Leetcode Solutions

SVR

August 14, 2025

Introduction

Following are my solutions for some leetcode problems. The solutions and code are primarily in C++ owing to the fact that I'm already using Python in my research, and C++ for the engineering part. However, C++ is something I'm trying to go deeper owing to the fact that I'm improving my ability to build low latency systems, which primarily use C/C++.

Template Script

Description

The following script is forked each time I want to locally work on a leetcode problem. The subsequent solutions in the later sections also have the functions present in this particular script in their scope. So this script also serves to provide an idea as to the functions, and what not, that are available. Note that the standard practice is to have these functions written in another file and have it included in the main script. However, I often tinker with these functions based on the problem at hand. Thus, the not-so-standard approach.

Template.cpp

```
using std::map;
   using std::format:
   using std::deque;
   using std::pair;
   // vector printing function
   template<typename T>
   void fPrintVector(vector<T> input){
       for(auto x: input) cout << x << ".";</pre>
       cout << endl:
   }
11
12
   template<typename T>
   void fPrintMatrix(vector<T> input){
       for(auto x: input){
           for(auto v: x){
16
               cout << y << ",";
           cout << endl;</pre>
19
```

```
2.1
   template<typename T, typename T1>
23
   void fPrintHashmap(unordered_map<T, T1> input){
2.4
       for(auto x: input){
           cout << format("[{},{}] \n", x.first, x.second);</pre>
2.6
2.7
       cout <<endl;</pre>
2.9
30
   struct TreeNode {
       int val:
32
       TreeNode *left:
33
       TreeNode *right;
34
       TreeNode() : val(0), left(nullptr), right(nullptr) {}
35
       TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
36
       TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
37
   };
38
39
40
   struct ListNode {
41
       int val:
42
       ListNode *next:
43
       ListNode() : val(0), next(nullptr) {}
       ListNode(int x) : val(x), next(nullptr) {}
       ListNode(int x, ListNode *next) : val(x), next(next) {}
46
   };
47
48
   void fPrintBinaryTree(TreeNode* root){
49
       // sending it back
50
       if (root == nullptr) return;
51
52
       // printing
       PRINTLINE
       cout << "root->val = " << root->val << endl;</pre>
55
```

```
56
       // calling the children
57
       fPrintBinaryTree(root->left);
58
       fPrintBinaryTree(root->right);
59
60
       // returning
61
62
       return;
63
64
65
   void fPrintLinkedList(ListNode* root){
       if (root == nullptr) return;
67
       cout << root->val << ". ":
68
       fPrintLinkedList(root):
       return:
70
71
72
   template<typename T>
   void fPrintContainer(T input){
74
       for(auto x: input) cout << x << ", ";</pre>
75
       cout << endl;</pre>
76
       return;
77
   }
78
79
   struct StopWatch
81
       std::chrono::time_point<std::chrono::high_resolution_clock> startpoint;
82
       std::chrono::time_point<std::chrono::high_resolution_clock> endpoint;
83
       std::chrono::duration<long long, std::nano>
                                                                duration;
84
85
       // constructor
86
                      {startpoint = std::chrono::high_resolution_clock::now();}
       StopWatch()
87
       void start()
                      {startpoint = std::chrono::high_resolution_clock::now();}
88
                      {endpoint = std::chrono::high_resolution_clock::now(); fetchtime();}
       void stop()
89
```

```
void fetchtime(){
      duration = std::chrono::duration_cast<std::chrono::nanoseconds>(endpoint - startpoint);
      cout << format("{} nanoseconds \n", duration.count());</pre>
   void fetchtime(string stringarg){
      duration = std::chrono::duration_cast<std::chrono::nanoseconds>(endpoint - startpoint);
      cout << format("{} took {} nanoseconds \n", stringarg, duration.count());</pre>
};
int main(){
   // input- configuration
   // return
   return(0);
```

91

93 94

99 100 101

102

103 104

110

1. Two Sum

Question

Given an array of integers nums and an integer target, return indices of the two numbers such that they add up to target. You may assume that each input would have exactly one solution, and you may not use the same element twice. You can return the answer in any order.

Solution

Code

```
int main(){
       // input- configuration
       vector<int> nums {2, 7, 11, 15};
                  target {9};
       int
       // setup
       int
                             complement
                                            {O}:
       unordered_map<int, int> number_to_index;
       vector<int>
                             finaloutput;
10
       // filling the unordered_map
       for(int i = 0; i < nums.size(); ++i){</pre>
14
          // calculating complement
           complement = target - nums[i];
16
17
          // checking if complement is present in registry
           if(number_to_index.find(complement) != number_to_index.end()) [[unlikely]]
19
```

```
2.0
               finaloutput.push_back(number_to_index[complement]); // adding first index
21
               finaloutput.push_back(i);
                                                                 // adding second index
2.2
                                                                 // breaking out
               break;
23
           else [[likely]]
2.5
               // check if current element is present
               if (number_to_index.find(nums[i]) == number_to_index.end()) [[likely]]
2.8
2.9
                   // adding the [number, index] pair to the hashmap
                   number_to_index[nums[i]] = i;
31
32
               else [[unlikely]]
33
34
                   // we'll do nothing since the number and its index is already present
35
                   continue;
36
37
38
       }
39
40
       // printing the final output
41
       for(const auto& x : finaloutput) {cout << x << ", ";} cout << endl;</pre>
42
43
       // return
44
       return(0);
45
46
47
```

2. Add Two Numbers

You are given two non-empty linked lists representing two non-negative integers. The digits are stored in reverse order, and each of their nodes contains a single digit. Add the two numbers and return the sum as a linked list. You may assume the two numbers do not contain any leading zero, except the number 0 itself.

Question

Solution

Code

```
int main(){
       // input- configuration
       ListNode* 11 = new ListNode(2):
       11->next
                     = new ListNode(4);
       11->next->next = new ListNode(3);
       ListNode* 12 = new ListNode(5);
       12->next = new ListNode(6);
       12->next->next = new ListNode(4);
10
       // setup
       ListNode* traveller_1 = 11;
       ListNode* traveller_2 = 12;
14
       ListNode* finalOutput = new ListNode(-1);
15
       ListNode* traveller_fo = finalOutput;
16
17
       int sum
                            {0}:
18
                            {0};
       int carry
19
```

```
int value 1
                     {0};
int value 2
                     {0}:
// moving through the two nodes
while(traveller_1 != nullptr || traveller_2 != nullptr){
   // adding the two numbers
   value_1 = traveller_1 == nullptr ? 0 : traveller_1->val;
   value_2 = traveller_2 == nullptr ? 0 : traveller_2->val;
   // calculating sum
          = value_1 + value_2 + carry;
   if (sum >= 10) [[unlikelv]] {sum -= 10; carrv = 1;}
                               {carrv = 0:}
   else
                 [[likelv]]
   // creating node
   traveller_fo->next = new ListNode(sum);
   traveller fo
                     = traveller fo->next:
   // updating the two pointers
   if(traveller_1 != nullptr) [[likely]] {traveller_1 = traveller_1->next;}
   if(traveller_2 != nullptr) [[likely]] {traveller_2 = traveller_2->next;}
}
// creating a final node if carry is non-zero
if (carry == 1) [[unlikely]] {
   traveller_fo->next = new ListNode(carry);
}
// printing the final output
traveller_fo = finalOutput->next;
cout << format("final-output = ");</pre>
while(traveller_fo != nullptr){
   cout << traveller_fo->val << ", ";</pre>
   traveller_fo = traveller_fo->next;
```

2.0

21 22

23

24 25

26

28 29

31

32

33

35

36

37 38

39

40

41

42 43

44

45

46

47 48

49

50

51

52

53

54

```
55      }
56      cout << "\n";
57
58      // return
59      return(0);
60
61    }</pre>
```

392. Is Subsequence

Question

Given two strings s and t, return true if s is a subsequence of t, or false otherwise.

A subsequence of a string is a new string that is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (i.e., "ace" is a subsequence of "abcde" while "aec" is not).

Code

```
int main(){
       // input- configuration
       string s {"abc"};
       string t {"ahbgdc"};
       // setup
       int i = 0;
       // going through the elements
10
       for(auto x: t) if (x == s[i]) ++i;
12
       // returning
13
       cout << format("final-output = {}\n", static_cast<bool>(i == s.size())) ;
16
       // return
       return(0);
19
20
```