STA513 – Analisis Statistika untuk Bisnis, Ekonomi, dan Indu<mark>stri</mark>

Semester Ganjil 2020/2021

PERTEMUAN #2

Sebaran Penaraikan Contoh

disusun oleh:

Bagus Sartono bagusco@apps.ipb.ac.id Prodi Statistika dan Sains Data

Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor

2020

Outline

- Apa itu sebaran penarikan contoh (sampling distribution)
- Sebaran penarikan contoh untuk rata-rata contoh
- Sebaran penarikan contoh untuk proporsi contoh
- Sebaran penarikan contoh untuk ragam contoh

Perhatikan Hasil Quick Count dari Beberapa Lembaga Survei Ini

Persentase suara untuk suatu pasangan berbeda-beda dari satu lembaga ke lembaga yang lain

Bandingkan Hasil Quick Count dengan Aktual-nya

Cagub-Cawagub	Putaran 2		
	Pemilih	%	
<u>Ahok</u> – <u>Djarot</u>	2.350.366	42,04%	
<u>Anies</u> – <u>Sandi</u>	3.240.987	57,96%	
Jumlah suara sah	5.591.353	100,00%	
Sumber	pilkada2017.kpu.go.id		

- Tidak ada yang sama dengan hasil KPU
- Ada yang lebih tinggi, ada yang lebih rendah

Sebaran Penarikan Contoh untuk Rata-Rata Contoh

Perhatikan ilustrasi berikut

- Andaikan terdapat suatu populasi berukuran N=4
- Peubah yang dicatat adalah usia
- Nilai-nilai setiap individu adalah:

18, 20, 22, 24 (tahun)

Sumber: Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Ilustrasi (lanjutan)

Ringkasan parameter dari data populasi dan sebarannya adalah

$$\mu = \frac{\sum X_i}{N}$$

$$= \frac{18 + 20 + 22 + 24}{4} = 21$$

$$\sigma = \sqrt{\frac{\sum (X_i - \mu)^2}{N}} = 2.236$$

Sumber: Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

Ilustrasi (lanjutan)

Perhatikan semua kemungkinan contoh berukuran n = 2

Amatan	Amatan #2			
#1	18	20	22	24
18	18,18	18,20	18,22	18,24
20	20,18	20,20	20,22	20,24
22	22,18	22,20	22,22	22,24
24	24,18	24,20	24,22	24,24

16 kemungkinan contoh berukuran n = 2 (sampling with replacement) 16 kemungkinan nilai ratarata contoh

Amatan	Amatan #2			
#1	18	20	22	24
18	18	19	20	21
20	19	20	21	22
22	20	21	22	23
24	21	22	23	24

Sumber: Statistics for Business and Economics, 6e © 2007 Pearson Education, Inc.

ILUSTRASI (lanjutan) Sebaran Penarikan Contoh dari Rata-Rarata

16 nilai rata-rata contoh

1st	2nd Observation			
Obs	18	20	22	24
18	18	19	20	21
20	19	20	21	22
22	20	21	22	23
24	21	22	23	24

Sebaran Rata-Rata Contoh

cenderung berbentuk normal

Ilustrasi (lanjutan)

Ringkasan dari sebaran rata-rata contoh

$$E(\overline{X}) = \frac{\sum \overline{X}_i}{N} = \frac{18 + 19 + 21 + \dots + 24}{16} = 21 = \mu$$

$$\begin{split} \sigma_{\overline{X}} &= \sqrt{\frac{\sum (\overline{X}_i - \mu)^2}{N}} \\ &= \sqrt{\frac{(18 - 21)^2 + (19 - 21)^2 + \dots + (24 - 21)^2}{16}} = 1.58 \end{split}$$

Perbandingan Sebaran Populasi dan Sebaran Penarikan Contoh untuk Rata-Rata

Populasi N = 4

$$\mu = 21$$
 $\sigma = 2.236$

Rata-Rata Contoh dengan n = 2

$$\mu_{\overline{X}} = 21 \quad \sigma_{\overline{X}} = 1.58$$

Dalil Limit Pusat (central limit theorem)

Jika dari suatu populasi dengan nilai harapan μ dan ragam σ^2 ditarik contoh secara acak berukuran n yang besar maka rata-rata contoh akan:

memiliki sebaran yang mendekati normal jika ukuran contoh (n) semakin besar

2. nilai harapan rata-rata contoh adalah μ

3. ragam dari rata-rata contoh adalah σ^2/n

untuk n
$$\rightarrow \infty$$

$$\overline{x} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

nilai harapan rata-rata contoh adalah μ

- nilai harapan rata-rata contoh sama dengan nilai harapan populasi
- rata-rata contoh adalah penduga yang tak bias bagi rata-rata populasi

Sifat keragaman rata-rata contoh

Bentuk Sampling Distribution dari Rata-Rata Contoh

Jika contoh berasal dari populasi yang menyebar normal

... maka rata-rata contoh akan menyebar normal, berapapun *n*.

Jika contoh berasal dari populasi yang menyebar tidak normal

 $\mu_{\overline{x}}$... maka rata-rata contoh akan menyebar normal, asalkan *n* besar.

Seberapa besar n? Agar sebaran rata-rata contoh cukup dekat dengan sebaran normal...

- pada umumnya, untuk berbagai bentuk sebaran data populasi kita dapat mencapai itu ketika n > 25 (beberapa buku menyebut $n \ge 30$)
- pada sebaran data populasi yang sangat tidak simetris, diperlukan n yang lebih besar lagi
- gunakan aplikasi http://shiny.stat.ipb.ac.id/bagusco/stk211/ pada menu SIMULASI SEBARAN CONTOH untuk melakukan simulasi tentang hal ini

Seberapa besar n? Agar sebaran rata-rata contoh cukup dekat dengan sebaran normal...

URL aplikasi:

http://shiny.stat.ipb.ac.id/bagusco/stk211/

Ilustrasi

- Andaikan kita memiliki suatu populasi data banyaknya buku yang dipinjam siswa dalam satu semester dengan $\mu=8$ dan simpangan baku $\sigma=3$.
- Sebuah contoh acak n = 36 diambil dari populasi tersebut.
- Berapa peluang rata-rata contoh yang diperoleh berada pada rentang 7.8 and 8.2?
- Meskipun tidak ada keterangan bahwa sebaran populasi normal, berdasarkan dalil limit pusat kita dapat menyebutka bahwa sebaran rata-rata contoh mendekati normal dengan rata-rata μ = 8 dan simpangan baku $3/\sqrt{36}$ = 3/6 = 0.5

sehingga P(7.8 <
$$\overline{X}$$
 < 8.2) = 0.3108

=NORM.DIST(8.2, 8, 0.5, 1) - NORM.DIST(7.8, 8, 0.5, 1)

mean stdev
(μ)

Ilustrasi

- Andaikan kita memiliki suatu populasi data banyaknya buku yang dipinjam siswa dalam satu semester dengan $\mu = 8$ dan simpangan baku $\sigma = 3$.
- Sebuah contoh acak n = 36 diambil dari populasi tersebut.
- Berapa peluang rata-rata contoh yang diperoleh berada pada rentang 7.8 and 8.2?
- Meskipun tidak ada keterangan bahwa sebaran populasi normal, berdasarkan dalil limit pusat kita dapat menyebutka bahwa sebaran rata-rata contoh mendekati normal dengan rata-rata μ = 8 dan simpangan baku $3/\sqrt{36} = 3/6 = 0.5$

sehingga
$$P(7.8 < \overline{x} < 8.2) = P\left(\frac{7.8 - 8}{0.5} < Z < \frac{8.2 - 8}{0.5}\right)$$

= $P(-0.4 < Z < 0.4)$
= $P(Z < 0.4) - P(Z < -0.4)$
= $0.6554 - 0.3446 = 0.3108$
= NORM.S.DIST(0.4,1) - NORM.S.DIST(-0.4,1)

Sebaran Penarikan Contoh untuk Proporsi Contoh

Sebaran Penarikan Contoh dari Proporsi

- proporsi adalah fraksi antara banyaknya kejadian tertentu dibagi dengan banyaknya amatan
- misal: dari 200 orang terdapat 120 perempuan, maka proporsi perempuan adalah 120/200 atau 0.6 atau 60%
- andaikan nilai pada data kita tuliskan 1 untuk perempuan dan 0 untuk laki-laki.... maka proporsi 0.6 juga dapat dituliskan sebagai jumlah dari 200 buah data bernilai 1 dan 0 dibagi 200
- formula proporsi menyerupai rata-rata
- karenanya... sifat sebaran penarikan contoh dari proporsi juga sama dengan rata-rata

Sebaran Penarikan Contoh dari Proporsi

Populasi

proporsi pada populasi = p

$$E(\hat{p}) = p$$

$$\sigma_{\hat{p}}^2 = \frac{p(1-p)}{n}$$

Ilustrasi

 Jika populasi yang sesungguhnya dari pendukung pasangan A adalah p = 0.4, dan dari populasi dilakukan survei dengan mengambil contoh 200 orang, berapa peluang survei menghasilkan proporsi antara antara 0.5 dan 0.6?

Jika p = 0.4 dan n = 200,berapa P(0.5 < phat < 0.6)?

$$\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{.4(1-.4)}{200}} = .03464$$

$$P(0.5 < \hat{p} < 0.6) = 0.00195$$

=NORM.DIST(0.6, 0.4, 0.03464, 1) - NORM.DIST(0.5, 0.4, 0.03464, 1)

Sebaran Penarikan Contoh untuk Ragam Contoh

Ragam

• Andaikan x_1, x_2, \ldots, x_n adalah contoh acak dari suatu populasi. Ragam contoh adalah

$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

• Akar kuadrat dari ragam disebut simpangan baku

Sebaran dari Ragam Contoh

Sebaran penarikan contoh dari s² memiliki nilai harapan dan ragam sebagai berikut:

$$E(s^2) = \sigma^2$$

$$E(s^2) = \sigma^2$$

$$Var(s^2) = \frac{2\sigma^4}{n-1}$$

Jika populasi memiliki sebaran normal, maka

$$\frac{(n-1)s^2}{\sigma^2}$$

memiliki sebaran χ^2 (chi-square, khi-kuadrat) dengan derajat bebas n – 1

Bentuk Sebaran Chi-Square

 Bentuk sebarannya tergantung pada nilai derajat bebas (degree of freedom, df)

Tentang Derajat Bebas

ide: banyaknya amatan yang nilainya bebas setelah rata-rata contoh diketahui

Ilustrasi: Rata-rata dari 3 bilangan adalah 8

Jadi untuk n = 3, derajat bebasnya adalah df = 3 - 1 = 2

(2 nilai bisa sembarang, tapi yang ketiga tidak jika rata-ratanya sudah diketahui)

Inspiring Innovation with Integrity in Agriculture, Ocean and Biosciences for a Sustainable World