Planche nº 15. Intégrales dépendant d'un paramètre

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Exercice nº 1 (**)

 $\mathrm{Pour}\ n\in\mathbb{N}^*\ \mathrm{et}\ x\in]0,+\infty[,\ \mathrm{on\ pose}\ \mathrm{I}_n(x)=\int_0^{+\infty}\frac{1}{(t^2+x^2)^n}.$

1) Calculer la dérivée de la fonction I_n sur $]0, +\infty[$.

2) En déduire la valeur de
$$\int_0^{+\infty} \frac{1}{(t^2+1)^3} dt$$
.

Exercice nº 2 (*** I) (très long) (Intégrale de POISSON)

Pour
$$x \in \mathbb{R}$$
, on pose $F(x) = \int_{-\pi}^{\pi} \ln(1 - 2x \cos \theta + x^2) d\theta$.

1) a) Montrer que F est paire, définie et continue sur R.

- **b)** Déterminer une relation entre F(x) et $F\left(\frac{1}{x}\right)$ pour x>0.
- c) Montrer que F est dérivable sur] -1, 1[puis sur $\mathbb{R} \setminus \{-1, 1\}$. Préciser une expression de F'(x) sous forme intégrale.
- d) Calculer F'(x).
- e) Déterminer $\lim_{x \to +\infty} (F(x) 4\pi \ln x)$.
- f) En déduire F(x) pour tout réel x. Tracer le graphe de F.
- 2) a) Quand $x \in]-1, 1[$, retrouver ce résultat en écrivant d'abord $\ln(x^2-2x\cos\theta+1)$ comme somme d'une série (commencer par dériver la fonction de θ).
- b) En déduire F(x) pour tout réel x de]-1,1[puis pour tout réel x.

Exercice n° 3 (** I) (Un calcul de l'intégrale de Gauss $I = \int_0^{+\infty} e^{-t^2} dt$).

$$\mathrm{Pour} \; x \in \mathbb{R}, \, \mathrm{on \; pose} \; F(x) = \int_0^1 \frac{e^{-x^2(1+t^2)}}{1+t^2} \; dt \; \mathrm{et} \; G(x) = \left(\int_0^x e^{-t^2} \; dt\right)^2.$$

- 1) Montrer que F est de classe C^1 sur \mathbb{R} et préciser F'.
- 2) Montrer que G est de classe C^1 sur \mathbb{R} et préciser G'.
- 3) Montrer que la fonction F + G est constante sur \mathbb{R} .
- 4) Déterminer $\lim_{x \to +\infty} F(x)$.
- 5) En déduire I.
- 6) Déterminer $\int_{-\infty}^{+\infty} e^{-t^2} dt$ et $\Gamma\left(\frac{1}{2}\right) = \int_{0}^{+\infty} \frac{e^{-t}}{\sqrt{t}} dt$.

Exercice nº 4 (***)

Existence et calcul de $\int_0^{+\infty} e^{-t^2} \operatorname{ch}(tx) \ dt$ (on dérivera l'intégrale à paramètre et on admettra que $\int_0^{+\infty} e^{-t^2} \ dt = \frac{\sqrt{\pi}}{2}$).

Exercice no 5 (***)

Existence et calcul de $\int_0^1 \frac{t-1}{\ln t} t^x dt$.

Exercice nº 6 (**** I) (très long)

Montrer que pour tout réel x strictement positif, $\int_0^{+\infty} \frac{e^{-xt}}{1+t^2} \, dt = \int_0^{+\infty} \frac{\sin t}{x+t} \, dt \text{ et en déduire } \int_0^{+\infty} \frac{\sin t}{t} \, dt \text{ (indication : trouver une équation différentielle du second ordre vérifiée par ces deux fonctions).}$

Exercice nº 7 (** I) (Produit de convolution)

1) Soient f et g deux fonctions définies sur \mathbb{R} , continues et T-périodiques (T réel strictement positif). Pour $x \in \mathbb{R}$, on pose

$$f * g(x) = \int_0^T f(x - t)g(t) dt.$$

Montrer que la fonction f * g est définie sur \mathbb{R} , continue et T-périodique.

2) * est donc une loi interne sur E, l'espace vectoriel des fonctions définies et continues sur \mathbb{R} et T-périodiques. Montrer que cette loi est commutative.

Exercice nº 8 (** I) (Transformée de FOURIER)

- 1) Pour $f: \mathbb{R} \to \mathbb{C}$, continue par morceaux et intégrable sur \mathbb{R} , on pose $\hat{f}: x \mapsto \int_{-\infty}^{+\infty} f(t)e^{-ixt} dt$. Montrer que \hat{f} est définie et continue sur \mathbb{R} .
- 2) On suppose que pour tout $k \in \mathbb{N}$, la fonction $t \mapsto t^n f(t)$ est intégrable sur \mathbb{R} . Montrer que \widehat{f} est de classe C^{∞} sur \mathbb{R} et déterminer $\widehat{f}^{(n)}$ pour tout $n \in \mathbb{N}$.
- 3) On suppose que f est de classe C^1 sur \mathbb{R} (et intégrable sur \mathbb{R}). Déterminer $\widehat{f'}$ en fonction de \widehat{f} .
- 3) En admettant que , déterminer $\widehat{f * g}$ en fonction de \widehat{f} et \widehat{g} .