1. Let $\sigma_{1,1} \colon \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^3$ be given by

$$[x_1:x_2]\times[y_1:y_2]\mapsto[x_1y_1:x_1y_2:x_2y_1:x_2y_2]$$

(a) It is clear that since $(x_1y_1)(x_2y_2) - (x_1y_2)(x_2y_1) = 0$,

$$\sigma_{1,1}\left(\mathbb{P}^1 \times \mathbb{P}^1\right) \subset \mathbb{V}\left(z_1 z_4 - z_2 z_3\right) = \left\{ [z_1: z_2: z_3: z_4] : \operatorname{rank} \begin{pmatrix} z_1 & z_2 \\ z_3 & z_4 \end{pmatrix} \le 1 \right\}.$$

Now, for the converse, suppose $z = [z_1 : z_2 : z_3 : z_4] \in \mathbb{V}(z_1 z_4 - z_2 z_3)$.

Then if $z_1, z_2 = 0$, either $z_3 \neq 0$ or $z_4 \neq 0$ (we will omit this from now), so we have $\sigma_{1,1}([0:1] \times [z_3:z_4]) = [0:0:z_3:z_4] = z$.

Suppose $z_1, z_3 = 0$, then $\sigma_{1,1}([z_2 : z_4] \times [0 : 1]) = [0 : z_2 : 0 : z_4] = [z_1 : z_2 : z_3 : z_4]$.

If $z_2, z_4 = 0$ then either $z_1 \neq 0$ or $z_3 \neq 0$ so $\sigma_{1,1}([z_1 : z_3] \times [1 : 0]) = z$.

If $z_3, z_4 = 0$ then either $z_1 \neq 0$ or $z_2 \neq 0$, so $\sigma_{1,1}([1:0] \times [z_1:z_2]) = z$.

Suppose $z_1, z_4 = 0$, so either $z_2 \neq 0$ or $z_3 \neq 0$, and in particular, the other is 0. Suppose $z_2 = 0$, so $z_3 \neq 0$. Then $\sigma_{1,1}\left([0:z_3] \times [1:0]\right) = [0:0:z_3:0] = [z_1:z_2:z_3:z_4]$. If instead $z_3 = 0$, then $z_2 \neq 0$, so $\sigma_{1,1}\left([z_2:0] \times [0:1]\right) = [0:z_2:0:0] = [z_1:z_2:z_3:z_4]$.

If $z_2, z_3 = 0$, then either z_1 or z_4 is nonzero and the other zero, so for $z_1 = 0$, $\sigma_{1,1}([0:z_4] \times [0:1])$ and for $z_4 = 0$, $\sigma_{1,1}([z_1:0] \times [1:0]) = z$.

Thus we have $\mathbb{V}(z_1z_4-z_2z_3)\subset\sigma_{1,1}(\mathbb{P}^1\times\mathbb{P}^1)$.

Therefore $\mathbb{V}(z_1z_4-z_2z_3)$ is precisely the image of $\sigma_{1,1}$.

(b) Let $\sigma_{1,2} \colon \mathbb{P}^1 \times \mathbb{P}^2 \to \mathbb{P}^5$ be the morphism given by

$$[x_1:x_2] \times [y_1:y_2:y_3] \mapsto [x_1y_1:x_1y_2:x_1y_3:x_2y_1:x_2y_2:x_2y_3].$$

Let M be the matrix

$$M = \begin{pmatrix} z_1 & z_2 & z_3 \\ z_4 & z_5 & z_6 \end{pmatrix}$$

We claim that

$$\sigma_{1,2}(\mathbb{P}^1 \times \mathbb{P}^2) = \{ [z_1 : \ldots : z_6] \mid rank M \le 1 \} = A$$

This is equivalent to showing that $\sigma_{1,2}(\mathbb{P}^1 \times \mathbb{P}^2)$ is the vanishing of the 2×2 minors of M.

Now, since $z_1z_5 - z_4z_2 = x_1y_1x_2y_2 - x_2y_1x_1y_2 = 0$ and $z_2z_6 - z_5z_3 = x_1y_2x_2y_3 - x_2y_2x_1y_3 = 0$, we have that $\sigma_{1,2}\left(\mathbb{P}^1 \times \mathbb{P}^2\right) \subset A$.

Now, suppose conversely, that $z = [z_1 : ... : z_6] \in A$, so $z_1 z_5 - z_4 z_2 = 0 = z_2 z_6 - z_5 z_3$.

If $z_1 = z_2 = z_3 = 0$ then $\sigma_{1,2}([0:1] \times [z_4:z_5:z_6]) = z$ (here z_4, z_5 and z_6 cannot all be 0 as $[0:\ldots:0] \notin \mathbb{P}^5$). If $z_i \neq 0$ for some $i \in \{1,2,3\}$, then $z_{i+3}z_1 = z_iz_4$, since for i=1, we get $z_1z_4 = z_1z_4$, for i=2 we get $z_1z_5 = z_2z_4$ which is true since $z \in A$ and $\begin{pmatrix} z_1 & z_2 \\ z_4 & z_5 \end{pmatrix}$ is a 2×2 minor of M; if i=3, we

get $z_1z_6=z_3z_4$ which is true as $\begin{pmatrix} z_1 & z_3 \\ z_4 & z_6 \end{pmatrix}$ is a 2×2 minor of M.

Completely equivalently, one can show that $z_{i+3}z_2 = z_iz_5$ and $z_{i+3}z_3 = z_iz_6$ which follow from the 2×2 minors in M.

Thus

$$\begin{split} \sigma_{1,2}\left([z_i:z_{i+3}]\times[z_1:z_2:z_3]\right) &= [z_iz_1:z_iz_2:z_iz_3:z_{i+3}z_1:z_{i+3}z_2:z_{i+3}z_3]\\ &= [z_iz_1:z_iz_2:z_iz_3:z_iz_4:z_iz_5:z_iz_6]\\ &= [z_1:z_2:z_3:z_4:z_5:z_6] = z \end{split}$$

(c) This generalizes directly to letting M be the matrix $M = (z_{ij})$ with $z_{ij} = x_i y_j$ and k = 1.

(a) Let $\varphi \colon k\left(\mathbb{P}^1\right) \to k(x)$ be defined by $\frac{F}{G} \mapsto \frac{F(x,1)}{G(x,1)}$.

One-to-one: By definition of being fields, we have $\frac{F}{G} + \frac{F'}{G'} = \frac{FG' + F'G}{GG'}$, so $\varphi\left(\frac{F}{G} + \frac{F'}{G'}\right) = \frac{F(x,1)G'(x,1) + F'(x,1)G(x,1)}{G(x,1)G'(x,1)} = \frac{F(x,1)G'(x,1) + F'(x,1)G'(x,1)}{G(x,1)G'(x,1)} = \frac{F(x,1)G'(x,1) + F'(x,1)G'(x,1)}{G(x,1)G'(x,1)} = \frac{F(x,1)G'(x,1) + F'(x,1)G'(x,1)}{G(x,1)G'(x,1)} = \frac{F(x,1)G'(x,1) + F'(x,1)G(x,1)}{G(x,1)G'(x,1)} = \frac{F(x,1)G'(x,1) + F'(x,1)G(x,1)}{G(x,1)G'(x,1)} = \frac{F(x,1)G'(x,1) + F'(x,1)G'(x,1)}{G(x,1)G'(x,1)} = \frac{F(x,1)G'(x,1)}{G(x,1)G'(x,1)} = \frac{F(x,1)G'(x,1)G'(x,1)}{G(x,1)G'(x,1)} = \frac{F(x,1)G'(x,1)G'(x,1)}{G'(x,1)G'(x$

 $\frac{F(x,1)}{G(x,1)} + \frac{F'(x,1)}{G'(x,1)} = \varphi\left(\frac{F}{G}\right) + \varphi\left(\frac{F'}{G'}\right)$, so φ is a homomorphism.

It suffices to show that $\varphi\left(\frac{F}{G}\right)=0 \implies \frac{F}{G}=0$. First, $\Gamma_h(\mathbb{P}^1)=\frac{k[x,y]}{\mathbb{I}(\mathbb{P}^1)}=k[x,y],$ so $F,G\in k[x,y]$ are forms of the same degree with $G\neq 0$. Suppose $\varphi\left(\frac{F}{G}\right)=\frac{F(x,1)}{G(x,1)}=0$. Then $F(x,y)\in (y-1)$. We claim F=0:

Suppose $F(x,y) = (g_0 + g_1 + \ldots + g_m)(y-1)$ with $g_m \neq 0$. Then $F_{m+1} = g_m z \neq 0$, so all lower F_i vanish as F is homogeneous. So $0 = F_0 = -g_0$. Then $0 = F_1 = g_0 z - g_1 \implies g_1 = 0$. Assume $g_0, \ldots, g_j = 0$, then $0 = F_{j+1} = g_j z - g_{j+1} = -g_{j+1}$, so $g_{j+1} = 0$. Hence $g_0, \ldots, g_m = 0$, contradicting $g_m \neq 0$. Thus $g = g_0 + \ldots + g_m = 0$ implying F = 0.

Thus $G \in k - \{0\}$, so $\frac{F}{G} = 0$.

Onto: Now suppose $\frac{f}{g} \in k(x)$, so $g \neq 0$. Let $d = \max \{\deg f, \deg g\}$, and let $f' = H_d(f)$ and $g' = H_d(g)$ be the homogenizations of f and g of degree d in k[x,y]. Then f'(x,1) = f and g'(x,1) = g and f',g' are forms of degree d with $g' \neq 0$. Then $\varphi\left(\frac{f'}{g'}\right) = \frac{f'(x,1)}{g'(x,1)} = \frac{f(x)}{g(x)}$, so φ is onto.

(b) We have that $\varphi \colon X \to Y$ is dominant if $\mathbb{I}(\varphi(X)) = \mathbb{I}(Y)$ if and only if $\mathbb{V}(\mathbb{I}(\varphi(X))) = \mathbb{V}(\mathbb{I}(Y)) = Y$. Now, $\varphi(X) \subset \mathbb{V}(\mathbb{I}(Y))$, and supposing W is a projective algebraic set containing $\varphi(X)$, we have $\mathbb{I}(Y) = \mathbb{I}(\varphi(X)) \supset \mathbb{I}(W)$, so $\mathbb{V}(\mathbb{I}(\varphi(X))) = \mathbb{V}(\mathbb{I}(Y)) \subset \mathbb{V}(\mathbb{I}(W)) = W$, so $\mathbb{V}(\mathbb{I}(\varphi(X)))$ is the smallest projective algebraic set containing $\varphi(X)$. Hence $\mathbb{V}(\mathbb{I}(\varphi(X))) = \overline{\varphi(X)}$, so we see that the equivalence φ dominant if and only if $\varphi(X) = Y$ is also true for the projective case. Now $\overline{\varphi(X)} - U = Y - U$ is closed, so $\varphi^{-1}\left(\overline{\varphi(X)}-U\right)=\varphi^{-1}\left(\overline{\varphi(X)}\right)-\varphi^{-1}(U)=X-\varphi^{-1}(U)$ is closed, so $\varphi^{-1}(U)$ is open.

3:

(a) By the lemma on lecture note 24, we have that since $\varphi \colon X \to Y$ is an isomorphism with $X \subset \mathbb{P}^n$ and $Y \subset \mathbb{P}^m$, the pullback $\varphi^* \colon k(Y) \to k(X)$ is an isomorphism.

Suppose $\psi \colon Y \to X$ is the inverse to φ . By the lemma on lecture note 24, we have that ψ^* is the inverse to φ^* .

It thus remains to show that φ^* takes $\mathcal{O}_Q(Y)$ into $\mathcal{O}_P(X)$, that ψ^* takes $\mathcal{O}_P(X)$ into $\mathcal{O}_Q(Y)$ and that $\psi^* \circ \varphi^*$ is the identity on $\mathcal{O}_Q(Y)$ and that $\varphi^* \circ \psi^*$ is the identity on $\mathcal{O}_P(X)$.

Suppose $(U,\alpha) \in \mathcal{O}_Q(Y)$. That is, $Q \in U$. Now, $P \in X$ and φ is a morphism, so we can find some open set W containing P such that $\varphi|_W$ agrees with some map $U \to \mathbb{P}^m$ with $A \mapsto [F_1(A):\ldots:F_{m+1}(A)]$ for F_1, \ldots, F_{m+1} homogeneous of the same degree. Thus $P \in \varphi^{-1}(Y) \cap W := U'$, and thus $\varphi^*(U, \alpha) = (U', \alpha \circ \varphi) \in \mathcal{O}_P(X)$ since if $\alpha = \frac{G}{H}$, then $(\alpha \circ \varphi)(P) = \frac{G(F_1(P), \ldots, F_{m+1}(P))}{H(F_1(P), \ldots, F_{m+1}(P))} = \frac{G(Q)}{H(Q)}$ is well defined.

Since $\psi(Q) = P$, we can repeat the above to find that ψ^* maps $\mathcal{O}_P(X)$ into $\mathcal{O}_Q(Y)$. Now, we further have that for any $(U,\alpha) \in \mathcal{O}_Q(Y)$, $\psi^* \circ \varphi^*(U,\alpha) = \psi^*(U',\alpha \circ \varphi) = (U'',\alpha \circ \varphi \circ \psi) = (U'',\alpha) = (U,\alpha)$, and similarly, for any $(U, \alpha) \in \mathcal{O}_P(X)$, $\varphi^* \circ \psi^*(U, \alpha) = \varphi^*(U', \alpha \circ \psi) = (U'', \alpha \circ \varphi \circ \varphi) = (U'', \alpha) = (U, \alpha)$, so we can thus conclude that φ^* restricts to an isomorphism $\varphi^*|_{\mathcal{O}_Q(Y)}:\mathcal{O}_Q(Y)\to\mathcal{O}_P(X)$.

It remains to show that this is a homomorphism of rings.

Suppose $(U,\alpha),(V,\beta)\in\mathcal{O}_Q(Y)$. Then indeed $(U,\alpha)+(V,\beta)=(U\cap V,\alpha|_{U\cap V}+\beta|_{U\cap V})\in\mathcal{O}_Q(Y)$ and $(U,\alpha)\cdot(V,\beta)=(U\cap V), \alpha|_{U\cap V}\cdot\beta|_{U\cap V})\in\mathcal{O}_Q(Y) \text{ since } Q\in U\cap V.$

$$\varphi^{*}\left((U\cap V,\alpha|_{U\cap V}+\beta|_{U\cap V})\right) = \left(W\cap\varphi^{-1}(U)\cap\varphi^{-1}(V),\alpha|_{U\cap V}\circ\varphi+\beta|_{U\cap V}\circ\varphi\right)$$
$$= \left(W\cap\varphi^{-1}(U),\alpha|_{U\cap V}\circ\varphi\right) + \left(W\cap\varphi^{-1}(V),\beta|_{U\cap V}\circ\varphi\right) = \varphi^{*}\left(U,\alpha\right) + \varphi^{*}\left(V,\beta\right).$$

And replacing the + with \cdot , we get $\varphi^*((U,\alpha)\cdot(V,\alpha))=\varphi^*(U,\alpha)\cdot\varphi^*(V,\beta)$ also. Hence φ^* is a ring homomorphism.

We recall that

$$m_P(X) = \{ f \in \mathcal{O}_P(X) : f(P) = 0 \} = \{ \text{non-units in } \mathcal{O}_P(X) \} = \{ (U, \alpha) : P \in U, \alpha(P) = 0 \}$$

Now, suppose $(U, \alpha) \in m_Q(Y)$. Then $\varphi^*(U, \alpha) = (U', \alpha \circ \varphi)$ where $P \in U'$ and since $\alpha \circ \varphi(P) = \alpha(Q) = 0$, we have $(U', \alpha \circ \varphi) \in m_P(X)$. Similarly, we get $\psi^*(U, \alpha) \in m_Q(Y)$ for any $(U, \alpha) \in m_P(X)$. Showing that $\psi^* \circ \varphi^*(U, \alpha) = (U, \alpha)$ for any $(U, \alpha) \in m_Q(Y)$ and $\varphi^* \circ \psi^*(V, \beta) = (V, \beta)$ for any $(V, \beta) \in M_Q(Y)$.

 $m_P(X)$ is done the same as the first part of the problem. Thus $\varphi^*|_{\mathcal{O}_Q(Y)}$ restrict to an isomorphism $\varphi^*|_{m_Q(Y)} : m_Q(Y) \to m_P(X)$. It remains to show that this isomorphism is, in fact, a homomorphism. It suffices to show this for φ^* .

Letting (U, α) , $(V, \beta) \in m_Q(Y)$, we have $Q \in U \cap V$ and $\alpha(Q) = 0 = \beta(Q)$. Thus since $(U, \alpha) + (V, \beta) = (U \cap V, \alpha + \beta)$, we get

$$\varphi^* \left((U, \alpha) + (V, \beta) \right) = \varphi^* \left(U \cap V, \alpha + \beta \right) = \left(W \cap \varphi^{-1}(U) \cap \varphi^{-1}(V), \alpha \circ \varphi + \beta \circ \varphi \right)$$
$$= \left(W \cap \varphi^{-1}(U), \alpha \circ \varphi \right) + \left(W \cap \varphi^{-1}(V), \beta \circ \varphi \right) = \varphi^* \left(U, \alpha \right) + \varphi^* \left(V, \beta \right),$$

showing that φ^* is an isomorphism of abelian groups.

(b) Suppose $\varphi \colon X \to Y$ is an isomorphism. By (a), we have that φ^* restricts to an isomorphism of abelian groups $m_Q(Y) \to m_P(X)$.

We thus have that $\frac{m_P(X)}{m_P(X)^2}$ which is a quotient group is isomorphic to $\frac{m_Q(Y)}{m_Q(Y)^2}$, and hence, if X is smooth, then

$$\dim Y = \dim X \stackrel{\text{X smooth}}{=} \dim_k \frac{m_P(X)}{m_P(X)^2} = \dim_k \frac{m_Q(Y)}{m_Q(Y)^2}$$

so Y is smooth. If Y were smooth instead, interchange X and Y above, as well as P and Q, giving that X is smooth as well. So X is smooth if and only if Y is smooth.

- (c) We have that $\Gamma(V(y)) = k[x,y]/I(V(y)) = k[x,y]/\sqrt{(y)} = k[x,y]/(y) = k[x]$ and $\Gamma(V(y-x^3)) = k[x,y]/I(V(y-x^3)) = k[x,y]/V(y-x^3) = k[x,y]/(y-x^3) = k[x]$, and $k[x] \cong k[x]$ by the trivial isomorphism (here we have concluded that the $\sqrt{(y)} = (y)$ and $\sqrt{(y-x^3)} = (y-x^3)$ since it is given in the problem that V(y) and $V(y-x^3)$ are varieties. Thus $\Gamma(V(y)) \cong \Gamma(V(y-x^3))$, so by the lemma on page 2 of lecture note 8, we have that V(y) and $V(y-x^3)$ are isomorphic as affine algebraic varieties.
- (d) The projective closure of a set $X \subset \mathbb{A}^n$ in \mathbb{P}^n is $\mathbb{V}(H(I(X)))$ by a lemma on lecture note 19. Thus, the projective closure of $V(y-x^3)$ is $\mathbb{V}(H(I(V(y-x^3)))) \stackrel{\text{variety}}{=} \mathbb{V}(H(y-x^3)) \stackrel{\text{principal ideal}}{=} \mathbb{V}(yz^2-x^3)$, since homogenizing a principal ideal is homoginizing the generator. Now, if $P \in \mathbb{V}(y)$, then P = [a:0:b], so $P \notin U_2$. Suppose $P \in U_1$, then since $\mathbb{V}(y) \cap U_1 = V(y)$ and $\frac{d}{dy}y = 1 \neq 0$, we have that P is not a singular point of $\mathbb{V}(y)$. Similarly, if $P \in U_3$, then $\mathbb{V}(y) \cap U_3 = V(y)$ and $\frac{d}{dy}y = 1 \neq 0$ again, so P is not a singular point of $\mathbb{V}(y)$. Hence P is smooth by definition.

By (b), if $\mathbb{V}(y)$ and $\mathbb{V}(yz^2 - x^3)$ were isomorphic, then $\mathbb{V}(yz^2 - x^3)$ would be smooth as well. However, we have $[0:1:0] \in \mathbb{V}(yz^2 - x^3)$, U_2 , so $\mathbb{V}(yz^2 - x^3) \cap U_2 = V(z^2 - x^3)$, and letting $f = z^2 - x^3$, we have $f_x = -3x^2$ and $f_z = 2z$, so evaluating at (0,0), we have $f_x(0,0) = 0 = f_z(0,0)$, so $\mathbb{V}(yz^2 - x^3)$ is singular at [0:1:0]. Thus the projective closures of V(y) and $V(y-x^3)$ are not isomorphic.

at [0:1:0]. Thus the projective closures of V(y) and $V(y-x^3)$ are not isomorphic. Geometrically, we see that $\mathbb{V}(yz^2-x^3)\cap U_2=V(z^2-x^3)$ has a cusp at (0,0) making it not smooth here while $\mathbb{V}(y)\cap U_2$ is the single point.

4:

Let $F \in k[x, y, z]$ be a homogeneous polynomial of degree n.

(a) We can write

$$F = \sum_{i+j+k=n, i, j, k \ge 0} \alpha_{i,j,k} x^i y^j z^k.$$

Then

$$F_x = \sum_{i+j+k=n, i \ge 1} \alpha_{i,j,k} \cdot ix^{i-1}y^j z^k$$

$$F_y = \sum_{i+j+k=n, j \ge 1} \alpha_{i,j,k} \cdot jx^i y^{j-1} z^k$$

$$F_z = \sum_{i+j+k=n, k \ge 1} \alpha_{i,j,k} \cdot kx^i y^j z^{k-1}$$

so

$$xF_x = \sum_{i+j+k=n, i \ge 1} \alpha_{i,j,k} \cdot ix^i y^j z^k$$

$$yF_y = \sum_{i+j+k=n, j \ge 1} \alpha_{i,j,k} \cdot jx^i y^j z^k$$

$$yF_z = \sum_{i+j+k=n, k \ge 1} \alpha_{i,j,k} \cdot kx^i y^j z^k.$$

giving the sum

$$xF_x + yF_y + zF_z = \sum_{i+j+k=n,i,j,k\geq 0} a_{i,j,k}(i+j+k)x^iy^jz^k = nF.$$

(b) Claim: $f_x = D(F_x)$. Proof: Suppose $F = \sum_{i+j+k=n} \alpha_{i,j,k} x^i y^j z^k$. Then $F_x = \sum_{i+j+k=n,i\geq 1} \alpha_{i,j,k} i x^{i-1} y^j z^k$. So $D(F_x) = \sum_{i+j+k=n,i\geq 1} \alpha_{i,j,k} i x^{i-1} y^j$. Now $f = \sum_{i+j+k=n} \alpha_{i,j,k} x^i y^j$, so $f_x = \sum_{i+j+k=n,i\geq 1} \alpha_{i,j,k} i x^{i-1} y^j$, proving the claim.

Suppose that P is a singular point of $\mathbb{V}(F)$ with $P \in U_3$. Thus P is a singular point of V(F(x,y,1)) = V(f) which means that $f_x(P) = 0 = f_y(P)$ and f(P) = 0. But if we denote the dehomoginization operator by D, we get that $f_x = D(F_x)$, so $D(F_x)(P) = 0 = D(F_y)(P)$. Further, $P \in V(F(x,y,1))$ gives that F(P) = 0. Now, $Z(P)F_z(P) = nF(P) = 0$ so since $P \in U_3$, $F_z(P) = 0$. Similarly for if $P \in U_2$ or U_1 .

Conversely, if $F(P) = F_x(P) = F_y(P) = F_z(P) = 0$ then suppose $P \in U_3$ wlog, with P = [a, b, 1]. Note

that F_i is homogenous for i=x,y,z. Then $f_x(P)=D(F_x)(a,b,1)=F_x(a,b,1)=0$. And similarly $f_y(P)=0$. And f(P)=D(F)(a,b,1)=F(a,b,1)=0 since F is homogeneous. Thus P is a singular point of $\mathbb{V}(F)$.

(c)

5:

(a) Let $F = x^2y^3 + x^2z^3 + y^2z^3$. Let $X = \mathbb{V}(F)$. Then by problem 4.(b), we have that P is a singular point if and only if $F(P) = F_x(P) = F_y(P) = F_z(P) = 0$. Now $F_x = 2xy^3 + 2xz^3$, $F_y = 3x^2y^2 + 2yz^3$ and $F_z = 3x^2z^2 + 3y^2z^2 = 3z^2(x^2 + y^2)$. If z = 0 then $x^2y^2 = 0$ so either x = 0 or y = 0.

If x=0 then $yz^3=0$, so either y=0 or z=0. If y=0 then x=0 or z=0. If none of them are 0, then $x^2=-y^2$ and $y^3=-z^3$ and $-2z^3=3x^2y$. However, from the first two, we get $3x^2y=3z^3$, so $-2z^3=3z^3$, hence $5z^3=0$ so z=0, contradiction. So the only singular points are $\{[1:0:0],[0:1:0],[0:0:1]\}$.

Let $f = F(x, y, 1) = x^2y^3 + x^2 + y^2$, so the multiplicity at (0, 0) is 2, and the tangent cone is $V(x^2 + y^2)$.

Let $f = F(x, 1, z) = x^2 + x^2 z^3 + z^3$, so the multiplicity at (0, 0) is 2, and the tangent cone at (0, 0) is $V(x^2)$.

Let $f = F(1, x, z) = y^3 + z^3 + y^2 z^3$, so multiplicity at (0, 0) is 3 and the tangent cone is $V(y^3 + z^3)$.

(b) Let $F = y^2z - x(x-z)(x-\lambda z), \lambda \in k$. Then $F_x = -(x-z)(x-\lambda z) - x(x-\lambda z) - x(x-z)$, and $F_y = 2yz$ and $F_z = y^2 + x(x-\lambda z) + \lambda x(x-z)$. If y = 0 then $x(x-\lambda z + \lambda x - \lambda z)$. If x = 0 then $z \neq 0$ and z = 0. If $z \neq 0$ then $z \neq 0$ then

Now, if z = 0 then x = 0 so $y \neq 0$.

So all the singular points are

$$\{[0:0:1],[1:0:1],[0:1:0]\}$$

Let $f = y^2 - x^2(x-z)$, then the multiplicity of (0,0) is 2 and tangent cone $V(y^2)$. For $f = y^2 - x(x-1)^2$ for (0,1), we insert x'+1, so $y^2 - (x'+1)x'^2$ which has multiplicity 2 and cone $V\left(y^2 - x'^2\right)$ which maps to $V\left(y^2 - (x-1)^2\right)$.

Let $f = z - x(x - z)(x - \lambda z)$ which has multiplicity 1 and cone V(z).

6:

(a) Firstly,
$$v_{2,2}(P) = \left[x_0^2 : x_0 y_0 : x_0 z_0 : y_0^2 : y_0 z_0 : z_0^2\right]$$
, so $v_{2,2}(P)^* = \mathbb{V}\left(x_0^2 w_1 + x_0 y_0 w_2 + \dots y_0 z_0 w_5 + z_0^2 w_6\right)$.

If $P \in C$ with [C] = [a:b:c:d:e:f], then

$$ax_0^2 + bx_0y_0 + cx_0z_0 + dy_0^2 + ey_0z_0 + fz_0^2 = 0$$

so $[C] \in v_{2,2}(P)^*$. Conversely, for any $[C] \in v_{2,2}(P)^*$, we have $P \in C$ by the nature of $v_{2,2}$.

- (b) We have that $P_1, \ldots, P_5 \in C$ if and only if $v_{2,2}(P_1)^* \cap \ldots \cap v_{2,2}(P_5)^*$ is nonempty, which is true by problem 4 on homework 10.
- (c) Suppose P = [0:0:1]. Then

Let f be the homogenization of F with respect to z, so

$$f = \sum_{i+j+k=n, i, j, k \ge 0} \alpha_{i,j,k} x^i y^j$$

Then $f_x = \sum_{i+j+k=n, i \geq 1} \alpha_{i,j,k} i x^{i-1} y^j$ and $f_y = \sum_{i+j+k=n, j \geq 1} \alpha_{i,j,k} j x^i y^{j-1}$ vanish at P.

(c)