DATA MINING AND MACHINE LEARNING

Clustering Algorithms 3

Hierarchical Clustering

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges or splits

Hierarchical Clustering

- Two main types of hierarchical clustering
 - Agglomerative:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Agglomerative Clustering Algorithm

- More popular hierarchical clustering technique
- Basic algorithm is straightforward

Compute the proximity matrix Let each data point be a cluster

Repeat

Merge the two closest clusters
Update the proximity matrix
Until only a single cluster remains

- Key operation is the computation of the proximity of two clusters
 - Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation

Start with clusters of individual points and a proximity matrix

	р1	p2	рЗ	p4	р5	<u></u>
p1						
p2						
p2 p3 p4 p5						
p 4						
р5						
•						

Intermediate Situation

After some merging steps, we have some clusters

	C 1	C2	C 3	C4	C 5
<u>C1</u>					
C2					
C 3					
<u>C4</u>					
C 5					

Proximity Matrix

Intermediate Situation

■ We want to merge the two closest clusters (C2 and C5) and update the proximity matrix.

Proximity Matrix

After Merging

■ The question is "How do we update the proximity matrix?"

	·		C2 U		
		C1	U C5	C3	C4
	C1		?		
C2 U	C 5	?		?	?
	C 3		?		
	<u>C4</u>		?		

	p 1	p2	р3	p4	р5	<u> </u>
p1						
p2						
р3						
p4						
p5						

- MIN
- MAX
- Group Average
- Distance Between Centroids

	p 1	p2	р3	p4	р5	<u> </u>
p1						
p2						
р3						
p4						
р5						

- MAX
- Group Average
- Distance Between Centroids

	р1	p2	р3	p4	p5	<u>.</u>
p1						
p2						
р3						
p4						
p5						

- MIN
- MAX
- Group Average
- Distance Between Centroids

	р1	p2	р3	p4	р5	<u>.</u>
p1						
p2						
p2 p3						
<u>р4</u> р5						
•						

- MIN
- MAX
- Group Average
- Distance Between Centroids

	р1	p2	р3	p4	р5	<u> </u>
p1						
p2						
р3						
p4						
р5						

- MIN
- MAX
- Group Average
- Distance Between Centroids

Cluster Similarity: MIN or Single Link

- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
 - Determined by one pair of points, i.e., by one link in the proximity graph.

	I 1				
11	1.00	0.90	0.10	0.65	0.20 0.50 0.30 0.80 1.00
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
14	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	1.00

Hierarchical Clustering: MIN

Nested Clusters

Dendrogram

Dendrogram: Hierarchical Clustering

 Clustering obtained by cutting the dendrogram at a desired level: each connected component forms a cluster.

Python support for Hierarchical Clustering

class sklearn.cluster.AgglomerativeClustering(n_clusters=2, *,
affinity='euclidean',memory=None, connectivity=None,
compute_full_tree='auto', linkage='ward', distance_threshold=None)

Tuneable parameters are

- n_clusters in hierarchical clustering need to specify a cut-of point
- linkage how the distance between points is defined
- distance_threshold neighboring clusters with greater value than this will not be merged; by controlling this you effectively set the height of the tree

Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Density-Based Clustering Methods

- Clustering based on density (local cluster criterion), such as density-connected points or based on an explicitly constructed density function
- Major features:
 - Discover clusters of arbitrary shape
 - Handle noise
 - One scan
 - Need density parameters
- Several interesting studies:
 - DBSCAN: Ester, et al. (KDD '96)
 - DENCLUE: Hinneburg & D. Keim (KDD '98/2006)
 - OPTICS: Ankerst, et al (SIGMOD '99).
 - CLIQUE: Agrawal, et al. (SIGMOD'98)

Density Based Clustering

■ DBSCAN (Density Based Spatial Clustering of Applications with Noise) is a density based scheme that works well with non spherical clusters.

DBSCAN Algorithm

(http://www2.cs.uh.edu/~ceick/7363/Papers/dbscan.pdf)

- Density = number of points within a specified radius \mathbf{r} (Eps)
- A point is a core point if it has more than a specified number of points (MinPts) within Eps
 - These are points that are at the interior of a cluster
- A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point
 - Greater MinPts and smaller r => Higher Density
- A noise point is any point that is not a core point or a border point.

DBSCAN: Core, Border, and Noise Points

DBSCA

DBSCAN uses these two pamperers (Eps and MinPts) to divide the sample space into 3 different categories:

- Core points: a sample s is a core point IF at least MinPts points are within distance Eps of it (including s).
- Reachable (border) points: a sample t is reachable from s IF point t is within distance Eps from core point s.
- Noise points: All samples not reachable from any other sample is said to be noise points.

DBSCAN

This image extracted from:

Schubert, Erich; Sander, Jörg; Ester, Martin; Kriegel, Hans Peter; Xu, Xiaowei (July 2017). "DBSCAN Revisited, Revisited: Why and How You Should (Still) Use DBSCAN". ACM Trans. Database Syst. **42** (3): 19:1–19:21.

DBSCAN Demo

https://www.youtube.com/watch?v=h53WMIImUuc

Outline Algorithm

- 1. Create a cluster (C) for each set of core points (S)
- 2. Include in C any points reachable from any core point in set S.

DBSCAN: Detailed Algorithm

ALGORITHM 1: Pseudocode of Original Sequential DBSCAN Algorithm

```
Input: DB: Database
   Input: \varepsilon: Radius
   Input: minPts: Density threshold
   Input: dist: Distance function
   Data: label: Point labels, initially undefined
1 foreach point p in database DB do
                                                                                // Iterate over every point
        if label(p) \neq undefined then continue
                                                                                // Skip processed points
2
        Neighbors N \leftarrow \text{RangeQuery}(DB, dist, p, \varepsilon)
                                                                                // Find initial neighbors
3
        if |N| < minPts then
                                                                                // Non-core points are noise
4
            label(p) \leftarrow Noise
            continue
6
        c \leftarrow \text{next cluster label}
                                                                                // Start a new cluster
7
        label(p) \leftarrow c
8
        Seed set S \leftarrow N \setminus \{p\}
                                                                                // Expand neighborhood
9
        foreach q in S do
10
            if label(q) = Noise then label(q) \leftarrow c
11
            if label(q) \neq undefined then continue
12
            Neighbors N \leftarrow \text{RangeQuery}(DB, dist, q, \varepsilon)
13
            label(q) \leftarrow c
14
            if |N| < minPts then continue
                                                                                // Core-point check
15
            S \leftarrow S \cup N
16
```

Above code taken from Schubert et al.

DBSCAN Algorithm (simplified)

- 1. Create a graph whose nodes are the points to be clustered
- 2. For each core-point c create an edge from c to every point p in the ε -neighborhood of c
- 3. Set N to the nodes of the graph;
- 4. If N does not contain any core points terminate
- 5. Pick a core point c in N
- 6. Let X be the set of nodes that can be reached from c by going forward;
 - 1. create a cluster containing X∪{c}
 - 2. $N=N/(X\cup\{c\})$
- 7. Continue with step 4

Note: points that are not assigned to any cluster are outliers;

Parameter estimation

- We first try to establish a value for min_pts and then set a value for ∈
- As a rule of thumb we set $min_pts \ge 2 \times D$ where D is the number of dimensions
- For datasets which are large or are noisy values of $min_pts > 2 \times D$ are appropriate
- Now use the min_pts parameter and vary the values of ∈ until the silhouette measure is maximized.

DBSCAN: Core, Border and Noise Points

Original Points

Point types: core, border and noise

Eps = 10, MinPts = 4

When DBSCAN Works Well

- Resistant to Noise
- Can handle clusters of different shapes and sizes

When DBSCAN Does NOT Work Well

Original Points

- Varying densities
- High-dimensional data

(MinPts=4, Eps=9.75).

(MinPts=4, Eps=9.92)

Advantages

- Automatically finds the number of clusters once the ∈ and min_pts parameters are specified
- Can capture non spherical clusters
- Can capture noise points in dataset

Disadvantages

- Can be slow for large datasets as complexity is $O(n^2)$
- Can produce poor quality solutions when data contains clusters of widely different density
- High dimensional datasets can also result in poor clustering as distances of points to clusters get distorted in space (affects other clustering algorithms as well)

Python support for DBSCAN

Supported by sklearn.dbscan

```
class sklearn.cluster.DBSCAN(eps=0.5, *, min_samples=5, metric='euclidean', metric_params=None, algorithm='auto', leaf_size=30, p=None, n_jobs=None)
```

- Tuneable parameters are eps and min_samples (min_pts)
- Returns *labels*, a one dimensional array of cluster indexes that samples belongs to; noisy samples are flagged by -1

Other Clustering Algorithms

Many other widely used algorithms exist such as:

- SOM (Self Organizing Map)
- EM (Expectation Maximization)
- BIRCH(Balanced Iterative Reducing and Clustering)
- Cascade K means
- etc.