I. PROBLEM FORMULATION

In this paper, two coordinate systems are used: the body coordinate system and the world coordinate system. The three axes of the body coordinate system coincide with three axes of the inertial/magnetic sensor unit (accelerometers, gyroscopes and magnetic sensors). The world coordinate system is a local geographic frame with north-west-up (x-y-z) convention.

A rotation matrix $C_w^b \in SO(3)$ is used to represent the rotation relationship between the body coordinate system and the world coordinate system. Let $r_b \in R^3$ and $r_w \in R^3$ denote the same position where r_b is expressed in the body coordinate system and r_w is expressed in the world coordinate system. The two vectors are related by the rotation matrix C_w^b when two coordinate frames share the same origin:

$$r_b = C_w^b r_w$$
.

The column vectors of C_w^b are denoted by $C_i \in \mathbb{R}^{3 \times 1}$:

$$C_w^b = \left[\begin{array}{ccc} C_1 & C_2 & C_3 \end{array} \right].$$

The kinematics of a rotation matrix is given by

$$\dot{C}_{w}^{b} = [\omega \times]C_{w}^{b} \tag{1}$$

where $\omega \in \mathbb{R}^3$ is the body angular velocity.

Three sensors are used in this paper: accelerometer $y_a \in R^3$, gyroscope $y_g \in R^3$ and magnetic sensor $y_m \in R^3$. The sensor outputs are modeled as follows:

$$y_{a,k} = C_w^b \tilde{g} + v_{a,k}$$

$$y_{m,k} = C_w^b \tilde{m} + v_{m,k}$$

$$y_g(t) = \omega(t) + v_g(t)$$
(2)

where $v_a \in R^3$, $v_m \in R^3$ and $v_g \in R^3$ are sensor noises. It is assumed that the sensor noises are white Gaussian and their covariances are given by

$$E\{v_{a,k}v'_{a,l}\} = r_a \delta_{k,l} I_3, E\{v_g(t)v_g(s)'\} = r_g \delta(t-s)I_3$$
$$E\{v_{m,k}v'_{m,l}\} = r_m \delta_{k,l} I_3.$$

where $r_a \in R$, $r_g \in R$ and $r_m \in R$ are positive scalars. $\delta(t)$ and $\delta_{k,l}$ are continuous and discrete time Dirac delta functions, respectively. Local gravitation vector $\tilde{g} \in R^3$ and magnetic field vector $\tilde{m} \in R^3$ are given by

$$\tilde{g} \triangleq \begin{bmatrix} 0 \\ 0 \\ g \end{bmatrix}, \quad \tilde{m} \triangleq \begin{bmatrix} \cos \mu \\ 0 \\ \sin \mu \end{bmatrix}$$
 (3)

where $g \in R$ is the magnitude of the gravitation and $\mu \in R$ is the magnetic dip angle.

Inserting (3) into (2), we have the following:

$$y_a = gC_3 + v_a$$

 $y_m = \cos \mu C_1 + \sin \mu C_3 + v_m.$ (4)

In (4), we note that C_2 term is not used. Thus the optimization problem is formulated, in which C_1 and C_3 are estimated. Once C_1 and C_3 are estimated, $C_2 \in \mathbb{R}^3$ can be computed by

$$C_2 = C_3 \times C_1. \tag{5}$$

II. ATTITUDE ESTIMATION PROBLEM AS A CONVEX OPTIMIZATION PROBLEM

In this section, the attitude estimation problem is formulated as a convex optimization problem. We assume that the initial discrete time index is 1 and the final discrete time index is N: for example, accelerometer output $y_{a,k}$ is available for $1 \le k \le N$.

$$\min_{C_{1,k},C_{3,k}} \sum_{k=1}^{N} \left(\frac{1}{r_a} \| \tilde{y}_{a,k} - C_{3,k} g - d_{a,k} \|_2^2 + \frac{1}{r_m} \| \tilde{y}_{m,k} - C_{1,k} \cos \mu - C_{3,k} \sin \mu - d_{m,k} \|_2^2 \right)
+ \sum_{k=1}^{N-1} \left(\frac{1}{r_g T} \| C_{i,k+1} - \exp([y_g \times]T) C_{i,k} \|_2^2 \right)
+ \alpha \sum_{k=1}^{N} \left(\| d_{a,k} \|_1 + \| d_{m,k} \|_1 \right)$$
(6)

subject to

$$\begin{bmatrix} C'_{1,k} \\ C'_{3,k} \end{bmatrix} \begin{bmatrix} C_{1,k} & C_{3,k} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

The parameter α determines how large $d_{a,k}$ and $d_{m,k}$ could be. If α is large, large $d_{a,k}$ and $d_{m,k}$ values are discouraged.

An article containing the detailed algorithm is under submission to an academic journal and will be uploaded in https://uouisl.wordpress.com/research/ upon acceptance.