Algebra Qualifying Exam (Old and New) January 22, 2005

Instructions: You are given 10 problems from which you are to do 8. Please indicate those 8 problems which you would like to be graded by circling the problem numbers on the problem sheet. You should have at least one problem from each of the five sets $\{1,2\}$, $\{3,4\}$, $\{5,6\}$, $\{7,8\}$, $\{9,10\}$ among your choice. **Note:** All rings in this exam are associative and with 1 and all integral domains are commutative.

 \mathbb{Z} and \mathbb{Q} are the sets of integers and rational numbers respectively.

- **1.** Let G be a finite group of order $5075 = 5^2 \cdot 7 \cdot 29$. Prove that G has a unique Sylow 29-subgroup. (Note that $5^2 \cdot 7 = 1 + 6 \cdot 29$).
- **2.** Let p be a prime integer and G be a subgroup of the symmetric group S_p . Assume that G acts transitively on the set $\{1, 2, \dots, p\}$. Let H be a non-trivial normal subgroup of G. Prove that H also acts transitively on the set $\{1, 2, \dots, p\}$.
- 3. Let R be a ring with identity and $M_n(R)$ be the ring of all $n \times n$ matrixes. Then $M_n(R)$ has a Jordan product $A \circ B = AB + BA$, where AB is the usual matrix multiplication. A Jordan homomorphism $\phi: M_n(R) \to M_n(R)$ is an abelian group homomorphism such that $\phi(A \circ B) = \phi(A) \circ \phi(B)$. Define $\phi(A) = A^t$ for all $A \in M_n(R)$, where A^t is the transpose of the matrix A. Show that ϕ is a Jordan homomorphism if R is a commutative ring. Is ϕ still a Jordan homomorphism when R is not commutative? If not, give an example and then modify the definition of ϕ to get a Jordan homomorphism involving the transpose operation and a ring anti-automorphism of R.
- **4.** Let R be an integral domain and $I \subseteq R$ be a proper ideal. Note that the subset $S = \{1 + a \mid a \in I\} \subseteq R$ is multiplicatively closed. It is known that the subset $S^{-1}R = \{\frac{r}{s} \mid r \in R, s \in S\}$ is a sub-ring of the field of fractions of R. Show that the subset $S^{-1}I = \{\frac{a}{s} \mid a \in I, s \in S\}$ is an ideal of $S^{-1}R$ and is contained in every maximal ideal of $S^{-1}R$.
- **5.** Let R be a PID and F be its field of fractions. Then F is an R-module with multiplication action. Show that if $R \subseteq M \subseteq F$ is an finitely generated R-submodule of F, then there is a $b \in R$ such that $M = R^{\frac{1}{b}}$.
- **6.** Let R be a ring (with identity) and M be a left R-module. Given a filtration $0 = M^0 \subset M^1 \subset \cdots \subset M^n = M$ of finite length of R-submodules, define $G = \{\phi \in \text{hom}_R(M,M) \mid (\phi 1)M^i \subseteq M^{i-1}, i = 1,\ldots,n\}$. Prove the following:
 - (a) G is a group under the composition of maps;
 - (b) G is a nilpotent group.

- (Hint: Using $\phi\psi \psi\phi = (\phi 1)(\psi 1) (\psi 1)(\phi 1)$ for any two Rmodule homomorphisms $\phi, \psi: M \to M$ to show that if $(\phi - 1)M^i \subseteq M^{i-k}$ and $(\psi - 1)M^i \subseteq M^{i-l}$, then $([\phi, \psi] - 1)M^i \subseteq M^{i-k-l}$.)

 7. Let F be a finite field of 2^n elements. Assume that F contains an element x
- satisfying $x^9 = 1$ and $x^3 \neq 1$. Prove that n is a multiple of 6.
- 8. Let $f(x) \in F[x]$ be a non-zero monic polynomial over a field F and E be a splitting field of f(x) over F. Assume that all zeros of f(x) in E are distinct and closed under multiplication. Prove that either f(x) = x, $f(x) = x^n - 1$, or $f(x) = x^n - x$ for some integer $n \ge 1$.
- **9.** Let V be a finite dimensional vector space over a field F and $f, g: V \to F$ be two linear functionals with $\ker(f) \subseteq \ker(g)$. Prove that there exists a scalar $c \in F$ such that g(v) = cf(v) for all $v \in V$.
- **10.** Let A and B be two $n \times n$ matrix over a field F. Prove that A and B are similar if and only if the two $2n \times 2n$ matrices $\begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}$ and $\begin{pmatrix} B & 0 \\ 0 & B \end{pmatrix}$ are similar.