

Universidad Nacional de Ingeniería Escuela Profesional de Matemática Ciclo 2023-1

[Análisis y Modelamiento Numérico I - CM4F1] [Prof: Los Profesores]

UNI, 12 de julio de 2023

Examen Final

1. Suponga que

$$f(x) = \begin{cases} e^{-1/x^2} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0. \end{cases}$$

La función es continua en \mathbb{R} , de hecho f es de clase $C^{\infty}(\mathbb{R})$, y 0 es la única raíz de f. Demuestre que si $x_0 = 10^{-4}$, se necesitan más de cien millones de iteraciones del método de Newton para llegar por debajo de 5×10^{-5} .

Solución: Por la regla de la cadena

$$f'(x) = \frac{2e^{-1/x^2}}{x^3}$$
 para $x \neq 0$.

Escribimos la iteración estándar del método de Newton. Los términos e^{-1/x_n^2} se cancelan y obtenemos

$$x_{n+1} = x_n - \frac{x_n^3}{2}$$
 o equivalentemente $x_n - x_{n+1} = \frac{x_n^3}{2}$.

Observamos que si x_n está cerca de 0, entonces x_{n+1} está muy cerca de x_n , lo que significa que en cada iteración ganamos muy poca precisión. Considerando $x_0 = 10^{-4}$. Es fácil ver que $x_n > 0$ para todo n. Para $x_1 = x_0(1 - x_0^2/2)$, y en particular $0 < x_1 < x_0$. La misma idea muestra que $0 < x_2 < x_1$, y luego $0 < x_3 < x_2$, y así sucesivamente:

$$0 < \dots < x_n < x_{n-1} < \dots < x_2 < x_1.$$

La diferencia $x_n - x_{n+1}$ siempre será positiva e igual a $x_n^3/2$, y en particular menor o igual a

$$(10^{-4})^3/2 = 5 \times 10^{-13}$$
.

Así que en cada iteración existe una reducción de como máximo 5×10^{-13} . Luego, para pasar de 10^{-4} a 5×10^{-5} debemos reducir a lo más en

$$10^{-4} - 5 \times 10^{-5} = 5 \times 10^{-5}$$
.

Por tanto, necesitaremos más de $(5 \times 10^{-5})/(5 \times 10^{-13})$, es decir, 10^8 iteraciones. (Más, porque a medida que nos acercamos a 5×10^{-5} , la reducción por iteración es menor de lo que estimamos).

2. Dado el siguiente sistema,

$$f_1(x, y, z) = x^2 - x + y^2 + z^2 - 5 = 0$$

$$f_2(x, y, z) = x^2 + y^2 - y + z^2 - 4 = 0$$

$$f_3(x, y, z) = x^2 + y^2 + z^2 + z - 6 = 0.$$

Resolver el sistema utilizando el método de punto fijo con punto inicial $P_0 = [0\ 0\ 0]^t$, aproximación y analice su convergencia. [5 ptos]

Solución: Hacer $F(\underline{x}) = \underline{x} - G(\underline{x})$ donde $\underline{x} = (x, y, z)$ y $F = (f_1, f_2, f_3)$. Si

$$\left| \frac{\partial g_1}{\partial x} \right| + \left| \frac{\partial g_2}{\partial x} \right| + \left| \frac{\partial g_3}{\partial x} \right| < 1$$

$$\left| \frac{\partial g_1}{\partial y} \right| + \left| \frac{\partial g_2}{\partial y} \right| + \left| \frac{\partial g_3}{\partial y} \right| < 1$$

$$\left| \frac{\partial g_1}{\partial z} \right| + \left| \frac{\partial g_2}{\partial z} \right| + \left| \frac{\partial g_3}{\partial z} \right| < 1$$

El esquema numérico es $\underline{x}^{k+1} = G(\underline{x}^k)$. Debido a la continuidad de G, se sigue que

$$\lim_{k \to \infty} G(\underline{x}^{(k)}) = G(\underline{x}^*).$$

Con la norma Euclideana se mide el error

Error =
$$\sqrt{(x^{(k)} - x^{(k-1)})^2 + (y^{(k)} - y^{(k-1)})^2 + (z^{(k)} - z^{(k-1)})^2} \to 0.$$

La solución aproximada es $\underline{x}^* = (-0.8471, 0.1529, 1.8471)$.

3. Dada la siguiente tabla de valores, para la Temperatura T (°C) y densidad del agua ρ (kg/m^3) Código

T	50	60	65	68	75	80
ρ	988	985.7	980.5	?	974.5	971.6

Mediante un polinomio cuadrático del método de interpolación de la forma de Newton con diferencias divididas halle la aproximación de la densidad ρ del agua para T=68. [5 ptos]

Solución: Sea el polinomio de aproximación

$$P_n(x) = \sum_{i=0}^n f[x_0 \cdots x_i] \prod_{j=0}^{i-1} (x - x_j),$$

donde

$$f[x_k,x_{k+1},\cdots,x_{k+i}] = \frac{f[x_{k+1},x_{k+2},\cdots,x_{k+i}] - f[x_k,x_{k+1},\cdots,x_{k+i-1}]}{x_{k+i}-x_k} \quad \text{para } k \in [0,n-i].$$

Por tanto, evaluando obtenemos

$$P_2(x) = 980.5 + (-0.6)(x - 65) + \left(\frac{0.02}{15}\right)(x - 65)(x - 75)$$
$$= -0.6x + 1019.5 + \left(\frac{0.02}{15}\right)(x^2 - 140x + 4875).$$

Finalmente,

$$P_2(68) = -40.8 + 1019.5 + \left(\frac{0.02}{15}\right) (4624 - 9520 + 4875) \approx 978.672 \,^{\circ}C.$$

4. Dado 9 puntos $(x_i, f(x_i))$ con $x_i = 4 - i$, $i = 0, \dots, 8$ y

$$f(x) = \frac{x^2}{\sqrt{x^2 + 1}}.$$

Mediante la interpolación de Lagrange, grafique la función exacta y la aproximada obtenida mediante la interpolación de Lagrange. [5 ptos]

Solución: Dada la base $\{L_i\}$ de polinomios de Lagrange del espacio de polinomios de grado a lo más n:

$$L_i(x) = \frac{\prod_{\substack{j=0\\j\neq i}}^{n} (x - x_j)}{\prod_{\substack{j=0\\j\neq i}}^{n} (x_i - x_j)} = \frac{(x - x_0)\cdots(x - x_{i-1})(x - x_{i+1})\cdots(x_n - x_n)}{(x_i - x_0)\cdots(x_i - x_{i-1})(x_i - x_{i+1})\cdots(x_i - x_n)}$$

El polinomio de interpolación P_n de f se puede expresar como

$$P_n(x) = f(x_0)L_0(x) + f(x_1)L_1(x) + \dots + f(x_n)L_n(x).$$

La gráfica de p y f es

