Centro de Estatística Aplicada

Gustavo Kanno¹ Rodrigo Marcel Araujo² Victor Ribeiro Baião Decanini³

Julho de 2021

Sumário

Análise das séries temporais mensais	5
Análise Descritiva	5
Funções de Autocorrelações	31
Testes de Dickey-Fuller e Phillips-Perron	37
Análise Correlação Cruzada	
Selecionado as variáveis de interesse do estudo	. 45
Modelo da Bovinocultura	46
Regressão classifica no contexto de Séries Temporais	
Regressão com erros autocorrelacionais	
Modelo da Avicultura de Corte	
Regressão classica no contexto de Séries Temporais	
Modelo da Pescados	
Regressão classifica no contexto de Séries Temporais	
Regressão com erros autocorrelacionais	
Modelo da Avicultura de postura	71
Regressão classifica no contexto de Séries Temporais	
Regressão com erros autocorrelacionais	
Modelo do Lácteos	
Regressão classifica no contexto de Séries Temporais	
Análise dos resíduos e seleção de variáveis de acordo com p-valor	
Modelo do Suinocultura	82
Estruturando a base	82
Regressão classifica no contexto de Séries Temporais	
Análise das séries temporais anuais	96
Analise das series temporais andais	
Testes de Dickey-Fuller e Phillips-Perron	
Regressão Lasso para Bovinocultura	
Regressão Lasso para o Pescado	
Regressão Lasso para a Avicultura de Corte	. 108

 $^{^{1}}$ Número USP: 9795810 2 Número USP: 9299208 3 Número USP: 9790502

egressão Lasso para Avicultura de Postura	10
egressão Lasso para o Lácteos	12
egressão Lasso para Suinocultura	14

```
library(randtests)
##
## Attaching package: 'randtests'
## The following object is masked from 'package:tseries':
##
##
       runs.test
library(zoo)
library(TSA)
## Registered S3 methods overwritten by 'TSA':
##
     method
                  from
##
     fitted.Arima forecast
##
     plot.Arima
                 forecast
##
## Attaching package: 'TSA'
## The following object is masked from 'package:GeneCycle':
##
##
       periodogram
## The following object is masked from 'package:readr':
##
##
       spec
## The following objects are masked from 'package:stats':
##
##
       acf, arima
## The following object is masked from 'package:utils':
##
##
       tar
library(gridExtra)
library(FitAR)
## Loading required package: lattice
##
## Attaching package: 'lattice'
## The following object is masked from 'package:faraway':
##
##
       melanoma
```

```
## Loading required package: leaps
## Loading required package: ltsa
## Loading required package: bestglm
##
## Attaching package: 'FitAR'
## The following object is masked from 'package:forecast':
##
##
       BoxCox
## The following object is masked from 'package:car':
##
##
       Boot
library(glmnet)
## Loading required package: Matrix
##
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
##
       expand, pack, unpack
## Loaded glmnet 4.1-1
library(astsa)
##
## Attaching package: 'astsa'
## The following objects are masked from 'package:fma':
##
##
       chicken, sales
## The following object is masked from 'package:forecast':
##
##
       gas
## The following object is masked from 'package:fpp2':
##
##
       oil
```

```
## The following object is masked from 'package:faraway':
##
## star
library(lmtest)
```

Análise das séries temporais mensais

Análise Descritiva

```
data$Data <- as.Date(data$Data)</pre>
head(data)
## # A tibble: 6 x 24
                Arroz 'Avicultura de ~ 'Avicultura de ~ Banana Batata
##
    Data
     <date>
                <dbl>
                                <dbl>
                                                  <dbl> <dbl> <dbl>
## 1 2007-01-01 0.01
                                 0.295
                                                    3.43 -2.86 0.75
## 2 2007-02-01 -0.68
                                 1.71
                                                   2.82 -1.62 -3.83
## 3 2007-03-01 -0.635
                                 2.26
                                                   10.1
                                                           1.05
                                                                 7.61
## 4 2007-04-01 -0.635
                                 -0.56
                                                   1.31 -2.65 36.4
## 5 2007-05-01 0.13
                                 -0.13
                                                   -1.11 -1.46 11.6
## 6 2007-06-01 0.230
                                  0.27
                                                    4.93 -1.07 -5.17
## # ... with 18 more variables: Bovinocultura <dbl>, 'Cacau e produtos' <dbl>,
      Café <dbl>, Cebola <dbl>, 'Complexo soja' <dbl>, 'Complexo
      sucroalc.' <dbl>, Feijão <dbl>, Frutas <dbl>, Hortícolas <dbl>,
      Indefinido <dbl>, 'Laranja e citros' <dbl>, Lácteos <dbl>, Mandioca <dbl>,
## #
      Milho <dbl>, Pescado <dbl>, Suinocultura <dbl>, Tomate <dbl>, Trigo <dbl>
zt2 <- ts(data[,2], frequency = 12, start = 2007, end = 2019)
zt3 <- ts(data[,3], frequency = 12, start = 2007, end = 2019)
zt4 <- ts(data[,4], frequency = 12, start = 2007, end = 2019)
zt5 <- ts(data[,5], frequency = 12, start = 2007, end = 2019)
zt6 <- ts(data[,6], frequency = 12, start = 2007, end = 2019)
zt7 <- ts(data[,7], frequency = 12, start = 2007, end = 2019)
zt8 <- ts(data[,8], frequency = 12, start = 2007, end = 2019)
zt9 <- ts(data[,9], frequency = 12, start = 2007, end = 2019)
zt10 <- ts(data[,10], frequency = 12, start = 2007, end = 2019)
zt11 <- ts(data[,11], frequency = 12, start = 2007, end = 2019)
zt12 <- ts(data[,12], frequency = 12, start = 2007, end = 2019)
zt13 <- ts(data[,13], frequency = 12, start = 2007, end = 2019)
zt14 <- ts(data[,14], frequency = 12, start = 2007, end = 2019)
zt15 <- ts(data[,15], frequency = 12, start = 2007, end = 2019)
zt16 <- ts(data[,16], frequency = 12, start = 2007, end = 2019)
zt17 <- ts(data[,17], frequency = 12, start = 2007, end = 2019)
zt18 <- ts(data[,18], frequency = 12, start = 2007, end = 2019)
zt19 <- ts(data[,19], frequency = 12, start = 2007, end = 2019)
zt20 \leftarrow ts(data[,20], frequency = 12, start = 2007, end = 2019)
zt21 <- ts(data[,21], frequency = 12, start = 2007, end = 2019)
```

```
zt22 <- ts(data[,22], frequency = 12, start = 2007, end = 2019)
zt23 <- ts(data[,23], frequency = 12, start = 2007, end = 2019)
zt24 <- ts(data[,24], frequency = 12, start = 2007, end = 2019)</pre>
```

```
plot(zt2,main="Série Temporal do Arroz", xlab= "Anos", ylab="IPCA")
```

Série Temporal do Arroz


```
#par(mfrow = c(2, 2))
plot(zt3,main="Série Temporal de Avicultura de Corte", xlab= "Anos", ylab="IPCA")
```

Série Temporal de Avicultura de Corte

plot(zt4,main="Série Temporal de Avicultura de Postura", xlab= "Anos", ylab="IPCA")

Série Temporal de Avicultura de Postura

plot(zt5,main="Série Temporal da Banana", xlab= "Anos", ylab="IPCA")

Série Temporal da Banana

plot(zt6,main="Série Temporal da Batata", xlab= "Anos", ylab="IPCA")

Série Temporal da Batata


```
#par(mfrow = c(3, 2))
plot(zt7,main="Série Temporal da Bovinocultura", xlab= "Anos", ylab="IPCA")
```

Série Temporal da Bovinocultura

plot(zt8,main="Série Temporal do Cacau e Produtos", xlab= "Anos", ylab="IPCA")

Série Temporal do Cacau e Produtos

plot(zt9,main="Série Temporal do Café", xlab= "Anos", ylab="IPCA")

Série Temporal do Café

plot(zt10,main="Série Temporal da Cebola", xlab= "Anos", ylab="IPCA")

Série Temporal da Cebola

plot(zt11, main="Série Temporal do Complexo Soja", xlab= "Anos", ylab="IPCA")

Série Temporal do Complexo Soja

plot(zt12,main="Série Temporal do Complexo Sucroalc.", xlab= "Anos", ylab="IPCA")

Série Temporal do Complexo Sucroalc.


```
#par(mfrow = c(3, 2))
plot(zt13,main="Série Temporal do Feijão", xlab= "Anos", ylab="IPCA")
```

Série Temporal do Feijão

plot(zt14, main="Série Temporal das Frutas", xlab= "Anos", ylab="IPCA")

Série Temporal das Frutas

plot(zt15, main="Série Temporal das Horticulas", xlab= "Anos", ylab="IPCA")

Série Temporal das Horticulas

plot(zt16, main="Série Temporal de Indefinido", xlab= "Anos", ylab="IPCA")

Série Temporal de Indefinido

plot(zt17,main="Série Temporal do Laranja e Citrus", xlab= "Anos", ylab="IPCA")

Série Temporal do Laranja e Citrus

plot(zt18, main="Série Temporal da Lácteos", xlab= "Anos", ylab="IPCA")

Série Temporal da Lácteos


```
#par(mfrow = c(3, 2))
plot(zt19,main="Série Temporal da Mandioca", xlab= "Anos", ylab="IPCA")
```

Série Temporal da Mandioca

plot(zt20,main="Série Temporal do Milho", xlab= "Anos", ylab="IPCA")

Série Temporal do Milho

plot(zt21,main="Série Temporal do Pescado", xlab= "Anos", ylab="IPCA")

Série Temporal do Pescado

plot(zt22, main="Série Temporal da Suínocultura", xlab= "Anos", ylab="IPCA")

Série Temporal da Suínocultura

plot(zt23,main="Série Temporal do Tomate", xlab= "Anos", ylab="IPCA")

Série Temporal do Tomate

plot(zt24, main="Série Temporal do Trigo", xlab= "Anos", ylab="IPCA")

Série Temporal do Trigo


```
par(mfrow = c(2, 1))
plot(zt21,main="Série Temporal do Pescado", xlab= "Anos", ylab="IPCA")
plot(zt18,main="Série Temporal do Lácteos", xlab= "Anos", ylab="IPCA")
```

Série Temporal do Pescado

Série Temporal do Lácteos

#900#650

```
par(mfrow = c(2, 1))
plot(zt7,main="Série Temporal da Bovinocultura", xlab= "Anos", ylab="IPCA")
plot(zt22,main="Série Temporal da Suínocultura", xlab= "Anos", ylab="IPCA")
```

Série Temporal da Bovinocultura

Série Temporal da Suínocultura


```
par(mfrow = c(2, 1))
plot(zt3,main="Série Temporal de Avicultura de Corte", xlab= "Anos", ylab="IPCA")
plot(zt4,main="Série Temporal de Avicultura de Postura", xlab= "Anos", ylab="IPCA")
```

Série Temporal de Avicultura de Corte

Série Temporal de Avicultura de Postura

Funções de Autocorrelações

Funções de Autocorrelações para Avicultura de Corte

```
#Funções de Autocorrelações para Avicultura de Corte
par(mfrow = c(1, 2))
acf(zt3, main="ACF Avicultura de Corte")
pacf(zt3, main="PACF Avicultura de Corte")
```

ACF Avicultura de Corte

PACF Avicultura de Corte

Funções de Autocorrelações para Avicultura de Postura

```
#Funções de Autocorrelações para Avicultura de Postura
par(mfrow = c(1, 2))
acf(zt4, main="ACF Avicultura de Postura")
pacf(zt4, main="PACF Avicultura de Postura")
```

ACF Avicultura de Postura

PACF Avicultura de Postura

Funções de Autocorrelações para Suinocultura

```
#Funções de Autocorrelações para Suinocultura
par(mfrow = c(1, 2))
acf(zt22, main="ACF Suínocultura")
pacf(zt22, main="PACF Suínocultura")
```

ACF Suínocultura

PACF Suínocultura

Funções de Autocorrelações para Pescado

```
#Funções de Autocorrelações para Pescado
par(mfrow = c(1, 2))
acf(zt21, main="ACF Pescado", lag.max = 36)
pacf(zt21, main="PACF Pescado", lag.max = 36)
```


Funções de Autocorrelações para Lácteos

```
#Funções de Autocorrelações para Lácteos
par(mfrow = c(1, 2))
acf(zt18, main="ACF Lácteos", lag.max = 48)
pacf(zt18, main="PACF Lácteos", lag.max = 48)
```


Funções de Autocorrelações para Bovinocultura

```
#Funções de Autocorrelações para Bovinocultura
par(mfrow = c(1, 2))
acf(zt7, main="ACF Bovinocultura")
pacf(zt7, main="PACF Bovinocultura")
```

ACF Bovinocultura

PACF Bovinocultura

Testes de Dickey-Fuller e Phillips-Perron

Teste de Dickey-Fuller

```
# Teste de Dickey-Fuller
adf.test(zt7)
```

```
##
## Augmented Dickey-Fuller Test
##
## data: zt7
## Dickey-Fuller = -4.4888, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary
```

```
adf.test(zt3)
```

```
##
## Augmented Dickey-Fuller Test
##
## data: zt3
## Dickey-Fuller = -5.4727, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary
```

```
adf.test(zt4)
##
   Augmented Dickey-Fuller Test
##
##
## data: zt4
## Dickey-Fuller = -6.117, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary
adf.test(zt18)
##
  Augmented Dickey-Fuller Test
## data: zt18
## Dickey-Fuller = -4.3253, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary
adf.test(zt21)
##
## Augmented Dickey-Fuller Test
##
## data: zt21
## Dickey-Fuller = -8.7741, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary
adf.test(zt22)
##
## Augmented Dickey-Fuller Test
## data: zt22
## Dickey-Fuller = -4.0878, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary
       Teste de Phillips-Perron
# Teste de Phillips-Perron
pp.test(zt7)
##
## Phillips-Perron Unit Root Test
## data: zt7
## Dickey-Fuller Z(alpha) = -70.675, Truncation lag parameter = 4, p-value
## alternative hypothesis: stationary
```

```
pp.test(zt3)
##
## Phillips-Perron Unit Root Test
## data: zt3
## Dickey-Fuller Z(alpha) = -69.133, Truncation lag parameter = 4, p-value
## = 0.01
## alternative hypothesis: stationary
pp.test(zt4)
##
## Phillips-Perron Unit Root Test
## data: zt4
## Dickey-Fuller Z(alpha) = -99.344, Truncation lag parameter = 4, p-value
## alternative hypothesis: stationary
pp.test(zt18)
##
## Phillips-Perron Unit Root Test
## data: zt18
## Dickey-Fuller Z(alpha) = -47.067, Truncation lag parameter = 4, p-value
## alternative hypothesis: stationary
pp.test(zt21)
##
## Phillips-Perron Unit Root Test
## data: zt21
## Dickey-Fuller Z(alpha) = -125.86, Truncation lag parameter = 4, p-value
## = 0.01
## alternative hypothesis: stationary
pp.test(zt22)
##
## Phillips-Perron Unit Root Test
## data: zt22
## Dickey-Fuller Z(alpha) = -84.151, Truncation lag parameter = 4, p-value
## alternative hypothesis: stationary
```

Análise Correlação Cruzada

Correlaões cruzadas da Bovincultura

```
#Correlaões cruzadas da Bovincultura
par(mfrow = c(3,2))
ccf(zt7,zt3,main="Bovinocultura e Avicultura de Corte")
ccf(zt7,zt4,main="Bovinocultura e Avicultura de Postura")
ccf(zt7,zt18,main="Bovinocultura e Lácteos")
ccf(zt7,zt21,main="Bovinocultura e Pescados")
ccf(zt7,zt22,main="Bovinocultura e Suinocultura")
```

Bovinocultura e Avicultura de Corte

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Bovinocultura e Avicultura de Postura

Bovinocultura e Lácteos

Bovinocultura e Pescados

Bovinocultura e Suinocultura

Correlações cruzadas da Avicultura de Corte

```
#Correlações cruzadas da Avicultura de Corte
par(mfrow = c(3,2))
ccf(zt3,zt4,main="Avicultura de Corte e Avicultura de Postura")
ccf(zt3,zt7,main="Avicultura de Corte e Bovinocultura")
ccf(zt3,zt18,main="Avicultura de Corte e Lácteos")
ccf(zt3,zt21,main="Avicultura de Corte e Pescados")
ccf(zt3,zt22,main="Avicultura de Corte e Suinocultura")
```

Avicultura de Corte e Avicultura de Postura

No. 20 1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 Lag

Avicultura de Corte e Bovinocultura

Avicultura de Corte e Lácteos

Avicultura de Corte e Pescados

Avicultura de Corte e Suinocultura

Correlações cruzadas da Avicultura de Postura

```
#Correlações cruzadas da Avicultura de Postura
par(mfrow = c(3,2))
ccf(zt4,zt3,main="Avicultura de Postura e Avicultura de Corte")
ccf(zt4,zt7,main="Avicultura de Postura e Bovinocultura")
ccf(zt4,zt18,main="Avicultura de Postura e Lácteos")
ccf(zt4,zt21,main="Avicultura de Postura e Pescados")
ccf(zt4,zt22,main="Avicultura de Postura e Suinocultura")
```

Avicultura de Postura e Avicultura de Corte

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Avicultura de Postura e Bovinocultura

Avicultura de Postura e Lácteos

Avicultura de Postura e Pescados

Avicultura de Postura e Suinocultura

Correlações cruzadas dos Lácteos

```
#Correlações cruzadas dos Lácteos
par(mfrow = c(3,2))
ccf(zt18,zt3,main="Lácteos e Avicultura de Corte")
ccf(zt18,zt4,main="Lácteos e Avicultura de Postura ")
ccf(zt18,zt7,main="Lácteos e Bovinocultura")
ccf(zt18,zt21,main="Lácteos e Pescados")
ccf(zt18,zt22,main="Lácteos e Suinocultura")
```

Lácteos e Avicultura de Corte

Lácteos e Avicultura de Postura

Lácteos e Bovinocultura

Lácteos e Pescados

Lácteos e Suinocultura

Correlaões cruzadas dos Pescados

```
# Correlaões cruzadas dos Pescados
par(mfrow = c(3,2))
ccf(zt21,zt3,main="Pescados e Avicultura de Corte")
ccf(zt21,zt4,main="Pescados e Avicultura de Postura")
ccf(zt21,zt7,main="Pescados e Bovinocultura")
ccf(zt21,zt18,main="Pescados e Lácteos")
ccf(zt21,zt22,main="Pescados e Suinocultura")
```

Pescados e Avicultura de Corte

Pescados e Avicultura de Postura

Pescados e Bovinocultura

Pescados e Lácteos

Pescados e Suinocultura

Correlações cruzadas da Suinocultura

```
#Correlações cruzadas da Suinocultura
par(mfrow = c(3,2))
ccf(zt22,zt3,main="Suinocultura e Avicultura de Corte")
ccf(zt22,zt4,main="Suinocultura e Avicultura de Postura")
ccf(zt22,zt7,main="Suinocultura e Bovinocultura")
ccf(zt22,zt18,main="Suinocultura e Lacteos")
ccf(zt22,zt21,main="Suinocultura e Pescados")
```

Suinocultura e Avicultura de Corte

Suinocultura e Avicultura de Postura

Suinocultura e Bovinocultura

Suinocultura e Lacteos

Suinocultura e Pescados

Selecionado as variáveis de interesse do estudo

Essa função retorna a coluna com a lag a ser considerada na análise

```
#Essa função retorna a coluna com a lag a ser considerada na análise

funcao_lags = function(df,coluna,nome,lag){
    n = nrow(df)
    pre = rep(NA,lag)
    newcol = c(pre,coluna)
    for (k in 1:lag){
        df = rbind(df,rep(NA,ncol(df)))
    }
    df[nome] = newcol
    return (df)
}
```

A função a baixo retira as variáveis do modelo em função do p-valor

```
#A função a baixo retira as variáveis do modelo em função do p-valor
tirar_variaveis = function(p,d,q,x,y){
    v = p + q + 1
    max = 0.06
    while (max > 0.05){
        model = Arima(y,order=c(p,d,q),xreg = x)
        ct = coeftest(model)
```

```
pvalues = ct[(v+1):nrow(ct),4]
    maxi = which.max(pvalues)
    max = ct[v + maxi,4]
    if (max > 0.05) {
        x = x[,-maxi]
        }
    }
    lista = list(ct, x)
    return (lista)
}
```

A seguir vamos selecionar apenas as variáveis de interesse para análise

```
#A seguir vamos selecionar apenas as variáveis de interesse para análise
data_cut = data[,c("Bovinocultura","Avicultura de Corte","Avicultura de Postura","Pescado","Lácteos","S
```

Modelo da Bovinocultura

Estruturando a base

```
#Estruturando a base
df1<- funcao_lags(data_cut, data_cut$'Avicultura de Postura', 'avp9', 9)
df1 <- funcao_lags(df1, df1$Pescado, 'p3', 3)
df1 <- funcao_lags(df1, df1$Pescado, 'p10', 10)
df1 <- funcao_lags(df1, df1$Bovinocultura, 'b1', 1)</pre>
df2 <- na.omit(df1)
```

Separando variável preditora e as covariáveis

```
#Separando variável preditora e as covariáveis
x = model.matrix(Bovinocultura~.,df2)[,-1]
y = df2$Bovinocultura
```

Regressão classifica no contexto de Séries Temporais

Criando o modelo de Regressão Simples

```
#Criando o modelo de Regressão Simples
fit1 <- summary(fit <- lm(y~x))
fit1

##
## Call:
## lm(formula = y ~ x)
##
## Residuals:</pre>
```

```
10 Median
                                3Q
  -3.5314 -0.9189 -0.0157 0.5586 8.5757
##
## Coefficients:
##
                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                             0.28536
                                        0.20364
                                                   1.401 0.163405
## x'Avicultura de Corte'
                             0.41328
                                        0.11349
                                                   3.642 0.000384 ***
## x'Avicultura de Postura'
                             0.04542
                                        0.06035
                                                   0.753 0.452982
## xPescado
                            -0.26037
                                        0.11194
                                                  -2.326 0.021498 *
## xLácteos
                            -0.20785
                                        0.12322
                                                  -1.687 0.093939 .
## xSuinocultura
                             0.28048
                                        0.21162
                                                   1.325 0.187266
                                        0.05358
                                                   3.356 0.001026 **
## xavp9
                             0.17980
                            -0.02202
                                        0.10186
                                                  -0.216 0.829147
## xp3
## xp10
                             0.07166
                                        0.10163
                                                   0.705 0.481954
## xb1
                             0.37950
                                        0.09758
                                                   3.889 0.000157 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 1.636 on 136 degrees of freedom
## Multiple R-squared: 0.4224, Adjusted R-squared: 0.3841
## F-statistic: 11.05 on 9 and 136 DF, p-value: 8.134e-13
```

Análise dos Resíduos

#Análise dos Resíduos acf2(resid(fit))

Regressão com erros autocorrelacionais

##

##

z test of coefficients:

Análise dos resíduos e seleção de variáveis de acordo com p-valor

```
#Análise dos resíduos e seleção de variáveis de acordo com p-valor
fit2 <- tirar_variaveis(0, 0, 0, x, y)</pre>
fit2[[1]]
##
## z test of coefficients:
##
                       Estimate Std. Error z value Pr(>|z|)
##
## intercept
                       ## 'Avicultura de Corte' 0.442471 0.105529 4.1929 2.754e-05 ***
## Pescado
                      -0.200620 0.097816 -2.0510 0.0402669 *
                       ## avp9
## b1
                                0.088166 5.0221 5.110e-07 ***
                       0.442780
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
xx <- fit2[2]
xx < -xx[[1]]
fit3 = Arima(y,order=c(0,0,0),xreg=xx)
fit3
## Series: y
## Regression with ARIMA(0,0,0) errors
##
## Coefficients:
        intercept 'Avicultura de Corte' Pescado
##
                                                avp9
##
          0.2883
                               0.4425 -0.2006 0.1791 0.4428
          0.1531
                                       0.0978 0.0523 0.0882
## s.e.
                               0.1055
## sigma^2 estimated as 2.693: log likelihood=-276.95
## AIC=565.9 AICc=566.51 BIC=583.81
coeftest(fit3)
```

```
Estimate Std. Error z value Pr(>|z|)
##
## intercept
                          0.288306
                                     0.153111 1.8830 0.0597017 .
## 'Avicultura de Corte'
                                     0.105529 4.1929 2.754e-05 ***
                         0.442471
## Pescado
                         -0.200620
                                     0.097816 -2.0510 0.0402669 *
                                     0.052350 3.4221 0.0006214 ***
## avp9
                          0.179147
## b1
                          0.442780
                                     0.088166 5.0221 5.110e-07 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

acf2(fit3\$residuals)

Series: fit3\$residuals


```
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] ## ACF 0.18 -0.04 -0.11 -0.08 0.05 0.05 0.04 0 -0.02 -0.04 -0.01 0.04 0.04 ## PACF 0.18 -0.07 -0.10 -0.04 0.07 0.01 0.02 0 -0.01 -0.03 0.00 0.04 0.01 ## [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] ## ACF -0.06 -0.08 -0.07 -0.01 0.04 -0.02 -0.05 -0.10 0.03 0.02 ## PACF -0.07 -0.05 -0.04 0.00 0.01 -0.04 -0.08 0.07 -0.01
```

```
fit4 = Arima(y,order=c(1,0,0),xreg=xx)
fit4
```

```
## Series: y
## Regression with ARIMA(1,0,0) errors
##
```

```
## Coefficients:
##
                          'Avicultura de Corte'
                                                                        b1
            ar1 intercept
                                                  Pescado
                                                              avp9
                                          0.5648
##
        0.4823
                   0.5436
                                                  -0.1257 0.1491
                                                                    0.1027
## s.e. 0.1250
                   0.2797
                                          0.1101
                                                   0.0892 0.0492
                                                                    0.1226
## sigma^2 estimated as 2.485: log likelihood=-270.68
## AIC=555.36
               AICc=556.17
                             BIC=576.24
```

coeftest(fit4)

```
##
## z test of coefficients:
##
##
                          Estimate Std. Error z value Pr(>|z|)
## ar1
                          0.482252
                                     0.124956 3.8594 0.0001137 ***
## intercept
                          0.543622
                                     0.279737 1.9433 0.0519760 .
## 'Avicultura de Corte'
                                     0.110114 5.1289 2.915e-07 ***
                          0.564759
## Pescado
                         -0.125731
                                     0.089156 -1.4102 0.1584680
## avp9
                          0.149073
                                     0.049215 3.0290 0.0024534 **
## b1
                          0.102674
                                     0.122567 0.8377 0.4022023
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

checkresiduals(fit4)

Residuals from Regression with ARIMA(1,0,0) errors


```
##
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(1,0,0) errors
## Q* = 3.2481, df = 4, p-value = 0.5172
##
## Model df: 6. Total lags used: 10
```

acf2(fit4\$residuals)

Series: fit4\$residuals


```
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] ## ACF 0.02 -0.01 -0.1 -0.04 0.07 0.02 0.05 -0.01 -0.02 -0.01 -0.03 0.02 0.06 ## PACF 0.02 -0.01 -0.1 -0.04 0.07 0.01 0.04 0.00 -0.01 -0.01 -0.03 0.01 0.05 ## [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] ## ACF -0.08 -0.05 -0.04 -0.02 0.00 -0.01 -0.03 -0.10 0.06 0.03 ## PACF -0.09 -0.04 -0.02 -0.04 -0.02 -0.01 -0.03 -0.09 0.07 0.02
```

```
fit5 <- tirar_variaveis(1, 0, 0, xx, y)
fit5[[1]]</pre>
```

```
##
## z test of coefficients:
##
##
Estimate Std. Error z value Pr(>|z|)
```

```
## ar1
             ## intercept
             ## avp9
             ## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
xx <- fit5[2]
xx<- xx[[1]]
fit6 = Arima(y,order=c(1,0,0),xreg=xx,fixed=c(NA,NA, NA, NA))
cof.fit6 = coeftest(fit6)
cof.fit6
##
## z test of coefficients:
##
             Estimate Std. Error z value Pr(>|z|)
             ## ar1
             0.584360 0.293969 1.9878 0.04683 *
## intercept
## avp9
             ## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
checkresiduals(fit6)
```



```
##
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(1,0,0) errors
## Q* = 4.357, df = 6, p-value = 0.6285
##
## Model df: 4. Total lags used: 10
```

acf2(fit6\$residuals, main = "")

LAG

```
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] ## ACF 0.04 -0.03 -0.11 -0.04 0.05 0.04 0.07 -0.03 -0.03 -0.02 -0.01 0.03 0.08 ## PACF 0.04 -0.03 -0.11 -0.03 0.05 0.03 0.07 -0.02 -0.01 -0.02 0.01 0.07 ## [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] ## ACF -0.09 -0.05 -0.04 -0.04 0.01 0.01 -0.05 -0.09 0.06 0.03 ## PACF -0.10 -0.03 -0.02 -0.06 -0.01 0.01 -0.07 -0.07 0.07 0.01
```

Modelo da Avicultura de Corte

Estruturando a base

```
#Estruturando a base
df1<- funcao_lags(data_cut, data_cut$'Avicultura de Corte', 'cort1', 1)
df1 <- funcao_lags(df1, df1$'Avicultura de Postura', 'pos12', 12)
df1 <- funcao_lags(df1, df1$Bovinocultura, 'bov1', 1)
df1 <- funcao_lags(df1, df1$Pescado, 'pes4', 4)
df1 <- funcao_lags(df1, df1$Pescado, 'pes9', 9)
df1 <- funcao_lags(df1, df1$Suinocultura, 'sui1', 1)
df1 <- funcao_lags(df1, df1$Suinocultura, 'sui6', 6)</pre>
```

Separando variável preditora e as covariáveis

```
#Separando variável preditora e as covariáveis
x = model.matrix('Avicultura de Corte'~.,df2)[,-1]
y = df2$'Avicultura de Corte'
```

Regressão classica no contexto de Séries Temporais

Criando o modelo de Regressão Simples

```
#Criando o modelo de Regressão Simples
fit1 <- summary(fit <- lm(y~x))</pre>
fit1
##
## Call:
## lm(formula = y \sim x)
##
## Residuals:
              10 Median
                              3Q
                                    Max
## -1.8583 -0.5435 -0.0324 0.5123 3.4823
## Coefficients:
                          Estimate Std. Error t value Pr(>|t|)
##
                          -0.01212 0.13955 -0.087 0.930894
## (Intercept)
## xBovinocultura
                           0.22080
                                     0.05196 4.249 4.05e-05 ***
                                     0.03793 3.425 0.000822 ***
## x'Avicultura de Postura' 0.12991
## xPescado
                           0.07105 0.06226 1.141 0.255841
## xLácteos
                           ## xSuinocultura
                           0.19667 0.13949 1.410 0.160939
                                     0.07225 4.698 6.56e-06 ***
## xcort1
                           0.33941
## xpos12
                          -0.10059
                                     0.03611 -2.785 0.006139 **
## xbov1
                           0.07239
                                     0.06584 1.099 0.273628
## xpes4
                          -0.06147
                                     0.06412 -0.959 0.339505
## xpes9
                           0.15784
                                     0.06198
                                              2.547 0.012035 *
                                     0.13031 -0.137 0.891035
## xsui1
                          -0.01789
## xsui6
                          -0.44583
                                     0.11305 -3.944 0.000130 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 0.9766 on 131 degrees of freedom
## Multiple R-squared: 0.5835, Adjusted R-squared: 0.5454
## F-statistic: 15.3 on 12 and 131 DF, p-value: < 2.2e-16
```

Análise dos Resíduos

```
#Análise dos Resíduos
acf2(resid(fit))
```


Seleção de variáveis

```
#Seleção de variáveis
fit2 <- tirar_variaveis(0, 0, 0, x, y)
xx <- fit2[2]
xx <- xx[[1]]
fit3 = Arima(y,order=c(0,0,0), include.mean = FALSE, xreg=xx)
fit3</pre>
```

```
## Series: y
## Regression with ARIMA(0,0,0) errors
##
## Coefficients:
         Bovinocultura
##
                        'Avicultura de Postura'
                                                 Lácteos
                                                            cort1
                                                                     pos12
                                                                             pes9
##
                0.2870
                                          0.1343
                                                   0.2003 0.4368
                                                                   -0.0781
                                                                            0.195
## s.e.
                0.0401
                                          0.0350
                                                   0.0681 0.0561
                                                                    0.0329 0.053
##
            sui6
         -0.4269
##
```

```
## s.e. 0.0992
##
## sigma^2 estimated as 0.9627: log likelihood=-198
## AIC=412 AICc=413.07 BIC=435.76
```

coeftest(fit3)

```
##
## z test of coefficients:
##
##
                         Estimate Std. Error z value Pr(>|z|)
## Bovinocultura
                         ## 'Avicultura de Postura'
                         0.134314
                                   0.035007 3.8368 0.0001247 ***
                                   0.068070 2.9429 0.0032516 **
## Lácteos
                         0.200323
## cort1
                         0.436756
                                   0.056084 7.7875 6.833e-15 ***
                        -0.078065
                                   0.032944 -2.3696 0.0178072 *
## pos12
                         0.195018
                                   0.053005 3.6793 0.0002339 ***
## pes9
## sui6
                        -0.426896
                                   0.099200 -4.3034 1.682e-05 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

checkresiduals(fit3)

Residuals from Regression with ARIMA(0,0,0) errors

##

```
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(0,0,0) errors
## Q* = 4.3146, df = 3, p-value = 0.2294
##
## Model df: 7. Total lags used: 10
acf2(fit3$residuals, main = "")
```


Modelo da Pescados

Estruturando a base

```
# Estruturando a base
df1<- funcao_lags(data_cut, data_cut$Pescado, 'pes1', 1)
df1 <- funcao_lags(df1, df1$Pescado, 'pes5', 5)
df1 <- funcao_lags(df1, df1$Pescado, 'pes12', 12)</pre>
```

```
df1 <- funcao_lags(df1, df1$'Avicultura de Corte', 'cort3', 3)
df1 <- funcao_lags(df1, df1$'Avicultura de Corte', 'cort8', 8)

df1 <- funcao_lags(df1, df1$'Avicultura de Postura', 'pos2', 2)
df1 <- funcao_lags(df1, df1$'Avicultura de Postura', 'pos9', 9)

df1 <- funcao_lags(df1, df1$Bovinocultura, 'bov1', 1)
df1 <- funcao_lags(df1, df1$Bovinocultura, 'bov3', 3)
df1 <- funcao_lags(df1, df1$Bovinocultura, 'bov7', 7)

df1 <- funcao_lags(df1, df1$Lácteos, 'lact2', 2)
df1 <- funcao_lags(df1, df1$Lácteos, 'lact8', 8)

df1 <- funcao_lags(df1, df1$Lácteos, 'lact8', 8)</pre>
```

Separando variável preditora e as covariáveis

```
#Separando variável preditora e as covariáveis
x = model.matrix(Pescado~.,df2)[,-1]
y = df2$Pescado
```

Regressão classifica no contexto de Séries Temporais

Criando o modelo de Regressão Simples

```
# Criando o modelo de Regressão Simples
fit1 <- summary(fit <- lm(y~x))</pre>
fit1
##
## Call:
## lm(formula = y \sim x)
##
## Residuals:
##
                1Q Median
                                        Max
## -2.8416 -0.7307 -0.0757 0.6792 3.1091
##
## Coefficients:
                            Estimate Std. Error t value Pr(>|t|)
                             0.19703
                                                  1.228 0.221743
## (Intercept)
                                        0.16044
## xBovinocultura
                            -0.03365
                                         0.06031 -0.558 0.577890
## x'Avicultura de Corte'
                                        0.08765 0.144 0.885759
                            0.01262
```

```
## x'Avicultura de Postura' 0.14380
                              0.04089 3.517 0.000609 ***
                     -0.11286
## xLácteos
                              0.09287 -1.215 0.226550
## xSuinocultura
                     0.11153
                              0.14706 0.758 0.449621
## xpes1
                     -0.03033
                              0.06781 -0.447 0.655479
## xpes5
                     -0.08437
                              0.07483 -1.128 0.261683
## xpes12
                     ## xcort3
                     0.07747 0.07984 0.970 0.333785
## xcort8
                              0.07260 -1.942 0.054438 .
                     -0.14097
## xpos2
                     -0.03105
                             0.04007 -0.775 0.439934
                     ## xpos9
## xbov1
                     ## xbov3
                             0.06816 -0.735 0.463668
                     -0.05010
## xbov7
                     ## xlact2
                      ## xlact8
                      0.05811
                              0.08427 0.690 0.491745
## xsui3
                      0.37341
                              0.15003 2.489 0.014128 *
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 1.098 on 125 degrees of freedom
## Multiple R-squared: 0.5513, Adjusted R-squared: 0.4867
## F-statistic: 8.534 on 18 and 125 DF, p-value: 1.673e-14
```

Análise dos Resíduos

Análise dos Resíduos
acf2(resid(fit))


```
## ACF -0.07 0.09 0.09 -0.14 0.08 -0.06 -0.04 0.03 0.00 0.06 -0.01 -0.18 -0.09 ## ACF -0.07 0.09 0.10 -0.14 0.04 -0.04 -0.03 0.01 0.03 0.05 -0.01 -0.20 -0.13 ## ACF -0.09 -0.02 0.08 -0.04 0.03 0.03 0.01 -0.01 -0.01 ## PACF -0.09 -0.02 0.08 -0.04 0.03 0.03 0.01 -0.01 -0.01 ## PACF -0.06 0.02 0.09 -0.01 -0.03 -0.01 0.02 -0.02 0.03
```

Regressão com erros autocorrelacionais

Análise dos resíduos e seleção de variáveis de acordo com p-valor

```
# Análise dos resíduos e seleção de variáveis de acordo com p-valor
y = ts(y, frequency=12)

x = x[,-1]
fit3 = Arima(y,order=c(0,0,0), seasonal = c(1, 0, 0),xreg=x)
coeftest(fit3)
```

```
## 'Avicultura de Postura' 0.116637
                       0.033488 3.4830 0.0004959 ***
## Lácteos
                ## Suinocultura
## pes1
                ## pes5
                ## pes12
## cort3
                0.077964 0.068351 1.1406 0.2540252
## cort8
                -0.012863 0.032304 -0.3982 0.6905015
## pos2
## pos9
                ## bov1
                0.095679
                       0.063358 1.5101 0.1310108
## bov3
                -0.025267
                       0.056244 -0.4492 0.6532543
## bov7
               ## lact2
                0.003111 0.079860 0.0390 0.9689257
## lact8
                0.033576
                       0.077945 0.4308 0.6666430
## sui3
                0.345969
                       0.120310 2.8757 0.0040319 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
x = x[,-15]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
## z test of coefficients:
##
##
                Estimate Std. Error z value Pr(>|z|)
## sar1
                ## intercept
## 'Avicultura de Corte'
                ## 'Avicultura de Postura' 0.116206 0.031601 3.6772 0.0002358 ***
## Lácteos
                0.155191
                       0.120610 1.2867 0.1981900
## Suinocultura
                ## pes1
## pes5
                ## pes12
                ## cort3
                0.077986 0.068345 1.1411 0.2538471
## cort8
                -0.012825 0.032287 -0.3972 0.6912055
## pos2
                ## pos9
## bov1
                ## bov3
                -0.025241 0.056236 -0.4488 0.6535506
## bov7
                0.077687 0.4354 0.6633040
                0.033821
## lact8
## sui3
                ## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
x = x[,-1]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
```

##

```
## z test of coefficients:
##
##
                 Estimate Std. Error z value Pr(>|z|)
                -0.384320 0.091107 -4.2184 2.461e-05 ***
## sar1
                 ## intercept
## 'Avicultura de Postura' 0.117141 0.031538 3.7142 0.0002038 ***
## Lácteos
                -0.058925 0.075323 -0.7823 0.4340391
## Suinocultura
                ## pes1
                ## pes5
               -0.096844 0.059644 -1.6237 0.1044420
## pes12
                ## cort3
## cort8
                ## pos2
               -0.013420 0.032278 -0.4158 0.6775852
## pos9
                ## bov1
                0.103928
                        0.056423 1.8419 0.0654843 .
## bov3
                -0.025070 0.056307 -0.4452 0.6561505
## bov7
               -0.109781
                        0.046989 -2.3363 0.0194757 *
## lact8
                0.029144 0.076293 0.3820 0.7024574
                 ## sui3
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
x = x[,-14]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
##
## z test of coefficients:
##
##
                 Estimate Std. Error z value Pr(>|z|)
## sar1
                ## intercept
                 ## 'Avicultura de Postura' 0.118704 0.031256 3.7978 0.000146 ***
## Lácteos
                ## Suinocultura
                ## pes1
                -0.036520 0.049362 -0.7398 0.459399
                -0.097461
                        0.059586 -1.6356 0.101919
## pes5
## pes12
                 ## cort3
                 ## cort8
## pos2
                -0.011675 0.031917 -0.3658 0.714510
## pos9
                ## bov1
                ## bov3
                ## bov7
                -0.112367
                        0.046468 -2.4182 0.015598 *
## sui3
                 ## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
x = x[,-9]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
```

```
##
## z test of coefficients:
##
##
                    Estimate Std. Error z value Pr(>|z|)
## sar1
                   ## intercept
                    ## 'Avicultura de Postura' 0.120786 0.030699 3.9345 8.338e-05 ***
## Lácteos
                   ## Suinocultura
                   ## pes1
                   ## pes5
                   -0.104471 0.056397 -1.8524 0.063964 .
                   ## pes12
## cort3
                    0.072869 0.067380 1.0815 0.279492
                   -0.097380 0.065850 -1.4788 0.139192
## cort8
## pos9
                   0.070694
                           0.029732 2.3777 0.017421 *
## bov1
                   0.104262
                            0.056282 1.8525 0.063952 .
## bov3
                            0.055754 -0.3840 0.700960
                   -0.021411
## bov7
                   -0.112548
                            0.046456 -2.4227 0.015406 *
## sui3
                    ## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
x = x[,-11]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
##
## z test of coefficients:
##
##
                    Estimate Std. Error z value Pr(>|z|)
## sar1
                   ## intercept
## 'Avicultura de Postura' 0.117943 0.029764 3.9625 7.415e-05 ***
## Lácteos
                   -0.060075 0.073328 -0.8193 0.412638
## Suinocultura
                   ## pes1
                   ## pes5
## pes12
                   0.519187
                            0.064688 8.0260 1.007e-15 ***
## cort3
                   0.063206  0.062513  1.0111  0.311977
                            0.065817 -1.4911 0.135945
## cort8
                   -0.098137
## pos9
                   0.070944 0.029689 2.3895 0.016869 *
## bov1
                            0.055946 1.8196 0.068815 .
                    0.101801
## bov7
                   -0.112213
                            0.046453 -2.4156 0.015708 *
                            0.109074 3.0774 0.002088 **
## sui3
                    0.335663
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
x = x[,-2]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
```

##

```
## z test of coefficients:
##
##
                Estimate Std. Error z value Pr(>|z|)
                ## sar1
                ## intercept
## 'Avicultura de Postura' 0.112130 0.028898 3.8802 0.0001044 ***
## Suinocultura
                ## pes1
               -0.110446 0.055348 -1.9955 0.0459902 *
## pes5
## pes12
               ## cort3
                0.062889 0.062508 1.0061 0.3143661
## cort8
                ## pos9
               ## bov1
               0.106356 0.055664 1.9107 0.0560455 .
## bov7
                ## sui3
                ## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
x = x[,-3]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
##
## z test of coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## sar1
                ## intercept
                0.053521 0.106943 0.5005 0.6167476
## 'Avicultura de Postura' 0.108768 0.028746 3.7837 0.0001545 ***
## Suinocultura
               ## pes5
                ## pes12
## cort3
                ## cort8
                -0.095019 0.066096 -1.4376 0.1505515
                ## pos9
## bov1
                0.102061 0.055734 1.8312 0.0670717 .
## bov7
                ## sui3
                0.317169  0.107541  2.9493  0.0031851 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
x = x[,-5]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
##
## z test of coefficients:
##
##
                Estimate Std. Error z value Pr(>|z|)
## sar1
                ## intercept
```

```
## 'Avicultura de Postura' 0.112567 0.028586 3.9378 8.223e-05 ***
## Suinocultura 0.163490 0.118145 1.3838 0.1664180
## pes5
                   -0.106665 0.054751 -1.9482 0.0513943 .
                    ## pes12
## cort8
                   ## pos9
                    0.072864 0.029770 2.4475 0.0143834 *
## bov1
                    0.091020 0.054774 1.6617 0.0965686 .
                   ## bov7
## sui3
                     ## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
x = x[,-4]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
##
## z test of coefficients:
##
##
                      Estimate Std. Error z value Pr(>|z|)
                     0.2469874 0.1061663 2.3264 0.0199962 *
## sar1
                     0.4025207 0.1625312 2.4766 0.0132650 *
## intercept
## 'Avicultura de Postura' 0.1477883 0.0400297 3.6920 0.0002225 ***
## Suinocultura
                   -0.0079504 0.1475616 -0.0539 0.9570319
                    -0.1227962 0.0783012 -1.5683 0.1168216
## pes5
## cort8
                   -0.1584009 0.0703558 -2.2514 0.0243585 *
                   0.1308314 0.0400853 3.2638 0.0010992 **
## pos9
## bov1
                   ## bov7
## sui3
                    0.3490096 0.1297387 2.6901 0.0071431 **
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

checkresiduals(fit3)

residuals

```
##
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(0,0,0)(1,0,0)[12] errors
## Q* = 21.828, df = 14, p-value = 0.08222
##
## Model df: 10. Total lags used: 24
```

Lag

acf2(fit3\$residuals, main = "")


```
x = x[,-2]
fit3 = Arima(y,order=c(0,0,0), seasonal = c(1, 0, 0),xreg=x)
coeftest(fit3)
```

```
##
## z test of coefficients:
##
##
                            Estimate Std. Error z value Pr(>|z|)
                                       0.103130 2.3818 0.0172305 *
## sar1
                            0.245630
## intercept
                            0.400724
                                       0.158954 2.5210 0.0117018 *
                                       0.039969 3.7005 0.0002151 ***
## 'Avicultura de Postura'
                            0.147907
## pes5
                           -0.123470
                                       0.077226 -1.5988 0.1098647
## cort8
                           -0.158979
                                       0.069562 -2.2854 0.0222871 *
```

```
## pos9
             ## bov1
## bov7
             ## sui3
             ## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
x = x[,-2]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
##
## z test of coefficients:
##
##
             Estimate Std. Error z value Pr(>|z|)
## sar1
             ## intercept
## 'Avicultura de Postura' 0.133601 0.039667 3.3681 0.0007570 ***
## cort8
             ## pos9
             ## bov1
## bov7
             ## sui3
             ## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```



```
##
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(0,0,0)(1,0,0)[12] errors
## Q* = 22.744, df = 16, p-value = 0.1208
##
## Model df: 8. Total lags used: 24
```

acf2(fit3\$residuals, main = "")


```
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
## ACF 0.02 0.12 0.08 -0.14 -0.06 -0.12 -0.13 -0.05 0.02 0.08 -0.01 -0.06 -0.04
## PACF 0.02 0.12 0.07 -0.16 -0.07 -0.09 -0.09 -0.04 0.05 0.08 -0.05 -0.13 -0.07
       [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
## ACF
       -0.07 -0.01 -0.03 -0.12 0.02 -0.02 -0.05 0.03 0.03 -0.04
                                                                 0.16
  PACF -0.04 0.02 -0.01 -0.13 -0.02 -0.04 -0.09 -0.01 0.05 -0.07
                                                                 0.11
       [,26] [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37]
        0.06 0.07 0.02 -0.05 -0.01 -0.04 -0.13
                                                0.10 -0.06 0.11
  ACF
                                                                 0.14
  PACF 0.02 0.01 0.02 -0.05 0.02 0.02 -0.09 0.12 -0.06 0.09 0.14
       [,38] [,39] [,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48]
        0.00 -0.04 -0.08 -0.09 -0.08 -0.10 -0.07 0.03 0.09 -0.02 0.07
## PACF -0.03 -0.03 -0.06 0.02 0.02 -0.07 -0.04 0.02 0.04 -0.04 0.04
```

S

```
## function (object, brief, ...)
## {
## UseMethod("S")
## }
## <bytecode: 0x00000000217c8498>
## <environment: namespace:car>
```

Modelo da Avicultura de postura

Estruturando a base

```
# Estruturando a base
df1<- funcao_lags(data_cut, data_cut$'Avicultura de Postura', 'avp1', 1)
df1<- funcao_lags(df1, df1$'Avicultura de Postura', 'avp12', 12)
df1<- funcao_lags(df1, df1$'Avicultura de Corte', 'avc5', 5)
df1 <- funcao_lags(df1, df1$Bovinocultura, 'bov3', 3)
df1 <- funcao_lags(df1, df1$Lácteos, 'lact11', 11)
df1 <- funcao_lags(df1, df1$Pescado, 'pes2', 2)
df1 <- funcao_lags(df1, df1$Pescado, 'pes9', 9)</pre>
```

Separando variável preditora e as covariáveis

```
#Separando variável preditora e as covariáveis
x = model.matrix('Avicultura de Postura'~.,df2)[,-1]
y = df2$'Avicultura de Postura'
```

Regressão classifica no contexto de Séries Temporais

Criando o modelo de Regressão Simples

```
# Criando o modelo de Regressão Simples
fit1 <- summary(fit <- lm(y~x))</pre>
fit1
##
## Call:
## lm(formula = y \sim x)
##
## Residuals:
               1Q Median
##
      Min
                               ЗQ
                                      Max
## -4.2151 -1.3755 -0.1872 1.4374 8.2788
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                         -0.01295 0.31733 -0.041 0.967509
## xBovinocultura
                         -0.01770
                                     0.10989 -0.161 0.872253
## x'Avicultura de Corte' 0.45460
                                     0.16365 2.778 0.006274 **
## xPescado
                                     0.13562 2.599 0.010415 *
                          0.35251
## xLácteos
                                     0.17453 0.945 0.346327
                          0.16496
## xSuinocultura
                         -0.28456
                                     0.27621 -1.030 0.304802
                                     0.07633 1.234 0.219312
## xavp1
                          0.09421
## xavp12
                          0.31398
                                     0.08246 3.808 0.000215 ***
## xavc5
                                     0.13972 2.258 0.025600 *
                          0.31548
## xbov3
                         0.07400
                                     0.12114 0.611 0.542366
                                     0.16012 0.690 0.491666
## xlact11
                         0.11042
## xpes2
                         -0.02661
                                     0.14349 -0.185 0.853182
## xpes9
                         -0.36608
                                     0.14250 -2.569 0.011319 *
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

```
##
## Residual standard error: 2.178 on 131 degrees of freedom
## Multiple R-squared: 0.3902, Adjusted R-squared: 0.3343
## F-statistic: 6.984 on 12 and 131 DF, p-value: 1.096e-09
```

Análise dos Resíduos

```
# Análise dos Resíduos
acf2(resid(fit))
```



```
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] ## ACF 0.02 -0.12 -0.2 0.00 0.11 0.01 -0.13 -0.02 -0.06 0.05 0.13 -0.10 -0.03 ## PACF 0.02 -0.12 -0.2 -0.01 0.06 -0.04 -0.12 0.01 -0.10 0.00 0.12 -0.11 -0.01 ## [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] ## ACF -0.18 0.10 0.02 0.00 -0.10 -0.05 -0.03 0.06 -0.06 ## PACF -0.17 0.06 -0.07 -0.02 -0.06 -0.07 -0.05 -0.09
```

10

LAG

15

20

Regressão com erros autocorrelacionais

5

Análise dos resíduos e seleção de variáveis de acordo com p-valor

```
# Análise dos resíduos e seleção de variáveis de acordo com p-valor fit2<- tirar_variaveis(0, 0, 0, x, y) fit2[1]
```

```
## [[1]]
##
## z test of coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## intercept
               ## 'Avicultura de Corte' 0.430956 0.133305 3.2328 0.0012256 **
               ## Pescado
               ## avp12
## avc5
              ## pes9
              ## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
xx <- fit2[2]
xx < -xx[[1]]
fit3 = Arima(y,order=c(0,0,0),xreg=xx)
coeftest(fit3)
##
## z test of coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## intercept
               ## 'Avicultura de Corte' 0.430956 0.133305 3.2328 0.0012256 **
               ## Pescado
               ## avp12
## avc5
              ## pes9
              ## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
checkresiduals(fit3)
```

Residuals from Regression with ARIMA(0,0,0) errors

residuals

```
##
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(0,0,0) errors
## Q* = 14.912, df = 4, p-value = 0.004888
##
## Model df: 6. Total lags used: 10
```

Lag

acf2(fit3\$residuals)

fit4 = Arima(y,order=c(3,0,0),xreg=xx,include.mean = FALSE,fixed=c(0,0,NA,NA,0,NA,NA,NA))
fit4

```
## Series: y
## Regression with ARIMA(3,0,0) errors
##
## Coefficients:
##
        ar1 ar2
                      ar3 'Avicultura de Corte' Pescado
                                                            avp12
                                                                     avc5
                                          0.6010
          0
               0
                  -0.2280
                                                        0 0.4380 0.4151
          0
                   0.0826
                                          0.1232
                                                        0 0.0624 0.1163
## s.e.
               0
##
           pes9
##
        -0.3460
## s.e.
        0.1074
## sigma^2 estimated as 4.628: log likelihood=-312.18
## AIC=636.35 AICc=636.97 BIC=654.17
```

coeftest(fit4)

```
##
## z test of coefficients:
##
##
                          Estimate Std. Error z value Pr(>|z|)
## ar3
                         -0.227984
                                     0.082567 -2.7612 0.0057588 **
## 'Avicultura de Corte'
                          0.601047
                                     0.123219 4.8779 1.072e-06 ***
                                     0.062446 7.0147 2.305e-12 ***
## avp12
                          0.438035
## avc5
                          0.415126
                                     0.116253 3.5709 0.0003558 ***
## pes9
                         -0.346032
                                     0.107404 -3.2218 0.0012739 **
## ---
                  0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Signif. codes:
```

checkresiduals(fit4)

Residuals from Regression with ARIMA(3,0,0) errors


```
##
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(3,0,0) errors
## Q* = 7.5364, df = 3, p-value = 0.05663
##
## Model df: 8. Total lags used: 11
```


Modelo do Lácteos

Estruturando a base

```
# Estruturando a base

df1<- funcao_lags(data_cut, data_cut$Lácteos, 'lact1', 1)

df1<- funcao_lags(df1, df1$'Avicultura de Postura', 'avp1', 1)

df1<- funcao_lags(df1, df1$'Avicultura de Corte', 'avc6', 6)

df1 <- funcao_lags(df1, df1$Bovinocultura, 'bov2', 2)

df1 <- funcao_lags(df1, df1$Pescado, 'pes4', 4)

df1 <- funcao_lags(df1, df1$Pescado, 'pes9', 9)</pre>

df2 <- na.omit(df1)
```

Separando variável preditora e as covariáveis

```
#Separando variável preditora e as covariáveis
x = model.matrix(Lácteos~.,df2)[,-1]
y = df2$Lácteos
```

Regressão classifica no contexto de Séries Temporais

Criando o modelo de Regressão Simples

```
# Criando o modelo de Regressão Simples
fit1 <- summary(fit <- lm(y~x))</pre>
fit1
##
## Call:
## lm(formula = y \sim x)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -1.9889 -0.5093 -0.0365 0.3740 3.7350
##
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                                 1.359
                            0.15734
                                       0.11576
                                                         0.1763
## xBovinocultura
                           -0.03768
                                       0.04196 -0.898
                                                         0.3707
## x'Avicultura de Corte'
                            0.13320
                                       0.06205
                                                2.147
                                                         0.0336 *
## x'Avicultura de Postura'
                                                 1.238
                                                         0.2177
                            0.03863
                                       0.03119
## xPescado
                           -0.03187
                                       0.05250 -0.607
                                                         0.5449
## xSuinocultura
                           -0.01598
                                       0.11157 -0.143
                                                         0.8863
## xlact1
                            0.58502
                                       0.06341
                                                9.225 5.09e-16 ***
## xavp1
                            0.03060
                                       0.03009
                                                 1.017
                                                         0.3110
## xavc6
                            0.07371
                                       0.05424
                                                1.359
                                                         0.1765
## xbov2
                           -0.07026
                                       0.04512 -1.557
                                                         0.1217
## xpes4
                            0.08919
                                       0.05472
                                                 1.630
                                                         0.1055
## xpes9
                            -0.09059
                                       0.05370 -1.687
                                                         0.0939 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8391 on 135 degrees of freedom
## Multiple R-squared: 0.5426, Adjusted R-squared: 0.5053
## F-statistic: 14.56 on 11 and 135 DF, p-value: < 2.2e-16
```

Análise dos Resíduos

```
# Análise dos Resíduos
acf2(resid(fit))
```



```
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] ## ACF 0.07 0.04 -0.08 0.00 0.03 0.12 -0.01 0.03 -0.06 0.05 -0.13 0.01 -0.20 ## PACF 0.07 0.04 -0.09 0.02 0.04 0.10 -0.02 0.03 -0.04 0.05 -0.14 0.01 -0.19 ## [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] ## ACF 0.01 0.03 0.01 0.03 -0.02 -0.03 -0.04 -0.01 0.18 0.14 ## PACF 0.03 0.05 -0.03 0.07 -0.02 0.02 -0.06 0.01 0.16 0.13
```

Análise dos resíduos e seleção de variáveis de acordo com p-valor

```
# Análise dos resíduos e seleção de variáveis de acordo com p-valor fit2 <- tirar_variaveis(0, 0, 0, x, y)
fit2[1]
```

```
## [[1]]
## z test of coefficients:
##
            Estimate Std. Error z value Pr(>|z|)
##
## intercept 0.036024
                       0.080495 0.4475 0.654489
            0.604999
                       0.060150 10.0582 < 2.2e-16 ***
## lact1
## avc6
            0.107164
                       0.049809 2.1515 0.031436 *
                       0.046861 3.0968 0.001956 **
## pes4
            0.145117
```

```
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
xx <- fit2[2]
xx < -xx[[1]]
fit3 = Arima(y,order=c(0,0,0),xreg=xx,include.mean = FALSE)
coeftest(fit3)
##
## z test of coefficients:
##
        Estimate Std. Error z value Pr(>|z|)
                   0.058137 10.5265 < 2.2e-16 ***
## lact1 0.611972
                   0.048610 2.3059 0.0211138 *
## avc6 0.112091
## pes4 0.150462
                  0.045344 3.3182 0.0009059 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
checkresiduals(fit3)
```

Residuals from Regression with ARIMA(0,0,0) errors


```
##
## Ljung-Box test
```

```
##
## data: Residuals from Regression with ARIMA(0,0,0) errors
## Q* = 3.8077, df = 7, p-value = 0.8016
##
## Model df: 3. Total lags used: 10
acf2(fit3$residuals, main = "")
```


Modelo do Suinocultura

Estruturando a base

```
# Estruturando a base
df1<- funcao_lags(data_cut, data_cut$Suinocultura, 'su1', 1)</pre>
```

```
df1<- funcao_lags(df1, df1$'Avicultura de Corte', 'avc1', 1)
df1<- funcao_lags(df1, df1$'Avicultura de Corte', 'avc6', 6)
df1<- funcao_lags(df1, df1$'Avicultura de Corte', 'avc10', 10)
df1 <- funcao_lags(df1, df1$Bovinocultura, 'bov1', 1)
df2 <- na.omit(df1)</pre>
```

Separando variável preditora e as covariáveis

```
# Separando variável preditora e as covariáveis
x = model.matrix(Suinocultura~.,df2)[,-1]
y = df2$Suinocultura
```

Regressão classifica no contexto de Séries Temporais

Criando o modelo de Regressão Simples

Criando o modelo de Regressão Simples

Coefficients:

(Intercept)

##

Estimate Std. Error t value Pr(>|t|)

2.609 0.01009 *

0.1920512 0.0735974

```
## xBovinocultura
                          0.0804015 0.0323240
                                               2.487 0.01409 *
## x'Avicultura de Corte'
                          0.0242656 0.0481760
                                               0.504 0.61530
## x'Avicultura de Postura'
                          0.0098311 0.0211227
                                               0.465 0.64237
## xPescado
                          -0.0008281 0.0373895 -0.022 0.98236
## xLácteos
                          ## xsu1
                          0.2273228 0.0776042
                                               2.929 0.00399 **
## xavc1
                          0.0865616 0.0462072
                                               1.873 0.06318 .
## xavc6
                         -0.0686232 0.0384825 -1.783 0.07680 .
## xavc10
                          0.0625848 0.0364282
                                                1.718 0.08808 .
## xbov1
                          0.0738746 0.0405940
                                                1.820 0.07100 .
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.6066 on 135 degrees of freedom
## Multiple R-squared: 0.3972, Adjusted R-squared: 0.3526
## F-statistic: 8.896 on 10 and 135 DF, p-value: 3.949e-11
```

Análise dos Resíduos

Análise dos resíduos e seleção de variáveis de acordo com p-valor

```
# Análise dos resíduos e seleção de variáveis de acordo com p-valor
fit2 <- tirar_variaveis(0, 0, 0, x, y)
fit2[1]</pre>
```

```
## [[1]]
##
## z test of coefficients:
##
## Estimate Std. Error z value Pr(>|z|)
## intercept    0.196715    0.062298    3.1576    0.0015905 **
```

```
## Bovinocultura 0.110931
                           0.024454 4.5363 5.725e-06 ***
## su1
                0.293553
                           0.073307 4.0044 6.217e-05 ***
                0.134372
                           0.038667 3.4751 0.0005106 ***
## avc1
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
xx <- fit2[2]
xx<- xx[[1]]
fit3 = Arima(y,order=c(0,0,0),xreg=xx)
coeftest(fit3)
##
## z test of coefficients:
##
##
                Estimate Std. Error z value Pr(>|z|)
                           0.062298 3.1576 0.0015905 **
## intercept
                0.196715
## Bovinocultura 0.110931
                           0.024454 4.5363 5.725e-06 ***
## su1
                 0.293553
                           0.073307 4.0044 6.217e-05 ***
                           0.038667 3.4751 0.0005106 ***
## avc1
                0.134372
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
checkresiduals(fit3)
```



```
##
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(0,0,0) errors
## Q* = 13.432, df = 6, p-value = 0.03667
##
## Model df: 4. Total lags used: 10
```

acf2(fit3\$residuals)

Series: fit3\$residuals


```
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] ## ACF -0.07 0.22 -0.08 0.11 0.03 0.02 0.09 -0.08 0.00 -0.02 0.08 0.12 0.14 ## PACF -0.07 0.22 -0.05 0.05 0.07 -0.02 0.09 -0.07 -0.05 0.02 0.07 0.14 0.15 ## [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] ## ACF -0.03 0.06 -0.1 0.05 -0.01 0.18 -0.04 -0.02 -0.02 -0.01 ## PACF -0.07 0.02 -0.1 -0.03 0.02 0.17 0.00 -0.05 -0.01 -0.04
```

```
fit4 = Arima(y,order=c(2,0,0),xreg=xx,fixed =c(0,NA,NA,NA,NA,NA,NA))
fit4
```

```
## Series: y
## Regression with ARIMA(2,0,0) errors
##
## Coefficients:
```

```
##
         ar1
                ar2 intercept Bovinocultura
                                                  su1
                        0.2107
##
          0 0.2407
                                       0.1116 0.2485 0.1412
## s.e.
             0.0832
                        0.0750
                                       0.0235 0.0747 0.0370
          0
##
## sigma^2 estimated as 0.36: log likelihood=-130.1
## AIC=272.2
                          BIC=290.11
              AICc=272.81
```

coeftest(fit4)

```
##
## z test of coefficients:
##
##
                 Estimate Std. Error z value Pr(>|z|)
                           0.083246 2.8915 0.0038338 **
## ar2
                 0.240708
                 0.210659
                            0.075006 2.8086 0.0049764 **
## intercept
                            0.023545 4.7379 2.159e-06 ***
## Bovinocultura 0.111554
                 0.248548
                            0.074714 3.3267 0.0008789 ***
## avc1
                 0.141187
                            0.037044 3.8113 0.0001382 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

checkresiduals(fit4)

Residuals from Regression with ARIMA(2,0,0) errors

##

```
## Ljung-Box test
##
## data: Residuals from Regression with ARIMA(2,0,0) errors
## Q* = 4.7092, df = 4, p-value = 0.3185
##
## Model df: 6. Total lags used: 10
acf2(fit4$residuals, main = "")
```



```
## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13] ## ACF 0.01 -0.01 -0.07 0.06 0.04 0.02 0.10 -0.08 -0.05 -0.04 0.06 0.16 0.13 ## PACF 0.01 -0.01 -0.07 0.06 0.03 0.02 0.11 -0.08 -0.05 -0.03 0.03 0.16 0.15 ## [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] ## ACF -0.03 0.02 -0.10 0.00 0.03 0.19 -0.03 -0.06 -0.04 0.01 ## PACF -0.02 0.05 -0.11 -0.04 0.01 0.16 -0.01 0.00 -0.02 -0.01
```

Análise das séries temporais anuais

Análise Descritiva

```
# Análise das séries temporais anuais
head(data_anual)
```

```
## # A tibble: 6 x 7
     Anos 'Avicultura de ~ 'Avicultura Pos~ 'Bovinocultura ~ Lácteos Pescado
##
##
    <dbl>
                   <dbl>
                                   <dbl>
                                                  <dbl>
                                                          <dbl>
## 1 2007
                   12.3
                                   26.0
                                                  20.5
                                                          21.7
                                                                  1.40
## 2 2008
                    8.33
                                    8.27
                                                  23.7
                                                          -2.41
                                                                  9.89
## 3 2009
                   -1.25
                                    3.77
                                                  -3.75
                                                           4.55
                                                                7.12
## 4 2010
                    9.27
                                    5.48
                                                  25.9
                                                           4.36 8.02
## 5 2011
                    6.21
                                    9.15
                                                  3.67
                                                           7.51 6.61
## 6 2012
                    11.2
                                   18.8
                                                  0.792 7.76 14.2
## # ... with 1 more variable: Suinocultura <dbl>
# Análise Descritiva
```

```
z_avc = data_anual$'Avicultura de Corte'
z_avc = ts(z_avc, frequency = 1, start = 2007, end = 2019)

z_avp = data_anual$'Avicultura Postura'
z_avp = ts(z_avp, frequency = 1, start = 2007, end = 2019)

z_bov = data_anual$'Bovinocultura de corte'
z_bov = ts(z_bov, frequency = 1, start = 2007, end = 2019)

z_lac = data_anual$'Lácteos'
z_lac = ts(z_lac, frequency = 1, start = 2007, end = 2019)

z_pesc = data_anual$Pescado
z_pesc = ts(z_pesc, frequency = 1, start = 2007, end = 2019)

z_suino = data_anual$Suinocultura
z_suino = ts(z_suino, frequency = 1, start = 2007, end = 2019)
```

```
# Análise Descritiva
plot(z_avc,main="Série Temporal da Avicultura de Corte", xlab= "Anos", ylab="IPCA")
```

Série Temporal da Avicultura de Corte

plot(z_avp,main="Série Temporal da Avicultura de Postura", xlab= "Anos", ylab="IPCA")

Série Temporal da Avicultura de Postura

plot(z_lac,main="Série Temporal do Lácteos", xlab= "Anos", ylab="IPCA")

Série Temporal do Lácteos

plot(z_pesc,main="Série Temporal do Pescado", xlab= "Anos", ylab="IPCA")

Série Temporal do Pescado

plot(z_bov,main="Série Temporal da Bovinocultura", xlab= "Anos", ylab="IPCA")

Série Temporal da Bovinocultura

plot(z_suino,main="Série Temporal da Suinocultura", xlab= "Anos", ylab="IPCA")

Série Temporal da Suinocultura

Funções de Autocorrelações para Bovinocultura

```
#Funções de Autocorrelações para Bovinocultura
par(mfrow = c(1, 2))
acf(z_bov, main="ACF Bovinocultura")
pacf(z_bov, main="PACF Bovinocultura")
```

ACF Bovinocultura

PACF Bovinocultura

Funções de Autocorrelações para Avicultura de Corte

```
#Funções de Autocorrelações para Avicultura de Corte
par(mfrow = c(1, 2))
acf(z_avc, main="ACF Avicultura de Corte")
pacf(z_avc, main="PACF Avicultura de Corte")
```

ACF Avicultura de Corte

PACF Avicultura de Corte

Funções de Autocorrelações para Avicultura de Postura

```
#Funções de Autocorrelações para Avicultura de Postura
par(mfrow = c(1, 2))
acf(z_avp, main="ACF Avicultura de Postura")
pacf(z_avp, main="PACF Avicultura de Postura")
```

ACF Avicultura de Postura

PACF Avicultura de Postura

Funções de Autocorrelações para Lácteos

```
#Funções de Autocorrelações para Lácteos
par(mfrow = c(1, 2))
acf(z_lac, main="ACF Lácteos")
pacf(z_lac, main="PACF Lácteos")
```


Funções de Autocorrelações para Pescado

```
#Funções de Autocorrelações para Pescado
par(mfrow = c(1, 2))
acf(z_pesc, main="ACF Pescado")
pacf(z_pesc, main="PACF Pescado")
```


Funções de Autocorrelações para Suinocultura

```
#Funções de Autocorrelações para Suinocultura
par(mfrow = c(1, 2))
acf(z_suino, main="ACF Suinocultura")
pacf(z_suino, main="PACF Suinocultura")
```

ACF Suinocultura

PACF Suinocultura

Testes de Dickey-Fuller e Phillips-Perron

Teste de Dickey-Fuller

```
# Teste de Dickey-Fuller
adf.test(z_bov)
```

```
##
## Augmented Dickey-Fuller Test
##
## data: z_bov
## Dickey-Fuller = -2.4786, Lag order = 2, p-value = 0.3901
## alternative hypothesis: stationary
adf.test(z_avc)
```

```
##
## Augmented Dickey-Fuller Test
##
## data: z_avc
## Dickey-Fuller = -1.9839, Lag order = 2, p-value = 0.5785
## alternative hypothesis: stationary
```

```
adf.test(z_avp)
##
   Augmented Dickey-Fuller Test
##
##
## data: z_avp
## Dickey-Fuller = -3.0526, Lag order = 2, p-value = 0.1714
## alternative hypothesis: stationary
adf.test(z_lac)
##
##
  Augmented Dickey-Fuller Test
##
## data: z_lac
## Dickey-Fuller = -1.8165, Lag order = 2, p-value = 0.6423
## alternative hypothesis: stationary
adf.test(z_pesc)
##
   Augmented Dickey-Fuller Test
##
## data: z_pesc
## Dickey-Fuller = -0.28347, Lag order = 2, p-value = 0.9843
## alternative hypothesis: stationary
adf.test(z_suino)
##
## Augmented Dickey-Fuller Test
## data: z_suino
## Dickey-Fuller = -3.3194, Lag order = 2, p-value = 0.08898
## alternative hypothesis: stationary
       Teste de Phillips-Perron
# Teste de Phillips-Perron
pp.test(z_bov)
##
##
  Phillips-Perron Unit Root Test
##
## data: z_bov
## Dickey-Fuller Z(alpha) = -12.303, Truncation lag parameter = 2, p-value
## = 0.3209
## alternative hypothesis: stationary
```

```
pp.test(z_avc)
##
## Phillips-Perron Unit Root Test
## data: z_avc
## Dickey-Fuller Z(alpha) = -10.175, Truncation lag parameter = 2, p-value
## = 0.4635
## alternative hypothesis: stationary
pp.test(z_avp)
##
##
   Phillips-Perron Unit Root Test
## data: z_avp
## Dickey-Fuller Z(alpha) = -11.209, Truncation lag parameter = 2, p-value
## = 0.3942
## alternative hypothesis: stationary
pp.test(z_lac)
##
## Phillips-Perron Unit Root Test
## data: z_lac
## Dickey-Fuller Z(alpha) = -14.738, Truncation lag parameter = 2, p-value
## = 0.1577
## alternative hypothesis: stationary
pp.test(z_pesc)
##
## Phillips-Perron Unit Root Test
##
## data: z_pesc
## Dickey-Fuller Z(alpha) = -8.6126, Truncation lag parameter = 2, p-value
## = 0.5682
## alternative hypothesis: stationary
pp.test(z_suino)
##
## Phillips-Perron Unit Root Test
## data: z_suino
## Dickey-Fuller Z(alpha) = -17.616, Truncation lag parameter = 2, p-value
## = 0.05617
## alternative hypothesis: stationary
```

Definindo variáveis do modelo

```
# Variáveis do modelo
library(glmnet)

colnames(data_anual) = c("ANO", "AVC", "AVP", "BOV", "LAC", "PESC", "SUIN")
data_anual = data_anual[,-1]
```

Regressão Lasso para Bovinocultura

```
#Correlaões cruzadas da Bovincultura
par(mfrow = c(3,2))
ccf(z_bov,z_avc,main="Bovinocultura e Avicultura de Corte")
ccf(z_bov,z_avp,main="Bovinocultura e Avicultura de Postura")
ccf(z_bov,z_lac,main="Bovinocultura e Lácteos")
ccf(z_bov,z_pesc,main="Bovinocultura e Pescado")
ccf(z_bov,z_suino,main="Bovinocultura e Suinocultura")
# Regressão LASSO
set.seed(1)
x = model.matrix(BOV~ .,data=data_anual)[,-1]
y = data_anual$BOV
cv.model = cv.glmnet(x,y,alpha = 1)
cv.model
##
## Call: cv.glmnet(x = x, y = y, alpha = 1)
## Measure: Mean-Squared Error
##
##
      Lambda Index Measure
                              SE Nonzero
## min 2.823 10 123.7 28.36
## 1se 6.522 1 144.2 25.92
par(mfrow=c(1,1))
```

Bovinocultura e Avicultura de Corte

Bovinocultura e Avicultura de Postura

Bovinocultura e Lácteos

Bovinocultura e Pescado

Bovinocultura e Suinocultura

plot(cv.model)


```
coef(cv.model,cv.model$lambda.min)
```

```
## 6 x 1 sparse Matrix of class "dgCMatrix"
## 1
## (Intercept) 6.24941948
## AVC 0.67510339
## AVP .
## LAC .
## PESC .
## SUIN 0.03047208
```

Regressão Lasso para o Pescado

```
# Pescados

par(mfrow = c(3,2))
ccf(z_pesc,z_avc,main="Pescado e Avicultura de Corte")
ccf(z_pesc,z_avp,main="Pescado e Avicultura de Postura")
ccf(z_pesc,z_bov,main="Pescado e Bovinocultura")
ccf(z_pesc,z_lac,main="Pescado e Lácteos")
ccf(z_pesc,z_suino,main="Pescado e Suinocultura")

# Regressão LASSO
```

```
set.seed(2)
x = model.matrix(PESC~ .,data=data_anual)[,-1]
y = data_anual$PESC
cv.model = cv.glmnet(x,y,alpha = 1)
cv.model
##
## Call: cv.glmnet(x = x, y = y, alpha = 1)
## Measure: Mean-Squared Error
##
##
       Lambda Index Measure
                               SE Nonzero
## min 0.9574
                 11
                      13.30 4.025
## 1se 2.4274
                      16.09 4.922
par(mfrow=c(1,1))
```

Pescado e Avicultura de Corte

Pescado e Avicultura de Postura

Pescado e Bovinocultura

Pescado e Lácteos

Pescado e Suinocultura

plot(cv.model)


```
coef(cv.model,cv.model$lambda.min)
```

```
## 6 x 1 sparse Matrix of class "dgCMatrix"

## (Intercept) 5.10009457

## AVC .

## AVP .

## BOV -0.01742377

## LAC .

## SUIN 0.35756988
```

Regressão Lasso para a Avicultura de Corte

```
# Avicultura de Corte

par(mfrow = c(3,2))
ccf(z_avc,z_avp,main="Avicultura de Corte e Avicultura de Postura")
ccf(z_avc,z_bov,main="Avicultura de Corte e Bovinocultura")
ccf(z_avc,z_lac,main="Avicultura de Corte e Lácteos")
ccf(z_avc,z_pesc,main="Avicultura de Corte e Pescado")
ccf(z_avc,z_suino,main="Avicultura de Corte e Suinocultura")

# Regressão LASSO
```

```
set.seed(3)
x = model.matrix(AVC~ .,data=data_anual)[,-1]
y = data_anual$AVC
cv.model = cv.glmnet(x,y,alpha = 1)
cv.model
##
## Call: cv.glmnet(x = x, y = y, alpha = 1)
##
## Measure: Mean-Squared Error
##
##
       Lambda Index Measure
                                SE Nonzero
## min 0.7118
                 18
                      22.18 9.671
                                         3
## 1se 2.6183
                      31.70 15.445
par(mfrow=c(1,1))
```

Avicultura de Corte e Avicultura de Postura

9; -5 0 5

Avicultura de Corte e Bovinocultura

Avicultura de Corte e Lácteos

Avicultura de Corte e Pescado

Avicultura de Corte e Suinocultura

plot(cv.model)


```
coef(cv.model,cv.model$lambda.min)
```

Regressão Lasso para Avicultura de Postura

```
# Avicultura de Postura

par(mfrow = c(3,2))
ccf(z_avp,z_avc,main="Avicultura de Postura e Avicultura de Corte")
ccf(z_avp,z_bov,main="Avicultura de Postura e Bovinocultura")
ccf(z_avp,z_lac,main="Avicultura de Postura e Lácteos")
ccf(z_avp,z_pesc,main="Avicultura de Postura e Pescado")
ccf(z_avp,z_suino,main="Avicultura de Postura e Suinocultura")

# Regressão LASSO
```

```
set.seed(4)
x = model.matrix(AVP~ .,data=data_anual)[,-1]
y = data_anual$AVP

par(mfrow=c(1,1))
```

Avicultura de Postura e Avicultura de Corte

υθν φ. -5 0 5 Lag

Avicultura de Postura e Bovinocultura

Avicultura de Postura e Lácteos

Avicultura de Postura e Pescado

Avicultura de Postura e Suinocultura


```
cv.model = cv.glmnet(x,y,alpha = 1)
cv.model
```

```
##
## Call: cv.glmnet(x = x, y = y, alpha = 1)
##
## Measure: Mean-Squared Error
##
## Lambda Index Measure SE Nonzero
## min 2.434 9 59.12 22.85 1
## 1se 5.123 1 74.99 27.37 0
```

plot(cv.model)


```
coef(cv.model,cv.model$lambda.min)
```

```
## 6 x 1 sparse Matrix of class "dgCMatrix"
## 1
## (Intercept) 6.3392348
## AVC 0.5007544
## BOV .
## LAC .
## PESC .
## SUIN .
```

Regressão Lasso para o Lácteos

```
# Lacteos
par(mfrow = c(3,2))
ccf(z_lac,z_avc,main="Lácteos e Avicultura de Corte")
ccf(z_lac,z_avp,main="Lácteos e Avicultura de Postura")
ccf(z_lac,z_bov,main="Lácteos e Bovinocultura")
ccf(z_lac,z_pesc,main="Lácteos e Pescado")
ccf(z_lac,z_suino,main="Lácteos e Suinocultura")

# Regressão LASSO
set.seed(5)
```

```
x = model.matrix(LAC~ .,data=data_anual)[,-1]
y = data_anual$LAC
par(mfrow=c(1,1))
```

Lácteos e Avicultura de Corte

Lácteos e Avicultura de Postura

Lácteos e Bovinocultura

Lácteos e Pescado

Lácteos e Suinocultura


```
cv.model = cv.glmnet(x,y,alpha = 1)
cv.model
```

```
##
## Call: cv.glmnet(x = x, y = y, alpha = 1)
##
## Measure: Mean-Squared Error
##
## Lambda Index Measure SE Nonzero
## min 2.747  4 111.8 60.25  1
## 1se 3.631  1 112.3 59.97  0
```

plot(cv.model)


```
coef(cv.model,cv.model$lambda.min)
```

```
## 6 x 1 sparse Matrix of class "dgCMatrix"
## (Intercept) 6.5890827
## AVC .
## AVP 0.1112567
## BOV .
## PESC .
## SUIN .
```

Regressão Lasso para Suinocultura

```
# Suinocultura

par(mfrow = c(3,2))
ccf(z_suino,z_avc,main="Suinocultura e Avicultura de Corte")
ccf(z_suino,z_avp,main="Suinocultura e Avicultura de Postura")
ccf(z_suino,z_bov,main="Suinocultura e Bovinocultura")
ccf(z_suino,z_lac,main="Suinocultura e Lacteos")
ccf(z_suino,z_pesc,main="Suinocultura e Pescado")
```

```
# Regressão LASSO
set.seed(6)
x = model.matrix(SUIN~ .,data=data_anual)[,-1]
y = data_anual$SUIN

par(mfrow=c(1,1))
```

Suinocultura e Avicultura de Corte

Suinocultura e Avicultura de Postura

Suinocultura e Bovinocultura

Suinocultura e Lacteos

Suinocultura e Pescado


```
cv.model = cv.glmnet(x,y,alpha = 1)
cv.model
```

```
##
## Call: cv.glmnet(x = x, y = y, alpha = 1)
##
## Measure: Mean-Squared Error
##
##
       Lambda Index Measure
                               SE Nonzero
## min 0.612
                 17
                      11.27 5.713
                                        3
## 1se 1.552
                  7
                      16.27 7.939
                                        3
```

```
plot(cv.model)
```


coef(cv.model,cv.model\$lambda.min)

```
library(faraway)
require(BatchGetSymbols)
require(Amelia)
require(reshape2)
require(ggthemes)
require(plyr)
library(ggplot2)
suppressMessages(library(foreign))
suppressMessages(library(dynlm))
suppressMessages(library(car))
suppressMessages(library(lmtest))
suppressMessages(library(sandwich))
suppressMessages(library(fpp2))
suppressMessages(library(tseries))
suppressMessages(library(zoo))
suppressMessages(library(forecast))
library(BETS)
library(quantmod)
library(fpp2)
library(GeneCycle)
library(randtests)
library(zoo)
library(TSA)
library(gridExtra)
library(FitAR)
library(glmnet)
library(astsa)
library(lmtest)
data = read_xlsx("IPCA_DADOS_AGRUPADOS.xlsx", sheet = 1)
data$Data <- as.Date(data$Data)</pre>
head(data)
zt2 <- ts(data[,2], frequency = 12, start = 2007, end = 2019)
zt3 <- ts(data[,3], frequency = 12, start = 2007, end = 2019)
zt4 <- ts(data[,4], frequency = 12, start = 2007, end = 2019)
zt5 <- ts(data[,5], frequency = 12, start = 2007, end = 2019)
zt6 <- ts(data[,6], frequency = 12, start = 2007, end = 2019)
zt7 < -ts(data[,7], frequency = 12, start = 2007, end = 2019)
zt8 <- ts(data[,8], frequency = 12, start = 2007, end = 2019)
zt9 <- ts(data[,9], frequency = 12, start = 2007, end = 2019)
zt10 <- ts(data[,10], frequency = 12, start = 2007, end = 2019)
zt11 <- ts(data[,11], frequency = 12, start = 2007, end = 2019)
zt12 <- ts(data[,12], frequency = 12, start = 2007, end = 2019)
zt13 <- ts(data[,13], frequency = 12, start = 2007, end = 2019)
zt14 <- ts(data[,14], frequency = 12, start = 2007, end = 2019)
zt15 <- ts(data[,15], frequency = 12, start = 2007, end = 2019)
zt16 <- ts(data[,16], frequency = 12, start = 2007, end = 2019)
zt17 <- ts(data[,17], frequency = 12, start = 2007, end = 2019)
zt18 <- ts(data[,18], frequency = 12, start = 2007, end = 2019)
zt19 <- ts(data[,19], frequency = 12, start = 2007, end = 2019)
zt20 <- ts(data[,20], frequency = 12, start = 2007, end = 2019)
zt21 <- ts(data[,21], frequency = 12, start = 2007, end = 2019)
```

```
zt22 <- ts(data[,22], frequency = 12, start = 2007, end = 2019)
zt23 <- ts(data[,23], frequency = 12, start = 2007, end = 2019)
zt24 <- ts(data[,24], frequency = 12, start = 2007, end = 2019)
plot(zt2,main="Série Temporal do Arroz", xlab= "Anos", ylab="IPCA")
\#par(mfrow = c(2, 2))
plot(zt3,main="Série Temporal de Avicultura de Corte", xlab= "Anos", ylab="IPCA")
plot(zt4,main="Série Temporal de Avicultura de Postura", xlab= "Anos", ylab="IPCA")
plot(zt5,main="Série Temporal da Banana", xlab= "Anos", ylab="IPCA")
plot(zt6,main="Série Temporal da Batata", xlab= "Anos", ylab="IPCA")
\#par(mfrow = c(3, 2))
plot(zt7,main="Série Temporal da Bovinocultura", xlab= "Anos", ylab="IPCA")
plot(zt8,main="Série Temporal do Cacau e Produtos", xlab= "Anos", ylab="IPCA")
plot(zt9,main="Série Temporal do Café", xlab= "Anos", ylab="IPCA")
plot(zt10,main="Série Temporal da Cebola", xlab= "Anos", ylab="IPCA")
plot(zt11, main="Série Temporal do Complexo Soja", xlab= "Anos", ylab="IPCA")
plot(zt12,main="Série Temporal do Complexo Sucroalc.", xlab= "Anos", ylab="IPCA")
\#par(mfrow = c(3, 2))
plot(zt13, main="Série Temporal do Feijão", xlab= "Anos", ylab="IPCA")
plot(zt14, main="Série Temporal das Frutas", xlab= "Anos", ylab="IPCA")
plot(zt15,main="Série Temporal das Horticulas", xlab= "Anos", ylab="IPCA")
plot(zt16,main="Série Temporal de Indefinido", xlab= "Anos", ylab="IPCA")
plot(zt17,main="Série Temporal do Laranja e Citrus", xlab= "Anos", ylab="IPCA")
plot(zt18,main="Série Temporal da Lácteos", xlab= "Anos", ylab="IPCA")
\#par(mfrow = c(3, 2))
plot(zt19,main="Série Temporal da Mandioca", xlab= "Anos", ylab="IPCA")
plot(zt20,main="Série Temporal do Milho", xlab= "Anos", ylab="IPCA")
plot(zt21, main="Série Temporal do Pescado", xlab= "Anos", ylab="IPCA")
plot(zt22, main="Série Temporal da Suínocultura", xlab= "Anos", ylab="IPCA")
plot(zt23,main="Série Temporal do Tomate", xlab= "Anos", ylab="IPCA")
plot(zt24,main="Série Temporal do Trigo", xlab= "Anos", ylab="IPCA")
par(mfrow = c(2, 1))
plot(zt21, main="Série Temporal do Pescado", xlab= "Anos", ylab="IPCA")
plot(zt18,main="Série Temporal do Lácteos", xlab= "Anos", ylab="IPCA")
#900#650
par(mfrow = c(2, 1))
plot(zt7,main="Série Temporal da Bovinocultura", xlab= "Anos", ylab="IPCA")
plot(zt22,main="Série Temporal da Suínocultura", xlab= "Anos", ylab="IPCA")
par(mfrow = c(2, 1))
plot(zt3,main="Série Temporal de Avicultura de Corte", xlab= "Anos", ylab="IPCA")
plot(zt4,main="Série Temporal de Avicultura de Postura", xlab= "Anos", ylab="IPCA")
#Funções de Autocorrelações para Avicultura de Corte
```

```
par(mfrow = c(1, 2))
acf(zt3, main="ACF Avicultura de Corte")
pacf(zt3, main="PACF Avicultura de Corte")
#Funções de Autocorrelações para Avicultura de Postura
par(mfrow = c(1, 2))
acf(zt4, main="ACF Avicultura de Postura")
pacf(zt4, main="PACF Avicultura de Postura")
#Funções de Autocorrelações para Suinocultura
par(mfrow = c(1, 2))
acf(zt22, main="ACF Suinocultura")
pacf(zt22, main="PACF Suinocultura")
#Funções de Autocorrelações para Pescado
par(mfrow = c(1, 2))
acf(zt21, main="ACF Pescado", lag.max = 36)
pacf(zt21, main="PACF Pescado", lag.max = 36)
#Funções de Autocorrelações para Lácteos
par(mfrow = c(1, 2))
acf(zt18, main="ACF Lácteos", lag.max = 48)
pacf(zt18, main="PACF Lácteos", lag.max = 48)
#Funções de Autocorrelações para Bovinocultura
par(mfrow = c(1, 2))
acf(zt7, main="ACF Bovinocultura")
pacf(zt7, main="PACF Bovinocultura")
# Teste de Dickey-Fuller
adf.test(zt7)
adf.test(zt3)
adf.test(zt4)
adf.test(zt18)
adf.test(zt21)
adf.test(zt22)
# Teste de Phillips-Perron
pp.test(zt7)
pp.test(zt3)
pp.test(zt4)
pp.test(zt18)
pp.test(zt21)
pp.test(zt22)
#Correlaões cruzadas da Bovincultura
par(mfrow = c(3,2))
ccf(zt7,zt3,main="Bovinocultura e Avicultura de Corte")
ccf(zt7,zt4,main="Bovinocultura e Avicultura de Postura")
ccf(zt7,zt18,main="Bovinocultura e Lácteos")
ccf(zt7,zt21,main="Bovinocultura e Pescados")
ccf(zt7,zt22,main="Bovinocultura e Suinocultura")
#Correlações cruzadas da Avicultura de Corte
par(mfrow = c(3,2))
ccf(zt3,zt4,main="Avicultura de Corte e Avicultura de Postura")
ccf(zt3,zt7,main="Avicultura de Corte e Bovinocultura")
ccf(zt3,zt18,main="Avicultura de Corte e Lácteos")
ccf(zt3,zt21,main="Avicultura de Corte e Pescados")
ccf(zt3,zt22,main="Avicultura de Corte e Suinocultura")
```

```
#Correlações cruzadas da Avicultura de Postura
par(mfrow = c(3,2))
ccf(zt4,zt3,main="Avicultura de Postura e Avicultura de Corte")
ccf(zt4,zt7,main="Avicultura de Postura e Bovinocultura")
ccf(zt4,zt18,main="Avicultura de Postura e Lácteos")
ccf(zt4,zt21,main="Avicultura de Postura e Pescados")
ccf(zt4,zt22,main="Avicultura de Postura e Suinocultura")
#Correlações cruzadas dos Lácteos
par(mfrow = c(3,2))
ccf(zt18,zt3,main="Lácteos e Avicultura de Corte")
ccf(zt18,zt4,main="Lácteos e Avicultura de Postura ")
ccf(zt18,zt7,main="Lácteos e Bovinocultura")
ccf(zt18,zt21,main="Lácteos e Pescados")
ccf(zt18,zt22,main="Lácteos e Suinocultura")
# Correlaões cruzadas dos Pescados
par(mfrow = c(3,2))
ccf(zt21,zt3,main="Pescados e Avicultura de Corte")
ccf(zt21,zt4,main="Pescados e Avicultura de Postura")
ccf(zt21,zt7,main="Pescados e Bovinocultura")
ccf(zt21,zt18,main="Pescados e Lácteos")
ccf(zt21,zt22,main="Pescados e Suinocultura")
#Correlações cruzadas da Suinocultura
par(mfrow = c(3,2))
ccf(zt22,zt3,main="Suinocultura e Avicultura de Corte")
ccf(zt22,zt4,main="Suinocultura e Avicultura de Postura")
ccf(zt22,zt7,main="Suinocultura e Bovinocultura")
ccf(zt22,zt18,main="Suinocultura e Lacteos")
ccf(zt22,zt21,main="Suinocultura e Pescados")
#Essa função retorna a coluna com a lag a ser considerada na análise
funcao_lags = function(df,coluna,nome,lag){
 n = nrow(df)
  pre = rep(NA,lag)
  newcol = c(pre,coluna)
 for (k in 1:lag){
   df = rbind(df,rep(NA,ncol(df)))
  df[nome] = newcol
 return (df)
}
#A função a baixo retira as variáveis do modelo em função do p-valor
tirar_variaveis = function(p,d,q,x,y){
 v = p + q + 1
 max = 0.06
  while (max > 0.05){
   model = Arima(y,order=c(p,d,q),xreg = x)
   ct = coeftest(model)
   pvalues = ct[(v+1):nrow(ct),4]
   maxi = which.max(pvalues)
   max = ct[v + maxi, 4]
   if (max > 0.05) {
```

```
x = x[,-maxi]
 lista = list(ct, x)
 return (lista)
#A seguir vamos selecionar apenas as variáveis de interesse para análise
data_cut = data[,c("Bovinocultura","Avicultura de Corte","Avicultura de Postura","Pescado","Lácteos","S
#Estruturando a base
df1<- funcao_lags(data_cut, data_cut$'Avicultura de Postura', 'avp9', 9)
df1 <- funcao_lags(df1, df1$Pescado, 'p3', 3)</pre>
df1 <- funcao_lags(df1, df1$Pescado, 'p10', 10)</pre>
df1 <- funcao_lags(df1, df1$Bovinocultura, 'b1', 1)</pre>
df2 <- na.omit(df1)
#Separando variável preditora e as covariáveis
x = model.matrix(Bovinocultura~.,df2)[,-1]
y = df2$Bovinocultura
#Criando o modelo de Regressão Simples
fit1 <- summary(fit <- lm(y~x))
fit1
#Análise dos Resíduos
acf2(resid(fit))
#Análise dos resíduos e seleção de variáveis de acordo com p-valor
fit2 <- tirar_variaveis(0, 0, 0, x, y)</pre>
fit2[[1]]
xx <- fit2[2]
xx < -xx[[1]]
fit3 = Arima(y,order=c(0,0,0),xreg=xx)
fit3
coeftest(fit3)
acf2(fit3$residuals)
fit4 = Arima(y,order=c(1,0,0),xreg=xx)
fit4
coeftest(fit4)
checkresiduals(fit4)
acf2(fit4$residuals)
fit5 <- tirar_variaveis(1, 0, 0, xx, y)
fit5[[1]]
xx <- fit5[2]
xx < -xx[[1]]
```

```
fit6 = Arima(y,order=c(1,0,0),xreg=xx,fixed=c(NA,NA, NA, NA))
cof.fit6 = coeftest(fit6)
cof.fit6
checkresiduals(fit6)
acf2(fit6$residuals, main = "")
#Estruturando a base
df1<- funcao_lags(data_cut, data_cut$'Avicultura de Corte', 'cort1', 1)
df1 <- funcao_lags(df1, df1\$'Avicultura de Postura', 'pos12', 12)
df1 <- funcao_lags(df1, df1$Bovinocultura, 'bov1', 1)</pre>
df1 <- funcao_lags(df1, df1$Pescado, 'pes4', 4)
df1 <- funcao_lags(df1, df1$Pescado, 'pes9', 9)
df1 <- funcao_lags(df1, df1$Suinocultura, 'sui1', 1)
df1 <- funcao_lags(df1, df1$Suinocultura, 'sui6', 6)
df2 <- na.omit(df1)</pre>
#Separando variável preditora e as covariáveis
x = model.matrix('Avicultura de Corte'~.,df2)[,-1]
v = df2$'Avicultura de Corte'
#Criando o modelo de Regressão Simples
fit1 <- summary(fit <- lm(y~x))</pre>
fit1
#Análise dos Resíduos
acf2(resid(fit))
#Seleção de variáveis
fit2 <- tirar_variaveis(0, 0, 0, x, y)</pre>
xx \leftarrow fit2[2]
xx \leftarrow xx[[1]]
fit3 = Arima(y, order=c(0,0,0), include.mean = FALSE, xreg=xx)
coeftest(fit3)
checkresiduals(fit3)
acf2(fit3$residuals, main = "")
# Estruturando a base
df1<- funcao_lags(data_cut, data_cut$Pescado, 'pes1', 1)
df1 <- funcao_lags(df1, df1$Pescado, 'pes5', 5)</pre>
df1 <- funcao_lags(df1, df1$Pescado, 'pes12', 12)
df1 <- funcao_lags(df1, df1$'Avicultura de Corte', 'cort3', 3)</pre>
df1 <- funcao_lags(df1, df1$'Avicultura de Corte', 'cort8', 8)
df1 <- funcao_lags(df1, df1$'Avicultura de Postura', 'pos2', 2)
df1 <- funcao_lags(df1, df1$'Avicultura de Postura', 'pos9', 9)
df1 <- funcao_lags(df1, df1$Bovinocultura, 'bov1', 1)</pre>
df1 <- funcao_lags(df1, df1$Bovinocultura, 'bov3', 3)
```

```
df1 <- funcao_lags(df1, df1$Bovinocultura, 'bov7', 7)</pre>
df1 <- funcao_lags(df1, df1$Lácteos, 'lact2', 2)</pre>
df1 <- funcao_lags(df1, df1$Lácteos, 'lact8', 8)
df1 <- funcao_lags(df1, df1$Suinocultura, 'sui3', 3)
df2 <- na.omit(df1)
#Separando variável preditora e as covariáveis
x = model.matrix(Pescado~.,df2)[,-1]
y = df2$Pescado
# Criando o modelo de Regressão Simples
fit1 <- summary(fit <- lm(y~x))</pre>
fit1
# Análise dos Resíduos
acf2(resid(fit))
# Análise dos resíduos e seleção de variáveis de acordo com p-valor
y = ts(y, frequency=12)
x = x[,-1]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
x = x[,-15]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
x = x[,-1]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
x = x[,-14]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
x = x[,-9]
fit3 = Arima(y,order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
x = x[,-11]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
```

```
x = x[,-2]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
x = x[,-3]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
x = x[,-5]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
x = x[,-4]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
checkresiduals(fit3)
acf2(fit3$residuals, main = "")
x = x[,-2]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
x = x[,-2]
fit3 = Arima(y, order=c(0,0,0), seasonal = c(1, 0, 0), xreg=x)
coeftest(fit3)
checkresiduals(fit3)
acf2(fit3$residuals, main = "")
# Estruturando a base
df1<- funcao_lags(data_cut, data_cut$'Avicultura de Postura', 'avp1', 1)
df1<- funcao_lags(df1, df1\$'Avicultura de Postura', 'avp12', 12)
df1<- funcao_lags(df1, df1\$'Avicultura de Corte', 'avc5', 5)
df1 <- funcao_lags(df1, df1$Bovinocultura, 'bov3', 3)</pre>
df1 <- funcao_lags(df1, df1$Lácteos, 'lact11', 11)</pre>
df1 <- funcao_lags(df1, df1$Pescado, 'pes2', 2)</pre>
df1 <- funcao_lags(df1, df1$Pescado, 'pes9', 9)</pre>
df2 <- na.omit(df1)
#Separando variável preditora e as covariáveis
x = model.matrix('Avicultura de Postura'~.,df2)[,-1]
y = df2\$'Avicultura de Postura'
# Criando o modelo de Regressão Simples
```

```
fit1 <- summary(fit <- lm(y~x))</pre>
fit1
# Análise dos Resíduos
acf2(resid(fit))
# Análise dos resíduos e seleção de variáveis de acordo com p-valor
fit2<- tirar_variaveis(0, 0, 0, x, y)
fit2[1]
xx <- fit2[2]
xx < -xx[[1]]
fit3 = Arima(y,order=c(0,0,0),xreg=xx)
coeftest(fit3)
checkresiduals(fit3)
acf2(fit3$residuals)
fit4 = Arima(y,order=c(3,0,0),xreg=xx,include.mean = FALSE,fixed=c(0,0,NA,NA,0,NA,NA,NA))
fit4
coeftest(fit4)
checkresiduals(fit4)
acf2(fit4$residuals, main = "")
# Estruturando a base
df1<- funcao_lags(data_cut, data_cut$Lácteos, 'lact1', 1)
df1<- funcao_lags(df1, df1\$'Avicultura de Postura', 'avp1', 1)
df1<- funcao_lags(df1, df1$'Avicultura de Corte', 'avc6', 6)</pre>
df1 <- funcao_lags(df1, df1$Bovinocultura, 'bov2', 2)
df1 <- funcao_lags(df1, df1$Pescado, 'pes4', 4)
df1 <- funcao_lags(df1, df1$Pescado, 'pes9', 9)
df2 <- na.omit(df1)
#Separando variável preditora e as covariáveis
x = model.matrix(Lácteos~.,df2)[,-1]
y = df2$Lácteos
# Criando o modelo de Regressão Simples
fit1 <- summary(fit <- lm(y~x))</pre>
fit1
# Análise dos Resíduos
acf2(resid(fit))
# Análise dos resíduos e seleção de variáveis de acordo com p-valor
fit2 <- tirar_variaveis(0, 0, 0, x, y)</pre>
fit2[1]
xx \leftarrow fit2[2]
xx < -xx[[1]]
fit3 = Arima(y,order=c(0,0,0),xreg=xx,include.mean = FALSE)
```

```
coeftest(fit3)
checkresiduals(fit3)
acf2(fit3$residuals, main = "")
# Estruturando a base
df1<- funcao_lags(data_cut, data_cut$Suinocultura, 'su1', 1)
df1<- funcao lags(df1, df1$'Avicultura de Corte', 'avc1', 1)
df1<- funcao_lags(df1, df1\$'Avicultura de Corte', 'avc6', 6)
df1<- funcao_lags(df1, df1\$'Avicultura de Corte', 'avc10', 10)
df1 <- funcao_lags(df1, df1$Bovinocultura, 'bov1', 1)
df2 <- na.omit(df1)
# Separando variável preditora e as covariáveis
x = model.matrix(Suinocultura~.,df2)[,-1]
y = df2\$Suinocultura
# Criando o modelo de Regressão Simples
fit1 <- summary(fit <- lm(y~x))</pre>
fit1
# Análise dos Resíduos
acf2(resid(fit))
# Análise dos resíduos e seleção de variáveis de acordo com p-valor
fit2 <- tirar_variaveis(0, 0, 0, x, y)</pre>
fit2[1]
xx \leftarrow fit2[2]
xx<- xx[[1]]
fit3 = Arima(y, order=c(0,0,0), xreg=xx)
coeftest(fit3)
checkresiduals(fit3)
acf2(fit3$residuals)
fit4 = Arima(y, order=c(2,0,0), xreg=xx, fixed =c(0,NA,NA,NA,NA,NA))
fit4
coeftest(fit4)
checkresiduals(fit4)
acf2(fit4$residuals, main = "")
library(readxl)
data_anual = read_xlsx("Cadeia-Ano.xlsx")
# Análise das séries temporais anuais
head(data_anual)
# Análise Descritiva
z_avc = data_anual$'Avicultura de Corte'
z_{avc} = ts(z_{avc}, frequency = 1, start = 2007, end = 2019)
z_avp = data_anual$'Avicultura Postura'
z_{avp} = ts(z_{avp}, frequency = 1, start = 2007, end = 2019)
```

```
z_bov = data_anual$'Bovinocultura de corte'
z_bov = ts(z_bov, frequency = 1, start = 2007, end = 2019)
z lac = data anual$'Lácteos'
z_{lac} = ts(z_{lac}, frequency = 1, start = 2007, end = 2019)
z_pesc = data_anual$Pescado
z_pesc = ts(z_pesc, frequency = 1, start = 2007, end = 2019)
z_suino = data_anual$Suinocultura
z_suino = ts(z_suino, frequency = 1, start = 2007, end = 2019)
# Análise Descritiva
plot(z_avc,main="Série Temporal da Avicultura de Corte", xlab= "Anos", ylab="IPCA")
plot(z_avp,main="Série Temporal da Avicultura de Postura", xlab= "Anos", ylab="IPCA")
plot(z_lac,main="Série Temporal do Lácteos", xlab= "Anos", ylab="IPCA")
plot(z_pesc,main="Série Temporal do Pescado", xlab= "Anos", ylab="IPCA")
plot(z_bov,main="Série Temporal da Bovinocultura", xlab= "Anos", ylab="IPCA")
plot(z_suino, main="Série Temporal da Suinocultura", xlab= "Anos", ylab="IPCA")
#Funções de Autocorrelações para Bovinocultura
par(mfrow = c(1, 2))
acf(z_bov, main="ACF Bovinocultura")
pacf(z_bov, main="PACF Bovinocultura")
#Funções de Autocorrelações para Avicultura de Corte
par(mfrow = c(1, 2))
acf(z avc, main="ACF Avicultura de Corte")
pacf(z_avc, main="PACF Avicultura de Corte")
#Funções de Autocorrelações para Avicultura de Postura
par(mfrow = c(1, 2))
acf(z_avp, main="ACF Avicultura de Postura")
pacf(z_avp, main="PACF Avicultura de Postura")
#Funções de Autocorrelações para Lácteos
par(mfrow = c(1, 2))
acf(z_lac, main="ACF Lácteos")
pacf(z_lac, main="PACF Lácteos")
#Funções de Autocorrelações para Pescado
par(mfrow = c(1, 2))
acf(z_pesc, main="ACF Pescado")
pacf(z pesc, main="PACF Pescado")
#Funções de Autocorrelações para Suinocultura
par(mfrow = c(1, 2))
acf(z_suino, main="ACF Suinocultura")
pacf(z_suino, main="PACF Suinocultura")
# Teste de Dickey-Fuller
adf.test(z bov)
adf.test(z_avc)
adf.test(z_avp)
adf.test(z_lac)
adf.test(z_pesc)
adf.test(z_suino)
# Teste de Phillips-Perron
pp.test(z_bov)
pp.test(z_avc)
```

```
pp.test(z_avp)
pp.test(z_lac)
pp.test(z_pesc)
pp.test(z_suino)
# Variáveis do modelo
library(glmnet)
colnames(data_anual) = c("ANO", "AVC", "AVP", "BOV", "LAC", "PESC", "SUIN")
data_anual = data_anual[,-1]
#Correlaões cruzadas da Bovincultura
par(mfrow = c(3,2))
ccf(z_bov,z_avc,main="Bovinocultura e Avicultura de Corte")
ccf(z_bov,z_avp,main="Bovinocultura e Avicultura de Postura")
ccf(z_bov,z_lac,main="Bovinocultura e Lácteos")
ccf(z_bov,z_pesc,main="Bovinocultura e Pescado")
ccf(z_bov,z_suino,main="Bovinocultura e Suinocultura")
# Regressão LASSO
set.seed(1)
x = model.matrix(BOV~ .,data=data_anual)[,-1]
y = data_anual$BOV
cv.model = cv.glmnet(x,y,alpha = 1)
cv.model
par(mfrow=c(1,1))
plot(cv.model)
coef(cv.model,cv.model$lambda.min)
# Pescados
par(mfrow = c(3,2))
ccf(z_pesc,z_avc,main="Pescado e Avicultura de Corte")
ccf(z_pesc,z_avp,main="Pescado e Avicultura de Postura")
ccf(z_pesc,z_bov,main="Pescado e Bovinocultura")
ccf(z_pesc,z_lac,main="Pescado e Lácteos")
ccf(z_pesc,z_suino,main="Pescado e Suinocultura")
# Regressão LASSO
set.seed(2)
x = model.matrix(PESC~ .,data=data_anual)[,-1]
y = data_anual$PESC
cv.model = cv.glmnet(x,y,alpha = 1)
cv.model
par(mfrow=c(1,1))
plot(cv.model)
```

```
coef(cv.model,cv.model$lambda.min)
# Avicultura de Corte
par(mfrow = c(3,2))
ccf(z_avc,z_avp,main="Avicultura de Corte e Avicultura de Postura")
ccf(z_avc,z_bov,main="Avicultura de Corte e Bovinocultura")
ccf(z avc,z lac,main="Avicultura de Corte e Lácteos")
ccf(z_avc,z_pesc,main="Avicultura de Corte e Pescado")
ccf(z_avc,z_suino,main="Avicultura de Corte e Suinocultura")
# Regressão LASSO
set.seed(3)
x = model.matrix(AVC~ .,data=data_anual)[,-1]
y = data_anual$AVC
cv.model = cv.glmnet(x,y,alpha = 1)
cv.model
par(mfrow=c(1,1))
plot(cv.model)
coef(cv.model,cv.model$lambda.min)
# Avicultura de Postura
par(mfrow = c(3,2))
ccf(z_avp,z_avc,main="Avicultura de Postura e Avicultura de Corte")
ccf(z_avp,z_bov,main="Avicultura de Postura e Bovinocultura")
ccf(z_avp,z_lac,main="Avicultura de Postura e Lácteos")
ccf(z_avp,z_pesc,main="Avicultura de Postura e Pescado")
ccf(z_avp,z_suino,main="Avicultura de Postura e Suinocultura")
# Regressão LASSO
set.seed(4)
x = model.matrix(AVP~ .,data=data_anual)[,-1]
y = data_anual$AVP
par(mfrow=c(1,1))
cv.model = cv.glmnet(x,y,alpha = 1)
cv.model
plot(cv.model)
coef(cv.model,cv.model$lambda.min)
# Lacteos
par(mfrow = c(3,2))
ccf(z_lac,z_avc,main="Lácteos e Avicultura de Corte")
ccf(z_lac,z_avp,main="Lácteos e Avicultura de Postura")
ccf(z_lac,z_bov,main="Lácteos e Bovinocultura")
ccf(z_lac,z_pesc,main="Lácteos e Pescado")
ccf(z_lac,z_suino,main="Lácteos e Suinocultura")
```

```
# Regressão LASSO
set.seed(5)
x = model.matrix(LAC~ .,data=data_anual)[,-1]
y = data_anual$LAC
par(mfrow=c(1,1))
cv.model = cv.glmnet(x,y,alpha = 1)
cv.model
plot(cv.model)
coef(cv.model,cv.model$lambda.min)
# Suinocultura
par(mfrow = c(3,2))
ccf(z_suino,z_avc,main="Suinocultura e Avicultura de Corte")
ccf(z_suino,z_avp,main="Suinocultura e Avicultura de Postura")
ccf(z_suino,z_bov,main="Suinocultura e Bovinocultura")
ccf(z_suino,z_lac,main="Suinocultura e Lacteos")
ccf(z_suino,z_pesc,main="Suinocultura e Pescado")
# Regressão LASSO
set.seed(6)
x = model.matrix(SUIN~ .,data=data_anual)[,-1]
y = data_anual$SUIN
par(mfrow=c(1,1))
cv.model = cv.glmnet(x,y,alpha = 1)
cv.model
plot(cv.model)
coef(cv.model,cv.model$lambda.min)
```