Incident Response Playbook: Suspicious DLL/Process Injection

Team AnubisX

Version 1.0 September 23, 2025

Document Control						
Attribute	Value					
Version	1.0					
Status	Draft					
Owner	AnubisX Security Team					
Review Cycle	w Cycle Every Quarter					

${\bf Contents}$

1	Introduction						
	1.1 Purpose						
	1.2 Scope						
2	Overview of the Attack						
3	Incident Response Phases						
	3.1 Phase 1: Preparation						
	3.2 Phase 2: Identification & Analysis						
	3.3 Phase 3: Containment						
	3.4 Phase 4: Eradication						
	3.5 Phase 5: Recovery						
	3.6 Phase 6: Post-Incident Activities (Lessons Learned)						

1 Introduction

1.1 Purpose

This playbook defines incident response procedures for handling "Suspicious DLL/Process Injection". It provides roles, responsibilities, detection indicators, containment steps, and recovery guidance to minimize impact and restore services.

1.2 Scope

This playbook applies to systems, network components, cloud services, and personnel. It is intended for use by incident responders, SOC analysts, IT operations, legal, and leadership.

2 Overview of the Attack

Process injection and DLL side-loading allow attackers to run code in the context of legitimate processes, evade detection, and escalate privileges. Key risks include:

- Stealthy execution and persistence
- In-memory credential theft
- Privilege escalation using trusted process context

3 Incident Response Phases

This playbook follows the NIST Incident Response lifecycle framework.

3.1 Phase 1: Preparation

Goal: To ensure the team is equipped and ready to respond to a process injection incident before it occurs.

- Roles and Responsibilities: Define roles: Incident Commander, Lead Analyst, Forensics, IT, Communications.
- Logging Auditing: Ensure logging and centralized authentication audits are enabled.
- Tools Resources: Deploy specialized detection rules and maintain playbooks for the specific alert type.
- Training: Regular backups and least-privilege access models.

3.2 Phase 2: Identification & Analysis

Goal: Confirm the activity and determine scope and severity.

- 1. **Initial Analysis and IOC Evaluation:** Analyze logs and alerts to identify Indicators of Compromise (IOCs). Common IOCs include:
 - Unexpected DLLs loaded into trusted processes
 - Processes exhibiting code injection patterns (CreateRemoteThread, NtCreateSection)
 - Signed-but-modified DLLs or side-loaded binaries

2. Severity Level Assessment: Classify the incident to ensure appropriate allocation of resources. Severity is based on: Operational Impact, Criticality of affected systems/data, Scope of attack, and Detection/Recovery timelines (MTTD/MTTR).

Level	Description	Example	MTTD	MTTR
Low	Single process shows	Developer tool loading plugin	<4 hrs	<24 hrs
	unusual DLL load.	unexpectedly.		
Medium	Multiple instances of	Malicious DLL injected into	4-12 hrs	1-3 days
	injection on several	userland processes across		
	hosts.	hosts.		
High	Credential theft and	In-memory tools extract cre-	12-24	3-7 days
	lateral movement re-	dentials and attackers move	hrs	
	sulting from injection.	laterally.		
Critical	Widespread injection	Injection used to establish	24+ hrs	7-21
	enabling enterprise	C2 and deploy ransomware		days
	compromise.	broadly.		

Table 1: Incident Severity Matrix

3.3 Phase 3: Containment

Goal: To limit attacker actions and preserve evidence.

- Suspend affected processes after memory capture, detect child/winapi usage patterns.
- Quarantine host and block further DLL loads from suspicious paths.

3.4 Phase 4: Eradication

Goal: To remove malicious components and prevent reinfection.

- Remove malicious DLLs, replace with signed binaries from trusted sources, reimage if necessary.
- Enable binary whitelisting and code integrity checks.

3.5 Phase 5: Recovery

Goal: To safely restore systems and business operations.

- Validate system integrity and certificate chains.
- Resume services with monitoring in place.

3.6 Phase 6: Post-Incident Activities (Lessons Learned)

Goal: To strengthen resilience and prevent recurrence.

- Conduct a blameless post-mortem and update playbooks.
- Produce final incident report and recommended mitigations.
- Implement controls to reduce recurrence.

4 MITRE ATT&CK Framework Mapping

Suspicious DLL/Process Injection ATT&CK Mapping

- Tactic: Defense Evasion
 - T1055 Process Injection
 - T1218 Signed Binary Proxy Execution
- Tactic: Credential Access
 - T1003 OS Credential Dumping