## Number Representation and Arithmetic Circuits

Chapter 5



#### Chapter Objectives

000

- Representation of numbers in computers
- Circuits used to perform arithmetic operations
- Performance issues in large circuit



#### Contents



- Number Representations in Digital Systems
- 2. Addition of Unsigned Numbers
- 3. Signed Numbers
- 4. Fast Adders
- 5. Multiplication
- 6. Other Number Representations
- 7. ASCII Character Code
- 8. Examples of Solved Problems



## NUMBER REPRESENTATIONS IN DIGITAL SYSTEMS



#### Number Representation



Unsigned integers

$$B = b_{n-1}b_{n-2} \cdots b_1b_0$$

$$V(B) = b_{n-1} \times 2^{n-1} + b_{n-2} \times 2^{n-2} + \dots + b_1 \times 2^1 + b_0 \times 2^0$$

$$= \sum_{i=0}^{n-1} b_i \times 2^i$$

Octal and Hexadecimal Representation

$$K = k_{n-1}k_{n-2} \cdots k_1 k_0$$

$$V(K) = \sum_{i=0}^{n-1} k_i \times r^i$$

### O Numbers in different systems O O

| Decimal  | Binary                                       | Octal    | Hexadecimal                           |
|----------|----------------------------------------------|----------|---------------------------------------|
| 00       | 000000                                       | 00       | 00                                    |
| 01       | 000001                                       | 01       | 01                                    |
| 02       | 000010                                       | 02       | 02                                    |
| 03       | 000011                                       | 03       | 03                                    |
| 04       | 000100                                       | 04       | 04                                    |
| 05       | 000101                                       | 05       | 05                                    |
| 06       | 000110                                       | 06       | 06                                    |
| 07       | 000111                                       | 07       | 07                                    |
| 08       | 001000                                       | 10       | 08                                    |
| 09       | 001001                                       | 11       | 09                                    |
| 10       | $oxed{001010} 001011$                        | 12<br>13 | $egin{pmatrix} 0A \ 0B \end{pmatrix}$ |
| 12       | 001011                                       | 14       | 0C                                    |
| 13       | 001101                                       | 15       | 0D                                    |
|          | 001110                                       | 16       | 0E                                    |
| 14<br>15 | $ $ $00\overline{1}\overline{1}\overline{1}$ | 17       | $0\overline{F}$                       |
| 16       | 010000                                       | 20       | 10                                    |
| 17       | 010001                                       | 21       | 11                                    |
| 18       | 010010                                       | 22       | 12                                    |

Figure 5.1. Numbers in different systems.



#### Conversion from decimal to binary

Convert  $(857)_{10}$ 

```
Remainder
                           1 LSB (Least Significant Bit)
857 \div 2 = 428
428 \div 2 = 214
214 \div 2 = 107
107 \div 2 = 53
 53 \div 2 = 26
 26 \div 2 = 13
 13 \div 2 = 6
  6 \div 2 = 3
  3 \div 2 = 1
                              MSB (Most Significant Bit)
   1 \div 2 = 0
```

Result is (1101011001)<sub>2</sub>



#### OOO Octal and Hexadecimal Numbers OOO

Conversion binary number to octal and hexadecimal number

$$\left(\underbrace{\frac{10}{2}}_{2}\underbrace{\frac{110}{6}}_{6}\underbrace{\frac{001}{1}}_{1}\underbrace{\frac{101}{5}}_{5}\underbrace{\frac{011}{3}}_{3}\underbrace{\frac{111}{7}}_{7}\underbrace{\frac{100}{4}}_{4}\underbrace{\frac{000}{0}}_{0}\underbrace{\frac{110}{6}}_{6}\right)_{2} = (26153.7406)_{8}$$

$$\left(\underbrace{\frac{10}{2}}_{2}\underbrace{\frac{1100}{C}}_{6}\underbrace{\frac{0110}{6}}_{6}\underbrace{\frac{1011}{B}}_{B}.\underbrace{\frac{1111}{F}}_{F}\underbrace{\frac{0000}{0}}_{0}\underbrace{\frac{0110}{6}}_{6}\right)_{2} = (2C6B.F06)_{16}$$

# ADDITION OF UNSIGNED NUMBERS



#### O Addition of Unsigned Numbers O O

(a) The four possible cases

| X | у | carry c | Sum s |
|---|---|---------|-------|
| 0 | 0 | 0       | 0     |
| 0 | 1 | 0       | 1     |
| 1 | 0 | 0       | 1     |
| 1 | 1 | 1       | 0     |

$$c = xy$$
  
 $s = x'y + xy'$   
 $= x \oplus y$   
Mod 2 addition

(b) Truth table

Figure 5.2. Half-adder.



#### Addition of Unsigned Numbers





(d) Graphical symbol



#### An example of addition



Figure 5.3. An example of addition.



#### Full Adder

| $c_i$ | $x_i$ | $y_i$ | $c_{i+1}$ | $s_i$ |
|-------|-------|-------|-----------|-------|
| 0     | 0     | 0     | 0         | 0     |
| 0     | 0     | 1     | 0         | 1     |
| 0     | 1     | 0     | 0         | 1     |
| 0     | 1     | 1     | 1         | 0     |
| 1     | 0     | 0     | 0         | 1     |
| 1     | 0     | 1     | 1         | 0     |
| 1     | 1     | 0     | 1         | 0     |
| 1     | 1     | 1     | 1         | 1     |

(a) Truth table



$$s_i = x_i \oplus y_i \oplus c_i$$



$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

(b) Karnaugh maps

Figure 5.4. Full-adder.

#### Full Adder





$$s_i = x_i \oplus y_i \oplus c_i$$



$$s_i = c'_i x'_i y_i + c'_i x_i y'_i + c_i x'_i y'_i + c_i x_i y_i$$

$$x_i \oplus y_i = x'_i y_i + x_i y'_i \qquad \text{X-OR}$$

$$(x_i \oplus y_i)' = x'_i y'_i + x_i y_i \qquad \text{X-NOR}$$

$$s_i = c'_i(x'_iy_i + x_iy'_i) + c_i(x'_iy'_i + x_iy_i)$$
  
=  $c'_i(x_i \oplus y_i) + c_i(x_i \oplus y_i)'$   
=  $x_i \oplus y_i \oplus c_i$ 

$$c_{i+1} = c'_i x_i y_i + c_i x'_i y_i + c_i x_i y'_i + c_i x_i y_i$$

$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$



#### Full Adder





(c) Circuit

Figure 5.4. Full-adder.



#### Decomposed Full-Adder









(b) Detailed diagram

Figure 5.5 A decomposed implementation of the full adder circuit.

### Implementation of $c_{i+1}$

$$c_{i+1} = x_i y_i + x_i c_i + y_i c_i$$

$$= x_i y_i + c_i (x_i + y_i)$$

$$c_{i+1} = x_i y_i + c_i (x_i \oplus y_i)$$

$$= x_i y_i + c_i x_i' y_i + c_i x_i y_i'$$

$$= x_i y_i + x_i c_i + y_i c_i$$

$$x_i y_i$$

$$c_i = x_i y_$$

 $c_i x_i' y_i$ 





### An example of addition

$$X = x_4 x_3 x_2 x_1 x_0 \qquad 0 \ 1 \ 1 \ 1 \qquad (15)_{10}$$

$$+ \quad Y = y_4 y_3 y_2 y_1 y_0 \qquad 0 \ 1 \ 0 \ 1 \qquad (10)_{10}$$

$$c_5 \ c_4 \ c_3 \ c_2 \ c_1 \qquad 0 \ 1 \ 1 \ 1 \ 0 \qquad (4) \ (3)^{(2)} \ (1)$$

$$S = S_4 \ S_3 \ S_2 \ S_1 \ S_0 \qquad 1 \ 1 \ 0 \ 0 \ 1 \qquad (25)_{10}$$

Figure 5.3. An example of addition.





#### Ripple Carry Adder



#### The delay depends on the size of numbers

FA: full adder

Total delay  $\approx n\Delta t$ ,  $\Delta t$  is one bit delay





#### Design Example



The Logic to calculate 3A using 8 bit adder



Figure 5.7. Circuit that multiplies an eight-bit unsigned number by 3

#### Design Example



#### Shift by 1 to the Left = 2A



## SIGNED NUMBERS



#### Signed Numbers





(a) Unsigned number



(b) Signed number



#### Signed Number



| $b_3b_2b_1b_0$                                                                                       | Sign and magnitude                           | 1's complement                                                                         | 2's complement                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0111<br>0110<br>0101<br>0100<br>0011<br>0010<br>0001<br>0000<br>1000<br>1011<br>1100<br>1101<br>1110 | +7 +6 +5 +4 +3 +2 +1 +0 =0 -1 -2 -3 -4 -5 -6 | +7<br>+6<br>+5<br>+4<br>+3<br>+2<br>+1<br>+0<br>-7<br>-6<br>-5<br>-4<br>-3<br>-2<br>-1 | +7 +6 Sign and magnitude +5: $-(2^{n-1}-1) \sim 2^{n-1} - 1$ +4 2's complement +3: $-2^{n-1} \sim 2^{n-1} - 1$ +2 +1 1's complement +0: $+0 = 0000$ -8 $-0 = 1111$ -7 -6 -5 -4 -3 -2 |
| 1111                                                                                                 | <del>-</del> 7                               | -0                                                                                     | <del>-</del> 1                                                                                                                                                                       |



#### Sign and Magnitude



N: number to be converted  $b_{n-1}$   $b_{n-2}$ 

n: the number of bits



When n= 4





#### 1's Complement



 $b_1'$ 

 $b_0'$ 

f N

$$1's complement of N = -N$$

1's complement of 
$$N = (2^n - 1) - N$$

When 
$$n=4$$
  $(2^4-1) = (1 \ 1 \ 1 \ 1)_2 (15)_{10}$   $- N = (0 \ 1 \ 0 \ 1)_2 (5)_{10}$ 

 $b'_{n-1}$   $b'_{n-2}$ 

$$(1 \ 0 \ 1 \ 0)_2 \ (-5)_{10}$$



#### 2's Complement



 $b_1'$ 

 $b_0'$ 

2's complement of N = -N

2's complement of 
$$N = 2^n - N = ((2^n - 1) - N) + 1$$
  
When  $n = 4$ 

$$= 1's complement of  $N + 1$ 

$$(2^4 - 1) = (1 \ 1 \ 1 \ 1)_2 \quad (15)_{10}$$

$$- N = (0 \ 1 \ 0 \ 1)_2 \quad (5)_{10}$$

$$+ \quad (0 \ 0 \ 0 \ 1)_2$$$$

 $b'_{n-1}$   $b'_{n-2}$ 

 $(1 \ 0 \ 1 \ 1)_2 \ (-5)_{10}$ 

#### 1's complement addition



$$r = 2 \qquad r : Base \\ N : number to be converted \\ n : the number of bits$$

$$-N = (2^4 - 1) - N \qquad M + N \le (2^4 - 1)$$

$$M + N \qquad positive \qquad -M + N = -(M - N) \qquad negative$$

$$\frac{(+5)}{(+7)} \qquad \frac{0 \ 1 \ 0 \ 1}{0 \ 1 \ 1 \ 1} \qquad \frac{(-5)}{(-3)} \qquad \frac{1 \ 0 \ 1 \ 0}{1 \ 1 \ 0 \ 0}$$

$$\frac{+(+2)}{(+7)} \qquad \frac{+0 \ 0 \ 1 \ 0}{0 \ 1 \ 1 \ 1} \qquad \frac{-M + N}{(-3)} \qquad \frac{\text{No carry }!}{=(2^4 - 1) - M + N}$$

 $= (2^4 - 1) - (M - N)$ 



### 1's complement addition



$$M-N$$
 positive  $(+5)$   $0 1 0 1$   $+(-2)$   $+ 1 1 0 1$   $1 0 0 1 0$   $1 0 0 1 1$  erated!

$$-M-N=-(M+N)$$
 negative

$$\frac{(-5)}{+(-2)} + \frac{1}{1} \cdot \frac{0}{1} \cdot \frac{1}{1}$$
Carry generated! 1 0 0 0

#### Carry generated!

$$M - N$$
  
=  $M + (2^4 - 1) - N$   
=  $M - N + (2^4 - 1)$ 

$$-M - N$$

$$= (2^{4} - 1) - M + (2^{4} - 1) - N$$

$$= (2^{4} - 1) - (M + N) + (2^{4} - 1)$$

Figure 5.9. Examples of 1's complement addition.



### 2's complement addition

Figure 5.10. Examples of 2's complement addition.



Figure 5.10. Examples of 2's complement addition.



#### 2's complement subtraction

Figure 5.11. Examples of 2's complement subtraction.

### 2's complement subtraction

$$\frac{(+5)}{-(+2)} - \frac{0101}{-0010} \longrightarrow \frac{0101}{10011} \xrightarrow{\frac{M}{+(2^4 - N)}} = \frac{M - N + 2^4}{10011}$$

$$\frac{(-5)}{-(+2)} - \frac{1011}{-0010} \longrightarrow \frac{1011}{11001} \xrightarrow{\frac{4 - M}{+(2^4 - N)}} = \frac{1011}{11001} \xrightarrow{\frac{4 - M}{+(2^4 - N)}} = \frac{1011}{11001}$$
ignore

## 4 bit 2's complement $: -8 \sim +7$



Figure 5.12. Graphical interpretation of four-bit 2's complement numbers.



#### Adder/Subtractor Unit



2's complement = 1's complement + 1
1's complement : bit inversion (NOT gate)

$$y_i \longrightarrow f = y_i \oplus 0 = y_i$$

$$y_i \longrightarrow f = y_i \oplus 1 = y_i'$$

o: addition

1: subtraction

$$\frac{y_i}{\overline{Add}/Sub} \longrightarrow f = y_i \oplus \overline{Add}/Sub = \begin{cases} y_i & if \overline{Add}/Sub = 0 \\ y_i' & if \overline{Add}/Sub = 1 \end{cases}$$



#### Adder/Subtractor Unit





Figure 5.13. Adder/subtractor unit.



#### Arithmetic Overflow



Range of 4 bit 2'c complement binary number

$$:-2^3 \sim 2^3 - 1 = -8 \sim +7$$
 Overflow =  $c_{n-1} \oplus c_n$ 

Overflow: Out of range

Figure 5.14. Examples of determination of overflow.

#### Performance Issues

- When buying a digital system, the buyer pays particular attention to the performance and the cost.
- Superior performance comes at a higher cost.
- In n-bit ripple carry adder, the delay is approximately  $n\Delta t$ , where  $\Delta t$  is a one bit delay.
- ▶ To speed up the computer performance, it is important to find faster circuits to perform addition.



## FAST ADDER



#### Ripple-Carry Adder





Figure 5.15. A ripple-carry adder based on expression 5.3.

#### Carry-Lookahead Adder

 $c_{i+1} = x_i y_i + x_i c_i + y_i c_i$  $c_{i+1} = x_i y_i + c_i (x_i + y_i)$ 

$$c_{i+1} = g_i + p_i c_i$$

 $c_{i+1} = g_i + p_i c_i$  Ripple Carry Adder

 $g_i = x_i y_i$ : generate function 1 x 2-input AND  $p_i = x_i + y_i$ : propagate function 1 x 2-input OR  $c_{i+1} = g_i + p_i(g_{i-1} + p_{i-1}c_{i-1})$  $c_{i+1} = g_i + p_i g_{i-1} + p_i p_{i-1} c_{i-1}$ 

$$c_{i+1} = g_i + p_i g_{i-1} + \\ p_i p_{i-1} g_{i-2} + \dots + p_i p_{i-1} \dots p_2 p_1 g_0 + p_i p_{i-1} \dots p_1 p_0 c_0$$



Figure 5.16. The first two stages of a carry-lookahead adder.

#### Carry-Lookahead Adder

$$c_{i+1} = g_i + p_i c_i$$
 
$$c_1 = g_0 + p_0 c_0$$
 
$$c_2 = g_1 + p_1 c_1$$
 Ripple carry 
$$c_2 = g_1 + p_1 g_0 + p_1 p_0 c_0$$
 Carry Lookahead 
$$c_3 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 c_0$$
 
$$c_{i+1} = g_i + p_i g_{i-1} + p_i p_{i-1} g_{i-2} + \dots + p_i p_{i-1} \dots p_2 p_1 g_0 + p_i p_{i-1} \dots p_1 p_0 c_0$$

- The complexity of an n-bit-carry-lookahead adder increases rapidly as n becomes larger.
- > To reduce the complexity, a hierarchical approach can be used.

#### hierarchical carry-lookahead adder

Carry-lookahead inside block and ripple carry between blocks

Total 12 gate delay to complete  $c_{32}$ 



The carry-out signals from four blocks:  $c_8$ ,  $c_{16}$ ,  $c_{24}$ ,  $c_{32}$ 

Figure 5.17. A hierarchical carry-lookahead adder with ripple-carry between blocks

#### Second-level Lookahead

$$g_i = x_i y_i$$
$$p_i = x_i + y_i$$

$$c_{8} = g_{7} + p_{7}g_{6} + p_{7}p_{6}g_{5} + p_{7}p_{6}p_{5}g_{4} + p_{7}p_{6}p_{5}p_{4}g_{3} + p_{7}p_{6}p_{5}p_{4}p_{3}g_{2} + p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}g_{1} + p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}p_{1}g_{0} + p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}p_{1}p_{0}c_{0}$$

$$P_{0} = p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}p_{1}p_{0}$$

$$G_{0} = g_{7} + p_{7}g_{6} + p_{7}p_{6}g_{5} + \dots + p_{7}p_{6}p_{5}p_{4}p_{3}p_{2}p_{1}g_{0}$$

$$c_{8} = G_{0} + P_{0}c_{0} \quad \text{(Block 0)}$$

$$c_{16} = G_{1} + P_{1}c_{8} \quad \text{(Block 1)} \quad \text{Ripple carry between blocks}$$

$$= G_{1} + P_{1}G_{0} + P_{1}P_{0}c_{0} \quad \text{Second-level lookahead}$$



Figure 5.18. A hierarchical carry-lookahead adder.



Figure 5.19. An alternative design for a carry-lookahead adder.

### O Technology Considerations

Standard SOP: two level implementation

$$c_1 = g_0 + p_0 c_0$$

$$c_2 = g_1 + p_1 g_0 + p_1 p_0 c_0$$

$$\vdots$$

$$c_8 = g_7 + p_7 g_6 + p_7 p_6 g_5 + p_7 p_6 p_5 g_4 + p_7 p_6 p_5 p_4 g_3 + p_7 p_6 p_5 p_4 p_3 g_2 + p_7 p_6 p_5 p_4 p_3 p_2 g_1 + p_7 p_6 p_5 p_4 p_3 p_2 p_1 g_0 + p_7 p_6 p_5 p_4 p_3 p_2 p_1 p_0 c_0$$

2-input AND, 3-input AND, 4-input AND, 5-input AND, 6-input AND, 7-input AND, 9-input AND, 9-input OR

Cost = 
$$9 + (2+3+4+5+6+7+8+9+9)=62$$

Suppose that the maximum fan-in of the gates is four inputs.

#### Multilevel implementation

$$c_8 = (g_7 + p_7 g_6 + p_7 p_6 g_5 + p_7 p_6 p_5 g_4) + ((p_7 p_6 p_5 p_4)(g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0) + (p_7 p_6 p_5 p_4)(p_3 p_2 p_1 p_0)c_0$$

3 x 2-input AND, 3 x 3-input AND, 5 x 4-input AND, 2 x 3-input OR, 2 x 4-input OR

Cost =15 + (2x3+3x3+5x4+2x3+2x4)=64

## O O O MULTIPLICATION



#### Multiplication



```
n \ bit + n \ bit = n + 1 \ bit
n \ bit \times n \ bit = 2n \ bit
```

| Multiplicand M<br>Multiplier Q | (14)<br>(11) | 1 1 1 0<br>x 1 0 1 1                                            | M          | $m_3 m_2 m_1 m_0$                 |
|--------------------------------|--------------|-----------------------------------------------------------------|------------|-----------------------------------|
|                                |              | $ \begin{array}{c} 1 \ 1 \ 1 \ 0 \\ 0 \ 0 \ 0 \ 0 \end{array} $ | $\times$ Q | $\times q_3 q_2 q_1 q_0$          |
| Product P                      | (154)        | $\frac{1110}{10011010}$                                         | P          | $p_7 p_6 p_5 p_4 p_3 p_2 p_1 p_0$ |

(a) Multiplication by hand

Figure 5.31. Multiplication of unsigned numbers.



#### Multiplication



```
      Multiplicand M
      (11)
      1110

      Multiplier Q
      (14)
      x 1011

      Partial product 0
      1110

      Partial product 1
      10101

      Partial product 2
      01010

      Partial product 2
      01010

      Product P
      (154)
      1001101
```

(b) Multiplication for implementation in hardware



#### Multiplication



```
PP0 = m_3 q_0 \quad m_2 q_0 \quad m_1 q_0 \quad m_0 q_0
PP0:
                     pp0_3 pp0_2 pp0_1 pp0_0
           + m_3 q_1 m_2 q_1 m_1 q_1 m_0 q_1
                pp1_4 pp1_3 pp1_2 pp1_1 pp1_0 p_0
PP1:
PP1:
                  0 pp1_4 pp1_3 pp1_2 pp1_1
                m_3q_2 m_2q_2 m_1q_2 m_0q_2
                 pp2_4 pp2_3 pp2_2 pp2_1 pp2_0
PP2:
PP2:
                  0 pp2_4 pp2_3 pp2_2 pp2_1
                m_3q_3 m_2q_3 m_1q_3 m_0q_3
PP3:
            c_{out} pp3_4 pp3_3 pp3_2 pp3_1 pp3_0
  P:
              p_7 p_6 p_5 p_4 p_3 p_2
```

$$pp0_0 = pp1_0 = p_0$$
  
 $pp1_1 = pp2_0 = p_1$ 

$$pp2_1 = pp3_0 = p_2$$

#### 4 x 4 multiplier circuit



(a) Structure of the circuit

Figure 5.32. A 4 x 4 multiplier circuit.

#### 4 x 4 multiplier circuit



Module for PP1



Figure 5.32. A 4 x 4 multiplier circuit.

#### oo 4 x 4 multiplier circuit





Figure 5.32. A 4 x 4 multiplier circuit.

Module for PP2 and P

#### Multiplication of signed numbers

$$\begin{array}{c} 0 & 1 & 1 & 1 & 0 \\ x & 0 & 1 & 0 & 1 & 1 \\ \hline & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ & + & 0 & 0 & 1 & 1 & 1 & 0 \\ \hline & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ & + & 0 & 0 & 1 & 0 & 1 & 0 \\ & + & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ & + & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ & + & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ \end{array}$$

(a) Positive multiplicand

Figure 5.33. Multiplication of signed numbers.

#### Multiplication of signed numbers



$$(-14)$$
 (+11)

Partial product 0

Partial product 1

Partial product 2

Partial product 3

Product P

$$(-154)$$



(b) Negative multiplicand

Figure 5.33. Multiplication of signed numbers.

# OOO OTHER NUMBER REPRESENTATIONS

#### **Fixed-Point Numbers**

$$B = b_{n-1}b_{n-2}\cdots b_1b_0 \cdot b_{-1}b_{-2}\cdots b_{-k}$$

$$V(B) = \sum_{i=-k}^{n-1} b_i \times 2^i$$

The position of radix point is assumed; hence the name fixed-point number.

If the radix point is not shown, then it is assumed to be to the right of the least-significant digit, which means that the number is an integer.

#### 00

#### Fixed-Point Numbers





Range:  $0 \sim 2^n - 1$ 

(a) Unsigned number



Range:  $-2^{n-1} \sim 2^{n-1} - 1$ 

(b) Signed number

#### Floating-Point Numbers



Using excess-127 is convenient for adding and subtracting floating-point number



Figure 5.34. IEEE Standard floating-point formats.

#### OOO Floating-Point Numbers OOO

- Single-Precision Floating-Point Format
  - ▶ Exponent = E 127
    - ▶ Range: 0~255, 0: real "0", 255: "∞"
  - $Value = \pm 1.M \times 2^{E-127}$
  - The exponent range of  $2^{-126}$  to  $2^{127}$  corresponds to about  $10^{\pm 38}$
- Double-Precision Floating-Point Format
  - ▶ Exponent = E 1023
  - $Value = \pm 1.M \times 2^{E-1023}$
  - The exponent range of  $2^{-1022}$  to  $2^{1023}$  corresponds to about  $10^{\pm 308}$

#### Floating-Point Numbers 000

- Single-Precision Floating-Point Format
  - $Value = +1.M \times 2^{E-127}$

$$(17.625)_{10} = (10001.101)_2$$

$$10001.101 = 1.0001101 \times 2^4$$

$$E = 4 + 127 = 10000011 = (131)_{10}$$



#### Floating-Point Numbers 000

- Single-Precision Floating-Point Format
  - $Value = +1.M \times 2^{E-127}$
  - ▶ Exponent = E 127
  - ▶ Range of Exponent:  $-2^7 \sim 2^7 1 = -128 \sim 127$
  - Range of E: Exponent + 127 =  $-1 \sim 254$  =  $0 \sim 255$
  - $(-1)_{10} = (111111111)_2 = (255)_{10}$

#### Binary-Coded-Decimal Representation

|                   | Decimal digit | BCD code |                                   |
|-------------------|---------------|----------|-----------------------------------|
|                   | 0             | 0000     | $(13)_{10} = (1101)_2 = (D)_{16}$ |
|                   | 1             | 0001     |                                   |
|                   | 2             | 0010     | $=(0001)_2(0011)_2$               |
|                   | 3             | 0011     |                                   |
|                   | 4             | 0100     |                                   |
|                   | 5             | 0101     | <u>;</u> !                        |
| Don't care term   | 6             | 0110     |                                   |
| 1010, 1011, 1100, | 7             | 0111     |                                   |
| 1101, 1110, 1111  | 8             | 1000     |                                   |
|                   | 9             | 1001     | $(0001)_2 (0011)_2$               |

Table 5.3. Binary-coded decimal digits.

#### Addition of BCD digits



Figure 5.35. Addition of BCD digits.



#### 00

#### Detect if sum > 9

00

- (1) If carry out of first 4-bit adder is occurred, i.e.  $c_4=1$
- (2) If sum of first 4-bit adder Z > 1,  $z_3 z_2 z_1 z_0 > 1001$



$$c_{out} = c_4 + z_3 z_2 + z_3 z_1$$



Figure 5.39. Circuit for a one-digit BCD adder.



#### **Gray Code**



Table 1-6 Gray Code

| Gray<br>code | Decimal equivalent |
|--------------|--------------------|
| -            |                    |
| 0000         | 0                  |
| 0001         | 1                  |
| 0011         | 2                  |
| 0010         | 3                  |
| 0110         | 4                  |
| 0111         | 5                  |
| 0101         | 6                  |
| 0100         | 7                  |
| 1100         | 8                  |
| 1101         | 9                  |
| 1111         | 10                 |
| 1110         | 11                 |
| 1010         | 12                 |
| 1011         | 13                 |
| 1001         | 14                 |
| 1000         | 15                 |

Successive Gray code has 1 bit difference only

#### O Generation of Gray Code



| n=1 | n=2 |
|-----|-----|
| 0   | 00  |
| 1   | 01  |
|     | 11  |
|     | 10← |

RBC (Reflected Binary Code)





00

Property of Gray Code





**Binary Counter** 

## Property of Gray Code



## ASCII CHARACTER CODE

| -                              | Bit<br>positions                                                                         | Bit positions 654                                                     |                        |       |                                  |              |                                                                                                                                         |               |              |  |
|--------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------|-------|----------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|--|
|                                | 3210                                                                                     | 000                                                                   | 001                    | 010   | 011                              | 100          | 101                                                                                                                                     | 110           | 111          |  |
| -                              | 0000                                                                                     | NUL                                                                   | DLE                    | SPAC  | E 0                              | @            | P                                                                                                                                       |               | p            |  |
| 128 characters<br>English only | 0001                                                                                     | $\mathbf{SOH}$                                                        | DC1                    | !     | 1                                | $\mathbf{A}$ | $\mathbf{Q}$                                                                                                                            | $\mathbf{a}$  | $\mathbf{q}$ |  |
|                                | 0010                                                                                     | $\mathbf{S}\mathbf{T}\mathbf{X}$                                      | DC2                    | "     | <b>2</b>                         | $\mathbf{B}$ | $\mathbf{R}$                                                                                                                            | b             | r            |  |
|                                | 0011                                                                                     | $\mathbf{E}\mathbf{T}\mathbf{X}$                                      | DC3                    | #     | 3                                | $\mathbf{C}$ | $\mathbf{s}$                                                                                                                            | $\mathbf{c}$  | s            |  |
|                                | 0100                                                                                     | EOT                                                                   | DC4                    | \$    | 4                                | D            | ${f T}$                                                                                                                                 | d             | t            |  |
|                                | 0101                                                                                     | ENQ                                                                   | NAK                    | %     | 5                                | ${f E}$      | $\mathbf{U}$                                                                                                                            | e             | u            |  |
|                                | 0110                                                                                     | $\mathbf{ACK}$                                                        | SYN                    | &     | 6                                | $\mathbf{F}$ | V                                                                                                                                       | f             | $\mathbf{v}$ |  |
|                                | 0111                                                                                     | $\operatorname{BEL}$                                                  | ETB                    | ,     | 7                                | $\mathbf{G}$ | W                                                                                                                                       | g             | w            |  |
|                                | 1000                                                                                     | $\mathbf{BS}$                                                         | CAN                    | (     | 8                                | $\mathbf{H}$ | $\mathbf{X}$                                                                                                                            | $\mathbf{h}$  | $\mathbf{x}$ |  |
|                                | 1001                                                                                     | $\mathbf{HT}$                                                         | $\mathbf{E}\mathbf{M}$ | )     | 9                                | Ι            | $\mathbf{Y}$                                                                                                                            | i             | y            |  |
|                                | 1010                                                                                     | LF                                                                    | SUB                    | *     | :                                | J            | ${f z}$                                                                                                                                 | j             | $\mathbf{z}$ |  |
|                                | 1011                                                                                     | VT                                                                    | $\mathbf{ESC}$         | +     | ;                                | $\mathbf{K}$ | [                                                                                                                                       | $\mathbf{k}$  | {            |  |
|                                | 1100                                                                                     | FF                                                                    | FS                     | ,     | <                                | ${f L}$      | \                                                                                                                                       | 1             |              |  |
|                                | 1101                                                                                     | $\mathbf{C}\mathbf{R}$                                                | $\mathbf{G}\mathbf{S}$ | -     | _                                | $\mathbf{M}$ | ]                                                                                                                                       | $\mathbf{m}$  | }            |  |
|                                | 1110                                                                                     | so                                                                    | $\mathbf{RS}$          | •     | >                                | N            | ^                                                                                                                                       | $\mathbf{n}$  | ~            |  |
| _                              | 1111                                                                                     | SI                                                                    | US                     | /     | ?                                | 0            |                                                                                                                                         | 0             | DEL          |  |
|                                | NUL                                                                                      | Null/Idle                                                             |                        | S     | SI                               |              | Shift i                                                                                                                                 | in            |              |  |
|                                | SOH                                                                                      | Start of header<br>Start of text                                      |                        | I     | $rac{	ext{DLE}}{	ext{DC1-DC4}}$ |              | Data link escape Device control Negative acknowledgement Synchronous idle End of transmitted block Cancel (error in data) End of medium |               |              |  |
|                                | STX                                                                                      |                                                                       |                        | I     |                                  |              |                                                                                                                                         |               |              |  |
|                                | $\mathbf{E}\mathbf{T}\mathbf{X}$                                                         | End of te                                                             | End of text NAK        |       |                                  |              |                                                                                                                                         |               |              |  |
|                                | EOT                                                                                      | End of transmission Enquiry Acknowledgement Audible signal Back space |                        | ion S | SYN<br>ETB<br>CAN<br>EM<br>SUB   |              |                                                                                                                                         |               |              |  |
|                                | $\mathbf{E}\mathbf{N}\mathbf{Q}$                                                         |                                                                       |                        |       |                                  |              |                                                                                                                                         |               |              |  |
|                                | $\mathbf{ACQ}_{\mathbf{q}}$                                                              |                                                                       |                        | t (   |                                  |              |                                                                                                                                         |               |              |  |
|                                | $\mathbf{BEL}$                                                                           |                                                                       |                        | I     |                                  |              |                                                                                                                                         |               |              |  |
|                                | $\mathbf{BS}$                                                                            |                                                                       |                        |       |                                  |              | Special sequence                                                                                                                        |               |              |  |
|                                | HT                                                                                       | Horizontal tab                                                        |                        |       | ESC                              |              | Escape                                                                                                                                  |               |              |  |
|                                | ${f LF}$                                                                                 | Line feed                                                             |                        |       | FS                               |              | File separator                                                                                                                          |               |              |  |
|                                | VT                                                                                       | Vertical tab<br>Form feed<br>Carriage return                          |                        |       | GS<br>RS<br>US                   |              | Group separator                                                                                                                         |               |              |  |
|                                | $\mathbf{FF}$                                                                            |                                                                       |                        |       |                                  |              | Record separator                                                                                                                        |               |              |  |
|                                | $\mathbf{C}\mathbf{R}$                                                                   |                                                                       |                        |       |                                  |              | Unit separator                                                                                                                          |               |              |  |
|                                | SO                                                                                       | Shift out                                                             |                        |       | DEL                              |              |                                                                                                                                         | m Delete/Idle |              |  |
|                                | Bit positions of code format = $\begin{bmatrix} 6 & 5 & 4 & 3 & 2 & 1 & 0 \end{bmatrix}$ |                                                                       |                        |       |                                  |              |                                                                                                                                         |               |              |  |

Table 5.4. The seven-bit ASCII code.

## Parity



Error-Detecting Code (parity checker)

$$b_6b_5b_4b_3b_2b_1b_0$$
  
ASCII A = 1 0 0 0 0 0 1  
ASCII T = 1 0 1 0 1 0 0





Even Parity

$$P = b_6 \oplus b_5 \oplus b_4 \oplus b_3 \oplus b_2 \oplus b_1 \oplus b_0$$

$$\bigcup$$

$$C = P \oplus b_6 \oplus b_5 \oplus b_4 \oplus b_3 \oplus b_2 \oplus b_1 \oplus b_0$$

## Parity Checker



> Even Parity

Case of Character 'A'

$$P = b_6 \oplus b_5 \oplus b_4 \oplus b_3 \oplus b_2 \oplus b_1 \oplus b_0$$
$$= 1 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 1 = 0$$

No Error

$$C = 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 0 \oplus 1 = 0$$

Error occurred at  $b_4$ 

$$C = 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 = 1$$

## O Binary Code for Text

- 000
- ASCII (American Standard Code for Information Interchange)
  - English only
  - How can we represent the other languages such as Hangeul, Chinese character, etc?
- Uni-Code
  - Unicode Consortium
  - UTF (Unicode Transformation Format): UTF-8, UTF-16, UTF-32
  - UCS (Universal Coded Character Sets): UCS-2 (16 bit), UCS-4
     (32 bit)
- EBCDIC (Extended Binary Coded Decimal Interchange Code)
  - eight-bit character encoding used mainly on IBM mainframe and IBM midrange computer operating systems

# EXAMPLES OF SOLVED PROBLEMS

## Example 5.7



#### Conversion the decimal number into a hexadecimal number

Convert (14959)<sub>10</sub>

|              |     | Remainder | Hex digit |     |
|--------------|-----|-----------|-----------|-----|
| 14959 ÷ 16 = | 934 | 15        | F         | LSB |
| 934 ÷ 16 =   | 58  | 6         | 6         |     |
| 58 ÷ 16 =    | 3   | 10        | Α         |     |
| 3 ÷ 16 =     | 0   | 3         | 3         | MSB |

Result is (3A6F)<sub>16</sub>

Figure 5.40. Conversion from decimal to hexadecimal.

## Example 5.8





Figure 5.41. Conversion of fractions from decimal to binary.

## Example 5.9



Convert (214.45)<sub>10</sub>

$$\frac{214}{2} = 107 + \frac{0}{2} \qquad 0 \text{ LSB}$$

$$\frac{107}{2} = 53 + \frac{1}{2} \qquad 1$$

$$\frac{53}{2} = 26 + \frac{1}{2} \qquad 1$$

$$\frac{26}{2} = 13 + \frac{0}{2} \qquad 0$$

$$\frac{13}{2} = 6 + \frac{1}{2} \qquad 1$$

$$\frac{6}{2} = 3 + \frac{0}{2} \qquad 0$$

$$\frac{3}{2} = 1 + \frac{1}{2} \qquad 1$$

$$\frac{1}{2} = 0 + \frac{1}{2} \qquad 1 \text{ MSB}$$

Integer part: successive division by 2

 $0.45 \times 2 = 0.90$  0 MSB  $0.90 \times 2 = 1.80$   $0.80 \times 2 = 1.60$   $0.60 \times 2 = 1.20$   $0.20 \times 2 = 0.40$   $0.40 \times 2 = 0.80$  $0.80 \times 2 = 1.60$  1 LSB

 $(214.45)_{10} = (11010110.0111001...)_2$ 

fractional part: successive multiplication by 2

Figure 5.42. Conversion of fixed point numbers from decimal to binary.

## Example 5.10





Figure 5.43. A comparator circuit.

$$X = x_3 x_2 x_1 x_0$$
$$Y = y_3 y_2 y_1 y_0$$

$$X = x_3 x_2 x_1 x_0$$

$$-Y = y_3' y_2' y_1' y_0'$$

$$+1$$

$$c_4S = c_4s_3s_2s_1s_0$$

$$S = s_3 s_2 s_1 s_0$$
$$V = c_4 \oplus c_3$$

$$N = s_3$$

$$Z = (s_3 + s_2 + s_1 + s_0)'$$
$$= \begin{cases} 1 & \text{if } X - Y = 0 \\ 0 & \text{otherwise} \end{cases}$$

## Example 5.10



$$Z = \begin{cases} 1 & if \ X = Y \\ 0 & if \ X \neq Y \end{cases}$$

$$N = \begin{cases} 1 & if \ X < Y \\ 0 & if \ X \geq Y \end{cases}$$

$$P = N'Z' = \begin{cases} 1 & if \ X > Y \\ 0 & if \ X \leq Y \end{cases}$$

## Summary

- ▶ The circuit, which implement the addition of two bits, is called a half adder.
- A full adder generates sum and carry out by using the carry in bit as well as two input bits.
- An n-bit ripple carry adder can be easily implemented by connecting full adders.
- The delay of an n-bit ripple carry adder depends on the size of the numbers, that is,  $Delay \approx n\Delta t$ ,  $\Delta t$  is the one bit gate delay.
- Subtraction can be carried out by adder and the complement.

## Summary



- Arithmetic overflow can be detected by carry out bits.
- To improve the performance of an ripple carry adder, a carry-lookahead adder can be used as a fast adder.
- Multiplication can be implemented by adder, shift operation and memory.
- Hardware multiplier accelerates the speed of multiplication.