Circuitos Lógicos

Módulo#4

Circuitos Aritméticos e Programáveis

Representação de números com sinal na forma sinal-magnitude.

Representação de números com sinal na forma complemento de 1.

Representação de números com sinal na forma complemento de 2.

Diagrama básico de um processador digital

Processo típico de uma adição binária.

próxima posição)

1ª parcela ——▶	1	0	1	0	1	Armazenado no registrador acumulador
2 ^a parcela — ▶	0	0	1	1	1	Armazenado no registrador B
Soma——▶	1	1	1	0	0	
Carry ──►	0	0	1	1	1	
(Deve ser adicionado à						

Circuito somador paralelo usando somadores completos

A soma aparece nas saidas S₄, S₃, S₂, S₁, S₀.

Mapas de Karnaugh para um somador completo

22	$\overline{C_{IN}}$	C _{IN}
ĀB	0	1
$\bar{A}B$	1	0
AB	0	1
$A\overline{B}$	1	0
- 8	Mana K	noro C

$$\begin{aligned} &\text{Mapa K para S} \\ &\text{S} = \overrightarrow{\text{ABC}}_{\text{IN}} + \overrightarrow{\text{ABC}}_{\text{IN}} + \overrightarrow{\text{ABC}}_{\text{IN}} + \overrightarrow{\text{ABC}}_{\text{IN}} \end{aligned}$$

	$\overline{C_{\text{IN}}}$	C _{IN}
ĀB	0	0
ĀВ	0	1
AB	1	1
$A\overline{B}$	0	1

Mapa K para
$$G_{UT}$$

 $C_{OUT} = BG_{IN} + AC_{IN} + AB$

Circuito de um somador completo.

Somador de quatro bits completo com registradores

Sinal usado para somar os números binários provenientes da memória e armazenar o resultado no acumulador

Problema: propagação do carry

Carry lookdeahead

Gi = Ai . Bi gerador do carry Pi = Ai xor Bi propagador do carry

Si = Ai xor Bi xor Ci = Pi xor Ci

Daí:

C2 = G1 + P1 C1 = G1 + P1 G0 + P1 P0 C0

C3 = G2 + P2 C2 = G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 C0

C4 = G3 + P3 C3 = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0 + P3 P2 P1 P0 C0

1

Carry lookdeahead, por ordem...

Circuitos somadores

Adição de um número positivo (+) com um negativo (-) no sistema complemento de 2.

Subtração (A-B) usando o sistema complemento de 2. Os bits do subtraendo (B) são invertidos e C0 = 1 para gerar o complemento de 2 de um número positivo (+) com um negativo (-)

Conexão de somadores em cascata para somar dois números decimais de três dígitos.

ALU ou ULA

Unidade lógica e aritmética

ALU ou ULA

ALU 74LS382/HC382

Dois chips ALU 74HC382 conectados com um somador de 8 bits.

Algumas definições ...

- A maioria dos computadores manipulam e armazenam informações e dados binários em grupos de 8 bits. O conjunto de oito bits é denominado 1 byte.
- Um byte pode representar vários tipos de dados / informações. Uma palavra é um grupo de bits que representa uma determinada unidade de informação. O tamanho da palavra pode ser definido como o número de bits na palavra binária em que um sistema digital opera. O tamanho da palavra de um PC é de 8 bytes (64 bits).
- Números em códigos binários frequentemente são divididos em grupos de 4 bits, denominado nibble.

Deteção de erros ... método de paridade

Muitos sistemas digitais empregam métodos para detecção de erros e, por vezes, até para a correção dos mesmos.

Um dos métodos mais simples e mais utilizados para detecção de erros é o <u>Método de Paridade</u>, que requer a adição de um bit extra para cada grupo de dados (códigos).

Neste método, há duas formas possíveis : paridade par e paridade ímpar. Transmissor e receptor devem adotar um deles.

Deteção de erros ...

A transmissão de dados (códigos binários) de um local para outro acontece frequentemente em sistemas digitais. Como exemplos, temos as atividades de armazenamento / recuperação de dados em unidades externas de memória, e a comunicação entre sistemas computacionais através de canais telefônicos.

O ruídos elétricos e flutuações espúrias na tensão, eventos comuns em todos os sistemas eletrônicos, podem causar erros durante a transmissão dos dados.

Deteção de erros ... método de paridade PAR

Método de paridade PAR : o número total de bits em um grupo, incluindo o bit de paridade, deve ser um número par.

Por exemplo, o grupo binário 1011 requer a adição de um bit de paridade 1, formando o novo grupo 11011, que tem um número par de 1s.

Método de paridade ÍMPAR : o número total de bits em um grupo, incluindo o bit de paridade, deve ser um número ímpar.

Por exemplo, o mesmo grupo binário 1011 requer a adição de um bit de paridade 0, formando o novo grupo 01011, que tem um número ímpar de 1s.

PLDs

Dispositivos Lógicos Programáveis

PLD (Programmable Logic Devices): (X) CI semi-dedicado () CI dedicado

Vantagens: espaço ocupado, confiabilidade, facilidade de projeto, tempo de projeto, modularidade

Dec 3:8

Dec 4:16

DISPOSITIVOS LÓGICOS PROGRAMÁVEIS

() CI de uso geral PLD (Programmable Logic Devices): (X) CI semi-dedicado () CI dedicado

Vantagens : espaço ocupado, confiabilidade, facilidade de projeto, tempo de projeto, modularidade

PROM (programmable read-only memory) - matriz de ANDs fixa / matriz de ORs programável

pró : estrutura aproveitável para 6 < n < 10, onde n é o no. de

variáveis de entrada

contra : para n = 10 são 1024 mintermos/portas AND e muitos não serão

necessários

PLA (programmable logic array) - matriz de ANDs programável / matriz de ORs programável FPLA (field- programmable logic array)

laboriosa

: no. de mintermos < 2ⁿ → n maior com os ANDs programáveis : maior flexibilidade na programação (ANDs e ORs programáveis) pró contra : exige circuitos adicionais para a programação da matriz OR contra : eleboração de algoritmos de programação pode ser complexa e

PAL

PLA (programmable logic array) - matriz de ANDs programável / matriz de ORs programável FPLA (field- programmable logic array)

pró : no. de mintermos < $2^n \rightarrow n$ maior com os ANDs programáveis pró : maior flexibilidade na programação (ANDs e ORs programáveis) contra : exige circultos adicionáis para a programação de matriz OR contra : efeboração de algoritimos de programação pode ser comptexa e laborasa.

PAL(0) (programmable-array logic device) - matriz de ANOs programável / matriz de ORs fixa

pró mesma flexibilidade da FPLA nos circuitos de entrada

prò : baixo custo prò : arquitetura flexival

PLA

pró : no. de mintermos < 2ⁿ → n maior com os ANDs programáveis
pró : maior flexibilidade na programação (ANDs e ORs programáveis)
contra : exige cincultos adicionais para a programação da matriz OR
contra : eleboração de algoritmos de programação pode ser complexa e
laboriosa

PAL(D) (programmable-array logic device) - matriz de ANDs programável / matriz de ORs fixa

pró : mesma flexibilidade da FPLA nos circuitos de entrada

pró : baixo custo
pró : arquitetura flexivel

Leitura indicada

Maini, A.K. "Digital Electronics - Principles and Integrated Circuits"

- a) Sec. 6.1 6.10, pgs. 203 234
- b) Sec. 11.1 11.11, pgs. 423 462

Arithmetic Circuits

LEARNING OBJECTIVES

Programmable Logic Devices

LEARNING OBJECTIVES

- Advantages and disadvantages programmable logic devices. Using ROM as a PLD. Introduction to different per logic devices.

