau do sistema de equações;

 $d \geq 2 \Rightarrow \mathcal{MQ}$

- F um corpo finito (Corpo de Galois);
- $q := |\mathbb{F}|$, ou seja, q é a quantidade de elementos de \mathbb{F} ;
- $\mathcal{P} = (p_1, ..., p_m)$, onde \mathcal{P} é um sistema sobre \mathbb{F} com m polinômios de grau d com n variáveis;
- $y = (y_1, ..., y_m) \in \mathbb{F}^m$, onde $y \in \text{um vetor}$.
- Então o problema do Sistema de Equações Polinomiais Multivariadas Simultâneas consiste em encontrar $x=(x_1,...,x_n)\in\mathbb{F}^n$ tal que:

$$\begin{cases} p_1(x_1,...,x_n) = y_1 \\ p_2(x_1,...,x_n) = y_2 \\ \vdots \\ p_m(x_1,...,x_n) = y_m \end{cases}$$

Sistema de Equações Multivariadas Quadráticas Simultâneas

Sejam:

- $n \in \mathbb{N}$, onde n é a quantidade de variáveis da equação;
- $m \in \mathbb{N}$, onde m é a quantidade de equações do sistema;
- $d \in \mathbb{N}$, onde d é o grau do sistema de equações;

 $d \geq 2 \Rightarrow \mathcal{MQ}$

- F um corpo finito (Corpo de Galois);
- ullet $q:=|\mathbb{F}|$, ou seja, q é a quantidade de elementos de $\mathbb{F};$ $\mathbb{F}=GF(2)$ ou $GF(2^k)$
- $\mathcal{P} = (p_1, ..., p_m)$, onde \mathcal{P} é um sistema sobre \mathbb{F} com m polinômios de grau d com n variáveis;
- $y = (y_1, ..., y_m) \in \mathbb{F}^m$, onde $y \in \text{um vetor}$.
- Então o problema do Sistema de Equações Polinomiais Multivariadas Simultâneas consiste em encontrar $x=(x_1,...,x_n)\in\mathbb{F}^n$ tal que:

$$\begin{cases} p_1(x_1,...,x_n) = y_1 \\ p_2(x_1,...,x_n) = y_2 \\ \vdots \\ p_m(x_1,...,x_n) = y_m \end{cases}$$

• Para qualquer q e d (normalmente igual a 2) nós chamamos então de Problema de equações \mathcal{M} ultivariadas \mathcal{Q} uadráticas e designamos o correspondente vetor \mathcal{P} como $\mathcal{MQ}(n, m, \mathbb{F})$.

Formato genérico da função \mathcal{MQ}

$$p_{1}(x_{1},...,x_{n}) := \sum_{1 \leq i \leq j \leq n} \alpha_{1,i,j} x_{i} x_{j} + \sum_{i=1}^{n} \beta_{1,i} x_{i} + \delta_{1}$$

$$\vdots$$

$$p_{l}(x_{1},...,x_{n}) := \sum_{1 \leq i \leq j \leq n} \alpha_{l,i,j} x_{i} x_{j} + \sum_{i=1}^{n} \beta_{l,i} x_{i} + \delta_{l}$$

$$\vdots$$

$$p_{m}(x_{1},...,x_{n}) := \sum_{1 \leq i \leq j \leq n} \alpha_{m,i,j} x_{i} x_{j} + \sum_{i=1}^{n} \beta_{m,i} x_{i} + \delta_{m}$$

Função *Trapdoor*

Segundo Patarin e Goubin (1997):

Função de mão única (one-way function)

Seja $f: \mathcal{D} \mapsto \mathcal{I}$ uma função. f é dita de mão única se:

- Dado $x \in \mathcal{D}$, seja fácil calcular y = f(x);
- Dado $y \in_R \mathcal{I}$, seja difícil calcular $x \in \mathcal{D}$ tal que f(x) = y.

Função Alçapão (trapdoor)

Seja $f: \mathcal{D} \mapsto \mathcal{I}$ uma função. f é dita uma função trapdoor se:

- f seja uma função de mão única;
- Existe uma informação secreta t tal que, dado $y \in_R \mathcal{I}$ e t, seja fácil calcular $x \in \mathcal{D}$ tal que f(x) = y.

Função MQ-Trapdoor

 Partindo de um conjunto de equações polinomiais "fáceis" utiliza-se duas transformações afins "criar" uma aparente instância aleatória de uma função MQ.

• A Chave Pública \mathcal{P} é a composição de duas transformações afins inversíveis $S: \mathbb{F}^n \to \mathbb{F}^n$ e $T: \mathbb{F}^m \to \mathbb{F}^m$, e um mapeamento central $F: \mathbb{F}^n \mapsto \mathbb{F}^m$, tal que F seja um vetor de polinômios $F = (p'_1, ..., p'_m)$, onde $\mathcal{P} = T \circ F \circ S$.

Isomorfismo de Polinômios (IP)

- Baseado na dificuldade de **decompor** \mathcal{P} **em** (S, F, T);
- A tripla (S, F, T) obtida na solução do problema do IP permitiu, inicialmente, a implementação de autenticação (zero knowlegde) e assinatura [Pat96];

- Baseado na dificuldade de **decompor** \mathcal{P} **em** (S, F, T);
- A tripla (S, F, T) obtida na solução do problema do IP permitiu, inicialmente, a implementação de autenticação (zero knowlegde) e assinatura [Pat96];
- IP para instâncias aleatórias é supostamente difícil, porém quando F possui uma "estrutura especial" é possível que o correspondente problema IP se torne fácil e possibilite a quebra do sistema devido esta fragueza.

- A principal diferença entre as atuais \mathcal{MQ} -trapdoors está no mapeamento central F;
- As duas transformações afins $(S \in T)$ funcionam praticamente da mesma forma em todas trapdoors.

2 Classes Genéricas que agrupam as 5 principais MQ-trapdoors

Big Field	Matsumoto-Imai scheme A (MIA) [MI88]	
	Hidden Field Equations (HFE) [Pat96]	
Single Field	Unbalanced Oil and Vinegar (UOV) [KPG99]	
	Step-wise Triangular Systems (STS) [WBP04]	
	ℓ -Invertible Cycles (ℓ -IC) [DWY07]	

Modificações Genéricas em esquemas \mathcal{MQ}

- Versões básicas de todas \mathcal{MQ} -Trapdoors foram quebradas!
- Aplicar modificadores pode contribuir para a obtenção de criptossistemas mais seguros.

Símbolo	Nome	Segurança	Ideia Básica
The second of	Menos	seguro	remove alguns polinômios
+ 4	Mais	maioria sem efeito	adiciona polinômios
p	Pré-fixo ou Pós-fi	xo em aberto	força algum $p_I = 0$
(V Y L)	Vinagre	pouco mais seguro	variáveis extras são definidas
1 25 H (1974)	Pertubação Intern	a em aberto	equivalente a $p + v$
f) (C	Fixador	em aberto	fixa algumas variáveis forma aleatória
m_(Mascaramento	em aberto	descarta algumas variáveis
s	Esparso	em aberto	usa polinômios esparsos

 Assim como as Versões Básicas, alguns modificadores já foram considerados inseguros ou sem efeito:

Ramificação (\perp), Sub-Corpo(/), Homogeneização(h), Incorporação(\nearrow)

Modificações Genéricas em esquemas MQ

• Todavia, aplicar modificadores também acarreta a perda de eficiência.

Símbolo	Nome	Perda
\	Menos	Encriptação mais lenta
(A) (H)	Mais	Assinatura mais lenta
p ₀	Pré-fixo ou Pós-fixo	Assinatura mais lenta
V	Vinagre	Encriptação mais lenta
C. C. Internal	Pertubação Interna	Tudo mais lento
S	Esparso	Speedup geralmente mais lento

 Para esquemas Big Field são empregadas uma bijeção adicional $\varphi: \mathbb{E} \mapsto \mathbb{F}$ e sua inversa, onde \mathbb{E} é uma extensão do corpo \mathbb{F}_q (ou seja, \mathbb{E} é igual a \mathbb{F}_{q^n}).

Desta forma:

$$\mathbb{F}^n \stackrel{\mathcal{S}}{\mapsto} \mathbb{F}^n \stackrel{\varphi^{-1}}{\mapsto} \mathbb{E}^n \stackrel{\mathcal{F}}{\mapsto} \mathbb{E}^n \stackrel{\varphi}{\mapsto} \mathbb{F}^m \stackrel{\mathcal{T}}{\mapsto} \mathbb{F}^m$$

- Proposto por Patarin em 1996;
- É uma generalização do MIA (C*).

Sejam:

- $i, j, k, d \in \mathbb{N}$, onde d é o grau do sistema de equações;
- F um corpo finito (Corpo de Galois);
- $q := |\mathbb{F}|$, ou seja, q é a quantidade de elementos de \mathbb{F} ;
- \mathbb{E}_{a^k} uma extensão de \mathbb{F}_q com grau k;
- α_{ii} , β_i e δ elementos de \mathbb{E}_{a^k} ;
- θ_{ii}, σ_{ii} e γ_i pertencentes ao conjunto Z.

Temos que,

$$f(x) = \sum_{i,j}^{d} \alpha_{ij} x^{q^{\theta_{ij}} + q^{\sigma_{ij}}} + \sum_{i}^{d} \beta_{i} x^{q^{\gamma_{i}}} + \delta$$

onde f(x) é um polinômio em x sobre \mathbb{E}_{a^k} com grau d, para os inteiros $0 \leq \theta_{ii}, \sigma_{ii}, \gamma_i \leq d$.

Sumário

- - Modificadores Genéricos
 - Hidden Field Equations HFE
 - Quartz Original e Quartz Aprimorado
 - Quartz Original
 - SHA-1
 - Quartz Aprimorado
 - Quartz Aprimorado x Outros Protocolos

 - Tempos Obtidos

Quartz Original - Visão Geral

- É baseado no HFEv-;
- Proposto por Patarin, Courtois e Goubin em 2001;
- Atualizado no mesmo ano pelos mesmos autores durante o NESSIE;
- Assinaturas curtas (128 bits).

Quartz Original - Definições Básicas

Sejam:

- $n \in \mathbb{N}$, onde n é a quantidade total de variáveis da equação;
- $v \in \mathbb{N}$, onde v é a quantidade de variáveis vinagre;
- $h \in \mathbb{N}$, onde h = n v:
- $m \in \mathbb{N}$, onde m é a quantidade de polinômios do sistema;
- $r \in \mathbb{N}$, onde r é a quantidade de polinômios removidos;
- $d \in \mathbb{N}$, onde d é o grau do sistema de equações;
- F um corpo finito (Corpo de Galois):
- q := |F|, ou seja, q é a quantidade de elementos de F.

No Quartz Original, temos que:

$$n = 107$$
, $v = 4$, $h = 103$, $m = 100$, $r = 3$, $d = 129$, $q = 2$.

- No QUARTZ, T, F e S são chamadas de t, F_V e s, respectivamente;
- Além disto, é gerada uma cadeia privada de 80 bits, denotada por Δ.

Quartz Original - Parâmetro Público

• No Quartz Original, \mathcal{P} é chamada de G.

Algoritmo de Assinatura

• Sejam M_0 , M_1 , M_2 e M_3 quatro cadeias de 160 bits definidas por:

$$M_0 = \text{SHA-1}(M),$$

 $M_1 = \text{SHA-1}(M_0||0),$
 $M_2 = \text{SHA-1}(M_0||1),$
 $M_3 = \text{SHA-1}(M_0||2).$

• Sejam H_1 , H_2 , H_3 e H_4 quatro cadeias de 100 bits definidas por:

$$H_1 = [M_1]_{0 \to 99},$$

$$H_2 = [M_1]_{100 \to 159} || [M_2]_{0 \to 39},$$

$$H_3 = [M_2]_{40 \to 139},$$

$$H_4 = [M_2]_{140 \to 159} || [M_3]_{0 \to 79}.$$

Seja \tilde{S} uma cadeia de 100 bits, tal que \tilde{S} seja inicializada com 00...0.

- Para i = 1 até 4, faça:
 - Calcule a cadeia de 100. bits Y definida por:

$$Y = H_i \oplus \tilde{S}$$
.

 Calcule a cadeia de 160 bits W definida por:

$$W = \mathsf{SHA-1}(Y\|\Delta).$$

Obtenha a cadeia de 3 bits R definida por:

$$R = [W]_{0 \to 2}$$
.

Obtenha a cadeia de 4 bits V definida por:

$$V=[W]_{3\rightarrow 6}.$$

- Para i = 1 até 4, faça: (Continuação)
 - Calcule B tal que ele seja uma elemento de $\mathbb E$ definido por:

$$B=\varphi\left(t^{-1}(Y\|R)\right).$$

 Solucione a seguinte equação polinomial em Z sobre E:

$$F_V(Z) = B$$
.

- Para i = 1 até 4, faça: (Continuação)
 - Calcule a cadeia de 107 bits X definida por:

$$X = s^{-1} \left(\varphi^{-1} \left((A) || V \right) \right).$$

 Defina um novo valor para a cadeia de 100 bits \tilde{S} como sendo:

$$\tilde{S} = [X]_{0 \to 99}.$$

Obtenha a cadeia de 7 bits X_i definida por:

$$X_i = [X]_{100 \to 106}$$
.

A assinatura S é a cadeia de 128 bits definida por:

$$S = \tilde{S} \|X_4 \|X_3 \|X_2 \|X_1.$$

• Sejam M_0 , M_1 , M_2 e M_3 quatro cadeias de 160 bits definidas por:

$$M_0 = \text{SHA-1}(M),$$

 $M_1 = \text{SHA-1}(M_0||0),$
 $M_2 = \text{SHA-1}(M_0||1),$
 $M_3 = \text{SHA-1}(M_0||2).$

• Sejam H_1 , H_2 , H_3 e H_4 quatro cadeias de 100 bits definidas por:

$$H_1 = [M_1]_{0 \to 99},$$

$$H_2 = [M_1]_{100 \to 159} || [M_2]_{0 \to 39},$$

$$H_3 = [M_2]_{40 \to 139},$$

$$H_4 = [M_2]_{140 \to 159} || [M_3]_{0 \to 79}.$$

$$\tilde{S} = [S]_{0 \to 99}.$$

• Sejam X_4 , X_3 , X_2 e X_1 quatro cadeias de 7 bits definidas por:

$$X_4 = [S]_{100 \to 106},$$

 $X_3 = [S]_{107 \to 113},$
 $X_2 = [S]_{114 \to 120},$
 $X_1 = [S]_{121 \to 127}.$

• Seja U uma cadeia de 100 bits, tal que U seja inicializada com \tilde{S} .

- Para i = 4 até 1, faça:
 - Calcule a cadeia de 100 bits Y definida por:

$$Y = G(U||X_i).$$

Defina um novo valor para a cadeia de 100 bits U como sendo:

$$U = Y \oplus H_i$$
.

• Se *U* é igual a cadeia 00...0, aceite a assinatura. Caso contrário, rejeite-a.

Quartz Original - Principais Características

Tamanho da Assinatura: 128 bits Tamanho da Chave Pública: 71 Kbytes Tamanho das Chaves Privadas: 3 Kbytes

Melhor ataque conhecido [JM03]: computações com

chamadas ao oráculo

aleatório

SHA-1

- O SHA-1 é empregado em diversos pontos do QUARTZ;
- Desde 2005 o SHA-1 é considerado inseguro já que apresenta colisões em 58 iterações com uma complexidade de 2³³ [WYY05]:
- Ano passado, o NIST publicou um Relatório Técnico "proibindo" a utilização do SHA-1 em esquemas de assinatura digital que requeiram uma segurança mínima de 280, nos EUA [Dan12]:
- Além disto, Joux (2004) apresenta um trabalho afirmando que funções hash iteradas são menos seguras do que esperava-se [Jou04]. Ou seja, a resistência a colisões é de apenas $\mathcal{O}(n \cdot 2^{n/2})$ e não $\mathcal{O}(2^n)$ como se esperava.

Introdução

Quartz Aprimorado - Definições Básicas

Sejam:

- $n \in \mathbb{N}$, onde n é a quantidade total de variáveis da equação;
- $v \in \mathbb{N}$, onde v é a quantidade de variáveis vinagre;
- $h \in \mathbb{N}$, onde h = n v:
- $m \in \mathbb{N}$, onde m é a quantidade de polinômios do sistema;
- $r \in \mathbb{N}$, onde r é a quantidade de polinômios removidos:
- $d \in \mathbb{N}$, onde d é o grau do sistema de equações;
- F um corpo finito (Corpo de Galois):
- $q := |\mathbb{F}|$, ou seja, q é a quantidade de elementos de \mathbb{F} .

No Quartz Original, temos que:

$$n = 231$$
, $v = 2$, $h = 229$, $m = 224$, $r = 5$, $d = 129$, $q = 2$.

Algoritmo de Assinatura

- Seja Γ uma cadeia de 96 bits, tal que $\Gamma \in_{R} \{0,1\}^{96}$;
- Seja M₀ uma cadeia de 512 bits definida por:

$$M_0 = SHA-3(M||\Gamma).$$

 Sejam H₁ e H₂ duas cadeias de 224 bits definidas por:

$$H_1 = [M_0]_{0 \to 223},$$

 $H_2 = [M_0]_{224 \to 447}.$

Seja \tilde{S} uma cadeia de 224 bits, tal que \tilde{S} seja inicializada com 00...0.

- Para i=1 até 2, faça:
 - Calcule a cadeia de 224 bits Y definida por:

$$Y=H_i\oplus \tilde{S}.$$

 Calcule a cadeia de 512 bits W definida por:

$$W = SHA-3(Y||\Delta).$$

Obtenha a cadeia de 5 bits R definida por:

$$R = [W]_{0 \to 4}.$$

Obtenha a cadeia de 2 bits V definida por:

$$V=[W]_{5\rightarrow 6}.$$

 Solucione a seguinte equação polinomial em Z sobre \mathbb{E} :

$$F_V(Z)=(Y\|R).$$

 Calcule a cadeia de 231 bits X definida por:

$$X = s^{-1} \left(\varphi^{-1}(A) \| V \right).$$

Defina um novo valor para a cadeia de 224 bits \tilde{S} como sendo:

$$\tilde{S} = [X]_{0 \to 223}.$$

Obtenha a cadeia de 7 bits X_i definida por:

$$X_i = [X]_{224 \to 230}$$
.

A assinatura S é a cadeia de 334 bits definida por:

$$S = \tilde{S} \|X_2\|X_1\|\Gamma.$$

ullet Seja \tilde{S} uma cadeia de 224 bits definida por:

$$\tilde{S} = [S]_{0 \to 223}$$
.

 Sejam X₂ e X₁ duas cadeias de 7 bits definidas por:

$$X_2 = [S]_{224 \to 230},$$

 $X_1 = [S]_{231 \to 237}.$

Seja Γ uma cadeia de 96 bits definida por:

$$\Gamma = [S]_{238 \to 334}$$
.

 Seja M₀ uma cadeia de 512 bits definida por:

$$M_0 = SHA-3(M||\Gamma).$$

• Sejam H_1 e H_2 duas cadeias de 224 bits definidas por:

$$H_1 = [M_0]_{0 \to 223},$$

 $H_2 = [M_0]_{224 \to 447}.$

 Seja U uma cadeia de 224 bits, tal que U seja inicializada com \tilde{S} .

- Para i = 2 até 1, faça:
 - Calcule a cadeia de 224 bits Y definida por:

$$Y = G(U||X_i).$$

 Defina um novo valor para a cadeia de 224 bits U como sendo:

$$U = Y \oplus H_i$$
.

 Se U é igual a cadeia 00...0, aceite a assinatura. Caso contrário, rejeite-a.

Quartz Aprimorado - Principais Características

Tamanho da Assinatura:334 bitsTamanho da Chave Pública:739 KbytesTamanho das Chaves Privadas:8 Kbytes

Melhor ataque conhecido [JM03]: 2¹¹² computações com

2¹¹² chamadas ao oráculo

aleatório

Quartz Aprimorado x Outros Protocolos

	Criptossistema	q	d	m	n	Tamanho da Assinatura (em bits)	Ref.
Pós-Quântico	CyclicUOV	256	256	77	77	624	[PBB10a]
	Rainbow	16	30	58	58	352	[PBB10b]
	NC-Rainbow	256	17	26	26	672	[YST12]
	CyclicRainbow	256	17	26	26	344	[PBB10a]
	Quartz Aprimorada	2	129	224	231	334	Nosso
Quântico	ECDSA RSA					400 2.048	[NIS09] [BR11]

Tabela: Tamanho das assinaturas de alguns criptossistemas.

Sumário

- - Modificadores Genéricos
 - Hidden Field Equations HFE

 - Quartz Original

 - Quartz Aprimorado x Outros Protocolos
 - Testes Realizados
 - Tempos Obtidos

Computadores Utilizados

Para esta simulação, utilizamos dois computadores distintos. Sendo eles:

Brucutu: processador Intel Xeon E5645 de 2,4 GHz \times 24. com 128 GB de memória RAM, utilizando o Sistema Operacional Linux Debian 7.0 (wheezy), OpenJDK 1.6.0_27 IcedTea e Python 2.7.3;

Ewerton-PC: processador Intel Core i7-2670QM de 2,2 GHz, com 8 GB de memória RAM, utilizando o Sistema Operacional Linux Ubuntu 12.10 (quantal), Java 1.7.0_25 da Oracle e Python 2.7.3.

Tempos obtidos no Brucutu

			Quartz Original	Quartz Aprimorado
	SHA-1	Média (ms)	158	-
Inicialização dos Vetores		Intervalo (ms)	121 - 236	-
	SHA-3	Média (ms)	-	40
		Intervalo (ms)	-	34 - 57
Geração de Chaves	Média (s)		16,9	75,1
Geração de Chaves	Intervalo (s)		16,5 - 17,7	74,2 - 77,8
Assinatura	Média (s)		5,2	19,1
Assiliatura	Intervalo (s)		4,4 - 27,2	18,9 - 20,0
Verificação de Assinatura	Média (ms)		3.814	18
Vernicação de Assiliatura	Intervalo (ms)		4 - 3.927	17 - 40
Verificação de Assinatura Falsa	Média (ms)		60.074	180
Verificação de Assiliatura Faisa	Intervalo (ms)		52.067 - 62.258	159 - 194

Tabela: Tempos obtidos durante a realização dos testes no Brucutu.

Tempos obtidos no Ewerton-PC

			Quartz Original	Quartz Aprimorado
	SHA-1	Média (ms)	62	-
Inicialização dos Vetores		Intervalo (ms)	47 - 130	-
	SHA-3	Média (ms)	-	15
		Intervalo (ms)	-	12 - 44
Geração de Chaves	Média (s)		18,5	87,0
Geração de Chaves	Intervalo (s)		15,6 - 26,8	72,2 - 108,3
Assinatura	Média (s)		5,4	16,6
Assiliatura	Intervalo (s)		4,3 - 169,2	16,5 - 25,6
Verificação de Assinatura	Média (ms)		164	35
vernicação de Assinatura	Intervalo (ms)		136 - 2.447	33 - 53
Verificação de Assinatura Falsa	Média (ms)		43.248	99
Verificação de Assiliatura Taisa	Int	ervalo (ms)	36.197 - 54.591	96 - 145

Tabela: Tempos obtidos durante a realização dos testes no Ewerton-PC.

Sumário

- 1 Introdução
 - Motivação
 - Objetivos
 - Contribuições
 - Criptossistemas de Chave Pública Multivariada
 - Problema MO
 - Problema do Isomorfismo de Polinômios
 - Principais MQ-Trapdoors
 - Modificadores Genéricos
 - Hidden Field Equations HFE
 - Quartz Original e Quartz Aprimorado
 - Quartz Original
 - SHA-
 - Quartz Aprimorado
 - Quartz Aprimorado x Outros Protocolos
 - Testes Realizados
 - Tempos Obtidos
 - Considerações Finais

Considerações Finais

- Neste trabalho nós apresentamos um novo protocolo de assinatura digital, baseado no Quartz de Patarin, Courtois e Goubin [CGP01, PCG01], utilizando uma construção que aumenta o nível de segurança para 2¹¹², contra os 2⁵⁰ do protocolo original.
- Mostramos que devido aos parâmetros escolhidos nossa proposta testará até 4.096 vezes menos hipóteses de utilização da chave pública, durante a resolução da função G;
- Constatamos que a substituição do SHA-1 pelo SHA-3
 proporciona um ganho de eficiência de aproximadamente
 75 % na inicialização dos vetores que serão utilizados pelos algoritmos de assinatura e verificação;
- Implementamos o Quartz (tanto em seu modelo original quanto aprimorado). Buscando comprovar sua viabilidade em cenários "reais" e contribuindo com as pesquisas realizadas na área de criptografia pós-quântica.

Trabalhos Futuros

- Pesquisar uma maneira de reduzir o tamanho das chaves de nosso aprimoramento;
- Buscar uma prova de segurança mais eficiente (tight) no modelo do oráculo aleatório para protocolos baseados na trapdoor HFE.

Referências I

- [BBD09] Daniel J. Bernstein, Johannes Buchmann e Erik Dahmen, editors. *Post-Quantum Cryptography*. Springer, 2009.
- [BERW08] Andrey Bogdanov, Thomas Eisenbarth, Andy Rupp e Christopher Wolf. Time-area Optimized Public-key Engines: MQ-Cryptosystems as Replacement for Elliptic Curves? Em Elisabeth Oswald e Pankaj Rohatgi, editors, Cryptographic Hardware and Embedded Systems CHES 2008, volume 5154 of Lecture Notes in Computer Science, páginas 45-61. Springer Berlin Heidelberg, 2008.
 - [BR11] Elaine Barker e Allen Roginsky. NIST Special Publication 800-131a Transitions: Recommendation for Transitioning the Use of Cryptographic Algorithms and Key Lengths. Relatório técnico, National Institute of Standards and Technology, NIST, U.S. Department of Commerce, Washington DC. http://csrc.nist.gov/publications/nistpubs/800-131A/sp800-131A.pdf, 2011. Último acesso em 09/07/2013.
- [CCC+09] Annalnn-Tung Chen, Ming-Shing Chen, Tien-Ren Chen, Chen-Mou Cheng, Jintai Ding, EricLi-Hsiang Kuo, FrostYu-Shuang Lee e Bo-Yin Yang. SSE Implementation of Multivariate PKCs on Modern x86 CPUs. Em Christophe Clavier e Kris Gaj, editors, Cryptographic Hardware and Embedded Systems CHES 2009, volume 5747 of Lecture Notes in Computer Science, páginas 33–48. Springer Berlin Heidelberg, 2009.
 - [CGP01] Nicolas T. Courtois, Louis Goubin e Jacques Patarin. Quartz, an asymmetric signature scheme for short signatures on PC. Primitive specification and supporting documentation (second revised version). 2001.
 - [Cou04] Nicolas T. Courtois. Short signatures, provable security, generic attacks and computational security of multivariate polynomial schemes such as HFE, QUARTZ and SFLASH. Cryptology ePrint Archive, Report 2004/143. http://eprint.iacr.org/2004/143, 2004. Versão extendida e revista do artigo Generic Attacks and the Security of Quartz publicado no PKC 2003. Último acesso em 12/06/2013.

Referências II

- [Dan12] Quynh Dang. NIST Special Publication 800-107: Recommendation for Applications Using Approved Hash Algorithms. Relatório técnico, National Institute of Standards and Technology, NIST, U.S. Department of Commerce, Washington DC. http://csrc.nist.gov/publications/nistpubs/800-107-rev1/sp800-107-rev1.pdf, 2012. Último acesso em 09/07/2013.
- [Deu85] David Deutsch. Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society of London Ser. A, A400:97–117, 1985.
- [DGS06] Jintai Ding, Jason E. Gower e Dieter Schmidt. *Multivariate public key cryptosystems*, volume 25 of *Advances in information security*. Springer, 2006.
- [DH76] Whitfield Diffie e Martin E. Hellman. New directions in cryptography. Information Theory, IEEE Transactions on, 22(6):644–654, 1976.
- [DWY07] Jintai Ding, Christopher Wolf e Bo-Yin Yang. ℓ-invertible cycles for Multivariate Quadratic (MQ) public key cryptography. Em Tatsuaki Okamoto e Xiaoyun Wang, editors, Public Key Cryptography PKC 2007, volume 4450 of Lecture Notes in Computer Science, páginas 266–281. Springer Berlin Heidelberg, 2007.
 - [Hei09] Raymond A. Heindl. New Directions in Multivariate Public Key Cryptography. Tese de Doutorado, Graduate School of Clemson University Clemson, SC, 2009.
 - [JM03] Antoine Joux e Gwenaëlle Martinet. Some weaknesses in Quartz Signature Scheme.

 NES/DOC/ENS/WP5/026/1. Relatório técnico, Janeiro 01 2003. Último acesso em 12/06/2013.
 - [Jou04] Antoine Joux. Multicollisions in iterated hash functions. application to cascaded constructions. Em Matt Franklin, editor, Advances in Cryptology - CRYPTO 2004, volume 3152 of Lecture Notes in Computer Science, páginas 306–316. Springer Berlin Heidelberg, 2004.
- [KPG99] Aviad Kipnis, Jacques Patarin e Louis Goubin. Unbalanced Oil and Vinegar signature schemes. Em Jacques Stern, editor, Advances in Cryptology EUROCRYPT 99, volume 1592 of Lecture Notes in Computer Science, páginas 206–222. Springer Berlin Heidelberg, 1999.

Referências III

- [MI88] Tsutomu Matsumoto e Hideki Imai. Public quadratic polynomial-tuples for efficient signature-verification and message-encryption. Em Lecture Notes in Computer Science on Advances in Cryptology - EUROCRYPT 88, páginas 419–453, New York, NY, USA, 1988. Springer-Verlag New York, Inc.
- [NISO9] NIST. FIPS 186-3: Digital Signature Standard (DSS). Relatório técnico, National Institute of Standards and Technology, NIST, U.S. Department of Commerce, Washington DC. http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf, 2009. Último acesso em 16/07/2013.
- [Pat96] Jacques Patarin. Hidden Field Equations (HFE) and Isomorphisms of Polynomials (IP): Two new families of asymmetric algorithms. Em Ueli Maurer, editor, Advances in Cryptology - EUROCRYPT 96, volume 1070 of Lecture Notes in Computer Science, páginas 33–48. Springer-Verlag, 12–16 Maio 1996.
- [PBB10a] Albrecht Petzoldt, Stanislav Bulygin e Johannes Buchmann. CyclicRainbow A Multivariate Signature Scheme with a Partially Cyclic Public Key. Em Guang Gong e KishanChand Gupta, editors, Progress in Cryptology - INDOCRYPT 2010, volume 6498 of Lecture Notes in Computer Science, páginas 33–48. Springer Berlin Heidelberg, 2010.
- [PBB10b] Albrecht Petzoldt, Stanislav Bulygin e Johannes Buchmann. Selecting parameters for the Rainbow Signature Scheme. Em Nicolas Sendrier, editor, Post-Quantum Cryptography, volume 6061 of Lecture Notes in Computer Science, páginas 218–240. Springer Berlin Heidelberg, 2010.
- [PCG01] Jacques Patarin, Nicolas T. Courtois e Louis Goubin. QUARTZ, 128-bit Long Digital Signatures. Em David Naccache, editor, Topics in Cryptology - CT-RSA 2001, volume 2020 of Lecture Notes in Computer Science. báginas 282–297. Springer Berlin Heidelberg. 2001.
 - [PG97] Jacques Patarin e Louis Goubin. Trapdoor one-way permutations and Multivariate Polynomials -Extended Version. Em Proc. of ICICS 97. LNCS 1334. páginas 356–368. Springer, 1997.
- [Sho97] Peter W. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM Journal on Computing, 26(5):1484–1509, 1997.

Referências IV

- [WBP04] Christopher Wolf, An Braeken e Bart Preneel. Efficient cryptanalysis of RSE(2)PKC and RSSE(2)PKC. Cryptology ePrint Archive, Report 2004/237. http://eprint.iacr.org/2004/237, 2004. Último acesso em 02/07/2013.
- [WYY05] Xiaoyun Wang, Yiqun Lisa Yin e Hongbo Yu. Finding collisions in the full SHA-1. Em Advances in Cryptology - CRYPTO 2005: 25th Annual International Cryptology Conference, Santa Barbara, California, USA, August 14-18, 2005, Proceedings, volume 3621 of Lecture Notes in Computer Science, páginas 17-36. Springer, 2005.
- [YST12] Takanori Yasuda, Kouichi Sakurai e Tsuyoshi Takagi. Reducing the Key Size of Rainbow using non-commutative rings. Em Orr Dunkelman, editor, *Topics in Cryptology CT-RSA 2012*, volume 7178 of *Lecture Notes in Computer Science*, páginas 68–83. Springer Berlin Heidelberg, 2012.

 A imagem utilizada como plano de fundo em todos os slides segue a licença de uso que consta em http://www.ime.usp.br — © Instituto de Matemática e Estatística da USP.