MATH-F-427 students

Coxeter groups

Course notes

June 9, 2019

Contents

Definition 0.1. Let A be an algebra over \mathbb{C} . Then, the **transcendence degree** of A over \mathbb{C} is the maximal number of algebraically independent elements of A. Recall that a subset $\{a_1,...,a_n\} \subset A$ is **algebraically independent** if and only if there exists no polynomial $P \in \mathbb{C}[Y_1,...,Y_n] \setminus \{0\}$ satisfying that $P(a_1,...,a_n) = 0$.

Proposition 0.2. Let $G \subset GL(\mathbb{C}^n)$ then, the transcendence degree of $\mathbb{C}[x]^G$ over G is n.

Proof. First of all, let us remember that $\mathbb{C}[x]^G$ is a sub algebra of $\mathbb{C}[x]$. In particular, this implies that the transcendence degree $\mathbb{C}[x]^G$ over \mathbb{C} is at most n. Indeed, if $\{a_1, ..., a_{n+1}\} \subset \mathbb{C}[x]^G$ were algebraically independent over \mathbb{C} , this would imply that $\{a_1, ..., a_{n+1}\}$ is an algebraically independent set of $\mathbb{C}[x]$ and therefore contradicts the fact that the transcendence degree of $\mathbb{C}[x]$ is n. On the other hand, let us remark every of the x_i is algebraic over $\mathbb{C}[x]^G$. Indeed, it is not hard to realise that for every $i \in \{1, ..., n\}$, the polynomial:

$$P_i(t) = \prod_{A \in G} (Ax_i - t) \tag{0.1}$$

is in $\mathbb{C}[x]^G$. Furthermore, since $\mathrm{Id}_{\mathbb{C}^n} \in G$, we know that $P_i(x_i) = 0$. In particular, this proves that the x_i are algebraic over $\mathbb{C}[x]^G$. However, since those are algebraically independent elements in C[x], this is only possible if there exists at least n algebraically independent elements of $\mathbb{C}[x]$. This proves that the transcendence degree of $\mathbb{C}[x]$ is at least n and therefore, as a consequence of our previous discussion, this proves that it is exactly n.

Definition 0.3. An element $A \in GL(\mathbb{C}^n)$ is a **pseudo-reflection** if $dim(Ker(A) - Id_{\mathbb{C}^n}) = n - 1$ and A is of finite order in G.

Definition 0.4. A finite subgroup G of $GL(\mathbb{C}^n)$ is a **complex reflection** group if it is generated by reflections.

Example 0.5. The dihedral group D^6 can be seen as a group generated by reflection when it is considered as a subgroup of $\mathrm{GL}(\mathbb{C}^2)$. In this case, it is nothing more than the group of symmetries of a regular hexagon in the plane. However, when we consider D^6 as the subgroup of $\mathrm{GL}(\mathbb{C}^3)$ generated by :

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \qquad \text{and} \qquad \begin{bmatrix} 1/2 & -\sqrt{3}/2 & 0 \\ \sqrt{3}/2 & 1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

can not be generated by reflections. In particular, it is therefore not a complex reflection group in $GL(\mathbb{C}^3)$. This example is of special interest since it shows that the definition depends on the dimension considered.

Now, let $\sigma \in GL(\mathbb{C}^n)$ be reflection and let $H_{\sigma} = \operatorname{Ker}(\sigma - \operatorname{Id}_{\mathbb{C}^n})$. Then, we know that H_{σ} is the solution of a linear equation given by a polynomial

 $L_{\sigma} \in \mathbb{C}[x]$. Moreover, this linear polynomial is unique up to multiplication by a non-zero complex number. The following lemma gives describe an interesting property of this polynomial.

Lemma 0.6. For every function $f \in \mathbb{C}[x]$ and for every reflection $\sigma \in GL(\mathbb{C}^n)$ we the polynomial L_{σ} divides the polynomial $\sigma f - f$.

Proof. Let $v \in H_{\sigma}$. Then, by definition $\sigma(v) = v$. In particular, this implies for every $f \in \mathbb{C}[x]$ that $\sigma f(v) = f(v)$ and therefore that $(\sigma f - f)(v) = 0$ for every $v \in H_{\sigma}$. Furthermore, since L_{σ} is of degree one, it is irreducible. In particular, the Nullstellensatz theorem implies that L_{σ} divides $\sigma f - f$ since H_{π} is the ideal generated by the irreducible polynomial L_{σ} .

Now, let us define I_G as the ideal of $\mathbb{C}[x]$ generated by homogeneous invariant polynomial of positive degree.

Proposition 0.7. Let G be a finite reflection group, let $h_1, ..., h_m$ be homogeneous polynomial polynomial of $\mathbb{C}[x]$, let $g_1, ..., g_m \in \mathbb{C}[x]^G$ be homogeneous invariant polynomials and let us suppose that:

$$g_1h_1 + g_2h_2 + \cdots + g_mh_m = 0 \in \mathbb{C}[x]$$
 (0.2)

Then, either $h_1 \in I_G$ or g_1 belongs to the ideal of $\mathbb{C}[x]$ generated by $\{g_2, ..., g_m\}$.

Proof. The proof is done by induction on the degree of h_1 .

- When the degree of $h_1 = 0$ we make two cases. If $h_1 = 0$, we know that $h_1 \in I_G$ and the claim follows. On the other hand, when h_1 is a non zero constant, Equation 0.2 implies that g_1 is in the ideal generated by $\{g_2, ..., g_m\}$.
- Now, let us suppose that the degree of h_1 is bigger than 1 and that the claim is true for every h'_1 less than the degree of h_1 . Now, let us suppose that g_1 is not in the ideal generated by $\{g_2, ..., g_m\}$. Then, for every reflection σ and since $g_i \in \mathbb{C}[x]^G$ for every i = 1, ..., m, we know that:

$$0 = \sigma(0) = \sigma\left(\sum_{i=1}^{m} g_i h_i\right)$$

$$= \sum_{i=1}^{m} g_i \sigma h_i.$$

$$(0.3)$$

On the other hand, as a consequence of previous lemma, we know that for every i = 1, ..., m there exists a polynomial \tilde{h}_i such that :

$$\sigma(h_i) = h_i + L_{\sigma} \tilde{h}_i. \tag{0.4}$$

Further more, since h_i , σh_i and L_{σ} are homogeneous, this polynomial \tilde{h}_{σ} is also homogeneous in $\mathbb{C}[x]$. Furthermore, the degree of this polynomial \tilde{h}_i

is by definition of degree of $deg(h_i) - 1$ since L_{σ} is of degree 1.In particular, we obtain that :

$$0 = \sum_{i=1}^{m} g_i(h_i + L\sigma\tilde{h}_i) = \sum_{i=1}^{m} g_ih_i + L_{\sigma}\sum_{i=1}^{m} g_i\tilde{h}_i = L_{\sigma}\sum_{i=1}^{m} g_i\tilde{h}_i.$$
(0.5)

In particular, using the induction hypotheses, this implies that $\tilde{h}_1 \in I_G$ and therefore that $\sigma h_1 - h_1 = L_{\sigma} \tilde{h}_1 \in I_G$. However, we know that G is generated by reflection. In particular, this implies that for every $\pi \in G$ there exists reflections $\sigma_1, ..., \sigma_k$ such that $\pi = \sigma_1 ... \sigma_k$. Now, using a telescopic sum, this implies that:

$$\pi h_1 - h_1 = \sigma_1 ... \sigma_k h_1 - h_1$$

$$= \sum_{i=1}^{k-1} \sigma_1 ... \sigma_{i+1} h_1 - \sigma_1 ... \sigma_i h_1$$

$$= \sum_{i=1}^{k-1} \sigma_1 ... \sigma_i (\sigma_{i+1} h_1 - h_1) \in I_G.$$

$$(0.6)$$

In particular, since:

$$\frac{1}{|G|} \sum_{\pi \in G} (\pi h_1 - h_1) = R_G(h_1) - h_1 \tag{0.7}$$

and since $R_G(h_1) \in I_G$ this implies that $h_1 \in I_G$.

Theorem 0.8 (Shepard - Todd - Chevalley). Let $G \subset GL(\mathbb{C}^n)$ be a finite group. Then, $\mathbb{C}[x]^G$ is generated by n algebraically independent homogeneous invariant if and only if G is a reflection group.

Proof. (\Leftarrow) Using the Hilbert basis theorem, we know that I_G is finitely generated. In particular, since each of those generating polynomials is invariant, it can be generated by finitely many homogeneous invariant polynomials and we obtain that :

$$I_G = \langle f_1, ..., f_m \rangle$$
 (0.8)

with $f_1, ..., f_m$ homogeneous invariant polynomials. Let us remark that this implies that $\mathbb{C}[x]^G = \mathbb{C}[f_1, ..., f_m]$. To understand why, let us suppose the opposite. Let $h \in \mathbb{C}[x]^G \setminus [f_1, ..., f_m]$ be an homogeneous polynomial of minimal degree for this property. Then, $h = \sum_{i=1}^m g_i f_i$ for some homogeneous polynomials g_i . In particular, because of the G invariance of h this implies that .

$$h = R_G(h) = \sum_{i=1}^m R_G(g_i) h_i$$
 (0.9)

However, $R_G(g_i)$ is an homogeneous polynomial of degree smaller than h. In particular, this implies by definition of h that $R_G(g_i) \in \mathbb{C}[f_1, ..., f_m]$ and we conclude that $h \in \mathbb{C}[f_1, ..., f_m]$. This leads to some contradiction and proves that $\mathbb{C}[x]^G = \mathbb{C}[f_1, ..., f_m]$.

Now, let m be some minimal positive integer satisfying the property that .

$$I_G = \langle f_1, ..., f_m \rangle$$
 (0.10)

with $f_1,...,f_m$ homogeneous invariant polynomials. We want to show that m=n or equivalently that $\{f_1,...,f_m\}$ are algebraically independent since the transcendence degree of $\mathbb{C}[x]^G$ is n. In order to prove this independence, let us reason by contradiction. Let us consider a polynomial $g(Y_1,...,Y_m) \in \mathbb{C}[Y_1,...,Y_m] \setminus \{0\}$ be such that :

$$g(f_1, ..., f_m) = 0 (0.11)$$

and assume that g has minimal degree and that every monomials of $g(f_1, ..., f_m)$ before cancellation have the same degree.

For every i = 1, ..., m let us consider the polynomial:

$$g_i = \left(\frac{\partial g}{\partial Y_i}\right)(f_1, ..., f_m) \in \mathbb{C}[x]^G.$$
 (0.12)

We know that each of the g_i is either 0 or homogeneous of degree $d - \deg(f_i)$. Since $g(Y_1,...,Y_m)$ is not constant, there exists some index i such that $\frac{\partial g}{\partial Y_i} \neq 0$ and therefore, by minimality assumption, $g_i \neq 0$. Now, let $I = < g_1,...,g_m >$. Up to renaming those polynomials, we can assume that $I = < g_1,...,g_k >$, that no proper subset of $\{g_1,...,g_k\}$ generates I and that k is minimal for this property. Then, for every i = k+1,...,m there must exists homogeneous polynomials h_{ij} equal to 0 or of degree $\deg(g_i) - \deg(g_j) = \deg(f_i) - \deg(f_j)$ such that:

$$g_i = \sum_{j=1}^k g_{ij} g_j . (0.13)$$

In particular, we see that:

$$0 = \frac{\partial}{\partial x_s} g(f_1, ..., f_m) = \sum_{i=1}^m g_i \frac{\partial f_i}{\partial x_s}$$

$$= \sum_{i=1}^k g_i \frac{\partial f_i}{\partial x_s} + \sum_{i=1}^m \left(\sum_{j=1}^m h_{ij} g_j \right) \frac{\partial f_i}{\partial x_s}$$

$$= \sum_{i=1}^k g_i \left(\frac{\partial f_i}{\partial x_s} + \sum_{j=1}^m h_{ij} \frac{\partial f_i}{\partial x_s} \right).$$

$$(0.14)$$

As $g_1 \notin \langle g_2, ..., g_m \rangle$, the last proposition implies that :

$$\frac{\partial f_1}{\partial x_s} + \sum_{j=k+1}^m h_{ij} \frac{\partial f_i}{\partial x_j} \in I_G. \tag{0.15}$$

In particular, this implies that :

$$\tilde{f} = \sum_{s=1}^{n} x_s \left(\frac{\partial f_1}{\partial x_s} + \sum_{j=k+1}^{m} h_{ij} \frac{\partial f_i}{\partial x_j} \right)$$

$$= \deg(f_1) f_1 + \sum_{j=1}^{m} \deg(f_i) h_j f_j$$

$$\in I_G \langle x_1, ..., x_n \rangle \subset \langle x_1 f_1, ..., x_n f_m \rangle + \langle f_2, ..., f_m \rangle.$$
(0.16)

Ib particular, since every of the polynomial $x_1f_1,...,x_nf_m$ is of degree strictly bigger than \tilde{f} , this implies that $\tilde{f} \in \{f_2,...,f_m > 1$. In particular, $f_1 \in \{f_2,...,f_m > 1$ which leads to some contradiction with the minimality of m.