Computer Vision HW2 Report

Student ID: R11921041

Name: 蔣沅均

Part 1. (10%)

• Plot confusion matrix of two settings. (i.e. Bag of sift and tiny image) (5%) Ans:

• Compare the results/accuracy of both settings and explain the result. (5%) Ans:

tiny image 的 accuracy 是 0.243,而 bag of sift 的是 0.622。兩個方法使用的 knn 分類器設定都一樣,因此可以比較出 bag of sift 相較於 tiny image 更能有效的抽取出利於場景分類的圖像特徵。

Part 2. (25%)

• Report accuracy of both models on the validation set. (2%)

Ans:

	A - mynet	B - resnet18
accuracy	0.8182	0.8824

• Print the network architecture & number of parameters of both models. What is the main difference between ResNet and other CNN architectures? (5%)

Ans:

	A - mynet	B - resnet18
# of params	317,866	11,310,666
arch	Mytericon (1): BatchNormad(13, 32, kernel_sizes(5, 5), stride-(7, 2), madding=(3, 3), blas=False) (bm(1): BatchNormad(22, eps=1e-mos-) (bm(1): BatchNormad(22, eps=1e-mos-) (bm(1): BatchNormad(22, eps=1e-mos-) (bm(1): Commod(33, 32, kernel_sizes(3, 3), stride=(1, 1), padding=(1, 1), blas=False) (bm(1): Stridenmad(22), eps=1e-85, momentum=(1, affine=True, track_running_stats=True) (commod(33, 42, kernel_sizes(3, 3), stride=(1, 1), padding=(1, 1), blas=False) (commod(32, eps=1e-85, momentum=(1, affine=True, track_running_stats=True) (commod(32, 64, kernel_sizes(3, 3), stride=(1, 2), padding=(1, 1), blas=False) (commod(32, 64, kernel_sizes(3, 3), stride=(1, 2), padding=(1, 1), blas=False) (commod(32, 64, kernel_sizes(3, 3), stride=(1, 2), padding=(1, 1), blas=False) (commod(32, 64, kernel_sizes(3, 3), stride=(1, 2), padding=(1, 1), blas=False) (commod(32, 64, kernel_sizes(3, 3), stride=(2, 2), padding=(1, 1), blas=False) (commod(32, 64, kernel_sizes(3, 3), stride=(2, 2), padding=(1, 1), blas=False) (commod(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), blas=False) (commod(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), blas=False) (commod(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), blas=False) (commod(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), blas=False) (commod(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), blas=False) (commod(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), blas=False) (commod(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), blas=False) (commod(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), blas=False) (commod(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), blas=False) (commod(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), blas=False) (commod(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), blas=False) (commod(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), blas=False) (commod(32, 64, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), blas=False) (commod(3	Institution Institution

ResNet use residual connection.

It should be easier for the solver to find the perturbations(F(x)) with reference to an identity mapping(x) than to learn the function as a new one.

 \bullet Plot four learning curves (loss & accuracy) of the training process (train/validation) for both models. Total 8 plots. (8%)

Ans:

• Briefly describe what method do you apply on your best model? (e.g. data augmentation, model architecture, loss function, etc) (10%)

Ans:

- data augmentation
 - Random Crop
 - TrivialAugment (https://arxiv.org/abs/2103.10158)
 - RandomErasing(https://arxiv.org/abs/1708.04896)
- model architecture
 - Based on Resnet18
 - Remove the first maxpool layer
 - Modify the fc module
- loss function
 - cross entropy