Cognome	Nome	Matricola

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

PROF. F. BOTTACIN, B. CHIARELLOTTO

4º Appello — 8 febbraio 2011

Esercizio 1. Nello spazio vettoriale \mathbb{R}^4 sia U il sottospazio generato dai vettori $u_1=(2,0,-1,1),$ $u_2=(1,2,0,2)$ e $u_3=(0,1,-2,-1).$

- (a) Si determini la dimensione di U.
- (b) Si determini una base di un sottospazio W tale che $U \oplus W = \mathbb{R}^4$ e si dica se un tale sottospazio W è unico.
- (c) Dato il vettore $u_t = (t, -1, 0, -1)$, si stabilisca per quale valore di t si ha $u_t \in U$.
- (d) Dato il vettore v = (6, -1, 0, 3), lo si scriva come somma v = u' + w', con $u' \in U$ e $w' \in W$.

Esercizio 2. Sia $f: \mathbb{R}^4 \to \mathbb{R}^3$ la funzione lineare la cui matrice, rispetto alle basi canoniche, è

$$A = \begin{pmatrix} 1 & -2 & 1 & 0 \\ 1 & 0 & 2 & -1 \\ 1 & -6 & -1 & 2 \end{pmatrix}$$

- (a) Si determinino delle basi del nucleo e dell'immagine di f.
- (b) Dato il vettore $u_t = (7, 2, t, 1)$ si determini t in modo che $u_t \in \text{Ker}(f)$.
- (c) Dato il vettore $w_t = (2, t, 0)$, si dica per quale valore di t si ha $f^{-1}(w_t) \neq \emptyset$.
- (d) Sia U il sottospazio di \mathbb{R}^4 generato dai vettori $u_1 = (3, -1, 2, 2)$ e $u_2 = (1, 1, 1, 3)$. Si determini una base del sottospazio f(U).
- (e) Si stabilisca se esiste una funzione lineare $g: \mathbb{R}^3 \to \mathbb{R}^4$ tale che la funzione composta $f \circ g: \mathbb{R}^3 \to \mathbb{R}^3$ sia l'identità. Se una tale g esiste se ne determini la matrice.

Esercizio 3. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, si consideri il sottospazio U di equazioni

$$U: \begin{cases} x_1 - 2x_2 + 3x_4 = 0\\ 2x_2 - x_3 + x_4 = 0. \end{cases}$$

- (a) Si determini una base di U.
- (b) Si determinino le equazioni cartesiane e una base del sottospazio U^{\perp} , ortogonale di U.
- (c) Dato il vettore v = (3, -2, 5, 7) si determinino due vettori $u \in U$ e $w \in U^{\perp}$ tali che v = u + w.
- (d) Dati i vettori $v_1 = (2, -1, 3, 1)$ e $v_2 = (0, 2, 1, -1)$ li si completi ad una base ortogonale di \mathbb{R}^4 .

Esercizio 4. Nello spazio euclideo tridimensionale si considerino i punti A = (2, 3, 1), B = (1, -2, -1) e il vettore n = (2, 1, 1).

- (a) Si determini l'equazione cartesiana del piano π passante per il punto medio M del segmento AB e ortogonale al vettore n.
- (b) Si determini l'angolo α formato dalla retta r, passante per i punti A e B, e il piano π .
- (c) Dato il punto C = (2, -3, 4) se ne determinino le proiezioni ortogonali C', sulla retta r, e C'', sul piano π .
- (d) Si determinino le equazioni della retta s passante per il punto M, contenuta nel piano π e ortogonale alla retta r.

Esercizio 5. Sia V uno spazio vettoriale con base $\{v_1, v_2, v_3, v_4\}$ e sia f l'endomorfismo di V definito da $f(v_1) = 3v_1 + 2v_3$, $f(v_2) = 2v_2 + 3v_4$, $f(v_3) = 2v_1 + 3v_3$, $f(v_4) = 2v_2 + 3v_4$. Si dica se f è invertibile e si determini una base di V rispetto alla quale la matrice di f sia diagonale.

Cognome	Nome	Matricola

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

PROF. F. BOTTACIN, B. CHIARELLOTTO

4º Appello — 8 febbraio 2011

Esercizio 1. Nello spazio vettoriale euclideo \mathbb{R}^4 , dotato del prodotto scalare usuale, si consideri il sottospazio U di equazioni

$$U: \begin{cases} 2x_1 + x_2 - 3x_4 = 0\\ -3x_1 - x_3 + 2x_4 = 0. \end{cases}$$

- (a) Si determini una base di U.
- (b) Si determinino le equazioni cartesiane e una base del sottospazio U^{\perp} , ortogonale di U.
- (c) Dato il vettore v = (6, 1, -4, -5) si determinino due vettori $u \in U$ e $w \in U^{\perp}$ tali che v = u + w.
- (d) Dati i vettori $v_1=(3,0,-1,2)$ e $v_2=(1,2,1,-1)$ li si completi ad una base ortogonale di \mathbb{R}^4 .

Esercizio 2. Sia V uno spazio vettoriale con base $\{v_1, v_2, v_3, v_4\}$ e sia f l'endomorfismo di V definito da $f(v_1) = v_1 + 4v_3$, $f(v_2) = 4v_2 + v_4$, $f(v_3) = v_1 + 4v_3$, $f(v_4) = v_2 + 4v_4$. Si dica se f è invertibile e si determini una base di V rispetto alla quale la matrice di f sia diagonale.

Esercizio 3. Sia $f: \mathbb{R}^4 \to \mathbb{R}^3$ la funzione lineare la cui matrice, rispetto alle basi canoniche, è

$$A = \begin{pmatrix} 2 & 1 & -2 & 0 \\ -1 & 2 & 0 & 2 \\ 1 & 8 & -4 & 6 \end{pmatrix}$$

- (a) Si determinino delle basi del nucleo e dell'immagine di f.
- (b) Dato il vettore $u_t = (2, t, 1, 3)$ si determini t in modo che $u_t \in \text{Ker}(f)$.
- (c) Dato il vettore $w_t = (-1, 2, t)$, si dica per quale valore di t si ha $f^{-1}(w_t) \neq \emptyset$.
- (d) Sia U il sottospazio di \mathbb{R}^4 generato dai vettori $u_1 = (1, -2, 3, 4)$ e $u_2 = (4, -6, 1, 8)$. Si determini una base del sottospazio f(U).
- (e) Si stabilisca se esiste una funzione lineare $g: \mathbb{R}^3 \to \mathbb{R}^4$ tale che la funzione composta $f \circ g: \mathbb{R}^3 \to \mathbb{R}^3$ sia l'identità. Se una tale g esiste se ne determini la matrice.

Esercizio 4. Nello spazio vettoriale \mathbb{R}^4 sia U il sottospazio generato dai vettori $u_1=(1,3,0,-1),$ $u_2=(0,2,1,2)$ e $u_3=(2,-1,1,0).$

- (a) Si determini la dimensione di U.
- (b) Si determini una base di un sottospazio W tale che $U \oplus W = \mathbb{R}^4$ e si dica se un tale sottospazio W è unico
- (c) Dato il vettore $u_t = (1, 0, 3, t)$, si stabilisca per quale valore di t si ha $u_t \in U$.
- (d) Dato il vettore v = (5, 7, -1, -5), lo si scriva come somma v = u' + w', con $u' \in U$ e $w' \in W$.

Esercizio 5. Nello spazio euclideo tridimensionale si considerino i punti A = (1, 4, -2), B = (2, -1, 1) e il vettore n = (2, -2, 1).

- (a) Si determini l'equazione cartesiana del piano π passante per il punto medio M del segmento AB e ortogonale al vettore n.
- (b) Si determini l'angolo α formato dalla retta r, passante per i punti $A \in B$, e il piano π .
- (c) Dato il punto C=(2,-3,1) se ne determinino le proiezioni ortogonali C', sulla retta r, e C'', sul piano π .
- (d) Si determinino le equazioni della retta s passante per il punto M, contenuta nel piano π e ortogonale alla retta r.