Digital image processing and analysis 3. Colour: physical origins, perception and characterisation

Professor Ela Claridge School of Computer Science

Previous lecture:

- Digital image properties
 - Computer representation pixels
 - Sampling related to image coordinates
 - Quantisation related to image values
- ... and how they relate to image acquisition

In this lecture we shall find out about:

- Colours and their origins
 - Physical underpinnings
 - Human visual perception

- Colour images
 - Image acquisition
 - Colour spaces

Light – a part of electromagnetic spectrum

Colour spectrum – visible light

Newton's experiment

Conclusion:

"White" light is a combinations of many different light wavelengths

White light is a mixture of all wavelengths, at equal magnitudes

Object absorbs certain parts of the spectrum and reflects the remaining parts.

We see/image light reflected from surfaces

White light is a mixture of all wavelengths, at equal magnitudes

The eye and the brain

Retina

Cones detect detail and colour, central, 6 million

Rods

sensitive to light & motion, off-centre, 120 million

Fovea

densely packed with cones, fine detail, uniform resolution

Colour (spectral) sensitivity of the cones

Colour is a percept

- White is a colour, the perception which is evoked by light that stimulates all three types of colour sensitive cone cells in the human eye in nearly equal amounts and with high brightness. [Wikipedia]
- Red is a colour, the perception of which is evoked by light that stimulates "red" sensitive cones in the human eye, and no other cones ("green" or "blue")

Colour is not a physical phenomenon

Colour vision deficiency (colour blindness)

- The decreased ability to see colour or differences in colour.
- Caused by a deficiency one or more of the three sets of color sensing cones in the eye.

Typical perception

Deficient perception

[Source: Wikipedia]

Primary colours tutorial http://micro.magnet.fsu.edu/primer/lightandcolor/primaryhome.html

© Professor Ela Claridge, School of Computer Science, University of Birmingham

Bayer filter

Image mosaic

Bayer filter

Image mosaic

Interpolated final pixels

© Professor Ela Claridge, School of Computer Science, University of Birmingham

Bayer filter

Image mosaic

Interpolated final pixels

© Professor Ela Claridge, School of Computer Science, University of Birmingham

Bayer filter

255	127	255	127
255	255	255	255
255	127	255	127
0	255	0	255

R:127 G:255 B:255	R:127 G:255 B:255	
R:127 G:255 B:127	R:127 G:255 B:127	

Image mosaic

Interpolated final pixels

Bayer filter

255	255	255	255
255	255	255	255
255	255	255	255
255	255	255	255

R:255 G:255 B:255	R:255 G:255 B:255	
R:255 G:255 B:255	R:255 G:255 B:255	

Image mosaic

Interpolated final pixels

© Professor Ela Claridge, School of Computer Science, University of Birmingham

Three-CCD (3CCD)

Prisms

Spectral sensitivity of a typical CMOS sensor

Spectral sensitivity of the cones

Colour spaces

- A colour space represents a system for measuring colours
- Most colours can be represented using three colour components
- They are called the primary colours (or the primaries)

Colour spaces

- There are many colour spaces.
- The choice of a particular space depends on the context in which we want to describe colours.
 The four most common colour spaces are:
 - RGB
 - HSV
 - CMY (K)
 - XYZ

- Primaries: Red Green Blue
- Similar to colours detected by colour receptors in the eye
- Used in display technology

© Professor Ela Claridge, School of Computer Science, University of Birmingham

Mixing is additive

Image source: http://www.netsourceinc.com/blog/quick-color-guide

RGB

Colour spaces HSV / HSL

Primaries: Hue - Saturation - Value

Or: Hue – Saturation – Lightness

Colour space related to subjective description of colours

Colour spaces HSV / HSL

Conic representation of the HSV and HSL colour spaces

Source: https://uk.mathworks.com/matlabcentral/fileexchange/28790-colorspace-transformations/content/colorspace/colorspace.html

© Professor Ela Claridge, School of Computer Science, University of Birmingham

Colour spaces CMY(K)

Primaries:

Cyan Magenta Yellow Blac**K**

- Used in printing technology
- Complement of RGB

Colour spaces CMY(K)

Mixing is **subtractive**

Image source: http://www.netsourceinc.com/blog/quick-color-guide

Colour spaces CMY(K)

Colour spaces CIE XYZ

- CIE: Commission Internationale de l'Eclairage
- Primaries: X, Y, Z
- Based on colour perception by humans
- Device independent
- The most common representation of the CIE XYZ space is the CIE chromacity diagram

Colour spaces CIE XYZ

Source: https://dotcolor.com/tag/chrom aticity-diagram/

© Professor Ela Claridge, School of Computer Science, University of Birmingham

Colour spaces

Colour picker experiment

Afterimage illusion Complementary colours

In this lecture we have covered:

- Colours and their origins
 - Physical underpinnings
 - Human visual perception

- Colour images
 - Image acquisition
 - Colour spaces

Next lecture

- Digital representation of colour images
 - Colour mixing (vector arithmetics)
 - Pixel arrays
 - Colour models

Further reading and experimentation

Bayer filter:

http://www.cambridgeincolour.com/tutorials/camera-sensors.htm

- https://en.wikipedia.org/wiki/Demosaicing
- Light and colour tutorial:
- http://micro.magnet.fsu.edu/primer/lightandcolor/index.html
- Additive colours:

http://micro.magnet.fsu.edu/primer/java/primarycolors/additiveprimaries/index.html

Subtractive colours:

http://micro.magnet.fsu.edu/primer/java/primarycolors/subtractiveprimaries/index.html

Colour separation:

http://micro.magnet.fsu.edu/primer/java/primarycolors/colorseparation/index.html

Afterimage illusion: https://en.wikipedia.org/wiki/Afterimage