Linear equations 1

Linear algebra basics

Dr.ir. Ivo Roghair, Prof.dr.ir. Martin van Sint Annaland

Chemical Process Intensification group Eindhoven University of Technology

Numerical Methods (6BER03), 2024-2025

Today's outline

- Introduction
- Matrix inversion
- Solving a linear system
- Towards larger systems
- Summary

Today's outline

- Introduction
- Matrix inversion
- Solving a linear system
- Towards larger systems
- Summary

Overview

Goals

- Different ways of looking at a system of linear equations
- Determination of the inverse, determinant and the rank of a matrix
- The existence of a solution to a set of linear equations

000

Different views of linear systems

• Separate equations:

$$x + y + z = 4$$

$$2x + y + 3z = 7$$

$$3x + y + 6z = 5$$

• Separate equations:

Introduction

$$x+y+z=4$$
$$2x+y+3z=7$$
$$3x+y+6z=5$$

• Matrix mapping Mx = b:

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix}$$

Different views of linear systems

Separate equations:

Introduction 000

$$x+y+z=4$$
$$2x+y+3z=7$$
$$3x+y+6z=5$$

• Matrix mapping Mx = b:

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix}$$

Linear combination:

$$x \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + y \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + z \begin{bmatrix} 1 \\ 3 \\ 6 \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix}$$

Different views of linear systems

• Separate equations:

$$x+y+z=4$$
$$2x+y+3z=7$$
$$3x+y+6z=5$$

• Matrix mapping Mx = b:

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix}$$

Linear combination:

$$x \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + y \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + z \begin{bmatrix} 1 \\ 3 \\ 6 \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix}$$

Today's outline

- Introduction
- Matrix inversion
- Solving a linear system
- Towards larger systems
- Summary

Inverse of a matrix

• The inverse M^{-1} is defined such that:

$$MM^{-1} = I$$
 and $M^{-1}M = I$

• Use the inverse to solve a set of linear equations:

$$M\mathbf{x} = \mathbf{b}$$
 $M^{-1}M\mathbf{x} = M^{-1}\mathbf{b}$
 $I\mathbf{x} = M^{-1}\mathbf{b}$
 $\mathbf{x} = M^{-1}\mathbf{b}$

How to calculate the inverse?

• The inverse of an $N \times N$ matrix can be calculated using the co-factors of each element of the matrix:

$$M^{-1} = \frac{1}{\det |M|} \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix}^{T}$$

- $\det |M|$ is the *determinant* of matrix M.
- C_{ii} is the *co-factor* of the ij^{th} element in M.

Consider the following example matrix:
$$M = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix}$$

Consider the following example matrix:
$$M = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix}$$

A co-factor (e.g. C_{11}) is the determinant of the elements left over when you cover up the row and column of the element in question, multiplied by ± 1 , depending on the position.

$$\begin{bmatrix} \mathbf{1} & \times & \times \\ \times & \mathbf{1} & \mathbf{3} \\ \times & \mathbf{1} & \mathbf{6} \end{bmatrix}$$

Consider the following example matrix:
$$M = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix}$$

A co-factor (e.g. C_{11}) is the determinant of the elements left over when you cover up the row and column of the element in question, multiplied by ± 1 , depending on the position.

$$\begin{bmatrix} 1 & \times & \times \\ \times & 1 & 3 \\ \times & 1 & 6 \end{bmatrix}$$

$$\begin{bmatrix} 1 & \times & \times \\ \times & 1 & 3 \\ \times & 1 & 6 \end{bmatrix} \qquad \begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix}$$

Consider the following example matrix:
$$M = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix}$$

A co-factor (e.g. C_{11}) is the determinant of the elements left over when you cover up the row and column of the element in question, multiplied by ± 1 , depending on the position.

$$\begin{bmatrix} 1 & \times & \times \\ \times & 1 & 3 \\ \times & 1 & 6 \end{bmatrix} \qquad \begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix}$$

$$C_{11} = +1 \cdot \det \begin{bmatrix} 1 & 3 \\ 1 & 6 \end{bmatrix}$$

= 6 × 1 - 3 × 1 = 3

Back to our example:

$$M^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix}^{-1} = \frac{1}{\det |M|} \begin{bmatrix} 3 & -3 & -1 \\ -5 & 3 & 2 \\ 2 & -1 & -1 \end{bmatrix}^{T}$$

Back to our example:

$$M^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix}^{-1} = \frac{1}{\det |M|} \begin{bmatrix} 3 & -3 & -1 \\ -5 & 3 & 2 \\ 2 & -1 & -1 \end{bmatrix}^{T}$$

- The determinant is very important
- If det |M| = 0, the inverse does not exist (singular matrix)

Calculating the determinant

Compute the determinant by multiplication of each element on a row (or column) by its cofactor and adding the results:

$$\det \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix} = +\det \begin{bmatrix} 1 & 3 \\ 1 & 6 \end{bmatrix} - \det \begin{bmatrix} 2 & 3 \\ 3 & 6 \end{bmatrix} + \det \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix} = -1$$

Calculating the determinant

Compute the determinant by multiplication of each element on a row (or column) by its cofactor and adding the results:

$$\det \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix} = +\det \begin{bmatrix} 1 & 3 \\ 1 & 6 \end{bmatrix} - \det \begin{bmatrix} 2 & 3 \\ 3 & 6 \end{bmatrix} + \det \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix} = -1$$

$$\det \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix} = +\det \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix} - 3\det \begin{bmatrix} 1 & 1 \\ 3 & 1 \end{bmatrix} + 6\det \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} = -1$$

Today's outline

- Introduction
- Matrix inversion
- Solving a linear system
- Towards larger systems
- Summary

Solving a linear system

Our example:

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix}$$

Solving a linear system

Our example:

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix}$$

• The solution is:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = M^{-1}b = \frac{1}{-1} \begin{bmatrix} 3 & -5 & 2 \\ -3 & 3 & -1 \\ -1 & 2 & -1 \end{bmatrix} \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix} = \frac{1}{-1} \begin{bmatrix} -13 \\ 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 13 \\ -4 \\ -5 \end{bmatrix}$$

Solving a linear system

Our example:

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 1 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix}$$

• The solution is:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = M^{-1}b = \frac{1}{-1} \begin{bmatrix} 3 & -5 & 2 \\ -3 & 3 & -1 \\ -1 & 2 & -1 \end{bmatrix} \begin{bmatrix} 4 \\ 7 \\ 5 \end{bmatrix} = \frac{1}{-1} \begin{bmatrix} -13 \\ 4 \\ 5 \end{bmatrix} = \begin{bmatrix} 13 \\ -4 \\ -5 \end{bmatrix}$$

• The inverse exists, because det |M| = -1.

• Create the matrix:

```
>>> A = np.array([[1, 1, 1], [2, 1, 3], [3, 1, 6]])
```

• Create the matrix:

```
>>> A = np.array([[1, 1, 1], [2, 1, 3], [3, 1, 6]])
```

Create solution vector:

```
1 >>> b = np.array([4, 7, 5])
```

Create the matrix:

```
>>> A = np.array([[1, 1, 1], [2, 1, 3], [3, 1, 6]])
```

Create solution vector:

```
>>> b = np.array([4, 7, 5])
```

• Get the matrix inverse:

```
>>> Ainv = np.linalg.inv(A)
```

Create the matrix:

```
>>> A = np.array([[1, 1, 1], [2, 1, 3], [3, 1, 6]])
```

Create solution vector:

```
>>> b = np.array([4, 7, 5])
```

Get the matrix inverse:

```
1 >>> Ainv = np.linalg.inv(A)
```

Compute the solution:

```
1 >>> x = np.dot(Ainv, b)
```

Create the matrix:

```
>>> A = np.array([[1, 1, 1], [2, 1, 3], [3, 1, 6]])
```

Create solution vector:

```
>>> b = np.array([4, 7, 5])
```

Get the matrix inverse:

```
>>> Ainv = np.linalg.inv(A)
```

Compute the solution:

```
x >>> x = np.dot(Ainv, b)
```

• Python's internal direct solver:

```
1 >>> x = np.linalg.solve(A, b)
```

These are black boxes! We are going over some methods later!

Exercise: performance of inverse computation

Create a script that generates matrices with random elements of various sizes $N \times N$ (e.g. values of $N \in \{10, 20, 50, 100, 200, \dots, 5000, 10000\}$). Compute the inverse of each matrix, and use <code>import time</code> and <code>time.time()</code> to see the computing time for each inversion. Plot the time as a function of the matrix size N.

Exercise: performance of inverse computation

Create a script that generates matrices with random elements of various sizes $N \times N$ (e.g. values of $N \in \{10, 20, 50, 100, 200, \dots, 5000, 10000\}$). Compute the inverse of each matrix, and use import time and time.time() to see the computing time for each inversion. Plot the time as a function of the matrix size N.

```
import numpy as np
    import matplotlib.pyplot as plt
    import time
    # Generate random matrices of various sizes 's'.
    # Invertithe matrices and store the time required
    # for the inversion. Plot the times vs 's'
    s = np.array([10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000])
    t inv = ∏
    for n in s:
        print(fWorking on size {n}')
        A = np.random.rand(n, n)
        start time = time.time()
        Ainy = np.linalq.inv(A)
14
15
        t inv.append(time.time() - start time)
16
    plt.loglog(s, t inv)
    plt.xlabel('N')
    plt.vlabel('Time [s]')
    plt.show()
```


Exercise: sample results

Each computer produces slightly different results because of background tasks, different matrices, etc. This is especially noticable for small systems.

The time increases by 3 orders of magnitude, for every magnitude in *N*. The *computational complexity* of matrix inversion scales with $\mathcal{O}(N^3)$!

Today's outline

- Introduction
- Matrix inversion
- Solving a linear system
- Towards larger systems
- Summary

Towards larger systems

Computation of determinants and inverses of large matrices in this way is too difficult (slow), so we need other methods to solve large linear systems!

Towards larger systems

• Determinant of upper triangular matrix:

$$\det |M_{tri}| = \prod_{i=1}^{n} a_{ii}$$
 $M = \begin{bmatrix} 5 & 3 & 2 \\ 0 & 9 & 1 \\ 0 & 0 & 1 \end{bmatrix} \Rightarrow \det |M| = 5 \times 9 \times 1 = 45$

Matrix multiplication:

$$\det |AM| = \det |A| \times \det |M|$$

• When A is an identity matrix (det |A| = 1):

$$\det |AM| = \det |A| \times \det |M| = 1 \times \det |M|$$

• With rules like this, we can use row-operations so that we can compute the determinant more cheaply.

Solutions of linear systems

Rank of a matrix: the number of linearly independent columns (columns that can not be expressed as a linear combination of the other columns) of a matrix.

$$M = \begin{bmatrix} 5 & 3 & 2 \\ 0 & 9 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

- 3 independent columns
- In Python:

$$M = \left[\begin{array}{cccc} 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right]$$

- $col 2 = 2 \times col 1$
- col 4 = col 3 col 1
- 2 independent columns: rank = 2

Solutions of linear systems

The solution of a system of linear equations may or may not exist, and it may or may not be unique. Existence of solutions can be determined by comparing the rank of the Matrix M with the rank of the augmented matrix M_a :

```
1 >>> numpy.linalg.matrix_rank(A)
2 >>> numpy.linalg.matrix_rank(np.column_stack((A,b))) # Concatenated matrices
```

Our system: Mx = b

$$M = \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{bmatrix}, b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \Rightarrow M_a = \begin{bmatrix} M_{11} & M_{12} & M_{13} & b_1 \\ M_{21} & M_{22} & M_{23} & b_2 \\ M_{31} & M_{32} & M_{33} & b_3 \end{bmatrix}$$

Existence of solutions for linear systems

For a matrix M of size $n \times n$, and augmented matrix M_q :

Rank(M) = n:Unique solution

Existence of solutions for linear systems

For a matrix M of size $n \times n$, and augmented matrix M_a :

Rank(M) = n: Unique solution

Rank(M) = Rank(M_a) < n:
 Infinite number of solutions

Existence of solutions for linear systems

For a matrix M of size $n \times n$, and augmented matrix M_a :

• Rank(M) = n: Unique solution

• Rank(M) = Rank (M_a) < n: Infinite number of solutions

• Rank(M) < n, Rank(M) < Rank(M_{α}): No solutions

Two examples

$$M = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & 2 \end{bmatrix} \quad b = \begin{bmatrix} 17 \\ 11 \\ 4 \end{bmatrix} \Rightarrow M_a = \begin{bmatrix} 1 & 1 & 2 & 17 \\ 0 & 3 & 1 & 11 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

 $rank(M) = 3 = n \Rightarrow Unique solution$

Two examples

$$M = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & 2 \end{bmatrix} \quad b = \begin{bmatrix} 17 \\ 11 \\ 4 \end{bmatrix} \Rightarrow M_a = \begin{bmatrix} 1 & 1 & 2 & 17 \\ 0 & 3 & 1 & 11 \\ 0 & 0 & 2 & 4 \end{bmatrix}$$

 $rank(M) = 3 = n \Rightarrow Unique solution$

$$M = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad b = \begin{bmatrix} 17 \\ 11 \\ 0 \end{bmatrix} \Rightarrow M_a = \begin{bmatrix} 1 & 1 & 2 & 17 \\ 0 & 3 & 1 & 11 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 $rank(M) = rank(M_n) = 2 < n \Rightarrow$ Infinite number of solutions

Summary •O

- Introduction
- Matrix inversion
- Solving a linear system
- Towards larger systems
- Summary

Summary

- Linear equations can be written as matrices
- Using the inverse, the solution can be determined
 - Inverse via cofactors
 - Inverse and solution in Python
- Introduced the concept of computational complexity: matrix inversion scales with N³
- A solution depends on the rank of a matrix

