Questions

1. Is there a relationship between the predictors (age and ingredients) and the response variable (compressive strength)?

Given there is a relationship:

- 2. How strong is it?
- 3. Which predictors contribute to compressive strength?
- 4. How large is the effect of each predictor on compressive strength?
- 5. How accurately can I predict compressive strength?
- 6. Is the relationship linear?
- 7. Is there synergy/interaction among the predictors?

1. Import packages and Data

```
In [1]: #import standard packages
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()

#supress warnings
import warnings
warnings.filterwarnings("ignore")
In [2]: #import data
concrete_data = pd.read_csv('../input/yeh-concret-data/Concrete_Data_Yeh.csv')
```

2. Initial EDA and Distributions

```
In [3]: #look at formatting of entries
         concrete_data.head()
Out[3]:
                      slag
                           flyash water superplasticizer coarseaggregate
                                                                             fineaggregate
            cement
         0
                                    162.0
                                                                                               28
               540.0
                        0.0
                               0.0
                                                        2.5
                                                                      1040.0
                                                                                       676.0
               540.0
                        0.0
                               0.0
                                    162.0
                                                        2.5
                                                                      1055.0
                                                                                      676.0
                                                                                               28
         2
               332.5 142.5
                                    228.0
                                                        0.0
                                                                                             270
                               0.0
                                                                       932.0
                                                                                       594.0
         3
               332.5 142.5
                               0.0
                                   228.0
                                                        0.0
                                                                       932.0
                                                                                       594.0
                                                                                             365
                               0.0 192.0
                                                       0.0
                                                                                       825.5 360
               198.6 132.4
                                                                       978.4
In [4]:
         #look at null count and dtype
```

```
concrete_data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1030 entries, 0 to 1029
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	cement	1030 non-null	float64
1	slag	1030 non-null	float64
2	flyash	1030 non-null	float64
3	water	1030 non-null	float64
4	superplasticizer	1030 non-null	float64
5	coarseaggregate	1030 non-null	float64
6	fineaggregate	1030 non-null	float64
7	age	1030 non-null	int64
8	csMPa	1030 non-null	float64

dtypes: float64(8), int64(1)
memory usage: 72.5 KB

In [5]: #look at distribution of data

coarseaggro	superplasticizer	water	flyash	slag	cement	
1030.00	1030.000000	1030.000000	1030.000000	1030.000000	1030.000000	count
972.91	6.204660	181.567282	54.188350	73.895825	281.167864	mean
77.75	5.973841	21.354219	63.997004	86.279342	104.506364	std
801.00	0.000000	121.800000	0.000000	0.000000	102.000000	min
932.00	0.000000	164.900000	0.000000	0.000000	192.375000	25%
968.00	6.400000	185.000000	0.000000	22.000000	272.900000	50%
1029.4(10.200000	192.000000	118.300000	142.950000	350.000000	75%
1145.00	32.200000	247.000000	200.100000	359.400000	540.000000	max

```
In [6]: #look at data distribution
for i in concrete_data.columns:
    plt.hist(concrete_data[i])
    plt.xticks()
    plt.xlabel(i)
    plt.ylabel('counts')
    plt.show()
```



```
In [7]: #heat map using Pearson's coefficient
plt.figure(figsize=(16, 6))
sns.heatmap(concrete_data.corr(), annot=True)
plt.title('Correlation Heatmap', fontdict={'fontsize':12}, pad=12);
```



```
In [8]: #create bins from compressive strength
bins = pd.qcut(concrete_data['csMPa'], q=4)

#add bins to concrete df
concrete_data['bins']=bins
```

```
In [9]: #look at how target is distributed among variables
    sns.pairplot(concrete_data.loc[:, (concrete_data.columns != 'csMPa')], hue='bins
    plt.legend()
    plt.show()
```


In [10]: #plot strongest linear correlation
 sns.lmplot(x='cement', y='csMPa',data=concrete_data)
 plt.show()

3. Mutual Information

```
In [13]: #make a copy of features matrix for mutual information analysis
         X_mi = X.copy()
         #label encoding for categorical variables
         for colname in X_mi.select_dtypes("object"):
             X_mi[colname], _ = X_mi[colname].factorize()
         #all discrete features have int dtypes
         discrete_features = X_mi.dtypes == object
In [14]: #some continuous variables also have int dtypes
         discrete_features[X_mi.columns] = False
In [15]: #use regression since the target variable is continuous
         from sklearn.feature_selection import mutual_info_regression
         #define a function to produce mutual information scores
         def make_mi_scores(X_mi, y, discrete_features):
             mi_scores = mutual_info_regression(X_mi, y, discrete_features=discrete_featu
             mi_scores = pd.Series(mi_scores, name="MI Scores", index=X_mi.columns)
             mi_scores = mi_scores.sort_values(ascending=False)
             return mi_scores
         #compute mutual information scores
         mi_scores = make_mi_scores(X_mi, y, discrete_features)
         mi_scores
Out[15]: water
                             0.359076
         age
                             0.358395
                             0.309544
         cement
         coarseaggregate
                            0.256413
         fineaggregate
                            0.209647
         superplasticizer 0.209488
         slag
                            0.183057
         flyash
                             0.120885
         Name: MI Scores, dtype: float64
In [16]: #define a function to plot mutual information scores
         def plot_mi_scores(scores):
             scores = scores.sort_values(ascending=True)
             width = np.arange(len(scores))
             ticks = list(scores.index)
             plt.barh(width, scores)
             plt.yticks(width, ticks)
             plt.title("Mutual Information Scores")
         #plot the scores
```

```
plt.figure(dpi=100, figsize=(8, 5))
plot_mi_scores(mi_scores)
```


4. Principal Component Analysis

```
In [18]: #copy features matrix for principal component analysis
         X_for_PCA = X.copy()
         #standardize
         X_for_PCA_scaled = (X_for_PCA - X_for_PCA.mean(axis=0)) / X_for_PCA.std(axis=0)
         from sklearn.decomposition import PCA
         #create principal components
         pca = PCA(len(X.columns))
         X_pca = pca.fit_transform(X_for_PCA_scaled)
         #convert to dataframe
         component_names = [f"PC{i+1}" for i in range(X_pca.shape[1])]
         X_pca = pd.DataFrame(X_pca, columns=component_names)
In [19]: #plot data using principal components
         sns.scatterplot(x=X_pca.loc[:,'PC1'],y=X_pca.loc[:,'PC2'], hue=bins)
         plt.show()
            3
                                                  csMPa
                                                (2.329, 23.71]
            2
                                                 23.71, 34.445]
                                                 (34.445, 46.135)
            1
                                                 46.135, 82.61
```

```
In [20]: #determine loadings
loadings = pd.DataFrame(
    pca.components_.T, # transpose the matrix of loadings
    columns=component_names, # so the columns are the principal components
    index=X.columns, # and the rows are the original features
```

PC1

```
)
loadings
```

Out[20]: PC1 PC2 PC3 PC4 PC5 PC6 0.098401 -0.113737 0.814202 -0.054297 0.148206 -0.203142 0.221 cement -0.362699 0.228 slag 0.177262 0.686053 -0.171794 -0.020932 0.304882 -0.394662 -0.142948 -0.408221 0.226751 -0.183267 0.352 flyash 0.549631 0.053256 -0.213190 0.070222 -0.365970 -0.524 0.547004 0.296060 water 0.282930 0.234597 -0.037274 0.354618 0.193294 -0.664 superplasticizer -0.505945 coarseaggregate 0.037928 -0.629943 -0.174088 -0.545805 -0.033083 0.314559 -0.226 fineaggregate -0.401926 -0.019391 -0.004569 0.385282 -0.701237 0.092466 -0.039 0.291479 -0.125981 0.100521 0.527919 0.228010 0.743908 0.069

```
In [21]: #determine % explained variance and use % cumulative variance for elbow method t
         def plot_variance(pca, width=8, dpi=100):
             # Create figure
             fig, axs = plt.subplots(1, 2)
             n = pca.n_components_
             grid = np.arange(1, n + 1)
             # Explained variance
             evr = pca.explained_variance_ratio_
             axs[0].bar(grid, evr)
             axs[0].set(
                 xlabel="Component", title="% Explained Variance", ylim=(0.0, 1.0)
             # Cumulative Variance
             cv = np.cumsum(evr)
             axs[1].plot(np.r_[0, grid], np.r_[0, cv], "o-")
             axs[1].set(
                 xlabel="Component", title="% Cumulative Variance", ylim=(0.0, 1.0)
             # Set up figure
             fig.set(figwidth=8, dpi=100)
             return axs
         plot_variance(pca);
```


5. OLS Regression Analysis

```
In [22]: #generate OLS regression results for all features
import statsmodels.api as sm

X_sm = sm.add_constant(X)
model = sm.OLS(y,X_sm)
print(model.fit().summary())
```

=======================================		=======				===
Dep. Variable:		csMPa	R-squared:		0.	616
Model:		OLS	Adj. R-squar	red:	0.613	
Method:	Least	Squares	F-statistic:	:	20	4.3
Date:	Fri, 15	Oct 2021	Prob (F-stat	tistic):	6.29e-	206
Time:		16:43:15	Log-Likeliho	ood:	-386	9.0
No. Observations:		1030	AIC:		77	'56 .
Df Residuals:		1021	BIC:		78	100.
Df Model:		8				
Covariance Type:	n	onrobust				
=======================================		=======	========			=====
===						
	coef	std err	t	P> t	[0.025	0.9
75]						
const	-23.3312	26.586	-0.878	0.380	-75.500	28.
837						
cement	0.1198	0.008	14.113	0.000	0.103	0.
136						
slag	0.1039	0.010	10.247	0.000	0.084	0.
124						
flyash	0.0879	0.013	6.988	0.000	0.063	0.
113						
water	-0.1499	0.040	-3.731	0.000	-0.229	-0.
071						
superplasticizer	0.2922	0.093	3.128	0.002	0.109	0.
476						
coarseaggregate	0.0181	0.009	1.926	0.054	-0.000	0.
037						
fineaggregate	0.0202	0.011	1.887	0.059	-0.001	0.
041						
age	0.1142	0.005	21.046	0.000	0.104	0.
125						
=======================================		=======	========			===
Omnibus:		5.378	Durbin-Watso			282
Prob(Omnibus):		0.068	Jarque-Bera	(JB):	5.	304
Skew:		-0.174	Prob(JB):		0.0	705
Kurtosis:		3.045	Cond. No.		1.06e	+05
============		=======	========			===

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.06e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
feature
                                VIF
                    cement 15.456717
       0
       1
                      slag 3.329127
       2
                    flyash 4.147833
       3
                     water 82.157569
       4 superplasticizer 5.471094
       5
          coarseaggregate 84.955779
       6
             fineaggregate 72.790995
       7
                       age 1.699459
In [24]: #print OLS summary for each feature
         for i in X.columns:
            X_{sm} = sm.add_{constant(X[i])}
            model = sm.OLS(y,X_sm)
            print(model.fit().summary())
```

Dep. Variable:	csMPa	R-squared:	0.248
Model:	OLS	Adj. R-squared:	0.247
		•	
Method:	Least Squares	F-statistic:	338.7
Date:	Fri, 15 Oct 2021	Prob (F-statistic):	1.32e-65
Time:	16:43:15	Log-Likelihood:	-4214.6
No. Observations:	1030	AIC:	8433.
Df Residuals:	1028	BIC:	8443.
Df Model:	1		
Covariance Type:	nonrobust		
===========	=======================================		=======================================
С	oef std err	t P> t	[0.025 0.975]
const 13.4	425 1. 297 1		10.898 15.987
cement 0.0		18.404 0.000	0.071 0.088
cement 0.0			0.071 0.008
Omnibus:	 19.696	 Durbin-Watson:	1.012
Prob(Omnibus):	0.000	Jarque-Bera (JB):	17.893
,		1	
Skew:	0.271	` /	0.000130
Kurtosis:	2.649	Cond. No.	861.
==========	==============		=======================================

Notes:

Dep. Variable:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

csMPa R-squared:

OLS Regression Results ______

p						
Model:		0	LS Adj.	R-squared:		0.017
Method:		Least Squar	es F-sta	tistic:		19.03
Date:	F	ri, 15 Oct 20	21 Prob	(F-statistic):	1.41e-05
Time:		16:43:	15 Log-L	ikelihood:		-4351.8
No. Observa	ntions:	10	30 AIC:			8708.
Df Residual	.s:	10	28 BIC:			8717.
Df Model:			1			
Covariance	Type:	nonrobu	st			
========	=======	========	=======	=======	=======	=======
	coef			P> t		
const	33.8888	0.680				
slag	0.0261	0.006	4.363		0.014	0.038
Omnibus:		 30.5	======= 76 Durbi	n-Watson:	=======	0.860
Prob(Omnibu	ıs):	0.0	00 Jarqu	e-Bera (JB):		28.559
Skew:		0.3	59 Prob(JB):		6.29e-07
Kurtosis:		2.6	14 Cond.	No.		150.

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLS Regression Results

Dep. Variable:	csMPa	R-squared:	0.011
Model:	OLS	Adj. R-squared:	0.010
Method:	Least Squares	F-statistic:	11.63
Date:	Fri, 15 Oct 2021	<pre>Prob (F-statistic):</pre>	0.000675
Time:	16:43:15	Log-Likelihood:	-4355.4
No. Observations:	1030	AIC:	8715.

0.018

Df Residua Df Model: Covariance			1028 BIC: 1 nonrobust			8725.		
=======	coef	std err	t	P> t	[0.025	0.975]		
const flyash	37.3139 -0.0276	0.679 0.008	54.978 -3.410	0.000 0.001	35.982 -0.043	38.646 -0.012		
Omnibus: Prob(Omnib	us):	29.(0.(======= -Watson: -Bera (JB):	=======	0.848 27.218		

Notes:

Skew:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

0.351 Prob(JB):

2.625 Cond. No.

1.23e-06

110.

OLS Regression Results

=======================================			
Dep. Variable:	csMPa	R-squared:	0.084
Model:	OLS	Adj. R-squared:	0.083
Method:	Least Squares	F-statistic:	94.13
Date:	Fri, 15 Oct 2021	<pre>Prob (F-statistic):</pre>	2.35e-21
Time:	16:43:15	Log-Likelihood:	-4316.1
No. Observations:	1030	AIC:	8636.
Df Residuals:	1028	BIC:	8646.
DC Madal.	1		

Df Model: 1
Covariance Type: nonrobust

========	========			========		========
	coef	std err	t	P> t	[0.025	0.975]
const water	76.9583 -0.2266	4.270 0.023	18.025 -9.702	0.000 0.000	68.580 -0.272	85.336 -0.181
=======	========	========		========	========	========
Omnibus:		33	.415 Durb	in-Watson:		0.970
Prob(Omnib	us):	0	.000 Jarq	ue-Bera (JB):	24.861
Skew:	•	0	.282 Prob	(JB):		3.99e-06
Kurtosis:		2	.488 Cond	. No.		1.57e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.57e+03. This might indicate that there are strong multicollinearity or other numerical problems.

OLS Regression Results

Dep. Variable:	csMPa	R-squared:	0.134				
Model:	OLS	Adj. R-squared:	0.133				
Method:	Least Squares	F-statistic:	159.1				
Date:	Fri, 15 Oct 2021	Prob (F-statistic):	5.13e-34				
Time:	16:43:15	Log-Likelihood:	-4287.1				
No. Observations:	1030	AIC:	8578.				
Df Residuals:	1028	BIC:	8588.				
Df Model:	1						
Covariance Type:	nonrobust						
=======================================							
===							

t

P>|t|

[0.025

coef

std err

0.9

75]						
const 838	29.4660	0.699	42.159	0.000	28.095	30.
superplasticizer 183	1.0237	0.081	12.613	0.000	0.864	1.
Omnibus:	========	======= 24.083	======= Durbin-Watso	:=======	:========: 1	353
					1.052	
Prob(Omnibus):		0.000	Jarque-Bera (JB):		24.389	
Skew:		0.353	Prob(JB):		5.06e-06	
Kurtosis:		2.738	Cond. No.		12.5	
============	=======	=======	========	-=======	:========	===

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

OLS Regression Results

		=======		=======		====
Dep. Variable:		csMPa	R-squared:		0.027	
Model:		OLS	Adj. R-squa	red:	0	.026
Method:	Leas	t Squares	F-statistic	:	2	8.75
Date:	Fri, 15	Oct 2021	Prob (F-sta	tistic):	1.02	e-07
Time:		16:43:15	Log-Likelih	ood:	-43	47.0
No. Observations:		1030	AIC:		8	698.
Df Residuals:		1028	BIC:		8	708.
Df Model:		1				
Covariance Type:		nonrobust	ıst			
=======================================	=======	=======	========	=======	========	======
==	coef	std err	t	P> t	[0.025	0.97
5]	COET	stu en	C	F>[C]	[0.023	0.57
const 53	70.2951	6.451	10.897	0.000	57.637	82.9
coarseaggregate 22	-0.0354	0.007	-5.362	0.000	-0.048	-0.0
Omnibus:	=======	32 683	======= Durbin-Wats	on•	========= 0	==== .883
Prob(Omnibus):		0.000				.567
Skew:		0.434	Prob(JB):	(35).	3.12	
Kurtosis:		2.772	Cond. No.		1.23	
=======================================	=======	=======		=======	========	====

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.23e+04. This might indicate that there are strong multicollinearity or other numerical problems.

OLS Regression Results

			=========
Dep. Variable:	csMPa	R-squared:	0.028
Model:	OLS	Adj. R-squared:	0.027
Method:	Least Squares	F-statistic:	29.58
Date:	Fri, 15 Oct 2021	<pre>Prob (F-statistic):</pre>	6.70e-08
Time:	16:43:15	Log-Likelihood:	-4346.6
No. Observations:	1030	AIC:	8697.
Df Residuals:	1028	BIC:	8707.
Df Model:	1		

Covariance Type	:	nonrobust				
=========	coef	std err	t	P> t	[0.025	0.975]
const fineaggregate	62.7749 -0.0348	4.983 0.006	12.598 -5.439	0.000 0.000	52.997 -0.047	72.553 -0.022
Omnibus: Prob(Omnibus):		39.248 0.000	Durbin-Wa Jarque-Be	ra (JB):		0.858 41.943
Skew: Kurtosis:		0.478 2.745	Prob(JB): Cond. No.			80e-10 55e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 7.55e+03. This might indicate that there are strong multicollinearity or other numerical problems.

OLS Regression Results

=======================================			===========
Dep. Variable:	csMPa	R-squared:	0.108
Model:	OLS	Adj. R-squared:	0.107
Method:	Least Squares	F-statistic:	124.7
Date:	Fri, 15 Oct 2021	<pre>Prob (F-statistic):</pre>	2.11e-27
Time:	16:43:15	Log-Likelihood:	-4302.3
No. Observations:	1030	AIC:	8609.
Df Residuals:	1028	BIC:	8618.
Df Model:	1		
Covariance Type:	nonrobust		

========	========		========		=======	=======
	coef	std err	t	P> t	[0.025	0.975]
const	31.8466	0.607 0.008	52.470 11.166	0.000 0.000	30.656	33.038
Omnibus:		46.	822 Durbin	n-Watson:		0.763
Prob(Omnibu	s):	0.0	000 Jarque	e-Bera (JB):		52.414
Skew:		0.	548 Prob(3	JB):		4.15e-12
Kurtosis:		2.8	859 Cond.	No.		96.2

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [25]: from statsmodels.formula.api import ols

#fit multiple linear regression model
model = ols('csMPa ~ cement + slag + flyash + water + superplasticizer + coarsea

#create residual vs. predictor plot for 'assists'
for i in X.columns:
    fig = plt.figure(figsize=(12,8))
    fig = sm.graphics.plot_regress_exog(model, i, fig=fig)
    fig.show()
```

Regression Plots for cement

Regression Plots for flyash

Regression Plots for superplasticizer

6. Feature Engineering with OLS

```
In [26]: #feature engineering using knowledge that water:cement ratio is an important fac
X['water_cement_ratio'] = X['water']/X['cement']
In [27]: #plot water:cement ratio against compressive strength
sns.scatterplot(x=X['water_cement_ratio'], y=y)
plt.show()
```


In [28]: #generate OLS regression results with water : cement ratio
X_sm = sm.add_constant(X)
model = sm.OLS(y,X_sm)
print(model.fit().summary())

======================================				:======		
Dep. Variable:			R-squared:		0.61	
Model:			Adj. R-squared	l:	0.61	
Method:			F-statistic:		183.	
Date:			Prob (F-statis	•	2.28e-20	
Time:	16		Log-Likelihood	l:	-3865.	
No. Observations:			AIC:		7750	
Df Residuals:		1020	BIC:		7800).
Df Model:		9				
Covariance Type:		nrobust 				
=======================================					========	-==
	coef	std err	· t	P> t	[0.025	
0.975]						
const	-16.1769	26.631	L -0.607	0.544	-68.434	
6.080						
cement	0.1013	0.011	9.346	0.000	0.080	
0.123						
slag	0.1062	0.016	10.473	0.000	0.086	
0.126						
flyash	0.0881	0.013	7.023	0.000	0.063	
0.113						
water	-0.1226	0.041	l -2.971	0.003	-0.204	
0.042						
superplasticizer	0.2893	0.093	3.106	0.002	0.107	
0.472	0.0164	0.000	1 750	0.001	0.002	
coarseaggregate	0.0164	0.009	9 1.750	0.081	-0.002	
0.035 fineaggregate	0.0204	0.011	1.908	0.057	-0.001	
0.041	0.0204	0.011	1.500	0.03/	-0.001	
age	0.1132	0.00	20.884	0.000	0.103	
0.124	0.1152	0.00.	20.004	0.000	0.105	
water_cement_ratio	-7.3785	2.699	9 -2.734	0.006	-12.675	
2.082	, , , , , , ,	2.00	2.754	0.000	12.0/3	
 				:=======	========	=
Omnibus:		7.306	Durbin-Watson:		1.27	79
Prob(Omnibus):		0.026	Jarque-Bera (J	B):	7.21	.6
Skew:		-0.199	Prob(JB):		0.027	1
Kurtosis:		3.097	Cond. No.		1.07e+0	95

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.07e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [29]: #generate OLS summary with only water : cement ratio
X_sm = sm.add_constant(X['water_cement_ratio'])
model = sm.OLS(y,X_sm)
print(model.fit().summary())
```

=======================================						
Dep. Variable:		csMPa	R-squared:		0.251	
Model:		OLS	Adj. R-squa	ared:	0.250	
Method:	Least S	Squares	F-statistic	:	343.9	
Date:	Fri, 15 0d	t 2021	Prob (F-sta	atistic):	1.86e-66	
Time:	16	5:43:27	Log-Likelih	nood:	-4212.6	
No. Observations:		1030	AIC:		8429.	
Df Residuals:		1028	BIC:		8439.	
Df Model:		1				
Covariance Type:	nor	nrobust				
=======================================			.========		=========	===
=====						
	coef	std er	r t	P> t	[0.025	
0.975]						
const	55.7502	1.16	47.834	0.000	53.463	5
8.037						
water_cement_ratio	-26.6379	1.43	6 -18.545	0.000	-29.456	-2
3.819						
=======================================			========		=========	
Omnibus:		29.143	Durbin-Wats	son:	1.022	
Prob(Omnibus):		0.000	Jarque-Bera	a (JB):	17.972	
Skew:			Prob(JB):	•	0.000125	
Kurtosis:		2.456	Cond. No.		5.09	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Looking at the p-value of the t-statistic: water: cement ratio has a strong association with compressive strength.

-30

Residual

water_cement_ratio

Water: cement ratio residuals exhibits a near linear relationship.

7. Preparing Data for ML

0.2

e(water_cement_ratio | X)

0.3

```
In [31]: #import ML preprocessing packages
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import MinMaxScaler

In [32]: #column names
    feature_names = X.columns

#train/test split 75% training, 25% test
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.75, rando

#numerical pipeline
    scaler=MinMaxScaler()

#apply scaler to numerical data
    X_train = scaler.fit_transform(X_train)
    X_test = scaler.transform(X_test)
```

8. ML Baselines

```
In [33]: #import ML packages
    from sklearn.linear_model import LinearRegression
    from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
    from xgboost import XGBRegressor
    from sklearn.model_selection import cross_val_score
    from numpy import mean
    from numpy import std
```

```
In [34]: #LinearRegression mean cross-validation
         lm = LinearRegression()
         lm.fit(X_train, y_train)
         cv = cross_val_score(lm,X_train,y_train,scoring='neg_mean_absolute_error',cv=5)
         print('LinearRegression')
         print(mean(cv), '+/-', std(cv))
        LinearRegression
        -8.07027940327449 +/- 0.9042563541306468
In [35]: #RandomForestRegressor mean cross-validation
         rf = RandomForestRegressor(random_state = 1)
         cv = cross_val_score(rf,X_train,y_train,scoring='neg_mean_absolute_error',cv=5)
         print('RandomForestRegressor')
         print(mean(cv), '+/-', std(cv))
        RandomForestRegressor
        -3.741303784820554 +/- 0.1746349225638862
In [36]: #GradientBoostingRegressor mean cross-validation
         gbr = GradientBoostingRegressor(random_state = 1)
         cv = cross_val_score(gbr,X_train,y_train,scoring='neg_mean_absolute_error',cv=5)
         print('GradientBoostingRegressor')
         print(mean(cv), '+/-', std(cv))
        {\tt GradientBoostingRegressor}
        -3.8930976574254514 +/- 0.14455688824589297
In [37]: #XGBoost mean cross-validation
         xgb = XGBRegressor(random_state = 1)
         cv = cross_val_score(xgb,X_train,y_train,scoring='neg_mean_absolute_error',cv=5)
         print('XGBoost')
         print(mean(cv), '+/-', std(cv))
        XGBoost
        -3.149192175484103 +/- 0.17553754090972187
```

9. Hyperparameter Tuning

```
In [38]: #ml algorithm tuner
         from sklearn.model selection import GridSearchCV
         #performance reporting function
         def clf_performance(regressor, model_name):
             print(model_name)
             print('Best Score: {} +/- {}'.format(str(regressor.best_score_),str(regressor)
             print('Best Parameters: ' + str(regressor.best_params_))
In [39]: #LinearRegression GridSearchCV
         lm = LinearRegression()
         param_grid = {
                          'fit_intercept':[True,False],
                          'normalize':[True,False],
                          'copy_X':[True, False]
         clf_lm = GridSearchCV(lm, param_grid = param_grid, cv = 5, scoring='neg_mean_abs
         best_clf_lm = clf_lm.fit(X_train,y_train)
         clf_performance(best_clf_lm, 'LinearRegressor')
```

```
LinearRegressor
        Best Score: -8.060702077432467 +/- 0.8846924722871585
        Best Parameters: {'copy_X': True, 'fit_intercept': False, 'normalize': True}
In [40]: #RanddomForestRegressor GridSearchCV
         rf = RandomForestRegressor(random_state = 1)
         param_grid = {
                          'n_estimators': np.arange(160,200,2) ,
                          'bootstrap': [True,False],
                            'max_depth': [20,30,40],
                            'max_features': ['auto', 'sqrt', 'log2'],
         #
         #
                             'min samples leaf': [2],
         #
                             'min_samples_split': [6,8,10]
         clf_rf = GridSearchCV(rf, param_grid = param_grid, cv = 5, scoring='neg_mean_abs
         best_clf_rf = clf_rf.fit(X_train,y_train)
         clf_performance(best_clf_rf, 'RandomForestRegressor')
        RandomForestRegressor
        Best Score: -3.752174984879036 +/- 0.16962584492518898
        Best Parameters: {'bootstrap': True, 'n_estimators': 192}
In [41]: #GradientBoostingRegressor GridSearchCV
         gbr = GradientBoostingRegressor(random_state = 1)
         param_grid = {
                          'n_estimators': [160],
                          'max_depth': [4],
                          'max_features': ['auto'],
                          'learning_rate': np.arange(.1,1,.1),
                          'alpha': [0.0001],
                          'min_samples_leaf': [2],
                          'min_samples_split': np.arange(2,6,1)
         clf_gbr = GridSearchCV(gbr, param_grid = param_grid, cv = 5, scoring='neg_mean_a
         best_clf_gbr = clf_gbr.fit(X_train,y_train)
         clf_performance(best_clf_gbr, 'GradientBoostingRegressor')
        GradientBoostingRegressor
        Best Score: -3.0637915704624037 +/- 0.17629198413614053
        Best Parameters: {'alpha': 0.0001, 'learning_rate': 0.2, 'max_depth': 4, 'max_fea
        tures': 'auto', 'min_samples_leaf': 2, 'min_samples_split': 2, 'n_estimators': 16
        0}
In [42]: #XGBoost GridSearchCV
         xgb = XGBRegressor(random_state = 1)
         param_grid = {
         #
                          'nthread':[4],
         #
                          'objective':['reg:linear'],
                          'learning_rate': [0.3],
         #
                        'max_depth': [4],
                          'min_child_weight': [1],
         #
                          'subsample': [1],
                         'colsample_bytree': np.arange(0.5,1,0.1),
         #
                        'n estimators': [500]
         clf_xgb = GridSearchCV(xgb, param_grid = param_grid, cv = 5, scoring='neg_mean_a
         best_clf_xgb = clf_xgb.fit(X_train,y_train)
         clf_performance(best_clf_xgb,'XGBoost')
```

```
XGBoost
Best Score: -3.020177287831604 +/- 0.18068834764455305
Best Parameters: {'max_depth': 4, 'n_estimators': 500}
```

10. Assessing Models

```
In [43]: #import metrics packages
         from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
In [44]: #GradientBoostingRegressor metrics
         gbr = GradientBoostingRegressor(alpha = 0.0001,
                                          learning_rate= 0.2,
                                          max_depth= 4,
                                          max_features='auto',
                                          min samples leaf= 2,
                                          min_samples_split= 2,
                                          n_estimators= 160,
                                          random_state = 1)
         gbr.fit(X_train,y_train)
         tpred_gbr=gbr.predict(X_test)
         print('GradientBoostingRegressor')
         print('MSE: {}'.format(mean_squared_error(y_test,tpred_gbr)))
         print('RMSE: {}'.format(np.sqrt(mean_squared_error(y_test,tpred_gbr))))
         print('MAE: {}'.format(mean_absolute_error(y_test,tpred_gbr)))
         print('R-squared: {}'.format(r2_score(y_test,tpred_gbr)))
        GradientBoostingRegressor
        MSE: 19.928264399385675
        RMSE: 4.464108466355368
        MAE: 3.0586929775691822
        R-squared: 0.9252890876328432
In [45]: #XGBoost metrics
         xgb = XGBRegressor(max_depth=4,
                             n estimators=500,
                             random_state = 1)
         xgb.fit(X_train,y_train)
         tpred_xgb=xgb.predict(X_test)
         print('XGBoost')
         print('MSE: {}'.format(mean_squared_error(y_test,tpred_xgb)))
         print('RMSE: {}'.format(np.sqrt(mean_squared_error(y_test,tpred_xgb))))
         print('MAE: {}'.format(mean absolute error(y test,tpred xgb)))
         print('R-squared: {}'.format(r2_score(y_test,tpred_xgb)))
        XGBoost
        MSE: 17.557246580616614
        RMSE: 4.190136821228707
        MAE: 2.824839199236197
        R-squared: 0.9341780154857116
```

11. Feature Importance

```
In [46]: #import packages for explaining feature importance
import eli5
from eli5.sklearn import PermutationImportance
```

```
In [47]: #permutation importance from xgboost
    perm = PermutationImportance(xgb).fit(X_test, y_test)
    eli5.show_weights(perm, feature_names = list(feature_names), top=len(feature_name)
```

Out[47]:	Weight	Feature
046[17].	0.9126 ± 0.1335	age
	0.4932 ± 0.0844	water_cement_ratio
	0.1878 ± 0.0439	slag
	0.1332 ± 0.0161	water
	0.0837 ± 0.0158	fineaggregate
	0.0426 ± 0.0082	coarseaggregate
	0.0396 ± 0.0058	superplasticizer
	0.0365 ± 0.0022	cement
	0.0085 ± 0.0030	flyash