No.16 CTT及IRT基础介绍

经典测验模型 (Classical Test Theory, CTT)

CTT模型的假设

• 同一测验中,观测分数可以表示为真分数与误差分数之和

$$X = T + E$$

X表示观测分数,T表示真分数 包含潜在特质分数和系统误差两部分),E表示误差分数 (又包含随机误差),下同 \bigcirc 系统误差与随机误差

误差分类	误差含义	误差来源
随机误差	与测量目的无关,由偶然因素引起又不易 控制的误差	例如,被试的生理、心理状态;评分的 差异
系统误差	经常性的或定向的误差,永远一致性地偏 向一边	例如,主试效应对测验结果产生的影响

● 同一测验中,真分数与误差分数的相关为0,即误差分数是随机的,服从均值为0的 正态分布

$$ho(T,E)=0$$
 $E\sim N(0,\sigma^2)$

• 同一被试反复参与同一测验, 其观测分数的均值会趋近于真分数

$$E(X) = T$$

₹平行测验

指两个不同的测验考察同一心理特质,并且题目形式、数量、难度、区分度以及学生得分的分布均一致。 其统计学定义如下:

$$X_i = T_i + E_i$$
 $X_j = T_j + E_j$ $T_i = T_j$ $\sigma^2_{E_i} = \sigma^2_{E_j}$

下标 i 和 j 表示两次平行测验 注意 , $i\neq j$) ,下同

● 不同平行测验中,误差分数的相关为0,真分数与误差分数的相关也为0

$$ho(E_i,E_j)=0$$
 $ho(E_i,T_j)=0$

$$Cov(E,T) = 0$$
 $\sigma_X^2 = \sigma_T^2 + \sigma_E^2$ $\sigma_X^2 = \sigma_V^2 + \sigma_S^2 + \sigma_E^2$

V 表示潜在特质分数,S 表示系统误差分数,E 表示随机误差分数

(理论)信度

$$ho_{XT} = rac{\sigma_T^2}{\sigma_X^2} = 1 - rac{\sigma_E^2}{\sigma_X^2}$$

- 全主要是不完成。
 全主要是不完成。
 全主要是不完成。
 全主要是不完成。
 全主要是不完成。
 全主要是不完成。
 全主要是不完成。
 全主要是不完成。
 一致性信度
 全主要是不完成。
 一致性信度
 全主要是不完成。
 一致性信度
 一致性信息
 一致性信度
 一致性信度
 一致性信息
 一致性信度
 一致性信度
 一致性信息
 一
- (理论) 效度

$$ho_{XY} = rac{\sigma_V^2}{\sigma_X^2}$$

- 在实际应用中,主要看内容效度、结构效度、效标关联效度
- 难度(通过率)

$$p = rac{\sum_{j=1}^{N} U_j}{N}$$

• 区分度(题目得分和测验总分的点二列相关)

$$ho_{pbi}^{(j)} = rac{ar{X}p_j - ar{X}q_j}{\sigma} \sqrt{p_j q_j}$$

CTT模型的局限性

• 同一被试总体中, 所有观测分数的测量标准误相同

$$\sigma_E = \sigma_X \sqrt{1-
ho_{XT}}$$

- 难以进行不同测验(非平行测验)分数的比较,线性等值、百分位等值仅适用于近似平行测验,然而实际情况下平行测验的条件很难满足
- 题目参数的无偏估计依赖于取样的代表性

思考影响答题表现的因素有哪些?——被试能力/特质,难度,区分度,猜测,失 误,……

项目反应理论(Item Response Theory, IRT)

IRT模型的本质

P实际上是某人答对某题的条件概率

$$P(X_j = x | \theta_i) = f(\theta_i)$$

 X_j 表示被试在测验第 j 题的反应类别,x 表示被试在该题的实际观测反应, $x=0,1,2,\cdot\cdot\cdot,k(k>1)$

IRT模型相比CTT模型的优势

• 题目参数估计精度更高,不同能力的被试具有不同的测量标准误

Fig. 2.2 Model of classical test theory

Fig. 2.3 Test whether items tap into the latent variable

$$Inf_i(heta) = \left[lpha_i^2 rac{1 - P_i(heta)}{P_i(heta)}
ight] \left[rac{P_i(heta) - \gamma_i}{1 - \gamma_i}
ight]^2.$$

This function applies for the 3PLM, the 2PLM ($\gamma_i=0$), and the 1PLM ($\gamma_i=0$, $\alpha_i=1$).

$$TInf(heta) = \sum_{i=1}^{I} Inf_i(heta).$$

$$SE(\theta) = \frac{1}{\sqrt{TInf(\theta)}}.$$

• 将题目难度和被试能力放在同一个量尺上

• 测验难度水平不同也可以进行分数的直接比较

Fig. 6.7 Linking students and items through an IRT scale

 \bigvee 以1PL/2PL为例,项目难度 b_i 是相对于有50%答对概率的被试的能力水平来定义的

题目参数的无偏估计相对不依赖代表性样本,能力参数的无偏估计相对不依赖测验 难度设计

IRT模型的假设

单维性假设

一般假设只有一个能力或者潜在特质就可以解释被试的测验表现,假设单一潜在特质的项目反应模型称为单维的

局部独立性假设

- 一般只检验同一被试对一次测验的不同题目的作答相互独立
- ₹强局部独立性

$$P(X_1 = 1, X_2 = 1 | \theta_i) = P(X_1 = 1 | \theta_i) P(X_2 = 1 | \theta_i)$$

项目特征曲线假设

常见的IRT模型

单维0-1计分IRT模型

模型名称	模型参数	模型表达式
1PLM	被试潜在特质 %	

	题目难度 Þj	$P_j(heta_i) = rac{1}{1 + exp(-(heta_i - b_j))}$
2PLM (最常用)	被试潜在特质 θ_i 题目难度 b_j ,区分度 a_j	$P_j(heta_i) = rac{1}{1 + exp(-a_j(heta_i - b_j))}$
3PLM	被试潜在特质 θ _i 题目难度 ^{b_j} ,区分度 α _j ,猜测度 c _j	$P_j(heta_i) = c_j + rac{1-c_j}{1+exp(-a_j(heta_i-b_j))}$
4PLM	被试潜在特质 θ_i 题目难度 θ_j ,区分度 θ_j ,猜测度 θ_j , 失误度 θ_j ,	$P_j(heta_i) = c_j + rac{r_j - c_j}{1 + exp(-a_j(heta_i - b_j))}$

♀1PLM/2PLM/3PLM的图形化表示

单维多级计分IRT模型

模型名称	适用情况	模型表达式
等级反应模型 (graded response theory, GRM) 最常用	有序多级	设被试 作答题目 有 m_k 个等级 等级难度依次递增 $b_{j1} < b_{j2} < b_{j3} < \cdots < b_{j,m_k}$ 等级得分 $x = (0,1,2,3,\cdots,m_k)$ 第一步 计算能力为 θ_i 的被试作答第 j 个题目时得分不低于 x 分的概率 $P_{jx}^*(\theta_i) = \frac{1}{1+exp(-a_j(\theta_i-b_{jx}))}$ 第二步 计算能力为 θ_i 的被试作答第 j 个题目时得分等于 x 分的概率 $P_{jx}(\theta_i) = P_{jx}^*(\theta_i) - P_{j,x+1}^*(\theta_i)$
拓广分部评分模型 (generalized partial credit model, GPCM)	有序多级	设被试 作答题目 有 m_k 个类别,得分 $x = (0, 1, 2, 3, \dots, m_k)$ $P(X_{ij} = x) = \frac{exp \sum_{k=0}^{x} a_j(\theta_i - b_{jk})}{\sum_{h=0}^{m_k} exp \sum_{k=0}^{h} a_j(\theta_i - b_{jk})}$ 以 0,1,2三类得分为例: $P(X_{ij} = 0) = \frac{1}{1 + exp(a_j(\theta_i - b_{j1})) + exp(a_j(2\theta_i - (b_{j1} + b_{j2})))}$ $P(X_{ij} = 1) = \frac{exp(a_j(\theta_i - b_{j1}))}{1 + exp(a_j(\theta_i - b_{j1})) + exp(a_j(2\theta_i - (b_{j1} + b_{j2})))}$ $P(X_{ij} = 2) = \frac{exp(a_j(2\theta_i - (b_{j1} + b_{j2})))}{1 + exp(a_j(\theta_i - b_{j1})) + exp(a_j(2\theta_i - (b_{j1} + b_{j2})))}$
多级评分模型 (Nominal Response Model, NRM)	无序多级	设被试 作答题目 有 m_k 个类别,类别 $x=(0,1,2,3,\cdots,m_k)$,选择类别 x 的概率 $P_{ix}(\theta)=\frac{exp(c_{jx}+a_{jx}\theta)}{\sum_{k=1}^{m_k}exp(c_{jk}+a_{jk}\theta))}$ a_{jx} 是题目 j 在类别 x 的区分度 斜率) 参数

定义步骤正确、错误

			Scored Categories for Y_i		
		$Y_i = 0$	$Y_i = 1$	$Y_i = 2$	$Y_i = 3$
	Step 1	F	S		
Adjacent Category	Step 2	[F	S	
Approach	Step 3		[F	S
	Step 1	F	S	S	S
Continuation Ratio	Step 2	[F	S	S
Approach	Step 3		[F	S
	Step 1	F	S	S	S
Cumulative	Step 2	F	F	S	S
Approach	Step 3	F	F	F	S
	Step 1	S	F		
Nominal	Step 2	S	[F]
Approach	Step 3	S			F

其他模型

多维、多组、多水平IRT模型等等......

融入作答反应时的IRT模型

融入反应时的3种主流思路: (1) 增加反应时参数,如4PL-RT; (2)分别对作答和反应时建模; (3)对作答和反应时进行多水平联合建模。

• 4PL-RT模型 (Wang & Hanson, 2005)

 \mathbb{V} 思路: 直接增加反应时参数 $\frac{
ho_i d_j}{t_{ij}}$

$$P_j(heta_i) = c_j + rac{1-c_j}{1+exp(-Da_j(heta_i-rac{
ho_id_j}{t_{ij}}-b_j))}$$

 ho_i 是被试 i 的速度参数, d_j 是题目 j 的速度参数, t_{ij} 是被试 i 在题目 j 上的作答反应时其他参数和传统 3 参模型相同, θ_i 为被试潜在特质, θ_j 为题目难度, a_j 为区分度, c_j 为猜测度

• LNIRT模型 (van der Linden, 2007)

♥思路:属于多水平IRT模型,用2PLM拟合被试作答,用对数正态模型拟合被试反应时,用MCMC算法 同时估计所有参数

常用的IRT参数估计方法

题目参数估计 (calibration)

joint maximum likelihood (JML)
conditional maximum likelihood (CML)
marginal maximum likelihood (MML)
Bayesian MCMC

能力参数估计 (scoring)

maximum likelihood (ML)
maximum a posteriori (MAP)
weighted likelihood estimator (WLE)

IRT模型的实现

选择合适的软件

基于R语言

常用的packages	用途	
mirt, Itm	项目反应理论	
CDM, GDINA	认知诊断	
lavaan	潜变量模型	
difR	项目功能差异	
psych	一般的心理计量学	
equate	等值	
lme4	一般、广义混合线性模型	

商用软件

CONQUEST/IRTPRO/flexMIRT

基于Python语言

暂无成熟的开源包

主要步骤(以2PL为例)

前提假设检验

• 单维性

不可能严格满足这个假设,某种程度总有其他的认知、人格、测验过程因素影响测验表现。如果不是严格意义上的单维,只要测验表现受到一个主要因子影响,那么IRT模型具有稳健性(Hambleton et al., 1991)。 一般采用EFA或PCA方法检验是否满足单维性。

Chen & Thissen (1997)

LD statistics	
greater than 10	large and reflecting likely LD issues or leftover residual variance that is not accounted for by the unidimensional IRT model
between 5 and 10	moderate and questionable LD
less than 5	small and inconsequential

模型拟合

• 模型比较

-2loglikelihood

Akaike Information Criterion (AIC) (Akaike, 1974)

Bayesian Information Criterion (BIC) (Schwarz, 1978)

• 模型拟合

M2 statistic (Maydeu-Olivares & Joe, 2005, 2006)

题目拟合

Orlando & Thissen(2000, 2003)

$$S - X^{2} = \sum_{k=0}^{n-1} N_{k} \frac{(O_{k} - E_{k})^{2}}{E_{k}(1 - E_{k})}$$

 $S-\chi^2$ 的 p>0.05 说明题目拟合较好

题目参数

难度范围一般介于 (-4, 4) 之间

区分度

0.01 - 0.34	very low
0.35 - 0.64	low
0.65 - 1.34	moderate
1.35 - 1.69	high
1.70 and above	very high

项目特征曲线

题目及测验信息

Let's practice!

以中班第14讲视觉辨识任务的数据(0, 1计分)为例,开展IRT分析~

参考资料大放送

内部参考资料

TTC系列文章

 "考试"背后的科学:教育测量中的理论与模型(IRT篇) https://ttc.zhiyinlou.com/ #/articleDetail?id=1280

- 原来这些热门考试是这么算分的! —— IRT技术和模型在大型测评中的应用 https://ttc.zhiyinlou.com/#/articleDetail?id=1366
- 教育测量模型与技术浅析(一): 在python学习IRT模型 https://ttc.zhiyinlou.com/#/articleDetail?id=2963
- 教育测量模型与技术浅析(二): IRT模型中的能力估计方法-python实战 https://ttc.zhiyinlou.com/#/articleDetail?id=2975

云学堂系列视频

• 第5讲: 当我们在讲IRT分数时,我们在说什么? http://tal.yunxuetang.cn/kng/vie w/package/5e20cd3cd0cb441aa7d6cbd6806efe44.html

外部参考资料

书籍

• Wu, M., Tam, H. P., & Jen, T. H. (2016). Educational measurement for applied researchers. *Theory into practice*.

论文

- Toland, M. D. (2014). Practical guide to conducting an item response theory analysis. *The Journal of Early Adolescence*, *34*(1), 120-151.
- Penfield, R. D. (2014). An NCME instructional module on polytomous item response theory models. *Educational Measurement: Issues and Practice*, *33*(1), 36-48.

科普文章

Parametric IRT (dichotomous data) https://bookdown.org/jorgetendeiro/ParametricIRT/

R Package manual

• Chalmers RP (2012). "mirt: A Multidimensional Item Response Theory Package for the R Environment." *Journal of Statistical Software*, 48(6), 1–29.