Aufgabe 1: Iris-Klassifikation

Ziel: Klassifikation der Iris-Blumen in die drei Arten setosa, versicolor und virginica.

Vorgehen: Zunächst wurde der Iris-Datensatz geladen. Anschließend erfolgte eine Aufteilung in Trainings- (80) und Testdaten (20) mit festem Seed (R: set.seed(42), Python: random_state=42, RapidMiner: random_seed=42).

Zur Modellbildung wurde in R der folgende Befehl verwendet:

```
# Laden und Überblick
data(iris)
set.seed(42)
# Split in Trainings- und Testdaten (80/20)
idx <- sample(1:nrow(iris), size = 0.8 * nrow(iris))
train <- iris[idx, ]
test <- iris[-idx, ]</pre>
```

In Python kam folgender Code zum Einsatz:

```
iris = datasets.load_iris(as_frame= True)
X = iris.data
y = iris.target
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42
)
```

In Orange wurde der Workflow mit den Modulen File \to Data Sampler (80/20) \to Random Forest \to Test & Score realisiert. In RapidMiner wurde ein äquivalenter Prozess mit den Schritten Read CSV \to Split Data \to Random Forest \to Apply Model \to Performance umgesetzt.

Zur Evaluation wurden Metriken wie Accuracy, Precision, Recall, F1-Score und die Confusion Matrix herangezogen.

In R:

```
library(randomForest)
model_rf <- randomForest(Species ~ ., data = train)
pred_rf <- predict(model_rf, test)
table(pred_rf, test$Species)</pre>
```

In Python:

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report

clf = RandomForestClassifier(random_state=42)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
print(classification_report(y_test, y_pred))
```

Ergebnisse (Python/R):

R:

$\operatorname{pred} \operatorname{rf}$	setosa	versicolor	virginica
setosa	9	0	0
versicolor	0	10	1
virginica	0	1	9

Python:

precision	recall	f1-score	support	
virginica	1.00	1.00	1.00	10
setosa	1.00	1.00	1.00	9
versicolor	1.00	1.00	1.00	11
accuracy	1.00	30		
macro avg	1.00	1.00	1.00	30
weighted avg	1.00	1.00	1.00	30

Interpretation: Das Modell zeigt eine sehr gute Trennschärfe, insbesondere zwischen setosa und den anderen beiden Arten.

Aufgabe 2: Algorithmusvergleich (Decision Tree, Naive Bayes, SVM)

Ziel: Vergleich der Klassifikationsleistung dreier Algorithmen auf demselben Datensatz und Splits.

Vorgehen: Als Datenbasis diente erneut der Iris-Datensatz. Die Daten wurden wie in Aufgabe 1 aufgeteilt. Es wurden drei Modelle trainiert:

Decision Tree: R: rpart(), Python: DecisionTreeClassifier(), Orange: Decision Tree-Widget, RapidMiner: Decision Tree \rightarrow Apply Model.

Naive Bayes: R: e1071::naiveBayes(), Python: GaussianNB(), Orange: Naive Bayes-Widget, RapidMiner: Naive Bayes → Apply Model.

SVM: R: e1071::svm(), Python: SVC(), Orange: SVM-Widget, RapidMiner: SVM \rightarrow Apply Model.

Die Modelle wurden mit Accuracy, Precision, Recall, F1 und ROC-AUC (für binäre und multiklassige Klassifikation) verglichen.

Hier als Beispiel der Decision Tree der durch das Python script erzeugt wurde:

Abbildung 1: Auf meinem Discord ist das ganze auch noch mal in Hochauflösender

Interpretation: Alle Confusion Matrizen sind genau so wie die obigen aus Aufgabe 1 heißt alle classen wurden richtig zugeordnet.

Aufgabe 3: Unüberwachtes Clustering (Rotwein-Daten)

Ziel: Strukturen in den Rotwein-Daten entdecken mittels K-Means und hierarchischem Clustering.

Vorgehen: Zunächst wurden fehlende Werte im Datensatz behandelt und eine Z-Score-Normalisierung auf alle Merkmale angewendet. Zur Bestimmung der optimalen Cluster-Anzahl wurde ein Elbow-Plot (Within-Cluster-Sum-of-Squares) sowie der Silhouette-Score berechnet.

Es kamen zwei Clustering-Methoden zum Einsatz:

K-Means: R: kmeans(), Python: KMeans(), Orange: K-Means-Widget, RapidMiner: K-Means-Operator.

Hierarchisches Clustering: Mit Ward-Linkage in allen Tools verfügbar.

Zur Auswertung wurden die Silhouette-Scores, Cluster-Profile (Mittelwerte je Cluster) sowie Visualisierungen wie Dendrogramme und PCA-Plots genutzt.

Ergebnisse (Beispiel): Die optimale Clusterzahl war k = 3. Die Cluster unterschieden sich insbesondere im Phenol-Gehalt.

Interpretation: Es zeigten sich zwei Cluster mit hohem bzw. niedrigem Phenolgehalt und ein intermediäres Cluster.

Aufgabe 4: Google Trends Clustering

Ziel: Regionale Suchmuster in Google Trends-Zeitreihen clustern.

Vorgehen: Zunächst wurde ein CSV-Export aus Google Trends geladen. Fehlende Werte wurden entfernt oder imputiert. Anschließend wurden die Daten normalisiert.

Die Feature-Matrix bestand aus Regionen als Beobachtungen und Zeitpunkten bzw. Suchbegriffen als Merkmalen. Für das Clustering wurden erneut K-Means und hierarchisches Clustering (siehe Aufgabe 3) genutzt. Zur Visualisierung wurden PCA-Scatterplots und Kartenplots eingesetzt (z.,B. mit Python geopandas oder dem Geo-Widget in Orange).

Ergebnisse (Beispiel): Drei Cluster konnten identifiziert werden: Regionen mit saisonalen Peaks, mit stabilen Suchvolumina sowie mit volatilen Trends.

Interpretation: Die Cluster spiegeln typische geografische Nutzungsmuster wider, z.,B. Urlaubsregionen mit Saisonalität im Vergleich zu dauerhaft populären oder wenig frequentierten Regionen.

Hinweis: Alle Arbeitsschritte wurden in R, Python (scikit-learn), Orange und RapidMiner (Repdiminer) implementiert, um Tool-typische Unterschiede in Usability und Konfigurationsmöglichkeiten zu vergleichen.