Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

ТОМСКИЙ ГОСУДАРСВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

Кафедра компьютерных систем в управлении и проектировании (КСУП)

РАЗРАБОТКА ПЛАГИНА «КАСТРЮЛЯ» ДЛЯ СИСТЕМЫ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ AUTOCAD

ПРОЕКТ СИСТЕМЫ

по дисциплине

«Основы разработки САПР»

		Выполнил:
		студент гр. 580-2
	-	Пчельник С.С.
«	>>>	2023 г.
		Проверил:
		к.т.н., доцент каф. КСУП
	_	Калентьев А.А.
«	>>	2023 г.

1. Описание САПР

1.1 Описание программы

АutoCAD — система автоматизированного проектирования (САПР) для создания трёх- и двухмерных моделей. Он включает в себя функции для автоматизации задач и повышения производительности, такие как сравнение чертежей, подсчет, добавление объектов и создание таблиц. Он также поставляется с семью отраслевыми наборами инструментов для электрического проектирования, проектирования предприятий, архитектурных чертежей, механического проектирования, 3D-картографии, добавления отсканированных изображений и преобразования растровых изображений. Аutocad позволяет пользователям создавать, редактировать и комментировать чертежи с помощью настольных компьютеров, Интернета и мобильных устройств.[1]

Аналоги AutoCAD:

- Autodesk Inventor;
- Autodesk Fusion 360;
- SolidWorks;
- Kompas-3D.

1.2 Описание АРІ

API (Application programming interface) — это программный интерфейс, используемый программами для взаимодействия между собой.

Для AutoCAD существует ObjectARX — набор динамически подключаемых библиотек, позволяющий реализовать взаимодействие между разрабатываемым плагином и САПР.

AutoCAD .NET API собран из различных DLL-файлов, которые содержат широкий ряд классов, структур, методов и событий, обеспечивающих доступ к объектам файла чертежа в приложении AutoCAD.[2]

Каждый DLL-файл определяет различные пространства имен, которые используются для организации размещения компонентов библиотек.

Четыре основные DLL-файла AutoCAD .NET API:

- 1. AcDbMgd.dll. Используется для работы с объектами файла чертежа;
- 2. AcMgd.dll. Используется для работы с самим приложением AutoCAD и пользовательским интерфейсом;
- 3. AcCui.dll. Используется для работы с файлами пользовательских настроек;
- 4. AcCoreMgd.dll. Используется для работы с редактором, а также определении команд и функций, используемых из Autocad.

Основные методы AutoCAD .NET API, используемые при создании плагина представлены в таблицах 1.1-1.5.

Таблица 1.1 – основные методы интерфейса DocumentManager

Название	Тип	Описание
MdiActiveDocument()	Document	Метод для создания и получения
		документа чертежа
MdiActiveDocument.Editor()	Editor	Метод для получения редактора
		текущего чертежа

Таблица 1.2 – Основные методы интерфейса TransactionManager.

Название	Тип	Описание
StartManager()	Transaction	Метод, реализующий работу с
		примитивами
Transaction.Commit()	void	Метод для завершения
		работы с примитивами

Таблица 1.3 – основные методы класса BlockTableRecord

Название	Тип	Описание
AppendEntity(Object object)	void	Метод, добавляющий в
		текущее пространство
		примитив типа Object

Таблица 1.4 – оснновные методы класса Solid3d

Название	Тип	Описание
CreateWedge(double length,	void	Метод для создания объемного
double width, double height)		объекта по заданной длине,
		ширине и высоте
Extrude(int region, double	void	Метод, выполняющий
height, double angle)		выдавливание указанной области
		region, на высоту height при
		заданном наклоне angle

Таблица 1.5 – основные методы класса Point3dCollection

Название	Тип	Описание
Add(Vector3d value)	Point3d	Добавляет объект,
		представленный значением, в эту
		коллекцию

1.3 Обзор аналогов плагина

Прямых аналогов для данного плагина нет. Косвенные плагины реализовывают только часть требуемой функциональности.

Плагин Softdraft Steel3D UK, от компании Soft Draft, предназначен для моделирования различных стальных конструкций. [3]

✓ Complex Extrusion Options

None Placement:

Cancel

Lines

838x292x226 838x292x194

838x292x194 838x292x176 762x267x197 762x267x173 762x267x147 762x267x134 686x254x170

Copyright (c) 2002-2018 SoftDraft, LLC

На рисунке 1.1 представлен пользовательский интерфейс плагина.

Рисунок 1.1 – Пользовательский интерфейс плагина Steel3D UK

OK

2. Описание проекта проектирования

Предметом проектирования является модель кастрюли.

Параметры кастрюли:

- высота кастрюли H (150 300 мм);
- диаметр кастрюли D (150 200 мм);
- высота ручек 11 (1/2 2/3 от толщины ручек 12);
- толщина ручек l2 (3 10 мм);
- толщина дна W (1 10 мм);
- толщина стенок N (0.5 3 мм).

На рисунке 2.1 показаны геометрические параметры кастрюли

Рисунок 2.1 – геометрические параметры кастрюли

3 Проект Системы

3.1 Диаграмма классов

Диаграмма классов (class diagram) показывает набор классов, интерфейсов и коопераций, а также их связи. Диаграммы этого вида чаще всего используются для моделирования объектно-ориентированных систем. Предназначены для статического представления системы. Диаграммы классов, включающие активные классы, представляют статическое представление процессов системы [4].

На рисунке 3.1 показана UML диаграмма классов

Рисунок 3.1 – Диаграмма классов

Добавлено примечание ([KA1]): Builder-Wrapper – как будет работать?

Wrapper, Builder – не хватает методов.

Wrapper, MainForm, ParameterType – курсивом?

Как будут валидироваться зависимые параметры в форме?

Добавлено примечание ([C2R1]): +

Добавлено примечание ([KA3R1]): ModelBuilder – нет.

МаinForm – Parameters – агрегация?

Wrapper – как забирает Parameters из формы? Как они передаются в Builder?

Передаются в Builder?

Передача словаря в Validate класса Parameters Validate – bool?

Опечатки в названиях сущностей в словарях Parameters/

Класс «MainForm» является формой пользовательского интерфейса. Принимает значения, необходимые для построения модели.

Builder – класс, строящий модель.

Wrapper – класс обёртка API САПР. Через него происходит взаимодействие MainForm и Builder.

Класс Parameter хранит информацию об одном параметре проектируемой модели.

Класс Parameters хранит словарь с параметрами модели.

ParameterType – перечисление, содержащее название параметров кастрюли.

Таблица 3.1 – Основные элементы класса Parameters

Название	Тип	Описание
Validate	bool	Совершает проверку
		значения параметра
Parameters	Dictionary <parametertype,paremeter></parametertype,paremeter>	Конструктор
		словаря, хранящего
		все параметры
SetValue	void	Устанавливает новое
		значение параметра
GetValue	Double	Возвращает
		значение параметра

Добавлено примечание ([КА5]): Нужны не только методы, нго и другие члены класса. Перепроверить на опечатки. Подписи к таблицам с большой буквы, после номера — длинное тире.

Добавлено примечание ([C6R5]): +

Таблица 3.2 – Основные элементы класса Builder

Название	Тип	Описание
Build	void	Совершает построение модели
BuildPot	void	Совершает построение основной
		части кастрюли
BuildHandles	void	Совершает построение ручек
		кастрюли
_parameters	Parameters	Объект, содержащий
		переменные для построения
		модели

Таблица 3.3 – Основные элементы класса Wrapper

Название	Тип	Описание
BuildPot	void	Открывает форму для принятия
		значений, после передаёт их в
		builder для строительства модели
Initialize	void	Запускается при загрузке плагина
Terminate	void	Запускается при закрытии САПР

3.2 Описание программы для пользователя

Плагин представляет собой диалоговое окно с полями для ввода и выбора соответствующих параметров.

На рисунках 3.2-3.4 представлен вид диалогового окна плагина в различных случаях.

Рисунок 3.2 – Макет интерфейса

Рисунок 3.3 – Макет интерфейса с неправильно введённым значением

Добавлено примечание ([KA7]):

Добавлено примечание ([C8R7]): +

Добавлено примечание ([KA9]): Добавить случай вывода ошибки для зависимых параметров.
Ошибка – в месседжбоксе красный крест

Рисунок 3.4 – Макет интерфейса окна ошибки при попытке построения фигуры с неправильно введёнными параметрами

Список Используемых источников

- 1. Официальный сайт AutoDesk. Продукт AutoCAD [Электронный ресурс] Режим доступа: свободный (дата обращения 15.10.2023) https://www.autodesk.com/developer-network/platform-technologies/autocad/objectarx
- Официальный сайт Autodesk. Help Autocad 2022 [Электронный ресурс] режим доступа: свободный (дата обращения 15.10.2023); https://help.autodesk.com/view/OARX/2022/ENU/?guid=GUID-8657D153-0120-4881-A3C8-E00ED139E0D3
- SoftDraft Steel3D UK | AutoCAD | Autodesk App Store.
 [Электронный ресурс]. Режим доступа: свободный (дата обращения:

Добавлено примечание ([C10R9]): +

Добавлено примечание ([C12R9]): +

внимательно замечание

Добавлено примечание ([KA11R9]): Перечитайте

 $\frac{https://apps.autodesk.com/ACD/ru/Detail/Index?id=523730756658500}{1661\&appLang=en\&os=Win32_64}$

4. Буч, Г. Язык UML. Руководство пользователя. 2-е изд. [Текст]/Г. Буч, Д. Рамбо, И. Якобсон. – М.: ДМК Пресс, 2006. – 496 с