MATH 270: Homework #6

Jesse Farmer

12 November 2004

- 1. Consider the function $f(x) = \frac{1}{z^2}$.
 - (a) f satisfies $\int_{\gamma} f(z) d = 0$ for all closed contours not passing through the origin but is not holomorphic at z = 0. Does this statement contradict Morera's Theorem? No, because Morera's theorem requires that the integral be zero along any closed curve, not only those avoiding any singularities.
 - (b) f is founded as z → ∞ but it is not a constant. Does this statement contradict Liouville's theorem?
 No. Liouville's theorem requires that f be bounded on all of C, not eventually bounded, i.e., bounded for z with sufficiently large moduli.
- 2. Let f(z) be entire and let $|f(z)| \ge 1$ for all $z \in \mathbb{C}$ Prove that f is constant. Since $|f(z)| \ge 1$ on \mathbb{C} , f never vanishes and $\frac{1}{f(z)}$ is also entire. Then $\left|\frac{1}{f(z)}\right| \le 1$, so by Liouville's theorem it is constant, and so f must also be constant.
- 3. Let f be entire and let $|f(z)| \leq M$ for z in $\gamma = \{z \mid |z| = R\}$, for fixed R. Prove that

$$f^{(k)}(re^{i\theta}) \le \frac{k!M}{(R-r)^k}$$

for all $k \in \mathbb{N}$ and $0 \le r < R$.

Pick any point $z_0 \in \mathbb{C}$ with $|z_0| = r < R$. Then there exists a neighborhood around z_0 of radius R-r contained in γ . f is entire so by the maximum modulus principle $|f(z)| \leq M$ on this circle, too. Cauchy's inequality implies that $|f(z_0)^{(k)}| \leq \frac{k!}{(R-r)^k} M$ for $k \in \mathbb{N}$, but since z_0 was arbitrary this is true for all z with |z| < R and the result follows.

4. Let f and g be holomorphic on a region A with $g'(z) \neq 0$ for all $z \in A$. Furthermore, let g be injective and γ be any closed curve in A. Show that for $z \notin \gamma$,

$$f(z)I(\gamma, z) = \frac{g'(z)}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{g(\zeta) - g(z)} d\zeta$$

1

Since g is injective and g' never vanishes g^{-1} exists and $\frac{dg^{-1}(w)}{dw} = \frac{1}{g'(z)}$ where $z = g^{-1}(w)$. Therefore, writing $\zeta = g^{-1}(w)$ and $w_0 = g(z)$, by Cauchy's theorem

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{g(\zeta) - g(z)} d\zeta = \frac{1}{2\pi i} \int_{\gamma} \frac{dg^{-1}(w)}{dw} \frac{f(g^{-1}(w))}{w - w_0} dw$$

$$= \frac{dg^{-1}(w_0)}{dw} f(g^{-1}(w_0)) I(\gamma, z)$$

$$= \frac{f(z)}{g'(z)} I(\gamma, z)$$

5. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ have radius of convergence R and let $A = \{z \in \mathbb{C} \mid |z| < R\}$. Show that $\int_{\gamma} f = 0$ for every closed curve γ in A where $A = \{z \in \mathbb{C} \mid |z| < R\}$.

Every polynomial is entire, so by Cauchy's theorem $\int_{\gamma} a_n z^n = 0$ for any closed curve γ in \mathbb{C} , assuming a_n is defined there. Since integrals are finitely additive, if γ is a closed curve in A

$$\int_{\gamma} \left(\sum_{n=0}^{k} a_n z^n \right) dz = \sum_{n=0}^{k} \int_{\gamma} a_n z^n dz = 0$$

Certainly, then, the integral is 0 in the limit, since the above statement is true for every $k \in \mathbb{N}$.

6. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ converge for |z| < R. If 0 < r < R show that $f(z) = \sum_{n=0}^{\infty} a_n r^n e^{in\theta}$ where $z = re^{i\theta}$ and

$$a_n = \frac{1}{2\pi r^n} \int_0^{2\pi} f\left(re^{i\theta}\right) e^{-in\theta} d\theta$$

and

$$\frac{1}{2\pi} \int_0^{2\pi} \left| f\left(re^{i\theta}\right) \right|^2 d\theta = \sum_{n=0}^{\infty} |a_n|^2 r^{2n}$$

From Taylor's theorem the coefficients a_n are $a_n = \frac{f^{(n)}(0)}{n!}$. Parameterize the circle of radius r by $\gamma(\theta) = re^{i\theta}$ for $\theta \in [0, 2\pi]$, then by Cauchy's theorem

$$a_n = \frac{f^{(n)}(0)}{n!} = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta^{n+1}} d\zeta = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(re^{i\theta})}{r^{n+1}e^{i(n+1)\theta}} rie^{i\theta} d\theta = \frac{1}{2\pi r^n} \int_{0}^{2\pi} f(re^{i\theta})e^{-in\theta} d\theta$$

As for the second equation, consider that

$$f\left(re^{i\theta}\right)\overline{f\left(re^{i\theta}\right)} = \left|f\left(re^{i\theta}\right)\right|^{2} = \left(\sum_{n=0}^{\infty} a_{n}r^{n}e^{in\theta}\right)\left(\sum_{m=0}^{\infty} \overline{a_{m}}r^{m}e^{-im\theta}\right)$$

$$= \sum_{n=0}^{\infty} \left[\left(\sum_{m=0}^{\infty} \overline{a_{m}}r^{m}e^{-im\theta}\right)a_{n}r^{n}e^{in\theta}\right]$$

$$= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \left(a_{n}\overline{a_{m}}r^{n+m}e^{i(n-m)\theta}\right)$$

But note that if n = m then $\int_0^{2\pi} a_n \overline{a_m} r^{n+m} e^{i(n-m)\theta} = 2\pi |a_n|^2 r^{2n}$, and if $n \neq m$ this integral is 0. Hence

$$\int_0^{2\pi} \left| f\left(re^{i\theta}\right) \right|^2 d\theta = 2\pi \sum_{n=0}^{\infty} |a_n|^2 r^{2n}$$

7. Suppose f is a nonvanishing function on $\overline{D(0,1)}$ such that $f|_{D(0,1)}$ is holomorphic. Prove that if |f(z)| = 1 when |z| = 1 then f is constant.

Define

$$\tilde{f}(z) = \begin{cases} f(z) & |z| \le 1\\ \frac{1}{f(\overline{z})} & |z| > 1 \end{cases}$$

Since f never vanishes \tilde{f} is defined and analytic for |z| > R with a power series

$$\frac{1}{\overline{f(\overline{z})}} = \frac{1}{\sum_{n=0}^{\infty} \overline{a_n} z^n}$$

This power series converges since it has a radius of convergence of $\frac{1}{R}$ where R is the radius of convergence of the power series representation of f. Hence, if R>1 then $\frac{1}{R}<1$ and the series converges. By the same reasoning as in the Schwarz reflection principle \tilde{f} is entire and \tilde{f} $|_{\overline{D(0,1)}}=f$. In particular this means $|\tilde{f}(z)|=1$ when |z|=1. The only analytic functions with constant moduli on any set are constant functions, so \tilde{f} must be constant on the boundary of the unit disc. Cauchy's formula implies that \tilde{f} is the same constant for any z with |z|<1. Finally, \tilde{f} must be constant since the extension is unique.