CHAPTER 4

4.2

$T_0T_1T_2T_3$				S ₁ S ₀ R ₃ load			
0	0	0	0	Х	Χ	0	
1	0	0	0	0	0	1	
0	1	0	0	0	1	1	
0	0	1	0	1	0	1	
0	0	0	1	1	1	1	

$$S_1 = T_2 + T_3$$

 $S_0 = T_1 + T_3$
load = $T_0 + T_1 + T_2 + T_3$

4.3

P: R1 ← R2 P'Q: R1 ← R3

4.4

Connect the 4-line common bus to the four inputs of each register. Provide a "load" control input in each register. Provide a clock input for each register.

To transfer from register C to register A: Apply $S_1S_0 = 10$ (to select C for the bus.) Enable the load input of A

Apply a clock pulse.

4.6

- (a) 4 selection lines to select one of 16 registers.
- (b) 16 × 1 multiplexers.
- (c) 32 multiplexers, one for each bit of the registers.

4.7

- (a) Read memory word specified by the address in AR into register R2.
- (b) Write content of register R3 into the memory word specified by the address in AR.
- (c) Read memory word specified by the address in R5 and transfer content to R5 (destroys previous value)

4.8

4.12

<u>M</u>	<u>A</u> <u>B</u>	Sum Cu	
0	0111 + 0110	1101 0	7 + 6 = 13
0	1000 + 1001	0001 1	8 + 9 = 16 + 1
1	1100 – 1000	0100 1	12 - 8 = 4
1	0101 – 1010	1011 0	5 - 10 = -5(in 2's comp.)
1	0000 - 0001	<u>1111 0</u>	0-1 = -1 (in 2's comp.)

4.13 A - 1 = A + 2's complement of 1 = A + 1111

S	Cin	Χ	Υ	
0	0	Α	В	(A + B)
0	1	Α	0	(A + 1)
1	0	Α	1	(A - 1)
1	1	Α	$\overline{\mathrm{B}}$	(A - B)

4.16

4.18

A = 11011001 ₍₊₎ (a) B = 10110100

 $A \leftarrow A \oplus B 01101101$

A = 11011001<u>B = 11111101</u> (OR)

11111101 $A \leftarrow AVB$

4.19

AR = 11110010 (a)

BR = <u>11111111(+)</u> $AR = \overline{11110001}$

1010

CR = 10111001 (b)

BR = 1111 1111 DR = 11101010^(AND)

CR = 10101000 BR = 0000 0000 AR = 1111 0001 DR = 11101010

 $AR = 11110001_{(-1)}$ (c)

CR = 10101000

AR = 01001001; BR = 00000000; CR = 10101000; DR = 11101010

4.20

R = 10011100

Arithmetic shift right: 11001110

Arithmetic shift left: 00111000

overflow because a negative number changed to

positive.

4.21

R = 11011101

10111010 Logical shift left:

01011101 Circular shift right:

Logical shift right: 00101110

01011100 Circular shift left:

S = 1 Shift left $A_0 A_1 A_2 A_3 I_L$

4.23

- (a) Cannot complement and increment the same register at the same time.
- (b) Cannot transfer two different values (R₂ and R₃) to the same register (R₁) at the same time.
- (c) Cannot transfer a new value into a register (PC) and increment the original value by one at the same time.