

A counter-example to the theorem of Hiemer and Snurnikov

Thierry Monteil ^{*}

Abstract

A planar polygonal billiard \mathcal{P} is said to have the finite blocking property if for every pair (O, A) of points in \mathcal{P} there exists a finite number of “blocking” points B_1, \dots, B_n such that every billiard trajectory from O to A meets one of the B_i ’s. As a counter-example to a theorem of Hiemer and Snurnikov, we construct a family of rational billiards that lack the finite blocking property.

Key words: rational polygonal billiards, translation surfaces, blocking property.

1 Introduction

A planar polygonal billiard \mathcal{P} is said to have the finite blocking property if for every pair (O, A) of points in \mathcal{P} there exists a finite number of “blocking” points B_1, \dots, B_n (different from O and A) such that every billiard trajectory from O to A meets one of the B_i ’s.

In [HS], Hiemer and Snurnikov tried to prove that any rational polygonal billiard has the finite blocking property. The aim of this paper is to construct a family of rational billiards that lack the finite blocking property.

^{*}Institut de Mathématiques de Luminy, CNRS UPR 9016, Case 907, 163 Avenue de Luminy, 13288 Marseille cedex 09, France – E-Mail: monteil@iml.univ-mrs.fr – Tel: +33 4 91 26 96 77 – Fax : +33 4 91 26 96 55

2 The counter-example

Let α be a positive irrational number and \mathcal{P}_α be the polygon drawn in Figure 1 (L_1 and L_2 can be chosen arbitrarily, greater than 1).

Figure 1: The polygon \mathcal{P}_α .

Let $(p_n, q_n)_{n \in \mathbb{N}}$ be a sequence in $\mathbb{N}^*{}^2$ such that:

- q_n is strictly increasing
- $|p_n - q_n \alpha| < 1$

For example, we can take $q_n = n + 1$ and $p_n = [q_n \alpha]$.

For $n \in \mathbb{N}$, let γ_n be the billiard trajectory starting from O to A with slope

$$\frac{1}{p_n + q_n \alpha} = \frac{1}{2q_n \alpha + \lambda_n} = \frac{1}{2p_n - \lambda_n}$$

where $\lambda_n = p_n - q_n \alpha \in]-1, 1[$.

So, we can check (with the classical unfolding procedure shown in Figure 2) that γ_n hits q_n walls, passes through $(\lambda_n, 1)$, hits p_n walls and then passes through $A(0, 2)$.

Figure 2: The unfolding procedure.

The fact that $\lambda_n \in]-1, 1[$ enables us to avoid the banana peel shown in Figure 3.

Figure 3: The banana peel.

Now, we assume by contradiction that there is a point $B(x, y)$ in \mathcal{P}_α distinct from O and A such that infinitely many γ_n pass through B . Hence, there is a subsequence such that for all n in \mathbb{N} , γ_{i_n} passes through B .

There are two cases to consider:

First case: $y \in]0, 1]$. By looking at the unfolded version of the trajectory (Figure 2), we see that $x = \varepsilon_{i_n} y (p_{i_n} + q_{i_n} \alpha) \pmod{2\alpha}$ where $\varepsilon_{i_n} \in \{-1, 1\}$ depends on the parity of the number of bounces of γ_{i_n} from O to B .

So, there exists a sequence $(k_n)_{n \in \mathbb{N}}$ in \mathbb{Z} such that $x = \varepsilon_{i_n} y (p_{i_n} + q_{i_n} \alpha) + 2k_{i_n} \alpha$.

Taking a further subsequence, we can consider $\varepsilon \circ i$ to be constant with value ε .

We have $x = \varepsilon y(p_{i_0} + q_{i_0}\alpha) + 2k_{i_0}\alpha = \varepsilon y(p_{i_1} + q_{i_1}\alpha) + 2k_{i_1}\alpha$.

Hence, $(p_{i_1} - p_{i_0}) + (q_{i_1} - q_{i_0})\alpha = \frac{\varepsilon 2\alpha}{y}(k_{i_0} - k_{i_1}) \neq 0$.

So, $\frac{\varepsilon 2\alpha}{y}$ can be written as $r + s\alpha$ where r and s are rational numbers.

Now, if $n \geq 1$, we still have $(p_{i_n} - p_{i_0}) + (q_{i_n} - q_{i_0})\alpha = (r + s\alpha)(k_{i_0} - k_{i_n})$.

Because $(1, \alpha)$ is free over \mathbb{Q} , we have

- $(p_{i_n} - p_{i_0}) = r(k_{i_0} - k_{i_n})$
- $(q_{i_n} - q_{i_0}) = s(k_{i_0} - k_{i_n}) \neq 0$ (remember that q_n is strictly increasing)

Thus, by dividing,

$$\frac{r}{s} = \frac{p_{i_n} - p_{i_0}}{q_{i_n} - q_{i_0}} = \frac{p_{i_n}}{q_{i_n}} \left(1 - \frac{p_{i_0}}{p_{i_n}}\right) \left(\frac{1}{1 - \frac{q_{i_0}}{q_{i_n}}}\right) \xrightarrow{n \rightarrow \infty} \alpha \in \mathbb{R} \setminus \mathbb{Q}$$

leading to a contradiction.

For the second case, if $y \in [1, 2[$, it is exactly the same (take the point $A(0, 2)$ as the origin and reverse Figure 2).

Thus, **the billiard \mathcal{P}_α lacks the finite blocking property**.

3 Conclusion

In [M], we study Hiemer and Snurnikov's proof: it works for rational billiards with discrete translation group (such billiards are called *almost integrable*). Then we generalize the notion of finite blocking property to translation surfaces (see [MT] for precise definitions). With an analogous construction to the one described above, we obtain the following results:

Theorem 1 *Let $n \geq 3$ be an integer. The following assertions are equivalent:*

- *the regular n -gon has the finite blocking property.*
- *the right-angled triangle with an angle equal to π/n has the finite blocking property.*
- $n \in \{3, 4, 6\}$.

Theorem 2 *A translation surface that admits cylinder decomposition of commensurable moduli in two transversal directions has the finite blocking property if and only if it is a torus branched covering.*

Corollary 1 *A Veech surface has the finite blocking property if and only if it is a torus branched covering.*

Note that torus branched coverings are the analogue (in the vocabulary of translation surfaces) of almost integrable billiards.

We also provide a local sufficient condition for a translation surface to fail the finite blocking property: it enables us to give a complete classification for the L-shaped surfaces and a density result in the space of translation surfaces in every genus $g \geq 2$.

References

[HS] P. HIEMER, V. SNURNIKOV, *Polygonal billiards with small obstacles*, Journal of Statistical Physics, Vol 90 (1998), p 453–466.

[MT] H. MASUR, S. TABACHNIKOV, *Rational billiards and flat structures*, Handbook on dynamical systems, Vol. 1A, p 1015–1089, North-Holland, Amsterdam, (2002).

[M] T. MONTEIL, *On the finite blocking property*, preprint.