Fuerzas Distribuidas

Para este ejemplo la distribución del peso es variable.

Centro de masa

With the substitution of W=mg and $dW=g\ dm$, the expressions for the coordinates of the center of gravity become

$$\overline{x} = \frac{\int x \, dm}{m}$$
 $\overline{y} = \frac{\int y \, dm}{m}$ $\overline{z} = \frac{\int z \, dm}{m}$ (5/1b)

Notación vectorial

$$\overline{\mathbf{r}} = \frac{\int \mathbf{r} \, dm}{m}$$

Centroide líneas áreas y volúmenes

Lineas:

Areas

Ejemplo: Localizar el centroide

Figuras y cuerpos compuestos

Ejemplo

PART	A in. ²	\bar{x} in.	ÿ in.	$\bar{x}A$ in. ³	$\bar{y}A$ in. ³
1	120	6	5	720	600
2	30	14	10/3	420	100
3	-14.14	6	1.273	-84.8	-18
4	-8	12	4	-96	-32
TOTALS	127.9			959	650

$$\overline{x} = \frac{\Sigma A x_c}{\Sigma A}$$
 $\overline{y} = \frac{\Sigma A y_c}{\Sigma A}$

Seminario 2

Problema 02

Determine the x- and y-coordinates of the centroid of the shaded area.

Problema 03

Determine the x- and y-coordinates of the centroid of the trapezoidal area.

Determine the y-coordinate of the centroid of the shaded area.

Problema 08

The homogeneous slender rod has a uniform cross section and is bent into the shape shown. Calculate the y-coordinate of the mass center of the rod. (Reminder: A differential arc length is $dL=\sqrt{(dx)^2+(dy)^2}=\sqrt{1+(dx/dy)^2}\,dy$.)

2 = 129T = 8483'C5 mm = 21'30 mm

Problema 09

Determine the coordinates of the centroid of the trapezoidal area shown.

Para el sector 1, las coordenadas de su centroide con respecto al eje x,y

$$\overline{y} = \frac{18 \times 10^{1} \cdot 300 + 9.10^{1} \cdot 400}{18 \times 10^{1} \cdot 9.10^{1}} = 333 \text{ mm}$$

Problema 10

Determine the y-coordinate of the centroid of the shaded area.

7: Sector circular

$$\overline{y} = \overline{2} A.\overline{y} = \frac{h^2}{\sqrt{3}}. \frac{2h}{3} - \frac{a^2\pi}{6}. \frac{2a}{\pi}$$

$$\frac{h^2}{\sqrt{3}}. \frac{a^2\pi}{6}. \frac{2a}{\pi}$$

A = A, -Az = 1/3 - 2.TT

TABLE D/3 PROPERTIES OF PLANE FIGURES

FIGURE	CENTROID	AREA MOMENTS OF INERTIA
Arc Segment $\alpha \stackrel{r}{=} \stackrel{C}{=} \stackrel{C}{=}$	$\overline{r} = \frac{r \sin \alpha}{\alpha}$	
Quarter and Semicircular Arcs $C \bullet \qquad \qquad \frac{1}{y}$	$\overline{y} = \frac{2r}{\pi}$	
Circular Area	_	$I_x = I_y = \frac{\pi r^4}{4}$ $I_z = \frac{\pi r^4}{2}$
Semicircular Area r	$\overline{y} = \frac{4r}{3\pi}$	$I_x = I_y = \frac{\pi r^4}{8}$ $\bar{I}_x = \left(\frac{\pi}{8} - \frac{8}{9\pi}\right)r^4$ $I_z = \frac{\pi r^4}{4}$
Quarter-Circular Area r $\overline{\overline{x}}$ C \overline{y} $-x$	$\overline{x} = \overline{y} = \frac{4r}{3\pi}$	$I_x = I_y = \frac{\pi r^4}{16}$ $\overline{I}_x = \overline{I}_y = \left(\frac{\pi}{16} - \frac{4}{9\pi}\right) r^4$ $I_z = \frac{\pi r^4}{8}$
Area of Circular Sector x	$\overline{x} = \frac{2}{3} \frac{r \sin \alpha}{\alpha}$	$I_x = \frac{r^4}{4} (\alpha - \frac{1}{2} \sin 2\alpha)$ $I_y = \frac{r^4}{4} (\alpha + \frac{1}{2} \sin 2\alpha)$ $I_z = \frac{1}{2} r^4 \alpha$

Vigas - Efectos externos

Tipos de vigas

Problema 16

Determine the reactions at the supports A and B for the beam loaded as shown.

Por simetria Ay= By

ZFy=0

Ay - By = 1 wo Ay + By = 0

Ay= By= 1w0

Vigas - Efectos internos

T: momento torsor

Combined loading

Lo que desea obtener es la funcion de la fuerza cortante V

$$V = \frac{dM}{dx}$$

Lo que se desea es obtener la función M

$$V = \frac{dM}{dx}$$

$$W = -\frac{dV}{dx}$$

$$W = -\frac{dV}{dx}$$

$$W = -\frac{dV}{dx}$$