Computer Vision

António J. R. Neves / Paulo Dias

Departamento de Electrónica, Telecomunicações e Informática
Universidade de Aveiro

an@ua.pt/paulo.dias@ua.pt
http://elearning.ua.pt/

- 1 Low level image processing
- Pixel relations
- Filtering
- 4 Histograms
- Segmentation
- 6 Frequency space
- Other Operations

- 1 Low level image processing
- 2 Pixel relations
- Filtering
- 4 Histograms
- Segmentation
- 6 Frequency space
- Other Operations

Low level image processing (1)

What a computer sees

Low level image processing (2)

What I see

What I want to see

Image arithmetics

- It is possible to apply the common arithmetic operations on images:
 - Addition
 - Subtraction
 - Multiplication
 - Division
- And also logic operations on binary images (AND, OR, NOT) . . .

- 1 Low level image processing
- 2 Pixel relations
- Filtering
- 4 Histograms
- Segmentation
- 6 Frequency space
- Other Operations

Pixel Neighbours

- Many image processing operations make use of spatial relationships between pixels.
- A number of methods have been devised to specify pixel neighbors and calculate distance.
- The 4-neighbors of a pixel (x,y) are the closest pixels in horizontal and vertical directions (D4).
- The 8-neighbors are the 4-neighbors plus the four closest pixels in diagonal direction (D8).
- Diagonal only (DN).

Pixel connections

 A group of pixels is said to be 4-connected if every pixel is 4-connected to the group.

 A group of pixels is said to be 8-connected every pixel is 8-connected to the group.

Distances

- The distance between pixels (x,y) and (u,v) can be calculated in several ways:
 - Euclidean (L2): $D = [(x-u)^2 + (y-v)^2]^{1/2}$
 - City-block (L1): D = |x u| + |y v|
 - Chessboard (Linf): D = max(|x u|, |y v|)
- Although Euclidean distance is more accurate, the sqrt makes it expensive to calculate.

- Low level image processing
- Pixel relations
- Filtering
- 4 Histograms
- Segmentation
- 6 Frequency space
- Other Operations

Spacial filtering

- Spatial filters make use of a fixed sized neighborhood in an input image to calculate output intensities.
- Linear filters use a weighted sum of pixels in the input image f(i,j) to calculate the output pixel g(i,j). In most cases, the sum of weights is one, so the output brightness = input brightness.
- Nonlinear filters can not be calculated using just a weighted sum (sqrt, log, sorting, selection).
- We can formalize the phrase "weighted sum of pixels" using correlation and convolution.
- The mathematical model is the discrete convolution operator based on the kernel h:

$$g(i,j) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} h(i-m,j-n)f(i,j)$$

Examples of filters (1)

- Average the easiest spatial filter to implement. The kernel is a matrix with all the values equals to one (the pixel is replaced by an average of the N × M neighbors). This filter smooths an image and removes noise and small details.
- Binomial uses Binomial coefficients as weights to give more emphasis to pixels near the center of the N × M neighborhood.
- Gaussian uses the Gaussian function to define the neighborhood weights.

Example of filters (2)

 $\sigma = 1$ pix $\sigma = 5$ pix $\sigma = 10$ pix

 σ = 30 pix

binary image operations

- The most common binary image operations are called morphological operations.
- The operation is a convolution of the binary image with a binary structuring element.
- The standard operations used in binary morphology include:

(a) original image; (b) dilation; (c) erosion; (d) majority; (e) opening; (f) closing. The structuring element for all examples is a 5×5 square.

- Low level image processing
- 2 Pixel relations
- Filtering
- 4 Histograms
- Segmentation
- 6 Frequency space
- Other Operations

Histograms: definition

- In statistics, a histogram is a graphical display of tabulated frequencies.
- Typically represented as a bar chart.

Image histograms

- In images, allow us to see the color or intensity distribution.
- The collected counts of data can be organized into a set of predefined bins.
- It is also possible to count image features that we want to measure (i.e. gradients, directions, etc).
- Some important parts of an histogram:
 - dims: The number of parameters you want to collect data.
 - bins: The number of subdivisions in each dim.
 - range: The limits for the values to be measured.
- If we want to count two features, the resulting histogram would be a 3D plot (in which x and y would be bin_x and bin_y for each feature and z would be the number of counts for each combination of (bin_x, bin_y)).

Histograms: example (1)

- Example of an histogram obtained from a grayscale image.
- Each bin shows the number of times each one of the gray values are present in the image.

Histograms: example (2)

• Example of an histogram showing the distribution of the colors on an image.

Histograms: operations

- Histogram operations are designed to enhance the visibility of objects of interest in an image.
- Histogram Equalization improves the contrast in an image, in order to stretch out the intensity range.
- Local Histogram Equalization increase the amount of enhancement by looking at local intensity properties (dividing an image into regions and perform histogram equalization on each sub-image or using local statistics).
- Histogram Comparison get a numerical parameter that expresses how well two histograms match each other (ex. Correlation, Chi-Square, Intersection, ...).
- Sum, subtract, . . .

Histograms: equalization

- Goal of histogram equalization is to reshape the image histogram to make it flat and wide.
- One of the solutions is to use the cumulative histogram (integral of intensity histogram) as the intensity mapping function.

- Low level image processing
- 2 Pixel relations
- Filtering
- 4 Histograms
- Segmentation
- 6 Frequency space
- Other Operations

Segmentation: concept

- Intermediate processing towards object recognition.
- Localize regions with common properties.
- Make a partition over the pixel ensemble.
- Usual grouping properties (Gray level, Color, Texture).
- Often requires preprocessing.
- Segmentation of non-trivial images is a difficult task.
- Segmentation accuracy determines the eventual success/failure of computerized image analysis.

Applications of segmentation

Thresholding (1)

- The basis of many region based segmentation algorithms.
- The most immediate and computationally appealing step.
- Direct image partition based on intensity properties.
 - $0iff(x, y) \leq K$
 - 1iff(x, y) > K
- Not easy to find the ideal k magic number.

Thresholding (2)

- Several approaches:
 - Global Thresholding
 - Variable Thresholding
 - Local T(x, y) depends on properties of the neighborhood of (x, y).
 - Adaptive T(x, y) depends on the spatial coordinates, x and у.
 - The Otsu's method Optimal global thresholding based on probabilistic estimates obtained from the histogram.

Region Growing (1)

- Region growing is a procedure that groups pixels or subregions into larger regions based on a predefined criteria.
 - Start with a set of "seed" points and from these, grow regions by appending to each seed those neighboring pixels that have properties similar to the seed (intensity, color, ...).
- Selection of seeds
 - Often interactive
 - Automated
- Centroids of pixel clusters
- Additional criteria: size and shape of region grown so far
- Stopping rules
 - Ideally, growing a region should stop when no more pixels satisfy the criteria for inclusion in that region.

Region Growing (2)

- Low level image processing
- Pixel relations
- Filtering
- 4 Histograms
- Segmentation
- 6 Frequency space
- Other Operations

Why frequency?

- Great for filtering.
- Great for compression.
- In some situations: Much faster than operating in the spatial domain.
- Convolutions are simple multiplications in Frequency space!
- ...

Frequency space (1)

On the left an image in its normal representation: f(x, y) - more intuitive. On the right, the same image represented in the frequency space: F(u, v).

Frequency space (1)

An image (500x500 pixels) and its Fourier spectrum. The super-imposed circles have radii values of 5, 15, 30, 80, and 230, which respectively enclose 92.0, 94.6, 96.4, 98.0, and 99.5% of the image power.

Horizontal and vertical frequency

- Horizontal frequencies correspond to horizontal gradients.
- Vertical frequencies correspond to vertical gradients.

Removing frequencies

- Low level image processing
- 2 Pixel relations
- Filtering
- 4 Histograms
- Segmentation
- 6 Frequency space
- Other Operations

2D geometric image transformations

Multi-resolution representations - Pyramids

Multi-resolution representations - Wavelets

A ₃	Н ₃	H_2 d_2^2	
V ₃	D_3 d_2^1	D_2 d_2^3	H_1 d_1^2
V_1 d_1^1			D_1 d_1^2

Decomposition of approximation A_1 is represented in gray:

Approximation A2 is decomposed as: A_3 denoted a_3 , H_3 denoted d_3^2 , V_3 denoted d_3^1 and D_3 denoted d_3^3 .

