

UiO • Department of Mathematics
University of Oslo

Join of hexagons and Calabi–Yau threefolds

Public defence

Fredrik Meyer

November 8, 2017

Outline of the thesis

- Unsuccessful attempts? to find new hyper-Kähler varieties.
 - Strategy: Naïvely perturb monomial equations of Stanley–Reisner ideals of known triangulations of CP².

Outline of the thesis

- Unsuccessful attempts? to find new hyper-Kähler varieties.
 - Strategy: Naïvely perturb monomial equations of Stanley–Reisner ideals of known triangulations of \mathbb{CP}^2 .
- The topology of smoothings of $C(dP_6)$.
 - Identify the smoothings as hyperplane complements in other spaces, and use exact sequences from algebraic topology.

Outline of the thesis

- Unsuccessful attempts? to find new hyper-Kähler varieties.
 - Strategy: Naïvely perturb monomial equations of Stanley–Reisner ideals of known triangulations of \mathbb{CP}^2 .
- The topology of smoothings of $C(dP_6)$.
 - Identify the smoothings as hyperplane complements in other spaces, and use exact sequences from algebraic topology.
- New Calabi-Yau varieties and potential mirror partners.
 - Found by smoothing a certain Stanley—Reisner sphere.

- Given a simplicial complex \mathcal{F} , we get a Stanley–Reisner scheme $\mathbb{P}(\mathcal{F})$.
- Is a union of projective spaces $\mathbb{P}^{\dim f}$, where f is a face of \mathcal{F} .

Example

From a simplicial complex to a union of \mathbb{P}^1 's.

The ideal is generated by $x_i x_{i+2} = x_i x_{i+3} = 0$ (i = 0, ..., 5).

- Join of two subschemes *X* and *Y*: The (closure of) the union of all lines between *X* and *Y*.
- Join of two Stanley–Reisner schemes $\mathbb{P}(\mathcal{F})$ and $\mathbb{P}(\mathcal{G})$ is $\mathbb{P}(\mathcal{F}*\mathcal{G})$, where the faces of $\mathcal{F}*\mathcal{G}$ are $f \sqcup g$ for $f \in \mathcal{F}$, $g \in \mathcal{G}$.

- Join of two subschemes *X* and *Y*: The (closure of) the union of all lines between *X* and *Y*.
- Join of two Stanley–Reisner schemes $\mathbb{P}(\mathcal{F})$ and $\mathbb{P}(\mathcal{G})$ is $\mathbb{P}(\mathcal{F} * \mathcal{G})$, where the faces of $\mathcal{F} * \mathcal{G}$ are $f \sqcup g$ for $f \in \mathcal{F}$, $g \in \mathcal{G}$.

Smoothings of Stanley–Reisner schemes:

- Join of two subschemes *X* and *Y*: The (closure of) the union of all lines between *X* and *Y*.
- Join of two Stanley–Reisner schemes $\mathbb{P}(\mathcal{F})$ and $\mathbb{P}(\mathcal{G})$ is $\mathbb{P}(\mathcal{F}*\mathcal{G})$, where the faces of $\mathcal{F}*\mathcal{G}$ are $f \sqcup g$ for $f \in \mathcal{F}$, $g \in \mathcal{G}$.

Smoothings of Stanley–Reisner schemes:

- Given a basis for $T^1(S_{\mathbb{P}(\mathcal{K})}/k, S_{\mathbb{P}(\mathcal{K})})_0$, we can try to find a smoothing of $X_0 = \mathbb{P}(\mathcal{K})$.
- \blacksquare A smoothing X of X_0 will have many of the same properties:
 - The same Hilbert polynomial.
 - By semicontinuity, if X_0 is a sphere, X will be Calabi–Yau.

Calabi-Yau varieties

Definition

A Calabi–Yau variety is an irreducible, smooth, projective scheme X/\mathbb{C} of dimension 3 satisfying:

$$\blacksquare \ H^0(X,\mathscr{O}_X)=H^3(X,\mathscr{O}_X)=\mathbb{C} \ \text{and} \ H^1(X,\mathscr{O}_X)=H^2(X,\mathscr{O}_X)=0.$$

- The canonical sheaf is trivial: $\omega_X \simeq \mathscr{O}_X$.
- Easiest invariants are the Euler characteristic and the Hodge numbers, $h^{ij} = h^i(X, \Omega^i_{X/\mathbb{C}})$.
- We always have $\chi = 2(h^{11} h^{12})$.

$$h^{00}$$
 h^{01}
 h^{10}
 h^{02}
 h^{11}
 h^{20}
 h^{03}
 h^{12}
 h^{21}
 h^{31}
 h^{23}
 h^{32}
 h^{33}

Calabi-Yau varieties

Definition

A Calabi–Yau variety is an irreducible, smooth, projective scheme X/\mathbb{C} of dimension 3 satisfying:

$$\blacksquare \ H^0(X,\mathscr{O}_X)=H^3(X,\mathscr{O}_X)=\mathbb{C} \ \text{and} \ H^1(X,\mathscr{O}_X)=H^2(X,\mathscr{O}_X)=0.$$

- The canonical sheaf is trivial: $\omega_X \simeq \mathscr{O}_X$.
- Easiest invariants are the Euler characteristic and the Hodge numbers, $h^{ij} = h^i(X, \Omega^i_{X/\mathbb{C}})$.
- We always have $\chi = 2(h^{11} h^{12})$.

Hodge numbers

The quintic $X = V(f) \subset \mathbb{P}^4$ is the canonical example of a Calabi–Yau. It has Hodge numbers $h^{11} = 1$ and $h^{12} = 101$.

Remark (Heuristic)

The number h^{12} is the dimension of the "space of parameters" of X. The following heuristic will give us the correct Hodge number:

- The space of degree 5 polynomials $H^0\left(\mathbb{P}^4, \mathscr{O}_{\mathbb{P}^4}(5)\right)$ in \mathbb{P}^4 is $\binom{4+5}{5} = \binom{9}{4} = 126$ -dimensional. Hence $\mathbb{P}\left(H^0\left(\mathbb{P}^4, \mathscr{O}_{\mathbb{P}^4}(5)\right)\right) = \mathbb{P}^{125}$.
- This is not unique, but we can act by PGL(5) to identify isomorphic quintics. We have $\dim PGL(5) = 25 1 = 24$.
- In total: 125 24 = 101, which is $h^{12}(X)$.

Mirror symmetry

- Calabi–Yau threefolds seem to "always" have "mirror partners".
- Mirror partner X° to X has "mirrored Hodge diamond".
- Hence $\chi(X^{\circ}) = -\chi(X)$.

			Χ			
			1			
		0		0		
	0		1		0	
1		101		101		1
	0		1		0	
		0		0		
			1			

Mirror symmetry

- Calabi-Yau threefolds seem to "always" have "mirror partners".
- Mirror partner X° to X has "mirrored Hodge diamond".
- Hence $\chi(X^{\circ}) = -\chi(X)$.

X							X°							
			1								1			
		0		0						0		0		
	0		1		0				0		101		0	
1		101		101		1		1		1		1		1
	0		1		0				0		101		0	
		0		0						0		0		
			1								1			

- Suppose X has a natural degeneration X_0 with a finite automorphism group G.
- **2** Find a family $\pi \colon \mathscr{X} \to S$ on which G act, and such that the general fiber X_t has only isolated singularities.
- There might be a finite subgroup H of the big torus acting. A mirror candidate is then a crepant resolution of X_t/H .

- The general quintic degenerates to the singular scheme $V(x_0x_1x_2x_3x_4)$.
- **2** Find a family $\pi \colon \mathscr{X} \to S$ on which G act, and such that the general fiber X_t has only isolated singularities.
- There might be a finite subgroup H of the big torus acting. A mirror candidate is then a crepant resolution of X_t/H .

- The general quintic degenerates to the singular scheme $V(x_0x_1x_2x_3x_4)$.
- 2 The family defined by $f_t = x_0 x_1 x_2 x_3 x_4 + t \sum_{i=1}^5 x_i^5$ is S_5 -invariant.
- There might be a finite subgroup H of the big torus acting. A mirror candidate is then a crepant resolution of X_t/H .

- The general quintic degenerates to the singular scheme $V(x_0x_1x_2x_3x_4)$.
- 2 The family defined by $f_t = x_0 x_1 x_2 x_3 x_4 + t \sum_{i=1}^5 x_i^5$ is S_5 -invariant.
- There is an action of $H \triangleq (\mathbb{Z}/5)^5/(\mathbb{Z}/5)$ on X_t . Crepant resolutions of X_t/H exists, and is a mirror.

Sometimes the following method produces a mirror manifold of a Calabi–Yau *X*:

- The general quintic degenerates to the singular scheme $V(x_0x_1x_2x_3x_4)$.
- The family defined by $f_t = x_0 x_1 x_2 x_3 x_4 + t \sum_{i=1}^5 x_i^5$ is S_5 -invariant.
- There is an action of $H \triangleq (\mathbb{Z}/5)^5/(\mathbb{Z}/5)$ on X_t . Crepant resolutions of X_t/H exists, and is a mirror.

We can use Roan's formula to compute the Euler characteristic:

Theorem (Roan's formula)

$$\chi(\widetilde{X_t/H}) = \frac{1}{|H|} \sum_{g,h \in H} \chi(X_t^g \cap X_t^h)$$

The cone over dP₆

- Let dP₆ ⊂ P⁶ be an anticanonically embedded del Pezzo surface of degree 6. Let C(dP₆) be its affine cone in A⁷.
- The equations are

$$\begin{vmatrix} y & x_1 & x_2 \\ x_4 & y & x_3 \\ x_5 & x_6 & y \end{vmatrix} \le 1.$$

The origin is an isolated singularity.

- There are two smoothing components.
- They come from perturbations of different forms of writing the equation.
- Can also write the equations as:

The two smoothing components of dP₆

We can identify this component with $\mathbb{P}(\mathcal{T}_{\mathbb{P}^2}) \setminus H$, where $\mathcal{T}_{\mathbb{P}^2}$ is the tangent bundle of \mathbb{P}^2 .

$$\begin{vmatrix} y & x_1 & x_2 \\ x_4 & y + t_1 & x_3 \\ x_5 & x_6 & y + t_2 \end{vmatrix} \le 1$$

The second component can be identified with $(\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1) \setminus H$, where H is a (1, 1, 1)-divisor.

Construction of a new Calabi–Yau: X_1

■ Let E be a vector space with basis e_1 , e_2 , e_3 . Consider

$$\mathbb{P}^{17} = \mathbb{P}(E \otimes E \oplus E \otimes E).$$

The elements are pairs of 3×3 matrices, equal up to scalar multiplication.

- Consider the set of pairs M of matrices (A, B) with rank 1 + 1.
- Intersect M with a generic $\mathbb{P}^{11} \subset \mathbb{P}^{17}$. Let $X_1 \stackrel{\Delta}{=} M \cap \mathbb{P}^{11}$.

Theorem

 X_1 is a smooth Calabi–Yau with Euler characteristic -72.

Construction of a new Calabi–Yau: X_2

■ Let F be a vector space with basis f_1 , f_2 . Consider

$$\mathbb{P}^{15} = \mathbb{P}(F \otimes F \otimes F \oplus F \otimes F \otimes ?????).$$

The elements are pairs of $2 \times 2 \times 2$ -tensors, equal up to scalar multiplication.

- Consider the set of pairs N of tensors (A, B) with rank 1 + 1.
- Intersect N with a generic $\mathbb{P}^{11} \subset \mathbb{P}^{15}$. Let $X_2 \stackrel{\triangle}{=} N \cap \mathbb{P}^{11}$.

Theorem

 X_2 is a smooth Calabi–Yau with Euler characteristic –48.

Construction of a new Calabi–Yau: X_3

■ Let *E* and *F* be as before. Consider

$$\mathbb{P}^{16} = \mathbb{P}(E \otimes E \oplus F \otimes F \otimes ?????).$$

- Consider the set of pairs W of tensors (A, B) with rank 1 + 1.
- Intersect W with a generic $\mathbb{P}^{11} \subset \mathbb{P}^{16}$. Let $X_3 \stackrel{\Delta}{=} W \cap \mathbb{P}^{11}$.

Theorem

 X_3 is a smooth Calabi–Yau with Euler characteristic -60.

Conjecture

 X_1 has Hodge numbers $h^{11} = 3$ and $h^{12} = 39$.

"Reason".

We know the Euler characteristic, so it is enough to find h^{12} .

Conjecture

 X_1 has Hodge numbers $h^{11} = 3$ and $h^{12} = 39$.

- We know the Euler characteristic, so it is enough to find h^{12} .
- The Grassmannian of \mathbb{P}^{11} 's in \mathbb{P}^{17} is 72-dimensional.

Conjecture

 X_1 has Hodge numbers $h^{11} = 3$ and $h^{12} = 39$.

- We know the Euler characteristic, so it is enough to find h^{12} .
- The Grassmannian of \mathbb{P}^{11} 's in \mathbb{P}^{17} is 72-dimensional.
- **3** We can act with automorphisms from $\prod_{i=1}^4 GL(E)$.

Conjecture

 X_1 has Hodge numbers $h^{11} = 3$ and $h^{12} = 39$.

- We know the Euler characteristic, so it is enough to find h^{12} .
- The Grassmannian of \mathbb{P}^{11} 's in \mathbb{P}^{17} is 72-dimensional.
- **3** We can act with automorphisms from $\prod_{i=1}^4 GL(E)$.
- The subgroup $\{t_1 t_2 = t_3 t_4\} \subset (\mathbb{C}^*)^4 \subset \prod_{i=1}^4 \mathrm{GL}(E)$ acts trivially.

Conjecture

 X_1 has Hodge numbers $h^{11} = 3$ and $h^{12} = 39$.

- We know the Euler characteristic, so it is enough to find h^{12} .
- The Grassmannian of \mathbb{P}^{11} 's in \mathbb{P}^{17} is 72-dimensional.
- **3** We can act with automorphisms from $\prod_{i=1}^4 GL(E)$.
- The subgroup $\{t_1 t_2 = t_3 t_4\} \subset (\mathbb{C}^*)^4 \subset \prod_{i=1}^4 \mathrm{GL}(E)$ acts trivially.
- **5** Hence $h^{12} = 72 \left(\dim \prod_{i=1}^{4} GL(E) 3 \right) = 72 33 = 39.$

Mirror candidate for X_1

Using the mirror Ansatz, we propose mirror candidates for X_1 and X_2 .

- There is an $H = \mathbb{Z}/3$ -action on E defined by $e_i \mapsto \omega^i e_i$.
- Another $\mathbb{Z}/3$ -action $e_i \mapsto e_{i+1}$.
- Extends to actions on $\mathbb{P}(E \otimes E \oplus E \otimes E) = \mathbb{P}^{17}$.
- Choose invariant \mathbb{P}^{11} : Defined by

$$f_{ij}^{\alpha} = e_{ij}^{\alpha} + t_{-i-j}^{\alpha} e_{-i-j,-i-j}^{\alpha+1}$$

for $i, j \in \mathbb{Z}/3 \times \mathbb{Z}/3$ $(i \neq j)$ and $\alpha = 0, 1$.

■ The resulting $X_{H_t} \stackrel{\triangle}{=} \mathbb{P}^{11} \cap M$ is singular with 48 isolated double point singularities.

Mirror candidate for X_1

- We divide out by the *H*-action and resolve: $X_1^{\circ} = \stackrel{\triangle}{=} ?X_{H_1}/H$.
- Roan's formula gives:

$$\chi(X_1^\circ) = \frac{1}{3}(24 + 8 \cdot 24) = 72.$$

Based on this calculation and the mirror heuristic, we conjecture:

Conjecture

 X_1° is a mirror of X_1 .

Remark

A very similar construction gives a mirror candidate for X_2 .

UiO Department of Mathematics University of Oslo

Join of hexagons and Calabi–Yau threefolds
Public defence

