Surplus Extraction with Behavioral Types

Nicolas Pastrian

University of Pittsburgh

December 20, 2021

Introduction

- We know that in a mechanism design setting, private information leads agents to retain informational rents
- Myerson (1981) and others have shown that if information is correlated then extracting all the rents is possible
- This is usually called *full surplus extraction*
- Cremer and McLean (1985, 1988) identify the key "independence" condition under which full extraction is possible

Main idea

- Here we introduce behavioral types in a classic surplus extraction problem
- We focus on a particular class of behavioral types
- That is, types who doesn't react optimally to incentives and always reveal their private information
- Main result: characterization of the conditions that guarantee full surplus extraction in an environment with behavioral types

Overview

- We consider a reduced form model á la McAfee and Reny (1992)
 - ► Single agent
 - ► Informational rents generated from unmodeled stage
 - ► No allocation in current stage, only transfers
 - Exogenous states
 - ► Correlation represented through beliefs over states
- Finite environment (types, states)

Model

- Single agent with type $t \in T$
- ullet Set of (exogenous) states Ω
- Both types and states are finite

Model

- Each type t associated with
 - ▶ Informational rents $v_t \in \mathbb{R}_+$
 - These rents comes from an unmodeled stage (e.g., second price auction)
 - ▶ Beliefs $p_t \in \Delta(\Omega)$
 - We assume p_t ≠ p_{t'} for all t, t' ∈ T, which implies there is correlation between types and states

Model

- A contract $c: \Omega \to \mathbb{R}$ is a mapping from states into transfers, with $c(\omega)$ the transfer required in state ω
- A mechanism (or menu) c = {c_t : t ∈ T} is a collection of contracts, one for each type
- Payoff for type t and contract $c_{t'}$ is

$$v_t - \langle p_t, c_{t'} \rangle$$

where
$$\langle p_t, c_{t'} \rangle = \sum_{\omega \in \Omega} p_t(\omega) c_{t'}(\omega)$$

Introducing Behavioral Types

- We allow some types in T to be behavioral
- We assume behavioral types always reveal their type regardless of the contracts offered.
- That is, they not need to satisfy any incentive compatibility constraint.
- Let $B \subseteq T$ be the set of behavioral types.
- Similarly, let $S = T \setminus B$ be the set of *strategic* types.

The Designer's Problem

- We are interested on whether the principal/designer is able to extract all the informational rents from the agent using a menu c.
- Such menu should guarantee that each type picks his intended contract

The Designer's Problem

• Formally, a menu achieves full extraction if for all $t \in T$

$$\langle p_t, c_t \rangle = v_t$$

• A menu is incentive compatible if each strategic type chooses his cost minimizing contract, i.e., for all $s \in S$

$$c_s \in \arg\min_{t \in T} \langle p_s, c_t \rangle$$

We say full extraction with behavioral types is feasible if there
exists an incentive compatible menu c which achieves full
extraction

Full extraction without Behavioral Types

- Without behavioral types, Crémer and McLean have identified the key condition for full extraction
- Being that the set of beliefs for all types must be linearly independent (convex independence)
- What we will do next is to provide the characterization if behavioral types are also present

Beliefs and key condition

Definition

A set of beliefs P satisfies the CM condition if for any $p \in P$, $p \notin co(P \setminus \{p\})$

- We denote by P^X the set of beliefs for types in $X \subseteq T$
- Then Crémer and McLean's result could be expressed as requiring that P^T satisfies the CM condition

Main result

Theorem

Full extraction with behavioral types is feasible if

- P^S satisfies the CM condition, and
- **2** For all types $b \in B$, $p_b \notin co(P^S)$
- This imposes no restrictions on the structure of v_t
- CM condition over strategic types still necessary
- Condition over behavioral types slightly relaxed

Sketch of proof

- ullet We start with the contract for types in S
- Ignoring types in *B*
- Condition (i) implies a contract which fully extract among types in S exists
- So far, we have $(c_t)_{t \in S}$

Sketch of proof

- Now, we construct the contract for types in B
- For $b \in B$, consider the following contract:

$$c_b = v_b + \alpha_b z_b$$

- We want (vector) z_b that allows us to separate b from types in S
- That is,

$$\langle p_b, z_b \rangle = 0$$

 $\langle p_s, z_b \rangle > 0, \quad \forall s \in S$

- Condition (ii) implies such z_b exists
- Choosing α_b big enough guarantees IC
- Repeat for all other types in B

From the main theorem

- Without loss to consider |B|=1 since contract for b is independent from contract for $b'\neq b$
- Moreover, contract offered to b is independent of the contracts offered to any other type $t \in T : t \neq b$

What if conditions in the Theorem fail?

 We have two complementary results in the case some of the conditions in the main theorem fail

What if conditions in the Theorem fail?

Corollary

Consider a particular behavioral type $b \in B$. Let c_{-b} be an incentive compatible contract menu for types $t \neq b$. If $p_b \notin co(P^S)$ then there exists a contract c_b such that the contract menu (c_b, c_{-b}) is incentive compatible and $\langle p_b, c_b \rangle = v_b$.

 In short, Condition 2 allows for full extraction from behavioral types even if not possible for strategic types (i.e., Condition 1 fails)

What if conditions in the Theorem fail?

Proposition

Suppose P^S satisfies the CM condition. Let $\hat{B} = \{b \in B : p_b \in co(P^S)\}$. Then, full extraction with behavioral types is feasible if for each $b \in \hat{B}$

$$v_b \geq \sum_{s \in S} \lambda^b(s) v_s,$$

where
$$\lambda^b \in \Delta(S)$$
 : $p_b = \sum_{s \in S} \lambda^b(s) p_s$.

• If Condition 2 fails, full extraction still feasible if informational rents of behavioral types are "big enough"

Related literature

- Classics: Myerson (1981), Cremer and McLean (1985, 1988), McAfee and Reny (1992)
- Genericity: Heifetz and Neeman (2006), Barelli (2009), Chen and Xiong (2011, 2013)
- Recent: Farinha Luz (2013), Lopomo, Rigotti, and Shannon (2020, 2021), Krahmer (2020), Fu et al (2021)
- "Behavioral": Eliaz (2002), Severinov and Deneckere (2006), Saran (2011), De Clippel, Saran and, Serrano (2018)

Concluding Remarks

- We characterize full surplus extraction in the presence of behavioral types
 - ► We identify a relaxation of the standard convex independence condition that guarantees full extraction
 - ► Full extraction is easier in this environment but still doesn't comes for free as some conditions are required

Concluding Remarks

- Future steps
 - ► Alternative behavioral assumptions on behavioral types
 - ► Beyond reduced form approach
 - ► Necessary conditions for full extraction