CAAM 336 · DIFFERENTIAL EQUATIONS

Homework 37 · Solutions

Posted Friday 21 March 2014. Due 1pm Friday 11 April 2014.

37. [25 points]

Let the symmetric bilinear form $(\cdot,\cdot):L^2(0,1)\times L^2(0,1)\to\mathbb{R}$ be defined by

$$(v,w) = \int_0^1 v(x)w(x) dx$$

and let the symmetric bilinear form $a(\cdot,\cdot):H^1(0,1)\times H^1(0,1)\to\mathbb{R}$ be defined by

$$a(v,w) = \int_0^1 v'(x)w'(x) dx.$$

Let $B(\cdot,\cdot):H^1(0,1)\times H^1(0,1)\to\mathbb{R}$ be defined by

$$B(v, w) = a(v, w) + (v, w).$$

Let the norm $|||\cdot|||: H^1(0,1) \to \mathbb{R}$ be defined by

$$|||v||| = \sqrt{B(v,v)}.$$

Let $f \in L^2(0,1)$, let $\rho \in \mathbb{R}$, let $H^1_D(0,1) = \{w \in H^1(0,1) : w(0) = 0\}$ and let $u \in H^1_D(0,1)$ be such that

$$B(u, v) = (f, v) + \rho v(1)$$
 for all $v \in H_D^1(0, 1)$.

Moreover, let N be a positive integer, let V_N be a subspace of $H_D^1(0,1)$ and let $u_N \in V_N$ be such that

$$B(u_N, v) = (f, v) + \rho v(1)$$
 for all $v \in V_N$.

- (a) Use the fact that (\cdot, \cdot) is a symmetric bilinear form on $L^2(0,1)$ and the fact that $a(\cdot, \cdot)$ is a symmetric bilinear form on $H^1(0,1)$ to show that $B(\cdot, \cdot)$ is a symmetric bilinear form on $H^1(0,1)$. Recall that $H^1(0,1) = \{v \in L^2(0,1) : v' \in L^2(0,1)\}$.
- (b) Show that

$$B(u - u_N, v) = 0$$
 for all $v \in V_N$.

(c) Show that

$$|||u - u_N|||^2 = |||u|||^2 - |||u_N|||^2$$
.

(d) Show that

$$|||u_N|||^2 \le |||u|||^2$$
.

Solution.

(a) [10 points] Since (\cdot,\cdot) is a symmetric bilinear form on $L^2(0,1)$,

$$(\alpha w_1 + \beta w_2, w_3) = \alpha(w_1, w_3) + \beta(w_2, w_3)$$
 for all $w_1, w_2, w_3 \in H^1(0, 1)$ and all $\alpha, \beta \in \mathbb{R}$

because if $w_1, w_2 \in H^1(0,1)$ then $w_1, w_2 \in L^2(0,1)$. Also, since $a(\cdot, \cdot)$ is a symmetric bilinear form on $H^1(0,1)$,

$$a(\alpha w_1 + \beta w_2, w_3) = \alpha a(w_1, w_3) + \beta a(w_2, w_3)$$
 for all $w_1, w_2, w_3 \in H^1(0, 1)$ and all $\alpha, \beta \in \mathbb{R}$.

Hence, for all $w_1, w_2, w_3 \in H^1(0,1)$ and all $\alpha, \beta \in \mathbb{R}$,

$$B(\alpha w_1 + \beta w_2, w_3) = a(\alpha w_1 + \beta w_2, w_3) + (\alpha w_1 + \beta w_2, w_3)$$

$$= \alpha a(w_1, w_3) + \beta a(w_2, w_3) + \alpha(w_1, w_3) + \beta(w_2, w_3)$$

$$= \alpha (a(w_1, w_3) + (w_1, w_3)) + \beta (a(w_2, w_3) + (w_2, w_3))$$

$$= \alpha B(w_1, w_3) + \beta B(w_2, w_3).$$

Therefore, $B(\cdot, \cdot)$ is linear in the first argument.

Moreover, since (\cdot,\cdot) is a symmetric bilinear form on $L^2(0,1)$,

$$(w_1, w_2) = (w_2, w_1)$$
 for all $w_1, w_2 \in H^1(0, 1)$

because if $w_1, w_2 \in H^1(0,1)$ then $w_1, w_2 \in L^2(0,1)$. Furthermore, since $a(\cdot, \cdot)$ is a symmetric bilinear form on $H^1(0,1)$,

$$a(w_1, w_2) = a(w_2, w_1)$$
 for all $w_1, w_2 \in H^1(0, 1)$.

Hence, for all $w_1, w_2 \in H^1(0, 1)$,

$$B(w_1, w_2) = a(w_1, w_2) + (w_1, w_2)$$

= $a(w_2, w_1) + (w_2, w_1)$
= $B(w_2, w_1)$.

Therefore, $B(\cdot, \cdot)$ is symmetric.

It then follows that, for all $w_1, w_2, w_3 \in H^1(0,1)$ and all $\alpha, \beta \in \mathbb{R}$,

$$B(w_1, \alpha w_2 + \beta w_3) = B(\alpha w_2 + \beta w_3, w_1)$$

= $\alpha B(w_2, w_1) + \beta B(w_3, w_1)$
= $\alpha B(w_1, w_2) + \beta B(w_1, w_3)$.

Therefore, $B(\cdot, \cdot)$ is linear in the second argument.

Consequently, $B(\cdot, \cdot)$ is a symmetric bilinear form on $H^1(0, 1)$.

(b) [5 points] Since V_N is a subspace of $H_D^1(0,1)$, the fact that

$$B(u, v) = (f, v) + \rho v(1)$$
 for all $v \in H_D^1(0, 1)$

means that

$$B(u,v) = (f,v) + \rho v(1)$$
 for all $v \in V_N$.

Moreover,

$$a(u_N, v) = (f, v) + \rho v(1)$$
 for all $v \in V_N$.

Therefore the properties satisfied by a symmetric bilinear form allow us to say that, for all $v \in V_N$,

$$B(u - u_N, v) = B(u, v) - B(u_N, v)$$

= $(f, v) + \rho v(1) - ((f, v) + \rho v(1))$
= 0.

$$B(u - u_N, v) = 0$$
 for all $v \in V_N$.

(c) [5 points] The properties satisfied by a symmetric bilinear form allow us to say that

$$B(u - u_N, u - u_N) = B(u, u - u_N) - B(u_N, u - u_N)$$

= $B(u, u) - B(u, u_N) - B(u_N, u) + B(u_N, u_N)$
= $B(u, u) - 2B(u, u_N) + B(u_N, u_N)$.

Now, $u_N \in V_N$ and so the fact that

$$B(u-u_N,v)=0$$
 for all $v\in V_N$

means that

$$B(u - u_N, u_N) = 0$$

and hence

$$B(u, u_N) = B(u_N, u_N)$$

since the properties satisfied by a symmetric bilinear form mean that

$$B(u - u_N, u_N) = B(u, u_N) - B(u_N, u_N).$$

Therefore

$$B(u - u_N, u - u_N) = B(u, u) - 2B(u_N, u_N) + B(u_N, u_N)$$

= $B(u, u) - B(u_N, u_N)$.

The definition of the norm $|||\cdot|||$ then allows us to conclude that

$$|||u - u_N|||^2 = |||u|||^2 - |||u_N|||^2$$
.

(d) [5 points] Since $|||u - u_N||| \in \mathbb{R}$, we can say that

$$|||u - u_N|||^2 \ge 0$$

and so since

$$|||u - u_N|||^2 = |||u|||^2 - |||u_N|||^2$$

we can conclude that

$$|||u|||^2 - |||u_N|||^2 \ge 0.$$

Hence,

$$|||u_N|||^2 \le |||u|||^2$$
.