FRANK JONES INTEGRATION THEORY SOLUTIONS

JAEMIN OH

Date: June 4, 2020.

1

CHATER 7: LEBESGUE INTEGRAL ON \mathbb{R}^n

section A: Riemann Integral.

Problem 1.

Suppose 1_A is LSC. Let $x \in A$ and $0 < 1_A(x) = 1$. By definition of LSC at x, there exists $\delta > 0$ such that $1_A(y) > 0$ for all $y \in B(x; \delta)$. So $1_A(y) = 1$ and therefore $B(x; \delta) \subset A$. Thus A is open.

On the contrary, suppose A is open. For $x \in A$, consider $t < 1 = 1_A(x)$. Since A is open, there exists $\delta > 0$ such that $B(x;\delta) \subset A$. Then we get $y \in B(x;\delta) \Rightarrow t < 1_A(y) = 1$. For $x \notin A$, consider $t < 0 = 1_A(x)$. Take any $\delta > 0$. Then $y \in B(x;\delta) \Rightarrow t < 0 \le 1_A(y)$. Therefore 1_A is LSC if A is open.

Note that f is LSC if and only if $\forall t \in \mathbb{R}$, $\{f > t\}$ is open. And f is LSC at x if and only if x is interior point of every $\{f > t\}$ for t < f(x).

Problem 2.

For $x \in A^{\circ}$, there exists $\delta > 0$ such that $B(x; \delta) \subset A$. Then $\inf_{y \in B(x; \delta)} 1_A(y) = 1$ so lower envelope of 1_A at x is same as $1_{A^{\circ}}(x) = 1$.

Now assume $x \notin A^{\circ}$. Then, for every $\delta > 0$ $B(x; \delta) \cap A \neq \emptyset$. Then $\inf_{y \in B(x; \delta)} 1_A(y) = 0$ for some small δ . Then lower envelope of 1_A is zero at x, which is same as $1_{A^{\circ}}(x)$.

If $x \in \overline{A}$, for all $\delta > 0$ $B(x; \delta) \cap A \neq \emptyset$. Therefore $\sup_{y \in B(x; \delta)} 1_A(y) = 1$, so upper envelope of 1_A is same as $1_{\overline{A}}$.

If $x \notin \bar{A}$, there exists $\delta > 0$ such that $B(x; \delta) \cap A = \emptyset$. Then $\sup_{y \in B(x; \delta)} 1_A(y) = 0$. So upper envelope of 1_A is same as $1_{\bar{A}}$.

Problem 3.

For each $x \in \mathbb{R}^n$, let $t < \min_i f_i(x)$. Then $t < f_i(x)$ for all $i \in \mathcal{I}$. For each i, there exists δ_i such that $y \in B(x; \delta_i)$ implies $t < f_i(y)$. Take $\delta = \max_i \delta_i$. Then $y \in B(x; \delta)$ implies $t < \min_i f_i(y)$. So $\min_i f_i$ is LSC.

Now consider $A_i = \left(-\frac{1}{i}, \frac{1}{i}\right) \subset \mathbb{R}$. Since A_i is open, by problem 1, 1_{A_i} is LSC. Let $A = \bigcap_{i=1}^{\infty} A_i$ then $1_A = \inf_i 1_{A_i}$. It is not semicontinuous by considering the set $\left\{1_A > \frac{1}{2}\right\} = \{0\}$.

Problem 4.

Let $\tau_f \geq f$ and $\tau_g \geq g$ where τ_f and τ_g are step functions. Note that $\tau_f + \tau_g$ is also step function greater than f + g. Then all others follow directly.

Problem 5.

Let $\varepsilon > 0$ be given. We can choose positive integer N such that

- (1) $|f(x) f_n(x)| < \varepsilon$ if $n \ge N$ and for all $x \in \mathbb{R}^n = X$.
- (2) $\int_{I} (\tau_N \sigma_N) d\lambda < \varepsilon$

18 JAEMIN OH

where τ_N, σ_N is simple function bigger, smaller than f_N respectively. For every $x \in X$,

$$\sigma_N(x) - \varepsilon \le f_N(x) - \varepsilon < f < f_N(x) + \varepsilon \le \tau_N(x) + \varepsilon$$

Then, $\int_{I} \sigma_{N} d\lambda - \varepsilon \lambda \left(I \right) \leq r \underline{\int_{I}} f d\lambda \leq r \overline{\int_{I}} f d\lambda \leq \int_{I} \tau_{N} d\lambda + \varepsilon \lambda \left(I \right)$ Because $\sigma_{N} - \varepsilon$ is step function smaller than f and $\tau_{N} + \varepsilon$ is also step function bigger than f. Therefore we can get

$$r\overline{\int_{I}}fd\lambda-r\int_{I}f\lambda<\varepsilon+2\varepsilon\lambda\left(I\right)$$

which implies Riemann integrability of f.

By definition of uniform convergence, $r \int |f - f_N| d\lambda \le \varepsilon \lambda(I)$. So, $\lim_{N\to\infty} r \int |f - f_N| d\lambda = 0$, which implies $\lim_{N\to\infty} \left| r \int f d\lambda - r \int f_N d\lambda \right| = 0$ then conclusion follows.

Problem 6.

- (a) g(x) = 0 for all $x \in I = [0,1]$. $f(x) = 1_{\mathbb{Q} \cap I}(x)$. f is nowhere continuous but f = g almost everywhere.
- (b) Consider the following function f:

$$f(x) = \begin{cases} 0 & \text{if } x \in I \cap C \\ \frac{1}{x} & \text{if } x \in I \cap C^c \end{cases}$$

where C is Cantor ternary set and I = [0, 1].

For $x \in I \cap C^c$, $x \in I_{j,k} = \left(\frac{2k}{3^j}, \frac{2k+1}{3^j}\right)$ for some k, j. On $I_{j,k}$, function $i: x \mapsto x$ is continuous and $i(x) \neq 0$. So, the map $\varphi: x \mapsto \frac{1}{x}$ is also continuous on $I_{j,k}$. Therefore, φ is continuous at x. Therefore, φ is continuous a.e. on I.

Note that $f(x) = \frac{1}{x}$ a.e. on I. Let g = f a.e. on I. Then $g(x) = \frac{1}{x}$ a.e. on I. Then g is discontinuous at x = 0. Therefore, f is continuous a.e. on I and there is no continuous function such that f = g a.e. on I.

Problem 7.

For $x \in [a, b]$, $na \le nx \le nb$, so $nx \in \frac{1}{2} + \mathbb{Z}$ for finitely many x. Therefore, (nx) is discontinuous at most finitely many points, which implies (nx) is Riemann integrable. Then $\frac{(nx)}{n^2}$ also Riemann integrable, and their finite summation $f_k(x) = \sum_{n=1}^k \frac{(nx)}{n^2}$ is also Riemann integrable.

 $\sum_{n=1}^{M} \frac{(nx)}{n^2} \text{ is also Riemann integrable.}$ Now, let $\varepsilon > 0$ be given. Since $\sum_{n=1}^{\infty}$ converges, there exists positive integer N such that $\sum_{k=N}^{\infty} < \varepsilon$. Consider $m > n \ge N$ and following:

$$|f_m(x) - f_n(x)| \le \left| \sum_{k=n+1}^m \frac{(kx)}{k^2} \right| \le \sum_{k=n+1}^m \frac{|(kx)|}{k^2} \le \sum_{k=n+1}^m \frac{1}{k^2} < \varepsilon$$

for all $x \in [a, b]$ since $-1 \le (nx) \le 1$. Therefore, f_n is uniformly Cauchy, which implies uniform convergence of f_n to f. By problem 5, f is Riemann integrable

since each f_n is Riemann integrable and $f_n \rightrightarrows f$.

Problem 9.

With out loss of generality, assume that f is monotonically increasing.

Let $\varepsilon > 0$ be given. Consider $a = x_0 < x_1 < \cdots < x_n = b$ where $\max_{1 \le k \le n} \lambda\left([x_{k-1}, x_k]\right) < \frac{\varepsilon}{f(b) - f(a)}$. (If f(a) = f(b), conclusion follows trivially so let us assume that f(a) < f(b).

Let I = [a, b] and $\sigma : I \to \mathbb{R}$ such that $\sigma((x_{k-1}, x_k)) = \{f(x_{k-1})\}$, $\sigma(x_k) = f(a)$. Similarly, let $\tau : I \to \mathbb{R}$ such that $\tau((x_{k-1}, x_k)) = \{f(x_k)\}$ and $\tau(x_k) = f(b)$. Then σ, τ are step functions satisfying $\sigma \le f \le \tau$. So,

$$\int_{I} (\tau - \sigma) d\lambda = \sum_{k=1}^{n} (f(x_{k}) - f(x_{k-1})) \lambda ([x_{k-1}, x_{k}])$$

$$< \sum_{k=1}^{n} (f(x_{k}) - f(x_{k-1})) \frac{\varepsilon}{f(b) - f(a)} = \varepsilon$$

which implies Riemann integrability of f on I.

Let x < x' be points where f is discontinuous. Since f is monotonic, $f(x-) = \lim_{y \uparrow x} f(y)$ and $f(x+) = \lim_{y \downarrow x} f(y)$ exist. By monotonicity of f, we can easily deduce that $f(x-) \le f(x) \le f(x+) \le f(x'-) \le f(x') \le f(x'+)$. Since f is discontinuous at x, x', f(t-) < f(t+) for t = x, x'. Choose $q_t \in (f(t-), f(t+))$ for t = x, x'. Then $q_x < q_{x'}$. The map $x \mapsto q_x$ is hence injective. So, there are at most countably many discontinuous points of f on f.

Therefore f is continuous a.e. on I.

Problem 10.

Consider 1_C where C is Cantor ternary set. If $x \in C$, $x \notin C^{\circ}$ since C has empty interior. So, for any $\delta > 0$, there exists $y \in B(x; \delta)$ such that $y \notin C$. Then $1_C(x) - 1_C(y) = 1$. So 1_C is discontinuous at $x \in C$.

On the contrary if $x \in C^c$, $x \in I_{j,k}$ for some j,k (we'll use notation of problem 6.) Then there is $\delta > 0$ such that $B(x;\delta) \subset I_{j,k} \subset C^c$, so $d(x,y) < \delta$ implies $1_C(x) - 1_C(y) = 0 < \varepsilon$ for any $\varepsilon > 0$. Therefore 1_C is continuous on C^c .

 1_C has an uncountable set of discontinuities (C) and continuous a.e. on [0,1]. Therefore 1_C is Riemann integrable.

Problem 11.

If f is Riemann integrable and $f=1_A$ a.e. on I=[0,1], $r\int fd\lambda=\int_I fd\lambda=\int_I 1_A d\lambda=\lambda\left(A\right)>0.$

Let σ be a step function, $\sigma \leq f$. Then $\sigma \leq 1_A$ a.e. on I and let N be corresponding null set.

Let $0 = x_0 < x_1 < \dots < x_n = 1$ be endpoints of special rectangles corresponding to σ . If $(x_{k-1}, x_k) \cap J_i = \emptyset$ for all positive $i = \frac{2m-1}{2^t} < 1$ $(A = I \setminus \bigcup J_i)$, we'll use

JAEMIN OH 20

notation of section 4.B), $(x_{k-1},x_k)\subset A$ which contradicts the fact that A has empty interior. So, $(x_{k-1}, x_k) \cap J_i \neq \emptyset$ for some i.

If $(x_{k-1}, x_k) \setminus N \subset A$, $(x_{k-1}, x_k) \setminus N \cap J_i = \emptyset$, then $(x_{k-1}, x_k) \cap J_i \subset N$. But $J_i \cap (x_{k-1}, x_k)$ is open and nonempty, so it has positive measure which contradicts $\lambda(N) = 0.$

Therefore for each k, $(x_{k-1}, x_k) \setminus N \cap A^c \neq \emptyset$. So $\sigma((x_{k-1}, x_k)) = \xi$ where $\xi \leq 0$. It means $\sigma \leq 0$. Then $r \int f d\lambda = \sup_{\sigma \leq f} \int_{I} \sigma d\lambda \leq 0$ which contradicts to $r \int f d\lambda = \lambda \left(A \right) > 0$.