

Caso 2] "Due vaolici reali coincidenti", cioè una radice reale à di molt. 2 Una pase é quiudi On sol. generale è u(t) = c1e xt + c2te Verifica: per e^{xt} è la stessa di sopra, quiudi la forccio solo $u(t) = te^{\lambda t}$, $u(t) = e^{\lambda t}$ $\lambda te^{\lambda t}$, $u(t) = 2\lambda e^{\lambda t}$ $\lambda^2 te^{\lambda t}$ Sostituisco uelle ea est ettemp $a\ddot{u} + b\ddot{u} + cu = 2a\lambda e^{\lambda t} + a\lambda^2 t e^{\lambda t} + be^{\lambda t} + b\lambda t e^{\lambda t} + cte^{\lambda t}$ = $e^{\lambda t}$ (2 $a\lambda + b$) + $te^{\lambda t}$ ($a\lambda^2 + b\lambda + c$) caratteristics derivota del pol. caratt. calcolata in X, quinch si ahnulla. Oss. et e tet sous Div. indip. (non sous multipli per una costante) Caso 3) Due radici complesse coningate d'i B e cos (pt) e siu (pt) Oua base è quindi sol, gen.: u(t) = c, e (os (pt) + c2 e sin (pt)

Escurção 6
$$u^{(a)} + u = 0$$
 $x^4 + 1 = 0$

Le radici saw de radici quant di -1

 $\frac{\pm 1 \pm i}{12}$

La solutione generale e^i

La solutione generale e^i
 $u(t) = ae^i cos(\frac{t}{12}) + be^i siu(\frac{t}{12}) + ce^i cos(\frac{t}{12})$

Lo usato la copeia e^i
 $u(t) = ae^i cos(\frac{t}{12}) + be^i siu(\frac{t}{12}) + ce^i cos(\frac{t}{12})$

Escurção 7 $u^{(5)} + u^{(3)} = 0$ $x^5 + x^3 = 0$

Yadio: $x = \pm i$ $e x = 0$ cou usal: 3
 $x = \pm i$ $e x = 0$ cou usal: 3
 $x = \pm i$ $e x = 0$ cou usal: 3
 $x = \pm i$ $e x = 0$ cou usal: 3
 $x = \pm i$ $e x = 0$ cou usal: 3
 $x = \pm i$ $e x = 0$ cou usal: 3
 $x = \pm i$ $e x = 0$ cou usal: 4

Sol generale: $e^{it} + e^{it} + e^{it}$

