Markov processes – III

- review of steady-state behavior
- probability of blocked phone calls
- calculating absorption probabilities
- calculating expected time to absorption

review of steady state behavior

Markov chain with a single class of recurrent states, aperiodic; and some transient states; then,

$$\lim_{n \to \infty} r_{ij}(n) = \lim_{n \to \infty} \mathbf{P}(X_n = j \mid X_0 = i) = \pi_j, \quad \forall i$$

can be found as the unique solution to the balance equations

$$\pi_j = \sum\limits_k \pi_k p_{kj}, \qquad j=1,\dots,m,$$
 together with $\sum\limits_j \pi_j = 1$

on the use of steady state probabilities, example

$$\pi_1 = 2/7$$
, $\pi_2 = 5/7$

assume process starts in state 1

$$P(X_1 = 1 \text{ and } X_{100} = 1 \mid X_0 = 1) =$$

$$P(X_{100} = 1 \text{ and } X_{101} = 2 \mid X_0 = 1) =$$

$$P(X_{100} = 1 \text{ and } X_{200} = 1 \mid X_0 = 1) =$$

design of a phone system

- calls originate as a Poisson process, rate λ
- each call duration is exponential (parameter μ)
- need to decide on how many lines, B?

• for time slots of small duration δ

- P(a new call arrives) $pprox \lambda \delta$
- if you have i active calls, then P(a departure) $pprox i\mu\delta$

design of a phone system, a discrete time approximation

• approximation: discrete time slots of (small) duration δ

• balance equations

$$\lambda \pi_{i-1} = i\mu \pi_i$$

$$\pi_i = \pi_0 \frac{\lambda^i}{\mu^i i!}$$

$$\pi_0 = 1 / \sum_{i=0}^B \frac{\lambda^i}{\mu^i i!}$$

• P(arriving customer finds busy system) is π_B

calculating absorption probabilities

- ullet absorbing state: recurrent state k with $p_{kk}=1$
- what is the probability a_i that the chain eventually settles in 4 given it started in i?

$$i$$
 = 4, a_i = i = 5, a_i = otherwise, a_i =

expected time to absorption

• find expected number of transitions μ_i until reaching 4, given that the initial state is i

$$\mu_i = 0 \ \ {\rm for} \ \ i =$$
 for all others, $\ \mu_i =$

mean first passage and recurrence times

- chain with one recurrent class
- mean first passage time from i to s:

$$t_i = \mathbf{E}[\min\{n \geq 0 \text{ such that } X_n = s\} \,|\, X_0 = i]$$

unique solution to:

$$t_s = 0,$$

 $t_i = 1 + \sum_j p_{ij} t_j,$ for all $i \neq s$

• mean recurrence time of s

$$t_s^* = \mathbf{E}[\min\{n \geq 1 \text{ such that } X_n = s\} \,|\, X_0 = s]$$

– solution to:

$$t_s^* = 1 + \sum_j p_{sj} t_j$$

gambler's example

- a gambler starts with i dollars; each time, she bets \$1 in a fair game, until she either has 0 or n dollars.
- what is the probability a_i that she ends up with having n dollars?

- $i = 0, \ a_i = \qquad \qquad i = n, \ a_i = \\ 0 < i < n, \ a_i =$

- expected wealth at the end? $0 \cdot (1 a_i) + n \cdot a_i =$
- how long does the gambler expect to stay in the game?
 - μ_i = expected number of plays, starting from i
 - for i = 0, n: $\mu_i =$
 - in general

$$\mu_i = 1 + \sum_j p_{ij} \mu_j$$

in case of unfavorable odds?