

Feature Scaling

Aksadur Rahman

aksadur@yahoo.com

Feature Scaling

Data Transformation

Normalization & Standardization

Agenda

- Why Data Scaling / Transformation?
- Transformation Techniques
- Normalization
- Standardization
- Related Topics

FEATURE SCALING

Scaling / Transformation

Monthly Income (\$)	Age of Customer (Years)	Purchase (Latest Car model)
1800	32	No
700	26	No
2750	29	Yes
3300	37 .	No
6000	42	No
4500	47	Yes
920	30	No
5050	39	No
1400	27	No

Scaling / Transformation

Monthly Income (\$)	Age of Customer (Years)	Purchase (Latest Car model)
1800 18	32	No
700 - 1 -	26	No
2750 27.5	29	Yes
3300 33	37	No
6000 60-	42	No
4500 -45	47	Yes
920 9.2	30	No
5050 50.5	39	No
1400 14	27	No
0-1	0-1	

MIN MAX SCALER (Normalization)

	Age	Salary		Age	Salary
0	44	72000		0.73913043	0.68571429
1	27	48000		0.	0.
2	30	54000		0.13043478	0.17142857
3	38	61000		0.47826087	0.37142857
4	40	70000		0.56521739	0.62857143
5	35	58000		0.34782609	0.28571429
6	31	52000	Scaling	0.17391304	0.11428571
7	48	79000		0.91304348	0.88571429
8	50	83000		1.	1.
9	37	67000		0.43478261	0.54285714

Scaling / Transformation Techniques

- Normalization
- Standardization
- Quantile transformation
- Log transformation
- Winsorization
- Power transformation
- Unit Vector Scaling

Normalization

Transformation

Mathematical Formula

$$X_{\text{transformed}} = \underbrace{X - X_{\text{min}}}_{X_{\text{max}} - X_{\text{min}}}$$

Python Function

Sklearn.preprocessing.

1 MinMaxScaler()

Transformation

Mathematical Formula

$$X_{transformed} = X - \mu$$

$$X_{transformed} = \frac{X_i - X_{mean}}{S_{tandard Deviation}}$$

Python Function

Sklearn.preprocessing. StandardScaler()

Feature Scaling

Examples of Algorithms where Feature Scaling matters:

- 1. K-Means uses the Euclidean distance measure here feature scaling matters.
- 2. K-Nearest-Neighbours also require feature scaling.
- 3. **Principal Component Analysis (PCA)**: Tries to get the feature with maximum variance, here too feature scaling is required.
- 4. Gradient Descent: Calculation speed increase as Theta calculation becomes faster after feature scaling.

Note: Naive Bayes, Linear Discriminant Analysis, and Tree-Based models are not affected by feature scaling.

Related Topics

- One-hot Encoding
- Missing value treatment
- Outlier treatment
- Feature Engineering
- Dimensionality Reduction

