1. Beta - Binomial conjugation: proof: For convenience, we take coin tossing as an example. Assume that we toss a coin N times, with mtimes resulting in heads. Previously, there have been a heads a times and tails b times. Denote the probability of tossing heads by θ . Then $P(\theta | \text{event}) = \frac{P(\text{event} | \theta) \cdot P(\theta)}{P(\text{event})}$ $= \frac{\binom{N}{m} \cdot \theta^{m} \cdot (1-\theta)^{N-m} \cdot \theta^{a-1} \cdot (1-\theta)^{b-1} \cdot \frac{P(a+b)}{P(a)P(b)}}{\binom{N}{m} \cdot \theta^{n} \cdot (1-\theta)^{N-m} \cdot \theta^{a-1} \cdot (1-\theta)^{b-1} \cdot \frac{P(a+b)}{P(a)P(b)} d\theta}$ ·: \(\beta \) \(\beta \) \(\text{H} \) \(\text{ $= \int_{0}^{1} \frac{m+a-1}{\Theta} \cdot (1-\Theta) \cdot \frac{P(N+a+b)}{P(m+a) P(N-m+b)}$ P(m+a) P(N-m+b)

Thus
$$(x)$$
 becomes $0^{m+a-1} \cdot (1-\theta)^{N-m+b-1} \cdot \frac{P(N+a+b)}{P(m+a)P(N-m+b)}$

$$= \beta(0|m+a,N-m+b) \times 2.$$

2. Gramma - Poisson conjugation

Gamma distribution: $f(x|a,\beta) = \frac{\beta^{n}}{P(x)} \cdot x^{n-1} \cdot e^{-\beta x}$

proof: By Bayes Rule, we have $P(\lambda|x) = \frac{P(x|\lambda) \cdot P(\lambda)}{P(x)}$

Assume there are n data points.

$$P(x|\lambda) = \frac{1}{1-1} \frac{x^n e^{-\lambda}}{(x)!} = \frac{x^{n-1}}{\frac{x^n}{1-1}} \frac{x^n e^{-\lambda}}{\frac{x^n}{1-1}} \times e^{-\lambda}$$

$$P(x|\lambda) = \frac{1}{1-1} \frac{x^n e^{-\lambda}}{(x)!} = \frac{x^{n-1}}{\frac{x^n}{1-1}} \frac{x^n e^{-\lambda}}{\frac{x^n}{1-1}} \times e^{-\lambda}$$

Thus, $P(\lambda|x) \propto x^{n-1} e^{-\beta \lambda}$

$$= x^{n-1} x^{n-1} \cdot e^{-(\beta+n)\lambda}$$

$$= x^{n-1} x^{n-1} \cdot e^{-(\beta+n)\lambda}$$

$$= x^{n-1} x^{n-1} \cdot e^{-(\beta+n)\lambda}$$

❈