Analyzing Massive Data Sets Summer Semester 2019

Prof. Dr. Peter Fischer

Institut für Informatik

Lehrstuhl für Datenbanken und Informationssysteme

Chapter 4: Finding Similar Items

High-Dimensional Data and Similarity

- First conceptual and algorithmic part of the lecture
- Two core concepts:
 - **High-Dimensional Data**: Data items represented by many data points (hundreds, thousands, ... possibly out of a much large space)
 - Analyzing a single or few dimensions insufficient to understand items
 - Similarity/Distance: Expressing pair-wise similarity over all features
- Applications:
 - Finding Similar Items: pairwise (this chapter)
 - **Clustering**: Identify structure / groups using similarity
 - Retrieval: Similarity between search expression and data set
- Strategies for massive volumes:
 - Exact solutions are costly but there are several strategies to help
 - **Approximate solutions** more **feasible** e.g., multiple hashes

Similar Items - A Common Metaphor

- Many problems can be expressed as finding "similar" sets:
 - Find near-neighbors in high-dimensional space
- Examples:
 - Pages with similar words (around 1.7% 7% pages on the web)
 - Mirror pages
 - Common source pages
 - Plagiarism
 - Classification by topic
 - Customers who purchased similar products
 - Foundation of recommendation systems (think Amazon)
 - Products with similar customer sets
 - Media with similar content (images, music, videos)
 - Duplicate removal
 - Recommendations

Defining Similarity

- Representing the data items:
 What is specific about items in a collections?
 - Text: Character Frequency, Lexical, Structure (sentence, chapters), Semantics/Meaning
 - Images: Colors, Structure, Objects, ...
 - Music: Pitch, Melody, Metric/Rhythm, Modulation, ...
- Expressing Similarity: Given the features, what makes items close?
 - Shared features
 - Numerically similar features values
 - Relevance of certain features
 - Combination of features

Computing Similarity

- Given: High dimensional data points $x_1, x_2, ...$

• For example: Image is a long vector of pixel colors
$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & 0 & 1 & 0 \end{bmatrix}$$

- And some distance function $d(x_1, x_2)$
 - Which quantifies the "distance" between x_1 and x_2
- Goal: Find all pairs of data points (x_i, x_j) that are within some distance threshold $d(x_i, x_i) \leq s$
- Note: Naïve solution would take $O(N^2)$ \otimes where N is the number of data points
- Documents are so large or so many that they cannot fit in main memory
- An exact solution is possible in $O(N \log N)$
- An approximate version can be done in O(N)!!
- How?

Easier problem: Identical copies

- Relatively straightforward task
- Naive strategy:
 - Enumerate all pairs $\frac{n^2}{2}$ -> O(n²)
 - Do a bitwise comparison, e.g. cmp: True or False
- Can be solved with cost O(n)
- How?
- Apply a hash function on every element
- Elements with same content will be in the same bucket.
- Caveat: Other direction may not hold: same hash value does not imply same content
- -> Need to check for collisions
- Scales well: hashing can be done fully parallel
- Hash tables can be distributed

Similar problem: Join processing

- A \times B + $\sigma_{\text{A.a comp B.b}}$
- For all pairs, apply a comparison => again O(n²)
- Joins can reduce the search space for certain predicates:

Strategies to reduce search space

- Join search space reduction
 - Indexing: Allow faster access to matching "inner" elements
 - Sorting: order one or both sides
 - Hashing: reduce space to items with same hash value
- Will not get O(n) complexity in the general case
 - Common Indexes (B+-Trees) have O(n log n) creation and access cost
 - Sorting costs O(n log n)
 - Indexes and sorting don't work well with many dimensions
 - Hashing only works for equality
- Is this a dead-end?
- No, we but can play with these concepts!

Expressing Similarity

Distance Measures (first take)

Goal: Find near-neighbors in high-dim. space

- We formally define "near neighbors" as points that are a "small distance" apart
- For each application, we first need to define what "distance" means
- Common for texts: Jaccard distance/similarity
 - The Jaccard similarity of two sets is the size of their intersection divided by the size of their union:

$$sim(C_1, C_2) = \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}$$

• Jaccard distance: $d(C_1, C_2) = 1 - \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}$

3 in intersection
8 in union
Jaccard similarity= 3/8
Jaccard distance = 5/8

Requirements for distance functions

Two data instances/points:

- $d(x, y) \ge 0$ (no negative distances)
- d(x, y) = 0 if and only if x = y (distances are positive, except for the distance from a point to itself)
- d(x, y) = d(y, x) (distance is symmetric)
- $d(x, y) \le d(x, z) + d(z, y)$ (the triangle inequality)
- Triangle Inequality:
 - no gain from a "detour", distance describes the shortest path
 - Hardest to prove, most often violated by candidates

"Base type" for measuresments

- Set Membership / Binary Variables (does the other data items contain the same features)
- Vector (Ordered Set)
- Spatial/Numeric values in Vector space
- (String) Editing: number of operations to transform data item into the other
- Graphs: common nodes and edges? Common label names?
- Time Series: sequences with timestamps, align shapes, time shifts, value shifts, ...

• ...

Set Membership

- Basic Idea:
 How many members of one set are also member of the other set?
- Also used for binary variables (0/1, True/False, Present/Absent)
- Most well-known measure Jaccard

$$J(C1, C2) = 1 - \frac{|C_1 \cap C_2|}{|C_1 \cup C_2|}$$

- Many variants, not all true distance functions
 - Sørensen-Dice: denominator sum of sizes (~F1 score)
 - Simple Matching coefficient, Rand: also mutual absence
- Alternative: Hamming symmetric difference

$$H(x,y) = |(x-y) \cup (y-x)|$$

Numeric / "Spatial" Distances (1)

- Idea:
 - Observe component-wise difference
 - Scale/normalize when needed
- Euclidean aka "Straight-Line":

$$E(x,y) = \sqrt[2]{\sum_{i=1}^{n} (x_i - y_i)^2}$$

• Based on Pythagorean formula for triangles: $a^2 + b^2 = c^2$

Numeric / "Spatial" Distances (2)

• Manhattan (aka city block, taxicab) $_n$

$$M(x,y) = \sum_{i=1}^{n} |x_i - y_i|$$

Weighted version: Canberra

$$CB(x,y) = \sum_{i=1}^{n} \frac{|x_i - y_i|}{|x_i| + |y_i|}$$

• Chebyshev/Chessboard (maximum component):

$$C(x,y) = max_i(|x_i - y_i|)$$

Observe a pattern?

Generalizing spatial metrics: P-Spaces

Minkowksi distance:

$$MK(x,y) = (\sum_{i=1}^{n} |x_i - y_i|^p)^{\frac{1}{p}}$$

Manhattan distance: P=1

• Euclidean distance: P=2

• Chebyshev distance: $\lim_{p\to\infty} MK(x,y)$

• Definition allows for arbitrary, even negative p

Cosine similarity/distance

- Angle between vectors
- Vector Product, normalized for length

$$C(x,y) = 1 - \frac{x \cdot y}{||x|| + ||y||} = 1 - \frac{\sum_{i=1}^{n} x_i y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \sqrt{\sum_{i=1}^{n} x_i^2}}$$

• Why cosine?:

$$x \cdot y = ||x|| * ||y|| * \cos \theta$$

- Cosine vs Euclidean
 - Cosine ignores length of vectors
 - Useful for weighted data (e.g., frequency counts in documents)

Edit / String Distance

- Measure distance between character sequences by the number of edit operations
- kitten -> sitting
- Levenshtein: Distance 3
 - Replace s for k
 - Replace i for e
 - Insert g at end
- LCS (only insert+remove): Distance 5
 - Remove k
 - Insert s at beginning
 - Remove e
 - Insert i before n
 - Insert g add end
- Could also apply hamming distance here: A={k,e}, B={s,i,g}

Representing Documents

- Naïve, extreme representations not really helpful
 - Full document (only for identity)
 - Individual symbols/characters (maybe for language detection)
- Split document what is the right granularity?
 - Individual words
 - Groups of words of characters (n-grams)
- Does the order matter?
- Does the word frequency matter?
- Or is there any other unit of importance?
 - Structure of document?

Common Representation of Texts: Vector Space

- Each feature (word, shingle) of a document is assigned a dimension.
- The number represents the weight is the value in the respective dimension.
 - A value space of 0/1 may just denote **presence** or **absence** of a feature
 - Another common approach is the number of occurrences (term frequency)
 - Normalization: bring weights in same range for all documents
 - Feature Weighing over all documents (IDF)
- Useful orderings: lexicographical, weights, ...

Example (with lexicographical ordering)

[as, please, possible, soon, yes]

• D1: "yes as soon as possible" D1: [2, 0, 1, 1, 1]

• D2: "as soon as possible please" D2: [2, 1, 1, 1, 0]

- In real datasets:
 - Vectors are very long (many possible features), but also very sparse
 - Skewed frequency: few very common features, many rare features: stop words, "tail clipping"

Finding Similar Items – Exact Solution

First idea: Inverted Indexes

- Key idea: Similarity can be only greater than 0 if there are shared features
- Inverted Index: look up documents containing a term/features
- Documents (aka forward index)

Inverted index:

A : y

B: y, x

C : w, z

D: w

E: y, x

F : w, z

G : z

H: x

Find candidates:

for every term in source:

get other documents from index

Merge and traverse

Limitations of inverted indexes

- Document length and term skew:
 - Very common terms shared among many documents
 - Very long list for long words
- Many candidates, large set to store and test

Documents

•
$$z = [A,B, E, F, G]$$

•
$$x = [B, C, D, E, F]$$

Candidates:

•
$$w = \{y, x, z\}$$

•
$$z = \{x, y, w\}$$

•
$$y = \{x, z, w\}$$

•
$$x = \{w, y, z\}$$

Index:

A:z, y

B: z, y, x

C: w, y, x

D: w, y, x

E : z, y, x

F: w, z, x

G:z

Working on Prefixes

• Overlap: $O(x,y) = |x \cap y|$ (not a true distance function)

Given a threshold t, the following hold:

1.
$$J(x,y) \ge t \Leftrightarrow O(x,y) \ge \frac{t}{1+t} * (|x| + |y|)$$

2.
$$J(x,y) \ge t \Rightarrow O(x,y) \ge t * |x|$$

$$3. \ J(x,y) \ge t \Rightarrow t * |x| < |y|$$

With 1 and/or 2, we can approximate J using O

Intuition for prefixes:

- for large data sets, we will aim for high thresholds
- high thresholds mean significant overlap
- With high overlap, we can eliminate candidates after seeing few non-matches when comparing (needs order)

Benefits:

- Only test prefix to find candidates
- Only index up to prefix length

Prefix with high similariy (t=0.9)

•
$$w = [C, D, F]$$
 index :
• $z = [A, B, E, F, G]$ A : z, y
• $y = [A, B, C, D, E]$ B : x
• $x = [B, C, D, E, F]$

- Tokens in the prefixes are underlined.
- For each record, similarity has to be tested with respect to its candidates.
- candidates :
 - $z = \{y\}$
 - $y = \{z\}$
- We have to check only 1 pair which afterwards does not meet the threshold.

Prefix with low similarity (t=0.5)

•
$$w = [C, D, F]$$

•
$$z = [A,B,E,F,G]$$

•
$$y = [A, B, C, D, E]$$

•
$$x = [B, C, D, E, F]$$

candidates :

- $w = \{y, x\}$
- $z = \{x, y\}$
- $y = \{x, z, w\}$
- $x = \{w, y, z\}$

• We have to check 5 pairs - one less than in Example 1 without prefix filtering

• w, x and x, y pass the threshold.

index:

A: z, y

B: z, y, x

C: w, y, x

D: w, x

E : z

Formalizing prefixes

- Given an ordering over the tokens in all lists and O(x,y) > a, then the $(|x| -\alpha + 1)$ -prefix of x and the $(|y| -\alpha + 1)$ -prefix of y must share at least one token.
- Since information on both sides is needed, precomputation is not directly possible
- We can again approximate:
 O (x,y) >= t* |x| (out of 3 and 1)
- Applying the formulas before, we can determine the needed prefix length of a list u as

$$|u| - [t * |u|] + 1$$

Further improvement: positional filtering

- Consider t = 0.8 and
- y = [A,B, C,D, E]
- x = [B,C,D,E,F]
- x and y are candidates of each other for a final similarity check, however they will not pass the constraint $O(x, y) \ge 5$ resulting from $J(x, y) \ge 0.8$.
- Taking the position of the common token B into account the maximum possible overlap can be estimated with respect to the unseen tokens in x and y:
- 1 + min(3, 4) = 4 therefore x and y cannot pass the similarity check.
- Let w = x[i] be the i-th token in x.
- w partitions x into a left xl (w) and right partition xr (w).
- If $O(x, y) \ge \alpha$, then for every token $w \in x \cap y$: $O(xl(w), yl(w)) + min(|xr(w)|, |yr(w)|) \ge \alpha$.

Approximative Solution

Hashing for Approximation

Key Ideas:

- Apply multiple different hash functions on the same data to express "more" than equality: approximate similarity
- Use hash functions that preserve of similarity (dependency on similarity function)
- Use hashing at multiple stages for different purposes

Strategy:

- 1. Shingling: Convert documents to sets
- **2. Min-Hashing:** Convert large sets to short signatures, while preserving similarity
- 3. Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
 - Reduce search space to generate candidate pairs
 - Careful about false negatives

The Big Picture

Shingling

Step 1: Shingling: Convert documents to sets

Documents as High-Dim Data

- Step 1: Shingling: Convert documents to sets
- Simple approaches:
 - Document = set of words appearing in document
 - Document = set of "important" words
 - Don't work well for this application. Why?
- Need to account for ordering of words!
- A different way: Shingles!

Define: Shingles

- A k-shingle (or k-gram) is a sequence of k tokens that appears in a document
 - Tokens can be characters, words or something else, depending on the application
 - Assume tokens = characters for examples
 - Amount of shingles bigger than number of tokens or length of document
- Example: k=2; document D_1 = abcab Set of 2-shingles: $S(D_1)$ = {ab, bc, ca}
 - Option: Shingles as a bag (multiset),
 count ab twice: S'(D₁) = {ab, bc, ca, ab}

Assessment of Shingles

- Benefit: Shingles capture some order of the document
 - Full representation of order within a shingle
 - Overlapping shingles provide indication of overall ordering
 - Reordering the document invalidates only few shingles
- Core Tuning question: How big to make k?
 - Too short = most shingles in most documents
 - Too long = missing too many possible candidates

Compressing Shingles

- Motivation:
 - Shingles generate a large space: token space^length, e.g., 27^9
 - Shingles consume O(length) bytes
 - String operations are (relatively) inefficient
- To compress long shingles, we can hash them to (say) 4 bytes
- Represent a document by the set of hash values of its k-shingles
 - Idea: Two documents could (rarely) appear to have shingles in common, when in fact only the hash-values were shared
 - In practice, the space of 2^32 is sufficient to cover all relevant shingles
- Example: k=2; document D_1 = abcab Set of 2-shingles: $S(D_1)$ = {ab, bc, ca} Hash the singles: $h(D_1)$ = {1, 5, 7}

Similarity Metric for Shingles

- Document D₁ is a set of its k-shingles C₁=S(D₁)
- Equivalently, each document is a 0/1 vector in the space of k-shingles
 - Each unique shingle is a dimension
 - Vectors are very sparse
- A natural similarity measure is the Jaccard similarity

Assumption:

- Documents that have lots of shingles in common have similar text, even if the text appears in different order
- Caveat: You must pick *k* large enough, or most documents will have most shingles
 - **k** = 5 is OK for short documents
 - **k** = 10 is better for long documents

MinHashing

Step 2: Minhashing: Convert large sets to short signatures, while preserving similarity

Encoding Sets as Bit Vectors

 Many similarity problems can be formalized as finding subsets that have significant intersection

- Encode sets using 0/1 (bit, boolean) vectors
 - One dimension per element in the universal set
- Interpret set intersection as bitwise AND, and set union as bitwise OR
- Example: $C_1 = 10111$; $C_2 = 10011$
 - Size of intersection = 3; size of union = 4,
 - Jaccard similarity (not distance) = 3/4
 - Distance: $d(C_1,C_2) = 1 (Jaccard similarity) = 1/4$

From Sets to Boolean Matrices

- Rows = elements (shingles)
- Columns = sets (documents)
 - 1 in row e and column s if and only if e is a member of s
 - Column similarity is the Jaccard similarity of the corresponding sets (rows with value 1)
 - Typical matrix is sparse!
- Each document is a column:
 - Example: $sim(C_1, C_2) = ?$
 - Size of intersection = 3; size of union = 6, Jaccard similarity (not distance) = 3/6
 - $d(C_1,C_2) = 1 (Jaccard similarity) = 3/6$

	1	1	0	1
0	0	1	0	1
OIIII19153	0	0	0	1
5	1	0	0	1
	1	1	1	0
	1	0	1	0

Documents

Outline: Finding Similar Columns

- So far:
 - Documents → Sets of shingles
 - Represent sets as boolean vectors in a matrix
- Next goal: Find similar columns while computing small signatures
 - Similarity of columns == similarity of signatures

Outline: Finding Similar Columns

- Next Goal: Find similar columns, Small signatures
- Naïve approach:
 - 1) Signatures of columns: small summaries of columns
 - 2) Examine pairs of signatures to find similar columns
 - Essential: Similarities of signatures and columns are related
 - 3) Optional: Check that columns with similar signatures are really similar

Warnings:

- Comparing all pairs may take too much time: Job for LSH
 - These methods can produce false negatives, and even false positives (if the optional check is not made)

Hashing Columns (Signatures)

- Key idea: "hash" each column C to a small signature h(C), such that:
 - (1) h(C) is small enough that the signature fits in RAM
 - (2) $sim(C_1, C_2)$ is the same as the "similarity" of signatures $h(C_1)$ and $h(C_2)$
- Goal: Find a hash function h(·) such that:
 - If $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 - If $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$
- Hash docs into buckets. Expect that "most" pairs of near duplicate docs hash into the same bucket!

Min-Hashing

- Goal: Find a hash function h(·) such that:
 - if $sim(C_1, C_2)$ is high, then with high prob. $h(C_1) = h(C_2)$
 - if $sim(C_1, C_2)$ is low, then with high prob. $h(C_1) \neq h(C_2)$
- Clearly, the hash function depends on the similarity metric:
 - Not all similarity metrics have a suitable hash function
- There is a suitable hash function for the Jaccard similarity: It is called Min-Hashing

Min-Hashing

- Imagine the rows of the boolean matrix permuted under random permutation π
- Define a "hash" function $h_{\pi}(C)$ = the index of the first (in the permuted order π) row in which column C has value 1:

$$h_{\pi}(\mathbf{C}) = \min_{\pi} \pi(\mathbf{C})$$

• Use several (e.g., 100) independent hash functions (that is, permutations) to create a signature of a column

Note: Another (equivalent) way is to

store row indexes: 1 5 1 5
2 3 1 3
6 4 6 4

Min-Hashing Example

The Min-Hash Property

- Choose a random permutation π
- Claim: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Why?
 - Let X be a doc (set of shingles), $y \in X$ is a shingle
 - Then: $Pr[\pi(y) = min(\pi(X))] = 1/|X|$
 - It is equally likely that any $y \in X$ is mapped to the *min* element
 - Let y be s.t. $\pi(y) = \min(\pi(C_1 \cup C_2))$
 - Then either: $\pi(y) = \min(\pi(C_1))$ if $y \in C_1$, or $\pi(y) = \min(\pi(C_2))$ if $y \in C_2$
 - So the prob. that **both** are true is the prob. $\mathbf{y} \in C_1 \cap C_2$
 - $Pr[min(\pi(C_1))=min(\pi(C_2))]=|C_1 \cap C_2|/|C_1 \cup C_2|=sim(C_1, C_2)$

0	0
0	0
1	1
0	0
0	1
1	0

One of the two cols had to have 1 at position **y**

Min-Hash Signatures

- We know: $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
- Now generalize to multiple hash functions
- The <u>similarity of two signatures</u> is the fraction of the hash functions in which they agree
- Pick K=100 random permutations of the rows
- Think of sig(C) as a column vector
- sig(C)[i] = according to the i-th permutation, the index of the first row that has a 1 in column C

$$sig(C)[i] = min(\pi_i(C))$$

- Note: The sketch (signature) of document C is small ~ 100 bytes!
- We achieved our goal! We "compressed" long bit vectors into short signatures
- Real-Life Implemention: Don't permute, but use random hash functions

Min-Hash Signature Example

Permutation π

4	3
2	4
1	7
3	2
6	6
	1

6

Input matrix (Shingles x Documents)

1	0	1	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signature matrix M

2	1	2	1
2	1	4	1
1	2	1	2

Similarities:

	1-3	2-4	1-2	3-4
Col/Col	0.75	0.75	0	0
Sig/Sig	0.67	1.00	0	0

Locality Sensitive Hashing

Step 3: Locality-Sensitive Hashing:
Focus on pairs of signatures likely to be from similar documents

LSH: First Cut

2	1	4	1
1	2	1	2
2	1	2	1

- Goal: Find documents with Jaccard similarity at least s
 (for some similarity threshold, e.g., s=0.8)
- LSH General idea: Use a function f(x,y) that tells whether x and y is a candidate pair: a pair of elements whose similarity must be evaluated
- For Min-Hash matrices:
 - Hash columns of signature matrix M to many buckets
 - Each pair of documents that hashes into the same bucket is a candidate pair
- Caveat: This approach can generate
 - False positives: Same bucket but too little overlap -> check afterwards
 - False negatives: Never same bucket, but enough overlap

Candidates from Min-Hash

2	1	4	1
1	2	1	2
2	1	2	1

- Pick a similarity threshold s (0 < s < 1)
- Columns **x** and **y** of **M** are a **candidate pair** if their signatures agree on at least fraction **s** of their rows:
 - M(i, x) = M(i, y) for at least frac. s values of i
 - We expect documents x and y to have the same (Jaccard) similarity as their signatures

LSH for Min-Hash

2	1	4	1
1	2	1	2
2	1	2	1

- Big idea: Hash columns of signature matrix M several times
- Arrange that (only) similar columns are likely to hash to the same bucket, with high probability
- Candidate pairs are those that hash to the same bucket

Partition *M* into *b* Bands

Partition M into Bands

- Divide matrix *M* into *b* bands of *r* rows
- For each band, hash its portion of each column to a hash table with k
 buckets
 - Make k as large as possible
- Candidate column pairs are those that hash to the same bucket for
 ≥ 1 band
- Tune b and r to catch most similar pairs, but few non-similar pairs

Hashing Bands

56

Example of Bands

Assume the following case:

- Suppose 100,000 columns of **M** (100k docs)
- Signatures of 100 integers (rows)
- Therefore, signatures take 40Mb
- Choose b = 20 bands of r = 5 integers/band
- **Goal:** Find pairs of documents that are at least s = 0.8 similar

2	1	4	1
1	2	1	2
2	1	2	1

2	1	4	1
1	2	1	2
2	1	2	1

- Find pairs of \geq s=0.8 similarity, set **b**=20, **r**=5
- **Assume:** $sim(C_1, C_2) = 0.8$
 - Since $sim(C_1, C_2) \ge s$, we want C_1, C_2 to be a candidate pair: We want them to hash to at least 1 common bucket (at least one band is identical)
- Probability C_1 , C_2 identical in one particular band: $(0.8)^5 = 0.328$
- Probability C_1 , C_2 are **not** similar in all of the 20 bands: $(1-0.328)^{20} = 0.00035$
 - i.e., about 1/3000th of the 80%-similar column pairs are false negatives (we miss them)
 - We would find 99.965% pairs of truly similar documents

C₁, C₂ are 30% Similar

2	1	4	1
1	2	1	2
2	1	2	1

- Find pairs of \geq s=0.8 similarity, set **b**=20, **r**=5
- **Assume:** $sim(C_1, C_2) = 0.3$
 - Since sim(C₁, C₂) < s we want C₁, C₂ to hash to NO common buckets (all bands should be different)
- Probability C_1 , C_2 identical in one particular band: $(0.3)^5 = 0.00243$
- Probability C_1 , C_2 identical in at least 1 of 20 bands: 1 $(1 0.00243)^{20} = 0.0474$
 - In other words, approximately 4.74% pairs of docs with similarity 0.3% end up becoming candidate pairs
 - They are false positives since we will have to examine them (they are candidate pairs) but then it will turn out their similarity is below threshold s

LSH Involves a Tradeoff

2	1	4	1
1	2	1	2
2	1	2	1

• Pick:

- The number of Min-Hashes (rows of **M**)
- The number of bands **b**, and
- The number of rows *r* per band

to balance false positives/negatives

 Example: If we had only 15 bands of 5 rows, the number of false positives would go down, but the number of false negatives would go up

Analysis of LSH – What We Want

Similarity $t = sim(C_1, C_2)$ of two sets ———

What 1 Band of 1 Row Gives You

b bands, r rows/band

- Columns C₁ and C₂ have similarity t
- Pick any band (r rows)
 - Prob. that all rows in band equal = t'
 - Prob. that some row in band unequal = 1 t^r
- Prob. that no band identical = $(1 t^r)^b$
- Prob. that at least 1 band identical = $1 (1 t^r)^b$

What b Bands of r Rows Gives You

Example: b = 20; r = 5

- Similarity threshold s
- Prob. that at least 1 band is identical:

S	1-(1-s ^r) ^b	
.2	.006	
.3	.047	
.4	.186	
.5	.470	
.6	.802	
.7	.975	
.8	.9996	

Picking r and b: The S-curve

- Picking r and b to get the best S-curve
 - 50 hash-functions (r=5, b=10)

Blue area: False Negative rate
Yellow area: False Positive rate

LSH Summary

- Tune M, b, r to get almost all pairs with similar signatures, but eliminate most pairs that do not have similar signatures
- Check in main memory that candidate pairs really do have similar signatures
- Optional: In another pass through data, check that the remaining candidate pairs really represent similar documents

Summary: 3 Steps

- Shingling: Convert documents to sets
 - We used hashing to assign each shingle an ID
- Min-Hashing: Convert large sets to short signatures, while preserving similarity
 - We used **similarity preserving hashing** to generate signatures with property $Pr[h_{\pi}(C_1) = h_{\pi}(C_2)] = sim(C_1, C_2)$
 - We used hashing to get around generating random permutations
- Locality-Sensitive Hashing: Focus on pairs of signatures likely to be from similar documents
 - We used hashing to find candidate pairs of similarity ≥ s