Chap 12: Partitions and equivalence relations
Def. A partition of a set A is a family $\{A_i; i \in I\}$ of horempty sheets which are mutually disjoint and where union is all of A . Note explicitly: (i) $A_i \neq \phi$, i $\in I$. A i $\cap A_j \neq \phi \Rightarrow A_i = A_j$. (ii) $A = \bigcup A_i$. $\forall x \in A$, $\exists i \in I$ s.t. $x \in A_i$.
Def: A relation on a set A is any statement which is either true or false for each ordered pair (x, y) of elements of A
Ex of relation: "x=y", "x <y", "x="" is="" of<="" offspring="" parallel="" td="" the="" to="" x="" y".=""></y",>
Def. An equivalence relation on a set A zs a relation that is:
(ii) Reflexive: X-XX YXEA
(ii) Symmetre: x~y => y~x
(iii) Transitive: X~y) => X~Z.
padition {Ai, i E]} >> equivalence relation: st. XEA; en yEA;
pandition $\{[x]\}_{x \in A}$ \iff equivalence relation
where [x]={yEA; y~x}.
Exercise: A.Z: nEZ, An={xEQ: n=x <n+1}.< td=""></n+1}.<>
(i) Anto AnnAmto > XEAnnAm nexentles men
(ii) YXEQ, XEAn whole NEXCHI. => Am=An

B. 5. and iff a-bed

(i). a-a=0€Q ⇒ a-a (ii) a-b ⇒ a-b€Q ⇒ b-a€Q ⇒ b-a€Q

(iii) a~b ⇒ a-b∈Q ⇒ a-c=(a-b)+(b-c)∈Q ⇒ a~c. b~c ⇒ b-c∈Q

. So ~ is an equivalence relation

C. 3: VIER Ar= (My): y=101+r}

C.4: (x,y)~(ux) iff ax+by=au+bv= (where a,b>0).

(x,y)~(u,v) iff (v,y) and (u,v) are on the same ellipse given by

ax+by= r. rER.

D.4. and iff I an integer k s.t. ak=bk.

(i) a=a ⇒ a~a

(ii) a~b ⇒ ∃k s.t. ak=bk ⇒ b~a

(iii) $a \sim b \Rightarrow \exists k \text{ s.t. } a k \Rightarrow b^k \Rightarrow a^k \ell = b^k \ell = b^k$

E.4: $\{B_i; i\in \mathbb{Z}\}$ is a partion of B. $f:A\rightarrow B$ is a function. $\{f^{\dagger}(B_i): i\in \mathbb{Z}\}$.

(i) = xEA, s.t. xEf'(Bi) Nf'(Bj) => fla) EBi NBj => Bi NB' # of

(ii) YXEA, fWEB => = i & I (B) (B) => XE JUBI)