CM 1606 Computational Mathematics

Functions

Week 3 | Ganesha Thondilege

Learning Outcomes

- Covers LO1 for CM1606
- On completion of this lecture, students are expected to be able to:
 - identify the rule of a function.
 - determine domain, codomain and range of a function.
 - Identify single valued functions.
 - construct compositions of functions.
 - construct the inverse of a function.
 - recognize special features of several types of functions.
 - Critical value analysis for quadratic functions

CONTENT

- Components of a function
- Range of a function
- Graph of a function
- Vertical line test single valued functions
- Addition and subtraction of functions
- Composition of functions
- Inverse of a function
- Graph of the inverse rule
- Several categories of functions
- Critical values of quadratic functions

Components of a function

Let A and B be non-empty sets.

"Each element in A is assigned by a certain rule to a

unique (Single valued) element in B"

- This assignment is called a <u>function</u> (mapping) from A to B.
- Then, the set A is called the domain
- The set B is called the codomain.
- The rule that assigns elements from A to B is considered as the <u>rule</u> of the function.

Components of a function ctd.

eg. Rule of raising to the power 2 (or squaring)

Components of a function ctd.

So, rule can be expressed as $f(x) = x^2$, where generally,

$$f(x)$$
 is for "function of x".

Alternatively it can be denoted by

$$x \mapsto x^2$$
 as well.

eg. Let
$$A = \{-1, 1, 2\}$$
, $B = \{1, 2, 3, 4\}$

$$f:A \to B$$

$$f: \mathbf{A} \to \mathbf{B}$$
$$f(x) = x^2$$

Range of a function

Let f be a function with $f:A \to B$. Suppose $a \in A$ is assigned to $b \in B$ by f (ie. f(a) = b).

Then b is called the image of a.

Set of all images of the elements in the domain is called the <u>range</u> of the function.

Usually, it is denoted by f(A).

Note that $f(A) \subseteq B$.

Range of a function ctd.

eg. Let
$$A = \{-1, 1, 2\}$$
, $B = \{1, 2, 3, 4\}$
 $f : A \to B$
 $f(x) = x^2$

```
Image of -1 is f(-1)=1
Image of 1 is f(1)=1
Image of 2 is f(2)=4
```

So, Range of
$$f = \{1, 4\}$$

Graph of a function

- Let the rule of a function denoted as y=f(x)
- The graph or the curve of f is given by the points (x,y)
- Domain in *x axis* and range in *y axis*

Example

What is the rule of the function plotted in the following figure? Determine the domain and the range.

Vertical line test – Single valued feature

Consider the graph of $y = \pm \sqrt{x}$

Addition and subtraction of functions

- Consider two functions $f(x) = x^2 + 5$ and $g(x) = -2x^2 3$
 - $\lambda f(x) \pm \mu g(x) = (\lambda f \pm \mu g)(x)$

$$i)(f+g)(x) = -x^2 + 2$$

$$(ii)(f-g)(x) = 3x^2 + 8$$

$$iii)(f + g)(0) = 2$$

$$iv)(f-g)(1) = 11$$

Composition of functions

 Chain of functions can be built up where, output of one function forms the input to the next function

output of f becomes input for g

Composition of functions ctd.

For two functions $f: A \to B$ and $g: B \to C$, the composition

of f and g, denoted by $g_0 f$

is the function $g_0 f : A \to C$ defined by

$$(g_{O}f)(x) \equiv g(f(x)).$$

We read $g_0 f$ as "g circle f" or "g of f".

Example

- 1) If the rules are given by f(x) = x + 1 and $g(x) = x^2$, then find the composed rules for $g_0 f$ and $f_0 g$.
- 2) Find composed rules with $f(x) = \frac{1}{x}$ and $g(x) = x^2$ in both ways.

Result : Let
$$f: A \to B$$
, $g: B \to C$, $h: C \to D$.
Then $h_O(g_O f) = (h_O g)_O f$

Inverse of a function

• For the function y=f(x), what is the rule from y to x?

- This reverse process is called as the inversion
- The required rule is called as the inverse function
- Denoted as $f^{-1}(x)$

Example

1) What is the rule of the inverse for f(x) = x + 2?

Then,
$$f^{-1}(y) = \frac{y+1}{2}$$
 or identically we have $f^{-1}(x) = \frac{x+1}{2}$.

Graph of the inverse rule

- Rule of $f^{-1}(x)$ can be plotted using the graph of f(x) by interchanging X and Y axes appropriately.
- That interchange is based on the following implication.

Graph of the inverse rule ctd.

• Alternatively, graph of $f^{-1}(x)$ can be taken as the reflection (mirror image) of the graph of f(x) over the line y = x.

eg.
$$f(x) = x^3$$

 $f^{-1}(x) = x^{\frac{1}{3}}$

Polynomial functions

• *n*th degree polynomial

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$
; $a_n \neq 0$

n is a non-negative integer and all a_i 's are constants

- Trigonometric functions
- Exponential and logarithmic functions

$$y = e^x \Leftrightarrow x = \log_e y \text{ (or ln } y)$$

Thus exponential and logarithmic functions are inverse of each other (mutual inverses).

Graph of $f(x) = e^x$ and $\ln x$

Logistic function

• Basic form: $y = \frac{1}{1 + e^{-x}}$

Ex:

Find the maximum and minimum value for this function and sketch the function (Hint: Refer $y = e^{-x}$)

Special features

Special features

Critical Values of Quadratic functions

Consider the function

$$f(x) = x^2 + 2x + 1$$

By the method of completing squares

$$f(x) = x^2 + 2x + 1 = (x+1)^2$$

Note:

$$f(x) = x^{2} \pm bx + c = \left(x \pm \frac{b}{2}\right)^{2} + c - \left(\frac{b}{2}\right)^{2} = \left(x \pm \frac{b}{2}\right)^{2} \pm d$$

Critical Values of Quadratic functions ctd.

Note:

$$f(x) = x^2 \pm bx + c = \left(x \pm \frac{b}{2}\right)^2 + c - \left(\frac{b}{2}\right)^2 = \left(x \pm \frac{b}{2}\right)^2 \pm d$$

Eg: Find the minimum value of the function $f(x) = x^2 + 6x + 15; x \in \Re$

$$f(x) = x^{2} + 6x + 15$$
$$= (x+3)^{2} + 6$$

So min
$$f(x) = 6$$

when
$$x = -3$$