

Programming and Problem Solving

Presented by Dr. Reda Zein Prepared By Eng. / Samer Hany

Sp24

PROGRAMMING & PROBLEM SOLVING

- Algorithms
- Flowcharts
- Pseudocode

Algorithms

ALGORITHM

A process or set of steps to be followed in calculations or other problem-solving operations, especially by a computer.

Algorithms .. their essential properties?

The four essential properties of an algorithm:

- i. Exact: Precisely and unambiguously described, so that there remains no uncertainty.
- ii. Terminate: The ultimate purpose of an algorithm is to solve a problem.
- iii. Effective: Must give the correct answer.
- iv. General: Must solve every instance of the problem. E.g., a program that computes the area of a rectangle, within the limits of the programming language and the machine.

Spring 24

Flowcharts

FLOWCHART

- A diagram that represents a process, system or computer algorithm.
- Example: Dealing with a non-functioning lamp

Flowcharts

BASIC ELEMENTS

Symbol	Purpose	Description
	Flow line	Indicates the flow of logic by connecting symbols.
	Terminal(Stop/Start)	Represents the start and the end of a flowchart.
	Input/Output	Used for input and output operation.
	Processing	Used for arithmetic operations and data-manipulations.
\Diamond	Decision	Used for decision making between two or more alternatives.
0	On-page Connector	Used to join different flowline
	Off-page Connector	Used to connect the flowchart portion on a different page.
	Predefined Process/Function	Represents a group of statements performing one processing task.

PSEUDOCODE

A description of the implementation of an algorithm in plain language that humans can easily understand.

ADVANTAGES OF PSEUDOCODE

- Improves the readability of any approach.
- Focuses on problem solving without worrying about the syntax of a specific programming language.
- Acts as a bridge between the program and the algorithm or flowchart.
- Works as a rough documentation of the program.

STEPS TO WRITE PSEUDOCODE

- Understand what the algorithm does.
- 2. Break the problem down into smaller parts.
- 3. Start by writing the purpose of the algorithm.
- 4. Write only one statement per line.
- 5. Use indentation to show hierarchy.
- 6. Capitalize key commands (e.g. IF, ELSE, etc.)
- 7. Use standard programming structures.
- 8. Keep it simple and concise.
- 9. Test your pseudocode logic before programming.

STATEMENTS

Assignment: ← or :=

• Comparison: =, ≠, <, >, ≤, ≥

• Arithmetic: +, −, ×, /, mod

• Logical: and, or

KEYWORDS

- START: This is the start of your pseudocode.
- INPUT: This is data retrieved from the user through typing or through an input device.
- READ / GET: This is input used when reading data from a data file.
- PRINT, DISPLAY, SHOW: This will show your output to a screen or the relevant output device.
- COMPUTE, CALCULATE, DETERMINE: This is used to calculate the result of an expression.
- **SET, INIT:** To initialize values
- INCREMENT: To increase the value of a variable

CONDITIONALS

- IF ELSE ENDIF
- Example:

```
INPUT time

IF time < 10 THEN

PRINT "Good Morning"

ELSE IF time < 20 THEN

PRINT "Good Day"

ELSE

PRINT "Good Evening"

ENDIF
```

ITERATION

- FOR ENDFOR
- Example:

FOR each character in "HELLO WORLD!" PRINT character

ENDFOR

ITERATION

- WHILE ENDWHILE
- Example:

```
SET i := 1

SET sum := 0

WHILE sum < 20

sum := sum + i^2

INCREMENT i

ENDWHILE

PRINT i

PRINT sum
```

FUNCTIONS

To define a function:

```
FUNCTION calculate_sum (a, b)
sum := a + b
RETURN sum
END FUNCTION
```

To call a function:

```
INPUT a, b
sum := calculate_sum (a, b)
PRINT sum
```

EXCEPTIONS (ERROR HANDLING)

• For error handling:

```
TRY
   INPUT birth_year
   age := this_year - birth_year
   PRINT age
CATCH
   PRINT "Please enter a valid date and try again"
END TRY
```

EXAMPLE

Dealing with a non-functioning lamp

// This program handles dealing with a non-functioning lamp

START

IF lamp not plugged in

plug in lamp

ELSE IF bulb burned out

replace bulb

ELSE

repair lamp

ENDIF

END

FURTHER READINGS

- https://www.programiz.com/article/flowchart-programming
- https://en.wikipedia.org/wiki/Flowchart
- https://medium.com/@ngunyimacharia/how-to-write-pseudocode-a-beginners-guide-29956242698
- https://www.wikihow.com/Write-Pseudocode