Listing of the Claims:

The following is a complete listing of all the claims in the application, with an indication of the status of each:

1	1 (Currently Amended). An image editing apparatus which edits image
2	data which has been coded in accordance with an image coding method, by
3	which wherein a plurality of image frames constituting the image data are
4	divided into groups in order to manage the plurality of image frames by the
5	unit of each group, each image frame is coded into one of a first type
6	image frame which is created by coding based only on data enclosed in the
7	image frame itself, a second type image frame which is created by
8	performing inter-frame mono-directional prediction based on a past image
9	frame and coding a difference obtained by the prediction, and a third type
10	image frame which is created by performing inter-frame dual-directional
11	prediction based on a past image frame and a future image frame and
12	coding differences obtained by the prediction, and the plurality of image
13	frames are coded so that a head frame of each group may be the first type
14	image frame, said apparatus comprising:
15	an image corder which codes each of frames of image data into one
16	of the first type image frame, the second type image frame, and the third
17	type image frame by coding according to said image coding method;
18	an image decoder which decodes the image frame coded by said
19	image coder by decoding; and
20	an image data analyzer which analyzes a picture header of a head
21	frame in the area to be edited and determines an attribute of each group,
22	and types of image frames included in each group,
23	wherein: said image data analyzer determines whether or not a head
24	group which is arranged at a head of an editing target area included in the
25	image data coded by said image coding method is a closed group which is
26	a group that does not include the third type image frame which is to be

27	decoded by referring to an image frame included in a group which is
28	arranged before the head group; and
29	in a case where said image data analyzer determines that the head
30	group is not the closed group, said image coder converts a portion near the
31	head of the editing target area into the closed group.
1	2 (Original). The image editing apparatus according to claim 1, wherein
2	said image data analyzer determines whether or not the third type image
3	frame included in the head group is an image frame which is to be decoded
4	by referring to an image frame included in a group which is arranged
5	before the head group.
1	3 (Original). The image editing apparatus according to claim 2, wherein:
2	in a case where said image data analyzer determines that the third
3	type image frame is an image frame which is to be decoded by referring to
4	an image frame included in the group arranged before the head group, the
5	image decoder decodes the third type image frame; and
6	said image coder codes the third type image frame which is
7	determined by said image data analyzer as an image frame to be decoded
8	by referring to an image frame included in the group arranged before the
9	head group, and is decoded by said image decoder, into an image frame
10	which is able to be decoded without referring to an image frame included
11	in the group arranged before the head group.
1	4 (Original). The image editing apparatus according to claim 1, wherein:
2	said image coding method is an MPEG method;
3	each of the groups is a GOP of MPEG;
4	the first type image frame is an I picture;
5	the second type image frame is a P picture; and
6	the third type image frame is a B picture.

5 (Currently Amended). An image editing apparatus which edits image

2	data which has been coded in accordance with an MPEG method, said
3	apparatus comprising:
4	image data analyzing means for analyzing a picture header of a
5	head frame in the area to be edited and a structure of image frames
6	included in each GOP of the image data, and determining an attribute of
7	each GOP and picture types of image frames included in each GOP;
8	conversion point detecting means for detecting a GOP which needs
9	to be re-coded from an editing target area of the image data, and an image
10	frame which needs to be re-coded from the detected GOP;
11	image decoding means for decoding the image frame which needs
12	to be re-coded detected by said conversion point detecting means by
13	decoding;
14	GOP converting means for creating a new GOP by re-coding the
15	image frame decoded by said image expanding means; and
16	image data concatenating means for concatenating a plurality of
17	image data which are cut out as editing target areas,
18	wherein: said image data analyzing means determines whether or
19	not a head GOP which is arranged at a head of the editing target area is a
20	closed GOP; and
21	in a case where said image data analyzing means determines that
22	the head GOP of the editing target area is not a closed GOP, said GOP
23	converting means converts a portion near the head of the editing target area
24	into a closed GOP.
1	6 (Currently Amended). An image editing apparatus which edits image
2	data which has been coded in accordance with by an image coding method,
3	wherein by which a plurality of image frames constituting the image data
4	are divided into groups in order to manage the image data by the unit of
5	each group, each image frame is coded into one of a first type image frame

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

which is created by coding based only on data enclosed in the image frame itself, a second type image frame which is created by performing interframe mono-directional prediction based on a past image frame and coding a difference, and a third type image frame which is created by performing inter-frame dual-directional prediction based on a past image frame and a future image frame and coding differences, and the image data is coded so that a head frame of each group may be the first type image frame, said apparatus comprising: an image encoder which codes each of frames of image data into one of the first type image frame, the second type image frame, and the third type image frame in accordance withing to said image coding method; an image decoder which decodes the image frame coded by said image encoder; and an image data analyzer which analyzes a picture header of a head frame in the area to be edited and determines an attribute of each group. and types of image frames included in each group, wherein: in a case where said image data analyzer determines that a head image frame which is arranged at a head of an editing target area included in the image data coded by said image coding method is not the first type image frame, said image decoder decodes the head image frame, and each image frame appearing between the head image frame and the first type image frame which appears first after the head image frame; and said image encoder re-codes the image frames which are created by said image decoder decoding the head image frame and each image frame appearing between the head image frame and the first type image frame which appears first after the head image frame, and at that time, re-codes the head image frame into the first type image frame, and re-codes any of the third type image frame appearing after the head image frame into an image frame which is able to be decoded without referring to an image

frame arranged before the head image frame.

1	7 (Currently Amended). An image editing apparatus which edits image
2	data which has been coded in accordance with by an image coding method.
3	wherein a plurality of image frames constituting the image data are divided
4	into groups in order to manage the image data by the unit of each group,
5	each image frame is coded into one of a first type image frame which is
6	created by coding based only on data enclosed in the image frame itself, a
7	second type image frame which is created by performing inter-frame
8	mono-directional prediction based on a past image frame and coding a
9	difference, and a third type image frame which is created by performing
10	inter-frame dual-directional prediction based on a past image frame and a
11	future image frame and coding differences, and the image data is coded so
12	that a head frame of each group may be the first type image frame, said
13	apparatus comprising:
14	an image encoder which codes each of frames of image data into
15	one of the first type image frame, the second type image frame, and the
16	third type image frame in accordance withing to said image coding
17	method;
18	an image decoder which decodes the image frame coded by said
19	image encoder; and
20	an image data analyzer which determines an attribute of each
21	group, and types of image frames included in each group,
22	wherein: in a case where said image data analyzer determines that a
23	head image frame which is arranged at a head of an editing target area
24	included in the image data coded by said image coding method is not the
25	first type image frame, said image decoder decodes the head image frame,
26	and each image frame appearing between the head image frame and the
27	first type image frame which appears first after the head image frame; and
28	said image encoder re-codes the image frames which are created by

29	said image decoder decoding the head image frame and each image frame
30	appearing between the head image frame and the first type image frame
31	which appears first after the head image frame, and at that time, re-codes
32	the head image frame into the first type image frame, and re-codes any of
33	the third type image frame appearing after the head image frame into an
34	image frame which is able to be decoded without referring to an image
35	frame arranged before the head image frame; and The image editing
36	apparatus according to claim 6, wherein:
37	in a case where said image data analyzer determines that the head
38	image frame of the editing target area is not the first type image frame,
39	the image decoder decodes any of the third type image frame
40	frames that appears appear after the a first type image frame which appears
41	first after the head image frame if any of the third type image frame frames
42	is an image frame which is to be decoded by referring to an image frame
43	which is arranged before the first type image frame; and
44	said image encoder re-codes the image frame which is created by
45	said image decoder decoding any of the third type image frame that
46	appears after the first type image frame which appears first after the head
47	image frame.
1	8 (Original). The image editing apparatus according to claim 6,
2	wherein when said image encoder re-codes the image frames which
3	are created by said image decoder decoding each frame appearing between
4	the head image frame and the first type image frame which appears first
5	after the head image frame, said image encoder re-codes any of the third
6	type image frame that appears after the head image frame into the third
7	type image frame that is able to be decoded without referring to an image
8	frame which is arranged before the head image frame.

^{9 (}Original). The image editing apparatus according to claim 6, wherein:

2	in a case where said image data analyzer determines that the head
3	image frame of the editing target area is the first type image frame, said
4	image decoder decodes any of the third type image frame that appears after
5	the head image frame; and
6	said image encoder re-codes the image frame which is created by
7	said image decoder decoding any of the third type image frame that
8	appears after the head image frame into an image frame which is able to be
9	decoded without referring to an image frame which is arranged before the
10	head image frame.
1	10 (Original). The image editing apparatus according to claim 6, wherein:
2	in a case where said image data analyzer determines that the head
3	image frame of the editing target area is the first type image frame, said
4	image decoder decodes any of the third type image frame that appears after
5	the head image frame; and
6	said image encoder re-codes the image frame which is created by
7	said image decoder decoding any of the third type image frame that
8	appears after the head image frame into the first type image frame.
1	11 (Original). The image editing apparatus according to claim 6, wherein:
2	in a case where said image data analyzer determines that the head
3	image frame of the editing target area is the first type image frame, said
4	image decoder decodes any of the third type image frame that appears after
5	the head image frame; and
6	said image encoder re-codes the image frame which is created by
7	said image decoder decoding any of the third type image frame that
8	appears after the head image frame into the third type image frame which
9	is able to be decoded without referring to an image frame which is
10	arranged before the head image frame.

ì	12 (Original). The image editing apparatus according to claim 6, wherein
2	said image coding method is an MPEG method;
3	each of the groups is a GOP of MPEG;
4	the first type image frame is an I picture;
5	the second type image frame is a P picture; and
6	the third type image frame is a B picture.
1	13 (Currently Amended). An image editing apparatus which edits
2	image data which has been coded in accordance with by an image coding
3	method, wherein a plurality of image frames constituting the image data
4	are divided into groups in order to manage the image data by the unit of
5	each group, each image frame is coded into one of a first type image frame
6	which is created by coding based only on data enclosed in the image frame
7	itself, a second type image frame which is created by performing inter-
8	frame mono-directional prediction based on a past image frame and coding
9	a difference, and a third type image frame which is created by performing
10	inter-frame dual-directional prediction based on a past image frame and a
11	future image frame and coding differences, and the image data is coded so
12	that a head frame of each group may be the first type image frame, said
13	apparatus comprising:
14	an image encoder which codes each of frames of image data into
15	one of the first type image frame, the second type image frame, and the
16	third type image frame in accordance with said image coding method;
17	an image decoder which decodes the image frame coded by said
18	image encoder; and
19	an image data analyzer which analyzes a picture header of a head
20	frame in the area to be edited and determines an attribute of each group,
21	and types of image frames included in each group,
22	wherein: said image data analyzer determines whether a first
23	condition that the first type image frame which appears first in an editing

24 target area included in the image data coded in accordance with said image 25 coding method is a head image frame which is arranged at a head of a 26 group, and a second condition that the group is a closed group which is a group that does not include the third type image frame which is to be 27 decoded by referring to an image frame included in a group which is 28 29 arranged before the group are satisfied or not; 30 in accordance with a result of said image data analyzer's 31 determining the first condition and the second condition, said image decoder decodes any of the third type image frame that appears after the 32 first type image frame appearing first in the editing target area and that 33 34 needs to be re-coded; and said image encoder re-codes the image frame which is created by 35 said image decoder decoding any of the third type image frame that 36 appears after the first type image frame which appears first in the editing 37 38 target area. 1 14 (Original). The image editing apparatus according to claim 13, 2 wherein: 3 in a case where said image data analyzer determines that one of the first condition and the second condition is not satisfied, said image decoder 4 decodes any of the third type image frame that appears after the first type 5 6 image frame which appears first in the editing target area; and 7 said image encoder re-codes the image data which is created by said image decoder decoding any of the third type image frame that 8 appears after the first type image frame which appears first in the editing 9 10 target area. 15 (Original). The image editing apparatus according to claim 13, 1 2 wherein: 3 in a case where said image data analyzer determines that the first

condition is satisfied and the second condition is not satisfied, said image 4 encoder re-codes the image frame which is created by said image decoder 5 decoding any of the third type image frame that appears after the first type 6 7 image frame which appears first in the editing target area into the first type 8 image frame. 1 16 (Original). The image editing apparatus according to claim 13, 2 wherein in a case where said image data analyzer determines that the first condition is satisfied and the second condition is not satisfied, said 3 image encoder re-codes the image frame which is created by said image 4 decoder decoding any of the third type image frame that appears after the 5 first type image frame which appears first in the editing target area into the 6 7 third type image frame which is able to be decoded without referring to an image frame which is arranged before the head image frame. 8 1 17 (Original). The image editing apparatus according to claim 13, wherein in a case where said image data analyzer determines that 2 the first condition and the second condition are satisfied, said image 3 editing apparatus copies the image frame which is created by said image 4 decoder decoding any of the third type image frame that appears after the 5 first type image frame which appears first in the editing target area to the 6 7 image data after being edited. 18 (Original). The image editing apparatus according to claim 13, wherein 1 said image coding method is an MPEG method; 2 3 each of the groups is a GOP of MPEG; 4 the first type image frame is an I picture; 5 the second type image frame is a P picture; and 6 the third type image frame is a B picture.

1	19 (Original). An image editing method for editing image data which has
2	been coded in accordance with an image coding method, wherein which a
3	plurality of image frames constituting the image data are divided into
4	groups in order to manage the plurality of image frames by the unit of each
5	group, each image frame is coded into one of a first type image frame
6	which is created by coding based only on data enclosed in the image frame
7	itself, a second type image frame which is created by performing inter-
8	frame mono-directional prediction based on a past image frame and coding
9	a difference, and a third type image frame which is created by performing
10	inter-frame dual-directional prediction based on a past image frame and a
11	future image frame and coding differences, and the plurality of image
12	frames are coded so that a head frame of each group may be the first type
13	image frame, said image editing method comprising:
14	setting an editing target area in the image data which has been
15	coded in accordance with said image coding method;
16	determining whether a head group which is arranged at a head of
17	the editing target area is a closed group which is a group that does not
18	include the third type image frame which is to be decoded by referring to
19	an image frame included in a group which is arranged before the head
20	group; and
21	converting a portion near the head of the editing target area into the
22	closed group in a case where said determining determines that the head
23	group is not the closed group.
1	20 (Original). The image editing method according to claim 19, further
2	comprising:
3	determining whether any of the third type image frame included in
4	the head group of the editing target area is an image frame which is to be
5	decoded by referring to an image frame included in a group which is
6	arranged before the head group;

/	decoding any of the third type image frame determined as an image
8	frame which is to be decoded by referring to an image frame included in a
9	group which is arranged before the head group; and
10	coding any of the decoded third type image frame into an image
11	frame which is able to be decoded without referring to an image frame
12	included in a group which is arranged before the head group.
1	21 (Original). The image editing method according to claim 19, wherein
2	said image coding method is an MPEG method;
3	each of the groups is a GOP of MPEG;
4	the first type image frame is an I picture;
5	the second type image frame is a P picture; and
6	the third type image frame is a B picture.
1	22 (Original). An image editing method for editing image data which has
2	been coded in accordance with an MPEG method, said image editing
3	method comprising:
4	setting one or more editing target areas in the coded image data;
5	determining whether a head GOP which is arranged at a head of
6	each of the one or more editing target areas is a closed GOP;
7	determining a picture type of a head image frame which is arranged
8	at the head of each editing target area;
9	detecting a GOP which needs to be re-coded, and an image frame
10	which is included in the GOP and needs to be re-coded in accordance with
11	a result of said determining whether a head GOP of each editing target area
12	is a closed GOP, and a result of said determining a picture type of a head
13	image frame of each editing target area; and
14	re-coding the detected image frame which needs to be re-coded,
15	after it is decoded.

1	23 (Original). The image editing method according to claim 22, further
2	comprising:
3	determining a picture type of a next image frame which is arranged
4	next to the head image frame of each editing target area, in a case where
5	said determining whether a head GOP is a closed GOP determines that the
6	head GOP of each editing target area is not a closed GOP;
7	decoding the next image frame and following image frames which
8	are B pictures, in a case where said determining a picture type of a next
9	image frame determines that the next image frame is a B picture, and
10	following image frames which are B pictures, after decoding an image
11	frame which is an I picture which is encountered first when going back in a
12	reverse direction from the head image frame, each image frame between
13	the encountered image frame and the head image frame, and the head
14	image frame;
15	re-coding each decoded image frame, and re-coding the image
16	frames which are created by decoding the following image frames which
17	are B pictures into image frames which are able to be decoded without
18	referring to an image frame which is arranged before the head image
19	frame; and
20	recording each of the image frames which are created by re-coding
21	the head image frame and the following image frames which are B pictures
22	after those image frame are decoded.
1	24 (Original). The image editing method according to claim 22, further
2	comprising:
3	decoding the head image frame of each editing target area in a case
4	where said determining a picture type of a head image frame determines
5	that the head image frame is a P picture, and also decoding each image
6	frame appearing after the head image frame and before an image frame
7	which is an I picture which appears first after the head image frame; and

8	re-coding the image frames which are created by decoding the head
9	image frame and each image frame appearing after the head image frame,
10	and re-coding the image frame which is created by decoding the head
11	image frame into an image frame which is an I picture.
. 1	25 (Original). The image editing method according to claim 22, further
2	comprising:
3	expanding the image frame which needs to be re-coded by
4	decoding:
5	creating a new GOP by re-coding the image frame which is
6	decoded by said expanding; and
7	concatenating the one or more editing target areas.
1	26 (Original). An image editing method for editing image data which has
2	been coded in accordance with an image coding method, wherein a
3	plurality of image frames constituting the image data are divided into
4	groups in order to manage the image data by the unit of each group, each
5	image frame is coded into one of a first type image frame which is created
6	by coding based only on data enclosed in the image frame itself, a second
7	type image frame which is created by performing inter-frame mono-
8	directional prediction based on a past image frame and coding a difference,
9	and a third type image frame which is created by performing inter-frame
10	dual-directional prediction based on a past image frame and a future image
11	frame and coding differences, and the image data is coded so that a head
12	frame of each group may be the first type image frame, said image editing
13	method comprising:
14	setting an editing target area in the image data which has been
15	coded in accordance with said image coding method;
16	determining a type of a head image frame which is arranged at a
17	head of the editing target area;
18	decoding the head image frame of the editing target area and each

19	image frame appearing between the head image frame and the first type
20	image frame which appears first after the head image frame, in a case
21	where said determining a type determines that the head image frame is not
22	the first type image frame; and
23	re-coding the image frames created by decoding the head image
24	frame and each image frame appearing between the head image frame and
25	the first type image frame which appears first after the head image frame,
26	and re-coding the head image frame into the first type image frame, and re-
27	coding any of the third type image frame that appears after the head image
28	frame into an image frame which is able to be decoded without referring to
29	an image frame which is arranged before the head image frame.
1	27 (Currently Amended). An image editing method for editing image data
2	which has been coded in accordance with an image coding method,
3	wherein a plurality of image frames constituting the image data are divided
4	into groups in order to manage the image data by the unit of each group,
5	each image frame is coded into one of a first type image frame which is
6	created by coding based only on data enclosed in the image frame itself, a
7	second type image frame which is created by performing inter-frame
8	mono-directional prediction based on a past image frame and coding a
9	difference, and a third type image frame which is created by performing
10	inter-frame dual-directional prediction based on a past image frame and a
11	future image frame and coding differences, and the image data is coded so
12	that a head frame of each group may be the first type image frame, said
13	image editing method comprising:
14	setting an editing target area in the image data which has been
15	coded in accordance with said image coding method;
16	determining a type of a head image frame which is arranged at a
17	head of the editing target area;
18	decoding the head image frame of the editing target area and each

19	image frame appearing between the head image frame and the first type
20	image frame which appears first after the head image frame, in a case
21	where said determining a type determines that the head image frame is not
22	the first type image frame;
23	re-coding the image frames created by decoding the head image
24	frame and each image frame appearing between the head image frame and
25	the first type image frame which appears first after the head image frame,
26	and re-coding the head image frame into the first type image frame, and re-
27	coding any of the third type image frame that appears after the head image
28	frame into an image frame which is able to be decoded without referring to
29	an image frame which is arranged before the head image frame;
30	The image editing method according to claim 26, further
31	comprising:
32	decoding any of the third type image frame frames that appears
33	appear after the first type image frame which appears first after the head
34	image frame if provided that any of the third type image frame frames is
35	an image frame which is to be decoded by referring to an image frame
36	which is arranged before the first type image frame, in a case where said
37	determining a type determines that the head image frame of the editing
38	target area is not the first type image frame; and
39	re-coding the image frame which is created by decoding any of the
40	third type image frame that appears after the first type image frame which
41	appears first after the head image frame.
1	28 (Original). The image editing method according to claim 26, further
2	comprising
3	re-coding the image frames created by decoding the head image
4	frame and each image frame appearing between the head image frame and
5	the first type image frame which appears first after the head image frame,
6	and re-coding any of the third type image frame that appears after the head

7	image frame into the third type image frame which is able to be decoded
8	without referring to an image frame which is arranged before the head
9	image frame.
1	29 (Original). The image editing method according to claim 26, further
2	comprising:
3	decoding any of the third type image frame that appears after the
4	head image frame of the editing target area in a case where said
5	determining a type determines that the head image frame is the first type
6	image frame; and
7	re-coding the image frame which is created by decoding any of the
8	third type image frame that appears after the head image frame into an
9	image frame which is able to be decoded without referring to an image
10	frame which is arranged before the head image frame.
1	30 (Original). The image editing method according to claim 26, further
2	comprising:
3	decoding any of the third type image frame that appears after the
4	head image frame of the editing target area in a case where said
5	determining a type determines that the head image frame is the first type
6	image frame; and
7	re-coding the image frame which is created by decoding any of the
8	third type image frame that appears after the head image frame into the
9	first type image frame.
1	31 (Original). The image editing method according to claim 26, further
2	comprising:
3	decoding any of the third type image frame that appears after the
4	head image frame of the editing target area in a case where said
5	determining a type determines that the head image frame is the first type

6	image frame; and
7	re-coding the image frame which is created by decoding any of the
8	third type image frame that appears after the head image frame into the
9	third type image frame which is able to be decoded without referring to an
10	image frame which is arranged before the head image frame.
1	32 (Original). The image editing method according to claim 26, wherein:
2	said image coding method is an MPEG method;
3	each of the groups is a GOP of MPEG;
4	the first type image frame is an I picture;
5	the second type image frame is a P picture; and
6	the third type image frame is a B picture.
1	33 (Original). An image editing method for editing image data which has
2	been coded in accordance with an image coding method, wherein which a
3	plurality of image frames constituting the image data are divided into
4	groups in order to manage the image data by the unit of each group, each
5	image frame is coded into one of a first type image frame which is created
6	by coding based only on data enclosed in the image frame itself, a second
7	type image frame which is created by performing inter-frame mono-
8	directional prediction based on a past image frame and coding a difference
9	and a third type image frame which is created by performing inter-frame
10	dual-directional prediction based on a past image frame and a future image
11	frame and coding differences, and the image data is coded so that a head
12	frame of each group may be the first type image frame, said image editing
13	method comprising:
14	setting an editing target area in the image data which has been
15	coded in accordance with said image coding method;
16	determining whether a first condition that the first type image
17	frame which appears first in the editing target area is a head image frame

18 which is arranged at a head of a group and a second condition that the 19 group is a closed group which is a group that does not include the third 20 type image frame which is to be decoded by referring to an image frame 21 included in a group which is arranged before the group are satisfied or not; 22 decoding any of the third type image frame that appears after the 23 first type image frame which appears first in the editing target area and that 24 needs to be re-coded, in accordance with a result of determining the first 25 condition and the second condition; and 26 re-coding the image frame which is created by decoding any of the 27 third type image frame that appears after the first type image frame which 28 appears first in the editing target area. 1 34 (Original). The image editing method according to claim 33, further 2 comprising: 3 decoding any of the third type image frame that appears after the 4 first type image frame which appears first in the editing target area, in a 5 case where said determining determines that one of the first condition and 6 the second condition is not satisfied; and 7 re-coding the image frame which is created by decoding any of the 8 third type image frame that appears after the first type image frame which 9 appears first in the editing target area. 1 35 (Original). The image editing method according to claim 33, further 2 comprising 3 re-coding the image frame which is created by decoding any of the 4 third type image frame that appears after the first type image fame which 5 appears first in the editing target area into the first type image frame, in a 6 case where said determining determines that the first condition is satisfied, 7 and the second condition is not satisfied.

1 36 (Original). The image editing method according to claim 33, further 2 comprising 3 re-coding the image frame which is created by decoding any of the 4 third type image frame that appears after the first type image fame which 5 appears first in the editing target area into the third type image frame 6 which is able to be decoded without referring to an image frame which is 7 arranged before the head image frame, in a case where said determining 8 determines that the first condition is satisfied, and the second condition is 9 not satisfied. 37 (Original). The image editing method according to claim 33, further 1 2 comprising 3 copying the image frame which is created by decoding any of the third type image frame that appears after the first type image frame which 4 appears first in the editing target area to the image data after being edited, 5 in a case where said determining determines that the first condition and the 6 7 second condition are satisfied. 1 38 (Currently amended). An image editing method for editing image data which has been coded in 2 accordance with an image coding method, wherein which a plurality of 3 4 image frames constituting the image data are divided into groups in order to manage the image data by the unit of each group, each image frame is 5 coded into one of a first type image frame which is created by coding 6 based only on data enclosed in the image frame itself, a second type image 7 frame which is created by performing inter-frame mono-directional 8 prediction based on a past image frame and coding a difference, and a third 9 10 type image frame which is created by performing inter-frame dualdirectional prediction based on a past image frame and a future image 11 frame and coding differences, and the image data is coded so that a head 12

13	frame of each group may be the first type image frame, said image editing
14	method comprising:
15	setting an editing target area in the image data which has been
16	coded in accordance with said image coding method;
17	determining whether a first condition that the first type image
18	frame which appears first in the editing target area is a head image frame
19	which is arranged at a head of a group and a second condition that the
20	group is a closed group which is a group that does not include the third
21	type image frame which is to be decoded by referring to an image frame
22	included in a group which is arranged before the group are satisfied or not;
23	decoding any of the third type image frame that appears after the
24	first type image frame which appears first in the editing target area and that
25	needs to be re-coded, in accordance with a result of determining the first
26	condition and the second condition;
27	re-coding the image frame which is created by decoding any of the
28	third type image frame that appears after the first type image frame which
29	appears first in the editing target area; and
30	The image editing method according to claim 33, further
31	comprising
32	inserting a first or second type image frame which appears
33	immediately before a head image frame which is arranged at the head of
34	the editing target area into the head of the editing target area, in a case
35	where the head image frame is the third type image frame.
1	39 (Original). The image editing method according to claim 33, wherein:
2	said image coding method is an MPEG method;
3	each of the groups is a GOP of MPEG;
4	the first type image frame is an I picture;
5	the second type image frame is a P picture; and
6	the third type image frame is a B picture.
	or and a production

1	40 (New). An image editing apparatus which edits image data which has
2	been coded in accordance with an image coding method, wherein a
3	plurality of image frames constituting the image data are divided into
4	groups, each image frame is coded into one of a first type image frame
5	which is created by coding data in the image frame, a second type image
6	frame which is created by performing inter-frame mono-directional
7	prediction based on a past image frame and coding a difference obtained
8	by the prediction, and a third type image frame which is created by
9	performing inter-frame dual directional prediction based on a past image
10	frame and a future image frame and coding differences obtained by the
11	prediction, and the plurality of image frames are coded so that a head
12	frame of each group may be the first type image frame, said apparatus
13	comprising:
14	an image coder which codes each of frames of image data into one
15	of the first type image frame, the second type image frame, and the third
16	type image frame;
17	an image decoder which decodes the image frame coded by the
18	image coder; and
19	an image data analyzer which detects a head group which is
20	arranged at a head of an editing target area included in the image data and
21	determines types of image frames included in each group,
22	wherein: said image data analyzer determines whether or not the
23	head group which is arranged at a head of the editing target area included
24	in the image data is a closed group which does not include the third type
25	image frame which is to be decoded by referring to an image frame
26	included in a group which is arranged before the head group; and
27	in a case where said image data analyzer determined the head group
28	is not the closed group which does not include the third type image frame,
29	said image coder converts a portion near the head of the editing target area

30 into the closed group. 1 41 (New). An image editing apparatus which edits image data which 2 has been coded in accordance with an MPEG method, said apparatus 3 comprising: image data analyzing means for analyzing a structure of image 5 frames included in each GOP of the image data, and determining an 6 attribute of each GOP and picture types of image frames included in each 7 GOP; 8 conversion point detecting means for detecting a GOP which needs 9 to be re-coded from an editing target area of the image data, and an image 10 frame which needs to be re-coded from the detected GOP; 11 image decoding means for decoding the image frame which needs 12 to be re-coded detected by said conversion point detecting means; 13 GOP converting means for creating a new GOP by re-coding the 14 image frame decoded by said image expanding means; and 15 image data concatenating means for concatenating a plurality of 16 image data which are cut out as editing target areas. 17 wherein: said image data analyzing means detects a head GOP 18 which is arranged at a head of the editing target area and determines 19 whether or not the head GOP which is arranged at the head of the editing 20 target area is a closed GOP; and 21 in a case where said image data analyzing means determines that 22 the head GOP of the editing target area is not a closed GOP, said GOP 23 converting means converts a portion near the head of the editing target area

into a closed GOP including no B picture.