

Computabilità, Complessità e Logica

Prof. Adriano Peron

Complessità: Spazio

Complessità computazionale

- Contesto
- La proda della decidibilità di un problema è un passo preliminare indispensabile per dimostrare la trattabilità di un problema
- Dal punto di vista pratico la decidibilità non è spesso una proprietà sufficiente
- ► E indispensabile valutare se la quantità di risorse necessaria per la risoluzione del problema è affrontabile
- Le due dimensioni principali per l'analisi della complessità sono
 - Tempo (numero di passi elementari)
 - Spazio (memoria necessaria)

Complessità computazionale

- Contesto
- L'appartenenza di un problema a una classe di complessità (come già la decidibilità/indecidibilità) sono proprietà intrinseche dei problemi
- Il modello adottato per la definizione di computabilità (le Macchine di Turing) è anche lo strumento per definire le classi di complessità.
- Lo spazio richiesto per l'esecuzione di una MdT è il numero di celle della MdT utilizzate per la computazione
- Lo spazio di esecuzione è valutato in funzione di un unico parametro: la dimensione dell'input sul nastro all'inizio della computazione
- Il valore di spazio consoderato è il valore maggiore rispettoa tutte le computazioni che hanno la stessa dimensione dell'input

Classi di complessità spaziale

Definizione

Sia t: $N \rightarrow R^+$ una funzione.

La classe di complessità SPACE(t(n)) è l'insieme dei linguaggi che possono essere decisi mediante MdT deterministiche che operano in spazio O(t(n)).

La classe di complessità NSPACE(t(n)) è l'insieme dei linguaggi che possono essere decisi mediante MdT non-deterministiche che operano in spazio O(t(n)).

Esempio. Si consideri il linguaggio $L = \{a^k b^k: k \ge 0\}$

Sia M una MdT che decide L

- 1. M controlla che non ci siano b prima di a (una scansione 2n passi)
- 2. Mitera la marcatura di una a e una b
- 3. La MdT usa solo la prozione di nastro riservata all'input e dunque usa spazio O(n).
- 4. L ∈SPACE(n).

Classi di complessità spaziale

Esempio. Si consideri il linguaggio L_{SAT}

1. Sappiamo che è un problema NP-completo e che (se $P \neq NP$) non esiste algoritmo in tempo polinomiale per decidere il linguaggio.

Una MdT non-deterministica

- 1. Inizia la computazione con la formula booleana sul nastro (input)
- 2. Genera casualmente una valutazione per le variabili booleane (spazio lineare nel numero delle variabili, non superiore allo spazio della formula che rappresenta l'input)
- 3. Verifica che la valutazione delle variabili soddisfi la formula (può essere fatto nello stesso spazio della formula)
- 4. $L_{SAT} \in NSPACE(n)$.

La classe di complessità PSPACE e NPSPACE

- La classe di complessità PSPACE include tutti i linguaggi/problemi che siano decisi da una MdT deterministica che decida in spazio polinomiale
- ► DEFINIZIONE. PSPACE è la classe dei linguaggi che possono essere decisi da una MdT deterministica in spazio polinomiale

$$PSPACE = \bigcup_{k} SPACE(n^k)$$

- La classe di complessità NPSPACE include tutti i linguaggi/problemi che siano decisi da una MdT nondeterministica che decida in spazio polinomiale
- ► DEFINIZIONE. PSPACE è la classe dei linguaggi che possono essere decisi da una MdT deterministica in spazio polinomiale

$$NPSPACE = \bigcup_{k} NSPACE(n^k)$$

Classi di complessità temporale

- Considerazioni.
- Nel determinare la decidibilità di un linguaggio/problema è irrilevante il modello computazionale
- ► Il risultato non dipende da determinismo/non determinismo o dall'uso di più nastri
- Nel determinare la classe di complessità temporale di un linguaggio/problema è rilevante il modello di MdT utlizzato.
- L'uso di MdT deterministiche e non deterministiche porta alla definizione di classi di complessità distinte (nel caso in cui $P \neq NP$).
- Cosa si può dire per la complessità spaziale?

Complessità spaziale e non-determinismo

- Quanto può incidere l'uso del non-determinismo nel determinare la complessità spaziale del problema?
- TEOREMA (Savitch).

Sia $f: N \to R^+$ una funzione tale che $f(n) \ge n$.

$$NSPACE(f(n)) \subseteq SPACE(f^2(n)).$$

- ▶ Ogni linguaggio L deciso in spazio O(f(n)) da una MdT non-deterministica può essere deciso in spazio $O\left(f^2(n)\right)$.
- COROLLARIO

$$PSPACE = NPSPACE$$

- ► Ogni MdT che decide in tempo polinomiale decide necessariamente anche in spazio polinomiale
- ► (Per ogni passo può usare una cella del nastro)

$$NP \subseteq NPSPACE = PSPACE$$

Segue la seguente gerarchia di classi di complessità

$$P \subseteq NP \subseteq NPSPACE = PSPACE$$

Per nessuna delle inclusioni della gerarchia esiste una prova che l'inclusione sia propria.

- ▶ Una classe di complessità temporale che includa *PSPACE*.
- \blacktriangleright Si assuma che una MdT decida un linguaggio con spazio f(n).
- Possibili configurazioni lunghezza f(n) di una MdT con alfabeto interno Γ con $|\Gamma|=d$ e stati di controllo $\mathbb Q$ con $|\mathbb Q|=m$
- Una configurazione include
 - Uno stato di controllo (m possibilità)
 - ll contenuto del nastro di $(d^{f(n)}$ possibilità)
 - ightharpoonup La posizione della testina sul nastro (f(n) possibilità)
- Complessivamente
- ▶ $mf(n)d^{f(n)}$ di upper bound $f(n)2^{O(f(n))}$
- Una MdT per decidere non ha bisogno di visitare due volte la stessa configurazione
- ▶ Una MdT che decide in spazio f(n) decide in $tempof(n)2^{O(f(n))}$

- ▶ Una MdT che decide in spazio f(n) decide in tempo $f(n)2^{O(f(n))}$
- Se un linguaggio L è deciso in spazio $O(n^k)$ ($L \in PSPACE$) allora L può essere deciso in tempo $O(2^{n^k})$

Sia la classe EXPTIME la classe dei problemi decisi da una MdT deterministica in tempo esponenziale, vale a dire

$$\mathsf{EXPTIME} = \bigcup_{k} \mathit{TIME}\left(2^{n^k}\right)$$

Vale dunque

 $NPSPACE = PSPACE \subseteq EXPTIME$

Segue la seguente gerarchia di classi di complessità

$$P \subseteq NP \subseteq NPSPACE = PSPACE \subseteq EXPTIME$$

- Per nessuna delle inclusioni della gerarchia esiste una prova che l'inclusione sia propria.
- ► E' solo noto che vale P ⊂ EXPTIME
- Una delle inclusioni è stretta ma non è noto quale sia stretta.

Gerarchie di complessità

PSPACE-completezza

▶ Riducibilità in tempo polinomiale: Un linguaggio L è riducibile in tempo polinomiale ad un linguaggio H se esiste una funzione $f: \Sigma^* \to \Sigma^*$ computabile in tempo polinomiale tale che per ogni $w \in \Sigma^*$

$$w \in L \iff f(w) \in H$$

PSPACE-completezza

- PSPACE-completezza: Un linguaggio L è PSPACEcompleto se
- 1. $L \in PSPACE$;

2. Ogni linguaggio $H \in PSPACE$ è riducibile in tempo polinomiale a L.

Un problema PSPACE-completo

- Formule booleane quantificate
- Sintassi
- ► La valutazione della formula booleana richiede l'assegnazione di un valore di verità 0/1 (0 = False, 1=True) alle variabili
- Sia $\alpha: Var \longrightarrow \{0,1\}$ la funzione che assegna un valore di verità alle variabili booleane
- La relazione $\alpha \models \varphi$ denota la soddisfacibilità di una formula rispetto alla valutazione delle variabili ed è definita come segue.
- $\alpha \models True$
- $\alpha \not\models False$
- $\alpha \models x \text{ se } \alpha(x) = 1$
- $\qquad \qquad \alpha \vDash \neg \varphi \text{ se } \alpha \not\vDash \varphi$

- $\alpha \models \exists x. \ \varphi \text{ se o } \alpha[x \longleftrightarrow 0] \models \varphi \text{ o } \alpha[x \longleftrightarrow 1] \models \varphi$
- $\alpha \models \forall x. \varphi \text{ se } \alpha[x \longleftrightarrow 0] \models \varphi \in \alpha[x \longleftrightarrow 1] \models \varphi$

Un problema PSPACE-completo

- ► Formule booleane quantificate
- ▶ Un occorrenza della variabile $x \in legata$ se compare nello scopo di una quantificazione $\exists x \ o \ \forall x$
- esempio $\varkappa \land \exists y \cdot y \land x$ ha x libera e y legata
- ▶ Una formula senza occorrenze di variabili libere è detta sentenza.
- Osservazione.
- La valutazione α serve solo a determinare la valutazione delle variabili libere.
- Se tutte le variabili sono legate da un quantificatore (è una sentenza) la valutazione della formula è indipendente dalla valutazione α usata per assegnare un valore di verità alle variabili.
- Ad una sentenza è vera o falsa indipendentemente da una funzione α di valutazione delle variabili.

 $L_{TOBF} = \{ \langle \phi \rangle : \phi \text{ una sentenza vera della logica boolena quantificata} \}$

TEOREMA. Il linguaggio L_{TOBF} è PSPACE-completo.

Formule booleane quantificate

► Esempio. Dato il grafo di seguito si vuole colorare i nodi con 0 e 1 in modo che nodi adiacenti siano colorati diversamente.

 $\exists x. \exists z. \exists y. \exists w. \varphi$: esiste una colorazione

 $\forall x. \exists z. \exists y. \exists w. \varphi$: per ogni colorazione di x esiste una colorazione degli altri nodi

Sono entrambe True

Formule booleane quantificate

► Esempio. Dato il grafo di seguito si vuole colorare i nodi con 0 e 1 in modo che nodi adiacenti siano colorati diversamente.

