

Flink OLAP 在字节跳动的 查询优化和落地实践

何润康 | 字节跳动基础架构工程师

- **1** 字节 Flink OLAP 介绍
- 02 查询优化

03 集群运维和稳定性建设

- 04 收益
- 05 未来规划

01 字节 Flink OLAP 介绍

- 1. 业务落地情况
- 2. 总体架构 & 业务架构
- 3. 业务落地挑战

业务落地情况

业务 规模

12+核心业务方

集群 规模

1.6w Core 资源

查询 规模

每天 Query 50w+

业务落地挑战

性能挑战

流式

端到端 latency 和稳定性

批式

处理速度和吞吐

亚秒级的 latency 和高查询 QPS

业务落地挑战

运维和稳定性挑战

运维

测试流程 无感升级 监控

监控体系

稳定性

容灾能力 Full GC 治理

02 查询优化

- 1. Query Optimizer 优化
- 2. Query Executor 优化

Query Optimizer 优化

Plan 缓存

Query Optimizer 优化

TopN 下推

30%

Query Optimizer 优化

跨 Union All 下推

Query Optimizer 优化

SELECT *
FROM t1 JOIN t2
ON t1.id = t2.id AND t1.id > 1

Join Filter 传递

Classloader 问题分析

Classloader 复用

Codegen 问题分析

Cache key 的设计

优化难点

Codegen 缓存优化

反序列化优化

TM Task 初始化阶段 CPU 占用较高

部署信息反序列化占比较高

多个 Subtask 存在冗余反序列化

反序列化优化

Join Probe 提前输出

内存池化

内存使用优化

03 集群运维和稳定性建设

- 1. 运维体系完善
- 2. 监控体系完善
- 3. 稳定性治理

运维体系完善

监控体系完善

资源使用 进程状态 集群监控 CPU GC Time/Count 内存 Thread 数 退出码 网络 JM 退出码 磁盘 细粒度 CPU TM 退出码 查询负载 作业 QPS 同时运行作业数

全链路 Latency 慢查询 作业监控 慢查询 JobID **Parse Latency Optimize Latency** 慢查询 QPS 失败查询 **Submit Latency** 失败查询 QPS Schedule Latency 失败查询 Latency Job Latency 外部 IO Result Push **HTAP MetaClient** Latency Latency HTAP Store Scan E2E Latency Latency

流&批

OLAP

稳定性治理

High Available

- 1. 双机房热备,支持故障切流
- 2. 支持 JobManager HA

限流 & 熔断

- 1. 支持 SQL Gateway QPS 限流
- 2. 限制 Flink 集群最大运行作业数
- 3. 作业 Failfast, 避免集群雪崩

GC 优化

- 1. 移除 Task 级别的 metric, JM Full GC 频率降低 88%
- 2. Codegen 缓存优化,TM Metaspace Full GC 次数降低为接近 0

JM 稳定性提升

- 1. Jobmaster 去除 zk 依赖
- 2. 限制 Flink UI 展示的作业数
- 3. 关闭 Flink UI 自动刷新

04 收益

Benchmark 收益

业务性能和稳定性收益

Job Latency 降低 48.3%

TM avg CPU 降低 27.3%

JM Full GC 频率降低 88.0%

TM Full GC 时间降低 71.5%

05 未来规划

未来规划

产品化完善

向量化引擎

物化视图

Optimizer 演进

THANK YOU

谢 谢 观 看