Университет ИТМО

Кафедра вычислительной техники

Отчет по прохождению практики

Студента
Р3311 группы
Морозова С.Д.
Руководитель
Соснин В.В.

Санкт-Петербург 2016

Содержание

1	Вве	едение	3		
2	Сис	стема компьютерной верстки ТЕХ(ІАТЕХ)	4		
	2.1	Краткое описание	4		
	2.2	Сравнение IPT _E X и MS Word	6		
	2.3	Выбор инструмента редактирования	7		
3	Системы контроля версий				
	3.1	Краткое описание	8		
	3.2	Достоинста и недостатки Git	8		
	3.3	GitHub	8		
4	Паралельные вычисления				
	4.1	История	9		
	4.2	Что-нибудь из теории	9		
	4.3	Что-нибудь еще	9		
5	Φy	нкции замера времени	10		
	5.1	Принцип работы	10		
	5.2	Windows	10		
		5.2.1 func1	10		
		5.2.2 func2	10		
		5.2.3	10		

	5.3	Linux	10
		5.3.1 func4	10
		5.3.2 func5	10
		5.3.3	10
	5.4	Кросплатформенные	10
		5.4.1 func7	10
		5.4.2 func8	10
		5.4.3	10
	5.5	Проблемы и сложности замеров времени	
		при параллельный вычислениях	10
6	Пра	актическая часть?	11
	6.1	Описание эксперементальной программы	11
	6.2	Результаты работы программы	11
	6.3	Выводы	11
7	Вы	вод по производственной практике	12
R	Сп	исок питературы	13

1 Введение

Тема прохождения практики—параллельные вычисления. Цель задания—сравнить различные функции в языке C, которые можно использовать для измерения времени работы параллельных программ.

Однако требования руководителя практики таковы, что перед тем как приступить к выполнению основного задания нужно ознакомиться с системой компьютерной вёрстки ТеХ (LaTeX), которая должна использоваться для написания отчёта, и ознакомиться с системой контроля версий Git, с последующим созданием учетной записи на сайте GitHub или анагичном.

2 Система компьютерной верстки ТрХ(ЬТрХ)

2.1 Краткое описание

Т_EX — система компьютерной вёрстки с формулами, разработанная американским профессором информатики Дональдом Кнутом. Название происходит от греческого слова $\tau \varepsilon \chi v \eta$ — «искусство», «мастерство», поэтому последняя буква читается как русская X. Хотя ТеХ является системой набора и верстки, развитые возможности макроязыка ТеХ делают его Тьюринг-полным языком программирования.

ТЕХ работает с боксами (box) и клеем (glue). Бокс — двумерный объект прямоугольной формы, характеризуется тремя величинами (высота, ширина, глубина). Элементарные боксы — это буквы, которые объединяются в боксы-слова, которые в свою очередь сливаются в боксы-строчки, боксы-абзацы и т.д.

Между боксами располагается клей, который имеет некоторую ширину по умолчанию и степени увеличения/уменьшения этой ширины. Объединяясь в бокс более высокого порядка, боксы могут шевелиться, но после того как найдено оптимальное решение, это состояние закрепляется, и полученный бокс выступает как единое целое.

Инетересный факт. На версии 3.0 дизайн был заморожен, поэтому в новых версиях не будет добавления новой функциональности, только исправление ошибок. Версия Т_FX'а ассимтотически прибли-

жается к числу π . Это факт говорит о том, что последняя версия 3.14159265 (январь 2014) является крайне стабильной и возможны лишь мелькие исправления. Дональд Кнут заявил, что последнее обновление (сделанное после его смерти) сменит номер версии на π , и с этого момента все ошибки станут особенностями.

IFTEX — созданный Лесли Лэмпортом набор макрорасширений (или макропакет) системы компьютерной вёрстки ТЕХ, который облегчает набор сложных документов. Стоит отметить, что как и любой другой макропакет¹ IFTEX не может расширить возможности ТЕХ (все, что можно сделать в одном пакете можно сделать и в любом другом). Пакет позволяет автоматизировать многие задачи набора текста и подготовки статей, включая набор текста на нескольких языках, нумерацию разделов и формул, размещение иллюстраций и таблиц на странице, ведение библиографии и др. Все это делает IFTEX крайне удобным инструментом для написания научных статей, диссертаций и т.п..

 $^{^1 {\}rm Tak}$ же существуют Plain TeX, AMS-TeX, AMS-LaTeX и т.д.

2.2 Сравнение IATEX и MS Word

В качестве сравнения— перечислим плюсы и минусы LATEX перед MS Word(а так же всеми его аналогами). Плюсы LATEX:

- Проста работы с любыми математическими формулами
- Кроссплатформенность
- Без особых трудностей можно получить сноски, список литературы, оглавление, список таблиц, указатель и т. п.
- Имеется несколько стандартных стилей (книга, статья, доклад, письмо), с помощью которых получаются документы очень высокого полиграфического качества
- Гибкая работа с логикической структурой текста
- Язык международного обмена по математике и физике (большинство научных издательств принимают тексты в печать только в этом формате)

Минусы ВТЕХ:

- \bullet Не является системой типа WYSIWYG 2
- При серьезных отклонениях от стандартных стилей документов требуется достаточно сложное программирование

То есть, выбирая между IFTEX и MS Word, стоит обратить внимание на то, какой текст вы собираетесь печатать, насколько нестандартный будет стиль текста, на его примерный объем. В некоторый случаях достаточно использовать MS Word, в других — использование IFTEX может заметно упростить работу.

2.3 Выбор инструмента редактирования

 $^{^2}$ What You See Is What You Get(Что видишь, то и получишь). Стоит отметить, что есть дистрибутивы T_EX в которых есть попытки реализовать WYSIWYG. Например платный дистрибутив BaKoMa TeX + текстовый редактор BaKoMa TeX Word.

- 3 Системы контроля версий
- 3.1 Краткое описание
- 3.2 Достоинста и недостатки Git
- 3.3 GitHub

4 Паралельные вычисления

- 4.1 История
- 4.2 Что-нибудь из теории
- 4.3 Что-нибудь еще...

5 Функции замера времени

5.1	Принцип работы
5.2	Windows
5.2.1	func1
5.2.2	$\mathrm{func}2$
5.2.3	•••
5.3	Linux
5.3.1	$\operatorname{func4}$
5.3.2	func5
5.3.3	•••
5.4	Кросплатформенные
5.4.1	func7
5.4.2	func8
5.4.3	•••

5.5 Проблемы и сложности замеров времени при параллельный вычислениях

- 6 Практическая часть?
- 6.1 Описание эксперементальной программы
- 6.2 Результаты работы программы
- 6.3 Выводы

7 Вывод по производственной практике

8 Список литературы