${\tt Title:} \quad {\tt METHODS, \ COMPOSITIONS \ AND \ KITS \ FOR \ PRESERVING \ ANTIGENICITY}$ 

| C02H  | <b>∀</b><br>:0   |
|-------|------------------|
| H A-N | ±<br>=0          |
| Ž     | - <sub>1</sub> A |

|                                                                            | CPP32 IC $_{50}(\mu \mathrm{M})$ | >10<br>>50<br>2.48<br>5.62<br>49.8     | >50<br>>50<br>1.45<br>>50<br>>50                          | 47.0      |
|----------------------------------------------------------------------------|----------------------------------|----------------------------------------|-----------------------------------------------------------|-----------|
| IONS IC <sub>50</sub>                                                      | mice iC $_{50}(\mu \mathrm{M})$  | 0.177<br>11.7<br>0.531<br>5.52<br>3.34 | 54.7<br>0.393<br>0.313<br>1.63<br>0.198                   | 0.064     |
| TABLE 1<br>50% INHIBITORY CONCENTRATIONS IC <sub>50</sub><br>FOR FORMULA A | А                                | Ala<br>Pro<br>Val<br>Leu<br>Phe        | Ala<br>Ala<br>Ala                                         | !         |
| 50% INHIBIT                                                                | R1                               | 555555<br>555555                       | сн 3<br>СН2 Рh<br>(СН2)2СН=СН2<br>СН2СО2 H<br>(СН2)2СО2 H | }         |
|                                                                            | Example                          |                                        | 21<br>27<br>30<br>33                                      | reference |

Fig. 1

Title: METHODS, COMPOSITIONS AND KITS FOR PRESERVING ANTIGENICITY

Inventor(s): Teresa Aja et al. Express Mail No. EL897861705US Docket No. 480140.476

|                    |                                    | 1                                                                                                                      |                    |                   |                   |                   |                                    |                     |                                   | ,                 |                   |                                                    |                     |                     |                     |                     |           |            |       |       |       |       |       |       |       |       |       |       |      |       |       |       |
|--------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|-------------------|-------------------|------------------------------------|---------------------|-----------------------------------|-------------------|-------------------|----------------------------------------------------|---------------------|---------------------|---------------------|---------------------|-----------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|-------|-------|-------|
|                    |                                    | h5                                                                                                                     | $k_3/K_1$ (M-1s-1) | 21,500            | 37,000            | 52,500            | 32,500                             | 35,300              | 127,000                           | 38,500            | 29,400            | 131,600                                            | 47,600              | 31,700              | 39,200              | 16,100              | 83,300    |            |       |       |       |       |       |       |       |       |       |       |      |       |       |       |
|                    |                                    | Mch5                                                                                                                   | Ki<br>(μΜ)         | 0.062             | 0.099             | 0.054             | 0.077                              | 0.043               | 0.038                             | 0.026             | 0.102             | 0.038                                              | 0.063               | 0.063               | 0.051               | 0.062               | 0.018     |            |       |       |       |       |       |       |       |       |       |       |      |       |       |       |
|                    |                                    | Mch2                                                                                                                   | $k_3/K_1$ (M-1s-1) | 58,800            | 9                 | 71,400            | 41,700                             | 55,600              | 19,600                            | 30,300            | 25,000            | 19,200                                             | 38,500              | 43,500              | 26,300              | 25,000              | 3,370     |            |       |       |       |       |       |       |       |       |       |       |      |       |       |       |
|                    |                                    | ×                                                                                                                      | Ki<br>(μM)         | 0.017             | 2                 | 0.014             | 0.024                              | 0.036               | 0.051                             | 0.033             | 0.040             | 0.104                                              | 0.052               | 0.023               | 0.038               | 0.040               | 0.594     |            |       |       |       |       |       |       |       |       |       |       |      |       |       |       |
| ,co <sub>2</sub> H | ATION RATE                         | CPP32                                                                                                                  | $k_3/Ki$ (M-1s-1)  | 13,400            | 25,900            | 72,700            | 33,700                             | 74,200              | 58,700                            | 21,200            | 44,200            | 56,000                                             | 38,900              | 7,910               | 21,800              | 31,800              | 14,600    |            |       |       |       |       |       |       |       |       |       |       |      |       |       |       |
| ZI                 | INACTIVAT                          | INACTIVA<br>JLA B                                                                                                      | INACTIVA<br>JLA B  | INACTIVA<br>JLA B | INACTIVA<br>JLA B | INACTIVA<br>JLA B | INACTIVA<br>JLA B                  | ) INACTIVA<br>ULA B | ) INACTIV                         | INACTIVA<br>JLA B | INACTIVA<br>JLA B | INACTIVA                                           | ) INACTIV/<br>ULA B | ) INACTIV,<br>ULA B | ) INACTIV/<br>ULA B | ) INACTIV/<br>ULA B | 밁         | Κi<br>(μM) | 0.960 | 0.830 | 0.493 | 0.742 | 0.110 | 0.125 | 0.520 | 0.113 | 0.125 | 0.180 | 2.28 | 0.505 | 0.346 | 0.820 |
| TZ DO              | TABLE 2<br>ANT KI AND<br>FOR FORML | CONSTANT KI AND INACTIVATION RATE  k <sub>3</sub> /Ki FOR FORMULA B  mice  Ki k <sub>3</sub> /Ki Ki k <sub>3</sub> /Ki | $k_3/Ki$ (M-1s-1)  | 2,860             | 6,150             | 7,120             | 45,100                             | 8,900               | 16,800                            | 41,700            | 7,560             | 18,300                                             | 21,400              | 1,540               | 14,200              | 14,900              | 278,000   |            |       |       |       |       |       |       |       |       |       |       |      |       |       |       |
| Z-72               |                                    |                                                                                                                        |                    |                   |                   |                   | ש                                  | Κi<br>(μM)          | 1.40                              | 1.68              | 1.10              | 0.133                                              | 0.843               | 0.327               | 0.240               | 0.397               | 0.327     | 0.234      | 4.56  | 0.632 | 0.739 | 0.015 |       |       |       |       |       |       |      |       |       |       |
|                    | DISSOCIATION                       |                                                                                                                        | ×                  | H                 | <b>=</b>          | LL.               | <b>=</b>                           | エ                   | <b>=</b>                          | <b>-</b>          | اسا               | I                                                  | L.                  | <b>_</b>            |                     | 0CH <sub>2</sub> Ph | ì         |            |       |       |       |       |       |       |       |       |       |       |      |       |       |       |
|                    |                                    |                                                                                                                        | R2                 |                   |                   |                   | 工                                  |                     |                                   |                   |                   |                                                    | I                   | $CH_2CH(CH_3)_2$    | (CH2)2Ph _          | i<br>i<br>·         | 1         |            |       |       |       |       |       |       |       |       |       |       |      |       |       |       |
|                    |                                    |                                                                                                                        | L <sub>A</sub>     | CH <sub>3</sub>   | CH <sub>3</sub>   | CH <sub>3</sub>   | (CH <sub>2</sub> ) <sub>3</sub> Ph | Ph                  | CH <sub>2</sub> CO <sub>2</sub> H | CH <sub>3</sub>   | CH <sub>3</sub>   | (CH <sub>2</sub> ) <sub>2</sub> CH=CH <sub>2</sub> |                     | CH <sub>3</sub>     | CH <sub>3</sub>     | CH3                 | }         |            |       |       |       |       |       |       |       |       |       |       |      |       |       |       |
|                    |                                    |                                                                                                                        | Example            | 43                | 46                |                   | 52                                 |                     |                                   |                   |                   |                                                    |                     |                     |                     |                     | reference |            |       |       |       |       |       |       |       |       |       |       |      |       |       |       |

The state of the s

Fig. 2

Title: METHODS, COMPOSITIONS AND KITS FOR PRESERVING ANTIGENICITY

| C02H | × °             |
|------|-----------------|
| CH3  | CH <sub>3</sub> |

|--|

Fig. 3

Title: METHODS, COMPOSITIONS AND KITS FOR PRESERVING ANTIGENICITY

|                          | ۵        |
|--------------------------|----------|
| $A-N$ $N$ $C(H_2)_n$ $O$ | NT<br>NT |

|                |                  | 2(           | TA<br>50% INHIBITORY<br>FOR F | TABLE 4 INHIBITORY CONCENTRATIONS IC <sub>50</sub> FOR FORMULA D | INS IC <sub>50</sub>           |                                      |                                |
|----------------|------------------|--------------|-------------------------------|------------------------------------------------------------------|--------------------------------|--------------------------------------|--------------------------------|
| Example<br>No. | A                | c            | mICE<br>IC <sub>50</sub> (μM) | CPP32<br>IC <sub>50</sub> (μΜ)                                   | MCH-2<br>IC <sub>50</sub> (μM) | MCH-3<br>IC <sub>50</sub> ( $\mu$ M) | MCH-5<br>IC <sub>50</sub> (μM) |
| 78             | Cbz              |              | 0.019                         | 1.03                                                             | 40.1                           | 96.9                                 | >10                            |
| 82             | Ac-Asp           | quin         | 0.694                         | 0.0014                                                           | 6.47                           | 0.145                                | 2.09                           |
| 85             | succinyl         | -            | 0.571                         | 0.245                                                            | 1.81                           | 2.83                                 | 7.98                           |
| 88             | Cbz-Asp          | <b>—</b>     | 0.096                         | 0.00052                                                          | 2                              | 0.084                                | 1.19                           |
| 91             | dihydrocinnamoyl | -            | 0.045                         | 0.780                                                            | >10                            | 32.6                                 | 18.7                           |
| 94             | Ac               | <del>-</del> | 3.07                          | 3.87                                                             | >10                            | >50                                  | >50                            |
| 100            | Benzoyl          | -            | 0.159                         | 8.77                                                             | >50                            | >50                                  | 4.63                           |
| 26             | 1—Naphthoyl      | _            | 0.010                         | 2.91                                                             | >50                            | 12.3                                 | 1.09                           |
| 103            | Cbz              | 2            | 0.026                         | 0.437                                                            | 32.0                           | <del>-</del>                         | 2.06                           |
| reference      | I                | 1            | 0.064                         | 47.0                                                             | >10                            | >10                                  | 2.96                           |

Fig. 4

 $\begin{tabular}{ll} Title: & METHODS. & COMPOSITIONS & AND & KITS & FOR & PRESERVING & ANTIGENICITY \\ \end{tabular}$ 

|   |                                        | بد     |             |
|---|----------------------------------------|--------|-------------|
|   | C02H                                   |        | >           |
|   | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | ZH     | ie 106      |
|   | <u>Z</u> :                             | o<br>I | Example 106 |
| ( |                                        |        |             |
|   | >                                      | _      |             |

| TABLE 5<br>DISSOCIATION CONSTANT KI AND INACTIVATION RATE<br>k3/KI FOR EXAMPLE 106 | Example 106 | Ki $(\mu M)$ k <sub>3</sub> /Ki $(M^{-1}s^{-1})$ Ki $(\mu M)$ k <sub>3</sub> /Ki $(M^{-1}s^{-1})$ | 12,000,000 | 960,000 0.820 | 0.033 25,000 0.594 2,950 | 98,000 |
|------------------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------|------------|---------------|--------------------------|--------|
| DISSOCIATION (                                                                     | Examp       | Ki (μΜ) k                                                                                         | 0.0005     | 0.012         | 0.033                    | 0.022  |
|                                                                                    |             | Enzyme                                                                                            | mICE       | CPP32         | MCH-2                    | MCH-5  |

Fig. 5



Title: METHODS. COMPOSITIONS AND KITS FOR PRESERVING ANTIGENICITY
Inventor(s): Teresa Aja et al. Express Mail No. EL897861705US Docket No. 480140.476

## Neutrophil Survival and Burst Assay



Fig. 7