

# Amatérské **RADIO**



ČASOPIS PRO RADIOTECHNIKU A AMATÉRSKÉ VYSÍLÁNÍ • ROČNÍK VI. 1957 • ČÍSLO 12

# Odešel nám rádce a přítel

**President republiky a státník, kte-  
rý znal z vlastní zkušenosti bolesti  
a touhy lidu.**

Dělnický president, který si uvykli již v mládí bez ohledu na mozoly dobitý z hranatého, nevhledného kusu kamene ladně linie; kameník, vědoucí, že vše nepotřebné je třeba oklestit tvrdým dlátem a při tom pracovat i s citem v pevné ruce tak, aby se nepoškodilo to, co udělá z nevhledné hmoty krásné dílo. Ta mozolnatá, úporná a nesmírně citlivá kamenická duše v něm zůstala i později, kdy se věnoval organování dělnického hnutí a kdy události v Rusku od r. 1905 do r. 1917 plně prozáaly, že společenské zřízení, jež svou dějinnou úlohu dohrálo, se nerozpadne samo od sebe, ale musí být odstraněno dlátem a pevně vedenou ranou palice – po kamenicku.

Jeho chlapský stisk ruky pak platił v roce 1921 těm, kteří jako on se



**Člen politického byra Ústředního výboru  
KSČ, president Československé republiky**

soudruh Antonín Zápotocký  
\* 19. XII. 1884 † 13. XI. 1957

**rozhodli jít přímou cestou, cestou bolševické linie strany důsledně revolučního typu.**

Jeho těžkou prací ztvrdlá osobnost pak pomáhala v čele Rudých odborů bojovat se všemi úkly nepřátele za buržoasních vlád první republiky, pomohla mu překonat i útrapy koncentračního tábora a vrhla jej do nové bezoddyšné práce v roce 1945 za vybudování republiky, jež by patřila plně lidu. A i tehdy, kdy se mnohým zdálo, že boj skončil, mu jeho dělnická přímost nedovolila neupozorňovat na potíže, jež čekají náš lid na cestě k lepšímu zítřku, i dodávat odvahy k jejich překonání. Pro tuto přímost byl také oblíben zprvu předseda Revolučního odborového hnutí, pak předseda vlády a posléze president republiky.

**Páne prezidente, vy jste odešel,  
ale již vstali noví bojovníci!**

# NA ROZLOUČENOU

**Proč je tak tma a smutno po kraji,  
proč je tak tma a teskno po domově?  
Sirény jitrem táhle volají  
a lidé touží po umlkém slově.**

**Sotva jste usnul, už Vás hledáme,  
z nás každý chvíliku do sebe se ztrácí...  
Pak jiskry z vlnkých očí křesáme  
a vracíme se k opuštěné práci.**

**Z moudrosti Vaši vzkvetly záhony,  
do každé brázdy zrníčko jste pustil.  
Život je přísný, má své zákony –  
dal jste mu vše, nic jste mu nedopustil.**

**Náš dík, i tichý žal dnes přijměte.  
Přežil jste smrt – v nás zůstáváte bdící.  
S odvážným srdcem, s touhou dítěte  
vystávají všude noví bojovníci.**

Jiří Havel

## JAK NA TO?

V době, kdy se čtenářům dostává do ruky toto číslo Amatérského radia, probíhá v celém státě diskuse k dopisu ÚV KSC o plnění usnesení celostátní konference strany a dalších úkolech výstavby socialismu u nás. Strana obrací se ke všem pracujícím, aby posoudili výsledky dosažené při plnění usnesení celostátní konference a aby připomínkami a podnětnými návrhy pomohli k zdárnému ukončení socialistické výstavby.

Je samozřejmé, že toto všeobecné hnutí za splnění úkolů nezustává bez okamžitého odkazu ani ve Svazarmu, kde předsednictvo ÚV projednalo opatření, směřující k tomu, aby se všichni členové a funkcionáři pod vedením stranických orgánů zapojili do diskuse a svými návrhy a zlepšenou prací přispěli k jejímu úspěchu. Měli by plně uplatnit své připomínky k závěrům ÚV KSC o budování socialismu v naší vlasti a říci, jak sami k tomu pomohou. Měli by v rozpravě ve svém zaměstnání a při všech příležitostech také vystoupit s návrhy, jak zvýšit účast pracujících na přípravě k obraně vlasti a jak si představují zlepšení práce naší branné organizace.

Proto Ústřední výbor Svazarmu považuje za správné, aby v druhé části diskuse, po projednání zásadních otázek obsažených v dopisu, se na schůzích KV, OV, ZO, aktivech, konferencích klubů a všech složek Svazarmu vyjádřili členové i k problémům práce Svazarmu.

Z výzvy předsednictva ÚV Svazarmu<sup>\*)</sup> vybíráme jen nejdůležitější úkoly, týkající se všeho členstva a zejména ty, které mají přímý vztah k práci radioamatérů: zlepšit propagaci činnosti mezi obyvatelstvem; věnovat veskerou péči výchovné a přesvědčovací práci mezi členstvem; aktivisovat činnost zvláště v základních organizačních týmech, že zlepšíme výcvik členů podle jejich zájmu; zlepšit hospodaření celé organizace, vést členy k správnemu poměru k socialistickému vlastnictví a k iniciativní svépomoci v opatřování výcvikových pomůcek; zlepšit řízení organizace ve všech složkách, více využívat tvůrčí účasti dobrovolných pracovníků zejména na řízení organizace a pod.

Přes úspěchy, kterých bylo dosaženo, je úkolem diskuse nalézt příčiny některých vážných nedostatků a za přispění všech členů je rázně odstranit.

Tolik ve velmi stručné zkratce o pokynech Ústředního výboru Svazarmu. Jeho výzva se týká všech členů Svazarmu. Bude dobré, když se podíváme do vlastních řad!

Jak to vypadá u vás, radioamatér-svazarmovci? Přihlásili jste se do Svazarmu ze zájmu o radiotechniku? Dobře. Byli jste vyškoleni, jste členy ZO nebo jiné složky. Máte zařízení a přístroje, se kterými pracujete a bavíte se, ať iž v kolektivce, sportovním družstvu radia nebo i doma. Jste jistě věšnivými zastánci radioamatérského sportu. Budete se za něj bít a povolá-li vás vlast, bez okolků jí dáte své vědomosti i umění k dispozici: vše, co jste se při výcviku i výkonu sportu naučili. Chápete však, že za svoji věc bojovat znamená ji i propagovat, vždy a všude! Důsledně. Nemít klapky na očích a sluchátka na uších... nýbrž hledat a poslouchat také kolem sebe. A zatím... Jakou máte organizaci? Věnujete čas kromě své osobní záliby také problémům předávání svých znalostí ostatním? Pracujete stejně houzevnatě také pro ně? Jaký je vás poměr k začátečníkům-posluchačům neb k začátečníkům-technikům? Proč nezískáváte nové členy? Vidíte, to je jeden z bodů, nad kterým je nutno se zamyslet. Nevíte řešení? Neuděláte tedy závazek, že se v určité den v týdnu postaráte, aby zvídavá mládež byla uspokojena ve své touze se vám přiblížit a vyuřovat? K jejímu získání není třeba žádných jiných opatření, než jít mezi ní a ukázat a předvést kouzla radiotechniky. Pozvat ji domů, do kolektivky k prohlídce přístrojů v provozu a je vaše. Pak je jen nutno si ji hledet, udržet. Uděláte dobrý a prospěšný čin. Nu, a jak zajišťujete výstavy radioamatérských prací? A co závody a soutěže, tam vy nepřelete?

Projednejte tyto otázky na schůzkách svých radioamatérských složek, základních organizací a klubů. Zapojte se do instruktorské práce a do funkcí, poradte, jak naší práci zpopularizovat, jak získávat a trvale upoutat další nové členy a dávat jim místo slibů praktické možnosti. Kde je dobrý organisátor, tam jde všechno. Nepovažujte propagandu za přítěž; je to důležitá politická práce s mladými lidmi, kteří vám budou vděční za to, co jste je naučili. A pak – nejde jen o mládež. Vedení Svazarmu nám právem vytýká, že je velmi málo organizovaných výcvik radistů, zejména žen. To budí pokynem k rozpravě, jak tyto nedostatky odstranit.

Je nutno využít mobilizaci všech členů, vzbudit jejich zájem a získávat jejich důvěru. Vytvořit takovou atmosféru, ve které lidé přijdu sami a s iniciativními návrhy. Jejich připomínky brát pozorně

v úvahu, projednat je až jsou-li dobré, uplatnit. Tak získáme mozky i ruce lidí. Ověří si, že jejich námaha nebyla marná, že je k něčemu a budou pracovat dál. Tím celá organizace získá zlepšení své práce, která pak zaručeně povede k dobrým výsledkům. To je další otázka do diskuse, pro aparát i aktivisty.

Aparát i dobrovolní pracovníci všech stupňů dosud málo pomáhají základním organizacím v plném rozvinutí technických druhů výcviku i sportu. Sem je nutno obrátit pozornost, zde je nutno hledat a najít správnou formu práce. Předpokladem je, aby vedoucí všech složek byli informováni o systému a účelu práce radioamatérů. Jak může někdo rozhodovat, zda je některý námet dobrý nebo špatný, zda je výcvik prováděn účelně a cílevědomě, nezná-li základní principy radioamatérské činnosti, nezná-li jejich možnosti, které jsou široké a má představy, že v budování místního rozhlasu, u telefonu nebo v opravárnství rozhlasových přijímačů končí radioamatérská působnost? Ba ne, radioamatéréři dovedou více, překvapivě více a bylo by zásadní chybou je podceňovat, poněvadž tím by se brzdil jejich další vývoj a význam pro brannost státu. Nemáte k tomu co říci? Nemyslete, že uděláte kus prospěšné práce, pořadíte-li jak vychovat a poučit alespoň rámcově ty, kteří se zabývají jiným druhem branné výchovy nebo sportu? Tož diskutujte. Jak zlepšit pochopení a spolupráci mezi výbory, sekciemi a kluby, jak naprostě vymýtit prestižní spory? Jak bojovat proti primadonství?

Bude nutno všude prověřit typy práce amatérů: techniku, provoz, spojovací služby, pomoc veřejných, soutěže a závody, rychlotelegrafii a j. Prostě všechn výcvik a účast radistů v CO. Jak – i k tomu je právě třeba diskuse.

Další otázkou je materiální i finanční zajištění těchto úkolů. Námit do diskuse: jak zhospodárnit nejen radioamatérský výcvik a sport, ale celý chod organizace. Víme všichni, že ne vždy je s prostředky, které nám dává stát, hospodařeno správně, rozvážně a úsporně. Víme, že není vždy v tomto směru dostatek kázně i citu. Víme, že se projevuje i nezdravá neskromnost, zvláště u mladých členů, kteří se domnívají, že Svazarm je povinen vše v jejich sportovní činnosti hradit ze státních prostředků, místo aby přiložili ruku k dílu a pomohli si v rámci možnosti sami. Ve skladističích leží spousty nevyužitého materiálu, který čeká na nápadu chycrých mozků a pracovitých rukou, jak jej upotřebit. Tam, kde je rádná materiálová evidence, dá se šetřit a kupovat jen to opravdu potřebné. Bude proto nutno diskusi zaměřit na nákup materiálu, zacházení s ním i na jeho spotřebu, na svépomocnou stavbu přístrojů a zařízení, jejich modernisaci, aby využívala po všech stránkách výcviku a sportu radistů. Je k tomu potřeba opět iniciativy vedení i členů všech složek. Ze to nejdé? Jen se podívejte, jak rozdílně jsou zařízeny klubovny a dílny při stejných nákladech, podívejte se na výbavu některých stanic při Polním dni, jak se od sebe liší. Zde nerozchoduji jen finanční prostředky. Zde především rozchoduji lidská práce, schopnosti a hlavně zájem o věc. Jsou potíže, je nutno je odstranit. Jak? – přemyšlejte, jistě najdete řešení.

Pořádek dělá dobré hospodářství. Jste jimi opravdu? Proč tedy v jedné organizaci jsou členské příspěvky vyrovnaný na sto procent a v druhé ani nevědí, kolik jim členové dluží?

Máme ve zvyku hledat chyby všude jinde, jen ne u sebe. Z pohodlnosti a setrvačnosti. Máme nyní příležitost (nikoliv však jen nyní...). Udelejme jednou pořádný úklid a nejdříve zameřme před svým prahem. To musíme udělat sami. Nedovolávejme se stále pomocí nadřízených složek Svazarmu. Začněme v základních organizačních, ve sportovních družstvech radia, v kolektivkách, v radioklubech. Věnujme konečně dostatek času na zjistění všech svých nedostatků, odhalme jejich příčiny. Dá to práci, budeme je muset někdy hledat dosti hluboko, chtějme je však vidět a nic si neomlouvajme a také falešně nemomlouvajme. Budeme upřímní a otevření. A teprve najdeme-li řešení, obrátme se o radu a případně o pomoc k nadřízeným orgánům.

Nepodceňujme žádnou malichernost. Malé, nepatrné chyby a omyley zavírají velké nezdary. Drobná zlepšení jsou základem velkých dobrých počinů.

Předsednictvo ÚV Svazarmu se na nás obrátilo, abychom svými zkušenostmi, připomínkami a námy pomohli zlepšit práci celé naší vlastenecké organizace, abychom na svých pracovištích byli spolehliví, obětaví, vzornými pracovníky a ze všech sil pomáhali budovat socialismus.

Radioamatér-svazarmovci pomohou. Tak zní náš závazek k dopisu Ústředního výboru KSC.

<sup>\*)</sup> Obránce vlasti, ročník V., číslo 43 z 25. 10. t. r.

# VZOR NAŠICH - SOVĚTŠÍ VOJÁCI



Boje o přechod Karpat v Dukelském průsmyku a přenesení bojů našich jednotek na území Československa se staly mezníkem na slavné bojové cestě od Sokolova přes Kyjev, Bílou Cerkev, Žaškov a dále až k úplnému osvobození. Důležitým mezníkem v bojích československých jednotek, které bojovaly po boku sovětské armády, se staly proto, že zahájily období přímého osvobození Československa a tyto jednotky, zakalené v předcházejících bojích, prošly nejtvrďší zkouškou, ve které prokázaly vysoké bojové morální hodnoty. „Dukelská operace“ – jak řekl soudruh Gottwald, „byla bitvou, ve které masy vojáků svou bojovou morálkou, svou nezdolností a houževnatostí, svou pevností a obětavostí i svým vojenským uměním překonaly i nejzáladnějšího a nejzavilejšího nepřítele. Zároveň se stala nejtěžší prověrkou jejich kádrů a nejbohatším zdrojem jejich bojových zkušeností.“ (K. G. Spisy X.)

Ale i jinak je toto období pro 1. čs. samostatný armádní sbor v SSSR významné. Do té doby byl sbor zahraniční jednotkou. Po překročení hranic se stává ozbrojenou silou domácí fronty a důležitým vnitropolitickým činitelem. Stává se představitelem moci svobodného Československa v průběhu národní a demokratické revoluce našeho lidu.

Vedle ostatních druhů vojska, nezbytných k dosažení úspěchu v boji, neméně úlohu sehráli spojaři. Zajištění nepřetržitého spojení za těžkých bojových podmínek, které byly znesnadňovány ještě nepříznivým počasím karpatského podzimu, vyžadovalo na vojáckých spojařích vysokou kázeň a organovanost, mistrovství ve svém oboru, velkou odvahu, iniciativu a značnou tělesnou zdatnost. Všechny tyto vlastnosti

byly získávány v bojích a denní obětavou prací.

Býlo by možné uvést řadu příkladů opravdového hrdinství, sebeobětování a odvahy, kde vojáci-spojaři se stávají středem pozornosti a aniž by si toho byli vědomi, puzeni pocitem zodpovědnosti k plnění úkolu a prodchnuti přesvědčením o správnosti své věci konají činy vysokého hrdinství. Vzpomínám na družstvo četaře Krbce, které ač značně oslabeno ztrátami v předcházejících bojích, po několik týdnů udržovalo spojení se sousední sovětskou jednotkou. Příslušníkům družstva nebylo dopřáno chvilky oddechu pro časté poruchy na vedení, způsobované dělostřeleckou a minometnou palbou nepřítele. Velmi často svádělo boj s prosakujícím nepřátelským průzkumem a se skupinkami nepřítele, procházejícími neobsazenými úseky fronty. Nebo kolik mužně síly a chrabrosti bylo zapotřebí radistům, kteří spolu s průzkumníky v hloubce nepřátelských postavení předávali zprávy radiem o každém hnutí nepřítele. Kolik vynálezavosti a odborných schopností bylo třeba k tomu, aby byla udržena spojení při častých změnách stanovišť. Každá situace, každá změna si vyžadovala nových vlastních řešení. Bylo třeba překonávat obtížnost terénu, nepřízeň počasí a co nejhoršího - desítky záladných překážek, které při sebemenší neopatrnosti znamenaly smrt.

Nelze konečně nevzpomenout žensko-pojářek, které stejně statečně a obětavě konaly službu radistek a telefonistek jako muži a navíc svou přesností a důslednosti převyšovaly mnohé muže.

Vzorem našim vojákům byli vždy sovětí soudruzi, vychovaní komunistickou stranou, kteří projevovali odvahu a hrdinství v bojích s nepřítelem.

Nakonec několik slov našim svazarmovcům-radioamatérům. V současné době není oboru, ve kterém by nebylo používáno techniky. V dnešním rozvoji techniky podstatnou úlohu hraje elektronika. Rovněž v armádě, při rozvoji bojové techniky, je čím dálé tím více používáno elektronických zařízení. Sebedokonalejší technika však není nic platné bez člověka, který ji dovede řídit. Vaše odborné znalosti, vaše zájmy dávají záruku, že u nás rostou lidé, kteří náročnou techniku zvládnou, dávají záruku zvyšování obranyschopnosti naší vlasti.

**plukovník Stanislav Odstrčil**

## Jednoduché zvýšení selektivity

Nevyhovuje-li selektivita přijimače, dá se zlepšit poměrně jednoduchou úpravou: místo jednoho mf filtru mezi



mf elektronkami se vestaví dva, volně mezi sebou vázané, jak to navrhuje D. W. Auton G3IHI v R. S. G. B. Bulletinu 7/57.

Podobné zapojení bylo před časem zkoušeno v OK1KIR s krystalkou, jež pak vykazovala nevidanou selektivitu. Šk

\*

Jednoduchou úpravu cívky ladícího obvodu s pohyblivým jádrem k rozštěrení pásmu přímozesilujícího přijimače i superhetu doporučuje sov. Radio č. 2, roč. 1956.



Jádérko *J* s obroušenými závity (nahoru) je po délkce provrtáno. Otvorem je provlečeno lanko *L*, zakápnuté lakem proti samovolnému posunutí. Lanko *L* je napínáno ocelovým perinem *P* a vedeno přes dvě kladíčky. Na hlavní osc *O* je nasazen knoflík. Popisovaným mechanismem je možno opatřit přímo cívku ladícího obvodu nebo k její odboče v  $\frac{1}{4}$  od studeného konce připojit další pomocnou cívku, tak jak je naznačeno na následujícím obrázku.



**Zájemce o stavbu osciloskopu UNISKOP upozorňujeme, že prodejna Pražského obchodu potřebami pro domácnost v Praze II, Jindřišská ulice, má již v prodeji thyratrony 21TE31.**

# RADIEM ZA ZÁCHRANU LIDSKÝCH ŽIVOTŮ

Josef Třešňák

V roce 1950 navštívil náš kolektiv OK1KVR náčelník horské služby Otto Štětka a požádal nás o spolupráci. Dohodli jsme se, že vyzkoušíme stanici tak, aby slyšitelnost byla po celé oblasti Krkonoš. Při tom stanice měly být lehké, pohotové a spolehlivé. Splnily tyto podmínky nebylo lehké, vždyť stanice měly pracovat v členitém terénu a příkon 0,5 W toho moc nedá. Bylo třeba také rozhodnout, zda se bude používat VKV nebo KV.

Clenové kolektivu se dali s chutí do práce. Byl předělán „Karlík“ na 28 MHz a zhotoveny další tranceivry pro tento kmitočet, dále dvě stanice pro 54 MHz, síťový vysílač pro 28 MHz a 3,5 MHz, který byl určen pro Luční boudu, odkud mělo být udržováno spojení s Vrchlabím. Další dva tranceivry se mohly přepínat na 28 a 54 MHz. Soudruh Štětka zorganisoval pak noční cvičení, jehož se zúčastnila družstva horské služby (HS) ze Špindlerova mlýna, Jánských Lázní, Pece a Vrchlabí. Domněle pohrešovaný turista měl být hledán v okolí Studniční a Luční hory.

Poplach byl vyhlášen 26. list. 1955 v 18 hodin. Skupina z Jánských Lázní měla Karlík 28 MHz, další stanice pro 28 MHz měla družstva Vrchlabí, Špindlerův Mlýn; skupina z Pece měla stanici pro 54 MHz. V této skupině byl pozorovatel z horské služby Tatry soudruh Krejčík. Na Luční boudu bylo dodáno zařízení pro 3,5, 28 a 54 MHz. Ve Špindlerově Mlýně byla umístěna síťová stanice na 28 MHz a Vrchlabí pracovalo na 3,5 a 28 MHz. Technický vedoucí soudruh Deutsch vypracoval přesný rozvrh vysílání a použitých kmitočtů.

Počasí nám nepřálo – byla hustá mlha, která mrzla na sněhu. Lyží nebylo možno použít a nezbylo než je něst. Dokonce družstvo, které šlo přes Sněžku, muselo použít maček (zeleza s hrotý). Po dosažení Luční boudy šli jsme směrem na Studniční horu, kde jsme navázali první spojení s družstvem z Pece. Ostatní stanice jsme neslyšeli, měly totiž značnou po-

ruchovost a hlavně nedodržovaly rozvrh vysílání. Navíc družstvo ze Špindlerova Mlýna vysílalo na 54 MHz, kdež-

to my jsme pracovali podle rozvrhu na 28 MHz. Družstva z Vrchlabí a Pece provedla spojovací cvičení při hledačce v okolí Luční a Studniční hory. Přestože byla velká mlha a silné námravy na anteně, cvičení se vydářilo. Pracovalo se v pásmu 28 MHz a bylo dokázáno, že lze použít vysílačů jako pojítka mezi družstvy horské služby při hledačce. Druhého dne se pokračovalo ve cvičení opět za nepříznivého počasí – husté mlhy a silného větru. A vydářilo se. Právě proto, že členové HS nemohli použít světelných signálů – raket, ani zvukových signálů pro silný vítr, domlouvaly se skupiny horské služby pomoci našich vysílačů. Zhodnocení, kterého se zúčastnil náčelník soudruh Štětka a za HS Vysoké Tatry soudruh Krejčík, ukázalo, že je možno používat vysílačiho zařízení jako pojítka mezi družstvy při hledačce. Ukázalo však také, že na delší vzdálenost se zatím vysílače neosvědčily. Úkolem vysílače je dorozumění mezi družstvy, udáváním směru pátrání i sdělení, že pátrání bylo skončeno. Stávalo se totiž, že pohrešovaný byl nalezen, ale z terénu nebylo možno stáhnout družstva, která přirozeně o nalezení pohrešovaného nic nevěděla a v pátrání pokračovala. Technický vedoucí soudruh Deutsch vysvětlil členům HS šíření elektromagnetických vln, jejich výhody i nevýhody. Soudruh Štětka vyzvedl obětavost všech členů kolektivu a požádal nás o další spolupráci.

V dalším cvičení pracovaly pouze dvě stanice. Ukázalo se, že nejlépe vyzouvají stanice typu „Karlík“ a to pro jednoduchou obsluhu, malou váhu ale i pro to, že mohou být obsluhovány s navléknutými palcovými rukavicemi – což je v zimním období zejména nutné. V oblasti Luční boudy, Kozích hřbetů a Obřího dolu bylo zařízeno vyzkoušeno ve spolupráci s HS a za přítomnosti náčelníka URK soudruha Stehlíka. Na základě získaných poznatků jsem prosedoval celou oblast Krkonoš a definitivně určil kmitočet, který bude pro tyto účely využívat. Přidělení stanic typu RF11 našemu kolektivu nám další práci ulehčilo.

Po mnoha zkouškách jsme požádali HS ve Špindlerově Mlýně o další cvičení, které se uskutečnilo v srpnu 1956. Stanice obsluhovali členové horské služby soudruzi Štětka, Erban a Soukup. Přezkoušeli jsme možnosti oboustranného spojení Zlaté Návrší, Labský Důl, Petrovka a Labská bouda, při čemž jsme získali další operátorské



i technické zkušenosti. Stanice RF11 měly velkou poruchovost přelámáním přívodů od zdrojů a hrdeľních mikrofonů. Po opravě stanic bylo přikročeno k dalším zkouškám letos v únoru. Při všech pokusech byly dělány záznamy o charakteru terénu, výšce, počasí a podobně. Do mapy byla zaznamenána i všechna místa, kde je nutno použít relátkové spojení. Členové horské služby se naučili dobré obsluhovat stanice RF11 a využívat terénu pro spojovací účely. Zdokonalili se pak v letošním spojovacím kursu, uspořádaném pro členy horské služby ve Špindlerově Mlýně.

Všechny dosažené úspěchy jsou výsledkem cílevědomé a vytrvalé práce i dobré technické a operátorské přípravy. Úspěch operátorů – neodborníků členů HS spočívá především v jejich ukázněnosti a disciplinovanosti. Při výběru operátorů z řad laiků je třeba přihlédnout k tomu, aby měli dobrý hlasový fond. Zkušenosť nám totiž ukázala, že ne každý může úspěšně používat hrdeľních mikrofonů. Předpokladem pro práci s hrdeľním mikrofonem je dobrý sytý hlas. Zároveň je nutné ukázat novým operátorům správné nasazení hrdeľního mikrofonu na krk i to, aby si při špatné srozumitelnosti přitlačili mikrofon prsty se strany k ohryzku. Při poslechu není vždy žádoucí mít sluchátka nasazena na zvukovodu ucha. Někdy je nutné posunout sluchátka mimo boltec. Je pochopitelné, že dobrý výsledek záleží v pečlivém udržování stanice a zdrojů, což je zejména nutné při službě jako je horská, která používá



stanic RF 11 pro záchrana lidského života.

Využití vysílačů bylo zkoušeno také při katastrofách způsobených lavinami a při horolezeckých neštěstích. Pro HS ve Vysokých Tatrách, kde se většina nechádza stává horolezcům, nelze dobré pracovat se stanicemi RF11; zdě je nutno používat duplexního spojení zvláště při slanování s obětí. Uplatňují se přístroje se subminiatuřami, protože vysílač a přijímací zařízení musí být lehké a malé. Výkon stanic nemusí být velký, neboť jde o maximální vzdálenost 2000 m při viditelnosti anten.

Dnes, kdy hory návštěvují desetitisíce turistů a rekreační, je nutné, aby HS byla lépe vybavena a tím byla zajištěna bezpečnost návštěvníků hor. Je pochopitelné, že vysílači stanice značně ulehčí a usnadní práci členům HS. Případ studenta Hrdličky je toho nejlepším důkazem. Vždyť několik členů HS bylo raněno a jeden se dokonce zřítil za velmi nepříznivého počasí do Červinkovy muldy. Náš stát, který umožňuje všem pracujícím rekrači v horách, stará se i o jejich bezpečnost. Proto bude HS v Krkonoších v letošním roce vybavena deseti přenosními a dvěma stacionárními stanicemi, které jejím členům značně ulehčí a zrychlí práci.

Velkou zásluhu na úspěšné práci HS mají i členové Svazarmu – kolektivu OK1KVR Tesla n. p. Vrchlabí, kteří dokázali, že desetitisíce korun, které stát investuje do vysílačů zařízení pro HS, nepřide nazmar, nýbrž že budou dobré sloužit těm, kteří si toho nejvíce zaslouhuji – našemu pracujícímu lidu. A ten bude moci mnohem bezstarostněji prožívat svou rekrači v prostředí našich krásných hor.

\*

## V POHRONI NAJDEM VZORNÝ POŘÁDEK

Sme na mieste. Na malebnom svahu hronské doliny vidíme 40 metrovú „windomku“, ktorá končí v obloku najnižšieho poschodia dievčenského internátu Švermových železiarní v Podbrezovej. Sú tu klubové miestnosti breznianskeho okresného rádioklubu. Vchádzame. V klube sa pracuje, sú tu aj tri súdružky. Hned je nám jasné, prečo vidíme na každom mieste poriadne uložené prístroje, náradie a knihy. Ani kvety tu nechýbajú; všetko je čisté a biele. Podvedome hľadáme popolník. „U nás sa veru nefajčí, ale návštevy môžu, zápaľky nám nehádzate na zem, cíte sa ako doma, dákujeme“.

U stanice OK3KAC je stále živo; strieďajú sa tu operátori, ktorých má klub celý rad. Zodpovedným operátorom je OK3AL, prevádzkovou operátorou YL Soňa, dnes už majiteľka vlastnej koncesie OK3IY. Ďalšie nádejné operátorky sú Jožka a Klárika. Pri ďalšom stole, upravenom pre výcvik telegrafistov, cvičia chlapci, ktorí chcú zakončiť výcvikový rok tiež skúškami pre RO. Dva z nich absolvovali školenie pre PO a skončili ho s úspechom. „Štyroch RO máme na vojne a tohto roku sa nám traja vrátia, bude nás opäť viac a bude nám veľšie“ – vrvia súdruhovia.

Technickú prácu klubu vedú skúsení odborníci, súdruhovia Ing. Slabák a Moucha. Nezabúdame ani na televíziu. V pláne je stavba malej retranslačnej stanice, ktorú umiestníme na blízkom vrchu. Touto otázkou sa musíme zaoberať, lebo sme „utopení“ v hlbokej a úzkej doline, kde nebudú pravdepodobne žiadne signály ani v čase, kedy bude vysielať banskobystrický televízny vysielač. Ak nám ich šťastlive nepre-

nesie niektoré diaľkové vysokonapäťové vedenie; i s tým počítame.



Pri práci v kolektívnej stanici OK3KAC žívia: Koles Šimon RO, Šapar Vít RP, Pezlarová Soňa PO – OK3IY, Širgel Milan RO, Boroš Ján RO.

Podbrezovskí rádioamatéri nie sú v okrese jediní. Chystá sa nová kolektívka v Brezne pod vedením OK3IC a športové družstvo radia pri ZO Svazarmu Strojárne Piesok. Členovia týchto nových kolektívov navštěvujú podbrezovských a snažia sa od nich naučiť všetko, čo je k nášmu športu potrebné. Pracovníci klubu sa im s radostou venujú a pomáhajú im i materiálne. Tak isto pracuje i krúžok modelárov, ktorý si prichádza pre technickú i hmotnú pomoc k súdruhom v okresnom rádioklube. Jaromír Loub

## VYZNAMENANÍ ODZNAKEM ZA OBĚTAVOU PRÁCI

U příležitosti 5. výročí Svazarmu vyznamenal Ústřední výbor mnoho pracovníků a kolektívů zlatým odznakem Za obětavou práci. Mezi vyznamenanými jsou i tito svazarmští radioamatéři:

Kraj Karlovy Vary – KAREL TAUC, který je členem KRK, má zaslouhy o dobré plnění úkolů na úseku civilní obrany v okrese Karlovy Vary-město. Je předsedou sekce CO. FRANTIŠEK BÁRTA je členem kolektivu televizní skupiny ORK v Ostrově a hospodářem klubu. Značně se zasloužil o to, že retranslační stanice pro televizi na Klínovci v Karlovarském kraji bude v nejbližší době úspěšně dokončena. ANTONÍN RYCHTER je vedoucím televizního kroužku při ORK Ostrov. Zúčastňuje se pravidelně práce na budování televizní retranslační stanice a tak se zasloužil o příjem televize v kraji. JOSEF LANGMÜLLER je vedoucím kolektivu televizní skupiny ORK Ostrov a byl jedním z iniciátorů stavby retranslační stanice na Klínovci. Pod jeho vedením se podařilo dokončit kolektivu svazarmovců vybudování této stanice.

Kraj Pardubice: JAROSLAV PAVLÍK je náčelníkem radioklubu a členem Okresního výboru Svazarmu v Litomyšli; založil v okrese první radistický kroužek a sekci radia. Pod jeho vedením se úspěšně rozvíjí činnost klubu; všichni členové uzavřeli na počest 5. výročí závazky, které plní. Zasloužil se o vybudování různých zařízení, vysílači stanice a pod. Pečuje o zakládání radistických kroužků v základních organizacích.

JAROSLAV KLIMA je členem KRK, odpovědným operátorem kolektivní stanice a vedoucím provozního odboru. Zasloužil se o zhotovení různých zařízení pro Polní den a VKV závod, klubovní vysílač pro kolektivní stanici KRK a zařízení pro spojovací služby. Značně přispěl ve spojovací službě při celostátním přeboru DZBZ.

ZDENĚK VLČEK je členem ORK Jaroměř a samostatným operátorem a instruktorem pro radiovýcvik. Pracuje jako aktivista v civilní obraně, kde úspěšně doškoluje.

KOLEKTIV KRK zajišťuje každoročně krajské akce DZBZ, SZBZ, motoristické soutěže a závody radiospojením, podílí se na akcích NF a jejich složek, zajišťuje spojení při žádostech, pracuje v mechanisačním středisku a v pracovních četách. Plní dobře propagativní úkoly a pořádá kvalitní výstavy radioamatérských prací. Kolektiv se zasloužil o zkvalitnění televizního příjmu v kraji. Má rovněž zásluhu o dobrý a rychlý průběh celostátního přeboru DZBZ.

Kraj Jihlava: ZDENKA CHROMÁ pracuje denně při stanici OK2FKF a umístila se jako první žena při rychlotelegrafových přeborech. Zastává funkciu zástupce náčelníka ORK a je instruktorkou kolektivu žen ve Žďáru nad Sázavou.

Kraj Brno: MILAN ŠKUTHAN je zodpovědným operátorem kolektivní stanice a instruktorem radistů. Vychoval mnoho mladých radistů ve své základní organizači Tesla, ale i v jiných organizačích Svazarmu.

Kraj Olomouc: ALOIS BEZDĚK je náčelníkem ORK v Olomouci a členem výboru základní organizačce Svazarmu ČSD hlavní nádraží. Zasloužil se o zřízení spojení letadla na letišti krajského aeroklubu.

ÚV Svazarmu: KAREL KRBECK je zástupcem náčelníka ÚRK. Úspěšně organuje činnost Ústředního radioklubu a různé sportovní akce.

# PŘENOSNÝ NAHRÁVAČ NA BATERIE I SÍŤ

Rudolf Navrátil

Záznamu zvuku na pásek je stále ještě pro nás amatéry oborem novým. Je jisté, že kdyby náš průmysl dal na trh dostatek vhodného materiálu, byla by věc stavby amatérských magnetofonů dnes již běžnou věcí. Na trhu není vhodný motor, nejsou k dostání hlavičky, nebo jsou příliš drahé. Amatéra brzdí také to, že nemá komu zadat soustružnické práce, když v každé klubovně není k disposici soustruh. Máme-li však možnost získat přesně soustružené součástky, je možno zhotovit amatérský nahrávač takřka na kolenou, jen trpělivosti je třeba. A právě tém, kterým podobné potíže brání ve stavbě magnetofonů, patří tento článek.

Na titulní straně je pohled na celé zařízení. Původně byl nahrávač navržen pro záznam i v přírodě, a proto měl být proveden přenosně a pokud možno lehký. Je proveden pro provoz ze sítě



Obr. 1. Detail hnacího mechanismu. Těsně upravo od mechanického odstědiveleho regulátoru jsou regulační kontakty a dále odporník R4. Docela upravo je pohonného motoru v železném krytu s odrušovacími kondenzátory.

nebo z vlastních zdrojů – baterií. Jeho váha je asi 7 kg i se zdroji, které jsou v samostatné skřínce, ale mohou se pomocí řemínek připevnit na vnější stranu kufríku. Kufrík byl volen úmyslně běžného cestovního typu, rozměrů 50 × 28 × 14 cm.

Nahrávač je pro jednostopý záznam. Třemi motory typu 28/3p (inkurant) je možno převijet pásek nejen rychle zpět, ale i vpřed, takže je možno si rychle najít určitou část natočeného pořadu. Tyto motory mají jako stator permanentní magnet, mají vysoké, ale velmi stabilní otáčky. Jsou stavěny pro krátkodobý provoz na 24 Vss, ale při 18 V běží velice dobře delší dobu bez zahřátí. Otáčky jsou závislé na napětí a této vlastnosti bylo využito k regulaci. Motor pro hnací

hřídel je připevněn objímou na pertinaxové destičce a pomocí gumových tlumicích sloupků připevněn k základní desce, která je rovněž z pertinaxu. Na hřídeli motoru je kladíčka o průměru 20 mm s řemínkem na vlastní hnací kladku, která slouží současně jako setrvačník. Hnací hřídel je ze stříbrité oceli o průměru 4 mm, dlouhý 95 mm. Ložiska jsou kluzná. Zde je nutno pracovat velmi přesně, aby hřídel neházel a nedošlo k tremolu reprodukce. Hnací kladka má průměr 60 mm, což je proti kladce motoru převod 1 : 3. Na hnacím hřídeli je pod kladkou nasunut regulátor z gramomotoru (obr. 1 a 2). Jeho princip je jistě všem znám, proto jej nebudu popisovat. V gramomotoru reguluje otáčky přibrzdrováním, kdežto zde ovládá páčku „a“, která při určitých otáčkách vřazuje do přívodu proudu motoru odporník R4 (obr. 13). Na velikosti odporu R4 závisí měkkost regulace. Nejlépe se osvědčil odpór 10 Ω s nastavitelnou odbočkou, aby bylo možno nastavit správnou hodnotu během natáčení. Napětí na motoru musí být tak veliké, aby otáčky byly větší, než jaké potřebujeme. To znamená, že regulační páčka „a“ musí rozpínat předřadný odpor a tím napětí snížit. Rovnoměrná a plynulá regulace je tím lepší, čím dešší je páčka, čili čím rychleji reaguje na sebemenší změnu otáček regulátoru. Bude-li předřadný odpor veliký, bude snížené napětí nízké, a proto také značný pokles otáček, takže může dojít i k trhavému pohybu pásku. Naopak, bude-li odpor malý, bude i malý pokles napětí a tím bude i volnější vyrovnávání otáček. Výhoda nízkého odporu je také v tom, že na regulačním kontaktu nevzniká jiskření, čímž odpadá nutnost odrušování praskotu,

který by se nám dostal do signálu. Otáčky se dají nastavit stavěcím šroubkem.

Při reprodukci vzniká však dosti veliké rušení; jednak jiskřením kolektorů, proto je nutné důkladně zablokovat kapacitou každý motor zvlášť a přímo u motoru s pokud možno krátkými přívody k bločkům, jednak magnetickými vazbami přímo na reprodukční hlavu. Proti tomuto magnetickému vyzářování pomohou jedině důkladné stínící obaly z permalloye, nebo aspoň měkkého železa okolo motorů (foto 1, 4, 6). Také je nutno správně natočit polohu kartáčků a celého motoru vůči reprodukční hlavě. Motory a všechny kovové části jsou vodivě spojeny se záporným polem žhavení zesilovače a uzemněny.

Převíjecí motory jsou podobně jako motor pro pohon připevněny k základní desce na gumových sloupcích a mají fikční převod (obr. 2). Hřidelky, na které se nasazují cívky s páskem, mají pod základní deskou naraženy kladky se žlábkem pro gumovou obrubu. Kladka



Obr. 2. Převod pro převíjecí a navíjecí kotouče a regulátor otáček. Relé pro přítlakovou kladku.

hřidele pro navíjení má průměr 70 mm s gumovou obroučí kulatého profilu (byla použita guma pro těsnění smaltovaných nádob). Kladka hřidele pro převíjecí cívku má průměr 25 mm s gumovou obroučí od šířky stroje. Přítlačná kladka je vyrobena z oceli (obr. 3) s dvěma kuličkovými ložisky pro hřidele o průměru 3 mm. Je na ni naražena tvrdší guma (gumová zátka) a povrch kladky je rýhován, aby guma na kladce neklouzala. Také zde je nutno dbát veliké přesnosti, aby kladka neházela.

Kladka je ovládána pákou z relátku (obr. 2 a 3). Relé je telefonní typ, převinuté, a má 9600 z/0,14 mm CuSm. Jeho odpor je  $800 \Omega$ , takže zdroje nezatěžuje. Zdvih kotvičky je asi 2 mm, což pro přítlačnou kladku plně vyhovuje, uděláme-li převod páku 1 : 1. Dvojice rozpinacích kontaktů, ponechaných v relátku při demontáži, odpojuje současně při záznamu nebo reprodukci napětí pro převíjecí motor, aby byl odvíjený pásek dostatečně napínán mechanickým odporem převíjecího převodu. Celé zapojení motorů a jejich přepínání je na obr. 13.

Přepinač poloh  $P_1$ , „vpřed“, „stop“ a „rychle“, je třípolový třípolohový. V poloze přepinače  $P_1$ , „vpřed“ je zapnut pohonného motoru a relé přítlačné kladky, které současně vypne převíjecí motor. Navíjecí motor dostává napětí srazené odporem  $R_1$ . Toto napětí je nutno nastavit tak, aby byl navíjený pásek dostatečně napínán a současně proud navíjecího motoru mnoho nezatěžoval zdroje.

V poloze přepinače  $P_1$ , „rychle“ je odpojen motor pohonného a tím i relé přítlačné kladky a plné napětí je vedené na přepinač  $P_2$ , „zpět“ nebo „vpřed“, který je dvoupolový dvoupolohový pákový. V poloze  $P_1$ , „rychle“ a  $P_2$ , „zpět“ jde plné napětí na převíjecí motor a částečné napětí srazené odporem  $R_2$  obrácené polarity na navíjecí motor, takže tento je slabě poháněn ve směru převíjeného pásku. V poloze  $P_1$ , „rychle“ a  $P_2$ , „vpřed“ je tomu opačně, takže pásek běží rychle vpřed.



Obr. 3. Pomocná kladka z kuličkového ložiska

Pomocné kladky jsou soustruženy z mosazi. Také zde záleží na přesné práci. Tyto kladky se však mohou snadněji vyrobit z kuličkových ložisek, jak je zobrazeno na obr. 3.

V počátku záznamu nebo reprodukce, kdy má odvíjená cívka velký průměr, otáčí se velmi lehce, proto by bylo lépe ji více přibrzdovat. Když nám pásek končí, má cívka malý průměr a zde přibrzdování není žádoucí; proto je mezi cívkovým kotoučem a levou pomocnou kladkou namontován plíšek s brzdící plstí (obr. 5). V počátku odvíjení pásku doléhá na něj plst po celé délce. Čím víc se průměr odvíjeného pásku zmenší, tím menší plochou dosedá pásek na plst a tím méně se také přibrzduje a částečně se tak udržuje stabilita napínání pásku.

Zesilovač je osazen elektronkami 1AF33, 3L31 a 1L33 na oscilátoru (obr. 7). Mazání předešlého záznamu je provedeno permanentním magnetem, kdežto předmagnetisace je vysokofrekvenční, asi 120 kHz. Přepínání „reprodukce“, „záznam z přijimače“ a „záznam z mikrofonu“ se provádí normálním přepinačem pro rozhlasové přijimače. Je třípolový, třípolohový dvousegmentový. První stupeň zesilovače je pouze pro reprodukci s páskem a je osazen elektronkou 1AF33. Druhý stupeň je rovněž osazen elektronkou 1AF33 a slouží po přepnutí jako mikrofoniční předzesilovač. Obě elektronky jsou zapojeny jako triody, kdežto třetí střepení má elektronku zapojenou jako pentodu. Nízkofrekvenční napětí na její řídící mřížce je vedené z potenciometru 500 k $\Omega$ . Čtvrtý stupeň je osazen elektronkou 3L31, která má ve stínici mřížce odpor 1 M $\Omega$ . Tato hodnota je trochu neobvyklá, ale nejlépe se mi osvědčila. V anodovém obvodu je cívka, jejíž hodnoty je nutno volit individuálně. Zájemci najdou hodnoty oscilační cívky 4 na příklad v AR č. 12/56. V popisovaném magnetofonu je použito cívky z výrodeje, která byla vyrobena původně pro dráfofon „Meopta“ (obr. 6.). Na kmi-



Obr. 4. Pohled na pohonné část magnetofonu. Zleva doprava: Nahoru: relé pro přítlačnou kladku s pákou vedoucí do pravého horního rohu k pohonu. Uprostřed nahoru jsou přepínače P2 a P1, pod nimi přivedy k hlavám. Vpravo od nich je kladka pro pohon. Pod relátkem je převíjecí motor bez krytu – dále destička s odpory R1, R2 a R3 pro pohon, a motor pro navíjení cívky. Vpravo dole je navíjecí motor.

točtu mnoho nezáleží, lépe je však jej volit raději nižší, asi 30 kHz.

V poloze přepinače „reprodukce“ je zapojeno žhavení a signál z prvního stupně na další a obvod pro záznamovou hlavu je uzemněn. Filtr v anodě první elektronky, tvořený odporem 10 k $\Omega$  s kapacitou 25 000 pF a odporem 22 k $\Omega$  paralelně k reprodukční hlavě, je pro zdůraznění hlubokých tónů, neboť zde vysokých tónů byl nadbytek. Elektronka oscilátoru je úplně bez napětí.

V poloze „záznam z přijimače“ je rovněž propojeno žhavení a signál z prvního stupně na další. Záznamová hlava je připojena na primární vinutí tráfy VT31 a na jeho sekundární vinutí je připojen nízkoohmový výstup z přijimače (5  $\Omega$ ). V oscilátoru je zapojeno jak žhavení 1L33, tak i její anodové napětí. Vysoký kmitočet z oscilátoru se nastaví ototým kondensátorem 500 pF s pevným dielektrikem. Aby energie neunikala do obvodu nízkého kmitočtu, neboť je nutno tímto poměrně malým výkonem šetřit, je v obvodu vřazen filtr. Tvoří jej vf tlumivka a proměnná kapacita, tak aby byla v rezonanci s vf před-



Obr. 5. Princip udržování stejnoměrného tahu pásku

magnetisaci. Správná hodnota se dá najít pokusně takto: použil jsem elektronkového voltmetu s „magickým okem“, popsaného v „Praktické škole radio-techniky“ od ing. M. Pacáka. Nejdříve se připojí voltmetr k oscilátoru za otočným kondensátorem 500 pF v bodě „X“ a pak se pokusně připojí na cívku oscilátoru proměnná kapacita. Použil jsem kondenzátor s pevným dielektrikem max. kapacity 5000 pF (inkurant). Je dobré tento kondenzátor namontovat do nějaké plechové krabice, opatřené dvěma přístrojovými svorkami a knoflíkem s šípkou. Ocejchovat jej můžeme nejlépe na kapacitním můstku. Bude to jednou provždy a v budoucnu nám prokáže tento jednoduchý přístroj cenné služby. Při protáčení této kapacity nám ukáže voltmetr v určité poloze kondenzátoru nejvyšší napětí. Odečteme na kondenzátoru příslušnou hodnotu kapacity a tuto nahradíme fixním kondenzátorem, nejlépe se slídovou neb keramickou izolací. Pak zapneme voltmetr za tlumivku mezi bod „Y“ a kostru zesilovače. Obyčejně se v tomto bodě nějaký výkon projeví, leda že bychom měli štěstí a nás filtry by byly náhodou právě v resonanci s kmotorem oscilátoru. Nyní měníme kapacitu připojenou paralelně k tlumivce. V jednom místě nám voltmetr neukáže žádnou výkylku, to znamená, že je v resonanci s oscilátorem. Po tomto úkonu nesmíme již v oscilátoru ani na filtru ničeho měnit. Za tlumivkou ještě filtr R-C. Hodnoty obou těchto součástek je nutno vyzkoušet a o jeho funkci je možno se dočíst v knize A. Rambouska „Amáterské páskové nahrávače“. Pro správné modulování pásku není zde indikátor, je však možno v poloze „natáčení z příjmu“



Obr. 6 Detail zesilovače. Vlevo oscilační cívka, nad ní elektrolyt 1000  $\mu$ F ve žhavení, tlumivka v anodě 3L31, regulační potenciometr, přepínač Z-R a vpravo nahore výfiltr pro Z hlavu.

može“ kontrolovat správné promodulování sluchátky při natáčení.

V poloze „natáčení z mikrofonu“ odpojí se žhavení prvého stupně zesilovače a přepne na triplólovou mikrofonní koncovku. Nf napětí pro druhý stupeň se přepne s prvním stupně rovněž na mikrofonní koncovku, takže nyní celý zesilovač pracuje jako záznamový. Mikrofon je kondenzátorový a bude popsán dále. Záznamová hlava se přepne přes kapacitu k anodě koncového stupně. K oscilátoru se opět zapne žhavicí

i anodové napětí. Vše zůstává jako v předešlém případě, jenže sluchátky lze kontrolovat pouze tu modulaci, kterou dodáváme záznamové hlavě.

Přívody napěti od zdrojů jsou přivedeny na šestipólovou bakelitovou svorkovnici pomocí šestipramenného kabelu. Zástrčka je vyrobena z patice staré elektronky a bakelitového pouzdra síťové zástrčky. Obrázek 8 zobrazuje postup výroby hlavičky z jádra transformátoru. Samozřejmě použijeme jádra z permaloye, sonapermu nebo MU-kovu. Po-



Obr. 7. Zapojení zesilovače a oscilátoru. R - reprodukční hlava, Z - záznamová hlava



Obr. 8. Postup výroby hlaviček, přípravek pro navijení hlaviček a mazací hlava

vrch těchto kovů je zvláště hladký a barvy kovové šedé nebo modré. Je lehce opracovatelný, ale pozor na deformaci při opracování! Ohýbáním nebo údery ztrácí na svých vlastnostech a museli bychom jej znova žíhat. Továrně se žláha ve vodíkové atmosféře. Jádro rozřízneme lupenkou pilkou na kov nejlépe tak, že ze silnějšího pertinaxu zhodovíme dvě čela, mezi která vložíme celé jádro. Napřed ovšem jednotlivé plechy slabě nařízmeme řídkým lakenem a přesně srovnané na sebe, aby po rozříznutí a odstranění čel držely pohromadě. Ve svéráku pak rozřízneme jádro i s pertinaxovými čely a pilníkem spilujeme na žádaný tvar. Po opilování vypilujeme do zadní části poloviny budoucí hlavičky drážku, kterou zalijeme címem pomocí větší silně zahřáté páječky. Rovněž spilovanou vnitřní plošku přední části jádra pocinujeme, aby po odejmutí per-



Obr. 9. Hotová hlavička

tinaxových čel drželo jádro dobrě pohromadě. Pak spojujovací plošky jádra napřed pilníkem rovně spilujeme a dobroušime napřed na hrubším a pak ještě na jemném karborundovém plochém brousku. Upozorňuji, že přesně rovné broušení nám ušetří mnoho starostí se skreslením reprodukce. Obroušené plošky ještě zkонтrolujeme lupou tak, že obě poloviny jádra dáme na sebe obroušenými plochami a proti světlu zkonzolujeme, zda nám někde nevzniká štěrbina. Teprve pak si můžeme dovolit odebrat pertinaxová čela. Obě půlky jádra obalíme isolačním papírem, navlečeme čelíčka cívek, stejně rozpuštěným celuloidem a navineme. Počet závitů není kritický. Pro reprodukční hlavičku navineme plné cívky, to bude asi  $2 \times 1000 - 2000$  závitů drátu o  $\varnothing 0,04$  až  $0,06$  mm CuSm, pro záznamovou hlavičku asi  $2 \times 800 - 1200$  závitů o  $\varnothing 0,08$  mm CuSm. Tento poměrně velký počet závitů tenkého drátu by se nám ručně asi těžko navíjel, proto si zhodovíme držák jádra (obr. 8), který upneme do vrtačky. Začátek a konec každé cívky nastavíme silnějším drátem a isolujeme tenkou bužírkou. Nyní přiložíme

obě poloviny reprodukční hlavičky na sebe, vložíme do přední štěrbiny kousek měděné nebo bronzové folie o síle  $0,012 - 0,015$  mm a po přesném srovnání upneme opatrne do svéráku. Dobře zahrátou páječkou nařízmeme kapky cínu s obou stran hlavičky na zadní štěrbiny. Totéž provedeme u přední štěrbiny a po vyjmutí ze svéráku zalijeme opatrne celou přední štěrbinu s vnitřní strany i s folií címem. Provedeme to tak, že obrátíme hlavu přední štěrbinou dolů, vložíme dovnitř hlavy na štěrbinu kousek trubičkového cínu s kalafunou a z vnější strany štěrbinu zahříváme horkou páječkou. Cín v hlavičce se snadno rozpustí a celou štěrbinu i s folií zaleje, protože plošky byly předem pocinovány. Pak očistíme hlavičku od přebytečného cínu, přední štěrbinu jemným pilníkem vyrovnáme a na konec přebroušime opět na plochém brousku, spojíme obě cívky mezi sebou, ale pozor na správnou polaritu! Pouzdro hlavičky je z magneticky nevodivého materiálu (mosaz, měď nebo hliník).

Stejným způsobem vyrobíme i záznamovou hlavu, avšak s tím rozdílem, že folii volíme o něco silnější než u reprodukční hlavy (asi  $0,015$  až  $0,018$  mm). Hlavičce však ponecháme zadní štěrbinu a také do této vložíme kousek měděné folie. Měděnou folii o tak malé síle získáme rozebráním svítkového kondenzátoru, kde bývají začátky hliníkových polepů nastavovány mědi. Bude-li folie silnější, než jakou potře-



Obr. 10. Mikrofon se stojánkem bez krytu.

bujeme, pak ji stačí ponořit do zředěné kyseliny dusičné a její zeslabování kontrolovat mikrometrem.

Mazací hlavička je zhodovena z magnetu měřicího deprézskeho přístroje malého typu (obr. 8 a 9). Magnet má půlové nástavce z plechů, proto se dá snadno vnitřní mezera otvoru pro otáčivou cívku měřidla připlováním zvětšit, aby se pokud možno celý magnetický tok soustředil na vnější mezera. Kulační otvor je vyplněn mosazným válečkem a rovněž vnější štěrbina je vyplňena mosazí. Na štěrbinu zde nezáleží. S obou stran magnetu jsou buď kovová, magneticky nevodivá nebo pertinaxová čela stažena mosazným šroubkem. Jedno z obou čel je opatřeno dvěma kolíčky z banánek, kterými se hlavička nasadí do zdířek, umístěných před záznamovou hlavou. Ihned po záznamu se hlavička vyjmě, aby se při zpětném chodu záznam zase nesmaloval. Někdo snad bude namítat, že tímto způsobem mazání vzniká velký šum na pásku. Komu by i to malé rušení vadilo, může před natáčením pásek při zpětném chodu přes mazací hlavičku smazat a při záznamu pak pásek od mazací hlavičky odsunout na určitou vzdálenost. Pásek se tím částečně odmagnetuje obrácenou polaritou. Pro trvalé používání je vhodné si napřed zjistit, jakou vzdálenost musí mít pásek od hlavy, aby byl šum minimální, a pak z mosazného plechu si zhotovit oblouček pro nasazení na hlavu. Tento oblouček zformujeme



Obr. 11. Zapojení mikrofonom



Obr. 12. Zdroje.

tak, aby byl pásek od hlavy patřičně vzdálen (obr. 8). Velikost šumu pásku kontrolujeme při reprodukci s nasazenou mazací hlavou a vytocíme regulátor hlasitosti naplno.

Zájemci o stavbu kondensátorového mikrofonu najdou dosti přesný popis v AR ročník 1952, strana 201. Chci zde upozornit pouze na některé změny proti popisovanému mikrofonu. Předně rozdíly jsou zmenšeny a membrána je zhotovena z hliníkové folie mnohem tenší. Je použito folie pro knihařské účely (pozlatko), ale doporučuji místo hliníkové folie použít zlato. Někteří starší knihaři je mívají ještě v zásobě. Zlatá folie je samozřejmě pevnější a časem se tak nenatáhne jako hliníková, jednak odolá lépe korosi. Citlivost a kmitočtový rozsah mikrofonu jsou závislé na napnutí membrány, proto jí napínáme při současném odposlechu sluchátky na zesilovači. Pozor při napí-

a je spolu s předzesilovačem montován do plechového pouzdra od léků (obr. 10). Pouzdro má odšroubovatelné víko, na které je přinýtována polokoule z olova a v této je závit pro našroubování na stolní stativ tvaru V. Uprostřed pod mikrofonem mezi sloupky z plechu je pertinaxová destička, na jejíž jedné straně jsou dva odpory a jeden bloček, na druhé straně dole je na gumových zátkách připevněna obálka pro elektronku. Elektronka je 1AF33, zapojená jako trioda (obr. 14) a protože je velice chouloustivá na mikrofonii, je ještě obalena gumovým kroužkem. Dno plechového pouzdra – zde vrch – má otvor o průměru 25 mm, který je z vnitřku kryt ochrannou drátenou sítkou a hedvábím. Provrtaným výklem s polokoulí je veden gumový dvoupramenný stíněný kabel, ukončený třípolovou mikrofonní zástrčkou, jíž se přivádí napětí pro mikrofon.

Zdroje tvoří transformátor a baterie, které jsou umístěny v krabici rozměrů 310 × 150 × 110 mm. Na 5 mm překližce rozměrů 300 × 105 mm je přišroubován síťový transformátor, jehož primár je pro 120 i 220 V a sekundár 20 V/0,5 A a 90 V/0,03 A. Nad transformátorem je namontován volný síťový napětí a reostat 50 Ω k doregulování napětí pro motory při provozu z baterie (obr. 12). Dále je nad základní deskou pertinaxový panel, na němž je třípolohový dvousegmentový přepínač, který přepíná polohy „vypnuto - síť - baterie“, vedle něho je dvoupolohový páčkový přepí-

náč voltmetru pro kontrolu buď žhavicího napětí nebo napětí baterií pro pohon motoru. Nad ním je voltmetr, vedle něhož vlevo je sítová pojistka a ještě dále elektronková obálka pro připojení kabelu nahráváče.

Na pravé straně panelu je tlačítko, kterým zapínáme síť v poloze „vypnuto“. Tím dostáváme pro motory napětí ze sítě, aníž bychom zatěžovali ostatní zdroje nebo optoelektronky zesilovače. Pod panelem jsou selenové usměrňovače. Pro pohon motoru jsou zde dvě desky na 0,5 A. Pro anodové napětí je 6 desek pro 30 mA. Napětí 18 V je filtrováno elektrolytem 1000 μF, jehož zkušební napětí je 40 V<sub>ss</sub>, anodové napětí je filtrováno pomocí dvou odporek a svitkových elektrolytů 2 × 16 μF a 4 μF (obr. 13). Na základní desce jsou pouzdra pro tři monočlánky paralelně, které žhaví elektronky zesilovače v obou polohách přepínače. V poloze „vypnuto“ se nejen odpojí od zesilovače, ale rozpojí i mezi sběrou, takže není zde možnost vybití některého článku s menší kapacitou. Pod pravou stranou panelu je šest plochých baterií pro pohon motoru. Při napětí jedné čerstvé baterie 4,5 V dostaneme 27 V, což je dost velká rezerva pro pokles napětí při zatížení.

Zbývá ještě se zmínit trochu o celkové úpravě zařízení. Základní deska magnetofonu je nastříkána lakem a tímž lakovem je nastříkán i společný kryt obou hlaviček, který je v mém případě vyroben z měděného plechu. Všechny ovládací prvky jsou popsány štítky, které se lehce dají vyrobit po domácku fotografickou cestou. Tuši narysuji jednotlivé štítky na pausovací papír a popíšeme pomocí šablony pro strojnické písmo. Kopírujeme na kontrastní bílý papír, nejlépe karton a vyvoláme v poněkud silnější vývojce, takže dostaneme kontrastní černé štítky s bílým písmem (foto tit. str.). Je dobré kopie leštíčkou vyletit a nalepit vhodným lepidlem na plech, který může být dosti tenký. Pak jednotlivé štítky ostříhneme a připevníme pomocí malých nýtek.

Štítky, které nás mají zvláště upozornit, můžeme anilinovou barvou zabarvit (ZÁZNAM – červeně).

Celkově se dá shrnout zdárná stavba nahrávače takto: Je nutno dbát velké přesnosti v soustružnických pracích a přesnosti i trpělivosti při konstrukci hlaviček. Nebude-li nám hned napoprvé hlavička fungovat tak, jak bychom chtěli, pak nezbývá nic jiného než ji znova rozebrat a po opravě znova složit.

Bude-li některá pomocná kladka nebo dokonce hnací hřídel házet, neomůže nic jiného než ji vyměnit. Budeme-li dbát přesnosti právě u této dvou jmenovaných součástí, to jest hlavičky a mechanických součástí, pak nám nemůže už nic pokazit zdárný výsledek stavby. Předpoklad je ovšem, že si budeme vědět rády se zesilovačem, který reprodukuje skreslené, nebo dokonce nefunguje vůbec. Konečně ten, kdo ještě nezná ani základní zásady při stavbě nf přístrojů, se do stavby nahrávače snad ani pouštět nebude.



Obr. 13. Zapojení zdrojů a zapojení pohonu magnetofonu

# STAŇTE SE SPOJENCI V ÚSILÍ ZA DALŠÍ ROZMÁCH VYNÁLEZECKÉHO A ZLEPŠOVATELSKÉHO HNUTÍ

Dr Alexej Čepička, předseda Státního úřadu pro vynálezy a normalisaci

Vzrušení, kterým je provázeno v celém světě vypuštění prvek a druhé umělé družice, a zkoušky mezikontinentální balistické střely v Sovětském svazu dokazují, že nová technická revoluce není již žádnou abstraktní představou ani hudebnou budoucností. Úspěchy, jichž dosáhla věda a technika zejména v podmínkách, které pro ni vytvořila prvá země socialismu – Sovětský svaz, – na poli mirovém i vojenském využití atomové energie, otevírají v dějinách lidstva nové dějinné údobi.

Objev využití atomové energie není však jediným důsledkem technické revoluce. Nebývale rychlý technický rozvoj a pokrok přináší velké změny v dosavadním způsobu výroby ve všech jejích oborech. Jsou objevovány nové druhy strojů, které pracují s neobyčejnou výkonností za dosud nezvyklých tlaků i teplot, padají rekordy v rychlosti, v dosažených výškách i vzdálostech. Ruku v ruce s novými druhy strojů, přístrojů a zařízení mění se pronikavým způsobem i způsoby výroby, výrobní postupy, technologie výroby. Tento technický rozvoj umožňuje mechanizovat jednotlivé druhy lidské činnosti, v níž celé výrobní procesy jsou uskutečňovány stroji. Tento vyšší stupeň mechanizace prací je však východiskem k automatisaci, která již nevyžaduje pracovníka ke každému stroji, nýbrž umožňuje seriovou výrobu v linkách, anž je třeba lidské ruky, vyjma dozoru a údržby. Nové možnosti dávají nám dnes také chemie, zejména radioaktivní látky, které umožňují využít nových vlastností hmot a uplatňují se i v zemědělské výrobě, mimo jiné využíváním živných láttek a roztoků k ničení škůdců a ovlivňováním růstu rostlin a zvířat. Nové a nové objevy nových hmot pomáhají nahrazovat zelezo, ocel, slitiny, dřevo a jiné suroviny umělými hmotami, které mají lepší vlastnosti než dosud používané suroviny a materiály. Významným důsledkem nové technické revoluce v této oblasti je, že nové hmoty přestaly být náhražkou a stávají se čím dál více základní prvotní surovinou.

Stranou těchto velkých změn nezůstala ani elektrotechnika, která i v budoucnu bude stále pronikavěji přinášet velké změny v dosavadním našem životě i v jeho vztazích. Zejména její významný úsek – slaboproudá elektrotechnika – prošla a prochází bouřlivým vývojem. Radiolokátor, černobílá i barevná televize, rádio, důmyslné elektronické počítací stroje, elektronkové měříci a kontrolní přístroje se stávají čím dál více účinnějším nástrojem člověka v jeho boji s přírodou, zmnohonásobují možnosti člověka odhalovat nové zákonitosti a úspěšněji řešit složité otázky výrobní činnosti na podkladě nejdokonalejší techniky.

U vědomí těchto důsledků technické revoluce pro rozvoj našeho národního hospodářství Komunistická strana Československa i vláda Národní fronty vždy dbaly, aby naše výroba nezaostávala za světovým vývojem vědy a techniky a aby nezůstala nepřipravena k plnému využití nejnovějších výsledků vědy a techniky. Zejména v posledních letech je zdůrazňován význam technického rozvoje, který podmiňuje i růst společenské produktivity práce. K posílení technického rozvoje byla již uskutečněna řada opatření, mezi něž patří také péče

o další rozvoj vynálezeckého a zlepšovatelského hnutí.

Nebude proto nevhodné, aby právě v době, kdy tisíce našich radioamatérů sledovaly v celém světě a také u nás dráhu obou umělých družic, byla věnována pozornost nejenom této světadějně události, nýbrž i výsledku práce těch, kteří nedosáhli řešení technických otázek na takové úrovni jako je umělá družice, ale jejichž práce je pro technický rozvoj neméně významná a důležitá.

Vynálezecké a zlepšovatelské hnutí se stalo význačným činitelem v úsilí o zrychlení tempa i zvětšení rozsahu technického rozvoje. Dokazuje to nejen každoročně stoupající počet vynálezců a zlepšovatelů, ale také rostoucí úroveň výsledků jejich práce. Od osvobození naši vlasti sovětskou armádou přesáhl počet podaných zlepšovacích návrhů zcela určitě výši jednoho milionu, i když evidence v prvních šesti letech nebyla dokonala. Za tutéž dobu bylo podáno přes 30 000 přihlášek vynálezů a uděleno více než 11 000 patentů. Rovněž hospodářsko-finanční výsledky, jichž bylo dosaženo využitím vynálezů a zlepšovacích návrhů, jsou nemalé. I když statisticky byla podchycena jen část taktu dosažených výsledků, přesahují dosažené úspory 5 miliard Kčs. V řešení technických problémů naší výroby bylo dosaženo mnoha vynálezci i zlepšovateli světového prvenství. Vynálezci a zlepšovaté, kteří vyšli z řad našeho pracujícího lidu, navázali na dobrou pověst a tradici československého vynálezeckví a v příznivých podmínkách, které pro ně vytvořilo lidové demokratické zřízení, byly vyřešeny složité úkoly na světové úrovni, takže zásluhy vynálezců a zlepšovatelů mohly být oceněny státními cenami, řady a jinými vysokými vyznamenáními. Z významných zlepšovatelů – těchto představitelů hnutí nového charakteru, jimž dělnická třída prokazuje své vůdčí schopnosti – možno jmenovat soudruhu Vlacha, známého metodou rovnání plechů plamenem, Hamra, který zavedl metodu tvarového broušení, Kyzlinka, známého pro novou technologii výroby miniaturních součástí a nástrojů a mnoha jiných. Z mladé generace našich vynálezců jsou známí soudruh Josef Josif vynálezec z oboru motocyklů, B. Sládek vynálezec na válcovacích tratičích, Vladimír Svatý vynálezec tryskového stavu, prof. Dr Ing. Čermák, Ing. Straka, Ing. Dubský a jiní. Jaký je podíl vynálezců a zlepšovatelů na úseku elektrotechniky a zvláště slaboproudé elektrotechniky?

Od roku 1945 bylo podáno do poloviny letošního roku celkem 5359 přihlášek vynálezů z elektrotechniky a z tohoto počtu připadá na obor slaboproudé elektrotechniky 2812 přihlášek, t. j. 53 %. V této době bylo uděleno 1797 patentů a z toho připadá na obor slaboproudé elektrotechniky 864

patentů, t. j. 38 %. Většina technických řešení, která jsou obsahem vynálezů, řeší otázky radiotechniky, televise, elektrotechniky a radiotechnických součástí (cívky, kondenzátory, polovodiče, relé a pod.), 20 % z uvedeného počtu jsou přihlášky z oboru telefonů. Z celkového počtu zlepšovacích návrhů za posledních 5 let zasluhují zmínky zlepšovací návrhy, které jako významné byly doporučeny k rozšíření. Z celkového počtu 293 těchto návrhů z oboru elektrotechniky týká se však slaboproudé elektrotechniky jen 36 návrhů. Proti přihláškám vynálezů jsou ve skladbě zlepšovacích návrhů podstatné rozdíly, které nasvědčují tomu, že vynálezecké a zlepšovatelské hnutí na úseku slaboproudé elektrotechniky není ovlivňováno prostřednictvím thematických úkolů potřebami našeho hospodářství. Z významných vynálezů z oboru radiotechniky zasluží zmínky vynálezecká činnost Ing. Jiřího Vacáčka a Ing. Viléma Kiliána, laureátů státní ceny, jimž byly uděleny patenty na řadu vynálezů z oboru stavby rozhlasových a krátkovlných vysílačů, Bohdana Carniola z oboru měřicích přístrojů pro vysokofrekvenční zařízení, Josefa Kapouna v oboru rozhlasových přijímačů, Dr Ing. Josefa Merhauta z oboru elektroakustiky, B. Bezděka z oboru výroby vlnovodů, Ing. Jana Váni, laureáta státní ceny, z oboru vakuové elektrotechniky řešením otázek konstrukce miniaturních elektronek. Josefa Kuneše z oboru úplné automatizace třídění plochých kondenzátorů a jiných. S velkým úspěchem vyřešil Ing. Karel Weber a jeho kolektiv elektromechanický dálnopis, na který bylo uděleno množství patentů. Rovněž byla udělena řada patentů Ing. Sušickému a jeho kolektivu za vyřešení dálnopisu na podkladě elektrotechnickém.

Výsledky této tvůrčí práce vynálezců a zlepšovatelů byly obdivovány na řadě výstav nejen domácími, ale i zahraničními návštěvníky. Zejména na poslední brněnské výstavě bylo vysloveno významnými zahraničními představiteli našim tvůrcům technického pokroku na úseku slaboproudého průmyslu vysoké uznání.

Přesto je známo, že nároky na naši slaboproudý průmysl neustále vzrůstají a při tom naše závody zápasí v provozu a ve výrobě s řadou obtíží a překážek. Právě v překonávání všech obtíží je práce vynálezců a zlepšovatelů velkou oporou, jestliže vedení závodu a odborová organizace budou pečo-



vat o to, aby byly pro jejich práci vytvořeny nejpříznivější podmínky.

Velký význam pro další rozvoj vynálezeckého a zlepšovatelského hnutí měly nové právní předpisy a projednání stavu vynálezeckého a zlepšovatelského hnutí na celostátní konferenci vynálezců, zlepšovatelů a novátorů na Pražském hradě. S velkou rozhodností bude nutno odstraňovat všechno, co úspěšný rozvoj tohoto hnutí brzdí a oslabuje.

Nelze nečinně přihlížet k podceňování významu práce vynálezců a zlepšovatelů, připustit zdlouhavé vyřizování jejich návrhů, trpět pomalou realisaci, nestarat se o rozšíření vynálezů a zlepšovacích návrhů, nových pracovních metod a připustit nespravedlivé jednání s vynálezci a zlepšovateli.

Nový zákon o vynálezech, objevech a zlepšovacích návrzích vytvořil podmínky, aby se tyto nedostatky a chyby neopakovaly. Zákon se stává návodem k takové praktické činnosti, aby zlepšovatelské a vynálezecké hnutí se stalo skutečnou součástí technického rozvoje, kterého se účastní v nejčasnější spolupráci pracovníci z výroby, dělníci, mistři technici spolu s pracovníky vědeckých a výzkumných ústavů tak, aby je neoddelovaly žádné přehrady vzniklé z nepochopení, prestíže, nebo jiných důvodů. Podle potřeb našeho hospodářství nový zákon nyní umožnuje, aby byla poskytnuta ochrana původcovských práv objevům, která doposud nebyla možna. K podstatnému rozšíření účinnosti zákona dochází také na úseku zdravotnictví a zemědělské výroby.

Na nové způsoby léčení nemocí a ochrany před nemocemi, na nové druhy rostlin i na nová plemena zvířat budou vydávána osvědčení o původcovství s nárokem na odměnu. Prostřednictvím smluv a dohod o využití a odměně vynálezů a zlepšovacích návrhů, jež je povinen uvažovat každý řídící orgán s vynálezcem a zlepšovatelem, chce-li využít výsledky jejich práce ve výrobě, bude dosaženo souladu mezi zájmy jednotlivce a společnosti, tak, aby znalost i zkušenost vynálezcu i zlepšovateli přinesly jim osobně i celku nejvyšší propěch. Řada opatření, aby řízení o vynálezech a zlepšovacích návrzích se zrychlilo a zkvalitnilo, sleduje cíl posilit důvěru vynálezců a zlepšovatelů v rozhodování těch orgánů, které jménem státu o výsledku jejich práce rozhodují.

**Nelze očekávat, že za literou zákona budou následovat skutky a činy, odpovídající zásadám a duchu nových právních předpisů. Spíše lze očekávat, že bude nutno klesat cestu nové praxi vyvražením nesprávných a falešných názorů.**

Proto kolektiv SÚVN uvítal možnost, aby Amatérské radio se stalo spojenec v úsilí o rozšíření a zkvalitnění vynálezeckého a zlepšovatelského hnutí. Má to být začátek trvalé spolupráce, k níž jsou dány nejlepší předpoklady. V řadách čtenářů je mnoho vynálezců a zlepšovatelů a mimo to všichni radioamatéři jsou lidé, kteří novou techniku mají upřímně rádi a jejím prostřednictvím jsou jim blízké všechny otázky technického pokroku. I v jejich práci jsou dosud nevyužité možnosti, aby přispěli k dalšímu rozvoji vynálezeckého a zlepšovatelského hnutí na všech pracovištích a tím získali zásluhy o takové tempo a rozsah technického rozvoje, který odpovídá potřebám našeho hospodářství.

\* \* \*

Není pochyb, že amatéři se iniciativně chopí možností, jež jim nová úprava zlepšovatelského hnutí poskytuje; vždyť neustálé zlepšování je podstatou radioamatérské činnosti. Ze dovezenou svých schopností využít pro zvyšování výroby, to dokázala řada exponátů z oboru průmyslové elektroniky na III. celostátní výstavě radioamatérských prací, pokusy ostravských s radiospojením v dolech, raděm řízený jeřáb s. ing. Hajiče v Brně, radiový dispečink v hutích, zařízený již před lety s. Kubíkem i každoroční životní spojovací služby, jimiž radioamatéři zavedli radio do zemědělství. Bohužel je také pravdu, že by jejich podíl mohl být ještě větší, kdyby se též setkávali vždy s porozuměním. Dokládá to nejnovejší



případ s. Jaroslava Boštíckého z Liberce. Tento soudruh navrhl nové provedení zpožďovacího relé, využívajícího nažehovací dobu u nepřímožhavené elektronky, při čemž ke spinání žávícího obvodu použil kořistného mžikového spinače. Třebaže toto zařízení, instalované na obráběcích strojích s častějšími pracovními přestávkami, může vypínáním motoru ušetřit mnoho kilowatthodin, vystá a proti rozšíření námetu námítka, že tento letecký spinač je jen pro napětí 40V a jeho použití při napětí 220V je proti platným předpisům. Tvrzení zlepšovatele, že spinač byl původně určen pro těžký provoz v letecku, kde je vyžadováno několikanásobně bezpečnější provedení a že spinač má max 0,5A střídměsto původních

10Ass, nebylo soudruhy, kteří o ZN rozhodují, uznáno. Nikdo z nich však neuznal za vhodné dát spinač přezkoušet EZÚ jenom proto, že neměli zájem na zavedení námetu, který přináší podstatné úspory elektřiny.

Proto ani nebyla uznána skutečnost, že spinač je již od června 1956 v hrubém provozu na stroji a nejen že je bezpečný, ale vykazuje i malé opotřebení přes časté spínání.

Dostí podivné je, že bylo při tom basrováno na celkem bezvýznamném detailu. Jak je z níže otištěného schématu vidět, je celkem lhostejo, jakého typu spinače se použije ke spinání žávícího obvodu elektronky UY1N; může to být stejně dobré třeba tlačítka jiného druhu, nebo podobný koncový spinač, používaný na obráběcích strojích nebo u výtahů. Podstatou zlepšovacího námetu tedy není použití výprodejního kořistného spinače náhradou za jiný, dražší, ač i to by bylo lze považovat za zlepšovací námet. Pravý vtip řešení, navrhovaného soudruhem Boštíckým, je přeci v použití nepřímožhavené elektronky.

Jaký rozdíl bývá někdy mezi kovářem a kovářičkem, mezi iniciativou zlepšovatele a neinicativou zlepšovacího organizátora! Jaký rozdíl může být mezi duchem, v němž je zlepšovatelské hnutí shora podporováno a mezi praxí dôle!



## KVIZ

Doplňujeme odpověď na první otázkou KVIZU v č. 5 AR, která nebyla přesně formulována a připouštěla různý výklad.

Na závitu nenaměříme žádné napětí tehdy, jsou-li přívody k voltmetu vedeny radiálně tak daleko, aby uzavíraly příslušnou část magnetického toku opačného směru (t. j. jako na obr. a). Předpokládali jsme hrncové jádro, o čemž v otázce nebyla zmínka. Kdyby byly přívody vedeny podle obr. b, ukázel by dostatečně citlivý

voltmetr výchylku. Děkujeme čtenářům, kteří nás upozornili.



# TELEVISNÍ PŘIJIMAČ

## TESLA 4102U „MÁNES“

Arnošt Lavante

Při vývoji přijimače 4202A počala se čím dálé tím důrazněji rýsovat neodvratná nutnost obohatit slaboproudou součástkovou základnu o nové součástky a materiály. Proto vývojoví pracovníci n. p. TESLA Strašnice přistoupili k vývoji další řady televizních přijimačů t. zv. řady Mánes, která by se opírala o nejnovější poznatky techniky, jakož i o součástky a elektronky nejmodernějšího provedení. Při tom nebyl brán ohled na to, zdali potřebné nové součástky, elektronky a materiály jsou již v ČSR vyvinuté, nebo jsou-li už ve výrobě, ale naopak problém byl řešen s hlediska, že má-li být dosaženo kvalitativního skoku ve výrobě televizních přijimačů, je nutno vytvořit jasné požadavky na přesné specifikované druhy nových materiálů i součástek. Tyto součástky pak s pomocí všech nadřízených složek za každou cenu zavést do výroby.

Na základě tohoto stanoviska byly nařízeny předběžné technické požadavky na televizní přijimač nové řady. Hlavní požadavky, které ohraňovaly po technické stránce obrys budoucího přijimače, byly:

A. Přijimač musí být tak jednoduchý a levný, aby mohl nahradit dosavadní typ 4001A.

B. Citlivost přijimače musí být zvýšena proti dosavadnímu typu.

C. Rozměry musí být zmenšeny.

D. Rovněž musí být snížen celkový elektrický příkon ze sítě.

E. Přijimač musí používat nejmodernějších elektronek a součástek.

Podle téhoto požadavků byl vyvinut přijimač 4102U, známý pod názvem „Mánes“. Přijimač je zapojen jako superhet. Vysokofrekvenční zesilovací elektronka a směšovací elektronka jsou spoju s příslušnými cívkovými sadami montované ve vysokofrekvenčním dílu nového provedení. Cívky jednotlivých kanálů jsou umístěny na otočném bubnu, t. zv. karuselu. Vzhledem k tomu, že počet vysílačů, který je možno v jednom místě přijímat, je omezený a sotva kdy, i v budoucnu, přesáhne počet

3 přijimatelných kanálů, je otočný buben u přijimačů řady Mánes šestipolohový. Celkové provedení vstupního dílu přijimače je na fotografii. V zájmu zjednodušení mechanické montáže je počet použitých šroubků snížen na 3 kusy. Všechny součástky včetně elektronkových objímek, aretačních per atd. jsou buď zaklesnuty do speciálních výrezů nebo přinýtovány k základní kostře.

Vstupní díl je osazen elektronkou PCC84, zapojenou jako vysokofrekvenční zesilovač v seriovém kask dovém zapojení a elektronkou PCF82, pracující jako směšovač a oscilátor.

Signál z antény se přivádí přes dva oddělovací bezpečnostní kondensátory  $C_1$  a  $C_2$  na antennní cívku. Vstup přijimače je přizpůsoben pouze pro symetrickou vstupní impedanci  $300 \Omega$ . Oddělovací kondensátory jsou nezbytné z bezpečnostních důvodů, aby oddělily antennní zdiřky od kostry přijimače, galvanicky spojené se sítí. Zabraňuje se tak nebezpečí úrazu při dotyku antennních zdířek. Vstupní cívky, upravené pouze pro impedanci  $300 \Omega$ , dovolují dosáhnout mnohem lepší elektrické symetrie. V případě, kdy je třeba připojit na přijimač antennní svod, provedený koaxiálním kabelem, byl k tomuto účelu vyvinut speciální symetrisační člen s elevátorem. Tento symetrisační člen bude rovněž vyráběn a v krátkosti uveden na trhu.

Mřížková cívka  $L_2$  je symetrisovaná kapacitním děličem, tvořeným kapacitou mřížka-katoda a kondensátory  $C_5$  a  $C_6$ . Tento způsob zapojení dovoluje udržet symetrii vstupní cívky. Trioda s uzemněnou katodou (elektronka EI) je neutralisována kapacitou  $C_7$ . Přes odporník  $R_1$  se přivádí předpětí pro regulaci zisku. Předpětí je důkladně blokováno prů-

chodkovým kondensátorem  $C_4$ . Trioda s uzemněnou mřížkou elektronky EI je zapojena do serie s triodou s uzemněnou katodou přes cívku  $L_7$ . Tato cívka tvoří  $\pi$  filtr, resonující zhruba uprostřed třetího televizního pásmá. Ss napětí pro vysokofrekvenčně uzemněnou mřížku je odebráno z děliče  $R_2$ ,  $R_4$ .

Zesílený vysokofrekvenční napětí je dále přiváděno přes pásmový filtr  $L_3$ ,  $L_4$  na mřížku směšovací elektronky. Na studený konec cívky  $L_4$  je připojen mřížkový svod a kondensátor  $C_{12}$ . Tento bod je vyveden na nýtek přístupný vně v dílu a slouží jako měrný bod pro sladování. Oscilátorová cívka  $L_5$  je zapojena mezi anodu a mřížku. Jemné doložení kmitočtu oscilátoru se provádí kondensátorem  $C_{14}$ . Změny kapacity tohoto kondensátoru se dosahují zasouváním a vysouváním dielektrika (pertinaxové destičky) mezi živý plošný dotyk a krycí destičku spojenou s kostrou. Oscilační napětí se na mřížku směšovací elektronky přivádí hlavně vzájemnou vazbou mezi cívkou  $L_4$  a  $L_6$ , jakož i přes různé rozptylové kapacity.

Mezifrekvenční signál se přivádí na mřížku první mezifrekvenční elektronky EF80 přes pásmový filtr. Tento pásmový filtr je tvořen dvěma samostatnými cívkami OMF 1a a OMF 1b. Vazba mezi oběma cívkami je provedena vazební linkou. Cívka OMF 1a se nalézá v malém krytu na vý díle, kdežto cívka OMF 1b je umístěna na kostře přijí-



Rozložené součásti na kostře televizoru Mánes.



mače. První mezifrekvenční elektronka EF80 je řízena předpětím. Aby se neměnila při změně předpětí příliš její vstupní kapacita, je provedena částečná kompenzace v katodě. Neblokovaný odpor  $R_{22}$  vytváří zpětnou vazbu, která omezuje velikost změny vstupní kapacity při změnách předpětí. Vazbu první elektronky EF80 na druhou mezifrekvenční elektronku, rovněž EF80, se provádí pomocí dalšího pásmového filtru OMF 2. Druhý mezifrekvenční stupeň je navázán na demodulační diodu přes jednoduchý bifilárně vinutý obvod OMF 3. Mezifrekvenční zesilovač je opatřen odladovačem zvukového doprovodu v krytu cívky OMF 1b. Obvod odladovače  $L_{28}, C_{21}$  je navázán přes kapacitu  $C_{28}$  na vazební linku. Aby tato kapacitní vazba nebyla narušována vazbou induktivní, působenou blízkostí jader, je zelezové jádro, kterým je tato cívka laděna, zašroubováno do krytu obráceným způsobem. Není tedy závadou, výčnívá-li jádro. Celý mezifrekvenční zesilovač se nachází podél levé hrany kostry přijimače. Uspořádání je dobře patrný na obr. 2.

Za mezifrekvenčním zesilovačem následuje detekční dioda. Tato je spolu s korekční tlumivkou  $L_{28}$  a příslušnými odpory a kondensátory umístěna v plechovém krytu na spodní straně kostry. Na obr. 5 je tento plechový kryt dobře patrný v pravém dolním rohu.

Obrazový zesilovač je rovněž osazen elektronkou EF80. Obrazový signál se přivádí přímo přes korekční tlumivku  $L_{28}$  a cívku pro odběr zvuku ZMF na katodu obrazovky 351QP44. Vazba na katodu obrazovky je přímá, takže stejnosměrná složka se přenáší přímo na obrazovku. Aby se pracovní bod obrazového zesilovače přišel neposouval v závislosti na síle zachyceného signálu, je stejnosměrná složka přiváděna na mřížku elektronky E5 pouze v úrovni cca 30 %. Tím je zajištěno, že pozadí (stejnosměrná složka) bude obrazovkou uspokojivě reprodukováno. Tato úprava dovoluje přesné nastavit pracovní bod obrazového zesilovače tak, že zesílení je co možná nejvyšší.

Jelikož obrazovky vykazují mezi sebou velmi značné rozdíly v závěrném napětí, bylo by pro nastavení správného pracovního bodu obrazovky zapotřebí regulace napětí na mřížce ve velmi širokých mezech. Na druhé straně obrazovka velmi trpí, je-li katoda namáhána

trvalým proudem větším než 100  $\mu$ A. Aby bylo možné nastavit správný pracovní bod pro každou obrazovku a přitom nebylo možné otevřít obrazovku na proud větší než 100  $\mu$ A, je v serii s regulátorem jasu  $P_2$  zapojen ještě nastavitelný potenciometr  $P_{11}$ . Tímto potenciometrem se individuálně upravuje maximální katodový proud při vytoceném regulátoru jasu na cca 100  $\mu$ A.

Zvukový doprovod je odebíráno za obrazovým zesilovačem přes pásmový filtr ZMF. Mezinosný kmitočet 6,5 MHz je dále zesilován pentodovou částí elektronky E6 PCF82. V anodě této elektronky je zapojena cívka poměrového detektoru. Elektronka je neutralisována připojením kondensátoru  $C_{45}$  na stínici mřížky místo na zem.

Demodulace zvukového doprovodu je prováděna nízkoohmovými diodami elektronky PABC80. Po potlačení zdůrazněných vysokých tónů v příslušném RC členu ( $C_{48}, R_{45}, C_{60}$ ) je nf signál veden na regulátor hlasitosti  $P_1$ . Nf zvukový doprovod je zesilován triodou elektronky PABC80. Koncový stupeň zvuku je osazen elektronkou PL82. Použitý reproduktor má průměr 16 cm a je namontován na boční stěně skřínky.

Obrazový signál je z anody elektronky E5 přiváděn přes odpor  $R_{101}$  na mřížku oddělovače synchronizačních pulsů. Tento stupeň je osazen pentodou sdržené elektronky PCF82. Druhý stupeň oddělovače synchronizačních pulsů je osazen zbývající triodou elektronky E6. Z anody této elektronky se oddělené synchronizační pulsy přivádějí na rádkový a vertikální rozkladový oscilátor. Pro vertikální rozklad tvoří odpor  $R_{107}, R_{108}$  a  $C_{103}$  a  $C_{104}$  integrační člen. Budíci oscilátor vertikálního rozkladu je zapojen jako rázující oscilátor. Pracuje s druhou polovinou elektronky E9 (PCF82). Kmitočet vertikálního rozkladu se jemně řídí potenciometrem  $P_4$ , umístěným na rámu s potenciometry, uchyceném na kostře přijimače. Tento rám je dobře patrný na obrázku. Potenciometr  $P_4$  je na tomto obrázku jako druhý zleva. Potenciometr  $P_8$  je malý proměnný odpor na liště pod kostrou v blízkosti vertikálního výstupního transformátoru. Svislý rozměr obrázku se řídí potenciometrem  $P_5$  a linearita potenciometrem  $P_7$ . Oba jsou umístěny na zadní stěně přijimače a jsou dobré viditelný na obr. 2. Potenciometr  $P_6$  upravuje linearitu vertikálního rozkladu v horních

15–20 % obrázku. Úprava linearity vertikálního rozkladu se provádí proměnnou zpětnou vazbou. Koncový stupeň vertikálního rozkladu je osazen elektronkou E10 PL82. Z katody této elektronky je odebíráno napětí pro stínici mřížku oddělovače synchronizačních pulsů (cca 15 V). Sekundární vnitřní výstupního transformátoru vertikálního rozkladu  $TR_3$  je připojeno na vertikální vychylovací cívky. Z těchto cívek se přes kondensátor  $C_{120}$  odebírá napětí pro zhášení zpětných běhů.

Rádkový rozklad používá jako budicí stupně rázujícího oscilátoru. Je osazen jednou polovinou elektronky ECC82. Druhá polovina elektronky pracuje jako řidící elektronka. Tato elektronka srovnává fázi přicházejících synchronizačních pulsů s vyráběným budicím pilotovým napětím z rázujícího oscilátoru. Složením obou napětí se vytváří puls, jehož šíře je závislá na vzájemné fázi obou napětí. Šíře pulsu se ovládá anodový proud řidící elektronky a z tohoto anodového proudu se odvozuje stejnosměrné korekční napětí pro rázující oscilátor. Korekční napětí je filtrováno filtrem o velké časové konstantě v katodě řidící elektronky. Kmitočet rázujícího oscilátoru není tedy synchronován přímo synchronizačními pulsy, ale neprávě stejnosměrným napětím. Tím se podstatně snižuje vliv rušení na stálost synchronizace. Aby stálost synchronizace byla ještě dokonalejší, je obvod rázujícího oscilátoru  $L_{131}$  stabilisován LC obvodem  $L_{132}, C_{133}$ . Potenciometrem  $P_9$  se v případě potřeby upravuje rádkový kmitočet s přední strany přijimače, kdežto hrubé nastavení kmitočtu se provádí jednak potenciometrem  $P_8$  a jádrem cívky  $L_{131}$ . Potenciometr  $P_9$  je umístěn na rámu na přední stěně kostry (obr. 5).

Pilotovým napětím z oscilátoru je buzena elektronka koncového stupně rádka PL81. Buzením do oblasti mřížkového proudu této elektronky záporné napětí. Toto napětí se odebírá z potenciometru  $P_{10}$  a používá jako záporné regulační napětí pro řízení kontrastu (zisku) přijimače. Potenciometr  $P_{10}$  je rovněž na přední straně přístroje a to na rámu s potenciometry jako první zleva.

V anodě elektronky E12 PL81 je zapojen výstupní transformátor rádkového rozkladu. Provedení transformátoru je dobře patrné z obr. 2. Jednotlivá vinutí



Kostra od spodu.



Vstupní část rozebraná.

jsou uložena na kostrách, do kterých je zasunuto ferritové jádro. Vysoké napětí je získáváno jako obvykle z tak zvaného terciérního vinutí a je usměrňováno vysokonapěťovou usměrňovací elektronkou s oxydovou katodou DY86. Účinnostní dioda je zapojena obvyklým způsobem na odbocoštu primárního vinutí. Pro zvýšení účinnosti je výstupní transformátor rádek zapojen jako autotransformátor. Do serie s vychylovacími cívky je zapojena cívka  $L_{134}$ , kterou se reguluje amplituda pilovitého proudu ve vychylovacích cívkách. Regulace amplitudy, prováděná tímto způsobem, nemá velký vliv na anodové napětí pro obrazovku. Regulace rádkové linearity se provádí nastavením jádra cívky  $L_{133}$ . Celý rádkový koncový stupeň je jištěn pojistkou 0,2 A.

Usměrnění síťového napětí se provádí selenovým usměrňovačem dobré patrným na obr. 5. Usměrněné napětí je filtrováno filtračním řetězcem, rozvětveným do několika směrů. Žhavici vlákna elektronek jsou připojená přímo na síť přes srážecí odpor  $R_{167}$  a thermistor W1. Pořadí, ve kterém jsou jednotlivé elektronky za sebou zapojeny, není náhodné, ale vyplývá z přípustných maximálních napětí mezi katodou a vláknenem, jakož i z požadavku zamezit vmodulovávání brumu, případně vzájemné vazbě přes žhavici vedení.

Montážní řešení celého přijimače je takové, že dovoluje snadné vyjmání ze skříně. Po uvolnění předních knoflíků a vyšroubování 4 šroubů lze celý přijimač vysunout tak, jak je to vidět na obr. 5. Po odšroubování reproduktoru a uvolnění dvou křídlových matek lze vysunout i obrazovku včetně nosného rámu. Demontáž přijimače je tedy opravdu snadná a rychlá. Mimo to je vespodní stěně skřínky veliký otvor, zakrytý děrovanou lepenkou, který umožňuje přístup pod kostru. Perforace spodní stěny má usnadnit větrání přijimače. Díky pečlivě provedenému větrání nepřestoupí ani za

zvýšeného napětí 240 V v síti teplota kostry na kterémkoliv místě 60°. Baňky elektronek a výstupní transformátor rádek jsou ovšem na svém povrchu teplejší. Tím se podařilo podstatně snížit tepelné namáhání součástek a zajistit tak předpoklady pro jejich dlouhou životnost. Aby bylo možné provádět hrubé nastavení kmitočtu oscilátoru, jsou cívky oscilátoru opatřeny doladovacím mosazným jádrem. Jádrem lze otáčet a nastavovat kmitočet oscilátoru z přední strany přijimače. Po sejmání knoflíku vysokofrekvenčního dílu je možné pomocí izolovaného šroubováku provést nastavení jádra tak, jak je to vidět na fotografii.

Přijimač Mánes je základním typem řady, jejímž dalším typem je televizní přijimač Aleš, osazený obrazovkou s uhlopříčkou 43 cm. Až na obrazovku je tento přijimač úplně shodný přijimačem Mánes.

Televizní přijimač Mánes byl vyvýjen jako náhrada za přijimač 4001A. Při tom se podařilo vyuvinout přijimač, který nejen že přijimač 4001A po funkční stránce nahražuje, ale dokonce jej ve všech směrech předčí. Při tom se podařilo dosáhnout velkých úspor na materiálu a snížit příkon přijimače proti svému předchůdci o 20 W. Ani po stránce montážní si přijimač nezdá se svým předchůdcem. Naopak, účelné rozmístění součástek a snížení počtu elektronek a tím i součástí, dovolilo zkrátit montážní časy na míru dosud



Doladování oscilátoru mosazným jádrem (isolovaný šroubovák vpravo vedle osítky).

nebývalou. I když přijimač má mnoho cenných předností proti přijimači 4001A, je třeba pamatovat na to, že přijimače řady Mánes nejsou přijimače luxusní, ale jsou především určeny pro oblastní příjem.

Pro kvalitní obraz je třeba zajistit na antenních zdírkách signál alespoň 250  $\mu$ V. Oblast, ve které přijimač je schopen zachycovat televizní pořady, je rozsáhlá. Přijimač se však nemůže měřit co do citlivosti s přijimači opatřenými třemi nebo i více mezifrekvenčními stupni. Dlouhodobé provozní zkoušky prokázaly, že přijimač je spolehlivý v provozu. Nejslabším článkem co do spolehlivosti ovšem jsou a i nadále zůstanou elektronky, které podle dosavadních zkušeností tvoří hlavní přičinu závad.

Věřím, že přijimač Mánes a jeho pokračovatel Aleš stanou se zrovna tak oblíbenými a vyhledávanými přijimači jako byl přijimač TESLA 4001A.

## OCHRANA POLOVODIČOVÝCH ZARIŽENÍ

Některá přenosná elektronická zařízení (zvláště ta, jež používají polovodičů) nesnázejí bez poškození chybné polování anodové baterie. I při velké opatrnosti se někdy stává, že při vkládání zdrojů do přístroje dojde k náhodnému dotyku nepatřičných přívodů, který ukrátí život elektrolytu, diodám nebo

transistorům. Velmi dobrou ochranou je germaniová dioda, D zapojená do serie s přívodem k baterii B (obr. 1).

Dioda působí jako vypinač, citlivý na směr proudu. Je-li připojen zdroj ve správné polaritě, kladne dioda napájecímu proudu malý odpor. Při nesprávné polaritě se dioda chová jako vysoký odpor ( $10^8 \dots 10^6 \Omega$ ), protékající proud je nepatrný a nemůže žádnou ze součástek poškodit.

S ohledem na odpor diody v propustném směru, na kterém vzniká nevelká napěťová ztráta, nutno zvýšit napětí baterie o přírůstek U, jehož informativní závislost na protékaném proudu I pro čs. germaniovou diodu 3NN40 vidíme na dalším obrázku.

V každém případě musíme dbát, aby



Obr. 1.

napájecí proud nepřekročil maximální proud, přípustný pro použitou diodu a napětí baterie nebylo vyšší než nejvyšší přípustné napětí v závěrném směru.

*Radio & Television News, březen 1956*

C.



Obr. 2.

při jakoli velkém napětí (začátek obr. 6-7). V další čtvrtperiodě má proud i napětí jistou hodnotu, která se mění, avšak proud teče proti napětí (mají rozdílnou znaménka – kondensátor se vypíjí) a výkon je zaporný. Záporné znaménko neznamená nic jiného, než že odebírá energii, která se v něm předtím nahromadila, a nemusí vás nijak lekat. Od okamžiku, kdy proud dosáhl maximální hodnoty v jednom směru a napětí prochází nulou (výkon je opět nulový), je součin napěti a proudu kladný po celou další čtvrtperiodu, t. j. kondensátoru se dál dává výkon, který se během další čtvrtperiody mění. Prosledujete-li si takto celý obrazek, který znázorňuje průběh napěti a proudu během jedné a čtvrt periody, přijde na to, že se mezi kondensátorem a střídavým zdrojem neustále přelevá jisté množství elektrické energie, které v kondensátoru nezůstává trvale. Proud protékající kondensátorem nemůže proto konat žádnou práci (na př. vyhřívat kondensátor jeho jalovém odporu), a současně efektivní hodnot napěti a proudu udává jen zdánlivý výkon (jalový). Tento vlastnosti kondensátoru bychom mohli výhodně použít při napájení žárovky pro 4,5 V ze sítě 220 V podle obr. 2-5. kapitoly tak, že bychom jím nahradili předřadný odpor. Tím bychom ušetřili výkon strávený na tomto odporu. Činný odpor žárovky se však sčítá se zdánlivým odporem kondensátoru podle jiných pravidel, která dosud neznámé, a proto si tototo použití ponecháme na pozdější dobu.

Závěrem podotíkáme, že kondensátor má kromě zdánlivého odporu i jistý odpor činný, který odpovídá ztrátám v dielektriku. U dobrého kondensátoru jsou tyto ztráty zanedbatelné a proto je zatím nemusíme uvažovat.

Kondensátor je levná a malá součástka a proto je s odporníkem nejčastějším prvkem obvodů v elektronických přístrojích nejrůznějšího druhu. Jiným základním prvkem je cívka, která je nositelem vlastnosti zvané *induktivnost*.

Synemeli drát do šroubovnice na př. navinutím na papírovou trubku, dostaneme cívku. Připojme-li začátek a konec vinutí cívky k různým pólym baterie, začne cívku

protékat proud. Pomocí kompasu můžeme zjistit, že se cívka chová jako magnet. Jeden konec cívky působí severní koncem střely kompasu, druhý působí jižním pólem (obr. 7-1). Přerušíme-li obvod vypínacem, cívka tu vlastnost ztratí. Chcete-li si to skutečně vyzkoušet, navrhnete hodně závitů, abyste baterii nezatahovali příliš vellkým proudem (dlouhý drát má větší odpor). Magnetický účinek bude silnější, vložte-li do cívky železnou tyčku. Bez železného jádra jsou magnetické účinky elektrického proudu velmi slabé. Proto mohou ovlivnit jen lehkou střelu kompasu.

Magnetický účinek proudu nevznikl až svinutím drátu do tvaru cívky. Projevuje se i u přímoře vodiče, jinž protéká proudem. V cívce, zvláště máli železné jádro, se pásového jednotlivých závitů sčítá a soustředuje v menším prostoru, takže je můžeme lépe prokázat. Při podrobnejším zkoumání zjistíme, že přitažlivá síla je úměrná protékajícímu proudu. Budeme-li napájet cívku střídavým proudem, poznáme, že střelka kompasu na cívku nereaguje. Není to tím, že by střídavý proud magnetické účinky neměl, rybřík proto, že směr magnetického pole je závislý na směru proudu. Obrácime-li směr proudu prohozením přívodu k barevní, vymění si severní póly místo s jižním a naopak. Protože se technicky střídavý proud mění kmitočtem 50 Hz, střídají se magnetické póly našeho elektromagnetu tak rychle, že je střelka nestačí sledovat a zůstane nehybná.

Cívky, které mají výkonem přes 200 V napájení žárovky pro 4,5 V ze sítě 220 V podle obr. 2-5. kapitoly tak, že bychom jím nahradili předřadný odpor. Tím bychom ušetřili výkon strávený na tomto odporu.

U dobrého kondensátoru jsou tyto ztráty zanedbatelné a proto je zatím nemusíme uvažovat.

Kondensátor je levná a malá součástka a proto je s odporníkem nejčastějším prvkem obvodů v elektronických přístrojích nejrůznějšího druhu. Jiným základním prvkem je cívka, která je nositelem vlastnosti zvané *induktivnost*.

Synemeli drát do šroubovnice na př. navinutím na papírovou trubku, dostaneme cívku. Připojme-li začátek a konec vinutí cívky k různým pólym baterie, začne cívku



Obr. 6-4: Nejjednodušší kondensátor.

Kondensátor se skládá ze dvou kovových desek nebo folií (folie je tenký plech), obvykle z dobré vodičové materiálu, které jsou navzájem odděleny nevodivou vrstvou – isolátorem. Obě desky nebo folie, k nimž jsou připojeny přívody kondensátoru, se nazývají polepy. Isolační vložka, která je dielektrikem. Tyto kondensátory jsou velmi používané a co do kapacity je při stejné velikosti jeden kondensátor elektrolytický. Ty se skládají ze dvou stočených pásů, obvykle hliníkových, oddělených ssavým papírem, který je napuštěn vodou. Isolační vložka je vložena do vzduchoprázdroviny, je dielektrikum. Polepy odpovídají prostoru po obou stranách membrány a membráně dielektrikum. Prohnutí membrány při napinění vodou můžeme srovnat s elektrickou polarizací dielektrika při nabité kondensátoru. Je to vnitřní stav isolátoru, který se navenek viditelně neprojevuje. Právě tak jako se může membrána v extrémním tlaku protrhnout, může se i dielektrikum působením velkého napětí prorazit nebo probít jiskrou. Vznikne poškození, které skutečně můžeme vydělat (díra).



Obr. 7-1: Elektromagnet.



Obr. 6-5: Různý způsob skládání polepu.

který je pak olisovan v hodnou hmotou je-li dielektrikem silná nebo jiný materiál, který nelze ohýbat, složí se několik listků dielektrika postříbeného nebo proloženého folií na sebe, polepy se vhodně spojí a po zalisování získáme plachý tvar.

Poněkud odlišnou konstrukci mají jiné kondensátory, t. zv. kondensátory z metalovaného papíru (MP), které nemají samostatné polepy. Úlohu polepu zastává souvislá vrstva zinku nastříkaná na jemný papír, který je dielektrikem. Tyto kondensátory jsou velmi používané a co do kapacity je při stejné velikosti jeden kondensátor elektrolytický. Ty se skládají ze dvou stočených pásů, obvykle hliníkových, oddělených ssavým papírem, který je napuštěn vodou. Isolační vložka se vytvoří na povrchu jednoho pásu, připojíme-li kondensátor na stejnosměrné napětí. Vrstvička se vytvoří pouze na polepu spojeném s kladným polem zdroje, chemicky zpracovaném (morfemem) tak, aby měl velký povrch. Druhým polepem je nojen druhý, hladký hliníkový pás, ale i vodivý roziok, jímž je nasycen papír. Protože isolaci vrstva (dielektrikum) vznikla chemickým pochodem, který je závislý na směru protékajícího proudu, nelze použít elektrolytického kondensátoru v obvodech, jimiž protéká pouze střídavý proud. Později se o tom zmíne podrobněji.





Obr. 6-6: Různé tvary malých kondenzátorů a schematická značka pro kondenzátor.

Pro dielektrikum kondenzátorů se kromě zmíněných látEK používá i mnoha jiných od obvyčejného vztahu až k různým keramickým hmotám. Kondenzátor s dielektrikem z různých hmot májí různé vlastnosti (např. kapacitu závislou určitým způsobem na teplotě nebo na napětí a pod.). K tomu se musí přihlédet při návrhu elektronických zařízení a volit kondenzátor, ale i z vhodného materiálu.

Podobně jako odporník můžeme zatřít jen určitým výkonem, snesec kondenzátor ještě napětí mezi polepy. Velikost tohoto provozního napětí je na kondenzátoru udána (na př. 160 V =, t. j. stejnosmerné napětí 160 V) a nesmí být překročena ani na krátkou dobu. Je-li kondenzátor připojen na střídavé napětí, nesmí být špičková hodnota tohoto napětí než provozní. Abysto bylo zaručeno, že jednotlivé výrobky vydrží toto napětí, zkouší je výrobce výšim napětím, jehož velikost může být tak vyznačena na kondenzátoru. Údaj zkušebního napětí je jen podkladem k posouzení, jakou bezpečnost má kondenzátor proti proražení, nikoli oporu k domněnce, že ho lze použít i pro vyšší napětí než je provozní.

Na obr. 6-6 jsou čtyři typické tvary malých radiotechnických kondenzátorů dnešní vý-

roby (typ c má vnitřní uspořádání podle obr. 6-5b, zbyvající podle obr. 6-5a).

Základní jednotkou kapacity je jeden farad (1 F). Kapacitu 1 F má takový kondenzátor, který nabije proudem 1 A za 1 vteřinu na napětí 1 V. Až budete mit více zkušenosť, poznáte sami, že je to obrovská kapacita. V praxi používáme kondenzátoru s mnohem menší kapacitou, k jejemuž výjádření postačí jednotka milionkrát menší – jeden mikrofarad (1  $\mu$ F) nebo i milionina této miliunity – jedlen pikofarad (1 pF). Pro bližší představu udejme, že v běžném síťovém přijímači najdete kondenzátory s kapacitou asi od 30 pF do 100 až 150  $\mu$ F.

Schematická značka kondenzátoru vznikla ze stylizovaného obrázku a vidíte ji na obr. 6-6 i s popisem. Kondenzátor se označuje ve srovnání s písmenem C s pořadovým číslem nebo jiným indexem. Kapacita se výjadřuje zkráceně podobně jako u odporu s menšími rozdíly. Jde-li o pikofarady, neřípojíme k číslu žádné liné označení. Protože používané kondenzátory mají mnohem menší farad, používáme písmene M pro mikrofarad, které u odporu znamená megahohm, M1 tedy znamená 0,1  $\mu$ F.

U elektrolytických kondenzátorů záleží na tom, kam který pól kondenzátoru připojíme. Proto je znáka pro elektrolytický kondenzátor rozlišuje oba polý známenky a dosud používaná znacka má i odlišný tvar. Nová norma schematických značek, zavedená v československém slaboproudém průmyslu, zná jen jednu znacku pro kondenzátor, rozšířenou pro elektrolytický kondenzátor o označení polarity. Obě znaky vidíte na obr. 6-6d.

Do vyráběných přístrojů je třeba současného nejrůznějších hodnot. Není možné zhotovat pro každé použití zvláštní součástku a proto se vyrábí dostatečné hustá řada velikostí, s nimiž musí konstruktér vystačit a nebo si musí z nich potřebnou hodnotu složit. Tato řada je dána čísly: 1-1,2-1,5-1,8-2-2,7-3-3,9-4,7-5,6-6-8-8,2-10

Byla u nás zavedena nedávno a jiné hodnoty nebudu pro běžný trh vyráběny. Jak je to s odporem kondenzátoru? Křikali jsme, že v ustáleném stavu kondenzátor nepropustí stejnosmerný proud. Zna-

mená to, že se chová jako přerušení oboudu, jehož odpor je velmi velký (teoreticky nekonečně velký). Při střídavém napětí se chová jako by propouštěl zdánlivý střídavý proud, který můžeme dokázat na př. žarovkou zapojenou v řetěz s kondenzátorem. Zvětšme-li kmitočet střídavého napětí, je i protékající proud větší. Odpor kondenzátoru je tedy závislý na kmitočtu to nejmíno úmerně (t. j. při dvojnásobném kmitočtu je poloviční, při čtyřnásobném kmitočtu čtvrtinový a pod.).

Stejným způsobem je závislý na kapacitě, větší kapacita pojme větší elektrické množství a proto kondenzátor v řetěz kapičtu protéká za jinak stejných podmínek i větší proud. Lze zjistit, že kondenzátor s kapacitou 1  $\mu$ F se chová při kmitočtu 50 Hz jako odpór 3080  $\Omega$ . Tento údaj si zapamatujte, umožní vám později rychle a poměrně přesně počítat z hledavy. Kondenzátor 0,1  $\mu$ F má při stejném kmitočtu 50 Hz odpor desetkrát větší, t. j. 30 800  $\Omega$ , zatím co při 500 kHz (kmitočet antennního proudu vysilače pracujícího s vinovou délkou 600 m) se tyž kondenzátor chová jako odpor 3,08  $\Omega$ .

Z toho, co jsme si dosud uvedli, vyplývá, že paralelním spojením několika kondenzátorů se výsledná kapacita zvětší, seriovým řazením se zmínilo. Představime-li si místo kondenzátorů jejich odpory, nebude se myšlenkový postup nijak lišit od zjištění výsledného odporu u parallelně nebo seriově řazených odporníků. K výslednému odporu bychom mohli zpet najít kapacitu, která mu odpovídá. To je však zbytečná oklika, uvážme-li, že kondenzátor protéká největší proud tehdy, kdy se napětí zdroje nejrychleji mění. Naopak, mění-li se napětí velmi pomalu (v okolí maximální hodnoty), je proud velmi malý (prochází nulou), protože je kondenzátor už nabity. Srovnáme-li tento pochod s vodní obědou z počátku této kapitoly, bude počopení ještě snadnější. Dospěli jsme tedy k poznatku, že střídavý proud v kondenzátoru předchází průběhu střídavého napětí o čtvrt vlny.

Odlíšné chování kondenzátoru má závažné důsledky. Uvažme podle obr. 6-7, jaký výkon se vytváří na kondenzátoru. Je-li proud nulový, pak bude výkon rovný nule.

Obr. 6-7: Fázové poměry na kondenzátoru.

Všimněme si podrobněji vztahu mezi proudem a napětím na kondenzátoru. Stejný proud tekoucí odporem probíhá přesně shodně s napětím. Je-li napětí nulové, je i proud nulový; dosahuje-li napětí špičkovou hodnotu, vystoupí i proud na největší hodnotu. Rikame, že proud a napětí na odporu jsou ve stejné fázi. Součin okamžitých hodnot napětí a proudu (t. j. okamžitý výkon) na takovém odporu je vždycky kladný. Znamená to, že se na odporu odevzdá určitý výkon, který se zpravidla méně než výkon, který je na př. kondenzátor. Zachytíme-li nějak průběh střídavého proudu a napěti na kondenzátoru, dostaneme obrázek podobný obr. 6-7. Změny napětí se později za změnami proudu. Snadno pochopíme, uvedomíme-li si, že kondenzátor protéká největší proud tehdy, kdy se napětí zdroje nejrychleji mění. Naopak, mění-li se napětí velmi pomalu (v okolí maximální hodnoty), je proud velmi malý (prochází nulou), protože je kondenzátor už nabity. Srovnáme-li tento pochod s vodní obědou z počátku této kapitoly, bude počopení ještě snadnější. Dospěli jsme tedy k poznatku, že střídavý proud v kondenzátoru předchází průběhu střídavého napětí o čtvrt vlny.

Obr. 6-7:

Diagram souboru fází na kondenzátoru. Na horizontální osi je napětí (x) a na vertikální osi proud (y). Načátku proud je v maxima pozitivní, napětí je v nule. Poté proud se snižuje, napětí se zvýšuje. Po dosažení špičky proudu (maxima negativní) se proud znovu zvýší až k nule, když napětí dosáhne maximu. Tím je celý cyklus.

15



# MALÝ PŘENOSNÝ VYSILAČ PRO SPOJOVACÍ SLUŽBY

Mirko Lenner, OK1CQ

Popisovaný vysilač je určen především jako lehce přenosné zařízení pro různé spojovací služby a podobné účely s rychlým uvedením do provozu a snadnou manipulací. Z toho důvodu je zde použito výkonového sítového oscilátoru a upuštěno tedy od zásady vícestupňového vysilače. Zařízení se tím stává jednodušším, lehce ovladatelným a méně náročným na prostor, což je u přenosných zařízení pro různorodé podmínky místní i provozní jedním z hlavních předpokladů.

Nicméně ovšem i s těmito přednostmi musíme na druhé straně zachovat dobrou kvalitu a stabilitu kmitočtu tak, aby bylo nejenom nevybočili z koncesních podmínek, ale aby bylo dodrželi úroveň dobrých a kvalitních stanic. Proto vyřešíme dobré pracující vysilač tohoto druhu s dobrým tónem, stabilním kmitočtem a kvalitní modulací je mnohdy větším oříškem, než postavit několika-stupňové vysílání zařízení. Těm, kteří budou mít zájem o stavbu popisovaného zařízení, kladu hned z počátku na srdce přesnost, důkladnost při mechanické práci i zapojování, opatrný výběr součástek a dbaní více než kde jinde na zásady stavby vysílačních stanic.

Celé zařízení je stavěno pro telegrafní i fonický provoz především na pásmu 3,5 MHz, lze s ním ovšem po přizpůsobení ladicích obvodů pracovat stejně dobře i CW na 160 a 40 m a fone na 40 m pásmu. Sestává ze tří částí: společného zdroje stejnosměrného proudu, který je ve své jedné části nezbytně stabilisován (Stabilovolt STV 280/40), dále ze sítového oscilátoru, osazeného osvědčenou 4654, a konečně z dvoustupňového modulátoru s EF6 a 4654.

V síťové části jsem použil usměrňovací elektronku EZ12 s nepřímo žhavenou katodou, která ovšem musí být spojena s vláknem (žhav. napětí 6,3 V stř.), takže neskytá žádné zvláštní výhody proti přímožhaveným AZ4 nebo AZ12 (žhav. napětí 4 V stř.), kterých lze rovněž dobře použít. Přes o něco větší nárok na místo doporučují použít dvou transformátorů, a to zvláště pro žhavení elektronek a zvláště pro anodové napětí.

Ve žhavicím budeme mít zase zvláštní vinutí pro oscilátor, zvláštní pro modulátor a zvláštní pro usměrňovací elektronku. I toto žhavicí vinutí zařazujeme do tohoto transformátoru, a to proto, aby nám při fone provozu vypínáním anodového proudu v síťovém okruhu primáru anodového transformátoru zůstávala nažhavena i usměrňovací elektronka. V každém případě se šetří proto, že při největším „tabu“ anodového proudu po zapnutí anodového okruhu neodebiráme do nenabitých elektrolytů a ještě k tomu do funkce celého přístroje proud z nedokonalé vyžhavené katody, což elektronice krátký život.

V případě nepřímožhavené elektronky k tomu přistupuje ještě výhoda, že nemusíme čekat na vyžhavení katody. Ovšem pozor na velmi dokonalou izolaci mezi vinutími, neboť na žhavicím vinutí pro usměrňovací elektronku je „nejvyšší plus“ s pulsujícími špičkami usměrněného střídavého proudu! Pokud si žhavicí

transformátor vinneme sami, přidáme ještě jedno vinutí pro signálku, a to tak, aby napětí bylo asi 50, max. 70 % nominální hodnoty žárovíčky. Pro indikaci nám to postačí a žárovíčce zmnoho-násobíme život.

Sekundární anodového transformátoru má  $2 \times 375$  V/150 mA, při čemž při kondensátorovém vstupu dosahuje asi 500 V ss v klidu (odběr pouze 38 mA stabilisátora), 460 V ss při CW a 420 V ss při fone provozu. Pojistku anodového obvodu zařadíme do středního vývodu sekundáru anodového transformátoru ještě před elektrolyty a dimensujieme ji 200 mA, neboť maximální proud při provozu je asi 120–125 mA, a to při provozu telefonii (včetně všech anod, stínících mřížek, stabilisátoru atd.). Elektrolyty volíme 16  $\mu\text{F}$  velmi dobré jakosti, zkoušené minimálně na 550 V provozního napětí a ještě první v nich překleneme paralelně vybijecím odporem 0,2 M $\Omega$ . Z druhého elektrolytu odvádíme část anodového proudu na stabilisátor STV 280/40 přes předřadný odporník  $R1$ , 20 k $\Omega$ /5 W, k němuž je prostřednictvím dvoupolohového třípolového přepinače při CW provozu připojen paraelně odporník  $R2$  9 k $\Omega$ /10 W, který při fone slouží pouze jako srážecí odporník pro stínici mřížku oscilátoru. Napětí  $g_2$  je stabilisováno pouze při CW. Přepinač slouží k přepínání CW – fone (k podrobnějšímu popisu se ještě vrátíme) a celá stabilisace je provedena tak, že při CW provozu protéká v klidu stabilisátorem tak velký příčný proud (odpory  $R1$  a  $R2$  paralelně), že při stisknutí klíče a odběru až 10 mA stínici mřížku oscilátoru zhubde zdaleka dostatečné množství proudu k tomu, aby stabilisátor nezhasl. Naproti tomu ovšem při telefonii, kdy používáme anodové modulace, při níž nezbytně musíme modulovat i  $g_2$ , nemůžeme mít stínici mřížku stabilisovanou. Odporník  $R2$ , který při CW slouží jako paralelní k  $R1$ , byl volen takové hodnoty, aby při fone srazil potřebnou část napětí a aby se na  $g_2$  dostalo rovněž 280 V, při čemž ovšem odporník  $R1$  upravuje proud stabilisátora tak, aby ani při telefonii nezhasl (příčný proud asi 7 mA).

Je to trochu komplikovaná kombinace těchto dvou odporníků při jejich různých funkcích, ale kdo dodrží popisované hodnoty, nebude se muset zdržovat laborováním. Střední elektrody stabilovoltu blokujeme kondenzátory 0,1  $\mu\text{F}$  s paralelními odpory 300 k $\Omega$  pro zamezení přeskoků, poslední (280 V) blokem 0,2  $\mu\text{F}$ . Pokud nepoužijeme stabilovoltu se zapalovací elektrou, slouží kondenzátory k snazšímu za-

pálení celého stabilisátora. K indikaci anodového napětí můžeme použít malou neonku s bajonetovým či mignon závitem o provozním napětí 75 V a spotřebě 0,3 mA. Předřadný odporník  $R4$  z plného anodového napětí bude pro ni 1,5 M $\Omega$ .

Oscilátorem je osvědčené ECO s katodovou odbočkou kapacitní. Poměr  $L$  k  $C$  volíme přibližně střední, pro 3,5 MHz spíše směrem k větší kapacitě, a to ze dvou důvodů. Jednak proto, aby bylo větší kapacitou zvýšilo stabilitu kmitočtu a aby nám vysilač s ohledem na těsnější vazbu s antenou nevyzařoval harmonické, naproti tomu ovšem volíme kapacitu ladicího kondenzátoru takovou, aby mohli event. pracovat i na 40m pásmu. Prakticky lze úpravu provést tím způsobem, že na kostru výměnné mřížkové cívky  $L1$  pro pásmo 3,5 MHz (o 30 závitovém drátu 0,2 mm smalt těsně vedle sebe) zapojíme pevný, vysoko kvalitní vzduchový nebo slídový kondenzátor  $C2$  200 pF; paralelně k němu vzduchový otočný kondenzátor  $C1$  s kalitativními vlastnostmi volíme pouze 100, max. 150 pF (pro snazší ladění). Kostříčka cívky má průměr 38 mm. Místo vzduchového nebo slídového kondenzátoru  $C2$  200 pF můžeme použít dvou vzájemně tepelně vykompensovávaných kondenzátorů, jejichž výsledná hodnota musí být opět 200 pF. Mřížkový okruh pracuje, jak známo, na 160 m. Na pásmu 7 MHz můžeme pracovat buď na 4. harmonické v anodovém okruhu nebo výměnnou cívku i v mřížkovém okruhu. Druhý způsob je bez sporu lepší, byť pracnější. Na 160 m pracujeme bez zdvojení v anodě (mřížkový okruh zůstává, pouze anodová cívka se vymění).

Kapacitní odbočku tvoříme pomocí dvou kondenzátorů  $C8$  a  $C9$ , které seriově připojíme jedním koncem přímo na mřížku a druhým na zem. Proti obvyklému zapojení paralelně k ladicímu kondenzátoru mřížkového obvodu (t. j. před mřížkovým odporem a kondenzátorem) se tento způsob lépe osvědčil. Stabilita ovšem neutrpí pouze za předpokladu přesného tepelného vykompensování obou kondenzátorů. Při tomto neobyvklém zapojení jeví však nutno uvědomit, že konden-





#### Seznam součástí:

R1 - 20 k $\Omega$ /5 W, R2 - 9 k $\Omega$ /10 W, R3 - 200 k $\Omega$ , R4 - 1,5 M $\Omega$ , R5 - 0,3 M $\Omega$ , R6 - 0,3 M $\Omega$ , R7 - 0,3 M $\Omega$ , R8 - 5 k $\Omega$ /1 W, R9 - 600  $\Omega$  drát., R10 - 1 M $\Omega$ , R11 - 15 k $\Omega$ , R12 - 3 k $\Omega$ , R13 - 200 k $\Omega$ , R14 - 400 k $\Omega$ , R15 - 100 k $\Omega$ , R16 - 75 k $\Omega$ /1 W, R17 - 0,2 M $\Omega$ , P1 - potenciometr 0,5 M $\Omega$  log, P2 - odružovač 100  $\Omega$ , C1 - 100 pF otoč. vzd., C2 - 200 pF, C3 -

150 pF otoč. vzd., C4 - 40 pF, C5 - 150 pF otoč. vzd., C6 - 200 pF, C7 - 100 pF, C8 - 120 pF, C9 - 600 pF, C10 - 5000 pF, C11 - 5000 pF/3 kV, C12 - 10 000 pF/3 kV, C13 - 2000 pF, C14 - 0,25  $\mu$ F, C15 - 20 000 pF, C16 - 0,1  $\mu$ F/2 kV, C17 - 0,25  $\mu$ F, C18 - 0,1  $\mu$ F, C19 - 0,1  $\mu$ F, C20 - 0,1  $\mu$ F, C21 - 0,2  $\mu$ F, C51 - elektrolyt 16  $\mu$ F/550 V, C52 - elektrolyt 16  $\mu$ F/550 V, C53 - elektrolyt 8  $\mu$ F/350 V, C54 - elektrolyt 2000  $\mu$ F/10 V, C55 - elektrolyt 2000  $\mu$ F/10 V, C56 - elektrolyt 25  $\mu$ F/10 V, C57 - elektrolyt 50  $\mu$ F/25 V, Tl 1 - sít. tlumivka, Tl 2 - modulační tlumivka, Tl 3 - nf tlumivka, vf tl. 1-3 vf tlumivky pro krátké vlny běžného typu, E1 - 4654, E2 - EF6, E3 - 4654, St - Stabilovolt STV 280/40, N - neonka Osram B 0,3 mA 75.7403.

sátor C7 je součástí ladicího obvodu a je nutno, aby byl vysoko jakostní, vzduchový nebo slídový. Komu by tento způsob činil potíže, může použít způsobu běžného, při čemž hodnoty obou kondensátorů se změní (zvýší), a to ze 120 na 300 pF a ze 600 na 1000 pF. Katoda je uzemněna přes vysokofrekvenční tlumivku běžného typu, za níž je vložen klíč, který při telefonii spíná jedním pólem dříve zmíněným přepínače. Mřížkový odpor R16 volíme 75 k $\Omega$ . Jeho hodnotu možno vyzkoušet, neboť na něm záleží příkon (výkon) oscilátoru, regulovaný mřížkovým předpětím, vzniklým mřížkovým proudem spádem na odporu. Vystříháme se přílišného snižování hodnoty, neboť tím znatelně utrpí jakost tónu a případně i stabilita. Jeho přetížením mohou nastat i přeskoky tónu a příliš velkým anodovým proudem při ne dosti velké účinnosti můžeme překročit anodovou ztrátu elektronky a tím způsobit její brzké zničení. Udaná hodnota při použití elektronky 4654 je vyzkoušená při dobrém kompromisu mezi jakostí tónu a výkonem a doporučují ji dodržet. Stínici

mřížku vysokofrekvenčně uzemňujeme kondensátorem 5000 pF a do přívodu proudu zařazujeme opět vf tlumivku.

Tato tlumivka zde nebývá nezbytná, ovšem v našem případě ji doporučují vzhledem k dosti stísněné konstrukci a tím k zamezení eventuálních nežádoucích vazeb a zamezení přívodu zbytku vysokofrekvenční energie do stabilizátoru, který je k oscilacím někdy až nepříjemně náchylný.

Anodový okruh je proveden v jednom celku s antenním obvodem jako zjednodušený „Collinsův filtr“, což má několik

předností. Výhodu jediné cívky oceníme v našem případě při úspore místa v přenosném zařízení, a snazší vyladění růz-



Propojení jednotlivých dílů.

ných typů i ne příliš přesně vypočtených anten, jaké se u příležitosti různých spojovacích služeb většinou vyskytuje, nám usnadní manipulaci. Naproti tomu si ovšem musíme uvědomit, že máme těsnější vazbu s antenou, která by se mohla projevit vyzařováním harmonických nebo dokonce snadným vyladěním anodového (antenního) okruhu na některou z nich – mimo pásmo. Tomu odpomůžeme tím, že v poměru  $L$  k  $C$  přidáme kapacity proti indukčnosti, ale tak, že část kapacit bude pevná a jen nezbytně nutná k obsažení pásmu bude proměnná. Pro 3,5 MHz platí  $L2 32$  závitů drátu průměru 1,5 mm (nejlépe měděný poštříbený) při vnitřním průměru závitu 50 mm a stoupání 3 mm. Cívku provedeme pokud možno samonosnou se 3 nebo lépe 4 zalisovanými trojitulovými tyčinkami, aby byla mechanicky naprostě pevná (viz „Amatérská radiotechnika“ díl I., str. 323). Kapacity jsou rozdeleny takto:  $C3$  a  $C5$  jsou otočné vzduchové kondensátory s kalitovými cely 150 pF,  $C4$  pevný 40 pF a  $C6$  pevný 200 pF, oba vzduchové nebo slídové. Celý anodový okruh je paralelně napájen přes vf tlumivku běžného typu, a proto je vysokofrekvenčně vázán kondensátorem  $C11$  5000 pF, rovněž velmi jakostním, nejlépe slídovým o vysoké elektrické pevnosti (3000 V prov.). Stejnou jakost použijeme i u kondenzátoru  $C12$  10 000 pF, který uzavírá anodový okruh pro vf kmitočet. Antennní odbočku nalezneme zkusmo, případně připojíme na několik závitů kolíšky pro krokodilka pro různé eventuality. Bývá to však většinou několik závitů od studeného konce cívky. Pro přesné vyladění a kontrolu doporučujeme vmontovat do zařízení jak miliampermetr do anodového přívodu s paralelním blokem  $C13$  2000 pF k ochraně před poškozením vf kmitočtem, tak i vysokofrekvenční měřič do antény. Zároveňku pro tento účel nedoporučujeme jednak pro různost „tahu“ používaných anten a jednak pro zbytečnou ztrátu vf energie.

Modulátor používáme dvoustupňový s libovolnou nf pentodou na vstupu. S ohledem na účely, k nimž je nás vysílač určen, použijeme jakostnějšího (nejlépe t. zv. „reportážního“) uhlíkového mikrofona. Zde se však naskytne otázka, jak vyřešit jeho napájení ss proudem o napětí 3–5 V. Použít vyměni-



Vlevo panel oscilátoru, uprostřed eliminátor, vpravo modulátor.

telné baterie zůstává bez sporu určitým balastem pro celé zařízení, nehledě k nedostatečné spolehlivosti. Použil jsem proto za zdroj části spádu na katodovém odporu koncové elektronky modulátoru. I když tento způsob má nevýhodu v nutnosti velmi dokonalé filtrace pro zamezení nežádoucí zpětné vazby a filtrační členy i s mikrofonním transformátorem si činí značný nárok na drahotěnný prostor v našem zařízení, domnívám se, že je i tak lepší než baterie. Kdo by však přece jen u jednoduššího způsobu chtěl zůstat, ušetří 2 velké bloky a nf tlumivku. Baterii pak vloží do serie s mikrofonem a transformátorem. Při použití způsobu naznačeného ve schématu nutno provést dokonalou filtraci zbytku nf střídavého napětí, které se na katodovém odporu vytvoří, i když je nf energie zkratována velkým elektrolytickým kondenzátem  $C57$  (minim. 50  $\mu\text{F}$ ). Filtraci provedeme obdobným způsobem jako v eliminátoru, totiž dvěma elektrolyty  $C54$  a  $C55$  a nízkofrekvenční tlumivkou (stačí kvalitní síťová). Kondensátory musí dosahovat velmi vysoké kapacity, nejméně 2000  $\mu\text{F}$  s provozním napětím 10 V. Abychom mohli nastavit přesné mikrofonné napětí, použijeme v části katodového odporu kon-

cové elektronky malý drátový potenciometr  $P2$  100  $\Omega$ , jehož běžec bude kladným polem mikrofonného napětí. Doplňujícím členem katodového odporu koncové elektronky bude drátový odpór  $R9$  600  $\Omega$  s nastavitelnou odběrkou, jejíž pomocí při zkouškách určíme předpětím takový klidový anodový proud, aby nebyla překročena anodová ztráta. Při použití reportážního mikrofona, jež ho vložka má odpór kolem 200  $\Omega$ , použijeme mikrofonného transformátoru o převod 1:43, t. j. primár 350 záv. 0,3 mm a sekundár 15 000 záv. 0,07 mm. Jeho sekundár je připojen na regulační potenciometr  $P1$  (0,5 M $\Omega$  log.), spojený s dvoupolovým vypínačem sítě.

Na konci modulátoru doporučujeme použít též elektronky, jaké jsme použili na oscilátoru, nejlépe strméjší 18 W pentody, jako je 4654. Souhlasnost je výhodná totiž proto, že na anodách bude stejně anodové napětí a i když pracuje každá elektronka jinak, můžeme přesto použít modulační tlumivky místo modulačního transformátoru, neboť impedance v anodovém obvodu budou přiblžně stejné. Za modulační tlumivku můžeme použít i vhodné síťové tlumivky dostatečně dimenované, i když modulační transformátor je lepší proto, že se oba anodové proudy rozdělí do dvou vnitří. Impedance pro nás případ bude 10 k $\Omega$ . Podle teoretických zásad má být sice při použití anodové modulace ze společného zdroje na anodě modulované vf elektronky o něco nižší napětí než na nf koncové, což se provádí odporem a k němu paralelním blokem za modulační tlumivku, avšak upustil jsem od toho ze dvou praktických důvodů: pro úsporu místa a odstranění dalšího vyhřívání srážecím odporem, aniž by modulace znatelně utrpěla. Je nutno si také uvědomit, že koncový stupeň modulátoru pracuje v našem případě jako ne-souměrný zesilovač při daném napětí 420 V a anodovém proudu 42 mA už ve třídě AB a jeho zesílení obou půlvln střídavého modulačního napětí není tudíž rovnoměrné. Poněvadž ovšem jde o vysílač, určený do terénu a výhradně pro mluvené slovo, nikoliv pro pokusy s kvalitním reprodukovánou hudebou, která má mnohem širší a bohatší kmitočtové spektrum a je citlivější na skreslení,



Montáž od spodu pod kostrami dílů.

dosáhneme poměrně dobré modulace, jež trochu ostřejší výraz nám naopak pomůže ke zvýšení srozumitelnosti v rušení.

Sám jsem to v praxi s tímto vysílačem vyzkoušel a dostal jsem vesměs velmi dobré reporty. Pro kontrolu modulace můžeme provést výstup pro sluchátka od anody koncové elektronky přes kondensátor  $C16$  0,1  $\mu F$  (zkoušený nejméně na 2000 V). Zdíky pro sluchátka přemostíme odporem  $R11$  15 k $\Omega$ . Celý tento člen je zároveň korekčním filtrem, který nám odřízne eventuální příliš vysoké tónové kmitočty. Sluchátka ovšem při běžném provozu nenecháváme zapojena. V ostatních částech je modulátor zapojen podle běžných zásad nf zesilovačů a není třeba se zde o nich dále blíže zmínkovat.

Pro přepínání CW - fone je ve vysílači zapojen dvoupolohový třípolový páčkový přepinač. Použijeme dostatečně pevného, jakostního, s dokonalými kontakty.

V poloze CW nám přepinač spíná dva proudové okruhy, a to 1) anodový k paralelně přiřazenému předřadnému odporu stabilovoltu  $R2$  9 k $\Omega$ , který v tomto případě zvýší příčný proud stabilizátoru, a 2) okruh stabilizovaného napětí 280 V na stínici mřížku elektronky výkonového sólooscilátoru. V poloze fone spínáme tři okruhy: 1) anodový pro

modulátor i oscilátor, 2) zvlášť anodu a stínici mřížku oscilátoru (která je odpojena nyní od stabilisace) a 3) telegrafní klíč na krátko.

Mechanickému zpracování věnujeme mimořádnou péči především proto, že zařízení je vystavováno převozům různými dopravními prostředky, mnohdy za značně nepříznivých podmínek. Za druhé proto, že je máme směšnat do poměrně malého prostoru, při čemž nesmí ztratit nejen na snadné ovladatelnosti, ale v žádném případě na bezpečnosti a jistotě provozu, stabilitě a dobré jakosti tónu i modulace. Zmínim se zde pouze o zásadách, neboť podrobnosti v rozložení dílů i jednotlivých součástek jsou dány z největší části rozměry a tvarem opatřených součástí, event. i kovového krytu, takže se budou muset řešit individuálně. Sám jsem to řešil tak, že do levé dolní části krytu je vmontován eliminátor, do pravé dolní poloviny modulátor a na předním panelu výkonový sólooscilátor s oběma okruhy, modulační tlumivkou, ovládacími členy a světelnými i měřicími indikátory s využitím prostoru v hořejší části kovové skřínky, jak je konečně zřejmé z obrázků. Jediné potenciometr s dvoupolovým sítovým vypinačem je vestavěn v modulátoru a jeho osa prochází předním panelem. Všechny tři díly jsou konstrukčně samostatnými celky a jsou podle rozložení jednotlivých

součástí a ovládacích prvků propojeny desetipramenným kabelem pomocí deseti až dvanáctipolových konektorů. Mikrofon je propojen mezi panelem a modulátorem stíněným kablíkem a samostatnou dvoupolovou zástrčkou. Velkou péči věnujeme mechanické pevnosti všech součástek, zvláště cívek a součástek kolem mřížkového okruhu oscilátoru. S ohledem na malé prostory je nutno zvláště dbát zásad správného rozložení součástek tak, aby nevznikaly nežádoucí vazby. V žádném případě se neubráníme stínění mezi oběma okruhy oscilátoru.

Při uvádění do chodu si připravíme pomocný kabel, vyzkoušme každý díl samostatně a hlavně dokonale proměříme, abychom nepřekročili maximální ztráty anod a stínicích mřížek. Pro zkoušení oscilátoru a modulátoru použijeme eventuálně nějakého universálního eliminátoru. Po této zkoušce propojíme všechny tři díly definitivním kabelem mimo kovový kryt a znovu vyzkoušíme funkce celého zařízení, proměříme proudy a napěti a provedeme případně definitivní korekce. S dobře seřízeným vysílačem tohoto typu dosáhneme značných úspěchů a bude nám dobrým pomocníkem při mnohých akcích radistických složek, spojovacích službách u ostatních složek Svazarmu i při jiných podobných příležitostech.

## BUDIČ PRO AMATEŘSKÉ VYSÍLÁČE

Ladislav Zýka, OK1IH, člen rady ÚRK

Na stránkách tohoto časopisu byl uveřejněn již mnohý návod na budič pro krátkovlnný amatérský vysílač. Proto budič dálé popsaný není ničím novým, i když je výsledkem vlastního praktického pokusnictví a pečlivých zkoušek v provozu na všech krátkovlnných pásmech, telegraficky i telefonicky.

V dnešní době je na přeplňných telegrafních pásmech nutné udržet vysokou kmitočtovou stabilitu signálu, zvláště na pásmech pro dálkový provoz, kde protistanice používají téměř bez výjimky přijímače s vysokou selektivitou a stabilitou. Mnozí z nás se již jistě setkali na pásmu se stanicí, jež kmitočet byl nestabilní a kterou bylo nutno na přijímače pracně dohánět a na jejíž adresu jsme pravděpodobně pronesli nějaké to méně učitivé slovo.

Tón vysílaných telegrafních signálů je vizitkou stanice a každý se jistě snaží dosáhnout lepší kvality než T7, stanovené koncezními podmínkami.

Další dobrou vlastností telegrafního vysílače má být to, aby nerušil nejen televizi (o TVI se psalo jinde a je to otázka nejen budiče), ale operátory jiných, hlavně bližších stanic, kteří mají na uších sluchátka a přijímač nařaděn na stejně pásmo, na kterém vysíláme. Jde zde o kliky, které jsou součástí telegrafního vysílání mnoha stanic pracujících na pásmech a které jsou příčinou toho, že se mezi bližšími stanicemi užívají při některých závodech různé hodiny o neútočení.

Vysoké kmitočtové stability budiče při dobrém tónu i na vyšších pásmech

(21–28 MHz) se dá dosáhnout při použití každého modernějšího oscilátoru, pracuje-li na nízkém kmitočtu, je-li dobré udělán, napájen z dobrého zdroje a všechny ostatní stupně, které následují, jsou v pořádku. To znamená, že při stavbě vlastního oscilátoru musí být dbáno zásad, o kterých bylo již několikráté psáno a o nichž se zmíněn jen krátké. Jde hlavně o naprostou mechanickou pevnost celé kostry, o solidní upevnění všech součástí, používat na zapojování silnějšího drátu a dobré pájet, použít pokud možno jen kvalitních součástí včetně elektronky, která se má vyznačovat vysokou strmostí a pohráti s teplotní kompenzací oscilátoru. Zdroj, ze kterého je budič napájen, musí mít dobrou filtraci a stabilizaci napětí. To jsou všechno podmínky, které se dají poměrně snadno splnit.

Dosažení stability a dobrého tónu by tedy u amatérských vysílačů nebylo tak nesnadné. Obtížnější je to již s kliky, což asi mnozí amatéři vysílači znají z vlastních zkušeností, když pracně odrušovali vysílač svůj nebo svého blízkého souče-

du. Klíčovat vysílač tak, aby nevznikaly kliky, je možné několika způsoby, v principu však jde vždy o klíčování některého stupně za oscilátorem. Nejjednodušší by bylo, kdybychom nechali oscilátor vysílače trvale kmitat a klíčovali následující stupeň s použitím patřičného klíčovacího filtru. Tímto způsobem je možno, jsou-li všechny ostatní stupně vysílače včetně koncového správně řízeny, prakticky dokonale odstranit

rušení, vznikající klíčováním. Tím si ovšem znemožníme BK provoz a jsme nuceni obsluhovat vypinač oscilátoru, což je nepříjemné hlavně v závodě, nehledě již na to, že páčkové vypinače, které jsou k dostání, nemají příliš velkou životnost.

Zkoušel jsem proto směšovací budič, avšak jeho správný chod je závislý na velmi přesném seřízení, nastavení správných vif napěti obou oscilátorů přiváděných na směšovač, dodržení velmi dobré symetrie směšovače, za kterým je nutno použít několika selektivních filtrů; neposlední okolností je to, že nejsou k sehnání vhodné krystaly.

Diferenciální klíčování, o kterém bylo v poslední době mnoho napsáno, vyžaduje velmi dobrého nastavení a pokud je známo, nebylo v amatérské praxi u nás odzkoušeno. Klíčování posuvem kmitočtu se používá s oblibou u velkých profesionálních vysílačů, avšak pro amatérský provoz se nedá použít, aniž bychom opět současně neklíčovali následující stupeň.

Popisovaný budič je třístupňový. Oscilátor v běžném Clappově zapojení je osazen elektronkou 6F31. Nemáte-li ji, můžete použít jakoukoliv modernější pentodu s velkou strmostí. Oscilátor pracuje v kmitočtovém rozsahu 875 až 950 kHz. V mřížkovém laděném obvodu je použita jako cívka tlumivka z vysílače SK10 a sice ta větší, přes kterou je napájena anoda PA stupně. Těchto tlumivek se stále ještě vyskytuje dostatečné množství, takže ji každý zájemce snadno sežene. S kapacitami, které jsou uvedené ve schématu, dostanete se s touto cívkou právě do pásmá a malé rozdíly se vyrovnejí trimrem. Ladící kondensátor použijte skutečně solidní, frézovaný, s dobrými kontakty na rotoru a pokud

možno s kuličkovými ložisky. Kondensátory v děliči jsou slídové nebo keramické (pozor na TK) a mohou mít větší kapacitu než 1000 pF, oscilátoru to příspěje k větší stabilitě. Kondensátor mezi mřížkou a ladicím obvodem je v méém případě slídový. Mřížkový odpór je uhlíkový 1—2 W, katodová tlumivka musí mít dost velkou indukčnost, dobré vyhovuje krížově navinutá asi se čtyřmi nebo více sekczemi (2,5 mH). Anodový obvod oscilátoru je naladěn na 1800 kHz, při čemž je nutno použít v obvodu velké indukčnosti a malé kapacity (trimr 30 pF max.), aby bylo dosaženo dostačeně šířky pásmá. Použil jsem odporu Neawid R. 024 be 1090 6 U1 6,4  $\Omega$ , vnitřně izolovaným drátem, který má vhodnou indukčnost.

Odebírání budicího napětí z nala- děného anodového obvodu se ukázalo jako nejlepší řešení pro zachování naprosté stability tónu při klíčování dalšího stupně.

Stínící mřížka a anoda oscilátoru jsou napájeny z malého stabilisátoru, umístěného přímo v budiči. Oscilátor je v trvalém provozu, klíčování se provádí v následujícím oddělovacím stupni, přičemž nemusíte mít obavy, že bude pronikat do přijímače a rušit, bude-li mít následující elektronka velmi malou kapacitu mřížka-anoda, vazební kapacita mezi oscilátorem a oddělovacím stupněm bude co nejmenší ( $1-2 \text{ pF}$ ), celý budič bude uzavřen do kovové skřínky a samotný oscilátor bude pokud možno odstíněn od ostatních stupňů. (V mém případě toho nebylo třeba).

Oddělovací stupeň, osazený elektronkou 6F31, je velmi jednoduše zapojen a hodnoty použitých odporů nejsou kritické. Klíčovací filtr v katodě je utvořen z tlumivky na železném jádře s velkou indukčností a ohmickým odporem vnitř asi  $900\ \Omega$ . (Z rotačního měniče pro FUG 10). Bude-li mít tlumivka malý ohmický odpor, zapojte s ní do série (mezi zem a tlumivku) odpor doplňující hodnoty. Nejvhodnější hodnotu kondensátoru katoda-zem zjistíte poslechem na přijímači. Tato hodnota bude  $4-8\ \mu\text{F}$ , snažte se použít hodnoty pokud možno největší, při čemž tón nesmí při klíčování splývat, ale pouze zvonit jako xtal. Tento klíčovací filtr je zamontován přímo v budici, nikoliv někde u klíče, který má metrové přívodní šnury. Použitím správných hodnot tlumivky a kondensátoru - klíčovacího filtru - se prakticky dokonale odstraní klikys a dosáhne se velmi pekného tónu.

Za oddělovacím stupněm je zesilovač, osazený elektronkou 6Ж4 (6F36), jejíž anodový obvod je naladěn na 1850 kHz a který bude další stupeň vysílače, vém případě násobiče s širokopásmovými filtry, osazené elektronkami 6L31. Zapojení zesilovače je běžné. Vazební kapacita z předchozího stupně má být opět pokud možno malá (10—20 pF). Hodnota katodového a mřížkového odporu není příliš kritická. Anodový obvod je tvořen velkou indukčností a malou kapacitou (trimr), jejich hodnoty budou závislé na kapacitě vedení k dalšímu stupni a na vstupní kapacitě elektronky tohoto stupně.

Serizování budiče provádějte za neu-  
stálé kontroly poslechem na některém  
harmonickém pásmu. Doladění posled-  
ního stupně budiče musíte samozřejmě



*Zapojení budíce.*

provést již s připojeným dalším stupněm (násobičem) vysílače.

Děláte-li již nový budič, stojí za to přidat ještě 3 elektronky, aby bylo možno vysílat také telefonicky. Tyto 3 elektronky budou dobrým modulátorem pro jakýkoliv vysílač, který následuje za budičem, bez ohledu na způsob zapojení nebo výkon, být i byl sebevěstí.

Kmitočtových modulátorů je několik druhů, v tomto případě jde o modulátor reaktanční, jehož elektronka, připojená na ladící obvod oscilátoru, působí jako proměnná kapacita nebo indukčnost, která mění kmitočet oscilátoru, jestliže je na vstup reaktanční elektronky přiváděno modulační napětí. Zda reaktanční elektronka působí jako proměnná indukčnost nebo kapacita, záleží jen na hodnotě RC členu mezi anodou a mřížkou.

Reaktanční elektronku je směšovačka 6H31 v běžném zapojení, i když některé hodnoty byly upraveny, protože hodnoty, uvedené v některých návodech, nevyhovovaly. Použijete-li jiné elektronky, je nutno počítat s tím, že budete muset zkusmo nastavovat hlavně hodnotu vazebního kondensátoru na ladící obvod oscilátoru. Nejlépe je použít malého trimru, který se nastaví za kontroly poslechem na vlastním přijímači. Nízkofrekvenční předzesílovač pro vyrobení dostatečného modulačního napětí pro reaktanční elektronku postačí dvoustupňový.

Zapojení nízkofrekvenčního zesilovače je zcela běžné a můžete použít na prvním stupni jakoukoliv pentodu a na druhém stupni jakoukoliv triodu nebo pentodu.

Žhavení všech tří elektronek modulátoru se při telegrafním provozu vypíná malým páčkovým vypinačem, aby elektronky zbytečně nepracovaly.

Při cejchování stupnice budiče je nutno počítat s tím, že se bude poněkud měnit při telegrafním a telefonním provozu, protože reaktanční elektronka ve studeném stavu má jinou kapacitu než ve stavu nažhaveném, čímž je ovlivněn kmitočet oscilátoru. Tento modulátor dává dostatečný kmitočtový zdroj i na 80 m pásmu a je dobré odzkoušet velikost potřebného zdvihu na všech telefonických pásmech s nějakou bližší protistanicí a stupnicí potenciometru nfpredzesilovače si ocejchovat pro jednotlivá pásmá.

### *Literatura:*

- B. Wardman, G5GQ, Multi-Band Exciter for TVI Reduction, Short Wave Magazine, březin č. 1/56.*

## Výroba elektronek v Anglii

Jednou z nejvýspějších zemí v oboru výroby elektronik je Anglie. Podle uveřejněných statistik se tam zabývá výrobou elektronik a obrazovek asi 24 000 osob, z nichž 2000 pracuje ve výzkumu a vývoji nových výrobků. Výrobou se zabývá 16 výrobců, kteří vyrobí ročně asi 57 milionů kusů. Hlavním výrobcem je firma Mullard, ovládaná holandským koncernem Philips, která sama dodává na trh zhruba 67 % celkové produkce elektronik a 51 % obrazovek. Ostatních 9 výrobců, sdružených nebo ovládaných kartelem výrobců elektronik, kryje zbytek spotřeby, výjma 3 % spotřeby, které pokrývá šest malých výrobců, stojících mimo vliv kartelu.



## Rubriku vede Jindra Macoun, OK1VR

Letošní IV. ročník naší podzimní soutěže na VKV – Den rekordů – byl rozhodně nejúspěšnější ze všech dosavadních a to jak co do účasti, tak podle dosažených výkonů a i co do použitých zařízení. S nedokonalým zařízením nelze již dosti dobré pracovat na vzdálenost 400–500 km. A těch spojení se stanicemi vzdálenými přes 400 km byla celá řada, i když podmínky nebyly nijak vynikající, ale průměrné nebo dobré. K velké účasti jistě přispěla ta okolnost, že byl současně pořádán Evropský VHF Contest 1957 (EVHFC) za týchž podmínek a ve stejně době. Jediný rozdíl byl v bodování a hodnocení, když naše bodování je bod/km, kdežto v EVHFC je bodování odstupňováno podle vzdálenosti. Je otázkou, který způsob je lepší. Jak jeden tak druhý mají svoje nedostatky. Způsob „našeho“ hraje s těmito stanicemi, které si zvolily stanoviště někde stranou, poměrně daleko od většiny ostatních. Tyto stanice pochopitelně propagují tento druh bodování, který však poškozuje stanice umístěné v hustěji obsazených oblastech, kde lze sice navázat celou řadu spojení, ale s malými vzdálenostmi, tedy i bodově méně hodnocenými. Posuzováno z obou hledisek, zdá se druhý způsob přece jen objektivnější. Také konečná kontrola deníku je v tomto případě podstatně jednodušší, než když je nutno přesně měřit vzdálenosti při každém spojení. Proto je v celkovém pořadí OK stanic uveden kromě součtu km a počtu spojení ještě počet bodů podle evropského bodování. Tak si budou moci všichni porovnat rozdíly mezi oběma způsoby bodování a současně odhadnout pravděpodobné umístění v EVHFC. Je pravděpodobné, že časem dojde k úplnému ztotožnění podmínek a obě soutěže splynou v jednu. Za dnešního stavu VKV techniky by

však bylo krokem zpět pořádat naši soutěž v jiném termínu za slabé nebo žádné mezinárodní účasti.

Podívejme se však na vlastní průběh. I když je konečně pořadí jistě zajímavé, není v mnoha případech měřítkem absolutní výkonnosti. Vyhrát nemohou všichni, ale všichni mohou za daných podmínek dosáhnout optimálních výsledků a měřítkem je pak vzájemné porovnání stanic, pracujících za shodných nebo podobných podmínek.

**1250 MHz:** Na tomto pásmu se nám proti loňskému roku situace poněkud zlepšila, takže se celkem 5 stanicemi podařilo spojení. Konečně se tedy dokázal Bohous – OK1BN z OKIKST, i OK1VAK a OK1KKD, které svá zařízení na těch 23 cm po několik let marně vozili na PD. Nejdéle QSO měla OKIKST s OK1KKA – 92 km. OK1VAK na Kleti pravděpodobně také slyšel OKIKST na úctyhodnou vzdálenost 220 km. Je už zřejmě jen otázkou času, kdy bude na 23 cm dosahováno takových vzdáleností jako na 70 cm. Snad by pomohlo, kdyby si soudruzi z OK1KST vylejí se svým zařízením na Ještěd a dali tak ostatním přiležitost k pokusům. Bylo by pochopitelně třeba oznamit to včas ve vysílání OK1CRA.

**435 MHz:** Zde se situace proti minulému roku příliš nezměnila, i když se také na tomto pásmu konečně začíná projevovat snaha o zmodernisování zařízení. Stanice OK1SO, OK1KVR a OK1VR připojily ke svým 2 m vysílačům ztrojovače, takže i na 70 cm bylo vysílání rizeno xalem. OKISO provedl během kontestu zajímavý pokus, když střídavě porovnával sónoskávátor a xalem řízený vysílač, oba o stejném výkonu. Při užití ztrojovače dostával reporty o 2 S lepší. Docela pěknou stabilitu měly některé vysílače pracující jako sónoskávátor, avšak se dvěma elektronkami v dvojčinném zapojení. Zde je třeba jmenovat zvláště stanici OK1KLR (na 2 m to však bylo horší). V činnosti bylo i několik superhetů. Nejvíce, jak se zdá, chodil v OKIKKD, kde bylo užito vstupní části inkurantního přijímače Fug 200, který má na vstupu žhavenou diodu LG7. Laděný oscilátor, také s původní elektronkou LD1, dával se vstupním signálem 1. mf = 25 MHz a po druhém směšování 5 MHz. Těch 31 spojení, navázaných stanici OKIKKD přímo z Kladna, je jistě velmi pěkným úspěchem na př. v porovnání s OK1VAE, který jich na Sněžce udělal 29. 34 spojení stanice OK1KKA je jen dalším dokladem toho, že jim Dordotym s. Pouly chodí skutečně uříz. Při tom nadmořská výška stanice OK1KKA byla jen 470 m. Tak trochu nás zklamali v OKIKST, kde jim sice vysílač chodil dobré, ale sami toho mnoho neslyšeli přesto, že v PD 1956 jimi jejich superhet chodil bezvadně. Těch 15 spojení je na Ještěd přece jen trochu málo.

Nejdéle spojení bylo uskutečněno mezi OK1VR/P a DL3YBA – 312 km. Bylo pracováno CW. OK1VR použil na PA elektronku REE30B (bohužel jen vypuštěnou), inpt 30 W. Antena 5 × 7 prvků Yagi. Přijímač konvertor s 1N23 na vstupu (podobný popsanému v Amateřské radiotechnice), 1. mf Fug 16 (42–48 MHz), 2. mf EK10. DL3YBA, který je držitelem světového rekordu (808 km), na tomto pásmu dosud nepracoval se žádnou jinou DL stanicí a tak spojení s OK je jeho druhou zemí po G. V DL totiž není provoz na 70 cm příliš rozšířen. Celkem tu pracuje pravidelně sotva 10 stanic, většinou v jihovýchodní Německu. Příčina je jednak ta, že 70 cm pásmo bylo pro amatérský provoz uvolněno podstatně později než pásmo 2 m, a dále proto, že v DL není zásadně používáno nestabilních zařízení ani na tomto pásmu. A vyrobít slušně chodící moderní zařízení na 435 MHz je přec jen poněkud obtížnější než na 145 MHz. V poslední době se i v DL situace zlepšuje, a tak budeme moci již příští rok pravděpodobně pracovat i s jinými stanicemi než s DL6-MHP nebo DL3YBA.

Závěrem je nutno konstatovat, že technická úroveň

zařízení na 70 cm nám nestoupá tak potížitelně jako na 2 m. Budeme-li chtít zlepšit své výkony i na tomto pásmu, budeme musit i zde, podobně jako na 2 m, začít s pravidelným vysíláním od krbu. Tak bude možno nejlépe budovat a zdokonalovat nová zařízení.

**145 MHz:** Toto pásmo se letos těšilo největší pozornosti a přípravě zařízení byla ve většině případů věnována velká péče. Počet nestabilních vysílačů byl ještě menší než o PD. A tak poctivě ušly většiny ostatních bylo mařeno jen takovými stanicemi jako IKRY, IKDQ, IKKH, IKKP, IZW a některými dalšími včetně celé řady HG a SP, zejména SP9 stanic, které dosud užívají velmi nestabilních sónoskávátorů. Avšak i ty jsou dosažené úspěchy podstatně lepší než o loňském PD, i když podmínky byly prakticky stejné. V neposlední řadě k tomu ovšem přispěla i ta skutečnost, že během celých 24 hodin bylo možno s každou stanicí pracovat jen jednou na rozdíl od PD. Tak se množí příznivci „intervalů“ sami přesvědčili o jejich nevhodnosti při soutěžích tohoto druhu. V tomto případě bylo možno daleko lépe využít krátkodobých, avšak výrazných zlepšení v podmínkách řízení na př. v neděli před polednem, kdy bylo uskutečněno mnoho dálkových spojení. Minohá z nich však byla znoemožněna nevhodným přeladováním některých našich stanic na kmitočet těchto vzdálených stanic nebo na kmitočet těch našich stanic, které se vzdálenými stanicemi pracovaly. O soutěžní taktice v závodech tohoto druhu si však povídáme v některém z příštích čísel.

Celé rádě našich stanic se podařilo pracovat během kontestu s pěti zeměmi. Téměř všichni už jen jediná k získání pěkného diplomu VHFB, vydávaného holandským VERONem za spojení se šestí zeměmi na VKV resp. na 2m. Jsou to hlavně stanice z OK2 a OK3, kde bylo mnohokrát pracováno s YU. Příští rok bude se strany těchto moravských a slovenských stanic se velkým zájmem o DL jako o šestou zemi, resp. o DL6MHP, který byl na Slovensku letos slyšen a který je, jak se zdá, ze všech DL nejdosažitelnější.

Z celkového pořadí na tomto pásmu je patrně velmi pěkné umístění stanice OK3KLM, které se na Chopku velmi dobré dařilo a kromě několika 460 km s YU-stanicemi dosahovalo velmi pěkných spojení s OK1 v západních Čechách. Pro mnohé naše stаницi byla OK3KLM největší DX. Škoda, že soudruzi z 3KLM musili končit již v neděli před polednem. Jejich úspěch mohl být ještě větší. Velmi dobré si také vedli OK2KOS, 2CE a 2AE. OK2AE dokázal, že i z Gottwaldova lze navázat řadu dálkových spojení s pěti zeměmi. OK2BJH má ze svého stálého QTH „zakázaný“ směr na jih a tak dosáhl svého ODX = 365 km s 1VR na Klinovci. Nemůžeme se znovu nezmitnit o OK1KST, který se tentokrát konečně „utříl“ a v celkovém počtu navázaných spojení se dělí s OK2KOS o 4. místo. MDX = 478 km (o tom ještě ani nevíte – hí) je ve VKV DX žebříčku vynese hned za „pětitovkáře“. Škoda, že jim to právě tak dobré nechodovalo na 70 cm.

Vzdálenost větší než 500 km se podařilo překlenout stanicím OK1KAX s YU2QN/FT, OK1KVR s DL9WLP, OK1KDF s DL3ENP a OK1VR s HB1IV, HB1IR a HB1RP. Nejlepšího ODXu (max QRB za stálého QTH) dosáhla stanice OK1KKD, pracující přímo z Kladna, a sice spojením s DL9WLP na 388 km.

## Den rekordů 1957

### 145 MHz

| Poř. | Stanice   | bodů  | QSO  | Bodů pro EVHFC |
|------|-----------|-------|------|----------------|
| 1.   | OK1VR/P   | 16305 | 82   | 205            |
| 2.   | OK1KPL/P  | 15834 | 80   | 192            |
| 3.   | OK1KDO/P  | 12998 | 70   | 155            |
| 4.   | OK3KLM/P  | 10824 | 50   | 129            |
| 5.   | OK1KCB/P  | 10082 | 52   | 125            |
| 6.   | OK1KOS/P  | 9385  | 59   | 108            |
| 7.   | OK1KAX/P  | 8584  | 56   | 115            |
| 8.   | OK2EC/P   | 8165  | 49   | 102            |
| 9.   | OK1KST/P  | 7722  | 59   | 101            |
| 10.  | OK1KUR/P  | 7268  | 53   | 98             |
| 11.  | OK1KBY/P  | 6136  | 36   | 71             |
| 12.  | OK1KNT/P  | 5883  | 51   | 79             |
| 13.  | OK1KVR/P  | 5857  | 49   | 72             |
| 14.  | OK1SO/P   | 5821  | 37   | 76             |
| 15.  | OK2AB     | (1)   | 5737 | 39             |
| 16.  | OK3YY/P   | 5498  | 39   | 74             |
| 17.  | OK1KKD    | (2)   | 5379 | 53             |
| 18.  | OK2KJI/P  | 4921  | 36   | 66             |
| 19.  | OK1KDF/P  | 4803  | 34   | 64             |
| 20.  | OK1KJA/P  | 4647  | 42   | 63             |
| 21.  | OK1KRC    | (3)   | 4266 | 46             |
| 22.  | OK1VBEE/P | 4262  | 36   | 55             |
| 23.  | OK1KAM/P  | 4219  | 43   | 60             |
| 24.  | OK1KKH/P  | 3769  | 32   | 54             |
| 25.  | OK1KFG    | (4)   | 3679 | 37             |



Vysílač pro 420 MHz OK1VR ze Dne rekordů na Klinovci.

|              |      |      |    |              |              |     |     |     |     |
|--------------|------|------|----|--------------|--------------|-----|-----|-----|-----|
| 26. OK2KAT/P | 3608 | 28   | 50 | 28. OK1VAI/P | 858          | 10  | 140 |     |     |
| 27. OK1KKA/P | 3305 | 34   | 48 | 29. OK1KPR/P | 830          | 15  | 180 |     |     |
| 28. OK3KAB/P | 2884 | 24   | 42 | 30. OK3IW/P  | 801          | 11  | 130 |     |     |
| 29. OK1UAF/P | 2828 | 33   | 47 | 31. OK2KBR/P | 759          | 9   | 130 |     |     |
| 30. OK2BJH   | (5)  | 2743 | 20 | 40           | 32. OK1KRI   | (4) | 751 | 14  | 140 |
| 31. OK1GT/P  | 2528 | 27   | 37 | 33. OK1KDF/P | 728          | 8   | 120 |     |     |
| 32. OK1VAM   | (6)  | 2493 | 34 | 41           | 34. OK1KCI/P | 703 | 9   | 120 |     |
| 33. OK2KCN/P | 2478 | 25   | 37 | 35. OK1KRE/P | 668          | 7   | 90  |     |     |
| 34. OK3HF/P  | 2404 | 25   | 34 | 36. OK1VD    | (5)          | 632 | 13  | 150 |     |
| 35. OK1EB/P  | 2266 | 23   | 34 | 37. OK2KOV/P | 568          | 10  | 100 |     |     |
| 36. OK1KCI/P | 2226 | 23   | 31 | 38. OK3KL/P  | 472          | 4   | 70  |     |     |
| 37. OK1KRI   | (7)  | 2129 | 28 | 36           | 39. OK2KAT/P | 467 | 5   | 60  |     |
| 38. OK1ZW/P  | 2017 | 21   | 31 | 40. OK2KCN/P | 432          | 11  | 110 |     |     |
| 39. OK3IW/P  | 1958 | 20   | 28 | 41. OK2LE/P  | 387          | 9   | 100 |     |     |
| 40. OK1KLR/P | 1923 | 22   | 27 | 42. OK2KGR/P | 357          | 8   | 90  |     |     |
| 41. OK2KJW/P | 1885 | 20   | 25 | 43. OK1KBV/P | 266          | 3   | 40  |     |     |
| 42. OK2KRG/P | 1870 | 18   | 32 | 44. OK2KJ/P  | 253          | 3   | 40  |     |     |
| 43. OK1KMM   | (8)  | 1844 | 25 | 33           | 45. OK1KMM   | (6) | 250 | 7   | 70  |
| 44. OK1KBW/P | 1768 | 23   | 31 | 46. OK2UC    | (7)          | 197 | 3   | 30  |     |
| 45. OK1KAD/P | 1681 | 15   | 24 | 47. OK2BH    | (8)          | 146 | 6   | 60  |     |
| 46. OK3KFY   | (9)  | 1635 | 19 | 23           | 48. OK1ZW/P  | 117 | 2   | 20  |     |
| 47. OK3VAT/P | 1294 | 10   | 17 | 49. OK3HF/P  | 63           | 1   | 10  |     |     |
| 48. OK1JK    | (10) | 1285 | 22 | 26           | 50. OK3KZY/P | 42  | 2   | 20  |     |
| 49. OK3KME/P | 1259 | 17   | 20 | 51. OK3VAO/P | 42           | 2   | 20  |     |     |
| 50. OK1KCR   | (11) | 1223 | 16 | 21           | 52. OK2AG    | (9) | 15  | 1   | 10  |
| 51. OK1CE    | (12) | 1221 | 20 | 23           |              |     |     |     |     |
| 52. OK1VD    | (13) | 1211 | 19 | 20           |              |     |     |     |     |
| 53. OK3IE/P  |      | 1177 | 12 | 21           |              |     |     |     |     |
| 54. OK2AG    | (14) | 1043 | 8  | 15           |              |     |     |     |     |
| 55. OK3RD/P  |      | 1034 | 12 | 17           |              |     |     |     |     |
| 56. OK2KEA/P |      | 884  | 9  | 12           |              |     |     |     |     |
| 57. OK3KSI/P |      | 855  | 10 | 15           | 1. OKIKKA/P  | 180 | 2   | 20  |     |
| 58. OK2VAJ   | (15) | 853  | 14 | 15           | 2. OKIKST/P  | 97  | 2   | 20  |     |
| 59. OK3KUS/P |      | 827  | 10 | 13           | 3. OK1KLR/P  | 93  | 2   | 20  |     |
| 60. OK3KTR   | (16) | 752  | 10 | 12           | 4. OK1VAK/P  | 84  | 1   | 10  |     |
| 61. OK1KRY/P |      | 726  | 6  | 10           | OK1KDO/P     | 84  | 1   | 10  |     |
| 62. OK3EY    | (17) | 704  | 9  | 13           |              |     |     |     |     |
| 63. OK2UAG   | (18) | 548  | 10 | 10           |              |     |     |     |     |
| 64. OK2KJ/P  |      | 526  | 10 | 10           |              |     |     |     |     |
| 65. OK1KOB   | (19) | 462  | 8  | 9            |              |     |     |     |     |
| 66. OK2KZO   | (20) | 451  | 4  | 7            |              |     |     |     |     |
| 67. OK1KDQ/P |      | 378  | 7  | 8            |              |     |     |     |     |
| 68. OK3KZY/P |      | 378  | 7  | 8            |              |     |     |     |     |
| 69. OK3VAO/P |      | 342  | 6  | 7            |              |     |     |     |     |
| 70. OK2OU    | (21) | 300  | 4  | 5            |              |     |     |     |     |
| 71. OK1KFX   | (22) | 272  | 8  | 9            |              |     |     |     |     |
| 72. OK2KNJ   | (23) | 105  | 3  | 4            |              |     |     |     |     |

### 435 MHz

| Pof. | Stanice  | Bodů | QSO  | Body pro EVHFC |     |
|------|----------|------|------|----------------|-----|
| 1.   | OK1KAX/P | 3410 | 27   | 500            |     |
| 2.   | OK1KKA/P | 3212 | 34   | 470            |     |
| 3.   | OK1KBW/P | 3149 | 31   | 500            |     |
| 4.   | OK1VAE/P | 3079 | 29   | 450            |     |
| 5.   | OK1KLR/P | 2474 | 31   | 390            |     |
| 6.   | OK1KVR/P | 2342 | 23   | 380            |     |
| 7.   | OK1VR/P  | 2269 | 18   | 310            |     |
| 8.   | OK1KKD   | (1)  | 2260 | 31             | 370 |
| 9.   | OK1KLL/P |      | 2190 | 26             | 340 |
| 10.  | OK1KAO/P |      | 2037 | 25             | 300 |
| 11.  | OK1KNT/P |      | 1856 | 25             | 310 |
| 12.  | OK1KDL/P |      | 1812 | 25             | 310 |
| 13.  | OK2KEZ/P |      | 1642 | 18             | 250 |
| 14.  | OK1KDO/P |      | 1619 | 11             | 160 |
| 15.  | OK1KAD/P |      | 1583 | 14             | 230 |
| 16.  | OK1SO/P  |      | 1579 | 13             | 220 |
| 17.  | OK1HV    | (2)  | 1496 | 22             | 270 |
| 18.  | OK1KRC   | (3)  | 1396 | 22             | 250 |
| 19.  | OK1KKH/P |      | 1356 | 13             | 220 |
| 20.  | OK1KJA/P |      | 1331 | 17             | 230 |
| 21.  | OK1KDK/P |      | 1261 | 20             | 210 |
| 22.  | OK1KPZ/P |      | 1058 | 12             | 190 |
| 23.  | OK1KRZ/P |      | 998  | 6              | 110 |
| 24.  | OK1KST/P |      | 981  | 15             | 170 |
| 25.  | OK2OL/P  |      | 962  | 14             | 160 |
| 26.  | OK1KCI/P |      | 953  | 14             | 140 |
| 27.  | OK2KJW/P |      | 914  | 13             | 140 |



Soudruh Vachuška obsluhoval stanici 420 MHz OK1KAD na Měděnci.



OK1VR na Klinovci.

amatéry se totiž terčové triody v jistém množství vyskytují. - 1VR).

**OK1SO:** Tak tentokrát jsem, jak se říká, úplně „výbouchl“. Chtěl jsem jet soutěž jen na 435 MHz, počítal jsem také na rekord (Plesivec-Prádlo 310 km), ale „Kosum“ to na 70 cm nechodoilo. Plesivec je kromě toho velmi nevhodně schován za Klinovcem ve směru na Krkonoše a tak se odtautud Krkonoše na 70 cm dělat nedají. Vyzkoušel jsem si alespoň dobre své nové zařízení na 435 MHz, kde mám elektronku Y32 (832), zapojenou jako zdrojová za dvoumetrovým vysílačem. I při výkonu 2 W do antény jsem dostával reporty o 2 S lepší než při vysílání na sónoskách se stejným výkonem.

**OK1KUR:** V neděli dopoledne byly zaslechnuty HG5KBA, HB1IV a HB1IR. Bohužel jen zaslechnutý, když spojení bylo znemožněno velkým rušením některých našich stanic. Nejhorší byla OK1KRY, která měla spektrum kmitočtu v šířce větší než 500 kHz bez značného maxima. Špatnou kvalitou vysílání dále vynikaly OK1UAF, 1KKP, 1ZW, někdy i 1KNT.

**OK1KCR:** Závod byl dobře organizován. Oproti minulému ročníku je vidět značný pokrok v kvalitě zařízení. Většina stanic už používá stabilních vysílačů.

**OK1KHB:** „Na základě výzev byla zjištěna nevhodnost našeho stálého QTH pro VKV pásmo – proto nebyl závod absolvován. Zasláme alespoň seznam zaslechnutých stanic“ (následuje seznam osmi stanic, z nichž nejbližší je ve vzdálenosti 125 km a nejvzdálejší přes 200 km). Správně tedy měli soudruzi z OK1KHB napsat: „Protože nás vysílat ještě nebyl v pořádku, nemohli jsme se nijak dovolat a zasláme alespoň seznam zaslechnutých stanic. Věříme, že nám to s lepším vysílačem půjde příště lépe.“ – 1VR).

**OK2BJH:** Pracoval jsem od krku, abych si ověřil možnost spojení na VKV a hlavně na 145 MHz. S výsledky jsem spokojen a jsou pro mne povídka k ještě intenzivnější práci na VKV pásmech. (Kdo nebyl spokojen s 365 km od krku na 2 m! – 1VR)

**OK2OL:** Soutěž jsem jel na 435 MHz. Měl jsem smůl při stavbě anteny na 145 MHz. Vítr mi ji shodil a antena se rozbalila na kousky tak prudce zhotovený přestupový TX včetně superhetu do závodu vůbec nezasáhl. Jinak se pilně připravují na práci od krku a starostí mi dělá už jen otáčení antény.

**OK2KB:** Bylo též pracováno na pásmu 1215 MHz. Na Moravě však žádná stanice nebyla v provozu, takže jsme nikoho neslyšeli. Zaměřili jsme se proto pouze na směrové volání do Čech, a to po dobu 3 hodin v neděli mezi 12 a 15 SEC. Zaslal jsem někdo?

**OK2KOS:** Práce naší stanice byla značně rušena SP stanicemi z okolí Katovic, které používaly silně pitemodulovaných sónoskátorů, zabírajících až 1 MHz.

**OK2KJ:** Nemohu souhlasit s tím, aby s jednou kyticí se na jedno zařízení vysílalo po víc značkami. Není to amatérské a nemá to žádnou cenu. **OK2KLM:** Účast stanice bola většina a kvalita vysílání tice se zlepšila až na několik stanic, které eště stále užívají sónoskátorové. Na budoucí rok treba spresnit podmínky „Dňa rekordov“, aby úplne súhlasili s podmienkami VKV Contestu, a to: vynechať hodnotenie modulácie, poradova čísla spojení na viac pásmach a bodovanie určiť súhlasné.

(Soudruzi, přečtěte si lepě soutěžní podmínky. Jak číslování, tak hodnocení modulace bylo již letos v obou soutěžích shodné. Jinak blahopřejeme k plknému umístění. – 1VR)

**OK2KCN:** Mnoho zdaru v kontrole deníků přeje kolektiv OK2KCN – Vy 73! (Tak pečlivě a přesně vyplňný deník, jako byl Váš a letos již



Kdo si počká – tak se dočká, tak jako OKIVAK s. Hušek, jenž po čtyřech letech se dočkal 8. 9. 57 v 0645 prvního QSO na 1215 MHz se stn. OKIKDO, QRB 86 km.

QTH Klet.

i většiny ostatních stanic, je radost kontrolovat (1 VR)

**OKIKDK:** Body nemáme vypočítány, jelikož nebyla zaslána mapa vzdálenosti stanic.

(ÚRK vydává mapu jen pro PD, z které lze při troše dobré vůli většinu vzdáleností stanovit velmi přesně, neboť většina kót použitých ve VKV Contestu je na ní zakreslena. Výměna QTH při spojeních se děje právě proto, abychom si mohli zjistit, jak daleko je naše protistantice. To lze dosudatné přesně stanovit z obyčejných školních mapy. Proto je také doporučováno uvádět při spojeních z málo známých QTH směr a vzdálenost od nejbližšího města, tak aby bylo možno tyto vzdálenosti stanovit z běžných map. Vzdálenosti, které nelze dosud dobře užít pro nedostatek map, t. j. vzdálenosti k zahraničním stanicím, rádi při kontrole doplníme. Na šesti valná většina našich stanic si vzdálenosti stanovila velmi přesně a jen za několik méně pořádných jako 1KBY, 2KJI, 1KFX, 1KDK jsme to musíme udělat při kontrole. – 1VR)

**OK3YY:** Najprv popíšem svoje zariadenie. Tx: vlo 18 MHz - EBL21, fd 72 MHz - EBL1, fd 144 MHz LS50, ppa LS50, input 10–100 W podla potreby. Rx: Fug 16 + konvertor (Wallman a kryštalom riadený oscilátor). Anténa používam 10 prvkovú Yagi. Toto zariadenie som vyzkúšal počas PD a chodilo fb. Hned po návrate z PD som to nainštaloval doma a začal som pravidelnú prácu od krbu. Žiaľ, že tu v okoli takmer nijest stanic pracujúcich od krbu. Pravidelné skedy s OK3KBM v Modre boli jediným vzdialenejsím spojením pre dlhy čas. Na pásmu bolo niekedy počúť tiež OK3KAB, KFY, KBP, ktoré chodily na rôzne záhračne antény, ako napríklad 80 m fuchs a pod. (Hi). Mne to však stačilo aspoň pre skúšky zariadenia.

V predkontestovom období vyrukovali už týždeň dopredru na Muck-hegy madarski amatéri HG5CS, CB, CO, CE a HG1KVM na Sághegy. Už v pondelok som nadviazał spojenie s CB. V týroku večer som lovil na pásmu a dostal som HG5CS, CB, CE, HG1KVM napriek spoluhráči s ostatními HG do Bratislavu neprenikol. Reporty pre mňa boli vždy 595 fb, i keď moja smerovka vo výške necelé dva metre nad plachou strechou, utopená v spleti rôznych antén, nebola natočená priamo na nich. Tieto stanice používali výšku jednoduchých zariadení. Napríklad HG5CS Tx-sym, osc 616, Rx-superereakčný a čtyrprievková Yagi; HG5CE, Tx-sóloco, EL84 a 5 prvk. Yagi a tak to vyzerala všade. Jedinou výnimkou bol HG5CB, ktorého Tx bol riadený xtalom 24MHz Na ppa mal dve EL84.

Piateho septembra po obvykom krúžku s HG5CB sa mi podarilo aj spojenie s HG1KVM, HG5CO, HG5KBA (170 km – 595) a počul som HG8YQ a HG9OZ. V západnom smere chodil tiež OE1LV, ale bol príliš slabý.

Siedmeho septembra som zariadenie prestahoval na Mikulčín vrch (severne od Javoriny), kde som bol QRV od 1600. Hned, ako som spustil

vysielač, urobil som spojenie s SP9KAX/p. Dal mi 493 a vraj som mal veľmi zlú moduláciu. Do závodu som to ešte stihol zistíť a opraviť. Totiž v dôsledku zvýšeného sieťového napäcia (255–260 V) sa mi rozkmital koncový stupeň. O šiestej popoludní som štartoval závod. Dario lo sú mi veľmi dobre, napriek tomu, že kota bola pomerne nízka (750 m) a v južnom smere som mal v ceste Veľký Lopeník, Inovec a mnoho iných vysokých hôr. Zo severnej strany bol hustý les, prevyšujúci moju smerovku aspoň o 6 metrov. Za necelú hodinu som mal dva rást spojení v okruhu asi 100 km. Pri trinástrom spojení (a potom vraj neverte na neštastné číslo) „vybuchol“ hlavný sieťový transformátor a prerazil sa na vysokonapäťovej časti. Týmto nás celkom vyradol, lebo náhradného nebolo. Po rôznych pokusoch oziviť viacestupňový vysielač usmerňovačom zo 420 MHz, museli sme tento odložiť. Mal som zo seba rozostavaný oscilátor s RD12TF. Pustil som sa do jeho zapojovania a okolo polnoci sa tento oscilátor rozkmital s výkonom asi 15 W. Bez vlnometru, pomocou improvizovaného ladeného obvodu a prijímača sa podarilo asi že dvadsať minút dať do pásmu vysielač a po niekoľkých dlhších výzvach som nadviazał opäť spojenie s OE1WJ (585). Bol som veľmi natezený, že predsa možem súťažiť, i keď s veľkými fažkostami. Podmienky po polnoci boli slabé a urobil som len niekoľko bližších spojení. Okolo štvrtre hodiny sa podmienky rýchlosťi a za pár chvíľ som registroval veľa SP a niekoľko OK1. O pol piatej prepínam prijímač na CW a hned som objavil stanicu YU3EN/EU (589), ako voľa výzvu na frekvenciu 149,6 MHz. Skoro pol hodiny som venoval bezvýsledne volaniu tejto stanice, no tých pár wattov nestabilného oscilátoru nepreniklo. Znechutnený myšlienkom na pokazený Tx s možnosťou CW, ladiil som sa bezmyšlienkovite po pásmu, keď zaznamenal na frekvencii 144,35 MHz počúvaný výzvu YU2QN/FT. Rýchle som sa naladil a zavolal som. Veľmi som sa potešil, keď som po prepnutí počúval známy tón voľa svoju žančku. Po doladení prijímača a natočení smerovky bol report pre neho 598 (QR) a report pre nás 575. QTH Kapovac, operátor Frátko a QRB 375 km. Spojenie sme ukončili fonicky. Na počiadenie OK1KAX/p, volám ešte raz, aby som upozornil YU2QN/FT, že OK1KAX chce nadviazať spojenie. Keď som počul, že toto spojenie sa darí, preladiil som sa a zákrátko som za výborných podmienok nadviazał niekoľko diaľkových spojení. Zaznamenal som OK1KYB, 1KPL, 1KD, keď sa začal ozývať do našich smerovok DL6MHP. Jeho slabé signály však rýchlo zanikly v hroznom QRM moravských stanic. Potom ešte niekoľko spojení s Nitrou, Trnavou od krbu a podmienky pomaly hasnuly. Umrlky vzdialenosť stanic a po pásmu počúť iba blízke stanie, marné volajúcej výzvu. OK3KME na dalekohľad Inovci prichádzal už len s trémolovitým únikom, ktorý si na vzdialenosť dvadsať kilometrov nijako neviem vysvetliť. Po marných pokusoch doplnil počet spojení z 39 na 40 vypínam o 1700 zariadenie. Výsledok 39 spojenie zo súčtu 5498 km a páť zemí za pátnásť hodín môže usporiadať len s ohľadom na náhradný nedokonalý vysielač. Nech tieto riadky sú súčasne opravedlnením za mieru frekvenčnej moduláciu a nestabilitu môjho vysielača v dobe od polnoci do konca závodu.

Stanica OK3KFY, OK3KBM a OK3VAQ pracuje priamo z Bratislavky počúli niekoľko rôznych YU a jedného II.../Triest. Bude teda treba skúsiť tých I.

A tak bychom mohli pokračovať dálve ve výčtu úspěchů, kterých je letos více než kdy jindy. Z celkového pořadí je vidět, že při užití dokonalých zařízení je možno dosáhnout pěkných výsledků ze všech částí naší republiky.

Závěrem ještě zmínka o podmínkách šíření během soutěže. Jak již bylo řečeno, nebyly nijak špatné, ale také nevynikající, prostě průměrné nebo dobré. Během nedělního dopoledneho krátkodobého zlepšení byly u nás poprvé zaslechnuty italské stanice. Ke spojení bohužel nedošlo, i když DL6MHP pracující s Javoru na Šumavě pracoval se třemi italskými stanicemi. Nejlepší podmínky byly opět jak v minulém i předminulém roce nad jižní Evropou, když nad Anglií byly opět frontální poruchy.

Z uvedených výsledků je možné stanovit pravděpodobné pořadí OK stanic v Evropském VHF Contestu. U stanic pracujících jen na jednom pásmu, t. j. v kategorii I. a 3., je pořadí zřejmé. Složitější už je to se stanicemi, které pracovaly na více pásmech. V důsledku silné nadhodnoceného pásmu 435 MHz je výsledné pořadí ovlivněno v prvé řadě umístěním na tomto pásmu.



Rubriku vede Jiří Mrázek, OK1GM

### VZÁJEMNÁ SLYŠITELNOST STANIC V DX PROVOZU

Ing. Miroslav Havlíček

Pri odhadu vzájemnej slyšiteľnosti dvou stanic pri spojení na veľkou vzdálosť sa obvykle predpokladá, že jsou-li obě stanice približne stejne silné, používajú-li podobné prijímacie a anten a jsou-li v miestne podmienky v obou miestach podobné (t. j. bez vŕšku QRM a QRN), slyší sa ob ďalšej vzdálosťi.

Tato zásada vzájemnosti je v podstatte správna, avšak zkušenosť, získané statistickým zpracováním soustavných záznamov o provozu na profesionálnych diaľkových spojach s rôznymi pokusy, provedené v několika minulých letech, ukazuje, že její platnosť je někdy omezena. Z prehľadového článku v časopise Wireless World (1) a z ďalšieho článku v Proceedings I. E. E. (2) jsme proti vybrali niekoľko informácií, ktoré môžu byť užitočné pro ty čtenáre, ktorí se zajímají o príjem a vysílanie na diaľkových pásmach. V uvedených článkach je obsaženo i mnoho ďalších zkušenosťí a údajov o ďalších prameňoch, z nichž lze získať podrobnejšie informace o jevech, ktoré zde popisujeme len v stručnosti.

### Princip vzájemnej slyšiteľnosti pri radiovém spojení

Zásada, že pri jinak stejných miestnych podmínkach (citlivosť prijímaču, pŕíkon vysielaču, anteny, QRM a QRN a pŕípadne i ďalší okolnosti) sa ob ďalšej stanice slyší stejně, byla definovaná již v samých začátcích krátkodobého provozu takto: „festilize elektronomotorskú sílu určité velikosti, púšobici na určité antené, vytvára jistý proud v určitém bodě ďalší anteny, pak stejně napětí, pŕivedené do téhož bodu druhé anteny, vytvára v pŕíslušnom bodě pŕvny antény tentýž proud, stejně velikosti i fáze“ (Carson, 1924). Tato zásada je plně oprávnená len pri vysílani prostredníctvom pŕzemenní vlny; pokud ide o spojení odrazom od ionisovaných vrstiev, platí jen obecně a její význam může být zmenšen mnoha činiteli.

Jediný z pŕípadu omezenie platnosti principu vzájemnosti je šíření vlny stejnomerně ionisovaným prostredím podél magnetického poleidu, t. j. v smere siločiar zemského magnetického pole, když se polarizace vlny stáčí proti smere hodinových ručiek bez ohľadu na to, ktorým smere se vlna šíri. Teoreticky lze naľáčiť dokonce pŕípad, když se polarizace zmene tak, že príjem je možný len v jednom smere, avšak tento neprínivý vliv nemá prakticky žiadny význam.

Další pŕíčinou rozdielu v príjmu v obou stanicach se snáží vysvetliť pŕedpoklad, že vlny, vysílané ze dvoch stanic proti súmerní smery, se súčasne absorbuju v ďalšom ďúsinek rôzne ionofériské absorpcie v ďalšom smere. Ani tento pŕedpoklad o šíření rôznych drahami však nemá dnes považován za prakticky významný a výsledky pokusu o provozní statistiky naznačujú, že príjem vlny nemá prakticky žiadny význam.

Další pŕíčinou rozdielu v príjmu v obou stanicach je

### Výsledky pokusu o ověření rozdílu v příjmu

V roce 1956 byly popsány pokusy, ktoré boli provedené v Veľkej Británii ke srovnáni pŕíjmu ze dvoch stanic proti súmerní smery, se súčasne absorbuju v ďalšom ďúsinek rôzne ionofériské absorpcie v ďalšom smere. Ani tento pŕedpoklad o šíření rôznych drahami však nemá dnes považován za prakticky významný a výsledky pokusu o provozní statistiky naznačujú, že príjem vlny nemá prakticky žiadny význam.

Pokusy byly konány asi po dva týdny, avšak nerovnomernosti v pŕíjmu ob ďalšej smery



Obr. 1 Diagram příjmu na několika radiových spojích na trati Londýn - Kapské Město a v opačném směru v době od léta 1950 do zimy 1953/54. Údaje ročních období uvedeny k severní polokouli.

byly zjištěny jen asi v jednom procentu pozorovací doby. Zdá se proto, že vzájemnost při šíření na poměrně krátkou vzdálenost 740 km je celkem pravidelná.

Jiné pokusy byly provedeny na radiových spojích mezi Velkou Britanií a USA a mezi Velkou Britanií a Austrálií na kmitočtech mezi 11 a 14 MHz. V obou stanici bylo použito k příjmu i vysílání stejně přepínané antény. Obě stanice vysíaly nemodulovanou nosnou vlnu vždy střídavě po dobu dvou minut. Výsledky byly zaznamenány a později vzájemně porovnány. V tomto případě byly pozorovány rozdíly v příjmu mezi oběma směry, a to někdy až po dobu několika hodin. V průměru byl příjem z Velké Britanie v USA a Austrálii horší než v opačném směru, rozdíly mezi oběma směry někdy dosahly až 5 - 10 dB.

#### Sezonní a dlouhodobé nerovnoměrnosti ve vzájemné slyšitelnosti

Těmito dvěma řadami pokusů bylo dokázáno, že k nerovnostem mezi příjemem v obou stanicích dochází při spojení na větší vzdálenost, nebylo však nijak vysvětleno, proč tomu tak je. O takový výklad se pokusila skupina pracovníků výzkumné radiové stanice britské státní výzkumné organizace D. S. I. R. a to ve dvou článcích, uveřejněných v časopise Proceedings of the I. E. E. [2], [3]. Zpracovali soustavně statistický materiál, nashromážděný od léta roku 1950 do zimy 1953/54 při provozu několika profesionálních radiových spojů na různých kmitočtech na trati Londýn - Kapské Město a v opačném směru a sestavili diagram, znázorněný na obr. 1.

Diagram je vyvnesen v počtu hodin, po které bylo možno průměrně během 24 hodin přijímat protější stanici tak silně, že bylo možno spolehlivě zapisovat rychlotelegrafní signály.

Z toho diagramu lze vyvodit několik zajímavých závěrů. Nejnápadnější je pravidelné sezonné kolísání denní doby příjmu signálů protější stanice. Při srovnávání obou směrů je třeba si uvědomit, že jedna ze stanic je umístěna na severní, druhá na jižní polokouli, takže na obou místech jsou roční období posunuta (diagram je označen podle ročních období na severní polokouli). Tak snadno pochopíme, proč maxima a minima příjmu v protějších směrech jsou vždy

opačná. To je první zajímavý poznatek pro spojení se stanicemi na jižní polokouli - naše letní podmínky jsou tam vlastně v době, kdy u nás je zima.

Druhou zajímavou pozoruhodností je trvale lepší příjem signálů z Londýna v Jižní Africe než signálů, přijímaných v Londýně z Jižní Afriky. Tato skutečnost se na diagramu zřetelně projevuje tím, že krivka příjmu v prvním směru trvale probíhá o něco výše než její protějšek, ač zařízení obou stanic (vysílače přijímací i antennou soustavy) jsou srovnatelné. Je tedy zřejmé, že v tomto případě kromě pravidelně se opakujících sezonních výkyvů existuje i dlouhodobý, trvale působící vliv (v průměru bylo v době od roku 1950 do 1953/54 možno přijímat signály v Londýně jen po dobu asi 18 hodin denně, zatím co v opačném směru byl příjem možný po dobu asi 20 hodin denně).

Srovnáváme-li tyto výsledky s amatérskou praxí, překvapí na první pohled, že na této trati lze udržovat pravidelné denní spojení po dobu mnohem delší, než by odpovídalo našim zkušenostem. Lze si to vysvětlit tím, že tato měření byla provedena ve stanicích, v nichž se používají podstatně větších výkonů, přesných směrových anten a dokonalých přijímacích soustav v nichž se podle potřeby volí nejdohodnejší vlnovou délku s mnohem větší možností výběru, než je tomu u amatérů, odkázaných jen na několik úzkých pásem. Naproti tomu mají ovšem tyto stanice nároky na jakost příjmu podstatně větší, než s jakými se spokojí amatér.

Ve své první práci z ledna 1955 [3] se citovala skupina pracovníků, která vysvětlit příčiny sezonného kolísání příjmu, avšak dosáhla jen k názoru, že činitelů, spoluúčastnících při dálkovém šíření krátkých vln, je tolik, že lze jen težko posoudit, do jaké míry se který z nich uplatňuje. V dalším článku z července 1956 [2] však dochází k názoru, že jednou z hlavních příčin pozorované sezonné nerovnoměrnosti je různá hladina atmosférického šumu, který je při dálkových spojeních jedním z důležitých omezujících činitelů, na nichž závisí odstup signálu od šumu v místě příjmu. Podrobným rozborom statisticky zpracovaného materiálu autori článu shledali, že výboje, vznikající v rossáhlých bouřkových oblastech, se šíří na velké vzdálenosti. Protože v letním období (květen, červen, červenec) bývá bouřek podstatně více než v zimě (listopad, prosinec, leden), lze si tím vysvětlit zvýšení atmosférického šumu v letních měsících a tím i zhoršení příjmu v tomto období.

Obr. 2 Srovnání špičkových hodnot atmosférického šumu, naměřeného při příjmu s kosočtverečnou směrovou antenou, s hodnotami naměřenými při příjmu v téže době s půlvlným vertikálním nesměrovým dipólem při spojení Londýn - ostrov Ascension.



#### Nerovnoměrnosti příjmu v průběhu dne

Další zajímavá okolnost byla zjištěna při sledování provozu na několika radiových spojích mezi Londýnem a několika městy na jižní polokouli nebo v poměrně blízkosti rovníku (Jižní Afrika, Ceylon, Singapur a Austrálie). Ukázalo se, že příjem v Londýně v určité době denní doby se vždy zhoršil, přičemž tato doba zhoršení během dne se pravidelně opakovala, měnila se postupně podle zeměpisné polohy přijímané stanice a byla úměrná místnímu času v místě vysílající stanice. Maximum atmosférických poruch bylo u stanic z východu zaznamenáno v době kolem 1200 hodin GMT, z jihu kolem 2000 hodin GMT a ze západu kolem 0300 hodin GMT. Z toho by vypadalo, že ohniska atmosférického šumu se pohybují se sluncem od východu k západu a odpovídají vždy době asi od 1850 do 2020 hodin místního času v oblasti vysílání.

Další ukázkou, doplňující tyto zkušenosti s účinky atmosférického šumu na jakost dálkových spojení, je diagram na obr. 2, na němž je znázorněn typický průběh špičkových hodnot atmosférického šumu, naměřeného v různých denních dobách na ostrově směrové kosočtverečné anteně ve srovnání se sumem, naměřeným na obyčejném nesměrovém vertikálním dipólu. Měření bylo provedeno v Anglii v červnu roku 1959 na kmitočtu 20,0 MHz s přijímačem o šíři pásmu 2,5 kHz a s kosočtverečnou antenou, používanou pro spojení s ostrovem Nankevetskem (Ascension Islands, ZD8, v Atlantském oceánu na západ od střední Afriky). Krivka jasně ukazuje, jak šum při příjmu směrovou antenou se v podvečer podstatně zvětší ve srovnání se sumem při příjmu nesměrovou antenou.

#### Závěr

Co z těchto několika nových poznatků o rozdílech ve vzájemné slyšitelnosti dvou stanic při spojení na velkou vzdálenost poamatérskou praxí?

Pro běžný dálkový provoz, kde nám jde jen o dosažení spojení na velkou vzdálenost podle možnosti, které se v té době vyskytují na pásmu a kde se mimo toho snažíme jen o příležitostné rozšíření počtu zemí a zon, s nimiž jsme pracovali, nemají tyto zkušenosti významnou význam. Mohou však být prospěšné tomu, kdo si při DX spojeních klade vysí cíle - necht již je to dosažení spojení s určitou



#### TADY JEJ NENAJDETE,

ten seší Amatérského radia, který budete potřebovat k doplnění celého ročníku koncem roku 1958. To už bude skorem marné běhání po trafikách. Chcete-li si takové běžecké výkony uspořít, pak stačí, když si koncem roku zařídíte předplacení u svého poštovního doručovatele, který Vám pak každý měsíc donese Váš sešít rovnou do bytu.

zemí nebo zonou, či amatérský průzkum šíření krátkých vln na velkou vzdálenost.

Hlavní význam této informaci nevidíme v konkrétních údajích, ale v tom, že ukazují, jak složité a různorodé jsou některé z jevů, jejichž společné působení rozhoduje o tom, zdari-li se v určité době to či ono DX spojení. To, co dnes o dálkovém šíření krátkých vln nacházíme i v nejnovějších radiotechnických příručkách, zdaleka nevyčerpává všechny vlivy, které zde spolujsou. Je třeba si uvědomit, že vědecké poznatky v tomto oboru nejsou zdaleka u konce a že se stále prohlubují. Uvedené ukázky této poznatky o dlouhodobých rozdílech ve vzájemné slyšitelnosti protistanic, o sezónním kolísání, o zásadních rozdílech mezi místními podmínkami obou stanic při spojení přes rovník, o významu atmosférického šumu, o významu směrových anten nejen s hlediskem síly přijímaného signálu, ale i po stránce změn odstupu signálu od šumu atd. jsou výstižnými ukázkami stálého vývoje zkušenosť se šířením krátkých vln na velké vzdálenosti.

[1] Bennington T. W., „Is radio propagation always two-way?“, Wireless World, č. 1/1957, str. 20 - 22.

[2] Humby A. M., Minnis C. M., „Asymmetry in the performance of high-frequency radiotelegraph circuits“, Proceedings of the I. E. E., červenec 1956, str. 553 - 558.

[3] Humby A. M., Minnis C. M., Hitchcock R. J., „Performance characteristics of high-frequency radiotelegraph circuits“, Proceedings of the I. E. E., leden 1955, str. 513 a další.

\* \* \*

### Předpověď podmínek na prosinec

1957

Protože v době okolo uzávěrky tohoto čísla měl autor mnoha práce se sledováním umělé družice, nedostal se ani k delšímu zhodnocení připořených podmínek ani k obvyklému přehledu podmínek za uplynulé období. Tento přehled slibuje do příštího čísla a dnes žádá čtenáře za prominutí. Snad se mu tohoto prominut dostane, protože se snažil přinést tentokrát podmínky všeobecně dobré, jak je patrné z prvního pohledu na obvyklý diagram. Sluneční činnost zůstává i nadále dosti vysoká, takže kritické kmitočty vrstvy F2 budou i nadále značně vysoké. I když se podmínky v některých směrech o něco proti situaci z měsíce října tu a tam zhorší, přece jen bude možno pracovat i na pásmu 28 MHz, vzhledem ke kratšímu dennímu období ovšem jen po kratší dobu než na podzim. Ovšem zato podmínky pro DX-směry na nižších pásmech budou nyní stále lepší a lepší a škoda jen, že na osmdesát metrech pracuje mimo Evropu a USA tak málo stanic.

Ostatní je všechno patrné z naší tabulky.  
OKIGM.

**M G R**

Dne 4. října t. r. vstoupilo lidstvo do další éry svého vývoje, do éry odpoutání se od Země a začátku meziplanetárních letů. Do éry, ve které se ionosféra nezkoumá jen radiovými vlnami vysílanými se zemského povrchu jakožto „zrcadlo“, ale po prvé i cílevědomě vysílanými shora, tedy jako „čočka“. Ještě v noci na 5. říjnu se podařilo našemu Mirkovi OK1FA na ionosférické stanici Geofyzikálního ústavu ČSAV v Panské Vsi zachytit jako prvnímu v ČSR signál první a 4. listopadu i druhé umělé družice Země. A potom i dal-



### A JEŠTĚ SPUTNIK Č. 1.

Byla 5. října 1957, sobota ráno, kdy jsem měl pravidelné spojení s Bohoušem YKIAT. Tu se naladil na nás kmitočet W8DAW a povídá: „Běda, how you hear the Russian Satellite?“ Říkám si ještě: „Co tím myslí? - snad Bohouše?“ Když jsem spojení s Bohoušem ukončil, přeladil jsem na 21 MHz, udělal tam asi 10 spojení, pak zpět na 14 MHz, navázal spojení s HA5KBP, JA1VE, OH2YV a tu slyším stanici JA6AP, jak se ptá jedně UA9-ky na něco stran. UA-Baby-Moon. Tu mi svítlo - i otázka W8DAW mi najednou byla jasná. Umělá družice, avisovaná i v AR, byla již nahoře. Kdo by ale byl počítal s tím, že to bude tak brzo? Začal jsem sledovat po pásmu a slyšel, že se o tom mezi amatéry mluví. Americká televize NBC v New Yorku již totiž rána přerušila právě vysílání, oznamila vypuštění družice sovětskými vědci, uduala oba kmitočty 20 005 a 40 002 kHz a z pásku ustoupila známé pipání.

Nastal hon po signálech umělé družice. Věděl jsem, že je předem nutno najít stanici WWV na 20 MHz, americký časový a hlavně také kmitočtový normál. Hned se to nepodařilo, protože ani tato silná stanice neprojdla při špatných podmínkách a za druhé mi čtení stupnice na Forbesu tak přesně neodpovídalo. Signál umělé družice jsem nasílal až 1920 SEČ v síle S6, ale brzo zmizel. Další obě kolem zeměkoule od 2056 do 2115 s maximem S9 ve 2104 SEČ. Zůstal jsem již na příjmu celou noc a dělal záznamy. Signály začaly přicházet pravidelně po 96 minutách a ze svých pěti anten jsem vybral dvě, které jsem pak pro příjem používal. V polovině trvání signálu bylo třeba anteny přepnout podle toho, jak vysílač UD měnil své QTH. Tímto způsobem jsem při některém obchu udržel signál po plných 45 minut. Při oběhu ve 2240, kdy byla UD nad Prahou, byl příjem S9 plus a odpovidal opravdu příjmu místní stanice. Po oběhu v 0630 SEČ v neděli ráno, kdy byl příjem opět S9 plus, napadlo mne zjistit nakolik a jak jsem signály přijímány ve světě.

Zavolal jsem tedy v 0645 SEČ W0CA ve státě Missouri, a ptám se ho na to. „Ano, růká, vím o UA-sateli a slyšel jsem již několikrát jeho vysílání na 20 005 kHz. Jeho signály jsou velmi dobré, v 1500 GMT byl zde S 7/8. Dovídám se, že je zde slyšen na mnoha místech.“

G2PL říká, že mohl jeho signály sledovat také po 45 minut při ranním obchu. Dostal jsem takto několik prvních reportů ze světa. Napadlo mne zavolat OK1GM do ionosférické observatoře v Průhonickách a předat mu je. Myslím, že byl touto první spoluprací s amatéry překvapen. Ihned poznal, že by se amatérů mohlo použít a požádal mne, abych ve sbírání tétoho reportu ze světa pokračoval a předával je telefonicky ionosférické observatoři. Amatéři, se kterými jsem měl v tomto směru pravidelné spojení, bylo třeba instruovat, jak reporty mají vypadat. Bylo třeba hlásit přesně podle GMT začátek a konec příjmu signálu jakož i maxima síly, případně vizuální pozorování. Dostali jsme tak asi 100 hlášení z celého světa. Naše stanice v Ulan Batoru, JT1AA, také platně přispěla. Zajímavé byly reporty o vizuálním pozorování na Hawaii, na Aljašce, na Novém Zélandu atd. O poměrně významném případu současného sledování signálu se stanici W7KVU ve státu Montana v USA jsem se již zmínil posledně. Tehdy jsem spojení udržoval na přijímači Collins a signály umělé družice přijímal na přijímači E52A. Oba typy přijímače byly zapnuty po celý týden. Pro příjem signálů z umělé družice se dobrě osvědčila nová přijímací antena, zavěšená na vrcholu továrního komínu.

Za těchto několika dnů nepotkal jsem ve světě jediného amatéra, který by v tomto směru nebyl ochotně vyhověl. Od mnoha z nich jsem přijal projekty blahopřání k úspěchu sovětských vědců, jakož i radosti, že se vypuštění umělé družice podařilo. Celkem to byla zkouška amatérů v době, kdy pozorovací stanice, zřízené k témtoto účelu po celém světě, na tak brzké vypuštění umělé družice nebyly připraveny, hlavně na západě. Připraveni ale byli amatéři všech kontinentů.

OK1MB



Registrace zařízení v Panské Vsi, díky jedinečnému QTH a dovedné obsluze s. Jiskry, zaznamenává dnes pravidelně dnem i noční Dellingerovy efekty.



Rubriku vede Béda Micka OKIMB

„DX - KROUŽEK“  
Stav k 15. říjnu 1957

| Vysílač: | OK1MB     | 231 (253)   | OK1KRC    | 64 (82) |
|----------|-----------|-------------|-----------|---------|
| OK1FF    | 227 (246) | OK1EB       | 62 (96)   |         |
| OK1HI    | 205 (210) | OK2KJ       | 61 (74)   |         |
| OK1CX    | 194 (201) | OK2ZY       | 59 (81)   |         |
| OK1KTI   | 170 (210) | OK3HF       | 55 (84)   |         |
| OK1SV    | 169 (189) | OK1KDR      | 54 (108)  |         |
| OK3HM    | 161 (180) | OK1KDC      | 54 (70)   |         |
| OK3MM    | 159 (180) | OK2KLI      | 50 (92)   |         |
| OK1CG    | 156 (183) | OK3KES      | 44 (64)   |         |
| OK1AW    | 151 (167) | OK1EV       | 33 (54)   |         |
| OKINC    | 143 (175) | Posluchači: |           |         |
| OKINS    | 142 (157) | OK3-6058    | 189 (237) |         |
| OKIKKR   | 134 (145) | OK1-407     | 172 (248) |         |
| OK3EA    | 126 (146) | OK1-1307    | 111 (171) |         |
| OK1JX    | 121 (159) | OK2-5214    | 107 (185) |         |
| OK1KTW   | 121 (140) | OK3-7347    | 100 (192) |         |
| OK3KEE   | 108 (130) | OK3-5842    | 95 (213)  |         |
| OK1FA    | 105 (116) | OK1-5693    | 89 (163)  |         |
| OK1VA    | 101 (121) | OK1-6643    | 73 (159)  |         |
| OK2KBE   | 96 (118)  | OK3-7773    | 69 (143)  |         |
| OK2GY    | 81 (97)   | OK1-5977    | 68 (163)  |         |
| OK1KPI   | 78 (104)  | OK1-5726    | 67 (201)  |         |
| OK3KBT   | 77 (102)  | OK1-7820    | 67 (162)  |         |
| OK2KTB   | 75 (120)  | OK2-3947    | 66 (153)  |         |
| OK3KAB   | 75 (114)  | OK3-9586    | 64 (127)  |         |
| OK1KPZ   | 67 (81)   | OK3-5663    | 62 (142)  |         |
| OKIKCI   | 66 (92)   | OK2-3986    | 57 (132)  |         |
| OK1KLV   | 66 (81)   | OK3-1369    | 51 (182)  |         |
| OK1IBY   | 65 (82)   | OK3-9280    | 48 (160)  |         |
|          |           | OK1CX       |           |         |

#### DIPLOMY:

WPA (Worked Portuguese Africa) nabízí CR6 Contest Committee, Box 64, Caala, Angola za 40 spojení uskutečněných po 15/8/57 s portugalskými stanicemi v Africe.

E. Y. M. A. (The Eight Hundred Years Munich Award – 800 let Mnichova). V době od 1. 10. 57 do 31. 12. 57 je třeba navázat 30 spojení se stanicemi v Mnichově – C 12. QSL se zasílají prostřednictvím ÚRK na OV München, P. O. Box 4, München 40.

W. L. A. (Worked Liverpool Award) za spojení s 10 stanicemi v okresu Liverpool po 1. 1. 56. CW, fone nebo kombinace obou. ZáZNAM o spojeních, žádost a 6 IRC prostřednictvím ÚRK na G3BHT, Hove To Sandy Lane, Hightown near Liverpool, England. V tomto okresu je v provozu 76 stanic, takže je lehce dosažitelný.

H. L. A. (Heard Liverpool Award) za stejných podmínek pro posluchače.

#### ZPRÁVY Z PÁSEM:

(čas v SEČ – kmotočty v kHz)

#### 14 MHz

Evropa: CW – UN1KAA na 14 050, UN1AE na 14 020, UP2AT na 14 085, IS1ZEI na 14 011, OY2H na 14 032, 9S4AX na 14 050. Fone: EA6AR na 14 135, SVOWQ na 14 175, LX3DL na 14 135, CT1GA na 14 155.

Asie: CW – YK1AT na 14 330 nebo 14 010 denně mezi 0700 a 0830 SEČ. JT1AA na 14 063 nepravidelně kolem 1500 SEČ a po 2400 SEC. OD5LK na 14 040 CR8AC na 14 048, ZC5AL na 14 023, 4S7WP na 14 048, VS9AG na 14 015, VU2CR na 14 045, VU2KM na 14 042, HL9KT na 14 020 kolem 1600 SEČ, HL2AJ kolem 1700 SEČ na 14 060. Fone: HS1A na 14 325, VS4JT na 14 305, YA1AA na 14 323, KA0SC na 14 310, VK9AD na 14 130, 4S7YL na 14 115, VU2BK na 14 120, VS6AZ na 14 305, OD5BZ na 14 180.

Afrika: CW – ZD4CB na 14 110, FB8XX na 14 039, FF8AC na 14 080, ZS3Q na 14 14 040, FQ8AP na 14 045, FB8ZZ na 14 040, ET2KY na 14 064, ZD4CM na 14 020, VQ5GC na 14 080, VQ6AC na 14 070, VQ6AB na 14 030 a VQ5GJ na 14 070. Fone: ZD3E na 14 180, I5FL na 14 160, ZE3JU na 14 130, SU1AD na 14 120, ZS2MI na 14 325, VQ6ST na 14 130 a EA8AI na 14 180.

Sev. Amerika: CW – W4FCB/KS4 na 14 074, OX3DL na 14 065, FY7YF na 14 005, HP1BR na 14 026, KH6RR na 14 050.

Již. Amerika: CW – VP8AO na 14 030, VP8CC na 14 055, PJ5CA na 14 040, CE0AC na 14 040 a VP8CT na 14 035. Fone: KH0AI na 14 108, PY2AK na 14 180.

Oceanie: CW – FO8AP ex FO8AP/MM na 14 340, FO8AG na 14 330 a FO8AO na 14 332, všechny po ránu kolem 0700 SEČ. ZK2AD na 14 040 xtal, ZK1AF na 14 027, ZK1AU na 14 347, VK0AB na 14 048, VR6TC na 14 020, YJ1DL na 14 022, FK8AS na 14 060, VK9SP na 14 045, VR2DB na 14 060 a VK0AS na 14 080. Fone: ZK1BS na 14 250, KH6IJ na 14 255, KS6AF na 14 260 kHz.

#### 21 MHz

Evropa: CW – M1H na 21 100, 9S4CH na 21 035, OY1R na 21 065, UR2AR na 21 050. Fone: YO3ZA na 21 200, I1CAQ na 21 150, GW3CDP na 21 270, GM3DHD na 21 220, GI2HML na 21 175, UR2KAA na 21 155, TF2WBZ na 21 230, ZB1HKO na 21 400, UB5KIA na 21 235, OZ3Y na 21 210, SV1AB na 21 190, HB9JZ na 21 120 a UA1CK na 21 245.

Asie: CW – XW8AG na 21 045, fone: MP4BCC na 21 205, BV1US na 21 280, KR6DR na 21 230 MP4BBL na 21 300 a KA2MA na 21 160 SSB.

Afrika: CW – FQ8AU na 21 110, fone: ZD4CL na 21 190, CR4AD na 21 130, 5A1TB na 21 210, ZD4CH na 21 175, CR5SP na 21 280, VQ4RF na 21 170, EA8BF na 21 205, 5A5TH na 21 320, OQ5HP na 21 150, 3V8BW na 21 200, ZS6UR na 21 185, FF8GP na 21 240, ZD4GK na 21 162, ZD2FNX na 21 205.

Sev. Amerika: CW – KL7BKN na 21 080, VP9DL na 21 070, KH6KC na 21 050. Fone: KH6IJ na 21 200, VP9CY na 21 220, CO2BL na 21 175, VP6FR na 21 210, TG9AD na 21 170, PJ2AV na 21 165, a v amer. fone pásmu KP4YT, KL7RZ, KL7WAH, KL7CDH, KL7AZN, KL7FAY, KL7BHE, KL7AZI a KL7ALZ.

Jižní Amerika: Fone – KC4USW na 21 428, KC4USB na 21 435, CX2CO na 21 230, HC1FS na 21 150, ZP5CG na 21 245 a CE3DY na 21 234.

Oceanie: CW – WOBLV/KG6 na 21 090 a fone VR2DB na 21 310 a ZK1BS na 21 190.

#### 28 MHz

Evropa: Fone – HB1UE/FL na 28 230, TF2WCD na 28 300 a CT1HB na 28 250.

Asie: JA3AB na 28 120 na CW a ZG6UNJ na 28 420 a 28 650 fone.

Afrika: Fone – ZS8I na 28 295, ZS9G na 28 300, VQ2NS na 28 230, EA9BK na 28 240 a CN2AD na 28 210.

Sev. Amerika: CW – VP7NM na

28 070, a fone VP5BL na 28 300, VO1DX na 28 400, VP5CM na 28 350 kHz.

Již. Amerika: Fone – HK7AB na 28 210, ZP5CF na 28 150.

Oceanie: Fone – ZL1PA na 28 250, ZL1IY na 21 275, VK4DD na 28 250.

#### RŮZNÉ Z DX – PÁSEM:

HV1AA – Vatican bude v telegrafní části CQ Contestu a další 2 nebo 3 dny fone.

CT1BQ bude vysílat z GR1O (Timor) již v nejbližších dnech a sice jen na 21 a 28 MHz fone.

Naše stanice v Mongolsku JT1AA používá v poslední době také xtal 14 093, protože v blízkosti 14 062 pracuje silná komerční stanice.

CN8MM měla spojení s první pravou vatikánskou stanicí. HV1CN používá BC610 s 300 W na 14 MHz fone.

XW8AB skončil vysílání z Laosu. Jeho poslední spojení byl K2OEA.

Naše stanice v Syrii YK1AT splnila podmínky pro WGDXC diplom. WAS bude dokončen v nejbližší době.

Známý KV4AA, redaktor DX-rubriky CQ Magazinu, resignoval. Nepohodl se totiž s vydavatelem CQ, Wayne Greenem W2NSD, ve věci příprav další DX-expedice YASME. DX-rubriku prezentoval W4KX.

YASME III. Jak víte, Danny, ex VR1A po ztrátě své první yachty Yasme v Tichomoří pořádal po USA přednášky a vystoupení v různých TV, čímž si vydělal na Yasme II. Vypravil se do Anglie a ve Skotsku koupil vhodnou starší loď. Odtamtud plul do svého domova v Hampshire. Po cestě zastavil v přístavu Holyhead, aby doplnil zásobu paliva. Dopravil sud benzínu na palubu a 20 gallony naplnil první nádržku. Když začal plnit druhou, nastal v podpalubí ohromný výbuch, který vyhodil celou palubu do vzduchu. Danny byl zachráněn poběžným hasicím členem a dopraven do nemocnice. Jeho zranění bylo lehké. Loď shofela ale byla kryta pojistěním. Pojistka již byla vyplacena a Danny kupuje YASME III, po které podnikne novou radiou expedici po ostrovech Tichomoří. Při první expedici kolem světa YASME I urazila s Dannym, jako jediným mužem posádky, 43 000 námořních mil, dokud nenarazili na korálový útes. Tehdy byl Danny zachráněn letadlem australské pobřežní hlídky.

Známý německý amatér DL1CU ztratil koncesi. Zastával názor, že profesionální stanice nepatří do amatérských pásem. V jeho případě vysílač Monte Carlo a Paris International v 7 MHz amatérském pásmu. Napsal oběma stanicím, ale Monte Carlo odpovědělo, že může vysílat, kde se jim libí. Situace se od té doby přiostřovala, až se věc dostala na mezinárodní základnu, a Francie žádala, aby DL1CU ztratil koncesi. A on ji opravdu ztratil. Již se podnikají kroky na jeho záchrannu.

OK3KAB dosáhla od května t. r. 54 nových zemí. Zaslali mi také pěknou zprávu o poslechu DX.

Pásmo 28 MHz je někdy krásně otevřeno. Dne 18. 10. 57 se mi mezi 1100 a 1200 SEČ podařil WAC-Fone za 58 minut: 4XRIX, ZL1CA, VO1DX, FA8RJ, TF2WCD, KH7AB.

Co Ham-Spirit není: Odpoloucháno na pásmu 21 MHz při posledním Fone CQ-Contestu v říjnu t. r. Obě pražské

stanice nazveme OK1XY a OK1XYZ. Stanice OK1XY jede v závodě soutěžné, stanice OK1XYZ „jede po něm“ a jak se říká „obiluje“, t. j. čeká jen na „nové země“ pro DXCC. Jakmile OK1XY dokončí soutěžní spojení, vpadá na tomtéž kmitočtu OK1XYZ, v případě, že protostanici potřebuje pro DXCC a volá ji bez ohledu na to, že další DX stanice volají OK1XY v závodě. Stanice OK1XY dostává od BV1US (Formosa) kontrolní skupinu 5725. OK1XYZ volá do toho, ale nedovolá se. OK1XY přeladí o 50 kHz výše a dává „CQ DX Contest“. Přichází na výzvu Hawai KH6IJ a dává report 5731.

Na tomtéž kmitočtu volá ZK1BS Cookovy ostrovy a dává report 5932. Spojení ukončeno a volají další stanice. V tom vypadá do toho OK1XYZ (anž by alespoň řekl: „dovol, počkej, potřebuji ho . . .“) a volá ZK1BS. Jednou, dvakrát . . . ale žádná odpověď. Mezičím OK1XY čeká trpělivě na kmitočtu a když vidí, že ZK1BS stanici OK1XYZ neslyší, řekne stručně: „asi přeladil a neslyší Tě. Ale prosím, dej mi kontrolní skupinu Ty, potřebuji spojení s OK jako násobič do závodu. Číslo pro Tebe 5915.“ A nyní věřte svému sluchu nebo nevěřte – OK1XYZ zapne vysílač a pln zloby a závisti, řekne: „Nemám rájem.“

Tedy toto Ham-Spirít není, nemluvíme-li o hrubosti, neslušnosti a jiném. Přistě se pokusím uvést několik případů na ukázkou opravdového HAM SPIRITU.

Z oběžníku QMF anglického telegrafního klubu TOPS se dovídáme, že známý novozélandský amatér a účastník všech mezinárodních závodů ZL3JA zmírel. Další ztichlý klíč.

**SPUTNIK II.** Tentokrát byli amatéři celého světa organizováni připraveni. Jíž prvního dne po vypuštění druhé umělé družice sovětskými vědci jsme na každý dotaz o slyšitelnosti dostali od-kudkoliv ze světa jasnou odpověď: bud „neslyším“, nebo když ano, tedy „tak a tak, v tolik GMT“ atd. Tentokráté nebylo již třeba žádného dalšího vysvětlování. Mimo podaného reportu říká koupř. K2LGS z NEW YORKU: „regarding the Sputnik 2 it is a fine business scientific achievement . . .“ K2BZT ze státu New Jersey: „Sputnik 2 is a tremendous and marveleous scientific achievement . . .“

Ještě něco veselého: W8DAW podává report o poslechu Sputnika dne 6. 11. 57 a hlásí od 15,07 do 15,22 GMT s max. S 5, opět od 16,52 do 17,07 GMT s max. S 5 atd. Pak ale říká: „Jednomu vědec-kémú ústavu v Texasu se prý podařilo rozluštit kod pro tlukot srdce, krevní tlak atd., vysílaný Sputníkem o zdravotním stavu psa. Je zde ale mnoho divokých pověsti. Tak ku př. jeden zdejší amatér řekl, že zaslechl ve vysílání Sputníka štěkot psa a že to má nahrané na magnetofonu. Získal tím velkou popularitu ve všech novinách ovšem jen do dneška, kdy Rusové řekli, že žádný mikrofon ve Sputníku není.“ Hi!

OK1MB

### ČAS - ČAS - ČAS!

To je to jediné, co QSL služba v prvé řadě potřebuje, a proto ruku na srdce: nezasíláte snad i Vy své QSL jen tak, co deník dal?

Neděláte to snad také jako na př.

**2KBE?** Ta zaslala na počátku července t. r. dvě zásilky QSL a to 6 kg a 2 kg. Při otevření 6 kg zásilky skvěl se na prvním, asi „čestném“ místě, lístek z 1. I. 57! Také dodržování ustanovení, které je dokonce na každém lístku pro OK kroužek otištěno. Pro QSL službu bylo v dané chvíli nejdůležitější, co počít s takovouto zásilkou! Třídit ji, když jsou lístky seřazeny každý pes jiná ves, ale tím současně důkladně zpozdit odeslání QSL poctivým a pořádným? Nebo zásilku odložit? Lístky jsou z počátku roku, každý na ně čeká – opravdu těžké rozhodování! Vy poctiví a svědomití, nekamenujte QSL službu za to, že Vám Vaše zásilky zpozdila, a posudte její rozhodnutí spravedlivě. Jistě uznáte, že nyní se nebude moci nikdo vy-

mlouvat, že mu o zaslání QSL toho mnoho známo nebylo! ZO, co říkáte svým RP-RO-PO? A co vy, novopečení OK? Nemyslité, že i Vy přiděláváte zbytečnou práci QSL službě, když Vám musí být vraceny lístky jen proto, že tam bylo opomenuto razítko, podpis a pod.? Před odesláním zkontrolujte své QSL! Tak bylo možno pokračovat ještě velmi dlouho a proto QSL služba ubezpečuje, že zásilky, které nebudou odpovídat ať již dříve známým nebo zde uvedeným pokynům, uskladní na ÚRK. Teprve o odbavení zásilek svědomitých soudruhů budou moci být zpracovány, případně vráceny zpět jako zásilky, neodpovídající uvedeným pokynům!

F. Henyš, QSL-manager



## SOUTĚŽE A ZÁVODY

### Rubriku vede

Karel Kamínek, OK1CX

Limitu 1000 bodů dosáhly ještě stanice: OK2KEH-4456, OK3KBT-4446, OK1KFL-4446, OK2KYK-3903, OK2KRG-3884, OK1BP-3870, OK1KDQ-3738, OK2NN-3712, OK1KPB-3648, OK1KPJ-3648, OK1EV-3588, OK1KKJ-3564, OK1KLV-3456, OK3KFY-3438, OK1GS-3434, OK2KFP-3381, OK2HT-3348, OK1GH-3330, OK1KOB-3324, OKIKKS-3222, OK1KCI-3099, OK3KAP-3078, OK1QS-3023, OK1JH-2754, OK1KKR-2562, OK1TB-2322, OK1KCS-2256, OK1KCR-2227, OK1KDR-2147, OK2KEJ-2124, OK2KDZ-2079, OK2KCE-1819, OK3KHE-1479, OK1KHH-1440, OK1KCZ-1372, OK1YG-1309, OK2KZC-1104, OK1KNT-1080.

b) pořadí stanic na pásmu 1,75 MHz (3 body za 1 potvrzené spojení):

| Stanice    | počet QSL | počet krajů | počet bodů |
|------------|-----------|-------------|------------|
| 1. OK1EB   | 62        | 16          | 2976       |
| 2. OK1KKR  | 61        | 14          | 2562       |
| 3. OK2KEH  | 42        | 12          | 1512       |
| 4. OKIKUR  | 41        | 11          | 1353       |
| 5. OKIKSP  | 40        | 11          | 1320       |
| 6. OK1KLV  | 34        | 12          | 1224       |
| 7. OK2KTB  | 34        | 12          | 1224       |
| 8. OK2KYK  | 32        | 11          | 1056       |
| 9. OK2KBE  | 33        | 9           | 891        |
| 10. OK1KDQ | 30        | 9           | 810        |

Na 11. místě je OK1KAM s 630 body. Ostatní stanice nedosáhly ještě limitu 30 QSL.

c) pořadí stanic na pásmu 3,5 MHz (1 bod za 1 potvrzené spojení):

| Stanice   | počet QSL | počet krajů | počet bodů |
|-----------|-----------|-------------|------------|
| 1. OK2KZT | 314       | 18          | 5652       |
| 2. OK3KES | 260       | 18          | 4680       |
| 3. OKIKSP | 273       | 17          | 4641       |
| 4. OK2KFK | 254       | 18          | 4572       |

Výsledky našich stanic svědčí o mizivé účasti našich stanic. I když se tento závod konal týden po Polním dni, mohl být mnohem lépe obsazen. Neúčast je až zarážející. Rádi bychom věděli, jak vám vyhovovaly podmínky tohoto závodu; na-pište nám.

Jiří Helebrandt

### „OK KROUŽEK 1957“

Stav k 15. říjnu 1957

a) pořadí stanic podle součtu bodů ze všech pásem:

| Stanice    | bodů |
|------------|------|
| 1. OK3KES  | 8028 |
| 2. OK1EB   | 6904 |
| 3. OK1KSP  | 6819 |
| 4. OK2KZT  | 5652 |
| 5. OK1KHK  | 5304 |
| 6. OK2KBE  | 5037 |
| 7. OK1KUR  | 4945 |
| 8. OK2KTB  | 4640 |
| 9. OK2KFK  | 4572 |
| 10. OK1KAM | 4500 |



Zářízení stanice OH0RD na Aalandských ostrovech.

|           |     |    |      |
|-----------|-----|----|------|
| 5. OK3KBT | 247 | 18 | 4446 |
| 6. OKIKFL | 247 | 18 | 4446 |
| 7. OK2KBE | 225 | 18 | 4050 |
| 8. OK1BP  | 215 | 18 | 3870 |
| 9. OKIKAM | 215 | 18 | 3870 |
| 10. OK2NN | 207 | 18 | 3712 |

Následují s nejméně 50 QSL:

OK1KPB-3648, OK1KKJ-3564, OK1KUR-3492, OK3KFY-3438, OK1GS-3434, OK1KH-3420, OK2HT-3348, OK1GH-3330, OK2KRG-3312, OK1KKS-3222, OK2KFP-3132, OK1KPJ-3114, OK3KTB-3096, OK3KAP-3078, OK1KCI-2952, OK2KEH-2844, OK1JH-2754, OK2KYK-2737, OK1KOB-2700, OK1EV-2664, OK1KDQ-2560, OK1EB-2466, OK1TB-2322, OK1KCS-2256, OK1KLV-2232, OK1KCR-2227, OK1QS-2159, OK1KDR-2147, OK2KEJ-2124, OK2KDZ-2070, OK2KCE-1819, OK3KHE-1479, OK1KHH-1440, OK1KCZ-1372, OK2KZC-1104, OK1KNT-1080, OK1YG-781.

d) pořadí stanic na pásmu 7 MHz (2 body za 1 potvrzené spojení):

| Stanic     | počet QSL | počet krajů | počet bodů |
|------------|-----------|-------------|------------|
| 1. OK3KES  | 74        | 18          | 2664       |
| 2. OK1EB   | 43        | 17          | 1462       |
| 3. OK1KH   | 39        | 13          | 1014       |
| 4. OK1EV   | 33        | 14          | 924        |
| 5. OK1KSP  | 39        | 11          | 858        |
| 6. OK1QS   | 32        | 12          | 768        |
| 7. OK2KRG  | 22        | 13          | 572        |
| 8. OK1KPJ  | 24        | 11          | 528        |
| 9. OK1KDQ  | 23        | 8           | 368        |
| 10. OK2KTB | 20        | 8           | 320        |

Pro nezašlané hlášení po 60 dnech vypadly ze soutěže do jeho obnovení stanice: OK2KLI, OK2UC, OK3KFE, OK2HW, OK2KZO, OK2KBR, OK2KFT a OK1KDC. Škoda ...

#### ZMĚNY V SOUTĚŽÍCH OD 15. ZÁŘI DO 15. ŘÍJNA 1957

„RP-OK DX KROUŽEK“:

II. třída:

Diplom č. 21 získal Jindra Günther z Prahy, OK1-5873.

III. třída:

Další diplomy obdrželi: č. 98 Karel Kunc, Znojmo, OK2-1487, č. 99 František Ruský, Olšany, p. Ruda nad Mor., OK2-4620, č. 100 L. Kohout, Praha, OK1-5978, č. 101 Jiří Taufner, České Budějovice, OK1-5695, č. 102 Ladislav Dušička, Panská Ves, okr. Doks, č. 103 Ivan Kunc, Praha, OK1-1726.

„S6S“:

V tomto období došlo nám 23 žádostí o diplom CW a 9 žádostí o diplom FONE. Byly to (v závorce pásmo doplňovací známky): CW - č. 377 K6KME z Kalifornie (14), č. 378 HA5BT z Budapešti (14), č. 379 OZ3GW (14), č. 380 OZ2KK (14), č. 381 OZ7BW, č. 382 OZ4PM, č. 383 OZ9KF, č. 384 OZ7CF (14), všechna na společnou žádost, z Kanadě. Dále č. 385 OK3HF z Bratislav (14), č. 386 OK3WW z Trnavy (14), pak č. 387 ON4FP, Lovaň (14), č. 388 W7ULC, Wash., č. 389 SM5DX (14), č. 390 YO8CF a č. 391 YO8MS, oba z Iasí,



č. 392 DLIYA z Mnichova (všechny známky od 3,5 do 28 MHz!), č. 393 UL7AB (14) za dřívější činnost v Alma-Atě, č. 394 OK2KYK, ORK Kyjov (14), č. 395 SP9EU z Katovic (14), č. 396 UA0SK (14), č. 397 DM2ACB (14) a č. 398 DM2ADJ (14) oba z Schwerinu, č. 399 W9SZR, Wisconsin, FONE - č. 58 OZ9SK (28), č. 59 W7UGQ z Oregonu (21), č. 60 YO2VI (14), č. 61 DL1YA z Mnichova, č. 62 ZP5CF (21) a č. 63 ZP5ET, manželé Domroví z Asuncionu, č. 64 WIOHA, Mass., č. 65 K9ALP z Wisconsinu (21), č. 66 SP5HS z Varšavy (14).

Doplňovací známky dále dostali: OK1VU k č. 98 CW za 21 MHz, OK1KMF k č. 352 za 14 MHz, DM2ABL k č. 77 CW za 3,5, 7 a 21 MHz.

„ZMT“:

Bylo vydáno dalších 9 diplomů od č. 98 do č. 106 v tomto pořadí: SM5LL, OK1KDR, DLIZN, OK1VA, HA5BI, DM2ABL, OK3KMS, OK1NS a OK2KJ. Uchazečtí došlo k zvýšení u těchto stanic: OK1SV má již 38 QSL, OK2KTB 37, OK3KES 35 a OK1EV 30.

„P-ZMT“:

Nové diplomy byly uděleny stanicím: č. 163 UA3-366, č. 164 SP8-100, č. 165 OK1-17140, č. 166 OK1-5643, č. 167, SP9-529 a č. 168 SP8-530.

Mezi uchazeče postoupily stanice OK3-7773 a SP2-202 s 23 QSL, OK1-8936, OK2-7890 a

DM0-611/L s 22, OK2-1487 s 21 a OK1-2927 s 20 listky.

„100 OK“

V tomto období bylo odesláno dalších 6 diplomů: č. 55 OE3RU, č. 56 SP9EU, č. 57 UB5CI, č. 58 DM3KNN, č. 59 DM3KEN a č. 60 SP3DG.

„P-100 OK“:

Další diplom č. 58 dostal DM0 249/L.

**Zajímavosti a zprávy z pásem i od krabu**

Novou „zemí“, na kterou byla od 4. října t. r. soustředěna pozornost a která zatím neposílá QSL-listky ani za částý poslech, jsou – družice. Děkujeme všem za podání poslechové zprávy. Došlo jich dost a byly odevzány příslušným vědeckým ústavům, kde byly se zájemem a s díkem všem povzatovatelům přijaty. \*

Stěžuje si oprávněně stanice OKIKFL: „do OKK pracováno na 3,5 MHz s 391 stanicemi, to by bylo 7038 bodů, kdyby ovšem stanice posíaly QSL's. Sro...“ Divíte se? Zatím totiž dostala 247 QSL, což je 446 bodů. Chybí tedy 144 listků a 2592 bodů. Kdo je vine? Ozvete se? Součet se blíží ke konci, jež regulérnost ohrožena, ale náprava je možná: POSENTE IHNEQ QSL. Máme zde těch stížnostních dopisů celou řadu a některé stanice se opakují v tomto seznamu „vinníků“ příliš často. Nebo chcete být mezi těmi, co budou při ukončení soutěže také „vyhodnoceni“? S příslušným poděkováním budeme jmenovat.

Již před časem jsme se zmínili, že podle připomínek z řad amatérů dojde v roce 1958 k některým úpravám a změnám v pravidlech našich soutěží. Jako obvykle ty nejdůležitější budou otištěny v 1. čísle Amatérského radia roč. 1958, podobně znění pak bude uveřejněno ve zvláštním sesítce, který bude stanicím rozesílán. Zatím snad stručně informace.

„OKK 1958“ bude zase na pásmech 1,75, 3,5 a 7 MHz. Soutěžit se bude o největší počet bodů součtem z všech pásem. Spojení navázávaná mezi OK – stanicemi v mezinárodních závodech nebudu pro OKK hodnocena. Změna v bodování projeví se na 7 MHz, kde za 1 QSL budou počítány 3 body. Pro stanice jednotlivých tří. C na pásmu 1,75 MHz bude spojení hodnoceno dvojnásobně, t. j. 6 bodů. Nejdůležitější změna je však v násobitelsích, kde dosavadní kraje budou nahrazeny okresy. Podrobné podmínky povídá vice.

V soutěži „RP-DX KROUŽEK“ došlo ke změně v pravidlech pro I. třídu: bude stačit 75 okresů z 19 krajů ČSR a 125 zahraničních listek. II. a III. třída zůstávají bez změny.

„P-100 OK“ bude moci získat i domácí poslušnáček za 100 QSL československých stanic ze 160 m. Totéž platí a pro vysílání v soutěži „100 OK“.

Pravidle ostatních dlouhodobých soutěží se v zásadě nemění. Zato došlo podle připomínek ke značným změnám v krátkodobých závodech, pořádaných Ustředním radioklubem. O těch však najdete informace v sesítce, který bude rozesílat Ustřední radioklub. Pokud jej do konce prosince neobjednete, napište si přímo URK.

Hlášení na předepsaných tiskopisech se budou tykat opět jen „OKK 1958“. Budou zaslány do savadním účastníkům, ostatní zájemci si napiší URK.

Jestě několik poznámek o změnách v našich stanicích. Tak OK2KLI dokončil stavbu nového vysílače pro pásmo 3,5, 7 a 14 MHz. Tx: Clappa-fa-id-pas, input 50W, ant: 40 m Fuchs pro 40 a 80 m, VS1AA pro 20 m. Směrována na obě Ameriky. Výsledek: přes 400 QSO v několika dnech ve směru LU/PY a W/VE. Z vznášejících: PJ2, TI, YV, KP4, KZ5, KG6, KH6, KL7 a HI8. Dál YK, UA0, VQ2, OQ5, ZS, XZ, VS1 a četné VK a ZL. Podmínky diplomu WVDXC splněny během 2 týdnů (same W7) – OK2-1487, Karel Kunc, Znojmo, dostal holandský HEC. – OK3-7347, Otto Chudý obdržel z Japonska HAC a posluchačský AJD č. 2. – FB8BI, ostrov Juan de Nova plati jen pro DUF, nikoliv jako nová zem – OK3KES má nová potvrzení z JA2, UA0 a FA9 – OK1SV představuje PA na 2 x LS50. OK1EV má hotov WAYUR, jen listky chybí – OK1KKY získala první v OK diplom „DLD 100“ – OK2-5663, Jirka Peček obdržel RADM IV. č. 41, česká na švédský HAC. A co je nového u vás? Těšíme se na zprávy

OK1CX

R. Štechmiller, O. Peukert, D. Loučková:

**Naše automobily včera**

(Mladá fronta, vůz. Kčs 61, —)

Není to jen přehled vývoje automobilů, jeden z těch desítek přehledů zpracovaných bud cítě

**PŘEČTEMĚ SI**



## Neyaproměňte, že

### V PROSinci

se osmého koná mezinárodní radiotelegrafní závod

### OK-DX CONTEST 1957

Vzhledem k tomu, že toto je první závod toho druhu, pořádaný československými amatéry, je morální povinností všech svazarmovských radioamatérů postarat se o jeho úspěch jak propagací na pásmech, tak účasti 8. XII. od 0000 do 1200 GMT na pásmech 3, 5, 7, 14, 21 a 28 MHz. Blížší podmínky byly otištěny v Amatérském radu č. 9/57 na str. 261.

Osmého musí éter hřmit výzvou „TEST OK“!

- .... 26. uspořádají kraje závod operátorů VKV na 145—420 MHz.
- .... koncem měsíce je třeba obnovit předplatné na Amatérské radio pro příští rok u poštovního doručovatele nebo na poštovním úřadě! Tato péče se Vám vyplatí, neboť budeš mít zaručen celý ročník a nebudete musit shánět jednotlivé chybějící sešity. Proto — uzel na kapesník!
- .... redakce nemá na skladě starší sešity. Chybí-li Vám některý sešit z roku 1957 na zkomoletování ročníku, nepište redakci, ale obraťte se jedině na Poštovní novinovou službu, která provádí distribuci našeho časopisu. Informace podá poštovní úřad — PNS.

s hlediska techniky nebo také – jako přívažek – s uměleckými aspiracemi. Autotí samozřejmě nemohli pomínit vývoj samohybného vozidla ze šlapacích tříkolek přes roztodivné tvary secesních kočárovitých rámcůmých nespolehlivých a nenáviděných dábelských vozidel, vytřásajících kníraté příšery s vyboulenýma očima a zanásečicími mladistvým pel spanilomyslných dam centimetrovou vrstvou prachu. Vynechat tento úsek není myslitelné ani s hlediska spisovatele, jemuž poskytuje období secese svým překotným technickým vývojem nepřeberné možnosti nečekaných obratů, ani s hlediska ilustrátora, jehož štětec si pochutná na rozpačité symbioze makartovské módy se strohou účelností lomených hřídele a ojnice. Není to myslitelné ani s hlediska čtenáře, zvláště má-li smysl pro humor, cítit by se o všechny tyto požitky osízen.

Tato kniha jde však přes pohrávání se secesí trošku dál, na historii vývoje našich tří vedoucích automobilek (Kopřivnice, Mladá Boleslav, Vysoké Mýto) a řady drobnějších výrobců, ještě dnes známých firem i dánou zapomenutých značek, je ukázaný vzájemný vliv nového technického oboru na okolo a naopak, vliv sportovních podniků, administrativních opatření, daní, nových vynálezů zdánlivě s automobilem nesouvisících na rozvoj průmyslu a vznik nových společenských problémů. Snad právě proto je dobré, že kniha o automobilovém včerejšku končí rokem 1922, kdy se uzavřelo hrdinské období vývoje automobilu a nový dopravní prostředek se stal součástí všedního života, tak běžnou jako je sluneční světlo, práce a spanek a automobilem...

Škoda jen, že takový hrdinský zpěv nebyl ještě složen také na radio, jež převrátilo svět ještě revolučně než svého času automobilem.

Ing. Dr Aleš Boleslav: Reproduktory a ozvučnice.

Vydáno v SNTL 1957, 178 stránek, 149 obrázků, cena Kčs 4,44.

Knižka správně začíná výkladem základních pojmu akustiky, jako je intenzita zvuku, hlasitost, mechanická impedance. Dále jsou uvedeny a vysvětleny základní matematické vztahy, popisující činnost přimovýzařujících reproduktorů a z toho plynoucí deformační charakteristiky. V knize jsou uvedeny vztahy a popis různých elektromechanických měničů a podobně popsáno konstrukční provedení přimovýzařujících elektrodynamicálních reproduktorů.

V oddílu knížky, věnovaném reproduktoričkám ozvučnicím, vychází autor z vlastnosti ozvučnic deskových a přechází k popisu vlastnosti ozvučnic složitějších. U každého typu je uvedena i kmitočtová charakteristika a náhradní schema. Kmitočtové charakteristiky reproduktoriček Tesla s obvodem m-V u zazářené skříně jsou ostatně jediným údajem o vyráběných reproduktorech vůbec. Je škoda, že autor nevedl podrobnější údaje o všech vyráběných reproduktorech Tesla; praktická cena knížky by tím ten stoupala. K oddílu věnovanému ozvučnicím m-V nutno upozornit na to, že i textilní materiály (plst, flanel) mají akustický odpor závislý na rychlosti proudění. Rovněž popsané metody měření akustického odporu poréřených materiálů, první tohoto druhu u nás, zjistění této závislosti neposkytuje. V dalších odstavcích jsou popsány soustavy reproduktoriček, reproduktory neprimitivní využívající (se zvukovodem), koaxiální. Závěr knížky tvoří popis měření vlastnosti reproduktoriček a ozvučnic s příslušnými schématy a výpočty.

Celkově možno říci, že knižka poskytuje dobrý přehled i praktické pokyny o reproduktorech a ozvučnicích, takže bude dobrou pomocíkem nejen pracovníkům v oboru elektroakustiky, ale i amatérům.

Kr.

## Novinky Našeho vojska

**Dr G. Niese: FYSIKA V THEORII A PRACTICE**  
V čem spočívá přístupnost, obsažnost a poupatovost této knížky, která dosáhla v NDR velkého úspěchu a byla tam vydána již čtyřikrát? Především v tom, že ji autor napsal velmi populární formou, takže ji porozumí každý, kdo se jen trochu o fyziku zajímá, kdo sice zná nejrůznější technická zařízení a jejich činnost, pracuje s nimi, ale nedovede si vysvětlit procesy, které mnohdy sám při výrobě uskutečňuje, nechápe však při tom zákonitost určitých dějů. Tak se tu zájemci seznámi se základy mechaniky, akustiky, nauky o teple, světle, magnetismu, elektřině, o energii vůbec a konečně poznají i principy atomové fysiky.

## ATOM A JADERNÁ FYSIKA

V této zajímavé, populárně vědecké publikaci se dozvijí zájemci mnoho podrobností z oboru atomistiky. Je zde nastíněn vývojový směr cesty k objevení atomové energie, jednotlivé články významných vědeckých pracovníků osvětlují stavbu hmoty, pojem hustoty a energie, fyzikální základy jaderné energie, podstatu jaderních reaktorů, za-

řízení elektráren, další se zabývají jadernými palivy, využitím radioisotopů a perspektivami využití atomové energie v budoucnosti.

**Upozorňujeme, že kniha A. Rambouska – Amatérské páskové nahrávače vyšla v Našem vojsku v II. doplněním vydání. Vázaná Kčs 19,40.**

## ČETLI JSME



Radio (SSSR) č. 10/57

Důstojně uvítáme všeobecný sjezd DOSAAF – Hudba v červnu – Uvádí televizní vysílač Stalingrad – Úloha radioamatérů v DOSAAF – Práce svépomocného radio klubu – Přípravy na všeobecnou výstavu radioamatérských prací – 8. prosince závod žen – Ve všem se opírat o aktív – Setkání na Festivalu – V červnu musí být významný pořádek! – Význam elektroniky pro obranu – Automatické navádění – Vysílač pro 144 MHz – Telegrafní klíč a paměti – Hon na lišku – Kapesní Z-metru – Typisované studiové zařízení TV – Transistorový měnič pro napájení bateriových přijímačů – Bateriový přijímač Nov. – Rozmístění součástí a montáž televizorů – Resonanční měření pomocí přijímače – Jak zacházet s transistory – Autotransformátor APH-250 – Bukurešťský televizní vysílač – Nové radiotechnické materiály a jejich vlastnosti – Elektronika pomáhá studovat cizí jazyky – Magnetofony na pařížském veletrhu – Nová zapojení televizorů – Novinky ze zahraničí.

## Malý oznamovatel

Tisková řádka je za Kčs 3,60. Částku za inserát si sami vypočtejte a ponákejte na účet č. 44.465-01/006. Vydavatelství časopisu MNO, Praha II, Vladislavova 26. Uzávěrka vždy 20. t. j. 6. týdnů před uveřejněním. Neopomeňte uvést prodejní cenu. Insertní oddělení je v Praze II, Jungmannova 13, III. p.

### PRODEJ:

**Magnetofon podle RKS bez mot., zasil. bez elektr., v kufru i jednoti.** (800). Vše P800, CO257 AZ11, 12D60 (à 10), P700, P2 (à 15), 3A4, EL3, EL6 (à 20), log. prav. Faber (90). M. Aichinger, U obec. dvora 2 Praha I.

**100 mA-meter** 125 × 115 dl. škály 90 (300), 5 × 6X4, 5 × 6X3II (à 20), všecko nové. Podolský, Svátopluková 13, Košice.

**2× EBL1, E446, AK1 (30), AF2 (20), 2× RBS964, AS4105, AL1, EK2, 506 (15).** J. Valík, hl. nádr. Prostějov 2.

**Krátké vlny** roč. 48–49–50–51 vž. (130), RA 1940 41–42–43–44 vž. (160). Sděl. technika 53–54 vž. (120), 55–56 neváz. (96). Amatér. radiotech. I. a II. díl (135). Srážský zákl. radiotech. 2 díly (80) nebo vým. J. Holub, Hlinsko v Č. 387.

**RA 1937–1951, AR 1952–1957, KV 1946–1951,** 20 roč. v celoploš., 4. roč. v poloplošné výzvě, 3 roč. v sesítech, vše bezv. (958), LB8 (120). J. Petzold, Ul. 5, května 29, Praha-Pankrác.

**Kompl. stavebnice televizoru podle RKS 1/56** 16 elektr. včetně 25QP20. Z větší části zapojeno (1300). 5 × AF100 (90). J. Korec, Gottwaldov I, Stalinova 3250.

**EZ6 s elin.** (800 a 150), E10aK s elin. ve spol. skříní (600), 2 el. konvertor pro 40, 20, 15, 10 m k E10aK (400), bfo k vestavění do rozhl. přij. (150), 3 ks mf trifa 110 kHz (à 25), 2 ks 1,6 MHz (à 25), GDO rozsah 5–170 MHz (400), kostra z Torn. Eb s kar. lad. kond. a skříní (350), el. 3 × Rens 1264 (20), 4 × 6AC7 (30), 3 × EF14 (30), 2 × RV2,4P45 (25), EC50 (50) nové nepouž. Známky na odp. Ing. J. Kraus, Turnov, Čs. dobr. 1018.

**Magn. hlava** Weda, nahrávací, mazací, přední, s ochr. stín. krytem, orig. tov. výrobek (450), spec. motorek 220 V 0,21 A k pohonu magn. s 1 roč. zárukou (225), obojí dosud nepoužito a tov. výrobky NDR Vitovský, Uh. Hradiště 138.

**Magnetofony**, stavebnice pro rychlosť 9,5 cm kompletně s montovanou mechanikou s magnetickým ovládáním, rychle převijením dopředu i dozadu, stop tlacičkou, včetně hlaviček, relé, trafa, cívek panehu, štítků, stínících krytů, hotových kostér s destičkami na zesilovací a napájecí, s plánekem zesilovací se všemi hodnotami a foto, zaručený výsledek (1680). J. Hrdlička, nf laboratoř, Praha I, Rybná 13, tel. 62841.

**Čas. Funktechnik** roč. 53, 54 (à 120), skřínka Avometu s přepinači a usměr. (80). J. Korec, Gottwaldov I, Stalinova 3250.

**Elektr. V-metr** Modrý bod 0,2–150 V 30Hz ± 100 MHz (430), SG50 seřízený (600), cívka, soupr. Mir (70), dílen. wattmetr (200), růz. trafo a elektronky. S. Nečásek, Na Zderaze 12, Praha 2.

### KOUPĚ:

**Inkurant.** vysilač 30WSa ossz. 3 × P35, T15, P2000 v bezev. stavu, případně i pokázený. RG12D60, P2000, LD15 s pat. Ing. E. Kůr, 2BEK, Vracov 1131.

**Sign. gen SG50**, Čs. přijimače. J. Tkadlík, Kostelec u Hl.

**Nf generátor a el. voltmetr Philips**, i vadny. František Kněž, Mezouň 130 p. Tachlovice.

**Elektronku BF8** len originálnu novú, 2 kusy a triál z EL10 z ozub. kolečkom. T. Červeňák, Košice, Leninova č. 65.

**Promítacíka 8 mm.** Horák, Trnava, Gottwaldov 18.

### VÝMĚNA:

**Radiosoučástky** vyměním za motovrak. J. Čermák, Bukovany č. 74 p. Kyjov.

### OBSAH

|                                                                                              |     |
|----------------------------------------------------------------------------------------------|-----|
| Odešel nám přítel . . . . .                                                                  | 353 |
| Jak na to? . . . . .                                                                         | 354 |
| Radiem za záchranu lidských životů. . . . .                                                  | 356 |
| Vyznamenání odznakem „Za obětavou práci“                                                     | 357 |
| V Pohroní. . . . .                                                                           | 357 |
| Vzor našich spojafů – sovětí vojáci . . . . .                                                | 355 |
| Přenosný nahrávač na baterie i na síť . . . . .                                              | 358 |
| Staňte se spojenci v úsilí za další rozmach vynalezeckého a zlepšovatelského hnutí . . . . . | 363 |
| Televizní přijímač Tesla 4102U Mánes . . . . .                                               | 365 |
| Ochrana polovodičových zařízení . . . . .                                                    | 368 |
| Abeceda . . . . .                                                                            | 369 |
| Přenosný vysílač pro spojovací služby . . . . .                                              | 371 |
| Budič pro amatérské vysílače . . . . .                                                       | 374 |
| VKV . . . . .                                                                                | 376 |
| Šíření KV a VKV . . . . .                                                                    | 378 |
| DX . . . . .                                                                                 | 380 |
| Součíže a závody . . . . .                                                                   | 382 |
| Nezapomeňte, že . . . . .                                                                    | 383 |
| Přečteme si . . . . .                                                                        | 383 |
| Četli jsme . . . . .                                                                         | 384 |
| <b>Malý oznamovatel</b> . . . . .                                                            | 384 |

Na str. III. a IV. obálky – listkovnice: hodnoty suchého článku se vzdutou depolarizací a střibro-zinkového akumulátoru.

Na titulní straně je obrázek přenosného magnetofonu, jehož stavba je popsána na str. 358.

Ve viku je mikrofon, stojánek pro něj, nad ním držák mazací hlavičky, vedle mikrofonu držák se zástrčkou, vpravo uchycení přívodních kabelů. Na panelu magnetofonu vlevo nahoru zemnické zdířka, otvor pro nastavení předmagnitisek šroubovákem, vlevo dole mikrofonní zásuvka, vedle páru zdířek pro přívod z přijímače a páru zdířek pro sluchátka nebo přívod do přijímače. Nad těmito je přepínač „reprodukce – záznam“ a regulace hlasitosti. Pod levým cívkovým kotoučem je brzdící plíšek a levá pomocná kladka. Vedle kladky dvě zdířky pro mazací hlavičku a dále společný kryt pro Z a R-hlavu. Pod hlavami je přepínač P2 a pravo P1. V pravo od hlaviček je hnací hřídel s příslušnou kladkou a dále druhá pomocná kladka.