Advanced Deep Learning

by Prof. Seungchul Lee Industrial Al Lab http://isystems.unist.ac.kr/ POSTECH

Table of Contents

- I. 1. Artistic Style Transfer
- II. 2. Discriminant Model vs. Generative Models
- III. 3. Generative Adversarial Networks (GAN)
- IV. 4. Deep Learning Implementation

1. Artistic Style Transfer

- Original paper (https://arxiv.org/abs/1508.06576)
- https://shafeentejani.github.io/2016-12-27/style-transfer/ (https://shafeentejani.github.io/2016-12-27/style-transfer/)
- https://harishnarayanan.org/writing/artistic-style-transfer/ (https://harishnarayanan.org/writing/artistic-style-transfer/)

Artistic Style Transfer for Video

· Vincent van Gogh

In [1]:

%%html

<center><iframe src="https://youtube.com/embed/ckqemfh0JMM?rel=0"
width="560" height="315" frameborder="0" allowfullscreen></iframe></center>

Picasso

In [2]:

%%html

<center><iframe src="https://youtube.com//embed/nMwU4avioVo?rel=0"
width="560" height="315" frameborder="0" allowfullscreen></iframe></center>

Revisit CNN

- Hierarchical feature representation
 - Contents representation
 - Style representation

Style Transfer

• Image construction

2. Discriminant Model vs. Generative Models

Imbalanced Data

- Not enough data from faulty status
- · Data Imbalance
 - Under sampling
 - Over sampling
 - Re-weighting
 - (Ada)Boosting

Labeled data

ОК

 $L(x, y, \theta) = \sum_{i=1}^{N} \omega(y_i) \cdot l(y_i, \hat{y}_i)$

NG

NG

Generative Model

- Data imbalance
 - Problematic in reality
 - For example, 98% OK, 2% NG

Revisit Autoencoder with MNIST Data

3. Generative Adversarial Networks (GAN)

- original paper by Ian J. Goodfellow (https://arxiv.org/abs/1406.2661 (https://arxiv.org/abs/1406.2661))
- https://blog.openai.com/generative-models/)

Turing test

- How to generate data?
 - Train through competition
 - Generator vs. Discriminator

H(D(G(z)), 1) + H(D(x), 0)

H(D(G(z)), 0)

4. Deep Learning Implementation

Computation Environment for Model Learning

- Development environment (open source)
 - Ubuntu 14.04
 - Python3
 - TensorFlow

- Machine
 - GPU: GeForce GTX TITAN X (PASCAL)
 - CPU: Intel i7-5930k 6 Core 3.5GHz processor

- · Parallel computing
 - Multi GPUs

Implementation of Deep Learning Model

In [3]:

%%html

<center><iframe src="https://www.youtube.com/embed/-eqVRXtX44Y?rel=0"
width="560" height="315" frameborder="0" allowfullscreen></iframe></center>

In [4]:

%%iavascript

\$.getScript('https://kmahelona.github.io/ipython_notebook_goodies/ipython_notebook_toc.
js')