Reconsidered error analysis in the finite element methods

Hiroki ISHIZAKA

April 1, 2025

Abstract

We introduce new proof methods for interpolation error estimates.

Contents

1	Pre	eliminalies 2			
	1.1	General Convention	2		
	1.2 Basic Notation				
	1.4	1.4 Function Spaces			
	1.5				
		1.5.1 Symbols			
		1.5.2 Meshes	3		
		1.5.3 Broken Sobolev Spaces, Mesh faces, Averages and Jumps	4		
	1.6	Useful Tools for Analysis	1		
		1.6.1 Jensen-type Inequality	5		
		1.6.2 Embedding Theorems	1		
		1.6.3 Trace Theorem	6		
		1.6.4 Bramble–Hilbert–type Lemma	6		
		1.6.5 Poincaré inequality	7		
2	Coo	metric Conditions	7		

1 Preliminalies

1.1 General Convention

Throughout this article, we denote by c a constant independent of h (defined later) and the angles and aspect ratios of simplices, unless specified otherwise all constants c are bounded if the maximum angle is bounded. These values vary across different contexts.

1.2 Basic Notation

d	The space dimension, $d \in \{2, 3\}$
\mathbb{R}^d	d-dimensional real Euclidean space
\mathbb{N}_0	$\mathbb{N}_0 := \mathbb{N} \cup \{0\}$
\mathbb{R}_+	The set of positive real numbers
$ \cdot _d$	d-dimensional Hausdorff measure
$v _D$	Restriction of the function v to the set D
$\dim(V)$	Dimension of the vector space V
δ_{ij}	Kronecker delta: $\delta_{ij} = 1$ if $i = j$ and 0 otherwise
$(x_1,\ldots,x_d)^T$	Cartesian coordinates in \mathbb{R}^d

1.3 Vectors and Matrices

$$\begin{array}{lll} & (v_1,\dots,v_d)^T & \text{Cartesian components of the vector } v \text{ in } \mathbb{R}^d \\ & x \cdot y & \text{Euclidean scalar product in } \mathbb{R}^d \colon x \cdot y := \sum_{i=1}^d x_i y_i \\ & |x|_E & \text{Euclidean norm in } \mathbb{R}^d \colon |x|_E := (x \cdot x)^{1/2} \\ & \mathbb{R}^{m \times n} & \text{Vector space } m \times n \text{ matrices with real-valued entries} \\ & A, B & \text{Matrices} & \text{Entry of } A \text{ in the } i \text{th and the } j \text{th column} \\ & A^T & \text{Trace of } A \colon \text{For } A \in \mathbb{R}^{m \times n}, \text{Tr}(A) := \sum_{i=1}^d A_{ii} \\ & \text{det}(A) & \text{Determinant of } A \\ & \text{diag}(A) & \text{Diagonal of } A \colon \text{For } A \in \mathbb{R}^{m \times n}, \text{ diag}(A)_{ij} := \delta_{ij} A_{ij}, \ 1 \leq i,j \leq d \\ & Ax & \text{Matrix-vector product:} \\ & \text{For } A \in \mathbb{R}^{m \times n} \text{ and } x \in \mathbb{R}^n, \ (Ax)_i := \sum_{j=1}^d A_{ij} x_j \text{ for } 1 \leq i \leq d \\ & A \colon B & \text{Double contraction:} \\ & \text{For } A \in \mathbb{R}^{m \times n} \text{ and } B \in \mathbb{R}^{m \times n}, \ A \colon B := \sum_{i=1}^m \sum_{j=1}^n A_{ij} B_{ij} \\ & \|A\|_2 & \text{Operator norm of } A \colon \text{For } A \in \mathbb{R}^{d \times d}, \ \|A\|_2 := \sup_{0 \neq x \in \mathbb{R}^d} \frac{|Ax|_E}{|x|_E} \\ & \|A\|_{\max} & \text{Max norm of } A \colon \text{For } A \in \mathbb{R}^{d \times d}, \ \|A\|_{\max} := \max_{1 \leq i,j \leq d} |A_{ij}| \\ & O(d) & O(d) \text{ consists of all orthogonal matrices of determinant } \pm 1 \\ \end{array}$$

In this article, we use the following facts.

For $A \in \mathbb{R}^{m \times n}$, it holds that

$$||A||_{\max} \le ||A||_2 \le \sqrt{mn} ||A||_{\max},\tag{1.1}$$

e.g., see [10, p. 56]. For $A, B \in \mathbb{R}^{m \times m}$, it holds that

$$||AB||_2 \le ||A||_2 ||B||_2. \tag{1.2}$$

If $A^{\top}A$ is a positive definite matrix in $\mathbb{R}^{d\times d}$, the spectral norm of the matrix $A^{\top}A$ is the largest eigenvalue of $A^{\top}A$; i.e.,

$$||A||_2 = (\lambda_{\max}(A^{\top}A))^{1/2} = \sigma_{\max}(A),$$
 (1.3)

where $\lambda_{\max}(A)$ and $\sigma_{\max}(A)$ are respectively the largest eigenvalues and singular values of A. If $A \in O(d)$, because $A^{\top} = A^{-1}$ and

$$|Ax|_E^2 = (Ax)^{\top}(Ax) = x^{\top}A^{\top}Ax = x^{\top}A^{-1}Ax = |x|_E^2$$

it holds that

$$||A||_2 = \sup_{0 \neq x \in \mathbb{R}^d} \frac{|Ax|_E}{|x|_E} = \sup_{0 \neq x \in \mathbb{R}^d} \frac{|x|_E}{|x|_E} = 1.$$

1.4 Function Spaces

In this article, we use standard Sobolev spaces with associated norms (e.g., see [2, 6, 7]).

1.5 Finite-Element-Methods-Related Symbols

1.5.1 Symbols

\mathbb{P}^k	Vector space of polynomials in the variables x_1, \ldots, x_d of
	global degree at most $k \in \mathbb{N}_0$
$N^{(d,k)}$	global degree at most $k \in \mathbb{N}_0$ $N^{(d,k)} := \dim(\mathbb{P}^k) = \begin{pmatrix} d+k \\ k \end{pmatrix}$
\mathbb{RT}^k	The Raviart–Thomas polynomial space of order $k \in \mathbb{N}_0$ as
	$\mathbb{RT}^k := (\mathbb{P}^k)^d + x\mathbb{P}^k \text{ for any } x \in \mathbb{R}^d$ $N^{(RT)} := \dim RT^k$
$N^{(RT)}$	$N^{(RT)} := \dim RT^k$
$T,\widetilde{T},\widehat{T},K$	Closed simplices in \mathbb{R}^d
$\mathbb{P}^k(T), \mathbb{RT}^k(T)$	$\mathbb{P}^k(T)$ (or $\mathbb{RT}^k(T)$) is spanned by the restriction to T
	of polynomials in \mathbb{P}^k (or \mathbb{RT}^k)

1.5.2 Meshes

Let $\Omega \subset \mathbb{R}^d$, $d \in \{2,3\}$, be a bounded polyhedral domain. Furthermore, we assume that Ω is convex if necessary. Let $\mathbb{T}_h = \{T\}$ be a simplicial mesh of $\overline{\Omega}$ made up of closed d-simplices, such as

$$\overline{\Omega} = \bigcup_{T \in \mathbb{T}_h} T,$$

with $h := \max_{T \in \mathbb{T}_h} h_T$, where $h_T := \operatorname{diam}(T)$. We also use a symbol ρ_T which means the radius of the largest ball inscribed in T. We assume that each face of any d-simplex T_1 in \mathbb{T}_h is either

a subset of the boundary $\partial\Omega$ or a face of another d-simplex T_2 in \mathbb{T}_h . That is, \mathbb{T}_h is a simplicial mesh of $\overline{\Omega}$ without hanging nodes. Such mesh \mathbb{T}_h is said to be conformal. Let $\{\mathbb{T}_h\}$ be a family of conformal meshes.

Let T be a simplex of \mathbb{T}_h which is a convex full of d+1 vertices, p_1, \ldots, p_{d+1} , that do not belong to the same hyperplane. Let S_i be the face of a simplex T opposite to the vertex p_i . For d=3, angles between faces of a tetrahedron are called *dihedral*, whereas angles between its edges are called *solid*.

1.5.3 Broken Sobolev Spaces, Mesh faces, Averages and Jumps

Let \mathcal{F}_h^i be the set of interior faces, and \mathcal{F}_h^{∂} be the set of faces on boundary $\partial\Omega$. We set $\mathcal{F}_h := \mathcal{F}_h^i \cup \mathcal{F}_h^{\partial}$. For any $F \in \mathcal{F}_h$, we define the unit normal n_F to F as follows: (i) If $F \in \mathcal{F}_h^i$ with $F = T_{\natural} \cap T_{\sharp}$, T_{\natural} , $T_{\natural} \in \mathbb{T}_h$, $\natural > \sharp$, let n_F be the unit normal vector from T_{\natural} to T_{\sharp} . (ii) If $F \in \mathcal{F}_h^{\partial}$, n_F is the unit outward normal n to $\partial\Omega$. We also use the following set. For any $F \in \mathcal{F}_h$,

$$\mathbb{T}_F := \{ T \in \mathbb{T}_h : \ F \subset T \}.$$

We consider \mathbb{R}^q -valued functions for some $q \in \mathbb{N}$. Let $p \in [1, \infty]$ and s > 0 be a positive real number. We define a broken (piecewise) Sobolev space as

$$W^{s,p}(\mathbb{T}_h;\mathbb{R}^q) := \{ v \in L^p(\Omega;\mathbb{R}^q) : v|_T \in W^{s,p}(T;\mathbb{R}^q) \ \forall T \in \mathbb{T}_h \}$$

with the norms

$$\begin{aligned} \|v\|_{W^{s,p}(\mathbb{T}_h;\mathbb{R}^q)} &:= \left(\sum_{T \in \mathbb{T}_h} \|v\|_{W^{s,p}(T;\mathbb{R}^q)}^p\right)^{1/p} & \text{if } p \in [1,\infty), \\ \|v\|_{W^{s,\infty}(\mathbb{T}_h;\mathbb{R}^q)} &:= \max_{T \in \mathbb{T}_h} \|v\|_{W^{s,\infty}(T;\mathbb{R}^q)}. \end{aligned}$$

When q=1, we denote $W^{s,p}(\mathbb{T}_h):=W^{s,p}(\mathbb{T}_h;\mathbb{R})$. When p=2, we write $H^s(\mathbb{T}_h)^q:=H^s(\mathbb{T}_h;\mathbb{R}^q):=W^{s,2}(\mathbb{T}_h;\mathbb{R}^q)$ and $H^s(\mathbb{T}_h):=W^{s,2}(\mathbb{T}_h;\mathbb{R})$. We use the norm

$$|\varphi|_{H^1(\mathbb{T}_h)} := \left(\sum_{T \in \mathbb{T}_h} \|\nabla \varphi\|_{L^2(T)^d}^2\right)^{1/2} \quad \varphi \in H^1(\mathbb{T}_h).$$

Let $\varphi \in H^1(\mathbb{T}_h)$. Suppose that $F \in \mathcal{F}_h^i$ with $F = T_{\natural} \cap T_{\sharp}$, T_{\natural} , T_{\natural} , $T_{\sharp} \in \mathbb{T}_h$, ${\natural} > {\sharp}$. We set $\varphi_{\natural} := \varphi|_{T_{\natural}}$ and $\varphi_{\sharp} := \varphi|_{T_{\sharp}}$. The jump in φ across F is defined as

$$\llbracket \varphi \rrbracket := \llbracket \varphi \rrbracket_F := \varphi_{\natural} - \varphi_{\sharp}, \quad \natural > \sharp.$$

For a boundary face $F \in \mathcal{F}_h^{\partial}$ with $F = \partial T \cap \partial \Omega$, $[\![\varphi]\!]_F := \varphi|_T$. For any $v \in H^1(\mathbb{T}_h)^d$, the notations

denote the jump in the normal component of v and the jump of v. Set two nonnegative real numbers $\omega_{T_{\natural},F}$ and $\omega_{T_{\natural},F}$ such that

$$\omega_{T_{\natural},F} + \omega_{T_{\sharp},F} = 1.$$

The skew-weighted average of φ across F is then defined as

$$\{\{\varphi\}\}_{\overline{\omega}} := \{\{\varphi\}\}_{\overline{\omega},F} := \omega_{T_{\sharp},F}\varphi_{\sharp} + \omega_{T_{\sharp},F}\varphi_{\sharp}.$$

For a boundary face $F \in \mathcal{F}_h^{\partial}$ with $F = \partial T \cap \partial \Omega$, $\{\{\varphi\}\}_{\overline{\omega}} := \varphi|_T$. Furthermore,

$$\{\{v\}\}_{\omega} := \{\{v\}\}_{\omega,F} := \omega_{T_{\natural},F} v_{\natural} + \omega_{T_{\sharp},F} v_{\sharp},$$

for the weighted average of v. For any $v \in H^1(\mathbb{T}_h)^d$ and $\varphi \in H^1(\mathbb{T}_h)$,

$$[\![(v\varphi)\cdot n]\!]_F = \{\!\{v\}\!\}_{\omega,F} \cdot n_F [\![\varphi]\!]_F + [\![v\cdot n]\!]_F \{\!\{\varphi\}\!\}_{\overline{\omega},F}.$$

We define a broken gradient operator as follows. Let $p \in [1, \infty]$. For $\varphi \in W^{1,p}(\mathbb{T}_h)$, the broken gradient $\nabla_h : W^{1,p}(\mathbb{T}_h) \to L^p(\Omega)^d$ is defined by

$$(\nabla_h \varphi)|_T := \nabla(\varphi|_T) \quad \forall T \in \mathbb{T}_h,$$

and we define the broken H(div; T) space by

$$H(\operatorname{div}; \mathbb{T}_h) := \left\{ v \in L^2(\Omega)^d; \ v|_T \in H(\operatorname{div}; T) \ \forall T \in \mathbb{T}_h \right\},$$

and the broken divergence operator $\operatorname{div}_h: H(\operatorname{div}; \mathbb{T}_h) \to L^2(\Omega)$ such that, for all $v \in H(\operatorname{div}; \mathbb{T}_h)$,

$$(\operatorname{div}_h v)|_T := \operatorname{div}(v|_T) \quad \forall T \in \mathbb{T}_h.$$

1.6 Useful Tools for Analysis

1.6.1 Jensen-type Inequality

Let r, s be two nonnegative real numbers and $\{x_i\}_{i\in I}$ be a finite sequence of nonnegative numbers. It then holds that

$$\begin{cases}
\left(\sum_{i\in I} x_i^s\right)^{\frac{1}{s}} \leq \left(\sum_{i\in I} x_i^r\right)^{\frac{1}{r}} & \text{if } r \leq s, \\
\left(\sum_{i\in I} x_i^s\right)^{\frac{1}{s}} \leq \operatorname{card}(I)^{\frac{r-s}{rs}} \left(\sum_{i\in I} x_i^r\right)^{\frac{1}{r}} & \text{if } r > s,
\end{cases}$$
(1.4)

see [7, Exercise 12.1].

1.6.2 Embedding Theorems

The following is well known as the Sobolev embedding theorem.

Theorem 1.1. Let $d \geq 2$, s > 0, and $p \in [1, \infty]$. Let $D \subset \mathbb{R}^d$ be a bounded open subset of \mathbb{R}^d . If D is a Lipschitz set, we then have

$$W^{s,p}(D) \hookrightarrow \begin{cases} L^q(D) & \forall q \in [p, \frac{pd}{d-sp}] \text{ if } sp < d, \\ L^q(D) & \forall q \in [p, \infty), \text{ if } sp = d, \\ L^{\infty}(D) \cap \mathcal{C}^{0,\xi}(\overline{D}) & \xi = 1 - \frac{d}{sp} \text{ if } sp > d. \end{cases}$$

$$(1.5)$$

Furthermore,

$$W^{s,p}(D) \hookrightarrow L^{\infty}(D) \cap \mathcal{C}^0(\overline{D}) \quad \text{(case } s = d \text{ and } p = 1\text{)}.$$
 (1.6)

Proof. See, for example, [6, Corollary B.43, Theorem B.40] and [7, Theorem 2.31] and the references therein.

The following is the embedding theorem related to operator from $W^{s,p}(D)$ into $L^q(S_r)$, where S_r is some plane r-dimensional piece belonging to D with dimensions r < d.

Theorem 1.2. Let $p, q \in [1, +\infty]$ and $s \ge 1$ be an integer. Let $D \subset \mathbb{R}^d$ be a bounded open set having piecewise smooth boundaries. The following embeddings are then continuous:

$$W^{s,p}(D) \hookrightarrow \begin{cases} L^q(S_r) & \text{if } 1 \le p < \frac{d}{s}, \ r > d - sp \text{ and } q \le \frac{pr}{d - sp}, \\ L^q(S_r) & \text{if } p = \frac{d}{s} \text{ for } q < +\infty. \end{cases}$$
 (1.7)

Proof. See, for example, [22, Theorem 2.1 (p. 61)] and the references therein. \Box

1.6.3 Trace Theorem

Theorem 1.3 (Trace on low-dimensional manifolds). Let $p \in [1, \infty)$ and let D be a Lipschitz domain in \mathbb{R}^d . Let M be a smooth, or polyhedral, manifold of dimension r in \overline{D} , $r \in \{0, \ldots, d\}$. Then, there exists a bounded trace operator from $W^{s,p}(D)$ to $L^p(M)$, provided sp > d - r, or $s \ge d - r$ if p = 1.

Proof. See
$$[7, Theorem 3.15]$$
.

1.6.4 Bramble-Hilbert-type Lemma

The Bramble–Hilbert–type lemma (e.g., see [5, 3]) plays a major role in interpolation error analysis. We use the following estimates on anisotropic meshes proposed in [1, Lemma 2.1].

Lemma 1.4. Let $D \subset \mathbb{R}^d$ be a connected open set that is star-shaped with respect to balls B. Let γ be a multi-index with $m := |\gamma|$ and $\varphi \in L^1(D)$ be a function with $\partial^{\gamma} \varphi \in W^{\ell-m,p}(D)$, where $\ell \in \mathbb{N}$, $m \in \mathbb{N}_0$, $0 \le m \le \ell$, $p \in [1, \infty]$. It then holds that

$$\|\partial^{\gamma}(\varphi - Q^{(\ell)}\varphi)\|_{W^{\ell-m,p}(D)} \le C^{BH}|\partial^{\gamma}\varphi|_{W^{\ell-m,p}(D)},\tag{1.8}$$

where C^{BH} depends only on d, ℓ , diam D, and diam B, and $Q^{(\ell)}\varphi$ is defined as

$$(Q^{(\ell)}\varphi)(x) := \sum_{|\delta| \le \ell - 1} \int_{B} \eta(y)(\partial^{\delta}\varphi)(y) \frac{(x - y)^{\delta}}{\delta!} dy \in \mathbb{P}^{\ell - 1}, \tag{1.9}$$

where $\eta \in \mathcal{C}_0^{\infty}(B)$ is a given function with $\int_B \eta dx = 1$.

To give local interpolation error estimates on isotropic meshes, we use the inequalities given in [4, Theorem 1.1] and [5, 3, 25] which are variants of the Bramble–Hilbert lemma.

Lemma 1.5. Let $D \subset \mathbb{R}^d$ be a bounded convex domain. Let $\varphi \in W^{m,p}(D)$ with $m \in \mathbb{N}$ and $1 \leq p \leq \infty$. There exists a polynomial $\eta \in \mathbb{P}^{m-1}$ such that

$$|\varphi - \eta|_{W^{k,p}(D)} \le C^{BH}(d,m)\operatorname{diam}(D)^{m-k}|\varphi|_{W^{m,p}(D)}, \quad k = 0, 1, \dots, m.$$
 (1.10)

Proof. The proof is found in [4, Theorem 1.1].

Remark 1.6. In [3, Lemma 4.3.8], the Bramble–Hilbert lemma is given as follows. Let B be a ball in $D \subset \mathbb{R}^d$ such that D is star-shaped with respect to B and its radius $r > \frac{1}{2}r_{\max}$, where $r_{\max} := \sup\{r : D \text{ is star-shaped with respect to a ball of radius } r\}$. Let $\varphi \in W^{m,p}(D)$ with $m \in \mathbb{N}$ and $1 \le p \le \infty$. There exists a polynomial $\eta \in \mathbb{P}^{m-1}$ such that

$$|\varphi - \eta|_{W^{k,p}(D)} \le C^{BH}(d, m, \gamma) \operatorname{diam}(D)^{m-k} |\varphi|_{W^{m,p}(D)}, \quad k = 0, 1, \dots, m.$$
 (1.11)

Here, γ is called the chunkiness parameter of D, which is defined by

$$\gamma := \frac{\operatorname{diam}(D)}{r_{\max}}.$$

The main drawback is that the constant $C^{BH}(d, m, \gamma)$ depends on the chunkiness parameter. Meanwhile, the constant $C^{BH}(d, m)$ of the estimate (1.10) does not depend on the geometric parameter γ .

Remark 1.7. For general Sobolev spaces $W^{m,p}(\Omega)$, the upper bounds on the constant $C^{BH}(d,m)$ are not given, as far as we know. However, when p=2, the following result has been obtained by Verfürth [25].

Let $D \subset \mathbb{R}^d$ be a bounded convex domain. Let $\varphi \in H^m(D)$ with $m \in \mathbb{N}$. There exists a polynomial $\eta \in \mathbb{P}^{m-1}$ such that

$$|\varphi - \eta|_{H^k(D)} \le C^{BH}(d, k, m) \operatorname{diam}(D)^{m-k} |\varphi|_{H^m(D)}, \quad k = 0, 1, \dots, m - 1.$$
 (1.12)

Verfürth has given upper bounds on the constants in the estimates such that

$$C^{BH}(d, k, m) \le \pi^{k-m} \binom{d+k-1}{k}^{1/2} \frac{\{(m-k)!\}^{1/2}}{\{\left[\frac{m-k}{d}\right]!\}^{d/2}},$$

where [x] denotes the largest integer less than or equal to x.

As an example, let us consider the case d=3, k=1, and m=2. We then have

$$C^{BH}(3,1,2) \le \frac{\sqrt{3}}{\pi},$$

thus on the standard reference element \widehat{T} , we obtain

$$|\hat{\varphi} - \hat{\eta}|_{H^1(\widehat{T})} \le \frac{\sqrt{6}}{\pi} |\hat{\varphi}|_{H^2(\widehat{T})} \quad \forall \hat{\varphi} \in H^2(\widehat{T}),$$

becase $diam(\widehat{T}) = \sqrt{2}$.

1.6.5 Poincaré inequality

Theorem 1.8 (Poincaré inequality). Let $D \subset \mathbb{R}^d$ be a convex domain with diameter diam(D). It then holds that, for $\varphi \in H^1(D)$ with $\int_D \varphi dx = 0$,

$$\|\varphi\|_{L^2(D)} \le \frac{\operatorname{diam}(D)}{\pi} |\varphi|_{H^1(D)}.$$
 (1.13)

Proof. The proof is found in [23, Theorem 3.2], also see [24].

Remark 1.9. The coefficient $\frac{1}{\pi}$ of (1.13) may be improved.

2 Geometric Conditions

References

- [1] Apel, Th.: Anisotropic finite elements: Local estimates and applications. Advances in Numerical Mathematics. Teubner, Stuttgart, (1999)
- [2] Bernardi, C., Girault, V., Hecht, F., Raviart, P.-A., Rivière, B.: Mathematics and Finite Element Discretizations of Incompressible Navier–Stokes Flows. SIAM, (2024)
- [3] Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods, Third Edition. Springer Verlag, New York (2008)
- [4] Dekel, S., Leviatan, D.: The Bramble–Hilbert Lemma for Convex Domains, SIAM Journal on Mathematical Analysis **35** No. 5, 1203-1212 (2004)
- [5] Dupont, T., Scott, R.: Polynomial approximation of functions in Sobolev spaces. Math. Comp. **34**, 441-463 (1980)
- [6] Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Springer Verlag, New York (2004)
- [7] Ern, A., Guermond, J. L.: Finite Elements I: Approximation and Interpolation. Springer-Verlag, New York (2021)
- [8] Ern, A., Guermond, J. L.: Finite elements II: Galerkin Approximation, Elliptic and Mixed PDEs. Springer-Verlag, New York (2021)
- [9] Ern, A. and Guermond, J. L.: Finite elements III: First-Order and Time-Dependent PDEs. Springer-Verlag, New York (2021).
- [10] Golub, G. H., Loan, C. F. V.: Matrix Computations 3rd edition. The Johas Hopkins University Press, (1996)
- [11] Ishizaka H. Anisotropic interpolation error analysis using a new geometric parameter and its applications. Ehime University, Ph. D. thesis (2022)
- [12] Ishizaka, H.: Anisotropic Raviart–Thomas interpolation error estimates using a new geometric parameter. Calcolo 59 (4), (2022)
- [13] Ishizaka, H.: Anisotropic weakly over-penalised symmetric interior penalty method for the Stokes equation. Journal of Scientific Computing 100, (2024)
- [14] Ishizaka, H.: Morley finite element analysis for fourth-order elliptic equations under a semi-regular mesh condition. Applications of Mathematics **69** (6), 769–805 (2024)
- [15] Ishizaka, H.: Hybrid weakly over-penalised symmetric interior penalty method on anisotropic meshes. Calcolo **61**, (2024)
- [16] Ishizaka, H.: Anisotropic modified Crouzeix-Raviart finite element method for the stationary Navier-Stokes equation. Numeriche Mathmatik, (2025)
- [17] Ishizaka, H.: Nitsche method under a semi-regular mesh condition. preprint (2025) https://arxiv.org/abs/2501.06824
- [18] Ishizaka, H., Kobayashi, K., Suzuki, R., Tsuchiya, T.: A new geometric condition equivalent to the maximum angle condition for tetrahedrons. Comput. Math. Appl. 99, 323–328 (2021)

- [19] Ishizaka, H., Kobayashi, K., Tsuchiya, T.: General theory of interpolation error estimates on anisotropic meshes. Jpn. J. Ind. Appl. Math. 38 (1), 163–191 (2021)
- [20] Ishizaka, H., Kobayashi, K., Tsuchiya, T.: Crouzeix–Raviart and Raviart–Thomas finite element error analysis on anisotropic meshes violating the maximum-angle condition. Jpn. J. Ind. Appl. Math. 38 (2), 645-675 (2021)
- [21] Ishizaka, H., Kobayashi, K., Tsuchiya, T.: Anisotropic interpolation error estimates using a new geometric parameter. Jpn. J. Ind. Appl. Math. 40 (1), 475–512 (2023)
- [22] Ladyženskaja, O. A., Solonnikov, V. A., Ural'ceva, N. N.: Linear and Quasi-linear Equations of Parabolic Type. Translations of Mathematical Monographs 23, AMS, Providence, (1968)
- [23] Mario, B.: A note on the Poincaré inequality for convex domains. Z. Anal. ihre. Anwend., 22, 751-756 (2003)
- [24] Payne, L.E., Weinberger, H.F.: An optimal Poincaré-inequality for convex domains, Arch. Rational Mech. Anal. 5, 286-292 (1960)
- [25] Verfürth, R.: A note on polynomial approximation in Sobolev spaces, Math. Modelling and Numer. Anal. 33, 715-719 (1999)