자료구조

L10: Hashing

2022년 1학기 국민대학교 소프트웨어학부

Overview

- Hashing
- Hash Functions
- Collision Resolution
- Analysis of Closed Hashing

Hashing

- 키가 K인 아이템을 상수 시간에 찾을 수 있을까?
- Hashing
 - Hash Table (HT): 아이템을 담는 배열. 크기는 M.
 - Hash Function (h): 키 K를 0 ~ M-1의 값으로 매핑하는 함수
 - 예) h(K) = K % M
 - Hashing은 키가 K인 아이템을 HT[h(K)]에 넣는다.

Hashing

- Hashing은 키의 개수에 비해서 키의 범위가 클 때 유용
- M개의 키가 0부터 M-1까지 순차적으로 있다면?
- M개의 키가 X부터 X+M-1 까지 순차적으로 있다면?
- M개의 키가 0부터 N (M << N)사이에 듬성듬성 있다면?
- 키가 문자열이라면?

Collision

- Collision: 두 키 K1과 K2의 해시값이 같은 경우
 - 즉, h(K1) = h(K2) 인 상황
 - 예) 키가 K1인 아이템이 이미 HT에 있는데,
 K1과 같은 해시값 K2를 갖는 아이템을 넣으려고 한다면?
- Collision Resolution
 - Collision이 발생 했을 때 어떻게 해결할 것인가?
 - 예) h(K2)에서 collision이 발생하면, HT[h(K2) + 1]에 값을 저장한다. 찾을 때에도 HT[h(K2)+1]을 살펴본다.

Overview

- Hashing
- Hash Functions
- Collision Resolution
- Analysis of Closed Hashing

- 어떤 해시 함수가 좋은 hash function일까?
 - Collision이 최소로 발생하는 함수가 좋은 hash function
 - 즉, 들어오는 데이터에 상관 없이 모든 slot에 고르게 할당하는 함수가 좋은 hash function
- M=16이고, h(K) = K % 16이라면, h(K)는 좋은 hash function일까?
 - 만일 키가 모두 짝수라면?
 - 만일 키의 하위 4개 비트가 모두 동일하다면?

- 문제점 1) 만일 키가 모두 짝수라면, Hash table의 절반은 사용되지 않는다.
 - M값을 소수(prime number)로 정하면 Hash table의 slot들을 모두 활용하는데 도움이 된다.
 - Why?
 - 모든 키가 어떤 정수 c의 배수라고 하자 (즉, c * i),
 - 만일 M과 c가 서로소이면 c * i (i=0,1,...,M-1)는 모두 다른 slot에 할당된다!
 - 증명 (모순증명법)
 - Assume c * i = c * j (mod M) where i != j in [0, M-1].
 - Since c is relatively prime to M, this implies i-j is a multiple of M;
 but it cannot happen since i != j in [0, M-1], thus contradiction.

- 문제점 2) 키의 마지막 4개 비트만 사용하기 때문에, 입력 데이터에 따라서 h(K)의 결과가 치우쳐져있을 수 있다.
- 해결방법: 키의 모든 비트를 사용한다
 - 예 1) Mid-square method:
 key를 제곱하여 가운데 r개의 비트를 M으로 나눈 나머지 구하기

	00110101 10100111
X	00110101 10100111
000010110011 <u>11101001</u> 001011110001	

- 문제점 2) 키의 마지막 4개 비트만 사용하기 때문에, 입력 데이터에 따라서 h(K)의 결과가 치우쳐져있을 수 있다.
- 해결방법: 키의 모든 비트를 사용한다
 - 예 2) folding approach: t개씩 비트를 잘라서 합한 후 M으로 나는 나머지 구하기. 짝수번째 조각을 뒤집어서 합할 수도 있음

Overview

- Hashing
- Hash Functions
- Collision Resolution
- Analysis of Closed Hashing

Collision Resolution

- Collision은 피하기 힘들다
 - 보통 키의 범위가 slot의 수보다 많기 때문에
 (a.k.a. 비둘기 집의 원리 (Pigeonhole principle))
 - 생일 문제 (Birthday paradox): 34명의 자료구조 수강생 중에 생일이 같은 두 사람이 존재할 확률은?

Collision Resolution

- 아이템을 넣으려는데 Collision이 발생한 경우, 어떻게 하면 좋을까?
- Collision resolution techniques
 - Open hashing (a.k.a. separate chaining)
 - Closed hashing (a.k.a. open addressing)

Open hashing

- Open hashing (a.k.a. separate chaining)
 - Hash Table의 각각의 slot에 Linked List를 연결
 - 삽입시 Collision이 발생하면 해당 slot의 Linked List에 추가

Closed Hashing

- Closed hashing (a.k.a. open addressing)
 - 삽입시 Collision이 발생하면 hash table의 다른 slot에 아이템을 저장

• 예: Bucket Hashing, Linear Probing, ...

Bucket Hashing

M = 10, B = 5h(K) = K mod 5

- hash table의 slot들을 여러 bucket으로 그룹화
 - M slot들이 B개의 bucket으로 나뉨
 - 각 buket은 M/B개의 slot을 가짐
 - Hash function (key → bucket 수)은
 아이템을 bucket의 첫번째 slot에 넣음.
 - 만약 차있으면? bucket의 다음 slot에 넣음
 - bucket이 가득차면? 별도의 bucket
 (overflow bucket)에 넣음

Bucket Hashing

- M = 10, B = 5h(K) = K mod 10
- Bucket Hashing의 변형: 마치
 bucket이 없는 것처럼 hashing을 한다
 - slot이 비어있으면? 넣는다
 - slot이 차있으면? 해당 bucket의 비어있는 slot을 찾아 넣는다
 - bucket의 모든 slot이 차있으면? overflow bucket에 넣는다

Bucket Hashing

- Bucket hashing vs open hashing?
 - Bucket hashing에서 collision이 더 많이 발생
 ⇒ 아이템 탐색 시간이 더 길어질 수 있음
 - Bucket hashing은 추가 공간을 덜 차치함
- Bucket Hashing의 한계
 - hash table에 빈 공간이 많이 남아있는 경우에도 bucket이 가득차면 overflow bucket에 값을 넣음

Linear Probing

- Bucket 없이 closed hashing하기: 삽입시 collision이 발생하면 hash table의 모든 slot중에 빈 곳을 찾아 넣음
 - 빈 slot 찿기: 비어있는 slot이 나올 때 까지 다음 slot으로 이동
 - h(K) + p(K, i)
 - p(K, i) = i
 - i는 충돌 발생 횟수

3

Linear Probing

- Linear probing의 문제점
 - Primary clustering: 채워져있는 slot들이 뭉쳐짐
 - → 남은 slot들에 할당될 확률이 서로 달라짐
 - 예) 오른쪽 그림에서, 삽입 연산시 각 slot에 값이 할당될 확률은?

Improving Linear Probing

- 개선 방법 1) 상수배 건너뛰기
 - P(K, i) = ci
 - c는 M과 서로소여야함 (why?)
 - o 한계: 여전히 primary clustering 존재
- 개선 방법 2) Pseudo-random probing
 - P(K, i) = Perm[i-1]
 - Perm: 1부터 M-1사이의 값이 섞여있는 길이 M-1의 배열
- 개선 방법 3) Quadratic probing
 - $P(K, i) = c_1 i^2 + c_2 i^2 + c_3$

Improving Linear Probing

- Pseudo-random probing과 Quadratic probing은
 모두 secondary clustering 문제가 있음
 - Secondary clustering: 해시함수가 특정 slot에 대하여 cluster를 형성함
 - 키의 해시값이 같은 아이템들은 모두 같은 probe sequence를 가지기 때문에 발생
 - Secondary clustering 발생 원인? P(K, i)가 i만의 함수라서 → K도 사용하면 해결
 - 예) Double hashing: $P(K, i) = i*h_2(K)$
 - Pseudo-random/quadratic probing에 double hashing을 적용 가능

Overview

- Hashing
- Hash Functions
- Collision Resolution
- Analysis of Closed Hashing

Analysis of Closed Hashing

- Load factor $\alpha = N/M$ (N: 아이템 수, M: Hash table 크기)
- 넣는데 걸리는 평균 탐색 횟수
 - \circ 첫번째 탐색만에 넣을 확률 $P(1) = 1 \frac{N}{M}$
 - 두번째 탐색만에 넣을 확률 $P(2) = \frac{N}{M} \left(1 \frac{N-1}{M-1}\right)$
 - \circ i번째 탐색만에 넣을 확률 $P(i) = \frac{N(N-1)\cdots(N-i+2)}{M(M-1)\cdots(M-i+2)} \left(1 \frac{N-i+1}{M-i+1}\right)$
 - 평균 탐색 횟수 $=\sum_{i=1}^{N+1} i \cdot P(i)$

$$i=1+rac{N}{M}+rac{N(N-1)}{M(M-1)}+\cdotspprox 1+\sum_{i=1}^{\infty}(N/M)^i=rac{1}{1-lpha}$$

Analysis of Closed Hashing

- 찿는데(지우는데) 걸리는 평균 탐색 횟수
 - 어떤 아이템을 찾을 때 걸리는 탐색 횟수는 그 아이템을
 넣는 시점에 걸렸던 탐색 횟수와 같음

$$\frac{1}{\alpha} \int_0^\alpha \frac{1}{1-x} dx = \frac{1}{\alpha} \log_e \frac{1}{1-\alpha}.$$

- Linear Probing의 경우
 - 삽입: $\frac{1}{2}(1+1/(1-\alpha)^2)$
 - 삭제: $\frac{1}{2}(1+1/(1-\alpha))$

Performance of Closed Hashing

Performance of Closed Hashing

Overview

- Hashing
- Hash Functions
- Collision Resolution
- Analysis of Closed Hashing

Questions?