BT 3040: BIOINFORMATICS

Assignment 10

Atharva Mandar Phatak | BE21B009 Department of Biotechnology

Indian Institute of Technology Madras

$\mathbf{Q1})$ Obtain the consensus phylogenetic tree for the following two sets of sequences:

Set 1: tim.dat

All the files in 'tim_dat' folder

Set 2: tim-hemo.dat

All the files in 'tim_dat_hemo' folder

Q2) Obtain the weight matrix for the following sequences

MVLSPADKTNVKGKVGAHAGEYGAAAW MKRLPADPPCVKGKVKAKAGDYGATTW MALSAADKTNVKSKVGGHAGEYGAATS MVLSAADKTNVKSKAGGNAGEWWAAAW MVLSAADKTNVKSKVLANAGEFGAAAW ALLPIRTTYHKKCASGHIPEEKDLNNV DEASSLKGHHIKKLEADALLIPLSASS

Code:

```
#BT3040 | Assignemnt 10 | Q2 | Atharva Mandar Phatak | BE21B009 |
import math
def sequence_to_matrix(input_sequence, sequence_length):
    amino_acids = ['A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N',
'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y']
    matrix = []
    for i in range(0, len(input_sequence), sequence_length):
        subsequence = input_sequence[i:i+sequence_length]
        row = [0] * len(subsequence)
        for j, aa in enumerate(subsequence):
            row[j] = aa
        matrix.append(row)
    return matrix
input sequence =
'MVLSPADKTNVKGKVGAHAGEYGAAAWMKRLPADPPCVKGKVKAKAGDYGATTWMALSAADKTNVKSKVGGHAGEYG
AATSMVLSAADKTNVKSKAGGNAGEWWAAAWMVLSAADKTNVKSKVLANAGEFGAAAWALLPIRTTYHKKCASGHIPE
EKDLNNVDEASSLKGHHIKKLEADALLIPLSASS'
sequence_length = 27
amino_acid_matrix = sequence_to_matrix(input_sequence, sequence_length)
def count amino acids(matrix):
    amino_acids = ['A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N',
'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y']
    amino_acid_counts = [[0] * len(matrix[0]) for _ in
range(len(amino_acids))]
```

```
for row in matrix:
        for i, amino acid in enumerate(row):
            amino_acid_counts[amino_acids.index(amino_acid)][i] += 1
    return amino acid counts
def calculate_weight_matrix(amino_acid_counts):
    num_rows = len(amino_acid_counts)
    num_cols = len(amino_acid_counts[0])
    weight_matrix = [[0] * num_cols for _ in range(num_rows)]
    for i in range(num_rows):
        for j in range(num_cols):
            n = amino acid counts[i][j]
            weight_matrix[i][j] = round(math.log((n + 1/20) / (8/20)),2)
    return weight_matrix
# Count amino acids
amino_acid_counts = count_amino_acids(amino_acid_matrix)
# Calculate weight matrix
weight_matrix = calculate_weight_matrix(amino_acid_counts)
from tabulate import tabulate
print("Alignment Matrix")
print(tabulate(amino_acid_counts, headers=["{}".format(i+1) for i in
range(len(amino_acid_matrix[0]))], tablefmt="grid", numalign="centre"))
print("")
print("")
print("Weight Matrix")
print(tabulate(weight_matrix, headers=["{}".format(i+1) for i in
range(len(weight_matrix[0]))], tablefmt="grid", numalign="centre"))
```

Output:

a) Alignment Matrix

	ent M													+											
	2	3	4		6	7	8		10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
1	1	1	0	3			+===== 0			+===== 0	+===== 0		+===== 1	+====== 1	+====== 1	+===== 3	1	+====== 5	+===== 0	+====== 0	+===== 0	+===== 0	+===== 5	+===== 5	
0	0		0	0	0	+ 0	+ 0	+ 0	1	0	0	1	+ 0	0	0	+ 0	0	0	+ 0	0	0	0	 0	0	1
	0		0	0		† 5	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	1	0	0	i
0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	5	0	0	0	0	
0	0	0	0			0			0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	Ţ
0	0	0	0		0	0	1	0	0	0	0	2	0	0	4	2	0	0	5	0	0	4	0	0	Ť
0	0	0	0	0	0	0	0	1		0	0	0	0	0	0	1	2	0	0	0	0	0	0	† Ø	
0	0		0				0			1	0	0	0	0	0	0	1	0	0	1	0	0	0	0	į
		0					4			_		1	5	0	1	0	1	0	0	0	1	0	0	0	Ì
	1		1				0		0	0	0	0	1	0	1	0	0	1	1	0	0	1	1	0	ļ
5	0		0		0				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	i
0	0		0	0		0	0	0	4	0	0	0	0	0 0	0	0	2	0	0	0	0	0	0	1	Ţ
0	0	0	1		0	0	1	1	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	Ţ
0	0	0	0	0	0	0	0	0	0	0	0	0	0	+ 0 +	0	0	0	0	0	0	0	0	0	0	ļ
	0	1	0	0					0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	İ
	0		5	1	0	0	0		0	0	0	† 3	0 0	1	0	0 0	0	0	0	0	0	0	1	0	-+ !
0	0	0	0	0	0	1	1	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	Ī

b) Weight Matrix

Complete output in 'Q2 Output.txt'