Machine Learning Medidas de distância de variáveis quantitativas

Prof. Hugo de Paula

Medidas de distância: variáveis contínuas

Qualquer distância métrica pode ser utilizada.

Mais importantes são classes de distâncias de Minkowski:

$$d(i,j) = \sqrt[n]{\left(\left|x_{i1} - x_{j1}\right|^n + \left|x_{i2} - x_{j2}\right|^n + \dots + \left|x_{ip} - x_{jp}\right|^n\right)}$$

- Se q = 1, d é a distância de Manhattan
- Se q = 2, d é a distância Euclidiana

Normalização e padronização de dados numéricos

Z-score:
$$z = \frac{x-\mu}{\sigma}$$

- x: valor, μ: média, σ: desvio padrão
- Distância entre o dado e a população em termos do desvio padrão
- Negativo quando abaixo da média, e positivo caso acima

PUC Minas Virtual

Normalização e padronização de dados numéricos

Normalização Min-Max:

$$x'_{i} = \frac{x_{i} - \min x_{i}}{\max x_{i} - \min x_{i}} (\max_{novo} - \min_{novo}) + \min_{novo}$$

Normalização Min-Max

ID	Gênero	Idade	Salário
1	F	27	19.000
2	M	51	64.000
3	M	52	100.000
4	F	33	55.000
5	M	45	45.000

ID	Gênero	Idade	Salário		
1	1	0.00	0.00		
2	0	0.96	0.56		
3	0	1.00	1.00		
4	1	0.24	0.44		
5	0	0.72	0.32		

Medidas de similaridade baseadas em vetor

Em alguns casos, medidas de distância provêm visão distorcida

- Ex. Quando o dado é muito esparso e 0's no vetor não são significativos
- Nesses casos, melhor utilizar medidas de distância baseada em vetor

$$X = \langle x_1, x_2, \cdots, x_n \rangle$$
 $Y = \langle y_1, y_2, \cdots, y_n \rangle$

Similaridade de cosseno

- Produto escalar: $sim(X,Y) = X \cdot Y = \sum x_i \times y_i$
- A norma do vetor X é: $||X|| = \sqrt{\sum x_i^2}$
- A similaridade de cosseno é:

$$sim(X,Y) = \frac{X \cdot Y}{\|X\| \times \|Y\|} = \frac{\sum x_i \times y_i}{\sqrt{\sum x_i^2} \times \sqrt{\sum y_i^2}}$$

Similaridade de cosseno

Exemplo:
$$X = \langle 2, 0, 3, 2, 1, 4 \rangle$$

$$||X|| = \sqrt{(4+0+9+4+1+16)} = 5,83$$

$$X^* = \frac{X}{||X||} = \langle 0.343, 0, 0.514, 0.343, 0.171, 0.686 \rangle$$

- Note que ||X|| = 1
- Torna o vetor de comprimento unitário

Exemplo: Similaridade entre documentos

	T1	T2	T3	T4	T5	T6	T7	T8
Doc1	0	4	0	0	0	2	1	3
Doc2	3	1	4	3	1	2	0	1
Doc3	3	0	0	0	3	0	3	0
Doc4	0	1	0	3	0	0	2	0
Doc5	2	2	2	3	1	4	0	2

Doc2 · Doc4 =
$$\langle 3,1,4,3,1,2,0,1 \rangle$$
 * $\langle 0,1,0,3,0,0,2,0 \rangle$
 $0+1+0+9+0+0+0+0=10$
Norma(Doc2) = SQRT(9+1+16+9+1+4+0+1) = 6.4
Norma(Doc4) = SQRT(0+1+0+9+0+0+4+0) = 3.74

Cosseno(Doc2, Doc4) = 10 / (6.4 * 3.74) = 0.42

PUC Minas Virtual

Correlação

Em casos onde há uma variância média alta entre os dados (ex. avaliação de filmes), o coeficiente de correlação de Pearson é a melhor opção.

Correlação de Pearson

$$coor(x, y) = \frac{cov(x, y)}{stdev(x) \cdot stdev(y)}$$

Aviso legal

O material presente nesta apresentação foi produzido a partir de informações próprias e coletadas de documentos obtidos publicamente a partir da Internet. Este material contém ilustrações adquiridas de bancos de imagens de origem privada ou pública, não possuindo a intenção de violar qualquer direito pertencente à terceiros e sendo voltado para fins acadêmicos ou meramente ilustrativos. Portanto, os textos, fotografias, imagens, logomarcas e sons presentes nesta apresentação se encontram protegidos por direitos autorais ou outros direitos de propriedade intelectual.

Ao usar este material, o usuário deverá respeitar todos os direitos de propriedade intelectual e industrial, os decorrentes da proteção de marcas registradas da mesma, bem como todos os direitos referentes a terceiros que por ventura estejam, ou estiveram, de alguma forma disponíveis nos slides. O simples acesso a este conteúdo não confere ao usuário qualquer direito de uso dos nomes, títulos, palavras, frases, marcas, dentre outras, que nele estejam, ou estiveram, disponíveis.

É vedada sua utilização para finalidades comerciais, publicitárias ou qualquer outra que contrarie a realidade para o qual foi concebido. Sendo que é proibida sua reprodução, distribuição, transmissão, exibição, publicação ou divulgação, total ou parcial, dos textos, figuras, gráficos e demais conteúdos descritos anteriormente, que compõem o presente material, sem prévia e expressa autorização de seu titular, sendo permitida somente a impressão de cópias para uso acadêmico e arquivo pessoal, sem que sejam separadas as partes, permitindo dar o fiel e real entendimento de seu conteúdo e objetivo. Em hipótese alguma o usuário adquirirá quaisquer direitos sobre os mesmos.

O usuário assume toda e qualquer responsabilidade, de caráter civil e/ou criminal, pela utilização indevida das informações, textos, gráficos, marcas, enfim, todo e qualquer direito de propriedade intelectual ou industrial deste material.

PUC Minas Virtual

© PUC Minas • Todos os direitos reservados, de acordo com o art. 184 do Código Penal e com a lei 9.610 de 19 de fevereiro de 1998.

Proibidas a reprodução, a distribuição, a difusão, a execução pública, a locação e quaisquer outras

modalidades de utilização sem a devida autorização da Pontifícia Universidade Católica de Minas Gerais.