1 Pseudofinite yoga

We say that a sentence holds in almost all finite models if it holds in every finite model of sufficiently large cardinality.

Let T_0 be a given theory with arbitrarily large finite models. We define

$$T_{\text{fin}} = \{ \varphi : M \models \varphi \text{ for almost all finite } M \models T_0 \}.$$

A structure N is a pseudofinite model of T_0 if $N \models T_{\text{fin}}$. This is equivalent to requiring that every sentence $\varphi \in \text{Th}(N)$ holds in arbitrarily large finite models of T_0 . Note that every model of T_{fin} is infinite.

We now discribe a canonical expansion of a finite model M to a two sorted structure $\langle M, \mathbb{N} \rangle$. The language of $\langle M, \mathbb{N} \rangle$ is denoted by L'.

- 1. L' expands the language of M and \mathbb{N} , where \mathbb{N} is considered as a structure in the language with symbols for all real relations and functions of any finite arity.
- 2. L' has a function $f_{\varphi}: M^{|z|} \to \mathbb{N}$ for each formula $\varphi(x;z) \in L'$ and every finite tuples of variables x;z of the first sort. The interpretation of $f_{\varphi}(b)$ is the (finite) cardinality of $\varphi(M;b)$.

For some application a richer language will be necessary (cfr. Section 2 below). Other times we need to expand M with a few more sorts.

We define

$$T'_{\text{fin}} = \{ \varphi \in L' : \langle M, \mathbb{N} \rangle \models \varphi \text{ for all finite } M \models T_0 \}.$$

In the sequel (U, *N) denotes some arbitrary saturated model of T'_{fin} .

1 Fact Assume that $\psi \in L'$ holds in every $\langle \mathcal{U}, *\mathbb{N} \rangle$ as above. Then $\langle M, \mathbb{N} \rangle \models \psi$ for all sufficiently large finite $M \models T_0$.

Below we write $|\varphi(x;b)|$ for $f_{\varphi}(b)$. We call this the pseudofinite cardinality of $\varphi(x;b)$. By the definition of T'_{fin} it is clear that the pseudofinite cardinality of a definable set \mathcal{D} does not depend on the formula defining it, so we can unambiguously write $|\mathcal{D}|$.

We will need two preorder relations (a.k.a. quasiorders) on $\mathbb{N} \setminus \{0,1\}$. We say that the fist linear the second polynomial. For $r,s \in \mathbb{N} \setminus \{0,1\}$

- 1. we write $r \leq_1 s$ if $r \leq n s$ for some positive $n \in \mathbb{N}$.
- 2. we write $r \leq_{p} s$ if $r \leq s^{n}$ for some positive $n \in \mathbb{N}$.

The associated equivalence relation are denoted by $r \sim s$ and $r \approx s$. Also, we write $r \leq s$ and $r \leq s$ for the associated strict order, i.e. if $n \cdot r < s$, respectively $r^n < s$ for all $n \in \mathbb{N}$.

2 Proposition Let \sim denote either \sim or \sim . For every non negative $r,s \in {}^*\mathbb{N}$

$$r + s \sim \max\{r, s\}$$

In particular, if \mathcal{D} , $\mathcal{C} \subseteq \mathcal{U}^z$ are two definable sets, then

$$||\mathcal{D} \cup \mathcal{C}|| \sim \max\{|\mathcal{D}|, ||\mathcal{C}|\}.$$

Proof In fact

$$\max\{r,s\} \leq r+s$$

$$\leq 2\max\{r,s\}$$

$$\leq (\max\{r,s\})^2$$

This proves the first equivalence. The second equivalence follows.

Definable sets $\mathcal{D} \subseteq \mathcal{U}^x$ such that $*|\mathcal{D}| \sim *|\mathcal{U}^x|$ are called large, otherwise we say they are small. The context will clarify if we are referring to the linear or to the polynomial equivalence.

3 Corollary Let \sim denote either γ or γ . Let $p(x) \subseteq L(\mathcal{U})$ be a type such that $\varphi(\mathcal{U})$ is large for every $\varphi(x)$ that is conjunction of formulas in p(x). Then p(x) has an extension to a complete type with the same property.

The following fact is immediate. It is stated to illustrate the typical application of the notions introduced above.

4 Fact Let \sim denote either γ or γ . Let $\varphi(x;z) \in L$, where x has finite length. Assume that in every model $\langle \mathcal{U}, {}^*\mathbb{N} \rangle$ there is a $b \in \mathcal{U}^z$ such that $\varphi(\mathcal{U}^x;b)$ is large. Then there is an $n \in \mathbb{N}$ such that every sufficiently large finite $M \models T_0$ contains a tuple c such that

$$|M^x| \le n |\varphi(M^x;c)|$$
 if $\sim \text{is } \gamma$
 $|M^x| \le |\psi(M^x;c)|^n$ if $\sim \text{is } \gamma$.

The following two proposition only hold for γ .

5 Proposition For every non negative $r, s \in {}^*\mathbb{N}$

$$r \cdot s \approx \max\{r, s\}$$

Proof In fact

$$\max\{r,s\} \leq r \cdot s$$

$$\leq \left(\max\{r,s\}\right)^2$$

Note that, in particular, $*|\mathcal{U}| \approx *|\mathcal{U}^x|$ for all tuples of variables of finite arity.

6 Corollary Let $\psi(x,z) \in L'$, where x,z are finite tuples of variables of the first sort. Let $A \subseteq \mathcal{U}$. Assume that

$$|\mathcal{A}| \leq |\mathcal{U}|$$
* $|\psi(a, \mathcal{U}^z)| \leq |\mathcal{U}|$ for every $a \in \mathcal{A}$.

Then

$$|*| \bigcup_{a \in \mathcal{A}} \psi(a, \mathcal{U}^z)| \leq |*|\mathcal{U}|.$$

Proof Let $r = *|\mathcal{A}|$. Let $s = *|\psi(a, z)|$, where $a \in \mathcal{A}$ is choosen such that s is maximal. Then

$$\begin{array}{ll} *\Big|\bigcup_{a\in\mathcal{A}}\psi(a,\mathcal{U}^z)\Big| & \leq & r\cdot s \\ \\ & \geqslant & *|\mathcal{U}|\cdot *|\mathcal{U}| \\ \\ & \geqslant & *|\mathcal{U}|. \end{array}$$

2 Erdős-Hajnal for stable graphs

In this section we assume that the language L' contains a few more symbols (below, for convenience, all finite models considered have as domain a subset of ω).

3. Let X be an n-ary relation symbol of the first sort. Let $\varphi \in L \cup \{X\}$ be a sentence. Then we require that L' has an n-ary predicate A_{φ} in the first sort. The interpretation of A_{φ} is a relation of maximal cardinality that makes φ true in M. If more then one relation satisfy the requirement above, we choose the minimal one in the lexicographic order (recall that the domain of M is a subset of ω).

Let $r(\cdot, \cdot)$ be a binary relation symbol. The theory that T_0 says that $r(\cdot, \cdot)$ is an irreflexive and symmetric relation (i.e. a graph) and that it is m-stable, where m is fixed but arbitrary. For the purpose of these notes m-stable means that $R_{\Delta}(\mathcal{U}) \leq m$, where R_{Δ} is defined below.

Let $\Delta = \{r(a,x) : a \in \mathcal{U}\}$. Let $S \subseteq \mathcal{U}$. We denote by $R_{\Delta}(S)$ the Shelah binary rank of S. That is, the maximal height n of binary tree of Δ^{\pm} -formulas $\langle \varphi_i(x) : s \in {}^{< n} 2 \rangle$ such that for every $s \in {}^{n} 2$ the type

$$\{\neg^{s_i} \varphi_{s \upharpoonright i}(x) : i \leq n\}$$

has a solution in S.

As T_0 is stable, $R_{\Delta}(\mathcal{U})$ is finite. Among the large $L(\mathcal{U})$ -definable subsets of \mathcal{U} we fix one, say $\mathcal{S} = \sigma(\mathcal{U})$, such that $R_{\Delta}(\mathcal{S})$ is minimal.

7 Fact For every Δ^{\pm} -definable set $\mathcal{D} \subseteq \mathcal{U}$, exactly one between $\mathcal{S} \cap \mathcal{D}$ and $\mathcal{S} \cap \neg \mathcal{D}$ is large.

Proof As S is large, at least one between $S \cap D$ and $S \cap \neg D$ is large by Proposition 2. Now, suppose for a contradiction that they both are large. Let $n = R_{\Delta}(S)$. By the minimality of n, both $S \cap D$ and $S \cap \neg D$ have rank n. This contradicts the definition of rank.

8 Theorem There is a large set $A \subseteq \mathcal{U}$ that is either a clique or an anticlique.

Proof Let $S = \sigma(\mathcal{U})$ be as defined above. Let $p(x) \subseteq \Delta^{\pm}$ be maximally consistent among the Δ^{\pm} -types such that $\sigma(x) \wedge \varphi(x)$ is large for every conjunction of formulas in the type. By the fact above, p(x) is Δ^{\pm} -complete, i.e. either $\varphi(x)$ or $\neg \varphi(x)$ is in p(x) for every $\varphi(x) \in \Delta^{\pm}$.

Let $\mathcal{B} = \{a \in \mathcal{S} : r(a,x) \in p\}$. By stability, \mathcal{B} is definable in $L(\mathcal{U})$. At least one between \mathcal{B} and $\mathcal{S} \setminus \mathcal{B}$ is large. Assume the first, the argument when $\mathcal{S} \setminus \mathcal{B}$ is large is similar.

Let \mathcal{A} be a definable subsets of \mathcal{B} that is maximal among those that satisfy the formula $(\forall x, y \in \mathcal{A}) r(x, y)$. The definition of L' guarantees that such a set exists.

We claim that A is large, hence it is the clique required by the theorem. So, assume not, and reason for a contradiction.

By the maximality of \mathcal{A} , for every $b \in \mathcal{B} \setminus \mathcal{A}$ there is an $a \in \mathcal{A}$ such that $\neg r(a,b)$. We rephrase this as the inclusion

$$\mathcal{B} \setminus \mathcal{A} \subseteq \bigcup_{a \in \mathcal{A}} \neg r(a, \mathcal{S})$$

By assumption \mathcal{A} is not large, hence $\mathcal{B} \setminus \mathcal{A}$ is large. When $a \in \mathcal{A}$, in particular $r(a,x) \in p$. Therefore, by the fact above, $r(a,\mathcal{S})$ is large and $\neg r(a,\mathcal{S})$ is small. This is a contradiction by Corollary 6.

Finally the Erdős-Hajnal property is obtained applying Fact 4.

9 Corollary There is an n such that in every finite model $M
varthing T_0$ there is a set $A \subseteq M$ of cardinality at least $|M|^{1/n}$ that is either a clique or an anticlique.