Fenómenos de Espera

Marcelo Martínez Mazzei, Guido Vives Leiva, Emiliano Lago Flores, Juan Manuel Bellido, Horacio Becerra, Conrado Fiore

> Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba

Resumen. En el marco de la Cátedra de Investigación Operativa de la Carrera de Ingeniería Industrial de la Facultad de Ciencias Exactas, Físicas y Naturales de la Universidad Nacional de Córdoba, se ha llevado a cabo el siguiente Trabajo de Cátedra para poner en práctica la interiorización de los conceptos referidos a los procesos de Toma de Decisiones, Simulación y manejo de software. El trabajo comienza con el planteo de un problema de Toma de Decisiones el cual es resuelto mediante la aplicación de la Simulación y un previo análisis estadístico.

1 Introducción

El problema de interés de este trabajo consiste en tomar una decisión en base al estudio del comportamiento de un sistema que evoluciona con el tiempo. La técnica utilizada para la resolución del mismo es la de Simulación.

La idea general para la resolución consiste en determinar las entradas y los parámetros de entrada del sistema, que en este caso consiste en un puesto de peaje, y así obtener la respuesta esperada al finalizar la simulación: cuántos puestos de peaje instalar. Para esto, se simulan diferentes situaciones y al final, en base al análisis de las respuestas obtenidas, se llega a una conclusión de cual es la mejor alternativa de entre las disponibles.

Es de destacar que antes de la realización de la simulación, es necesario contar con determinada información previa del las variables involucradas en el proceso. En este caso será necesario contar con las distribuciones de probabilidad de dichas variables a fin de poder simular sus valores. Para la obtención de esta información, se realiza un análisis estadístico descriptivo de las variables y las correspondientes pruebas de hipótesis sobre las distribuciones inferidas. Estas herramientas nos conducirán a las distribuciones requeridas.

2 Problema

En un cierto camino se desea instalar un puesto de peaje. La empresa desea determinar si una sola cabina de pago permite satisfacer la demanda creada por los vehículos que arriban a ese sector. Se definen las Variables:

X: "Tiempo entre arribos" (segundos)

Y: "Tiempo necesario para cobrar" (segundos)

3 Análisis Estadístico Descriptivo de Variables

Para el análisis estadístico descriptivo de las variables X e Y se hizo uso del Software Estadístico InfoStat (versión 2008).

3.1 Análisis de la Variable X

Según la definición de esta variable aleatoria continua, se la puede pensar en primer lugar con una distribución Exponencial. Sin embargo, se procederá con el análisis descriptivo de la misma para poder decidir con criterio el modelo que mejor ajusta.

Tabla 1. Tabla de datos de la variable X

56,5	272,7	32,6	41,8
32,1	4,9	334,6	39,5
124,8	109,0	147,9	207,5
39,0	152,6	426,4	56,5
134,5	323,4	26,6	50,0

Tabla 2. Tabla de medidas resumen de X

Resumen	Variable X
n	20,00
Media	130,69
D.E.	121,75
Var(n-1)	14822,52
CV	93,16
Mediana	83,20
Q1	39,00
Q3	152,60
Asimetría	1,17
Kurtosis	0,42

Fig. 1. Histograma de la variable X

Fig. 2. Diagrama de caja de la variable X

Fig. 3. Gráfica de la distribución empírica de X

Analizando los resultados estadísticos podemos ver que:

La mediana es bastante menor a la media

El coeficiente de Asimetría tiende a 1,2, y de Kurtosis es aproximadamente 0,4 (los cuales escapan un poco de los valores que se estipulan para considerar al modelo como exponencial)

El gráfico de la distribución empírica se asemeja a acumulada de la Exponencial

El histograma nos revela un comportamiento típico Exponencial (sesgo derecho)

El diagrama de caja presenta un marcado sesgo derecho y la longitud de los bigotes es bastante desigual. Notamos también la existencia de datos atípicos

En base a todo esto podemos suponer una distribución Exponencial con un lambda igual a:

$$\lambda = 1/\overline{x} = 1/130,69 = 0,008. \tag{1}$$

es decir:

$$X \sim \text{Exp}(0,008)$$
. (2)

3.2 Análisis de la Variable Y

Al igual que con la variable X, se realizará un estudio de la muestra proporcionada para la variable aleatoria Y a fin de determinar el modelo de probabilidad que mejor ajusta:

Tabla 3. Tabla de datos de la variable Y

117,7	95,0	60,3	177,7	149,7
159,5	143,7	130,5	119,8	82,5
146,4	130,5	138,5	60,2	130,6
175,7	121,3	158,7	140,0	154,0
110,4	143,2	133,3	120,9	138,4

Tabla 4. Tabla de medidas resumen de Y

Resumen	Variable Y
n	25,00
Media	129,54
D.E.	30,22
Var(n-1)	912,97
CV	23.33

Mediana	133,30
Q1	119,80
Q3	146,40
Asimetría	-0,86
Kurtosis	0,74

Fig. 4. Histograma de la variable Y

Fig. 5 Diagrama de caja de la variable Y

Fig. 6. Gráfica de la distribución empírica de Y

Analizando los resultados podemos ver que:

La media y la mediana se encuentran relativamente próximas la una de la otra

Los coeficientes de Asimetría, de Variación, y de Kurtosis son próximos a cero

El gráfico de la distribución empírica se asemeja a la Ojiva de la Normal

El histograma nos revela un comportamiento Normal con un leve sesgo izquierdo

El diagrama de caja presenta un leve sesgo izquierdo y la longitud de los bigotes es bastante parecida. Notamos también un dato atípico.

En base a todo esto podemos suponer una distribución Normal con media 129,54 y varianza 912,57; es decir:

$$Y \sim N (129,54; 912,57)$$
. (3)

4 Pruebas de Hipótesis

Para las realizaciones de las pruebas de hipótesis sobre las distribuciones de las variables se ha empleado el Software Estadístico InfoStat (versión 2008).

4.1 Prueba de Hipótesis para X

Dado que el tamaño de la muestra es menor a 50 datos, se elije para trabajar el estadístico de Kolmogorov-Smirnov.

Planteo de la prueba.

$$H_0 = X \sim \operatorname{Exp}(\lambda) . \tag{4}$$

$$H_1 = X \text{ no es } \sim \text{Exp}(\lambda)$$
. (5)

Elegimos un α igual a 0,05 porque representa un valor relativamente intermedio para llevar a cabo la decisión de rechazo.

Tabla 5. Tabla de la prueba de bondad de ajuste (Kolmogorov)

Variable	e Ajuste	Lambda	n	Estadistico D	p-valor
X	Exp(0	800.0 (800.	20	0.88	< 0.01

Tabla 6. Tablas de frecuencias

Ajuste: Exponencial con estimación de parámetros: lambda= 0,00765

Variable Clase LI	LS	MC	FA	FR E(FA) E(FR)Chi-2 p
Columnal 1	4,90	110,28	57,59	11 0,55 11,40 0,57 0,01
Columnal 2	110,2	8 215,65	5 162,9	96 5 0,25 4,76 0,24 0,03
Columna1 3	215,6	5 321,03	3 268,3	34 1 0,05 2,13 0,11 0,62
Columnal 4	321,0	3 426,40	373,7	71 3 0,15 1,71 0,09 1,59 0,4527

El valor de p es la probabilidad asociada a dicho estadístico. Luego como p es mayor que α no rechazamos la Hipótesis nula, y resulta:

$$X \sim \text{Exp}(0,008)$$
. (6)

4.2 Prueba de Hipótesis para Y

Para la prueba de hipótesis de la variable Y, dado que se supone un comportamiento normal, se realiza la prueba de normalidad Shapiro-Wilks proporcionada por el Software InfoStat. Para ello, adoptamos un nivel de significancia de 0,05 en base al criterio adoptado en la prueba de la variable X.

Tabla 7. Tabla de la prueba Shapiro-Wilks (modificado)

Variable	n	Media	D.E.	W^*	p(Unilateral D)
Variable Y	25	129.54	30.22	0.91	0.1118

Como tenemos un p-valor mayor al nivel de significancia podemos decir que es factible la hipótesis nula, con lo que:

5 Simulación

Para la simulación se utiliza la planilla de cálculo Excel 2003 donde se simulan 1000 pasadas de vehículos para 3 situaciones diferentes: Primero para un solo puesto de peaje, luego para dos, y finalmente para 3.

Dado que sólo importa el tiempo promedio de espera par cada caso, sólo se mostrarán algunas filas de la simulación para dar una idea de la metodología empleada.

En última instancia se comparan los tiempos de espera promedio de cada caso para sacar conclusiones.

Tabla 8. Tabla de la primera simulación

N° de	Tiempo	Tiempo arribos		Tiempo	cobrar	Tiomno doscovno	Tiempo
Vehículo	Rn	X	Reloj	S12(Rn)	Y	Tiempo desocupa	espera
1	0,160	239,693	239,693	5,089	102,032	0,000	0,000
2	0,739	39,597	279,290	5,423	112,105	341,724	62,434
3	0,373	128,927	408,217	5,018	99,865	453,830	45,612
4	0,187	218,853	627,070	7,075	162,007	553,695	0,000
5	0,603	66,072	693,142	5,578	116,781	789,077	95,935
6	0,244	184,107	877,249	6,856	155,391	905,858	28,609
7	0,756	36,603	913,851	4,653	88,853	1061,249	147,398
8	0,113	284,835	1198,686	4,582	86,705	1150,102	0,000
9	0,277	167,735	1366,421	4,832	94,265	1285,392	0,000
10	0,848	21,578	1387,999	6,016	130,009	1460,687	72,688
11	0,135	262,016	1650,015	6,016	130,013	1590,696	0,000

12	0,216	200,366	1850,381	5,723	121,175	1780,028	0,000
13	0,830	24,369	1874,750	7,526	175,648	1971,556	96,807
14	0,866	18,803	1893,553	6,436	142,721	2147,204	253,651
15	0,271	170,558	2064,111	4,719	90,845	2289,925	225,814
16	0,571	73,136	2137,247	5,911	126,841	2380,770	243,523
17	0,455	103,018	2240,265	5,090	102,050	2507,611	267,346
18	0,959	5,532	2245,797	5,285	107,939	2609,661	363,864
19	0,970	3,964	2249,761	5,886	126,082	2717,600	467,839
20	0,914	11,783	2261,544	5,941	127,747	2843,682	582,138

Tiempo promedio de espera para n igual a 1000:

$$1279,065 \text{ s} = 0,36 \text{ h}$$
 (8)

Tabla 9. Tabla de la segunda simulación

N° de	N° de		Tiempo arribos Reloj		cobrar	Tiempo desocupa	Tiempo desocupa	Tiempo espera	
Vehículo	Rn	X	Keloj	S12(Rn)	Y	cabina 1	cabina 2	Menor	Tiempo
1	0,064	358,820	358,820	6,532	145,607	0,000	0,322	0,000	0,000
2	0,522	85,070	443,890	4,658	88,976	504,427	0,322	0,322	0,000
3	0,111	287,507	731,397	4,648	88,696	504,427	532,866	504,427	0,000
4	0,486	94,264	825,661	5,627	118,281	820,093	532,866	532,866	0,000
5	0,350	137,092	962,753	4,993	99,101	820,093	943,942	820,093	0,000
6	0,029	461,504	1424,257	5,999	129,522	1061,855	943,942	943,942	0,000
7	0,953	6,308	1430,565	6,508	144,887	1061,855	1553,780	1061,855	0,000
8	0,476	97,067	1527,632	7,270	167,926	1575,452	1553,780	1553,780	26,147
9	0,858	20,015	1547,648	6,131	133,510	1575,452	1721,706	1575,452	27,805
10	0,726	41,880	1589,527	7,518	175,400	1708,962	1721,706	1708,962	119,435
11	0,420	113,290	1702,817	3,592	56,788	1884,362	1721,706	1721,706	18,889
12	0,920	10,874	1713,691	5,446	112,815	1884,362	1778,494	1778,494	64,803
13	0,574	72,440	1786,131	5,708	120,714	1884,362	1891,309	1884,362	98,231
14	0,938	8,324	1794,455	4,936	97,383	2005,076	1891,309	1891,309	96,854
15	0,001	918,735	2713,190	6,181	135,009	2005,076	1988,692	1988,692	0,000
16	0,448	104,936	2818,126	7,086	162,351	2005,076	2848,199	2005,076	0,000
17	0,410	116,450	2934,576	5,896	126,409	2980,477	2848,199	2848,199	0,000
18	0,487	93,920	3028,496	5,765	122,449	2980,477	3060,985	2980,477	0,000
19	0,241	186,030	3214,526	3,718	60,585	3150,944	3060,985	3060,985	0,000
20	0,896	14,353	3228,878	5,658	119,195	3150,944	3275,111	3150,944	0,000

Tiempo Promedio para n igual a1000:

$$31,74s = 0,008 \text{ h}$$
 (9)

Tabla 10. Tabla de la tercera simulación

N° de	Tiemp	o arribos		Tiempo	cobrar	Tiempo	Tiempo	Tiempo	Tiempo	o espera
Vehíc	Rn	X	Reloj	S12(Rn)	Rn) Y	desocupa cabina 1	desocupa cabina 2	desocupa cabina 3	Menor	Tiempo
1	0,643	57,641	57,641	4,796	93,173	0,000	0,674	0,415	0,000	0,000
2	0,202	209,293	266,933	5,729	121,349	150,814	0,674	0,415	0,415	0,000
3	0,542	80,044	346,978	7,889	186,616	150,814	0,674	388,282	0,674	0,000
4	0,608	65,077	412,054	5,023	100,025	150,814	533,593	388,282	150,814	0,000
5	0,253	179,790	591,845	5,847	124,911	512,079	533,593	388,282	388,282	0,000

6	0,982	2,314	594,158	7,103	162,858	512,079	533,593	716,756	512,079	0,000
7	0,727	41,688	635,846	5,246	106,759	757,017	533,593	716,756	533,593	0,000
8	0,410	116,382	752,228	6,638	148,808	757,017	742,605	716,756	716,756	0,000
9	0,954	6,116	758,343	7,125	163,538	757,017	742,605	901,036	742,605	0,000
10	0,004	733,130	1491,473	4,876	95,578	757,017	921,881	901,036	757,017	0,000
11	0,920	10,930	1502,403	6,345	139,950	1587,051	921,881	901,036	901,036	0,000
12	0,158	241,149	1743,552	6,253	137,168	1587,051	921,881	1642,354	921,881	0,000
13	0,446	105,480	1849,032	7,443	173,144	1587,051	1880,720	1642,354	1587,051	0,000
14	0,186	220,094	2069,125	6,501	144,689	2022,176	1880,720	1642,354	1642,354	0,000
15	0,817	26,398	2095,524	5,001	99,352	2022,176	1880,720	2213,814	1880,720	0,000
16	0,888	15,475	2110,998	6,262	137,469	2022,176	2194,876	2213,814	2022,176	0,000
17	0,732	40,698	2151,697	6,495	144,491	2248,467	2194,876	2213,814	2194,876	43,179

Tiempo promedio de espera para n igual a 1000:

$$3,0015 \text{ s} = 0,00008 \text{ h}$$
 (10)

6 Conclusión

Una observación rápida de los resultados nos permite afirmara que: Comparando los tiempos promedio en cada simulación vemos que a medida que la cantidad de cabinas de pago aumenta, el tiempo de espera promedio obviamente, se va haciendo menor.

Luego, para la decisión de la mejor alternativa analizamos que:

Con una sola cabina de cobro el tiempo que debe esperar el vehículo para ser atendido es de 0,36 horas (aproximadamente 22 minutos);

Con dos cabinas de cobro el tiempo que debe esperar el vehículo (alrededor de 30 segundos) es razonablemente menor que en el caso anterior;

Con tres cabinas de cobro el tiempo que debe esperar el vehículo (aproximadamente 3 segundos) es mínimo y mejora los anteriores;

Por ley el tiempo de espera no debe exceder los 2 o 3 minutos, dependiendo el caso.

En base a todo lo anterior vemos que con una cabina de pago el tiempo de espera no es para nada razonable y además no cumple con las exigencias de la ley. Luego, vemos que la ley no se viola instalando dos o tres cabinas de pago; y que, además, con tres cabinas los tiempos de espera son más que deseables. Pero es interesante considerar, aunque el problema no lo explicite, que la instalación de tres cabinas tiene lógicamente un costo superior a la instalación de dos.

Entonces: Dado que el tiempo de espera con dos cabinas es un tiempo razonable; que este tiempo de espera cumple con las exigencias de la ley; y que la instalación de dos cabinas de cobro implica menor costo que la instalación de tres, llegamos a la conclusión que la alternativa de decisión que mejor responde a la problemática inicial es la instalación de dos cabinas de cobro de peaje.

7 Resumen

En el trabajo realizado se presenta un caso en el cuál es necesario decidir sobre la instalación de cabinas en un puesto de peaje. Para tomar la decisión que mejor responda a la necesidad planteada de cuántas cabinas son necesarios para cubrir las demandas de vehículos, se realiza una simulación de tres situaciones distintas: en la primera situación se simula la instalación de una sola cabina de peaje, luego se simula la instalación de dos cabinas, y finalmente se simula la instalación de tres cabinas. Para llevar a cabo la simulación se toman en cuenta dos variables denominadas X: "Tiempo entre arribos" e Y:"Tiempo necesario para cobrar".

Dado que es necesario conocer la distribución de probabilidades de dichas variables, se realiza un estudio estadístico descriptivo de las mismas a fin de establecer que modelo de probabilidades ajusta mejor al comportamiento de las mismas. Luego, para llegar a una sólida y bien fundamentada elección del modelo, se realizan una prueba de hipótesis sobre el modelo preseleccionado para la variable X, y otra para la variable Y.

De las pruebas de hipótesis realizadas a las variables se concluye que la variable X tiene una distribución Exponencial, y la variable Y tiene una Normal. En base a esto, se simulan 1000 arribos de

vehículos al puesto de peaje, de los cuales sólo se explicitan 20, y se determina el tiempo promedio de espera de cada vehículo.

Finalmente, en base al análisis de los tiempos promedio de espera, considerando los costos de instalación de las cabinas, y teniendo en cuenta la exigencia de la ley en cuanto a la espera en los peajes; se arriba a una decisión que trata de ser satisfactoria en base a los criterios del decisor.

8 Referencias

- 1. Alberto C. L. y Carignano C. E.: "Apoyo Cuantitativo a las Decisiones". Cooperadora de la Facultad de Ciencias Económicas, UNC, Córdoba. (2007)
- 2. Winston W. L.: "Investigación de Operaciones" Grupo Editorial Iberoamericana. México (2005)
- 3. Boaglio, Catrina, Conforte, Dimitroff, Gayol, Ingaramo, Nepote, Rocha, Smrekar, Zanazzi: "Guía de Actividades Probabilidad y Estadística". Departamento de Matemática, FCEFyN, UNC. Córdoba (2010)