Physics

Grade Level: Physics Powered by alexandria.ai

Physics Fundamentals: A Focus on Mechanics

Based on the University of Pennsylvania (UPenn) Curriculum

Grade Level: University

2. Material Explanations

Introduction to Mechanics

Mechanics is a branch of physics that deals with the study of the motion of objects, the forces that cause this motion, and the energy changes that occur as a result. This field is fundamentally important in understanding how objects move and interact.

Components of Mechanics

1. Kinematics

- Kinematics is the study of motion without considering the forces that lead to it. It involves concepts such as displacement, velocity, acceleration, time, and trajectories.

2. Dynamics

- Dynamics examines how forces impact motion. Forces can cause an object to speed up, slow down, change direction, or deform.

3. Statics

- Statics investigates the behavior of objects at rest under the influence of forces. This is crucial in engineering fields to assess structures' stability.

4. Energy Conservation

- An understanding of the principle of conservation of energy allows for calculations and

predictions about how moving objects will behave.

3. Practice Problems with Solutions

Problem 1:

A car accelerates from rest at 3m/s² for 10 seconds. What is its final velocity?

Solution:

By using the equation v = u + at

Where,

- v is the final velocity,
- u is the initial velocity = 0 (as the car is starting from rest),
- a is the acceleration = 3m/s², and
- t is the time = 10s.

Substituting into the equation: $v = 0 + (3 \text{ m/s}^2 * 10 \text{s}) = 30 \text{ m/s}$

Problem 2:

A 2kg object is being accelerated at a rate of 5 m/s². What is the force being applied?

Solution:

Using Newton's Second Law, which states f = ma, where

- f is the force,
- m is the mass = 2kg, and
- a is the acceleration = 5 m/s².

Substituting into the equation: $f = 2kg * 5 m/s^2 = 10N$

Problem 3:

An object is thrown vertically upwards with an initial velocity of 20 m/s. What is its height after 2 seconds?

Solution:

Using the equation $h = ut + 0.5at^2$, with

- h is the height,
- u is the initial velocity = 20 m/s,
- t is the time = 2s, and
- a is the acceleration = -9.8 m/s^2 (considering gravity).

Substituting into the equation: $h = 20m/s^2s + 0.5^2 - 9.8m/s^2(2s)^2 = 20.4m$

Problem 4:

A 10 kg box is at rest on a surface with a coefficient of friction of 0.3. What is the force of friction when a 20 N horizontal force is applied?

Solution:

The force of friction can be calculated by $f = \mu N$ where

- f is the friction force,
- μ is the coefficient of friction = 0.3, and
- N is the normal force = $m*g = 10kg * 9.8 m/s^2 = 98N$.

Substituting into the equation: f = 0.3 * 98N = 29.4N

Since the applied force is less than the force of friction, the box does not move, and the force of friction is equal to the applied force, i.e., 20 N.

Problem 5:

A pendulum swings through an angle of 30 degrees. If the pendulum is 0.8 meters long, what is the length of the path it travels?

Solution:

The length of the path can be calculated by $L=2\pi r\theta/360$ where

- L is the arc length,
- r is the radius = 0.8 m, and
- θ is the angle = 30 degrees.

Substituting into the equation: $L = 2\pi^*0.8m^*30/360 = 0.418m$

- **4. References**
- 1. OpenStax, College Physics Open Textbook Library. Available: https://openstax.org/subjects
- 2. Paul E. Tippens, Physics, 7th Edition; McGraw Hill: Open Textbook Library. Available: http://www.digitalbookindex.org/_SEARCH/search011t-rev.asp
- 3. Open Educational Resources (OER) Service, Introduction to Mechanics. Available: https://oercommons.org/
- 4. Physics Mechanics, Internet Archive. Available: https://archive.org/search?query=mechanics.