

Sampling Bias in Deep Active Classification

An Empirical Study

Ameya Prabhu**1; Charles Dognin*2; Maneesh Singh2 ¹University of Oxford, ²Verisk | AI

* Equal Contribution # Work done at Verisk | Al

Motivation

Goal: Efficient data sampling for training large DNN classifier models.

- Literature finds that uncertainty sampling is biased
- Selects redundant samples from a region in f
- Does not scale with batched sampling

Recent works propose approaches to alleviate these:

- Diversity sampling
- Bayesian sampling and Ensembles

Use Cases

- Annotate powerful small labeled datasets using active learning with fast compact models
- Perform fast, compute-efficient training of large transformer models at minimal accuracy loss

Setup

- Setup Details:
 - 8 large text classification datasets (Size 120K-3.6M)
 - Two models: TFIDF-MNB & FastText.zip representating traditional & deep models
 - No sources of randomness: deterministic setup
- Hypothesis tested:
 - Label and distributional sampling bias
 - Algorithmic factors: Initial set selection, query size and query strategy with two trained models and four acquisition functions
- Large scale empirical study: Combinatorial explosion of factors, large scale study necessary to isolate effects. Hence, we run ~2300 experiments.
- Uniqueness of Study
 - Our datasets 2 orders of magnitude larger
 - Query size often ~dataset size of past works
 - Extensive benchmarking (20x experiments)

We present trends consistent across all 8 datasets and robust across various isolation settings

Popular active learning (AL) hypotheses tested for deep models

Uncertainty based AL is label-biased & feature-biased

Uncertainty based AL irreversibly degrades with in query size

Dsets	Chance	$ FTZ 9 \cap 19 \cap 39 $	$ FTZ 39 \cap 39 \cap 39 $	$MNB \ 9 \cap 19 \cap 39$	MNB $39 \cap 39 \cap 39$
SGN	0.83 ± 0.0	77.0 ± 0.5	77.9 ± 0.2	31.9 ± 0.0	55.5 ± 0.0
DBP	0.9 ± 0.0	80.0 ± 0.1	79.6 ± 0.2	82.3 ± 0.0	79.7 ± 0.0
YHA	3.7 ± 0.0	68.3 ± 0.1	69.0 ± 0.0	92.1 ± 0.0	89.5 ± 0.0
YRP	0.9 ± 0.0	46.0 ± 0.9	42.7 ± 1.0	10.8 ± 0.0	16.0 ± 0.0
YRF	3.6 ± 0.0	68.4 ± 0.2	67.6 ± 0.1	14.2 ± 0.0	13.6 ± 0.0
AGN	3.7 ± 0.0	70.3 ± 0.2	68.7 ± 0.1	81.6 ± 0.0	79.8 ± 0.0
AMZP	0.9 ± 0.0	45.8 ± 0.1	48.2 ± 0.2	11.5 ± 0.0	15.0 ± 0.0
AMZF	3.6 ± 0.0	55.2 ± 0.4	57.0 ± 0.2	28.4 ± 0.0	57.8 ± 0.0

Ensembles help improve quality of sampling in active classification

Dsets	Chance	FTZ Ent-Ent	FTZ Ent-LC	FTZ Ent-DelEnt	FTZ DelEnt-DelLC	FTZ DelEnt-DelEnt
SGN	9.4 ± 0.0	84.6 ± 0.2	83.1 ± 0.3	81.7 ± 0.1	82.6 ± 0.1	84.2 ± 0.1
DBP	9.3 ± 0.0	85.7 ± 0.2	85.5 ± 0.3	83.3 ± 0.1	83.0 ± 0.4	83.2 ± 0.2
YHA	19.0 ± 0.0	79.0 ± 0.0	71.6 ± 0.2	76.3 ± 0.1	69.6 ± 0.7	75.6 ± 3.9
YRP	9.3 ± 0.0	58.4 ± 0.6	59.0 ± 0.3	59.0 ± 0.6	61.6 ± 0.7	62.1 ± 0.1
YRF	19.0 ± 0.0	77.8 ± 0.2	66.6 ± 0.3	75.8 ± 0.1	65.4 ± 0.3	80.1 ± 0.2
AGN	19.1 ± 0.0	78.3 ± 0.1	77.3 ± 0.1	77.1 ± 0.3	78.2 ± 0.4	79.0 ± 0.3
AMZP	9.5 ± 0.0	63.5 ± 0.2	63.5 ± 0.3	66.1 ± 0.4	70.0 ± 0.1	70.0 ± 0.1
AMZF	19.0 ± 0.0	70.3 ± 0.1	64.3 ± 0.2	69.6 ± 0.1	65.6 ± 0.2	72.6 ± 0.2

Dsets	Chance	FTZ-FTZ	FTZ-5F	5FTZ-5FTZ	5FTZ-5FTZ	
	Chance	Ent	TZ Ent	Ent-LC	Ent-Ent	
SGN	9.4 ± 0.0	84.6 ± 0.2	86.3 ± 0.2	85.4 ± 0.4	85.8 ± 0.0	
DBP	9.3 ± 0.0	85.7 ± 0.2	86.6 ± 0.3	86.78 ± 0.1	87.8 ± 0.2	
YRP	9.3 ± 0.0	58.4 ± 0.6	58.1 ± 0.7	58.3 ± 0.3	58.2 ± 0.2	
YRF	19.0 ± 0.0	77.8 ± 0.2	79.0 ± 0.3	68.5 ± 1.1	77.6 ± 0.3	
AGN	19.1 ± 0.0	78.3 ± 0.1	79.0 ± 0.2	79.1 ± 0.2	77.9 ± 0.2	

Dsets	Common%	Chance%	$\mid \#SV \mid$
SGN	71.3 ± 0.5	9.3 ± 0.5	13184
DBP	86.3 ± 0.5	9.7 ± 0.5	1479
YRP	57.3 ± 0.5	9.7 ± 0.5	31750
AGN	45.0 ± 0.8	21.0 ± 1.6	1032

Table 3: Proportion of Support Vectors intersecting with our actively selected set calculated by $\frac{|S_{SV} \cap S_b|}{|S_{SV}|}$.

Applications

Model	AGN	DBP	SGN	YRF	YRP	YHA	AMZP	AMZF
VDCNN (Conneau et al., 2017)	91.3	98.7	96.8	64.7	95.7	73.4	95.7	63.0
DPCNN (Johnson and Zhang, 2017)	93.1	99.1	98.1	69.4	97.3	76.1	96.7	65.2
WC-Reg (Qiao et al., 2018)	92.8	98.9	97.6	64.9	96.4	73.7	95.1	60.9
DC+MFA (Wang et al., 2018)	93.6	99.2	-	66.0	96.5	-	-	63.0
DRNN (Wang, 2018)	94.5	99.2	-	69.1	97.3	70.3	96.5	64.4
ULMFiT (Howard and Ruder, 2018)	95.0	99.2	-	70.0	97.8	-	-	o ≖ .
EXAM (Du et al., 2019)	93.0	99.0	-	-	-	74.8	95.5	61.9
Ours: ULMFiT (Small data)	93.7 (20)	99.2 (10)	97.0 (10)	67.6 (20)	97.1 (10)	74.3 (20)	96.1 (10)	64.1 (20)
Ours: ULMFiT (Tiny data)	91.7 (8)	98.6 (2.3)	97.4 (6.3)	66.3 (8)	96.7 (4)	73.3 (8)	95.8 (4)	62.9 (8)

Almost as accurate

Take Aways

Summary

Uncertainty based AL with deep models like Fasttext.zip show:

- Negligible class bias
- No adverse feature bias (favorable)
- Scales with query size (no degradation)

Surprising Discoveries

- Ensembling does not improve sampling
- Supports of a SVM have large overlap with our acquired samples

Uses

- Generates compact surrogate datasets
 - Speedup large DNN training by 25-200x
- State-of-the-art in deep active text classification
 - Outperforms prev. best by 4x less data

Contact

Ameya Prabhu ameya.prabhu@mailfence.com Charles Dognin charles.dognin@verisk.com

References

- Aditya Siddhant and Zachary C Lipton. Deep bayesian active learning for natural language processing: Results of a large-scale empirical study. In EMNLP 2018
- Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set approach. In ICLR 2018 Daniel Gissin and Shai Shalev-Shwartz. 2019. Discriminative active learning. ArXiv preprint arxiv:1907.06347v1

