

## Department of Mathematics and Natural Sciences

Semester: Spring 2024

## **Final Examination**

Course ID: MAT-215

Course Title: Complex Variables and Laplace Transformations (Mathematics III)

Total Marks: 35 Date: May 8, 2024

Time: 1 hour 30 minutes

## Answer any five $[5 \times 7 = 35]$

[7]

[7]

1. [4+3]

i. Use definition to find 
$$\mathcal{L}{f(t)}$$
, where  $f(t) = \begin{cases} 0, & 0 \le t < \frac{\pi}{2} \\ \cos t, & t \ge \frac{\pi}{2} \end{cases}$ 

ii. Show that 
$$\mathcal{L}\{y''(t)\} = s^2 Y(s) - s y(0) - y'(0)$$

2. Evaluate 
$$\frac{1}{2\pi i} \oint_C \frac{e^{zt}}{(z^2+1)^2} dz$$
 if  $t > 0$  and C is the circle  $|z| = 3$ . [7]

i. Find the Laplace transform of  $f(t) = te^{3t} \cos 2t$ 

ii. Evaluate 
$$\mathcal{L}^{-1}\left\{\frac{s}{s^2+4}e^{-\pi s}\right\}$$

4. Evaluate 
$$\int_{i}^{2-i} (3xy + iy^2) dz$$
 along the curve  $x = 2t - 2, y = 1 + t - t^2$ . [7]

5. Solve the following differential equation using Laplace transform:

$$2y''' + 3y'' - 3y' - 2y = e^{-t}, y(0) = 0, y'(0) = 0, y''(0) = 1$$

6. Consider following:

• If 
$$F(s) = \mathcal{L}{f(t)}$$
 and  $a > 0$ , then  $\mathcal{L}{f(t-a)\mathcal{U}(t-a)} = e^{-as}F(s)$ ,

• If 
$$f(t) = \mathcal{L}^{-1}{F(s)}$$
, then  $\mathcal{L}^{-1}{e^{-as}F(s)} = f(t-a)\mathcal{U}(t-a)$ ,

• Also  $\mathcal{L}{g(t)\mathcal{U}(t-a)} = e^{-as} \mathcal{L}{g(t+a)}$ 

Now, solve 
$$y' + y = f(t)$$
,  $y(0) = 5$  where  $f(t) = \begin{cases} 0, & 0 \le t < \pi \\ 2 \cos t, & t \ge \pi \end{cases}$ 

7. Expand 
$$f(z) = \frac{1}{z^2 + 4z + 3}$$
 in a Laurent Series valid for  $1 < |z| < 3$ . [7]