实验 4 直流电路测量分析

一、实验目的

- 1.熟悉直流电路的测量和分析方法。
- 2.熟悉直流电源、电压表、电流表的使用法及其特性。

二、实验仪器和器材

1.实验仪器

直流稳压电源型号:IT6302 台式多用表型号:UT805A

2.实验(箱)器材

电路实验箱

元器件: 电阻(功率 1/2W: 100,470,330,510x3,1k);

二极管(1N4148)

3.实验预习的虚拟实验平台

NI Multisim

三、实验内容

- 1.测量电阻串联分压电路和并联分流电路。分析: 串联电路总电压为器件分压电压之和, 并联电路总电流为支路电流之和。
- 2. 测量直流电源开路电压 V_8 和带负载电压 V_{RL} 。分析:直流电源可等效为一个理想电压源串联内阻 r 的电路。
- 3. 测量 3 回路 2 激励源电阻线性电路。分析: 节点电流之和为零; 回路电压之和为零, 测量 2 激励源分别单独作用电路时的电压或电流。分析: 与 2 激励源共同作用时值的关系: 线性电路可叠加。
- 4. (选) 将 R5 跟换为 D1,重复 3: 测量电路在激励源单独和共同作用时的电压和电流值。分析: 非线性电路不可叠加。

四、实验原理

- 1.电阻串联与并联电路
 - 串联电路电流相同,具有分压作用
 - 并联电路电压相同,具有分流作用

- 2. 仪器仪表内阻的影响及激励源内阻的测量
- a.激励源等效内阻

激励源可等效为一个理想电压源 V_s (电流源) 和内阻 r 串联 (并联) 电路。当外加负载输出电流时,激励源端口电压会下降,内阻大下降多,电流大下降多。等效内阻 r 的测量:

先测开路电压 Us=Vs

再测短路电流 ls (内阻大时)

 $r = U_s/I_s$

或测量外加负载电阻 R 时的电压 U_R (内阻小时)

 $r=(U_S-U_R)R/U_R$

■ 差值法

由于直流电压源等效内阻较小, 空载与加负载时的电压变化较小, 为了减小测量误差常采用差值法测量 \triangle U(Us-Ur)。测量电压时电压表的正极接被测电压源正极, 电压表的负极接另外一个比较电压源的正极 (两电压源负极相连),将比较电压源的电压调整到被测电压源空载时相同, 这时电压表为 0, 被测电压源接负载时, 电压表为 \triangle U。 $r=\triangle$ UR/Ur b.仪器仪表内阻: 电压表内阻大, 测量电压与被测电路并联; 电流表内阻小, 测量电流要串入被测电路。

电流表外接时测得的电流:被测器件与电压表内阻并联电路的总电流,为被测电流加电压表内的电流(同时测量电流电压时),电压表内阻越大,测量误差越小。

电流外接

电压表外接

3.3回路2激励源电阻直流电路测量分析

流向某一节点的电流之和等于由该节点流出的电流之和, 沿电路中的任一回路绕行一周, 在该回路上电动势之和等于各电阻上的电压降之和。

i_{R1}+i_{R2}+i_{R3}=0 (设定方向,如:流出(入)节点2为正)

u_{R1}+v₁+u_{R4}+u_{R3}=0 (设定方向,如:回路1逆(顺)时针为正)

4. 线性电路与非线性电路测量

- 在线性电路中,任一支路的电流(或电压)可以看成是电路中每一个独立激励源单独作用于电路时,在该支路产生的电流(或电压)的代数和;
- R₃分别在 V₁,V₂单独激励下的(电流)相加的值与前面的值相同。

- \blacksquare i_{R3} $(v_1+v_2) = i_{R3}$ $(v_1) + i_{R3}$ (v_2)
- 在非线性电路中(有非线性元器件)不成立。

五、实验步骤及数据记录(及处理)

1.测试电阻并联和串联电路

(实验预习时要在虚拟实验平台按实验内容进行测试,物理实验平台测试线路图可按实际测试参数画,也可用参数相同的虚拟实

验平台线路图代替)

测量线路图 (参照 Multisim 平台线路图):

电阻并联串联电路测量记录表:

	并 联 电路 Vs:12V	R1 (470)	R2 (1k)		
I(mA)	37.89	25.789	12.166		
U(V)	11.9708				

	串联电 路 Vs : 12V	R1 (470)	R2 (1k)
I(mA)	8.233		
U(V)	11.998	3.8609	8.136

$$\begin{split} & | = |_{R1} + |_{R2} = 37.955 \qquad |_{R1} / |_{R2} = R2/R1 = 2.1198 \\ & U = U_{R1} + U_{R2} = 11.9969 \qquad U_{R1} / U_{R2} = R1/R2 = 0.4745 \end{split}$$

2. 仪器仪表内阻的影响及激励源内阻的测量

- a.测量直流电压源等效内阻
 - 由于直流电源内阻较小采用外接负载测量方法
 - 测量线路图

电源内阻测量记录表:

RL: 100 Ω	开路电压 Us	接 RL 的电压 Url
U(V)	12.0063	11.8926

电源内阻计算:

 $r=(U_S-U_{RL})RL/U_{RL} = 0.9546\Omega$

3.二电压源三个回路电阻电路测试

a.在 V_1V_2 电压激励源下的电压(电流)测量测量线路图

电压源三个回路电阻电路直流测试数据 (测量值注意正负,黄色格内为计算值)

	回路电压(V)					回路电压之 和(V)		支路电流(mA)			节点 电流之 和(mA)			
	UV 1	UV 2	U ₁	U ₂	U ₃	U ₄	U ₅	回路1	回路2	回路3	A ₁	A ₂	A_3	节点 1
V ₁ V ₂ ,共同作用	-6	-12	0.982	5.988	4.036	0.982	1,976	0	0	0	1.926	5.988	-7.914	0
V ₁ 单独作用	-6	0	2.204	1.190 20	1.582 23	2.20 57	- 0.39 185				4.311	- 1.124 64	-3.124	
V ₂ 单独作用	0	-12	1.222	7.180	2.442	- 1.22 089	2.37 52				2.384	7.210	-4.791	
V ₁ V _{2单独作} 用之和	-6	-12	0.982	5.990	4.024 73	0.98 481	1.98 335				1.927	6.085	-7.915	