Trabalho Nº1 - MRAC Direto

COE603 - Controle Adaptativo

Caio Cesar Leal Verissimo - 119046624 Leonardo Soares da Costa Tanaka - 121067652 Lincoln Rodrigues Proença - 121076407 Engenharia de Controle e Automação - UFRJ Rio de Janeiro, Rio de Janeiro, Brasil Maio de 2025

Conteúdo

1	Res	Resumo das equações do sistema				
	1.1	Equaçõ	ões do Algoritmo MRAC Direto	3		
	1.2	Estabil	lidade do Algoritmo MRAC Direto	4		
2	Dia	gramas	s de blocos	5		
3	Res	ultados	s das simulações	6		
	3.1	Simula	ção #1	7		
		3.1.1	Configuração do experimento:	7		
		3.1.2	Resultados da simulação:	7		
		3.1.3	Comentários:	8		
	3.2	Simula	ção #2	9		
		3.2.1	Configuração do experimento:	9		
		3.2.2	Resultados da simulação:	9		
		3.2.3	Comentários:	10		
	3.3	Simula	ção #3	11		
		3.3.1	Configuração do experimento:	11		
		3.3.2	Resultados da simulação:	11		
		3.3.3	Comentários:	12		
	3.4	Simula	ção #4	13		
		3.4.1	Configuração do experimento:	13		

	3.4.2	Resultados da simulação:	13	
	3.4.3	Comentários:	14	
3.5	Simula	ıção #5	15	
	3.5.1	Configuração do experimento:	15	
	3.5.2	Resultados da simulação:	15	
	3.5.3	Comentários:	16	
3.6	Simula	ıção #6	17	
	3.6.1	Configuração do experimento:	17	
	3.6.2	Resultados da simulação:	17	
	3.6.3	Comentários:	18	
3.7	Simula	ıção #7	19	
	3.7.1	Configuração do experimento:	19	
	3.7.2	Resultados da simulação:	19	
	3.7.3	Comentários:	20	
3.8	Simulação #8			
	3.8.1	Configuração do experimento:	21	
	3.8.2	Resultados da simulação:	21	
	3.8.3	Comentários:	22	
3.9	Simula	ıção #9	23	
	3.9.1	Configuração do experimento:	23	
	3.9.2	Resultados da simulação:	23	
	3.9.3	Comentários:	24	
3.10	Simula	ıção #10	25	
	3.10.1	Configuração do experimento:	25	
	3.10.2	Resultados da simulação:	25	
	3.10.3	Comentários:	26	

1 Resumo das equações do sistema

Neste experimento, simulamos o algoritmo MRAC Direto para o caso:

• n = 1 (ordem da planta)

• $n^* = 1$ (grau relativo)

• $n_p = 2$ (número de parâmetros)

1.1 Equações do Algoritmo MRAC Direto

A Tabela 1 resume as equações fundamentais do algoritmo MRAC (Model Reference Adaptive Control) na forma direta, considerando uma planta de primeira ordem (n = 1), grau relativo igual a 1 $(n^* = 1)$ e número de parâmetros $n_p = 2$.

Descrição	Equação	Ordem
Planta	$\dot{y} = a_p y + k_p u$	1
Modelo	$\dot{y}_m = -a_m y_m + k_m r$	1
Erro da saída	$e_0 = y - y_m$	
Lei de controle	$u = \theta^T \omega$	
Regressor	$\omega^T = \begin{bmatrix} y & r \end{bmatrix}$	
Lei de adaptação	$\dot{\theta} = -\operatorname{sign}(k_p)\Gamma\omega e_0$	2

Tabela 1: Resumo do Algoritmo MRAC Direto

A Figura 1 ilustra o diagrama de blocos do sistema em malha fechada, juntamente com a verificação da equivalência com o modelo de referência. Este diagrama mostra como a combinação dos ganhos adaptativos θ_1^* e θ_2^* pode transformar o comportamento da planta para que ela imite o modelo de referência.

Figura 1: Diagrama de blocos e verificação da equivalência com o modelo de referência

As expressões ideais para os parâmetros θ_1^* e θ_2^* que garantem essa equivalência são apresentadas a seguir. Esses parâmetros são obtidos por identificação direta, com base nas constantes do modelo e da planta.

$$\theta_1^* = -\frac{a_p + a_m}{k_p}$$

$$\theta_2^* = \frac{k_m}{k_p}$$

Essas equações representam os valores ideais dos parâmetros adaptativos para que a planta controlada siga o comportamento especificado pelo modelo de referência. Na prática, o algoritmo de adaptação busca aproximar esses valores ao longo do tempo.

1.2 Estabilidade do Algoritmo MRAC Direto

1. Forma vetorial e definições Escrevendo em forma vetorial:

$$\boldsymbol{\theta}^* = \begin{bmatrix} \theta_1^* \\ \theta_2^* \end{bmatrix}, \quad \boldsymbol{\omega} = \begin{bmatrix} y \\ r \end{bmatrix} \implies u^* = \boldsymbol{\theta}^{*T} \boldsymbol{\omega}.$$
 (1)

Analogamente, a lei de controle é

$$\boldsymbol{\theta} = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} \quad \Longrightarrow \quad u = \boldsymbol{\theta}^T \, \boldsymbol{\omega}. \tag{2}$$

2. Dinâmica do erro Definimos o erro de saída:

$$e = y - y_m. (3)$$

Subtraindo as dinâmicas da planta e do modelo:

$$\dot{e} = \dot{y} - \dot{y}_m = (a_p y + k_p u) - (-a_m y_m + k_m r)
= -a_m (y - y_m) + (a_p + a_m) y + k_p u - k_m r + \underbrace{(a_m y) - (a_m y)}_{=0}
= -a_m e + k_p \Big[\frac{a_p + a_m}{k_p} y + u - \frac{k_m}{k_p} r \Big]
= -a_m e + k_p \Big[u - \theta_1^* y - \theta_2^* r \Big]
= -a_m e + k_p \Big[u - u^* \Big].$$
(4)

3. Erro paramétrico Definimos o vetor de erro de parâmetro:

$$\tilde{\boldsymbol{\theta}} = \boldsymbol{\theta} - \boldsymbol{\theta}^* \implies \dot{e} = -a_m e + k_p \, \tilde{\boldsymbol{\theta}}^T \boldsymbol{\omega}.$$
 (5)

4. Função de Lyapunov Escolhemos

$$V(e,\tilde{\boldsymbol{\theta}}) = \frac{1}{2}e^2 + \frac{1}{2}|k_p|\tilde{\boldsymbol{\theta}}^T \Gamma^{-1}\tilde{\boldsymbol{\theta}}.$$
 (6)

Calculando sua derivada:

$$\dot{V} = e \,\dot{e} + |k_p| \,\tilde{\boldsymbol{\theta}}^T \,\Gamma^{-1} \,\dot{\tilde{\boldsymbol{\theta}}}
= -a_m e^2 + k_p \,\tilde{\boldsymbol{\theta}}^T \,\boldsymbol{\omega} \,e + |k_p| \,\tilde{\boldsymbol{\theta}}^T \,\Gamma^{-1} \,\dot{\tilde{\boldsymbol{\theta}}}.$$
(7)

Para garantir $\dot{V} \leq 0$, adotamos a lei de adaptação

$$\dot{\boldsymbol{\theta}} = -\Gamma \operatorname{sign}(k_p) \,\boldsymbol{\omega} \, e. \tag{8}$$

5. Conclusões de estabilidade Com essa escolha,

$$\dot{V} = -a_m e^2 \le 0, \quad \Longrightarrow \quad e(t), \ \tilde{\boldsymbol{\theta}}(t) \in \mathcal{L}_{\infty}. \tag{9}$$

Como $r(t) \in \mathcal{L}_{\infty} \Rightarrow y_m(t) \in \mathcal{L}_{\infty}$ e

$$\dot{V} \le 0 \implies V(t) \le V(0),\tag{10}$$

segue que

$$\int_0^t e^2(\tau) \, d\tau < \infty \quad \Longrightarrow \quad e \in \mathcal{L}_2. \tag{11}$$

Finalmente, aplicando o lema de Barbalat,

$$e \in \mathcal{L}_2, \quad \dot{e} \in \mathcal{L}_\infty \quad \Longrightarrow \quad \lim_{t \to \infty} e(t) = 0.$$
 (12)

2 Diagramas de blocos

Nesta seção, apresentamos os principais diagramas de blocos que descrevem o funcionamento do controle adaptativo modeloreferência (MRAC) na sua forma direta. Cada figura ilustra uma parte fundamental do sistema, desde a estrutura geral até os componentes individuais como a planta, o modelo de referência e a malha de adaptação.

Figura 2: Diagrama de blocos geral do controle MRAC direto.

A Figura 2 mostra a arquitetura geral do controlador MRAC direto. O objetivo do sistema é ajustar os parâmetros do controlador de modo que a saída da planta acompanhe a saída do modelo de referência para qualquer entrada r(t). O sinal de erro $e = y - y_m$ é utilizado para atualizar os parâmetros adaptativos.

Figura 3: Malha de adaptação dos parâmetros θ .

Na Figura 3, destacamos a malha de adaptação, responsável por ajustar os parâmetros do controlador θ com base no erro de seguimento. Essa adaptação ocorre conforme uma lei de atualização derivada da função de Lyapunov, garantindo estabilidade do sistema.

Figura 4: Componentes individuais do sistema MRAC.

A Figura 4 agrupa os blocos fundamentais do sistema MRAC. À esquerda, o modelo de referência define a dinâmica desejada para o sistema. Ao centro, está a planta controlada, que deve seguir essa referência. À direita, o sinal de referência r(t) atua como entrada comum para ambos os blocos, sendo a base para comparação entre o comportamento ideal e o real.

3 Resultados das simulações

Cada subseção a seguir apresenta a configuração do experimento, espaço reservado para os dados obtidos em cada simulação e comentários sobre o desempenho do MRAC Direto.

3.1 Simulação #1

3.1.1 Configuração do experimento:

• Planta: $P(s) = \frac{k_p}{s - a_p} = \frac{1}{s - 2}$

• Modelo de referência: $M(s) = \frac{k_m}{s + a_m} = \frac{1}{s + 1}$

• Condições iniciais: $y_p(0) = 0, y_m(0) = 0$

• Sinal de referência: DC = 1 (constante), $A_s=0,\,\omega_s=5$ rad/s

 Ganho de matching ótimo: $\theta^* = \left[-(a_p + a_m)/k_p; k_m/k_p\right] = [-3;1]$

• Ganho de adaptação: $\Gamma_1=2I_{2\times 2},\,\Gamma_2=100I_{2\times 2}$

• Condição inicial do parâmetro: $\theta(0) = [0; 0]$

3.1.2 Resultados da simulação:

Figura 5: Resultado da simulação (Script: simu01.m)

3.1.3 Comentários:

A simulação do MRAC Direto apresentou os seguintes comportamentos, conforme a variação do ganho de adaptação Γ:

- Erro de rastreamento (e_0): Para $\Gamma = 100I$, o erro converge mais rapidamente com menor overshoot. Já para $\Gamma = 2I$, a convergência é mais lenta e com maiores oscilações, só que uma menor frequência de oscilação.
- Ganho de adaptação (θ): Ambos os casos não convergem para o valor ótimo $\theta^* = [-3; 1]$. Porque o sinal de entrada que é um sinal DC igual a 1, o que não auxilia na convergência do ganho de adaptação.
- Resposta do sistema $(y_p \ e \ y_m)$: O rastreamento da referência é mais eficiente para $\Gamma = 100I$, apresentando menor erro e resposta mais rápida.
- Sinal de controle (u): Ambos os casos convergem para o valor adequado em regime permanente. Com $\Gamma = 100I$, o controle atua de forma mais intensa no início, mas estabiliza mais rapidamente.
- Diagrama de fase $(e_0 \times \tilde{\theta})$: Para $\Gamma = 2I$, a trajetória é mais lenta e ampla; para $\Gamma = 100I$, há convergência rápida com órbitas mais fechadas.

Conclusão: Aumentar o ganho de adaptação Γ melhora significativamente a velocidade de convergência do sistema, tanto para o erro quanto para os parâmetros adaptativos, ao custo de maior agressividade no transiente.

3.2 Simulação #2

3.2.1 Configuração do experimento:

• **Planta:** $P(s) = \frac{1}{s-2}$

• Modelo de referência: $M(s) = \frac{1}{s+1}$

• Condições iniciais: $y_p(0) = 0$, $y_m(0) = 0$

• Sinal de referência: DC = 2 (constante), $A_s=1,\,\omega_s=5$ rad/s

• Ganho de matching ótimo: $\theta^* = [-3; 1]$

• Ganho de adaptação: $\Gamma_1=2I_{2\times 2},\,\Gamma_2=100I_{2\times 2}$

• Condição inicial do parâmetro: $\theta(0) = [0; 0]$

3.2.2 Resultados da simulação:

Figura 6: Resultado da simulação (Script: simu02.m)

3.2.3 Comentários:

Nesta simulação, foi utilizado um sinal de referência composto por uma componente DC e uma senoidal, o que introduz maior oscilação no sistema. Os principais resultados observados foram:

- Erro de rastreamento (e_0): O erro apresenta comportamento oscilatório permanente devido à componente senoidal do sinal de referência. Com $\Gamma = 100I$, o erro é mais suavizado e acompanha melhor a referência.
- Ganho de adaptação (θ): Ambos os casos convergem para valores próximos de θ^* , com maior rapidez e menor variação para $\Gamma = 100I$.
- Resposta do sistema (y_p, y_m, r) : A resposta com $\Gamma = 100I$ segue melhor a referência, com menor defasagem e melhor rastreamento da componente senoidal.
- Sinal de controle (u): Oscilatório em ambos os casos, com maior intensidade e frequência no início. A escolha de Γ mais alto permite estabilização mais rápida, porém com maior ação de controle.
- Diagrama de fase $(e_0 \times \tilde{\theta})$: Com $\Gamma = 100I$, as trajetórias convergem de forma mais concentrada em torno da origem, indicando melhor desempenho adaptativo.

Conclusão: A presença da componente senoidal no sinal de referência exige maior capacidade adaptativa do sistema. O ganho de adaptação elevado ($\Gamma = 100I$) proporciona resposta mais precisa, embora com maior esforço de controle.

3.3 Simulação #3

3.3.1 Configuração do experimento:

• **Planta:** $P(s) = \frac{1}{s-2}$

• Modelo de referência: $M(s) = \frac{1}{s+1}$

• Condições iniciais: $y_p(0) = 3$, $y_m(0) = 0$

• Sinal de referência: DC = 1 (constante), $A_s = 0$, $\omega_s = 5$, rad/s

• Ganho de matching ótimo: $\theta^* = [-3; 1]$

• Ganho de adaptação: $\Gamma_1=2I_{2\times 2},\,\Gamma_2=100I_{2\times 2}$

• Condição inicial do parâmetro: $\theta(0) = [0; 0]$

3.3.2 Resultados da simulação:

Figura 7: Resultado da simulação (Script: simu03.m)

3.3.3 Comentários:

Nesta simulação, a planta parte de uma condição inicial não nula $(y_p(0) = 3)$, enquanto o modelo inicia em zero. O sinal de referência é constante (DC = 1). Os principais resultados observados foram:

- Erro de rastreamento (e_0): O erro converge rapidamente para zero, sendo mais eficiente para $\Gamma = 100I$. A presença do offset inicial é corrigida com maior rapidez neste caso.
- Ganho de adaptação (θ): Os parâmetros adaptativos se ajustam rapidamente e não estabilizam em torno de θ^* , com menor oscilação e adaptação mais rápida para maior ganho de adaptação.
- Resposta do sistema: O sistema com $\Gamma = 100I$ segue o modelo de referência com mais precisão, apresentando menor tempo de acomodação e sobre-elevação.
- Sinal de controle (u): O controle é inicialmente intenso devido à diferença nas condições iniciais. Para $\Gamma = 100I$, observa-se maior esforço de controle, mas com resposta mais eficaz.
- Diagrama de fase $(e_0 \times \tilde{\theta})$: As trajetórias convergem rapidamente para a origem, especialmente para $\Gamma = 100I$, indicando uma adaptação eficiente mesmo com condições iniciais desfavoráveis.

Conclusão: A diferença nas condições iniciais evidencia a importância do ganho de adaptação. Valores maiores de Γ resultam em respostas mais rápidas e precisas, compensando rapidamente desvios iniciais.

3.4 Simulação #4

3.4.1 Configuração do experimento:

• **Planta:** $P(s) = \frac{1}{s-2}$

• Modelo de referência: $M(s) = \frac{1}{s+1}$

• Condições iniciais: $y_p(0) = 3$, $y_m(0) = 0$

• Sinal de referência: DC = 2 (constante), $A_s=1,\,\omega_s=5,\mathrm{rad/s}$

• Ganho de matching ótimo: $\theta^* = [-3; 1]$

• Ganho de adaptação: $\Gamma_1=2I_{2\times 2},\,\Gamma_2=100I_{2\times 2}$

• Condição inicial do parâmetro: $\theta(0) = [0; 0]$

3.4.2 Resultados da simulação:

Figura 8: Resultado da simulação (Script: simu04.m)

3.4.3 Comentários:

Nesta simulação, a planta inicia novamente em $y_p(0) = 3$, mas o sinal de referência inclui uma componente senoidal além da parte DC (DC = 2, $A_s = 1$, $\omega_s = 5$ rad/s). Isso introduz um regime permanente oscilatório. Os principais pontos observados são:

- Erro de rastreamento (e₀): O erro não converge para zero devido à presença do componente harmônico no sinal de referência. No entanto, para Γ = 100I, o erro apresenta menor amplitude de oscilação, indicando melhor desempenho de rastreamento.
- Ganho de adaptação (θ): Os parâmetros adaptativos não convergem para valores constantes, pois o sistema está em regime oscilatório. Ainda assim, os ganhos oscilam em torno de valores próximos de θ^* no caso de $\Gamma = 2I$, com maior oscilação observada para $\Gamma = 100I$.
- Resposta do sistema: O sistema com maior ganho de adaptação responde mais rapidamente e com menor erro de seguimento da referência. Entretanto, a presença de altas frequências exige maior esforço adaptativo.
- Sinal de controle (u): O controle apresenta oscilações significativas para ambas as configurações, mas mais intensas para $\Gamma = 100I$, refletindo a tentativa de acompanhar a componente senoidal do sinal de referência.
- Diagrama de fase $(e_0 \times \tilde{\theta})$: As trajetórias não convergem para a origem, como esperado em um regime não estacionário. Os ciclos fechados no plano de fase revelam a persistência da oscilação e o comportamento quase-periódico da adaptação.

Conclusão: A introdução da componente senoidal no sinal de referência impossibilita a convergência do erro para zero. Ainda assim, o aumento do ganho de adaptação melhora o desempenho de rastreamento, ao custo de maior esforço de controle e maiores oscilações nos parâmetros adaptativos.

3.5 Simulação #5

3.5.1 Configuração do experimento:

• Planta: $P(s) = \frac{1}{s-2}$

• Modelo de referência: $M(s) = \frac{1}{s+4}$

• Condições iniciais: $y_p(0) = 0$, $y_m(0) = 0$

• Sinal de referência: DC = 1 (constante), $A_s = 0$, $\omega_s = 5$, rad/s

• Ganho de matching ótimo: $\theta^* = [-(2+4)/1; 1/1] = [-6; 1]$

• Ganho de adaptação: $\Gamma_1=2I_{2\times 2},\,\Gamma_2=100I_{2\times 2}$

• Condição inicial do parâmetro: $\theta(0) = [0; 0]$

3.5.2 Resultados da simulação:

Figura 9: Resultado da simulação (Script: simu05.m)

3.5.3 Comentários:

Nesta simulação, a planta instável $P(s) = \frac{1}{s-2}$ é controlada de modo que sua saída siga o modelo de referência $M(s) = \frac{1}{s+4}$. O sinal de referência é puramente constante (DC = 1), sem componente senoidal. Os principais pontos observados são:

- Erro de rastreamento (e₀): Como o sinal de referência é constante e não possui componentes oscilatórias, o erro converge rapidamente para zero. O modelo adaptativo consegue compensar a dinâmica instável da planta com eficiência, especialmente com os ganhos de adaptação utilizados.
- Ganho de adaptação (θ): Os parâmetros adaptativos convergem suavemente para valores próximos de $\theta^* = [-6; 1]$. Isso é esperado, já que a referência constante permite que o algoritmo de adaptação atue em um regime mais estável e previsível.
- Resposta do sistema: A resposta da planta controlada aproxima-se da resposta do modelo de referência, com um comportamento estável e transiente bem amortecido. A escolha de um polo mais afastado ($a_m = 4$) no modelo de referência acelera a convergência do sistema.
- Sinal de controle (u): O esforço de controle é moderado e se estabiliza rapidamente. Como não há variações rápidas na referência, o sinal de controle não apresenta oscilações significativas.
- Diagrama de fase (e₀ × θ̂): As trajetórias no plano de fase convergem para a origem, indicando que tanto o erro
 de rastreamento quanto o erro nos parâmetros adaptativos são eliminados com o tempo. Isso demonstra a eficácia do
 controlador adaptativo nesse cenário.

Conclusão: A estabilidade do modelo de referência e a ausência de componentes senoidais na entrada facilitam a convergência do erro e dos parâmetros adaptativos. A planta instável é controlada com sucesso, e a escolha de um polo mais rápido $(a_m = 4)$ no modelo de referência proporciona uma resposta mais ágil, sem comprometer a estabilidade ou exigir esforço excessivo de controle.

3.6 Simulação #6

3.6.1 Configuração do experimento:

• **Planta:** $P(s) = \frac{1}{s-2}$

• Modelo de referência: $M(s) = \frac{1}{s+4}$

• Condições iniciais: $y_p(0) = 0$, $y_m(0) = 0$

• Sinal de referência: DC = 2, $A_s = 1$, $\omega_s = 5$ rad/s

• Ganho de matching ótimo: $\theta^* = [-(2+4)/1; 2/1] = [-6; 2]$

• Ganho de adaptação: $\Gamma_1=2I_{2\times 2},\ \Gamma_2=100I_{2\times 2}$

• Condição inicial do parâmetro: $\theta(0) = [0; 0]$

3.6.2 Resultados da simulação:

Figura 10: Resultado da simulação (Script: simu06.m)

3.6.3 Comentários:

Nesta simulação, a planta instável $P(s)=\frac{1}{s-2}$ deve a companhar o modelo de referência $M(s)=\frac{1}{s+4}$, sendo excitada por um sinal de referência composto por uma parte constante (DC = 2) e uma componente senoidal de amplitude $A_s=1$ e frequência $\omega_s=5$ rad/s. Os principais pontos observados são:

- Erro de rastreamento (e₀): Devido à presença da componente senoidal no sinal de referência, o erro não converge exatamente para zero, mas estabiliza em torno de uma oscilação periódica. Ainda assim, o sistema acompanha bem a referência, com pequenas oscilações residuais no erro.
- Ganho de adaptação (θ): Os parâmetros adaptativos não convergem para valores fixos, refletindo o caráter dinâmico da referência. Observa-se que os ganhos oscilam em torno de valores próximos a $\theta^* = [-6; 2]$, com maior oscilação para o caso de $\Gamma = 100I$, devido à maior sensibilidade do ganho de adaptação.
- Resposta do sistema: A resposta da planta segue bem o comportamento do modelo de referência, incluindo a oscilação imposta pela referência senoidal. O modelo de referência com polo em −4 proporciona uma resposta mais rápida, o que exige maior agilidade do controlador adaptativo.
- Sinal de controle (u): O sinal de controle apresenta oscilações mais intensas em comparação com o caso de referência puramente constante, resultado da necessidade de acompanhar a frequência da referência. Para Γ = 100I, esse esforço de controle é ainda mais pronunciado.
- Diagrama de fase (e₀ × θ̃): As trajetórias no plano de fase revelam ciclos fechados, indicando que o sistema entra
 em um regime oscilatório estável. A presença de laços periódicos é típica de referências não constantes e confirma a
 persistência da adaptação ao longo do tempo.

Conclusão: A introdução da componente senoidal no sinal de referência impede a convergência do erro para zero, mas o sistema adaptativo ainda é capaz de manter o erro dentro de limites aceitáveis. O modelo de referência mais rápido $(a_m = 4)$ melhora a velocidade de resposta, ao custo de maior esforço de controle e flutuações nos parâmetros adaptativos.

3.7 Simulação #7

3.7.1 Configuração do experimento:

• **Planta:** $P(s) = \frac{1}{s-2}$

• Modelo de referência: $M(s) = \frac{2}{s+1}$

• Condições iniciais: $y_p(0) = 0$, $y_m(0) = 0$

• Sinal de referência: DC = 1, $A_s = 0$, $\omega_s = 5 \text{ rad/s}$

• Ganho de matching ótimo: $\theta^* = [-(2+1)/1; 2/1] = [-3; 2]$

• Ganho de adaptação: $\Gamma_1=2I_{2\times 2},\,\Gamma_2=100I_{2\times 2}$

• Condição inicial do parâmetro: $\theta(0) = [0; 0]$

3.7.2 Resultados da simulação:

Figura 11: Resultado da simulação (Script: simu07.m)

3.7.3 Comentários:

Nesta simulação, a planta instável $P(s)=\frac{1}{s-2}$ deve a companhar o modelo de referência $M(s)=\frac{2}{s+1}$ sob a ação de um sinal de referência puramente constante (DC = 1). O modelo de referência é mais lento em comparação com simulações anteriores. Os principais pontos observados são:

- Erro de rastreamento (e_0) : O erro converge rapidamente para zero, evidenciando o bom desempenho do sistema adaptativo. A ausência de componentes oscilatórias no sinal de referência facilita a convergência do erro.
- Ganho de adaptação (θ): Os parâmetros adaptativos convergem para valores próximos de $\theta^* = [-3; 2]$, conforme esperado para o regime com referência constante. A velocidade de convergência é maior no caso de $\Gamma = 100I$, devido ao ganho de adaptação mais elevado.
- Resposta do sistema: A resposta da planta segue fielmente o modelo de referência, com tempo de acomodação compatível com o polo em −1. O sistema exibe comportamento suave, sem oscilações ou sobressaltos.
- Sinal de controle (u): O esforço de controle é moderado, refletindo tanto a suavidade da referência quanto a lentidão relativa do modelo de referência. Para valores maiores de Γ, há um pico mais acentuado no controle inicial, mas que rapidamente se estabiliza.
- Diagrama de fase (e₀ × θ̃): O diagrama mostra a trajetória de convergência dos parâmetros, com o erro indo a zero conforme os parâmetros se estabilizam. Ao contrário do caso com referência senoidal, não há ciclos fechados, indicando convergência estática.

Conclusão: A utilização de um modelo de referência mais lento e um sinal de entrada constante resulta em uma adaptação mais tranquila, com menor esforço de controle e rápida convergência dos parâmetros. O desempenho do sistema adaptativo é excelente neste cenário, evidenciando a eficácia do controlador mesmo para plantas instáveis.

3.8 Simulação #8

3.8.1 Configuração do experimento:

• **Planta:** $P(s) = \frac{1}{s-2}$

• Modelo de referência: $M(s) = \frac{2}{s+1}$

• Condições iniciais: $y_p(0) = 0$, $y_m(0) = 0$

• Sinal de referência: DC = 2, $A_s = 1$, $\omega_s = 5$ rad/s

• Ganho de matching ótimo: $\theta^* = [-(2+1)/1; 2/1] = [-3; 2]$

• Ganho de adaptação: $\Gamma_1=2I_{2\times 2},\,\Gamma_2=100I_{2\times 2}$

• Condição inicial do parâmetro: $\theta(0) = [0; 0]$

3.8.2 Resultados da simulação:

Figura 12: Resultado da simulação (Script: simu08.m)

3.8.3 Comentários:

Nesta simulação, a planta instável $P(s) = \frac{1}{s-2}$ deve seguir o modelo de referência $M(s) = \frac{2}{s+1}$, sob um sinal de referência composto por uma componente constante (DC = 2) e uma senoidal de baixa amplitude ($A_s = 1$) com frequência $\omega_s = 5$ rad/s. Este cenário permite observar o desempenho do sistema adaptativo diante de sinais mistos. Os principais pontos observados são:

- Erro de rastreamento (e₀): O erro inicial é significativo devido à condição inicial nula, mas rapidamente converge, oscilando de forma suave em torno de zero em resposta à componente senoidal. O bom desempenho do controle adaptativo se mantém mesmo com o acréscimo da oscilação.
- Ganho de adaptação (θ): Os parâmetros convergem para valores próximos ao ganho ótimo $\theta^* = [-3; 2]$, com oscilações em regime permanente induzidas pela natureza periódica da entrada. As variações de θ são mais acentuadas quando $\Gamma = 100I$, como esperado.
- Resposta do sistema: A planta acompanha de forma bastante próxima o comportamento do modelo de referência, apresentando tanto o nível DC quanto a forma oscilatória. A fidelidade na reprodução da dinâmica de referência indica uma adaptação eficaz.
- Sinal de controle (u): O controle apresenta variações coerentes com a natureza do sinal de referência, com esforço adicional para compensar a instabilidade da planta e seguir as oscilações. Um pico inicial mais elevado aparece nos casos com maior ganho adaptativo, seguido por estabilização.
- Diagrama de fase (e₀ × θ̃): O diagrama mostra trajetórias oscilatórias, indicando regime permanente com erro pequeno e parâmetros levemente variantes. A forma espiralada ou cíclica está associada à persistência de excitação da entrada.

Conclusão: A presença de uma referência mista (constante + senoidal) impõe maior desafio ao controlador adaptativo, mas os resultados mostram que a estrutura é capaz de lidar com esse cenário com boa precisão. A adaptação responde bem à excitação persistente, promovendo rastreamento eficaz mesmo para uma planta instável.

3.9 Simulação #9

3.9.1 Configuração do experimento:

• **Planta:** $P(s) = \frac{1}{s-2}$

• Modelo de referência: $M(s) = \frac{1}{s+1}$

• Condições iniciais: $y_p(0) = 0$, $y_m(0) = 0$

• Sinal de referência: DC = 1, $A_s = 0$, $\omega_s = 5 \text{ rad/s}$

• Ganho de matching ótimo: $\theta^* = [-(2+1)/1; 1/1] = [-3; 1]$

• Ganho de adaptação:

$$\Gamma_1 = 2 \begin{bmatrix} 1 & 0.35 \\ 0.35 & 1 \end{bmatrix}, \quad \Gamma_2 = 100 \begin{bmatrix} 1 & 0.35 \\ 0.35 & 1 \end{bmatrix}$$

• Condição inicial do parâmetro: $\theta(0) = [0; 0]$

3.9.2 Resultados da simulação:

Figura 13: Resultado da simulação (Script: simu09.m)

3.9.3 Comentários:

Nesta simulação, mantêm-se a planta instável $P(s)=\frac{1}{s-2}$ e o sinal de referência puramente constante (DC = 1), mas introduz-se uma modificação importante: os ganhos de adaptação Γ_1 e Γ_2 passam a ser matrizes simétricas e não-diagonais, com termos fora da diagonal igual a 0,35. Isso permite investigar o impacto de acoplamentos entre os parâmetros adaptativos. Os principais pontos observados são:

- Erro de rastreamento (e_0): A convergência do erro ocorre de forma estável e eficaz, com desempenho semelhante ao de simulações anteriores com ganho diagonal. A presença de termos fora da diagonal na matriz Γ não compromete o rastreamento, indicando robustez do algoritmo adaptativo.
- Ganho de adaptação (θ): A trajetória dos parâmetros θ tende a convergir para valores próximos ao ótimo teórico $\theta^* = [-3; 1]$, com dinâmica influenciada pelo acoplamento entre os parâmetros. Observa-se uma interação mais pronunciada entre as componentes de θ , refletida em trajetórias mais entrelaçadas.
- Resposta do sistema: A saída da planta acompanha fielmente a resposta do modelo de referência, evidenciando que
 o sistema adaptativo é capaz de compensar a instabilidade da planta mesmo com uma matriz Γ não-diagonal.
- Sinal de controle (u): O esforço de controle permanece dentro de níveis aceitáveis, com um pico inicial relacionado à correção rápida dos parâmetros. O comportamento do controle é suavizado após o transiente inicial.
- Diagrama de fase $(e_0 \times \tilde{\theta})$: O diagrama mostra um padrão de convergência para a origem, com trajetórias mais curvilíneas ou inclinadas do que nas simulações anteriores, evidenciando a influência da matriz Γ com acoplamento.

Conclusão: A introdução de uma matriz de adaptação não-diagonal mostra-se viável e eficaz para este cenário. O acoplamento entre os parâmetros não prejudica a estabilidade ou o rastreamento, e pode até favorecer uma adaptação mais coordenada, dependendo do caso. Esta simulação demonstra a flexibilidade do esquema adaptativo frente a diferentes configurações matriciais de ganho.

3.10 Simulação #10

3.10.1 Configuração do experimento:

• **Planta:** $P(s) = \frac{1}{s-2}$

• Modelo de referência: $M(s) = \frac{1}{s+1}$

• Condições iniciais: $y_p(0) = 0$, $y_m(0) = 0$

• Sinal de referência: DC = 2, $A_s = 1$, $\omega_s = 5$ rad/s

• Ganho de matching ótimo: $\theta^* = [-(2+1)/1;;1/1] = [-3;;1]$

• Ganho de adaptação:

$$\Gamma_1 = 2 \begin{bmatrix} 1 & 0.35 \\ 0.35 & 1 \end{bmatrix}, \quad \Gamma_2 = 100 \begin{bmatrix} 1 & 0.35 \\ 0.35 & 1 \end{bmatrix}$$

• Condição inicial do parâmetro: $\theta(0) = [0; ; 0]$

3.10.2 Resultados da simulação:

Figura 14: Resultado da simulação (Script: simu10.m)

3.10.3 Comentários:

Nesta simulação, a planta instável e o modelo de referência permanecem inalterados em relação à Simulação #9. A principal modificação está no sinal de referência, que agora possui uma componente oscilatória (senoide) além do valor DC, tornando o rastreamento mais desafiador. A estrutura de adaptação com matrizes de ganho não-diagonais é mantida.

- Erro de rastreamento (e_0): O erro apresenta oscilações coerentes com a natureza senoidal do sinal de referência, mas com amplitude limitada, indicando que o sistema consegue acompanhar a referência com boa fidelidade, apesar da maior exigência dinâmica.
- Ganho de adaptação (θ): A trajetória dos parâmetros adaptativos mantém estabilidade, com convergência gradual
 para a vizinhança dos valores ótimos. A oscilação na referência se reflete em oscilações nos parâmetros, especialmente
 durante os primeiros instantes.
- Resposta do sistema: A planta segue o modelo de referência com boa precisão, reproduzindo tanto o valor DC quanto a componente oscilatória da entrada. A performance confirma a eficácia da estrutura adaptativa mesmo sob sinal de referência variado.
- Sinal de controle (u): O controle exibe oscilações em frequência compatível com a senoide de entrada, mas com amplitude controlada. O esforço de controle aumenta levemente em relação à simulação anterior, como esperado em situações com maior exigência dinâmica.
- Diagrama de fase $(e_0 \times \tilde{\theta})$: As trajetórias não convergem diretamente à origem devido à natureza persistente do erro oscilatório. No entanto, o padrão cíclico observado é compatível com um regime permanente de rastreamento senoidal.

Conclusão: A Simulação #10 demonstra a robustez da estrutura adaptativa frente a sinais de referência mais complexos, com bom rastreamento, estabilidade dos parâmetros e controle efetivo. A combinação de matriz Γ não-diagonal e entrada mista revela a capacidade do sistema de lidar com variações dinâmicas sem comprometer a convergência e o desempenho.