Page: 1 of 24

FCC TEST REPORT

FCC ID : ZDFPE12001

Applicant : ARTURIA

Address : 4, chemin de Malacher 38240 MEYLAN FRANCE

Equipment Under Test (EUT):

Product Name : SPARK Creative Drum Machine

Model No. : PE12001 /SPARK

Standards : FCC PART15 SUBPART B

Date of Test : March 10~15, 2011 **Date of Issue** : March 16,2011

Test Engineer : Zero Zhou

Reviewed By : Philo.Zhong

Test Result : PASS *

Prepared By:

Zero Thru
Thelo zhous

Waltek Services (Shenzhen) Co., Ltd.

1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen 518105, China

Tel:+86-755-27553488

Fax:+86-755-27553868

* The sample detailed above has been tested to the requirements of Council Directives ANSI C63.4:2003. The test results have been reviewed against the Directives above and found to meet their essential requirements.

1 Test Summary

Test	Test Requirement	Test Method	Class / Severity	Result
Radiated Emission (30MHz to 1GHz)	FCC PART 15, SUBPART B: 2007	ANSI C63.4: 2003	FCC Part15.109	PASS
Conducted Emission (150KHz to 30MHz)	FCC PART 15, SUBPART B: 2007	ANSI C63.4: 2003	FCC Part15.107	PASS

2 Contents

1	COVE	R PAGE	
1	TEST SUN	MMARY	2
2	CONTI	ENTS	3
3	GENEI	RAL INFORMATION	4
		NT INFORMATION	
	3.2 Geni	ERAL DESCRIPTION OF E.U.T.	4
		AILS OF E.U.T	
		CRIPTION OF SUPPORT UNITS	
		NDARDS APPLICABLE FOR TESTING	
		FACILITY	
		LOCATION	
4	EQUIP	MENT USED DURING TEST	6
5	EMISS	IONS TEST RESULTS	8
	5.1 Coni	DUCTED EMISSION DATA	8
	5.1.1	E.U.T. Operation	8
	5.1.2	Measurement Uncertainty	8
	5.1.3	EUT Setup	
	5.1.4	Conducted Emission Test Result	
	5.1.5	Photograph- Test Setup for Conducted Emission	
		IATION EMISSION DATA	
	5.2.1	Measurement Uncertainty	
	5.2.2 5.2.3	EUT Setup	
	5.2.3 5.2.4	Spectrum Analyzer Setup Test Procedure	
	5.2.5	Corrected Amplitude & Margin Calculation	
	5.2.6	Summary of Test Results	
	5.2.7	Photograph – Radiation Emission Test Setup	
6	РНОТО	OGRAPHS - CONSTRUCTIONAL DETAILS	18
	6.1 EUT	- Front View	18
	6.2 EUT	- BACK VIEW	18
		- OPEN VIEW.	
		1 - Front View	
		1 - BACK VIEW	
		2 - Front View	
		2 - BACK VIEW	
		3- FRONT VIEW	
		3 - BACK VIEW CB4 - Front View	
		CB4 - FRONT VIEWCB4 - BACK VIEW	
7			23
,	ntt i	44 13 17.1	1.4

3 General Information

3.1 Client Information

Applicant: ARTURIA

Address of Applicant: 4, chemin de Malacher 38240 MEYLAN FRANCE

Manufacturer: Eolane Technology (Suzhou) Co. ,Ltd.

Address of Manufacturer: #49, 9 Dongfu Road, Dongjing Industrial Park, Suzhou

Industrial Park, Suzhou Jiangsu, China, 215123

3.2 General Description of E.U.T.

Product Name: SPARK Creative Drum Machine

Model No. : PE12001 /SPARK

3.3 Details of E.U.T.

Power supply: Powered by USB 5VDC

3.4 Description of Support Units

The EUT has been tested as independent unit.

3.5 Standards Applicable for Testing

The customer requested FCC tests for a SPARK Creative Drum Machine. The standards used were FCC PART 15 SUBPART B.

3.6 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• IC – Registration No.: 7760A

Waltek Services(Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration No.:7760A, August 3,2010.

• FCC – Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, July 9, 2008

3.7 Test Location

All Emissions testswere performed at:

Waltek Services(Shenzhen) Co., Ltd. at 1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen, China

4 Equipment Used during Test

Equipment Name	Manufacturer Model	Equipmen t No	Internal No	Specification	Cal. Date	Due Date	Cert. No	Uncertainty
EMC	Agilent/	MY45114	W2008001	9k-26.5GHz	Aug-	Aug-	Wws20	±1dB
Analyzer Trilog Broadband Antenne 30- 3000 MHz	E7405A SCHWARZB ECK MESS- ELEKTROM/ VULB9163	943 336	W2008002	30-3000 MHz	Aug- 2010	2011 Aug- 2011	081596	±1dB
Broad-band Horn Antenna 1-18 GHz	SCHWARZB ECK MESS- ELEKTROM/ BBHA9120D	667	W2008003	1-18GHz	Aug- 2010	Aug- 2011		f<10 GHz: ±1dB 10GHz <f <18 GHz: ±1.5dB</f
Broadband Preamplifier 0.5-18 GHz	SCHWARZB ECK MESS- ELEKTROM/ BBV 9718	9718-148	W2008004	0.5-18GHz	Aug- 2010	Aug- 2011		±1.2dB
10m Coaxial Cable with N- male Connectors usable up to 18GHz,	SCHWARZB ECK MESS- ELEKTROM/ AK 9515 H	-	-	-	Aug- 2010	Aug- 2011		-
10m 50 Ohm Coaxial Cable with N-plug, individual length, usable up to 3(5)GHz, Connector	SCHWARZB ECK MESS- ELEKTROM/ AK 9513				Aug- 2010	Aug- 2011		
Positioning Controller	C&C LAB/ CC-C-IF				N/A	N/A		
Color Monitor	SUNSPO/ SP- 14C				N/A	N/A		
Test Receiver	ROHDE&SC HWARZ/ ESPI	101155	W2005001	9k-3GHz	Aug- 2010	Aug- 2011	Wws20 080942	±1dB
EMI Receiver	Beijingkehuan	KH3931		9k-1GHz	Aug- 2010	Aug- 2011		
Two-Line V- Network	ROHDE&SC HWARZ/ ENV216	100115	W2005002	50Ω/50μ Η	Aug- 2010	Aug- 2011	Wws20 080941	±10%
V-LISN	SCHWARZB ECK MESS - ELEKTRONI K	NSLK 8128	8128-259	9k-30MHz	Aug- 2010	Aug- 2011		

Page:7 of 24

Equipment Name	Manufacturer Model	Equipmen t No	Internal No	Specification	Cal. Date	Due Date	Cert. No	Uncertainty
Absorbing Clamp	ROHDE&SC HWARZ/ MDS-21	100205	W2005003	impandance 50Ω loss : 17 dB	Aug- 2010	Aug- 2011	Wws20 080943	±1dB
10m 50 Ohm Coaxial Cable with N-plug, individual length, usable up to 3(5)GHz, Connectors	SCHWARZB ECK MESS- ELEKTROM/ AK 9514				Aug- 2010	Aug- 2011		
Mp3	iPod A1285	5K85004 U 3R0	-	-	Aug- 2010	Aug- 2011	-	±0.5dB
FM Generator	JUNG JIN	SG-1501			Aug- 2010	Aug- 2011		±1dB

5 Emissions Test Results

5.1 Conducted Emission Data

Test Requirement: FCC Part15.107
Test Method: ANSI C63.4:2003

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class: Class B

Limit: 66-56 dBµV between 0.15MHz & 0.5MHz

56 dBμV between 0.5MHz & 5MHz 60 dBμV between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

Quasi-Peak & Average if maximised peak within 6dB of

Average Limit

5.1.1 E.U.T. Operation

Operating Environment:

Temperature: 25.5 °C Humidity: 51 % RH Atmospheric Pressure: 1012 mbar

EUT Operation:

The EUT was tested according to ANSI C63.4:2003. The frequency spectrum from 150kHz to 30MHz was investigated.

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

5.1.2 Measurement Uncertainty

Based on CISPR16-4-2, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of conducted emission measurement at Waltek Lab is +3.64dB.

5.1.3 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.4:2003, The specification used in this report was the FCC Part15 B 15.107 limits.

The EUT was placed on the test table in working mode connected with PC.

5.1.4 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Live line:

Neutral line:

Page:11 of 24

5.1.5 Photograph- Test Setup for Conducted Emission

Page: 13 of 24

5.2 Radiation Emission Data

Test Requirement: FCC Part15.109
Test Method: ANSI C63.4:2003

Test Result: PASS

Frequency Range: 30MHz to 1GHz

Measurement Distance: 3m

Class B

Limit: $40.0 \text{ dB}\mu\text{V/m}$ between 30MHz & 88MHz

 $43.5 \text{ dB}\mu\text{V/m}$ between 88MHz & 216MHz $46.0 \text{ dB}\mu\text{V/m}$ between 216MHz & 960MHz

54.0 dBµV/m zbove 960MHz

Detector: Peak for pre-scan (120kHz resolution bandwidth)

Quasi-Peak if maximised peak within 6dB of limit

5.2.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Waltek EMC Lab is ± 5.03 dB.

5.2.2 EUT Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4:2003, The specification used in this report was the FCC Part15 B limits.

The EUT was placed on the test table in working mode connected with PC.

5.2.3 Spectrum Analyzer Setup

According to FCC Part15 B Rules, the system was tested 30 to 1000MHz.

Start Frequency	30 MHz
Stop Frequency	1000MHz
Sweep Speed Auto	
IF Bandwidth	120 KHz
Video Bandwidth	100KHz
Quasi-Peak Adapter Bandwidth	120 KHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth	100KHz

5.2.4 Test Procedure

The radiated emissions test.

Maximizing procedure was performed on the six (6) highest emissions to ensure EUT is compliant with all installation combinations.

All data was recorded in the peak detection mode. Quasi-peak readings was performed only when an emission was found to be marginal (within -4 dB μ V of specification limits), and are distinguished with a "**Qp**" in the data table.

The EUT was under normal mode during the final qualification test and the configuration was used to represent the worst case results.

5.2.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of $-7dB\mu V$ means the emission is $7dB\mu V$ below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. - Class B Limit

5.2.6 Summary of Test Results

According to the data in this section, the EUT complied with the FCC Part15 B standards.

Antenna polarization:Horizontal

5.2.7 Photograph – Radiation Emission Test Setup

6 Photographs - Constructional Details

6.1 EUT - Front View

6.2 EUT - Back View

6.3 EUT - Open View

6.4 PCB1 - Front View

6.5 PCB1 - Back View

6.6 PCB2 - Front View

6.7 PCB2 - Back View

6.8 PCB3- Front View

6.9 PCB3 - Back View

6.10 PCB4 - Front View

6.11 PCB4 - Back View

7 FCC Label

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:(1)this device may not cause harmful interference,and (2) this device must accept any interference received, including interference that may cause undesired operation. The Label must not be a stick-on paper. The Label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

