Graph Theory

Problem 1

True or false?

- (a) The complete bipartite graph $K_{5,5}$ has no cycle of length five.
- (b) If *T* is a tree with at least four edges, then $\chi(T) = 3$.
- (c) Let C_n denote a cycle on n vertices. For all $n \ge 5$ it holds $\chi(C_n) \ne \chi(C_{n-1})$.
- (d) It is possible to remove two edges from K_6 so that the resulting graph has a clique number of 4.

Problem 2

What is the minimum number of edges that need to be removed from K_5 so that the resulting graph has a chromatic number of

- (a) 3?
- (b) 2?
- (c) 1?

Problem 3

Consider the complete 3-partite graphs $K_{4,1,1}$, $K_{3,2,1}$, $K_{2,2,2}$.

- (a) What is the chromatic number of each of these graph?
- (b) Which of these graphs are planar?

Problem 4

Consider the following graph, *G*:

[†] indicates a previous exam question

^{*} indicates a difficult/advanced question.

- (a) What is the chromatic number of *G*?
- (b) What is the clique number of *G*?
- (c) Does *G* have a Hamiltonian path and/or a Hamiltonian cycle?
- (d) Does *G* have an Eulerian path and/or an Eulerian cycle?

Problem 5

Draw a single graph with 6 vertices and 10 edges that satisfies each of the following:

- (a) is planar,
- (b) contains a Hamiltonian circuit, and
- (c) does not contain an Eulerian path.

Problem 6^{\dagger} (20T2)

- (a) Prove that a graph with 6 vertices and at least 13 edges must have at least two vertices of degree 5.
- (b) Prove that a graph with 6 vertices and at least 13 edges has clique number at least 4.
- (c) Prove that a graph with 6 vertices and at least 13 edges is non-planar.
- (d) Draw a planar graph with 6 vertices and 12 edges that has clique number 3. Justify each property.