StarSpark AI: ML Intern Assignment

Image-to-Asymptote Model Fine-Tuning

Overview

Develop a fine-tuned version of an open-source language model (e.g., Llama, Gemma) that generates compilable <u>Asymptote</u> code from technical or mathematical images. This project simulates a real-world application for Al-assisted mathematical content creation in K-12 education.

Assignment Components

1. Model Selection

- Task: Choose an appropriate open-source language model as your base.
- **Considerations:** Assess model performance, community support, and compatibility with your intended fine-tuning objectives.

2. Dataset Creation

- Data Curation: Curate a dataset consisting of image-to-Asymptote code pairs.
- Methodology Documentation: Clearly document your data collection process including:
 - Data sources
 - Tools and techniques used
 - Any ethical or copyright considerations
- **Dataset Splitting:** Create and document separate training, validation, and test sets to ensure robust model evaluation.

3. Fine-Tuning Pipeline

- Approach: Design a fine-tuning strategy tailored to the selected model.
- Implementation:
 - Develop the training pipeline
 - Apply hyperparameter tuning
 - Monitor and log model performance during training

 Documentation: Detail your training decisions, challenges faced, and rationale for your choices.

4. Evaluation

- Metrics Definition: Implement evaluation metrics to assess:
 - Syntactic Correctness: The generated Asymptote code must compile without errors.
 - Visual Fidelity: The output diagrams should accurately represent the input images.
- **Performance Analysis:** Analyze model outputs to determine where the model excels and where improvements are needed.

Deliverables

- Public GitHub Repository: Include reproducible code and clear instructions.
- Model Access: Provide trained model weights or an access method.
- **Documentation:** Comprehensive documentation covering:
 - Data collection methodology
 - o Fine-tuning pipeline details and hyperparameter tuning decisions
 - Evaluation metrics and analysis of model performance
- Final Report: A detailed report summarizing:
 - The approach and methodology
 - Experimental results and performance metrics
 - Insights, challenges, and potential future improvements

Timeline

- **Duration:** Complete the assignment within two weeks from the assignment date.
- **Milestones:** Define intermediate checkpoints to track progress and ensure timely completion.

Final Evaluation

Your model will be assessed on a private test set curated by StarSpark.AI, featuring diverse mathematical diagrams relevant to K-12 education.

Evaluation Criteria

- **Technical Implementation:** Robustness and scalability of your solution.
- Data Engineering: Innovation and thoroughness in the dataset creation process.
- **Problem Solving:** Creative and effective solutions to encountered challenges.

- Code Quality & Documentation: Readability, maintainability, and clarity of code and supporting documentation.
- **Model Performance:** Effectiveness based on both syntactic correctness and visual fidelity.
- **Analytical Insights:** Depth of analysis in your final report regarding model successes and areas for improvement.