

UNITED STATES PATENT APPLICATION

FOR

PREDICTIVELY RESPONDING TO SNMP COMMANDS

INVENTORS:

Santosh Chandrachood, a citizen of India

ASSIGNED TO:

Cisco Technology, Inc., a California Corporation

PREPARED BY:

**THELEN, REID & PRIEST LLP
P.O. BOX 640640
SAN JOSE, CA 95164-0640
TELEPHONE: (408) 292-5800
FAX: (408) 287-8040**

Attorney Docket Number: CISCO-4306

Client Docket Number: CISCO-4306

S P E C I F I C A T I O NTITLE OF INVENTION

PREDICTIVELY RESPONDING TO SNMP COMMANDS

FIELD OF THE INVENTION

[0001] The present invention relates to the field of computer science. More particularly, the present invention relates to a method and apparatus for predictively responding to Simple Network Management Protocol (SNMP) commands.

BACKGROUND OF THE INVENTION

[0002] A successful communication network depends in large part on planning. Part of planning includes designing the various devices in the network for ease of management. Managed devices may include routers, switches, access servers, and the like. To this end, a communication protocol known as Simple Network Management Protocol (SNMP) was developed and is commonly utilized. SNMP operations include “Get” and “Get-next” requests for reading information and “Set” requests for configuring information. Typically, most SNMP requests are requests to “Get” data. Exemplary SNMP operations are described in Table 1, listed below.

Operation	Description
Get-request	Retrieve a value from a specific MIB variable.
Get-next-request	Retrieve a value of the object instance that is next in the lexicographical order of a specific MIB variable specified. With this operation, a SNMP manager does not need to know the exact variable name. A sequential search is performed to find the needed variable within a table.
Get-response	The reply to a get-request, get-next-request, and set-request sent by a NMS.
Set-request	Store a value in a specific variable.
Trap	An unsolicited message sent by a SNMP agent to a SNMP manager indicating that some event has occurred.

Table 1

[0003] Figure 1 is a block diagram that illustrates a typical network employing SNMP to manage network devices. In general, the management of the network is controlled by a Network Management System (NMS) 100. A NMS 100 executes management applications 120 that monitor and control managed devices 105 at regular intervals via a SNMP Manager 125. The SNMP Manager 125 forms Protocol Data Units (PDUs) and sends them to the managed devices. Each managed device 105 includes a SNMP agent 110 that processes the PDU, authenticates it and retrieves information requested by the NMS 100. Each managed device 105 maintains this requested information in a Management Information Base (MIB) 115. Some MIB 115 variables may depend on other variables. The values for the variables are typically stored in a table. There may be many tables in a particular MIB 115 and there may be more than one MIB 115 for each managed device. The size of a MIB table may vary from a few values to hundreds or even thousands of values depending on the managed device 105.

[0004] Figures 2A-2C illustrate typical timing of SNMP requests and responses.

Figure 2A is a timing diagram that illustrates typical timing of SNMP requests issued by a NMS. Reference numeral 214 indicates the time during which SNMP requests are generated, also known as the “burst”. As shown in FIG. 2A, SNMP requests 200-208 are typically periodic. The same set of requests is typically repeated after interval T (210). Moreover, the sequence and content of SNMP requests to a particular SNMP agent are typically invariant over multiple bursts. Thus, a SNMP agent typically responds to the same set of SNMP requests each period.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1

processing time for requests 230 and 232 and response 244 is delayed by the processing time for requests 230, 232 and 234. This behavior means that the number of requests a NMS can send per burst is limited by the size of period T 246.

[0007] SNMP agent processing often requires collecting the requested information from one or more subsystems. For example, a router may support multiple interfaces and the SNMP agent must collect information from each of the interfaces. Interfacing with another subsystem typically involves communicating with an application or process running on the same CPU or on a different CPU. This inter-process communication (IPC) typically results in communication delays that increase the amount of time required to collect information. The inter-process communication also uses precious CPU cycles that could otherwise be utilized for the core functionality of the network device. For example, inter-process communication delays for a network router SNMP agent use CPU cycles that could otherwise be utilized for core routing functions.

[0008] Moreover, each request is handled serially, without regard to preceding or succeeding requests. If data request from one subsystem is interspersed with data requests for another subsystem, then this process is inefficient. For example, a burst that includes a request for variable X from subsystem 1 (X_1), followed by a request for Y_2 , followed by a request for Z_1 generates two requests from subsystem 1 and one from subsystem 2.

[0009] There is an increasing trend towards putting more subsystems in network devices, resulting in more SNMP requests and more inter-process communication. But as discussed above, the number of requests a NMS can send per burst is limited by the size of period T 246. In addition, management applications typically require current information regarding managed devices. Thus, it is desirable to increase the amount of data collected without decreasing the frequency of data collection (increasing the period T 246).

[0010] What is needed is a solution that enables responding to network management requests relatively efficiently thereby increasing the amount of data that may be requested per unit time. A further need exists for such a solution that enables relatively even processing loads when responding to a group of requests. A further need exists for such a solution that can be implemented without network manager modification. Yet another need exists for such a solution that uses open and well-understood standards.

BRIEF DESCRIPTION OF THE INVENTION

[0011] A method for predictively responding to network management data requests includes populating a memory with prefetched response data based on whether one or more requests matches a predetermined pattern and sending a response including the prefetched response data if a request matches the pattern and if the memory includes response data corresponding to the request. The pattern includes one or more expected requests and the periodicity of the one or more expected requests. The response data includes information prefetched from at least one subsystem on a managed network device. According to one aspect, the managed network device is configured with a Simple Network Management Protocol (SNMP) agent that responds to requests from a SNMP manager.

[0012] An apparatus for predictively responding to network management data requests includes a request classifier to classify a request based on whether one or more received requests matches a predetermined pattern. The pattern includes one or more expected request and the periodicity of the one or more expected request. The apparatus also includes a lookahead processor coupled to the request classifier. The lookahead processor is configured to populate a memory with prefetched response data in response to a signal from the request classifier. The response data includes information prefetched from at least one subsystem on a managed network device. The apparatus also includes a an interfacer coupled to the lookahead processor. The interfacer interfaces with the one or more subsystem on the managed network device to provide the response data. The

interfacer is also coupled to a sender that sends a response including the prefetched response data if a received request matches the pattern and if the memory includes response data corresponding to the received request. According to one aspect, the managed network device is configured with a Simple Network Management Protocol (SNMP) agent that responds to requests from a SNMP manager.

PCT/US2013/032850

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] The accompanying drawings, which are incorporated into and constitute a part of this specification, illustrate one or more embodiments of the present invention and, together with the detailed description, serve to explain the principles and implementations of the invention.

[0014] In the drawings:

FIG. 1 is a block diagram that illustrates a typical network employing the Simple Network Management Protocol (SNMP) to manage network devices.

FIG. 2A is a timing diagram that illustrates typical timing of SNMP requests issued by a network manager.

FIG. 2B is a timing diagram that illustrates typical SNMP agent CPU loading due to SNMP requests.

FIG. 2C is a timing diagram that illustrates typical SNMP requests and corresponding responses.

FIG. 3A is a block diagram that illustrates a SNMP message format.

FIG. 3B is a block diagram that illustrates an apparatus for predictively responding to SNMP commands in accordance with one embodiment of the present invention.

FIG. 4A is a timing diagram that illustrates the timing of SNMP requests issued by a network manager in accordance with one embodiment of the present invention.

FIG. 4B is a timing diagram that illustrates SNMP agent CPU loading due to SNMP requests in accordance with one embodiment of the present invention.

FIG. 4C is a timing diagram that illustrates SNMP requests and corresponding responses in accordance with one embodiment of the present invention.

FIG. 5 is a high-level flow diagram that illustrates a method for predictively responding to SNMP commands in accordance with one embodiment of the present invention.

FIG. 6 is a low-level flow diagram that illustrates a method for predictively responding to SNMP commands in accordance with one embodiment of the present invention.

FIG. 7 is a flow diagram that illustrates a method for classifying a SNMP request in accordance with one embodiment of the present invention.

FIG. 8 is a flow diagram that illustrates a method for populating a cache with response packets including prefetched response data in accordance with one embodiment of the present invention.

FIG. 9 is a flow diagram that illustrates a method for prefetching response data in accordance with one embodiment of the present invention.

FIG. 10 is a flow diagram that illustrates a method for validating cache entries in accordance with one embodiment of the present invention.

FIG. 11A is a block diagram that illustrates a pattern file in accordance with one embodiment of the present invention.

FIG. 11B is a block diagram that illustrates a command language interface in accordance with one embodiment of the present invention.

FIG. 11C is a block diagram that illustrates using the command language interface of FIG. 11B to configure the pattern file of FIG. 11A in accordance with one embodiment of the present invention.

DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT

[0015] Embodiments of the present invention are described herein in the context of a method and apparatus for predictively responding to Simple Network Management Protocol (SNMP) commands. Those of ordinary skill in the art will realize that the following detailed description of the present invention is illustrative only and is not intended to be in any way limiting. Other embodiments of the present invention will readily suggest themselves to such skilled persons having the benefit of this disclosure. Reference will now be made in detail to implementations of the present invention as illustrated in the accompanying drawings. The same reference indicators will be used throughout the drawings and the following detailed description to refer to the same or like parts.

[0016] In the interest of clarity, not all of the routine features of the implementations described herein are shown and described. It will, of course, be appreciated that in the development of any such actual implementation, numerous implementation-specific decisions must be made in order to achieve the developer's specific goals, such as compliance with application- and business-related constraints, and that these specific goals will vary from one implementation to another and from one developer to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking of engineering for those of ordinary skill in the art having the benefit of this disclosure.

[0017] According to embodiments of the present invention, a network agent populates a memory with prefetched response data based on whether one or more data requests match a predetermined pattern. A response that comprises the prefetched response data is sent if the memory includes the response data corresponding to the request.

[0018] In the context of the present invention, the term "network" includes local area networks, wide area networks, the Internet, cable television systems, telephone systems, wireless telecommunications systems, fiber optic networks, ATM networks, frame relay networks, satellite communications systems, and the like. Such networks are well known in the art and consequently are not further described here.

[0019] In accordance with one embodiment of the present invention, the components, processes and/or data structures may be implemented using C or C++ programs running on high performance computers (such as an Enterprise 2000™ server running Sun Solaris™ as its operating system. The Enterprise 2000™ server and Sun Solaris™ operating system are products available from Sun Microsystems, Inc. of Mountain View, California). Different implementations may be used and may include other types of operating systems, computing platforms, computer programs, firmware, computer languages and/or general-purpose machines. In addition, those of ordinary skill in the art will recognize that devices of a less general purpose nature, such as hardwired devices, field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs),

or the like, may also be used without departing from the scope and spirit of the inventive concepts disclosed herein.

[0020] As is known to those skilled in the art, network devices may be configured and managed using either out-of-band or in-band techniques. Out-of-band configuration and management are typically performed by connecting to the console port on the network device and using the management console locally from a terminal or remotely through a modem. Alternatively, network devices may be configured and managed “in-band,” either by connecting via Telnet to the network device and using a management console, or by communicating with the network device’s in-band management interface using the industry standard Simple Network Management Protocol (“SNMP”). This can be accomplished by using a SNMP-compatible network management application and the network device’s Management Interface Base (“MIB”) files. Normally, however, in order to perform in-band administrative tasks of a network device, such as configuration and management, the network device must first be assigned an IP address. Additionally, in order to use in-band configuration and management capabilities, the SNMP management platform of the network device must be configured to understand and be able to access the objects contained in the network device’s MIB. Embodiments of the present invention use in-band network management techniques.

[0021] Embodiments of the present invention can use the Internet Protocol or a proprietary Cluster Management Protocol (“CMP”) as the underlying mechanism to transport the SNMP configuration and management data. Without limitation, the

protocols implemented in embodiments of the present invention include the Internet Protocol (“IP”), the Internet Control Message Protocol (“ICMP”), the User Datagram Protocol (“UDP”), the Trivial File Transfer Protocol (“TFTP”), the Bootstrap Protocol (“BOOTP”), and the Address Resolution Protocol (“ARP”).

[0022] The MIB variables of network devices according to embodiments of the present invention are accessible through SNMP. As has been mentioned earlier, SNMP is an application-layer protocol designed to facilitate the exchange of management information between network devices. SNMP is used to monitor IP gateways and their networks, and defines a set of variables that the gateway must keep and specifies that all operations on the gateway are a side effect of fetching or storing to data variables. SNMP consists of three parts: a Structure of Management Information (“SMI”), a Management Information Base (“MIB”) and the protocol itself. The SMI and MIB define and store the set of managed entities, while SNMP itself conveys information to and from the SMI and the MIB.

[0023] Instead of defining a large set of commands, SNMP places all operations in a get-request, get-next-request, and set-request format. For example, a SNMP manager can get a value from a SNMP agent or store a value into that SNMP agent. The SNMP manager can be part of a network management system (“NMS”), and the SNMP agent can reside on a networking device such as a router. The device MIB files may be compiled with network management software, which then permits the SNMP agent to respond to MIB-related queries being sent by the NMS.

[0024] The CiscoWorks™ software package, available from Cisco Systems, Inc. of San Jose, California, is an example of network management product supporting SNMP. CiscoWorks™ uses the device MIB variables to set device variables and to poll devices on the network for specific information. Among other tasks, the CiscoWorks™ software permits the results of a poll to be displayed as a graph and analyzed in order to troubleshoot internetworking problems, increase network performance, verify the configuration of devices, and monitor traffic loads. Other products known to those skilled in the art, available from several other vendors, provide similar functionality.

[0025] As is known to those skilled in the art, the SNMP model typically assumes that each managed network device is capable of running a SNMP agent internally. However, some devices, such as older devices that were not originally intended for use on a network, may not have this capability. To handle them, the SNMP protocol defines what is called a “SNMP proxy agent,” namely an agent that watches over one or more non-SNMP devices and communicates with the management console on their behalf, typically communicating with the non-SNMP devices themselves using some nonstandard or proprietary protocol. Typically, the SNMP proxy agent operates by translating the SNMP interactions it receives from the management console into whatever protocols are supported by the foreign device.

[0026] Figure 3A is a block diagram illustrating an exemplary SNMP message format known to those skilled in the art. Figure 3A illustrates the message format for a version

of SNMP known to those skilled in the art as “SNMPv1.” Depending on the requirements of each particular implementation, embodiments of the present invention may be implemented using other versions of SNMP, or using versions of other network management protocols known to those skilled in the art.

[0027] As shown in FIG. 3A, SNMP message 350 comprises a message header 352 and a Protocol Data Unit (“PDU”) 354. Message header 352 comprises a Version Number field 356 and a Community String 358. Version Number field 356 specifies the version of the SNMP protocol being used, while community string 358 defines an access environment for a group of network management stations/consoles. Network management stations/consoles within a community are said to exist within the same administrative domain. As is known to those skilled in the art, community strings serve as a weak form of authentication because devices that do not know the proper community name are precluded from SNMP operations.

[0028] Still referring to FIG. 3A, PDU 354 of SNMP message 350 comprises a PDU Type field 360, Request ID field 362, Error Status field 364, Error Index field 366, and a Variable Bindings field 368. As is known to those skilled in the art, PDU fields are variable in length. PDU Type field 360 specifies the type of PDU transmitted (e.g., Get, GetNext, Response, Set). Request ID field 362 associates a SNMP requests with the corresponding response. Error Status field 364 indicates one of a number of errors and error types. Only the response operation sets this field. Other operations set this field to zero. Error Index field 366 associates an error with a particular object instance (if there is

an error, the error index is set to a non-zero error code). Variable Bindings field 368 serves as the data field of the SNMP PDUs. As is known to those skilled in the art, each variable binding 370, 372, 374 associates a particular object instance with its current value (with the exception of Get and GetNext requests, for which the value is ignored). It should be noted that, as is known to those skilled in the art, SNMP also defines a PDU known as a “trap.”

[0029] Embodiments of the present invention described herein are discussed with specific references to SNMP in order to facilitate understanding, but the mechanisms and methodology described herein work equally well with other network management protocols such as simple network management protocol version 2 (SNMPv2).

[0030] For the purposes of this disclosure, the term “SNMP core” is used to denote an application that implements basic SNMP agent functionality, responding to each SNMP command in a serial manner as known to those skilled in the art. The terms “SNMP agent” and “agent” are used to denote embodiments of the present invention.

[0031] Turning now to FIG. 3B, a block diagram that illustrates an apparatus for predictively responding to SNMP commands in accordance with one embodiment of the present invention is presented. SNMP agent 300 includes a request classifier 305 coupled to a response cache 310 and a pattern storage 320. SNMP agent 300 may be part of a networked device such as a router, switch, access server or the like. SNMP agent 300 may also comprise a SNMP proxy agent. Request classifier 305 is also coupled to a

SNMP core that implements basic SNMP functionality, responding to each SNMP command in a serial manner as known to those skilled in the art. Agent 300 also includes a lookahead processor 325 coupled to the pattern storage 320 and the response cache 310. An interfacer 330 is coupled to the SNMP core 315 and a managed object storage 335.

[0032] In operation, request classifier 305 receives a SNMP request 340, compares the request to at least one pattern stored in pattern storage 320, and classifies the request based on whether it matches a pattern. A pattern comprises one or more expected requests and the periodicity of the one or more requests. Request classifier 305 sends the received request to SNMP core 315 if the request does not match a pattern. SNMP core 315 implements basic SNMP agent functionality, responding to each request in a serial manner. If the request matches a pattern, request classifier 305 looks for the corresponding response in response cache 310. If the corresponding response is found, response classifier 305 sends a SNMP response 345 using the response obtained from response cache 310. If the corresponding response is not found, lookahead processor 325 examines the requests comprising the pattern, groups the request according to the subsystem responsible for providing the information and sends the grouped requests to interfacer 330. Interfacer 330 interfaces with a managed object storage 335 such as a MIB to obtain the information requested and returns the grouped response data to lookahead processor 325. Lookahead processor 325 receives the grouped response data, creates response packets and stores the response packets in response cache 310. A sender (not shown in FIG. 3B) receives a response from request classifier 305 and sends the SNMP response 345.

[0033] Many other devices or subsystems (not shown) may be connected in a similar manner. Also, it is not necessary for all of the devices shown in FIG. 3B to be present to practice the present invention, as discussed below. Furthermore, the devices and subsystems may be interconnected in different ways from that shown in FIG. 3B.

[0034] Figures 4A-4C illustrate the timing of SNMP requests and responses in accordance with embodiments of the present invention.

[0035] Figure 4A is a timing diagram that illustrates the timing of SNMP requests issued by a network manager in accordance with one embodiment of the present invention. FIG. 4A is the same as FIG. 2A and is used for comparison purposes.

[0036] Figure 4B is a timing diagram that illustrates SNMP agent CPU load in accordance with one embodiment of the present invention. Note that the initial spike in SNMP agent CPU load 430-438 is not present, since predicting SNMP requests enables spreading initialization tasks over a wider time period.

[0037] Figure 4C is a timing diagram that illustrates SNMP agent responses in accordance with one embodiment of the present invention. Note that the time between requests (460, 464) and the corresponding responses (462, 466) is reduced relative to that shown in FIG. 2C.

[0038] Turning now to FIG. 5, a high-level flow diagram that illustrates a method for predictively responding to SNMP commands in accordance with one embodiment of the present invention is presented. At 500, one or more SNMP request patterns that include one or more expected requests and the periodicity of the one or more expected requests are configured and stored in a pattern storage. At 505, a memory such as a response cache is populated with prefetched response data in response to or in anticipation of one or more requests matching a pattern.

[0039] The memory is populated with prefetched response data in response to one or more requests matching a pattern when the first request in a pattern is received. This first request or “Trigger request” initiates data collection for the trigger request and any remaining requests in a pattern. A SNMP response corresponding to the trigger request is sent upon completion of the data collection. At this point, the memory includes SNMP response data for SNMP requests that are in the pattern but which have not been received by the SNMP agent. SNMP response data for remaining requests in the pattern are obtained from the memory upon receipt of the actual request.

[0040] According to other embodiments of the present invention, the trigger request is also used to initiate periodic data collection for requests in a pattern, populating the memory with prefetched response data in anticipation of one or more requests matching a pattern. The data collection rate is tied to the period specified by the pattern. A periodic validation process ensures that only non-stale data is used to send a SNMP response.

[0041] Still referring to FIG. 5, at 507 a SNMP request is received. At 508 a determination is made regarding whether the SNMP request has a matching pattern. If the SNMP request has a matching pattern, at 510 a response including prefetched response data is sent. If the SNMP request has no matching pattern, basic SNMP agent processing is performed at 515. In other words, if a SNMP request has no matching pattern, a SNMP core processes the SNMP request in a serial fashion.

[0042] Turning now to FIG. 6, a low-level flow diagram that illustrates a method for predictively responding to SNMP commands in accordance with one embodiment of the present invention is presented. At 600, a SNMP request is received. At 605, the request is classified according to whether it matches a pattern. At 610, a determination is made regarding whether a matching pattern is found. If the pattern is not found, at 615 basic SNMP agent processing is performed. If a matching pattern is found, at 625 a check is made to determine whether the cache includes a response corresponding to the request. If a corresponding request is found in the cache, non-data fields such as the request ID are added to the response PDU at 640 and the response is sent at 645.

[0043] Turning now to FIG. 7, a flow diagram that illustrates a method for classifying a SNMP request in accordance with one embodiment of the present invention is presented. At 700, the community string and data fields of the request PDU and the IP address and port number of the SNMP manager that sent the request are received. A key comprising the community string, NMS IP address and NMS port number is used to select possible patterns. Using the NMS port number allows differentiating between

multiple SMNP managers on a NMS. At 705, a determination is made regarding whether the SNMP request matches a predefined pattern. If the request does not match a predefined pattern, an indication that a pattern is not found is made at 715. If the request matches a predefined pattern, an indication that a pattern is found is made at 720.

[0044] Turning now to FIG. 8, a flow diagram that illustrates a method for populating a cache with response packets including prefetched response data in accordance with one embodiment of the present invention is presented. At 800, a determination is made regarding whether it is time to prefetch response data and whether patterns are available. It is time to prefetch the data if a burst is imminent, based on the time a trigger request was received and the periodicity of the corresponding pattern. It is also time to prefetch the data when a burst is in progress, such as upon receiving the first request of a pattern. A pattern is available if a request matches a pattern. If it is time to prefetch response data and if patterns are available, the response data is prefetched at 810. At 815, one or more response packets are created for the data obtained at 810. At 820, the one or more response packets are added to the cache. At 825, the cache contents are validated. At 830, a determination is made regarding whether the entry is the first expected request in a pattern. If the entry is not the first expected request in a pattern, processing continues at 800.

[0045] Turning now to FIG. 9, a flow diagram that illustrates a method for prefetching response data in accordance with one embodiment of the present invention is presented. At 900, SNMP requests in the pattern are examined. At 905, the requests are

grouped according to the subsystem responsible for supplying the response data.

Grouping the requests in this way reduces the amount of inter-process communication by decreasing the number of times the SNMP agent communicates with a subsystem. At 910, the grouped request data is requested from the appropriate subsystem. At 915, the requested data is received from the corresponding subsystem.

[0046] Embodiments of the present invention use a validation process to periodically determine the validity of cache contents. A cache entry is flagged as invalid if a predetermined time has elapsed since the data was retrieved from the subsystem responsible for providing the data. This is described in detail below with reference to FIG. 10.

[0047] Turning now to FIG. 10, a flow diagram that illustrates a method for validating cache entries in accordance with one embodiment of the present invention is presented. At 1000, a cache entry is received. At 1005, a determination is made regarding whether the cache entry is valid. According to one embodiment of the present invention, the cache entry is invalid if a predetermined amount of time has elapsed since it was obtained from the subsystem responsible for it. According to another embodiment, the cache entry is invalid when the corresponding request within a pattern is removed, such as when a specific request within a pattern is removed or when the entire pattern is removed. If the cache invalid is invalid, it is invalidated at 1010. At 1015, a determination is made regarding whether another cache entry needs to be checked. If another cache entry needs to be checked, processing continues at 1000.

[0048] Figures 11A-11B illustrate an exemplary pattern file and a corresponding user interface to configure one or more patterns. Figures 11A-11B are for purposes of illustration and are not intended to be limiting in any way. Those of ordinary skill in the art will recognize that many pattern representations and user interfaces are possible without departing from the inventive concepts disclosed herein.

[0049] Turning now to FIG. 11A, a block diagram that illustrates a pattern file in accordance with one embodiment of the present invention is presented. Pattern file 1100 includes a pattern ID 1105, a period indication 1110 and the requested data 1115-1130. As shown in FIG. 11A, the requested data includes object x 1115, object y 1120, table ABC 1125 and table XYZ 1130. According to one embodiment of the present invention, a table is traversed row-wise by default. According to another embodiment of the present invention, the access rule is specified as shown at reference numerals 1135 and 1140.

[0050] Turning now to FIG. 11B, a block diagram that illustrates a command language interface in accordance with one embodiment of the present invention is presented. The “new” command 1145 creates a new pattern identified by a pattern ID. The “patternfile” command 1150 specifies a file that includes pattern information. The “sequence” command 1155 specifies a particular request within a pattern. The “no” prefix performs a delete function. More specifically, the “no snmp patterns new” command removes a pattern, the “no snmp patterns patternfile” command removes a

pattern file and the “no snmp patterns sequence” command removes a request within a pattern. The “period” command 1160 specifies the burst period.

[0051] Figure 11C is a block diagram that illustrates using the command language interface of FIG. 11B to configure the pattern file of FIG. 11A in accordance with one embodiment of the present invention. Command 1165 specifies a new pattern with a pattern ID of 1. Command 1170, 1175, 1180 and 1185 specify requests for data items 1115, 1120, 1125 and 1130, respectively. Command 1190 specifies a burst period of 10.

[0052] One advantage of the present invention is that a network agent can group a set of requests internally, significantly reducing inter-process communication and processing times. Additionally, data required for a response may be obtained before the request is received, thereby improving response time, increasing the amount of data that may be requested per unit time and minimizing CPU processing spikes. Also, embodiments of the present invention may be implemented using the SNMP protocol and without modifying a NMS.

[0053] While embodiments and applications of this invention have been shown and described, it would be apparent to those skilled in the art having the benefit of this disclosure that many more modifications than mentioned above are possible without departing from the inventive concepts herein. The invention, therefore, is not to be restricted except in the spirit of the appended claims.