南亞塑膠工業股份有限公司 纖維事業部

酯化聚合反應條件優化

報告人:蘇正一 2020年12月25日

執行摘要

- 一、PET聚合體係由對苯二甲酸及乙二醇經酯化聚合反應製成:
 - (一)正常生產時,需人工取樣且各品質指標化驗分析時間長, 無法即時回饋控制。
 - (二)改規格時,需依序調整製程變數及添加副料,交接降級時間長。

由製程專業知識及統計手法將70個製程變數篩選出關鍵變數, 開發【AI品質預測模型】,預測「酯化率」、「二乙二醇含量」、 「酸價」、「特性黏度」等四項重要品質指標,取代人工分析, 即時回饋控制,提升製程品質能力;並輔以最佳化演算法,找出 副料最佳添加方式,縮短改規格降級時間。

二、投資費用: 45, 436千元。

專案完成後,預估台灣及海外各廠21套生產線,合計可減少降級量13,897噸/年,人員精簡11人,年效益168,320千元。 回收年限:0.27年。

報告大綱

- 一、PET酯化聚合製程說明
- 二、改善動機
- 三、建立AI品質預測模型作回饋控制
- 四、AI推展計劃
- 五、AI執行效益
- 六、後續工作計劃

一、PET酯化聚合製程說明

PET粒製程重要品質指標:

- 1.調漿酯化段:酯化率(C值)。
- 2.聚合段:二乙二醇含量(DEG)、酸價(COOH)、特性黏度(IV)。

一、PET酯化聚合製程說明(續)

PET主要化學反應如下:

(一)酯化反應

說明:對苯二甲酸與乙二醇混合調漿後,進行酯化脫水反應。

(二)聚合反應

說明:觸媒催化進行聚合反應,真空脫除乙二醇,製成PET聚合體。

(三)副反應生成二乙二醇

說明:酯化聚合過程,乙二醇反應形成副產物二乙二醇。

二、改善動機

運用AI技術建立品質預測模型,即時回饋控制重要製程變數,穩定生產品質,減少人工分析及品質降級損失。

品質指標	說明	品質分析管理
酯化率 (C值)	酯化反應後的PTA轉化率。 C值低,低聚物含量高;C值高,聚合速率慢。	取樣頻率: 1次/4hr 分析時間: 2hr/次
二乙二醇 (DEG) 含量	酯化聚合段乙二醇反應形成的副產物。 DEG含量較高,染色深度較深,但耐熱性較差。	取樣頻率: 1次/4hr 分析時間: 4hr/次
酸價 (COOH)	代表PET聚合體殘留的COOH含量; 與酯化率密切相關,酸價影響聚合反應速度及 產品耐熱性。	取樣頻率: 1次/8hr 分析時間: 2.5hr/次
特性黏度 (IV)	代表PET聚合體的分子鏈長度(聚合度)。 IV依下游產品加工需求管制。	取樣頻率: 1次/8hr 分析時間: 4hr/次

(一)以酯化率預測模型為例,說明AI建模流程:

收集2018年4月至2019年6月製程與品質數據,剔除後總共554,200筆製程數據、36,916筆品質數據作為建模數據,其中90%為訓練資料,10%為驗證資料。

- 1. 化學反應時間差調整
 - (1)以生產實際案例說明化學反應時間差:

以耐熱瓶粒改產非耐熱瓶粒,酯化率由96.5%降至95.0±0.5%,觀察 漿體密度調整後,酯化率變化趨勢,經330分鐘酯化率達到新平衡點。

- 1. 化學反應時間差調整
 - (2)另以XGBoost模型預測誤差做驗證,測試從0到420分鐘(30分鐘為間隔) 共15個時間差,驗證結果如下:

漿體密度於時間差330分鐘誤差最小

酯化一槽溫度於時間差240分鐘誤差最小

- 1. 化學反應時間差調整
 - (3)各製程變數化學反應時間差如下:

項次	製程變數	與取樣點分析時間差
1	DRC004:漿體密度	330 分
2	TIC003:調漿槽溫度	330 分

•

17	FIC020:酯化一槽回流EG量	240 分
18	LIC020:酯化一槽液位	240 分
19	TIC020:酯化一槽溫度	240 分

35	LIC023:酯化二槽液位	30 分
36	TIC023:酯化二槽溫度	30 分
37	MS026:酯化單體輸送泵浦轉速	0 分

2. 數據標準化

各變數的原始數據單位、數值不同,使用標準化轉換,將數據轉換在 同一基準下,可避免數值大小影響模型準確度。

原始數據共36,916筆(單位、數值範圍不同)

時間	漿體密度 (KG/M³) DRC004	調漿槽 温度(℃) TIC003	酯化一槽 温度(℃) TIC020
2018/8/14 16:00	1358. 5	68. 0	260. 2
2018/8/14 16:01	1358. 6	68. 0	260. 1
2018/8/14 16:02	1358. 4	68. 0	260. 1
•	•	•	•
2019/6/16 16:00	1334. 4	74. 3	256. 6
2019/6/17 16:00	1336. 5	68. 4	257. 0

數據標準化共36,916筆(無單位)

時間	漿體密度 DRC004	調漿槽 溫度 TIC003	酯化一槽 溫度 TIC020
2018/8/14 16:00	3. 67	0. 57	-0.18
2018/8/14 16:01	3. 69	0. 57	-0.22
2018/8/14 16:02	3. 64	0. 57	-0.22
•	•	•	•
2019/6/16 16:00	-2. 54	1.49	-1.86
2019/6/17 16:00	-2.00	0.63	-1.68

各變數數據平均值皆為 0,標準差皆為 1

X:製程變數 μ:平均數 σ:標準差

標準化轉換

1. 變數篩選: 37個製程變數篩選出9個關鍵變數

				_
項次	製程變數	相關係數絕對值	Lasso迴歸係數	
1	DRC004	0.888	-0. 70929	
2	TIC003	0.718	0. 06903	
•	•	•	•	
8	LIC023	0.477	0. 03713	
9	MS026	0.386	-0.02188	
10	T0201	0.722	-	
	•	•	•	
23	T0238	0.768	_	
24	LIC003	0.049	_	
	•	•	•	\ 2
34	MA020	0.005	_	J
35	PI004	0.152	0	
36	PIC020	0.161	0	\
37	PIC023	0.103	0	

步驟①:剔除高度相關的變數 剔除14個彼此高度相關的變數, 保留具代表性的製程變數。

步驟②:剔除相關係數影響小的變數 剔除11個與酯化率相關係數 絕對值低(<0.05)的製程變數。

步驟③:剔除Lasso迴歸影響小的變數 剔除3個Lasso迴歸係數等於0的 製程變數。

經過以上3個步驟篩選,最後**選擇9個** 關鍵變數。

數據收集 □ 資料 前處理 □ 編建變數 □ 模型建立 □ 模型驗證

2. 篩選完成變數列表

項次	製程變數	製程變數說明	時間差(分)
1	DRC004	漿體密度	330
2	TIC003	調漿槽溫度	330
3	TIC020	酯化一槽溫度	240
4	FIC020	酯化一槽回流EG量	240
5	LIC020	酯化一槽液位	240
6	TIC023	酯化二槽溫度	30
7	FIC023	酯化二槽回流EG量	30
8	LIC023	酯化二槽液位	30
9	MS026	酯化單體輸送泵浦轉速	0

- 1. 酯化率預測模型以**XGBoost模型**之決定係數最高(0.96),且平均絕對 百分比誤差(MAPE)最小(0.061%)。
- 2. 以2019年10月的數據進行測試, MAPE為0. 081%與建模時相當。

模型名稱	脊迴歸 (Ridge)	套索迴歸 (Lasso)	極限梯度 提升決策樹 (XGBoost)
決定係數 (R ²)	0.80	0.80	0. 96
均方根誤差 (RMSE)	0. 2010	0. 2009	0. 0859
平均絕對 百分比誤差 (MAPE)	0. 1564	0. 1562	0.0610

說明:決定係數愈接近1.0,代表模型愈有預測能力。 均方根誤差、平均絕對百分比誤差越小越好。

關鍵變數與酯化率變化趨勢如下表,**經比對化工原理,兩者趨勢一致**, 模型可上線使用。

XGBoost 重要性排名	製程變數	製程變數說明	模型趨勢 正負向	化工原理 正負向
1	TIC023	酯化二槽溫度	+	+
2	DRC004	漿體密度	_	_
3	TIC003	調漿槽溫度	+	+
4	TIC020	酯化一槽溫度	+	+
5	MS026	酯化單體輸送泵浦轉速	_	_
6	FIC023	酯化二槽回流EG量	+	+
7	FIC020	酯化一槽回流EG量	+	+
8	LIC023	酯化二槽液位	+	+
9	LIC020	酯化一槽液位	+	+

說明:運用實驗設計方法,在可操作的條件範圍內,計算XGBoost模型各變數的正負向趨勢。

(二)即時回饋控制:以酯化率為例

依據AI模型的變數重要性,選擇酯化二槽溫度為控制點,並設定調整範圍之上下限。

品質指標	控制點	調整範圍
酯化率(C值)	酯化二槽溫度	中心值±1℃

(三)AI回饋控制改善前後製程能力比較圖

品質指標	項目	酯化率
四貝徂尓	管制標準	97.5±0.5 %
製程能力	改善前	0.83
(Cpk)	改善後	1.47

說明:

透過AI解析續改善調漿槽溫度穩定性提升製程能力; 2020年3月Cpk已達2.08。

(四)另外三項品質指標比照酯化率(C值)品質預測模型方式建立,彙總如下:

品質指標	二乙二醇含量 (DEG)	酸價 (COOH)	特性黏度 (IV)
製程變數個數	70	70	70
關鍵變數個數	14	11	4
資料筆數	41, 316	19, 734	40, 918
最佳模型	XGBoost	XGBoost	Lasso
決定係數(R ²)	0. 97	0. 95	0.87
均方根誤差(RMSE)	0.030	0. 262	0.003
平均絕對百分比誤差(MAPE)	0. 525	0. 365	1.332
回饋控制點	酯化二槽 DEG外加量	酯化二槽溫度	主聚合二槽 真空度

(五)DCS即時顯示品質指標預測值與製程品質能力(Cpk) 將AI預測值即時顯示在DCS上,並依據AI預測值自動調整製程條件, 以提升製程品質能力,並可改善後段製程生產效率、染色等加工性。

說明:

製程品質能力(Cpk)改善,A級收率預計可提升0.4%,減少降級量5,415噸/年。

- (六)應用:縮短改規格時間
 - 1. 改規格時需依序調整各製程變數及添加副料,以致交接降級時間長。 因此運用下列方法縮短改規格時間:
 - (1)前述品質預測模型。
 - (2)以最佳化演算法找出副料最佳的添加方式。
 - 2. 各規格間主要配方差異如下:

副料種類	間苯二甲酸 (PIA)	二氧化鈦 (TiO ₂)	二乙二醇 (DEG)	磺酸鈉苯二甲酸甲基酯 (DMS)	
副料用途	調整結晶度	調整消光度 各種特殊粒依不同含量添加改			
添加位置	調漿槽				
規格	1. 光度別:全光、有光、半光、鈍光。 2. 機能別:高收縮粒、陽離子可染粒、工業絲粒、難燃粒、 瓶用原粒等。				

(六)應用:縮短改規格時間

3. 運用最佳化演算法尋找副料最佳注入條件 以全光粒改鈍光粒, TiO₂由0%提升至2. 35%為例:

(1)改善前後TiO2注入條件比較表

正常速度:	5.880	公升/分

項	目	注入方式	第一段注入條件	第二段注入條件	達標時間
改-	善前	單段	7.644 公升/分 x 180分 (1.3倍速度)	_	860分
改.	善後	兩段	14.406 公升/分 x 120分(2.45倍速度)	6.468 公升/分 x 40分 (1.1倍速度)	387分

(2)添加方式

(六)應用:縮短改規格時間

3. 運用最佳化演算法尋找副料最佳注入條件 (3)主聚合槽TiO₂含量平衡曲線

(六)應用:縮短改規格時間

4. 執行過程及結果

改善方向	降級時間				
以告 万 问	改善前	改善後	差異		
應用品質指標預測模型	18小時	12小時	6小時		
尋找副料最佳的添加方式	14.3小時	6.5小時	7.8小時		
改規格降級時間(合併效益)	18小時	12小時	6小時		

說明:

- (1)續應用於其他更改規格之製程條件調整及改善副料添加方式,縮短 降級時間。
- (2)海內外各廠區比照推動,預期改規格降級量減少8,482噸/年(28%)。

四、AI推展計劃

(一)AI作業模組化

為加速推展到海內外廠區,資料前處理及AI建模工作由AI專人開發公用模組供生產主管自行完成AI建模工作,以簡化工作流程及縮短建模時間,AI工程師擔任輔導諮詢角色,從旁協助。

四、AI推展計劃

(二)海內外各廠區展開計劃如下:

開發時程	20	18	2019			2020			20	21		
廠區	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2
)		Ŧ	里論指	E論推導與建立模型				品質指標預測橫向展開				
台灣廠								改	規格AI建	模横向展	開	
					廷	上立模	型		品質指	標預測橫	向展開	
越南廠									改	規格AI建	模横向展	開
							arte y task on	al .		n 44 lb	14 or w1 14	1 1 111
 南卡廠							建立模型	<u></u>		品質指	標預測橫	向展開
										改規格	AI建模橫	向展開

五、AI執行效益

各廠區降級量預計減少13,897噸/年,人員精簡11人,合計效益預計 168,320千元/年,彙總如下:

(一)運用AI預測品質指標,作即時回饋控制,A級收率提升0.4%,降級量預估減少如下:

單位:噸/年、NTD千元/年

廠區(套數)	台灣廠(7套)	越南廠(2套)	南卡廠(12套)	合計
降級量減少	1, 784	207	3, 424	5, 415
年效益	12, 488	1, 236	45, 454	59, 178

(二)聚合改規格運用AI品質指標作回饋控制並尋找最佳副料添加方式,預估減少改規格 降級量28%如下: 單位:噸/年、NTD千元/年

廠區	台灣廠	越南廠	南卡廠	合計
降級量減少	1, 774	453	6, 255	8, 482
年效益	12, 418	2, 718	83, 036	98, 172

(三)人員精簡:

運用AI改善後,可即時回饋控制,穩定品質,減少分析頻率,預估可精簡化驗分析人員計11人(台灣廠4人、越南廠4人及南卡廠3人),預計年效益10,970千元。

六、後續工作計劃

- (一)續優化AI預測模型及減少降級量:
 - 1. **優化AI模型並應用副料調整最佳化演算法**,再縮短改規格時間; 預定2021年3月完成,預估年效益32,724千元。
 - 2. 整合客戶需求,減少粒規格數,集中生產,由34項減少至 28項(減少6項),降低改規格次數,減少降級量1,040噸/年, 預定2021年6月完成,預估年效益12,037千元。
- (二)其他製程(紡絲、假撚)AI運用:
 - 1. 紡絲:建立紡絲設備製程穩定度指標、紡絲噴絲頭壓力預測絲束 黏度模型,監控紡絲製程,穩定品質減少斷絲,預計 可提升A級率0.5%,預估年效益18,429千元。
 - 2. 假燃:建立假燃斷絲原因自動判斷模型,以假燃斷絲圖形及張力 數據,由AI自動判斷斷絲原因,可即時處理減少斷絲, 預計可提升A級率1. 0%,預估年效益30,752千元。

報告完畢恭請清

附件、專有名詞中英文對照表

項次	英文縮寫	英文全名	中文名稱	說明
1	DCS	Distributed Control System	分散控制系統	生產製程所使用的電腦化控制 系統,由分散在系統中不同節點 的處理器所組成的控制系統。
2	Linear	Linear Regression Model	線性迴歸模型	用線性函式去擬合一組資料並 使得損失最小的模型。
3	Ridge	Ridge Regression Model	脊迴歸模型	加入L2正則項,有助於處理多重 共線性問題。
4	Lasso	Lasso Regression Model	套索迴歸模型	加入L1正則項,有助於變數選擇。
5	XGBoost	eXtreme Gradient Boosting Model	極限梯度提升模型	決策樹演算法集大成的最終學習 模型。
6	R ²	Coefficient of Determination	決定係數或判定係數	迴歸模型裡可解釋離差平方和與 總離差平方和的比值。
7	RMSE	Root Mean Square Error	均方根誤差	均方根誤差代表預測的值和觀察 到的值之差的樣本標準差,又稱 標準誤差,均方根誤差是一項 迴歸指標。
8	MAPE	Mean Absolute Percentage Error	平均絕對百分比誤差	預測值與觀測值誤差百分率的 平均值,平均絕對百分比誤差是 一項迴歸指標。