ML 2019 SPRING HW1

B06902074 資工二 柯宏穎

請實做以下兩種不同feature的模型,回答第 (1) ~ (3) 題:

- (1) 抽全部9小時內的污染源feature當作一次項(加bias)
- (2) 抽全部9小時內pm2.5的一次項當作feature(加bias)

備註:

- a. NR請皆設為0,其他的數值不要做任何更動
- b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等) 都是可以用的
- c. 第1-3題請都以題目給訂的兩種model來回答
- d. 同學可以先把model訓練好,kaggle死線之後便可以無限上傳。
- e. 根據助教時間的公式表示,(1) 代表 p = 9x18+1 而(2) 代表 p = 9*1+1
- 1. (2%)記錄誤差值 (RMSE)(根據kaggle public+private分數),討論兩種feature的影響

	public score	private score	
(1)All feature	5.66699	7.21391	
(2)PM2.5	5.93022	7.24763	

明顯地,只抓取pm2.5的來預測,因影響pm2.5的原因必定不只一個,我們不能純粹依照前9小時的pm2.5來 training,會忽略掉過多可能的變因。

2. (1%)將feature從抽前9小時改成抽前5小時,討論其變化

	public score	private score	
(1)All feature	5.98296	7.17309	
(2)PM2.5	6.23692	7.24512	

這次我取預測前5小時來做training,跟用前9小時的比較,差距不大。在public中,用比較長的時間去training,相對好比較多,這也比較符合想像:有更多的先備資料,能更準確地預測未來。private中則幾乎相同,較無討論空間。

3. (1%)Regularization on all the weight with λ =0.1、0.01、0.001、0.0001,並作圖

	λ=0.1	λ=0.01	λ=0.001	λ=0.0001
All feature(public)	5.66700	5.66699	5.66699	5.66699
PM2.5(public)	5.93022	5.93022	5.93022	5.93022
All feature(private)	7.21391	7.21391	7.21391	7.21391
PM2.5(private)	7.24762	7.24763	7.24763	7.24763

由多次training可發現,在本次的預測中,可能因為有加入adagra 的關係, λ 極小時,並無太大的差別,因為越接近optimal點時,下降速度越慢,本來就不太容易過於接近極值點造成overfitting。有嘗試過將 λ 調大, 會造成 underfitting,版上的score會變高。

4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 x^n ,其標註(label)為一純量 y^n ,模型參數為一向量w (此處忽略偏權值 b),則線性回歸的損失函數(loss function)為 $\sum_{n=1}^N (y^n-x^n*w)^2$ 。若將所有訓練資料的特徵值以矩陣 $X=[x^1x^2\dots x^N]^T$ 表示,所有訓練資料的標註以向量 $y=[y^1y^2\dots y^N]^T$ 表示,請問如何以 X 和 y 表示可以最小化損失函數的向量 w ?請選出正確答案。(其中 X^TX 為invertible)

Ans:(c)