

Análise e Síntese de Algoritmos

Programação dinâmica. CLRS Cap. 15

Instituto Superior Técnico 2022/2023

Resumo

Programação dinâmica

Problema da Mochila (Knapsack)

Maior Sub-Sequência Comum (LCS)

Realizar Trocos

Major Palíndromo

Multiplicação de Cadeias de Matrizes

Contexto

- Revisão [CLRS, Cap.1-13]
 - Fundamentos; notação; exemplos
- Técnicas de Síntese de Algoritmos [CLRS, Cap.15-16]
 - Programação dinâmica [CLRS, Cap.15]
 - Algoritmos greedy [CLRS, Cap.16]
- Algoritmos em Grafos [CLRS, Cap.21-26]
 - Algoritmos elementares
 - Caminhos mais curtos [CLRS, Cap.22,24-25]
 - Fluxos máximos [CLRS, Cap.26]
 - Árvores abrangentes [CLRS, Cap.23]
- Programação Linear [CLRS, Cap.29]
 - Algoritmos e modelação de problemas com restrições lineares
- Tópicos Adicionais [CLRS, Cap.32-35]
 - Complexidade Computacional

Análise e Síntese de Algoritmos - 2022/2023

1/6

Técnicas para Síntese de Algoritmos

Técnicas para Síntese de Algoritmos

- Dividir para conquistar
 - Exemplo: MergeSort
- Programação dinâmica
 - Exemplo: Floyd-Warshall
- Algoritmos greedy
 - Exemplo: Prim, Dijkstra

Programação Dinâmica

Exemplo

Calcular o *n*-ésimo elemento da sequência de Fibonacci, sabendo que:

$$fib(n) = \left\{ egin{array}{ll} 0 & ext{se } n=0 \ 1 & ext{se } n=1 \ fib(n-1) + fib(n-2) & ext{caso contrário} \end{array}
ight.$$

Solução Recursiva

Programação Dinâmica

```
fib(n)

if n \le 1 then

return n

else

return fib(n-1) + fib(n-2)

end if

Complexidade: O(2^n)
```

(-)

Análise e Síntese de Algoritmos - 2022/2023

5/60

Programação Dinâmica

Passos para a realização de um algoritmo baseado em programação dinâmica:

- Caracterizar estrutura de uma solução óptima
- Definir recursivamente o valor de uma solução óptima
- Calcular valor da solução óptima utilizando abordagem bottom-up
- Construir solução a partir da informação obtida

Análise e Síntese de Algoritmos - 2022/2023

4/60

Programação Dinâmica

Solução Programação Dinâmica

```
\begin{aligned} &\textbf{fib}(n) \\ &\textbf{if } n \leq 1 \textbf{ then} \\ &\textbf{return } n \\ &\textbf{else} \\ &\textbf{Alocar vetor } f \textbf{ com } n+1 \textbf{ posições} \\ &f[0] = 0 \\ &f[1] = 1 \\ &i = 2 \\ &\textbf{while } i \leq n \textbf{ do} \\ &f[i] = f[i-1] + f[i-2] \\ &i = i+1 \\ &\textbf{end while} \\ &\textbf{return } f[n] \\ &\textbf{end if} \end{aligned}
```

Programação Dinâmica

Exemplo

Calcular as combinações de n, k a k

$$C_k^n = \begin{cases} 1 & \text{se } k = 0 \text{ ou } k = n \\ C_{k-1}^{n-1} + C_k^{n-1} & \text{se } 0 < k < n \\ 0 & \text{caso contrário} \end{cases}$$

Programação Dinâmica

TÉCNICO LISBOA

Solução Recursiva

```
\mathbf{C}(n,k) if k=0 or k=n then return 1 else return C(n-1,k-1)+C(n-1,k) end if
```

- Cada chamada a C(n, k) retorna 1 ou invoca o cálculo de dois sub-problemas
- Solução é calculada somando 1's !
- Tempo de execução é: $\Omega(C_k^n)$

Análise e Síntese de Algoritmos - 2022/2023

8/60

Programação Dinâmica

Características da Programação Dinâmica

- Solução óptima do problema composta por soluções óptimas para sub-problemas
- Solução recursiva resolve repetidamente os mesmos sub-problemas
 - Sobreposição de problemas
 - Possível usar solução construtiva para evitar resolver repetidamente o mesmo problema
- Memorização (Memoization)

Exemplo

Programação Dinâmica

- Número de C(n, k) distintos é apenas $n \times k$
- Complexidade da solução recursiva deriva do cálculo repetido de sub-problemas

$$- C(5,3) = C(4,2) + C(4,3)$$

$$-C(4,2) = C(3,1) + C(3,2)$$

$$-C(4,3) = C(3,2) + C(3,3)$$

- Solução: solução construtiva (bottom-up)
 - Preencher tabela $(n \times k)$ (triângulo de Pascal)

Análise e Síntese de Algoritmos - 2022/2023

9/60

Programação Dinâmica

Abordagem

- Caracterizar a estrutura da solução óptima
- Definir recursivamente o valor da solução óptima
- Calcular o valor da solução óptima (bottom-up)
- Construir a solução óptima

Problema da Mochila

Definição

- Dados n objetos $(1, \ldots, n)$ e uma mochila
- Cada objeto tem um valor v_i e um peso w_i
- Peso transportado pela mochila não pode exceder W
- Objetivo: maximizar o valor transportado pela mochila e respeitar a restrição de peso

Formalização

• $x_i = 1$ se objeto i incluído na mochila; 0 caso contrário

$$\begin{array}{ll} \text{maximizar} & \sum\limits_{i=1}^n v_i x_i \\ \text{sujeito a} & \sum\limits_{i=1}^n w_i x_i \leq W \\ & x_i \in \{0,1\} \end{array}$$

Análise e Síntese de Algoritmos - 2022/2023

12/6

Problema da Mochila

Tentativa

- Algoritmo que a cada passo selecciona objeto com maior valor v_i/w_i
- Problema:
 - $-v_1=8, w_1=6$
 - $-v_2=5, w_2=5$
 - $-v_3=5, w_3=5$
 - -W = 10
- Primeiro objeto seleccionado (objeto 1) impede encontrar solução óptima (com objetos 2 e 3)

Análise e Síntese de Algoritmos - 2022/2023

13/60

Problema da Mochila

Solução

- v[i,j]: máximo valor que é possível transportar se:
 - se o peso limite é j, $(j \leq W)$
 - e se apenas podem ser seleccionados os objetos numerados de 1 a
 i
- Solução óptima encontra-se em v[n, W]
- Definição:

$$v[i,j] = max(v[i-1,j], v[i-1,j-w_i] + v_i)$$

$$v[0,j] = 0, \quad j \ge 0$$

 $v[i,j] = -\infty, \ j < 0$
 $v[i,0] = 0$

Problema da Mochila

Análise

 Solução óptima é composta por soluções óptimas para os sub-problemas:

$$v[i,j] = max(v[i-1,j], v[i-1,j-w_i] + v_i)$$

- Se v[i,j] é solução óptima:
 - Se objeto i não é incluído, v[i-1, j] é sub-solução óptima
 - Se objeto i é incluído, $v[i-1,j-w_i]$ é sub-solução óptima
- Caso contrário: seria possível obter solução com valor superior ao da solução óptima; uma contradição !

Problema da Mochila

Análise

- Solução recursiva tem tempo de execução exponencial em n e W
 - Mas: número de sub-problemas distintos é $n \times W$
 - Conclusão: resolução repetida dos mesmos sub-problemas !
- Utilizar solução construtiva (bottom-up)
 - preencher tabela $(n \times W)$

Complexidade: $\Theta(nW)$

• pseudo-polinomial (depende do valor, não do tamanho do input)

Análise e Síntese de Algoritmos - 2022/2023

16/6

Problema da Mochila (com repetição)

Solução

- v[j]: máximo valor que é possível transportar se:
 - − se o peso limite é j, $(j \le W)$
- Solução óptima encontra-se em v[W]
- Definição:

$$v[j] = \max(0, \max_{1 \le i \le n} \{v[j - w_i] + v_i\}), \quad j \le W$$

$$v[0] = 0$$

$$v[j] = -\infty, \quad j < 0$$

Problema da Mochila (com repetição)

Definição

- Dados n objetos $(1, \ldots, n)$ e uma mochila
- Cada objeto tem um valor v_i e um peso w_i
- Peso transportado pela mochila não pode exceder W
- Objetivo: determinar os objetos que devem ser colocados na mochila por forma a maximizar o valor transportado pela mochila e respeitar a restrição de peso

Formalização

• $x_i = k$ se objeto incluído k vezes na mochila; 0 caso contrário

maximizar
$$\sum_{i=1}^{n} v_i x_i$$
 sujeito a $\sum_{i=1}^{n} w_i x_i \leq W$ $x_i \in \mathbb{N}$

Análise e Síntese de Algoritmos - 2022/2023

17/60

Maior Sub-Sequência Comum

Definição

- Dada uma sequência $X=\langle x_1,\ldots,x_n\rangle$, uma sequência $Z=\langle z_1,\ldots,z_k\rangle$ é uma sub-sequência de X se existe uma sequência estritamente crescente $\langle i_1,\ldots,i_k\rangle$ tal que para todo o $j=1,\ldots,k,x_{i_j}=z_j$
- Dadas as sequências $X = \langle x_1, \dots, x_n \rangle$ e $Y = \langle y_1, \dots, y_m \rangle$, Z é uma sub-sequência comum se Z é sub-sequência de X e de Y Obs: $X_i = \langle x_1, \dots, x_i \rangle$
- Objetivo: encontrar sub-sequência comum de maior comprimento (LCS) entre duas sequências X e Y

Exemplo

- Um caso concreto:
 - $-X = \langle abefcghd \rangle$
 - $-Y = \langle eagbcfdh \rangle$
 - $-Z = \langle abcd \rangle$ é sub-sequência comum de X e Y
- Uma solução exaustiva é impraticável:
 - Considerar inclusão (ou não) de cada carater de X e de Y
 - Total de sub-sequências em X: 2ⁿ
 - Total de sub-sequências em Y: 2^m
 - Total de casos a analisar: 2^{n+m}
 - Impraticável para valores elevados de n e m

Análise e Síntese de Algoritmos - 2022/2023

20/6

Maior Sub-Sequência Comum

Abordagem

- Se $x_n = y_m$, encontrar LCS W de X_{n-1} e Y_{m-1}
 - Adicionar $x_n = y_m$ a W permite obter Z
- Se $x_n \neq y_m$, encontrar LCS' s para X_{n-1} e Y e para X e Y_{m-1}
 - Escolher a maior LCS

Formulação

• c[i,j]: comprimento da LCS para as sequências X_i e Y_j

$$c[i,j] = \begin{cases} 0 & \text{se } i = 0 \text{ ou } j = 0 \\ c[i-1,j-1]+1 & \text{se } i,j > 0 \text{ e } x_i = y_j \\ max(c[i,j-1],c[i-1,j]) & \text{se } i,j > 0 \text{ e } x_i \neq y_j \end{cases}$$

Tempo de execução: O(n m)

Maior Sub-Sequência Comum

Alguns Resultados

- Sejam $X = \langle x_1, \dots, x_n \rangle$ e $Y = \langle y_1, \dots, y_m \rangle$ duas sequências, e seja $Z = \langle z_1, \dots, z_k \rangle$ uma LCS de X e Y
- Se $x_n = y_m$, então $z_k = x_n = y_m$ e Z_{k-1} é LCS de X_{n-1} e Y_{m-1}
- Se $x_n \neq y_m$, então:
 - se $z_k \neq x_n$ implica que Z é LCS de X_{n-1} e Y
 - se $z_k \neq y_m$ implica que Z é LCS de X e Y_{m-1}

Abordagem

- Se $x_n = y_m$, encontrar LCS W de X_{n-1} e Y_{m-1}
 - Adicionar $x_n = y_m$ a W permite obter Z
- Se $x_n \neq y_m$, encontrar LCS' s para X_{n-1} e Y e para X e Y_{m-1}
 - Escolher a maior LCS

Análise e Síntese de Algoritmos - 2022/2023

21/60

Maior Sub-Sequência Comum

	_	а	b	е	f	С	g	h	d
-									
е									
a									
g									
b									
С									
f									
d									
h									
	a g b c f	a g b c f d	- e a g b c f d	- e a g b c f d	- e e e e e e e e e e e e e e e e e e e	- e e e e e e e e e e e e e e e e e e e	- e e e e e e e e e e e e e e e e e e e	- e	- e e e e e e e e e e e e e e e e e e e

Maior Sub-Sequência Comum

Exemplo

	-	a	b	е	f	С	g	h	d
-	0	0	0	0	0	0	0	0	0
е	0								
a	0								
g	0								
b	0								
С	0								
f	0								
d	0								
h	0								

Análise e Síntese de Algoritmos - 2022/2023

24/60

Exemplo

		_	а	b	е	f	С	g	h	d
	-	0	0	0	0	0	0	0	0	0
_	е	0	0							
_	а	0								
	g	0								
	b	0								
	C	0								
	f	0								
_	d	0								
	h	0								

Análise e Síntese de Algoritmos - 2022/2023

25/60

Maior Sub-Sequência Comum

Maior Sub-Sequência Comum

Exemplo

	-	а	b	е	f	С	g	h	d
-	0	0	0	0	0	0	0	0	0
е	0	0							
а	0	1							
g	0								
b	0								
С	0								
f	0								
d	0								
h	0								

	_	а	b	е	f	С	g	h	d
-	0	0	0	0	0	0	0	0	0
е	0	0							
а	0	1							
g	0	1							
b	0								
С	0								
f	0								
d	0								
h	0								

Maior Sub-Sequência Comum

Exemplo

	-	a	b	е	f	С	g	h	d
-	0	0	0	0	0	0	0	0	0
е	0	0							
а	0	1							
g	0	1							
b	0	1							
С	0								
f	0								
d	0								
h	0								

Análise e Síntese de Algoritmos - 2022/2023

28/60

Exemplo

	-	а	b	е	f	С	g	h	d
_	0	0	0	0	0	0	0	0	0
е	0	0							
а	0	1							
g	0	1							
b	0	1							
С	0	1							
f	0	1							
d	0	1							
h	0	1							

Análise e Síntese de Algoritmos - 2022/2023

20/60

Maior Sub-Sequência Comum

Maior Sub-Sequência Comum

Exemplo

	-	а	b	е	f	С	g	h	d
-	0	0	0	0	0	0	0	0	0
е	0	0	0						
а	0	1							
g	0	1							
b	0	1							
С	0	1							
f	0	1							
d	0	1							
h	0	1							

	-	а	b	е	f	С	g	h	d
-	0	0	0	0	0	0	0	0	0
е	0	0	0						
а	0	1	1						
g	0	1							
b	0	1							
С	0	1							
f	0	1							
d	0	1							
h	0	1							

Maior Sub-Sequência Comum

Exemplo

	-	a	b	е	f	С	g	h	d
-	0	0	0	0	0	0	0	0	0
е	0	0	0						
а	0	1	1						
g	0	1	1						
b	0	1	2						
С	0	1							
f	0	1							
d	0	1							
h	0	1							

Análise e Síntese de Algoritmos - 2022/2023

32/60

Exemplo

		_	а	b	е	f	С	g	h	d
_	-	0	0	0	0	0	0	0	0	0
	е	0	0	0						
	а	0	1	1						
_	g	0	1	1						
	b	0	1	2						
_	С	0	1	2						
	f	0	1	2						
	d	0	1	2						
_	h	0	1	2						

Análise e Síntese de Algoritmos - 2022/2023

33/60

Maior Sub-Sequência Comum

Maior Sub-Sequência Comum

Exemplo

	-	а	b	е	f	С	g	h	d
-	0	0	0	0	0	0	0	0	0
е	0	0	0	1					
а	0	1	1	1					
g	0	1	1	1					
b	0	1	2	2					
С	0	1	2	2					
f	0	1	2	2					
d	0	1	2	2					
h	0	1	2	2					

	_	а	b	е	f	С	g	h	d
-	0	0	0	0	0	0	0	0	0
е	0	0	0	1	1				
а	0	1	1	1	1				
g	0	1	1	1	1				
b	0	1	2	2	2				
С	0	1	2	2	2				
f	0	1	2	2					
d	0	1	2	2					
h	0	1	2	2					

Maior Sub-Sequência Comum

Exemplo

	-	а	b	е	f	С	g	h	d
-	0	0	0	0	0	0	0	0	0
е	0	0	0	1	1				
а	0	1	1	1	1				
g	0	1	1	1	1				
b	0	1	2	2	2				
С	0	1	2	2	2				
f	0	1	2	2	3				
d	0	1	2	2					
h	0	1	2	2					

Análise e Síntese de Algoritmos - 2022/2023

36/60

Exemplo

	-	а	b	е	f	С	g	h	d
-	0	0	0	0	0	0	0	0	0
е	0	0	0	1	1	1	1	1	1
a	0	1	1	1	1	1	1	1	1
g	0	1	1	1	1	1	2	2	2
b	0	1	2	2	2	2	2	2	2
С	0	1	2	2	2	3	3	3	3
f	0	1	2	2	3	3	3	3	3
d	0	1	2	2	3	3	3	3	4
h	0	1	2	2	3	3	3	4	4

Análise e Síntese de Algoritmos - 2022/2023

37/60

Maior Sub-Sequência Comum

Maior Sub-Sequência Comum

Exemplo

	-	а	b	е	f	С	g	h	d
-	0	0	0	0	0	0	0	0	0
е	0	0	0	1	1	1	1	1	1
а	0	1	1	1	1	1	1	1	1
g	0	1	1	1	1	1	2	2	2
b	0	1	2	2	2	2	2	2	2
С	0	1	2	2	2	3	3	3	3
f	0	1	2	2	3	3	3	3	3
d	0	1	2	2	3	3	3	3	4
h	0	1	2	2	3	3	3	4	4

LCS: abch (de tamanho 4)

Exemplo

	-	a	b	е	f	С	g	h	d
-	0	0	0	0	0	0	0	0	0
е	0	0	0	1	1	1	1	1	1
а	0	1	1	1	1	1	1	1	1
g	0	1	1	1	1	1	2	2	2
b	0	1	2	2	2	2	2	2	2
С	0	1	2	2	2	3	3	3	3
f	0	1	2	2	3	3	3	3	3
d	0	1	2	2	3	3	3	3	4
h	0	1	2	2	3	3	3	4	4

LCS: abcd (de tamanho 4)

Realizar trocos

Definição

- Dado um conjunto de moedas, denominadas $1, \ldots, n$, com valores d_1, \ldots, d_n , calcular o menor número de moedas cuja soma de valores é T
 - Número ilimitado de moedas de cada denominação
- Solução greedy pode não funcionar:
 - $-d_1 = 1$; $d_2 = 5$; $d_3 = 20$; $d_4 = 25$
 - Troco de 40?!
- Solução baseada em programação dinâmica

Análise e Síntese de Algoritmos - 2022/2023

40/6

Maior Sub-Sequência Palíndromo

Definição

• Dada uma sequência $X = \langle x_1, \dots, x_n \rangle$, calcular a maior sub-sequência $Z = \langle z_1, \dots, z_k \rangle$ de X tal que Z seja um palíndromo

Exemplo

- $X = \langle abcfdbca \rangle$
- $Z = \langle abdba \rangle$

Realizar Trocos

Formulação

- c[i,j]: menor número de moedas necessárias para pagar j unidades, $0 \le j \le T$, utilizando apenas moedas com denominação entre 1 e i, $1 \le i \le n$
- Objetivo é calcular c[n, T]

$$c[i,j] = \left\{ egin{array}{ll} 0 & ext{se } i > 0 \text{ e } j = 0 \ +\infty & ext{se } i = 0 \text{ ou } j < 0 \ ext{min}(c[i-1,j],c[i,j-d_i]+1) & ext{caso contrário} \end{array}
ight.$$

Tempo de execução: O(n T)

Análise e Síntese de Algoritmos - 2022/2023

41/60

Maior Sub-Sequência Palíndromo

Formulação

• I[i,j]: tamanho da maior sub-sequência palíndromo de X (entre os índices i e j, tal que $j \ge i$)

$$I[i,j] = \left\{ egin{array}{ll} 1 & ext{i} = ext{j} \\ I[i+1,j-1] + 2 & ext{se } x_i = x_j \\ \max(I[i,j-1],I[i+1,j]) & ext{caso contrário} \end{array}
ight.$$

Maior Sub-Sequência Palíndromo

Maior Sub-Sequência Palíndromo

i \j	1	2	3	4	5	6	7	8
1	1							
2		1						
3			1					
4				1				
5					1			
6						1		
7							1	
8								1

$$I[i,j] = 1, \quad i = j$$

Análise e Síntese de Algoritmos - 2022/2023

	i \j	1	2	3	4	5	6	7	8
	1	1	1						
	2		1						
	3			1					
	4				1				
•	5					1			
	6						1		
	7							1	
	8								1

$$max(I[i, j-1], I[i+1, j]), x_i \neq x_i$$

Análise e Síntese de Algoritmos - 2022/2023

Maior Sub-Sequência Palíndromo

Exemplo	i	1	2	3	4	5	6	7	8		
Exemplo	Xi	а	b	С	f	d	b	С	a		
		i	\j	1	2	3	4	5	6	7	8
			1	1	1						
			2		1	1					
			3			1	1				
			4				1	1			
			5					1	1		
			6						1	1	
			7							1	1
			8								1

$$max(I[i, j-1], I[i+1, j]), x_i \neq x_j$$

Maior Sub-Sequência Palíndromo

$$max(I[i, j-1], I[i+1, j]), x_i \neq x_i$$

Maior Sub-Sequência Palíndromo

Maior Sub-Sequência Palíndromo

i \j	1	2	3	4	5	6	7	8
1	1	1	1	1				
2		1	1	1	1			
3			1	1	1	1		
4				1	1	1	1	
5					1	1	1	1
6						1	1	1
7							1	1
8								1

$$max(I[i, j-1], I[i+1, j]), x_i \neq x_j$$

Análise e Síntese de Algoritmos - 2022/2023

i \j	1	2	3	4	5	6	7	8
1	1	1	1	1	1			
2		1	1	1	1	3		
3			1	1	1	1	3	
4				1	1	1	1	1
5					1	1	1	1
6						1	1	1
7							1	1
8								1

$$I[i+1, j-1]+2, \quad x_i = x_i$$

Análise e Síntese de Algoritmos - 2022/2023

Maior Sub-Sequência Palíndromo

							J	
i \j	1	2	3	4	5	6	7	8
1	1	1	1	1	1	3		
2		1	1	1	1	3	3	
3			1	1	1	1	3	3
4				1	1	1	1	1
5					1	1	1	1
6						1	1	1
7							1	1
8								1

$$max(I[i, j-1], I[i+1, j]), x_i \neq x_j$$

Maior Sub-Sequência Palíndromo

	i \j	1	2	3	4	5	6	7	8
	1	1	1	1	1	1	3	3	
	2		1	1	1	1	3	3	3
	3			1	1	1	1	3	3
	4				1	1	1	1	1
	5					1	1	1	1
	6						1	1	1
	7							1	1
Ī	8								1

$$max(I[i, j-1], I[i+1, j]), x_i \neq x_i$$

Maior Sub-Sequência Palíndromo

i \j	1	2	3	4	5	6	7	8
1	1	1	1	1	1	3	3	5
2		1	1	1	1	3	3	3
3			1	1	1	1	3	3
4				1	1	1	1	1
5					1	1	1	1
6						1	1	1
7							1	1
8								1

$$I[i+1, j-1] + 2, \quad x_i = x_j$$

Análise e Síntese de Algoritmos - 2022/2023

52/60

Multiplicação de Cadeias de Matrizes

Exemplo

- Calcular $A(13 \times 5) \times B(5 \times 89) \times C(89 \times 3) \times D(3 \times 34)$
- $(((A \times B) \times C) \times D)$: - $13 \times 5 \times 89 + 13 \times 89 \times 3 + 13 \times 3 \times 34 = 10.582$ produtos
- $((A \times B) \times (C \times D))$: - $13 \times 5 \times 89 + 89 \times 3 \times 34 + 13 \times 89 \times 34 = 54.201$ produtos
- $((A \times (B \times C)) \times D)$: - $5 \times 89 \times 3 + 13 \times 5 \times 3 + 13 \times 3 \times 34 = 2.856$ produtos!
- $(A \times ((B \times C) \times D))$: - $5 \times 89 \times 3 + 5 \times 3 \times 34 + 13 \times 5 \times 34 = 4.055$ produtos
- $(A \times (B \times (C \times D)))$: - $89 \times 3 \times 34 + 5 \times 89 \times 34 + 13 \times 5 \times 34 = 26.418$ produtos

Multiplicação de Cadeias de Matrizes

Definição

- Dadas matrizes A_1, A_2, \dots, A_n , tal que A_i tem dimensões $(I_i \times c_i)$
- Objetivo: colocar parêntesis na cadeia de produtos de matrizes
 A₁ × A₂ × ... × A_n, tal que o número de multiplicações escalares
 é minimizado

Observações

- Tempo para multiplicar as *n* matrizes é dominado pelo tempo para realizar as multiplicações escalares necessárias
 - Para multiplicar duas matrizes $(r \times s)$ e $(s \times t)$, o número de multiplicações escalares é: $r \times s \times t$
- Número de produtos depende do modo como os produtos de matrizessão organizados
 - Colocação de parêntesis define organização da multiplicação de matrizes

Análise e Síntese de Algoritmos - 2022/2023

53/60

Multiplicação de Cadeias de Matrizes

• Número de colocações possíveis de parêntesis cresce exponencialmente com número de matrizes:

$$P(n) = \begin{cases} 1 & \text{se } n = 1\\ \sum_{k=1}^{n-1} P(k) \ P(n-k) & \text{se } n \ge 2 \end{cases}$$

$$P(n) = C(n-1)$$

$$C(n) = \frac{C_n^{2n}}{n+1} = \Omega(4^n/n^{3/2})$$

Multiplicação de Cadeias de Matrizes

TÉCNICO LISBOA

Características da Solução Óptima

Seja $A_{1...n}$ solução com colocação óptima de parêntesis

- Admitir solução óptima com parêntesis em k, $A_{1...k}A_{k+1...n}$
- Facto:
 - Colocação de parêntesis para $A_{1...k}$ é também óptima
- Porquê?
 - Caso contrário seria possível encontrar uma melhor colocação de parêntesis para $A_{1...n}$ e portanto para $A_{1...n}$
- Conclusão:
 - Solução óptima para o problema da colocação de parêntesis é composta por soluções óptimas para os seus sub-problemas

Análise e Síntese de Algoritmos - 2022/2023

56/6

Multiplicação de Cadeias de Matrizes

Solução Recursiva

$$m[i,j] = \begin{cases} 0 & \text{se } i = j \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & \text{se } i < j \end{cases}$$

$$s[i,j] = k \text{ sse } m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$$

Multiplicação de Cadeias de Matrizes

Solução Recursiva

- m[i,j]: menor número de multiplicações escalares necessário para calcular multiplicação cadeias matrizes A_{i...j}
- Solução óptima para $A_{1...n}$ é m[1, n]
- i = j: m[i, j] = 0
- i < j:
 - Admitir que solução óptima coloca parêntesis em k:
 - $m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$
 - Mas qual é o valor de k?
 - ightharpoonup certamente k tem valor entre i e j-1
 - ▶ considerar todos os valores de *k* possíveis
- s[i,j]: define colocação óptima de parêntesis entre i e j

Análise e Síntese de Algoritmos - 2022/2023

57/60

Multiplicação de Cadeias de Matrizes

Cálculo dos valores de m[i,j]

- Número de sub-problemas distintos:
 - -1 para cada $1 \le i \le j \le n$
 - número de problemas: $\Theta(n^2)$
- Problema:
 - solução recursiva requer tempo exponencial
 - resolução repetida dos mesmos subproblemas
- Solução:
 - solução construtiva (bottom-up)
 - tempo de execução: $O(n^3)$

Memorização (Memoization)

- Permite obter tempo de execução das soluções dos sub-problemas, mas utilizando abordagem recursiva (top-down)
 - É necessário memorizar resultados de sub-problemas já resolvidos
- Exemplo: caminhos mais curtos num DAG, com DFS
- Exemplo: cálculo das combinações
 - Não calcular todo o triângulo de Pascal
 - Calcular apenas as entradas necessárias
 - Calcular cada entrada apenas 1 vez

Análise e Síntese de Algoritmos - 2022/2023

60/60

