Allocation de ressources et programmation par contraintes

Master 1 MIAGE « Ingénierie Métier »

Raisonnement et Science de la Décision

Laurent.Perrussel@ut-capitole.fr

Planification de tâches

Allocation de ressources

- Contraintes sur les disponibilités des ressources
 - Personnel
 - Machine
 - Salle
- Contraintes sur les dates de réalisation des tâches
 - Dates de début
 - Dates de fin

Allocation de ressources

- Objectif
 - Affecter des ressources à des tâches.
 - Organiser les activités
 - Dimension temporelle
 - Affectation contrainte
 - Ressources non universelles
 - Disponibilité limitée des ressources

- Données en entrée
 - Ressources
 - Tâches
 - Contraintes
- Données en sortie
 - Planification temporelle

Planification

- Trouver les tâches et leur ordonnancement pour satisfaire un objectif
- Données
 - Entrée
 - Tâches possibles
 - Contraintes
 - But
 - Sortie
 - Séquence de tâches

Organisation

- Programmation par contraintes
 - Définition
 - Rechercher une solution
- Représenter un problème d'allocation
 - Description des ressources et tâches
 - Calcul de la solution
- Exemple d'allocation
 - Atelier
 - Planning d'employés

Programmation par contraintes

- Problème
 - Variables
 - Domaines possibles de valeurs pour les variables
 - Contraintes sur les variables et les domaines
 - Combinaison de valeurs possibles pour les variables
 - Forme potentiellement complexe

- Exemple : formule « plat dessert »
 - Variables
 - Plat
 - Dessert
 - Domaines
 - Plat ∈ {steakHaché, paella}
 - Dessert ∈ {yaourt,pâtisserie}
 - Contraintes
 - (steakHaché, yaourt), (paella, yaourt), (steakHaché, patisserie)

Programmation par contraintes

- Affectation
 - Une valeur pour chaque variable
 - Affectation totale
 - Une valeur pour quelques variables
 - Affectation partielle
- Solution
 - Une affectation satisfaisant toutes les contraintes
- Optimisation possible
 - Fonction d'optimisation portant sur les variables
 - Grandeur numérique
 - Minimiser ou maximiser

Programmation par contraintes

- Exemple
 - Variables et domaines
 - $A \in \{0,1\}, B \in \{1,2\}$
 - Contraintes
 - A ≠ B
 - Affectation
 - (0,1), (1,1), (0,2) et (1,2)
 - Affectations « solution »
 - $(0,1), \frac{(1,1)}{(0,2)}$ et (1,2)
 - Optimisation
 - F : A + B à minimiser
 - Solution optimale
 - A = 0 et B = 1

Programmation par contrainte : plusieurs technologies

- Programmation linéaire
 - Contraintes arithmétiques
 - Ex : A + B < 10
 - Opérations arithmétiques
 - Somme

$$\circ$$
 C = A + B

- Produit scalaire
 - o C = [X1..Xn] . [Y1..Yn]
- Contraintes générales
 - Valeurs différentes
 - Présence d'une valeur dans une liste de variables

- Programmation logique
 - Combinaison logiques de contraintes
 - Ex :
 - $(A \in \{0,1\} ET B \in \{1,2\})$ OU $(A \in \{2,4\}, B \in \{5,6\})$

Programmation par contraintes : problème du sac à dos

Variables

- Poids maximal: Max,
- **Poids**: *P*1...*PN*,
- **Valeur**: *V*1...*VN*,
- **Présent :** *X1 . . . XN*

Domaines

- Pi et Vi **fixés**
- $Xi \in \{0,1\}$
- Contraintes: $[P1...PN] . [X1...XN] \leq Max$
- Optimisation $F = [V1...VN] \cdot [X1...XN]$

maximiser(F)

Programmations par contraintes : rechercher les solutions

- Recherche « naïve »
 - Tout vérifier
- Inefficace et très couteux
 - 2^n affectations pour n variables (binaires)

```
Solution = \{\}
```

Pour chaque affectation totale A **Si** A satisfait toutes les contraintes

Solution \leftarrow solution \cup A

Finsi

FinPour

Programmation par contraintes rechercher les solutions

- Profondeur d'abord
 - Affectation partielle
 - Compléter l'affectation en vérifiant les contraintes à chaque étape
- Variables
 - Déjà affectées
 - En cours
 - Futures

Programmation par contraintes rechercher les solutions

- Profondeur d'abord
 - Arbre de solutions partielles
 - Allers et retours dans l'arbre de solutions
 - « Forward » : affectation est complétée et explorée
 - « backward » : affectation est partiellement annulée

```
Exploration « forward »
 Choisir une variable X dans les variables
futures
Futures \leftarrow futures - X
Pour toutes les valeurs
                   possibles de X
        Mettre à jour les
        valeurs possibles des variables
                   futures
        Si valeurs cohérentes
                   existent
          conserver affectation partielle
          explorer (futures)
        Finsi
```

FinPour

Programmation par contraintes rechercher les solutions

- Exemple :
 - 2 variables A et B
 - Domaine: 1..3 pour A et B
 - Contrainte : A = 3*B

Représenter un problème d'allocation

- Objectif
 - Trouver une allocation optimale pour des ressources et des tâches
 - Contraintes
 - Chaque tâche a une durée
 - Relation de précédence entre tâches
 - Hypothèse
 - Tâche non interruptible

- Exemple
 - Planification de projet
 - Affectation de travaux à une machine
 - Planification employés
 - Quelles personnes dans quels services
 - Organisation d'un championnat sportif
 - Embarquement / débarquement dans un aéroport
 - •

Allocation : décrire les tâches

- Fonctions associées à une tâche X
 - Durée(X)
 - dateDebutPlusTot(X)
 - dateFinPlusTard(X)
 - TachesPrecedentes(X)

Tache	Durée	Tot	Tard
A	2	0	10
В	1	1	2
С	3	4	7

Allocation : décrire les contraintes

- Début des taches
 - Debut(X) ∈
 [dateDebutPlusTot(X),
 dateDebutPlusTard(X)]
 - dateDebutPlusTard(X) = dateFinPlusTard(X) duree(X)
- Précédence : X < Y
 - Debut(X) + duree(X) \leq Debut(Y)

Tache	Durée	Tot	Tard
A	2	0	10
В	1	1	2
С	3	4	7

 $debut(A) \in [0..8]$ $Debut(C) \in [4..4]$ $Debut(A) + duree(A) \leq Debut(C)$

Allocation: optimisation

B[1,2]

A [2,4]

- Hypothèse : ressource unitaire
 - Contraintes d'unicité
- Précédences libres :
 - X < Y OU Y < X
- Solution : planification avec le plus court délai
 - Minimiser les dates de début des dernières tâches
 - Introduction d'une pseudo tache « agrégeant » les dernières taches
 - Minimiser le début de la pseudo-tache

Pseudo-tache « Fin » après C
 Debut(C) + duree(C) ≤
 Debut(Fin)

 $Debut(C) + 3 \le Debut(Fin)$

Fin [7,7]

Allocation: ressources multiples

- Machines en différents exemplaires
- Permet de faire des tâches en parallèle
 - Ajout de règles avec des capacités

Allocation: exemples

- Atelier Tâches Machine (Job-shop)
 - Chaque tâche est décomposée en opérations
 - Opérations sont ordonnées
 - Opérations ont une durée
 - Opérations à effectuer sur machines dédiées
- Objectif
 - Minimiser le temps passé (autrement dit le temps perdu)

Allocation: atelier

- 3 machines
 - M1, M2 et M3
- 3 tâches
 - T1 : opérations sur M3 (durée : 4) puis M2 (2) et M1 (1)
 - T2 : opérations sur M1 (3) et M3 (3)
 - T3 : opérations sur M2 (2), puis M1 (4) et M3 (1)
- Variables
 - 1 variable par opération sur une machine : OpI,J
 - Opération de la tâche I sur la machine J

Allocation: atelier

- Variables
 - 1 variable par opération de la tache I sur une machine J : OpI,J
 - 1 variable Fin
- Contraintes de précédence
 - Debut(Op1,3) + duree(Op1,3) \leq debut(Op1, 2)
 - Debut(Op1,2) + duree(Op1,2)) \leq debut(Op1, 1)
 - ...
- Optimisation
 - Debut(Op1,1) + 1 \leq debut(Fin) ET Debut(Op2,3) + 3 \leq debut(Fin) ET Debut(Op3,3) + 1 \leq debut(Fin)
 - Minimiser Debut(Fin)

- Planifier l'activité d'employés pour une semaine
 - Type de service : matin, après-midi, nuit
 - Nombre d'employés requis par type de service
 - Valeur minimale et maximale
 - Nombre de services par employés
 - Valeur minimale et maximale
 - Cout par employé et service
- Objectif
 - Minimiser le cout

- Employés : Alice, Bob, Charlie...
- 7 jours à planifier
- Service: Matin (AM), Après-midi (PM) et nuit (N)
- Présence par service
 - AM: 2-3, PM: 3 et N: 1-2
- Activités possibles par employé
 - AM: 2-3, PM: 1-2 et N: 1-2
- Activités par employé : 4-6 services
- Cout
 - AM: 10, PM: 12 et N: 15

Résultat visé

	Lundi	Mardi	Mercredi	
Alice	AM	PM	PM	
Bob	AM	-	AM	
Charlie	PM	N	N	

- Représentation
 - Variables pour chaque jour Y où l'employé X travaille TrXY
 - TrAliceLundi : Alice travaille Lundi
 - Domaine pour TrXY: AM, PM, N et Libre
- Variables pour min et max employés par service
 - NbEmpAM ∈[2..3] (nombre d'employés pour le matin)
- Variables pour min et max de services par employés
 - NbServN \in [1..2] (nombre de nuits possibles)

- Contraintes
 - Somme des NbEmpAM, NbEmpPM, NbEmpN (pour tous les jours de la période)
 - Calculer le cout global sur la période
- Minimiser ensuite le cout.