

Aula 03: Algoritmos de Ordenação - Análise Matemática Completa

Prof. Vagner Cordeiro Sistemas de Informação Universidade - 2025

Agenda Completa da Aula

Parte I: Fundamentos Matemáticos

- 1. Teoria da Ordenação e Conceitos Fundamentais
- 2. Análise Matemática Detalhada de Complexidade
- 3. Cálculo Passo a Passo do Tempo de Execução

→ Parte II: Algoritmos Elementares

- 4. Bubble Sort Análise Completa O(n²)
- 5. Selection Sort Otimização de Trocas
- 6. Insertion Sort Melhor Caso O(n)

7 Parte III: Algoritmos Avançados

- 7. Merge Sort Divide-and-Conquer O(n log n)
- 8. Quick Sort Análise Probabilística
- 9. Heap Sort Estruturas de Dados Integradas

■ Parte IV: Análise Prática

- 10. Comparações Experimentais e Benchmarks
- 11. Casos Reais de Aplicação
- 12. Exercícios e Problemas Práticos

Objetivos de Aprendizagem

E Conhecimentos Teóricos:

- **Dominar** os fundamentos matemáticos da ordenação
- Calcular complexidade de tempo passo a passo
- **Demonstrar** limites teóricos de algoritmos baseados em comparação
- Compreender trade-offs entre tempo, espaço e estabilidade

Habilidades Práticas:

- Implementar algoritmos clássicos com análise detalhada
- Otimizar código para diferentes cenários reais
- **Medir** performance empírica com benchmarks rigorosos
- Resolver problemas complexos usando ordenação

- Selecionar algoritmos apropriados para cada contexto
- Combinar técnicas para soluções híbridas
- Aplicar ordenação em problemas do mundo real

Fundamentos Matemáticos da Ordenação

► Definição Formal Completa

Problema da Ordenação:

Dada uma sequência $A=\langle a_1,a_2,\ldots,a_n\rangle$ de n elementos e uma **relação de ordem total** \leq , encontrar uma **permutação** $A'=\langle a_1',a_2',\ldots,a_n'\rangle$ tal que:

$$a_1' \le a_2' \le a_3' \le \ldots \le a_n'$$

Q Análise Matemática Fundamental

Teorema (Limite Inferior para Ordenação):

Qualquer algoritmo de ordenação baseado em **comparações** requer no mínimo $\Omega(n \log n)$ comparações no pior caso.

Prova Detalhada:

- 1. Espaço de permutações: Existem n! permutações possíveis
- 2. Árvore de decisão: Cada comparação gera no máximo 2 resultados
- 3. Altura mínima: $h \ge \log_2(n!)$
- 4. Aproximação de Stirling: $\log_2(n!) pprox n \log_2 n n \log_2 e + O(\log n)$
- 5. Conclusão: $h = \Omega(n \log n)$

Exemplo Numérico:

- Para n=8: 8!=40.320 permutações
- 1 (40,000) 150 ~ (:

Análise de Complexidade: Limites Teóricos

Limite Inferior para Algoritmos Baseados em Comparação

Teorema: Qualquer algoritmo de ordenação baseado em comparações requer $\Omega(n\log n)$ comparações no pior caso.

Demonstração (Árvore de Decisão):

- Existem n! permutações possíveis
- Cada comparação divide o espaço de possibilidades em no máximo 2 partes
- Altura mínima da árvore: $\lceil \log_2(n!) \rceil$
- Pela aproximação de Stirling: $\log_2(n!) = \Theta(n \log n)$

$$\log_2(n!) \geq \log_2\left(\left(rac{n}{e}
ight)^n
ight) = n\log_2\left(rac{n}{e}
ight) = \Omega(n\log n)$$

Classificação por Complexidade

Classe	Complexidade	Algoritmos		
Quadrática	$O(n^2)$	Bubble, Selection, Insertion		
Linearítmica				
Linear	O(n)	Counting, Radix, Bucket		
Sublinear				

→ Parte II: Algoritmos Elementares - Análise Completa

- Bubble Sort: O Algoritmo das Bolhas
- **©** Princípio Fundamental:

Comparar elementos adjacentes e trocar se estiverem fora de ordem. O maior elemento "borbulha" para a posição final a cada iteração.

Análise Matemática Detalhada:

Número de Comparações:

$$C(n) = \sum_{i=0}^{n-2} (n-1-i) = \sum_{j=1}^{n-1} j = rac{(n-1)n}{2} = rac{n^2-n}{2}$$

Número de Trocas:

- Melhor caso: T=0 (array ordenado)
- Pior caso: $T=C(n)=rac{n(n-1)}{2}$ (array reverso)
- Caso médio: $T=rac{n(n-1)}{4}$ (análise probabilística)

if (app[i] \ app[i + 1]) {

```
void bubble_sort_completo(int arr[], int n) {
   int comparacoes = 0, trocas = 0;

for (int i = 0; i < n - 1; i++) {
   int houve_troca = 0; // Flag de otimização

   for (int j = 0; j < n - i - 1; j++) {
      comparacoes++; // Conta cada comparação
   }
}</pre>
```

- Selection Sort: Busca do Extremo
- **©** Princípio Fundamental:

A cada iteração, **seleciona** o menor elemento do subarray não ordenado e o coloca na posição correta.

Análise Matemática:

Número de Comparações (sempre):

$$C(n) = \sum_{i=0}^{n-2} (n-1-i) = rac{n(n-1)}{2} = O(n^2)$$

Número de Trocas (sempre):

$$T(n) = n - 1 = O(n)$$

Vantagem: Número mínimo de trocas possível!

Parte III: Algoritmos Avançados - Divide and Conquer

- Merge Sort: O Paradigma Divide-and-Conquer
- **©** Princípio Fundamental:
- Divide o problema em subproblemas menores, resolve recursivamente e combina as soluções.
- ▶ Relação de Recorrência:

$$T(n) = egin{cases} O(1) & ext{se } n \leq 1 \ 2T(n/2) + O(n) & ext{se } n > 1 \end{cases}$$

Solução pelo Teorema Master:

$$T(n) = O(n \log n)$$

- Prova Matemática Detalhada:
 - 1. Altura da árvore de recursão: $h = \log_2 n$
 - 2. Trabalho por nível: O(n) (para merge)
 - 3. Trabalho total: $O(n) \times O(\log n) = O(n \log n)$

Parte IV: Análise Comparativa Completa

™ Tabela Comparativa Detalhada

Algoritmo	Melhor	Médio	Pior	Espaço	Estável	In-place	Adaptativo
Bubble Sort	O(n)		$O(n^2)$	O(1)	✓	✓	✓
Selection Sort	$O(n^2)$			O(1)	X	✓	×
Insertion Sort	O(n)		$O(n^2)$	O(1)	✓	✓	✓
Merge Sort					V	×	×
Quick Sort	$O(n \log n)$		$O(n^2)$	$O(\log n)$	X	✓	×
Heap Sort	$O(n \log n)$			O(1)	X	✓	×

→ Quando Usar Cada Algoritmo:

© Cenários Práticos:

- **Bubble Sort:** \succeq Ensino e arrays muito pequenos (n < 20)
- Selection Sort: 💾 Quando memória (trocas) é limitada
- Insertion Sort: ${\mathscr A}$ Arrays pequenos (n<50) ou quase ordenados
- Merge Sort: @ Quando estabilidade é crucial ou worst-case garantido
- Quick Sort: * Caso geral melhor performance média

Exercícios Práticos e Problemas Reais

- Lista de Exercícios Progressivos
- Nível Básico Implementação e Análise

Exercício 1: Implemente bubble sort que conta comparações e trocas

```
// TODO: Implementar bubble_sort_com_contadores()
// Retorna: struct {int comparacoes; int trocas;}
```

Exercício 2: Modifique insertion sort para ordenação decrescente

```
// TODO: insertion_sort_decrescente()
// Analise: Muda a complexidade? Por quê?
```

Exercício 3: Calcule complexidade exata para entrada específica

```
Entrada: [5, 4, 3, 2, 1] (tamanho n=5)
Para bubble sort: Quantas comparações? Quantas trocas?
Resposta teórica: C = n(n-1)/2 = 10, T = 10
```

Nível Intermediário - Otimizações

Exercício 4: Implemente quick sort com mediana-de-3

Casos Reais de Aplicação

■ Caso 1: Sistema de E-commerce

```
typedef struct {
    int produto_id;
    char nome[100];
    float preco;
    int estoque;
    float avaliacao;
    int vendas;
} Produto;

// Diferentes critérios de ordenação:
    // 1. Por preço (filtro econômico)
    // 2. Por avaliação (melhores produtos)
    // 3. Por vendas (mais populares)
    // 4. Multi-critério: avaliação + vendas
```

Questão: Qual algoritmo usar para cada caso?

- Dados pequenos (< 100 produtos): Insertion sort
- Dados médios (100-10K): Quick sort
- Estabilidade crucial: Merge sort
- Memória limitada: Heap sort

III Caso 2: Análise de Big Data

```
// Arquivo com 10 milhões de registros
typedef struct {
   long timestamp;
   int user id:
```

Benchmarks e Medições Práticas

Resultados Experimentais (n = 10.000)

Algoritmo	Tempo (ms)	Comparações	Trocas/Movimentos	Memória (KB)
Bubble Sort	892.3	49.995.000	24.997.500	40
Selection Sort			9.999	40
Insertion Sort	118.4	25.005.000	25.005.000	40
Merge Sort				
Quick Sort			32.847	44
Heap Sort			286.439	

Análise dos Resultados:

Observações:

- 1. **Quick Sort** é ~110x mais rápido que Bubble Sort
- 2. **Selection Sort** faz mínimo de trocas (apenas n-1)
- 3. **Merge Sort** tem performance previsível
- 4. **Insertion Sort** surpreende em dados quase ordenados

Fatores que afetam performance:

• Cache de CPU: Localidade de referência

- **Macetes e Dicas Práticas**
- **Otimizações Universais:**
- 1. Use insertion sort para arrays pequenos (n < 20)

```
if (n < 20) {
   insertion_sort(arr, n);
   return;
}</pre>
```

2. Evite recursão desnecessária no quick sort

```
while (baixo < alto) {
    int pi = partition(arr, baixo, alto);
    if (pi - baixo < alto - pi) {
        quick_sort(arr, baixo, pi - 1);
        baixo = pi + 1;
    } else {
        quick_sort(arr, pi + 1, alto);
        alto = pi - 1;
    }
}</pre>
```

3. Use algoritmos adaptativos quando possível

```
// Detecta se array já está ordenado
bool esta_ordenado(int arr[], int n) {
   for (int i = 1; i < n; i++) {
      if (arr[i] < arr[i-1]) return false;
   }
   return true;</pre>
```

P Desafio Final: Algoritmo Híbrido

Implemente um algoritmo que:

- 1. **Detecta** padrões nos dados (ordenado, reverso, aleatório)
- 2. **Escolhe** automaticamente o melhor algoritmo
- 3. Combina técnicas para otimização máxima

```
void smart_sort(int arr[], int n) {
    if (n < 20) {
        insertion_sort(arr, n);
    } else if (esta_quase_ordenado(arr, n)) {
            insertion_sort(arr, n); // O(n) para dados quase ordenados
    } else if (tem_muitas_duplicatas(arr, n)) {
            three_way_quick_sort(arr, 0, n-1); // Otimizado para duplicatas
    } else {
            intro_sort(arr, 0, n-1, 2 * log(n)); // Quick + Heap sort
    }
}</pre>
```

Sua missão: Implemente e teste este algoritmo híbrido!

Implementação do Heap Binário

Propriedade do Max-Heap: Para todo nó *i*:

 $\operatorname{parent}(i) \geq A[i]$

4. Algoritmos de Ordenação Linear

Counting Sort: Ordenação por Contagem

Aplicabilidade: Elementos inteiros em intervalo conhecido [0,k]

```
void counting_sort(int array[], int n, int k) {
    // Array de saída que terá os elementos ordenados
    int output[n];
    // Array de contagem para armazenar count de cada elemento
    int count[k + 1];
    // Inicializa array de contagem com zeros
    for (int i = 0; i <= k; i++)
        count[i] = 0;
    // Armazena a contagem de cada elemento
    for (int i = 0; i < n; i++)</pre>
        count[array[i]]++;
    // Modifica count[i] para que contenha posição atual
    // do elemento i no array de saída
    for (int i = 1; i <= k; i++)
        count[i] += count[i - 1];
    // Constrói o array de saída
    for (int i = n - 1; i >= 0; i--) {
        output[count[array[i]] - 1] = array[i];
        count[array[i]]--;
    // Copia o array de saída para array[], para que
    // array[] contenha elementos ordenados
    for (int i = 0; i < n; i++)
        array[i] = output[i];
```

Radix Sort: Ordenação por Dígitos

Princípio: Ordena dígito por dígito usando counting sort estável

```
int obter_maximo(int array[], int n) {
    int max = array[0];
    for (int i = 1; i < n; i++)
        if (array[i] > max)
            max = array[i];
    return max;
void counting_sort_radix(int array[], int n, int exp) {
    int output[n];
    int count[10] = {0};
    // Armazena contagem de ocorrências em count[]
    for (int i = 0; i < n; i++)
        count[(array[i] / exp) % 10]++;
    // Modifica count[i] para conter posição atual
    for (int i = 1; i < 10; i++)
        count[i] += count[i - 1];
    // Constrói array de saída
    for (int i = n - 1; i >= 0; i--) {
        output[count[(array[i] / exp) % 10] - 1] = array[i];
        count[(array[i] / exp) % 10]--;
    // Copia array de saída para array[]
    for (int i = 0; i < n; i++)
        array[i] = output[i];
void radix sort(int array[], int n) {
    int max = obter_maximo(array, n);
    // Executa counting sort para cada dígito
    for (int exp = 1; max / exp > 0; exp *= 10)
        counting sort radix(array, n, exp);
```

5. Otimizações e Algoritmos Híbridos

Introsort: Combinação Inteligente

Princípio: Combina QuickSort, HeapSort e InsertionSort

```
#include <math.h>
void introsort util(int array[], int baixo, int alto, int limite profundidade) {
    while (alto > baixo) {
        int tamanho = alto - baixo + 1;
        // Para arrays pequenos, use insertion sort
        if (tamanho < 16) {</pre>
            insertion_sort_range(array, baixo, alto);
            break;
        // Se profundidade máxima atingida, use heap sort
        else if (limite profundidade == 0) {
            heap_sort_range(array, baixo, alto);
            break;
        // Caso contrário, use quick sort
        else {
            int pivot = partition(array, baixo, alto);
            // Otimização: recursão na partição menor
            if (pivot - baixo < alto - pivot) {</pre>
                introsort util(array, baixo, pivot - 1, limite profundidade - 1);
                baixo = pivot + 1;
            } else {
                introsort_util(array, pivot + 1, alto, limite_profundidade - 1);
                alto = pivot - 1;
            limite_profundidade--;
void introsort(int array[], int n) {
```

Timsort: Algoritmo do Python

Princípio: Detecta runs naturais e os mescla eficientemente

Características Principais:

- Adaptativo para dados parcialmente ordenados
- Estável e com performance $O(n \log n)$ garantida
- Otimizado para padrões comuns de dados reais

```
// Simplificação conceitual do Timsort
typedef struct {
    int base;
    int tamanho;
} Run;
void timsort_simplificado(int array[], int n) {
    const int MIN_MERGE = 32;
    // 1. Identifica ou cria runs mínimos
    for (int i = 0; i < n; i += MIN_MERGE) {</pre>
        int fim = (i + MIN_MERGE - 1 < n - 1) ? i + MIN_MERGE - 1 : n - 1;</pre>
        insertion_sort_range(array, i, fim);
    // 2. Mescla runs progressivamente
    int tamanho = MIN_MERGE;
    while (tamanho < n) {</pre>
        for (int inicio = 0; inicio < n; inicio += tamanho * 2) {</pre>
             int meio = inicio + tamanho - 1;
             int fim = (inicio + tamanho * 2 - 1 < n - 1) ?</pre>
                      inicio + tamanho * 2 - 1 : n - 1;
             if (meio < fim)</pre>
                 merge(array, inicio, meio, fim);
```

6. Análise Experimental e Benchmarks

Framework de Testing Rigoroso

```
typedef enum {
   ALEATORIO,
 ALEATURIO,

ORDENADO,

REVERSO,

QUASE_ORDENADO,

MUITAS_REPETICOES

} TipoDados;
 case ORDENADO:
    for (int i = 0; i < n; i++)
        array[i] = i;
    break;</pre>
                                   creat;

Case QMAC GROENDOD:

C
                                                    for (int i = 0; i < n; i++)
    array[i] = rand() % 10; // Apenas 10 valores distintos
break;</pre>
return ((double)(fim - inicio)) / CLOCKS_PER_SEC;
 for (int t = 0; t < num tamanhos; t++) {
   int n = tamanhos[t];
   printf('Tamanho do Array: %d elementos\n', n);
   printf('.' * 40);</pre>
                                   for (int tipo = 0; tipo < 5; tipo++) {
    printf("\nTipo de Dados: %s\n", nomes_tipos[tipo]);</pre>
                                      for (int alg = 0; alg < 6; alg++) {
   int *array_teste = mallor(n * sizeof(int));
   gerar_dados_teste(array_teste, n, (TipoDados)tipo);</pre>
                                                                        free(array_teste);
```

Resultados Experimentais Típicos

Performance para 100.000 elementos

Algoritmo	Aleatório	Ordenado	Reverso	Quase Ord.
Bubble Sort	15.23s	0.03s	30.45s	2.15s
Selection Sort	8.67s	8.66s	8.68 s	8.65s
Insertion Sort	4.32s	0.02s	8.64s	0.48s
Merge Sort				0.017s

듣 Resumo da Aula e Conceitos-Chave

© Principais Aprendizados

Fundamentos Matemáticos:

- Limite inferior de $\Omega(n\log n)$ para algoritmos baseados em comparação
- Relações de recorrência e Teorema Master para análise
- Análise de casos: melhor, médio e pior

★ Algoritmos Implementados:

- 1. **Bubble Sort:** $O(n^2)$ didático, adaptativo
- 2. **Selection Sort:** $O(n^2)$ mínimo de trocas
- 3. **Insertion Sort:** $O(n^2)$ ótimo para dados pequenos/quase ordenados
- 4. **Merge Sort:** $O(n \log n)$ estável, previsível
- 5. **Quick Sort:** $O(n \log n)$ avg rápido na prática

Q Critérios de Escolha:

- **Tamanho dos dados** (n < 50: insertion, n > 10K: quick/merge)
- Estabilidade (merge sort quando necessária)
- Memória disponível (in-place vs. external)
- Padrão dos dados (quase ordenado: insertion)

Dicas e Macetes Essenciais

Ø Otimizações Práticas:

- 1. **Híbrido:** Insertion sort para subarrays pequenos
- 2. Randomização: Pivô aleatório no quick sort
- 3. **Detecção precoce:** Flag para arrays já ordenados
- 4. Mediana-de-3: Melhora escolha do pivô

⚠ Pegadinhas Comuns:

- Overflow: Use meio = baixo + (alto-baixo)/2
- Estabilidade: Cuidado com < vs <= nas comparações
- Recursão infinita: Verificar condições de parada
- Acesso fora dos limites: Sempre validar índices

Exercícios para Casa

Exercícios Obrigatórios:

1. Implementação Básica (★)

- Implemente os 5 algoritmos principais
- Adicione contadores de comparações e trocas
- Teste com arrays ordenados, reversos e aleatórios

2. Análise Experimental (★★)

- Meça tempo de execução para diferentes tamanhos
- o Compare resultados com análise teórica
- Identifique pontos de transição (quando um supera outro)

3. Otimizações (★★★)

- Quick sort com mediana-de-3
- Merge sort iterativo (bottom-up)
- Insertion sort binário (busca binária para posição)

T Desafios Extras:

4. Algoritmo Híbrido (★★★★)

- o Combine técnicas para máxima eficiência
- Adapte automaticamente ao padrão dos dados

Métricas de Avaliação

Critérios para Implementações:

- **Corretude:** Algoritmo ordena corretamente
- Z Eficiência: Respeita complexidade teórica
- **Clareza**: Código bem comentado e estruturado
- **Robustez:** Trata casos extremos (n=0, n=1)
- **Análise:** Contadores e medições implementados

Pontuação:

- Básico (60%): Implementação correta dos algoritmos
- Intermediário (80%): + Otimizações e análise
- Avançado (100%): + Híbridos e aplicações reais

E Referências e Material Complementar

□ Literatura Fundamental:

- 1. Cormen, T. H. Introduction to Algorithms, 4^a ed. (Capítulos 2, 4, 6-8)
- 2. **Sedgewick, R.** *Algorithms*, 4^a ed. (Parte II: Sorting)
- 3. **Knuth**, **D. E.** *The Art of Computer Programming*, Vol. 3 (Sorting and Searching)

Recursos Online:

- Visualgo.net Visualização de algoritmos
- Big-O Cheat Sheet Referência rápida
- Sorting Algorithm Animations

Ferramentas para Prática:

- LeetCode Problemas práticos
- HackerRank Desafios de ordenação
- Codeforces Competições

Prévia do Conteúdo:

- Listas Ligadas: Simples, duplas, circulares
- Pilhas e Filas: Implementação e aplicações
- Árvores Binárias: Conceitos fundamentais
- Hash Tables: Função hash e tratamento de colisões

© Para se Preparar:

- 1. Revise conceitos de **ponteiros** e **alocação dinâmica**
- 2. Pratique manipulação de estruturas em C
- 3. Estude análise amortizada (opcional)

✓ Checklist da Aula

Conceitos Dominados:

- [] Limite inferior teórico para ordenação
- [] Análise de complexidade de todos os algoritmos
- [] Implementação correta dos 5 algoritmos principais
- [] Critérios para escolha de algoritmos
- [] Otimizações e técnicas avançadas
- [] Aplicações em problemas reais

Habilidades Desenvolvidas:

- [] Análise matemática de algoritmos
- [] Implementação eficiente em C
- [] Medição e comparação de performance
- [] Resolução de problemas práticos
- [] Otimização de código

Tronga dos Exercícios: Próxima aula

Dúvidas: Monitoria ou fórum online

Contato: professor@universidade.edu.br

"A ordenação é a base de quase todos os algoritmos eficientes. Dominá-la é dominar a essência da computação."

Obrigado pela atenção! 🎓

}

```
### Sistema de Processamento de Log

```C
typedef struct {
 time t timestamp;
```

# 8. Algoritmos de Ordenação Externa

### **Ordenação de Arquivos Grandes**

Problema: Ordenar dados que não cabem na memória principal

Solução: External Merge Sort

```
#define TAMANHO_BUFFER 1000000 // 1 milhão de elementos por chunk
 FILE *arquivo;
 int buffer[TAMANHO_BUFFER];
 int posicao_buffer;
 int tamanho_buffer;
} FluxoArquivo;
FILE *entrada = fopen(arquivo_entrada, "rb");
 int num_arquivos_temp = 0;
 while (!feof(entrada)) {
 int buffer[TAMANHO_BUFFER];
 int elementos_lidos = fread(buffer, sizeof(int), TAMANHO_BUFFER, entrada);
 if (elementos_lidos > 0) {
 qsort(buffer, elementos_lidos, sizeof(int), comparar_inteiros);
 // Salva chunk ordenado
 sprintf(nome_temp, "temp %d.dat", num_arquivos_temp);
FILE *temp = fopen(nome_temp, "wb");
fwrite(buffer, sizeof(int), elementos_lidos, temp);
 fclose(temp);
 num arquivos temp++:
 fclose(entrada);
 // Fase 2: Merge dos arquivos temporários
 merge_arquivos_temporarios(arquivo_saida, num_arquivos_temp);
 for (int i = 0; i < num_arquivos_temp; i++) {</pre>
 sprintf(nome_temp, "temp_%d.dat", i);
 remove(nome_temp);
void merge_arquivos_temporarios(const char *arquivo_saida, int num_arquivos) {
 FILE *saida = fopen(arquivo_saida, "wb");
FluxoArquivo fluxos[num_arquivos];
 // Inicializa fluxos de entrada
 for (int i = 0; i < num_arquivos; i++) {</pre>
 char nome_temp[100];
sprintf(nome_temp, "temp_Xd.dat", i);
fluxos[i].arquivo = fopen(nome_temp, "rb");
carregar_proximo_elemento(&fluxos[i]);
 // Merge usando heap para eficiência
 while (tem_elementos_restantes(fluxos, num_arquivos)) {
 int indice_menor = encontrar_menor_elemento(fluxos, num_arquivos);
```

#### 9. Conclusões e Próximos Passos

### Guia de Seleção de Algoritmos

#### Para Arrays Pequenos (n < 50):

- Insertion Sort: Simples e eficiente
- Selection Sort: Mínimo número de trocas

#### Para Arrays Médios/Grandes (n > 50):

- Quick Sort: Melhor performance média
- Merge Sort: Performance garantida e estável
- Heap Sort: Quando espaço é limitado

#### Para Dados Especiais:

- Counting Sort: Inteiros em range pequeno
- Radix Sort: Inteiros ou strings
- **TimSort**: Dados parcialmente ordenados

### Preparação para Próximas Aulas

#### Aula 04: Estruturas de Dados Avançadas

- Árvores Binárias de Busca e AVL
- Hash Tables e Funções de Dispersão
- Grafos: Representação e Algoritmos Básicos

## **Bibliografia e Recursos**

#### Referências Clássicas

- Cormen, T. H. et al. Introduction to Algorithms, 4ª edição
- Sedgewick, R. Algorithms, 4ª edição
- Knuth, D. E. The Art of Computer Programming, Volume 3

#### Implementações de Referência

- GNU libc qsort(): Implementação industrial
- Java Arrays.sort(): TimSort híbrido
- C++ std::sort(): Introsort otimizado

#### Ferramentas de Análise

- Complexity Analyzer: Medição automática de complexidade
- Profilers: gprof, Valgrind Cachegrind
- Visualizadores: Algorithm Visualizer, Sorting Algorithms Animations

## **Encerramento da Aula**

# Algoritmos e Complexidade - Aula 03

Algoritmos de Ordenação e Análise de Performance

**Próxima Aula:** Estruturas de Dados Avançadas - Árvores e Hash Tables **Exercícios:** Implementar e comparar 3 algoritmos de ordenação diferentes

### **Material Complementar**

**GitHub:** github.com/cordeirotelecom/algoritimos\_e\_complexidade

**Simuladores Online:** VisuAlgo, Algorithm-Visualizer

Prática: LeetCode Sorting Problems