AE 41 Ecoulements Compressibles

Emmanuel Benard ISAE/SupAéro

Elements extraits des cours de: ENSICA/SupAéro/ENSMA

Cours C4

1. Définition d'un écoulement monodimensionnel

2. Simplification des équations du mouvement

3. Vitesse du son

4. Différentes formes de l'équation de l'énergie

Gaz parfait

Fluide parfait : effets diffusifs négligés (viscosité, conductivité thermique)

Écoulement 1D

- Vitesse a un seule composante V
- P, T, V, ρ sont uniformes / section de passage
 - lentes variations de section
 - fort rayon de courbure $\frac{S}{R^2} \ll 1$
- Permanent / stationnaire
- Forces extérieures de volume négligées (gravité...)

Est-ce que ça sert en dehors de l'école ????

$$P = P(x)$$

$$T = T(x)$$

$$\rho = \rho(x)$$

Hypothèses

- Monodimensionnel
- Stationnaire
- Pas de forces de volume
- Section de passage constante

$rac{\partial}{\partial t} \iiint_{\mathcal{V}} ho d\mathcal{V} = - \iint_{s} ho \vec{V} . \vec{ds}$

$$-\rho_1 V_1 S + \rho_2 V_2 S = 0$$

Équation de continuité

$$\rho_1 V_1 = \rho_2 V_2$$

Équation de quantité de mouvement

$$\frac{\partial}{\partial t} \int \int_{\mathcal{V}} \rho V d\mathcal{V} + \int \int_{s} \left(\rho \vec{V} . \vec{ds} \right) \vec{V} = - \int \int_{s} P . \vec{ds} - \int \int_{s} \mathcal{V} d\vec{s} + \int \int_{\mathcal{V}} \rho \vec{F} d\mathcal{V}$$

$$\left|\iint_{m{s}}\left(
hoec{V}.ec{ds}
ight)ec{V}=-\iint_{m{s}}P.ec{ds}
ight|$$

$$\rho_1(-V_1S)V_1 + \rho_2(V_2S)V_2 = -(-P_1S + P_2S)$$

$$P_1 + \rho_1 V_1^2 = P_2 + \rho_2 V_2^2$$

Équation de l'énergie

$$\frac{\partial}{\partial t} \iiint_{\mathcal{V}} \rho \left[\underbrace{\frac{V^2}{2}} \right] d\mathcal{V} + \iint_{S} \rho \left[e + \frac{V^2}{2} \right] \vec{V} \cdot \vec{ds} =$$

$$\iiint_{\mathcal{V}} \dot{q} \rho dV - \iint_{S} P \vec{V} \cdot \vec{ds} + \iiint_{\mathcal{V}} \rho \left(\vec{F} \cdot \vec{V} \right) d\mathcal{V} + W_{\text{leca}} + W_{\text{lis}}$$

$$\iiint_{S} \rho \left[e + \frac{V^2}{2} \right] \vec{V} \cdot \vec{ds} = \dot{Q} - \iint_{S} P \vec{V} \cdot \vec{ds}$$

$$-\rho_1 \left[e_1 + \frac{V_1^2}{2} \right] V_1.S + \rho_2 \left[e_2 + \frac{V_2^2}{2} \right] V_2.S = \dot{Q} - (-P_1 V_1 S + P_2 V_2 S)$$

$$\frac{\dot{Q}}{S} + P_1 V_1 + \rho_1 \left[e_1 + \frac{V_1^2}{2} \right] V_1 = P_2 V_2 + \rho_2 \left[e_2 + \frac{V_2^2}{2} \right] V_2$$

J/s
$$\frac{\dot{Q}}{\rho_1 V_1 S} + \frac{P_1}{\rho_1} + e_1 + \frac{V_1^2}{2} = \frac{P_2}{\rho_2} + e_2 + \frac{V_2^2}{2}$$
 kg/s
$$\checkmark$$

 $q + h_1 + \frac{V_1^2}{2} = h_2 + \frac{V_2^2}{2}$

J/kg = Chaleur ajoutée /unité de masse

Propagation énergétique par collision intermoléculaire

$$\rho a = (\rho + d\rho)(a + da)$$

$$P + \rho a^2 = (P + dP) + (\rho + d\rho)(a + da)^2$$

$$a = -\rho \left(\frac{dP}{d\rho} + a^2 - 2a\rho \right)$$

$$da = \frac{1}{-2a\rho}$$

 $dP = -2a\rho da - a^2 d\rho$

$$a^2 = \frac{dP}{d\rho} = \left(\frac{\partial P}{\partial \rho}\right)_S = -\left(\frac{\partial P}{\partial v}\right)_S v^2 = -\frac{v}{(1/v)(\partial v/\partial P)_S}$$

$$a = \sqrt{\left(\frac{\partial P}{\partial \rho}\right)_S} = \sqrt{\frac{v}{\tau_S}}$$

$$a = \sqrt{\gamma RT} = \sqrt{\frac{\gamma P}{\rho}}$$

Isaac Newton 1687

Vitesse mesurée : 346.56 m/s

Calcul isotherme: 297.62 m/s

$$a = \sqrt{\frac{1}{\rho \tau_T}}$$

$$a = \sqrt{\frac{1}{\rho \tau_T}}$$
 $\tau_T = 10^{-5} m^2 / N$

Pierre Simon Marquis de Laplace 1816

Calcul isentropique : 346.02 m/s avec $T_{air} = 25^{\circ} C$

$$a = \sqrt{\frac{1}{\rho \tau_s}} = \sqrt{\gamma RT}$$

$$h_1 + \frac{V_1^2}{2} = h_2 + \frac{V_2^2}{2}$$

Gaz calorifiquement parfait

$$C_p T_1 + \frac{V_1^2}{2} = C_p T_2 + \frac{V_2^2}{2}$$

$$\frac{a_1^2}{\gamma - 1} + \frac{V_1^2}{2} = \frac{a_2^2}{\gamma - 1} + \frac{V_2^2}{2}$$

Conditions critiques ($M_c=1$) via processus adiabatique

$$A \stackrel{Non-adiabatique}{\Longrightarrow} B \qquad \overline{}$$

$$\frac{a^2}{\gamma - 1} + \frac{V^2}{2} = \frac{\gamma + 1}{2(\gamma - 1)}a_c^2$$

Conditions génératrices, totales ou d'arrêt isentropique (
$$M \neq 0$$
) via processus isentropique

 $a_{cA} \neq a_{cB}$

Processus adiabatique pour l'équation de l'énergie

$$C_p T + \frac{V^2}{2} = C_p T_i$$

$$\frac{T_i}{T} = 1 + \frac{\gamma - 1}{2}M^2$$

Processus isentropique
$$\frac{P_i}{P} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{\frac{\gamma}{\gamma - 1}} \qquad \frac{\rho_i}{\rho} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{\frac{1}{\gamma - 1}}$$

$$\frac{\rho_i}{\rho} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{\frac{1}{\gamma - 1}}$$

$$\frac{a^2}{\gamma - 1} + \frac{V^2}{2} = \frac{a_i^2}{\gamma - 1}$$

$$\frac{a_c}{a_i} = \sqrt{\frac{2}{\gamma + 1}}$$

$$\frac{1}{1} + \frac{V^2}{2} = \frac{a_i^2}{\gamma - 1}$$
Conditions critiques (*Mc=1*)
$$\begin{cases} \frac{T_c}{T_i} = \frac{2}{\gamma + 1} = 0.833 \\ \frac{P_c}{P_i} = \left(\frac{2}{\gamma + 1}\right)^{\frac{\gamma}{\gamma - 1}} = 0.528 \\ \frac{e_c}{P_i} = \sqrt{\frac{2}{\gamma + 1}} \end{cases}$$

$$\frac{\rho_c}{\rho_i} = \left(\frac{2}{\gamma + 1}\right)^{\frac{1}{\gamma - 1}} = 0.634$$

Équations 1D, stationnaire, fluide parfait, gaz parfait

$\rho_1 V_1 = \rho_2 V_2$ $P_1 + \rho_1 V_1^2 = P_2 + \rho_2 V_2^2$

Vitesse du son (isentropique)

$$q + h_1 + \frac{V_1^2}{2} = h_2 + \frac{V_2^2}{2}$$

$$a = \sqrt{\gamma RT} = \sqrt{\frac{\gamma P}{\rho}}$$

Conditions totales d'arrêt génératries

Conditions totales, d'arrêt, génératrices

$$\frac{P_i}{P} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{\frac{\gamma}{\gamma - 1}}$$

Relations isentropiques

$$\frac{T_i}{T} = 1 + \frac{\gamma - 1}{2}M^2$$

$$\frac{\rho_i}{\rho} = \left(1 + \frac{\gamma - 1}{2}M^2\right)^{\frac{1}{\gamma - 1}}$$