Algebraic Geometry 1

PROBLEM SET 12

Keywords: Zariski tangent space, regularity, blow-ups

Problem 1 (3 pt)

Let X ba a k-scheme. Describe a natural bijection between $\operatorname{Mor}_k(\operatorname{Spec} k[\epsilon]/(\epsilon^2), X)$ and the set of k-points p of X with the additional datum of a tangent vector at p. In particular, the subset of morphisms mapping $\operatorname{Spec}(k) = \operatorname{Spec}(k[\epsilon]/(\epsilon^2))_{red}$ to p admits the structure of a k-vector space. Describe the differential of a morphism $f: X \to Y$ at p in these terms when k(p) = k(f(p)).

Problem 2 (3 pt)

Let X be a k-scheme of finite type, $D \subseteq X$ an effective Cartier divisor (a hypersurface which is locally cut out by a non-zero divisor in X). If D is regular at a point p, then so is X. Is this still true if D is the vanishing locus of a zero divisor?

Problem 3 (3 pt)

Let $C = V(y^2 - x^3) \subseteq \mathbb{A}^2_k$ with $k = \bar{k}$ and $\operatorname{char}(k) \neq 2, 3$ be an "ordinary cusp".

- 1. Compute the singular locus of C.
- 2. Let \tilde{A} denote the blow-up of \mathbb{A}^2 in C^{sing} , and let C' denote the strict transform of C. Compute the intersection of C' with the exceptional divisor in \tilde{A} , and the tangent cone of C at the origin of \mathbb{A}^2 .
- 3. Show that C is not isomorphic to \mathbb{A}^1 , but C' is, and show that the morphism $C' \to C$ is finite and birational.

Problem 4 (3 pt)

Let us work over $k = \bar{k}$ with $char(k) \neq 2, 3$.

- 1. Let X be the cone over the twisted cubic. Compute X^{sing} . What is the exceptional divisor of the blow-up of X at X^{sing} ?
- 2. Let Y be the blow-up of \mathbb{A}^3 along the union of two intersecting lines V(xy,z). Compute Y^{sing} . Show that Y is not isomorphic to what one gets by blowing up first one line, and then the strict transform of the other.
- 3. Let Z be the surface $V(x^2-yz^2)$ in \mathbb{A}^3 (this "pinch point" is a higher-dimensional analogue of the singularity encountered in the previous problem). Compute Z^{sing} . Compute the blow-up of Z at the origin.