

Práctica 3 de 3 – Introducción a MPI (Práctica Final)

Recordatorio previo

Esta práctica es la tercera y última parte del bloque de Introducción a MPI.

En ella aplicarás de forma integrada los principales conceptos ya practicados:

- Comunicación punto a punto ('MPI_Send', 'MPI_Recv')
- Comunicación colectiva (`MPI_Scatter`, `MPI_Gather`, `MPI_Reduce`, `MPI_Bcast`)
- Sincronización (`MPI_Barrier`) y medición de tiempos (`MPI_Wtime`)
- Gestión de errores básica

Recuerda que un programa MPI típico tiene esta estructura:

- 1. Inicialización (`MPI_Init`)
- 2. Obtención del 'rank' y 'size'
- 3. Comunicación o cálculo según el rol de cada proceso
- 4. Finalización (`MPI_Finalize`)

Planteamiento: Simulación distribuida de sensores

Debes implementar un sistema paralelo en el que se simula una red distribuida de sensores que recogen valores (por ejemplo, temperaturas o presiones).

El objetivo es calcular medias locales y detectar posibles valores críticos que activen una alerta global.

El objetivo es calcular medias locales y detectar posibles valores críticos que activen una alerta global. Actividades (guia sugerida)

- 1. **El proceso 0** generará aleatoriamente un array de valores enteros (ej. 5 por proceso).
- 2. Distribuye los valores entre procesos usando 'MPI_Scatter'.
- 3. Cada proceso calcula la media local de sus valores.

- 4. Usa 'MPI_Gather' para enviar las medias locales al proceso 0.
- 5. El proceso 0:
 - 1. Muestra todas las medias locales.
 - 2. Detecta si alguna supera un umbral crítico (ej. > 50).
 - 3. En caso afirmativo, lanza un mensaje de alerta e identifica los procesos responsables.
- 6. Opcional:
 - 4. Añade `MPI_Barrier` antes del análisis para sincronizar.
 - 5. Usa `MPI_Wtime` para medir el tiempo de ejecución.
 - 6. Añade control de errores: por ejemplo, que el número de elementos sea múltiplo del número de procesos.

Preguntas de reflexión

Responde de forma justificada las siguientes preguntas:

- 1. ¿Qué tipo de comunicación has usado en cada parte del programa?
- 2. ¿Hay algún tipo de desequilibrio en el trabajo de los procesos?
- 3. ¿Dónde podrías aplicar paralelismo adicional?
- 4. ¿Qué otras estrategias se te ocurren para lanzar alertas o combinar resultados?

Instrucciones de entrega final

Esta práctica se entrega de forma conjunta con las dos anteriores. Debes subir a Moodle un archivo `.zip` que incluya:

- Código fuente (`.c`) de esta práctica.
- Códigos fuente de las prácticas anteriores.
- Capturas de pantalla que demuestren la ejecución.
- Un documento `.rtf` o `.pdf` con:
 - Las respuestas a las preguntas de esta práctica.
 - Las reflexiones de las prácticas anteriores.
 - Comentarios personales si los deseas (opcional).

Rúbrica de evaluación conjunta (3 prácticas)

Criterio	Descripción	Puntos
Entrega completa	Incluye todas las prácticas, códigos y documentos solicitados.	3
Aplicación correcta de MPI	Usa adecuadamente las funciones de MPI vistas en clase.	2
Calidad del código	Códigos claros, funcionales y bien comentados.	2
Reflexión y análisis	Responde con criterio a las preguntas planteadas.	2
Organización	Buena presentación y estructura del archivo entregado.	1

Justificación Académica

Esta práctica final sintetiza los contenidos clave de la unidad de MPI trabajados en clase:

- Comunicación punto a punto y colectiva
- Distribución y recogida de datos
- Reducción y análisis global
- Sincronización, temporización y detección de errores

La actividad promueve la aplicación integrada de técnicas de paralelismo en memoria distribuida y refuerza competencias relacionadas con la computación de alto rendimiento, incluyendo diseño de soluciones escalables y análisis del comportamiento del sistema paralelo bajo diferentes configuraciones.