

Numerical Analysis

(ENME 602)

Spring 2021

Lecture 5

Dr. Hesham H. Ibrahim

Associate Professor, Mechatronics Department. hesham.hamed-ahmed@guc.edu.eg Office C7.04

Lecture 5

Interpolation & Polynomial Approximation

- 5.1 Divided Differences
- 5.2 Divided Differences Interpolation
- 5.3 Error of Interpolation using Divided Differences
- 5.4 Interpolation of Equally-Spaced Points

Problem:

- We are solving the same problem:
- Given

$$X_0 X_1 \qquad X_n$$
 $f_0 f_1 \qquad f_n$

find a polynomial of degree at most n, P(x), that goes through all the points, that is satisfies:

$$P(x_k)=f_k$$

We take a new approach to this problem.

▶ Let P_n(x) be the nth degree interpolating polynomial. We want to rewrite Pn(x) in the form

$$P_n(x)=a_0+a_1(x-x_0)+a_2(x-x_0)(x-x_1)+$$

....+ $a_n(x-x_0)(x-x_1)...(x-x_{n-1})$

for appropriate constants ao, a1,..., an.

We want to determine the coefficients $a_0, a_1, ..., a_n$.

$$P_n(x)=a_0+a_1(x-x_0)+a_2(x-x_0)(x-x_1)+$$

....+ $a_n(x-x_0)(x-x_1)...(x-x_{n-1})$

- ▶ Determining a_0 is easy: $a_0=P_n(x_0)=f_0$
- ▶ To determine a₁ we compute

$$P_n(x_1)=a_0+a_1(x-x_0)$$

 $f_1=f_0+a_1(x_1-x_0)$

Solving for a₁ we have

$$a_1 = \frac{f_1 - f_0}{x_1 - x_0}$$

- This prompts to define the coefficients to be the divided differences.
- The divided differences are defined recursively.

<u>Definition</u>: The 0th divided difference of a function f with respect to the point x_i is denoted by f[x_i] and it is defined by f[x_i]=f(x_i)

Definition: The first divided difference of f with respect to x_i, x_{i+1} is denoted by f[x_i,x_{i+1}] and it is defined as follows:

$$f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i}$$

▶ <u>Definition</u>: The second divided difference at the points x_i,x_{i+1},x_{i+2} denoted by f[x_i,x_{i+1},x_{i+2}] is defined as follows:

$$f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_i, x_{i+1}]}{x_{i+2} - x_i}$$

<u>Definition</u>: The second divided difference at the points x_i,x_{i+1},x_{i+2} denoted by f[x_i,x_{i+1},x_{i+2}] is defined as follows:

$$f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_i, x_{i+1}]}{x_{i+2} - x_i}$$

Definition: If the (k-1)st divided differences f[x_i,...,x_{i+k-1}] and f[x_{i+1},...,x_{i+k}] are given, the kth divided difference relative to x_i,...,x_{i+k} is given by

$$f[x_{i},...,x_{i+k}] = \frac{f[x_{i+1},...,x_{i+k}] - f[x_{i},...,x_{i+k-1}]}{x_{i+k} - x_{i}}$$

The divided differences are computed in table:

X	f(x)	Ist DD	IInd DD	IIIrd DD	IVth DD
X 0	fo				
X 1	fı	f[x0,x1]			
X 2	f ₂	$f[x_1,x_2]$	$f[x_0,x_1,x_2]$		
X 3	fз	$f[x_2,x_3]$	$f[x_1,x_2,x_3]$	$f[x_0,x_1,x_2,x_3]$	
X 4	f ₄	f[x3,x4]	$f[x_2, x_3, x_4]$	$f[x_1,x_2,x_3,x_4]$	$f[x_0,x_1,x_2,x_3,x_4]$

$$f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i} \qquad f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_i, x_{i+1}]}{x_{i+2} - x_i}$$

Example 1

Compute the divided differences with following data:

X	f(x)		
0	3		
1	4		
2	7		
4	19		

Example 1

Completing the table:

X	f(x)	Ist DD	IInd DD	IIIrd DD
0	3			
1	4	1		
2	7	3	1	
4	19	6	1	0

So the nth interpolating polynomial becomes:

$$P_n(x)=f[x_0]+f[x_0,x_1](x-x_0)+f[x_0,x_1,x_2](x-x_0)(x-x_1)+...+f[x_0,...,x_n](x-x_0)...(x-x_{n-1})$$

<u>Definition</u>: This formula is called Newton's interpolatory <u>forward</u> divided difference formula.

Example 2

Construct the interpolating polynomial of degree 4 for the points:

x	0.0	0.1	0.3	0.6	1.0
f(x)	-6.0000	-5.89483	-5.65014	-5.17788	-4.28172

$$P_{n}(x)=f[x_{0}]+f[x_{0},x_{1}](x-x_{0})+f[x_{0},x_{1},x_{2}](x-x_{0})(x-x_{1})+...+f[x_{0},...,x_{n}](x-x_{0})...(x-x_{n-1})$$

We construct the divided difference table

X	f(x)	Ist DD	IInd DD	IIIrd DD	IVth DD
0.0	-6.00000				
0.1	-5.89483	1.0517			
0.3	-5.65014	1.22345	0.5725		
0.6	-5.17788	1.5742	0.7015	0.215	
1.0	-4.28172	2.2404	0.9517	0.278	0.063

Then, Newton's forward polynomial is:

$$P_4(x) = -6 + 1.0517x + 0.5725x(x - 0.1) + + 0.215x(x - 0.1)(x - 0.3) + + 0.063x(x - 0.1)(x - 0.3)(x - 0.6)$$

Example 2

• (B) Add the point f(1.1)=-3.99583 to the table, and construct the polynomial of degree five.

X	f(x)	Ist DD	IInd DD	IIIrd DD	IVth DD	Vth DD
0.0	-6.00000					
0.1	-5.89483	1.0517				
0.3	-5.65014	1.22345	0.5725			
0.6	-5.17788	1.5742	0.7015	0.215		
1.0	-4.28172	2.2404	0.9517	0.278	0.063	
1.1	-3.99583	2.8589	1.237	0.356625	0.078625	0.0142

Newton's polynomial: $P_5(x)=P_4(x)+$ +0.0142x(x-0.1)(x-0.3)(x-0.6)(x-1)

Newton's Backward Formula

If the interpolating nodes are reordered as

$$X_{n}, X_{n-1}, ..., X_{1}, X_{0}$$

a formula similar to the Newton's forward divided difference formula can be established.

▶
$$P_n(x)=f[x_n]+f[x_n,x_{n-1}](x-x_n)+...$$

+ $f[x_n,...,x_0](x-x_n)...(x-x_1)$

Definition: This formula is called Newton's backward divided difference formula.

Newton's Backward Formula

If the interpolating nodes are reordered as

$$X_{n}, X_{n-1}, ..., X_{1}, X_{0}$$

a formula similar to the Newton's forward divided difference formula can be established.

▶
$$P_n(x)=f[x_n]+f[x_n,x_{n-1}](x-x_n)+...$$

+ $f[x_n,...,x_0](x-x_n)...(x-x_1)$

Definition: This formula is called Newton's backward divided difference formula.

Example 3

Construct the interpolating polynomial of degree four using Newton's backward divided difference formula using the data:

0.0	-6.00000				
0.1	-5.89483	1.0517			
0.3	-5.65014	1.22345	0.5725		
0.6	-5.17788	1.5742	0.7015	0.215	
1.0	-4.28172	2.2404	0.9517	0.278	0.063

$$P_4(x) = -4.28172 + 2.2404(x-1) + \\ +0.9517(x-1)(x-0.6) + \\ +0.278(x-1)(x-0.6)(x-0.3) \\ +0.063(x-1)(x-0.6)(x-0.3)(x-0.1)$$

$$P_{n}(x)=f[x_{n}]+f[x_{n},x_{n-1}](x-x_{n})+... +f[x_{n},...,x_{0}](x-x_{n})...(x-x_{1})$$

The nth degree polynomial generated by the Newton's divided difference formula is the <u>exact</u> <u>same polynomial</u> generated by Lagrange formula. Thus, the error is the same:

$$E_n(x,f) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)...(x-x_n)$$

Recall also that

$$E_n(x,f)=f(x)-P_n(x)$$

Example 4

For the function

$$f(x) = x^2 e^{\frac{-x}{2}}$$

- Construct the divided difference table for the points $x_0=1.1$ $x_1=2$ $x_2=3.5$ $x_3=5$ $x_4=7.1$
- Find the Newton's forward divided difference polynomials of degree 1, 2 and 3.
- \circ Find the errors of the interpolates for f(1.75).
- Find the error bound for $E_1(x,f)$.

Example 4

The divided difference table is:

	X	f(x)	Ist DD	IInd DD	IIIrd DD	IVth DD
1 75	1.1	0.6981				
1.75	2	1.4715	0.8593			
	3.5	2.1287	0.4381	-0.1755		
	5	2.0521	-0.0511	-0.1631	0.0032	
	7.1	1.4480	-0.2877	-0.0657	0.0191	0.0027

$$P_1(x) = 0.6981 + 0.8593(x-1.1)$$

$$P_2(x) = P_1(x) - 0.1755(x-1.1)(x-2)$$

$$P_3(x) = P_2(x) + 0.0032(x-1.1)(x-2)(x-3.5)$$

Example 4

f(1.75)=1.2766

Degree	Pn(1.75)	Actual error
1	1.25665	0.01995
2	1.2852	-0.0086
3	1.2861	-0.0095

- Typically we can expect that a higher degree polynomial will approximate better but here P₂(x) approximates better than P₃(x).
- Difference is small.

Example 4

The error of $P_1(x)$ is

$$E_1(x,f) = \frac{f''(\xi(x))}{2!}(x-1.1)(x-2)$$

We find the derivatives

$$f(x) = x^2 e^{-\frac{x^2}{2}}$$

$$f'(x) = (2x - \frac{x^2}{2})e^{-\frac{x}{2}}$$

$$f''(x) = (2 - 2x + \frac{x^2}{4})e^{-\frac{x}{2}}$$

 $\max_{x} |f''(x)| \le |f''(2)| = 0.3679$

Plot of |f''(x)| on [1.1,2]

Example 4

- g(x)=(x-1.1)(x-2)
- The maximum of |g(x)| is attained at the midpoint of the interval [1.1,2]:
- $p_m = (1.1+2)/2 = 1.55$
- $|g(x)| \le |g(1.55)| = 0.2025$
- Error bound:

$$|E_1(x,f)| = \frac{|f''(\xi(x))|}{2!} |(x-1.1)(x-2)|$$

$$\leq \frac{0.3679}{2} 0.2025 = 0.03725$$

Plot of |g(x)| on [1.1,2].

How Does Divided Difference Relate to the Derivative?

Notice that

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

The Mean Value Theorem says that if f'(x) exists, then

$$f[x_0,x_1]=f'(\xi)$$

for some ξ between x_0 and x_1 .

- The following Theorem generalizes this:
- Theorem Suppose f has n continuous derivatives and x0,x1,...,xn are distinct numbers in [a,b]. Then ξ in (a,b) exists with

$$f[x_0,...,x_n] = \frac{f^{(n)}(\xi)}{n!}$$

Error Estimation when f(x) is Unknown: Next Term Rule

- Often f(x) is NOT known, and the nth derivative of f(x) is also not known. Therefore, it is hard to bound the error.
- We saw that

$$f[x_0,...,x_n] = \frac{f^{(n)}(\xi)}{n!}$$

Thus, the nth divided difference is an estimate of the nth derivative of f.

Error Estimation when f(x) is Unknown: Next Term Rule

This means that the error is approximated by the value of the next term to be added:

$$E_n(x,f) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_0)...(x - x_n)$$

$$\approx f[x_0,...,x_n,x_{n+1}](x - x_0)...(x - x_n)$$

• $E_n(x,f)\approx$ the value of the next term that would be added to $P_n(x)$.

Example 5: Next Term Rule

For the function

$$f(x) = x^2 e^{-\frac{x}{2}}$$

- Construct the divided difference table for the points $x_0=1.1$ $x_1=2$ $x_2=3.5$ $x_3=5$ $x_4=7.1$
- Find the Newton's forward divided difference polynomial of degree 1.
- Use the next term rule to estimate the error of the interpolate for f(1.75).

$$|E_1(x,f)| = \frac{|f''(\xi(x))|}{2!} |(x-1.1)(x-2)|$$

$$\leq \frac{0.3679}{2} 0.2025 = 0.03725$$

Example 5: Next Term Rule

The divided difference table is:

X	f(x)	Ist DD	IInd DD
1.1	0.6981		
2	1.4715	0.8593	
3.5	2.1287	0.4381	-0.1755

- $P_1(x) = 0.6981 + 0.8593(x-1.1)$
- $P_2(x) = P_1(x) 0.1755(x-1.1)(x-2)$
- The next term rule gives:
- \triangleright E₁(1.75,f) \approx -0.17755(1.75-1.1)(1.75-2)=0.02852

Definition: The points x₀,x₁,...,x_n are called equally spaced if

$$x_1-x_0=x_2-x_1=...=x_n-x_{n-1}=h$$
 (step).

- **Example**: $x_0=1$ $x_1=1.5$ $x_2=2$ $x_3=2.5$
- If the data are equally spaced getting the interpolation polynomial is simpler.
- When we compute the divided differences we will always divide by the same number.
- In this case it is more convenient to define ordinary differences.

Definition: The first forward difference Δf(x_i) is defined as

$$\Delta f(x_i) = f(x_{i+1}) - f(x_i)$$

Then,

$$f[x_i, x_{i+1}] = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} = \frac{\Delta f(x_i)}{h}$$

Example: Let f(x)=ln(x). The first forward difference at the points $x_0=1$ $x_1=2$ is $\Delta f(x_0)=f(2)-f(1)=ln(2)-ln(1)=ln(2)=0.69315$

The second forward difference $\Delta^2 f(x_i)$ is defined as follows:

$$\Delta^2 f(x_i) = \Delta f(x_{i+1}) - \Delta f(x_i)$$

Consequently the second divided difference expressed in terms of the ordinary difference is:

$$f[x_{i}, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_{i+1}, x_{i}]}{x_{i+2} - x_{i}} = \frac{1}{2h} \left[\frac{\Delta f(x_{i+1})}{h} - \frac{\Delta f(x_{i})}{h} \right] = \frac{\Delta^{2} f(x_{i})}{2h^{2}}$$

The (k+1)st forward difference $\Delta^{k+1} f(x_i)$ is defined as follows:

$$\Delta^{k+1} f(x_i) = \Delta^k f(x_{i+1}) - \Delta^k f(x_i)$$

In general,

$$f[x_i,...,x_{i+k}] = \frac{\Delta^k f(x_i)}{k!h^k}$$

 Computing ordinary differences is the same as computing divided differences - in a table.

Example 6

Compute the ordinary differences table for

$$f(x) = 2x^3$$

for the points:

$$x_0=0$$
, $x_1=0.5$, $x_2=1$, $x_3=1.5$, $x_4=2$, $x_5=2.5$

- Compute the divided differences table for the same function and the same points.
- Compare the two tables.

Table of Ordinary Differences

X	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$	$\Delta^4 f(x)$
0	0				
0.5	0.25	0.25			
1	2	1.75	1.5		
1.5	6.75	4.75	3.0	1.5	
2	16	9.25	4.5	1.5	0
2.5	31.25	15.25	6.0	1.5	0
3	54	22.75	7.5	1.5	0

Example 6

Compute the ordinary differences table for

$$f(x) = 2x^3$$

for the points:

$$x_0=0$$
, $x_1=0.5$, $x_2=1$, $x_3=1.5$, $x_4=2$, $x_5=2.5$

- Compute the divided differences table for the same function and the same points.
- Compare the two tables.

Table of Divided Differences

×	f(x)	Ist DD	IInd DD	IIIrd DD	IVth DD
0	0				
0.5	0.25	0.5			
1	2	3.5	3		
1.5	6.75	9.5	6	2	
2	16	18.5	9	2	0
2.5	31.25	30.5	12	2	0
3	54	45.5	15	2	0

Example 6

Table of Ordinary Differences

X	f(x)	$\Delta f(x)$	$\Delta^2 f(x)$	$\Delta^3 f(x)$	$\Delta^4 f(x)$
0	0				
0.5	0.25	0.25			
1	2	1.75	1.5		
1.5	6.75	4.75	3.0	1.5	
2	16	9.25	4.5	1.5	0
2.5	31.25	15.25	6.0	1.5	0
3	54	22.75	7.5	1.5	0

Table of Divided Differences

X	f(x)	Ist DD	IInd DD	IIIrd DD	IVth DD
0	0				
0.5	0.25	0.5			
1	2	3.5	3		
1.5	6.75	9.5	6	2	
2	16	18.5	9	2	0
2.5	31.25	30.5	12	2	0
3	54	45.5	15	2	0

$$f[x_i,...,x_{i+k}] = \frac{\Delta^k f(x_i)}{k!h^k}$$

- An interpolation polynomial of degree n can be written in terms of ordinary differences.
- The independent variable in this polynomial is typically not x but s:

$$s = \frac{x - x_0}{h}$$

Newton's forward difference formula is given by:

$$P_n(s) = f(x_0) + s\Delta f(x_0) + \frac{s(s-1)}{2!} \Delta^2 f(x_0) + \dots$$
$$\dots + \frac{s(s-1)\dots(s-n+1)}{n!} \Delta^n f(x_0)$$

Example 7

Given the table of x_i and f(x_i):

X	0	0.2	0.4	0.6	0.8	1.0	1.2
f(x)	0	0.203	0.423	0.684	1.03	1.557	2.572

- Compute the forward differences to order four.
- Find f(0.73) from a cubic interpolating polynomial.

Example 7

We complete the table

X	f(x)	ist diff	lind diff	Ilird diff	IVth diff
0	0				
0.2	0.203	0.203			
0.4	0.423	0.22	0.017		
0.6	0.684	0.261	0.041	0.024	
0.8	1.03	0.346	0.085	0.044	0.2
1.0	1.557	0.527	0.181	0.096	0.052
1.2	2.572	1.015	0.488	0.307	0.211

0.73

Example 7

Since 0.73 falls between 0.6 and 0.8 and we need 4 point to obtain a cubic polynomial, we use the closest points to 0.73:

X₀ X₁ X₂ X₃ 0.4 0.6 0.8 1

We take the appropriate subtable:

X	f(x)	Ist diff	IInd diff	IIIrd diff
0.4	0.423			
0.6	0.684	0.261		
0.8	1.03	0.346	0.085	
1.0	1.557	0.527	0.181	0.096

Example 7

We obtain the polynomial:

$$P_3(s) = 0.423 + 0.261s + 0.085 \frac{s(s-1)}{2} + 0.096 \frac{s(s-1)(s-2)}{6}$$

- Since x=0.73, then $s=(x-x_0)/h=(0.73-0.4)/0.2=1.65$ P(1.65)=0.893
- Note: The function f(x)=tan(x). So f(0.73)=0.895. Thus the actual error of the approximation is 0.002.

Backward Differences

As before, we can rearrange the points and define backward differences:

Definition: The first backward difference at x_i is defined as follows:

$$\nabla f(x_i) = f(x_i) - f(x_{i-1})$$

Note:

$$\nabla f(x_i) = \Delta f(x_{i-1})$$

Backward Differences

<u>Definition</u>: The kth backward difference at the point x_i is defined as follows:

$$\nabla^{k} f(x_{i}) = \nabla^{k-1} f(x_{i}) - \nabla^{k-1} f(x_{i-1})$$

<u>Definition</u>: Newton's backward difference formula is given by

$$P_{n}(s) = f(x_{n}) + s\nabla f(x_{n}) + \frac{s(s+1)}{2!}\nabla^{2}f(x_{n}) + ...$$
... + $\frac{s(s+1)...(s+n-1)}{n!}\nabla^{n}f(x_{n})$
where $s=(x-x_{n})/h$.

Example 8

Given the data:

X	-0.75	-0.5	-0.25	0
f(x)	-0.0718125	-0.02475	0.3349375	1.101

- Construct the forward difference table.
- Use Newton's forward difference formula to construct the interpolating polynomial of degree 3.
- Use Newton's backward difference formula to construct the interpolating polynomial of degree 3.
- Use either polynomial to approximate f(-1/3).

Example 8

We construct the forward difference table:

X	f(x)	lst diff	IInd diff	IIIrd diff
-0.75	-0.0718125			
-0.5	-0.02475	0.0470625		
-0.25	0.3349375	0.3596875	0.312625	
0	1.101	0.7660625	0.406375	0.09375

The forward difference polynomial is

$$P_3(s) = -0.0718125 + 0.0470625s + 0.312625 \frac{s(s-1)}{2!} + 0.09375 \frac{s(s-1)(s-2)}{3!}$$

Example 8

The backward difference table is exactly the same as the forward difference table

X	f(x)	lst diff	IInd diff	IIIrd diff
-0.75	-0.0718125			
-0.5	-0.02475	0.0470625		
-0.25	0.3349375	0.3596875	0.312625	
0	1.101	0.7660625	0.406375	0.09375

▶ The backward difference polynomial is:

$$P_3(s) = 1.101 + 0.7660625s + 0.406375 \frac{s(s+1)}{2!} +$$

$$+0.09375 \frac{s(s+1)(s+2)}{3!}$$

$$P_n(s) = f(x_n) + s\nabla f(x_n) + \frac{s(s+1)}{2!}\nabla^2 f(x_n) + \dots$$
$$\dots + \frac{s(s+1)\dots(s+n-1)}{n!}\nabla^n f(x_n)$$

Example 8

- We have to use either polynomial to estimate f(-1/3).
- If we use the backward polynomial,

$$s=(x-x_n)/h=x/h=-4/3$$

• We compute $P_3(-4/3) \approx 0.1745185$

Thank You

"Linear Systems: Iterative Methods"

