FACULTÉ DES ARTS ET DES SCIENCES - DÉPARTEMENT DE SCIENCES ÉCONOMIQUES

SIGLE	DU	COURS	ECN 3150		NOM(s)	DU/DES	PROFESSEUR(s):	Jean-Marie	DUFOUR
TITRE	DU	COURS	:_ECONOMETRIE	- Examen	différé				

DIRECTIVES PEDAGUGIQUES:

Documentation non permise.

Calculatrices et règles à calcul autorisées.

Ce questionnaire doit être rendu à la fin de l'examen.

QUESTION 1: Répondez brièvement aux questions suivantes:

(40 points) 1) Pourquoi R² ne peut-il jamais baisser lorsqu'on ajoute une variable explicative additionnelle dans le modèle classique?

- 2) Dans quel(s) condition(s) les estimateurs de moindres carrés et les estimateurs de vraisemblance maximale des coefficients de régression sont-ils identiques dans le modèle linéaire classique?
- 3) Quelle est la signification du terme "hétéroscédasticité"? Quelles conséquences a le fait de ne pas tenir compte de celle-ci (et simplement utiliser les moindres carrés ordinaires)?
- 4) Qu'est-ce qu'un estimateur convergent?
- 5) Pourquoi utilise-t-on, dans certains cas, la méthode des variables instrumentales? Donnez un exemple d'une situation où l'utilisation d'une telle méthode paraîtrait justifiée.
- 6) Soient les deux relations

Donnez deux ensembles de conditions suffisantes sans lesquelles la méthode de Zellner pour estimer ce système n'est pas susceptible d'améliorer la précision de l'estimation.

7) On considère le modèle non-linéaire suivant:

$$y_t = \beta_2 + \beta_1 x_{1t}^{\beta_2} + \frac{x_{2t}}{\beta_3} + u_t, t = 1, ..., 100$$

où les erreurs u_t , t = 1, ..., 100 sont i.i.d. $N[0, \sigma^2]$ et x_1 ainsi que x_2 sont des régresseurs non-stbchastiques.

Décrivez comment on pourrait tester l'hypothèse

$$H_0: \beta_3 = 1$$
 et $\beta_2 = 2$.

8) On considère une équation du type:

QUESTION 2: On suppose que les dépenses de consommation C_t (durant la période t) (35 points) sont une fonction linéaire du revenu Y_t et des actifs liquides L_t (monnaie, obligations, etc..):

$$C_t = \beta_0 + \beta_1 Y_t + \beta_2 L_t + U_t$$

(où u_t est une perturbation aléatoire). Utilisant des données trimestrielles qui couvrent la période 1953-1959, on obtient (par les moindres carrés ordinaires) l'estimation suivante:

$$C_t = -13.391 + .63258 Y_t + .45065 L_t + 0_t$$

 (-3.71) (8.32) (4.24)
 $R^2 = .9951$, $T = 28$

- a) En supposant que les hypothèses du modèle l'néaire classique sont satisfaites, testez (au niveau .05) si
 - 1) B₂ = 0;
 - 2) $\beta_1 = 0$ et $\beta_2 = 0$.
- b) Supposons que l'on ait des raisons de penser que la variance des erreurs durant la période 1957-1959 était plus grande que durant la période 1953-56. Dans ce contexte, décrivez comment on pourrait tester l'hypothèse d'égalité des variances des erreurs (entre les deux périodes concernées).
- c) Calculant la statistique de Durbin-Watson vous obtenez DW = .612. Sur cette base, critiquez les conclusions obtenues en a). (Soyez précis). S'il y a lieu, proposez une solution au problème.
- QUESTION 3: Etant donné le modèle $\underline{y} = X\underline{\beta} + \underline{u}$, on suppose que toutes les conditions du (25 points) modèle linéaire classique sont satisfaites sauf que $E[\underline{u}\underline{u}'] = \sigma^2 V$, où V est une matrice positive définie (connue).
 - a) Si on applique les moindres carrés ordinaires à cette équation, l'estimateur résultant $\underline{\hat{\beta}}$ est-il sans biais? (Justifiez votre réponse).
 - b) Calculez la matrice de covariance de $\hat{\underline{\beta}}$.
 - c) Existe-t-il un meilleur estimateur? Si oui, en quel sens et dérivez-le.

Signature du professeur

FACULTÉ DES ARTS ET DES SCIENCES - DÉPARTEMENT DE SCIENCES ÉCONOMIQUES

SIGLE	DU	COURS: ECN 3150	NOM(s)	DU/DES	PROFESSEUR(s):	Jean-Marie Dufour
TITRE	DU	COURS: Econométrie				

QUESTION 1 : (35 points)

Indiquez si chacune des assertions suivantes est VRAIE, FAUSSE ou INCERTAINE. Justifiez brièvement votre réponse.

- Lorsqu'on ajoute une variable explicative à une régression linéaire, la valeur du coefficient de corrélation multiple corrigé R² n'augmente pas nécessairement.
- -2) Lorsque les erreurs suivent une loi multinormale (dans le modèle linéaire classique); la somme des résidus (des moindres carrés ordinaires) doit être égale à zéro.
- J3) La méthode de Zellner pour l'estimation conjointe de plusieurs équations est toujours plus efficace que l'application des moindres carrés ordinaires à chaque équation.
- -4) La méthode des moindres carrés ordinaires et la méthode des doubles moindres carrés peuvent être considérés comme des cas spéciaux de la méthode des variables instrumentales.
- -5) Pour l'estimation d'un modèle de régression linéaire avec erreurs autocorrélées (suivant un processus autorégressif d'ordre 1), la méthode de Cochrane-Orcutt et la méthode de Durbin donnent généralement le même résultat.
- -6) Dans le traitement des modèles à retards échelonnés, la méthode d'Almon peut être considérée comme un cas spécial de la méthode de Koyck.
- 47) La procédure de Box-Cox permet de déterminer si les erreurs (dans le modèle linéaire classique) sont hétéroskédastiques.

QUESTION 2 : (45 points)

Un économètre propose la forme suivante pour la demande de momnaie durant l'hyperinflation allemande :

$$\log\left(\frac{M_t}{P_t}\right) = \beta_0 + \beta_1 \pi_t^* + \varepsilon_t$$

où M₊ = stock de monnaie (au temps t);

P₊ = niveau des prix (au temps t);

 $\pi_t^* = \text{taux d'inflation anticipé (au temps t)};$

 $\varepsilon_{\rm t}$ = erreur aléatoire.

Sur base d'une série mensuelle couvrant la période février 1921-août 1923 (31 observations), il obtient (par les moindres carrés ordinaires) l'équation :

SIGLE DU COURS: ECN 3150

- a) Sur la base de ces données, testez les hypothèses suivantes (à un niveau de 5%) :
 - 1) $\beta_1 = -1.0$;
 - les erreurs ne sont pas autocorrélées;
 - 3) la demande de monnaie est stable;
 - 4) la variance des erreurs est constante; (ce résultat peut-il affecter la validité des résultats précédents?).

(Précisez bien les hypothèses sur lesquelles chacun de ces tests est basé).

- b) Ce modèle suppose-t-il que l'élasticité de la demande de monnaie est constante (le long de la courbe de demande de monnaie)? Sinon, décrivez comment on pourrait mesurer cette élasticité.
- c) Un deuxième économètre propose le modèle alternatif

$$\log \frac{M_t}{P_t} = \beta_0^* + \beta_1^* \log \pi_t^* + \epsilon_t$$

Décrivez une procédure statistique par laquelle on pourrait discriminer entre ce modèle et le précédent.

d) Un troisième économètre propose d'ajouter la valeur retardée de log(M,/P,) à l'équation et obtient (par les moindres carrés ordinaires) :

$$\log \frac{M_{t}}{P_{t}} = \begin{array}{c} 3.403 - 2.003\pi^{*} + 0.430 \log \left(\frac{M_{t-1}}{P_{t-1}}\right) + \hat{\epsilon}_{t} \\ R^{2} = 0.949 \end{array}, \quad DW = 1.81$$

(échantillon effectif : mars 1921-août 1923, après déduction d'une observation pour la variable retardée).

- 1) Sur la base de ce résultat, l'addition de cette variable vous apparaît-elle justifiée? Justifiez votre réponse.
- 2) Testez si les erreurs sont autocorrélées.
- 3) Donnez une justification économique de la proposition du troisième économètre. (Essayez d'être explicite).

QUESTION 3 : (20 points)

Soit le modèle

$$y_t = \beta_1 + \beta_2 X_{t2} + ... + \beta_k X_{tk} + \epsilon_t$$
, $t = 1, ..., T$

où k ≥ 2 et toutes les hypothèses du modèle linéaire classique normal sont satisfaites. Montrez que le test du quotient de vraisemblance pour l'hypothèse

$$H_0 : \beta_2 = \beta_3 = \dots = \beta_k = 0$$

est équivalent à un test basé sur la statistique

$$F = \frac{R^2/(K-1)}{(1-R^2)/(T-K)}$$

The 1 Distribution and the Normal Distribution®

Degrees of Freedom	/3	5 25	is '-	05	.025	.02.0	.005
	-	1.000	3.078	6.314	12.706	31.821	63.657
	12	.816	1.886	2.920	4.303	6.965	9.925
	ادرا	.765	1.638	2.353	3.182	4.541	5.841
	4	.741	1.533	2.132	2.776	3.747	4.604
	S	.727	1.476	2.015	2.571	3.365	4.032
	6	.718	1.440	1.943	2.447	3.143	3.707
	7	.711	1.415	1.895	2.365	2.998	3.499
	œ	.706	1.397	1.860	2.306	2.896	3.355
	9	.703	1.383	1.833	2.262	2.821	3.250
	10	.700	1.372	1.812	2.228	2.764	3.169
	11	.697	1.363	1.796	2.201	2.718	3.106
	12	.695	1.356	1.782	2.179	2.681	3.055
	13	.694	1.350	1.771	2.160	2.650	3.012
	14	.692	1.345	1.761	2.143	2,624	2,977
	15	.691	1.341	1.753	2.131	2.602	2.947
	16	.690	1.337	1.746	2.120	2.583	2.921
	17	.689	1.333	1.740	2.110	2.567	2.898
	18	.688	1.330	1.734	2.101	2.552	2.878
	19	.688	1.328	1.729	2.093	2.539	2.861
	20	.687	1.325	1.725	2.086	2.528	2.845
	21	.686	1.323	1.721	2.080	2.518	2.831
	22	.686	1.321	1.717	2.074	2.508	2.819
	23	.685	1.319	1.714	2.069	2.500	2.807
	24	.685	1.318	1.711	2.064	2.492	2.797
	25	.684	1.316	1.708	2.060	2,485	2.787
	26	.684	1.315	1.706	2.056	2.479	2.779
	27	.684	1.314	1.703	2.052	2.473	2.771
	28	.683	1.313	1.701	2.048	2.467	2.763
	29	.683	1.311	1.699	2.045	2.462	2.756
	30	.683	1.310	1.697	2.042	2.457	2.750
	40	.681	1.303	1.684	2.021	2.423	2.704
	60	.679	1.296	1.671	/2.000	2.390	2.660
	120	.677	1.289	1.658	1.980	2.358	2.617
(Niceard)		.674	1.282	1.645	1.960	2.326	2.576

Source. This table is abridged from E. S. Pearson and H. O. Hartley, Biometrika Tables for Statisticians, Vol. I (1954), p. 138, with kind permission of the Syndics of the Cambridge University Press, publishers for the Biometrika Society.

^a The smaller probability shown at the head of each column is the area in one tail; the larger probability is the area in both tails. Example: With 20 degrees of freedom, a t value larger than 1.725 has a .05 probability and a t value exceeding 1.725 in absolute value has a .1 probability.

The χ^2 Distributionⁿ
Degrees
of Freedom

																																					Freedom
90	0.8	70	60	50	40	30	29	67		3 6	**	35	2.4	23	22	21	20	19	30	17	16	15	14	13	12	=	10	9	90	7	6	A	4		2.	-	/5
59,1963	21.1720	43.2752	35.5346	27.9907	20.7065	13.7867	13.1211	12.4013	01.00.11	11 8076	1001	10 5197	9.88623	9.26042	8.64272	8.03366	7,43386	6.84398	6.26481	5.69724	5.14224	4.60094	4.07468	3.56503	3.07382	2.60321	2.15585	1.734926	1.344419	.989265	.675727	.411740	.206990	.0717212	.0100251	392704 - 10-10	.995
01.7541	20,0400	45,4418	37,4848	29.7067	22.1643	14.9535	14.2363	3,3040	1 60.00	2 8786	2 1981	11.5240	10.8564	10.19567	9.54249	8.89720	8.26040	7.63273	7.01491	6,40776	5.81221	5,22935	4.66043	4.10691	3 53056	3.05347	2.55821	2.087912	1.646482	1.239043	.872085	.554300	.297110	.114832	.0201007	157088 - 10-9	.990
24 2210	01.1008	48.7576	40.4817	32.3574	24.4331	16.7908	1760.01	10.007	16 3070	14 5733	13.8439	13.1197	12.4011	11.6885	10,9823	10.28293	9.59083	8.90655	8.23075	7.56418	6.90766	6.26214	5.62872	5,005/4	4 40379	3.81575	3.24697	2.70039	2.17973	1.68987	1.237347	.831211	.484419	.215795	.0506356	982069 - 10	.975
37 0300	00,000	51,7393	 43.1879	34,7642	26.5093	18.4926	17.7003	17 7083	6 0270	16.1513	15.3791	14.6114	13.8484	13.0905	12.3380	115913	10.8508	10.1170	9.39046	8.67176	7.96164	7.26094	6.57063	5.07100	5,22603	4.57481	3.94030	3.32511	2.73264	2.16735	1.63539	1.145476	.710721	.351846	.102587	393214 - 10-4	.950
82 3581	77 7017	55.3290	 46.4589	37.6886	29.0505	20.5992	17.1011	10 7677	18 0307	18.1138	17.2919	16,4734	15.6587	14.8479	14.0415	13.2396	12,4426	11.6509	10.8649	10.0852	9.31223	8.54675	7.78953	7.04130	6.30380	5.57779	4.86518	4.16816	3,48954	2.83311	2.20413	1.61031	1.063623	.584375	.210720	.0157908	.900

~	
-	-
=	-
£ .	_
6	-
30.	=
_	100
٥,	2
Э.	=
-	m
=	_
· 2	9
2	-
_	7
0	-
2	-
	2
*	~
20	SA:
	=
~	Α.
-	nwo
	20
40	23
=	22
-	2
-	-
-	-
Ε	-
=	-
-	
7	-
-	26.
-	6
-	head
-	-
=	2
=	~
-	_
-4	등
	_
-	-
90	
-	nlos
=	0
-	=
-	=
200	=
	=
-	-
_	-
-	₩.
=	
6	the
~	~
~	
-	52
2	-
-	0
-	50
4	_
	=
	-
	-
	area in th
	0
	-
	7
	Đ,
	15
	=
	-
	=
	ъ.
	3
	75
	-
	-
	Ε
	-
	-
	_
	Exa
	34
	52
	3
	=
	73
	7
	4.0
	-
	≤
	-
	Ē
	-
	dia.

.750	.500	.250	.100	.050	.025	.010	.005
1015308	454937	1.32330	2.70554	3.84146	5.02389	6.63490	7.879
575364	1.38629	2.77259	4.60517	5.99147	7.37776	9.21034	10.5966
212534	2.36597	4.10835	6.25139	7.81473	9.34840	11.3449	12.838
1.92255	3.35670	5.38527	7.77944	9.48773	11.1433	13.2767	14.8602
2.67460	4.35146	6.62568	9.23635	11.0705	12.8325	15.0863	16.749
1 45460	5 34812	7.84080	10.6446	12.5916	14.4494	16.8119	18.54
4 25485	6.34581	9.03715	12.0170	14.0671	16.0128	18.4753	20.2777
5.07064	7 34412	10.2188	13.3616	15.5073	17.5346	20.0902	21.95
5.89883	8.34283	11.3887	14.6837	16.9190	19.0228	21.6660	23.5893
Occurs y	0 34103	13 6400	15051	18 1070	20 4831	22 2001	25 185
0.73720	9.34104	12.000	1106.61	10,5070	31 0300	24 7250	36.76
7.58412	10.3410	13.7007	007277	17.0751	23.32.00	26 3530	38 30
0.45042	11.3403	14,0404	10 2110	22.0201	24.7356	27.6883	29.8194
10.1653	13.3393	17.1170	21.0642	23.0040	20.1190	29,1413	31,319
11.0365	14.3389	18.2451	22.3072	24,9958	27.4884	30.5779	32.80
11.9122	15.3385	19.3688	23.5418	26.2962	28.8454	31.9999	34.26
12.7919	16.3381	20,4887	24.7690	27.5871	30,1910	33,4087	35.71
13.6753	17.3379	21.6049	25.9894	28.8693	31.5264	34.8053	38.5822
15.4518	19.3374	23.8277	28.4120	31,4104	34,1696	37.3662	39.99
10,3444	20.3372	26,0300	10.6173	33 0244	36.7807	40.2894	42.79
18 1373	22 3369	27.1413	32.0069	35.1725	38.0757	41.6384	44.18
19.0372	23.3367	28.2412	33.1963	36,4151	39.3641	42.9798	45.5585
19.0191	24.3366	29.3389	34.3816	37.6525	40.6465	44.3141	46.927
20.8434	25.3364	30,4345	35.5631	38.8852	41.9232	45.6417	48,2899
21.7494	26,3363	31.5284	36.7412	40.1133	43.1944	46.9630	49.6449
22.6572	27.3363	32,6205	37.9159	41.3372	44,4607	48.2782	50,9933
23.5666	28.3362	33,7109	39.0875	42,5569	45.7222	49.5879	52.33
24,4776	29.3360	34.7998	40.2560	43,7729	46.9792	50.8922	53,6720
33.6603	39.3354	45.6160	51.8050	55.7585	59.3417	63.6907	66.7659
42.9421	49.3349	56.3336	63.1671	67.3048	71.4202	/6.1539	79,4900
52.2938	59.3347	66.9814	74.3970	79.0819	83.2976	88.3794	91.951
61.6983	69.3344	77.5766	85.5271	90.5312	95.0231	100.425	104.215
71.1445	79.3343	88.1303	96.5782	101.879	106.629	112.329	116.32
80.6247	89.3342	98.6499	107.565	113.145	118.136	124.116	128.29
90.1332	99.3341	109.141	118,498	124.342	129.561	135.807	140,169

Vol. 1 (1954), pp. 130-131, with kind permis for the Biometrika Society.

5% and 1% Points for the Distribution of F (5% roman, 1% boldface)^a

Est of the second secon

Degrees of											Degr	ces of	Freed	lom n	1									
Freedom	1	2	3	4	5	6	7	8	9	10	11	12	14	16	20	24	30	40	50	75	100	200	500	00
1	161 4052	200 4999	216 5403	225 5625	230 5764	234 5859	237 5928	239 5981	241 6022	242 6056	243 6082	244 6106	245 6142	246 6169	248 6203	249 6234	250 6258	251 6286	252	253 6323	253	254	254 6361	254
2	18.51	19.00	19.16	19.25	19.30 99.30	19 11	19 36	19 37	19 38	10 10	19 40	19 41	10 42	10 43	19 44	0.45	10 46	10.47	10.47	10 49	10.40	10.40	10.50	10.00
3	10.13	9.55	9.28	9.12	9.01 28.24	8.94	8.88	8.84	8.81	8.78	8.76	8.74	8.71	8 69	8 66	8 64	8 62	8 60	9 59	9 57	9 56	9 54	8 54	0 4
4	7.71 21.20	6.94 18.00	6.59	6.39	6.26 15.52	6.16	6.09	6.04 14.80	6.00	5.96 14.54	5.93 14.45	5.91 14.37	5.87 14.24	5.84 14.15	5.80 14.02	5.77	5.74 13.83	5.71	5.70	5.68 13.61	5.66 13.57	5.65 13.52	5.64 13.48	5.63
5	6,61 16,26	5.79 13.27	5.41 12.06	5.19 11.39	5.05 10.97	4.95 10.67	4.88 10.45	4.82 10.27	4.78 10.15	4.74 10.05	4.70 9.96	4.68 9.89	4.64 9.77	4,60 9.68	4.56 9.55	4.53 9.47	4.50 9.38	4.46 9.29	4.44 9.24	4.42 9.17	4.40 9.13	4.38 9.07	4.37 9.04	4.36
6	5.99 13.74	5.14 10.92	4.76 9.78	4.53 9.15	4.39 8.75	4.28 8.47	4.21 8.26	4.15 8.10	4.10 7.98	4.06 7.87	4.03 7.79	4.00 7.72	3.96 7.60	3.92 7.52	3.87 7.39	3.84 7.31	3.81 7.23	3.77 7.14	3.75 7.09	3.72 7.02	3.71	3.69 6.94	3.68 6.90	3.67
7	5.59 12.25	4.74 9.55	4.35 8.45	4.12 7.85	3.97 7.46	3.87 7.19	3.79 7.00	3.73 6.84	3.68 6.71	3.63 6.62	3.60 6.54	3.57 6.47	3.52 6.35	3.49 6.27	3.44 6.15	3.41 6.07	3.38 5.98	3.34 5.90	3.32 5.85	3.29 5.78	3.28 5.75	3.25 5.70	3.24 5.67	3.23 5.65
8	5.32 11.26	4.46 8.65	4.07 7.59	3.84 7.01	3.69 6.63	3.58 6.37	3.50 6.19	3.44 6.03	3.39 5.91	3.34 5.82	3.31 5.74	3.28 5.67	3.23 5.56	3.20 5.48	3.15 5.36	3.12 5.28	3.08 5.20	3.05 5.11	3.03 5.06	3.00 5.00	2.98 4.96	2.96 4.91	2.94 4.88	2.93 4.86
9	5.12 10.56	4.26 8.02	3.86 6.99	3.63 6.42	3.48 6.06	3.37 5.80	3.29 5.62	3.23 5.47	3.18 5.35	3.13 5.26	3.10 5.18	3.07 5.11	3.02 5.00	2.98 4.92	2.93 4.80	2.90 4.73	2.86 4.64	2.82 4.56	2.80 4.51	2.77 4.45	2.76 4.41	2.73 4.36	2.72 4.33	2.71 4.31
10	4,96 10,04	4.10 7.56	3.71 6.55	3.48 5.99	3.33 5.64	3.22 5.39	3.14 5.21	3.07 5.06	3.02 4.95	2.97 4.85	2.94 4.78	2.91 4.71	2.86 4.60	2.82 4.52	2.77 4.41	2.74 4.33	2.70 4.25	2.67 4.17	2.64 4.12	2.61 4.05	2.59 4.01	2.56 3.96	2.55 3.93	2.54 3.91
11	4.84 9.65	3.98 7.20	3.59 6.22	3.36 5.67	3.20 5.32	3.09 5.07	3.01 4.88	2.95 4.74	2.90 4.63	2.86 4.54	2.82 4.46	2.79 4.40	2.74 4.29	2.70 4.21	2.65 4.10	2.61 4.02	2.57 3.94	2.53 3.86	2.50 3.80	2.47 3.74	2.45 3.70	2.42 3.66	2.41 3.62	2.40 3.60
12	4.75 9.33	3.88 6.93	3.49 5.95	3.26 5.41	3.11 5.06	3.00 4.82	2.92 4.65	2.85 4.50	2.80 4.39	2.76 4.30	2.72 4.22	2.69 4.16	2.64 4.05	2.60 3.93	2.54 3.86	2.50 3.78	2.46 3.70	2.42 3.61	2.40 3.56	2.36	2.35	2.32	2.31	2.30

13	9.07	3.80 6.70	3.41 5.74	3.18 5.20	3.02 4.86	2.92 4.62	2.84 4.44	2.77 4.30	2.72 4.19	2.67 4.10	2.63 4.02	2.60 3.96	2.55 3.85	2.51 3.78	2.46 3.67	2.42 3.59	2.38 3.51	2.34 3.42	2.32 3.37	2.28 3.30	2.26 3.27	2.24 3.21	2.22 3.18	2.21 3.16
14																		2.27 3.26						
15	4,54 8.68	3.68 6.36	3.29 5,42	3.06 4.89	2.90 4.56	2.79 4.32	2.70 4.14	2.64 4.00	2.59 3.89	2.55 3.80	2.51 3.73	2.48 3.67	2.43 3.56	2.39 3.48	2.33 3.36	2.29 3.29	2.25 3.20	2.21 3.12	2.18 3.07	2.15 3.00	2.12 2.97	2.10 2.92	2.08 2.89	2.07 2.87
16	4.49 8.53	3.63 6.23	3.24 5.29	3.01 4.77	2.85 4.44	2.74 4.20	2.66 4.03	2.59 3.89	2.54 3.78	2.49 3.69	2.45 3.61	2.42 3.55	2.37 3.45	2.33 3.37	2.28 3.25	2.24 3.18	2.20 3.10	2.16 3.01	2.13 2.96	2.09 2.89	2.07 2.86	2.04 2.80	2.02 2.77	2.01 2.75
17	4.45 8.40	3.59 6.11	3.20 5.18	2.96 4.67	2.81 4.34	2.70 4.10	2.62 3.93	2.55 3.79	2.50 3.68	2.45 3.59	2.41 3.52	2.38 3.45	2.33 3.35	2.29 3.27	2.23 3.16	2.19 3.08	2.15 3.00	2.11 2.92	2.08 2.86	2.04 2.79	2.02 2.76	1.99 2.70	1.97 2.67	1.96 2.65
18	4.41 8.28	3.55 6.01	3.16 5.09	2.93 4.58	2.77 4.25	2.66 4.01	2.58 3.85	2.51 3.71	2.46 3.60	2.41 3.51	2.37 3.44	2.34 3.37	2.29 3.27	2.25 3.19	2.19 3.07	2.15 3.00	2.11	2.07 2.83	2.04 2.78	2.00 2.71	1.98 2.68	1.95 2.62	1.93 2.59	1.92
19																		2.02 2.76						
20																		1.99 2.69						
21	4.32 8.02	3.47 5.78	3.07 4.87	2.84 4.37	2.68 4.04	2.57 3.81	2.49 3.65	2.42 3.51	2.37 3.40	2.32 3.31	2.28 3.24	2.25 3.17	2.20 3.07	2.15 2.99	2.09 2.88	2.05 2.80	2.00 2.72	1.96 2.63	1.93 2.58	1.89 2.51	1.87	1.84 2.42	1.82 2.38	1.81
22	4.30 7.94	3.44 5.72	3.05 4.82	2.82 4.31	2.66 3.99	2.55 3.76	2.47 3.59	2.40 3.45	2.35 3.35	2.30 3.26	2.26 3.18	2.23 3.12	2.18 3.02	2.13 2.94	2.07 2.83	2.03 2.75	1.98 2.67	1.93 2.58	1.91 2.53	1.87 2.46	1.84	1.81	1.80 2.33	1.78 2.31
23	4.28 7,88	3.42 5.66	3.03 4.76	2.80 4.26	2.64 3.94	2.53 3.71	2.45 3.54	2.38 3.41	2.32 3.30	2.28 3.21	2.24 3.14	2.20 3.07	2.14 2.97	2.10 2.89	2.04 2.78	2.00 2.70	1.96 2.62	1.91 2.53	1.88	1.84 2.41	1.82 2.37	1.79	1.77 2.28	1.76
24	4.26 7.82	3.40 5.61	3.01 4.72	2.78 4.22	2.62 3.90	2.51 3.67	2.43 3.50	2.36 3.36	2.30 3.25	2.26 3.17	2.22 3.09	2.18 3.03	2.13 2.93	2.09 2.85	2.02 2.74	1.98 2.66	1.94 2.58	1.89 2.49	1.86	1.82 2.36	1.80 2.33	1.76	1.74 2.23	1.73
25																		1.87 2.45						
26																		1.85 2.41						
27																		1.84						

00	005	200	001	1 32	0\$	40	30	74	50	91	14	15	301800	1	6	8	1 4	1,	5	1	1,	1,	1	mobasi reedom
9.1	79.1	69.1	1.72	ZT.1	-	18.1	78.1	16.1	96.1	20.2	2.06	2.12	51.5	2.19	2.24	2.29	2.36	3,53	95.2	17.2	2.95	3.34	4.20	- 22
).[29.1	89.1	17.1	1.73		08.1	28.1	06.1	1.94	2.00	2.05	2.10	2.14	2.18	22.2	2.28	2.35	2.43	2.54	07.2	2.93	133	81.4	67
).1	\$9.1	99.1	69.1	1.72	1.76	97.I	1.8.1	68.1	161	66.I	2.04	60°Z	2.12	91.2	12.2	72.27	2.34	2.2	2.53	2.69	26.2	3.32	11.4	9€
2.1 9.1	19.1 89.1	1.64	1.67 80.2	1.69	1.74	1.76	1.82	1.86	16.1	1.97	2.02	2.07	2.10	2.14	10.5	3.12	3.25	3.42	12.5	79.5 79.5	2.90	3.30	1.15	75
	1.59 1.94				17.1								28.2											34
	95.1 99.1	65.1 66.1	1.62 00.5	7.04 7.04	1.69	71.2	97.Z	28.1	78.1 54.5	1.93	86.1 26.2	2.03	2.06 2.78	2.10	2.15	3.04	81.2 3.18	3.5	85.5 3.58	2.63 3.89	2.86 4.38	3.26	11.39	9£
	1.54 38.1	72.1 06.1	09.1	1.63	1.67	1.71	1.76 22.2	1.80	2.40	15.2	1.96	2.02	2.05	28.2	2.14	3.02	3.15	3.2	3.54	3.86	2.85	3.25	01.4 86.7	8£
	1.83 1.84	22.1 88.1	65.1 1.94	19.1	39.1 20.2	11.5	1.74	67.1 67.1	1.84	1.90	2.56 1.95	2.00	2.04	2.07	2.12	2.18	3.12	3 6	3,51	3.83	4.31	81.23	4.08	40
	12.1	28.1	16.1	1.94	1.64	89°7	1.73	87.1 82.2	28.1	94°Z	1.94	1.99	2.02	2.06 2.06	2.11	2.96	3.10	3 2	3,49	98.£	2.83	3.22 81.8	4.07 72.7	7.5
7.1	87.1	1.82	88.1 88.1	26.I	1.63	90°Z	21.1	7.7¢	18.1	1.88	25.5 2.52	86.1 26.2	89°Z	2.05	2.10	2.16 2.16	3.07	3 14	3,48	82.5 87.5	2.82	3.21	4.06	**
₽. I 7. I	84.1 87.1	12.1 08.1	58.1 58.1	72.1 09.1	86°1	2.04	1.71	2.22	08.1 2.30	1.87	1.91	76.1 06.2	2.00	2.04	28.2	76'7	22.2 3.05	3 2	2,42	72.5 37.6	17.81	3.20	7.21	91
۱.۲ ۲.۱	77.1 ET.1	02.1 87.1	1.83	88.1 88.1	96'I	1.64	11.70	2.20 1.74	87.2 67.1	98.1 04.2	1.90	88.5 88.5	1.99	2.03	2.08	2.14	3.04	3:0	14.2	3.56 47.5	2.80	80.8 80.8	4.04 7.19	18
F. [94.1	84.1	1.82	22.1 38.1	1.60 1.60	2.00	99,1	1.74	87.1	28.1	1.90	26.1 36.5	29.2	20.2	2.07	2.13	3.02	3.18	2.40	3.7.5	2.79	81.E	4.03	0\$

1.00	SI'I	1.17	1.24 1.36	15.1	1.35	05.1 02.1	69°I	1.52	78.1 78.1	66'I	1.69	81.2 81.2	1.79	1.83	1.88	15.2	2.01	087	3.02	3.37	87.£	09°F	\$8.£	00
80.1 11.1	1.19	82.1	1.26	1.30	1.36	19.1	17.1	18.1	88.1 88.1	1.65	1.70	1.76 2.20	1.80 2.26	1.84	1.89	2.53	2.02 2.66	2 2	3.04	\$5.5 \$5.5	19.5 3.80	3,00	28.£	0001
1.13	1.16	1.22	1.28	1.32	85.1 72.1	1.42 1.64	47.I	1.54 1.54	26.1 09.1	1.67	1.72	1.78 2.23	18.1 18.1	28.1 75.2	1.90 1.90	88.5 88.5	2.69	5 2	3.05	3.36	29.5 58.5	30.£	38.8 07.9	100
91.1 82.1	1.22	1.26 1.39	1.32	25.1 58.1	25.1 1.62	85.I	1.52	72.1 88.1	1.62 79.1	69°1	1.74	1.80 82.2	1.83	14.2	1.92	86.1 09.2	2.05	06.2	3.26	12.41	29.2 88.5	3.04	98.£	200
1.22 1.33	22.1 1.37	1.29	15.1 15.1	9\$"I 4£"I	24.1 99.1	74.1 27.1	₽2.1 £8.1	16.1 19.1	1.64	1.71	1.76	1.82 2.30	1.85	1.89 144.2	1.94	29.2	2.07	7 0 Z	3.14	3.44	16.5 3.91	30.£	18.8 18.8	120
22.1 75.1	1.27	15.1	1.36	65.1 95.1	89,1	65.1 65.1	22.1 28.1	1.60	2.03	21.12	1.77	1.83	1.86 2.40	1,90 7 4 ,2	26.1 38.5	2.01	2.08	567	3.17	3.47	\$6.5 \$9.2	87.4 87.4	1,92	571
82.1	0£.1	12.1	1.39	1.42	84.1 E7.1	12.1 17.1	72.1 72.1	86'I	89.1 80.2	2.19	95.1 92.5	1.85	88.1 2.43	18.2	1.97	2.03	28.2	6 7	3.20	3.51	2.70 3.98	3.09 4.82	16.5	100
1.32	1.35	8£.1	24.1 26.1	24.1 07.1	12.1 87.1	\$2.1 \$8.1	6.1 1.60	29.1 2.03	11.70	1.77	1.82	88.1 14.2	1.91	26.1 26.5	1.99	2.05	21.2	3.04	3.25	3.56	2.72	3.11	96'9 96'9	08
25.1 52.1	7£.1	1.40	24.1 66.1	17.1	1.53 1.82	88.1 88.1	29.1 89.1	70.1	21.1	1.79	1.84	1.89	15.51	1.97	10.2	77.2	2,14	3.07	2.35 3.29	3.60	4.08 4.08	1,92	10.7 10.7	04
1.37	1.39 1.60	1.42	17.1	97.I	\$2.1 \$8.1	1.57	£9.1	89°1	1.73	1.80	1.85	1.90	1.94	86.I 16.2	20.2	2.08 2.79	2.15	3.09	3.31	3.62	2.75	\$6't	3.99 \$0.7	59
9£.1	15.1 E3.1	89.I	84.1 1.7.1	05.1	82.1 78.1	22.1 1.93	2.03	1.70	2.20	18.1	1.86	1.92	1.95	1.99	£0.5 27.5	28.2	2.17	3 2	2.37	25.5	2.76	31.5 86.4	4.00	09
14.1	1.43	95.1 17.1	87.1	1.52.1 1.8.1	82.1 09.1	19.1 99.1	1.67	21.1	1.76	2.33	1.88	1.93	1.97	2.00	2.05	28.2	2.18	3 2	2.38	3.68	2.78	10.2	4.02	SS

TO DESCRIPTION OF THE PROPERTY OF THE PROPERTY

Source. This table is reproduced from Statistical Methods, 4th edition, with the permission of the author, George W. Snedecor, and his publisher, The Collegiate Press, Ames, lowa.

* The number of degrees of freedom in the numerator and the denominator are n_1 and n_2 , respectively. Example: With 5 degrees of freedom in the numerator and 20 in the denominator, an F value larger than 2.71 has .05 probability and a value exceeding 1/4.56 = .219 has .95 probability with the same degrees of freedom. The figure .219 represents the probability. Also, an F value exceeding 1/4.56 = .219 has .95 probability with the same degrees of freedom. The figure .219 represents the lower 5 percent point of the distribution; it is obtained by taking the reciprocal of the F ratio and interchanging the degrees of freedom in the numerator and the denominator.