曲线积分 curve intergral

定义

设 L 为 xOy 面内的一条光滑曲线弧,函数 f(x,y) 在 L 上有界,在 L 上任意插入一点列 $M_1, M_2, \cdots, M_{n-1}$ 把 L 分成 n 个小段;设第 i 个小段的长度为 Δs_i ,又 (ξ_i, η_i) 为第 i 个小段上任意取定的一点,作积 $f(\xi_i, \eta_i)\Delta s_i$,并作和 $\sum_{i=1}^n f(\xi_i, \eta_i)\Delta s_i$,如果当各小弧段的长度的最大值 $\lambda \to 0$ 时,这和的极限总存在,且与曲线弧 L 的分法无关,那么称此极限为函数 f(x,y) 在曲线弧 L 上对弧长的曲线积分或第一类曲线积分,记作 $\int_L f(x,y) ds$,即

$$\int_{L} f(x, y) ds = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}, \eta_{i}) \Delta s_{i}$$

其中 f(x,y) 称为被积函数,L 叫做积分弧段

类似的情况可以扩展至三维

$$\int_{L} f(x, y, z) ds = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_{i}, \eta_{i}, \zeta_{i}) \Delta s_{i}$$

甚至是任意维

$$\int_{L} f(P) ds = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(P_{i}) \Delta s_{i}$$

性质

- 若曲线 L 为一闭合曲线,则将对 f(P) 在 L 上的曲线积分记为 $\oint_L f(P) \mathrm{d} s$
- 若 α 与 β 均为常数,则

$$\int_{L} [\alpha f(P) + \beta g(P)] ds = \alpha \int_{L} f(P) ds + \beta \int_{L} g(P) ds$$

• 若曲线 L 可以被分为有限多条曲线 L_1, L_2, \cdots, L_n , 则

$$\int_{L} f(P) ds = \sum_{i=1}^{n} \int_{L_{i}} f(P) ds$$

• 设在 $L \perp f(P) \leq g(P)$,则

$$\int_L f(P) \mathrm{d} s \le \int_L g(P) \mathrm{d} s$$

特别有

$$\left| \int_{L} f(P) \, \mathrm{d} \, s \right| \le \int_{L} |f(P)| \, \mathrm{d} \, s$$

曲线积分的计算

若曲线 L 可由参数方程 r(t) $t \in [\alpha, \beta]$ 表述 (其中 $\alpha \leq \beta$),则对于函数 f(P) 在曲线 L 上的曲线积分可改写为

$$\int_{L} f(P) \mathrm{d}s = \int_{\alpha}^{\beta} f(\boldsymbol{r}(t)) \|\boldsymbol{r}'(t)\| \mathrm{d}t$$

对坐标的曲线积分

定义

设 L 为 n 维空间内点 A 到点 B 的一条有向光滑曲线弧,函数 $F_i(P)$ 在 L 上有界,在 L 上沿 L 的方向任意插入一点列 $M_1(x_{11},x_{21},\cdots,x_{n1}),M_2(x_{12},x_{22},\cdots,x_{n2}),\cdots,M_{m-1}(x_{1m-1},x_{2m-1},\cdots,x_{nm-1})$ 把 L 分为 m 个有向小弧段

$$\widehat{M_{j-1}M_j}$$
 $(j = 1, 2, \cdots, n; M_0 = A, M_n = B)$

设 $\Delta x_{ij} = x_{ij} - x_{ij-1}$,点 P_j 为 $\widehat{M_{j-1}M_j}$ 上任意取定的点,做乘积 $F_i(P_j)\Delta x_{ij}$,并做和 $\sum_{j=1}^m F_i(P_j)\Delta x_{ij}$,如果当各小弧段长度的最大值 $\lambda \to 0$ 是,这和的极限总存在,且与曲线弧 L 的分法及点 P_j 的取法无关,那么称此极限为函数 $F_i(P)$ 在有向曲线弧 L 上对坐标 x_i 的曲线积分或第二类曲线积分,记作 $\int_L F_i(P) \mathrm{d}x_i$,即

$$\int_{L} F_i(P) dx_i = \lim_{\lambda \to 0} F_i(P_j) \Delta x_{ij}$$

其中 $F_i(p)$ 叫做被积函数, L 叫做积分弧段

若 $\mathbf{F}(P) = \langle F_1(P), F_2(P), \cdots, F_n(P) \rangle$, 则有

$$\sum_{i=1}^{n} \left(\int_{L} F_{i}(P) dx_{i} \right) = \int_{L} \left(\sum_{i=1}^{n} F_{i}(P) dx_{i} \right) = \int_{L} \mathbf{F} \cdot d\mathbf{r}$$

其中 dr 称为有向曲线元

性质

• 若 α 与 β 均为常数,则

$$\int_{L} [\alpha \mathbf{F}(P) + \beta \mathbf{G}(P)] \cdot d\mathbf{r} = \alpha \int_{L} \mathbf{F}(P) \cdot d\mathbf{r} + \beta \int_{L} \mathbf{G}(P) \cdot d\mathbf{r}$$

• 若有向曲线 L 可以被分为有限多条曲线 L_1, L_2, \dots, L_n , 则

$$\int_{L} \boldsymbol{F}(P) \cdot d\boldsymbol{r} = \sum_{i=1}^{n} \int_{L_{i}} \boldsymbol{F}(P) \cdot d\boldsymbol{r}$$

• 设 L 是有向光滑曲线弧, L^- 是 L 的反向曲线弧,则

$$\int_{L^{-}} \boldsymbol{F} \cdot \mathrm{d}\boldsymbol{r} = -\int_{L} \boldsymbol{F} \cdot \mathrm{d}\boldsymbol{r}$$

计算

若曲线 L 可由参数方程 $\mathbf{r}(t)$ $t \in [\alpha, \beta]$ 表述 (其中 $\mathbf{r}(\alpha)$ 位于起点 A, $\mathbf{r}(\beta)$ 位于起点 B), 则

$$\int_{L} \mathbf{F}(P) \cdot d\mathbf{r} = \int_{\alpha}^{\beta} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$

两类曲线积分之间的联系

$$\int_{I} \mathbf{F} \cdot \mathrm{d}\mathbf{r} = \int_{I} F_{T} \mathrm{d}s$$

其中 F_T 为向量 F 在曲线的切向量 T 上的投影

格林公式及其应用

格林公式 Green's theorem

设闭区域 D 由分段光滑的曲线 ∂D 围成, 若函数 P(x,y) 与 Q(x,y) 在 D 上具有一阶连续偏导数,则有

$$\iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint_{\partial D} P dx + Q dy$$

其中 ∂D 为 D 的正向边界 (即, ∂D 的左边均在 D 内, 右边均在 D 外)

路径无关

若对于函数 $\mathbf{F}(P)$ 的曲线积分在 G 内与其积分路径无关,仅与其起点与终点相关,则称该积分在 G 内与路径无关,否则称其与路径有关

设区域 G 是一连通区域,若函数 P(x,y) 与 Q(x,y) 在 G 内具有一阶连续偏导,则曲线积分 $\int_L P \mathrm{d}x + Q \mathrm{d}y$ 在 G 内与路径无关的充分必要条件为

 $\frac{\partial P}{\partial u} = \frac{\partial Q}{\partial x}$

在 G 内恒成立

若对于函数 F(P) 的曲线积分在 G 内与路径无关,则沿 G 内任意闭合曲线的曲线积分 $\oint_L P \mathrm{d}x + Q \mathrm{d}y$ 均为 0

二元函数的全微分求积

设区域 G 是一个单连通域,若函数 P(x,y) 与 Q(x,y) 在 G 内具有一阶连续偏导数,则 P(x,y)dx+Q(x,y)dy 在 G 内为某一函数 u(x,y) 的全微分的充分必要条件是

 $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$

在 G 内恒成立

设区域 G 是一连通区域,若函数 P(x,y) 与 Q(x,y) 在 G 内具有一阶连续偏导,则曲线积分 $\int_L P dx + Q dy$ 在 G 内与路径无关的充分必要条件为: 在 G 内存在函数 u(x,y),使 du = P dx + Q dy

曲线积分的基本定理

若曲线积分 $\int_L \mathbf{F} \cdot \mathrm{d}\mathbf{r}$ 在区域 G 内与积分路径无关,则称向量场 \mathbf{F} 为保守场 (conservative field)

若向量场 ${m F}(P)$ 在 G 内为一保守场,则一定存在一数量函数 f(P),使得 ${m F}=\nabla f$,而曲线积分 $\int_L {m F}\cdot {
m d}r$ 在 G 内与路径无关,且

$$\int_{T} \mathbf{F} \cdot \mathrm{d}r = f(B) - f(A)$$

其中 L 是位于 G 内起点为 A, 终点为 B 的任意分段光滑曲线

向量场 F 为保守场的充分必要条件是 $\nabla \times F = 0$. 即 F 的旋度为 0

对面积的曲面积分

定义

设曲面 Σ 是光滑的,函数 f(x,y,z) 在 Σ 上有界,把 Σ 任意分成 n 小块 ΔS_i (ΔS_i 同时表示第 i 小块曲面的面积),设 (ξ_i,η_i,ζ_i) 是 ΔS_i 上任意取定的一点,做乘积 $f(\xi_i,\eta_i,\zeta_i)\Delta S_i$,并作和 $\sum_{i=1}^n f(\xi_i,\eta_i,\zeta_i)\Delta S_i$,如果当各小块曲面的直径的最大值 $\lambda \to 0$ 时,这和的极限总存在,且与曲面 Σ 的分法及点 (ξ_i,η_i,ζ_i) 的取法无关,那么称此极限为函数 f(x,y,z) 在曲面 Σ 上对面积的曲面积分或第一类曲面积分,记作 $\iint_{\Sigma} f(x,y,z) \mathrm{d} S$,即

$$\iint_{\Sigma} f(x, y, z) dS = \lim_{\lambda \to 0} \sum_{i=1}^{n} f(\xi_i, \eta_i, \zeta_i) \Delta S_i$$

其中 f(x,y,z) 叫做被积函数, Σ 叫做积分曲面

性质

若 α 与 β 均为常数,则

$$\iint_{\Sigma} [\alpha f(P) + \beta g(P)] dS = \alpha \iint_{\Sigma} f(P) dS + \beta \iint_{\Sigma} g(P) dS$$

• 若曲面 Σ 可以被分为有限多个曲面 $\Sigma_1, \Sigma_2, \cdots, \Sigma_n$,则

$$\iint_{\Sigma} f(P) dS = \sum_{i=1}^{n} \iint_{\Sigma_{i}} f(P) dS$$

• 设在 $\Sigma \perp f(P) \leq g(P)$,则

$$\iint_{\Sigma} f(P) dS \le \iint_{\Sigma} g(P) dS$$

特别有

$$\left| \iint_{\Sigma} f(P) dS \right| \leq \iint_{\Sigma} |f(P)| dS$$

计算

若曲面 Σ 可由参数方程 G(u,v)=(x(u,v),y(u,v),z(u,v)) 表示,则函数 f(x,y,z) 对于曲面 Σ 的曲面积分可表示为

$$\iint_{\Sigma} f(x, y, z) dS = \iint_{D} f(x(u, v), y(u, v), z(u, v)) \left\| \frac{\partial \mathbf{G}}{\partial u} \times \frac{\partial \mathbf{G}}{\partial v} \right\| du dv$$

对坐标的曲面积分

定义

设 Σ 为光滑的有向的,向量函数 F(x,y,z) 在 z 轴方向上的分量函数 $F_z(x,y,z)$ 在 Σ 上有界,把 Σ 任意分成 n 小块 ΔS_i (ΔS_i 同时表示第 i 小块曲面的面积), ΔS_i 在 xOy 面上的投影为 (ΔS_i) $_{xy}$,设 (ξ_i,η_i,ζ_i) 是 ΔS_i 上任意取定的一点,做乘积 $F_z(\xi_i,\eta_i,\zeta_i)(\Delta S_i)_{xy}$,并作和 $\sum_{i=1}^n F_z(\xi_i,\eta_i,\zeta_i)(\Delta S_i)_{xy}$,如果当各小块曲面的直径的最大值 $\lambda \to 0$ 时,这和的极限总存在,且与曲面 Σ 的分法及点 (ξ_i,η_i,ζ_i) 的取法无关,那么称此极限为函数 $F_z(x,y,z)$ 在有向曲面 Σ 上对坐标x、y 的曲面积分或第二类曲面积分,记作 $\iint_{\Sigma} F_z(x,y,z) dx dy$,即

$$\iint_{\Sigma} F_z(x, y, z) dx dy = \lim_{\lambda \to 0} \sum_{i=1}^n F_z(\xi_i, \eta_i, \zeta_i) (\Delta S_i)_{xy}$$

其中 $F_z(x,y,z)$ 叫做被积函数, Σ 叫做积分曲面

类似的可定义对坐标 y、z 的曲面积分以及对坐标 x、z 的曲面积分

$$\iint_{\Sigma} F_x(x, y, z) dy dz = \lim_{\lambda \to 0} \sum_{i=1}^n F_x(\xi_i, \eta_i, \zeta_i) (\Delta S_i)_{yz}$$

$$\iint_{\Sigma} F_y(x, y, z) dx dz = \lim_{\lambda \to 0} \sum_{i=1}^n F_y(\xi_i, \eta_i, \zeta_i) (\Delta S_i)_{xz}$$

应用中常出现的形式为求向量场 F(x,y,z) 在曲面有向 Σ 上的通量 Φ , 为方便记为

$$\Phi(\Sigma) = \iint_{\Sigma} F_x(x, y, z) dy dz + \iint_{\Sigma} F_y(x, y, z) dx dz + \iint_{\Sigma} F_z(x, y, z) dx dy$$
$$= \iint_{\Sigma} F_x(x, y, z) dy dz + F_y(x, y, z) dx dz + F_z(x, y, z) dx dy$$
$$= \iint_{\Sigma} \mathbf{F}(x, y, z) d\mathbf{S}$$

其中 dS 为有向面积微元

性质

若 α 与 β 均为常数,则

$$\iint_{\Sigma} [\alpha \mathbf{F}(P) + \beta \mathbf{G}(P)] \cdot d\mathbf{S} = \alpha \iint_{\Sigma} \mathbf{F}(P) \cdot d\mathbf{S} + \beta \iint_{\Sigma} \mathbf{G}(P) \cdot d\mathbf{S}$$

• 若有向曲面 Σ 可以被分为有限多个曲面 $\Sigma_1, \Sigma_2, \cdots, \Sigma_n$, 则

$$\iint_{\Sigma} \boldsymbol{F}(P) \cdot d\boldsymbol{S} = \sum_{i=1}^{n} \iint_{\Sigma_{i}} \boldsymbol{F}(P) \cdot d\boldsymbol{S}$$

• 设 Σ 是有向光滑曲面, Σ^- 是 Σ 的反向光滑曲面(曲面重叠,但法向量相反),则

$$\iint_{\Sigma^{-}} \boldsymbol{F}(P) \cdot d\boldsymbol{S} = -\iint_{\Sigma} \boldsymbol{F}(P) \cdot d\boldsymbol{S}$$

计算

若曲面 Σ 可由参数方程 G(u,v)=(x(u,v),y(u,v),z(u,v)) 表示,则函数 f(x,y,z) 对于曲面 Σ 的曲面积分可表示为

$$\iint_{\Sigma} \mathbf{F}(x, y, z) \cdot dS = \iint_{D} \mathbf{F}(x(u, v), y(u, v), z(u, v)) \cdot \left(\frac{\partial \mathbf{G}}{\partial u} \times \frac{\partial \mathbf{G}}{\partial v}\right) du dv$$

其中曲面 Σ 的正向与 $\frac{\partial \mathbf{G}}{\partial u} \times \frac{\partial \mathbf{G}}{\partial v}$ 的方向相同

两类曲线积分之间的联系

$$\iint_{\Sigma} \boldsymbol{F} \cdot \mathrm{d} \, \boldsymbol{S} = \iint_{\Sigma} F_N \mathrm{d} \, S$$

其中 F_N 为向量 F 在曲面法向量 N 上的投影

高斯通量公式 Gauss' flux theorem

设空间闭合区域 Ω 是由分段光滑的闭曲面 $\partial\Omega$ 所围成,若向量函数 $\mathbf{F}(x,y,z)$ 的各个分量 F_x 、 F_y 与 F_z 再 Ω 上具有一阶连续偏导数,则

$$\Phi(\partial\Omega) = \iint_{\partial\Omega} \mathbf{F} \cdot d\mathbf{S} = \iiint_{\Omega} \left(\frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z} \right) dv = \iiint_{\Omega} \nabla \cdot \mathbf{F} dv$$

这里 $\partial\Omega$ 是 Ω 的整个边界曲面的外侧

若对于空间区域 G 内任意比去买你所围成的区域全属于 G,则称 G 是空间二维单连通区域;如果 G 内任一闭曲线中可以组成一张完全属于 G 的曲面,则称 G 是空间一维单连通区域

设 G 是空间二维单连通区域, 若 P(x,y,z)、Q(x,y,z) 与 R(x,y,z) 在 G 内具有一阶连续偏导数,则曲面积分

$$\iint_{\Sigma} P \, \mathrm{d} y \, \mathrm{d} z + Q \, \mathrm{d} x \, \mathrm{d} z + R \, \mathrm{d} x \, \mathrm{d} y$$

在 G 内与所取平面 Σ 无关,而只取决于 Σ 的边界曲线 $\partial\Sigma$ 的充分必要条件是

$$\nabla \cdot \mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} = 0$$

在 G 内恒成立

格林第一公式与拉普拉斯算子

设函数 u(x,y,z) 与 v(x,y,z) 在闭区域 Ω 上具有一阶及二阶连续偏导数,则

$$\iint_{\partial\Omega}u\frac{\partial v}{\partial\boldsymbol{n}}\mathrm{d}S=\iiint_{\Omega}u\Delta v\mathrm{d}x\mathrm{d}y\mathrm{d}z+\iint_{\Omega}\left(\frac{\partial u}{\partial x}\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\frac{\partial v}{\partial y}+\frac{\partial u}{\partial z}\frac{\partial v}{\partial z}\right)$$

其中 $\partial\Omega$ 为闭区域 Ω 的整个边界曲面, $\frac{\partial v}{\partial n}$ 为函数 u(x,y,z) 沿 $\partial\Omega$ 的外法线方向的方向导数,符号 $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ 称为拉普拉斯 (Laplace) 算子,该公式称为格林第一公式

通量与散度 flux & divergence

设有向量场

$$\mathbf{F} = F_x \mathbf{i} + F_u \mathbf{j} + F_z \mathbf{k}$$

其中函数 F_x 、 F_y 与 F_z 均具有一阶连续偏导数, Σ 是场内的一片有向曲面,n 是 Σ 在点 (x,y,z) 处的单位法向量,则积分

$$\Phi(\Sigma) = \iint_{\Sigma} \boldsymbol{F} \cdot \boldsymbol{n} dS$$

称为向量场 F 通过曲面 Σ 向着指定侧的通量

对于向量场 F, 定义其散度 div F 为

$$\operatorname{div} \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$

若将 F 视为描述一稳定不可压缩流体的流动速度场,则 $\mathrm{div}F(M)$ 可看作为该流体在点 M 的源头强度;对于 $\mathrm{div}F(M)>0$ 的点,流体从该点发散,即正源;对于 $\mathrm{div}F(M)<0$ 的点,流体从该点汇聚,即负源;对于 $\mathrm{div}F(M)=0$ 的点,流体从该点只改变流向,即无源

若用 nabla 算子 $\nabla = \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial u}, \frac{\partial}{\partial z} \right\rangle$ 来表示,则有

$$\operatorname{div} \boldsymbol{F} = \nabla \cdot \boldsymbol{F}$$

若向量场 F 的散度 $\nabla \cdot F$ 处处为 0,则称 F 为无源场,否则称其为有源场

斯托克公式环流量与旋度

斯托克公式 Stokes' theorem

斯托克公式是格林公式的推广,即格林公式是斯托克公式在二维上的一个缺省

设 Γ 为分段光滑的空间有向闭曲线, Σ 是以 Γ 为边界的分片光滑的有向曲面, Γ 的正向与 Σ 的侧复合右手规则,若函数 $F_x(x,y,z)$ 、 $F_y(x,y,z)$ 与 $F_z(x,y,z)$ 在曲面 Σ (连同边界 Γ) 上具有一阶连续偏导数,则有

$$\iint_{\Sigma} \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right) dy dz + \left(\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \right) dx dz + \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) dx dy = \oint_{\Gamma} F_x dx + F_y dy + F_z dz$$

为方便记忆,将其用行列式表示,则有

$$\iint_{\Sigma} \begin{vmatrix} \mathrm{d} y \mathrm{d} z & \mathrm{d} x \mathrm{d} z & \mathrm{d} x \mathrm{d} y \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{vmatrix} = \oint_{\Gamma} F_x \mathrm{d} x + F_y \mathrm{d} y + F_z \mathrm{d} z$$

若引入环流量与旋度,则可表示为

$$\oint_{\Gamma} \boldsymbol{F} \cdot d\boldsymbol{r} = \iint_{\Sigma} \nabla \times \boldsymbol{F} \cdot d\boldsymbol{S}$$

空间曲线积分的路径无关

设空间区域 G 是一维单连通域,若函数 $F_x(x,y,z)$ 、 $F_y(x,y,z)$ 与 $F_z(x,y,z)$ 在 G 内具有一阶连续偏导数,则空间积分 $\int_{\Gamma} F_x \mathrm{d}x + F_y \mathrm{d}y + F_z \mathrm{d}z$ 在 G 内域路径无关的充分必要条件是

$$\frac{\partial F_z}{\partial u} = \frac{\partial F_y}{\partial z} \quad \frac{\partial F_x}{\partial z} = \frac{\partial F_z}{\partial x} \quad \frac{\partial F_y}{\partial x} = \frac{\partial F_x}{\partial y} \qquad (\text{ or } \nabla \times \mathbf{F} = \mathbf{0})$$

在 G 内恒成立

设区域 G 是空间一维单连通区域,若函数 $F_x(x,y,z)$ 、 $F_y(x,y,z)$ 与 $F_z(x,y,z)$ 在 G 内具有一阶连续偏导数,则表达式 F_x d $x+F_y$ d $y+F_z$ dz 在 G 内成为某一函数 u(x,y,z) 的全微分的充分必要条件是等式 $\nabla \times \mathbf{F} = \mathbf{0}$ 在 G 内恒成立;当该条件满足时,这函数为

$$u(x, y, z) = \int_{(x_0, y_0, z_0)}^{(x, y, z)} F_x dx + F_y dy + F_z dz + u_0$$

其中积分路径可任一取定, u_0 为 (x_0,y_0,z_0) 处的值;因而也可去

$$u(x,y,z) = \int_{x_0}^{x} F_x(x,y_0,z_0) dx + \int_{y_0}^{y} F_y(x,y,z_0) dy + \int_{z_0}^{z} F_z(x,y,z) dz + u_0$$

 (x_0, y_0, z_0) 为 G 内某一点

环流量与旋度 circulation&rotation

设有向量场

$$\boldsymbol{F} = F_x \boldsymbol{i} + F_u \boldsymbol{j} + F_z \boldsymbol{k}$$

其中函数 F_x 、 F_y 与 F_z 均具有一阶连续偏导数, Γ 是场内的一条分段光滑的有向闭曲线,r 是 Γ 在点 (x,y,z) 处的单位 切向量,则积分

$$\oint_{\mathbb{R}} \boldsymbol{F} \cdot \boldsymbol{r} \mathrm{d} s$$

称为向量场 F 沿有向曲线 Γ 的环流量,也可表示为

$$\oint_{\Gamma} oldsymbol{F} \cdot \mathrm{d} oldsymbol{r}$$

对于向量场 F, 定义其旋度 rot F 为

$$\operatorname{rot} \boldsymbol{F} = \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}\right) \boldsymbol{i} + \left(\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}\right) \boldsymbol{j} + \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right) \boldsymbol{k}$$

利用 nabla 算子来表示则有

$$\mathrm{rot} m{F} =
abla imes m{F} = egin{array}{cccc} m{i} & m{j} & m{k} \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ F_x & F_y & F_z \ \end{array}$$

其表示向量场 F 在一点上的旋转量,其旋转方向为 $\nabla \times F$ 按右手规则定义