Developing computational infrastructure for an EEG-based Brain-Computer Interface

Murat Kaya, Hilmi Yanar, Doç.Dr. Yuriy Mishchenko*

EEG BCI toolset

- Developed in the course of implementing a EEG-based BCI in our laboratory
- Supports and implements the elements of typical EEG BCI workflow

Workflow

Data acquisition

- Acquire data from EEG devices and save it to a MATLAB format for further (offline) analysis
- Provide real-time EEG data feed for (online or live) analysis and processing
- Offer user interfaces for BCI experiments

EEG data acquisition devices

Nihon Kohden EEG-1200

 medical grade EEG system, 38 channels max, 1000 Hz sampling rate, 0.01 μV resolution

EMOTIV EPOC (x3)

 wireless EEG headset, 12 channels max, 128 Hz sampling rate, 0.5 μV resolution

Data acquisition tools

emologger

emoExperiment

nklogger

nkiui

nkimport

nkExperiment

sync.ino

Emotiv Epoc interface for measuring right/left hand movement ERPs

Nihon Kohden interface for Right/Left-Hand and Right-Left-Hand-Leg-Tongue BCI experiments

Nihon Kohden Interface for five-finger motor imagery

Nihon Kohden Interface for free key-press motor imagery

Data acquisition

- A recurrent problem is inability to synchronize User Interface(s) data with EEG acquisition device(s) – Nihon Kohden EEG-1200 adds variable delay into its EEG data stream varying between 200 ms and 500 ms
- Our solution is to inject a ~ 1 uV Event Trigger signal directly to EEG-1200 signal acquisition box, and then find it in the EEG-1200's recording

Data analysis

- Trials extraction
- Event -Related-Potentials (ERP)
- Data spectrograms
- Signal-stimulus covariances
- Features calculation

Data analysis

ERP curves

Spectrograms

FT Features

EEG band powers

PSD

Amplitudes

Feature-stimulus correlations

Examples of measured ERPs

Right/left hand + neutral

Right/left hand, leg, tongue + neutral

Feature selection

- Small amount of data
 - The number of event examples typically obtained from one 1-hour BCI experiment – 200-500, the number of features - > 9,000
 - The Rule of Thumb in Machine Learning the number of examples >≈ 10x the number of features
- Pre-select features before trying to detect events in the EEG data

Feature selection

- Single feature ranking
 - Feature-stimulus Pearson correlation
 - Feature-stimulus Mutual Information
 - Kullback-Leibler (KL) Divergence
- Channel ranking
 - Add-one-in EEG channel ranking
 - Leave-one-out EEG channel ranking

Feature selection

Automation

- Detect "events" in EEG data automatically
- Synchronous model beginning of an event is known via a signal to the subject
- Use Machine Learning algorithms to machine-learn the ways to identify BCI events in EEG data

Automation

svm_tr

General Support Vector Machine for 2-class separation

mcsvm tr

Multiclass Support Vector Machine, voting implementation

mnlr_tr

Multinomial Logistic Regression for direct learning of class-probabilities

svm_lc

Learning curves for 2-class Support Vector Machine

gen_lc

General learning curves for (any, multinomial) given classification method

Automation

Tests/LIVE

- Automate (offline) analysis of experiments using a batch script
- The batch script pulls together the above tools to perform data synchronization, extraction of trials, ERP calculation, features ranking, training and validation of ML eventmodels automatically

Tests/LIVE

- Experiments with live events detection began recently using our NK EEG-1200 Interactive User Interface (nkiui)
- Subjects control a virtual robot arm in 3D using Left/Right-Hand-Leg-Tongue BCI model (5 dof + neutral)

LIVE experiments

Tests/LIVE

- (limited) First results:
 - 2 dof + neutral arm control 70-85% accuracy
 - 5 dof + neutral arm control 40-50% accuracy
- These are comparable to our offline results so far

Acknowledgements

Lab members:

- Murat KAYA
- Hilmi YANAR
- Erkan ÖZBAY

Former lab members:

- Emre SAĞLAM
- Umut SÜRMELİ

Funding sources:

- TUBITAK ARDEB 1001 (113E611)
 "Development of more efficient Noninvasive Brain Computer Interfaces"
- Toros University BAP (TUBAP135001)
 "Founding of the Noninvasive Brain Machine Interfaces Research Laboratory"
- Bilim Akademisi BAGEP-2013
 Young Scientist Award

Questions about toolbox etc.: yuriy.mishchenko@gmail.com

