Dynamic Programming

- Principle of optimality
- · 0/1 Knapsack
- Largest Common Subsequence
- Travelling Salesperson Problem
- Multistage Graph problem (using Forward computation)

Dynamic Programming

- Dynamic programming is typically applied to optimization problem.
- Dynamic Programming is an algorithm design method that can be used when the solution to a problem may be viewed as the result of a sequence of decisions

Why Dynamic Programming?

- **Divide-and-Conquer** : a top-down approach. partitions a problem into independent subproblems
- Greedy method: only works with the local information
- Dynamic programming: a bottom-up approach.

 Solutions for smaller instances are stored in a table for later use.

Comparison with divide-and-conquer

• Divide-and-conquer algorithms split a problem into separate subproblems, solve the subproblems, and combine the results for a solution to the original problem

• Example: Quicksort

Example: Mergesort

• Example: Binary search

- Divide-and-conquer algorithms can be thought of as topdown algorithms
- In contrast, a dynamic programming algorithm proceeds by solving small problems, then combining them to find the solution to larger problems
- Dynamic programming can be thought of as bottom-up

Comparison with Greedy Approach

- Greedy and Dynamic Programming are methods for solving optimization problems.
- However, often you need to use dynamic programming since the optimal solution cannot be guaranteed by a greedy algorithm.
- Dynamic Programming provides efficient solutions for some problems for which a brute force approach would be very slow.
- To use Dynamic Programming we need only show that the principle of optimality applies to the problem.

Elements of Dynamic Programming ...

Principle of optimality

In an optimal sequence of decisions or choices, each subsequence must also be optimal.

- Memorization (for overlapping sub-problems)
- avoid calculating the same thing twice,
- usually by keeping a table of know results that fills up as sub-instances are solved.

Example: Fibonacci numbers

Fibonacci numbers: 0, 1, 1, 2, 3, 5, 8, 13, 21, 24

Computing the nth fibonacci number using **bottom-up** iteration:

•
$$f(0) = 0$$

•
$$f(1) = 1$$

•
$$f(2) = 0+1 = 1$$

•
$$f(3) = 1+1 = 2$$

•
$$f(4) = 1+2 = 3$$

•
$$f(5) = 2+3 = 5$$

•

•

•

•
$$f(n-2) = f(n-3) + f(n-4)$$

•
$$f(n-1) = f(n-2) + f(n-3)$$

•
$$f(n) = f(n-1) + f(n-2)$$

• Recall definition of Fibonacci numbers:

$$f(0) = 0$$

 $f(1) = 1$
 $f(n) = f(n-1) + f(n-2)$ for $n \ge 2$

• Computing the nth Fibonacci number recursively (top-down): f(n)

• • •

Recursive calls for fib

fib Using Dynamic Programming

• The difference between this problem ar one is that you CANNOT take a fraction

- You can either take it or not.
- Hence the name Knapsack 0-1 problem.

- As we did before we are going to solve the problem in terms of subproblems.
 - So let's try to do that...
- Our first attempt might be to characterize a sub-problem as follows:
 - Let S_k be the optimal subset of elements from $\{I_0, I_1, ..., I_k\}$.
 - What we find is that the optimal subset from the elements $\{I_0, I_1, ..., I_{k+1}\}$ may not correspond to the optimal subset of elements from $\{I_0, I_1, ..., I_k\}$ in any regular pattern.
 - Basically, the solution to the optimization problem for S_{k+1} might NOT contain the optimal solution from problem S_k .

• Let's illustrate that point with an example:

<u>ltem</u>	<u>Weight</u>	<u>Val</u>	<u>ue</u>
I _o	3	10	
I ₁	8	4	
	9	9	
l ₃	8	11	

- The maximum weight the knapsack can hold is 20.
- The best set of items from $\{I_0, I_1, I_2\}$ is $\{I_0, I_1, I_2\}$
- BUT the best set of items from $\{I_0, I_1, I_2, I_3\}$ is $\{I_0, I_2, I_3\}$.
 - In this example, note that this optimal solution, $\{I_0, I_2, I_3\}$, does NOT build upon the previous optimal solution, $\{I_0, I_1, I_2\}$.
 - (Instead it build's upon the solution, $\{I_0, I_2\}$, which is really the optimal subset of $\{I_0, I_1, I_2\}$ with weight 12 or less.)

- So now we must re-work the way we build upon previous subproblems...
 - Let B[k, w] represent the maximum total value of a subset S_k with weight w.
 - Our goal is to find **B**[**n**, **W**], where n is the total number of items and W is the maximal weight the knapsack can carry.
- So our recursive formula for subproblems:

```
B[k, w] = B[k - 1, w], if w_k > w
= max { B[k - 1, w], B[k - 1, w - w_k] + v_k}, otherwise
```

- this means that the best subset of S_k that has total weight w is:
 - 1) The best subset of S_{k-1} that has total weight w, or
 - 2) The best subset of S_{k-1} that has total weight w-w_k plus the item k

Knapsack 0-1 Problem – Recursive Formula

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

• The best subset of S_k that has the total weight w, either contains item k or not.

- First case: $w_k > w$
 - Item *k* can't be part of the solution! If it was the total weight would be > w, which is unacceptable.
- Second case: w_k ≤ w
 - Then the item *k* can be in the solution, and we choose the case with greater value.

Knapsack 0-1 Algorithm

```
for w = 0 to W { // Initialize 1st row to 0's
  B[0,w]=0
for i = 1 to n { // Initialize 1<sup>st</sup> column to 0's
  B[i,0] = 0
for i = 1 to n {
 for w = 0 to W {
          if w_i \le w { //item i can be in the solution
                  if v_i + B[i-1,w-w_i] > B[i-1,w]
                           B[i,w] = v_i + B[i-1,w-w_i]
                  else
                           B[i,w] = B[i-1,w]
          else B[i,w] = B[i-1,w] // w_i > w
```

- Let's run our algorithm on the following data:
 - n = 4 (# of elements)
 - W = 5 (max weight)
 - Elements (weight, value):

```
(2,3), (3,4), (4,5), (5,6)
```

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0					
2	0					
3	0					
4	0					

// Initialize the base cases
for
$$w = 0$$
 to W
 $B[0,w] = 0$

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w	0	1	2	3	4	5
0	0	Q	0	0	0	0
1	0	Ŏ				
2	0					
3	0					
4	0					

$$i = 1$$

$$v_i = 3$$

$$w_i = 2$$

$$w = 1$$

$$w-w_i = -1$$

if
$$w_i \le w$$
 //item i can be in the solution
if $v_i + B[i-1,w-w_i] > B[i-1,w]$

$$B[i,w] = v_i + B[i-1,w-w_i]$$
else

$$B[i,w] = B[i-1,w]$$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

<u>ltems:</u>

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w	0	1	2	3	4	5
0	0_	0	0	0	0	0
1	0	0	3			
2	0					
3	0					
4	0					

$$i = 1$$

$$v_i = 3$$

$$w_i = 2$$

$$\mathbf{w} = 2$$

if
$$v_i + B[i-1,w-w_i] > B[i-1,w]$$

 $B[i,w] = v_i + B[i-1,w-w_i]$

else

$$B[i,w] = B[i-1,w]$$

else
$$B[i,w] = B[i-1,w] // w_i > w$$

if $w_i \le w$ //item i can be in the solution

$$if v_i + B[i-1,w-w_i] > B[i-1,w]$$

$$B[i,w] = v_i + B[i-1,w-w_i]$$

$$B[i,w] = B[i-1,w]$$

else
$$B[i,w] = B[i-1,w] // w_i > w$$

<u>Items:</u>

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w	0	1	2	3	4	5
0	0	0 -	0	0	0	0
1	0	0	3	3		
2	0					
3	0					
4	0					

$$w_i = 2$$

$$w = 3$$

if
$$w_i \le w$$
 //item i can be in the solution
if $v_i + B[i-1,w-w_i] > B[i-1,w]$

$$B[i,w] = v_i + B[i-1,w-w_i]$$

$$B[i,w] = B[i-1,w]$$

else
$$B[i,w] = B[i-1,w] // w_i > w$$

Items:	

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w	0	1	2	3	4	5
0	0	0	0_	0	0	0
1	0	0	3	3	3	
2	0					
3	0					
4	0					

$$i = 1$$

$$v_i = 3$$

$$w_i = 2$$

$$\mathbf{w} = 4$$

if
$$w_i \le w$$
 //item i can be in the solution
if $v_i + B[i-1,w-w_i] > B[i-1,w]$

$$B[i,w] = v_i + B[i-1,w-w_i]$$
else

$$B[i,w] = B[i-1,w]$$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w	0	1	2	3	4	5
0	0	0	0	0_	0	0
1	0	0	3	3	3	3
2	0					
3	0					
4	0					

$$i = 1$$
 $v_i = 3$
 $w_i = 2$
 $\mathbf{w} = 5$

if
$$w_i \le w$$
 //item i can be in the solution
if $v_i + B[i-1,w-w_i] > B[i-1,w]$

$$B[i,w] = v_i + B[i-1,w-w_i]$$
else

$$B[i,w] = B[i-1,w]$$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0				
3	0					
4	0					

$$i = 2$$

$$v_i = 4$$

$$w_i = 3$$

$$\mathbf{w} = 1$$

$$w - w_i = -2$$

if
$$w_i \le w$$
 //item i can be in the solution

$$if v_i + B[i-1,w-w_i] > B[i-1,w]$$

 $B[i,w] = v_i + B[i-1,w-w_i]$

else

$$B[i,w] = B[i-1,w]$$

if
$$w_i \le w$$
 //item i can be in the solution
if $v_i + B[i-1,w-w_i] > B[i-1,w]$

$$B[i,w] = v_i + B[i-1,w-w_i]$$

$$B[i,w] = B[i-1,w]$$

else
$$B[i,w] = B[i-1,w] // w_i > w$$

else
$$B[i,w] = B[i-1,w] // w_i > w$$

<u>Items:</u>

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3			
3	0					
4	0					

$$i = 2$$

$$v_i = 4$$

$$w_i = 3$$

$$\mathbf{w} = 2$$

$$w-w_i = -1$$

if
$$w_i \le w$$
 //item i can be in the solution
if $v_i + B[i-1,w-w_i] > B[i-1,w]$

$$B[i,w] = v_i + B[i-1,w-w_i]$$
else

$$B[i,w] = B[i-1,w]$$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0 _	0	3	3	3	3
2	0	0	3	4		
3	0					
4	0					

$$i = 2$$

$$v_i = 4$$

$$w_i = 3$$

$$\mathbf{w} = 3$$

$$w-w_i = 0$$

if
$$v_i + B[i-1,w-w_i] > B[i-1,w]$$

 $B[i,w] = v_i + B[i-1,w-w_i]$

else

$$B[i,w] = B[i-1,w]$$

else
$$B[i,w] = B[i-1,w] // w_i > w$$

if
$$w_i \le w$$
 //item i can be in the solution

$$if v_i + B[i-1,w-w_i] > B[i-1,w]$$

$$B[i,w] = v_i + B[i-1,w-w_i]$$

$$B[i,w] = B[i-1,w]$$

else
$$B[i,w] = B[i-1,w] // w_i > w$$

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0 _	3	3	3	3
2	0	0	3	4	4	
3	0					
4	0					

$$i = 2$$

$$v_i = 4$$

$$w_i = 3$$

if
$$w_i \le w$$
 //item i can be in the solution

if
$$v_i + B[i-1,w-w_i] > B[i-1,w]$$

$$B[i,w] = v_i + B[i-1,w-w_i]$$

$$B[i,w] = B[i-1,w]$$

else
$$B[i,w] = B[i-1,w] // w_i > w$$

Items:	
10011101	

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0					
4	0					

$$i = 2$$

$$v_i = 4$$

$$w_i = 3$$

$$\mathbf{w} = 5$$

$$w - \mathbf{w} = 2$$

if
$$w_i \le w$$
 //item i can be in the solution
if $v_i + B[i-1,w-w_i] > B[i-1,w]$

$$B[i,w] = v_i + B[i-1,w-w_i]$$
else

$$B[i,w] = B[i-1,w]$$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

<u>Items:</u>

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	, 0	3	, 4	4	7
3	0	1 0	* 3	† 4		
4	0					

$$i = 3$$
 $v_i = 5$
 $w_i = 4$
 $w = 1..3$
 $w-w_i = -3..-1$

if
$$v_i + B[i-1,w-w_i] > B[i-1,w]$$

 $B[i,w] = v_i + B[i-1,w-w_i]$
else

$$B[i,w] = B[i-1,w]$$

else
$$B[i,w] = B[i-1,w] // w_i > w$$

if
$$w_i \le w$$
 //item i can be in the solution

$$if v_i + B[i-1,w-w_i] > B[i-1,w]$$

$$B[i,w] = v_i + B[i-1,w-w_i]$$

$$B[i,w] = B[i-1,w]$$

else **B[i,w]** = **B[i-1,w]** //
$$w_i > w$$

<u>Items:</u>

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0 _	0	3	4	4	7
3	0	0	3	4	5	
4	0					

$$i = 3$$

$$v_i = 5$$

$$w_i = 4$$

$$\mathbf{w} = 4$$

$$w-w_i = 0$$

if
$$w_i \le w$$
 //item i can be in the solution
if $v_i + B[i-1,w-w_i] > B[i-1,w]$

$$B[i,w] = v_i + B[i-1,w-w_i]$$

else

$$B[i,w] = B[i-1,w]$$

else
$$B[i,w] = B[i-1,w] // w_i > w$$

if $w_i \le w$ //item i can be in the solution

if
$$v_i + B[i-1,w-w_i] > B[i-1,w]$$

$$B[i,w] = v_i + B[i-1,w-w_i]$$

$$B[i,w] = B[i-1,w]$$

else
$$B[i,w] = B[i-1,w] // w_i > w$$

<u>Items:</u>

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	▼ 7
4	0					

$$i = 3$$
 $v_i = 5$
 $w_i = 4$
 $\mathbf{w} = 5$
 $w-w_i = 1$

if
$$w_i \le w$$
 //item i can be in the solution
if $v_i + B[i-1,w-w_i] > B[i-1,w]$

$$B[i,w] = v_i + B[i-1,w-w_i]$$

else

$$B[i,w] = B[i-1,w]$$

else
$$B[i,w] = B[i-1,w] // w_i > w$$

if $w_i \le w$ //item i can be in the solution

if
$$v_i + B[i-1,w-w_i] > B[i-1,w]$$

$$B[i,w] = v_i + B[i-1,w-w_i]$$

$$B[i,w] = B[i-1,w]$$

else
$$B[i,w] = B[i-1,w] // w_i > w$$

<u>Items:</u>

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	1 0	13	4	15	7
4	0	• 0	* 3	* 4	* 5	

$$i = 4$$
 $v_i = 6$
 $w_i = 5$
 $\mathbf{w} = 1..4$
 $w-w_i = -4..-1$

if
$$w_i \le w$$
 //item i can be in the solution
if $v_i + B[i-1,w-w_i] > B[i-1,w]$

$$B[i,w] = v_i + B[i-1,w-w_i]$$
else

$$B[i,w] = B[i-1,w]$$
else $B[i,w] = B[i-1,w]$ // $w_i > w$

if
$$w_i \le w$$
 //item i can be in the solution
$$if \ v_i + B[i\text{-}1,w\text{-}w_i] > B[i\text{-}1,w]$$

$$B[i,w] = v_i + B[i\text{-}1,w\text{-}w_i]$$
 else
$$B[i,w] = B[i\text{-}1,w]$$

else $B[i,w] = B[i-1,w] // w_i > w$

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	† 7

$$i = 4$$

$$v_i = 6$$

$$w_i = 5$$

$$\mathbf{w} = \mathbf{5}$$

if
$$v_i + B[i-1,w-w_i] > B[i-1,w]$$

 $B[i,w] = v_i + B[i-1,w-w_i]$

else

$$B[i,w] = B[i-1,w]$$

else
$$B[i,w] = B[i-1,w] // w_i > w$$

if
$$w_i \le w$$
 //item i can be in the solution

$$if v_i + B[i-1,w-w_i] > B[i-1,w]$$

$$B[i,w] = v_i + B[i-1,w-w_i]$$

$$B[i,w] = B[i-1,w]$$

else
$$B[i,w] = B[i-1,w] // w_i > w$$

Items:

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

We're DONE!!

The max possible value that can be carried in this knapsack is \$7

Knapsack 0-1 Algorithm

- This algorithm only finds the max possible value that can be carried in the knapsack
 - The value in B[n,W]
- To know the *items* that make this maximum value, we need to trace back through the table.

Knapsack 0-1 Algorithm Finding the Items

```
    Let i = n and k = W
    if B[i, k] ≠ B[i-1, k] then
    mark the i<sup>th</sup> item as in the knapsack
    i = i-1, k = k-w<sub>i</sub>
    else
    i = i-1 // Assume the i<sup>th</sup> item is not in the knapsack
    // Could it be in the optimally packed knapsack?
```

Knapsack 0-1 Algorithm Finding the Items

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	4 7
4	0	0	3	4	5	7

<u>Items: Knapsack:</u>

$$i = 4$$
 $k = 5$
 $v_i = 6$
 $w_i = 5$
 $B[i,k] = 7$
 $B[i-1,k] = 7$

$$i = n$$
, $k = W$
while $i, k > 0$
 $if B[i, k] \neq B[i-1, k]$ then
 $mark \ the \ i^{th} \ item \ as \ in \ the \ knapsack$
 $i = i-1, \ k = k-w_i$
else
 $i = i-1$

Knapsack 0-1 Algorithm Finding the Items

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	↑ 7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

<u>Items: Knapsack:</u>

2: (3,4)

3: (4,5)

4: (5,6)

$$i = 3$$

 $k = 5$
 $v_i = 5$
 $w_i = 4$
B[i,k] = 7
B[i-1,k] = 7

$$i = n$$
, $k = W$
while $i, k > 0$
 $if B[i, k] \neq B[i-1, k]$ then
 $mark \ the \ i^{th} \ item \ as \ in \ the \ knapsack$
 $i = i-1, \ k = k-w_i$
else
 $i = i-1$

Knapsack 0-1 Algorithm Finding the Items

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
•	0	0	2	1	_	7

3

0

Items: Knapsack: Item 2

1: (2,3)

2: (3,4)

3: (4,5)

4: (5,6)

$$i = 2$$

$$k = 5$$

$$v_i = 4$$

$$w_i = 3$$

$$B[i,k] = 7$$

 $B[i-1,k] = 3$
 $k - w_i = 2$

$$i = n$$
, $k = W$
while $i, k > 0$

0

4

if
$$B[i, k] \neq B[i-1, k]$$
 then

mark the ith item as in the knapsack

5

$$i = i-1$$
, $k = k-w_i$

4

else

$$i = i-1$$

Knapsack 0-1 Algorithm Finding the Items

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

i = n, k = W

Items: Knapsack: 1: (2,3) Item 2 2: (3,4) Item 1

$$i = 1$$

 $k = 2$
 $v_i = 3$
 $w_i = 2$
B[i,k] = 3
B[i-1,k] = 0
 $k - w_i = 0$

3: (4,5)

4: (5,6)

while i,
$$k > 0$$

if $B[i, k] \neq B[i-1, k]$ then
 $mark\ the\ i^{th}\ item\ as\ in\ the\ knapsack$
 $i = i-1,\ k = k-w_i$
else
 $i = i-1$

Knapsack 0-1 Algorithm Finding the Items

i / w	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

k = 0, so we're DONE!

<u>Items:</u>	Knapsack:
1: (2,3)	Item 2
2: (3,4)	Item 1

i = 1
k = 2
$v_i = 3$
$\mathbf{w}_{i} = 2$
B[i,k] = 3
B[i-1,k] = 0
$k - w_i = 0$

The optimal knapsack should contain:

Item 1 and Item 2

Knapsack 0-1 Problem – Run Time

```
for w = 0 to W
B[0,w] = 0
O(W)
for i = 1 to n
B[i,0] = 0
O(n)
for i = 1 to n
for <math>w = 0 to w
 < the rest of the code > O(W)
What is the running time of this algorithm?
```

Remember that the brute-force algorithm takes: **O(2**ⁿ**)**

O(n*W)

Brute-force search or **exhaustive search**, also known as **generate and test**, is a very general <u>problem solving</u> technique and <u>algorithmic paradigm</u> that consists of systematically enumerating all possible candidates for the solution and checking whether each candidate satisfies the problem's statement.

- Consider the problem having weights and profits are:
- Weights: {3, 4, 6, 5}
- Profits: {2, 3, 1, 4}
- The weight of the knapsack is 8 kg
- The number of items is 4

- A solution to the knapsack problem may be obtained by making a sequence of decisions on the variables x1, x2, ..., xn. A decision on variable x; involves deciding which of the values 0 or 1 is to be assigned to it.
- Let $(\mathcal{Y}_j(X))$ the value of an optimal solution to KNAP(I,j, X). Since the principle of optimality holds, we obtain

$$f_n(M) = \max\{f_{n-1}(M), f_{n-1}(M - w_n) + p_n\}$$

• For arbitrary $f_i(X)$, i > 0 quation generalizes to

$$f_i(X) = \max\{f_{i-1}(X), f_{i-1}(X - w_i) + p_i\}$$

• Equation may be solved $f_n(M)$ y beginning with the knowledge $f_0(X) = 0$ or all X and $f_i(x) = -\infty, x < 0, f_1, f_2, \ldots, f_n$ y be successively computed using equation 2.

(Ref. Horowithz Sahni , page no-

• **Con**sider the knapsack instance n = 3, (w1, w2,w3) = (2, 3, 4), (p1, p2, p3) = (1, 2, 5) and M = 6.

Initially compute

$$S^0 = \{(0,0)\}$$

Where $S^{i} m_{i} S_{1}^{i} = \{(P, W) | (P - p_{i}, W - w_{i}) \in S^{i-1}\} \mid \text{together } S^{i-1} \text{ and } S_{1}^{i}$.

Purging Rule: If s_{i+1} contains (P_j, W_j) and (P_k, W_k) ; these two pairs such that $P_j \le P_k$ and $W_j \ge W_k$, then (P_j, W_j) can be eliminated. This purging rule is also called as dominance rule. In short, remove the pair with less profit and more weight.

```
S^{0} = \{(0,0)\}; S_{1}^{1} = \{(1,2)\}
S^{1} = \{(0,0), (1,2)\}; S_{1}^{2} = \{(2,3), (3,5)\}
S^{2} = \{(0,0), (1,2), (2,3), (3,5)\}; S_{1}^{3} = \{(5,4), (6,6), (7,7), (8,9)\}
S^{3} = \{(0,0), (1,2), (2,3), (5,4), (6,6), (7,7), (8,9)\}.
```

Note that the pair (3, 5) has been eliminated from S^3 as a result of the purging rule stated above. \square

```
line procedure DKP(p, w, n, M)
 1 S^0 \leftarrow \{(0,0)\}
    for i \leftarrow 1 to n-1 do
           S_1^i \leftarrow \{(P1, W1) | (P1 - p_i, W1 - w_i) \in S^{i-1} \text{ and } W1 \leq M\}
           S^i \leftarrow MERGE\_PURGE(S^{i-1}, S^i_1)
         repeat
         (PX, WX) \leftarrow last tuple in S^{n-1}
         (PY, WY) \leftarrow (P1 + p_n, W1 + w_n) where W1 is the largest W in
            any tuple in S^{n-1} such that W + w_n \leq M
         //trace back for x_n, x_{n-1}, \ldots, x_1//
 8
         if PX > PY then x_n \leftarrow 0
 9
                        else x_n \leftarrow 1
         endif
10
11
         trace back for x_{n-1}, \ldots, x_1
12
      end DKP
```

Largest/Longest Common Subsequence (LCS)

(Ref. Parag Dave, page no-285)

A subsequence is a sequence that appears in the same relative order, but not necessarily contiguous. For example, "abc", "abg", "bdf", "aeg", "acefg", ... etc are subsequences of "abcdefg".

Problem:

Given two sequences $X = \langle x1, x2,...xm \rangle$ and $Y = \langle y1, y2,...yn \rangle$, Find the longest sub-sequence $Z = \langle z1,....zk \rangle$ that is common to X and Y.

For example:

If X = < A,B,C,B,D,A,B> and Y = <B,D,C,A,B,A> then some common sub-sequences are: {A} {B} {C} {D} {A,A} {B,B} {B,C,A} {B,C,A} {B,C,B,A} {B,D,A,B}

From which {B,C,B,A } {B,D,A,B} are the Longest Common sub-sequences.

c[i, j] = length of LCS for X[i] and Y[j].

$$c[i, j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1, j-1]+1 & \text{if } i, j > 0 \text{ and } x_i = y_i \\ \max(c[i, j-1], c[i-1, j]) & \text{if } i, j > 0 \text{ and } x_i \neq y_i \end{cases}$$

```
LCS - Length(X, Y)
 1 m \leftarrow length[X]
 2 \quad n \leftarrow length[Y]
 3 for i \leftarrow 1 to m
               \mathbf{do}\ c[i,0] \leftarrow 0
 5
      for j \leftarrow 0 to n
                \mathbf{do}\ c[0,j] \leftarrow 0
 6
       for i \leftarrow 1 to m
 8
                do for j \leftarrow 1 to n
 9
                            do if x_i = y_j
                                     then c[i, j] \leftarrow c[i - 1, j - 1] + 1
10
                                              b[i,j] \leftarrow " \""
11
                                     else if c[i-1,j] \ge c[i,j-1]
12
                                                  then c[i,j] \leftarrow c[i-1,j]
13
14
                                                          b[i,j] \leftarrow ``\uparrow"
                                                  else c[i,j] \leftarrow c[i,j-1]
15
                                                          b[i,j] \leftarrow \text{``}\leftarrow\text{''}
16
17
       return c and b
```

PRINT-LCS (b, x, i, j)

- 1. if i=0 or j=0
- 2. then return
- 3. if b $[i,j] = ' \setminus '$
- 4. then PRINT-LCS (b,x,i-1,j-1)
- 5. print x_i
- 6. else if b $[i,j] = ' \uparrow '$
- 7. then PRINT-LCS (b,X,i-1,j)
- 8. else PRINT-LCS (b,X,i,j-1)

Largest/Longest Common Subsequence (LCS)

Example:

Given two strings are X = BACDB and Y = BDCB find the longest common subsequence.

Travelling Salesman Problem

(Ref. Horowithz Sahni , page no-319)

In the traveling salesman problem, a map of cities is given to the salesman and he has to visit all the cities only once and return to his starting point to complete the tour in such a way that the length of the tour is the shortest among all possible tours for this map. Clearly starting from a given city, the salesman will have a total of (n-1)! Different sequences:

If n = 2, A and B, there is no choice.

If n = 3, i.e. he wants to visit three cities inclusive of the starting point, he has 2! Possible routes and so on.

Travelling Salesman Problem

(Ref. Horowithz Sahni, page no-319)

The Dynamic Programming proceeds as follows:-

Step-1

Consider the given travelling salesman problem in which he wants to find that route which distance. has shortest

Step-2

Consider set of 0element, such that

$$q(2, \Phi) = c21$$

$$g(3, \Phi) = c31$$

$$g(4, \Phi) = c41$$

Step-3

After completion of step-2, consider sets of 1 elements, such that

$$g(3,{2}) = c32 + g(2, \Phi) = c32 + c21$$

$$g(4,{2}) = c42 + g(2, \Phi) = c42 + c21$$

$$g(2,{3}) = c23 + g(3, \Phi) = c23 + c31$$

$$g(4,{3}) = c43 + g(3, \Phi) = c43 + c31$$

$$q(2,{4}) = c24 + q(4, \Phi) = c24 + c41$$

$$g(3,{4}) = c34 + g(4, \Phi) = c34 + c41$$

Step-4

After completion of step-3, consider sets of 2 elements, such that

Set
$$\{2,3\}$$
: $g(4,\{2,3\}) = min \{c42 + g(2,\{3\}), c43 + g(3,\{2\})\}$

Set
$$\{2,4\}$$
: $q(3,\{2,4\}) = min \{c32 + q(2,\{4\}), c34 + q(4,\{2\})\}$

Set
$$\{3,4\}$$
: $g(2,\{3,4\}) = min\{c23 + g(3,\{4\}), c24 + g(4,\{3\})\}$

Step-5

After completion of step-4, Find the length of an optimal tour:

$$f = g(1,\{2,3,4\}) = min \{ c12 + g(2,\{3,4\}), c13 + g(3,\{2,4\}), c14 + g(4,\{2,3\}) \}$$

Step-6

After completion of step-5, Find the Optimal TSP tour

Travelling Salesman Problem

(Ref. Horowithz Sahni, page no-319)

Solve the TSP problem for given Distance matrix.

```
g(2, \Phi) = c21 = 1

g(3, \Phi) = c31 = 15

g(4, \Phi) = c41 = 6
```

k = 1, consider sets of 1 element:

Set {2}:
$$g(3,\{2\}) = c32 + g(2, \Phi) = c32 + c21 = 7 + 1 = 8$$

 $g(4,\{2\}) = c42 + g(2, \Phi) = c42 + c21 = 3 + 1 = 4$
Set {3}: $g(2,\{3\}) = c23 + g(3, \Phi) = c23 + c31 = 6 + 15 = 21$
 $g(4,\{3\}) = c43 + g(3, \Phi) = c43 + c31 = 12 + 15 = 27$
Set {4}: $g(2,\{4\}) = c24 + g(4, \Phi) = c24 + c41 = 4 + 6 = 10$

k = 2, consider sets of 2 elements:

```
Set \{2,3\}: g(4,\{2,3\}) = min \{c42 + g(2,\{3\}), c43 + g(3,\{2\})\} = min \{3+21, 12+8\} = min \{24, 20\} = 20
Set \{2,4\}: g(3,\{2,4\}) = min \{c32 + g(2,\{4\}), c34 + g(4,\{2\})\} = min \{7+10, 8+4\} = min \{17, 12\} = 12
Set \{3,4\}: g(2,\{3,4\}) = min \{c23 + g(3,\{4\}), c24 + g(4,\{3\})\} = min \{6+14, 4+27\} = min \{20, 31\} = 20
```

Length of an optimal tour:

```
f = g(1,\{2,3,4\}) = min \{ c12 + g(2,\{3,4\}), c13 + g(3,\{2,4\}), c14 + g(4,\{2,3\}) \}
= min \{2 + 20, 9 + 12, 10 + 20\}
= min \{22, 21, 30\} = 21
```

 $q(3,\{4\}) = c34 + q(4, \Phi) = c34 + c41 = 8 + 6 = 14$

Successor of node 1: $c13 + g(3,\{2,4\}) = 3$

Successor of node $3 := c34 + g(4,\{2\}) = 4$

Successor of node 4: $q(4,\{2\}) = 2$

Successor of node 2: back to staring node 1

Distance matrix

```
\begin{pmatrix}
0 & 2 & 9 & 10 \\
1 & 0 & 6 & 4 \\
15 & 7 & 0 & 8 \\
6 & 3 & 12 & 0
\end{pmatrix}
```

Dynamic Programming

 <u>Dynamic Programming</u> is an algorithm design method that can be used when the solution to a problem may be viewed as the result of a sequence of decisions

Multi-stage graph

- A multistage graph is a directed graph in which the vertices are partitioned into k ≥ 2 disjoint sets V_i, 1≤i ≤k.
- <u, v> is an edge in E, then u∈ V_i and v ∈ V_{i+1} for some i, 1≤i ≤k.
- The sets V₁ and V_k are such that |V₁| = |V_k|=1
- s and t are the vertices in V₁ and V_k respectively.
- The vertex s is the source and t is the sink
- The multi stage graph is to find a minimum cost path from s to t.

The shortest path in multistage graphs

•e.g.

- The greedy method can not be applied to this case: (S, A, D, T) 1+4+18 = 23.
- The real shortest path is:

$$(S, C, F, T)$$
 $5+2+2=9$.

Dynamic programming approach

• Dynamic programming approach (forward approach):

- $d(S, T) = min\{1+d(A, T), 2+d(B, T), 5+d(C, T)\}$
- d(A,T) = min{4+d(D,T), 11+d(E,T)}= min{4+18, 11+13} = 22.

• d(B, T) = min{9+d(D, T), 5+d(E, T), 16+d(F, T)} = min{9+18, 5+13, 16+2} = 18.

- $d(C, T) = min\{ 2+d(F, T) \} = 2+2 = 4$
- d(S, T) = min{1+d(A, T), 2+d(B, T), 5+d(C, T)} = min{1+22, 2+18, 5+4} = 9.
- The above way of reasoning is called backward reasoning.

```
Algorithm Fgraph(G,k,n,p)
//input is k stage graph G=(V,E) with n vertices
//indexed in order of stages
// E set of edges, c[i][j] is cost of <i,j>
// p[1..k] is a minimum cost path
  fcost[n] = 0.0;
For j = n-1 to 1 step -1 do
{ // compute fcost[j]
  Let r be the vertex such that <j, r> is an edge
  of G and c[j][r] + fcost[r] is minimum;
  fcost[i] = c[i][r] + fcost[r];
  d[i]=r;
p[1]=1; p[k] = n;
for j = 2 to k-1 do p[j] = d[p[j-1]];
```

Complexity

- G represented using adjacency list
- Vertex r can be found in time proportional to the degree of vertex j.
- If G has |E| edges, the total time required is $\Theta(|v| + |E|)$
- Additional space required for cost[],d[],p[]

Multi-stage graph

Multistage Graph-forward approach

Cost(i, j)=min { c(j, l) +cost (i+1,l)} l ∈ V_{i+1}, <j,l> ∈ E

- Cost(5,12)=0;
- Cost(4,9)=4+ Cost(5,12)=4;
- Cost(4,10)=2+ Cost(5,12)=2;
- Cost(4,11)=5+ Cost(5,12)=5;

- MULTI STAGE GRAPH
- Cost(3,6)=min{6+cost(4,9), 5+cost(4,10)}=min{10,7}=7
- Cost(3,7)=min{4+cost(4,9), 3+cost(4,10)}=min{8,5}=5
- Cost(3,8)=min{5+cost(4,10),6+cost(4,11)}=min{7,11}=7
- Cost(2,2)=min{4+cost(3,6),2+cost(3,7),1+cost(3,8)}=min{11,7,8}=7
- Cost(2,3)=min{2+cost(3,6),7+cost(3,7)}=min{9,12}=9
- Cost(2,4)=11+cost(3,8)=18
- Cost(2,5)=min{11+cost(3,7), 8+cost(3,8)}=min{16,15}=15
- Cost(1,1)=min{9+cost(2,2),7+cost(2,3),3+cost(2,4),2+cost(2,5) =min{16,16,21,17}=16

Shortest path 1-2-7-10-12 $Cost(i, j)=min \{ c(j, l) + cost (i+1, l) \} l \in V_{i+1}, \langle j, l \rangle \in E$

Backward approach (forward reasoning)


```
d(E,T), d(S, F)+d(F, T)
= min{ 5+18, 7+13, 7+2 }
= 9
                           A
                                             18
                                     9
                            11
                                             13
               S
                           В
                            16
                     5
```

• $d(S,T) = min\{d(S, D) + d(D, T), d(S,E) +$

```
Algorithm Bgraph(G,k,n,p)
//input is k stage graph G=(V,E) with n vertices
//indexed in order of stages
// E set of edges, c[i][j] is cost of <i,j>
// p[1..k] is a minimum cost path
  bcost[1] = 0.0;
For j=2 to n do
{ // compute bcost[j]
  Let r be the vertex such that <r, j> is an edge
  of G and bcost[r] + c[r][j] is minimum;
  bcost[i] = bcost[r] + c[r][j];
d[j]=r;
p[1]=1; p[k] = n;
for j = k-1 to 2 do p[j] = d[p[j+1]];
```

Principle of optimality

- Principle of optimality: Suppose that in solving a problem, we have to make a sequence of decisions $D_1, D_2, ..., D_n$. If this sequence is optimal, then the last k decisions, 1 < k < n must be optimal.
- e.g. the shortest path problem

 If $i_1, i_2, ..., j$ is a shortest path from $i_1, i_2, ..., j$ must be a shortest path from i_1 to j
- In summary, if a problem can be described by a multistage graph, then it can be solved by dynamic programming.

Dynamic programming

- Forward approach and backward approach:
 - Note that if the recurrence relations are formulated using the forward approach then the relations are solved backwards. i.e., beginning with the last decision
 - On the other hand if the relations are formulated using the backward approach, they are solved forwards.
- To solve a problem by using dynamic programming:
 - Find out the recurrence relations.
 - Represent the problem by a multistage graph.

The End