Hypothesis Testing

November 2, 2022

Today

- Finish discussion of hypothesis testing, by focusing on chi-square
- Discussion of one application article

Analysis of Two-Way Tables

nes\$relig_attend3	nes\$pid_3 Dem	Ind	Rep	Row Total
Low	 921 0.388	1008 0.425	 444 0.187	 2373 0.405
Mid	670 0.451	524 0.352	293 0.197	1487 0.254
High	 754 0.377	603 0.301	644 0.322	 2001 0.341
Column Total	 2345 	2135	 1381 	 5861

Analysis of Two-Way Tables

- Difference of means and difference of proportions share a similar approach:
 - Compare two groups
 - Null hypothesis is no difference between groups
 - Examine the difference between groups in the sample and examinethe likelihood that the null hypothesis is true given the observed difference in the sample
- What if we have categorical variables with more than two outcomes?
 - More than two groups—ex., Democrats, Republicans, Independents
 - More than two outcomes—i.e., vote for candidate in a three-party race

Analysis of Two-Way Tables

- Can make a two-way table (i.e. cross-tab) comparing categorical variables
 - *R* x *C* Table:
 - R rows
 - C columns
- Independent variable is the column variable
- Dependent variable is the row variable
- We are interested in the conditional distribution of the DV across categories of the IV
- Remember-To determine if the IV is related to the DV, then interested in whether the distribution of the DV is different in different categories of the IV

Testing the Null Hypothesis

- Null hypothesis: No association between the row variable and the column variable
- If true, then the table would have the same distribution across all columns
- Can determine what the table would look like if the null hypothesis were true
- Need expected cell counts:
 - Expected cell count = $\frac{(row\ Total)(column\ Total)}{N}$
- Compare hypothetical table (with expected cell counts) to the table with observed cell counts from sample

Example

	nes\$pid_3			
nes\$relig_attend3	Dem	Ind	Rep	Row Total
Low	921 0.388	1008 0.425	 444 0.187	2373 0.405
Mid	670 0.451	524 0.352	293 0.197	1487 0.254
High	 754 0.377	603 0.301	 644 0.322	 2001 0.341
			j	
Column Total	2345	2135	1381 	5861

Chi-Square

- Can use chi-square statistic to determine the likelihood that we would get our table if H_0 were true
- Steps:
 - Take the difference between each observed count and its corresponding expected count
 - Square all these values (so all are either 0 or positive)
 - Divide each squared difference by the expected count
 - Sum over all cells
- This gives chi-square statistic:

•
$$x^2 = \sum \frac{\text{(observed count-expected count)}^2}{\text{expected count}}$$

- X² distribution is based on degrees of freedom:
 - Degrees of freedom= (r-1)(c-1)

Statistical Significance with Chi-square

- We can determine the p-value using the chi-square distribution
- If H_0 is true, χ^2 has approximately a chi-square distribution with (r-1)(c-1) degrees of freedom
- Can use p-value to test for statistical significance
 - Not directional, always only one-tail (chi-square distribution always positive)
 - To determine direction, need to compare conditional distributions, i.e., must assess it yourself

Chi-Square Example

nes\$relig_attend3	nes\$pid_3 Dem	Ind	Rep	Row Total
Low	921 0.388	1008 0.425	444 0.187	2373 0.405
Mid	670 0.451	524 0.352	293 0.197	1487 0.254
High	754 0.377	603 0.301	644 0.322	 2001 0.341
Column Total	2345	2135	1381	5861

Chi-square table—critical values

Percentage Points of the Chi-Square Distribution

Degrees of Freedom		Probability of a larger value of x 2											
	0.99	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.01				
1	0.000	0.004	0.016	0.102	0.455	1.32	2.71	3.84	6.63				
2	0.020	0.103	0.211	0.575	1.386	2.77	4.61	5.99	9.21				
3	0.115	0.352	0.584	1.212	2.366	4.11	6.25	7.81	11.3				
4	0.297	0.711	1.064	1.923	3.357	5.39	7.78	9.49	13.2				
5	0.554	1.145	1.610	2.675	4.351	6.63	9.24	11.07	15.0				
6	0.872	1.635	2.204	3.455	5.348	7.84	10.64	12.59	16.8				
7	1.239	2.167	2.833	4.255	6.346	9.04	12.02	14.07	18.48				
8	1.647	2.733	3.490	5.071	7.344	10.22	13.36	15.51	20.0				
9	2.088	3.325	4.168	5.899	8.343	11.39	14.68	16.92	21.6				
10	2.558	3.940	4.865	6.737	9.342	12.55	15.99	18.31	23.2				
11	3.053	4.575	5.578	7.584	10.341	13.70	17.28	19.68	24.7				
12	3.571	5.226	6.304	8.438	11.340	14.85	18.55	21.03	26.2				
13	4.107	5.892	7.042	9.299	12.340	15.98	19.81	22.36	27.6				
14	4.660	6.571	7.790	10.165	13.339	17.12	21.06	23.68	29.1				
15	5.229	7.261	8.547	11.037	14.339	18.25	22.31	25.00	30.5				
16	5.812	7.962	9.312	11.912	15.338	19.37	23.54	26.30	32.0				
17	6.408	8.672	10.085	12.792	16.338	20.49	24.77	27.59	33.4				
18	7.015	9.390	10.865	13.675	17.338	21.60	25.99	28.87	34.8				
19	7.633	10.117	11.651	14.562	18.338	22.72	27.20	30.14	36.1				
20	8.260	10.851	12.443	15.452	19.337	23.83	28.41	31.41	37.5				
22	9.542	12.338	14.041	17.240	21.337	26.04	30.81	33.92	40.2				
24	10.856	13.848	15.659	19.037	23.337	28.24	33.20	36.42	42.9				
26	12.198	15.379	17.292	20.843	25.336	30.43	35.56	38.89	45.6				
28	13.565	16.928	18.939	22.657	27.336	32.62	37.92	41.34	48.2				
30	14.953	18.493	20.599	24.478	29.336	34.80	40.26	43.77	50.8				
40	22.164	26.509	29.051	33.660	39.335	45.62	51.80	55.76	63.6				
50	27.707	34.764	37.689	42.942	49.335	56.33	63.17	67.50	76.1				
60	37.485	43.188	46.459	52.294	59.335	66.98	74.40	79.08	88.3				

Chi-square Distribution

Chi-square test example

Table 7-7 Chi-square Calculation for Opinions on Diplomacy versus Military Force, by Gender

	Ger	Gender					
Favor diplomacy or force?	Female	Male	Total				
Diplomacy	$f_o = 245.0$ $f_o = 214.3$ $f_o - f_o = 30.7$ $(f_o - f_o)^2 = 942.5$ $(f_o - f_o)^2 / f_o = 4.4$	$f_o = 176.0$ $f_o = 206.7$ $f_o - f_o = -30.7$ $(f_o - f_o)^2 = 942.5$ $(f_o - f_o)^2 / f_o = 4.6$	40.4% (421)				
Middle	$f_o = 125.0$ $f_e = 135.9$ $f_o - f_e = -10.9$ $(f_o - f_e)^2 = 118.8$ $(f_o - f_e)^2/f_e = .9$	$f_o = 142.0$ $f_o = 131.1$ $f_o - f_o = 10.9$ $(f_o - f_o)^2 = 118.8$ $(f_o - f_o)^2 / f_o = .9$	25.6% (267)				
Force	$f_o = 160.0$ $f_o = 179.7$ $f_o - f_o = -19.7$ $(f_o - f_o)^2 = 388.1$ $(f_o - f_o)^2 / f_o = 2.2$	$f_o = 193.0$ $f_o = 173.3$ $f_o - f_o = 19.7$ $(f_o - f_o)^2 = 388.1$ $(f_o - f_o)^2 / f_o = 2.2$	33.9% (353)				
Total	100.0% (530)	100.0% (511)	99.9% ^a (1,041)				

Note: Shaded cells aren't used directly in the chi-square test statistic formula but are included for reference.

^aDoes not total to 100% due to rounding.

Chi-square example

- I predict that the more conservative someone is, the more likely they are to drink caffeinated beverages
- I conduct a survey based on an SRS of adults in the United States
- Independent variable—liberal/conservative scale (liberal, moderate, conservative)
- Dependent variable—amount of caffeinated beverages a person consumes (none, some, many)
- I give you the data, make a cross-tab and find the chi-square

Data for chi-square example

- R1: Cons, Some
- R2: Cons, Some
- R3: Lib, Many
- R4: Lib, Many
- R5: Mod, None
- R6: Cons, None
- R7: Mod, Many
- R8: Lib, Some
- R9: Mod, None
- R10: Mod, Some
- R11: Lib, Many
- R12: Cons, Some

- R13: Lib, None
- R14: Cons, None
- R15: Mod, Some
- R16: Mod, Many
- R17: Cons, Many
- R18: Cons, None
- R19: Lib, Some
- R20: Cons, Many
- R21: Mod, Some
- R22: Mod, None
- R23: Mod, Some
- R24: Mod, Many

Application—Emotion & Gender Stereotypes in Candidate Evaluation

- Brooks, Deborah Jordan. 2011. "Testing the Double Standard for Candidate Emotionality: Voter Reactions to the Tears and Anger of Male and Female Politicians." The Journal of Politics 73: 597-615.
- Some conventional wisdom suggests voters hold female candidates to a higher standard than male candidates
 - Displays of emotion e.g., anger and crying
 - Gender stereotypes generate negative reactions by voters
- Do voters hold double standards that disadvantage female candidates?
- No systematic empirical examinations & little theoretical development on the subject

Overview—Competing Theoretical Perspectives

- (1) Descriptive stereotypes
- Confirmation of a stereotype (i.e., women tend to get more "emotional") is attributed (by voters) as reflecting one's disposition
 - · Will be punished more than stereotype-inconsistent behavior
- Stereotypes attribute tearful displays more to women, leading to greater perceptions of weakness among them (compared to men)
- Emotion by men is less likely to be attributed to their disposition or some "personality deficit"
- (2) Prescriptive stereotypes
 - Men are less expected to be emotional, and thus showing emotion is more harmful to them (compared to women)
- (3) Political leaders are largely immune to emotional stereotypes
 - Men and women are penalized equally (or not at all)

Analytical & Data Overview

- Internet experiment (via Polimetrix): April 17-29, 2009
 - Nationally representative sample
 - 1,120 total respondents, with random assignment
- Two treatment groups & a control group
 - "Crying" condition 384 respondents
 - "Anger" condition 371 respondents

Analytical & Data Overview—the Treatments

- Respondents randomly assigned one of two newspaper articles about a fictional candidate
 - "Congresswoman Karen Bailey" or "Congressman Kevin Bailey"
 - 1-2 paragraphs describe an incident of selected behavior (otherwise same as control group story)
 - I.e., Candidate displaying "crying" or "anger"
- Article describes announcement that he/she is seeking a U.S. Senate seat
 - Describes legislative successes & challenges over previous two years
 - Described as "a moderate and oriented towards bipartisan solutions"

Treatment Text—Crying Treatment

- Article headline/title & subtitle:
 - "Congresswoman (Congressman) Karen (Kevin) Bailey has a teary week: Cries over campaign rigors, legislative challenges"
- Treatment text:
 - "The announcement has been overshadowed by other events, however. In an incident earlier this week, the congresswoman cried during a speech she was giving while discussing the rigors of campaigning in her last election. During another recent press conference, Representative Bailey cried while being questioned by reporters who were pressing her repeatedly to comment on the failure of a recent bill to which she had devoted a great deal of time. With tears in her eyes, Representative Bailey cut the press conference short and said only 'I really can't talk about this right now.' The congresswoman's office declined to comment on the incidents."

Treatment Text—Anger Treatment

- Article headline/title & subtitle:
 - "Congresswoman (Congressman) Karen (Kevin) Bailey erupts at colleague, reporter: Calls colleague 'obstinate S.O.B."
- Treatment text:
 - "The announcement has been overshadowed by other events, however. In an incident earlier this week, the congresswoman yelled at a committee chair who was trying to block her bill from coming to the House floor, calling him an 'obstinate S.O.B.' Journalists reporting on the committee hearings caught the representative's outburst on tape. In a different incident last month, reporters cornered the congresswoman outside of a Washington, D.C. restaurant to ask for her comments on a recent bill she had sponsored. When reporters persisted in their questioning and continued to follow her down the street, the congresswoman shoved one of the reporters out of the way and yelled, 'I said I was through taking questions tonight, and I meant it.' 'She could have made the same point without pushing me and yelling," commented the reporter after Representative Bailey left the scene. The congresswoman's office declined to comment on the incidents..."

Treatment Text-Control Group

- Article headline/title & subtitle:
 - "Congresswoman (Congressman) Karen (Kevin) Bailey announces Senate bid"
- No treatment text just the base text of the hypothetical article (which every group reads)

Analysis Overview

- Three primary dependent variables (measuring voter perceptions) on a 7-point scale:
 - Overall favorability
 - Likely effectiveness in the Senate
 - Likely effectiveness as U.S. President in 10 years
- Other questions measuring various traits were explored partly to establish validity of treatments
 - E.g., strong vs. weak; caring vs. uncaring; emotional vs. unemotional; angry vs. calm, etc.
- No controls necessary Randomization!
- Baseline results = no a priori evidence of emotionality stereotypes

Empirical Results

TABLE 1. Summary Results for Crying Experiment

		ANOVA RESULTS						MEANS MEANS													
	Candidate Gender										Cry (vs. the control group)		Candidate Gender * Cry		Overall						
	F	p-val	F	p-val	F	p-val	CONTROL (male + female candidates)	CRY (male + female candidates)	CONTROL Male cand	CRY Male cand	CONTROL Female cand	CRY Female cand	N								
Favorability	1.38	0.24	4.30**	0.04	0.27	0.60	4.5	4.3	4.5	4.4	4.5	4.2	746								
Senate Effectiveness	0.00	0.99	8.55***	0.00	0.16	0.69	4.5	4.3	4.5	4.3	4.6	4.2	746								
Presidential Effectiveness	3.63*	0.06	17.41***	0.00	0.13	0.72	3.8	3.4	3.9	3.5	3.7	3.2	745								
Strong	0.11	0.74	68.41***	0.00	0.50	0.48	4.4	3.6	4.4	3.6	4.4	3.5	747								
Strong Leadership	0.04	0.85	35.75***	0.00	1.08	0.30	4.5	3.8	4.4	3.9	4.5	3.8	743								
Unemotional	1.32	0.25	588.33***	0.00	3.30*	0.07	3.9	2.0	3.9	2.1	4.0	1.9	746								
Appropriate	0.15	0.70	52.41***	0.00	0.01	0.92	4.5	3.8	4.5	3.7	4.5	3.8	747								
Situational Attribution	0.86	0.35	NA		N	JA	N	JA.	NA	3.5	NA	3.6	383								

* $p \le .1$, *** $p \le .05$, **** $p \le .01$ Note: Favorability/Senate Effectiveness/Presidential Effectiveness (Most favorable/most effective response=7, Least favorable/least effective response=1), Strong (Strong=7, Weak=1), Strong Leadership (Describes extremely well=7, Does not describe well at all=1); Unemotional=7, Emotional=1), Appropriate (Appropriate Behavior=7, Inappropriate Behavior=1), Situational Attribution (Situation=7, Personality/Disposition=1).

Empirical Results

TABLE 2 Summary Results for Anger Experiment

	ANOVA RESULTS					ME	MEANS MEANS																								
	Candidate Gender																				Angr (vs. t contr grou	he ol	Gen	lidate der *	Ove	erall		-			
	F	p-val	F	p-val	F	p-val	CONTROL (male + female candidates)	ANGER (male + female candidates)	CONTROL Male cand	ANGRY Male cand	CONTROL Female cand	ANGRY Female	N																		
Favorability	1.38	0.24	63.42***	0.00	0.37	0.54	4.5	3.7	4.5	3.8	4.5	3.6	735																		
Senate Effectiveness	0.00	0.96	39.78***	0.00	0.10	0.75	4.5	3.9	4.5	3.9	4.6	3.9	734																		
Presidential Effectiveness	2.93*	0.09	53.83***	0.00	0.06	0.81	3.8	3.0	3.9	3.1	3.7	2.9	735																		
Calm	0.27	0.61	369.93***	0.00	1.38	0.24	4.4	2.6	4.4	2.7	4.4	2.5	735																		
Unemotional	2.42	0.12	173.07***	0.00	4.49**	0.03	3.9	2.7	3.9	2.9	4.0	2.5	734																		
Appropriate	2.66*	0.10	216.79***	0.00	3.59*	0.06	4.5	2.9	4.5	3.1	4.5	2.7	735																		
Situational Attribution	1.83	0.18	NA		NA		NA	2.7	NA.	3.5	NA	3.3	371																		

 $p \le .1, p \le .05, p \le .01$

Note: Favorability/Senate Effectiveness/Presidential Effectiveness (Most favorable/most effective response=7, Least favorable/least effective response=1), Calm (Calm=7, Angry=1), Unemotional (Unemotional=7, Emotional=1), Appropriate (Appropriate Behavior=7, Inappropriate Behavior=1), Situational Attribution (Situation=7, Personality/Disposition=1).

Treatment Results

- Crying leads to a small drop in favorability, and moderate penalties in terms of future effectiveness
- But, no evidence that women are penalized more than men
- Similar results for the anger condition
- Later in the study Brooks considers the survey respondent's gender as an additional modifier
 - I.e., A conditional hypothesis too complex for us at the moment
 - Basic results show that women respondents/voters penalize female candidates for crying more than they penalize men

Next steps

- Next week, will wrap up and review these approaches
 - We will focus on another application article that uses these approaches
- Midterm exam #2—week of November 9th
 - Everything since first midterm—e.g., probability theory, sampling distributions, difference of means & proportions, statistical significance & hypothesis testing, etc.