

Prova de Ácidos, bases, sais e óxidos - ITA

- ${f 1}$ (ITA-12) Considere as seguintes afirmações a respeito dos haletos de hidrogênio HF , HCI , HBr e HI :
- I. A temperatura de ebulição do $H\!I$ é maior do que a dos demais.
- II. À exceção do *HF*, os haletos de hidrogênio dissociam-se completamente em água.
- III. Quando dissolvidos em ácido acético glacial puro, todos se comportam como ácidos, conforme a seguinte ordem de força ácida: HI > HBr > HCI >> HF.

Das afirmações acima, está(ao) CORRETA(S) apenas

- a) I.
- b) IeII.
- c) II.
- d) II e III.
- e) III.
- **2 -** (ITA-11) Nas condições ambientes, assinale a opção que contém apenas óxidos neutros.
- a) NO₂, CO e Al₂O₃
- b) N₂O, NO e CO
- c) N₂O, NO e NO₂
- d) SiO₂, CO₂ e Al₂O₃
- e) SiO₂, CO₂ e CO
- **3** (ITA-06) Considere os seguintes óxidos (I, II, III, IV e V): I. CaO II. N_2O_5 III. Na_2O IV. P_2O_5 V. SO_3

Assinale a opção que apresenta os óxidos que, quando dissolvidos em água pura, tornam o meio ácido.

- A () Apenas I e IV B () Apenas I, III e V
- C() Apenas II e III D() Apenas II, IV e V
- E() Apenas III e V
- **4** (ITA-04) Qual das opções a seguir apresenta a equação química balanceada para a reação de formação de óxido de ferro (II) sólido nas condições-padrão?
- A. () Fe(s) + Fe₂O₃(s) \rightarrow 3FeO(s).
- B. () Fe(s) + $1/2O_2(g) \rightarrow FeO(s)$.
- C. () $Fe_2O_3(s) \rightarrow 2FeO(s) + 1/2O_2(g)$.
- D. () Fe(s) + CO(g) \rightarrow FeO(s) + C(graf).
- E. () Fe(s) + CO₂(g) \rightarrow FeO(s) + C(graf) + 1/2O₂(g).
- **5** (ITA-03) Indique a opção que contém a equação química de uma reação ácido-base na qual a água se comporta como base.
- a) $NH_3 + H_2O \rightleftharpoons NH_4OH$
- b) NaNH₂ + H₂O = NH₃ + NaOH
- c) Na₂CO₃ + H₂O NaHCO₃ + NaOH

- d) $P_2O_5 + 3H_2O \implies NaHCO_3 + NaOH$
- e) TiCl₄ + 2H₂0 ₹ TiO₂ + 4HCl
- **6 -** (ITA-02) Considere o caráter ácido-base das seguintes espécies:
- I.H , O.
- II.C 5 H 5 N (piridina).
- III. ($C_2 H_5$)₂ NH (di-etil-amina).
- IV. $[(C_2 H_5)_2 NH]^+$ \mathbb{Z} (di-etil-amônio).
- V.C, H, OH (etanol).

Segundo a definição ácido-base de Brönsted, dentre estas substâncias, podem ser classificadas como base

- a) apenas I e II. b) apenas I, II e III.
- c) apenas II e III. d) apenas III, IV e V.
- e) todas.
- **7 -** (ITA-97) Considere os cinco conjuntos de pares de moléculas no estado gasoso:

 $I\hbox{-} H_2NNH_2 \ e \ CH_3NH_2 \qquad \qquad II\hbox{-} \ N_2 \ e \ NH_3.$

III- Cl_2 e H_2CCl_2 . IV- N_2 e CO.

V- CCl₄ e CH₄.

Qual das opções abaixo contém os conjuntos de pares de moléculas que são respectivamente: básicas, isoeletrônicas e apolares?

- a) I, II e III. b) I, III e IV. c) II, IV e V.
- d) II, III e V. e) I, IV e V.
- **8** (ITA-97) Considere as afirmações sobre os óxidos de nitrogênio NO, N_2O e NO_2 :
- I- A formação destes óxidos, a partir de N_2 e O_2 , é endotérmica.
- II- Os números de oxidação dos átomos de nitrogênio nos óxidos NO, N_2O e NO_2 são respectivamente, +2, +1 e +4.
- III- O N₂O é chamado de gás hilariante.
- IV- O NO é o anidrido do ácido nítrico.
- V- O NO₂ é um gás colorido.

Estão corretas:

- a) Apenas II e IV. b) Apenas III e V.
- c) Apenas I, II, III e IV. d) Apenas I, II, IV e V.
- e) Todas.
- **9** (ITA-96) Considere as informações seguintes, todas relativas à temperatura de 25°C :

I- NH₄ $^{+}$ $_{(aq)}$ \longleftrightarrow NH₃ $_{(aq)}$ + H $^{+}$ $_{(aq)}$; $K_{c}\approx 10^{-10}$

II- HNO_2 (aq) \leftrightarrow NO_2 (aq) + H^+ (aq) ; $K_c \approx 10^{-4}$

III- OH $^{\text{-}}_{\text{(aq)}}\leftrightarrow\text{O}^{\text{-}2}_{\text{(aq)}}+\text{H}^{\text{+}}_{\text{(aq)}}$; $K_c<10^{\text{--}36}$ Examinando estas informações, alunos fizeram as seguintes afirmações:

I- OH é um ácido muitíssimo fraco.

II- O ânion NO₂- é a base conjugada do HNO₂.

III- HNO₂ é ácido conjugado da base NO₂.

IV- NH₄ + é um ácido mais fraco do que o HNO₂.

V- Para NH₄ $^{+}_{(aq)}$ + NO $^{-}_{(aq)}$ \leftrightarrow NH₃ $_{(aq)}$ + HNO₂ $_{(aq)}$ devemos ter K_c <1.

Das afirmações acima está(ão) correta(S):

- a) Todas
- b) Apenas I
- c) Apenas I, II e III
- d) Apenas I, II, III e IV e) Apenas II e III
- **10 -** (ITA-95) Considere as seguintes afirmações:
- I- Óxidos como Na₂O, MgO e ZnO são compostos iônicos.
- II- Óxidos como K₂O, BaO, CuO são básicos.
- III- Óxidos de carbono, nitrogênio e enxofre são compostos moleculares.

IV- PbO₂ e MnO₂ são oxidantes fortes.

Destas afirmações estão corretas:

- a) Apenas I e II. b) Apenas I e III.
- c) Apenas III e IV. d) Apenas I, II e III.
- e) Todas.
- 11 (ITA-95) Qual das opções abaixo contém a afirmação falsa, considerando condições ambientes?
 a) H₃C - OH é um líquido incolor, inflamável e miscível

em qualquer proporção de água.

b) Solução do composto a seguir em água é ácida.

- c) Glicerina tem 3 grupos -OH mas suas soluções aquosas não são alcalinas.
- d) H_3C COOH pode ser obtido pela fermentação aeróbica de vinhos.
- e) CI OH é uma espécie química que tem caráter básico e está presente em soluções de gás cloro em água.
- **12 -** (ITA-94) Qual das opções a seguir contém a afirmação falsa?
- a) CrO₃⁻ é um óxido menos ácido que Cr₂O₃.
- b) Para obter HCl gasoso basta juntar H₂SO₄ e sal de cozinha a frio.
- c) Vidros para garrafas e janelas são obtidos fundindo juntos sílica, cal e soda.
- d) Chama-se de superfosfato um adubo obtido pela interação H_2SO_4 com triofosfato de cálcio.
- e) Enquanto os óxidos dos metais alcalinos e dos metais alcalino terrosos pulverizados costumam ser brancos,

os óxidos dos metais de transição são, via de regra, fortemente coloridos.

- **13** (ITA-92) Considere a seguinte seqüência de sais de sódio: *sufato*; *sufito*; *tiosulfito* e *sulfeto*. A opção que contém a seqüência de fórmulas corretas destes sais é:
- a) N₂SO₄; Na₂S₂O₃; Na₂SO₃; Na₂S
- b) Na₂SO₄; Na₂S; Na₂S₂O₃; Na₂SO₃.
- c) $Na_2S_2O_3$ Na_2S ; Na_2SO_4 ; Na_2SO_3 .
- d) N₂SO₄; Na₂S₂O₃; Na₂S₂O₃; Na₂S.
- e) Na₂SO₃; Na₂SO₄; Na₂SiO₃; Na₂S.
- **14 -** (ITA-89) assinale a alternativa falsa em relação a propriedades de óxidos:
- a) o SiO₂ forma muito ácido solúvel em H₂O.
- b) NO₂ reage com água produzindo HNO₂ e HNO₃.
- c) Cr₂O₃ é um óxido básico.
- d) CrO₃ é um óxido ácido.
- e) ZnO reage com bases fortes.
- **15** (ITA-89) Chamemos a conceituação de ácido-base segundo Arrhenius de I, a de Lowry-Bönsted de II e a de Lewis de III. Consideremos a reação do íon cúprico com quatro moléculas de água para formar o composto de coordenação [Cu(H₂O)₄]⁺² (aq). Esta é uma reação de um ácido com uma base segundo:
- a) I e II. b) I e III. c) Apenas II. d) II e III. e) Apenas III.
- 16 Das afirmações a seguir assinale a ERRADA
- a) os hidróxidos dos metais de transição, via de regra,
 são coloridos e muito pouco solúveis em água
- b) os hidróxidos de metais alcalinos terrosos são menos solúveis em água do que os hidróxidos dos metais alcalinos
- c) o método mais fácil de preparação de qualquer hidróxido consiste na reação do respectivo óxido em água
- d) existem hidróxidos que formam produtos solúveis quando tratados com soluções aquosas, tanto de certos ácidos quanto de certas bases
- e) hidróxido de alumínio, recém precipitado de solução aquosa, geralmente se apresenta na forma de um gel não cristalizado
- **17** Qual das afirmações abaixo é FALSA em relação aos óxidos?
- a) MgO é um exemplo de oxido pouco solúvel em água
- b) ZnO se dissolve tanto em ácido sulfúrico quanto em hidróxido de sódio

- c) NO é um exemplo de óxido cuja formação a partir dos elementos ocorre por reação exotérmicas
- d) CO é um exemplo de óxido que não reage com ácidos nem com bases para formar sais
- e) Cl2O é um exemplo de óxido bem solúvel em água
- **18 -** Todas as afirmações desta questão referem-se à preparação e propriedades de óxidos.

Qual das opções abaixo contém DUAS afirmações FALSAS ?

- a) $I Al_2O_3$ no estado líquido é um condutor iônico.
- $II Al_2O_3$ é o componente principal do salitre.
- b) $I CO_2$ gasoso se converte em líquido por compressão à temperatura ambiente.
- II A molécula do CO_2 é linear (O = C = O) o que explica a sua não-polaridade.
- c) I A solução de NO₂ em água contém ácido nítrico.
- II À temperatura ambiente NO_2 é sempre acompanhado de N_2O_4 .
- d) I CO no estado líquido é condutor iônico.
- II Na reação : FeO + CO \rightarrow Fe + CO $_2$ o CO atua como redutor.
- e) I Em ClO₂ as ligações entre átomos diferentes são iônicas.
- II ClO₂ é exemplo de óxido básico.
- 19 A respeito de sais, qual das seguintes afirmações é FALSA?
- a) K₃Fe(CN)₆ é um sal complexo; quando dissolvido em água dissocia-se em duas espécies iônicas.
- b) $K_2Al_2(SO_4)_4$ é um sal duplo; quando dissolvido em água dissocia-se em três espécies iônicas.
- c) A equação que representa o equilíbrio existente entre uma solução saturada de carbonato de cálcio e o excesso de soluto é: $CaCO_3$ (sólido) $\rightarrow Ca^{+2} + CO_3^{-2}$.
- d) Na solução saturada de carbonato de cálcio, isenta de qualquer excesso de sal, existem íons de Ca^{+2} e CO_3^{-2} em equilíbrio com moléculas de CaCO3.
- e) Nos alumens, dos quais o composto da opção (b)
 é um exemplo, um dos cátions tem número de
 Oxidação +3 e o outro +1.
- **20** A respeito das espécies químicas HNO₃, HCN, CH₃COOH, HCO₃-, HClO₄, HPO₄-², cada uma em solução aquosa e à temperatura ambiente, fazem-se as seguintes afirmações:
- I O motivo pelo qual HNO₃ e HCIO₄ são considerados ácidos oxidantes é que eles possuem oxigênio Em suas moléculas.

- II HCN e CH₃COOH são ácidos fracos, pois são pouco dissociados em íons.
- III HCO_{3-} e HPO_4^{-2} não reagem com íons OH^- de bases fortes, já que íons do mesmo sinal se repelem. $IV – HCO_3^-$ e HPO_4^{-2} se dissociam menos do que H_2CO_3 e H_3PO_4 , respectivamente.

V – HCN, CH₃COOH e HCO₃⁻ são ácidos orgânicos, pois contêm carbono em suas moléculas. Quais destas afirmações estão CERTAS ?

- a) apenas III.
- b) apenas II e IV.
- c) apenas I, II e V.
- d) apenas I, III e IV.
- e) apenas I, III, IV e V.

GABARITO

D
В
D
В
D
SR
E
С
Α
E
E
Α
D
Α
E
С
С
E
D
В