4. DZ

Pitanje 1

Pretpostavimo da analiziramo mrežu koristeći konturne struje koje imaju referentne smjerove u smeru gibanja kazaljke na satu. Promjenimo li jednoj od konturnih struja smjer, tada su predznaci zajedničkih impedancija svih susjednih struja:

Odaberite jedan ili više odgovora:

~	mogu biti i negativni i pozitivni	/
----------	-----------------------------------	---

negativni

pozitivni

Povratna informacija

Točan odgovor je: mogu biti i negativni i pozitivni.

Pitanje 2

Postavi jednadžbu prve i treće petlje mreže na slici u Laplace-ovoj domeni.

a)
$$I_1(s)[R_1 + R_2 + R_3] - I_3(s)R_2 - I_2(s)R_3 = U_1(s)$$

 $I_3(s)[R_2 + sL_1 + R_4 + \frac{1}{sC_1}] - I_1(s)R_2 - I_2(s)\frac{1}{sC_1} = i_{L1}(0)L_1 + \frac{u_{C1}(0)}{s}$

$$\begin{split} \text{b)} \quad &I_1(s)[\,R_1+R_2+R_3\,]-\,I_2(s)R_2-I_3(s)R_3=\,U_1(s)\\ &I_3(s)[R_2+sL_1+R_4+\frac{1}{sC_1}]-\,I_1(s)R_2-I_2(s)\frac{1}{sC_1}=-i_{L1}(0)L_1-\frac{u_{C1}(0)}{s} \end{split}$$

$$\begin{split} \text{C)} \quad &I_{1}(s)[\,R_{1}\,+\,R_{2}\,+\,R_{3}\,] -\,I_{3}\,(s)\,R_{2}\,-\,I_{2}\,(s)\,R_{3}\,=\,U_{1}\,(s)\\ &I_{3}(s)[\,R_{2}\,+\,sL_{1}\,+\,R_{4}\,+\,\frac{1}{s\,C_{1}}\,] -\,I_{1}(s)\,R_{2}\,-\,I_{2}(s)\,\frac{1}{s\,C_{1}}\,=\,i_{Z1}(0)\,L_{1}\,-\,\frac{u_{C1}(0)}{s} \end{split}$$

$$\begin{split} \text{d)} \quad &I_{1}(s)[\,R_{1}\,+\,R_{2}\,+\,R_{3}\,]\,-\,I_{3}\,(s)\,R_{2}\,-\,I_{2}\,(s)\,R_{3}\,=\,U_{1}\,(s)\\ &-\,I_{3}(s)[\,R_{2}\,+\,s\,L_{1}\,+\,R_{4}\,+\,\frac{1}{s\,C_{1}}\,]\,+\,I_{1}(s)\,R_{2}\,+\,I_{2}(s)\,\frac{1}{s\,C_{1}}\,=\,-i_{I1}(0)\,L_{1}\,-\,\frac{u_{C1}(0)}{s} \end{split}$$

Odaberite jedan ili više odgovora:

c)
b)

a)
d)
X

Povratna informacija

Točan odgovor je: a).

Pitanje 3

Postavi jednadžbu druge petlje mreže na slici.

$$\text{a)} \ R_{2}[i_{1}(t)-i_{1}(t)] + L_{1}\frac{d}{dt}[i_{2}(t)-i_{1}(t)] + \frac{1}{C_{2}}\int_{-\infty}^{t}[i_{1}(\tau)-i_{1}(\tau)]d\tau + L_{2}\frac{d}{dt}[i_{1}(\tau)-i_{3}(\tau)] = u_{2}(t)$$

$$\text{b)} \ R_{2}[i_{2}(t)+i_{1}(t)]+L_{1}\frac{d}{dt}[i_{2}(t)+i_{1}(t)]+\frac{1}{C_{2}}\int_{-\infty}^{\infty}[i_{2}(\tau)-i_{+}(\tau)]d\tau+L_{2}\frac{d}{dt}[i_{2}(\tau)-i_{3}(\tau)]=u_{2}(t)$$

$$\text{c)} \ \ R_2[i_2(t)-i_1(t)] + L_1\frac{d}{dt}[i_2(t)-i_1(t)] + \frac{1}{C_2}\int_{\infty}^t [i_2(\tau)-i_4(\tau)]d\tau + L_2\frac{d}{dt}[i_2(\tau)-i_3(\tau)] = -u_2(t)$$

$$\text{d)} \ \ R_2[i_2(t)-i_1(t)] + L_1\frac{d}{dt}[i_2(t)-i_1(t)] + \frac{1}{C_2}\int_{\infty}^t [i_2(\tau)-i_4(\tau)]d\tau + L_2\frac{d}{dt}[i_2(\tau)+i_3(\tau)] = u_2(t)$$

Odaberite jedan ili više odgovora:

____c)

Povratna informacija

Točan odgovor je: a).

Pitanje 4
Ako kroz neku granu el. mreže prolaze dvije konturne struje la i lb različitog smjera, a referentni smjer struje lg grane koju tražimo je istog smjera kao la, koji izraz opisuje struju grane lg?
Odaberite jedan ili više odgovora: Ig=la+lb
Ig=la-lb ✓
ništa od navedenog
Povratna informacija
Točan odgovor je: lg=la-lb.
Pitanje 5
Da li prilikom rješavanja mreže uzimamo u obzir zavisne izvore?
Odaberite jedan ili više odgovora:
ne, njih naknadno uvrštavamo
da, uzimamo ih u obzir pomoću parametara kojima ih opisujemo 🗸
ako postoje zavisni strujni izvori, tada mrežu ne možemo rješiti pomoću Kirchhoffovog zakona za napone ili Kirchhoffovog zakona za struje
samo ako mrežu rješavamo korištenjem Kirchhoffovog zakona za napone
samo ako mrežu rješavamo korištenjem Kirchhoffovog zakona za struje
Povratna informacija
Točan odgovor je: da, uzimamo ih u obzir pomoću parametara kojima ih opisujemo.

4. DZ Jednadžbe mreža. Pitanje 1 Pretpostavimo da rješavamo mrežu od Nb grana i Nv čvorova. Za točno rješenje mreže dobili bi: Odaberite jedan ili više odgovora: Nb napona grana i Nb struja grana √ Nv napona grana i Nb struja grana Nb napona grana i Nv struja grana Nv napona grana i Nv struja grana ništa od navedenog Točan odgovor je: Nb napona grana i Nb struja grana. Pitanje 2 Postavi jednadžbu treće petlje mreže na slici. Odaberite jedan ili više odgovora: d) L3(0) a) b) 🗶 UC1(0) Točan odgovor je: a).

- a) Točan odgovor nije ponuđen
- b) $L_2 \frac{d}{dt} [i_3(t) i_2(t)] + i_3(t) R_3 u_2(t) = 0$
- $\text{C)} \ L_2 \frac{d}{dt} [i_3(t) + i_2(t)] + i_3(t) R_3 u_2(t) = 0$
- d) $-L_2 \frac{d}{dt} [i_3(t) + i_2(t)] i_3(t) R_3 + u_2(t) = 0$

Pitanje 3	i(t) R
Odredi struju i(t) ako je: R=L=1;	<u></u>
$u_0(t) = 2\sin(4t); -\infty < t < \infty.$	
Odaberite jedan ili više odgovora:	Uo(t)(\(\sigma\)
0.887 sin (4t + 100°)	5
0.485 sin (4t - 76°) √	<u> </u>
0.23 cos(4t)	
0.5 sin (2t - 56°)	
Točan odgovor je: 0.485 sin (4t - 76°).	
Pitanje 4	
Koliki je broj linearno nezavisnih jednadžbi Kirchhoft Nb grana i Nv čvorova? Odaberite jedan ili više odgovora: Nv - 1 Nb - Nv	fovog zakona za struje (KZS) za mrežu od
Nb - (Nv - 1) X	
Nb - (Nv + 1)	
Nv - (Nb - 1)	
Točan odgovor je: Nv - 1.	
Pitanje 5	
Otpor R u grani neke mreže prikljućen je između čvo od čvora A, a referentni smjer struje kroz granu je od I_R je:	
Odaberite jedan ili više odgovora:	
I _R =(Ub-Ua)/R	
I _R =(Ub+Ua)/R	
I _R =-(Ub+Ua)/R	
I _R =(Ua-Ub)/R √	
Točan odgovor je: I _R =(Ua-Ub)/R.	

O čemu ovisi broj linerarno nezavisnih jednadžbi Kirchhoffovog zakona za napone (KZN)?

Odaberite jedan ili više odgovora:

- o broju čvorova i grana 🗸
- ništa od navedenog
- jedino o broju čvorova, broj grana nije važan
- o broju elemenata u granama
- jedino o broju grana, broj čvorova nije važan

Pitanje 2

Koliko ima linearno nezavisnih jednadžbi Kirchhoffovog zakona za struje u mreži s 4 grane?

Odaberite jedan ili više odgovora:

- □ 3
- □ 2
- \sqcup 4
- 🔻 ništa od navedenog 🗸

Pitanje 3

Koja od jednadžbi odgovara mreži prikazanoj slikom?

Odaberite jedan ili više odgovora:

- (u1+ug1)/R1 + u1/R2 1/L3(u2-u1) i3(0) = 0
- (u1-ug1)/R1 + u1/R2 1/L3(u2+u1) i3(0) = 0
- niti jedna od navedenih! 🗸
- (u1+ug1)/R1 + u1/R2 1/L3(u2-u1) i3(0) = 0

Postavi jednadžbu četvrte petlje mreže na slici.

$$\text{a)} \ \frac{1}{C_1} \int_{\infty}^{t} [i_4(\tau) - i_1(\tau)] d\tau + L_3 \frac{di_4}{dt} + \frac{1}{C_2} \int_{\infty}^{t} [i_4(\tau) - i_2(\tau)] d\tau = 0$$

$$\text{b)} \ \frac{1}{C_1} \int_{\infty}^t [i_4(\tau) - i_1(\tau)] d\tau + L_3 \frac{di_4}{dt} + \frac{1}{C_2} \int_{\infty}^t [i_4(\tau) - i_1(\tau)] d\tau = 0$$

$$\text{C}\big) \ - \frac{1}{C_1} \int\limits_{-\infty}^{t} [i_4(\tau) - i_1(\tau)] d\tau + L_3 \frac{di_4}{dt} - \frac{1}{C_2} \int\limits_{-\infty}^{t} [i_4(\tau) - i_2(\tau)] d\tau = 0$$

d)
$$\frac{1}{C_2} \int_{-\infty}^{t} [i_4(\tau) - i_1(\tau)] d\tau + L_3 \frac{di_4}{dt} + \frac{1}{C_2} \int_{-\infty}^{t} [i_4(\tau) - i_2(\tau)] d\tau = 0$$

Odaberite jedan ili više odgovora:

υа

▽

□ b)

Pitanje **5**

Jednadžbe stanja koristimo u analizi nekih električnih mreža da bi:

Odaberite jedan ili više odgovora:

odredili izraze za struje i napone

odredili izraze struje i napone na L i C u ovisnosti o vremenu 🗸

odredili iznose početnih struja i napona na L i C

odredili linearnost odnosno nelinearnost mreže

4. DZ Jednadžbe mreža.

Postavi jednadžbu četvrte petlje mreže na slici.

$$\text{a)} \ \frac{1}{C_1} \int_{\infty}^t [i_4(\tau) - i_1(\tau)] d\tau + L_3 \frac{di_4}{dt} + \frac{1}{C_2} \int_{\infty}^t [i_4(\tau) - i_2(\tau)] d\tau = 0$$

$$\text{b)} \ \frac{1}{C_1} \int_{\infty}^t [i_4(\tau) - i_1(\tau)] d\tau + L_3 \frac{di_4}{dt} + \frac{1}{C_2} \int_{\infty}^t [i_4(\tau) - i_1(\tau)] d\tau = 0$$

$$\text{C}\big) \, - \frac{1}{C_1} \int\limits_{-\infty}^t [i_4(\tau) - i_1(\tau)] d\tau + L_3 \, \frac{di_4}{dt} - \frac{1}{C_2} \int\limits_{-\infty}^t [i_4(\tau) - i_2(\tau)] d\tau = 0$$

$$\text{d)} \ \frac{1}{C_2} \int_{\infty}^t [i_4(\tau) - i_1(\tau)] d\tau + L_3 \frac{di_4}{dt} + \frac{1}{C_2} \int_{\infty}^t [i_4(\tau) - i_2(\tau)] d\tau = 0$$

Odaberite jedan ili više odgovora:

 \Box d)

□ b)

 \Box c)

Za mrežu na slici odredi jednadžbe petlji.

Odaberite jedan ili više odgovora:

$$\Box I1(Rg+1/j\omega C)=U0$$

$$I2(Rk+Rp+R1)=-Ug+Uz$$

I2(RI □ I I2(RI □ I I2(RI □ I I I I I I I I I I I I I I I I I I	$1(Rg+1/j\omega C)=U0+Uz$ $k+Rp+Rl)=-Ug+Uz$ $1(Rg+1/j\omega C)=U0+Uz$ $k+Rp+Rl)=-Ug$ Točan odgovor nije ponuđen. $1(Rg+1/j\omega C)=U0$ $k+Rp+Rl)=-Ug$
Odab	o se odabire referentni čvor kada pišemo jednadžbe napona čvorova? perite jedan ili više odgovora: na čvoru na kojem je spojena negativna stezaljka naponskog ili strujnog izvora na čvoru u koji ulazi najviše struja proizvoljno ništa od navedenog na čvoru iz kojeg izlazi najviše struja
reference grane Odab	kroz neku granu el. mreže prolaze dvije konturne struje Ia i Ib različitog smjera, a entni smjer struje Ig grane koju tražimo je istog smjera kao Ia, koji izraz opisuje struju e Ig? perite jedan ili više odgovora: g=Ia+Ib g=-Ia-Ib g=-Ia-Ib ništa od navedenog
u sme predz Odab	postavimo da analiziramo mrežu koristeći konturne struje koje imaju referentne smjerove eru gibanja kazaljke na satu. Promjenimo li jednoj od konturnih struja smjer, tada su znaci zajedničkih impedancija svih susjednih struja: perite jedan ili više odgovora: mogu biti i negativni i pozitivni megativni mozitivni

Pretpostavimo da analiziramo mrežu koristeći konturne struje koje imaju referentne smjerove u smeru gibanja kazaljke na satu. Promjenimo li jednoj od konturnih struja smjer, tada su predznaci zajedničkih impedancija svih susjednih struja:

Odaberite jedan ili više odgovora:

ゼ							-
	mogu	b1t1	1	negativni	1	pozitivni	V

uegativni negativni

pozitivni

Povratna informacija

Točan odgovor je: mogu biti i negativni i pozitivni.

$$\text{a)} \ \frac{1}{C_1} \int_{\infty}^t [i_4(\tau) - i_1(\tau)] d\tau + L_3 \frac{di_4}{dt} + \frac{1}{C_2} \int_{\infty}^t [i_4(\tau) - i_2(\tau)] d\tau = 0$$

$$\text{b)} \ \frac{1}{C_1} \int_{\infty}^t [i_4(\tau) - i_1(\tau)] d\tau + L_3 \frac{di_4}{dt} + \frac{1}{C_2} \int_{\infty}^t [i_4(\tau) - i_1(\tau)] d\tau = 0$$

$$\text{C}\big) \, - \frac{1}{C_1} \int\limits_{-\infty}^t [i_4(\tau) - i_1(\tau)] d\tau + L_3 \frac{di_4}{dt} - \frac{1}{C_2} \int\limits_{-\infty}^t [i_4(\tau) - i_2(\tau)] d\tau = 0$$

$$\text{d)} \ \frac{1}{C_2} \int_{\infty}^t [i_4(\tau) - i_1(\tau)] d\tau + L_3 \frac{di_4}{dt} + \frac{1}{C_2} \int_{\infty}^t [i_4(\tau) - i_2(\tau)] d\tau = 0$$

Postavi jednadžbu četvrte petlje mreže na slici. Odaberite jedan ili više odgovora:

□ d)

 □ a) ✓ □ b) □ c)
Povratna informacija
Točan odgovor je: a).
Koja je matrična jednadžba ispravna ? Odaberite jedan ili više odgovora: ☐ Ig Yv ⁻¹ = Uv ☐ Yv ⁻¹ Ig = Uv ☐ Ig = Uv Yv ☐ Ig = Yv Uv ✓ Povratna informacija
Točan odgovor je: Yv^{-1} $Ig = Uv$, $Ig = Yv$ Uv .
Otpor R u grani neke mreže prikljućen je između čvorova A i B. Čvor B je na većem potencijalu od čvora A, a referentni smjer struje kroz granu je od čvora A prema čvoru B. Izraz za struju I_R je: Odaberite jedan ili više odgovora:
Povratna informacija
Točan odgovor je: $I_R=(Ua-Ub)/R$.
Koje su nepoznate varijable u jednadžbama čvorova? Odaberite jedan ili više odgovora: □ naponi grana □ struje petlji □ naponi i struje □ struje grana □ naponi čvorova ✓

Povratna informacija

Točan odgovor je: naponi čvorova.

U mreži sa 6 grana i 4 čvora broj linearno nezavisnih jednadžbi Kirchhoffovog zakona za struje (KZS) i Kirchhoffovog zakona za napone (KZN) je:

_	Odaberite jedan ili više odgovora:				
	KZN=3, KZS=5				
	KZS=5, KZN=5				
V	KZS=3, KZN=3 ✓				
	KZN=5, KZS=3				
	ne može se odrediti bez poznavanja topološke strukture mreže				
Pita	nje 3				
	Ako u mreži postoje nezavisni i zavisni strujni izvori, što se dešava s brojem potrebnih jednadžbi za rješavanje mreže korižtenjem Kirchhoffovog zakona za struje (KZS)?				
Odab	erite jedan ili više odgovora:				
V	ostaje isti 🗶				
	povećava se za broj zavisnih izvora				
	povećava se za broj nezavisnih izvora				
	smanjuje se za broj nezavisnih izvora				
	smanjuje se za broj zavisnih strujnih izvora				
Povra	atna informacija				

Pitanje 4

Točan odgovor je: smanjuje se za broj nezavisnih izvora.

Odabe	rite jedan ili više odgovora:
	11(R1+R2)-12*R2=Ug
	$+12(R2+R3+R4+1/j\omega C)+13(R4+1/j\omega C)=1g*R3$
,	$R5+j\omega L+1/j\omega C$)-12(R4+1/j ωC)=0
✓	11(R1+R2)-I2*R2=Ug
	$+12(R2+R3+R4+1/j\omega C)-13(R4+1/j\omega C)= Ig*R3$
13(R4+	-R5+jωL+1/jωC)-I2(R4+1/jωC)=0 Χ
	-I1(R1+R2)+I2*R2=Ug
-I1*R2	$+12(R2+R3+R4+1/j\omega C)-13(R4+1/j\omega C)=-1g*R3$
13(R4+	$R5+j\omega L+1/j\omega C$)-12(R4+1/j\u03c0C)=0
	14/04 D2\ 124D2 LL
	11(R1+R2)-12*R2=Ug
	+l2(R2+R3+R4+1/jωC)-l3(R4+1/jωC)= -lg*R3 ·R5+jωL+1/jωC)-l2(R4+1/jωC)=0
13(141) -	N3+JWL+17 JWC)-12(N4+17 JWC)-0
	11(R1+R2)-I2*R2=Ug
	$+12(R2+R3+R4+1/j\omega C)-13(R4+1/j\omega C)=-1g*R3$
I3(R4+	$R5+j\omega L+1/j\omega C) = -I2(R4+1/j\omega C)$
Povrat	tna informacija
Točan	odgovor je: I1(R1+R2)-I2*R2=Ug
	$+12(R2+R3+R4+1/j\omega C)-13(R4+1/j\omega C)=-1g*R3$
13(R4+	$R5+j\omega L+1/j\omega C$)- $I2(R4+1/j\omega C)=0$.

Kako se odabire referentni čvor kada pišemo jednadžbe napona čvorova?

Odaberite jedan ili više odgovora:

	na čvoru na kojem je spojena negativna stezaljka naponskog ili strujnog izvora
	na čvoru u koji ulazi najviše struja
V	proizvoljno 🗸

ništa od navedenog

na čvoru iz kojeg izlazi najviše struja

Pitanje 2

Postavi jednadžbu treće petlje mreže na slici u Laplace-ovoj domeni.

a)
$$I_3(s)[sL_1 + \frac{1}{sC_2} + \frac{1}{sC_3} + sL_4] - I_1(s)sL_1 - I_4(s)sL_4 - I_2(s)\frac{1}{sC_2} = U_3(s) - i_{L1}(0)L_1 - \frac{u_{C3}(0)}{s} + i_{L4}(0)L_4 + \frac{u_{C2}(0)}{s}$$

b)
$$I_3(s)[sL_1 + \frac{1}{sC_2} + \frac{1}{sC_3} + sL_4] - I_1(s)sL_1 - I_4(s)sL_4 - I_2(s)\frac{1}{sC_2} = U_3(s) + i_{L1}(0)L_1 - \frac{u_{L3}(0)}{s} - i_{L4}(0)L_4 + \frac{u_{L2}(0)}{s}$$

C)
$$I_3(s)[sL_1 + \frac{1}{sC_2} + \frac{1}{sC_3} + sL_4] - I_1(s)sL_1 - I_4(s)sL_4 - I_2(s)\frac{1}{sC_2} =$$

- $U_3(s) - i_{11}(0)L_1 - \frac{u_{C3}(0)}{s} + i_{14}(0)L_4 + \frac{u_{C2}(0)}{s}$

$$\begin{aligned} \text{d)} \quad &I_3(s)[sL_1+\frac{1}{sC_2}+\frac{1}{sC_3}+sL_4]-I_1(s)sL_1-I_4(s)sL_4-I_2(s)\frac{1}{sC_2}=\\ &U_3(s)-i_{L1}(0)L_1+\frac{u_{C3}(0)}{s}+i_{L4}(0)L_4-\frac{u_{C2}(0)}{s} \end{aligned}$$

$$\begin{split} \Theta\big) & \quad I_{3}(s)[sL_{1}+\frac{1}{sC_{2}}+\frac{1}{sC_{3}}+sL_{4}]-I_{1}(s)sL_{1}-I_{4}(s)sL_{4}-I_{2}(s)\frac{1}{sC_{2}}=\\ & \quad U_{3}(s)-i_{L1}(0)L_{1}-\frac{u_{C3}(0)}{s}+i_{L4}(0)L_{4}-\frac{u_{C2}(0)}{s} \end{split}$$

Odaberite jedan ili više odgovora:

Kako određujemo smjer konturnih struja korištenjem Kirchhoffovog zakona za struje (KZS) ? Odaberite jedan ili više odgovora:
barem dvije konturne struje moraju biti različitih smjerova
sve konturne struje moraju biti istog smjera
smjer sami određujemo onako kako nam najviše odgovara 🗸
smjer konturnih struja je uvijek u smjeru kazaljke na satu
ako nije zadano, ne možemo rješiti mrežu pomoću KZS
Točan odgovor je: smjer sami određujemo onako kako nam najviše odgovara.
Ako u grani sa otpornikom $R=2\Omega$ koja je priključena na čvorove A i B teče struja $I_R=1A$, na kojem je potencijalu čvor B, ako je čvor A na potencijalu od 5V? Odaberite jedan ili više odgovora: ne možemo odrediti jer nam nije poznat smjer struje I_R 7V 3V 6V Točan odgovor je: ne možemo odrediti jer nam nije poznat smjer struje I_R .
Koje su nepoznate varijable u jednadžbama petlji? Odaberite jedan ili više odgovora:
naponi 👗
naponi i struje
izvori
struje
početni uvjeti
Točan odgovor je: struje.

Za mrežu sa slike vrijedi:

Odaberite jedan ili više odgovora:

- napon grane 4 = napon grane 5 = -napon čvora 2
- napon grane 2 =-napon grane 1 =napon čvora 1
- napon grane 3 = napon čvora 2 napon čvora 1 🗸
- napon grane 2 = -napon grane 1 = -napon čvora 1

Točan odgovor je: napon grane 2 = -napon grane 1 = napon čvora 1, napon grane 3 = napon čvora 2 - napon čvora 1.

Da li su ove mreže dualne (G'=1/R, L'=C, C'=L, ig'=ug)?

Odaberite jedan odgovor:

Oa √

○ Ne

Točan odgovor je: Da.

