Visualization for Data Science Task Abstraction

Office hours start this week

- TA Office Hours
 - -Tuesdays in RM 238 at 5pm
 - Wednesdays Online on Zoom at 5pm
 - Saturday Online on Zoom at 2pm
 - Sunday Online on EdStem at 4pm
- Instructor Office Hours
 - − In Person RM 202 from 1 − 2:45pm on Wednesdays

Individual Mindmap exercise - 10 minutes

Make a list of all the keywords you have been exposed to in the class so far. Create a mind map that connects them together.

Analysis framework: Four levels, three questions

- domain situation
 - who are the target users?
- abstraction
 - translate from specifics of domain to vocabulary of vis
 - what is shown? data abstraction
 - why is the user looking at it? task abstraction
- idiom
 - how is it shown?
 - visual encoding idiom: how to draw
 - interaction idiom: how to manipulate
- algorithm
 - efficient computation

Nested model

- downstream: cascading effects
- upstream: iterative refinement

What? **Attributes Datasets** Data Types **→** Attribute Types → Categorical → Attributes → Positions → Grids → Items → Links **→** Data and Dataset Types → Ordered Clusters, **Tables** Geometry Networks & Fields Sets, Lists Trees → Ordinal Items (nodes) Grids Items Items Items Positions Attributes Links **Positions** → Quantitative Attributes Attributes **→** Dataset Types **→** Ordering Direction → Networks → Tables → Fields (Continuous) → Sequential Grid of positions Attributes (columns) Items → Diverging (rows) Cell containing value Attributes (columns) Value in cell → Cyclic → Trees → Multidimensional Table Key 2 Attributes

What?

Why?

How?

Data abstraction: Three operations

• translate from domain-specific language to generic visualization language

- identify dataset type(s), attribute types
- identify cardinality
 - how many items in the dataset?
 - what is cardinality of each attribute?
 - number of levels for categorical data
 - range for quantitative data
- consider whether to transform data
 - guided by understanding of task

Data Abstraction Revisited

City	Condition	Temperature
Calgary	Mainly Clear	-4°C
Charlottetown	Light Snowshower	-6°C
Edmonton		-7°C
Fredericton	Clear	-9°C
Halifax	Light Snow	-6°C
<u>Iqaluit</u>	Clear	-28°C
Montréal	Mainly Clear	-9°C
Ottawa (Kanata - Orléans)	Mainly Clear	-10°C
Prince George	Fog	-6°C
Québec	Mainly Clear	-15°C
Regina	Mist	-13°C
Saskatoon	Mist	-11°C
St. John's	Mostly Cloudy	-5°C
Thunder Bay	Light Snow	0°C
<u>Toronto</u>	Cloudy	-1°C
Vancouver	Mainly Clear	7°C
Victoria	Mainly Clear	5°C
Whitehorse	Mostly Cloudy	-12°C
Winnipeg	Mist	-6°C
<u>Yellowknife</u>	Light Snow	-13°C

Data Model

- Mathematical Abstraction
- Variable data types in programming languages

Conceptual Model

- Mental construction
- Based on an understanding of tasks

Data Model

- floats
- 32.52, 54.06, 14.35, ...

Conceptual Model

temperature

Data Abstraction

- task: forecasting the weather continuous to 2 significant figures: quantitative
- task: deciding if bath water is ready hot, warm, cold: ordinal
- task: decide if I should leave the house today above freezing, below freezing: categorical

Learning Outcomes

- Describe why task abstraction is important
- Explain the nested design model
- List the various actions and targets
- Analyze a dataset using both the task and data abstraction frameworks presented so far

From domain to abstraction compare two group

Epidemiologist studying the spread of a new strain of influence

Task: Contrast the prognosis of patients who were intubated in the ICU more than one more after exposure to patients hospitalized within the first week.

Anthropologist studying ancient African kingdoms

Task: Explore the marriage customs that existed in the Benin and Shona kingdoms using folklore and written traditions reasons why similarities between the marriage ceremonies in the Benin and Shona kingdoms. within the Benin

Pastor studying the applications of the parables of Jesus

Task: Perform an exegesis that elucidates the different meaning of the parable of the Lost Son in the gospel of Luke

Biologist studying immune system response

Task: See if the results for tissue samples treated with LL-37 match up with the ones without the peptide.

From domain to abstraction

- domain characterization: details of application domain
 - -group of users, target domain, their questions & data
 - varies wildly by domain
 - must be specific enough to get traction
 - domain questions/problems
 - break down into simpler abstract tasks
- abstraction: data & task
 - map what and why into generalized terms
 - identify tasks that users wish to perform, or already do
 - find data types that will support those tasks
 - possibly transform /derive if need be

Design process

Whose Task: Designer vs. User

From Tasks to Tools – A continuum

- Specific tools
 - Narrow use: typically designed for a specific context
 - Designer has customized the tool in such a way that the user cannot change it
 - Limited design choices
 - High stakes
- General tools
 - Users have a lot of power

download the app

Task abstraction: Actions and targets

very high-level pattern

- actions3 levels
 - analyze
 - high-level choices
 - search
 - find a known/unknown item
 - query
 - find out about characteristics of item

- targets
 - what is being acted on

- {action, target} pairs
 - -discover distribution
 - -compare *trends*
 - -locate *outliers*
 - -browse *topology*

Actions: Analyze

- consume
 - –discover vs present
 - classic split
 - aka explore vs explain
 - -enjoy
 - newcomer
 - aka casual, social
 - https://namerology.com/baby-name-grapher/
- produce
 - -annotate, record
 - -derive
 - crucial design choice

→ Consume

→ Discover

→ Present

→ Enjoy

- → Produce
 - → Annotate

→ Record

→ Derive

Derived attributes

- derived attribute: compute from originals
 - simple change of type
 - acquire additional data
 - complex transformation

 $trade\ balance = exports - imports$

Derived Data

Original Data

Actions: Search

- what does user know?
 - target, location
- lookup
 - ex: word in dictionary
 - alphabetical order
- locate
 - ex: keys in your house
 - ex: node in network
- browse
 - ex: books in bookstore
- explore
 - ex: find cool neighborhood in new city

→ Search

	Target known	Target unknown
Location known	• • • Lookup	• • • Browse
Location unknown	C • Locate	Explore

https://bl.ocks.org/heybignick/3faf257bbbbc7743bb72310d03b86e

Actions: Query

how much of the data matters?

- -one: identify
- -some: compare
- all: summarize

Actions

independent choices for each of these three levels

- analyze, search, query
- mix and match

& Actions

→ Analyze

→ Consume

→ Search

	Target known	Target unknown
Location known	·.·· Lookup	·.· Browse
Location unknown	₹ • Locate	₹ ! Explore

Query

Task abstraction: Targets

- **All Data**
 - → Trends
- → Outliers
- → Features

- **Attributes**
 - → One
 - → Distribution
 - → Extremes outliers _

- → Many
 - → Dependency → Correlation

→ Similarity

- **Network Data**
 - → Topology

→ Paths

- **Spatial Data**
 - → Shape

Abstraction

- these {action, target} pairs are good starting point for vocabulary
 - -but sometimes you'll need more precision!
- rule of thumb
 - systematically remove all domain jargon
- interplay: task and data abstraction
 - need to use data abstraction within task abstraction
 - to specify your targets!
 - but task abstraction can lead you to transform the data
 - iterate back and forth
 - first pass data, first pass task, second pass data, ...

Why?

Targets

Why?

- **Analyze**
 - → Consume

- → Produce
 - → Annotate

Search

- {action, target} pairs
 - -discover distribution
 - -compare trends
 - -locate outliers
 - -browse topology

	Target known	Target unknown
Location known	·.·· Lookup	• Browse
Location unknown	₹ Ocate	<: O: Explore

Query

. . ..

→ Many

Attributes

- **Network Data**
 - → Topology

→ Paths

- **Spatial Data**
 - → Shape

How?

Encode

→ Arrange

→ Express

→ Separate

→ Order

→ Use

What?
Why?
How?

→ Map

from categorical and ordered attributes

→ Color

→ Size, Angle, Curvature, ...

→ Shape

→ Motion

Direction, Rate, Frequency, ...

Manipulate

Facet

Reduce

→ Change

Juxtapose

→ Filter

→ Select

→ Partition

Aggregate

→ Navigate

→ Superimpose

→ Embed

THE SQUIRREL CENSUS

DATA

NYC OPEN DATA WEEK MULTI-PARK SQUIRREL COUNT

The Squirrel Census is a multimedia science, design, and storytelling project focusing on the Eastern gray (Sciurus carolinensis). They count squirrels and present their findings to the public.

On March 1, 2020 — with the help of 72 volunteer Squirrel Sighters, as well as NYC Open Data — they performed a sample count in 24 New York City parks, and gathered other material data. Four hundred and thirty-three squirrel sightings were tallied. The methodology was less focused on total squirrel numbers per hectare and more attuned to the stories — of squirrels, humans, and parks.

The data is organized into three sets below.

USER GUIDE

PARK DATA SQUIRREL DATA

STORIES

Data and Task Abstraction Group Exercise – 20 minutes

- Dataset
- https://www.thesquirrelcensus.com/data

map what and why into generalized terms

- identify tasks that users wish to perform, or already do
- find data types that will support those tasks (possibly transform /derive if need be)