№ 10

A Q	1	2	3	4	5	6	7	8	9
а	1,-	-, y		3, y	6, <i>x</i>	5,-	8, y	7, <i>x</i>	
b	2, <i>x</i>	5,-	2, <i>x</i>	9, <i>x</i>	-, x	2, y		5,-	8, <i>x</i>

Ход работы:

Определим явно несовместимые состояния:

Πο a: (2, 5), (2, 8), (4, 8), (4, 5), (5, 7), (7, 8)

По b: (1, 6),(3,6),(4,6),(5,6),(6,9)

Множество несовместимых пар – $\{(1,6), (2,5), (2,8), (3,6), (4,5), (4,6), (4,8), (5,6), (5,7), (6,9), (7,8)\}$

2	3	4	5	6	7	8	9	
				0				1
			0			0		2
				0				3
			0	0		0		4
				0	0			5
							0	6
					1	0		7
						1		8

Определим явно совместимые состояния (такие состояния, для которых непротиворечивы правила переходов и выходов): $\{(1,3),(2,7),(3,5),(3,7),(5,9),(7,9)\}$

Остальные состояния проверим на совместимость составлением т.н. парных группировок.

$$(1, 2) \to (2, 5)$$
 - не совместимое;

$$(1, 4) \rightarrow \{(1, 3) - \text{явно совместимое}; (2,9) - \text{явно совместимое} \};$$

$$(1,4) \rightarrow (2,9) \rightarrow (5,8) \rightarrow (6,7) \rightarrow (5,8)$$
 - явно совместимо;

$$(1,5) \to (1,6)$$
 - не совместимое;

$$(1,7) \rightarrow (1,8) \rightarrow \{(1,7) - \text{явно совместимое}, (2,5) - \text{не совместимое}\};$$

$$(1,9) \to (2,8)$$
 - не совместимое;

$$(2,3)$$
 → $(2,5)$ - не совместимое;

$$(2,4) \to (5,9)$$
 - явно совместимое;

$$(2,6)$$
 → $(2,5)$ - не совместимое;

$$(3,4) \to (2,9)$$
 - явно совместимое;

$$(3,8) \to (2,5)$$
 - не совместимое;

$$(3,9) \rightarrow (2,8)$$
 - не совместимое;

$$(4,7) \rightarrow (3,8)$$
 - не совместимое;

$$(4,9) \to (8,9) \to (5,8)$$
 - явно совместимое;

$$(6,8) \to \{(5,7) - \text{ не совместимое}; (2,5) - \text{ не совместимое}\};$$

2	3	4	5	6	7	8	9		Предварительно собранные для
									анализа
									блоки(множества
									состояний)
0	1	1	0	0	0	0	0	1	{1,3,4}
	0	1	0	0	1	0	1	2	{2,4,7,9}
		1	1	0	1	0	0	3	{3,4,5,7}
			0	0	0	0	1	4	{4,9}
		!		0	0	1	1	5	{5,8,9}
					1	0	0	6	{6,7}
						0	1	7	{7,9}
							1	8	{8,9}

Теперь построим максимальные блоки совместимости

- **1.** Рассмотрим первый блок: {1,3,4}. В нём совместимы все состояния. Выносится в решение.
- 2. $\{2,4,7,9\}$: состояния 2 и 9 совместимы между собой и с состояниями 4,7, но состояния 4,7 между собой не совместимы. Нам следует разбить на: $\{2,4,9\}$ $\{2,9,7\}$.
- 3. $\{3,4,5,7\}$: состояние 3 совместимо с состояниями 4, 5, 7, но при этом состояние 4 несовместимо с состояниями 5, 7. Также, состояние 5 не совместимо с состояниями 4,7, а состояние 7 не совместимо с 5 и 4. Поэтому, разобьем блок на $\{3, 4\}\{3, 5\}\{3,7\}$. Блок $\{3,4\}$ содержится в блоке выше $\{1,3,4\}$.
- 4. $\{4,9\}$: блок уже сожержится в блоке выше. $(\{2,4,9\})$

- 5. {5, 8, 9}: Все состояния между собой совместимы. Выносится в решение.
- 6. {6,7}: Все состояния между собой совместимы. Выносится в решение.
- 7. $\{7, 9\}$: блок содержится в блоке выше. $(\{2,7,9\})$
- 8. $\{8, 9\}$: блок уже содержится в блоке выше $(\{5, 8, 9\})$

Таким образом, получено 7 блоков максимального покрытия $Gmax=\{\{1,3,4\},\{2,4,9\},\{2,7,9\},\{3,5\},\{3,7\},\{5,8,9\},\{6,7\}\}.$

Проверка блоков покрытия на замкнутость

				Номера	блоков
			покрытия, которым		
№ блока	Состав	Непоср. произво	дное множество	принад	цлежит
покрытия	блока			непоср.про	изводн. мн-
			В	o	
		По а	По в	Для а	Для b
1.	1, 3,4	1,3	2,9	1	2 3
2.	2,4,9	3	5,8,9	1 4 5	6
3.	2,7,9	8	5,8	6	6
4.	3,5	6	2	7	2 3
5.	3,7	8	2	6	2 3
6.	5,8,9	6,7	5,8	7	6
7.	6,7	5,8	2	6	2 3

$$G1 = \{\{1, 3, 4\}; G2 = \{2, 4, 9\}; G3 = \{2, 7, 9\}; G4 = \{3, 5\}; G5 = \{3, 7\}; G6 = \{5, 8, 9\}; G7 = \{6, 7\}.$$

	a	ь
G1	G1/y	G2/x
		G3/x
G2	G1/y	G6/x
	G4/y	
	G5/y	
G3	G6/y	G6/x
G4	G7/x	G2/x
		G3/x
G5	G6/y	G2/x
		G3/x
G6	G7/x	G6/x
G7	G6/y	G2/v
	30/ 9	G2/y G3/y
		<u> </u>

Возьмём начальное состояние 4 и совершим проверку реализации:

Допустимая	b	ь	a	a
последовательность				
Исходный	9/x	8/x	7/x	8/y
Покрывающий	G2/x	G6/x	G3/x	G6/y
	G3/x		G5/x	
	G6/x		G7/x	

$$||Gmax|| = 7$$
 $||S|| = 9$

Точная верхняя граница мощности кратчайшего покрытия:

$$min(||S||, ||Gmax||) = min(9,7) = 7$$

Для наибольшего графа $((1,4) \to (2,9) \to (5,8) \to (6,7) \to (5,8)$ — явно совместимое) количество вершин не соединенных между собой ребром равно двум. Следовательно, $\|Pmax\| = 2$

Построение кратчайшего покрытия, если это возможно.

Выделим в максимальных блоках покрытия уникальные состояния, которые здесь есть:

$$\{\{\underline{1},3,4\}, \{2,4,9\}, \{2,7,9\}, \{3,5\}, \{3,7\}, \{5,\underline{8},9\}, \{\underline{6},7\}\}$$

Попробуем убрать блоки $\{3, 5\}, \{3, 7\}$:

$$\{\{1,3,4\},\,\{2,4,9\},\,\{2,7,9\},\,\{5,8,9\},\,\{6,7\}\}$$

			Номера блоков		
			покрытия	, которым	
№ блока	Состав	Непоср. производное множество принадлежит			цлежит
покрытия	блока	непоср.производн. мн			изводн. мн-
				В	О
		По а	По в	Для а	Для b
1.	1, 3,4	1,3	2, 9	1	2 3
2.	2,4,9	3	5,8,9	1	4

3.	2,7,9	8	5, 8	4	4
4.	5,8,9	6, 7	5,8	5	4
5	6,7	5,8	2	4	2 3

Исключим: 9,7,2,4.

Из первого блока исключаем "4", из второго блока исключаем "2" и "9", из третьего блока мсключаем "7" и "9". Теперь, проверим на замкнутость.

№ блока покрытия	Состав блока	Непоср. произво	непоср.пр	, которым цлежит	
		По а	По в	Для а	Для b
1.	1,3	1	2	1	3
2.	4	3	9	1	4
3.	2	-	5	-	4
4.	5,8,9	6, 7	5,8	5	4
5	6, 7	5, 8	2	4	3

Покрытие - замкнутое, следовательно $Gmin = \{\{1,3\}, \{4\}, \{2\}, \{5,8,9\}, \{6,7\}\}$

	a	ь
G1	G1/-	G3/x
G2	G1/y	G4/x
G3	-/y	G4/-
G4	G5/x	G4/x
G5	G4/y	G3/y

Возьмём начальное состояние 4 и совершим проверку реализации:

	b	b	a	a
>4	X	X	X	У
G2	X	X	X	у

Заметим, что исходный и покрываемый автомат одинаковы по функционалу.

Вывод: мы построили максимальную и минимальную группировки частично определенного автомата.