Partie I. Détermination de la nature d'un mélange inconnu

- 1. Une information importante lue sur la courbe de titage est le pH de la solution titré lu pour V=0, alors pHint. = 10,5 \Rightarrow [H⁺]=10^{-10,5} M et [HO]=10^{-14-1-10,5}) = 10^{-3.5} M. On en déduit que la solution titrée:
 - 1) n'est pas un mélange d'acide.
 - 2) n'est pas un mélange dans dequel il y a de l'hydroxyde de sodium à la concentration 0,010 ~ 0,050 mol. L-1; en effect, toute les solutions mettant en jeu Na. HOB à la concentration 0,010 ~ 0,050 mol. L-1 ont un pH supérieur à 12 \implies [HO] \geq 10^2M Conclusion: la solution titrée est la solution mélange d'hydrogéno-carbonate de sodium et de carbonate de sodium. Ce qui est confirmé par le fait qu'une tel mélange à un pH voisin du pKa accocié, en l'occurrence celui du couple HCO3/CO3-(pKa=10,3)

2. Les deux réaction de titrage s'écrivent!

(4)
$$CO_{3}^{2\Theta}(aq) + H_{coq}^{\Theta} = HCO_{3}^{\Theta}(aq)$$
 $K_{1}^{\circ} = 10^{10.3}$

(2) $HO_3^{\Theta}(aq) + H_{caq}^{\Theta}(aq) = H_2O_3(aq)$ $K_2 = 10^{6.9}$

En notant respectivement C_1 et C_2 , les concentrations en ions carbonate et hydrogéno carbonate, et en liant les deux volumes équivalents $V_{e,1} = b$. O_mL et $V_{e,2} = 1b$, O_mL , les relations aux équivalences s'ecrivent: $C_1V_0 = CV_{e,1}$ et $(C_1+C_2)V_0 = C(V_{e,2}-V_{e,1})$

2. (suite)

Application numérique : C1=0,030 mol. L' et C2=0,020 mol. L'

3. La 2ème demi-équivalence (Ve,14Ve,2) correspond à un mélange équimolaire H_2O_3/HO_3^{Θ} . Le pH lu en ce point est égal au pKa,2 du couple. On retrouve bien approximativement le 6,4 des données.

Le pka, du couple $HO_3^{\bullet}/O_3^{2\bullet}$ peut être estimé à partir du pH imitial (lu à la valeur 10,5):

$$pH = pKa, t log(\frac{C_1}{C_2})$$

On retrouve bien un pkanégal à 10,3

Remorque: ce resultat suppose que l'action de l'eau sur les ions carbonate (rôle basique des ions carbonate) ne modifie pas de façon significative la concentration en ions carbonate et hydrogéno carbonate.

Partie IL Dosage des polyphosphates d'une lessive

- 1. Dans la résine Pn 03n+1 (04) H(04) = Hn+2 Pn 03n+1 (04)
- 2. Les volumes équivalents correspondent aux extreme de la courbe. d'écrivée.

$$Ve.1 = 11.5 mL$$
 (lu, $\frac{l_1}{l_{max}}$. 25 mL) * ln. lmax sont mesurées
 $Ve.2 = 15.5 mL$ (lu, $\frac{l_2}{l_{max}}$. 25 mL) par un régle sur la
 $Ve.3 = 19.4 mL$ (lu, $\frac{l_3}{l_{max}}$. 25 mL) diagramme.

Les acidités fortes puis les deux acidités faibles sont dosées successivement:

1)
$$0 < V \le V_{e,1}$$
 $H_3O_{(ag)}^{\Theta} + HO_{(ag)}^{\Theta} = 2H_2O_{(l)}$ $K_1^0 = K_e^{-1} = 10^{14}$

2) Ve,
$$1 < V \le Ve$$
, $2 + H_2P_n O_{3n+1}(ag) + H_0 C_{ag} = HP_n O_{3n+1}(ag) + H_2O(l)$
On sait $pKa_1 = 6.5$ or $Ka_1 = 10^{-6.5}$ alors $K_2 = Ka_1 \cdot K_e^{-1} = 10^{7.5}$

3)
$$V_{e,1} < V \le V_{e,3}$$
 $HP_nO_{3n+1}^{(n+1)\Theta} + HO_{cag}^{\Theta} = P_nO_{3n+1}^{(n+2)\Theta} + H_2O_{(e)}$
On sait $pK_{a,2} = 9.3$ or $K_{a_2} = 10^{-9.3}$ alors $K_3^{\circ} = K_{a_2}.K_e^{-1} = 10^{-9.7}$

3. Entre V=0 et V=Ve.1, n acidités ont été dosées. entre V=Ve.1 et V=Ve.2, une acidités à été dosées on a donc $N=\frac{Ve.1}{Ve.2-Ve.1}=2,9=3$, car n est entier. Et totalement, n+2=5 acidités ont été dosées:

(Ve,3 = (n+2) Co Vp => $C_0 = \frac{CV_{e,3}}{(n+2)Vp} = \frac{0.0975.19.4.10^{-3}}{5.20.10^{-3}} = 1.89.10^{-2} \text{ mol.} C'$

Soit une masse de polyphosphate P_3 O_{10}^{5-} $m_{pp} = M_{pp}$, $n_0 = M_{pp}$, $L_0.V_s$ $M_{pp} = 253 \text{ g,mol}^{-1} \Rightarrow m_{pp} = 0.478 \text{ g}$

Dans la solution préparée à partir de 1,5 g de lessive, soit 31,9%. de polyphosphate dans la lessive.