Extending the GATK to support Genomics X PRIZE variation comparisons

Brad Chapman
Bioinformatics Core
Harvard School of Public Health

23 February 2012

Genomics X PRIZE

http://genomics.xprize.org/

Clinical grade genome

- 98 percent genome coverage
- 1 error per million bases (SNPs + small indels)
- Full haplotype phasing
- Structural variations

Sequencing for patients

http://www.amazon.com/Creative-Destruction-Medicine-Digital-Revolution/

Reference genome

- Pooled 40kb fosmids
- Multiple technologies Ilumina, SOLiD,
 Complete Genomics, Genotyping
- ABI validation

Variation evaluation

- Variant normalization
- Comparisons concordant, discordant
- Haplotypes
- Custom structural variation comparison

GATK software stack

GATK

Picard

SAM/BAM format http://picard.sourceforge.net/

Tribble

General framework to index and query file formats http://code.google.com/p/tribble/

GATK

- Toolkit for variation data
- Java API
 - Map/Reduce
 - File formats + variation objects

```
http://www.broadinstitute.org/gsa/wiki/index.php/The_Genome_Analysis_Toolkit
```

Clojure

- Dynamic programming language
- Java Virtual Machine
- Lisp
- Immutable data structures
- Functional programming

```
http://clojure.org/
```

Example code with Java

Development tools

Build Leiningen

https://github.com/technomancy/leiningen

Testing Midje

https://github.com/marick/Midje

Integration Travis CI

http://travis-ci.org/

Deployment Heroku

http://www.heroku.com/

Dependency resolution

```
:dependencies [[org.clojure/clojure "1.3.0"]
               [org.clojure/math.combinatorics "0.0.2"]
               [org.clojars.chapmanb/gatk "1.4.20"]
               [org.clojars.chapmanb/picard "1.58"]
               [incanter/incanter-core "1.3.0-SNAPSHOT"]
               [incanter/incanter-charts "1.3.0-SNAPSHOT"]
               [fs "1.1.2"]
               [clj-yaml "0.3.1"]
               [doric "0.7.0-SNAPSHOT"]
               [ordered "1.0.0"]
               [compojure "1.0.1"]
               [ring "1.0.2"]
               [enlive "1.0.0"]]
```

Python mutability

```
In [1]: def do_work(in_dict):
        in_dict["item"] = "changed"
        return "some_result"

    input = {"item": "original"}
    do_work(input)
    print input

{'item': 'changed'}
```

Immutable data structures

```
(defn do-work [in-dict]
  (let [new-dict (assoc in-dict "item" "changed")]
    "some_result"))

(let [input {"item" "original"}]
  (do-work input)
  (println input))

{"item" "original"}
```

Python and Clojure side by side

```
def words(text):
    return re.findall("[a-z]+", text.lower())
(defn words [text]
  (re-seg #"[a-z]+" (.toLowerCase text)))
http://en.wikibooks.org/wiki/Clojure_Programming/Examples/
Norvig_Spelling_Corrector
http://tin.nu/sudoku.html
```

MapReduce

- Software framework for distributed computing
- Introduced by Google
- Parallelization of large datasets
- Hadoop open source

Functional: Map

Functional: Reduce

```
model = collections.defaultdict(lambda: 1)
for f in features:
    model[f] += 1
(reduce (fn [model x]
           (assoc model x
                   (inc (get model x 1))))
        features))
```


home

links

about

Welcome to Try Clojure. See that little box up there? That's a Clojure repl. You can type expressions and see their results right here in your browser. We also have a brief tutorial to give you a taste of Clojure. Try it out by typing tutorial in the console!

http://tryclj.com/

Variant comparison architecture

- Automated pipeline
- Configuration file describing inputs
- Web front end to build configuration and run

Configuration YAML

```
outdir: test/data/grading
outdir-prep: test/data/grading/prep
experiments:
    - sample: NA00001
    ref: test/data/GRCh37.fa
    intervals: test/data/phasing-reference-regions.bed
    calls:
        - name: reference
        file: test/data/phasing-reference.vcf
        - name: contestant
        file: test/data/phasing-contestant.vcf
        intervals: test/data/phasing-contestant-regions.bed
```

General comparison YAML

```
experiments:
  - sample: Test1
    ref: test/data/hg19.fa
    intervals: test/data/target-regions.bed
    align: test/data/aligned-reads.bam
    calls:
      - name: gatk
        file: test/data/gatk-calls.vcf
        refcalls: false
      - name: freebayes
        file: test/data/freebayes-calls.vcf
        annotate: true
        filters:
          - HRun > 5.0
          - QD < 2.0
          - FS > 60.0
          - MQRankSum < -12.5
```

Web: implementation

- Clojure web framework
 - Compojure http://compojure.org/
 - Enlive https://github.com/cgrand/enlive
- ClojureScript: Clojure to Javascript
 - http://clojurescriptone.com/
- CSS framework: Twitter Bootstrap
 - http://twitter.github.com/bootstrap/

Web: submission

Web: results

X PRIZE scoring

Summary

Metric	Value
Overall accuracy score	86.67
Percentage of bases compared	100.00
Total bases compared	13
Possible evaluation bases	13
Discordant SNPs	1
Discordant indels	0
Phasing Error SNPs	1
Phasing Error indels	0
Phased haplotype blocks	4
Non-matching heterozygous alternative alleles	6

Variant files in VCF format

- · Concordant variants
- · Discordant variants
- · Variants with phasing errors

Code perusal

```
Source https://github.com/chapmanb/bcbio.variation

Docs http://chapmanb.github.com/bcbio.variation
```