Relatório das Medições de Consumo do TMS320F28027

danilopena.ba@gmail.com

17 de novembro de 2015

1 Introdução

O objetivo deste trabalho é realizar medição de consumo do processador digital de sinais (DSP) TMS320F28027 da Texas Instruments. As medições deverão ser realizadas variando frequência e tensão de alimentação, proporcionalmente.

2 Requisitos e Especificações

2.1 Requisitos

As medições de consumo do DSP devem ser registradas variando a frequência de operação (F) do processador e sua tensão de alimentação (V). Uma tabela e curvas com amostras de consumo com combinações F-V proporcionais devem ser obtidas. Para uma medição com frequência e tensão f[n] - v[n], em que f[n] e v[n] são parâmetros de frequência e tensão respectivamente, o valor de v[n+1] escolhido tem de ser tal que $v[n+1] = \Delta v[n]$, em que $\Delta = f[n+1]/f[n]$.

É desejado que as medições sejam realizadas apenas do processador, não incluindo nenhum dispositivo externo (dispositivos presentes na placa), bem como todos os periféricos do processador estejam desligados, exceto a CPU.

2.2 Especificações

O DSP utilizado é o TMS320F28027 encontrado no kit experimental Piccolo Launch-Pad (LAUNCHXL-F28027), ilustrado na Figura 1. A placa conta com uma interface de programação e depuragem USB e comunicação serial (UART) com um emulador JTAG que pode ser isolado através dos jumpers JP1 e JP2. A placa conta também com LEDs, pushbuttons, e switchs para seleção do modo de boot.

Figura 1: Overview do Piccolo LaunchPad.

O DSP TMS320F28027 é um processador de 32bits que pode operar até 60MHz com alimentação de 3.3V. O DSP conta com diversos periféricos, alguns como conversor AD, módulo PWM, timers de 32bits, oscilador interno (on-chip), PLL, interfaces de comunicação SPI, SCI(UART), I2C, memórias Flash e SARAM.

As medições de consumo são realizadas em corrente (mA), visto que a tensão é constante no momento da medição, basta realizar a conversão para potência. Os possíveis valores de frequência utilizados são obtidos combinando o multiplicador e divisor da PLL. A tabela 1 mostra os possíveis valores de frequência que podem ser obtidos a partir do oscilador interno de 10MHz.

Além do kit LaunchPad, foram utilizados um multímetro digital Agilent U1252B com precisão de tensão CC de 0.025%, uma fonte de alimentação Minipa MPL-

Tabela 1: Possíveis valores de frequência utilizando PLL e oscilador interno de 10MHz.

	Divisor		
Multiplicador	/1	/2	/4
1	10	5	2.5
2	20	10	5
3	30	15	7.5
4	40	20	10
5	50	25	12.5
6	60	30	15
7	-	35	17.5
8	-	40	20
9	-	45	22.5
10	-	50	25
11	-	55	27.5
12	-	60	30

3303M com display de 3 dígitos com precisão de 1% do display com regulação de tensão +-(0,01%+3mV) e precisão de saída fixa de 3%. Também foram utilizados protoboard, resistor de 10Ω com tolerância de +-5%.

3 Desenvolvimento

Inicialmente é feito medições na alimentação da placa sem isolar o circuito de depuragem presente no LaunchPad, ilustrado na Figura 2. O objetivo desta medição inicial é verificar o funcionamento das configurações da PLL, do sinal de clock do oscilador interno responsáveis pela variação de frequência, e da escolha do algoritmo adequado para o DSP. O resultado pode ser verificado na tabela 2.

Algumas conclusões são obtidas nesta etapa. Não existe variação de consumo entre códigos de loop infinito e simples algoritmos de benchmark (inicialmente a ideia era utilizar códigos de benchmark Dhrystone). Foi utilizado o teste Lucas—Lehmer para números primos, e não foi verificado mudança de consumo em relação ao código de loop infinito. Então utilizou-se em todo o experimento apenas loop infinito.

A GPIO (pinos de entrada e saída) foram configurados como saída em nível alto com Pull-Up habilitado, em que a corrente nos pinos fica entre +- $2\mu A$ (pág 80, 6.3 Electrical Characteristics, datasheet TMS320F28027). Os seguintes periféricos

Tabela 2: Medição na placa.

	ras ora z. modigas ma prasa.				
Frequência	Consumo (para 4.2V)	Consumo (para 3.3V)			
10 MHz	55.3 mA	48.6 mA			
15 MHz	57.3 mA	50.3 mA			
20 MHz	58.8 mA	52.3 mA			
25 MHz	60.9 mA	54.0 mA			
30 MHz	62.6 mA	55.8 mA			
35 MHz	64.5 mA	57.8 mA			
40 MHz	66.2 mA	60.1 mA			
45 MHz	67.8 mA	61.6 mA			
50 MHz	69.6 mA	63.5 mA			
55 MHz	71.5 mA	65.2 mA			
60 MHz	73.3 mA	67.0 mA			

Figura 2: Alimentação da placa.

foram desligados: ADC, I2C, ePWM, eCAP, SCI, SPI, Comp/DAC, HRPWM, CPU-Timer, incluindo a Flash. O processador ao ser iniciado leva sua memória de programa para a SARAM para que a memória Flash não seja utilizada.

O código no DSP segue os seguintes passos:

1. Construção dos objetos.

(Clock, CPU, Flash, GPIO, PIE, PLL, Watchdog)

2. Desabilita watchdog.

- 3. Calibração do ADC.
- 4. Configuração do oscilador interno (10MHz).
- 5. Configuração da PLL, selecionando o multiplicado e divisor adequado.
- 6. Desabilita interrupções (PIE) e limpa flags.
- 7. Copia memória de programa para a RAM.
- 8. Configura nível alto e Pull-Up para o GPIO.
- 9. Loop infinito (ex.: while (1)).

3.1 Medições

As medições foram realizadas alimentando a placa LaunchPad com a fonte Minipa, com os Jumper J1 e J2 do LaunchPad desconectados (Figura 1) de forma a isolar o emulador do DSP. Foi conectado um resistor de 10Ω em série com a placa (na protoboard, entre a alimentação e a placa), ilustrado na Figura 3. Foi utilizado o multímetro Agilent U1252B para medir a tensão em cima do resistor. Após programar o DSP no computador para uma determinada frequência, é feito as medições dividindo o valor de tensão obtido no multímetro por 10 (valor do resistor) e registrado um valor de corrente (em mA).

Figura 3: Esquema de medição.

Foram realizadas 88 medições, mostrado na Tabela 3, com ganho de frequência Δ_f e de tensão Δ_v variável, em que os ganhos não são proporcionais, ou seja, $\Delta_f \neq \Delta_v$ não atendendo os requisitos. Exemplificando, para as duas primeiras amostras, $\Delta_f[1] = f[2]/f[1] = 15/10 = 1.5$ e $\Delta_v[1] = v[2]/v[1] = 3.1/3.0 = 1.03$.

Tabela 3: Medição do TMS320F28027.

Consumo (mA)								
MHz	3.0 V	3.1 V	3.2 V	3.3 V	3.4 V	3.5 V	3.6 V	3.7 V
10	50.7	51.6	52.4	53.0	54.1	54.9	55.6	56.3
15	52.8	53.7	54.5	55.4	56.1	56.9	57.7	58.4
20	54.7	55.6	56.5	57.2	58.1	58.8	59.6	60.3
25	56.8	57.7	58.5	59.3	60.0	60.9	61.7	62.4
30	58.7	59.6	60.4	61.4	62.1	62.8	63.6	64.3
35	60.6	61.5	62.3	63.2	64.0	64.8	65.6	66.3
40	62.5	63.3	64.2	65.1	65.8	66.6	67.4	68.1
45	64.3	65.2	66.0	66.8	67.7	68.4	69.2	70.0
50	66.5	67.4	68.2	69.0	69.8	70.6	71.4	72.1
55	68.4	69.2	70.1	70.9	71.8	72.5	73.3	74.0
60	70.3	71.1	72.0	72.8	73.6	74.4	75.2	75.9

A dificuldade está em encontrar ganhos de frequência e tensão, que mesmo que não sejam constantes, sejam ao menos iguais para o mesmo conjunto de amostras, ou seja, $\Delta_f[n] = \Delta_v[n]$. Significa combinar os possíveis valores de frequência descritos na Tabela 1, com a faixa de tensão do DSP de 2.97V a 3.63V (6.2 Recommended Operating Conditions, datasheet, TMS320F28027).

3.2 Dificuldades

 (\dots)

- 1. Encontrar ganhos de frequência e tensão que atendam os requisitos.
- 2. Descrever problema da cópia da memória de programa da Flash pra SARAM.
- 3. Descrever problema da falta de oscilador externo.

4 Resultados e Conclusões

No datasheet do TMS320F28027 é descrito um gráfico de medição de consumo, Figura 4. Esta medição foi realizada com os seguintes periféricos habilitados: ePWM,

eCAP, SCI, SPI, ADC, I2C, COMP, CPU-Timer, com chaveamento nos pinos do PWM de 60kHz, com todos os demais pinos desconectados, com o código rodando fora da Flash.

Figura 4: Curva descrita no datasheet.

Segundo o datasheet, para cada periférico desligado ocorre a redução de corrente no DSP descrito na tabela 4.

Tabela 4: Redução de consumo por periférico.

Periférico	Redução de corrente (mA)
ADC	2
I2C	3
ePWM	2
eCAP	2
SCI	2
SPI	2
COMP/DAC	1
HRPWM	3
CPU-Timer	1

O gráfico de consumo obtido através das medições realizadas neste trabalho está ilustrado na Figura 5.

Figura 5: Gráfico obtido das medições do DSP.

5 Referências

application notes - Build Your Own LaunchPad or LaunchPad BoosterPack Development Kit

datasheet - TMS320F28027

F2802x Peripheral Driver Library

more literature - LAUNCHXL-F28027 C2000 Piccolo LaunchPad Quick Start Guide

user guides - C2000 Real-Time Control Peripheral Reference Guide

user guides - Driver Library

user guides - Firmware Examples

user guides - LAUNCHXL-F28027 C2000 Piccolo LaunchPad Experimenter Kit

user guides - SYSBIOS (TI-RTOS Kernel) v6.41 User's Guide

user guides - TMS320C28x DSP CPU and Instruction Set

user guides - TMS320C28x Optimizing CC++ Compiler v6.4 User's Guide

user guides - TMS320x2802x Piccolo Boot ROM Reference Guide

user guides - TMS320x2802x, 2803 Piccolo Analog-to-Digital Converter and Comparator Ref. Guide

user guides - TMS320x2802x, 2803x Piccolo Inter-Integrated Circuit (I2C) Module Ref. Guide

user guides - TMS320x2802x, 2803x Piccolo Serial Communications Interface (SCI)

user guides - TMS320x2802x, 2803x Piccolo Serial Peripheral Interface (SPI) Reference Guide

user guides - TMS320x2802xTMS320F2802xx Piccolo System Control and Interrupts Reference Guide

(falta os Application Report ...)