Math-234-Homework-4 Problem-1: (i) Let DSC, f: D-OC be a function, afc an accumulation point of D, and LEC. Prove that the following statements are equivalent.

(a) Lim f(Z) exists and im f(Z)= l. (b) Define f: Duf9? - C defined by $f(z) = \int f(z) \qquad \text{if } z \in D$ $f(z) = \int \int f(z) \qquad \text{if } z = 0$ Then f es continuous at D. (This poolen says that lim f(Z) exists AT fran be extended to a function for Dusa? that es continuous at e.) (ii) Let DCC, f: D-oC be a function, a & D such that a is an accumulation point of D\ 997, and LEC. Use (i) to prove the following statements are equivalent. (a) f is complexe differentiable at a and fra)=1.

(b) Define
$$g: D \rightarrow C$$
 by

$$g(z) = \begin{cases} f(z) - f(a) & \text{if } z \neq a \\ z - a & \text{if } z = a \end{cases}$$

I if $z = a$

Then g is continuous at a .

When f is complex differentiable then gra)=fra).

Use this to establish f és complex differentiable g. D -o C such that g is continuous at a and f(2) = f(2) + (2-a) g(2) for all z ∈ D.

Problem-2: Use problem-1 (ii) to in the the followings.

Let D = C and e e) such that a ir an accumulation point or D < 603 of D > {e}.

(i) Suppose f, g: D - C are complex differentiable at a. Show that fg is complex differentiable at a and

(fg)'(a) = f(a)g'(a) + f'(a)g(a).

(ii) Suppose that f: D - C complex differentiable at a and f (2) to for all & ED. Show that is also complex differentiable at a and f $\left(\frac{1}{f}\right)'(Q) = -\frac{f'(Q)}{(f'(Q))^2}$

Problem-3: Let DSC, a & D such that a is an accumulation point of D\ser and f: D-OC be a function. Let D'EC such that f cD = D; fra) is an accomulation point of D' \ \free \free ?. Let 9: D'-0 C. Ausume that f is complex differentiable at a and g is complex differentiable at for). Show that got is complex differentiable at a and (gof)(4) = g(f(4))f(4)

0 11	
Problem-4	1: (i) Assume that $D \subseteq C$, $q \in D$ such that a is an accumulation point of $D \setminus \S q \in A$. Let $f, g: D \to C$
	Such that both f and g are complex differential at a; $f(a) = 0$, $g(a) = 0$; and $g'(a) \neq 0$.
	Show that $G_{\infty} = \frac{f(2)}{g(2)} = \frac{f(4)}{g'(4)}$
	(ii) Compute Cim $\frac{Z^2+1}{Z^4-1}$ and
	$\frac{C_{i,0}}{z_{i,0}} = \frac{z_{i,0}^3 + (i-3)_{i,0}^2 + (i-3)_{i,0}^2 + 2+i}{z_{i,0}^2}$
	Z -(
roblem-5	(i) Let P. Q: I-OC be polynomial
	functions of degree m and n respectively,
	(i) Let P, Q: [-n C be polynomial functions of degree m and n respectively, where m and n are positive integers.
	Define A= SZEC/Q(2)=02, Let
	pce)
	D= C \ A. Show that f(z)= P(z)
	is complex differentiable on D.
	(ii) Determine the largest DCC an
	which the following functions are
	complex differentiable.
	(ii) Determine the largest DCC on which the following functions are complex differentiable. (a) ZHO - (b) ZHO ZH - 1+1° (c) ZH - ez-1
	(d) 2 (-1) Im(2)

Problem-6: Let DC C and f: D-o C be a function. Cet QED such that a is excemblation point of Disag. Assume that f is complex differentiable at a. Define D= SZ/ZEDZ and g:D=00 by g(z)= f(\overline{z}). Show that g is complex differentiable at a ED and g'(ē)= f'(0). Problem-7: (i) (et C_= C - {ZEC/Z<0} Show that for ZEC- $Arg(2) = \int cos'(\frac{Re(2)}{121})$ if Im(2)70(-cos' (-121) if Im(2) (ii) Show that Arg: C- - 1RSC és continuous. (iii) Show that Log: C-- 0 C is continueras.

Problem-8 (in Let D, D' & C open, f: D-n C and g: D'-0 C continuous. More over, ausome $f(D) \subseteq D'$ and g(f(z)) = z for all $z \in D$. let and b=f(a) eD'. Show that
if g is complex differentiable at b and $g''(b) \neq 0$, then f is complex differentiable et a and $f'(a) = \frac{1}{g'(b)}$ (ii) Show that Log: [- -DC o's complex differentiable and $\left(\angle 692\right) = \frac{7}{7}$