

Claims

- 205 1. A method for safely coupling an external voltage network to an operating voltage network, in particular of a motor vehicle, in which at least one controllable switch (Q_2) is arranged between the operating voltage network (BN) and a connecting terminal (VK), the at least one controllable switch is connected to a control unit (SG), the connecting terminal (VK) is designed for connection of the external voltage network (FN) and the method comprises the following steps:
- measuring the voltage at the connecting terminal (VK),
 - examining whether the measurement voltage is not below a lower threshold value and not in excess of an upper threshold value,
 - closing the controllable switch (Q_2) if the measurement voltage is within the permissible range,
- 215
- measuring the current flowing between the connecting terminal (VK) and the operating voltage network (BN),
 - examining whether the current is not below a lower threshold value,
- 220
- opening the at least one controllable switch (Q_2) if the current is outside the permissible range.
- 225
- 230 2. A method according to claim 1, characterized in that the method steps are carried out with activated ignition lock (Q_1) only.
- 235 3. A method according to claim 1, characterized in that the controllable switch (Q_2) is opened when the current between the connecting terminal (VK) and the operating voltage network (BN) is in excess of an upper threshold value.

- 240 4. A method according to claim 1,
 characterized in that, after opening of the controllable switch (Q_2), this
 state is maintained until the voltage at the connecting terminal (VK)
 drops to zero or falls below a lower threshold value.
- 245 5. A method according to claim 1,
 characterized in that the measurement of the voltage at the connecting
 terminal (VK) is carried out permanently during the entire process.
- 250 6. A method according to claim 1,
 characterized in that the results of the measurement result examination
 steps are output via a display unit (AE).
- 255 7. A method according to claim 1,
 characterized in that, after opening of the at least one controllable
 switch (Q_2), said switch (Q_2) is closed again at regular intervals in order
 to determine whether the operational state that caused opening of said
 switch (Q_2) is still present.
- 260 8. A circuit arrangement for carrying out the method according to any of
 claims 1 to 7.
- 265 9. A circuit arrangement according to claim 8,
 characterized in that the controllable switch (Q_2) is a relay.
10. A circuit arrangement according to claim 8 or 9,
 characterized in that the connecting terminal (VK) is covered by a cap
 (AK) and the latter is connected to a switch (Q_3) such that the switching
 state of said switch (Q_3) changes upon removal of the cap from the
 connecting terminal (VK).
11. A circuit arrangement according to any of claims 8 to 10,

270 characterized in that the operating voltage network (BN) is the supply network of a first motor vehicle (A) and that the external voltage network (FN) is the supply network of a second motor vehicle (B), or a charging device.

275 12. A circuit arrangement according to claim 8,
characterized in that a measurement resistor (Rm) is connected between the terminal means of the connecting terminal (VK).