CLAIM SUMMARY DOCUMENT

1-10. (Currently canceled)

11. (New) A positive-type planographic printing plate precursor comprising:

a photosensitive layer provided as a top layer and obtained by coating and drying on a support a photosensitive layer coating solution formed of a photosensitive composition, which contains a cyanine dye represented in the following general formula (I) and a polymer insoluble in water and soluble in an aqueous alkali solution, dissolved or dispersed in a solvent system, which includes a solvent having a boiling point lower than 200°C, wherein 80% by weight or more of the solvent consists of a solvent having a boiling point lower than 100°;

wherein a solubility in an aqueous alkali solution of the photosensitive layer is as a top layer increased by an infrared laser exposure:

$$R^7$$
 Y^1
 L^2
 X^- General formula (I)
 R^8
 R^8
 R^6
 R^6

wherein, each of Y¹ and Y² represents a dialkylmethylene group or a sulfur atom; each of R³ and R⁴ represents an alkyl group, alkenyl group, alkynyl group or phenyl group which may be substituted; L² represents a trimethine group, pentamethine group or heptamethine group which may be substituted, and two substituents of the pentamethine group or the heptamethine group may be combined with each other to form a cycloalkene ring having 5

to 7 carbon atoms; each of R^5 through R^8 represents a hydrogen atom or an alkyl group, alkenyl group, alkoxy group, cycloalkyl group or aryl group which may be substituted, and R^5 and R^6 , and R^7 and R^8 may be combined with each other to form a ring structure; and X^5 represents an anion.

- 12. (New) A positive-type planographic printing plate precursor according to claim 11, wherein the photosensitive layer coating solution is formed of the photosensitive composition dissolved or dispersed in a solvent system which includes a solvent having a boiling point lower than 200°C, wherein 90% by weight or more of the solvent consists of a solvent having a boiling point lower than 100°.
- a photosensitive layer as a top layer and obtained by coating and drying on a support a photosensitive layer coating solution formed of a photosensitive composition, which contains a cyanine dye represented in the following general formula (I) and a polymer insoluble in water and soluble in an aqueous alkali solution, dissolved or dispersed in a solvent system, which includes a solvent having a boiling point lower than 200°C, wherein 80% by weight or more of the solvent consists of a solvent having a boiling point lower than 100°;

wherein a solubility in an aqueous alkali solution of the photosensitive layer is increased by an infrared laser exposure:

$$R^7$$
 Y^1
 L^2
 X^- General formula (I)
 R^8
 R^8
 R^8
 R^8
 R^6

wherein, each of Y¹ and Y² represents a dialkylmethylene group or a sulfur atom; each of R³ and R⁴ represents an alkyl group, alkenyl group, alkynyl group or phenyl group which may be substituted; L² represents a trimethine group, pentamethine group or heptamethine group which may be substituted; and two substituents of the pentamethine group or the heptamethine group may be combined with each other to form a cycloalkene ring having 5 to 7 carbon atoms; each of R⁵ through R8 represents a hydrogen atom or an alkyl group, alkenyl group, cycloalkyl group or aryl group which may be substituted, and R⁵ and R⁶, and R⁶ and R® may be combined with each other to form a ring structure; and X represents an anion wherein of the residual solvent contained in the photosensitive layer 50% by weight or more of the solvent consists of solvent having a boiling point lower than 100°.

14. (New) A positive-type planographic printing plate precursor according to claim 13, wherein of the residual solvent contained in the photosensitive layer 70% by weight or more of the solvent consists of a solvent having a boiling point lower than 100°.

15. (New) A positive-type planographic printing plate precursor according to claim 11, wherein the cyanine dye represented in the general formula (I) is at least one of compounds (1) to (5) shown below:

C₁₀H₂₁

ĊΙ

 $PF_{\overline{6}}$

 $^{l}_{C_{10}H_{21}}$

16. (New) A method for producing a positive-type planographic printing plate precursor comprising the steps of:

preparing a photosensitive composition containing a cyanine dye represented in the following general formula (I) and a polymer insoluble in water and soluble in an aqueous alkali solution;

preparing a photosensitive layer coating solution by dissolving or dispersing the photosensitive composition in a solvent system which includes a solvent having a boiling point lower than 200°C, wherein 80% by weight or more of the solvent consists of a solvent having a boiling point lower than 100°; and

coating and drying the photosensitive layer coating solution on a support to form a photosensitive layer as a top layer:

$$R^{7}$$
 Y^{1}
 L^{2}
 R^{5}
 R^{6}
 R^{8}
 R^{6}
 R^{3}
 R^{6}
 R^{6}
 R^{6}
 R^{6}

wherein, each of Y¹ and Y² represents a dialkylmethylene group or a sulfur atom; each of R³ and R⁴ represents an alkyl group, alkenyl group, alkynyl group or phenyl group which may be substituted; L² represents a trimethine group, pentamethine group or heptamethine group which may be substituted, and two substituents of the pentamethine group or the heptamethine group may be combined with each other to form a cycloalkene ring having 5 to 7 carbon atoms; each of R⁵ through R⁸ represents a hydrogen atom or an alkyl group, alkenyl group, alkoxy group, cycloalkyl group or aryl group which may be substituted, and

 R^5 and R^6 , and R^7 and R^8 may be combined with each other to form a ring structure; and X^5 represents an anion.

17. (New) A method for producing a positive-type planographic printing plate precursor comprising the steps of:

preparing a photosensitive composition containing a cyanine dye represented in the following general formula (I) and a polymer insoluble in water and soluble in an aqueous alkali solution;

preparing a photosensitive layer coating solution by dissolving or dispersing the photosensitive composition in a solvent system which includes a solvent having a boiling point lower than 200°C, wherein 90% by weight or more of the solvent consists of a solvent having a boiling point lower than 100°; and

coating and drying the photosensitive layer coating solution on a support to form a photosensitive layer as a top layer:

 R^7 Y^1 Y^2 R^5

$$R^8$$
 $X^ R^6$
 R^6
 R^6
 R^6
 R^6
 R^6

wherein, each of Y^1 and Y^2 represents a dialkylmethylene group or a sulfur atom; each of R^3 and R^4 represents an alkyl group, alkenyl group, alkynyl group or phenyl group which

may be substituted; L² represents a trimethine group, pentamethine group or heptamethine group which may be substituted, and two substituents of the pentamethine group or the heptamethine group may be combined with each other to form a cycloalkene ring having 5 to 7 carbon atoms; each of R⁵ through R⁸ represents a hydrogen atom or an alkyl group, alkenyl group, alkoxy group, cycloalkyl group or aryl group which may be substituted, and R⁵ and R⁶, and R⁷ and R⁸ may be combined with each other to form a ring structure; and X⁷ represents an anion.

18. (New) A method for producing a positive-type planographic printing plate precursor comprising the steps of:

preparing a photosensitive composition containing a cyanine dye represented in the following general formula (I) and a polymer insoluble in water and soluble in an aqueous alkali solution;

preparing a photosensitive layer coating solution by dissolving or dispersing the photosensitive composition in a solvent system which includes a solvent having a boiling point lower than 200°C, wherein 80% by weight or more of the solvent consists of a solvent having a boiling point lower than 100°; and

coating and drying the photosensitive layer coating solution on a support to form a photosensitive layer as a top layer:

$$R^7$$
 Y^1
 L^2
 X^2
General formula (I)
 R^8
 R^8
 R^8
 R^8
 R^8

wherein, each of Y¹ and Y² represents a dialkylmethylene group or a sulfur atom; each of R³ and R⁴ represents an alkyl group, alkenyl group, alkynyl group or phenyl group which may be substituted; L² represents a trimethine group, pentamethine group or heptamethine group which may be substituted, and two substituents of the pentamethine group or the heptamethine group may be combined with each other to form a cycloalkene ring having 5 to 7 carbon atoms; each of R⁵ through R³ represents a hydrogen atom or an alkyl group, alkenyl group, alkoxy group, cycloalkyl group or aryl group which may be substituted, and R⁵ and R⁶, and R³ may be combined with each other to form a ring structure; and X⁻ represents an anion wherein of the residual solvent contained in the photosensitive layer 50% by weight or more of the solvent consists of a solvent having a boiling point lower than 100°.

19. (New) A method for producing a positive-type planographic printing plate precursor according to claim 18, wherein of the residual solvent contained in the photosensitive layer 70% by weight or more of the solvent consists of a solvent having a boiling point lower than 100°.

20. (New) A method for producing a positive-type planographic printing plate precursor according to claim 16, wherein the cyanine dye represented in the general formula (I) is at least one of compounds (1) to (5) shown below:

(2)

(3)
$$NO_2$$
 CIO_4 CH_3 NO_2 CIO_4 CH_3 NO_2 CIO_4 CIO_4 CIO_4 CIO_4 OIO_4 OIO_4

C₁₀H₂₁

 PF_6