ROBOTIK HTM Scara

November 20, 2024

1 Herleitung der HTM für Standardmanipulatoren

1.1 (1) SCARA

Folgende Bibliotheken, Funktionen und Konstanten werden genutzt:

```
[1]: from matplotlib import pyplot as plt
     from numpy.linalg import inv
     from IPython import display
     import numpy as np
     import math
     PI = 3.1415926535
     def plot4x4Mat(m):
         print("[\%6.2f\t\%6.2f\t\%6.2f\t\%6.2f]"\%(m[0,0],m[0,1],m[0,2],m[0,3]))
         print("[\%6.2f\t\%6.2f\t\%6.2f\t\%6.2f]"\%(m[1,0],m[1,1],m[1,2],m[1,3]))
         print("[%6.2f\t%6.2f\t%6.2f\t%6.2f]"%(m[2,0],m[2,1],m[2,2],m[2,3]))
         print("[\%6.2f\t\%6.2f\t\%6.2f\t\%6.2f]"\%(m[3,0],m[3,1],m[3,2],m[3,3]))
     def rotX(phi):
         m = np.array([[1,0,0,0]],
                        [0, math.cos(phi), math.sin(phi),0],
                        [0,-math.sin(phi),math.cos(phi),0],
                        [0,0,0,1]]
         return m
     def rotY(phi):
         m = np.array([[math.cos(phi),0,-math.sin(phi),0],
                        [0,1,0,0],
                        [math.sin(phi),0,math.cos(phi),0],
                        [0,0,0,1]])
         return m
     def rotZ(phi):
         m = np.array([[math.cos(phi),math.sin(phi),0,0],
                        [-math.sin(phi),math.cos(phi),0,0],
                        [0,0,1,0],
```

[0,0,0,1]])

1.1.1 (I) Kinematisches Model des Roboters

(I.1) Der Roboter

return m

(I.2) Kinematische Struktur und Parameter Die wesentlichen Parameter des SCARA-Roboters sind zwei Rotations und ein Translationsgelenk. Im folgenden ist die Kinematische Kette des Systems angegeben. Neben den Gelenkparametern ϕ_0 , ϕ_1 und d_2 sind noch die Parameter zu Gliederabständen $(a_0, a_1, a_2 \text{ und } a_3)$ gegeben. Weiterhin sind die Koordinatensysteme KS0, KS1, KS2, KS3 für jedes Gelenk und den TCP eingetragen. Die Koordinatensysteme drehen oder bewegen sich nicht mit, wenn die entsprechenden Gelenkwerte verändert werden.

[2]: display.Image("./data/SCARA_KinStrk.jpg")

[2]:


```
[4]: #Ausgabe der Ergebnisse
    print("a0 = ",end="");    print(a0)
    print("a1 = ",end="");    print(a1)
    print("a2 = ",end="");    print(a2)
    print("a3 = ",end="");    print(a3)
    print("phi0 = ",end="");    print(phi0)
    print("phi1 = ",end="");    print(phi1)
    print("d2 = ",end="");    print(d2)
a0 = 1
a1 = 1
a2 = 1
a3 = 1
phi0 = 0
```

(I.3) Koordinatensysteme

1.1.2 (II) Herleitung der HTM

Kinematische Kette...

phi1 = 0d2 = 0

(II.1) HTM ${}_{3}^{2}T$ Die Koordinatensysteme KS3 und KS2 haben die gleiche Orientierung. Die Orientierung verändert sich auch nicht, wenn beliebige Gelenkwerte verändert werden. Daher hat die HTM ${}_{3}^{2}T$ keine Rotationsanteil.

Ein Translationsanteil ist jeodch vorhanden. Dieser ist einmal fest, definert durch die Link-Länge a_3 , und einmal variabel durch das Translationsgelenk, repäsentiert durch den Parameter d_2 .

Der parametrisierte Translationsvektor ²V bzgl. Zielkoordinatensystem KS2 beträgt:

$${}^2V = \left(\begin{array}{c} 0\\0\\a_3+d_2\\1\end{array}\right)$$

Die finale HTM ${}_{3}^{2}T(d_{2})$ beträgt somit:

$${}_{2}^{3}T = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & (a_{3} + d_{2}) \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

```
[5]: T_3_2 = np.array([[1,0,0,0],[0,1,0,0],[0,0,1,(a3+d2)],[0,0,0,1]]);
[6]: #Ausgabe der Berechnungsergebnisse
print("T_3_2 = ",end="\n"); plot4x4Mat(T_3_2)
```

(II.2) HTM ${}_{2}^{1}T$ In der Grundstellung (siehe Kinematische Struktur oben) habe die beiden Koordinatensysteme K2 und K1 eine unterschiedliche Orientierung. Die Orientierung der Koordinatensysteme ist ausserdem noch bestimmt durch die Gelenkstellung ϕ_{1} . In der Grundstellung ($\phi_{1} = 0$) können die beiden Koordinatensysteme in die gleiche Orientierung gebracht werden, wenn KS2 entlang der X-Achse eine Rotation um 180° bzw. π (rad) erfährt.

Eine weitere Rotation ist notwendig, wenn $\phi \neq 0$ gilt. Dann muss KS2 entlang der Z-Achse zusätzlich rotiert werden. Der Betrag dieser Rotation ist leicht aus der Kinematischen Struktur abzulesen. Der Betrag der Rotation beträgt $|\phi|$. Fraglich ist das Vorzeichen.

Bzgl. der Definitionen aus der Vorlesung betrachten wir die Drehung von KS2 (Ursprungskoordinatensystem) zu KS1 (Zielkoordinatensystem) hin. Wird nun zuerst die Rotation von KS2 um die X-Achse durchgeführt und danach die Rotation um die Z-Achse, dann beträgt der Wert des Rotationswinkels $-\phi$. Denn KS2 müsste dann entgeben der postiven Drehrichtung Rotiert werden.

Wird hingegen zuerste die Drehung um die Z-Achse ausgeführt und als zweites die Rotation um die X-Achse, dann ist der Rotationswinkel $+\phi$.

Es gibt also mindestens zwei Möglichkeiten die Rotationen darzustellen. Erste Variante, erst Rotation um die X-Achse und dann um die Z-Achse:

$${}^1_2R_{XZY}(\pi,-\phi_1,0) = R_Y(0) \cdot R_Z(-\phi_1) \cdot R_X(\pi) \; = \;$$

$$\begin{pmatrix} \cos(0) & 0 & -\sin(0) & 0 \\ 0 & 1 & 0 & 0 \\ \sin(0) & 0 & \cos(0) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos(-\phi_1) & \sin(-\phi_1) & 0 & 0 \\ -\sin(-\phi_1) & \cos(-\phi_1) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\pi) & \sin(\pi) & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos(\phi_1) & -\sin(\phi_1) & 0 & 0 \\ \sin(\phi_1) & \cos(\phi_1) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos(\phi_1) & \sin(\phi_1) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos(\phi_1) & \sin(\phi_1) & 0 & 0 \\ \sin(\phi_1) & -\cos(\phi_1) & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

$$R1_2_1 =$$
[1.00 0.00 0.00 0.00]
[0.00 -1.00 0.00 0.00]
[0.00 -0.00 -1.00 0.00]
[0.00 0.00 0.00 1.00]

Bei der zweite Variante wird erst um die Z-Achse und dann um die X-Achse rotiert:

$${}^1_2R_{ZXY}(\phi_1,\pi,0) = R_Y(0) \cdot R_X(\pi) \cdot R_Z(\phi_1) \ =$$

$$\begin{pmatrix} \cos(0) & 0 & -\sin(0) & 0 \\ 0 & 1 & 0 & 0 \\ \sin(0) & 0 & \cos(0) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(\pi) & \sin(\pi) & 0 \\ 0 & -\sin(\pi) & \cos(\pi) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos(\phi_1) & \sin(\phi_1) & 0 & 0 \\ -\sin(\phi_1) & \cos(\phi_1) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos(\phi_1) & \sin(\phi_1) & 0 & 0 \\ -\sin(\phi_1) & \cos(\phi_1) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos(\phi_1) & \sin(\phi_1) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

```
R2_2_1 =
[ 1.00
          0.00
                  0.00
                           0.00]
[ 0.00 -1.00
                  0.00
                           0.00]
                  -1.00
 0.00
         -0.00
                           0.00]
          0.00
                  0.00
[ 0.00
                           1.00]
```

Mit beiden Varianten werden die Koordinatensystem KS2 und KS1 in die gleiche Orientierung gebracht. Beide Varianten führen auch zu den gleichen Rotationsmatrizen.

Auch der Translationsvektor 1V ist nicht direkt aus der Kinematischen Struktur abzulesen. Befindet sich der Roboter nicht in der Grundstellung, dann hat dieser Vektor x- und y-Anteile, abhängig von der Gelenkstellung ϕ_1 .

$$^1V = \left(\begin{array}{c} a_2 \cdot cos(\phi_1) \\ a_2 \cdot sin(\phi_1) \\ 0 \\ 1 \end{array} \right)$$

Damit ergibt sich folgende paremetrisierte HTM ${}_{2}^{1}T(\phi_{1})$:

$${}^1_2T(\phi_1) \; = \; \left(\begin{array}{cccc} \cos(\phi_1) & \sin(\phi_1) & 0 & a_2 \cdot \cos(\phi_1) \\ \sin(\phi_1) & -\cos(\phi_1) & 0 & a_2 \cdot \sin(\phi_1) \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right)$$

- [11]: $T_2_1 = R2_2_1$; $T_2_1[0,3] = a2*math.cos(phi1)$ $T_2_1[1,3] = a2*math.sin(phi1)$
- [12]: #Ausgabe der Berechnungsergebnisse
 print("T_2_1 = ",end="\n"); plot4x4Mat(T_2_1)

$$T_2_1 =$$
[1.00 0.00 0.00 1.00]
[0.00 -1.00 0.00 0.00]
[0.00 -0.00 -1.00 0.00]
[0.00 0.00 0.00 1.00]

(II.3) HTM ${}_{1}^{0}T$ Die HTM kann genauso hergeleitet werden wie ${}_{2}^{1}T$ oben. Der einzige Unterschied ist, dass es keine konstante Rotation um π gibt. Daher gibt es auch nur eine Rotation um die Achse Z des Zielkoordinatensystems KS0 mit negativen Betrag. Der Rotationswinkel ist also $-\phi_{0}$.

$$\begin{split} & \overset{Z}{U}R_{XYZ}(0,0,-\phi_0) = R_Z(-\phi_0) \cdot R_Y(0) \cdot R_X(0) \; = \\ & \left(\begin{array}{cccc} \cos(-\phi_0) & \sin(-\phi_0) & 0 & 0 \\ -\sin(-\phi_0) & \cos(-\phi_0) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right) \; = \\ & \left(\begin{array}{cccc} \cos(\phi_0) & -\sin(\phi_0) & 0 & 0 \\ \sin(\phi_0) & \cos(\phi_0) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right) \\ & & & & & & & & \\ {}^0V = \left(\begin{array}{cccc} a_1 \cdot \cos(\phi_0) \\ a_1 \cdot \sin(\phi_0) \\ a_0 \\ 1 \end{array} \right) \\ & & & & & & \\ {}^0T(\phi_1) \; = \; \left(\begin{array}{cccc} \cos(\phi_0) & -\sin(\phi_0) & 0 & a_1 \cdot \cos(\phi_0) \\ \sin(\phi_0) & \cos(\phi_0) & 0 & a_1 \cdot \sin(\phi_0) \\ 0 & 0 & 1 & a_0 \\ 0 & 0 & 0 & 1 \end{array} \right) \end{split}$$

```
[13]: T_1_0 = rotZ(-phi0)
         T_1_0[0,3] = a1*math.cos(phi0)
         T_1_0[1,3] = a1*math.sin(phi0)
         T_1_0[2,3] = a0
[14]: #Ausgabe der Berechnungsergebnisse
         print("T_1_0 = ",end="\n"); plot4x4Mat(T_1_0)
        T_1_0 =
                                    0.00
                                                1.00]
        [ 1.00
                       0.00
                                    0.00
        [ -0.00
                       1.00
                                                0.001
        0.00
                       0.00
                                    1.00
                                                1.00]
        0.00
                       0.00
                                    0.00
                                                1.00]
        (II.4) Die finale HTM {}_{3}^{0}T
                                         {}_{3}^{0}T(\phi_{0},\phi_{1},d_{2}) = {}_{1}^{0}T(\phi_{0})\cdot {}_{2}^{1}T(\phi_{1})\cdot {}_{3}^{2}T(d_{2}) =
           \begin{pmatrix} \cos(\phi_0) & -\sin(\phi_0) & 0 & a_1 \cdot \cos(\phi_0) \\ \sin(\phi_0) & \cos(\phi_0) & 0 & a_1 \cdot \sin(\phi_0) \\ 0 & 0 & 1 & a_0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos(\phi_1) & \sin(\phi_1) & 0 & a_2 \cdot \cos(\phi_1) \\ \sin(\phi_1) & -\cos(\phi_1) & 0 & a_2 \cdot \sin(\phi_1) \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & (a_3 + d_2) \\ 0 & 0 & 0 & 1 \end{pmatrix} 
[15]: T_3_0 = T_1_0 @ T_2_1 @ T_3_2
[16]: #Ausqabe der Berechnungsergebnisse
         print("T_3_0 = ",end="\n"); plot4x4Mat(T_3_0)
        T_3_0 =
        [ 1.00 0.00
                                    0.00
                                                2.00]
        [0.00 -1.00]
                                    0.00
                                                0.00]
        [ 0.00 -0.00
                                  -1.00
                                                0.00]
        [ 0.00 0.00
                                    0.00
                                                1.00]
        1.1.3 (III) Übung
[17]: # Parameter der Kinematischen Struktur
         a0 = 1
         a1 = 1
         a2 = 1
         a3 = 1
         # Gelenkparameter
         #phi0 = -PI/2
         #phi1 = PI/2
         #d2 = 2
         print("phi0 = ", end="")
```

```
phi0 = float(input());
    print("phi1 = ", end="")
     phi1 = float(input());
     print("d2 = ", end="")
     d2 = float(input());
     # HTM: T_3_2
     T_3_2 = \text{np.array}([[1,0,0,0],[0,1,0,0],[0,0,1,(a3+d2)],[0,0,0,1]]);
     # HTM: T_2_1
     T_2_1 = rotX(PI) @ rotZ(phi1);
     T_2_1[0,3] = a2*math.cos(phi1)
     T_2_1[1,3] = a2*math.sin(phi1)
     # HTM: T_1_0
     T_1_0 = rotZ(-phi0)
     T_1_0[0,3] = a1*math.cos(phi0)
     T_1_0[1,3] = a1*math.sin(phi0)
     T_1_0[2,3] = a0
     # HTM: T_3_0 = T_1_0 * T_2_1 * T_3_2
     T_3_0 = T_1_0 @ T_2_1 @ T_3_2
     #Ausgabe der Berechnungsergebnisse
     print("T_3_0 = ",end="\n"); plot4x4Mat(T_3_0)
    phi0 =
     0
    phi1 =
     0
    d2 =
     1
    T_3_0 =
    [ 1.00
              0.00
                      0.00
                              2.007
    [ 0.00 -1.00
                      0.00
                              0.00]
    [ 0.00 -0.00
                     -1.00
                             -1.00
    0.00
            0.00
                      0.00
                              1.00]
[]:
[]:
[]:
```