MTH 311 Homework 3

Philip Warton

January 31, 2020

2.2.2

c.)

Show that $\lim \frac{\sin(n^2)}{\sqrt[3]{n}} = 0$.

Proof. Choose $\epsilon>0$, arbitrarily. Let $N_\epsilon>\frac{1}{\epsilon^3}$. We can therefore write that for all $n\geqslant N_\epsilon$ we have $n>\frac{1}{\epsilon^3}$ which is equivalent to stating that $\epsilon^3n>1$. By properties of the sine function we also know that $|sin(n^2)|\leqslant 1$ and therefore $|sin(n^2)|^3\leqslant 1^3=1$. From there, we have by ordering that $|sin(n^2)|^3<\epsilon^3n$. We can divide this expression by n to get the inequality $\frac{|sin(n^2)|^3}{n}<\epsilon^3$. Since both sides are positive, this is equivalent to $\frac{|sin(n^2)|}{\sqrt[3]{n}}<\epsilon$. With both the numerator and denominator positive, we write $\left|\frac{sin(n^2)}{\sqrt[3]{n}}\right|<\epsilon$. Trivially subtracting a zero we get $\left|\frac{sin(n^2)}{\sqrt[3]{n}}-0\right|<\epsilon$. By definition of convergence we have $\lim\frac{sin(n^2)}{\sqrt[3]{n}}=0$.

2.2.5

a.)

Let [[x]] be the floor function, where [[x]] is equal to the greatest integer less than or equal to x. Show that $\lim \left[\left[\frac{5}{n} \right] \right] = 0$.

Proof. Let $\epsilon>0$, chosen arbitrarily. Choose $N_{\epsilon}>\frac{5}{\epsilon}$. From there we have for all $n\geqslant N_{\epsilon}$ that $n>\frac{5}{\epsilon}$, which is equivalent to stating $\epsilon>\frac{5}{n}$. With n positive, we have $\left[\left[\frac{5}{n}\right]\right]\leqslant\frac{5}{n}<\epsilon$, and with all terms being always positive this is equivalent to $\left|\left[\left[\frac{5}{n}\right]\right]-0\right|<\epsilon$. Therefore, we have $\lim\left[\left[\frac{5}{n}\right]\right]=0$.

2.2.7

a.)

Is the sequence $(-1)^n$ eventually or frequently in the set $\{1\}$?

The sequence $(-1)^n$ is not eventually in the set $\{1\}$. In other words, for all $N \in \mathbb{N}, \exists n \geqslant N : (-1)^n \notin \{1\}$.

Proof. Let $N \in \mathbb{N}$, arbitrarily. There are two cases, $(-1)^N = (-1)$, and $(-1)^N = 1$.

Case 1:
$$(-1)^N = (-1)$$
 Let $n = N$. We have $(-1)^n = (-1)^N = (-1)$, and $(-1) \notin \{1\}$.

Case 2: $(-1)^N = 1$ Let n = N + 1. From there we can write $(-1)^n = (-1)^{N+1}$, equivalent to $(-1)^N (-1)^1$. Thus, we have $1(-1) = -1 \notin \{1\}$.

The sequence $(-1)^n$ is frequently in the set $\{1\}$ (ie. $\forall N \in \mathbb{N}, \exists n \geqslant N : (-1)^n \in \{1\}$).

Proof. Let $N \in \mathbb{N}$, arbitrarily. There are once again two cases, $(-1)^N = (-1)$, and $(-1)^N = 1$.

Case 1: $(-1)^N = (-1)$ Let n = N + 1. We have $(-1)^n = (-1)^{N+1}$ which is equal to $(-1)^N (-1) = 1$. Since $1 \in \{1\}$, we have $(-1)^n \in 1$ for some $n \ge N$.

Case 2: $(-1)^N = 1$ Let n = N. From there we can write $(-1)^n = 1 \in \{1\}$.

b.)

Eventually is stronger than frequently. We can state that eventually implies frequently, but frequently does not imply eventually.

Suppose we have a sequence a_n eventually in the set S. Eventually implies frequently because if there exists N_e where $\forall n_e \geqslant N_e, \, a_{n_e} \in S$, then for every $N_f \in \mathbb{N}$, choose $n_f \geqslant \max\{N_e, N_f\}$. Then we have $a_{n_f} \in S$ since $n_f \geqslant N_e$.

This does not hold in the other direction, since frequently only defines that there must exist one index greater than any N that is in the proposed set. Therefore it cannot be said that all indecies greater than some N will be in the set.

c.)

A sequence (a_n) converges to a if, given any ϵ -neighborhood $V_e(a)$ of a, (a_n) is eventually in $V_e(a)$.

d.)

Suppose an infinite number of terms of a sequence x_n are equal to 2. This does not imply that x_n is eventually in the interval (1.9, 2.1). The counterexample would be suppose $x_n = \{1, 2, 1, 2, 1, 2, ...\}$.

However, having an infinite number of terms be equal to 2 does imply that x_n would be frequently in the aforementioned interval. Suppose that this implication was not true, then there would be some N after which all x_n would not be in the interval, and therefore not equal to two. Thus there would be a finite number of terms equal to 2, which is a contradiction.

2.3.9

Suppose a_n bounded and $\lim b_n = 0$. Show that $\lim a_n b_n = 0$.

Proof. Since a_n is bounded we know there exists M>0 such that $|a_n|\leqslant M$ for all $n\in\mathbb{N}$. Also since b_n converges to 0 we have $\forall \epsilon>0$ $\exists N_{\epsilon B}: \forall n\geqslant N_{\epsilon B}, \ |b_n-0|<\epsilon$.

Let $\epsilon_j>0$ be arbitrary. Choose $N_{\epsilon AB}=N_{\epsilon B}$. We know that for all $n\geqslant N_{\epsilon AB}$, the following hold:

$$|a_n|\leqslant M$$

$$|b_n-0|<\epsilon_j \qquad \text{(with all terms positive we can multiply these inequalities resulting in strict inequality)}$$

$$\Longrightarrow |a_n||b_n-0|< M(\epsilon_j)$$

$$|a_n||b_n|=|a_nb_n-0|< M(\epsilon_j)$$

Since we chose ϵ_j arbitrarily, we can write this inequality for any other $\epsilon_k>0$ by letting $\epsilon_k=M\epsilon_j$. Therefore we can say that for all $\epsilon_k>0$, there exists $N_{\epsilon AB}$ such that for all $n\geqslant N_{\epsilon AB}, |a_nb_n-0|<\epsilon_k$. Thus $\lim a_nb_n=0$.

3