CMPSC 448: Machine Learning

Lecture 4. Basic Convex Optimization

Rui Zhang Fall 2021

For a given training data:

$$(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)$$

difference between true value
$$y_i$$
 and what model predicts for x_i some regularization of model parameters

For a given training data:

$$(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)$$

Find the minimum x_* of f(x)?

Find the minimum x_* of f(x)?

Easy: set the derivative to zero!

$$f'(x) = 2(x - 2) = 0$$

$$x_* = 2$$

Theorem. Given a function $f : \mathbb{R}^d \mapsto \mathbb{R}$, if $f(\boldsymbol{x})$ is differentiable and and \boldsymbol{x}^* is a local minimum, then $\nabla f(\boldsymbol{x}^*) = \mathbf{0}$.

Theorem. Given a function $f : \mathbb{R}^d \mapsto \mathbb{R}$, if $f(\boldsymbol{x})$ is differentiable and and \boldsymbol{x}^* is a local minimum, then $\nabla f(\boldsymbol{x}^*) = \mathbf{0}$.

Theorem. Given a function $f : \mathbb{R}^d \to \mathbb{R}$, if $f(\boldsymbol{x})$ is differentiable and and \boldsymbol{x}^* is a local minimum, then $\nabla f(\boldsymbol{x}^*) = \mathbf{0}$.

How about this function?

$$\min_{x \in \mathbb{R}} \ x^4 - 3x^3 + x^2 + \frac{3}{2}x$$

$$f'(x) = \frac{df}{dx} = 4x^3 - 9x^2 + 2x + \frac{3}{2}$$

How about this function?

$$\min_{x \in \mathbb{R}} x^4 - 3x^3 + x^2 + \frac{3}{2}x$$

$$f'(x) = \frac{df}{dx} = 4x^3 - 9x^2 + 2x + \frac{3}{2}$$

(1) There might not be a closed form solution for f'(x) = 0!

How about this function?

$$\min_{x \in \mathbb{R}} \ x^4 - 3x^3 + x^2 + \frac{3}{2}x$$

$$f'(x) = \frac{df}{dx} = 4x^3 - 9x^2 + 2x + \frac{3}{2}$$

- (1) There might not be a closed form solution for f'(x) = 0!
- (2) Having derivative equals zero is NOT sufficient for optimality!

Theorem. If $f(\boldsymbol{x})$ is twice continuously differentiable and \boldsymbol{x}^* is a local minimum, then $\nabla^2 f(\boldsymbol{x}^*)$ is positive semidefinite (i.e., $z^{\mathsf{T}} \nabla^2 f(\boldsymbol{x}^*) z \geq 0$, $\forall z \in \mathbb{R}^d$).

Theorem. If $f(\boldsymbol{x})$ is twice continuously differentiable and \boldsymbol{x}^* is a local minimum, then $\nabla^2 f(\boldsymbol{x}^*)$ is positive semidefinite (i.e., $z^{\mathsf{T}} \nabla^2 f(\boldsymbol{x}^*) z \geq 0$, $\forall z \in \mathbb{R}^d$).

This can't be a local minimum because second order derivative <0

Fog of war

We need a key structure on the function local minima: Convexity.

Convex set

Definition

A set $\mathcal{C} \subseteq \mathbb{R}^d$ is convex if for any $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{C}$ and any $\lambda \in [0,1]$, we have:

$$\lambda \boldsymbol{x} + (1 - \lambda) \boldsymbol{y} \in \mathcal{C}$$

Convex set

Definition

A set $\mathcal{C} \subseteq \mathbb{R}^d$ is convex if for any $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{C}$ and any $\lambda \in [0,1]$, we have:

$$\lambda \boldsymbol{x} + (1 - \lambda) \boldsymbol{y} \in \mathcal{C}$$

Convex set

Definition

A set $\mathcal{C} \subseteq \mathbb{R}^d$ is convex if for any $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{C}$ and any $\lambda \in [0,1]$, we have:

$$\lambda \boldsymbol{x} + (1 - \lambda) \boldsymbol{y} \in \mathcal{C}$$

Convex function

Definition

A function $f: \mathbb{R}^d \to \mathbb{R}$ if and only if:

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

25

Convex function

Definition

A function $f: \mathbb{R}^d \to \mathbb{R}$ if and only if:

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Theorem. If f(x) is convex, then every local minimum is a global minimum.

Example: absolute

$$f(x) = |x|$$

$$f(\lambda x + (1 - \lambda)y) = |\lambda x + (1 - \lambda)y|$$

$$\leq |\lambda x| + |(1 - \lambda)y|$$

$$= \lambda |x| + (1 - \lambda)|y|$$

$$= \lambda f(x) + (1 - \lambda)f(y)$$

Example: norm

Is
$$f(oldsymbol{x}) = \|oldsymbol{x}\|_2$$
 convex for $oldsymbol{x} \in \mathbb{R}^d$?

Example: norm

Is
$$f(oldsymbol{x}) = \|oldsymbol{x}\|_2$$
 convex for $oldsymbol{x} \in \mathbb{R}^d$?

$$\begin{split} f(\lambda \boldsymbol{x} + (1-\lambda)\boldsymbol{y}) &= \|\lambda \boldsymbol{x} + (1-\lambda)\boldsymbol{y}\|_2 \\ &\leq \|\lambda \boldsymbol{x}\|_2 + \|(1-\lambda)\boldsymbol{y}\|_2 \quad \text{(triangle inequality)} \\ &= \lambda \|\boldsymbol{x}\|_2 + (1-\lambda)\|\boldsymbol{y}\|_2 \quad \text{(homogeneity)} \\ &= \lambda f(\boldsymbol{x}) + (1-\lambda)f(\boldsymbol{y}) \end{split}$$

Yes, the norm of a vector is a convex function.

Example: quadratic

$$\lambda f(x) + (1 - \lambda)f(y) - f(\lambda x + (1 - \lambda)y) = \lambda x^{2} + (1 - \lambda)y^{2} - (\lambda x + (1 - \lambda)y)^{2}$$

$$= \lambda x^{2} + (1 - \lambda)y^{2} - \lambda^{2}x^{2} - 2\lambda(1 - \lambda)xy - (1 - \lambda)^{2}y^{2}$$

$$= \lambda(1 - \lambda)x^{2} + \lambda(1 - \lambda)y^{2} - 2\lambda(1 - \lambda)xy$$

$$= \lambda(1 - \lambda)(x^{2} + y^{2} - 2xy)$$

$$= \lambda(1 - \lambda)(x - y)^{2} \ge 0$$

Example: exponential

$$f(x) = \exp(x) = e^x$$

- Show that above function is convex using basic definition of convexity?
- While it is obviously convex, You will find it's a bit hard to prove...
- but we can use second order derivative to show this very easy, which will be discussed later

Property 4: Alternate Definition of Convex Functions

Theorem

Let f be a differentiable function. Then, f is convex if and only if its domain is convex and the following inequalities hold:

$$\forall \boldsymbol{x}, \boldsymbol{y} \in \text{dom}(f), \ f(\boldsymbol{y}) - f(\boldsymbol{x}) \ge \langle \nabla f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle$$

Property 4: Alternate Definition of Convex Functions

Theorem

Let f be a differentiable function. Then, f is convex if and only if its domain is convex and the following inequalities hold:

$$\forall \boldsymbol{x}, \boldsymbol{y} \in \text{dom}(f), \ f(\boldsymbol{y}) - f(\boldsymbol{x}) \ge \langle \nabla f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle$$

Property 4: Alternate Definition of Convex Functions

Is
$$f({m x}) = e^{{m x}^{ op} {m a}}$$
 convex?

$$f(\mathbf{y}) - (f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle) = e^{\langle \mathbf{y}, \mathbf{a} \rangle} - \left(e^{\langle \mathbf{x}, \mathbf{a} \rangle} + e^{\langle \mathbf{x}, \mathbf{a} \rangle} \langle \mathbf{y} - \mathbf{x}, \mathbf{a} \rangle \right)$$

$$= e^{\langle \mathbf{x}, \mathbf{a} \rangle} \left(e^{\langle \mathbf{y} - \mathbf{x}, \mathbf{a} \rangle} - (1 + \langle \mathbf{a}, \mathbf{y} - \mathbf{x} \rangle) \right)$$

$$\geq 0 \quad \text{(because } 1 + \mathbf{z} \leq e^{\mathbf{z}} \text{ for all } \mathbf{z} \in \mathbb{R})$$

Yes, it is!

Property 5: Optimality condition for Convex function

Theorem. If $f(\mathbf{x})$ is convex and continuously differentiable, then \mathbf{x}^* is a global minimum if and only if $\nabla f(\mathbf{x}^*) = \mathbf{0}$.

Property 5: Optimality condition for Convex function

Theorem. If $f(\mathbf{x})$ is convex and continuously differentiable, then \mathbf{x}^* is a global minimum if and only if $\nabla f(\mathbf{x}^*) = \mathbf{0}$.

When convex, $\nabla f(\boldsymbol{x}^*) = \boldsymbol{0}$ is necessary and sufficient

Property 5: Optimality condition for Convex function

Theorem. If $f(\mathbf{x})$ is convex and continuously differentiable, then \mathbf{x}^* is a global minimum if and only if $\nabla f(\mathbf{x}^*) = \mathbf{0}$.

Why?

From Property 4 we have:

$$f(\boldsymbol{y}) \ge f(\boldsymbol{x}_*) + \langle \nabla f(\boldsymbol{x}_*), \boldsymbol{y} - \boldsymbol{x}_* \rangle$$

When $\nabla f(\boldsymbol{x}^*) = \mathbf{0}$

$$f(\boldsymbol{y}) \geq f(\boldsymbol{x}_*)$$

• If the function $f: \mathbb{R} \to \mathbb{R}$ is twice-differentiable, then it is convex if and only if:

$$f''(x) \ge 0$$

Is
$$f(x) = x^4$$
 convex?

$$f''(x) = 12x^2 \ge 0$$

Yes, it is!

Is
$$f(x) = x^4$$
 convex?

$$f''(x) = 12x^2 \ge 0$$

Yes, it is!

$$f(x) = \exp(x) = e^x$$

• If the function $f: \mathbb{R} \to \mathbb{R}$ is twice-differentiable, then it is convex if and only if:

$$f''(x) \ge 0$$

• If the function $f:\mathbb{R}^d o\mathbb{R}$ is twice-differentiable, then it is convex if and only if:

$$\nabla^2 f(\boldsymbol{x}) \succeq 0$$

for all $oldsymbol{x} \in \mathbb{R}^d$

- the Hessian matrix is positive semidefinite
- all the eigenvalues of its Hessian matrix are non-negative

Convex Optimization

Problem:

Find the minimum of x_* of f(x), when the function is convex!

From Property 3:

Every local minimum is a global minimum for convex functions!

Convex functions are EASY to solve!

It suffices to find a local minimum, because we know it will be global

Descent direction

Let assume at iteration t the algorithms is at point x_t and got local information from oracle such as $f(x_t)$ and $\nabla f(x_t)$

I would like to move to a new point $\,oldsymbol{x}_{t+1}$

such that

$$f(\boldsymbol{x}_{t+1}) \leq f(\boldsymbol{x}_t)$$

Descent direction

Let assume at iteration t the algorithms is at point x_t and got local information from oracle such as $f(x_t)$ and $\nabla f(x_t)$

I would like to move to a new point $\,oldsymbol{x}_{t+1}$

such that

$$f(\boldsymbol{x}_{t+1}) \leq f(\boldsymbol{x}_t)$$

Answer? negative gradient at current point $-\nabla f(\boldsymbol{x}_t)$

Gradient Descent (GD) algorithm

The simplest algorithm in the world (almost)

Example

Step size selection

How do I choose the step size?

- Exact line search (usually expensive)
- Heuristics (practical)
- Fixed
- Adaptive based on iteration # [smaller steps at end]

Example Step size selection

$$f(x) = x^2$$
$$\eta = 0.3$$

Example Step size selection

$$f(x) = x^2$$
$$\eta = 0.7$$

Example Step size selection

$$f(x) = x^2$$
$$\eta = 0.9$$

Given: a set of points on the plane

Goal: find the best line that approximates the points > 10

Given: a set of points on the plane

Goal: find the best line that approximates the points

Error of a line:

$$f(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (w_0 + w_1 x_i - y_i)^2$$

Given: a set of points on the plane

Goal: find the best line that approximates the points

Error of a line:

$$f(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (w_0 + w_1 x_i - y_i)^2$$

Gradient at a point:

$$\frac{\partial f(w_0, w_1)}{\partial w_0} = \frac{2}{n} \sum_{i=1}^n w_0 + w_1 x_i - y_i$$
$$\frac{\partial f(w_0, w_1)}{\partial w_1} = \frac{2}{n} \sum_{i=1}^n (w_0 + w_1 x_i - y_i) x_i$$

How error decreases

Stochastic gradient descent

GD is not practical for large-scale data!

Consider a learning problem with millions of images?

n gradient computations for n training samples per iteration!

GD versus SGD

Stochastic Gradient Descent (SGD): At each iteration, compute the gradient over a small fixed-size subset of data (min-batch)!

Stay tuned! We will talk about SGD in future lectures!

What if the function is not differentiable?

To many tangent vectors at non-differentiable a point! Which direction should I take?

Subgradients

Definition

Let $f:\mathcal{C}\to\mathbb{R}$ be a proper function and let $x\in\mathrm{dom}(f)$. A vector g is called a subgradient of f at x if

$$f({m y}) \geq f({m x}) + \langle {m g}, {m y} - {m x}
angle$$
 for all ${m y} \in {
m dom}(f)$

We denote the set of all subgradients at point x by $\partial f(x)$ which is $\partial f(x) = {\nabla f(x)}$ if the function is differentiable at x.

$$f(x) = |x|$$

Later in the course, we will introduce Subgrdient Descent algorithm!