

CLAIMS

What is claimed is:

1. A method for generating a shadow effect for objects
in a graphical user interface, the method comprising:

5 displaying a first object; and

displaying a second object, wherein a portion of a
drop shadow from the first object is shown on the second
object, and wherein the portion of the drop shadow from
10 the first object is displaced from the first object in
direct proportion to a z-depth difference between the
first object and the second object.

2. The method of claim 1, wherein the graphical user
15 interface is a layered graphical user interface.

3. The method of claim 1 further comprising:

receiving user input within the graphical user
interface to vary the z-depth difference between the
20 first object and the second object.

DOCUMENT EMBODIMENT

4. A computer program product in a computer-readable medium for use in a data processing system for generating a shadow effect for objects in a graphical user interface, the computer program product comprising:

5 instructions for displaying a first object; and
instructions for displaying a second object, wherein
a portion of a drop shadow from the first object is shown
on the second object, and wherein the portion of the drop
shadow from the first object is displaced from the first
object in direct proportion to a z-depth difference
10 between the first object and the second object.

5. The computer program product of claim 4, wherein the
graphical user interface is a layered graphical user
15 interface.

6. The computer program product of claim 4 further
comprising:

20 instructions for receiving user input within the
graphical user interface to vary the z-depth difference
between the first object and the second object.

7. An apparatus for generating a shadow effect for objects in a graphical user interface, the apparatus comprising:

means for generating a first object;

- 5 means for generating a second object, wherein a portion of a drop shadow from the first object is shown on the second object, and wherein the portion of the drop shadow from the first object is displaced from the first object in direct proportion to a z-depth difference
10 between the first object and the second object; and

means for displaying the first object and the second object.

Sub
Bl
5 8. A method for generating a shadow effect for objects in a graphical user interface, wherein the graphical user interface simulates a three-dimensional coordinate space by displaying objects whose dimensions are computed in the three-dimensional coordinate space, the method comprising:

generating a shadow object corresponding to a first object;

10 determining an occluding region of the shadow object that partially occludes an illumination of a second object;

15 computing a z-dimensional difference value between a z-value of the first object and a z-value of the second object;

20 calculating a translation value that is directly proportional to the computed z-dimensional difference value;

25 translating the occluding region of the shadow object along an x-dimension or a y-dimension within the three-dimensional coordinate space in accordance with the calculated translation value; and

30 displaying the first object, an unoccluded portion of the second object, and the occluding region of the shadow object on a display device.

25 9. The method of claim 8, wherein the first object, the unoccluded portion of the second object, and the occluding region of the shadow object are rendered into a bitmap prior to displaying on the display device.

- CMK
B1 5
10. The method of claim 8, further comprising:
displacing the occluding region of the shadow object
along a first dimension of the three-dimensional
coordinate space by a displacement distance, wherein the
occluding region of the shadow object is translated along
a second dimension of the three-dimensional coordinate
space that differs from the first dimension.
- 10 10. The method of claim 8, wherein the displacement
distance is determined in accordance with a position in
the three-dimensional coordinate space of a simulated
light source.
- 15 12. The method of claim 8, wherein the displacement
distance is determined in accordance with user-specified
configuration parameters.
- 20 13. The method of claim 8, wherein the shadow object is
transparent.
- 25 14. The method of claim 8, wherein the shadow object is
generated in accordance with user-specified configuration
parameters.
- 30 15. The method of claim 8, wherein the shadow object is
subjected to a diffusion filter.
16. The method of claim 8, wherein the shadow object has
a substantially same size as the first object.

17. The method of claim 8, wherein the shadow object has a substantially same shape as the first object.

18. The method of claim 8, wherein the objects are two-dimensional planar objects within the three-dimensional coordinate space, wherein the objects are parallel to an x-y plane in the three-dimensional coordinate space, wherein the objects may be translated along either of a set of three dimensions in the three-dimensional coordinate space but not rotated about an x-axis in the three-dimensional coordinate space or about a y-axis in the three-dimensional coordinate space.

19. A computer program product in a computer-readable medium for use in a data processing system for generating a shadow effect for objects in a graphical user interface, wherein the graphical user interface simulates a three-dimensional coordinate space by displaying objects whose dimensions are computed in the three-dimensional coordinate space, the computer program product comprising:

instructions for generating a shadow object corresponding to a first object;

instructions for determining an occluding region of the shadow object that partially occludes an illumination of a second object;

instructions for computing a z-dimensional difference value between a z-value of the first object and a z-value of the second object;

instructions for calculating a translation value that is directly proportional to the computed z-dimensional difference value;

instructions for translating the occluding region of the shadow object along an x-dimension or a y-dimension within the three-dimensional coordinate space in accordance with the calculated translation value; and

instructions for displaying the first object, an unoccluded portion of the second object, and the occluding region of the shadow object on a display device.

TOP SECRET - EYES ONLY

b1
c/nk 10

20. The computer program product of claim 19, wherein
the first object, the unoccluded portion of the second
object, and the occluding region of the shadow object are
rendered into a bitmap prior to displaying on the display
device.

5

21. The computer program product of claim 19, further
comprising:

instructions for displacing the occluding region of
the shadow object along a first dimension of the
three-dimensional coordinate space by a displacement
distance, wherein the occluding region of the shadow
object is translated along a second dimension of the
three-dimensional coordinate space that differs from the
first dimension.

10

15

22. The computer program product of claim 19, wherein
the displacement distance is determined in accordance
with a position in the three-dimensional coordinate space
of a simulated light source.

20

23. The computer program product of claim 19, wherein
the displacement distance is determined in accordance
with user-specified configuration parameters.

25

24. The computer program product of claim 19, wherein
the shadow object is transparent.

30

25. The computer program product of claim 19, wherein
the shadow object is generated in accordance with
user-specified configuration parameters.

SEARCHED
INDEXED
SERIALIZED
FILED

26. The computer program product of claim 19, wherein
the shadow object is subjected to a diffusion filter.

5 27. The computer program product of claim 19, wherein
the shadow object has a substantially same size as the
first object.

10 28. The computer program product of claim 19, wherein
the shadow object has a substantially same shape as the
first object.

15 29. The computer program product of claim 19, wherein
the objects are two-dimensional planar objects within the
three-dimensional coordinate space, wherein the objects
are parallel to an x-y plane in the three-dimensional
coordinate space, wherein the objects may be translated
along either of a set of three dimensions in the
three-dimensional coordinate space but not rotated about
20 an x-axis in the three-dimensional coordinate space or
about a y-axis in the three-dimensional coordinate space.

TOP SECRET - SECURITY INFORMATION

30. An apparatus for generating a shadow effect for objects in a graphical user interface, wherein the graphical user interface simulates a three-dimensional coordinate space by displaying objects whose dimensions
5 are computed in the three-dimensional coordinate space, the apparatus comprising:

means for generating a shadow object corresponding to a first object;

10 means for determining an occluding region of the shadow object that partially occludes an illumination of a second object;

15 means for computing a z-dimensional difference value between a z-value of the first object and a z-value of the second object;

20 means for calculating a translation value that is directly proportional to the computed z-dimensional difference value;

means for translating the occluding region of the shadow object along an x-dimension or a y-dimension within the three-dimensional coordinate space in accordance with the calculated translation value; and

25 means for displaying the first object, an unoccluded portion of the second object, and the occluding region of the shadow object on a display device.

31. The apparatus of claim 30, wherein the first object, the unoccluded portion of the second object, and the occluding region of the shadow object are rendered into a bitmap prior to displaying on the display device.

B1
Cant
Code
Sect
"S
Tow
D
O

32. The apparatus of claim 30, further comprising:
means for displacing the occluding region of the
shadow object along a first dimension of the
three-dimensional coordinate space by a displacement
distance, wherein the occluding region of the shadow
object is translated along a second dimension of the
three-dimensional coordinate space that differs from the
first dimension.

5

33. The apparatus of claim 30, wherein the objects are
two-dimensional planar objects within the
three-dimensional coordinate space, wherein the objects
are parallel to an x-y plane in the three-dimensional
coordinate space, wherein the objects may be translated
10 along either of a set of three dimensions in the
three-dimensional coordinate space but not rotated about
an x-axis in the three-dimensional coordinate space or
about a y-axis in the three-dimensional coordinate space.
15

B1

10

C1

15

FOCUSING DEVICE