

第五节、晶系的划分

□晶体的周期性

□晶体的对称性

□固体物理学原胞

□结晶学原胞——晶胞

- UGSTC 45
 - 晶胞基矢总是选取在对称轴上或对称面的法线方向上,由此构成了描述晶体对称性的坐标系。
 - 按照坐标系的性质(即晶胞基矢的性质), 晶体可以分为7大晶系。
 - 每种晶系又包含一种或几种特征Bravaise 晶胞,共有14种Bravaise晶胞。

nesic **

在结晶学中,三个

基矢 \vec{a} , \vec{b} , \vec{c} 总

是选取在对称轴或 对称面的法线方向 上,三个基矢之间

的夹角为 α , β , γ

根据基矢的不同性质, 晶体可分为7 大晶系

按照对称性从低到高的顺序:

□1、三斜晶系:

$$\left| \vec{a} \right| \neq \left| \vec{b} \right| \neq \left| \vec{c} \right|$$

$$\alpha \neq \beta \neq \gamma \neq 90^{\circ}$$

Triclinic

三斜晶胞

基矢特征为: \vec{b} 垂直于 \vec{a} , \vec{c} 组成的平面,但 \vec{a} 与 \vec{c} 不正交,即:

$$\vec{a}$$
上 \vec{b} , \vec{c} 上 \vec{b} , 但 \vec{a} 与 \vec{c} 不正交

$$\alpha = \gamma = 90^{\circ}$$
, $\beta \neq 90^{\circ}$, $\alpha \neq b \neq c$

单斜晶系包含: 简单单斜晶胞和底心单斜晶胞

 \vec{c}

Base-centered monoclinic

单斜晶胞的左右侧面和上下底面为长方形

为什么没有侧心单斜晶胞呢?

□3、三角晶系:

$$\alpha = \beta = \gamma \neq 90^{\circ}$$

$$a = b = c$$

Rhombohedral

三角晶胞

■□4、正交晶系:

$$\alpha = \beta = \gamma = 90^{\circ}$$
 $\alpha \neq b \neq c$

正交晶系含4种特征Bravaise晶胞:

简单正交晶胞,底心正交晶胞,体心正交晶胞,面心正交晶胞,面心正交晶胞

simple orthorhombic

body-centered orthorhombic

体心正交晶胞

Base-centered orthorhombic

底心正交晶胞

为什么没有侧心正交晶胞呢?

Face-centered orthorhombic

面心正交晶胞

Face-centered orthorhombic

面心正交晶胞

Face-centered orthorhombic

面心正交晶胞

□5、正方晶系:

正方晶系又称为四角晶系或四方晶系,

其特点为:
$$\alpha = \beta = \gamma = 90^{\circ}$$
 $a = b \neq c$

正方晶系包含2种特征Bravaise晶胞: 简单正方晶胞,体心正方晶胞

简单正方晶胞

体心正方晶胞

为什么没有底心正方晶胞和面心正方晶胞?

□6、六角晶系:

$$\alpha = \beta = 90^{\circ}$$

$$\gamma = 120^{\circ}$$

$$a = b$$

Ti的晶体结构

USTC 48

□7、立方晶系:

$$a = b = c$$

$$\alpha = \beta = \gamma = 90^{\circ}$$

立方晶系包含:

简单立方晶胞 体心立方晶胞 面心立方晶胞

简单立方晶胞

 \vec{a} Body-centered cubic

体心立方晶胞

面心立方晶胞

面心立方晶胞

Face-centered cubic

面心立方晶胞

为什么没有底心立方晶胞?

uesic M 口注:

在归属某一个未知晶体结构属于哪 一个晶系时,必须尽量反映其对称 性,也就是说:应尽量将其归属到 对称性最高的晶系中去,以对称性 最高的晶胞基矢作为该晶体结构的 晶胞基矢。

应该掌握的知识点:

1、根据晶体的对称性特征,晶体可分为哪七大晶系,包含哪14种特征Bravaise晶胞

Uestc 4st

课堂练习

- (1)、试说明:在四角晶系中,为什么底心四角晶胞与简单四角晶胞等价。
- (2)、试说明:在四角晶系中,为什么面心四角晶胞与体心四角晶胞等价。
- (3)、试说明:在立方晶系中,为什么不存在底心立方和侧心立方晶胞,
- (4)、试说明:为什么面心立方和体心立方晶胞相互独立
- (5)、试说明:在单斜晶系中,为什么没有侧心单斜晶胞?
- (6)、试说明:在正交晶系中,为什么没有侧心正交晶胞?

Uestc 4st

课堂练习

- (1)、试说明:在四角晶系中,为什么底心四角晶胞与简单四角晶胞等价。
- (2)、试说明:在四角晶系中,为什么面心四角晶胞与体心四角晶胞等价。
- (3)、试说明:在立方晶系中,为什么不存在底心立方和侧心立方晶胞,
- (4)、试说明:为什么面心立方和体心立方晶胞相互独立
- (5)、试说明:在单斜晶系中,为什么没有侧心单斜晶胞?
- (6)、试说明:在正交晶系中,为什么没有侧心正交晶胞?

(1)、在四角晶系中,不存在底心四角晶 胞,因为底心四角晶胞与简单四角 晶胞等价。

底面是正方形

底面是正方形

属四角晶系

简单四角晶胞

底心四角晶胞与简单四角晶胞等价

(2)、在四角晶系中,也不存在面心四角 晶胞,因为面心四角晶胞与体心四 角晶胞等价。

(3)、在立方晶系中,不存在底心和侧心立方晶 胞,因为,在立方晶系中所有面都等价

(4)、在立方晶系中,面心立方晶胞和体心立

方晶胞是相互独立的,不能彼此转化,

因为,转化以后,将 $a=b\neq c$

__

(5) 为什么没有侧心单斜晶胞呢?

(6) 为什么没有侧心正交晶胞呢?

