Homework 2

M371: Mathematical Statistics Due: Friday, 2/16 11:59p

Playlists: Here are a couple of playlists from me to help you get started on the assignment:

Psychedelic Bass Mix: https://shorturl.at/gEQ38

Disco Then/Now: https://shorturl.at/iEKQ4

Problem 1.

How would you respond to a friend who asks you, "How can we say that the sample mean is a random variable when it is just a number, like the population mean? For example, a simple random sample of size 50 produced $\bar{x} = 938.5$; how can the number 938.5 be a random variable?"

Problem 2.

Suppose that we have a random sample $X_1, ..., X_n \sim_{\mathsf{iid}} N(\mu, \sigma^2)$.

- (a) Show that the maximum likelihood estimator for μ is $\hat{\mu} = \bar{X}$.
- (b) Show that the maximum likelihood estimator for σ^2 is $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X})^2$. (c) Show that the expected value of $\hat{\sigma}^2$ in part (b) is $\frac{n-1}{n}\sigma^2$.

Problem 3.

Suppose we have $X_1, ..., X_n \sim_{\mathsf{iid}} \mathsf{Beta}(\alpha, 1)$.

- (a) Find a method of moments estimator for α .
- (b) Find the maximum likelihood estimator of α . (Hint: $B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$.)

Problem 4.

Suppose we have $X_1, ..., X_n \sim_{\mathsf{iid}} \mathsf{Beta}(1, \beta)$.

- (a) Find a method of moments estimator for β .
- (b) Find the maximum likelihood estimator of β .
- (c) Find the maximum likelihood estimator of β^3 .

Problem 5.

Suppose we have $X_1, ..., X_n \sim_{\mathsf{iid}} \mathsf{Exp}(\lambda)$.

- (a) Find a method of moments estimator for λ based on the first moment.
- (b) Find a method of moments estimator for λ based on the second moment.
- (c) What does this tell you about the uniqueness of method of moments estimators? Which estimator do you prefer and why?
- (d) Show that the $Exp(\lambda)$ distribution is a special case of the Gamma distribution by choosing specific values for the Gamma parameters α and β .
- (e) Find the MLE of λ .
- (f) Consider the reparametrized Exponential distribution, which uses the parameter $\theta = g(\lambda) = \frac{1}{\lambda}$. In other words, the pdf is now:

$$f(x|\theta) = \frac{1}{\theta}e^{-x/\theta}$$
, for $x > 0$

Find the MLE of θ . What is the relationship between it and the MLE of λ you found in part (f)? (Bonus:) Generalize the pattern you saw between parts (e) and (f) to prove the invariance property of the MLE for the Exponential distribution.

Problem 6.

(a) Suppose that X is a random variable following the Poisson distribution with rate parameter λ . Show that $E[X] = \lambda$.

Hint: You may find the following fact useful:

$$\sum_{k=0}^{\infty} \frac{a^k}{k!} = e^a$$

(b) Suppose that we obtained the following count data:

Count	Frequency
0	24
1	30
2	17
3	19
4	7
5	0
6	3

Fit a Poisson distribution to the data using the Method of Moments to estimate the parameter.

(c) Suppose that X is a random variable that follows the Poisson distribution that you fit in part (b). Compute P(X=0), P(X=1), and P(X=2). Are these similar to the sample probabilities from the data in part (b)? Based on these probabilities alone, comment on whether the Poisson distribution is a good fit to the above data.