COMP3005 Database Management Systems (DBMS)

Ahmed El-Roby

Associate Professor, School of Computer Science, Carleton University

Abdelghny Orogat

Ph.D. Candidate, School of Computer Science, Carleton University

Program

1- Read the Data

2- Process the Data

3- Write the Data

Program

1- Read the Data

2- Process the Data

3- Write the Data

Traditional file processing

Each user defines and implements the files needed for a specific software application

Files

Traditional file processing

Each user defines and implements the files needed for a specific software application

How to organize the data in the files?

- File structures
- Ensuring efficient storage
- Ensuring efficient retrieval

Traditional file processing

Each user defines and implements the files needed for a specific software application

How to avoid data inconsistency

- Different copies of the same data.
- Lack of synchronization

Permanent

Storage

Hard Drive

Solid-State Drive

Files

Traditional file processing

Each user defines and implements the files needed for a specific software application

- Access control.
- Encryption

Traditional file processing

Each user defines and implements the files needed for a specific software application

What about data access efficiency?

- Search for "Courses of Alex".

Traditional file processing

Each user defines and implements the files needed for a specific software application

What about scalability?

- The list of customers grows.

Database approach

Single repository maintains data that is defined once and then accessed by various users

 Document-based data model like MongoDB.

Graph-based data model like Neo4J.

Which type of Databases is suitable for your use-case?

 Document-based data model like MongoDB.

Graph-based data model like Neo4J.

Query Language

How does your software application interact with these DBMS systems?

What can you expect to learn from this course?

How to design a Database?

STUDENT

Name	Student_number	Class	Major
Smith	17	1	CS
Brown	8	2	CS

COURSE

Course_name	Course_number	Credit_hours	Department	
Intro to Computer Science	CS1310	4	CS	
Data Structures	CS3320	4	CS	
Discrete Mathematics	MATH2410	3	MATH	
Database	CS3380	3	CS	

SECTION

Section_identifier Course_number		Semester	Year	Instructor
85	MATH2410	Fall	07	King
92	CS1310	Fall	07	Anderson
102	CS3320	Spring	08	Knuth
112	MATH2410	Fall	08	Chang
119	CS1310	Fall	08	Anderson
135	CS3380	Fall	08	Stone

GRADE_REPORT

Student_number	Section_identifier	Grade
17	112	В
17	119	С
8	85	Α
8	92	Α
8	102	В
8	135	Α

PREREQUISITE

	Course_number	Prerequisite_number
	CS3380	CS3320
	CS3380	MATH2410
ĺ	CS3320	CS1310

What can you expect to learn from this course?

	Week	#	Day	Date	Торіс	Assignments	Office Hours
	Week 1		Monday	8-Jan-2024	Database Introduction and Course Outline		NO 055
			Wednesday		Relational Algebra		NO Office Hours
	M - 1 0		Monday		Tuple Relational Calculus		NO 055
	Week 2		Wednesday	17-Jan-2024	SQL - DDL and DML		NO Office Hours
	Mod: 0	5	Monday	22-Jan-2024	SQL (DQL: SELECT-FROM-WHERE)		Wednesday 0:00pm
Orogat	Week 3	6	Wednesday	24-Jan-2024	SQL (DQL: AGR()-GROUP BY-HAVING-SETS)	A1	to 0:00pm Room HP5270
	Mook 4	7	Monday	29-Jan-2024	SQL (DQL: Complex Queries and SubQueries)	Two weeks: 22-Jan-2024 to 4-Feb-2024 Topics: RA, TRC, and Simple SQL	Wednesday 0:00pm
	Week 4	8	Wednesday	31-Jan-2024	SQL (DQL: VIEWs-INDEX-FUNCTIONs)	. Spice 144, 11to, and online out	to 0:00pm Room HP5270
	Week 5	9	Monday	5-Feb-2024	ER Model	A2	Wednesday 0:00pm
	vveek 5	10	Wednesday	7-Feb-2024	ER Mapping	Two weeks: 5-Feb-2024 to 18-Feb-2024	to 0:00pm Room HP5270
	Week 6	11	Monday	12-Feb-2024	Application Development	Topics: SQL and ER	Wednesday 0:00pm
Prof. El-Roby	Week 6	12	Wednesday	14-Feb-2024	Functional Dependencies and Normalization Theory		to 0:00pm Room HP5270
	Week 7	13	Monday	19-Feb-2024	Winter break, no classes.		
	1	14	Wednesday	21-Feb-2024	Winter break, no classes.		
		15	Monday	26-Feb-2024	Physical Storage		Wednesday 0:00pm
	Week 8		Wednesday		File Organization		to 0:00pm Room HP5270
	Week 9		Monday		Buffer Management	A3	52.15
			Wednesday	6-Mar-2024	ŭ	A3 Two weeks: 4-Mar-2024 to 17-Mar-2024	
5 (5)	Week 10		Monday	11-Mar-2024	ū	Topics: ER, ER mapping, and Functional	
Prof. El-Roby		20	Wednesday	13-Mar-2024	Hash Tables	Dependencies and Normalization	1
	Mark 44		Monday	18-Mar-2024	Concurrent Indexing	A4	
	Week 11		Wednesday	20-Mar-2024		Two weeks: 18-Mar-2024 to 31-Mar-2024	
	Most: 40	23	Monday	25-Mar-2024	Query Execution and Optimization	Topics: Application Development and	
	Week 12	24	Wednesday	27-Mar-2024	Concurrency Control	Physical Storage Systems	Į l
Oromet	Week 13	25	Monday		NO SQL - Document-Oriented Database (MongoDB)	A5	
Orogat		26	Wednesday	3-Apr-2024	NO SQL - Graph-Oriented Database (Directed Edge-Labelled Graph [RDF])		
Students	10/	27	Monday	8-Apr-2024	NO SQL - Graph-Oriented Database (Property Graph [Neo4J])	Topics: Query Processing, Optimization,	Wednesday 0:00pm
	■ vveek 14 ==		Wednesday		No Class - Classes follow a Friday schedule.	and NO SQL	to 0:00pm Room HP5270

Avi Silberschatz, Henry F. Korth, and S. Sudarshan. **Database System Concepts**. Seventh Edition.

 Ramez Elmasri and Shamkant B. Navathe: Fundamentals of Database Systems. Seventh Edition.

Systems Documentations

SQL-Based DBMS

PostgreSQL

Document-Based DBMS

MongoDB

Graph-Based DBMS

- Apache Jena Fuseki
- Neo4i

Grading Components	Weighting	Notes and Passing Criteria
Assignments	30%	Out of the 5 assignments, only the highest 4 scores will be considered.
Project	30%	The project groups will consist of 1 to 3 students. Further information regarding the project will be provided later.
Final	40%	Need to score over 45% of the exam to pass the course
Attendance	0%	Attending the lectures is crucial for your learning experience, even though they won't be graded for marks.

Grading Components	Weighting	Notes and Passing Criteria
Assignments	30%	Out of the 5 assignments, only the highest 4 scores will be considered.

- Five assignments
- Late submissions allowed within 24 hours with a 10% penalty
- No submissions allowed after these 24 hours. (Do not ask for extensions)
- The grades for the best four assignments will contribute to your overall assignments grade

Grading Components	Weighting	Notes and Passing Criteria
Project	30%	The project groups will consist of 1 to 3 students. Further information regarding the project will be provided later.

• More details will be posted later

Discussion Forum

Questions related to the

- Lectures
- Assignments (General only)
- Exams

Office Hours

Instructor

Questions related to the

- Lectures
- Assignments
- Exams
- Any other

TAs

Questions related to the

- Lectures
- Assignments
- Programs Setup
- Running a Query or App

Starting on the week of **January 22nd**

- Every day of the week
- Posted on Brightspace
- Available slots both in-person and via Zoom

Email

Instructor

Questions related to the

- Mistake in the slides
- Feedback
- Urgent Situation

TAs

Questions related to the

- Grading Issue
- Quick Question

- Contact the TA responsible for marking the question if you have any issues or concerns.
 - o In the event of a disagreement with the TA, they will forward the situation to the instructor along with the relevant details.
 - The instructor will ultimately make the final decision regarding the matter.
- Please avoid contacting the instructors directly regarding grade-related matters.

- Zero-tolerance policy!
- Not sure? Ask
- Refer to Academic Integrity at Carleton

Thank you