Équations, inéquations et systèmes

•			•	
So	m	m	ลเ	re

1	Définitions et vocabulaire	1
2	Équation et inéquation du premier degré à une inconnue 2.1 Résolution d'une équation du premier degré à une inconnue	1
3	1	2
	3.1 Résolution d'une équation du second degré à une inconnue	3
	 3.3 Signe d'un trinôme de la forme ax² + bx + c 3.4 Résolution d'une inéquation du second degré à une inconnue 	
4	Équations et inéquations d'autres types à une inconnue	4
5	Système d'équations à deux inconnues 5.1 Équation du premier degré à deux inconnues	5
6	Régionnement du plan	6
	 6.1 Régionnement et signe de ax + by + c 6.2 Résolution graphique d'un système d'inéquations 6.2 	

Définitions et vocabulaire

Définitions

- «Une équation» est une égalité (=) dans laquelle une ou plusieurs valeurs, qu'on désigne par des lettres (le plus souvent x, y, z, ...), sont inconnues.
- «Une inéquation» est une inégalité (≤, <, ≥, >) dans laquelle une ou plusieurs valeurs, qu'on désigne par des lettres (le plus souvent x, y, z, ...), sont inconnues.
- le réel ou les réels qui vérifient une équation (ou une inéquation) sont appelés «solutions» de celle-ci.
- «Résoudre» une équation (ou une inéquation), c'est trouver tous les nombres réels qui la vérifient.
- L'«ensemble des solutions» d'une équation (ou d'une inéquation) est noté S.

Exemples

- Équations: -2x + 5 = 0; 3x 5y = 5; $|x^2 1| = 7$.
- Inéquations: $-3x^2 5x + 6 < 3$; $3x + 7y 3 \ge 0$; $\sqrt{x^2 + 1} > 3$.

Équation et inéquation du premier degré à une inconnue

Résolution d'une équation du premier degré à une inconnue

Définition

Toute équation pouvant se ramener à la forme ax + b = 0, avec a et b des réels connus, est appelée «**équation du** premier degré à une inconnue».

Règle

On considère l'équation (*E*): ax + b = 0, où *a* et *b* sont des réels.

- Si $a \neq 0$, alors, l'équation (*E*) admet une unique solution qui est $x = -\frac{b}{a}$. On écrit $S = \left\{-\frac{b}{a}\right\}$.
- Si a = 0 et b = 0, alors, l'équation (*E*) admet comme solution tous les nombres réels. On écrit $S = \mathbb{R}$.
- Si a = 0 et $b \neq 0$, alors, l'équation (E) n'admet pas de solution. On écrit $S = \emptyset$.

Exercice

Résoudre dans \mathbb{R} les équations suivantes :

(a)
$$3x - 5 = -2x + 1$$

(b)
$$\frac{x}{6} - 3 = \frac{x}{4} - 1$$

(c)
$$3x - 2 = 5x + 3 - 2x$$

(d)
$$2x + 5 - 3x = 3 - x + 2$$

(b)
$$\frac{x}{6} - 3 = \frac{x}{4} - 1$$

(e) $\frac{3x - 2}{6} - \frac{5}{12} = \frac{2x - 3}{4}$

(c)
$$3x - 2 = 5x + 3 - 2x$$

(f) $\frac{2x-1}{3} - \frac{5x+2}{5} = 1 - \frac{x+1}{3}$

Signe d'un binôme de la forme ax + b

Règle

On considère le binôme ax + b avec $a \neq 0$. On a

- $x = -\frac{a}{b}$ si et seulement si ax + b = 0.
- $x < -\frac{a}{b}$ si et seulement si ax + b et a ont le même signe.
- $x > -\frac{a}{b}$ si et seulement si ax + b et a ont des signes opposés.

On résume ses situations dans un tableau, appelé tableau de signe de ax + b.

х	$-\infty$	$-\frac{b}{a}$	+∞
ax + b	signe de − <i>a</i>	Ó	signe de <i>a</i>

Exercice

Etudier le signe des binômes suivants :

- (a) 4x + 2
- (b) -2x + 4
- (c) $3x \sqrt{2}$
- (d) -4x-5

Résolution d'une inéquation du premier degré à une inconnue

Définition

Toute inéquation pouvant se ramener à l'une des formes $ax + b \le 0$, ax + b < 0, $ax + b \ge 0$ ou ax + b > 0, avec a et b des réels connus, est appelée «inéquation du premier degré à une inconnue».

Règle

- Méthode 1 : Résoudre une inéquation du premier degré à une inconnue, revient à isoler l'inconnue, en utilisant les règles de d'addition et de multiplication sur les inégalités.
- Méthode 2 : Résoudre une inéquation du premier degré à une inconnue, revient à étudier le signe de son binôme (premier membre de l'inéquation), et d'en déduire les réels x pour lesquels l'inéquation est vérifiée.

Exercice

Résoudre dans \mathbb{R} les inéquations suivantes :

(a)
$$3x + 5 < 0$$

(b)
$$-2x + \frac{1}{2} \ge 0$$

(c)
$$3x - \sqrt{2} \le -2x + 3$$

(c)
$$3x - \sqrt{2} \le -2x + 1$$
 (d) $-\frac{4x-1}{3} > \frac{5-3x}{2} + \frac{x}{6}$

Équation et inéquation du second degré à une inconnue

Résolution d'une équation du second degré à une inconnue

Définition

Toute équation pouvant se ramener à la forme $ax^2 + bx + c = 0$, avec a, b et c des réels connus tels que $a \ne 0$, est appelée «équation du second degré à une inconnue».

Exemples

L'équation $-2x^2 - 3x + 4 = 0$ est une équation du second degré à une inconnue. Les équations $5x^2 + 3x = 0$ et $4x^2 - 1 = 0$ le sont aussi.

Définition

On appelle «**discriminant**» d'une équation $ax^2 + bx + c = 0$ le réel $b^2 - 4ac$, noté Δ .

Exemples

- Le discriminant de l'équation $2x^2 x + 3 = 0$ est $\Delta = (-1)^2 4 \times 2 \times 3 = 1 24 = -23$.
- Le discriminant de l'équation $-x^2 + 3x + 2 = 0$ est $\Delta = 3^2 4 \times (-1) \times 2 = 9 + 8 = -17$.
- Le discriminant de l'équation $\frac{1}{2}x^2 + 2x + 2 = 0$ est $\Delta = 2^2 4 \times \frac{1}{2} \times 2 = 4 4 = 0$.

Règle

Soit (*E*): $ax^2 + bx + c = 0$ une équation de discriminant Δ .

- Si Δ > 0 alors l'équation (E) admet deux solutions x₁ et x₂ tels que x₁ = (-b+√Δ)/2a et x₂ = (-b-√Δ)/2a.
 Si Δ = 0 alors l'équation (E) admet une unique solution x₀ tel que x₀ = (-b/2a).
- Si Δ < 0 alors l'équation (*E*) n'admet de solution et $S = \emptyset$.

Exercice

Résoudre dans \mathbb{R} les équations suivantes :

(a)
$$2x^2 + 3x + 1 = 0$$

(b)
$$\frac{1}{3}x^2 - 2x + 3 = 0$$

(a)
$$2x^2 + 3x + 1 = 0$$
 (b) $\frac{1}{3}x^2 - 2x + 3 = 0$ (c) $-x^2 - x + 2 = 0$

(d)
$$-3x^2 + 4\sqrt{3}x - 3 = 0$$

Règle

On considère l'équation (E): $ax^2 + bx + c = 0$ avec $(a \ne 0)$.

- Si b = 0 alors résoudre l'équation $ax^2 + c = 0$ revient à résoudre l'équation $x^2 = -\frac{c}{a}$.
 - Si $-\frac{c}{a}$ > 0, alors, l'équation (*E*) admet deux solutions $x_1 = \sqrt{-\frac{c}{a}}$ et $x_2 = -\sqrt{-\frac{c}{a}}$.
 - Si $-\frac{c}{a} = 0$, alors, l'équation (E) admet une seule solution $x_0 = 0$.
 - Si $-\frac{a}{a}$ < 0, alors, l'équation (*E*) n'admet pas de solutions.
- si c = 0 alors résoudre l'équation $ax^2 + bx = 0$ revient à résoudre l'équation x(ax + b) = 0.

Ce qui signifie que x = 0 ou ax + b = 0.

L'équation (*E*) admet donc deux solutions $x_1 = 0$ et $x_2 = -\frac{b}{a}$.

Résoudre dans \mathbb{R} les équations suivantes :

(a)
$$3x^2 + 1 = 0$$

(b)
$$-\frac{1}{5}x^2 - x = 0$$
 (c) $-x^2 + 3 = 0$

(c)
$$-x^2 + 3 = 0$$

(d)
$$x^2 + x\sqrt{2} = 0$$

Factorisation d'un trinôme de la forme $ax^2 + bx + c$

Règle

Factoriser le trinôme $P(x) = ax^2 + bx + c$ revient à résoudre l'équation (E): $ax^2 + bx + c = 0$.

- Si l'équation (E) admet deux solutions x_1 et x_2 alors on a $P(x) = a(x x_1)(x x_2)$.
- Si l'équation (E) admet une seule solution x_0 alors on a $P(x) = a(x x_0)^2$.
- Si l'équation (E) n'admet de solution alors P(x) est impossible à factoriser.

Factoriser, si possible, les trinômes suivants :

(a)
$$2x^2 + 6x + 18$$

(b)
$$-\frac{1}{2}x^2 + \frac{7}{2}x - 6$$

(c)
$$-x^2 - x - 2$$

(a)
$$2x^2 + 6x + 18$$
 (b) $-\frac{1}{2}x^2 + \frac{7}{2}x - 6$ (c) $-x^2 - x - 2$ (d) $x^2 - 2(1 - \sqrt{2})x + 3 + 2\sqrt{2}$ (e) $4x^2 - 3$ (f) $2x^2 + 3$ (g) $-x^2 + 9$ (h) $-2x^2 - 5x$ (i) $x^2 + 3x$

(i)
$$x^2 + 3x$$

3.3 Signe d'un trinôme de la forme $ax^2 + bx + c$

Règle

Étudier le signe du trinôme $ax^2 + bx + c$ avec $a \ne 0$ revient à résoudre l'équation (E): $ax^2 + bx + c = 0$.

• Si l'équation (*E*) admet deux solutions x_1 et x_2 (avec $x_1 < x_2$) alors on a :

x	$-\infty$		x_1		x_2		+∞
$ax^2 + bx + c$		signe de <i>a</i>	Ó	signe de $-a$	Ó	signe de a	

• Si l'équation (E) admet une seule solution x_0 alors on a :

x	$-\infty$	x_0	+∞
$ax^2 + bx + c$	signe de <i>a</i>	Ó	signe de a

• Si l'équation (*E*) n'admet de solution alors on a :

x	$-\infty$		+∞
$ax^2 + bx + c$	signe de <i>a</i>		

Exercice

Étudier le signe des trinômes suivants :

(a)
$$-x^2 + 3x + 4$$

(b)
$$\sqrt{3}x^2 - 2x - 3\sqrt{3}$$

(b)
$$\sqrt{3}x^2 - 2x - 3\sqrt{3}$$
 (c) $-\frac{1}{2}x^2 - 2x - 2$

(d)
$$x^2 + 3x + 3$$

(e)
$$-x^2 + 9$$

(f)
$$4x^2 + 9$$

(g)
$$-3x^2 + 2x$$

(h)
$$x^2 + 5x$$

3.4 Résolution d'une inéquation du second degré à une inconnue

Définition

Toute inéquation pouvant se ramener à l'une des formes $ax^2 + bx + c \le 0$, $ax^2 + bx + c < 0$, $ax^2 + bx + c \ge 0$ ou $ax^2 + bx + c > 0$, avec a, b et c des réels connus tels que $a \ne 0$, est appelée «**inéquation du second degré à une** inconnue».

Règle

Résoudre une inéquation du second degré à une inconnue, revient à étudier le signe de son trinôme (premier membre de l'inéquation), et d'en déduire les réels x pour lesquels l'inéquation est vérifiée.

Exercice

Résoudre dans \mathbb{R} les inéquations suivantes :

(a)
$$x^2 - 4x + 4 > 0$$

(a)
$$x^2 - 4x + 4 > 0$$
 (b) $-\frac{1}{3}x^2 + x + 6 \ge 0$
(e) $-x^2 + 16 < 0$ (f) $4x^2 + 9 \le 0$

(c)
$$x^2 - \sqrt{2}x - 2 < 0$$

(g) $4x^2 - 7x > 0$

(d)
$$-3x^2 + \sqrt{3}x - 1 \le 0$$

(e)
$$-x^2 + 16 < 0$$

(f)
$$4x^2 + 9 \le 0$$

(g)
$$4x^2 - 7x > 0$$

(h)
$$-x^2 + 5 \ge 0$$

Équations et inéquations d'autres types à une inconnue

1. Résoudre dans \mathbb{R} les équations suivantes :

(a)
$$(x-3)(2x+5) = 0$$
 (b) $(-x^2 - 2x + 3)(2 - 3x) = 0$ (c) $\frac{-x+3}{2x+1} = 0$ (d) $\frac{5x^2 - 4x - 1}{x-1} = 0$

2. Résoudre dans \mathbb{R} les équations suivantes :

(a)
$$|-4x+3| = 3$$
 (b) $|2x^2-4| = 0$ (c) $|1-2x| = |1+2x|$ (d) $|-x^2+x| = |x-1|$

3. Résoudre dans \mathbb{R} les équations suivantes :

(a)
$$(2x-3)^2 = 4$$
 (b) $(x+2)^2 = 2x+1$ (c) $\sqrt{5-x} = 3$ (d) $\sqrt{2x+4} = x+3$

4. Résoudre dans \mathbb{R} les équations suivantes :

(a)
$$|-x^2 + x| = 3|x - 1|$$
 (b) $|x^2 - 1| = x|x + 1|$ (c) $|-4x + 2| - |3x + 2| = 5$ (d) $2|x - 2| + |2x + 1| = 3 - x$

1. Résoudre dans \mathbb{R} les inéquations suivantes :

(a)
$$(2x-1)(x+5) > 0$$
 (b) $(3x+4)(x+\sqrt{3})(-2x+6) \ge 0$ (c) $\frac{-x+1}{3x+2} < 0$ (d) $\frac{3x(2x+4)}{2x^2-2x\sqrt{6}+3} \le 0$

2. Résoudre dans ℝ les inéquations suivantes :

(a)
$$|3x-4| < 5$$
 (b) $|2x+5| \ge 3$ (c) $|4-2x| < 3|x+5| + 4$ (d) $|x^2-3x| \le 5|x|$

3. Résoudre dans $\mathbb R$ les inéquations suivantes :

(a)
$$(x-6)^2 > 4$$
 (b) $(2x+1)^2 \ge 8x$ (c) $\sqrt{x+5} < 5$ (d) $\sqrt{x^2+3} \le 2x$

Système d'équations à deux inconnues

Dans la suite, \mathbb{R}^2 représente l'ensemble des couples (x, y) tels que $x \in \mathbb{R}$ et $y \in \mathbb{R}$.

5.1 Équation du premier degré à deux inconnues

Définition

Toute équation pouvant se ramener à la forme ax+by+c=0, avec a, b et c des réels connus, est appelée «**équation** du premier degré à deux inconnues».

Les solutions de l'équation ax + by + c = 0 sont les couples (x; y) de \mathbb{R}^2 la vérifiant.

Système d'équations du premier degré à deux inconnues

Définition

On considère le système (S) : $\begin{cases} ax + by = c \\ a'x + b'y = c' \end{cases}$, où a, a', b et b' sont des réels connus.

- On appelle «**déterminant**» du système (S), le nombre réel noté D tel que D = $\begin{vmatrix} a & b \\ a' & b' \end{vmatrix} = ab' ba'$.
- Le système (S) est dit «**de Cramer**», si $D \neq 0$.
- On appelle «**déterminant extrait**» du système (*S*), le déterminant obtenu, en remplaçant dans le précédent, soit a et a', ou bien b et b', par c et c'. Le premier sera noté D_x , et le second D_y .

En d'autres termes $D_x = \begin{vmatrix} c & b \\ c' & b' \end{vmatrix} = cb' - bc'$ et $D_y = \begin{vmatrix} a & c \\ a' & c' \end{vmatrix} = ac' - ca'$.

Exemples

On considère le système (S) : $\begin{cases} 2x - y = 3 \\ x + 3y = 0 \end{cases}$

- le déterminant de (S) est D = $\begin{vmatrix} 2 & -1 \\ 1 & 3 \end{vmatrix} = 2 \times 3 1 \times (-1) = 6 + 1 = 7.$
- les déterminants extraits de (S) son

$$D_x = \begin{vmatrix} 3 & -1 \\ 0 & 3 \end{vmatrix} = 3 \times 3 - 0 \times (-1) = 9 - 0 = 9 \quad \text{ et } \quad D_y = \begin{vmatrix} 2 & 3 \\ 1 & 0 \end{vmatrix} = 2 \times 0 - 1 \times 3 = 0 - 3 = -3.$$

Règle

On considère le système (S) : $\begin{cases} ax + by = c \\ a'x + b'y = c' \end{cases}$, où a, a', b et b' sont des réels connus.

Soit D le discriminant de (S), et D_x et D_y ses déterminants extraits.

- Si D \neq 0, alors, le système (S) admet une unique solution $(x_0; y_0)$ tel que $x_0 = \frac{D_x}{D}$ et $y_0 = \frac{D_y}{D}$. On écrit $S = \{(x_0; y_0)\}.$
- Si D = 0, avec $D_x = 0$ et $D_y = 0$, alors, le système (S) admet une infinité de solutions. Ce sont les solutions de l'une de ses deux équations, puisqu'elles seront identiques ou équivalentes.
- Si D = 0, avec $D_x \neq 0$ ou bien $D_y \neq 0$, alors, le système (S) n'admet pas de solutions, et l'ensemble des solutions est $S = \emptyset$.

Exercice

Résoudre dans R les systèmes suiv

(a)
$$\begin{cases} 2x + 3y = 1 \\ 3x + 2y = 4 \end{cases}$$

(b)
$$\begin{cases} -x + 4y = 0 \\ 3x + 2y = 7 \end{cases}$$

(c)
$$\begin{cases} 2x - y = -3 \\ -8x + 4y = 15 \end{cases}$$

(a)
$$\begin{cases} 2x + 3y = 1 \\ 3x + 2y = 4 \end{cases}$$
 (b)
$$\begin{cases} -x + 4y = 0 \\ 3x + 2y = 7 \end{cases}$$
 (c)
$$\begin{cases} 2x - y = -3 \\ -8x + 4y = 15 \end{cases}$$
 (d)
$$\begin{cases} -4x - 12y = 8 \\ 2x + 6y = -4 \end{cases}$$

Système somme et produit de deux inconnues

Règle

On considère le système (S) : $\begin{cases} x+y=p \\ xy=q \end{cases}$, où p et q sont deux réels connus.

Résoudre le système (S), revient à résoudre l'équation (E) : $X^2 - pX + q = 0$, où X est l'inconnue. Le discriminent de cette équation est $\Delta = p^2 - 4q$.

- Si $\Delta > 0$, alors, l'équation (*E*) admet deux solutions X_1 et X_2 , et le système (*S*) a pour ensemble de solutions $S = \{(X_1; X_2); (X_2; X_1)\}.$
- Si $\Delta = 0$, alors, l'équation (*E*) admet une seule solution X_0 , et le système (*S*) a pour ensemble de solutions $S = \{(X_0; X_0)\}.$
- Si Δ < 0, alors, l'équation (E) n'admet pas de solutions, et le système (S) a pour ensemble de solutions $S = \emptyset$.

Exercice

Résoudre dans R les systèmes suivants :

(a)
$$\begin{cases} x + y = \frac{1}{6} \\ xy = -\frac{1}{6} \end{cases}$$

(b)
$$\begin{cases} x+y=-7\\ xy=12 \end{cases}$$

(c)
$$\begin{cases} x^2 + y^2 - xy = 0 \\ x + y = -2 \end{cases}$$
 (d)
$$\begin{cases} x + y + xy = 11 \\ x^2y + xy^2 = 30 \end{cases}$$

(d)
$$\begin{cases} x + y + xy = 11 \\ x^2y + xy^2 = 30 \end{cases}$$

Régionnement du plan

Régionnement et signe de ax + by + c

Propriété

On considère la droite (*D*): ax + by + c = 0.

La droite (*D*) définit deux demi-plans ouverts :

- L'un d'eux est l'ensemble des points M(x, y) qui vérifient l'inégalité ax + by + c > 0.
- L'autre est l'ensemble des points M(x, y) qui vérifient l'inégalité ax + by + c < 0.

Pour distinguer entre les deux demi-plans, on calcule la valeur de ax + by + c pour les coordonnées d'un point qui n'est pas sur la droite (*D*). Généralement, on choisit *O*(0;0) l'origine du repère si c'est possible.

Exercice

Résoudre graphiquement dans \mathbb{R}^2 les inéquations suivantes :

(a)
$$2x + 3x - 1 > 0$$

(b)
$$-3x + 2x < 4$$

(c)
$$-x - 2y + 1 \ge 0$$

(d)
$$-2x + 3y + 4 \le 0$$
 (e) $2y - 1 > 0$

(e)
$$2\nu - 1 > 0$$

Résolution graphique d'un système d'inéquations 6.2

Exercice

Résoudre graphiquement dans \mathbb{R}^2 les systèmes suivants :

(a)
$$\begin{cases} 2x + y < 0 \\ 3x + y \le 2 \end{cases}$$

(b)
$$\begin{cases} x - y + 4 > 0 \\ 2x + 5y + 8 > 0 \end{cases}$$

(c)
$$\begin{cases} 2x + 3y \ge 1 \\ -x + 2y \ge 4 \end{cases}$$