funcion facto	sia		
0; =1			
(n+1)! = n	! x (n+1)		
1) Definely enel	formato de las l	funciones recursivas - u	
Usaremes estas	functiones (heron a	istas en la ayudatia 16/5,	
z(n)=0	() = 0.1	muH(C,y)=Z()=C	(autholicacies)
((Ceero)	5(n) = n+1 (successor)	mult (x+1,y 1 = suma	(y, mult(xy))
		suma (0,x) = T,(x)=	
entonces factor	a queda .	Sinc (x+1,y) = 5 (T3	(x14,5ma(x14))
fact (0) = def	s(z(0))=1		
fact (nti) =d	ef mult (fact(n),	s(n))	

2) Ahora definet como termino 1 con basa en la respuestre 1 las finciones que usquemos son (vistas en la clase 17/5/23) $S \equiv_{def} \lambda x. [F, X]$ $P \equiv_{def} \lambda x. X = (prodecesor)$ Cero Eder Ax.XV (due sies Ø) Mult Edel Yaf. Ayx. (Ceroy) (Cy) (suma (mult (Py)x)x) (multiplicación) suna =det Y 2f. Zyx. (Ceroy)(Hx)(G(Py)x(f(Py)x)) C =der XX. 8 (sunci) (cero) Hat let lx.x Galet lz,x,y.5 ((2x,y,w.w)zxy) entonces factoral sera fact = det Y 21. 1x. (Cero x) (Sx) (mu H (fact (Px)) x)

3) A partir de la fucien recursina-yu, d	blinele con un program, de IMP
vecnos quenos seras los Programas	Ph y Pg
tal are	
<ph,07-01 <pg,0,="" y="">-</ph,07-01>	-, 5-1
$\sigma'(X_0) = sucesor(\sigma(X_3))$	donde X3 es una localidad con · O almacenado
of (Xo) = mult (factor(Xz), successor	-(o-(z)))
ertonces Ph = Xo:= X3+1	
$P_g = X_o := (X_2 \times (Z+1))$)
y queda	
$X_3 := \emptyset$, $W := Z$,	
Y ₀ := 0;	
Phi while Yo < W do	de esta manera se
Z:= Yoj	calcula fact(Z) y se guarda en Xo
$X_2 := X_0;$ $P_9;$	
$y_0 := y_0 + 1$	

ò

4) Define la nunimalización no acotada por medio de pre	granas while.
sea 9:1NnH -> IN funcion computable , sypon	gans que g' es un
prograna que la calcula, ahora réalizarence en	programa E para la
minimalización no acotados, donte el resultado	where en y
Z:=0	
$\omega_1 := X_1, \ldots, \omega_n := X_n$	
y:=0, X ₂ :=1	
while $7(z=0)$ do	
Y ₁ := Y	
$X_1 := \omega_1, \ldots, X_n := \omega_n$	14
$X_2 := g(Y, X_1, \dots, X_n)$	
if $(X_2=0)$ then	
Z := 1	
else	
$y := y_1 + 1$	

۲,