Análisis Matemático II

Zamboni, Gianfranco

20 de enero de 2019

Este apunte no tiene demostraciones

${\bf \acute{I}ndice}$

1.	\mathbf{Rep}	oaso e e e e e e e e e e e e e e e e e e e	1
	1.1.	Intervalos	1
	1.2.	Sucesiones	1
		1.2.1. Binomio de Newton	2
		1.2.2. Propiedad	2
		1.2.3. Propiedades del límite	2
	1.3.	Métricas y topologías \mathbb{R}^n	3
2.	Fun	iciones de \mathbb{R}^n en \mathbb{R}^k	5
	2.1.	Continuidad	6
3.	Calo	culo diferencial en varias variables	7
	3.1.	Repaso Álgebra	7
		3.1.1. Propiedades	7
	3.2.	En los reales	7
		3.2.1. Polinomio de Taylor	8
		3.2.2. Otras propiedades	8
	3.3.	En \mathbb{R}^n	8
	3.4.	Regla de la cadena	10
		3.4.1. Lemas Previos	10
		3.4.2. Regla de la cadena	10
	3.5.	Polinomio de Taylor	10
		3.5.1. Propiedades	11
4.	Ext	remos de funciones de varias variables	12
	4.1.	Criterio del Hessiano	13
	4.2.	Teorema de la función inversa	13
	4.3.	Teorema de la función implicita	13
	4.4.	Multiplicadores de Lagrange	13
		4.4.1. Caso general	14

5 .	Inte	egrales dobles y triples	15
	5.1.	Repaso	15
		5.1.1. Integral de Rienman	15
		5.1.2. Teorema fundamental del cálculo integral	16
		5.1.3. Regla de Barrow	16
		5.1.4. Integración por partes	16
		5.1.5. Sustitución	16
		5.1.6. Integrales impropias	16
		5.1.7. Criterios de comparación de integrales impropias	17
		5.1.8. Integrales con las que comparar:	17
	5.2.	Integral doble	17
		5.2.1. Teorema de fubbini	17
	5.3.	Principio de Cavalieri	18
	5.4.	Integrales en \mathbb{R}^n	18
		5.4.1. Dominios elementales en $\mathbb R$	18
		5.4.2. Teorema del valor medio para integrales	18
	5.5.	Cambio de variables	18
		5.5.1. Coordenadas polares	19
		5.5.2. Transformaciones lineales	19
		5.5.3. Coordenadas cilíndricas	19
		5.5.4 Coordenadas esféricas	19

1. Repaso

1.1. Intervalos

Sea A un intervalo en los \mathbb{R} ,

Cota superior: Es un número $M \in \mathbb{R}$ tal que para todo $a \in A$, $a \leq M$.

Cota inferior: Es un número real m tal que para todo $a \in A$, $a \ge m$.

Supremo: Es un $s \in \mathbb{R}$ tal que es cota superior de A y además si s' es otra cota superior de A, entonces vale que $s \leq s'$. Notamos $\sup A = s$.

Ínfimo: Es un $i \in \mathbb{R}$ tal que i es cota inferior de A y además si i' es otra cota inferior, entonces $i' \leq i$. Notamos $\inf A = i$

Conjunto acotado superiormente: Es un conjunto que tiene cota superior.

Conjunto acotado inferiormente: Es un conjunto que tiene cota inferior.

Conjunto acotado: Es un conjunto que está acotado tanto superiormente como inferiormente.

Propiedades:

- \blacksquare Si $A \neq \phi \in \mathbb{R}$ está acotado superiormente, entonces Atiene supremo en \mathbb{R}
- El supremo de un conjunto es único
- \blacksquare Si $A \neq \phi \in \mathbb{R}$ está acotado inferiormente, entonces Atiene ínfimo en \mathbb{R}
- El ínfimo de un conjunto es único

1.2. Sucesiones

Suceción: Es una función $f: \mathbb{N} \to \mathbb{R}$, $f(k) = x_k$. Para indicar que f describe una sucesión la notamos como $(x_k)_{\leq 1}$

Sucesión convergente: X_k es una sucesión convergente si existe un $l \in \mathbb{R}$ tal que, dado un $\epsilon > 0$, existe un $k_0 \in \mathbb{N}$ tal que $\forall k \geq k_0$, vale que $|x_k - l| < \epsilon$.

En castellano: "Una sucesión es convergente a un número l, si a partir de cierto elemento x_k , los valores de la sucesión se acercan cada vez más a x".

Subsucesión: S'_n es una subsucesión de S_n si se puede construir a partir de una función $f: \mathbb{N} \to \mathbb{N}$ estrictamente creciente tal que $S'_n = S_{f(n)}$

Sucesión creciente: S es creciente si $\forall k \in \mathbb{N}, x_k \leq x_{k+1}$.

Sección 1.2 Sucesiones Análisis Matemático II

Propiedades:

 \blacksquare Si S converge a un número l, entonces S está acotada y notamos:

$$\lim_{k \to \infty} x_k = l$$

 \blacksquare Si (X_n) es monótona creciente y está acotada superiormente, entonces

$$\lim_{n \to \infty} x_n = \sup X_n$$

• Si (X_n) es monótona decreciente y está acotada inferiormente, entonces

$$\lim_{n\to\infty} x_n = \inf X_n$$

- La subsucesión de una sucesión convergente, si converge, converge al mismo punto.
- Si S está acotada superiormente, entonces existe una subsucesión creciente de elementos de S que converge hacia $\sup S = s$.
- Toda sucesión $S = \{x_k\}_{k\geq 1}$ creciente y acotada es convergentes hacia $\sup S$
- \blacksquare Toda sucesión $S=\{x_k\}_{k\geq 1}$ decreciente y acotada es convergentes hacia $\inf S$
- \blacksquare Sean A y B dos sucesiones no vacias y acodtadas:
 - Si $A \subset B$ entonces, $\sup A \leq \sup B$ y $\inf A \geq \inf B$
 - $\sup A + B \le \sup A + \sup B$

1.2.1. Binomio de Newton

$$(a+b)^n = \sum_{k=0}^n {m \choose k} a^{m-k} b^k \text{ donde } {m \choose k} = \frac{m!}{k!(m-k)!}$$

1.2.2. Propiedad

$$\left(1+\frac{1}{m}\right)^m < \left(1-\frac{1}{m+1}\right)^{m+1} \ \text{y} \ \lim_{m\to\infty} \left(1+\frac{1}{m}\right)^m = e$$

1.2.3. Propiedades del límite

Sean X_n y Y_n sucesiones tales que $\lim_{n\to\infty} X_n = x$ y $\lim_{n\to\infty} Y_n = y$ existen, entonces vale:

- Si $y \neq 0$, entonces, existe n_0 tal que $y_n \neq 0$ para todo $n \geq n_0$ y la sucesión $\left(\frac{X_n}{Y_n}\right)$ está definida y vale que

$$\lim_{n \to \infty} \frac{X_n}{Y_n} = \frac{x}{y}$$

Métricas y topologías \mathbb{R}^n 1.3.

Dados $\vec{x} = (x_1, \dots, x_n)$ e $\vec{y} = (y_1, \dots, y_n)$ dos puntos de \mathbb{R}^n ,

- $\vec{x} + \vec{y} = (x_1 + y_1, \dots, x_n + y_n)$
- **Distancia:** $\vec{x} \in \vec{y}$ es $d(x,y) = ||\vec{x} \vec{y}||$
- Sea $\lambda \in \mathbb{R}$, entonces $\lambda \vec{x} = (\lambda x_1, \dots, \lambda x_n)$
- Norma euclídea: $\|\vec{x}\|^2 = x_1^2 + \dots + x_2^2$ Producto interno: $v \cdot w = \sum_{i=0}^n v_i w_i$
- Base canónica: La base canónica de \mathbb{R}^n son los vectores $(1,0,\ldots,0),\ldots,(0,\ldots,0,1)$
- Norma infinito: $||x||_{\infty} = max\{|x_i| : 1 \le i \le n\}$

Propiedades

- $\|\vec{x}\|^2 = \vec{x}\vec{x}$
- $\|\vec{x}\| = 0 \iff \vec{x} = (0, \dots, 0)$
- $d(x,y) = 0 \iff ||x-y|| = 0 \iff x = y$
- Desigualdad de Cauchy-Schwarz: $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$
- $d(x,z) \le d(x,y) + d(y,z)$

• $v \cdot w = ||v|| ||w|| \cos \alpha$ con α el grado entre w y v.

- $||xy|| \le ||x|| + ||y||$
- Si $x = (x_1, \dots, x_n)$, entonces $|x_i| \le ||x||$ $v \cdot w = 0 \iff v \perp w \ (v \ y \ w \ \text{son perpendiculares})$

Sea $p \in \mathbb{R}^n$ y $r \in \mathbb{R}_{>0}$, definimos:

Bola abierta: $B(p,r) = B_r(p) = \{x \in \mathbb{R}^n \mid ||x-p|| < r\}$ es el conjunto de puntos en \mathbb{R}^n que esta a distancia menor a r de p.

Conjunto abierto: Es un conjunto de puntos $U \subset \mathbb{R}^n$ tal que $\forall x \in U, \exists B(x, r_x) \subset U$. Sea $A \in \mathbb{R}^n$ un conjunto abierto, entonces a es:

- un punto interior de A si $\exists \epsilon > 0$ tal que $B_{\epsilon}(a) \subset A$.
- un punto exterior de A si a no es un punto interior.
- un punto frontera si $\forall \epsilon > 0, B_{\epsilon}(a) \cap A \neq \phi$ y $B_{\epsilon}(a) \cap A^{c} \neq \phi$.

Borde: $\partial A = \{x \in \mathbb{R}^n \mid x \text{ es frontera de } A\}$

Clausura: $\overline{A} = A \cup \partial A$.

Conjunto cerrado: Es un conjunto de puntos tal que su complemento es abierto.

Conjunto acotado: Un conjunto A es acotado si existe r > 0 tal que $A \subset B_r(0)$

Conjunto compacto: Es un conjunto cerrado y acotado.

Sea $p \in \mathbb{R}^2$, $q \in \mathbb{R}^3$ y $r \in \mathbb{R}_{>0}$,

- $\partial B_r(p)$ es un círculo de radio r centrado en el punto p. Si r=1, entonces se llama círculo unidad.
- $\partial B_r(q)$ es el conjunto de puntos que forman una esfera de radio r centrada en el punto q. Si r=1, entonces se llama **esfera unidad**.
- $B_r(p) \subset \mathbb{R}^2$ es un **disco** en \mathbb{R}^2
- $B_r(p) \subset \mathbb{R}^2$, es un conjunto abierto de \mathbb{R}^2 .
- A es cerrado $\iff A^c$ es abierto.
- Para todo $A \in \mathbb{R}^n$, $A \cup \partial A$ es cerrado.
- $\{x \in \mathbb{R}^n / x_n > 0\}$ es un conjunto abierto de los \mathbb{R}^n .
- $\{U_j: j \in J\}$ un familia de conjunto abiertos, entonces $U = \bigcup_{j \in J}$ es también un conjunto abierto.
- Si $\{U_1, \ldots, U_k\}$ es un conjunto finito de conjuntos abiertos, entonces $\bigcap_{j=1}^k U_j$ es un conjunto abierto.
- Sea $x \in \partial A$, entonces, para todo $\epsilon > 0$, $B_{\epsilon}(x)$ contiene al menos un punto de A y al menos un punto $z \notin A$.

 $X_k \subset \mathbb{R}^n$ es convergente si existe $x \in \mathbb{R}^n$ tal para todo $\epsilon > 0$, existe $k_0 \in \mathbb{N}$ tal que $\forall k \geq k_0$, $||x_k - x|| < \epsilon$.

Propiedades

- Si existe $\lim_{k\to 0} X_k = x \in \mathbb{R}^n$, entonces x es único.
- Una subsucesión de una sucesión convergente en \mathbb{R}^n , si converge, es convergente hacia el mismo límite.
- \blacksquare Toda sucesión convergente en \mathbb{R}^n es acotada.
- \blacksquare Toda sucesión acotada en \mathbb{R}^n tiene una subsucesión convergente.
- F es un conjunto cerrado si para toda sucesión $(X_k)_{k\geq 1}$ contenida en F con $\lim_{k\to\infty} X_k = x$, vale que $x\in F$.

Teorema de compacidad: Sea C subconjunto ordenado y acotado en \mathbb{R}^n , entonces vale que toda sucesión $(X_k)_{k\geq 1}\in C$, tiene una subsucesión $X_{k'}$ convergente hacia un $x\in C$.

2. Funciones de \mathbb{R}^n en \mathbb{R}^k

Sea $f: \mathbb{R}^n \to \mathbb{R}^m$, definimos:

Dominio: Conjunto de puntos de \mathbb{R}^n para los cuales la función f está definida. Lo notamos Dom(f)

Imagen: Conjunto de puntos $Im(f) = \{y \in \mathbb{R}^m : \exists x \in Dom(f) \text{ tal que } f(x) = y\}$

Composición de funciones: Si $g: \mathbb{R}^k \to \mathbb{R}^n$, entonces se puede definir $f \circ g: \mathbb{R}^k \to \mathbb{R}^m$ tal que $(f \circ g)(x) = f(g(x))$.

Curva: Función $\alpha: I \to \mathbb{R}^n$, donde I es algún subconjunto (en general un intervalo) de \mathbb{R} .

Gráfico: Subconjunto de \mathbb{R}^{n+1} formado por los pares ordenados (X; f(X)) donde $X \in Dom(f)$. Lo denotamos $Gr(f) \subset \mathbb{R}^{n+1}$.

Superficie de nivel: Dada $f: \mathbb{R}^n \to \mathbb{R}$ y un número real c, es el subconjunto del dominio dado por $S_c(f) = \{x \in Dom(f) : f(x) = c\}$

Límite: Sea $f: \mathbb{R}^n \to \mathbb{R}$ y $P \in \mathbb{R}^n$. $l \in \mathbb{R}$ es el límite de f cuando X tiende a P (y lo notamos $\lim_{X \to P} f(X) = l$) si para todo $\epsilon > 0$ existe $\delta > 0$ tal que $0 < \|X - P\| < \delta$ entonces $|f(X) - l| < \epsilon$.

Converge a : Se dice que f converge L cuando $X \to P$, si $\lim_{X \to P} f(X) = L$

Diverge: Se dice que f diverge en P cuando $\lim_{X\to P} f(X) = \infty$

Propiedades : Sea $f:A\in\mathbb{R}^n\to\mathbb{R}^m$ una función, $\alpha:I\in\mathbb{R}\to A$ y $\beta:J\in\mathbb{R}\to A$ dos curvas en R^n :

- Sea $g: \mathbb{R}^k \to \mathbb{R}^n$ tal que $\lim_{X \to P} g(X) = L_1 \in \mathbb{R}^n$, Si vale que $\lim_{Y \to L_1} f(Y) = L_2$, entonces $\lim_{X \to P} (f \circ g)(X) = L_2$, siempre y cuando $F(X) \neq L_1$ para $X \neq P$.
- Si A y B son tales que $\lim_{t \to t_0} \alpha(t) = P$ y $\lim_{t \to t_1} \beta(t) = P$ y $\alpha(t) \neq P$ para $t \neq t_0$ y $\beta(t) \neq P$ para $t \neq t_1$. Si pasa que $\lim_{t \to t_0} F(\alpha(t)) \neq \lim_{t \to t_1} f(\beta(t))$, entonces no existe el límite $\lim_{X \to P} f(X)$

En castellano: "Dadas dos curvas α y β que convergen a P tales que valen P en único punto, si $f \circ \alpha$ y $f \circ \beta$ tienen distintos limites, entonces no existe el límite de f en el punto P".

- Sean $P \in \overline{A}$, y $L \in \mathbb{R}^m$, las siguientes afirmaciones son equivalentes:
 - $\lim_{X\to P} f(X) = L$
 - Para toda sucesión de puntos $P_k \in A$ tal que $P_k \neq P$ y $P_k \to P$, se tiene que $\lim_{k \to \infty} P_k = L$
- Sean (P_k) y P'_k dos sucesiones de puntos de A tales que tienden a P, sucesiones de puntos de A, tales que ambas tienden a P, y las sucesiones $(Q_k) = f(P_k)$ y $(Q'_k) = f(P'k)$ tienen límites distintos, entonces no existe el límite lím $_{X\to P} f(X)$.
- \blacksquare ftiende a Lcuando $X \to P$ si y solo si cada coordenada de f converge a la coordenada correspondiente de L

2.1. Continuidad

Sean $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$:

Continuidad en un punto: f es continua en $P \in A$ si $\lim_{X\to P} f(X) = f(P)$.

Continuidad en el dominio: f es continua, si f es continua en P para todo $P \in A$.

Conjunto conexo por arcos: Conjunto C que verifica que para cualquier punto $p, q \in C$ hay una curva $\alpha : [a, b] \to C$ continua tal que $\alpha(a) = p$ y $\alpha(b) = q$.

Propiedades

- Si $f(x_1, ..., x_n) = (f_1(x_1, ..., x_n), ..., f_m(x_1, ..., x_n))$, entonce f es continua en P si y solo si f_i es continua en P para $1 \le i \le n$.
- Sea $g: B \subset \mathbb{R}^k \to \mathbb{R}^n$, si $g \neq f$ son continuas, entonces $f \circ g$ es continua en $Dom(f \circ g)$.
- \blacksquare La suma, producto y cociente de funciones continuas en P, resultan ser funciones continuas en P.
- Sean $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$, f es continua en P si y solo sí para toda sucesión $\{X_k\}$ en \mathbb{R}^n , tal que $\lim_{k\to\infty} X_k = P$, se verifica que $\lim_{k\to\infty} f(X_k) = f(P)$.
- Sea $f:A\subset\mathbb{R}^n\to\mathbb{R}$, una función continua en $P\in\mathbb{R}^n$ y X_k una sucesión en los reales, entonces:
 - Si $X_k \to p$ con X_k una sucesión en A tal que $f(X_k) < 0$, entonces $f(P) \le 0$.
 - Si $X_k \to p$ con X_k una sucesión en A tal que $f(X_k) > 0$, entonces $f(P) \ge 0$.
 - Si f(p) > 0, entonces existe una bola $B(x_0, r)$ con r > 0 tal que si $x \in B(x_0, r) \cap A$, $f(x) \ge 0$
 - Si f(p) < 0, entonces existe una bola $B(x_0, r)$ con r > 0 tal que si $x \in B(x_0, r) \cap A$, $f(x) \le 0$
- Teorema de Bolzano: Dada $f:[a,b] \to \mathbb{R}$ continua con f(a)f(b) < 0 (f(a) y f(b) de signos distintos), entonces existe $c \in (a,b)$ tal que f(c) = 0.
- Teorema de Bolzano en \mathbb{R}^n : Sea $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$, A arcoconexo y f continua en A, si existen $P, Q \in A$ tal que f(P)f(Q) < 0, entonces existe $R \in A$ tal que f(R) = 0
- Teorema de valores intermedios: Sea $A \subset \mathbb{R}^2$ arco-conexo y $f : A \to \mathbb{R}$ continua. Si f(P) < d < f(Q) con $P, Q \in A$ y $d \in \mathbb{R}$, entonces existe $R \in A$ tal que f(R) = d

3. Calculo diferencial en varias variables

3.1. Repaso Álgebra

Recta: $L(x) = \lambda x + p$

Plano: $\Pi : \alpha v + \beta w + p$ donde v y w son linealmente independientes.

Transformación lineal: Sea $T: \mathbb{R}^n \to \mathbb{R}^m$ es una transformación lineal si:

- T(v+w) = T(v) + T(w)
- $T(\lambda v) = \lambda T(w)$

3.1.1. Propiedades

- Sean $L_1(x) = \lambda v + p$ y $L_2(x) = \lambda' w + q$ son paralelas $\iff v = kw$
- Sean $L_1(x) = \lambda v + p$ y $L_2(x) = \lambda' w + q$ son perpendiculares $\iff v \perp w$
- Sea Π : $\alpha v + \beta w + p$ un plano, entonces $v \times w$ es ortogonal a v y a w.
- Sea $\Pi : \alpha v + \beta w + p$ un plano, entonces $x \in \Pi \iff (x-p) \perp N \iff N(x-p) = 0 \iff Nx = Np$ con N la normal del plano.
- Para describir una recta en \mathbb{R}^3 se necesitan dos ecuaciones.
- Dada $T: \mathbb{R}^n \to \mathbb{R}^m$ una transformación lineal, $\exists !\ M \in \mathbb{R}^{m \times n} \ /\ T(v) = Mv$

3.2. En los reales

Una función $f: \mathbb{R} \to \mathbb{R}$ es derivable en a si existe el siguiente límite:

$$\lim_{h \to 0} \frac{f(a+h) - a}{h} = l$$

En dicho caso l es la derivada de f en a y notamos f'(a) = l

Teorema de Fermat: Si f es derivable en $c \in (a,b)$ y c es un extremo local de f, entonces f'(c) = 0.

Teorema de Rolle: Sea $f:[a,b] \to \mathbb{R}$ continua y derivable en (a,b) tal que f(a)=f(b), entonces existe $c \in (a,b) / f'(c) = 0$

Teorema de Lagrange: Si f es continua en [a,b] y derivable en (a,b) entonces existe $c \in (a,b)$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Teorema de Cauchy: Sean $f, g : [a, b] \to \mathbb{R}$ continuas y derivables en (a, b) entonces existe c tal que g'(c)(f(b) - f(a)) = f'(c)(g(a) - g(b))

Sección 3.3 En \mathbb{R}^n Análisis Matemático II

3.2.1. Polinomio de Taylor

Sea $F:I\subset\mathbb{R}\to\mathbb{R},\ a\in I,\ I$ intervalo abierto y f n-veces derivable en I, entonces, llamamos **polinomio de Taylor** de f de orden n en a al siguiente polinomio:

$$P_n(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^2 + \dots + \frac{f^{(k)}(a)}{k!}(x - a)^k + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n$$

Propieades

- P_n es el único polinomio de grado n que verifica: $P_n(a) = f(A), P'_n(a) = f'(a), \dots, P_n^{(n)} = f^{(n)}(a)$
- Es el único polinomio que cumple que, dado $R_n(x) = f(x) P_n(x)$ se verifica:

$$\lim_{x \to a} \frac{R_n(x)}{(x-a)^n} = 0$$

3.2.2. Otras propiedades

■ Si $f: \mathbb{R} \to \mathbb{R}$ es derivable en a, entonces f es continua en a.

3.3. En R^n

Derivada de una curva: Sea $\alpha:(a,b)\to\mathbb{R}^n$ una curva en el intervalo (a,b) entonces la derivada de α en t_0 es el vector que se obtiene derivando cada coordenada de $\alpha(t)$ en t_0 .

Curva regular : Sea $\alpha : \mathbb{R} \to \mathbb{R}^n$ una curva en \mathbb{R}^n , α es regular si cada una de sus coordenadas es una función derivable y ademas, para todo $t \in \mathbb{R}$, ninguna derivada es cero.

Dirección: Un vector $v \in \mathbb{R}^n$ es considerado una dirección si ||v|| = 1.

Derivadas direccionales: Sea $V \in \mathbb{R}^2$, ||v|| = 1, sea $f : A \subset \mathbb{R}^n \to \mathbb{R}$ y $P \in A^0$, entonces el limite:

$$\lim_{t\to 0} \frac{f(P+tV) - f(P)}{t}$$

(si existe) es la derivada direccional de f en P en la dirección V y lo notamos:

$$\frac{\partial f}{\partial v}$$
 ó $f_V(P)$

Derivadas parciales: Sean E_1, \ldots, E_n los vectores de la base canónica, la i-ésima derivada parcial de f en P es la derivada direccional de f en la dirección E_i . Y la notamos como $\frac{\partial f}{\partial x_i}$

Hiperplano tangente: El hiperplano tangente en P de una función f es el plano generado por todas las derivadas parciales de f en P. En otras palabras es un plano que pasa por (P, f(p)) y está generado por $\{(E_0, f_{x_0}(P)), \ldots, (E_n, f_{x_n}(P))\}$. La fórmula de este plano es de la forma $\Pi_P : \langle N, Y - Q \rangle = 0$ donde $N = (f_{x_0}(P), \ldots, f_{x_n}(P), -1)$ es la normal del plano y $Q = (X, x_{n+1}) - (P, f(P))$

Sección 3.3 En \mathbb{R}^n Análisis Matemático II

Deferenciabilidad: Sea $f:A\subset\mathbb{R}^n\to\mathbb{R}$ y $P\in A^0$, si existen las derivadas parciales de f en P, decimos que f es diferenciable en P si existe

$$\lim_{X \to P} \frac{|f(X) - f(P) - f_{x_1}(P)(x_1 - p_1) - \dots - f_{x_n}(P)(x_n - p_n)|}{\|X - P\|}$$

En este caso a la función $(x_1, \ldots, x_n) \to f_{x_1}(P)(x_1 - p_1) + \cdots + f_{x_n}(P)(x_n - p_n)$ la denominamos diferencial de f en P y la notamos Df_p

Si A es abierto y f es diferenciable en en todos los puntos de A, entonces f es diferenciable en A.

Gradiente: Vector formado por todas las derivadas parciales de f en un punto P, lo notamos $\nabla f(P)$

Propiedades

- $Df_P(X) = \langle \nabla f(P), X \rangle$
- La ecuación del plano tangente a P es $\Pi_P: f(P)+ \langle \nabla f(P), X-P \rangle$
- Cauchy-Schwartz: $|Df_p(X)| = |\langle \nabla f(P), X \rangle| \le ||\nabla f(P)|| ||X||$
- Si $f: \mathbb{R}^2 \to \mathbb{R}$ es diferenciable $p = (x_0, y_0)$, entonces la dirección de máximo crecimiento es $\nabla f(p)$ y la dirección de mínimo crecimiento es $-\nabla f(p)$
- Que f sea diferenciable en P es un requisito necesario para que existan las derivadas parciales de f en P.
- Si n=1, entonces vale que f es diferenciable en $a \in A^0 \iff$ existe f'(a)
- Si $f: \mathbb{R} \to \mathbb{R}$ es derivable en x_0 , entonces el gráfico de f admite una recta tangente en $(x_0, f(x_0))$
- Sea $f: \mathbb{R}^2 \to \mathbb{R}$ diferenciable en (x_0, y_0) , entonces el gráfico de f admite un plano tangente en el punto $(x_0, y_0, f(x_0, y_0))$
- Sea $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ diferenciable en $P \in A^\circ$, entonces f es continua en P.
- Sea $f: A \subset \mathbb{R}^n \to \mathbb{R}$, $P \in A^0$, si existe una única transformación lineal $T: \mathbb{R}^n \to \mathbb{R}$ tal que f es aproximable al punto p por T (lím $_{x\to p} \frac{f(x)-f(p)-T(x-p)}{\|x-p\|} = 0$) entonces $T = Df_p$ y existen todas las derivadas parciales de f en P.
- Si f es diferenciable en $p, v \in \mathbb{R}^n, \|v\| = 1$, entonces $\exists \frac{\partial f}{\partial v}(p) = Df_p(v) = \langle \nabla f(P), v \rangle$
- Sean $f, g: A \subset \mathbb{R} \to \mathbb{R}^n$, $p \in A^0$ diferenciables en p:
 - \bullet f + g es diferenciable en p
 - $f \cdot g$ es diferenciable en p
 - Si $g(p) \neq 0 \Rightarrow \frac{f}{g}$ es diferenciable en p
- Si $T: \mathbb{R}^n \to \mathbb{R}$ es una transformación lineal, entonces T es diferenciable en $p \ \forall \ p \in \mathbb{R}^n$ y $DT_p = T$
- Sea $f: A \subset \mathbb{R}^n \to \mathbb{R}$, A abierto tal que en cada $q \in A$, existen $f_{x_1}(q), f_{x_2}(q), \dots, f_{x_n}(q)$. Sea $p \in A$, si $f_{x_1}, f_{x_2}, \dots, f_{x_n}$ son continuas en p, entonces f es diferenciable en p.

• Si $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$, el $Df_p \in \mathbb{R}^{m \times n}$ y

$$Df_p = \begin{pmatrix} \nabla f_1(p) \\ \nabla f_2(p) \\ \vdots \\ \nabla f_m(p) \end{pmatrix}$$

3.4. Regla de la cadena

3.4.1. Lemas Previos

- Sea $T: \mathbb{R}^n \to \mathbb{R}^m$ una transformación lineal, entonces existe $c \geq 0 \ / \ x \in \mathbb{R}^n$ y $||T|| \leq c||x||$
- $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ es diferenciable en p entonces existen una $B_r(p)$ y una constante $c_p \geq 0$ tal que $||F(X) F(P)|| \leq c||x||$ para todo $x \in B_r(p)$

3.4.2. Regla de la cadena

Sean $F:A\subset\mathbb{R}^n\to\mathbb{R}^m$ difereniable en $p\in A^0$ y $G:B\subset\mathbb{R}^m\to\mathbb{R}^k$ diferenciable en $q=F(p)\in B$. Entonces $G\circ F$ es diferenciable en p y vale:

$$D(G \circ F)(p) = DG(q) \circ DF(p)$$

Esta composición, se puede ver como la multiplicación de las matrices que representan a dichos diferenciales.

3.5. Polinomio de Taylor

Definición: Decimos que $f: A \subset \mathbb{R}^n \to \mathbb{R}$ es C^2 en p si f tiene derivadas primeras (todas) y segundas (todas) y todas son continuas en p. Y decimos que f es C^3 en p si existen sus derivadas terceras y estas son continuas en p.

Matriz Hessiana: Si f tiene derivadas segundas en p, llamaremos matriz de derivadas segundas de f en p ó matriz Hessiana de f(p) a:

$$Hf(p) = \begin{pmatrix} f_{x_1 x_2(p)} & \dots & f_{x_1 x_n(p)} \\ \vdots & \ddots & \vdots \\ f_{x_1 x_2(p)} & \dots & f_{x_1 x_n(p)} \end{pmatrix}$$
(1)

Polinomio de Taylor de grado 2:

$$P_2(x) = f(p) + \nabla f(p)(x-p) + \frac{1}{2}(x-p)^t f(p)(x-p)$$

3.5.1. Propiedades

- Si f es C^2 en p, entonces $f_{x_ix_j}(p) = f_{x_jx_i}(p)$
- $f \text{ es } C^3 \text{ en } p \iff f_{x_1}, f_{x_2}, \dots, f_{x_n} \text{ son } C^2.$
- Teorema de Lagrange: Sea $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$, A convexo y abierto y f diferenciable en A. Si $p,q\in A$ entonces hay un punto c en el segmento que une a p con q ($c\neq p,q$) tal que f(q)-f(p)=Df(c)(q-p)
- Sea $f: B \subset \mathbb{R}^n \to \mathbb{R}$, si f es C^3 en B, entonces el error $R_2(x) = f(x) P_2(x)$ verifica que

$$\lim_{x \to p} \frac{R_2(x)}{\|x - p\|^2} = 0$$

y además

$$R_2(x) = \frac{1}{3!} \sum_{i,j,k=1}^n f_{x_i x_j x_k}(c) (x_i - p_i) (x_j - p_j) (x_k - p_k)$$

siendo c algún punto del segmento que une a x con p.

 $\bullet \ \int_a^b h(t)g(t)dt = h(c) \int_a^b g(t)dt$ para algún cen el intervalo [a,b]

4. Extremos de funciones de varias variables

Sea $f: A \subset \mathbb{R}^n \to \mathbb{R}$, decimos que en $p \in A$ hay un **máximo** para f si $f(p) \geq f(x)$ para todo $x \in A$. Y es **máximo estricto**, global o absoluto si $f(p) > f(x) \ \forall \ x \in A$.

Máximo local: En $g \in A$ hay un máximo local (o relativo) de f si hay r > 0 tal que f restringida a $B_r(g) \cap A$, tiene un máximo en g.

Mínimos: Analogamente se definen los mínimos globales, locales y estrictos.

Puntos críticos: $p \in A$ es un punto crítico en f si f es diferenciable en p y $\nabla f(p) = (0, \dots, 0)$

Matriz definida positiva: Sea $A \in \mathbb{R}^{n \times m}$, A es definida positiva si para todo $X \in \mathbb{R}^n$ vale que $X^t A X > 0$ si $X \neq 0$

Matriz semidefinida positiva: Sea $A \in \mathbb{R}^{n \times m}$, A es definida positiva si para todo $X \in \mathbb{R}^n$ vale que $X^t A X \ge 0$ si $X \ne 0$

Matriz semidefinida/definida negativa: Definiciónes análogas a las anteriores.

Matriz indefinida: Sea $A \in \mathbb{R}^{n \times m}$, A es indefinida si existen $X, X_1 \neq 0 \in \mathbb{R}^n$ tales que $X^t A X > 0$ y $X_1^t A X < 0$

Punto Silla: p es un punto silla si existen dos trayectorias α , β que tienden a p (o sea son continuas y $\alpha(0) = \beta(0) = p$), y tales que $f \circ \alpha(t)$ tiene un máximo en t = 0 y $f \circ \beta$ tiene un mínimo en t = 0. Es decir, si hay dos trayectorias continuas de manera que f tiene máximo y mínimo a lo largo de ellas en p. En este caso p no es ni máximo ni mínimo de f.

Difeomorfismo: Sea A y B conjuntos abiertos y $\varphi:A\to B$ una función biyectiva, entonces φ es un difeomorfismo si φ es diferenciable en A y $\varphi^{-1}:B\to A$ es diferenciable en B.

Teorema de Weierstrass: Sea $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$, con A compacto y f continua en A. Entonces existen $m, M \in \mathbb{R}$ tales que $m \le f(x) \le M \ \forall \ x \in A$. Además existen $P_m, P_M \in A$ tales que f alcanza su mínimo y máximo respectivos en A en dichos puntos.

Propiedades

- Sea $A \in \mathbb{R}^{m \times m}$, A es definida negativa si y solo si existe c > 0 tal que $X^t A X \ge -d\|X\|$
- A es definida negativa si y solo si -A es definida positiva.
- Sea $\varphi: A \to B$ un difeomorfismo y $p \in A$ tal que $\varphi(p) = q$, entonces $D\varphi(p)$ es una matriz inversible y $(D\varphi(p))^{-1} = D\varphi^{-1}(q)$
- Si $\varphi: A \to B$ es un difeomorfismo entonces A y B pertenecen al mismo espacio dimensional.

4.1. Criterio del Hessiano

Sea $B \in \mathbb{R}^{m \times m}$ una matriz simétrica, entonces:

- B es definida positiva si y solo si todos sus autovalores son positivos. Y esto sucede si y solo si las determinantes de sus submatrices son todas positivas.
- \blacksquare B es definida negativa si y solo si todos sus autovalores son negativos. Y esto sucede si y solo si las determinantes de sus submatrices van intercalando signos (la pimera es negativa, la segunda es positiva, la tercera es negativa, etc).
- B es indefinida si y solo si hay dos autovalores λ_i y λ_j tal que $\lambda_i > 0$ y $\lambda_j < 0$. Y esto sucede si los signos de las determinantes de sus submatrices no cumplen con los patrones mencionados en los casos anteriores.

Sea $f:A\subset\mathbb{R}\to\mathbb{R}$, con A abierto, f C^3 en A y sea $p\in A$, un punto crítico de f, entonces:

- Si Hf(p) es definida positiva entonces, en p, f tiene un mínimo local y estricto.
- \blacksquare Si Hf(p) es definida negativa entones, en p, f tiene un máximo local y estricto
- Si Hf(p) es indefinida, entonces p es un punto silla (no es máximo ni mínimo)

4.2. Teorema de la función inversa

Sea $\varphi:A\in\mathbb{R}^n\to\mathbb{R}^n$ con A abierto y φ diferenciable en A. Si existe $p\in A$ tal que $D\varphi(p)$ es inversible, entonces hav dos conjuntos $U \subset A$ y $V \subset \mathbb{R}^n$ tal que:

- $p \in U \lor \varphi(p) \in V$
- $\bullet \varphi|_{U}: U \to V$ es un difeormofismo diferenciable.

Teorema de la función implicita

Dada $f:A\subset\mathbb{R}^n\to\mathbb{R}$ una función $C^{(k)}$ y $S=\{X\in\mathbb{R}^n:f(X)=0\}$ una curva de nivel de f. Si existe $P \in S$ tal que $\frac{\partial f}{\partial x_i}(P) \neq 0$. Entonces existen $U \subset \mathbb{R}^{n-1}$, un entorno de $X_i = (x_0, x_{i-1}, x_{i+1}, x_n)$, y $V \in \mathbb{R}$, un entorno de x_i , y una función $\varphi: U \to V$ tal que:

- $\varphi(X_i) = x_i$
- $\varphi \in C^{(k)}$ en U

$$\left. \varphi_{x_j} \right|_{X_i} = \frac{-f_{x_j}(X)}{f_{x_i}(X)}$$

Multiplicadores de Lagrange

Sean $f: A \subset \mathbb{R}^n \to \mathbb{R}$ y $f: D \subset \mathbb{R}^n \to \mathbb{R}$, $S = \{(x_1, \dots, x_n) \in D: g(x_1, \dots, x_n) = 0\}$ una superficie de nivel y $P \in S$ tal que f y g son diferenciables en P. Si $\nabla g(p) \neq (0, \dots, 0)$ y $f|_{S}$ tiene un extremo global o local en P, entonces $\nabla f(p) = \lambda \nabla g(p)$ para algún $\lambda \in \mathbb{R}$

4.4.1. Caso general

Si S es un sistema de ecuaciones y restringimos f a S entonces:

$$S = \begin{cases} g_1(x_1, \dots x_n) = 0 \\ \vdots \\ g_n(x_1, \dots x_n) = 0 \end{cases}$$

Si $p \in S$ es un extremo de $f|_S$, f, g_1, \ldots, g_n son diferenciables en p, $\nabla g_i(p) \neq 0$ para algún $1 \leq i \leq n$ y $\nabla f(p) \neq 0$, vale que:

$$\nabla f(p) = \lambda_1 g_1(x_1, \dots, x_n) + \dots + \lambda_n g_n(x_1, \dots, x_n)$$

Cada λ_i es llamado multiplicador de Lagrange

5. Integrales dobles y triples

5.1. Repaso

Sea $f:[a,b]\to\mathbb{R}$ una función acotada, si f es positiva, la integral de la misma mide el área comprendida entre [a,b] y la gráfica de f. Si f es arbitraria, la integral sirve para calcular el promedio de f.

5.1.1. Integral de Rienman

Partición de un intervalo : Conjunto $\Pi = \{a, t_1, \dots, t_n, b\}$ tal que $a < t_1 < \dots < t_n < b$

Aproximación del área por defecto : $s_{\Pi}(f) = \sum_{i=1}^{n} (t_i - t_{i-1}) m_i$ donde m_i es el mínimo valor de f en el intervalo $[t_{i-1}, t_i]$. $s_{\Pi}(f)$ se denomina suma inferior de f en Π

Aproximación del área por exceso : $S_{\Pi}(f) = \sum_{i=1}^{n} (t_i - t_{i-1}) M_i$ con M_i el maximo valor de f en el intervalo $[t_{i-1}, t_i]$. $S_{\Pi}(f)$ se denomina suma superior de f en Π

Refinamiento : Sean Π y Π' dos particiones de [a,b], entonces, Π' es más fina que Π si $S_{\Pi'}(f) \leq S_{\Pi}(f)$ y $s'_{\Pi}(f) \geq s_{\Pi}(f)$

Partición regular : Sea $\Pi = \{a, t_1, \dots, t_n, b\}$ una partición de [a, b], entonces Π es regular si $t_{i-1} - t_i = k$ para todo i

Integral inferior : $I_*(f) = \sup\{s_{\Pi}(f) : \Pi \text{ partición de } [a, b]\}$

Integral superior : $I^*(f) = inf\{S_{\Pi}(f) : \Pi \text{ partición de } [a, b]\}$

Integrabilidad : f es integrable en [a,b] si $I_*(f)=I^*(f)$. Si esto sucede, entonces llamamos a este número $\int_a^b f(x)dx$

Propiedades:

- $S_{\Pi}(f) \geq s_{\Pi}(f)$ para todo Π partición de un intervalo.
- Sean Π_1 y Π_2 dos particiones cualesquiera, entonces:

$$m(a,b) \le s_{\Pi_1}(f) \le s_{\Pi_2}(f) \le M(b-a)$$

con m y M el mínimo y máximo de f, respectivamente.

- $f:[a,b]\to\mathbb{R}$ es integrable si y solo si para cada $\epsilon>0$ hay una partición Π_{ϵ} de [a,b] tal que $S_{\Pi_{\epsilon}}(f)-s_{\Pi_{\epsilon}}(f)<\epsilon$
- Si $f:[a,b] \to \mathbb{R}$ es monótona creciente (decreciente), entonces f es integrable en [a,b]
- Sean $f, g : [a, b] \to \mathbb{R}$ integrables y $\alpha, \beta \in \mathbb{R}$, entonces $\alpha f + \beta g$ es integrable en [a, b] y

$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$$

■ Si f es integrable en [a,b] y $c \in (a,b)$, entonces f es integrable en [a,c] y en [c,b] y vale que:

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

■ Sean $f,g:[a,b] \to \mathbb{R}$ integrables tales que $f(x) \leq g(x)$ para todo $x \in [a,b]$, entonces

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx$$

• Si f es integrale en [a, b], entonces |f| es integrable y

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| dx$$

lacksquare Si f es continua en [a,b] entonces es integrable en ese intervalo

5.1.2. Teorema fundamental del cálculo integral

Sea $f:[a,b]\to\mathbb{R}$ continua y $F(x)=\int_a^x f(t)dt$, entonces F es continua en [a,b], derivable en (a,b) y F'(x)=f(x)

5.1.3. Regla de Barrow

Si $f:[a,b]\to\mathbb{R}$ es integrable y existe $F(x)=\int_a^x f(t)dt$ tal que F'(x)=f(x), entonces

$$\int_{a}^{b} f(x) = F(b) - F(a)$$

5.1.4. Integración por partes

$$\int_a^b f(x)g(x)dx = f(x)g'(x)\Big|_a^b - \int_a^b f'(x)g(x)dx$$

5.1.5. Sustitución

Sea $f:[a,b]\to\mathbb{R}$ integrable y $U:[a,b]\to\mathbb{R}$ es derivable, entonces:

$$\int_{U(a)}^{U(b)} f(U(x))U'(x)dx = \int_a^b f(x)dx$$

5.1.6. Integrales impropias

Sea $f:(a,b)\to\mathbb{R}$ integrable con $a\to\infty$ ó $b\to\infty$, entonces:

$$\int_{a}^{b} f(x)dx = \lim_{r \to b^{-}} \int_{a}^{r} f(x)dx \text{ si } b \text{ tiende a infinito}$$

$$\int_a^b f(x) dx = \lim_{r \to a^+} \int_r^a f(x) dx$$
 si a tiende a infinito

En el caso que tanto a como b tiendan a infinito, separamos el intervalo en (a, c] y [c, b) para algún $c \in (a, b)$ finito y calculamos las integrales de cada intervalo por separado.

Convergencia absoluta: La integral impropia de f en [a,b) converge absolutamente si la integral respectiva de |f| converge.

Propiedades:

lacksquare Si la integral impropia de |f| en un intervalo converge entonces la integral de f converge en ese intervalo.

5.1.7. Criterios de comparación de integrales impropias

Sean $f, g: [a, b) \to \mathbb{R}$ continuas tal que $f \ge g \ge 0$

- Si $\int_a^b f(x)dx$ converge, entonces $\int_a^b g(x)dx$ converge.
- Si $\int_a^b g(x)dx$ diverge, entonces $\int_a^b f(x)dx$ diverge.

En, general, si $f, g : [a, b] \to \mathbb{R}$:

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = l \neq 0 \Rightarrow \left(\int_a^{\infty} f(x) dx < \infty \iff \int_a^{\infty} g(x) dx < \infty \right)$$

$$\lim_{x\to\infty}\frac{f(x)}{g(x)}=0\Rightarrow\left(\int_a^\infty g(x)dx<\infty\Rightarrow\int_a^\infty f(x)dx<\infty\right)$$

$$\lim_{x\to\infty}\frac{f(x)}{g(x)}=\infty\Rightarrow\left(\int_a^\infty g(x)dx=\infty\Rightarrow\int_a^\infty f(x)dx=\infty\right)$$

5.1.8. Integrales con las que comparar:

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = \begin{cases} \text{converge} & \text{si } p > 1\\ \text{diverge} & \text{si } p \leq 1 \end{cases}$$

$$\int_{0}^{1} \frac{1}{x^{p}} dx = \begin{cases} \text{converge} & \text{si } p \leq 1\\ \text{diverge} & \text{si } p > 1 \end{cases}$$

5.2. Integral doble

5.2.1. Teorema de fubbini

Sea $f: A \subset \mathbb{R}^2 \to \mathbb{R}$, $B_x = \{y \in \mathbb{R} : (x,y) \in A\}$ y $C_y = \{x \in \mathbb{R} : (x,y) \in A\}$. Si $f_{y_0}: C_{y_0} \to \mathbb{R}$, $f_{y_0}(x) = f(x,y_0)$ es inyectiva para todo y_0 y $f_{x_0}: B_{x_0}$, $f_{x_0}(y) = f(x_0,y)$ es integrable para todo x_0 , entonces:

$$\int \int_{A} f(x,y)dx = \int_{B_{x}} \left(\int_{C_{y}} f(x,y)dy \right) dx = \int_{C_{y}} \left(\int_{B_{x}} f(x,y)dx \right) dy$$

Observación :

$$\int_{c}^{d} \int_{a}^{b} f(x)g(y)dxdy = \left(\int_{a}^{b} f(x)dx\right)\left(\int_{c}^{d} g(y)dy\right)$$

5.3. Principio de Cavalieri

Sean dos regiones en un espacio tridimensional incluidas entre dos planos paralelos. Si cada plano paralelo a estos dos planot interseca ambas regiones en secciones de igual area, entonces las dos regiones tienen el mismo volumen.

5.4. Integrales en \mathbb{R}^n

Sea $f:D\subset\mathbb{R}^n\to\mathbb{R}$ acotada. Sea Q un (hiper) cubo en \mathbb{R}^n tal que $D\subset Q$, se define $\bar{f}:Q\to\mathbb{R}$ acotada de la siguiente forma:

$$\bar{f}(x) = \begin{cases} f(x) & \text{si } x \in D \\ 0 & \text{si } x \in Q - D \end{cases}$$

y f es integrable en D si y solo si \bar{f} es integrable en Q. En tal caso vale que:

$$\int \cdots \int_D f(x_1, \dots, x_n) dx_1 \dots dx_n = \int \cdots \int_Q \bar{f}(x_1, \dots, x_n) dx_1 \dots dx_n$$

Propiedad : \bar{f} es integrable en Q si para cada $\epsilon > 0$ hay una partición P tal que $S_P(f) - s_P(f) < \epsilon$

5.4.1. Dominios elementales en \mathbb{R}

Tipo 1: $D = \{(x,y) : a \le x \le b \land \varphi(x) \le y \le \psi(x)\}$

$$\int \int_{D} f(x,y) dx dy = \int_{a}^{b} \int_{\varphi(x)}^{\psi(x)} f(x,y) dy dx$$

Tipo 2: $D = \{(x,y) : a \le y \le b \land \varphi(y) \le x \le \psi(y)\}$

$$\int \int_{D} f(x,y) dx dy = \int_{a}^{b} \int_{\varphi(y)}^{\psi(y)} f(x,y) dx dy$$

Tipo 3: Regiones que son del tipo 1 y 2 simultaneamente.

5.4.2. Teorema del valor medio para integrales

Sea $f:D\subset\mathbb{R}^n\to\mathbb{R}$ continua, D compacto, arcoconexo. Entonces hay $x_0\in D$ tal que

$$\int \int_D f(x_1, \dots, x_n) dx_1 \dots dx_n = f(x_0) \mu(D)$$

donde $\mu(D)$ es el área de D.

5.5. Cambio de variables

Jacobiano de una transformación lineal: Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$ (o $\mathbb{R}^3 \to \mathbb{R}^3$ derivable, llamamos jacobiano JT de T en (x_0, y_0)

Cambio de variable: Sea $D, D* \subset \mathbb{R}^2$ y sea $T: D* \to D$ derivable y biyectiva, entonces dado $f: D \to \mathbb{R}$ integrable se tiene que

$$\int \int_D f(x,y) dx dy = \int \int_{D*} f \circ T(u,v) |JT(u,v)| du dv$$

5.5.1. Coordenadas polares

Dado un vector (x_0, y_0) en el plano, el cambio de variables a coordenadas polares está dado por:

$$\begin{cases} u = r \times \cos \theta \\ v = r \times \sin \theta \end{cases}$$

donde θ es el ángulo entre el eje x y (x_0, y_0) y r es el módulo del vector (x_0, y_0) . En este caso queda que

$$JT(r, \theta) = \left| \det \left(\begin{array}{cc} \cos \theta & -r \mathrm{sen} \ \theta \\ \mathrm{sen} \ \theta & r \mathrm{cos} \ \theta \end{array} \right) \right| = r$$

5.5.2. Transformaciones lineales

Las transformaciones lineales $T:\mathbb{R}^2\to\mathbb{R}$ (inversibles) buscan transformar rectángulos en paralelogramos.

5.5.3. Coordenadas cilíndricas

Dado un vector (x, y, z) en el espacio, el cambio de variables a coordenadas cilíndricas está dado por:

$$\begin{cases} u = r \times \cos \theta \\ v = r \times \sin \theta \\ w = z \end{cases}$$

donde θ es el ángulo entre el eje x y la proyección del vector (x_0, y_0, z_0) en el plano xy y r es el módulo del vector (x_0, y_0, z_0) . En este caso queda que:

$$JT(r, heta) = \left| egin{matrix} \cot\left(& \cos heta & -r ext{sen } heta & 0 \ & ext{sen } heta & r ext{cos } heta & 0 \ & 0 & 0 & 0 \end{array}
ight)
ight| = r$$

5.5.4. Coordenadas esféricas

Dado un vector (x_0, y_0, z_0) en el espacio, el cambio de variables a coordenadas esféricas está dado por:

$$\left\{ \begin{array}{l} x = r \mathrm{sen} \ \phi \ \mathrm{cos} \ \theta \\ y = r \mathrm{sen} \ \phi \ \mathrm{sen} \ \theta \\ z = r \mathrm{cos} \ \phi \end{array} \right.$$

donde θ es el ángulo entre el eje x y la proyección en el plano xy del vector (x_0, y_0, z_0) , ϕ es el angulo entre el eje z y la proyección en xz del vector (x_0, y_0, z_0) y r es el módulo del vector (x_0, y_0, z_0) . En este caso queda que:

$$JT(r,\theta) = \left| \det \left(\begin{array}{ccc} (\cos\theta)(\sin\phi) & -r(\sin\theta)(\sin\phi) & r(\sin\theta)(\cos\phi) \\ (\sin\theta)(\cos\phi) & r(\cos\theta)(\sin\phi) & r(\sin\theta)(\cos\phi) \\ \cos\phi & 0 & -r{\rm sen} \; \theta \end{array} \right) \right| = r^2 sen \; \phi$$