ENK 物聯網解決方案

Easy NB-IoT Kit 加上整合資料庫大平台

NB-IoT 模組開發

對象: 想要更換無線模組, 有硬體開發能力者為佳

小尺寸, 低功率

尺寸:17.7mm x 15.8mm x

2.0mm

- B1/B2/B3/B4/B5/B8/B12/B13/B17/B18/B19/
- B20/B25/B26/B28/B66
- ●支援協定:UDP/TCP/CoAP/LWM2M/MQT
- ●發送功率:23dBm ±2(Max)
- ●超低功耗:

0.29mA @Idle Mode (eDRX=81.92s)

 $3.5 \mu A \text{ @PSM}$

110mA @LTE Cat NB1, 23dBm

- Sensitivity: -129dBm
- ●工作溫度:-40℃~+85℃
- ●工作電壓: 2.1V~3.63V, 3.3V Typ.

NB-IoT 模組開發 - 搞清楚每一腳位

NB-IoT AT-Command – 自行控制連線

得自行處理NB-IOT的連線

搜網流程:

開發緣由

- ▶ 現有產品如何整合NB無線模組呢?
- ▶ 連接那一家NB-IOT網路?
- ▶ 使用何種通信協定呢? CoAP, Restful, MQTT?
- 軟韌體開發設計需花費多少時間?
- 資料庫如何介接及系統整合?
- > 天線調校及匹配問題?
- ▶ NB模組調試及優化?

無使用ENK-v01 使用ENK-v01 開發花費時間 ??天 10分鐘

ENK 節省了1-5步驟

1.NB-IoT電路設計

- 電路設計
- 電路Layout
- 天線調教

2.NB-IoT硬體製作

- 洗版, 打件
- 備料, 囤貨

3.雲端平台建置

- 平台維運
- 障礙查測
- 建置Server API

- 撰寫Client端程式
- 驗證程式穩定性
- 韌體電路偵錯

- AT Command熟悉
- 基地台連線測試

ENK 工作模式及資料庫大平台 Restful API /MQTT / Websocket **Customer Server** FAR EASTONE 📏 台湾大哥大 /DB aws 中華電信 CoAP / MQTT Server Chunghwa Telecom CoAP / MQTT Server NB-OT Network ENK-v01 智慧電,水錶 ENK-v01模組 IoT平台Client端協定 CoAP / MQTT Client **UART API** 智慧家電設備 I²C API **NB-IoT AT Command GPIO UART API** 防災防盜設備 EAGLETEK

Appendix – API 指令集

※每個字串結尾需增加一個換行字元(0xD and 0xA)

說明	格式	Example	ENK-v01模組回覆	
設定欲存取IoT平台之 APIKEY	EGT_0\${APIKEY}	EGT_0PK2APZZF25K7B2T11Z	ОК	
設定欲存取IoT平台之 DeviceID	EGT_1\${DeviceID}	EGT_15361246003	OK 設定要大平台的變數,	
設定欲存取IoT平台之 SensorID	EGT_2\${SensorID}	EGT_2Sensor01	ok 並儲存於MCU內	
設定Server IP	EGT_i\${IP}	EGT_ i61.216.74.128	OK	
設定Server Port	EGT_p \${Port}	EGT_ p5683	ОК	
設定APN	EGT_N\${APN}	EGT_ Ninternet	ОК	
取得ENK-v01 設定資訊	EGT_I	EGT_I	61.216.74.128 5683 internet PK2APZZ115K7B2T11Z 5361246001 Sensor01 CoAP Mode	
發送訊息至IoT平台	EGT_4["{Message}"]	EGT_4["Hello"]	ОК	
至IoT平台取得訊息	EGT_3	EGT_3	{"id":"Sensor01","deviceId":"5361246003","ti me":"2018-02- 05T13:10:10Z","value":["Hello_Lierda"]}	
測試用	EGT_T	EGT_T	ОК	

ENK 上傳/下傳展示

♣ Step 1. 上傳資料至IoT平台

Header	command	Data
EGT_	4	Hello

輸入EGT_4["Hello"]

♣ Step 2. 從IoT平台讀取上傳的資料

輸入EGT_3

ENK 指令說明

ENK 資料庫大平台展示(以XX電信為例)

- 閱讀user guide
- 研讀模組電路圖
- 熟悉UART API
- 翔宇FAE support

- 創建Device ID
- 創建Sensor ID

- 將ENK-v01上電
- 設定IoT平台APIKEY
- 設定IoT平台Device ID
- 設定IoT平台Sensor ID
- 下達ENK-v01 API指令
 - EGT_4["Hello Lierda"]

ENK 腳位圖

ENK 天線選配

▶ U.fl 接頭

選配

為何需要 ENK 呢?

- ▶ 不需要複雜NB-IOT無線硬體開發人力
- ▶ 不需要軟韌體NB-IOT整合開發人力
- 無需處理平台資料庫整合問題
- ▶ 10分鐘快速連網物連網平台
- ▶ 體積小並提供標準的連接介面
- 可依不同場域來選配天線

ENK PC Demo

Appendix – I/O 接腳圖

P1: VCC, UART, I²C, GPIO

- 1, 电源输入,
- 2, IIC 的时钟
- 3, IIC 的数据
- 4, MCU 串口的 RX 引脚
- 5, MCU 串口的 TX 引脚
- 6, MCU 普通 IO 口 P2.3
- 7, 按键引脚 P2.4
- 8, GND 引脚

P4: VCC, Reset

P2: hardware reset

Appendix – 電氣規格

Feature	Boudica	MTK	Qualcomm		
Frequency Bands	B1/B3/B5/B8/B20/B28	B1/B2/B3/B4/B5/B8/B12 /B13/B17/B18/B19/ B20/B25/B26/B28/B66	B1/B2/B3/B4/B5/B8/ B12/B13/B18/ B19/B20/B26/B28		
Power Supply	3.1 V~4.2V Typical: 3.6V	2.1V~3.63V Typical: 3.3V	3.3V~4.3V Typical: 3.8V		
Module Dimension	20x16x2.2mm	17.7×15.8×2.0mm	26.5× 22.5×2.3mm		
Transmitting Power	23dBm±2dB	22.5dBm±2dB	23dBm		
Sensitivity	-128dBm	TBD	-117 dBm		
Temperature Range	-30°C ~ + 85°C	-35°C ~ +75°C	-40°C ~ +85°C		
Power Saving	5uA	TBD	10uA		
Antenna Interface	u.fl	u.fl	u.fl		
I/O Interface	UART, I ² C, GPIO	UART, I ² C, GPIO, ADC	UART, I ² C, GPIO		
Protocol Stacks	CoAP/UDP, MQTT/TCP	CoAP/UDP, MQTT/TCP	CoAP/UDP, MQTT/TCP		