Question	Scheme	Marks
10(i)	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \left[(3a+2)\mathbf{i} + b\mathbf{j} \right] - \left[(b+1)\mathbf{i} + b\mathbf{j} \right]$	M1
	$\overrightarrow{AB} = \left[\left(3a + 2 \right) - \left(b + 1 \right) \right] \mathbf{i} = 3\mathbf{i}$	A1
	$(3a+2)-(b+1)=3 \Rightarrow 3a-b=2 \text{ or } b=3a-2$	M1A1
	<u> </u>	
	$\frac{\sqrt{17}}{34} = \frac{1}{\sqrt{68}}$	B1
	$68 = (3a+2)^2 + b^2$	M1
	$\Rightarrow 68 = (3a+2)^2 + (3a-2)^2 \Rightarrow 68 = 18a^2 + 8$	M1
	$\Rightarrow 60 = 18a^2 \Rightarrow a = \frac{\sqrt{30}}{3} \text{ oe}$	A1
(ii)	$b = \frac{3\sqrt{30}}{3} - 2 = \sqrt{30} - 2$	M1A1 [10]
	Tot	al 10 marks

Part	Mark	Notes
	M1	For the vector equation $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$
	This can be implied by the next correct step.	
	A1	For the correct unsimplified vector $\overrightarrow{AB} = [(3a+2)\mathbf{i} + b\mathbf{j}] - [(b+1)\mathbf{i} + b\mathbf{j}]$
	M1	For setting their vector $\overrightarrow{AB} = 3\mathbf{i}$ and attempting to find an expression in terms of a and b only
	A1	For a correct expression in any form. e.g. $3a-b=2$ or $b=3a-2$ or equivalent
	ALT	
	M1	For the vector equation $\overrightarrow{OB} = \overrightarrow{AB} + \overrightarrow{OA}$
	A1	For the correct unsimplified vector $\overrightarrow{OB} = [(b+1)\mathbf{i} + b\mathbf{j}] + 3\mathbf{i} = \{(b+4)\mathbf{i} + b\mathbf{j}\}$
	M1	For setting their \overrightarrow{OB} equal to $(3a+2)\mathbf{i}+b\mathbf{j}$ and equating coefficients of \mathbf{i} and \mathbf{j} $(b+4)\mathbf{i}+b\mathbf{j}=(3a+2)\mathbf{i}+b\mathbf{j} \Rightarrow b+4=3a+2$
	A1	For a correct expression in any form.

		e.g. $3a-b=2$ or $b=3a-2$ or equivalent	
		For simplifying $\frac{\sqrt{17}}{34}$ into $\frac{1}{\sqrt{68}}$ or any equivalent.	
	B1	For example, $\left(\frac{\sqrt{17}}{34}\right)^2 = \frac{1}{68}$ Accept seen anywhere in their working.	
		If this step is not explicitly, correct a or b implies correct work.	
(i)	Way 1		
(1)	M1	For using Pythagoras to form an equation with their $\sqrt{68}$ or 68 and $(3a+2)\mathbf{i}+b\mathbf{j}$ and forming an expression in terms of a and b [These values must be applied	
		correctly. Do not accept $\frac{1}{68} = (3a+2)^2 + b^2$ for this mark]	
	M1	For eliminating b from their equation and solving the resulting equation to find a value for a or a^2 .	
	A1	For $a = \frac{\sqrt{30}}{3}$ oe This does not have to be simplified.	
(ii)	M1	For finding the value of b using their expression in terms of a and b and their a provided their $a > 0$	
	A1	For $b = \sqrt{30} - 2$ o.e. This does not have to be simplified.	
	Way 2		
		For using Pythagoras to form an equation with their and $\overrightarrow{OB} = (b+4)\mathbf{i} + b\mathbf{j} \sqrt{68}$	
	M1	or 68 and forming an expression in terms of b [This must be applied correctly. Do	
		not accept $\frac{1}{68} = (b+4)^2 + b^2$ for this mark]	
		For finding a value for b or b^2 by solving their 3TQ by any valid method.	
(ii)		E.g., by completing the square. $68 = (b+4)^2 + b^2$	
	M1	$\Rightarrow 68 = 2b^2 + 8b + 16 \Rightarrow b^2 + 4b - 26 = 0$	
		$\Rightarrow b^2 + 4b - 26 = (b+2)^2 - 30 = 0$	
		$\Rightarrow b = \sqrt{30} - 2$	
	A1	For $b = \sqrt{30} - 2$ o.e. This does not have to be simplified.	
(i)	M1	For finding the value of a using their expression in terms of a and b and their b provided their $b > 0$.	
	A1	For $a = \frac{\sqrt{30}}{3}$ oe This does not have to be simplified.	

Question	Scheme	Marks
11(a)	$f(x) = 10 + 6x - x^2 = -(x^2 - 6x) + 10 \Rightarrow A = -1$	B1
	$f(x) = -[(x-3)^2 - 9] + 10 = -(x-3)^2 + 19$	M1
	B = -3, C = 19	A1A1
		[4]
(b)	(i) $x = 3$	B1ft
	(ii) $f(x)$ greatest = 19	B1ft [2]
(c)	$x^{2} - x + 13 = 10 + 6x - x^{2} \Rightarrow 2x^{2} - 7x + 3 = 0$	M1
	$\Rightarrow (2x-1)(x-3) = 0 \Rightarrow x = \frac{1}{2}, 3$	M1A1 [3]
(d)	$A = \int_{\frac{1}{2}}^{3} (10 + 6x - x^2) dx - \int_{\frac{1}{2}}^{3} (x^2 - x + 13) dx = \left[\int_{\frac{1}{2}}^{3} -2x^2 + 7x - 3 dx \right]$	M1
	$A = \left[-\frac{2x^3}{3} + \frac{7x^2}{2} - 3x \right]_{\frac{1}{2}}^{3}$	M1A1
	$A = \left[\left(-\frac{2 \times 3^3}{3} + \frac{7 \times 3^2}{2} - 3 \times 3 \right) - \left(-\frac{2 \times 0.5^3}{3} + \frac{7 \times 0.5^2}{2} - 3 \times 0.5 \right) \right]$	M1
	$A = \frac{125}{24} \text{oe}$	A1
		[5]
	Total 1	4 marks

Part	Mark	Notes
(a)	B1	For factorising -1 and finding $A = -1$
	M1	For an attempt to complete the square – (See general guidance)
	A1	For either $B = -3$ or $C = 19$
	A1	For both $B = -3$ and $C = 19$
	AI	Accept all values embedded.
	NB: C	orrect values following no working – Award full marks in this part.

(b)(i)		x = 3		
	B1ft	ft their B		
		You may see differentiation to find a maximum x. Allow a correct value of x here		
(b)(ii)		even if it does not follow from their working. $f(r) = 10$		
(0)(11)	$\begin{array}{c c} \mathbf{f}(x) = 19 \\ \text{ft their } C \end{array}$			
	B1ft	You may see differentiation to find a maximum x . Allow a correct value of $f(x)$		
		here even if it does not follow from their working.		
		Allow $y = 19$.		
(c)	M1	Sets the equation of curve C equal to the equation of curve S and forms a 3TQ		
	Attempts to solve their 3TQ using any correct method to find two values of			
	M 1			
		If their 3TQ is incorrect and no working is seen to solve it, withhold this mark.		
	A1	For both $x = \frac{1}{2}$, 3 correct Accept coordinates – ignore y values.		
	NID D	2		
(F)	NB: B	oth correct values following no working – Award full marks in this part.		
(d)		For a correct statement with their values of x in the correct position of the intent to		
		integrate the two expressions and subtract the result, or to integrate $2x^2 - 7x + 3$ Ft their limits for this mark, the correct way around, but allow recovery at a later		
	M 1	stage.		
		If they deal with the two expressions separately, look for subtraction at the end of		
		their solution.		
		For an attempt to integrate their combined expression or two separate expressions.		
		They must achieve as a minimum		
	M1	$\pm Px^3 \pm Qx^2 \pm Rx$ for their integration whether they integrate two expressions		
		separately (each) or one combined expression.		
		Ignore limits for this mark.		
		For the correct integrated expression(s)— ignore limits for this mark		
	A1	Allow $\frac{2x^3}{3} - \frac{7x^2}{2} + 3x$		
		ξ <u>-</u>		
		For substituting their limits into their integrated expression and subtracting the		
		results of lower limit from upper limit.		
		Note carefully:		
		If they have the correct limits and correct integration allow this mark if the correct		
	M 1			
		area is obtained without seeing explicit substitution. $\left(\pm \frac{125}{24}, \pm 5.208\right)$		
		If their limits are incorrect or the integration is incorrect or the final area is		
		incorrect then explicit substitution must be seen for the award of this mark.		
	A1	For the correct area $A = \frac{125}{24}$ oe		
		24		