0.1 分段低次插值

0.1.1 高次插值的病态性质

上面我们根据区间 [a,b] 上给出的节点做插值多项式 $L_n(x)$ 近似 f(x),一般总认为 $L_n(x)$ 的次数 n 越高逼近 f(x) 的精度越好, 但实际上并非如此. 这是因为对任意的插值节点, 当 $n \to \infty$ 时, $L_n(x)$ 不一定收敛于 f(x). 20 世纪 初龙格 (Runge) 就给出了一个等距节点插值多项式 $L_n(x)$ 不收敛于 f(x) 的例子. 他给出的函数为 $f(x) = 1/(1+x^2)$, 它在 [-5,5] 上各阶导数均存在. 在 [-5,5] 上取 n+1 个等距节点 $x_k = -5 + 10 \frac{k}{n}$ ($k=0,1,\cdots,n$) 所构造的拉格朗日插值多项式为

$$L_n(x) = \sum_{j=0}^n \frac{1}{1 + x_j^2} \frac{\omega_{n+1}(x)}{(x - x_j)\omega'_{n+1}(x_j)}.$$

令 $x_{n-1/2} = \frac{1}{2}(x_{n-1} + x_n)$,则 $x_{n-1/2} = 5 - \frac{5}{n}$,表 2-5 列出了当 $n = 2, 4, \cdots$,20 时的 $L_n(x_{n-1/2})$ 的计算结果及在 $x_{n-1/2}$ 上的误差 $R(x_{n-1/2})$. 可以看出,随着 n 的增加, $R(x_{n-1/2})$ 的绝对值几乎成倍地增加。这说明当 $n \to \infty$ 时, L_n 在 [-5,5] 上不收敛。龙格证明了,存在一个常数 $c \approx 3.63$,使得当 $|x| \leqslant c$ 时, $\lim_{n \to \infty} L_n(x) = f(x)$,而当 |x| > c 时 { $L_n(x)$ } 发散。

一			
n	$f(x_{n-1/2})$	$L_n(x_{n-1/2})$	$R(x_{n-1/2})$
2	0.137931	0.759615	-0.621684
4	0.066390	-0.356826	0.423216
6	0.054463	0.607879	-0.553416
8	0.049651	-0.831017	0.880668
10	0.047059	1.578721	-1.531662
12	0.045440	-2.755000	2.800440
14	0.044334	5.332743	-5.288409
16	0.043530	-10.173867	10.217397
18	0.042920	20.123671	-20.080751
20	0.042440	-39.952449	39.994889

表 1: 计算结果及误差

下面取 n = 10, 根据计算画出 $y = L_{10}(x)$ 及 $y = 1/(1 + x^2)$ 在 [-5, 5] 上的图形, 见图 1.

从图 1看到, 在 $x = \pm 5$ 附近 $L_{10}(x)$ 与 $f(x) = 1/(1 + x^2)$ 偏离很远, 例如 $L_{10}(4.8) = 1.80438$, f(4.8) = 0.04160. 这说明用高次插值多项式 $L_n(x)$ 近似 f(x) 效果并不好, 因而通常不用高次插值, 而用分段低次插值. 从本例看到,

如果我们把 $y = 1/(1+x^2)$ 在节点 $x = 0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5$ 处用折线连起来显然比 $L_{10}(x)$ 逼近 f(x) 好得多. 这正是我们下面要讨论的分段低次插值的出发点.

0.1.2 分段低次插值

定理 0.1 (分段线性插值)

若已知函数 $f \in D^2[a,b]$ 在节点 $a=x_0 < x_1 < \cdots < x_n = b$ 上的函数值 f_0, f_1, \cdots, f_n , 记 $h_k = x_{k+1} - x_k$, $h = \max_{k} h_k$, 则存在一折线函数 $I_h(x)$ 满足:

- (1) $I_h(x) \in C[a, b]$;
- (2) $I_h(x_k) = f_k \ (k = 0, 1, \dots, n);$
- (3) $I_h(x)$ 在每个小区间 $[x_k, x_{k+1}]$ 上是线性函数.

并且 $I_h(x)$ 在每个小区间 $[x_k, x_{k+1}]$ 上可表示为

$$I_h(x) = \frac{x - x_{k+1}}{x_k - x_{k+1}} f_k + \frac{x - x_k}{x_{k+1} - x_k} f_{k+1}, \quad x_k \leqslant x \leqslant x_{k+1}, \quad k = 0, 1, \dots, n-1.$$
 (1)

称 $I_h(x)$ 为分段线性插值函数. 我们有误差估计

$$\max_{\alpha \leqslant x \leqslant b} |f(x) - I_h(x)| \leqslant \frac{M_2}{8} h^2, \tag{2}$$

其中 $M_2 = \max_{a \leqslant x \leqslant b} |f''(x)|$. 进而 $I_h(x)$ 在 [a,b] 上一致收敛到 f(x).

 \Diamond

笔记 分段线性插值就是通过插值点用折线段连接起来逼近 f(x).

笔记 分段线性插值函数 $I_h(x)$ 的导数是间断的, 若在节点 x_k $(k=0,1,\cdots,n)$ 上除已知函数值 f_k 外还给出导数值 $f_k'=m_k$ $(k=0,1,\cdots,n)$, 这样就可构造一个导数连续的分段插值函数, 即分段三次 Hermite(埃尔米特) 插值.

证明 取 $I_h(x)$ 在每个小区间 $[x_k, x_{k+1}]$ 上的表示为

$$I_h(x) = \frac{x - x_{k+1}}{x_k - x_{k+1}} f_k + \frac{x - x_k}{x_{k+1} - x_k} f_{k+1}, \quad x_k \leq x \leq x_{k+1}, \quad k = 0, 1, \dots, n-1.$$

显然这样的 $I_h(x)$ 满足插值条件 (1)(2)(3).

分段线性插值的误差估计可利用插值余项 (??)得到

$$\max_{x_k \leqslant x \leqslant x_{k+1}} |f(x) - I_h(x)| \leqslant \frac{M_2}{2} \max_{x_k \leqslant x \leqslant x_{k+1}} |(x - x_k)(x - x_{k+1})|$$

或

$$\max_{a \leqslant x \leqslant b} |f(x) - I_h(x)| \leqslant \frac{M_2}{8} h^2,$$

其中 $M_2 = \max_{a \leqslant x \leqslant b} |f''(x)|$. 由此还可得到

$$\lim_{h \to 0} I_h(x) = f(x)$$

在 [a,b] 上一致成立, 故 $I_h(x)$ 在 [a,b] 上一致收敛到 f(x).

定理 0.2 (分段三次 Hermite(埃尔米特) 插值)

若已知函数 $f \in C^4[a,b]$ 在节点 $a = x_0 < x_1 < \dots < x_n = b$ 上的函数值 f_0, f_1, \dots, f_n , 记 $h_k = x_{k+1} - x_k$, $h = \max_k h_k$, 则存在一个导数连续的分段插值函数 $I_h(x)$ 满足条件:

- (1) $I_h(x) \in C^1[a,b]$;
- (2) $I_h(x_k) = f_k, I'_h(x_k) = f'_k (k = 0, 1, \dots, n);$
- (3) $I_h(x)$ 在每个小区间 $[x_k, x_{k+1}]$ 上是三次多项式.

并且 $I_h(x)$ 在每个小区间 $[x_k, x_{k+1}]$ 上的表达式为

$$I_h(x) = \left(\frac{x - x_{k+1}}{x_k - x_{k+1}}\right)^2 \left(1 + 2\frac{x - x_k}{x_{k+1} - x_k}\right) f_k + \left(\frac{x - x_k}{x_{k+1} - x_k}\right)^2 \left(1 + 2\frac{x - x_{k+1}}{x_k - x_{k+1}}\right) f_{k+1}$$

$$+\left(\frac{x-x_{k+1}}{x_k-x_{k+1}}\right)^2(x-x_k)f_k' + \left(\frac{x-x_k}{x_{k+1}-x_k}\right)^2(x-x_{k+1})f_{k+1}'. \tag{3}$$

上式对于 $k=0,1,\cdots,n-1$ 成立. 称 $I_h(x)$ 为分段三次 Hermite(埃尔米特) 插值函数. 我们有误差估计

$$\max_{a \le x \le b} |f(x) - I_h(x)| \le \frac{h^4}{384} \max_{a \le x \le b} |f^{(4)}(x)|,$$

其中 $h = \max_{0 \le k \le n-1} (x_{k+1} - x_k)$.

 \Diamond

笔记 这个定理表明分段三次埃尔米特插值比分段线性插值效果明显改善. 但这种插值要求给出节点上的导数值, 所要提供的信息太多, 其光滑度也不高 (只有一阶导数连续), 改进这种插值以克服其缺点就导致三次样条插值的提出.

证明 根据两点三次插值多项式 (??), 可取 $I_h(x)$ 在区间 $[x_k, x_{k+1}]$ 上的表达式为

$$\begin{split} I_h(x) &= \left(\frac{x-x_{k+1}}{x_k-x_{k+1}}\right)^2 \left(1+2\frac{x-x_k}{x_{k+1}-x_k}\right) f_k + \left(\frac{x-x_k}{x_{k+1}-x_k}\right)^2 \left(1+2\frac{x-x_{k+1}}{x_k-x_{k+1}}\right) f_{k+1} \\ &+ \left(\frac{x-x_{k+1}}{x_k-x_{k+1}}\right)^2 (x-x_k) f_k' + \left(\frac{x-x_k}{x_{k+1}-x_k}\right)^2 (x-x_{k+1}) f_{k+1}'. \end{split}$$

上式对于 $k = 0, 1, \dots, n-1$ 成立. 上式显然满足插值条件 (1)(2)(3).

利用三次埃尔米特插值多项式的余项 (??), 又注意到 $\max_{x_k \leq x \leq x_{k+1}} \left\{ (x - x_k)^2 (x - x_{k+1})^2 \right\} = \frac{h_k^4}{16} (求导易证), 其中 h_k = x_{k+1} - x_k$, 故可得误差估计

$$|f(x) - I_h(x)| \leqslant \frac{1}{4!} \max_{x_k \leqslant x \leqslant x_{k+1}} |f^{(4)}(x)| (x - x_k)^2 (x - x_{k+1})^2 \leqslant \frac{1}{24} \max_{x_k \leqslant x \leqslant x_{k+1}} |f^{(4)}(x)| \cdot \frac{h_k^4}{16}$$

$$= \frac{1}{384} h_k^4 \max_{x_k \leqslant x \leqslant x_{k+1}} |f^{(4)}(x)|, \quad x \in [x_k, x_{k+1}],$$

其中 $h_k = x_{k+1} - x_k$. 进而

$$\max_{a \le x \le b} |f(x) - I_h(x)| \le \frac{h^4}{384} \max_{a \le x \le b} |f^{(4)}(x)|,$$

其中
$$h = \max_{0 \le k \le n-1} (x_{k+1} - x_k).$$