Sub-Group

Let (G1,*) be a group and H, be non-empty subset of G1. If (H,*) is itself is a group then (H,*) is called Sub-group of (G1,*)

eg: Let G= \(\xi\)1,-1,\(\ilde{\chi}\),-\(\ilde{\chi}\) and H=\(\xi\)1,-\(\frac{\chi}{\chi}\). Here Grand H are groups w.x.t. binary ofperation nulliplication and H is a subset of G. Therefore, (H, ·) is a subgroup of (G1,·).

Ex: Let $H = \{0,2,4\} \subseteq Z_6$. Check that $(H,+_6)$ is a subgroup of $(Z_6,+_6)$.

Sof (Z6,+6). Sof Z6={0,1,2,3,4,5}

`	`							
	16	10	1	2	3_	4	5	
	0	0	1	2_	3	4	5	
	1	1_	2	3	4	2	0	
	2	2	3	7	2	٥	1	
	3	3	4	5	0	1	2	
ľ	4	4	5	0	1	2	3	
1	5	5	0	١	2	3	4	

.: (Z6,+6) is a group

H= 50,2,43

+6	0	12	4
O	0	2	4
2	2	4	0
4	04	0	2

The following conditions are to be satisfied in order to prove that it is subgroup

(i) closure: let a, b eH = a+6b eH

0,2 eH =) 0+62 = 2 eH.

(ii) Identity Etement: The row headed by 0 is exactly
Same as initial row.
.: O is the identity element.

(iii) Inverse: 0=0,2=4,4=2 Inverse exist for each element of (H,+6) : (H,+6) is a sub-group of (Z6,+6).

Cosets

let (H,*) be a sub-group (G, *) and a ∈ G

Then the subset:

a* H = \{a*h: hEH}\}
is called a left coset of H in G, and the subset

H*G = \{ h*a: hEH}\}
is called a right coset of H in G.

In General, a* H = H*a, however if G is abelian then [a* H = H*a] Va = G

Ex let $H = \{1, -1\}$ and $G = \{1, -1, i, -i\}$ there (H, *) is a sub-group (G, *).

St? The various left cocets and right cosets of H in Gr are given below-

Left cosels of HinG IXH = {1,-1} = H -1 XH = {-1,1} = H iXH = {i,-i} -iXH = {-i,i}

Fight Cosets of H in by

Hx1 = \{1, -1\} = H

Hx1 = \{-1, 1\} = H

Hx1 = \{i, -i\}

Hxi = \{i, -i\}

Hx-i = \{-i, i\}

Ex Prove that if (H,*) is a sub-group (G,*), then a*H=H
if and only if a EH.

Sol" let a * H = H

Since e ∈ H then a = a + e ∈ a + H

Hence a ∈ H

Conversely, let a & H & Hen a * H & H (H,*) is a cub-group

Now her

=> h = a*(a-1 * h) ∈ a * H

heH ⇒ hea*H H C a x H

Hence a*H=H

S. Prove that the order of any sub-group of a finite group divides the order of the group.

Sol let (61,*) be a finite group of order h and (H, K) be a Sub-group of G of order m.

let a, *H, a2*H,, a3*H, ... ax*H denote Kdistinct Left cosels of H in G such that

G=(a,*H)U(a,*H)U(a,*H)U(a,*H)....U(a,*H) Where all the K Left coset appearing on right hand side are disjoint.

Therefore,

n= m+m+ + K terms

K = n/m = O(G)/O(H)

I comorphism of Group

Let (G1,*) and (G1, A) be two groups. f: G -> G'

Satisfying f(axb) = f(a) Af(b), Va, be G

is called an isomorphism of Goto Gr.

Ex: Consider the Group (R,+) and (R+, x) where R+ denoted the set of positive real numbers. fa: R -> R+, a = R+ is defined by fa(x) = ax.

 $f_{\alpha}(x+y) = \alpha^{x+y} = \alpha^x \times \alpha^y$

=) fa is structure preserving Also, $f_a(x) = f_a(y)$

$$a^{x} = a^{y}$$

ax-y = 1 axy = a .. x-y=0 This shows that for is one - one. From the definition YER+ => There exists a real number x such that y=ax yert => y=ax for some x ek. \Rightarrow $y = f_a(x)$ =) fa is onlo function 1. Ihus (R,+) = (R+, x) Cyclic Group let (G1,*) be a group. If there exists an element at G1 Such that Cy= gam: m'is an integer } i.e. (G1;*) is cyclic, if there exists an element a & G1 Such that every element of G is a power of a and a is called generator of cyclic group. egs- G={1,-1,i,-i} is a group w.r.t. binary operation 'x'. (G,x) is a cyclic group. i is a generator of Gr. Since (139=1 $(i)^{3} = -i$ i2 = -1 (i)'= i G= { i4, i3, i2, i3 = 6 <i>> Similarly (-i) es a generator

i,-i are only generators of Gr.

Proof: let $(G_1, *)$ be a cyclic group is abelian.

Proof: let $(G_1, *)$ be a cyclic group

Generated by a when $x, y \in G_1$ $\Rightarrow x = a^m$ and $y = a^n$ for some integers $m \in A_1$ $= a^m * a^m$ $= a^n * a^m$ $= a^n * a^m$ $= a^n * a^m$

This group have a commutative property. So Every cyclic group is an abelian group.

Ex. (G1,*) is group order 60, find all sub-groups of G1.
Sol The factors of 60 are:

1,2,3,4,5,6,10,12,15,20,30,60Let α be a generator of $(G_{1,*})$ then sub-groups of $(G_{1,*})$ are - $\{e_{3}, \langle \alpha^{2} \rangle, \langle \alpha^{2} \rangle, \langle \alpha^{3} \rangle, \langle \alpha^{4} \rangle, \langle \alpha^{5} \rangle, \langle \alpha^{6} \rangle, \langle \alpha^{10} \rangle, \langle \alpha^{12} \rangle, \langle \alpha^{12} \rangle, \langle \alpha^{15} \rangle, \langle \alpha^{20} \rangle, \langle \alpha^{20} \rangle, \langle \alpha^{60} \rangle$