Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di TE1

A.A. 2009-2010 - Docente: Prof. F. Pappalardi Tutori: Annamaria Iezzi e Dario Spirito

Tutorato 3 18 marzo 2010

- 1. Determinare i campi di spezzamento in $\mathbb C$ dei seguenti polinomi e calcolarne il grado su \mathbb{Q} .
 - a) $X^3 6$
 - b) $X^4 + 30X^2 + 45$
 - c) $X^4 + 2X^3 + 4X 4$
- 2. Dimostrare che l'applicazione

$$\phi: \mathbb{Q}(\sqrt{2}) \longrightarrow \mathbb{Q}(\sqrt{3}), \quad a + b\sqrt{2} \mapsto a + b\sqrt{3}$$

non è un omomorfismo di campi.

- 3. Determinare tutti gli Q-isomorfismi in C dei seguenti campi e determinare quali tra di essi sono automorfismi:
 - a) $\mathbb{Q}(\sqrt[5]{2})$

b) $\mathbb{Q}(\sqrt[4]{2})$

- c) $\mathbb{Q}(\xi_{13})$ e) $\mathbb{Q}(\sqrt{2}, \xi_8)$ d) $\mathbb{Q}(\sqrt{3+\sqrt{8}})$ f) $\mathbb{Q}(1+\frac{1}{\pi})$
- 4. Determinare quali radici dell'unità sono contenute nei seguenti ampliamenti di Q:
 - a) $\mathbb{Q}(i)$

- c) $\mathbb{Q}(\sqrt{-2})$
- e) $\mathbb{Q}(\sqrt{-3})$

b) $\mathbb{Q}(\sqrt{2})$

- d) $\mathbb{Q}(\sqrt{2},i)$
- f) $\mathbb{Q}(\sqrt[5]{2})$

- 5. Fattorizzare $\Phi_n(X)$ su $\mathbb{R}[X]$.
- 6. Sia $A = \mathbb{F}_5 \times \mathbb{F}_5$, e si definiscano su di esso le operazioni "+" (l'addizione termine a termine) e "o" come

$$(a,b) \circ (a',b') = (aa' + 3bb', ab' + a'b)$$

Rispetto a queste due operazioni, A è un anello commutativo unitario con zero (0,0) e unità (1,0), nonché uno spazio vettoriale su \mathbb{F}_5 con la moltiplicazione scalare termine a termine.

a) Dimostrare che l'applicazione

$$\psi: \mathbb{F}_5[X] \longrightarrow A, \quad \sum a_i X^i \mapsto \sum a_i (0,1)^i$$

è un omomorfismo di anelli.

b) Determinare $\ker \psi$ e Im ψ e definire l'applicazione canonica

$$\overline{\psi}: \frac{\mathbb{F}_5[X]}{\ker \psi} \to \operatorname{Im} \psi$$

- c) Usando il punto precedente, mostrare che $K := \text{Im } \psi$ è un campo, ampliamento di \mathbb{F}_5 ; determinare il grado $[K : \mathbb{F}_5]$, una base di K su \mathbb{F}_5 e il numero di elementi di K.
- 7. Sia E un ampliamento di \mathbb{F}_p . Dimostrare che l'applicazione

$$\eta: E \longrightarrow E, \quad x \mapsto x^p$$

è un omomorfismo (detto omomorfismo di Frobenius); dimostrare inoltre che, se E è finito, η è un automorfismo e trovare un esempio in cui E è infinito ed η non è suriettivo.

8. Dimostrare che un campo finito non può essere algebricamente chiuso. (Suggerimento: considerare il polinomio $x^{|E|} - x + 1$.)