## **ARYAN JAGANI**

## In-class activities/Lab (IS 733)

Task 1: Understanding Naive Bayes and K-nearest neighbors

1a: Manually calculate prediction using the Naive Bayes Model and K nearest neighbor, K=2; Euclidean Distance for the test example for the following example:

• Use any random combination to test/report your probability

|    |          | Contains |        |       |
|----|----------|----------|--------|-------|
|    | Contains | Money    |        |       |
| ID | Link     | Words    | Length | Class |
| 1  | Yes      | Yes      | Long   | Spam  |
| 2  | No       | No       | Short  | Ham   |
| 3  | Yes      | No       | Long   | Spam  |
| 4  | No       | Yes      | Short  | Spam  |
| 5  | Yes      | Yes      | Short  | Spam  |
| 6  | No       | No       | Long   | Ham   |
| 7  | Yes      | No       | Short  | Ham   |
| 8  | No       | Yes      | Long   | Spam  |
| 9  | Yes      | Yes      | Long   | Spam  |
| 10 | No       | No       | Short  | Ham   |





|                                                                                                                                                                    |                                                                         |    |   |       | Poge O                                                                        |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----|---|-------|-------------------------------------------------------------------------------|--|--|--|--|
| J Composting Fuclidean distance.  d= Varxw2+(y1-y2+(z1-22).                                                                                                        |                                                                         |    |   |       |                                                                               |  |  |  |  |
|                                                                                                                                                                    | Coursing the distance from the test example  (1,0,0) to all other poins |    |   |       |                                                                               |  |  |  |  |
| (D                                                                                                                                                                 | CL                                                                      | cm | 1 | Class | Distance  \[ (1-1)^2 + (0-0^2 + (1-1)^2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |  |  |  |  |
| 2                                                                                                                                                                  | 0                                                                       | 0  | 0 | ham   | 1-41                                                                          |  |  |  |  |
| 3                                                                                                                                                                  |                                                                         | 0  |   | Spam  | 0                                                                             |  |  |  |  |
| 4                                                                                                                                                                  | 0                                                                       |    | 0 | Spam  | 1.73                                                                          |  |  |  |  |
| 5                                                                                                                                                                  |                                                                         |    | 0 | Spam  | 1.4)                                                                          |  |  |  |  |
| 6                                                                                                                                                                  |                                                                         | 0  |   | ham   |                                                                               |  |  |  |  |
| 7                                                                                                                                                                  |                                                                         | 0  | 0 | ham   |                                                                               |  |  |  |  |
| 8                                                                                                                                                                  | 0                                                                       | 1  |   | Spam  |                                                                               |  |  |  |  |
| 9                                                                                                                                                                  |                                                                         | 1  |   | spam  | 1                                                                             |  |  |  |  |
| 10                                                                                                                                                                 | 0                                                                       | 0  | 0 | ham   | 1.4)                                                                          |  |  |  |  |
| ij Find the neasest neighbors  two closest Points  I D3 (distance= 0.0, Spam)  ID1 (distance= 1.0, Spam)  Since Both are spam, test example is classified as Spam) |                                                                         |    |   |       |                                                                               |  |  |  |  |
| Final classification Naive Bayes = Spam  Knearest neighbour = Spam  Thus: test example is Spam                                                                     |                                                                         |    |   |       |                                                                               |  |  |  |  |

1b: write code (with Al assistant) to build a naive Bayes and KNN classifier. You can use the hamspam.csv to test it out.

https://github.com/AryanJ09/IS733\_Class/blob/main/01272025\_CW/CW-03-03-2025/CLASSWORK\_1B.ipynb

## Task2: Understanding ROC and AUC

2a: Create a ROC (with Al assistant/Excel ) (Refer to roc\_data.csv)

Step1: Given the threshold (0.95,0.90,0.85,0.80,0.75,0.70), derive True Positive and False Positive

Step2: Calculate the True Positive Rate (TPR) and False Positive Rate (FPR), enter the values into the sheet

Step3: plot the set points (FRP, TPR) on the ROC diagram

| - торо: р.от | c set points (i iti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,  | ,      |     | 9                    |        |        |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------|-----|----------------------|--------|--------|--|
| 2            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |        |     | classmate  Date Page |        |        |  |
| T            | hreshold value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7P | TN     | ·FP | FN                   | TPR    | FPR    |  |
| 1            | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13 | 374    | 4   | 11                   | 0.5417 | 0.0513 |  |
|              | 0-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (2 | 73     | 5   | 9                    | 0.6389 | 0-0641 |  |
|              | 0.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18 | 73     | 5   | 中                    | 0.7083 | 0-0641 |  |
|              | 0-80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19 | 73     | 5   | 6                    | 0-7800 | 0.064) |  |
|              | 0-75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20 | 72     | 6   | 6                    | 0.7639 | 0.0769 |  |
|              | 0-70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21 | 72     | 6   | 5                    | 0.8056 | 0.0769 |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |        |     |                      |        |        |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |        |     |                      |        |        |  |
|              | CONTRACTOR OF THE PARTY OF THE |    | FB-438 |     |                      |        |        |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |        |     |                      |        |        |  |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |        |     |                      |        |        |  |

https://github.com/AryanJ09/IS733\_Class/blob/main/01272025\_CW/CW-03-03-2025/733\_classwork\_graph\_2a.ipynb



https://github.com/AryanJ09/IS733 Class/blob/main/01272025 CW/CW-03-03-2025/roc dataaryan q2a.csv

2b. Write code (with AI assistant) to fit the model using your favorite classifier (NB, KNN, or Decision tree); using the hamspam.csv, ask to output an ROC curve and AUC score. (Hint: if you fit a decision tree, you might want to reduce max\_depth)

https://github.com/AryanJ09/IS733 Class/blob/main/01272025 CW/CW-03-03-2025/CLASSWORK 2B.ipynb

## Submission to blackboard

1a and 2a: photocopy of your manual calculation

The rest of the task (1b, 2b): Python Notebook uploaded to GitHub and submit a link