The single most comprehensive and unified source of information about mathematical functions.

Arg

View the online version at

Download the

functions.wolfram.com

PDF File

Notations

Traditional name

Argument

Traditional notation

arg(z)

Mathematica StandardForm notation

Arg[z]

Primary definition

12.02.02.0001.01

$$\arg(z) = -i\log\left(\frac{z}{|z|}\right)$$

Arg(z) is the argument of z, such that $z = |z| e^{i Arg(z)}$. The argument of a complex number z is the phase angle (in radians) that the line from 0 to z makes with the positive real axis.

Specific values

Specialized values

$$arg(x) = 0 /; x \in \mathbb{R} \land x > 0$$

$$arg(x) = \pi /; x \in \mathbb{R} \land x < 0$$

12.02.03.0002.01

$$\arg(i\,x) = \frac{\pi}{2}\,/;\, x \in \mathbb{R} \wedge x > 0$$

12.02.03.0021.01

$$\arg(i\,x) = -\frac{\pi}{2}\,/;\, x \in \mathbb{R} \land x < 0$$

12.02.03.0003.01

$$arg(x + i y) = tan^{-1}(x, y) /; x \in \mathbb{R} \land y \in \mathbb{R}$$

Values at fixed points

12.02.03.0004.01

$$arg(0) \in (-\pi, \pi]$$

Arg(0) is not a uniquely defined number. Depending on the argument of z, the limit $\lim_{|z|\to 0} Arg(z)$ can take any value in the interval $(-\pi, \pi)$.

12.02.03.0005.01

$$arg(1) == 0$$

12.02.03.0006.01

$$arg(-1) == \pi$$

12.02.03.0007.01

$$\arg(i) = \frac{\pi}{2}$$

12.02.03.0008.01

$$\arg(-i) = -\frac{\pi}{2}$$

12.02.03.0022.01

$$\arg(1+i) = \frac{\pi}{4}$$

12.02.03.0023.01

$$\arg(-1+i) = \frac{3\pi}{4}$$

12.02.03.0024.01

$$\arg(-1-i) = -\frac{3\pi}{4}$$

12.02.03.0025.01

$$\arg(1-i) = -\frac{\pi}{4}$$

12.02.03.0026.01

$$\arg(\sqrt{3} + i) = \frac{\pi}{6}$$

12.02.03.0027.01

$$\arg(1+i\sqrt{3}) = \frac{\pi}{3}$$

12.02.03.0028.01

$$\arg(-1+i\sqrt{3}) = \frac{2\pi}{3}$$

12.02.03.0029.01

$$\arg\left(-\sqrt{3} + i\right) = \frac{5\pi}{6}$$

12.02.03.0030.01

$$\arg(-\sqrt{3} - i) = -\frac{5\pi}{6}$$

12.02.03.0031.01

$$\arg(-1 - i\sqrt{3}) = -\frac{2\pi}{3}$$

12.02.03.0032.01

$$\arg(1-i\sqrt{3}) = -\frac{\pi}{3}$$

12.02.03.0033.01

$$\arg(\sqrt{3} - i) = -\frac{\pi}{6}$$

12.02.03.0009.01

$$arg(2) = 0$$

12.02.03.0010.01

$$arg(-2) = \pi$$

12.02.03.0011.01

$$arg(\pi) = 0$$

12.02.03.0012.01

$$\arg(3\,i) = \frac{\pi}{2}$$

12.02.03.0013.01

$$\arg(-2\,i) = -\frac{\pi}{2}$$

12.02.03.0014.01

$$\arg(2+i) = \tan^{-1}\left(\frac{1}{2}\right)$$

Values at infinities

12.02.03.0015.01

$$arg(\infty) = 0$$

12.02.03.0016.01

$$arg(-\infty) == \pi$$

12.02.03.0017.01

$$arg(i \infty) = \frac{\pi}{2}$$

12.02.03.0018.01

$$\arg(-i\,\infty) = -\frac{\pi}{2}$$

12.02.03.0019.01

$$arg(\tilde{\infty}) \in (-\pi, \pi]$$

General characteristics

Domain and analyticity

Arg(z) is a nonanalytical function; it is a real-analytic function of the complex variable z for $z \neq 0$.

$$12.02.04.0001.01$$

$$z \longrightarrow \arg(z) :: \mathbb{C} \longrightarrow \mathbb{R}$$

Symmetries and periodicities

Parity

Arg(z) is an odd function for almost all z.

$$12.02.04.0002.01$$

$$arg(-z) = -arg(z) /; z \notin (-\infty, 0)$$

$$12.02.04.0003.01$$

$$arg(-z) = arg(z) - \frac{\sqrt{-z}}{\sqrt{z}} i \pi$$

Mirror symmetry

$$12.02.04.0004.01$$

$$\arg(\bar{z}) = -\arg(z) /; z \notin (-\infty, 0)$$

Periodicity

No periodicity

Homogeneity

```
12.02.04.0005.01 \arg(a\,z) = \arg(z)\,/;\, a \in \mathbb{R} \, \land \, a > 0
```

Sets of discontinuity

The function Arg(z) is a single-valued, continuous function on the z-plane cut along the interval $(-\infty, 0)$, where it is continuous from above.

```
12.02.04.0006.01
\mathcal{DS}_{z}(\arg(z)) = \{\{(-\infty, 0), -i\}\}
12.02.04.0007.01
\lim_{\epsilon \to +0} \arg(x + i \epsilon) = \arg(x) = \pi /; x \in \mathbb{R} \land x < 0
12.02.04.0008.01
\lim_{\epsilon \to +0} \arg(x - i \epsilon) = -\pi /; x \in \mathbb{R} \land x < 0
```

Transformations

Transformations and argument simplifications

Argument involving complex characteristics

```
\frac{12.02.16.0032.01}{\arg(|z|) == 0}
```

12.02.16.0033.01

$$\arg\left(\frac{z}{|z|}\right) = \arg(z)$$

12.02.16.0034.01

$$arg(sgn(z)) = arg(z)$$

12.02.16.0006.01

$$arg(\bar{z}) = -arg(z) /; arg(z) \neq \pi$$

12.02.16.0035.01

$$\arg(\bar{z}) = 2\pi \left| \frac{\arg(z) + \pi}{2\pi} \right| - \arg(z)$$

Argument involving basic arithmetic operations

12.02.16.0001.01

$$\arg(-z) = -\arg(z) /; z \notin (-\infty, 0)$$

12.02.16.0002.01

$$\arg(-z) = \arg(z) - \frac{\sqrt{-z}}{\sqrt{z}} i \pi$$

12.02.16.0036.01

$$\arg(-z) = \arg(z) + \pi \left(2 \left[-\frac{\arg(z)}{2\pi} \right] + 1 \right)$$

12.02.16.0037.01

$$\arg(i z) = \arg(z) + \frac{\pi}{2} /; \arg(z) \le \frac{\pi}{2}$$

12.02.16.0038.01

$$\arg(iz) = \arg(z) - \frac{3\pi}{2} /; \arg(z) > \frac{\pi}{2}$$

12.02.16.0004.01

$$\arg(i z) = \arg(z) - \frac{\pi}{2} - \frac{(-1)^{3/4} \pi \sqrt{i z}}{\sqrt{z}}$$

12.02.16.0039.01

$$\arg(iz) = \arg(z) + 2\pi \left[\frac{1}{4} - \frac{\arg(z)}{2\pi} \right] + \frac{\pi}{2}$$

12.02.16.0040.01

$$arg(-iz) = arg(z) - \frac{\pi}{2}/; arg(z) > -\frac{\pi}{2}$$

12.02.16.0041.01

$$arg(-iz) = arg(z) + \frac{3\pi}{2}/; arg(z) \le -\frac{\pi}{2}$$

12.02.16.0005.01

$$\arg(-iz) = \arg(z) + \frac{\pi}{2} - \frac{\sqrt[4]{-1} \pi \sqrt{-iz}}{\sqrt{z}}$$

12.02.16.0042.01

$$arg(-iz) = arg(z) + 2\pi \left[\frac{3}{4} - \frac{arg(z)}{2\pi} \right] - \frac{\pi}{2}$$

12.02.16.0007.01

$$\arg\left(\frac{1}{z}\right) = -\arg(z) /; z \notin (-\infty, 0)$$

$$\arg\left(\frac{1}{z}\right) = -\arg(z) /; \arg(z) \neq \pi$$

12.02.16.0043.01

$$\arg\left(\frac{1}{z}\right) = 2\pi - \arg(z) /; \arg(z) = \pi$$

$$\arg\left(\frac{1}{z}\right) = -\sqrt{z} \sqrt{\frac{1}{z}} \arg(z)$$

$$\arg\left(\frac{1}{z}\right) = 2\pi \left\lfloor \frac{\arg(z) + \pi}{2\pi} \right\rfloor - \arg(z)$$

$$\arg\left(-\frac{1}{z}\right) = \pi - \arg(z) /; \operatorname{Im}(z) \ge 0$$

$$\arg\left(-\frac{1}{z}\right) = -\arg(z) - \pi /; \operatorname{Im}(z) < 0$$

$$\arg\left(-\frac{1}{z}\right) = -\arg(z) - \pi i \sqrt{-\frac{1}{z}} \sqrt{z}$$

$$\arg\!\left(\!-\frac{1}{z}\right)\!=\!-\arg(z)+2\,\pi\left\lfloor\frac{\arg(z)}{2\,\pi}\right\rfloor+\pi$$

$$\arg\left(\frac{i}{z}\right) = \frac{\pi}{2} - \arg(z) /; \arg(z) \ge -\frac{\pi}{2}$$

$$\arg\left(\frac{i}{z}\right) = -\arg(z) - \frac{3\pi}{2} /; \arg(z) < -\frac{\pi}{2}$$

$$\arg\left(\frac{i}{z}\right) = -\arg(z) + 2\pi \left[\frac{\arg(z)}{2\pi} + \frac{1}{4}\right] + \frac{\pi}{2}$$

$$\arg\left(-\frac{i}{z}\right) = -\frac{\pi i}{2} - \arg(z) /; \arg(z) < \frac{\pi}{2}$$

$$\arg\left(-\frac{i}{z}\right) = \frac{3\pi}{2} - \arg(z) /; \arg(z) \ge \frac{\pi}{2}$$

12.02.16.0054.01

$$\arg\left(-\frac{i}{z}\right) = -\arg(z) + 2\pi \left\lfloor \frac{\arg(z)}{2\pi} + \frac{3}{4} \right\rfloor - \frac{\pi}{2}$$

Addition formulas

$$arg(x + i y) = tan^{-1}(x, y) /; Im(x) = 0 \land Im(y) = 0$$

Multiple arguments

For products

12.02.16.0011.01

$$arg(a z) = arg(z) /; a \in \mathbb{R} \land a > 0$$

12.02.16.0014.01

$$\arg(z_1 z_2) = \arg(z_1) + \arg(z_2) /; -\pi < \arg(z_1) + \arg(z_2) \le \pi$$

12.02.16.0055.01

$$\arg(z - z^2) = \arg(1 - z) + \arg(z)$$

$$\arg(-z - z^2) = \arg(1 + z) + \arg(-z)$$

12.02.16.0057.01

$$\arg(z_1 \ z_2) = \arg(z_1) + \arg(z_2) \ /; \ \arg(z_1) \le 0 \ \land -\arg(z_1) - \pi < \arg(z_2) \ \lor \ \arg(z_1) \ge 0 \ \land \ \arg(z_2) \le \pi - \arg(z_1)$$

12.02.16.0058.01

$$\arg(z_1 z_2) = \arg(z_1) + \arg(z_2) - 2\pi /; \arg(z_1) \ge 0 \land \arg(z_2) > \pi - \arg(z_1)$$

12.02.16.0059.0

$$\arg(z_1 z_2) = \arg(z_1) + \arg(z_2) + 2\pi /; \arg(z_1) \le 0 \land \arg(z_2) \le -\arg(z_1) - \pi$$

12.02.16.0015.01

$$\arg(z_1 z_2) = \arg(z_1) + \arg(z_2) + 2\pi \left[\frac{\pi - \arg(z_1) - \arg(z_2)}{2\pi} \right]$$

12.02.16.0060.01

$$\arg\left(\prod_{k=1}^{n} z_k\right) = \sum_{k=1}^{n} \arg(z_k) + 2\pi \left\lfloor \frac{\pi - \sum_{k=1}^{n} \arg(z_k)}{2\pi} \right\rfloor /; n \in \mathbb{N}^+$$

For quotients

$$\arg\left(\frac{z}{z+1}\right) = \arg(z) - \arg(z+1)$$

$$\arg\left(\frac{z}{z-1}\right) = \arg(-z) - \arg(1-z)$$

12.02.16.0016.01

$$\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2) \ /; \ -\pi < \arg(z_1) - \arg(z_2) \le \pi$$

12.02.16.0063.01

$$\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2) /; \ \arg(z_1) \le 0 \land \arg(z_2) < \arg(z_1) + \pi \lor \arg(z_1) > 0 \land \arg(z_2) \ge \arg(z_1) - \pi \lor \arg(z_2) > 0 \land \arg(z_2) \ge \arg(z_1) - \pi \lor \arg(z_2) > 0 \land \arg$$

12.02.16.0064.01

$$\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2) - 2\pi /; \arg(z_1) \ge 0 \land \arg(z_2) < \arg(z_1) - \pi$$

12.02.16.0065.01

$$\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2) + 2\pi /; \arg(z_1) \le 0 \land \arg(z_2) \ge \arg(z_1) + \pi$$

12 02 16 0017 01

$$\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2) + 2\pi \left[\frac{\pi - \arg(z_1) + \arg(z_2)}{2\pi}\right]$$

Power of arguments

12.02.16.0066.01

$$\arg(\sqrt{z}) = \frac{\arg(z)}{2}$$

12 02 16 0067 01

$$\arg\left(\sqrt{z^2}\right) = \arg(z) /; \operatorname{Re}(z) > 0 \lor \operatorname{Re}(z) = 0 \land \operatorname{Im}(z) > 0$$

12.02.16.0068.01

$$\arg\left(\sqrt{z^2}\right) = \arg(z) - \frac{\pi i \left(\sqrt{z^2} - z\right)}{2\sqrt{-z^2}}$$

12.02.16.0069.01

$$\arg(z^{1/n}) = \frac{\arg(z)}{n} /; n \in \mathbb{Z} \land n \neq 0 \land n \neq -1$$

12.02.16.0070.01

$$\arg \left(z^2\right) = 2\arg(z) \ /; \ \operatorname{Re}(z) > 0 \ \lor \ \operatorname{Re}(z) = 0 \ \land \operatorname{Im}(z) > 0$$

12.02.16.0071.01

$$\arg(z^2) = 2 \arg(z) + 2\pi /; -\pi < \arg(z) \le -\frac{\pi}{2}$$

12.02.16.0072.01

$$\arg(z^2) = 2 \arg(z) - 2\pi /; \frac{\pi}{2} < \arg(z) \le \pi$$

12.02.16.0073.01

$$\arg(z^2) = 2\arg(z) + 2\pi \left\lfloor \frac{1}{2} - \frac{\arg(z)}{\pi} \right\rfloor$$

12.02.16.0074.01

$$\arg(z^{2}) = 2\arg(z) - \frac{\pi i \left(\sqrt{z^{2}} - z\right)}{\sqrt{-z^{2}}}$$

$$\arg(x^a) = \tan^{-1}(\cos(\operatorname{Im}(a)\log(x)), \sin(\operatorname{Im}(a)\log(x))) /; x \in \mathbb{R} \land x > 0$$

12.02.16.0019.01

$$arg(z^a) = a arg(z) /; a \in \mathbb{R} / -\pi < a arg(z) \le \pi$$

12.02.16.0075.01

$$\arg(z^a) = a \arg(z) + 2\pi k /; a \in \mathbb{R} \land -\pi - 2\pi k < a \arg(z) \le \pi - 2\pi k \land k \in \mathbb{Z}$$

12.02.16.0076.01

$$\arg(z^a) = \operatorname{Im}(a\log(z)) \, /; \, -\pi < \operatorname{Im}(a\log(z)) \leq \pi$$

12.02.16.0077.01

$$\arg(z^a) = \operatorname{Im}(a\log(z)) + 2\pi k /; -2\pi k - \pi < \operatorname{Im}(a\log(z)) \le \pi - 2\pi k \wedge k \in \mathbb{Z}$$

12.02.16.0020.01

$$\arg(z^a) = \arg(e^{i a \arg(z)}) /; a \in \mathbb{R}$$

12.02.16.0021.01

$$\arg(z^a) = \tan^{-1}(\cos(a\tan^{-1}(\operatorname{Re}(z),\operatorname{Im}(z))), \sin(a\tan^{-1}(\operatorname{Re}(z),\operatorname{Im}(z)))) /; a \in \mathbb{R}$$

12.02.16.0022.01

$$\arg(x^a) = \operatorname{Im}(a) \log(x) \, /; \, -\frac{\pi}{\log(x)} < \operatorname{Im}(a) \leq \frac{\pi}{\log(x)} \bigwedge x \in \mathbb{R} \, \bigwedge x > 0$$

12.02.16.0024.01

$$\arg(z^a) = a \arg(z) + 2\pi \left| \frac{\pi - a \arg(z)}{2\pi} \right| /; \operatorname{Im}(a) = 0$$

$$\arg(z^{a}) = a \arg(z) + \operatorname{Im}(a) \overline{\log(z)} + 2\pi \left[\frac{\pi - \operatorname{Im}(a \log(z))}{2\pi} \right]$$

$$\arg(z^a) = a \arg(z) + 2\pi \left[\frac{\pi - \operatorname{Im}(a \log(z))}{2\pi} \right] - i a \log(|z|) + i \operatorname{Re}(a \log(z))$$

$$\arg(z^a) = 2\pi \left[\frac{\pi - \operatorname{Im}(a\log(z))}{2\pi} \right] + \operatorname{Im}(a\log(z))$$

12.02.16.0080.01

$$\arg(z^a) = \operatorname{Im}(a)\log(|z|) + \arg(z)\operatorname{Re}(a) + 2\pi \left\lfloor \frac{\pi - \operatorname{Im}(a\log(z))}{2\pi} \right\rfloor$$

12.02.16.0026.01

$$\arg(z^a) = \operatorname{Re}(a) \arg(z) + \operatorname{Im}(a) \log(|z|) + 2\pi \left| \frac{\pi - \operatorname{Im}(a) \log(|z|) - \arg(z) \operatorname{Re}(a)}{2\pi} \right|$$

12.02.16.0027.01

$$\arg(z^a) = \tan^{-1}\left(\cos\left(\operatorname{Im}(a)\log(|z|) + \tan^{-1}(\operatorname{Re}(z), \operatorname{Im}(z))\operatorname{Re}(a)\right), \\ \sin\left(\operatorname{Im}(a)\log(|z|) + \tan^{-1}(\operatorname{Re}(z), \operatorname{Im}(z))\operatorname{Re}(a)\right)\right) \\ = \tan^{-1}\left(\cos\left(\operatorname{Im}(a)\log(|z|) + \tan^{-1}(\operatorname{Re}(z), \operatorname{Im}(z))\operatorname{Re}(a)\right)\right) \\ = \tan^{-1}\left(\operatorname{Re}(z), \operatorname{Im}(z)\right) \\ = \tan^{-1}\left(\operatorname{Re}(z)\right) \\ = \tan^{-1}\left(\operatorname{Re}(z)\right) \\ = \tan^{-1}\left($$

Exponent of arguments

$$\arg(e^{x+iy}) = \tan^{-1}(\cos(y), \sin(y))$$

12.02.16.0082.01

$$\arg(e^z) = \operatorname{Im}(z) /; -\pi < \operatorname{Im}(z) \le \pi$$

12.02.16.0083.01

$$\arg(e^z) = 2\pi k + \operatorname{Im}(z) /; -2\pi k - \pi < \operatorname{Im}(z) \le \pi - 2\pi k \wedge k \in \mathbb{Z}$$

12.02.16.0084.01

$$\arg(e^z) = \operatorname{Im}(z) + 2\pi \left\lfloor \frac{\pi - \operatorname{Im}(z)}{2\pi} \right\rfloor$$

12.02.16.0085.01

$$\arg(e^{iz}) = \operatorname{Re}(z) + 2\pi \left[\frac{\pi - \operatorname{Re}(z)}{2\pi} \right]$$

12.02.16.0086.01

$$\arg(e^z) == \pi - (\pi - \operatorname{Im}(z)) \operatorname{mod} (2 \, \pi)$$

12.02.16.0087.01

$$\arg(e^{iz}) = \pi - (\pi - \operatorname{Re}(z)) \bmod (2\pi)$$

Some functions of arguments

12.02.16.0088.01

$$\arg(c z^a) = \arg(c) + \operatorname{Im}(a \log(z)) + 2\pi \left[\frac{\pi - \arg(c) - \operatorname{Im}(a \log(z))}{2\pi} \right]$$

12.02.16.0089.01

$$\arg(c\,e^z) = \arg(c) + \operatorname{Im}(z) + 2\,\pi \left\lfloor \frac{\pi - \arg(c) - \operatorname{Im}(z)}{2\,\pi} \right\rfloor$$

12.02.16.0090.01

$$\arg(x^a y^b) = a \arg(x) + b \arg(y) + 2\pi \left[\frac{-a \arg(x) - b \arg(y) + \pi}{2\pi} \right] /; a \in \mathbb{R} \land b \in \mathbb{R}$$

12.02.16.0091.01

$$\arg\!\left(x^a\,y^b\,z^c\right) = a\arg(x) + b\arg(y) + c\arg(z) + 2\,\pi \left\lfloor \frac{-a\arg(x) - b\arg(y) - c\arg(z) + \pi}{2\,\pi} \right\rfloor /; \, a \in \mathbb{R} \, \bigwedge b \in \mathbb{R} \, \bigwedge c \in \mathbb{R}$$

12.02.16.0092.01

$$\arg\left(\prod_{k=1}^{n} z_{k}^{a_{k}}\right) = \sum_{k=1}^{n} a_{k} \arg(z_{k}) + 2\pi \left[\frac{\pi - \sum_{k=1}^{n} a_{k} \arg(z_{k})}{2\pi}\right] /; \ a_{k} \in \mathbb{R} \ \land \ 1 \le k \le n$$

12.02.16.0093.01

$$\arg\left(x^a\ y^b\right) = 2\,\pi \left\lfloor \frac{\pi - \operatorname{Im}(a\log(x)) - \operatorname{Im}(b\log(y))}{2\,\pi} \right\rfloor + \operatorname{Im}(a\log(x)) + \operatorname{Im}(b\log(y))$$

12.02.16.0094.01

$$\arg\left(x^a\ y^b\ z^c\right) = 2\ \pi \left\lfloor \frac{\pi - \operatorname{Im}(a\log(x)) - \operatorname{Im}(b\log(y)) - \operatorname{Im}(c\log(z))}{2\ \pi} \right\rfloor + \\ \operatorname{Im}(a\log(x)) + \operatorname{Im}(b\log(y)) + \operatorname{Im}(c\log(z))$$

12 02 16 0095 01

$$\arg\left(\prod_{k=1}^{n} z_{k}^{a_{k}}\right) = 2\pi \left[\frac{\pi - \sum_{k=1}^{n} \operatorname{Im}(a_{k} \log(z_{k}))}{2\pi}\right] + \sum_{k=1}^{n} \operatorname{Im}(a_{k} \log(z_{k}))$$

Products, sums, and powers of the direct function

Sums of the direct function

12.02.16.0096.01

$$\arg(z_1) + \arg(z_2) = \arg(z_1 z_2) / ; \arg(z_1) \le 0 \land -\arg(z_1) - \pi < \arg(z_2) \lor \arg(z_1) \ge 0 \land \arg(z_2) \le \pi - \arg(z_1)$$

12.02.16.0097.01

$$\arg(z_1) + \arg(z_2) = \arg(z_1 z_2) + 2\pi /; \arg(z_1) \ge 0 \land \arg(z_2) > \pi - \arg(z_1)$$

12.02.16.0098.01

$$\arg(z_1) + \arg(z_2) = \arg(z_1 z_2) - 2\pi /; \arg(z_1) \le 0 \land \arg(z_2) \le -\arg(z_1) - \pi$$

12 02 16 0028 01

$$\arg(z_1) + \arg(z_2) = \arg(z_1 \, z_2) - 2 \, \pi \left[\frac{\pi - \arg(z_1) - \arg(z_2)}{2 \, \pi} \right]$$

12.02.16.0099.0

$$\sum_{k=1}^{n} \arg(z_k) = \arg\left(\prod_{k=1}^{n} z_k\right) - 2\pi \left\lfloor \frac{\pi - \sum_{k=1}^{n} \arg(z_k)}{2\pi} \right\rfloor /; n \in \mathbb{N}^+$$

Differences of the direct function

12.02.16.0100.01

$$\arg(z_1) - \arg(z_2) = \arg\left(\frac{z_1}{z_2}\right)/; -\pi < \arg(z_1) - \arg(z_2) \le \pi$$

12.02.16.0101.01

$$\arg(z_1) - \arg(z_2) = \arg\left(\frac{z_1}{z_2}\right)/; \ \arg(z_1) \le 0 \ \land \ \arg(z_2) < \arg(z_1) + \pi \ \lor \ \arg(z_1) > 0 \ \land \ \arg(z_2) \ge \arg(z_1) - \pi$$

12.02.16.0102.01

$$\arg(z_1) - \arg(z_2) = \arg\left(\frac{z_1}{z_2}\right) + 2\pi /; \arg(z_1) \ge 0 \land \arg(z_2) < \arg(z_1) - \pi$$

12.02.16.0103.01

$$\arg(z_1) - \arg(z_2) = \arg\left(\frac{z_1}{z_2}\right) - 2\pi /; \arg(z_1) \le 0 \land \arg(z_2) \ge \arg(z_1) + \pi$$

12.02.16.0104.01

$$\arg(z_1) - \arg(z_2) = \arg\left(\frac{z_1}{z_2}\right) - 2\pi \left\lfloor \frac{\arg(z_2) - \arg(z_1) + \pi}{2\pi} \right\rfloor$$

Linear combinations of the direct function

12.02.16.0105.01

$$a\arg(x) + b\arg(y) = \arg(x^a y^b) - 2\pi \left[\frac{\pi - a\arg(x) - b\arg(y)}{2\pi} \right] /; a \in \mathbb{R} \land b \in \mathbb{R}$$

12.02.16.0106.01

$$a\arg(x) + b\arg(y) + c\arg(z) = \arg\left(x^a\,y^b\,z^c\right) - 2\,\pi\left[\frac{\pi - a\arg(x) - b\arg(y) - c\arg(z)}{2\,\pi}\right]/; \, a \in \mathbb{R} \, \bigwedge b \in \mathbb{R} \, \bigwedge c \in \mathbb{R}$$

$$\sum_{k=1}^{n} a_k \arg(z_k) = \arg\left(\prod_{k=1}^{n} z_k^{a_k}\right) - 2\pi \left\lfloor \frac{\pi - \sum_{k=1}^{n} a_k \arg(z_k)}{2\pi} \right\rfloor /; a_k \in \mathbb{R} \wedge 1 \le k \le n$$

Related transformations

$$e^{i \arg(z)} = \frac{z}{|z|}$$

$$12.02.16.0030.01$$

$$e^{i \arg(z)} = \cos(\arg(z)) + i \sin(\arg(z))$$

$$12.02.16.0031.01$$

$$e^{i \arg(z)} = \cos\left(\tan^{-1}\left(\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\right)\right) + i \sin\left(\tan^{-1}\left(\frac{\operatorname{Im}(z)}{\operatorname{Re}(z)}\right)\right) /; -\frac{\pi}{2} < \arg(\operatorname{Re}(z)) \le \frac{\pi}{2}$$

Complex characteristics

Real part

$$12.02.19.0001.01$$

$$Re(arg(x + i y)) = tan^{-1}(x, y)$$

$$12.02.19.0008.01$$

$$Re(arg(z)) = arg(z)$$

Imaginary part

$$12.02.19.0002.01$$

$$Im(arg(x + i y)) == 0$$

$$12.02.19.0003.01$$

$$Im(arg(z)) == 0$$

Absolute value

$$|\arg(x+iy)| = \sqrt{\tan^{-1}(x,y)^2}$$

$$|\arg(z)| = \sqrt{\tan^{-1}(\operatorname{Re}(z),\operatorname{Im}(z))^2}$$

Argument

12.02.19.0005.01

$$\arg(\arg(x+iy)) = \tan^{-1}(\tan^{-1}(x,y), 0)$$
12.02.19.0010.01

$$\arg(\arg(z)) = \tan^{-1}(\tan^{-1}(\operatorname{Re}(z), \operatorname{Im}(z)), 0)$$

Conjugate value

$$\frac{12.02.19.0006.01}{\arg(x+iy)} = \tan^{-1}(x, y)$$

$$\frac{12.02.19.0007.01}{\arg(z)} = \arg(z)$$

Signum value

$$12.02.19.0011.01$$

$$sgn(arg(x + i y)) = sgn(tan^{-1}(x, y))$$

$$12.02.19.0012.01$$

$$sgn(arg(x + i y)) = \frac{tan^{-1}(x, y)}{\sqrt{tan^{-1}(x, y)^{2}}}$$

$$12.02.19.0013.01$$

$$sgn(arg(z)) = sgn(tan^{-1}(Re(z), Im(z)))$$

$$12.02.19.0014.01$$

$$sgn(arg(z)) = \frac{arg(z)}{\sqrt{tan^{-1}(Re(z), Im(z))^{2}}}$$

Representations through equivalent functions

With related functions

With Re

$$12.02.27.0006.01$$

$$\arg(z) = \tan^{-1}(\text{Re}(z), -i(z - \text{Re}(z)))$$

With Im
$$12.02.27.0007.01$$

$$arg(z) = tan^{-1}(z - i Im(z), Im(z))$$

$$12.02.27.0004.01$$

$$arg(z) = tan^{-1}(Re(z), Im(z))$$

$$12.02.27.0005.01$$

$$arg(z) = tan^{-1}\left(\frac{Im(z)}{Re(z)}\right)/; Re(z) > 0$$

With Abs

$$12.02.27.0001.01$$

$$\arg(z) = -i \log \left(\frac{z}{|z|}\right)$$

$$12.02.27.0008.01$$

$$\arg(z) = i (\log(|z|) - \log(z))$$

12.02.27.0002.01

$$\cos(\arg(z)) = \frac{\operatorname{Re}(z)}{|z|}$$

12.02.27.0003.01

$$\sin(\arg(z)) = \frac{\operatorname{Im}(z)}{|z|}$$

With Conjugate

12.02.27.0009.01

$$\arg(z) = \frac{1}{2} i \left(\log(z \,\bar{z}) - 2 \log(z) \right)$$

With Sign

12.02.27.0010.01

$$arg(z) = -i \log(sgn(z))$$

With inverse trigonometric functions

With ArcSin

12.02.27.0011.01

$$\arg(z) = \sin^{-1}\left(\frac{\text{Im}(z)}{|z|}\right) + \frac{\pi}{4} \left(-\sqrt{\frac{1}{z}} \sqrt{z} + \frac{i\sqrt{-z^2}}{z} \left(1 - \frac{\sqrt{z^2}}{z}\right) - \sqrt{\frac{i}{z}} \sqrt{-iz} + 2\right)$$

12 02 27 0012 01

$$\arg(z) = \sin^{-1}\left(\frac{\operatorname{Re}(z)}{|z|}\right) + \frac{\pi}{4}\left(\frac{\sqrt{z^2}}{z}\left(1 + \frac{i\sqrt{-z^2}}{z}\right) - \sqrt{\frac{1}{z}}\sqrt{z} - \sqrt{-\frac{i}{z}}\sqrt{iz} + \frac{4(-1)^{3/4}\sqrt{iz}}{\sqrt{z}} + 4\right)$$

With ArcCos

12.02.27.0013.01

$$\arg(z) = -\cos^{-1}\left(\frac{\text{Im}(z)}{|z|}\right) + \frac{\pi}{4}\left(-\sqrt{\frac{1}{z}}\sqrt{z} + \frac{i\sqrt{-z^2}}{z}\left(1 - \frac{\sqrt{z^2}}{z}\right) - \sqrt{\frac{i}{z}}\sqrt{-iz} + 4\right)$$

12.02.27.0014.01

$$\arg(z) = -\cos^{-1}\left(\frac{\operatorname{Re}(z)}{|z|}\right) + \frac{\pi}{4}\left(\frac{\sqrt{z^2}}{z}\left(1 + \frac{i\sqrt{-z^2}}{z}\right) - \sqrt{\frac{1}{z}}\sqrt{z} - \sqrt{-\frac{i}{z}}\sqrt{iz} + \frac{4(-1)^{3/4}\sqrt{iz}}{\sqrt{z}} + 6\right)$$

With ArcTan

12.02.27.0015.01

$$arg(z) = tan^{-1}(Re(z), Im(z))$$

With inverse hyperbolic functions

Inequalities

```
\begin{aligned} |\text{arg}(z)| &\leq \pi \\ |\text{12.02.29.0002.01} \\ -\pi &< \text{arg}(z) \leq \pi \\ |\text{12.02.29.0003.01} \\ -r &< \text{arg}(a+z) < R \ /; \ -r < \text{arg}(z) < R \ \land \ -r < \text{arg}(a) < R \ \land \ R - r \leq \pi \end{aligned} Pavlyk O. (2006)
```

Zeros

$$12.02.30.0001.01$$

$$\arg(z) = 0 \ /; \ z \in \mathbb{R} \ \land z > 0$$

History

Arg is encountered often in mathematics and the natural sciences.

Copyright

This document was downloaded from functions.wolfram.com, a comprehensive online compendium of formulas involving the special functions of mathematics. For a key to the notations used here, see http://functions.wolfram.com/Notations/.

Please cite this document by referring to the functions.wolfram.com page from which it was downloaded, for example:

http://functions.wolfram.com/Constants/E/

To refer to a particular formula, cite functions.wolfram.com followed by the citation number.

e.g.: http://functions.wolfram.com/01.03.03.0001.01

This document is currently in a preliminary form. If you have comments or suggestions, please email comments@functions.wolfram.com.

© 2001-2008, Wolfram Research, Inc.