BAYESIAN STATISTICS - LECTURE 10

LECTURE 10: BAYESIAN MODEL COMPARISON.

MATTIAS VILLANI

DEPARTMENT OF STATISTICS
STOCKHOLM UNIVERSITY
AND
DEPARTMENT OF COMPUTER AND INFORMATION SCIENCE
LINKÖPING UNIVERSITY

OVERVIEW

- **Bayesian model comparison**
- **■** Marginal likelihood
- **Log Predictive Score**

USING LIKELIHOOD FOR MODEL COMPARISON

- Consider two models for the data $\mathbf{y} = (y_1, ..., y_n)$: M_1 and M_2 .
- Let $p_i(\mathbf{y}|\theta_i)$ denote the data density under model M_i .
- If know θ_1 and θ_2 , the **likelihood ratio** is useful

$$\frac{p_1(\mathbf{y}|\theta_1)}{p_2(\mathbf{y}|\theta_2)}.$$

■ The likelihood ratio with ML estimates plugged in:

$$\frac{p_1(\boldsymbol{y}|\hat{\theta}_1)}{p_2(\boldsymbol{y}|\hat{\theta}_2)}.$$

- Bigger models always win in estimated likelihood ratio.
- **Hypothesis tests** are problematic for non-nested models. End results are not very useful for analysis.

BAYESIAN MODEL COMPARISON

- Just use your priors $p_1(\theta_1)$ och $p_2(\theta_2)$.
- The marginal likelihood for model M_k with parameters θ_k

$$p_k(y) = \int p_k(y|\theta_k)p_k(\theta_k)d\theta_k.$$

- \blacksquare θ_k is removed by the prior. **Not a silver bullet**. **Priors matter!**
- The Bayes factor

$$B_{12}(y) = \frac{p_1(y)}{p_2(y)}.$$

■ Posterior model probabilities

$$\underbrace{\Pr(\mathsf{M}_k|\mathbf{y})}_{\text{posterior model prob.}} \propto \underbrace{p(\mathbf{y}|\mathsf{M}_k)}_{\text{marginal likelihood}} \cdot \underbrace{\Pr(\mathsf{M}_k)}_{\text{prior model prob.}}$$

BAYESIAN HYPOTHESIS TESTING - BERNOULLI

■ **Hypothesis testing** is just a special case of model selection:

$$\begin{split} \textit{M}_{O}: & \textit{x}_{1}, ..., \textit{x}_{n} \overset{\textit{iid}}{\sim} \textit{Bernoulli}(\theta_{O}) \\ \textit{M}_{1}: & \textit{x}_{1}, ..., \textit{x}_{n} \overset{\textit{iid}}{\sim} \textit{Bernoulli}(\theta), \theta \sim \textit{Beta}(\alpha, \beta) \\ & p(\textit{x}_{1}, ..., \textit{x}_{n} | \textit{M}_{O}) = \theta_{O}^{s} (1 - \theta_{O})^{f}, \\ p(\textit{x}_{1}, ..., \textit{x}_{n} | \textit{M}_{1}) & = \int_{O}^{1} \theta^{s} (1 - \theta)^{f} \textit{B}(\alpha, \beta)^{-1} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} d\theta \\ & = \textit{B}(\alpha + s, \beta + f) / \textit{B}(\alpha, \beta), \end{split}$$

where $B(\cdot, \cdot)$ is the **Beta function**.

■ Posterior model probabilities

$$Pr(M_k|x_1,...,x_n) \propto p(x_1,...,x_n|M_k)Pr(M_k)$$
, for $k = 0, 1$.

■ The Bayes factor

$$BF(M_0; M_1) = \frac{p(x_1, ..., x_n | H_0)}{p(x_1, ..., x_n | H_1)} = \frac{\theta_0^s (1 - \theta_0)^f B(\alpha, \beta)}{B(\alpha + s, \beta + f)}.$$

PRIORS MATTER

EXAMPLE: GEOMETRIC VS POISSON

- Model 1 **Geometric** with Beta prior:
 - $y_1, ..., y_n | \theta_1 \sim \text{Geo}(\theta_1)$
 - $\theta_1 \sim Beta(\alpha_1, \beta_1)$
- Model 2 Poisson with Gamma prior:
 - $V_1, ..., V_n | \theta_2 \sim Poisson(\theta_2)$
 - $\theta_2 \sim \text{Gamma}(\alpha_2, \beta_2)$
- Marginal likelihood for M₁

$$p_{1}(y_{1},...,y_{n}) = \int p_{1}(y_{1},...,y_{n}|\theta_{1})p(\theta_{1})d\theta_{1}$$

$$= \frac{\Gamma(\alpha_{1}+\beta_{1})}{\Gamma(\alpha_{1})\Gamma(\beta_{1})} \frac{\Gamma(n+\alpha_{1})\Gamma(n\bar{y}+\beta_{1})}{\Gamma(n+n\bar{y}+\alpha_{1}+\beta_{1})}$$

■ Marginal likelihood for M₂

$$p_2(y_1, ..., y_n) = \frac{\Gamma(n\bar{y} + \alpha_2)\beta_2^{\alpha_2}}{\Gamma(\alpha_2)(n + \beta_2)^{n\bar{y} + \alpha_2}} \frac{1}{\prod_{i=1}^n y_i!}$$

GEOMETRIC AND POISSON

GEOMETRIC VS POISSON, CONT.

■ Priors match prior predictive means:

$$E(y_i|M_1) = E(y_i|M_2) \iff \alpha_1\alpha_2 = \beta_1\beta_2$$

Data: $y_1 = 0$, $y_2 = 0$.

$lpha_1=$ 1, $eta_1=$ 2	$lpha_1=$ 10, $eta_1=$ 20	$\alpha_1 = 100, \beta_1 = 200$
$lpha_2=$ 2, $eta_2=$ 1	$lpha_2=$ 20, $eta_2=$ 10	$lpha_2=$ 200, $eta_2=$ 100
1.5	4.54	5.87
0.6	0.82	0.85
0.4	0.18	0.15
	$\alpha_2 = 2, \beta_2 = 1$ 1.5 0.6	0.6 0.82

Data: $y_1 = 3$, $y_2 = 3$.

	$lpha_1=$ 1, $eta_1=$ 2	$lpha_1=$ 10, $eta_1=$ 20	$\alpha_1 = 100, \beta_1 = 200$
	$\alpha_2=2, \beta_2=1$	$lpha_2=$ 20, $eta_2=$ 10	$lpha_2=$ 200, $eta_2=$ 100
BF_{12}	0.26	0.29	0.30
$\Pr(M_1 \mathbf{y})$	0.21	0.22	0.23
$\Pr(M_2 \mathbf{y})$	0.79	0.78	0.77

GEOMETRIC VS POISSON FOR POIS(1) DATA

GEOMETRIC VS POISSON FOR POIS(1) DATA

MODEL CHOICE IN MULTIVARIATE TIME SERIES

■ Multivariate time series

$$\mathbf{x}_{t} = \alpha \beta' \mathbf{z}_{t} + \Phi_{1} \mathbf{x}_{t-1} + ... \Phi_{k} \mathbf{x}_{t-k} + \Psi_{1} + \Psi_{2} t + \Psi_{3} t^{2} + \varepsilon_{t}$$

Need to choose:

- Lag length, (k = 1, 2..., 4)
- Trend model (s = 1, 2, ..., 5)
- Long-run (cointegration) relations (r = 0, 1, 2, 3, 4).

The most prof	BABLE	(k, r, s)	COM	BINATI	ONS IN	I THE	Danisi	I MON	ETARY	DATA.
k	1	1	1	1	1	1	1	1	0	1
r	3	3	2	4	2	1	2	3	4	3
s	3	2	2	2	3	3	4	4	4	5
p(k, r, s y, x, z)	.106	.093	.091	.060	.059	.055	.054	.049	.040	.038

GRAPHICAL MODELS FOR MULTIVARIATE TIME SERIES

- **Graphical models** for multivariate time series.
- Zero-restrictions on the effect from time series *i* on time series *j*, for all lags. (**Granger Causality**).
- Zero-restrictions on the elements of the inverse covariance matrix of the errors.

PROPERTIES OF BAYESIAN MODEL COMPARISON

■ Coherence of pair-wise comparisons

$$B_{12} = B_{13} \cdot B_{32}$$

■ Consistency when true model is in $\mathcal{M} = \{M_1, ..., M_K\}$

$$\Pr\left(M = M_{TRUE}|\mathbf{y}\right) \to 1 \text{ as } n \to \infty$$

■ "KL-consistency" when $M_{TRUE} \notin \mathcal{M}$

$$\Pr\left(M = M^* | \mathbf{y}\right) \to 1 \text{ as } n \to \infty,$$

 M^* minimizes **KL divergence** between $p_M(\mathbf{y})$ and $p_{TRUE}(\mathbf{y})$.

- Smaller models always win when priors are very vague.
- Improper priors cannot be used for model comparison.

MARGINAL LIKELIHOOD MEASURES OUT-OF-SAMPLE PREDICTIVE PERFORMANCE

■ The marginal likelihood can be decomposed as

$$p(y_1,...,y_n) = p(y_1)p(y_2|y_1)\cdots p(y_n|y_1,y_2,...,y_{n-1})$$

■ Assume that y_i is independent of $y_1, ..., y_{i-1}$ conditional on θ :

$$p(y_i|y_1,...,y_{i-1}) = \int p(y_i|\theta)p(\theta|y_1,...,y_{i-1})d\theta$$

- **Prediction of** y_1 is based on the prior of θ . Sensitive to prior.
- Prediction of y_n uses almost all the data to infer θ . Not sensitive to prior when n is not small.

NORMAL EXAMPLE

- Model: $y_1, ..., y_n | \theta \sim N(\theta, \sigma^2)$ with σ^2 known.
- Prior: $\theta \sim N(0, \kappa^2 \sigma^2)$.
- Intermediate posterior at time i-1

$$\theta|y_1,...,y_{i-1} \sim N\left[w_i(\kappa) \cdot \bar{y}_{i-1}, \frac{\sigma^2}{i-1+\kappa^{-2}}\right]$$

where $w_i(\kappa) = \frac{i-1}{i-1+\kappa^{-2}}$.

■ Intermediate predictive density at time i-1

$$y_i|y_1,...,y_{i-1} \sim N\left[w_i(\kappa) \cdot \bar{y}_{i-1}, \sigma^2\left(1 + \frac{1}{i-1+\kappa^{-2}}\right)\right]$$

- For i=1, $y_1 \sim N\left[0, \sigma^2\left(1+\frac{1}{\kappa^{-2}}\right)\right]$ can be very sensitive to κ .
- For large $i: y_i | y_1, ..., y_{i-1} \stackrel{approx}{\sim} N(\bar{y}_{i-1}, \sigma^2)$, not sensitive to κ .

FIRST OBSERVATION IS SENSITIVE TO κ

FIRST OBSERVATION IS SENSITIVE TO κ - ZOOMED

LOG PREDICTIVE SCORE - LPS

- Reduce sensitivity to the prior: sacrifice n^* observations to train the prior into a posterior.
- **Predictive (Density) Score (PS).** Decompose $p(y_1, ..., y_n)$ as

$$\underbrace{\frac{p(y_1)p(y_2|y_1)\cdots p(y_{n^*}|y_{1:(n^*-1)})}{training}}_{training}\underbrace{\frac{p(y_{n^*+1}|y_{1:n^*})\cdots p(y_n|y_{1:(n-1)})}{test}}_{test}$$

- Usually report on log scale: Log Predictive Score (LPS).
- Time-series: obvious which data are used for training.
- Cross-sectional data: training-test split by cross-validation:

Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5

AND HEY! ... LET'S BE CAREFUL OUT THERE.

- Be especially **careful** with Bayesian model comparison when
 - The compared models are
 - very different in structure
 - severly misspecified
 - very complicated (black boxes).
 - The priors for the parameters in the models are
 - not carefully elicited
 - only weakly informative
 - not matched across models.
 - The data
 - has outliers (in all models)
 - has a multivariate response.