An Introduction to Manifold

5 Manifolds

Problem 5.1

Let A and B be points on the real line \mathbb{R} . Consider the set $S = (\mathbb{R} - \{0\}) \cup \{A, B\}$.

Figure 1: Real line with two origins

For any two positive real numbers c, d, define

$$I_A(-c,d) = (-c,0) \cup \{A\} \cup (0,d)$$

Similarly for $I_B(-c,d)$, with B in place of A. Define a topology on S as follows: on $(\mathbb{R} - \{0\})$, use the subspace topology inherited from \mathbb{R} , with open intervals as a basis. A basis of neighborhoods at A is the collection $\{I_A(-c,d) \mid c,d>0\}$; similarly, a basis of neighborhoods at B is $\{I_B(-c,d) \mid c,d>0\}$.

(a) Prove that the map $h: I_A(-c,d) \to (-c,d)$ defined by

$$h(x) = x \quad \text{for } x \in (-c, 0) \cup (0, d),$$

$$h(A) = 0$$

is a homeomorphism.

(b) Prove that S is locally Euclidean and second countable, but not Hausdorff.

Solution

- (a) To show that h is a homeomorphism, we need to show that it is continuous and has a continuous inverse.
 - (i) h is injective.

Let $x, y \in I_A(-c, d)$ such that h(x) = h(y). There are two cases:

- h(x) = h(y) = 0, then x = y = A
- $h(x) = h(y) \neq 0$, then h(x) = x and h(y) = y, so x = y.
- (ii) h is surjective.

Let $y \in (-c, d)$. There are two cases:

- $y \neq 0$, then $y \in I_A(-c,d)$ and h(y) = y.
- y = 0, then h(A) = 0 = y.
- (iii) h is continuous.

Let $(x,y) \subseteq (-c,d)$ be an open interval. There are two cases:

- $0 \in (x,y)$, then $h^{-1}((x,y)) = I_A(x,y) \subseteq I_A(-c,d)$ is open.
- $0 \notin (x,y)$, then $h^{-1}((x,y)) = (x,y) \subseteq I_A(-c,d)$ is open.
- (iv) h^{-1} is continuous.

There are two cases:

- $A \in (x,y)$, then $h(I_A(x,y)) = (x,y) \in (-c,d)$ is open.
- $A \notin (x, y)$, then $h((x, y)) = (x, y) \in (-c, d)$ is open.

Therefore, h is a homeomorphism.

(b) (i) S is locally Euclidean.

From (a), we know that for any $x \in S$, there is a neighborhood U of x such that U is homeomorphic to an open subset of \mathbb{R} with h as the homeomorphism.

- (i) S is second countable.
- (ii) S is not Hausdorff. Consider the points A and B. For any open set U containing A, we have $U = I_A(-a_1, a_2)$ for some $a_1, a_2 > 0$. Similarly, for any open set V containing B, we have $V = I_B(-b_1, b_2)$ for some $b_1, b_2 > 0$. Suppose $U \cap V = \emptyset$. Let $c_1 = \max(a_1, b_1)$ and $c_2 = \min(a_2, b_2)$. Then $U \cap V = (c_1, 0) \cup (0, c_2)$, which is not empty. Therefore, S is not Hausdorff.

Problem 5.2

A fundamental theorem of topology, the theorem on invariance of dimension, states that if two nonempty open sets $U \subseteq \mathbb{R}^n$ and $V \subseteq \mathbb{R}^m$ are homeomorphic, then n = m. Use the idea of Example 5.4 as well as the theorem on invariance of dimension to prove that the sphere with a hair in \mathbb{R}^3 is not locally Euclidean at q. Hence it cannot be a topological manifold.

Figure 2: A sphere with a hair.

Solution

Suppose the sphere with a hair is locally Euclidean of dimension n at q. Then there is a neighborhood U of q such that U is homeomorphic to an open ball $B = B(0, \varepsilon) \subseteq \mathbb{R}^n$ with q mapping to 0. The homeomorphism $U \to B$ restricts to a homeomorphism $U \setminus \{q\} \to B \setminus \{0\}$. Since $B \setminus \{0\}$ is either connected if $n \geq 2$ or has two connected components if n = 1 and $U \setminus \{q\}$ has two connected components, n must be 1, i.e., U is homeomorphic to an open interval $U \subseteq \mathbb{R}$. However, a neighborhood on the sphere has dimension 2. By invarience of dimension, the sphere with a hair cannot be locally Euclidean at q.

Problem 5.3

Let S^2 be the unit sphere

$$x^2 + y^2 + z^2 = 1$$

in \mathbb{R}^3 . Define in S^2 the six charts corresponding to the six hemispheres—the front, rear, right, left, upper, and lower hemispheres:

$$\begin{split} &U_1 = \big\{ (x,y,z) \in S^2 \mid x > 0 \big\}, \quad \phi_1(x,y,z) = (y,z), \\ &U_2 = \big\{ (x,y,z) \in S^2 \mid x < 0 \big\}, \quad \phi_2(x,y,z) = (y,z), \\ &U_3 = \big\{ (x,y,z) \in S^2 \mid y > 0 \big\}, \quad \phi_3(x,y,z) = (x,z), \\ &U_4 = \big\{ (x,y,z) \in S^2 \mid y < 0 \big\}, \quad \phi_4(x,y,z) = (x,z), \\ &U_5 = \big\{ (x,y,z) \in S^2 \mid z > 0 \big\}, \quad \phi_5(x,y,z) = (x,y), \\ &U_6 = \big\{ (x,y,z) \in S^2 \mid z < 0 \big\}, \quad \phi_6(x,y,z) = (x,y). \end{split}$$

Describe the domain $\phi_4(U_{14})$ of $\phi_1 \circ \phi_4^{-1}$ and show that $\phi_1 \circ \phi_4^{-1}$ is C^{∞} on $\phi_4(U_{14})$. Do the same for $\phi_6 \circ \phi_1^{-1}$.

Solution

As $U_{14} = U_1 \cap U_4$, $\phi_4(U_{14}) = \{(x, z) \mid x > 0, x^2 + z^2 < 1\}$), and the transition map $\phi_1 \circ \phi_4^{-1}$ is given by

$$\begin{split} \phi_1 \circ \phi_4^{-1}(x,z) &= \phi_1 \Big(x, -\sqrt{1-x^2-z^2}, z \Big) \\ &= \Big(-\sqrt{1-x^2-z^2}, z \Big), \end{split}$$

which is C^{∞} on $\phi_4(U_{14})$.

Problem 5.4

Let $\{(U_{\alpha}, \phi_{\alpha})\}$ be the maximal atlas on a manifold M. For any open set U in M and a point $p \in U$, prove the existence of a coordinate open set U_{α} such that $p \in U_{\alpha} \subseteq U$.

Solution

Let U_{β} be a coordinate open set such that $p \in U_{\beta} \subseteq U$. Then $U_{\alpha} = U_{\beta} \cap U$ is a coordinate open set such that $p \in U_{\alpha} \subseteq U$.

6 Smooth Maps on a Manifold

Problem 6.1

Let \mathbb{R} be the real line with the differentiable structure given by the maximal atlas of the chart $(\mathbb{R}, \phi = 1 : \mathbb{R} \to \mathbb{R})$, and let \mathbb{R}' be the real line with the differentiable structure given by the maximal atlas of the chart $(\mathbb{R}, \psi : \mathbb{R} \to \mathbb{R})$, where $\psi(x) = x^{\frac{1}{3}}$.

- (a) Show that these two differentiable structures are distinct.
- (b) Show that there is a diffeomorphism between \mathbb{R} and \mathbb{R}' . (Hint: The identity map $\mathbb{R} \to \mathbb{R}$ is not the desired diffeomorphism; in fact, this map is not smooth.)

Solution

(a) Suppose that \mathbb{R} and \mathbb{R}' have the same differentiable structure. Then $F: \mathbb{R} \to \mathbb{R}'$ must be the identity map and $\psi \circ F \circ \phi$ must be a diffeomorphism. However, for $x \in \mathbb{R}$,

$$\psi \circ F \circ \phi^{-1}(x) = \psi(x) = x^{\frac{1}{3}},$$

is not C^{∞} at 0. Therefore, \mathbb{R} and \mathbb{R}' have distinct differentiable structures.

(b) Let $F: \mathbb{R} \to \mathbb{R}'$ be the map defined by $F(x) = x^3$. For $x \in \mathbb{R}$, we have

$$\psi \circ F \circ \phi^{-1}(x) = \psi(x^3) = (x^3)^{\frac{1}{3}} = x,$$

is a diffeomorphism. Therefore, F is a diffeomorphism between \mathbb{R} and \mathbb{R}' .

Problem 6.2

Let M and N be manifolds and let q_0 be a point in N. Prove that the inclusion map $i_{q_0}: M \to M \times N, i_{q_0}(p) = (p, q_0), \text{ is } C^{\infty}.$

Solution

Let $(U_{\alpha}, \phi_{\alpha})$ and (V_i, ψ_i) be a chart of M and N, respectively, then $(U_{\alpha} \times V_i, \phi_{\alpha} \times \psi_i)$ is a chart of $M \times N$. To show that i_{q_0} is C^{∞} , we have the map

$$\begin{split} (\phi_\alpha \times \psi_i) \circ i_{q_0} \circ \phi_\beta^{-1}(x) &= (\phi_\alpha \times \psi_i) \big(\phi_\alpha^{-1}, q_0\big) \\ &= \big(\phi_\alpha \circ \phi_\beta^{-1}(x), \psi_i(q_0)\big). \end{split}$$

As ϕ_{α} and ϕ_{β} are compatible and $\psi_i(q_0)$ is a constant, the map is C^{∞} . Therefore, i_{q_0} is C^{∞} .

Problem 6.3

Let V be a finite-dimensional vector space over \mathbb{R} , and $\operatorname{GL}(V)$ the group of all linear automorphisms of V. Relative to an ordered basis $e = (e_1, ..., e_n)$ for V, a linear automorphism $L \in \operatorname{GL}(V)$ is represented by a matrix $[a_i^i]$ defined by

$$L(e_j) = \sum_i a_j^i e_i.$$

The map

$$\phi_e : \mathrm{GL}(V) \to \mathrm{GL}(n, \mathbb{R}),$$

$$L \mapsto \left[a_i^i\right],$$

is a bijection with an open subset of $\mathbb{R}^{n\times n}$ that makes $\mathrm{GL}(V)$ into a C^{∞} manifold, which we denote temporarily by $\mathrm{GL}(V)_e$. If $\mathrm{GL}(V)_u$ is the manifold structure induced from another ordered basis $u=(u_1,...,u_n)$ for V, show that $\mathrm{GL}(V)_e$ is the same as $\mathrm{GL}(V)_u$.

Solution

Problem 6.4

Find all points in \mathbb{R}^3 of which the functions $x, x^2 + y^2 + z^2 - 1, z$ can serve as a local coordinates system in a neighborhood.

Solution

For $(x, y, z) \in \mathbb{R}^3$, define $F : \mathbb{R}^3 \to \mathbb{R}^3$ by

$$F(x, y, z) = (x, x^2 + y^2 + z^2 - 1, z).$$

The Jacobian determinant of F is

$$\frac{\partial(F^1, F^2, F^3)}{\partial(x, y, z)} = \det \begin{bmatrix} 1 & 0 & 0\\ 2x & 2y & 2z\\ 0 & 0 & 1 \end{bmatrix}$$
$$= 2y.$$

By the inverse function theorem, F is a local coordinate system at (x, y, z) if and only if $2y \neq 0$. Therefore, the points in \mathbb{R}^3 of which the functions $x, x^2 + y^2 + z^2 - 1, z$ can serve as a local coordinates system in a neighborhood are all points except the x-z plane.

7 Quotients

Problem 7.1

Let $f: X \to Y$ be a map of sets, and let $B \subset Y$. Prove that $f(f^{-1}(B)) = B \cap f(X)$. Therefore, if f is surjective, then $f(f^{-1}(B)) = B$.

Solution

- (a) For $x \in f(f^{-1}(B))$, there exists $y \in f^{-1}(B)$ such that $x = f(y) \in f(X)$ and $y \in f^{-1}(B)$, so $f(y) \in B$. Therefore, $x \in B \cap f(X)$.
- (b) For $x \in B \cap f(X)$, there exists $y \in X$ such that $x = f(y) \in B$, so $y \in f^{-1}(B)$. Therefore, $x \in f(f^{-1}(B))$.

Therefore, $f(f^{-1}(B)) = B \cap f(X)$. If f is surjective, then $f(f^{-1}(B)) = B \cap f(X) = B \cap Y = B$.

Problem 7.2

Let H^2 be the closed upper hemisphere in the unit sphere S^2 , and let $i: H^2 \to S^2$ be the inclusion map. In the notation of Example 7.13, prove that the induced map $f: H^2/\sim \to S^2/\sim$ is a homeomorphism. (Hint: Imitate Proposition 7.3.)

Solution

Problem 7.3

Deduce Theorem 7.7 from Corollary 7.8. (Hint: To prove that if S/\sim is Hausdorff, then the graph R of \sim is closed in $S\times S$, use the continuity of the projection map $\pi:S\to S/\sim$. To prove the reverse implication, use the openness of π .)

Solution

Suppose \sim is an open equivalence relation on S, then the projection map $\pi: S \to S/\sim$ is open. Then

 S/\sim is Hausdorff.

$$\iff$$
 The diagonal $\Delta = \{([x], [x]) \in (S/\sim) \times (S/\sim)\}$ is closed in $(S/\sim) \times (S/\sim)$, $\iff (\pi^{-1} \times \pi^{-1})\Delta = \{(x, y) \mid x \sim y\} = R$ is closed in $S \times S$.

Problem 7.4

Let S^n be the unit sphere centered at the origin in \mathbb{R}^{n+1} . Define an equivalence relation \sim on S^n by identifying antipodal points:

$$x \sim y \iff x = \pm y, \quad x, y \in S^n.$$

- (a) Show that \sim is an open equivalence relation.
- (b) Apply Theorem 7.7 and Corollary 7.8 to prove that the quotient space S^n/\sim is Hausdorff, without making use of the homeomorphism $\mathbb{R}P^n\simeq S^n/\sim$.

Solution

- (a) Let $U \subset S^n$ be an open set. Then $\pi^{-1}(\pi(U)) = U \cup a(U)$, where $a: S^n \to S^n, a(x) = -x$ is the antipodal map. Since a is a homeomorphism, a(U) is open. Therefore, $\pi^{-1}(\pi(U))$ is open as a union of two open sets, then $\pi(U)$ is open by the definition of the quotient topology. Thus, π is an open map, i.e., \sim is an open equivalence relation.
- (b) The graph R of \sim is

$$\begin{split} R &= \{(x,y) \mid x \sim y\} \\ &= \{(x,x) \in S^n \times S^n\} \cup \{(x,-x) \in S^n \times S^n\} \\ &= \Delta \cup (\mathbb{1} \times a)\Delta. \end{split}$$

Since S^n is Hausdorff, the diagonal Δ is closed in $S^n \times S^n$. Since $\mathbb{1} \times a : S^n \times S^n \to S^n \times S^n$, $(\mathbb{1} \times a)(x,y) = (x,-y)$ is a homeomorphism, $(\mathbb{1} \times a)(\Delta)$ is closed in $S^n \times S^n$. Therefore, R is closed in $S^n \times S^n$ as a union of two closed sets, then S^n/\sim is Hausdorff.

Problem 7.5

Suppose a right action of a topological group G on a topological space S is continuous; this simply means that the map $S \times G \to S$ describing the action is continuous. Define two points x, y of S to be equivalent if they are in the same orbit; i.e., there is an element $g \in G$ such that y = xg. Let S/G be the quotient space; it is called the orbit space of the action. Prove that the projection map $\pi: S \to S/G$ is an open map. (This problem generalizes Proposition 7.14, in which $G = \mathbb{R}^{\times} = \mathbb{R} - \{0\}$ and $S = \mathbb{R}^{n+1} - \{0\}$. Because \mathbb{R}^{\times} is commutative, a left \mathbb{R}^{\times} -action becomes a right \mathbb{R}^{\times} -action if scalar multiplication is written on the right.)

Solution

Let $U \subset S$ be an open set. Then

$$\pi^{-1}(\pi(U)) = \bigcup_{g \in G} Ug$$

is open in S as a union of open sets. Since π is a quotient map, $\pi(U)$ is open in S/G. Therefore, π is an open map.

Problem 7.6

Let the additive group $2\pi\mathbb{Z}$ act on \mathbb{R} on the right by $x \cdot 2\pi n = x + 2\pi n$, where n is an integer. Show that the orbit space $\mathbb{R}/2\pi\mathbb{Z}$ is a smooth manifold.

Solution

(a) $\mathbb{R}/2\pi\mathbb{Z}$ is Hausdorff.

Let $[x], [y] \in \mathbb{R}/2\pi\mathbb{Z}$ be two distinct points and presentatives $x \in [x], y \in [y]$. As \mathbb{R} is Hausdorff, there are open sets $U, V \subset \mathbb{R}$ such that $x \in U, y \in V$, and $U \cap V = \emptyset$. Then $\pi(U)$ and $\pi(V)$ are open sets in $\mathbb{R}/2\pi\mathbb{Z}$ as π is an open map, moreover, $\pi(U) \cap \pi(V) = \emptyset$. Therefore, $\mathbb{R}/2\pi\mathbb{Z}$ is Hausdorff.

(b) $\mathbb{R}/2\pi\mathbb{Z}$ is second countable.

As π is an open map and \mathbb{R} is second countable, $\mathbb{R}/2\pi\mathbb{Z}$ is second countable.

(c) $\mathbb{R}/2\pi\mathbb{Z}$ is locally Euclidean.

Define

$$\varphi_1: \mathbb{R}/2\pi\mathbb{Z} \to (-\pi, \pi)$$
$$[x] \mapsto x \in (-\pi, \pi),$$

and

$$\varphi_2: \mathbb{R}/2\pi\mathbb{Z} \to (0,2\pi)$$
$$[x] \mapsto x \in (0,2\pi).$$

On
$$\varphi_1(U_1 \cap U_2) = \varphi_1(\mathbb{R}/2\pi\mathbb{Z}) = (-\pi, \pi),$$

(i) $x \in (-\pi, 0)$

$$\begin{aligned} \varphi_2 \circ \varphi_1^{-1}(x) &= \varphi_2([x]) \\ &= x + 2\pi. \end{aligned}$$

(ii) $x \in (0, \pi)$

$$\begin{aligned} \varphi_2 \circ \varphi_1^{-1}(x) &= \varphi_2([x]) \\ &= x. \end{aligned}$$

On
$$\varphi_2(U_1 \cap U_2) = \varphi_2(\mathbb{R}/2\pi\mathbb{Z}) = (0, 2\pi),$$

(i) $x \in (0, \pi)$

$$\begin{aligned} \varphi_1 \circ \varphi_2^{-1}(x) &= \varphi_1([x]) \\ &= x. \end{aligned}$$

(ii) $x \in (\pi, 2\pi)$

$$\begin{split} \varphi_1 \circ \varphi_2^{-1}(x) &= \varphi_1([x]) \\ &= x - 2\pi. \end{split}$$

Therefore, $(\mathbb{R}/2\pi\mathbb{Z}, \varphi_1)$ and $(\mathbb{R}/2\pi\mathbb{Z}, \varphi_2)$ are compatible and then form a C^{∞} atlas. Then, $\mathbb{R}/2\pi\mathbb{Z}$ is locally Euclidean.

In conclusion, $\mathbb{R}/2\pi\mathbb{Z}$ is a smooth manifold.

Problem 7.7

- (a) Let $\{(U_{\alpha}, \phi_{\alpha})\}_{\alpha=1}^2$ be the atlas of the circle S^1 in Example 5.7, and let $\bar{\phi}_{\alpha}$ be the map ϕ_{α} followed by the projection $\mathbb{R} \to \mathbb{R}/2\pi\mathbb{Z}$. On $U_1 \cap U_2 = A \sqcup B$, since ϕ_1 and ϕ_2 differ by an integer multiple of 2π , $\bar{\phi}_1 = \bar{\phi}_2$. Therefore, $\bar{\phi}_1$ and $\bar{\phi}_2$ piece together to give a well-defined map $\bar{\phi}: S^1 \to \mathbb{R}/2\pi\mathbb{Z}$. Prove that $\bar{\phi}$ is C^{∞} .
- (b) The complex exponential $\mathbb{R} \to S^1$, $t \mapsto e^{it}$, is constant on each orbit of the action of $2\pi\mathbb{Z}$ on \mathbb{R} . Therefore, there is an induced map $F: \mathbb{R}/2\pi\mathbb{Z} \to S^1$, $F([t]) = e^{it}$. Prove that F is C^{∞} .
- (c) Prove that $F: \mathbb{R}/2\pi\mathbb{Z} \to S^1$ is a diffeomorphism.

Solution

(a)
$$U_1 = \{e^{it} \in \mathbb{C} \mid -\pi < t < \pi\},$$

$$U_2 = \{e^{it} \in \mathbb{C} \mid 0 < t < 2\pi\},$$

and

$$\phi_1(e^{it}) = t, \quad -\pi < t < \pi,$$
 $\phi_2(e^{it}) = t, \quad 0 < t < 2\pi,$

Let $\pi: \mathbb{R} \to \mathbb{R}/2\pi\mathbb{Z}$ be the projection map and $\psi_1: \mathbb{R}/2\pi\mathbb{Z} \to V_1 = (-\pi, \pi)$ and $\psi_2: \mathbb{R}/2\pi\mathbb{Z} \to V_2 = (0, 2\pi)$ be the coordinate maps.

(i)
$$\psi_1 \circ \bar{\phi} \circ \phi_1^{-1}(x) = \psi_1 \circ \pi(x)$$
$$= x, \quad -\pi < x < \pi$$

$$\begin{split} \text{(ii)} \;\; \psi_2 \circ \bar{\phi} \circ \phi_1^{-1}(x) &= \psi_2 \circ \pi(x) \\ &= \begin{cases} x & 0 < x < \pi \\ x + 2\pi & -\pi < x < 0 \end{cases}$$

$$\begin{split} \text{(iii)} \quad & \psi_1 \circ \bar{\phi} \circ \phi_2^{-1}(x) = \psi_1 \circ \pi(x) \\ & = \begin{cases} x & 0 < x < \pi \\ x - 2\pi & \pi < x < 2\pi \end{cases}$$

$$\begin{aligned} \text{(iv)} \qquad & \psi_2 \circ \bar{\phi} \circ \phi_2^{-1}(x) = \psi_2 \circ \pi(x) \\ & = x, \quad 0 < x < 2\pi. \end{aligned}$$

Then, $\psi_{\beta} \circ \bar{\phi} \circ \phi_{\alpha}^{-1}$ is C^{∞} . Since ψ_{β} and ψ_{α} are diffeomorphisms, $\bar{\phi}$ is C^{∞} .

(b)
$$S^{1} \longleftarrow F \qquad \mathbb{R}/2\pi\mathbb{Z}$$

$$\phi_{\alpha} \qquad \qquad \psi_{\beta} \qquad \qquad \psi_{\beta$$

Then, $\phi_{\beta} \circ F \circ \psi_{\alpha}^{-1}$ is C^{∞} . Since ψ_{β} and ψ_{α} are diffeomorphisms, F is C^{∞} . (c)

Problem 7.8

The Grassmannian G(k, n) is the set of all k-planes through the origin in \mathbb{R}^n . Such a k-plane is a linear subspace of dimension k of \mathbb{R}^n and has a basis consisting of k linearly independent vectors $a_1, ..., a_k$ in \mathbb{R}^n . It is therefore completely specified by an $n \times k$ matrix $A = [a_1...a_k]$ of rank k, where the rank of a matrix A, denoted by rkA, is defined to be the number of linearly independent columns of A. This matrix is called a matrix representative of the k-plane.

Two bases $a_1,...,a_k$ and $b_1,...,b_k$ determine the same k-plane if there is a change-of-basis matrix $g=\left[g_{ij}\right]\in \mathrm{GL}(k,\mathbb{R})$ such that

$$b_j = \sum_i a_i g_{ij}, \quad 1 \le i, j \le k.$$

In matrix notation, B = Ag.

Let F(k, n) be the set of all $n \times k$ matrices of rank k, topologized as a subspace of $\mathbb{R}^{n \times k}$, and \sim the equivalence relation

 $A \sim B$ iff there is a matrix $g \in GL(k, \mathbb{R})$ such that B = Ag.

In the notation of Problem B.3, F(k,n) is the set D_{\max} in $\mathbb{R}^{n\times k}$ and is therefore an open subset. There is a bijection between G(k,n) and the quotient space $\frac{F(k,n)}{\sim}$. We give the Grassmannian G(k,n) the quotient topology on $\frac{F(k,n)}{\sim}$.

- (a) Show that \sim is an open equivalence relation. (Hint: Either mimic the proof of Proposition 7.14 or apply Problem 7.5.)
- (b) Prove that the Grassmannian G(k, n) is second countable. (Hint: Apply Corollary 7.10.)
- (c) Let S = F(k, n). Prove that the graph R in $S \times S$ of the equivalence relation \sim is closed. (Hint: Two matrices $A = [a_1...a_k]$ and $B = [b_1...b_k]$ in F(k, n) are equivalent if and only if every column of B is a linear combination of the columns of A if and only if $\text{rk}[AB] \leq k$ if and only if all $(k+1) \times (k+1)$ minors of [AB] are zero.)
- (d) Prove that the Grassmannian G(k,n) is Hausdorff. (Hint: Mimic the proof of Proposition 7.16.)

Next we want to find a C^{∞} at las on the Grassmannian G(k,n). For simplicity, we specialize to G(2,4). For any 4×2 matrix A, let A_{ij} be the 2×2 submatrix consisting of its ith row and jth row. Define

$$V_{ij} = \{ A \in F(2,4) \mid A_{ij} \text{ is nonsingular} \}.$$

Because the complement of V_{ij} in F(2,4) is defined by the vanishing of $\det A_{ij}$, we conclude that V_{ij} is an open subset of F(2,4).

- (e) Prove that if $A \in V_{ij}$, then $Ag \in V_{ij}$ for any nonsingular matrix $g \in GL(2,\mathbb{R})$.
- (f) Define $U_{ij} = \frac{V_{ij}}{\sim}$. Since \sim is an open equivalence relation, $U_{ij} = \frac{V_{ij}}{\sim}$ is an open subset of G(2,4).

For $A \in V_{12}$,

$$A \sim AA_{12}^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ * & * \\ * & * \end{pmatrix} = \begin{pmatrix} I \\ A_{34}A_{12}^{-1} \end{pmatrix}.$$

This shows that the matrix representatives of a 2-plane in U_{12} have a canonical form B in which B_{12} is the identity matrix.

(e) Show that the map $\tilde{\varphi}_{12}: V_{12} \to \mathbb{R}^{2\times 2}$,

$$\tilde{\varphi}_{12}(A) = A_{34}A_{12}^{-1},$$

induces a homeomorphism $\varphi_{12}: U_{12} \to \mathbb{R}^{2 \times 2}$.

(e) Define similarly homeomorphisms $\varphi_{ij}: U_{ij} \to \mathbb{R}^{2\times 2}$. Compute $\varphi_{12} \circ \varphi_{23}^{-1}$, and show that it is C^{∞} .

(f) Show that $\{U_{ij} \mid 1 \leq i < j \leq 4\}$ is an open cover of G(2,4) and that G(2,4) is a smooth manifold.

Similar consideration shows that F(k,n) has an open cover $\{V_I\}$, where I is a strictly ascending multi-index $1 \leq i_1 < ... < i_k \leq n$. For $A \in F(k,n)$, let A_I be the $k \times k$ submatrix of A consisting of i_1 th, ..., i_k th rows of A. Define

$$V_I = \{A \in G(k,n) \mid \det A_I \neq 0\}.$$

Next define $\tilde{\varphi}_I: V_I \to \mathbb{R}^{(n-k) \times k}$ by

$$\tilde{\varphi}_{I(A)} = \left(AA_I^{-1}\right)_{I'},$$

where $()_{I'}$ denotes the $(n-k)\times k$ submatrix obtained from the complement I' of the multi-index I. Let $U_I=\frac{V_I}{\sim}$. Then $\tilde{\varphi}$ induces a homeomorphism $\varphi:U_I\to\mathbb{R}^{(n-k)\times k}$. It is not difficult to show that $\{(U_I,\varphi_I)\}$ is a C^∞ atlas for G(k,n). Therefore the Grassmannian G(k,n) is a C^∞ manifold of dimension k(n-k).

Problem 7.9

Show that the real projective space $\mathbb{R}P^n$ is compact.