波云为治学

杨氏双缝干涉

内容:

- 1.干涉现象
- 2.干涉的计算
- 3.干涉图样的特点

光的双缝干涉现象

二 杨氏双缝干涉实验的计算 ——明暗条件

问题: x 满足什么条件时是明/暗纹中心?

波程差 $\Delta r = r_2 - r_1 \approx d \sin \theta$

1.干涉条件:

$$d\sin\theta = \begin{cases} \pm k\lambda & \text{加强} & k = 0,1,2,\cdots \\ \pm (2k-1)\frac{\lambda}{2} & \text{减弱} & k = 1,2,\cdots \end{cases}$$

波程差
$$\Delta r = d \sin \theta$$

 $(\theta$ 很小)

$$\approx d \tan \theta$$

$$= d\frac{x}{D} = \left\{ \begin{array}{l} \pm k\lambda & \text{明} \\ \pm (2k-1)\frac{\lambda}{2} & \text{暗} \end{array} \right.$$

2.明暗条纹的位置

明纹中心
$$k=0,1,2,\cdots$$

干涉相消

明暗条纹的位置 (画法一)

$$x = \begin{cases} \pm k \frac{D}{d} \lambda & \text{明纹中心 (相长)} \\ k = 0,1,2,\cdots \end{cases}$$

$$\pm \frac{D}{d} (2k-1) \frac{\lambda}{2} \quad \frac{\text{暗纹中心 (相消)}}{k = 1,2,\cdots}$$

明纹中心(相长)

$$k = 0,1,2,\cdots$$

暗纹中心(相消)
$$k=1,2,\cdots$$

明暗条纹的位置 (画法二)

$$\Delta x = \frac{D}{d} \lambda$$

条纹等间隔排列

双缝干涉条纹:明暗相间地、均匀、等间距地分布在中央明纹两侧。

- 例1 以单色光照射到相距为0.2mm的双缝上,双缝与屏幕的垂直距离为1m.
- (1) 从第一级明 纹 到同侧 的第四级明 纹的距离为7.5mm,求单色光的波长;
 - (2) 求两条第四级明纹间的距离.

解 (1)
$$x_k = \pm k \frac{D}{d} \lambda$$
, $k = 0$, 1, 2,....
 $\Delta x_{14} = x_4 - x_1 = \frac{D}{d} (k_4 - k_1) \lambda$ $\lambda = 500$ nm
(2) $\Delta x = 8 \frac{D}{d} \lambda = 20$ mm

干涉明暗原理

$$\Delta \varphi = \begin{cases} \pm 2k\pi \\ \pm (2k-1)\pi \end{cases}$$

干涉明暗条件

$$\Delta r = \begin{cases} \pm k\lambda \\ \pm (2k-1)\frac{\lambda}{2} \end{cases}$$

明暗条纹 间距

$$\Delta x = \frac{D}{d} \lambda$$

明暗条纹的位置

$$x = \begin{cases} \pm k \frac{D}{d} \lambda \\ \pm \frac{D}{d} (2k-1) \frac{\lambda}{2} \end{cases}$$

波程差

$$\Delta r = d \sin \theta$$

$$\approx d \tan \theta$$

$$= d \frac{x}{D}$$

