Assignment

Antalene (EE22BTECH11008)

Question 9.3.9

The probability that a bulb produced by a factory will fuse after 150 days of use is 0.05. Find the probability that out of 5 such bulbs

- 1) none
- 2) not more than one
- 3) more than one
- 4) at least one

will fuse after 150 days of use.

Solution:

Guassian:

let Y be a gaussian Random variable

Parameter	Value	Description	
X	0,1,2,3,4,5	No. Of bulbs fused	
n	5	Total no. Of bulbs	
p	0.05	bulb fusing	
q	0.95	not fusing	
$\mu = np$	0.25	Mean of Binomial Distribution	
$\sigma^2 = npq$	0.2375	Varience of binomial Distribution	

TABLE I

RANDOM VARIABLE AND PARAMETER

$$Y \sim N(\mu, \sigma) \tag{1}$$

$$\sim N(1.25, 0.9375)$$
 (2)

Due to continuity correction Pr(X = x) can be approximated using gaussian distribution as

$$p_Y(x) \approx \Pr(x - 0.5 < Y < x + 0.5)$$
 (3)

$$\approx \Pr(Y < x + 0.5) - \Pr(Y < x - 0.5) \tag{4}$$

$$\approx F_Y(x+0.5) - F_Y(x-0.5) \tag{5}$$

CDF of Y is defined as:

$$F_Y(x) = \Pr(Y < x) \tag{6}$$

$$=\Pr\left(\frac{Y-\mu}{\sigma}<\frac{x-\mu}{\sigma}\right) \tag{7}$$

$$\implies \frac{Y - \mu}{\sigma} \sim N(0, 1) \tag{8}$$

$$=1-\Pr\left(\frac{Y-\mu}{\sigma}>\frac{x-\mu}{\sigma}\right) \tag{9}$$

$$= \begin{cases} 1 - Q\left(\frac{x-\mu}{\sigma}\right) & x \ge \mu \\ Q\left(\frac{\mu-x}{\sigma}\right) & x < \mu \end{cases}$$
 (10)

Then probability in terms of Q funtion is

$$\implies p_Y(x) \approx Q\left(\frac{(x-0.5)-\mu}{\sigma}\right) - Q\left(\frac{(x+0.5)-\mu}{\sigma}\right) \tag{11}$$

Binomial:

$$\Pr(X = k) = {}^{n}C_{k}p^{k}(1 - p)^{n-k}$$
(12)

$$= {}^{5}C_{k} (0.05)^{k} (0.95)^{5-k}$$
(13)

CDF of X

$$F_X(k) = \Pr\left(X \le k\right) \tag{14}$$

$$= \sum_{i=0}^{k} {}^{10}C_i (0.05)^i (0.95)^{5-i}$$
(15)

The solution

The graph

Pr(X = x)	in term of Q	Numercal value	Binomial solution	
Pr(X=0)	Q(-1.53) - Q(0.512)	0.6960	0.773	
$\Pr(X \le 1)$	Q(1.5896)	0.9948	0.9774075	
$1 - \Pr\left(X = 0\right)$	1 - (Q(-1.53) - Q(0.512))	0.304	0.227	
$1 - \Pr\left(X \le 1\right)$	1 - Q(1.5896)	0.006	0.0226	
TABLE II				

RANDOM VARIABLE AND PARAMETER

Fig. 1. Binomial vs guassian