

Hydrodynamic research on flap-type WEC with high accuracy coupled SPH method

Shi Yingxuan ZheJiang University

One Background

Two Methodology

Three Results and discussions

One background

TwoMethodology

Three
Results& discussions

One background

TwoMethodology

Three
Results& discussions

Four Conclusions

Wave energy is important not only for alleviating energy crisis but also supplying the power for islands.

For improving efficiency of wave energy capturing, it is important to study hydrodynamic characteristics of floating.

One background

TwoMethodology

Three
Results& discussions

One background

Two

Methodology

Three

Results& discussions

Four

Conclusions

Discrete governing equations

$$\begin{cases} \frac{D\rho_{i}}{Dt} = \rho_{i} \sum_{j} (\boldsymbol{u}_{i} - \boldsymbol{u}_{j}) \cdot \nabla_{i} W_{ij} V_{j} + \rho_{\delta i} \\ \rho_{i} \frac{D\boldsymbol{u}_{i}}{Dt} = -\sum_{j} (p_{i} + p_{j}) \cdot \nabla_{i} W_{ij} V_{j} + \rho_{i} \boldsymbol{g} + \boldsymbol{\tau}_{i} \\ \frac{D\boldsymbol{x}_{i}}{Dt} = \boldsymbol{u}_{i} \\ p_{i} = (\rho_{i} - \rho_{r}) c^{2} \end{cases}$$

δ-SPH model

$$\begin{cases} \rho_{\delta} = \delta h c_{0} \sum_{j} \boldsymbol{\psi}_{ij} \nabla_{i} W_{ij} V_{j} \\ \boldsymbol{\psi}_{ij} = 2 \left(\rho_{i} - \rho_{j} \right) \frac{\boldsymbol{x}_{i} - \boldsymbol{x}_{j}}{\left| \boldsymbol{r}_{ij} \right|^{2}} - \left[\left\langle \nabla p \right\rangle_{i}^{L} + \left\langle \nabla p \right\rangle_{j}^{L} \right] \\ \left\langle \nabla p \right\rangle_{i}^{L} = \sum_{j} \left(\rho_{i} - \rho_{j} \right) L_{i} \nabla_{i} W_{ij} V_{j} \\ L_{i} = \sum_{j} \left(\boldsymbol{x}_{i} - \boldsymbol{x}_{j} \right) \otimes \nabla_{i} W_{ij} V_{j} \\ \boldsymbol{\tau}_{i} = \alpha h c \rho_{0} \sum_{j} \frac{\left(\boldsymbol{u}_{j} - \boldsymbol{u}_{i} \right) \cdot \left(\boldsymbol{r}_{j} - \boldsymbol{r}_{i} \right)}{\left| \boldsymbol{r}_{j} - \boldsymbol{r}_{i} \right|^{2}} \nabla_{i} W V_{j} \\ \boldsymbol{v} = \frac{\alpha h c_{0}}{2 \left(d + 2 \right)} \end{cases}$$

Boundary condition

1. Motionless walls

$$p_b = p_p - \rho_0 \mathbf{g} \cdot \mathbf{n}_b \eta \Delta$$

$$(u^n - u^n)$$

$$\begin{cases} u_b^n = -u_p^n \\ u_b^{\tau} = u_p^{\tau} \end{cases}$$

2. Moving boundary

$$p_b = p_p - \rho_0 \left[\frac{D \boldsymbol{u}_b}{D t} \cdot \boldsymbol{n}_b + \boldsymbol{g} \cdot \boldsymbol{n}_b \right] \eta \Delta$$

One background

TwoMethodology

Three Results& discussions

Four Conclusions

Wave-maker theory

$$x_{\text{piston}}(t) = \frac{s}{2} \sin(\sigma t)$$

$$s=H/(kd)$$

Boundary force model

$$f_{ij} = \begin{cases} -\left(c_0 \frac{\left(\mathbf{u}_i - \mathbf{u}_j\right) \cdot \mathbf{n}_j W_{ij} h_{ij}^d \mathbf{n}_j}{\left|\mathbf{r}_{ij} \cdot \mathbf{n}_j\right|}\right) & \left(\mathbf{u}_i - \mathbf{u}_j\right) \cdot \mathbf{n}_j < 0 \\ 0 & \left(\mathbf{u}_i - \mathbf{u}_j\right) \cdot \mathbf{n}_j \ge 0 \end{cases}$$

The motions of floating body

$$\begin{cases} \mathbf{F} = \sum_{i \in solid} \frac{D\mathbf{u}_i}{Dt} \\ \mathbf{T} = \sum_{i \in solid} \frac{D\mathbf{u}_i}{Dt} (\mathbf{x}_i - \mathbf{x}_{rot}) \end{cases}$$

$$\begin{cases} M \frac{d\mathbf{u}}{dt} = \mathbf{F} + M\mathbf{g} \\ I \frac{d\mathbf{\Omega}}{dt} = \mathbf{T} + M\mathbf{g} \cdot (\mathbf{x}_c - \mathbf{x}_{rot}) - k_d \cdot \mathbf{\Omega}_k \end{cases}$$

$$\frac{d\mathbf{x}_i}{dt} = \mathbf{u} + \mathbf{\Omega} \times (\mathbf{x}_i - \mathbf{x}_{rot})$$

One background

TwoMethodology

Three
Results& discussions

One background

TwoMethodology

Three Results& discussions

Four Conclusions

3.1 Standing Waves

Fig.1 Tank model and its initial condition

Fig.4 Effect of the boundary force model

0.8

0.6

One background

TwoMethodology

Three
Results& discussions

Four Conclusions

3.2 Wave tank

Fig.1 The sketch of numerical wave tank

Fig.2 time profiles of water surface elevation predicted by different resolutions

Fig.3 particles penetrate across the wall boundary

10

One background

TwoMethodology

Three Results& discussions

Four Conclusions

3.3 Interaction of Wave & Rigid Plate

One background

TwoMethodology

Three Results& discussions

Four Conclusions

3.4 Flap-type WEC of bottom-hinged pivot

Fig.1 The schematic of bottom hinged Oscillating Wave Surge Converter

Fig.2 Pressure contours at different time. (From top to bottom: t = 5s, t = 6s, t = 7s)

Fig.3a Time histories of the flap rotation angle

Fig.3b Time histories of the flap rotation angle (damping $k_d = 35$)

One background

TwoMethodology

Three Results& discussions

Four Conclusions

3.5 Flap-type WEC of land-hinged pivot

Fig.1 The schematic of land hinged Oscillating Wave Surge Converter.

Fig.2 The sketch of pivoted absorber.

One background

TwoMethodology

Three Results& discussions

Four Conclusions

3.5.1 Single absorber

Fig.1 The instantaneous power of absorber with different PTO damping coefficients

Fig.2 Comparision between SPH and experiment under period T=4s

Fig.3 The active power of absorber with different PTO damping coefficients for different wave periods

One background

TwoMethodology

Three
Results& discussions

Four Conclusions

3.5.2 Double absorber

different gaps

One background

TwoMethodology

Three
Results& discussions

One

background

Two

Methodology

Three

Results& discussions

Four

Conclusions

Conclusions

- The selection of kernel function is critical for accuracy of SPH method. Gaussian kernel can be regarded as a proper kernel function for simulations of waves.
- The PTO damping coefficients and the wave periods have important effect on active power, and there is the optimal damping coefficient for the fixed wave period.
- The distance between two absorbers has large effect on energy capturing efficiency, and the maximal active power is obtained when the distance is large enough.

Thanks for Your Attention

ZheJiang UniversityShi Yingxuan