Naive Baye's -> Part 2 Baye's Theorem P(B/A) = P(B) * P(A/B)P(A) Supervised ML V CLASSIFICATION OP No Yes $P(Y/X_{1},x_{2},x_{3},x_{4},-x_{n}) = P(y) + P(x_{1},x_{2},x_{4},x_{4},-x_{n}/y)$ P(x1, x2, x3 - - - xn) = P(y) * P(x,/y) * P(x,/y) * P(x3/y) --- P(xn/y) Constant -> P(x,) P(x,) P(x,) P(N/7,1x, 1x, -- xn) = P(N) * P(x,/y) * P(x,/y) * --- P(xn/y)

Constant -> P(x,) + P(x) + P(xx) +- -- P(xn)

		✓			₩
Day	Outlook	Temperature	Humidity	Wind	Play Tennis
D1	Sunny 🗸	Hot	High	Weak	No -
D2	Sunny	Hot	High	Strong	No -
D3	Overcast V		High	Weak	Yes
D4	Rain 🗸	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No /
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Unny	2	3	49	315
Dvur (ant	4	0	419	0/5
Rain	3	2	319	45

Outlook

Temp evalue

	Ys	N·	P(4)	P(N)
Hot	2	2	2/9	45
Mild	4	2	419	215
Lord	3		319	45
	9	5		

P(Sunny/400)

New Data

Assignment -> (overcost, Mild) -> 0/p??