

Black hole eating boson star

Taishi Ikeda (Sapienza University of Rome) taishi.ikeda@uniroma1.it

- Introduction
 - Motivation
 - Set up
- Numerical formulation
- Construction of initial data
- Preliminary results
- Summary

- Introduction
 - Motivation
 - Set up
- Numerical formulation
- Construction of initial data
- Preliminary results
- Summary

Scalar field beyond GR and SM

- Mystery in our Universe
 - Dark matter ??
 - Dark energy ??
 - Quantum theory of gravity ??

- Light scalar fields are smoking guns for new physics beyond SM.
- Boson stars of the complex scalar field may be dark matter.

Sang-Jin (1994)

- Boson stars interact with other astrophysical objects.
- The simplest model of boson stars

$$S = \int d^4x \sqrt{-g} \left(\frac{R}{16\pi} - g^{\mu\nu} \nabla_{\mu} \psi \nabla_{\nu} \psi^* - \mu^2 |\psi|^2 \right)$$

 ψ : complex scalar field

Boson star

Non-rotating Boson star profile

$$\begin{cases} ds^2 = -\alpha_{\rm BS}^2 dt^2 + a_{\rm BS}^2 dr^2 + r^2 d^2 \Omega \\ \psi_{\rm BS}(t,r) = e^{i\omega t} \psi_{0,\rm BS}(r) \end{cases}$$

 ω : boson star frequency

Einstein eq. and KG eq.

$$\begin{cases} \partial_r \alpha_{\rm BS} = \cdots \\ \partial_r a_{\rm BS} = \cdots \\ \partial_r^2 \psi_{0,\rm BS} = \cdots \end{cases}$$

$$M_{\rm max} \simeq 0.6 \frac{M_{\rm p}^2}{\mu} -$$

Boundary conditions

$$\begin{cases} a_{\rm BS}(\infty) = \alpha_{\rm BS}(\infty)^{-1} \\ \psi_{0,\rm BS}(\infty) = 0 \end{cases}$$

Eigenfrequency : $\omega_{\mathrm{BS}}(\psi_c,n)$

$$\psi_{0,\mathrm{BS}}(0) = \psi_c$$
 $n: \# \mathrm{node}$

solutions with n=0

Seidel et.al 1990

Possible interactions with BHs

Boson stars with light fields

Typical dynamics ?

$$\frac{M_{\rm BS}}{M_{\odot}} = 9 \times 10^9 \frac{100 \text{pc}}{R_{\rm BS}} \left(\frac{10^{-22} \text{ eV}}{\mu}\right)^2$$

Boson stars can interact with BHs.

Set up

- Set up : BS-BH system
 - Spherical symmetry (for simplicity)
 - Initial profile of the scalar field is same as boson star profile
 - We solve the evolution of metric and the complex scalar field.

Gravitational atom

Gravitational atom is long-lived state of the scalar field around BH.

$$\left(\Box_{\text{Kerr BH}} - \mu^2\right)\psi = 0$$
 $\psi = e^{-i\omega t + im\phi}R(r)S(\theta)$

$$\Delta \frac{d}{dr} \left(\Delta \frac{dR}{dr} \right) + \left(\omega^2 (r^2 + a^2)^2 - 4aMrm\omega + a^2 m^2 - \Delta (\mu^2 r^2 + a^2 \omega^2 + \Lambda) \right) R = 0$$

- Boundary condition
 - Ingoing on BH horizon
 - decaying at infinity
- Leaver method

$$\omega = \omega_R + i\omega_I$$

We can estimate typical life time of the gravitational atom.

- Introduction
 - Motivation
 - Set up
- Numerical formulation
- Construction of initial data
- Preliminary results
- Summary

Numerical formulation

- We use (generalized-)BSSN formulation. $ds^2 = -\alpha^2 dt^2 + \gamma_{ij}(dx^i + \beta^i dt)(dx^j + \beta^j dt)$

conformal decomposition

$$\begin{cases} \gamma_{ij} = e^{4\phi} \tilde{\gamma}_{ij} \\ K_{ij} = e^{4\phi} \tilde{A}_{ij} + \frac{1}{3} \gamma_{ij} K \end{cases}$$

auxiliary field

$$\tilde{\Lambda}^k = \tilde{\gamma}^{ij} (\tilde{\Gamma}^k_{ij} - \bar{\Gamma}^k_{ij})$$

 $\bar{\gamma}_{ii}$: reference metric

• spherical symmetry : (t, r, θ, ϕ)

$$\begin{cases} \tilde{\gamma}_{ij} = \operatorname{diag}(\tilde{a}, \tilde{b}r^2, \tilde{b}r^2 \sin^2 \theta) \\ \tilde{A}_{ij} = \operatorname{diag}(A, Br^2, Br^2 \sin^2 \theta) \\ \tilde{\Lambda}^k = (\tilde{\Lambda}, 0, 0) \end{cases}$$

constraint eq.

$$\mathcal{H} \equiv \left(\frac{\phi''}{a} + \frac{\phi'^2}{a} - (\frac{a'}{2a^2} - \frac{b'}{ab} - \frac{2}{ar})\phi'\right)e^{\phi} - \frac{e^{\phi}}{8}\tilde{R} + \frac{e^{5\phi}}{8}\left(\frac{A^2}{a^2} + 2\frac{B^2}{b^2}\right) - \frac{e^{5\phi}}{12}K^2 + 2\pi e^{5\phi}E$$

$$\mathcal{M} \equiv 6\phi' \frac{A}{a} + \frac{A'}{a} - \frac{a'A}{a^2} + \frac{b'}{b} \left(\frac{A}{a} - \frac{B}{b} \right) + \frac{2}{r} \left(\frac{A}{a} - \frac{B}{b} \right) - \frac{2}{3}K' - 8\pi p = 0$$

Numerical formulation

evolution eq.

$$\begin{split} & \partial_{t}\phi = \beta\phi' - \frac{1}{6}\alpha K + \sigma\frac{1}{6}\mathcal{B} \\ & \partial_{t}a = \beta a' + 2a\beta' - 2\alpha A - \sigma\frac{2}{3}a\mathcal{B} \\ & \partial_{t}b = \beta b' + 2\beta\frac{b}{r} - 2\alpha B - \sigma\frac{2}{3}b\mathcal{B} \\ & \partial_{t}K = \beta K' - \mathcal{D} + \alpha(\frac{1}{3}K^{2} + \frac{A^{2}}{a^{2}} + 2\frac{B^{2}}{b^{2}}) + 4\pi\alpha(E + S) \\ & \partial_{t}A = \beta A' + 2A\beta' + e^{-4\phi}(-\mathcal{D}_{rr}^{TF} + \alpha(R_{rr}^{TF} - 8\pi S_{rr}^{TF})) + \alpha(KA - 2\frac{A^{2}}{a}) - \sigma\frac{2}{3}A\mathcal{B} \\ & \partial_{t}B = \beta B' + \frac{e^{-4\phi}}{r^{2}}(-\mathcal{D}_{\theta\theta}^{TF} + \alpha(R_{\theta\theta}^{TF} - 8\pi S_{\theta\theta}^{TF})) + \alpha(KB - 2\frac{B^{2}}{b}) + 2\frac{\beta}{r}B - \sigma\frac{2}{3}B\mathcal{B} \\ & \partial_{t}\tilde{\Lambda} = \beta\tilde{\Lambda}' - \beta'\tilde{\Lambda} + \frac{2\alpha}{a}(\frac{6A\phi'}{a} - \frac{2}{3}K' - 8\pi p) + \frac{\alpha}{a}(\frac{a'A}{a^{2}} - \frac{2b'B}{b^{2}} + 4B\frac{a - b}{rb^{2}}) + \sigma(\frac{2}{3}\tilde{\Lambda}\mathcal{B} + \frac{\mathcal{B}'}{3a}) + \frac{2}{rb}(\beta' - \frac{\beta}{r}) - 2\frac{\alpha'A}{a^{2}} + \frac{1}{a}\beta'' \end{split}$$

Our numerical code

- Time integration: 4th order Runge-Kutta method
- Radial derivative: 4th order accurate centered finite difference
- Open MP, KO dissipation, excision procedure

Test simulations

- Numerical convergence, and boson star evolution
 - Pure gauge evolution

$$\alpha(r,0) = 1 + \frac{\alpha_0 r^2}{1 + r^2} \left(e^{-(r - r_0)^2} + e^{-(r + r_0)^2} \right)$$

Boson star evolution

$$\begin{cases} \phi(0,r) = \phi_{\rm BS}(r) \\ \psi(0,r) = \psi_{\rm BS}(r) \\ \alpha(0,r) = e^{-4\phi_{\rm BS}(r)} \end{cases} \qquad \psi_c = 0.01$$

Evolution is consistent with stable boson star configuration.

- Introduction
 - Motivation
 - Set up
- Numerical formulation
- Construction of initial data
- Preliminary results
- Summary

Construction of ID

Initial condition

Construction of ID

- We construct BS-BH initial data by solving constraint equation.
 - assumptions for initial data

- Parameters: ψ_c , $M_{0,\mathrm{BH}}$
- momentarily static : K = A = B = 0 \longrightarrow $\mathcal{M} = 0$
- conformally flat : a = b = 1
- Profile of the scalar field is same as boson star profile.
- precollapse lapse, zero shift : $\alpha(0,r) = e^{-4\phi(0,r)}$, $\beta(0,r) = 0$
- 1. Construct the BS star profile in isotropic coordinate.

$$\begin{cases} ds^2 = -\alpha_{\rm BS}^2(r)dt^2 + \Phi_{\rm BS}(r)^4(dr^2 + r^2d^2\Omega) \\ \psi(t,r) = \psi_{0,\rm BS}(r)e^{i\omega t} \end{cases}$$

2. Apply the window function to scalar field

$$\psi_{\text{BS}}^{\text{W}}(r) = W(r)\psi_{0,\text{BS}}(r) \\ W(r) = \begin{cases} 0 & (r < M_{0,\text{BH}} + \epsilon_1) \\ f(r) & (M_{0,\text{BH}} + \epsilon_1 < M_{0,\text{BH}} + \epsilon_1 + \epsilon_2) \\ 1 & (M_{0,\text{BH}} + \epsilon_1 + \epsilon_2 < r) \end{cases}$$

Construction of ID

3.Sum of conformal factor

$$\Phi = \Phi_{BS} + \Phi_{BH} - 1 + \delta \Phi$$

$$\Phi = e^{\phi}$$

conformal factor
$$\Phi=e^{\phi}$$

$$\Phi=\Phi_{\rm BS}+\Phi_{\rm BH}-1+\delta\Phi \qquad \Phi_{\rm BH}=1+\frac{M_{0,\rm BH}}{2r}$$

4. Solve Hamiltonian constraint for $\delta\Phi$

$$\mathcal{H} = \Phi'' + \frac{2}{r}\Phi' + 2\pi\Phi^5 E_{\text{BS}}^{\text{W}} = 0$$

Integrate from infinity with $\delta\Phi(\infty) = \partial_r \delta\Phi(\infty) = 0$

- Introduction
 - Motivation
 - Set up
- Numerical formulation
- Construction of initial data
- Preliminary results
- Summary

Preliminary results

Here, we show one preliminary result.

$$\mu M_{0,\rm BH} = 1, \psi_c = 0.01$$

The scalar field decays exponentially around BH in early phase.

In late time, we observe power-law tail.

In general, we can expect power low tail

$$\psi \sim t^p \sin(\mu t)$$

$$\begin{cases} p = -(l+3/2) & \text{at late time} \\ p = -5/6 & \text{at very late time} \end{cases}$$

Preliminary results

$$\mu M_{0,\rm BH} = 1, \psi_c = 0.01$$

Late time radial profile of scalar field is $\sim r^{-3/4}$

cf: Lam (2019)

BH eat almost boson star energy in early phase.

In late time, $\mu M_{BH} \simeq 1.4$

The life time of the corresponding gravitational atom is very short.

power low behavior dominates.

Preliminary results

 We guess late time behavior from ADM mass and mass of the scalar field.

→

We need further simulations to check the expectations.

- Introduction
 - Motivation
 - Set up
- Numerical formulation
- Construction of initial data
- Preliminary results
- Summary

Summary

We considered the accretion process of boson star into black hole.

_

• For $\mu M_{0,\rm BH} = 1, \psi_c = 0.01$

Gravitational atom ??

we observed late time power low decay, and power low profile.

- We can guess late time behavior from ADM mass and mass of the scalar field.
- We need further simulations....

Finish

