Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

Object Detection

Object localization

What are localization and detection?

Image classification

" Car"

Classification with localization

"Cw

bjert

Detection

Classification with localization

4 - background

Defining the target label y

- thạy bộ 1 - pedestrian
- 2 car <
- 3 motorcycle
- 4 background \leftarrow

$$\begin{cases}
(\dot{y}_{1} - \dot{y}_{1})^{2} + (\dot{y}_{2} - \dot{y}_{2})^{2} \\
+ \dots + (\dot{y}_{N} - \dot{y}_{N})^{2} & \text{if } y_{1} = 1 \\
(\dot{y}_{1} - \dot{y}_{1})^{2} & \text{if } y_{1} = 0
\end{cases}$$

y1 -> y8 tương ứng với pc, bx, by, ... c3

De Dister on object?

Object?

Object?

Need to output b_x , b_y , b_h , b_w , class label (1-4)

Andrew Ng

Object Detection

điểm mốc

Landmark detection

Landmark detection

 b_x , b_y , b_h , b_w

ConvNet ConvNet

129

Object Detection

Object detection

Car detection example

Sliding windows detection Corportation cost

Object Detection

Convolutional implementation of sliding windows

Turning FC layer into convolutional layers

Convolution implementation of sliding windows

[Sermanet et al., 2014, OverFeat: Integrated recognition, localization and detection using convolutional networks]

Andrew Ng

Convolution implementation of sliding windows

Object Detection

Bounding box predictions

Output accurate bounding boxes

YOLO algorithm

[Redmon et al., 2015, You Only Look Once: Unified real-time object detection]

Andrew Ng

Specify the bounding boxes

Object Detection

Intersection over union

Evaluating object localization

Để tính loU, trước tiên, chúng ta tính diện tích phần hợp của hai hình chữ nhật, bằng "hình chữ nhật thứ nhất + hình chữ nhật thứ hai", sau đó tính diện tích giao nhau giữa hai hình chữ nhật này.

Cuối cùng, IOU = diện tích phần giao nhau/diện tích phần hợp. Nếu IOU >=0.5 thì tốt. Đáp án tốt nhất là 1. IOU càng cao thì

More generally, IoU is a measure of the overlap between two bounding boxes.

Một trong những vấn đề mà chúng ta đã đề cập trong YOLO là nó có thể phát hiện một đối tượng nhiều lần. Non-max Suppression đảm bảo rằng YOLO sẽ chỉ phát hiện đối tượng một lần.

deeplearning.ai

Object Detection

Non-max suppression

Non-max suppression example

Non-max suppression example

19x19

Non-max suppression example

Giả sử chúng ta đang nhắm mục tiêu biến một lớp làm lớp đầu ra. Shape Y phải là [Pc, bx, by, bh, hw], trong đó Pc là xác suất xảy ra đối tượng đó. Loại bỏ tất cả các box có Pc <0.6

Trong các box còn lại:

Chọn box có đầu ra Pc lớn nhất làm dự đoán.

Loại bỏ bất kỳ box còn lại nào có loU > 0.5 với đầu ra của box đó ở bước trước, tức là bất kỳ box nào có độ chồng chéo cao (lớn hơn ngưỡng chồng chéo 0.5).

Nếu có nhiều lớp/kiểu đối tượng c cần phát hiện, nên chạy Non-max suppression c lần, mỗi lần cho một lớp đầu ra.

Pc

Non-max suppression algorithm

Each output prediction is:

Discard all boxes with $p_c \leq 0.6$

- ->> While there are any remaining boxes:
 - Pick the box with the largest p_c Output that as a prediction.
 - Discard any remaining box with $IoU \ge 0.5$ with the box output in the previous step

Object Detection

Anchor boxes

deeplearning.ai

Trong YOLO, mỗi lưới chỉ phát hiện một đối tượng. Điều gì sẽ xảy ra nếu một ô lưới cần phát hiện nhiều đối tượng?

Làm thế nào để chọn các anchor box? Mọi người thường chọn thủ công, có thể chọn 5 hoặc 10 anchor box shape có hình dạng khác nhau liên quan tới các loại đối tượng thường được phát hiện. Bạn cũng có thể sử dụng thuật toán k-mean trên tập dữ liệu của mình để xác định điều đó. Anchor box cho phép thuật toán chuyên biệt hóa, nghĩa là trong trường hợp này có thể dễ dàng phát hiện hình ảnh rộng hơn hoặc cao hơn.

Overlapping objects:

$$\mathbf{y} = \begin{bmatrix} b_{c} \\ b_{x} \\ b_{y} \\ b_{h} \\ b_{w} \\ c_{1} \\ c_{2} \\ c_{3} \end{bmatrix}$$

Anchor box 1:

Anchor box 2:

[Redmon et al., 2015, You Only Look Once: Unified real-time object detection]

Anchor box algorithm

Previously:

Each object in training image is assigned to grid cell that contains that object's midpoint.

With two anchor boxes:

Each object in training image is assigned to grid cell that contains object's midpoint and anchor box for the grid cell with highest IoU.

3x3x 2x8

Anchor box example

Anchor box 1: Anchor box 2:

Andrew Ng

Object Detection

Putting it together: YOLO algorithm

[Redmon et al., 2015, You Only Look Once: Unified real-time object detection]

Andrew Ng

Making predictions

Outputting the non-max supressed outputs

- For each grid call, get 2 predicted bounding boxes.
- Get rid of low probability predictions.
- For each class (pedestrian, car, motorcycle) use non-max suppression to generate final predictions.

Object Detection

Region proposals (Optional)

Region proposal: R-CNN

Faster algorithms

 \rightarrow R-CNN:

Propose regions. Classify proposed regions one at a time. Output <u>label</u> + bounding box.

Fast R-CNN:

Propose regions. Use convolution implementation of sliding windows to classify all the proposed regions.

Faster R-CNN: Use convolutional network to propose regions.

[Girshik et. al, 2013. Rich feature hierarchies for accurate object detection and semantic segmentation] [Girshik, 2015. Fast R-CNN]

[Ren et. al, 2016. Faster R-CNN: Towards real-time object detection with region proposal networks]

Andrew Ng

Convolutional Neural Networks

Semantic segmentation with U-Net

Object Detection vs. Semantic Segmentation

Input image

Object Detection

Semantic Segmentation

Motivation for U-Net

Chest X-Ray

Brain MRI

Per-pixel class labels

- 1. Car
- 0. Not Car

Per-pixel class labels

- 1. Car
- 2. Building
- 3. Road

```
22222222222222222222222
22222222222222222222222
22222222222222222222222
22222222222222222222222
22222222222222222222222
  13333333333331
```

Segmentation Map

Deep Learning for Semantic Segmentation

Transpose Convolution

Normal Convolution

Transpose Convolution

Transpose Convolution

filter $f \times f = 3 \times 3$

padding p = 1 stride s = 2

Deep Learning for Semantic Segmentation

U-Net

