Generate data The cell below generates data for the LDA model. Note, for simplicity, we are using N_d = N for all d. In []: def generate_data(D, N, K, W, eta, alpha): # sample K topics beta = sp_stats.dirichlet(eta).rvs(size=K) # size K x W theta = np.zeros((D, K)) # size D x K W = np.zeros((D, N, W)) z = np.zeros((D, N), dtype=int) for d in range(D): # cample decompost topic distribution	
<pre>theta = np.zeros((D, K)) # size D x K w = np.zeros((D, N, W)) z = np.zeros((D, N), dtype=int) for d in range(D):</pre>	
# sample document topic distribution	
<pre>theta_d = sp_stats.dirichlet(alpha).rvs(size=1) theta[d] = theta_d for n in range(N): # sample word to topic assignment z_nd = sp_stats.multinomial(n=1, p=theta[d, :]).rvs(size=1).argmax(axis=1)[0] # sample word</pre>	
<pre>w_nd = sp_stats.multinomial(n=1, p=beta[z_nd, :]).rvs(1) z[d, n] = z_nd w[d, n] = w_nd return w, z, theta, beta</pre>	
<pre>D_sim = 500 N_sim = 50 K_sim = 2 W_sim = 5 eta_sim = np.ones(W_sim) eta_sim[3] = 0.0001 # Expect word 3 to not appear in data eta_sim[1] = 3. # Expect word 1 to be most common in data</pre>	
alpha_sim = np.ones(K_sim) * 1.0 w0, z0, theta0, beta0 = generate_data(D_sim, N_sim, K_sim, w_sim, eta_sim, alpha_sim) w_cat = w0.argmax(axis=-1) # remove one hot encoding unique_z, counts_z = numpy.unique(z0[0, :], return_counts=True) unique_w, counts_w = numpy.unique(w_cat[0, :], return_counts=True) # Sanity checks for data generation	
print(f"Average z of each document should be close to theta of document. \n Theta of doc 0: {theta0[0]} \n Mean z of doc 0: {counts_z/N_sim}") print(f"Beta of topic 0: {beta0[0]}") print(f"Beta of topic 1: {beta0[1]}") print(f"Word to topic assignment, z, of document 0: {z0[0, 0:10]}") print(f"Observed words, w, of document 0: {w_cat[0, 0:10]}") print(f"Unique words and count of document 0: {[f'{u}: {c}' for u, c in zip(unique_w, counts_w)]}") Average z of each document should be close to theta of document	
Average z of each document should be close to theta of document. Theta of doc 0: [0.54132269 0.45867731] Mean z of doc 0: [0.5 0.5] Beta of topic 0: [0.11430351 0.69431184 0.08117848 0. 0.11020617] Beta of topic 1: [0.10644659 0.37798951 0.47896521 0. 0.03659869] Word to topic assignment, z, of document 0: [1 1 0 1 0 1 0 1 0 1] Observed words, w, of document 0: [1 2 4 1 1 1 1 1 2]	
Unique words and count of document 0: ['0: 9', '1: 27', '2: 11', '4: 3'] import torch import torch.distributions as t_dist def generate_data_torch(D, N, K, W, eta, alpha): """	
Torch implementation for generating data using the LDA model. Needed for sampling larger datasets. # sample K topics beta_dist = t_dist.Dirichlet(torch.from_numpy(eta)) beta = beta_dist.sample([K]) # size K x W # sample document topic distribution	
<pre>theta_dist = t_dist.Dirichlet(torch.from_numpy(alpha)) theta = theta_dist.sample([D]) # sample word to topic assignment z_dist = t_dist.OneHotCategorical(probs=theta) z = z_dist.sample([N]).reshape(D, N, K)</pre>	
<pre># sample word from selected topics beta_select = torch.einsum("kw, dnk -> dnw", beta, z) w_dist = t_dist.OneHotCategorical(probs=beta_select) w = w_dist.sample([1]) w = w.reshape(D, N, W)</pre>	
<pre>return w.numpy(), z.numpy(), theta.numpy() Helper functions def log_multivariate_beta_function(a, axis=None): return np.sum(sp_spec.gammaln(a)) - sp_spec.gammaln(np.sum(a, axis=axis))</pre>	
CAVI Implementation, ELBO and initialization [: def initialize_q(w, D, N, K, W):	
Random initialization. """ phi_init = np.random.random(size=(D, N, K)) phi_init = phi_init / np.sum(phi_init, axis=-1, keepdims=True) gamma_init = np.random.randint(1, 10, size=(D, K)) lmbda_init = np.random.randint(1, 10, size=(K, W)) return phi_init, gamma_init, lmbda_init	
<pre>def update_q_Z(w, gamma, lmbda): D, N, W = w.shape K, W = lmbda.shape E_log_theta = sp_spec.digamma(gamma) - sp_spec.digamma(np.sum(gamma, axis=1, keepdims=True)) # size D x K E_log_beta = sp_spec.digamma(lmbda) - sp_spec.digamma(np.sum(lmbda, axis=1, keepdims=True)) # size K x W log_rho = np.zeros((D, N, K)) w_label = w.argmax(axis=-1)</pre>	
<pre>for d in range(D): for n in range(N): E_log_beta_wdn = E_log_beta[:, int(w_label[d, n])] E_log_theta_d = E_log_theta[d] log_rho_n = E_log_theta_d + E_log_beta_wdn log_rho[d, n, :] = log_rho_n</pre>	
<pre>phi = np.exp(log_rho - sp_spec.logsumexp(log_rho, axis=-1, keepdims=True)) return phi def update_q_theta(phi, alpha): E_Z = phi D, N, K = phi.shape</pre>	
<pre>gamma = np.zeros((D, K)) for d in range(D): E_Z_d = E_Z[d] gamma[d] = alpha + np.sum(E_Z_d, axis=0) # sum over N return gamma def update_q_beta(w, phi, eta): E_Z = phi</pre>	
<pre>E_Z = phi D, N, W = w.shape K = phi.shape[-1] lmbda = np.zeros((K, W)) for k in range(K): lmbda[k, :] = eta for d in range(D): for k in range(D):</pre>	
<pre>for n in range(N):</pre>	
<pre>E_log_theta = sp_spec.digamma(gamma) - sp_spec.digamma(np.sum(gamma, axis=1, keepdims=True)) # size D x K E_log_beta = sp_spec.digamma(lmbda) - sp_spec.digamma(np.sum(lmbda, axis=1, keepdims=True)) # size K x W E_Z = phi # size D, N, K log_Beta_alpha = log_multivariate_beta_function(alpha) log_Beta_eta = log_multivariate_beta_function(eta) log_Beta_gamma = np.array([log_multivariate_beta_function(gamma[d, :]) for d in range(D)]) dg_gamma = sp_spec.digamma(gamma)</pre>	
<pre>log_Beta_lmbda = np.array([log_multivariate_beta_function(lmbda[k, :]) for k in range(K)]) dg_lmbda = sp_spec.digamma(lmbda) neg_CE_likelihood = np.einsum("dnk, kw, dnw", E_Z, E_log_beta, w) neg_CE_Z = np.einsum("dnk, dk -> ", E_Z, E_log_theta) neg_CE_theta = -D * log_Beta_alpha + np.einsum("k, dk ->", alpha - 1, E_log_theta) neg_CE_beta = -K * log_Beta_eta + np.einsum("w, kw ->", eta - 1, E_log_beta)</pre>	
H_Z = -np.einsum("dnk, dnk ->", E_Z, np.log(E_Z)) gamma_0 = np.sum(gamma, axis=1) dg_gamma0 = sp_spec.digamma(gamma_0) H_theta = np.sum(log_Beta_gamma + (gamma_0 - K) * dg_gamma0 - np.einsum("dk, dk -> d", gamma - 1, dg_gamma)) lmbda_0 = np.sum(lmbda, axis=1) dg_lmbda0 = sp_spec.digamma(lmbda_0) H_beta = np.sum(log_Beta_lmbda + (lmbda_0 - W) * dg_lmbda0 - np.einsum("kw, kw -> k", lmbda - 1, dg_lmbda))	
<pre>return neg_CE_likelihood + neg_CE_Z + neg_CE_theta + neg_CE_beta + H_Z + H_theta + H_beta def CAVI_algorithm(w, K, n_iter, eta, alpha): D, N, W = w.shape phi, gamma, lmbda = initialize_q(w, D, N, K, W) # Store output per iteration elbo = np.zeros(n_iter)</pre>	
<pre>###### CAVI updates ####### # q(Z) update phi = update_q_Z(w, gamma, lmbda) # q(theta) update gamma = update_q_theta(phi, alpha)</pre>	
<pre># q(beta) update lmbda = update_q_beta(w, phi, eta) # ELBO elbo[i] = calculate_elbo(w, phi, gamma, lmbda, eta, alpha)</pre>	
<pre># outputs phi_out[i] = phi gamma_out[i] = gamma lmbda_out[i] = lmbda return phi_out, gamma_out, lmbda_out, elbo n iter0 = 100</pre>	
<pre>n_iter0 = 100 K0 = K_sim W0 = W_sim eta_prior0 = np.ones(W0) alpha_prior0 = np.ones(K0) phi_out0, gamma_out0, lmbda_out0, elbo0 = CAVI_algorithm(w0, K0, n_iter0, eta_prior0, alpha_prior0) final_phi0 = phi_out0[-1]</pre>	
<pre>final_gamma0 = gamma_out0[-1] final_lmbda0 = lmbda_out0[-1] precision = 3 print(f" Recall label switching - compare E[theta] and true theta and check for label switching") print(f"Final E[theta] of doc 0 CAVI: {np.round(final_gamma0[0] / np.sum(final_gamma0[0], axis=0, keepdims=True), precision)}") print(f"True theta of doc 0: {np.round(theta0[0], precision)}")</pre>	
<pre>print(f" Recall label switching - e.g. E[beta_0] could be fit to true theta_1") print(f"Final E[beta] k=0: {np.round(final_lmbda0[0, :] / np.sum(final_lmbda0[0, :], axis=-1, keepdims=True), precision)}") print(f"Final E[beta] k=1: {np.round(final_lmbda0[1, :] / np.sum(final_lmbda0[1, :], axis=-1, keepdims=True), precision)}") print(f"True beta k=0: {np.round(beta0[0, :], precision)}") print(f"True beta k=1: {np.round(beta0[1, :], precision)}")</pre>	
Recall label switching - compare E[theta] and true theta and check for label switching Final E[theta] of doc 0 CAVI: [0.394 0.606] True theta of doc 0: [0.541 0.459] Recall label switching - e.g. E[beta_0] could be fit to true theta_1 Final E[beta] k=0: [0.117 0.249 0.623 0. 0.011] Final E[beta] k=1: [0.107 0.764 0.004 0. 0.126] True beta k=0: [0.114 0.694 0.081 0. 0.11]	
SVI Implementation Using the CAVI updates as a template, finish the code below.	
<pre>def update_q_Z_svi(batch, w, gamma, lmbda): """ SVI update for q(Z). """ D_batch, N_batch, _ = batch.shape K = gamma.shape[-1]</pre>	
<pre>E_log_theta = sp_spec.digamma(gamma) - sp_spec.digamma(np.sum(gamma, axis=1, keepdims=True)) E_log_beta = sp_spec.digamma(lmbda) - sp_spec.digamma(np.sum(lmbda, axis=1, keepdims=True)) log_rho = np.zeros((D_batch, N_batch, K)) w_label = batch.argmax(axis=-1) for d in range(D_batch):</pre>	
<pre>for n in range(N_batch): E_log_beta_wdn = E_log_beta[:, int(w_label[d, n])] E_log_theta_d = E_log_theta[d] log_rho_n = E_log_theta_d + E_log_beta_wdn log_rho[d, n, :] = log_rho_n</pre> phi_batch = np.exp(log_rho - sp_spec.logsumexp(log_rho, axis=-1, keepdims=True))	
<pre>return phi_batch def update_q_theta_svi(batch, phi, alpha): """ SVI update for q(theta). """ D_batch, _, K = phi.shape</pre>	
<pre>E_Z_batch = phi gamma_batch = np.zeros((D_batch, K)) for d in range(D_batch): E_Z_d = E_Z_batch[d] gamma_batch[d] = alpha + np.sum(E_Z_d, axis=0) # sum over N return gamma_batch</pre>	
<pre>def update_q_beta_svi(batch, w, phi, eta): """ SVI update for q(beta). """ D_batch, N_batch, W = batch.shape K = phi.shape[-1]</pre>	
<pre>lmbda_batch = np.zeros((K, W)) for k in range(K): lmbda_batch[k, :] = eta for d in range(D_batch): for n in range(N_batch):</pre>	
<pre>lmbda_batch[k, :] += phi[d, n, k] * batch[d, n] # Sum over d and n return lmbda_batch def SVI_algorithm(w, K, S, n_iter, eta, alpha): """ Stochastic Variational Inference (SVI) algorithm for LDA. """</pre>	
<pre>D, N, W = w.shape phi, gamma, lmbda = initialize_q(w, D, N, K, W) # Store output per iteration elbo = np.zeros(n_iter) phi_out = np.zeros((n_iter, D, N, K)) gamma_out = np.zeros((n_iter, D, K))</pre>	
<pre>lmbda_out = np.zeros((n_iter, K, W)) for i in range(n_iter): # Sample batch (subsample documents) batch_indices = np.random.choice(D, size=S, replace=False) batch_w = w[batch_indices]</pre>	
# SVI updates phi_batch = update_q_Z_svi(batch_w, w, gamma, lmbda) gamma_batch = update_q_theta_svi(batch_w, phi_batch, alpha) lmbda_batch = update_q_beta_svi(batch_w, w, phi_batch, eta) # Update global variables phi[batch_indices] = phi_batch	
<pre>gamma[batch_indices] = gamma_batch lmbda = lmbda_batch # ELBO elbo[i] = calculate_elbo(w, phi, gamma, lmbda, eta, alpha) # Store outputs</pre>	
<pre>phi_out[i] = phi gamma_out[i] = gamma lmbda_out[i] = lmbda return phi_out, gamma_out, lmbda_out, elbo CASE 1</pre>	
Tiny dataset np.random.seed(0) # Data simulation parameters	
D1 = 50 N1 = 50 K1 = 2 W1 = 5 eta_sim1 = np.ones(W1) alpha sim1 = np.ones(K1)	
alpha_sim1 = np.ones(K1)	
<pre>alpha_sim1 = np.ones(K1) w1, z1, theta1, beta1 = generate_data(D1, N1, K1, W1, eta_sim1, alpha_sim1) # Inference parameters n_iter_cavi1 = 100 n_iter_svi1 = 100 eta_prior1 = np.ones(W1) * 1. alpha_prior1 = np.ones(K1) * 1. S1 = 5 # batch size start_cavi1 = time.time() phi_out1_cavi, gamma_out1_cavi, lmbda_out1_cavi, elbo1_cavi = CAVI_algorithm(w1, K1, n_iter_cavi1, eta_prior1, alpha_prior1) end_cavi1 = time.time()</pre>	
alpha_sim1 = np.ones(K1) w1, z1, theta1, beta1 = generate_data(D1, N1, K1, W1, eta_sim1, alpha_sim1) # Inference parameters n_iter_cavi1 = 100 n_iter_svi1 = 100 eta_prior1 = np.ones(W1) * 1. alpha_prior1 = np.ones(K1) * 1. S1 = 5 # batch size start_cavi1 = time.time() phi_outl_cavi, gamma_outl_cavi, lmbda_outl_cavi, elbol_cavi = CAVI_algorithm(W1, K1, n_iter_cavi1, eta_prior1, alpha_prior1) end_cavi1 = time.time() start_svi1 = time.time() phi_outl_svi, gamma_outl_svi, lmbda_outl_svi, elbol_svi = SVI_algorithm(W1, K1, S1, n_iter_svi1, eta_prior1, alpha_prior1) end_svi1 = time.time() final_phil_cavi = phi_outl_cavi[-1] final_gamma1_cavi = gamma_outl_cavi[-1] final_lmbda1_cavi = lmbda_outl_cavi[-1] final_lmbda1_cavi = lmbda_outl_cavi[-1] final_phi_svi = phi_outl_svi[-1]	
<pre>alpha_sim1 = np.ones(K1) w1, z1, theta1, beta1 = generate_data(D1, N1, K1, W1, eta_sim1, alpha_sim1) # InTerence parameters n.iter_cavi1 = 100 n.iter_svi1 = 100 eta_prior1 = np.ones(W1) * 1. alpha_prior1 = np.ones(W1) * 1. sl = 5 # batch size start_cavi1 = time.time() phi_out1_cavi, gamma_out1_cavi, lmbda_out1_cavi, elbo1_cavi = CAVI_algorithm(w1, K1, n_iter_cavi1, eta_prior1, alpha_prior1) end_cavi1 = time.time() start_svi1 = time.time() phi_out1_svi, gamma_out1_svi, lmbda_out1_svi, elbo1_svi = SVI_algorithm(w1, K1, N1, N2, N2, N2, N3, N2, N3, N2, N3, N4, N4, N3, N4, N4, N4, N4, N4, N4, N4, N4, N4, N4</pre>	AVI alg.
alpha sint = np ones(x1) wi, 21, thetal, betal = generate_data(D1, N1, K1, M1, eta_sim1, alpha_sim1) # Inference parameterslter_cav11 = 180lter_sv11 = 200lter_sv11 = 180lter_sv11 = 200lter_sv11 = 180lter_sv11 = 200lter_sv11 = 200lter_sv11, leta_priori, alpha_priori)lter_cav11 = time.time()lter_sv11, leta_priori, alpha_priori)lter_sv11 = time.time()lter_sv11 = time.time()lter_sv1	AVI alg.
alpha_simi = np.ones(Ki) wi, zi, thetai, betai = generate_data(Di, Ni, Ki, Wi, eta_simi, alpha_simi) # Inference parameters (\text{\text	AVI alg.
ALDINO, JATE = NO. CORESTAND M.K., V.S., V.S	AVI alg.
styrm_and = np consent) at_All trieds, betal = querrate_dist(CL_NL_NL_ML_ML_eta_sint, dista_sint) * information parameters * information paramete	AVI alg.
siphs, vertical, betal = generate_data(s), ki, ki, wi, cha_sisi, alpha_sisi) # Powers parameters Liver_sisi = 100 Powers Liver_sisi = 100 Second Liv	AVI alg.
ships six's equipment of the process design of the process of the	AVI alg.
Sabigation = promoted	AVI alg.
And the content of th	AVI alg.
Supplied and recovering processing as a part of processing processing and process	AVI alg.
And the first proposed (in the content proposed content (in the content proposed content pr	AVI alg.
without it is in an extension of the control of the	AVI alg.
And in that is an engineering midit. Use Multiple of Language 1. **Colored processors** **Colored pr	AVI alg.
indicate in processing appearance support of the processing appearanc	AVI alg.
Account of the control of the contro	
Section 1. Control of the control of	
The control of the co	
Single-State Control of Control o	
A TABLE OF THE PARTY OF THE PAR	
Services of the control of the contr	
Section 1. The content of the conten	
Table Tabl	
Column C	
Set to the control of	
Set	
The control of the co	
Set of the content of	

Examine per iteration run time. Time SVI: 2.003345251083374

In []: **import** time

