Билет 1.

1. Непрерывная случайная величина У имеет плотность распределения

$$f_Y(y) = \frac{5y^4}{\theta (1+y^5)^{1/\theta+1}}, \qquad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^5\right),\,$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.95$, если после n = 31 испытаний получены значения $\overline{x} = 143$, $S\left(\overrightarrow{x}\right) = 10.75$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 переписыввание №3, 2020-2021 уч. год Билет 2.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{4y^3}{\theta (1 + y^4)^{1/\theta + 1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^4\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.95$, если после n = 31 испытаний получены значения $\overline{x} = 143$, $S(\overrightarrow{x}) = 10.75$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7. 6-й сем.. Математическая статистика. РК1 переписыввание №3. 2020-2021 vч. год

Билет 3.

1. Непрерывная случайная величина Y имеет плотность распределения

$$f_Y(y) = \frac{3y^2}{\theta (1+y^3)^{1/\theta+1}}, \quad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^3\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава Т15К6 были испытаны n=31 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=143$ мин, $S(\overline{x})=10.75$ мин. Построить доверительный интервал уровня $\gamma=0.95$ для среднего времени работы резца до затупливания.

Билет 4.

1. Непрерывная случайная величина У имеет плотность распределения

$$f_Y(y) = \frac{7y^6}{\theta (1+y^7)^{1/\theta+1}}, \qquad y \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Y}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Y_i^7\right),$$

где $\overrightarrow{Y} = (Y_1, \dots, Y_n)$ — случайная выборка из генеральной совокупности Y. Является ли оценка $\hat{\theta}\left(\overrightarrow{Y}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.95$, если после n = 31 испытаний получены значения $\overline{x} = 143$, $S(\overrightarrow{x}) = 10.75$.

№ вопроса	1		$\angle = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 переписыввание №3, 2020-2021 уч. год Билет 5.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{5z^4}{\theta (1+z^5)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^5\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\hat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.8$, если после n = 26 испытаний получены значения $\overline{x} = 45.1$, $S(\overline{x}) = 5.55$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7. 6-й сем.. Математическая статистика. РК1 переписыввание №3. 2020-2021 vч. год

Билет 6.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{4z^3}{\theta (1+z^4)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^4\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\hat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.8$, если после n = 26 испытаний получены значения $\overline{x} = 45.1$, $S(\overrightarrow{x}) = 5.55$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 7.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_{Z}\left(z\right) = \frac{3z^{2}}{\theta\left(1+z^{3}\right)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{ heta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^3\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\widehat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Для определения стойкости резца из сплава Т15К6 были испытаны n=26 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x}=45.1$ мин, $S(\overline{x})=5.55$ мин. Построить доверительный интервал уровня $\gamma=0.8$ для среднего времени работы резца до затупливания.

ИУ7, 6-й сем., Математическая статистика, РК1 переписыввание №3, 2020-2021 уч. год Билет 8.

1. Непрерывная случайная величина Z имеет плотность распределения

$$f_Z(z) = \frac{7z^6}{\theta (1+z^7)^{1/\theta+1}}, \qquad z \geqslant 0,$$

где значение $\theta>0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{Z}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + Z_i^7\right),$$

где $\overrightarrow{Z} = (Z_1, \dots, Z_n)$ — случайная выборка из генеральной совокупности Z. Является ли оценка $\hat{\theta}\left(\overrightarrow{Z}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma = 0.8$, если после n = 26 испытаний получены значения $\overline{x} = 45.1$, $S(\overrightarrow{x}) = 5.55$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 переписыввание №3, 2020-2021 уч. год

Билет 9.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{5x^4}{\theta (1 + x^5)^{1/\theta + 1}}, \quad x \ge 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^5\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где значения m и σ^2 неизвестны. Построить для σ^2 доверительный интервал уровня $\gamma = 0.9$, если после n = 11 испытаний получены значения $\overline{x} = 37$, $S\left(\overrightarrow{x}\right) = 3.45$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

Билет 10.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{4x^3}{\theta (1 + x^4)^{1/\theta + 1}}, \quad x \ge 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^4\right),\,$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim \text{Exp}(\lambda)$, где значение λ неизвестно. Построить для λ доверительный интервал уровня $\gamma = 0.9$, если после n = 11 испытаний получены значения $\overline{x} = 37$, $S\left(\overrightarrow{x}\right) = 3.45$.

№ вопроса	1	2	$\Sigma = \max$	min
Баллы	17	17	34	20

ИУ7, 6-й сем., Математическая статистика, РК1 переписыввание №3, 2020-2021 уч. год Билет 11.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{3x^2}{\theta (1+x^3)^{1/\theta+1}}, \quad x \geqslant 0,$$

где значение $\theta > 0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^3\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\hat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

Для определения стойкости резца из сплава T15K6 были испытаны n=11 образцов при скорости резания 0.33 м/с и подаче 0.12 мм/об, в результате чего получены следующие характеристики времени работы резца до затупливания: $\overline{x} = 37$ мин, $S(\overrightarrow{x}) = 3.45$ мин. Построить доверительный интервал уровня $\gamma=0.9$ для среднего времени работы презида до задупливания іп

ИУ7. 6-й сем.. Математическая статистика. РК1 переписыввание №3. 2020-2021 vy. год

Билет 12.

1. Непрерывная случайная величина X имеет плотность распределения

$$f_X(x) = \frac{7x^6}{\theta (1 + x^7)^{1/\theta + 1}}, \quad x \geqslant 0,$$

где значение $\theta>0$ неизвестно. Для оценки параметра θ используется статистика

$$\hat{\theta}\left(\overrightarrow{X}\right) = \frac{1}{n} \sum_{i=1}^{n} \ln\left(1 + X_i^7\right),$$

где $\overrightarrow{X} = (X_1, \dots, X_n)$ — случайная выборка из генеральной совокупности X. Является ли оценка $\widehat{\theta}\left(\overrightarrow{X}\right)$ а) несмещенной; б) эффективной по Рао-Крамеру?

2. Пусть $X \sim N(m, \sigma^2)$, где где значения m и σ^2 неизвестны. Построить для m доверительный интервал уровня $\gamma=0.9,$ если после n=11 испытаний получены значения $\overline{x}=37,$ $S(\overline{x})=3.45.$

	№ вопроса	1	2	$\Sigma = \max$	min
ĺ	Баллы	17	17	34	20