Ι-

▶ Lorsque $\alpha > 0$, on a $\frac{1}{n^{\alpha}} \xrightarrow[n \to +\infty]{} 0$, alors

$$\sqrt{1+n^{\alpha}} - 1 = n^{\alpha} \sqrt{1+\frac{1}{n^{\alpha}}} - 1$$

$$\underset{n \to +\infty}{\sim} n^{\alpha} \left(1 + \frac{1}{2n^{\alpha}} + o\left(\frac{1}{n^{\alpha}}\right)\right) - 1$$

$$= n^{\alpha} - \frac{1}{2} + o(1) \xrightarrow[n \to +\infty]{} +\infty$$

la série est donc divergent grossièrement.

▶ Lorsque $\alpha = 0$, on a

$$u_n = \begin{cases} \lambda(\sqrt{2} - 1) & n = 3k, k \in \mathbb{N}^* \\ \sqrt{2} - 1 & sinon \end{cases}$$

donc $\lim_{n\to+\infty} u_n \neq 0$, la série est donc divergent grossièrement.

▶ Lorsque $\alpha < 0$, on a $n^{\alpha} \xrightarrow[n \to +\infty]{} 0$, alors

$$\sqrt{1+n^{\alpha}} - 1 = 1 + \frac{1}{2}n^{\alpha} + o(n^{\alpha}) - 1$$
$$= \frac{1}{2}n^{\alpha} + o(n^{\alpha}) \underset{n \to +\infty}{\sim} \frac{1}{n^{-\alpha}}$$

donc $|u_n| \underset{n\to+\infty}{\sim} \frac{1}{n^{-\alpha}}$ cars elles sont à termes positifs.

On a $\sum u_n$ est divergente grossièrement lorsque $\alpha \geq 0$

II -

On a $\sum |u_n|$ a le même nature que $\sum \frac{1}{n^{-\alpha}}$, qui est divergent lorsque $\alpha < -1$, donc $\sum u_n$ est convergente absolument lorsque $\alpha < -1$

III -

III.A -

On a $w_n = u_{3n} + u_{3n+1} + u_{3n+2}$, donc

$$\begin{split} w_n &= \lambda \left(\sqrt{1 + \frac{1}{3n}} - 1 \right) + \left(\sqrt{1 + \frac{1}{3n+1}} - 1 \right) + \left(\sqrt{1 + \frac{1}{3n+2}} - 1 \right) \\ &= \lambda \left(\frac{1}{6n} - \frac{1}{8} \left(\frac{1}{3n} \right)^2 \right) + \frac{1}{6n+2} + \frac{1}{6n+4} - \frac{1}{8} \left(\frac{1}{(3n+1)^2} + \frac{1}{(3n+2)^2} \right) + o\left(\frac{1}{n^2} \right) \\ &= \frac{\lambda}{6n} - \frac{\lambda}{72n^2} + \frac{1}{6n} - \frac{1}{18n^2} + \frac{1}{6n} - \frac{2}{18n^2} - \frac{1}{72n^2} - \frac{1}{72n^2} + o\left(\frac{1}{n^2} \right) \\ &= \frac{\lambda}{6n} - \frac{\lambda}{72n^2} + \frac{2}{6n} - \frac{14}{72n^2} + o\left(\frac{1}{n^2} \right) \end{split}$$

On a donc
$$w_n = \frac{\lambda + 2}{6n} - \frac{\lambda + 14}{72n^2} + o\left(\frac{1}{n^2}\right)$$

III.B -

Supposons que

$$\Phi: \begin{array}{c} \mathbb{N} \to \mathbb{N} \\ n \mapsto 3n \end{array}$$

On a Φ est strictement croissante, et $\forall n \in \mathbb{N}, \Phi(n+1) - \Phi(n) = 3$. Lorsque $\alpha = -1, \sqrt{1 + \frac{1}{n}} - 1 \sim \frac{1}{n \to +\infty} \rightarrow 0$, on a donc $u_n \to 0$. Par sommation par parquets de longueur bornée, on a $\sum u_n$ et $\sum w_n$ sont de même nature.

- ▶ Lorsque $\lambda \neq -2$, $w_n \underset{n \to +\infty}{\sim} \frac{1}{6n}$, $\sum w_n$ est donc divergente (série de Riemann diverge).
- ▶ Lorsque $\lambda = -2$, $w_n \sim \frac{-1}{n \to +\infty} \frac{-1}{6n^2}$, $\sum w_n$ est donc converge (série de Riemann converge).

Finalement, on a $\sum u_n$ converge si $\lambda = -2$

IV -

Lorsque $\alpha = -1, \lambda = -2$, on a $w_n = -\frac{1}{6n^2} + o\left(\frac{1}{n^2}\right)$, et $\sum w_n$ converge. On suppose que $v_n = -w_n = \frac{1}{6n^2} + o\left(\frac{1}{n^2}\right)$, qui est une série à termes positfs.

IV.A -

Par comparaison des séries à termes positfs, on a $R_n(w) = -R_n(v) = -R_n(\frac{1}{6n^2})$, en notant $f: n \mapsto \frac{1}{6n^2}$, par une comparaison série-intégrale, on a : $R_n(v) \sim \frac{1}{6n}$ car $f(n) = o\left(\frac{1}{6n}\right) = o\left(\int_n^{+\infty} f(t) dt\right)$, on a donc $R_n(w) \sim -\frac{1}{6n}$

IV.B -

On a $R_{3n-1}(u) = \sum_{k=3n}^{+\infty} u_k = \sum_{k=n}^{+\infty} w_k = R_n(w)$, donc $R_{3n-1}(u) \sim -\frac{1}{6n}$ Et puis, on a

$$R_{3n}(u) = R_{3n-1}(u) - u_{3n}$$

$$\underset{n \to +\infty}{\sim} -\frac{1}{6n} - (-2)\left(\sqrt{\frac{1}{3n} + 1} - 1\right)$$

$$\underset{n \to +\infty}{\sim} \frac{1}{6n}$$

donc
$$R_{3n}(u) \underset{n \to +\infty}{\sim} \frac{1}{6n}$$

IV.C -

On a

$$R_{3n+1}(u) = R_{3n}(u) - u_{3n+1}$$

$$= \frac{1}{6n} - \left(\sqrt{1 + \frac{1}{3n+1}} - 1\right)$$

$$= \frac{1}{6n} - \left(1 + \frac{1}{6n+2} - 1 + o\left(\frac{1}{3n+1}\right)\right)$$

$$= o(\frac{1}{n})$$

Il tends vers 0 le plus vite lorsque n tends vers $+\infty$