Multi-armed Bandit Based Covariance Matrix Adaptation Evolution Strategy

Chuan-Che Yen Advisor: Dr. Tian-Li Yu

TEILab

Nov 23, 2014

Outline

- Real-valued Function Optimization
- Related Approaches
- Motivation
- Methodology
- **(5)** Experiments and Results
- **6** Summary
- Conclusion

Outline

- Real-valued Function Optimization
- Related Approaches
- Motivation
- 4 Methodology
- Experiments and Results
- **6** Summary
- Conclusion

Real-valued Function Optimization

- Real-valued function
 - $f: \mathcal{S} \subset \mathbb{R}^n \to \mathbb{R}, x \mapsto f(x)$
 - S: search space
 - Elements of S: candidates or solutions
- Optimization
 - arg min f(x), where x are within given bounds.
 - $\widetilde{\text{Maximizing } f}$ is equivalent to minimizing -f.
- Example
 - $\arg\min 2x^3 3x^2 36x 14$.
 - Design of aircraft wings.

4 / 47

Black-box Optimization

- Without interior information.
- Unavailable to optimize using mathematical methods.
- The only information is the interaction between input and output.

Figure: Black-box function

- Non-convex
- Ruggedness

- Dimensionality and non-separable
- Ill-conditioned

- Non-convex
 - Multi-modal problems
- Ruggedness

- Dimensionality and non-separable
- Ill-conditioned

Figure: Non-convex function

- Non-convex
 - Multi-modal problems
- Ruggedness
 - Perturbated by noise.
- Dimensionality and non-separable
- Ill-conditioned

Figure: Non-convex function

6 / 47

- Non-convex
 - Multi-modal problems
- Ruggedness
 - Perturbated by noise.
 - Non-smooth.
- Dimensionality and non-separable
- Ill-conditioned

Figure: Non-convex function

Figure: sin(x) with noise

- Non-convex
 - Multi-modal problems
- Ruggedness
 - Perturbated by noise.
 - Non-smooth.
- Dimensionality and non-separable
- Ill-conditioned
 - Unable to extract gradient information

Figure: Non-convex function

Figure: sin(x) with noise

Outline

- Real-valued Function Optimization
- Related Approaches
 - Real-coded Extended Compact Genetic Algorithm
 - Covariance Matrix Adaptation Evolution Strategy
- Motivation
- 4 Methodology
- Experiments and Results
- 6 Summary

Related Approaches

- Optimizing black-box problems
 - No deterministic way to evolve global optimum.
 - Applying random search for approximation.
- Stochastic algorithms
 - Ant Colony Optimization, Bat Algorithm, etc.
 - Iteratively generating better solutions.
- Two major approaches
 - Estimation of distribution algorithm (EDA).
 - Evolution strategy (ES).

Also known as Probabilistic Model Building GA (PMBGA).

- Also known as Probabilistic Model Building GA (PMBGA).
 - Building model explicitly.
 - Linkage between decision variables are provided.

- Also known as Probabilistic Model Building GA (PMBGA).
 - Building model explicitly.
 - Linkage between decision variables are provided.
- Mechanism difference with traditional GA.
 - Operators 'crossover' and 'mutation' are replaced with 'modeling' and 'sampling'.

- Also known as Probabilistic Model Building GA (PMBGA).
 - Building model explicitly.
 - Linkage between decision variables are provided.
- Mechanism difference with traditional GA.
 - Operators 'crossover' and 'mutation' are replaced with 'modeling' and 'sampling'.

Extended Compact Genetic Algorithm (ECGA)

- Each EDA is different from the others in model building.
- ECGA was proposed by Harik (1999).
- Good probabilistic model inspires good linkage learing
 - Model is built according to population distribution.
 - Applying greedy search to refine model iteratively.
- ECGA focuses on bitstring, discrete problems.
 - γ-ECGA.
 - An interface for real-valued function is demanded.

Discretization

- Continuous domain → Discrete domain
- ullet Finding good solutions o Finding promising regions
- 2 traditional discretization methods
 - Fixed Height Histogram (FHH)
 - Fixed Width Histogram (FWH)

Figure: illustration of FHH

Figure: illustration of FWH

Split on Demand

- Solutions in each bin should not exceed γN .
 - ullet N is the population size.
 - \bullet $\,\gamma$ defines the rate of one region.
- γ decays with a factor ϵ .

Figure: illustration of SoD

Preparing discretization

- Preparing discretization
- Integrating discretized results into ECGA.

- Preparing discretization
- Integrating discretized results into ECGA.
- Section ECGA builds model accordingly, output the promising regions.

- Preparing discretization
- Integrating discretized results into ECGA.
- Section ECGA builds model accordingly, output the promising regions.
- Sampling accordingly.

- Preparing discretization
- Integrating discretized results into ECGA.
- Section ECGA builds model accordingly, output the promising regions.
- Sampling accordingly.
- ullet For every L generations, a local optimizer is adopted to obtain high resolution solutions

- Preparing discretization
- Integrating discretized results into ECGA.
- Section ECGA builds model accordingly, output the promising regions.
- Sampling accordingly.
- ullet For every L generations, a local optimizer is adopted to obtain high resolution solutions
- o If model does not converge, goto 1.

Evolution Strategy (ES)

- A search template for black-box optimization.
 - Encoded in continuous domain.
- New search points are generated based on current population.
- (μ, λ) -ES and $(\mu, \mu + \lambda)$ -ES.
- $x_i^{t+1} = m^t + \sigma N_i(0, C)$.
 - x_i : *i*-th generated solution at generation t + 1.
 - m: weighted mean of population at generation t.
 - σ : step size.
 - C: Estimated distribution.

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 夕久○

Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

- A famous derivation of ES.
- Importance of σ and C.
 - Larger step size reinforces exploration while smaller reinforces exploitation.
 - Choosing an fixed, appropriate number?
 - Covariance matrix determines the shape of estimated distribution.
 - Determining the length of each axis.
 - Representing the dependency among decision variables.
- CMA-ES features in the adoption of historical information.
 - \bullet σ and C are adjusted accordingly.

Illustration of σ and C

Figure: t = 10

Outline

- Real-valued Function Optimization
- Related Approaches
- Motivation
- 4 Methodology
- Experiments and Results
- **6** Summary
- Conclusion

Motivation

- Exploration and Exploitation
 - Exploration: the ability to have an overview to the search space.
 - Exploitation: the ability to generate high resolution solutions.
 - CMA-ES preforms outstandingly on exploitation.
- Easily trapped into local optima due to the ability of exploitation.
 - Lack of diversity
 - Typical evolutionary algorithms adopt a larger initial population size.
 - CMA-ES benefits nothing from a larger initial population size.

Hypothesis

- Increasing diversity by maintaining multiple groups.
 - kind of discretization.
 - How to define the number of groups?
 - What is the criteria for individuals to form a group?
- There is implicit information hidden between groups.
 - How to extract the information?
 - How to benefit from the information and obtain better solutions?
 - Inspired by discretization, we aim to find a more promising region.
- 2-layer CMA-ES is introduced
 - Inner layer for exploitation
 - Outer layer for exploration

Outline

- Real-valued Function Optimization
- Related Approaches
- Motivation
- Methodology
- Experiments and Results
- **6** Summary
- Conclusion

Flow of Proposed Template

Figure: Flow

Pseudo-code of Template

12 Algorithm: Overview for the system

Undetermined Components

- The method for making division
- The criterion of selecting representative solutions for each group
- The method for evolving the selected candidates

Making Division

- The initial population is expected to categorized according to position.
 - Roughly expresses the diversity
 - A population in a specific region is expected driven toward the identical local optimum.
 - In other words, a group can be roughly viewed as points near by one specific valley.
- Space locality plays an important role.
 - Applying clustering

k-means

- *k-means* clustering is a basic method for vector quantization.
 - Partitioning n solutions into k mutual independent clusters.
 - Serving as a prototype
- Number of clusters
 - As known as number of groups.
 - Without k, finding optimal is said to be NP-hard.
 - To define a proper k is difficult.
- Heuristic algorithms for approximation.
 - Forgy method for initialization
 - iteratively refinements until convergence

Algorithm of Approximation to k-means

```
Input: k, d, \{o_1, o_2, \ldots, o_n\} as observations
   Output: S
 1 Initial: m_1, m_2, \ldots, m_k are random selected from observations as initial
   centers:
                                                              // Forgy method
 2 while At least one of the observations moves to other group do
       for i = 1 to k do
        S_i = \emptyset;
       end
      for i = 1 to n do
          assign o_i to S_i if o_i is closest to m_i among the k centers;
       end
       for i = 1 to k do
          m_i is updated by the arithmetic mean of all vectors \in S_i;
       end
12 end
```

13 Algorithm: Clustering heuristic function

Illustration for The Algorithm

Remaining Criteria

- How to select representativeness from each group?
 - Using the optimal solution found so far as the representativeness in each group
- How to evolve selected candidates?
 - Evolving them with CMA-ES
 - The so-called 'outer CMA-ES'
 - Aims to observe if better regions can be reached
- The number of solutions in a group is fixed after clustering.
 - Once a better solution is generated, the worst one should be replaced.

An Implementation of the Template

```
Input: n,t
  Output: best solution ever evolved
1 Uniformly sampled population of size n;
2 k = \sqrt{\frac{n}{2}};
3 Integrating k-means with Frogy-method to cluster the n individuals into k
  groups;
4 C \leftarrow array with size k;
5 for i = 1 to k do
      Optimizing group<sub>i</sub> by adopting CMA-ES for t generations;
    C_i \leftarrow \mathsf{best} \; \mathsf{solution};
     Applying CMA-ES to evolve the population consisting of local optima
      of groups, as known as C, until terminated.;
9 end
```


10 Algorithm: 2-layer CMA-ES

- 2-layer CMA-ES addresses the diversity for the search.
- Next we lay emphasis on finding more promising regions.

Exploring

- Based on current groups, we aim to figure out better solutions.
 - According to our hypothesis, the implicit information is hidden between groups.
 - What is a good way to evolve groups?
- We consider the priority
 - Put less concentration on groups which performs badly
 - Lay emphasis on possible regions
 - Without any prior knowledge, a selection strategy is demanded.
- The ability to generate new groups adaptively
 - We assume a fixed number of groups.
 - A replacement strategy is demanded accordingly.

The Selection Strategy

- The selection strategy is with the feature that
 - Given a set of groups, the performance of each group is evaluated through trials
 - Lays emphasis on better performance groups
 - groups with worse performance would not be ignored permanently
- This is just identical to the Multi-armed Bandit (MAB) problem.

Multi-armed Bandit Problem

- Investigate the trade-off between exploration and exploitation
- Assume there are k independent slot machines
- Each machine generates reward according to its own unknown probability distribution.
- We can only observe the playing sequence and the correlated reward.
- The goal is to maximize reward in limited play times.

Upper Confidence Bound

- A family of solutions to MAB problems
- UCB1 the first Upper Confidence Bound (UCB) algorithm
- Play machine j which maximizes

$$\bar{x_j} + \sqrt{\frac{2\ln n}{n_j}}$$

- $\bar{x_j}$: the average reward of machine j.
- n_j : the number of times machine j has been played.
- n: the played times of overall system.

UCB1-tuned

- UCB1 takes no variance into consider.
 - UCB1-tuned is the version which adds variance as a factor.
 - UCB1-tuned is not proven working well but outperforms UCB1 in practice.
 - ullet In UCB1-tuned, the machine j to be played is with the highest

$$\bar{x_j} + \sqrt{\frac{\ln n}{n_j} \min(\frac{1}{4}, V_j(n_j))}$$

, where
$$V_j(t) = \sigma_j^2 + \sqrt{\frac{2 \ln n}{n_j}}$$
.

• UCB1-tuned is adopted in our work.

The Replacement Strategy

- By generating a new point and sampling around the new point, we claim to form a better group, and the worst one should be replaced.
- There are 2 judgement to distinguish if there is any group to delete.
 - If a group does not sample a better solution anyway.
 - ② If no group converges, check among groups if there is group has not been played for t rounds where t is a number larger than the number of the solutions the group contains.

Flow of MAB-based CMA-ES

Procedure of MAB-based CMA-ES

1 Algorithm: MAB-based CMA-ES **Input**: n,t as a proper generation for each pulling action Output: best solution ever evolved 2 Uniformly sampled population of size n: 3 $k = \sqrt{\frac{n}{2}}$; 4 Integrating k-means with Frogy-method to cluster the n individuals into kgroups as known as bandits: 5 $C \leftarrow \text{array with size } k$; 6 for i = 1 to k do pull(i); $C_i \leftarrow \text{best solution};$ 9 end 10 while not terminated do for i = 1 to k do calculate UCB(i); // calculate modified UCB1-tuned as illustrated above record the index with max value in M: end pull(M); $C_M \leftarrow \mathsf{best} \; \mathsf{solution} \; \mathsf{in} \; \mathsf{group}_M;$ update(); 18 end

11

12

13

15

```
1 Initial P \leftarrow a permutation array from 1 to k;
 2 ToBeDeleted = 0;
3 for i = 1 to k do
       if deleting criterion 1 is met in group<sub>Ps</sub> then
           ToBeDeleted = P_i;
       end
7 end
 8 if ToBeDeleted = 0 then
       for i = 1 to k do
           if deleting criterion 2 is met in groupP_i, then
10
               ToBeDeleted = P_i;
11
12
           end
       end
14 end
15 if ToBeDeleted = 0 then
       return;
17 end
18 else
       s \leftarrow \mathsf{ToBeDeleted}:
19
       generate a new solution as a new group denoted as group^* according
20
       to C_1, C_2, \dots, C_{s_{i-1}}, C_{s_{i+1}}, \dots, C_k ;
       for i = 1 to ||group_s|| - 1 do
21
          pull(group^*) without replacing worst;
       end
       replace qroup_s with qroup^*;
24
       return:
```

27 Algorithm: update

Outline

- Real-valued Function Optimization
- 2 Related Approaches
- Motivation
- 4 Methodology
- 5 Experiments and Results
- 6 Summary
- Conclusion

Testbed

- A set of benchmark proposed in CEC 2005 (Suganthan et al. 2005)
- 25 problems are categorized into 4 kinds of problem that
 - Unimodal functions (1–5)
 - Basic multi-modal functions (6–12)
 - Expanded functions (13–14)
 - Hybrid composition functions (15–25)
- Benchmark criteria
 - ullet N_{f_e} to convergence
 - ullet The accuracy after $10^5~N_{f_e}$
 - We aim to design an algorithm with the ability to adaptively develop more promising. Therefore we take the latter.

Experiments Design

- The algorithms are designed based on the assumption of increasing diversity and extracting implicit information.
- As a consequence, we demonstrate 2 comparisons to verify the assumption.
 - Comparing original CMA-ES and 2-layer CMA-ES
 - Comparing 2-layer CMA-ES and MAB-based CMA-ES
- Finally, a comparison between MAB-based CMA-ES and rECGA with SoD is demonstrated. The motivation is to verify if our algorithm provides comparable results in the field of discretization.

Comparison

- ullet For original CMA-ES, the λ is set to 20 and σ is initialized to 1.
- ullet For 2-layer CMA-ES, the λ and σ is as above.
- For 2-layer CMA-ES, the initial population size is set to 450 and inner CMA-ES executes for 1000 generations.

	CMA-ES	2-Layer CMA-ES
U	_	_
В	_	1
Е	_	2
Н	2	4
Total	2	7

	CMA-ES	2-Layer CMA-ES
U	1	-
В	2	1
E	1	2
H	3	5
Total	6	8

Table: Best accuracy comparison

Table: Median accuracy comparison

Comparison

- 2-layer CMA-ES is set as above.
- MAB-based CMA-ES sets t of inner CMA-ES to be 30 and t of outer CMA-ES to be 1. Other settings are identical 2-layer CMA-ES.

	2-Layer	MAB-basd
	CMA-ES	CMA-ES
U	1	-
В	ı	1
Е	1	1
Н	2	3
Total	3	4

Table: Best accuracy comparison

	2-Layer	MAB-basd
	CMA-ES	CMA-ES
U	1	1
В	-	4
E	_	2
Н	2	8
Total	2	15

Table: Median accuracy comparison

- SoD sets parameter as follows
 - Population size = 250
 - crossover probability = 0.975, tournament size = 8
 - $\gamma = 0.5, \epsilon = 0.998$
 - For every 5 generations a local optimizer is adopted.

	MAB-basd	rECGA+
	CMA-ES	SoD
U	5	0
В	5	1
E	0	2
Н	4	4
Total	14	15

Table: Best accuracy comparison

	MAB-basd	rECGA +
	CMA-ES	SoD
U	5	0
В	5	1
Е	0	2
Н	8	4
Total	14	7

Table: Median accuracy comparison

Outline

- Real-valued Function Optimization
- 2 Related Approaches
- Motivation
- 4 Methodology
- Experiments and Results
- **6** Summary
- Conclusion

Outline

- Real-valued Function Optimization
- 2 Related Approaches
- Motivation
- 4 Methodology
- Experiments and Results
- 6 Summary
- Conclusion

