

You'd like to compute the activations of the hidden layer $a^{(2)} \in \mathbb{R}^3$. One way to do so is the following Octave code:

```
% Thetal is Theta with superscript "(1)" from lecture % ie, the matrix of parameters for the mapping from layer 1 (input) to layer 2 % Thetal has size 3x3 % Assume "sigmoid" is a built-in function to compute 1 / (1 + \exp(-z)) a2 = zeros (3, 1); for i = 1:3 a2(i) = a2(i) + x(j) * Thetal(i, j); end a2(i) = a2(i) + x(j) * Thetal(i, j); end end
```

You want to have a vectorized implementation of this (i.e., one that does not use for loops). Which of the following implementations correctly compute $a^{(2)}$? Check all that apply.

z = Theta1 * x; a2 = sigmoid (z);

a2 = sigmoid (x * Theta1);

a2 = sigmoid (Theta2 * x);

z = sigmoid(x); a2 = sigmoid (Theta1 * z);

5. You are using the neural network pictured below and have learned the parameters $\Theta^{(1)} = \begin{pmatrix} 1 & 2.1 & 1.3 \\ 1 & 0.6 & -1.2 \end{pmatrix}$ (used to compute $a^{(2)}$) and $\Theta^{(2)} = 1 & 4.5 & 3.1$ (used to compute $a^{(3)}$) as a function of $a^{(2)}$). Suppose you swap the parameters for the first hidden layer between its two units so $\Theta^{(1)} = \begin{pmatrix} 1 & 0.6 & -1.2 \\ 1 & 2.1 & 1.3 \end{pmatrix}$ and also swap the output layer so $\Theta^{(2)} = 1 & 3.1 & 4.5$. How will this change the value of the output $h_{\Theta}(x)$?

1 point

- It will stay the same.
- O It will increase.
- O It will decrease
- O Insufficient information to tell: it may increase or decrease.