

¹ School of Computer Science - Robotics Institute, Carnegie Mellon University ² Carnegie Institute of Technology - Mechanical Engineering, Carnegie Mellon Unive Yeo2 Jon Ifred Chang² Yang Jennifer

of Engineering Carnegie Mellon University College

Overview

- generate walking trajectory for a soft, quadruped, Use nonlinear trajectory optimization to delta-actuated walking robot
- Verify the walking trajectory by simulating it, utilizing the inverse kinematics of the delta robot

System Setup

We use DIRCOL to generate our trajectory:

Dynamics

$$\begin{bmatrix} m_b I \\ m_f I \\ m_f I \\ m_f I \end{bmatrix} \begin{bmatrix} \dot{v}_b \\ \dot{v}_{f_1} \\ \dot{v}_{f_2} \\ m_f I \end{bmatrix} = \begin{bmatrix} -\ddot{m}_b g \\ -\ddot{m}_{f_1} g \\ -\ddot{m}_{f_2} g \\ -\ddot{m}_{f_3} g \\ -\ddot{m}_{f_4} g \end{bmatrix} \begin{bmatrix} -I & -I & -I & -I \\ I & 0 & 0 & 0 \\ I & 0 & 0 & 0 \\ 0 & 0 & I & 0 \\ 0 & 0 & I \end{bmatrix} \begin{bmatrix} F_1 \\ I & 0 & 0 & 0 \\ F_2 \\ F_4 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 0 \\ I & 0 & 0 & 0 \\ 0 & I & 0 & 0 \\ 0 & 0 & I & 0 \\ 0 & 0 & I & 0 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \end{bmatrix}$$

State

 $F^{(2)}$ $F^{(3)}$ $F^{(4)}$ $u = ig [F^{(1)}$ Control

Contact Forces

Sts
$$J(x_{1:N}) = \sum_{i=1}^{N} \left[rac{1}{2} ||(x_i - x_g)||_2^2
ight]$$

Constraints

- **Dynamics constraint**
- constraint **Body torque equality**
- Foot velocity inequality constraint
- Foot position inequality constraint 4.
 - **Body height constraint** 5
- Grounded foot velocity constraint 9
 - Grounded foot z-height constraint
- Floating foot ground force constraint ထ တ
- Grounded foot ground force constraint

Acknowledgements

Temel. We extend a special thanks to Arun Bishop This research is associated with CMU's Zeynep for his help throughout the project. Zoom Lab, led by Professor

Walker Delta

- delta robots arranged in origin soft, 3D printed prismatic diamond shape about the
- cm range of motion Each linear actuator has
- in the XY plane actuator base in the Z robot the center of the he plane and aligned with the Robot frame origin is at
 - are in the in the robot frame The end effectors locations axis negative Z

onversion Trajector

Setu Simulation

- model Simulate the robot movement a URDF though Pybullet with of the robot
- Command motor actuation amounts Control **1** using Pybullet's built in function
- o spuno realistic Use velocity and force b the simulator to ensure speeds are being used

Resul

rsity

imitations.

robot behavior from matching with the simulated results does not Sim2Real gap preventing the real the forward kinematics results. that error simulation some a large there match with There is Also,

Conclusion

We were able to find a trajectory for the robot to follow. tuned to produce a trajectory the but very little. Currently, generated trajectory is optimal to the solver, onable for the robot. However, the robot moves need to be constraints that is reas

Work Future

- such that we can trajectories our system better walking to refine Continue generate
- the walking trajectories on the system world real and the simulatio **Evaluate**