AUTOMATED CALIBRATION SYSTEM FOR ROBOT SENSORS

AUTOMATED CALIBRATION SYSTEM FOR

TECHNICAL SPECIFICATION AND INTELLECTUA

Document ID: IP-ACS-2023-114

Effective Date: January 11, 2024

Version: 3.2

Classification: CONFIDENTIAL

1. SYSTEM OVERVIEW

1-
1. This document describes the proprietary Automated Calibration System ("
-
2. The ACS comprises both hardware and software components designed to
2. TECHNICAL SPECIFICATIONS
-
1. **Hardware Components**

b) Reference sensor array featuring:

a) Multi-axis calibration platform with precision actuators

High-precision LiDAR reference units (accuracy: ±0.5mm)

Depth-sensing calibration targets

-

Multi-surface material samples for reflectivity testing

c) Environmental control chamber for temperature stabilization

-

- 2. **Software Components**
- a) Proprietary calibration algorithms (Patent Application No. 16/789,432)
- b) Real-time sensor data processing module
- c) Machine learning-based drift compensation system
- d) Automated calibration scheduling and tracking system

3. INTELLECTUAL PROPERTY RIGHTS

_

1. The Company maintains exclusive ownership of all intellectual property r
a) Patents and patent applications
b) Trade secrets
c) Proprietary algorithms
d) Technical documentation
e) Source code
f) Hardware designs
2. **Patent Portfolio**
-
US Patent No. 11,234,567: "Method for Automated Multi-Sensor Calibratio
-
US Patent Application No. 16/789,432: "Self-Learning Sensor Calibration S

PCT Application No. PCT/US2023/012345: "Adaptive Sensor Calibration for

4. CONFIDENTIALITY AND PROTECTION

- 1. All information contained herein is deemed confidential and proprietary to
- 2. Access to this documentation is restricted to authorized personnel who have
- 3. Implementation of the following security measures is mandatory:
- a) Encrypted storage of all technical documentation
- b) Access logging and monitoring
- c) Regular security audits

d) Physigal security controls for calibration facilities

5. TECHNICAL SPECIFICATIONS AND PERFORMA

- 1. **Calibration Accuracy**

- Position accuracy: ±0.1mm

- Angular accuracy: ±0.02 degrees

- Depth measurement accuracy: ±0.3mm

- Calibration time: <45 minutes per unit

- - 6 -

2. **Operating Parameters**

_

Temperature range: 10°C to 40°C

-

Humidity: 20% to 80% non-condensing

-

Power requirements: 208V 3-phase, 30A

-

Network connectivity: Gigabit Ethernet

6. COMPLIANCE AND CERTIFICATION

-

1. The ACS has been certified to meet the following standards:

- -7 ISO/IEC 17025:2017
ISO 9001:2015
CE Marking (European Conformity)
UL 1740 (Robotics Equipment)

7. WARRANTY AND LIMITATION OF LIABILITY

1. The Company warrants the ACS system against defects in materials and w

2. THE GOMPANY MAKES NO OTHER WARRANTIES, EXPRESS OR
8. CERTIFICATION
The undersigned hereby certifies that this document accurately represents the
technical specifications and intellectual property rights of the Automated
Calibration System as of the Effective Date.

NAVIFLOOR ROBOTICS, INC.
By: _
Dr. Elena Kovacs
Chief Research Officer
Date: _

Marcus Depth
Chief Technology Officer

Date: _
...

9. DOCUMENT CONTROL

Version History:
3.2: Current version (January 11, 2024)

3.1: Updated patent portfolio (November 15, 2023)

By: _ -9 -

