Lecture 2

Data Summary/Visualization I

Text: Chapter 2 & Chapter 3

STAT 8010 Statistical Methods I August 25, 2020

> Whitney Huang Clemson University

Notes

Agenda

- Sampling Techniques
- Summarizing Categorical Data
- 3 Summarizing Numerical Data

Notes				

Last Lecture

- Stating the problem, identifying the variable(s) of interest, and gathering data
 - Types of variables and datasets
 - Observational vs. Experimental Studies
 - Methods of sampling
- Summarizing the data
- Analyzing the data
- Reporting and interpreting the results

CLEMS N	Data Summa- ry/Visualization	
	CLEMS#N	
	Sampling Techniques Summarizing Categorical Data Summarizing	

Notes			

Today's Lecture

- Stating the problem, identifying the variable(s) of interest, and gathering data
 - Types of variables and datasets
 - Observational vs. Experimental Studies
 - Sampling Techniques
- Summarizing the data
- Analyzing the data
- Reporting and interpreting the results

Notes			

Collecting Data: Statistical Sampling

Statistical sampling is the procedure to select a subset from a statistical **population** that is representative of the population. There are several types of sampling:

 Simple random sampling (SRS): a sample selected such that each element in the population has the same probability of being selected

 Stratified sample: elements in the population are first divided into groups and a simple random sample is then taken from each group

Stratified sample

Notes			

Sampling cont'd

 Cluster sampling: the elements in the population are first divided into separate groups called clusters and then a simple random sample of the clusters is taken that all elements in a selected cluster are part of a sample

 Systematic sampling: randomly select one of the first k elements from the population and then every k_{th} element thereafter is picked

 Convenience sampling: elements selected from the population on the basis of convenience

Data Summa- ry/Visualization I
CLEMSON UNIVERSITY
Sampling Techniques

Notes			

What type of sampling was used?

- A researcher randomly chooses houses in a town.
 Once a particular house is chosen everyone living in the house is surveyed
- A school principal decides to performs an exit interview with every 14th name from a list of graduating seniors
- A biologist knows that 40% of bats are male and that 60% are female so she randomly selects 20 males and randomly selects 30 females to be in her sample
- A graduate student wants to do a study on why people like bluegrass music and uses the people she meets at the next show she attends as her sample
- To get an idea of the average weight of his cattle, a rancher randomly chooses to weigh 25 from his list of the animals

Notes

Summarizing Categorical Variables

Notes			

Example: Sport Injuries

The paper "Profile of sport/leisure injuries treated at emergency rooms of urban hospitals." by Pelletier et al. 1991 examined the nature and number of sport/leisure injuries treated in hospital emergency rooms in a large metropolitan city. They classified non-contact sports injuries by sport, resulting in the following data set:

Sport
Soccer
Basketball
Others
Basketball
Touch Football
Others
Touch Football
Volleyball
Baseball/softball
:

Question: How to summarize this data set?

Data Summa-ry/Visualization	
Sampling Techniques Summarizing Categorical Data	
Summarizing Numerical Data	

Notes				

Frequency Table

- A frequency table for categorical data is a table that displays the possible categories along with the associated frequencies or relative frequencies
- The frequency for a particular category is the number of times the category appears in the data set
- The relative frequency for a particular category is the fraction or proportion of the time that the category appears in the data set. It is calculated as:

 $relative\ frequency =$

Notes

R S I T Y			
ing al Data			
0.10			

Frequencies and Relative Frequencies

How could we visualize these information? ⇒ Making a bar chart and/or a pie chart

Notes				

Bar Charts

A bar chart draws a bar with a height proportional to the count in the table:

Data Summa- ry/Visualization I
CLEMS N
Summarizing Categorical Data
2.12

Notes			

Bar Charts cont'd

Notes

Pie Charts

Notes

Pie Charts cont'd

Data Summa-ry/Visualization
Summarizing Categorical Data

Notes			

Bar Charts vs. Pie Charts

Discussion: Which one you prefer to visualize categorical variables. Why?

Notes

A Good Bar Chart

Notes			

A (Potential) Misleading Bar Chart

Notes			

Example: O'Hare Airport Flight Data

 carrier
 origin

 1
 UA
 EWR

 2
 AA
 LGA

 3
 AA
 LGA

 4
 AA
 LGA

 5
 UA
 LGA

 6
 UA
 EWR

In this example, we have two categorical variables, carrier and origin, respectively. How to summarize/visualize this dataset?

Notes			

ORD Flight Data Cont'd

EWR LGA

AA 0 5694

UA 0.30 0.25

EWR LGA

AA 0.00 0.45

Data Summary/Visualization	
Sampling Techniques Summarizing Categorical Data	

Notes

Summarizing Numerical Variables

Notes			

Example: Murder arrests (per 100,000) in US States in 1973

Data: 13.2, 10.0, 8.1, 8.8, 9.0, 7.9, 3.3, 5.9, 15.4, 17.4, 5.3, 2.6, 10.4, 7.2, 2.2, 6.0, 9.7, 15.4, 2.1, 11.3, 4.4, 12.1, 2.7, 16.1, 9.0, 6.0, 4.3, 12.2, 2.1, 7.4, 11.4, 11.1, 13.0, 0.8, 7.3, 6.6, 4.9, 6.3, 3.4, 14.4, 3.8, 13.2, 12.7, 3.2, 2.2, 8.5, 4.0, 5.7, 2.6, 6.8.

Question: How to graphically summarize this data set?

Stem-and-Leaf Plot

```
The decimal point is at the |

0 | 8

1 |
2 | 1122667
3 | 2348
4 | 0349
5 | 379
6 | 00368
7 | 2349
8 | 158
9 | 0007
10 | 04
11 | 134
12 | 127
13 | 022
14 | 4
16 | 1
17 | 4
```


Histogram

Notes

Notes

Notes

Histogram

ļ	Notes		
-			

Box-and-Whisker Plot

Notes				
	 			_
				_
				_

Shape of Distributions

Source: Skewness - Wikipedia

In the rest of the class, we will talk about how to summarize a numerical variable in terms of its center and spread

Notes			

Measures of Center

- A measure of center attempts to report a "typical" value for the variable
- When a measure of center is calculated with sample data it is a statistic
- When a measure of center is calculated with popular (e.g., census data) it is a parameter
- Measures: Mean, Median, Mode

Data Summa- ry/Visualization I
CLEMS#N
Summarizing Numerical Data

Notes			

Mean

• The population mean, denoted by μ_X , is the sum of all the population values $(\{X_i,\cdots,X_N\})$ divided by the size of the population (N). That is,

$$\mu_{X} = \frac{\sum_{i=1}^{N} X_{i}}{N}$$

• The sample mean, denoted by \bar{X} is the sum of all the sample values $(\{X_1, \cdots, X_n\})$ divided by the sample size (n). That is,

$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

Data Summa- ry/Visualization I
CLEMS N
Summarizing Numerical Data

Notes

Median

The median is the value separating the higher half from the lower half of a data sample

How to compute the median: Order the *n* observations in a data set from smallest to largest, then

١	Median =	
	the single middle value,	n odd
	the average of the middle two values.	n even

Data Summa- ry/Visualization
<u>CLEMS#N</u>
Sampling Techniques
Summarizing Numerical Data

Notes			

Mode

The mode is the value of the observation that appears most frequently

How to compute the mode(s): Order the observations in a data set from smallest to largest, then find the number that is repeated more often than any other

Notes

_				

2.3

Example

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13

 Plot this "data set" and describe the shape of the distribution

ry/Visualization
CLEMS N

2.3

Notes

Example cont'd

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13

• Find the sample mean

$$\bar{X} = \sum_{i=1}^{9} \frac{13+18+13+14+13+16+14+21+13}{9}$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21
 - Compute the sample size n and identify (or compute) the median value
 - 0 $n = 9 \Rightarrow$ the median is the 5th number, which is 14

ta

Example cont'd

- Find the mode
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 21
 - ② We have 3 13 and 2 14 \Rightarrow 13 is the mode

Example: Resistant (Robust) Statistics

Suppose we have the following list of values: 13, 18, 13, 14, 13, 16, 14, 210, 13

• Find the sample mean

$$\bar{X} = \sum_{i=1}^{9} \frac{13 + 18 + 13 + 14 + 13 + 16 + 14 + 210 + 13}{9} = 36$$

- Find the sample median
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210
 - Compute the sample size n and identify (or compute) the median value

Notes

Notes

Example cont'd

- Find the mode
 - Order the data first: 13, 13, 13, 13, 14, 14, 16, 18, 210
 - ② We have 3 13 and 2 14 \Rightarrow 13 is (still) the mode

What is the take-home message?

ry/Visualization I
CLEMS N
Summarizing Numerical Data

Notes

Measures of Spread

 Measures: Range, Variance/Standard Deviation, Interquartile range (IQR)

Notes			

Range

The range of a dataset is the difference between the largest and smallest values

- Compute the range of the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13
- Compute the range of the following list of values: 13, 18, 13, 14, 13, 16, 14, 210, 13

Question: Is Range a robust statistic?

Notes

Standard Deviation/Variance

- The sample standard deviation (variance), denoted by s (s^2), is a measure of the amount of variation of data. s (s^2) can be used as the estimate of the population standard deviation (varaince), denoted by σ (σ^2)
- *s* is calculated in the following way:
 - lacktriangle Calculate the sample mean $ar{X}$
 - ② Calculate the deviation (from the sample mean) for each observation (i.e., $X_i \bar{X}$, $i = 1, \dots, n$)
 - Square each deviation and add them (i.e., $\sum_{i=1}^{n} (X_i \bar{X})^2$)
 - O Divide by n-1 and take the square root, that is,

$$s = \sqrt{\frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}}$$

Data Summa- ry/Visualization I
CLEMS#N
Summarizing Numerical Data

Notes			

Example

- Compute s of the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13
- Compute s of the following list of values: 13, 18, 13, 14, 13, 16, 14, 210, 13

Question: Is standard deviation a robust statistic?

Notes			
-			

Interquartile range (IQR)

- IQR = $Q_3 Q_1$, where Q_1 is the Lower Quartile (the median of the lower half of the data) and Q_3 is the Upper Quartile (the median of the upper half of the data)
- Compute the IQR of the following list of values: 13, 18, 13, 14, 13, 16, 14, 21, 13
- Compute the IQR of the following list of values: 13, 18, 13, 14, 13, 16, 14, 210, 13

Question: Is IQR a robust statistic?

Notes			

Summary

In this lecture, we learned

- Sampling Techniques
- Summarizing Categorical Data
- Summarizing Numerical Data

In next lecture we will learn

- How to construct a boxplot
- How to visualize numerical + categorical variables and numerical + numerical variables
- How to visualize time series, cross-sectional, and spatio-temporal Data sets

Data Summa- ry/Visualization I	Notes
categorical Data ummarizing lumerical Data	

Notes				