Assignment 5

Ritvik Sai C - CS21BTECH11054

June 23, 2022

Question

Find the probability P_s that in a men's tennis tournament the final match will last five sets.

- (a) Assume that the probability p that a player wins a set equals 0.5.
- (b) Use bayesian statistic with uniform prior (see law of succession).

Solution I

(a) Suppose that the probability P(A) that player A wins a set equals p=1-q. He wins the match in five sets if he wins two of the first four sets and the fifth set. Hence, the probability $P_5(A)$ that he wins in five equals $6p^3q^2$. Similarly, the probability $p_5(B)$ that player B wins in five equals $6p^2q^3$. Hence,

 $p_5 = p_5(A) + p_5(B) = 6p^3q^2 + 6p^2q^3 = 6p^2q^2$ is the probability that the match last five sets.

If p=q=1/2, then $p_5 = 3/8$

(b) Suppose now that $P(A) = \widetilde{p}$ is an RV with density f(p).In this case, $\widetilde{p_5} = 6\widetilde{p^2}(1-\widetilde{p^2})$ is an RV. We wish to find its best bayesian estimate . Using the MS criterion, we obtain $\widehat{p_5} = E(p_5) = \int_0^1 6p^2(1-p^2)f(p)\ dp$ If f(p)=1, then $\widehat{p_5} = 1/5$