## Two Functional MDD's for the Price of One - Part 2

Curtis d'Alves, Nhan Thai, Nassim Khoonkari, Padma Pasupathi, Tanya Bouman, Christopher Anand

November 6, 2019

## Outline

- Symphony Syntax Guide Part 1
- Sample Problem 1
- Symphony Syntax Guide Part 2
- 4 Sample Problem 2
- Sample Problem 3
- 6 Symphony Syntax Guide Part 3
- Sample Problem 4

# Symphony - Modeling Language for Non-Linear Optimization

- Models linear and non-linear optimization problems
- Simple declarative language
- Support for bounded parameters and constraint programming
- Generates performance oriented c code
- Solver Agnostic (plug into your solver of choice)

## Vectors and dimension

- In Symphony, everything is vector.
- Vectors
  - ▶ Dimension (Shape): can be scalar, 1D, 2D, 3D, ...
    - ★ Scalar is just a single number
    - ★ 1D(n) variable is an array of n number, useful for problems in signal processing, sound processing, ...
    - \*  $2D(m \times n)$  variable is a 2D array of m  $\times$  n numbers, useful for problems in image processing, ...
    - ★ 3D(m x n x p) variable is a 3D array of m x n x p numbers, useful for problems in topology, image processing with voxels, ...
  - Numtype: can be real (R) or complex (C)
- We can manipulate vectors like adding, multiplying, doing inner product, ... to form new vectors (expressions).

## Forming An Expression

- (+), (-), (\*), (/) Add/Subtract/Multiply/Divide (point-wise) two vectors having same shape and same numtype
- (\*.) Scale a vector with a scalar (if they form a vector space in Mathematics, i.e, real number can scale anything, but complex can only scale complex)
- (<.>) Inner product (dot product) of two vectors
- (^) Power a vector with an integer
- Piecewise:

sumElements, norm2square, normHuber

## Structure

A valid symphony problem consists of:

- Variables
- Objective function
- Constants (optional)
- Constraints (optional)

## Variable Declaration

- Variables are declared in a variable block
- For example:

```
variables:

x[100][100] = 10

y[20][20][20]

a, b = 2, c
```

- Assignment denotes an initial value
- Unassigned variables will be randomly iniatlized with anumber between (0,1)

## Objective Function

- Declared in a minimize block
- For example:

```
minimize:
2 (x - y)^2
3
```

• Must evaluate to a scalar (one dimensional value)

## Constant Declarations

- Declared in a constants block
- For example:

```
constants:

m = 2

delta = 10, sigma = 15

mask[100][100] = Pattern(FIRST_ROW_1)
```

- Unlike variables, cosntants must be assigned, and are not optimized over
- Multi-dimensional constants can be assigned using the Pattern function, which takes the following macros as input

```
FIRST_COLUMN_0, FIRST_COLUMN_1, LAST_ROW_0
LAST_ROW_1, LAST_COLUMN_0, LAST_COLUMN_1 ...
```

## Local Variables

- Sometimes your expression can become to convoluted, declare local variables using a let block
- For example:

```
let:
    regularizerX = norm2square x
    regularizerY = norm2square y
    regularizer = regularizerX + regularizerY

minimize:
    norm2square (x - y) + regularizer
```

# Sample Problem 1 - Velocity Problem



- MRI imaging problem dealing with blood flow
- Given vector field of blood flow: can we find how long each blood cell has been there?
- Do this by minimizing the flow over time (hence an optimization problem!)

# Velocity Problem - Model Derivation

$$\Rightarrow t_{i-1,j} - t_{i,j} = \frac{CB}{|\overrightarrow{v}|} = \frac{AB\cos\theta}{\sqrt{v_x^2 + v_y^2}} = \frac{1\frac{v_y}{\sqrt{v_x^2 + v_y^2}}}{\sqrt{v_x^2 + v_y^2}} = \frac{v_y}{v_x^2 + v_y^2}$$
(1)

$$\Rightarrow (t_{i-1,j} - t_{i,j})(v_x^2 + v_y^2) = v_y \tag{2}$$

$$\Leftrightarrow \Delta t_y(v_x^2 + v_y^2) = v_y \tag{3}$$

# Velocity Problem - Optimization Model

$$\begin{aligned} \min_{t} \sum_{\text{pixels}} (\Delta t_x (v_x^2 + v_y^2) - v_x) * v_x^2)^2 \\ + \sum_{\text{pixels}} (\Delta t_y ((v_x^2 + x_y^2) - x_y) * x_y^2)^2 \\ v_{(x,y)} \quad \text{velocity in x,y direction} \\ t_{(x,y)} \quad \text{time in x,y direction} \end{aligned}$$

## Variable Bounds

- Variable bounds are put in a constraints block
- For example:

```
constants:
yUpperBound = 5
constraints:
    x >= 10
y <= yUpperBound
</pre>
```

• Bounds must be assigned to a value or constant (not an expression)

# File Storage

- Values for variabels or constants can be loaded from text files or HDF5 datasets
- For example:

```
constants:
    b[10][10] = File("b.txt")
variables:
    real[128][128] = Dataset("dataset.hd5","real")
imag[128][128] = Dataset("dataset.hd5","imag")
```

## HDF5 - Hierarchical Data Format

- Designed to store and organize large amounts of data
- Capable of storing multiple labeled datasets in a single file
- Great library h5py for python, capable of generating data straight from numpy arrays

#### Brain Problem - 1

Data: real part (re) and imag part (im) of image's k-space received by the MRI. Black spots are where the signal is lost.



Apply a threshold: signal = abs(re) > 0.5 to get a matrix of where the signal is received. signal[i][j] = 1 if there is signal in this spot, 0 otherwise



## Brain Problem - 2

Naively reconstruct the image by taking inverse FFT, we get the naive image.





## Multi-Coil MRI

$$\min_{\rho} \sum_{i=0}^{\text{\#coils}} ||FT(P)) - m_i||^2 \\
+ \lambda(||\delta_x(\rho)||^2 + ||\delta_y(\rho)||^2)$$

 $\rho = \text{ True Image}$ 

 $S_i = \text{Coil Sensitivity}$ 

 $m_i = \text{K-Space measurement}$ 

 $\lambda = \text{scaling}$ 

## Constraints

- Declared in a constraints block (just like variable bounds)
- For example:

```
constraints:

x <.> x >= 0
```

- Expression must be on LHS and must evaluate to scalar (one-dimensional value)
- Note: limits your choice of supported solvers

# Logistics Problem

- In most logistic problems we want to Maximize the benefits or Minimize the costs.
- This table is for defining the revenue of sending products from factories to companies.

|          | Company1 | Company2 |
|----------|----------|----------|
| Factory1 | 1.75     | 2.25     |
| Factory2 | 2.00     | 2.50     |

 the below table shows the demand of companies. Also the capacity of each factory for producing is 60000.

|          | Company1               | Company2               |
|----------|------------------------|------------------------|
| Factory1 | <i>x</i> <sub>11</sub> | <i>x</i> <sub>12</sub> |
| Factory2 | x <sub>21</sub>        | x <sub>22</sub>        |
|          | 23000                  | 30000                  |

# Logistics Problem

we want to Maximize the revenue.

$$Maxf(x) = Min - f(x)$$

So we will have:

$$\begin{aligned} \mathit{Min} - & ((c_{11} * x_{11}) + (c_{12} * x_{12}) + (c_{21} * x_{21}) + (c_{22} * x_{22})) \\ & \text{subject to:} \\ & x_{11} \geq 0, \ x_{12} \geq 0, \ x_{21} \geq 0, \ x_{22} \geq 0 \\ & x_{11} + x_{21} \geq \mathsf{DemandCompany1} \\ & x_{12} + x_{22} \geq \mathsf{DemandCompany2} \\ & x_{11} + x_{12} \leq \mathsf{CapacityFactory1} \\ & x_{21} + x_{22} \leq \mathsf{CapacityFactory2} \end{aligned}$$

## Logistics Problem

variables here are the the products which are sent from each factory to each company.

CapacityFactory1 = 600000 CapacityFactory2 = 600000 DemandCompany1 = 30000 DemandCompany2 = 23000  $c_{11} \rightarrow \text{revenue of } x_{11} = 1.75$  $c_{12} \rightarrow \text{revenue of } x_{12} = 2.25$  $c_{21} \rightarrow \text{revenue of } x_{21} = 2$  $c_{22} \rightarrow \text{revenue of } x_{22} = 2.50$