14.5 The Chain Rule

The Chain Rule: Case 1

Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(t) and y = h(t) are both differentiable functions of t. Then z is a differentiable function of t and

$$rac{dz}{dt} = rac{\partial z}{\partial x}rac{dx}{dt} + rac{\partial z}{\partial y}rac{dy}{dt}$$

Proof

Since z = f(x, y) is differentiable, we have

$$\Delta z = f_x(x_0,y_0)\Delta x + f_y(x_0,y_0)\Delta y + arepsilon_1\Delta x + arepsilon_2\Delta y$$

where $arepsilon_1 o 0$ and $arepsilon_2 o 0$ as $(\Delta x,\Delta y) o (0,0)$. Dividing both sides by Δt , we have

$$rac{\Delta z}{\Delta t} = rac{\partial z}{\partial x} rac{\Delta x}{\Delta t} + rac{\partial z}{\partial y} rac{\Delta y}{\Delta t} + rac{arepsilon_1}{\Delta t} \Delta x + rac{arepsilon_2}{\Delta t} \Delta y$$

If we let $\Delta t \to 0$, then $\Delta x = g(t+\Delta t) - g(t) \to 0$ because g is differentiable and therefore continuous. Similarly, $\Delta y \to 0$. This, in turn, means that $\varepsilon_1 \to 0$ and $\varepsilon_2 \to 0$. Thus, we have

$$egin{aligned} rac{dz}{dt} &= \lim_{\Delta t o 0} rac{\Delta z}{\Delta t} \ &= rac{\partial f}{\partial x} \lim_{\Delta t o 0} rac{\Delta x}{\Delta t} + rac{\partial f}{\partial y} \lim_{\Delta t o 0} rac{\Delta y}{\Delta t} + \left(\lim_{\Delta t o 0} arepsilon_1
ight) \lim_{\Delta t o 0} rac{\Delta x}{\Delta t} + \left(\lim_{\Delta t o 0} arepsilon_2
ight) \lim_{\Delta t o 0} rac{\Delta y}{\Delta t} \ &= rac{\partial f}{\partial x} rac{dx}{dt} + rac{\partial f}{\partial y} rac{dy}{dt} + 0 \cdot rac{dx}{dt} + 0 \cdot rac{dy}{dt} \ &= rac{\partial f}{\partial x} rac{dx}{dt} + rac{\partial f}{\partial y} rac{dy}{dt} \end{aligned}$$

The Chain Rule: Case 2

Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(s, t) and y = h(s, t) are differentiable functions of s and t. Then

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$
$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$

The Chain Rule: General Version

Suppose that u is a differentiable function of the n variables x_1, x_2, \ldots, x_n , and each x_j is a differentiable function of the m variables t_1, t_2, \ldots, t_m . Then u is a function of the m variables t_1, t_2, \ldots, t_m , and

$$rac{\partial u}{\partial t_i} = rac{\partial u}{\partial x_1} rac{\partial x_1}{\partial t_i} + rac{\partial u}{\partial x_2} rac{\partial x_2}{\partial t_i} + \cdots + rac{\partial u}{\partial x_n} rac{\partial x_n}{\partial t_i}$$

for each $i = 1, 2, \ldots, m$.

Implicit Differentiation

Suppose that an equation of the form F(x,y)=0 defines y implicitly as a differentiable function of x, that is, y=f(x), where F(x,f(x))=0 for all x in the domain of f. If F is differentiable, we can apply Case I of the Chain Rule to differentiate both sides of the equation F(x,f(x))=0 with respect to x. Since both x and y are functions of x, we obtain

$$\frac{\partial F}{\partial x}\frac{dx}{dx} + \frac{\partial F}{\partial y}\frac{dy}{dx} = 0$$

But $\frac{dx}{dx}=1$, so if $\frac{\partial F}{\partial y} \neq 0$, we can solve for $\frac{dy}{dx}$ to obtain

$$rac{dy}{dx} = -rac{rac{\partial F}{\partial x}}{rac{\partial F}{\partial y}} = -rac{F_x(x,y)}{F_y(x,y)}$$

For F(x, y, z) = 0, we can apply the Chain Rule to differentiate both sides of the equation F(x, y, z) = 0 with respect to x. We obtain

$$\frac{\partial F}{\partial x}\frac{\partial x}{\partial x} + \frac{\partial F}{\partial y}\frac{\partial y}{\partial x} + \frac{\partial F}{\partial z}\frac{\partial z}{\partial x} = 0$$

Since we're differentiating with respect to x, $\frac{\partial y}{\partial x}=0$ Hence

$$rac{\partial F}{\partial x} + rac{\partial F}{\partial z} rac{\partial z}{\partial x} = 0$$

We can get

$$\frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial x}} = -\frac{F_x}{F_z}$$

$$rac{\partial z}{\partial y} = -rac{rac{\partial F}{\partial y}}{rac{\partial F}{\partial z}} = -rac{F_y}{F_z}$$