Notes pour 201-NYA (Calcul différentiel)

Alex Provost

30 novembre 2017

- 0 Révision
- 1 Limites et continuité
- 2 Dérivée
- 3 Analyse et optimisation
- 4 Fonctions transcendantes

Jusqu'à présent, nous n'avons considéré que des fonctions algébriques, c'est-à-dire des fonctions construites à partir des opérations algébriques usuelles (somme, différence, produit, quotient, racines). Il existe cependant beaucoup d'autres fonctions importantes qui ne peuvent pas s'exprimer simplement à l'aide des opérations algébriques usuelles. Ces fonctions sont dites **transcendantes** car elles « transcendent » ou « dépassent » l'algèbre.

Nous allons nous intéresser particulièrement à deux grandes familles importantes de fonctions transcendantes : les fonctions trigonométriques et les fonctions exponentielles. Ces fonctions apparaissent naturellement dans une multitude d'applications variées.

4.1 Fonctions trigonométriques

- 4.1.1 Notions élémentaires de trigonométrie
- 4.1.2 Dérivées des fonctions trigonométriques
- 4.1.3 Fonctions trigonométriques inverses
- 4.1.4 Dérivées des fonctions trigonométriques inverses

Example 1. Trouvons les extremums de $f(x) = 2x + 10 \operatorname{arccot} x$.

Example 2 (Problème de maximisation de l'angle de Regiomontanus). Une personne désire admirer un tableau accroché sur un mur au-dessus du niveau de ses yeux. On veut trouver la distance au mur qui maximise l'angle de vision du tableau (voir la figure).

4.2 Fonctions exponentielles

4.2.1 Notions élémentaires de fonctions exponentielles et logarithmes

4.2.2 Dérivées des fonctions exponentielles et logarithmes

Example 3. Calculer la dérivée des fonctions suivantes :

a)
$$f(x) = 4^x - 5 \log_0 x$$

c)
$$h(x) = e^{x^4 - 3x^2 + 9}$$

b)
$$q(x) = 3e^x + 10x^3 \ln x$$

d)
$$i(x) = \ln(x^{-4} + x^4)$$

Example 4. Soit la fonction $f(x) = e^{-\frac{x^2}{2}}$ (appelée fonction gaussienne en l'honneur du mathématicien Carl Friedrich Gauss).

- a) Faire une étude complète de f.
- b) Trouver le rectangle d'aire maximale inscrit entre le graphe de f et l'axe des x.

4.2.3 Dérivation logarithmique

Depuis quelque temps déjà, nous savons comment dériver toute fonction de la forme $f(x) = x^r$, où l'exposant $r \in \mathbb{R}$ est une constante. Dans la sous-section précédente, nous avons vu comment dériver toute fonction de la forme $f(x) = b^x$, où la base b > 0 est n'importe quelle constante strictement positive. Nous pouvons même dériver toute fonction de la forme $f(x) = b(x)^r$ ou bien $f(x) = b^{r(x)}$, à l'aide de la dérivation en chaîne. Mais qu'arrive-t-il si la base et l'exposant dépendent simultanément de x? Autrement dit, comment peut-on calculer la dérivée d'une fonction ayant la forme $f(x) = b(x)^{r(x)}$?

L'idée derrière cette technique, appelée la **dérivation logarithmique**, est d'appliquer un logarithme à f(x) avant d'effectuer la dérivée, dans le but d'abaisser l'exposant r(x) devant le logarithme :

$$\ln(f(x)) = \ln(b(x)^{r(x)}) = r(x)\ln(b(x)).$$

(On utilise le logarithme naturel parce qu'il est le plus simple à dériver.) En dérivant l'expression précédente (en chaîne à gauche, avec la règle du produit à droite), on obtient

$$\frac{f'(x)}{f(x)} = r'(x)\ln(b(x)) + r(x)\frac{b'(x)}{b(x)},$$

d'où l'expression un peu intimidante

$$f'(x) = f(x) \left(r'(x) \ln(b(x)) + r(x) \frac{b'(x)}{b(x)} \right).$$

En pratique, on ne se souvient jamais de la forme exacte de cette grosse expression, donc on refait plutôt le calcul à chaque fois. (Mais chapeau si vous arrivez à la retenir par cœur!)

Remarque. Il existe une approche alternative à cette méthode. Elle consiste à réécrire la fonction à base variable $f(x) = b(x)^{r(x)}$ sous la forme $f(x) = e^{\ln(b(x)^{r(x)})} = e^{r(x)\ln(b(x))}$. Ensuite, on dérive en chaîne pour obtenir $f'(x) = f(x)(r(x)\ln(b(x)))'$, ce qui donne la même expression que celle trouvée précédemment.

Example 5. Calculer la dérivée de $f(x) = x^{\sin x}$ avec la dérivation logarithmique.

On pourrait directement appliquer la formule ci-dessus, mais refaisons le calcul dans ce cas particulier. On a $\ln(f(x)) = \sin x \ln x$, dont la dérivée fait $\cos(x) \ln x + \frac{\sin x}{x}$. Ainsi, la dérivée recherchée est $f'(x) = x^{\sin x} \left(\cos x \ln x + \frac{\sin x}{x}\right)$.