

SuperKart Sales Forecast Model

Model Deployment: SuperKart

August 9, 2025

Contents / Agenda

- Executive Summary
- Business Problem Overview & Solution Approach
- Exploratory Data Analysis (EDA)
- Data Pre-processing
- Data Background and Contents
- Model Building
- Model Improvement Hyperparameter Tuning
- Model Performance Summary
- Deployment

Executive Summary

Project Summary

- Developed a machine learning-powered sales forecasting system for SuperKart retail products.
- Trained an XGBoost regression model with hyperparameter tuning to predict total product sales per store using product attributes, store characteristics, and pricing information.
- Built a backend API (Flask + Gunicorn in Docker) for model inference and deployed on Hugging Face Spaces.
- Created a Streamlit-based frontend interface for user-friendly predictions, connected to the backend API for real-time results.
- Evaluated model performance using RMSE, MAE, and R² to ensure accuracy and reliability in predicting sales.

Executive Summary

Actionable Insights

- Pricing (MRP) and product placement area are highly correlated with sales volume —
 adjusting these can drive measurable improvements.
- Store location tier significantly impacts sales; tier-based marketing strategies can optimize revenue.
- Product type (Perishables vs Non-Perishables) influences sales seasonality —
 stocking strategies should adapt accordingly.

Executive Summary

Recommendations

- 1. **Deploy the model in retail operations** to help managers forecast sales at the SKU-store level and optimize inventory.
- 2. **Integrate with ERP systems** to trigger automated purchase orders when predicted sales exceed stock thresholds.
- 3. **Expand training data** with seasonal and promotional event information to improve accuracy.
- 4. **Retrain quarterly** to incorporate recent sales patterns and adapt to market changes.
- 5. **Enhance dashboard visualizations** in the frontend to provide trend analysis alongside point predictions.

Business Context:

- SuperKart operates multiple retail stores selling diverse products ranging from perishable goods to non-perishables.
- Sales performance varies significantly based on product attributes, pricing, store characteristics, and location.
- Overstocking leads to increased storage costs and wastage, while understocking results in missed sales opportunities.

Business Problem Overview

- Manual forecasting methods rely heavily on historical sales averages and lack predictive accuracy.
- No real-time tool exists for store managers to estimate sales for specific products under changing market conditions.

Business Impact:

- Inefficient inventory allocation impacts profitability and customer satisfaction.
- Accurate sales forecasts can enable better purchasing decisions, reduce wastage, and maximize revenue.

Solution Approach

Data Collection & Preparation:

- Used historical SuperKart sales data containing product details, store attributes, and pricing information.
- Performed data cleaning, missing value imputation, and feature engineering (e.g., store age, product type categorization).

Model Development:

- Built an XGBoost regression model optimized with hyperparameter tuning for high accuracy.
- Selected XGBoost due to its robustness in handling tabular data and mixed variable types.

Deployment:

- Backend: Flask API with Gunicorn, containerized with Docker, deployed on Hugging Face Spaces for scalable inference.
- Frontend: Streamlit application providing an intuitive user interface to input parameters and get instant predictions.

Evaluation & Validation:

- Measured performance using RMSE, MAE, and R² to ensure predictions were business-relevant.
- Conducted test set validation to confirm model generalization to unseen data.

Exploratory Data Analysis: Product-Level Insights

Product MRP & Sales:

- Higher MRP products tend to have lower sales volume but higher per-unit revenue.
- Sweet spot observed in mid-priced items (~ ₹100–₹200) for maximum total sales.

Sugar Content Impact:

 "Low" sugar products dominate total sales, followed by "Regular Sugar"; "No Sugar" has niche but growing demand.

Category Trends:

 Perishables sell faster but are more sensitive to pricing changes compared to Non-Perishables.

Exploratory Data Analysis: Store-Level Insights

Store Size Effect:

 Large stores generally have the highest total sales, but small stores outperform in per-unit profitability for certain items.

City Type Influence:

- Tier 2 was the leader in total sales.
- Tier 1 had higher per-unit prices, Tier 3 more budget-friendly sales volume.

Store Type Patterns:

• Supermarket Type2 dominated total sales

Data Preprocessing: Feature Engineering

Categorical Encoding:

Converted categorical variables (e.g., Product_Sugar_Content, Store_Size,
 Store_Location_City_Type, Store_Type, Product_Id_char, Product_Type_Category)
 into numerical format using One-Hot Encoding to make them compatible with ML algorithms.

Derived Features:

 No new synthetic variables added; used original features as provided after encoding.

Data Type Checks:

 Verified all features had the correct data type (numerical vs categorical) before modeling.

Data Preprocessing: Outlier Check & Treatment

Numerical Feature Review:

 Checked Product_Weight, Product_Allocated_Area, Product_MRP, and Store_Age_Years for extreme values using boxplots and IQR method.

Findings:

- Minimal outliers observed in Product_Weight and MRP consistent with realistic market values.
- Decision: No removal or capping was done to preserve potential high-value sales insights.

Data Preprocessing: Data Preparation for Modeling

Target Variable:

Sales was continuous, used directly without transformation.

Data Splitting:

Train–Test Split: 70% training, 30% testing.

Normalization:

 Applied StandardScaler to numerical variables (Product_Weight, Product_Allocated_Area, Product_MRP, Store_Age_Years) for uniform scale in modeling.

Data Preprocessing: Preprocessing Pipeline

Created Scikit-learn Pipeline for reproducible preprocessing:

- 1. **OneHotEncoder** for categorical features.
- StandardScaler for numerical features.
- 3. Combined using **ColumnTransformer**.
- 4. Integrated into a full pipeline with **XGBoost Regressor** for final modeling.

Benefits:

- Ensures consistent preprocessing on both training and prediction data.
- Reduces risk of data leakage.
- Simplifies deployment (model + preprocessing in one object).

Dataset Source: Historical product and store sales dataset from SuperKart retail data repository.

Data Scope: Captures product, store, and location characteristics along with sales totals.

Timeframe: Multiple years of sales records (aggregated to product-store level).

Rows & Columns: ~8,500 records × 11 key features + 1 target variable (Sales).

Target Variable

Sales - Numerical; total product-store sales value in Rupees.

Key Features

- Product_Weight Numerical; product weight in kilograms.
- Product_Sugar_Content Categorical; sugar level (Low Sugar, Regular, No Sugar).
- **Product_Allocated_Area** Numerical; shelf space allocated (in square meters).
- Product_MRP Numerical; product price in Rupees.
- Store_Size Categorical; store scale (Small, Medium, High).
- Store_Location_City_Type Categorical; city tier (Tier 1, Tier 2, Tier 3).
- **Store_Type** Categorical; store format (e.g., Supermarket Type1, Food Mart).
- **Product_Id_char** Categorical; product category code (FD, NC, DR).
- **Store_Age_Years** Numerical; years since store opening.
- **Product_Type_Category** Categorical; perishability classification.

Chose XGBoost Regressor due to its:

- Superior performance in handling structured/tabular data
- Ability to capture non-linear relationships
- Built-in regularization to reduce overfitting

Model Building: Model Building Steps

1. Baseline Model

a. Trained a simple XGBoost model with default parameters to establish a benchmark.

2. Hyperparameter Tuning

- a. Used GridSearchCV to optimize key parameters:
 - i. n_estimators (number of boosting rounds)
 - ii. max_depth (tree depth)
 - iii. learning_rate
 - iv. subsample and colsample_bytree

3. Feature Encoding

a. Applied one-hot encoding for categorical features to align with XGBoost requirements.

4. Train-Test Split

a. 70% training data, 30% testing data for unbiased evaluation.

5. Cross-Validation

a. Used 5-fold cross-validation to ensure model stability across splits.

Model Building: Model Performance & Takeaways

Model Performance

- **Training R²:** ~0.94 (strong fit without excessive overfitting)
- **Test R²:** ~0.92 (high predictive accuracy)
- **RMSE:** ~300 sales units prediction errors are relatively small compared to sales magnitude.

Key Takeaways

- XGBoost outperformed baseline models in accuracy and error metrics.
- Model generalizes well to unseen data, indicating strong deployment readiness.

Model Improvement - Hyperparameter Tuning

Tuning Approach

- Method Used: GridSearchCV with 5-fold cross-validation
- Objective: Minimize RMSE while maintaining high R² on unseen data
- Parameters Tuned:

o **n_estimators:** 100 → 300

o max_depth: 6 → 8

o **learning_rate:** 0.1 → 0.05

subsample: 0.8 → 0.9

o colsample_bytree: 0.8 → 0.9

Performance Comparison				
Metric	Baseline Model	Tuned Model	Improvement	
Train R ²	0.91	0.94	+0.03	
Test R ²	0.88	0.92	+0.04	
RMSE (Test)	420	300	↓ 120	

Key Insights

- **Lower RMSE** means more precise sales predictions.
- Higher R² on test data confirms better generalization without overfitting.
- Optimal hyperparameters allowed the model to better capture complex relationships in sales patterns.

Final Model

• **Algorithm:** XGBoost Regressor

Parameters Parameters:

o **n_estimators:** 300

o max_depth: 8

learning_rate: 0.05

o subsample: 0.9

o colsample_bytree: 0.9

o random_state: 42

Metric	Training Data	Test Data
R ² Score	0.94	0.92
RMSE	280	300
MAE	190	205

Key Takeaways

- High R² on both training and test sets indicates
 strong predictive power and good
 generalization.
- Low RMSE and MAE confirm precise sales forecasting capabilities.
- Minimal gap between train and test metrics → no significant overfitting.

Deployment

Backend

- Built a Flask API to serve predictions from the trained XGBoost model.
- Serialized model saved as xgb_tuned_model.joblib.
- Deployed to **Hugging Face Spaces** using
 Docker for a consistent runtime
 environment.

Endpoint:

POST /v1/predict

Input: JSON object with product and store features

Output: Predicted sales value

Frontend

- Developed a **Streamlit web app** for an interactive UI.
- Allows users to input product and store details via dropdowns and number inputs.
- Sends requests to the backend API and displays predicted sales instantly.
- Deployed separately to Hugging Face
 Spaces and linked to backend API.

https://huggingface.co/spaces/igross/superkart-sales-forecas t-frontend-space

https://huggingface.co/spaces/igross/superkart-sales-forecas t-backend

Deployment

SuperKart Sales Forecast

https://huggingface.co/spaces/igross/superkart-sales-forecast-frontend-space