

Microturbinas eólicas inspiradas en el vuelo de un albatros

Engineering, 2014, 6, 427-438

Published Online July 2014 in SciRes. http://dx.doi.org/10.4236/eng.2014.68045

The Flight of Albatross—How to Transform It into Aerodynamic Engineering?

Günther Pfeifhofer*, Helmut Tributsch

Carinthia University of Applied Sciences, Villach, I Email: G.Pfeifhofer@fh-kaernten.at, Helmut.Trib

Received 26 April 2014; revised 30 May 2014; ac

Prototipo

Créditos: Alex Flores (DIMEC

Preguntas

Ángulo con respecto a la posición?

Fuerza sobre los perfiles alares?

Potencia a X rpm?

Modelo: flujo potencial

Flujo incompresible (div(V)=0) y no viscoso (curl(V)=0)

$$\nabla \cdot \mathbf{V} = \nabla \cdot \nabla \phi = \nabla^2 \phi = 0$$

Flujo uniforme horizontal (dirección +x):

$$u = U_{\infty}$$
 $v = 0$
 $\phi = U_{\infty}x$ $\psi = U_{\infty}y$

Flujo uniforme vertical (dirección +y):

$$u = 0$$
 $v = V_{\infty}$
 $\phi = V_{\infty}y$ $\psi = -V_{\infty}x$

Fuente:

$$V_r = \frac{q}{2\pi r}$$
 $V_\theta = 0$
 $\phi = \frac{q}{2\pi} \ln(r)$ $\psi = \frac{q}{2\pi} \theta$

Sumidero:

$$V_r = -\frac{q}{2\pi r}$$
 $V_\theta = 0$
 $\phi = -\frac{q}{2\pi} \ln(r)$ $\psi = -\frac{q}{2\pi} \theta$

Vórtice (dirección contra reloj):

$$V_r = 0$$
 $V_\theta = \frac{\Gamma}{2\pi r}$
 $\phi = \frac{\Gamma}{2\pi \theta} \quad \psi = -\frac{\Gamma}{2\pi r} \ln(r).$

Método del panel

Hess y Smith (~1960): sistema lineal para fuerza del vórtice

