

	ind	ord	$\operatorname{Tr}_{F_{16}}$	$\operatorname{Tr}_{F_{16}/F_4}$
(0000)			0	0
(0001)		1	0	0
(0010)		15	1	$\alpha^3 + \alpha + 1$
(0011)		5	1	$\alpha^3 + \alpha + 1$
(0100)		15	1	$\alpha^3 + \alpha$
(0101)		5	1	$\alpha^3 + \alpha$
(0110)		15	0	1
(0111)		15	0	1
(1000)		5	1	$\alpha^3 + \alpha + 1$
(1001)		15	1	$\alpha^3 + \alpha + 1$
(1010)		3	0	0
(1011)		3	0	0
(1100)		15	0	1
(1101)		15	0	1
(1110)		15	1	$\alpha^3 + \alpha$
(1111)		5	1	$\alpha^3 + \alpha$

1.

2. Незвідні поліноми матимуть вигляд $ax^2 + bx + c$. Переберемо усі можливі значення у $F_4(\{0,1,\beta,\beta+1\})$. Зазначимо, що $a \neq 0$ (інакше поліном буде першого степеню) і $c \neq 0$ (інакше поліном точно звідний).

(Вибачте, дуже багато переписувати, тому чернетку як я перебирала усе це я прикріплю іншим файлом)

Випишемо незвідні поліноми $x^2+x+1, x^2+\beta x+1, \beta x^2+1, \beta x^2+x+1, \beta x^2+\beta x+1, (\beta+1)x^2+1, (\beta+1)x^2+x+1, (\beta+1)x^2+(\beta+1)x+1, x^2+\beta, x^2+x+\beta, x^2+x+\beta, x^2+\beta x+\beta, \beta x^2+x+\beta, \beta x^2+x+\beta, \beta x^2+\beta x+\beta, (\beta+1)x^2+\beta, (\beta+1)x^2+\beta x+\beta, (\beta+1)x^2+\beta x+\beta, (\beta+1)x^2+(\beta+1)x+\beta, x^2+(\beta+1), x^2+x+(\beta+1), x^2+(\beta+1)x+(\beta+1), \beta x^2+\beta x+(\beta+1)x+(\beta+1), (\beta+1)x^2+x+(\beta+1), (\beta+1)x^2+\beta x+(\beta+1), (\beta+1)x^2+\beta x+(\beta+1)x^2+\beta x+$

3. Контрприклад $x^2 + 2x$

4. $f(x)=x^5+x^4+1=(x^2+x+1)(x^3+x+1)$. Нехай α - корінь x^2+x+1 . $\alpha^2=\alpha+1,\ \alpha^3=\alpha^2+1=1$. Тоді ord $(\alpha)=3\Longrightarrow$ ord $(x^2+x+1)=3$. Нехай β - корінь x^3+x+1 . $\beta^4=\beta\cdot\beta^3=\beta(\beta+1)=\beta^2+\beta\neq 1\Longrightarrow$ ord $(\beta)=7$. Знайдемо $t=\min\{s|2^s\geq \max\{1,1\}\}=0$. ord $(f(x))=2^0$ lcm (3,7)=21

5.
$$\frac{\varphi(5^5 - 1)}{5} = \frac{1}{5} \cdot \varphi(3124) = \frac{1}{5} \cdot \varphi(2^2 \cdot 11 \cdot 71) = \frac{1400}{5} = 280$$