Electricity and Magnetism

- •Physics 259 L02
 - •Lecture 12

Chapter 23

(please read chapter 22 of the textbook)

Last time

• Chapter 22

This time

• Chapter 23

23-1: The Electric Flux

A closed surface through which an electric field passes is called **Gaussian surface**

An imaginary mathematical surface

Electric Flux; Gauss' Law

Gauss' Law is equivalent to Coulomb's law. It will provide us:

- (i) an easier way to calculate the electric field in specific circumstances (especially situations with a high degree of symmetry)
- (ii) a better understanding of the properties of conductors in electrostatic equilibrium (more on this as we go)
- (iii) It is valid for moving charges not limited to electrostatics.

The Gaussian surface is most useful when it matches the shape of the field

Electric Flux (Φ_e)

- Amount of electric field going through a surface
- The number of field lines coming through a surface

Wind going through a loop

The Electric Flux

Amount of electric field going through a surface

$$\Phi_e \alpha E$$

$$\Phi_e \alpha A$$

$$\Phi_e \alpha \theta$$

$$\Phi_{\rm e} = E_{\perp}A = EA\cos\theta$$

11

QuickCheck 27.2

The electric flux through the shaded surface is

- A. 0.
- B. 200 N m/C.
- C. $400 \text{ N m}^2/\text{C}$.
- D. Some other value.

QuickCheck 27.2

The electric flux through the shaded surface is

- B. 200 N m/C.
- C. $400 \text{ N m}^2/\text{C}$.
- D. Some other value.

This section we talked about:

Chapter 23.1

See you on Monday

