Announcements

Midterm 1: Thurs. 2/15 7:00-8:30 pm Loom's Lab. 144
Tomorrow's problem session & Wed. class: review
See Friday's email for full policies

Recall: Tower Law: If FSKEL,

[L:F]=[L:k][k:F]

Composite: Smallest subfield k, kz of L containing K, and Kz.

Prop: Let K1/f, K2/f be finite extre w/ K1, K2 & L.

a) $[K_1K_2: K_2] \leq [K_1:F]$

b) [k,k2:F] < [k,:F] [k2:F]

Pf: Let $\{\alpha_{1,1}, -1, \alpha_n\}$ be a basis for k_1 over F. Let $K = \{f_1\alpha_1 + \cdots + f_n\alpha_n | f_i \in k_2\}$

We have $K_1 \subseteq K_2$, $K_2 \subseteq K_3$, and $\dim_{K_2} K \subseteq M_2$, so if it's a field it is K_1K_2 , and a) will hold.

Closed unher +, -: yes, since k is a v.s.

Closed under .:

Since 41, -, dk is an F-basis for k1, write

$$aid_j = \sum_{k} h_k d_k$$
 $F \subseteq K_2$

Then,

$$= \underbrace{\sum_{i,j,k} f_{i,j} d_{i,d_{j}}}_{EK_{2}} = \underbrace{\sum_{i,j,k} f_{i,j} f_{i,j} d_{i,j} d_{i,j}}_{EK_{2}} + \underbrace{\sum_{i,j,k} f_{i,j} f_{i,j} d_{i,j} d_{i,j} d_{i,j}}_{EK_{2}} + \underbrace{\sum_{i,j,k} f_{i,j} f_{i,j} d_{i,j} d_{i,j} d_{i,j}}_{EK_{2}} + \underbrace{\sum_{i,j,k} f_{i,j} f_{i,j} d_{i,k}}_{EK_{2}} + \underbrace{\sum_{i,j,k} f_{i,j} f_{i,k}}_{EK_{2}} + \underbrace{\sum_{i,j,k} f_{i,k}}_{EK_{2}} + \underbrace{\sum_{i$$

Inverses: Let YEK, 803, and consider the Kz-linear transformation

$$T_{\gamma}: K \longrightarrow K$$
 additive gp. homom., but not ring homom.)

Since L is an integral domain,

Ker (Tx) = {0}, so by the rank-nullity theorem,

dim im Ty + dim ker Ty = n, so Ty is onto.

Thus Y has inverse $T_Y^{-1}(1) \in K$.

b) Using the Tower Law,

$$[K':E][K':E] = [K'K':K'][K':E] = [K'K':E]$$

Alternate pf (see DRF): Finite extins are interated simple extensions. Prove a) for simple extins by considering degrees of min'l polys, and use induction for the general case

17

Straightedge and Compass Constructions

Game (ancient Greeks): Given a straightedge (ruler w/ out markings) and compass, what can we construct?

Operations:

1) Connect two pts. by a line

2) Draw a circle w/ a given center and point

3) Find int. pt. of lines/circles

No measuring allowed!

With these operations, can do many things:

a) Perpendicular bisector

b) Double the area of a square

C) Construct the n-gon for certain n (Gauss: 17-gon)

3 problems that the Greek's couldn't solve!

I) Double the cube

II) Trisect an arbitrary angle

III) Square the circle"

Big idea: constructible numbers

Constructible numbers:

Rephrase:

II) Construct cos
$$\frac{\Theta}{3}$$
 given cos Θ

$$\begin{array}{c|c}
\hline
1 \\
\hline
\end{array}$$

