COMP 335 Assignment 5

Vaansh Lakhwara (ID: 401147641)

October 19, 2020

Question 1.

$$L_1 = \{a^{n^3+5} : n \ge 0\}$$

Assume for contradiction that L_1 is regular and apply the Pumping Lemma.

Let m be the integer given by the pumping and choose $w = a^{m^3+5}$

Since $w \in L_1$ we can write w = xyz such that $|xy| \le m$ and $|y| \ge 1$, as well as $xy^iz \in L_1$ for all i = 0,1,2,...Let |y| = k, so $k \le m$ and $xy^2z \in L_1$ where $xy^2z = a^{m^3+5+k}$

We know that, $m^3 + 5 < m^3 + 5 + k$ (Since $k \ge 1$)

 $m < 3m < 3m^2 + 3m + 1$

 $m^3 + k < m^3 + m < m^3 + 3m^2 + 3m + 1 < (m+1)^3$ (Since $|xy| \le m \Rightarrow |y| \le m$)

 $\begin{array}{l} m^3 + 5 < m^3 + 5 + k < m + 1^3 + 5 \\ \therefore, a^{m^3 + 5} < a^{m^3 + 5 + k} < a^{m + 1^3 + 5} \end{array}$

and, $a^{m^3+5+k} \notin L_1$

Therefore, the pumped string is of length that is strictly in between the two powers and cannot be in L_1 . Contradiction.

Question 2.

$$L_2 = \{vuv^R : v, u \in \{a, b\}^*, |u| = 2\}$$

Assume for contradiction that L_2 is regular and apply the Pumping Lemma.

Let m be the integer given by the pumping and choose $w = a^m b^m a b b^m a^m$, where $v = a^m b^m, u = ab$ and $v^R = a^m b^m$

Since $w \in L_2$ we can write w = xyz such that $|xy| \le m$ and $|y| \ge 1$, as well as $xy^iz \in L_2$ for all i = 0,1,2,...Let |y| = k, then $xy^2z \in L_2$ where $xy^2z = a^{m+k}b^mabb^ma^m$

Here, $u = ab, v = a^{m+k}n^m$ and $v^R = b^ma^m$, however v^R is not the reverse of v, since $k \ge 1$ \therefore , $a^{m+k}b^mabb^ma^m \notin L_2$

Therefore, the pumped string produces a string that is not of the form vuv^R and cannot be in L_2 . Contradiction.

Question 3.

$$L_3 = \{a^i b^j c^k : i \ge 2j + 3k\}$$

Assume for contradiction that L_3 is regular and apply the Pumping Lemma.

Let m be the integer given by the pumping and choose $w=a^{5m}b^mc^m$

Since $w \in L_3$ we can write w = xyz such that $|xy| \le m$ and $|y| \ge 1$, as well as $xy^iz \in L_3$ for all i = 0,1,2,...Let |y| = k.

Pumping down, we get $a^{5m-k}b^mc^m$

Since $5m - k < 5m \Rightarrow$ the string is not of the form $a^i b^j c^k : i \ge 2j + 3k$

 \therefore , $a^{5m-k}b^mc^m \notin L_3$

Therefore, the pumped down string cannot be in L_3 .

Contradiction.