Spatial Data Analysis and Modeling for Agricultural Development, with R - Workshop

Advances in Remote Sensing

Remote Sensing Instrument/platform

Data Processing

4 Million Landsat images (1972-2016) More than a petabyte stored on tapes at USGS and growing daily

Cost of Remote sensing instruments

No matter how much you screw up, you will never have to tell your boss: "mmm... I think I may have toppled that 290 million dollar NOAA-N prime satellite right onto the lab floor

Cost of Purchasing data

Mono High & Medium-Resolution Satellite Imagery Price List

Satellite(s)	Product + Resolution	Archive - > 90 days	Archive - ≤ 90 days	Standard Tasking*	Priority Tasking*	Rush Tasking
WorldView-3	30-cm Natural Color 30-cm 4-band PS 30-cm Pan + 1.2-m MS	\$22.50/km ² 25 km ² Pan = \$19	\$32.50/km² 25 km² Pan = \$29	\$32.50/km ² 100 km ² Pan = \$29	\$54.50/km ² 100 km ² Pan = \$51	N/A
WorldView-3	30-cm Pan + 1.2-m 8-band MS	\$24/km² 25 km²	\$34/km² 25 km²	\$34/km² 100 km²	\$56/km² 100 km²	N/A
WorldView-3	7.5-m 8-band SWIR only	\$24/km² 25 km²	\$34/km² 25 km²	\$34/km² 100 km²	\$56/km² 100 km²	N/A
GeoEye-1 WorldView-2 WorldView-3	40-cm Natural Color 40-cm 4-band PS 40-cm Pan + 1.6-m MS	\$19.50/km ² 25 km ² Pan = \$16	\$29.50/km ² 25 km ² Pan = \$26	\$29.50/km ² 100 km ² Pan = \$26	\$51.50/km ² 100 km ² Pan = \$48	\$93.50/km ² 100 km ² Pan = \$90 GeoEye-1 only
WorldView-2 WorldView-3	40-cm Pan + 1.6-m 8-band MS	\$21/km² 25 km²	\$31/km² 25 km²	\$31/km² 100 km²	\$53/km² 100 km²	N/A

Stereo High & Medium-Resolution Satellite Imagery Price List

If the data is not free!!!

Satellite(s)	Product + Resolution	Archive - > 90 days	Archive - ≤ 90 days	Standard Tasking [*]	Priority Tasking*	Rush Tasking
WorldView-3	30-cm Natural Color 30-cm 4-band PS 30-cm Pan + 1.2-m MS	\$45/km² 100 km² Pan = \$38	\$65/km² 100 km² Pan = \$58	\$65/km ² 100 km ² Pan = \$58	\$109/km² 100 km² Pan = \$102	N/A
WorldView-3	30-cm Pan + 1.2-m 8-band MS	\$48/km² 100 km²	\$68/km² 100 km²	\$68/km² 100 km²	\$112/km² 100 km²	N/A
GeoEye-1 WorldView-2 WorldView-3	40-cm Natural Color 40-cm 4-band PS 40-cm Pan + 1.6-m MS	\$39/km² 100 km² Pan = \$32	\$59/km² 100 km² Pan = \$52	\$59/km² 100 km² Pan = \$52	\$103/km² 100 km² Pan = \$96	N/A
WorldView-2 WorldView-3	40-cm Pan + 1.6-m 8-band MS	\$42/km² 100 km²	\$62/km² 100 km²	\$62/km² 100 km²	\$106/km² 100 km²	N/A

Cost effective alternatives: UAV

Rotary wing

Easier to pilot, agile maneuvering Vertical take-off and landing

Fixed wing

[0]

More efficient aerodynamics longer flights, higher speed Large space for take-off and landing

^{[*] &}quot;Parrot AR.Drone 2.0", N. Halftermeyer – Wikimedia Commons

[[]o] "InView Unmanned Aircraft" by Fasicle, http://www.barnardmicrosystems.com/ - Wikimedia Commons

\$12500 + \$4000 for camera

eBee Ag Hardware				
Weight (including supplied camera)	Approximately 1.56 lbs			
Wingspan	96 cm			
Material	EPP foam, carbon structure and composite parts			
Propulsion	Electric pusher propeller, 160 W brushless DC motor			
Battery	11.1 V, 2150 mAh			
Camera (supplied)	12 Mp (megapixel) S110 NIR (near-infrared)			
Carry case dimensions	55 x 45 x 25 cm			

What can you get from UAV data?

plants

Vegetation indices
Plant growth, counting, diseases identification
Impact of chemical or biological treatments

soil

Temperature and moisture
Water issues and irrigation systems
Ground erosion and modifications, topography

- Plant stress assessment.
- Yield monitoring.
- Chlorophyll indication.
- Senescence analysis.
- Drought assessment.
- Biomass indication.
- Leaf area indexing.

- Nitrogen recommendation.
- Phenology.
- Growth monitoring.
- Crop discrimination.
- Leaf area indexing.
- Tree classification.
- Plant counting.

Optimization of the treatments

only where and when necessary \dots fertilizers cut down till to 20 – 40 %

Reduction and prevention of waste

water consumption ... in some cases till to almost 90 %

Reduction of labor and material costs

Reduction of pollution

Small UAVs are electrical machines.

Reduction of the risks

Automatic and continuous analysis of the processes and field status. Prevention.

Can this be replacement for satellite remote sensing data?

High resolution commercial data for local applications: YES!!!

Large area monitoring: NO; but those data are free!

Challenges???

Big Data

in Remote Sensing

Storage estimates:

Typical laptop data storage: 500 GB and memory 4 GB

Landsat data for Tanzania at 30 m with 8 bands around 20 GB; Sentinel data at 10 m >> 100 GB (with compression)

Alternatives:

Workstation: cost of running; data archive;

Goodchild et al. (2012):

Next-generation Digital Earth

Michael F. Goodchild^{a,1}, Huadong Guo^b, Alessandro Annoni^c, Ling Bian^d, Kees de Bie^e, Frederick Campbell^f, Max Craglia^c, Manfred Ehlers^g, John van Genderen^e, Davina Jackson^h, Anthony J. Lewisⁱ, Martino Pesaresi^c, Gábor Remetey-Fülöpp^j, Richard Simpson^k, Andrew Skidmore^f, Changlin Wang^b, and Peter Woodgate^l

^aDepartment of Geography, University of California, Santa Barbara, CA 93106; ^bCenter for Earth Observation and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China; ^cJoint Research Centre of the European Commission, 21027 Ispra, Italy; ^dDepartment of Geography, University at Buffalo, State University of New York, Buffalo, NY 14261; ^eFaculty of Geo-Information Science and Earth Observation, University of Twente, 7500 AE, Enschede, The Netherlands; ^fFred Campbell Consulting, Ottawa, ON, Canada K2H 5G8; ^gInstitute for Geoinformatics and Remote Sensing, University of Osnabrück, 49076 Osnabrück, Germany; ^hD_City Network, Newtown 2042, Australia; [†]Department of Geography and Anthropology, Louisiana State University, Baton Rouge, LA 70803; [†]Hungarian Association for Geo-Information, H-1122, Budapest, Hungary; ^kNextspace, Auckland 1542, New Zealand; and [†]Cooperative Research Center for Spatial Information, Carlton South 3053, Australia

"The supply of geographic information from satellite-based and ground-based sensors has expanded rapidly, encouraging belief in a new, fourth, or "big data," paradigm of science that emphasizes **international collaboration**, **data-intensive analysis**, **huge computing resources**, **and high-end visualization**."

Google Earth Engine

Global Landsat Timelapse Animations

Columbia Glacier Retreat, 1984-2011

Las Vegas Urban Growth, 1986-2012

earthengine.google.com

Saudi Arabia Irrigation, 1984-2012

Brazilian Amazon Deforestation, 1984-2012

29 years

of satellite data

2,068,467

landsat scenes analyzed 909

terabytes of data

More than

2M

hours of computation over

66,000

computers

days to build Timelapse Elapsed Time: ~1.5 megacity of Dubai grows in the desert, from 1984 to today

Global Forest Change, 2000-2012 Source: Hansen, Potapov, Moore, Hancher, et al. (Science, 2013) Powered by Google Earth Engine

The Earth Engine Data Catalog

... and many more, updating daily!

- > 200 public datasets
 - > 5 million images

- > 4000 new images every day
 - > 5 petabytes of data

