1

0.1 Introducciónwww

Queremos buscar los mínimos del siguiente problema: \mathcal{L} es un operador lineal $\mathcal{L}u=f$. Si definimos

$$A(u,v) = \int \int_{\Omega} \mathcal{L}uv dx dy$$

donde dxdy representará un diferencial de area y en general lo omitiremos. A es tal que $A(u,v) \ge \alpha ||u||^2$ si u_0 es mínimo de

$$A(u,u)-2(f,u)$$

donde se define

$$(f,u) = \int \int_{\Omega} fu.$$

entonces a u_0 se le llama la solución generalizada de $\mathcal{L}u=f$. El operador \mathcal{L} puede ser por ejemplo la biarmónica Δ^2 . si

$$\int \int_{\Omega} \mathcal{L}u\phi = \int \int_{\Omega} f\phi$$

para todo $\phi \in C_0^{\infty}$, entonces definimos el operador autoadjunto como

$$\int \int_{\Omega} \mathscr{L}^* u \phi$$

donde * indica complejo conjugado. Ejemplos físicos de este operador son la membrana elástica y el campo electrostático. En cualquiera de estos casos vemos que la energía almacenada por el campo se puede escribir de la forma

$$I(u) = \int \int_{\Omega} |\nabla u|^2.$$

El problema lo plantearemos como : encontrar u que minimiza I(u) con $u|_{\partial\Omega}=f$. Primero veremos que el minimizar la energia es equivalente a encontrar la solución al problema del laplaciano con valor en la frontera. Sea v tal que $v|_{\partial\Omega}=f$ y sea h=v-u entonces $h|_{\partial\Omega}=0$. Ahora

$$I(v) = I(u+h) = \int \int_{\Omega} (u_x + h_x)^2 + (u_y + h_y)^2$$

donde si utilizamos una de las identidades de Green que se sigue del teorema de la divergencia con el campo vectorial $u\nabla v$ y usando el hecho que $\partial_k(u\partial_k v) = u\partial_k\partial_k v + \partial_k u\partial_k v$, donde se asume suma sobre indices repetidos, entonces

$$\int \int_{\Omega} \nabla \cdot (u \nabla v) = \int \int u \Delta v + \int \int_{\Omega} \nabla u \cdot \nabla v$$

donde aplicandolo a la energ'ia y recordando que h vale cero en la frontera encontramos que

$$I(v) = I(u) + I(h) - 2 \int \int_{\Omega} h \Delta u$$

donde usamos el hecho que h vale cero en la frontera. Si el laplaciano de u es positivo en un punto (x_0, y_0) entonces será positivo en una vecindad de (x_0, y_0) .

Tomamos h < 0 en la vecindad de (x_0, y_0) fuera de dicha vecindad, entonces se tiene que $I(u+h) \ge I(u)$. Ahora si tomamos h > 0 en la vecindad y cero fuera y tal que $\int \int_{\Omega} |\nabla h|^2 = 1$ entonces

$$I(u + \epsilon h) - I(u) = \epsilon^2 - 2\epsilon \int \int_{\Omega} h\Delta u < 0$$

si ϵ es pequeño, lo que contradice que I(u) sea mínimo. Lo que implica que $\Delta u \leq 0$ y por lo tanto $\Delta u = 0$ y por lo tanto u mínimo de I(u) con $u|_{\partial\Omega} = f$ es necesario y suficiente para que $\Delta u = 0$ en Ω y $u|_{\partial\Omega} = f$.

La solución es única.

Si u_1 y u_2 son soluciones, $h = u_1 - u_2$ entonces

$$I(u_1) = I(u_2 + h) = I(u_2) + I(h)$$

y como $I(u_1) = I(u_2)$ implica que I(h) = 0 y por lo tanto $\nabla h = 0$ y por lo tanto h = cte = 0 en $\partial \Omega$.

Principio de Dirichlet.

Tenemos las siguientes preguntas:

- 1. ¿Existe una solución de Deltau = 0 en Ω , talque $u|_{\partial\Omega} = f$?.¿Que tipo de solución es ? Acaso $u \in C^2(\Omega) \cap C^0(\bar{\Omega})$ donde la barra indica la cerradura de Ω . Si es única $h = u_1 u_2$ implica $\Delta h = 0$ y $h|_{\partial\Omega} = 0$ implica el principio del máximo que a su vez implica que h = 0.
- 2. ¿Existe un mínimo?
- 3. ¿Como se calcula el mínimo $I(u) = \int \int_{\Omega} |\nabla u|^2$.
- 4. Si existe el mínimo u implica acaso que $u \in C^2(\Omega) \cap C^0(\bar{\Omega})$ implica acaso que la energía es finita ?

Ilustraremos estas preguntas con un ejemplo.

1)Ejemplo de Hadamard.

Sea Ω un disco unitario. Consideremos la función sobre la frontera del disco unitario parametrizada por el ángulo $\theta \in [0, 2\pi]$

$$f(\theta) = \sum_{n=1}^{\infty} \frac{\cos(2^{2n}\theta)}{2^n} \tag{1}$$

Como $|f(\theta)| \leq \sum \frac{1}{2^n} = 1$ (como puede verse de sumar la serie geométrica con r = 1/2), entonces al serie es absolutamente convergente. Que implica que $f(\theta)$ es continua. sea

$$u(x,y) = u(\rho,\theta) = \sum_{n=1}^{\infty} \rho^{2^{2n}} \frac{\cos(2^{2n}\theta)}{2^n}$$

esta función cumple que $u|_{\partial\Omega}=f(\theta)$ y $|u(x,y)|\leq 1$ y

$$u(x,y) = Re\left(\sum_{n=1}^{\infty} \frac{z^{2^n}}{2^n}\right)$$

es una función analítica para |z|<1 lo que implica que u es armónica. Ahora para pasar a coordenadas polares usamos el hecho que

$$u_x = u_\rho \cos \theta - u_\theta \frac{\sin \theta}{\rho}$$

$$u_y = u_\rho \sin \theta + u_\theta \frac{\cos \theta}{\rho}.$$

La energía se calcula como

$$I(u) = \int \int_{\Omega} (u_x^1 + u_y^2) = \int_0^1 \int_0^{2\pi} \left(u_\rho^2 + \frac{u_\theta^2}{\rho^2} \right) \rho d\rho d\theta$$

Sustituyendo se tendría que

$$I(u) = \int_0^1 \int_0^{2\pi} \left(\sum_{n=1}^\infty 2^{2n} \frac{\rho^{2^{2n}-1}}{2^n} \frac{\cos(2^{2n}\theta)}{2^n} \right)^2 + \left(\sum_{n=1}^\infty (-)2^{2n} \frac{\rho^{2^{2n}}}{2^n} \frac{\sin(2^{2n}\theta)}{2^n} \right)^2 \frac{1}{\rho^2} \rho d\rho d\theta.$$

Como los dobles productos de senos y cosenos son cero, entonces

$$I(u) = 2\pi \sum_{n=1}^{\infty} \frac{2^{2n}}{2^{2n+1}} \rho^{2^{2n+1}} \bigg|_{0}^{1} = \pi \sum_{n=1}^{\infty} \rho^{2n+1} = \infty.$$

Moraleja, tengo que trabajar con una clase más chica de funciones en la frontera. Esta clase será $f|_{\partial\Omega}$ y si definimos los siguientes espacios, entonces

$$L^{2}(S^{1}) = \left\{ g(\theta) = \sum_{n = -\infty}^{\infty} a_{n} e^{in\theta} \in Re \Leftrightarrow a_{-n} = \bar{a}_{n} \right\}$$

con

$$\sum |a_n|^2 = \int_0^{2\pi} |g(\theta)|^2 d\theta < \infty$$

Podemos definir los espacios de funciones

$$H^{\alpha}(S^1) = \left\{ g(\theta) = \sum_{-\infty}^{\infty} a_n e^{in\theta}, a_{-n} = \bar{a}_n, \sum_{-\infty}^{\infty} |a_n|^2 n^{2\alpha} < \infty \right\}.$$

en particular

$$H^{1}(S^{1}) = \left\{ g : \sum_{n = -\infty}^{\infty} |a_{n}|^{2} n^{2} = \int_{0}^{2\pi} |g'(\theta)|^{2} d\theta \right\} < \infty$$

Para ver a que espacio de funciones corresponde la función del ejemplo de Hadamard (??) vemos que

$$\sum_{-\infty}^{\infty} |a_n|^2 n^{2\alpha} = \sum_{n=-\infty}^{\infty} \left(\frac{1}{2^n}\right)^2 (2^{2n})^{2\alpha} = \sum_{n=-\infty}^{\infty} \frac{1}{2^{2n(1-2\alpha)}}$$

que será menor que infinito si $\alpha < 1/2$ y la serie converge uniformenente. Si $\alpha \geq 1/2$ tenemos una suma infinita y por lo tanto $f(\theta) \in H^{\alpha}(S^1)$ con $\alpha < 1/2$. Se puede probar que si $f(\theta) \in H^{\alpha}(S^1)$, $\alpha \geq 1/2$ entonces existe u tal que $u|_{\rho=1}=f$ y $I(u)<\infty$. (teorema de traza, además f es continua)

2) Tipo de soluciones.

Sea $f|_{\partial\Omega}$ tal que exista $u_0\in C^2(\Omega)\cap C^0(\bar\Omega),\ u_0|_{\partial\Omega}=1$ y $I(u_0)<\infty$. Sea u talque $\nabla^2 u=0$, $u\in C^2(\Omega)\cap C^0(\bar\Omega),\ I(u)<\infty,\ u|_{\partial\Omega}=f$ sea $h=u-u_0$ implica $h\in C^2(\Omega)\cap C^0(\bar\Omega),\ \Delta h=\Delta u-\Delta u_0=-\Delta u_0=g$ es continua.

Sea

$$J(k) = \int \int_{\Omega} |\nabla k|^2 + 2 \int \int_{\Omega} gk$$

para $k \in C^2(\Omega) \cap C^0(\bar{\Omega}), k|_{\partial\Omega} = 0$, $I(k) < \infty$. Si definimos

$$J(h) = I(h) + 2 \int \int_{\Omega} \Delta h h = I(h) - 2 \int \int_{\Omega} |\nabla h|^2 = -I(h)$$

donde hemos utilizado la identidad de Green. Ahora

$$J(h+k) = I(h+k) + 2 \int \int (h+k)g$$

$$J(h+k) = I(h) + I(k) - 2 \int \int k\Delta h + 2 \int \int (h+k)g$$

$$J(h+k) = J(h) + I(k) + 2 \int \int_{\Omega} (g-\Delta h)k$$

cuando $g - \Delta h = 0$ da el mínimo de J(k). Alrevés, si h tiene esas propiedades y J(h) es mínimo entonces $\Delta h = g$ en Ω . Entonces tenemos que si definimos el espacio de funciones

$$E = \left\{ k \in C^2(\Omega) \cap C^0(\bar{\Omega}), k|_{\partial\Omega} = 0 \right\}, I(k) < \infty$$

entonces $\min_E J(k)$ es una condición necesaria y suficiente para que h sea solución de la ecuación si $\Delta h=g$ y como se vió se tiene que

1.
$$J(h) = -I(h)$$

2.
$$J(h+k) = J(k) + I(k)$$

3.
$$J(k) \ge I(k) - 2 \iint_{\Omega} |g||k| \ge I(k) - \epsilon \iint_{\Omega} k^2 - \frac{1}{\epsilon} \iint_{\Omega} g^2$$

donde en 3) se utilizó el hecho que si a,b son dos números cualesquiera entonces siempre se tiene que $2ab \leq \epsilon a^2 + \frac{1}{\epsilon}b^2$ (teorema del binomio) . Si |k|=0 en $\partial\Omega$ entonces el lema de Poincaré nos da que

$$\int \int_{\Omega} k^2 \le \kappa \int \int_{\Omega} |\nabla k|^2$$

donde tomando $\epsilon=1/\kappa$ tenemos que

$$J(k) \geq -\kappa \int \int_{\Omega} g^2$$

es decir ${\cal J}$ es acotado por abajo.

Chapter 1

Espacios de Hilbert

1.1 Espacios vectoriales

Sea E con operaciones + y × por escalar, $f,g \in E \ \lambda \in \mathbb{R}(\acute{o} \ \mathbb{C})$, entonces $\lambda f \in E$. Ejemplos: \mathbb{R} , \mathbb{C} $C^0(\bar{\Omega}), C^1(\bar{\Omega}), \dots$ Espacio Normado : E vectorial con $\| \| : E \to \mathbb{R}^+ \Rightarrow \| f - g \| = \text{distancia de } f \text{ a } g$ $||f|| = 0 \Leftrightarrow f = 0$ $\|\alpha f\| = |\alpha| \|f\|$ $\|f+g\| = \|f\| + \|g\|$

Ejemplos: \mathbb{R}^n con la norma $||x|| = \max_{j=1,\dots,n} |x_j|$, o, $||x|| = \left(\sum_j x_j^2\right)^{1/2}$

$$C^{0}(\bar{\Omega})$$
, $||f|| = |f|_{0} = \max_{x \in \bar{\Omega}} |f(x)|$

$$C^{0}(\bar{\Omega}) , ||f|| = |f|_{0} = \max_{x \in \bar{\Omega}} |f(x)|$$

$$C^{1}(\bar{\Omega}) , ||f|| = |f|_{1} = \max_{x \in \bar{\Omega}} |f(x)| + \sum_{\lambda} \max_{x \in \Omega} |\partial_{\lambda} f|$$

$$L^2(\Omega)$$
 con la norma $||f||_2 = \left(\int \int_{\Omega} |f|^2 dx\right)^{\frac{1}{2}}$

$$H^1(\Omega)$$
 con la norma $||f||_1 = \left(\int \int_{\Omega} |f|^2 dx + \sum_{\lambda} |\partial_{\lambda} f|\right)^{\frac{1}{2}}$
 $L^2(\Omega) = \{f \ medible \ con \ \int \int_{\Omega} |f|^2 dx < \infty\}$

$$L^{2}(\Omega) = \{f \text{ medible con } \int \int_{\Omega} |f|^{2} dx < \infty \}$$

Espacio con producto escalar Espacio vectorial con $(,) \in \mathbb{R}$ (ó \mathbb{C}). Si $(f,g) = \overline{(g,f)}$ entonces $(f,f) \in \mathbb{R}$.

$$(f_1 + f_2, g) = (f_1, g) + (f_2, g)$$

(f,f)>0 si $f\neq 0$ entonces se define $||f||=(f,f)^{\frac{1}{2}}$ porque de la desigualdad de Cauchy-Schwarz se tiene $|(f,g)| \le ||f|| ||g||$ implica

$$||f + g||^2 = (f + g, f + g) = ||f||^2 + ||g||^2 + (g, f) + (f, g)$$
$$\leq ||f||^2 + ||g||^2 + ||f|| ||g|| = (||f|| + ||g||)^2$$

Cauchy-Schwarz

$$0 \leq \overline{(f + \lambda g, f + \lambda g)} = \|f\|^2 + \lambda^2 \|g\|^2 + \overline{\lambda}(f, g) + \lambda(g, f) = \|f\|^2 + \lambda^2 \|g\|^2 + 2Re(\lambda(g, f)) \text{ si } (g, f) = Re^{i\phi} \text{ tomemos } \lambda = \rho e^{-i\phi} \text{ entonces}$$
$$0 \leq \rho^2 \|g\| + 2\rho |(g, f)| + \|f\|^2 \text{ no tiene raices implica el discriminante}$$

```
\begin{array}{l} (g,f)|^2 - \|f\| + \lambda^2 \|g\| \leq 0 \\ \underset{\mathbb{R}^n,\mathbb{C}}{\text{ejemplos}} \ \mathbb{R}^n, \mathbb{C} \ (x,y) = \sum x_i \bar{y}_i \\ L^2(\Omega) : (f,g) = \int_{\Omega} f \bar{g} dx \\ H^1(\Omega) \ \text{con producto interno} \ (f,g)_1 = \int_{\Omega} f \bar{g} + \sum_{i=1}^n f_{x_i} \bar{g}_{x_i} \end{array}
```

1.2 Sucesión de Cauchy en un espacio normado

Sea E con $\|\ \|$, Una sucesión $\{u_n\} \in E$ es de Cauchy si dado $\epsilon > 0$ existe $N(\epsilon)$ tal que $\|u_n - u_m\| \le \epsilon$, $n, m \ge N$.

E es de Banach si E tiene (,) y es completo, E es de Hilbert.

No todo espacio vectorial es completo, pero se puede completar tomando clases de equivalencia de sucesiones de Cauchy por ejemplo $C^0[0,1]$