Page Deriled

50X1-HUM

TEAL TOWNS TOWN TOWN THE PROPERTY OF THE PROPE

50X1-HUM

Wickelkondensatoren TESLA

Wickelkondensatoren TESLA

Jede Kette ist so stark wie ihr schwachstes Glied, und die Qualitateines jeden Rundfunkempfängers, Messapparates, Verstariage, Soudou und Fernschapparates entspricht der Qualitat des letzten auch der eine unwichtigsten Bestandteiles, da bei dessen Versagen der der der betriebsunfähig wird. Diese Tatsache macht die 200 i. Sold der Entwicklung neuer Typen und bei der Labrikation ver for Wickelkondensatoren gehören ohne Zweitel zu dem wiede allen Schwarhstromgeraten haufig verwendeten Best oach der Rundfunkempflänger mittlerer Type und 20 for der Sold mich wieden mehr Wickelkondensatoren eingebaut, worang die Wickelkondensatoren eingebaut.

kleinen Bestandteiles für den einwandfreien Betriebt den flich ersichtlich ist. Radi reparaturwerkstatten konstande des Wickelkondensatoren sehr hantig die Urbeiten bei den Konstande der Entwicklungsalderlung des Unternetsingut bekannt sind, wird der Entwicklung sowie der Urbeiten Bestandteiles besondere Autmerksankeit gewinden. WICKELKONDENSATOREN TESLA werden Uniterel und ein schiedenen Ausführungen erzeugt und stehen den Konstrukte aus ein alle Verwendungszwecke in reicher Auswahl zur Vertugung. Den alle angeführten Augaben werden Sie bestimmt davon überzeugen.

Wickelkondensatoren TESLA in Isolierrohr mit Drahtanschlüssen

Beschreibung

Diese Type von Wickelkondensatoren besteht im wesentlichen aus zwei Metallfolien, die durch ein aus Spezialpapier bestehendes Dielektrikum isoliert sind. Die Folien werden samt Papierband in Rollen aufgewickelt, im Vakuum getrocknet und mit Spezialwachs oder Ol imprägniert. Die mit der ausseren Folie verbundene Seite ist durch einen längeren Drahtanschluss oder durch einen auf dem Isolierröhrehen aufgedrackten Ringstreifen gekennzeichnet (1). Diese Seite wird bei der Montage mit dem Chassis verbunden. Die äussere Folienwicklung bildet dann für das Kondensatorinuere eine elektrische Abschirmung. Der Wickel wird in ein Isolierröhr eingelegt und mit Vergussmasse verschlossen (2). Sodann werden die Drahtanschlüsse stark verzinnt (3).

Technische Angaben

Nennwert-Toleranz:

normal $\pm 20\%$ cingeengt: $\pm 10\%$ (von 0.1 $\mu\mathrm{F}$ answarts) Betriebstemperaturbereich: $\pm 20\%$ C his $\pm 50\%$ C Lagertemperaturbereich: $\pm 20\%$ C his $\pm 40\%$ C Verlustwinkel: $\mathrm{tg}\vartheta$ max. 0,01 bei 800 Hz.

Zugfestigkeit der Drahtauschlüsse: 2 kg in Achsenrichtung-

Solationswiderstand: das Produkt aus Isalationswiderstand in MOhm und der Kapazitat in «1 hoträgt mindestens 200; bei kleineren Kapazitatswerten mindestens 5000 MOhm.

Sämtliche Kondensatoren werden unt unterdenekter Sellistinduktivität erzeugt.

For BetrSpan		TC 101 160	TC 102 250	TC 103	7 C 104 600	TC, 105 1000	10 100
Bezeichnung	Kapazität		Dure Nur die	hmesser D angeführter	Länge L . Werte sin		
						1 30	
160	100 pF					+ 30	
160	160 pF					300	
250	$250~\mathrm{pF}$					2 30	
400	400 pF						
640	640 pF				7 .30	9 (1)	
1 K	1000 pF				7 30	9 30	17
					7 30	14 30	1.1
1 K 6 2 K 5	1600 pF 2500 μF				7 30	11 30	1
4 K	4000 pF			7 30	0 30	12 45	1.4.
	6400 pF			7 30	9 30	12 35	1.1
6 K 4	0.100 pr						
10 K	10000 µF		7×30	9 30	11 30	12 35	1.1
16 K	16000 pF		9 - 30	9 30	12 35	14 (5	11.
25 K	25000 pF		H 30	11 - 30	14 35	133 35	
40 K	40000 pF	11 - 30	12 - 35	12 - 35	16 35	14 55	11.
64 K	64000 pF	11 - 30	12 + 35	H 35	11 55	18 55	
М 1	0,1 <i>µ</i> F	$14 \cdot 35$	14 35	18 55	18 55	22 55	
M 16	0.16 nF	14 35	16 - 35	18 - 55	22 55	26 55	
M 25	0.25 µF	14 - 55	18 - 55	18 - 55	26 55		
M 4	0.1 µF	18 - 55	18 55	22 - 55			
M 64	0.64 //1	22 - 55	22 - 55	26 55			
- 1 M	1 //F	$\frac{22}{55}$	26 55				
	•						
a dor Tabelle sin	d nur die Gleichst	rom-					
		**1	lariado en escretara		12.03	1000 600	1.1

In der Tahelle sind nur die Gleichstrom-Betriebsspannungen angeführt. Für Wechselstrom gilt folgende Tabelle:

Abmessingen und Gewichte

Für jene Apparate, die voraussichtlich unter schwierigen Betriebsbedingungen arbeiten werden sober für Apparate, die für diese Bedingungen direkt könstruvert sind, werden von Radioangemearen derartige Ausführungsformen von Wickelkondensaloren verlangt, die unter allen Betriebsbedingungen zurerlässig arbeiten. Wir können mit Genugtung feststellen, dass die Konstruktene des Unternehmens TESLA alle vorgelegten technischen Probleme einvendfrei gelost haben. Lin Radioa sich die folgende Neuentwicklung, durch die das umfangtriehe Sortiment bereichert wurde:

Vollkommen Tropenfeste Wickelkondensatoren TESLA PACOTROP

Beschreibung

Bei dieser Type handelt es sich um Folienkondensatoren mit Papierdielektrikum, die in einem Metallrohr eingebaut (1) und mit einer Glasperle (2) abgeschlossen sind, durch die einer der Drahtanschlüsse hindurchgeführt ist. Der zweite Pol ist mit dem Gehäuseboden verlötet (3). Um die Lötarbeit bei der Montage zu erleichtern, sind die Kondensatorenanschlüsse stark verzinnt. Die Gehäuseberfläche ist durch eine korrosionsbeständige Schicht geschützt.

Vorzüge

Tange Lebensdauer, geringe Induktivität, verlässlis cher Betrieb bei grossen Temperatur- und Luftfenchtigkeitsschwankungen. Widerstandsfähigkeit gegen äussere Einflüsse. Erschütterungsfestigkeit und geringe Ahmessungen können als Hamptvorteile dieser Ausführung der Wickelkondensatoren TESLA hervorgehoben werden.

Technische Angaben

Temperaturbereich: nort bi-Relative Feuchtigkeit; bis 98 Isolationswiderstand ber 20°C, 1000 MOlin, Jaw niedrigen Kapazitaten 25000 Methor Verla traktori tg*ir* max, 0.01 has 0.00 Hz Prüfspanning: 1 Minute 300 - der Betrobe gar nung

Kennziffern, Hauptabmessungen, Kapazitätsbereiche und Toleranzen:

•													
Kennziffer		1	rc 120	,		Tt.	122				10-12	1	
Betriebsspa	manag V		160			\$1	H)				1000		
Überlastba	el nit \		200			51	H)				1050		
						25					1210		
Betriebsspa	mning \ ~		{ (H)				.,,						
Kapazität	Toleranz	D	1.	at	Aus- führung	Ð	l .	.1	Aus- Juhrung	()	1	, <u>, , , , , , , , , , , , , , , , , , </u>	
pF 1000						7	26	1.5	\	j.,,	24.		
1600	20 %					3	26	1.5	`	10	200	18.1	
2500						5	26 26	1.5	\	j () ()	21		
4000 6400						5	26	1.5	`	10	1.	2	
pF				, -	i.	_	26	1.5		100	, Se		
10000 16000	20 %	5	26 26	$\frac{1.5}{1.5}$	\	-	26	1.5	\	100			
25000	(; 10 °;.)	<u>:</u>	26	1.5	ì] ***	26		`	700			
4(0)(00)		10	26	2.5	\] 41	26	2.	\	1.2			
64000		111	26	2.5	\	1 ()	3.5	2.5	\	15			
aV	na v	10	35	0.5	\	12	35	٠,)	1::	: '		
0,1 11,16	20 °., 10 °.,	12	35	2,5 2,5 2,5	ì	15	3.5	2.5	Ś		•		
0,25	5	15	3.5	2.5	Ý	18	3.5	2.5	ì				
0,1	**	18	3.5	2.5	``								

Bei einem Unterdruck von 90 nam Ha er da. E. triebsspanning wie folgt beschrankt Gehäusedurchmesser D = 3 Max. Betrieb-spanning ١ Some Some Charles $\ \ \, \text{Vastuhrung} \ \, \text{\times}$ Au-führung A

Elektrolyt-Kondensatoren TESLA

Eine mehr als dreissigjährige Tradition und Erfahrungen bei der Erzeugung von Elektrolyt-Kondensatoren in der Tschechoslowakei gaben den Konstrukteuren und dem ganzen Fabrikationsapparat TESLA die Möglichkeit, mit allen Problemen, die die stürmische Entwicklung der Elektronik-Industrie in den letzten Jahren mit sich brachte, fertig zu werden, und diese Tatsache sicherte den Elektrolyt-Kondensatoren TESLA einen der besten Plätze auf dem Weltmarkte. Die langjährige, gewissenhafte Arbeit, sowohl in der Ent-

wicklung als auch in der Herstellung, brachte den Radiofachlenten zahlreiche verschiedene Ausführungen von Elektrolyt-Kondensatoren TESLA, die ihnen eine reiche Auswahl für sämtliche Verwendungszwecke bietet.

Die vorhandene Möglichkeit verschiedener Befestigungsart im Apparatechassis, der einwandfreie Betrieb unter beliebigen Betrieb-bedingungen, geringe Abmessungen und eine umfangreiche Auswahl verschiedener Spannungen und Kapazitäten, bieten Radiofachleuten die Garantie, dass alle auftretenden Schwierigkeiten bei der Arbeit mit Elektrolyt-Kondensatoren überwunden werden können.

eringe Abmessungen, lange Lebensdauer, gute elektrische Eigenschaften.

Technische Angaben

Nennwert-Toleranz:

 $-20~\%_0,~+50~\%$ bis 100/110 V $-10~\%_0,~+50~\%$ von 160/175 V Verlustwinkel: tg θ max. 15 % bei 20°C und 50 Hz.

Reststrom max.: 0,15 . C . V . 10-3 := 0,1 (mA)

Kapazitāt C in pF und Spannung in V bei 20°C Festigkeit der Drahtanschlüsse: 2 kg Zugspannung in Achsenrichtung,

Betriebstemperatur:

-20 bis +60% für Typen bis 250/275 V.

0 bis +60% für die übrigen Typen.

Lagertemperatur: $-20~{\rm bis} \pm 40\%$. Der Pluspol wird entweder durch farbigen Isolierschlunch oder durch Anfdruck auf dem Isolierrohr gekennzeichnet.

	FORM ss-Spitzenspannung V sung (Durchmesser) um		TC 500 12/15 D	TC 501 30-35 - D	TC 502 100 110 D
Bezeichnung 10 M 25 M 50 M G 1 G 25 G 5	Kapaziti 10 25 50 100 250 500		14 14 18 18 22 22	14 18 22 22 22	14 18 22 26
Betriebs-Spitz	FORM zenspannung V = Durchmesser) mm	TC 510- 160/175 D	TC 511 250/275 D	TC 512 350 385 D	TC 513 456 500 D
Bezeichnung 4 M 8 M 16 M 32 M 50 M	Kapazität µF 4 8 16 32 50	14 14 18 22 26	14 18 22 26	11 18 26	11 18 26

	,	· F.	wichit.		
Rohrdurch- messer	11		18	22	26
Gewicht g	9,5		16,6	23.5	37,0

POOR ORIGINAL

Niedervolt-Elektrolytkondensatoren TESLA

in Blechgehäusen

Verwendung

Diese Kondensatoren werden zur Unterdrückung der Welligkeit gleichgerichteter Ströme in Niedervoltgleichrichtern für grössere Belastbarkeit verwendet, z.B. Röhrenheizung oder in Spezialgleichrichtern, bei denen es auf vollendete Unterdrückung ankommt. (Für Mikrophone, Photozellen u. dgl.)

Der Kondensator besteht aus einem oder mehreren Wickeln. die in einem Blechgehäuse (1) eingesetzt und mit Vergussmasse abgeschlössen sind. Diese Wickel bestehen aus zwei Aluminiumfolien, von denen eine mit einer das Dielektrikum bildenden Oxydschicht verschen ist. Zwischen den Folien befindet sich eine mit Elektrolyt getränkte Papierschicht. Das Gehäuse ist mit einem Pertinaxdeckel verschlössen (2): Die Lötösen sind stark versinnt (3). Der Pluspol des Kondensators ist mit bezeichnet. Plus und Minuspol sind vom Gehäuse isoliert. Der Kondensator hat zwei Laschen zwecks leichter Montage (4).

Technische Angaben

Nennwert-Toleranz:

-20 % bis +50 %.

Verlustwinkel: tg θ max. 15 % bei 20% und 50 Hz.

Reststrom max.: 0,15 . C . V . 10-3 \pm 0,1 (mA) \pm Kapazität C in μF und Spannung

Bereich der Betriebstemperatur: -20° C bis $+60^{\circ}$ C.

Lagertemperatur: -20°C bis $+40^{\circ}\text{C}$.

FORM Betriebs-Spitzenspannung V Abmessungen mm		TC 503 12/15 L × C	TC 504 30/35 L × C	TC 505 100,110 L + C
Bezeichnung	Kapazität µF			 and an address to the state of
G 25	250			32×30
G 5-	500		32 30	32 - 30
1 G	1000	32×30	62 - 30	62 - 60
2 C 5	2500	62×30	92 - 30	
5 G	5000	$62 \ge 60$	92 - 60	

GEWICHTE UND ABMESSUNGEN

. de		G	e	ı	Gewicht g
32	•	30	39	48	140
62		30	69	78	270
62	1	60	69	78	520
. 92		30	99	108	420
92	- 1	60	99	108	810

Elektroly) Kontensatoren TESLA im Aliuminiumbechern

mitizentraler Befestigungsschraube

Aluminumberbern werden zur brome in Anodemetzgeräten für ender: Diese Kordentatoren kön-mintiert verden; da zu ihrer Her-Elektralyn benützt wird.

sonders für Service ge-

Isolations-Unterlage (4).

Beschreibung

Der Kondensator wird von zwei Aluminiumfolien gebildet, deren eine mit einer das Dielektrikum bildenden Oxydschicht bedeckt ist. Zwischen den Folien befindet sieh eine mit Elektrolyt getränkte Papierschicht. Der daraus hergestellte Wickel wird in einem Aluminiumbecher eingeschlossen. Die mit dem Pluspol in Verbindung stehende verzinnte Lötöse (5) wird durch eine Bakelitschraube mit Schraubenmutter herausgeführt. Der Minuspol ist direkt mit dem Metallbecher verbunden. Bei Doppelkapazitäten ist der positive Pol der grösseren Kapazität mit 4 bezeichnet. Der Aluminiumbecher ist mit Gummidichtung versehen.

Technische Anguben

Toleranz der Nennkapazität: – 10 his – 50 $^{o}_{\rm so}$. Max. Verlustwinkel:

tg θ max. 15 % bei 20°C und 50 Hz.

Reststrom: max. 0.15 , C , V , 10^{-3} < 0.1 (mA). Kapazität in $\mu {\rm F}$ and Spanning in Volt.

Bereich der Betriebstemperatur:

für Typen bis 250 275 V	20°C bis	
für die übrigen Typen	o°C bis	, O2C
Bereich der Lagertemperatur:	20%, bis	5590.

Betriebs-Spitze	RM enspannung V	TC 515 160/175 D × L	TC 517 250 275 D - L	TC 519 350-385 D L	196, 521 196, 579 D. J.
Bezeichnung	Kapazität µF	*			
8 M	8			25 55	25 55
16 M	16		25 55	23 55	25 55
32 M	32	25 - 53	25 - 55	25 65	25 400
50 M	50	25 . 55	25 - 65	25 89	(5) , (
8 8 M	8-8			25 55	25 55
10 S M	16 -8		25 35	25 55	25 65
16 16 M	16-16		25 - 55	25 65	25 80
32.32 M	32 - 32	25 - 65	25 - 80	35 80	35 60
50 50 M	50 - 50	25 5.80	35 - 80		

LOTOSE					. 6
	D	đ	á		· Be
WA 060 10	26	18,5	25	8	-
11 000 AW	36	18,5	30		

ISOLATIONSUNTERLAGE

		d
WA 353 65	52	HL5
WA 355 BE		

Diese Kondensatorentype wird in einer niedrigen Spezielausführung hergestellt, welche für jene Apparate bestimmt ist, in denen wegen Raummangel die normalen hohen Typen nicht verwendet werden können.

In dieser nicdrigen Ausführung werden folgende Typen hergestellt:

Durchmesser	25	23	2.5	
Linge	53	6.5	2.0	2 .
Gewicht z	3.5	511	7.2	145

Au-führung form	Kapazitāt' µF	Betrieb- Spitzen- -pannung	Alones- sungen	Gewitht g
WK 765 65	32	1 m 50m	25 55	3.5
WK 705 06	16 . 16	4 344. 3666 V	25 55	35
WK 795 07	32 32	250 275 1	25 - 55	35
WK 705 08	32 - 32	380 420 \$	35 80	44.5
WK 785 09	32	330 12m V	25 65	400
WK 705 10	54)	320 126 V	25 - 55	35

Dichte Elektrolytkondensatoren TESLA

Diese Elektrylytkondensstoren werden im allgemeinen in Glärungskroven zur Unterdrückung der Wechselström-komponente von gleichigerichteren Strömen verwendet. Sie eigen sich auch als Blockkondensstoren in Niederfrequenz-sträfen und überall dort, wo es auf lange Lebensdauer und Reime Abmessungen ankommt, und wo bedeutende Schwan-kungen der Temperatur zu erwarten sind.

Beschreibung

se Kondensatoren bestehen aus zwei Aluminiumfolien, i denen eine gestert und mit einer Oxydschicht versehen die dies Dielekrikum darstellt Zwischen den Folien bedet nich eine mit Elektrolyt getränkte Papierschicht. Die hirdh entstandenen Straten werden aufgewickelt und mit eine Aluminiumbeckenz werdenstellt und Theorem und mit den Phapol, die negativen Folien mit Aluminiumbechen zweichlossen. Die verzinn-Ritters und mit den Phapol, die negativen Folien mit Aluminiumbechen zweibunden.

Beringe Abmessungen bei hohen Kapazitäten, einfache Montage, luftdicht abgeschlossenes Metallgehäuse. Widerstandsfähigkeit bei Temperaturschwankungen und verlässlicher Betrieb, auch bei starkem Frost, sind die Grundeigenschaften der "M" Ausführung dieser Elektrolyt-Kondensatoren Type TESLA.

Technische Angaben

Nennwert-Toleranz: $-20^{0/6}$ bis $\pm 50^{0/6}$.

Verlustfaktor tg θ max. 15 % bei 26°C und 50 Hz. Reststrom: 0.15 · C × V μ A event. 100 μ A (der grössere Wert gilt), gemessen bei 20°C, bei Betriebsspannung.

Zulässige relative Feuchtigkeit: bis 98 %.

Zulässige Minimal-Betriebstemperatur: normale Ausführung:

-20% für Kondensatoren bis 250 V Betriebs-

spannung 10% für Kondensatoren bis 350 V Betriebs-

spannung $-0^{\rm o}{\rm C}$ für Kondensatoren bis 450 V Betriebsspannung

Spezialausführung ..M":

- 40°C für Kondensatoren bis 350 V Betriebs-

spannung ~10°C für Kondensatoren bis 450 V Betriebsspannung.

Zulässige Hüchsttemperatur: 70°C.

Zulässiger Bereich der Lagertemperatur: - 60°C bis ± 55°C.

Zugfestigkeit der Lötüsen 2 kg

Diese Kondensatoren werden in drei verschiedenen Ausführungen gemäss den unten angeführten Masshildern hergestellt (A. B. C).

TYPE Betriebs- Spitzenspannung V An-führung Bezeichnung µF	TC 51 12/1 B	1	TC : 12; C D	15	30 1	527 /35 B L		531 35 : L	100	160		250 A,		250		350	535 385 C L	150 . A.	500		,
4 M 8 M 8 10 M 10 16 M 16 M 16 25 M 32 M 32 50 M 50 G 1 100 G 25 C 50 M 8 8 M 8+8 16.8 M 16+16	16 5 25 5	80 50 50 50	16 20 25	50 30 50 50 50	16 16 16 20	30 30 50 50	16 16 20 20 25	50 50 50 50	16 16 20 25	 16 16 16 20 25 25 25 25 25 25 25 25	30 30 30 50 50 50 50 50 50 70		50 50 50	16 16 20 20 25 25 25 25 25 25 25	30 30 50 50 50	16	50 50 50 70 70	16 20 25 30 35	50 50 50 50 50	16 25 25 25 25 25 25	2,

Konden-atoren mit Durchmesser 35, mm, werden nur in Ansfahrung A.u. C. die übrigen Hurchmesser in allen drei Ausführungen hergestellt.

ABMESSUNGEN

ORIG (NA) POOR

Dichte Elektrolytkondensatoren TESLA für niedrige

Temperaturen in Isolierstoffgehäusen

Dess Kondensatoren werden analog wie die früher angeführten Typen verwundet, und zwar zur Glättung von Niedervolt- und Heckwortgeichrichtern. Die Technologie der Fabrikation und die Austährungsform ist den allerschwersten Betriebsverhält-nissontangepasst.

Beschreibung

Lange Lebensdauer, vorzügliche elektrische Eigenschaften, Betriebsfähigkeit auch bei --40°C, resp. 60°C, sowie bei hoher Feuchtigkeit und niedrigem Druck. Geringe Abmessungen, vollkommene Erschütterungsfestigkeit.

Technische Angaben

Nennwert-Toleranz: - 20 % bis + 50 %.
Verlustwinkel: Max. 15 % bei 20 C and 50 Hz.
Reststrom: 0,15 C. V. 10-3 + 0.1 (mA) — C ist die Kapazität in µF, V die Spannung in Volt.
Betriebstemperatur: - 40 °C, resp. - 60 °C bis - 70 °C (laut Tabelle).
Lagertemperatur: - 60 °C bis + 55 °C.

										*			
FO	RM	TC 590	TC 581	TC 591	TC 582	TC 592	TG 583	TC 584	TC 585	TC 595	TC 586	TC 596	TC 597
	-Spitzen-	6/8	12	/15	30	35	100/110	160/175	250	,275	350	/385	450-500
spanut	ng V ==	10	60	40	60	40	~ 60	60	60	- 40	- 60	40	3 10
Betriebsten	peratur ^D C	bis	bis	bis	bis	bis.	bis	bis	bis -	bis	bis -	bis	bis
	•	+70	+60	+70	+60	. +-70	+60	- - 60	. + 60	÷70	- 60	j-70	70
Bezeichnung	Kapazität µF	L				Abme	ssungen	$\mathbf{D} \cdot \mathbf{L}_i$		- 2			To all the second secon
4 M	4	1										16×50	16×50
5 M	5	-					16 - 30		16×50		25×50	-	
8 M	8	-		-						1.44		20 + 50	20 ± 50
10 M	10				16×30	16 - 30	16 - 50		20 < 50	$16 \sim 50$	30×50		
16 M	16		-									25 + 50	25 50
25 M	25	1	16 × 30		16×50	16 - 30		25 - 50	35 - 50	$20 \approx 50$			
32 M	32		:	_								30 - 50	30×50
50 M	50		16×50	16×30	20×50	16 > 50	35 ± 50		* 1	25×50			
Gl	100		20 × 50	16×50	25 × 50	20 - 50				35 - 50			
G 25	250		30 × 50	25×50		30 > 50				***			
G 5	500	-		30×50				***					
1 G	1000	35 × 50	,								-		

ECCENTRAL CONTRACTOR OF THE SERVICE OF THE SERVICE

Technische Angaben

Toleranz: bei den Typen bis zu einer Spannung von 100/110 V = 20 % +56 % bei den Typen bis zu einer Spannung von 160/175 V =10 % +50 % Verlustwinkel: tg θ max. 15 % bei 20°C und 50 Hz. Reststrom: 0.15 C . V . 10-3 + 0,1 (mA) — Kapazität C in $\mu {\rm F}$, Spannung in V

Zulässige Temperaturen:

Betriebstemperaturen	Ausf normal	ührung dicht
bis 350/385 V bis 450/500 V	0°C bis + 60°C	40°C bis70°C 10°C bis70°C
Lagertemperaturea sämtliche Arten	0°C bis +40°C	60°C bis 9:55°C

Maximaler Kapazitätsverlust bei der Minusgrenze der Betriebstemperatur 50 $^{o}_{\ o}$. Relative Feuchtigkeit: bei normaler Ausführung 80 $^{o}_{\ o}$, bei luftdichter Ausführung 98 $^{o}_{\ o}$.

Auf Grund dieser kurzen Beschreibung einiger Haupttypen der Elektrolytkondensatoren, die das Unternehmen TESLA erzeugt. können Sie einen Überblick von dem Umfang des erzeugten Sortimentes and seiner vielseitigen Verwendungsmöglichkeit gewinnen. Die verschiedenartigen Ausführungen der Elektrolytkondensatoren TESLA bieten den Technikern die Möglichkeit, eine solche Type zu wählen, die auf Grund ihrer Montageart, ihrer elektrischen Eigenschaften und ihrer Anpassungsfähigkeit an die Betriebsbedingungen imstande ist, jedes Problem zu lösen, das bei der Fabrikation entstehen könnte.

Sales of the Control of the Control

FO Betriebs-Spitzer Ausführung Ösen Grüsse	PRM Ispanning V	TC 550 12/15 gewöhnl. ohne	TG 551 12/15 dieht ohne	TC 552 12/15 gewöhnt, seitlich	TC 55: 12/15 dicht seitlich	30/35 gewöhnl. ohne	TC 555 30/35 dicht ohne sinheitlich ~	TC 556 36,35 gewöhnl. scitlich 45 × 50 + 23	TC 557 30/35 dicht seitlich 5 mm	TC 558 300/110 gewöhnl, ohue	TC 559 100 110 dicht olme	TC 560 100 14n gewihal, seitlich	TC 561 100 110 dicht scitlich
Bezeichnung 10 M 50 M G 1 G 25 G 5 50/50 M G 1/1 G 25/25	Kapazitāt µF 10 50 100 250 500 500 500 100 250 25						erzeng	der Wert					-
FORM Betriebs-Spitzen- spanning V. 2 Ausführung Ösen Grösse	gewöhnl.		75 160 17	gewölml.	250, 275	250/275 25 gewöhul. d seitlich se	0/275 350 ₇ 3 icht gewöh	85 350 385 ml. dicht olme	350 385 gewohnl	350 385 45	0/500 450 50 volul, dicht	450/500 gewöhnl.	150/500
32 M 50 M G I Io 16 Io M Io I	10 12 50 60					e	zengter Werl						

POOR ORIGINAL

Kondensator wird meht achiefert

POOR ORIGINAL

DATEN DER TESLA-ELEKTRONENRÖHREN

				Heizur	*		node	Schire	ngitter	Stegereitter		Innen-	Aussen-		
Туре	Aquivalent	Verwendungsare	Art	Span-	Strom	Span- nung	Strom	Span- nung	Strom	Spannung	Sreifheit	wider- stand	wider	Leistung	Socket
100				. v-	Α.	ν.	mA	٧.	mA		yA V	kta	ks:	w	Nr.
12F31	12BA6	Pentode, regelbar	ind.	12.6	0.15	250	11	100	4.2	120	4400		1500		
12H31	12BE6	Pentagrid	.,	12.6	0.15	250	. 3	100	7.1	-1.5 -30	7700		1300		H 13
62L31	(50B5) (4)	Strahlpentode		62	0.075	200	55	200	9.5	-15	8000	25			H 17
UBL 21		Doppeldiode NF-Pentode		55	0,1	200	55	200	9,5	-13	8000	25	3,5 3,5	4.5 4,8	H 18
UCH 21	1	Triode-Hexode		20	0.1	200	2,5	100	3	-2	680	1000			U2
	1 Volt Wech	selstrom-Röhrei	n:												
6CC41	. (12AX7) (4)	Doppeltriode		6,3	0.3	250	2,3			-1,5	2000				N 1
6L41	(5763)	5trahlpentode		6,3	0.75	300	50	250	15	-125	7000			12	N 2
6L43	(6AG7)	Strahlpentode	**	6.3	0.65	300	30	150	9	-3	11000	90	10	3	N 2
6L50	(6BG6)	Strahlpentode		6.3	1	400	70	250	10	3 25	11000	70	10	20	51
EBL 21		Doppeldiode NF-Pentode		6,3	0,8	250	36	240	4,5	-6	9000	50	7	4,5	01
ECH 21		Triode-Hexode		6.3	0.3			1							
EF 22		Pentode, regelbar	**	6.3	0.3	250 250	3	100	6.2	-2 -24.5	750	1400			U2
EM 11		Abstimmanzeige-	••	6.3	0.2	250	6	100	1,7	-2 ,5-56	2200	1200			U 3
		röhre		6.3	0,2	250				0.16			1000		T 1
ABL 1		Diode-NF-Pentode		4	2.4	250	36	250	4	6	9500	60	7	4.5	P 2. 1
AD 1		Endtriode		4	0.95	250	60			45	6000	67	ź	4.2	P 1
AF 3		Pentode, regelbar		4	0.65	250	3	- 100	2.6	-3 -55	1800	. •	•	7,2	P 3
AF 7		Pentode, nicht regelbar	**	4	0.65	250	3	100	1,1	_2	2100	2000			P 3
AL 4		Endpentode		4	1.75	250	36	250	5	6	9500	50	7	4.3	P4 1
EBL 1		Doppeldiode Endpentode		6.3	0.8	250	36	240	4,5		9000	50	.,	4.5	P 2
ECH 3		Triode-Hexode		6.3	0.2	250	3	100	. 3	2 22		4300			3
ECH 4		Triode-Hexode		6.3	0.35	250	3	100	6.2	-2 -23 -2	650 750	1300			P 5
EF 6		Pentode.		6.3	0.33	250	1	100	0.8						P 6
		nicht regelbar	••				•			2	1800	2500			P 3
EF 9		Pentode, regelbar		6,3	0,2	250	6	100	1,7	2,549	2200	1250			P 3

TESLA

Rectifying valves

	Cat	hode		Αn	o d e		Ri	Electrodes	Maximum	Maximum
Туре	V' (V)	II (A)	Va (kV)	la (mA)	Wa (W)	le (A)	Ω	to the base	height H (mm)	diameter . (mm)
hvv	1.1	3,5	3	0,7		0.002		F. A	103	45
RA SA	t, 0	4, t = 5, t	1.5	3.90	3.7		170	F	215	52
PA SA	19,6	D2 26	10	350		1.2	700 1100		550	182
RA YA	13.7 - 27.6	1 ' = 16	15	2000	60 x	7	100		880	120
на та	1. 0 20,6	110 - 125	20	7000	200	50	75		1155	178

Mercury vapour rectifying valves and thyratrons.

+	Catho) d e		Αn	o d e		Electrodes	Maximum	Maximum
Type	Vf (V)	If (A)	Va (k\)	la (A)	lap (A)	Vi (kV)	connected to the base	height H (mm)	diameter (mm)
UAIA	4.0	9 13	8	1	5	9	F	295	65
UAIA	5.0	12,5 - 14,5	- 11	,	15	12	F	375	71
UC 16 AF	5.0	29 35	17	161	80	20	F, G	530	153
	,								

Suitable as:

Oscillator
Modulator
A F. Amplifler
R F. Amplifler
Power Amplifler
Industrial Oscillator
Voltage Control

(Va - 2000 V: Ia = 1 A)
 (Va 2000 V: Vq :450 V)
 (Va 1200 V: Ia 50 mA)
 (Va 1200 V: Ia 50 mA)
 The same tube of slightly different dimensions is marked: RD 5 XG
 The same tube with a different radiator is marked: RD 12 XB

COK 32482 (1962 - SCT (4 - 54

ELEKTRONENRÖHREN

TESLA

DATEN DER TESLA-ELEKTRONENRÖHREN

Type	Aq.,				Heren	~!	*	ne tr	Setur	ngitter	Stevengagger		lunes	Aussen			
1426	~q.,	ileet	¥er ∞endungs si i	A- 1	Span-		Span-	Str-m m.A	Span-	Şirêm m A	Coarining	Stellheit	eider trand	mider mand	Leiter		
Minia	tur-Ba	tter	erohren												~	No	
1AF33	155	(1)	Diode-Pentode	dir.													
1F33	174	(1)	NF-Detektor		1.4	0.025	67.5	1.6	67.5	0.4	0	500	600	1000		н 2	
			Pentode		1.4	0.025	90	3.5	67,5	1.4	0	750	500	400		H 1	
1H33	185	(1)	HF-Verstarker		1.4	0.025	90	1.37	67.5								
			Pentagrid			0,023	70	1.37	67,5	3.2	0	300	600			H 3	
			Oszillator- u Mischr														
1L33	154	(1)	Pentode														
			NF-Verstarker	**	1.4	0.050	90	7,5	67.5	1,5	7	1400	100	8	0.23	H 4	
3L31	3A4	(1)	Pentode		1.4	0,1									0.23		
			NF- u HF-Verst		2.8	0.050	135	14.8	90	2.6	- 7.5	1900	90	8	0.6	нь	
3L35	(3A4)	(1)	Pentode		1.4	0,1								۰	U. 6	11 3	
AF34	(155)	(4)	NF- u HF-Verst		2,8	0,050	135	14.8	90	2.6	7.5	1900	90	8	0.6	H 5.	
14134	(133)	(4)	Drode-Pentode NF-Detektor		1,2	0.030	67.5	1.6	67.5	0.4	0	500	600	1000		H 2	
F34	(1T4)	(4)	Pentode		1.2	0 030	00						000	.000		n 2	
			HF-Verstarker		1.2	0 030	90	3.5	67.5	1.4	0	750	500	400		H 1	
11134	(1R5)	(4)	Pentagrid		1.2	0.030	90	1.37	67.5	3.2	0						
134			Oszill u. Mischr				,,	1.37	67,3	3,2	0	300	600			H 3	
L34	(154)	(4)	Pentode NF-Verstarker		1.2	0.060	90	7.5	67.5	4.5	-7	1400	100	8	0.23		
L 32			Strahlpentode									, 100	100		0.23	H 4	
			NF- u HF-Verst		1,2	0.12	90										
L33	(3A4)	(4)			2.4	0.060	90	9.5	90	2.2	-4.5	1500	100	8	0.12	H 5 _R	
			NF- u. HF-Verst.		1,2	0.120	135	14.8	90								
L34			Pentode		1.2	0,060	1,,,	14.0	70	2.6	7.5	1900	90	8	0.6	H 6	
135			NF-Verstarker		2.4	0.060	90	7.4	67.5	1.4	7	1400	100	_			
133			Pentode	10.00	1.2	0.120						1400	100	8	0.23	H 7	
			NF- u. HF-Verst		2.4	0.060	135	14,8	90	2.6	7.5	1900	90	8	0.6	на	
														0	0.0	n đ	

tes.

Ca'g (pF)	Cg'c (pF)	Cac (pF)	Suitable as	Electrodes connected to the base	Maximum height H (mm)	Maximur diamete (mrn)
8,0	9,0	3,5	1, 3, 5	F, G, A	163	65
11	7,5	5,5	1, 5	- F	200	50
15,6	18,2	2,3	1, 5	_	300	125
6,5	6,0	1,5	1, 3, 5, 6	F	272	75
8,3	16,4	0,75	5		445	182
11,0	17,6	1,3	1, 5	_	550	102
7,3	9,4	2,1	1, 2, 3, 5		275	125
10,0	9,8	1,1	1, 2, 3		320	165
11,0	17,0	1,3	2, 3		550	182
11,0	17,0	2,0	2, 3		550	182
15,9	32,2	1,6	5	F	440	180
14,6	26,4	13,8	3	F	400	105
14,6	26,4	13,8	3	F	455	180
9	12	1,0	1, 3, 4		195	92
18,5	23,5	3,0	1, 3, 4, 5	-	292	205
29,5	26,6	1,5	1, 5		700	215
25,5	26,8	2,6	3, 4		700	215
21,5	29,6	2,3	3, 5, 6		790	206
40	58	2	1, 3, 5		485	170
45	65	7	5.6		1090	209
27	23	1,3	1 5		630	
18,5	23,5	3,0	1, 3, 4, 5		295	115
29,5	26,6	1,5	1, 5	The second of th	700	110
29,5	26,6	1,5	1, 5		700	
25,5	26,8	2,6	3		700	115
21,5	29,6	2,3	1, 3, 5		790	115
40	58	2	1, 3, 5		485	155
45	65	7	1, 5		1150	170
45	65	7	1, 5		1090	273
40	50	8	3, 4		1120	273
51	101	6.6	5			273
55	106	6	5		1120	273

-						
Ci (pF)	Co (pF)	Ca/g, (pF)	Suitable as	Electrodes connected to the base	Maximum height H (mm)	Maximum diameter (mm)
	9	0,15	1, 5, 7	F, G, G,	154	91
			3, 5	F, G, G,	267	150
	10	0,01	1, 5	F, G, G,	265	65

POOR-XORIGINAL

1	ELE	KTRO:	'ENRÔH!	RE	v			•	TE	LA							
	DATE	EN DER 1	TESLA-ELE	KTR	ON	ENR	ÖH	REN									10
					Herzur	re	,	Anode	Schire	mg:tter	Steuergitter		Innen-	Aussen-			
	Type	Aquivalent	Verwendungsart	Art	Span- nung V		Span- nung V		Span- nung V	Strom mA	Spannung	Steilheit u A V	wider- stand k!!	wider- stand kt/	Leistung W	Sociael Nr	
	63 V N	Miniaturroh	ren fur Wechse	Istro	m												
	6B31	(6AL5) (2)	Doppeldiode Detektor	ind.		0,3	150	2×9	Imax	2 ×	54 mA			2 × 0,3		H 10	-
	6B32	6AL5	Doppeldiode Detektor		6.3	0,3	150	2 × 9	Imax	2 ×	54 mA			2 × 0,3		н 11	
	6BC32	6AV6	Doppeldiode Triode		6,3	0,3	250	1			1,8	1600	68			H 12	
	6F31	6BA6	Pentode, regelbar		6,3	0,3	250	11	100	4.2	-1 -20	4400	1500			H 13	
	6F32	6AKS	Pentode, nicht regelbar		6,3	0,175	180	8	120	2.2	-2	4600	530			H 14	
	6F33	(6AS6)	Pentode HF-Verstarker		6,3	0,175	120	5,7	120	3	2	3500				H 15	
	6F35	(6AJ5)	Pentode, nicht regelbar		6,3	0,175	28	3	28	1,2	-0.8	2750	90			H 14	
	6F36	(6AC7)	Pentode, nicht regelbar		6,3	0,45	300	10	150	2.5	-2	9000	1000			H 16	
	6F37	(6F36)	Pentode,		6,3	0,45	300	10	150	2,5	2	9000	1000			H 16	
	6H31	(6BE6)	nicht regelbar Pentagrid		6.3	0.3	250	3	100	7.1	-1.5	475	1000			H 17	1
	6L31	6AQ5	Oszill. u. Mischr. Strahlpentode		6,3	0,45	250	45	250	4.5	-12,5	4100	52	5	4,5	H 18	20.50
	6C31	614	NF-Verstarker Steile Triode		6.3	0.4	150	10			1	10000				H 19	00
	6CC31	6]6	Doppeltriode		6,3	0.45	200	6			0	3000	12.5	70		H 20	
		om-Rohren														To the second	
	13B31 12BC32	(12AV6)	Doppeldiode Doppeldiode Triode			0.15 0.15	150 250	9 1.2			-2	1600		2 × 300 62,5		H 10 H 12	100

O T

TESLA High power transmitting tubes and rectifying val

	Туре	Cat	thode	An	o d e				s	f ma
	1,100	Vf (V)	If (A)	Va (kV) la (A)	Wa (W)	le (A)	h	Ri (kΩ)	(mAV)	(Mc
	RD 25 A	4,0	1,75 - 2,2	0,6 0,17	25		9.5	1,265	7.5	
	RD 60 A	10,0	1,7 - 2,0	1,5 0,2	60		25.0	and the same of th	1	25
73	RD 150 A	12,5	2,8 - 3,2	2,5 0,2	150	0,8	14 — 18	5,0 4,5 — 6,0	5,0	53
cooled	RD 200 B	10,8	4,0 - 4,4	3,5 0,275	200	2,0				20
õ	RD 500 A	17,0	10,0 - 13.0	5.0 0.2	500	0.8	20 24	5,0	-	50
-	RD 750 A	16,5	21.0 - 26.0	10,5 0,4	750		35 - 45	15 — 18	-	2
ō "	ZD 200 A	12,5	5,25 - 5,75	3,0 0,1	200	2,0	60 100	20	-	2
Radiation triodes	ZD 400 A	13,5	12,6 — 14,4	4,0 0,15		0,275	8 — 12	7 – 11		20
.ĕ. :ē	ZD 600 A	16,0	8,5 - 9,5	10,0	600	0,75	23 - 30	11 - 17		2:
	ZD 800 A	17,0	8,7 — 9,7	5.0	800	0,8	11 — 15	5 - 7		ı
	RD 1 XA	15 8 — 17,0	19 — 24	10,0 0,4	1000	2,3	7 - 9	2,8 — 3,8		
	ZD 1 XA	17,6 20,0	22 - 27	6.0	1100	STAND OF STREET	31 - 39	10,5 — 15,3		36
es	ZD 1 XB	17,6 20,0	22 - 27	6.0	1200	2,2	6.0 - 7,5			ı
triodes	RD 2 XF	12,0	45 55	5,0 1	2000	2,2	6.0 — 7,5			
	RD 5 XF 4)	11,0	115 135	8,5 2	5000	5,0	20 - 24	3.5 — 4.5	9 1)	150
cooled	RD 8 XA	18,5 - 20,6	66 74	12,0 2	8000	9,3	19 — 21	2,0 - 2,5	10	190
00	ZD 8 XA	15 9 19,6	68 — 77	12,0	8000	7.0	_ 33 — 44	4.4 — 6		3
	RD 12 XA 5)	18,0 - 20,0	94 — 102.0	15,0 2,5	12000	13,2	5,4 — 7.0		1	20
ž	RD 20 XF	19,5	220 — 240	15 5	20000	30	40 — 50	4.5 - 5.2		30
	RD 50 XA	30,0 - 33,0	210 240	20 10	50000	50	34 — 38		15	25
	RD 5 YA	18 — 20	44 - 56	1 10 1	5000	5.5	44 — 52	2.0 — 2.5		3
	RD 5 YF	11,0	115 - 135	8,5 2	5000	9,3	34 — 43	6.0 — 8.5		20
	RD 12 YA	18.5 20,6	66 — 74	15 2	12000	11	19 — 21	2.0 — 2,5	10	100
	RG 12 YE	18,5 - 20,6	66 — 74	12 2	12000	the second second	33 - 44	4.4 — 6		3
θS	ZD 12 YA	15,9 - 19,6	68 — 77	12 1,5	12000		33 — 44	4,4 6		30
Po	RD 18 YA	18,0 - 20,0	94 — 104	15 2.5	18000	13.2	5,4 - 7			2C
Ξ	RD 20 YF	19,5	220 — 240	15 5	20000	30.0	40 - 50	_4.5 - 5.2	Transcent Teacher	30
cooled triodes	RD 75 YA	30,0 - 33	220 — 250	20 10	75000	50,0	34 — 38		15	2
jo l	RD 75 YB	30 - 33	220 250	20 10	75000	50,0	44 — 52	2,0 2.5		3
ខ	ZD 75 YA	28 - 30,5	210 240	20 7	75000	35.0	14 — 52	2.0 — 2.5		3
Water	RD 150 YA	31,5 - 34,0	440 — 470	20 20	150000	100,0	9,5 — 10,5		20	_ 1
ā	RD 150 YB	31,5 - 54,0	440 — 470	20 20	150000	100,0	40 - 43	0,6 — 1,2		3
> 1			The state of the s	Company of the second of the control of the	:50000	100,0	40 48	0.8 - 1.2		24

Туре	Cathode		Anode				Grids				, conto	1	1
	Vf (V)	If (A)	Va (kV)	la (mA)	Wa (W)	le (A)	Wg. (W)	Vg. (V)	lg. (mA)	Wg. (W)	S (mA;V)	д	f max (Mc s)
RE 400 F RE 1000 F RL 65 A	5 7,5 10,0	12,5 — 15,5 23 — 29 1,65 — 2,05	4 6 1,5	350 700 125	400 1000 65	2,5 5	15 25	600 1000 400	20	40 70 15	4,5 2) 10 1,5 3)	7.2	150 150 15

POOR ORIGINAL

Sanitized Copy Approved for Release 2010/08/18 : CIA-RDP81-01043R000700220007-9

POORSORIGINAL

Sanitized Conv. 4 paraved for Release 2010/08/18 - CIA-RDR81-010/18/000700220007-9