X = Sp(A) has presheaf of meconosphic functions $M_X(R) := total ring of fractions of <math>O_X(R)$. The fact that control is actually well-behaved relies on flatness. Want to show M_X is sheaf.

lemma: $f \in M_X(X)$, $R \in X$ rational $\longrightarrow I(R) := \{ a \in O_X(R) : a f \in O_X(R) \}$. This is cohecent ideal sheaf: $O_X(R) \otimes I(X)$ $O_X(R) \otimes I(X)$

 $\underline{f}: This must be \widetilde{I(X)}. We have \widetilde{I(X)}(R) \rightarrow I(R), which we need to show is isom. Write <math>J = \frac{t}{n}$.

(ansider the O_{X} -mod. $N = \frac{tO_{X}^{(X)} + nO_{X}^{(X)}}{nO_{X}^{(X)}}$. We have exact seq. of $O_{X}(X) = A$ -modules

airta

(*) $O \to I(X) \to O(X) \to N \to O$. Now use flatness of $O(X) \to O(R)$.

᠒

Take tensor product w/ O(R) for (*).

Thm: Mx is a sheaf.

 $\text{Pf}: \text{ let } X = X_1 \cup \cdots \cup X_m \text{ be admissible corec. Enough to show } 0 \to M_X(X_4) \to \underset{i:j}{\mathbb{T}} M_X(X_i) \to \overset{n}{\mathbb{T}} M_X(X_i) \to \underset{i:j}{\mathbb{T}} M_X(X_i) \to \underset{i:j}{\mathbb{T}} M_X(X_i) \to \underset{i:j}{\mathbb{T}} M_X(X_i) \to M_X(X_i)$

Suppose $f \in \ker(M_X(X) \to TiM_X(X_1))$. Write $f = \frac{9}{n}$. Lack at costrictions and use injectivity of localization in this case.

Sheafiness of $0_X \Rightarrow f=0$. Now we need to give. $\{f_i \in M(X_i)\} \ \forall \ f_i|_{X_i \cap X_j} = f_j|_{X_i \cap X_j}$. Find common denominators

and glue. Use the ideal sheaves from before to give denominators. The key is that I(X) has an NZD. The only

non-obvious thing is the alg. fact that if every elt. of I(X) is a zero-divisor then there is some global

zeodivisor.

Analytic Reductions

Affinoid X=Sp(A) has cononical reduction $\bar{X}=Spec(\bar{A})$ for $\bar{A}=A^{\circ}/A^{\circ\circ}$. \bar{A} is coduced finite type \bar{K} -alg.

Reduction map ced: $X \to \overline{X}$ (surj. on \overline{k} closed pts.), $\chi \in Sp(A) \mapsto kec(\overline{A} \to \overline{k}_X)$. This is functorial.

Example: Assume k alg. closed. D closed unit dis k. $\overline{D} = \operatorname{Spec} \overline{K[z]} = A_{\overline{K}}^{1}$. set $(z) = \overline{z} \in \overline{K}$.

(2) T = Spk(2,2") = Spk(2,w)/(zw-1) => T = Spec k[2,w]/(zw-1).

Reduction as expected

 $Spk(z,\pi/z)$. e(annulus)

(3) Fix pseudouniformizec TEK (so 0 < hT < 1). X = {z & K: | TT | ≤ |z| ≤ | }. Reduction should be

intermediate between previous two reductions. $X = Sp K(z,w)/(zw-\pi)$. $\bar{X} = Spec \bar{K}[z,w]/(zw)$.

ced: X -> A'z U A'w. |z|=1 => ced(z) = pt. z on A'z. 121= | \pi | \Rightarrow \text{ced(z)} = \rhot. (\frac{\pi}{2}) on Aw.

ITI(| z| z|) red(z) gets sent to the crossing w=0=z.