Paul Gustafson

Texas A&M University - Math 608

Instructor: Grigoris Paouris

HW 7

4.43 For $x \in [0,1)$, let $\sum_{1}^{\infty} a_n(x) 2^{-n}$ be the binary expansion of x. (If x is a dyadic rational, choose the expansion such that $a_n(x) = 0$ for n large.) Then the sequence $(a_n) \in \{0,1\}^{[0,1)}$ has no pointwise convergent sequence.

Proof. Suppose not. Then there exists a subsequence (a_{n_k}) with $a_{n_k} \to a$ for some $a \in \{0,1\}^{[0,1)}$. Pick

52 The one-point compactification of \mathbb{R}^n is homeomorphic to the *n*-sphere $\{x\in\mathbb{R}^{n+1}:|x|=1\}.$

60 The product of countably many sequentially compact spaces is sequentially compact.

69

74 Consider $\mathbb N$ as a subset of its Stone-Cech compactification $\beta \mathbb N$.

- a. If A and B are disjoint subsets of N, their closures in β N are disjoint. (Hint: $\chi_A \in C(\mathbb{N}, I)$.)
- b. No sequence in $\mathbb N$ converges in $\beta \mathbb N$ unless it is eventuall constant.

1