Digital Images

- What is an image?
- Digital images and pixels
- Image size and resolution
- Color components
- Number of gray levels
- Brightness discrimination experiment
- Weber's Law

What is an Image?

- Ideally, a 2-dimensional light intensity function f(x,y), where x and y are spatial coordinates, and f at (x,y) is related to the brightness or color of the image at that point.
- In practice, most images are defined over a rectangle.
- Continuous in amplitude ("continuous-tone")
- Continuous in space: no pixels!

Digital Images and Pixels

- A digital image is the representation of a continuous image f(x,y) by a 2-d array of discrete samples. The amplitude of each sample is quantized to be represented by a finite number of bits.
- Each element of the 2-d array of samples is called a pixel or pel (from "picture element")
- Pixels are point samples, without extent.
- A pixel is not:
 - Round, square, or rectangular
 - An element of an image sensor
 - An element of a display

A Digital Image is Represented by Numbers

128	125	107	105	110	118	116	114	110
121	122	115	108	106	107	116	116	107
110	114	112	107	105	103	106	106	100
100	96	100	99	94	94	101	101	89
85	82	81	80	76	75	80	82	72
58	58	56	54	53	52	51	49	45
41	41	41	39	39	38	36	35	33
43	(43)	42	43	41	41	41	43	40
60	60	59	59	60	59	59	58	56

- Pixel = "picture element"
- Represents brightness at one point

A Digital Image Represented by a Matrix

$$f = \begin{bmatrix} f(0,0) & f(1,0) & \cdots & f(W-1,0) \\ f(0,1) & f(1,1) & \cdots & f(W-1,1) \\ \vdots & \vdots & \ddots & \vdots \\ f(0,H-1) & f(1,H-1) & \cdots & f(W-1,H-1) \end{bmatrix} \bigvee y$$

- The pixel values f(x,y) are sorted into the matrix in "natural" order, with x corresponding to the column and y to the row index. Matlab uses this convention. This results in f(x,y)=f_{yx}, where f_{yx} denotes an individual element in common matrix notation.
- For a color image, f might be one of the components.

Image Size and Resolution

n=2

n=4

n=8

- These images were produced by simply picking every nth sample horizontally and vertically and replicating that value nxn times.
- We can do better
 - Prefiltering before subsampling to avoid aliasing
 - Smooth interpolation

Images of Different Size

128x128

Fewer Pixels Mean Lower Spatial Resolution

Color Components

 Color images typically represented by three values per sample location, for red, green and blue primary components

$$x_R(x,y), \quad x_G(x,y), \quad x_B(x,y)$$

General multi-component image

$$x_c(x,y), \quad c=1,2,\ldots,C$$

- Examples:
 - Color printing: cyan, magenta, yellow, black dyes, sometimes more
 - Hyperspectral satellite imaging: 100s of channels

Different Number of Gray Levels

How Many Gray Levels are Required?

Contouring is most visible for a ramp

Digital images typically are quantized to 256 gray levels.

Storage Requirements for Digital Images

Image WxH pixels, 2^B gray levels, c color components

Size =
$$W \times H \times B \times c$$

- Example: W = H = 512, B=8, c=1 (i.e., monochrome)
 Size = 2,097,152 bits (or 256 kByte)
- Example: WxH = 1280x1024, B=8, c=3 (24 bit RGB image)
 Size = 31,457,280 bits (or 3.75 MByte)
- Much less with (lossy) compression!

Brightness Discrimination Experiment

Can you see the circle?

Note: I is luminance, measured in cd/m^2

Visibility threshold

$$\frac{\Delta I}{I} \approx const. \approx 1...2\%$$

"Weber fraction" "Weber's Law"

Contrast with 8 Bits According to Weber's Law

 Assume that the luminance difference between two successive representative levels is just at visibility threshold

$$\frac{I_{max}}{I_{min}} = (1 + const.)^{255}$$

For

$$const. = 0.01...0.02$$
 $\frac{I_{max}}{I_{min}} = 13...156$

- Typical display contrast
 - Cathode ray tube 100:1
 - Print on paper 10:1
- Suggests uniform quantization in the log(I) domain

Gamma Characteristic

Cathode ray tubes (CRT) are nonlinear

• Cameras contain γ -predistortion circuit

$$U \sim I^{\frac{1}{\gamma}}$$

Log vs. γ -predistortion

Similar enough for most practical applications

