STA 601/360 Homework 2

Yifei Wang

12 September, 2019

Exec 1. Hoff 3.1 Sample survey: Suppose we are going to sample 100 individuals from a county (of size much larger than 100) and ask each sampled person whether they support policy \mathbf{Z} or not. Let $Y_i = 1$ if person i in the sample supports the policy, and $Y_i = 0$ otherwise.

a) Assume Y_1, \ldots, Y_{100} are, conditional on θ , i.i.d. binary random variables with expectation θ . Write down the joint distribution of $Pr(Y_1 = y_1, ..., Y_{100} = y_{100} \mid \theta)$ in a compact form. Also write down the form of $Pr(\sum Y_i = y \mid \theta)$.

$$P(Y_1 = y_1, ..., Y_{100} = y_{100} \mid \theta) = \theta^{\sum y_i} (1 - \theta)^{(100 - \sum y_i)}$$

$$P(\sum Y_i = y \mid \theta) = {100 \choose y} \theta^{\sum y_i} (1 - \theta)^{(100 - \sum y_i)}$$

(b) For the moment, suppose you believed that $\theta \in \{0.0, 0.1, ..., 0.9, 1.0\}$. Given that the results of the survey were $\sum_{i=1}^{100} Y_i = 57$, compute $\sum Y_i = 57 \mid \theta$ for each of these 11 values of θ and plot these probabilities as a function of θ .

```
N = 100
y_sum = 57
theta = seq(0, 1, 0.1)
likelihood = choose(N, y_sum) * theta^y_sum * (1 - theta)^(N-y_sum)

plot(theta, likelihood, 'b', main = "Probabilities of Every theta-values")
```

Probabilities of Every theta-values

(c) Now suppose you originally had no prior information to believe one of these θ -values over another, and so $Pr(\theta=0.0)=Pr(\theta=0.1)=$ ůůů = $Pr(\theta=0.9)=Pr(\theta=1.0)$. Use Bayes' rule to compute $p(\theta\mid\sum_{i=1}^n Y_i=57)$ for each θ -value. Make a plot of this posterior distribution as a function of θ .

$$Pr(\theta = 0.0) = Pr(\theta = 0.1) = \dots = Pr(\theta = 0.9) = Pr(\theta = 1.0) = \frac{1}{11}$$

$$p(\theta \mid \sum_{i=1}^{n} Y_i = 57) = \frac{p(\sum_{i=1}^{n} Y_i = 57 \mid \theta) p(\theta)}{p(\sum_{i=1}^{n} Y_i = 57)} \propto p(\sum_{i=1}^{n} Y_i = 57 \mid \theta)$$

We need the posterior distribution to be integrated to 1. So we have,

posterior = likelihood / sum(likelihood)

plot(theta, posterior, 'b', main = "Posterior Distribution of theta for Discrete Prior")

Posterior Distribution of theta for Discrete Prior

(d) Now suppose you allow θ to be any value in the interval [0,1]. Using the uniform prior density for θ , so that $p(\theta)=1$, plot $p(\theta)\times Pr(\sum_{i=1}^n Y_i=57\mid\theta)$ as a function of θ

$$p(\theta) \times p(\sum_{i=1}^{n} Y_i = 57 \mid \theta) = {100 \choose 57} \theta^{57} (1-\theta)^{43}$$

```
theta = seq(0, 1, 0.01)
y_sum = 57
N = 100
likelihood_unif = choose(N, y_sum) * theta^y_sum * (1 - theta)^(N-y_sum)

plot(theta, likelihood_unif, 'l', main = "Probabilities of theta for Uniform Prior")
```

Probabilities of theta for Uniform Prior

(e) As discussed in this chapter, the posterior distribution of θ is Beta(1+57,1+100-57). Plot the posterior density as a function of θ . Discuss the relationships among all of the plots you have made for this exercise.

```
theta = seq(0, 1, 0.01)
y_sum = 57
N = 100
a = 1
b = 1
posterior_unif = beta(a+y_sum, b+N-y_sum)^(-1) * theta^y_sum * (1 - theta)^(N-y_sum)

plot(theta, posterior_unif, 'l', main = "Posterior Density of theta for Uniform Prior")
```

Posterior Density of theta for Uniform Prior

We have 2 different priors, discrete uniform and continuous uniform. For the discrete one, the posterior probability mass function has the identical shape with the sample method $P(\sum Y_i \mid \theta)$ (likelihood). For the continuous one, the posterior probability density function has the identical shape with the product of sample method and priors (because $p(\theta) \equiv 1$). Also, the shape of posterior probability function of the continuous one is similar to the discrete one, because both priors are uniformly and equivantly spaned from 0 to 1.

Exec 2. Hoff 3.2 Sensitivity analysis: It is sometimes useful to express the parameters a and b in a beta distribution in terms of $\theta_0 = \frac{a}{a+b} and n_0 = a+b$, so that $a=\theta_0 n_0$ and $b=(1-\theta_0)n_0$. Reconsidering the sample survey data in Exercise 3.1, for each combination of $\theta_0 \in \{0.1,0.2,...,0.9\}$ and $n_0 \in \{1,2,8,16,32\}$ find the corresponding a, b values and compute $Pr(\theta>0.5\mid \sum Y_i=57)$ using a Beta(a,b) prior distribution for θ . Display the results with a contour plot, and discuss how the plot could be used to explain to someone whether or not they should believe that $\theta>0.5$, based on the data that $\sum_{i=1}^n Y_i=57$.

(a, b)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
1	(0.1,	(0.2,	(0.3,	(0.4,	(0.5,	(0.6,	(0.7,	(0.8,	(0.9,
	0.9)	0.8)	0.7)	0.6)	0.5)	0.4)	0.3)	0.2)	0.1)
2	(0.2,	(0.4,	(0.6,	(0.8,	(1.0,	(1.2,	(1.4,	(1.6,	(1.8,
	1.8)	1.6)	1.4)	1.2)	1.0)	0.8)	0.6)	0.4)	0.2)
8	(0.8,	(1.6,	(2.4,	(3.2,	(4.0,	(4.8,	(5.6,	(6.4,	(7.2,
	7.2)	6.4)	5.6)	4.8)	4.0)	3.2)	2.4)	1.6)	0.8)
16	(1.6,	(3.2,	(4.8,	(6.4,	(8.0,	(9.6,	(11.2,	(12.8,	(14.4,
	14.4)	12.8)	11.2)	9.6)	8.0)	6.4)	4.8)	3.2)	1.6)
32	(3.2,	(6.4,	(9.6,	(12.8,	(16.0,	(19.2,	(22.4,	(25.6,	(28.8,
	28.8)	25.6)	22.4)	19.2)	16.0)	12.8)	9.6)	6.4)	3.2)

$$P(\theta \mid \sum Y_i = 57) = \frac{P(\sum Y_i = 57 \mid \theta) P(\theta)}{P(\sum Y_i = 57)}$$

$$= \frac{\binom{100}{57} \theta^{57} (1 - \theta)^{43} Beta(a, b)}{P(\sum Y_i = 57)}$$

$$= Beta(a + y, b + n - y)$$

$$= Beta(a + 57, b + 43)$$

$$Pr(\theta > 0.5 \mid \sum Y_i = 57) = Pr(Beta(a + 57, b + 43) > 0.5)$$

Contour Plot for the Belief of theta > 0.5

Given the fact that $\sum_{i=1}^{100} Y_i = 57$, this plot could be interpretated as how the prior knowledge influence on the posterior belief of whether θ is greater than 0.5. n_0 could be interpretated as the number of prior sample size and θ_0 could be treated as the prior θ . The value of θ_0 will affect the value of θ , by dragging the likelihood function towards the prior. Given n = 100, this "dragging" effect is determined by the values of n_0 and the differences between θ and θ_0 . The greater the differences, or the greater the n_0 , the greater the effect People should probably believe that $\theta > 0$ when the combination of theta₀ and n_0 falls into the upper part of the 0.5 contour line.