一件名	鉄	旧
李		*
班	掚	ll l
级		1
邢幸		· 中
体	份王	

四川轻化工大学试卷(2019至2020学年第二学期期末)

课程名称: 高等数学 B2(A卷)

命题教师: 余成恩

适用班级: 19级文科本科班

考试(考查): 考 试 2020 年 月 日 共 6 页

题号	_	 Ξ	四	五	六	七	八	总分	评阅(统分) 教 师	
得										
分										

注意事项:

- 1、满分100分。要求卷面整洁、字迹工整、无错别字。
- 2、考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则 视为废卷。
- 3、考生必须在签到单上签到,若出现遗漏,后果自负。
- 4、如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷分 别一同交回,否则不给分。

试 题

得分	评阅教师

一、填空题(请将正确的结果填在横线上.每小题 4 分, 共 20 分)

1. 求极限:
$$\lim_{\substack{x \to \infty \\ y \to \infty}} \frac{\ln(x^2 + y^2)}{x^2 + y^2} = _____;$$

- 2. 设 $I = \iint_{D} (2 + x^3 \cos y) dx dy$,其中 $D: x^2 + y^2 \le 1$,则 I =______.
- 4. 微分方程 $y' \frac{1}{x}y = 0$ 满足初始条件 $y|_{x=1} = 2$ 的特解为 $y = ______$.
- 5. 已知 $y_1 = e^{x^2}$ 、 $y_2 = xe^{x^2}$ 为方程 $y'' 4xy' + (4x^2 2)y = 0$ 的解,则该方程的通

得分	评阅教师

二、单选题(请将正确答案的编号填在题后对应括号内,每小题4分,共20分)

1. 函数
$$z = \ln(x^2 + y^2 - 1) + \sqrt{4 - x^2 - y^2}$$
 的定义域是 ()

(A)
$$\{(x, y)|x^2 + y^2 \ge 1\}$$

(B)
$$\{(x,y)|1 < x^2 + y^2 < 4\}$$

(C)
$$\{(x,y)|x^2+y^2 \le 4\}$$

(C)
$$\{(x,y)|x^2+y^2 \le 4\}$$
 (D) $\{(x,y)|1 < x^2+y^2 \le 4\}$

2. 已知
$$D: x^2 + y^2 \le 4$$
,则积分 $I = \iint_D e^{x^2 + y^2} d\sigma = ($)

(A)
$$\pi(e^4-1)$$

(B)
$$2\pi(e^4-1)$$

(C)
$$\frac{1}{2}\pi(e^4-1)$$

(D)
$$2\pi(e^4+1)$$

3. 下列数项级数中,发散的级数是(

(A)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n^2}}$$

(B)
$$\sum_{n=1}^{\infty} \frac{1}{3^n}$$

(C)
$$\sum_{n=1}^{\infty} \frac{2^n}{3^n}$$

(D)
$$\sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}}$$

4.
$$\mathscr{Y}_{1\times 3} + \frac{1}{3\times 5} + \frac{1}{5\times 7} + \frac{1}{7\times 9} + \cdots$$
 ()

(B) 收敛且和为
$$\frac{1}{2}$$

5. 下列说法正确的是()

(A) 方程
$$x(y')^2 - 4yy' + 3xy = 0$$
 是二阶线性齐次微分方程;

- (B) 多元函数在某点的各个偏导数都存在,则在该点一定连续;
- (C) 绝对收敛的级数一定是收敛的;

(D)
$$\lim_{n\to\infty} u_n = 0$$
 是级数 $\sum_{n=1}^{\infty} u_n$ 收敛的充分必要条件;

姓名	类	一
**		
	展数数	
李号		
描	A 型 K	
談	**	得分 评阅教师
		四、求由方程 $e^x + e^y + e^z = 3xyz$ 所确定函数 $z = f(x, y)$ 的全微分 . (10 分)
小 车	ķ	
	松	
学院		

得分	评阅教师

五、求函数 $f(x,y) = 3xy - x^3 - y^3$ 的极值 . (10分)

得分	评阅教师

六、计算二重积分 $\iint_D \sqrt{9-x^2} \, dx dy$, 其中 D 是圆周 $x^2+y^2=9$ 与坐标轴所围成的在第一象限内的闭区域 . (10 分) (注: 要求画出积分区域图)

姓名	线
李号	然
岩	围
級	本 本 大
亚辛	**
学院	· · · · · · · · · · · · · · · · · · ·

得分	评阅教师

七、解微分方程: y'' - y' = x . (10分)

得分	评阅教师

八、求幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$ 的收敛域与和函数 . (10 分)