

Grundlagen der Elektrotechnik II

Frequenzanalyse periodischer Signale

Studien- und Versuchsaufgaben

Autor: Richard Grünert 23.5.2019

1 Vorbereitungsaufgaben

1.1

$$\underline{X}_{\nu} = \frac{1}{T_1} \cdot \int_{T_1} x(t) \cdot e^{-(j\nu \cdot \omega_1 t)} dt$$

$$= \frac{1}{T_1} \cdot \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} X_m \cdot e^{-(j\nu \cdot \omega_1 t)} dt$$

$$= -\frac{X_m}{T_1 \cdot j\nu \omega_1} \cdot \left[e^{-(j\nu \cdot \omega_1 t)} \right]_{-\frac{\tau}{2}}^{\frac{\tau}{2}}$$

$$= -\frac{X_m}{T_1 \cdot j\nu \omega_1} \cdot \left(e^{-j\nu \cdot \omega_1 \frac{\tau}{2}} - e^{j\nu \cdot \omega_1 \frac{\tau}{2}} \right)$$

 $\omega_1 = \frac{2\pi}{T_1}$ und Erweiterung mit $\frac{-1}{-1}$:

$$\underline{X}_{\nu} = \frac{X_m}{2j\pi\nu} \cdot \left(e^{j\nu \cdot \pi \frac{\tau}{T_1}} - e^{-j\nu \cdot \pi \frac{\tau}{T_1}} \right)$$
$$= \frac{X_m}{\pi\nu} \cdot \frac{\left(e^{j\nu \cdot \pi \frac{\tau}{T_1}} - e^{-j\nu \cdot \pi \frac{\tau}{T_1}} \right)}{2j}$$

mit
$$\frac{\left(e^{jx} - e^{-jx}\right)}{2j} = \sin(x)$$
 und $\frac{\tau}{T_1} = D$:
$$\underline{X}_{\nu} = \frac{X_m}{\pi\nu} \cdot \sin(\pi\nu D)$$

Erweitert man wieder mit $\frac{D}{D}$ erhält man das Bild einer Spaltfunktion $si(x) = \frac{\sin x}{x}$:

$$\underline{X}_{\nu} = D \cdot X_m \cdot \frac{\sin(\pi \nu D)}{\pi \nu D} = D \cdot X_m \cdot \sin(\pi \nu D)$$

Als reele Reihe:

$$x(t) = X_0 + \sum_{\nu=1}^{\infty} \hat{X}_{\nu} \cos(\nu \cdot \omega_1 t + \phi_{\nu})$$
$$X_0 = \frac{1}{T_1} \cdot \int_{T_1} x(t) dt = \frac{X_m}{2}$$

Aus der komplexen Reihendarstellung folgt

$$b_{\nu} = -2 \cdot \operatorname{Im}(\underline{X}_{\nu}) = 0$$

$$\hat{X}_{\nu} = \sqrt{a_{\nu}^{2} + b_{\nu}^{2}} = 2 \cdot |\underline{X}_{\nu}| \Longrightarrow a_{\nu} = 2 \cdot |D \cdot X_{m} \cdot \operatorname{si}(\nu \pi D)|$$

 ϕ_{ν} hängt nur vom Wert von $\mathrm{si}(\nu\pi D)$ ab, da \underline{X}_{ν} rein reell ist:

$$\phi_{\nu} = \begin{cases} 0 & ; \nu = \frac{4k+1}{2D} \\ \pi & ; \nu = \frac{4k-1}{2D} \\ \text{n.d.} & ; \text{sonst} \end{cases}$$

Somit ist

$$x(t) = \frac{X_m}{2} + \sum_{\nu=1}^{\infty} 2DX_m \cdot |\sin(\pi\nu D)| \cdot \cos(\nu \cdot \frac{2\pi}{T_1} \cdot t + \phi_{\nu})$$

Reihenentwicklung von x(t) bis zur 16. Oberwelle

D=0.

Effektivwert:

$$X_{\text{eff}} = \sqrt{\frac{1}{T_1} \cdot \int_{T_1} x^2(t) \, dt} = \sqrt{\frac{X_m^2}{T_1} \cdot \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} 1 \, dt}$$
$$X_{\text{eff}} = X_m \cdot \sqrt{\frac{\tau}{T_1}} = X_m \cdot \sqrt{D}$$

	$O = \frac{1}{2}, X_{\text{eff}}$	$x = \frac{X_m}{\sqrt{2}}$		D	$=\frac{1}{4}, X_{\text{eff}}$	$=\frac{X_m}{2}$	D	$=\frac{1}{8}, X_{\text{eff}}=\frac{1}{8}$	$\frac{X_m}{\sqrt{8}}$
ν	\underline{X}_{ν}	$\hat{X}_{ u}$	$\phi_{ u}$	ν	$\hat{X}_{ u}$	$\phi_{ u}$	ν	$\hat{X}_{ u}$	$\phi_{ u}$
1	$\frac{1}{\pi}X_m$	$\frac{2}{\pi}X_m$	0	1	$\frac{\sqrt{2}}{\pi}X_m$	0	1	$\frac{\sqrt{2-\sqrt{2}}}{\pi}X_m$	0
2	_	_	_	2	$\frac{1}{\pi}X_m$	0	2	$\frac{\sqrt{2}}{2\pi}X_m$	0
3	$-\frac{1}{3\pi}X_m$	$\frac{2}{3\pi}X_m$	π	3	$\frac{\sqrt{2}}{3\pi}X_m$	0	3	$\frac{\sqrt{2+\sqrt{2}}}{3\pi}X_m$	0
4	_	_	_	4	_	_	4	$\frac{1}{2}X_m$	0
5	$\frac{1}{5\pi}X_m$	$\frac{2}{5\pi}X_m$	0	5	$\frac{\sqrt{2}}{5\pi}X_m$	π	5	$\frac{\sqrt{2+\sqrt{2}}}{5\pi}X_m$	0
6	_	_	_	6	$\frac{1}{3\pi}X_m$	π		$\frac{\sqrt{2}}{16\pi}X_m$	0
7	$-\frac{1}{7\pi}X_m$	$\frac{2}{7\pi}X_m$	π	7	$\frac{\sqrt{2}}{7\pi}X_m$	π	7	$\frac{\sqrt{2-\sqrt{2}}}{7\pi}X_m$	0
8	_	_	_	8	_	_	8	_	_
9	$\frac{1}{9\pi}X_m$	$\frac{2}{9\pi}X_m$	0	9	$\frac{\sqrt{2}}{9\pi}X_m$	0	9	$\frac{\sqrt{2-\sqrt{2}}}{9\pi}X_m$	π
10	_	_	_	10	$\frac{1}{5\pi}X_m$	0	10	$\frac{\sqrt{2}}{5\pi}X_m$	π
11	$-\frac{1}{11\pi}X_m$	$\frac{2}{11\pi}X_m$	π	11	$\frac{\sqrt{2}}{11\pi}X_m$	0	11	$\frac{\sqrt{2+\sqrt{2}}}{11\pi}X_m$	π
12	_	_	_	12	_	_	12	$\frac{1}{6\pi}X_m$	π
13	$\frac{1}{13\pi}X_m$	$\frac{2}{13\pi}X_m$	0	13	$\frac{\sqrt{2}}{13\pi}X_m$	π	13	$\frac{\sqrt{2+\sqrt{2}}}{13\pi}X_m$	π
14	_	_	_	14	$\frac{1}{7\pi}X_m$	π	14	$\frac{\sqrt{2}}{7\pi}X_m$	π
15	$-\frac{1}{15\pi}X_m$	$\frac{2}{15\pi}X_m$	π	15	$\frac{\sqrt{2}}{15\pi}X_m$	π	15	$\frac{\sqrt{2-\sqrt{2}}}{15\pi}X_m$	π
16	_	_	_	16	_	_	16	_	_

1.2

$$\begin{split} \underline{X}_{\nu} &= \frac{1}{T_{1}} \cdot \int_{-\frac{T_{1}}{2}}^{\frac{T_{1}}{2}} X_{m} \cos\left(\frac{\pi}{T_{1}}t\right) \cdot e^{-(j\nu\frac{\pi}{T_{1}}t)} \, \mathrm{d}t \\ &= \frac{X_{m}}{T_{1}} \cdot \left[\frac{e^{-(j\nu\frac{\pi}{T_{1}}t)}}{(-j\nu\frac{\pi}{T_{1}})^{2} + (\frac{\pi}{T_{1}})^{2}} \cdot \left((-j\nu\frac{\pi}{T_{1}}) \cdot \cos\left(\frac{\pi}{T_{1}}t\right) + \frac{\pi}{T_{1}} \cdot \sin\left(\frac{\pi}{T_{1}}t\right) \right) \right]_{-\frac{T_{1}}{2}}^{\frac{T_{1}}{2}} \\ &= \frac{X_{m}}{\pi(1 - 4\nu^{2})} \cdot \left[e^{-j\nu\pi} \cdot \left(-j2\nu \cdot \cos\left(\frac{\pi}{2}\right) + 1 \right) - e^{j\nu\pi} \cdot \left(-j2\nu \cdot \cos\left(-\frac{\pi}{2}\right) - 1 \right) \right] \\ &= \frac{X_{m}}{\pi(1 - 4\nu^{2})} \cdot \left(e^{-j\nu\pi} + e^{j\nu\pi} \right) = 2 \frac{X_{m}}{\pi(1 - 4\nu^{2})} \cdot \left(\frac{e^{j\nu\pi} + e^{-j\nu\pi}}{2} \right) \end{split}$$

$$\underline{X}_{\nu} = \frac{2X_m}{\pi(1 - 4\nu^2)} \cdot \cos(\nu\pi)$$

$$\hat{X}_{\nu} = 2 \cdot \mid \underline{X}_{\nu} \mid = \frac{4 \cdot X_m}{\pi (1 - 4\nu^2)} \cdot \cos(\nu \pi)$$

Mittelwert:

$$X_{0} = \frac{1}{T_{1}} \cdot \int_{-\frac{T_{1}}{2}}^{\frac{T_{1}}{2}} X_{m} \cdot \cos\left(\frac{\pi}{T_{1}}t\right) dt = \frac{X_{m}}{\pi} \cdot \left[\sin\left(\frac{\pi}{T_{1}}t\right)\right]_{-\frac{T_{1}}{2}}^{\frac{T_{1}}{2}}$$
$$X_{0} = \frac{2X_{m}}{\pi}$$

Effektivwert:

$$X_{\text{eff}} = \sqrt{\frac{X_m^2}{T_1} \cdot \int_{-\frac{T_1}{2}}^{\frac{T_1}{2}} (\cos(\frac{\pi}{T_1}t))^2 dt}$$

$$X_{\text{eff}} = \sqrt{\frac{X_m^2}{T_1} \cdot \left[\frac{t}{2} + \frac{\sin(\frac{2\pi}{T_1})t}{4 \cdot \frac{\pi}{T_1}}\right]_{-\frac{T_1}{2}}^{\frac{T_1}{2}}}$$

$$X_{\text{eff}} = \frac{X_m}{\sqrt{2}}$$

D	$=\frac{1}{4}, X_{\text{eff}} =$	$\frac{X_m}{2}$
ν	$\hat{X}_{ u}$	$\phi_{ u}$
1	$\frac{4}{3\pi}X_m$	0
2	$\frac{4}{15\pi}X_m$	π
3	$\frac{4}{35\pi}X_m$	0
4	$\frac{4}{63\pi}X_m$	π
5	$\frac{4}{99\pi}X_m$	0
6	$\frac{4}{143\pi}X_m$	π
7	$\frac{4}{195\pi}X_m$	0
8	$\frac{4}{255\pi}X_m$	π
9	$\frac{4}{323\pi}X_m$	0
10	$\frac{4}{399\pi}X_m$	π
11	$\frac{4}{483\pi}X_m$	0
12	$\frac{4}{575\pi}X_m$	π
13	$\frac{4}{675\pi}X_m$	0
14	$\frac{4}{783\pi}X_m$	π
15	$\frac{4}{899\pi}X_m$	0

1.3

$$\underline{U}_2 = \underline{U}_0 \cdot \frac{\frac{1}{j\omega C + \frac{1}{R_2}}}{R_1 + \frac{1}{j\omega C + \frac{1}{R_2}}} = \frac{\underline{U}_0 \cdot R_2}{R_1 + R_2 + j\omega C R_1 R_2}$$

Betrag:

$$\hat{U}_2 = \frac{\hat{U}_0 \cdot R_2}{\sqrt{(R_1 + R_2)^2 + (\omega C R_1 R_2)^2}}$$

Phase:

$$\phi_{\underline{U}_2} = \phi_{\underline{U}_0} - \arctan \frac{\omega C R_1 R_2}{R_1 + R_2}$$

2 Versuchsaufgaben

2.1

Messwerte der Aufgabe 3.1 für $T=10~\mu s$:

$D = \frac{1}{2}, X_{\text{eff}} = ?$					
ν	$\hat{X}_{\nu}/\mathrm{mV}$	$X_{\nu_{ ext{eff}}}/ ext{mV}$	$f_{ u}/\mathrm{kHz}$		
1	608.112	430	100		
2	-	-	-		
3	208.045	147.11	300		
4	-	-	-		
5	123.546	87.36	500		
6	-	-	-		
7	91.040	64.375	700		
8	-	-	-		
9	68.059	48.125	900		
10	-	-	-		
11	57.544	40.69	1100		
12	-	-	-		
13	48.691	34.43	1300		
14	-	-	-		
15	41.606	29.42	1500		

$D = \frac{1}{4}, X_{\text{eff}} = 500 \text{ mV}$				
ν	$\hat{X}_{\nu}/\mathrm{mV}$	$X_{\nu_{ ext{eff}}}/ ext{mV}$	$f_{ u}/{ m kHz}$	
1	445.477	315	100	
2	311.070	219.96	200	
3	143.401	101.4	300	
4	-	-	-	
5	88.388	62.5	500	
6	105.217	74.4	600	
7	64.488	45.6	700	
8	-	-	-	
9	48.225	34.1	900	
10	60.670	42.9	1000	
11	38.891	27.5	1100	
12	-	-	-	
13	34.083	24.1	1300	
14	45.255	32	1400	
15	30.123	21.3	1500	

$D = \frac{1}{8}, X_{\text{eff}} = 343 \text{ mV}$				
ν	$\hat{X}_{\nu}/\mathrm{mV}$	$X_{\nu_{ ext{eff}}}/ ext{mV}$	$f_{ u}/{ m kHz}$	
1	244.942	173.2	100	
2	222.965	157.66	200	
3	189.787	134.2	300	
4	154.291	109.1	400	
5	116.673	82.5	500	
6	75.095	53.1	600	
7	36.204	25.6	700	
8	-	-	-	
9	27.436	19.4	900	
10	43.416	30.7	1000	
11	51.760	36.6	1100	
12	52.609	37.2	1200	
13	45.962	32.5	1300	
14	33.234	23.5	1400	
15	16.829	11.9	1500	

2.2

2.3