Heteroskedasticity

```
# Set your working directory
setwd("C:/PAPP")

# Verify that your working directory
getwd()

#
rm(list = ls())
```

```
##
install.packages("lmtest")
install.packages("sandwich")
##
library(lmtest)
library(sandwich)
library(texreg)
library(dplyr)
```

```
##
cps <- read.csv("cps2013.csv")
##
head(cps)</pre>
```

```
##
plot(income ~ education, data = cps)
```



```
##
model1 <- lm(income ~ education, data = cps)
summary(model1)</pre>
```

call:

lm(formula = income ~ education, data = cps)

Residuals:

Min 1Q Median 3Q Max -23.035 -6.086 -1.573 3.900 60.446

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 9.496 on 2987 degrees of freedom

Multiple R-squared: 0.1588, Adjusted R-squared: 0.1585

F-statistic: 563.8 on 1 and 2987 DF, p-value: < 2.2e-16

```
##
plot(income ~ education, data = cps)
abline(model1, col = "red")
```



```
##
plot(fitted(model1), residuals(model1), main = "Residuals vs.
Fitted")
```

Residuals vs. Fitted


```
##
bptest(model1)
```

studentized Breusch-Pagan test

data: model1

BP = 76.679, df = 1, p-value < 2.2e-16

```
##
screenreg(coeftest(model1, vcov = vcovHC(model1)))
```

VIII. 로지스틱 회귀분석

• 선형 OLS의 등분산성/정규성

• 이항분포에 대한 이해

• 승산 Odds, 그리고 승산비 Odds ratio

확률	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	0.99	1
승산	0	0.11	0.25	0.43	0.67	1.00	1.50	2.33	4.00	9.00	99.0 0	8

https://ko.wikipedia.org/wiki/%EB%A1%9C%EC%A7%80%EC%8A%A4%ED%8B%B1_%ED%9A%8C%EA%B7%80

• 로그 오즈 (Log Odds) Logit

https://pythonkim.tistory.com/28

• 로그 오즈 (Log Odds) Logit

확률	р	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
승산	p/1-p	0.111	0.25	0.429	0.667	1	1.5	2.333	4	9
로짓	ln(p/1-p)	-2.198	-1.386	-0.846	-0.405	0	0.405	0.847	1.386	2.197

2. 로지스틱 회귀분석의 추정

$$\log\left(\frac{p}{1-p}\right) = a + b_1 x_1 + \dots + b_k x_k$$

• 최대우도추정법 Maximum Likelihood Estimation MLE

• Convergence (수렴)과 Separation (분리) 문제

• 유사 R-square 검정

• 우도비 검정 Likelihood ratio test

• 우도비 검정 Likelihood ratio test

함수	범위	완벽한 적합도	좋은 적합도	나쁜 적합도
우도(L)	$0 \le L \le 1$	1	1에 근접	0에 근접
In우도(InL)	$-\infty < \ln L \le 0$	0	0에 근접	음수로 감소
-2LL	$0 \le -2LL < \infty$	0	0에 근접	양수로 증가

• Information Criteria 검정

$$AIC = -2\ln L + 2q$$

$$AIC' = \frac{-2\ln L + 2q}{N}$$

$$BIC = -G + (df)(\ln N)$$

$$G = -2 \ln L_0 - (-2 \ln L_M)$$

예측력

```
• ln(\frac{P(\overline{b}'d)}{1-P(\overline{b}'d)})
= -1.261 - 0.001 * 연령 + 0.171 * 학력 -0.283 * 보수성 – 0.268 * 여성 – 0.414 * 기혼
```

```
• <u>P(찬성)</u>

1-P(찬성)

= Exp(-1.261 - 0.001 * 연령 + 0.171 * 학력 -0.283 * 보수성 - 0.268 *

여성 - 0.414 * 기혼)
```

- 회귀계수 (b) 독립변수가 1단위 증가시, 종속변수가 '1'일 log odds의 변화량 변화량이 일정한 선형관계
- 100(Exp(b)-1) 독립변수가 1단위 증가시, 종속변수가 '1'이 될 odds의 변화율 (%) 변화율이 일정한 비선형관계

- 회귀계수 (b) 독립변수가 1단위 증가시, 종속변수가 '1'일 log odds의 변화량 변화량이 일정한 선형관계
- 100(Exp(b)-1) 독립변수가 1단위 증가시, 종속변수가 '1'이 될 odds의 변화율 (%) 변화율이 일정한 비선형관계

5. 다항 로지스틱의 논리

Binomial Logistic

```
# Set your working directory
setwd("C:/PAPP")

# Verify that your working directory
getwd()

#
rm(list = ls())
```

```
#
library(foreign)
library(Zelig)
library(texreg)
library(dplyr)
library(lmtest)
##
rm(list = ls())
## bes <- read.dta("bes.dta")</pre>
```

Variable	Description	Range		
Turnout	투표여부	No (0); Yes (1)		
Gender	성별	1 (male); 0 (female)		
LeftRightSelf	이념적 지향	1 (left) - 11 (right)		
CivicDutyIndex	시민적 의무에 대해 느끼는 가치	high values mean high civic duty		
polinfoindex	정치에 대한 지식	0 (low) - 8 (high)		
edu*	교육연수	binary		
in.school	학교 재학 여부	binary		
in.uni	대학 재학 여부	binary		

.

```
##
bes$Gender <- factor(bes$Gender, levels = c(0, 1), labels =
c("Female", "Male"))
##
head(bes)</pre>
```

```
##
bes <- filter(bes,</pre>
               !is.na(Turnout),
               !is.na(Income),
               !is.na(polinfoindex),
               !is.na(Gender),
               !is.na(edu15),
               !is.na(edu17),
               !is.na(edu18),
               !is.na(edu19plus),
               !is.na(in_school),
               !is.na(in_uni))
```

==========	=========
	Model 1
(Intercept)	-1.14 ***
	(0.15)
Income	0.03
7	(0.02)
polinfoindex	0.38 ***
	(0.02)
GenderMale	-0.35 ***
. J 15	(0.08)
edu15	0.38 ***
a al 1 7	(0.10)
edu17	0.46 **
adu 10	(0.15)
edu18	0.11
odu10pluc	(0.14) 0.24 *
edu19plus	(0.12)
in_school	0.15
111_3C11001	(0.39)
in_uni	-0.72 **
III_uIII	(0.25)
AIC	4401.20
BIC	4464.53
Log Likelihood	
	4381.20
Num. obs.	4161
============	
*** $p < 0.001$,	** $p < 0.01$, * $p < 0$.

```
##
table(bes$Turnout)
##
predicted_probs <- predict(model1, type = "response")</pre>
##
expected <- as.numeric(predicted_probs > 0.5)
observed <- bes$Turnout
outcome <- table(observed,expected)</pre>
outcome
```

```
##
(outcome[1,1] + outcome[2,2]) / sum(outcome)
##
mean(bes$Turnout)
```

```
##
model2 <- glm(Turnout ~ Income + polinfoindex + Influence +
Gender + Age + edu15 + edu17 + edu18 + edu19plus + in_school +
in_uni, family = binomial(link = "logit"), data = bes)
##
screenreg(list(model1, model2))</pre>
```

	Model 1	Model 2				
(Intercept)	-1.14 ***	-3.90 ***				
, , ,	(0.15)	(0.22)				
Income	0.03	0.15 ***				
	(0.02)	(0.02)				
polinfoindex	0.38 ***	0.25 ***				
	(0.02)	(0.02)				
GenderMale	-0.35 ***	-0.36 ***				
	(0.08)	(0.08)				
edu15	0.38 ***	-0.34 **				
	(0.10)	(0.11)				
edu17	0.46 **	0.36 *				
	(0.15)	(0.16)				
edu18	0.11	0.14				
	(0.14)	(0.15)				
edu19plus	0.24 *	0.01				
	(0.12)	(0.13)				
in_school	0.15	1.13 **				
	(0.39)	(0.40)				
in_uni	-0.72 **	-0.05				
	(0.25)	(0.27)				
Influence		0.21 ***				
		(0.02)				
Age		0.05 ***				
		(0.00)				
AIC	4401.20	4003.90				
BIC	4464.53	4079.90				
Log Likelihood	-2190.60	-1989.95				
Deviance	4381.20	3979.90				
Num. obs.	4161	4161				
==========	=========	=========				
*** p < 0.001. ** p < 0.01. * p < 0.05						

^{***} p < 0.001, ** p < 0.01, * p < 0.05

```
##
lrtest(model1, model2)
```

Likelihood ratio test

```
Model 1: Turnout ~ Income + polinfoindex +
Gender + edu15 + edu17 + edu18 +
    edu19plus + in_school + in_uni
Model 2: Turnout ~ Income + polinfoindex +
Influence + Gender + Age +
    edu15 + edu17 + edu18 + edu19plus +
in_school + in_uni
 #Df LogLik Df Chisq Pr(>Chisq)
1 10 -2190.6
2 12 -1990.0 2 401.3 < 2.2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01
'*' 0.05 '.' 0.1 ' ' 1
```