WHAT IS CLAIMED IS:

l	1. A method of treating a cornea of an eye of a patient to mitigate
2	presbyopia, the eye having a pupil and a cornea, the method comprising:
3	identifying a multifocal ablation shape having a first region providing a near
1	vision correction and a second region providing a far vision correction;
5	adjusting an ablation cut profile of the multifocal ablation shape in response to
6	the size of the pupil so as to provide a balance of the near vision correction provided by the
7	first region and the far vision correction provided by the second region for the patient;
3	ablating the eye with a series of laser beam pulses according to the adjusted
)	ablation cut profile.
l	2. The method of claim 1, wherein the ablation cut profile further
2	comprises a third region providing an intermediate optical surface having an optical power
3	continuously varying between the first region providing near vision correction and the second
ı	region providing far vision correction, so as to provide intermediate vision correction with the
5	intermediate optical surface.
	3. The method of claim 2, wherein the intermediate optical surface varies
2	from a first optical power near the first region to a second optical power near the second
3	region.
Į	4. The method of claim 3, wherein the difference in optical power
2	between the first optical power near the first region and the second optical power near the
3	second region has a range from about 1 to 4 D.
	5. The method of claim 1, wherein the first region is disposed centrally in
2	relation to the pupil of the eye.
	6. The method of claim 1, further comprising scaling the ablation cut
2	profile in relation to the size of the pupil.
l	7. The method of claim 6, wherein the step of scaling of the ablation cut
2	profile is done so as to scale the optical power of the ablation cut profile in relation to the size
3	of the pupil.

- 8. The method of claim 7 wherein the optical power of the first region remains constant during the step of scaling.
- 1 9. The method of claim 7 wherein the optical power of the second region 2 remains constant during the step of scaling.
- 1 10. A system for treating a cornea of an eye of a patient to mitigate
 2 presbyopia with a multifocal ablation shape, the eye having a pupil and a cornea, the system
 3 comprising:
- a laser for making a beam of an ablative light energy;

- a processor in electrical communication with the laser and controlling a distribution of a series of laser beam pulses to ablate the multifocal shape on the eye, the multifocal ablation shape producing a first region of the cornea providing a near vision correction and a second region of the cornea providing a far vision correction, the processor determining the distribution of laser beam pulses in response to a signal related to a size of the pupil so as to balance the near vision correction and the far vision correction of the multifocal treatment for the patient.
- 1 11. The system of claim 10 wherein the first region providing near vision correction is disposed centrally in relation to the pupil of the eye.
 - 12. The system of claim 10 wherein the near vision correction and the far vision correction are balanced with a variable of a refractive correction in response to the size of the pupil.
 - 13. The system of claim 11 wherein the variable of the refractive correction includes a dimension across the refractive correction.
 - 14. The system of claim 10 wherein the near vision correction and the far vision correction are balanced in response to the size of the pupil so as to scale a dimension across the first region providing near vision correction in relation to the size of the pupil.
 - 15. The system of claim 10 wherein the near vision correction and the far vision correction are balanced in response to the size of the pupil so as to scale a dimension across the second region providing far vision correction in relation to the size of the pupil.