# Citation prediction



# Agenda

O1 Context and objective

02 Methodology overview

03 Data exploration and processing

04 Feature engineering

05 Modeling

06 Tuning

07 Perspectives

Context and objective



#### Context and objective

#### **Project Aim**

This project aims to predict if two papers have a **citation link** by using machine learning or deep learning techniques. It is a binary classification task with two outcomes:

- 0 no link
- 1 existence of a link

#### Challenge

- Différents datasets to combine into a coherent piece. Egde list, abstracts and authors.
- Languages detected in the abstracts (eng, fr, ca, etc)
- 153 Authors for a single paper



Methodology overview



### Methodology overview



Data exploration and processing



## Data exploration and processing

#### Nodes degree distribution barplot







Not a surprising observation

## Data exploration and processing



## Data exploration and processing



Features engineering



## Feature engineering

#### **Graph**



- Sum of degrees
- Difference of degrees
- Jaccar coeffincient
- Adamic adar index
- Resource allocation
- Clustering coefficient
- Degree centrality
- Common neighbor centrality

#### **Abstracts**



- Sum of unique words
- Difference of uniques words
- Common words
- Doc2vec cosine similarity

#### **Authors**



■ Doc2vec cosine similarity

#### Feature engineering





Most digital transformation processes of digitally mature manufacturing firms are management or innovation-driven.

Only a **small fraction** of digitally mature companies have used **IT** to transform.

There are no consistent
 approaches visible in the process of digital transformation.

Citation prediction challenge 01 02 03 04 Feature engineering 05 06 07

#### Doc2vec VS Tf-IDF

| Doc2vec                                                                                                                                                                                                                                                                                                                                                                               | Tf idf                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Dimensionnality reduction</li> <li>Paragraph embedding</li> <li>Work well for large corpora. Many to many mapping between input and output.</li> <li>Cut-off: size of the vector for the new dimension</li> <li>Pr(x,y) of for a word to appear in the context of another word</li> <li>Most suitable for a wide ranging corpus content with no common vocabulary</li> </ul> | <ul> <li>Compute each tearm tf-idf</li> <li>Most suitable for small corpora</li> <li>One to one mapping between input and output</li> <li>Cut-off: tf-idf threshold.</li> <li>Pr(x) of a word to appear</li> <li>Most suitable for a focused corpus content with a « core » vocabulary</li> </ul> |

Citation prediction challenge



Modeling



# Logistic regression



| precision | recall               | f1-score                            | support                                            |
|-----------|----------------------|-------------------------------------|----------------------------------------------------|
| 0.85      | 0.91                 | 0.88                                | 174503                                             |
| 0.90      | 0.84                 | 0.87                                | 174503                                             |
|           |                      | 0.87                                | 349006                                             |
| 0.87      | 0.87                 | 0.87                                | 349006                                             |
| 0.87      | 0.87                 | 0.87                                | 349006                                             |
|           | 0.85<br>0.90<br>0.87 | 0.85 0.91<br>0.90 0.84<br>0.87 0.87 | 0.85 0.91 0.88<br>0.90 0.84 0.87<br>0.87 0.87 0.87 |

06

Kaggle: 0.22935

05 Modeling

## XgBoost classfier



|               | precision | recall | f1-score | support |
|---------------|-----------|--------|----------|---------|
| 0.0           | 0.85      | 0.91   | 0.88     | 174503  |
| 1.0           | 0.90      | 0.84   | 0.87     | 174503  |
| accuracy      |           |        | 0.87     | 349006  |
| macro avg     | 0.87      | 0.87   | 0.87     | 349006  |
| weighted avg  | 0.87      | 0.87   | 0.87     | 349006  |
| mergineed dvg | 0.07      | 0.07   | 0.07     | 3 13000 |

06

07

Kaggle : 0.22601

#### Multi Layers Perceptron





|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0.0          | 0.86      | 0.91   | 0.88     | 174503  |
| 1.0          | 0.90      | 0.85   | 0.88     | 174503  |
| accuracy     |           |        | 0.88     | 349006  |
| macro avg    | 0.88      | 0.88   | 0.88     | 349006  |
| weighted avg | 0.88      | 0.88   | 0.88     | 349006  |

Modeling

03

Tuning



# Tuning

- Gridsearch for LR and XgBoost
- Manual tuning for MLP

07

Results and perspective



# Perspective

- Node2vec
- Tf/idf
- Scibert
- Hyperparameter tuning for MLP