Design Projects

Multi-layer Perceptron (MLP) Neural Network for Machine Learning

Multi-Layer Perceptron Neural Network

- Handwritten digit recognition
 - Task: Classify a given image of a handwritten digit into one of 10.
 - Dataset: Modified National Institute of Standards and Technology (MNIST), including 60,000 28×28 pixel grayscale images of handwritten single digits between 0 and 9.
- Multi-Layer Perceptron (MLP) Neural Network

FIGURE 12.18
Design Structure of SLP Neural Network

Sigmoid Neuron Design

Design on MLP Neural Network

- The MLP neural network can be decomposed into multiple layers of sigmoid neurons
- Each sigmoid neuron can be further decomposed into multiple floating-point (FP) operations such as FP adders and multipliers.
- Sigmoid neuron design using FP operators
 - From hardware design specification, the sigmoid neuron can be constructed/integrated using FP units (FPUs)
 - Hardware design architecture should be considered

$$hn_i = \frac{1}{1 + exp(-\sum_{j=1}^{784} wh_{ij} \times x_j - bh_i)}$$

FIGURE 12.19

- Project #1: Design Integration and Simulation on FP Multiplier-Subtractor (MS)
 - Include the FPU_Is_lib.v into your project.
 - Notice that all the FP designs are asynchronous negedge reset.
 - Design the fp_ms using the FP multiplier and FP subtractor as design intellectual properties (IPs)

```
module FP multiplier(
               clock,
  input
  input
               reset,
  input [31:0] io in a,
  input [31:0] io in b,
 output [31:0] io out s
module FP subber(
  input
                clock,
  input
              reset,
  input [31:0] io_in_a,
  input [31:0] io in b,
  output [31:0] io_out s
```


FIGURE 12.19
Streaming Design Structure of Hidden-Layer Neuron

- Project #1: Design Integration and Simulation on FP Multiplier-Subtractor (MS)
 - Build the simulation environment with test cases below:
 - One input to the FP multiplier is -1.0
 - Feeding in pipelined/consecutive FP 12.0 and -10.0 (dot product) to the multiplier
 - Feeding in pipelined/consecutive FP -2.0 and 2.0 (bias bh_i) to the subtractor

FIGURE 12.19
Streaming Design Structure of Hidden-Layer Neuron

TABLE 8.2

TABLE 8.2							
IEEE 754 Format for FP Numbers							
\mathbf{FP}	1.0	2.0	3.0	4.0	5.0	6.0	
HW	3f800000	40000000	40400000	40800000	40a00000	40c00000	
FP	7.0	8.0	9.0	10.0	11.0	12.0	
$\mathbf{H}\mathbf{W}$	40e00000	41000000	41100000	41200000	41300000	41400000	
FP	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	
HW	bf800000	c0000000	c0400000	c0800000	c0a00000	c0c00000	
FP	-7.0	-8.0	-9.0	-10.0	-11.0	-12.0	
HW	c0e00000	c1000000	c1100000	c1200000	c1300000	c1400000	

- Project #2: Design Integration and Simulation on FP Sequence of Multiplier-Subtractor-Subtractor-Reciprocal (MSSR)
 - Design the fp_mssr by adding the FP subtractor and FP reciprocal to the Project 1.
 - Notice that all the FP designs are asynchronous negedge reset.

FIGURE 12.19
Streaming Design Structure of Hidden-Layer Neuron

- Project #2: Design Integration and Simulation on FP sequence of Multiplier-Subtractor-Subtractor-Reciprocal (MSSR)
 - Build the simulation environment with test cases below:
 - Testing io_a-1.0 for the second FP subtractor
 - Testing 1.0/io_a for the FP reciprocal
 - Feeding in pipelined/consecutive FP 12.0 and -10.0 (dot product) to the multiplier

• Feeding in pipelined/consecutive FP -2.0 and 2.0 (bias bh_i) to

the subtractor

TABLE 8.2

IEEE 754 Format for FP Numbers							
\mathbf{FP}	1.0	2.0	3.0	4.0	5.0	6.0	
$\mathbf{H}\mathbf{W}$	3f800000	40000000	40400000	40800000	40a00000	40c00000	
FP	7.0	8.0	9.0	10.0	11.0	12.0	
$\mathbf{H}\mathbf{W}$	40e00000	41000000	41100000	41200000	41300000	41400000	
FP	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	
$\mathbf{H}\mathbf{W}$	bf800000	c0000000	c0400000	c0800000	c0a00000	c0c00000	
FP	-7.0	-8.0	-9.0	-10.0	-11.0	-12.0	
$\mathbf{H}\mathbf{W}$	c0e00000	c1000000	c1100000	c1200000	c1300000	c1400000	

FIGURE 12.19

Streaming Design Structure of Hidden-Layer Neuron

- Project #3: Design Integration and Simulation on FP Dot Product
 - Include the FPU_ls_lib.v into your project
 - Design the fp_dot using the FP multiplier and FP adder as design intellectual properties (IPs)
 - The streaming width is four, meaning the input vector size is 4

FIGURE 12.19 Streaming Design Structure of Hidden-Layer Neuron

$$hn_{i} = \frac{1}{1 + exp(-\sum_{j=1}^{784} wh_{ij} \times x_{j} - bh_{i})}$$

- Project #3: Design Integration and Simulation on FP **Dot Product**
 - Build the simulation environment with test cases below

•
$$[w0, w1, w2, w3] * \begin{bmatrix} x0 \\ x1 \\ x2 \\ x3 \end{bmatrix} = [1.0, 2.0, 3.0, 1.0] * \begin{bmatrix} 1.0 \\ 2.0 \\ 2.0 \\ 1.0 \end{bmatrix}$$

FIGURE 12.19

Streaming Design Structure of Hidden-Layer Neuron

	1.0
_ [1 0 2 0 2 0 1 0] *	-2.0
= [1.0,2.0,3.0,1.0] *	-1.0
	-2.0

IEEE 754 Format for FP Numbers						
FP	1.0	2.0	3.0	4.0	5.0	6.0
HW	3f800000	40000000	40400000	40800000	40a00000	40c00000
FP	7.0	8.0	9.0	10.0	11.0	12.0
$\mathbf{H}\mathbf{W}$	40e00000	41000000	41100000	41200000	41300000	41400000
FP	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0
HW	bf800000	c0000000	c0400000	c0800000	c0a00000	c0c00000
FP	-7.0	-8.0	-9.0	-10.0	-11.0	-12.0
HW	c0e00000	c1000000	c1100000	c1200000	c1300000	c1400000

- Project #4: Design Integration and Simulation on a sigmoid neuron using the FPUs provided.
 - Integrate project 2 and 3 as the sigmoid neuron

FIGURE 12.19
Streaming Design Structure of Hidden-Layer Neuron

- Project #4: Design Integration and Simulation on a sigmoid neuron using the FPUs provided.
 - Build the simulation environment with two test cases below

•
$$[w0, w1, w2, w3] * \begin{bmatrix} x0\\ x1\\ x2\\ x3 \end{bmatrix} = [1.0, 2.0, 3.0, 1.0] * \begin{bmatrix} 1.0\\ 2.0\\ 2.0\\ 1.0 \end{bmatrix}$$

•
$$[w0, w1, w2, w3] * \begin{bmatrix} x0 \\ x1 \\ x2 \\ x3 \end{bmatrix} = [1.0, 2.0, 3.0, 1.0] * \begin{bmatrix} -1.0 \\ -2.0 \\ -1.0 \\ -2.0 \end{bmatrix}$$

The bias input bh_i is FP -2.0 and 2.0 for the two dot products, respectively

TABLE 8.2

IEEE 754 Format for FP Numbers							
FP	1.0	2.0	3.0	4.0	5.0	6.0	
HW	3f800000	40000000	40400000	40800000	40a00000	40c00000	
FP	7.0	8.0	9.0	10.0	11.0	12.0	
HW	40e00000	41000000	41100000	41200000	41300000	41400000	
FP	-1.0	-2.0	-3.0	-4.0	-5.0	-6.0	
HW	bf800000	c0000000	c0400000	c0800000	c0a00000	c0c00000	
FP	-7.0	-8.0	-9.0	-10.0	-11.0	-12.0	
HW	c0e00000	c1000000	c1100000	c1200000	c1300000	c1400000	

Evaluation Rubric

Grading rubric

- Submit your report and the project to Canvas
 - In the report, include screenshots of your design code, testbench, and simulation results as attachments.
- Grading policy
 - Introduction and conclusion (2 pts)
 - Design code (2 pts)
 - Testbench (1 pt)
 - Simulation results
 - All the signals must be *clearly shown* in the screenshot waveform (2 pts)
 - The FP inputs and outputs must be shown in *float32* format (1 pts)
 - The correctness of the simulation results (2 pts)

Thanks!

CRC Publisher Book: Integrated Circuit Design

Associate Professor, UHCL yangxia@uhcl.edu

Affiliate Faculty, LBL xiaokunyang@lbl.gov