Міністерство освіти і науки України

КНУ ім. Тараса Шевченка Фізичний факультет

Звіт до лабораторної роботи №1

Виконали:

студенти 2 курсу 5а групи спеціалізації 104 "Фізика та астрономія,, Меланіч Геннадій Анатолійович Коцан Олена Степанівна Загревський Владислав Анатолійович

Зміст

1	Вступ
2	Інтегруючий RC-ланцюжок
	2.1 Досліди
	2.2 Чому вихідний сигнал має саме таку форму?
	2.2.1 Меандр
	2.2.2 Синусоїдальний сигнал
3	Диференціюючий CR-ланцюжок
	3.1 Досліди
	3.1.1 Чому вихідний сигнал має саме таку форму?
	3.2 Меандр
	3.2.1 Синусоїдальний сигнал
1	Висновки

1 Вступ

Мета, яку ми ставили собі, починаючи виконувати дану лабораторну роботу:

- Якісно познайомитись із таким частотним фільтром, як чотирьохполюсник:
 - 1. Які можливі схеми підключення.
 - 2. Які є режими роботи (інтегруючий чи диференціюючий чотирьохполюсник).
- Базуючись на знаннях вище, провести серію дослідів, аби ще краще зрозуміти досліджуваний пристрій.
- Розрахувати теоретично залежності вихідних сигналів в залежності від вхідних, переконатись, що вони співпадають з отриманими експериментально.

Також у даному звіті будуть надані не тільки результати роботи, а й теоретичні/практичні поради, які нам дуже допомогли б у процесі виконання даної роботи.

2 Інтегруючий RC-ланцюжок

Оскільки чотирьохполюсник має (неймовірно!) чотири полюси, існує 2 унікальні способи, як його під'єднати до схеми. При першому способі під'єднання, як на рисунку нижче, чотирьохполюсник носит назву 'інтегруючий RC-ланцюжок,;

2.1 Досліди

Після під'єднання як на рисунку вище, ми подавали на вхід сигнали і дивились на

вихідний сигнал. Ми подали синусоїдальний сигнал та сигнал у формі меандра:

2.2 Чому вихідний сигнал має саме таку форму?

2.2.1 Меандр

Меандр у просторі Лапласа описується функцією $\frac{U_{in}}{p}$. Тоді:

$$U_{out}(p) = \frac{U_{in}}{p} \frac{\frac{1}{pC}}{R + \frac{1}{pC}} = U_{in} \frac{1}{p(p\tau + 1)}$$
 (1)

Для оберненого перетворення:

$$\frac{1}{p(p\tau+1)} = \frac{1}{p} - \frac{1}{p+\frac{1}{\tau}}$$

Тоді обернене перетворення матиме вигляд:

$$U_{out}(t) = U_{in}(1 - e^{-\frac{t}{\tau}}), \quad \tau = RC$$
 (2)

3 графіку видно, що $\tau \approx 2.6mc$.

2.2.2 Синусоїдальний сигнал

Процедура аналогічна попередньому пункту. Для спрощення приймемо ф-цію на графіку за $-\sin 1 \cdot t$. Тоді:

$$U_{out}(p) = -\frac{U_{in}}{p^2 + 1} \cdot \frac{1}{p\tau + 1} = -U_{in} \frac{\tau}{\tau^2 + 1} \left(\frac{1}{p + \frac{1}{\tau}} - \tau \frac{p}{p^2 + 1} + \frac{1}{\tau} \frac{1}{p^2 + 1} \right)$$
(3)

Тоді обернене перетворення буде у вигляді:

$$U_{out}(t) = U_{in} \frac{\tau}{1 + \tau^2} (-e^{-\frac{t}{\tau}} + \tau \cdot \cos t - \frac{1}{\tau} \sin t)$$

Отже, досить точним буде твердження, що функція $-\sin t$ перейшла у функцію $\cos t$, що і можна спостерігати на другому графіку наших дослідів із чотирьохполюсником.

3 Диференціюючий СК-ланцюжок

У цьому випадку має місце така схема підключення:

3.1 Досліди

Після під'єднання як на рисунку вище, ми подавали на вхід сигнали і дивились на вихідний сигнал. Ми подавали сигнал у формі меандра та синусоїдальний сигнал:

3.1.1 Чому вихідний сигнал має саме таку форму?

3.2 Меандр

Логіка та послідовність формульних викладок така сама, як і у випадку Інтегруючого RC-ланцюжка:

$$U_{out}(p) = \frac{U_{in}}{p} \frac{R}{R + \frac{1}{pC}} = U_{in} \frac{1}{p + \frac{1}{\tau}}$$

$$U_{out}(t) = U_{in} e^{-\frac{t}{\tau}}$$

$$\tag{4}$$

В цьому випадку $\tau \approx 2.45 mc$.

3.2.1 Синусоїдальний сигнал

Оскільки на меті побачити фізичну картину процесу, а не розібратись у арифметичних тонкощах розкладання на прості дроби, знову приймемо, для спрощення, що вхідна функція " $-\sin t_{\rm h}$ ".

$$U_{out}(p) = -U_{in} \frac{1}{p^2 + 1} \frac{1}{p + \frac{1}{\tau}}$$

$$\frac{1}{p^2+1}\frac{1}{p+\frac{1}{\tau}} = \frac{\tau}{1+\tau^2} \left(\tau \frac{1}{p+\frac{1}{\tau}} + \frac{1}{p^2+1} - \tau \frac{p}{p^2+1}\right)$$

Тоді шукана функція $U_{out}(t)$:

$$U_{out}(t) = U_{in} \frac{\tau}{1 + \tau^2} \left(\tau \cos t - \tau e^{-\frac{t}{\tau}} - \sin t \right)$$
 (5)

Знову таки бачимо, CR-фільтр перетворив вхідний $-\sin t$ сигнал у вихідний $\cos t$ сигнал, що прекрасно корелює там, що видно на отриманому графіку.

4 Висновки

Тож у ході даної лабораторної роботи ми:

- якісно ознайомились чотирьохполюсником одним із найпростіших у своєму роді частотним фільтром.
 - 1. Розібрались із схемою його підключення.
 - 2. Перевірили обидва режими його роботи: диференціюючий та інтегруючий.
- Провели серію дослідів, які ще краще втамували наше бажання до розуміння приладу як на якісному, так і на кількісному рівнях.
- Закріпили вивчене теоретично:
 - 1. Після досить довгого і наполегливого вглядання у формулу (3), ми, нарешті, зрозуміли що для успішного оберненого перетворення Фур'є, її доцільно розкласти на прості множники.
 - 2. До речі, осягнення попереднього пункту, нарешті, стало очевидно, як формула (1) перетворилась у (2).
- Отже, після мозкового штурму у попередньому пункті, ми успішно отримали аналогічні формули і для CR режиму: (4), (5), які також співпали із тим, що ми побачили на екрані осцилографа.