

Universitatea POLITEHNICA din București Facultatea de Automatică și Calculatoare

Proiectarea algoritmilor (PA)

- seria CD -

Andrei Mogoș - Suport de curs

Curs 2: Greedy (Programare lacomă)
- continuare -

Observație

Suportul de curs de la seria CD (pentru cele 14 cursuri) se bazează pe slide-urile de la PA din anii precedenți (2007 – 2016) de la seriile CA, CB, CC (titulari de curs: Ş. Trăușan, T. Rebedea, C. Chiru)

Bibliografie

Cormen – Introducere în Algoritmi: cap. Algoritmi Greedy (17)

Când funcţionează algoritmii Greedy? (1)

1) Problema are proprietatea alegerii locale

 Alegând soluţia optimă local se ajunge la soluţia optimă global.

2) Problema are proprietatea de substructură optimă

- O soluţie optimă a problemei conţine soluţiile optime ale subproblemelor.
- 1)+2): facem o alegere locală (lacomă) => rămâne o subproblemă. Soluţia optimă a subproblemei + alegerea locală deja facută => soluţia optimă pentru problemă.

Când funcţionează algoritmii Greedy? (2)

- Nu există o metodă generală de a arăta că un algoritm Greedy rezolvă o problemă de optimizare.
- Există trei abordări principale:
 - Metoda 1: Dacă problema are proprietătile:
 - alegere locală
 - substructură optimă atunci se poate dezvolta un algoritm Greedy pentru a rezolva problema
 - Metoda 2: Se folosesc matroizi
 - Metoda 3: Se demonstrează, pentru acea problemă (fără a folosi metode generale pentru algoritmi Greedy) că problema respectivă poate fi rezolvată de algoritmul Greedy construit

Matroizi [Cormen] (1)

Definitie: Un matroid este o pereche M = (S, l) care satisfice urmatoarele conditii:

- a) S este multime finita;
- b) $l \subseteq Subsets(S)$, $l \neq \emptyset$ (l este o familie nevida de submultimi ale lui S numite submultimile independente ale lui S) astfel incat daca $B \in l$ si $A \subseteq B$ atunci $A \in l$. Se observa ca $\emptyset \in l$;
- c) Daca $A \in l$, $B \in l$ si card(A) < card (B) atunci exista un element $x \in B \setminus A$ astfel incat $A \cup \{x\} \in l$.

Definitie: Un <u>matroid</u> M = (S, l) se numeste <u>ponderat</u> (weighted) daca exista o functie pondere w care sa asocieze o valoare pozitiva w(x) (w(x) > 0) fiecarui element $x \in S$. Functia pondere w se extinde la submultimi ale lui S prin insumare:

$$w(A) = \sum_{x \in A} w(x), \ \forall A \subseteq S$$

be.

Matroizi [Cormen] (2)

Algoritmi Greedy pe un matroid ponderat

```
Greedy(M, w) {
    A = \emptyset
    se sorteaza S[M] descrescator dupa w
    for-each x \in S[M] (sortat descrescator)
        if A \cup \{x\} \in l[M]
        A = A \cup \{x\}
    return A
}
```


Matroizi [Cormen] (3)

Probleme pentru care Greedy duce la solutia optima

Se da un matroid ponderat M = (S, l) si se cere sa se gaseasca o multime $A \in l$ astfel incat w(A) sa fie maxim.

A = an optimal subset = submultime independenta cu pondere maxima

Matroizii ponderati au proprietatile:

- alegerii locale
- substructura optima

Teorema: Daca M = (S, l) este un matroid ponderat cu functia de pondere w atunci algoritmul Greedy calculeaza solutia optima (an optimal subset).

ÎNTREBĂRI?