

MICROCOPY RESOLUTION TEST CHART NAI. 'NAL BUREAU OF STANDARDS-1963-A

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	3. RECIPIENT'S CATALOG NUMBER
WHOI-83-28 #133 47	(8
4. TITLE (and Subtitle) Entry Anida and Entry Anid Entry of Double North	5 TYPE OF REPORT & PERIOD COVERED
Fatty Acids and Fatty Acid Esters of Particulate Matte Collected In Sediment Traps In The Peru Upwelling Area	
R/V KNORR Cruise 73, February/March 1978	6 PERFORMING ORG. REPORT NUMBER
11, visit of the order of the o	
7. AUTHOR(a)	WHOI-83-28 B. CONTRACT OR GRANT NUMBER(#)
Stuart G. Wakeham, Joaquim B. Livramento, and	N00014-74-C-0262
John W. Farrington	N00014-79-C-0071
	OCE 77-26084, OCE 80-18436
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Woods Hole Oceanographic Institution Woods Hole, Massachusetts 02543	
woods note, massachusetts 02545	
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Office of Naval Research	September 1983
and	13. NUMBER OF PAGES
The National Science Foundation	49
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
	Unclassified
	15a, DECLASSIFICATION DOWNGRADING
	SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	<u> </u>
Approved for public release; distribution unlimited.	
,	
	,
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	m Report)
William Ind	V 001 1 1 13
	A
18. SUPPLEMENTARY NOTES	
This report should be cited as: Woods Hole Oceanog. Ins	st. Tech. Rept. WHOI-83-28,
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)	
1. Sediment Traps	
2. Peru Upwelling Area	
3. Fatty acids; Fatty acid esters	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)	
Please see reverse side.	1
	!
	j
	1
	Į.
	J
	1

LCURITY	CLASSIFICATION O	F THIS PAGE(When	Date Entered
, , , , , , ,	OF WARLE FOR LIGHT	1 11110 . JAPI	~ ~

20.

ABSTRACT

Particulate matter samples were collected using free-drifting sediment traps in the Peru upwelling area in 1978 to assess the vertical flux and organic composition of lipids associated with particles sinking out of the euphotic zone. Samples have been analyzed for a variety of lipids, including hydrocarbons, fatty acids, wax esters, steryl esters, triacylglycerols, alkyldiacylglycerols, fatty alcohols, sterols, and steroid ketones. The purpose of this report is to collate the fatty acid and fatty acid ester (wax ester, steryl ester, triacylglycerol, and alkyldiacylglycerol) for the 20 floating sediment traps which were deployed.

Patty Acids And Fatty Acid Esters of Particulate Matter Collected in Sediment Traps in the Peru Upwelling Area R/V KNORR Cruise 73, February/March 1978

by

Stuart G. Wakeham, Joaquim B. Livramento, and John W. Farrington

Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

September 1983

Technical Report

Funding was provided by the Office of Naval Research under Contracts N00014-74-C-0262, N00014-79-C-0071, and by the National Science Foundation under Grants OCE 77-26084 and OCE 80-18436.

Reproduction in whole or in part is permitted for any purpose of the United States Government. This report should be cited as: Woods Hole Oceanog. Inst. Tech. Rept. WHOI-83-28.

Approved for Distribution:

Accession For

NTIS GRA&I

William J. Jenkins, Acting Department Chairman
Department of Chemistry

Department of Chemistry

TABLE OF CONTENTS

	Page
Abstract	1
Acknowledgements	2
Introduction	3
Methods	4
Presentation Format	6
References	7
Peru FST Data Summary	9

ABSTRACT

Particulate matter samples were collected using free-drifting sediment traps in the Peru upwelling area in 1978 to assess the vertical flux and organic composition of lipids associated with particles sinking out of the euphotic zone. Samples have been analyzed for a variety of lipids, including hydrocarbons, fatty acids, wax esters, steryl esters, triacylglycerols, alkyl-diacylglycerols, fatty alcohols, sterols, and steroid ketones. The purpose of this report is to collate the fatty acid and fatty acid ester (wax ester, steryl ester, triacylglycerol, and alkyldiacylglycerol) for the 20 floating sediment traps which were deployed.

ACKNOWLEDGEMENTS

We thank Robert B. Gagosian for help during the cruise, Nick Staresinic and Gilbert Rowe for directing the sediment trap deployments, Gale E. Nigrelli for extracting the sediment trap samples, and Nelson M. Frew for helping with GC/MS analyses. Our thanks to all officers, crew, and scientists R/V Knorr Cruise 73/2.

Support for this research was provided by Office of Naval Research Contracts N00014-74-C-0262 (to J. W. Farrington) and N00014-79-C-0071 (to J.W.F. and S.G.W.) and National Science Foundation Grants OCE 77-26084 and OCE-80-18436 (to R. B. Gagosian).

I. INTRODUCTION

Organic geochemical studies of marine particulate matter are important in understanding the carbon cycle in the oeans. Large, rapidly sinking particles produced primarily in the euphotic zone by biological processes dominate the vertical mass flux to the deep sea. As part of an investigation of the relationships between the organic matter composition of large particles and the biogeochemical processes in the water column, we have analyzed samples of particulate matter collected in sediment traps in the upwelling area off the coast of Peru near 15°S during February-March, 1978. The rationale for sampling the upwelling area is that organic compounds are biosynthesized in large quantities compared to most other marine environments, and thus tracing transformations of organic matter in the water column would be more readily achieved because of the higher concentrations involved.

The investigation of the biogeochemistry of organic matter in the coastal area off Peru is a coordinated effort by several groups. Included are studies of hydrocarbons, fatty acids, wax esters, steryl esters, triacylglycerols, fatty alcohols, sterols, long-chain ketones, steroid ketones, carotenoids, amino acids, and organic carbon and nitrogen flux in source organisms, large and small particles, and sediments (Henrichs, 1980; Staresinic, 1978; Staresinic et al., 1983; Staresinic, 1983; Lee and Cronin, 1982; Wakeham et al., 1983; Volkman et al., 1983; Gagosian et al., 1983a,b; Repeta, 1982; Repeta and Gagosian, 1983; Henrichs and Farrington, 1983; Henrichs et al., 1983). The overall objectives of these studies are: i) to examine the downward flux and composition of organic matter and specific organic compounds out of the euphotic zone and into deeper water; ii) to determine the temporal and spatial variations in flux and composition; iii) to investigate the relationship between biological processes in the upper part of the water column and the formation of sinking particles; and iv) to investigate the relation between particle flux and composition and accumulation of organic matter in the underlying sediments.

The purpose of this report is to collate the data obtained for analysis of the sediment trap particulate matter samples for total fatty acids and fatty acid derivatives, in particular wax esters, steryl esters, triacylglycerols, and alkyldiacylglycerols. A brief summary of the analytical methodology used is presented. The reader is referred to Wakeham et al. (1983) for an initial discussion of the data.

II. METHODS

Free-drifting sediment traps (FSTs) were deployed off the Peruvian coast near the Coastal Upwelling Ecosystems Analysis "C" transect at about 15°S (Figure 1) during February-March, 1978 on R/V KNORR Cruise 73/2. FST deployment data and particulate organic carbon (POC) and nitrogen (PON) flux data are given in Tables 1 and 2, respectively (Staresinic, 1978). Gagosian et al. (1980) have described hydrographic, nutrient, and primary productivity conditions during the cruise. The FSTs consisted of a pair of 41 cm diameter cylinders (0.26 m² total collecting area) as described in detail by Staresinic (1978; 1983); the rationale of using free-drifting traps as opposed to moored trap arrays has been discussed by Staresinic et al. (1978). In all, 18 sets of FSTs were deployed for organic geochemical studies in the active upwelling; two additional traps were deployed 50 km offshore out of the upwelling zone (Figure 1). Four sets of day/night-shallow/deep trap samples were collected to assess diel and depth variations in flux and organic matter composition. The FSTs were recovered after 8-12 hour deployments so no poisons were used to inhibit microbial spoilage. In addition, a series of sediment cores were collected during the cruise, and results for some lipid class analyses in the sediments are reported by Volkman et al. (1983). Amino acid data for FSTs and sediments have been described elsewhere by Lee and Cronin (1982) and Henrichs (1980), respectively, and Gagosian et al. (1983a,b) report FST and sediment sterol data.

Analysis

Following recovery of the FSTs, the collected particulate matter was split by a plankton splitter and an aliquot (38%-50%) was filtered onto precombusted

or appropriate problems therebeshy themselves and the

FIGURE 1 Locations of FST (\bullet) Deployments and Sediment Samples (\blacktriangle).

Table 1. FST Deployment Data (Staresinic, 1983).

FST Station	Date	Latitude (S)	Longitude (W)	Exposure Period (local time)	Deployment Depth (m)	Water Depth (m)
2	2/28	15°27.04'	75°57.7'	1000-1805	16	3600
3	2/28	15°26.06'	75°52.9'	2045-1000	-	3600
4	3/3	15°02.6'	75°31.3'	0926-1817	19	93
5	3/5	15°09.3'	75°31.3'	0913-1830	15	70
6	3/5,6	15°07.8'	75°33.9'	1924-1032	10	90
7	3/6	15°08.5'	75°37.0'	0925-1630	23	120
8	3/7	15°10.9'	75°34.5'	0840-1722	52	500
9	3/7	15°10.6'	75°34.6'	0830-1640	14	500
10	3/7,8	15°09.3'	75°36.2'	1955-0650	14	400
11	3/7,8	15°09.3'	75°36.3'	2105-0716	52	400
12	3/9	15°13.5'	75°37.2'	0912-1708	14	1000
13	3/9	15°13.3'	75°37.7'	0925-1625	53	1000
14	3/9,10	15°12.9'	75°39.3'	2200-0718	14	1000
15	3/9,10	15°12.9'	75°39.3'	2205-0648	53	1000
16	3/12	15°09.4'	75°35.1'	0850-1555	11	300
17	3/12	15°09.4'	75°34.6'	0904-1608	53	300
18	3/12,13	15°09.6'	75°34.3'	1930-0730	11	400
19	3/12,13	15°09.7'	75°34.2'	1948-0647	53	250
20	3/13	15°27.3'	75°51.3'	1045-2010	36	3800
21	3/13	15°26.0'	75°53.4'	1055-2035	53	3800

Table 2. Free-Drifting Sediment Trap POM Flux Data (Staresinic, 1983).

COUNTY OF THE PROPERTY OF THE

						4	c					
uction 50 m					,	6.1		6.7	,	6.1	,	6.
%: Production 30 m 50												
POC Flux Euphotic Depth	9.8	,	٧.٢	6.5	,	10./	•	14.8	;	11.0	((30.2
Primary Production (m ⁻² d ⁻¹)	5.30		79.6	6.43		4 8 8	c c	3.59	Č	5.24	•	1.38
50 m					,	7.1.7	ç Ç	238.8	9	320.4	c c	132.0
Daily POC Flux (mg m ⁻² d ⁻¹) tic 30 m th					·	•			•	'1	•	7
Daily POM (mg m ⁻² (Euphotic 30	520.8	, ,	7.116	415.2	ŗ	0.//4	,	246./	ć T	5/4.8		410.4
POC Dry Wt.	6.9	9.9	0.6	7.9	5.6 8.8	9.1 5.3	7.3	9.5 3.2	5.3	7.7	7.3	2.4
Z: C	8.4	6.9	5.3	4.9	7.3	6.9 9.1	7.3	5.4	7.5	5.7 9.3	6.9	9.2
PON (mg)	31.2	37.2	48.0	32.4	22.6 19.2	45.6	28.0	63.6	30.0	61.2	30.0	7.2
Downward Flux $\binom{m^{-2}}{4} (12 \text{ hr})^{-1}$ Wt. POC 8)	260.4	255.6	255.6	207.6	164.4 140.4	313.2 130.8	203.5 165.5	343.2 73.2	224.4 208.8	350.4 111.6	208.2	0.99
Downw (m ⁻² () Dry Wt. (g)	3.79	3.88	2.86	3.23	2.93 2.92	3.34	2.80	3.61 2.32	4.23	4.58	2.86	2.79
FST Depth (m)	19	15	10	23	14	14 52	11 53	11 53	11 53	11 53	36	53
FST No.	4	5	9	7	o, 80	10	12	14 15	16 17	18 19	20	21

glass fiber filters. The filters were immediately freeze-dried and stored frozen until extraction in the shore-based laboratory. The particulates and filters were exhaustively Soxhlet-extracted with toluene/methanol (1:1) and the lipids thus extracted partitioned into hexane. An aliquot of the hexane-soluble lipids (25%) was saponified with methanolic KOH, methylated with BF₃-MeOH, and the fatty acid methyl esters purified by silica gel adsorption chromatography (Merck silica gel 50, 5% deactivated with water). A second aliquot of the lipids (50%) was fractionated into constituent lipid class compounds by silica gel chromatography. Wax esters and steryl esters were eluted with 50% toluene in hexane and triacylglycerols and alkyldiacylglycerols were eluted by 10% ethyl acetate in hexane.

Fractions were analyzed by glass capillary gas chromatography on a Carlo Erba FTV Model 4160 gas chromatograph equipped with an on-column injector and a flame ionization detector. Compounds were separated on a 25 m x 0.3 mm i.d. silylated column coated with SE-52 (Grob, 1980). Fatty acid methyl esters were analyzed with a hydrogen carrier gas flow of 0.8 kg/cm² and a linear temperature program of 100-320°C at 3°/min. Intact wax esters and steryl esters were analyzed with hydrogen carrier at 1.5 kg/cm² and a program of 180-360° at 2°/min. Intact triacylglycerols and alkyldiacylglycerols were analyzed with hydrogen carrier at 2.0 kg/cm² and a program of 150-370° at 3.5°/min. The FID temperature was set at 350°C. Quantitation of GC peaks was obtained by electronic measurement of peak heights and areas using a Columbia Scientific Instruments Supergrator 3 and by comparison with internal and external standards.

Structural information was obtained by co-injection experiments with authentic standards and by capillary gas chromatography/mass spectrometry. Electron impact mass spectra of fatty acid methyl esters were obtained using a Varian Aerograph 1400 gas chromgtograph equipped with a 20 m x 0.3 mm i.d. SE-52 capillary column and interfaced with a Finnigan 1015C quadrupole mass spectrometer. Methane chemical ionization spectra of intact wax esters and steryl esters, and electron impact spectra of intact triacylglycerols and alkyldiacylglycerols were obtained using a Finnigan 9500 GC and a Finnigan 3200 quadrupole mass spectrometer; both the GC and MS were modified for high

temperature work as described by Wakeham and Frew (1982). Wax esters and steryl esters were separated on a SE-52 column (20 m x 0.3 mm i.d.) using helium carrier at 1.3 kg/cm 2 and a temperature program from 180-360° at 3°/min. Triacylglycerols and alkyldiacylglycerols were analyzed on a 15 m x 0.3 mm i.d. SE-30 capillary column with helium carrier at 0.75 kg/cm 2 and programmed from 250-370° at 4°/min. The glass capillary GC/MS interface was silylated and maintained at 370-380°C. Mass spectral data were acquired and processed using a Finnigan Incos Model 2300 data system.

III. PRESENTATION FORMAT

Data for the FSTs are summarized in Table 3. Total particulate matter (PM) and particulate organic carbon (POC) flux values are taken from Staresinic (1978, 1983). Lipid flux data are estimated from weights of lipid extracted, while flux data for total fatty acids (TFA), wax esters (WE), steryl esters (SE), triacylglycerols (TaG), and alkyldiacylglycerols (DaG) are sums derived from gas chromatographic analyses. Because day/night pairs of FSTs are compared, flux data are given in weight/m²·12 hr.

In the tables which follow, flux data for fatty acids and fatty acid esters are listed in terms of carbon chain length (number of carbon atoms:number of double bonds). Steryl esters are designated as acyl carbon number/sterol moiety (e.g. $12/\Lambda^{5,22}$ - C_{28} is methylcholesta-5,22-dien-3 β -yl dodecanoate). Data in Table 3 have been rounded to a reasonable number of significant figures, while data in the tables following have not. Blanks indicate that a particular compound or chain length was not present at a readily quantifiable level. For the alkyldiacylglycerols, N.D. means that these compounds were not determined because their presence was not clearly demonstrated.

REFERENCES

- Gagosian, R. B., Loder, T., Nigrelli, G., Mlodzinska, Z., Love, J. and Kogelshatz, J. (1980). Hydrographic and nutrient data from R/V KNORR Cruise 73, Leg 2 February to March, 1978 off the coast of Peru. W.H.O.I. Tech. Rpt. 80-1, 77 pp.
- Gagosian, R. B., Nigrelli, G. E. and Volkman, J. K. (1983a). Vertical transport and transformation of biogenic organic compounds from a sediment trap experiment off the coast of Peru. In: NATO Advanced Research Institute on Coastal Upwelling and its Sediment Record, ed. by Seuss, E. and Thiede, J. Plenum Press, New York, pp. 241-272.
- Gagosian, R. B., Volkman, J. K. and Nigrelli, G. E. (1983b). The use of sediment traps to determine sterol sources in coastal sediments off Peru. In: Advances in Organic Geochemistry 1981, ed. by Bjoroy, M. John Wiley and Sons, London, pp. 369-379.
- Henrichs, S. M. (1980). Biogeochemistry of amino acids in interstitial waters of marine sediments. Ph.D. Thesis, W.H.O.I./M.I.T. Joint Program in Oceanography, W.H.O.I. Technical Report 80-39, 253 pp.
- Henrichs, S. M. and Farrington, J. W. (1983). Peru upwelling region sediments near 15°S: 1. Remineralization and accumulation of organic matter. Limnol. Oceanogr. In press.
- Henrichs, S. M., Farrington, J. W. and Lee, C. (1983). Peru upwelling region sediments near 15°S: 2. Dissolved free and total hydrolyzable amino acids. Limnol. Oceanogr. In press.
- Lee, C. and Cronin, C. (1982). The vertical flux of particulate organic nitrogen in the sea: decomposition of amino acids in the Peru upwelling area and the equatorial Atlantic. J. Mar. Res., 40: 227-251.
- Repeta, D. J. (1982). Transformations of carotenoids in the oceanic water column. Ph.D. Thesis, W.H.O.I./M.I.T. Joint Program in Oceanography. W.H.O.I. Tech. Rpt. 82-46, 241 pp.
- Repeta, D. and Gagosian, R. B. (1983). Carotenoid transformation products in the upwelled waters off the Peruvian coast: suspended particulate matter, sediment trap material and zooplankton fecal pellet analyses. In: Advances in Organic Geochemistry 1981, ed. by Bjoroy, M. John Wiley and Sons, London, pp.380-388.
- Staresinic, N. (1978). The vertical flux of particulate organic matter in the Peru upwelling as measured with a free-drifting sediment trap. Ph.D. Thesis, W.H.O.I./M.I.T. Joint Program in Biological Oceanography, 255 pp.
- Staresinic, N., Rowe, G. T., Shaughnessy, D. and Williams, A. J., III (1978). Measurement of the vertical flux of particulate organic matter with a free-drifting sediment trap. <u>Limnol. Oceanogr.</u>, 23: 559-563.

- Staresinic, N. (1983). Downward flux of bulk particulate organic matter in the Peru coastal upwelling. J. Mar. Res. Submitted.
- Staresinic, N., Farrington, J. W., Gagosian, R. B., Clifford, C. H. and Hulburt, E. M. (1983). Downward transport of particulate matter in the Peru coastal upwelling: Role of the anchoveta, Engraulis ringens. In:

 NATO Advanced Research Institute on Coastal Upwelling and its Sediment Record, ed. by Suess, E. and Thiede, J. Plenum Press, New York, pp. 225-240.
- Volkman, J. K., Farrington, J. W., Gagosian, R. B. and Wakeham, S. G. (1983). Lipid composition of surface sediments and bacterial mats from the Peru upwelling region. In: Advances in Organic Geochemistry 1981, ed. by Bjoroy, M. John Wiley and Sons, London, pp. 228-240.
- Wakeham, S. G. and Frew, N. M. (1982). High temperature glass capillary gas chromatography/mass spectrometry of wax esters, steryl esters, and triacylglycerols. <u>Lipids</u>, 17: 831-843.
- Wakeham, S. G., Farrington, J. W. and Volkman, J. K. (1983). Fatty acids, wax esters, triacylglycerols, and alkyldiacylglycerols associated with particles collected in sediment traps in the Peru upwelling. In:

 Advances in Organic Geochemistry 1981, ed. by Bjoroy, M. John Wiley and Sons, London, pp. 185-197.

Table 3. FST Data Summary

FST	Day/Night Depth (m)	PM ^{a, c} g/m ² ⋅12 h		C Lipid ^b 2 · 12 h	T FA C	WE ^C	SE ^c		Da G
									
2	D, 16 m			43.4	10,200	670	30	1,130	
3	N, ^d			8.3	2,930	37	3	260	
4	D, 19 m	3.79	260	27.1	7,240	34	12	920	
5	D, 19 m	3.88	256	27.3	6,180	27	8.5	130	
6	N, 10 m	2.86	256	7.7	1,990	28	7.9	130	23
7	D, 23 m	3.23	208	11.8	2,320	17	0.5	95	5.9
8	D, 52 m	2.92	140	14.7	2,700	81	6.8	160	
9	D, 14 m	2.93	164	13.2	3,140	40	3.7	36	
10	N, 14 m	3.34	313	75.3	24,400	840	230	600	200
11	N, 52 m	2.48	131	24.7	14,400	18	40	840	
12	D, 11 m	2.80	204	39.3	13,200	32	58	1,110	
13	D, 53 m	3.02	166	24.5	5,540	48	20	270	
14	N, 11 m	3.61	343	117	20,600	150	53	870	140
15	N, 53 m	2.32	73	12.1	3,560	25	5.9	850	
16	D, 11 m	4.23	224	80.6	31,400	130	28	310	
17	D, 53 m	3.12	209	23.0	3,150	14	2.9	260	
18	N, 11 m	4.58	350	53.7	14,400	230	19	530	95
19	N, 53 m	2.50	112	6.7	1,950	32	16	460	40
20	D, 36 m	2.86	208	17.9	5,060	230	256	250	
21	N, 53 m	2.79	66	60	17,400	51	18	580	

^aStaresinic, 1978

b Gravimetric determination

^cSee text for abbreviations

^dData not available

PM Flux POC Flux Lipid Flux - 43.4 mg/m² 12 hr

Day / Night Depth 16 m

Total E	Total Fatty Acids Wax Esters			Steryl Esters			
C No. μg/m ² 12 h		$\mu g/m^2$ 12 h C No. $\mu g/m^2$ 12 h		C No.		μg/m ² 12 h	
				acyl	sterol		
12:0	25.8	26:1		12	Δ ⁵ ,22 _{C28}		
13:0	15.3	26:0	2.9	unk			
14:1	1.0	27:0	1.5	13	Δ ⁵ ,22 _C 28		
14:0	1708.4	28:1		14	Δ ³ , ² ² C ₂ 7	1.5	
15:0	89.4	28:0	77.0	14	Δ ⁵ C27	4.7	
15:0	30.8	29:0	3.7	14	Δ ³ ,22C ₂₀	2.1	
15:0	156.1	30:2		14	Δ ²² C ₂₈		
16:1Δ ⁹	845.2	30:1	14.2	unk	20		
16:0	4890.0	30:0	35.2	unk			
17:0	33.2	31:0	I.S.	14	Δ ²² C ₂₉		
17:0	14.7	32:2	66.4	15	45,22C28(?)	
17:1		32:1	45.6	15	Δ ⁵ C ₂₈		
17:0	I.S.	32:0	70.5	15	Δ ⁵ C ₂₇	0.4	
18:2		33:1	, , , ,	16	45,22 _{C27}	4.1	
18:14 ⁹	682.7	33:0	4.1	16	Δ ⁵ C ₂₇	9.6	
18:1411	284.5	34:2	212.2	14	Δ5,22 _{C29}		
18:0	929.0	34:1	18.9	16	A5,22C29	2.9	
19:0	1.8.	34:0	8.8	16	Δ5,22C28 Δ5,24(28)C	300	
20:5	2.0.	35:1	0.0	16	Δ ²² C ₂₈	720	
20:4		35:0		16	Δ ⁵ C28		
20:1	121.4	36:2		16	Δ22C29		
20:0	59.6	36:1	54.8	16	A5C00		
21:0	37.0	36:0	6.0	17	Δ ⁵ C ₂₉ Δ ⁵ ,22 _{C₂₇}		
22:6	11.5	37:0	1.0	17	Δ5C27	0.9	
22:5	11.3	38:2	1.0	18	Δ5,22 _{C27}	0.3	
22:1	56.1	38:1	20.3	18	Δ5c ₂₇	3.8	
22:0	37.9	38:0	1.4	unk	a 421	3.0	
23:0	10.4	39:0	2, 4	18	Δ5,22 _{C28}		
24:1	102.9	40:2		18	Δ5C28		
24:0	36.2	40:1	11.4	19	Δ ⁵ C ₂₇		
25:0	3.1	40:0	1.7	18	Δ ²² C ₂₉ (?)		
26:1	18.9	41:0	1.7	18	Δ ⁵ C ₂₉ (?)		
26:0	10.7	42:2		20	Δ5,22 _{C27}		
27:0	1.0	42:1	11.8	20	Δ ⁵ C ₂₇	0.1	
28:0	2.7	42:0	1.5	22	Δ5C27	V14	
29:0	2.0	44:2	1.3	unk	2 02/		
30:0	4.8	44:1		-112			
30.0	7.0	44:0		Tota	1	30.4	
Total	10,185.3	77.0		1000	•	30.7	
40041	-0,103.3	Total	670.9				

Triac	ylglycerols	Alkyldiacylglycerols		
C No.	μg/m ² 12 h	C No.	μg/m ² 12 h	
40				
41				
42	17.9			
43	6.5			
44	75.6			
45	20.4			
46	164.4	46e		
47	44.4			
48	225.6	48e		
49	56.4			
50	223.2	50e		
51	15.6			
52	200.4	52e		
53	5.4			
54	52.8	54e		
55	1.6			
56	15.6	56e		
57	0.8			
58	5.9	58e		
59				
60				
Total	1132.4	Total	N.D.	

PM Flux -POC Flux -Lipid Flux - 8.3 mg/m² 12 hr Day / Night
Depth ____ m

Total	Fatty Acids	Wa	x Esters		Steryl Esters			
C No.	μg/m ² 12 h	C No.	μg/m ² 12 h		C No.	μg/m ² 12 h		
				acy1	sterol			
12:0	10.4	26:1		12	45,22 _{C28}			
13:0	1.5	26:0	0.2	unk	_			
14:1	0.6	27:0	0.1	13	Δ ⁵ ,22 _{C28}			
14:0	312.8	28:1		14	Δ5,22 _{C27}	0.1		
i 15:0	26.2	28:0	1.3	14	A ⁵ Coz Ti	0.3		
a 15:0	6.7	29:0	0.3	14	Δ5,22 _{C28}	0.0		
15:0	34.8	30:2		14	Δ ²² C ₂₈			
16:10 ⁹	292.0	30:1	0.9	unk	a C28			
16:0	1352.5	30:0	4.1	unk				
i 17:0	20.9	31:0	I.S.	14	Δ ²² C ₂₉			
	5.7		1.3		Δ5,22 _{C28}			
a 17:0	3.7	32:2		15	Δ ⁵ C ₂₈			
17:1		32:1	1.4	15	A5C28			
17:0	I.S.	32:0	5.1	15	Δ ⁵ C33	0.1		
18:2	29.1	33:1		16	Δ ⁵ ,22 _{C27}	0.4		
18:109	229.8	33:0	0.5	16	45c37	1.0		
18:14 ¹¹	122.3	34:2		14	Δ ⁵ , 22 _{C29}			
18:0	236.0	34:1	11.3	16	Δ5,22C28 Δ5,24(28)C	0.1		
19:0	I.S.	34:0	1.8	16	Δ5,24(28)	28		
20:5	35.1	35:1		16	Λ ²² C20			
20:4	2.6	35:0	0.3	16	Δ ⁵ C ₂ g			
20:1	35.3	36:2		16	Δ22C20			
20:0	25.8	36:1	3.4	16	Δ ⁵ C ₂₉ Δ ⁵ ,22 _{C₂₇}			
21:0		36:0	0.6	17	Δ5,22 _{C27}			
22:6	70.2	37:0	0.1	17	A ^D C27	0.2		
22:5	3.1	38:2		18	Δ5,22 _{C27}	0.1		
22:1	12.2	38:1	1.8	18	Δ ⁵ C ₂₇	0.7		
22:0	17.0	38:0	2.0	unk		•		
23:0	3.0	39:0		18	45,22 _{C28}	0.2		
24:1	18.6	40:2		18	Δ5C28	V. L		
24:0	13.1	40:1	1.0	19	45Co-	0.02		
25:0	4.3	40:0	0.1	18	Δ ⁵ C ₂₇ Δ ²² C ₂₉ (?)	0.02		
26:1	4.3 3.7	41:0	0.1	18	A5C(8)			
	3.7 3.7	42:2	0.2	20	Δ ⁵ C ₂₉ (?) Δ ⁵ ,22 _{C₂₇}	0.02		
26:0			0.2	20	Δ ⁵ C ₂₇	0.02		
27:0	0.6	42:1 42:0			45027	0.1		
28:0	0.6			22	Δ5C27			
29:0	0.6	44:2		unk				
30:0	0.6	44:1			•	0.0		
	0000	44:0		Tota	Ţ	2.9		
Total	2929.8							
		Total	37.3					

Triacy	lglycerols	Alkyldiacylglycerols				
 C No.	μg/m ² 12 h	C No.	μg/m ² 12 h			
40	4.9					
41						
42	8.3					
43	1.6					
44	21.2					
45	4.7					
46	37.8	46e				
47	9.6					
48	51.4	48e				
49	9.1					
50	44.3	50e				
51	7.3					
52	29.4	52e				
53	5.6					
54	17.6	54e				
55	1.8	•				
56	4.4	56e				
57	1.3					
58	4.0					
59	•					
60						
Total	264.4	Total	N.D.			

PM Flux - 3.79 g/m^2 12 h POC Flux - 260.4 mg/m^2 12 h Lipid Flux - 27.1 mg/m^2 12 hr

Day / Night Depth 19 m

Total Fatty Acids		Wa	x Esters		Steryl Esters			
C No.	μg/m ² 12 h	C No.	μg/m ² 12 h	ı	C No.	μg/m ² 12 h		
				acyl	sterol			
12:0	38.2	26:1		12	Δ ^{5,22} C ₂₈			
13:0	1.1	26:0	0.6	unk	·			
14:1	11.0	27:0	0.1	13	Δ ⁵ ,22 _{C28}			
14:0	842.3	28:1		14	D3,22C27			
i 15:0	61.0	28:0	2.7	14	Δ ⁵ C27	0.7		
15:0	19.1	29:0	0.3	14	A5,22Caa			
15:0	112.6	30:2	0.9	14	∆ ²² C ₂₈			
16:14 ⁹	865.9	30:1	1.2	unk	20			
16:0	2621.7	30:0	4.0	unk				
17:0	50.4	31:0	I.S.	14	Δ ²² C ₂₉ Δ ⁵ ,22C ₂₈			
17:0	13.2	32:2	1.5	15	Δ5,22 _{C20}			
17:1	2012	32:1	1.3	15	Δ5C28			
17:0	I.S.	32:0	3.7	15	V ₂ Co2	0.1		
18:2	91.8	33:1		16	45,22 _{C27}	0.4		
18:14 ⁹	404.2	33:0	0.4	16	V2Co2	2.4		
18:1411	352.2	34:2		14	Δ5,22 _{C20}			
18:0	594.9	34:1	5.6	16	Δ5,22C28 Δ5,24(28)	0.2		
19:0	I.S.	34:0	1.3	16	Δ5,24(28)	Cao		
20:5	426.0	35:1		16	AZZC20	-26		
20:4	27.4	35:0	0.3	16	A ³ Coo			
20:1	237.2	36:2	0.3	16	866C			
20:0	41.4	36:1	4.2	16	Δ ⁵ C ₂₉ Δ ⁵ ,22 _{C₂₇}			
21:0	-4	36:0	0.5	17	A5.22ca-			
22:6	173.9	37:0	0.2	17	Δ5C27	0.3		
22:5	40.2	38:2	0.2	18	45,22 _{C27}	0.4		
22:1	62.6	38:1	2.7	18	Δ ⁵ C ₂₇	2.4/2.5*		
22:0	44.3	38:0	0.9	unk	a 02/	2.4/2.0		
23:0	8.8	39:0	0.3	18	45,22 _{C28}			
24:1	41.1	40:2	0.5	18	Δ ⁵ C ₂₈			
24:0	27.9	40:1	0.5	19	Δ ⁵ C ₂₇	0.1		
	4.1	40:0	0.4	18	Δ ²² C ₂₉ (?)	U.1		
25:0 26:1	8.0	40:0	U.4	18	$\Delta^{5}C_{29}(?)$			
26:0	11.3	42:2		20	Δ5,22 _{C27}	1.1		
20:0	1.0	42:2	0.2	20	Δ5C27	1.0		
27:0 28:0	3.8	42:1	V. Z	22	Δ ⁵ C ₂₇	1.0		
28:0 29:0	3.8 0.4	44:2		unk	5 C27			
30:0	1.6	44:1		WIIA				
30.0	1.0	44:0		Tota	1	11.6		
Total	7240.6	77.0		1000	•	11.0		
10001	, 244.0	Total	33.8		*18:1/1	9.0		

Triacy	lglycerols	Alkyldiacylglycerols				
C No.	μ g/m² 12 h	C No.	μg/m ² 12 h			
40						
41						
42	4.8					
43	0.4					
44	10.1					
45	0.6					
46	13.3	46e				
47	1.2					
48	15.7	48e				
49	1.2					
50	15.0	50e				
51	0.7					
52	14.9	52e				
53	0.2					
54	13.8	54e				
55						
56		56e				
57						
58						
59						
60						
Total	92.3	Total	N.D.			

PM Flux - 3.88 g/m² 12 h POC Flux - 255.6 mg/m² 12 h Lipid Flux - 27.3 mg/m² 12 hr

Day / Night Depth 19 m

0 No			Wax Esters		Steryl Esters		
C No.	μg/m ² 12 h	C No.	μg/m ² 12 h		C No.	μg/m ² 12 h	
· · · · · · · · · · · · · · · · · · ·				acyl	sterol		
12:0	216.3	26:1		12	Δ ⁵ ,22 _{C28}		
13:0		26:0	0.1	unk			
14:1		27:0		13	Δ ⁵ ,22 _{C28}		
14:0	655.7	28:1		14	45,22 _{C27}		
15:0	287.9	28:0	0.9	14	Δ ⁵ C27	0.5	
15:0	13.1	29:0	0.3	14	Δ5,22 _{C28}	• • • • • • • • • • • • • • • • • • • •	
15:0	410.1	30:2	0.0	14	Δ ²² C ₂₈		
16:10 ⁹	626.7	30:1		unk	78		
16:0	1894.3	30:0	2.3	unk			
i 17:0	25.2	31:0	I.S.	14	Δ ²² C ₂₉		
17:0	23.2	32:2	1.1	15	Δ5,22 _{C28}		
		32:2	1.5	15	Δ ⁵ C ₂₈		
17:1	7 6		3.9	15	Δ ⁵ C ₂₇	0.2	
17:0	I.S.	32:0	3.9	16	Δ5,22 _{C27}	0.2	
18:2 18:14 ⁹	055 0	33:1	0.2		Δ ⁵ C ₂₇		
18:10,	255.8	33:0	0.3	16	A5.22	1.7	
18:1A ¹¹	290.9	34:2	2.6	14	Λ ⁵ ,22 _{C29}		
18:0	173.7	34:1	3.0	16	Δ5,22C28 Δ5,24(28)C	0.7	
19:0	I.S.	34:0	1.3	16	127-	28	
20:5	161.0	35:1		16	Δ ²² C ₂₈		
20:4	4.0	35:0	0.3	16	Δ ⁵ C ₂₈		
20:1	139.4	36:2	1.6	16	Δ22C29		
20:0	92.9	36:1	1.1	16	Δ ⁵ C ₂₉ Δ ⁵ ,22 _{C₂₇}	•	
21:0		36:0	0.6	17	Δ3,22C ₂₇		
22:6	167.3	37:0	0.3	17	45C27	1.1	
22:5	18.5	38:2		18	Δ5,22 _{C27}	0.8	
22:1	163.5	38:1	2.8	18	Δ ⁵ C ₂₇	2.0	
22:0	168.7	38:0	0.6	unk			
23:0	30.7	39:0		18	Δ5,22 _{C28}	0.6	
24:1	71.1	40:2		18	ASC.		
24:0	134.6	40:1	1.0	19	Δ ⁵ C ₂₇ Δ ²² C ₂₉ (?)		
25:0	11.1	40:0	0.3	18	Δ ²² C ₂₉ (?)		
26:1	81.2	41:0	-	18	Δ ⁵ C ₂₉ (?) Δ ⁵ ,22 _{C₂₇}		
26:0	47.6	42:2		20	A5,22C27		
27:0	27.6	42:1	1.1	20	Δ5c ₂₇	0.3	
28:0	1.8	42:0		22	Δ ⁵ C ₂₇	- · ·	
29:0	4.0	44:2		unk	2/		
30:0	4.0	44:1		-1170			
30.0	7.0	44:0		Tota	1	8.5	
Total	6178.7	77.0		1008	•	0.J	
10081	01/0./	Total	27.0				

Triacy	lglycerols	Alkyldiacylglycerols				
C No.	μg/m ² 12 h	C No.	μg/m ² 12 h			
40						
41						
42	2.9					
43						
44	8.8					
45	1.9					
46	22.1	46e				
47	5.5					
48	30.8	48e				
49	4.1					
50	16.2	50e				
51	1.9					
52	15.5	52e				
53						
54	16.0	54e				
55						
56		56e				
57						
58						
59						
60						
Total	125.6	Total	N.D.			

PM Flux - 2.86 g/m² 12 h POC Flux - 255.6 mg/m² 12 h Lipid Flux - 7.7 mg/m² 12 hr

Day / Night
Depth 10 m

Total F	Total Fatty Acids War		ax Esters Steryl Es		Esters	
C No.	μg/m ² 12 h	C No.	μg/m ² 12 h	,	C No.	μg/m ² 12 h
				acyl	sterol	
12:0	0.5	26:1		12	Δ ⁵ ,22 _{C28}	
13:0	0.5	26:0		unk		
14:1		27:0		13	Δ ⁵ ,22 _{C28}	
14:0	242.0	28:1		14	Δ5,22 _{C27}	
15:0	25.3	28:0	1.5	14	A ⁵ Coz	1.2
15:0	6.4	29:0		14	Δ ⁵ ,22 _{C20}	0.3
15:0	30.8	30:2		14	∆ ²² C ₂₈	
16:1Δ ⁹	126.2	30:1		unk	20	
16:0	1041.9	30:0	1.2	unk		
17:0	1.2	31:0	I.S.	14	Δ ²² C ₂₉	
17:0	3.0	32:2	3.0	15	Λ ⁵ ,22 _{C20}	
17:1		32:1	1.0	15	Δ5C28	
17:0	I.S.	32:0	4.5	15	Δ5C27	
18:2	48.3	33:1	•••	16	A5,22Ca7	0.8
18-149	66.8	33:0	1.0	16	Δ ⁵ C ₂₇	1.5
18:14 ¹¹	57.3	34:2	2.7	14	Λ ⁵ ,22 _{C20}	
18:0	160.8	34:1	1.0	16	Δ5,22 _{C28} Δ5,24(28) _C	0.4
19:0	I.S.	34:0	1.7	16	$\frac{1}{6}$ 5,24(28) _C	300
20:5	3.3	35:1		16	AZZCOO	20
20:4	0.0	35:0	0.2	16	Δ ⁵ C28	
20:1	38.9	36:2	2.4	16	A ^e ^e Cao	
20:0	30.5	36:1	2.1	16	A5C20	
21:0	30.3	36:0	0.5	17	Δ ⁵ C ₂₉ Δ ⁵ ,22 _{C27}	
22:6	7.7	37:0	0.2	17	A ⁵ Coz	0.9
22:5	- • •	38:2	~ · ·	18	Δ ⁵ C ₂₇ Δ ⁵ , 22 _{C₂₇}	0.5
22:1	5.2	38:1	2.2	18	Δ5C27	1.6
22:0	35.5	38:0	0.2	unk		
23:0	4.2	39:0	0.1	18	45,22 _{C28}	0.3
24:1	20.0	40:2		18	Δ ⁵ C ₂ e	
24:0	17.6	40:1	0.9	19	Δ ³ C ₂₇	0.1
25:0	1.7	40:0	0.2	18	Δ ²² C ₂₉ (?)	- · -
26:1	4.7	41:0	- · ·	18	A ² Caa(?)	
26:0	6.9	42:2		20	Δ5,22 _{C27}	
27:0	2.1	42:1	1.0	20	Δ ⁵ C ₂₇	0.3
28:0	3.2	42:0		22	Δ ⁵ C ₂₇	
29:0	0.5	44:2		unk	/ /	
30:0	0.5	44:1				
55.5	3.3	44:0		Tota	1	7.9
Total	1993.6			.004	-	* • •
10001	.,,,,,	Total	27.6			
			27.0			

Triacy	lglycerols	Alkyldiacylglycerols		
C No.	μ g/m² 12 h	C No.	μg/m ² 12 h	
40				
41				
42	3.0			
43	0.7			
44	12.8	44e	0.8	
45	2.4			
46	31.3	46e	1.7	
47	1.8			
48	31.8	48e	6.8	
49	1.4			
50	15.2	50e	7.2	
51				
52	13.4	52e	5.4	
53				
54	15.8	54e	1.3	
55				
56	1.3	56e		
57				
58				
59				
60				
Total	130.9	Total	23.3	

PM Flux - 3.23 g/m² 12 h POC Flux - 207.6 mg/m² 12 h Lipid Flux - 11.8 mg/m² 12 hr

Day / Night Depth 23 m

Total F	Total Fatty Acids Wax Esters		Steryl Esters			
C No.	μg/m ² 12 h	C No.	μg/m ² 12 h		C No.	μg/m ² 12 h
				acyl	sterol	
12:0		26:1		12	Δ ^{5,22} C ₂₈	
13:0		26:0		unk		
14:1		27:0		13	Δ ⁵ ,22 _{C28}	
14:0	208.4	28:1		14	Δ5,22C27	
15:0	120.0	28:0	0.04	14	A ⁵ Co.	0.02
15:0	25.3	29:0	·	14	Δ ⁵ ,22 _{C20}	3.00
15:0	60.0	30:2		14	Δ ²² C ₂₈	
16:10 ⁹	146.7	30:1	0.05	unk	78	
16:0	952.5	30:0	0.1	unk		
17:0		31:0	I.S.	14	Δ ²² C ₂₉	
17:0		32:2	1.2	15	Δ5,22 _{C28}	
17:1		32:1	0.6	15	Δ ⁵ C ₂₈	
17:0	I.S.	32:0	3.4	15	Δ5C27	
18:2	1.5.	33:1	3.4	16	Δ5,22 _{C27}	0.05
18:14 ⁹	144.7	33:0	0.1	16	Δ ⁵ C ₂₇	0.2
18:14 ¹¹	95.7	34:2	1.5	14	Λ5,22 _{C29}	0.2
18:0	114.9	34:1	0.7	16	A5,22C29	0.03
19:0	I.S.	34:0	0.9	16	Δ5,22C28 Δ5,24(28)	Coo
20:5	1.5.	35:1	0.5	16	Δ ²² C ₂₈	28
20:3		35:0	0.3	16	A5C00	
20:4	32.7	36:2	1.6	16	Λ ⁵ C ₂₈ Λ ²² C ₂₉	
20:0	37.1	36:1	0.6	16	A5C029	
21:0	37.1	36:0	0.5	17	Δ ⁵ C ₂₉ Δ ⁵ ,22 _{C27}	
22:6	13.1	37:0	0.5	17	Δ5C27	0.03
22:5	13.1	38:2	0.8	18	Δ5,22 _{C27}	3.03
22:3	203.6	38:1	1.5	18	Δ5C27	0.1
22:1	203.0	38:0	0.4	unk	a 027	V.1
23:0		39:0	V. 7	18	Δ ⁵ ,22 _{C28}	
23:0	94.1	40:2		18	A ⁵ Caa	
	_		1.5	19	Δ ⁵ C ₂₇	
24:0	46.2	40:1 40:0	0.3	18	Δ ²² C ₂₉ (?)	
25:0			V.3	18	Δ ⁵ C ₂₉ (?)	
26:1	27 4	41:0		20	Δ5,22 _{C27}	
26:0	37.6	42:2	0.5	20	Δ ⁵ C ₂₇	0.02
27:0		42:1	0.5		45C27	0.02
28:0		42:0		22	Δ5C27	
29:0		44:2		unk		
30:0		44:1		 .	•	
G-4-1	0210 (44:0		Tota	1	0.5
Total	2319.6	-	• • •			
		Total	16.6			

Triacy	lglycerols	Alkyldiacylglycerols			
C No. 1	μg/m ² 12 h	C No.	μ g/m² 12 h		
40					
41					
42	2.8				
43	0.6				
44	7.9				
45					
46	18.2	46e			
47	0.8				
48	21.8	48e	1.6		
49					
50	13.0	50e	2.9		
51					
52	14.4	52e	1.1		
53					
54	12.8	54e	0.4		
55					
56	2.2	56e			
57					
58					
59					
60					
Total	94.6	Total	5.9		

PM Flux - 2.92 g/m² 12 h POC Flux - 140.4 mg/m² 12 h Lipid Flux - 14.7 mg/m² 12 hr

Day / Night Depth 52 m

Total 1	Fatty Acids	Wa	Wax Esters Steryl Ester		Steryl Esters	
C No.	μg/m ² 12 h	C No.	μg/m ² 12 h		C No.	μg/m ² 12 h
				acy1	sterol	
12:0	47.4	26:1		12	Δ ^{5,22} C ₂₈	
13:0	0.4	26:0		unk		
14:1		27:0		13	Δ ⁵ ,22 _{C28}	
14:0	348.6	28:1		14	Δ ³ ,22C ₂₇	
15:0	8.7	28:0	3.5	14	Δ ⁵ C ₂₇ Δ ⁵ ,22 _{C28}	0.8
15:0	4.7	29:0	0.2	14	45,22 _{C28}	
15:0	16.8	30:2	1.4	14	Δ ²² C ₂₈	
16:14 ⁹	296.0	30:1	1.4	unk	20	
16:0	1429.3	30:0	4.4	unk		
17:0	3.6	31:0	I.S.	14	Δ ²² C ₂₉	
17:0	3.9	32:2	4.9	15	V2,55C38	
17:1		32:1	6.4	15	$\Delta^{3}C_{20}$	
17:0	I.S.	32:0	6.8	15	Δ ⁵ C ₂₇ Δ ⁵ ,22 _{C₂₇}	0.1
18:2		33:1	1.8	16	Δ5,22 _{C27}	0.5
18:14 ⁹	128.0	33:0	0.7	16	Δ ³ C ₂₇	2.4
18:1411	97.2	34:2		14	A5,22C20	0.5
18:0	237.4	34:1	30.2	16	Δ5,22C28 Δ5,24(28)C	
19:0	I.S.	34:0	2.4	16	45,24(28) _C	28
20:5	2.3	35:1	1.2	16	AZZC28	20
20:4	0.1	35:0	0.2	16	V ₂ C30	
20:1	12.3	36:2		16	A ²² C ₂₀	
20:0	8.5	36:1	7.0	16	Δ ⁵ C ₂₉ Δ ⁵ ,22 _{C₂₇}	
21:0		36:0	1.0	17	45,22 _{C27}	
22:6	4.8	37:0	0.2	17	Δ ⁵ C ₂₇ Δ ⁵ ,22 _{C₂₇}	0.2
22:5		38:2	1.3	18	Δ ⁵ ,22 _{C27}	0.4
22:1	6.1	38:1	1.2	18	Δ ⁵ C ₂₇ 2	1.8
22:0	9.3	38:0	0.5	unk		
23:0	1.8	39:0	0.2	18	Δ5,22 _{C28}	
24:1	5.3	40:2	0.5	18	Δ^5 C29	
24:0	7.7	40:1	1.2	19	A ⁵ Co7	
25:0	2.8	40:0	0.04	18	$\Delta^{2}C_{20}(?)$	
26:1	2.7	41:0		18	Δ ⁵ C ₂₉ (?) Δ ⁵ ,22 _{C₂₇}	
26:0	3.9	42:2		20	45,22 _{C27}	
27:0	3.3	42:1	0.4	20	Δ ³ C ₂₇	0.1
28:0	7.7	42:0	0.2	22	Δ ⁵ C ₂₇	
29:0	1.3	44:2	•	unk	- /	
30:0	0.1	44:1				
-		44:0		Tota	.1	6.8
Total	2694.5					-
		Total	80.5			

Triacy	lglycerols	Alkyldiacylglycerols			
C No. 1	ug/m ² 12 h	C No.	μg/m ² 12 h		
40					
41					
42	2.4				
43					
44	13.2				
45	3.6				
46	37.2	46e			
47	4.8		•		
48	46.8	48e			
49	4.8				
50	19.2	50e			
51					
52	15.6	52e			
53					
54	10.8	54e			
55					
56		56e			
57					
58					
59					
60					
Total	158.4	Total	N.D.		

PM Flux - 2.93 g/m² 12 h POC Flux - 164.4 mg/m² 12 h Lipid Flux - 13.2 mg/m² 12 hr

Day / Night Depth 14 m

Total Fatty Acids		Wa	Wax Esters		Steryl Esters		
C No.	μg/m ² 12 h	C No.	μg/m ² 12 h		C No.	μg/m ² 12 h	
				acy1	sterol		
12:0	7.9	26:1		12	Δ ⁵ ,22 _{C28}		
13:0	1.3	26:0	0.6	unk	_		
14:1		27:0	0.1	13	Δ ⁵ ,22 _{C28}		
14:0	520.1	28:1		14	Δ5,22 _{C27}		
15:0	17.4	28:0	0.9	14	Δ ⁵ C27	0.4	
15:0	6.9	29:0	0.2	14	Λ ⁵ ,22 _{Cae}		
15:0	45.2	30:2		14	Δ ²² C ₂₈		
16:14 ⁹	199.5	30:1	1.4	unk	20		
16:0	1749.8	30:0	1.9	unk			
17:0	4.2	31:0	I.S.	14	4 ²² C ₂₉		
17:0	8.7	32:2	2.3	15	Δ5,22C28		
17:1		32:1	1.6	15	A ⁵ Coo	•	
17:0	I.S.	32:0	8.0	15	Δ ⁵ C ₂₇ Δ ⁵ ,22 _{C₂₇}	0.2	
18:2		33:1		16	Δ5,22 _{C27}	0.5	
18:14 ⁹	110.9	33:0	0.6	16	Δ ⁵ C ₂₇	1.1	
18:14 ¹¹	72.5	34:2		14	Λ ⁵ ,22 _{C20}	0.2	
18:0	285.8	34:1	10.0	16	Δ5,22 _C 28 Δ5,24(28) _C		
19:0	I.S.	34:0	1.2	16	$\tilde{\Delta}^{5,24(28)}_{C}$	20	
20:5		35:1	-, -	16	A ²² Cae	20	
20:4		35:0	0.6	16	A ⁵ Cae		
20:1	5.6	36:2		16	A ²² C20		
20:0	14.2	36:1	3.6	16	Δ ⁵ C20		
21:0	• • • • • • • • • • • • • • • • • • • •	36:0	1.0	17	Δ ⁵ C ₂₉ Δ ⁵ ,22 _{C₂₇}		
22:6	11.1	37:0	0.6	17	Δ ³ C ₂₇	0.2	
22:5		38:2		18	Δ ⁵ ,22C ₂₇		
22:1	9.5	38:1	1.7	18	Δ ⁵ C ₂₇	1.0	
22:0	22.4	38:0	0.8	unk			
23:0	4.3	39:0	0.2	18	Δ5,22 _{C28}		
24:1	4.2	40:2		18	A ⁵ Cae		
24:0	7.5	40:1	1.2	19	Δ ⁵ C ₂₇ Δ ²² C ₂₉ (?)		
25:0	6.1	40:0	0.4	18	$\Delta^{22}C_{29}(?)$		
26:1	4.8	41:0		18	Δ ⁵ C ₂₉ (?) Δ ⁵ ,22 _{C₂₇}		
26:0	0.6	42:2		20	Δ ⁵ , ²² C ₂₇		
27:0	14.1	42:1	0.6	20	Δ ³ C ₂₇	0.1	
28:0	5.0	42:0	0.2	22	Δ ⁵ C ₂₇		
29:0	3.1	44:2		unk	- ·		
30:0	1.2	44:1					
		44:0		Tota	1	3.7	
Total	3143.9						
		Total	40.3				

Triacy	glycerols	Alkyldiacylglycerols			
C No. 3	ug/m ² 12 h	C No.	μg/m ² 12 h		
 40					
41					
42	1.2				
43	0.4				
44	3.6				
45	0.4				
46	7.2	46e			
47	0.6				
48	8.4	48e			
49	0.6				
50	3.6	50e			
51					
52	4.8	52e			
53	4.0	720			
54	4.8	54e			
55	710	376			
56	0.6	56e			
57	J. 0	306			
5 8					
59					
60					
OV					
Total	36.1	Total	N.D.		

PM Flux - 3.34 g/m² 12 h POC Flux - 313.2 mg/m² 12 h Lipid Flux - 75.3 mg/m² 12 hr

Day / Night
Depth 14 m

Total F	Total Fatty Acids Wax Est		x Esters		Steryl	Esters
C No.	μg/m ² 12 h	C No.	μg/m ² 12 h		C No.	μg/m ² 12 h
				acy1	<u>sterol</u>	
12;0	97.8	26:1		12	Λ ^{5,22} C ₂₈	
13:0	2.8	26:0	3.8	unk		
14:1		27:0	1.6	13	Δ ⁵ ,22 _{C28}	
14:0	2590.3	28:1	3.7	14	A3,22C27	4.1
i 15:0	88.5	28:0	38.4	14	Δ5C27	19.6
a 15:0	19.6	29:0	6.8	14	Λ ⁵ ,22 _{C20}	1.7
15:0	165.2	30:2		14	Δ ²² C ₂₈	
16:14 ⁹	4954.2	30:1	47.0	unk	26	
16:0	7865.0	30:0	104.4	unk		
i 17:0	131.8	31:1	6.4	14	Δ ²² C ₂₉	
17:0	75.4	31:0	I.S.	15	Δ5,22 _{C28}	
17:1	,,,,	32:2	2.0.	15	A20	
17:0	I.S.	32:1	81.6	15	Δ ⁵ C ₂₇ Δ ⁵ , 22 _{C₂₇}	2.3
18:2	230.0	32:0	114.0	16	A5,22 _{Co.7}	8.9
18:14 ⁹	3354.2	33:1	12.0	16	ASCOT	60.1
18:1411	1978.9	33:0	10.8	14	Δ ⁵ C ₂₇ Δ ⁵ , 22C ₂₉	2.0
18:0	727.6	34:2	116.4	16	A5,22C29	4.1
19:0	I.S.	34:1	39.6	16	Δ5,22C28 Δ5,24(28)C	714
20:5	2.5	34:0	44.4	16	Δ ²² C ₂₈	26
20:4	234.9	35:0	8.8	16	A5C28	
20:1	1066.0	36:2	44.4	16	Δ ⁵ C ₂₈ Δ ²² C ₂₉	
20:0	407.3	36:1	12.8	16	A5C00	
21:0	407.3	36:0	15.6	17	Δ ⁵ C ₂₉ Δ ⁵ , 22 _{C27}	
22:6	186.8	37:0	13.0	17	A5C07	7.3
22:5	7.6	38:2	28.8	18	Δ ⁵ C ₂₇ Δ ⁵ , 22 _{C₂₇}	6.2
22:1	94.2	38:1	31.2	18	Δ5c ₂₇	63.9
22:0	8.7	38:0	7.2	unk	2 021	•••
23:0	4.4	39:0	,	18	45,22 _{C28}	3.4
24:1	56.9	40:2	40.8	18	Δ ⁵ C ₂₈	3. 4
24:0	14.8	40:1	13.2	19	A ³ Con	2.2
25:0	3.9	40:0	3.5	18	Δ ²² C ₂₉ (?)	- · ·
26:1	8.6	41:0	4.5	18	Δ ⁵ C ₂₉ (?)	
26:0	14.8	42:2		20	Δ5,22 _{C27}	
27:0	2.5	42:1	7.2	20	Δ ⁵ C ₂₇	31.4
28:0	2.5	42:0	2.4	22	Δ ⁵ C ₂₇	9.3
29:0	9.4	44:2	£.7	unk	2 02/	<i>y</i> . <i>y</i>
30:0	0.5	44:1		~115		
30.0	0. 5	44:0		Tota	1	226.5
Total	24,407.6	77.0		1000	•	220.3
10081	47,707.0	Total	843.1			
		10081	043.1			

Triacy	lglycerols	Alkyldiacylglycerols		
C No. 1	μg/m ² 12 h	C No.	μg/m ² 12 h	
40				
41				
42	8.4			
43				
44	44.4			
45				
46 .	121.2	46e		
47				
48	152.4	48e	38.4	
49				
50	99.6	50e	70.8	
51				
52	79.2	52e	74.4	
53				
54	55.2	54e	12.0	
55				
56	20.4	56e		
57				
58	14.6			
59				
60				
Total	595.4	Total	195.6	

PM Flux - 2.48 g/m² 12 h POC Flux - 130.8 mg/m² 12 h Lipid Flux - 24.7 mg/m² 12 hr

Day / Night
Depth 52 m

Total Fatty Acids		Wa	Wax Esters		Steryl Esters		
C No.	μ g/m² 12 h	C No.	μ g/m² 12 h		C No.	μg/m ² 12 h	
				acy1	sterol		
12:0	41.1	26:1		12	Δ ^{5,22} C ₂₈		
13:0	2.6	26:0		unk			
14:1		27:0		13	Δ ⁵ ,22 _{C28}		
14:0	942.2	28:1		14	A3,22C27	1.5	
15:0	26.1	28:0	0.7	14	A ⁵ Coz	2.6	
15:0	9.3	29:0	0.2	14	A5,22C20	0.3	
15:0	30.2	30:2		14	∆22C28		
16:149	3177.1	30:1		unk	- 20		
16:0	3856.3	30:0	1.3	unk			
17:0	44.9	31:1		14	Δ ²² C ₂₉		
17:0		31:0	I.S.	15	Δ5,22C28		
17:1		32:2	 -	15	A ⁵ C20		
17:0	I.S.	32:1	1.8	15	Δ5C27	0.7	
18:2	87.3	32:0	2.2	16	A5,22Co.	1.6	
18:1A ⁹	3874.8	33:1	212	16	Δ5C27	5.5	
18:1411	955.9	33:0	0.2	14	A5.22c-	0.7	
18:0	579.3	34:2	2.8	16	Δ5,22C28 Δ5,24(28)C	1.3	
19:0	I.S.	34:1	1.0	16	$\Delta 5,24(28)_{C}$	20	
20:5	32.5	34:0	1.7	16	AZZCoo	20	
20:4	7.9	35:0	0.2	16	Δ ⁵ C ₂₈ Δ ²² C ₂₉		
20:1	81.1	36:2	2.0	16	Δ22C20		
20:0	11.7	36:1	1.4	16	Δ ⁵ C20		
21:0	101.4	36:0	0.5	17	Δ ⁵ C ₂₉ Δ ⁵ .22 _{C₂₇}		
22:6	367.4	37:0		17	Δ5C27	1.3	
22:5	37.8	38:2		18	Δ ⁵ C ₂₇ Δ ⁵ , 22C ₂₇	2.1	
22:1	93.1	38:1		18	Δ5c ₂₇	7.8	
22:0	10.8	38:0		unk			
23:0	1.9	39:0		18	45,22 _{C28}	7.8	
24:1	10.4	40:2		18	A ⁵ Cae	- · ·	
24:0	3.1	40:1	1.4	19	Δ ⁵ C ₂₇ Δ ²² C ₂₉ (†)	0.5	
25:0	0.3	40:0	0.7	18	422C20(1)		
26:1	0.8	41:0	- • •	18	D~C20(1)		
26:0	11.6	42:2		20	Δ5,22 _{C27}	0.7	
27:0	8.6	42:1		20	Δ5C27	4.4	
28:0	12.6	42:0		22	Δ ⁵ C ₂₇	0.8	
29:0	0.3	44:2		unk	2 /	+·•	
30:0	0.3	44:1					
-		44:0		Tota	1	39.6	
Total	14,420.6				_	· -	
							

Triacy	Triacylglycerols		Alkyldiacylglycerols		
C No.	μg/m ² 12 h	C No.	ug/m ² 12 h		
40					
41					
42					
43					
44	20.4				
45					
46	42.0	46e			
47	1.2	•			
48	73.2	48e			
49	2.4				
50	111.6	50e			
51	1.2				
52	262.8	52e			
53	2.4				
54	154.8	54e			
55					
56	91.2	56e			
57					
58	40.8				
59					
60	33.6				
Total	843.6	Total	N.D.		

ANALYSIS CONTRACTOR OF THE CON

PM Flux - 2.80 g/m² 12 h POC Flux - 203.5 mg/m² 12 h Lipid Flux - 39.3 mg/m² 12 hr

Day / Night Depth 11 m

Total	Fatty Acids	Wax Esters			Esters	
C No.	μg/m ² 12 h	C No.	μg/m ² 12 h		C No.	μg/m ² 12 h
				acy1	sterol	
12:0	24.9	26:1		12	Λ ^{5,22} C ₂₈	
13:0	0.2	26:0		unk	-	
14:1		27:0		13	Λ ⁵ ,22 _{C28}	
14:0	2597.6	28:1		14	43,22C27	0.5
15:0	35.5	28:0	0.6	14	A ⁵ Coz	1.5
15:0		29:0	0.2	14	A5,22C20	1.3
15:0	59.6	30:2	0.5	14	Δ ²² C ₂₈	1.0
16:149	1539.7	30:1	0.8	unk	20	0.8
16:0	6783.1	30:0	1.2	unk		0.2
17:0	21.6	31:1		14	Δ ²² C ₂₉	0.8
17:0	22.0	31:0	I.S.	15	Δ5,22 _{C28}	0.0
17:1		32:2	1.0	15	Δ ⁵ C ₂₈	
17:0	I.S.	32:1	1.6	15	Δ ⁵ C ₂₇	
18:2	46.5	32:0	2.2	16	Δ5,22 _{C27}	1.0
18:14 ⁹	1110.8	33:1	2.2	16	Δ ⁵ C ₂₇	2.7
18:14 ¹¹			A 3	14	45,22 _{C29}	2.1
	164.4	33:0	0.3		15.220	5.0
18:0	579.7	34:2	6.5	16	Δ5,22 _{C28} Δ5,24(28) _C	3.0
19:0	I.S.	34:1	1.8	16	Δ ²² C ₂₈	[,] 28
20:5	6.8	34:0	1.3	16	Δ-102 9	15.5
20:4	18.6	35:0	0.3	16	Δ ⁵ C ₂₈	
20:1	20.3	36:2	4.3	16	Δ ²² C ₂₉	3.4
20:0	58.1	36:1	2.1	16	Δ ⁵ C ₂₉ Δ ⁵ ,22 _{C₂₇}	12.3
21:0		36:0	2.0	17	Δ3'22C27	
22:6	6.9	37:0		17	Δ ⁵ C ₂₇ Δ ⁵ , 22C ₂₇	
22:5	0.2	38:2		18	45,22C27	
22:1	11.6	38:1	1.5	18	Δ ⁵ C ₂₇	1.6
22:0	46.3	38:0	1.0	unk	5 00	0.8
23:0	4.2	39:0	0.2	18	45,22 _{C28}	2.3
24:1	24.8	40:2		18	Δ ⁵ C ₂₈	3.5
24:0	33.7	40:1	1.0	19	Δ ³ C ₂₇	
25:0	2.0	40:0	0.4	18	Δ ⁵ C ₂₇ Δ ²² C ₂₉ (?)	2.4
26:1	5.0	41:0	0.1	18	Δ ⁵ C ₂₉ (?) Δ ⁵ ,22 _{C₂₇}	1.5
26:0	6.4	42:2		20	43,22C27	
27:0	2.2	42:1	0.8	20	Δ ⁵ C ₂₇	
28:0	1.7	42:0	0.3	22	Δ ⁵ C ₂₇	
29:0	1.9	44:2		unk		
30:0	0.9	44:1				
		44:0		Tota	1	58.1
Total	13,215.2					
		Total	32.0			

Triacylglycerols		Alkyldiacylglycerols		
C No.	μg/m ² 12 h	C No.	μg/m ² 12 h	
 40				
41				
42	18.5			
43	4.4			
44	112.3			
45	14.5			
46	203.3	46e		
47	22.0			
48	248.3	48e		
49	17.2			
50	240.2	50e		
51	14.3			
52	101.4	52e		
53	10.8	• • • • • • • • • • • • • • • • • • • •		
54	89.9	54e		
55	0.7			
56	7.7	56e		
57				
58	5.3			
59				
60				
•				
Total	1110.7	Total	N.D.	

PM Flux - 3.02 g/m² 12 h POC Flux - 165.5 mg/m² 12 h Lipid Flux - 24.5 mg/m² 12 hr

Day / Night Depth 53 m

Total F	Total Fatty Acids		Wax Esters		Steryl Esters			
C No.	μg/m ² 12 h	C No.	μg/m ² 12 h		C No.	μg/m ² 12 h		
				acyl	sterol			
12:0	14.3	26:1		12	Δ ^{5,22} C ₂₈			
13:0		26:0	2.2	unk	-			
14:1		27:0		13	Δ ⁵ ,22 _{C28}			
14:0	731.3	28:1		14	Δ5,22 _{C27}	0.6		
15:0	53.0	28:0	2.2	14	Δ ⁵ C ₂₇	0.6		
15:0	27.0	29:0	0.1	14	Δ5,22 _{C28}	0.9		
15:0	80.7	30:2	0.1	14	Δ ²² C ₂₈	0.7		
16:10 ⁹	878.5	30:1	1.4	unk	P C 28			
16:0	1882.4	30:0	9.5	unk		0.6		
17:0	30.9	31:1	9.3	14	•22a	0.6		
	4.5		T 0		Δ ²² C ₂₉ Δ ⁵ , ²² C ₂₈			
17:0	4.5	31:0	I.S.	15	A50			
17:1		32:2	3.4	15	Δ ⁵ C ₂₈ Δ ⁵ C ₂₇			
17:0	I.S.	32:1	1.9	15	Δ ³ C33			
18:2	49.5	32:0	10.3	16	Δ5,22 _{C27}	1.1		
18:14 ⁹	432.6	33:1		16	Δ ⁵ C ₂₇ Δ ⁵ ,22 _{C₂₉}	2.8		
18:14 ¹¹	202.9	33:0	0.7	14	A3,22C29			
18:0	349.0	34:2		16	Δ5,22C28 Δ5,24(28)C	1.8		
19:0	I.S.	34:1	7.0	16	Δ3,24(28)C	28		
20:5	110.5	34:0	3.2	16	Δ ²² C ₂₉	3.9		
20:4	2.7	35:0	0.3	16	Δ ⁵ C ₂₈			
20:1	89.5	36:2	0.8	16	Δ ⁵ C ₂₈ Δ ²² C ₂₉	1.5		
20:0	89.9	36:1	1.1	16	Δ ⁵ C ₂ Q	3.7		
21:0		36:0	0.7	17	Δ ⁵ C ₂₉ Δ ⁵ ,22 _{C27}			
22:6	237.8	37:0	0.2	17	Δ ⁵ C27			
22:5	12.1	38:2		18	Δ ⁵ C ₂₇ Δ ⁵ ,22 _{C₂₇}			
22:1	15.9	38:1	3.0	18	Δ5C27	1.1		
22:0	44.8	38:0	0.1	unk		- 1 -		
23:0	9.3	39:0	0.2	18	Δ ⁵ ,22 _{C28}	0.7		
24:1	55.6	40:2	•••	18	Δ5C28			
24:0	61.7	40:1	1.0	19	Δ ⁵ C ₂₇			
25:0	6.0	40:0	0.4	18	Δ ²² C ₂₉ (?)	0.3		
26:1	18.2	41:0	U. 4	18	45Coc(9)	0.5		
26:1	21.6	42:2		20	Δ ⁵ C ₂₉ (†) Δ ⁵ ,22 _{C₂₇}	0.3		
	8.0	42:2	0.3	20	Δ ⁵ C ₂₇			
27:0 28:0	8.0 8.0	42:1 42:0	0.3	20 22	Δ ⁵ C ₂₇			
		42:0	U.4	unk	a-C27			
29:0	5.0			unk				
30:0	2.6	44:1		.	•	20.1		
9 -4-3	5525 A	44:0		Tota	.1	20.1		
Total	5535.8							
		Total	48.4					

Triacy	lglycerols	Alkyldiacylglycerols			
C No.	μg/m ² 12 h	C No.	μg/m ² 12 h		
40					
41					
42	5.5				
43	1.3				
44	19.1				
45	3.2				
46	61.0	46e			
47	4.6				
48	65.6	48e			
49	2.6				
50	43.2	50e			
51	3.1				
52	32.4	52e			
53	2.0				
54	18.1	54e			
55					
56	4.3	56e			
57					
58					
59					
60					
Total	266.2	Total	N.D.		

PM Flux - 3.61 g/m² 12 h POC Flux - 343.2 mg/m² 12 h Lipid Flux - 117.2 mg/m² 12 hr

Day / Night
Depth 11 m

Total Fatty Acids		Wa	Wax Esters		Steryl Esters			
C No.	μg/m ² 12 h	C No.	μg/m ² 12 h		C No.	μg/m ² 12 h		
				acyl	stero1			
12:0	97.9	26:1		12	Δ ⁵ ,22 _{C28}			
13:0	2.8	26:0	0.7	unk				
14:1		27:0	0.2	13	Λ ⁵ ,22 _{C28}			
14:0	2636.7	28:1	0.8	14	Δ5,22C27	1.2		
15:0	130.7	28:0	6.5	14	A ⁵ Co.	4.8		
15:0	6.4	29:0	1.0	14	Λ ⁵ ,22 _{C20}	0.3		
15:0	220.0	30:2		14	Δ ²² C ₂₈			
16:149	921.5	30:1	8.5	unk	2 028			
16:0	10,952.8	30:0	25.4	unk				
17:0	66.3	31:1		14	Δ ²² C ₂₉			
17:0	46.8	31:0	I.S.	15	Δ5,22 _{C28}			
17:1	40.0	32:2	7.2	15	Δ5C ₂₈			
17:0	I.S.	32:1	13.8	15	Δ ⁵ C ₂ χ	0.9		
18:2	1.5.	32:0	26.6	16	Δ5,22 _{C27}	3.4		
18:14 ⁹	2041.1	33:1	20.0	16	Δ ⁵ C ₂ χ	15.1		
18:14 ¹¹			1 7	14	Δ5,22 _{C29}	13.1		
	584.2	33:0	1.7		A5.220	0.1		
18:0	1415.0	34:2	11.2	16	Δ5,22C28 Δ5,24(28)	0.1		
19:0	I.S.	34:1	21.8	16	.220	28		
20:5	4.7	34:0	5.6	16	Δ ²² C ₂₈			
20:4	27.7	35:0	0.6	16	Λ ⁵ C28			
20:1	465.9	36:2	0.6	16	Δ ²² C ₂₉			
20:0	297.9	36:1	4.0	16	Δ ⁵ C33	0.2		
21:0		36:0	0.7	17	15,22 _{C27}			
22:6	35.8	37:0	0.6	17	Δ ⁵ C ₂₇ Δ ⁵ ,22 _{C₂₇}	1.1		
22:5	6.3	38:2	2.9	18	Δ3,22C ₂₇	4.2		
22:1	52.1	38:1	4.2	18	Δ ⁵ C ₂₇	19.8		
22:0	158.2	38:0	0.3	unk	5 00			
23:0	35.7	39:0	0.1	18	Δ ^{5,22} C ₂₈			
24:1	160.7	40:2	0.7	18	Δ5C28			
24:0	129.7	40:1	1.5	19	Δ ³ C ₂₇	0.4		
25:0	5.9	40:0	0.1	18	Δ ⁵ C ₂₇ Δ ²² C ₂₉ (?)			
26:1	22.4	41:0		18	D'Coal?)			
26:0	17.5	42:2		20	45,22C27			
27:0	44.3	42:1	0.7	20	Δ ⁵ C ₂₇	1.1		
28:0	4.6	42:0		22	Δ ⁵ C ₂₇			
29:0	0.7	44:2		unk	• /			
30:0	0.7	44:1						
-		44:0		Tota	1	52.6		
Total	20,575.0	-						
	-	Total	148.0					

Triacylglycerols		Alkyldiacylglycerols		
C No.	μg/m ² 12 h	C No.	μg/m ² 12 h	
40	4.9			
41				
42	31.3			
43	6.8			
44	112.1			
45	11.8			
46	220.8	46e		
47				
48	230.4	48e	17.8	
49				
50	124.8	50e	53.5	
51				
52	68.3	52e	42.7	
53				
54	30.1	54e	20.2	
55	6.6			
56	17.3	56e	9.4	
57				
58	3.7			
59				
60				
Total	868.9	Total	143.5	

PM Flux - 2.32 g/m² 12 h POC Flux - 73.2 mg/m² 12 h Lipid Flux - 12.1 mg/m² 12 hr Day / <u>Night</u> Depth <u>53</u> m

Total F	Total Fatty Acids		Esters	Steryl Esters		
C No.	μg/m ² 12 h	C No.	μg/m ² 12 h	(C No.	μg/m ² 12 h
				acyl	sterol	
12:0	8.0	26:1		12	Λ ^{5,22} C ₂₈	
13:0	0.5	26:0		unk	_	
14:1		27:0		13	Δ ⁵ ,22 _{C28}	
14:0	505.1	28:1		14	V2,55C22	
15:0	19.7	28:0	2.0	14	Δ ⁵ C27	1.0
	11.9	29:0	0.1	14	A5,22Coo	
15:0 15:0	37.1	30:2		14	∆ ²² C ₂₈	
16:149	1077.3	30:1	0.6	unk	25	
16:14	665.4	30:0	3.2	unk		
	39.1	31:1	J. E	14	Δ ²² C ₂₉	
17:0	37.1	31:0	I.S.	15	Δ5,22 _{C28}	
17:0		32:2	1.9	15	Δ5C28	
17:1	I.S.	32:2	1.4	15	Δ5C27	
17:0	44.7	32:0	3.9	16	A5,22 _{C27}	0.3
18:2 18:14 ⁹	311.2	33:1	3.7	16	Δ ⁵ , 22 _{C27} Δ ⁵ C ₂₇	0.8
18:14 ¹¹	165.4	33:0	0.2	14	Δ5,22 _{C29}	0.8
18:14	153.2	34:2	0.2	16	Λ5,22C29	1.0
19:0	I.S.	34:1	6.5	16	Δ5,22C28 Δ5,24(28)	28
20:5	230.9	34:0	1.4	16	∆22C28	20
20:3	5.3	35:0	0.2	16	Δ ⁵ C ₂₈	
20:4	8.5	36:2	0.2	16	AZZCan	
	6.2	36:1	1.6	16	Δ ⁵ C20	
20:0 21:0	0.2	36:0	0.7	17	Δ ⁵ C ₂₉ Δ ⁵ ,22 _{C27}	
22:6	103.7	37:0	0.2	17	45C27	
	5.2	38:2	0.5	18	A5,22 _{C27}	0.5
22:5	46.5	38:1	0.4	18	Δ5c27	1.2
22:1 22:0	44.9	38:0	V.7	unk	21	
22:0	3.4	39:0	0.1	18	Δ5,22 _{C28}	0.3
	23.7	40:2	V. A	18	V2Cae	
24:1		40:1	0.5	19	Δ ⁵ C ₂₇	
24:0	20.9 2.8	40:0	4. 3	18	Δ ²² C ₂₉ (?)	
25:0	2.8 6.4	41:0		18	$\Delta^{2}C_{20}(?)$	
26:1	6.7	42:2		20	Δ5,22 _{C27}	•
26:0	1.7	42:1		20	Δ5C27	
27:0	2.2	42:1		22	ΔSC27	
28:0	0.5	44:2		unk	21	
29:0	0.5	44:1		~11#		
30:0	0.3	44:0		Tota	.1	5.9
Taba1	3558.6	44:0		1000	-	4. •
Total	3330.0	Total	25.4			

Triacy	lglycerols	Alkyldiacylglycerols		
C No.	μg/m ² 12 h	C No. μg/m ² 12 h		
40	2.6			
41				
42	8.5			
43	0.8			
44	72.7			
45	7.2			
46	195.6	46e		
47	11.0			
48	202.8	48e		
49	2.4			
50	81.8	50e		
51	4.8			
52	122.4	52e		
53	2.0			
54	69.6	54e		
55	2.3			
56	40.1	56e		
57				
58	17.9			
59				
60				
Total	844.7	Total N.D.		

PM Flux - 4.23 g/m² 12 h POC Flux - 224.4 mg/m² 12 h Lipid Flux - 80.6 mg/m² 12 hr

Day / Night Depth 11 m

	Total E	atty Acids	Wa	x Esters		Steryl	Ssters
,	C No.	μg/m ² 12 h	C No.	μg/m ² 12 h		C No.	μg/m ² 12 h
					acyl	sterol	
	12:0	202.0	26:1		12	Δ ⁵ ,22 _{C28}	
	13:0	1.0	26:0		unk		
	14:1		27:0		13	Δ ⁵ ,22 _{C28}	
	14:0	4619.4	28:1		14	A3,22C27	
i	15:0	104.1	28:0	13.1	14	Δ ⁵ C ₂₇ Δ ⁵ ,22 _{C28}	0.5
	15:0	22.9	29:0	1.5	14	Δ5,22 _{C20}	•••
	15:0	298.5	30:2		14	∆ ²² C ₂₈	0.9
	16:14 ⁹	4949.6	30:1	10.7	unk	n 028	0. 7
	16:0	14,168.0	30:0	26.2	unk		1.1
i	17:0	145.7	31:1		14	Δ ²² C ₂₉	0.6
	17:0	59.5	31:0	I.S.	15	Δ5,22 _{C28}	0.0
•	17:1	37.3	32:2	3.0	15	Δ ⁵ C ₂₈	
	17:0	I.S.	32:1	11.0	15	Δ ⁵ C ₂₇	
	18:2	169.0	32:0	17.4	16	Δ5,22 _{C27}	2.0
	18:14 ⁹	1306.3	33:1	27,7	16	Δ ⁵ C ₂₇	1.7
	18:14 ¹¹	588.2	33:0	1.1	14	Δ5,22 _{C29}	1.,
	18:0	1771.4	34:2	20.9	16	A5,22C29	3.9
	19:0	1.5.	34:1	3.4	16	Δ5,22 _{C28} Δ5,24(28) _{C2}	3.7
	20:5	385.4	34:0	3.4	16	Δ ²² C ₂₈	8 4.1
	20:4	39.2	35:0	0.7	16	Δ ⁵ C28	₹•.5
	20:1	362.2	36:2	3.5	16	Δ22C29	2.6
	20:0	705.7	36:1	5.2	16	A ⁵ C==	6.6
	21:0	703.7	36:0	2.2	17	Δ ⁵ C ₂₉ Δ ⁵ ,22 _{C27}	0.0
	22:6	402.0	37:0	0.4	17	A5C==	
	22:5	4.9	38:2	2.1	18	Δ ⁵ C ₂₇ Δ ⁵ ,22 _{C27}	
	22:1	212.7	38:1	2.5	18	Δ ⁵ C ₂₇	0.6
	22:0	411.0	38:0	1.2	unk	a C27	0.0
	23:0	39.4	39:0	0.4	18	45,22 _{C28}	0.8
	24:1	78.4	40:2	0.4	18	Δ ⁵ C ₂₈	0.5
		239.8	40:2	2.3	19	ASC	0.3
	24:0					Δ ⁵ C ₂₇ Δ ²² C ₂₉ (?)	0.6
	25:0	11.8	40:0	0.2	18 18	Δ ⁵ C ₂₉ (?)	1.3
	26:1 26:0	28.7 42.9	41:0 42:2		20	A5,22 _{C27}	1.3
						ASC C27	
	27:0	2.5 8.8	42:1 42:0		20	Δ ⁵ C ₂₇	
	28:0 29:0	8.8 3.5	42:0		22 unk	Δ ⁵ C ₂₇	
		6.5	44:1		ulik		
	30:0	0.0			T -4-	•	27 0
	Total	21 202 0	44:0		Tota	.1	27.8
	105#1	31,382.0		100 /			

Total

132.4

Triac	ylglycerols	Alkyldiacylglycerols		
C No.	μg/m ² 12 h	C No. μg/m ² 1	2 h	
40	9.8			
41				
42	14.0			
43	4.2			
44	31.4			
45	6.0			
46	54.0	46e		
47	10.4			
48	59.3	48e		
49	10.6			
50	38.6	50e		
51	3.0			
52	33.7	52e		
53	2.8			
54	24.7	54e		
55	•			
56	5.6	56e		
57				
58			•	
59				
60				
30				
Total	308.3	Total N.D.		

PM Flux - 3.12 g/m² 12 h POC Flux - 208.8 mg/m² 12 h Lipid Flux - 23.0 mg/m² 12 hr

Day / Night Depth 53 m

Total i	Patty Acids	Wa	x Esters		Steryl	Esters
C No.	μg/m ² 12 h	C No.	μg/m ² 12 h		C No.	μ g/m² 12 h
				acyl	sterol_	
12:0	1.4	26:1		12	Δ ^{5,22} C ₂₈	
13:0		26:0		unk		
14:1		27:0		13	Δ5,22 _{C28}	
14:0	386.6	28:1		14	Δ ⁵ ,22 _{C2} ,	
15:0	15.3	28:0	0.9	14	A ⁵ Caz	0.2
15:0	0.9	29:0	0.4	14	A 3 1 2 2 Coo	
15:0	12.7	30:2	1.3	14	∆ ²² C ₂₈	
16:14 ⁹	380.8	30:1	1.8	unk	20	
16:0	1964.9	30:0	1.4	unk		
17:0	11.1	31:1		14	Δ ²² C ₂₉	
17:0	2.1	31:0	I.S.	15	V2,55C38	
17:1		32:2	1.1	15	Δ ⁵ C ₂₈	
17:0	I.S.	32:1	0.6	15	A ^D Coz	
18:2		32:0	1.6	16	Δ5,22 _{C27}	0.8
18:10 ⁹	173.5	33:1		16	Δ5C27	0.7
18:14 ¹¹	137.8	33:0	0.2	14	Δ5,22 _{C20}	
18:0	371.4	34:2	· · ·	16	Δ5,22C29	
19:0	I.S.	34:1	1.9	16	Δ5,22C28 Δ5,24(28)	Cae
20:5	1.7	34:0	0.5	16	AZZCaa	-20
20:4		35:0	•••	16	A ² Coo	
20:1	5.6	36:2		16	A ² 4C20	
20:0	13.2	36:1	1.1	16	Δ ⁵ C ₂₉ Δ ⁵ ,22 _{C27}	
21:0	20.2	36:0	0.1	17	Δ5,22 _{C27}	
22:6	2.4	37:0	• • • • • • • • • • • • • • • • • • • •	17	Δ ³ C ₂₇	
22:5	1.4	38:2		18	Δ5,22 _{C27}	0.6
22:1	2.8	38:1	0.9	18	Δ ⁵ C ₂₇	0.6
22:0	17.3	38:0	÷ • •	unk	- '	- - •
23:0	2.1	39:0		18	45,22 _{C28}	
24:1	2.3	40:2		18	Δ5C28	
24:0	12.2	40:1		19	Δ5C27	
25:0	1.4	40:0		18	Δ22C29(1)	
26:1	1.5	41:0		18	$\Delta^{5}C_{20}(?)$	
26:0	4.6	42:2		20	Δ5,22 _{C27}	
27:0	0.4	42:1		20	Δ5c ₂₇	
28:0	1.1	42:0		22	Δ ⁵ C ₂₇	
29:0	0.1	44:2		unk	21	
30:0	0.1	44:1				
30.0	V.1	44:0		Tota	1	2.9
Total	3528.7	7718		-006	_	
	·	Total	13.8			

Triacylglycerols		Alkyld i	acylglycerols
C No.	μg/m ² 12 h	C No.	μg/m ² 12 h
40			
41			
42	10.9		
43	1.3		
44	19.8		
45	5.3		
46	36.1	46e	
47	5.0		
48	47.8	48e	
49	4.6		
50	38.2	50e	
51	2.5		
52	45.1	52e	
53		525	
54	41.0	54e	
55	V	• • • •	
56		56e	
57		700	
58			
59			
60			
55			
Total	257.6	Total	N.D.

PM Flux - 4.58 g/m² 12 h POC Flux - 350.4 mg/m² 12 h Lipid Flux - 53.7 mg/m² 12 hr

Day / Night
Depth 11 m

Total I	fatty Acids	We	x Esters	• Ster		Esters
C No.	μg/m ² 12 h	C No.	μg/m ² 12 h		C No.	μg/m ² 12 h
				acyl	sterol	
12:0	39.5	26:1		12	A5,22 _{C28}	
13:0	37.3	26:0	2.0	unk	2 028	
14:1		27:0	0.4	13	A5,22Can	
14:0	1830.0	28:1	•••	14	A5,22C28 A5,22C27	0.1
i 15:0	85.6	28:0	23.5	14	ASCar Z/	0.7
15:0	13.3	29:0	3.1	14	A5C27 A5,22C28	• • • • • • • • • • • • • • • • • • • •
15:0	99.6	30:2	5.2	14	∆22C28	
16:14 ⁹	1533.8	30:1	8.7	unk	G 028	
16:0	7194.1	30:0	68.7	unk		
i 17:0	38.9	31:1	•	14	A22C29	
17:0	46.7	31:0	I.S.	15	Δ5,22 _{C28}	
17:1	40.7	32:2	9.2	15	Δ5C28	
17:0	I.S.	32:1	12.5	15	43C	0.3
18:2	113.4	32:0	44.0	16	5,22 _{C27}	1.0
18:14 ⁹	1140.5	33:1	44.0	16	45C27	4.9
18:10 ¹¹	472.1	33:0	2.2	14	Δ5,22 _{C29}	7.7
18:0	940.3	34:2	6.4	16	A5.22C29	1.8
19:0	I.S.	34:1	19.8	16	Δ5,22C28 Δ5,24(28)C	1.0
20:5	58.4	34:0	6.6	16	Δ ²² C ₂₈	28
20:4	11.4	35:0	0.6	16	Δ ⁵ C28	
20:1	259.8	36:2	7.9	16	A66C	
20:0	149.2	36:1	7.4	16	45C22	
21:0	147.2	36:0	0.4	17	A5C29 A5,22C27 A5C27 A5,22C27	
22:6	49.1	37:0	0.5	17	A ⁵ Coz	0.5
22:5	0.8	38:2	•••	18	A5,22 _{Co.7}	0.9
22:1	49.7	38:1	2.8	18	Δ5C27	7.4
22:0	91.4	38:0	0.6	unk	_	,,,
23:0	18.8	39:0	0.5	18	A5,22C28	0.4
24:1	51.2	40:2		18	Δ5C28	• • •
24:0	57.9	40:1	1.6	19	Δ ⁵ C ₂₇	
25:0	2.1	40:0		18	Δ ²² C ₂₉ (?)	
26:1	16.8	41:0		18	A ⁵ Coo(?)	
26:0	3.8	42:2		20	Δ5,22 _{C27}	
27:0	1.3	42:1	0.9	20	Δ5C27	1.1
28:0	1.6	42:0	•••	22	Δ ⁵ C ₂₇	
29:0	0.8	44:2		unk	- 421	
30:0	0.8	44:1				
J	•••	44:0		Tota	1	19.1
Total	14,372.7	7714		1004	•	47.4
		Total	229.7			
			447.7			

	Triacylglycerols		Alkyld	liacylglycerols
	C No. y	g/m ² 12 h	C No.	μg/m ² 12 h
· · · · · · · · · · · · · · · · · · ·	40	7.4		
	41	0.5		
	42	20.0		
	43	4.0		
	44	56.2		
	45	9.2		
	46	112.4	46e	
	47			
	48	129.6	48e	9.2
	49			
	50	89.2	50e	20.2
	51			
	52	52.1	52e	26.0
	53			
	54	34.4	54e	24.6
	55			
	56	9.7	56e	10.4
	57			•
	58		58e	4.8
	59			
	60			
	Total	524.7	Total	95.3

PM Flux - 2.50 g/m² 12 h POC Flux - 111.6 mg/m² 12 h Lipid Flux - 6.7 mg/m² 12 hr

Day / <u>Night</u> Depth <u>53</u> m

Total F	atty Acids	Wa	x Esters		Steryl I	Ssters
C No.	μg/m ² 12 h	C No.	μg/m ² 12 h		C No.	μg/m ² 12 h
				acyl	<u>sterol</u>	
12:0	1.2	26:1		12	Δ ⁵ , ²² C ₂₈	
13:0	0.5	26:0	0.1	unk		
14:1		27:0		13	Λ ⁵ ,22 _C 28	
14:0	237.8	28:1		14	A3,22Ca2	0.3
15:0	16.2	28:0	1.4	14	Δ ⁵ C ₂₇ Δ ⁵ , 22 _{C₂₈}	0.3
15:0	0.7	29:0	0.3	14	Δ5,22 _{C20}	
15:0	13.2	30:2	-	14	∆ ²² C ₂₈	1.0
16:14 ⁹	122.9	30:1	0.9	unk	20	_••
16:0	1033.1	30:0	3.6	unk		0.5
17:0	7.2	31:1	-	14	Δ ²² C ₂₉	0.4
17:0	1.7	31:0	I.S.	15	Δ5,22 _{C28}	•••
17:1		32:2	1.6	15	A ⁵ Cae	
17:0	I.S.	32:1	1.2	15	Δ ⁵ C ₂₈ Δ ⁵ C ₂ ζ	
18:2	1.0.	32:0	4.2	16	Δ5,22 _{C27}	0.5
18:14 ⁹	228.9	33:1	7.2	16	Δ5C27	0.8
18:1411	79.7	33:0	0.3	14	Δ5.22 _{C29}	0.0
18:0	152.4	34:2	0.3	16	A5.22C29	3.2
19:0	I.S.	34:1	11.2	16	Δ5,22 _{C28} Δ5,24(28) _{C2}	3.2
20:5	1.5.	34:0	0.8	16	∆ ²² C ₂₈	28 3.6
		35:0	0.3	16	45C==	3.0
20:4	10.9	36:2	1.2	16	Δ ⁵ C ₂₈ Δ ²² C ₂₉	1.1
20:1			2.6	16	45a	2.4
20:0	10.2	36:1	0.4	17	Δ ⁵ C ₂₉ Δ ⁵ ,22 _{C27}	2.4
21:0	2.1	36:0 37:0	0.4	17	Δ5c ₂₇	
22:6	2.1	38:2	0.1	18	Δ5,22 _{C27}	
22:5		38:1	1.4	18	Δ ⁵ C ₂₇	0.2
22:1 22:0	8.4	38:0	0.04	unk	a-027	0.2
23:0	0.8	39:0	0.1	18	Δ ⁵ ,22 _{C28}	0.3
24:1	5.4	40:2	V. I	18	A5C	0.3
	6.1	40:2	0.6	19	45C	U. Z
24:0					Δ ⁵ C ₂₇ Δ ²² C ₂₉ (?) Δ ⁵ C ₂₉ (?) Δ ⁵ ,22C ₂₇	0.3
25:0	0.6	40:0	0.1	18 18	45C=-(9)	0.3
26:1	1.4	41:0		20	A5.220	0.1
26:0	1.6	42:2	0.3		A50	
27:0	2.3	42:1	0.3	20	Δ ⁵ C ₂₇	
28:0	0.4	42:0		22	Δ5C27	0.0
29:0	0.1	44:2		unk		0.2
30:0	0.1	44:1				
	1040 0	44:0		Tota	Ţ	15.9
Total	1949.9	a	20.4			
		Total	32.4			

Triacylglycerols		Alkyldiacylglycerols		
C No.	μg/m ² 12 h	C No.	μg/m ² 12 h	
40				
41				
42	9.7			
43	1.9			
44	35.5			
45	8.6			
46	75.2	46e		
47	7.9			
48	117.8	48e		
49	5.5	, = •		
50	102.0	50e	11.3	
51	2.6		22.0	
52	43.4	52e	14.4	
53	1.8	• • • • • • • • • • • • • • • • • • • •	*4.4	
54	37.0	54e	11.5	
55	1.0	5.5		
56	5.8	56e	2.6	
57		555	2.0	
58	2.2	58e		
59				
60				
Total	457.8	Total	39.8	

PM Flux - 2.86 g/m² 12 h POC Flux - 208.2 mg/m² 12 h Lipid Flux - 17.9 mg/m² 12 hr

Day / Night Depth 36 m

C No.	μg/m ² 12 h	C No.	2			_
			μg/m ² 12 h		C No.	μg/m ² 12 h
				acy1	sterol	
12:0	16.7	26:1		12	Δ ^{5,22} C ₂₈	5.2
13:0	1.0	26:0	0.9	unk		1.8
14:1		27:0	0.7	13	A5,22C28	7.9
14:0	563.0	28:1		14	Δ ³ , ² ² C ₂ ⁷	9.8
i 15:0	90.4	28:0	5.7	14	Δ ⁵ C ₂₇	7.3
15:0	16.9	29:0	2.5	14	A5,22Cas	44.5
15:0	50.8	30:2		14	∆ ²² C ₂₈	
16:14 ⁹	182.0	30:1		unk	26	
16:0	2914.9	30:0	17.1	unk		
i 17:0	24.3	31:1		14	Δ ²² C ₂₉	
17:0	8.0	31:0	I.S.	15	Δ5,22 _{C28}	11.9
17:1		32:2	18.2	15	A50	5.7
17:0	I.S.	32:1	8.3	15	Δ ⁵ C ₂₇ Δ ⁵ ,22 _{C₂₇}	-
18:2		32:0	50.9	16	Δ5,22 _{C27}	6.8
18:14 ⁹	444.3	33:1		16	Δ ⁵ C ₂₇	10.0
18:14 ¹¹	86.3	33:0	2.4	14	Λ ⁵ ,22 _{C20}	
18:0	387.2	34:2	• • • • • • • • • • • • • • • • • • • •	16	Δ5,22 _{C29}	20.6
19:0	I.S.	34:1	81.0	16	Δ5,22 _{C28} Δ5,24(28) _{C2}	00
20:5	3.4	34:0	5.5	16	Δ ²² C ₂₈	19.8
20:4	3.4	35:0	0.7	16	Δ ⁵ C ₂₈	36.2
20:1	42.6	36:2	•••	16	Δ22C29	12.7
20:0	74.0	36:1	14.1	16	A5C22	
21:0	7410	36:0	4.2	17	Δ ⁵ C ₂₉ Δ ⁵ ,22 _{C27}	
22:6	2.3	37:0	4.6	17	Δ5c27	
22:5	0.4	38:2		18	A5,22 _{C27}	
22:1	17.1	38:1	6.4	18	Δ5C27	30.7
22:0	42.5	38:0	7.7	unk		1.5
23:0	6.2	39:0		18	Δ ⁵ ,22 _{C28}	13.7
24:1	22.8	40:2		18	Vaca	
24:0	36.9	40:1	3.6	19	A ⁵ Ca7	
25:0	4.3	40:0	1.3	18	Δ^{2} C ₂ Q(?)	
26:1	14.8	41:0	_	18	$\Delta^{J}C_{2Q}(?)$	
26:0	0.4	42:2		20	45,22C27	3.7
27:0	1.9	42:1		20	Δ ⁵ C ₂₇	3.9
28:0	5.7	42.0		22	Δ ⁵ C ₂₇	
29:0		44:2		unk	£ /	2.4
30:0	1.7	44:1				
		44:0		Tota	1	256.1
Total	5062.8					
		Total	231.2			

Triacylglycerols		Alkyldiacylglycerols		
C No. u	g/m ² 12 h	C No.	ug/m ² 12 h	
40				
41				
42	9.8			
43	- · ·			
44	18.2			
45	1.8			
46	50.4	46e		
47	3.2			
48	63.6	48e		
49	5.5			
50	52.6	50e		
51				
52	20.5	52e		
53				
54	25.2	54e		
55			•	
56		56e		
57				
58		58e		
59				
60				
Tota1	250.9	Total	N.D.	

PM Flux - 2.79 g/m^2 12 h POC Flux - 66 mg/m^2 12 h Lipid Flux - 60 mg/m^2 12 hr

Day / Night
Depth 53 m

Total	Fatty Acids	Wa	x Esters		Steryl	Esters
C No.	μg/m ² 12 h	C No.	μg/m ² 12 h		C No.	μg/m ² 12 h
				acy1	sterol	
12:0	444.3	26:1		12	45,22 _{C28}	
13:0	1.5	26:0	1.4	unk		
14:1		27:0	0.5	13	A5,22C28	
14:0	1895.0	28:1		14	43,22C27	0.7
15:0	134.1	28:0	3.2	14	A ^S C22	1.5
a 15:0	34.0	29:0	0.5	14	A5,22 _{Cae}	0.6
15:0	158.2	30:2		14	422C28	
16:10 ⁹	2015.8	30:1	0.5	unk		
16:0	6318.0	30:0	4.2	unk		
17:0	1258.1	31:1		14	4 ²² C29	
17:0	232.2	31:0	I.S.	15	A3,24C28	
17:1		32:2		15	A ⁵ C ₂₀	
17:0	I.S.	32:1	8.1	15	Δ ⁵ C ₂₇	0.5
18:2	154.3	32:0	5.2	16	A3,22C27	0.7
18:14 ⁹	1099.1	33:1		16	45C27	4.0
18:14 ¹¹	729.6	33:0	1.0	14	A5,22 _{Caa}	1.0
18:0	1509.2	34:2		16	Δ5,22C28 Δ5,24(28)C	1.2
19:0	I.S.	34:1	13.0	16	Δ5,24(28) _C	28
20:5	44.2	34:0	2.4	16	A ²² C20	
20:4	2.2	35:0	0.3	16	A ^S C2e	
20:1	415.7	36:2		16	A ²² Caa	
20:0	198.8	36:1	4.5	16	Δ ⁵ C ₂₉	
21:0		36:0	0.6	17	Δ ⁵ C ₂₉ Δ ⁵ ,22 _{C27}	
22:6	103.1	37:0	0.7	17	Δ ⁵ C ₂₇	0.3
22:5	1.5	38:2		18	Δ ⁵ C ₂₇ Δ ⁵ ,22 _{C27}	1.1
22:1	88.3	38:1	3.3	18	45c27	4.3
22:0	140.9	38:0		unk		
23:0	28.5	39:0	1.0	18	45,22 _{C28}	0.6
24:1	69.9	40:2		18	∆5C28	
24:0	122.6	40:1		19	Δ ⁵ C ₂₈ Δ ⁵ C ₂₇ Δ ²² C ₂₉ (?)	
25:0	61.7	40:0	0.9	18	$\Delta^{22}\bar{C}_{29}(?)$	
26:1	28.6	41:0		18	Δ ⁵ C ₂₉ (?) Δ ⁵ ,22 _{C₂₇}	
26:0	49.1	42:2		20	45,22 _{C27}	
27:0	28.6	42:1		20	Δ ³ C ₂₇	1.5
28:0	18.7	42:0		22	Δ ⁵ C ₂₇	
29:0		44:2		unk		
30:0		44:1				
		44:0		Tota	1	18.0
Total	17,385.8					
		Total	51.3			

Triacy	lglycerols	Alkyldiacylglycerols		
C No.	μg/m ² 12 h	C No.	μg/m ² 12 h	
40	9.7			
41				
42	17.6			
43				
44	34.6			
45	3.5			
46	66.6	46e		
47	6.6			
48	126.0	48e		
49	8.3			
50	99.4	50e		
51	7.2			
52	116.4	52e		
53				
54	86.5	54e		
55				
56		56e		
57				
58		58e		
59				
60				
Total	582.4	Total	N.D.	

MANDATORY DISTRIBUTION LIST

FOR UNCLASSIFIED TECHNICAL REPORTS, REPRINTS, AND FINAL REPORTS PUBLISHED BY OCEANOGRAPHIC CONTRACTORS OF THE OCEAN SCIENCE AND TECHNOLOGY DIVISION OF THE OFFICE OF NAVAL RESEARCH

(REVISED JUNE 1983)

 Deputy Under Secretary of Defense (Research and Advanced Technology)
 Military Assistant for Environmental Science Room 3D129
 Washington, DC 20301

> Office of Naval Research 800 North Quincy Street Arlington, Va 22217

- 3 ATTN: Code 483
- 1 ATTN: Code 420C
- 2 ATTN: 102B

Commanding Officer
Naval Research Laboratory
Washington, DC 20375

- 6 ATTN: Library Code 2627
- 1 ATTN: Library Code 2620, Mr. Peter Imhof
- 12 Defense Technical Information Center Cameron Station Alexandria, VA 22314 ATTN: DCA

Commander
Naval Oceanographic Office
NSTL Station
Bay St. Louis, MS 39522

- 1 ATTN: Code 8100 1 ATTN: Code 6000
- 1 ATTN: Code 3300
- 1 NODC/NOAA
 Code D781
 Wisconsin Avenue, N.W.
 Washington, DC 20235

FILMED

10-83

DIC