RMS – skripta za II parcijalni (by Selmir Hasanović)

Prednosti i nedostaci simulacije

- Prednosti:
 - opis i rješavanje složenih, dinamičkih problema sa slučajnim varijablama
 - rješavanje problema koji se pojavljuju kod odlučivanja (izbor alternativa, predviđanje), uvjeti eksperimentisanja su pod potpunom kontrolom animacija rada modela
 - olakšava vrednovanje logike i dinamike rada.
- Nedostaci:
 - "there is no such thing as a free lunch"
 - dosta dug i skup razvoj modela
 - dugo i skupo izvođenje eksperimenata
 - ne dobivaju se funkcijske ovisnosti ulaz-izlaz, niti optimalna rješenja
 - potrebno je poznavanje većeg broja metoda i alata
 - vrednovanje modela je složeno i zahtijeva dodatne simulacijske eksperimente.

Diskretne simulacije

- Najviše korištene metode simulacije poslovnih procesa:
 - diskretna simulacija služi detaljnoj analizi sistema s redovima čekanja
 - **sistemska dinamika** omogućuje modeliranje sistema s povratnom spregom.
- Simulacija sa diskretnim događajima je proces kodiranja ponašanja kompleksnih sistema po sekvencama dobro definisanih događaja. U ovom kontekstu, događaj predstavlja specifičnu promjenu u stanju sistema u specifičnom trenutku u vremenu.

Osnovni pojmovi diskretne simulacije

- Diskretna simulacija opisuje promjene stanja koje se odvijaju diskontinuirano u vremenu.
- Promjene stanja su posljedica međudjelovanja među objektima sistema.
- Simulacijski modeli prikazuju objekte sistema, njihove atribute i međudjelovanje među njima.
- Osnovni pojmovi su:
 - entitet
 - atribut
 - stanje
 - događaj
 - resursi
 - lista procesa
 - aktivnosti i zastoji.
- Komponente simulacija diskretnih događaja:
 - sat
 - lista događaja
 - generator slučajnih brojeva
 - statistika
 - uslov za završetak.

Slučajne varijable

- Zbog postojanja slučajnih varijabli nužno je koristiti se teorijom vjerovatnosti i statistikom prilikom:
 - generiranja slučajnih varijabli
 - analize ulaznih podataka
 - planiranja simulacijskih eksperimenata
 - analize izlaza simulacijskih eksperimenata.
- **Slučajni broj** kontinuirana slučajna varijabla s uniformnom razdiobom u segmentu [0,1]. **Slučajne varijable** s bilo kojom razdiobom vjerovatnosti mogu se generirati pomoću transformacija slučajnih varijabli U(0,1).
- Kako se mogu generirati slučajni brojevi:
 - fizički pribori
 - o kocka, rulet, brzo rotirajući disk
 - nedostaci: komplicirani, mijenjaju razdiobe, nemoguće ponoviti isti niz slučajnih brojeva
 - korištenje iracionalnih brojeva
 - \circ znamenke konstanti: e, π
 - o nedostaci: dosta slabe karakteristike slučajnosti.

Diskretna simulacija koristi se za:

- detaljan opis strukture sistema i njegovih elemenata
- ponašanje sistema opisuje se na diskontinuirani način, u obliku slijeda različitih događaja i aktivnosti
- modeli oponašaju stvarne sisteme i procese, a objekti u modelima predstavljaju objekte iz stvarnih sistema ili procesa
- prvenstveno se koristi za modeliranje i analizu sistema s redovima čekanja na resurse sistema.

Događaji u diskretnim simulacijama

- Događaj je promjena stanja sistema koja se dešava u jednom trenutku. Događaj može nastupiti:
 - zbog ulaska ili izlaska entiteta iz sistema
 - zbog promjene vrijednosti atributa entiteta kao posljedica početka ili završetka međudjelovanja među entitetima.

Konceptualni simulacijski modeli

- Značaj konceptualnih simulacijskih modela:
 - izdvajanje najvažnijih karakteristika sistema
 - opisivanje elemenata sistema i njihovih interakcija
 - olakšavanje komunikacije modelara i korisnika
 - pomoć u razvoju računarskog modela (programa).

Vrednovanje modela

- Vrednovanje modela ima za cilj eliminaciju različitih vrsta grešaka modela:
 - greške u logici modela
 - matematičkim relacijama
 - programu
 - ulaznim podacima
 - načinu korištenja modela
 - obradi i interpretaciji rezultata simulacijskih eksperimenata.

- U tu svrhu koriste se različite:
 - statističke tehnike
 - računarske tehnike
 - procjene eksperata
 - grafički prikaz izlaznih varijabli modela
 - animacija rada modela.

Analiza rezultata simulacije

- Analiza rezultata simulacije treba da uključi verifikaciju i validaciju modela.
- Verifikacija debugging (otklanjanje grešaka).
- Validacija model = stvarni svijet.
- Četiri mogućnosti za postojanje modela:
 - neverificiran, nije validan
 - neverificiran, nije validan
 - verificiran, nije validan
 - verificiran, validan.
- Tehnike za verifikaciju modela:
 - Top-down modularni dizajn
 - o podijeli i pobijedi
 - o moduli = subrutine, podprogrami, procedure
 - o moduli imaju dobro definisane interfejse
 - o mogu biti neovisno izgrađeni, debugirani i održavani
 - o top-down dizajn: hijerarhijske strukture, moduli i podmoduli.
 - Anti-bugging
 - Struktuirani walk-through
 - o objašnjavanje koda nekoj drugoj osobi ili grupi
 - o treba da funkcioniše čak i kada osoba koje je razvijala model nije prisutna.
 - Deterministički modeli
 - o koristi konstantne vrijednosti
 - o naziva se još i direktno testiranje
 - o jednostavni testni ulazi
 - specifične sekvence koje uzrokuju da model ulazi u ekstremna operacionalna stanja
 - o nedostaci: vremenski zahtijevni, nekada potrebno programiranje, teško razmišljati o svim verifikacijskim slučajevima, održavanje jako teško.
 - Pokretanje pojednostavljenih slučajeva
 - Tragovi
 - o trace = vremenski određena lista događaja i varijabli
 - nekoliko nivoa detalja: tragovi događaja, tragovi procedura, tragovi varijabli, korisnik bira detalje što uključuje pokretanje i stopiranje.
 - On-line grafički prikazi
 - Test kontinuiranosti
 - Degeneracijski test
 - Test konzistentnosti
 - Neovisnost od seed-a.

- Tehnike validacije za jedan problem možda neće biti primjenljive za drugi problem. Aspekti koje treba validirati:
 - pretpostavke
 - vrijednosti ulaznih parametara i distribucija
 - izlazne vrijednosti i zaključci.

Tehnike:

- ekspertska intuicija
- mjerenja stvarnih sistema
- teoretski testovi.
- Dijagram toka simulacijskog procesa:

Kompjuterska simulacija

- Simulatori su kompjuterski modeli stvarnih ili predloženih proizvoda ili događaja, koji se ponašaju drugačije u zavisnosti od ulaznih podataka koji se unesu. Na ovaj način proizvodi ili događaji se mogu testirati u virtuelnom okruženju prije proizvodnje tako da problemi u dizajnu mogu biti identificirani i modificirani na vrijeme.

Razlika između animacije i simulacije

- Simulacija je interaktivna parametri se mogu mijenjati i njihovi efekti se mogu analizirati.
- Animacija nije interaktivna promjene se ne mogu unositi od strane nekoga ko posmatra animaciju s ciljem promjena na slici.

Bitne činjenice za vizualiziranje simulacije:

- pojasniti ideje, metode i važne činjenice za simulaciju
- treba da budu softverski nezavisna, ali određeni softveri rade bolje za konkretne primjene od drugih
- za početak koncentrisati se na jednostavan model procesnog sistema:
 - dekomponovati problem
 - utvrditi terminologiju
 - napraviti ručnu simulaciju
 - osnovne statističke metode
 - prikaz simulacijskog izučavanja.

Dijelovi simulacijskog modela

- Entiteti

- "igrači" koji se pokreću uokolo, mijenjaju status, pod uticajem su i utiču na druge entitete
- dinamički objekti kreiraju se, pomjeraju, napuštaju (možda)
- uobičajeno predstavljaju prave stvari
- može imati "lažne" entitete za modeliranje "trikova"
- obično ima više realizacija koje su moguće
- može da ima više različitih tipova entiteta konkurentno
- obično je potrebno prvo identificirati entitete prilikom kreiranja modela.

Atributi

- karakteristike svih entiteta: opisivati, razlikovati
- svi entiteti imaju isti skup atributa i različite vrijednosti za različite entitete (npr. vrijeme dolaska, vrijeme zadržavanja, prioritet, boja)
- vrijednost atributa je povezana sa specifičnim entitetom
- slično kao lokalne varijable.

(Globalne) varijable

- reflektuju se za mnogo različitih stvari:
 - o vrijeme putovanja između svih dijelova sistema
 - o broje dijelove u sistemu
 - o simulacijski sat
- nisu svezane za određeni entitet
- entiteti mogu pristupiti ili mijenjati varijable.

- Resursi

- entiteti se bore za ljude, opremu i prostor
- entitet koristi resurse, nakon korištenja prestaje trenutna potreba za resursom
- može se posmatrati: resurs je dodijeljen entitetu i entitet ne pripada resursu
- resurs može da ima različite jedinice kapaciteta
- broj jedinica resursa može biti promijenjen tokom simulacije.

- Redovi

- stavljanje entiteta da čekaju kada ne mogu da se kreću ili kada je resurs zauzet
- imaju svoja imena i vezana su za određeni resurs
- mogu da imaju konačni kapacitet da se modelira ograničeni prostor treba modelirati šta se dešava kada je red već pun
- uobičajeno se prati dužina reda i čekanja u njemu.

- Statistički akumulatori

varijable koje "posmatraju" šta se dešava

- zavise od izlaznih performansi
- "pasivni" u modelu ne učestvuju, samo posmatraju
- na kraju simulacije koriste se za izračunavanje, s ciljem mjerenja izlaza performansi
- statistički akumulatori za jednostavan procesni sistem:
 - o broj dijelova koji su do sada proizvedeni
 - o ukupno vrijeme čekanja u redu do sada
 - o broj dijelova koji su prošli kroz red
 - o maksimalno vrijeme u redu do određenog trenutka
 - maksimalno vrijeme provedeno u sistemu do određenog trenutka
 - o ukupno vrijeme provedeno u sistemu
 - o oblasti do trenutka ispod krivulje koja pokazuje provedeno vrijeme u redu Q(t)
 - o maksimalno Q(t) do sada
 - o oblast ispod krivulje vremena koja pokazuje zauzetost servera B(t).

Poređenje alternativa

- Uobičajeno je da se simulacija koristi ne samo za jedan model "konfiguracije".
- Često se porede alternative, odabir ili traženje one najbolje (koristeći neki od kriterija).
- Jednostavan procesni sistem: šta će se desiti ako se udupla brzina dolazaka?
 - skraćivanje međudolazaka za pola
 - vraćanje modela za uduplano vrijeme dolazaka
 - npr. napraviti pet replikacija.

Pregled studije simulacije

- razumjeti sistem
- ciljevi moraju biti jasni
- formulacija reprezentacije modela
- prenošenje u softver za modeliranje
- verificiranje programa, tj. modela
- validacija modela
- eksperimenti sa dizajnom
- praviti dovoljan broj simulacija
- analizirati, ući u srž simulacije, dokumentovanje rezultata.

Optimizacija

- Optimizacija daje odabir najpovoljnijeg rješenja iz skupa mogućih rješenja.
- U matematičkom smislu, to je proces koji daje ekstremnu vrijednost (minimum ili maksimum) u zavisnosti od funkcije cilja.

Optimizacija sistema i procesa

- Potreba za optimizacijom kada dvije (ili više) karakteristike procesa različito utiču na posmatranu promjenljivu, djelujući jedna nasuprot drugoj kompromisni zadatak.
- Oblasti:
 - optimizacija pri projektovanju sistema
 - optimizacija operativnih parametara procesa
 - optimizacija upravljanja procesima.

Metode i klase optimizacije

- Podjela po broju promjenljvih koje se optimizuju:
 - jednoparametarska
 - višeparametarska.
- Podjela po broju funkcija cilja, odnosno kriterijuma:
 - jednoobjektna
 - višeobjektna.
- Podjela po zadatku optimizacije:
 - statička
 - dinamička.
- Metode optimizacije:
 - linearno i nelinearno programiranje
 - dinamičko programiranje
 - stohastičko programiranje
 - optimizacija upravljanja.

Analiza modela

- Kada se model jednom razvije i testira, može se koristiti za "what-if" analize predviđanje ponašanja sistema u slučaju mijenjanja vrijednosti ulaza.
- Cilj je ispitivanje robusnosti procesa na osnovu postavljenog matematičkog modela, kao i ispitivanje kvaliteta modela.
- Analizu modela treba razlikovati od validacije i verifikacije modela, koja se zasniva prvenstveno na poređenju rezultata modela sa eksperimentima ili na fizičkoj konzistentnosti rezultata modela.
- Analize modela mogu da daju nove informacije o posmatranom sistemu i procesu i njegovom očekivanom ponašanju.
- Analize modela se mogu koristiti za optimalno planiranje fizičkih ili numeričkih eksperimenata.
- Osnovne tehnike su analiza nepouzdanosti i analiza osjetljivosti modela.

Analiza osjetljivosti

- Tehnika ispitivanja uticaja promjene ulaznih veličina ili parametara modela na rezultate modela.
- Cilj analize je da se ulazne veličine modela poredaju po značaju uticaja na rezultate.
- Analiza osjetljivosti može da se koristi za:
 - pojednostavljenje i poboljšanje modela
 - ispitivanje robusnosti pretpostavki modela
 - analizu šta-ako, odnosno kreiranje različitih scenarija
 - potvrdu kvaliteta modela.
- Analiza također obezbjeđuje informacije o:
 - interakciji između parametara i faktora
 - regionima optimalnosti ili nestabilnosti.
- Postoji veliki broj metoda, a po pristupu se mogu svrstati u dvije grupe: determinističke i stohastičke.

Redukcija modela

- Često su modeli, a naročito dinamički, vrlo složene strukture, pa je rješavanje zahtjevno po pitanju utroška računarskog vremena i neophodne memorije.
- Moguće rješenje je da se generiše značajno jednostavniji model koji daje esencijalni opis sistema,
 kao i detaljniji model.

- Redukcija modela matematički model za aproksimaciju sistema običnih diferencijalnih jednačina (ODJ) u model manjih dimenzija:
 - cilj metode je nalaženje manje-dimenzionalnog podsistema
 - uslov je da za više-dimenziono stanje sistema postoji manje-dimenzioni podsistem
 - više-dimenzioni sistem se onda projektuje u podsistem i tako se dobija manje-dimenziona aproksimacija.

Metode redukcije modela

- U zavisnosti od oblika ODJ, metode se dijele na:
 - linearne za linearne ODJ prvog reda
 - drugog reda za linearne ODJ drugog reda
 - parametarske za linearne ODJ kada je neophodno ne mijenjati neki parametar u matricama
 - slabo nelinearne za nelinearne ODJ u kojima je linearnost limitirana na kvadratnu i kubnu funkciju
 - nelinearne za nelinearne ODJ u općem slučaju.
- Parcijalne diferencijalne jednačine se metodama redukcije mogu prevesti u sistem običnih diferencijalnih jednačina.
- Kod parcijalnih diferencijalnih jednačina, koje se rješavaju diskretizacijom, metodom redukcije se može smanjiti veliki broj neophodnih čovora te time ubrzati konvergencija.

Eksperimentalne kontrole

- Eksperimentalne kontrole su mehanizmi u nauci koji imaju mogućnost da eliminišu strane (neželjene) faktore koji mogu uticati na rezultate eksperimenta.
- Kreiranjem rezervnog seta rezultata koji nije bio pod neželjenim uticajem, naučnici su u prilici da izoliraju određen fenomem poredeći testnu grupu sa grupom gdje su korištene određene kontrole.

Kontrola u eksperimentu

- Kontrola je dio eksperimenta koji se koristi kao standard za poređenje.
- Kontrola je potrebna zato što je to nepromijenjeni dio eksperimenta koji se koristi da se detektuju efekti skrivenih varijabli.

Veza eksperimenata sa simulacijama

- Simulacije su toliko realistične da mogu predvidjeti rezultate tradicionalnih eksperimenata.
- Računarske metode su neraskidivo vezane uz eksperimentalne podatke.
- Sa druge strane, eksperimentalna potvrda rezultata je neophodna.
- Računarske simulacije i metode moraju ići ruku pod ruku s eksperimentom, ali vrijedi i obrnuto.
- Eksperimenti često trebaju računarske simulacije da dopune zaključke koji su potrebni za optimizaciju rada fizičkih sistema.

Kvalitativna opažanja i rezultati

- Kvalitativna opažanja su ona opažanja koja neko ko provodi eksperiment doživljava tokom eksperimenta. To su identifikatori trendova u podacima.

Kvantitativna opažanja i rezultati

- Kvantitativna opažanja su brojčane vrijednosti u formi sirovih podataka prikazanih u tabelama, grafikonima ili izfiltrirani u Ključne Indikatore Performansi (KPI).

Rezultati i zaključci

- Kada se eksperiment završi, potrebno je uporediti i izvući zaključke o tome šta se dogodilo s kontroliranim ili izmanipuliranim promjenljivim grupama podataka.
- Razlike u rezultatima, ako ih ima, će odgovoriti na pitanje istraživanja.
- Na kraju eksperimenta, odgovor će dokazati ili opovrgnuti hipoteze nakon što je grupa kontroliranih varijabli olakšala odgovore na specifična pitanja istraživanja.
- Bez kontrole, ne bi postojalo ništa sa čime bi se mogli uporediti rezultati eksperimenta i bilo bi nemoguće odgovoriti na postavljena pitanja.

