

COMP 3710 - 3 Applied Artificial Intelligence (3,1,0) Fall 2017

Seminar/Lab 7.

Decision tree, and k-Nearest Neighbor (kNN) algorithm

Instructor: Mahnhoon Lee

Student Name: ZHENYU WANG **Student Number:** T00059541

1. Decision tree

Here is the training data set.

Film	Country	Big Star	Genre	Success
Film 1	USA	Yes	SF	False
Film 2	USA	No	Comedy	False
Film 3	USA	Yes	Comedy	True
Film 4	Europe	No	Comedy	True
Film 5	Europe	Yes	SF	True
Film 6	Europe	Yes	Romance	False
Film 7	Other	Yes	Comedy	True
Film 8	Other	No	SF	False
Film 9	Europe	Yes	Comedy	False
Film 10	USA	Yes	Comedy	True

a) Construct a decision tree with the above table. You should show how in the tree is constructed, by computing information gains and entropies.

$$\begin{aligned} \text{Gain(Country)} &= 1 - \text{w-entropy(USA)} - \text{w-entropy(Europe)} - \text{w-entropy(Other)} \\ &= 1 - 4/10 * \text{H(USA)} - 4/10 * \text{H(Europe)} - 2/10 * \text{H(Other)} \\ &= 1 - 4/10 * (-2/4 \log_2(2/4) - 2/4 \log_2(2/4)) - 4/10 * \text{H(Europe)} - 2/10 * \text{H(Other)} \\ &= 1 - 4/10 * (-2/4 \log_2(2/4) - 2/4 \log_2(2/4)) - 4/10 * (-1/2 \log_2(1/2) - 1/2 \log_2(1/2)) - 4/10 * (-1/2 \log_2(1/2) - 1/2 \log_2(1/2)) \\ &= 1 - (4/10 * 1) - (4/10 * 1) - (2/10 * 1) \\ &= 1 - 0.4 - 0.4 - 0.2 \\ &= 0 \end{aligned}$$

Gain(Big Star) = 1 - w-entropy(YES) - w-entropy(NO)
=
$$1 - 7/10 * H(YES) - 3/10 * H(NO)$$

= $1 - 7/10 * (-4/7 \log_2(4/7) - 3/7 \log_2(3/7)) - 3/10 * (-2/3 \log_2(2/3) - 1/3 \log_2(1/3))$
= $1 - (0.7 * 0.985) - (0.3 * 0.918)$
= 0.0351

$$\begin{aligned} \text{Gain(Genre)} &= 1 - \text{w-entropy(SF)} - \text{w-entropy(Comedy)} - \text{w-entropy(Romance)} \\ &= 1 - 3/10 * \text{H(SF)} - 6/10 * \text{H(Comedy)} - 1/10 * \text{H(Romance)} \\ &= 1 - 3/10 * (-1/3 \log_2(1/3) - 2/3 \log_2(2/3)) - 6/10 * (-4/6 \log_2(4/6) - 2/6 \log_2(2/6)) - 0 \\ &= 1 - (0.3 * 0.918) - (0.6 * 0.918) - 0 \\ &= 0.1738 \end{aligned}$$

- The information gain for Country = 0
- The information gain for $Big\ Star = 0.0351$
- The information gain for Genre = 0.1738
- Therefore, the attribute *Genre* provides the greatest information gain and so is placed at the top of the decision tree.

SF:

Film 1	USA	Yes	SF	False
Film 5	Europe	Yes	SF	True
Film 8	Other	No	SF	False

$$\begin{aligned} \text{Gain(Country)} &= 1 - \text{w-entropy(USA)} - \text{w-entropy(Europe)} - \text{w-entropy(Other)} \\ &= 1 - 1/3 * \text{H(USA)} - 1/3 * \text{H(Europe)} - 1/3 * \text{H(Other)} \\ &= 1 - 1/3 * 0 - 1/3 * 0 - 1/3 * 0 \\ &= 1 \end{aligned}$$

$$\begin{aligned} \text{Gain(Big Star)} &= 1 - \text{w-entropy(YES)} - \text{w-entropy(NO)} \\ &= 1 - 2/3 * \text{H(YES)} - 1/3 * \text{H(NO)} \\ &= 1 - 2/3 * (-1/2 \log_2(1/2) - 1/2 \log_2(1/2)) - 1/3 * 0 \\ &= 1 - (2/3 * 1) \\ &= 1/3 = 0.33 \end{aligned}$$

- The information gain for Country=1
- The information gain for $Big\ Star = 0.33$
- Therefore, the attribute *Country* provides the greatest information gain and so is placed under the SF.

Comedy:

Film 2	USA	No	Comedy	False
Film 3	USA	Yes	Comedy	True
Film 4	Europe	No	Comedy	True
Film 7	Other	Yes	Comedy	True
Film 9	Europe	Yes	Comedy	False
Film 10	USA	Yes	Comedy	True

$$\begin{split} \text{Gain(Country)} &= 1 - \text{w-entropy(USA)} - \text{w-entropy(Europe)} - \text{w-entropy(Other)} \\ &= 1 - 3/6 * \text{H(USA)} - 2/6 * \text{H(Europe)} - 1/6 * \text{H(Other)} \\ &= 1 - 3/6 * (-2/3 \log_2(2/3) - 1/3 \log_2(1/3)) - 2/6 * (-1/2 \log_2(1/2) - 1/2 \log_2(1/2)) - 1/6 * (-1 \log_2(1) - 1 \log_2(1)) \\ &= 1 - (3/6 * 0.918) - (2/6 * 1) - (1/6 * 0) \\ &= 1 - 0.459 - 0.33 \\ &= 0.211 \end{split}$$

Gain(Big Star) = 1 - w-entropy(YES) - w-entropy(NO)
=
$$1 - 4/6 * H(YES) - 2/6 * H(NO)$$

= $1 - 4/6 * (-3/4 \log_2(3/4) - 1/4 \log_2(1/4)) - 2/6 * (-1/2 \log_2(1/2) - 1/2 \log_2(1/2))$
= $1 - (4/6 * 0.811) - (2/6 * 1)$
= 0.126

- The information gain for Country = 0.211
- The information gain for $Big\ Star = 0.126$
- Therefore, the attribute *Country* provides the greatest information gain and so is placed under the comedy.

Romance:

Film 6	Europe	Yes	Romance	False	

Gain(Country) =
$$1 - w$$
-entropy(USA) $- w$ -entropy(Europe) $- w$ -entropy(Other)
= $1 - 0 - 1 * H(Europe) - 0$
= $1 - 1 * 0$
= 1

Gain(Big Star) = 1 - w-entropy(YES) - w-entropy(NO)
=
$$1 - 1 * H(YES) - 0 * H(NO)$$

= $1 - 1 * (-1 log_2(1) - 0$
= $1 - (1 * 0)$
= 1

- The information gain for Country=1
- The information gain for $Big\ Star = 1$
- And there is only one sample for Romance, the result only can be false.

- b) Answer the next two queries using the above decision tree.
 - (China, Yes, SF)
 From above decision tree, we can know other country in SF and has Big Star will be
 False
 - (USA, No, Comedy)
 From above decision tree, we can see USA in Comedy and doesn't have Big Star will be
 False

2. k-Nearest Neighbor (kNN) algorithm

Here is the training data set for class grades.

MATH 1650	COMP 2230	COMP 3710	Grade level
4	3	4	Excellent
3	4	3	Good
3	4	4	Excellent
2	3	3	Okay
3	3	2	Good
2	3	2	Okay

- a) Find the grade levels for the next two queries using the $\underline{3}NN$ algorithm.
 - (3, 2, 4)
 - (3, 4, 3)

(3,2,4)	(4,3,4)		$\sqrt{2}$	Excellent
	(3,4,3)		√5	Good
	(3,4,4)	$\sqrt{(a_1 - a_2)^2 + (b_1 - b_2)^2 + (c_1 - c_2)^2}$	2	
	(2,3,3)		$\sqrt{3}$	Okay
	(3,3,2)		√5	
	(2,3,2)		√6	

To decide the grade level for (3,2,4), we can see from above table, the minimum distance is $\sqrt{2}$, which means Excellent.

(3,4,3)	(4,3,4)		$\sqrt{3}$	
	(3,4,3)		0	Good
	(3,4,4)	$\sqrt{(a_1 - a_2)^2 + (b_1 - b_2)^2 + (c_1 - c_2)^2}$	1	Excellent
	(2,3,3)		$\sqrt{2}$	Okay
	(3,3,2)		$\sqrt{2}$	
	(2,3,2)		$\sqrt{3}$	

To decide the grade level for (3,4,3), we can see from above table, the minimum distance is 0, which means Good.