COMP2611: Computer Organization

Tutorial 1: Programs and Numbers

- ☐ You will learn the following in this tutorial:
 - □ the compilation process of computer programs into machine instructions.
 - □ the conversion between binary, decimal and hexadecimal numbers.
 - □ the computer numerical unit prefix.

Computer programs

- the compilation process

Number bases

- the introduction of different bases

Conversion between binary and decimal

- conversion methods and exercises

Conversion between binary and hexadecimal

- conversion methods and exercises

Computer numerical unit prefix

Programs for MIPS processor

```
swap(int v[], int k)
High-level
language
                {int temp;
                   temp = v[k]:
program
                   v[k] = v[k+1]:
(in C)
                   v[k+1] = temp;
                  Compiler
Assembly
                swap:
                     muli $2, $5.4
language
                        $2. $4.$2
                     add
program
                         $15. 0($2)
(for MIPS)
                     1w
                         $16. 4($2)
                         $16. 0($2)
                     SW
                         $15, 4($2)
                     SW
                     jr
                         $31
                  Assembler
           00000000101000010000000000011000
Binary machine
           00000000000110000001100000100001
language
            program
            1000110011110010000000000000000100
(for MIPS)
```

Computer programs

- the compilation process

Number bases

- the introduction of different bases

Conversion between binary and decimal

- conversion methods and exercises

Conversion between binary and hexadecimal

- conversion methods and exercises

Computer numerical unit prefix

- Numbers can be represented in any base
 - □ Human: decimal (base 10, has 10 digits 0,1,...,9);
 - □ Computer: binary (base 2, has 2 digits, 0,1)
- □ Positional Notation: value of the ith digit d is d x Basei
- \square Bits are grouped and numbered 0, 1, 2, 3 ... from <u>right</u> to the <u>left</u>:
 - □ Byte: a group of 8 bits
 - □ Word: a group of 32 or 64 bit

□ Value of the 32-bit binary numbers =

$$(b_{31} \times 2^{31}) + (b_{30} \times 2^{30}) + ... + (b_1 \times 2^1) + (b_0 \times 2^0)$$

- □ Hexadecimal (base 16) numbers are commonly used
- ☐ To avoid reading and writing long binary numbers

Conversion to hexadecimal

□ Since base 16 is a power of 2, we can simply convert by replacing each group of four bits by a single hexadecimal digit, and vice versa

Example of hexadecimal-to-binary conversion:

- $\Box 0_{\text{hex}} 9_{\text{hex}}$ for $0000_2 1001_2$
- \Box a_{hex} f_{hex} for $1010_2 1111_2$
- □ i.e. 0000 1010 0000 0101 0000 1100 0000 0110₂
 - $= 0 a 0 5 0 c 0 6_{hex}$
 - = 0x0a050c06 # 0x to indicate it is a hexadecimal
 - = 168102918₁₀

- ☐ Binary to decimal:
 - □ Double and add method:
 - For each position *i* starting at the leftmost 1,
 - Double the sum, add bit i to the sum

Ex: 011010

- □ Successive divisions by 2:
 - Inverse of double and add
 - In each step the remainder of the division is the next bit of the sequence
- □ Remark:
 - □ useful powers of 2 to memorize

35	= 1 0 0 0 1 1
17	1
8	1
4	0
2	0///
1	0//
0	1 '
Quotient	Remainder

20	2^1	2^2	2^3	2^4	2^5	2^{6}	2^{7}	2^8	2 ⁹	2^{10}
1	2	4	8	16	32	64	128	256	512	1024

Computer programs

- the compilation process

Number bases

- the introduction of different bases

Conversion between binary and decimal

- conversion methods and exercises

Conversion between binary and hexadecimal

- conversion methods and exercises

Computer numerical unit prefix

■ We keep on dividing the decimal integer by 2 until the quotient is 0. The remainder at each step corresponds to a digit of the integer in base 2, from the Least Significant Digit (LSD) to the Most Significant Digit (MSD).

Converting positive binary integer to decimal

- □ The value represented by the i-th bit $\frac{d}{d}$ of a positive binary integer is in fact $\frac{d}{d} \times 2^i$. Note that the Least Significant bit is the 0-th bit.
- Take the integer $ABCD_{(2)}$ as an example, it effectively corresponds to: $ABCD_{(2)} = (Ax2^3) + (Bx2^2) + (Cx2^1) + (Dx2^0)$

2's power	21	2 ²	2 ³	24	2 ⁵	26	27	2 ⁸	2 9	210
value	2	4	8	16	32	64	128	256	512	1024

Question 1: Convert the positive integer $10\ 1001_{(2)}$ to the decimal format.

Computer programs

- the compilation process

Number bases

- the introduction of different bases

Conversion between binary and decimal

- conversion methods and exercises

Conversion between binary and hexadecimal

- conversion methods and exercises

Computer numerical unit prefix Exercises

- □ The binary number system is verbose in that even small numerical values could require long strings of bits to represent.
- ☐ Hexadecimal number system is a number system that has a base of 16 (instead of 2).
- □ Under the hexadecimal system, there are 16 possible values for each digit, as shown in the table.

Decimal value	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hexa- decimal digit	0	1	2	3	4	5	6	7	8	9	Α	В	C	О	ш	F

Converting binary number to hexadecimal

- We just group the binary number into groups of 4 bits, and then each group represents one digit of the corresponding hexadecimal number.
- The conversion can be made immediately by eye inspection.

Converting hexadecimal number to binary

- We just expand each digit of the hexadecimal number into 4 bits, and then the resulting bits from all the digits represent the corresponding binary number.
- □ Again, the conversion can be made immediately by eye inspection.

Computer programs

- the compilation process

Number bases

- the introduction of different bases

Conversion between binary and decimal

- conversion methods and exercises

Conversion between binary and hexadecimal

- conversion methods and exercises

Computer numerical unit prefix

Computer numerical unit prefix

- \Box For representing a number of bits or bytes in computers, the unit prefix Kilo is often used to represent 2¹⁰ (equal to 1024) not 1000.
- \Box For examples, 1 kilobytes = 1024 bytes and 1 kilobits = 1024 bits.
- ☐ Similarly, we have the following table for the common prefixes used for bytes and bits:

Unit prefix	Value
Kilo	2 ¹⁰ (or 1024)
Mega	2 ²⁰ (or 2 ¹⁰ Kilo)
Giga	2 ³⁰ (or 2 ¹⁰ Mega)
Tera	2 ⁴⁰ (or 2 ¹⁰ Giga)

Computer programs

- the compilation process

Number bases

- the introduction of different bases

Conversion between binary and decimal

- conversion methods and exercises

Conversion between binary and hexadecimal

- conversion methods and exercises

Computer numerical unit prefix

Question 2: Convert the positive integer 11 0100 $1001_{(2)}$ to the decimal format.

Question 3: Convert 1010 0011 1001 0111 $0100_{(2)}$ to the hexadecimal format.

Question 4: Convert B12A3F01₍₁₆₎ to the binary format.

- You have learnt:
 - □ the compilation process of computer programs into machine instructions.
 - the conversion between binary, decimal and hexadecimal numbers.
 - the computer numerical unit prefix.