## **Attachment 1. – Probe Calibration Data**

#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Digital EMC (Dymstec)

Certificate No: ET3-1703\_Jul13

#### CALIBRATION CERTIFICATE

Object ET3DV6R - SN:1703

Calibration procedure(s) QA CAL-01 v8, QA CAL-23.v4, QA CAL-25 v4

Calibration procedure for dosimetric E-field probes

Calibration date: July 29, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards          | ID .            | Cal Date (Certificate No.)        | Scheduled Calibration  |
|----------------------------|-----------------|-----------------------------------|------------------------|
| Power meter E4419B         | GB41293874      | 04-Apr-13 (No. 217-01733)         | Apr-14                 |
| Power sensor E4412A        | MY41498087      | 04-Apr-13 (No. 217-01733)         | Apr-14                 |
| Reference 3 dB Attenuator  | SN: S5054 (3c)  | 04-Apr-13 (No. 217-01737)         | Apr-14                 |
| Reference 20 dB Attenuator | SN: S5277 (20x) | 04-Apr-13 (No. 217-01735)         | Apr-14                 |
| Reference 30 dB Attenuator | SN: S5129 (30b) | 04-Apr-13 (No. 217-01738)         | Apr-14                 |
| Reference Probe ES3DV2     | SN: 3013        | 28-Dec-12 (No. ES3-3013_Dec12)    | Dec-13                 |
| DAE4                       | SN: 660         | 31-Jan-13 (No. DAE4-660_Jan13)    | Jan-14                 |
| Secondary Standards        | ID              | Check Date (in house)             | Scheduled Check        |
| RF generator HP 8648C      | US3642U01700    | 4-Aug-99 (in house check Apr-13)  | In house check: Apr-15 |
| Network Analyzer HP 8753E  | US37390585      | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13 |
| RF generator HP 8648C      | US3642U01700    | 4-Aug-99 (in house check Apr-13)  | In house check: Apr    |

Name Function Calibrated by: Claudio Leubler Laboratory Technician Katja Pokovic Technical Manager Approved by: Issued: July 29, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: ET3-1703\_Jul13

Page 1 of 11

#### Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kallbrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z diode compression point

CF crest factor (1/duty\_cycle) of the RF signal modulation dependent linearization parameters

Polarization φ rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center),

i.e., 9 = 0 is normal to probe axis

#### Calibration is Performed According to the Following Standards:

 IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices; Measurement Techniques", December 2003

Techniques", December 2003

b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

#### Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z \* frequency\_response (see Frequency Response Chart). This linearization is
  implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included
  in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z \* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1703\_Jul13

Page 2 of 11

ET3DV6 - SN:1703 July 29, 2013

# Probe ET3DV6R

SN:1703

Manufactured: July 3, 2002 Repaired: July 22, 2013 Calibrated: July 29, 2013

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: ET3-1703\_Jul13 Page 3 of 11

ET3DV6-SN:1703 July 29, 2013

## DASY/EASY - Parameters of Probe: ET3DV6R - SN:1703

#### **Basic Calibration Parameters**

|                          | Sensor X | Sensor Y | Sensor Z | Unc (k=2) |
|--------------------------|----------|----------|----------|-----------|
| Norm $(\mu V/(V/m)^2)^A$ | 1.78     | 1,62     | 1.78     | ± 10.1 %  |
| DCP (mV) <sup>B</sup>    | 98.3     | 98.2     | 94.6     | 11        |

#### Modulation Calibration Parameters

| UID | Communication System Name |     | A<br>dB | B<br>dB√μV | С    | D<br>dB | VR<br>mV | Unc <sup>E</sup><br>(k=2) |
|-----|---------------------------|-----|---------|------------|------|---------|----------|---------------------------|
| 0   | CW X 0.0                  | 0.0 | 0.0     | 1.0        | 0.00 | 142,7   | ±3.3 %   |                           |
|     |                           | Y   | 0.0     | 0.0        | 1.0  |         | 136.8    |                           |
|     |                           | Z   | 0.0     | 0.0        | 1.0  |         | 144.5    |                           |

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Numerical linearization parameter: uncertainty not required.

Certificate No. ET3-1703\_Jul13

Page 4 of 11

A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6).

Numerical linearization parameter: uncertainty not required.
 Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

ET3DV6- SN 1703

July 29, 2013

## DASY/EASY - Parameters of Probe: ET3DV6R - SN:1703

#### Calibration Parameter Determined in Head Tissue Simulating Media

| f (MHz) <sup>C</sup> | Relative<br>Permittivity F | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha | Depth<br>(mm) | Unct.<br>(k=2) |
|----------------------|----------------------------|------------------------------------|---------|---------|---------|-------|---------------|----------------|
| 835                  | 41.5                       | 0.90                               | 6.54    | 6.54    | 6.54    | 0.31  | 2.74          | ± 12.0 %       |
| 900                  | 41.5                       | 0.97                               | 6,31    | 6.31    | 6.31    | 0.35  | 2.62          | ± 12.0 %       |
| 1750                 | 40.1                       | 1.37                               | 5.39    | 5.39    | 5.39    | 0.80  | 2.04          | ± 12.0 %       |
| 1900                 | 40.0                       | 1.40                               | 5.19    | 5.19    | 5.19    | 0.80  | 2.07          | ± 12.0 %       |
| 2450                 | 39.2                       | 1,80                               | 4.62    | 4.62    | 4.62    | 0.80  | 1.76          | ± 12.0 %       |

<sup>&</sup>lt;sup>C</sup> Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to

Certificate No: ET3-1703\_Jul13

Page 5 of 11

At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

ET3DV6-SN:1703

July 29, 2013

## DASY/EASY - Parameters of Probe: ET3DV6R - SN:1703

#### Calibration Parameter Determined in Body Tissue Simulating Media

| f (MHz) <sup>C</sup> | Relative<br>Permittivity F | Conductivity<br>(S/m) | ConvF X | ConvF Y | ConvF Z | Alpha | Depth<br>(mm) | Unct.<br>(k=2) |
|----------------------|----------------------------|-----------------------|---------|---------|---------|-------|---------------|----------------|
| 835                  | 55.2                       | 0.97                  | 6.39    | 6.39    | 6.39    | 0.44  | 2.24          | ± 12.0 %       |
| 900                  | 55.0                       | 1.05                  | 6.21    | 6.21    | 6.21    | 0.33  | 3.00          | ± 12.0 %       |
| 1750                 | 53.4                       | 1.49                  | 4.80    | 4.80    | 4.80    | 0.80  | 2.47          | ± 12.0 %       |
| 1900                 | 53.3                       | 1.52                  | 4.58    | 4.58    | 4.58    | 0.80  | 2.27          | ± 12.0 %       |
| 2450                 | 52.7                       | 1.95                  | 4.11    | 4.11    | 4.11    | 0.65  | 1.17          | ± 12.0 %       |

Certificate No: ET3-1703 Jul13

Page 6 of 11

<sup>&</sup>lt;sup>C</sup> Frequency validity of  $\pm$  100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to  $\pm$  50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

F At frequencies below 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) can be relaxed to  $\pm$  10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$  and  $\sigma$ ) is restricted to  $\pm$  5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Report No.: DRTFCC1312-1171

ET3DV6- SN:1703 July 29, 2013

## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ET3-1703\_Jul13

Page 7 of 11

ET3DV6- SN:1703 July 29, 2013

## Receiving Pattern ( $\phi$ ), $\vartheta = 0^{\circ}$





Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ET3-1703\_Jul13

Page 8 of 11

Date of issue: Dec. 11, 2013

ET3DV6- SN:1703 July 29, 2013

### Dynamic Range f(SAR<sub>head</sub>) (TEM cell , f = 900 MHz)





Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ET3-1703\_Jul13

Page 9 of 11

ET3DV6- SN:1703 July 29, 2013

## **Conversion Factor Assessment**



## Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz



Certificate No: ET3-1703\_Jul13

Page 10 of 11

ET3DV6-SN:1703

July 29, 2013

## DASY/EASY - Parameters of Probe: ET3DV6R - SN:1703

#### Other Probe Parameters

| Sensor Arrangement                            | Triangular |
|-----------------------------------------------|------------|
| Connector Angle (°)                           | 27.5       |
| Mechanical Surface Detection Mode             | enabled    |
| Optical Surface Detection Mode                | disabled   |
| Probe Overall Length                          | 337 mm     |
| Probe Body Diameter                           | 10 mm      |
| Tip Length                                    | 10 mm      |
| Tip Diameter                                  | 6.8 mm     |
| Probe Tip to Sensor X Calibration Point       | 2.7 mm     |
| Probe Tip to Sensor Y Calibration Point       | 2.7 mm     |
| Probe Tip to Sensor Z Calibration Point       | 2.7 mm     |
| Recommended Measurement Distance from Surface | 4 mm       |

Certificate No: ET3-1703\_Jul13

Page 11 of 11

## **Attachment 2. – Dipole Calibration Data**

#### Calibration Laboratory of Schmid & Partner

Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client Digital EMC (Dymstec)

Certificate No: D900V2-1d146\_Dec12

Accreditation No.: SCS 108

#### CALIBRATION CERTIFICATE

Object D900V2 - SN: 1d146

Calibration procedure(s) QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date: December 13, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards           | ID#                | Cal Date (Certificate No.)        | Scheduled Calibration     |
|-----------------------------|--------------------|-----------------------------------|---------------------------|
| Power meter EPM-442A        | GB37480704         | 01-Nov-12 (No. 217-01640)         | Oct-13                    |
| Power sensor HP 8481A       | US37292783         | 01-Nov-12 (No. 217-01640)         | Oct-13                    |
| Reference 20 dB Attenuator  | SN: 5058 (20k)     | 27-Mar-12 (No. 217-01530)         | Apr-13                    |
| Type-N mismatch combination | SN: 5047.3 / 06327 | 27-Mar-12 (No. 217-01533)         | Apr-13                    |
| Reference Probe ES3DV3      | SN: 3205           | 30-Dec-11 (No. ES3-3205_Dec11)    | Dec-12                    |
| DAE4                        | SN: 601            | 27-Jun-12 (No. DAE4-601_Jun12)    | Jun-13                    |
| Secondary Standards         | ID#                | Check Date (in house)             | Scheduled Check           |
| Power sensor HP 8481A       | MY41092317         | 18-Oct-02 (in house check Oct-11) | In house check: Oct-13    |
| RF generator R&S SMT-06     | 100005             | 04-Aug-99 (in house check Oct-11) | In house check: Oct-13    |
| Network Analyzer HP 8753E   | US37390585 S4206   | 18-Oct-01 (in house check Oct-12) | In house check: Oct-13    |
|                             | Name               | Function                          | Signature                 |
| Calibrated by:              | Israe El-Naouq     | Laboratory Technician             | Dercer El Doce            |
| Approved by:                | Katja Pokovic      | Technical Manager                 | DEKS.                     |
|                             |                    |                                   | Issued: December 13, 2012 |

Certificate No: D900V2-1d146\_Dec12

Page 1 of 8

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

#### Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland





S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

#### Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

#### Additional Documentation:

d) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
  of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
   No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D900V2-1d146\_Dec12

Page 2 of 8

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                  | V52.8.3     |
|------------------------------|------------------------|-------------|
| Extrapolation                | Advanced Extrapolation |             |
| Phantom                      | Modular Flat Phantom   |             |
| Distance Dipole Center - TSL | 15 mm                  | with Spacer |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm      |             |
| Frequency                    | 900 MHz ± 1 MHz        |             |

#### Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 41.5         | 0.97 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 41.2 ± 6 %   | 0.94 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        | _            |                  |

#### SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.56 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 10.5 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.66 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 6.76 W/kg ± 16.5 % (k=2) |

#### Body TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 55.0         | 1.05 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 54.3 ± 6 %   | 1.02 mho/m ± 6 % |
| Body TSL temperature change during test | < 0,5 °C        |              |                  |

#### SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 250 mW input power | 2.61 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 10.6 W/kg ± 17.0 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 250 mW input power | 1.68 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 6.82 W/kg ± 16.5 % (k=2) |

Certificate No: D900V2-1d146\_Dec12

Page 3 of 8

Report No.: DRTFCC1312-1171 FCC ID: VUJAT287UHF Date of issue: Dec. 11, 2013

#### Appendix

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 50.8 Ω - 1.1 jΩ |  |  |  |  |
|--------------------------------------|-----------------|--|--|--|--|
| Return Loss                          | - 37.3 dB       |  |  |  |  |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 46.7 Ω - 3.0 jΩ |  |
|--------------------------------------|-----------------|--|
| Return Loss                          | ~ 26.7 dB       |  |

#### General Antenna Parameters and Design

| Electrical Delay (one direction) | 1.409 ns |
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### **Additional EUT Data**

| Manufactured by | SPEAG          |  |  |  |  |
|-----------------|----------------|--|--|--|--|
| Manufactured on | April 25, 2012 |  |  |  |  |

Certificate No: D900V2-1d146\_Dec12

Page 4 of 8

#### DASY5 Validation Report for Head TSL

Date: 13.12.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 1d146

Communication System: CW; Frequency: 900 MHz

Medium parameters used: f = 900 MHz;  $\sigma = 0.94 \text{ mho/m}$ ;  $\varepsilon_r = 41.2$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(5.97, 5.97, 5.97); Calibrated: 30.12.2011;

Sensor-Surface: 3mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.3(988); SEMCAD X 14.6.7(6848)

#### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.654 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 3.84 W/kg

SAR(1 g) = 2.56 W/kg; SAR(10 g) = 1.66 W/kg

Maximum value of SAR (measured) = 2.98 W/kg



Certificate No: D900V2-1d146\_Dec12

Page 5 of 8

#### Impedance Measurement Plot for Head TSL



Certificate No: D900V2-1d146\_Dec12

Page 6 of 8

#### **DASY5 Validation Report for Body TSL**

Date: 13.12.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN: 1d146

Communication System: CW; Frequency: 900 MHz

Medium parameters used: f = 900 MHz;  $\sigma = 1.02 \text{ mho/m}$ ;  $\varepsilon_r = 54.3$ ;  $\rho = 1000 \text{ kg/m}^3$ 

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

#### DASY52 Configuration:

Report No.: DRTFCC1312-1171

Probe: ES3DV3 - SN3205; ConvF(5.94, 5.94, 5.94); Calibrated: 30.12.2011;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

• Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001

DASY52 52.8.3(988); SEMCAD X 14.6.7(6848)

#### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 56.102 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 3.94 W/kg

SAR(1 g) = 2.61 W/kg; SAR(10 g) = 1.68 W/kg

Maximum value of SAR (measured) = 3.05 W/kg



0 dB = 3.05 W/kg = 4.84 dBW/kg

Certificate No: D900V2-1d146\_Dec12

Page 7 of 8

#### Impedance Measurement Plot for Body TSL



Certificate No: D900V2-1d146\_Dec12

Page 8 of 8

## **Attachment 3. – SAR SYSTEM VALIDATION**

Report No.: DRTFCC1312-1171 FCC ID: VUJAT287UHF Date of issue: Dec. 11, 2013

#### **SAR System Validation**

Per FCC KDB 865664 D02v01, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in IEEE 1528-2003 and FCC KDB 865664 D01v01r01.

Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

**Table Attachment 3.1 SAR System Validation Summary** 

| SAR    | Freq. | <b>.</b> . | Probe | Probe   | Probe CAL.<br>Point |      | Probe CAL. |       | Probe CAL.       |                    | PERM.             | COND.        |                | CW Validatio | n | М | OD. Validation | on |
|--------|-------|------------|-------|---------|---------------------|------|------------|-------|------------------|--------------------|-------------------|--------------|----------------|--------------|---|---|----------------|----|
| System | [MHz] | Date       | SN    | Туре    |                     |      | (er)       | (σ)   | Sensi-<br>tivity | Probe<br>Linearity | Probe<br>Isortopy | MOD.<br>Type | Duty<br>Factor | PAR          |   |   |                |    |
| D      | 835   | 2013-08-05 | 1703  | ET3DV6R | 835                 | Head | 42.449     | 0.871 | PASS             | PASS               | PASS              | GMSK         | PASS           | N/A          |   |   |                |    |
| D      | 900   | 2013-08-07 | 1703  | ET3DV6R | 900                 | Head | 40.862     | 0.978 | PASS             | PASS               | PASS              | N/A          | N/A            | N/A          |   |   |                |    |
| D      | 1900  | 2013-08-09 | 1703  | ET3DV6R | 1900                | Head | 39.541     | 1.386 | PASS             | PASS               | PASS              | GMSK         | PASS           | N/A          |   |   |                |    |
| D      | 2450  | 2013-08-11 | 1703  | ET3DV6R | 2450                | Head | 39.684     | 1.779 | PASS             | PASS               | PASS              | OFDM         | N/A            | PASS         |   |   |                |    |
| D      | 835   | 2013-08-06 | 1703  | ET3DV6R | 835                 | Body | 53.976     | 0.957 | PASS             | PASS               | PASS              | GMSK         | PASS           | N/A          |   |   |                |    |
| D      | 900   | 2013-08-08 | 1703  | ET3DV6R | 900                 | Body | 55.241     | 1.027 | PASS             | PASS               | PASS              | N/A          | N/A            | N/A          |   |   |                |    |
| D      | 1900  | 2013-08-10 | 1703  | ET3DV6R | 1900                | Body | 54.290     | 1.535 | PASS             | PASS               | PASS              | GMSK         | PASS           | N/A          |   |   |                |    |
| D      | 2450  | 2013-08-12 | 1703  | ET3DV6R | 2450                | Body | 53.424     | 1.944 | PASS             | PASS               | PASS              | OFDM         | N/A            | PASS         |   |   |                |    |