Dynamická zbierka otázok a úloh

Mení sa v čase...

	Obsah		3	Rieš. LDR – metóda charakteristickej rovnice	7
			3.1	Úloha	7
1	Pâzna poimy a definício	1	$\frac{3.1}{3.2}$	Úloha	8
	Rôzne pojmy a definície Úloha	1	•	Úloha	9
1.1	Úloha	1	3.3		J
1.2	Otázka	2	4	Rieš. LDR – využitie	
1.3	Úloha	2	_	Laplaceovej transformácie	10
1.4	Otázka	$\frac{2}{2}$	4.1	Úloha	10
1.5 1.6	Úloha	$\frac{2}{2}$	4.2	$ \text{Úloha} \dots \dots \dots \dots $	11
	Otázka	$\frac{2}{2}$	$4 \cdot 3$	Úloha	11
1.7 1.8		$\frac{2}{2}$	4.4	$ m ext{Uloha}$	13
_	Otázka	$\frac{2}{2}$	4.5	Úloha	13
1.9	Úloha		4.6	Úloha	14
1.10	Otázka	2		5 1 110 141 1	
1.11	Úloha	3	5	Prevod diferenciálnych	
1.12	Úloha	3		rovníc na prenosové fun-	
1.13	Úloha	3		kcie a na opis v stavovom	10
1.14	Úloha	3		priestore	16
1.15	Úloha	3	5.1	Úloha	16
1.16	Otázka	3	5.2	Úloha	17
2	DR vo všeobecnosti	3	6	Prenosová funkcia ako	
2.1	Otázka	3		model dynamického sys-	
2.2	Úloha	4		tému	17
2.3	Úloha	4	6.1	Úloha	17
2.4	Úloha	4	6.2	Úloha	18
$\frac{2.4}{2.5}$	Úloha	4	6.3	Úloha	19
2.6	Úloha	4	6.4	Úloha	19
2.7	Otázka	4	6.5	Úloha	19
2.8	Úloha	5	6.6	Úloha	20
2.9	Úloha	5	6.7	Úloha	20
2.9 2.10	Úloha	6	7	Rôzne úlohy	20
2.10	Úloha	6	7.1	Úloha	20

1 Rôzne pojmy a definície

1.1 Úloha

Vlastnými slovami vysvetlite pojem Kybernetika (čo je to Kybernetika?).

Riešenie: Kybernetika je veda o riadení a prenose informácií v systémoch zahŕňajúcich stroje, živé organizmy a ľudskú spoločnosť.

1.2 Úloha

Vysvetlite pojem zosilnenie systému (alebo statické zosilnenie systému).

Riešenie: Zosilnenie systému je pomer medzi ustálenou hodnotou výstupného signálu systému a ustálenou hodnotou vstupného signálu systému.

1.3 Otázka

Ako sa nazýva pomer medzi ustálenou hodnotou výstupného signálu systému a ustálenou hodnotou vstupného signálu systému?

Odpoveď: Zosilnenie systému.

1.4 Úloha

Vysvetlite rozdiel medzi bezzotrvačným a zotrvačným systémom.

Riešenie: Každý systém je z istého hľadiska dynamickým systémom, teda takým, ktorého výstup sa mení v čase pričom aktuálny výstup závisí nielen od aktuálneho vstupu, ale aj od predchádzajúcich hodnôt vstupu a/alebo výstupu. Výstup sa tak zjavne nemení okamžite, systém má zotrvačnosť – zotrvačný systém. Teoreticky má význam uvažovať taký systém, ktorého výstup závisí len od aktuálneho vstupu. Teda výstup sa zmení okamžite po zmene vstupu, systém nemá zotrvačnosť – bezzotrvačný systém. Príkladom bezzotrvačného systému v praxi môže byť napríklad odporový delič elektrického napätia (napätie na výstupe sa zmení prakticky okamžite pri zmene napätia na vstupe).

1.5 Otázka

Čo sú to začiatočné podmienky dynamického systému?

Odpoveď: Začiatočné podmienky sú hodnoty veličín v čase považovanom za začiatočný, typicky v čase t=0. Ide o veličiny, ktoré charakterizujú stav systému (stavové veličiny). Napríklad systém opísaný diferenciálnou rovnicou druhého rádu má dve začiatočné podmienky, pretože stav systému je daný minimálne dvoma veličinami.

1.6 Úloha

Vysvetlite pojem prevodová charakteristika systému.

Riešenie: Prevodová charakteristika systému je závislosť medzi ustálenou hodnotou výstupného signálu systému a ustálenou hodnotou vstupného signálu systému.

1.7 Otázka

Ako sa nazýva vzájomná závislosť medzi ustálenými hodnotami výstupného signálu systému a ustálenými hodnotami vstupného signálu?

Odpoveď: Prevodová charakteristika systému.

1.8 Otázka

Čo určuje sklon prevodovej charakteristiky?

Odpoveď: Sklon prevodovej charakteristiky určuje zosilnenie systému.

1.9 Úloha

Vysvetlite pojem prechodová charakteristika systému.

Riešenie: Prechodová charakteristika systému je časový priebeh výstupného signálu systému po skokovej zmene vstupného signálu s jednotkovou veľkosťou.

1.10 Otázka

Ako sa nazýva časový priebeh výstupného signálu systému po skokovej zmene vstupného signálu s jednotkovou veľkosťou?

Odpoveď: Prechodová charakteristika systému.

1.11 Úloha

Napíšte vzťah (rovnicu), ktorým je definovaná Laplaceova transformácia.

Riešenie: Laplaceova transformácia funkcie času f(t) je definovaná vzťahom

$$F(s) = \int_0^\infty e^{-st} f(t) dt$$
 (1.1)

kde s je komplexná premenná (komplexné číslo). F(s) je obraz funkcie f(t).

1.12 Úloha

Napíšte Laplaceov obraz derivácie časovej funkcie $\frac{\mathrm{d}f(t)}{dt}$

Riešenie: Laplaceov obraz derivácie časovej funkcie je

$$\mathcal{L}\left\{\frac{\mathrm{d}f(t)}{\mathrm{d}t}\right\} = sF(s) - f(0) \tag{1.2}$$

kde $F(s) = \mathcal{L}\{f(t)\}$ a f(0) je začiatočná hodnota funkcie f(t) v čase t = 0.

1.13 Úloha

Napíšte Laplaceov obraz jednotkového skoku.

Riešenie: Laplaceov obraz jednotkového skoku je

$$\mathcal{L}\{1\} = \frac{1}{s} \tag{1.3}$$

1.14 Úloha

Napíšte Laplaceov obraz Dirackovho impulzu.

Riešenie: Laplaceov obraz Dirackovho impulzu je

$$\mathcal{L}\{\delta(t)\} = 1\tag{1.4}$$

1.15 Úloha

Definujte prenosovú funkciu systému.

Riešenie: Prenosova funkcia je pomer Laplaceovho obrazu výstupného signálu systému k Laplaceovmu obrazu vstupného signálu systému pri nulových začiatočných podmienkach systému.

1.16 Otázka

Ako sa nazýva pomer Laplaceovho obrazu výstupného signálu systému k Laplaceovmu obrazu vstupného signálu systému pri nulových začiatočných podmienkach systému?

Odpoveď: Prenosová funkcia systému.

2 Diferenciálne rovnice vo všeobecnosti

2.1 Otázka

Čo je riešením obyčajnej diferenciálnej rovnice (vo všeobecnosti)?

Odpoveď: V kontexte predmetu MRS hovoríme o diferenciálnych rovniciach opisujúcich dynamický systém. Riešením diferenciálnej rovnice je funkcia, v uvedenom kontexte funkcia času (časová závislosť), ktorú keď dosadíme do diferenciálnej rovnice, tak táto rovnica platí.

2.2 Úloha

Vysvetlite rozdiel medzi homogénnou a nehomogénnou obyčajnou diferenciálnou rovnicou.

Riešenie: Homogénnou je rovnica vtedy, keď sa v rovnici nachádza len funkcia času, ktorá je neznámou. Iné funkcie času sa v rovnici nevyskytujú. Z hľadiska systému to znamená, že systém má len výstup, len výstupný signál.

Nehomogénnou je diferenciálna rovnica vtedy, keď obsahuje aj iné funkcie času ako neznámu. Z hľadiska systému to znamená, že systém má okrem výstupu aj vstup, teda vstupný signál.

2.3 Úloha

Uveďte príklad homogénnej obyčajnej diferenciálnej rovnice.

Riešenie:

$$\frac{\mathrm{d}y(t)}{\mathrm{d}t} + ay(t) = 0 \tag{2.1}$$

Neznámou v tejto rovnici je funkcia času y(t). Koeficient a je reálne číslo.

2.4 Úloha

Uveďte príklad nehomogénnej obyčajnej diferenciálnej rovnice.

Riešenie:

$$\frac{\mathrm{d}y(t)}{\mathrm{d}t} + ay(t) = u(t) \tag{2.2}$$

Neznámou v tejto rovnici je funkcia času y(t). Koeficient a je reálne číslo. kde u(t) je funkcia času. Nie je to však neznáma funkcia času.

2.5 Úloha

Vysvetlite pojem analytické riešenie obyčajnej diferenciálnej rovnice.

Riešenie: Analytické riešenie diferenciálnej rovnice je funkcia času, ktorú je možné vyjadriť (zapísať) analyticky (matematicky). Napríklad y(t) = 5 t je analyticky zapísaná funkcia času (t je čas).

2.6 Úloha

Vysvetlite pojem numerické riešenie obyčajnej diferenciálnej rovnice.

Riešenie: Numerické riešenie diferenciálnej rovnice je funkcia času, inými slovami časová postupnosť, ktorá je vyjadrená (zapísaná) pomocou hodnôt, čísiel. Napríklad časová postupnosť vyjadrená tabuľkou priraďujúcou k časovým hodnotám hodnoty veličiny, ktorá je neznámou v diferenciálnej rovnici.

$$\begin{array}{ccc} t & y(t) \\ \hline 0 & 0 \\ 1 & 5 \\ 2 & 10 \\ \vdots & \vdots \end{array}$$

Takáto časová postupnosť (funkcia času) môže byť validné riešenie diferenciálnej ale nie je to analyticky zapísaná časová funkcia. Je vyjadrená pomocou hodnôt, čísiel.

2.7 Otázka

Aký je rozdiel medzi analytickým a numerickým riešením diferenciálnej rovnice?

Odpoveď: Rozdiel je v spôsobe vyjadrenia (zápisu) funkcie času, ktorá je riešením diferenciálnej rovnice. Analytické riešenie je zapísané matematicky (analyticky), napríklad $y(t) = e^{-at}$, a numerické riešenie je zapísané pomocou hodnôt, čísiel, napríklad v tabuľke, kde prvý stĺpec sú časové hodnoty a druhý stĺpec sú hodnoty veličiny y(t).

2.8 Úloha

Nasledujúcu diferenciálnu rovnicu druhého rádu prepíšte na sústavu diferenciálnych rovníc prvého rádu.

$$a_2\ddot{y}(t) + a_1\dot{y}(t) + a_0y(t) = b_0u(t)$$
 $a_2, a_1, a_0, b_0 \in \mathbb{R}$ (2.3)

Riešenie: Ako prvé zvoľme

$$x_1(t) = y(t) \tag{2.4}$$

To znamená

$$\dot{x}_1(t) = \dot{y}(t) \tag{2.5}$$

čo však nie je v tvare aký hľadáme. Na pravej strane vystupuje pôvodná veličina y(t). Druhou voľbou preto nech je

$$x_2(t) = \dot{y}(t) \tag{2.6}$$

pretože potom môžeme písať prvú diferenciálnu rovnicu v tvare

$$\dot{x}_1(t) = x_2(t) \tag{2.7}$$

Ostáva zostaviť druhú diferenciálnu rovnicu.

Keďže sme zvolili (2.6), tak je zrejmé, že platí

$$\dot{x}_2(t) = \ddot{y}(t) \tag{2.8}$$

Otázkou je $\ddot{y}(t)=?$ Odpoveďou je pôvodná diferenciálna rovnica druhého rádu. Upravme (2.3) na tvar

$$\ddot{y}(t) + \frac{a_1}{a_2}\dot{y}(t) + \frac{a_0}{a_2}y(t) = \frac{b_0}{a_2}u(t)$$
(2.9)

$$\ddot{y}(t) = -\frac{a_1}{a_2}\dot{y}(t) - \frac{a_0}{a_2}y(t) + \frac{b_0}{a_2}u(t)$$
 (2.10)

To znamená, že

$$\dot{x}_2(t) = -\frac{a_1}{a_2}\dot{y}(t) - \frac{a_0}{a_2}y(t) + \frac{b_0}{a_2}u(t) \tag{2.11}$$

čo však stále nie je požadovaný tvar druhej hľadanej diferenciálnej rovnice. Na pravej strane rovnice (2.11) môžu figurovať len nové veličiny $x_1(t)$ a $x_2(t)$, nie pôvodná veličina y(t). Stačí si však všimnúť skôr zvolené (2.4) a (2.6). Potom môžeme písať

$$\dot{x}_2(t) = -\frac{a_1}{a_2} x_2(t) - \frac{a_0}{a_2} x_1(t) + \frac{b_0}{a_2} u(t)$$
(2.12)

čo je druhá hľadaná diferenciálna rovnica prvého rádu.

2.9 Úloha

Sústavu rovníc

$$\dot{x}_1(t) = x_2(t) \tag{2.13a}$$

$$\dot{x}_2(t) = -a_0 x_1(t) - a_1 x_2(t) + b_0 u(t)$$
(2.13b)

$$y(t) = x_1(t) \tag{2.13c}$$

prepíšte do maticového tvaru:

$$\dot{x}(t) = Ax(t) + bu(t) \tag{2.14a}$$

$$y(t) = c^{\mathsf{T}} x(t) \tag{2.14b}$$

(definujte signálny vektor x(t), maticu A a vektory b a c).

Riešenie: Ide o sústavu dvoch diferenciálnych rovníc prvého rádu kde neznámymi sú funkcie času $x_1(t)$ a $x_2(t)$. Stavový vektor je teda

$$x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \tag{2.15}$$

Potom môžeme písať

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -a_0 & -a_1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ b_0 \end{bmatrix} u(t)$$
 (2.16)

a teda

$$A = \begin{bmatrix} 0 & 1 \\ -a_0 & -a_1 \end{bmatrix} \qquad b = \begin{bmatrix} 0 \\ b_0 \end{bmatrix} \tag{2.17}$$

Výstupná rovnica s využitím stavového vektora je

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}$$
 (2.18)

a teda

$$c^{\mathsf{T}} = \begin{bmatrix} 1 & 0 \end{bmatrix} \tag{2.19}$$

2.10 Úloha

Schematicky znázornite dynamický systém daný v tvare diferenciálnej rovnice

$$\dot{y}(t) + ay(t) = bu(t) \qquad y(0) = y_0$$

kde a, b sú konštanty a u(t) je známy vstupný signál.

Riešenie:

2.11 Úloha

Podľa zadanej blokovej schémy zostavte diferenciálnu rovnicu, ktorá popisuje dynamický systém.

Riešenie: Diferenciálna rovnica je

$$\dot{y}(t) + ay(t) = 0$$
 $y(0) = y_0$ (2.20)

3 Analytické riešenie lineárnej obyčajnej diferenciálnej rovnice – metóda charakteristickej rovnice

Poznámka

Pri hľadaní riešenia metódou charakteristickej rovnice je možné využiť nasledujúce konštatovania:

- 1. Ak má charakteristická rovnica n navzájom rôznych riešení s_i pre i = 1, ..., n, potom zodpovedajúce fundamentálne riešenia (módy) sú: e^{s_1t} , e^{s_2t} , ..., e^{s_nt} .
- 2. Ak sa medzi n koreňmi charakteristického polynómu vyskytne k-násobný koreň, vytvoríme k lineárne závislých riešení: $e^{s_i t}$, $te^{s_i t}$, ..., $t^{k-1}e^{s_i t}$
- 3. V prípade výskytu dvojice komplexne združených koreňov charakteristického polynómu, $s_{1,2}=\alpha\pm j\beta$, kde j je imaginárna jednotka, využijeme na určenie fundamentálnych riešení Eulerov vzťah

$$e^{(\alpha \pm j\beta)t} = e^{\alpha t} (\cos \beta t \pm j \sin \beta t)$$

Preto potom možno písať príslušné fundamentálne riešenie v tvare

$$c_1 e^{(\alpha+j\beta)t} + c_2 e^{(\alpha-j\beta)t} = e^{\alpha t} \left(c' \cos \beta t + c'' \sin \beta t \right)$$

kde sú imaginárne časti nulové.

3.1 Úloha

Nájdite analytické riešenie diferenciálnej rovnice

$$\dot{y}(t) + ay(t) = 0$$
 $y(0) = y_0$ $a \in \mathbb{R}, y_0 \in \mathbb{R}$

Riešenie: (metódou charakteristickej rovnice)

Prvým krokom je stanovenie charakteristickej rovnice. Tú je možné určiť nahradením derivácií neznámej funkcie mocninami pomocnej premennej, označme ju s. Napríklad prvú deriváciu $\dot{y}(t)$ nahradíme s^1 , nultú deriváciu y(t) nahradíme s^0 . Charakteristická rovnica pre danú diferenciálnu rovnicu bude

$$s + a = 0 \tag{3.1}$$

Druhým krokom je stanovenie fundamentálnych riešení diferenciálnej rovnice, ktoré sú dané riešeniami charakteristickej rovnice. Riešením charakteristickej rovnice je

$$s_1 = -a \tag{3.2}$$

Fundamentálne riešenie je teda len jedno

$$y_{f1}(t) = e^{-at} (3.3)$$

Tretím krokom je stanovenie všeobecného riešenia dif. rovnice. Je lineárnou kombináciou fundamentálnych riešení. Teda

$$y(t) = c_1 e^{-at} (3.4)$$

kde $c_1 \in \mathbb{R}$ je konštanta.

Štvrtým krokom je stanovenie konkrétneho riešenia dif. rovnice v prípade, ak sú dané začiatočné podmienky. Konkrétne ide o stanovenie hodnoty konštanty c_1 . Pre čas t=0 má všeobecné riešenie tvar

$$y(0) = c_1 e^{(-a)0} = c_1 (3.5)$$

Samotná hodnota y(0) je známa, keďže máme začiatočnú podmienku $y(0) = y_0$. Takže

$$c_1 = y_0 \tag{3.6}$$

To znamená, že riešenie úlohy je:

$$y(t) = y_0 e^{(-a)t} (3.7)$$

3.2 Úloha

Nájdite analytické riešenie diferenciálnej rovnice. Použite metódu charakteristickej rovnice.

$$\ddot{y}(t) + (a+b)\dot{y}(t) + aby(t) = 0$$
 $y(0) = y_0$ $\dot{y}(0) = z_0$ $a, b \in \mathbb{R}$

Riešenie: Prvým krokom je stanovenie charakteristickej rovnice. V tomto prípade

$$s^2 + (a+b)s + ab = 0 (3.8)$$

V druhom kroku pre stanovenie fundamentálnych riešení hľadáme riešenia charakteristickej rovnice. Vo všeobecnosti

$$s_{1,2} = \frac{-(a+b) \pm \sqrt{(a+b)^2 - 4ab}}{2}$$
 (3.9)

avšak v tomto prípade tiež vidíme, že

$$s^{2} + (a+b)s + ab = (s+a)(s+b)$$
(3.10)

Riešenia charakteristickej rovnice teda sú

$$s_1 = -a \tag{3.11a}$$

$$s_2 = -b \tag{3.11b}$$

Zodpovedajúce fundamentálne riešenia sú

$$y_{f1}(t) = e^{-at} (3.12a)$$

$$y_{f2}(t) = e^{-bt}$$
 (3.12b)

Tretím krokom je stanovenie všeobecného riešenia dif. rovnice. Je lineárnou kombináciou fundamentálnych riešení. Teda

$$y(t) = c_1 e^{-at} + c_2 e^{-bt} (3.13)$$

kde $c_1, c_2 \in \mathbb{R}$ sú konštanty.

Vo štvrtom kroku je možné na základe začiatočných podmienok stanoviť konkrétne riešenie. Pre čas t=0 má všeobecné riešenie tvar

$$y(0) = c_1 e^{(-a)0} + c_2 e^{(-b)0} = c_1 + c_2$$
(3.14)

Derivácia všeobecného riešenia je

$$\dot{y}(t) = -ac_1e^{-at} - bc_2e^{-bt} \tag{3.15}$$

Pre čas t=0 má derivácia všeobecného riešenia tvar

$$\dot{y}(0) = -ac_1 - bc_2 \tag{3.16}$$

Z uvedeného vyplýva sústava dvoch rovníc o dvoch neznámych konštantách c_1 a c_2

$$c_1 + c_2 = y_0 (3.17a)$$

$$-ac_1 - bc_2 = z_0 (3.17b)$$

Do druhej rovnice dosaďme $c_1 = y_0 - c_2$

$$-a(y_0 - c_2) - bc_2 = z_0 (3.18a)$$

$$-ay_0 + ac_2 - bc_2 = z_0 (3.18b)$$

$$c_2(a-b) = z_0 + ay_0 (3.18c)$$

$$c_2 = \frac{z_0 + ay_0}{a - b} \tag{3.18d}$$

potom

$$c_1 = y_0 - c_2 (3.19a)$$

$$c_1 = y_0 - \frac{z_0 + ay_0}{a - b} \tag{3.19b}$$

$$c_1 = \frac{y_0(a-b) - z_0 - ay_0}{a-b}$$
 (3.19c)

$$c_1 = \frac{y_0 a - y_0 b - z_0 - a y_0}{a - b} \tag{3.19d}$$

$$c_{1} = \frac{y_{0}a - y_{0}b - z_{0} - ay_{0}}{a - b}$$

$$c_{1} = \frac{-y_{0}b - z_{0}}{a - b}$$
(3.19d)
$$c_{1} = \frac{-y_{0}b - z_{0}}{a - b}$$

Konkrétne riešenie úlohy teda je

$$y(t) = \frac{-y_0b - z_0}{a - b}e^{-at} + \frac{z_0 + ay_0}{a - b}e^{-bt}$$
(3.20)

Úloha 3.3

Nájdite analytické riešenie diferenciálnej rovnice. Použite metódu charakteristickej rovnice.

$$\ddot{y}(t) + 3\dot{y}(t) + 2y(t) = u(t)$$
 $y(0) = 3, \ \dot{y}(0) = -2$ $u(t) = 0$

Riešenie: Prvým krokom je stanovenie charakteristickej rovnice. V tomto prípade

$$s^2 + 3s + 2 = 0 (3.21)$$

V druhom kroku pre stanovenie fundamentálnych riešení hľadáme riešenia charakteristickej rovnice. Riešením charakteristickej rovnice sú

$$s_1 = -1$$
 (3.22a)

$$s_2 = -2$$
 (3.22b)

Zodpovedajúce fundamentálne riešenia sú

$$y_{f1}(t) = e^{-t} (3.23a)$$

$$y_{f2}(t) = e^{-2t} (3.23b)$$

Tretím krokom je stanovenie všeobecného riešenia dif. rovnice. Je lineárnou kombináciou fundamentálnych riešení. Teda

$$y(t) = c_1 e^{-t} + c_2 e^{-2t} (3.24)$$

kde $c_1, c_2 \in \mathbb{R}$ sú konštanty.

Vo štvrtom kroku je možné na základe začiatočných podmienok stanoviť konkrétne riešenie. Pre čas t=0 má všeobecné riešenie tvar

$$y(0) = c_1 e^{(-1)0} + c_2 e^{(-2)0} = c_1 + c_2$$
(3.25)

Tým sme takpovediac zúžitkovali informáciu o začiatočnej hodnote y(0) = 3. Druhá začiatočná podmienka sa týka derivácie riešenia. Derivácia všeobecného riešenia je

$$\dot{y}(t) = -c_1 e^{-t} - 2c_2 e^{-2t} \tag{3.26}$$

Pre čas t=0 má derivácia všeobecného riešenia tvar

$$\dot{y}(0) = -c_1 - 2c_2 \tag{3.27}$$

Z uvedeného vyplýva sústava dvoch rovníc o dvoch neznámych konštantách c_1 a c_2

$$c_1 + c_2 = 3 (3.28a)$$

$$-c_1 - 2c_2 = -2 (3.28b)$$

Platí $c_2 = 3 - c_1$, a teda

$$-c_1 - 2(3 - c_1) = -2 (3.29a)$$

$$-c_1 - 6 + 2c_1 = -2 (3.29b)$$

$$c_1 = 4$$
 (3.29c)

potom

$$c_2 = 3 - c_1 \tag{3.30a}$$

$$c_2 = 3 - 4 \tag{3.30b}$$

$$c_2 = -1$$
 (3.30c)

Našli sme funkciu y(t), ktorá je riešením diferenciálnej rovnice pre konkrétne začiatočné podmienky

 $y(t) = 4e^{-t} - e^{-2t} (3.31)$

4 Analytické riešenie lineárnej obyčajnej diferenciálnej rovnice – využitie Laplaceovej transformácie

Poznámka

Pri využití Laplaceovej transformácie je potrebné využiť tabuľku Laplaceových obrazov signálov, z ktorej vybrané položky sú uvedené v nasledujúcej tabuľke:

f(t)	F(s)
$\dot{f}(t)$	sF(s) - f(0)
$\frac{\mathrm{d}^n f(t)}{\mathrm{d}t^n}$	$s^n F(s) - s^{(n-1)} f(0) - \dots - f^{(n-1)}(0)$
1	$\frac{1}{s}$
$\delta(t)$	1
e^{-at}	$\frac{1}{s+a}$

4.1 Úloha

Nájdite analytické riešenie diferenciálnej rovnice. Použite Laplaceovu transformáciu.

$$\dot{y}(t) - ay(t) = 0 \qquad y(0) = y_0 \tag{4.1}$$

Riešenie: Na jednotlivé signály v tejto rovnici aplikujme LT.

$$(sY(s) - y(0)) - aY(s) = 0 (4.2)$$

kde Y(s) je obrazom signálu y(t). Y(s) je teda obrazom riešenia rovnice. Vyjadrime Y(s):

$$(s-a)Y(s) - y(0) = 0$$

$$Y(s) = \frac{1}{(s-a)}y(0)$$
(4.3)

V tomto prípade je priamo z tabuľky Laplaceových obrazov a originálov zrejmé, že

$$\mathcal{L}^{-1}\{Y(s)\} = y(t) = e^{at}y(0) \tag{4.4}$$

čím sme priamo našli riešenie danej diferenciálnej rovnice s danou začiatočnou podmienkou.

$$y(t) = e^{at}y_0 (4.5)$$

4.2 Úloha

Nájdite analytické riešenie diferenciálnej rovnice. Použite Laplaceovu transformáciu.

$$\ddot{y}(t) + 4\dot{y}(t) + 3y(t) = 0$$
 $y(0) = 2, \ \dot{y}(0) = 1$ (4.6)

Riešenie: Na jednotlivé signály v tejto rovnici aplikujme LT.

$$s(sY(s) - y(0)) - \dot{y}(0) + 4(sY(s) - y(0)) + 3Y(s) = 0$$
(4.7)

$$(s^{2}Y(s) - sy(0) - \dot{y}(0)) + 4(sY(s) - y(0)) + 3Y(s) = 0$$
(4.8)

kde Y(s) je obrazom signálu y(t). Y(s) je teda obrazom riešenia rovnice. Vyjadrime Y(s):

$$s^{2}Y(s) + 4sY(s) + 3Y(s) - sy(0) - \dot{y}(0) - 4y(0) = 0$$
(4.9)

$$s^{2}Y(s) + 4sY(s) + 3Y(s) - s \cdot 2 - 1 - 4 \cdot 2 = 0$$
(4.10)

$$(s^2 + 4s + 3) Y(s) = 2s + 9 (4.11)$$

$$Y(s) = \frac{2s+9}{s^2+4s+3} \tag{4.12}$$

Uvedený výraz Y(s) je potrebné rozložiť na parciálne zlomky, pričom korene menovateľa sú

$$s^{2} + 4s + 3 = (s+1)(s+3) \tag{4.13}$$

Teda

$$Y(s) = \frac{2s+9}{(s+1)(s+3)} = \frac{A}{s+3} + \frac{B}{s+1}$$
 (4.14)

kde A a B sú konštanty. Zapíšme túto rovnosť v tvare

$$2s + 9 = A(s+1) + B(s+3) \tag{4.15}$$

Uvedené platí pre akékoľvek s,teda môžeme dosadiť ľubovoľné hodnoty. Pre s=-3 platí

$$2 \cdot (-3) + 9 = A \cdot (-3 + 1) + B \cdot 0 \tag{4.16}$$

$$3 = -2A \tag{4.17}$$

$$A = -\frac{3}{2} \tag{4.18}$$

Pre s = -1 platí

$$2 \cdot (-1) + 9 = A \cdot 0 + B \cdot (-1 + 3) \tag{4.19}$$

$$7 = 2B \tag{4.20}$$

$$B = \frac{7}{2} \tag{4.21}$$

Teda

$$Y(s) = -\frac{3}{2} \frac{1}{s+3} + \frac{7}{2} \frac{1}{s+1}$$
 (4.22)

Na záver využijeme tabuľku Laplaceových obrazov a originálov na nájdenie riešenia diferenciálnej rovnice

$$\mathcal{L}^{-1}\left\{Y(s)\right\} = y(t) = -\frac{3}{2}e^{-3t} + \frac{7}{2}e^{-t} \tag{4.23}$$

4.3 Úloha

Nájdite analytické riešenie diferenciálnej rovnice. Použite Laplaceovu transformáciu.

$$\ddot{y}(t) + (a+b)\dot{y}(t) + aby(t) = 0$$
 $y(0) = y_0$ $\dot{y}(0) = z_0$ $a, b \in \mathbb{R}$

Riešenie: Na jednotlivé členy diferenciálnej rovnice aplikujeme Laplaceovu transformáciu.

$$\mathcal{L}\{\ddot{y}(t)\} = s^2 Y(s) - sy(0) - \dot{y}(0) \tag{4.24a}$$

$$\mathcal{L}\{(a+b)\dot{y}(t)\} = (a+b)(sY(s) - y(0)) \tag{4.24b}$$

$$\mathcal{L}\{aby(t)\} = abY(s) \tag{4.24c}$$

Potom rovnica v Laplaceovej oblasti bude

$$s^{2}Y(s) - sy(0) - \dot{y}(0) + (a+b)(sY(s) - y(0)) + abY(s) = 0$$
(4.25a)

$$s^{2}Y(s) - sy_{0} - z_{0} + (a+b)(sY(s) - y_{0}) + abY(s) = 0$$
(4.25b)

$$s^{2}Y(s) - sy_{0} - z_{0} + asY(s) + bsY(s) - ay_{0} - by_{0} + abY(s) = 0$$
(4.25c)

Členy obsahujúce Y(s) zoskupíme na ľavej strane rovnice

$$Y(s)(s^{2} + as + bs + ab) = sy_{0} + z_{0} + ay_{0} + by_{0}$$
(4.26)

Obrazom riešenia dif. rovnice teda je

$$Y(s) = \frac{sy_0 + z_0 + ay_0 + by_0}{s^2 + (a+b)s + ab}$$
(4.27)

Zaujíma nás však originál tohto obrazu. V uvedenom tvare obrazu však nie je možné nájsť jeho originál s využitím tabuľky Laplaceových obrazov signálov. Obraz je potrebné prepísať na jednoduchšie výrazy, typicky je účelným rozklad na parciálne zlomky. Menovateľ $s^2 + (a+b)s + ab$ je kvadratický polynóm, ktorý má dva rôzne korene a tie sú

$$s_1 = -a \tag{4.28a}$$

$$s_2 = -b \tag{4.28b}$$

Takže platí

$$Y(s) = \frac{sy_0 + z_0 + ay_0 + by_0}{s^2 + (a+b)s + ab} = \frac{sy_0 + z_0 + ay_0 + by_0}{(s+a)(s+b)} = \frac{A}{s+a} + \frac{B}{s+b}$$
(4.29)

kde A a B sú neznáme konštanty. To je možné zapísať aj v tvare

$$sy_0 + z_0 + ay_0 + by_0 = A(s+b) + B(s+a)$$
(4.30)

Uvedené platí pre akékoľvek s, teda aj pre s = -a a s = -b. Pre s = -a dostaneme

$$-ay_0 + z_0 + ay_0 + by_0 = A(-a+b) + B(-a+a)$$
(4.31a)

$$z_0 + by_0 = A(-a+b) (4.31b)$$

$$A = \frac{z_0 + by_0}{-a + b} \tag{4.31c}$$

Pre s = -b dostaneme

$$-by_0 + z_0 + ay_0 + by_0 = A(-b+b) + B(-b+a)$$
(4.32a)

$$z_0 + ay_0 = B(-b+a) (4.32b)$$

$$B = \frac{z_0 + ay_0}{-b + a} \tag{4.32c}$$

Obraz riešenia dif. rovnice potom je v tvare

$$Y(s) = \frac{z_0 + by_0}{-a + b} \left(\frac{1}{s+a} \right) + \frac{z_0 + ay_0}{-b+a} \left(\frac{1}{s+b} \right)$$
 (4.33)

Originálom k výrazu $\frac{1}{s+a}$ je v zmysle tabuľky Laplaceových obrazov signálov funkcia e^{-at} . Originálom k výrazu $\frac{1}{s+b}$ je v zmysle tabuľky Laplaceových obrazov signálov funkcia e^{-bt} . Preto originálom obrazu riešenia dif. rovnice je

$$y(t) = \frac{z_0 + by_0}{-a + b}e^{-at} + \frac{z_0 + ay_0}{-b + a}e^{-bt}$$
(4.34)

Našli sme riešenie diferenciálnej rovnice pre dané začiatočné podmienky.

4.4 Úloha

Nájdite analytické riešenie diferenciálnej rovnice. Použite Laplaceovu transformáciu.

$$\dot{y}(t) + ay(t) = bu(t)$$
 $y(0) = 0$ $u(t) = \delta(t)$ $a, b \in \mathbb{R}$

kde $\delta(t)$ je Dirackov impulz.

Riešenie: Na jednotlivé členy diferenciálnej rovnice aplikujeme Laplaceovu transformáciu.

$$\mathcal{L}\{\dot{y}(t)\} = sY(s) - y(0) \tag{4.35a}$$

$$\mathcal{L}\{ay(t)\} = aY(s) \tag{4.35b}$$

$$\mathcal{L}\{bu(t)\} = bU(s) = b \cdot 1 \tag{4.35c}$$

Potom rovnica v Laplaceovej oblasti bude

$$sY(s) - y(0) + aY(s) = b$$
 (4.36a)

$$sY(s) + aY(s) = b (4.36b)$$

Členy obsahujúce Y(s) zoskupíme na ľavej strane rovnice

$$Y(s)(s+a) = b (4.37)$$

Obrazom riešenia dif. rovnice teda je

$$Y(s) = \frac{b}{s+a} = b \frac{1}{s+a}$$
 (4.38)

Zaujíma nás však originál tohto obrazu. V tomto prípade je priamo z tabuľky Laplaceových obrazov signálov zrejmé, že originálom je funkcia

$$y(t) = b e^{-at} \tag{4.39}$$

čím sme našli riešenie diferenciálnej rovnice.

4.5 Úloha

Nájdite analytické riešenie diferenciálnej rovnice. Použite Laplaceovu transformáciu.

$$\dot{y}(t) + ay(t) = bu(t)$$
 $y(0) = y_0$ $u(t) = 1$ $a, b \in \mathbb{R}$

kde u(t) je v tejto súvislosti skoková zmena vstupného signálu v čase t=0.

Riešenie: Na jednotlivé členy diferenciálnej rovnice aplikujeme Laplaceovu transformáciu.

$$\mathcal{L}\{\dot{y}(t)\} = sY(s) - y(0) \tag{4.40a}$$

$$\mathcal{L}\{ay(t)\} = aY(s) \tag{4.40b}$$

$$\mathcal{L}\{bu(t)\} = bU(s) = b \cdot \frac{1}{s} \tag{4.40c}$$

Potom rovnica v Laplaceovej oblasti bude

$$sY(s) - y(0) + aY(s) = b\frac{1}{s}$$
 (4.41a)

$$sY(s) - y_0 + aY(s) = b\frac{1}{s}$$
 (4.41b)

Členy obsahujúce Y(s) zoskupíme na ľavej strane rovnice

$$Y(s)(s+a) = y_0 + b\frac{1}{s}$$
 (4.42)

Obrazom riešenia dif. rovnice teda je

$$Y(s) = \frac{y_0}{s+a} + b \frac{1}{s(s+a)} \tag{4.43}$$

Zaujíma nás však originál tohto obrazu. Prvý výraz je

$$Y_1(s) = \frac{y_0}{s+a} \tag{4.44}$$

Súvisí so začiatočnou podmienkou a jeho originálom (podľa tabuľky Laplaceových obrazov) je funkcia

$$y_1(t) = y_0 e^{-at} (4.45)$$

Druhý výraz je

$$Y_2(s) = \frac{b}{s(s+a)} {(4.46)}$$

Súvisí so vstupným signálom u(t) a nie je možné priamo určiť jeho originál z tabuľky Laplaceových obrazov signálov. Preto je potrebné využiť rozklad na parciálne zlomky. V tomto prípade

$$Y_2(s) = \frac{b}{s(s+a)} = \frac{A}{s} + \frac{B}{s+a}$$
 (4.47)

kde A a B sú neznáme konštanty. To je možné zapísať aj v tvare

$$b = A(s+a) + Bs \tag{4.48}$$

Uvedené platí pre akékoľvek s, teda aj pre s=0 a s=-a. Pre s=0 dostaneme

$$b = Aa \tag{4.49a}$$

$$A = \frac{b}{a} \tag{4.49b}$$

Pre s = -a dostaneme

$$b = B(-a) \tag{4.50a}$$

$$B = \frac{-b}{a} \tag{4.50b}$$

Teda

$$Y_2(s) = \frac{b}{a} \left(\frac{1}{s}\right) - \frac{b}{a} \left(\frac{1}{s+a}\right) \tag{4.51}$$

a originálna funkcia je

$$y_2(t) = \frac{b}{a} - \frac{b}{a}e^{-at} \tag{4.52}$$

Súčet $y_1(t) + y_2(t)$ je riešením diferenciálnej rovnice

$$y(t) = y_0 e^{-at} + \frac{b}{a} - \frac{b}{a} e^{-at}$$
 (4.53)

4.6 Úloha

Nájdite analytické riešenie diferenciálnej rovnice. Použite Laplaceovu transformáciu.

$$\ddot{y}(t) + 4\dot{y}(t) + 3y(t) = u(t) \qquad y(0) = 3 \qquad \dot{y}(0) = -2 \qquad u(t) = 1$$

Riešenie: Na jednotlivé členy diferenciálnej rovnice aplikujeme Laplaceovu transformáciu.

$$\mathcal{L}\{\ddot{y}(t)\} = s^2 Y(s) - sy(0) - \dot{y}(0) \tag{4.54a}$$

$$\mathcal{L}\{4\dot{y}(t)\} = 4(sY(s) - y(0)) \tag{4.54b}$$

$$\mathcal{L}{3y(t)} = 3Y(s) \tag{4.54c}$$

$$\mathcal{L}\{u(t)\} = U(s) = \frac{1}{s} \tag{4.54d}$$

Potom rovnica v Laplaceovej oblasti bude

$$s^{2}Y(s) - sy(0) - \dot{y}(0) + 4sY(s) - 4y(0) + 3Y(s) = \frac{1}{s}$$
 (4.55a)

$$s^{2}Y(s) - s \cdot 3 - (-2) + 4sY(s) - 4 \cdot 3 + 3Y(s) = \frac{1}{s}$$
 (4.55b)

$$s^{2}Y(s) - 3s + 2 + 4sY(s) - 12 + 3Y(s) = \frac{1}{s}$$
 (4.55c)

$$s^{2}Y(s) + 4sY(s) + 3Y(s) = 3s + 10 + \frac{1}{s}$$
 (4.55d)

Členy obsahujúce Y(s) zoskupíme na ľavej strane rovnice

$$Y(s)(s^{2} + 4s + 3) = 3s + 10 + \frac{1}{s}$$
(4.56)

Obrazom riešenia dif. rovnice teda je

$$Y(s) = \frac{3s+10}{s^2+4s+3} + \frac{1}{s(s^2+4s+3)}$$
(4.57)

Zaujíma nás však originál tohto obrazu. Prvý výraz je

$$Y_1(s) = \frac{3s+10}{s^2+4s+3} \tag{4.58}$$

Súvisí so začiatočnými podmienkami a nie je možné priamo určiť jeho originál z tabuľky Laplaceových obrazov signálov. Preto je potrebné využiť rozklad na parciálne zlomky. Výraz v menovateli s^2+4s+3 je kvadratický polynóm, ktorý má dva rôzne korene a tie sú

$$s_{1,2} = \frac{-(4) \pm \sqrt{4^2 - 4 \cdot 3}}{2} = \frac{-4 \pm \sqrt{4}}{2} = \frac{-4 \pm 2}{2}$$
 (4.59)

teda

$$s_1 = -1$$
 (4.60a)

$$s_2 = -3$$
 (4.60b)

Potom v tomto prípade

$$Y_1(s) = \frac{3s+10}{s^2+4s+3} = \frac{A}{s+1} + \frac{B}{s+3}$$
 (4.61)

kde A a B sú neznáme konštanty. To je možné zapísať aj v tvare

$$3s + 10 = A(s+3) + B(s+1) \tag{4.62}$$

Uvedené platí pre akékoľvek s, teda aj pre s=-1 a s=-3. Pre s=-1 dostaneme

$$-3 + 10 = A(-1+3) \tag{4.63a}$$

$$7 = 2A \tag{4.63b}$$

$$A = \frac{7}{2} {(4.63c)}$$

Pre s = -3 dostaneme

$$-9 + 10 = B(-3+1) \tag{4.64a}$$

$$1 = -2B \tag{4.64b}$$

$$B = -\frac{1}{2} (4.64c)$$

Teda

$$Y_1(s) = \frac{3s+10}{s^2+4s+3} = \frac{7}{2} \left(\frac{1}{s+1}\right) - \frac{1}{2} \left(\frac{1}{s+3}\right)$$
(4.65)

a originálna funkcia je

$$y_1(t) = \frac{7}{2}e^{-t} - \frac{1}{2}e^{-3t} \tag{4.66}$$

Druhý výraz je

$$Y_2(s) = \frac{1}{s(s^2 + 4s + 3)} \tag{4.67}$$

Súvisí so vstupným signálom u(t) a nie je možné priamo určiť jeho originál z tabuľky Laplaceových obrazov signálov. Preto je potrebné využiť rozklad na parciálne zlomky. V tomto prípade

$$Y_2(s) = \frac{1}{s(s^2 + 4s + 3)} = \frac{C}{s} + \frac{D}{s+1} + \frac{E}{s+3}$$
 (4.68)

kde C, D a E sú neznáme konštanty. To je možné zapísať aj v tvare

$$1 = C(s+1)(s+3) + Ds(s+3) + Es(s+1)$$
(4.69)

Uvedené platí pre akékoľvek s,teda aj pre $s=0,\, s=-1$ a s=-3. Pre s=0 dostaneme

$$1 = C(0+1)(0+3) \tag{4.70a}$$

$$1 = 3C \tag{4.70b}$$

$$C = \frac{1}{3} \tag{4.70c}$$

Pre s=-1 dostaneme

$$1 = D(-1)(-1+3) \tag{4.71a}$$

$$1 = 2D \tag{4.71b}$$

$$D = \frac{1}{2} \tag{4.71c}$$

Pre s = -3 dostaneme

$$1 = E(-3)(-3+1) \tag{4.72a}$$

$$1 = 6E \tag{4.72b}$$

$$E = \frac{1}{6} (4.72c)$$

Teda

$$Y_2(s) = \frac{1}{s(s^2 + 4s + 3)} = \frac{1}{3} \left(\frac{1}{s}\right) + \frac{1}{2} \left(\frac{1}{s+1}\right) + \frac{1}{6} \left(\frac{1}{s+3}\right)$$
(4.73)

a originálna funkcia je

$$y_2(t) = \frac{1}{3} + \frac{1}{2}e^{-t} + \frac{1}{6}e^{-3t}$$
(4.74)

Súčet $y_1(t) + y_2(t)$ je riešením diferenciálnej rovnice

$$y(t) = \frac{7}{2}e^{-t} - \frac{1}{2}e^{-3t} + \frac{1}{3} + \frac{1}{2}e^{-t} + \frac{1}{6}e^{-3t}$$
 (4.75a)

$$y(t) = 4e^{-t} - \frac{1}{3}e^{-3t} + \frac{1}{3}$$
(4.75b)

5 Prevod diferenciálnych rovníc na prenosové funkcie a na opis v stavovom priestore

5.1 Úloha

Nájdite prenosovú funkciu dynamického systému daného diferenciálnou rovnicou v tvare

$$a_1 \dot{y}(t) + a_0 y(t) = b_0 u(t)$$
 $a_0, a_1, b_0 \in \mathbb{R}$ (5.1)

Riešenie: Aplikujme Laplaceovu transformáciu na jednotlivé členy diferenciálnej rovnice.

$$a_1(sY(s) - y(0)) + a_0Y(s) = b_0U(s)$$
(5.2)

Začiatočné podmienky sú nulové, teda y(0) = 0, potom

$$a_1 s Y(s) + a_0 Y(s) = b_0 U(s)$$
 (5.3)

Hľadáme $\frac{Y(s)}{U(s)},$ osamostatnime pretoY(s)

$$Y(s) (a_1 s + a_0) = b_0 U(s)$$
(5.4)

$$Y(s) = \frac{b_0}{a_1 s + a_0} U(s) \tag{5.5}$$

Prenosová funkcia systému je teda

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_0}{a_1 s + a_0} \tag{5.6}$$

5.2 Úloha

Nájdite prenosovú funkciu dynamického systému daného diferenciálnou rovnicou v tvare

$$\ddot{y}(t) + a_1 \dot{y}(t) + a_0 y(t) = b_0 u(t) \qquad a_0, a_1, b_0 \in \mathbb{R}$$
(5.7)

Riešenie: Aplikujme Laplaceovu transformáciu na jednotlivé členy diferenciálnej rovnice.

$$s(sY(s) - y(0)) - \dot{y}(0) + a_1(sY(s) - y(0)) + a_0Y(s) = b_0U(s)$$
(5.8)

Začiatočné podmienky sú nulové, teda y(0) = 0 a $\dot{y}(0) = 0$, potom

$$s^{2}Y(s) + a_{1}sY(s) + a_{0}Y(s) = b_{0}U(s)$$
(5.9)

Osamostatnime Y(s):

$$Y(s) (s^{2} + a_{1}s + a_{0}) = b_{0}U(s)$$
(5.10)

$$Y(s) = \frac{b_0}{s^2 + a_1 s + a_0} U(s) \tag{5.11}$$

Prenosová funkcia systému je teda

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_0}{s^2 + a_1 s + a_0}$$
 (5.12)

6 Prenosová funkcia ako model dynamického systému

6.1 Úloha

Uvažujte statický systém prvého rádu (SS1R) daný prenosovou funkciou v tvare

$$Y(s) = \frac{b_0}{s + a_0} U(s) \tag{6.1}$$

kde $a_0, b_0 \in \mathbb{R}$ sú parametre systému. Stanovte časovú funkciu, ktorá je analytickým vyjadrením prechodovej charakteristiky tohto systému.

Riešenie: Prechodová charakteristika systému je odpoveď systému na jednotkový skok. V Laplaceovej oblasti je jednotkový skok daný ako

$$U(s) = \frac{1}{s} \tag{6.2}$$

Dosadením do opisu systému získame obraz výstupnej veličiny systému:

$$Y(s) = \frac{b_0}{s + a_0} \cdot \frac{1}{s} = \frac{b_0}{s(s + a_0)}$$
(6.3)

Tento obraz výstupnej veličiny presne zodpovedá situácii, ktorá definuje prechodovú charakteristiku systému. Začiatočné podmienky sú nulové a na vstupe systému je jednotkový skok. Je potrebné nájsť originál tohto obrazu. Rozložme daný výraz na parciálne zlomky:

$$Y(s) = \frac{b_0}{s(s+a_0)} = \frac{A}{s} + \frac{B}{s+a_0}$$
(6.4)

kde A a B sú neznáme konštanty. To je možné zapísať aj v tvare

$$b_0 = A(s + a_0) + Bs (6.5)$$

Uvedené platí pre akékoľvek s, teda aj pre s=0 a $s=-a_0$. Pre s=0 platí

$$b_0 = Aa_0 \tag{6.6}$$

$$A = \frac{b_0}{a_0} \tag{6.7}$$

Pre $s = -a_0$ platí

$$b_0 = B(-a_0) (6.8)$$

$$B = \frac{-b_0}{a_0} {(6.9)}$$

Teda

$$Y(s) = \frac{b_0}{a_0} \left(\frac{1}{s}\right) - \frac{b_0}{a_0} \left(\frac{1}{s + a_0}\right) \tag{6.10}$$

Na záver využijeme tabuľku Laplaceových obrazov a originálov na nájdenie originálu obrazu výstupnej veličiny systému:

$$\mathcal{L}^{-1}\left\{Y(s)\right\} = y(t) = \frac{b_0}{a_0} - \frac{b_0}{a_0} e^{-a_0 t} \tag{6.11}$$

čím sme našli analytické vyjadrenie prechodovej charakteristiky systému.

6.2 Úloha

Pre dynamický systém opísaný pomocou prenosovej funkcie nájdite zodpovedajúcu diferenciálnu rovnicu.

$$G(s) = \frac{b_0}{s^2 + a_1 s + a_0} \tag{6.12}$$

Riešenie: Platí $G(s) = \frac{Y(s)}{U(s)}$, teda

$$Y(s) = G(s)U(s) \tag{6.13}$$

$$Y(s) = \frac{b_0}{s^2 + a_1 s + a_0} U(s) \tag{6.14}$$

$$(s^{2} + a_{1}s + a_{0})Y(s) = b_{0}U(s)$$
(6.15)

$$s^{2}Y(s) + a_{1}SY(s) + a_{0}Y(s) = b_{0}U(s)$$
(6.16)

Prvý člen rovnice je v podstate

$$s^{2}Y(s) = s^{2}Y(s) - s \cdot 0 - 0 \tag{6.17}$$

pretože prenosová funkcia predpokladá nulové začiatočné podmienky. Originálom tohto obrazu je

$$\mathcal{L}^{-1}\left\{s^{2}Y(s)\right\} = \ddot{y}(t) \tag{6.18}$$

Obdobne pre druhý člen rovnice

$$a_1 s Y(s) \Longrightarrow a_1 \dot{y}(t)$$
 (6.19)

Tretí člen je jednoducho

$$a_0Y(s) \Longrightarrow a_0y(t)$$
 (6.20)

a pravá strana rovnice je

$$b_0 U(s) \Longrightarrow b_0 u(t) \tag{6.21}$$

Celá diferenciálna rovnica má tvar

$$\ddot{y}(t) + a_1 \dot{y}(t) + a_0 y(t) = b_0 u(t) \tag{6.22}$$

6.3 Úloha

Pre dynamický systém opísaný pomocou prenosovej funkcie nájdite zodpovedajúcu diferenciálnu rovnicu.

$$G(s) = \frac{b_1 s}{s^2 + a_1 s + a_0} \tag{6.23}$$

Riešenie: Platí $G(s) = \frac{Y(s)}{U(s)}$, teda

$$Y(s) = G(s)U(s) \tag{6.24}$$

$$Y(s) = \frac{b_1 s}{s^2 + a_1 s + a_0} U(s) \tag{6.25}$$

$$(s^{2} + a_{1}s + a_{0})Y(s) = b_{1}sU(s)$$
(6.26)

$$s^{2}Y(s) + a_{1}sY(s) + a_{0}Y(s) = b_{1}sU(s)$$
(6.27)

Pomocou tabuľky Laplaceových obrazov a originálov nájdeme originály jednotlivých členov rovnice.

$$s^2Y(s) \Longrightarrow \ddot{y}(t)$$
 $a_1sY(s) \Longrightarrow a_1\dot{y}(t)$ $a_0Y(s) \Longrightarrow a_0y(t)$ $b_1sU(s) \Longrightarrow b_1\dot{u}(t)$ (6.28)

Celá diferenciálna rovnica má tvar

$$\ddot{y}(t) + a_1 \dot{y}(t) + a_0 y(t) = b_1 \dot{u}(t) \tag{6.29}$$

6.4 Úloha

Určte charakteristický polynóm prenosovej funkcie

$$G(s) = \frac{b_2 s^2 + b_1 s + b_0}{a_3 s^3 + a_2 s^2 + a_1 s + a_0}$$

$$(6.30)$$

Riešenie: Charakteristický polynóm prenosovej je menovateľ prenosovej funkcie, teda

$$a_3s^3 + a_2s^2 + a_1s + a_0 (6.31)$$

6.5 Úloha

Určte póly dynamického systému daného prenosovou funkciou

$$G(s) = \frac{as+b}{s^2 + (c+d)s + cd}$$
 (6.32)

Riešenie: Póly systému sú korene charakteristického polynómu, teda korene menovateľa prenosovej funkcie. Charakteristický polynóm je

$$s^2 + (c+d)s + cd (6.33)$$

Je zrejmé, že platí

$$s^{2} + (c+d)s + cd = (s+c)(s+d)$$
(6.34)

Korene charakteristického polynómu sú

$$s_1 = -c$$
 $s_2 = -d$ (6.35)

6.6 Úloha

Vyšetrite stabilitu dynamického systému daného prenosovou funkciou

$$G(s) = \frac{5s}{s^2 + 5s + 6} \tag{6.36}$$

Riešenie: Stabilita dynamického systému je daná pólmi systému, teda koreňmi charakteristického polynómu. Charakteristický polynóm je menovateľ prenosovej funkcie, teda

$$s^2 + 5s + 6 \tag{6.37}$$

Korene charakteristického polynómu sú

$$s_{1,2} = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 6}}{2} = \frac{-5 \pm \sqrt{1}}{2} = \frac{-5 \pm 1}{2}$$
 (6.38)

$$s_1 = -2 \qquad s_2 = -3 \tag{6.39}$$

Korene sú reálne a záporné, ležia teda v ľavej polrovine komplexnej roviny. Preto je systém stabilný.

6.7 Úloha

Nájdite hodnoty koeficientov a a b, pre ktoré je dynamický systém stabilný

$$G(s) = \frac{1}{s^2 + (a+b)s + ab} \tag{6.40}$$

Riešenie: Stabilita dynamického systému je daná pólmi systému, teda koreňmi charakteristického polynómu. Charakteristický polynóm je menovateľ prenosovej funkcie, teda

$$s^2 + (a+b)s + ab (6.41)$$

Je zrejmé, že platí

$$s^{2} + (a+b)s + ab = (s+a)(s+b)$$
(6.42)

Korene charakteristického polynómu sú

$$s_1 = -a s_2 = -b (6.43)$$

Pre stabilitu systému musia byť oba korene v ľavej polrovine komplexnej roviny, teda ich reálna časť musí byť záporná. Preto pre hodnoty koeficientov musí platiť

$$a > 0 \qquad b > 0 \tag{6.44}$$

7 Rôzne úlohy

7.1 Úloha

Uvažujme lineárny dynamický systém v tvare

$$\dot{x}(t) = a x(t) + b u(t) \tag{7.1a}$$

$$y(t) = x(t) \tag{7.1b}$$

kde x(t) je stavová veličina systému, u(t) je vstupná veličina systému a y(t) je výstupná veličina systému. Parameter b=1 a parameter a je neznáma konštanta.

- a) Koľkého rádu je systém?
- b) Aký je charakteristický polynóm daného dynamického systému?
- c) Pre ktoré a je systém stabilný a pre ktoré a je nestabilný? Nájdite intervaly.

Riešenie:

- a) Parameter a je skalár, nie je to matica prípadne môžeme povedať, že je to matica 1×1 . Vo všeobecnosti je táto matica štvorcová a jej rozmer zodpovedá rádu systému. V tomto prípade je teda systém prvého rádu.
- b) Keďže ide o systém prvého rádu, je jednoduché priamo určiť jeho prenosovú funkciu. Charakteristický polynóm systému je potom menovateľ prenosovej funkcie. Keďže y(t) = x(t) tak diferenciálna rovnica systému je

$$\dot{y}(t) = a y(t) + b u(t) \tag{7.2}$$

Aplikujme Laplaceovu transformáciu na obe strany rovnice

$$sY(s) - y(0) = aY(s) + bU(s)$$
 (7.3)

Prenosová funkcia je pomer výstupného a vstupného signálu v Laplaceovej oblasti pri nulových začiatočných podmienkach, teda y(0) = 0, potom

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b}{s-a} \tag{7.4}$$

Charakteristický polynóm systému je teda

$$(s-a) (7.5)$$

c) Stabilita lineárneho systému je daná pólmi systému, teda koreňmi charakteristického polynómu. Ak všetky korene charakteristického polynómu ležia v ľavej polrovine komplexnej roviny, teda ich reálna časť je záporná, systém je stabilný. V tomto prípade je koreň charakteristického polynómu s=a. Preto systém je stabilný pre a<0 a nestabilný pre a>0. Pre a=0 je systém na hranici stability.