

Knots, collocation, writing

Mark Blyth

Week's activities

- ₭ Spline-Newton CBC with more knots
 - Goal: more numerical stability
 - Different results, but not really any better
- Updated continuation paper
 - Edited, formatted, submitted
- Looked into collocation references
- Started annual review report

Newton iteration issues

- Solution jumps
 - Probably a finite-differences issue?
 - ▶ But, Jacobian is always well-conditioned
- Converged solution doesn't actually solve continuation equations
 - Newton iterations should, but don't, give a vector that, when passed to the continuation equations, give a zero output
 - More iterations don't help
 - Different convergence criteria don't improve things
- Idea: try more knots!
 - More knots = more attainable accuracy = perhaps better chance of finding a solution

Baseline: 5 knots

- Minimum 3 interior knots for a valid BSpline model
- Solution jumps
- Converged Newton-iteration vectors don't solve the continuation equations accurately

20 knots

- Simulation is notably slower to run
- Solution still jumps
- Converged Newton-iteration vectors solve system to higher accuracy than before

30 knots

- Simulation is even slower to run
- ₭ Solution jumps at about the same place
- Converged Newton-iteration vectors again solve system to higher accuracy

Things to note

- ✓ SciPy solvers still get a solution with 5 knots
 - Means the equations can be solved, but not by a Newton solver
 - Doesn't quite make sense...

- Solution is jumping after the second fold
 - I'd have expected this to be one of the more numerically stable places

Other things to try

- Adaptive stepsize
 - Should allow greater accuracy around difficult regions (eg. folds)
- Adaptive knots
 - Essential for 'harder' (eg. neuronal) signals
 - (Presumably) unimportant here
- Idea: Jacobian checking
 - Use a secant predictor to estimate the next Jacobian
 - If the finite-differences Jacobian differs much from the secant prediction, try FD again with a new stepsize
 - Extension: adaptive-stepsize finite differences

5 knots, $K_p=2$

Another thing to try: increasing the control gain

₭ Slight improvement in results

Effects of control gain

- k Was originally using $K_p = 1$
 - ► This worked fine for Duffing Fourier
 - \blacktriangleright Keeping K_p as low as possible seems to give the best-possible accuracy
- k Using $K_p = 2$ delayed the 'jump'
 - \blacktriangleright Jump region is controllable with Kp=1 for Fourier, but not splines
 - lacktriangle Still doesn't explain why non-Newton solvers could find a solution at $K_p=1!$
- $\ensuremath{\mathbb{K}}$ Intuitively, increasing K_p would make it *harder* to find a correct solution, not easier
 - In limit, large K_p means every control target solves the continuation equations, whether or not they're noninvasive
 - Intuition: smaller K_p gives a larger gradient at the fixed-point, and therefore a more accurate solution can be found

Standard continuation

Other work: considering a 'standard' (non-control-based) continuation of the Duffing oscillator

- Removes any issue from controllers being weird
- Simplifies down to just a discretisation and predictor/corrector problem
- Plan of action:
 - 1. Learn about collocation and periodic-orbit continuation [in progress]
 - 2. Learn about BSpline collocation for BVPs [in progress]
 - 3. Combine them
 - Add in the extras (BSpline periodicity structure, choice of knots, choice of collocation meshpoints, if any)
 - 5. Code up and test
 - 6. Make the step 4 extras adaptive

Next steps

- Lab group presentation
- Annual review report
- Later...
 - More collocation
 - 'Standard' continuation
 - Adaptive algos