A. 全 1 子矩阵

Bobo 写了一个 n 行 m 列的矩阵 $A_{i,j}$.

- 首先,他把所有元素 $A_{i,j}$ $(1 \le i \le n, 1 \le j \le m)$ 设为 0. 然后,他选了 4 个整数 x_1, x_2, y_1, y_2 满足 $1 \le x_1 \le x_2 \le n, 1 \le y_1 \le y_2 \le m$,并把满足 $x_1 \le i \le n$ $x_2, y_1 \leq j \leq y_2$ 的元素 $A_{i,j}$ 设为 1.

给出 n 行 m 列的矩阵 $A_{i,j}$, 判断它是否是 Bobo 所写的矩阵。

输入格式

输入文件包含多组数据,请处理到文件结束。

每组数据的第一行包含两个整数 n 和 m.

接下来 n 行,其中第 i 行包含 m 个整数 $A_{i,1}, A_{i,2}, \ldots, A_{i,m}$.

- $1 \le n, m \le 10$
- $A_{i,j} \in \{0,1\}$
- 至多 1000 组数据。

输出格式

对于每组数据,如果所给矩阵是 Bobo 所写的矩阵,输出 Yes,否则输出 No.

样例输入

2 2

11

10

3 3 000

001

000

3 4

1111

1111

1111

样例输出

No

Yes

Yes

B. 组合数

给出 n 和 k, 求 $\min\{\frac{n!}{k!(n-k)!}, 10^{18}\}$ 的值。 其中 $n! = 1 \times 2 \times \cdot \times n$ 表示 n 的阶乘。

输入格式

输入文件包含多组数据,请处理到文件结束。 每组数据包含两个整数 n 和 k.

- $0 \le k \le n \le 10^9$
- 至多 10⁵ 组数据。

输出格式

对于每组数据,输出一个整数,表示所求的值。

样例输入

1000000000 0 1000000000 2 1000000000 500000000

样例输出

C. Distinct Substrings

For a string s_1, s_2, \ldots, s_n , Bobo denotes the number of its distinct substrings as $f(s_1, s_2, \ldots, s_n)$. He also defines defines $h(c) = f(s_1, s_2, \ldots, s_n, c) - f(s_1, s_2, \ldots, s_n)$ for character c.

Given a string s_1, s_2, \ldots, s_n and m, find the value of $\bigoplus_{c=1}^m (h(c) \cdot 3^c \mod (10^9 + 7))$.

Note that \oplus denotes the bitwise exclusive-or (XOR).

Input

The input consists of several test cases and is terminated by end-of-file.

The first line of each test case contains two integers n and m.

The second line contains n integers s_1, s_2, \ldots, s_n .

- $1 \le n, m \le 10^6$
- $1 \le s_i \le m$
- The sum of n does not exceed 5×10^6 .

Output

For each test case, print an integer which denotes the result.

Sample Input

```
3 2
```

1 1 2

2 3

1 2

1 1000000

1

Sample Output

18

69

317072014

Note

For the second test case, h(1) = h(2) = 2, h(3) = 3.

D. Modulo Nine

Bobo has a decimal integer $\overline{a_1a_2\dots a_n}$, possibly with leading zeros. He knows that for m ranges $[l_1,r_1],[l_2,r_2],\dots,[l_m,r_m]$, it holds that $a_{l_i}\times a_{l_i+1}\times\dots\times a_{r_i}$ mod 9=0. Find the number of valid integers $\overline{a_1a_2\dots a_n}$, modulo (10^9+7) .

Input

The input consists of several test cases and is terminated by end-of-file.

The first line of each test case contains two integers n and m.

The *i*th of the following m lines contains two integers l_i and r_i .

- $1 \le n, m \le 50$
- $1 \le l_i \le r_i \le n$
- There are at most 100 test cases.

Output

For each test case, print an integer which denotes the result.

Sample Input

- 2 1
- 1 2
- 4 2
- 1 3
- 2 4
- 50 1 1 50

Sample Output

40

4528

E. Numbers

Bobo has n distinct integers a_1, a_2, \dots, a_n in [0, 99]. He writes them in decimal notation without leading zeros in a row, obtaining a string s.

Given the string s, find the number of possible array of integers a_1, a_2, \ldots, a_n .

Input

The input consists of several test cases and is terminated by end-of-file.

Each test case contains a string s.

- $1 \le |s| \le 50$
- There are at most 100 test cases.

Output

For each test case, print an integer which denotes the result.

Sample Input

999 233333 0123456789

Sample Output

2

0

F. 4 Buttons

Bobo lives in an infinite chessboard. Initially he locates at (0,0). There are 4 buttons.

- When the first button is pressed, Bobo moves right for at most a cells.
- When the second button is pressed, Bobo moves up for at most b cells.
- When the third button is pressed, Bobo moves left for at most c cells.
- When the fourth button is pressed, Bobo moves down for at most d cells.

Find the number of cells Bobo can reach modulo $(10^9 + 7)$, if he presses the buttons for no more than n times.

Input

The input consists of several test cases and is terminated by end-of-file.

Each test case contains five integers $n,\,a,\,b,\,c$ and d.

- $1 \le n, a, b, c, d \le 10^9$
- The number of test cases does not exceed 10^5 .

Output

For each test case, print an integer which denotes the result.

Sample Input

Sample Output

11 13 5685

Note

For the first test case, Bobo can reach the following 11 cells: (-3,0), (-2,0), (-1,0), (0,-4), (0,-3), (0,-2), (0,-1), (0,0), (0,1), (0,2), (1,0).

G. 字典序

对于序列 $A=(a_1,a_2,\ldots,a_m)$ 和 $B=(b_1,b_2,\ldots,b_m)$,定义 A 的字典序比 B 小,记作 A< B ,当且仅当存在 $1\leq p\leq m$ 使得 $a_p< b_p$ 且对于所有的 $1\leq i< p$ 都有 $a_i=b_i$. 进一步地,定义 $A\leq B$ 当且仅当 A< B 或者 A=B.

Bobo 有一个 n 行 m 列的矩阵 C. 他想找字典序最小的 $1,2,\ldots,m$ 的排列 $\sigma_1,\sigma_2,\ldots,\sigma_m$, 使得 $S_1 \leq S_2 \leq \cdots \leq S_n$, 其中 $S_i = (C_{i,\sigma_1},C_{i,\sigma_2},\ldots,C_{i,\sigma_m})$.

输入格式

输入文件包含多组数据, 请处理到文件结束。

每组数据的第一行包含两个整数 n 和 m.

接下来 n 行, 其中第 i 行包含 m 个整数 $C_{i,1}, C_{i,2}, \ldots, C_{i,m}$.

- $1 \le n, m \le 2000$
- $1 \le C_{i,j} \le 10^9$
- $n \times m$ 的总和不超过 10^7

输出格式

对于每组数据,如果有解,输出 m 个整数,表示字典序最小的 $\sigma_1, \sigma_2, \ldots, \sigma_m$. 否则输出 -1.

样例输入

- 4 3
- 4 3 3
- 1 5 1
- 1 5 1
- 3 5 2
- 2 2
- 1 1
- 2
 2
- 2 2
- 1 1

样例输出

- 2 1 3
- 1 2
- -1

有向图 H.

Bobo 有一个 n+m 个节点的有向图, 节点用 $1,2,\ldots,(n+m)$ 编号。他还有一个 n 行 (n+m) 列的矩阵 P.

- 如果在 t 时刻他位于节点 u $(1 \le u \le n)$,那么在 (t+1) 时刻他在节点 v 的概率是 $P_{u,v}/10000$.
- 如果在 t 时刻他位于节点 u (u > n),那么在 (t + 1) 时刻他在节点 u 的概率是 1.

0 时刻 Bobo 位于节点 1,求无穷久后,他位于节点 $(n+1),\ldots,(n+m)$ 的概率 p_1,p_2,\ldots,p_m 。

输入格式

输入文件包含多组数据, 请处理到文件结束。

每组数据的第一行包含两个整数 n 和 m.

接下来 n 行,其中第 i 行包含 n+m 个整数 $P_{i,1}, P_{i,2}, \ldots, P_{i,n+m}$.

- $n, m \ge 1$
- $n + m \le 500$
- $1 \le P_{i,j} \le 10000$
- $P_{i,1} + P_{i,2} + \cdots + P_{i,n+m} = 10000$ 至多 100 组数据,除了 1 组外都满足 $n+m \le 50$.

输出格式

对于每组数据,输出 m 个整数表示 p_1,p_2,\ldots,p_m . 格式如下:如果 $p_i=\frac{P}{Q}$ (其中 $\gcd(P,Q)=1$),则输出 $P \cdot Q^{-1} \mod (10^9 + 7)$.

样例输入

```
1 2
5000 2000 3000
2 1
1000 2000 7000
1000 2000 7000
1000 2000 3000 4000
1000 2000 3000 4000
```

样例输出

```
800000006 200000002
428571432 571428576
```

样例解释

对于第一组数据, $p_1 = \frac{2}{5}, p_2 = \frac{3}{5}$.

I. 2019

Bobo 有一颗 n 个点的树,点的编号是 $1,2,\ldots,n$. 树有 (n-1) 条边,第 i 条边的端点是 a_i 和 b_i ,权值是 c_i . 求满足 u < v 的 (u,v) 数量,满足点 u 到点 v 路径上的权值和是 2019 的倍数。

输入格式

输入文件包含多组数据, 请处理到文件结束。

每组数据的第一行包含一个整数 n.

接下来 (n-1) 行, 其中第 i 行包含三个整数 a_i , b_i 和 c_i .

- $\bullet \quad n \leq 2 \times 10^4$
- $1 \le a_i, b_i \le n$
- $0 \le c_i < 2019$
- n 的总和不超过 10^5 .

输出格式

对于每组数据,输出一个整数,表示所求的值。

样例输入

4

1 2 1

1 3 2018

1 4 1

1

1 2 0

1 3 0

1 4 0

3

1 2 1

2 3 1

样例输出

2

6

J. Parity of Tuples (Easy)

Bobo has n m-tuple v_1, v_2, \ldots, v_n , where $v_i = (a_{i,1}, a_{i,2}, \ldots, a_{i,m})$. He wants to find count(x) which is the number of v_i where $a_{i,j} \wedge x$ has odd number of ones in its binary notation for all j. Note that \wedge denotes the bitwise-and.

Find $\sum_{x=0}^{2^k-1} \operatorname{count}(x) \cdot 3^x$ modulo (10^9+7) for given k.

Input

The input consists of several test cases and is terminated by end-of-file.

The first line of each test case contains three integers n, m and k.

The *i*th of the following n lines contains m integers $a_{i,1}, a_{i,2}, \ldots, a_{i,m}$.

- $1 \le n \le 10^4$
- $1 \le m \le 10$
- $1 \le k \le 30$
- $0 \le a_{i,j} < 2^k$.
- There are at most 100 test cases, and at most 1 of them have $n > 10^3$ or m > 5.

Output

For each test case, print an integer which denotes the result.

Sample Input

- 1 2 2
- 3 3
- 1 2 2 1 3
- 3 3 4
- 1 2 3
- 4 5 6
- 7 8 9

Sample Output

12

K. 双向链表练习题

Bobo 有 n 个列表 L_1, L_2, \ldots, L_n . 初始时, L_i 仅包含元素 i,即 $L_i = [i]$. 他依次执行了 m 次操作。第 i 次操作由两个整数 a_i, b_i 指定,每次操作分为两步:

- 1. $L_{a_i} \leftarrow \text{reverse}(L_{a_i} + L_{b_i})$, 其中 \leftarrow 表示赋值, + 表示列表的连接,reverse 表示列表的反转。例如,reverse([1, 2] + [3, 4, 5]) = [5, 4, 3, 2, 1].
- 2. $L_{b_i} \leftarrow []$. 其中 [] 表示空的列表。

输出 m 次操作后, L_1 的元素。

输入格式

输入文件包含多组数据,请处理到文件结束。

每组数据的第一行包含两个整数 n 和 m.

接下来 m 行, 其中第 i 行包含 2 个整数 a_i, b_i .

- $1 \le n, m \le 10^5$
- $1 \leq a_i, b_i \leq n, a_i \neq b_i$
- n 的总和, m 的总和都不超过 5×10^5 .

输出格式

对于每组数据,先输出 L_1 的长度 $|L_1|$,再输出 $|L_1|$ 个整数,表示 L_1 的元素。

样例输入

- 2 1
- 1 2
- 2 1
- 2 1
- 3 3
- 3 2
- 3 2
- 1 3

样例输出

- 2 2 1
- 0
- 3 2 3 1