การทดลองที่ 1 การใช้งาน LED บนบอร์ดและการใช้งาน Logic Analyzer

วัตถุประสงค์

- 1) สามารถเขียนโปรแกรมควบคุม LED บนบอร์ดได้
- 2) สามารถใช้ logic analyzer เพื่อวัดสัญญาณดิจิทัลได้
- 3) เข้าใจว่าการกำหนด optimization level ให้กับคอมไพเลอร์ส่งผลต่อโปรแกรมอย่างไร

1. โครงสร้าง LED บนบอร์ด

บนบอร์ด ET-STM32F ARM KIT มี LED 8 ดวง เชื่อมต่อกับ GPIO พอร์ต E ขา 8 ถึง 15 (PE8 . . . PE15) โดยต่อ วงจรแบบขับกระแส (Source Current) โดยใช้กับแหล่งจ่าย +3.3V ทำงานด้วยลอจิก "1" (+3V3) และหยุดทำงานด้วย โลจิก "0" (0V) ดังรูปที่ 1 และ 2 โดย LED0 เชื่อมต่อกับขา PE8 ส่วน LED7 เชื่อมต่อกับ PE15

รูปที่ 1 การเชื่อมต่อ LED

รูปที่ 2 LED บนบอร์ด

2 เขียนโปรแกรมเพิ่มเติม

เปิด Project จาก Lab 0 แล้วแก้ไขโปรแกรมใน while loop ให้เป็นดังรูปที่ 3 และเพิ่มฟังก์ชัน delay ลงในไฟล์ main.c ดังรูปที่ 4 พร้อมประกาศฟังก์ชัน Prototype การเขียนโปรแกรมเพิ่มเติมลงในไฟล์ main.c ควรเขียนให้อยู่ระหว่าง comment /* USER CODE BEGIN \times */ และ /* USER CODE END \times */ เพื่อป้องกันไม่ให้โปรแกรมที่เขียนเพิ่มนั้นหายใน กรณีที่สั่ง Generate code ทับ Project เดิม

```
while (1)
{
/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */
   HAL GPIO WritePin(GPIOE, GPIO_PIN_9, GPIO_PIN_RESET);
   delay(500);

HAL GPIO_WritePin(GPIOE, GPIO_PIN_9, GPIO_PIN_SET);
   delay(500);

HAL GPIO_WritePin(GPIOE, GPIO_PIN_8, GPIO_PIN_RESET);
   delay(500);

HAL GPIO_WritePin(GPIOE, GPIO_PIN_8, GPIO_PIN_SET);
   delay(500);

HAL GPIO_WritePin(GPIOE, GPIO_PIN_8, GPIO_PIN_SET);
   delay(500);

/* USER CODE END 3 */
```

รูปที่ 3 แก้ไขโปรแกรมใน while loop

```
/* USER CODE BEGIN 4 */
/* Delay in ms by using 2 nested loop

*/
void delay(uint32_t ms)
{
  volatile uint32_t i, j;
  for (i=0; i<ms; i++)
    for (j=0; j<25000; j++)
    ;
}
/* USER CODE END 4 */</pre>
```

รูปที่ 4 ฟังก์ชัน delay

3. อธิบายการทำงาน

โปรแกรมจะเริ่มต้นทำงานที่ฟังก์ชัน main โดยจะรันฟังก์ชันดังต่อไปนี้

- ฟังก์ชัน HAL_Init() เพื่อกำหนดค่าเริ่มต้นที่จำเป็นต่อการเริ่มการทำงานให้กับไมโครคอนโทรลเลอร์ โดย โค้ดของฟังก์ชันนี้จะอยู่ในไฟล์ stm32f1xx hal.c
- ฟังก์ชัน SystemClock_Config() ทำงานต่อจากฟังก์ชัน HAL_Init() เพื่อตั้งค่าวงจรหารและคูณความถี่ ภายในไมโครคอนโทรลเลอร์ให้ทำงานตามที่ตั้งค่าไว้จากโปรแกรม STM32CubeMX โดยรายละเอียดของ ชนิดตัวแปรแบบ Structure และโค้ดของฟังก์ชันที่เรียกใช้ภายในฟังก์ชัน SystemClock_Config() นั้น สามารถศึกษาเพิ่มเติมได้จากไฟล์ stm32f1xx_hal_rcc.h และ stm32f1xx_hal_rcc.c
- ฟังก์ชัน MX_GPIO_Init() ซึ่งมีรายละเอียดดังรูปที่ 5 เป็นฟังก์ชันที่โปรแกรม STM32CubeMX สร้างขึ้น เพื่อกำหนดให้ขา PE8 และ PE9 ทำหน้าที่เป็นเอาต์พุตตามที่กำหนดไว้ในโปรแกรม ขา PE8 และ PE9 จะ ทำงานได้ต้องจ่ายสัญญาณนาฬิกาไปยังโมดูล GPIO พอร์ต E ด้วยฟังก์ชัน

```
__HAL_RCC_GPIOE_CLK_ENABLE();
```

 จากนั้น enable ขาที่ต้องการใช้งานซึ่งได้แก่ PE8 และ PE9 สำหรับควบคุม LED0 และ LED1 ตามลำดับ ผ่านตัวแปรแบบโครงสร้าง GPIO InitStructure ด้วยคำสั่ง

```
GPIO_InitStructure.Pin = GPIO_Pin_8 | GPIO_Pin_9;
แล้วกำหนดให้ทั้งสองขาทำหน้าที่เป็นขาเอาต์พุตแบบ push pull ที่ความเร็ว 50 MHz ด้วยคำสั่ง
GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_SPEED_HIGH;
จากนั้นจึงทำให้การตั้งค่าเกิดผลด้วยการเรียกฟังก์ชัน
```

HAL GPIO Init(GPIOE, &GPIO InitStruct);

```
void MX_GPIO_Init(void)
{
    GPIO_InitTypeDef GPIO_InitStruct;

    /* GPIO Ports Clock Enable */
    __HAL_RCC_GPIOE_CLK_ENABLE();

    /*Configure GPIO pins : PE8 PE9 */
    GPIO_InitStruct.Pin = GPIO_PIN_8|GPIO_PIN_9;
    GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
    GPIO_InitStruct.Speed = GPIO_SPEED_HIGH;
    HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
}
```

รูปที่ 5 รายละเอียดของฟังก์ชัน MX_GPIO_Init

• ตัวแปร GPIO_InitStruct มีชนิดข้อมูลเป็น GPIO_InitTypeDef ซึ่งเป็นชนิดข้อมูลแบบโครงสร้าง มี รายละเอียดดังนี้

```
typedef struct
{
    uint32_t Pin; //ระบุขาที่ต้องการตั้งค่า
    uint32_t Mode; //ระบุโหมดการทำงานของขาที่ต้องการตั้งค่า
    uint32_t Pull; //ระบุการทำงานแบบ Pull-Up หรือ Pull-Down
    uint32_t Speed; //ระบุความเร็วเมื่อทำงานเป็นขาเอาต์พุต
}GPIO_InitTypeDef;
```

GPIOE เป็น pointer ที่ถูกสร้างขึ้นด้วยมาโครในไฟล์ stm32f107xc.h

```
#define GPIOE ((GPIO_TypeDef *) GPIOE_BASE)
```

GPIOE จึงมีสถานะเป็น pointer ที่ชี้ไปยังหน่วยความจำ ณ ตำแหน่งเริ่มต้นของพอร์ต E โดยมีชนิดของ
 ข้อมูลเป็น struct GPIO_TypeDef ซึ่งมีข้อมูลย่อยภายใน struct เป็นรีจิสเตอร์ทั้งหมดของพอร์ต E มี
 รายละเอียดดังนี้

- ฟังก์ชัน HAL_GPIO_WritePin(GPIOE, GPIO_PIN_9, GPIO_PIN_RESET)ใน while loop คือการทำให้ขา
 PE9 ส่งลอจิก 0 ออกมาส่งผลให้ LED1 ที่เชื่อมต่ออยู่ดับ
- ฟังก์ชัน HAL_GPIO_WritePin(GPIOE, GPIO_PIN_9, GPIO_PIN_SET) คือการทำให้ขา PE9 ส่ง<u>ลอจิก 1</u> ออกมาส่งผลให้ LED1 ที่เชื่อมต่ออยู่<u>ติด</u>
- ฟังก์ชัน HAL_GPIO_WritePin และฟังก์ชันอื่นๆ ที่เกี่ยวข้องกับโมดูล GPIO สามารถศึกษาเพิ่มเติมได้จาก ไฟล์ stm32f1xx_hal_gpio.h และ stm32f1xx_hal_gpio.c หรือศึกษาจากเอกสารคู่มือไฟล์ PDF ที่ โฟลเดอร์ "GDrive\STM32CubeF1" ซึ่งมีรายละเอียดของฟังก์ชันนี้อยู่ที่หน้า 250 ดังรูปที่ 6

18.2.8 HAL_GPIO_WritePin

Function Name	void HAL_GPIO_WritePin (GPIO_TypeDef * GPIOx, uint16_t GPIO_Pin, GPIO_PinState PinState)		
Function Description	Sets or clears the selected data port bit.		
Parameters	 GPIOx: where x can be (AG depending on device used) to select the GPIO peripheral GPIO_Pin: specifies the port bit to be written. This parameter can be one of GPIO_PIN_x where x can be (015). PinState: specifies the value to be written to the selected bit. This parameter can be one of the GPIO_PinState enum values: GPIO_BIT_RESET: to clear the port pin GPIO_BIT_SET: to set the port pin 		
Return values	• None		
Notes	 This function uses GPIOx_BSRR register to allow atomic read/modify accesses. In this way, there is no risk of an IRQ occurring between the read and the modify access. 		

รูปที่ 6 รายละเอียดของฟังก์ชัน HAL_GPIO_WritePin

 ฟังก์ชัน void delay (uint32_t ms) เป็นฟังก์ชันหน่วงเวลาเพื่อหยุดการทำงานของไมโครโพรเซสเซอร์ชั่วคราวด้วย การไม่ให้ไป execute คำสั่งอื่น มีการทำงานเป็นการวนลูป 2 ลูปซ้อนกัน ระยะเวลาของการหน่วงเวลาขึ้นอยู่กับ จำนวนของการวนลูปนอกซึ่งถูกกำหนดค่าผ่านตัวแปร ms และการกำหนด optimization level ตอนคอมไพล์ โปรแกรม

การทดลอง

1. ให้ตรวจสอบการหน่วงเวลาจากการเรียกฟังก์ชัน delay(500) ว่าหน่วงเวลาเป็นระยะเวลา 500 ms หรือไม่ ถ้				
ไม่ใช่ให้เปลี่ยนเงื่อนไขของลูปข้างใน (inner loop) ให้สามารถหน่วงเวลาได้ 500 ms แล้วบันทึกผล				
2. เปลี่ยน optimization level ให้เป็น level 3 แล้วตรวจสอบดูว่าผลของการเรียกฟังก์ชัน delay(500 เปลี่ยนแปลงหรือไม่ อย่างไร เพราะสาเหตุใด ถ้ามีการเปลี่ยนแปลงแล้วเงื่อนไขของลูปในควรเปลี่ยนแปลงอย่างไร เพื่อใหผลลัพธ์ของการเรียกฟังก์ชันเหมือนกับการทดลองที่ 1				
3. ให้เปลี่ยน optimization level กลับมาเป็น level 0 พร้อมกับใช้เงื่อนไขของลูปข้างในตามผลการทดลองที่ จากนั้นจงเขียนโปรแกรมให้ LED 3 ดวง ได้แก่ LED2 LED1 และ LED0 แสดงผลลัพธ์ของวงจรนับขึ้น 3 บิต (0b000 0b111) โดยหน่วงเวลาที่ 300 ms และทำให้ LED ที่เหลือดับ พร้อมใช้ logic analyzer ตรวจจับสัญญาณ เมื่อพบว่า LEI				
ทั้งสามดวงมีค่า 0b110 ให้แสดงผลค้างไว้ 10 µs แล้วจึงให้ logic analyzer ทำงานต่อ				

ใบตรวจการทดลองที่ 1

	วัน/เดือน/ปี] Sec 1 🔲 Sec 2 กลุ่มที่
1. '	รหัสนักศึกษา	ชื่อ-นามสกุล	
2. '	รหัสนักศึกษา	ชื่อ-นามสกุล	
3. '	รหัสนักศึกษา	ชื่อ-นามสกุล	
ลาเ	ยเซ็นผู้ตจรวจ		
การ	รทดลองข้อ 3 ผู้ตรวจ		วันที่ตรวจ
คำ	ถามท้ายการทดลอง		
1.	ไฟล์ hex ของการทดลองที่ 3 มีขนาด	KB โดยได้ข้อมูลจ	าก
2. GPIOE เป็นมาโคร pointer เพื่อชี้ไปยังตำแหน่งเริ่มต้นในหน่วยความจำของโมดูล GPIO พอร์ต E จงหาตำแห ตำแหน่งที่เท่าไร (คำตอบเป็นตัวเลข) และถูกจัดเป็นส่วนไหนใน memory space โดยศึกษาจากไฟล์ stm32f			