Lecture 13 – Intro to Complexity theory

NTIN071 Automata and Grammars

Jakub Bulín (KTIML MFF UK) Spring 2024

^{*} Adapted from the Czech-lecture slides by Marta Vomlelová with gratitude. The translation, some modifications, and all errors are mine.

Recap of Lecture 12

- the Diagonal language L_D is not recursively enumerable
- the Universal language L_U, the Universal TM: simulate any M
 on any w
- recursive languages are closed under complement
- Post's theorem: L recursive iff both L, \overline{L} are RE
- \bullet L_U , L_D are recursively enumerable but not recursive
- reductions between decision problems
- the Halting problem is undecidable
- (Rice's thm: nontriv. properties of programs are undecidable)
- Undecidable problems about context-free grammars
- Source of undecidability: Post's correspondence problem

Summary of Lecture 13

- time complexity

Chapter 5: Intro to Complexity

Time complexity

Asymptotic notation

Big-O notation: Let $f,g:\mathbb{N}\to\mathbb{R}^+$. We say that $f(n)\in O(g(n))$, if there exist $C,n_0\in\mathbb{N}^+$ such that $(\forall n>n_0)\ f(n)\leq C\cdot g(n)$

e.g. $\limsup_{n\to\infty} \frac{f(n)}{g(n)} < \infty$. In that case we say that g(n) is an [asymptotic] upper bound [up to a constant multiple] for f(n).

Note: Often the imprecise term 'upper bound' is used; sometimes you will encounter f(n) = O(g(n)).

For example, $f(5n^3 + 2n^2 + 22n + 6) \in O(n^3)$ with $n_0 = 10$, C = 6.

Little-o notation: $f(n) \in o(g(n))$, if for all c > 0 there exists $n_0 \in \mathbb{N}^+$ so that $(\forall n \ge n_0)$ $f(n) < c \cdot g(n)$, i.e. $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$. Then we say f(n) is [asymptotically] dominated by g(n).

Analogously for \geq instead of \leq : Ω, ω .

Classes of time complexity

Definition

Let M be a Turing machine that halts on every input. The time complexity of M is the function $f: \mathbb{N} \to \mathbb{N}$, where f(n) is the maximum number of computation steps for inputs of length n.

Definition

For $t: \mathbb{N} \to \mathbb{R}^+$, $\mathrm{TIME}(t(n))$ is the class of all languages decidable by a TM of time complexity in O(t(n)) (i.e., always halts and for |w| = n correctly answers in at most O(t(n)) steps).

NB: Here we mean the standard, single-tape, deterministic TM.

Example

Example $(L = \{0^i 1^i \mid i \ge 0\})$ is in TIME (n^2)

- 1. check if the input is $0^i 1^j$, if a 0 follows a 1, reject (time O(n))
- 2. return to the beginning: hidden in the constant O(2n) = O(n)
- 3. go through the 0s, in time $O(n^2)$
 - 3.1 rewrite the next 0 to X
 - 3.2 find the first 1, rewrite to X
 - 3.3 return to the beginning
- 4. if no more 0s, check that no more 1s remain and accept (if 1 found, reject) (time O(n))

Can we do it faster?

Can we do it faster?

Idea: "compare the binary representations of i and j", $\log n$ bits, for each bit need to traverse through the word

```
Example (L = \{0^i 1^i \mid i \ge 0\} \text{ is also in } TIME(n \log n))
```

- 1. check if the input is $0^i 1^j$ and even length (time O(n))
- 2. iterate while there are 0s, in time $O(n \log n)$
 - 2.1 rewrite every other 0 to X, then every other 1 to X
 - 2.2 check if the number of remaining 0s+1s is even, if not, reject
- 3. if no more 0s, check that no more 1s and accept (time O(n))

Can we do it even faster?

Time complexity and regular languages

Can we do it even faster? Not really.

Theorem

Every language decidable in time $o(n \log n)$ [on a single-tape, deterministic TM] is regular.

[We omit the proof.]

Multi-tape TM

Example (Multi-tape TM for $L = \{0^i 1^i \mid i \ge 0\}$ **)**

- copy 0s to Tape 2
- at first 1, switch state; erase 1 from Tape 1 & 0 from Tape 2
- · accept if both tapes are erased

Lemma

Every multi-tape Turing Machine with time complexity t(n) is equivalent to a [single-tape] Turing Machine with time complexity $O(t^2(n))$.

Proof: Simulation of n steps of a k-tape TM can be done in $O(n^2)$ moves since one step takes 4n + 2k moves (heads at most 2n fields apart, read, write, move head marks).

Nondeterministic time complexity

The time complexity of a **nondeterministic** Turing machine that always halts is defined analogously: f(n) is the maximum number of steps in **any branch** of the computation tree.

Definition

For $t : \mathbb{N} \to \mathbb{R}^+$, $\overline{\text{NTIME}}(t(n))$ is the class of all languages decidable by a nondeterm. TM of time complexity in O(t(n)).

(An NTM decides L if halts on all inputs and recognizes L.)

Theorem

Any nondeterministic TM of time complexity $t(n) \ge n$, has a deterministic equivalent of time complexity in $2^{O(t(n))}$.

Corollary

If $t(n) \ge n$, then $\text{NTIME}(t(n)) \subseteq \text{TIME}(2^{O(t(n))})$.

Proof

Recall the construction: BFS of the computation graph, keep a queue of configurations to process.

- At most *d* possible transitions for any $(q, X) \in (Q \setminus F) \times \Gamma$.
- So after k steps at most d^k configurations.
- Processing one configuration can be 'hidden' in the constant.
- Therefore the simulation is in time:

$$O(t(n)d^{t(n)}) = 2^{O(t(n))}$$

• We need to simulate multiple tapes, but:

$$(2^{O(t(n))})^2 = 2^{O(2t(n))} = 2^{O(t(n))}$$

P vs. NP

The class P

Definition

Let P (also PTIME) be the class of all languages decidable in polynomial time by a [single-tape, deterministic] Turing machine:

$$P = \bigcup_k \mathrm{TIME}(n^k)$$

- Path in a graph
- Primality of an integer (Agrawal, Kayal, Saxena 2002)
- Linear programming
- Horn-SAT

(The last two are P-complete under LOGSPACE reductions.)

Theorem ($CFL \subseteq P$)

Every context free language belongs to P.

Proof: Take a ChNF grammar for L. Given input ω , run the CYK algorithm (polynomial, in $O(n^3)$).

The class NP: verifier-based definition

Definition

A verifier for a language L is an algorithm V such that:

 $L = \{ w \mid \text{there exists a finite string } c \text{ such that } V \text{ accepts } \langle w, c \rangle \}$

Such a *c* is called a certificate. It can be over any alphabet!

Complexity of verifiers is only considered wrt. the length of w: a polynomial verifier must halt in time $O(|w|^k)$ for some k>0. Then we can assume the certificate has polynomial length

(otherwise the verifier cannot even read it).

Definition

NP is the class of all languages that have a polynomial verifier.

That is, there is an algorithm that works in time polynomial in |w| and when given $w \in L$ and a certificate c validates that c is a valid certificate for $w \in L$.

Hamiltonian path

A Hamiltonian path in a directed graph G is a directed path P that visits each vertex of G exactly once.

 $HAMPATH = \{\langle G \rangle \mid G \text{ contains a Hamiltonian path}\}$

- complexity for graphs can be measured just wrt. |V| (|E| is at most quadratic, thus polynomial)
- the certificate is the path (sequence of vertices)
- the algorithm verifies that the sequence is indeed a path containing each vertex exactly once; this can be easily done in polynomial time wrt. |V|
- ullet for $\overline{\rm HAMPATH}$ we do not know whether a polynomial verifier exists (we only know the problem is in EXPTIME)

The class NP: nondeterminism-based definition

Definition

 NP is the class of all languages that have a polynomial verifier.

Theorem

 $NP = \bigcup_k NTIME(n^k).$

Idea: convert a verifier to a nondeterministic TM, and vice versa

- ⇒ the NTM guesses the certificate, then simulates the verifier
- the verifier takes as a certificate the accepting path of the NTM (more precisely, the sequence of nondeterministic choices that leads to acceptance), then simulates the NTM

 $\mathrm{NP} \subseteq \bigcup_k \mathsf{NTIME}(n^k)$: Let $L \in \mathrm{NP}$ and take a polynomial verifier V for L, say it works in time $C \cdot |\omega|^k$. Construct an NTM M:

Given input ω :

- nondeterministically guess a certificate c (of $|c| \leq C \cdot |\omega|^k$)
- ullet simulate V on input $\langle \omega, c \rangle$
- ullet if V accepted, M accepts

 $\bigcup_k NTIME(n^k) \subseteq NP$: Let $L \in NTIME(n^k)$, i.e., L = L(M) for an NTM M working in time $O(n^k)$. Construct a polynomial verifier V:

Given input $\langle w, c \rangle$, interpret c as sequence of choices: $c_i = j$ means "at step i use jth possible transition" (order as in code(M))

- simulate M on input w
- at each step *i* choose the *c_i*th possible transition
- accept if this computation path leads to acceptance

Example: CLIQUE is in NP

 $CLIQUE = \{\langle G, k \rangle \mid G \text{ is a graph which contains } K_k \text{ as a subgraph}\}$

Polynomial verifier for CLIQUE: input $\langle \langle G, k \rangle, c \rangle$

- interpret the certificate c as a list of vertices
- check that c contains k vertices
- check that c induces a complete subgraph of G

Nondeterministic TM deciding CLIQUE: input $\langle G, k \rangle$

- nondeterministically choose a k-element subset $c \subseteq V$
- check that c induces a complete subgraph of G

NP-completeness

Polynomial-time reductions and

Polynomial-time reducibility

Recall the notion of reduction between decision problems. Now we additionally require that the algorithm is polynomial-time:

A [total] function $f: \Sigma^* \to \Delta^*$ is polynomial-time computable, if there exists a [deterministic] Turing Machine M and C, k > 0 such that for each $\omega \in \Sigma^*$, M halts in at most $C \cdot |\omega|^k$ steps with $f(\omega) \in \Delta^*$ being the non-blank contents of its tape.

Definition

A language $A\subseteq \Sigma^*$ is polynomial-time reducible to a language $B\subseteq \Delta^*$, $A\leq_P B$, if there exists a polynomial-time computable function $f:\Sigma^*\to \Delta^*$ such that for all $\omega\in \Sigma^*$:

$$\omega \in A \Leftrightarrow f(\omega) \in B$$

Then we call f a polynomial-time reduction from A to B.

Example: Hamiltonian path from source to target

- HAMPATH = $\{\langle G \rangle \mid G \text{ contains a Hamiltonian path}\}$
- st-HAMPATH = { $\langle G, s, t \rangle \mid G \text{ has a H. path from } s \text{ to } t$ }

Example

HAMPATH and *st*-HAMPATH are polynomial-time interreducible, i.e. each polynomial-time reduces to the other.

The reduction HAMPATH $\leq_P st$ -HAMPATH:

Given G create G' by adding new vertices s,t and all edges from s to V_G and from V_G to t; define $f(\langle G \rangle) = \langle G',s,t \rangle$

$$\langle G \rangle \in \text{HAMPATH} \iff \langle G', s, t \rangle \in st\text{-HAMPATH}$$

The reduction st-HAMPATH \leq_P HAMPATH: construct G' by adding new vertices s', t', edges $s' \to s, t \to t'$; $f(\langle G, s, t \rangle) = \langle G' \rangle$

Example: 3SAT is polynomial-time reducible to CLIQUE

A propositional formula is in CNF if it is a conjunction of clauses, and 3-CNF if each clause contains exactly 3 literals.

- SAT = $\{\langle \phi \rangle \mid \varphi \text{ is a satisfiable CNF formula}\}$
- $3SAT = \{ \langle \phi \rangle \mid \varphi \text{ is a satisfiable 3-CNF formula} \}$

Theorem

3SAT is polynomial-time reducible to CLIQUE.

Proof: Vertices are occurrences of literals (three vertices per clause). Include all edges except for:

- between vertices from the same clause
- between a variable and its negation $(x \text{ and } \neg x)$

Set k = # clauses. Note: Exactly one literal per clause selected. \square

Exercise: 3SAT is polynomial-time interreducible with SAT.