Quiz de Révision : Vocabulaire des Espaces métriques

Gönenç Onay

2025-26 GSU - Cours MAT-301

Exercice 1.

Soit (E, d) un espace métrique et $A \subseteq E$.

- 1. Montrer que \overline{A} est l'intersection de tous les fermés contenant A.
- 2. Montrer que l'intérieur de A, noté \mathring{A} , est l'union de tous les ouverts contenus dans A.

Exercice 2.

Soit (E,d) un espace métrique et $x,y \in E$ deux points distincts. Montrer qu'il existent des ouverts U_x et U_y tels que $x \in U_x$, $y \in U_y$ et $U_x \cap U_y = \emptyset$.

Exercice 3.

Soit (E,d) un espace métrique et $A \subseteq E$ un sous-ensemble non vide. On définit le diamètre de A, noté diam(A), à valeurs dans $\mathbb{R}_{\geq 0} \cup \{+\infty\}$, comme diam $(A) := \sup\{d(x,y) : x,y \in A\}$. Montrer que diam $(A) = \operatorname{diam}(\overline{A})$.

Exercice 4.

Montrer que tout ouvert de \mathbb{R} (muni de la distance usuelle) est une union dénombrable d'intervalles ouverts (disjoints).

Exercice 5.

Soit E = ([a,b],d) où d est la restriction de la distance usuelle sur \mathbb{R} à l'intervalle [a,b]. Soit $(F_n)_{n\in\mathbb{N}}$ une suite de fermés de E d'intersection vide, c'est-à-dire $\bigcap_{n=0}^{+\infty} F_n = \emptyset$.

Montrer qu'il existe une sous-famille finie d'intersection vide, i.e., il existe $N \in \mathbb{N}$ tel que $\bigcap_{n=0}^{N} F_n = \emptyset$. Indication : Utiliser le théorème de Bolzano-Weierstrass.

Si l'on change [a, b] en [a, b] est-ce que le résultat reste vrai?

Exercice 6.

Soit $E = \mathbb{N}$. On définit

$$\mathcal{A} = \{\emptyset\} \cup \{C \subseteq \mathbb{N} : C \text{ est cofini}\},\$$

- 1. Montrer que \mathcal{A} satisfait les proprietes principales des ouverts d'un espace métrique, c'està-dire :
 - $-\emptyset \in \mathcal{A} \text{ et } E \in \mathcal{A}.$
 - \mathcal{A} est stable par union quelconque,
 - \mathcal{A} est stable par intersection finie.
- 2. Peut-on munir E d'une distance d telle que \mathcal{A} soit exactement l'ensemble de tous les ouverts de (E, d)? (penser à l'Exercice 2)