P. Maurer ENS Rennes

Leçon 142. PGCD et PPCM, algorithmes de calcul. Applications.

Devs:

- Critère d'Eisenstein
- Décomposition de Dunford

Références:

- 1. Gourdon, Algèbre
- 2. Perrin, Cours d'algèbre
- 3. Combes, Algèbre et géométrie
- 4. Saux-Picart, Cours de calcul formel : algorithmes fondamentaux
- 5. Colmez, Eléments d'analyse et d'algèbre
- 6. Objectif Agrégation

On se donne un anneau A unitaire, commutatif et intègre, et k un corps.

1 PGCD et PPCM dans un anneau factoriel

1.1 Généralités

Définition 1. On note A^{\times} le groupe des inversibles de A, aussi appelés unités.

Définition 2. Soit $a,b \in A$. On dit que a divise b si il existe $r \in A$ tel que b = ar. Un élément $d \in A$ est appelé diviseur commun de $n_1, \ldots, n_m \in A$ si d divise n_i pour tout i. Un élément $m \in A$ est appelé multiple commun de $n_1, \ldots, n_m \in A$ si n_i divise m pour tout i.

Définition 3. Un élément $p \in A$ est dit irréductible si p n'est ni nul ni inversible et si $p \mid ab \Longrightarrow p \mid a$ ou $p \mid b$ pour tout $a,b \in A$.

Définition 4. On dit que $a, b \in A$ sont associés s'il existe $u \in A^{\times}$ tel que a = ub. On montre que a et b sont associés si et seulement si (a) = (b).

Définition 5. Soit A un anneau intègre. On dit que A est factoriel si tout élément $a \in A$ peut s'écrire, de manière unique à permutation de facteurs près, de la forme :

$$a = u p_1^{\alpha_1} \cdots p_\ell^{\alpha_\ell}$$

 $O\dot{u} \ u \in A^{\times} \ et \ p_1, \dots, p_{\ell} \in A \ sont \ irréductibles \ et \ \alpha_1, \dots, \alpha_{\ell} \in \mathbb{N}.$

Exemple 6. $\mathbb{Z}[i]$ est factoriel. $\mathbb{Z}[i\sqrt{5}]$ n'est pas factoriel car $3 \times 3 = (2 + i\sqrt{5})(2 - i\sqrt{5})$.

Dans ce qui suit, on suppose que A est factoriel.

Définition 7. Soit $a, b \in A$, écrit sous la forme $a = u \prod p^{v_p(a)}$ et $b = v \prod p^{v_p(b)}$.

- On appelle plus petit multiple commun de a et b l'élément $ppcm(a, b) := \prod_{n \in \{v_p(a), v_p(b)\}} vpcm(a, b)$
- On appelle plus grand diviseur commun de a et b l'élément $\operatorname{pgcd}(a,b) := \prod_{p \in p(v_p(a), v_p(b))}$

Le ppcm et le pgcd sont définis à un inversible près.

Remarque 8. Le ppcm et le pgcd peuvent ne pas exister si l'anneau n'est pas factoriel. Par exemple, dans $\mathbb{Z}[i\sqrt{5}]$, 3 et $2+i\sqrt{5}$ n'ont pas de ppcm tandis ce que 9 et $3(2+i\sqrt{5})$ n'ont pas de pgcd.

1.2 Contenu d'un polynôme

Définition 9. Pour $P \in A[X]$ non nul, on appelle contenu de P, noté c(P) le plus grand diviseur commun de ses coefficients. L'élément c(P) est défini modulo A^{\times} (à un inversible près).

Un polynôme est dit primitif si c(P) = 1.

Lemme 10. (Gauss) On a c(PQ) = c(P) c(Q) modulo A^{\times} .

Théorème 11. Si A est factoriel, A[X] est factoriel.

Développement 1 :

Théorème 12. (Critère d'Eisenstein). Soit A un anneau factoriel. On note K = Frac(A). Les polynômes de A[X] irréductibles sont :

- i. Les constantes $p \in A$ irréductibles dans A
- ii. Les polynômes de degré plus grand que 1 primitifs et irréductibles dans K[X]

Soit $P = \sum_{i=1}^{n} a_i X^i \in A[X]$, et p un élément irréductible de A tel que $p \nmid a_n$, $p^2 \nmid a_0$ et $p \mid a_i$ pour tout $i \in [0, n-1]$. Alors P est irréductible dans K[X].

Application 13. Le polynôme cyclotomique $\Phi_{\mathbb{Q},p}(X) = \prod_{\zeta \in \mu_p^*} (X - \zeta) = \sum_{i=1}^{p-1} X^i$ est

irréductible sur $\mathbb Q$, où p est un nombre premier et μ_p^* désigne l'ensemble des racines primitives $p^{\text{èmes}}$ de l'unité.

2 Section 2

1.3 Cas des anneaux principaux

Définition 14. On dit que A est principal si tout idéal de A est principal, c'est-à-dire engendré par un seul élément.

Exemple 15. \mathbb{Z} et k[X] sont des anneaux principaux.

Théorème 16. (Théorème de Bézout)

Soit A un anneau principal et $a, b \in A$. On note $d = \operatorname{pgcd}(a, b)$. Alors (a) + (b) = (d). Autrement dit, il existe $u, v \in A$ tels que au + bv = d.

Corollaire 17. Soit A un anneau principal et $a, b \in A \setminus \{0\}$ premiers entre eux. Alors (a) + (b) = (1), i.e il existe $u, v \in A$ tels que au + bv = 1.

Remarque 18. Le théorème de Bézout est mit en défaut dans un anneau factoriel non principal. Par exemple, l'anneau k[X,Y] est factoriel et X et Y sont premiers entre eux, mais on a $(X) + (Y) = (X,Y) \neq (1)$.

Exemple 19. (Lemme des noyaux)

Soit E un k-espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$. Soit $P_1, \ldots, P_r \in K[X]$ deux à deux premiers entre eux. Alors $\operatorname{Ker} P(f) = \operatorname{Ker} P_1(f) \oplus \cdots \oplus \operatorname{Ker} P_r(f)$.

Développement 2 :

Proposition 20. Soit $f \in \mathcal{L}(E)$ et $F \in k[X]$ un polynôme annulateur de f. Soit $f = \beta M_1^{\alpha_1} \cdots M_s^{\alpha_s}$ la décomposition en facteurs irréductibles de k[X] du polynôme F.

Pour $i \in [\![1,s]\!]$, on note $N_i = \operatorname{Ker} M_i^{\alpha_i}(f)$. On a alors $E = N_1 \oplus \cdots \oplus N_s$, et pour tout $i \in [\![1,s]\!]$, la projection sur N_i parallèlement à $\bigcap N_j$ est un polynôme en f.

$$1 \le j \le s$$
 $j \ne i$

Théorème 21. (Réduction de Dunford)

Soit $f \in \mathcal{L}(E)$ un endomorphisme dont le polynôme caractéristique χ_f est scindé sur k. Alors il existe un unique couple $(d,n) \in \mathcal{L}(E)^2$ tel que

- 1. Les endomorphismes d et n commutent et d + n = f.
- 2. L'endomorphisme d est diagonalisable et l'endomorphisme n est nilpotent.

De plus, les endomorphismes d et n sont des polynômes en f.

2 Algorithmes de calcul dans un anneau euclidien

2.1 Obtention du PGCD et des relations de Bézout

Définition 22. Un anneau intègre A est dit euclidien si il existe une application f: $A \setminus \{0\} \to \mathbb{N}$ telle que pour tout $(a,b) \in A \times A \setminus \{0\}$, il existe un couple $(q,r) \in A^2$ vérifiant a = bq + r et (r = 0 ou f(r) < f(b)).

Proposition 23. Si A est euclidien, le couple (q,r) obtenu pour tout $(a,b) \in A \times A \setminus \{0\}$ ci-dessus est unique.

Exemple 24. L'anneau \mathbb{Z} muni de l'application f(n) = |n| est euclidien. L'anneau k[X] muni de l'application $f(P) = \deg(P)$ est euclidien.

Théorème 25. (Algorithme d'Euclide)

Soit a et b deux éléments non nuls d'un anneau euclidien A, soit $(r_i)_i$ la suite d'élements définie par $r_0 = a$, $r_1 = b$, puis, pour $r \ge 2$, $r_i = \operatorname{rem}(r_{i-2}, r_{i-1})$, où $\operatorname{rem}(x, y)$ désigne la fonction qui a (x, y) associe le reste dans la division de x par y dans A.

Alors la suite $(r_i)_i$ est finie : il existe un entier n+1 pour lequel $r_{n+1}=0$ et $\operatorname{pgcd}(a,b)=r_n$.

Proposition 26. En gardant les mêmes notations, on a $n \le 2\log_2(a) + 1$. En particulier, le nombre de divisions à réaliser pour calculer $\operatorname{pgcd}(a,b)$ est majoré par $2\log_2(a)$.

Proposition 27. Le calcul du pgcd de a et b par l'algorithme d'Euclide a une complexité de $O(\log(a)\log(b))$ opérations binaires, dans le pire des cas.

Exemple 28. $\operatorname{pgcd}(X^m - 1, X^k - 1) = X^{\operatorname{pgcd}(m,k)} - 1$

Théorème 29. (Algorithme d'Euclide étendu) $Si\ a,b\in A\setminus\{0\}$, on définit :

$$W_0 = \begin{pmatrix} a \\ 1 \\ 0 \end{pmatrix}, W_1 = \begin{pmatrix} b \\ 0 \\ 1 \end{pmatrix}, W_i = \begin{pmatrix} r_i \\ u_i \\ v_i \end{pmatrix}$$

Où pour $i \geq 2$, r_i est le reste de la division euclidienne (q_i, r_i) de r_{i-2} par r_{i-1} , u_i et v_i étant définis par $u_i = u_{i-2} - q_i u_{i-1}$ et $v_i = v_{i-2} - q_i v_{i-1}$.

Alors pour tout i, $r_i = au_i + bv_i$: en particulier, $pgcd(a, b) = au_n + bv_n$, où n est le plus petit indice pour lequel $r_{n+1} = 0$.

2.2 Théorème chinois et résolution effective

Théorème 30. (Théorème chinois)

Soit I et J des idéaux de A tels que I+J=A. L'application φ : $\begin{cases} A/I\cap J \to (A/I)\times (A/J)\\ \hat{x} &\mapsto (\overline{x},\check{x}) \end{cases}$ est un isomorphisme d'anneau.

Corollaire 31. Soit A un anneau principal, $m \in A$ et $n \in A$ premiers entre eux. Considérons $u \in A$, $v \in A$ tels que $1 = u \, m + v \, n$. L'application ψ : $\begin{cases} A/mnA & \to & (A/mA) \times (A/nA) \\ \hat{x} & \mapsto & (\overline{x}, \widecheck{x}) \end{cases}$ est un isomorphisme d'anneau.

Applications 3

L'isomorphisme réciproque associe à $(\bar{a}, \check{b}) \in (A/mA) \times (A/nA)$ la classe $\hat{x} \in A/mnA$ de x = vna + umb.

Remarque 32. Si m et n sont premiers entre eux, le corollaire montre que le système

$$\begin{cases} k \equiv a \pmod{mA} \\ k \equiv b \pmod{nA} \end{cases}$$

a une unique solution modulo mnA. Si A est euclidien, on peut déterminer une relation de Bézout via l'algorithme d'Euclide pour obtenir une solution x. Les autres solutions s'obtiennent en ajoutant à x un multiple de mn.

Exemple 33. Le système de congruences dans \mathbb{Z} $\begin{cases} x \equiv 2 \pmod{4} \\ x \equiv 3 \pmod{5} \\ x \equiv 1 \pmod{9} \end{cases}$ a pour solutions $x = x \equiv 1 \pmod{9}$

3 Applications

3.1 Résolution d'équations diophantiennes

Proposition 34. Soit $a,b \in \mathbb{Z}$. L'équation ax = b admet des solutions si et seulement si $a \mid b$, et dans ce cas, l'unique solution est donnée par $x = \frac{b}{a}$.

Proposition 35. Soit $a,b \ge 2$ deux entiers premiers entre eux. L'équation ua - vb = 1 admet pour uniques solutions les couples (u+kb,v+ka) où le couple (u,v) est donné par le théorème de Bézout et k est un entier relatif.

Remarque 36. En pratique, on obtient u et v grâce à l'algorithme d'Euclide.

Exemple 37. L'équation 47u + 111v = 1 a pour solutions (26 + 111k, -11 + 47k) pour $k \in \mathbb{Z}$.

Cadre 38. Soit $n, m \in \mathbb{N}$, $A \in \mathcal{M}_{m,n}(\mathbb{Z})$ et $B \in \mathcal{M}_{m,1}(\mathbb{Z})$. On souhaite résoudre l'équation AX = B.

Proposition 39. On suppose que $A = \operatorname{diag}(d_1, \ldots, d_r, 0, \ldots, 0)$ avec $d_1, \ldots, d_r \in \mathbb{Z}$. Alors l'équation AX = B a des solutions si et seulement si $d_i|b_i$ pour tout $i \in [\![1,r]\!]$ et $b_{r+1} = \cdots = b_m = 0$, et dans ce cas, les solutions sont les n-uplets $\left(\frac{b_1}{d_1}, \ldots, \frac{b_r}{d_r}, k_{r+1}, \ldots, k_n\right)$ avec $k_{r+1}, \ldots, k_n \in \mathbb{Z}$.

Théorème 40. (Invariants de similitude). Soit $A \in \mathcal{M}_{m,n}(\mathbb{Z})$. Il existe une famille (d_1,\ldots,d_r) d'entiers non nuls tels que $d_1|\cdots|d_r$ telle que A soit équivalente à diag $(d_1,\ldots,d_r,0,\ldots,0)$.

Remarque 41. On obtient les invariants de similitude de A de manière algorithmique, sur une méthode similaire au pivot de Gauss, en utilisant des divisions euclidiennes successives.

Proposition 42. Soit $P \in GL_m(\mathbb{Z})$ et $Q \in GL_n(\mathbb{Z})$ tels que PAQ = D, où D est de la forme du théorème 8. Alors X est solution de AX = B si et seulement si $Q^{-1}X$ est solution de $DQ^{-1}X = PB$.

Remarque 43. Ceci donne une méthode de résolution pour les équations diophantiennes linéaires à n variables.

3.2 Une application en théorie des groupes

On considère G un groupe abélien fini.

Définition 44. On appelle ordre d'un élément $g \in G$ et on note $\operatorname{ord}(g)$ le plus petit entier $d \in \mathbb{N}^*$ tel que $g^d = 1$.

Proposition 45. Pour $q \in G$, on a ord $(q) = d \iff q^d = 1$ et $\forall k \in \mathbb{N}^*$ $q^k = 1 \Rightarrow d \mid k$.

Proposition 46.

- 1. Si $x \in G$ est d'ordre a et si $y \in G$ est d'ordre b, et si pgcd(a,b) = 1, alors xy est d'ordre ab.
- 2. Si $a,b \in \mathbb{N}^*$ et si G contient des éléments d'ordre a et b, alors il contient un élément d'ordre $\operatorname{ppcm}(a,b)$.
- 3. Soit N le maximum des ordres des éléments de G. Alors on a $x^N = 1$ pour tout $x \in G$. On dit que N est l'exposant du groupe G.

Définition 47. On appelle caractère linéaire de G un morphisme de groupes $\chi: G \to \mathbb{C}^*$, et on note \hat{G} l'ensemble des caractères linéaires de G.

Proposition 48. Muni du produit $(\chi_1 \chi_2)(g) := \chi_1(g) \chi_2(g)$, l'ensemble \hat{G} des caractères linéaires de G est un groupe commutatif. On l'appelle le groupe dual de G.

Lemme 49. Soit G un groupe abélien fini. Alors G est isomorphe à \hat{G} .

Lemme 50. Soit G un groupe abélien fini. Alors G et \hat{G} ont le même exposant.

Théorème 51. (Théorème de structure des groupes abéliens finis, existence) Soit G un groupe abélien fini. Alors il existe $r \in \mathbb{N}$ et des entiers N_1, \ldots, N_r , où N_1 est l'exposant de G et qui vérifient $N_{i+1}|N_i$ pour tout $i \le r-1$, et qui sont tels que

$$G \simeq \prod_{i=1}^r \mathbb{Z}/N_i \mathbb{Z}.$$