Sorular (Mobil Sürüm)

VK

05/04/2020

Bazen çevreden hoşuma giden sorular görüyorum. Bunları da çözüp atmak yerine bir yerde depolayıp örnek sorular oluşturma fikri aklıma geldi. O yüzden Github'ta tutayım dedim, belki gün gelir yeterli soru birikirse millet de faydalanır (faydalanamadı).

1 Soru: 2020/04/04

Soru:

$$\left. \begin{array}{l} x - ay + z = 1 \\ ax - y + z = a \\ x + y - z = 0 \end{array} \right\} \text{lineer denklem sisteminin}$$

- (a) tek çözümünün olması için a = ?
- (b) çözümünün olmaması için a = ?
- (c) sonsuz çözümünün olması için a = ?

Cevap: Denklemi öncelikle matris formunda yazalım.

$$\underbrace{\begin{bmatrix} 1 & -a & 1 \\ a & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} x \\ y \\ z \end{bmatrix}}_{b} = \underbrace{\begin{bmatrix} 1 \\ a \\ 0 \end{bmatrix}}_{b} \tag{1}$$

sol ve sağ tarafı birleştirerek arttırılmış matrisi (A|b) oluşturalım.

$$\begin{bmatrix}
1 & -a & 1 & | & 1 \\
a & -1 & 1 & | & a \\
1 & 1 & -1 & | & 0
\end{bmatrix}$$
(2)

Gauss eleme yöntemini uygulamak için 3. satırı -1 ile çarpıp 1. satıra, -a ile çarpıp 2. satıra eklersek:

$$\begin{bmatrix}
0 & -a-1 & 2 & 1 \\
0 & -a-1 & a+1 & a \\
1 & 1 & -1 & 0
\end{bmatrix}$$
(3)

2. satırı -1 ile çarpıp 1. satıra eklersek

$$\begin{bmatrix}
0 & 0 & 1-a & 1-a \\
0 & -a-1 & a+1 & a \\
1 & 1 & -1 & 0
\end{bmatrix}$$
(4)

katsayılar kısmının determinantına, 3. satır 1. sütun elemanına göre Laplace açılımıyla baktığımızda:

$$\det(A) = 1 \cdot (1 - a) \cdot (1 + a) = 1 - a^2 \tag{5}$$

- a) Tek çözümü olması için $\det(A) \neq 0$ olmalı. Bu yüzden $a \in \mathbb{R} \setminus \{1, -1\}$
- b) Sonsuz çözüm için ise arttırılmış matrisin rank değerinin satır sayısından küçük olması gerekir. Katsayılar kısmının determinantının $a \in \{1, -1\}$ olduğunu biliyorsak. a = 1 için (A|b)'nin ilk satırının tamamen 0 olduğu açıkça görülmektedir. Böylelikle rank((A|b)) = 2 < 3 olacaktır. Bu durumda sonsuz çözüm elde edilir.
- c) Hiç çözümün olmaması için ise katsayılar matrisinin rank değeri 3'ten küçük olduğu halde arttırılmış matrisin rank değerinin 3 olması gereklidir. Bu durum da a=-1 için sağlanır.

Bu yaptığımız işlemlerin doğruluğunu gözle görmek için üstteki şartları denklem takımımıza yerleştirirsek. a=1 için:

$$x - y + z = 1$$
$$x - y + z = 1$$
$$x + y - z = 0$$

Görüldüğü üzere 1. ve 2. denklem aynı olduğundan dolayı ikisinden biri silinerek gerçekte 2 tane denklem 3 tane değişken içeren bir sistemimiz olduğu görülür. Böylelikle 3. değişken bağımsız değişken olup, bu değişken sonsuz farklı değer alabileceğinden, denklem sistemimizin sonsuz çözümü vardır. Bundan farklı olarak, yine katsayılar matrisinin determinantını sıfır yapıyor olsa da a=-1 durumu için denklem sistemini incelersek:

Burada da görüldüğü gibi, 2. denklemin sol tarafını -1 ile çarptığımızda 3. denklemin sol tarafını elde edebiliyor olmamıza rağmen, sağ tarafı 1 olmaktadır. Bu da 3. denklemin 0 olan sağ tarafından farklıdır. Yani 2. ve 3. denklemlerin

birbiri ile çeliştiği bellidir. Bu sebepten ötürü çözüm kümesi boştur.

Son olarak da grafik bir anlam yüklemek istersek, üstte verilen denklem sistemleri 3 boyutlu uzayda çeşitli düzlemleri ifade eder. Bir denklem sisteminin çözümünü kümesi ise bu düzlemlerin kesişiminde kalan noktalar kümesi olarak düşünülebilir. Katsayılar matrisinin determinantının sıfır olması, düzlemlerin birbirine paralel olduğuna işarettir. Denklemin sağ tarafındaki sayıların farkı da bu iki düzlem arasındaki uzaklığa işaret ettiğinden, sağ tarafı aynı olan iki paralel düzlem, aynı düzlemdir ve tüm noktalarda kesişir. Ancak eğer sağ tarafları farklıysa, aralarında sabit bir uzaklık bulunan bu iki düzlem, asla kesişmezler ve böylelikle sonuç da bulunamaz. Bunun belki grafiğini de çizerim ileride (çizmedi).

2 Soru: 2020/03/12

Soru: $\int_0^\infty te^{-kt^2}dt = \frac{1}{2k}$ is en 'in tek degerleri icin $\int_0^\infty t^n e^{-kt^2}dt$ nedir?

Cevap:

n tek ise n=2m+1 $\forall m \in \{0,1,2,\cdots\}$ yazılabilir. Öyleyse integral:

$$\int_{0}^{\infty} t^{2m+1} e^{-kt^2} dt = \int_{0}^{\infty} t^{2m} t e^{-kt^2} dt \tag{6}$$

Bunu integral reduction ile çözmeliyiz. Ama önce değişken dönüşümü yapalım. $z=t^2$ için dz=2tdt olur.

$$z = t^2 (7)$$

$$dz = 2tdt (8)$$

$$t^{2m} = (t^2)^m = z^m (9)$$

$$t \to 0, \quad z \to 0$$
 (10)

$$t \to \infty, \quad z \to \infty$$
 (11)

Öyleyse:

$$\underbrace{\frac{1}{2} \int_0^\infty z^m e^{-kz} dz}_{I(m)} \tag{12}$$

Bundan sonra I(m)'i çözmek integral reduction ile çok kolay! Tabi yardımımıza

kısmi integrasyon yetişsin. $\int v du = uv - \int u dv$

$$v = z^m (13)$$

$$dv = mz^{m-1} (14)$$

$$du = e^{-kz}dz (15)$$

$$u = -e^{-kz}/k (16)$$

(17)

Yerlerine yazarsak:

$$I(m) = \frac{1}{2} \left(\underbrace{-e^{-kz} z^m / k}_{f(z)} \right|_0^{\infty} + \frac{m}{k} \underbrace{\frac{1}{2} \int_0^{\infty} z^{m-1} e^{-kz} dz}_{I(m-1)}$$
(18)

Burada f(z) hesaplanırsa

$$\lim_{z \to \infty} f(z) = \lim_{z \to \infty} \left(-\frac{z^m}{e^{kz}} \right) = 0 \tag{19}$$

$$f(0) = 0 \tag{20}$$

Böylelikle Denklem (18):

$$I(m) = \frac{m}{k}I(m-1) \tag{21}$$

m=1için soruda verildiği üzere I(0)=1/(2k) olduğundan:

$$I(1) = \frac{1}{k} \cdot \frac{1}{2k} = \frac{1}{2k^2} \tag{22}$$

$$I(2) = \frac{2}{k} \cdot \frac{2k}{2k^2} = \frac{1}{k^3}$$

$$I(3) = \frac{3}{k} \cdot \frac{1}{k^3} = \frac{3}{k^4}$$
(23)

$$I(3) = \frac{3}{k} \cdot \frac{1}{k^3} = \frac{3}{k^4} \tag{24}$$

$$\vdots (25)$$

$$I(m) = \frac{m!}{2k^{m+1}} \tag{26}$$

Burada tabi soruda n verildigi icin m cinsinden birakmak yakışık almaz. Onu da çevirmek lazım (çevirmedi)