Algoritmo de Potenciación Modular

Para calcular
$$3^{14}$$
 módulo 11 $(a = 3, b = 14, n = 11)$

Se calcula la expresión de b en base 2 $14 = 1110_{2}$

 3^{14} módulo 11 vale 4

 $\mathcal{A}=$ "aábcde
éfghiíjklmnñoópqrstuúvwxyz AÁBCDEÉFGHIÍJKLMNÑOÓPQR STUÚVWXYZ
0123456789 ,.:-()"

(alfabeto con 81 símbolos)

De Texto a Número Entero

"bala" codificación numérica [2, 0, 14, 0]

[2, 0, 14, 0] se corresponde con el número entero

$$2 \cdot 81^3 + 0 \cdot 81^2 + 14 \cdot 81^1 + 0 \cdot 81^0 = 1064016$$

De Número Entero a Texto

para el entero 100, se calculan sus dígitos en base 81

[1, 19]

[1, 19] se corresponde con el texto "áó"

Intercambio de Clave de Diffie-Hellman

$$\begin{array}{c} \text{Alicia} \leftarrow ----- \rightarrow \overline{\text{Benito}} \\ \text{Canal Vulnerable} \end{array}$$

Eligen un número primo p grande (público). Calculan g una raíz primitiva módulo p.

- Alicia elige un número a con $0 \le a \le p-2$.
- lacktriangle Alicia envía a Benito, $A:=g^a$ módulo p.
- Benito elige un número b con $0 \le b \le p-2$.
- lacktriangle Benito envía a Alicia, $B:=g^b$ módulo p.
- La clave que van a compartir es $K:=g^{ab}$ módulo p

$$\begin{array}{c}
A \\
ALICIA \\
a \text{ clave privada}
\end{array}$$

$$\begin{array}{c}
A \\
---- \\
B
\end{array}$$

$$\begin{array}{c}
BENITO \\
b \text{ clave privada}
\end{array}$$

Alicia calcula Benito calcula B^a módulo p A^b módulo p \downarrow \downarrow \downarrow K