Machine learning

Presented by : Dr. Hanaa Bayomi

REFERENCES

•T. Mitchell, Machine Learning, McGraw-Hill

• Peter Flach, Machine Learning. The Art and Science of Algorithms that Make Sense of Data.

• John D. Kelleher, Fundamental of Machine Learning for predictive Data Analytic.

Grading

Type	grades
3 Assignments	15
 Mid term Exam 	15
project	10
 Final exam 	60
Total	100

What is machine learning?

▶ Definition:

Machine = computer, computer program (in this course)

Learning = improving performance on a given task, based on experience / examples

> In other words

- instead of the programmer writing explicit rules for how to solve a given problem, the programmer instructs the computer how to learn from examples
- in many cases the computer program can even become better at the task than the programmer is!

INTRODUCTION

Traditional Programming

Machine Learning

EXAMPLES

Example 1 : Tic-Tac-Toe

How to program the computer to play tic-tac-toe?

- Option A: The programmer writes explicit rules, e.g. 'if the opponent has two in a row, and the third is free, stop it by placing your mark there', etc (lots of work, difficult, not at all scalable!)
- Option B: Go through the game tree, choose optimally (for non-trivial games, must be combined with some heuristics to restrict tree size)
- Option C: Let the computer try out various strategies by playing against itself and others, and noting which strategies lead to winning and which to losing (='machine learning')

Example 2 : face recognition

- Face recognition is hot (facebook, apple; security; . . .)
- Programmer writes rules: "If short dark hair, big nose, then it is Mikko" (impossible! how do we judge the size of the nose?!)
- The computer is shown many (image, name) example pairs, and the computer learns which features of the images are predictive (difficult, but not impossible)

Example 3: Prediction of search queries

- The programmer provides a standard dictionary (words and expressions change!)
- Previous search queries are used as examples!

An Online Guide To Dream Interpretation

www.dreammoods.com/ +1

20 Aug 2011 – We realize that your **dreams** are unique; no other individual **can** have your ... It provides you with insight into your own self and a **means** for ...

Dream Dictionary - Teeth Dreams - Common Dreams - Chase Dreams

Dream Moods A-Z Dream Dictionary

www.dreammoods.com/dreamdictionary/ +1

1 Jul 2011 - In analyzing your dreams, you can learn about your deep ...

Type Of Dreams - Dream Themes - Sex - Your Dream Symbol Interpretation

Show more results from dreammoods.com

Example 4: Ranking search results

- Various criteria for ranking results
- What do users click on after a given search? Search engines can learn what users are looking for by collecting queries and the resulting clicks.

nokia

Noin 186 000 000 tulosta (0,08 sekuntia)

Mukautettu >

Nokia Online Kauppa

Nokia.fi/kauppa Helppoa ja sujuvaa - osta puhelin ja lisälaitteet Nokian kaupasta. Ilmainen autonavigointi ja teline - Ilmaiset karttapalvelut - Lisälaitteet - Puhelimet

Nokia, Finland - Wikipedia, the free encyclopedia 2 - [Käännä tämä sivu]

Nokia is a town and a municipality on the banks of the Nokianvirta River (Kokemäenjoki) in the region of Pirkanmaa, some 15 kilometres (9 mi) west of ... en.wikipedia.org/wiki/Nokia,_Finland - Välimuistissa - Samankaltaisia

Nokia - Wikipedia, the free encyclopedia 🛱 - [Käännä tämä sivu]

Nokia Corporation OMX: NOK1V, NYSE: NOK, FWB: NOA3) is a Finnish ... en.wikipedia.org/wiki/Nokia - Välimuistissa - Samankaltaisia

Nokia 5700 XpressMusic - Wikipedia

Nokia 5700 XpressMusic on vuonna 2007 julkaistu nuorten musiikkipuhelin ... fi.wikipedia.org/wiki/Nokia_5700_XpressMusic - Välimuistissa - Samankaltaisia

Näytä lisää tuloksia kohteesta wikipedia.org

Nokia (nokia) on Twitter 12 - [Käännä tämä sivu]

News and updates from **Nokia**. The main tweeps at the channels are @jussipekka & @ JGallo02.

twitter.com/nokia - Välimuistissa - Samankaltaisia

Ovi Musiikki - porttisi musiikin maailmaan

Aloitussivu · Nokia Ovi Player · Ovi Musiikki Unlimited Nokia.com; Copyright ©2010 Nokia. Kaikki oikeudet pidätetään. music.ovi.com/fi/fi/pc · Välimuistissa

YouTube - Lex Nokia anti-ad 2A: "Perustuslaki" 🌣

tammikuu 2009 ... Urkintalaki.fi:n masinoima Lex Nokia -lakiehdotuksen vastainen mainos
 Perustuslaki".

www.youtube.com/watch?v=0tDhemyzB3k - Välimuistissa - Samankaltaisia

Example 5

- Self-driving cars:
 - Sensors (radars, cameras) superior to humans
 - How to make the computer react appropriately to the sensor data?

Google Cars Drive Themselves, in Traffic

Example 6

- Machine translation:
 - Traditional approach: Dictionary and explicit grammar
 - More recently, statistical machine translation based on example data is increasingly being used

Käännös (suomi > englanti)

Computer studies provide an excellent foundation for the work, wherever applicable, or to develop information technology.

Example 7

Prediction of friends in Facebook, or prediction of who you'd like to follow on Twitter.

Problem setup

One definition of machine learning: A computer program improves its performance on a given task with experience (i.e. examples, data).

1- Task

Task: What is the problem that the program is solving?

•Machine learning allows us to tackle tasks that are too difficult to solve with <u>fixed programs written and</u> <u>designed by human beings</u>.

• Machine learning is interesting because developing our understanding of machine learning entails <u>developing our understanding of the principles that underlie intelligence.</u>

1- Task (Cont.)

Some of the most common machine learning tasks include the following:

- **1- Classification**: In his type of task, the computer program is asked to specify which of k categories some input belongs to.
 - -Classification Algorithms attempt to map inputs into one of a set of classes (Colors, Good and Bad Credit Risks)
- **2- Regression :** In this type of task, the computer program is asked to predict a numerical value given some input.
 - -Regression Algorithms attempt to mapinputs into continuous output (Integers, Real Numbers, Vectors, etc.)

1- Task (Cont.)

Some of the most common machine learning tasks include the following:

3- Transcription: In this type of task, the machine learning system is <u>asked to</u> <u>observe a relatively unstructured representation of some kind of data and transcribe it into discrete, textual form.</u>

E.g.: optical character recognition (OCR), where the computer program is shown a photograph containing an image of text and is asked to return this text in the form of a sequence of characters.

4- Machine translation: In a machine translation task, the input already consists of a sequence of symbols in some language, and the computer program must convert this into a sequence of symbols in another language.

2- Experience

Experience: What is the data (examples) that the program is using to improve its performance?

- Experience is a dataset.
- •A dataset is a collection of many examples.
- An example is a collection of features that have been quantitatively measured from some object or event that we want the machine learning system to process.

3- performance level

Performance measure: How is the performance of the program (when solving the given task) evaluated?

In order to evaluate the abilities of a machine learning algorithm, we must design a quantitative measure of its performance. Usually this performance measure P is specific to the task T being carried out by the system.

- Accuracy: Accuracy is just the proportion of examples for which the model *produces the correct output*.
- Error Rate: the proportion of examples for which the model *produces an incorrect output*.

WHEN DO WE USE MACHINE LEARNING?

ML is used when:

- □• Human expertise does not exist (navigating on Mars)
- □ Humans can't explain their expertise (speech recognition)
- • Models must be customized (personalized medicine)
- □ Models are based on huge amounts of data (genomics)

WHEN DO WE USE MACHINE LEARNING?

A classic example of a task that requires machine learning: It is very hard to say what makes a 2

Slide credit: Geoffrey Hinton

Some more examples of tasks that are best solved by using a learning algorithm

☐ Recognizing patterns:
☐ Facial identities or facial expressions
☐ Handwritten or spoken words
☐ Medical images
☐ Generating patterns:
 Generating images or motion sequences
☐ Recognizing anomalies:
☐ Unusual credit card transactions
☐ Unusual patterns of sensor readings in a nuclear power plant
☐ Prediction:
 Future stock prices or currency exchange rates

Slide credit: Geoffrey Hinton

Supervised Learning

SUPERVISED LEARNING PARADIGM

Housing price prediction

Supervised Learning

"right answers" or "Labeled data" given

Regression:

Predict continuous valued output (price)

Lung Cancer (Malignant or benign)

Classification

Discrete valued output (0 or 1)

Lung Cancer (Malignant or benign)

UNSUPERVISED LEARNING

□ Unsupervised learning, on the other hand, allows us to approach problems with little or no idea what our results should look like. □ We can derive structure from data where we don't necessarily know the effect of the variables. ☐ We can derive this structure by clustering the data based on relationships among the variables in the data. □With unsupervised learning there is no feedback based on the prediction results, i.e., there is no teacher to correct you.

SUPERVISED

Unsupervised

Unsupervised learning is where you only have input data and <u>no corresponding output</u> <u>variables</u>.

Unsupervised Learning applications

[Source: Daphne Koller]

Unsupervised Learning applications

Individuals

Microarray data

- Have a group of individuals
- On each measure expression of a gene
- Run algorithm to cluster individuals into types of people

UNSUPERVISED

IP's costs for the Despurater Horson dissafer here \$6.510on. Photograph

Learning Types

Supervised Unsupervised Classification Clustering Dis **Dimensionality** Regression reduction Continuous

Machine Learning types

- Semi-supervised learning
 - mix of Supervised and Unsupervised learning
 - usually small part of data is labelled
- Reinforcement learning Leaning by interaction
 - Model learns from a series of actions by maximizing a reward function
 - The reward function can either be maximized by penalizing bad actions and/or rewarding good actions
 - Example training of self-driving car using feedback from the environment