aws Invent

CON306

Building machine-learning infrastructure on Amazon EKS with Kubeflow

Yaniv Donenfeld

Sr. BDM, Container Services AWS

Jean Marie Ferdegue

Director, Platform Engineering, Babylon Health

Jeremie Vallee

Al Infrastructure Lead Babylon Health

Agenda

AWS

- The AWS ML stack
- Machine learning Why Kubernetes?
- Kubeflow and Kubeflow pipelines
- Common requirements
- Making AWS a first-class citizen of Kubeflow

Babylon Health

- The mission
- Challenges
- Our solution
- Next steps

The AWS ML stack

Broadest and deepest set of capabilities

Al services

VISION	SPEECH	LANGUAGE	СНАТВОТЅ	FORECASTING	RECOMMENDATIONS
AMAZON AMAZON AMAZOR REKOGNITION REKOGNITION TEXTRA	AMAZON AMAZON POLLY TRANSCRIBE	AMAZON AMAZON COMPREHEND TRANSLATE & COMPREHEND MEDICAL	AMAZON LEX	forecast	AMAZON PERSONALIZE

ML services

ML frameworks + infrastructure

FRAMEWORKS	INTERFACES	INFRASTRUCTURE	
TensorFlow mxnet PYTÖRCH	GLUON K Keras	EC2 P3 EC2 G4 FPGAS DL AMAZON ELASTIC AWS IOT ELASTIC INFERENCE & P3DN EC2 C5 CONTAINERS CONTAINER KUBERNETES GREENGRASS INFERENCE SERVICE	

Why machine learning on Kubernetes?

Composability

Portability

Scalability

Amazon EKS: run Kubernetes in cloud

Managed Kubernetes control plane, attach data plane

Native upstream Kubernetes experience

Platform for enterprises to run production-grade workloads

Integrates with additional AWS services

Which user are you?

ML practitioner

ML ops team member

ML practitioners would like to have...

- Infrastructure abstraction
- Sharing and collaboration
- End-to-end workflow (build, train, test, deploy)
- Experiment management
- Hyperparameter tuning/optimization

ML ops teams would need to implement...

- An end to end platform
- Infrastructure abstraction
- Authentication and authorization support (multi-tenant access)
- Resource and quota management

Introducing Kubeflow

Prototyping

Jupyter / JupyterHub

- Build, deploy, and train ML models
- Live code, equations, visualizations, and narrative text
- 40+ programming languages
- Sharing and collaboration

EFS for reusing training data and results

Built-in AWS CLI and ECR support

Training

Typical Autonomous Vehicle Development Workflow

Distributed Training Challenges

Single GPU code → multiple

Dataset Copying time

Dataset Sharing and Reuse

Horovod + MPIJob

Use FSx Lustre / EFS

Built-in CSI driver with S3 integration

Distributed Training Challenges

Single GPU code → multiple

Dataset Copying time

Dataset Sharing and Reuse

Horovod + MPIJob

Use FSx Lustre / EFS

Built-in CSI driver with S3 integration

Want to run Distributed Training on EKS?

Distributed TensorFlow training using Kubeflow on Amazon EKS

Ajay Vohra Principal SA -Vision/AI/ML

Inference

Kubeflow KFServing

Pluggable Interface

```
apiVersion: "serving.kubeflow.org/v1alpha1"
kind: "InferenceService"
metadata:
    name: "sklearn-iris"
spec:
    default:
        sklearn:
        storageUri: "gs://kfserving-samples/models/sklearn/iris"
```

```
apiVersion: "serving.kubeflow.org/v1alpha1"
kind: "InferenceService"
metadata:
   name: "flowers-sample"
spec:
   default:
    tensorflow:
      storageUri: "gs://kfserving-samples/models/tensorflow/flowers"
```

```
apiVersion: "serving.kubeflow.org/v1alpha1"
kind: "KFService"
metadata:
   name: "pytorch-cifar10"
spec:
   default:
     pytorch:
        storageUri: "gs://kfserving-samples/models/pytorch/cifar10"
        modelClassName: "Net"
```


End-to-end ML

Kubeflow Pipelines

- A user interface (UI) for managing and tracking experiments, jobs, and runs
- An engine for scheduling multi-step ML workflows
- An SDK for defining and manipulating pipelines and components

Pipeline component

Pipeline decorator

Creating a pipeline


```
@dsl.pipeline(
                                      Pipeline function
name='Sample Trainer',
description="
                                              Pipeline component
def sample_train_pipeline(...):
  create_cluster_op = CreateClusterOp('create-cluster', ...)
  analyze_op = AnalyzeOp('analyze', ...)
  transform_op = TransformOp('transform', ...)
  train_op = TrainerOp('train', ...)
  predict_op = PredictOp('predict', ...)
  confusion_matrix_op = ConfusionMatrixOp('confusion-matrix', ...)
                                              Compile pipeline
 roc_op = RocOp('roc', ...)
kfp.compiler.Compiler().compile(sample_train_pipeline, 'my-
pipeline.zip')
```

Leveraging AWS Innovations through Kubeflow

Do-It-Yourself

Managed Service

Running SageMaker – pipeline component

Supported components

- Training
- Model generation
- Hyperparameter tuning
- Model deployment
- Batch transform

Github link

https://github.com/kubeflow/pipelines/tree/master/components/aws/sagemaker

Related breakouts

[AIM326-R1] Implement ML workflows with Kubernetes and Amazon SageMaker

12/4/19 (Wednesday) 4:00 PM - Bellagio, Monet 1

What's next?

Kubeflow 1.0 – Main components

- Graduating 1.0
 - kfctl for deployment and upgrades
 - TFJob and PyTorch for distributed training (already 1.0)
 - Jupyter notebook controller and web app
 - •

Beta

- Katib for hyper-parameter tuning
- Fairing SDK to facilitate use of notebooks for build-train-deploy
- KFServing for model deployment and inference
- •

Kubeflow 1.0 – AWS Support

- Multi user support
 - Kubeflow pipelines
 - Managed contributors
- IAM Roles for Service Accounts integration with notebooks

Call to Action

re:Invent workshop

OPN401-R1 - [REPEAT 1] Machine learning with Kubeflow on AWS

12/5/19 (Thursday) 3:15 PM - MGM, Level 1, Grand Ballroom 120

Online workshop

https://eksworkshop.com/kubeflow/

Community

Join the kubeflow#aws Slack channel:

Babylon

Babylon The mission

We believe it is possible to put an accessible and affordable health service in the hands of every person on Earth

Babylon Challenges

Our challenges

Global products

Global company

Global platform

Our challenges

300+

Microservices

500+

Deployments per day on average

15+

EKS clusters

5

AWS Regions

Our challenges

Providing a safe and secure environment for our research teams

Data locality

Training and managing AI models at a global scale

Improving overall engineering efficiency

BabylonOur solution

Al platform: The big picture

Providing our teams with a single interface to experiment, train, tune, validate, and track their AI models

Al platform

Secure

Treat it as a production platform

Scalable

Pay for what you use, and scale as much as you need

Flexible

It must be able to run any tool or service our users need

Global

We need to deploy it anywhere we operate

Al platform

Al platform

- EKS infrastructure
- GPUs
- Networking

- Kubeflow deployment
- Project structure
- Extensibility

- Global platform
- Deployments

Al platform: *EKS infrastructure*

- Make everything private
 - EKS API
 - EKS nodes

- Prepare for different workloads
 - High CPU, high memory, GPUs
 - Spot instances for better pricing
- Encrypt by default
 - EBS volumes
 - AMIs (root volumes)

Al platform: GPUs on EKS

- NVidia device plugin DaemonSet
- Register nodes with
 - Taint: nvidia.com/gpu=true
 - Label: GPU type and brand

nvidia-tesla-k80

```
# Add a toleration, allowing the pod to run on GPU nodes
tolerations:
    - key: "nvidia.com/gpu"
        operator: "Equal"
        value: "true"
        effect: "NoSchedule"

# Use nodeSelector to choose the GPU type
nodeSelector:
    accelerator: nvidia-tesla-k80 # or nvidia-tesla-v100
```

Al platform: Networking

Virtual Private Cloud (VPC)

- Span over at least 3 Availability Zones (AZ) ... if you can!
- 1 Auto Scaling Group per AZ per instance type
- Use NAT gateways

Kubernetes

- Zero-trust policy
- Mutual TLS
- Service role-based access control
- Service mesh (Istio)

AI platform: Kubernetes and Kubeflow

Kubernetes

- Perfect for scheduling and running any workloads
- Massive scale

Kubeflow

- ML toolkit for Kubernetes
- Modular: use and deploy only what you need
- Multi-user: plug in your enterprise OIDC
- Open-source: deploy it anywhere you have Kubernetes
- We mostly use Jupyter Notebooks, TensorFlow jobs, hyperparameter tuning

Al platform: Deploying Kubeflow

AI platform: Project isolation and collaboration

Project CRD

- Isolated namespace
- RBAC rules for user management
- Encrypted EFS partition
- Quotas management
- Need faster storage?
 - EBS volumes
 - FSx for Lustre

Al Platform: Workload Monitoring

- Monitor Projects (CPU, RAM, etc)
- Monitor Cluster State (MLOps)
- Collect metrics from jobs
- Automated Dashboards via ConfigMaps

... And monitor cost

Al platform: Extensibility of services

- Modularity of Kubernetes and Kubeflow
 - Gives us ability to add new tools fast
 - Ex: deploying Argo for workflow management

Use case:

Migrating our model Clinical Validation pipeline to Argo on EKS

Al platform: Single cluster

Al platform: Global footprint

API

```
{
    "kind": "pod",
    "name": "simple-gpu-example",
    "image": "nvidia/cuda:8.0-cudnn5-runtime",
    "command": ["python"],
    "args": ["script.py"],
    "resources": "gpu_medium"
}
```



```
apiVersion: v1
kind: Pod
metadata:
  name: simple-gpu-example
  namespace: my-project
  containers:
  - image: nvidia/cuda:8.0-cudnn5-runtime
    command: [ "python" ]
    args: [ "script.py" ]
    name: simple-gpu-example
    resources:
        memory: "16Gi"
        cpu: "8000m"
        nvidia.com/gpu: 1
    name: "tensorflow"
    volumeMounts:
    - mountPath: /mnt
      name: efs-storage
  restartPolicy: "OnFailure"
  volumes:
  - name: efs-storage
    persistentVolumeClaim:
     claimName: efs
  imagePullSecrets:

    name: my-deploy-pull-secret

  tolerations:
  - key: "nvidia.com/gpu"
    operator: "Equal"
    value: "true"
    effect: "NoSchedule"
  nodeSelector:
    accelerator: nvidia-tesla-k80
```

Babylon platform: Global deployments

Deploying models and services in multiple regions

Secure SDLC-aware deployment tool: Shipcat (in Rust)

- Per microservice tracking of:
 - Compliance and regulations
 - Engineering documents
 - Data management

Babylon Next steps

Next steps

Providing a common model serving framework at Babylon

Better metadata tracking for our models

Integration with Kubeflow pipelines

Improving Docker user experience for researchers

Thank you!

Yaniv Donenfeld donenfel@amazon.com

Jean-Marie Ferdegue jeanmarie.ferdegue@babylonhealth.com

Jeremie Vallee jeremie.vallee@babylon health.com

Please complete the session survey in the mobile app.

