

Circular Orbits

Formula Development: How much energy does an object have in a circular orbit?

Example 1: A 500kg satellite is to be put into a 300km high circular orbit. How much energy must be added to get it from the ground into orbit?

Example 3: A 1.5T probe is in a 550 km high circular orbit. How much energy is needed to get the probe to just escape the Earth?

$$G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg}6^2$$
 $M_E = 5.98 \times 10^{24} \text{ kg}$

Win =
$$\frac{(6.57 \times 10^{-1})(6.48 \times 10^{24})(1500)}{2(6930000)}$$

Example 4: A 4T spaceship is in a 340km high circular orbit. How much energy is needed so it ends up with a velocity of 2km/s in deep space?

m : 4000 kg

$$\frac{1}{2}\left(\frac{-GMm}{r}\right) + Win = \frac{1}{2}mv^2$$

$$Win = \frac{1}{2}mv^2 + \frac{GMm}{2r}$$

Win =
$$\frac{1}{2}$$
[4000)(2000)²+ $\frac{(6.67 \times 10^{-11})(5.98 \times 10^{24})(4000)}{2(6720000)}$

Example 5:

A 3T probe is in a 400km high circular orbit. It has a rocket engine that has an ISP of 4000 and uses 20kg of fuel a minute. How long must you fire the engine so it ends up in deep space with a velocity of 1km/s

		_			
		5			
	1			٣	\
					1
				J	
	1				/
	4		_	_	
		1			
			/		
				3	
46	erb	oke	of	bit	
•					

(SP	Thrust	Δν
Δt=1SP=4000\$	Vexn = 39200m/s	F = 13067N
F = 9.8N	Om= 20kg	m = 3000 kg
Δm = 1kg	Ot - bos	Δv=?
Fat = Om Vexh	Fat-OmVerh	At = MAV
9.8(4000) = Vexh	F = 20 (39200)	= 3000 (2323)
Vexh= 39 200m/s	F= 13067N	= 740 s

D Find DV $\Delta V = VH - VC$ D Find VC

FNet = Fg

MPAC = GMMP $V^2 = GM$ C^2 $VC = \sqrt{GM}$

Vc = 7670 m/s

(3) Find V_H $E_T = E_T^{1}$ $E_Q + E_K = E_K^{1}$ $-\frac{GMm}{\Gamma} + \frac{1}{2}mV_{M}^{2} = \frac{1}{2}mV^{12}$ $V_H = \int V^{12} + \frac{26M}{\Gamma}$ $V_H = 10893 \text{ m/s}$