Reply to Reviewer 3

Anonymous Authors¹

1. Performance of MLCAUSALITY

 We tested the model MLCAUSALITY that the reviewer suggested for comparison (Fulmyk et al., 2023), the results are shown in Table 1, 2, 3, 4, 5.

Table 1. AUROC of the Lorenz-96 dataset.

	AUROC				
Models	p = 10, F = 10 T = 1000	p = 40, F = 40 T = 1000	p = 40, F = 40 T = 500		
MLCAUSALITY KANGCI	0.812±0.03 1.0±0.00	$0.679{\scriptstyle \pm 0.05} \\ 0.991{\scriptstyle \pm 0.003}$	$0.523{\scriptstyle \pm 0.05} \\ 0.966{\scriptstyle \pm 0.015}$		

Table 2. AUROC of the Dream-3 dataset, T=966, p=100

Models			AUROC		
	Ecoli-1	Ecoli-2	Yeast-1	Yeast-2	Yeast-3
MLCAUSALITY KANGCI	0.492 0.758	0.486 0.680	0.510 0.667	0.523 0.552	0.496 0.562

Table 3. AUROC of the Dream-4 dataset, T=210, p=100

Models			AUROC		
	Gene-1	Gene-2	Gene-3	Gene-4	Gene-5
MLCAUSALITY KANGCI	0.512 0.747	0.518 0.591	0.495 0.602	0.502 0.613	0.501 0.601

Table 4. AUROC of the VAR dataset.

	AUROC				
Models	p = 10, T = 1000 $sparsity = 0.2$ $lag = 3$	p = 10, T = 1000 $sparsity = 0.3$ $lag = 3$	$\begin{aligned} p &= 10, T = 1000 \\ sparsity &= 0.2 \\ lag &= 5 \end{aligned}$		
MLCAUSALITY KANGCI	0.852±0.11 1.0±0.00	0.834±0.009 0.993±0.003	0.817±0.011 1.0±0.00		

2. Tuning the threshold of Fusion algorithm

In this section, we further analyze the impact of the threshold on the results. We selected the Dream-3 dataset and fine-tuned the threshold from 0.01 to 0.5, with an interval of 0.05. The AUROC results are shown in the Table 6.

Table 5. AUROC of the fMRI Bold signal

Table 3. Nettoe of the first Bold signal						
Models			AUROC			
	Sim-1	Sim-2	Sim-3	Sim-4	Sim-5	
MLCAUSALITY	$0.598{\scriptstyle\pm0.04}$	$0.601{\scriptstyle\pm0.03}$	$0.655{\scriptstyle\pm0.03}$	$0.599{\scriptstyle\pm0.01}$	0.623 ± 0.04	
KANGCI	0.809 ± 0.08	0.838 ± 0.03	0.875 ± 0.02	0.902 ± 0.02	0.856 ± 0.05	
	Sim-6	Sim-7	Sim-8	Sim-9	Sim-10	
MLCAUSALITY	0.604 ± 0.03	0.617 ± 0.03	0.622 ± 0.04	0.553 ± 0.03	0.641 ± 0.04	
KANGCI	$0.922{\scriptstyle\pm0.02}$	$0.895{\scriptstyle\pm0.04}$	$0.763{\scriptstyle\pm0.08}$	$0.824{\scriptstyle\pm0.08}$	$0.780{\scriptstyle\pm0.07}$	
	Sim-11	Sim-12	Sim-13	Sim-14	Sim-15	
MLCAUSALITY	0.603 ± 0.03	0.596 ± 0.02	0.575 ± 0.04	0.599 ± 0.03	0.588 ± 0.05	
KANGCI	$0.823{\scriptstyle\pm0.03}$	$0.847{\scriptstyle\pm0.03}$	$0.749{\scriptstyle\pm0.08}$	$0.788{\scriptstyle\pm0.08}$	$0.736{\scriptstyle\pm0.08}$	
	Sim-16	Sim-17	Sim-18	Sim-19	Sim-20	
MLCAUSALITY	0.581 ± 0.02	0.577 ± 0.03	0.497 ± 0.04	0.512 ± 0.06	0.511 ± 0.05	
KANGCI	0.721 ± 0.09	$0.853{\scriptstyle\pm0.03}$	$0.806{\scriptstyle\pm0.06}$	$0.872{\scriptstyle\pm0.03}$	$0.909{\scriptstyle\pm0.03}$	
	Sim-21	Sim-22	Sim-23	Sim-24	Sim-25	
MLCAUSALITY	$0.697 {\scriptstyle\pm0.07}$	$0.606{\scriptstyle\pm0.05}$	$0.620{\scriptstyle\pm0.06}$	$0.552{\scriptstyle\pm0.05}$	$0.608{\scriptstyle\pm0.04}$	
KANGCI	$0.805{\scriptstyle\pm0.07}$	$0.811{\scriptstyle\pm0.06}$	$0.664{\scriptstyle\pm0.08}$	$0.560{\scriptstyle\pm0.09}$	$0.742{\scriptstyle\pm0.08}$	
	Sim-26	Sim-27	Sim-28			
MLCAUSALITY	0.574 ± 0.03	0.573 ± 0.02	0.592 ± 0.06			
KANGCI	$0.702{\scriptstyle\pm0.09}$	$0.736{\scriptstyle\pm0.08}$	$0.809{\scriptstyle\pm0.07}$			

Table 6. Tuning the threshold on Dream-3 dataset.

Dataset			Thre	shold		
Dutaset	0.01	0.05	0.10	0.15	0.20	0.25
Ecoli-1	0.756	0.757	0.758	0.760	0.761	0.761
Ecoli-2	0.677	0.680	0.681	0.683	0.677	0.677
Yeast-1	0.667	0.667	0.667	0.667	0.667	0.667
Yeast-2	0.549	0.552	0.552	0.552	0.552	0.546
Yeast-3	0.512	0.512	0.512	0.512	0.512	0.512
	0.30	0.35	0.40	0.45	0.50	
Ecoli-1	0.759	0.755	0.745	0.734	0.734	
Ecoli-2	0.676	0.675	0.663	0.652	0.641	
Yeast-1	0.667	0.667	0.667	0.667	0.667	
Yeast-2	0.543	0.542	0.535	0.533	0.521	
Yeast-3	0.562	0.562	0.562	0.562	0.562	

References

Fulmyk, W. et al. Nonlinear granger causality using kernel ridge regression. *arXiv preprint arXiv:2309.05107*, 2023.