Lecture 1

Applications of Integrals

Definite Integral

Definition 1. The definite integral of a continuous function f over an interval from x = a and x = b is the net change of an anti derivative of f over the interval. Symbolically, if F(x) is an anti derivative of f(x), then

$$\int_{a}^{b} f(x) \, dx = F(x) \mid_{a}^{b} = F(b) - F(a) \quad \text{where} \quad F'(x) = f(x)$$

Integrand: f(x) Upper limit: b Lower limit: a

The relationship in the box turns out to be the most important theorem in calculus - the fundamental theorem of calculus.

Remark 1. Do not confuse a definite integral with an indefinite integral. The definite integral $\int_a^b f(x) dx$ is a real number. The indefinite integral $\int f(x) dx$ is a whole set of functions - all anti derivatives of f(x).

Example. Evaluate $\int_{-1}^{2} (3x^2 - 2x) dx$.

We choose the simple anti derivative of $(3x^2 - 2x)$, namely $(x^3 - x^2)$, since any anti derivative will do

$$\int_{-1}^{2} (3x^2 - 2x) \, dx = (x^3 - x^2) \Big|_{-1}^{2}$$
$$= (2^3 - 2^2) - ((-1)^3 - (-1)^2) = 4 - (-2) = 6.$$

Proposition 1 (Definite Integral Properties). 1. $\int_a^a f(x) dx = 0$

2.
$$\int_a^b f(x) \, \mathrm{d}x = -\int_b^a f(x) \, \mathrm{d}x$$

3.
$$\int_a^b kf(x) dx = k \int_a^b f(x) dx$$
 where k is a constant

4.
$$\int_a^b f(x) \pm g(x) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$$

5.
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

Proof. These properties are justified as follows. If F'(x) = f(x), then

1.
$$\int_{a}^{a} f(x) dx = F(x) |_{a}^{a} = F(a) - F(a) = 0$$

2.
$$\int_{a}^{b} f(x) \, dx = F(x) \Big|_{a}^{b} = F(b) - F(a) = -[F(a) - F(b)]$$
$$= -\int_{b}^{a} f(x) \, dx$$

and so on.

The evaluation of a definite integral is a two-step process:

- find an anti derivative;
- find the net change in that anti derivative.

Common Errors:

1.

$$\int_0^2 e^x \, \mathrm{d}x = e^x \Big|_0^2 = e^2 - 1$$

Do not forget to evaluate the anti derivative at both the upper and lower limits of integration and do not assume that the anti derivative is 0 just because the lower limit is 0.

2.

$$\int_0^5 \frac{x}{x^2 + 10} \, \mathrm{d}x = \frac{1}{2} \int_0^5 \frac{1}{u} \, \mathrm{d}u$$

If a substitution is made in a definite integral, the limits of integration also must be changed. The new limits are determined by the particular substitution used in the integral.

Area under a Curve

Consider the graph of f(x) = x from x = 0 to x = 4

We can easily compute the area of the triangle bounded by f(x) = x, the x axis (y = 0), and the line x = 4, using the formula for the area of a triangle:

$$A=\frac{bh}{2}=\frac{4\cdot 4}{2}=8.$$

Let us integrate f(x) = x from x = 0 to x = 4:

$$\int_0^4 x \, dx = \frac{x^2}{2} \Big|_0^4 = \frac{4^2}{2} - \frac{0}{2} = 8.$$

We get the same result! It turns out that this is not a coincidence.

Proposition 2. If f is continuous and $f(x) \ge 0$ over the interval [a,b], then the area bounded by y = f(x), the x axis (y = 0), and the vertical lines x = a and x = b is given by

$$A = \int_a^b f(x) \, \mathrm{d}x.$$

Let us see why the definite integral gives us the area exactly. Let A(x) be the area under the graph of y = f(x) from a to x.

$$A(x) =$$
Area from a to x
 $A(b) =$ Area from a to $b = A$.

If we can show that A(x) is anti derivative of f(x), then we can write

$$\int_{a}^{b} f(x) dx = A(x) \Big|_{a}^{b} = A(b) - A(a)$$

$$= (\text{Area from } a \text{ to } b) - (\text{Area from } a \text{ to } a) = A - 0 = A.$$

To show that A(x) is an anti derivative of f(x) - that is A'(x) = f(x) - we use the definition of the derivative and write

$$A'(x) = \lim_{\Delta x \to 0} \frac{A(x + \Delta x) - A(x)}{\Delta x}.$$

Geometrically, $A(x + \Delta x) - A(x)$ is the area from x to $x + \Delta x$. This is given approximately by the area of the rectangle $\Delta x \cdot f(x)$, and the smaller Δx is, the better the approximation. Using

$$A(x + \Delta x) - A(x) \approx \Delta x \cdot f(x)$$

and dividing both sides by Δx , we obtain

$$\frac{A(x + \Delta x) - A(x)}{\Delta x} \approx f(x).$$

Now, if we let $\Delta x \to 0$, then the left side has A'(x) as a limit, which is equal to the right side. Hence, A'(x) = f(x).

Example. Find the area bounded by $f(x) = 6x - x^2$ and y = 0 for $1 \le x \le 4$.

$$A = \int_{1}^{4} (6x - x^{2}) dx = \left(3x^{2} - \frac{x^{3}}{3}\right) \Big|_{1}^{4} = 48 - \frac{64}{3} - 3 + \frac{1}{3} = 24.$$

Area between a Curve and the x Axis

The condition $f(x) \ge 0$ is essential to the relationship between an area under a graph and the definite integral. Suppose $f(x) \le 0$ and A is the area between the graph of f and the x axis for $a \le x \le b$. If we let g(x) = -f(x), then A is also the area between the graph of f and the f axis for f and f axis for f axis for

$$A = \int_{a}^{b} g(x) dx = \int_{a}^{b} [-f(x)] dx$$

Example We consider the function $f(x) = x^2 - 2x$.

a) From the graph we see that $f(x) \leq 0$ for $1 \leq x \leq 2$, so we integrate -f(x)

$$A_1 = \int_1^2 [-f(x)] dx = \int_1^2 (2x - x^2) dx$$
$$= \left(x^2 - \frac{x^3}{3}\right) \Big|_1^2 = 4 - \frac{8}{3} - 1 + \frac{1}{3}.$$

b) Since the graph shows that $f(x) \ge 0$ on [-1,0] and $f(x) \le 0$ on [0,1], the computation of this area will require two integrals:

$$A = A_1 + A_2 = \int_{-1}^{0} f(x) \, dx + \int_{0}^{1} [-f(x)] \, dx$$
$$= \int_{-1}^{0} (x^2 - 2x) \, dx + \int_{0}^{1} (2x - x^2) \, dx$$
$$= \left(\frac{x^3}{3} - x^2\right) \Big|_{-1}^{0} + \left(x^2 - \frac{x^3}{3}\right) \Big|_{0}^{1}$$
$$= \frac{4}{3} + \frac{2}{3}$$

Area between Two Curves

Consider the area bounded by y=f(x) and $y=g(x), \ f(x)\geqslant g(x)\geqslant 0,$ for $a\leqslant x\leqslant b$

(Area A between
$$f(x)$$
 and $g(x)$)
= (Area under $f(x)$) – (Area under $g(x)$)
= $\int_a^b f(x) dx - \int_a^b g(x) dx$
= $\int_a^b [f(x) - g(x)] dx$

It can be shown that the above result does not require f(x) or g(x) to remain positive over the interval [a,b].

Proposition 3. If f and g are continuous and $f(x) \ge g(x)$ over the interval [a,b], then the area bounded by y = f(x) and y = g(x) for $a \le x \le b$ is given by

$$A = \int_a^b [f(x) - g(x)] \, \mathrm{d}x$$

Example We sketch the area bounded by $f(x) = \frac{1}{2}x + 3$, $g(x) = -x^2 + 1$, x = -2, and x = 1.

5

We observe from the graph that $f(x) \ge g(x)$ for $-2 \le x \le 1$, so

$$A = \int_{-2}^{1} [f(x) - g(x)] dx = \int_{-2}^{1} \left[\left(\frac{x}{2} + 3 \right) - (-x^2 + 1) \right] dx$$

$$= \int_{-2}^{1} \left(x^2 + \frac{x}{2} + 2 \right) dx$$

$$= \left(\frac{x^3}{3} + \frac{x^2}{4} + 2x \right) \Big|_{-2}^{1}$$

$$= \left(\frac{1}{3} + \frac{1}{4} + 2 \right) - \left(\frac{-8}{3} + \frac{4}{4} - 4 \right)$$

$$= \frac{33}{4}.$$

Example We sketch the are bounded by $f(x) = 5 - x^2$ and g(x) = 2 - 2x.

To find points of intersection (hence the upper and lower limits of integration), we solve

$$5 - x^{2} = 2 - 2x$$
$$x^{2} - 2x - 3 = 0$$
$$x_{1} = -1 \qquad x_{2} = 3$$

The figure shows that $f(x) \ge g(x)$ over the interval [-1,3], so

$$A = \int_{-1}^{3} [f(x) - g(x)] dx = \int_{-1}^{3} [5 - x^{2} - (2 - 2x)] dx$$
$$= \int_{-1}^{3} (3 + 2x - x^{2}) dx$$
$$= \left(3x + x^{2} - \frac{x^{3}}{3}\right) \Big|_{-1}^{3} = \frac{32}{3}.$$

Volumes

We start with a simple type of solid called a cylinder which is bounded by a plane region B_1 , called the base, and a congruent region B_2 in a parallel plane. The cylinder consists of all points on line segments that are perpendicular to the base and join B_1 to B_2 . If the area of the base is A and the height of the cylinder (the distance from B_1 to B_2) is h, then the volume V of the cylinder is defined as

$$V = Ah$$

In particular, if the base is a circle with radius r, then the cylinder is a circular cylinder with volume $V = \pi r^2 h$, and if the base is a rectangle with length l and width w, then the cylinder is a rectangular box (also called a rectangular parallelepiped) with volume V = lwh. For a solid S that is not a cylinder we first 'cut' S into pieces and approximate each piece by a cylinder. We estimate the volume of S by adding the volumes of the cylinders. We arrive at the exact volume of S through a limiting process in which the number of pieces becomes large.

We start by intersecting S with a plane and obtaining a plane region that is called a <u>cross-section</u> of S. Let A(x) be the area of the cross-section of S in a plane P_x perpendicular to the x-axis and passing through the point x, where $a \leq x \leq b$. The cross-sectional area A(x) will vary as x increases from a to b.

Let us divide S into n 'slabs' of equal width Δx by using the planes $P_{x_1}, P_{x_2}, ...$ to slice the solid. If we choose sample points x_i^* in $[x_{i-1}, x_i]$, we can approximate the *i*th slab S_i (the part of S that lies between the planes $P_{x_{i-1}}$ and P_{x_i}) by a cylinder with base area $A(x_i^*)$ and 'height' Δx . The volume of this cylinder is $A(x_i^*)\Delta x$, so an approximation to our intuitive conception of the volume of the *i*th slab S_i is

$$V(S_i) \approx A(x_i^*) \Delta x$$

Adding the volumes of these slabs, we get an approximation to the total volume

$$V \approx \sum_{i=1}^{n} A(x_i^*) \Delta x$$

This approximation appears to become better and better as $n \to \infty$. Therefore we define the volume as the limit of these sums as $n \to \infty$. But we recognize the limit of Riemann sums as a definite integral and so we have the following definition.

Definition 2. Let S be a solid that lies between x = a and x = b. If the cross-sectional area of S in the plane P_x , through x and perpendicular to the x-axis, is A(x), where is a continuous function, then the volume of S is

$$V = \lim_{n \to \infty} \sum_{i=1}^{n} A(x_i^*) \Delta x = \int_a^b A(x) \, \mathrm{d}x.$$

Remark 2. When we use the volume formula $V = \int_a^b A(x) dx$, it is important to remember that A(x) is the area of a moving cross-section obtained by slicing through x perpendicular to the x-axis. Notice that, for a cylinder, the cross-sectional area is constant: A(x) = A for all x. So our definition of volume gives $V = \int_a^b A = A(b-a)$; this agrees with the formula V = Ah.

Example. Show that the volume of a sphere of radius r is $V = \frac{4}{3}\pi r^3$.

If we place the sphere so that its center is at the origin, then the plane P_x intersects the sphere in a circle whose radius (from the Pythagorean Theorem) $y = \sqrt{r^2 - x^2}$. So the cross-sectional area is

$$A(x) = \pi(r^2 - x^2).$$

Using the definition of volume with a = -r and b = r, we have

$$V = \int_{-r}^{r} \pi(r^2 - x^2) \, dx = \frac{4}{3}\pi r^3.$$

Example. Find the volume of the solid obtained by rotating about the x-axis the region under the curve $y = \sqrt{x}$ from 0 to 1.

When we slice through the point x, we get a disk with radius \sqrt{x} . The area of this cross-section is

$$A(x) = \pi x.$$

The solid lies between x = 0 and x = 1, so its volume is

$$V = \int_0^1 \pi x \, \mathrm{d}x = \frac{\pi}{2}.$$

Example. Find the volume of the solid obtained by rotating the region bounded by $y = x^3$, y = 8, and x = 0 about the y-axis.

Because the region is rotated about the y-axis, it makes sense to slice the solid perpendicular to the y-axis and therefore to integrate with respect to y. If we slice at height y, we get a circular disk with radius x, where $x = \sqrt[3]{y}$. So the area of a cross-section through y is

$$A(y) = \pi y^{\frac{2}{3}}.$$

The solid lies between y = 0 and y = 1, so its volume is

$$V = \int_0^8 \pi y^{\frac{2}{3}} \, \mathrm{d}y = \frac{96\pi}{5}.$$

Example. We have a solid with a circular base of radius 1. Parallel cross-sections perpendicular to the base are equilateral triangles. Find the volume of the solid.

Let us take the circle to be $x^2 + y^2 = 1$. Since B lies on the circle, we have $y = \sqrt{1 - x^2}$ and so the base of the triangle ABC is $|AB| = 2\sqrt{1 - x^2}$. Since the triangle is equilateral, the cross-sectional area is

$$A(x) = \sqrt{3}(1 - x^2).$$

and the volume of the solid is

$$V = \int_{-1}^{1} \sqrt{3}(1 - x^2) \, \mathrm{d}x = \frac{4\sqrt{3}}{3}.$$

Volumes by Cylindrical Shells

Now let S be the solid obtained by rotating about the y-axis the region bounded by y = f(x) [where $f(x) \ge 0$], y = 0, x = a and x = b, where $b > a \ge 0$.

We divide the interval [a, b] into n subintervals $[x_{i-1}, x_i]$ of equal width Δx and let $\bar{x_i}$ be the midpoint of the ith subinterval. If the rectangle with base $[x_{i-1}, x_i]$ and height $f(\bar{x_i})$ is rotated about the y-axis, then the result is a cylindrical shell with average radius $\bar{x_i}$, height $f(\bar{x_i})$, and thickness Δx , so its volume is

$$V_i = (2\pi \bar{x_i})[f(\bar{x_i})]\Delta x.$$

Therefore an approximation to the volume V of S is given by the sum of the volumes of these shells:

$$V \approx \sum_{i=1}^{n} V_i = \sum_{i=1}^{n} (2\pi \bar{x}_i) [f(\bar{x}_i)] \Delta x.$$

This approximation appears to become better as $n \to \infty$. But, from the definition of an integral, we know that

$$\lim_{n \to \infty} \sum_{i=1}^{n} (2\pi \bar{x_i})[f(\bar{x_i})] \Delta x = \int_a^b 2\pi x f(x) \, \mathrm{d}x.$$

Definition 3. The volume of the solid obtained by rotating about the y-axis the region under the curve y = f(x) from a to b, is

$$V = \int_{a}^{b} \underbrace{2\pi x}_{circumference} \underbrace{f(x)}_{b \ eight} \underbrace{dx}_{thickness} \quad where \quad 0 \leqslant a < b.$$

Example. Find the volume of the solid obtained by rotating about the y-axis the region between y = x and $y = x^2$.

We see that the shell has radius x, circumference $2\pi x$, and height $x-x^2$. So the volume is

$$V = \int_0^1 (2\pi x)(x - x^2) \, \mathrm{d}x = \frac{\pi}{6}.$$

Average Value of Continuous Function

We know that the average of a finite number of values

$$a_1, a_2, ..., a_n$$

is given by

Average =
$$\frac{a_1 + a_2 + \dots + a_n}{n}.$$

How can we handle a continuous function with infinitely many values?

- we divide the time interval [a, b] into n equal subintervals,
- we compute the value of the function at a sample points in each subinterval,
- we use the average of these values as an approximation of the average value of the continuous function f over [a, b].

We would expect the approximations to improve as n increases. In fact, we would be inclined to define the limit of the average for n values as $n \to \infty$ as the average value of f over [a, b], if the limit exists.

(Average value for
$$n$$
 values) = $\frac{1}{n}[f(x_1) + f(x_2) + \dots + f(x_n)]$

where x_k is a sample point in the kth subinterval. We have

$$\begin{split} &\frac{b-a}{b-a} \cdot \frac{1}{n} [f(x_1) + f(x_2) + \ldots + f(x_n)] \\ &= \frac{1}{b-a} \cdot \frac{b-a}{n} [f(x_1) + f(x_2) + \ldots + f(x_n)] \\ &= \frac{1}{b-a} \cdot \left[f(x_1) \frac{b-a}{n} + f(x_2) \frac{b-a}{n} + \ldots + f(x_n) \frac{b-a}{n} \right] \\ &= \frac{1}{b-a} \cdot [f(x_1) \Delta x + f(x_2) \Delta x + \ldots + f(x_n) \Delta x]. \end{split}$$

Thus,

(Average value over
$$[a, b]$$
) = $\lim_{n \to \infty} \frac{1}{b - a} \sum_{k=1}^{n} f(x_k) \Delta x$.

Now the part in the braces is a definite integral. Thus,

(Average value over
$$[a, b]$$
)

$$= \frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x.$$

Proposition 4. Average value of a continuous function f over [a, b]

$$\frac{1}{b-a} \int_{a}^{b} f(x) \, \mathrm{d}x.$$

Example. We will find the average value of $f(x) = x - 3x^2$ over the interval [-1, 2].

$$\frac{1}{b-a} \int_{a}^{b} f(x) dx = \frac{1}{2-(-1)} \int_{-1}^{2} (x-3x^{2}) dx$$
$$= \frac{1}{3} \left(\frac{x^{2}}{2} - x^{3}\right) \Big|_{-1}^{2} = -\frac{5}{2}.$$

Arc Length

Suppose that a curve C is defined by the equation y = f(x), where f is continuous and $a \le x \le b$. We obtain a polygonal approximation to C by dividing the interval [a, b] into n subintervals with endpoints $x_0, x_1, ..., x_n$ and equal width Δx . If $y_i = f(x_i)$, then the point $P_i = (x_i, y_i)$ lies on C and the polygon with vertices $P_0, P_1, ..., P_n$ illustrated is an approximation to C.

The length L of C is approximately the length of this polygon and the approximation gets better as we let n increase. Therefore we define the length L of the curve C with equation y = f(x), $a \le x \le b$, as the limit of the lengths of these inscribed polygons (if the limit exists):

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} |P_{i-1}P_i|.$$

If we let $\Delta y_i = y_i - y_{i-1}$, then

$$|P_{i-1}P_i| = \sqrt{(\Delta x)^2 + (\Delta y)^2}.$$

By applying the Mean Value Theorem to on the interval $[x_{i-1}, x_i]$, we find that there is a number x_i^* between x_{i-1} and x_i such that

$$f(x_i) - f(x_{i-1}) = f'(x_i^*)(x_i - x_{i-1}),$$

 $\Delta y_i = f'(x_i^*)\Delta x.$

Thus we have

$$|P_{i-1}P_i| = \sqrt{1 + [f'(x_i^*)]^2} \Delta x.$$

Therefore

$$L = \lim_{n \to \infty} \sum_{i=1}^{n} |P_{i-1}P_i| = \lim_{n \to \infty} \sum_{i=1}^{n} \sqrt{1 + [f'(x_i^*)]^2} \Delta x.$$

Theorem 4. If f' is continuous on [a,b], then the length of the curve y=f(x), $a \leqslant x \leqslant b$, is

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} \, dx.$$

Remark 3. If a curve has the equation x = g(y), $c \le y \le d$, and g'(y) is continuous, then by interchanging the roles of x and y, we obtain the following formula for its length:

$$L = \int_{c}^{d} \sqrt{1 + [g'(x)]^2} \, dy.$$

Example. Find the length of the arc of the semi-cubical parabola $y^2 = x^3$ between the points (1,1) and (4,8).

For the top half of the curve we have $y=x^{\frac{3}{2}}$ and $y'=\frac{3}{2}x^{\frac{1}{2}}$ and so the arc length formula gives

$$L = \int_{1}^{4} \sqrt{1 + \frac{9}{4}x} \, dx = \frac{1}{27} (80\sqrt{10} - 13\sqrt{13}).$$

Example. Find the length of the arc of the parabola $y^2 = x$ between the points (0,0) and (1,1). Since $x=y^2$, we have y'=2y and so the arc length formula gives

$$L = \int_0^1 \sqrt{1 + 4y^2} \, dx = \frac{\sqrt{5}}{2} + \frac{\ln(\sqrt{5} + 2)}{4}.$$