

В задаче требуется оценка погрешностей.

Теоретическое введение

Oбъемный nomoк жидкости Q, протекающей через трубу – объем жидкости протекающей через поперечное сечение трубы в единицу времени. Простейшая модель вытекания жидкости из шприца через тонкую иглу подразумевает пропорциональность потока Q жидкости, протекающего через иглу, высоте h водяного столба жидкости отсчитываемого от нижнего конца иглы:

$$Q = \alpha h,\tag{1}$$

 α – постоянная величина.

Задание

- 1. Закрепите в штативе шприц. Под шприц поставьте стакан. Измерьте зависимость объемного потока Q жидкости, вытекающей из иглы, от высоты h. Постройте график исследуемой зависимости таким образом, чтобы в область построения графика попала точка (0; 0). Определите угловой коэффициент зависимости α .
- 2. Исследованная зависимость может быть описана предложенной в начале условия моделью лишь с некоторой поправкой на введение эффективной длины водяного столба $h_{\text{эффект}} = h + \Delta h$. То есть, объемный поток жидкости пропорционален некоторой эффективной длине столба жидкости, отличающейся от реального значения на величину Δh :

$$Q = \alpha h_{\text{addekt}}, \tag{2}$$

Рис. 1. Шприц с иглой

Используя результаты измерений, проведённых в предыдущем опыте, определите величину Δh (численное значение и знак).

3. Потребность введения эффективной длины столба в частности связана с тем, что жидкость во время вытекания из иглы образует капли на конце иглы. Для того, чтобы этот эффект перестал иметь значение, погрузите нижний конец иглы в воду на малую глубину ≈ 1 мм. Повторите эксперимент по измерению объемного потока воды от высоты столба жидкости. Постройте график исследованной зависимости объемного потока Q от длины столба жидкости h. Можно ли утверждать, что погружение конца иглы в воду не повлияло на коэффициент пропорциональности α ? Можно ли считать, что введение поправки эффективной длины столба жидкости в такой конфигурации установки не требуется? Ответы подтвердите численными значениями, описывающими полученный график.

Оборудование. Шприц 50 мл (исследуемый), шприц 20 мл вспомогательный для пе-

релива воды, синяя сточенная игла 0.6x30 мм, линейка 30 см, секундомер, весы, стакан 0.25 л, штатив с лапкой, салфетка (для поддержания рабочего места в чистоте).

Примечание. В игле или рядом местом ее соединения с основным объемом шприца могут образовываться пузырьки воздуха, влияющие на величину потока. При обнаружении таких пузырьков вставьте поршень в шприц и создайте сильную струю в игле путем надавливания на поршень. Чтобы при вытаскивании поршня из шприца в иглу снова не попали пузыри воздуха, опустите иглу в воду.

Решение

Соберем установку, описанную в условии. Под стакан, в который будут падать капли, поместим весы. Это обеспечит более точное определение массы воды, вытекшей из шприца, по сравнению с измерениями при использовании шкалы шприца (погрешность измерения массы с помощью весов ≈ 0.03 г, погрешность измерения объёма по шкале шприца ≈ 0.5 мл). Будем наполнять шприц до отметок в $V=60,\ 50,\ 40,\dots$ мл и измерять время $t,\ 3a$ которое показания весов увеличатся на m=1.00 г. Расход воды можно рассчитать по формуле:

$$Q = \frac{m}{\rho t},\tag{3}$$

где $\rho=1.0$ г/см 3 – плотность воды. Высота от конца иголки до нулевого деления на шприце составит $h_0=5.20\pm0.05$ см. Полная высота шкалы шприца составляет $l=9.10\pm0.05$ см. Тогда высоту столба жидкости в каждом эксперименте легко рассчитать как:

$$h = h_0 + \frac{V - 0.5 \text{ M/J}}{60 \text{ M/J}} \cdot l. \tag{4}$$

Необходимость смещения значения объема на 0.5 мл связана с тем, что дно шприца имеет форму конуса, на котором умещается 0.5 мл воды ниже нулевой отметки шкалы (определяется экспериментально). Для каждой величины V измерим время t три раза, в вычислениях используем среднее арифметическое. Занесем данные в таблицу и построим график зависимости Q(h).

Проведем аналогичный эксперимент для варианта установки, в котором игла погружена в воду. Для каждой величины V измерим время t' три раза, в вычислениях используем среднее арифметическое. Данные также внесем в таблицу, график зависимости объемного расхода Q_1 от времени для удобства нанесем на одни те же оси с предыдущим графиком.

V, мл	h, cm	t_1, c	t_2 , c	t_3 , c	Q, мкл/с	t_{1}', c	t_2', c	t_3' , c	Q_1 , мкл/с
60	14.22	47.06	44.62	44.69	22.00	39.75	41.75	41.03	24.48
50	12.71	52.44	50.38	52.32	19.34	44.36	48.38	48.69	21.21
40	11.19	59.75	58.68	61.44	16.68	56.35	53.68	54.98	18.18
30	9.67	72.34	71.54	72.12	13.89	63.44	61.36	65.42	15.77
20	8.16	92.59	98.56	90.98	10.63	77.22	79.32	75.04	12.95
10	6.64	124.56	121.44	122.75	8.14	97.65	99.98	98.25	10.14

По графику можно утверждать, что полученные зависимости описываются линейными функциями с одинаковыми угловыми коэффициентами α , но с разными смещениями:

$$\alpha = 1.86 \pm 0.12 \text{ мкл/(c} \cdot \text{см}).$$

Так, график зависимости измеренной без погружения конца иглы в воду пересекает горизонтальную ось в значении $h_0=2.3\pm0.4$ см. Тем самым эффективная длина водяного столба меньше реального значения. То есть $\Delta h=-h_0=-2.3\pm0.4$ см.

График зависимости, измеренный при погружении иглы в воду, пересекает горизонтальную ось в меньшем значении: $h_1 = 1.2 \pm 0.4$ см, однако, все же отличном от нуля. То есть и для второго эксперимента необходимо вводить понятие эффективной длины водяного столба, чтобы применять описанную в теоретической справке модель к данной задаче.

