Choosing a Penalty Function

J. Wren*

1 Overview

First, let's make the notation clear.

- denote a generic loss function, $\ell(\hat{d}, d^{\text{tgt}})$, where \hat{d} is the predicted value and d^{tgt} is the target value
- we will consider loss functions of the form $p(\hat{d} d^{\text{tgt}}) = p(r)$
- \bullet p is the penalty function, and r denotes the prediction error (residual)
- average loss (a measure of performance) is $\frac{1}{S} \sum_{s=1}^{S} \ell(\hat{d}_s, d^{\text{tgt}})$

Our penalty function has been $p^{\text{sqr}}(r) = r^2$, with $\widehat{\text{MSE}}$ as the average loss. $p^{\text{sqr}}(r)$ is perhaps the most ubiquitous penalty function because of its two essential qualities:

- 1. punishment is more severe for large residuals
- 2. p is symmetric, i.e., p(-r) = p(r)

Symmetry implies indifference between over-estimates (r > 0), and under-estimates (r < 0). But since an under-estimate leads to bounds that are conservative, whereas an over-estimate leads to bounds that are *incorrect*, we should punish over-estimates more than under-estimates.

^{*}Becker Friedman Institute for Research in Economics, University of Chicago.

2 Penalty Functions

2.1 A natural $p^{sqr}(r)$ extension

To impose asymmetrical penalization, we can use the right-tilted square penalty function:

$$p_{\alpha}^{\text{rts}}(r) \equiv \begin{cases} \alpha r^2, & \text{if } r \ge 0\\ (1 - \alpha)r^2, & \text{if } r < 0, \end{cases}$$
 (1)

where $\alpha \in \left[\frac{1}{2}, 1\right)$. $\alpha = \frac{1}{2}$ gives us a symmetrical punishment, while the penalization for overestimating increases as $\alpha \to 1$. Since $\alpha = 1$ results in no punishment for underestimates, α should be strictly less than 1.

2.2 A large error emphasis

Let's also consider one more penalty function that more heavily punishes large residuals (outliers). Define:

$$p_{\alpha}^{\text{rtso}}(r) \equiv \begin{cases} \frac{1}{\exp(-\alpha r^2)} - 1, & \text{if } r \ge 0\\ \frac{1}{\exp(-(1-\alpha)r^2)} - 1, & \text{if } r < 0, \end{cases}$$
 (2)

where again $\alpha \in \left[\frac{1}{2}, 1\right)$. As $\alpha \to 1$, the additional punishment (relative to p_{α}^{rts}) for large residuals increases.

¹While a more general definition would allow for $\alpha \in [0,1]$, since we want to impose a higher cost for over-estimating, we should only consider values of $\alpha \geq \frac{1}{2}$.

References

BOYD, S. (2022): "EE104/CME107: Introduction to Machine Learning," https://ee104.stanford.edu, accessed: 2023–1-18.