CLUSTERING

Chapter 10

Outline

- ➤ What is Clustering?
- >K-Means Clustering
- >Hierarchical Clustering

WHAT IS CLUSTERING?

Supervised vs. Unsupervised Learning

- Supervised Learning: both X and Y are known
- Unsupervised Learning: only X

Clustering

- Clustering refers to a set of techniques for finding subgroups, or clusters, in a data set
 - Be careful not to use the word "class" instead of cluster
- Good clustering: when the observations within a group are similar but observations in different groups are very different
- For example, suppose we collect *p* measurements on each of *n* breast cancer patients. There may be different unknown types of cancer which we could discover by clustering the data

Different Clustering Methods

- There are many different types of clustering methods
- We will concentrate on two of the most commonly used approaches
 - K-Means Clustering
 - Hierarchical Clustering
- The objective is to have a
 - minimal intra-cluster "within-cluster-variation", i.e. the elements within a cluster should be as similar as possible
 - maximum inter-cluster "center-to-center" distance, i.e. the cluster centers should be as far apart as possible

K-MEANS CLUSTERING

K-Means Clustering

- To perform K-means clustering, one must first specify the desired number of clusters K
- Then the K-means algorithm will assign each observation to exactly one of the K clusters

How does K-Means work?

We would like to partition that data set into K clusters

$$C_1,\ldots,C_K$$

- Each observation belongs to <u>one</u> of the K clusters
- K-Means results in a Voronoi Tessellation of the input space in \Re^n
 - A tessellation is a tiling/segmenting of the input space
 - Each segment/region is a Voronoi Cell and indicates which part of the input space "belongs" to which cluster center

K-Means Clustering Algorithm - Book

 Initial Step: Randomly assign each observation to one of K clusters such that

 $\forall i \in Obs, \exists k \in Clusters \mid i \in C_k$ (every observation belongs to a cluster)

 $\forall l, m \in Clusters, l \neq m \rightarrow C_i \cap C_m = \emptyset$ (clusters are mutually exclusive)

- Iterate until the cluster assignments stop changing:
 - For each of the K clusters, compute the cluster centroid. The k^{th} cluster centroid is the mean of the observations assigned to the k^{th} cluster $\sum X_{i,j}$

 $\forall k, \forall i \in C_k, \forall j \in p, \text{Centroid}_{k,j} = \frac{\overline{i}}{|C_k|}$

(cluster centroid is mean of each feature for the observations belonging to it)

 Assign each observation to the cluster whose centroid is closest (where "closest" is defined using Euclidean distance.

$$k_i = argmin_k ||x_i - Centroid_k||^2$$

K-Means Algorithm - Visualized

K-Means Clustering Algorithm Alternative Initialization

- Alternative Initial Step:
 Randomly select k starting centroids
- Iterate until the cluster centroids each change very little:
 - Assign each observation to the cluster whose centroid is closest (where "closest" is defined using Euclidean distance.

$$k_i = argmin_k ||x_i - Centroid_k||^2$$

For each of the K clusters, update the cluster centroid. The kth cluster centroid is the mean of the observations assigned to the kth cluster

$$\forall k, \forall i \in C_k, \forall j \in p, \text{Centroid}_{k,j} = \frac{\sum_{i} X_{i,j}}{|C_k|}$$

(cluster centroid is mean of each feature for the observations belonging to it)

K-Means Considerations: K

K-Means Achieves the property:

$$\underset{C_1, \dots, C_k}{\text{minimize}} \left\{ \sum_{k=1}^{K} \frac{1}{|C_k|} \sum_{i, i' \in C_k} \sum_{j=1}^{p} (x_{i,j} - x_{i'j})^2 \right\}$$

- In K-means clustering, we must specify K for the number of clusters we desire
 - If we know how many clusters we want, then we can select K
 - What if we don't know? How do we determine a "best" K?
 - Elbow method compute SSE for several K values and look for the "elbow":

Ш

SS

$$SSE = \sum_{k=1}^{k} \sum_{x \in C_k} (x - C_k)^2$$

- Other Potential (Automatic) Solutions:
 - χ-Means (Bayesian Information Criteria)
 - G-Means (Anderson-Darling)
 - PG-Means (Kolmogorov-Smirnov test)

K value

HIERARCHICAL CLUSTERING

Hierarchical Clustering

- K-Means clustering requires choosing the number of clusters.
- If we don't want to do that, an alternative is to use Hierarchical Clustering
- Hierarchical Clustering has an added advantage that it produces a tree based representation of the observations, called a Dendogram

Dendograms

- First join closest points (5 and 7)
- Height of fusing/merging (on vertical axis) indicates how similar the points are
- After the points are fused they are treated as a single observation and the algorithm continues

Interpretation

- Each "leaf" of the dendogram represents one of the 45 observations
- At the bottom of the dendogram, each observation is a distinct leaf. However, as we move up the tree, some leaves begin to fuse. These correspond to observations that are similar to each other.
- As we move higher up the tree, an increasing number of observations have fused. The earlier (lower in the tree) two observations fuse, the more similar they are to each other.
- Observations that fuse later are quite different

Choosing Clusters

- To choose clusters we draw lines across the dendogram
- We can form any number of clusters depending on where we draw the break point.

Algorithm (Agglomerative Approach)

- The dendogram is produced as follows:
 - Start with each point as a separate cluster (n clusters)
 - Calculate a measure of dissimilarity between all points/clusters
 - Fuse two clusters that are most similar so that there are now n-1 clusters
 - Fuse next two most similar clusters so there are now n-2 clusters
 - Continue until there is only 1 cluster

An Example

- Start with 9 clusters
- Fuse 5 and 7
- Fuse 6 and 1
- Fuse the (5,7) cluster with 8.
- Continue until all observations are fused.

How do we define dissimilarity?

- Implementing hierarchical clustering involves one obvious issue
- How do we define the dissimilarity, or linkage, between the fused (5,7) cluster and 8?
- There are four options:
 - Complete Linkage
 - Single Linkage
 - Average Linkage
 - Centroid Linkage

Linkage Methods: Distance Between Clusters

- Complete Linkage: Largest distance between observations
- Single Linkage: Smallest distance between observations
- Average Linkage: Average distance between observations
- Centroid: distance between centroids of the observations

Linkage Can be Important

- Here we have three clustering results for the same data
- The only difference is the linkage method but the results are very different
- Complete and average linkage tend to yield evenly sized clusters whereas single linkage tends to yield extended clusters to which single leaves are fused one by one.

Exercise

 Suppose that we have 5 observations, for which we compute a similarity (distance) matrix as follows:

	Α	В	С	D	Е
Α	0				
В	9	0			
С	3	7	0		
D	6	5	9	0	
E	11	10	2	8	0

 On the basis of the similarity matrix, sketch the dendogram that results from hierarchically clustering these 5 observations using complete linkage.

FINAL THOUGHTS

Practical Issues in Clustering

- In order to perform clustering, some decisions must be made:
 - Should the features first be normalized? i.e. Have the variables centered to have a mean of zero and standard deviation of one.
 - In case of hierarchical clustering:
 - What dissimilarity measure should be used?
 - What type of linkage should be used?
 - Where should we cut the dendogram in order to obtain clusters?
 - In case of K-means clustering:
 - How many clusters should we look for the data?
- In practice, we try several different choices, and look for the one with the most useful or interpretable solution.

Using the results of clustering

- Most importantly, one must be careful about how the results of a clustering analysis are reported
- These results should not be taken as the absolute truth about a data set
- Rather, they should constitute a starting point for the developments of a scientific hypothesis and further study, preferably on independent data

Backup Slides

K-Means Considerations: Local

Optimums

- The K-means algorithm can get stuck in "local optimums" and not find the best solution
- Hence, it is important to run the algorithm multiple times with random starting points to find a good solution

K-Means Considerations: Data

- Identification of potential cluster shape non-convex shapes will perform poorly
 - Alternatives: CRYSTAL, DBSCAN,...
- Choice of similarity function
 - Continuous
 - Euclidean: $d(x_i, x_j) = \sqrt{\sum_{k=1}^{d} (x_{i,k} x_{j,k})^2}$
 - Normalize disparate axis dimensions x [0..100], y [0..1]
 - Mahalanobis: $d_M(\overrightarrow{x_i}, \overrightarrow{x_j}) = (\overrightarrow{x_i} \overrightarrow{x_j}) \sum^{-1} (\overrightarrow{x_i} \overrightarrow{x_j})^T$
 - Discrete Binary Jaccard index
 - Discrete Dice/Czehanovsky-Sorensen measure
 - Mixed:
 - Gower similarity
 - Podani (Gower extended with ordinals)
 - Discrete and Mixed: Where is the cluster center?
 - k-Mediods

K-Mediods

- 1) **Initialize**: Randomly assign $\{C_1...C_K\}$ to K samples from $\{x_1...x_N\}$
- 2) **Assignment**: Assign each x_n to one of the $k=\{1...K\}$ cluster centers $\{C_1...C_K\}$ (distance based on similarity measure)
- 3) **Update**: For the given cluster assignment, update each C_k to the x_n in each cluster k that minimizes the error
- 4) Repeat until converged

Subsampling/ Vector Quantization

Image Summarization

Overview of Computational Complexities

- Use Big-Oh notation
 - Upper bounds on computational complexity
 - Performance bounds is based on:
 - M-Number of samples
 - L-Number of iterations
 - K-The number of clusters
 - n-Dimensionality of the data
- Performance Bounds:
 - K-Means O(nMKL)
 - Soft K-Means O(nMKL)
 - K-Mediods $O(nLKM_k^2)$

How good is our clustering?

- Evaluation without class labels (recall inter and intracluster optimizations)
 - Homogeneity
 - Separation
 - Silhouette Width
 - Davies Bouldin index
 - Dunn index ratio between the minimal inter-cluster (center to center) distance to maximal intra-cluster (farthest point in cluster to farthest point in cluster) distance
- Evaluation with class labels: purity, F-measure, Rand index, Adjusted Rand index, Jaccard index, Fowled-Mallows index