### **Fundamental Definitions**

- Reliability
  - → Probability that the system has not experienced any failures within a given time period.
- Availability
  - $\rightarrow$  The probability that the system is operational at a given time t.

Distributed DBMS

© M. T. Özsu & P. Valduri

Ch 12/1

### **Fundamental Definitions**

- Failure
  - → Failure in a system can be attributed to deficiencies either in the components that make it up, or in the design
- Erroneous state
  - → The transitions from this state would eventually cause a system failure
- Error
  - → The part of the state which is incorrect.
- Fault
  - → An error in the internal states of the components of a system or in the design of a system.

Distributed DBMS

© M. T. Özsu & P. Valduriez



### Types of Faults

- Hard faults
  - → Commonly called as Permanent faults
  - → Permanent faults cause permanent errors that result in permanent failures
  - → Recovery from such fault requires repairing the system
- Soft faults
  - → Transient or intermittent faults jointly called soft faults
  - → An intermittent fault refers to fault that demonstrates itself occasionally due to unstable hardware or varying hardware or software states.
  - → Transient fault describes fault that results from temporary environmental conditions.

Distributed DBMS

© M. T. Özsu & P. Valduriez



### **Fault-Tolerance Measures**

Reliability R(t) refer to the probability that the system under consideration does not experience any failures in a given interval

The mean number of failures in time 
$$[0, t]$$
 can be computed as
$$E[k] = \sum_{k=0}^{\infty} k \frac{e^{-m(t)}[m(t)]^k}{k!} = m(t)$$

and the variance can be be computed as

$$Var[k] = E[k^2] - (E[k])^2 = m(t)$$

Thus, reliability of a single component is

$$R(t) = e^{-m(t)}$$

and of a system consisting of n non-redundant components as

$$R_{sys}(t) = \prod_{i=1}^{n} R_i(t)$$

© M. T. Özsu & P. Valduriez

### **Fault-Tolerance Measures**

Availability A(t) refers to the probability that system is operational according to its specification at a given point in time t

 $A(t) = \Pr{\text{system is operational at time } t}$ 

### Assume

- $\bullet$  Poisson failures with rate  $\lambda$
- $\bullet$  Repair time is exponentially distributed with mean  $1/\mu$

Then, steady-state availability

$$A = \lim_{t \to \infty} A(t) = \frac{\mu}{\lambda + \mu}$$

Distributed DBMS

© M. T. Özsu & P. Valdurie:

Ch.12/7

### **Fault-Tolerance Measures**

**MTBF** 

Mean time between failures

$$MTBF = \int_{0}^{\infty} R(t) dt$$

**MTTR** 

Mean time to repair

Availability

 $\frac{\text{MTBF}}{\text{MTBF} + \text{MTTR}}$ 

Distributed DBMS

© M. T. Özsu & P. Valduriez



### Failures in Distributed DBMS

- Transaction failures
  - → Transaction aborts (unilaterally or due to deadlock)
  - → Avg. 3% of transactions abort abnormally
- System (site) failures
  - → Failure of processor, main memory, power supply, ...
  - → Main memory contents are lost, but secondary storage contents are safe
  - → Partial vs. total failure
- Media failures
  - Failure of secondary storage devices such that the stored data is lost
  - → Head crash/controller failure (?)
- Communication failures
  - → Lost/undeliverable messages
  - → Network partitioning

Distributed DBM<sup>9</sup>

M. T. Özsu & P. Valduriez

# Local Recovery Management – Architecture

- Volatile storage
  - → Consists of the main memory of the computer system (RAM).
- Stable storage
  - → Resilient to failures and loses its contents only in the presence of media failures (e.g., head crashes on disks).
  - → Implemented via a combination of hardware (non-volatile storage) and software (stable-write, stable-read, clean-up) components.



Distributed DBMS

© M. T. Özsu & P. Valdurie

Ch 12/11

## **Update Strategies**

- In-place update
  - → Each update causes a change in one or more data values on pages in the database buffers
- Out-of-place update
  - → Each update causes the new value(s) of data item(s) to be stored separate from the old value(s)

Distributed DBM<sup>9</sup>

© M. T. Özsu & P. Valduriez



### Logging

The log contains information used by the recovery process to restore the consistency of a system. This information may include

- → transaction identifier
- type of operation (action)
- → items accessed by the transaction to perform the action
- → old value (state) of item (before image)
- → new value (state) of item (after image)

. . .

Distributed DBMS

© M. T. Özsu & P. Valduriez

# Why Logging? Upon recovery: - all of $T_1$ 's effects should be reflected in the database (REDO if necessary due to a failure) - none of $T_2$ 's effects should be reflected in the database (UNDO if necessary) $\begin{array}{c|c} system \\ crash \\ Begin \\ T_2 \end{array}$ t time

© M. T. Özsu & P. Valduri



