Notas sobre el Timer 1 (PIC18F452)

- Este módulo utiliza un contador de 16 bits para contar los flancos de subida de la señal que se haga llegar a su entrada.
- El contenido del contador del *Timer* 0 se guarda en los registros Timer1 *High Byte* y TMR1L (*low byte*). Al Timer1 high byte se tiene acceso a través del registro TMR1H. Al TMR1L se tiene acceso directo desde el bus de datos.
- La señal a la que le cuenta los flancos de subida puede ser interna (*Fosc*/4) o externa (pines RC0 y RC1).
- El contenido del Timer 1 se puede modificar (escribir) y leer en cualquier momento por medio de los registros TMR0H y TMR0L. No siendo necesario detener el funcionamiento del *timer* 1 ni para escribir ni para leer su contenido.

Nota: contenido del contador del *timer* $1 \equiv$ contenido del *timer* 1

• El Timer 1 puede provocar una interrupción por 'overflow' (si se habilita) cuando su contenido pasa de 0xFFFF a 0x0000.

```
PIR1.TMR1IF = 0;

PIE1.TMR1IE = 1;

INTCON.PEIE = 1; // es de tipo peripheral

INTCON.GIE = 1;
```

• El funcionamiento del *Timer* 1 se configura y se controla con el registro T1CON.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	_	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N

Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.

• **RD16** = 1 \rightarrow se escriben y se leen los 16 bits a la vez (contenido del contador del timer 1)

 $RD16 = 0 \rightarrow los$ bytes alto y bajo que forman el contenido del Timer 1 ni se escriben ni se leen a la vez. Esto puede ser un problema si el Timer 1 está funcionando (contando flancos de subida)

• T1CKPS1 – T1CKPS0: se utilizan para establecer el *prescaler*.

$$(T1CKPS1, T1CKPS0) = 11 \rightarrow prescaler = 8$$

 $(T1CKPS1, T1CKPS0) = 10 \rightarrow prescaler = 4$
 $(T1CKPS1, T1CKPS0) = 01 \rightarrow prescaler = 2$
 $(T1CKPS1, T1CKPS0) = 00 \rightarrow prescaler = 1$

Nota: la escritura de un valor en el registro TMR1L pone a cero el contador que implementa el *prescaler*.

• T1OSCEN = $1 \rightarrow$ se habilita el hardware para el oscilador.

T1OSCEN = $0 \rightarrow$ se deshabilita el hardware para el oscilador.

• TISYNC

Si el bit TMR1CS = 1, entonces

- _ si $\overline{\text{T1SYNC}} = 1$ → no se sincroniza la señal β con la señal de reloj del PIC18F452
- _ si $\overline{\text{T1SYNC}} = 0$ → se sincroniza la señal β con la señal de reloj del PIC18F452

Si el bit TMR1CS = 0, entonces el bit $\overline{T1SYNC}$ no afecta al funcionamiento del Timer 1

- TMR1CS: con este bit se selecciona el origen de la señal de reloj a la que el Timer 1 le cuenta los flancos de subida:
 - _ si TMR1CS = 1 entonces la señal de reloj la obtiene del pin RC0.
 - _ si TMR1CS = 0 entonces la señal de reloj la obtiene de una señal de reloj interna del microcontrolador cuya frecuencia es igual a $f_{osc}/4$
- TMR1ON = $1 \rightarrow \text{el Timer } 1$ cuenta flancos de subida.

 $TMR1ON = 0 \rightarrow el Timer 1 no cuenta (su contenido no cambia).$

Note 1: When enable bit T1OSCEN is cleared, the inverter and feedback resistor are turned off. This eliminates power drain.

• $Para\ TMR1CS = 0$ se cumple que,

$$f_{\alpha} = F_{osc}/4$$
 y $T_{\alpha} = 4 \cdot T_{osc}$

$$f_{\beta} = F_{osc}/(4 \cdot prescaler)$$
 y $T_{\beta} = 4 \cdot T_{osc} \cdot prescaler$

$$t_{overflow} = 4 \cdot T_{osc} \cdot prescaler \cdot (2^{16} - alfa)$$

Lectura contenido TIMER1,

1° se lee TMR1L

2° se lee TMR1H

• Escritura contenido TIMER1,

1° se escribe TMR1H

2° se escribe TMR1L

