Midterm 2

ECE 275

Nov 12th, 2021

(1) Your name: Student ID:

About the exam

- 1. There are total 4 problems.
- 2. Problem 1 and Problem 2 are mandatory. You have the option of doing any one of Problem 3 and Problem 4. If you do both, you will receive the best of the two.

Problem description

Design a Mealy sequential circuit which investigates an input sequence X and which will produce an output of Z=1 for any input sequence ending in $0\underline{101}$ provided that the sequence 110 has never occurred.

Example:

$$X = 01010110110$$
 $Z = 00010100000$

Notice that the circuit does not reset to the start state when an output of Z = 1 occurs.

Problem 1. Complete the following state diagram. You can also choose to draw state diagram from scratch. Also fill the state transition table. (20 marks)

State	Meaning
S _o	XXX
S ₁	xx0
S₂	x01
S₃	"010"
S ₄	xx1
S₅	x11
S₅	"110"

Present State	Ne	xt State	Output		
	X=0	X=1	X=0	X=1	
S _o	S₁	S₄	C)	0
S ₁	Si	S₂	()		0
S₂	S₃	5,	\bigcirc		
S₃	5,	52	0	†	
S ₄	5,	S₅	0		0
S₅	S₅	S5	C	0	
S₅	S₅	S₅	C)	0

Problem 2. Can the above state table be reduced? Find Only specify which states are equivalent to each other the state table again. (10 marks)

Present State		Nex	lext State		Output	
		X=0	X=1		X=0	X=1
S₀		S ₁	S ₄		0	(
S ₁		Sı	(S ₂)		()	0 (
S₂	$\overline{}$	Sī	5,		0 0	D.
S₃		5,	(T)		0	1
S ₄		(51)	S ₅		0	(
S₅		SE	55		0	0
S _r		S ₆	S ₆		0	

				1		2	56
So							-
S,	2=4						-
SZ	1=3	23					
S ₂	\times	X	. ×				
Sy	颂	X	15,3	\times			_
S	156	12/	32/6	X	12/6		
S	No.	63	625	×	625	5.0	
	50	5	Sz	S ₃	Sy	S	5,

$$S_5 \in S_6$$

Problem 3. (State assignment).

Using the guideline method find the groups of states that should be grouped together. Draw the state assignment map. Assign a 3-bit state encoding to the states in the reduced state table derived in Problem 2. (20 marks).

	Present State	Nex	t State		Output		
		X=0	X=1		X=0	X=1	
	S₀ S	S ₁	S ₄		0	0	
	S ₁	S₃	S₂ S₋		\bigcirc 0	0 0	
	S₃	5,	5,			1	
	S ₄	5,	S₌		0	0	
	S ₀ S ₁ S ₂ S ₃ S ₄ S ₅ S ₆	S->55	S ₅		0	0	
		S ₆	S ₆			0	
	Gla p	3, (4)		S_Z		Sa	
\times	G10 5	5. (\frown			$\subset \setminus$
		5, 1, 33, 1	(> 1	(53)	(S_z,S_1)	(,,)
		1				,	
	GZ; (×7	- ,		
$\sqrt{}$	G_{2}°	S_{i} , S_{u}),	(S, , S¬ `		$(5_{5}, 5_{6})$		
	,			′ (5/ 5		
		1Q C	\				
		(8,55))			3- f	f
							\
						52), Yo
			- 02	4	7	\sim	\sim
`		0	5.,	5-	So	\bigcirc	\bigcirc \bigcirc
		n 7 L	2 9		_		.
		3	7	5	S_{\perp}		
	U _D	57-	75				1
					<u>'</u>		
		Ty	1		2		
			,		S	1	
					- 3	(
					\leq	1	
					JY	′	, 1
					55	(

Problem 4. The following state-assigned table is given. Find the boolean expressions for inputs J_1 and K_1 to a J-K flip flop that implments the transition from Present state y_1 to Next state Y_1 . Express the inputs J_1 and K_1 in terms of input X and present state y_2 , y_1 and y_0 (20 marks).

	Presen	t state		Next State		Output
	y ₂ y ₁	y₀ 0 0	Y_2 Y_1 Y_0	Y ₂	X=1 Y ₁ Y ₀	X=0 X=1
	0 0 0	0 1	1 1	0	0 0 1 1 0 0	0 0 0 1 1 0 0 0 0
	0	1 1	0 1 d d	1 1 d	1 1 d	1 0 0
	1 1	0 1	1 0	1	1 1 0 0	d d d 1 0 0 1 0 0
	1	1 1	1 1	0	1 1	1 0 0
_/						
/,	-		_		y ,	7, 1, 1,
	/ ⁰ d 4	0 0	8		\bigcirc	o rod
	1 5	, 13	7 7			
	3 7	15 1	11 00			$, \downarrow Q$
	3 7					0 0 1
911	12 06	14	10		\	do
1		0 0			· ·	
		12				
	= Xyot	X		1.		
	1 = >00			Κ,		<u> </u>
		1 1	0	Į / ó	A A	J
						1
	/ /					0
	(d d					
Y			1	91		T .
	d	$\lambda \mid J \mid c$)	1 9		
		72			72	- ·
				K,=	$y_0 + \overline{y}_2$ $z \overline{y}_0 (x + 1)$	
				(
				a K	z yo (xtl	りし)