6.837 Computer Graphics

Curve Properties & Conversion, Surface Representations

Cubic Bezier Splines

•
$$P(t) = (1-t)^3$$
 P_1
+ $3t(1-t)^2$ P_2
+ $3t^2(1-t)$ P_3
+ t^3 P_4

Bernstein Polynomials

For Bézier curves, the 1
 basis polynomials/vectors
 are Bernstein polynomials

• For cubic Bezier curve:

$$B_1(t) = (1-t)^3$$
 $B_2(t) = 3t(1-t)^2$
 $B_3(t) = 3t^2(1-t)$ $B_4(t) = t^3$

(careful with indices, many authors start at 0)

Defined for any degree

General Spline Formulation

$$Q(t) = \mathbf{GBT}(\mathbf{t}) = \text{Geometry } \mathbf{G} \cdot \text{Spline Basis } \mathbf{B} \cdot \text{Power Basis } \mathbf{T(t)}$$

- Geometry: control points coordinates assembled into a matrix $(P_1, P_2, ..., P_{n+1})$
- Power basis: the monomials $1, t, t^2, ...$
- Cubic Bézier:

$$P(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ y_1 & y_2 & y_3 & y_4 \end{pmatrix} \begin{pmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t \\ t^2 \\ t^3 \end{pmatrix}$$

Questions?

The Plan for Today

- Differential Properties of Curves & Continuity
- B-Splines
- Surfaces
 - Tensor Product Splines
 - Subdivision Surfaces
 - Procedural Surfaces
 - Other

Differential Properties of Curves

- Motivation
 - Compute normal for surfaces

Compute velocity for animation

Analyze smoothness

Velocity

- First derivative w.r.t. t
- Can you compute this for Bezier curves?

$$P(t) = (1-t)^{3} P_{1} P_{2} P_{4} P_{4} P_{4} P_{4} P_{4} P_{4} P_{5} P_{1} P_{5} P$$

• You know how to differentiate polynomials...

Velocity

- First derivative w.r.t. t
- Can you compute this for Bezier curves?

$$P(t) = (1-t)^{3} \qquad P_{1} \qquad \bullet P_{2} \\ + 3t(1-t)^{2} \qquad P_{2} \\ + 3t^{2}(1-t) \qquad P_{3} \qquad P_{1} \qquad \bullet P_{3} \\ + t^{3} \qquad P_{4} \qquad \bullet P_{3} \\ \bullet \qquad P'(t) = -3(1-t)^{2} \qquad P_{1} \qquad \bullet P_{3} \\ + \qquad [3(1-t)^{2} - 6t(1-t)]P_{2} \qquad \bullet \qquad \bullet P_{3} \\ + \qquad [6t(1-t) - 3t^{2}] \qquad P_{3} \\ + \qquad 3t^{2} \qquad \qquad P_{4}$$

Linearity?

- Differentiation is a linear operation
 - -(f+g)'=f'+g'
 - (af)' = a f'
- This means that the derivative of the basis is enough to know the derivative of any spline.
- Can be done with matrices
 - Trivial in monomial basis
 - But get lower-order polynomials

Tangent Vector

- The tangent to the curve P(t) can be defined as T(t)=P'(t)/||P'(t)||
 - normalized velocity, ||T(t)|| = 1
- This provides us with one orientation for swept surfaces later

Curvature Vector

- Derivative of unit tangent
 - -K(t)=T'(t)
 - Magnitude ||K(t)|| is constant for a circle
 - Zero for a straight line
- Always orthogonal to tangent, ie. $K \cdot T = 0$

Geometric Interpretation

- K is zero for a line, constant for circle
 - What constant? 1/r
- 1/||K(t)|| is the radius of the circle that touches P(t) at *t* and has the same curvature as the curve

Curve Normal

• Normalized curvature: T'(t)/||T'(t)||

Questions?

Orders of Continuity

- $C^0 = continuous$
 - The seam can be a sharp kink
- G^1 = geometric continuity
 - Tangents point to the same
 direction at the seam
- C^1 = parametric continuity
 - Tangents **are the same** at the seam, implies G¹
- C^2 = curvature continuity
 - Tangents and their derivatives are the same

Orders of Continuity

- G^1 = geometric continuity
 - Tangents point to the same
 direction at the seam
 - good enough for modeling
- C^1 = parametric continuity
 - Tangents are the same at the seam, implies G¹
 - often necessary for animation

Connecting Cubic Bézier Curves

- How can we guarantee C⁰ continuity?
- How can we guarantee G¹ continuity?
- How can we guarantee C¹ continuity?
- C² and above gets difficult

Connecting Cubic Bézier Curves

- Where is this curve
- C⁰ continuous?
- G¹ continuous?
- C¹ continuous?
- What's the relationship between:
- the # of control points, and the # of cubic Bézier subcurves?

Questions?

- \geq 4 control points
- Locally cubic

- \geq 4 control points
- Locally cubic
 - Cubics chained together, again.

Cubic B-Splines: Basis

A B-Spline curve is also bounded by the convex hull of its control points.

 $B_4(t) = \frac{1}{6}t^3$

Cubic B-Splines: Basis

$$Q(t) = \frac{(1-t)^3}{6}P_1 + \frac{3t^3 - 6t^2 + 4}{6}P_2 + \frac{-3t^3 + 3t^2 + 3t + 1}{6}P_3 + \frac{t^3}{6}P_4$$

$$Q(t) = \mathbf{GBT}(\mathbf{t})$$

$$B_{B-Spline} = \frac{1}{6} \begin{pmatrix} 1 & -3 & 3 & -1 \\ 4 & 0 & -6 & 3 \\ 1 & 3 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- Local control (windowing)
- Automatically C², and no need to match tangents!

B-Spline Curve Control Points

Default B-Spline

B-Spline with derivative discontinuity

Repeat interior control point

B-Spline which passes through end points

Repeat end points

Bézier ≠ B-Spline

But both are cubics, so one can be converted into the other!

Converting between Bézier & BSpline

$$Q(t) = \mathbf{GBT(t)}$$
 = Geometry $\mathbf{G} \cdot \text{Spline Basis } \mathbf{B} \cdot \text{Power Basis } \mathbf{T(t)}$

- Simple with the basis matrices!
 - Note that this only works for $B_{Bezier} = egin{pmatrix} 1 & -3 & 3 & -1 \ 0 & 3 & -6 & 3 \ 0 & 0 & 3 & -3 \ 0 & 0 & 0 & 1 \end{pmatrix}$ a single segment of 4 control points
- $P(t) = G B_1 T(t) =$

$$(G \mathbf{R}_1 \mathbf{R}_2^{-1}) \mathbf{R}_2 \mathbf{T}(t)$$

$$B_{B-Spline} = \frac{1}{6}$$

G B₁ (**B**₂⁻¹**B**₂) **T**(t)=
(**G B**₁ **B**₂⁻¹) **B**₂ **T**(t)
$$B_{B-Spline} = \frac{1}{6} \begin{pmatrix} 1 & -3 & 3 & -1 \\ 4 & 0 & -6 & 3 \\ 1 & 3 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
for the segment in new basis.

Converting between Bézier & B-Spline

NURBS (Generalized B-Splines)

- Rational cubics
 - Use homogeneous coordinates, just add w!
 - Provides an extra weight parameter to control points

- NURBS: Non-Uniform Rational B-Spline
 - non-uniform = different spacing between the blending functions, a.k.a. "knots"
 - rational = ratio of cubic polynomials (instead of just cubic)
 - implemented by adding the homogeneous coordinate w into the control points.

Questions?

Representing Surfaces

- Triangle meshes
 - Surface analogue of polylines, this is what GPUs draw
- Tensor Product Splines
 - Surface analogue of spline curves
- Subdivision surfaces
- Implicit surfaces
 - f(x,y,z) = 0
- Procedural
 - e.g. surfaces of revolution, generalized cylinder
- From volume data (medical images, etc.)

Triangle Meshes

- What you've used so far in Assignment 0
- Triangle represented by 3 vertices
- Pro: simple, can be rendered directly
- Cons: not smooth, needs many triangles to approximate smooth surfaces (tessellation)

Smooth Surfaces?

•
$$P(t) = (1-t)^3$$
 P_1
+ $3t(1-t)^2$ P_2
+ $3t^2(1-t)$ P_3
+ t^3 P_4

What's the dimensionality of a curve? 1D!

What about a surface?

How to Build Them? Here's an Idea

•
$$P(u) = (1-u)^3 P_1$$

+ $3u(1-u)^2 P_2$
+ $3u^2(1-u) P_3$
+ $u^3 P_4$

(Note! We relabeled *t* to *u*)

How to Build Them? Here's an Idea

•
$$P(u) = (1-u)^3 P_1$$

+ $3u(1-u)^2 P_2$
+ $3u^2(1-u) P_3$
+ $u^3 P_4$

(Note! We relabeled *t* to *u*)

•
$$P(u, \mathbf{v}) = (1-u)^3$$
 $P_1(\mathbf{v})$
+ $3u(1-u)^2$ $P_2(\mathbf{v})$
+ $3u^2(1-u)$ $P_3(\mathbf{v})$
+ u^3 $P_4(\mathbf{v})$

• Let's make the P_is move along curves!

•
$$P(u, v) = (1-u)^3$$
 $P_1(v)$
+ $3u(1-u)^2$ $P_2(v)$
+ $3u^2(1-u)$ $P_3(v)$
+ u^3 $P_4(v)$

• Let's make the P_is move along curves!

- $P(u, \mathbf{v}) = (1-u)^3$ $P_1(\mathbf{v})$ + $3u(1-u)^2$ $P_2(\mathbf{v})$ + $3u^2(1-u)$ $P_3(\mathbf{v})$ + u^3 $P_4(\mathbf{v})$
- Let's make the P_is move along curves!

•
$$P(u, v) = (1-u)^3$$
 $P_1(v)$
+ $3u(1-u)^2$ $P_2(v)$
+ $3u^2(1-u)$ $P_3(v)$
+ u^3 $P_4(v)$

• Let's make the P_is move along curves!

- $P(u, \mathbf{v}) = (1-u)^3$ $P_1(\mathbf{v})$ + $3u(1-u)^2$ $P_2(\mathbf{v})$ + $3u^2(1-u)$ $P_3(\mathbf{v})$ + u^3 $P_4(\mathbf{v})$
- Let's make the P_is move along curves!

•
$$P(u, \mathbf{v}) = (1-u)^3$$
 $P_1(\mathbf{v})$
+ $3u(1-u)^2$ $P_2(\mathbf{v})$
+ $3u^2(1-u)$ $P_3(\mathbf{v})$
+ u^3 $P_4(\mathbf{v})$

• Let's make the P_is move along curves!

A 2D surface patch!

- In the previous, Pis were just some curves
- What if we make **them** Bézier curves?

- In the previous, Pis were just some curves
- What if we make **them** Bézier curves?
- Each u=const. and v=const.

curve is a Bézier curve!

 Note that the boundary control points (except corners) are NOT interpolated!

A bicubic Bézier surface

The "Control Mesh" 16 control points

Bicubics, Tensor Product

•
$$P(u,v) = B_1(u) * P_1(v)$$

+ $B_2(u) * P_2(v)$
+ $B_3(u) * P_3(v)$
+ $B_4(u) * P_4(v)$
• $P_i(v) = B_1(v) * P_{i,1}$
+ $B_2(v) * P_{i,2}$
+ $B_3(v) * P_{i,3}$

 $B_4(v) * P_{i,4}$

Bicubics, Tensor Product

•
$$P(u,v) = B_1(u) * P_1(v)$$

+ $B_2(u) * P_2(v)$
+ $B_3(u) * P_3(v)$
+ $B_4(u) * P_4(v)$
• $P_i(v) = B_1(v) * P_{i,1}$
+ $B_2(v) * P_{i,2}$
+ $B_3(v) * P_{i,3}$
+ $B_4(v) * P_{i,4}$

$$P(u, v) =$$

$$\sum_{i=1}^{4} B_i(u) \left[\sum_{j=1}^{4} P_{i,j} B_j(v) \right]$$

$$B_{i,j}(u,v) = B_i(u)B_j(v)$$

 $= \sum \sum P_{i,j} B_{i,j}(u,v)$

i = 1, j = 1

Bicubics, Tensor Product

•
$$P(u,v) = B_1(u) * P_1(v)$$

+ $B_2(u) * P_2(v)$
+ $B_3(u) * P_3(v)$
+ $B_4(u) * P_4(v)$
• $P_i(v) = B_1(v) * P_{i,1}$
+ $B_2(v) * P_{i,2}$
+ $B_3(v) * P_{i,3}$

 $+ B_4(v) * P_{i,4}$

$$P(u,v) = \frac{4}{4}$$

16 control points P_{i,j} 16 2D basis functions B_{i,i}

$$= \sum_{i=1}^{4} \sum_{j=1}^{4} P_{i,j} B_{i,j}(u,v)$$

$$B_{i,j}(u,v) = B_i(u)B_j(v)$$

Recap: Tensor Bézier Patches

- Parametric surface P(u,v) is a bicubic polynomial of two variables u & v
- Defined by 4x4=16 control points $P_{1,1}$, $P_{1,2}$ $P_{4,4}$
- Interpolates 4 corners, approximates others
- Basis are product of two Bernstein polynomials: $B_1(u)B_1(v)$; $B_1(u)B_2(v)$;... $B_4(u)B_4(v)$

Questions?

Tangents and Normals for Patches

- P(u,v) is a 3D point specified by u, v
- The partial derivatives $\partial P/\partial u$ and $\partial P/\partial v$ are 3D vectors
 - Both are tangent to surface at P

Tangents and Normals for Patches

- P(u,v) is a 3D point specified by u, v
- The partial derivatives $\partial P/\partial u$ and $\partial P/\partial v$ are 3D vectors
 - Both are tangent to surface at P
 - Normal is perpendicular to both, i.e., $n = (\partial P/\partial u) \times (\partial P/\partial v)$

Questions?

Recap: Matrix Notation for Curves

• Cubic Bézier in matrix notation

```
point on curve
 P(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} =
                                                                                                            Canonical
                                                                                                         "power basis"
\begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ y_1 & y_2 & y_3 & y_4 \end{pmatrix} \begin{pmatrix} 1 & -3 & 3 & -1 \\ 0 & 3 & -6 & 3 \\ 0 & 0 & 3 & -3 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t \\ t^2 \\ t^3 \end{pmatrix}
       "Geometry matrix"
                                                                   "Spline matrix"
   of control points P<sub>1</sub>..P<sub>4</sub>
                                                                       (Bernstein)
                    (2 \times 4)
```

Hardcore: Matrix Notation for Patches

Not required, but convenient!

x coordinate of surface at (u, v)

$$P^x(u,v) =$$

$$(B_1(u),\ldots,B_4(u))$$

Row vector of basis functions (*u*)

$$P(u, v) = \sum_{i=1}^{4} B_i(u) \left[\sum_{j=1}^{4} P_{i,j} B_j(v) \right]$$

Column vector of basis functions (v)

$$\begin{pmatrix} P_{1,1}^x & \dots & P_{1,4}^x \\ \vdots & & \vdots \\ P_{4,1}^x & \dots & P_{4,4}^x \end{pmatrix} \begin{pmatrix} B_1(v) \\ \vdots \\ B_4(v) \end{pmatrix}$$

4x4 matrix of x coordinates

of the control points

Hardcore: Matrix Notation for Patches

• Curves:

$$P(t) = \mathbf{G} \mathbf{B} \mathbf{T}(t)$$

• Surfaces:

$$P^{x}(u,v) = \mathbf{T}(u)^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{G}^{x} \mathbf{B} \mathbf{T}(v)$$

A separate 4x4 geometry matrix for x, y, z

• T = power basis

 \mathbf{B} = spline matrix

G = geometry matrix

Super Hardcore: Tensor Notation

- You can stack the G^x , G^y , G^z matrices into a geometry **tensor** of control points
 - I.e., $G^{k}_{i,j}$ = the k^{th} coordinate of control point $P_{i,j}$
 - A cube of numbers!

$$P^{k}(u,v) = \mathbf{T}^{l}(u) \mathbf{B}_{l}^{i} \mathbf{G}_{ij}^{k} \mathbf{B}_{m}^{j} \mathbf{T}^{m}(v)$$

- "Definitely not required, but nice!
 - See http://en.wikipedia.org/wiki/Multilinear_algebra

Tensor Product B-Spline Patches

- Bézier and B-Spline curves are both cubics
 - Can change between representations using matrices

- Consequently, you can build tensor product surface patches out of B-Splines just as well
 - Still 4x4 control points for each patch
 - 2D basis functions are pairwise products of B-Spline basis functions
 - Yes, simple!

Tensor Product Spline Patches

Pros

- Smooth
- Defined by reasonably small set of points

Cons

- Harder to render (usually converted to triangles)
- Tricky to ensure continuity at patch boundaries

Extensions

- Rational splines: Splines in homogeneous coordinates
- NURBS: Non-Uniform Rational B-Splines
 - Like curves: ratio of polynomials, non-uniform location of control points, etc.

Utah Teapot: Tensor Bézier Splines

• Designed by Martin Newell

Cool: Displacement Mapping

• Not all surfaces are smooth...

Cool: Displacement Mapping

- Not all surfaces are smooth...
- "Paint" displacements on a smooth surface
 - For example, in the direction of normal
- Tessellate smooth patch into fine grid,
 then add displacement D(u,v) to vertices
- Heavily used in movies, more and more in games

Displacement Mapping Example

zbrushcentral 73

Questions?

Subdivision Surfaces

- Start with polygonal mesh
- Subdivide into larger number of polygons, smooth result after each subdivision
 - Lots of ways to do this.
- The limit surface is smooth!

Corner Cutting

Corner Cutting

Corner Cutting

Slide by Adi Levin

It turns out corner cutting (Chaikin's Algorithm) produces a quadratic B-Spline curve! (Magic!)

Slide by Adi Levin

It turns out corner cutting (Chaikin's Algorithm) produces a quadratic B-Spline curve! (Magic!)

ne control polygon

(Well, not totally unexpected, remember de Casteljau)

Slide by Adi Levin

Subdivision Curves and Surfaces

- Idea: cut corners to smooth
- Add points and compute weighted average of neighbors
- Same for surfaces
 - Special case for irregular vertices
 - vertex with more or less than 6 neighbors in a triangle mesh

Subdivision Curves and Surfaces

Advantages

- Arbitrary topology
- Smooth at boundaries
- Level of detail, scalable
- Simple representation
- Numerical stability, well-behaved meshes
- Code simplicity
- Little disadvantage:
 - Procedural definition
 - Not parametric
 - Tricky at special vertices

Warren et al.

Flavors of Subdivision Surfaces

- Catmull-Clark
 - Quads and triangles
 - Generalizes bicubics to arbitrary topology!
- Loop, Butterfly
 - Triangles

- Doo-Sabin, sqrt(3), biquartic...
 - and a whole host of others
- Used everywhere in movie and game modeling!
- See http://www.cs.nyu.edu/~dzorin/sig00course/

Subdivision + Displacement

zbrushcentral

Subdivision + Displacement

Epic Games

Questions?

Specialized Procedural Definitions

- Surfaces of revolution
 - Rotate given 2D profile curve
- Generalized cylinders
 - Given 2D profile and 3D curve, sweep the profile along the 3D curve

• Assignment 1!

Surface of Revolution

- 2D curve q(u) provides one dimension
 - Note: works also with 3D curve
- Rotation R(v) provides 2nd dimension

s(u,v)=R(v)q(u)where R is a matrix, q a vector, and s is a point on the surface

General Swept Surfaces

- Trace out surface by moving a profile curve along a trajectory.
 - profile curve $\mathbf{q}(u)$ provides one dim
 - trajectory $\mathbf{c}(u)$ provides the other
- Surface of revolution can be seen as a special case where trajectory is a circle

$$s(u,v)=M(c(v))q(u)$$

where *M* is a matrix that depends on the trajectory *c*

General Swept Surfaces

- How do we get **M**?
 - Translation is easy, given by c(v)
 - What about orientation?
- Orientation options:
 - Align profile curve with an axis.
 - Better: Align profile curve with frame that "follows" the curve

$$s(u,v)=M(c(v))q(u)$$

where **M** is a matrix that depends on the trajectory **c**

Frames on Curves: Frenet Frame

- Frame defined by 1st (tangent), 2nd and 3rd derivatives of a 3D curve
- Looks like a good idea for swept surfaces...

Frenet: Problem at Inflection!

- Normal flips!
- Bad to define a smooth swept surface

Smooth Frames on Curves

- Build triplet of vectors
 - include tangent (it is reliable)
 - orthonormal
 - coherent over the curve

• Idea:

- use cross product to create orthogonal vectors
- exploit discretization of curve
- use previous frame to bootstrap orientation
- See Assignment 1 instructions!

Normals for Swept Surfaces

• Need partial derivatives w.r.t. both *u* and *v*

$$n = (\partial \mathbf{s}/\partial u) \times (\partial \mathbf{s}/\partial v)$$

- Remember to normalize!
- One given by tangent of profile curve, the other by tangent of trajectory

$$s(u,v)=M(c(v))q(u)$$

where **M** is a matrix that depends on the trajectory **c**

Questions?

Implicit Surfaces

Surface defined implicitly by a function

```
f(x, y, z) = 0 (on surface)

f(x, y, z) < 0 (inside)

f(x, y, z) > 0 (outside)
```


From Blinn 1982

Implicit Surfaces

• Pros:

- Efficient check whether point is inside
- Efficient Boolean operations
- Can handle weird topology for animation
- Easy to do sketchy modeling

• Cons:

 Does not allow us to easily generate a point on the surface

Questions?

Point Set Surfaces

• Given only a noisy 3D point cloud (no connectivity), can you define a reasonable surface using only the points?

Laser range scans only give you points,
 so this is potentially useful

Point Set Surfaces

Point Set Surfaces

- Modern take on implicit surfaces
- Cool math: Moving Least Squares (MLS), partitions of unity, etc.

• Not required in this class, but nice to know.

Questions?

That's All for Today

- Further reading
 - Buss, Chapters 7 & 8
- Subvision curves and surfaces
 - http://www.cs.nyu.edu/~dzorin/sig00course/