

UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO PROGRAMA DE PÓS-GRADUAÇÃO EM BIOMETRIA E ESTATÍSTICA

Alunos

Gleyce Alves Pereira da Silva Ivanildo Batista da Silva Júnior Jaine de Moura Carvalho Taciana Araújo da Silva

Professor

Dr. Lucian Bogdan Bejan

Resolução da terceira lista de Estatística Aplicada

Sumário

1	Questão 1				
2	Questão 2	 	 	 	
3	Questão 3	 	 	 	6
4	Questão 4				
5	Questão 5				
6	Questão 6				
7	Questão 7 7.1 Resolução da questão 7 7.1.1 Letra a) 7.1.2 Letra b) 7.1.3 Letra c) 7.1.4 Letra d) 7.1.5 Letra e)	 		 	
8	Questão 8				
9	Questão 9	 	 	 	
	Questão 10				

(Cap. 5: ex. 29 (p. 122)) Duas lâmpadas queimadas foram acidentalmente misturadas com seis lâmpadas boas. Se vamos testando as lâmpadas, uma por uma, até encontrar duas defeituosas, qual é a probabilidade de que a última defeituosa seja encontrada no quarto teste?

1.1 Resolução da questão 1

Definindo o número de lâmpadas:

```
lampadas<-rep(c("B", "D"), times = c(6, 2))
lampadas

## [1] "B" "B" "B" "B" "B" "B" "D" "D"
```

Criando o experimento com um número grande de simulações (cem mil simulações) e inserindo duas condições:

- Retirar quatro lâmpadas e a quarta lâmpada deve ser defeituosa;
- devem haver duas lâmpadas defeituosas

```
#casos em que tem 2 lampadas defeituosas

experimento <- sample(lampadas,4)
  lampdefeituosa <- replicate(L, {experimento <- sample(lampadas,4)
    (experimento[4]=="D")
  n <- str_count(experimento, "D")
  length(which(n==1))==2})</pre>
```

Calculando a média dos experimentos:

```
s<-mean(lampdefeituosa)
```

Dividindo por 2, pois estava contando duas vezes, 1 para cada regra.

Solução

```
round(s/2,3)
## [1] 0.107
```

Um empreiteiro apresentou orçamentos separados para a execução da parte elétrica e da parte de encanamento de um edifício. Ele acha que a probabilidade de ganhar a concorrência da parte elétrica é de 1/2. Caso ele ganhe a parte elétrica, a chance de ganhar a parte de encanamento é de 3/4; caso contrário, essa probabilidade é de 1/3. Qual a probabilidade de ele:

- (a) ganhar os dois contratos?
- (b) ganhar apenas um?
- (c) não ganhar nada?

2.1 Resolução da questão 2

Diagrama de probabilidade condicional:

Questão resolvida em *R*: Dados da questão.

2.1.1 Letra a)

Probabilidade de ganhar os dois contratos.

```
a<- p1*p2
a
```

```
## [1] 0.375
```

2.1.2 Letra b)

Probabilidade de ganhar apenas um contrato.

```
## [1] 0.2916667
```

2.1.3 Letra c)

Probabilidade de não ganhar contratos.

```
p4 = (p1*p2)+((1-p1)*p3)
c<-1 - (p1+p4 - a)
c
```

```
## [1] 0.3333333
```

Para estudar o comportamento do mercado automobilístico, as marcas foram divididas em três categorias: marca F, marca W, e as demais reunidas como marca X. Um estudo sobre o hábito de mudança de marca mostrou o seguinte quadro de probabilidade:

Proprietário de	Probabilidade de mudança para					
carro da marca	W	F	X			
W	0,50	0,25	0,25			
F	0,15	0,25 0,70	0,15			
X	0,30	0,30	0,40			

a compra do primeiro carro é feita segundo as seguintes probabilidades: marca W com 50%, marca F com 30% e marca X com 20%.

- (a) Qual a probabilidade de um indivíduo comprar o terceiro carro da marca W?
- (b) Se o terceiro carro é da marca W, qual a probabilidade de o primeiro também ter sido W?

3.1 Resolução da questão 3

Questão resolvida em *R*. Dados da questão.

```
w1<- 0.5
f1<-0.3
x1<- 0.2

w2w1<-0.5 #carro2 ser w sendo que o carro1 foi w.
w2f1<-0.15
w2x1<-0.3

f2w1<-0.25
f2f1<-0.7
f2x1<-0.3

x2w1<-0.25
x2f1<- 0.15
x2x1<-0.4</pre>
```

3.1.1 Letra a)

```
w2<- (w1*w2w1)+(f1*w2f1)+(x1*w2x1)
f2<-(w1*f2w1)+(f1*f2f1)+(x1*f2x1)
x2<-(w1*x2w1)+(f1*x2f1)+(x1*x2x1)
#então,
w3<-(w2*w3w2)+(f2*w3f2)+(x2*w3x2)
w3</pre>
```

3.1.2 Letra b)

```
w3w1<-(w3w2*w2w1)+(w3f2*f2w1)+(w3x2*x2w1)
w1w3<-((w1*w3w1)/(w3))
w1w3
```

[1] 0.5813953

Um inspetor da seção de controle de qualidade de uma firma examina os artigos de um lote que tem m peças de primeira qualidade e n peças de segunda qualidade. Uma verificação dos b primeiros artigos selecionados ao acaso do lote mostrou que todos eram de segunda qualidade (b < n - 1). Qual a probabilidade de que entre os dois próximos artigos selecionados, ao acaso, dos restantes, pelo menos um seja de segunda qualidade?

4.1 Resolução da questão 4

Resposta : Temos pelo menos um artigo de 2ª qualidade, ou seja, pode acontecer um ou dois.

- o primeiro artigo de 2ª qualidade e o segundo artigo de 1ª qualidade : (SP);
- o segundo artigo de 2ª qualidade e o primeiro artigo de 1ª qualidade : (PS);
- os dois artigos serem de 2ª qualidade.

Como uma verificação dos **b** primeiros artigos selecionados ao acaso mostrou que todos eram de 2^a qualidade, temos para essa análise **m** artigos de 1^a qualidade e **n** – **b** artigos de 2^a qualidade. Assim, $\mathbf{m} + (\mathbf{n} - \mathbf{b}) = \mathbf{m} + \mathbf{n} - \mathbf{b}$ artigos para serem examinados. Note que a probabilidade total é 1 = P(PP) + P(SS) + P(PS) + P(SP). Mas, o caso dois artigos de 1^a qualidade (PP) não pode ocorrer, ou seja, não vai ocorrer $P(PP) = \mathbf{m} + \mathbf{n} - \mathbf{b}$

$$\frac{\binom{n-b}{0}\binom{m}{2}}{\binom{m+n-b}{2}} = \frac{\frac{(n-b)!}{0!(n-b-0)!} \frac{m!}{2!(m-2)!}}{\frac{(m+n-b)!}{2!(m+n-b-2)!}} = \frac{\frac{(n-b)!}{(n-b)!} \frac{m!}{2!(m-2)!}}{\frac{(m+n-b)!}{2!(m+n-b-2)!}} = \frac{\frac{m!}{2!(m-2)!}}{\frac{(m+n-b)!}{2!(m+n-b-2)!}} = \frac{m!}{2!(m-2)!} \frac{2!(m+n-b-2)!}{(m-2)!}$$

$$\frac{m!(m+n-b-2)!}{(m-2)!(m+n-b)!} = \frac{m(m-1)!(m+n-b-2)!}{(m-2)!(m+n-b)(m+n-b-1)!} = \frac{m(m-1)!(m+n-b-2)!}{(m-2)!(m+n-b)(m+n-b-1)!} = \frac{m(m-1)(m-2)!(m+n-b-2)!}{(m-2)!(m+n-b)(m+n-b-2)!} = \frac{m(m-1)}{(m+n-b)(m+n-b-1)}$$

Portanto, para que pelo menos um artigo seja de 2^a qualidade, devemos ter: 1 - P(PP) =

$$1 - \frac{m(m-1)}{(m+n-b)(m+n-b-1)}$$

Um sistema é composto de três componentes 1, 2 e 3, com confiabilidade 0.9, 0.8 e 0.7, respectivamente. O componente 1 é indispensável ao funcionamento do sistema; se 2 ou 3 não funcionam, o sistema funciona, mas com um rendimento inferior. A falha simultânea de 2 e 3 implica o não-funcionamento do sistema. Supondo que os componentes funcionem independentemente, calcular a confiabilidade do sistema.

Questão resolvida em R. Abaixo vemos os dados da questão.

```
c1<-0.9
c2<-0.8
c3<-0.7
```

5.1 Resolução da questão 5

```
c2c3<-c2*c3 #prob da interseção - eventos independentes
c2c3
```

```
## [1] 0.56
```

Então a confiabilidade do sistema será:

```
S <-c1*(c2+c3-c2c3)
S
```

```
## [1] 0.846
```

Num mercado, três corretoras A, B e C são responsáveis por 20%, 50% e 30% do volume total de contratos negociados, respectivamente. Do volume de cada corretora, 20%, 5% e 2%, respectivamente, são contratos futuros em dólares. Um contrato é escolhido ao acaso e este é futuro em dólares. Qual é a probabilidade de ter sido negociado pela corretora A? E pela corretora C? Questão resolvida em R e abaixo podem ser visualizados os dados da questão:

```
a<-0.2
b<-0.5
c<-0.3
fa<-0.2
fb<-0.05
fc<-0.02
```

6.1 Resolução da questão 6

f: contratos futuros, escreve como reunião de a, b e c.

```
f<-(a*fa)+(b*fb)+(c*fc)
f
```

```
## [1] 0.071
```

Então, a probabilidade de 1 contrato futuro ser negociado pela corretora A é:

```
af<-((a*fa)/f)
af
```

```
## [1] 0.5633803
```

E pela corretora B:

```
cf<-((c*fc)/f)
cf
```

```
## [1] 0.08450704
```

Um inspetor de controle de qualidade pesquisa defeitos em itens produzidos. O inspetor pesquisa as falhas do item numa série de fixações independentes, cada uma com duração fixa. Dado que existe uma falha, seja p a probabilidade de a falha ser detectada durante qualquer fixação (esse modelo é discutido em "Human Performance in Sampling Inspection," Human Factors, 1979,p. 99-105).

- a. Assumindo que um item tenha uma falha, qual é a probabilidade de ele ser detectado até o final da segunda fixação (depois da detecção de uma falha, as fixações são interrompidas)?
- Forneça uma expressão da probabilidade de que uma falha será detectada até o final da enésima fixação.
- c. Se, quando uma falha não for detectada em três fixações, o item passar, qual será a probabilidade de que um item com falha passe na inspeção?
- d. Suponha que 10% de todos os itens contenham uma falha [P(item escolhido aleatoriamente apresenta falha) = 0,1]. Com a suposição da parte (c), qual é a probabilidade de um item com falha passar na inspeção (ele passará automaticamente se não tiver falha, mas também pode passar se tiver)?
- e. Dado que um item passou na inspeção (nenhuma falha em três fixações), qual é a probabilidade de ele possuir uma falha? Calcule para p = 0,5.

7.1 Resolução da questão 7

7.1.1 Letra a)

$$P(D_1 \cap D_1') = P(D_1' \cap D_1) = P(D_2|D_1') \cdot P(D_1')$$

Como as fixações são independentes, temos que

$$P(D_1|D_1') = P(D_1) + P(D_2) \cdot P(D_1')$$

Logo,

$$P(\text{detecção} \leq 2) = P(D_2) - P_1$$

$$P(\text{detecção} \le 2) = p + p(1 - p) = 2p - p^2$$

$$P(\text{detecç\~ao} \leqslant 2) = \boxed{p(2-p)}$$

7.1.2 Letra b)

$$\begin{aligned} \det & \operatorname{cox} \| = P(D_1) + P(D_1' \cap D_2) + P(D_1' \cap D_2' \cap D_3) + \dots + P(D_1' \cap D_2' \cap D_3' \dots D_{n-1}' \cap D_n) \\ &= p + p(1-p) + p(1-p)^2 + \dots + p(1-p)^{n-1} \\ &= p \Big[1 + (1-p) + (1-p)^2 + \dots + (1-p)^{n-1} \Big] \\ &= p \Bigg[\frac{1 - (1-p)^n}{1 - (1-p)} \Bigg] = p \Bigg[\frac{1 - (1-p)^n}{\cancel{1} - \cancel{1} + p} \Bigg] = p \Bigg[\frac{1 - (1-p)^n}{\cancel{p}} \Bigg] \\ &= \boxed{1 - (1-p)^n} \end{aligned}$$

7.1.3 Letra c)

$$P(\text{sem detecções em 3 fixações}) = \boxed{(1-p)^3}$$

7.1.4 Letra d)

I = itens que passam pela inspeção F = possuem falhas

$$P(I) = P(F) + P(F \cap I) = 0.9 + P(I|F) \cdot P(F)$$
$$= 0.9 + (1 - p)^3 \cdot 0.1$$
$$\boxed{0.9 + 0.1(1 - p)^3}$$

7.1.5 Letra e)

$$P(F|I) = \frac{P(F \cap I)}{P(I)} = \frac{0.1(1-p)^3}{0.9 + 0.1(1-p)^3}$$

com p = 0.5

$$=\frac{0.1(1-0.5)^3}{0.9+0.1(1-0.5)^3}=\frac{0.1\cdot0.5^3}{0.9+0.1\cdot0.5^3}=\frac{0.1\cdot0.125}{0.9+0.1\cdot0.125}=\frac{0.0125}{0.9125}\approx \boxed{0.0137}$$

Um sistema consiste em dois componentes. A probabilidade de o segundo componente funcionar de forma satisfatória durante a vida útil do projeto é 0.9, a probabilidade de pelo menos um dos dois componentes funcionar é de 0.96 e a de ambos os componentes funcionarem é de 0.75. Dado que o primeiro componente funciona de forma satisfatória por toda a vida útil do projeto, qual é a probabilidade de o segundo também funcionar?

Definindo as variáveis

```
P_A_inter_B = 0.75
P_A_uni_B = 0.96
P_B = 0.9
```

8.1 Resolução da questão 8

Pela forma $P(A \cup B) = P(A) + P(B) - P(A \cap B)$, faremos então 0.96 = P(1sistema) + 0.9 - 0.75. Isolando P(1sistema) temos que P(1sistema) = 0.96 - 0.9 + 0.75 = 0.81.

```
P_A = P_A_uni_B - P_B + P_A_inter_B
P_A
0.80999999999999999
```

Agora temos que calcular a probabilidade condicional:

$$P(\text{2 sistema} \mid 1 \text{ sistema}) = \frac{P(\text{2 sistema} \cap 1 \text{ sistema})}{P(\text{1 sistema})}$$

$$P(2 \text{ sistema} \cap 1 \text{ sistema}) = P(1 \text{ sistema} \cap 2 \text{ sistema}) = 0.75$$

Logo teremos que

$$P(2sistema|1sistema) = \frac{0.75}{0.81} = 0.926$$

Em *Python* irei gerar a probabilidade do segundo também funcionar.

```
P_B_inter_A = P_A_inter_B

P_B_cond_A = P_B_inter_A/P_A

round(P_B_cond_A,3)
```

Um sistema de computadores usa senhas que são exatamente sete caracteres e cada caracter é uma das 26 letras (a-z) ou 10 inteiros (0-9). Você mantém uma senha para esse sistema de computadores. Seja A o subconjunto de senhas que começam com a vogal (a, e, i, o, u) e seja B o subconjunto de senhas que terminam com um número par (0, 2, 4, 6 ou 8).

- (a) Suponha que um invasor selecione uma senha ao acaso. Qual a probabilidade de sua senha ser relacionada?
- (b) Suponha que um invasor saiba que sua senha está no evento A e selecione uma senha ao acaso para esse subconjunto. Qual a probabilidade de sua senha ser selecionada?
- (c) Suponha que um invasor saiba que sua senha está em A e em B e selecione uma senha ao acaso para esse subconjunto. Qual a probabilidade de sua senha ser selecionada?

9.1 Resolução da questão 9

Definindo as variáveis da questão

```
#número de letra do alfabeto (de A a Z)
a = 26
#quantidade de números inteiros (de 0 a 9)
i = 10
#número de caracteres de uma senha
C = 7
```

9.1.1 Letra a)

Necessário encontrar o número de possibilidades que é o número de caracteres totais elevado ao número de caracteres da senha.

```
(N^o \text{ total de caracteres})^{N^o \text{ de caracteres da senha}}
```

Abaixo vermos o valor de possibilidades calculado.

```
(a+i)**c
78364164096
```

Calculando a probabilidade.

```
1/((a+i)**c)
1.2760934944382872e-11
```

9.1.2 Letra b)

A probabilidade de uma senha do conjunto A ser seleciona é o número de elemento do conjunto A (5 elementos) sobre o número de elementos totais (36 elementos), logo:

9.1.3 Letra c)

A probabilidade do invasor selecionar a senha ao acaso dos dois conjuntos é o produto das probabilidades de escolher a senha em cada um desses conjunto, visto que é de A **E** de B, pois entende-se que a senha estará na interceção desses subconjuntos. O valor da probabilidade do subconjunto A já foi encontrado no item anterior, agora temos que calcular para o subconjunto B. O subconjunto B também possui o mesmo número de elemento do subconjunto A, logo o cálculo da probabilidade será o número de elementos dividido pelo número total de elementos, logo:

Obtivemos os mesmo valores, logo multiplicaremos esses valores e vamos obter o valor de obter a senha desses dois subconjuntos.

Um artigo na *British Medical Journal* "Comparison of treatment of reanl calculi by operative surgery, percutaneous nephrolithotomy, and extracorporeal shock wave lithotripsy- Comparação de tratamento de cálculo renal por cirurgia, por nefrolitotomia percuntânea e por litotripsia com onda de choque - {1986, Vol.82, pág. 879-892} forneceu a seguinte discussão de taxas de sucesso de 78% (273/350), enquanto um método mais novo, nefrolitotomia percutânea (NP), tem uma taxa de sucesso de 83% (289/350). Esse novo método pareceu melhor, mas os resultados mudaram quando o diâmetro da pedra foi considerado. Para pedras com diâmetros menores do que dois centímetros, 93% (81/87) de casos de cirurgia aberta obtiveram sucesso comparados com somente 83% (234/270) de casos de NP. Para pedras maiores do que ou iguais a dois centpimetros, as taxas de sucesso foram 73 % (192/263) e 69% (55/80) para cirurgia aberta e NP, respectivamente. Cirurgia aberta é melhor para ambos os tamanhos de pedra, porém tem menos sucesso no total. Em 1951, E.H. Simpsom alertou para essa aparente contradição (conhecida como **Paradoxo de Simpson**), porém o risco ainda persiste. Explique como a cirurgia aberta pode ser melhor para ambos os tamanhos de pedras, porém pior para o total.

10.1 Resolução da questão 10

Tabela por total:

Tipo de procedimento	Percentual de sucesso do procedimento	Forma de cálculo
Cirurgia Aberta	78%	273/350
Nefrolitotomia Percutânea	83%	289/350

Tabela de sucesso dos procedimentos com a pedra de cálculo renal com diâmetro menor que 2 centímetros.

Tipo de procedimento	Percentual de sucesso do procedimento	Forma de cálculo
Cirurgia Aberta	93%	81/87
Nefrolitotomia Percutânea	83%	234/270

Tabela de sucesso dos procedimentos com a pedra de cálculo renal com diâmetro maior ou igual que 2 centímetros.

Tipo de procedimento	Percentual de sucesso do procedimento	Forma de cálculo
Cirurgia Aberta	73%	192/263
Nefrolitotomia Percutânea	69%	55/80

Com os dados nas tabelas acimas, vemos de forma mais organizada o compotamento dos resultados: que para cada caso dos diâmetros da pedra de cálculo renal, a cirurgia aberta é um procedimento com sucesso maior que a Nefrolitotomia Percutânea; entretanto, no **total**, a Nefrolitotomia Percutânea é um procedimento melhor.

Para explicar o motivo desse comportamento é necessário criar uma nova tabela com esses dados.

A tabela abaixo trata dos resultados para a **cirurgia aberta** com os resultados desagregados pelo diâmetro da pedra de cálculo renal.

A primeira coisa que podemos observar é que há mais cirurgias abertas para pedras com diâmetro menor que 2 centímetros

	Número de sucessos	Número de Fracassos	Sucessos + Fracassos	Percentual	Taxa de sucesso
Pedra com diâmetro menor que 2 cm	192	71	263	75.15%	73%
Pedra com diâmetro maior ou igual a 2 cm	81	6	87	24.85%	93%
Total	273	77	350	100%	78%

Abaixo temos a tabela com Nefrolitotomia Percutânea.

	Número de sucessos	Número de Fracassos	Sucessos + Fracassos	Percentual	Taxa de sucesso
Pedra com diâmetro menor que 2 cm	55	25	80	23%	69%
Pedra com diâmetro maior ou igual a 2 cm	234	36	270	77%	83%
Total	289	61	350	100%	83%

Na tabela acima, há muito mais cirurgias abertas em que a pedra tem diâmetro menor que 2 centímetros, então quando as pedras têm diâmetro menor que 2 centímetros, então há muitos Nefrolitotomias Percutâneas. Aqui, a taxa de sucesso total depende da taxa de sucesso para cada tamanho de pedra, mas igual ao grupo de probabilidade. Portanto, esta é a média ponderada da taxa de sucesso do grupo ponderada pelo tamanho do grupo é

$$P(\text{Sucesso Global}) = P\Big(\frac{\text{Sucesso}}{\text{Pedra larga}}\Big)P(\text{Pedra Larga}) + P\Big(\frac{\text{Sucesso}}{\text{Pedra pequena}}\Big)P(\text{Pedra pequena})$$

Analisando as apenas taxas de sucessos, podemos observar que a cirurgia aberta tem uma taxa de sucesso maior quando a pedra do cálculo renal é maior que ou igual a 2 centímetros e que a Nefrolitotomia Percutânea tem mais sucesso em pedras de cálculos renais menores que 2 centímetros; entretanto a taxa de sucesso de NP é maior que a de cirurgia aberta.

	Número	Número	
	de sucessos	de Sucessos	Total
	da cirurgia	de NP	
Pedra com diâmetro menor que 2 cm	192 (34.1%)	55 (9.78%)	247
Pedra com diâmetro maior ou igual a 2 cm	81 (14.41%)	234 (41.63%)	315
Total	273	289	562