MCMT Homework 9

Shun Zhang

Exercise 9.1

Let Y_t denote the number of coordinates that have been selected after t rounds. Define the distinguishing statistic $f: \{0,1\}^n \to R$ by $f(x) = \sum_{i=1}^n x_i$.

- 1. The probability that one coordinate is not selected in t steps is $p = (1 \frac{1}{n})^t$. The expectation of the number of coordinates that are not selected in t steps is $\mathrm{E}(n-Y_t) = np = n(1-\frac{1}{n})^t$. So $\mathrm{E}(Y_t) = n n(1-\frac{1}{n})^t$.
- 2. Let $I_i(t)$ be the indicator that *i*-th coordinate has been selected at *t*-th step.

E(
$$I_i(t)I_j(t)$$
) = 2(1 - (1 - $\frac{1}{n}$)^t) - (1 - (1 - $\frac{2}{n}$)^t) = 1 - 2(1 - $\frac{1}{n}$)^t + (1 - $\frac{2}{n}$)^t.
E($I_i(t)$)E($I_j(t)$) = (1 - (1 - $\frac{1}{n}$)^t)².
Cov($I_i(t)$, $I_j(t)$) = E($I_i(t)I_j(t)$) - E($I_i(t)$)E($I_j(t)$) = (1 - $\frac{2}{n}$)^t - (1 - $\frac{1}{n}$)^t \le 0.