Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° d	d'ins	scrip	tior	ı :			
Liberté · Égallié · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	uméros	figure	ent sur	la con	vocatio	on.)											1.1

ÉPREUVES COMMUNES DE CONTRÔLE CONTINU
CLASSE: Première 3,4 COURS HATTTEMER
E3C : □ E3C1 ⊠ E3C2 □ E3C3
VOIE : ⊠ Générale □ Technologique □ Toutes voies (LV)
ENSEIGNEMENT : Spécialité « Mathématiques »
DURÉE DE L'ÉPREUVE : 2 heures
CALCULATRICE AUTORISÉE : ⊠Oui □ Non
DICTIONNAIRE AUTORISÉ : □Oui ⊠ Non
☐ Ce sujet contient des parties à rendre par le candidat avec sa copie. De ce fait, il ne peut être dupliqué et doit être imprimé pour chaque candidat afin d'assurer ensuite sa bonne numérisation.
☐ Ce sujet intègre des éléments en couleur. S'il est choisi par l'équipe pédagogique, il est nécessaire que chaque élève dispose d'une impression en couleur.
□ Ce sujet contient des pièces jointes de type audio ou vidéo qu'il faudra télécharger et jouer le jour de l'épreuve.
Nombre total de pages : 5

Exercice 1 (7 points)

Maxime participe à un jeu qui se déroule en deux parties :

- La probabilité qu'il gagne la première partie est de 0,2.

- S'il gagne la première partie, il gagne la deuxième avec une probabilité de 0,9.
- S'il perd la première partie, il perd la suivante avec une probabilité de 0,6.

On note:

- G_1 l'événement « Maxime gagne la première partie »
- G_2 l'événement « Maxime gagne la première partie »

Partie A

- 1. Construire un arbre pondéré illustrant la situation.
- 2. Calculer la probabilité que Maxime gagne les deux parties du jeu.
- 3. Montrer que la probabilité que Maxime gagne la deuxième partie du jeu est 0,5.

Partie B

On sait de plus que :

à chaque partie gagnée, le joueur gagne 1,5 €. à chaque partie perdue, il perd 1 €.

On note X la variable aléatoire qui correspond au gain algébrique en euros de Maxime à l'issue des deux parties.

1. Recopier sur la copie et compléter le tableau ci-dessous donnant la loi de probabilité de la variable aléatoire *X*.

Valeurs de X		3	Total
Probabilité		0,18	

2. Déterminer si ce jeu est équitable. Justifier.

Exercice 2 (7 points)

Une personne souhaite louer une maison à partir du 1^{er} janvier 2020 et a le choix entre deux formules de contrat :

Modèle CCYC: ©DNE Nom de famille (naissance): (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° (d'ins	crip	tior	ı :			
Liberté · Égalité · Fraternité RÉPUBLIQUE FRANÇAISE Né(e) le :	(Les nu	uméros	figure	ent sur	la con	vocatio	on.)											1.1

• Contrat n°1 : le loyer augmente chaque année de 200 €. ☐ Contrat n°2 : le loyer augmente chaque année de 5 %.

Pour tout entier nature n, on note :

- u_n le loyer annuel de l'année 2020 + n pour le contrat n°1.
- v_n le loyer annuel de l'année 2020 + n pour le contrat n°2.

Dans les deux cas, le loyer annuel initial est de 3600 €. On a donc $u_0 = v_0 = 3600$.

- **1.** Étude de la suite (u_n)
- a) Déterminer le loyer annuel de l'année 2021 pour le contrat n°1.
- b) Déterminer l'expression de u_n en fonction de n puis en déduire le loyer annuel de l'année 2030.
- **2.** Étude de la suite (v_n)
- a) Déterminer le loyer annuel de l'année 2021 pour le contrat n°2.
- b) Déterminer l'expression de v_n en fonction de n puis en déduire le loyer annuel de l'année 2030.
- 3. On considère le script suivant, écrit en langage Python :

Après exécution, la variable n contient la valeur 6. Donner une interprétation de ce résultat dans le contexte de l'exercice.

Exercice 3 (6 points)

Des pucerons envahissent une roseraie.

On introduit alors des coccinelles, prédatrices des pucerons, à l'instant t=0, et on s'intéresse à l'évolution du nombre de pucerons à partir de cet instant et sur une période de 20 jours.

Partie A:

Dans le repère ci-dessous, on a tracé :

- La courbe \mathcal{C} représentant le nombre de milliers de pucerons en fonction du nombre de jours écoulés depuis l'introduction des coccinelles.
- La tangente T à la courbe $\mathcal C$ au point d'abscisse 0 passe par les points $A(0\ ;\ 2,1)$ et

B(2; 4,3)

- 1. Déterminer par lecture graphique le nombre de pucerons à l'instant où l'on introduit les coccinelles puis le nombre maximal de pucerons sur la période de 20 jours.
- **2.** On assimile la vitesse de prolifération des pucerons à l'instant t au nombre dérivé f'(t).

Déterminer graphiquement la vitesse de prolifération des pucerons à l'instant t=0.

Partie B:

Modèle CCYC : ©DNE Nom de famille (naissance) : (Suivi s'il y a lieu, du nom d'usage)																		
Prénom(s) :																		
N° candidat :											N° c	d'ins	crip	tion	ı :			
Liberté · Égalité · Fraternité Né(e) le :	(Les nu	uméro	s figure	ent sur	la con	vocatio	on.)]	20							70)	

On modélise l'évolution du nombre de pucerons par la fonction f définie, pour tout t appartenant à l'intervalle [0; 20], par :

$$f(t) = 0.003t^3 - 0.12t^2 + 1.1t + 2.1$$

où $\,t\,$ représente le nombre de jours écoulés depuis l'introduction des coccinelles et f(t) le nombre de pucerons en milliers.

- **1.** En admettant que $f'(t)=0.009t^2-0.24t+1.1$ pour tout t appartenant à l'intervalle [0;20] où f' désigne la dérivée de la fonction f.
- **2.** Dresser le tableau de signes de f'(t) sur l'intervalle [0; 20] après avoir résolu l'inéquation $f'(t) \ge 0$.
- **3.** En déduire le tableau des variations de la fonction f sur l'intervalle [0; 20]. Préciser les images des valeurs de t apparaissant dans le tableau(Les extremums).

Rappels :si le taux f'(t) > 0 sur I alors la fonction f est strictement croissante sur I et si f'(t) < 0 alors le taux est strictement décroissante sur I.