DSA – Seminar 2 – Complexity (Algorithm Analysis)

1. TRUE or FALSE? a. $n^2 \in O(n^3)$

b.
$$n^3 \in O(n^2)$$

c.
$$2^{n+1} \in \Theta(2^n)$$

d.
$$2^{2n} \in \Theta(2^n)$$

e.
$$n^2 \in \Theta(n^3)$$

f.
$$2^n \in O(n!)$$

g.
$$log_{10}n \in \Theta(log_2n)$$

h.
$$O(n) + O(n^2) = O(n^2)$$

i.
$$\Theta(n) + O(n^2) = O(n^2)$$

j.
$$O(n) + O(n^2) = O(n^2)$$

k.
$$O(f) + O(g) = O(max \{f,g\})$$

I.
$$O(n) + O(n) = O(n)$$

m.
$$(n + m)^2 \in O(n^2 + m^2)$$

n.
$$3^n \in O(2^n)$$

o.
$$\log_2 3^n \in O(\log_2 2^n)$$

2. Complete with the complexity of search and sorting algorithms

Algorithm	Time Complexity				Extra Space
	Best C.	Worst C.	Average C.	Total	Complexity
Linear Search					
Binary Search					
Selection Sort					
Insertion Sort					
Bubble Sort					
Quick Sort					
Merge Sort					

3. Analyze the time complexity of the following two subalgorithms:

```
\begin{array}{c} \text{subalgorithm } \text{s1(n) is:} \\ \quad \text{for i} \leftarrow \text{1, n execute} \\ \quad \text{j} \leftarrow \text{n} \\ \quad \text{while } \text{j} \neq \text{0 execute} \\ \quad \quad \text{j} \leftarrow \left[\frac{j}{2}\right] \\ \quad \text{end-while} \\ \quad \text{end-for} \end{array}
```

```
end-subalgorithm
subalgorithm s2(n) is:
       for i \leftarrow 1, n execute
              j ← i
              while j \neq 0 execute
              end-while
       end-for
end-subalgorithm
   4. Analyze the time complexity of the following two subalgorithms:
subalgorithm s3(x, n, a) is:
       found ← false
       for i ← 1, n execute
              if x_i = a then
                     found ← true
              end-if
       end-for
end-subalgorithm
subalgorithm s4(x, n, a) is:
       found ← false
       while found = false and i \le n execute
              if x_i = a then
                     found ← true
              end-if
              i \leftarrow i + 1
       end-while
end-subalgoritm
   5. Analyze the time complexity of the following algorithm (x is an array, with elements x_i \le n):
Subalgorithm s5(x, n) is:
       k← 0
       for i \leftarrow 1, n execute
              for j \leftarrow 1, x_i execute
                     k \leftarrow k + x_i
              end-for
       end-for
end-subalgorithm
       a. if every x_i > 0
       b. if x_i can be 0
     - Does the complexity change if we allow values of 0 in the array?
```

Think about an array *x* defined in the following way:

```
Let x_i = \begin{cases} 1, & i \text{ is a perfect square} \\ 0, & otherwise \end{cases}
```

- 6. Consider the following problems and find an algorithm (having the required time complexity) to solve them:
 - a. Given an arbitrary array with numbers $x_1...x_n$, determine whether there are 2 equal elements in the array. Show that this can be done with Θ (n log₂ n) time complexity.
 - b. Given an arbitrary array with numbers $x_1...x_n$, determine whether there are two numbers whose sum is k (for some given k). Show that this can be done with Θ (n \log_2 n) time complexity. What happens if k is even and k/2 is in the array (once or multiple times)?
 - c. Given an ordered array $x_1...x_n$, in which the elements are distinct integers, determine whether there is a position such that A[i] = i. Show that this can be done with $O(log_2 n)$ complexity.
- 7. Analyze the time complexity of the following algorithm:

```
subalgorithm s6(n) is:
      for i \leftarrow 1, n execute
             @elementary operation
      end-for
      i ← 1
      k ← true
      while i <= n - 1 and k execute
             j ← i
             k_1 \leftarrow true
             while j \le n and k_1 execute
                    @ elementary operation (k_1 can be modified)
             end-while
             i \leftarrow i + 1
             @elementary operation (k can be modified)
      end-while
end-subalgorithm
```

8. Analyze the time complexity of the following algorithm:

```
end-if
end-subalgorithm
```

Initial call for the subalgorithm: p(x, 1, n)

- **Obs**: In case of recursive algorithms, the first step of the complexity computation is to write the recurrence relation.

PROPOSED PROBLEMS:

1. Analyze the time complexity of the following algorithm:

```
Subalgorithm s7(n) is:

s ← 0

for i ← 1, n² execute

j ← i

while j ≠ 0 execute

s ← s + j

j ← j - 1

end-while

end-for
end-subalgorithm
```

2. Analyze the time complexity of the following algorithm:

3. Analyze the time complexity of the following algorithm:

```
Function s9(n) is:
    if n < 1 then
        s9 ← 1
    else
        for i ← 1, n, 2 execute
            print "*"
        end_for
        s9 ← 1 + s9(n/5)
    end_if
end function</pre>
```