

LED 驅動線路與連接形式

Driving LED Circuit and Connection Form

概要

針對 LED 特性,討論常用驅動線路中連接形式對 LED 使用的影響,提出適合於 LED 的工作狀態,以及線路設計應考慮相關因素。

半導體光電技術的發展,使發光二極體(LED)從電子產業中的指示燈,顯示幕等應用產品,擴展到照明行業的燈光產品中,例如交通信號燈、城市夜景工程等。然而,作爲半導體器件,發光二極體不同於一般燈泡,雖然它也是發光器件,但是有半導體二極體的特性,只有工作于適合的條件下,其壽命長、效率高的優點才能得到充分體現,因此,對 LED 的驅動線路應用與連接形式具有特別重要的意義。

一 LED 的光電特點

爲了正確使用 LED,設計 LED 驅動線路,就必須瞭解 LED 的特性。發光二極體 LED的實質性結構是半導體 PN 結,它具有二極體相應的特性,Figure 1 爲 LED 正向 I—V 曲線.

GaAs 材料的紅、黃光 LED 其正嚮導通電壓約爲 2.0V,GaN 材料的藍、綠光 LED 其正嚮導通電壓約爲 3.5V。LED 一般工作電流爲 20mA,LED 工作點附件 I-V 曲線十分陡峭,電壓微小變化對應正向電流將明顯變化,電壓變化 0.01V,藍、綠色 LED 正向電流 IF 變化約 0.5mA,紅、黃光 LED 約爲 1.0mA,具體可參見 Figure 2 所示:

GaN	VF(v)	3.20	3.21	3.22	3.23	3.24	3.25	3.26	3.27	3.28	3.29	3.30	3.40	3.50
綠光	IF(mA)	17.2	17.7	18.3	18.7	19.3	19.8	20.4	21.0	21.6	22.2	22.8	29.3	36.4
GaAs	VF(v)	2.00	2.01	2.02	2.03	2.04	2.05	2.06	2.07	2.08	2.09	2.10	2.15	2.20
黃光	IF(mA)	11.2	12.1	13.1	14.2	15.2	16.4	17.1	18.9	20.2	21.5	22.8	29.6	37.6

Figure 2:LED 正向電流隨電壓變化測試紀錄

LED 亮度 IV 隨正向電流 IF 變化而變化,如 Figure 3 IV 隨正向電流 IF 變化曲線。低電流時,亮度 IV 與電流 IF 成正比,高電流時,亮度趨於飽和,隨電流 IF 增加 IV 基本不再增加;另外,環境溫度變化時,LED 的正向壓降 VF 也會隨溫度變化,大約-2mV/°C 左右,不同材料 LED 的變化率存在一定的差別;而 IF 幾毫安培的波動,對 LED 的壽命和光衰減產生極大的影響;這些因素在驅動線路設計中應著重加以考慮。

二、基本驅動線路

■ 線路原理

LED 最基本的原理電路如 Figure 4 所示, 圖中 RA 爲限流電阻, VF 爲 LED 的正向電壓, IF 爲正向電流。IF=(VDD-VF)/R。

■ 電晶體驅動線路

電晶體驅動線路主要是通過電晶體來控制 LED, LED 通常作爲負載與電晶體集電

極相連接,基極信號控制 LED;但作爲特殊應用,也可以插入電晶體發射極,例如 Figure 5 所示。該線路可用於通電顯示,並兼作電源電壓下降指示,例如 Vb 的電壓指示: Vb=Vbe+VF=IbXRc=Vdd X Rc /(Rb+Rc).

注:對於矽材料電晶體 Vbe 約為 0.7V 時,保證電晶體有足夠的偏置電壓,電晶體處於 導通狀態, LED 發光。

■ 恒壓驅動線路

Figure 6 為典型的 LED 恒壓驅動線路, R 為串聯電阻, 起限流作用。

許多採用乾電池供電的線路捨棄限流電阻 R,LED 直接工作在電池的輸出電壓之下,靠電池內阻限流。而電池的內阻卻和電池的容量、壽命、材料等有關,容量大的電池內阻也較小;新電池一般內阻較小,隨使用時間增加而加大。由於電池本身內阻的作用,其輸出電壓隨電流增大而下降,內阻較大的電池電壓變化大。該線路優點爲電路簡單、成本低,缺點是電流變化大,亮度變化也大,容易因過流燒毀 LED。不過,對於LED 在電池輸出電壓下,正向電流未超過器件額定值的 1.2 倍,並且電池內阻也較大

的情況,這種線路還是很實用。

■ 恒流驅動線路

典型的 LED 恒流驅動線路如 Figure 7 所示,D 為齊納二極體,作為恒壓源加在電晶體Q1 的基極上,由於基極偏壓穩定,集電極電流 Ic=IF 也隨之穩定,根據 Ic=If=(VzD-Vbe)/Rb,.即使電源電壓 VDD 變化 Ic=IF 也不會變化,其優點為電流和亮度穩定,缺點是成本較高,電功率損耗也較大。

LED 的特性表明,其最適合於穩壓恒流的工作狀態.恒流使 LED 亮度穩定,對器件有防止 過流衝擊的保護作用,並且避免因環境溫度變化,造成 VF 降低而加大電流 IF 的現象;電源電壓 穩定有助於優化線路結構,降低電功率損耗.

三、 LED 連接形式

LED 作爲驅動電路的負載,經常需要幾十個甚至上百個 LED 組合在一起,構成發光元件,LED 負載的連接形式,直接關係到其可靠性和壽命。

■ 串聯連接形式:

即將多個 LED 的正極對負極連接成串,其優點通過每個 LED 的工作電流一樣,一般應串入限流電阻 R,如 Figure 8 中的單串電路.則: VDD=IF X R+ΣVFN。 IF=(VDD-ΣVFN)/R。由此單串電路為基礎,並聯構成的發光元件 Figure 8,這種先串後並的線路優點是線路簡單、亮度穩定、可靠性高,並且對器件的一致性要求較低,即使個別使 LED 單管失效對整個發光組件影響最小。假定為 N=8 的 GaAs 材料 LED,設計正向電流 If=20mA 爲目標值,單個 LED 正向電壓 VF=2.0V,則 VD=8 X VF=16.0V,VR=IF X R=20mAX200Ω=4.0V,VDD=VD+VR=20.0V。當單管 VF 離散性較大時,假設VD=15.6~16.4V時,則對應 VR=4.4~3.6V,很容易計算 IF=22mA~18mA,經過單管測試,其光強 IV 變化如表二,可以看出單個 LED 光強變化量在 10%以內,基本上保持發光組件亮度均勻。當出現一個 LED 短路時,VD=14V 則 VR=6V;IF=VR/R=30mA,實際上由於單管短路造成 IF 上升,單管 VF 隨 IF 的增加而增加,VD 應高於 14V,則 VR 小於6V,燈串電流應小於 30mA,具體電流值與所採用.

器件 IF (IV)	紅光 LED	黄光 LED	綠光 LED
18mA	91.1%	91.4%	92.7%
19mA	95.9%	96.1%	96.6%
20mA	100%	100%	100%
21mA	104.9%	104.2%	103.5%\
22mA	109.3%	108.9%	107.3%
30mA	142.1%	137.0%	132.7%

備註:表中光強相對值,其中 If=20mA 時的光強為 100%

Figure9:LED 光強隨正向電流變化測試紀錄

不同的 LED 單管,有關實驗中測量為 28mA 左右;當出現一個 LED 開路時,將導致這串 8個 LED 熄滅,從原理上 LED 開路的可能性極小。無至於使整個發光元件失效,這種連接形式的發光元件可靠性較高,並且對 LED 的要求也較寬鬆,適用範圍大,不需要特別挑選,整個發光組件的亮度也相對均勻。在工作環境因素變化較大情況下,使用這種連接形式的發光元件效果較為理想。

■ 並聯連接形式:

即將多個 LED 的正極與正極、負極與負極並聯連接,其特點是每個 LED 的工作電壓一樣,總電流爲 Σ IFN,爲了實現每個 LED 的工作電流 IF 一致,要求每個 LED 的正向電壓也要一致。但是,器件之間特性參數存在一定差別,且 LED 的正向電壓 VF 隨溫度上升而下降,不同 LED 可能因爲散熱條件差別,而引發工作電流 IF 的差別,散熱條件較差的 LED,溫升較大,正向電壓 VF 下降也較大,造成工作電流 IF 上升又加劇溫升,如此迴圈可能導致 LED 燒毀。

先並後串混合連接構成的發光元件如 Figure 10 所示:

其問題主要在單組並聯 LED 中,由於器件和使用條件的差別,導致單組中個別 LED 晶片喪失 PN 特性,出現短路,個別器件短路使未失效的 LED 失去工作電流 IF,導致整組 LED 熄滅,總電流 ΣIFN 全部從短路器件通過,而較長時間的短路電流又使器件內部鍵合金屬絲或其他部分燒毀,出現開路,這時未失效的 LED 重新獲得電流,恢復正常發光,只是工作電流 If 較原來大一點。這是這種連接形勢的發光元件出現先是一組幾個 LED 一起熄滅,一段時間後,除其中一個 LED 不亮,其他 LED 又恢復正常的原因。發光二極體 VF 的不穩定性,使多個 LED 並聯使用時,工作電流精度範圍受到限制,因此,採用 LED 並聯形式,考慮器件和環境差別等到因素對電路的景響,設計時留有一定的餘量,以保證其可靠性。

四、LED 驅動線路

■ 交流驅動線路 ------電容降壓恒流驅動線路

電容降壓恒流驅動線路,市電經過並聯 RC 電路,對 LED 負載起限流作用,橋式整流電路將交流電整流為脈動的直流電源。

常用的 220V 交流驅動線路如 Figure 11 所示.

這種驅動線路的優點是成本低、結構簡單。但是,在接通或斷開電源電路時,經常伴隨電容充放電瞬間衝擊電流,只要用數位示波器對 LED 負載進行測試,很容易抓捕到其波形,它對 LED 晶片損傷嚴重,甚至可能導致半導體 PN 擊穿,造成 LED 失效。因此,設計時應考慮相應的保護措施,以便提高 LED 的使用壽命。

■ 電流可調的恒流驅動線路

採用常見 78 系列電源電路 IC 構成的 LED 恒流驅動線路,如 Figure 12 所示.其特點是成本低、結構簡單、可靠性高;通過調整電位器阻值,即可方便調整恒流電流;適用於電源電壓範圍大,驅動電流較精確穩定,電源電壓變化影響較小的電路。

綜上所述,我們認為 LED 以恒流驅動和串聯連接的工作方式為佳。但是,無論採用何種驅動和連結方式,在這些線路設計中必需消除可能導致 LED 失效的因素。為提高 LED 發光性能和使用壽命,需要認真考慮 LED 驅動線路。

LED 驅動 IC 參考相關網站:

http://www.supertex.com/feature_flexfamily2.html http://www.threemen.com.cn/yjin_e.htm#3