Online sellers revisited worksheet

Joachim Vandekerckhove

Set up environment

```
library(rjags)
library(coda)
library(ggplot2)
library(dplyr)
library(readr)
```

Data

Load the data and necessary colors.

JAGS Models

Create the JAGS model files for independent, aggregate, and hierarchical models and run MCMC sampling for each model.

```
# Define parameters for MCMC
nChains <- 8
nBurnin <- 1000
nSamples <- 5000
nThin <- 1</pre>
samplesList <- list()
```

```
independent_model <- "</pre>
model{
  for (i in 1:nSellers){
    k[i] ~ dbin(theta[i], n[i])
    kPostpred[i] ~ dbin(theta[i], n[i])
    theta[i] ~ dunif(0, 1)
п
modelFile <- "onlineSellersIndependent.jags"</pre>
writeLines(independent_model, con = modelFile)
```

```
data_list <- list(k = k, n = n, nSellers = nSellers)
inits <- function() list(theta = runif(nSellers))
params <- c("theta", "kPostpred")</pre>
```

```
## Compiling model graph
## Resolving undeclared variables
## Allocating nodes
## Graph information:
## Observed stochastic nodes: 5
## Unobserved stochastic nodes: 10
## Total graph size: 23
##
## Initializing model
```

```
aggregate_model <- "
model{
  for (i in 1:nSellers){
    k[i] ~ dbin(theta, n[i])
    kPostpred[i] ~ dbin(theta, n[i])
  theta ~ dunif(0, 1)
п
modelFile <- "onlineSellersAggregate.jags"</pre>
writeLines(aggregate_model, con = modelFile)
```

```
data_list <- list(k = k, n = n, nSellers = nSellers)
inits <- function() list(theta = runif(1))
params <- c("theta", "kPostpred")</pre>
```

```
## Compiling model graph
## Resolving undeclared variables
## Allocating nodes
## Graph information:
## Observed stochastic nodes: 5
## Unobserved stochastic nodes: 6
## Total graph size: 19
##
## Initializing model
```

```
hierarchical_model <- "
model{
  for (i in 1:nSellers){
   k[i] ~ dbin(theta[i], n[i])
    kPostpred[i] ~ dbin(theta[i], n[i])
    theta[i] ~ dnorm(mu, 1/sigma^2)T(0, 1)
  mu \sim dunif(0, 1)
  sigma ~ dunif(0, 1)
п
modelFile <- "onlineSellersHierarchical.jags"
writeLines(hierarchical_model, con = modelFile)
```

```
jags_model <- jags.model(modelFile,</pre>
                         data
                                  = data list,
                         inits = inits,
                         n.chains = nChains,
                         n.adapt = nBurnin)
## Compiling model graph
##
      Resolving undeclared variables
```

##

Inspect Results

Print the multivariate Gelman diagnostic for each model.

```
mpsrf <- list()</pre>
modelList <- c("onlineSellersIndependent.jags",
                "onlineSellersAggregate.jags",
                "onlineSellersHierarchical.jags")
for (modelName in modelList) {
  samples <- samplesList[[modelName]]</pre>
  gelman diag <- gelman.diag(samples,
                               multivariate=TRUE)
  mpsrf[[modelName]] <- gelman_diag$mpsrf</pre>
}
gelman df <- data.frame(Model = names(mpsrf),</pre>
                          MPSRF = unlist(mpsrf))
```

Inspect Results

Print the multivariate Gelman diagnostic for each model.

Model	Multivariate PSRF
onlineSellersIndependent.jags	1.001188
onlineSellersAggregate.jags	1.000179
onlineSellersHierarchical.jags	1.004616

Analysis and Plots

Generate plots for posterior distributions and posterior predictive distributions.

onlineSellersIndependent.jags

onlineSellersHierarchical.jags

Joint Posterior for Hierarchical Model

