Основы теории графов. Задачи.

1 Основы

TODO...

2 Деревья

 $\mathcal{C}(\mathcal{T}\mathcal{O}\mathcal{D}\mathcal{O})$...

3 Эйлеровы графы

 $\mathcal{C}\mathcal{T}\mathcal{O}\mathcal{D}\mathcal{O}$ »...

4 Паросочетания I

*TODO»...

5 Гамильтоновы графы

TODO...

6 Графы деБрейна

 ${\mathscr{TODO}}{}_{\gg}...$

7 Вершинная связность

 $\mathcal{C}(\mathcal{T}\mathcal{O}\mathcal{D}\mathcal{O})$...

8 Рёберная связность

 $\it 3ad.~8.1.$ Рассмотрим граф $\it G$ с двумя выделенными несмежными вершинами $\it s$ и $\it t.$ Множество вершин $\it X$, не содержащее вершин $\it s$ и $\it t.$ назовём вершинным разрезом, если после его удаления из графа пути между $\it s$ и $\it t.$ будут отсутствовать.

Рассмотрим наряду с графом G граф H, полученный с помощью следующей процедуры. Каждую вершину v_i графа G разделим на две вершины v_{i1} и v_{i2} , которые дополнительно соединим направленным ребром (v_{i1}, v_{i2}) в случае, если v_i отлична от s и от t. Каждое ребро v_i, v_j заменим на два ребра (v_{i2}, v_{j1}) и (v_{j2}, v_{i1}) .

Из получившегося графа H получим сеть H', приписав каждому ребру пропускную способность 1, в качестве истока взяв s_2 , а в качестве стока — t_1 . Докажите, что величина максимального потока в сети H' равна величине минимального вершинного разреза в графе G.

Доказательство. В качестве иллюстрации своих рассуждений приведу пример исходного графа:

и сети, полученной из него по правилам в условии задачи:

Для краткости буду называть вершины сети вида v_{i1} чётными полувершинами (верхний ряд на рисунке), а вершины вида v_{i2} – чётными полувершинами.

Во-первых, заметим, что только у стока (s2) допустим нулевой входной поток, а значит вершину t2 без входящих рёбер можно из рассмотрения выбросить. Поток из неё во все оранжевые рёбра всегда будет нулевым. Аналогично выбрасываем вершину s1 (у неё исходящиё поток тоже ноль) и идущие к ней оранжевые рёбра, т.к. поток через них всегда будет нулевым.

Запустив на нашу сеть алгоритм Форда-Фалкерсона, мы найдём максимальный поток, который определяется (по теореме) минимальным S-T-разрезом. Попробуем угадать, какие рёбра в него войдут. Мы хотим получить разрез с минимальным потоком. Такие разрезы легче найти среди разрезов с минимальной пропускной способностью. Поскольку пропускная способность всех рёбер по правилам задачи одинакова и равна 1, мы ищем разрез с минимальным числом рёбер из S-половины в Т-половину, причём рёбра, идущие из Т в S (в обратном направлении) в разрезе не учитываются.

Рассмотрим какую-нибудь пару полувершин, например v_{11} и v_{12} . Если бы нечётная полувершина входила во множество Т разреза, то мы бы учитывали входящие в неё рёбра из вершин s2, v22, v42. Если бы мы включили её в S-половину разреза вместе с s2, а v22 и v42 в Т-половину, то все входящие в неё ребра не учитывались бы (все рёбра из зелёной s2 находятся внутри S-половины, а v22 и v42 были бы "обратными" $T \to S$ -рёбрами). Учитывалось бы только единственное исходящее -вертикальное синее ребро $(v_{11} \to v_{12})$.

Так же и в целом по построению сети ситуация такова: только синие рёбра (рёбра вида $v_{i1} \to v_{i2}$) идут сверху вниз, а все остальные снизу вверх. Поэтому минималь-

ный S-T разрез будет иметь вид: S - это какое-то подмножество нечётных полувершин (верхний синий ряд) плюс s2, а T - какое-то подмножество чётных полувершин (нижний синий ряд) плюс t1. Соответственно рёбра в найденном минимальном разрезе будут из подмножества синих рёбер.

Теперь заметим, что каждое синее ребро взаимно однозначно соответствует чётнонечётной паре полувершин в H, т.е. их вершине-прототипу в G, и его удаление соответствует удалению этой вершины (т.е. удаление некоторого $(v_{i1} \to v_{i2})$ в H однозначно соответствует удалению v_i в G), а минимальный рёберный разрез по синим рёбрам в H соответствует минимальному разделяющему множеству вершин в G.

Найденный алгоритмом Форда-Фалкерсона максимальный поток — это поток через минимальный рёберный разрез в H' (какой бы он ни был, он будет среди синих рёбер) и соответвествует такому набору рёбер в H, что при его удалении путей между s2 и t1 не останется. Таким образом, максимальный поток в H' даст нам размер минимального вершинно-разделяющего множества в G.

TODO...

9 Паросочетания

9.1 Задачи

Зад. 9.1. Докажите, что любой кубический граф, имеющий не более двух мостов, можно покрыть путями длины 3, не пересекающимися по рёбрам.

Доказательство. В таком графе найдётся совершенное паросочетание. Удаляя его, мы получаем некоторый подграф. Каждая вершина в нём имеет степень 2. Значит, подграф состоит из циклов. Сориентируем рёбра каждого цикла графа в одном направлении:

У каждой вершины будет одно входящее, одно исходящее и одно удалённое "совершенное" ребро. Пути длины 3 строим так: ребро $u,v\in M$, ребро исходящее из v, ребро исходящее из u.

 $3a\partial$. 9.2. Назовём граф критическим, если в нём нет совершенного паросочетания, но при удалении любой вершины оно появляется. Иначе говоря, для любой вершины в графе есть паросочетание, покрывающее все вершины, кроме неё. Докажите, что $c_o(G \setminus S) - |S| \leqslant -1$ для любого непустого множества S вершин критического графа.

Доказательство. Рассмотрим произвольное произвольное непустое множество S в графе G и выделим произвольную (возможно, единственную, если |S|=1) вершину $x \in S$. Обозначим $G' = G \setminus x$ и $S' = S \setminus x$. Заметим, что |S| = |S'| + 1. Тогда: $G \setminus S = G \setminus (S' \cup x) = (G \setminus x) \setminus S' = G' \setminus S'$. По условию задачи, в G' всегда найдётся

совершенное паросочетание, а значит: $\operatorname{def}(G') = \max_{\forall S'' \subset V'(G')} \left[C_o(G' \setminus S'') - |S''| \right] = 0.$ Соединяя вместе эти формулы, получаем: $C_o(G \setminus S) - |S| = C_o(G' \setminus S') - (|S'| + 1) = \left[C_o(G' \setminus S') - |S'| \right] - 1 \leqslant \max_{\forall S'' \subset V'(G')} \left[C_o(G' \setminus S'') - |S''| \right] - 1 = \operatorname{def}(G') - 1 = 0 - 1 = -1$ Что и требовалось доказать.

TODO...

9.2 Иллюстрации

Рис. 1: Кубический граф

Рис. 2: Мин. (16 вершин) кубический граф с 3 мостами (сов.п.с. ∄)

Рис. 3: Дефицит графа

10 Раскраски

 $3ad.\ 10.1.\$ Доказать, что в любом графе G существует такое линейное упорядочение его вершин, при котором жадный алгоритм раскраски окрасит вершины графа ровно в $\mathcal{X}(G)$ цветов.

Доказательство. Выделяем в графе максимальное независимое множество вершин S_1 . Они несмежны между собой и получат один цвет C_1 . Теперь выбираем среди оставшихся вершин графа вершины, смежные с S_1 и среди них выбираем максимально независимое множество S_2 . Опять, их цвет C_2 одинаковый в силу несмежности, но отличается от C_1 в силу смежности с S_1 . Среди оставшихся выбираем вершины, смежные с $S_1 \cup S_2$, а среди них - максимальное независимое множество S_3 . Они получат новый цвет C_3 итд до S_q . В силу максимальности независимых множеств на каждом этапе их общее число q минимально, т.е. равно хроматическому числу $q = \mathcal{X}(G)$.

Теперь расставим все вершины по порядку так: сначала вершины из S_1 в любом порядке (номера $1,2,...,|S_1|$), потом из S_2 в любом порядке ($|S_1|+1,|S_1|+2,...,|S_1|+|S_2|$) итд до S_q . При проходе в таком порядке жадный алгоритм будет замечать смежность вершин очередного множества S_i только с предыдущими $S_{j< i}$ (поскольку последующие еще не раскрашены) и выдаст ту же раскраску $C_1...C_q$.

TODO...

11 Планарные графы І

 $3a\partial$. 11.1. Без использования теоремы о четырех красках доказать, что любой планарный связный граф, построенный на не более чем n=11 вершинах, является 4-раскрашиваемым.

Указание: вначале доказать, что в таком графе существует вершина, степень которой меньше или равна четырем.

Доказательство. Пусть $\delta = \min_{v \in V(G)} \deg(v)$. Тогда $\delta \cdot V \leqslant \sum_{v \in V(G)} \deg(v) = 2E \leqslant 2(3V - V)$

6)=6V-12, поскольку для простых связных планарных графов верно $E\leqslant 3V-6$. Отсюда $12/(6-\delta)\leqslant V$. Но по условию $V\leqslant 11$, а значит $12\leqslant 66-11\delta$. Получаем, что $\delta\leqslant (54/11)\approx 4.9$, то есть целое число $\delta\leqslant 4$ и найдется вершина v, у которой $\deg(v)\leqslant 4$.

Теперь проведём рассуждение, полностью аналогичное приведённому на последней лекции, но вместо 5 цветов и соседей у нас будет 4.

Проводим индукцию по количеству вершин. Для V=4 утверждение очевидно (а для меньшего числа тривиально/бессмысленно). Предположим, что для (V-1) индукция уже доказана. Докажем теперь шаг индукции для V ($V\leqslant 11$). Выделим вершину степени не больше 4 (мы показали, что она всегда найдётся), временно удалим, раскрасим остальной граф (это возможно по предположению шага) и вернём вершину на место. В худшем случае у вершины 4 соседа у которых 4 разных цвета (иначе раскрашиваем вершину 0 в оставшийся цвет). Например, 1-красный, 2-синий, 3-жёлтый, 4-зелёный, а самой вершине дадим индекс 0, как показано на рисунке.

Сначала выбираем пару смежных вершин 1(красный)-3(жёлтый). Пытаемся перекрасить 1-ю в желтый, если же у неё есть жёлтый сосед 1', пытаемся перекрасить его в красный, при неудаче рассматриваем соседей соседа итд. Если удалось, меняем цвета в цепочке, 1-ю в жёлтый, 0-ю в красный и празднуем успех. В случае полной неудачи, худший случай - это когда цепочка дотянется до вершины 3. Тогда выбираем вторую пару 2(синий)-4(зелёный) и пытаемся перекрасить 4-ю в синий, а если найдётся синий сосед 4', пытаемся раскрасить его в зелёный, при неудаче тянем цепочку дальше. Рано или поздно сине-зелёная цепочка упрётся в красно-жёлтую, потому что та образует вместе с вершиной 0 замкнутый цикл, так что в этом случае удача нам гарантирована. Это доказывает шаг индукции и завершает задачу.

TODO...

12 Планарные графы II

 $\it 3ad.\ 12.1.\$ Доказать с помощью теоремы Куратовского непланарность графа $\it G$, изображенного на рисунке:

Доказательство. Докажем, что подграф нашего графа, полученный удалением 4 рёбер, является подразбиением графа K_5 , что по критерию Куратовского гарантирует непланарность.

Пронумеруем вершины исходного графа:

В качестве подмножества для критерия возьмём граф, в котором удалены рёбра 4-1,4-6 слева и 5-3,5-9 справа:

Вершины 1,6,3,9 в результате имеют степень 2 и являются *подразбиением* графа, к которому мы стремимся (для ясности немного переместим эти вершины):

Удалим подразбиения, заменив на прямые рёбра:

Получившийся граф изоморфен графу K_5 . Доказано.

 $\it 3ad.$ 12.2. Доказать с помощью теоремы Куратовского непланарность графа $\it G$, изображенного на рисунке:

Доказательство. Докажем, что подграф нашего графа, полученный удалением одного радиального ребра, является подразбиением графа $K_{3,3}$, что по критерию Куратовского гарантирует непланарность.

Пронумеруем вершины исходного графа:

В качестве подмножества для критерия возьмём граф, в котором удалено одно радиальное ребро, например ребро 4-8:

Смежные с удаленным ребром вершины 4,8 в подмножестве имеют степень 2 и являются подразбиением графа, к которому мы стремимся. Удалим их, заменив на рёбра:

Получившийся граф изоморфен графу $K_{3,3}$. Просто переставим вершины на рисунке для наглядности:

Доказано.

 $\it 3ad.$ 12.3. Найти выпуклое вложение в плоскость графа $\it G$, показанного на рисунке:

Доказательство. Пронумеруем вершины исходного графа:

И предъявим вложение:

 $\it 3ad.$ 12.4. Для карты на сфере записать перестановки $\sigma,\,\alpha,\,\varphi$

Доказательство.

$$\sigma = (1745)(26)(38)$$

$$\alpha = (16)(28)(37)(54)$$

$$\varphi = (5)(1234)(786)$$

$$\varphi = \sigma \cdot \alpha \qquad \sigma = \varphi \cdot \alpha \qquad \alpha = \alpha^{-1}$$

$$n = |\sigma| = 3, m = |\alpha| = 4, r = |\varphi| = 3$$
$$g = (2 - n + m - r)/2 = 0$$

$$q = (2 - n + m - r)/2 = 0$$

$${\mathscr{T}}{\mathcal{O}}{\mathcal{D}}{\mathcal{O}}{\mathscr{D}}{\mathcal{O}}{\mathscr{S}}\dots$$

