Introduction to machine-learning using scikit-learn

QLSC612

May 2025

Ву

Mohammad Torabi & Michelle Wang

Objectives

- Part 2: Unsupervised learning
 - Dimensionality reduction
 - Clustering
 - Coding example: PCA, k-means
 - Coding example: fMRI site prediction

Types of ML Algorithms

Types of ML Algorithms

Unsupervised learning

- Learning without knowing the true labels
- Objectives
 - Dimensionality reduction of <u>features</u> through transformation rather than selection
 - Grouping of <u>samples</u> based on "similarity"
- Techniques
 - Feature Transformation/Projection
 - Clustering

Data is almost 1-dimensional BUT represented as 2-dimensional

- Curse of Dimensionality: large number of input features can dramatically impact the performance of ML algorithms
- Techniques:
 - Feature selection (usually supervised)
 - Feature transformation (usually unsupervised)
- Feature transformation is useful for
 - Information compression
 - Data artifact clean-up
 - Visualization

- High dimensional data:
 - Model complexity increases -> unstable solution
 - Risk of overfitting: fitting exactly training data but failing on test data

Maybe OK to drop X2

Data is low-dimensional BUT no feature can be dropped

Minimize

$$\|X - WH\|_F^2 = \sum_{i,j} (X_{i,j} - (WH)_{i,j})^2$$

Feature Transformation

- Change of basis (i.e. "perspective") for data representation
- Priors on data generation process
 - Singular Value Decomposition (SVD)
 - Principal Component Analysis (PCA)
 - Independent Component Analysis (ICA)
 - Non-negative Matrix Factorization (NMF)

- PCA finds the components (eigenvectors) that are orthogonal and capture the maximum variance in data.
- These components form the basis of the new space that the data will be transformed to
- Truncating the components to keep only the first k components gives the best rank-k approximation of X and transforms X to k-dim space

Reconstructing with 1 principal component:

Explained variance: 0.53

Reconstructing with 2 principal components:

Explained variance: 0.84

Reconstructing with 3 principal components:

Explained variance: 0.97

Variance explained

original data space

$$\hat{y} = W \hat{\beta}$$

sklearn

```
transformer = PCA(n_components=N)
transformer.fit(X)
transformed_X = transformer.transform(X)
print(transformed_X.shape) #(n_samples, n_components)
```

```
transformer = PCA(n_components=N)
transformed_X = transformer.fit_transform(X)
```

A preprocessing step

Pipelines

- Chain various "preprocessing" tasks in your analysis
 - Feature scaling
 - Dimensionality reduction
- Avoids mistakes e.g. double dipping
- Simplifies changes to your analysis

Pipelines

• Feature selection / transformation only on the training data!

```
transformer = PCA(n_components=N)
transformed_train = transformer.fit_transform(X_train)
Transformed_test = transformer.transform(X_test)
```

Pipelines

```
pipeline = make_pipeline(PCA(n_components=N), LinearRegression())
pipeline.fit(X_train, y_train)
y_test_predicted = pipeline.predict(X_test)
```

- Grouping observations together without knowing their true labels
- Use distance (i.e. similarity) between samples (often in a high-dimensional space!)
- Things to consider
 - Priors on parameters (e.g. n_clusters)
 - Scalability

Method name	Parameters	Scalability	Usecase	Geometry (metric used)
K-Means	number of clusters	Very large n_samples, medium n_clusters with MiniBatch code	General-purpose, even cluster size, flat geometry, not too many clusters, inductive	Distances between points
Agglomerative clustering	number of clusters or distance threshold, linkage type, distance	Large n_samples and n_clusters	Many clusters, possibly connectivity constraints, non Euclidean distances, transductive	Any pairwise distance
Gaussian mixtures	many	Not scalable	Flat geometry, good for density estimation, inductive	Mahalanobis distances to centers

• Which samples will cluster together?

Sample space

Which samples will cluster together if n_clusters=4?

Sample space

Which samples will cluster together if n_clusters=3?

• Which samples will cluster together if n_clusters=2?

... is in the eyes of the beholder

K-means Clustering

- The K-means algorithm aims to choose centroids that minimise the inertia, or within-cluster sum-of-squares criterion
- Each centroid represents a cluster
- This algorithm requires the number of clusters to be specified
- Very high-dimensional spaces result in inflated Euclidean distances (an instance of curse of dimensionality)
 - Run a dimensionality reduction algorithm (e.g. PCA) prior to k-means clustering

$$\sum_{i=0}^n \min_{\mu_j \in C} (||x_i - \mu_j||^2)$$

K-means Clustering

Steps:

- Initialization: Choose k random centroids
- 2. **Assignment step:** Assign each observation to the cluster with the nearest mean.
- Update step: Recalculate means (centroids) for observations assigned to each cluster.

K-means Clustering

Distance Metrics

- Euclidean distance
- Manhattan distance
- Hamming distance
- Correlation (1 corr)

Biological Example

- Parcellate brain voxels based on their fMRI signals
- How do we know if the clustering is done well?
- What metrics do we have?

Evaluation of clusters

- Internal validation (without true labels):
 - o Silhouette Coefficient

$$s=rac{b-a}{max(a,b)}$$

- external validation
 - With true labels:
 - Rand Index (RI) and Adjusted Rand Index (ARI)

$$ext{RI} = rac{a+b}{C_2^{n_{samples}}}$$

Mutual Information

$$ext{ARI} = rac{ ext{RI} - E[ext{RI}]}{ ext{max}(ext{RI}) - E[ext{RI}]}$$

Project

- Data: X: connectivity features derived from fMRI data, y: fMRI site label for each participant.
- **Visualize the data:** you have to apply dimensionality reduction first
- Classification (supervised learning): Use different models to classify and predict the fMRI site using the connectivity features and compare their performance. We will use scikit-learn pipeline for this purpose, which chains different transformations. Then we will fit the whole pipeline on our data using cross-validation.
- **Clustering (unsupervised learning):** use K-means clustering to cluster the participants. Find the best number of clusters and evaluate the clustering performance.