2020年度 医用工学概論 試験範囲について

下記の部分を中心に出題するので、授業資料、練習問題をよく確認しておいて下さい。 下記の内容に限らず、練習問題に出てくる**物理量、単位**や**用語**は意味も含めて理解しておいてください。数値が答えになり、単位が必要な場合は必ず単位をつけて回答してください。

第1回 オリエンテーション

出題しません

第	2	叵

<u> 20 '</u>								
	生体組織の特異的な性質について、代表的な5つの性質及びその内容							
	生体の電気的、機械的な特性を表す 物性値 およびそれぞれの意味							
	生体の組織ごとの上記の物性値の違いと傾向(表)							
	マクロショック、ミクロショックにおける心室細動に閾値							
第	第3回							
	周期、周波数など、波の性質を表す数値とその意味							
	生体の組織ごとの音に対する物性値の違いと傾向(表)							
	超音波の生体作用に関する用語							
	生体内における熱の性質、熱の移動							
	眼球、皮膚、血液の光学的性質と光の波長による影響の違い							
第	第4回							
	電気に関する用語と意味(電流、電圧、電位、電位差、電気抵抗、電圧降下など)							
	オームの法則の式とその意味							
	電気抵抗と抵抗率の式							
	以下の練習問題を解けるようにしておく							
	· 合成抵抗(計算問題)							
	・・キルヒホッフの法則(計算問題)							
	・ ホイートストンブリッジ(計算問題)							
	・ 熱と電力(計算問題)							
第.	<u>5 回</u>							

- □ 電気回路の構成素子の種類と特性を表す単位
 - · R: 電気抵抗、単位: Ωなど
 - ・ 別称も含めて覚えておく
- □ 過渡現象
 - ・ 時定数の意味
 - ・ 練習問題を解けるようにしておく
- □ 微分回路、積分回路の違いと効果について

第6	
	交流電圧、電流の式
	・ 式の形、振幅、位相、角周波数の意味
	実効値の意味と計算、振幅との関係
	以下の練習問題をとけるようにする。
	· RLC 直列回路
	・ 交流回路の電力
	· 共振
第7	<u>' 回</u>
	能動素子と受動素子
	ダイオードとは何か、ダイオードの種類とそれぞれの違い
	トランジスタとは何か
	トランジスタと FET の違い
第8	
	整流回路、平滑化回路
	・ 平滑化の良さを表すリップル率の式
	・ 整流回路、平滑化回路の大まかな形と構成素子
	增幅度、利得
	・ 練習問題を解けるようにする
	フィルタ回路の種類とそれぞれの機能
	・ それぞれの回路の機能と名称、回路の形を見分けられるようにする。
	オペアンプ とは何か、オペアンプ の特徴
	オペアンプを用いた増幅、演算回路
	・ それぞれの回路の機能と名称、回路の形を見分けられるようにする。
<u>第</u> 9	
	論理回路素子の種類と真理値表
	AD、DA 変換とは何か
	サンプリング定理とは何か
Ш	様々な変調方式
	・アナログ変調、パルス変調、デジタル変調について、それぞれ変調された波形を見
///-	分け、名称が答えられるようにする。
	追加資料「トランスデューサまとめ」の内容
	https://naoki-sh.github.io/_pages/documents/me2020/attached/transducer.pdf

第13回

П	記録•	表示装置の	種類と名称	対応周波数の	の傾向	特徴	(表を参昭)
\Box	日山火水	24小衣担ツ	生死 こ 1日70、	/ 1 / L / L / L / X X X V	クリ製用り、	11112	しなる多点と

- □ ソフトウェア、ハードウェアの違い
- □ コンピュータの構成要素(5大要素)
- □ OSとは何か
- □ 記憶装置の種類と名称、それぞれの違いと特徴
- □ インターフェイスの種類と名称
- □ ファイルフォーマットの種類と名称
- □ ネットワークの種類

セキュリティに関しては本授業の試験には出題しません。(国家試験には出題されることがあるので覚えておくこと。)

第14回

- □ ミクロショック、マクロショック、および、最小感知電流
- □ 医療機器のクラス分類、
 - ・ 保護接地の役割について
 - ・ 保護接地用のコンセントについて
- □ 医療機器の装着部の形別区分と適応範囲
 - ・ それぞれの記号、名称および患者漏れ電流(定常状態)
- □ EPR システムとは何か
- □ 非常電源の種類と立ち上がり時間
- □ 電磁的な安全について以下の用語を理解する
 - ・ 電磁妨害を与える性質を表す EMI(Immunity イミュニティ)
 - ・ 電磁妨害によって受ける影響を表す EMS (Emission エミッション)
 - ・ EMI、EMS を共に小さくする「両立性」を意味する EMC

テストの配点について

- · 国家試験形式 4割 (20問各2点)
- 選択問題 約2割
- · 記述問題 約2割
- 計算問題 約2割

注意

- ・ 記述問題、計算問題は部分点を与える可能性があります。
- · 計算問題は途中経過が不明な場合は減点します。必ず途中式または、そのように計算される理由を明記してください。
- ・ 国家試験形式の中にも計算を必要とする問題を一部出題します。