A Numerical Evaluation of the Accuracy of Influence Maximization Algorithms

3rd International Workshop on MAISoN, Santa Clara

October 2, 2019

Hautahi Kingi

IMPAQ International

Minh Huynh

IMPAQ International

George Rochester

U.S. Food and Drug Administration

Li-An Daniel Wang

Sam Houston State University

Mike Trinh

IMPAQ International

Antonio Paredes

U.S. Food and Drug Administration

Tom Shafer

Elder Research

Aaron Heuser

IMPAQ International

Latest Paper Version: hautahi.com/work
Code: github.com/hautahi/IM-Evaluation

1. Introduction to Influence Maximization

- 1. Introduction to Influence Maximization
- 2. Approximate (1 1/e) Solutions
 - Greedy
 - Reverse Influence Sampling

- 1. Introduction to Influence Maximization
- 2. Approximate (1 1/e) Solutions
 - Greedy
 - Reverse Influence Sampling
- 3. Exact Solution

- 1. Introduction to Influence Maximization
- 2. Approximate (1 1/e) Solutions
 - Greedy
 - Reverse Influence Sampling
- 3. Exact Solution
- 4. Results

• Which nodes are most influential?

- Which nodes are most influential?
- Applications: Viral Marketing, Epidemiology, Fault Monitoring, Public Health

- Which nodes are most influential?
- Applications: Viral Marketing, Epidemiology, Fault Monitoring, Public Health
- Formal Primitives: Graph G=(V,E), Spread Function $\sigma(S)\mapsto \mathbb{R}$

- Which nodes are most influential?
- Applications: Viral Marketing, Epidemiology, Fault Monitoring, Public Health
- Formal Primitives: Graph G=(V,E), Spread Function $\sigma(S)\mapsto \mathbb{R}$
- Kempe et al. (2003) formulation:

$$\max_{S \subseteq V} \sigma(S)$$
 s.t. $|S| \le k$

 S_1

 S_2

$$\sigma(S_1)$$

$$\sigma(S_2)$$

$$\sigma(S_1)$$

$$\sigma(S_2)$$

$$\sigma(S_2)$$

A Brief History

Computationally Challenging

- 1. Size of domain is $\binom{n}{k}$
- 2. $\sigma(\cdot)$ estimated via expensive Monte Carlo

A Brief History

Computationally Challenging

- 1. Size of domain is $\binom{n}{k}$
- 2. $\sigma(\cdot)$ estimated via expensive Monte Carlo

Borgs et al. (2014)

Reverse Influence Sampling

A Brief History

Computationally Challenging

- 1. Size of domain is $\binom{n}{k}$
- 2. $\sigma(\cdot)$ estimated via expensive Monte Carlo

Greedy Solution

```
S, \max = \emptyset, 0
for 1: k
    for \boldsymbol{v} in \boldsymbol{V}\setminus \boldsymbol{S}
       if \sigma(S \cup v) > \max
           \max, \mathbf{v}^* = \sigma(S \cup v), v
       end if
    end for
    S = S \cup v^*
end for
```

```
S, \max = \emptyset, 0
for 1: k
    for \boldsymbol{v} in \boldsymbol{V}\setminus \boldsymbol{S}
       if \sigma(S \cup v) > \max
            \max_{\mathbf{v}} \mathbf{v}^* = \sigma(S \cup v), v
        end if
    end for
    S = S \cup v^*
end for
```

$$O(k \cdot n \cdot mc)$$

```
S, \max = \emptyset, 0
for 1: k
   for \boldsymbol{v} in \boldsymbol{V}\setminus \boldsymbol{S}
       if \sigma(S \cup v) > \max
           \max, \mathbf{v}^* = \sigma(S \cup v), v
       end if
    end for
    S = S \cup v^*
end for
```

$$O(k \cdot n \cdot mc)$$

 $\sigma(\cdot)$ sub-modular!

```
S, max = \emptyset, 0
for 1: k
   for v in V \setminus S
      if \sigma(S \cup v) > \max
         \max, \mathbf{v}^* = \sigma(S \cup v), v
      end if
   end for
   S = S \cup v^*
end for
```

$$O(k \cdot n \cdot mc)$$

 $\sigma(\cdot)$ sub-modular!

$$\sigma(S_{Greedy}) \ge \left(1 - \frac{1}{e} - \epsilon\right) \sigma(S_{OPT})$$

$$S$$
, max = \emptyset , 0
for 1 : k
for v in $V \setminus S$
if $\sigma(S \cup v) > \max$
 $\max_{} v^* = \sigma(S \cup v), v$
end if
end for
 $S = S \cup v^*$
end for

$$O(k \cdot n \cdot mc)$$

 $\sigma(\cdot)$ sub-modular!

$$\sigma(S_{Greedy}) \ge \left(1 - \frac{1}{e} - \epsilon\right)\sigma(S_{OPT})$$

submodularity

$$S$$
, max = \emptyset , 0
for $1: k$
for v in $V \setminus S$
if $\sigma(S \cup v) > \max$
 $\max_{} v^* = \sigma(S \cup v), v$
end if
end for
 $S = S \cup v^*$
end for

$$O(k \cdot n \cdot mc)$$

 $\sigma(\cdot)$ sub-modular!

$$\sigma(S_{Greedy}) \geq \left(1 - \frac{1}{e} - \epsilon\right) \sigma(S_{OPT})$$
submodularity
$$\sigma(\cdot) \text{ approximation}$$

Reverse Influence Sampling

Reverse Influence Sampling

- Large Collection of RRR sets: $\Re = \{R_1, ..., R_{\theta}\}$
- Fraction of RRR sets in \Re covered by $S: \mathcal{F}_{\Re}(S)$
- Lemma 1:

$$\sigma(S) = n \cdot \mathbb{E}(\mathcal{F}_{\mathfrak{R}}(S))$$

Reverse Influence Sampling

- Large Collection of RRR sets: $\Re = \{R_1, ..., R_{\theta}\}$
- Fraction of RRR sets in \Re covered by $S: \mathcal{F}_{\Re}(S)$
- Lemma 1:

$$\sigma(S) = n \cdot \mathbb{E}(\mathcal{F}_{\mathfrak{R}}(S))$$

• Lemma 2:

If
$$\theta > (8 + 2\epsilon)n \frac{l \log n + \log\binom{n}{k} + \log 2}{OPT \cdot \epsilon^2}$$
 then

$$|\sigma(S) - n \cdot \mathcal{F}_{\mathfrak{R}}(S)| < \frac{\epsilon}{2}OPT$$

Step 1: Generate many RRRSs $\Re = \{R_1, ..., R_{\theta}\}$

Step 2: Greedy Maximum Coverage

for **1**: *k*

for
$$oldsymbol{v}$$
 in $oldsymbol{V}\setminus oldsymbol{\mathcal{S}}$

if
$$\mathcal{F}_{\mathfrak{R}}(S \cup v) > \max$$

$$\max, v^* = \mathcal{F}_{\mathfrak{R}}(S \cup v), v$$

end if

end for

$$S = S \cup v^*$$

end for

Step 1: Generate many RRRSs

$$\mathfrak{R} = \{R_1, \dots, R_{\theta}\}$$

Step 2: Greedy Maximum Coverage

for **1**: *k*

for
$$\boldsymbol{v}$$
 in $\boldsymbol{V}\setminus \boldsymbol{S}$

if
$$\mathcal{F}_{\mathfrak{R}}(S \cup v) > \max$$

$$\max, v^* = \mathcal{F}_{\mathfrak{R}}(S \cup v), v$$

end if

end for

$$S = S \cup v^*$$

end for

$$O(k \cdot n + \theta)$$

Step 1: Generate many RRRSs

$$\mathfrak{R} = \{R_1, \dots, R_{\theta}\}$$

Step 2: Greedy Maximum Coverage

for 1: *k*

for
$$\boldsymbol{v}$$
 in $\boldsymbol{V}\setminus \boldsymbol{S}$

if
$$\mathcal{F}_{\mathfrak{R}}(S \cup v) > \max$$

$$\max, v^* = \mathcal{F}_{\mathfrak{R}}(S \cup v), v$$

end if

end for

$$S = S \cup v^*$$

end for

$$O(k \cdot n + \theta)$$

 $\mathcal{F}_{\mathfrak{R}}(\cdot)$ sub-modular!

Step 1: Generate many RRRSs

$$\mathfrak{R} = \{R_1, \dots, R_{\theta}\}$$

Step 2: Greedy Maximum Coverage

for 1: *k*

for \boldsymbol{v} in $\boldsymbol{V}\setminus \boldsymbol{S}$

if $\mathcal{F}_{\mathfrak{R}}(S \cup v) > \max$

 $\max, v^* = \mathcal{F}_{\mathfrak{R}}(S \cup v), v$

end if

end for

$$S = S \cup v^*$$

end for

$$O(k \cdot n + \theta)$$

 $\mathcal{F}_{\mathfrak{R}}(\cdot)$ sub-modular!

$$\sigma(S_{RIS}) \ge \left(1 - \frac{1}{e} - \epsilon\right) \sigma(S_{OPT})$$

RIS - Exact

RIS-Exact

Step 1: Generate many RRRSs

$$\mathfrak{R} = \{R_1, \dots, R_{\theta}\}$$

Step 2: Greedy Maximum Coverage

for **1**: *k*

for
$$\boldsymbol{v}$$
 in $\boldsymbol{V}\setminus \boldsymbol{S}$

if
$$\mathcal{F}_{\mathfrak{R}}(S \cup v) > \max$$

$$\max, v^* = \mathcal{F}_{\mathfrak{R}}(S \cup v), v$$

end if

end for

$$S = S \cup v^*$$

end for

RIS-Exact

Step 1: Generate many RRRSs

$$\mathfrak{R} = \{R_1, \dots, R_{\theta}\}$$

Step 2: Greedy Maximum Coverage

for 1: *k*

for
$$\boldsymbol{v}$$
 in $\boldsymbol{V}\setminus \boldsymbol{S}$

if
$$\mathcal{F}_{\mathfrak{R}}(S \cup v) > \max$$

$$\max, v^* = \mathcal{F}_{\mathfrak{R}}(S \cup v), v$$

end if

end for

$$S = S \cup v^*$$

end for

$$\mathfrak{R} = \{R_1, \dots, R_{\theta}\}$$

Step 2: Maximum Coverage

for
$$s$$
 in $\binom{n}{k}$ candidates

if
$$\mathcal{F}_{\mathfrak{R}}(s) > \max$$

$$\max, S = \mathcal{F}_{\Re}(s), v$$

end if

end for

$$\sigma(S_{RIS-E})$$

$$\sigma(S_{RIS-E}) \ge n \mathcal{F}(S_{RIS-E}) - \frac{\epsilon}{2} \text{OPT}$$

[Lemma]

$$\sigma(S_{RIS-E}) \ge n \mathcal{F}(S_{RIS-E}) - \frac{\epsilon}{2} \text{OPT}$$
$$\ge n \mathcal{F}(S_{OPT}) - \frac{\epsilon}{2} \text{OPT}$$

[Lemma]

[definition of S_{RIS-E}]

$$\sigma(S_{RIS-E}) \ge n \,\mathcal{F}(S_{RIS-E}) - \frac{\epsilon}{2} \,\text{OPT}$$

$$\ge n \,\mathcal{F}(S_{OPT}) - \frac{\epsilon}{2} \,\text{OPT}$$

$$\ge \sigma(S_{OPT}) - \frac{\epsilon}{2} \,\text{OPT} - \frac{\epsilon}{2} \,\text{OPT}$$

[Lemma]

[definition of S_{RIS-E}]

[Lemma]

$$\sigma(S_{RIS-E}) \ge n \, \mathcal{F}(S_{RIS-E}) - \frac{\epsilon}{2} \, \text{OPT}$$

$$\ge n \, \mathcal{F}(S_{OPT}) - \frac{\epsilon}{2} \, \text{OPT}$$

$$\ge \sigma(S_{OPT}) - \frac{\epsilon}{2} \, \text{OPT} - \frac{\epsilon}{2} \, \text{OPT}$$

$$\ge (1 - \epsilon) \, OPT$$

[Lemma] $[definition of S_{RIS-E}]$ [Lemma]

Experiments

GPU Implementation

• AWS EC2 Deep Learning Base AMI Linux Version 19.1 Instance - Nividia Tesla K80

GPU Implementation

- AWS EC2 Deep Learning Base AMI Linux Version 19.1 Instance Nividia Tesla K80
- Python Numba

GPU Implementation

- AWS EC2 Deep Learning Base AMI Linux Version 19.1 Instance Nividia Tesla K80
- Python Numba
- Two distributed objects:
 - 1. $\Re = \{R_1, ..., R_\theta\}$ coded as $\theta \times n$ array with $\Re_{ij} = TRUE$ if node j is in R_i .
 - 2. C coded as $1 \times \binom{n}{k}$ array with C_i representing the number of sets in \Re covered by candidate seed set i.

Experiment Parameters

+ 3 Network

Types

Erdos-Renyi, Watts-Strogatz,
 Scale-Free

+ 6-7 PropagationProbabilities

• $p \in [0.01, 0.7]$

+ 29 ParameterConfigurations

• $q \in [0.1,0.9], \beta \in [0,0.9],$ $\gamma \in [1.5,4]$

Network Size 100,Seed Set Size 4

+ 10 Graph
Instances

+ 1,880 TotalSimulations

- 180 seconds each
- 4 days total

Approximations are near optimal

$$\delta = \frac{\sigma(S_{RIS})}{\sigma(S_{RIS-E})}$$

Weak positive relationship between network density and accuracy

Recap

- 1. RIS-Exact exploits Reverse Influence Sampling to make exact solutions feasible.
- 2. Top approximation algorithms are almost perfect.
- 3. Solution accuracy does not depend on network structure.

Thanks

Appendix

References

Kempe, Kleinberg & Tardos (2003). Maximizing the spread of influence through a social network. In *Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining* (p. 137-146). ACM.

Borgs, Brautbar, Chayes & Lucier (2014). Maximizing social influence in nearly optimal time. In *Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms* (p. 946-957). Society for Industrial and Applied Mathematics.

Li, Smith, Dinh & Thai (2017). Why approximate when you can get the exact? optimal targeted viral marketing at scale. In *IEEE INFOCOM 2017-IEEE Conference on Computer Communications*. IEEE, 1-9

RIS Proof Sketch

$$\sigma(S_{RIS}) \ge n \, \mathcal{F}(S_{RIS}) - \frac{\epsilon}{2} \, \text{OPT} \qquad \text{[Lemma]}$$

$$\ge \left(1 - \frac{1}{e}\right) n \, \mathcal{F}(S^*) - \frac{\epsilon}{2} \, \text{OPT} \qquad \text{[Greedy States of the series of th$$

[Lemma]

[Greedy submodular error]

[definition of S^*]