Geometria e Algebra

LISI

Prof. Marini Stefano

Primo parziale, 12/11/2020, A.A. 2020/2021

Esercizio 1. Siano $v=(\frac{t}{\sqrt{2}},1,\frac{t}{\sqrt{2}})$ e $w=(\frac{1}{\sqrt{2}},t,\frac{1}{\sqrt{2}})$ vettore di \mathbb{R}^3 dipendenti da un parametro reale $t\in\mathbb{R}$. Allora:

- 1. Trovare $t \in \mathbb{R}$, se esiste, tale che v e w sono ortogonali tra loro;
- 2. Trovare $t \in \mathbb{R}$, se esistono, tale che w ha norma $\sqrt{2}$;
- 3. Trovare $t \in \mathbb{R}$, se esiste, tale che l'angolo θ tra $v \in w \notin \pi$;

Esercizio 2. Sia

$$A = \left(\begin{array}{cccc} 0 & 0 & t & 0 \\ 1+t & 1 & 0 & 1 \\ 1 & 1+t & 0 & 1 \\ 1 & 1 & 0 & 1+t \end{array}\right)$$

la matrice dipendente dal parametro $t \in \mathbb{R}$

- 1. Dire se per t = -1, la matrice A risulta invertibile e in caso affermativo calcolare l'inversa.
- 2. Studiare il rango della matrice A al variare del parametro $t \in \mathbb{R}$;

Esercizio 3. Si consideri il sistema lineare dipendente dai parametri $k \in \mathbb{R}$

$$\begin{cases} x + ky + z = 1\\ (1 - k^2)y - z = 0\\ (1 - k)z = k \end{cases}$$

- 1. Risolvere il sistema per k = 0;
- 2. Studiare al variare del parametro $k \in \mathbb{R}$ le soluzioni del sistema.

Esercizio 4. Sia

$$\pi: 2x + 3y - z = 1$$

l'equazione cartesiana di un piano.

- 1. Trovare il piano π' passante per P = (0,0,0) e parallelo a π .
- 2. Trovare una retta r passante per Q = (1,0,2) e parallela al piano π .
- 3. Trovare la retta r' passante per P e Q e studiarne la mutua posizione con π .

Esercizio 5. Giustificando, stabilire se la seguente affermazione é vera o falsa: "Sia $O \in M_{n \times n}$ una matrice ortogonale. Allora O^m , con m pari, é una matrice ortogonale con determinante uquale a 1"