Homework for CS112 Input: Standard Input Output: Standard Output

Geometry
Time limit per test: 2 seconds
Memory limit per test: 128 megabytes

Problem. Closest Pair of Points

You are given n distinct points with integer coordinates on an Euclidean plane, the i-point has coordinate (x_i, y_i) .

Your goal is find two points $A(x_a, y_a)$ and $B(x_b, y_b)$, s.t. the Euclidean distance from A to B is minimum. Note that $A - B \neq 0$.

Example.

There are 11 points - $P = \{ (2;4), (-4;4), (6;2), (5;-3), (-2;1), (3;1), (-3;-3), (-5;-1), (0;-1), (7;-1), (8;5) \}.$

The answer should be equal to 2.83. Hence, we have two pair satisfy with problem's require which are $\{(-2,1),(0,-1)\}$ and $\{(5,-3),(7,-1)\}$.

Input.

- The first line contains an integer n.
- The next n lines contain two integers x_i and y_i the coordinates of the *i*-th point. It is guaranteed that all given points are pairwise distinct.

Output.

- Your output should include one number the smallest distance. Your answer is considered correct if its absolute or relative error does not exceed 10^{-6} .
- Formally, let your answer be a, and the jury's answer be b. Your answer is accepted iff $\frac{|a-b|}{max(1,|b|)} \leq 10^{-6}.$

Constrains.

- $2 \le n \le 2 * 10^5$.
- $-10^8 \le x_i, y_i \le 10^8$

Sample.

Input	Output
11	2.8284271
2 4	
-4 4	
6 2	
5 -3	
-2 1	
3 1	
-3 -3	
-5 -1	
0 -1	
7 -1	
8 5	