1. (25 bodů) Rozhodněte, zda je následující funkce $f:\mathbb{N}^2\to\mathbb{N}$ vyčíslitelná.

$$f(i,j) = \left\{ \begin{array}{ll} \varphi_i(107) & \text{pokud pro nějaké } y \in W_i \cap W_j \text{ platí } \varphi_i(y) = \varphi_j(y) \\ \bot & \text{jinak} \end{array} \right.$$

Své rozhodnutí dokažte. (Pro důkaz, že funkce je vyčíslitelná, stačí napsat while-program, který ji počítá.)

2. (40 bodů) Binární operaci \diamond na množinách $A,B\subseteq\mathbb{N}$ definujeme jako

$$A \diamond B = \{i \mid i \in A \text{ a } i \text{ je sudé}\} \cup \{i \mid i \in B \text{ a } i \text{ je liché}\}.$$

Rozhodněte a dokažte, zda je na tuto operaci uzavřená

- (a) třída všech rekurzivních množin,
- (b) třída všech rekurzivně spočetných množin.
- 3. $(35\ bodů)$ Řekneme, že neorientovaný graf obsahuje $dvojitou\ k$ -kliku pro dané k>1, pokud obsahuje dvě různé k-kliky, které sdílí alespoň jeden společný vrchol. Dokažte, že problém rozhodnout, zda daný neorientovaný konečný graf G pro dané k obsahuje dvojitou k-kliku, je NP-úplný. Formálně problém definujeme jako množinu

 $DOUBLE-CLIQUE = \{ \langle G, k \rangle \mid G \text{ je graf obsahující dvojitou } k\text{-kliku} \}.$

1. (25 bodů) Rozhodněte, zda je následující funkce $f:\mathbb{N}^2\to\mathbb{N}$ vyčíslitelná.

$$f(i,j) = \left\{ \begin{array}{ll} \varphi_i(107) & \text{pokud pro nějaké } y \in W_i \cap W_j \text{ platí } \varphi_i(y) = \varphi_j(y) \\ \bot & \text{jinak} \end{array} \right.$$

Své rozhodnutí dokažte. (Pro důkaz, že funkce je vyčíslitelná, stačí napsat while-program, který ji počítá.)

 $\check{\mathbf{Re}}\check{\mathbf{sen}}$ í: Funkce f je vyčíslitelná, počítá ji například následující program.

```
begin
```

```
\begin{array}{l} n := 0; \\ flag := 0; \\ \underline{\textbf{while}} \ flag = 0 \ \underline{\textbf{do}} \ \underline{\textbf{begin}} \\ y := \pi_1(n); \\ z := \pi_2(n); \\ \underline{\textbf{if}} \ Sc(x_1, y, z) = 1 \ \land \ Sc(x_2, y, z) = 1 \ \underline{\textbf{then}} \\ \underline{\textbf{if}} \ \Phi(x_1, y) = \Phi(x_2, y) \ \underline{\textbf{then}} \ flag := 1; \\ n := n + 1; \\ \underline{\textbf{end}} \\ x_1 := \Phi(x_1, 107); \\ \underline{\textbf{end}} \end{array}
```

Program pro vstup(i,j) postupně prohledává všechny dvojice $(y,z)\in\mathbb{N}^2.$ Pro každou dvojici ověří, zda programy P_i a P_j skončí na vstupu yběhem zkroků (a tudíž $y\in W_i\cap W_j)$ a následně zda $\varphi_i(y)=\varphi_j(y).$ Pokud dvojice splní obě podmínky, program vrátí hodnotu $\varphi_i(107).$

2. (40 bodů) Binární operaci \diamond na množinách $A,B\subseteq\mathbb{N}$ definujeme jako

$$A \diamond B = \{i \mid i \in A \text{ a } i \text{ je sudé}\} \cup \{i \mid i \in B \text{ a } i \text{ je liché}\}.$$

Rozhodněte a dokažte, zda je na tuto operaci uzavřená

- (a) třída všech rekurzivních množin,
- (b) třída všech rekurzivně spočetných množin.

Řešení: Obě třídy jsou uzavřené na operaci <.

(a) Nechť $A, B \subseteq \mathbb{N}$ jsou rekurzivní množiny. Pak jejich charakteristické funkce χ_A, χ_B jsou TVF. Množina $A \diamond B$ je také rekurzivní, neboť její charakteristická funkce je vyčíslitelná například tímto programem:

begin

```
y := x_1 \mod 2;

\underline{\mathbf{if}} \ y = 0 \ \underline{\mathbf{then}} \ x_1 := \chi_A(x_1);

\underline{\mathbf{if}} \ y = 1 \ \underline{\mathbf{then}} \ x_1 := \chi_B(x_1);

and
```

(b) Nechť A, B jsou r.e. množiny, tedy $A = dom(\varphi_i)$ a $B = dom(\varphi_j)$ pro nějaké $i, j \in \mathbb{N}$. Množina $A \diamond B$ je také r.e., protože je definičním oborem vyčíslitelné funkce počítané tímto programem:

begin

```
y := x_1 \mod 2;

\underline{\mathbf{if}} \ y = 0 \ \underline{\mathbf{then}} \ \Phi(i, x_1);

\underline{\mathbf{if}} \ y = 1 \ \underline{\mathbf{then}} \ \Phi(j, x_1);

and
```

3. $(35 \ bodů)$ Řekneme, že neorientovaný graf obsahuje $dvojitou \ k$ -kliku pro dané k > 1, pokud obsahuje dvě různé k-kliky, které sdílí alespoň jeden společný vrchol. Dokažte, že problém rozhodnout, zda daný neorientovaný konečný graf G pro dané k obsahuje dvojitou k-kliku, je NP-uplný. Formálně problém definujeme jako množinu

 $DOUBLE-CLIQUE = \{\langle G, k \rangle \mid G \text{ je graf obsahující dvojitou } k\text{-kliku}\}.$

Řešení: Nejprve ukážeme, že $DOUBLE\text{-}CLIQUE \in \mathsf{NP}.$ Problém rozhoduje například nedeterministický TM, který nejdříve zjistí, zda vstup je tvaru $\langle G, k \rangle$. Pokud tomu tak není, stroj zamítne. Je-li k větší než počet vrcholů v grafu G, stroj také zamítne. Nyní stroj nedeterministicky vybere dvě podmnožiny vrcholů grafu G tak, aby každá obsahovala právě k vrcholů. Pokud jsou tyto množiny totožné nebo mají prázdný průnik, stroj zamítne. Nyní stačí ověřit, že vrcholy v každé množině tvoří k-kliku. Pokud tomu tak je, stroj akceptuje. V opačném případě zamítne. Popsaný výpočet lze provést v polynomiálním počtu kroků vzhledem k velikosti vstupu.

NP-těžkost dokážeme redukcí $CLIQUE \leq_p DOUBLE\text{-}CLIQUE$ z NP-úplného problému CLIQUE. Redukční funkci f definujeme takto:

- Pokud vstupní řetězec není kódem dvojice $\langle G, k \rangle$, pak funkce f dá na výstup stejný řetězec.
- Je-li vstupem kód dvojice $\langle G, k \rangle$, pak funkce f vrátí kód $\langle G', k+1 \rangle$, kde G' je graf obsahující dvě kopie grafu G a navíc jeden přidaný vrchol, který má hranu do každého vrcholu. Pokud G = (V, E), pak G' formálně definujeme jako (V', E'), kde $V' = \{v, v' \mid v \in V\} \cup \{w\}$ a $E' = \{\{v_1, v_2\}, \{v'_1, v'_2\} \mid \{v_1, v_2\} \in E\} \cup \{\{v, w\}, \{v', w\} \mid v \in V\}$. Pokud graf G obsahoval n vrcholů, pak G' obsahuje 2n + 1 vrcholů.

Redukční funkce je zjevně totálně vyčíslitelná deterministickým TM pracujícím v polynomiálním čase.

Zbýva dokázat, že $x \in CLIQUE \iff f(x) \in DOUBLE\text{-}CLIQUE$.

- "\implies" Pokud $x \in CLIQUE$, pak x je kódem dvojice $\langle G, k \rangle$, kde G obsahuje k-kliku. Nechť W je množina vrcholů této k-kliky. Pak G' obsahuje dvě (k+1)-kliky, kde jedna je tvořena vrcholy $W \cup \{w\}$ a druhá vrcholy $\{v' \mid v \in W\} \cup \{w\}$. Jedná se o různé kliky, které však mají společný vrchol w. Tedy $f(x) = \langle G', k+1 \rangle \in DOUBLE\text{-}CLIQUE$.
- " \Leftarrow " Pokud $f(x) \in DOUBLE\text{-}CLIQUE$, pak $f(x) = \langle G', k+1 \rangle$ a G' je graf obsahující dvojitou (k+1)-kliku. Vezměme jednu z těchto (k+1)-klik. Jelikož graf G' neobsahuje žádnou hranu spojijící dvě kopie grafu G, tak celá tato (k+1)-klika musí leže v jedné kopii grafu G rozšířené o vrchol w. Vypustíme-li z této (k+1)-kliky
 - vrchol w, pokud je v ní obsažen, nebo
 - jeden libovolný vrchol, pokud (k+1)-klika neobsahuje w,

získáme nutně k-kliku v jedné z kopií grafu G. Graf G tedy obsahuje k-kliku a proto platí $x \in CLIQUE$.