Supplementary 5 – Outputs for the 53 pipeline (10%) and 79 pipeline (15%) samples

Output 1: Median Predictive Accuracy and Kolmogorov-Smirnov Statistic

Sample Size = 53 pipelines (10% of full multiverse)

Sampling Approach	Median R ²	K-S Statistic	K-S Statistic	
Full multiverse	0.064			
Active learning	0.066	0.144		
Random	0.066	0.088		
Stratified	0.077	0.210		

Sample Size = 79 pipelines (15% of full multiverse)

Sampling Approach	Median R ²	K-S Statistic	K-S Statistic	
Full multiverse	0.064			
Active learning	0.065	0.093		
Random	0.051	0.154		
Stratified	0.067	0.068		

Output 2: Predictive Accuracy of the Pipelines

Sample Size = 53 pipelines (10% of full multiverse)

Best Full Sample	R ²	Best Active Learning	R ²	Best Random	R ²	Best Stratified	R ²
				Sampling		Sampling	
b-200, rMas, 500200,		b-100, rAvg, SAV400,		b-200, rMas, 600200,		b-200, rAvg, 500200,	
CP1CP2	0.203	CP1CP2PzP3P4	0.157	CP1CP2	0.173	CP1CP2PzP3P4	0.177
b-100, rMas, 500200,		b-200, rAvg, SAV400,		b-200, rCSD, 500200,		b-200, rMas, 600200,	
CP1CP2	0.188	CP1CP2PzP3P4	0.157	CP1CP2PzP3P4	0.147	CP1CP2	0.173
b-200, rMas, SAV400,		b-100, rAvg, 500200,		b-200, rAvg, 500200,		b-100, rMas, 600200,	
CP1CP2PzP3P4	0.184	CP1CP2PzP3P4	0.155	P3P4CP1CP2	0.146	CP1CP2	0.169
b-100, rMas, SAV400,		b-200, rAvg, 500200,		b-100, rAvg, 500200,		b-200, rCSD, 500200,	
CP1CP2PzP3P4	0.182	CP1CP2PzP3P4	0.155	CP1CP2PzP3P4	0.141	CP1CP2PzP3P4	0.147
b-200, rAvg, 500200,		b-100, rCSD, 500200,		b-100, rMas, 500300,		b-200, rAvg, 500200,	
CP1CP2PzP3P4	0.177	P3P4CP1CP2	0.151	CP1CP2	0.137	P3P4CP1CP2	0.146
b-200, rMas, 700200,		b-100, rCSD, 500200,		b-200, rCSD, 500200,		b-100, rAvg, 500200,	
CP1CP2	0.173	CP1CP2	0.150	around	0.127	CP1CP2PzP3P4	0.141
b-200, rMas, 600200,		b-100, rCSD, 500200,		b-100, rMas, 450100,		b-100, rMas, 500300,	
CP1CP2	0.173	Cz	0.149	CP1CP2	0.120	CP1CP2	0.137
b-200, rAvg, SAV400,		b-200, rCSD, 500200,		b-200, rAvg, GAV400,		b-200, rCSD, 500200,	
CP1CP2PzP3P4	0.171	CP1CP2	0.147	CP1CP2PzP3P4	0.113	around	0.127
b-100, rMas, 600200,		b-100, rCSD, 500200,		b-200, rCSD, 500200,		b-200, rAvg, 450100,	
CP1CP2	0.169	CP1CP2PzP3P4	0.147	Pz	0.110	CP1CP2PzP3P4	0.125
b-100, rAvg, SAV400,		b-200, rCSD, 500200,		b-100, rAvg, 700300,		b-200, rAvg, 500200,	
CP1CP2PzP3P4	0.168	P3P4CP1CP2	0.147	CP1CP2PzP3P4	0.109	Cz	0.121

Sample Size = 79 pipelines (15% of full multiverse)

Best Full Sample	R ²	Best Active Learning	R ²	Best Random	R ²	Best Stratified	R ²
				Sampling		Sampling	
b-200, rMas, 500200,		b-100, rMas, SAV400,		b-100, rCSD, 500200,		b-200, rMas, 600200,	
CP1CP2	0.203	CP1CP2PzP3P4	0.160	P3P4CP1CP2	0.156	CP1CP2	0.173
b-100, rMas, 500200,		b-100, rAvg, SAV400,		b-100, rCSD, 500200,		b-100, rCSD, 500200,	
CP1CP2	0.188	CP1CP2PzP3P4	0.157	around	0.152	CP1CP2	0.162
b-200, rMas, SAV400,		b-200, rAvg, SAV400,		b-200, rAvg, 700200,		b-200, rCSD, 500200,	
CP1CP2PzP3P4	0.184	CP1CP2PzP3P4	0.157	CP1CP2PzP3P4	0.152	CP1CP2PzP3P4	0.147
b-100, rMas, SAV400,		b-100, rAvg, 500200,		b-200, rMas, SAV400,		b-200, rCSD, 500200,	
CP1CP2PzP3P4	0.182	CP1CP2PzP3P4	0.156	CP1CP2	0.147	CP1CP2	0.142
b-200, rAvg, 500200,		b-200, rAvg, 500200,		b-200, rMas, 700200,		b-100, rAvg, 500200,	
CP1CP2PzP3P4	0.177	CP1CP2PzP3P4	0.156	P3P4CP1CP2	0.137	CP1CP2	0.138
b-200, rMas, 700200,		b-100, rCSD, 500200,		b-200, rMas, 600200,		b-100, rMas, 500300,	
CP1CP2	0.173	P3P4CP1CP2	0.152	P3P4CP1CP2	0.131	CP1CP2	0.137
b-200, rMas, 600200,		b-100, rCSD, 500200,		b-200, rAvg, 700200,		b-200, rCSD, 500200,	
CP1CP2	0.173	CP1CP2	0.152	P3P4CP1CP2	0.116	Cz	0.128
b-200, rAvg, SAV400,		b-100, rCSD, 500200,		b-100, rAvg, 600200,		b-200, rCSD, 500200,	
CP1CP2PzP3P4	0.171	Cz	0.150	CP1CP2PzP3P4	0.115	around	0.127
b-100, rMas, 600200,		b-200, rMas, SAV400,		b-100, rAvg, SAV400,		b-200, rAvg, 500200,	
CP1CP2	0.169	CP1CP2PzP3P4	0.149	P3PzP4	0.103	around	0.123
b-100, rAvg, SAV400,		b-100, rCSD, 500200,		b-200, rAvg, 700600,		b-100, rAvg, 500200,	
CP1CP2PzP3P4	0.168	CP1CP2PzP3P4	0.149	CP1CP2	0.099	P3P4CP1CP2	0.121

Blue = the Pipeline is included within the best pipelines of the full multiverse. b-100 and b-200 = baseline durations of 100 and 200 ms respectively, rAvg, rMas and rCSD = common average, linked mastoids and common source density reference schemes respectively.

Output 3: Raincloud Plots of Predictive Accuracies

Sample Size = 53 pipelines (10% of full multiverse)

Sample Size = 79 pipelines (15% of full multiverse)

Output 4: Scatter Plots of Spatial Distribution in the Low Dimensional Space

Sample Size = 53 pipelines (10% of full multiverse)

Sample Size	Full Multiverse vs. Random	Full Multiverse vs.	Full Multiverse vs. Active	
	Sample	Stratified Sample	Learning Sample	
53 pipelines	70.90	72.53	70.78	

Sample Size = 79 pipelines (15% of full multiverse)

Sample Size	Full Multiverse vs. Random	Full Multiverse vs.	Full Multiverse vs. Active	
	Sample	Stratified Sample	Learning Sample	
79 pipelines	69.09	70.92	71.63	

Output 5: Specification Curves

Sample Size = 53 pipelines (10% of full multiverse)

Specification curves displaying the variability in the R^2 across each sample, in vertical alignment with the respective pipeline options. Panel A = random sample, Panel B = stratified sample, Panel C = active learning sample, Panel D = full multiverse. Each colour in the lower specification panel corresponds to one decision node. Blue = baseline duration, yellow = reference scheme, green = time window, purple = electrode cluster. Each row within a colour represents a different option at that decision node. In the top panel of the active learning plot, dark green points denote pipelines that were directly sampled and light green points denote pipelines that were estimated.

<u>Sample Size = 79 pipelines (15% of full multiverse)</u>

Specification curves displaying the variability in the R^2 across each sample, in vertical alignment with the respective pipeline options. Panel A = random sample, Panel B = stratified sample, Panel C = active learning sample, Panel D = full multiverse. Each colour in the lower specification panel corresponds to one decision node. Blue = baseline duration, yellow = reference scheme, green = time window, purple = electrode cluster. Each row within a colour represents a different option at that decision node. In the top panel of the active learning plot, dark green points denote pipelines that were directly sampled and light green points denote pipelines that were estimated.