§1 Lecture 03-12

§1.1 Amortized Time

Definition 1.1 (Amortized Time). Amortized Time := Actual Time $+\Delta\phi_{\text{Potential}}$

$$\phi \ge 0$$

Note 1.2. If $\phi(\text{before}) = 0$, then Amortized time \geq Actual time.

Example 1.3 (Lazy Delete) • Fake / marked items.

• At 50% "fake", reconstruct the data structure.

Let $\phi = 2 \cdot \#$ Fake Elements. Then:

	Actual	\Delta \phi	AM
Insert	logn	0	log n
Lazy Delete	1	2	3
Reconstruct	n	-n	0

Actual time: $\underline{\text{Cost}}$ of t operations (Insert, Delete) starting from an empty tree

$$\leq t \log t + 3t$$

Example 1.4 (Counting to n in the bit model)

Let ϕ be the number of ones.

Actual time take k + 1 where k is the number of ones before the first zero reading from left to right.

 $\Delta \phi = -k + 1.$

So Amortized time = 2 for each increment.

Therefore total amortized time is = 2n, so actual time is $\le 2n$.

§1.2 Fibonacci Heap

Operations.

	Binary Heap	Fibonacci Heap (Amortized)	AM
Insert	logn	1	log n
Delete	logn	$\log n$	3
Delete Min	logn	$\log n$	0
Decrease Key	logn	1	0
Meld (Join)	logn * logm	1	0

General Stucture is a bunch of double linked lists connected to another another, along with a "root list" and pointer to the min in the "root list".

1. Insert(x, F). Add another "subtree" to the root list.

- 2. $Meld(F_1, F_2)$. Link the root lists of the two trees together.
- 3. Decrease key (x, k, F). Insert x tree into root list and change the key.

We will ensure that max degree = $O(\log n)$. Proof later. Let $\phi = \alpha$ size of root list + β number of marked items.