Instituto Superior de Engenharia de Lisboa

ENGENHARIA INFORMÁTICA E DE COMPUTADORES

PROCESSAMENTO DE IMAGEM E BIOMETRIA PRIMEIRO TRABALHO PRÁTICO

LI61N-MI2N

Autores – Grupo 3:

40602, Sara Sobral 40686, Eduardo António

Índice

Desenvolvimento de conclusões	3
Exercício 1	3
Função image_details.m	3
Função image_details.m	
Exercício 2	
Função medical_image_enhancement.m	
Função fingerprint_enhancement.m	
Função face_detection.m	6
Exercício 3	7
Exercício 4	8
Função codeCardGenerato	8
Exercício 5	

Desenvolvimento de conclusões

Exercício 1

Função image_details.m

Obtenha informação sobre uma imagem. espacial; resolução em profundidade; valores mínimo, médio e máximo de intensidade; medida de contraste; entropia da imagem. Apresentar a imagem e o respetivo histograma.

Utilização da função <u>imfinfo</u> para obter informação sobre a imagem, como a resolução espacial, a resolução em profundidade e o tipo de cor da imagem para saber se é necessário obter as componentes (R, G e B).

Utilização da função imread para ler a imagem a partir do ficheiro.

A função recebe como parâmetro a imagem que se pretende analisar. As imagens estão presentes em GenericImages.zip.

> Apresentação de resultados

• Exemplo de imagem binária: circ_bw.tif

resolução espacial = 76160 resolução em profundidade = 1 bit/pixel valores mínimo de intensidade = 0 valores médio de intensidade = 0.48871 valores máximo de intensidade = 1 medida de contraste = 6.0206 entropia da imagem = 0.99963

• Exemplo de imagem monocromática: lena.gif

resolução espacial = 65535 resolução em profundidade = 8 bit/pixel valores mínimo de intensidade = 3 valores médio de intensidade = 99 valores máximo de intensidade = 238 medida de contraste = 35.5268 entropia da imagem = 7.5683

• Exemplo de imagem a cores: peppers.png

resolução espacial = 262144 resolução em profundidade = 24 bit/pixel

componente	red:	green:	blue:
valores mínimo de intensidade =	0	0	0
valores médio de intensidade =	144.1151	112.8049	64.1288
valores máximo de intensidade =	253	255	255
medida de contraste =	48.0967	48.1308	48.1308
entropia da imagem =	7.3316	7.5605	7.0196

Função image_details.m

> Obtenha informação sobre uma imagem e a uma versão transformada por T, sendo T uma transformação de intensidade genérica.

A função recebe como parâmetro a imagem que se pretende analisar. As imagens estão presentes em GenericImages.zip.

Função T utilizada foi a inversa, ou seja, o índice 0 da *lookup table* corresponde à intensidade mais elevada que a imagem pode ter.

Utilização da função intlut para gerar a imagem transformada.

> Apresentação de resultados

• Exemplo de imagem binária: circ_bw.tif

• Exemplo de imagem monocromática: lena.gif

• Exemplo de imagem a cores: peppers.png

Exercício 2

Função medical_image_enhancement.m

Realiza transformações de intensidade adequadas para melhorar a legibilidade das mesmas. Apresente os resultados obtidos para cada imagem deste conjunto.

A função recebe como parâmetro a imagem que se pretende analisar. As imagens estão presentes em Medicallmages.zip. Se a imagem recebida for binária ou coloridas é convertida para níveis de cinzento para que se possa aplicar a função i<u>madjust</u>. Esta função ajusta os valores de intensidade da imagem, ou seja, mapeia os valores de intensidade da imagem para novos valores de forma a que 1% dos dados sejam saturados em baixas e altas intensidades. O que faz aumentar o contraste da imagem de saída..

> Apresentação de resultados Imagem lmagem transformada 200 200 100 100 Imagem Imagem transformada 200 200 100 100 Imagem Imagem transformada 250 250 200 200 150 150 100 100 50 50

No caso de PET1.tif obtemos os tumores depois o contorno do corpo, a apresentamos a sua soma.

No caso XRay1.tif obtemos a inversa à qual subtraímos a imagem original.

Função fingerprint_enhancement.m

Para uma imagem de impressão digital produz uma versão binária da mesma, tentando separar as riscas do fundo.

A função recebe como parâmetro a imagem que se pretende analisar. As imagens estão presentes em FingerprintImages.zip. Nesta função calcula-se o limiar ótimo para transformar a imagem na sua versão binária (método de Otsu) através da função <u>im2bw</u>..

> Apresentação de resultados

Função face_detection.m

Para uma imagem de face, procura localizar os extremos da face e afixar um retângulo a delimitar a face.

A função recebe como parâmetro a imagem que se pretende analisar. As imagens estão presentes em Facelmages.zip. Foi utilizado um detetor de objetos

(https://www.mathworks.com/help/vision/ref/vision.cascadeobjectdetector-class.html) que utiliza o algoritmo Viola-Jones. É criado um detetor de objetos com classificação modelo 'FrontalFaceCART', utiliza-se a função step que processa os dados de entrada de acordo com o algoritmo do objeto e retorna uma matriz [x y largura altura], que especifica em pixels, o canto superior esquerdo e o tamanho de uma caixa delimitadora.

> Apresentação de resultados

Exercício 3

- > Identifique o(s) problema(s) na imagem e proponha uma técnica (ou mais) para a sua correção;
- circles.bmp

Problema(s): As imagens apresentam ruido padronizado com diferentes níveis de intensidade.

Imagens	Proposta(s) de correção
circles_1.bmp	Aplicar uma transformação em frequência passa baixo para remover o
	ruido que não pertence ao espetro da imagem e aplicar um filtro de
circles_2.bmp	sharpening para salientar as transições entre os círculos da aplicação
circles_3.bmp	anterior.
circles_4.bmp	
circles_5.bmp	

• face1.bmp

Problema(s): As imagens apresentam diferentes intensidades de ruido impulsivo salt and peppe.

Imagens	Proposta(s) de correção
face1_1.bmp	Aplicar um filtro espacial não linear mediana para eliminar pontos de
face1_2.bmp	ruido impulsivo com valores extremos. A dimensão da mascara mediana
face1_3.bmp	pode variar para corrigir as diferentes imagens. Obriga à ordenação dos
face1_4.bmp	valores, colocando os valores 0 (pepper) à esquerda, os valores 255 (salt)
face1_5.bmp à direita e os valores dos pixéis originais no centro, obtendo as	
- - .	valor do contexto da imagem original.

• finger1.bmp

Problema(s): As imagens estão esborratadas, o nível de *blured* vai aumentando de imagem para imagem.

ımagens	Proposta(s) de correção
finger1_1.bmp	Aplica rum filtro espacial linear passa alto (como o laplaciano) para
finger1_2.bmp	realizar sharpening sobre a imagem, ou seja, afiar e salientar as
finger1_3.bmp	transições das zonas brancas para as pretas.
finger1_4.bmp	
finger1_5.bmp	

• lena.gif

Problema(s): Todas as imagens apresentam ruido.

Imagens	Proposta(s) de correção
lena_1.bmp	Aplicar um filtro espacial linear passa baixo para suavizar a imagem de
lena_2. <u>bmp</u>	forma a eliminar o ruido existente.
lena_3. bmp	
lena_4.bBmp	
lena_5. bmp	

• squares.gif

Problema(s): As imagens estão esborratadas, o nível de *blured* vai aumentando de imagem para imagem.

ımagens	Proposta(s) de correção
squares_1.gif	Aplicar um filtro espacial passa alto de deteção de contornos.
squares_2.gif	
squares_3.gif	
squares_4.gif	

> Compare a imagem restaurada com a imagem original.

Um MAE baixo e um MSE alto indica ocorrência de outliers no conjunto de dados.

Imagens	Brilho	Contraste	Entropia	MSE	MAE
circles_1.bmp	4.4514	0	-2.8446	0.65889	4.444
circles_2.bmp	2.9665	0	-2.5703	0.70064	2.9599
circles_3.bmp	0.61072	0	-1.4036	0.98042	0.60997
circles_4.bmp	0.61281	0	-1.4109	0.97893	0.61208
circles_5.bmp	0.62746	0	-1.4329	0.97481	0.62737
face1_1.bmp	0.077698	0	0.066425	0.46234	1.6896
face1_2.bmp	0.078674	0	0.060538	0.45258	1.7401
face1_3.bmp	0.11615	0	0.06493	0.44232	1.8273
face1_4.bmp	0.10431	0	0.06076	0.41498	1.8867
face1_5.bmp	0.11865	0	0.062689	0.41351	2.1005
finger1_1.bmp	-3.3247	0	0.14186	0.4341	5.8699
finger1_2.bmp	-2.5914	0	0.17585	0.14763	8.3205
finger1_3.bmp	-1.8762	0	0.22112	0.069748	11.5573
finger1_4.bmp	-1.1661	0	0.252	0.04567	14.8908
finger1_5.bmp	-0.46469	0	0.25703	0.032974	0.032974
lena_1.gif	0.31051	0	0.029094	1	14
lena_2.gif	0.31051	0	0.029094	1	14
lena_3.gif	0.31051	0	0.029094	1	14
lena_4.gif	0.31051	0	0.029094	1	14
lena_5.gif	0.31051	0	0.029094	1	14
squares_1.gif	9.7495	0	-4.5947	0	11
squares_2.gif	-10.1055	0	-4.0995	0	11
squares_3.gif	-10.2864	0	-3.7359	0	11
squares_4.gif	-10.4003	0	-3.4807	0	11
squares_5.gif	-10.483	0	-3.2985	0	11

Exercício 4

Função codeCardGenerato

➤ A qual gera uma imagem colorida, contendo um cartão de códigos, com conteúdo aleatório, de forma matricial, tal como se apresenta na figura. Apresente cinco imagens diferentes geradas com o método proposto.

> Descrição da metodologia

Este exercício tem como objetivo gerar uma imagem colorida com conteúdo aleatório na forma matricial.

- 1. Gerar um valor (inteiro) aleatório para a largura N e um valor (caracter) para altura M.
- 2. Adicionar a um contento os valores de 1 a N com espaçamento de 3.
- 3. Criar um objeto imagem (*Graphics2D*). Ter cuidado com o tipo de fonte para que o espaçamento não fique desorganizado.
- 4. Gerar um valor aleatório para a escolha da cor, a cor é introduzida por linha.
- 5. Escrever no objeto imagem o conteúdo do contentor com a cor gerada.
- 6. Gerar M linhas com N valores (inteiros) aleatórios.

- 7. Cada linha gerada é adicionada ao contentor, é gerada também uma cor aleatória. Repetir o ponto 5.
- 8. Preencher o fundo da imagem com uma cor.

> Apresentação de resultados

	1	2	3	4	5	6	7	8
Α	506	532	344	227	481	517	514	17
В	420	220	714	309	974	765	329	66
C	538	882	311	622	658	781	846	208
D	251	294	311	679	848	378	283	157
Е	556	462	455	358	947	564	793	148
F	609	403	947	77	392	187	185	494
G	838	175	990	954	226	392	321	196
Н	61	435	729	172	571	930	47	931
Ι	838	983	104	170	426	206	35	950

Exercício 5

As imagens utilizadas estão presentes em BinaryAndGrayscaleImages.zip.

Realize coloração das imagens através das técnicas de intensity slicing e intensity to RGB transform; indique os critérios e as funções usadas para a atribuição de cores.

As técnicas recebem imagens monocromáticas e realização a sua coloração. É útil para visualizar imagens médicas, científicas ou vegetação, pois é de interesse realçar certos valores de intensidade para serem mais percetíveis ao sistema visual humano.

A técnica de intensity slicing começa por dividir a resolução em profundidade da imagem recebida por um valor (escala) obtendo o número de intervalos. O valor escala é calculado consoante os valores de níveis de cinzento que a imagem original usa. Logo, o número de intervalos é igual ao número de cores da imagem original que por sua vez é igual ao número de cor que a imagem final vai ter.

Para cada intervalo é construído um valor RGB. No final a imagem monocromática de dimensão $(2^n - 1)^2$ passa para $(2^n - 1)^3$.

Exemplo:

Imagem monocromática (circles.bmp) com resolução em profundidade n = 8 bit/pixel

A escala é 4 porque a imagem apenas usa quatro níveis cinzentos.

Como as imagens de entrada são monocromáticas (o valor do pixel varia entre 0 e 255), foi aplicada uma tabela de lookup. Quando o valor do pixel está mais perto de 0 a cor RGB atribuída tem um tom frio, e quando o valor do pixel está mais perto de 255 a cor RGB atribuída tem um tom quente. Foi utilizada uma tabela de lookup.

Resultado:

A técnica intensity to RGB transform aplica três funções diferentes sobre um pixel monocromático, estas funções são idem-potentes, ou seja, para o mesmo pixel o resultado é sempre o mesmo. Cada função gera um valor para a componente azul, para a componente verde e para a componente vermelha. Exemplo:

Imagem monocromática (circles.bmp) com resolução em profundidade n = 8 bit/pixel

Os quatros níveis de cinzento serão submetidos às três unções.

$$fB(I) = B$$

 $I \longrightarrow fG(I) = G$ $fB(I) = 3*I = B$ cor RGB:
 $fR(I) = R$ $fG(I) = 0,5*I = G$ [R, G, B]
 $fR(I) = 2*I = R$

Resultado:

> Comente qual das técnicas aplicadas produz melhores resultados.

A técnica de intensity slicing apresenta melhor resultados, pois se a função escolhida na técnica intensity to RGB transform não for adequada pode fazer o oposto de salientar detalhes.

Exemplo para a função apresentada em cima: intensity slicing: intensity to RGB transform

