

Inteligencia Artificial & Machine Learning

Applicaciones en movilidad

Dr. Iván S. Razo Zapata

Aprendizaje Supervisado

Random Forests

Métodos de ensamble - (ensemble methods)

Idea general - Wisdom of the crowd

Algunas condiciones

- Los clasificadores son "weak classifiers" ... pero
 - Tienen un desempeño "aceptable", i.e. errores menores al 50%
 - Deben ser diversos, i.e. cometen diferentes errores (son independientes)

Métodos de ensamble comunes

- Bagging (voto mayoritario)
 - Random forest
- Boosting (voto ponderado)

Bagging - Bootstrap aggregation

- La idea básica es extraer conjuntos de datos de manera aleatoria y con reemplazo del conjunto de entrenamiento, cada muestra del mismo tamaño que el conjunto de entrenamiento original.
- $D = \{A,B,C,D,E,F\}$
 - $D1 = \{A,B,A,D,E,F\}$
 - $D2 = \{A,B,C,B,E,F\}$
- Entrenar un modelo en cada muestra

Bagging - Bootstrap aggregation

```
from sklearn.ensemble import BaggingClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train test split
from sklearn import datasets
import numpy as np
np.random.seed(2)
X, y = datasets.load_wine(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# Scaling data
scaler = StandardScaler()
scaler.fit(X train)
X train = scaler.transform(X train)
X test = scaler.transform(X test)
n neighbors = 5
modelo = KNeighborsClassifier(n neighbors)
modelo.fit(X train,y train)
# Bagging
modeloB = BaggingClassifier(KNeighborsClassifier(n neighbors), n estimators=50)
modeloB.fit(X train,y train)
print(modelo.score(X test,y test))
print(modeloB.score(X test,y test))
```


- Árboles CART
- Como con bagging, los árboles son entrenados con diferentes datasets
- A diferencia de bagging, para cada split se considera un subconjunto m del total de atributos p
 - m < p

- ¿Cuántos arboles?
 - Sky is the limit
 - Computing power is the limit
- ¿Qué tamaño para m?

$$m = \sqrt{p}$$

Algorithm 15.1 Random Forest for Regression or Classification.

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$
.

Classification: Let $\hat{C}_b(x)$ be the class prediction of the bth random-forest tree. Then $\hat{C}_{rf}^B(x) = majority \ vote \ \{\hat{C}_b(x)\}_1^B$.

Random forest and variable importance


```
from sklearn import tree
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.model selection import train test split
from sklearn import datasets
import numpy as np
np.random.seed(123)
X, y = datasets.load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# Scaling data
scaler = StandardScaler()
scaler.fit(X train)
X train = scaler.transform(X train)
X_test = scaler.transform(X_test)
# K-neighbors
n neighbors = 5
modelo = KNeighborsClassifier(n neighbors)
modelo.fit(X_train,y_train)
# Decision tree
modeloDT = tree.DecisionTreeClassifier(criterion='gini')
modeloDT.fit(X train,y train)
# Random Forest
modeloRF = RandomForestClassifier(n_estimators=100, max_depth=5)
modeloRF.fit(X train,y train)
print("K-neighbors : ", modelo.score(X_test,y_test))
print("Decision tree: ", modeloDT.score(X_test,y_test))
print("Random forest: ", modeloRF.score(X_test,y_test))
```

import matplotlib.pyplot as plt
plt.plot(modeloRF.feature_importances_)

max_features : {"auto", "sqrt", "log2"}, int or float, default="auto"

The number of features to consider when looking for the best split:

- If int, then consider max_features features at each split.
- If float, then max_features is a fraction and round(max_features * n_features) features are considered at each split.
- If "auto", then max_features=sqrt(n_features).
- If "sqrt", then max_features=sqrt(n_features) (same as "auto").
- If "log2", then max_features=log2(n_features).
- If None, then max features=n features.

Random forest vs DT

Engineering

Founded by the Royal Academy of Engineering and Lloyd's Register Foundation

GRACIAS

https://hubiq.mx/

MUBIORO HUBIO in HUBIORO