تکلیف معماری کامپیوتر سری ۲

پرهام الوانی ۸ اسفند ۱۳۹۳

فهرست مطالب

۲ مساله ۱ ۳ مساله ۲ ۴ مساله ۳

۱ مساله ۱

operand memory no with Instruction:

$$= 1 \circ + (1 - \circ / 1) * (7 \circ \circ + (1 - \circ / 1) * 7 \Delta \circ)$$

$$= 1 \circ + \circ / 1 * (7 \circ \circ + \circ / \circ 1 * f \Delta \circ)$$

$$= 1 \circ + 7 \circ + \circ / f \Delta$$

$$= \mathtt{T} \circ / \mathtt{F} \Delta n s$$

operand memory one with Instruction:

$$= r \circ / f \Delta + r \circ + (1 - \circ / \Lambda \Delta) * (r \circ \circ + (1 - \circ / f f) * f \Delta \circ)$$

$$= \text{res}(\text{rd} + \text{res} + \text{ell}) * (\text{res} + \text{fla})$$

$$= \text{res}/\text{fd} + \text{res} + \text{res} + \text{e}/\text{fvd}$$

$$= \lambda \circ / \Delta + \circ / 2 V \Delta$$

$$= \lambda 1/17 \Delta ns$$

operand memory two with Instruction:

$$= r \circ / f \Delta + r * (r \circ + r \circ + \circ / F V \Delta)$$

$$= r \circ / f \Delta + 1 \circ \circ + 1 / r \Delta$$

$$=$$
 $170/\Lambda ns$

AMAT finally and:

$$= \text{\texttt{T}} \circ / \text{\texttt{F}} \Delta * \circ / \Delta + \text{\texttt{A}} 1 / 1 \text{\texttt{T}} \Delta * \circ / \text{\texttt{T}} \Delta + 1 \text{\texttt{T}} \circ / \text{\texttt{A}} * \circ / 1 \Delta$$

$$= 10/77 + 71/797 + 19/87$$

$$=$$
 97/777 ns

۲ مساله ۲

$\circ \rightarrow$	0000000
r r ightarrow ightarrow	00010101
au au o	00010111
$\texttt{TD} \to$	00100011
$YF\to$	01001100
ightarrow	0000000 \
${\it FF} ightarrow$	01000010
${\tt \Lambda} \circ \to $	01010000
$\Delta extsf{f} o$	00110110
au ho ightarrow	00100100
au $ au$ $ au$	00011000
au au o	00010111
$V \Delta \to$	01001011
au ightarrow	00000010

# r	# r	#1	address
hit	hit	miss	0
hit	hit	miss	71
hit	hit	hit	74
hit	hit	miss	٣۵
hit	hit	miss	49
hit	hit	hit	١
hit	hit	hit	99
hit	hit	miss	٨٠
hit	hit	miss	٥۴
hit	hit	hit	45
hit	hit	hit	74
hit	hit	hit	74
hit	hit	hit	٧۵
hit	hit	hit	٢

rate miss =
$$= \frac{V}{V^* * V} = \frac{V}{S}$$

٣ مساله ٣

بله با افزایش k همواره مقدار ratio hit افزایش میابد. این موضوع را میتوان اینگونه توصیف کرد که با افزایش k رعایت همجواری های زمانی بیشتر میشود که این موضوع در کنار رعایت همجواری مکانی در blocking باعث افزایش ratio hit میشود.

۴ مساله ۴

rate miss
$$=$$
 $\frac{\lambda}{\Delta} = \Delta$

		#1	address
		miss	0
		miss	١
		miss	۱۵
		miss	14
		hit	14
		hit	۱۵
		miss	18
# \	sets	miss	٢
	sets •	miss	74
۲۵	1	miss	77
١٨	\ \frac{1}{7}	hit	18
77	۳	hit	14
71	4	hit	١
71		miss	71
14	۵ ۶	miss	77
10		hit	74
۱۵	Y	hit	77
		miss	١.
		miss	١٨
		miss	۱۵
		hit	١
		miss	0
		miss	14
		miss	۲۵
		miss	7.

rate miss =
$$= \frac{\lambda}{\gamma \Delta} = \gamma \gamma$$

#١	address
miss	0
miss	١
miss	۱۵
miss	14
hit	14
hit	۱۵
miss	18
miss	٢
miss	74
miss	77
hit	18
hit	14
hit	١
miss	71
miss	77
hit	74
hit	77
miss	10
miss	١٨
hit	۱۵
hit	١
hit	0
hit	14
miss	70
miss	71

rate miss =
$$= \frac{11}{10} = 44$$

#١	address
miss	0
miss	١
miss	۱۵
miss	14
hit	14
hit	۱۵
miss	18
miss	٢
miss	74
miss	77
hit	18
hit	14
hit	١
miss	71
miss	77
hit	74
hit	77
miss	10
miss	١٨
hit	۱۵
hit	١
miss	0
hit	14
miss	70
miss	71

rate miss =
$$= \frac{1 \circ}{7 \Delta} = 7 \circ$$