Introduction to the sponge and duplex constructions

Gilles Van Assche¹

¹STMicroelectronics

Indocrypt, New Delhi, December 2018

Based on joint work with Elena Andreeva, Guido Bertoni, Joan Daemen, Bart Mennink, Michaël Peeters, Ronny Van Keer

- 1 Unkeyed applications
 - Hashing requirements
 - Traditional constructions
 - Modern generic security
 - The sponge construction
 - The duplex construction
- 2 Intermezzo: why permutations?
- 3 Keyed applications
 - The outer keyed sponge and duplex constructions
 - Generic security, the beginning
 - Generic security, progressing
 - The full-state keyed duplex construction

- 1 Unkeyed applications
 - Hashing requirements
 - Traditional constructions
 - Modern generic security
 - The sponge construction
 - The duplex construction
- 2 Intermezzo: why permutations?
- 3 Keyed applications
 - The outer keyed sponge and duplex constructions
 - Generic security, the beginning
 - Generic security, progressing
 - The full-state keyed duplex construction

- 1 Unkeyed applications
 - Hashing requirements
 - Traditional constructions
 - Modern generic security
 - The sponge construction
 - The duplex construction
- 2 Intermezzo: why permutations?
- 3 Keyed applications
 - The outer keyed sponge and duplex constructions
 - Generic security, the beginning
 - Generic security, progressing
 - The full-state keyed duplex construction

Cryptographic hash functions

Applications

- Signatures: $sign_{RSA}(h(M))$ instead of $sign_{RSA}(M)$
- Key derivation: master key K to derived keys $(K_i = h(K||i|))$
- Bit commitment, predictions: h(what I know)
- Message authentication: h(K||M)
- **...**

Generalized: extendable output function (XOF)

$$h: \{0,1\}^* \to \{0,1\}^*$$

"XOF: a function in which the output can be extended to any length."

[Ray Perlner, SHA-3 workshop 2014]

- Applications
 - Signatures: full-domain hashing, mask generating function
 - Key derivation: as many/long derived keys as needed
 - Stream cipher: $C = P \oplus h(K || nonce)$

Preimage resistance

■ Given $y \in \mathbf{Z}_2^n$, find $x \in \mathbf{Z}_2^*$ such that h(x) = y

- If h is a random function, about 2^n attempts are needed
- **Example:** given derived key $K_1 = h(K||1)$, find master key K

Second preimage resistance

■ Given $x \in \mathbf{Z}_2^*$, find $x' \neq x$ such that h(x') = h(x)

- If h is a random function, about 2^n attempts are needed
- **Example**: signature forging
 - Given M and sign(h(M)), find $M' \neq M$ with equal signature

Collision resistance

■ Find $x_1 \neq x_2$ such that $h(x_1) = h(x_2)$

- If h is a random function, about $2^{n/2}$ attempts are needed
 - Birthday paradox: among 23 people, probably two have same birthday
 - Scales as $\sqrt{|range|} = 2^{n/2}$

Other requirements

- Security claims by listing desired properties
 - Collision resistant
 - (Second-) preimage resistant
 - Multi-target preimage resistance
 - Chosen-target forced-prefix preimage resistance
 - Correlation-free
 - Resistant against length-extension attacks
 - **...**
- But ever-growing list of desired properties
- A good hash function should behave like a random mapping...

Security requirements summarized

- Hash or XOF h with n-bit output
- Modern security requirements
 - h behaves like a random mapping
 - ... up to security strength s
- Classical security requirements, derived from it

Preimage resistance	$2^{\min(n,s)}$
Second-preimage resistance	$2^{\min(n,s)}$
Collision resistance	$2^{\min(n/2,s)}$

Iterated functions

- All practical hash functions are iterated
 - Message M cut into blocks $M_1, ..., M_l$
 - q-bit chaining value
- Output is function of final chaining value

Internal collisions!

- Different inputs M and M* giving the same chaining value
- Messages M||X| and $M^*||X|$ always collide for any string X

Does not occur in a random mapping!

- 1 Unkeyed applications
 - Hashing requirements
 - Traditional constructions
 - Modern generic security
 - The sponge construction
 - The duplex construction
- 2 Intermezzo: why permutations?
- 3 Keyed applications
 - The outer keyed sponge and duplex constructions
 - Generic security, the beginning
 - Generic security, progressing
 - The full-state keyed duplex construction

Merkle-Damgård

- Uses a compression function from n + m bits to n bits
- Instances: MD5, SHA-1, SHA-2 ...
- Merkle-Damgård strengthening

[Merkle, CRYPTO'89], [Damgård, CRYPTO'89]

Merkle-Damgård

- Uses a compression function from n + m bits to n bits
- Instances: MD5, SHA-1, SHA-2 ...
- Merkle-Damgård strengthening

[Merkle, CRYPTO'89], [Damgård, CRYPTO'89]

Merkle-Damgård: preserving collision resistance

Merkle-Damgård: length extension

Recurrence (modulo the padding):

- $h(M_1) = f(IV, M_1) = CV_1$
- $\blacksquare h(M_1 \| \dots \| M_i) = f(CV_{i-1}, M_i) = CV_i$

Forgery on naïve message authentication code (MAC):

- MAC(M) = h(Key||M) = CV
- MAC(M||suffix) = f(CV||suffix)

Solution: HMAC

$$\mathsf{HMAC}(\mathsf{M}) = h(\mathsf{Key}_\mathsf{out} \| h(\mathsf{Key}_\mathsf{in} \| \mathsf{M}))$$

Davies-Meyer

Davies-Meyer

1 Unkeyed applications

- Hashing requirements
- Traditional constructions
- Modern generic security
- The sponge construction
- The duplex construction
- 2 Intermezzo: why permutations?
- 3 Keyed applications
 - The outer keyed sponge and duplex constructions
 - Generic security, the beginning
 - Generic security, progressing
 - The full-state keyed duplex construction

Generic security: indistinguishability

- \blacksquare Adversary $\mathcal D$ must tell apart
 - lacktriangle the ideal function: a monolithic random oracle \mathcal{RO}
 - lacksquare construction $\mathcal{S}[\mathcal{F}]$ calling an ideal primitive \mathcal{F}
- **Express** $Pr(success | \mathcal{D})$ as a function of total cost of queries N
- \blacksquare Problem: in real world, \mathcal{F} is available to adversary

Generic security: indifferentiability [Maurer et al. (2004)]

Applied to hash functions in [Coron et al. (2005)]

- lacktriangle distinguishing mode-of-use from ideal function (\mathcal{RO})
- lacktriangle covers adversary with access to primitive ${\mathcal F}$ at left
- additional interface, covered by a simulator at right

Generic security: indifferentiability [Maurer et al. (2004)]

Methodology:

- lacktriangle build ${\mathcal P}$ that makes left/right distinguishing difficult
- lacksquare prove bound for advantage given this simulator ${\cal P}$
- $lacktriangledown \mathcal{P}$ may query \mathcal{RO} for acting \mathcal{S} -consistently: $\mathcal{P}[\mathcal{RO}]$

Generic security: indifferentiability [Maurer et al. (2004)]

$$\mathsf{Adv}(q) = \left| \mathsf{Pr} \left(\mathcal{D}^{\mathcal{S}[\mathcal{F}], \mathcal{F}} \right) - \mathsf{Pr} \left(\mathcal{D}^{\mathcal{RO}, \mathcal{P}[\mathcal{RO}]} \right) \right| \leq \epsilon(q)$$

Consequences of indifferentiability

- Let \mathcal{D} : n-bit output pre-image attack. Success probability:
 - for random oracle: $P_{pre}(\mathcal{D}|\mathcal{RO}) = q2^{-n}$
 - for our construction: $P_{pre}(\mathcal{D}|\mathcal{S}[\mathcal{F}]) = ?$
- A distinguisher \mathcal{D} with $Adv(q) = P_{pre}(\mathcal{D}|\mathcal{S}[\mathcal{F}]) P_{pre}(\mathcal{D}|\mathcal{RO})$
 - do pre-image attack
 - lacktriangleright if success, conclude random sponge and \mathcal{RO} otherwise
- lacksquare But we have a proven bound $\mathrm{Adv}(q) \leq \epsilon(q)$, so

$$\mathsf{P}_{\mathsf{pre}}(\mathcal{D}|\mathcal{S}[\mathcal{F}]) \leq \mathsf{P}_{\mathsf{pre}}(\mathcal{D}|\mathcal{RO}) + \epsilon(\textbf{\textit{q}})$$

■ Can be generalized to any attack

Consequences of indifferentiability

Theorem 2. Let \mathcal{H} be a hash function, built on underlying primitive π , and RO be a random oracle, where \mathcal{H} and RO have the same domain and range space. Denote by $\mathbf{Adv}^{\text{pro}}_{\mathcal{H}}(q)$ the advantage of distinguishing (\mathcal{H}, π) from (RO, S), for some simulator S, maximized over all distinguishers \mathcal{D} making at most q queries. Let atk be a security property of \mathcal{H} . Denote by $\mathbf{Adv}^{\text{nk}}_{\mathcal{H}}(q)$ the advantage of breaking \mathcal{H} under atk, maximized over all adversaries \mathcal{A} making at most q queries. Then:

$$\mathbf{Adv}_{\mathcal{H}}^{\mathrm{atk}}(q) \leq \mathbf{Pr}_{RO}^{\mathrm{atk}}(q) + \mathbf{Adv}_{\mathcal{H}}^{\mathrm{pro}}(q),$$
 (1)

where $Pr_{RO}^{atk}(q)$ denotes the success probability of a generic attack against \mathcal{H} under atk, after at most q queries.

[Andreeva, Mennink, Preneel, ISC 2010]

Limitations of indifferentiability

- Only about the mode
 - No security proof with a concrete primitive
- Only about single-stage games [Ristenpart et al., Eurocrypt 2011]
 - Example: hash-based storage auditing

$$Z = h(File || C)$$

Making Merkle-Damgård indifferentiable

Enveloped Merkle-Damgård

[Bellare and Ristenpart, Asiacrypt 2006]

Making Merkle-Damgård suitable for XOFs

Mask generating function construction "MGF1"

1 Unkeyed applications

- Hashing requirements
- Traditional constructions
- Modern generic security
- The sponge construction
- The duplex construction
- 2 Intermezzo: why permutations?
- 3 Keyed applications
 - The outer keyed sponge and duplex constructions
 - Generic security, the beginning
 - Generic security, progressing
 - The full-state keyed duplex construction

The sponge construction

- Calls a *b*-bit permutation *f*, with b = r + c
 - r bits of rate
 - c bits of *capacity* (security parameter)
- Natively implements a XOF

Generic security of the sponge construction

Theorem (Bound on the \mathcal{RO} -differentiating advantage of sponge)

$$A \leq \frac{N^2}{2^{c+1}}$$

Preimage resistance	$2^{\min(n,c/2)}$
Second-preimage resistance	$2^{\min(n,c/2)}$
Collision resistance	$2^{\min(n/2,c/2)}$
Any other attack	$2^{\min(\mathcal{RO},c/2)}$

1 Unkeyed applications

- Hashing requirements
- Traditional constructions
- Modern generic security
- The sponge construction
- The duplex construction
- 2 Intermezzo: why permutations?
- 3 Keyed applications
 - The outer keyed sponge and duplex constructions
 - Generic security, the beginning
 - Generic security, progressing
 - The full-state keyed duplex construction

The duplex construction

- Object: D = DUPLEX[f, pad, r]
- Requesting ℓ -bit output Z = D.duplexing (σ, ℓ)
 - lacktriangle input σ and output Z limited in length
 - Z depends on all previous inputs

Generating duplex responses with a sponge

$$Z_0 = \mathsf{sponge}(\sigma_0, \ell_0)$$

Generating duplex responses with a sponge

$$Z_1 = \mathsf{sponge}(\mathsf{pad}(\sigma_0)||\sigma_1, \ell_1)$$

Generating duplex responses with a sponge

$$Z_2 = \mathsf{sponge}(\mathsf{pad}(\sigma_0)||\mathsf{pad}(\sigma_1)||\sigma_2,\ell_2)$$

Security of the duplex construction

Duplexing-sponge lemma

Every output block of a duplex object DUPLEX[f, pad, r] is a valid output of SPONGE[f, pad, r]

Proof is trivial

Corollary

The security of DUPLEX[f, pad, r] can be reduced to that of SPONGE[f, pad, r]

Outline

- 1 Unkeyed applications
 - Hashing requirements
 - Traditional constructions
 - Modern generic security
 - The sponge construction
 - The duplex construction
- 2 Intermezzo: why permutations?
- 3 Keyed applications
 - The outer keyed sponge and duplex constructions
 - Generic security, the beginning
 - Generic security, progressing
 - The full-state keyed duplex construction

Symmetric crypto: what textbooks and intro's say

Symmetric cryptography primitives:

- Block ciphers
- Key stream generators
- Hash functions

And their modes-of-use

Picture by GlasgowAmateur

The truth about symmetric crypto today

Block ciphers:

What block cipher are used for

- Hashing (Davies-Meyer) and its modes HMAC, MGF1, ...
- Block encryption: ECB, CBC, ...
- Stream encryption:
 - synchronous: counter mode, OFB, ...
 - self-synchronizing: CFB
- MAC computation: CBC-MAC, C-MAC, ...
- Authenticated encryption: OCB, GCM, CCM ...

Block cipher operation

Block cipher operation: the inverse

When do you need the inverse?

Indicated in red:

- Hashing and its modes HMAC, MGF1, ...
- Block encryption: ECB, CBC, ...
- Stream encryption:
 - synchronous: counter mode, OFB, ...
 - self-synchronizing: CFB
- MAC computation: CBC-MAC, C-MAC, ...
- Authenticated encryption: OCB, GCM, CCM ...
 - Most schemes with misuse-resistant claims

So for most uses you don't need the inverse!

Block cipher internals

Davies-Meyer compression function

Removing restrictions not required in hashing

Simplifying the view: iterated permutation

Designing a permutation

- Remaining problem: design of iterated permutation
 - round function: good approaches known
 - asymmetry: round constants
- Advantages with respect to block ciphers:
 - less barriers ⇒ more diffusion
 - no more need for efficient inverse
 - no more worries about key schedule

Examples of permutations

- In Salsa, Chacha, Grindahl...
- In SHA-3 candidates: CubeHash, Grøstl, JH, MD6, ...
- In CAESAR candidates: Ascon, Icepole, Norx, π -cipher, Primates, Stribob, ...
- In recent proposals: Gimli, Xoodoo

And of course in KECCAK

What textbooks and intro's should say

Symmetric cryptography primitives:

- Block ciphers
- Key stream generators
- **Permutations**

And their modes-of-use

Picture by Sébastien Wiertz

Outline

- 1 Unkeyed applications
 - Hashing requirements
 - Traditional constructions
 - Modern generic security
 - Ine sponge construction
 - The duplex construction
- 2 Intermezzo: why permutations?
- 3 Keyed applications
 - The outer keyed sponge and duplex constructions
 - Generic security, the beginning
 - Generic security, progressing
 - The full-state keyed duplex construction

Outline

- 1 Unkeyed applications
 - Hashing requirements
 - Traditional constructions
 - Modern generic security
 - Ine sponge construction
 - The duplex construction
- 2 Intermezzo: why permutations?
- 3 Keyed applications
 - The outer keyed sponge and duplex constructions
 - Generic security, the beginning
 - Generic security, progressing
 - The full-state keyed duplex construction

Message authentication codes

- Using sponge
- See also KMAC [NIST SP 800-185]

Stream encryption

- Using sponge
- Long output stream per IV: similar to OFB mode
- Short output stream per IV: similar to counter mode

Authenticated encryption: spongeWrap

- Using duplex
- Adopted by several CAESAR candidates

[KECCAK Team, SAC 2011]

Outer keyed sponge

Outer keyed sponge

$$\mathsf{OKS}^f_{\mathbf{K}}(\mathsf{M}) = \mathsf{SPONGE}^f(\mathbf{K}||\mathsf{M})$$

Outer keyed duplex

Duplexing-sponge lemma

$$Z_i = \mathsf{SPONGE}(\sigma_0||\mathsf{pad}||\ldots||\sigma_i)$$

Outer keyed duplex

Duplexing-sponge lemma

 $Z_i = \mathsf{SPONGE}(K||\sigma_0||\mathsf{pad}||\dots||\sigma_i) \Rightarrow \mathsf{equivalent} \ \mathsf{to} \ \mathsf{OKS}_K$

Outline

- Unkeyed applications
 - Hashing requirements
 - Traditional constructions
 - Modern generic security
 - The sponge construction
 - The duplex construction
- 2 Intermezzo: why permutations?
- 3 Keyed applications
 - The outer keyed sponge and duplex constructions
 - Generic security, the beginning
 - Generic security, progressing
 - The full-state keyed duplex construction

Keyed sponge: distinguishing setting

- Straightforward bound: $M^2/2^{c+1} + M/2^k$
- Security strength s: expected complexity of successful attack
 - strength s means attack complexity 2^s
 - bounds can be converted to security strength statements
- Here: $s \leq \min(c/2, k)$
 - **e.g.**, s = 128 requires c = 256 and k = 128
 - c/2: birthday bound

More fine-grained attack complexity

- Splitting attack complexity:
 - queries to construction: data complexity M
 - \blacksquare queries to f or f^{-1} : computational complexity N
- Our ambition around 2010: $M^2/2^{c+1} + NM/2^c + N/2^k$
- If we limit data complexity $M < 2^a \ll 2^{c/2}$:
 - \blacksquare s < min(c a, k)
 - \blacksquare e.g., s = 128 and a = 64 require c = 192 and k = 128

- Typically just one instance with the same partial r-bit input
- Success probability per guess: 1/2^c

- Multiple instances ($\mu \le M$) with same partial r-bit input
- Success probability per guess: $\mu/2^c$

- Multiple instances ($\mu \le M$) with same partial r-bit input
- Success probability per guess: $\mu/2^c$

- Multiple instances ($\mu \le M$) with same partial r-bit input
- Success probability per guess: $\mu/2^{c}$

An initial attempt

- Proof of bound $M^2/2^{c+1} + NM/2^{c-1} + N/2^{k}$
- Problems and limitations
 - does not cover multi-target attacks
 - did not convince reviewers
 - does not support new variants, e.g., inner-keyed sponge

[KECCAK Team, SKEW 2011]

Outline

- 1 Unkeyed applications
 - Hashing requirements
 - Traditional constructions
 - Modern generic security
 - The sponge construction
 - The duplex construction
- 2 Intermezzo: why permutations?
- 3 Keyed applications
 - The outer keyed sponge and duplex constructions
 - Generic security, the beginning
 - Generic security, progressing
 - The full-state keyed duplex construction

The inner keyed sponge

The inner keyed sponge

The inner keyed sponge

The inner keyed sponge

 $\mathsf{IKS}^f_{\mathsf{K}}(\mathsf{M}) = \mathsf{SPONGE}^{e^f_{\mathsf{K}}}(\mathsf{M})$ [Chang, Dworkin, Hong, Kelsey, Nandi, 2012]

A modular proof approach

- Inner/outer-keyed, multi-target (n), multiplicity μ
- Modular proof using Patarin's H-coefficient technique
- Bound: $M^2/2^{c+1} + \mu N/2^{c-1} + \frac{nN}{2^k} + \dots$

[Andreeva, Daemen, Mennink, Van Assche, FSE 2015]

Multi-target

System with n independent keys, damage if any instance is broken

Other proofs

- Security beyond 2^{c/2}
 [Jovanovic, Luykx, Mennink, Asiacrypt 2014]
- Partially full-state sponge-based AE [Sasaki, Yasuda, CT-RSA 2015]
- Full-state keyed sponge (but fixed output size)
 [Gaži, Pietrzak, Tessaro, Crypto 2015]
- Full-state keyed sponge and duplex [Mennink, Reyhanitabar, Vizár, Asiacrypt 2015]
- Improved security of the outer keyed sponge [Naito, Yasuda, FSE 2016]

Full-state absorbing!

Absorbing on full permutation width does not degrade bounds

[Mennink, Reyhanitabar, Vizár, Asiacrypt 2015]

Full-state absorbing!

Absorbing on full permutation width does not degrade bounds

[Mennink, Reyhanitabar, Vizár, Asiacrypt 2015]

Limitations

But proven bounds had some limitations and problems:

- term $\mu N/2^k$ rather than $\mu N/2^c$
- no multi-key security
- \blacksquare multiplicity μ only known a posteriori

Outline

- 1 Unkeyed applications
 - Hashing requirements
 - Traditional constructions
 - Modern generic security
 - The sponge construction
 - The duplex construction
- 2 Intermezzo: why permutations?
- 3 Keyed applications
 - The outer keyed sponge and duplex constructions
 - Generic security, the beginning
 - Generic security, progressing
 - The full-state keyed duplex construction

Keyed duplex

- lacksquare Initial state: concatenation of key $k=\mathbf{K}[\delta]$ and IV
- lacksquare Full-state absorbing, no padding: $|\sigma|=b$
- Re-phased: f, Z, σ instead of σ , f, Z

pprox all keyed sponge functions are modes of this

Generic security of keyed duplex: the setup

- Ideal function: Ideal eXtendable Input Function (IXIF)
 - \blacksquare \mathcal{RO} -based object with duplex interface
 - Independent outputs Z for different paths
- Further refine adversary's capability
 - L: # queries to keyed duplex/ \mathcal{RO} with repeated path
 - \blacksquare q_{IV} : max_{IV} # init queries with different keys

Generic security of keyed duplex: the bound

$$L^2/2^{c+1} + (L+2\nu)N/2^c + q_{IV}N/2^k + \dots$$

with ν : chosen such that probability of ν -wise multi-collision in set of M r-bit values is negligible

[Daemen, Mennink, VA, Asiacrypt 2017]

Application: counter-like stream cipher

- Only init calls, each taking Z as keystream block
- IV is nonce, so L=0
- Assume $M \ll 2^{r/2}$: $\nu = 1$

Bound:

$$(2\nu)N/2^{c}+q_{1V}N/2^{k}+...$$

Strength:

$$s \leq \min(c-1, k-\log_2(q_{IV}))$$

Application: lightweight MAC

- \blacksquare Message padded and fed via IV and σ blocks
- t-bit tag, squeezed in chunks of r bits: c = b r
- **a** adversary chooses IV so $L \approx M = 2^a$
- \blacksquare q_{IV} is total number of keys n

Bound:

$$M^2/2^{c+1} + MN/2^{c-1} + nN/2^k + ...$$

Strength:

$$s \leq \min(c - a - 1, k - \log_2(n))$$

Imposes a minimum width of the permutation:

$$b > c > s + a$$

Application: authenticated encryption

		Parameters			Respecting	Misuse
Scheme		b	С	r	Strength	Strength
Ketje	Jr.	200	184	16	$min{196 - a, 177}$	189 – a
	Sr.	400	368	32	$min{396 - a, 360}$	374 – a
Ascon	128	320	256	64	$\min\{317 - a, 248\}$	263 − a
	128a	320	192	128	$\min\{318 - a, 184\}$	200 − a
NORX	32	512	128	384	127	137 – a
	64	1024	256	768	255	266 – a
Keyak	River	800	256	544	255	266 – a
	Lake	1600	256	1344	255	267 – a

Any questions?

Thanks for your attention!

https://keccak.team/

