ECONOMETRÍA BÁSICA

Capítulo 15: Variable Instrumental

José Valderrama & Freddy Rojas jtvalderrama@gmail.com & frojasca@gmail.com ■ Universidad Católica Santo Toribio de Mogrovejo

Septiembre de 2021

- Introducción
- 2 Motivación
- 3 Definición
 - Origen de la endogeneidad
 - Variable instrumental
 - Ejemplo
- ESTIMACIÓN
 - Modelo simple
 - Modelo multivariado (m=k)
 - Modelo multivariado (m>k)
 - Aplicación matemática
- 6 Referencia

- 1 Introducción
- 2 Motivación
- 3 DEFINICIÓN
 - Origen de la endogeneidad
 - Variable instrumental
 - Ejemplo
- ESTIMACIÓN
 - Modelo simple
 - Modelo multivariado (m=k)
 - Modelo multivariado (m>k)
 - Aplicación matemática
- 5 Referencia

Introducción

- Se dice que el estudio de la endogeneidad es una de las contribuciones fundamentales de la Econometría a la Estadística.
- MCO es inconsistente en el modelo: $y_i = x_i'\beta + \mu_i$ si $Cov[x_i, \mu_i] \neq 0$. Este problema se conoce como endogeneidad y una de las soluciones es el uso de variables instrumentales.
- Un instrumento es una variable exógena, es decir: $Cov[z_i, \mu_i] = 0$ (condición de exogeneidad) que esta correlacionado con la variable endógena (condición de relevancia) y que por tanto puede ser usado para la estimación del modelo MCO.

- Introducción
- 2 Motivación
- 3 Definición
 - Origen de la endogeneidad
 - Variable instrumental
 - Ejemplo
- 4 ESTIMACIÓN
 - Modelo simple
 - Modelo multivariado (m=k)
 - Modelo multivariado (m>k)
 - Aplicación matemática
- 6 Referencia

MOTIVACIÓN

Motivación

Motivación

MOTIVACIÓN

- 1 Introducción
- 2 Motivación
- O DEFINICIÓN
 - Origen de la endogeneidad
 - Variable instrumental
 - Ejemplo
- ESTIMACIÓN
 - Modelo simple
 - Modelo multivariado (m=k)
 - Modelo multivariado (m>k)
 - Aplicación matemática
- 6 Referencia

- Introducción
- 2 Motivación
- O DEFINICIÓN
 - Origen de la endogeneidad
 - Variable instrumental
 - Ejemplo
- ESTIMACIÓN
 - Modelo simple
 - Modelo multivariado (m=k)
 - Modelo multivariado (m>k)
 - Aplicación matemática
- 6 Referencia

SITUACIONES QUE ORIGINAN ENDOGENEIDAD

Variables omitidas

Introducción

- Modelo verdadero: $y_i = x'_{i1}\beta_1 + x'_{i2}\beta_2 + \nu_i$
- Modelo estimado: $y_i = x'_{i1}\beta_1 + \mu_i$
- 2 Doble causalidad o simultaneidad

$$y_i = z_i \beta_1 + x_i \beta_2 + \nu_i$$

$$x_i = z_i \gamma_1 + y_i \gamma_2 + \mu_i$$

- Errores de medida
 - Modelo verdadero: $y_i = x_i^* \beta + \nu_i$

Pero existe un error de medida tal que el valor observado de x es:

$$x_i = x_i^* + \epsilon$$

• Modelo estimado: $y_i = x_i \beta + \mu_i$

- 1 Introducción
- 2 Motivación
- O DEFINICIÓN
 - Origen de la endogeneidad
 - Variable instrumental
 - Ejemplo
- ESTIMACIÓN
 - Modelo simple
 - Modelo multivariado (m=k)
 - Modelo multivariado (m>k)
 - Aplicación matemática
- 5 Referencia

VARIABLE INSTRUMENTAL

Introducción

Si E(x'u) = 0, MCO es consistente (identifica el efecto de X en Y)

Variable instrumental

Si $E(x'u) \neq 0$, MCO es inconsistente (no identifica el efecto de X en Y)

Definición

000000000

Variable instrumental

Introducción

Si $E(x'u) \neq 0$, pero tenemos z tal que E(z'u) = 0 y Si $E(z'x) \neq 0$, IV consistente e identifica efecto de X en Y

Variable instrumental

Introducción

- Un instrumento es una de las formas de resolver el problema de endogeneidad.
- Dado el modelo $y_i = \beta_0 + \beta_1 x_i + \mu_i$. Existe una variable z que cumple con el siguiente diagrama:

Condición de Relevancia: $Cov(zx) \neq 0$ Condición de Exogeneidad: $Cov(z\mu) = 0$

- Introducción
- 2 Motivación
- 3 Definición
 - Origen de la endogeneidad
 - Variable instrumental
 - Ejemplo
- 4 Estimación
 - Modelo simple
 - Modelo multivariado (m=k)
 - Modelo multivariado (m>k)
 - Aplicación matemática
- 6 Referencia

EDUCACIÓN Y SALUD¹

Introducción

- Imagine un programama de salud que ofrece educación (z) sobre los beneficios de los ejercicios.
- Imagine que estamos interesados en los efectos del ejercicio (d) sobre la la salud (y), y no de los efectos de z sobre y.
- Se tiene entonces una situación donde:

$$z \rightarrow d \rightarrow y$$

- La educación por si misma es improbable que afecte directamente a la salud.
- La variable z que afecta a d pero no a y directamente es llamada un instrumento.

¹Adaptado de Lee (2005), Micro-Econometrics for Policy, Program, and Treatment Effects. Pág. 129.

- Introducción
- 2 Motivación
- 3 Definición
 - Origen de la endogeneidad
 - Variable instrumental
 - Ejemplo
- 4 Estimación
 - Modelo simple
 - Modelo multivariado (m=k)
 - Modelo multivariado (m>k)
 - Aplicación matemática
- 5 Referencia

- Introducción
- 2 Motivación
- 3 Definición
 - Origen de la endogeneidad
 - Variable instrumental
 - Ejemplo
- 4 Estimación
 - Modelo simple
 - Modelo multivariado (m=k)
 - Modelo multivariado (m>k)
 - Aplicación matemática
- 5 Referencia

En el modelo de regresión lineal simple: $y_i = \beta_0 + \beta_1 x_i + \mu_i$ se sabe que x es endógena y se instrumentaliza esto con z. Entonces se plantea el **procedimiento en dos etapas**:

- Se estima el modelo $x = \gamma_0 + \gamma_1 z + v$. Si z no está correlacionado con μ , entonces $\hat{x} = \hat{\gamma}_0 + \hat{\gamma}_1 z$ tampoco.
- 2 Se estima el modelo: $y_i = \beta_0 + \beta_1 \hat{x}_i + \varepsilon_i$

 β_1 se le conoce como el estimador MC2E (Mínimos cuadrados en dos etapas)

Alternativamente se puede emplear la lógica del método de momentos:

$$y_i = \beta_0 + \beta_1 x_i + \mu_i$$

$$Cov(y_i, z_i) = Cov(\beta_0, z_i) + Cov(\beta_1 x_i, z_i) + cov(z_i, \mu_i)$$

$$Cov(y_i, z_i) = 0 + \beta_1 Cov(x_i z_i) + 0$$

$$\beta_1 = \frac{Cov(y_i, z_i)}{Cov(x_i z_i)}$$

Finalmente, por el método de momentos:

$$\hat{\beta}_1^{\textit{MC2E}} = \frac{\hat{\sigma}_{\textit{yz}}}{\hat{\sigma}_{\textit{xz}}}$$

- Introducción
- 2 Motivación
- 3 Definición
 - Origen de la endogeneidad
 - Variable instrumental
 - Ejemplo
- 4 Estimación
 - Modelo simple
 - Modelo multivariado (m=k)
 - Modelo multivariado (m>k)
 - Aplicación matemática
- 5 Referencia

Sea el objetivo:
$$Y = XB + \mu$$
. $[(nx1) = (nxk)(kx1) + (nx1)]$
1ERA ETAPA: $x_j = Z\gamma + \nu$ $[(nx1) = (nxk)(kx1) + (nx1)]$, de donde se tiene: \hat{x}_j , con lo cual: $[\hat{x}_1, \hat{x}_2, \hat{x}_3...] = \hat{X}$
2DA ETAPA: $Y = \hat{X}\beta + \epsilon$

Resolviendo se tiene que:

- **1** De la primera etapa: $\hat{\gamma} = (z'z)^{-1}z'x_1$, por lo tanto $\hat{x}_1 = z(z'z)^{-1}z'x_1$, con lo cual $\hat{X} = z(z'z)^{-1}z'X$
- **2** De la segunda etapa: $\hat{\beta} = (\hat{X}'\hat{X})^{-1}\hat{X}'y$

Reemplazando, $\hat{\beta} = (\hat{z}'\hat{X})^{-1}\hat{z}'v$

- Introducción
- 2 Motivación
- 3 Definición
 - Origen de la endogeneidad
 - Variable instrumental
 - Ejemplo
- 4 Estimación
 - Modelo simple
 - Modelo multivariado (m=k)
 - Modelo multivariado (m>k)
 - Aplicación matemática
- 6 Referencia

ESTIMACIÓN EN DOS ETAPAS: ENFOQUE MATRICIAL (SISTEMA SOBREIDENTIFICADO)

Cuando k < m un método alternativo de estimación es GMM, el cual minimiza la forma cuadrática de: $\frac{1}{N} \sum_{i=1}^{N} (z_i(y_i - x_i'\beta)) = 0$:

$$Q(\beta) = \left[\frac{1}{N} \sum_{i=1}^{N} (z_i(y_i - x_i'\beta))\right]' W_N \left[\frac{1}{N} \sum_{i=1}^{N} (z_i(y_i - x_i'\beta))\right]$$
$$= (Z'u)'W(Z'u)$$

- Introducción
- 2 Motivación
- 3 DEFINICIÓN
 - Origen de la endogeneidad
 - Variable instrumental
 - Ejemplo
- 4 Estimación
 - Modelo simple
 - Modelo multivariado (m=k)
 - Modelo multivariado (m>k)
 - Aplicación matemática
- 6 Referencia

Sea el siguiente proceso generador de datos:

$$Cops_{t} = \alpha + \beta X_{t} + \phi I_{t} + \epsilon_{t}$$

$$X_{t} = \psi + \gamma Cops_{t} + v_{t}$$
(1)

El proceso subyacente es el siguiente:

$$Cops_{t} = \frac{\alpha + \beta \psi}{1 - \beta \gamma} + \frac{\phi I_{t}}{1 - \beta \gamma} + \frac{\beta v_{t}}{1 - \beta \gamma} + \frac{\epsilon_{t}}{1 - \beta \gamma}$$

$$X_{t} = \frac{\psi + \gamma \alpha}{1 - \beta \gamma} + \frac{\gamma \phi}{1 - \beta \gamma} I_{t} + \frac{\gamma \epsilon_{t} + v_{t}}{1 - \beta \gamma}$$
(2)

Entonces,

Introducción

$$E[(Cops_t - E(Cops_t))(v_t - E(v_t))] = \frac{\beta \sigma_u^2}{1 - \beta \gamma}$$

la estimación de variables instrumentales requiere o implica los siguientes pasos:

$$E(Cops_t|I_t) = \frac{\alpha + \beta \psi}{1 - \beta \gamma} + \frac{\phi I_t}{1 - \beta \gamma}$$

Referencia

$$X_t = \widehat{\eta}_0 + \widehat{\eta}_1 E(\mathit{Cops}_t | I_t) + \widehat{\epsilon}_t$$

donde

Introducción

$$\widehat{\eta}_{0} = \frac{\sum (E(Cops_{t}|I_{t}) - E(Cops_{t}))(X_{t} - X)}{\sum (E(Cops_{t}|I_{t}) - E(Cops_{t}))^{2}}$$

$$\widehat{\eta}_{1} = \frac{\sum \frac{\phi I_{t}}{1 - \beta \gamma} \frac{\gamma \phi}{1 - \beta \gamma} I_{t}}{\sum \left(\frac{\phi I_{t}}{1 - \beta \gamma}\right)^{2}} \equiv \frac{\frac{\phi}{1 - \beta \gamma} \frac{\gamma \phi}{1 - \beta \gamma} \sum I_{t}^{2}}{\left(\frac{\phi}{1 - \beta \gamma}\right)^{2} \sum (I_{t})^{2}} \equiv \gamma$$

Por simplicidad $E(|I_t|) = 0$.

- 1 Introducción
- 2 Motivación
- 3 DEFINICIÓN
 - Origen de la endogeneidad
 - Variable instrumental
 - Ejemplo
- ESTIMACIÓN
 - Modelo simple
 - Modelo multivariado (m=k)
 - Modelo multivariado (m>k)
 - Aplicación matemática
- 6 Referencia

REFERENCIAS

- Referencia 1
- Referencia 2. colocar alguna referencia
- Referencia 3. colocar alguna referencia

• Agregar alguna nota

Referencia 3. colocar alguna referencia

REFERENCIAS

Referencia 1

ECONOMETRÍA BÁSICA

Capítulo 15: Variable Instrumental

José Valderrama & Freddy Rojas jtvalderrama@gmail.com & frojasca@gmail.com ▼ Universidad Católica Santo Toribio de Mogrovejo

Septiembre de 2021

