Übungsblatt 14 zur Algebra I

Abgabetermin entscheidet ihr!

Aufgabe 1. Illustrationen des Hauptsatzes

- a) Zeige, dass die einzigen Zwischenerweiterungen von $\mathbb{Q}(\sqrt{2})$ über \mathbb{Q} die beiden trivialen (ganz $\mathbb{Q}(\sqrt{2})$ und nur \mathbb{Q}) sind.
- b) Finde ein normiertes separables Polynom f(X) mit rationalen Koeffizienten, sodass der Index der Untergruppe $\operatorname{Gal}_{\mathbb{Q}(\sqrt[3]{2})}(x_1,\ldots,x_n)$ in $\operatorname{Gal}_{\mathbb{Q}}(x_1,\ldots,x_n)$ gleich 3 ist. Dabei seien x_1,\ldots,x_n die Nullstellen von f(X). Ist diese Untergruppe ein Normalteiler?
- c) Sei f(X) ein normiertes separables Polynom mit rationalen Koeffizienten, welches mindestens eine echt komplexe Nullstelle besitzt. Zeige, dass die Galoisgruppe der Nullstellen von f(X) mindestens ein Element der Ordnung 2 besitzt.

Aufgabe 2. Wurzelausdrücke

- a) Sei x eine durch Wurzeln ausdrückbare Zahl und x' ein galoissch Konjugiertes von x. Zeige, dass x' ebenfalls durch Wurzeln ausdrückbar ist, und zwar durch denselben Wurzelausdruck wie x.
- b) Zeige, dass jede primitive n-te Einheitswurzel durch Wurzeln, deren Exponenten höchstens $\max\{2,\frac{n-1}{2}\}$ sind, ausgedrückt werden kann.

Aufgabe 3. Normalteiler

- a) Sei G eine Gruppe mit $G \neq \{id\}$. Finde zwei verschiedene Normalteiler in G.
- b) Sei G eine beliebige Gruppe. Zeige, dass das Zentrum von G ein Normalteiler in G ist.
- c) Ist die symmetrische Gruppe S₅ einfach?

Aufgabe 4. Diedergruppen

- a) Bestimme explizit die Symmetriegruppe eines ebenen regelmäßigen n-Ecks in der Ebene, die sog. $Diedergruppe D_n \subseteq S_n$. Zeige, dass diese von zwei Elementen erzeugt werden kann und insgesamt 2n Elemente enthält.
- b) Zeige, dass der Index von D_4 in S_4 gleich 3 ist.
- c) Zeige, dass D_4 kein Normalteiler in S_4 ist.

Aufgabe 5. Auflösbarkeit von Gleichungen

- a) Finde ein normiertes irreduzibles Polynom f(X) fünften Grads mit rationalen Koeffizienten, sodass die Gleichung f(X) = 0 auflösbar ist.
- b) Zeige, dass die Gleichung $X^5 23X + 1 = 0$ nicht auflösbar ist.

Aufgabe 6. Kriterium für Konstruierbarkeit

Sei x eine algebraische Zahl und t ein primitives Element zu allen galoissch Konjugierten von x. Zeige, dass x genau dann konstruierbar ist, wenn der Grad von t eine Zweierpotenz ist.