Romina Espinosa Varela – is684310

Sistemas Distribuidos - ITESO

4 marzo 2015

Práctica 3

Encontrar los problemas de rendimiento

Utiliza la herramienta Parallel Amplifier y contesta las siguientes preguntas que se piden a continuación.

1. ¿Cuál es el porcentaje de utilización del CPU durante la ejecución del programa?

- 2. Si la concurrencia es pobre, explica por qué.
- Sí, porque todo el tiempo se están creando nuevos hilos y esa es una operación muy costosa.

3. ¿Cuáles son las partes del programa donde se gasta la mayor parte del tiempo? En el cálculo de las distancias entre aviones.

	CPU Time: Total		
Source	Effective Time by Utilization		
	☐ Idle ☐ Poor ☐ Ok ☐ Ideal ☐ Over		
<pre>int rinic=(MAX/THREADS)*hnilo;</pre>	0.0%		
<pre>int rfin=rinic+(MAX/THREADS);</pre>	0.0%		
int i,j;	0.0%		
if(hnilo==THREADS-1)	0.0%		
rfin;	0.0%		
// printf("Hilo=%d, inicio=%d, fin=%d\n",h	0.0%		
for(i=rinic;i <rfin;i++)< td=""><td>0.0%</td></rfin;i++)<>	0.0%		
{	0.0%		
for(j=i;j <max;j++)< td=""><td>0.3%</td></max;j++)<>	0.3%		
if(i!=j)	0.2%		
if(dist(avion[i],avion[j]) <dis< td=""><td>74.1%</td></dis<>	74.1%		
{	0.0%		
<pre>EnterCriticalSection(≻);</pre>	0.0%		
avion[i].warnings++;	0.0%		
avion[j].warnings++;	0.0%		
totwarnings++;	0.0%		
LeaveCriticalSection(≻);	0.0%		
}	0.0%		
1	0.0%		

4. ¿Cuántos hilos fueron creados y terminados durante la ejecución del programa? 8,001

Resolver los problemas de rendimiento a través de la técnica llamada Thread Pools con eventos de la API de Windows

Utiliza la herramienta Parallel Amplifier y contesta las siguientes preguntas que se piden a continuación.

1. ¿Cuál es el porcentaje de utilización del CPU durante la ejecución del programa?

2. Si la concurrencia es pobre, explica por qué.

Grouping: Call Stack					
	CPU Time: Total▼		≪		
Function Stack	Effective Time by Utilization	Spin	Over		
	☐ Idle ☐ Poor ☐ Ok ☐ Ideal ☐ Over	Time	Time	■ Idle	
□ ' Total	99.9% [0.1%	0.0%	(
⊟ ≥ func@0x7dea9f2a	99.2% [0.1%	0.0%	(
☐ □ func@0x7dea9f4b	99.2% [0.1%	0.0%	(
☐ □ BaseThreadInitThunk	99.2% [0.1%	0.0%	(
☐ ≥ func@0x7dec4333	96.1% [0.1%	0.0%	(
☐ ☐ func@0x7dee22be	96.1% [0.1%	0.0%	(
■ > MyWorkCallback	95.6%	0.0%	0.0%	9.251	
🕀 🛭 NtQueryInformationT	0.3%	0.0%	0.0%	0.036	
	0.1%	0.0%	0.0%	(
	0.0%	0.1%	0.0%	(
	3.1%	0.0%	0.0%	(
□ ∨ pre_c_init	0.7%	0.0%	0.0%	(
Colocted 1 rosu(c)	05.69/	0.09/	0.09/		

Está más o menos. Se ha de seguir invirtiendo mucho tiempo en la sección crítica.

- 3. ¿Cuáles son las partes del programa donde se gasta la mayor parte del tiempo? En la función del hilo.
- 4. ¿Cuántos hilos fueron creados y terminados durante la ejecución del programa?