Topology II – Homework 2

Junwoo Yang

October 3, 2021

1 Proof of Theorem 51.2

Theorem 51.2. The product * has the following properties:

- (i) Associative: ([f] * [g]) * [h] = [f] * ([g] * [h])
- (ii) Let e_x denote the constant path $e_x \colon I \to X$ given by $s \mapsto x, x \in X$. If $f(0) = x_0$ and $f(1) = x_1$ then $[e_{x_0}] * [f] = [f]$ and $[f] * [e_{x_1}] = [f]$.
- (iii) Let $\overline{f}: I \to X$ given by $s \mapsto f(1-s)$. Then $[f] * [\overline{f}] = [e_{x_0}]$ and $[\overline{f}] * [f] = [e_{x_1}]$.

Proof. First two observations

- Suppose $f \simeq_p g$ via homotopy $H, f, g \colon I \to X$. Let $k \colon X \to Y$. Then $k \circ f \simeq_p k \circ g$ using $k \circ H$.
- If f * g (not necessarily path homotopic). Then $k \circ (f * g) = (k \circ f) * (k \circ g)$.

Now, the proof

(ii) Take $e_0: I \to I$ given by $s \mapsto 0$. Take $i: I \to I$ given by $s \mapsto s$. Then e_0*i is a path from 0 to $1 \in I$. The path i is also such a path. Because I is a convex subset, e_0*i and i are path homotopic, $e_0* \simeq i$. Using one of our observations, we find that

$$f \circ (e_0 * i) \simeq_p f \circ i$$
$$(f \circ e_0) * (f \circ i) \simeq_p f$$
$$e_{x_0} * f \simeq_p f$$
$$[e_{x_0}] * [f] = [f].$$

(iii) Note that $i * \bar{i} \simeq_p e_0$. Now, applying the same rules, we get

$$f \circ (i * \overline{i}) \simeq_p f \circ e_0$$
$$f * \overline{f} \simeq_p e_{x_0}$$
$$[f] * [\overline{f}] = [e_{x_0}].$$

(i) Remark: Only defined if f(1) = g(0), g(1) = h(0). Note that $f * (g * h) \neq (f * g) * h$. The trajectory is the same, but the speed is not.

Assume the product is defined. Suppose [a,b], [c,d] are intervals in \mathbb{R} . Then there is a unique positive (positive slope), linear map from $[a,b] \to [c,d]$. For any $a,b \in [0,1)$ with 0 < a < b < 1, we define a path

$$\begin{array}{c} k_{a,b} \colon [0,1] \longrightarrow X \\ [0,a] \xrightarrow{\lim} [0,1] \xrightarrow{f} X \\ [a,b] \xrightarrow{\lim} [0,1] \xrightarrow{g} X \\ [b,0] \xrightarrow{\lim} [0,1] \xrightarrow{h} X \end{array}$$

Then $f * (g * h) = k_{\frac{1}{2}, \frac{3}{4}}$ and $(f * g) * h = k_{\frac{1}{4}, \frac{1}{2}}$.

Let γ be that path $\gamma \colon I \to I$ with the following graphs:

Note that $\gamma \simeq_p i$. Now, using the fact that composition of positive linear maps is positive linear.

$$k_{c,d} \circ \gamma \simeq_p k_{c,d} \circ i$$

 $k_{a,b} \simeq_p k_{c,d},$

which is what we wanted to show.

2 Exercises

Exercise 51.1. Show that if $h, h': X \to Y$ are homotopic and $k, k': Y \to Z$ are homotopic, then $k \circ h$ and $k' \circ h'$ are homotopic.

Proof. Let $H: X \times I \to Y$ and $K: Y \times I \to Z$ be homotopies between h, h' and k, k' respectively, i.e. H(x,0) = h(x), H(x,1) = h'(x), K(y,0) = k(y), and K(y,1) = k'(y). Then, define the map $F: X \times I \to Z$ by F(x,t) = K(H(x,t),t). This is continuous and defines a homotopy between $F(x,0) = K(H(x,0),0) = K(h(x),0) = k(h(x)) = k \circ h$ and $F(x,1) = K(H(x,1),1) = K(h'(x),1) = k'(h'(x)) = k' \circ h'$.

Exercise 51.2. Given spaces X and Y, let [X,Y] denote the set of homotopy classes of maps of X into Y.

- (a) Let I = [0, 1]. Show that for any X, the set [X, I] has a single element.
- (b) Show that if Y is path connected, the set [I, Y] has a single element.

Proof. To explain more about homotopy class, given two topological spaces X and Y, place an equivalence relation on the continuous maps $f: X \to Y$ using homotopies, and write $f_1 \sim f_2$ if f_1 is homotopic to f_2 .

- (a) We need to show that all continuous maps of X into I are homotopic to each other; we do this by showing that every continuous map $f: X \to I$ is homotopic to the constant map $f_0: X \to I$ defined by $f_0(x) = 0$ for all $x \in X$. This is indeed the case, and an explicit homotopy is given by $F: X \times I \to I$ defined by F(x,t) = tf(x), which is clearly continuous, and satisfies $F(x,0) = 0 = f_0(x)$ and F(x,1) = f(x).
- (b) Assuming Y is path-connected, we need to show that any two continuous maps from I to Y are homotopic. First we show that every continuous map $f\colon I\to Y$ is homotpic to the constant map $I\to Y$ which maps every element of I to f(0). Indeed, consider $F\colon I\times I\to Y$ given by F(s,t)=f(st), which is continuous. This is a homotopy between the constant map F(s,0)=f(0) and F(s,1)=f(s). (In other terms: we have shown that every path in Y can be homotoped (not fixing the end points) to the constant path at its starting point).

Next, given two points $y, y' \in Y$, let $f, f' \colon I \to Y$ be the constant maps taking the values f(s) = y and $f'(s) = y' \, \forall s \in I$. Since Y is path-connected, there exists a path $g \colon I \to Y$ such that g(0) = y and g(1) = y'. We then consider the map $F \colon I \times I \to Y$ defined by F(s,t) = g(t), which gives a homotopy between F(s,0) = g(0) = y = f(s) and F(s,1) = g(1) = y' = f'(s). Thus, any path is homotopic to a constant path, and any two constant paths are homotopic to each other (again, not fixing the end points); it follows that any two maps $I \to Y$ are homotopic.

Exercise 51.3. A space X is said to be contractible if the identity map $i_X \colon X \to X$ is null-homotopic.

- (a) Show that I and \mathbb{R} are contractible.
- (b) Show that a contractible space is path connected.
- (c) Show that if Y is contractible, then for any X, the set [X,Y] has a single element.
- (d) Show that if X is contractible and Y is path connected, then [X, Y] has a single element.
- *Proof.* (a) Let $F: I \times I \to I$ be defined by F(s,t) = st and $G: \mathbb{R} \times I \to \mathbb{R}$ by G(s,t) = st. These are homotopies between the constant map at 0 and identity map, so both spaces are contractible.

- (b) Recall that if there is a path between a, b and a path between b, c, then there is a path between a, c. It therefore suffices to show that all points can be connected to a given point by a path. Assuming X is contractible, there is a homotopy $F \colon X \times I \to X$ between identity map id_X and the constant map f_0 mapping every point $x \in X$ to the same point $x_0 \in X$ s.t. $F(x,0) = f_0(x) = x_0$ and $F(x,1) = \mathrm{id}_X(x) = x$ for all $x \in X$. Then, the map $g \colon I \to X$ defined by g(t) = F(x,t) is continuous and determines a path from $g(0) = x_0$ to g(1) = x.
- (c) Assume Y is contractible, and let $F: Y \times I \to Y$ be a homotopy s.t. F(y,1) = y is the identity map and $F(y,0) = y_0 \in Y$ is a constant map sending every point to some point $y_0 \in Y$. Then given any map $g: X \to Y$, we consider $G: X \times I \to Y$ defined by G(x,t) = F(g(x),t). This is continuous, and defines a homotopy between g and the constant map g_0 which maps every point of X to y_0 . Indeed, G(x,1) = F(g(x),1) = g(x), and $G(x,0) = F(g(x),0) = y_0$. It follows that every map from X to Y is homotopic to the constant map g_0 , and hence that any two maps from X to Y are homotopic to each other.
- (d) Since X is contractible, id_X is homotopic to a constant map $g(x) = x_0$ by a homotopy $G \colon X \times I \to X$ s.t. $G(x,0) = x_0$, G(x,1) = x for all $x \in X$. First we show that every continuous map $f \colon X \to Y$ is homotopic to the constant map $X \to Y$ which maps every element of X to $f(x_0)$. Indeed, define a continuous map $F \colon X \times I \to Y$ by F(x,t) = f(G(x,t)). This is a homotopy between the constant map $F(x,0) = f(G(x,0)) = f(x_0)$ and F(x,1) = f(G(x,1)) = f(x).

Next, we show that if Y is path connected then constant maps (sending every point of X to the same point of Y) are homotopic to each other. Indeed, given two points $y_0, y_1 \in Y$, let $f_0, f_1 \colon X \to Y$ be the constant maps taking the values $f_0(x) = y_0$ and $f_1(x) = y_1$ for all $x \in X$. Since Y is path-connected, there exists a path $g \colon I \to Y$ s.t. $g(0) = y_0$ and $g(1) = y_1$. We then consider the map $F \colon X \times I \to Y$ defined by F(x,t) = g(t), which gives a homotopy between $F(x,0) = g(0) = y_0 = f_0(x)$ and $F(x,1) = g(1) = y_1 = f_1(x)$.

Thus, assuming X contractible and Y path-connected, any continuous map of X into Y is homotopic to a constant map, and any two constant maps are homotopic to each other. It follows that any two continuous maps from X to Y are homotopic to each other.