1. cvičení - LS 2017

Michal Outrata

Opakování z přednášky $\mathbb{N}, \mathbb{N}_0, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{R}_+, \mathbb{R}_-, \exists, \forall$

Výrazy

- roznásobte : $(x+11)^2$, $(x-3.5)^2$, $(-x-3)^3$, $(-x+\pi)^2$;
- zjednodušte : $(x^4)^3$, $(4t^5)^{-2}$, $(n^{13})^7$, $(y^{3/5})^4$, $(2^7 \cdot a^{-4/6})^{-2/7}$;
- zjednodušte :

 - (i) $\frac{a}{3b} \frac{2a}{9b} + \left(\frac{3c}{b}\right)^2$; (ii) $\frac{12x^2y}{3b} : \frac{8xy^2}{12b}$; (iii) $\frac{\frac{(-3y)^2x^3}{-6xy^5}}{\frac{-6xy^5}{(-4zy)^3}}$.

Rovnice a nerovnice Vyřešte v oboru reálných čísel následující rovnice, pokud možno graficky.

- 2t 8 = 16;
- 2t + 6 = 7 vyřešte postupně v \mathbb{N} , \mathbb{Z} a \mathbb{R} ;
- 3x 6 < 9;
- $|3x 6| \le 9$;
- 6 |3x 6| < 9;
- |2x 1| = |x 6|;
- $|2x 1| \ge |x 1|$;
- ||x-7|-3|=8;
- ||x-7|-3|>0

- ||x-7|-3|>-3;
- $x^2 = 81;$
- $x^2 + 3.5x = 2$;
- $-3x^2 \ge -15x + 18;$
- $\sqrt{x} = 1$;
- $\bullet \ \sqrt{x} = -1;$
- $\bullet \ \sqrt{3}x = x;$
- $\bullet \ \frac{x^2 7x + 12}{3x 6} \ge 0;$
- $\bullet \ \frac{-x^2+3x+4}{x^2-9} < 0;$
- $7 |3 x| \le 4$.