

Airbus Ship Detection Challenge

Giosuè Zannini matr. 873810 Academic year 2021/2022

Summary of DataSet

YOLO v3

How it works

Image Grid. The Red Grid is responsible for detecting the dog

Determine Anchors

	Scale 1 [width, height]	Scale 2 [width, height]	Scale 3 [width, height]
Anchor 1	[0.123, 0.200]	[0.084, 0.040]	[0.013, 0.014]
Anchor 2	[0.251, 0.130]	[0.091, 0.092]	[0.031, 0.027]
Anchor 3	[0.266, 0.257]	[0.198, 0.067]	[0.040, 0.078]

Loss Function

Regression Loss

$$\lambda_{coord} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} 1_{ij}^{obj} [(x_{i} - \widehat{x_{i}})^{2} + (y_{i} - \widehat{y_{i}})^{2}] + \lambda_{coord} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} 1_{ij}^{obj} \left[\left(\sqrt{w_{i}} - \sqrt{\widehat{w_{i}}} \right)^{2} + \left(\sqrt{h_{i}} - \sqrt{\widehat{h_{i}}} \right)^{2} \right] \\ + \lambda_{obj} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} 1_{ij}^{obj} (C_{i} - \widehat{C_{i}})^{2} + \lambda_{noobj} \sum_{i=0}^{S^{2}} \sum_{j=0}^{B} 1_{ij}^{noobj} (C_{i} - \widehat{C_{i}})^{2} + \sum_{i=0}^{Obj} 1_{ij}^{obj} \sum_{c \in classes} (p_{i}(c) - \widehat{p_{i}}(c))^{2}$$

Confidence Loss

Classification Loss

Data Augmentation

Model tuning

Obj confidence threshold	Overlap threshold						
		0,6	0,7	0,8	0,9		
	0,6	0,814	0,816	0,814	0,79		
	0,7	0,817	0,82	0,819	0,795		
	0,8	0,822	0,821	0,821	0,799		
	0,9	0,777	0,779	0,78	0,764		
	1,0	0,247	0,245	0,245	0,247		

NB: As metric I used Mean Average Precision

Model evaluation

MAP

MAP 50

MAP 75

0,825

0,904

0,857

