CA320 - Computability & Complexity Context-Free Languages

Dr. David Sinclair

CA320 Dr. David Sinclair

Context-Free Languages

Context-Free Grammars

A context-free grammar (CFG) is a 4-tuple $G = (N, \Sigma, S, P)$ where

- N is a set of nonterminal symbols, or variables,
- Σ is a set of *terminal symbols*, and N and Σ are disjoint finite sets,
- S is a special nonterminal $(S \in N)$ called the *start symbol*,
- P is a finite set of grammar rules, or productions, of the form $A \to \alpha$, where $A \in V$ and $\alpha \in (N \cup \Sigma)$.

The set $V = N \cup \Sigma$ is called the vocabulary of G.

Context-Free Grammars (2)

A derivation, $\alpha \Rightarrow \beta$, is the application of one or more production rules starting with the string α and resulting in the string β .

Consider the following grammar.

$$S \rightarrow SS$$

$$S \rightarrow (S)$$

$$S \rightarrow \epsilon$$

An example derivation is:

$$S \Rightarrow SS \Rightarrow S(S) \Rightarrow S((S)) \Rightarrow S(()) \Rightarrow (S)(()) \Rightarrow ($$

If $A \to \gamma$ then $\alpha A\beta \Rightarrow \alpha \gamma \beta$ is a single step derivation using $A \to \gamma$.

The grammar is a *context-free grammar* since the production rule, $A \to \gamma$, does not depend on the *context* surrounding nonterminal, A.

CA320 Dr. David Sinclair

Context-Free Languages

Context-Free Grammars (3)

Derivations requiring ≥ 0 and ≥ 1 steps are denoted by \Rightarrow^* and \Rightarrow^+ respectively.

The start symbol denotes the entire set of strings that can be generated by G, L(G).

$$L(G) = \{x \in \Sigma^* | S \Rightarrow^+ x\}$$

Example: AnBn

$$S \rightarrow aSb$$

$$S \rightarrow \epsilon$$

This grammar yields derivations such as

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$
.

$$L(G) = \{a^k b^k | k \ge 0\}$$

CA320

Context-Free Grammars (4)

Example: *Expr*

 $\begin{array}{ccc}
O & \rightarrow & * \\
O & \rightarrow & /
\end{array}$

This grammar generates simple expressions over number and identifiers.

CA320 Dr. David Sinclair

Context-Free Languages

Derivations

A *derivation* is a sequence of steps where in each step a non-terminal is replaced by the left-hand side of a productions rule that starts with the non-terminal.

If the leftmost non-terminal is always chosen to be replaced then it is a *leftmost derivation*.

If the rightmost non-terminal is always chosen to be replaced then it is a *rightmost derivation*.

A derivation is also called a *parse*. The process of discovering a derivation is called *parsing*.

Parse Tree

Consider the CFG grammar Expr.

$$S \Rightarrow E O E$$

$$\Rightarrow id O E$$

$$\Rightarrow id + E$$

$$\Rightarrow id + E O E$$

$$\Rightarrow id + num O E$$

$$\Rightarrow id + num * E$$

$$\Rightarrow id + num * id$$

This can be denoted as $S \Rightarrow^* id + num * id$.

Because we always choose the leftmost non-terminal this is a leftmost derivation.

CA320 Dr. David Sinclair

Context-Free Languages

Parse Tree (2)

This derivation can also be represented as a parse tree.

But what if we choose a rightmost derivation of the same expression.

Ambiguity

What is the implication of the fact that there at least 2 parse trees for the same expression?

A CFG G is ambiguous if $\exists x \in L(G)$ such that x has more than one derivation tree. This is equivalent to saying it has more than one distinct leftmost or rightmost derivations tree.

CA320 Dr. David Sinclair

Context-Free Languages

Ambiguity (2)

Sometimes redesigning the grammar can remove the ambiguity. The following grammar, *Expr1*, does not have the ambiguity of *Expr*.

(E)

The only parse tree for id + num * id is:

Pushdown Automaton

We know that the language AnBn is not a regular language and cannot be recognised by a $Finite\ State\ Automaton$. The following language $SimplPal = \{wcw^r | w \in \Sigma^*\}$, where w^r is the reverse of w, is also not a regular language. Both of these languages require a machine that can remember something. In the case of SimpPal it must remember w. Then after seeing c it then checks for w^r .

We can extend a Nondeterministic Finite State Automaton by adding a *stack memory*. This is called a *Pushdown Automaton*.

CA320 Dr. David Sinclair

Context-Free Languages

Pushdown Automaton (2)

A Pushdown Automaton (PDA) is a 7-tuple $M = (Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ where

- *Q* is a finite set of *states*;
- Σ and Γ are finite *input* and *stack alphabets*;
- $q_0 \in Q$ is the *initial state*;
- $Z_0 \in \Gamma$ is the *initial stack symbol*;
- $A \subseteq Q$ is the set of accepting states;
- $\delta: Q \times (\Sigma \cup \{\epsilon\}) \times \Gamma \to 2^{(Q \times \Gamma^*)}$ is the *transition function*.

The PDA is nondeterministic because the transition function δ can map the same element of the range to different elements of the range.

A configuration of the PDA $M = (Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ is a triple (q, x, α) where $q \in Q, x \in \Sigma^*$ and $\alpha \in \Gamma^*$.

Pushdown Automaton (3)

 $(p, x, \alpha) \vdash_M (q, y, \beta)$ represents the PDA M moving from configuration (p, x, α) to configuration (q, y, β) . This can occur in two ways:

- an input symbol is read; or
- a Λ-transition occurs.

i.e. $x = \sigma y, \sigma \in \Sigma \cup \{\epsilon\}$.

If $\alpha = X\gamma, X \in \Gamma, y \in \Gamma^*$ then $\beta = \xi \gamma$ where $(q, \xi) \in \delta(p, \sigma, X)$.

 $(p, x, \alpha) \vdash_{M}^{n} (q, y, \beta)$ denotes moving from configuration (p, x, α) to configuration (q, y, β) in n steps.

 $(p, x, \alpha) \vdash_{M}^{*} (q, y, \beta)$ denotes moving from configuration (p, x, α) to configuration (q, y, β) in zero or more steps.

CA320 Dr. David Sinclair

Context-Free Languages

Pushdown Automaton (4)

If $M = (Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ and $x \in \Sigma^*$, then x is accepted by M if $\exists \alpha \in \Gamma^*, q \in A$ such that

$$(q_0, x, Z_0) \vdash_M^* (q, \epsilon, \alpha)$$

A language $L \subseteq \Sigma^*$ is said to be accepted by M if L is precisely the set of strings accepted by M.

Theorem

A language is context-free iff it can be recognized by a pushdown automaton.

Pushdown Automaton (5)

Example PDAs

AnBn

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$A = \{q_3\}$$

The transition table for *AnBn* is:

State	Input	Top of Stack	Move(s)
q_0	ϵ	Z_0	(q_3, Z_0)
q_0	a	Z_0	(q_1,aZ_0)
q_1	a	a	(q_1,aa)
q_1	b	a	(q_2,ϵ)
q_2	b	a	(q_2,ϵ)
q_2	ϵ	Z_0	(q_3,Z_0)

The sequence of moves that accepts aabb is:

$$(q_0, aabb, Z_0) \vdash (q_1, abb, aZ_0) \vdash (q_1, bb, aaZ_0) \vdash (q_2, b, aZ_0) \vdash (q_2, \epsilon, Z_0) \vdash (q_3, \epsilon, Z_0)$$

Dr. David

Dr. David Sinclair

Context-Free Languages

Pushdown Automaton (6)

SimplPal

$$Q = \{q_0, q_1, q_2\} A = \{q_2\}$$

The transition table for SimplPal is: State Input Top of Stack Move(s)				
-	<u> </u>		<u> </u>	
q_{0}	а	Z_0	(q_0, aZ_0)	
q_0	Ь	Z_0	(q_0,bZ_0)	
q_0	a	а	(q_0,aa)	
q_0	Ь	a	(q_0,ba)	
q_0	а	b	(q_0,ab)	
q_0	b	b	(q_0,bb)	
q_0	С	Z_0	(q_1,Z_0)	
q_0	С	а	(q_1,a)	
q_0	С	Ь	(q_1,b)	
q_1	a	а	(q_1,ϵ)	
q_1	b	Ь	(q_1,ϵ)	
q_1	ϵ	Z_0	(q_2,Z_0)	

 $(q_0, abcba, Z_0) \vdash$ $(q_0, bcba, aZ_0) \vdash$ $(q_0, cba, baZ_0) \vdash$ $(q_1, ba, baZ_0) \vdash$ $(q_1, a, aZ_0) \vdash$ $(q_1, \epsilon, Z_0) \vdash$ (q_2, ϵ, Z_0)

Pushdown Automaton (7)

We can rewrite the same PDA as:

$$Q = \{q_0, q_1, q_2\}$$

$$\Sigma = \{a, b, c\}$$

$$\Gamma = \{a, b\}$$

$$A = \{q_2\}$$

$$\delta = ((q_0, a, Z_0), (q_0, aZ_0)), ((q_0, b, Z_0), (q_0, bZ_0)),$$

$$((q_0, a, a), (q_0, aa)), ((q_0, b, a), (q_0, ba)),$$

$$((q_0, a, b), (q_0, ab)), ((q_0, b, b), (q_0, bb))$$

$$((q_0, c, Z_0), (q_1, Z_0)), ((q_0, c, a), (q_1, a))$$

$$((q_0, c, b), (q_1, b)), ((q_1, a, a), (q_1, \epsilon))$$

$$((q_1, b, b), (q_1, \epsilon)), ((q_1, \epsilon, Z_0), (q_2, Z_0))$$

CA320 Dr. David Sinclair

Context-Free Languages

Pushdown Automaton (8)

Or draw it as a transition diagram;

Pushdown Automaton (9)

Consider the language $EvenPal = \{ww^r | w \in \{a, b\}^*\}$

The PDA that accepts EvenPal is:

$$Q = \{q_0, q_1, q_2\}$$

$$\Sigma = \{a, b\}$$

$$\Gamma = \{a, b\}$$

$$A = \{q_2\}$$

$$\delta = ((q_0, a, Z_0), (q_0, aZ_0)), ((q_0, a, a), (q_0, aa)),$$

$$((q_0, a, b), (q_0, ab)), ((q_0, b, Z_0), (q_0, bZ_0)),$$

$$((q_0, b, a), (q_0, ba)), ((q_0, b, b), (q_0, bb)),$$

$$((q_0, \epsilon, \epsilon), (q_1, \epsilon)),$$

$$((q_1, a, a), (q_1, \epsilon)), ((q_1, b, b), (q_1, \epsilon)),$$

$$((q_1, \epsilon, Z_0), (q_2, \epsilon))$$

CA320 Dr. David Sinclair

Context-Free Languages

Deterministic PDA

A PDA $M = (Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ is deterministic if we can always decide which transition will be used next, i.e.

- $\forall q \in Q, \sigma \in \Sigma \cup \{\epsilon\}, X \in \Gamma$, the set $\delta(q, \sigma, X)$ has at most one element; **and**
- $\forall q \in Q, \sigma \in \Sigma, X \in \Gamma$, the sets $\delta(q, \sigma, X)$ and $\delta(q, \epsilon, X)$ cannot both be nonempty.

The *SimplPal* language is deterministic. The *EvenPal* language is nondeterministic. **Why?**

A language L is deterministic context-free if there is some deterministic PDA that recognizes L.

Theorem

Not every non-deterministic PDA can be converted to an equivalent deterministic PDA.

This has serious implications for the efficient parsing of context-free languages.

Dr. David Sinclair

Pumping Lemma for Context-Free Languages

Theorem

If L is a context-free language there is an integer n such that $\forall u \in L \text{ with } |u| \geq n, \ u = vwxyz \text{ such that}$

- 1. |wy| > 0
- 2. $|wxy| \leq n$
- 3. $\forall m \geq 0, vw^m xy^m z \in L$

Example: The language $AnBnCn = \{a^nb^nc^n|n \ge 0\}$ is not a context-free language.

CA320 Dr. David Sinclair

Context-Free Languages

Pumping Lemma for Context-Free Languages (2)

Proof

Let's assume AnBnCn is context-free. Then

$$a^n b^n c^n = v w^m x v^m z, \forall m > 0.$$

Conditions 1 and 2 imply that wxy has at least one symbol and no more that 2 distinct symbols.

Let σ_1 be one of the symbols occurring in wy and σ_2 be the symbol that does not occur in wy.

Then the string vw^0xy^0z , which deletes w and y from u, will have less than n occurrences of σ_1 but exactly n occurrences of σ_2 . But $u = vw^0xy^0z \in AnBnCn$ must have an equal number each symbol but we have shown that number of occurrences of σ_2 is greater than the number of occurrences of σ_1 . This contradiction invalidates the assumption that AnBnCn is context-free.