MINGXUAN LI

Brown University, Providence, RI 02912 mingxuan_li@brown.edu \diamond https://drmeerkat.github.io

EDUCATION

Brown University

Sept 2019 - June 2021(Expected)

ScM in Computer Science, GPA: 4.0/4.0

Core Courses: Learning and Sequential Decision Making, Introduction to Robotics, Reintegrating AI

Hong Kong University of Science and Technology(HKUST)

Feb 2018 - June 2018

Exchange Student in Computer Science, Major GPA: 4.0/4.3

Core Courses: Intro to Bayesian Networks, Data Visualisation, Database Management System

Beihang University

Sept 2015 - June 2019

B.S in Computer Science and Technology, Overall GPA: 3.7/4.0

Core Courses: Compiler Theory, Operating System, Image Processing and Pattern Recognition

RESEARCH INTEREST

Reinforcement Learning, Efficient Planning, Adversarial Defense.

PUBLICATIONS

- Interpretability is a Kind of Safety: An Interpreter-based Ensemble for Adversary Defense KDD 2020 (Accepted) Jingyuan Wang, Yufan Wu, Mingxuan Li, Xin Lin, Junjie Wu, Chao Li
- Replication of "When to Trust Your Model: Model-Based Policy Optimization" Preprint Mingxuan Li*, Xiaoyu Jiang*, Qiuxuan Chen*, Shiyi Han*, Jingyan Dong*, Ruochen Zhang*
- Detecting and Recovering Adversarial Examples: An Input Sensitivity Guided Method Priprint Mingxuan Li, Jingyuan Wang, Yufan Wu, Shuchang Zhou, Chao Li

SELECTED RESEARCH EXPERIENCE

Learning to Control with the Explainable Latent Dynamics Graph Mar. 2020 - Current Advisor: Prof. Michael L. Littman RLab, Brown University

- · Proposed the Latent Local Planning Network, a world model that explicitly learns the latent dynamics purely from pixel inputs without reconstruction;
- · Model interpretability emerges as an intrinsic property of explicit model of the latent dynamics;
- · Proposed soft lambda return actor-critic learning behaviours from purely simulated trajectories generated by world model.

Planning with Hierarchical State Partitions

Feb. 2020 - Current

Advisor: Prof. Michael L. Littman

RLab, Brown University

- · Designed a hierarchical planning framework based on state partitions enabling fast value propagation and guaranteed optimal convergent policy;
- · Proved that the problem of finding planning amenable state partition is in general NP-complete;
- · Proposed a hierarchical state partition algorithm with near-optimal partition quality.

Towards Sample Efficient Agents through Algorithmic Alignment Mar. 2020 - May 2020 Advisor: Prof. Michael L. Littman RLab, Brown University

- · Designed the Deep Graph Value Networks (DeepGVs) to show the potential of GNNs to support sample efficient learning agent;
- · DeepGVs efficiently solved MDPs and outperformed unstructured baseline by a large margin;
- · Found that neural networks with structured computation procedures can be trained more efficiently because of algorithmic alignment;
- · Poster accepted by DLRLSS 2020.

Robust Adversaries Detection and Recovery

Mar. 2019 - Nov. 2019

Advisor: Prof. Jingyuan Wang, Dr. Shuchang Zhou

Meqvii CV Group, Beihang U

- · Proposed an input sensitivity based adversarial examples detection and recovery pipeline with an average of 96% detection accuracy and high robust classification accuracy against famous adversaries;
- · Provided an optimization view of adversarial examples' intrinsic properties that can differentiate them from normal inputs;
- · Significantly increased attacking cost and decreased attacking success rate when combining the detector and the rectifier together;
- \cdot Formed two research papers as first author and second student author, respectively, one of which is accepted by KDD 2020.

On Neural Network Interpretability

Aug. 2017 - Jun. 2018

Advisor: Prof. Jingyuan Wang

Big Data Intelligence Group on SmartCity, Beihang U

- · Proposed an algorithm called Tree2Net extracting rules from decision trees to initialize a neural network (tree to network) and reverse the procedure to find out what the network has learnt (network to tree);
- · Independently built the self-defined network structure with the most basic operator;

Unsupervised Multi-Modal Neural Image Style Transfer

May 2018 - Aug. 2018

Advisor: Dr.Xinlei Pan

Berkeley Artificial Intelligence Research Lab, UC Berkeley

- · Proposed a model in combined use of Bayesian GAN and Cycle GAN;
- · Achieved multi-modal image generation and unsupervised leaning simultaneously;
- · Attempted to apply Stochastic Hamiltonian Gradient Monte Carlo sampling to the network parameters.

"BDCI & Alibaba Cloud Cup" Data Mining Competition

Sept. 2017 - Nov. 2017

Advisor: Prof. Jingyuan Wang

Big Data Intelligence Group on SmartCity, Beihang U

- · Worked on mobile phone user localisation in a shopping mall using shop ID and WIFI information;
- · Gained a 30+ ranking improvement after combining a modified neural-network architecture proposed in a paper entitled Deep Neural Networks for wireless localization in indoor and outdoor environments published in Neurocomputing, Vol. 194, June 2016;
- · Led a 4-member team and achieved the national rank of 130/2845 (4%).

INTERNSHIP EXPERIENCE

Turing Microbe Co.,Ltd

Mar. 2019 - Jul. 2019

Advisor: Prof. Wei $Xu(IIIS, Tsinghua\ U)$ Computer Vision Research Intern, R ED Department

- · Analysed over 30,000 cases of gynaecological diseases data with T-SNE and unsupervised deep clustering techniques to give doctors insights on new taxonomy for Bacterial Vaginal(BV) diagnosis;
- · Used StyleGAN to generate realistic and highly diverse BV images for training young doctors;
- · Highly recognised by Prof. Qinping Liao, the chairman of Chinese Medical Doctor Association, gynaecology branch, for insightful data analyse and practical application value of the image generation pipeline.

Wealth Engine Technology Co., Ltd

Aug. 2017 - Jan. 2018

Advisor: Prof. Changle Lin(IIIS, Tsinghua U)

Machine Learning Engineer, R&D Department

- · Analyzed real-world stock and fund investment log to construct better investment strategy;
- · Used random forest/Xgboost to build a customer churn prediction system, which is still in use;
- · Used linear regression and regression tree to price financial products for different customer group.

SELECTED PROJECTS

PiDrone: An autonomous drone using Raspberry Pi Course Project

Sept. 2019 - Dec. 2019

Brown University

- · Built a drone equipped with Raspberry Pi from scratch under the guidance of online manuals;
- Implemented core algorithms to enable the drone to fly, including PID controller, speed control with optical flow, state estimation with unscented Kalman Filter and position control with SLAM;
- · Got a solid grasp of foundations of robotics and probabilistic control theory.

JPEG-2000 Standard Image I/O Pipeline Personal Side Project

May 2019 - Jun. 2019

Beihang U

- · Implemented 2D-FastDCT and 2D-FFT in JAVA;
- · Analysed JPEG-2000 ISO standard and implemented the whole I/O process including image header information extraction without using any external JAVA image processing packages;
- · Provided a visual interface for previewing the processed image along with its grey scale distribution.

SELECTED COURSES

Mathematical Analysis for Engineering(I)	98 (Top 1%)
$\operatorname{Discrete} \ \operatorname{Mathematics}(\operatorname{I})$	99 (1/218)
Advanced Algebra for Engineering	95 (Top 5%)
Introduction to Machine Learning	$100 \ (1/162)$
Data Visualisation	A+(1/86)
Introduction to Bayesian Networks	A- (Graduate Level)
Image Processing and Pattern Recognition	$100 \ (1/65)$