## AA 274: Principles of Robotic Autonomy Problem Set 4

Name: Ashar Alam SUID: 06265091 ashar1

March 13, 2019

## Problem 1

- (i) No need for writeup
- (ii) Following are the plots:



Figure 1:  $A^*$  implementation for a simple example



Figure 2: A\* implementation for a large random example

## Problem 2

- (i) No need for writeup
- (ii) No need for writeup
- (iii) Following are the plots:



Figure 3: RRT implementation for 2D geometric planning problems



Figure 4: RRT implementation for Dubins car planning problems

## Problem 3

- (i) We are using navigator.py for motion planning.
- (ii) navigator.py subscribes to the topics \map, \metadata and \cmd\_nav
  - For the topic \map the callback function is map\_callback, which is used to set the occupancy grid for the map.
  - For the topic \map\_metadata the callback function is map\_md\_callback, which is used to set the origin and decide the width, height and resolution of the map.
  - For the topic \cmd\_nav the callback function is cmd\_nav\_callback, which is used to set the goal position for navigation.
- (iii) navigator.py publishes to the topics \cmd\_path, \cmd\_pose, \cmd\_path\_sp and \cmd\_vel
  - For the topic \cmd\_path the message is Path, which is used to publish a path plan for visualisation.
  - For the topic \cmd\_pose the message is Pose2D, which is used to get close to the nav goal using the pose controller once we are close to the goal.

- For the topic \cmd\_path\_sp the message is Pose\_Stamped, which is used to publish desired x and y coordinates for visualization.
- For the topic \cmd\_vel the message is Twist, which is used to align with the path plan, if we are stationary.
- (iv) A screenshot of Rviz is attached below:



Figure 5: Screenshot of nav.rviz when running turtlebot3\_nav\_sim.launch.