Kolloquium zur Master Arbeit

Classification of meromorphic connections using Stokes structures and Stokes groups

Maximilian Huber

9. September 2015

Outline

Zusammenhangs-Matrizen und die klassifizierende Menge

Levelt-Turittin und die Normalform Die klassifizierende Menge der Systeme

Die Stokes Strukturen

Die anti-Stokes Richtungen Aufteilen bezüglich der Level

Beispiel

Abschnitt 1

Zusammenhangs-Matrizen und die klassifizierende Menge

Definition Eine **Zusammenhangs-Matrix** $A \in GL_n(\mathbb{C}(\{t\}))$ beschreibt ein System (also: System linearer gewöhnlicher komplexer Differentialgleichungen) $dX = AX \,.$

Definition

Eine **Zusammenhangs-Matrix** $A \in GL_n(\mathbb{C}(\{t\}))$ beschreibt ein System (also: System linearer gewöhnlicher komplexer Differentialgleichungen)

dX = AX.

Proposition

Durch einen Wechsel $F \in GL_n(\mathbb{C}((t)))$ der Basis erhält man das System FA , gegeben durch die **Gauge-Transformation**

$${}^{F}A := (dF)F^{-1} + FAF^{-1}$$
.

Definition

Eine **Zusammenhangs-Matrix** $A \in GL_n(\mathbb{C}(\{t\}))$ beschreibt ein System (also: System linearer gewöhnlicher komplexer Differentialgleichungen)

$$dX = AX$$
.

Proposition

• F ist **konvergent** : $\Leftrightarrow F \in GL_n(\mathbb{C}(\{t\}))$ sonst ist F **formal** (geschrieben \widehat{F}).

Durch einen Wechsel $F \in GL_n(\mathbb{C}((t)))$ der Basis erhält man das System FA , gegeben durch die **Gauge-Transformation**

$${}^{F}\!A := (dF)F^{-1} + FAF^{-1}$$
.

Definition

Eine **Zusammenhangs-Matrix** $A \in GL_n(\mathbb{C}(\{t\}))$ beschreibt ein System (also: System linearer gewöhnlicher komplexer Differentialgleichungen)

$$dX = AX.$$

Proposition

•• F ist **konvergent**: $\Leftrightarrow F \in GL_n(\mathbb{C}(\{t\}))$ sonst ist F **formal** (geschrieben \widehat{F}).

Durch einen Wechsel $F \in GL_n(\mathbb{C}((t)))$ der Basis erhält man das System FA , gegeben durch die **Gauge-Transformation**

$${}^{F}A := (dF)F^{-1} + FAF^{-1}$$
.

Definition

Die Zusammenhangs-Matrizen A und B sind (formal) äquivalent, falls es einen (formalen) Basiswechsel F gibt, so dass FA = B.

Die Normalform und formale Klassifikation

Die Normalform und formale Klassifikation

$$A^{0} = {}^{\mathbf{F}} \left(Q'(t^{-1}) + \frac{1}{t} L \right)$$

Die Normalform und formale Klassifikation

$$A^0 = {\operatorname{F}}\left(Q'(t^{-1}) + \frac{1}{t}L\right)$$

- ▶ $Q(t^{-1}) := \bigoplus_{j=1}^{s} q_{j}(t^{-1}) \cdot \operatorname{id}_{n_{j}} \text{ mit } q_{j}(t^{-1}) \in \mathbb{C}[t^{-1}],$ ▶ $L := \bigoplus_{j=1}^{s} L_{j} \text{ mit } L_{j} \in \operatorname{GL}_{n_{j}}(\mathbb{C}) \text{ in Jordan-Normalform und}$ ▶ $F \in \operatorname{GL}_{n}(\mathbb{C}(\{t\})) \text{ eine Gauge-Transformation.}$

Aus dem Levelt-Turittin Theorem erhalten wir:

Korollar Jedes (unverzweigte) System A ist formal äquivalent zu einer Normalform und Normalformen sind bis auf (konvergente) Äquivalenz eindeutig.

Die klassifizierende Menge

Fixiere eine Normalform A^0 .

Ziel: verstehe die Menge

$$^{0}C(A^{0}):=\left\{ \left[A\right] \mid A=^{\widehat{F}}\!A^{0} \text{ für ein } \widehat{F}\in \mathit{G}(\!(t)\!)\right\}$$

der Äquivalenzklassen vom Zusammenhangs-Matrizen formal äquivalent zu ${\cal A}^0.$

Die klassifizierende Menge

Fixiere eine Normalform A^0 .

Ziel: verstehe die Menge

$$^0C(A^0) := \left\{ [A] \mid A = ^{\widehat{F}}\!A^0 \text{ für ein } \widehat{F} \in \mathit{G}(\!(t)\!) \right\}$$

der Äquivalenzklassen vom Zusammenhangs-Matrizen formal äquivalent zu A^0 .

Betrachte dazu die folgende Menge:

Definition Die klassifizierende Menge ist definiert als die Menge
$$\mathcal{H}(A^0) := \left\{ \left[\left(A, \widehat{F} \right) \right] \mid A = \widehat{^F}A^0 \text{ mit } \widehat{F} \in G(\!(t)\!) \right\}$$
 der Äquivalenzklassen markierter Paare zu A^0 .

Die klassifizierende Menge

Fixiere eine Normalform A^0 .

Ziel: verstehe die Menge

der Äquivalenzklassen vom Zusammenhangs-Matrizen formal äquivalent zu A^0 .

Betrachte dazu die folgende Menge:

einfach

Definition Die klassifizierende Menge ist definiert als die Menge
$$\mathcal{H}(A^0) := \left\{ \left[\left(A, \widehat{F} \right) \right] \mid A = \widehat{^F} A^0 \text{ mit } \widehat{F} \in \mathit{G}(\!(t)\!) \right\}$$
 der Äquivalenzklassen markierter Paare zu A^0 .

Abschnitt 2

Die Stokes Strukturen

Sei ${\mathcal A}$ die Garbe der Funktionen mit asymptotischer Erweiterung.

Definition

- ▶ Die Stokes Garbe $\Lambda(A^0)$ ist die Untergarbe von $GL_n(A)$ bestehend aus den Schnitten f, welche
 - 1. **multiplikativ flach** (f ist asymptotisch zu id)

sind.

Sei ${\mathcal A}$ die Garbe der Funktionen mit asymptotischer Erweiterung.

Definition

- ▶ Die Stokes Garbe $\Lambda(A^0)$ ist die Untergarbe von $GL_n(A)$ bestehend aus den Schnitten f, welche
 - 1. multiplikativ flach (f ist asymptotisch zu id) und
 - 2. eine **Isotropie von** A^0 (${}^fA^0 = A^0$) sind.

Sei ${\mathcal A}$ die Garbe der Funktionen mit asymptotischer Erweiterung.

Definition

- ▶ Die Stokes Garbe $\Lambda(A^0)$ ist die Untergarbe von $\mathrm{GL}_n(\mathcal{A})$ bestehend aus den Schnitten f, welche
 - 1. **multiplikativ** flach (f ist asymptotisch zu id) und
 - 2. eine **Isotropie von** A^0 (${}^fA^0 = A^0$) sind.
- ▶ Die Stokes Gruppe $Sto_{\theta}(A^0) \subset \Lambda(A^0)_{\theta}$ sind die Keime f, für die auch noch jeder Eintrag
 - 3. von **maximal decay** in Richtung θ

ist.

Sei ${\mathcal A}$ die Garbe der Funktionen mit asymptotischer Erweiterung.

Definition

- ▶ Die Stokes Garbe $\Lambda(A^0)$ ist die Untergarbe von $\mathrm{GL}_n(\mathcal{A})$ bestehend aus den Schnitten f, welche
 - 1. **multiplikativ flach** (f ist asymptotisch zu id) und
 - 2. eine **Isotropie von** A^0 (${}^fA^0 = A^0$) sind.
- ▶ Die **Stokes Gruppe** $Sto_{\theta}(A^0) \subset \Lambda(A^0)_{\theta}$ sind die Keime f, für die auch noch jeder Eintrag
 - 3. von **maximal decay** in Richtung θ

Definition

Definition $e^{q(t^{-1})}$ mit $q(t^{-1}) \in \frac{a}{t^k} + o(t^{-k})$ hat maximal decay in Richtung θ genau dann wenn $ae^{-ik\theta}$ reell negativ ist.

ist.

Zu einem (A,\widehat{F}) wähle sektorweise asymptotische Lifts $F_j\in\Lambda(A^0)(U_j)$ der formalen Transformation \widehat{F} . Durch $(F_kF_j^{-1})$ ist dann ein Kozykel in $H^1(S^1;\Lambda(A^0))$ definiert.

Zu einem (A,\widehat{F}) wähle sektorweise asymptotische Lifts $F_j\in\Lambda(A^0)(U_j)$ der formalen Transformation \widehat{F} . Durch $(F_kF_j^{-1})$ ist dann ein Kozykel in $H^1(S^1;\Lambda(A^0))$ definiert. Dies liefert den folgenden Isomorphismus:

$$\begin{array}{ccc} \text{Satz (Malgrange-Sibuya)} \\ \mathcal{H}(A^0) & \longrightarrow & H^1(S^1;\Lambda(A^0)) \end{array}$$

Zu einem (A,\widehat{F}) wähle sektorweise asymptotische Lifts $F_j\in\Lambda(A^0)(U_j)$ der formalen Transformation \widehat{F} . Durch $(F_kF_j^{-1})$ ist dann ein Kozykel in $H^1(S^1;\Lambda(A^0))$ definiert. Dies liefert den folgenden Isomorphismus:

Zu einem (A,\widehat{F}) wähle sektorweise asymptotische Lifts $F_j\in\Lambda(A^0)(U_j)$ der formalen Transformation \widehat{F} . Durch $(F_kF_j^{-1})$ ist dann ein Kozykel in $H^1(S^1;\Lambda(A^0))$ definiert. Dies liefert den folgenden Isomorphismus:

Abschnitt 3

Fragen?

Definition

Zu jeder Richtung θ definieren wir Menge der dazugehörigen Level \mathcal{K}_{θ} als die $k \in \mathbb{N}$ für die

für jedes $i \in \mathbb{N}$ gilt, dass

$$\theta + i \frac{\pi}{k} \in \mathbb{A}$$
.

Definition

Zu jeder Richtung θ definieren wir Menge der dazugehörigen Level \mathcal{K}_{θ} als die $k \in \mathbb{N}$ für die

für jedes
$$i \in \mathbb{N}$$
 gilt, dass

$$\theta + i\frac{\pi}{k} \in \mathbb{A}.$$

Definition

Zu jeder Richtung θ definieren wir Menge der dazugehörigen Level \mathcal{K}_{θ} als die $k \in \mathbb{N}$ für die

für jedes $i \in \mathbb{N}$ gilt, dass

$$\theta + i \frac{\pi}{k} \in \mathbb{A}$$
.

Definition

Zu jeder Richtung θ definieren wir Menge der dazugehörigen Level \mathcal{K}_{θ} als die $k \in \mathbb{N}$ für die

für jedes $i \in \mathbb{N}$ gilt, dass

$$\theta + i \frac{\pi}{k} \in \mathbb{A}$$
.

Lemma

Gilt für jedes $\theta \in \mathbb{A}$ dass $\mathcal{K}_{\theta} = \{k\}$, so haben die anti-Stokes Richtungen eine $\frac{\pi}{k}$ -drehsymmetrie.

Aufteilen bezüglich der Level

Die Menge aller Level $\mathcal K$ ist $\bigcup_{\theta\in\mathbb A}\mathcal K_\theta.$

$$\operatorname{Sto}_{\theta}(A^0) \longrightarrow \prod_{k \in \mathcal{K}} \operatorname{Sto}_{\theta}^k(A^0)$$

Lemma Die Aufteilung in "Anteile von Level k" $\operatorname{Sto}_{\theta}(A^0) \longrightarrow \prod_{k \in \mathcal{K}} \operatorname{Sto}_{\theta}^k(A^0)$ ist ein Isomorphismus und haben damit den Isomorphismus $\mathcal{H}(A^0) \longrightarrow \prod_{\theta \in \mathbb{A}} \prod_{k \in \mathcal{K}} \operatorname{Sto}_{\theta}^k(A^0)$

$$\mathcal{H}(A^0) \longrightarrow \prod_{\theta \in \mathbb{A}} \prod_{k \in \mathcal{K}} \operatorname{Sto}_{\theta}^k(A^0)$$

Aufteilen bezüglich der Level

Die Menge aller Level \mathcal{K} ist $\bigcup_{\theta \in \mathbb{A}} \mathcal{K}_{\theta}$.

$$\operatorname{Sto}_{\theta}(A^0) \longrightarrow \prod_{k \in \mathcal{K}} \operatorname{Sto}_{\theta}^k(A^0)$$

Lemma Die Aufteilung in "Anteile von Level k"
$$\operatorname{Sto}_{\theta}(A^0) \longrightarrow \prod_{k \in \mathcal{K}} \operatorname{Sto}_{\theta}^k(A^0)$$
 ist ein Isomorphismus und haben damit den Isomorphismus
$$\mathcal{H}(A^0) \longrightarrow \prod_{\theta \in \mathbb{A}} \prod_{k \in \mathcal{K}} \operatorname{Sto}_{\theta}^k(A^0) = \prod_{k \in \mathcal{K}} \left(\prod_{\theta \in \mathbb{A}} \operatorname{Sto}_{\theta}^k(A^0)\right).$$

Abschnitt 4

Beispiel

Definition
1. Definiere die Relation $q_j \stackrel{\prec}{\underset{\theta}{\longrightarrow}} q_l$ als äquivalent zu $e^{(q_l-q_j)(t^{-1})} \text{ ist von maximal decay in Richtung } \theta.$

Definition

1. Definiere die Relation $q_j \underset{\theta}{\prec\!\!\!\!\!/} q_l$ als äquivalent zu $e^{(q_l-q_j)(t^{-1})} \text{ ist von maximal decay in Richtung } \theta.$ Die anti-Stokes Richtungen sind genau die $\theta \in S^1$, so dass $q_j \underset{\theta}{\prec\!\!\!\!\!/} q_l$ für ein Paar (q_j,q_l) .

Definition

1. Definiere die Relation $q_j \underset{\theta}{\prec} q_l$ als äquivalent zu $e^{(q_l - q_j)(t^{-1})} \text{ ist von maximal decay in Richtung } \theta.$ Die anti-Stokes Richtungen sind genau die $\theta \in S^1$, so dass $q_j \underset{\theta}{\prec} q_l$ für ein Paar (q_j, q_l) .

Definiere die Gruppe der Stokes Matrizen als
$$\mathbb{S}\mathrm{to}_{\theta}(A^0) := \left\{ C = (c_{jl})_{j,l \in \{1,...,n\}} \in \mathrm{GL}_n(\mathbb{C}) \middle| \right.$$

$$c_{(l,j)} = \delta_{jl} \text{ außer wenn } q_j \not \stackrel{\prec}{=} q_l \right\}.$$

ovon Dimension 3

Fixiere $\theta \in S^1$ und q_1 , q_2 und q_3 so dass $q_1 \overset{\checkmark}{\underset{\theta}{\leftarrow}} q_2$, $q_1 \overset{\checkmark}{\underset{\theta}{\leftarrow}} q_3$ und $q_2 \overset{\checkmark}{\underset{\theta}{\leftarrow}} q_3$

Fixiere $\theta \in S^1$ und q_1 , q_2 und q_3 so dass $q_1 \stackrel{\checkmark}{\underset{\theta}{\longrightarrow}} q_2$, $q_1 \stackrel{\checkmark}{\underset{\theta}{\longrightarrow}} q_3$ und $q_2 \stackrel{\checkmark}{\underset{\theta}{\longrightarrow}} q_3$

 $\text{mit Level } \mathcal{K} = \{k_2 > k_1\}.$

von Dimension 3

von Dimension 3

von Dimension 3

Fixiere
$$\theta \in S^1$$
 und q_1 , q_2 und q_3 so dass $q_1 \underset{\theta}{\prec} q_2$, $q_1 \underset{\theta}{\prec} q_3$ und $q_2 \underset{\theta}{\prec} q_3$

 S^1

Beispiel Fixiere

von Dimension 3

Fixiere
$$\theta \in S^1$$
 und q_1 , q_2 und q_3 so dass $q_1 \underset{\theta}{\prec} q_2$, $q_1 \underset{\theta}{\prec} q_3$ und $q_2 \underset{\theta}{\prec} q_3$

 S^1

Beispiel von Dimension 3 Fixiere $\theta \in S^1$ und q_1 , q_2 und q_3 so dass $q_1 \overset{\prec}{\underset{\theta}{\longrightarrow}} q_2$, $q_1 \overset{\prec}{\underset{\theta}{\longrightarrow}} q_3$ und $q_2 \overset{\prec}{\underset{\theta}{\longrightarrow}} q_3$ mit Level $\mathcal{K} = \{k_2 > k_1\}.$ $\begin{pmatrix} 1 & \star & \star \\ & 1 & \star \\ & & 1 \end{pmatrix} \in \mathbb{S}to_{\theta}(A^{0})$ $\bullet \begin{pmatrix} 1 \\ \star & 1 \\ & & 1 \end{pmatrix} \in \operatorname{Sto}_{\theta - \frac{\pi}{k_2}}(A^0)$ $\begin{pmatrix} 1 & 1 \\ & \star & 1 \end{pmatrix} \in \operatorname{Sto}_{\theta - \frac{\pi}{k_1}}(A^0)$ $\begin{pmatrix} 1 & \star & \star \\ & 1 & \\ & & 1 \end{pmatrix} \in \mathbb{S} to_{\theta - \frac{2\pi}{k_2}}(A^0)$

 S^1

Abschnitt 5

Anhang

Ein Keim $f \in GL_n(\mathcal{A}_\theta)$, der eine Isotropie von A^0 ist, sieht wie folgt aus

Ein Keim $f \in GL_n(\mathcal{A}_\theta)$, der eine Isotropie von A^0 ist, sieht wie folgt aus

$$f = t^{L} e^{Q(t^{-1})} \rho_{\theta}(f) e^{-Q(t^{-1})} t^{-L}$$

$$= t^{L} e^{Q(t^{-1})} \left(1_{n} + \sum_{(l,j)} C^{(l,j)} \right) e^{-Q(t^{-1})} t^{-L}$$

Ein Keim $f \in GL_n(\mathcal{A}_\theta)$, der eine Isotropie von A^0 ist, sieht wie folgt aus

$$\begin{split} f &= t^L e^{Q(t^{-1})} \rho_{\theta}(f) e^{-Q(t^{-1})} t^{-L} \\ &= t^L e^{Q(t^{-1})} \left(1_n + \sum_{(l,j)} C^{(l,j)} \right) e^{-Q(t^{-1})} t^{-L} \\ &= t^L \left(1_n + \sum_{(l,j)} C^{(l,j)} e^{(q_l - q_j)(t^{-1})} \right) t^{-L} \,. \end{split}$$

Ein Keim $f \in GL_n(\mathcal{A}_{\theta})$, der eine Isotropie von A^0 ist, sieht wie folgt aus

$$\begin{split} f &= t^L e^{Q(t^{-1})} \rho_{\theta}(f) e^{-Q(t^{-1})} t^{-L} \\ &= t^L e^{Q(t^{-1})} \left(1_n + \sum_{(l,j)} C^{(l,j)} \right) e^{-Q(t^{-1})} t^{-L} \\ &= t^L \left(1_n + \sum_{(l,j)} C^{(l,j)} e^{(q_l - q_j)(t^{-1})} \right) t^{-L} \,. \end{split}$$

Also ist f

1. multiplikativ flach falls falls für jedes $C^{(l,j)} \neq 0$ der Faktor $e^{(q_l-q_j)(t^{-1})}$ asymptotisch zu 0 ist und

Ein Keim $f \in GL_n(\mathcal{A}_{\theta})$, der eine Isotropie von A^0 ist, sieht wie folgt aus

$$\begin{split} f &= t^L e^{Q(t^{-1})} \rho_{\theta}(f) e^{-Q(t^{-1})} t^{-L} \\ &= t^L e^{Q(t^{-1})} \left(1_n + \sum_{(l,j)} C^{(l,j)} \right) e^{-Q(t^{-1})} t^{-L} \\ &= t^L \left(1_n + \sum_{(l,j)} C^{(l,j)} e^{(q_l - q_j)(t^{-1})} \right) t^{-L} \,. \end{split}$$

Also ist f

- 1. multiplikativ flach falls fälls für jedes $C^{(l,j)} \neq 0$ der Faktor $e^{(q_l-q_j)(t^{-1})}$ asymptotisch zu 0 ist und
- 2. von maximal decay falls für jedes $C^{(l,j)} \neq 0$ der Faktor $e^{(q_l-q_j)(t^{-1})}$ von maximal decay in Richtung θ ist.