

ML for Bank Claim Management Prediction

Mayara Cordeiro

Project overview

Problem Definition

Data Preprocessing

Data cleaning Nan values Encode categorical values **Prepare Data for ML**

Vector Assemble, split data (test, train)

Apply models

Logistic Regression Decision Tree Classifier, Random Forest Classifier, Gradient-boosted Tree Classifier **Evaluate Models**

Binary Classification Evaluator; Multi Classification Evaluator

Run the project

"What is the best ML algorithm to improve a claim management process in a bank?"

The data

- Null values
- Alphabetical

ID /	target	▲ v1	▲ v2	▲ v3	▲ v4	v5 🔺	v6 🔺	v7 🔺	v8	v9 🔺	v10 🔺	v11 🔺	v12 🔺	v13	v14
3	1	1.3357394154	1 8.72747443554	С	3.9210257481	7.91526571423	2.59927780824	3.17689497363	0.012941465862	9.99999947099	0.503281467753	16.4341080862	6.08571076128	2.86682950383	11.63638
4	1	null	null	С	null	9.19126518062	null	null	2.30163049167	null	1.31290991714	null	6.50764677834	null	11.63638
5	1	0.9438769102	49 5.31007920093	С	4.41096869049	5.32615938231	3.97959189371	3.92857110919	0.0196451311527	12.6666671203	0.765863972354	14.7560976181	6.38467003054	2.50558923501	9.60354
6	1	0.7974145561	91 8.30475713591	С	4.22592985639	11.6274384197	2.09770043999	1.98754875148	0.171946704524	8.96551632111	6.5426694717	16.3474825682	9.64665283318	3.90330196103	14.0947
8	1	null	null	С	null	null	null	null	null	null	1.05032835954	null	6.32008733304	null	10.9910
9	0	null	null	С	null	8.85679096154	null	null	0.359993128846	null	1.05032784251	null	6.21607696606	null	11.91628
12	0	0.8998056579	05 7.31299494722	С	3.49414846822	9.94619971703	1.92606996638	1.77042746203	0.0662514981243	5.01128698221	2.34135611559	16.2745100416	7.71117448561	5.915587527	12.1486

Data Preprocessing

- CSV data
- Convert data types
- Replace nan values
- ☐ Encode categorical to numerical labels
- Result: New csv data

ID	 target /	⊳ v1	- 4	▶ v2	Δ	v3	△ v4	_	v5	Δ	v6	Δ	v7	Δ	v8 🗻	v9	-	v10	h 1	v11 🚕	v12	A 1	v13	△ v1	14 🚜	⊩ v1	.5
3	1	1.3357	394	8.727474		2	3.9	210258	7.9152656		2.5992777		3.176895		0.012941466	9.99999	9	0.5032815		16.434109	6.0857105	1	2.8668294	11	1.636387	1.3	3550133
4	1	1.6306	857	7.464411		2	4.1	1450977	9.191265		2.4364016		2.4839208		2.3016305	9.03185	3	1.31291		15.4474125	6.5076466	:	3.7983963	11	1.636386	2.0	0809107
5	1	0.9438	769	5.310079		2	4.4	110969	5.3261595		3.9795918		3.9285712		0.01964513	12.6666	57	0.76586396		14.756098	6.3846703	1	2.5055892	9.	603541	1.5	9841266
6	1	0.7974	1454	8.304757		2	4.2	2259297	11.627439		2.0977004		1.9875487		0.1719467	8.96551	5	6.5426693	3	16.347483	9.646653	;	3.903302	14	4.094723	1.5	9450436
8	1	1.6306	857	7.464411		2	4.1	1450977	8.742359		2.4364016		2.4839208		1.4965686	9.03185	3	1.0503284		15.4474125	6.3200874	1	3.7983963	10	0.991097	2.0	0809107
9	0	1.6306	857	7.464411		2	4.1	1450977	8.856791		2.4364016		2.4839208		0.35999313	9.03185	3	1.0503279		15.4474125	6.216077		3.7983963	11	1.916256	2.0	0809107

Prepare data for ML

- Vector Assembler
- ☐ Split data (train, test) randomSplit([0.7, 0.3])

Apply models

- Logistic Regression
- Decision Tree Classifier
- Random Forest Classifier
- ☐ Gradient Boost Classifier

Evaluation

ROC Accuracy

Logistic Regression: 0.72 Logistic Regression: 0.767

Decision Tree Classifier: 0.63 Decision Tree Classifier: 0.776

Random Forest Classifier: 0.71 Random Forest Classifier: 0.760

Gradient Boosting Classifier: 0.74 Gradient Boosting Classifier: 0.779

prediction target 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0 0 | 1.0 0.0

Conclusion

The ML algorithms allows the model to predict eligible process to be solved in priority. Improving the bank services and contribute to deliver a quality service for its clients, by decreasing the processing time.

Accuracy results are closer between the methods, gradient boosting tree presented better results in ROC and accuracy.

Improve the models performance: analyzing better the categorical features and selecting less but important columns to improve the model.