Nom i Cognoms:	Una possible solució	
----------------	----------------------	--

1) Si cada instrucció 'one-word' necessita del cicle de fetch i del cicle d'execució, justifica perquè s'afirma que la CPU executa (amb excepcions) una instrucció nova a cada cicle.

Gràcies al pipe-line, mentre la CPU executa la instrucció actual, s'està fent el *fetch* de la següent.

2) Omple la següent taula amb els valors corresponents després d'executar la instrucció: addwf 0x20, 1

	abans	després
0x20	22	42
WREG	20	20

3) Et sembla una bona idea implementar una rutina recursiva en un PIC18? Justifica la resposta.

No és una bona idea. Només tenim 31 nivells de pila, i segurament seran insuficients per a guardar tantes adreces de retorn.

4) Defineix els conceptes, i explica les diferències entre una memòria estàtica i una memòria volàtil.

La memòria volàtil és aquella que perd la informació quan es queda sense alimentació. La memòria estàtica és una memòria que no necessita refresc per a mantenir la informació, però si també necessita alimentació.

5) En una arquitectura PIC18, quina diferència hi ha entre la memòria RAM i els registres.

Cap. La memòria RAM és un fitxer de registres.

6) Anomena un cas en que una instrucció s'executi en un cicle d'instrucció:

Una instrucció single word que no provoqui salt

i en dos cicles?

Una instrucció double word

i en tres cicles?

Una instrucció de salt seguida d'una instrucció double word

7) Si executem la instrucció *clrf* 0x20, a. Quin registre s'esborrarà si a=1 ?

El registre 0x20 del banc indicat pel registre BSR

i si a=0?

El registre 0x20 del access bank

- 8) Justifica si és certa l'afirmació següent:
- "Quan executem la instrucció addwf 0x20, W (essent W=0), el resultat de la suma es guarda al registre WREG, que es troba a l'adreça 0 de memòria".

Fals. El resultat es guarda a WREG, però aquest no es troba a l'adreça 0.

9) Amb quin valor es carrega el registre PC quan es produeix un reset del micro?

0

10) Anomena un avantatge i un inconvenient d'una arquitectura Harvard enfront d'una Von Neumann.

L'arquitectura Harvard permet l'accés concurrent a dades i instruccions, per tant és més ràpida. Per altra banda, és més complexa.

01.55	Clear f			ADDWF	ADD W to f				
CLRF				Syntax:	ADDWF	ADDWF f {,d {,a}}			
Syntax:	CLRF f{,a} 0 ≤ f ≤ 255 a ∈ [0,1]			Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]				
Operands:				ореганаз.					
Operation:	$000h \rightarrow f,$ $1 \rightarrow Z$			Operation:	(W) + (f) -	$(W) + (f) \rightarrow dest$			
				Status Affected:	N, OV, C,	N, OV, C, DC, Z			
Status Affected:	Z			Encoding:	0010	01da	ffff	ffff	
Encoding:	0110 101a	ffff	ffff	Description: Add W to register 'f'. If 'd' is '0', the					
Description:	Clears the contents register. If 'a' is '0', the Acce	·			result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default).				