# 1.5 Electric Fields in Polarizable Materials



Gas sensor based on interdigitated electrodes



#### Capacitive Silicon Microphone







E-Field acting on dielectric material: either atomic dipoles are generated or already existing dipoles

Electric polarization

are ordered by electric field





Remarks:

# 1.5.2. Electric Displacement Field

(i) Introduction of electric displacement field

Polarization  $\vec{P}$  is proportional to  $\vec{E}$ :  $\vec{P} = \mathcal{E}_r$   $\vec{E}$ Simplest material  $\mathcal{E}_r$  = Scalar, number, always larger than 1 Law we can have ( there more Complex material laws, where  $\mathcal{E}_r$  is not Constant) in this lecture:  $\mathcal{E}_r$  = Scalar, Constant  $\mathcal{E}_r$  = relative dielectric Constant  $\mathcal{E}_r$  = Jielectric Constant of Vacuum  $\mathcal{E}_r$  = 8.85  $\cdot$  10  $\cdot$  1 As/rm dielectric Constant is also Called permittivity  $\cdot$  2  $\cdot$  2  $\cdot$  4  $\cdot$  4  $\cdot$  5  $\cdot$  5  $\cdot$  6  $\cdot$  7  $\cdot$  4  $\cdot$  6  $\cdot$  7  $\cdot$  4  $\cdot$  8  $\cdot$  7  $\cdot$  4  $\cdot$  8  $\cdot$  9  $\cdot$  9

## (ii) Introduction of electric displacement field

Intention: universally valid relation between charge distribution in space and electric field and electric displacement field, respectively

→ This can be done by introducing the mathematical/physical quantity "flux of a vector field"



#### (ii) Introduction of electric displacement field

Intention: universally valid relation between charge distribution in space and electric field and electric displacement field, respectively

→ This can be done by introducing the mathematical/physical quantity "flux of a vector field"

Example: flow field of water (e.g., in a river) flowing with velocity  $\vec{v} = \vec{v}(\vec{r})$ 





① A  $\bot V$ ,  $\lnot I | \overrightarrow{V} \Rightarrow flux$  of water through area  $A: |\overrightarrow{V}| \cdot A = \overrightarrow{V} \cdot \overrightarrow{a}$   $= \overrightarrow{V} \cdot A \cdot \overrightarrow{n}$  Uses uncompary field units:  $\left[ \frac{m}{s} \cdot m^2 \right] = \frac{m^3}{s}$   $\overrightarrow{V}(\overrightarrow{r}) \neq f(t)$ 

2 Ally;  $\vec{a} = |A| \cdot \vec{n} \perp \vec{V} \Rightarrow \text{flux of water through area } A: \vec{\nabla} \cdot \vec{a} = \vec{V} \cdot A \cdot \vec{n} = 0$ 



Dielectric Displacement Flux displacement current Dielectric

 Consider an arbitrary volume V in space ("control/test volume") enclosed by boundary surface  $\delta \checkmark$ 



- Determine Flux of D through the enveloping surface:
  - o divide **a**✓ in small pieces A normal vector in pointing outward => Ai = Ai . Ti
  - o determine flux of D through  $\overrightarrow{A_j}$ for each element  $\overrightarrow{A_j}$  of  $\overrightarrow{OV}$  we determine flux of  $\overrightarrow{D}$ -field:  $\overrightarrow{T_j} \cdot \overrightarrow{A_i} = |\overrightarrow{D_i}| \cdot |\overrightarrow{A_j}|$ . Cos  $\overrightarrow{A_j}$   $\overrightarrow{n}$



Total flux through enveloping surface of V:

$$\Rightarrow$$
 Summing up fluxes through all  $A_j: \sum_{i=1}^n \overline{D_i} \cdot \overline{A_j}$ 

o for infinitesimal small areas A:

$$\overrightarrow{A_{i}} = \overrightarrow{A_{i}} \cdot \overrightarrow{n_{i}} \Rightarrow \overrightarrow{da} \Rightarrow integration along Closed surface  $\overrightarrow{D} \cdot \overrightarrow{n} \cdot \overrightarrow{da} = \overrightarrow{D} \cdot \overrightarrow{n} \cdot \overrightarrow{da}$ 

Closed surface  $\overrightarrow{D} \cdot \overrightarrow{n} \cdot \overrightarrow{da} = \overrightarrow{D} \cdot \overrightarrow{n} \cdot \overrightarrow{da}$ 

Closed surface  $\overrightarrow{D} \cdot \overrightarrow{n} \cdot \overrightarrow{da} = \overrightarrow{D} \cdot \overrightarrow{n} \cdot \overrightarrow{da}$ 

Closed surface  $\overrightarrow{D} \cdot \overrightarrow{n} \cdot \overrightarrow{da} = \overrightarrow{D} \cdot \overrightarrow{n} \cdot \overrightarrow{da}$ 

Closed surface  $\overrightarrow{D} \cdot \overrightarrow{n} \cdot \overrightarrow{da} = \overrightarrow{D} \cdot \overrightarrow{n} \cdot \overrightarrow{da}$ 

Closed surface  $\overrightarrow{D} \cdot \overrightarrow{n} \cdot \overrightarrow{da} = \overrightarrow{D} \cdot \overrightarrow{n} \cdot \overrightarrow{da}$ 

Closed surface  $\overrightarrow{D} \cdot \overrightarrow{n} \cdot \overrightarrow{da} = \overrightarrow{D} \cdot \overrightarrow{n} \cdot \overrightarrow{da}$ 

Closed surface  $\overrightarrow{D} \cdot \overrightarrow{n} \cdot \overrightarrow{da} = \overrightarrow{D} \cdot \overrightarrow{n} \cdot \overrightarrow{da}$ 

Closed surface  $\overrightarrow{D} \cdot \overrightarrow{n} \cdot \overrightarrow{da} = \overrightarrow{D} \cdot \overrightarrow{n} \cdot \overrightarrow{da}$ 

Closed surface  $\overrightarrow{D} \cdot \overrightarrow{n} \cdot \overrightarrow{da} = \overrightarrow{D} \cdot \overrightarrow{n} \cdot \overrightarrow{da}$ 

Closed surface  $\overrightarrow{D} \cdot \overrightarrow{n} \cdot \overrightarrow{da} = \overrightarrow{D} \cdot \overrightarrow{n} \cdot \overrightarrow{da}$ 

Closed surface  $\overrightarrow{D} \cdot \overrightarrow{n} \cdot \overrightarrow{da} = \overrightarrow{D} \cdot \overrightarrow{n} \cdot \overrightarrow{da}$ 

Closed surface  $\overrightarrow{D} \cdot \overrightarrow{D} \cdot \overrightarrow{da} = \overrightarrow{D} \cdot \overrightarrow{D} \cdot \overrightarrow{D} \cdot \overrightarrow{da}$ 

Closed surface  $\overrightarrow{D} \cdot \overrightarrow{D} \cdot \overrightarrow{D} \cdot \overrightarrow{D} \cdot \overrightarrow{D} \cdot \overrightarrow{D} \cdot \overrightarrow{D}$ 

Closed surface  $\overrightarrow{D} \cdot \overrightarrow{D} \cdot \overrightarrow{D}$$$

1.5.2. Gauss's law (= central law of electrostatics

# (i) For a point charge Q in spherical control volume K(0,R)

- point charge Q located in the center of a spherical control volume K
- location of point charge= origin of coordinate system Q = located at Tk, Tk = (8) |r-12 = |r = r
- field of point charge:

Ēr = Tr





## (ii) Generalization to arbitrary control volume

$$= 7 \text{ Gauss's Law}: \int \overline{D} \cdot d\overline{a} = Q \text{ if } \overline{fa} \in V$$

$$\int \overline{D} \cdot d\overline{a} = 0 \text{ if } \overline{fa} \notin V$$

$$\downarrow V$$

## (iii) Gauss's law for a system of point charges (superposition principle)

We Consider many point Charge  $q_i$  inside the control volume VTotal Charge Q(V) inside  $V: Q(V) = \sum_{i \in V} q_i$   $q_i \in V$   $q_i \in V$ 



