Empirical Methods for Policy Evaluation

Matteo Bobba

Toulouse School of Economics (TSE)

TSE PhD Program (MRes) Fall 2025

Difference-in-Differences and Event Studies (5 Classes)

- Two-way fixed effect regressions
 - DID ≠ TWFE
 - Event Study regressions
 - Heterogeneity-robust DID estimators
- Application
 - A quick recap on job search models
 - ⇒ Informality, job search, and schooling investments (Bobba et al, IER 2022)

$\mathsf{DID} \neq \mathsf{TWFE}$

Groups and Time Periods

- ullet We consider observations that can be divided into G groups and T periods
- \bullet For every $(g,t) \in \{1,...,G\} \times \{1,...,T\} \colon = \mathsf{nb}$ of obs in group g at period t
 - ⇒ For simplicity, we assume hereafter balanced panel of groups:

For all
$$(g,t) \in \{1,...,G\} \times \{1,...,T\}, N_{g,t} > 0$$

- Panel/repeated cross-section data set where groups are, e.g.
 - ⇒ Individuals, firms, counties, etc.
 - ⇒ Cross-section dataset where cohort of birth plays the role of time
 - \Rightarrow One may have $N_{g,t}=1$, e.g. b/c group=individual or a firm

Treatment and Design

- $D_{g,t} \in \mathbb{R}^+$: treatment of group g and at period t
- \Rightarrow Staggered adoption design: $D_{g,t}$ increases only once, constant otherwise
 - In some cases the treatment may vary across individuals within a group
 - Fuzzy DID, not considered here
- \Rightarrow We assume that $D_{q,t}$ is constant within g

Potential Outcomes, SUTVA, and Covariates

- Let $(d_1,...,d_T)$ denote a treatment trajectory
- Corresponding potential outcomes: $Y_{g,t}(d_1,...,d_T)$
- Then observed outcome: $Y_{g,t} = Y_{g,t}(D_{g,1},...,D_{g,T})$
- ⇒ We maintain the usual SUTVA:

$$(Y_{g,1}(d_1,...,d_T),...,Y_{g,T}(d_1,...,d_T)) \coprod (D_{g',t'})_{g'\neq g,t'=1,...,T}, \forall (g,t,d_1,...,d_T)$$

• For any variable $X_{q,t}$, let $\boldsymbol{X}_q = (X_{q,1},...,X_{q,T})$ and $\boldsymbol{X} = (\boldsymbol{X}_1,...,\boldsymbol{X}_G)$.

The Pervasiveness of Two-way Fixed Effect Regressions

⇒ Researchers often consider two-way fixed effects (TWFE) models of the kind:

$$Y_{g,t} = \alpha_g + \gamma_t + \beta_{fe} D_{g,t} + \epsilon_{g,t}.$$

- 26 out of the 100 most cited 2015-2019 AER papers estimate TWFE
- Also commonly used in other social sciences
- Other popular method: event-study regressions=dynamic version of TWFE

TWFE Parameters

- ullet $\widehat{eta}_{fe}=$ OLS coeff. of $D_{g,t}$ in a reg. of $Y_{g,t}$ on group FEs, time FEs and $D_{g,t}$
- $oldsymbol{\widehat{eta}_{fd}}=$ OLS coeff. of $D_{q,t}-D_{q,t-1}$ in a reg. of $Y_{g,t}-Y_{g,t-1}$ on time FEs and $D_{a,t}-D_{a,t-1}$
- ullet $\widehat{eta}_{f_e}^X$, when include covariates $X_{g,t}$ in the regression
- \Rightarrow We first focus on β_{fe} , but we will extend the results to β_{fd} and β_{fe}^{X}

The Simplest Setup, 2x2 Case

- ullet Two groups $g \in \{s,n\}$ and two time periods $t \in \{1,2\}$
- ullet $D_{g,t} \in \{0,1\}$, such that $D_{s,1} = D_{n,1} = 0$, $D_{s,2} = 1$, and $D_{n,2} = 0$
- ullet $Y_{q,t}$ is the observed outcome in location g at period t
- ullet $Y_{g,t}(0),Y_{g,t}(1)$ are potential outcomes without and with treatment

The Parallel (//) Trend Assumption

In the absence of treatment, same average outcome evolution across groups

$$\mathbb{E}[Y_{s,2}(0) - Y_{s,1}(0)] = \mathbb{E}[Y_{n,2}(0) - Y_{n,1}(0)]$$

ullet Weaker than imposing that s and n have same untreated-outcome levels

$$\mathbb{E}[Y_{s,t}(0)] = \mathbb{E}[Y_{n,t}(0)]$$
 for all t

Also weaker than imposing no variation in average untreated outcomes

$$\mathbb{E}[Y_{g,2}(0)] = \mathbb{E}[Y_{g,1}(0)]$$
 for all g

⇒ Appeal of // trends: has testable implications (no pre-trends)

Illustration of Parallel-trends

In the Simplest Set-up, TWFE = DID

• Under // trends, DID is unbiased for the ATE in location s at period 2

$$\begin{split} \mathbb{E}(DID) &= \mathbb{E}[Y_{s,2} - Y_{s,1} - (Y_{n,2} - Y_{n,1})] \\ &= \mathbb{E}[Y_{s,2}(1) - Y_{s,1}(0) - (Y_{n,2}(0) - Y_{n,1}(0))] \\ &= \mathbb{E}[Y_{s,2}(1) - Y_{s,2}(0)] + \mathbb{E}[Y_{s,2}(0) - Y_{s,1}(0)] - \mathbb{E}[Y_{n,2}(0) - Y_{n,1}(0)] \\ &= \mathbb{E}[Y_{s,2}(1) - Y_{s,2}(0)] \end{split}$$

• This result extends beyond the 2x2 case as long as

$$D_{q,t} = 1\{t > T_0\}D_q$$
, with $T_0 \ge 1, D_q \in \{0,1\}$

⇒ The before-after diff is combined with the treated-control diff

Additive Separability of TWFE

Static case

$$D_{g,t} \in R^+ \text{and for all } (g,t,d_1,...,d_T), Y_{g,t}(d_1,...,d_T) = Y_{g,t}(d_t)$$

- Parallel trends: for all $t \geq 2$, $E[Y_{g,t}(0) Y_{g,t-1}(0)] = \gamma_t$
- It follows that: $E[Y_{g,t}(0)-Y_{g,1}(0)]=\gamma_t$, and let $\alpha_g=E[Y_{g,1}(0)]$
- \Rightarrow Then, $E[Y_{q,t}(0)] = E[Y_{q,1}(0)] + E[Y_{q,t}(0) Y_{q,1}(0)] = \alpha_q + \gamma_t$

Parameter of Interest

Average treatment response

$$\Delta^{TR} = \frac{1}{\sum_{g,t} D_{g,t}} \sum_{g,t} (Y_{g,t}(D_{g,t}) - Y_{g,t}(0))$$

- Then, let $\delta^{TR} = E[\Delta^{TR}]$. With a binary D, $\delta^{TR} = \mathsf{ATT}$
- Analogously, in (g, t):

$$\Delta_{g,t} = \frac{1}{D_{g,t}} \left[Y_{g,t}(D_{g,t}) - Y_{g,t}(0) \right] \text{ if } D_{g,t} \neq 0$$

Then:

$$\delta^{TR} = E\left[\sum_{(g,t):D_{g,t}>0} W_{g,t} \Delta_{g,t}\right], \quad \text{with } W_{g,t} = \frac{D_{g,t}}{\sum_{(g,t):D_{g,t}>0} D_{g,t}}$$

$\beta_{fe} = \text{weighted sum of ATEs under } / / \text{ trends}$

- ullet Let $\epsilon_{fe,g,t}=$ resid. of the reg. of $D_{g,t}$ on a constant, group FEs, and time FEs
- It can be shown that:

$$\beta_{fe} = E \left[\sum_{(g,t):D_{g,t}>0} W_{fe,g,t} \Delta_{g,t} \right]$$

- $\bullet \ W_{fe,g,t} = \frac{D_{g,t}\epsilon_{fe,g,t}}{\sum_{(g,t):D_{g,t}>0} D_{g,t}\epsilon_{fe,g,t}}$
- In general, $\beta_{fe} \neq \delta^{TR}$ because $W_{fe,g,t} \neq W_{g,t}$
- \Rightarrow We may have $W_{fe,g,t} < 0$: if $\epsilon_{fe,g,t} < 0$ while $D_{g,t} > 0$
- $\Rightarrow E\left[\widehat{\beta}_{fe}\right] \text{ may be } <0 \text{ even if } Y_{g,t}(d)>Y_{g,t}(0) \text{ for all } (g,t) \text{ and } d>0$

Characterizing (g,t) cells weighted negatively by β_{fe}

- Let $D_{g,.}$ =average treat. rate of g and $D_{.,t}$ =average treat. rate at t
- ullet Under // trends, $W_{fe,g,t}$ is decreasing with $D_{g,.}$ and $D_{.,t}$
- β_{fe} more likely to assign negative weight to:
 - ⇒ Periods with many vs few treated groups
 - ⇒ Groups treated for many vs few periods
- ullet In staggered adoption designs $(D_{g,t} \geq D_{g,t-1})$, $W_{fe,g,t} < 0$ more likely
 - In the last periods and for groups adopting the treatment earlier
 - ⇒ Remove negative weights by removing always treated groups

Forbidden Comparison 1: Switchers Vs. Always Treated

- ullet D binary and design staggered: $\widehat{eta}_{fe}=$ weighted avg of two types of DIDs:
 - ullet DID_1 : comparing s from untreated to treated to n untreated at both dates
 - DID_2 : comparing switching group s to group a treated at both dates.
- \Rightarrow Negative weights in β_{fe} originate from the second type of DIDs

Forbidden Comparison 1: An Example

• Group e treated at t=2, group ℓ treated at t=3. Then:

$$\widehat{\beta}_{fe} = \frac{1}{2} \times \underbrace{DID_{e-\ell}^{1-2}}_{DID_1} + \frac{1}{2} \times \underbrace{DID_{\ell-e}^{2-3}}_{DID_2}$$

At periods 2 and 3, e's outcome = treated potential outcome, so

$$Y_{e,3} - Y_{e,2} = Y_{e,3}(1) - Y_{e,2}(1) = Y_{e,3}(0) + \Delta_{e,3} - (Y_{e,2}(0) + \Delta_{e,2}).$$

ullet On the other hand, group ℓ only treated at period 3, so

$$Y_{\ell,3} - Y_{\ell,2} = Y_{\ell,3}(0) + \Delta_{\ell,3} - Y_{\ell,2}(0)$$

Forbidden Comparison 1: An Example (continued)

$$\Rightarrow E\left[DID_{\ell-e}^{2-3}\right] = E\left[Y_{\ell,3} - Y_{\ell,2} - (Y_{e,3} - Y_{e,2})\right] = E\left[\Delta_{\ell,3} + \Delta_{e,2} - \Delta_{e,3}\right]$$

- Note: if $\Delta_{e,2} = \Delta_{e,3}$, $E[DID_{\ell-e}^{2-3}] = E[\Delta_{\ell,3}]$
- More generally, if $\Delta_{a,t} = \Delta_{a,t'}$, $W_{fe,a,t} \geq 0$. But restrictive!
- Note:

$$Y_{g,t}(0) - Y_{g,t-1}(0) = Y_{g,t}(1) - Y_{g,t-1}(1) \iff \Delta_{g,t} = \Delta_{g,t-1}$$

• This assumption is actually equivalent to time-invariant treat. effects

Forbidden Comparison 1: Graphical Illustration

Forbidden Comparison 2: Switching more vs Switching less

- Suppose the treatment D is not binary
- \bullet $\widehat{\beta}_{fe} =$ (group m whose D increases more) (group ℓ whose D increases less)
- ullet In fact, with two groups m and ℓ and two periods,

$$\widehat{\beta}_{fe} = \frac{Y_{m,2} - Y_{m,1} - (Y_{\ell,2} - Y_{\ell,1})}{D_{m,2} - D_{m,1} - (D_{\ell,2} - D_{\ell,1})}$$

⇒ This "Wald-DID" estimator may not estimate convex combination of effects

Forbidden Comparison 2: An Example

- \bullet Assume m goes from 0 to 2 units of treatment while ℓ goes from 0 to 1
- \Rightarrow Denominator of the Wald-DID is 2-0-(1-0)=1
 - \bullet Potential outcomes: $Y_{m,t}(d) = Y_{m,t}(0) + \delta_m d$ and $Y_{\ell,t}(d) = Y_{m,t}(0) + \delta_\ell d$
 - Then:

$$E\left[\widehat{\beta}_{fe}\right] = E\left[Y_{m,2} - Y_{m,1} - (Y_{\ell,2} - Y_{\ell,1})\right]$$

$$= E\left[Y_{m,2}(0) + 2\delta_m - Y_{m,1}(0) - (Y_{\ell,2}(0) + \delta_\ell - Y_{\ell,1}(0))\right]$$

$$= E\left[Y_{m,2}(0) - Y_{m,1}(0)\right] - E\left[Y_{\ell,2}(0) - Y_{\ell,1}(0)\right] + 2\delta_m - \delta_\ell$$

$$= 2\delta_m - \delta_\ell$$

Forbidden Comparison 2: Graphical Illustration

Extensions

- ullet This logic extends to eta_{fd} , but with different weights $W_{fd,g,t}$
- \Rightarrow If $\beta_{fd} \neq \beta_{fe}$, we reject homogeneous TE under // trends
 - With covariates, we modify the // trends by assuming that for some λ ,

$$\begin{split} &E[Y_{g,t}(0) - Y_{g,t-1}(0) - (X_{g,t} - X_{g,t-1})'\lambda | \boldsymbol{D}_g, \boldsymbol{X}_g] \\ = &E[Y_{g,t}(0) - Y_{g,t-1}(0) - (X_{g,t} - X_{g,t-1})'\lambda], \end{split}$$

- ullet Let $\epsilon^X_{fe,g,t}=$ resid. of reg. of $D_{g,t}$ on a const., group FEs, time FEs and $X_{g,t}$
- \bullet Then, same result as above but with $\epsilon^X_{fe,g,t}$ instead of $\epsilon_{fe,g,t}$ in $W_{fe,g,t}.$

4 □ ト 4 □ ト 4 亘 ト 4 亘 ・ り 9 ○ ○

Software Implementations

- ullet bacondecomp computes DIDs and their corresponding weights entering in $\widehat{\beta}_{fe}$
- ullet twowayfeweights computes the weights $W_{fe,g,t}$ and $W_{fd,g,t}$, with/o X
 - \Rightarrow Worst-case scenario of std dev on $\Delta_{g,t}$ (weights are max corr. with TE)
 - \Rightarrow Correlation between weights and proxies of $\Delta_{g,t}$

Example: Effect of Newspapers on Electoral Turnout

- Gentzkow et al. (AER, 2011) use US county data on presidential elections
- ullet Reg change in turnout in g on change in # newspapers + state-year FE
- One could also estimate the FE regression

	\widehat{eta}	% of < 0	$Sum\;of<0$
Regression	(s.e.)	weights	weights
$\widehat{\beta}_{fe}$	-0.0011	40.1%	-0.53
\widehat{eta}_{fd}	0.0011) 0.0026 (0.0009)	45.7%	-1.43

 \Rightarrow Under // trends, we reject the null hypothesis that $\Delta_{g,t} = \Delta \ \forall (g,t)$

Event Study Regressions

Main Assumptions

- Assuming past treatments do not affect current outcomes is restrictive
- ullet We now generalize the previous set-up as follows ($oldsymbol{0}_t$ =vector of t zeros)
- Univariate, dynamic framework w/o anticipation, $D_{q,t} \in \mathbb{R}^+$:

$$Y_{g,t}(d_1,...,d_T) = Y_{g,t}(d_1,...,d_t)$$

// trends, v2

$$\Rightarrow \ \forall g \ \text{and} \ t \geq 2, \ E[Y_{g,t}(\mathbf{0}_t) - Y_{g,t-1}(\mathbf{0}_{t-1}) | \mathcal{\textbf{\emph{D}}}_g] = E[Y_{g,t}(\mathbf{0}_t) - Y_{g,t-1}(\mathbf{0}_{t-1})]$$

$$\Rightarrow$$
 For all $t \geq 2$, $E[Y_{q,t}(\mathbf{0}_t) - Y_{q,t-1}(\mathbf{0}_{t-1})] = \gamma_t$

Staggered Design: Notation and Parameters

- Staggered treatment: $D_{g,t} = 1\{t \geq F_g\}, F_g = \text{period when } g \text{ becomes treated}$
- ullet Exclude always treated here and let $F_g=T+1$ if never treated
- Let $\mathbf{1}_t$ be a vector of t ones and define:

$$\begin{split} &\Delta_g(\ell) = Y_{g,F_g+\ell}(\mathbf{0}_{F_g-1},\mathbf{1}_{\ell+1}) - Y_{g,F_g+\ell}(\mathbf{0}_{F_g+\ell}), \\ &\Delta(\ell) = \frac{1}{N \leq (T-\ell)} \sum_{g:F_g+\ell \leq T} \Delta_g(\ell) \end{split}$$

where $N_{\leq}(t) = \operatorname{card}\{g : F_g \leq t\}$

- $\Rightarrow \Delta_g(\ell)$: effect for g of having received the treatment for $\ell+1$ periods
- $\Rightarrow \Delta(\ell)$: effect of having received the treatment for $\ell+1$ periods

4 D > 4 D > 4 E > 4 E > E 9 9 0

Staggered design: ES Regressions

- \bullet Regression of $Y_{g,t}$ on group and time FEs, and $(1\{F_g=t-\ell\})_{\ell=-K,\dots,L,l\neq -1}$
- When $t \ell > T$, we set $1\{F_g = t \ell\} = 0$
- \Rightarrow For $\ell \geq 0$, β_{ℓ} is supposed to estimate $\Delta(\ell)$
- \Rightarrow For $\ell \leq -2$, $\beta_{\ell} =$ placebo used to check // trends

An Aside: "Basic" Problems with ES Regressions

Let us consider the fully-dynamic specification where

$$K = \overline{K} := \max_{g: F_g \leq T} F_g - 1, \quad L = \overline{L} := T - \min_g F_g$$

- If all groups are eventually treated, then:
- $\bullet \ (\beta_\ell)_{\ell=-\overline{K},...,\overline{L},\ell\neq -1} \ \text{not sep. identified from} \ (\beta_\ell+\kappa(\ell+1))_{\ell=-\overline{K},...,\overline{L},\ell\neq -1}$

$$\begin{array}{ll} \Rightarrow & \mathsf{Proof:} & \sum_{\substack{\ell = -\overline{K} \\ \ell \neq -1}}^{\overline{L}} 1\{F_g = t - \ell\}(\ell+1) = \sum_{\substack{\ell = -\overline{K} \\ \ell \neq -1}}^{\overline{L}} 1\{F_g = t - \ell\}(\ell+1) \\ &= (t+1-F_g) \sum_{\substack{\ell = -\overline{K} \\ \ell \neq -\overline{K}}}^{\overline{L}} 1\{F_g = t - \ell\} \\ &= \underbrace{t+1}_{\mathsf{enter in time FE}} \underbrace{-F_g}_{\mathsf{enter in group FE}} \end{array}$$

4□ > 4□ > 4 = > 4 = > = 900

An Aside: "Basic" Problems with ES Regressions

- ⇒ The fully-dynamic specification requires never treated groups
 - Otw some placebo coeffs should be removed, or dyn. effects be restricted
 - ullet In the latter case, a common practice is to choose $L < \overline{L}$
 - But even if TE are homogenous, this makes sense only if

$$Y_{g,F_g+\ell}(\mathbf{0}_{F_g-1},\mathbf{1}_{\ell+1}) = Y_{g,F_g+\ell}(\mathbf{0}_{F_g})$$
 for $\ell > L$.

• More natural to assume that TE stabilize:

$$\Delta_q(\ell) = \Delta_q(L) (= \Delta(L)), \text{ for } \ell > L$$

Decomposition Result for ES Regressions

- $\epsilon_{g,t}$: res. of $1\{F_g=t-\ell\}$ on group/time FEs and $(1\{F_g=t-\ell'\})_{\ell'=-K,..,\overline{L}}$
- \bullet Define $W_{g,\ell,\ell'} = \frac{\epsilon_{g,F_g+\ell'}}{\sum_g \epsilon_{g,F_g+\ell}}, \forall (\ell,\ell')$
- ullet Suppose that $D_{g,t}$ is binary and design is staggered. Then, for $\ell=0,...,\overline{L}$,

$$E\left[\widehat{\beta}_{\ell}\right] = E\left[\underbrace{\sum_{g} W_{g,\ell,\ell} \Delta_g(\ell)}_{\text{sum of effect of } \ell+1 \text{ treat. periods}} + \underbrace{\sum_{\ell' \neq \ell} \sum_{g} W_{g,\ell,\ell'} \Delta_g(\ell')}_{\text{sum of effects of } \ell'+1 \text{ treat periods}} \right]$$

• $\sum_{g} W_{g,\ell,\ell} = 1$ and $\sum_{g} W_{g,\ell,\ell'} = 0 \ \forall \ell, \ell' \neq \ell$

ES Even Less Robust to Heterog. TE than Static TWFE

- ullet As in the static case, $W_{g,l,l}$ may be <0
- \Rightarrow \widehat{eta}_l contaminated by effects of l'+1 treatment periods
- \Rightarrow $\Delta_g(l)=\Delta_{g'}(l)\ \forall g,g'$ not sufficient for \widehat{eta}_l to be unbiased. We also need

$$\Delta_g(l') = \Delta_{g'}(l') \ \forall l' \neq l$$

Origin: Again, Forbidden Comparisons

- ullet As in the static case, \widehat{eta}_ℓ can still be written as a linear combination of DID
- But in some of these DIDs:
 - ullet The control group has been treated for $l'
 eq \ell$ period at baseline/endline
 - If $\ell>0$, the treated group has been treated for $\ell'>0$ period at the baseline
 - ullet The treated group has been treated for $\ell' < \ell$ period at the endline
- ⇒ Contamination bias

A Simple Example

- ullet Consider a design with G=2, T=3, K=0
 - Group 1 treated at t=2
 - $\bullet \ \ {\rm Group} \ 2 \ {\rm treated} \ {\rm at} \ t=3 \\$
- Then, some algebra shows that:

$$\widehat{\beta}_1 = \underbrace{Y_{1,3} - Y_{1,2} - (Y_{2,3} - Y_{2,2})}_{DID_1} + 2\underbrace{[Y_{1,2} - Y_{1,1} - (Y_{2,2} - Y_{2,1})]}_{DID_2}$$

A Simple Example (cont'd)

• In DID_1 , control group g=2 treated for 1 period at t=3 and g=1 also treated for 1 period at t=2. Then,

$$E[DID_1] = E[\Delta_1(1) - (\Delta_1(0) + \Delta_2(0))].$$

• DID_2 identifies the effect of having been treated for 1 rather than 2 periods:

$$E[DID_2] = E[\Delta_1(0)]$$

 \Rightarrow We obtain $E[\widehat{\beta}_1] = E[\Delta_1(1) + (\Delta_1(0) - \Delta_2(0))]$

Software Implementations

eventstudyweights Stata package computes weights in decomposition:

```
eventstudyweights {rel_time_list}, absorb(i.groupid i.timeid) cohort(first_treatment) rel_time(ry), with rel_time_list=list of the 1\{F_g=t-l\}, first_treatment=F_g (missing if never treated), and ry=timeid - first treatment
```

Can easily include covariates

Heterogeneity-robust DID estimators

Robust DIDs (Static Case)

- Avoid making the forbidden comparisons leveraged by TWFE:
 - ⇒ Never compare switcher to switcher: only compare switcher to stayer
 - ⇒ Never compare a switcher to a stayer with a different baseline treatment
- ullet Depends on whether groups' outcome at t only depends on treatment at t
- If yes, we can consider each pair of consecutive time periods independently
 - $\Rightarrow t-1$ to t switchers: groups whose treatment changes from t-1 to t
 - $\Rightarrow t-1$ to t stayers: groups whose treatment does not change from t-1 to t, with same t-1 treatment as switchers

Robust DIDs (Dynamic Case)

- in more general case, we need to control for groups' full treatment history
 - \Rightarrow t-1 to t first-time switchers: treat changes for the first time from t-1 to t
 - $\Rightarrow 1$ to $t+\ell$ stayers: treat does not change from 1 to $t+\ell$, with same t-1 treatment as switchers
- Allowing for dynamic effects may lead to less precise and interpretable effects

Parameters of interest

- Suppose first that D is binary
- Let us define

$$S = \{(g,t) : t \ge 2, \ D_{g,t} \ne D_{g,t-1}, \ \exists g' : \ D_{g',t} = D_{g',t-1} = D_{g,t-1}\}$$

- $N_S = \operatorname{card}(\mathcal{S})$
- ⇒ Then, ATE for matchable switchers is

$$\delta^{S} = E \left[\frac{1}{N_{S}} \sum_{(g,t) \in \mathcal{S}} Y_{g,t}(1) - Y_{g,t}(0) \right]$$

Assumptions for identifying δ^S

ullet δ^S can be unbiasedly estimated under the following // trends conditions

$$\Rightarrow E[Y_{g,t}(0) - Y_{g,t-1}(0)|\mathbf{D}_g] = E[Y_{g,t}(0) - Y_{g,t-1}(0)] = \gamma_{0,t}$$

$$\Rightarrow E[Y_{g,t}(1) - Y_{g,t-1}(1)|\mathbf{D}_g] = E[Y_{g,t}(1) - Y_{g,t-1}(1)] = \gamma_{1,t}$$

• Usual // trends on $Y_{q,t}(0)$ sufficient if we focus on switchers in

$$S_+ = \{(g,t) : t \ge 2, D_{g,t} = 1 > D_{g,t-1} = 0, \exists g' : D_{g',t} = D_{g',t-1} = 0\}$$

ullet Weaker exogeneity assumption sufficient to consistently estimate δ^S :

$$E[Y_{g,t}(0) - Y_{g,t-1}(0)|D_{g,1}, ..., D_{g,t}] = E[Y_{g,t}(0) - Y_{g,t-1}(0)]$$

• Allows for possibility that $Y_{g,t}(0) - Y_{g,t-1}(0)$ affects $D_{g,t+1}$ etc.

4 D > 4 P > 4 E > 4 E > E 990

Weighted averages of DIDs identify δ^S

- For all $t \in \{1, ..., T\}$ and d = 0, 1, let
 - $N_{+,t} = \operatorname{card} \ \{g: D_{g,t} > D_{g,t-1}\} \ \operatorname{and} \ N_{-,t} = \operatorname{card} \ \{g: D_{g,t} < D_{g,t-1}\}$
 - $\bullet \ N_{=d,t} = {\rm card} \ \{g: D_{g,t} = D_{g,t-1} = d\}$
 - $DID_{+,t} = \sum_{g:D_{g,t}>D_{g,t-1}} \frac{1}{N_{+,t}} (Y_{g,t} Y_{g,t-1}) \sum_{g:D_{g,t}=D_{g,t-1}=0} \frac{1}{N_{=0,t}} (Y_{g,t} Y_{g,t-1})$
 - $\begin{array}{l} \bullet \ DID_{-,t} = \\ \sum_{g:D_g,t=D_g,t-1=1} \frac{1}{N=1,t} \left(Y_{g,t} Y_{g,t-1} \right) \sum_{g:D_g,t < D_g,t-1} \frac{1}{N_{-,t}} \left(Y_{g,t} Y_{g,t-1} \right) \end{aligned}$
- Then

$$E[DIDM] = E\left[\sum_{t=2}^{T} \frac{N_{+,t}}{N_S} DID_{+,t} + \frac{N_{-,t}}{N_S} DID_{-,t}\right] = \delta^S$$

Intuition for DIDM

- $DID_{+,t}$: ΔY between those treated between t-1 and t, and untreated
- \Rightarrow Under // trends on Y(0), it identifies TE in groups switching into treatment
- \Rightarrow Under // trends on Y(1), $DID_{-,t}$ identifies TE for switchers out of treat
 - Finally, DIDM is a weighted average of those DID estimands

Placebo Estimators

- ⇒ Focus on groups that are stayers one period before switchers switch
 - ullet Compare switchers' and stayers' ΔY , one period before switchers switch
 - Also compare switchers and stayers 2, 3 periods etc. before switchers switch

Controlling for Time-varying Covariates

Rationale: // trends only hold if we account for change in covariates

$$E(Y_{g,t}(d) - Y_{g,t-1}(d)|\boldsymbol{D}_g, \boldsymbol{X}_g) = \gamma_{d,t} + (X_{g,t} - X_{g,t-1})'\lambda_d \quad \forall d \in \mathcal{D}$$

- Special case is group-specific linear trends $X_{g,t} = (1\{g=2\} \times t,..,1\{g=G\} \times t)$
- Let $\epsilon_{g,t}(d)$ residual of the reg. of $Y_{g,t}-Y_{g,t-1}$ on period FEs and $X_{g,t}-X_{g,t-1}$ for (g,t) s.t. $D_{g,t}=D_{g,t-1}=d\in\mathcal{D}$
- ullet Define $DIDM^X$ as DIDM, but using $\epsilon_{g,t}(D_{g,t-1})$ instead of $Y_{g,t}-Y_{g,t-1}$
- Separate reg. for each $d \in \mathcal{D}$, estimated in sample of d-stayers

4□ > 4□ > 4□ > 4□ > 4□ > □
9

Software Implementation

- R and Stata command: did_multiplegt
 - Options to relax the standard // trends
 - Control for time-varying, time-invariant covariates, or linear time trends
 - Flexibly specifies the number of placebos to be estimated

Example (continued): Gentzkov et al. (AER, 2011)

Table: Estimates of the effect of one additional newspaper on turnout

	Estimate	Standard error	N
$\frac{\widehat{\beta}_{fd}}{\widehat{\beta}_{fe}}$	0.0026	0.0009	15,627
\widehat{eta}_{fe}	-0.0011	0.0011	16,872
DIDM	0.0043	0.0014	16,872
DIDM Placebo	-0.0009	0.0016	13,221

 \Rightarrow DIDM is 66% larger (t-stat=1.77) than \widehat{eta}_{fd} and opposite sign to \widehat{eta}_{fe}

Allowing for dynamic effects: potential outcome notation

- We maintain previous assumption of no anticipation effects
- \Rightarrow Potential outcomes $Y_{g,t}(d_1,...,d_t)$ do not depend on future treatments
 - $\mathbf{0}_k$: vector of k zeros, $\mathbf{1}_k$: vector of k ones
 - ullet $Y_{g,t}(\mathbf{0}_k,\mathbf{1}_{t-k})$: g at t if untreated from 1 to k and treated from k+1 to t

46 / 88

Parameters of interest

- Binary staggered design: $D_{g,t} = 1\{t \ge F_g\}$
- \Rightarrow ATE of cohort getting treated from c to c+l, i.e. for l+1 periods

$$\delta(c,\ell) = E\left[\frac{1}{N_{=}(c)} \sum_{g:F_g=c} \left(Y_{g,c+\ell}(\mathbf{0}_{c-1}, \mathbf{1}_{\ell+1}) - Y_{g,c+\ell}(\mathbf{0}_{c+\ell})\right) \middle| \boldsymbol{D}\right]$$

- Where $N_{=}(c) = \operatorname{card}\{g : F_g = c\}$
- ullet ATE across cohorts $\ell+1$ periods after they started receiving treat

$$\delta(\ell) = E\left[\frac{1}{\sum_{c=2}^{T-\ell} N_{=}(c)} \sum_{c=2}^{T-\ell} N_{=}(c)\delta(c,\ell) \middle| \boldsymbol{D}\right]$$

DID estimators using never-treated groups

• To estimate $\delta(c,\ell)$

$$\widehat{\delta}_1(c,\ell) = \frac{1}{N_{=}(c)} \sum_{g: F_g = c} \left(Y_{g,c+\ell} - Y_{g,c-1} \right) - \frac{1}{N_{=}(T+1)} \sum_{g: F_g = T+1} \left(Y_{g,c+\ell} - Y_{g,c-1} \right)$$

- Recall that $\{g: F_q = T + 1\} = \text{never-treated groups}$
- \Rightarrow $\widehat{\delta}_1(c,\ell)$: ΔY between c-1 and $c+\ell$ in cohort c and in never-treated groups
 - Then let

$$\hat{\delta}_{1}(\ell) = \frac{1}{\sum_{c=2}^{T-\ell} N_{-}(c)} \sum_{c=2}^{T-\ell} N_{-}(c) \hat{\delta}_{1}(c,\ell)$$

DID estimators using other control groups

If no never-treated groups, use instead the last treated/not-yet-treated groups

$$\widehat{\delta}_2(c,\ell) = \frac{1}{N_{=}(c)} \sum_{g: F_g = c} \left(Y_{g,c+\ell} - Y_{g,c-1} \right) - \frac{1}{N_{>}(c+\ell)} \sum_{g: F_g > c+\ell} \left(Y_{g,c+\ell} - Y_{g,c-1} \right)$$

- $N_{>}(c+\ell)=\mathrm{card}\{g:F_g>c+\ell\}$. Define $\widehat{\delta}_2(\ell)$ accordingly
- There are more not-yet-treated groups than never-treated groups
- \Rightarrow $\widehat{\delta}_2(c,l)$ possibly more precise than $\widehat{\delta}_1(c,\ell)$
 - Also, never-treated groups may be very different from other groups
- \Rightarrow // trends may not hold when only never treated used as controls

Software Implementation

• The csdid (Stata) and did (R) commands. Syntax: csdid outcome, time(timeid) gvar(cohort) where cohort= F_g (=0 for never treated)

The eventstudyinteract Stata command. Syntax:
 eventstudyinteract outcome {rel_time_list}, absorb(i.groupid i.timeid) cohort(first_treatment) control_cohort(controlgroup)

A Quick Recap on Job Search Models

The Optimal Stopping Model

ullet Risk neutral individual in discrete time with preferences in t=0 given by

$$\sum_{t=0}^{\infty} \beta^t c_t, \quad \beta \in (0,1)$$

- ullet Start as unemployed, with consumption equal to b
- Jobs sampled sequentially. Each job is for life and identical except for wage
- \bullet Wages are drawn from an exogenous stationary distribution F(w)
- \Rightarrow Given draw $w_t \in W$ agent decides whether to take it or continue searching

51 / 88

Dynamic Programming Formulation

ullet Value function for the agent when he has sampled a job of $w\in W$ is

$$V(w) = \max\left\{\frac{w}{1-\beta}, \beta V + b\right\}$$

where V is the continuation value of not accepting a job:

$$V = \int_{\omega \in \Omega} V(\omega) dF(\omega)$$

⇒ Combine these two equations and get:

$$V(w) = \max \left\{ \frac{w}{1-\beta}, b + \beta \int_{\omega \in \Omega} V(\omega) dF(\omega) \right\}$$

Reservation Wage

- ullet V(w) is non-decreasing, decision rule has a reservation value property
- Reservation wage is given by

$$\frac{w^*}{1-\beta} = b + \beta \int_{\omega \in \Omega} V(\omega) dF(\omega)$$

- \Rightarrow Decision rule: $\forall w < w^\star$, $V(w) = \frac{w^\star}{1-\beta}$ and $\forall w \geq w^\star$, $V(w) = \frac{w}{1-\beta}$
 - Therefore, reservation wage can be written as

$$\frac{w^{\star}}{1-\beta} = b + \beta \left[\frac{w^{\star} F(w^{\star})}{1-\beta} + \int_{w > w^{\star}} \frac{w}{1-\beta} dF(w) \right]$$

Reservation Wage

 \bullet Since $\frac{w^\star}{1-\beta}=\int_{w< w^\star}\frac{w^\star}{1-\beta}dF(w)+\int_{w\geq w^\star}\frac{w^\star}{1-\beta}dF(w)$

$$w^{\star} = b + \frac{\beta}{1 - \beta} \left[\int_{w \ge w^{\star}} (w - w^{\star}) dF(w) \right]$$

Taking the Model to the Data

- \bullet For a random sample of N workers we observe $\{\tilde{t}_u(i), w(i)\}_{i=1}^N$
- Job offers/termination arrive at random times with density between offers

$$q_u(t_u) = \lambda \exp(-\lambda t_u), \lambda > 0$$

$$q_e(t_e) = \eta \exp(-\eta t_e), \eta > 0$$

Reservation wage in continuous time

$$w^* = b + \frac{\lambda}{\rho + \eta} \int_{w^*} (w - w^*) dF(w)$$

 \Rightarrow It is easy to show that $\partial w^{\star}/\partial \eta < 0, \partial w^{\star}/\partial \rho < 0, \partial w^{\star}/\partial \lambda > 0$

Simulating Labor Market Data

Hypothetical early labor market career

Event number	State	Time of event	Duration draw	Match value
1	И	0.891	0.891	6.243
2	U	3.168	2.277	4.329
3	U	15.554	12.386	3.871
4	U	15.558	0.004	10.918
5	E	38.921	23.363	_
6	U	44.236	5.315	7.891
7	U	56.793	12.557	12.119
8	E	157.421	100.628	_
9	U	164.772	7.351	10.145
10	E	322.510	157.738	_
:	÷	:		:

Steady-state Proportions

The probability that an individual is unemployed is

$$p(u) = \frac{\mathbb{E}(t_u)}{\mathbb{E}(t_e) + \mathbb{E}(t_u)} = \frac{[\lambda \tilde{F}(w^*)]^{-1}}{\eta^{-1} + [\lambda \tilde{F}(w^*)]^{-1}}$$
$$= \frac{\eta}{\eta + \lambda \tilde{F}(w^*)}$$

And conversely

$$p(e) = 1 - p(u) = \frac{\lambda \tilde{F}(w^*)}{\eta + \lambda \tilde{F}(w^*)}$$

Offered and Accepted Wages

Optimal decision rule ⇒ truncation in the accepted wage distribution

$$g(w) = \frac{f(w)}{\tilde{F}(w^*)}, w \ge w^*$$

ullet This density is well defined: integrates to 1 and non-negative for all $w \geq w^\star$

58 / 88

Likelihood Contributions

The likelihood of an ongoing unemployment spell is

$$L(t_u, u) = f_u(t_u)p(u) = \lambda \tilde{F}(w^*) \exp[-\lambda \tilde{F}(w^*)t_u] \times \frac{\eta}{\eta + \lambda \tilde{F}(w^*)}$$

ullet The likelihood of employed and earning a wage w is

$$L(w,e) = \frac{f(w)}{\tilde{F}(w^{\star})} \times \frac{\lambda \tilde{F}(w^{\star})}{\eta + \lambda \tilde{F}(w^{\star})} = \frac{\lambda f(w)}{\eta + \lambda \tilde{F}(w^{\star})}$$

Likelihood Function

ullet The likelihood function for a random sample of N individuals is then

$$L(w_1, ..., w_{N_e}, t_1, ..., t_{N_u}) = \prod_{i \in e} \left[\frac{\lambda f(w(i))}{\eta + \lambda \tilde{F}(w^*)} \right] \times \prod_{i \in u} \left[\frac{\eta \lambda \tilde{F}(w^*) \exp[-\lambda \tilde{F}(w^*) t_u(i)]}{\eta + \lambda \tilde{F}(w^*)} \right]$$

And the associated log-likelihood is

$$\ln L = -N \ln[\eta + \lambda \tilde{F}(w^*)] + N \ln \lambda + \sum_{i \in e} \ln[f(w(i))] +$$
$$+ N_u \ln[\tilde{F}(w^*)] + N_u \ln(\eta) - \lambda \tilde{F}(w^*) \sum_{i \in u} t_u(i)$$

Identification

- ullet The primitive parameters that explicitly enter in $\ln L$ are λ,η and F
- ullet Parameters b and ho only enter through w^\star
- Equilibrium object w^* is part of the support of F
- ⇒ This feature generates a non-standard likelihood function

61/88

Flinn and Heckman (1982)

Estimate the reservation wage as the minimum accepted wage

$$\hat{w}^{\star} = \min(w_1, ..., w_{N_e})$$

- ⇒ Order statistics are super-consistent (i.e. converge at rate N)
- 2 Maximize log likelihood with respect to λ, η and μ conditional on \hat{w}^*
- $\Rightarrow F(w) \text{ needs to be recoverable: } F(w|w \geq \hat{w}^\star) = \frac{F(w) F(w^\star)}{\bar{F}(w^\star)}, \forall w \geq \hat{w}^\star$
- $\ \, \ \, \ \,$ Plug estimated parameters into equation for w^\star and solve for either b or ρ
- \Rightarrow Usually fix ρ and recover the value of b

62 / 88

Informality, job search, and schooling investments

Bobba, Flabbi and Levy (IER, 2022)

- An equilibrium search model where:
 - Search frictions generate mobility between formal and informal jobs
 - Match productivity and bargaining generate overlapping wage distributions
 - ⇒ Both ingredients generates a mix of formal and informal jobs in equilibrium
- One long-term "cost of informality": Under-investment in education
 - Same features that create informality may also distort returns to schooling
 - ⇒ Trade-off between welfare in the labor market and pre-market HK

Context: Labor Markets in Latin America

- More than half of the labor force is in the informal sector
 - Workers not contributing to and not covered by the social security system
 - ⇒ Informal employees and (most of the) self-employed
- Neither a segmented or a competitive labor market
 - Individuals transit back and forth between formal and informal jobs
 - Wage/productivity distributions overlap
 - Mix of formality status within the same firm
- Informal workers gained access to non-contributory social programs

The Model Environment

- Timing
 - Schooling decision
 - Searching status decision
- Labor Market States
 - Unemployed
 - Self-employed
 - Informal Employee
 - Formal Employee

65 / 88

Schooling Decision

- Irrevocable decision about schooling level $h \in \{0,1\}$
- Individual-specific heterogeneity
 - costs $\kappa \sim T(\kappa)$
 - opportunity cost PDV of participating in LMK as h=0
- \Rightarrow Only agents with $\kappa < \kappa^{\star}(y)$ will acquire h = 1
 - All labor market parameters are allowed to be schooling-specific

Searching-status Decision

- Irrevocable decision $s \in \{0, 1\}$:
 - Self-employed (s=1)
 - Unemployed (s=0)
- ullet Search for a job in both states but receive offers at different rates: $\gamma_h < \lambda_h$
- Self-employment income $y \sim R(y|h)$
- \Rightarrow Only agents with $y \geq y^{\star}(h)$ search while also working as self-employed

Labor Market Dynamics

State	PDV	Shock	Flow Utility
Workers:			
Unemployed	U(h)	λ_h	$\xi_h + eta_{0,h} B_0$
Self-Employed	S(y,h)	γ_h	$y+eta_{0,h}B_0$
Informal Employee	$E_0[w,y,h]$	η_h, χ_h	$w_0(x;y,h) + \beta_{0,h} B_0$
Formal Employee	$E_1[w,y,h]$	η_h, χ_h	$w_1(x;y,h) + \beta_{1,h}B_1[w_1(x;y,h)]$
Firms:			
Vacancy	V[h]	ζ_h	$ u_h$
Filled Informal Job	$F_0[x,y,h]$	$\eta_h, {\color{cyan}\chi_h}$	$x - w_0(x; y, h)$
Filled Formal Job	$F_1[x,y,h]$	η_h, χ_h	$x - (1+t)w_1(x;y,h)$

- \Rightarrow Match-specific productivity: $x \sim G(x|h)$
- \Rightarrow One-shot penalty for firms hiring illegally: $c_h w_0(x; y, h)$
- \Rightarrow Matching function determines $\{\lambda_h, \gamma_h, \zeta_h\}$: $m_h = (u_h + \psi_h s_h)^{\iota_h} (v_h)^{1-\iota_h}$

Labor Market Institutions and Wage Determination

- Non-wage workers' flow value:
 - ullet formal employee $=eta_{1,h}B_1[w_1(x;y,h)]=eta_{1,h}[au tw_1(x;y,h)+b_1]$
 - informal employee $= \beta_{0,h} B_0$
 - \Rightarrow b_1 generates spillovers within and between schooling levels
- Nash-bargaining wage schedules (under free-entry of firms) are:

$$w_0(x; y, h) = \frac{\alpha_h}{1 + \chi_h c_h} x + (1 - \alpha_h) [\rho Q(y, h) - \beta_{0,h} B_0]$$

$$w_1(x; y, h) = \frac{\alpha_h}{1 + t} x + \frac{(1 - \alpha_h)}{1 + \beta_{1,h} \tau t} [\rho Q(y, h) - \beta_{1,h} b_1]$$

 $\Rightarrow Q(y,h) \equiv \max\{S(y,h),U(h)\}$

Equilibrium Representation

Empirical Implications

- ⇒ Main stylized facts of informal labor markets are replicated in equilibrium:
 - A mixture of formal and informal jobs is realized
 - Pormal employees have on average higher wages than informal employees
 - But their accepted wage distributions overlap
 - Informal employees and self-employed have different labor market dynamics
 - Firms hire formal or informal workers at different points in time
 - 6 Workers transit over time between different formality status

Data Sources

- Mexico's Labor Force Survey (ENOE) in 2005
 - Nonagricultural, full-time, male, private-sector workers
 - \Rightarrow Secondary-school between the ages of 25 and 55 who reside in urban areas
 - ullet $w \equiv$ Hourly wages as employee, main job after labor contributions
 - $\bullet \ y \equiv$ Hourly labor income as self-employed, without paid employees
 - ullet f=1 if employee is contributing to the social-security fund; =0 otherwise
 - $\bullet \ h=1 \ {\rm if} \ {\rm Upper} \ {\rm secondary} \ {\rm completed} = 0 \ {\rm if} \ {\rm Lower} \ {\rm secondary} \ {\rm completed}$
- Aggregate labor shares for Mexico in 2005
 - Total compensations per employee as percentage of GDP
- Vacancy rates for 2005
 - Good coverage of vacancy posting in urban areas
 - ⇒ Detailed information on the schooling level required for the job

Identification: Search-Matching-Bargaining Parameters

- G(x|h): Has to be "recoverable"
 - \Rightarrow We assume lognormal with parameters $\{\mu_{x,h},\sigma_{x,h}\}$
- ullet $\lambda_h, \gamma_h, \eta_h$: stationarity + optimal decision rules identify mobility rates from
 - ⇒ Transitions
 - ⇒ Steady state distributions over labor market states
- ρ, ξ_h : Use Q(y,h) to obtain their joint identification
- Nash Bargaining coefficient: $\alpha_1 = \alpha_0 = \alpha$
 - \Rightarrow Use labor shares $(w_f(x;y,h)/x)$

Identification: Matching Function + Demand Side

• $\{\psi_h, \iota_h\}$: use vacancy rate and define mkt tightness $\omega_h \equiv \frac{v_h}{u_h + \psi_h s_h}$, so that

$$\psi_h = \frac{\gamma_h}{\lambda_h}$$

$$\iota_h = \frac{\ln \omega_h - \ln \lambda_h}{\ln \omega_h}$$

- Then, back out the demand side parameters
 - $\zeta_h = \omega_h^{-\iota_h}$
 - ullet ν_h : use firm's value function and impose free entry

Identification: Informality Parameters (β_1 and c_h)

- ullet Different transition rates out of formal jobs and informal jobs identify χ_h
- Overlap between formal and informal accepted wage distributions

$$w_0(\tilde{x}(y,h);y,h) - w_1(\tilde{x}(y,h);y,h) > 0$$

- \Rightarrow Given x, formal employees receive higher non-wage benefits
- \Rightarrow eta_1 and c_h alter location and overlap of accepted wage distributions
 - ullet Variation in y is useful variation to separately identify the parameters

Identification: Informality Parameters (β_0)

- ullet The identification of eta_0 requires the use of additional information
- We exploit staggered entry of the Seguro Popular (SP) program in 2005

 \Rightarrow In terms of our model, SP $\approx \uparrow$ in B_0 by 25%

Identification: Informality Parameters (β_0 , cont'd)

- Variation in B_0 identify β_0 if uncorrelated with changes in model primitives
- ⇒ Labor market outcomes pre-policy (2002) seem balanced

	Hourly Wages (log)			Labor Market Proportions			
	Formal	Informal	Self	Formal	Informal	Self	Unempl
SP in $2005 (1=yes)$	-0.041	0.048	-0.035	-0.034	0.035	-0.004	0.003
	(0.036)	(0.055)	(0.062)	(0.026)	(0.019)	(0.014)	(0.006)
Complete Sec. (1=yes)	0.218	0.288	0.092	0.061	-0.036	-0.029	0.003
	(0.017)	(0.032)	(0.033)	(0.011)	(0.008)	(0.008)	(0.003)
Number of Obs.	7865	5474	2777	16458	16458	16458	16458

Identification: Self-employment and Schooling Parameters

- R(y|h): Identified by observed self-employment earnings, once we assume a recoverable primitive distribution
 - \Rightarrow We assume lognormal with parameters $\{\mu_{y,h},\sigma_{y,h}\}$
- ullet $T(\kappa)$: The threshold crossing decision rule allows for the identification of one parameter from the proportions of individuals in the two schooling levels

$$\frac{1}{n}\sum_{i=1}^{n}h_{i} = \int_{y}T(\kappa^{*}(y))dR(y|0)$$

 \Rightarrow We assume a negative exponential with parameters δ

Identification: Unobserved Ability Types

- Type is known to the individual but unobserved in the data
- We denote each type with k and its proportion in the population with π_k

$$x|k = a_k^G x$$
$$y|k = a_k^R y$$
$$\kappa|k = a_k^T \kappa$$

- ⇒ Duration dependence in unemployment identifies these parameters
 - Hazard rates at three and six months for both schooling levels
 - Assume K=2
 - type k=1 normalized to $a_1^T=a_1^R=a_1^G=1$
 - type k = 2 exhibiting $a_2^T < 1; a_2^R > 1; a_2^G > 1$

Estimation in Two Steps

- $\bullet \ \, \text{For} \,\, s \in \{0,1\} \,\, \text{and} \,\, \mathsf{SP} \in \{0,1\}, \,\, \mathsf{we} \,\, \mathsf{match} \,\, \mathsf{the} \,\, \mathsf{following} \,\, \mathsf{moments} \,\,$
 - Proportions of individuals in each labor market state
 - Accepted wage distributions of formal and informal employees
 - ⇒ Mean and SD: overall and by quintiles
 - \Rightarrow Overlap: % of formal empl. for each quintile of the informal wage distribution
 - Accepted earnings distributions of self-employed
 - ⇒ Mean and SD
 - Transitions between LMK states (yearly)
 - Hazard rates out of unemployment (at 3 and 6 months)
 - Labor Shares
- Estimate demand-side parameters using vacancy rates

Parameter Estimates (selected coeffs)

		0	High Schooling: $h = 1$			
	Coeff.	Std. Error	Coeff.	Std. Error		
	Search	n, Matching, a	and Barga	ining		
λ_h	0.4679	0.0035	0.5167	0.0098		
γ_h	0.0349	0.0042	0.0306	0.0014		
η_h	0.0326	0.0007	0.0190	0.0052		
$\mu_{x,h}$	2.7616	0.0367	2.6749	0.0382		
$\sigma_{x,h}$	0.6243	0.0132	0.7970	0.0038		
$\mu_{y,h}$	1.6718	0.0188	1.9497	0.0763		
$\sigma_{y,h}$	0.7754	0.0028	0.8027	0.0258		
ξ_h	-103.46	1.6661	-158.05	4.6038		
α	0.5630	0.0169	0.5630	0.0169		
Preferences and Informality						
$\beta_{1,h}$	0.7949	0.0044	0.6091	0.0043		
$\beta_{0,h}$	0.9862	0.0038	0.9807	0.0015		
χ_h	0.0079	0.0004	0.0113	0.0008		
c_h	12.882	0.7045	16.574	1.3932		
Matching Function and Demand Side						
ψ_h	0.0745	0.0088	0.0592	0.0034		
ι_h	0.7321	0.0253	0.7281	0.0184		
ζ_h	7.9718	1.6278	5.8569	0.8742		
ν_h	-496.01	288.80	-773.80	111.34		

Returns to Schooling

	Ability:	Low	High
		k = 1	k = 2
PDV of Labor Market Sear	ch:		
$\int_{y} Q(y,h) dR(y h)$		0.309	0.278
J			
Average Accepted Wages:			
$\overline{F \colon E_h \left[w_1 \mid \tilde{x}(y,h) \leq x \right]}$		0.479	0.435
I: $E_h[w_0 \mid x_0^*(y,h) \le x <$	$\tilde{x}(y,h)$]	0.281	0.296
Average Offered Wages:			
$\overline{F \colon E_h \left[w_1 \mid y < y^*(h) \right]}$		0.213	0.210
F: $E_h[w_1 y \ge y^*(h)]$		0.213	0.204
I: $E_h[w_0 \mid y < y^*(h)]$		0.133	0.134
I: $E_h[w_0 \mid y \geq y^*(h)]$		0.142	0.136

Out-of-Sample Model Validation

• Estimate the effect of $\uparrow B_0$ using SP roll-out one year later (2006)

$$y_{i,q} = \theta d_{m(i),q} + \vartheta h_i + \varrho_{m(i)} + \varphi_q + \epsilon_{i,q}$$

- \bullet Predict change in LMK outcomes with $B_0^{\rm 2006}$ using estimated model
- Estimate TWFE-DID specifications on both actual and simulated data

Out-of-Sample Model Validation

Counterfactual 1: The Equilibrium Effects of Informality

Model:	Firms can only offer a formal contract					
Specifications:	Baseline	Exogenous	Exogenous	Hosios-like		
	Model	Schooling	Contact Rates	Condition $(\alpha = \iota)$		
Flow Welfare:						
Total	-0.0596	-0.0750	-0.0020	0.0478		
Workers	-0.0460	-0.0599	0.0166	0.0570		
Firms	-0.2821	-0.3219	-0.3055	-0.1589		
Labor Market Proportions:						
Unemployed	0.0213	0.0636	0.0019	-0.0459		
Self-employed	0.3353	0.3526	0.3625	0.2329		
Formal Employees	0.0275	-0.0146	-0.0376	0.0076		
Schooling Outcomes:						
% HS Completed	0.1029	_	0.0781	0.1501		
% High Ability in HS	0.0538	_	0.0569	0.0628		

 Note : Relative changes wrt the benchmark model. Hosios increases α from 0.56 to 0.73.

75.75.75

Counterfactual 2: Changes in Payroll Tax Rate (t)

- Composition effects over schooling/ability explain no impact on informality
- \bullet Balanced-budget policy with $\tau=0\to 10\%$ increase in high-school completion

Main Takeways from the Estimated Model

- Returns to schooling are substantial
- Informality is welfare improving but:
 - Significantly more so for firms than workers
 - Reduces human capital accumulation (hold-up problem)
- Payroll tax rate has a non-intuitive impact on equilibrium outcomes
 - Informality rate not a good indicator for policy
 - Redistributive forces within the formal system are key

DID ⇔ Economic Model

- Relevant institutional features are included in the model in a tractable way
- These parameters are hard to separately identify using labor market data
- The staggered roll-out of the policy provides additional variation to:
 - ⇒ Identify the (average) valuation of non-contributory benefits
 - \Rightarrow Validate the model on a different time period by simulating one-step ahead