Lab 6

Relational Algebra & SQL Queries

1. Find the ordered items which are in stock.

select s.itemid,orderQuantity.orderid from stock as s join (select oc.itemid,oc.quantity,o.orderid from orders as o join ordercontains as oc on oc.orderid= o.orderid) as orderQuantity on orderQuantity.itemid = s.itemid where orderQuantity.quantity<=s.quantity;

$$\begin{split} &\pi_{\text{item.id,orderid}}(stock_{\text{<orderQuantity.itemid=stock.itemid AND}} \\ &\text{orderQuantity.quantity<=stock.quantity>} \bowtie (orderQuantity, (\sigma_{\text{(ordercontains.itemid,ordercontains.quantity)}} \\ &(orders))_{\text{<ordercontains.orderid=orders.orderid>}} \bowtie ordercontains)) \end{split}$$

4	itemid character (10)	orderid charact	
1	ITEM000005	ORDER	00001
2	ITEM000001	ORDER	00001
3	ITEM000001	ORDER	00002

2. Find the customers whose orders are in stock.

Select s.itemid,orderQuantity.orderid,orderQuantity.name from stock as s JOIN (select oc.itemid,oc.quantity,o.orderid,c.name from orders as o JOIN ordercontains as oc on oc.orderid= o.orderid JOIN customer as c on c.customerid= o.customerid) as orderQuantity on orderQuantity.itemid = s.itemid where orderQuantity.quantity<=s.quantity;

$$\begin{split} & \pi_{\text{stock.item.id,orderQuantity.orderid,orderQuantity.name}(stock_{\text{corderQuantity.itemid=stock.itemid}} \text{AND} \\ & \text{orderQuantity.quantity}<& \bowtie(\text{orderQuantity,}(\sigma_{\text{(ordercontains.itemid,ordercontains.quantity,}}) \\ & \text{orders.orderid,customer.name})(\text{orders}))_{\text{cordercontains.orderid=orders.orderid),}} \\ & \text{ordercontains}\bowtie\text{customer})) \end{split}$$

4	name character varying (20)	orderid character (10)	itemid character (10)	
1	Akhilesh	ORDER00001	ITEM000005	
2	Akhilesh	ORDER00001	ITEM000001	
3	Mitesh	ORDER00002	ITEM000001	

3. Display the category names with their ordered quantities from all the orders placed.

Select name,sum(result.quantity) from
(Select itemcategory.name,ordercontains.quantity from itemcategory
JOIN item on item.categoryid = itemcategory.categoryid
JOIN ordercontains on item.itemid = ordercontains.itemid
JOIN orders on ordercontains.orderid = orders.orderid
) as result
GROUP BY name

$$\begin{split} & \text{r1} = \pi(_{\text{itemcategory.name,ordercontains.quantity}}) \\ & \bowtie_{<\text{items.categoryid=itemcategory.categoryid>}}) \\ & \text{items.categoryid=itemcategory.categoryid>}) \\ & \text{items.itemsid=ordercontains.itemid>}) \\ & \text{ordercontains} \bowtie_{<\text{ordercontains.itemsid=orders.itemid>}}) \\ & \text{orders} \\ & \text{result} = \pi_{(\text{name})} F_{\text{SUM(quantity)}}(\text{r1}) \end{aligned}$$

4	name character varying (20)	sum numeric
1	Jewellery	2
2	Grooming	19
3	Fashion	9

4. Show the number of warehouses present in each city.

Select city.name,count(*) from warehouse JOIN city on city.cityid=warehouse.cityid GROUP BY city.name

 $\pi_{\mathsf{city.name}}.F_{\mathsf{count}(^*)}(warehouse \bowtie_{<\!\mathsf{warehouse.cityid} = \mathsf{city.cityid} >} city)$

4	name character varying (20)	count bigint
1	Gandhinagar	1
2	Vadodara	2
3	Surat	2

5. List all the managers of different warehouses.

Select emp.* from employee as emp JOIN warehouse as w on w.managerid = emp.emp_id

 $\pi_{\mathsf{emp},^{\star}}(\mathsf{employee} \bowtie_{\mathsf{<}\mathsf{warehouse}.\mathsf{managerid=employee}.\mathsf{employee} \mathsf{id>}} \mathsf{warehouse})$

4	emp_id [PK] character (10)	warehouseid character (10)	name character (20)	salary numeric	contact character (10)
1	EMP0000001	WRHSE00001	Suresh	10000	9123456789
2	EMP0000006	WRHSE00004	Akshay	15000	9132456789
3	EMP0000003	WRHSE00002	Shrey	11000	9123456879

6. In which warehouses the employee count is below the average count.

Select warehouseid ,count(*) as Employee_count from employee as e GROUP BY e.warehouseid having count(*) > (select Trunc(avg(ware_count.count) ,2)from (select warehouseid ,count(*) as count from employee as e GROUP BY e.warehouseid) as ware_count) $r1 = \text{warehouseid}, F_{\text{count}(*)} \Rightarrow \text{count} \text{ (employee)}$ $r2 = F_{\text{AVG(count)}} \text{ (r1)}$ $r3 = \sigma_{\text{(r1...count>r2.AVG(count))}}$ $result = \pi_{\text{(warehouseid,count)}(r3)}$

7. List all the pending orders.

Select * from orders where order_delivery_date is null

 $\sigma_{(order_delivery_date = NULL)}(orders)$

4	orderid [PK] character (10)	transportid character (10)	customerid character (10)	order_placed_date date	order_delivery_date date
1	ORDER00004	TRANS00002	CUST000003	2020-08-02	[null]

8. List the customerid with the highest number of orders placed.

Select customerid from (select customerid ,count(*) from orders GROUP BY customerid) as maxcount where count in (select max(count) from (select customerid ,count(*) from orders GROUP BY customerid)as maxc)

r1 = customerid,
$$F_{count(*)}$$
->count (orders)
r2= $F_{max(count)}$ (r1)

$$result = \pi_{(customerid, count)} \sigma_{(r1.count=r2.max(count))}$$

9. Name the vehicle no/id which is having the highest number of orders to transport.

Select vehicleid, count from (select vehicleid, count(*) from transport GROUP BY vehicleid) as maxcount where count in (select max(count) from (select vehicleid, count(*) from transport GROUP BY vehicleid) as maxc)

$$\begin{split} \text{r1} &= \text{vehicleid}. F_{\text{count(*)->count}} \text{ (transport)} \\ \text{r2} &= F_{\text{max(count)}} \text{ (r1)} \\ \text{result} &= \pi_{\text{(vehicleid,count)}} \sigma_{\text{(r1.count=r2.max(count))}} \end{split}$$

4	vehicleid character (10)	count bigint	
1	VEHIC00001		1
2	VEHIC00003		1
3	VEHIC00006		1