Contents

Estimation from a damage function

Reduced-form estimation

Introductory thoughts

- ▶ The impact of CO₂ on impacts has a much shorter half-life than of CO₂ in the atmosphere because of adaptation—but we know exactly how long that timescale is: a Bartlett kernel-weighted 30 years.
- ► The impact of a step change in temperature produces a short-term effect, in the immediate year, and a long-term effect, 30 years later.
- The damage function we estimate for IAMs should incorporate this transition, both in its estimation and in the information we provide to IAMs.

A model of impacts

Changes in CO₂ leads to changes in temperature according to a scientifically assumed transfer function, $p_t = (1 - e^{-t/2.8})e^{-t/400}$: $T_t = C_t * p_t$. (Throughout, * is the convolution operator.) Assume that impacts are generated by

$$y = [f(T_t) - a(f(T_t) * b_t)] (\mathsf{GDPpc})^{\gamma}$$

- ▶ $f(T_t)$ is an instantaneous damage function, generally of the form $\beta_1 T_t + \beta_2 T_t^2$.
- b_t is the Bartlett kernel, and a is the degree of temperature-driven adaptation.
- ► The last term provides a measure of elasticity of damages with income.

Estimated damage function

Bayesian fitted parameters

Results

RCP	SSP	Monetization	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07
4.5	SSP4	VSL ag02 popavg	49.765215	20.090173	11.188628	7.319126	5.2335889	3.9565314	3.1067942	2.5073709
4.5	SSP4	VSLY popavg	27.076281	11.585834	6.923858	4.851441	3.7002694	2.9724734	2.4727046	2.1093082
4.5	SSP4	VSLY scaled	4.846833	2.353378	1.527805	1.128928	0.8938308	0.7389402	0.6293463	0.5477955
4.5	SSP4	VSL ag02 scaled	10.848195	5.175614	3.320996	2.429363	1.9066906	1.5647519	1.3247003	1.1474737
4.5	SSP5	VSL ag02 popavg	22.639750	12.790459	9.110520	7.113661	5.8206464	4.9042500	4.2186996	3.6866908
4.5	SSP5	VSLY popavg	11.801313	7.208263	5.423449	4.413440	3.7358821	3.2413275	2.8619107	2.5608733
4.5	SSP5	VSLY scaled	3.848509	2.133306	1.521382	1.197915	0.9917263	0.8470242	0.7393777	0.6560325
4.5	SSP5	VSL ag02 scaled	11.471691	5.608791	3.721099	2.799517	2.2450104	1.8726067	1.6050818	1.4037624
8.5	SSP4	VSL ag02 popavg	112.962731	41.333858	21.802857	13.955777	9.9695436	7.6319429	6.1235417	5.0814877
8.5	SSP4	VSLY popavg	54.144549	20.820391	11.622419	7.842783	5.8696309	4.6790999	3.8891723	3.3288767
8.5	SSP4	VSLY scaled	10.365246	4.535453	2.715188	1.892462	1.4381250	1.1560006	0.9663930	0.8312908
8.5	SSP4	VSL ag02 scaled	22.627928	10.012589	5.961467	4.101235	3.0711859	2.4350453	2.0115973	1.7132506
8.5	SSP5	VSL ag02 popavg	43.699053	21.802650	14.734155	11.293759	9.2161600	7.8077671	6.7840025	6.0041636
8.5	SSP5	VSLY popavg	20.489387	11.096381	7.938798	6.331466	5.3222833	4.6156765	4.0879440	3.6765711
8.5	SSP5	VSLY scaled	6.789311	3.387298	2.244069	1.682805	1.3488154	1.1277918	0.9711668	0.8546137
8.5	SSP5	VSL ag02 scaled	19.423931	8.974785	5.584819	3.984682	3.0697847	2.4871389	2.0886172	1.8013216

Calculating an SCC (one slide for MG)

1. We estimate a global damage function: total monetized costs as they vary with temperature change from the baseline.

- 2. The damage function includes the effect of temperature adaptation (minor here) and income adaptation (huge).
- 3. We calculate (A) costs for each year according to an RCP scenario, and (B) costs for a 1 tonne boost in 2017 above that scenario.
- 4. The SCC is the present discounted value of (B) (A).

Calculating an SCC

Let x_t be a stream of CO₂ emissions and y_t be the stream of impacts.

Let f(t) be an impulse response function which describes how a single GT jump in CO₂ produces a stream of impacts. Then, $y_t = x_t * f(T)$, the result of a convolution.

- 1. We assume that each unit increase in CO2 has an impact that starts near 0, rises rapidly, and slowly decays. It also varies with average global temperature \mathcal{T} .
- The entire stream of impacts from CO2 is the just the sum of scaled and translated copies of this impulse response.
- We calculate the coefficients that define that impulse response.
- 4. We calculate the NPV of the impulse response.

A proposed structural form

Suppose that $f(T) = \sum_{k=0}^{K} (\beta_{k0} + \beta_{k1}T) t^k e^{-t/\tau}$, where τ is the residence time of CO₂ in the atmosphere, 400 yr under IPCC or 77 yr under DICE. Then,

$$y_{t} = \alpha + \sum_{s=0}^{\infty} x_{t-s} \sum_{k=0}^{K} (\beta_{k0} + \beta_{k1} T_{t-s}) s^{k} e^{-s/\tau} + \epsilon_{t}$$

$$= \alpha + \sum_{k=0}^{K} \beta_{k0} \sum_{s=0}^{\infty} x_{t-s} s^{k} e^{-s/\tau} + \sum_{k=0}^{K} \beta_{k1} \sum_{s=0}^{\infty} x_{t-s} T_{t-s} s^{k} e^{-s/\tau} + \epsilon_{t}$$

This is just a weighted sum of recent CO_2 emissions as the predictors for a regression.

Calculating an SCC

We are interested in the discounted sum of impacts. This can be calculated as,

$$SCC_{t} = \sum_{u=0}^{\infty} e^{-\delta u} y_{u}(\delta_{u})$$

$$= \sum_{u=0}^{\infty} e^{-\delta u} \left[\sum_{k=0}^{K} \beta_{k0} \sum_{s=0}^{\infty} \mathbf{1} \{ u - s = 0 \} s^{k} e^{-s/\tau} + \sum_{k=0}^{K} \beta_{k1} \sum_{s=0}^{\infty} \mathbf{1} \{ u - s = 0 \} T_{u-s} s^{k} e^{-s/\tau} \right]$$

$$= \sum_{u=0}^{\infty} e^{-\delta u} \left[\sum_{k=0}^{K} \beta_{k0} u^{k} e^{-u/\tau} + \sum_{k=0}^{K} \beta_{k1} T_{t} u^{k} e^{-u/\tau} \right]$$