Graph and discrete structure

Louis Esperet (GSCOP) - 4 lectures. *Lecture 2*

Reminder

Induction

Reminder on induction.

Course

Planar graph

Steinitz (1920)

 ${\it G}$ is planar and 3-connected

 $\Leftrightarrow G$ is the skeleton of a 3d polyhedron.

 $\Leftrightarrow G$ has a planar drawing with strait line edges and in which edges face is convex.

k-connected

 ${\cal G}$ is k-connected

- $|V(G)| \ge k 1$ vertices (???)
- ullet whatever we remove $\leq k-1$ vertices, the graph remains connected.

Euler formula

n-m+f=2 for plannar graph.

Proof of Euler formula for 3-connected planar graph

Coloring planar graphs

Let G be a planar graph.

Assume that G is triangulated. (all the faces are triangle).

For each vertex v let $\omega(v) = d(v) - 6$

Question

What is $\sum_{v \in V(G)} \omega(v)$? -12.

$$\sum (d(v)-6) + \sum (2\cdot(e)-6) = \sum (d(v)-6) + 0 = 2m-6n+4m-6f = 6m-6n-6f = -6(n-m+6) = -12$$

In general, i.e. when G is not triangulated $\sum_{v \in V(G)} \omega(v) \leq -12$

(w, omega?)

$$\exists v, d(v) - 6 \le 1$$

 $d(v) \le S$

Corollary

In any planar graph, there is a vertex of degree ≤ 5 .

(Another from last time)

Any planar graph is 5-degenerate and thus, 6-colorable.

Theorem: planar graph are 5 colorable

proof by induction on the number of vertices (n)

- $\bullet \ \ \text{if} \ n \leq 5 \text{, it is fine}.$
- Assume we have proved that every planar graph for n-1 vertices is 5-colorable. We want to prove it also for n vertices.

Case 1:

G has a vertex of degree $ext{leq 4}$.

By induction G-v is 5-colorable. Color ${\sf v}$ with a color that does not appear in its neighborhood.

Case 2:

Every vertex has degree ≥ 5 .

There is a vertex of degree = 5. By induction G - v is 5-colorable.

A 1-4 cycle cannot cross a 2-5 cycle. So, at least one of the recoloring will work and v can be recolored.

4-coloring

Proposition

Any planar graph has

- a vertex of degree ≤ 4
- on a vertex of degree 5, adjacent to vertex of degree ≤ 6 .

Proof

- ullet We can assume that G is a triangulation.
- $\forall v, \ \omega(v) = d(v) 6, \ \sum \omega(v) = -12.$

Assume that we don't have vertices of degree ≤ 4 . Every vertex ha degree at least 5.

By contradiction, assume that every vertex of degree 5 has all its neighboors that have degree ≥ 7 .

d(v)	$\omega(v)$
5	-1
6	0
7	1

8	2

Idea : move the weight s.t. everyone ha weight ≥ 0

 $\mbox{Rule}:\mbox{every vertex of degree }5$ receive weight from all of it's neightboors.

After application of the rule :

Vertices of the rule, vertices of degree d=5 are ok $-1+5 imes \frac{1}{6}=0$