Gupte et al.

At the same time, a number of aspects of the biology of PARPs and related proteins remain to be explored. For example, we still know very little about the broad spectrum of biology dependent on the PARP family of proteins. In addition, our understanding of the different catalytic-dependent and catalytic-independent functions of PARPs is limited. Furthermore, while numerous examples of ADP-ribose "reader" domains exist in nature, a comprehensive understanding of the functions of the proteins that contain these domains has been elusive.

With respect to ADP-ribosylation, the factors that drive selectivity and specificity for different substrates by different PARPs have been incompletely elucidated. Additionally, determining the repertoire of targets of distinct PARPs and their sites of ADP-ribosylation in different tissues is in its infancy. Likewise, the broader spectrum of amino acids that function as acceptors of ADP-ribose is still being defined (e.g., serine and cysteine) (Leidecker et al. 2016; Westcott et al. 2017). Such information would provide new insights into the biological roles of PARP across tissues and in disease states. One of the greatest needs and most significant challenges in the field, however, is moving beyond the identification of sites of ADPribosylation toward the determination of the functional relevance of ADP-ribosylation at those sites, which will reveal the definitive biological consequences of ADP-ribosylation. Finally, the field has not fully explored the therapeutic potential of PARPis. In conclusion, even after five decades of research on PARPs and ADP-ribosylation, much work remains to be done.

Competing interest statement

W.L.K. is a founder and consultant for Ribon Therapeutics, Inc.

Acknowledgments

We thank Dae-Seok Kim, Keun Woo Ryu, and Balaji Parameswaran for critical reading of the manuscript and intellectual input. The PARP-related work in the Kraus laboratory is funded by the National Institutes of Health/National Institute of Diabetes and Digestive and Kidney Diseases (R01 DK069710), the Cancer Prevention and Research Institute of Texas (RP160319), and the Cecil H. and Ida Green Center for Reproductive Biology Sciences Endowment.

References

- Adelman K, Lis JT. 2012. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. *Nat Rev Genet* **13:** 720–731.
- Adhya D, Basu A. 2010. Epigenetic modulation of host: new insights into immune evasion by viruses. *J Biosci* **35:** 647–663.
- Aguilar-Quesada R, Munoz-Gamez JA, Martin-Oliva D, Peralta A, Valenzuela MT, Matinez-Romero R, Quiles-Perez R, Menissier-de Murcia J, de Murcia G, Ruiz de Almodovar M, et al. 2007. Interaction between ATM and PARP-1 in response to DNA damage and sensitization of ATM deficient cells through PARP inhibition. *BMC Mol Biol* 8: 29.

- Aguilera-Gomez A, van Oorschot MM, Veenendaal T, Rabouille C. 2016. In vivo vizualisation of mono-ADP-ribosylation by dPARP16 upon amino-acid starvation. *Elife* 5: e21475.
- Ahel I, Ahel D, Matsusaka T, Clark AJ, Pines J, Boulton SJ, West SC. 2008. Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins. *Nature* 451: 81–85.
- Ahel D, Horejsi Z, Wiechens N, Polo SE, Garcia-Wilson E, Ahel I, Flynn H, Skehel M, West SC, Jackson SP, et al. 2009. Poly (ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1. *Science* 325: 1240–1243.
- Aksoy P, Escande C, White TA, Thompson M, Soares S, Benech JC, Chini EN. 2006a. Regulation of SIRT 1 mediated NAD dependent deacetylation: a novel role for the multifunctional enzyme CD38. *Biochem Biophys Res Commun* **349**: 353–359.
- Aksoy P, White TA, Thompson M, Chini EN. 2006b. Regulation of intracellular levels of NAD: a novel role for CD38. *Biochem Biophys Res Commun* **345:** 1386–1392.
- Altmeyer M, Neelsen KJ, Teloni F, Pozdnyakova I, Pellegrino S, Grofte M, Rask MB, Streicher W, Jungmichel S, Nielsen ML, et al. 2015. Liquid demixing of intrinsically disordered proteins is seeded by poly(ADP-ribose). *Nat Commun* 6: 8088.
- Ame JC, Spenlehauer C, de Murcia G. 2004. The PARP superfamily. *Bioessays* **26:** 882–893.
- Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Cohen H, Lin SS, Manchester JK, Gordon JI, Sinclair DA. 2002. Manipulation of a nuclear NAD⁺ salvage pathway delays aging without altering steady-state NAD⁺ levels. *J Biol Chem* 277: 18881–18890.
- Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Sinclair DA. 2003. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in *Saccharomyces cerevisiae*. *Nature* **423**: 181–185.
- Araki T, Sasaki Y, Milbrandt J. 2004. Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. *Science* **305**: 1010–1013.
- Audebert M, Salles B, Calsou P. 2004. Involvement of poly(ADPribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. *J Biol Chem* **279**: 55117–55126.
- Barbarulo A, Iansante V, Chaidos A, Naresh K, Rahemtulla A, Franzoso G, Karadimitris A, Haskard DO, Papa S, Bubici C. 2013. Poly(ADP-ribose) polymerase family member 14 (PARP14) is a novel effector of the JNK2-dependent pro-survival signal in multiple myeloma. Oncogene 32: 4231–4242.
- Barkauskaite E, Jankevicius G, Ladurner AG, Ahel I, Timinszky G. 2013. The recognition and removal of cellular poly(ADP-ribose) signals. *FEBS J* **280:** 3491–3507.
- Bartolomei G, Leutert M, Manzo M, Baubec T, Hottiger MO. 2016. Analysis of chromatin ADP-ribosylation at the genome-wide level and at specific loci by ADPr-ChAP. *Mol Cell* 61: 474–485.
- Beck C, Boehler C, Guirouilh Barbat J, Bonnet ME, Illuzzi G, Ronde P, Gauthier LR, Magroun N, Rajendran A, Lopez BS, et al. 2014a. PARP3 affects the relative contribution of homologous recombination and nonhomologous end-joining pathways. *Nucleic Acids Res* **42:** 5616–5632.
- Beck C, Robert I, Reina-San-Martin B, Schreiber V, Dantzer F. 2014b. Poly(ADP-ribose) polymerases in double-strand break repair: focus on PARP1, PARP2 and PARP3. *Exp Cell Res* 329: 18–25.
- Bekker-Jensen S, Lukas C, Kitagawa R, Melander F, Kastan MB, Bartek J, Lukas J. 2006. Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J Cell Biol 173: 195–206.