Содержание

1	Системы множеств				
	1.1	Последовательность попарно непересекающихся множеств	3		
	1.2	Верхние и нижние пределы	3		
		1.2.1 Верхний предел	3		
		1.2.2 Нижний предел	3		
	1.3	Монотонная последовательность множеств	3		
	1.4	Пример последовательности, у которой верхний не равен нижнему	3		
	1.5	Закон де Моргана для верхних и нижних пределов	3		
	1.6	Замкнутость относительно верхних и нижних пределов	4		
	1.7	Отображения колец и σ -алгебр	4		
	1.8	Невозможность использования пар операций для определения кольца	4		
	1.9	Действия с сигма-алгебрами	5		
	1.10	Описание сигма-алгебр	5		
	1.11	Построение конечной сигма-алгебры	5		
	1.12	Возможные мощности конечных сигма-алгебр	5		
	1.13	Возможные размеры вероятностного пространства	5		
2	Mep		5		
	2.1	Аддитивная функция, но не мера	5		
	2.2	Базовые свойства полукольца	5		
	2.3	Множества, построенные на основе других множеств	6		
	2.4	Сигма-аддитиность следует из непрерыввности	6		
	2.5	Непрерывность убывающих множеств	6		
	2.6	Непрерывность возрастающих множеств	7		
3	Вио	шняя мера	7		
9	3.1	Внешняя мера строго меньше обычной меры	7		
	3.2	Внешняя мера объединения	7		
	3.3	Про меру Жордана	7		
	3.4	Пример объъединения неизмеримых, объединение которых измеримо	7		
	3.5	Полнота меры Лебега	7		
	3.6	Мера нижнего предела меньше нижней меры предела	7		
	0.0	тигра пижнего предела меньше пижнен меры предела	'		
4	Измеримые функции				
	4.1	Композиция измеримых функций	7		
	4.2	Измеримость индикатора множества	8		
	4.3	Измеримость прообраза синглетона	8		
	4.4	Измеримость функции, у которой измеримы прообразы лучей	8		
	4.5	Разрывная в каждой точке измеримая функция	8		
	4.6	Измеримость эквивалентных функций	8		
	4.7	Монотонная измерима	8		
	4.8	Непрерывная функция, переводящая множество меры ноль в ненулевое	8		
	4.9	Возрастающая функция, переводящая множество меры ноль в ненулевое	8		
	4.10	Прообраз измеримого множества неизмерим	8		
		Образ измеримого меры ноль незимерим	8		
		Измеримое небарелевское	8		

5	Cxc	рдимость	9
	5.1	Функция максимальной цифры из десятичной записи числа	9
	5.2	Из сходимости п.в. не следует сходимость по мере в случае, когда мера сигма-	
		конечная	9
	5.3	Отделимость от нуля сходящейся последовательности неотрицательных функ-	
		ций по мере	9
	5.4	Доказательство сходимости последовательности	9
	5.5	Сходится по мере но ни в какой точке	9
	5.6	Не выполнение теоремы Егорова	9
6	Инт	геграл Лебега	10
	6.1	Интеграл функции Дирихле	10
	6.2	Подсчёт интеграла Лебега по определению	10
	6.3	Проверка на интегрируемость на прямой	10
	6.4	Почти всюду конечность интегрируемых по Лебегу функций	10
	6.5	Последовательность интегрируемых	10

1 Системы множеств

1.1 Последовательность попарно непересекающихся множеств

Пусть
$$B_n := A_n \setminus (\bigcup_{i=1}^{n-1} A_i)$$

Очевидно, что если мы возьмём счётное объединение B_n , то возьмём каждое из A_n по одному разу, что эквивалентно счётному объединению A_n .

1.2Верхние и нижние пределы

1.2.1 Верхний предел

$$a \in \overline{\lim}_n A_n \Leftrightarrow \forall N \in \mathbb{N} \ \exists n \geqslant N \ a \in A_n \Leftrightarrow \forall N \in \mathbb{N} \ a \in \bigcup_{i \geqslant n} A_i \Leftrightarrow a \in \bigcap_{n=1}^{\infty} \bigcup_{i \geqslant n} A_i$$

1.2.2Нижний предел

$$a \in \underline{\lim}_n A_n \Leftrightarrow \exists N \in \mathbb{N} \ \forall n \geqslant N \ a \in A_n \Leftrightarrow \exists N \in \mathbb{N} \ a \in \bigcap_{i \geqslant n} A_i \Leftrightarrow a \in \bigcup_{n=1}^{\infty} \bigcap_{i \geqslant n} A_i$$

1.3 Монотонная последовательность множеств

Пусть без ограничения общности $A_1 \subset A_2 \subset \cdots \subset A_n \subset \cdots$

Тогда
$$\overline{\lim}_n A_n = \bigcap_{n=1}^\infty \bigcup_{i \ge n} A_i = \bigcup_{i \ge n} A_i$$
, т.к. $\{\bigcup_{i \ge n} A_i\}_n$ - тоже монотонная

Тогда
$$\overline{\lim}_n A_n = \bigcap_{n=1}^\infty \bigcup_{i\geqslant n} A_i = \bigcup_{i\geqslant n} A_i$$
, т.к. $\{\bigcup_{i\geqslant n} A_i\}_n$ - тоже монотонная.
Ну а $\underline{\lim}_n A_n = \bigcup_{n=1}^\infty \bigcap_{i\geqslant n} A_i = \bigcup_{n=1}^\infty A_n$, т.к. $\bigcap_{i\geqslant n} A_i = A_n$ из-за монотонности A_i

Пример последовательности, у которой верхний не равен ниж-1.4 нему

Пусть
$$A_{2n} := \{0\}; A_{2n+1} := \emptyset$$

Тогда $\overline{\lim}_n A_n = \{0\}; \underline{\lim}_n A_n = \emptyset$

Закон де Моргана для верхних и нижних пределов 1.5

$$\overline{\overline{\lim}_n A_n} = \lim_n \overline{A_n}$$

$$\overline{\bigcup_{n=1}^{\infty}\bigcap_{i\geqslant n}A_i}=\bigcap_{n=1}^{\infty}\overline{\bigcap_{i\geqslant n}A_i}=\bigcap_{n=1}^{\infty}\bigcup_{i\geqslant n}\overline{A_i}$$

1.6 Замкнутость относительно верхних и нижних пределов

 $\overline{\lim}_n A_n = \bigcap_{n=1}^\infty \bigcup_{i\geqslant n} A_i$, по определению, σ -алгебра замкнута относительно счётных пере-

сечений и объединений, поэтому $\bigcup_{i\geqslant n}A_i\in\sigma$ -алгебре, и $\bigcap_{n=1}^\infty\bigcup_{i\geqslant n}A_i\in\sigma$ -алгебре.

Аналогично с нижним пределом.

1.7 Отображения колец и σ -алгебр

• $\varnothing \in f^{-1}(B), \varnothing = f^{-1}(\varnothing)$ - следует из определения прообраза, т.к. если никого нет, то никто в нас не перейдёт

$$C_{1,2} \in f^{-1}(B) \Rightarrow \exists X_{1,2} \in B : f^{-1}(X_{1,2}) = C_{1,2}$$
$$x \in f^{-1}(C_1 \cap C_2) \Rightarrow \exists y \in C_1 \cap C_2 : f(x) = y \Rightarrow y \in C_1 \cap C_2 \subseteq C_{1,2} \Rightarrow$$
$$x \in f^{-1}(C_1) \cap f^{-1}(C_2) \Rightarrow f^{-1}(C_1 \cap C_2) \subseteq f^{-1}(C_1) \cap f^{-1}(C_2)$$

$$x \in f^{-1}(C_1) \cap f^{-1}(C_2) \Rightarrow x \in f^{-1}(C_1) \land x \in f^{-1}(C_2) \Rightarrow \exists ! y : f(x) = y \Rightarrow y \in C_1 \land y \in C_2 \Rightarrow y \in C_1 \cap C_2 \Rightarrow x \in f^{-1}(C_1 \cap C_2) \Rightarrow f^{-1}(C_1) \cap f^{-1}(C_2) \subseteq f^{-1}(C_1 \cap C_2)$$

Получили, что $f^{-1}(C_1 \cap C_2) = f^{-1}(C_1) \cap f^{-1}(C_2)$, аналогично делаем с \triangle , получили все свойства кольца у $f^{-1}(B)$.

• В данном пункте будет выполняться $f(C_1 \cap C_2) \subseteq f(C_1) \cap f(C_2)$, но не будет выполняться включение в другую сторону из-за отсутствия сюръективности у f. Приведём контрпример.

Пусть
$$\mathcal{A} = \{\emptyset, \{1,2\}, \{3,4\}, \{1,2,3,4\}\}$$
 - это кольцо, пусть тогда Пусть $\mathcal{B} = \{\emptyset, \{5,6\}, \{6\}, \{5\}\}\}$ $f(\emptyset) = \emptyset; \ f(\{1,2\}) = \{5,6\}; \ f(\{3,4\}) = \{6\}; \ f(\{1,2,3,4\}) = \{5,6\}$

• Аналогично первому пункту.

1.8 Невозможность использования пар операций для определения кольца

- Приведём контрпример: $A = \{\{1\}, \{1,2\}, \{1,3\}, \{1,2,3\}\}$
- Приведём контрпример: $A = \{\emptyset, \{1\}, \{0\}\}$

1.9 Действия с сигма-алгебрами

- 1. Каждая операция на пересечении замкнута, значит итоговое множество также останется замкнутым
- 2. Нет, приведём контрпример: $\mathcal{B}_1 = \{\{1\}, \{\varnothing\}\}, \mathcal{B}_2 = \{\{2\}, \{\varnothing\}\}\}$
- 3. Нет, т.к. в разности двух множеств нет пустого множества.
- 4. Нет, т.к. в симметрической разности двух множеств нет пустого множества.

1.10 Описание сигма-алгебр

Первые 4 пункта очевидные и предлагаются читателю в качестве занимательного упражнения: взять все пересечения и симметрические разности.

В пункте f) возьмём множество всех подмножеств $\mathbb{Q} \cap [0; 1]$

1.11 Построение конечной сигма-алгебры

Разобьём Ω на некоторое дизъюнктное разбиение и возьмём множество всех подмножеств получившегося разбиения.

1.12 Возможные мощности конечных сигма-алгебр

Из предыдущего пункта очевидно следует, что мощности такой σ -алгебры должна быть степенью двойки. Значит подходит только 128.

1.13 Возможные размеры вероятностного пространства

Минимум - 2, возьмём пустое множества и всё множество.

Максимум - 2^n , возьмём множество всех подмножеств множества элементарных событий.

2 Mepa

2.1 Аддитивная функция, но не мера

Пусть $S = \{\varnothing, \{1\}, \{2\}, \{3\}, \{1,2,3\}\}$, и зададим φ .

$$\varphi(\{1,2,3\}) = 2; \ \varphi(\{1\}) = \varphi(\{2\}) = \varphi(\{3\}) = 1; \ \varphi(\varnothing) = 0$$

2.2 Базовые свойства полукольца

1.
$$A = B \sqcup C \Rightarrow m(A) = m(B) + m(C); \ m(C) \geqslant 0 \Rightarrow m(B) \leqslant m(A)$$

2.
$$m(\emptyset) = m(\emptyset \cup \emptyset) = 2 * m(\emptyset) \Rightarrow m(\emptyset) = 0$$

3. $B = (A \cap B) \sqcup (\sqcup C_i)$, где $C_i \in S$

$$m(B) = m(A \cap B) + m(\Box C_i)$$

$$m(A \cup (\Box C_i)) = m(A \cup B) = m(A) + m(\Box C_i)$$

$$m(A \cup B) = m(A) + m(B) - m(A \cap B)$$

4.

$$B \setminus A = \sqcup C_i; \ A \setminus B = \sqcup D_i; \ m(A \triangle B) = m((B \setminus A) \sqcup (A \setminus B)) = 0 \Rightarrow m(A \setminus B) = 0 \land m(B \setminus A) = 0$$
$$m(A) = m((A \cap B) \sqcup (A \setminus B)) = m(A \cap B) = m((A \cap B) \sqcup (B \setminus A)) = m(B)$$

2.3 Множества, построенные на основе других множеств

- Пусть $A_0 \subseteq A \in S_1 \subseteq S$, тогда по свойству полукольца $S: \exists C_i: A_0 \sqcup (\sqcup C_i) = A;$ $\forall A, B \in S_1: m(A \cap B) \leqslant 0 \Rightarrow m(A \cap B) = 0;$ $m(\varnothing) = 0 \Rightarrow \varnothing \in S_1$
- $m(\varnothing) = 0 \Rightarrow \varnothing \in R_1;$

Пересечение принадлежит R_1 аналогично первому пункту.

$$m(A\triangle B) = m((A \setminus B) \sqcup (B \setminus A)) \leqslant m(A) + m(B) \leqslant 0 \Rightarrow m(A\triangle B) = 0$$

• Неверно, возьмём отрезок [0;1] и классическую меру Лебега, тогда заметим, что мера каждой точки равна 0, а объединение всех точек имеет меру 1, значит в A_1 нет единицы.

2.4 Сигма-аддитиность следует из непрерыввности

Пусть для некоторого $B = \bigsqcup B_i$, обозначим $C_k = \bigsqcup_{i=k}^{\infty} B_k$

Тогда
$$m(C_k) = m(B) - \sum_{i=1}^k m(B_i); \varnothing = \lim m(C_k)$$

Тогда из непрерывности меры следует $m(\varnothing) = \lim m(C_k) \Rightarrow 0 = \lim_{k \to \infty} (m(B) - \sum_{i=1}^k m(B_i))$ $m(B) = \sum m(B_i)$ - σ -аддитиновсть доказана.

В случае полукольца это не работает, т.к. мы можем взять $S = \mathbb{Q} \cap [a;b] \subseteq [0;1]$, где m([a;b]) = b - a заметим что условие задачи выполняется, но $1 = m([0;1] \cap \mathbb{Q}) \neq \sum m(\mathbb{Q} \cap [r_i;r_i]) = 0$.

ДАННЫЙ ПРИМЕР ПОДХОДИТ ДЛЯ ВСЕХ ОСТАЛЬНЫХ ЗАДАЧ ИЗ ДАННОЙ ТЕМЫ, КОТОРЫЕ НЕ БЫЛИ РАССМОТРЕНЫ ДАЛЕЕ

2.5 Непрерывность убывающих множеств

$$A = \bigcap A_i \Rightarrow \overline{A} = \bigcup \overline{A_i} \Rightarrow \lim m(\overline{A_i}) = m(\overline{A}) = \lim m(E \setminus A_i) = m(E \setminus A)$$

$$m(E) - \lim m(A_i) = m(E) - m(A) \Rightarrow \lim m(A_i) = m(A)$$

2.6 Непрерывность возрастающих множеств

Пусть
$$A = \bigcup A_i = \coprod B_i$$
, где $B_i = A_i \setminus A_{i-1}$
$$\lim_{i \to \infty} m(A_i) = \lim_{i \to \infty} \sum_{k=1}^i m(B_k) = \sum_{i=1}^\infty m(B_i) = m(\bigcup B_i) = m(\bigcup A_i) = m(A)$$

3 Внешняя мера

3.1 Внешняя мера строго меньше обычной меры

Возьмём наш пример $\mu^*(\mathbb{Q} \cap [a;b]) = 0 < m(\mathbb{Q} \cap [a;b]) = 1$

3.2 Внешняя мера объединения

$$\mu^*(A \cup B) = \inf_{(A \cup B) \subseteq \coprod A_i} \sum m(A_i) \leqslant \inf_{A \subseteq \coprod A_i} \sum m(A_i) + \inf_{B \subseteq \coprod B_i} \sum m(B_i) = \mu^*(A) + \mu^*(B)$$

3.3 Про меру Жордана

Заметим, что $\forall r_i \in (\mathbb{Q} \cap [0;1]) : m(r_i) = 0$, но $\mathbb{Q} \cap [0;1]$ неизмерима по Жордану В качестве σ -аддитивной меры на \mathcal{M}_J возьмём тождественный ноль:)

3.4 Пример объъединения неизмеримых, объединение которых измеримо

В качесте A_1 выберем множество Витали (неизмеримое по Лебегу), а в качестве A_2 возьмём дополнение множества Витали.

3.5 Полнота меры Лебега

$$B\subseteq A\Rightarrow \mu^*(B)\leqslant \mu^*(A)=0\Rightarrow \mu(B)\leqslant \mu^*(B)=0$$

3.6 Мера нижнего предела меньше нижней меры предела

Пусть $A_{2n}=[0;\frac{1}{2}];\ A_{2n+1}=(\frac{1}{2};1].$ Очевидно, что $\forall i: \mu(A_i)=\frac{1}{2},$ а $\mu(\liminf A_n)=\mu(\varnothing)=0$

4 Измеримые функции

4.1 Композиция измеримых функций

 $\{x: f(x) < g(x)\} = \bigcup \{x: f(x) < r_i < g(x)\} = \bigcup \{x: f(x) < r_i\} \cap \{x: g(x) > r_i\}$), отсюда $\{x: f(x) + g(x) < a\} = \{x: f(x) < a - g(x)\}$ очевидно измеримо.

4.2 Измеримость индикатора множества

- \Rightarrow Возьмём возьмём в качестве a из Лебегова множества $\frac{1}{2}$, тогда множество $\{x:f(x)>\frac{1}{2}\}$ измеримо, а это множество в точности M.
- \Leftarrow Рассмотреть все возможные случаи при выборе a в Лебеговом множестве и понять, что при каждом случае оно измеримо.

4.3 Измеримость прообраза синглетона

Возьмём в качестве $f(x) = \mathbb{I}_E(x) * x + (1 - \mathbb{I}_E(x)) * (-x)$, где E - неизмеримое по Лебегу множество, однако прообразом каждой точки будет также точка, которая, очевидно, измерима по Лебегу.

4.4 Измеримость функции, у которой измеримы прообразы лучей

Для любого Лебегова множества приблизимся к его числу a какой-то последовательностью $\{b_n\}$, где $b_n \in \{a_n\}_n$, а $\lim b_n = a$ подходит к a слева, тогда $f^{-1}(a; +\infty) = \bigcap f^{-1}(b_n; +\infty)$

4.5 Разрывная в каждой точке измеримая функция

Возьмём в качестве f функцию Дирихле.

4.6 Измеримость эквивалентных функций

$$\{x: \ g(x) < a\} = (\{x: \ f(x) < a\} \setminus \{x: \ f(x) \neq g(x)\}) \sqcup \{x: \ (g(x) < a) \land (f(x) \neq g(x))\}$$

4.7 Монотонная измерима

Каждое Лебегово множество будет иметь вид [a; c), которое, очевидно, измеримо.

4.8 Непрерывная функция, переводящая множество меры ноль в ненулевое

Канторова лестница

4.9 Возрастающая функция, переводящая множество меры ноль в ненулевое

Пусть $\varphi(x)$ - канторова лестница, тогда нужная нам функция имеет вид $f(x) = \frac{x + \varphi(x)}{2}$

4.10 Прообраз измеримого множества неизмерим

4.11 Образ измеримого меры ноль незимерим

4.12 Измеримое небарелевское

Возьмём $\varphi(x)$ - канторову лестницу, из её области значений [0;1] достанем неизмеримое подмножество, возьмём его прообраз. Его прообраз - подмножество Канторова множества,

значит оно измеримо и имеет меру 0. Если бы оно было барелевский, то его образ был бы измерим, поэтому это ИЗМЕРИМОЕ НЕБАРЕЛЕВСКОЕ множество МЕРЫ 0.

5 Сходимость

5.1 Функция максимальной цифры из десятичной записи числа

Давайте посчитаем меру множества, где f(x)=9. Разделим отрезок [0;1] на десять чистей и выберем множество, где первая цифра после запятой - это девятка, далее разделим каждую из 9 оставшихся частей на 10 частей и из каждого снова выберем $\frac{1}{10}$ часть. Получим, что $\mu(\{x:f(x)=9\})=\sum \frac{9^{n-1}}{10^n}=1$

5.2 Из сходимости п.в. не следует сходимость по мере в случае, когда мера сигма-конечная

Возьмём
$$f_n(x) = \begin{cases} 1, x \in [n; \ n+1) \\ 0, else \end{cases}$$

5.3 Отделимость от нуля сходящейся последовательности неотрицательных функций по мере

Пусть $B_{\frac{1}{n}}=\{x: f(x)<-\frac{1}{n}\}$, очевидно, что $\forall n\in\mathbb{N}: \nu(B_{\frac{1}{n}})=0$, и $B_{\frac{1}{n}}\subseteq B_{\frac{1}{n+1}}\Rightarrow \lim B_{\frac{1}{i}}=\bigcup B_{\frac{1}{i}}=B$. Тогда $\nu(B)=\sum \nu(B_{\frac{1}{i}})=0$, что нам и требовалось доказать.

5.4 Доказательство сходимости последовательности

Очевидно, что сдвиги на r_n никак не влияют на $\mu(\{x: f(x) > \varepsilon\})$, поэтому давайте выберем какое-то фиксированное r, нам нужно посчитать меру множества $(r - \frac{1}{\sqrt{n}\varepsilon}, r + \frac{1}{\sqrt{n}\varepsilon})$. Видно, что при $n \to \infty$ она стремится к нулю.

5.5 Сходится по мере но ни в какой точке

$$\forall \varepsilon > 0 \lim_{n \to \infty} \mu(\{x : e^{-(p_n - q_n x)^2} > \varepsilon\}) \Leftrightarrow \forall \varepsilon > 0 \lim_{n \to \infty} \mu(\{x : -(p_n - q_n x)^2 > \ln(\varepsilon)\}) \Leftrightarrow \forall \varepsilon > 0 \lim_{n \to \infty} \mu(\{x : -\sqrt{\ln(\varepsilon)} < p_n - q_n x < \sqrt{\ln(\varepsilon)}\}) \Leftrightarrow \forall \varepsilon > 0 \lim_{n \to \infty} \mu(\{x : -\frac{\sqrt{\ln(\varepsilon)}}{q_n} < \frac{p_n}{q_n} - x < \sqrt{\frac{\ln(\varepsilon)}{q_n}}\}) \Leftrightarrow \forall \varepsilon > 0 \lim_{n \to \infty} \mu(\{x : (x > \frac{p_n}{q_n} - \frac{\sqrt{\ln(\varepsilon)}}{q_n}) \land (x < \frac{p_n}{q_n} + \frac{\sqrt{\ln(\varepsilon)}}{q_n})\}) = \lim_{n \to \infty} \frac{2\sqrt{\ln(\varepsilon)}}{q_n} = 0$$

Она не сходится ни в одной точке, т.к. мы можем взять две подпоследовательности: $p_{n_k}=1$ и $p_{n_m}=q_{n_m}-1$, у которых поточеченые пределы соответственно равны 0 и 1.

5.6 Не выполнение теоремы Егорова

Возьмём $f_n := \mathbb{I}_{[-n;n]}$, она подходит под условие теоремы Егорова, но при этом нет ни одного достаточно большого множества, на котором последовательность равномерно сходится к f(x) = 1.

6 Интеграл Лебега

6.1 Интеграл функции Дирихле

f(x) - простая функция \Rightarrow интегрируема по Лебегу. $\int f(x)d\mu(x) = 1 * \mu(\mathbb{Q}) + 0 * \mu(\mathbb{R} \setminus \mathbb{Q}) = 0$

6.2 Подсчёт интеграла Лебега по определению

$$\frac{1}{x}\geqslant\lfloor\frac{1}{x}\rfloor$$
, рассмотрим, где $\lfloor\frac{1}{x}\rfloor=n\Leftrightarrow n\leqslant\frac{1}{x}< n+1\Leftrightarrow x\in(\frac{1}{n+1};\ \frac{1}{n}].$ Значит $\int\lfloor\frac{1}{x}\rfloor d\mu(x)=\sum\limits_{n=1}^{\infty}n*\mu(x:\ \frac{1}{x}=n)=\sum\limits_{n=1}^{\infty}n*(\frac{1}{n}-\frac{1}{n+1})=\sum\limits_{n=1}^{\infty}\frac{1}{n+1}=+\infty\Rightarrow\int\frac{1}{x}d\mu(x)\geqslant+\infty$

6.3 Проверка на интегрируемость на прямой

 $\frac{\sin x}{x}$ интегрируема по Лебегу на прямой $\Leftrightarrow \frac{\sin^+ x}{x}$ интегрируема на прямой $\Rightarrow \frac{\sin^+ x}{x}$ интегрируема на $[0; +\infty]$.

$$\int_{[0;+\infty]} \frac{\sin^+ x}{x} \, d\mu(x) = \sum_{n=0}^{\infty} \int_{[2\pi n; \, \pi(2n+1)]} \frac{\sin(x)}{x} \, d\mu(x) \geqslant \sum_{n=0}^{\infty} \int_{[2\pi n; \, \pi(2n+1)]} \frac{\sin(x)}{\pi(2n+1)} \, d\mu(x) = \sum_{n=0}^{\infty} \frac{1}{\pi(2n+1)} \int_{[2\pi n; \, \pi(2n+1)]} \sin x \, d\mu(x) = \sum_{n=0}^{\infty} \frac{2}{\pi(2n+1)} = +\infty$$

В данных преобразованиях мы использовали счётную аддитивность интеграла Лебега и его монотонность.

6.4 Почти всюду конечность интегрируемых по Лебегу функций

Пусть $\mu(\{x\in A: f(x)=\pm\infty\})>0$, тогда по определению интеграла Лебега $\int\limits_A |f(x)|\,d\mu(x)=+\infty*\varepsilon+\delta$, где $\varepsilon>0,\delta\geqslant 0$. Получили, что интеграл модуля функции бесконечен.

6.5 Последовательность интегрируемых

Пусть
$$f_n(x) = \begin{cases} n^2(n+1), x \in (\frac{1}{n+1}; \frac{1}{n}] \\ 0, else \end{cases}$$

Заметим, что при любом фиксированном n последовательность таких функций поточечно сходится к 0, а её интеграл Лебега равен $n^2(n+1)(\frac{1}{n}-\frac{1}{n+1})=n$, что является конечным числом при фиксированном n.

10

Однако, если мы устремим
$$n \to \infty$$
, то $\lim_{n \to \infty} \int_{[0; 1]} f_n(x) \, d\mu(x) = \lim_{n \to \infty} n = +\infty$