

Architetture aritmetiche

Sommatori: Full Adder, Ripple Carry

Sommatori: Carry Look-Ahead, Carry Save, Add/Subtract

Moltiplicatori: Combinatori, Wallace, Sequenziali

Circuiti per aritmetica in virgola mobile

versione del 11/11/03

Sommatori: Full Adder

$$\left| \mathbf{s}_{i} = \overline{\mathbf{x}}_{i} \overline{\mathbf{y}}_{i} \mathbf{c}_{i} + \overline{\mathbf{x}}_{i} \mathbf{y}_{i} \overline{\mathbf{c}}_{i} + \mathbf{x}_{i} \overline{\mathbf{y}}_{i} \overline{\mathbf{c}}_{i} + \mathbf{x}_{i} \mathbf{y}_{i} \mathbf{c}_{i} \right|$$

$$\left| \boldsymbol{C}_{i+1} = \boldsymbol{X}_{i} \boldsymbol{y}_{i} + \boldsymbol{X}_{i} \boldsymbol{C}_{i} + \boldsymbol{y}_{i} \boldsymbol{C}_{i} \right|$$

Sommatori: Ripple Carry

[1]

Sommatori: Ripple Carry

[2]

Ripple-Carry Block Architecture

Sommatori: Carry Look-Ahead [1]

Carry Look-Ahead Logic: Internal architecture

Carry Look-Ahead Logic

Sommatori: Carry Look-Ahead [2]

Somma di più valori

Calcolo della somma di 3 (o più) valori come:

$$W = X + Y + Z$$

- Soluzione:
 - Calcolare una somma intermedia

$$T = X + Y$$

E quindi calcolare il risultato finale:

$$W = T + Z$$

- Le somme possono essere realizzate mediante
 - Due sommatori ripple-carry connessi in cascata
 - Due sommatori carry look-ahead connessi in cascata
- Ricorda la somma di N addendi da n bit richiede n+ log₂N bit per il risultato

Somma di tre addendi -Architettura con sommatori ripple-carry

Somma di tre addendi -Prestazioni con sommatori ripple-carry

Prestazioni con sommatori ripple-carry (in blu il ritardo di ogni segnale)

Ritardo $R = (n + 2)\Delta T$ con ΔT ritardo di un Full-Adder

Somma di N addendi da n bit: N-1 stadi di somma, risultato su $n+\lceil log_2N\rceil$ bit, ritardo = $(n+\lceil log_2N\rceil)$ ΔT

Somma di tre addendi con Sommatori Carry Save

- Il primo stadio calcola le somme S (parziali e senza propagazione di riporto) e i riporti CS (Carry Save Adder)
- Il secondo stadio somma (con propagazione di riporto) i valori provenienti dal primo stadio

Somma di tre addendi - Prestazioni Carry Save

Sommatore Carry Save come blocco

- Sommatore Carry Save composto da due unità
 - Blocco Carry Save:
 - Produce i due vettori S e CS
 - Ritardo: $R_{CS} = 1$
 - Sommatore Ripple-Carry:
 - Produce il risultato finale
 - Ritardo: $R_{RC} = n + 1$

Sommatore Carry Save come blocco

Istanti di generazione dei bit di uscita

Esempio sommatore a 6 addendi con blocchi Carry Save da 3 addendi

Esempio sommatore a 9 addendi con blocchi Carry Save da 3 addendi

Vantaggi più evidenti al crescere del numero degli operandi

Sommatori Add/Subtract: operazioni in complemento a 2

Moltiplicatori combinatori

Prodotto di due numeri positivi di 3 bit (n bit - 2n bit prodotto)

Moltiplicazione bit a bit					
		x_2	x_1	x_0	X
		У2	У1	Уо	=
		y_0x_2	y_0x_1	y ₀ x ₀	
	y_1x_2	y_1x_1	y_1x_0		
y ₂ x ₂	y_2x_1	y_2x_0			
		PP ₀₂	PP ₀₁	PP ₀₀	
	PP_{12}	PP_{11}	PP_{10}		
PP ₂₂	PP ₂₁	PP_{20}			
p ₅ p ₄	P ₃	p ₂	p_1	p ₀	

Matrice di prodotti parziali costituita da *n* righe

Moltiplicatori combinatori: somma per righe

Somma per righe

Ogni cella del moltiplicatore calcola

- •il prodotto parziale corrispondente e
- •una somma parziale

Il riporto delle somme parziali si propaga lungo la riga

Le somme si propagano in verticale

Per il calcolo del prodotto parziale, X si propaga in diagonale e Y in verticale

Sono necessari *n-1* sommatori a *n* bit (con eventuale calcolo del prodotto parziale). Il primo non genera riporti

La struttura è regolare

Prestazioni: dipendono dai sommatori, con sommatori non veloci ordine di 2n

Moltiplicatori combinatori: somma per righe

Moltiplicatori combinatori: somma per diagonali

Somma per diagonali

- Ogni cella del moltiplicatore (tranne quelle dell'ultima riga) calcola il prodotto parziale corrispondente e una somma parziale
- Il riporto delle somme parziali si propaga lungo le diagonali
- Le somme si propagano in verticale
- Per il calcolo del prodotto parziale, X si propaga in diagonale e Y in verticale
- Sono necessari *n* sommatori a *n* bit (di cui il primo non genera riporti)
- La struttura è regolare
- Prestazioni: dipendono dai sommatori, con sommatori non veloci ordine di 2n

Moltiplicatori combinatori: somma per diagonali

Circuito per la somma per diagonali.

Moltiplicatori combinatori: somma per colonne

- Il metodo è simile a quello utilizzato a mano per effettuare la moltiplicazione
- Si utilizza la matrice dei prodotti parziali (matrice di AND) e un insieme di contatori paralleli
- Il generico contatore parallelo riceve in ingresso una colonna di prodotti parziali (e gli eventuali riporti dagli stadi precedenti) e genera il conteggio degli 1 della colonna
- Il conteggio generato in ogni stadio produce il bit del prodotto per lo stadio considerato e eventuali riporti per gli stadi successivi
- Irregolare (contatori diversi)
- Prestazioni: paragonabili a quelle per somma per righe, infatti si ha propagazione di riporti in tutte le colonne

Moltiplicatori combinatori: somma per colonne

- Moltiplicando e moltiplicatore da 6 bit
- In nero la matrice di AND, in rosso i riporti generati dai contatori
- ogni contatore genera 1 bit del prodotto e riporti per le colonne successive
- il contatore di colonna 1 genera 1 riporto per colonna 2
- il contatore di colonna 2 genera 2 riporti per colonna 3 e 4
- il contatore di colonna 3 genera 2 riporti per colonna 4 e 5
- □ e così via.....

Moltiplicatori combinatori:

somma per colonne con riduzione della matrice dei termini prodotto

- Riduzione successiva della matrice dei prodotti parziali
 - La matrice dei prodotti parziali M0 viene ridotta, in termini di righe, tramite contatori paralleli per colonna che non propagano i riporti, ma li usano (insieme ai bit di somma) per costruire la matrice ridotta
 - Il risultato generato dai contatori crea una matrice successiva M1, costituita da un numero inferiore di righe. In questo modo non c'è propagazione dei riporti all'interno della stessa matrice
 - Il procedimento viene iterato fino a quando non si ottiene una matrice di sole due righe
 - Le due righe costituiscono l'ingresso ad un sommatore
- La riduzione è rapida
- La struttura è irregolare
- Le prestazioni aumentano
 - ipotesi: il tempo di un contatore è identico a quello di un Full-Adder
 - domina il tempo del sommatore finale

Moltiplicatori combinatori:

somma per colonne con matrici successive

Moltiplicatori combinatori: moltiplicatore di Wallace

- E' basato sulla riduzione successiva della matrice M0
- Prevede l'utilizzo di soli contatori a 2 o 3 ingressi, che sono equivalenti rispettivamente ad un Half-Adder e a un Full-Adder
- Il procedimento di riduzione della matrice a 2 sole righe è più lento rispetto al caso di contatori a ingressi qualsiasi, ma comunque rapido (log 3/2 n passi)
 - M0 di n righe
 - M1 di (2/3)n righe
 - M2 di (2/3)²n righe
 -
 - Mh di (2/3)^hn righe: se il n° di righe è uguale a 2 la riduzione termina
- 🗅 La struttura è "regolare"
- Le prestazioni sono dominate dal sommatore finale (veloce)

Moltiplicatori combinatori: moltiplicatore di Wallace

Moltiplicatori sequenziali

[1]

- Moltiplicazione sequenziale tra due numeri di n
- I passi da eseguire sono:
 - 1. Inizializza a zero un registro accumulatore A
 - 2. Inizializza a zero un bistabile C per il riporto
 - 3. Salva nei registri Q ed M moltiplicatore e moltiplicando
 - 4. Se il bit meno significativo di Q vale 1
 - Somma A ed M
 - Memorizza il risultato in A
 - 5. Shift a destra del registro [C; A; Q] di una posizione
 - 6. Ripeti dal punto 4 per *n* volte
 - 7. Preleva il risultato della moltiplicazione dai registro [A; Q]

Moltiplicatori sequenziali

[2]

- I circuiti per la realizzazione delle operazioni in virgola mobile sono molto complessi
- Si consideri l'algoritmo per la somma secondo lo standard IEEE Single Precision:
 - Si sceglie il numero con esponente minore e si fa scorrere la sua mantissa a destra un numero di bit pari alla differenza dei due esponenti
 - Si assegna all'esponente del risultato il maggiore tra gli esponenti degli operandi
 - Si esegue l'operazione di somma tra le mantisse per determinare il valore ed il segno del risultato
 - Si normalizza il risultato cosi' ottenuto
 - · Non sempre quest'ultima operazione è necessaria

Nota:

- se A o B = $\pm \infty$
- se $A \circ B = 0$
- se la differenza tra gli esponenti è maggiore o uguale al numero di bit a disposizione per le mantisse
- è inutile fare la somma

- Nel seguito viene sviluppato un sommatore floating point
- I numeri A e B sono rappresentati
 - Su 32 bit
 - Secondo lo standard IEEE Single Precision
- Gli operandi A e B sono composti come segue:

$$A = \{ S_A, E_A, M_A \}$$

 $B = \{ S_B, E_B, M_B \}$

In cui:

- S_A , S_B Segno, 1 bit
- E_A , E_B Esponente in eccesso 127, 8 bit
- M_A , M_B Mantissa, 23 bit

[3]

Passo 1

Si sceglie il numero con esponente minore e si fa scorrere la sua mantissa a destra un numero di bit pari alla differenza dei due esponenti

- Richiede le seguenti operazioni:
 - Individuazione dell'esponente minore E_{min}
 - Calcolo della differenza tra gli esponenti $d = |E_A E_B|$
 - Selezione della mantissa dell'operando con esponente M_{Emin}
 - Scorrimento della mantissa M_{Emin} di d posizioni a dx (tenendo conto dell'1 implicito)
- Il calcolo della differenza tra gli esponenti consente allo stesso tempo (analizzandone il segno S_E) di individuare l'esponente minore

- Questa prima sezione del sommatore calcola:
 - $-M_1$ La mantissa del numero con esponente minore, opportunamente shiftata
 - $-M_2$ La matissa del numero con esponente maggiore

Passo 2

- Si assegna all'esponente del risultato il maggiore tra gli esponenti degli operandi
- Richiede le seguenti operazioni:
 - Selezione dell'esponente minore E_{max} in base a S_E .
 - Si riutilizza il segno S_F della differenza tra gli esponenti

Passo 3

- Si esegue l'operazione di somma tra le mantisse per determinare il valore ed il segno del risultato
- Richiede le seguenti operazioni:
 - Calcolo della somma algebrica M_{12} delle mantisse M_1 ed M_2 ottenute al primo passo, e relativo segno
 - Si utilizza un sommatore/sottrattore su 24 bit con riporto

□ Se C_{out} = 0 e M_{12} normalizzata $E = E_{max}$

Passo 4

- Si normalizza il risultato così ottenuto
- Richiede le seguenti operazioni
 - Se C_{out} = 1, Shdx M_{12} e $E = E_{max}$ + 1, eventuale troncamento
- □ Altrimenti ($C_{out} = 0$ e M_{12} non normalizzata)
 - Individuazione del numero z degli zeri nei bit più significativi della mantissa M_{12}
 - Shift sx della mantissa M₁₂
 - Calcolo del nuovo esponente $E = E_{max} z$
 - A tale scopo sono necessari:
 - · Un circuito per il calcolo dei leading zeroes
 - Un sottrattore su 8 bit
 - · Uno shifter per l'allineamento della mantissa

