H21A1, H21A2, H21A3, H22A1, H22A2, H22A3,

1mm APERTURE OPTO-ELECTRONIC SINGLE CHANNEL SLOTTED INTERRUPTER SWITCHES WITH TRANSISTOR SENSORS

DESCRIPTION

The H21A_ and H22A_ series of opaque photointerrupters are single channel switches consisting of a Gallium Arsenide infrared emitting diode and a NPN silicon photo transistor mounted in a polycarbonate housing. The package is designed to optimise the mechanical resolution, coupling efficiency, ambient light rejection, cost and reliability. Operating on the principle that objects opaque to infrared will interrupt the transmission of light between an infrared emitting diode and a photo sensor switching the output from an "ON" state to an "OFF" state.

FEATURES

- High Gain
- 3mm Gap between LED and Detector
- Polycarbonate case protected against ambient light

APPLICATIONS

 Copiers, Printers, Facsimilies, Record Players, Casette Decks, Optoelectronic Switches

ABSOLUTE MAXIMUM RATINGS (25°C unless otherwise specified)

Storage Temperature	-40°C to +	- 85°C
Operating Temperature	-25°C to +	- 85°C
Lead Soldering Temperature		
(1/16 inch (1.6mm) from case for	or 10 secs)	260°C

INPUT DIODE

Forward Current	50mA
Reverse Voltage	5V
Power Dissipation	75mW

OUTPUT TRANSISTOR

Collector-emitter Voltage BV _{CEO}	<i>3</i> 0V
$\begin{array}{c} \text{Emitter-collector Voltage BV}_{\text{ECO}} \\ \text{Collector Current I}_{\text{C}} \\ \text{Power Dissipation} \end{array}$	5V 20mA 75mW

2017

ISOCOM COMPONENTS LTD

Unit 25B, Park View Road West, Park View Industrial Estate, Brenda Road Hartlepool, TS25 1YD England Tel: (01429)863609 Fax: (01429)863581 e-mail sales@isocom.co.uk http://www.isocom.com

DB92168L

ELECTRICAL CHARACTERISTICS ($\rm T_{A}{=}~25^{\circ}C$ Unless otherwise noted)

	PARAMETER	MIN	TYP	MAX	UNITS	TEST CONDITION
Input	Forward Voltage (V_F) Reverse Voltage (V_R) Reverse Current (I_R)	5	1.2	1.7	V V μA	$I_{F} = 50 \text{mA}$ $I_{R} = 100 \mu \text{A}$ $V_{R} = 5 \text{V}$
Output	Collector-emitter Breakdown (BV $_{CEO}$)	30			V	$I_{\rm C} = 1 \text{mA}$
	$Emitter-collector Breakdown (BV_{ECO}) \\ Collector-emitter Dark Current (I_{CEO})$	5		100	V nA	$I_{\rm E} = 100 \mu A$ $V_{\rm CE} = 10 V$
Coupled	On-State Collector Current $I_{c}(_{ON})$ (Note 1)					
	H21A1,H22A1	0.15 1.0 1.9			mA mA mA	$5\text{mAI}_{\text{F}}, 5\text{VV}_{\text{CE}}$ $20\text{mAI}_{\text{F}}, 5\text{VV}_{\text{CE}}$ $30\text{mAI}_{\text{F}}, 5\text{VV}_{\text{CE}}$
	H21A2,H22A2	0.3 2.0 3.0			mA mA mA	5mAI_{F} , 5VV_{CE} 20mAI_{F} , 5VV_{CE} 30mAI_{F} , 5VV_{CE}
	H21A3,H22A3	0.6 4.0 5.5			mA mA mA	5mAI_{F} , 5V V_{CE} 20mAI_{F} , 5V V_{CE} 30mA I_{F} , 5V V_{CE}
	Collector-emitter Saturation Voltage $V_{\text{CE(SAT)}}$ H21A2, 3, H22A2, 3 H21A1, H22A1			0.4 0.4	V V	$20\mathrm{mAI}_{_{\mathrm{F}}}, 1.8\mathrm{mAI}_{_{\mathrm{C}}}$ $30\mathrm{mAI}_{_{\mathrm{F}}}, 1.8\mathrm{mAI}_{_{\mathrm{C}}}$
	Turn-on Time ton Turn-off Time toff		8 50		μs μs	$V_{CC} = 5V$, $I_F = 30\text{mA}, R_L = 2.5\text{k}\Omega$

Note 1 Special Selections are available on request. Please consult the factory.

21/6/10 DB92168L

Collector Power Dissipation vs. Ambient Temperature

Normalized Output Current vs. Collector-emitter Voltage

Forward Current vs. Ambient Temperature

Normalized Output Current vs.

Normalized Output Current vs. Ambient Temperature

Collector-emitter Saturation

