Physik / Mechanik Die Kugelschwebe

## Die Kugelschwebe

## Aufbau und Durchführung

In einer halbkreisförmigen Rinne befinden sich eine Metall- und eine Holzkugel gleicher Grösse. Bei einer gleichförmige Drehung der Kugelschwebe um ihre senkrecht stehende Längsachse bewegen sich beide Kugeln in der halbkreisförmigen Rinne in die gleiche Höhe.



Abbildung 1: Halbkreisförmige Kunststoffrinne mit zwei Kugeln unterschiedlicher Masse. Bei Drehung steigen beide Kugeln auf die gleiche Höhe, die nur von der Drehzahl abhängig ist.

- Die Rinne wird in langsame Rotation versetzt. Die Kugeln steigen nicht in der Rinne hoch und bleiben am untersten Punkt liegen.
- Die Rinne wird in schnelle Rotation versetzt. Die Kugeln steigen an der gekrümmten Wand empor und bleiben in gleicher Höhe liegen
- Die Rotationsfrequenz wird weiter erhöht. Bei höherer Rotationsfrequenz vergrössert sich auch die Steighöhe

## Theorie

Auf der Kugel wirken die Gewichtskraft  $F_G$  und die Normalkraft  $F_N$ . Die Resultierende Kraft (i.e. Zentripetalkraft) muss bei der Gleichgewichtslage (gleichförmige Kreisbewegung) horizontal sein. Hat die Kugel ihre Gleichgewichtslage erreicht, so ist das Verhältnis von Zentripetalkraft  $F_Z$  und Gewichtskraft  $F_G$  gleich dem Tangens des Winkels  $\alpha$ , der von der Rotationsachse und der Verbindungsgeraden zwischen Kugelschalenmittelpunkt und Kugel eingeschlossen wird.

Es gilt also folgende Beziehung:

$$\tan \alpha = \frac{F_Z}{F_G} \tag{1}$$

$$\tan \alpha = \frac{m \cdot \omega^2 \cdot r}{mg}$$

$$\tan \alpha = \frac{m \cdot \omega^2 \cdot r}{mq} \tag{2}$$

(3)

Dividiert man die Gleichung durch die Masse m des Körpers und beachtet, dass  $r = R \cdot \sin \alpha$  ist, so

AK 1 Physik / Mechanik Die Kugelschwebe



Abbildung 2: Kräftegleichgewicht bei der Kugelschwebe.

erhält man

$$\tan \alpha = \frac{\omega^2 \cdot r}{q} \tag{4}$$

$$\tan \alpha = \frac{\omega^2 \cdot r}{g}$$

$$\tan \alpha = \frac{\omega^2 \cdot R \cdot \sin \alpha}{g}$$
(5)

(6)

Nun gilt  $\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$  und folglich ist

$$\frac{\sin \alpha}{\cos \alpha} = \frac{\omega^2 \cdot R \cdot \sin \alpha}{g} \tag{7}$$

(8)

Offenbar hat diese Gleichung eine Lösung für  $\alpha = 0$ . Das heisst also, für  $\alpha = 0$  ist  $\omega$  beliebig wählbar; die Kugel bleibt stets im untersten Punkt liegen. Sei daher  $\alpha \neq 0$ ; dann ist  $\sin \alpha \neq 0$  und aus

$$\frac{1}{\cos \alpha} = \frac{\omega^2 \cdot R}{g}$$

$$\alpha = \arccos(\frac{g}{\omega^2 \cdot R})$$
(9)

$$\alpha = \arccos(\frac{g}{\omega^2 \cdot R}) \tag{10}$$

Einer Winkelgeschwindigkeit  $\omega$  ist also gemäss vorstehender Gleichung (10) genau ein Winkel  $\alpha$ zugeordnet und man erkennt, dass bei wachsendem  $\omega$  der Winkel  $\alpha$  wächst, denn die Funktion arccos ist mit cos eine (streng monoton) fallende Funktion.

Die Steighöhe h beträgt

$$h = R - R \cdot \cos \alpha = R - \frac{g}{\omega^2} \tag{11}$$

AK2 Physik / Mechanik Die Kugelschwebe

## Diskussion

Ferner muss hier beachtet werden, dass arccos nur für Werte  $\leq 1$  definiert ist, d.h. also (10) ist nur

$$\frac{g}{\omega^2 \cdot R} \le 1 \tag{12}$$

$$\frac{g}{\omega^2 \cdot R} \le 1 \tag{12}$$

$$\omega \ge \sqrt{\frac{g}{R}} \tag{13}$$

Falls nun  $\omega = \sqrt{\frac{g}{R}}$ , so hat man  $\alpha = \arccos(1) = 0$ , im Widerspruch zur Voraussetzung  $\alpha \neq 0$ . Es muss also  $\omega > \sqrt{\frac{g}{R}}$  gelten, damit die Kugel in der Rinne steigen kann. Für den Fall  $R=11\,\mathrm{cm}$  ergibt sich die Bedingung  $\omega > 9.44\,\mathrm{Hz},$  d.h.  $\underline{f} > 1.5\,\mathrm{Hz}.$ 

Bei Winkelgeschwindigkeit  $\omega \leq \sqrt{\frac{g}{R}}$ wird die Kugel nicht ausgelenkt.



Abbildung 3: Der Graph der Funktion  $\alpha(\omega)$  ist für R=11 cm wiedergegeben. Hier kann man sehen, dass die Kugel mit steigender Winkelgeschwindigkeit niemals den Winkel  $\alpha = 90^{\circ}$  erreichen kann, sich diesem Wert aber mit wachsendem  $\omega$  immer mehr annähert.  $\alpha = 90^{\circ}$  ist eine Asymptote der Funktion  $\alpha(\omega)$ .

AK 3