Guía 2: Codificación de infinituplas de números y biyección entre ω y Σ^*

Codificación de infinituplas de números

Definiciones

- De infinituplas:
 - $ullet \ \omega^N = \{(s_1, s_2, \dots): s_i \in \omega orall i \in N\}$
 - $ullet \ \omega^{[N]} = \{(s_1,s_2,\dots) \in \omega^N : (\exists n \in N : s_i = 0 orall i \geq n)\}$
 - Es decir, tiene una cantidad finita de coordenadas no nulas
- De números:
 - pr: Definimos

$$pr:N o\omega$$

 $n \rightarrow n$ -ésimo número primo

- Si p,p_1,\ldots,p_n son números primos (con $n\geq 1$) y $p|p_1\ldots p_n\Rightarrow \exists i:p=p_i$
- Codificación (Teorema Fundamental de la Aritmética reversionado):

$$orall x \in N, \exists ! (s_1, s_2, \dots) \in \omega^{[N]} : x = \prod_{i=1}^{\infty} pr(i)^{s_i}$$

- Notación:
 - Dada una infinitupla $(s_1,s_2,\dots)\in\omega^{[N]}$, usaremos $\langle s_1,s_2,\dots
 angle$ para denotar al número $x=\prod_{i=1}^\infty pr(i)^{s_i}$
 - Dado $x\in N$, usaremos (x) para denotar a la única infinitupla $(s_1,s_2,\dots)\in\omega^{[N]}$ tal que $x=\langle s_1,s_2,\dots\rangle=\prod_{i=1}^\infty pr(i)^{s_i}$
 - Para cada $i \in N$, usaremos $(x)_i$ para denotar a s_i de dicha infinitupla

Consecuencias de la codificación

- Por la notación:
 - $(x) = ((x)_1, (x)_2, \dots)$
 - $(x)_i$ es el exponente de pr(i) en la única factorización prima de x
 - $\langle (x)_1, (x)_2, \dots \rangle = x \forall x \in N$
 - $ullet \ orall (s_1,s_2,\dots) \in \omega^{[N]}, (\langle s_1,s_2,\dots
 angle) = (s_1,s_2,\dots)$
- Si $x, y \in N$, entonces:
 - $ullet (x)_i \leq x orall i \in N$
 - $(x. y)_i = (x)_i + (y)_i \forall i \in N$
 - $x|y \Leftrightarrow \forall i \in N, (x)_i < (y)_i$
- Las funciones:

У

$$egin{aligned} \omega^{[N]} &
ightarrow N \ (s_1,s_2,\dots) &
ightarrow \langle s_1,s_2,\dots
angle \end{aligned}$$

son biyectivas, una inversa de la otra

- Dados $x, i \in N$, $(x)_i = \max\{t \in N : pr(i)^t | x\}$
- Mayor factor primo: Sea

$$egin{aligned} Lt:N
ightarrow \omega \ & x
ightarrow \left\{ egin{aligned} \max\{i \in N: (x)_i
eq 0
ight\} & ext{si } x
eq 1 \ & ext{si } x = 1 \end{aligned} \end{aligned}$$

entonces se cumple que:

- $Lt(x) = 0 \Leftrightarrow x = 1$
- $ullet x = \prod_{i=1}^{Lt(x)} pr(i)^{(x)_i}$

Órdenes totales

Repaso de conceptos

- Relación binaria: sea A un conjunto, una relación binaria en A es un subconjunto de A^2
 - Notación: si R es una relación binaria en A, escribimos aRb para denotar que $(a,b)\in R$
 - Si R es una relación binaria sobre A y $A\subseteq B$, entonces R es una relación binaria sobre B
- Orden parcial: una relación binaria R sobre A es un orden parcial sobre A (\leq) si cumple
 - Reflexividad: $\forall x \in A, xRx$
 - ullet Transitividad: $orall x,y,z\in A,xRy\wedge yRz\Rightarrow xRz$
 - Antisimetría: $\forall x,y \in A, xRy \land yRx \Rightarrow x=y$
- *Orden total*: un orden total sobre A es un orden parcial \leq sobre A que cumple que $\forall a,b\in A,a < b\lor b < a$
- I-ésimo elemento de A: si A es un conjunto finito y no vacío, y ≤ es un orden total sobre A, sea:

$$f:\{1,2,\ldots,|A|\} o A$$
 $f(1)= ext{menor elemento de }A$ $f(i+1)= ext{menor elemento de }A-\{f(1),f(2),\ldots,f(i)\}$

Órdenes naturales sobre Σ^*

Num

- Llamaremos *numerales* a los siguientes símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- Consideraremos Num como el alfabeto de numerales (notar que $Num \cap \omega = \emptyset$)
- Las palabras de Num^* denotarán (en notación decimal) a los números de ω (notar que $Num^* \cap \omega = \emptyset$)
- La representación decimal de números de ω mediante palabras de Num^* no nos da una biyección entre Num^* y ω ya que hay palabras que representan al mismo número (por ejemplo, 016 y 16)

\widetilde{Num}

- Definimos $\widetilde{Num} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, d\}$ donde d denota al número 10
- Los números de ω se representarán mediante la siguiente lista infinita de palabras de \widetilde{Num}^* : $1,2,3,\ldots,9,d,11,12,\ldots,19,1d,21,\ldots,29,2d,\ldots,9d,d1,d2,\ldots,dd,111,\ldots$
 - Siguiente: la siguiente a una palabra α de la lista anterior se obtiene aplicando lo siguiente:
 - 1. Si $\alpha = d^n \operatorname{con} n \geq 0$, entonces el siguiente de α es 1^{n+1}
 - 2. Si α no es de la forma d^n con $n \geq 0$, entonces el siguiente de α se obtiene así:
 - Buscar de derecha a izquierda el primer símbolo no igual a d
 - Reemplazar dicho símbolo por su siguiente en la lista
 1, 2, 3, 4, 5, 6, 7, 8, 9, d
 - Reemplazar por el símbolo 1 a todos los símbolos iguales a d que ocurrían a la derecha del símbolo reemplazado
 - Propiedades:
 - (S) Toda palabra de \widetilde{Num}^* aparece en la lista descripta
 - ullet (I) Ninguna palabra de \widetilde{Num}^* aparece más de una vez en la lista descripta
 - Para la demo:
 - Consideremos la lista representada por $B_0; B_1; B_2; \dots$ donde B_i es la parte de la lista en la cual las palabras tienen longitud exactamente i
 - Si $B_n=lpha_1,\ldots,lpha_k$, entonces $a_1=1^n$ y $a_k=d^n$
 - Si d^n ocurre en B_n , lo hace en la última posición
 - Sea $\sigma \in \widetilde{Num}$ y $\alpha \neq d^n \in \widetilde{Num}^*$, entonces el siguiente de $\sigma \alpha$ es $\sigma \beta$ donde β es el siguiente de α
 - Si $B_n=lpha_1,\ldots,lpha_k$, entonces $B_{n+1}=1lpha_1,\ldots,1lpha_k,2lpha_1,\ldots,2lpha_k,\ldots,dlpha_1,\ldots,dlpha_k$
 - B_n es una lista sin repeticiones de todas las palabras de longitud n de \widetilde{Num}^*
 - De esta, claramente se deduce (S) y (I)
- Dada la función

$$*:\omega o \widetilde{Num}^*$$

 $n \to (n+1)$ -ésima palabra de la lista descripta

por (S) sabemos que es sobreyectiva, y por (I) que es inyectiva. Luego, esta es una **biyección** con inversa:

$$\#:\widetilde{Num}^* o\omega$$

 $\alpha \to \mathrm{posici\acute{o}n}$ de α en la lista descripta - 1

• Si $lpha=s_1s_2..s_k$ con $k\geq 1$ y $s_i\in \widetilde{Num} orall i\in\{1,2,..,k\}$, entonces $\#(lpha)=\sum_{i=1}^k\#(s_i) imes 10^{k-i}$

Caso general

• Sea Σ un alfabeto no vacío y supongamos \leq es un orden total sobre Σ , y sea $\Sigma = \{a_1, \ldots, a_n\}$ con $a_1 < a_2 < \ldots < a_n$, podemos considerar la siguiente lista de palabras de Σ^* :

$$arepsilon, a_1, \ldots, a_n$$
 $a_1a_1, \ldots, a_1a_n, a_2a_1, \ldots, a_2a_n, \ldots, a_na_1, \ldots, a_na_n$

la cual enumera sin repeticiones todas las palabras de Σ^* (i.e., produce una **biyección** entre ω y Σ^*)

• La lista se define formalmente con la función $\emph{siguiente}\ s^{\leq}: \Sigma^* o \Sigma^*$

$$s^{\leq}((a_n)^m)=(a_1)^{m+1}orall m\geq 0$$
 $s^{\leq}(lpha a_i(a_n)^m)=lpha a_{i+1}(a_1)^morall lpha\in\Sigma^*, i\in\{1,2,\ldots,n-1\}, m>0$

- Propiedades:
 - $ullet \ arepsilon
 eq s^{\leq}(lpha) orall lpha \in \Sigma^*$
 - $\alpha \neq \varepsilon \Rightarrow \exists \beta \in \Sigma^* : s^{\leq}(\beta) = \alpha$
- Luego, la lista puede ser descripta como:

$$arepsilon, s^{\leq}(arepsilon), s^{\leq}(s^{\leq}(arepsilon)), s^{\leq}(s^{\leq}(s^{\leq}(arepsilon))), \ldots$$

y se puede demostrar que:

- (S) Toda palabra de Σ^* aparece en la lista descripta
- (I) Ninguna palabra de Σ^* aparece más de una vez en la lista descripta
- Para esta **biyección**, definimos $*^{\leq}:\omega\to\Sigma^*$ como la función que asigna a cada $n\in\omega$ la n+1-ésima palabra de la lista descripta, y $\#^{\leq}:\Sigma^*\to\omega$ como la función que asigna a cada $\alpha\in\Sigma^*$ la posición de α en la lista descripta menos uno (las dos son *inversas* una de la otra). Es decir:

$$egin{aligned} *^\leq : \omega &
ightarrow \Sigma^* \ *^\leq (0) = arepsilon \ \end{aligned} \ *^\leq (n+1) = s^\leq (*^\leq (n))$$

$$egin{aligned} \#^\leq &: \Sigma^* o \omega \ & \epsilon o 0 \ & a_{i_k} \ldots a_{i_0} o \sum_{j=0}^k i_j n^j \end{aligned}$$

• Sea $n\geq 1$, entonces $orall x\geq 1, x=\sum_{j=0}^k i_j n^j$ con $k\geq 0, 1\leq i_j\leq n orall j\in \{0,1,\ldots,k\}$

Extensión del orden total de Σ a Σ^*

- $\alpha \leq \beta \Leftrightarrow \#^{\leq}(\alpha) \leq \#^{\leq}(\beta)$ y \leq es un orden total sobre Σ^*
- $\bullet \ \ S \neq \emptyset \subseteq \Sigma^* \Rightarrow \exists \alpha \in S : \alpha \leq \beta \forall \beta \in S$