Case Type: B2B Demand forecasting of a particular product

Use and context of the data

The dataset contains historical product demand for a manufacturing company with footprints globally. The company provides thousands of products within dozens of product categories. There are four central warehouses to ship products within the region it is responsible for. Since the products are manufactured in different locations all over the world, it normally takes more than one month to ship products via ocean to different central warehouses. If forecasts for each product in different central with reasonable accuracy for the monthly demand for month after next can be achieved, it would be beneficial to the company in multiple ways.

Import modules and data

```
In [24]: import math
    from sklearn.metrics import mean_squared_error
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    %matplotlib inline
    dataframe = pd.read_csv("Historical Product Demand.csv")
    dataframe.head()
```

Out[24]:

	Product_Code	Warehouse	Product_Category	Date	Order_Demand
0	Product_0993	Whse_J	Category_028	2012/7/27	100
1	Product_0979	Whse_J	Category_028	2012/1/19	500
2	Product_0979	Whse_J	Category_028	2012/2/3	500
3	Product_0979	Whse_J	Category_028	2012/2/9	500
4	Product_0979	Whse_J	Category_028	2012/3/2	500

Count of Products by grouping

```
In [25]: dataframe_grouped = dataframe.groupby(['Product_Code']).size().rese
t_index(name='counts').sort_values(['counts'],ascending=False)
dataframe_grouped.head()
```

Out[25]:

	Product_Code	counts
1348	Product_1359	16936
1284	Product_1295	10575
1367	Product_1378	9770
619	Product_0620	9428
1275	Product 1286	8888

Select a product to work on this project

We will be working on demand forecasting of product 1359 as it has the highest count. There is no particular way of choosing a product and any of the above products can be worked upon for its demand forecasting

We do not need the details of 'Warehouse', 'Product Code' and 'Product Category' for demand forecasting. All we need is the demand and time(date)

Out[26]:

	Date	Order_Demand
921328	2017/1/6	100000
863636	2016/9/9	9000
893829	2016/9/9	40000
1013066	2016/9/9	2000
863593	2016/9/9	1000

Creating the major axis-that is Time. All the data will now be indexed in terms of time.

Out[27]:

Order Demand

Date	
2017-01-06	100000
2016-09-09	9000

Formatting

```
In [28]: dataframe_for_product1359['Order_Demand'] = dataframe_for_product13
59['Order_Demand'].astype(str)
dataframe_for_product1359['Order_Demand'] = dataframe_for_product13
59['Order_Demand'].map(lambda x: x.lstrip('(').rstrip(')'))
dataframe_for_product1359['Order_Demand'] = dataframe_for_product13
59['Order_Demand'].astype(int)
dataframe_for_product1359.head()
```

Out[28]:

Order_Demand

Date	
2017-01-06	100000
2016-09-09	9000
2016-09-09	40000
2016-09-09	2000
2016-09-09	1000

Determining Monthly Demand

Get the demand in terms of January, February.....December

```
In [54]: dataframe_for_product1359_Monthly= dataframe_for_product1359.resamp
le('M').sum()
dataframe_for_product1359_Monthly.head()
```

Out[54]:

Ord	er	Dei	ma	nc
Olu			ıııa	ııv

Date	
2012-01-31	8911000
2012-02-29	8131000
2012-03-31	7775000
2012-04-30	8960000
2012-05-31	8475000

Note that the sharp dip in 2017 is due to the data being incomplete in 2017

```
In [30]: dataframe_for_product1359_Monthly.Order_Demand.plot(figsize=(13,6),
    title= 'Demand of Product', fontsize=14,color="Red")
    plt.show()
```


Create Train and Test Data

Last 10 months make up the test data

Demand for product 1359

```
In [56]: Demand_for_1359_Train.Order_Demand.plot(figsize=(13,6), title= 'Pro
    duct 1359 - Train and Test', fontsize=12,color="Red")
    Demand_for_1359Test.Order_Demand.plot(figsize=(13,6), title= 'Produ
    ct 1359 - Train and Test', fontsize=12)
    plt.show()
```


Simple Smoothing

```
In [49]: from statsmodels.tsa.api import ExponentialSmoothing, SimpleExpSmoo
    thing, Holt
    y_hat_avg = Demand_for_1359Test.copy()
    fit2 = SimpleExpSmoothing(np.asarray(Demand_for_1359_Train['Order_D
    emand'])).fit(smoothing_level=0.6,optimized=False)
    y_hat_avg['SES'] = fit2.forecast(len(Demand_for_1359Test))
```

```
In [50]: Demand_for_1359_Train.Order_Demand.plot(figsize=(13,6), title= 'Pro
    duct 1359 - Train and Test', fontsize=12,color="Red")
    plt.plot(Demand_for_1359_Train['Order_Demand'], label='Train',color
    ="Red")
    plt.show()
```



```
In [57]: plt.plot(Demand_for_1359Test['Order_Demand'], label='Test')
    plt.plot(y_hat_avg['SES'], label='Simple Smoothing',color="Green")
    plt.title("Simple Smoothing")
    plt.legend(loc='best')
    plt.show()
```


Root mean square error calculation

```
In [34]: smooth_rms = math.sqrt(mean_squared_error(Demand_for_1359Test.Order
    _Demand, y_hat_avg.SES))
    print(smooth_rms)
```

905476.4628886498

Exponential Smoothing

Exponential smoothing uses the weighted average of previous observations where more weight is given to the most recent observations and the weight decreases as observations get older.

```
In [38]: exp_hat_avg = Demand_for_1359Test.copy()
    fit1 = ExponentialSmoothing(np.asarray(Demand_for_1359_Train['Order
        _Demand'])    ,seasonal_periods=4    ,trend='additive', seasonal='additiv
        e',).fit()
        exp_hat_avg['Exp_Smooth'] = fit1.forecast(len(Demand_for_1359Test))
        plt.figure(figsize=(14,6))
        plt.plot( Demand_for_1359_Train['Order_Demand'], label='Train',colo
        r="Red")
        plt.plot(Demand_for_1359Test['Order_Demand'], label='Test')
        plt.plot(exp_hat_avg['Exp_Smooth'], label='Exp_Smooth',color="Green")
        plt.legend(loc='best')
        plt.title("Exponential Smoothing");
        plt.show()
```


Root mean square error calculation

In [58]:	<pre>exp_rms = math.sqrt(mean_squared_error(Demand_for_1359Test.Order_De</pre>
	<pre>mand, exp_hat_avg.Exp_Smooth)) print(exp rms)</pre>
	princ(exp_ims)

872760.1292784497

In []:	