Frühjahr 25 Themennummer 2 Aufgabe 1 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

- a) Sei A eine Teilmenge von \mathbb{R} und sei $f:A\to\mathbb{R}$ eine Funktion. Geben Sie je eine Definition dafür an, dass f stetig auf A bzw. gleichmäßig stetig auf A ist.
- b) Gegeben sei die Funktion $g: \mathbb{R}^+ := \{x \in \mathbb{R} : x > 0\} \to \mathbb{R}, \ x \mapsto 1/x$. Zeigen Sie, dass g stetig auf \mathbb{R}^+ ist, indem Sie Ihre Definition aus a) verifizieren. Ist g gleichmäßig stetig auf \mathbb{R}^+ ? Begründen Sie Ihre Antwort.

Lösungsvorschlag:

- a) f heißt stetig in $x_0 \in A$, wenn für jede A-wertige Folge $(x_n)_{n \in \mathbb{N}} \subset A$ mit Grenzwert x_0 auch $(f(x_n))_{n \in \mathbb{N}}$ konvergiert und der Grenzwert $f(x_0)$ ist.
 - f heißt stetig, wenn f für alle $x_0 \in A$ stetig in x_0 ist.
 - f heißt gleichmäßig stetig, wenn für alle $\varepsilon > 0$ ein $\delta > 0$ existiert, mit $|x y| < \delta \implies |f(x) f(y)| < \varepsilon$ für alle $x, y \in A$.
 - (Alternativlösung: f heißt stetig in $x_0 \in A$, wenn für alle $\varepsilon > 0$ ein $\delta > 0$ mit $|x x_0| < \delta \implies |f(x) f(x_0)| < \varepsilon$ für alle $x \in A$, existiert.)
- b) Sei $x_0 \in \mathbb{R}^+$ und sei $(x_n)_{n \in \mathbb{N}} \subset \mathbb{R}^+$ eine Folge, die gegen x_0 konvergiert. Dann konvergiert auch $(1/x_n)_{n \in \mathbb{N}}$ und zwar gegen den Grenzwert $1/x_0$, also ist g stetig in x_0 für alle $x_0 \in \mathbb{R}^+$ und daher stetig. Der Vollständigkeit halber wiederholen wir den Beweis des Grenzwertsatzes. Weil $x_n \to x_0$ gilt, gibt es ein $N \in \mathbb{N}$ mit $x_n > x_0/2 > 0$ für $n \ge N$. Dann ist

$$\left| \frac{1}{x_n} - \frac{1}{x_0} \right| = \frac{|x_n - x_0|}{x_n x_0} < \frac{2|x_n - x_0|}{x_0^2} < \varepsilon$$

für alle $n \geq \hat{N}$, wobei $\hat{N} \in \mathbb{N}_{\geq N}$ so gewählt ist, dass $|x_n - x_0| < \frac{\varepsilon x_0^2}{2}$ für alle $n \geq \hat{N}$, was wegen $x_n \to x_0$ möglich ist.

(Alternativlösung: Abschätzung wie oben, für $x_0 \in \mathbb{R}^+$ und $\varepsilon > 0$ wähle $\delta = \min\{\frac{x_0}{2}, \frac{\varepsilon x_0^2}{2}\}.$)

g ist aber nicht gleichmäßig stetig, denn g ist unbeschränkt bei 0. Angenommen es gäbe zu $\varepsilon = 1 > 0$ ein $\delta > 0$ mit $|x - y| < \delta \implies |g(x) - g(y)| < \varepsilon$, dann finden wir ein $n \in \mathbb{N}$ mit $\delta > \frac{1}{n}$. Für alle $x \in (0, \frac{1}{n})$ gilt dann

$$|g(x) - g(1)| \le \left| g(x) - g\left(\frac{1}{n}\right) \right| + \sum_{j=1}^{n-1} \left| g\left(\frac{j}{n}\right) - g\left(\frac{j+1}{n}\right) \right| \le n\varepsilon,$$

also g(x) < 1 + n, damit wäre g beschränkt bei 0, es gilt aber $g(\frac{1}{k}) = k \to \infty$ für $k \to \infty$, wobei $(\frac{1}{k})_{k \in \mathbb{N}} \subset \mathbb{R}^+$ ist. Also kann g nicht gleichmäßig stetig sein.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$