РАБОТА № 5 СПОСОБЫ АДРЕСАЦИИ

Цель работы: изучение способов адресации данных в МП-86 и микропрограммирование команд с различными режимами адресации.

1. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- по материалам раздела 2 ознакомиться с режимами адресации;
- по материалам раздела 3 ознакомиться с микропрограммированием формирования исполнительных адресов;
- закодировать программу, указанную в задании (табл. 6);
- ввести программу, исходные данные и таблицу преобразования кодов операций;
- разработать микропрограммы операций с учетом используемых способов адресации и произвести их отладку в режиме МИКРОКОМАНДА;
- выполнить программу на различных наборах исходных данных в режимах КОМАНДА и АВТОМАТ.

2. РЕЖИМЫ АДРЕСАЦИИ

Способ определения адресов данных или адресов перехода называется режимом адресации. Режим адресации определяет поле mod в формате команды (см. рис. 3 лабораторной работы № 4):

```
mod = \begin{cases} 00 - \text{смещение отсутствует;} \\ 01 - \text{есть только dispL;} \\ 10 - \text{смещение занимает 2 байта (dispH, dispL).} \end{cases}
```

При mod=11 поле r/m, как и поле reg, определяет номер регистра (табл. 2). В остальных случаях поле r/m совместно с полем mod участвует в формировании эффективного адреса EA (табл. 1).

Вычисление физического адреса (RA) можно проиллюстрировать рисунком (см. рис. 1).

Режимы адресации для различных комбинаций mod и r/m Таблица 1

mod r/m	00	01	10
000	BX+SI	BX+SI+dispL	BX+SI+dispH,dispL
001	BX+DI	BX+DI+dispL	BX+DI+ dispH,dispL
010	BP+SI	BP+SI+dispL	BP+SI+ dispH,dispL
011	BP+DI	BP+DI+dispL	BP+DI+ dispH,dispL
100	SI	SI+dispL	SI+ dispH,dispL
101	DI	DI+dispL	DI+ dispH,dispL
110	dispH,dispL	BP+dispL	BP+ dispH,dispL
111	BX	BX+dispL	BX+ dispH,dispL

Рис. 1. Вычисление физического адреса

Рассмотрим стандартные режимы адресации.

- 1. **Регистровая** (mod=11) операнды находятся в регистрах, указанных полями reg и r/m. Пример см. п. 4.2. лабораторной работы № 4.
- 2. **Непосредственная** в команде определяется непосредственный операнд (константа). Пример. MOV DX, 0DH.
- 3. **Абсолютная** (mod=00, r/m=110) команда содержит физический адрес памяти.
- 4. **Косвенно-регистровая** в регистре содержатся не данные, а EA операнда (рис. 2). Это 4 последние строки табл. 1, при disp=0. Пример. MOV DX, [DI].

Рис. 2. Косвенно-регистровая адресация

5. **Базовая адресация** (рис. 3). В этом режиме предполагается, что база содержит начальный адрес структуры данных, а смещение определяет элемент этой структуры.

Пример. MOV DX, [BP].10H.

Рис. 3. Базовая адресация

6. **Индексная адресация** (рис. 4). Смещение в команде определяет фиксированный начальный адрес структуры. Содержимое индексного регистра определяет элемент этой структуры. Пример. MOV DX, 10H[SI].

Рис. 4. Индексная адресация

7. **Базово-индексная адресация** (рис. 5). Этот режим удобен для обращения к сложной структуре данных, например к матрице. Пример. MOV DX, 10H [BP] [DI].

Рис. 5. Базово-индексная адресация

8. **Относительная адресация.** Этот режим адресации был рассмотрен в лабораторной работе № 4 п.4.3.

3. ПРИМЕР МИКРОПРОГРАММИРОВАНИЯ

В качестве примера рассмотрим эмуляцию команды ADD DX, 100H[BP][SI]. Это базово-индексная адресация.

3.1. Кодирование команды

Используя рис. 3 в лабораторной работе № 4, выбираем формат RRM, по табл. 1. лабораторной работы № 4 определяем для ADD КОП = 0010 1011, по табл. 2 лабораторной работы № 4 определяем код регистра DX - 010, по табл. 1. для заданного режима адресации выбираем mod=10 и г/m=010. Предполагаем, что смещение dispH,dispL выровнено по границе слова, т.е. IP четно. В результате в табл. 2 приведено кодирование команды ADD DX, 100[BP][SI].

Кодирование команд ы ADD DX, 100[BP][SI Таблица 2

Формат Код команды в двоичном виде		Код команды в 16-тиричном виде			
	КОП	mod	reg	r/m	
RRM	0010 1011	10	010	010	2B92
KKIVI	DispH		DispL	ı	
	0000 0001	(000 00	00	0100

3.2. Кодирование микропрограмм

3.2.1. Микропрограмма выборки

Микропрограмма выборки имеет тот же вид, что и в 4-й лабораторной работе (см. п.7.2.1).

3.2.2. Микропрограмма формирования адреса

Процедуры формирования адресов для режимов, используемых в данной лабораторной работе, целесообразно оформить в виде подпрограмм, чтобы не дублировать их для всех команд с одинаковыми способами адресации. Также имеет смысл оформить в виде вложенных подпрограмм выборку смещений dispL и dispH,dispL. На рис. 6 приведена схема формирования адреса для команды ADD DX, 100[BP][SI], а в табл. 3 − микропрограмма формирования адреса. Микропрограмма оформлена как подпрограмма (см. лабораторную работу № 3).

Рис. 6. Схема формирования адреса для команды ADD DX, 100[BP][SI]

Микропрограмма формирования адреса Таблица 3

Адрес	Операция	Поле	Значение	Функция
MK				
10	ARAM := IP	В	С	IP
	(адрес dispH,dispL)	WM	3	ARAM:= RGB
	IP := IP + 2	SRC	5	CONST, RGB
		ALU	3	Сложение
		DST	4	Запись в РЗУ[В]
		CONST	2	

Окончание табл. 3

Адрес	Операция	Поле	Значение	Функция
МK				
11	Чтение из ОП	MEM	5	Чтение слова
	dispH,dispL	В	F	RW-рабочий
	RW := RGR			регистр
		DST	1	РЗУ[B]:= RGR
12	RW:=RW+SI	A	6	SI
		В	F	RW
		ALU	3	R+S+C0
		DST	4	Запись в РЗУ[В]
13	RW:=RW+BP	A	5	BP
	ARAM:=SDA	В	F	RW
		ALU	3	R+S+C0
		DST	4	Запись в РЗУ[В]
	Безусловный	WM	2	Запись в ARAM
	возврат из	JFI	4	Б/у переход
	подпрограммы	CHA	5	CRTN

3.2.3. Микропрограмма операции

Микропрограмма операции ADD reg2, mem (табл.4) записана с адреса 03. Адрес первого операнда — регистра DX задан в поле reg команды, на что указывает значение поля МВ микрокоманды. Второй операнд выбираем из памяти (mem). Формирование адреса оформлено в виде микроподпрограммы (см. табл. 3), которая вызывается в соответствующем месте микропрограммы.

Микропрограмма операции reg2, mem

Таблица 4

	тикропрограмма оп	срации те	,2, 1110111	Таолица 4
Адрес	Операция	Поле	Значение	Функция
МK				
03	Определение адреса	JFI	4	Б/у переход
	второго операнда.	CHA	1	Вызов подпрограммы
		CONST	10	Адрес подпрограмм
04	Чтение второго	MEM	5	Чтение слова
	операнда из памяти	В	F	RW-рабочий регистр
	RW := RGR	DST	1	Р3У[B]:= RGR
05		A	F	RW
	ADD reg2, RW	MB	2	reg2
		ALU	3	R+S
		F	1	Фиксация флажков
		CHA	0	JZ – переход к
				выборке команды

3.3. Кодирование таблицы преобразования адресов

Кодирование таблицы преобразования адресов производится в соответствии с рекомендациями в разделе 6 лабораторной работы № 4. Для нашей команды преобразование адресов описывается в табл. 5. В команде ADD в код операции входят поля КОП, mod и r/m, а безразличными являются биты 3-5 второго байта команды.

Преобразование адресов

т	· ~		_
	20	лица	_
	$\alpha \mathbf{U}$	IIVIIIA	.)

Начальный адрес				
03	0010	1011	10XX	X010

4. СОДЕРЖАНИЕ ОТЧЕТА

В отчет входят следующие пункты:

- 1) программа решаемой задачи на языке ассемблера;
- 2) кодирование команд;
- 3) микропрограммы формирования адресов и операций;
- 4) таблица преобразования адресов;
- 5) протокол выполнения программы в режиме КОМАНДА;
- 6) протокол формирования адреса для наиболее сложного способа адресации в режиме МИКРОКОМАНДА.

5. КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Опишите режимы адресации, используемые в МП-86.
- 2. Составьте микропрограмму вычисления адреса для режима, указанного преподавателем.
- 3. Составьте микропрограмму выполнения команды по указанию преподавателя.

6. ВАРИАНТЫ ЗАДАНИЙ

Таблица 6

1. MOV ADD OR	AX, [20H] [BX], 1ABH CX, 100H[SI]	2. MOV TEST XOR	[SI], 500H AX, [20H] CX, 200H[BX][DI]
3.		4.	
SAR	[BP]	SAR	300H[DI]
XOR	120H[DI], C000H	AND	CX, [BX]
SUB	DX, [130H]	ADD	[160H], 100H

Окончание табл. 6

5. INC MOV CMP	150H[BP][DI] AX, [30H] [200H], 200H	6. DEC CMP AND	[DI] [220H], 120H DX, 170H[BX][SI]
7. MOV AND XCHG	CX, 100H[BP][DI] [BX], 8000H [120H], AX	8. SHL TEST ADD	[SI] [100H], 8000H CX, 200H[BX]
9. SAR TEST MOV	140H[BX][SI] 200H[SI], F000H AX, [50H]	10. INC MOV SUB	[1A0H] DX, 100H[BP] [SI], 11AH
11. INC MOV OR	[130H] DX, 300H[BP][SI] [BX], F00FH	12. DEC MOV XOR	[DI] AX, [A0H] CX, 180H[BX][SI]