B.Tech. 2nd Semester End-Term Examination 2021 Subject Name: Engineering Mathematics - II

Symbols Used Here Have Their Usual Meanings

Subject Code: UAD12B13, DTPH12B12 Full Marks: 50 Answer scripts to be submitted through email: nita.ma.btech.b1@gmail.com

Choose the correct option from the following:

 $[10 \times 2 = 20 \text{ Marks}]$

- If the vector $\vec{F} = (xyz)^b(x^a\hat{\imath} + y^a\hat{\imath} + z^a\hat{k})$ is an irrotational vector, then the values of a and b are respectively
 - 0 and -1
 - 2 and 3 c)

- -1 and 0
- None of these
- At the origin, the function $f(z) = \sqrt{|xy|}$ is?
 - Analytic

not analytic

Differentiable

- none of these
- If $f(z) = \frac{\sin(z-1)}{(z-1)^4}$ then the residue at z = 1 is 3.
 - a)

b)

c)

- None of these.
- If $\varphi = 2x^2 + 3y^2 + 4z^2$, then curl(grad φ) is given by

2

- None of these
- The directional derivative of $\emptyset = x^2yz + 4xz^2$ at (1, -2, -1) in the direction of $2\hat{i} \hat{j} 2\hat{k}$ is

 $\frac{61}{\sqrt{3}}$

- None of these
- The value of the integral $\int_0^\infty \int_0^\infty \frac{e^{-y}}{y} dy dx$ is

b)

- d)
- For which of the following values of a, the vectors (1,2,1), (a,3,1), (2,a,0) in \mathbb{R}^3 are linearly dependent?
 - a) 2, -1

- 2.1 -2, -1
- c) -2, 1
- The principal value of $Log(-\frac{1}{2} \frac{1}{2}i\sqrt{3})$ is

 $\frac{4}{\pi}\pi i$

- **d**) $\frac{1}{2}log2 + \frac{3}{4}\pi i$
- The poles of the function $f(z) = \tan(\frac{1}{z})$ are
 - a) $z = 2n\pi \pm \frac{\pi}{2}$

b) $z = 2n\pi + \frac{\pi}{2}$

 $z=2n\pi-\frac{\pi}{2}$

- The value of $\int_0^{\frac{\pi}{2}} \sqrt{\cot \theta} d\theta$ is

None of these

Choose the correct option from the following:

 $[10 \times 3 = 30 \text{ Marks}]$

Time: 2 Hours

- Using the transformation x + y = u, y = uv, the value of the integral $\int_0^\infty \int_0^\infty e^{-(x+y)} x^{p-1} y^{q-1} dx dy$ is equal to
 - - $\Gamma(p+1)\Gamma(q-1)$

- **b**) $\Gamma(p)\Gamma(q)$
- d) None of these
- The value of the integral $\iiint (x + y + z) dx dy dz$ over the tetrahedron bounded by the planes x = 0, y = 0, z = 0 and x + y + z = 1 is
 - a) c)

c)

b)

- None of these
- The eigen values for the matrix $A = \begin{bmatrix} 1 & 3 & 1 \end{bmatrix}$ are
 - 5, 1, 2

5, 1, 1 b)

5, 2, 1

- 6, 1, 1
- The value of the line integral $\int_{C} \vec{F} \cdot d\vec{r}$ where $\vec{F} = 2x \vec{i} + y^2 \vec{j}$ and C is the path from the point (1, -2) to the point (2, -1)
 - a)

b)

c)

- None of these
- The rate of change of $f = x^2y + yz^2$ at (1, -1, 2) in the direction of the normal to the surface 15.
 - a) $\sqrt{21}$

√<u>19</u>

c)

- None of these
- If $A = \begin{pmatrix} 1 & 0 \\ 2 & 4 \end{pmatrix}$ then eigen values of $4A^{-1} + 3A + 2I$ are
 - a) 6, 15

9,12

9,15 c)

- None of these
- The value of the integral $\int_{|z|=1}^{\infty} \frac{dz}{z\sin z}$ is

 $-2\pi i$

- d) None of these
- The real part of the analytic function w = u + iv is $x^3 3xy^2 + 3x^2 3y^2$ then the value of the imaginary part will be
 - a) $y^3 3xy^2 3y^2 + c$
- $3x^2y + 6xy y^3 + c$
- $y^3 3xy^2 + 3x^2 x^2y^2 + c$
- None of these.
- 19. If $A = \begin{bmatrix} 2 & 1 & -2 \end{bmatrix}$, then the value of $A^3 - 6A^2 + 8A - 12I$ in matrix form is [1 2 1] $A^2 - I$ 2A-Ia)
 - 2A + I

- None of these.
- If the force field $\overline{F} = 3x^2y\hat{i} + (x^3 2yz^2)\hat{j} + (3z^2 2y^2z)\hat{k}$ is conservative, then the Scalar potential Ø is equal to
 - a) $y^2z^2 + x^3y + c$

 $z^3 - v^2 z^2 + c$

 $x^3y + z^3 - y^2z^2 + c$

None of these