JEGYZŐKÖNYV

Operációs rendszerek BSc

2022. tavasz féléves feladat

Készítette: Szkárosi Szilárd

Neptunkód: **DLWGQZ**

1. feladat:

IPC mechanizmus

A feladat leírása:

4.feladat: Írjon C nyelvű programot, ami létrehoz két csővezetéket (két file deszkriptor part) elforkol. A szülő elküldi a saját pidjét a gyermeknek az egyik csövön. A gyermek kiirja a képernyőre és visszaküldi egy az övét a másik csövön. Megszűnnek a processzek (a szülő megvárja a gyereket).

A feladat elkészítésének lépései:

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/wait.h>
int main()
   int pipefd[2];
   int pipefdMasik[2];
   int bufMasik; //Masik buffer a kuldendo szovegnek
   if (pipe(pipefd) == -1)
       perror("pipe"); //Csovezeteket krealunk, amiben a ket fd lesz eltarolva
       exit(-1);
   if (pipe(pipefdMasik) == -1)
       perror("pipe"); //Csovezeteket krealunk, amiben a ket fd lesz eltarolva
       exit(-1);
   cpid = fork();
   if (cpid == -1)
       perror("Elforkol");
       exit(-1);
```

A feladat leírása alapján két darab csővezetéket kell elforkolni. Ennek megvalósítására két darab változót deklaráltam, amelynek segítségével kreálni tudom a csővezetékeket.

Ha a cpid értéke 0, akkor létrehozzuk a gyerek pid-jét. Azután a read() rendszerhívás segítségével beolvassuk a csővezetéken keresztül a gyerek pid-jét, majd egy másik csővezetéken a write() rendszerhívással kiiratom a pid-et és végül kilépek.

Ellenkező esetben, ha a cpid értéke nem egyenlő 0-val, akkor a szülő pid-jét hozzuk létre. A write() rendszerhívással beleírjuk a csőbe a pid értékét, majd a másik csövön pedig a read() rendszerhívással beolvassuk a pid-et. A wait() rendszerhívás segítségével megvárjuk a gyereket.

A futtatás eredménye:

```
szkarosi1@szkarosi1-VirtualBox:~/OS_GYAK/OS_beadando$ ./4_f.out
3292: szulo vagyok
3293: gyerek vagyok
```

2. feladat:

OS algoritmusok

A feladat leírása:

35.feladat: Adott az alábbi terhelés esetén a rendszer. Határozza meg az indulás, befejezés, várakozás/átlagos várakozás és körülfordulás/átlagos körülfordulás, válasz/átlagos válaszidő és a CPU kihasználtság értékeket az FCFS ütemezési algoritmusok mellett! (cs: 0,1ms; sch: 0,1ms)

A feladat elkészítésének lépései:

FCFS Ütemezés						
	P1	P2	Р3	P4	P5	
Érkezés	1	4	4	7	8	
CPU idő	4	11	4	7	4	
Indulás	1	5	16	20	27	
Befejezés	5	16	20	27	31	
Várakozás	1	5	16	20	27	
Körülfordulási idő	4	12	16	20	23	

Körülfordulási idők átlaga	15
Válaszidők átlaga	93
CPU kihasználtság	129
Várakozási idők átlaga	13,8

FCFS Gantt-diagram:

