

Some reminders about the Lasso estimator.

> ¹Université d'Evry val d'Essonne (France) Laboratoire de Statistique et génome.

²Université Gaston Berger de Saint-Louis (Sénégal) LERSTAD.

February, 2014

Outline

- Model
- 2 High dimensional data situations (d >> n)
- Oracle inequality

Outline

- Model
- 2 High dimensional data situations (d >> n)
- 3 Oracle inequality

linear regression model

• One observes n independent and identically distributed (i.i.d) couples $(z_1, Y_1),...,(z_n, Y_n)$ from the joint distribution of $(Z, Y) \in \mathbb{R}^d \times \mathbb{R}$ such that:

$$y_i = z_i^T \beta_0 + \epsilon_i \tag{1}$$

- β_0 is the unknown parameter to estimate.
- Matrix notation, let $(y, X) \in \mathbb{R}^n \times \mathcal{M}_{n,d}$

$$y = X\beta_0 + \epsilon \tag{2}$$

linear regression model

• One observes n independent and identically distributed (i.i.d) couples $(z_1, Y_1),...,(z_n, Y_n)$ from the joint distribution of $(Z, Y) \in \mathbb{R}^d \times \mathbb{R}$ such that:

$$y_i = z_i^T \beta_0 + \epsilon_i \tag{1}$$

- β_0 is the unknown parameter to estimate.
- Matrix notation, let $(y,X) \in \mathbb{R}^n \times \mathcal{M}_{n,d}$

$$y = X\beta_0 + \epsilon \tag{2}$$

Estimation

• If n > d, the estimator $\hat{\beta}$ of β_0 is defined as follows

$$\hat{\beta} := \underset{\beta \in \mathbb{R}^d}{\operatorname{argmax}} \ \ell(\beta),$$

where ℓ is the likelihood function.

 \rightarrow if $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$, $\hat{\beta}$ is the well known OLS estimator.

$$\hat{\beta} = (X^T X)^{-1} X^T y$$

Outline

- Model
- 2 High dimensional data situations (d >> n)
- Oracle inequality

Penalization

If d >> n, direct maximization of likelihood can lead to:

- Overfitting: the classifier can only behave well in training set, and can be bad in test set.
- Unstable: since empirical risk is data dependent, hence random, small change in the data can lead to very different estimators.
- → Penalization

Penalization

If d >> n, direct maximization of likelihood can lead to:

- Overfitting: the classifier can only behave well in training set, and can be bad in test set.
- Unstable: since empirical risk is data dependent, hence random, small change in the data can lead to very different estimators.
- → Penalization

ℓ_0 -penalization

Akaike information criterion (AIC)

$$AIC(\beta) = 2\hat{L}(\beta) + 2\|\beta\|_{0},$$

Bayesian information criterion (BIC)

$$BIC(\beta) = 2\hat{L}(\beta) + 2\log(n)\|\beta\|_0,$$
 where $\|\beta\|_0 = card\{j \in 1, \dots, d, \beta_i \neq 0\}.$

- * Produce interpretable models
- → Non-convex optimization.
 - ightharpoonup card $(\mathcal{P}(\{1,\ldots,d\}))=2^d$ models,
 - stepwise selection

ℓ_0 -penalization

Akaike information criterion (AIC)

$$AIC(\beta) = 2\hat{L}(\beta) + 2\|\beta\|_0,$$

Bayesian information criterion (BIC)

$$BIC(\beta) = 2\hat{L}(\beta) + 2\log(n)||\beta||_0,$$

where
$$\|\beta\|_0 = card\{j \in 1, ..., d, \beta_i \neq 0\}.$$

- * Produce interpretable models.
- → Non-convex optimization.
 - ightharpoonup card $(\mathcal{P}(\{1,\ldots,d\}))=2^d$ models,
 - stepwise selection.

ℓ_1 – penalization

Lasso [Tibshirani, 1996]

$$\hat{eta}(\lambda) = \arg\min_{eta \in R^d} \left\{ \hat{L}(eta) + \lambda \sum_{j=1}^d |eta_j|
ight\}$$

- * Regularization technique for simultaneous estimation and selection, $\hat{\beta}_{L,i}(\lambda) = 0$ for $i \notin K(\hat{\beta}_L) \subset \{1, \dots, d\}$.
- * High dimension d >> n.
- ⋆ Convex optimization.

ℓ_1 – penalization

* If
$$\epsilon \sim \mathcal{N}(0, I)$$
 and $X^T X = I$, for $j \in \{1, \dots, d\}$,

$$\beta_{j}(\lambda) = \begin{cases} \hat{\beta}_{j}^{\text{OLS}} - \lambda/2 & \text{if } \hat{\beta}_{j}^{\text{OLS}} > \lambda/2\\ \hat{\beta}_{j}^{\text{OLS}} + \lambda/2 & \text{if } \hat{\beta}_{j}^{\text{OLS}} < -\lambda/2\\ 0 & \text{otherwise} \end{cases}$$

Geometric view of penalization

$$\max_{\beta} \ell(\beta)$$
 s.t. $pen(\beta) \leq \xi$

Geometry of the Lasso

Figure: Lasso solution.

Choice of λ

Figure: Regularization path.

Choice of λ

- Cross validation which is recommended when the goal is to minimize the prediction error. It can be computationally slow.
- Information criteria such as AIC or BIC can be defined for the Lasso

$$AIC(\lambda) = L_n(\hat{\beta}(\lambda)) + \frac{2}{n}df(\lambda),$$

$$BIC(\lambda) = L_n(\hat{\beta}(\lambda)) + \frac{\log n}{n}df(\lambda),$$

where $df(\lambda)$ is the degrees of freedom of the Lasso for a given parameter λ .

Choice of λ

Figure: Regularization path

Properties of the Lasso

- Prediction

 Does the Lasso provide a good approximation of $X\beta_0$?
- Estimation

 Does the Lasso provide a good approximation of β_0 ?
- SelectionDoes the Lasso select the right covariates?
- Sign recovery
 Does the Lasso select the right covariates and identify correctly the signs of their coefficients?

Outline

- Model
- 2 High dimensional data situations (d >> n)
- Oracle inequality

Model:

$$y_i = f_0(x_i) + \epsilon_i$$

$$\Gamma \subseteq \left\{ eta \in \mathbb{R}^d, \ f_eta(.) = \sum_{j=1}^p eta_j \phi_j(.)
ight\}$$

Oracle inequality

$$R(f_{\beta}, f_0) \le C \times \inf_{\beta \in \Gamma} \left\{ R(f_{\beta}, f_0) + \Delta_n \right\}. \tag{3}$$

Model:

•

$$y_i = f_0(x_i) + \epsilon_i$$

 $\Gamma \subseteq \left\{ \beta \in \mathbb{R}^d, \ f_{\beta}(.) = \sum_{j=1}^p \beta_j \phi_j(.) \right\}.$

Oracle inequality

$$R(f_{\hat{\beta}}, f_0) \le C \times \inf_{\beta \in \Gamma} \left\{ R(f_{\beta}, f_0) + \Delta_n \right\}.$$
 (3)

Model:

$$y_i = f_0(x_i) + \epsilon_i$$

•

$$\Gamma \subseteq \left\{ \beta \in \mathbb{R}^d, \ f_{\beta}(.) = \sum_{j=1}^p \beta_j \phi_j(.) \right\}.$$

Oracle inequality

$$R(f_{\hat{\beta}}, f_0) \le C \times \inf_{\beta \in \Gamma} \Big\{ R(f_{\beta}, f_0) + \Delta_n \Big\}.$$
 (3)

Tibshirani, R. (1996).

Regression shrinkage and selection via the lasso.

J. Roy. Statist. Soc. Ser. B, 58(1):267-288.