VECTORIAL ENCODINGS OF QUALITATIVE DOMAINS

https://github.com/24195007/VECTORIAL-ENCODINGS-OF-QUALITATIVE-DOMAINS

1 Project overview

Goal: Build a cross- domain search engine (text + images) and visualise embeddings with a Self- Organising Map.

Datasets

ID	Name	Modality	Size	Note
B.1	Furniture mag	azines text + image	129 PDF ⇒ 14 257 pages	Brand look- books
B.2	Architecture p	apers text	40 arXiv PDFs ⇒ 8 962 chunks	Research theory
B.3	Product photo	s image	792 JPEG	Product gallery

2 Collection & preprocessing

- 1. Scraping: requests / BeautifulSoup to fetch URLs; heavy files stored on OneDrive.
- 2.Parsing:
 - •PDFs via pdfplumber (text) and pdf2image (PNG).
 - •Images resized to 512×512, RGB.
- 3.Cleaning: remove blanks/footers; Chinese "。 " & English "." dual split.
- 4.Storage: one jsonl per dataset with id / text / img_path / meta.

3 Vectorisation & comparison

Dataset	Main method	Why chosen	Alternatives	Pros / cons (own tests) BERT boosts F1 by
B.1 magazine text	sentence- BERT (768- d)	Captures context; works well for ~12 k sentences	TF- IDF	18 pp, needs more VRAM; TF- IDF sparse, weak across sentences
B.1 magazine images	ResNet- 50 GAP (512- d)	Fast inference, sensitive to furniture shape & texture	CLIP- ViT- B/32	CLIP +3 pp recall but ×1.9 memory; ResNet runs 40 img/s
B.2 papers	sentence- BERT	Same model = unified latent space	Doc2Vec	Doc2Vec converges slowly, weaker on long sentences
B.3 product photos	ResNet- 50 GAP	Keeps pipeline simple	SIFT BoW	SIFT fails under rotation/lighting (>25 % mis- match)

Take- away: sentence- BERT for all text, ResNet- 50 for all images; CLIP left for future improvements.

4 SOM training

Grids: (10×10) for text, (12×12) for images.

- •Params: iterations=100, alpha0=0.5.
- •Call example in cell In [74] .
- •qe_history / te_history arrays created in the constructor

5 QE/TE plotting, snapshot saving & best- SOM picking

- 1.Plotting function inserted into the class (see snippet above) uses qe_history / te_history arrays and is called via som.plot_errors().
- 2.What QE & TE mean
- •QE: average Euclidean distance to BMU → mapping accuracy.
- •TE: ratio of samples whose 1st and 2nd BMUs are non- adjacent → topological faithfulness.
- 3.Snapshot list: self.snapshots.append(self.weights.copy()) each epoch (or every k epochs).
- 4.Example decision (image SOM)

Epoch	QE	TE	Verdict
20	0.42	0.31	unstable
50	0.25	0.11	chosen
70	0.23	0.10	marginal gain
90	0.22	0.09	over- fitting risk

poch 50 balances low QE and stable TE; snapshots[4] is selected, visualised vs epoch 70 in som best vs next.png.

5.Persisting

python

for i,w inenumerate(self.snapshots):

np.save(f"checkpoints/img/epoch-{i+1}.npy", w)

6 PCA- to- RGB mapping

- •som- only vs global PCA; the former sharpens local differences, the latter shows corpus- wide trends.
- •"som- only" heat- map is rendered in the notebook

7 Cross- domain search demo

- •Pipeline: query image → vector → same- cell texts → cosine ranks.
- •Console print sample (top- 3) in cell output