Lezione 6 Fisica Generale I

Federico De Sisti 2024-10-11

1 Moto del proiettile

$$\begin{cases} x(t) = v_x t \\ y(y) = h + v_y t - \frac{1}{2} g t^2 \end{cases} \Rightarrow t = \frac{x}{v_x}$$

$$z(t) = const = 0$$

Eliminando il parametro dal sistema otteniamo:

$$y = h + v_y \frac{x}{v_x} - \frac{1}{2} g \frac{x^2}{(v_x)^2}$$

Teorema 1 (Del grande cazzo)

per trovare il massimo di una curva tocca fare la derivata

$$8 = = = = = = D.$$

$$\frac{dy}{dx} = \frac{v_y}{v_{0x}} = \frac{yx}{(v_{0y})} = 0 \Rightarrow x = \frac{v_{0x}v_{0y}}{g} = \frac{v_0^2 \cos \theta \sin \theta}{g}.$$

$$y_{max} = h + \frac{v_{0y}}{v_{0x}} \frac{v_{0x}v_{0y}}{g} - \frac{1}{2}g \frac{v_{0x}^2 v_{0y}^2}{v_{0x}^2}.$$

$$y_{max} = h + \frac{1}{2}gv_{0y}^2.$$

$$t_{hmax} = \frac{v_{0y}}{g}.$$

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \sin(\beta)\cos(\alpha).$$

ponendo $\alpha = \beta = \theta$

$$\sin(2\theta) = 2\sin(\theta)\cos(\theta).$$

$$\max_{\theta} x(\theta) = \max_{\theta} \frac{\sin(2\theta)}{g} \Rightarrow \theta = \frac{\pi}{4}$$

$$\begin{cases} v_x(t) = v_{0x} \\ v_y(t) = v_{0y} - gt \end{cases}$$

$$v_y(t_{max}) = 0 = v_{0y} - gt_h max \Rightarrow t_{hmax} = \frac{v_{0y}}{g}.$$

$$y_m ax = y(t_{hmax}) = h + \frac{v_{0y}^2}{g} - \frac{1}{2}g\left(\frac{v_{0y}}{g}\right)^2 = h + \frac{1}{2}\frac{v_{0y}^2}{g}.$$

Esercizio

appena sparo la scimmia cade dal ramo, il mio proiettile colpisce la scimmia? **Svolgimento**

Scrivo le equazioni del moto per il proiettile e la scimmia

$$\begin{cases} x_p(t) = v_{0x}t \\ y_p(t) = v_{0y}t - \frac{1}{2}gt^2 \end{cases} \begin{cases} x_s(t) = d \\ y_s(t) = h - \frac{1}{2}gt^2 \end{cases}$$

$$x_p(t) = v_{0x}t = t_d = \frac{d}{v_{0x}}y_p(t_p) = v_{0y}\frac{d}{v_{0x}} - \frac{1}{2}g\frac{d^2}{v_{0x}}.$$

$$\begin{cases} y_p(t_d) = v_{0y}\frac{d}{v_{0x}} - \frac{1}{2}g\frac{d^2}{v_{0x}^2} \\ y_s(t_d) = h - \frac{1}{2}g\frac{d^2}{v_{0x}^2} \end{cases}.$$

troviamo $t_g=\frac{2v_{0y}}{g}$ Ci sono delle condizioni sul fatto che la scimmia colpisca il proiettile

Esercizio per casa

cosa succede nello stesso problema se non parto da 0, ma da un'altezza h, per colpire la scimmia è una buona strategia avere una velocità che punta la scimmia

In quale punto l'accelerazione normale è massima

Nel massimo

$$r = \frac{v^2}{a_n} \Rightarrow r = \frac{v_{0x}^2}{g} = \frac{v_0^2 \cos \theta}{g}.$$

$$\begin{cases} a_t(t) = g \sin \gamma(t) \\ a_n(t) = g \cos \gamma(t) \end{cases}.$$

 γ è l'angolo che la velocità forma con l'asse x e che la normale forma con l'asse

fai esercizi 212 210 fine capitolo 2

2 Sistemi di riferimento in movimento

2.1 Orientamento degli assi orientati nello stesso modo, l'origine ha un moto traslatorio

Indicheremo con l'apice i vettori dal secondo sistema di riferimento

$$\overrightarrow{r'}(t) = \overrightarrow{r'}_{O'}(t) + \overrightarrow{r'}'(t).$$

$$x(t)\hat{i} + y(t)\hat{j} + z(t)\hat{k} = x_{O'}(t)\hat{i} + y_{O'}(t)\hat{j} + z_{O'}(t)\hat{k} + x'(t)\hat{i}' + y'(t)\hat{j}' + z'(t)\hat{k}'.$$
 qui ho fatto le foto, sarebbe da trascrivere il tutto guarda trasformaszioni galileane pagina 77