第十次作业

洪艺中 12335025

2024年5月20日

0.1 179 页习题 7

题目 1. 设 (\mathcal{M}, g) 和 $(\bar{\mathcal{M}}, \bar{g})$ 均为 Riemann 流形, 证明:

- (i) 若 φ : $\mathcal{M} \to \overline{\mathcal{M}}$ 为等距同胚, 则 φ 将 (\mathcal{M}, g) 的测地线映为 $(\overline{\mathcal{M}}, \overline{g})$ 的测地线;
- (ii) 若 $\varphi_1, \varphi_2 \colon \mathcal{M} \to \mathcal{M}$ 均为等距变换, (\mathcal{M}, g) 完备且连通,且存在一点 p 使得 $\varphi_1(p) = \varphi_2(p)$ 和 $(\varphi_{1*})_p = (\varphi_{2*})_p$,则 $\varphi_1 \equiv \varphi_2$.

解答.

- (i) 取 \mathcal{M} 上测地线 $\gamma(t)$ 附近的一组光滑变分 α : $[0,T] \times (-\varepsilon,\varepsilon) \to \mathcal{M}$, $(t,s) \mapsto \alpha(t,s)$, $\alpha(t,0) = \gamma(t)$, $\gamma(s)$ 的长度是最小值. 因为 φ 是等距, 所以 $\varphi \circ \alpha$ 保持所有曲线 $\alpha_s(t)$ 的长度, 因此 $\varphi \circ \alpha(t,0) = \varphi \circ \gamma(t)$ 也是这个变分的最小值. 因此根据 α 的任意性和第一变分公式, $\varphi \circ \gamma$ 也是测地线.
- (ii) 因为 (\mathcal{M}, g) 完备且连通,根据 Hopf-Rinow 定理,其在 p 点测地完备. 因为 φ_1, φ_2 都是等距同胚,所以其将测地线映为测地线. 因此 $\varphi_i(\exp_p v) = \exp_{\varphi_i(p)}((\varphi_{i*})_p v)$. 利用条件,任取 $v \in T_p \mathcal{M}$,有 $\varphi_1(\exp_p v) = \varphi_2(\exp_p v)$. 故 $\varphi_1 \equiv \varphi_2$.

0.2 179 页习题 8

题目 2. 设 (\mathcal{M},g) 为完备 Riemann 流形, $\gamma:[0,+\infty)\to\mathcal{M}, s\mapsto\gamma(s)$ 为测地线, 其中 s 为弧长参数. 如果 $s=\rho(\gamma(0),\gamma(s))$, 其中 ρ 是距离函数, 则称 γ 为从 $\gamma(0)$ 点出发的**射线**. 设 p 为非紧致完备 Riemann 流形 (\mathcal{M},g) 上任意一点, 证明: M 上存在从 p 出发的一条射线.

解答. 因为 \mathcal{M} 非紧, 所以 \mathcal{M} 直径不能有限. 因 \mathcal{M} 测地完备, 对每个 $n \in \mathbb{N}$, 存在 $v_n \in T_p \mathcal{M}$, $|v_n| = 1$, 且 $t \in [0, n]$ 时, $\exp_p tv_n$ 都是极小测地线. 因为 $T_p \mathcal{M}$ 中的单位球面 $S_p \mathcal{M}$ 是紧集, 所以 $\{v_n\}$ 有收敛的子列 (不妨仍记作 $\{v_n\}$) 收敛到 v. 对每个 $n \in \mathbb{N}$, 由完备性, $m \ge n$ 时都有 $\lim_{m \to \infty} \exp_p nv_m = \exp_p nv$. 所以 $\exp_p tv$ 可以定义在 $t \in [0, +\infty)$. 即存在射线.

0.3 192 页习题 1

题目 3. 证明: 由 (4.2.2) 式定义的诱导联络 $\tilde{\nabla}$ 满足 (4.2.3) 和 (4.2.4) 式.

解答. 因为 \mathcal{N} 是 \mathcal{M} 的嵌入子流形, 所以其也是正则子流形, 即存在 \mathcal{M} 上 p 附近的坐标图 $(\mathcal{U}, \psi; x^i)$ 使得 $x^{n+1} = \cdots = x^m = 0$. 那么沿 $f: \mathcal{N} \to \mathcal{M}$ 的向量场可以用这组坐标对应的基向量表示. 同时, \mathcal{N} 上的向量场 $X \in T_p \mathcal{N}$ 形为 $X = \sum_{k=1}^n a^k \partial_{x^k}$, 所以其可以自然地延拓成为 \mathcal{M} 上的光滑向量场 $\bar{X} = f_* X$ (取 $\partial_{x^{n+1}}$ 到 ∂_{x^m} 上的系数为 0). 根据定义, 此时

$$\widetilde{\nabla}_X W = \nabla_{\bar{X}} W,$$

故 (4. 2. 3) 和 (4. 2. 4) 式由 M 上联络的性质立得.

0.4 192 页习题 5

题目 4. 设 $\gamma:[a,b]\to\mathcal{M},\,s\mapsto\gamma(s)$ 是 Riemann 流形 (\mathcal{M},g) 的正规测地线. X,Y 为沿 γ 的 Jacobi 场. 证明:

- (i) 若 $X = f(s)\gamma'(s)$, 则 f(s) = as + b, a, b 为常数;
- (ii) 若在 γ 的两个不同点处 X 与 γ' 正交, 则 $\langle X, \gamma' \rangle = 0$;
- (iii) $\langle X, \nabla_{\gamma'} Y \rangle \langle \nabla_{\gamma'} X, Y \rangle = \text{const.}.$

解答.

(i) 因为 $\nabla_{\gamma'(s)}\gamma'(s) = 0$, 所以 Jacobi 方程变为

$$f''(s)\gamma'(s) = R(\gamma', f(s)\gamma')\gamma' = 0,$$

所以 f(s) = as + b.

- (ii) $\nabla_{\gamma'}\nabla_{\gamma'}\langle X, \gamma' \rangle = \langle \nabla_{\gamma'}\nabla_{\gamma'}X, \gamma' \rangle = 0$,记 $h(s) := \langle X(s), \gamma'(s) \rangle$,那么有两点 $h(s_0) = h(s_1) = 0$ 且 h''(s) = 0. 所以 $h(s) \equiv 0$.
- (iii) 对这个式子求导,

$$\begin{split} &\nabla_{\gamma'}(\langle X, \nabla_{\gamma'}Y \rangle - \langle \nabla_{\gamma'}X, Y \rangle) \\ &= \langle \nabla_{\gamma'}X, \nabla_{\gamma'}Y \rangle + \langle X, \nabla_{\gamma'}\nabla_{\gamma'}Y \rangle - \langle \nabla_{\gamma'}\nabla_{\gamma'}X, Y \rangle - \langle X, \nabla_{\gamma'}\nabla_{\gamma'}Y \rangle \\ &= 0. \end{split}$$

0.5 192 页习题 6

题目 5. 设 γ : $[0,l] \to (\mathcal{M},g)$ 为正规测地线, 证明: 若 N 为沿 γ 平行的单位向量场, 使 $\langle N(t_0), \gamma'(t_0) \rangle = 0$, V = f(t)N 为 γ 的端点保持固定的变分向量场, 则

$$\frac{\mathrm{d}^2 L}{\mathrm{d}s^2}(0) = -\int_0^l f(f^{\prime\prime} + f \mathbf{R}(\gamma^\prime, N, \gamma^\prime, N)) \, \mathrm{d}t.$$

解答. 代入第二变分公式,得到

$$\frac{\mathrm{d}^{2}L}{\mathrm{d}s^{2}}(0) = \int_{0}^{l} \left[\langle \nabla_{\gamma'}V, \nabla_{\gamma'}V \rangle - \mathrm{R}(V, \gamma', V, \gamma') \right] \mathrm{d}t$$

$$= \int_{0}^{l} \left[\gamma'(\langle V, \nabla_{\gamma'}V \rangle) - \langle V, \nabla_{\gamma'}\nabla_{\gamma'}V \rangle - \mathrm{R}(V, \gamma', V, \gamma') \right] \mathrm{d}t$$

$$= -\int_{0}^{l} \left[ff'' + f^{2}\mathrm{R}(N, \gamma', N, \gamma') \right] \mathrm{d}t$$