- b. Define 'paging in virtual memory' and explain with neat sketch.
- 32. a. Explain the various disk scheduling techniques.

(OR) b. Define 'file and file system' and explain the various file organizations with examples.

Reg. No.							

B.Tech. DEGREE EXAMINATION, DECEMBER 2018

1st to 6th Semester

15CS302J - OPERATING SYSTEMS

(For the candidates admitted during the academic year 2015-2016 to 2017-2018)

Note:

 ${\bf Part}$ - ${\bf A}$ should be answered in OMR sheet within first 45 minutes and OMR sheet should be handed over to hall invigilator at the end of 45^{th} minute. ${\bf Part}$ - ${\bf B}$ and ${\bf Part}$ - ${\bf C}$ should be answered in answer booklet. (i)

(ii)

Time: Three Hours

Max. Marks: 100

 $PART - A (20 \times 1 = 20 Marks)$ Answer ALL Questions

 The API gives a program access to the
 (A) Software
 (C) Process (B) Hardware (D) Application

The primary job of an operating system is to
 (A) Command resources
 (C) Provide utilities

(B) Manage resources

(D) Be user friendly

Privilege instructions are executed in
 (A) User mode
 (C) System mode

(B) Kernel mode (D) Server mode

4. Which is a system call used to create a new
(A) Create ()
(C) Fork ()

(B) Open()
(D) New()

5. Thread is a ______(A) Heavy weight (C) Uni

(B) Light weight (D) Multi

6. A collection of program, data, stack and attributes is referred as

(A) Process state (C) Process control

(B) Process block(D) Process image

_ program switches the processor from one process to the other (A) Spawning
(C) Dispatcher (B) Trace (D) Preemption

8. The state in which the thread waits until the processor is made available
(A) Standby (B) Ready
(C) Running (D) Waiting

(B) Ready (D) Waiting

Page 4 of 4

12DA1-6/15CS302J

Page 1 of 4

12DA1-6/15CS302J

9. Th	e banker's algorithm is used		
(A) To rectify deadlock	(B)	To detect deadlock
(C) To prevent deadlock	(D)	To solve deadlock
0. W	hich of the following scheduling algori	thms is	non preemptive?
) FIFO		Round robin
) SJF		Priority
1 Δ	direct method of deadlock prevention i	s to pre	vent the occurrence of
) Mutual exclusion	S to pre	Hold and wait
) Circular waits		Non preemption
(C) Circulai walts	(D)	Non preemption
	utex is similar to		the little that
) Spin locks		Event blocks
(C) Binary semaphore	(D)	Condition variable
	ne system spends most of its time sw lled .	apping	pieces rather than executing instructions is
) Simple paging	(B)	Virtual memory paging
) Thrashing		Segmentation
sto (A	e page replacement algorithm is FIFO, ore of 3 frames is 1) 10 2) 8	(B)	
		` ′	
	sysical memory is broken into fixed siz		ks called Pages
	S) Segments		Tracks
(0) Segments	(D)	Tidoks
	ne is used as an index into the p		
	Page offset		Page number
(C	Page count	(D)	Page bit
	is a collection of related field	ds that	can be treated as a unit by some application
	a) Database	(B)	File
(C	Record	(D)	Table
18. W	Then to users keep a sub directory in th	eir own	directories, the structure being referred to is
(A	Tree structure	(B)	Cyclic graph directory structure
	Two level directory structure		Acyclic graph directory
19 T	ne set of tracks that are at one arm posi	tion ma	ke un
	Magnetic disks		Electrical disks
	C) Cylinders		Assemblies
(0	-, -,	(2)	
of 4			12DA1-6/15CS302J

20.			parity organization and used block
	level striping and keep	os a parity block on a separate disk	
	(A) 1	(B) 2	
	(C) 3	(D) 4	

PART – B (5 × 4 = 20 Marks) Answer ANY FIVE Questions

- 21. Discuss the objectives of operating system.
- 22. Compare user level threads and kernel level threads.
- 23. Write short notes on dispatcher program.
- 24. Define 'mutual exclusion' and mention its requirement.
- 25. Discuss the process control block with a neat diagram.
- 26. Mention the function of partitioning.
- 27. Write briefly about disk scheduling.

PART – C (5 × 12 = 60 Marks) Answer ALL Questions

28. a. Explain in detail about the basic elements of an operating system.

- b. Define interrupts and explain its types.
- 29. a. Explain five-state process model with its transition diagram.

- $\begin{tabular}{ll} \begin{tabular}{ll} \beg$
- 30. a. Write short notes on mutual exclusion and semaphores.

b. Consider the following five processes, with the length of CPU burst time given in milliseconds. Consider the FCFS, non-preemptive SJF and round robin (quantum = 1 ms) scheduling algorithms. Which algorithm give the minimum average waiting time? Discuss it.

Process	Arrival time	Burst time
A	0	3
В	2	6
С	4	4
D	6	5
E	8	2

31. a. Explain fixed and dynamic partitioning with suitable examples.

(OR)

Page 3 of 4

12DA1-6/15CS302J