كوانتم ميكانسيات

حنالد حنان يوسفزني

باسے کامیٹ،اسیام آباد khalidyousafzai@comsats.edu.pk

ارستمبر٢٠٢١

عسنوان

vii	کی کتاب کادیب حب	بـرى <i>پې</i>	مسي
1	سل موج		1
1	ىشەروۋىگرمساوا ت	1.1	
۲	شمساریاتی مفهوم	1.5	
۵	احستال کی در	1,10	
۵	البقراء فللمعتبيرات		
9	۱٫۳٫۲ استمراری متغییرات		
11	معمول زنی	۱.۴	
10	معيار حسركت	1.0	
11	اصول عـــدم يقينيت	۲.۱	
20	ر تائع وقبت سشر ودُ نگر مساوات	غب	۲
20		۲.1	
۳۱	لامتنابی حپور کنوال	۲.۲	
۴.	بارمونی مـــر تعش	۲.۳	
۲	، ۲٫۳۱ الجبرانی ترکیب ،		
۵۱	• " • • • • • • • • • • • • • • • • • •		
۵۹		۲۴	
,	دا التربي عمليا من	•	
۸۸		۲.۵	
۸۲	۲.۵.۱ مقید حسالات اور بخف راوحسالات ۲.۵.۱ مقید حسالات ۲.۵.۱ مقید مسالات ۲.۵.۱ مقید د مساله در مقال کنده و مسال		
۷٠	۲.۵.۲ و کیلٹ تف عسل کوال		
۷٩	متنائی حیکور کنوال	۲.۲	
۹۳	بدوضو ابط	ق رہ	
911	لدو سوابط لمب را به فعن المسابق	ا س ا س	,
91 9∠	، ببرت نفت ۳.۱.۱ و تابل معيلوم مبيالات	' .'	
	l E		
99	ہر مشی عب امسل کے است بیازی تقب عسل بریں یہ	٣.٢	

iv

99	٣.٢٠١ غني رمسلل طيف		
1+1	۳.۲ <u>.۲</u> استمراری طیف		
۱۰۴	متعمم شمب رياتي مفهوم	۳,۳	
۱•۸	اصول عب م يقينية	۳.۳	
۱۰۸	۱٫۴۰۱ و اصول عب م یقینیت کا ثبوت		
111	۳٬۴۰۲ کم سے کم عب میں تعینیت کاموجی اکٹھ		
111	۳,۴۰۳ توانائی ووقت اصول عب م بقینیت		
114	. دراک عبدالقت	۳۵	
	•	•	
اسا	بادی کوانٹم میکانسیات	تنين ابعب	۴
اسا	کروی محب د دم سین مساوات سشروژ نگر	۱.۳	
١٣٣	ا.ا. ۴ ملیحبه گیمتغییرات		
۳۳	۲.۱.۲ زاویائی مساوات		
114	۱٫۳۰ ردای مساوات		
٣	ہائے ڈروجن جوہر	۲.۲	
١٣٣	۲.۲.۱ ردای تغناعسل موج		
۱۵۳	۲.۲.۲ م بائسیڈرو جن کاطیف		
104	زاویائی معیار حسر کت	۳.۳	
102	۱۳۰۱ استعازی افتدار		
175 170	۳.۳.۲ استیازی تفساعسلات حیکر	۸ ۲۰	
	حب کر	17.17	
127 127	۱.۲.۶ مفت عنی معیدال معیار ایک استی تا ایک است مران		
12 (۱۰۰۰ راویان نعیار محارمی و مجلوعی		
149	ۆرا <u>ت</u>	متماثل	۵
179	دوزراتی نظام	۵.۱	
141	ا.ا.۵ بوزان اور فنسر میون		
۱۷۴	۵.۱.۲ قوت مبادله		
144		۵.۲	
۱۷۸	۵٫۲٫۱ میلیم		
14	۵.۲.۲ ووری حبدول		
IAT	لمهوسس اجب م	۵.۳	
١٨٣	ا.۵٫۳ آزادالپیشرون گیس		
YAI	۵٫۳٫۲ سخ <u>ت</u> پی		
191	كوانثم ثمسارياتي ميكانسيات	۵.۴	
195	۵٬۴۰۱ ایک مثال		
190	اع وقت نظے رہے اضطے راہے	ۇ	u
190	ئان وقت تقسیر سے استسراب غسیر انحطاطی نظس رہے اضطسراب	سيرة ۱۱	٦
190	سیراحطا فی مستری اطلاع به برای ۱۱۰۰ میستران با		

ع-نوان

194	اول رتی نظـــربــه	۲.۱.۲		
۲٠٠	دوم رتی توانائسیال	٧.١.٣		
۲+۱	سري اضطسراب	انحطاطى نظب	۲.۲	
۲•۱	دوپڑ تا انحطاط	4.4.1		
۲+۵	بلت در تی انحطاط	۲.۲.۲		
۲+9	ن کامهسین پیافت میان بیان میان بیان بیان میان بیان بیان بیان بیان بیان بیان بیان ب	ہائ <u>ٹ</u> ڈروجر	٧.٣	
۲۱۰	اصْبِ فَنَيْتَى تَصْحِيجِ	4.1.1		
۲۱۳	حپکرومدارربط	۲,۳,۲		
11		زيمسان اث	٣.٣	
11	کمسزورمپدان زیمسان اثریسی در میشد این در میشد این در میشد این از میشد در میشد این در میشد این در میشد در میشد در میشد و می	۱.۳.۱		
119	ط اقت قور مب د ان زیم ان اثر	۲.۳.۲		
۲۲۰	درمیانی طباقت میدان زیمیان اثر بر	۳.۳.۳		
771	نہایت مہین بٹوارہ	٣.٣.٣		
١٣١		ى اصول	تغب	
۲۳۱	_	4.*	۔ 1 کا	_
		•	•	
۲۳۳	لوان تخمين	رامب رزوبر	ونزلوك	۸
۳۳۴	نط ے	کلا سیکی خ	۸.۱	
۲۳۸		ىسىرتگزنى	۸.۲	
	1.5	(* *		
rm9	اضط_راب_			9
٠٩٢	٠٠٠	دو مصطحی نظیہ	9.1	
٠٩٢	مفط رب نظام	9.1.1		
٣٣	تابع وقت نظسرے اضطسراب	9.1.5		
د۳۵	سائن نمسا ضطسراب	9.1.1		
۷۴۷	شنسراح اورانجذاب	اشعساعی ا	9.5	
۷۴۷	برقت طیسی امواج	9.7.1		
۲۴۷	انجزاب، تحسرق شده احشراج اورخود باخود احشراج	9.7.7		
449	غب رأت کی اضط سراب میسید است کی اضط سراب میسید است کی اضط سرا ب	9.7.1		
101	ئىر انق		9.10	
101	آننسنائن A اور B عبددی سسر	9.1.1		
121	هیجبان حسال کاعسر میں جسیات میں میں میں میں میں ہے۔ توریق	9.77.7		
۵۵۲	قواعب دانتخناب	9,17,17		
	***	ر ے ن اگزر	, >	,
242 242				1+
740	حرارت ناگزر		14.1	
Γ1ω ۲4∠		1•.1.1		
' 1∠ '∠1	علله محرارت مع روه بوت		1• ٢	

	(\$ % ?	
121	۱۰٫۲۰۱ گرنگی عمسل	
۲۷۲	۱۰.۲.۲ هندی پیت	
144	۳.۲.۰۱ اېارونوويوټم اثر	
141	4	اا جھسرا
141	تعار ن	
r_1	ارا السبكي نظسرب بخمسراو	"."
۲۷۳	۱۱.۱۲ کوانفم نظسری جهسراو	
۲۷۴	حبزوي موج تحبزب	11.1
۲۷۴	ا.١١.٢ اصول وضوابط	
122	۱۱٫۲٫۲ لاماغمسل	
r ∠9	يتتقلات حيط	11 "
		•
٢٨٢	بارن تخسين	11.6
۲۸۲	۱٫۴۱ مساوات مشروڈ گر کی تکملی روپ	
٢٨٦	۱۱٫۴۰۲ پارن تخسین اوّل	
19+	۳.۶۰ شلل بارن	
191		۱۲ کیس نو
290	آتنشائن يو دُلسكيوروزن تفنياد	11.1
190	مسئلة بْلُ تَ	11.1
799	مسئله کلمیه بر	11.11
	3 	•
۳.,		14.6
۳+۱	كوانثم زينوتفن د	11.0
۳+۵		جوابا <u>۔۔</u>
		:
۳• ۷	l,	ا خطى الجبر
۳۰ ۷	سمتبات	1.1
٣٠٧	اندرونی ضرب	۲۱
m.∠	تالب	۳.۱
m.2		•
	شبد کی اس س	۱.۳
m•∠	امت یازی تف عسلات اور امت یازی افت دار	۵.۱
m•∠	ہر مثی تبار کے	1.1
٣٠9		منسرہنگ_

میسری پہلی کتاب کادیباحیہ

گزشتہ چند برسوں سے حکومت پاکستان اعسلیٰ تعسیم کی طسر ف توجبہ دے رہی ہے جس سے ملک کی تاریخ مسیں پہلے مصر تب اور پہلی مسرتب اعسلیٰ تعسیمی اداروں مسیں تحقیق کار جمان پیدا ہوا ہے۔ امید کی حباتی ہے کہ بیہ سلمہ حباری رہے گا۔ پاکستان مسیں اعلیٰ تعسیم کانظام انگریزی زبان مسیں رائج ہے۔ دنیا مسیں تحقیق کام کا بیشتر ھے۔ انگریزی زبان مسیں ہی چھپتا ہے۔ انگریزی زبان مسیں ہم موضوع پر لاتعہداد کتابیں بائی حباتی ہیں جن سے طلب وطالب سے استفادہ کرتے ہیں۔

ہمارے ملک مسیں طلب وط الب سے کی ایک بہت بڑی تعبد ادبنیا دی تعسیم اردوزبان مسیں حساس کرتی ہے۔ ان کے لئے انگریزی زبان مسیں موجود مواد سے استفادہ کرنا تو ایک طسرون، انگریزی زبان ازخود ایک رکاوٹ کے طور پر ان کے سامنے آتی ہے۔ سے طلب وط الب سے ذبین ہونے کے باوجود آگے بڑھنے اور قوم وملک کی بھسر پور خسد مت کرنے کے وقت بل نہیں درکار ہیں۔ ہم نے قوی سطح پر ایسا کرنے کی وقت بل نہیں درکار ہیں۔ ہم نے قوی سطح پر ایسا کرنے کی کوئی خیاطب وط الب سے کواردوزبان مسیں نصاب کی انچھی کتابیں درکار ہیں۔ ہم نے قوی سطح پر ایسا کرنے کی کوئی خیاطب وط الب کوئی درکار ہیں۔ کوئی خیال کوئی کوئی سے کواردوزبان مسیں نصاب کی انچھی کتابیں درکار ہیں۔ ہم نے قوی سطح پر ایسا کرنے کی کوئی حضا طب خواہ کو حشش نہیں گی۔

مسیں برسوں تک اسس صورت حسال کی وحب سے پریشانی کا شکار رہا۔ پچھ کرنے کی نیت رکھنے کے باوجود پچھ نے کر سکتا تعتار میسرے لئے اردومسیں ایک صفحہ بھی لکھنا ناممسکن تعتار آحنسر کار ایک دن مسیں نے اپنی اسس کمسزوری کو کتاب نے لکھنے کاجواز بنانے سے انکار کر دیااوریوں ہے کتاب وجود مسیں آئی۔

سے کتاب اردوزبان مسیں تعسیم حسام کرنے والے طلب وطبالب ہے گئے نہایت آسان اردومسیں کھی گئے ہے۔ کوشش کی گئے ہے کہ اسکول کی سطیر نصاب مسین استعال ہونے والے تکنیکی الفاظ بی استعال کئے حبائیں۔ جہاں الیے الفاظ موجو دستہ تھے وہال روز مسین استعال ہونے والے الفاظ چنے گئے۔ تکنیکی الفاظ کی چن ٹی کے وقت اسس بات کا دبان رکھیا گیا کہ ان کا استعال دیگر مضامین مسین مجملی ہو۔

کتاب مسین مین الاقوای نظام اکائی استعال کی گئے ہے۔ اہم متغیبرات کی عسلامتیں وہی رکھی گئی ہیں جو موجو دہ نظام تعلیم کی نفسانی کتابوں مسین رائع ہیں۔ یوں اردو مسین کھی اسس کتاب اور انگریزی مسین ای مضمون پر کھی کتاب پڑھنے والے طلب و طالب سے کوالے متھ کام کرنے مسین د شواری نہیں ہوگی۔

امید کی حباتی ہے کہ سے کتاب ایک ون حسالفت اردو زبان مسیں انجنیئر نگ کی نصب بی کتاب کے طور پر استعال کی حبائے گا۔ اردوزبان مسیں برقی انجنیئر نگ کی کلسل نصاب کی طسر ف سے پہلافت دم ہے۔

اسس کتاب کے پڑھنے والوں سے گزار شس کی حباتی ہے کہ اسے زیادہ سے زیادہ طلب وط الب سے تک پہنچ نے مسیں مدد دیں اور انہیں جہاں اسس کتاب مسیں عضلطی نظر آئے وہ اسس کی نشاندہی مسیری ای-مسیل پر کریں۔مسیں ان کا نہایت سشکر گزار ہوں گا۔

اس کتاب مسین تمام غلطیاں مجھ ہے ہی سے زد ہوئی ہیں البت انہیں درست کرنے مسین بہت لوگوں کا ہاتھ ہے۔ مسین ان سب کا شکریہ اداکر تا ہوں۔ یہ سلمار ابھی حباری ہے اور مکسل ہونے پر ان حضرات کے تاثرات پر ایران حضرات کے تاثرات پر ان حضرات کے تاثرات پر ان حضرات کے تاثرات پر ان حضرات کے تاثرات کے تاثرات کے بیاں شامسل کئے دیا تیں گے۔

مسیں بہاں کامسیٹ لو نیورسٹی اور ہائر ایجو کیشن کمیشن کاسٹکریہ ادا کرنا حپاہت ہوں جن کی وحبہ سے الی سسر گرمیال مسکن ہوئیں۔

> حنالد حنان يوسفز كي 28 اكتوبر 201₁

باب

تین ابعسادی کوانٹم میکانسیات

۱.۴ کروی محید دمسیں مساوات مشیروڈنگر

تین ابعاد تک توسیع باآسانی کی حباستی ہے۔مساوات مشرود گر درج ذیل کہتی ہے

$$i\hbar \frac{\mathrm{d}\Psi}{\mathrm{d}t} = H\Psi;$$

معیاری طریقے کارے اطال x کے ساتھ y اور z پر کرکے:

$$(r.r) p_x \to \frac{\hbar}{i} \frac{\partial}{\partial x}, \quad p_y \to \frac{\hbar}{i} \frac{\partial}{\partial y}, \quad p_z \to \frac{\hbar}{i} \frac{\partial}{\partial z}$$

میملٹنی اعبام ل H کو کلاسیکی توانائی

يوں درج ذيل ہو گا

$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi + V \Psi$$

(r.m)

۔ اجہاں کلاسیکی مشبود اور عساسل مسین مسنرق کرنا وشوار ہو، وہال مسین عسامسل پر ''ٹوپی''کانشان بنتا تا ہوں۔ اسس باب مسین ایسا کوئی موقع نہسین بایاجہاتا جہاں ان کی پہچان مشکل ہوالمہذ ایہاں سے عساملین پر ''ٹوپی''کانشان نہسین ڈالاجباے گا۔

جہاں

$$\nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

کار تیسی محدد مسیں لایلا سی اسے۔

$$\int \left|\Psi\right|^2 \mathrm{d}^3\, r = 1$$

جب ان تکمل کو پوری فصٹ پرلیٹ اہو گا۔ اگر مخفی توانائی وقت کی تابع ہے ہوتب سائن حسالات کا مکسل سلسایایا حبائے گا:

$$\Psi_n(\mathbf{r},t) = \psi_n(\mathbf{r})e^{-iE_nt/\hbar}$$

جہاں فصن ائی تف^عل موج ہل عنیبر تابع وقت سشر وڈ نگر مساوات

$$-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi = E\psi$$

کو مطمئن کر تاہے۔ تابع وقت شہروڈ نگر مساوات کاعصومی حسل درج ذیل ہوگا۔

$$\Psi({m r},t) = \sum c_n \psi_n({m r}) e^{-iE_n t/\hbar}$$

جباں متقلات c_n ہمیشہ کی طسرح ابت دائی تف عسل موج $\Psi(r,0)$ سے حسامسل کیے حبائیں گے۔ (اگر مخفیہ استمراریہ عسالات دیتی ہوتب مساوات P_n مسیں مجسوعہ کی بجبائے تکمل ہوگا۔)

بوال اسم:

ا. عاملین r اور p کے تب م باضال مقلبیت رشتے r: $[x,p_y]$ ، $[x,p_y]$ ، [x,y] ، وغیبرہ وغیبرہ وغیبرہ وغیبرہ کریں۔

جواب:

$$(r_i, p_j] = -[p_i, r_j] = i\hbar\delta_{ij}, \quad [r_i, r_j] = [p_i, p_j] = 0$$
 - روز $r_z = z$ اور $z = y$ ، $r_x = x$ جہاں اختار ہے ہو تا ہو کہ کو فائل ہر کرتے ہیں جب کہ جہاں اختار ہے ہو تا ہو

Laplacian

continuum

canonical commutation relations

ب. تین ابعاد کے لیے مسئلہ اہر نفسٹ کی تصدیق کریں:

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle \boldsymbol{p}\rangle = \langle -\nabla V\rangle \quad \text{if} \quad \frac{\mathrm{d}}{\mathrm{d}t}\langle \boldsymbol{r}\rangle = \frac{1}{m}\langle \boldsymbol{p}\rangle$$

(ان مسیں سے ہرایک در حقیقت تین مساوات کو ظاہر کرتی ہے۔ ایک مساوات ایک حبزوکے لیے ہوگا۔) اٹ ارہ: پہلے تصدیق کرلیں کہ مساوات 71.3 تین العاد کے لیے بھی کارآ مدہے۔

ج. مسزنبرگ عدم يقينيت كے اصول كو تين ابعاد كے ليے سيان كريں۔

جواب:

$$\sigma_x \sigma_{p_x} \geq rac{\hbar}{2}, \quad \sigma_y \sigma_{p_y} \geq rac{\hbar}{2}, \quad \sigma_z \sigma_{p_z} \geq rac{\hbar}{2}$$

تانهم (مشلاً) $\sigma_{x}\sigma_{p_{y}}$ پر کوئی پاست دی عسائد نهسین ہوتی۔

ا.ا. ۴ علیجی د گی متغییرات

عسوماً مخفیہ صرف مبداے مناصلہ کا تف عسل ہو گا۔ ایک صورت مسیں کروکھے محمدہ (۲,θ,φ) کا استعال بہتر ثابت ہوگا(شکل 4۔1)۔ کروی محسدہ مسین لاپلائ درج ذیل روپ اختیار کرتا ہے۔

$$(\textit{r.ir}) \qquad \nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \left(\frac{\partial^2}{\partial \phi^2} \right)$$

یوں کروی محید دمسین تابع وقی شسروڈ نگر مساوات درج ذیل ہو گی۔

$$(\text{r.ir}) \quad -\frac{\hbar^2}{2m} \Big[\frac{1}{r^2} \frac{\partial}{\partial r} \Big(r^2 \frac{\partial \psi}{\partial r} \Big) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \Big(\sin \theta \frac{\partial \psi}{\partial \theta} \Big) + \frac{1}{r^2 \sin^2 \theta} \Big(\frac{\partial^2 \psi}{\partial \phi^2} \Big) \Big] \\ + V \psi = E \psi$$

ہم ایسے حسل کی تلاسش مسیں ہیں جن کو حساصل ضر ب کی صور ہے۔ مسیں علیحہ دہ علیحہ دہ لکھناممسکن ہو:

$$\psi(r,\theta,\phi) = R(r)Y(\theta,\phi)$$

اسس کومساوات ۱۴۰۱۴مسیں پر کرکے

$$-\frac{\hbar^2}{2m} \left[\frac{Y}{r^2} \frac{\mathrm{d}}{\mathrm{d}r} \left(r^2 \frac{\mathrm{d}R}{\mathrm{d}r} \right) + \frac{R}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial Y}{\partial \theta} \right) + \frac{R}{r^2 \sin^2 \theta} \frac{\partial^2 Y}{\partial \phi^2} \right] + VRY = ERY$$

spherical coordinates^a

دونوں اطبران کو $RY = \overline{x}$ میرکہ $-2mr^2/\hbar^2$ سے ضرب دیتے ہیں۔

$$\left\{ \frac{1}{R} \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) - \frac{2mr^2}{\hbar^2} [V(r) - E] \right\}$$
$$+ \frac{1}{Y} \left\{ \frac{1}{\sin \theta} \left(\sin \theta \frac{\partial Y}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 Y}{\partial \phi^2} \right\} = 0$$

$$\frac{1}{R}\frac{d}{dr}\left(r^2\frac{\mathrm{d}R}{\mathrm{d}r}\right) - \frac{2mr^2}{\hbar^2}[V(r) - E] = l(l+1)$$

$$\frac{1}{Y}\Big\{\frac{1}{\sin\theta}\Big(\sin\theta\frac{\partial Y}{\partial\theta}\Big)+\frac{1}{\sin^2\theta}\frac{\partial^2 Y}{\partial\phi^2}\Big\}=-l(l+1)$$

سوال ۴.۲: کارتیسی محدد مسین علیحب گی متغیرات استعال کرتے ہوئے لامت ناہی مسر بعی کنوال (یاڈ ب مسین ایک زرہ):

$$V(x,y,z) = egin{cases} 0 & 0 & 0 & 0 & 0 \\ \infty & 0 & \infty & \infty & 0 \end{cases}$$
 ویگر صورت کورت کرمورت کارگری کار

حسل کریں۔

ا. ساكن حسالات اوران كى مطابقتى توانائسيال دريافت كرين-

ب. بڑھتی توانائی کے لیے ظے انفسرادی توانائیوں کو E3 ، E2 ، E3 ، وغیسرہ، وغیسرہ سے ظہر کرکے E1 تا E6 تلاش کریں۔ بیسدی صورت کریں۔ ان کی انحطاطیت (لیتی ایک بی توانائی کے مختلف صلوں کی تعسداد) معسلوم کریں۔ بیسدہ: یک بیسدی صورت مسین انحطاطی مقید حالات نہیں پائے حباتے ہیں (سوال 45.2)، تاہم تین ابعدادی صورت مسین سے کمشرت سے کے حباتے ہیں۔

ج. توانائی E₁₄ کی انحطاطیت کیا ہے اور سے صورت کول دلچسپ ہے؟

۲٫۱٫۴ زاومائی مساوات

 $Y \sin^2 \theta$ کے تابعیت تعلین کرتی ہے۔ اسس کو $Y \sin^2 \theta$ کے خرب دے کر درج زیل حساسل ہوگا۔

$$\sin\theta\frac{\partial}{\partial\theta}\Big(\sin\theta\frac{\partial Y}{\partial\theta}\Big)+\frac{\partial^2 Y}{\partial\phi^2}=-l(l+1)Y\sin^2\theta$$

'الیاکرنے ہے ہم عب ومیت نہیں کوتے ہیں، چونکہ بیباں 1 کوئی بھی محنطوط عبد دہوسکتا ہے۔ بعب دمسین ہم دیکھسیں گے کہ 1 کولاز مأعب درصح سے ہونا ہوگا۔ ای نتیج ہوئی مسین رکھتے ہوئے مسین نے علیجہ لگی مستقل کواسس مجیب روپ مسین کلھا ہے۔ ہو سکتا ہے آپ اسس مساوات کو پہچانے ہوں۔ یہ کلاسیکی برقی حسر کیات میں مساوات الپلاسس کے حسل مسیں پائی حباقی ہے۔ ہمیث کی طسر ح ہم علیجہ گی متغیرات:

$$(\mathbf{r}.\mathbf{I}\mathbf{q})$$
 $Y(heta,oldsymbol{\phi})=\Theta(heta)\Phi(oldsymbol{\phi})$

 Θ ستعال کرکے دیکھنا حیابیں گے۔اسس کو پر کرکے Θ سے تقسیم کر کہ درج ذیل حساس ہوگا۔

$$\left\{\frac{1}{\Theta}\left[\sin\theta\frac{\mathrm{d}}{\mathrm{d}\theta}\left(\sin\theta\frac{\mathrm{d}\Theta}{\mathrm{d}\theta}\right)\right] + l(l+1)\sin^2\theta\right\} + \frac{1}{\Phi}\frac{\mathrm{d}^2\Phi}{\mathrm{d}\phi^2} = 0$$

پہلا جبزو صرف θ کانف عسل ہے، جبکہ دوسراصرف φ کانف عسل ہے، المبذا ہرایک حبزوایک مستقل ہوگا۔ اسس مسرت ہم علیحہ کی مستقل عمل علی سے ہیں۔

$$(r.r.) \qquad \frac{1}{\Theta} \left[\sin \theta \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin \theta \frac{\mathrm{d}\Theta}{\mathrm{d}\theta} \right) \right] + l(l+1) \sin^2 \theta = m^2$$

$$\frac{1}{\Phi}\frac{\mathrm{d}^2\,\Phi}{\mathrm{d}\phi^2} = -m^2$$

متغیر φ کی ماوات زیادہ آسان ہے۔

$$\frac{\mathrm{d}^2\,\Phi}{\mathrm{d}\phi^2} = -m^2\Phi \implies \Phi(\phi) = e^{im\phi}$$

(r.rr)
$$\Phi(\phi+2\pi)=\Phi(\phi)$$

ورسرے لفظوں مسیں m=1 یا $e^{im(\phi+2\pi)}=e^{im\phi}$ یا $e^{2\pi im}=1$ الزمانف در صحیح ہوگا۔ $m=0,\pm 1,\pm 2,\cdots$

سے میں ہم عسومیت نہیں کوتے ہیں، چونکہ m کوئی بھی محسلوط عسد دیو سکتا ہے؛ اگر حیب ہم حبلد دیکھیں گے کہ m کو عسد دصحیح ہونا ہوگا۔ انتہاہ: اب حسر ن m دو مختلف چینزوں، کیت اور علیمہ گی مستقل، کو ظاہر کر رہاہے۔ امید ہے کہ آپ کو درست منتی حبانے مسیں مشکل در چیش نہیں ہوگی۔

3.4 کی قیمت کے بین معصوم مشیرط اتن معصوم نہیں ہے۔ یاد رہے کہ m کی قیمت سے قطع نظسر، احستال کثافت $(|\Phi|^2)$ کی سے قبی ہے۔ ہم حصہ 3.4 مسین ایک فیلنے طسریقے ہے۔ زورہ ولسیل ہیتش کر کے m پر مسلط شیرط حساص کر ہیں گے۔

$$P_0 = 1$$
 $P_1 = x$ $P_2 = \frac{1}{2}(3x^2 - 1)$ $P_3 = \frac{1}{8}(35x^4 - 30x^2 + 3)$ $P_5 = \frac{1}{8}(63x^5 - 70x^3 + 15x)$

 θ

$$\sin\theta\frac{\mathrm{d}}{\mathrm{d}\theta}\Big(\sin\theta\frac{\mathrm{d}\Theta}{\mathrm{d}\theta}\Big) + [l(l+1)\sin^2\theta - m^2]\Theta = 0$$

اتنی سادہ نہیں ہے۔اسس کاحسل درج ذیل ہے

$$\Theta(\theta) = AP_l^m(\cos\theta)$$

جب P_l^m شریک لیژانڈر تفاعل P_l^m ہے جس کی تعسریف درج ذیل ہے

(r.r₂)
$$P_l^m(x) \equiv (1 - x^2)^{|m|/2} \left(\frac{d}{dx}\right)^{|m|} P_l(x)$$

اور I ویں لیڑانڈر کشیدر کنی کو $P_{I}(x)$ ظی ہر کر تاہے $P_{I}(x)$ کا تعدیف کلیے روڈریکلیے $P_{I}(x)$

$$P_l(x) \equiv \frac{1}{2^l l!} \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^l (x^2 - 1)^l$$

دیت ہے۔ مثال کے طور پر درج ذیل ہو نگے۔

$$P_0(x) = 1$$
, $P_1(x) = \frac{1}{2} \frac{d}{dx} (x^2 - 1) = x$,
 $P_2(x) = \frac{1}{4 \cdot 2} (\frac{d}{dx})^2 (x^2 - 1)^2 = \frac{1}{2} (3x^2 - 1)$

حبدول ۲۰۱۱ مسیں ابت دائی چند لیژانڈر کشیر رکنیاں پیش کی گئی ہیں۔ جیسا کہ نام می ظاہر ہے، $P_{I}(x)$ متخیر x کی

associated Legendre function

اوھیان رہے کہ $P_l^{-m}=P_l^m$ ہوگا۔

Rodrigues formula"

 $P_l^m(x)$ ورجبہ l کشیسرر کن ہے، اور l کی قیمت طے کرتی ہے کہ آیا ہے۔ جنت کاطباق ہو گی۔ تاہم $P_l^m(x)$ عصوماً کشیسرر کنی نہیں ہوگا: اور طباق m کی صورت مسین اسس مسین $\sqrt{1-x^2}$ کاحب زوخر کی لیاحبائے گا:

$$P_2^0(x) = \frac{1}{2}(3x^2 - 1), \quad P_2^1(x) = (1 - x^2)^{1/2} \frac{d}{dx} \left[\frac{1}{2}(3x^2 - 1) \right] = 3x\sqrt{1 - x^2},$$

$$P_2^2(x) = (1 - x^2) \left(\frac{d}{dx} \right)^2 \left[\frac{1}{2}(3x^2 - 1) \right] = 3(1 - x^2),$$

وغیبره وغیبره و $\frac{1}{2}$ و تا ہے اور چونکہ $\frac{1}{2}$ و تا ہے الہذا $\frac{1}{2}$ و تا ہے الہذا $\frac{1}{2}$ و تا ہے الہذا و خیبره وغیبره وغیبره و تا ہے اللہ و تا ہے تا ہے

$$(r,rq)$$
 $l=0,1,2,\ldots; m=-l,-l+1,\ldots-1,0,1,\ldots l-1,l$

i اور m کی کمی تجمی قیتوں کے لئے اسس کے دو خطی عنیہ رتائع حل اور m کی کمی تجمی قیتوں کے لئے اسس کے دو خطی عنیہ رتائع حل مرور تم تف کہاں ہیں؟ جواب: یقینا تف رق مساوات کے ریاضی حسلوں کی صورت مسیں ہاتی حسل ضرور مورد ہوں گے تاہم $\theta=0$ اور (یا) $\pi=0$ پرا ہے حسل بے مسابع بین (سوال ۲۰۸۰ کیھسیں) جس کی بنایہ طور پر نافت ابل مسبول ہوں گے۔

کروی محید د مسیں حجمی رکن درج ذیل ہوگا

$$ho$$
ر (۴.۳۰) ho ho

$$Y_I^m(heta,\phi)$$
، ابت دائی چیند کروی ہار مونیات، (۳.۳ ابت دائی

$$\begin{split} Y_2^{\pm 2} &= (\frac{15}{32\pi})^{1/2} \sin^2 \theta e^{\pm 2i\phi} & Y_0^0 &= (\frac{1}{4\pi})^{1/2} \\ Y_3^0 &= (\frac{7}{16\pi})^{1/2} (5\cos^3 \theta - 3\cos \theta) & Y_1^0 &= (\frac{3}{4\pi})^{1/2} \cos \theta \\ Y_3^{\pm 1} &= \mp (\frac{21}{64\pi})^{1/2} \sin \theta (5\cos^2 \theta - 1) e^{\pm i\phi} & Y_1^{\pm 1} &= \mp (\frac{3}{8\pi})^{1/2} \sin \theta e^{\pm i\phi} \\ Y_3^{\pm 2} &= (\frac{105}{32\pi})^{1/2} \sin^2 \theta \cos \theta e^{\pm 2i\phi} & Y_2^0 &= (\frac{5}{16\pi})^{1/2} (3\cos^2 \theta - 1) \\ Y_3^{\pm 3} &= \mp (\frac{35}{64\pi})^{1/2} \sin^3 \theta e^{\pm 3i\phi} & Y_2^{\pm 1} &= \mp (\frac{15}{8\pi})^{1/2} \sin \theta \cos \theta e^{\pm i\phi} \end{split}$$

یہاں R اور Y کو علیجہ دہ علیجہ دہ معمول پر لانازیادہ آسان ثابیہ ہو تاہے۔

$$\int_0^\infty |R|^2 \, r^2 \, \mathrm{d} r = 1 \quad \text{if} \quad \int_0^{2\pi} \int_0^\pi |Y|^2 \sin\theta \, \mathrm{d}\theta \, \mathrm{d}\phi = 1$$

معمول شده زادیائی موجی تف عسلات الوکروی مار مونیات اکترین

$$Y_l^m(\theta,\phi) = \epsilon \sqrt{\frac{(2l+1)}{4\pi} \frac{(l-|m|)!}{(l+|m|)!}} e^{im\phi} P_l^m(\cos\theta)$$

جہاں $0 \geq m \geq 1$ اور $0 \leq m \leq 0$ اور $\epsilon = (-1)^m$ بعد مسیں ثابت کریں گے، کرویار مونیات عسودی ہیں البذاور ن بی البذاور ن بین البذاور ن بی البذاور ن بین البذاور ن

$$\int_0^{2\pi} \int_0^{\pi} [Y_l^m(\theta,\phi)]^* [Y_{l'}^{m'}(\theta,\phi)] \sin\theta \, \mathrm{d}\theta \, \mathrm{d}\phi = \delta_{ll'} \delta_{mm'}$$

جدول ۳۰ مسیں چند ابت دائی کروی ہار مونیات پیش کے گئے ہیں۔ تاریخی وجوہات کی بن 1 کو اسمتی کو انٹائی عدد 1 اور 1 کو 1 اور 1 کو 1 اور 1 کو 1 اور 1 کو 1

سوال ۲۰۰۸: د کھائیں کہ
$$l=m=0$$
 کے لئے

$$\Theta(\theta) = A \ln[\tan(\theta/2)]$$

المعمول زنی مستقل کوسوال 54.4 مسین حساصل کے گئے ہے؛ نظریہ زاویا کی معیار حسر کے مسین مستعمل عسالہ تیہ ہم آہنگی کی سناطسہ $Y_{l}^{-m} = (-1)^{m}(Y_{l}^{m})^{*}$ موگار جس کی قیمت 1 یا $Y_{l}^{-m} = (-1)^{m}(Y_{l}^{m})^{*}$ موگار جس کی قیمت 1 یا $Y_{l}^{-m} = (-1)^{m}(Y_{l}^{m})^{*}$ موگار جو المحیار کے دوسیان کرنے کے ساتھ میں مستعمل عسالہ میں معالم میں میں معالم معالم میں معالم میں معالم معال

spherical harmonics"

azimuthal quantum number110

magnetic quantum number12

ساوات θ (مساوات ۴.۲۵) کو مطمئن کرتی ہے۔ یہ (وہ) نافت ابل تسبول دوسسرا حسل ہے؛ اسس مسین کیا حسر ابی ہے؟

 $Y_3^l(\theta,\phi)$ اور $Y_3^l(\theta,\phi)$ اور $Y_3^l(\theta,\phi)$ تشکیل دیں۔ (آپ $P_3^l(\theta,\phi)$ کوجو حبدول ۲.۳ سوال ۳.۵ نظمیل دیں۔ $P_1^l(\theta,\phi)$ آپ کو مساوات $P_1^l(\theta,\phi)$ کی مدد سے تشکیل دین ہوگا۔)تصدیق سجھے کہ $P_1^l(\theta,\phi)$ موزوں قیمتوں کیلئے سے زاویائی مساوات (مساوات (۱۰۸) کو مطمئن کرتے ہیں۔

سوال ۲ ، ۲: کلیے روڈریگیس سے ابت داکر کے لیٹانڈر کشی رکنیوں کی معیاری عصودیت کی سشرط:

$$\int_{-1}^{1} P_l(x) P_{l'}(x) \, \mathrm{d}x = \left(\frac{2}{2l+1}\right) \delta_{ll'}$$

اخىذكرىي ـ (امشارە: تكمل بالحصص استعال كريں ـ)

۳.۱.۳ رداسی مساوات

$$\frac{\mathrm{d}}{\mathrm{d}r} \left(r^2 \frac{\mathrm{d}R}{\mathrm{d}r} \right) - \frac{2mr^2}{\hbar^2} [V(r) - E] R = l(l+1) R$$

ئے متغیرات استعال کرتے ہوئے اسس مساوات کی سادہ روپ ساسل کی جباستی ہے: درج ذیل لینے سے

$$u(r) \equiv rR(r)$$

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2 u}{\mathrm{d}r^2} + \Big[V + \frac{\hbar^2}{2m}\frac{l(l+1)}{r^2}\Big]u = Eu$$

اسس کور**دا سی مماواہے ^{۱۱} کہتے ہیں ^۱اجو شکل وصورے کے لیے ظے یک بعسدی مشروڈ نگر مساوات (مساوات ۲.۵) کی طسر ترہے، تاہم بیب ال موثر مخفیہ** ۱^۸درج ذیل ہے

(פּרָא)
$$V_{\dot{\tau}\tau} = V + \frac{\hbar^2}{2m} \frac{l(l+1)}{r^2}$$

radial equation

m کیت کوظ ہر کرتی ہے: ردای ساوات سیں علیحہ دگی مستقل m نہیں پایاب تا ہے۔

effective potential^{1A}

جس مسیں $[l(l+1)/r^2]$ اضافی جبزوپایا جباتا ہے جو مرکز گریز بروہ اکہاتا ہے۔ یہ کا سیکی میکانیا سے مسر کز گریز (محبازی) توت کی طسرح، ذرہ کو (مبداے دور) باہر جبانب دھکیلت ہے۔ یہاں معمول زنی مشرط (مساوات ۳۳) درج ذیل رویے افتیار کرتی ہے۔

$$\int_0^\infty |u|^2 \, \mathrm{d}r = 1$$

کسی مخصوص مخفیہ (V(r) کے بغیب ہم آگے نہیں بڑھ سکتے ہیں۔ مثال ۲٫۱۱: درج ذیل لامت ناہی کروی کنواں پر غور کریں۔

$$V(r) = \begin{cases} 0 & r \le a \\ \infty & r > a \end{cases}$$

اسس کے تف عسلات موج اور احبازتی توانائیاں تلاسش کریں۔

حسل: کنوال کے باہر تف عسل موج صف رہے جب کے کنوال کے اندرردای مساوات درج ذیل ہے

$$\frac{\mathrm{d}^2 u}{\mathrm{d}r^2} = \left[\frac{l(l+1)}{r^2} - k^2\right] u$$

جباں ہمبیشہ کی طسرح درج ذمل ہوگا۔

$$(r.rr)$$
 $k \equiv \frac{\sqrt{2mE}}{\hbar}$

u(a)=0 مے اس مساوات کو، سرحدی شرط u(a)=0 مسلط کرکے، حسل کرنا ہے۔ سب سے آسان صورت u(a)=0 کی ہے۔

$$\frac{\mathrm{d}^2 u}{\mathrm{d}r^2} = -k^2 u \implies u(r) = A\sin(kr) + B\cos(kr)$$

یادر ہے، اصل ردائی تف عسل موج R(r)=u(r)/r ہے اور r o 0 کی صورت مسیں R(r)=u(r)/r ہوتا ہو a=1 بڑھتا ہے۔ یوں جمیں a=1 منتخب a=1 میں مول کی در صحیح ہے۔ خل ہر ہے کہ احب از تی تو انائیاں در جن ذیل ہوں گی۔ a=1 میں معدد صحیح ہے۔ خل ہر ہے کہ احب از تی تو انائیاں در جن ذیل ہوں گی۔

(r.rr)
$$E_{n0} = \frac{n^2 \pi^2 \hbar^2}{2ma^2},$$
 $(n = 1, 2, 3, ...).$

centrifugal term¹⁹

ور هنقت بم صوف اتناح پ تبین که تف عسل مون معمول پرلانے کے صابل ہو؛ ہے ضروری نہیں کہ ہے مصنائی ہو: مساوات ۲۳۱ مسین $R(r) \sim 1/r$ کی بنامبدایہ $R(r) \sim 1/r$ معمول پرلانے کے صابل ہے۔

جو عسین کیسے بعدی لامتنائی حیکور کواں کی توانائیاں ہیں (مساوات ۲۰۲۷)۔ u(r) کو معمول پر لانے سے جو مسین کیسے بعدی لامتنائی حسنو (جو $Y_0^0(\theta,\phi)=1/\sqrt{4\pi}$ کی بہت عنسیر اہم ہے) کوساتھ منسکار کرتے ہوئے درج ذیل حساس ہوگا۔

$$\psi_{n00} = \frac{1}{\sqrt{2\pi a}} \frac{\sin(n\pi r/a)}{r}$$

[دھیان بیجے کہ ساکن حسالت کے نام تین کواٹنائی اعداد ایس اور n اور m استعال کر کے رکھے جباتے ہیں: $\psi_{nml}(r,\theta,\phi)$ بجبکہ توانائی، E_{nl} ، صرف n اور l پر مخصر ہوگ۔]

(ایک اختیاری عبد دصحیح 1 کے لئے)مباوات ۴۲.۴۷ کاعب وی حسل

$$u(r) = Arj_l(kr) + Brn_l(kr).$$

بہت جبانا پہچانا نہیں ہے جباں $j_l(x)$ رتب l کا کروکھ بیبل تفاعلی $n_l(x)$ رتب l کا کروکھ نیوم فی تفاعلی $n_l(x)$ سے جن کی تعب یون سے درج ذیل ہیں۔

$$(r.r) j_l(x) \equiv (-x)^l \Big(\frac{1}{x}\frac{\mathrm{d}}{\mathrm{d}x}\Big)^l \frac{\sin x}{x}; n_l(x) \equiv -(-x)^l \Big(\frac{1}{x}\frac{\mathrm{d}}{\mathrm{d}x}\Big)^l \frac{\cos x}{x}$$

مثال کے طور پر درج ذیل ہوں گے ،وغیبرہ وغیبرہ۔

$$j_0(x) = \frac{\sin x}{x}; \quad n_0(x) = -\frac{\cos x}{x};$$

$$j_1(x) = (-x)\frac{1}{x}\frac{d}{dx}\left(\frac{\sin x}{x}\right) = \frac{\sin x}{x^2} - \frac{\cos x}{x};$$

$$j_2(x) = (-x)^2\left(\frac{1}{x}\frac{d}{dx}\right)^2 \frac{\sin x}{x} = x^2\left(\frac{1}{x}\frac{d}{dx}\right)\frac{x\cos x - \sin x}{x^3}$$

$$= \frac{3\sin x - 3x\cos x - x^2\sin x}{x^3}$$

حبدول ۴.۴ مسیں ابت دائی چند کروی بیسل اور نیومن تف عسلات پیش کیے گئے ہیں۔ متغیبر X کی چھوٹی قیمت کے لئے جب اں

$$\sin x \approx x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$$
 of $\cos x \approx 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots$

ہوں گے، درج ذیل ہوں گے،وغیسرہ وغیسرہ۔

$$j_0(x) \approx 1; \quad n_0(x) \approx -\frac{1}{x}; \quad j_1(x) \approx \frac{x}{3}; \quad j_2(x) \approx \frac{x^2}{15};$$

quantum numbers"

spherical Bessel function

spherical Neumann function

- جبدول ۲۰، ۲۰: ابت مرائی چیند کروی بییل اور نیومن تف عسلات، $j_n(x)$ اور $j_n(x)$ بچھوٹی x کے لئے متعت اربی روپ۔

$$n_{0} = -\frac{\cos x}{x} \qquad j_{0} = \frac{\sin x}{x}$$

$$n_{1} = -\frac{\cos x}{x^{2}} - \frac{\sin x}{x} \qquad j_{1} = \frac{\sin x}{x^{2}} - \frac{\cos x}{x}$$

$$n_{2} = -\left(\frac{3}{x^{3}} - \frac{1}{x}\right)\cos x - \frac{3}{x^{2}}\sin x \quad j_{2} = \left(\frac{3}{x^{3}} - \frac{1}{x}\right)\sin x - \frac{3}{x^{2}}\cos x$$

$$n_{l} \to -\frac{(2l)!}{2^{l}l!} \frac{1}{x^{l+1}}, \quad x \ll 1 \qquad j_{l} \to \frac{2^{l}l!}{(2l+1)!} x^{l}$$

دھیان رہے کہ مبدا پر ببیل نقب عسلات مصنابی ہیں جبکہ مبدا پر نیومن نقب عسلات بے مت ابوبڑھتے ہیں۔ یوں جمیں لازماً 10 = B1 منتخب کرنا ہوگالبذا درج ذیل ہوگا۔

$$R(r) = Aj_1(kr)$$

اب سرت دی شرط R(a)=0 کو مطمئن کرناباقی ہے۔ ظبیر ہے کہ k کو درج ذیل کے تحت منتخب کرناہوگا $j_l(ka)=0$

یعن 1 رتبی کردی بیسل تف عسل کا (ka) ایک صف رہوگا۔ اب بیسل تف عسلات ارتعی ہیں (شکل 2.4 کی کھسیں)؛ ہر ایک کے لامت ان تعداد صف رپائے حباتے ہیں۔ تاہم (ہماری بدقتتی سے) سے ایک جیسے مناصلوں پر نہیں پائے حباتے ہیں۔ تاہم (ہماری بدقتتی سے) سے ایک جیسے مسل کرنا ہوگا۔ بہسر حسال سرحدی سے رہے نواز میں ہوگا۔ بہسر حسال سرحدی سفر طے تحت درج ذیل ہوگا۔ میں ہوگا۔ میں معالی ہوگا۔ اس معالی ہوگا۔ میں ہوگا۔ میں معالی ہوگا۔ معالی ہو

$$(r.rq) k = \frac{1}{a}\beta_{nl}$$

جہاں β_{nl} رتبہ l کروی بیل تف 2 وال صفر ہوگا۔ یوں احب ازتی توانائیاں

$$(r.s.) E_{nl} = \frac{\hbar^2}{2ma^2} \beta_{nl}^2.$$

اور تفاعلات موج درج ذیل ہوں گے

$$\psi_{nlm}(r,\theta,\phi) = A_{nl}j_l(\beta_{nl}r/a)Y_l^m(\theta,\phi).$$

جہاں مستقل A_{n1} کا تعسین معمول زنی ہے کیا جہاتا ہے۔ چونکہ l کی برایک قیمت کے لئے m کی (2l+1) مختلف قیمت یں پائی حباتی ہیں لہذا تو انائی کی ہر سطح (2l+1) گٹا انحطاطی ہوگی (مساوات ۲۹،۳۹ دیمسیں)۔

سوال ۲.۴:

۲.۲۰ بائيي ڈروجن چوہر

ا. کروی نیو من تفاعسان سے اور $n_1(x)$ اور $n_2(x)$ کو (مساوات ۴۰٬۳۹) مسیں پیش کی گئی تعسر بینات سے تسار کریں۔

ب. سائن اور کوسائن کو پھیااکر $1 \ll x \leq 1$ کارآمد $n_1(x)$ اور $n_2(x)$ کے تخمینی کلیات اخساز کریں۔ تصدیق کریں کہ ہے۔ مبدا پر باحث ہیں۔

سوال ۴.۴:

ا. تصدیق کریں کہ V(r)=0 اور l=1 کے لئے $Arj_l(kr)$ ردای مساوات کو مطمئن کر تاہے۔

n میں کو وی کنواں کیلے l=1 کی صورت میں احباز تی توانائیاں ترسیم کی مدد ہے تعسین کریں۔ دکھا کیں کہ $j_1(x)=0$ \Longrightarrow بری قیمت کے لئے $E_{n1}\approx (\hbar^2\pi^2/2ma^2)(n+1/2)^2$ ہوگا۔ (اخداہ: پہلے tan x واحد tan x

سوال ۹.۷: ایک زره جس کی کمیت m ہے کومتناہی کروی کوال:

$$V(r) = \begin{cases} -V_0 & r \le a \\ 0 & r > a \end{cases}$$

میں رکھ حباتا ہے۔ اس کا ذمینی حبال ، l=0 کے لئے ، روای مباوات کے حسل سے حساس کریں۔ دکھائیں کے $V_0a^2<\pi^2\hbar^2/8m$ کی صورت مسین کوئی مقید حسال نہیں پایا جب نے گا۔

۴.۲ اینٹ روجن جوہر

ہائے ڈروجن جوہر بار e کے ایک بھساری پروٹان جس کے گرد بار e کا ایک ہاکا السیکٹران طواف کر تا ہو پر مشتل ہو تا ہے۔ پروٹان بنیادی طور پر ساکن رہت ہے (جے ہم مبدا پر تصور کر سکتے ہیں)۔ ان دونوں کے مختالف بار کے نیج قوت کشش پائی حباقی ہے جو انہمیں اکٹھے رکھتے ہے (شکل 3.4 دیکھیں)۔ وتانون کو لمب کے تحت مخفی توانائی درج ذیل ہوگی

$$V(r) = -\frac{e^2}{4\pi\epsilon_0}\frac{1}{r}$$

لہند ارداسی مساوات ۳۷٪ ۴۸ درج ذیل روی اختیار کرے گی۔

(r.sr)
$$-\frac{\hbar^2}{2m} \frac{\mathrm{d}^2 u}{\mathrm{d}r^2} + \left[-\frac{e^2}{4\pi\epsilon_0} \frac{1}{r} + \frac{\hbar^2}{2m} \frac{l(l+1)}{r^2} \right] u = Eu$$

ہم نے اسس مساوات کو u(r) کے لئے حسل کر کے احبازتی توانائیاں E تعسین کرنی ہیں۔ ہائیڈروجن جوہر کا حسل نہایت اہم ہے لہلنذا مسیں اسس کو، ہار مونی مسر تعش کے تحلیلی حسل کی ترکیب ہے، تندم بالتدم حسل کر کے پیشش کر تاہوں۔ (جس متدم پر آپ کودشواری پیشس آئے، حسب ۲.۳.۲ ہے مددلیں جہاں مکسل تفصیل پیشس کی گئے ہے۔)

کولب مخفیہ، مساوات ۲۵۰۳، (E>0 کے لئے) استمراریہ حسالات، جو السیکٹران پروٹون بھے راو کو ظاہر کرتے ہیں، تسلیم کرنے کے ساتھ عنی رمسلسل مقید حسالات، جو ہائیڈروجن جو ہر کو ظاہر کرتے ہے، بھی تسلیم کرتا ہے۔ ہماری و کی پی موحن رالذ کر مسین ہے۔

۲.۲.۱ رداسی تف عسل موج

سب سے پہلے نئی عسلامتیں متصارف کرتے ہوئے مساوات کی بہتر (صاف)صورت حساصل کرتے ہیں۔ درج ذیل متصارف کرکے (جہال مقید حسالات کے لئے 6 منفی ہونے کی وحب سے K حقیقی ہوگا)

$$\kappa \equiv \frac{\sqrt{-2mE}}{\hbar}$$

ماوات ۴.۵۳ کو E سے تقسیم کرنے سے

$$\frac{1}{\kappa^2} \frac{\mathrm{d}^2 u}{\mathrm{d}r^2} = \left[1 - \frac{me^2}{2\pi\epsilon_0 \hbar^2 \kappa} \frac{1}{(\kappa r)} + \frac{l(l+1)}{(\kappa r)^2} \right] u$$

حاصل ہوگاجس کود کھ کر ہمیں خیال آتاہے کہ ہم درج ذیل علامتیں متعارف کریں

(r.ss)
$$\rho \equiv \kappa r, \quad \rho_0 \equiv \frac{me^2}{2\pi\epsilon_0\hbar^2\kappa}$$

لهاندادرج ذيل لكصاحبائے گا۔

(۲.۵۲)
$$\frac{\mathrm{d}^2 u}{\mathrm{d}\rho^2} = \left[1 - \frac{\rho_0}{\rho} + \frac{l(l+1)}{\rho^2}\right] u$$

 $ho \to \infty$ کرنے سے تو سین کے اندر مستقل حبزو علی است کے بعد ہم حسالات کی متعتار ہی رہنے ہو کالہندا (تخمین) ورج ذیل کھا حباسکتا ہے۔

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\rho^2} = u$$

اسس کاعب وی حسال درج ذیل ہے

$$u(\rho) = Ae^{-\rho} + Be^{\rho}$$

$$u(\rho) \sim Ae^{-\rho}$$

ho o
ho کی صورت مسیں مسر کز گریز حبز وغنالب ہوگا؛ ho o
ho o
ho کی صورت مسیں مسر کز گریز حبز وغنالب ہوگا؛ ho o
ho

$$\frac{\mathrm{d}^2 u}{\mathrm{d}\rho^2} = \frac{l(l+1)}{\rho^2} u$$

جس کاعب وی حسل (تصیدیق سیجیے) درج ذیل ہو گا

$$u(\rho) = C\rho^{l+1} + D\rho^{-l}$$

تاہم (ho o 0 کی صورت مسیں) ho^{-l} بے تسابوبڑھت ہے لہندا ho = 0 ہوگا۔ یوں ho کی چھوٹی قیمتوں کے لیے درج ذیل ہو گا۔ گا۔

$$u(\rho) \sim C \rho^{l+1}$$

 $: v(\rho)$ اگلے ت دم پر متعت اربی رویہ کو چھیلنے کی حن طب رنب اتف عسل الم

$$u(\rho) = \rho^{l+1} e^{-\rho} v(\rho)$$

اسس امید سے متعبار ف کرتے ہے کہ $v(\rho)$ سے $v(\rho)$ زیادہ سادہ ہوگا۔ ابت دائی نتائج

$$\frac{\mathrm{d}u}{\mathrm{d}\rho} = \rho^l e^{-\rho} \Big[(l+1-\rho)v + \rho \frac{\mathrm{d}v}{\mathrm{d}\rho} \Big]$$

اور

$$\frac{\mathrm{d}^2\,u}{\mathrm{d}\rho^2} = \rho^l e^{-\rho} \Big\{ \Big[-2l - 2 + \rho + \frac{l(l+1)}{\rho} \Big] v + 2(l+1-\rho) \frac{\mathrm{d}v}{\mathrm{d}\rho} + \rho \frac{\mathrm{d}^2\,v}{\mathrm{d}\rho^2} \Big\}$$

خوشش آئین نظر رہیں آتے ہیں۔اسس طسر $v(\rho)$ کی صورت مسیں ردای مساوات (مساوات (مرح: نیل رویے نامیل کرتی ہے۔

$$\rho \frac{\mathrm{d}^2 \, v}{\mathrm{d} \rho^2} + 2(l+1-\rho) \frac{\mathrm{d} v}{\mathrm{d} \rho} + [\rho_0 - 2(l+1)] v = 0$$

 $v(\rho)$ ، $v(\rho)$ کاط وقتی تسلس کھے جا سکتا ہے۔

$$v(
ho) = \sum_{j=0}^{\infty} c_j
ho^j$$

۳۳ یہ دلسل l=0 کی صورت مسین کارآمد نہیں ہو گی (اگر پ مساوات ۴۵۰ مسین پیشن نتیب اسس صورت کے لئے بھی درست ہے)۔ بہسر دسال، مسیرامقصد نئ عسابقت (مساوات ۴۰،۷) کے استثمال کے لئے راستہ ہموار کرنا ہے۔ ہمیں عبد دی سر (c2 ، c1 ، c0) وغنیرہ) تلاسٹس کرنے ہوں گے۔ حبزودر حبزو تفسرق لیتے ہیں۔

$$\frac{dv}{d\rho} = \sum_{j=0}^{\infty} j c_j \rho^{j-1} = \sum_{j=0}^{\infty} (j+1) c_{j+1} \rho^j$$

j = 1 کہا ہے۔ اگر آپکو نقین ہوتہ مسیں "فنسرضی احشار ہے" j = 1 کہا ہے۔ اگر آپکو نقین ہوتو اولین چند احب زاء صریحاً لکھ کر تصدیق کر لیں۔ آپ سوال اٹھا سکتے ہیں گے نیا محبوعہ j = -1 سے کیوں مشروع نہیں کیا گیا؛ تاہم حبزو ضربی (j+1) اسس حبزو کو حنتم کر تاہے لہاندا ہم صف رہے بھی مشروع کر سکتے ہیں۔ j = 1 دوبارہ تفسرت لیتے ہیں۔

$$\frac{d^2 v}{d\rho^2} = \sum_{j=0}^{\infty} j(j+1)c_{j+1}\rho^{j-1}$$

نہیں مساوا<u>۔۔</u> ۲۱.۴ ممسیں پر کرتے ہیں۔

$$\begin{split} \sum_{j=0}^{\infty} j(j+1)c_{j+1}\rho^{j} + 2(l+1) + \sum_{j=0}^{\infty} (j+1)c_{j+1}\rho^{j} \\ &- 2\sum_{j=0}^{\infty} jc_{j}\rho^{j} + \left[\rho_{0} - 2(l+1)\right]\sum_{j=0}^{\infty} c_{j}\rho^{j} = 0 \end{split}$$

$$j(j+1)c_{j+1} + 2(l+1)(j+1)c_{j+1} - 2jc_j + [\rho_0 - 2(l+1)]c_j = 0$$

يا

$$c_{j+1} = \left\{ \frac{2(j+l+1) - \rho_0}{(j+1)(j+2l+2)} \right\} c_j$$

ہوگا۔ یہ کلیہ توالی عددی سر تعسین کرتے ہوئے تف عسل $v(\rho)$ تعسین کرتا ہے۔ ہم c_0 سے شروع کر کے (جو کی سے قل کاروپ اختیار کرتا ہے جے آحضر مسیں معمول زنی ہے حساسل کیا حب کا)، مساوات ۲۳۰ سے c_1 تعسین کرتے ہے؛ جس کو والیس ای مساوات مسین پر کرکے c_2 تعسین ہوگا، وغیبرہ، وغیبرہ۔ c_3

 $^{^{67}}$ آپ پوچ کے بین: طامت ت سلل کی ترکیب $u(\rho)$ پری کیوں لاگونہیں کی گئی؛ اسس ترکیب کے اطباق ہے تب ل متعداد بی رویہ کو کیوں (مبنو فربی کی صورت میں) باہر نکالا گیا؟ در هیقت اسس کی وجب نسان کی خواصورتی ہے۔ حب زو خربی کی صورت میں) باہر نکالا گیا؟ در هیقت اسس کی وجب نسان کی خواصورتی ہے۔ سلس کا پیسا حب ذو ρ^0 بار نکالئے ہے تسلس کا پیسا حب و ρ^0 حاصل ہوگا۔ اس کے بر عکس حب زو خربی ρ^0 باہر نکالت ازیادہ خروری ہے؛ اے باہر نسائے کے ρ^0 باہر نکالئے ہے ρ^0 باہر نکالئے ہے ρ^0 باہر نکالئے ہوتا ہے (کر کے میں) جس کے ساتھ کام کرنا زیادہ خشکل خاب ہوتا ہے۔ در کی جسیں ان جس کے ساتھ کام کرنا نیادہ خشکل خاب ہوتا ہے۔

۲.۲۰ بائڀ ڈروجن جو ہر

آئے آئی بڑی قیت (جو ρ کی بڑی قیت کے مطابقتی ہوں گے جہاں بلت دطاقتیں عنالب ہوں گی) کے لئے عددی سے دول کی صورت دیکھے۔ یہاں کلیہ توالی درج ذیل کہتا ہے۔ r

$$c_{j+1} \cong \frac{2j}{j(j+1)}c_j = \frac{2}{j+1}c_j$$

ایک لمحہ کے لیے منسر ض کرے کہ ہے بالکل شیک شیک رشتہ ہے۔ تب

$$c_j = \frac{2^j}{j!}c_0$$

للبيذا

$$v(\rho) = c_0 \sum_{j=0}^{\infty} \frac{2^j}{j!} \rho^j = c_0 e^{2\rho}$$

اور يول درج ذيل ہو گا

$$u(\rho) = c_0 \rho^{l+1} e^{\rho}$$

جو ρ کی بڑی قیمتوں کے لیے بے وت ابو بڑھتا ہے۔ مثبت قوت نمسا وہی غنیسر پسندیدہ متعاربی رویہ دیتا ہے جو مساوات ۵۷۔ مصری بایا گئیا۔ (در هیقت متعاربی حسل بھی ردای مساوات کے حبائز حسل ہیں البت ہم ان مسین رکھتے ہیں کیونکہ ہے۔ معمول پر لانے کے وتابل نہمیں ہیں۔) اسس المیہ سے نحبات کا صرف ایک ہی راستہ ہی راستہ ہے؛ حسل کو کہمیں نے کہمیں اختتام پذیر ہوناہوگا۔ لازی طور پر ایک ایسازیادہ سے زیادہ عدد صحیح، بدر تر نہایا حبائے گاجس پر درج ذیل ہو۔

$$(r.) \qquad c_{(j_{7,\cdot,\downarrow}+1)} = 0$$

(یوں کلیہ توالی کے تحت باقی تمام (زیادہ بلند) عبد دی سے صف ہوں گے۔) مساوات ۲۳.۲۳ سے ظاہر ہے کہ درج ذیل ہوگا۔

$$2(j$$
بنية $+l+1)-\rho_0=0$

صدر کوانتم عدد۲۲

$$n \equiv j$$
بندر $+ l + 1$

j+1 مسیں j+1 کوں دو جہیں j+1 اور نہیں جہیں ایسانہ ایسانہ

متعارف کرتے ہوئے درج ذیل ہوگا۔

$$ho_0=2n$$

 $(r. \Delta a)$ اور ar اور e اور e اور e اور e

(°.19)
$$E=-\frac{\hbar^2\kappa^2}{2m}=-\frac{me^4}{8\pi^2\epsilon^2\hbar^2\rho^2}$$

لہٰذااحبازتی توانائیاں درج ذیل ہوں گی۔

(r.2.)
$$E_n = -\left[\frac{m}{2\hbar^2} \left(\frac{e^2}{4\pi\epsilon}\right)^2\right] \frac{1}{n^2} = \frac{E_1}{n^2}, \qquad n = 1, 2, 3, \dots$$

یہ مشہور زمان **کلیہ بوہر**^{۲۸}ہے جوعنالباً پورے کوائٹم میکانیات مسیں اہم ترین نتیجہ ہے۔ جناب بوہرنے <u>1913</u> مسیں، نات بل استعال کلانسیکی طبیعیات اور نیم کوائٹم میکانیات کے ذریعہ سے کلیے کوانسنہ کسیا۔ مساوات مشروڈ گر 192<u>4 مسیں منظر ر</u>عام ہوئی۔)

مساوات ۸۵.۵۵ ۴۲.۲۸ کوملا کر درج ذیل حساصل ہوگا

$$\kappa = \left(\frac{me^2}{4\pi\epsilon_0\hbar^2}\right)\frac{1}{n} = \frac{1}{an}$$

جهال

$$(\text{r.2r}) \hspace{1cm} a \equiv \frac{4\pi\epsilon_0\hbar^2}{me^2} = 0.529 \times 10^{-10}\,\mathrm{m}$$

ر **داس بوہر ۱۹** کہا تا ۳۰ ہے۔ یوں (مساوات ۸۵۵، ۲۰ دوبارہ استعال کرتے ہوئے) درج ذیل ہوگا۔

$$\rho = \frac{r}{an}$$

ہائے ڈروجن جو ہر کے فصن کی تف عسلات موج کے نام تین کوانٹ اُئی اعب داد (l ، n)استعال کر کے رکھے حباتے ہیں

$$\psi_{nlm}(r,\theta,\phi) = R_{nl}(r)Y_l^m(\theta,\phi)$$

جہاں مساوات ۳۱.۳۱ ماور ۲۰.۴ کودیکھتے ہوئے

$$R_{nl}(r) = \frac{1}{r} \rho^{l+1} e^{-\rho} v(\rho)$$

Bohr formula

Bohr radius 19

اردانس بوہر کوروایق طور پرزیر نوشت کے ساتھ لکھا حباتاہے: ao ، تاہم یے غیسر ضروری ہے البیندامسیں انسس کو صرف م

۳٫۲ بائب ٹررو جن جو ہر

 $v(\rho)$ متغیر ρ میں در جب n-l-1 بیند $v(\rho)$ متغیر $v(\rho)$ متغیر $v(\rho)$ متغیر کی معرور جب ذیل کالیت توالی دے گا (اور پورے تف عسل کو معمول پر لانا باقی ہے)۔

$$c_{j+1} = rac{2(j+l+1-n)}{(j+1)(j+2l+2)}c_j$$

زمین مالی از العنی کم سے کم توانائی کے حسال ایک لیے n=1 ہو گا؛ طسبعی متقلات کی قیمتیں پر کرتے ہوئے در حب ذیل حساس ہوگا۔

$$(r.22) E_1 = -\left[\frac{m}{2\hbar^2} \left(\frac{e^2}{4\pi\epsilon}\right)^2\right] = -13.6 \,\mathrm{eV}$$

$$\psi_{100}(r,\theta,\phi)=R_{10}(r)Y_0^0(\theta,\phi)$$

کلیہ توالی پہلے حبزو پر بی افتتام پزیر ہوتا ہے (ماوات ۲۰۷۱ء j=0 کے لئے j=0 حاصل ہوتا ہے)، کلیہ توالی پہلے حبزو پر بی افتتام پزیر ہوتا ہے (ماوادر یوں ورحبہ ذیل ہوگا۔ $v(\rho)$ میک ایک مستقل $v(\rho)$ ہوگا اور یوں ورحبہ ذیل ہوگا۔

$$R_{10}(r) = \frac{c_0}{a}e^{-r/a}$$

اسس کومساوات ۳۰٫۳۱ کے تحت معمول پرلانے سے

$$\int_0^\infty |R_{10}|^2 r^2 dr = \frac{|c_0|^2}{a^2} \int_0^\infty e^{-2r/a} r^2 dr = |c_0|^2 \frac{a}{4} = 1$$

يعنى $c_0=2/\sqrt{a}$ مسنى حسال درج ذيل بوگا۔ $Y_0^0=rac{1}{\sqrt{4\pi}}$ يعنى $c_0=2/\sqrt{a}$

$$\psi_{100}(r,\theta,\phi)=rac{1}{\sqrt{\pi a^3}}e^{-r/a}$$

n=2 کے گئے توانائی n=2

$$(r.n)$$
 $E_2 = \frac{-13.6 \,\text{eV}}{4} = -3.4 \,\text{eV}$

ground state^rl

j=0 اور j=0 اور j=0 استعال کرتے ہوئے j=0 اور j=0 استعال کرتے ہوئے j=0 اور j=0 استعال کرتے ہوئے j=0 دے گالبہ نا j=0 ور در ور مرب ذیل ہوگا۔ j=0 در مرب اللہ خا

$$R_{20}(r) = rac{c_0}{2a} \Big(1 - rac{r}{2a} \Big) e^{-r/2a}$$

[دھیان رہے کہ مختلف کو انٹم اعبداد l اور n کے لئے بھیلاو عبد دی سر $\{c_j\}$ مکسل طور پر مختلف ہو نگے۔] کلیہ توالی $v(\rho)$ ایک مستقل ہو گالہہذادر حب ذیل حیاص ہوگا۔

$$(r.nr)$$
 $R_{21}(r) = \frac{c_0}{4a^2}re^{-r/2a}$

(ہر منف رد صورت مسیں _{Co} معمول زنی سے تعسین ہو گاسوال 11.4 دیکھسیں)۔

کسی بھی اختیاری n کے لئے (مساوات ۲۰۲۷ سے ہم آہنگ) کی ممکن قیمتیں در جب ذیل ہوں گ

$$(r.\Lambda r) l = 0, 1, 2, \cdots, n-1$$

جبکہ ہر l کے لئے m کی مکنے قیتوں کی تعبداد (2l+1) ہو گی (مساوات ۴۰،۳۹)، اہندا E_n توانائی کی کل انحطاطیت درج ذیل ہو گی۔

$$d(n) = \sum_{l=0}^{n-1} (2l+1) = n^2$$

کشیرر کنی $v(\rho)$ (جومساوات ۴۷۲۷ کے کلیہ توالی سے حساس ہوگی) ایک ایس ایس ایس ایس ہے جس سے عمسلی رماضی دان بخولی واقف ہیں؛ ماسوائے معمول زنی کے، اسے درج ذمل کھی حساسکتا ہے۔

$$v(
ho)=L_{n-l-1}^{2l+1}(2
ho)$$

جهال

$$L_{q-p}^{p}(x) \equiv (-1)^{p} \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^{p} L_{q}(x)$$

ایک شریک لاگیخ کثیر دکنی ۲۳ ہے جب

$$(r.nn)$$
 $L_q(x) \equiv e^x \left(\frac{\mathrm{d}}{\mathrm{d}x}\right)^q (e^{-x}x^q)$

q وي لا گُيْخ كثير ركني ٢٠٠ ہے۔ ٣٥ (جدول ٣٠٥ ميں چندابت دائي لا گيخ كثير ركنياں پيش كي گئي ہيں؛ جبدول ٢٠١ ميں

associated Laguerre polynomial

۱۵۱ مرم. بائتيدُ روجن جو بر

$$L_q(x)$$
 ابت دائی چند لاگیخ کشب ررکنیاں، $C_{\alpha}(x)$

$$L_{0} = 1$$

$$L_{1} = -x + 1$$

$$L_{2} = x^{2} - 4x + 2$$

$$L_{3} = -x^{3} + 9x^{2} - 18x + 6$$

$$L_{4} = x^{4} - 16x^{3} + 72x^{2} - 96x + 24$$

$$L_{5} = -x^{5} + 25x^{4} - 200x^{3} + 600x^{2} - 600x + 120$$

$$L_{6} = x^{6} - 36x^{5} + 450x^{4} - 2400x^{3} + 5400x^{2} - 4320x + 720$$

$L^p_{q-p}(x)$ ، جبدول ۲۰۰۳: ابت دائی چن د شریک لاگنج کثیب رر کنیاں،

$$L_0^2 = 2 L_0^0 = 1$$

$$L_1^2 = -6x + 18 L_0^1 = -x + 1$$

$$L_2^2 = 12x^2 - 96x + 144 L_0^2 = x^2 - 4x + 2$$

$$L_0^3 = 6 L_0^1 = 1$$

$$L_1^3 = -24x + 96 L_1^1 = -2x + 4$$

$$L_2^3 = 60x^2 - 600x + 1200 L_2^1 = 3x^2 - 18x + 18$$

$R_{nl}(r)$ ، جبدول کے بات دائی چیندرداسی تف عسال سے، کا بات دائی چیندرداسی تف

$$R_{10} = 2a^{-3/2}e^{-r/a}$$

$$R_{20} = \frac{1}{\sqrt{2}}a^{-3/2}\left(1 - \frac{1}{2}\frac{r}{a}\right)e^{-r/2a}$$

$$R_{21} = \frac{1}{\sqrt{24}}a^{-3/2}\frac{r}{a}e^{-r/2a}$$

$$R_{30} = \frac{2}{\sqrt{27}}a^{-3/2}\left(1 - \frac{2}{3}\frac{r}{a} + \frac{2}{27}\left(\frac{r}{a}\right)^{2}\right)e^{-r/3a}$$

$$R_{31} = \frac{8}{27\sqrt{6}}a^{-3/2}\left(1 - \frac{1}{6}\frac{r}{a}\right)\left(\frac{r}{a}\right)e^{-r/3a}$$

$$R_{32} = \frac{4}{81\sqrt{30}}a^{-3/2}\left(\frac{r}{a}\right)^{2}e^{-r/3a}$$

$$R_{40} = \frac{1}{4}a^{-3/2}\left(1 - \frac{3}{4}\frac{r}{a} + \frac{1}{8}\left(\frac{r}{a}\right)^{2} - \frac{1}{192}\left(\frac{r}{a}\right)^{3}\right)e^{-r/4a}$$

$$R_{41} = \frac{\sqrt{5}}{16\sqrt{3}}a^{-3/2}\left(1 - \frac{1}{4}\frac{r}{a} + \frac{1}{80}\left(\frac{r}{a}\right)^{2}\right)\left(\frac{r}{a}\right)e^{-r/4a}$$

$$R_{42} = \frac{1}{64\sqrt{5}}a^{-3/2}\left(1 - \frac{1}{12}\frac{r}{a}\right)\left(\frac{r}{a}\right)^{2}e^{-r/4a}$$

$$R_{43} = \frac{1}{768\sqrt{35}}a^{-3/2}\left(\frac{r}{a}\right)^{3}e^{-r/4a}$$

۳.۲ بائي ٿررو جن جو ۾

چند ابتدائی شریک لاگیخ کشیر رکنیاں پیش کئے گئی ہیں؛ حبدول ۲۰۸ مسیں چند ابتدائی ردای تفاعسل امواج پیش کئے گئی ہیں پیش کئے گئے ہیں جنہیں مشکل 4.4 مسیں ترسیم کیا گیا ہے۔) ہائیڈروجن کے معمول شدہ تفاعسلات موج در حب ذیل ہیں۔

$$(\text{r.ng}) \qquad \psi_{nlm} = \sqrt{\left(\frac{2}{na}\right)^3 \frac{(n-l-1)!}{2n[(n+l)!]^3}} \, e^{-r/na} \Big(\frac{2r}{na}\Big)^l \big[L_{n-l-1}^{2l+1}(2r/na)\big] Y_l^m(\theta,\phi)$$

یہ تفاعبات خوفت کے نظر آتے ہیں لیکن مشکوہ نہ کیجے گا؛ یہ اُن چند حقیقی نظاموں مسیں سے ایک ہے جن کا بند روپ مسیں شکک شک حسل حساس کرنا مسکن ہے۔ دھیان رہے، اگر جہ تفاعبات موج سین فول کو انسانی اوات کہ در میں اوات کہ در میں کو انسانی کو مون ہے۔ یہ کولمب توانائی کی ایک مخصر تقسین کرتا ہے۔ یہ کولمب توانائی کی ایک مخصر تقسین (مساوات ۲۰۵۰)۔ ایک مخصر تقسین (مساوات ۲۰۵۰)۔ تقساعبال میں توانائیاں 1 پر مخصر تقسین (مساوات ۲۰۵۰)۔ تقساعبال میں موج باہی عصودی

$$\int \psi_{nlm}^* \psi_{n'l'm'} r^2 \sin \theta \, dr \, d\theta \, d\phi = \delta_{nn'} \delta_{ll'} \delta_{mm'}$$

ہیں۔ یہ کروی ہار مونیات کی عصوریت (مساوات m') اور $(n \neq n')$ کی صورت مسین H کی منف رد امتیازی افت دار کے امتیازی اقتحال ہونے کی بنا ہے۔

ہائے ڈروجن نف عبدات موج کی تصویر کئی آسان کام نہیں ہے۔ ماہر کیب ان کے ایسے کثانت و اشکال بن تے ہیں جن کی چک چک $|\psi|^2$ کاراست متناسب ہوتی ہے (مشکل 5.4)۔ زیادہ معلومات متناسب ہوتی ہے (مشکل گفت احسال کی سطحوں (مشکل 6.4) کے امشکال دی ہیں (جنہیں پڑھے انسبتاً مشکل ہوگا)۔

سوال ۱۰.۳: کلید توالی(مساوات ۲.۷۱) استعال کرتے ہوئے تف عسل موج R_{31} ، R_{30} اور R_{32} حساسل کریں۔ انہیں معمول پرلانے کی ضرورت نہیں۔

سوال ۱۱. ۴:

ا. ماوات ψ_{200} مسین دیے گئے R_{20} کو معمول پرلاکر ψ_{200} تسار کریں۔

ب. مساوات ψ_{21-1} اور ψ_{210} ، ψ_{210} ، ψ_{211} کو معمول پرلاکر R_{21} اور ψ_{21-1} شیار کریں۔ موال ۱۱.۳:

ا. مساوات ۸۸ ۱۴ متال کرتے ہوئے ابت دائی حسار لا گیغ کثب ررکنسال حساس کریں۔

Laguerre polynomial

[°] و گر عسلامتوں کی طسر کان کے لئے بھی گئی عسلامتیں استعال کی حباتی ہیں۔ مسیں نے سب سے زیادہ مقبول عسلامتیں استعال کی ہیں۔

ا. ہائے ڈروجن جو ہر کے زمین نی حسال مسیں السیکٹر ان کے لیے $\langle r \rangle$ اور $\langle r^2 \rangle$ تلاسٹس کریں۔ اپنے جو اب کور داسس بوہر کی صور سے مسیں تکھیں۔

ب. ہائیڈروجن جوہر کے زمسینی حسال مسیں السیکٹران کے لیے $\langle x^2 \rangle$ اور $\langle x^2 \rangle$ تلاشش کریں۔ احشارہ: آبکو کوئی نسیا تکمل حساصل کرنے کی ضرورت نہیں۔ دھیان رہے کہ $x^2 + y^2 + z^2 + y^2$ ہوگا، اور از مسینی حسال مسیں تشاکلی کو بروئے کارلائیں۔

 $y \cdot x$ اور $z \rightarrow b = 1$ کی اور $z \rightarrow b = 1$ کی تلاشن کریں۔انتباہ: $y \cdot x$ اور $z \rightarrow b = 1$ کی جس کے دیا $x = r \sin \theta \cos \phi$ کی تشام کی جس ہے۔ یہاں $x = r \sin \theta \cos \phi$

سوال ۱۳۱۳: ہائیڈروجن کے زمینی حسال مسیں r کی کون می قیمت زیادہ مختسل ہو گی۔ (اسس کا جواب صف رنہ میں ہے!) ادارہ: آپکو پہلے معسلوم کرناہو گاکہ r+dr اور r+dr کے ناتی السیام ان کیا دیارہ کا دیارہ کا دارہ معسلوم کرناہو گاکہ اور r+dr

سوال ۱۵. m:=-1 ، l=1 ، n=2 اور m=-1 ، l=1 ، n=2 کور خارت جو بر ساکن حسال ۱۵. m=-1 ، l=1 ، l

$$\Psi(\bm{r},0) = \frac{1}{\sqrt{2}}(\psi_{211} + \psi_{21-1})$$

ا. حال $\Psi(r,t)$ تیار کریں۔اس کی سادہ ترین صورت حاصل کریں۔

ب. مخفی توانائی کی توقعت تی قیمت می $\langle V \rangle$ تلاکش کریں۔(کیپ یہ t کی تائع ہو گی؟)اصل کلیہ اور عبد د دی جواب کو السیکٹران وولٹ توصورت مسین پیش کریں۔

۴.۲.۲ مهائي دروجن كاطيف

اصولی طور پر ایک بائیڈروجن جوہر جو س کن حسال ψ_{nlm} مسین پایاحب تا ہو ہمیشہ کے لیے ای حسال مسین رہے گا۔ تاہم اسس کو (دو سرے جوہر کے ساتھ کر اگر یا اسس پر رو سشنی ڈال کر) جھسٹر نے سے السیکٹران کی دو سرے ساکن حسال مسین عبور اسکر سکتا ہے یا (عسوماً برقت طیسی فوٹان کے احضران مسین عبور اسکر سکتا ہے یا (عسوماً برقت طیسی فوٹان کے احضران کے اور ان کی توانائی حسار ہوگئی حسال ہنتھ ہیں کہ تنقیل ہو سکتا ہے ہے 2^{-2} برائی جسسٹر دختانیاں ہر وقت پائی حبائیں گی المبین اعسبور (جنہیں 'کوانٹم چھانا گا ہے "کہتے ہیں) مستقل طور پر ہوتے رہیں گے ، جن کی بہتا ہائیڈروجن سے ہر وقت روسشنی (فوٹان) حسارت کی توانائیوں کے صنر ق

(r.91)
$$E_{\gamma}=E_i-E_f=-13.6\,\mathrm{eV}\,\Big(\frac{1}{n_i^2}-\frac{1}{n_f^2}\Big)$$

کے برابر ہوگا۔

transition

²⁷ نطر آء اسس مسیں تابع وقت باہم عمسل پایا حبائے گا جس کی تفصیل باب ۹ مسیں پیش کی حبائے گی۔ یہساں اصسل عمسل حبانت اخروری نہیں ہے۔

۴.۲ هائيي ژروجن جو هر 100

اب کلید بلانک میں میں تعدد کے راست سناسب ہوگی:

$$(r.qr)$$
 $E_{\gamma} = hv$

جب طوار موج $\lambda = c/\nu$ ہوگا۔

(r.gr)
$$\frac{1}{\lambda} = R \Big(\frac{1}{n_f^2} - \frac{1}{n_i^2} \Big)$$

جهال

(r.9r)
$$R \equiv \frac{m}{4\pi c\hbar^3} \left(\frac{e^2}{4\pi\epsilon_0}\right)^2 = 1.097 \times 10^7 \,\mathrm{m}^{-1}$$

رڈرگ متقل سی کہاتا ہے۔ مساوات ۴.۹۳ ہائیڈروجن کے طیف کا کلیے رڈبرگ ہے۔ یہ کلیہ انیسویں صدی منیں تحبرباتی طور پر اخبذ کیا گیا۔ نظریہ بوہر کی سب سے بڑی فنتی اسس کلیے کا حصول ہے جو ت درت کے بنیادی متقلات کی صورت مسین R کی قیت ریت ہے۔ زمسینی حسال ($n_f = 1$) مسین عبور، بالا کے بصری سیں روشنی پیداکرتے ہیں جے بالمر تسلم الے اس کتے ہیں۔ ای طسرت 3 میں عسبور، م**ا سژیز تسلسلی** ^{۴۳} دیتے ہیں جوزیر بصسری شعساع ہے، وغنیسرہ وغنیسرہ (مشکل 7.4 دیکھسیں)۔(رہائثی حسرار سے پر ن زمادہ تر ہائیڈروجن جوپر زمسینی سال مسین ہو گئے؛ احت راجی طیف سامسل کرنے کی مناطب ر آیکو پہلے مختلف ہیسان حالات مسیں السیکٹران آباد کرنے ہوں گے؛ایب عصوماً گیس مسیں برقی شعب پیدا کرے کیا حباتا ہے۔) سوال ۱۲.۱۲: بائیٹر روجن جوہر کے پروٹان کے مسرکزہ کے گر د طواف کرتے ہوئے ایک السیٹران پر مشتل ہے۔ (ازخو دہائٹ ڈروجن میں Z=1 جبکہ باردارہ ہیلیم Z=1 اور دہری باردارہ کشیم Z=1 ہوگا، وغنیہ رہ وغنیہ ہ R(Z) ، اور رڈبرگ متقل $E_1(Z)$ ، بندشی تواناکی $E_1(Z)$ ، رداسس بوہر $E_n(Z)$ ، اور رڈبرگ متقل $E_n(Z)$ تعسین کریں۔ (اپنے جوامات کوہائٹڈروجن کی متعباقہ قیمتوں کے لیےاظ سے پیش کریں۔) برقب طبیعی طیف کے کس خطب مسین

Planck's formula "^^

^{&#}x27;'قونان در حقیقت برقب طلیبی احسران کاایک کوانٹم ہے۔ ب ایک اضافیتی چیسزے جس پر غیسر اضافی کوانٹم بریانیات تبال استعال نہیں ہے۔اگر حیب ہم چند مواقع پر فوٹان کی بات کرتے ہوئے کلمیں پلانک ہے اسس کی توانائی مسامسل کریں گے،یادر ہے کداسس کااسس نظسر ہے ہے کوئی تعساق نہیں جس پر ہم باہے کر رہے ہیں۔

Rydberg constant **

Rydberg formula "

Lyman series "*

Balmer series

Paschen series "

Helium "a

Lithium

Z=2 اور Z=3 کی صورت مسیں لیمان تسلسل پائے حب میں گے؟ امثارہ: کسی نے حساب کی ضرورت نہمیں ہے؛ مخفیہ (مساوات ۲۰۵۲) مسیں Z=2 ہوگالب زاتسام نستائج مسیں بھی بھی بچھ پر کرناہوگا۔

سوال ۱۲.۲۷: زمسین اور سورج کو ہائیٹ ڈروجن جو ہر کامتبادل تحباذ بی نظام تصور کریں۔

ا. مساوات ۸۵۲ می جگ مخفی توانائی تف عسل کی به وگا؟ (زمسین کی کمیت m جبکه سورج کی کمیت M لیس) برین است نظام کا" رداسس بوبر" a_{g} کمیابوگا؟ اسس کی عسد دی قیت تلاسش کریں۔

n=1 جی از بی کلیے ہو ہر لکھ کررداسس r_0 کے مدار سیں سیارہ کے کلا سیکی توانائی کو E_n کے برابرر کھ کرد کھا ئیں کہ جوگا۔ اسس سے زمسین کے کوانٹ اُئی عبد دn کی انداز آقیت تلاش کریں۔

و. منسرض کرین زمسین اگلی نمپلی سطح (n-1) مسیں عصبور کرتی ہے۔ گتی تو انانی کا احسیراج ہوگا ؟ جو اب حب اول مسیں دیں - حسارج فوٹان (یازیادہ ممکن طور پر گر **اور بٹال خ**) کا طول موج کسیا ہوگا ؟ (اپنج جو اب کو نوری سالوں مسیں پیش کریں۔ کسیاسی حسیر سے انگیز نتیجہ محض ایک اتقاق ہے۔)

۳.۳ زاویائی معیار حسر کت

ہم دیکھ جیے ہیں کہ ہائے ڈروجن جو ہر کے ساکن حسالات کو تین کوانٹ اُئی اعسداد n اور m کے لحیاظ سے نام دیاحب تا ہے۔ مصدر کوانٹم عسد د (n) حسال کی توانائی تعسین کرتا ہے (مساوات ۲۰۸۰)؛ ہم دیکھیں گے کہ l اور m مداری زادیائی معیار حسر کے سے تعساق رکھتے ہیں۔ کلا سیکی نظر ہے مسین وسطی قوتیں، توانائی اور معیار حسر کت بنیادی بقت اور یہ ہمیں داوی ہا ہمیت کہ کوانٹم میکانیا ہے مسین زاویائی معیار حسر کر راسس سے بھی زیادہ) اہمیت رکھتا ہے۔

کلا سیکی طور پر (مبدا کے لحیاظ سے) ایک ذرہ کی زاویائی معیار حسر کت درج ذیل کلیہ دیت ہے

(r.9a)
$$oldsymbol{L} = oldsymbol{r} imes oldsymbol{p}$$

جس کے تحت درج ذیل ہوگا۔

$$(r.99) L_x = yp_z - zp_y, L_y = zp_x - xp_z, L_z = xp_y - yp_x$$

ان کے متعباقہ کو انٹم عباملین معیاری نخب $p_z \to -i\hbar\partial/\partial z$ ، $p_y \to -i\hbar\partial/\partial y$ ، $p_x \to -i\hbar\partial/\partial x$ حساس معیاری نخب $p_z \to -i\hbar\partial/\partial z$ ، $p_y \to -i\hbar\partial/\partial y$ ، $p_z \to -i\hbar\partial/\partial z$ میں ہم نے ہار مونی مسر نخب کے احسان کو حنائس الجبرائی ترکیب سے ماملین کے امتیازی احتدار حساس کے حساب میں الجبرائی ترکیب ، عباملین کے مقلبیت تعباقات پر مسبنی ہے ۔ اسس کے بعد ہم امتیازی تعباقات پر مسبنی ہے ۔ اسس کے بعد ہم امتیازی تعباقات پر مسبنی ہے ۔ اسس کے بعد ہم امتیازی تعباقات پر مسبنی ہے۔ اسس کے بعد ہم امتیازی تعباقات پر مسبنی ہے۔ اسس کے بعد ہم امتیازی تعباقات پر مسبنی ہے۔ اسس کے بعد ہم امتیازی تعباقات پر مسبنی ہے۔ اسس کے بعد ہم امتیازی تعباقہ تعباق

۳٫۳۰ زاویا کی معیار حسر کت

ا.۳.۳ است ازی افت دار

عاملین L_{x} اور L_{y} آپس میں غیبر مقلوب ہیں۔ در حقیقت درج ذیل ہوگا۔

$$[L_x, L_y] = [yp_z - zp_y, zp_x - xp_z]$$

$$= [yp_z, zp_x] - [yp_z, xp_z] - [zp_y, zp_x] + [zp_y, xp_z]$$

باضابط مقلبیت رشتوں میاوات 10.4 سے ہم جانے ہیں کہ صرف x اور p_x اور p_z اور p_z عاملین عنسے مقلوب ہیں یوں در میانی دواحب زاہد ف ہوں کے لہذا درج ذیل ہوگا

$$[L_x, L_y] = yp_x[p_z, z] + xp_y[z, p_z] = i\hbar(xp_y - yp_x) = i\hbar L_z$$

(r.99)
$$[L_x, L_y] = i\hbar L_z; \quad [L_y, L_z] = i\hbar L_x; \quad [L_z, L_x] = i\hbar L_y$$

زاویائی معیار حسر کے کے بنیادی مقلبیت رہتے ہیں جن ہے باقی سب کچھ اخب ذہوگا

دھیان رہے کہ L_y اور L_z غیر ہم آہنگ وتبل مشاہدہ ہیں متعم اصول عدم تقینیت مساوات L_z تحت

$$\sigma_{L_x}^2 \sigma_{L_y}^2 \geq \left(rac{1}{2i} \langle i \hbar L_z
angle
ight)^2 = rac{\hbar^2}{4} \langle L_z
angle^2$$

يا

$$(r...)$$
 $\sigma_{L_x}\sigma_{L_y} \geq \frac{\hbar}{2} |\langle L_z \rangle|$

ہوگا یوں ایسے حسالات کی تلامش جو L_x اور L_y اور L_y کے بیک وقت امت بیازی تف عسلات ہوں بے مقصد ہوگا اسس کے بیک زاوہائی معیار حسر کت کامسر بع

$$(r.1-1) L^2 \equiv L_x^2 + L_y^2 + L_z^2$$

ی کے ساتھ مقلو<u>ں</u> ہے

$$[L^{2}, L_{x}] = [L_{x}^{2}, L_{x}] + [L_{y}^{2}, L_{x}] + [L_{z}^{2}, L_{x}]$$

$$= L_{y}[L_{y}, L_{x}] + [L_{y}, L_{x}]L_{y} + L_{z}[L_{z}, L_{x}] + [L_{z}, L_{x}]L_{z}$$

$$= L_{y}(-i\hbar L_{z}) + (-i\hbar L_{z})L_{y} + L_{z}(i\hbar L_{y}) + (i\hbar L_{y})L_{z}$$

$$= 0$$

معتالب کی سادہ روپ حساسل کرنے کے لیے مسیں نے مساوات 64.3 استعال کیا ہے بھی یاد رہے کہ L^2 معتال کیا اور L_z کے ساتھ بھی L^2 مقلوب ہوگا اس سے آپ اخرنہ کر سکتے ہیں کہ L_y اور L_z کے ساتھ بھی مقلوب ہوگا

$$[L^2, L_x] = 0, \quad [L^2, L_y] = 0, \quad [L^2, L_z] = 0$$

بالمختصب رأدرج ذبل ہوگا

$$[L^2, \boldsymbol{L}] = 0$$

اس طرح L کے ساتھ بیک وقت استیازی L^2 ہم آہنگ ہوگا اور ہم L^2 کا مثلًا L_z کے ساتھ بیک وقت استیازی حالات تلاث کرنے کی امدر کھ کے ہیں

$$(r.1.6r)$$
 $L^2f=\lambda f$ if $L_zf=\mu f$

ہم نے حسے 1.3.2 مسیں ہار مونی مسر تعش پر سیڑ ھی عسام کی ترکیب استعال کی یہی ترکیب یہاں پر بھی استعال کرتے ہیں

يهال مم درج ذيل ليت بين

$$(r.1 \cdot \Delta)$$
 $L \pm \equiv L_x \pm iL_y$

کامقلب درج ذیل ہو گا L_z

$$[L_z, L_{\pm}] = [L_z, L_x] \pm i[L_z, L_y] = i\hbar L_y \pm i(-i\hbar L_x) = \pm \hbar(L_x \pm iL_y)$$

لېذادرج ذيل ہو گا

$$[L_z,L_{\pm}]=\pm\hbar L_{\pm}$$

اور ظاہر ہے کہ درج ذیل ہوں گے

$$[L^2, L_{\pm}] = 0$$

(r.1-1)
$$L^2(L_{\pm}f) = L_{\pm}(L^2f) = L_{\pm}(\lambda f) = \lambda(L_{\pm}f)$$

لہذاای است یازی متدر λ کے لیے $L_{\pm}f$ بھی L^2 کا است یازی تف عسل ہو گاجب کہ مساوات 106.4 کہتی ہے کہ

(r.1.4)
$$L_z(L_{\pm f}) = (L_z L_{\pm}) - L_{\pm} L_z) f + L_{\pm} L_z f = \pm \hbar L \pm f + L_{\pm} (\mu f) = (\mu \pm \hbar) (L_{\pm} f)$$

۳٫۳۰ زاویا کی معیار حسر کت

لہذائی استیازی و تدر کہ $\mu \pm \hbar$ کے لیے $\mu \pm \hbar$ کا استیازی تغنا عمل ہوگا ہم $\mu \pm \hbar$ کو عساس رفعت کہتے ہیں چونکہ $\mu \pm \hbar$ کے استیازی و تعنا ہوگا ہم $\mu \pm \hbar$ کے استیازی و تعنا ہوگا ہم کے استیازی و تعنا ہوگا ہم کر تاہد ہوں ہمیں کہ کہ کی ایک قیست کے لیے حسالات کی ایک سیڑھی مئتی ہے جس کا ہرپا ہے و تسر بی پالی سیڑھی میٹ ہو ہوگا شکل 8.4 سیڑھی حب ڑھنے کی حناط سر ہم عساس لے کے ایک مالے اور ہوگا شکل 8.4 سیڑھی حب ڑھنے کی حناط سر ہم عساس استیازی و تعنا ہو گا ہو گا

$$(r.1.) L_+ f_t = 0$$

فنىرى كرى اسس بالائى پايە پر L_z كى استىيازى قىمىتى $\hbar l$ ہو حسر ونے L كى من سبت آپ پر حبلد آيا ہوں گ

$$(r.11)$$
 $L_z f_t = \hbar l f_t; \quad L^2 f_t = \lambda f_t$

ا___ درج ذیل ہو گا

$$L_{\pm}L_{\mp} = (L_x \pm iL_y)(L_x \mp iL_y) = L_x^2 + L_y^2 \mp i(L_xL_y - L_yL_x)$$

= $L^2 - L_z^2 \mp i(i\hbar L_z)$

یا دو سے الفاظ میں درج ذیل ہو گا

$$(r.iir) L^2 = L_{\pm}L_{\mp} + L_z^2 \mp \hbar L_z$$

يوں

$$L^{2}f_{t} = (L_{-}L_{+} + L_{z}^{2} + \hbar L_{z})f_{t} = (0 + \hbar^{2}l^{2} + \hbar^{2}l)f_{t} = \hbar^{2}l(l+1)f_{t}$$

لہذا درج ذیل ہو گا

$$\lambda = \hbar^2 l(l+1)$$

ہمیں L_z کی امتیازی ت درکی زیادہ سے زیادہ قیمت کی صورت مسیں L^2 کی امتیازی ت دردیتی ہے ساتھ ہی ای وجب کی سناسیڑھی کا سب سے نحیالیا ہے f_b پایا حبائے گاہو درج ذیل کو مطمئن کرے گا

$$(r.11r) L_{-}f_{b}=0$$

برض کریں اسس نجیلے ہاہے پر L_z کا متیازی ت در $\hbar ar{l}$ ہو

(r.11a)
$$L_z f_b = \hbar \bar{l} f_b; \quad L^2 f_b = \lambda f_b$$

مساوات 112.4 استعال کرتے ہوئے درج ذیل ہو گا

$$L^{2}f_{b} = (L_{+}L_{-} + L_{z}^{2} - \hbar L_{z})f_{b} = (0 + \hbar^{2}l^{-2} - \hbar^{2}\bar{l})f_{b} = \hbar^{2}\bar{l}(\bar{l} - 1)f_{b}$$

لېذا درج ذيل ہو گا

$$(r.117)$$
 $\lambda = \hbar^2 \bar{l}(\bar{l}-1)$

مساوات 113.4 اور 116.4 کاموازے کرنے سے $(l+1)=ar{l}(ar{l}-1)=[l+1]$ ہو گالبذایا l+1=l+1 ہو گاجو بے معنی ہے چونکہ نحیالیا ہے سب سے اوپر (بالائی)یا ہے سب نہ سین ہو گاپادر جنوبی ہوگا

$$(r.112)$$
 $\bar{l}=-l$

N قسبر ہے کہ جا کے استیازی اقتدار m ہونگے جہاں m جس کی مناسب آپ پر جبلد عبیاں ہوگی کی قیمت L_z مناسب میں l-1 تا l+1 ہوگا یو سالفیوص آپ دیکھ سکتے ہیں کہ l=-l+1 بازد l=1 ہوگا یو سالفیوص آپ دیکھ سکتے ہیں کہ l=1 اور l=1 بازد کرتے ہیں محتے ہوگا استیازی تف عب السے کو اعتداد l=1 اور l=1 بان کرتے ہیں

$$(r.11A) L^2 f_l^m = \hbar^2 l(l+1) f_l^m; L_z f_l^m = \hbar m f_l^m$$

جہاں درج ذیل ہو گئے

$$(r.119)$$
 $l = 0, 1/2, 1, 3/2, ...; $m = -l, -l+1, ..., l-1, l$$

l کی کی ایک قیمت کے لیے m کی l+1 و مختلف قیمت یں ہوں گی لیخی سیڑھی کے l+1 پارے ہوگے بعض اور حت اس نتیج ہو کو شکل l+1 و کی طرز پر ظاہر کی حب اتا ہے جو l=1 کے لیے دکھ لیا گیا ہے بہاں تسرکا کی اکا کیوں مسیں l+1 وظاہر کرتے ہیں ان تمام کی لمب نیساں کم کا کا کیوں مسیں l+1 ہوں گی جو کشان مکنٹ زاویا کی معیار حسر کرتے وظاہر کرتے ہیں ان تمام کی المب نیساں کم کا کا کیوں مسیں l+1 وظاہر کرتے ہیں ان تمام کی احب زاقی تعیاد ہوں ہوں کے جب کہ سے کے l+1 احب زاء l+1 کی احب زاویا کی معیاد حسر ایک وظاہر والے معیاد رہم کو خوالی کو معیاد رہم کے معیاد میں اور کی خوالی کو معیاد کی معیاد حسر کرتے ہیں گئے ہیں کہ آپ زاویا کی معیاد حسر کت کو سیدھی کے رخ نہیں دکھ کے بی بہل نظر مسیں ہو کے بی نامعقول بات نظر آتی ہے کیا میں کے محدد کو زاویا کی معیاد حسر کت سمتی کے رخ نہیں کہ کرنے منتی نظر مہیں کر سانا ہوں اب ایسا کرنے کی حناطر آپ کو تسینوں احب زاء بیک وقت معیاد حسر کت سے ہیں جب کہ اصول عدم میں تبین ہوگا ہوں الکل نہیں آپ بنیادی گئے ہیں کہ اس کے ایس نہیں کہ کہ میں انسان تعیین نہیں ہو گئے ہیں بہت کی میں احب نام کوں احب زاء بیک وقت میں نہیں ہوگا ہوں احب زاء کے کہ سے نام کوں احب زاء کی میں تبین ہو گئے ہیں بہت کی ہوگا میں احب زاء کی کہ سے کا اور ہوا کہ کیا ہوں احب زاء کہ کے ایس نہیں ہوگا ہیں تعین نہیں ہوگا ہوں کی تبین ہوگا گئے گئے اور ہوگا کی تبین ہوگا گئے کہ کے ایس نہیں ہوگا کے کہ کے ایس نہیں ہوگا ہوں کی تبین ہوگا گئے کہ کے ایس نہیں ہوگا کے کہ کے ایس نہیں ہوگا ہوں کی کہ کے ایس نہیں ہوگا کے کہ کے

وہی کروی ہار مونیات ہیں جنہیں ایک دوسری راہ پر جیلتے ہوئے ہم نے حصہ 2.1.4 مسیں حیاصل کیا یمی وحبہ ہے کہ مسیں نے حسر ف l اور m استعمال کیے اب مسیں آپ کو بتایاوں گا کہ کروی ہار مونیات کیوں عصودی ہیں سے الگ تھلگ امتیان کا اور L_z کا اور L_z کے امتیان کا قت عملات ہیں

سوال ۱۸.۱۸: عمل رفت اور عمل تقلیل m کی قیت ایک (1) سے تبدیل کرتے ہیں

$$(r.r.) L_{\pm}f_l^m = (A_l^m)f_l^{m\pm 1}$$

جب A_l^m کوئی مستقل ہے امتیازی تفاعسات کو معمول پر لانے کی حناطس A_l^m کی ہوگا اٹ ارہ پہلے دکھائیں کہ L_y اور L_y ایک دوسرے کے ہر مثی جوڑی دارہے چونکہ L_x اور L_y مشہود ہیں آپ منسر ض کر سکتے ہیں ہے ہر مثی ہول گے لیکن آپ حیاہیں تواسس کی تصدیق کر سکتے ہیں اسس کے بعد مساوات L_x استعمال کریں جواب

(c.ifi)
$$A_l^m = \hbar \sqrt{l(l+1) - m(m\pm 1)} = \hbar \sqrt{(l\mp m)(l\pm m+1)}$$

ا. معتام اور معیار حسرکت کی باضابط، مقلبیت رستنوں مساوات 10.4 سے سشروع کرتے ہوئے درج ذیل معتالب حساصل کریں

(r.177)

$$[[L_z,x]=i\hbar y,\quad [L_z,y]=-i\hbar x,\quad [L_z,z]=0,\quad [L_z,p_x]=i\hbar p_y,\quad [L_z,p_y]=-i\hbar p_x,\quad [L_z,p_z]=-i\hbar p_x$$

ب. ان نت نگر کو استعال کرتے ہوئے مساوات 96.4 سے $[L_z, L_x] = i\hbar L_y$

$$p^2=p_x^2+p^2$$
 ور $[L_z,p^2]$ اور $[L_z,p^2]$ اور $[L_z,p^2]$ کی تیتیں تا شش کریں جب ل $[L_z,p^2]$ برگا

د. اگر V صرف r کاتائع ہوت وکسائیں کے ہیمکٹنی $V + V = (p^2/2m) + V$ کہ تمام تسینوں احبزاء کے مقلوبی ہوگایوں L^2 اور L_2 باہمی ہم آہنگ مشہود ہوں گے

سوال ۲۰۴۰:

ا. و کھائیں ایک مخفی توانائی V(r) مسیں ایک ذرے کی مداری زاویائی معیار حسر کے کو توقعاتی قیمت کی سروڑ کی توقعیاتی قیمت کے برابر ہوگی

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle \boldsymbol{L}\rangle = \langle \boldsymbol{N}\rangle$$

جهال

$$N = r \times (-\nabla V)$$

ہے۔ مسئلہ اہر نفسٹ کامہ اثل گھومت تعسلق ہے

۳.۳.۱ امتبازی تفاعلات

ہمیں سب سے پہلے L_y ، L_x اور L_z کو کروی محد دمسیں لکھت ہوگا اب L_y ، L_x ہمیں سب سے پہلے L_y ، L_z اور L_z کو کروی محد دمسیں ڈھلوان درج ذیل ہوگا

$$\boldsymbol{\nabla} = \boldsymbol{a}_{\mathrm{r}} \frac{\partial}{\partial r} + \boldsymbol{a}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta} + \boldsymbol{a}_{\phi} \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}$$

جہاں $r=ra_{ ext{r}}$ ہوگایوں درج ذیل کھاجہا

$$\boldsymbol{L} = \frac{\hbar}{i} \Big[r(\boldsymbol{a}_{\scriptscriptstyle \mathrm{T}} \times \boldsymbol{a}_{\scriptscriptstyle \mathrm{T}}) \frac{\partial}{\partial r} + (\boldsymbol{a}_{\scriptscriptstyle \mathrm{T}} \times \boldsymbol{a}_{\scriptscriptstyle \mathrm{\theta}}) \frac{\partial}{\partial \theta} + (\boldsymbol{a}_{\scriptscriptstyle \mathrm{T}} \times \boldsymbol{a}_{\scriptscriptstyle \mathrm{\phi}}) \frac{1}{\sin \theta} \frac{\partial}{\partial \phi} \Big]$$

اور ج $(a_{
m r} imes a_{\phi}) = -a_{
m r}$ اور ج $(a_{
m r} imes a_{\phi}) = -a_{
m r}$ اور ج $(a_{
m r} imes a_{\phi}) = a_{\phi}$ اور ج $(a_{
m r} imes a_{\phi}) = a_{\phi}$ اور ج

(r.irr)
$$L=rac{\hbar}{i}\Big(a_{\phi}rac{\partial}{\partial heta}-a_{ heta}rac{1}{\sin heta}rac{\partial}{\partial\phi}\Big)$$

اکائ سمتیات $a_{ heta}$ اور a_{ϕ} کوان کے کار تیسی احبزاء مسیں کھتے ہیں

(r.ira)
$$oldsymbol{a}_{ heta} = (\cos heta \cos \phi) oldsymbol{i} + (\cos heta \sin \phi) oldsymbol{j} - (\sin heta) oldsymbol{k}$$

$$($$
י.ודי) $oldsymbol{a}_{\phi}=-(\sin\phi)oldsymbol{i}+(\cos\phi)oldsymbol{j}$

يول

$$L = \frac{\hbar}{i} [(-\sin\phi \, \boldsymbol{i} + \cos\phi \, \boldsymbol{j}) \frac{\partial}{\partial \theta} - (\cos\theta \cos\phi \, \boldsymbol{i} + \cos\theta \sin\phi \, \boldsymbol{j} - \sin\theta \, \boldsymbol{k}) \frac{1}{\sin\theta} \frac{\partial}{\phi}]$$

ہو گاظاہر ہے درج ذیل ہوں گے

$$L_{x}=\frac{\hbar}{i}\Big(-\sin\phi\frac{\partial}{\partial\theta}-\cos\phi\cot\theta\frac{\partial}{\partial\phi}\Big)$$

$$L_y = \frac{\hbar}{i} \Big(+ \cos\phi \frac{\partial}{\partial \theta} - \sin\phi \cot\theta \frac{\partial}{\partial \phi} \Big)$$

(r.1rq)
$$L_z=rac{\hbar}{i}rac{\partial}{\partial\phi}$$

ہمیں آمسل رفت اور امسل تقلیل بھی در کار ہوں گے

$$L_{\pm} = L_x \pm iL_y = \frac{\hbar}{i} \left[\left(-\sin\phi \pm i\cos\phi \right) \frac{\partial}{\partial\theta} - \left(\cos\phi \pm i\sin\phi \right) \cot\theta \frac{\partial}{\partial\phi} \right]$$

چونکہ $\phi \pm i\sin\phi = e^{\pm i\phi}$ ہوتا ہوگا $\phi \pm i\sin\phi = e^{\pm i\phi}$

$$($$
ارم، $)$ $L_{\pm}=\pm \hbar e^{\pm i\phi}\Big(rac{\partial}{\partial heta}\pm i\cot hetarac{\partial}{\partial \phi}\Big)$

بالخصوص سوال 1.4(a) درج ذيل ہو گا

$$(\mathbf{r}_{-}\mathbf{i}\mathbf{r}_{-}) \qquad \qquad L_{+}L_{-} = -\hbar^{2}\Big(\frac{\partial^{2}}{\partial\theta^{2}} + \cot\theta\frac{\partial}{\partial\theta} + \cot^{2}\theta\frac{\partial^{2}}{\partial\phi^{2}} + i\frac{\partial}{\partial\phi}\Big)$$

لہذا سوال 4. 1 2(b) درج ذیل حاصل ہو تاہے

$$L^2 = -\hbar^2 \Big[\frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \Big(\sin\theta \frac{\partial}{\partial\theta} \Big) + \frac{1}{\sin^2\theta} \frac{\partial^2}{\partial\phi^2} \Big]$$

$$L^{2}f_{l}^{m} = -\hbar^{2} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \right] f_{l}^{m} = \hbar^{2} l(l+1) f_{l}^{m}$$

یہ ٹھیک زاویائی مساوات 18.4 ہے ساتھ ہی ہے L_z کا استعیازی تف 2 ہی ہے جہاں اسس کا استعیازی و تدر $m\hbar$

$$L_z f_l^m = \frac{\hbar}{i} \frac{\partial}{\partial \phi} f_l^m = \hbar m f_l^m$$

(r.irr)
$$H\psi=E\psi, \quad L^2\psi=\hbar^2l(l+1)\psi, \quad L_z\psi=\hbar m\psi$$

ہم مساوات 132.4 استعال کرتے ہوئے مساوات شہروڈ نگر مساوات 14.4 کو مختصہ رادرج ذیل لکھ سکتے ہیں

$$\frac{1}{2mr^2}\Big[-\hbar^2\frac{\partial}{\partial r}\Big(r^2\frac{\partial}{\partial r}\Big)+L^2\Big]\psi+V\psi=E\psi$$

یہاں ایک دلچیپ صور تحسال پیدا ہوتی ہے علیدگی متغییرات کی ترکیب سے استیازی تف عسالت کی صرف عصد دلا تحصیح I قیمتیں مساوات I واراہذا I اور اہذا I اور اہذا I میں کی نصف عصد درصحیح قیمتیں مساوات I والے بھی دیتی ہے آپ کا خیسال ہوگا کہ نصف عصد درصحیح نتائج غنیسر ضروری ہے لیکن جیسا آپ اگلے حصوں مسیں دیکھیں گے کہ بیانی زیادہ اہمیت کے حسل ہے سوال ۲۰۲۱:

ا. مساوات 130.4 سے مساوات 131.4 اخبذ كريں اشارہ تف عسل برق استعال كرنان بجوليں

ب. مساوات 129.4 اور 131.4 سے مساوات 132.4 اخسند کریں امشارہ مساوات 1112.4 ستعال کریں سوال ۴۲.۲۲:

ا. حاب كي بغير بت أين $L_+Y_1^l$ كي ابوگا

ج. بلاوا طرحمل کے ذریعے مستقل معمول ذنی تعسین کریں اپنی حتی نتیجے کا سوال 5.4 کے نتیجے کے ساتھ مواز سے کریں سوال ۲۰۰۸: آپ نے سوال 3.4 مسیں درج ذیل دکھیا یا

 $Y_2^1(\theta,\phi) = -\sqrt{15/8\pi}\sin\theta\cos\theta e^{i\phi}$

عبام الرفت کا (θ, ϕ) یراط لاق کریں معمول ذنی کے لیے مباوات 121.4 استعال کریں

سوال ۴۰.۲۳: بے کمیت کا ایک ڈنڈاجس کی لمب آئی a ہے کے دونوں سروں پر کمیت m کے ذرات بندے ہوئیں ا یہ نظام وسط کے گرد آزادی سے تین بودی حسر کے کر سکتا ہے جب کہ نظام کا وسط از خود حسر کے نہیں کر تا

ا. د کھائیں کے اسس نظام کی احساز تی توانائیاں درج ذیل ہو تگی

$$E_n = \frac{\hbar^2 n(n+1)}{ma^2},$$
 $n = 0, 1, 2, ...$

امشارہ کلاسیکی تمن نیُوں کو کل زاویائی معیار حسر کے کی صوری مسیں تکھیں ۔ ب. اسس نظام کی معمول شدہ امت یازی تف عسلات کے ابول گھ اسس نظام کی n وی توانائی سطح کی انحطاطیت کے ابولگ ٣٠.٣ - چيکر

ہم ہم حیکر

$$[S_x,S_y]=i\hbar S_z,\quad [S_y,S_z]=i\hbar S_x,\quad [S_z,S_x]=i\hbar S_y$$

یوں پہلے کی طسرت S^2 اور S_z کے امتیازی تقناعہاں۔ درج ذیل کو مطمئن کرتے ہیں

(r.ma)
$$S^2|sm\rangle = \hbar^2 s(s+1)|sm\rangle; \quad S_z|sm\rangle = \hbar m|sm\rangle$$

 $S_{\pm} \equiv S_x \pm i S_y$ جبکه درج ذیل ہوگاجہاں

$$(\sigma.$$
וריי) $S_{\pm}|sm
angle=\hbar\sqrt{s(s+1)-m(m\pm1)}|s(m\pm1)
angle$

تاہم بہاں امتیازی تف عسلات θ اور φ کے تف عسل نہیں ہیں لہذا ہے کر وی ہار مونیا ہے۔ نہیں ہو نگے اور کوئی وجبہ نہیں بائی حباتی ہے کہ ہم ۶ اور m کی نصف عب در صحیح قیمتیں متبول نے کریں

$$(r.r2)$$
 $s = 0, 1/2, 1, 3/2, ...; $m = -s, -s+1, ..., s-1, s$$

ہم دیکھتے ہیں کہ ہر بنیادی ذرے 2 کی ایک مخصوص نافت اہل تب دیل قیمت ہوتی ہے جے اسس مخصوص نسل کا حپکر کہتے ہیں π مسین ایک ہر بنیادی ذرے 2 و عنی مورہ میں π مسین ایک السیام وان کا حپکر 1 ڈیلٹ کا حپکر 3/2 گر ہویٹون کا حپکر 2 و عنی مورہ و عنی مسید و π مسین ایک السیام وان کا مداری زاویا کی معیار حسر کت کو انٹم عسد د 1 کوئی بھی عسد د صرح تی ہیں مسین ایک السیام و کا مداری زاویا کی معیار حسر کے بونظام چھیٹر نے سے تب یل ہوگا تاہم کی بھی ذرے کا 8 اٹل ہوگا جسس کی بٹ نظر سے حپکر نسبتا

س دہ ہے سوال ۲۸.۲۵: اگر السیکٹران ایک کلانسیکی ٹھوسس کرہ ہو تا جس کار داسس درج ذیل ہو

(r.ma)
$$r_c = \frac{e^2}{4\pi\epsilon_0 mc^2}$$

ہم آننٹٹائن کلیے $E=mc^2$ کے تحت یہ وخشر ص کرتے ہوئے کہ السیکٹران کی کیت اسس کی برقی میدان کے توانائی کی بین ہوئے خطب بین ہے السیکٹران کا کلا سیکی رداس حیاصل کرتے ہیں السیکٹران کا زاویائی معیار حسر کرت $m s^{-1}$ کے خطب استواپر کمی نقطے کی رفت اور حقیقت تحب ربات ہوئے نقطے کی رفت اور حقیقت تحب ربات ہوئے نتیجہ مسزیہ عناط محبوس ہوگا تھی ہوئے نتیجہ مسزیہ عناط محبوس ہوگا

1/2 پکر

ساده ماده (پرونان، نیوٹران، السیکٹران) کے ساتھ ساتھ گوارکے $s=\frac{1}{2}$ اور تسام لیٹالین $s=\frac{1}{2}$ ہوگا جو سب سے اور ماده (پرونان، نیوٹران، السیکٹران) کے ساتھ ساتھ کے بعد زیادہ حیکر کے ضوابط دریافت کرنانسبٹا آسان ہے۔ صرف "دو" عدد استیازی تف عسلات پائے جب آبین بیسلا $\left|\frac{1}{2}\frac{1}{2}\right|$ ہے جہ ہم میدالی چگر s=1 اور دوسرا $\left|\frac{1}{2}\left|\frac{1}{2}\right|$ ہور دوسرا $\left|\frac{1}{2}\left|\frac{1}{2}\right|$ ہور کا میدالی کے بیان کو اس سے متیات لیتے ہوئے s=1 حیکر ذرے کے میدالی کو سال قب اللہ اللہ تعلق میدالی قبل میدالی قبل اللہ کا راہ کی کی کا راہ کے بیان کو سال کو دوا حب زائی وت اللہ قبل کی کا راہ کے بیان کے بیان کے بیان میدالی کے بیان کے بیان کی کر ان میں میں کے بیان کے بیان کی کو بیان کے بیان کے بیان کے بیان کی کر انہ میں کے بیان کی کر میان کے بیان کے بیان کے بیان کر بیان کے بیان

$$\chi = \begin{pmatrix} a \\ b \end{pmatrix} = a\chi_+ + b\chi_-$$

جهال

$$\chi_+ = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

ہم میدان حیکر کوظ اہر کر تاہے اور

$$\chi_{-} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

محنالف میدان حپکر کوظ اہر کر تاہے۔

quarks "2

leptons

spin up "9

spin down 2.

spinor²¹

۱۲۷ چيکر

ساتھ ہی عب ملین حبکر 2×2 مت الب ہوں گے جنہ میں حساصل کرنے کی حن اطسر ہم ان کااثر χ_+ اور χ_- پر ویکھتے ہیں۔ مساوات 135.4 درج ذیل کہتی ہے۔

$$\mathbf{S}^2\chi_+=rac{3}{4}\hbar^2\chi_+$$
 of $\mathbf{S}^2\chi_-=rac{3}{4}\hbar^2\chi_-$

 S^2 کو (اب تک) نامعلوم ار کان کافت الب

$$\mathbf{S}^2 = \begin{pmatrix} c & d \\ e & f \end{pmatrix}$$

لکھ کرمساوات ۲۰۱۴ می بائیں مساوات کو درج ذیل لکھ سے ہیں

$$\begin{pmatrix} c \\ e \end{pmatrix} = \begin{pmatrix} \frac{3}{4}\hbar^2 \\ 0 \end{pmatrix} \quad \text{i.} \quad \begin{pmatrix} c & d \\ e & f \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{3}{4}\hbar^2 \begin{pmatrix} \hbar \\ 0 \end{pmatrix}$$

 $c=rac{3}{4}\hbar^2$ اور c=0 ہوگا۔ مساوات $c=rac{3}{4}\hbar^2$

$$\begin{pmatrix} d \\ f \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{3}{4}\hbar^2 \end{pmatrix} \quad \ \ \, \cdot \quad \begin{pmatrix} c & d \\ e & f \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{3}{4}\hbar^2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

اور d=0 اور $f=rac{3}{4}\hbar^2$ ہوگا۔ یوں درج ذیل مسال ہو تاہے۔

(r.irr)
$$\mathbf{S}^2 = \frac{3}{4}\hbar^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

اسی طب رح

$$\mathbf{S}_z\chi_+=rac{\hbar}{2}\chi_+,\quad \mathbf{S}_z\chi_-=-rac{\hbar}{2}\chi_-,$$

ہے درج ذیل حسامسل ہو گا۔

$$\mathbf{S}_z = rac{\hbar}{2} egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}$$

ب اتھ ہی مب اوات 136.4 ذمل کہتی ہے۔

$$S_{+}\chi_{-} = \hbar\chi_{+}, \quad S_{-}\chi_{+} = \hbar\chi_{-}, S_{+}\chi_{+} = S_{-}\chi_{-} = 0,$$

لہاندادرج ذیل ہو گا۔

$$\mathbf{S}_{+}=\hbar\begin{pmatrix}0&1\\0&0\end{pmatrix},\quad\mathbf{S}_{-}=\hbar\begin{pmatrix}0&0\\1&0\end{pmatrix}$$

اب چونکہ $S_y=rac{1}{2i}(S_+-S_-)$ اور $S_x=rac{1}{2}(S_++S_-)$ اور یول ورج جونکہ $S_y=S_\pm=S_x\pm iS_y$ ہول کے اور یول ورج اور کی ہوگا۔

$$\mathbf{S}_{x} = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \mathbf{S}_{y} = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

 $\mathbf{S}=\frac{\hbar}{2}\sigma$ چونکہ \mathbf{S}_{z} , \mathbf{S}_{y} , \mathbf{S}_{x} کاحب زوخر بی پایاحب تا ہے الہذا انہ میں زیادہ صاف روٹ کی الم کاحب زوخر بی پایاحب تا ہے الم کاحب میں ہوں گے۔

$$(\textbf{r.irg}) \hspace{1cm} \sigma_{x} \equiv \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_{y} \equiv \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_{z} \equiv \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

یں پالی قالب چکر S_z اور S^2 تس م بر مثی بیں (جیسا کہ انہ میں ہونا بھی ہے کو نکہ S_z , S_y , S_x ور S_z بیں۔ وسیارہ کوظ ابر کرتے ہیں)۔ اسس کے بر تکسس S_z اور S_z فیسر بر مثی ہیں؛ یب نامت بال مشاہدہ ہیں۔ S_z کے امت بیازی چکر کا د (یقیناً) ورج ذیل ہوں گے۔ S_z

$$(\gamma$$
اهتیازی متدر $\chi_+=egin{pmatrix}1\\0\end{pmatrix}$, $(+rac{\hbar}{2}$ استیازی متدر $\chi_-=egin{pmatrix}0\\1\end{pmatrix}$, $(-rac{\hbar}{2}$, $(-rac{\hbar}{2}$

$$|a|^2 + |b|^2 = 1$$

(لعنی حپ کر کارلاز مأمعمول ث ده ہوگا)۔ ۵۳

تاہم اسس کی بحبائے آپ S_x کی پیسائٹس کر سکتے ہیں۔ اسس کے کسیانت آئے اور ان کے انفسرادی احسالات کسیا ہوگئے ؟ عصومی شماریاتی مفہوم کے تحت ہمیں S_x کے امتسیازی افتدار اور امتسیازی حسکر کار حبانے ہوں گے۔ امتسیازی مسلوات درج ذیل ہے۔ مسلوات درج ذیل ہے۔

$$\begin{vmatrix} -\lambda & \hbar/2 \\ \hbar/2 & -\lambda \end{vmatrix} = 0 \implies \lambda^2 = \left(\frac{\hbar}{2}\right)^2 \implies \lambda = \pm \frac{\hbar}{2}$$

ے ہر گز حسیرے کی بات نہیں کہ S_x کی ممکنہ قیمتیں وہی ہیں جو S_z کی ہیں۔ استیازی حسکر کار کو ہمیٹ کی طسرز پر حساس کرتے ہیں:

$$\frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \pm \frac{\hbar}{2} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \implies \begin{pmatrix} \beta \\ \alpha \end{pmatrix} = \pm \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

Pauli spin matrices

 S_z کی احسان زرہ ہونے کا احسال $|a|^2$ ہے۔ ایسا کہنا درست نہیں۔ در حقیقت وہ کہنا حیا ہے ہیں کہ اگر S_z کی پیسا کشن کی حبائے ہیں کہ آبر جمان خوا ہے ہیں کہ اگر اور کی اسل ہونے کا احسان $|a|^2$ ہوگا۔ (صفحہ ۱۵۰) پر حسانسیہ ۱۱ دیکھسیں۔)

۱۲۹ چيکر

استیانی حپکر کار درج ذیل ہوں گے۔ \mathbf{S}_{x} کے \mathbf{S}_{x} کے استیانی حپکر کار درج ذیل ہوں گے۔

$$($$
استيانى ت در $\chi_+^{(x)} = \begin{pmatrix} rac{1}{\sqrt{2}} \\ rac{1}{\sqrt{2}} \end{pmatrix}$, $(+rac{\hbar}{2}$ استيانى ت در $\chi_-^{(x)} = \begin{pmatrix} rac{1}{\sqrt{2}} \\ rac{-1}{\sqrt{2}} \end{pmatrix}$, $(-rac{\hbar}{2}$ استيانى ت در $\chi_-^{(x)} = \begin{pmatrix} rac{1}{\sqrt{2}} \\ rac{-1}{\sqrt{2}} \end{pmatrix}$, $(-rac{\hbar}{2}$

بطور ہر مشی متالب کے امت بازی سمتیات ہے۔ فعن کا احساط کرتے ہیں؛ عصو می حپکر کار χ (مساوات ۱۳۹ میں) کو ان کا خطی جوڑ کھی حب سکتا ہے۔

$$\chi = \Big(\frac{a+b}{\sqrt{2}}\Big)\chi_+^{(x)} + \Big(\frac{a-b}{\sqrt{2}}\Big)\chi_-^{(x)}$$

 $\frac{1}{2}$ اور $-\hbar/2$ کی پیپ کشش کریں تب $-\hbar/2$ ہے حصول کا احستال $\frac{1}{2}|a+b|^2$ اور $-\hbar/2$ حصول کا احستال S_x ان احستال سے کا مجموعہ $\frac{1}{2}|a-b|^2$

مثال ٢٠٢: فنرض كرين ألى حيكر كاايك ذره درج ذيل حال ميں ہے۔

(r.12r)
$$\chi = \frac{1}{\sqrt{6}} \begin{pmatrix} 1+i \\ 2 \end{pmatrix}$$

بت ئیں کہ S_z اور S_x کی پیپ کشش کرتے ہوئے $+\hbar/2$ اور $-\hbar/2$ سامس کرنے کے احتمالات کسیا ہوگے۔ $d=(1+i)\sqrt{6}$ میل جارت کا کہ اور $d=(1+i)\sqrt{6}$ کیا جارت کا احتمال میں ہوگے۔

$$\left|\frac{1+i}{\sqrt{6}}\right|^2 = \frac{1}{3}$$

جبکہ $\frac{\hbar}{2}$ سامسل کرنے کا احتمال

$$\left|\frac{2}{\sqrt{6}}\right|^2 = \frac{2}{3}$$

$$\frac{5}{6}\Big(+\frac{\hbar}{2}\Big)+\frac{1}{6}\Big(-\frac{\hbar}{2}\Big)=\frac{\hbar}{3}$$

جس کو ہم بلادا سے درج ذیل طسریقہ سے بھی حسامسل کر سکتے ہیں۔

$$\langle S_x \rangle = \chi^{\dagger} \mathbf{S}_x \chi = \begin{pmatrix} \frac{1-i}{\sqrt{6}} & \frac{2}{\sqrt{6}} \end{pmatrix} \begin{pmatrix} 0 & \frac{\hbar}{2} \\ \frac{\hbar}{2} & 0 \end{pmatrix} \begin{pmatrix} \frac{1+i}{\sqrt{6}} \\ \frac{2}{\sqrt{6}} \end{pmatrix} = \frac{\hbar}{3}$$

میں آپ کو 2/1 سیکر سے متلقہ ایک منسرضی پیپائسی تحب رہا ہے گزرتا ہوں۔ یونکہ ب ان تصوراتی خسالات کی وضاحت کرتاہے جن پر ہا۔ امسیں تبصر اکسیا گیا۔ فٹ رض کریں ایک زراحسال + لامسیں پایاحباتا ہے۔ اب اگر کوئی سوال یو چھے کہ اسس زرے کی زاویائی حپکری میارِ حسر کت کاz حبز کیا ہے۔ تب ہم یورے یقین کے ساتھ جواب دے کتے ہیں کہ اسس کا جوارے 4 / أ+ بو گا۔ يونكه ج كى پيپائس لاز من يمي قيب دے گا۔ اسس كے بحبائے اگر يو جھنے والا سوال کرے کہ اسس زرے کی حپکر یازاویائی میارِ حسرکت کا x حسنر کیا ہوگا۔ تب ہم ہے۔ کہنے پر محببور یونگے کہ Sx کی پیپائس سے 4/ 1/ + با2/ 1/ سے حصول کا احسال آدھ اور اور اسے گرسوال پوچھنے والا کلا سے کی ماحسر تبات باحسہ ا۔ ۲ کے نقطہ نزرے حقیقت پسند ہو تووہ اسس جواب کو ناکافی مستحمے گا۔ کیا آپ یہ کہنا حیاہتے ہیں کہ آپ کواسس زرے کا حقیقی حسال معسلوم نہسیں ہے۔ نہسیں مسیں نے یہ تو نہسیں کہا!۔ مجھے زرے کاحسال تھیک تھیک معسلوم ہے اور سے +ψ_ _ - بب ایسا کوں ہے کہ آپ مجھ اسس کے حیکر کا x حبز نہیں بت سکتے اسس کیے کہ اسس کے حیکر کا گوئی مخصو س x حبز نہیں بامات تاہے۔ یقینن ایب ہی ہوگا۔ اگر ی کا اور چ کی قیمتیں تائین ہوں تب اصول ادم یقینت متمکن نہیں ہوگا۔ پہ سنتے ہی سوال کرنے والا زرے کی حپکر کا x حسنز از خود پیپائٹس کر تا ہے۔ ایب منسر ض کریں کہ وہ 4 اُر بھت $\frac{1}{2}$ جے اس است کر تا ہے۔ وہ خو ثی سے حیالاٹ ہے۔ اس زرے کی $\frac{1}{2}$ قیت ٹھیک $\frac{1}{2}$ ہے۔ بی آیے درست منسرماتے ہیں اب اسس کی بہی قیمت ہے۔ جس سے یہ بلکل سابت نہیں ہو تا کہ تحب رہے ہے بہلے بھی اسس کی بہی قیمت تھی۔ اب ظباہر ہے آپ بال کی کھسال اتار رہے ہو اور آپ کی ادم یقینیت اصول کا کسیا بیٹ۔ مسیں اب S_X اور S_Z دونوں کو حبانت ہوں۔ جی نہیں آیے نہیں حباخے ہیں۔ آیے نے پیپائس کے دوران زرے کاحبال تبدیل کر دیاہے۔ اب وہ اور اگر ہے آیا اس کے S_x کی قیمت جانے ہیں۔ آیے S_z کی قیمت اب نے ہیں۔ سے کن میں نے ψ_+ کی پیپ کُس کے دوران ہمنے یوری کو سس کی کہ میں زرے کا سکون برباد سے کروں۔ اچھااگر آیہ میسری بات پر یقین S_x نہیں کرتے تو خود تصدیق کریں۔ آپ S_z کی پیپ اُنٹ کریں اور دیکھیں کہ کیا نتیجبہ حساس ہو تا ہے۔ عسین مسکن ے کہ وہ 1/2 مساس کرے جو میں رے لیے سرمند گی کاعصر ہوگا۔ اگر ہم اسس پورے عمسل کو بار بار دورائیں تو ہے۔ سے اوت اے 1/2 سے اسے 2/ 1/1 سے اوت اے کام آدمی کے لیئے

۱۲۱ میریم. حبیکر

سوال 26.4 (الف) تصدیق کی جنے گا کہ حپکری کالپ مساوات 145.4 اور 147.4 زاویائی میارِ حسر کت کے بنیادی سے اوات دار شباد کی رشتوں کو مطمین کرتے ہیں۔

-1دریکھ کیں کہ پولی حسیکری کالب مثال 148.4 درج ذیل زروی ت کنرہ کو مطمین کرتی ہے۔ $\sigma_j \sigma_k = \delta_{jk} + i \sum_l \epsilon_{jkl} \sigma_l$

جبان احشاریا پر به اور ی کو ظلی بر کرتے ہیں۔ جب کہ Levi-Civita ϵ_{jkl} علی احشاریا پر به به اور ی اور ترکو ظلی بر کرتے ہیں۔ جب کہ ابور ترکی سورت مسین 1+ جب کہ 1,3,2 با بورت 1,3,2 کی سورت مسین 1+ جب کہ با بورت ویگر 1,2 بورت میں 1+ جب کہ با بورت ویگر وی بوگا۔

 $\psi = A\begin{bmatrix} 3i \\ 4 \end{bmatrix}$ النستان کریں۔ $\psi = A\begin{bmatrix} 3i \\ 4 \end{bmatrix}$ عان کریں۔ $\psi = A\begin{bmatrix} 3i \\ 4 \end{bmatrix}$ عان کریں۔ $\psi = A\begin{bmatrix} 3i \\ 4 \end{bmatrix}$ النستان کریں۔ $\psi = A\begin{bmatrix} 3i \\ 4 \end{bmatrix}$ عا

 $(, S_x, S_y, S_z)$ اور σ_{S_x} اور σ_{S_z} اور σ_{S_z}

سوال 29.4 (الف) استیازی عبد داد تلاسش لریں۔ (ب) عبدوی حسال پر مساوات S_y spinor کے استیازی عبد داد تلاسش لریں۔ (ب) عبدوی حسال کیا ہوگا۔ 139.4 میں پائے حبانے والا ایک زرے کے S_y کی پیسائس سے کیا قیمتیں متوقع ہیں اور ہر قیمت کا احسال کیا ہوگا۔ تیسان رہے کہ اور ماغنی حقیق بھی ہو سکیے ہیں۔ (ج) کی پیسائنس سے کیا قیمتیں متوقع ہیں اور ان کے احسالات کیا ہوں گے۔ کیا قیمتیں متوقع ہیں اور ان کے احسالات کیا ہوں گے۔

سوال 30.4 کسی اختیاری رکھ ہے ہم رہ حپکری زاویائی میارِ حسر کسے کے احب زاء کا کالپ ک_ی تیار کریں۔ کروی محد داستعال کریں جب ان درج ذیل ہوگا۔

$$\hat{r} = \sin\theta\cos\phi\hat{i} + \sin\theta\sin\phi\hat{j} + \cos\theta\hat{k}$$

کی امت یازی عبد داد اور معمور سید اامت یازی spinor تلاسش کریں۔ S_r

$$\chi_{+}^{(r)} = \begin{bmatrix} \cos(\theta/2) \\ e^{i\phi}\sin(\theta/2) \end{bmatrix}; \quad \chi_{-}^{(r)} = \begin{bmatrix} e^{i\phi}\sin(\theta/2) \\ -\cos(\theta/2) \end{bmatrix};$$

چونکہ آپ اپنی مسرضی کے دوہری حبز ضرب و نام ہے ضرب دے سکتے ہو۔ اہسازا آپ کا جواب کچھ مختلف ہو سکتا ہے۔

سوال 31.4 ایک زراجس کا حیکر ایک ہے کے لیے حیکری کا لیپ S_x اور S_z تیبار کریں۔ اشعبارہ S_z کے گئے استیازی حسالات ہوگے ہرا لیے حسال پر S_z اور S_z کا عمسل تاین کریں۔ نصاب مسیں S_z ہو کہ کے لیے استعمال کی گئی ترقیب استعمال کی گئی ترقیب استعمال کریں

۲.۴۰۱ مقن طیسی میدال میں ایک السیکٹران

ایک حپکر کاٹے ہوئے بار بار زرا پر مقت طبی جفد کتب مشتمل ہوگا۔ اسس کامقت طبی جفد کتبی معیارِ اثر 4، زرے کی حپکری زاویائی معیارِ حسر کرے 8 کوراسی متناسب ہوگا۔

$$\mu = \gamma S$$

جب ں شن سبی مستقل ہم مسقن مقت طیسی نسبت کہ لاتا ہے۔ مقت اطیسی میدان B مسیں رکھے گے مقت طیسی جفد کتب پر تو ہے۔ قوتِ مسروڑ 4 × 4 عمسل کر تا ہے۔ جو کمپس کی سوئے کی طسرح اسس کومیدان کے متواز ٹیلانے کی کوسس کر تا ہے۔ اسس قوتِ مسروٹ کے ساتھ وبستا توانائی درج ذیل ہوگی۔

$$(r.109)$$
 $H = -\mu.B$

لہازامقن طبیعی میدان B مسیں ایک نقط پر رہتے ہوئے ایک باروار حپکر کھاتے ہوئے زرے کا ہیملٹو نیں درج زیل ہوگا۔ $H = -\gamma B.S$

مثال ۱۳.۳: تقت یم لارمسر فنسر ض کریں z رخ یکسال مقت طبی میدان $oldsymbol{B}=B_0\hat{k}$

مسين 1/2 حيكركاك كن ذره پاياب تا بوت لبى روپ مسين جيملشنى مساوات 158.4 درج ذيل موگا

$$m{H}=-\gamma B_0 m{S}_z = -rac{\gamma B_0 \hbar}{2}egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}$$

جیملٹنی H کے امتیازی حالات وہی ہول گے جو S_z کے تھے

$$\left\{ egin{aligned} \chi_+, & E_+ = -(\gamma B_0 \hbar)/2 \ \chi_-, & E_- = +(\gamma B_0 \hbar)/2 \end{aligned}
ight.$$

کلا سسکی صورت کی طسرح بہاں بھی کم ہے کم توانائی اسس صورت ہو گی جب جفت کتب کامعیار اثر مقت طیسی میدان کا متوازی ہوجو نکہ ہیملٹنی غنیسر تائزہ وقت ہے امذا تائزہ وقت ششر وڈنگر مساوات

$$i\hbar rac{\partial X}{\partial t} = m{H} X$$

ے عصوبی حسل کوسا کن حسالات کی صورت مسیں لکھا جب سکتا ہے

$$\chi(t) = a\chi + e^{-iE_{+}t/\hbar} + b\chi_{-}e^{-iE_{-}t/\hbar} = \begin{pmatrix} ae^{i\gamma B_{0}t/2} \\ be^{-i\gamma B_{0}t/2} \end{pmatrix}$$

۱۷۳ چپکر

متقلاے a اور b کواہت دائی معسلوما<u>۔</u>

$$\chi(0) = \begin{pmatrix} a \\ b \end{pmatrix}$$

 $b=a=\cos(lpha/2)$ واور $a=a=\cos(lpha/2)$ وان متقلات کو $|a|^2+|b|^2=1$ اور a=a=a=a واور a=a=a واور خل متقلات کو a=a=a واور خل متقل بین جہاں a=a=a واور خل متقل متعلق بین جہاں متعلق بین متعلق

(r.17a)
$$\chi^t = \begin{pmatrix} \cos(\alpha/2)e^{i\gamma B_0t/2} \\ \sin(\alpha/2)e^{-i\gamma B_0t/2} \end{pmatrix}$$

آئیں S کی توقعی تی قیمیہ بطور تف 2 ل وقت حیاص کریں

$$\langle S_x
angle = \chi(t)^{\dagger} S_x \chi(t) = \left(\cos(\alpha/2) e^{-i\gamma B_0 t/2} \sin(\alpha/2) e^{i\gamma B_0 t/2} \right)$$
 $imes \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \cos(\alpha/2) e^{i\gamma B_0 t/2} \\ \sin(\alpha/2) e^{-i\gamma B_0 t/2} \end{pmatrix}$
 $($ ٢٠.١٦)
$$= \frac{\hbar}{2} \sin \alpha \cos(\gamma B_0 t)$$

اسی طسسرح

$$\langle S_y
angle = \chi(t)^\dagger S_y \chi(t) = -rac{\hbar}{2} \sin lpha \sin(\gamma B_0 t)$$

اور درج ذیل ہو گا

(r.17a)
$$\langle S_z \rangle = \chi(t)^\dagger S_z \chi(t) = \frac{\hbar}{2} \cos lpha$$

کلا سیکی صورت کی طسرح شکل 10.4 محور z کہ ساتھ s ایک مستقل زاوی α پر رہتے ہوئے محور کے گرد لار مسر تعبد د

$$(r.179)$$
 $\omega = \gamma B_0$

ے تقت دیم کر تا ہے ہے۔ حیسرت کی بات نہیں ہے مسئلہ اہر نفسٹ کی وہ صورت جس سے سوال 20.4 مسیں اخسنہ کسی احت کی اسکی قوانین کے تحت $\langle S \rangle$ ارتقاء پائے گا بہسر حسال اسس عمسال کو ایک خصوص سیاح کو حسباق مسیں ویھنا اچھا گامٹال

مثال ۱۲٬۲۰ تحب رسب سٹرن و گرلاخ ایک عنب ریکساں مقت اطیسی میدان مسیں ایک مقت اطیسی جفت کتب پر سنہ صرف قوت مسرور کبکہ ایک قوت بھی پایا حبا تا ہے

(1.14)
$$oldsymbol{F} =
abla(oldsymbol{\mu} \cdot oldsymbol{B})$$

اس قوت کو استعال کرتے ہوئے ایک مخصوص سمت بند حپکر کے ذرہ کو درج ذیل طب یقب سے علیحہ و کسیا سکتا ہے و منسر ض کریں ایک نسبتا بھاری تعب یکی جوہروں کی شعباع y رخ حسر کرتے ہوئے ایک عنیب ریک ال مقن طبیعی مب دان کے خطب سے گزرتی ہے شکل 11.4 لیعنی

$$B(x,y,z) = -\alpha x \hat{i} + (B_0 + \alpha z)\hat{k}$$

$$\mathbf{F} = \gamma \alpha (-S_x \hat{i} + S_z \hat{k})$$

کہ تاہم $B_0 \stackrel{}{=} \mathcal{S}_X$ د نقت دیم لارمسر کی بن S_X سینزی سے ارتعب شش کر تا ہے جس کے بن اسس کی اوسط قیمت صف موگی لہذا S_X رخ کل قوت درج ذیل ہوگا

$$(r.12r)$$
 $F_z = \gamma \alpha S_z$

اور شعباع کے حبکری زاویائی معیار حسرکت کے تھے جبزو کی تناسب سے شعباع اوپر یا نیجے کی طسرون جھکے گی کا کان سیکی طور پر چونکہ چھ کے کو کوانٹ اشدہ نہیں ہوگا ہم توقع کرتے کہ تھ تحور پر شعباع کی لپائی پائی حباتی جبکہ حقیقت شعباع کا سیکی طور پر چونکہ یہ مطاہرہ کرتی ہے 1 + 2s علیحہ ہ شعباعوں مسیں تقسیم ہو کر زاویائی معیار حسرکت کے کوانٹ زئی کانو بصورت مظاہرہ کرتی ہوئے چونکہ اسس کے اندر حبانب بتسام السیکٹراان چوڑیوں کی صورت مسیں مثال کے حب کہ ان کے حبکہ اور مداری زاویائی معیار حسرکت منبوخ ہوجاتے ہیں یوں صرف ہیں۔ وفی اکسیے السیکٹراان یوپائے حباتے ہیں کہ ان کے حبکہ اور مداری زاویائی معیار حسرکت منبوخ ہوجاتے ہیں یوں صرف ہیں۔ دلیل کا خیس کے اسیکٹران کورج تو کا لیے السیکٹران فقط سے دلیات کا سیکی متاجب کو کانٹم میکانیات مسیل قوت کی کوئی جگہ نہیں پائی حباتی ہے لہذا ای مسئلے کو درج ذیلے نقط ساتھ جاتھ ساتھ جاتھ ہوگا ہا کہ میں بیملئنی صف ہرے ابت داکرتے ہوئے وقت ہے جس دوران ذرامقن طیسی میدان سے گزر تا ہے کے بید ار ہوکہ واپس گبسری نیٹ میسیدان سے گزر تا ہے کے بید ار ہوکہ واپس گبسری نیٹ میسیدان سے گزر تا ہے کے بید ار ہوکہ واپس گبسری نیٹ میں دوران ذرامقن طیسی میدان سے گزر تا ہے کے بیب دار ہوکہ واپس گبسری نیٹ میٹ دوسیا تا ہے

$$H(t) = \begin{cases} 0 & t < 0 \\ -\gamma (B_0 + \alpha z) S_z & 0 \le t \le T \\ 0 & t > T \end{cases}$$

جیے ہم بتا جیے ہیں اسس مسئلہ مسیں B 2 x + x جبزو کا کوئی کر دار نہیں ہے لہذا مسیں اسس تکلیف دہ جبزو کو نظر ر انداز کر تاہوں و نسر ض کریں جوہر کا حب کر 1/2 ہے اور ہے۔ درج ذیل حسال ہے ابت دا کر تاہے

$$\chi(t) = a\chi_+ + b\chi_- \qquad \qquad t \le 0$$

ہیملٹنی کی ہیداری کے وقت $\chi(t)$ ہمیثہ کی طسرح ارتقاءیا تاہے

$$\chi(t) = a\chi_{+}e^{-iE_{+}t/\hbar} + b\chi_{-}e^{-iE_{-}t/\hbar} \qquad 0 \le 0t \le T$$

۱۷۵ مریم. مپیکر

جہاں مساوات 161.4 کے تحت

$$(r.12r)$$
 $E_{\pm}=\mp\gamma(B_0+az)rac{\hbar}{2}$

ہوگالہذا $t \geq T$ کے لیے ہودرج ذیل حسال اختیار کرے گا

$$($$
رد.اخه) $\chi(t)=\left(ae^{i\gamma TB_0/2}\chi_+
ight)e^{i(lpha\gamma T/2)z}+\left(be^{-i\gamma TB_0/2}\chi_-
ight)e^{-i(lpha\gamma T/2)z}$

ان دونوں احبزاء کا آپ ترخ مسیں معیار حسر کت پایاب تا ہے مساوات 32.3 دیکھیں ہمامیدان حبزو کا معیار حسر کت درج ذیل ہوگا

$$p_z = rac{lpha \gamma T \hbar}{2}$$

سوال ۲۶ ۴: مثال 3.4 مسين

ا. وقت t پر چپکری زاویائی معیار حسر کت کے x رخ جبزو کی پیمائثی متیب $\hbar/2$ حاصل کرنے کا احتال کی ہوگا

ب. الرخ کے لیے اس سوال کاجواب کے امو گا

ج. ترخ اس سوال کاجواب کسیا ہوگا

سوال ۲۷.۲۷: ایک ارتعاشی مقناطیسی میدان

 $\boldsymbol{B} = B_0 \cos(\omega t) \hat{k}$

جہاں B_0 اور ω متقل ہیں میں ایک السیکٹران کن پایاحہا تاہے

ا. اسس نظام کامیمکشی متالب شیار کریں

 $\chi(0) = \chi_+^{\chi}$ بھور پر ہمامیدان حسال لیمن $\chi(0) = \chi_+^{\chi}$ بھر السینٹرون ابت دائی طور پر ہمامیدان حسال لیمن $\chi(t) = 0$ بھر السینٹر کی وقت ہے اپذا آپ ابتدا کر تا ہے مستقبل کی وقت ہے اپذا آپ مساوات $\chi(t)$ حساس نہیں کر سے ہیں خوشش قتمتی ہے آپ تائع وقت شہروڈ گر مساوات $\chi(t)$ کو بلاوا سے حسل کر سے ہیں خوشش قتمتی ہے آپ تائع وقت شہروڈ گر مساوات کے 162.4 وہلاوا سے حسل کر سے ہیں

ج. S_x کی پیپ کش مسیں $\hbar/2$ نتیب مسل کرنے کا استال کی ابوگا جو اب S_x جا $\sin^2\left(\frac{\gamma B_0}{2\omega}\sin(\omega t)\right)$

و. S_{x} کو مکسل الٹ کرنے کے لیے کم سے کم میدان B_{0} کتنا

۲.۴.۲ زاویائی معیار حسرکت کامحب وعب

منسرض کریں ہمارے پاسس 1/2 حیکرکے دو ذرات مشالہائیڈروجن کے زمینی حسال مسیں ایک السیکٹران اور ایک پروٹان ہیں ان مسیں سے ہر ایک ہے۔ مید ان یامخسالف میدان ہو سکتاہے لہذا کل حیار ممسکنات ہو تگی

$$(r.122)$$
 $\uparrow\uparrow$, $\uparrow\downarrow$, $\downarrow\uparrow$, $\downarrow\downarrow$

جہاں پہلے شیسر کانشان لینی بایاں شیسر السیسٹر ان کو جب کہ دوسسر الینی دایاں شیسر کانشان پروٹان کو ظاہر کر تاہے سوال: اسس جوہر کاکل زاویائی معیار حسر کے کسیاہوگاہم درج ذیل وسنسرض کرتے ہیں

$$S\equiv S^{(1)}+S^{(2)}$$

ان حیار مسر کب حسالات مسیں سے ہر ایک S_z کا استیازی حسال ہو گاان کے z احبزاء سادہ جمع دیتے ہیں

$$S_z \chi 1 \chi 2 = (S_z^{(1)} + S_z^{(2)}) \chi 1 \chi 2 = (S_z^{(1)} \chi 1) \chi 2 + \chi 1 (S_z^{(2)} \chi 2)$$

= $(\hbar m_1 \chi 1) \chi 2 + \chi 1 (\hbar m_2 \chi 2) = \hbar (m_1 + m_2) \chi 1 \chi 2$

$$\uparrow \uparrow$$
: $m = m_{s1} + m_{s2} = \frac{1}{2} + \frac{1}{2} = 1$

$$\uparrow\downarrow$$
: $m = m_{s1} + m_{s2} = \frac{1}{2} - \frac{1}{2} = 0$

$$\downarrow \uparrow: \quad m = m_{s1} + m_{s2} = -\frac{1}{2} + \frac{1}{2} = 0$$

$$\downarrow \downarrow : \quad m = m_{s1} + m_{s2} = -\frac{1}{2} - \frac{1}{2} = -1$$

۱۷۷ میرم. حپکر

 $S=S^{-1}+S$ ہے کہ $S=S^{-1}+S$ ہوتا ہے کہ $S=S^{-1}+S$ ہوتا ہے کہ وحیج متد موں کے لیے نظر مسیں ہے شیک معلوم نہمیں ہوتا ہے کہ S=S ہوگا ہیں نظر آتا ہے کہ S=S ہوگا ہیں ہوتا ہے اس الجھن سے نظنے کی مناظر ہم معاوات 146.4 استعال کرتے ہوئے $S=S^{-1}+S^{-1}+S^{-1}$

$$\begin{split} S_{-}(\uparrow\uparrow) &= (S_{-}^{(1)}\uparrow)\uparrow + \uparrow (S_{-}^{(2)}\uparrow) \\ &= (\hbar\downarrow)\uparrow + \uparrow (\hbar\downarrow) = \hbar(\downarrow\uparrow + \uparrow\downarrow) \end{split}$$

آ ہو کھے سے ہیں کہ s=1 کے تین حالات $|sm\rangle$ عبد میں درج ذیل ہو نگے

$$\begin{cases} |11\rangle = \uparrow \uparrow \\ |10\rangle = \frac{1}{\sqrt{2}} (\uparrow \downarrow + \downarrow \uparrow) \\ |1-1\rangle = \downarrow \downarrow \end{cases} \quad s = 1 \text{ (f.)}$$

$$(r.11.1) \hspace{1cm} \{|00\rangle = \frac{1}{\sqrt{2}}(\uparrow \downarrow - \downarrow \uparrow)\} \hspace{1cm} s = 0 \hspace{1cm} \text{(f.11.1)}$$

اسس حیال پرعب مسل رفعت یاعب مسل تقلیل کی طباق سے صف رحب صل ہوگا موال 34.4 (ب) ویکھیں یوں مسیں وعن کر تاہوں کہ 1/2 حبکر کے دو ذرات کا کل حبکر ایک یاصف رہوگا ہوائس پر مخصد ، ہوگا کہ آیادہ تین جوڑی یاوٹ ان تقسیم اختیار کرتے ہیں اسس کی تصدیق کرنے کی حناط سر مجھے ثابت کرنا ہوگا کہ تین حبٹرواں حیالات S² کے است یازی سمتیات ہوگا جن کے است یازی سمتیات ہوگا جن کے است یازی تعدر صف رہو درج ذیل ہوگا جن کے است یازی افت دار عمل کا مواجب کہ وجب ان S² کاوہ است یازی سمتیا ہوگا جس کا است یازی متدر صف رہو درج ذیل کی صاحب سکتا ہے

$$S^2 = (\mathbf{S}^{(1)} + \mathbf{S}^{(2)}) \cdot (\mathbf{S}^{(1)} + \mathbf{S}^{(2)}) = (S^{(1)})^2 + (S^{(2)})^2 + 2\mathbf{S}^{(1)} \cdot \mathbf{S}^{(2)}$$

$$S^2 = (\mathbf{S}^{(1)} + \mathbf{S}^{(2)}) \cdot (\mathbf{S}^{(1)} + \mathbf{S}^{(2)}) = (S^{(1)})^2 + (S^{(2)})^2 + 2\mathbf{S}^{(1)} \cdot \mathbf{S}^{(2)}$$

$$\begin{split} \boldsymbol{S}^{(1)} \cdot \boldsymbol{S}^{(2)}(\uparrow\downarrow) &= (S_x^{(1)} \uparrow)(S_x^{(2)} \downarrow) + (S_y^{(1)} \uparrow)(S_y^{(2)} \downarrow) + (S_z^{(1)} \uparrow)(S_z^{(2)} \downarrow) \\ &= \left(\frac{\hbar}{2} \downarrow\right) \left(\frac{\hbar}{2} \uparrow\right) + \left(\frac{i\hbar}{2} \downarrow\right) \left(\frac{-i\hbar}{2} \uparrow\right) + \left(\frac{\hbar}{2} \uparrow\right) \left(\frac{-\hbar}{2} \downarrow\right) \\ &= \frac{\hbar^2}{4} (2 \downarrow\uparrow - \uparrow\downarrow) \end{split}$$

سى طب رح درج ذيل بھى ہو گا

$$S^{(1)} \cdot S^{(2)}(\downarrow \uparrow) = \frac{\hbar^2}{4} (2 \uparrow \downarrow - \downarrow \uparrow)$$

سس طسرح

$$(\text{r.inf}) \hspace{1cm} \boldsymbol{S}^{(1)} \cdot \boldsymbol{S}^{(2)} |10\rangle = \frac{\hbar^2}{4} \frac{1}{\sqrt{2}} (2\downarrow\uparrow -\uparrow\downarrow +2\uparrow\downarrow -\downarrow\uparrow) = \frac{\hbar^2}{4} |10\rangle$$

أور

$$(\text{r.inf}) \hspace{1cm} S^{(1)} \cdot S^{(2)} |00\rangle = \frac{\hbar^2}{4} \frac{1}{\sqrt{2}} (2\downarrow\uparrow - \uparrow\downarrow - 2\uparrow\downarrow + \downarrow\uparrow) = -\frac{3\hbar^2}{4} |00\rangle$$

ہو نگے مساوات 179.4 پر دوبارہ غور کرتے ہوئے اور مساوات 142.4 استعمال کرتے ہوئے ہم درج ذیل متیجب اخسذ کرتے ہیں

$$(\text{r.inf}) \hspace{1cm} S^2|10\rangle = \Big(\frac{3\hbar^2}{4} + \frac{3\hbar^2}{4} + 2\frac{\hbar^2}{4}\Big)|10\rangle = 2\hbar^2|10\rangle$$

لېذا |10
angle يقينا |10
angle كاامتيازى حال بوگا جس كاامتيازى ت در |10
angle بوگااور

$$\langle r$$
. Ind) $S^2|00
angle=\Big(rac{3\hbar^2}{4}+rac{3\hbar^2}{4}-2rac{3\hbar^2}{4}\Big)|00
angle=0$

$$(r.in)$$
 $s = (s_1 + s_2), (s_1 + s_2 - 1), (s_1 + s_2 - 2), \dots, |s_1 - s_2|$

چونکه z احبزاء آپس مسین جی ہوتے ہیں لہذا صرف وہ مسر کی حسالات جن کے گئے $m_1+m_2=m+m_1+m_2$ حسد ڈال $m_1+m_2=m+m_2$ اور m_1 ہوگامسر کی حسالات $|s_1m_1\rangle|s_2m_2$ کا خطی محبوعی:

$$|sm\rangle = \sum_{m_1+m_2=m} C_{m_1m_2m}^{s_1s_2s} |s_1m_1\rangle |s_2m_2\rangle$$

۱۷۹ چيکر

 $s_1 = s_2 = 1/2$ کی جہاں 177.4 اس عسوی روپ کے دو مخصوص صورت ہیں جہاں 177.4 اس عسوی روپ کے دو مخصوص صورت ہیں جہاں 177.4 اس عسوی روپ کے دو مخصوص صورت ہیں جہاں 177.4 کی متقالت $C^{s_1s_2s}_{m_1m_2m}$ کو کی بیٹ رسمی عسال تمین کی المیت و المیت کی المیت و کا میں چند سادہ صور تیں پیش کی گئی ہے مثال کے طور پر دو زر بے ایک جدول کے ساپ دار قطار مسین در زنیل پیش کیا گیا ہے ہوں کی گئی ہے مثال کے طور پر دو زر بے ایک حب دول کے ساپ دار قطار مسین در زنیل پیش کیا گئی ہے مثال کے طور پر دو زر بے ایک جدول کے ساپ دار قطار مسین در زنیل پیش کیا گئی ہے مثال کے طور پر دو زر بے ایک حب دول کے ساپ دار قطار مسین در زنیل پیش کیا گئی ہے مثال کے طور پر دو زر بے ایک حب سے دول کے ساپ دار قطار مسین در زنیل پیش کیا گئی ہے مثال کے طور پر دو زر بے ایک دول کے ساپ دار قطار مسین در زنیل پیش کیا گئی ہے مثال کے طور پر دو زر بے ایک دول کے ساپ دار قطار مسین در زنیل پیش کیا گئی ہے مثال کے طور پر دو زر بے ایک دول کے ساپ دار قطار مسین دول کے ساپ دار قطار کیا تھوں دول کے ساپ دار قطار مسین دول کے ساپ دار قطار کیا تو دول کے ساپ دول کے ساپ دار قطار کیا تو دول کے ساپ دار قطار کیا تو دول کے ساپ دول کے ساپ دار قطار کیا تو دول کے ساپ دول کے ساپ دول کے ساپ دول کے دول کے دول کے ساپ دول کے دو

$$|30\rangle=\frac{1}{\sqrt{5}}|21\rangle|1-1\rangle+\sqrt{\frac{3}{5}}|20\rangle|10\rangle+\frac{1}{\sqrt{5}}|2-1\rangle|11\rangle$$

$$|s_1 m_1\rangle |s_2 m_2\rangle = \sum_s C_{m_1 m_2 m}^{s_1 s_2 s} |sm\rangle$$

مثال کے طور پر 1 × 3/2 حبدول میں ساپ دار صف درج ذیل کہتی ہے

$$|\frac{3}{2}\frac{1}{2}\rangle|10\rangle = \sqrt{\frac{3}{5}}|\frac{5}{2}\frac{1}{2}\rangle + \sqrt{\frac{1}{15}}|\frac{3}{2}\frac{1}{2}\rangle - \sqrt{\frac{1}{3}}|\frac{1}{2}\frac{1}{2}\rangle$$

 $\sqrt{2}\hbar|1-1
angle$ ا. مساوات 177.4 مسین دیے گئے |10
angle پر |10
angle کا اطلاق کرتے ہوئے تصدیق کریں کہ آپ |177.4 مساسل کرتے ہیں مسل کرتے ہیں

ب. مساوات 178.4 مسیں $\langle 00 |$ پر S_{\pm} کااط لاع کرتے ہوئے تصدیق کریں کہ آپ صف رسامسل کرتے ہیں

ج. و کھائی کہ مساوات 177.4 مسیں دیے گئے $\langle 11 \mid 12 \mid S^2 \rangle$ کہ موضوع استیازی افت داروالے استیازی تفاعلات ہیں

موال ۲۰۲۹: کوارک کاحپکر 1/2 ہے تین کوارک ایک دونوں کے ساتھ مسل کرایک ہیں مشلا پروٹان یا نیوٹران دو کوارک بلکہ ہے۔ کہتا زیادہ درست ہوگا کہ ایک کوارک اور ایک ضد کوارک آپس مسیس جوڑ کر ایک میں خوٹر کر ایک میں بین لہذاان کامداری زاویائی ایک میں بین لہذاان کامداری زاویائی معیار حسر کرتے میں مشلاپیان یا کایون مسئر میں کہ ہے کوارکے زمسینی حسال مسیس ہیں لہذاان کامداری زاویائی معیار حسر کرتے صف رہوگا

ا بیسریون کے کسیا مکن حیکر ہونگے ب. میسزان کے کسیا مکن حیکر ہونگے

سوال ۲۳۰،۳۰:

ب. ہائیڈروجن جوہر کے 4510 مسیں ایک السیٹران محنالف میدان پایا حباتا ہے اگر آپ پروٹان کے حپکر کو کو مضامل کئے بغید صرف السیٹران کے کل زاویائی معیار حسر کت کی مسریع کی پیسائٹس کر سکیں تب کیا قیمتیں حساسل ہو سکتی ہیں اوران کی افغیرادی احتمال کیا ہوگا

سوال ۱۳۰۳: S^2 اور $S^{(1)}_z$ کامقلوب تعسین کریں جہاں $S^{(2)}_z$ کا مقلوب تعسین کریں جہاں جہاں کے $S^{(1)}_z$ کا مقلوب تعسین کریں جہاں ہوئے درج ذیل دکھائیں

$$[S^2, S^{(1)}] = 2i\hbar(S^{(1)} \times S^{(2)})$$

میں یہاں بتاناحپ ہوں گا کہ چونکہ $S_z^{(1)}$ اور S^2 ایک روسرے غیر مقلوبی ہیں اہذا ہم ایے حسالات حساس کرنے سے وقت ورنوں کے بیک وقت استیازی سمتیات ہو ہمیں S^2 کے استیازی حسالات تیار کرنے کی حناطب $S_z^{(1)}$ استیازی حسالات کے خطی محبوعے درکار ہونگے مساوات 185.4 میں کلیبش و گورڈن عددی سے ہمارے لیے بھی کچھ کرتے ہیں ساتھ ہی مساوات 187.4 سے ہم کہہ سکتے ہیں کہ S^2 کے ساتھ محبوعہ $S^{(1)}$ وتابل براہ وگارو ہماری معیلومات مساوات 103.4 کی ایک مخصوص صورت ہے

سوال ۳۳۳: فنسرض کریں کہ ہم جبنے ہیں کہ دوعہ د 2 / 1 حپکر ذرات یکت تنظیم ?? مسیں پائے حبتے ہیں۔مان لیں کہ اکائی سمتیا $S_{a}^{(2)}$ کے رخ درہ داکئے سمتیا $S_{a}^{(2)}$ کے رخ درہ دیکے حپکری زاویائی معیار حسر کے کاحبز \hat{a} ہے۔درج ذیل دکھائیں جبال \hat{a} اور \hat{b} کے خزاویہ \hat{b} ہے۔

(r.19+)
$$\langle S_a^{(1)} S_b^{(2)} \rangle = -\frac{\hbar^2}{4} \cos \theta$$

سوال ۳۳۳. ۴:

ا. کلیبش گورڈن عددی سروں کو $S_2 = anything$ $S_1 = 1/2$ کلیبش گورڈن عددی سروں کو $S_2 = anything$ $S_1 = 1/2$ کاامت یازی حسال و یکٹ مسین $S_1 = 1/2$ کاامت یازی حسال و یکٹ میں $S_2 = 1/2$ کا کامت یازی حسال و یکٹ میں کہ گا

$$|sm\rangle = A|\frac{1}{2}\frac{1}{2}\rangle|S_2(m-\frac{1}{2})\rangle + B|\frac{1}{2}(-\frac{1}{2})\rangle|S_2(m+\frac{1}{2})\rangle$$

۱۸۱ میریم. حبیکر

 $S_{\chi}^{(2)}$ مساوات 179.4 تامساوات 182.4 کی ترکیب استعال کریں۔ اگر آپ یہ جبانے سے متارہ 182.4 مثلاً ویکٹ ر $|s_{2}m_{2}\rangle$ پر کسیا کرتا ہے تو مساوات 136.4 سے تو مساوات 147.4 سے قبل جسلہ دوبارہ پڑھسیں۔ جواب:

$$A = \sqrt{\frac{s_2 \pm m + 1/2}{2s_2 + 1}}; B = \pm \sqrt{\frac{s_2 \mp m + 1/2}{2s_2 + 1}}$$

 $s = s_2 \pm 1/2$ جبان $s = s_2 \pm 1/2$ عبان

... است عسوى نتیج كي تصديق حبدول 8.4مسين تين ياحپار در حب د كيو كركرين-

سوال $^{\prime\prime\prime\prime\prime\prime\prime}$: ہمیشہ کی طسرح S_z کی امتیازی حسالات کو اس سس لیتے ہوئے 3/2 چپر کے ذرے کے لیے و تسالب S_x تلاسش کریں۔ امتیازی مساوات حسل کرتے ہوئے S_x کی امتیازی اقتدار مسلوم کریں۔

سوال ۳۸.۳۵: مساوات 145.4 اور 147.4 مسین 1/2 پکر سوال 31.4 مسین ایک حیکر اور سوال 52.4 مسین 3/2 حیکر کے اسلام کی بات کی گئی۔ ان نتائج کو عصومیت دیتے ہوئے اختیاری ۶ حیکر کے لیے حیکر کی صالب تلاسش کریں۔ جواب:

$$S_{z} = \hbar \begin{pmatrix} s & 0 & 0 & \cdots & 0 \\ 0 & s-1 & 0 & \cdots & 0 \\ 0 & 0 & s-2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & -s \end{pmatrix}$$

$$S_{x} = \frac{\hbar}{2} \begin{pmatrix} 0 & b_{s} & 0 & 0 & \cdots & 0 & 0 \\ b_{s} & 0 & b_{s-1} & 0 & \cdots & 0 & 0 \\ 0 & b_{s-1} & 0 & b_{s-2} & \cdots & 0 & 0 \\ 0 & 0 & b_{s-2} & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & b_{-s+1} \\ 0 & 0 & 0 & 0 & \cdots & b_{-s+1} & 0 \end{pmatrix}$$

$$S_{y} = \frac{\hbar}{2} \begin{pmatrix} 0 & \iota b_{s} & 0 & 0 & \cdots & 0 & 0 \\ \iota b_{s} & 0 & -\iota b_{s-1} & 0 & \cdots & 0 & 0 \\ \iota b_{s} & 0 & -\iota b_{s-1} & 0 & \cdots & 0 & 0 \\ 0 & \iota b_{s-1} & 0 & -\iota b_{s-2} & \cdots & 0 & 0 \\ 0 & \iota b_{s-2} & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & -\iota b_{-s+1} \\ 0 & 0 & 0 & 0 & \cdots & \iota b_{-s+1} & 0 \end{pmatrix}$$

$$\mathcal{S}_{x}b_{j} = \sqrt{(s+j)(s+1-j)}\cup_{x}$$

سوال ۳۹،۳۹: کروی ہار مونیات کے لیے، ؟؟؟؟ ضربی حبز درج ذیل طسریقے سے حساس کریں۔ ہم حسہ 2.1.4 سے درج ذیل حبانتے ہیں

$$Y_l^m = B_l^m e^{\iota m\phi} P_l^m(\cos\theta)$$

آپ کو حبز B_l^m تغیین کرنا ہو گا (جس کی قیت تلاش کے بغیبر مسیں نے ذکر مساوات 32.4 مسیں کیا)۔ مساوات 130.4،120.4 اور 130.4 اور 130.4 استعال کرتے ہوئے B_l^m کی صورت مسیں B_l^m کا کلیہ توالی دریافت کریں۔ آخن مسلوں کو M کے ریاضی ماغول کی ترکیب سے حسل کرتے ہوئے M کو مجبوعی مستقل M کی جمہوری مستقل M کی جمہوری مستقل کا بھی کچھ کریں۔ مشریک لیجب نڈر تقن عسل کے تقسر کے کا درج ذیل کلیہ مدد گار ثابت ہو سکتا ہے:

$$(7.191) (1-x^2)\frac{dP_l^m}{dx} = \sqrt{1-x^2}P_l^{m+1} - mxP_l^m$$

سوال ۲۳۲.۳: پائسیڈرو جن جو ہر مسیں ایک السیکٹر ان درج ذیل حبکر اور فصن کی حسال کے ملاپ مسیں پایا حب تا ہے

$$R_{21}(\sqrt{1/3}Y_1^0\chi + \sqrt{2/3}Y_1^1\chi -)$$

ا. مداری زاویائی معیار حسر کت کے مسر بڑع (L^2) کی پیپ کنٹس سے کی قیمتیں حساس ہو سکتی ہیں؟ ہر قیمت کا انفٹ رادی احستال کس ہوگا؟

- یمی کچھ معیاری Zزاویائی معیار حسر کت کے (L_z) حسنر کے لیے معاوم کریں۔

ج. یمی کچھ حیکری زاویائی معیار حسرکت کے مسرئع سکیئر (S²) کے لیے معلوم کریں۔

و. کین کچھ پکری زاویائی معیارZ کو J=L+S جنزے لیے کریں۔ کل زاویائی معیار حسر کت کو J=L+S کیس۔

ھ. آپ J^2 کی پیپ کش کرتے ہیں آپ کے قیمتیں حساس کرتے ہیں ان کا انفٹ رادی احستال کیا ہوگا

و. یمی کچھ J_z کے لیے معلوم کریں۔

ز. آیے ذرے کے معتام کی پیپائٹس کرتے ہیں،اسس کی 4, 0, 1 بریائے حبانے کی کثافت احتال کیا،وگا؟

ح. آپ حپکرے 2 حبزاور منبع سے وضاصلہ کی پیپ کشش کرتے ہیں (یادرہے کہ یہ ہم آہنگ مشہودات ہیں)ایک ذرے کارداسس ۲ پراورہم مبدان ہونے کا کثافت احسال کیاہوگا؟

سوال ۳۸ ۲۰:

ا. وکھائیں کہ ایک تناعب $f(\phi)$ جس کو؟؟؟؟ تسلم میں پھیلایات اسکتاہے، کے لیے درج ذیل ہوگا

$$f(\phi + \varphi) \equiv e^{\frac{iL_z\varphi}{\hbar}} f(\phi)$$

(4.001) - 129.4 اختیاری زاوی ہے ۔ اس کی بن (4.001) - 12000 کو (4.001) - 12000 کے گرد گھونے کا پیداکار کے اس اور سوال (4.001) - 12000 کی بن (4.001) - 12000 کے رخ گھونے کا پیداکار ہے لین اور سوال (4.000) - 12000 کے رخ گھونے کا پیداکار ہے لین اور سوال (4.000) - 12000 کے رخ گھونے کا پیداکار ہے لین کا بین اور سوال (4.000) - 12000 کے رخ گھونے کا پیداکار ہے لین کا بین کے دوروں کی دوروں کے دوروں

۱۸۳ - پکر

کے گر دوائیں ہاتھ سے زاوی ϕ گومنے کا اُڑ پیدا کر تا ہے۔ حیکر کی صور سے مسین گومنے کا پیدا کار $S\cdot\hat{n}/\hbar$ ہو گابالخصوص 1/2

$$\chi'=e^{\iota(\sigma.\hat{n})arphi/2}\chi$$

ہمیں حپکر کاروں کے گھومنے کے بارے مسیں بت اتی ہے۔

ب. محور x-axis کے لیے ظے 180 ڈگری گھونے کو ظہا ہر کرنے والا (2×2) متالب سیار کریں اور د کھا ئیں کہ ہے۔ ہماری توقعہا سے کے عسین مطابق ہمے میدان (χ_+) کو حنالانے میدان (χ_+) مسین سبدیل کرتا ہے

ج. محور y - axis کے لیے اظرے 90 ڈگری گھومنے والا مت الب شیار کریں اور دیکھیں کہ y - axis کا اثر کسیا ہوگا؟

د. محور axis کے لیے نظرے 360 زاویہ گلومنے کو ظاہر کرنے والا متالب شیار کریں۔ کیا جواب آپ کی توقعات کے مطابق ہے؟ ایسان ہونے کی صورت مسین اسس کی مفہرات پر تبصرہ کریں۔

ه. درج ذیل د کھیائیں

(r.19
$$^{\mu}$$
) $e^{\iota(\sigma.\hat{n})\varphi/2} = \cos(\varphi/2) + \iota(\hat{n}.\sigma)\sin(\varphi/2)$

سوال 9,7 : زاویائی معیار حسر کس کے بنیادی شبادلی رشتے (مساوات 99.4) استیازی اقتدار کے عسد در صحیح قیمتوں کے ساتھ ساتھ نصف عسد در صحیح قیمتوں کی بھی احبازت دیتے ہیں۔ جب مداری زاویائی معیار حسر کس کی صرف عسد در صحیح قیمتیں پائی حباتی ہیں۔ یوں ہم توقع کریں گے کہ $\mathbf{r} \times \mathbf{p} = \mathbf{L} = \mathbf{r} \times \mathbf{p}$ کے روپ مسیں کوئی اضافی شد ط طرور نصف عسد دی قیمتوں کو حساری کرتا ہوگا۔ ہم \mathbf{a} کو کوئی ایسا مستقل کسیتے ہیں جمکا بود لمب کی ہومشلاً ہائے ڈروجن پر بات کرتے ہیں جمکا بود راس بوہر درج ذیل حساملین متعبار ف کرتے ہیں

$$q_1 = \frac{1}{\sqrt{2}}[x + (a^2/\hbar)p_y]; p_1 \equiv \frac{1}{\sqrt{2}}[p_x - (\hbar/a^2)y];$$

$$q_2 \equiv \frac{1}{\sqrt{2}}[x - (a^2/\hbar)p_y]; p_2 \equiv \frac{1}{\sqrt{2}}[p_x + (\hbar/a^2)y].$$

ا. تصدیق کریں کہ $[q_1,q_2] = [p_1,p_2] = 0; [q_1,p_1] = [q_2,p_2] = i\hbar$ یوں معتام اور معیار حسر کت کی باض اول تب دلی رشتوں کو [q's] اور [q's] اور [q's] اور [q's] مطمئین کرتے ہیں اور امشار سے [q's] میں ملین کے ہم آہنگ ہیں [q's]

ب. درج ذیل د کھائیں

$$L_z = \frac{\hbar}{2a^2}(q_1^2 - q_2^2) + \frac{a^2}{2\hbar}(q_1^2 - q_2^2)$$

ج. تصدیق کریں کہ ایک ایب ایس بار مونی مسر نشش جس کی کمیت $m=\hbar/a^2$ ہو کہ ہر ایک ہمرایک $L_z=H_1-H_2$ کے لیے کا کہ جمالتن H کے لیے دلات کا کہ جمالتن کا کے بیمالین کا کہ جمالت کی ایک کہ جمالت کے لیے دلیا کہ جمالت کی جمالت کی جمالت کے ایک کہ جمالت کی جمالت کے لیے دلیا کہ جمالت کی جمالت کی جمالت کے لیے دلیا کہ جمالت کی جمالت کے لیے دلیا کہ جمالت کی جمالت کے لیے دلیا کہ جمالت کے لیے دلیا کہ جمالت کی جمالت کی جمالت کے لیے دلیا کہ جمالت کے لیے دلیا کہ جمالت کی جمالت کی جمالت کے لیے دلیا کہ جمالت کے لیے دلیا کہ جمالت کی جمالت کی جمالت کی جمالت کے لیے دلیا کہ جمالت کی جمالت کے لیے دلیا کہ جمالت کی جمالت کی جمالت کی جمالت کی جمالت کے لیے دلیا کہ جمالت کی جمالت کی جمالت کی جمالت کی جمالت کے لیے دلیا کہ جمالت کی جمالت کے جمالت کی جمالت کی جمالت کی جمالت کی جمالت کی جمالت کے جمالت کے جمالت کی جمالت کی جمالت کے لیے دلیا کہ جمالت کی جمالت کی جمالت کے جمالت کی جمالت کی جمالت کی جمالت کی جمالت کے جمالت کی جمالت کے جمالت کی جمالت کے جمالت کے جمالت کی جمالت کے جمالت کی جمالت کے جمالت کی جما

 $n=0,1,2,3,\cdots$ و. ہم جبانے ہیں کہ ہار مونی مسر تعش کے ہیملٹنی کی استیازی استداری آئیں جبان ہیں جبان ہیں جبائی کی روپ اور باض بطہ شباد کی رشتوں سے سے اخسنہ کسیا گیا گیا ہوگا (حسب ?? کے الجبرائی نظس رہے مسین ہیملٹنی کی روپ اور باض ابطہ شباد کی استعال کرتے ہوئے ہے اخسنہ کریں کہ L_z کے استیازی استدار لازماً عسد دہوں گے۔

سوال B کا سیکی برتی حسر کیا ہے مسیں ایک ذرہ جس کا؟؟؟؟ q ہواور جومقت طیسی میدان E اور D مسیں نوال C مسین فت اور C کے ساتھ حسر کر سے کر تابو، برقو ہے مسل کر تا ہے جو لور بیٹ قوت کی مساوات دیتی ہے

(r.19r)
$$oldsymbol{F} = q(oldsymbol{E} + oldsymbol{v} imes oldsymbol{B})$$

اسس قوت کو کسی بھی عنیسر سمتی مخفی توانائی تف عسل کی ڈھسلوان کی صورت مسین لکھ حب سکتا ہے اپذا مساوات سشہ روڈ نگرا پی اصلی رویے مسین (مساوات 1.1)اسس کو قسبول نہیں کر سستی ہے تاہم اسس کی نفیسس روپ

(r.192)
$$\iota\hbar\frac{\partial\psi}{\partial t}=H\psi$$

کوئی مسئلہ نہیں کھٹڑا کرتی ہے۔ کلانسیکی ہیملٹنی درج ذیل ہوگا

$$H=rac{1}{2m}(oldsymbol{p}-qoldsymbol{A})^2+qoldsymbol{arphi}$$

جبال A مستی مخفی قوه B=
abla imes A اور arphi منیسر مستی مخفی قوه $E=abla \phi-\partial A/\partial t)$ بین البندات رود مگر مین باضابط، متبادل (\hbar/ι) ورخ دیل کصاحب سکتا ہے۔ میں باضابط، متبادل $p o(\hbar/\iota)$ ورخ دیل کصاحب سکتا ہے۔

(r.192)
$$\iota \hbar \frac{\partial \psi}{\partial t} = [\frac{1}{2m}(\frac{\hbar}{\iota}\nabla - q {\bm A})^2 + q \phi] \psi$$

ا. درج ذیل د کھائیں

$$rac{d\langle r
angle}{dt}=rac{1}{m}\langle(m{p}-qm{A})
angle$$

(r.199)
$$mrac{d\langle v
angle}{dt}=q\langle m{E}
angle+rac{q}{2m}\langle(m{p} imesm{B}-m{B} imesm{p})
angle-rac{q^2}{m}\langle(m{A} imesm{B})
angle$$

۱۸۵ مریم. حپکر

ج. بالخصوص موجی اکھے تحب پریک ان E اور B میدانوں کی صورت مسیں درج ذیل د کھا ئیں E

$$mrac{d\langle oldsymbol{v}
angle}{dt}=q(oldsymbol{E}+\langle oldsymbol{v}
angle imes oldsymbol{B}),$$

اسس طسرح $\langle v \rangle$ کی توقعت تی قیمت عسین لوریسنز قوت کی مساوات کے تحت حسر کرے گی جیب ہم مسئلہ ؟؟؟؟؟ کے تحت کرتے ہیں۔

سوال K اور K متقلات (پس منظر حبانے کے لیے سوال 59.4 پر نظر ڈالیں) درج ذیل منسر ض کریں جہاں B_0 اور K مستقلات ہیں

$$\boldsymbol{A} = \frac{\boldsymbol{B_0}}{2} (x\hat{\boldsymbol{\jmath}} - y\hat{\boldsymbol{\imath}})$$

 $\varphi = Kz^2$

ا. ميدان E اور B تلاسش كري

;

ب. ان میدانوں مسیں جن کی کمیت m اور بار q ہوں کے ساکن حسالات کی احباز تی توانائیاں تلاسٹس کریں۔جواب

$$(r,r+1)$$
 $E(n_1,n_2)=(n_1+\frac{1}{2})\hbar\omega_1+(n_2+\frac{1}{2})\hbar\omega,(n_1,n_2=0,1,2,3,\cdots)$

A ہوال aبر تی سے منظے رہانے کی مناطب رسوال 59.4 پر نظے رڈالیں) کلا سے کی برتی حسر کیا ہے۔ مسیں مخفی قوہ a اور a بیں اور a بیں منسداریں میں کے جا سے میں منسداریں میں منسداریں میں اور a بیں منسداریں میں کے جا سے میں منسداریں میں میں منسداریں میں منسلے می

ا. د کھائیں کہ مخفی قوہ

$$(extstyle arphi, \mathbf{r} \cdot \mathbf{r})$$
 $arphi' \equiv arphi - rac{\partial \Lambda}{\partial t}, oldsymbol{A}' \equiv oldsymbol{A} +
abla \Lambda$

 ϕ اور وقت کا Λ ایک اختیاری حقیقی تف عسل ہے) بھی وہی میدان ϕ اور A دیتے ہیں۔ مساوات Λ عنب رہنے ہیں۔ مساوات کی تاریخ تب اولہ کہا تھی ہوں کہ ہم کہتے ہیں کہ ہے۔ نظسر ہے گئے عنب رہنے ہیں۔ مساوات کہا تھی ہوں کہ ہم کہتے ہیں کہ ہے۔ نظسر ہے۔ کہا تھی میں کہ ہم کہتے ہیں کہ ہم کہتے ہیں۔ مساوات کہا کہ ہم کہتے ہیں۔ مساوات کہ ہم کہتے ہیں کہتے ہیں کہتے ہیں۔ مساوات کہنے ہم کہتے ہیں۔ مساوات کہ ہم کہتے ہیں کہ ہم کہتے ہم ک

... کوانٹم میکانسیات مسیں مخفی قوہ کا کر دار زیادہ براہ راست پایا حباتا ہے اور ہم حبانت حپامیں گے کہ ایا ہے نظے رہے گئے متغیر رہتا ہے یا نہیں؟ د کھائیں کہ

$$\Psi' \equiv e^{iq\Lambda/\hbar} \Psi$$

سٹروڈگر مساوات (مساوات 20.4) کو گئج تبادلہ مخفی قوہ ϕ' اور A لیتے ہوئے مطمئن کرتا ہے۔ چونکہ Ψ اور Ψ' میں صرف زاویائی حبز کا فسٹرق پایا حباتا ہے لہندا ہیں اور یوں سے Φ' منسی صرف زاویائی حبز کا فسٹرق پایا حباتا ہے لہندا ہے ایک میں معلومات کے لیے حس 3.2.10 میں دھوئے کیجے گا۔

جوابات

ف رہنگ

54relation, allowed 26energies, energy 51 argument, 22allowed, Bessel 31 conservation, 99 function, spherical 13ensemble, 107energy,binding expectation Bohr 6value. 106radius, formula 106formula,Bohr 16Broglie,De 25 conditions, boundary Fourier 98term,centrifugal 52transform,inverse 83 states, coherent 52transform, 4collapses, Frobenius commutation 45method, function 36relation, canonical 90relations, canonical 59delta,Dirac 36commutator, generalized 28complete, 59 distribution, 77continuous, 59 function, 90continuum, generating coordinates 50 function, 91 spherical, generator 3interpretation,Copenhagen 86space,intranslation 75degenerate, 86time.intranslation delta Gram-Schmidt 28Kronecker. 79process,orthogonalization Dirac 21 Hamiltonian, 80orthonormality, harmonic 77discrete, 25oscillator, dispersion سرہنگ ۳۱۰

3realist, 113Helium, 12potential, Hermitian 97effective, 40conjugate, 3 variables, hidden probability 8density, 2indeterminacy, quantum ladder 105number,principle 38operators, numberquantum Laguerre 96azimuthal, 108polynomial, associated 96magnetic, 108polynomial, 99numbers,quantum 90Laplacian, law 97equation,radial 34Hooke, recursion Legendre 46 formula, 94associated, reflection linear 64coefficient, 22 combination, 73time,revival 113Lithium, Rodrigues 49 formula, 6mean, 94formula,Rodrigues 6median, Rydberg 14momentum, 113 constant, 113 formula, Neumann 99 function, spherical Schrodinger 27node, 20time-independent, 10normalization. 1align,Schrodinger series 14operator, 113Balmer, 38lowering, 28Fourier. 38raising, 113Lyman, 27orthogonal, 113Paschen, 28orthonormal, 35power, Planck's 34Taylor, 113 formula, spherical 96harmonics, polynomial 11 square-integrable, 48Hermite, 7deviation,standard position 3agnostic, state 58bound, 3orthodox,

ىنىرەنگى ۱۱۳

:	
ات	27excited,
يالات،83	107,27 ground,
احبازني	58scattering,
احبازتی توانائیال،26	statistical
المستمراري،77	2interpretation,
استمراریپ،90 اصول	66 function, step
اصول	
عدم یقینیت، 16	theorem
انتشاری	28Dirichlet's,
رشته،54	15Ehrenfest,
انحطاطی، 75	52Plancherel,
انعکا کسس .	112transition,
ش رح،46	transmission
اوسط،6	64coefficient,
, 5,	65,58tunneling,
بقب توانائي، 31	58points,turning
نوانانى، 31 سندىشى توانانى، 107	16principle,uncertainty
سند ی توانای،/ 10	Toprinciple, uncertainty
106	variables
رداسس،106 کلب،106 ببیل ببیل کروی قن عسل،99	19of,separation
بييل	7variance,
مبيان ڪروي قفعت ن	velocity
55.6° C 655	54group,
يلانك	54phase,
پلائک کلیہ، 113 پیداکار نز میں میں میں اس	
يبداكار پبداكار	wave
فصن مسين انتقتال کا،86	64incident,
وقت مسين انتصاً ل86،	52packet,
پيداکار	64reflected,
ونسي سامت ن المتعن ن المتعن ن المتعن ن المتعن ن المتعند الكار تنت عسل ن المتعند المتع	64transmitted,
	1 function,wave
شبادلی	16wavelength,
باضابط، رشته، 36	
باضابط رشتے،90	
تبادل کار ، 36	
تحبِدیدی عسر صبہ، 73	
تر سی ل .	
شرح،64 تار	
ترسیل ترسیل تسسل بالمسر،113 پاسشن،113	
بالمسر،113	
پاکستن،113	

ب کن	شيــلر،34
	ھير،34 طب فت تي،35
عالا ت ، 12	
سرحىدى شەرائط،25	نوریپئ ر،28
سِرنگ زنی،65،58	ليمـــان،113 تو ــــــــــــــــــــــــــــــــــــ
سگراه13	'تغييريت،7 تفعل
سوچ	
انگاری، 3	ۋىك،59
تقلب بسند، 3	تف ^ع موج، 1
حقیق <u>۔</u> پےند، 3	توالی کلیــ،46 توانائی احبازتی،22 توقعت تی قیمــــ،6
سيزهي عب ملين،38	46، ــــــــــــــــــــــــــــــــــــ
عب ملين،38	توانانی :
سيرهي تف عسل 66،	احبازلي،22
4	توقعي بي
شسرود گر	قي <u> </u>
غني رتابع وقت،20	
ت روزِ نِگر تصویر کشی،86 شرودِ نِگر تصویر کشی،86	جف <u>۔</u> * ع
ىشىروۋىگرمىساوا <u>س</u> ، 1	تقت ك-ل،24
شمسارياتی مفهوم، 2	6
	حب ال بخ س راو،58
طول موچ،113،16	مسن ،
	زمىينى،107،27
عبامبل،14	مقب 58،
تقلیل،38	ميحبان،27
رفعــــــ،38	خط دم ده
عــبور،112 عـــدم تعــين،2	خطی جوڑ،22 خفیبے متنعیسرات،3
عبدم تين،2	هيه ميرات، 3
عبدم يقينيت اصول، 16	دلىيل،51
عت ده،27 علیحه گی متغب رات،19	51:0= 9
	ۇيراك _
عبودي،27	دیرا <u> </u>
معياري،28	المياري - وري <u>د</u> 00
ء ک	ۇيك كرونسپكر،28
غي رمسلسل 77،	2007 # 37
منسروبنيوسس	رداسی مساوات،97
ت عروبتيو سن	رڈبرگ،113
نر سيب 43،	کلب،113
تر کیب، 45 فوریٹر الٹ بدل، 52	رڈبر گ۔ 113 کلیہ، 113 رفت ار دوری سمتی، 54
است برن،52 برل،52	دوري مستى،54
بدن، د	کر وہی سنتی،54
ت بل تكامسل مسر بيع، 11	ر وفي يلكيس
ت.ن مانون مت انون	روڈریگیس کلیے،94
0,0	<i>></i>

ىن رېڭ

مسر کز گریز حبزو،98 مسئله امرنفسٹ،15 پلانشسرال،55 ڈرشلے،28 معمول زنی،10 معيار حسركت،14 منعکس،64 موجی اکثر،52 كوانٹ ائى اعب داد، 99 لواست اد دو دو کوانستائی عبد د اسمتی ،96 مقت طبیی ،96 کوپن ہیسگن مفہوم ، 3 والپی نقساط،58 وسطانیہ،6 ہارمونی مسر تعش،25 ہرمثی جوڑی دار،40 ہیسے زنسبر گل تصویر کثی،86 لاپلاس،90 لاگنج شریک کشیدر کن،108 ہیلیم،113 لتحيم، 113 ليژانڈر شريک ،94 ہیملٹنیٰ، 21 متىم تفعس ،59 تفسيم ،59 محسد د 91، وي ،19 موثر ،97 مسر تعش بار مونی ،25