BELLWETHER 2.0

By:
Aayushi Agrawal
Akshay Ravichandran
Yudong RAO

INTRODUCTION

What is a 'bellwether'?

A: Given N projects from a community of projects, the 'bellwether' is that project whose data yields the best predictions on all others

ORIGINAL STUDY

- Conducted by Rahul Krishna and Prof. Menzies^[5]
- Introduced the bellwether method:

MOTIVATION

 Bellwethers appear prevalent in SE data sets defect prediction, code smell, effort estimation

Useful baseline method for transfer learning

Bellwethers mitigate conclusion instability

ISSUE ADDRESSED

The Discover phase is slow

```
def discover(datasets):
"Identify Bellwether Datasets"
 for data_1, data_2 in datasets:
   def train (data 1):
    "Construct quality predictor"
    return predictor
   def predict (data 1):
     "Predict for quality"
     return predictions
   def score (data_1, data_2):
     "Return accuracy of Prediction"
     return accuracy(train(data_1), \
     test(data_2))
  "Return data with best prediction score"
```

RESEARCH QUESTION

RQ: Can the time taken to find the bellwether dataset be reduced?

INSPIRATION - RFE^[6]

Algorithm 1: Recursive feature elimination

- 1.1 Tune/train the model on the training set using all predictors
- 1.2 Calculate model performance
- 1.3 Calculate variable importance or rankings
- 1.4 for Each subset size S_i , i = 1...S do
- 1.5 Keep the S_i most important variables
- 1.6 Optional Pre-process the data
- 1.7 Tune/train the model on the training set using S_i predictors
- 1.8 Calculate model performance
- 1.9 [Optional] Recalculate the rankings for each predictor
- 1.10 end
- 1.11 Calculate the performance profile over the S_i
- 1.12 Determine the appropriate number of predictors
- 1.13 Use the model corresponding to the optimal S_i

INSPIRATION - BEETLE PAPER^[4]

```
def FindBellwether(sources, step size, budget, thres, ←
            lives):
        while lives or cost > budget:
23456789
         "Sample configurations"
         sampled = list()
         for source in sources:
            "Sample step_size number of configurations" sampled += source.sample(step_size)
         "Get cost"
         cost = get_cost(sampled)
         "Evaluate pair—wise performances"
perf = get_perf(sampled)
"Remove non—bellwether environments"
10
11
         sources=remove non bellwethers(sources, perf, ←
                thres)
         "Loose life if no sources are removed"
14
         if prev == len(sources): lives -= 1
"Return a bellwether"
15
        return sources[argmin(perf)]
```

OUR APPROACH

```
discoverBellwether(datasets, n_rep):
     repeat n_rep times:
           Initialize lives, x, step size
           while lives > 0:
                 for dataset 1, dataset 2 in datasets:
                       data1 = sample x\% of dataset 1
                       data2 = sample x% of dataset 2
8
                       predictor = train(data1)
                       G score[dataset 1, dataset 2] = score(test(predictor, data2))
                 rank and eliminate datasets based on median g-score
                 if no dataset to eliminate:
                       lives = lives - 1
                 x = x + step size
           for each dataset not eliminated:
15
                 increment its wins
16
     return dataset with most wins
```

TWO VERSIONS FOR ELIMINATION

 Throw away bottom ¹/₃ of datasets sorted with median G-Score in each iteration

 Throw away datasets with median G-Score lower than threshold in each iteration

DATA SET DESCRIPTION

- The AEEEM dataset was gathered by D'Amborse et al. [1], it contains 61 metrics, 5371 instances, 893
 defective instances.
- The RELINK community data was obtained from work by Wu et al. [2], it contains 26 metrics, 649 total instances, 238 defective instances
- The Apache community data was gathered by Jureczko et al. [3]. This dataset contains records of the number
 of known defects for each class using a post-release bug tracking system. The classes are described in terms
 of 20 OO metrics, including CK metrics and McCabes complexity metrics.

EXPERIMENTAL SETUP

- Threshold value = 52
- sample size = 0.25, incremented by 0.05
- Lives = 10

RESULTS

RESULTS

G-SCORES

FUTURE WORK

Predicting the threshold values for optimal bellwethers

Analysis of trade-off between different parameters

Combining our method with Hoeffding Racing

References

- [1] D'Ambros, Marco, Michele Lanza, and Romain Robbes. "Evaluating defect prediction approaches: a benchmark and an extensive comparison." *Empirical Software Engineering 17*. 4-5 (2012): 531-577.
- [2] Bavota, Gabriele. "Mining unstructured data in software repositories: current and future trends." Software Analysis, Evolution, and Reengineering (SANER), 2016 IEEE 23rd International Conference on. Vol. 5. IEEE, 2016.
- [3] Jureczko, Marian, and Lech Madeyski. "Towards identifying software project clusters with regard to defect prediction." *Proceedings of the 6th International Conference on Predictive Models in Software Engineering*. ACM, 2010.
- [4] Nair, Vivek, et al. "Transfer Learning with Bellwethers to find Good Configurations." *arXiv preprint arXiv:1803.03900* (2018).
- [5] Krishna, Rahul, and Tim Menzies. "Bellwethers: A Baseline Method For Transfer Learning." *IEEE Transactions on Software Engineering* (2018).
- [6] Max, "Recursive Feature Elimation" https://topepo.github.io/caret/recursive-feature-elimination.html#search

THANK YOU!