Geometry of the space of density matrices #NYAJ

1 General Matrices

Let $\mathcal{D} \equiv M_d(\mathbb{C}) = \{d \times d \text{ matrices with complex entries}\}.$ (d > 1). Let $x \in \mathcal{D}$ be an arbitrary $d \times d$ matrix with complex entries, and let

$$\rho(x) = \frac{1}{d} \mathbb{I} + \sqrt{\frac{d-1}{d}} x.$$

Proposition 1.1. The map $\rho: \mathcal{D} \to \mathcal{D}$ by $x \mapsto \rho(x)$ is a bijection with inverse

$$x(\rho) = \sqrt{\frac{d}{d-1}} \left(\rho - \frac{1}{d} \mathbb{I}\right).$$

Thus each ρ is specified by exactly one x.

Proof. It is trivial to show that $\rho = \rho'$ implies x = x', and that for any $\rho' \in \mathcal{D}$ the matrix $x(\rho')$ is also in \mathcal{D} such that $\rho(x(\rho')) = \rho'$, which proves the assertion.

Proposition 1.2. Some properties.

- 1. $\rho^{\dagger} = \rho \iff x^{\dagger} = x$.
- 2. Tr $\rho = 1 \iff \text{Tr } x = 0$.

Proof. Trivial.

Proposition 1.3. (FALSE) Let $\rho^{\dagger} = \rho$ and Tr $\rho = 1$. Then the following are equivalent: (FALSE)

- 1. $z^{\dagger} \rho z \geq 0$ for all d-dimensional complex vectors z (ρ is positive definite),
- 2. Tr $(\rho^2) \le 1$,
- 3. Tr $(x^2) \le 1$.

Proof. $(1 \to 2)$ and $(2 \leftrightarrow 3)$ are true. But $(2 \to 1)$ is false for d > 2, as shown by the counterexample $\rho = \text{diag}(-.2, .6, .6)$, which obeys Tr $(\rho) = 1$ and Tr $(\rho^2) = .76 < 1$ and Tr (x) = 0 and Tr $(x^2) \approx .427 < 1$ but is not positive semi-definite because it has a negative eigenvalue.

2 Bipartite System

An arbitrary hermitian matrix Q_{AB} of size $d_A d_B$ can be written in the form

$$Q_{AB} = c_{00} \frac{\mathbb{I}_{AB}}{d_A d_B} + \left(\frac{A}{d_B} \oplus \frac{B}{d_A}\right) + \sum_{mn} c_{mn} \left(A_m \otimes B_n\right) \tag{1}$$

where A and B are arbitrary traceless hermitian matrices of sizes d_A and d_B , and A_m and B_n are bases for the spaces of traceless hermitian matrices of sizes d_A and d_B , and c_{mn} are real numbers, and $m = 1, 2 \dots d_A^2 - 1$ and $n = 1, 2 \dots d_B^2 - 1$. To show this fact, first show that $L(V \otimes W) \cong L(V) \otimes L(W)$ and that the same goes for the hermitian spaces. Then choose a basis

for hermitian matrices such that the zeroth basis element is the identity matrix, and the rest are traceless.

It follows that

Tr
$$Q_{AB} = c_{00}$$
 $Q_A = \text{Tr}_B Q_{AB} = c_{00} \frac{\mathbb{I}_A}{d_A} + A$ $Q_B = \text{Tr}_A Q_{AB} = c_{00} \frac{\mathbb{I}_B}{d_B} + B$ (2)

Therefore we may write an arbitrary density matrix as

$$\rho_{AB} = \frac{\mathbb{I}_{AB}}{d_A d_B} + \sqrt{\frac{d_A d_B - 1}{d_A d_B}} \left[\left(\sqrt{\frac{d_B (d_A - 1)}{d_A d_B - 1}} \, \frac{x_A}{d_B} \oplus \sqrt{\frac{d_A (d_B - 1)}{d_A d_B - 1}} \, \frac{x_B}{d_A} \right) + y_{AB} \right]$$
(3)

$$= \frac{\mathbb{I}}{d} + \sqrt{\frac{d-1}{d}} \left[(\alpha x_A \oplus \beta x_B) + y_{AB} \right] \tag{4}$$

$$=\frac{\mathbb{I}}{d} + \sqrt{\frac{d-1}{d}} x_{AB} \tag{5}$$

along with the condition that $\rho_{AB} \geq 0$. The matrix y_{AB} is defined as above, and

Tr
$$\rho_{AB} = 1$$

$$\rho_A = \frac{\mathbb{I}_A}{d_A} + \sqrt{\frac{d_A - 1}{d_A}} x_A \qquad \rho_B = \frac{\mathbb{I}_B}{d_B} + \sqrt{\frac{d_B - 1}{d_B}} x_B \qquad (6)$$

We find that

$$x_{AB}^2 = \left(\alpha^2 x_A^2 \oplus \beta^2 x_B^2\right) + 2\alpha\beta \left(x_A \otimes x_b\right) + y_{AB}^2 + z_{AB} \tag{7}$$

where

$$z_{AB} = (\alpha x_A \oplus \beta x_B) y_{AB} + y_{AB} (\alpha x_A \oplus \beta x_B) \tag{8}$$

$$= \sum_{mn} c_{mn} \left[\alpha \left(x_A A_m + A_m x_A \right) \otimes B_n + \beta A_m \oplus \left(x_B B_n + B_n x_B \right) \right] \tag{9}$$

and then since Tr $z_{AB} = 0$ we find

$$\operatorname{Tr} x_{AB}^{2} = \alpha^{2} d_{B} \operatorname{Tr} x_{A}^{2} + \beta^{2} d_{A} \operatorname{Tr} x_{B}^{2} + \operatorname{Tr} y_{AB}^{2}.$$
 (10)

The conditions $\rho_{AB}, \rho_A, \rho_B \geq 0$ imply (Tr x_A^2 , Tr x_A^2 , Tr y_{AB}^2) ≤ 1 along with

$$\alpha^2 d_B \operatorname{Tr} x_A^2 + \beta^2 d_A \operatorname{Tr} x_B^2 + \operatorname{Tr} y_{AB}^2 \le 1$$
 (11)

Assigning the inner product $(A, B) = \text{Tr } A^{\dagger}B$ and choosing orthonormal bases for the spaces of traceless hermitian matrices, the system can be described by three bloch vectors: one for A, one for B, and a mutual vector. Each lies within a ball of radius one.