A hypergraph H (VE) edge set E = bomon set (n) I same as a family of suborts Example: V= {1,2,3,4,5} $E = \left\{ \frac{1}{2}, \frac{2}{3}, \frac{3}{5}, \frac{1}{5}, \frac{3}{5} \right\}$ Q. Color the points Lervices in with as few whom as pavible evens hyporedy in E sees least two colons [= = \ {a,b}, {s,c}, {c,a}, {d,e}, {e,a}

A hypergraph H (V,E) is k-uniform
if every hyperedge is k-tized.
Clearly, graphs are 2-unitorn hypergraphs
Theorem: Every k-uniform hypergraph H(Visith less than 2 hyperedges is 2-colorable.
2-colorable
Proof: Let $V = \{1, 2,, n\}$ be the vertex set of H .
For each vertis i ∈ V independenty
and uniformly at random assign a color from the set fred green}
Consider a hyporedy exE.
Problall the vertices in e get red color = $\frac{1}{2^k}$
Prob [" "] = [

 $rac{1}{2}$ $reen alor <math>rac{1}{2}$ $rac{1}{2}$ Proble is monochromatic) = (A) + (B) $=\frac{1}{k-1}$ Let E = {e1, e2, -, em} Pr[e, is monochromate] +

Pr[e, is monochromate] +

by

i). Pr [em B monochromh] $= m \cdot \frac{1}{k-1} \quad (from @)$ 2^{k-1} (Sixn: $m < 2^{k-1}$)

2 let 2 let monochronder)
$$V(.)$$
. $V(e_m)_s$ monochronder) $V(.)$. $V(e_m)_s$ $V(.)$ $V(e_m)_s$ $V(.)$ $V(e_m)_s$ $V(e$

Bolldbas's Therem Theorem Let (A, My-, Am) and (B, R,-,Bm) tront nue etse de cemangse out ed $\forall i, j \in (m)$ A, $\cap B_j = \emptyset$ if and only 'if i=j. Then, $m \leq (a+b)$ $\forall i \in (M) |A_i| = 0, |B_i| = 5.$ B, B, ---Let $X = \bigcup_{i=1}^{n} (A_i \cup B_i) \int_{i=1}^{n} J_{i}(A_i \cup B_i) dA_i = 0$ Recall ongrup Uniformly at rondom O: Dinew order choose a linear of elmb of X.

(A; R;) is "preant" in G

even element of A;

ordr/pernutation

of X.

if every element of A;

precedes every element of A;

in G.

(A; Bi) can be present

in any given parentation

(A; Bi) pair is present in G = 1

(a+t)

(a+t)

$$-|A| = \alpha$$

$$-|B| = b$$

$$(\alpha_1 + b_1)!$$

$$(\alpha_1 + b_2)!$$

$$P_r \left(X_1 \cup X_2 \right) = P_r \left(X_1 \right) + P_r \left(X_2 \right)$$

$$P_r \left(X_1 \cup X_2 \right) = P_r \left(X_2 \right) + P_r \left(X_2 \right)$$

$$P_r \left(X_1 \cup X_2 \right) = P_r \left(X_2 \right) + P_r \left(X_2 \right)$$

$$P_r \left(X_1 \cup X_2 \right) = P_r \left(X_2 \right) + P_r \left(X_2 \right)$$

$$P_r \left(X_1 \cup X_2 \right) = P_r \left(X_2 \right) + P_r \left(X_2 \right)$$

$$P_r \left(X_1 \cup X_2 \right) = P_r \left(X_2 \right) + P_r \left(X_2 \right)$$

$$P_r \left(X_1 \cup X_2 \right) = P_r \left(X_2 \right) + P_r \left(X_2 \right)$$