In [1]: # import libaries
 import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt

In [2]: x=pd.read_csv(r"C:\Users\user\Downloads\18_world-data-2023 - 18_world-data-202

Out[2]:

	Country	Density\n(P/Km2)	Abbreviation	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Calling Code
0	Afghanistan	60	AF	58.10%	652,230	323,000	32.49	93.0
1	Albania	105	AL	43.10%	28,748	9,000	11.78	355.0
2	Algeria	18	DZ	17.40%	2,381,741	317,000	24.28	213.0
3	Andorra	164	AD	40.00%	468	NaN	7.20	376.0
4	Angola	26	AO	47.50%	1,246,700	117,000	40.73	244.0
190	Venezuela	32	VE	24.50%	912,050	343,000	17.88	58.0
191	Vietnam	314	VN	39.30%	331,210	522,000	16.75	84.0
192	Yemen	56	YE	44.60%	527,968	40,000	30.45	967.0
193	Zambia	25	ZM	32.10%	752,618	16,000	36.19	260.0
194	Zimbabwe	38	ZW	41.90%	390,757	51,000	30.68	263.0

195 rows × 35 columns

In [3]: x=x.head(10)

Out[3]:

	Country	Density\n(P/Km2)	Abbreviation	Agricultural Land(%)	Land Area(Km2)	Armed Forces size	Birth Rate	Calling Code	(
0	Afghanistan	60	AF	58.10%	652,230	323,000	32.49	93.0	_
1	Albania	105	AL	43.10%	28,748	9,000	11.78	355.0	
2	Algeria	18	DZ	17.40%	2,381,741	317,000	24.28	213.0	
3	Andorra	164	AD	40.00%	468	NaN	7.20	376.0	
4	Angola	26	AO	47.50%	1,246,700	117,000	40.73	244.0	
5	Antigua and Barbuda	223	AG	20.50%	443	0	15.33	1.0	
6	Argentina	17	AR	54.30%	2,780,400	105,000	17.02	54.0	
7	Armenia	104	AM	58.90%	29,743	49,000	13.99	374.0	
8	Australia	3	AU	48.20%	7,741,220	58,000	12.60	61.0	
9	Austria	109	AT	32.40%	83,871	21,000	9.70	43.0	

10 rows × 35 columns

```
In [4]:
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10 entries, 0 to 9 Data columns (total 35 columns): # Column Non-Null Count Dtype ----------0 Country 10 non-null object 1 Density (P/Km2)10 non-null object 2 Abbreviation 10 non-null object 3 Agricultural Land(%) 10 non-null object 4 Land Area(Km2) object 10 non-null 5 Armed Forces size 9 non-null object 6 Birth Rate 10 non-null float64 7 Calling Code 10 non-null float64 8 Capital/Major City 10 non-null object 9 Co2-Emissions 10 non-null object 10 CPI 9 non-null object 11 CPI Change (%) 9 non-null object 12 Currency-Code 10 non-null object Fertility Rate float64 13 10 non-null 14 Forested Area (%) 10 non-null object 15 Gasoline Price 10 non-null object **GDP** object 16 10 non-null 17 Gross primary education enrollment (%) 10 non-null object Gross tertiary education enrollment (%) 18 9 non-null object Infant mortality float64 19 10 non-null Largest city object 20 10 non-null 21 Life expectancy 9 non-null float64 Maternal mortality ratio 9 non-null float64 23 Minimum wage 9 non-null object Official language object 24 10 non-null Out of pocket health expenditure object 10 non-null 26 Physicians per thousand 10 non-null float64 27 Population 10 non-null object 28 Population: Labor force participation (%) object 8 non-null 29 Tax revenue (%) 9 non-null object 30 Total tax rate 9 non-null object Unemployment rate object 31 8 non-null 32 Urban_population 10 non-null object 33 Latitude 10 non-null float64 34 Longitude 10 non-null float64 dtypes: float64(9), object(26)

memory usage: 2.9+ KB

In [6]: d=x[['Co2-Emissions','Birth Rate','Fertility Rate']]

Out[6]:

	Co2-Emissions	Birth Rate	Fertility Rate
0	8,672	32.49	4.47
1	4,536	11.78	1.62
2	150,006	24.28	3.02
3	469	7.20	1.27
4	34,693	40.73	5.52
5	557	15.33	1.99
6	201,348	17.02	2.26
7	5,156	13.99	1.76
8	375,908	12.60	1.74
9	61,448	9.70	1.47

In [7]:

Out[7]:

	Birth Rate	Calling Code	Fertility Rate	Infant mortality	Life expectancy	Maternal mortality ratio	Physicians per thousand	Latit
count	10.000000	10.000000	10.000000	10.000000	9.000000	9.000000	10.000000	10.000
mean	18.512000	181.400000	2.512000	16.090000	74.788889	124.888889	2.671000	17.538
std	10.754729	149.167467	1.416622	18.504321	7.376897	206.621904	1.738387	31.192
min	7.200000	1.000000	1.270000	2.700000	60.800000	5.000000	0.210000	-38.416
25%	11.985000	55.750000	1.650000	3.575000	74.900000	15.000000	1.330000	-4.136
50%	14.660000	153.000000	1.875000	8.300000	76.700000	39.000000	3.045000	30.986
75%	22.465000	327.250000	2.830000	17.825000	78.500000	112.000000	3.890000	40.882
max	40.730000	376.000000	5.520000	51.600000	82.700000	638.000000	5.170000	47.516

In [8]:

Out[8]: <seaborn.axisgrid.PairGrid at 0x190982c9610>

In [9]:

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[9]: <AxesSubplot:xlabel='Density\n(P/Km2)', ylabel='Density'>

In [10]:

In [11]: (1)

Out[11]: <AxesSubplot:>

In [12]: x=x1[['Birth Rate']]

```
In [13]: # to split my dataset into traning and test date
         from sklearn.model_selection import train_test_split
In [14]: | from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
Out[14]: LinearRegression()
In [15]:
         3.552713678800501e-15
In [16]: coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
Out[16]:
                   Co-efficient
          Birth Rate
                          1.0
In [17]: prediction=lr.predict(x_test)
Out[17]: <matplotlib.collections.PathCollection at 0x19099579250>
          40
          35
          30
          25
           20
                   20
                            25
                                     30
                                             35
In [18]: _
Out[18]: 1.0
In [19]:
Out[19]: 1.0
In [20]:
```

```
In [21]: rr=Ridge(alpha=10)
     rr.fit(x_train,y_train)
Out[21]: 0.9891341375985607
In [22]: la=Lasso(alpha=10)
Out[22]: Lasso(alpha=10)
In [23]:
Out[23]: 0.40595350565336585
In [25]: | from sklearn.linear_model import ElasticNet
     en=ElasticNet()
Out[25]: ElasticNet()
In [26]:
Out[26]: array([0.96136336])
In [27]:
Out[27]: array([39.68002169, 31.75838761, 16.88609644])
In [28]:
Out[28]: 0.5236920669199243
Out[29]: 0.9942868376994006
In [31]:
     Mean Absolute Error 4.736951571734001e-15
In [32]:
     Mean Squared Error 3.3658065289429835e-29
In [33]:
     Root Mean Squared Error 5.801557143511545e-15
In [ ]:
```

9 of 9