T.Y. B.SC. APPLIED STATISTICS AND DATA ANALYTICS (HONS.) ACADEMIC YEAR 2023-24

REGIONAL AND STATE-WISE ELECTRICITY CONSUMPTION FORECASTING IN INDIA

ANALYSIS OF TIME SERIES

Submitted By:
Ayush Anand D003
Senorita Chettiar D004
Ayush Pujari D011
D Vaishnavi D021

Submitted To:
Mr. Priyesh D. Tiwari
Assistant Professor
Department of Statistics
Mithibai College (Mumbai)

PROJECT OVERVIEW

This project aims to forecast electricity consumption across different regions in India using historical data from January 2013 to December 2023. The study utilizes data sourced from the Power System Operation Corporation Limited (POSOCO) to analyze consumption patterns and predict future demand. The analysis involves aggregating data into four major regions — North, South, East, and West — and employing two prominent time series forecasting methods: Holt-Winters Exponential Smoothing and Seasonal ARIMA (SARIMA). In addition to regional analysis, we also perform a focused analysis on the top three states with the highest consumption. The best-performing models are used to forecast electricity consumption for 2024, offering insights for energy management and policy planning.

OBJECTIVES

To forecast regional electricity consumption across North, South, East, and West regions of India for the year 2024 using historical data.

To conduct individual time series analysis for the top three states with the highest consumption to understand localized consumption patterns.

Dataset Overview

Source

The dataset for this project was sourced from the Power System Operation Corporation Limited (POSOCO) website, a reliable source for electricity load and consumption data in India.

Key Features

- Time Period: January 2013 December 2023 (11 years of data)
- Frequency: Monthly
- Geographical Scope: Covers all states and union territories in India
- Variables:
 - Date: The month and year of the consumption data
 - Electricity Consumption: Measured in million units (MU) for each state and union territory

Regional Aggregation

The state-wise data has been combined to create four aggregated datasets for the North, South, East, and West regions of India. This regional aggregation helps in capturing broader consumption patterns and trends across different parts of the country.

State-Wise Electricity Consumption Trends in Northern and Southern Regions

State-Wise Electricity Consumption Trends in Western and Eastern Regions

Overview of Forecasting Approach

01.

Data Analysis Insights:

Observed distinct trends and seasonal patterns in electricity consumption data across states.

02.

Modeling Techniques:

Applied SARIMA and Holt-Winters models to capture these patterns effectively.

03.

Validation Process:

Conducted a traintest split to evaluate model performance.

Train data: Jan 2013-Dec 2022

Test data: Jan 2023-Dec 2023 04.

Model Comparison:

Compared the accuracy of SARIMA and Holt-Winters models to select the best fit for each region.

05.

Outcome:

Ensured robust and tailored forecasts for each region based on the selected models.

Electricity Consumption Analysis for North Region

Stationarity Check Augmented Dickey-Fuller (ADF) Test Results

```
result = adfuller(train_data)
print('ADF Statistic: %f' % result[0])
print('p-value: %f' % result[1])
```

ADF Statistic: 0.536684

p-value: 0.985946

- Positive ADF Statistic
- A p-value of 0.985946 (which is greater than L.o.S 0.05)

Thus, we fail to reject the Null Hypothesis of the data being non-stationary and can safely conclude that our data is non-stationary.

Also, from the decomposition performed, we can also conclude that seasonality is present in the data at

Preprocessing for Stationarity: Seasonal and Normal Differencing

After Seasonal Differencing Augmented Dickey-Fuller (ADF) Test Results

```
result = adfuller(sd_df_train)
print('ADF Statistic: %f' % result[0])
print('p-value: %f' % result[1])

ADF Statistic: -2.302620
```

After Normal Differencing

Augmented Dickey-Fuller (ADF) Test Results

```
result = adfuller(double_df_train)
print('ADF Statistic: %f' % result[0])
print('p-value: %f' % result[1])
```

ADF Statistic: -4.526441

p-value: 0.000176

p-value: 0.171124

The time series data is stationary after applying seasonal and normal differencing, as indicated by the p-value being less than 0.05 from the ADF test.

Holt-Winters Linear Exponential Smoothing Model Results

Holt-Winters Model Summary

			J	
Dep. Variable:	1	North 1	No. Observations:	120
Model:	ExponentialSmoo	thing	SSE	460066439.190
Optimized:		True	AIC	1851.127
Trend:	Ado	ditive	BIC	1895.727
Seasonal:	Add	ditive	AICC	1857.899
Seasonal Periods:		12	Date:	Wed, 04 Sep 2024
Box-Cox:	F	alse	Time:	04:05:48
Box-Cox Coeff.:	1	Vone		
	coeff	code		
smoothing_lev	el 1e-05	alpha		
smoothing_tren	nd 2e-05	beta		
smoothing_season	al 9e-06 g	amma		

Holt-Winters Model Fit and Forecasts

Holt-Winters Model Equations

Holt-Winters Model

The Holt-Winters model equations based on the provided model summary are as follows:

Level Equation

$$L_t = 0.000001(Y_t - S_t) + (1 - 0.000001)(L_{t-1} + T_{t-1})$$

Trend Equation

$$T_t = 0.00002(L_t - L_{t-1}) + (1 - 0.00002)T_{t-1}$$

Seasonal Component

$$S_t = 0.000009(Y_t - L_t) + (1 - 0.000009)S_{t-12}$$

Forecast Equation

$$\hat{Y}_{t+h} = L_t + h \cdot T_t + S_{t+12-h}$$

Holt-Winters Model Accuracy Metrics

SARIMA (Seasonal Autoregressive Integrated Moving Average) Model

SARIMA Model Summary

120	bservations:	th No. Of	No			ariable:	Dep. V
-732.107	g Likelihood	2) Lo g	, [1, 2], 1	, 0)x(2, 1	RIMAX(2, 1	Model: SAF	
1478.215	AIC	24	Sep 20:	Wed, 04		Date:	
1494.976	BIC	41	09:29:			Time:	
1484.940	HQIC	13)1-01-20	0		Sample:	
		22	12-01-20	:-1			
		og	O			е Туре:	Covarianc
	0.975]	[0.025	P> z	z	std err	coef	
	0.109	-0.252	0.439	-0.775	0.092	-0.0715	ar.L1
	-0.065	-0.465	0.009	-2.600	0.102	-0.2650	ar.L2
	0.618	-0.144	0.222	1.221	0.194	0.2371	ar.S.L12
	-0.217	-0.792	0.001	-3.442	0.147	-0.5048	ar.S.L24
	-0.630	-1.490	0.000	-4.831	0.219	-1.0601	ma.S.L12
	0.983	0.261	0.001	3.375	0.184	0.6221	ma.S.L24
	5.37e+06	2.73e+06	0.000	6.005	6.74e+05	4.046e+06	sigma2
		1.76	ra (JB):	rque-Be	0.23 Ja	Box (L1) (Q):	Ljung-
		0.42	ob(JB):	Pr	0.63	Prob(Q):	
		-0.36	Skew:		2.86	dasticity (H):	Heteroske
		3.10	urtosis:	K	0.01	(two-sided):	Prob(H)

SARIMA Model Accuracy Metrics

SARIMA Model Equation

Model Representation

The SARIMA model can be represented as:

SARIMA[2, 1, 0][2, 1, 1, 12]

Forecast Equation

The forecast for \hat{Y}_{t+1} based on the SARIMA model is given by:

$$\hat{Y}_{t+1} = \mu - 0.2650Y_{t-2} - 0.5048Y_{t-24} - 1.0601\epsilon_{t-12} + 0.6221\epsilon_{t-24}$$

where:

- Y_{t-2} and Y_{t-24} represent the actual values at time t-2 and t-24, respectively.
- ϵ_{t-12} and ϵ_{t-24} are the error terms at time t-12 and t-24, respectively.
- μ is the constant term (if applicable).

SARIMA Model Fit and Forecasts

Residual Analysis for North

The residual analysis confirms that the SARIMA model satisfies all key assumptions:

- Normality: Residuals are normally distributed.
- Stationarity: No trends or patterns in the residuals.
- No Autocorrelation: Residuals show no significant autocorrelation.
- Homoscedasticity: Residuals have constant variance.

This indicates a good model fit for accurate forecasting.

Electricity Consumption Analysis for East Region

Stationarity Check Augmented Dickey-Fuller (ADF) Test Results

```
result = adfuller(train_data)
print('ADF Statistic: %f' % result[0])
print('p-value: %f' % result[1])
```

ADF Statistic: -0.502700

p-value: 0.891489

- Negative ADF Statistic
- A p-value of 0.891489 (which is greater than L.o.S
 0.05)

Thus, we fail to reject the Null Hypothesis of the data being non-stationary and can safely conclude that our data is non-stationary.

Also, from the decomposition performed, we can also conclude that seasonality is present in the data at

Preprocessing for Stationarity: Seasonal and Normal Differencing

After Seasonal Differencing Augmented Dickey-Fuller (ADF) Test Results

```
result = adfuller(sd_df_train)
print('ADF Statistic: %f' % result[0])
print('p-value: %f' % result[1])
```

ADF Statistic: -2.278178

p-value: 0.179103

After Normal Differencing

Augmented Dickey-Fuller (ADF) Test Results

```
result = adfuller(double_df_train)
print('ADF Statistic: %f' % result[0])
print('p-value: %f' % result[1])
```

ADF Statistic: -6.714803

p-value: 0.000000

The time series data is stationary after applying seasonal and normal differencing, as indicated by the p-value being less than 0.05 from the ADF test.

Holt-Winters Linear Exponential Smoothing Model Results

Holt-Winters Model Summary

Dep. Variable:		East	No. Observations:	120
Model:	ExponentialSm	oothing	SSE	77909903.746
Optimized:		True	AIC	1638.029
Trend:	A	Additive	BIC	1682.628
Seasonal:	A	Additive	AICC	1644.801
Seasonal Periods:		12	Date:	Wed, 04 Sep 2024
Box-Cox:		False	Time:	04:09:42
Box-Cox Coeff.:		None		
	coeff	code		
smoothing_leve	7e-05	alpha		
smoothing_trend	0.9879675	beta		
smoothing_seasona	I 0.0006345	gamma		

Holt-Winters Model Fit and Forecasts

Holt-Winters Model Equations

Holt-Winters Model

The Holt-Winters model equations based on the provided model summary are as follows:

Level Equation

$$L_t = 0.00007(Y_t - S_t) + (1 - 0.00001)(L_{t-1} + T_{t-1})$$

Trend Equation

$$T_t = 0.9879675(L_t - L_{t-1}) + (1 - 0.9879675)T_{t-1}$$

Seasonal Component

$$S_t = 0.0006345(Y_t - L_t) + (1 - 0.0006345)S_{t-12}$$

Forecast Equation

$$\hat{Y}_{t+h} = L_t + h \cdot T_t + S_{t+12-h}$$

Holt-Winters Model Accuracy Metrics

SARIMA (Seasonal Autoregressive Integrated Moving Average) Model

SARIMA Model Summary

120	ervations:	No. Obs	East		riable:	Dep. \
-839.803	Likelihood	Log)x(0, 1, 0, 12)	X(2, 1, 2	Model: SARIMA	
1689.605	AIC		04 Sep 2024	Wed,	Date:	
1702.827	BIC		09:35:44		Time:	
1694.962	HQIC		01-01-2013		ample:	
			- 12-01-2022			
			opg		Type:	Covarian
0.975]	[0.025	P> z	z	std err	coef	
-0.077	-0.350	0.002	-3.064	0.070	-0.2132	ar.L1
0.762	0.485	0.000	8.832	0.071	0.6234	ar.L2
5.785	-5.786	1.000	-0.000	2.952	-0.0004	ma.L1
-0.759	-1.240	0.000	-8.160	0.122	-0.9996	ma.L2
5.6e+05	5.6e+05	0.000	1.07e+11	25e-06	5.596e+05 5.	sigma2
	4.45	ra (JB):	Jarque-Be	0.16	-Box (L1) (Q):	Ljun
	0.13	ob(JB):	Pr	0.69	Prob(Q):	
	0.42	Skew:		2.55	edasticity (H):	Heteros
	4.39	urtosis:	Kı	0.01) (two-sided):	Prob(

SARIMA Model Accuracy Metrics

SARIMA Model Equation

Model Representation

The SARIMA model can be represented as:

 $SARIMA(2,1,2)(0,1,0)_{12}$

Forecast Equation

The forecast for \hat{Y}_{t+1} based on the SARIMA model is given by:

$$\hat{Y}_{t+1} = \mu - 0.2132Y_{t-1} + 0.6234Y_{t-2} + 0.9996\epsilon_{t-2}$$

where:

- Y_{t-1} and Y_{t-2} represent the actual values at time t-1 and t-2, respectively.
- ϵ_{t-2} is the error term at time t-2.
- μ is the constant term (if applicable).

SARIMA Model Fit and Forecasts

Residual Analysis

The residual analysis confirms that the SARIMA model satisfies all key assumptions:

- **Normality**: Residuals are normally distributed.
- Stationarity: No trends or patterns in the residuals.
- No Autocorrelation: Residuals show no significant autocorrelation.
- Homoscedasticity: Residuals have constant variance.

This indicates a good model fit for accurate forecasting.

Electricity Consumption Analysis for South Region

Stationarity Check Augmented Dickey-Fuller (ADF) Test Results

```
result = adfuller(train_data)
print('ADF Statistic: %f' % result[0])
print('p-value: %f' % result[1])

ADF Statistic: -1.052568
p-value: 0.733612
```

- Negative ADF Statistic
- A p-value of 0.733612 (which is greater than L.o.S 0.05)

Thus, we fail to reject the null hypothesis that the data is non-stationary and can safely conclude that our data is non-stationary.

Also, from the decomposition performed, we can also conclude that seasonality is present in the data

Preprocessing for Stationarity: Seasonal and Normal Differencing

After Seasonal Differencing Augmented Dickey-Fuller (ADF) Test Results

```
sd_df_train = train_data - train_data.shift(12)
sd_df_train = sd_df_train.dropna()
result = adfuller(sd_df_train)
print('ADF Statistic: %f' % result[0])
print('p-value: %f' % result[1])

ADF Statistic: -3.089693
p-value: 0.027325
```

After Normal Differencing

Augmented Dickey-Fuller (ADF) Test Results

```
double_df_train= sd_df_train - sd_df_train.shift(1)
double_df_train= double_df_train.dropna()
result = adfuller(double_df_train)
print('ADF Statistic: %f' % result[0])
print('p-value: %f' % result[1])

ADF Statistic: -3.064903
p-value: 0.029262
```

In both instances, differencing indicates stationarity with a p-value of less than 0.05, confirming that the data is stationary.

Holt-Winters Linear Exponential Smoothing Model Results

Holt-Winters Model Summary

Dep. Variable:		South	No. Observa	tions:	120
Model:	ExponentialSmo	oothing		SSE	249201663.128
Optimized:		True		AIC	1777.554
Trend:	Д	Additive		BIC	1822.154
Seasonal:	Д	Additive		AICC	1784.326
Seasonal Periods:		12		Date:	Wed, 04 Sep 2024
Box-Cox:		False		Time:	01:13:14
Box-Cox Coeff.:		None			
	coeff	code	optimized		
smoothing_lev	el 0.6060714	alpha	True		
smoothing_tren	nd 0.0001	beta	True		
smoothing_season	al 0.0001	gamma	True		

Holt-Winters Model Fit and Forecasts

Holt-Winters Model Equations

Holt-Winters Model

The Holt-Winters model equations based on the provided model summary are as follows:

Level Equation

$$L_t = 0.6060714(Y_t - S_t) + (1 - 0.6060714)(L_{t-1} + T_{t-1})$$

Trend Equation

$$T_t = 0.0001(L_t - L_{t-1}) + (1 - 0.0001)T_{t-1}$$

Seasonal Component

$$S_t = 0.0001(Y_t - L_t) + (1 - 0.0001)S_{t-12}$$

Forecast Equation

$$\hat{Y}_{t+h} = L_t + h \cdot T_t + S_{t+12-h}$$

Holt-Winters Model Accuracy Metrics

SARIMA (Seasonal Autoregressive Integrated Moving Average) Model

SARIMA Model Summary

			9	(ARIMA	(Results			
Dep.	Variable:				South	No. Obse	ervations:	120
	Model:	SARIN	MAX(1,	1, 0)x(0,	1, 0, 12)	Log L	ikelihood	-955.202
	Date:		W	ed, 04 S	ep 2024		AIC	1914.403
	Time:			(01:33:30		BIC	1919.730
	Sample:			01-0	01-2013		HQIC	1916.562
				- 12-	01-2022			
Covaria	nce Type:				opg			
	coef	f s	std err	z	P> z	[0.025	0.975]	
ar.L1	-0.3501		0.083	-4.239	0.000	-0.512	-0.188	
sigma2	3.933e+06	4.3	1e+05	9.123	0.000	3.09e+06	4.78e+06	
Ljun	g-Box (L1)	(Q):	0.22	Jarque-	Bera (JB): 7.50		
	Prob	(Q):	0.64		Prob(JB): 0.02		
Heteros	kedasticity	(H):	2.51		Skev	v: -0.14		
Prob(H) (two-sid	ed):	0.01		Kurtosi	s: 4.27		

SARIMA Model Accuracy Metrics

SARIMA Model Equation

Model Representation

The SARIMA model can be represented as:

 $SARIMA(1,1,0)(0,1,0)_{12}$

Forecast Equation

The forecast for \hat{Y}_{t+1} based on the SARIMA model is given by:

$$\hat{Y}_{t+1} = \mu - 0.3501Y_t - \epsilon_t$$

where:

- Y_t represents the actual value at time t.
- ϵ_t is the error term at time t.
- μ is the constant term (if applicable).

SARIMA Model Fit and Forecasts

Residual Analysis

-10000

The residual analysis confirms that the SARIMA model satisfies all key assumptions:

- **Normality**: Residuals are normally distributed.
- Stationarity: No trends or patterns in the residuals.
- No Autocorrelation: Residuals show no significant autocorrelation.
- Homoscedasticity: Residuals have constant variance.

This indicates a good model fit for accurate forecasting.

Electricity Consumption Analysis for West Region

Stationarity Check Augmented Dickey-Fuller (ADF) Test Results

```
result = adfuller(train_data)
print('ADF Statistic: %f' % result[0])
print('p-value: %f' % result[1])

ADF Statistic: -0.150907
p-value: 0.944126
```

- Negative ADF Statistic
- A p-value of 0.944126 (which is greater than L.o.S 0.05)

Thus, we fail to reject the Null Hypothesis of the data being non-stationary and can safely conclude that our data is non-stationary.

Also, from the decomposition performed, we can also conclude that seasonality is present in the data

Preprocessing for Stationarity: Seasonal and Normal Differencing

After Seasonal Differencing Augmented Dickey-Fuller (ADF) Test Results

```
sd_df_train = train_data - train_data.shift(12)
sd_df_train = sd_df_train.dropna()
result = adfuller(sd_df_train)
print('ADF Statistic: %f' % result[0])
print('p-value: %f' % result[1])

ADF Statistic: -2.391947
p-value: 0.144022
```

After Normal Differencing

Augmented Dickey-Fuller (ADF) Test Results

```
double_df_train= sd_df_train - sd_df_train.shift(1)
double_df_train= double_df_train.dropna()
result = adfuller(double_df_train)
print('ADF Statistic: %f' % result[0])
print('p-value: %f' % result[1])

ADF Statistic: -4.258358
p-value: 0.000524
```

After applying normal differencing, it shows stationarity with a p-value below 0.05, affirming the stationary nature of the data.

Holt-Winters Linear Exponential Smoothing Model Results

Holt-Winters Model Summary

	ExponentialS	Smoothin	g Model Resu	lts	
Dep. Variable:		West	No. Observa	tions:	120
Model:	ExponentialSmo	oothing		SSE	430489699.655
Optimized:		True		AIC	1843.153
Trend:	Д	Additive		BIC	1887.753
Seasonal:	Д	Additive		AICC	1849.925
Seasonal Periods:		12		Date:	Wed, 04 Sep 2024
Box-Cox:		False		Time:	06:37:16
Box-Cox Coeff.:		None			
	coeff	code	optimized		
smoothing_lev	el 0.6379587	alpha	True		
smoothing_tren	od 0.0035501	beta	True		
smoothing_season	al 0.0020589	gamma	True		

Holt-Winters Model Fit and Forecasts

Holt-Winters Model Equations

Holt-Winters Model

The Holt-Winters model equations based on the provided model summary are as follows:

Level Equation

$$L_t = 0.6379587(Y_t - S_t) + (1 - 0.6379587)(L_{t-1} + T_{t-1})$$

Trend Equation

$$T_t = 0.0035501(L_t - L_{t-1}) + (1 - 0.0035501)T_{t-1}$$

Seasonal Component

$$S_t = 0.0020589(Y_t - L_t) + (1 - 0.0020589)S_{t-12}$$

Forecast Equation

$$\hat{Y}_{t+h} = L_t + h \cdot T_t + S_{t+12-h}$$

Holt-Winters Model Accuracy Metrics

SARIMA (Seasonal Autoregressive Integrated Moving Average) Model

SARIMA Model Summary

	· ·						
120	ervations:	No. Obs	West			ariable:	Dep. V
-749,900	Likelihood	Log I	[1, 2], 12)	0)x(1, 1,	IMAX(0, 1,	Model: SAR	
1507.801	AIC		Sep 2024	Wed, 04 5		Date:	
1517.427	BIC	k	06:51:54			Time:	
1511,666	HQIC		-01-2013	01		ample:	S
		É	-01-2022	- 12			
		ř.	opg			e Type:	Covarianc
	0.975]	[0.025	P> z	z	std err	coef	
	0.613	-0.281	0.467	0.727	0.228	0.1659	ar.S.L12
	-0.850	-1.810	0.000	-5.428	0.245	-1.3301	ma.S.L12
	0.840	0.116	0.010	2.586	0.185	0.4779	ma.S.L24
	6.12e+06	3.28e+06	0.000	6.475	7.26e+05	4.699e+06	sigma2
		0.66	ra (JB):	rque-Be	2.27 Ja	Box (L1) (Q):	Ljung-
		0.72	ob(JB):	Pr	0.13	Prob(Q):	
		-0.01	Skew:		3.76	dasticity (H):	Heteroske
		3.44	urtosis:	K	0.00	(two-sided):	Prob(H)

SARIMA Model Accuracy Metrics

SARIMA Model Equation

Model Representation

The SARIMA model can be represented as:

SARIMA $(0,1,0)(1,1,1)_{12}$

Forecast Equation

The forecast for \hat{Y}_{t+1} based on the SARIMA model is given by:

$$\hat{Y}_{t+1} = \mu - 1.3301Y_{t-12} + 0.4799Y_{t-24}$$

where:

- Y_{t-12} and Y_{t-24} represent the actual values at time t-12 and t-24, respectively.
- μ is the constant term (if applicable).

SARIMA Model Fit and Forecasts

Residual Analysis

The residual analysis confirms that the SARIMA model satisfies all key assumptions:

- **Normality**: Residuals are normally distributed.
- **Stationarity**: No trends or patterns in the residuals.
- No Autocorrelation: Residuals show no significant autocorrelation.
- Homoscedasticity: Residuals have constant variance.

This indicates a good model fit for accurate forecasting.

Forecast for Top 3 States

To gain deeper insights into regional electricity consumption patterns, we conducted individual time series forecasts for the top three states with the highest consumption. This analysis allows us to capture state-level trends and seasonality, providing more targeted and granular forecasts that complement the regional predictions.

01. Maharashtra (1735108.8 MU) 02. Gujarat (1260955.3 MU) 03. Uttar Pradesh (1250038.8 MU)

01. Maharashtra

SARIMA (Seasonal Autoregressive Integrated Moving Average) Model

SARIMA Model Equation

Model Representation

The SARIMA model can be represented as:

SARIMA(0, 1, 0)(1, 1, 1)₁₂

Forecast Equation

The forecast for \hat{Y}_{t+1} based on the SARIMA model is given by:

$$\hat{Y}_{t+1} = \mu - 0.0338Y_{t-12} - 3.4137\epsilon_{t-12} + 1.8039\epsilon_{t-24}$$

where:

- Y_{t-12} represents the actual value at time t-12.
- ϵ_{t-12} and ϵ_{t-24} are the error terms at time t-12 and t-24, respectively.
- μ is the constant term (if applicable).

02. Gujarat

SARIMA (Seasonal Autoregressive Integrated Moving Average) Model

SARIMA Model Equation

Model Representation

The SARIMA model can be represented as:

SARIMA(2, 1, 0)(0, 1, 1)₁₂

Forecast Equation

The forecast for \hat{Y}_{t+1} based on the SARIMA model is given by:

$$\hat{Y}_{t+1} = \mu - 0.3499Y_t - 0.1603Y_{t-1} - 1.3342\epsilon_{t-12} + 0.3334\epsilon_{t-24}$$
 where:

- Y_t and Y_{t-1} represent the actual values at time t and t-1, respectively.
- ϵ_{t-12} and ϵ_{t-24} are the seasonal error terms at time t-12 and t-24, respectively.
- μ is the constant term (if applicable).

03. Uttar Pradesh

SARIMA (Seasonal Autoregressive Integrated Moving Average) Model

SARIMA Model Equation

Model Representation

The SARIMA model can be represented as:

 $SARIMA(0,1,0)(2,1,1)_{12}$

Forecast Equation

The forecast for \hat{Y}_{t+1} based on the SARIMA model is given by:

$$\hat{Y}_{t+1} = \mu - 0.0699Y_{t-12} - 0.2703Y_{t-24} - 0.6147\epsilon_{t-12} + 0.2712\epsilon_{t-24}$$

where:

- Y_{t-12} and Y_{t-24} represent the actual values at time t-12 and t-24, respectively.
- ϵ_{t-12} and ϵ_{t-24} are the error terms at time t-12 and t-24, respectively.
- μ is the constant term (if applicable).

2024 Forecast: Regional Electricity Consumption

Based on the analysis conducted so far, we utilized the SARIMA models developed for each region — North, South, East, and West — to forecast electricity consumption for 2024. These models, built on historical data from 2013 to 2023, effectively capture regional trends and seasonal patterns, providing robust predictions that can support strategic planning and decision-making for the future.

Graphical Forecast of Electricity Consumption: North Region (2024)

Predicted Consumption Values: North Region (2024)

	North
Date	
2024-01-01	35186.787160
2024-02-01	31969.782938
2024-03-01	34352.471343
2024-04-01	35313.589032
2024-05-01	41363.847003
2024-06-01	46846.168858
2024-07-01	49137.492845
2024-08-01	49267.318938
2024-09-01	45836.152952
2024-10-01	38012.889170
2024-11-01	32736.032074
2024-12-01	36393.063135

Graphical Forecast of Electricity Consumption: East Region (2024)

Predicted Consumption Values: East Region (2024)

	East	
Date		
2024-01-01	12802.901959	
2024-02-01	12329.833859	
2024-03-01	14208.903608	
2024-04-01	15945.584660	
2024-05-01	16798.708491	
2024-06-01	17640.027376	
2024-07-01	18575.250547	
2024-08-01	17991.201763	
2024-09-01	17396.070797	
2024-10-01	15976.002448	
2024-11-01	12997.312529	
2024-12-01	12742.325229	

Graphical Forecast of Electricity Consumption: South Region (2024)

Predicted Consumption Values: South Region (2024)

	South
Date	
2024-01-01	35470.969254
2024-02-01	35544.688967
2024-03-01	40874.663503
2024-04-01	39922.718787
2024-05-01	37167.522520
2024-06-01	37371.469168
2024-07-01	35525.663847
2024-08-01	40249.196407
2024-09-01	36479.379302
2024-10-01	40001.307741
2024-11-01	34130.335740
2024-12-01	35248.324785

Graphical Forecast of Electricity Consumption: West Region (2024)

Predicted Consumption Values: West Region (2024)

		West	
Dat	e		
2024-01-0	1	42204.695766	
2024-02-0	1	40784.633396	
2024-03-0	1	43685.696614	
2024-04-0	1	42651.182788	
2024-05-0	1	43682.147635	
2024-06-0	1	40192.772832	
2024-07-0	1	40586.279809	
2024-08-0	1	40116.152846	
2024-09-0	1	39144.974657	
2024-10-0	1	42882.926509	
2024-11-0	1	42475.421261	
2024-12-0	1	44489.792230	

Conclusion

The SARIMA models applied to each region's electricity consumption data have provided detailed forecasts for 2024. The forecasts reveal region-specific trends and anticipated consumption patterns, offering valuable insights for strategic planning. The North, South, East, and West regions each exhibit unique patterns, with projections reflecting both seasonal effects and underlying trends. These forecasts will support informed decision-making and resource allocation, helping to address regional demand variations effectively. Ongoing monitoring and model refinement will be essential to ensure accuracy and adapt to any unforeseen changes in consumption patterns.

THANK YOU!

Presented by Group 7