Problem Set 2 Due Fri Feb 22, 2019 Submit through bCourses

1. Electronic Noise.

You are given two amplifiers modeled by the circuit below. Both amplifier have the same gain a_v but different input referred noise (Table 1) and are otherwise ideal. The amplifiers are driven by a resistive voltage source R_S .

Noise source	Amplifier A	Amplifier B
$\sqrt{\frac{\overline{v_n^2}}{\Delta f}}$	$1\frac{\text{nV}}{\sqrt{\text{Hz}}}$	$10\frac{\text{nV}}{\sqrt{\text{Hz}}}$
$\sqrt{\frac{ar{\iota_n^2}}{\Delta \mathbf{f}}}$	$1\frac{\text{pA}}{\sqrt{\text{Hz}}}$	$1\frac{\mathrm{fA}}{\sqrt{\mathrm{Hz}}}$

(a) Calculate the input referred voltage noise in V/\sqrt{Hz} achieved with the two amplifiers, respectively. Report your result in Table 2 below. You may assume that the amplifier voltage and current noise sources are uncorrelated (usually not the case).

R_s	Amplifier A	Amplifier B
50 Ω		
5 ΜΩ		

(b) Briefly comment on the significance of your result.

2. Amplifier Noise.

For the amplifier shown below, derive analytical expressions as a function of g_m , γ , f_T , R_L , R_S , and C_L .

- (a) The voltage gain $a_v(s) = v_o/v_i$
- (b) The PSD of the noise in V/\sqrt{Hz} at node v_o
- (c) The total noise integrated over all frequencies at node v_o
- (d) The dynamic range of the circuit as a function of the peak-to-peak voltage range $V_{o,pp}$ at node v_o
- (e) The minimum detectable signal in nV/\sqrt{Hz} at low frequency and μV_{rms} based on the total noise at the output of the amplifier.
- (f) Comment on the effect of R_s on the dynamic range and minimum detectable signal of the circuit.
- (g) Find the component values that meet the following requirements: $a_{vo} = -5$, a 3-dB bandwidth at v_o of 500-MHz, $\gamma = 1$, $V^* = 150$ mV, $f_T = 50$ GHz, 50-dB dynamic range at v_o , $V_{o,pp} = 500$ mV, $R_s = 500$ and minimum power dissipation.
- (h) Verify your result from part (g) with SPICE. Model the transistor as an ideal transconductor with input capacitance C_{GS} and a drain current noise source. Model the transistor as an ideal transconductor with gate-to-source capacitance and drain current noise. Assume infinite output resistance.

3. Noise Cancelling Amplifier

- (a) Find the input impedance R_{in} .
- (b) What is the output noise under the constraint of impedance matching $(R_{in} = R_S)$? Ignore noise from current source I_B .
- (c) What is the output noise with the modified topology below, under a matching condition? How would you pick the value of K? Is K positive or negative?

(d) Replace the functional block above with real circuit, and re-calculate output noise.