

Regression Model to Predict Cement Compressive Strength

Compressive strength of cement at 7 and 28 days

import library
import pandas as pd
import numpy as np

import data
cement = pd.read_csv('https://github.com/ybifoundation/Dataset/raw/main/Concrete%20Compressive%20Strength.csv')

view data
cement.head()

	Cement (kg in a m^3 mixture)	Blast Furnace Slag (kg in a m^3 mixture)	Fly Ash (kg in a m^3 mixture)	Water (kg in a m^3 mixture)	Superplasticizer (kg in a m^3 mixture)	Coarse Aggregate (kg in a m^3 mixture)	Fine Aggregate (kg in a m^3 mixture)	Age (day)	Concrete Compressive Strength(MPa, megapascals)
0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28	79.986111
1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28	61.887366
2	332.5	142.5	0.0	228.0	0.0	932.0	594.0	270	40.269535
3	332.5	142.5	0.0	228.0	0.0	932.0	594.0	365	41.052780
4	198.6	132.4	0.0	192.0	0.0	978.4	825.5	360	44.296075

info of data
cement.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1030 entries, 0 to 1029
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Cement (kg in a m^3 mixture)	1030 non-null	float64
1	Blast Furnace Slag (kg in a m^3 mixture)	1030 non-null	float64
2	Fly Ash (kg in a m^3 mixture)	1030 non-null	float64
3	Water (kg in a m^3 mixture)	1030 non-null	float64
4	Superplasticizer (kg in a m^3 mixture)	1030 non-null	float64
5	Coarse Aggregate (kg in a m^3 mixture)	1030 non-null	float64
6	Fine Aggregate (kg in a m^3 mixture)	1030 non-null	float64
7	Age (day)	1030 non-null	int64
8	Concrete Compressive Strength(MPa, megapascals)	1030 non-null	float64

dtypes: float64(8), int64(1)
memory usage: 72.5 KB

summary statistics
cement.describe()

	Cement (kg in a m^3 mixture)	Blast Furnace Slag (kg in a m^3 mixture)	Fly Ash (kg in a m^3 mixture)	Water (kg in a m^3 mixture)	Superplasticizer (kg in a m^3 mixture)	Coarse Aggregate (kg in a m^3 mixture)	Fine Aggregate (kg in a m^3 mixture)	Age (day)	Concrete Compressive Strength(MPa, megapascals)
count	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000
mean	281.165631	73.895485	54.187136	181.566359	6.203112	972.918592	773.578883	45.662136	35.817836
std	104.507142	86.279104	63.996469	21.355567	5.973492	77.753818	80.175427	63.169912	16.705679
min	102.000000	0.000000	0.000000	121.750000	0.000000	801.000000	594.000000	1.000000	2.331808
25%	192.375000	0.000000	0.000000	164.900000	0.000000	932.000000	730.950000	7.000000	23.707115
50%	272.900000	22.000000	0.000000	185.000000	6.350000	968.000000	779.510000	28.000000	34.442774
75%	350.000000	142.950000	118.270000	192.000000	10.160000	1029.400000	824.000000	56.000000	46.136287

check for missing value
cement.isna().sum()

Cement (kg in a m^3 mixture)	0
Blast Furnace Slag (kg in a m^3 mixture)	0
Fly Ash (kg in a m^3 mixture)	0
Water (kg in a m^3 mixture)	0
Superplasticizer (kg in a m^3 mixture)	0
Coarse Aggregate (kg in a m^3 mixture)	0
Fine Aggregate (kg in a m^3 mixture)	0
Age (day)	0
Concrete Compressive Strength(MPa, megapascals)	0
dtype: int64	

check for categories
cement.nunique()

Cement (kg in a m^3 mixture)	280
Blast Furnace Slag (kg in a m^3 mixture)	187
Fly Ash (kg in a m^3 mixture)	163
Water (kg in a m^3 mixture)	205
Superplasticizer (kg in a m^3 mixture)	155
Coarse Aggregate (kg in a m^3 mixture)	284
Fine Aggregate (kg in a m^3 mixture)	304
Age (day)	14
Concrete Compressive Strength(MPa, megapascals)	938
dtype: int64	

visualize pairplot
import seaborn as sns
sns.pairplot(cement)


```
# columns name
cement.columns
```

```
# define X
X=cement[['Cement (kg in a m^3 mixture)',
'Blast Furnace Slag (kg in a m^3 mixture)',
'Fly Ash (kg in a m^3 mixture)', 'Water (kg in a m^3 mixture)',
'Superplasticizer (kg in a m^3 mixture)',
'Coarse Aggregate (kg in a m^3 mixture)',
'Fine Aggregate (kg in a m^3 mixture)', 'Age (day)']]
# split data
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,train_size=0.7,random_state=2559)
# verify shape
X_train.shape,X_test.shape,y_train.shape,y_test.shape
((721, 8), (309, 8), (721,), (309,))
     ((721, 8), (309, 8), (721,), (309,))
# select model
from sklearn.linear_model import LinearRegression
model=LinearRegression()
# train model
model.fit(X_train,y_train)
LinearRegression()
     LinearRegression()
# predict with model
y_pred=model.predict(X_test)
# model evaluation
from sklearn.metrics import mean_absolute_error,mean_absolute_percentage_error,mean_squared_error
```

model MAE
mean_absolute_error(y_test,y_pred)

7.814891951068712

model MAPE
mean_absolute_percentage_error(y_test,y_pred)

0.28040027489426594

model MSE
mean_squared_error(y_test,y_pred)

102.62674212692517

future prediction
X.sample()

	Cement (kg in a m^3 mixture)	Blast Furnace Slag (kg in a m^3 mixture)	Fly Ash (kg in a m^3 mixture)	Water (kg in a m^3 mixture)	Superplasticizer (kg in a m^3 mixture)	Coarse Aggregate (kg in a m^3 mixture)	Fine Aggregate (kg in a m^3 mixture)	Age (day)
871	159.0	187.0	0.0	176.0	11.0	990.0	789.0	28

define X_new
X_new=X.sample()
X_new

	Cement (kg in a m^3 mixture)	Blast Furnace Slag (kg in a m^3 mixture)	Fly Ash (kg in a m^3 mixture)	Water (kg in a m^3 mixture)	a m^3 superplasticizer (kg	Coarse Aggregate (kg in a m^3 mixture)	Fine Aggregate (kg in a m^3 mixture)	Age (day)
186	222.36	0.0	96.67	189.29	4.46	967.08	870.32	28

predict for X_new
model.predict(X_new)

array([22.94900105])

