

Convolutional Feature Maps

Elements of efficient (and accurate) CNN-based object detection

Kaiming He
Microsoft Research Asia (MSRA)

Overview of this section

- Quick introduction to convolutional feature maps
 - Intuitions: into the "black boxes"
 - How object detection networks & region proposal networks are designed
 - Bridging the gap between "hand-engineered" and deep learning systems
- Focusing on forward propagation (inference)
 - Backward propagation (training) covered by Ross's section

Object Detection = What, and Where

We need a building block that tells us "what and where"...

Object Detection = What, and Where

Convolutional:

sliding-window operations

Feature:

encoding "what"

(and implicitly encoding "where")

Map:

explicitly encoding "where"

Convolutional Layers

Convolutional layers are locally connected

- a filter/kernel/window slides on the image or the previous map
- the position of the filter explicitly provides information for localizing
- local spatial information w.r.t. the window is encoded in the channels

Convolutional Layers

Convolutional layers share weights spatially: translation-invariant

- Translation-invariant: a translated region will produce the same response at the correspondingly translated position
- A local pattern's convolutional response can be re-used by different candidate regions

Convolutional Layers

 Convolutional layers can be applied to images of any sizes, yielding proportionally-sized outputs

HOG by Convolutional Layers

- Steps of computing HOG:
 - Computing image gradients
 - Binning gradients into 18 directions
 - Computing cell histograms
 - Normalizing cell histograms

- Convolutional perspectives:
 - Horizontal/vertical edge filters
 - Directional filters + gating (non-linearity)
 - Sum/average pooling
 - Local response normalization (LRN)

see [Mahendran & Vedaldi, CVPR 2015]

HOG, dense SIFT, and many other "hand-engineered" features are convolutional feature maps.

one feature map of conv₅ (#55 in 256 channels of a model trained on ImageNet)

ImageNet images with strongest responses of this channel

Intuition of *this* response:

There is a "circle-shaped" object (likely a tire) at this position.

What

Where

one feature map of conv₅ (#66 in 256 channels of a model trained on ImageNet) ImageNet images with strongest responses of this channel

Intuition of *this* response:

There is a " λ -shaped" object (likely an underarm) at this position.

What

Where

Visualizing one response (by Zeiler and Fergus)

image credit: Zeiler & Fergus

- Location of a feature: explicitly represents where it is.
- Responses of a feature:
 encode what it is, and implicitly
 encode finer position information –

finer position information is encoded in the channel dimensions (e.g., bbox regression from responses at one pixel as in RPN)

Receptive Field

- Correspondence between a feature map pixel and an image pixel is not unique
- Map a feature map pixel to the center of the receptive field on the image in the SPP-net paper

Receptive Field

How to compute the center of the receptive field

- A simple solution
 - For each layer, pad $\lfloor F/2 \rfloor$ pixels for a filter size F (e.g., pad 1 pixel for a filter size of 3)
 - On each feature map, the response at (0, 0) has a receptive field centered at (0, 0) on the image
 - On each feature map, the response at (x, y) has a receptive field centered at (Sx, Sy) on the image (stride S)
- A general solution

$$i_0 = g_L(i_L) = \alpha_L(i_L - 1) + \beta_L,$$

$$\alpha_L = \prod_{p=1}^L S_p,$$

$$\beta_L = 1 + \sum_{p=1}^L \left(\prod_{q=1}^{p-1} S_q\right) \left(\frac{F_p - 1}{2} - P_p\right)$$

See [Karel Lenc & Andrea Vedaldi] "R-CNN minus R". BMVC 2015.

Region-based CNN Features

figure credit: R. Girshick et al.

input image

region proposals ~2,000

1 CNN for each region

classify regions

R-CNN pipeline

Region-based CNN Features

- Given proposal regions, what we need is a feature for each region
- R-CNN: cropping an image region + CNN on region, requires 2000 CNN computations
- What about cropping feature map regions?

Regions on Feature Maps

image region

feature map region

- Compute convolutional feature maps on the entire image only once.
- Project an image region to a feature map region (using correspondence of the receptive field center)
- Extract a region-based feature from the feature map region...

Regions on Feature Maps

- Fixed-length features are required by fully-connected layers or SVM
- But how to produce a fixed-length feature from a feature map region?
- Solutions in traditional compute vision: Bag-of-words, SPM...

Bag-of-words & Spatial Pyramid Matching

SIFT/HOG-based feature maps

figure credit: S. Lazebnik et al.

Spatial Pyramid Pooling (SPP) Layer

fix the number of bins (instead of filter sizes)

adaptively-sized bins

a finer level maintains explicit spatial information

fc layers...

concatenate,

a coarser level removes explicit spatial information (bag-of-features)

Spatial Pyramid Pooling (SPP) Layer

Single-scale and Multi-scale Feature Maps

- Feature Pyramid
 - Resize the input image to multiple scales
 - Compute feature maps for each scale
 - Used for HOG/SIFT features and convolutional features (OverFeat [Sermanet et al. 2013])

Single-scale and Multi-scale Feature Maps

• But deep convolutional feature maps perform well at a single scale

	SPP-net	SPP-net
	1-scale	5-scale
pool ₅	43.0	44.9
pool ₅ fc ₆	42.5	44.8
fine-tuned fc	52.3	53.7
fine-tuned fc ₇	54.5	55.2
fine-tuned fc ₇ bbox reg	58.0	59.2
conv time	0.053s	0.293s
fc time	0.089s	0.089s
total time	0.142s	0.382s

- Also observed in Fast R-CNN and VGG nets
- Good speed-vs-accuracy tradeoff
- Learn to be scale-invariant from pretraining data (ImageNet)
- (note: but if good accuracy is desired, feature pyramids are still needed)

detection mAP on PASCAL VOC 2007, with ZF-net pre-trained on ImageNet this table is from [K. He, et al. 2014]

R-CNN vs. Fast R-CNN (forward pipeline)

R-CNN

- Extract image regions
- 1 CNN per region (2000 CNNs)
- Classify region-based features

SPP-net & Fast R-CNN (the same forward pipeline)

- 1 CNN on the entire image
- Extract features from feature map regions
- Classify region-based features

R-CNN vs. Fast R-CNN (forward pipeline)

R-CNN

• Complexity: \sim 224 \times 224 \times 2000

SPP-net & Fast R-CNN (the same forward pipeline)

- Complexity: $\sim 600 \times 1000 \times 1$
- ~ 160 **x faster** than R-CNN

Region Proposal from Feature Maps

- Object detection networks are fast (0.2s)...
- but what about region proposal?
 - Selective Search [Uijlings et al. ICCV 2011]: 2s per image
 - EdgeBoxes [Zitnick & Dollar. ECCV 2014]: 0.2s per image
- Can we do region proposal on the same set of feature maps?

Region Proposal from Feature Maps

- By decoding one response at a single pixel, we can still roughly see the object outline*
- Finer localization information has been encoded in the channels of a convolutional feature response
- Extract this information for better localization...

Revisiting visualizations from Zeiler & Fergus

^{*} Zeiler & Fergus's method traces unpooling information so the visualization involves more than a single response. But other visualization methods reveal similar patterns.

Region Proposal from Feature Maps

Region Proposal Network

- Slide a small window on the feature map
- Build a small network for:
 - classifying object or not-object, and
 - regressing bbox locations
- Position of the sliding window provides localization information with reference to the image
- Box regression provides finer localization information with reference to this sliding window

- Anchors: pre-defined reference boxes
 - Box regression is with reference to anchors: regressing an anchor box to a ground-truth box
 - Object probability is with reference to anchors, e.g.:
 - anchors as positive samples: if IoU > 0.7 or IoU is max
 - anchors as negative samples: if IoU < 0.3

- Anchors: pre-defined reference boxes
- Translation-invariant anchors:
 - the same set of anchors are used at each sliding position
 - the same prediction functions (with reference to the sliding window) are used
 - a translated object will have a translated prediction

- Anchors: pre-defined reference boxes
- Multi-scale/size anchors:
 - multiple anchors are used at each position: e.g., 3 scales (128², 256², 512²) and 3 aspect ratios (2:1, 1:1, 1:2) yield 9 anchors
 - each anchor has its own prediction function
 - single-scale features, multi-scale predictions

Comparisons of multi-scale strategies

Region Proposal Network

- RPN is fully convolutional [Long et al. 2015]
- RPN is trained end-to-end
- RPN shares convolutional feature maps with the detection network (covered in Ross's section)

Faster R-CNN

Microsoft

system	time	07 data	07+12 data
R-CNN	~50s	66.0	-
Fast R-CNN	~2s	66.9	70.0
Faster R-CNN	198ms	69.9	73.2

detection mAP on PASCAL VOC 2007, with VGG-16 pre-trained on ImageNet

Keys to efficient CNN-based object detection

- Feature sharing
 - R-CNN => SPP-net & Fast R-CNN: sharing features among proposal regions
 - Fast R-CNN => Faster R-CNN: sharing features between proposal and detection
 - All are done by shared convolutional feature maps
- Efficient multi-scale solutions
 - Single-scale convolutional feature maps are good trade-offs
 - Multi-scale anchors are fast and flexible

Conclusion of this section

- Quick introduction to convolutional feature maps
 - Intuitions: into the "black boxes"
 - How object detection networks & region proposal networks are designed
 - Bridging the gap between "hand-engineered" and deep learning systems
- Focusing on forward propagation (inference)
 - Backward propagation (training) covered by Ross's section

