FINITE AUTOMATA

Based on Chapter 3 of Aho, Lam, Sethi, Ullman:

Compilers: Principles, Techniques, & Tools

2nd Ed, Addison Wesley, 2007

Table of Contents

- Introduction
- Nondeterministic Finite Automata
- Deterministic Finite Automata
- Conversion of NFA into DFA
- From Regular Expression to NFA
- Design of Lexical Analyzer Generator

Introduction

- Finite Automata or Finite State Machine
 - a mathematical way of describing particular kinds of algorithms (or machines)
 - to describe the process of recognizing patterns in input strings
 - to construct scanners
 - strong relationship with regular expressions
 - any regular expression can be converted into an equivalent finite automata
- Two Types
 - deterministic finite automata(DFA) vs nondeterministic finite automata(NFA)
 - any NFA can be converted into an equivalent DFA
 - both automata are capable of recognizing the same languages, called the regular languages

Nondeterministic Finite Automata

- An NFA *M* consists of
 - S: a set of states
 - Σ : a set of input symbol(alphabet)
 - T : a transition function T: S x ($\Sigma \cup \{ \epsilon \}$) \rightarrow P(S)
 - $s_0 \in S$, a start state
 - $F \subseteq S$: a set of accepting states
- L(M) is the set of strings $c_1c_2...c_n$, $c_i \in \Sigma \cup \{ \epsilon \})$ $s_1 \in T(s_0,c_1), s_2 \in T(s_1,c_2), ..., s_n \in T(s_{n-1},c_n), s_n \in F$
- An NFA *M accepts* an input string s if an only if s is in *L*(*M*) and *rejects* otherwise.

Nondeterministic Finite Automata

- An NFA can be represented diagrammatically by a transition diagram
 - state: node, transition function: labeled edges

- Characteristics
 - E-transition
 - more than one transitions over an input character
 - more than one sequence of transitions can lead to an accepting state
 - other path that can lead to non-accepting state may be made
 - NFA does not represent an algorithm, but can be simulated by backtracking or subset construction

Nondeterministic Finite Automata

- Example
 - string *aabb* in M1 can lead to state 3 or to state 0
 - string *abb* in M2 can be accepted by either of two sequences

Transition Table

 M_1

{3}

State	Input Symbol		
	a	b	3
1	{2,3}	-	{4}
2	-	{4}	-
3	-	-	{3}
4	-	{3}	-

3

 M_2

M2: $(a|\epsilon)b^*$

Deterministic Finite Automata

- An DFA *M* consists of
 - S: a set of states
 - Σ : a set of input symbol(alphabet)
 - T: a transition function T: $S \times \Sigma \to S$
 - $s_0 \in S$, a start state
 - $F \subseteq S$: a set of accepting states
- Characteristics
 - no E-transition
 - at most one edge from each state s on an input symbol a
 - DFA represents an algorithm for the recognizer

Deterministic Finite Automata

Simulating a DFA M

```
Input: a string x terminated eof
Output: "yes" if M accepts the string x; "no" otherwise
Algorithm:
     s = s_0;
     c = nextchar();
     while (c != eof)  {
         s = move(s, c); // move(s, c) = T(s, c)
         c = nextchar();
     if (s is in F)
        return "yes"
     else
        return "no"
```

Deterministic Finite Automata

• Example : (a | b)*abb

• Transition Diagram

Stata	Input Symbol		
State	a	b	
0	1	0	
1	1	2	
2	1	3	
3	1	0	

- Subset Construction
 - general idea

 T_i is a subset of S_N $i \in Ti$

- Subset Construction
 - E-closure(s) : set of NFA states reachable form NFA state s on E-transitions
 - E-closure(T): set of NFA states reachable from NFA states in T on E-transitions
 - move(T,a): set of NFA states to which there is a transition on input symbol a from some NFA state s in T

```
Algorithm:
initially, \(\epsilon \cdot \cdot closure(s_0)\) is in \(Dstates\) and it is unmarked \(\formark T\);

for (there is an unmarked state T in \(Dstates\)) {

mark T;

for (each input symbol \(a\)) {

U = \(\epsilon \cdot closure(move(T,a));

if (U is not in \(Dstates\))

add U as an unmarked state to \(Dstates;
\)

\(Dtran[T, a] = U
\)
}
```


$$\varepsilon$$
-closure(0) = {0,1,2,4,7} = A

$$\varepsilon$$
-closure(move(A,a)) = ε -closure({3,8}) = {1,2,3,4,6,7,8} = B

$$\varepsilon$$
-closure(move(A,b)) = ε -closure($\{5\}$) = $\{1,2,4,5,6,7\}$ = C

$$\varepsilon$$
-closure(move(B,a)) = ε -closure($\{3,8\}$) = B

$$\varepsilon$$
-closure(move(B,b)) = ε -closure($\{5,9\}$) = $\{1,2,4,5,6,7,9\}$ = D

$$\varepsilon$$
-closure(move(C,a)) = ε -closure($\{3,8\}$) = B

$$\varepsilon$$
-closure(move(C,b)) = ε -closure($\{5\}$) = C

$$\varepsilon$$
-closure(move(D,a)) = ε -closure($\{3,8\}$) = B

$$\epsilon$$
-closure(move(D,b)) = ϵ -closure($\{5,10\}$) = $\{1,2,4,5,6,7,10\}$ = E <- **final state**

$$\varepsilon$$
-closure(move(E,a)) = ε -closure($\{3,8\}$) = B

$$\varepsilon$$
-closure(move(E,b)) = ε -closure($\{5\}$) = C

• Example: M5

Stata	Input Symbol		
State	a	b	
A	В	С	
В	В	D	
C	В	C	
D	В	Е	
Е	В	С	

cf. compare it with M3

Simulation of NFA

Simulating an NFA

```
Input: NFA N with start state s_0, accepting states F, and input X terminated by eof
```

Output: yes or no

Algorithm:

```
S = \epsilon\text{-closure}(\{s_0\});
a = \text{nextchar}();
while (a != \text{eof})\{
S = \epsilon\text{-closure}(\text{move}(S,a));
a = \text{nextchar}();
}
if (S \cap F \text{ is not empty})
return "yes"
else
return "no"
```

From a Regular Expression to an NFA

- Thompson's Construction
 - 1. for ε

2. for a in Σ

3. for $s \mid t$

4. for st

5. for s*

From a Regular Expression to an NFA

- Example: (a | b)*abb
 - for a and b

• for a | b

• for (a|b)*

• for (a|b)*abb

see M4

Time-Space Tradeoffs

- NFA
 - space : O(|r|)
 - time : O(|r| * |x|)

x: input string

r: regular expression

- DFA
 - space: $O(2^{|r|})$
 - time: O(|x|)

Optimizing DFA

- 1. Construct an initial partition Π of the set of states with two groups: accepting states F and non-accepting states S-F
- 2. Apply the right procedure to construct new partition Π_{new}
- 3. If $\Pi_{\text{new}} = \Pi$, let $\Pi_{\text{final}} = \Pi$ and continue with step (4), otherwise, repeat step (2) with $\Pi = \Pi_{\text{new}}$
- 4. Choose representative states in each group
- 5. Remove dead states

• Construction of Π_{new}

for each group G of Π do partition G into subgroups such that two states s and t of G are in the same subgroup if and only if for all input symbols a, state s and t have transitions on a to states in the same group of Π ; replace G in Π_{new} by the set of all subgroups formed

Optimizing DFA

• Example (slide 13)

- Initial Partition {A,B,C,D} {E}
- Next Partitions{A,B,C} {D} {E}{A,C} {B} {D} {E}
- Final States 0,1,2,3

- State Elimination Method
 - Rule 1: There should not be any incoming edge to the initial state
 - If there are incoming edges to the initial state, create a new initial state with no incoming edges.

- Rule 2: There must be only one final state.
 - If there is more than one final state, convert all final states to non-final states and create a new single final state.

- State Elimination Method
 - Rule 3: From the final state, there should be no outgoing edges.
 - If there are outgoing edges from the final state, convert all final states to non-final states and create a new final state having no outgoing edges.

- Rule 4: All intermediate states are eliminated one by one.
- state

• Example: M1

- Arden's Rule
 - to resolve recursions

$$X = AX + B$$

$$\rightarrow$$
 X = A*B

$$X = XA + B$$

$$\rightarrow$$
 X = BA*

• Example 1

$$(1) A = aA + aB + bC$$

(2)
$$B = bC$$

(3)
$$C = \lambda$$
 (final state)

$$(4) B = b$$

$$(5) A = aA + bb + b$$

$$(6) A = a*(bb+b)$$

• Example 2

$$(1) A = aA + bA + aB$$

(2)
$$B = bC$$

(3)
$$C = bD$$

(4)
$$D = \lambda$$

$$(5) C = b$$

(6)
$$B = bb$$

$$(7) A = (a+b)A + abb$$

$$(8) A = (a+b)*abb$$

$$== (a \mid b)*abb$$

• Example 3

$$(1) A = aA + bB$$

(2)
$$B = bA + aB + \lambda$$

$$(3) B = aB + (bA + \lambda)$$

(4)
$$B = a*(bA + \lambda) = a*bA + a*$$

(5)
$$A = aA + b(a*bA+a*) = aA + ba*bA + ba*$$

= $(a+ba*b)A + ba*$

(6)
$$A = (a+ba*b)*ba* = (a|ba*b)*ba*$$