TEORIA DE GRAFOS

PROF. EVANIVALDO C. SILVA JR.

 Motivação: Problema das Sete pontes de Königsberg (Leonhard Euler)

EXEMPLO 1: Mapa do Metrô de SP

 EXEMPLO 2: Grafo representando linhas aéreas entre algumas capitais

- Grafos: Um grafo é uma tripla ordenada (N,A,g) onde:
- N = um conjunto não vazio de vértices (nós, "nodes" ou nodos)
- A = um conjunto de arestas (arcos ou "edge");
- g = uma função que associa cada aresta a a um par nãoordenado x – y de vértices chamados de extremos de a.

OBSERVAÇÃO: Os grafos, aqui considerados, terão sempre um número finito de vértices e de arestas.

No exemplo 1 temos:

- Conjunto de vértices: V = {São Paulo, Rio de Janeiro, Curitiba, Florianópolis, Porto Alegre};
- Conjunto de arestas: A = { São Paulo Rio de Janeiro, São Paulo – Curitiba, Rio de Janeiro – Curitiba, Curitiba – Florianópolis, Florianópolis – Porto Alegre, Rio de Janeiro – Florianópolis}

EXEMPLO 2: Grafo numérico

No exemplo 2 temos:

- Conjunto de vértices: V = {1, 2, 3, 4, 5};
- Conjunto de arestas: A = {a₁, a₂, a₃, a₄, a₅, a₆}
- Função de associação: $g(a_1)=1-2$, $g(a_2)=1-2$, $g(a_3)=2-2$, $g(a_4)=2-3$, $g(a_5)=1-3$, $g(a_6)=3-4$.

- Definições Básicas
- Vértices Adjacentes: dois vértices em um grafo são adjacentes se forem extremo de uma mesma aresta (No exemplo 2, os vértices 1 e 2, 2 e 3, 1 e 3, 3 e 4)
- Laços: é uma aresta de extremo n n.
 (No exemplo 2, a aresta a₃)
- Arestas paralelas: são arestas que possuem os mesmos extremos.
- (No exemplo 2, as arestas a₁ e a₂)

- Definições Básicas
- Grafos Simples: É um grafo que não tem arestas paralelas nem laços.

(Exemplo 1)

 Vértice isolado: É um vértice que não é adjacente a qualquer outro

(No exemplo 2, o vértice 5)

- Grau do vértice: É o número de arestas que o tem como extremo ou incidentes no mesmo.
- (No exemplo 2, os vértices 1 e 3 tem grau 3, o vértice 2 tem grau 5, o vértice 4 tem grau 1 e o vértice 5 tem grau 0)

- Definições Básicas
- Grafo Completo: É o grafo no qual todos os vértices distintos são adjacentes.

Exemplos:

Os exemplos 1 e 2 não são completos.

- Definições Básicas
- Subgrafo: Um subgrafo de um determinado grafo, consiste em um conjunto de vértices e um conjunto de arestas que são subconjuntos de vértices e arestas do grafo original, respectivamente, nos quais os extremos de qualquer aresta precisam ser os mesmo que no grafo original.
- O grafo (b) é um subgrafo do grafo (a) nos grafos abaixo:

- Definições Básicas
- Caminho: Um caminho de um vértice a_i a um vértice a_j é uma sequência n₀, a₀, n₁, a₁, ..., n_{k-1}, a_{k-1}, n_k, de vértices e arestas onde, para cada i, os extremos da aresta a_i, são n_i-n_{i+1}.

EXEMPLO:

No grafo acima a sequência 1, a₁, 2, a₄, 3, a₆, 4 é um caminho do vértice 1 ao vértice 4.

OBS: (1) O comprimento de um caminho é o número de arestas que ele contém. No exemplo anterior o comprimento do caminho é 3.

(2) Se uma aresta for usada mais de uma vez então ela deve ser contada a quantidade de vezes que for usada no caminho.

- Definições Básicas
- Grafo conexo: Um grafo é conexo quando existe um caminho entre quaisquer dois vértices desse grafo.

EXEMPLO: O grafo (a) é conexo e o (b) não:

4

- Definições Básicas
- Ciclo: Um ciclo em um grafo é um caminho de algum vértice n₀ de forma que nenhum vértice ocorra mais de uma vez no caminho exceto o próprio n₀.

EXEMPLO: No grafo abaixo o caminho 1, a₁, 2, a₄, 3, a₅, 1 é um ciclo.

- Definições Básicas
- Um grafo que não possui ciclos é dito acíclico.

EXEMPLO: Os grafos abaixo são acíclicos.

 Grafos direcionados: Um grafo é direcionado quando a ordem da conexão é prédeterminada.

Exemplo:

- Representação Computacional dos Grafos
- Matriz de Adjacências: É a representação do grafo onde os vértices ocupam a posição das linhas/colunas e o número de arestas que conectam cada vértice ocupam os coeficientes das matrizes.

Exemplo:

OBS: Vértices isolados representam linhas/colunas nulas.

- Representação Computacional dos Grafos
- Matriz de Adjacências: Em um grafo direcionado as "saídas" de uma aresta é colocada nas linhas enquanto que as "entradas" nas colunas.

Exemplo:

Entradas

0	1	0 1 0 1 0	0	0
0	0	1	0	0
0	0	0	0	0
0	0	1	0	1
0	0	0	0	0

- (1) Em um grafo direcionado, não ponderado e sem arestas paralelas temos:
- A matriz de adjacências que o representa é uma matriz booleana, isto é, seus coeficientes são somente 0 ou 1;
- A diagonal principal da matriz de adjacências desse grafo é nula.
- (2) Em um grafo não direcionado, a matriz de adjacências é simétrica.

- Representação Computacional dos Grafos
- Relação de Adjacências: É uma representação por pares ordenados (ou não, para grafos não direcionados), onde:

$$(n_i, n_j) \Leftrightarrow \exists$$
 um aresta de n_i para n_j

Nos exemplos anteriores temos:

1)
$$\{(1,4),(3,4),(3,4),(3,3)\}$$

$$2) \{(1,2),(2,3),(4,3),(4,5)\}$$

REFERÊNCIA BIBLIOGRÁFICA

[1] Gersting, J.L., Fundamentos Matemáticos para a Ciência da Computação., ed. Rio de Janeiro: Livros Técnicos e Científicos, 1995.