Guía de ejercicios # 7 - Punto Flotante

Organización de Computadoras C3

UNQ

Los objetivos de esta práctica son:

- Comprender las limitaciones de los sistemas de punto fijo y las motivaciones del punto flotante.
- Manejar la interpretación de los sistemas de punto flotante
- Comprender la relación entre rango y resolución variable

Los ejercicios marcados con \bigstar son un conjunto minimal para comprender los temas tratados en esta práctica. Para resolver esta práctica se aconseja consultar el apunte de la materia Sistemas de Punto Flotante

1 Interpretación

1. Interpretar las siguientes cadenas de bits en el sistema dado:

- a) 1110 1110
- b) 1111 1111
- c) 1110 0000
- d) 0010 0000
- e) 0000 0100
- 2. Interpretar las siguientes cadenas de bits en el sistema dado: Donde:

mantisa SM(5,4) exponente CA2(3)

- a) 1110 1110
- b) 1111 1111
- c) 0110 0100
- d) 1110 0100
- e) 0010 0000
- 3. Interpretar las siguientes cadenas de bits en el sistema dado: Donde: $\boxed{\text{mantisa } SM(9,7) \mid \text{exponente } SM(7)}$
 - a) 1110 1110 0101 1111
 - b) 1111 1111 1111 1110

- c) 0110 0011 1100 0110
- d) 0010 0001 1000 1100
- 4. Buscar un ejemplo para afirmar o refutar lo siguiente: Punto fijo tiene error de representación, mientras que punto flotante no.
- 5. Buscar un ejemplo para afirmar o refutar lo siguiente: La cadena mas grande en un sistema de punto flotante es 011110111, siendo el sistema mantisa SM(5,4) exponente CA2(4)

2 Rango

6. Calcular el rango de un sistema de punto flotante con

Mantisa: BSS(5)Exponente: BSS(3)

7. Calcular el rango de un sistema de punto flotante con

Mantisa: SM(9,7)Exponente: SM(7)

8. Calcular el rango de un sistema de punto flotante con

Mantisa: Normalizada y con bit implícito SM(9+1,9)

Exponente: Ex(5,16)

9. Calcular el rango de un sistema de punto flotante con

Mantisa: Normalizada y con bit implícito SM(7+1,6)

Exponente: Ex(7,64)

- 10. Buscar un contraejemplo para refutar lo siguiente: En punto flotante es posible representar todos los numeros reales contenidos en el rango
- 11. Justificar la siguiente afirmación con ejemplos: En un sistema de punto flotante donde: Mantisa: BSS(5, 2), Exponente: BSS(3) es posible representar más números que en un sistema BSS(8)

3 Resolucion variable

12. Calcular la resolución máxima y mínima de un sistema de punto flotante con

Mantisa: BSS(5)Exponente: BSS(3)

13. Calcular la resolución máxima y mínima de un sistema de punto flotante con

Mantisa: SM(9,7)

Exponente: SM(7)

- 14. ¿Cuántas resoluciones diferentes puedo tener en el siguiente sistema? $\boxed{\text{mantisa SM}(5,4) \mid \text{exponente} CA2(4)}$
- 15. ¿Cuántas resoluciones diferentes puedo tener en el siguiente sistema? $\boxed{\text{mantisa SM}(5,4) \quad | \text{ exponente } SM(4)}$
- 16. Calcular la resolución máxima y mínima de un sistema de punto flotante con

Mantisa: Normalizada y con bit implícito SM(4+1,4)

Exponente: CA2(3)

17. Calcular la resolución máxima y mínima de un sistema de punto flotante con

Mantisa: Normalizada y con bit implícito SM(9+1,9)

Exponente: Ex(5,16)

18. Calcular la resolución máxima y mínima de un sistema de punto flotante con

Mantisa: Normalizada y con bit implícito SM(7+1,6)

Exponente: Ex(7,64)

- 19. Justificar porqué es falsa la siguiente afirmación: En punto flotante la resolución es infinita
- 20. Justificar porqué es falsa la siguiente afirmación: Punto flotante tiene sólo dos resoluciones: maxima y mínima

4 Normalizacion

21. Una o mas de las siguientes opciones son verdaderas. Indicar cuáles son justificando las verdaderas y dando un contraejemplo de las falsas.

¿Para qué sirve la Normalización de cadenas? ¿Cuál es su consecuencia?

- a) Para no tener 2 representaciones del 0
- b) Para perder la representación del 0
- c) Para no tener multiples representaciones de la mayoría de los números
- d) Para tener una mejor resolución máxima y mínima
- $22.\,$ Dar 3 representaciones distintas del número 4 en el siguiente sistema:

mantisa SM(6) | exponente CA2(5)

23. Interpretar las siguientes cadenas de bits en el sistema dado: Donde: mantisa SM(10+1,10) exponente CA2(5)

*Notar que los 10 bits de la magnitud de la mantisa son fraccionarios, 9 de ellos explícitos y uno implícito

- a) 111 1111 1111 1111
- b) 000 0000 0010 0000
- c) 000 0000 0000 0000
- d) 000 0000 0111 0011
- e) 000 0000 0001 1111
- f) 000 0000 0011 1111
- 24. Interpretar las cadenas del ejercicio anterior en un sistema de punto flotante con

Mantisa: Normalizada y con bit implícito SM(9+1,9)

Exponente: SM(6)

Teniendo en cuenta el siguiente formato:

magnMant(8)	signoMant(1)	signoExp(1)	magnExp(5)

Notar que los 9 bits de la magnitud de la mantisa son fraccionarios, 8 de ellos explícitos y uno implícito

25. Calcular el rango de un sistema de punto flotante con

Mantisa: Normalizada y con bit implícito SM(5+1,4)

Exponente: Ex(8, 128)

. Notar que en la mantisa tenemos 5 bits $+\ 1$ implicito de los cuales sólo 4 son fraccionarios.

Referencias

(1) Williams Stallings, Computer Organization and Architecture. Editorial Prentice Hall. Capítulo 9, sección 4