Лабораторная работа №3

«Расчет диска на статическую прочность с учетом его теплового состояния»

Цель работы: получение навыков по импортированию геометрической модели в препроцессор ANSYS, выполнению последовательно теплового и сопряженного с ним анализа термонапряженного состояния конструкции.

Содержание от тема и цель лабораторной работы, объект исследования (геометрическая модель диска с указанием всех размеров и приложенных нагрузок), расчет граничных условий для теплового анализа, основные данные по расчету (закрепление, краткое описание применяемой конечно-элементной сетки). В отчете следует представить поле температур, поле напряжений от действия только температурных нагрузок и суммарного действия температурных и механических нагрузок (3 эпюры). В выводах к работе необходимо указать расположение точек с максимальными напряжениями, провести анализ соответствия полученных результатов физическому смыслу, а так же оценить вклад температурных нагрузок в общие термонапряженное состояние диска.

Задача 1. Расчет граничных условий диска ТВД.

Рис. 1 – Схема теплового нагружения диска ТВД

Порядок расчета (расчет выполняется по вариантам, указанным в приложении):

1. Расчет температуры среды.

Температуру среды рассчитывают для каждого сечения по формуле:

$$T_c = T_{KB,I} + \frac{U^2}{2C_p}$$

где $T_{KBД}$ – температура за КВД, [K];

$$U = \frac{\pi \cdot n_{BJ}}{30} R_c$$
 – окружная скорость, [м/c];

 ${\it R}_c$ - средний радиус і-го участка, на которые был разбит диск

$$C_p = -1.7287 \cdot 10^{-7} T_{KB,I}^{3} + 4.1509 \cdot 10^{-4} T_{KB,I}^{2} - 1.0764 \cdot 10^{-1} T_{KB,I} + 1004.6 - 10^{-1} T_{KB,I}^{2} + 1004.6 - 10^{-1} T_{KB,I}$$

теплоемкость воздуха, [Дж/(кг·К)].

2. Расчет коэффициентов теплоотдачи.

Коэффициенты теплоотдачи рассчитывают для каждого сечения по соотношению:

$$\alpha = \frac{Nu}{R_c} \lambda,$$

где $Nu = 0.0207 \ Re_{\omega}^{0.8}$ – число Нуссельта;

$$Re_{\omega} = \frac{\rho U R_c}{\mu}$$
 — число Рейнольдса;

$$\rho = \frac{P}{RT_C}$$
 – плотность воздуха, [кг/м³];

 ${f P}, {f T}_C$ – давление и температура воздуха в расчетном сечении [Па], [K];

R = 290 Дж/(кг K) – универсальная газовая постоянная;

$$\mu = 1.8494 \cdot 10^{-5} e^{0.0008 \cdot T_c}$$
 – коэффициент динамической вязкости воздуха, [Па·с];

$$\lambda = 2.583 \cdot 10^{-2} e^{0.0009 \cdot T_c}$$
 – коэффициент теплопроводности воздуха, [Вт/м К];

 n_{BJ} — частота вращения ротора высокого давления, [об/мин].

3. Полученные результаты сводят в таблицу 1.

Таблица 1 – Расчет условий теплообмена

N _{ce4}	R, м	T _c , K	μ, Па∙с	λ , BT/M·K	ρ, κΓ/m ³	Re	Nu	α , $BT/(M^2 град)$
1								
:								
:								
i								
k								

Задача 2. Тепловой расчет диска ТВД на стационарном режиме.

Порядок выполнения:

- 1. Определение типа анализа (Preferences):
- $\dots \Rightarrow Thermal \Rightarrow Ok$
- 2. Выбор типа используемого элемента (*Element Type*):
- ... => Thermal Mass Solid Quad 4 node (плоский твердотельный элемент первого порядка) => Ok => назначение опции осесимметрии для выбранного элемента Options => K3 = Axisymmetric => Ok => Close.
 - 3. Назначение свойств материала (Material Props):
 - теплопроводность (Conductivity KXX) **20** Bt/(м·К);
 - модуль упругости *1.7·10*¹¹ Па;
 - коэффициент Пуассона 0.3;
 - коэффициент теплового расширения $1.5 \cdot 10^{-5} \text{ K}^{-1}$;
 - плотность 8200 кг/ м³.
- 4. Построение геометрической модели диска следует выполнить с помощью любой САD программы (например, КОМПАС). Необходимым условием при создании геометрии для анализа тел вращения в плоской осесимметричной постановке является следующее: осью симметрии является ось *OY*. Сохранять импортируемую геометрию следует в формате *IGES*. Если геометрия создавалась в программных продуктах КОМПАС или AutoCAD, а расчеты предполагается производить в системе СИ, следует выполнить масштабирование размеров из миллиметров в метры (масштабный коэффициент 0.001). Сделать это можно как до передачи модели в ANSYS, так и после.
 - 5. Импорт геометрии в ANSYS (*Import*):
- U.M. => File => Import => IGES => Ok=> Merge = Yes (слитие совпадающих точек), Solid = Yes (создать твердотельные элементы, если возможно), Small = No (удалить малые области) -
 - 6. Создание площади диска (Modeling)

Для разбиения диска на конечно-элементную сетку предварительно необходимо создать площадь диска, подлежащую разбиению:

- ...=> *Create=>Areas=>Arbitrary=>Ву Lines=>*указываем все линии, образовывающие замкнутый контур=>Ok.
 - 7. Создание конечно-элементной сетки (Meshing).

Установить общий для всей модели размер элемента SIZE = 0.003 м и сгенерировать сетку конечных элементов для расчетной области.

- 8. После создания сетки провести слияние совпадающих узлов и их перенумерацию (Numbering Ctrls):
- M.M.=> Preprocessor => Numbering Ctrls => Merge Items => Label = Nodes, Action = Merge items=> OK;
 - M.M.=> Preprocessor => Numbering Ctrls => Numbering Ctrls => Compress Numbers (Label =

Nodes = >Ok.

- 9. Выбор типа анализа (Analysis Type):
- ...=> New Analysis => Steady-state => Ok установившийся.
- 10. Приложение температурных нагрузок (*Define Loads*):
- ... => *Thermal* => *Convection* => *On Lines* => указать линии, соответствующие одному из назначенных участков (рис. 1), и приложить предварительно рассчитанные граничные условия 3 рода коэффициент теплоотдачи $VALI = \alpha_i$, и температуру среды $VAL2I = T_{Ci}$.
 - 11. Запуск расчета (*Solve*):
 - $\dots \Rightarrow Current Ls \Rightarrow Ok$.
 - 12. Просмотр поля температур (*Plot Results*):
- \dots => Contour Plot=> Nodal Solu => Item to be contoured = DOF Solution=> Nodal Temperature => Ok. Необходимо сохранить результат расчета (поле температур).

Задача 3. Расчет температурных напряжений.

- 1. Изменение настроек основного меню для прочностного анализа (*Preferences*):
- В пункте меню Individual discipline(s) to show in the GUI изменить тип исследования с теплового на структурный.
 - 2. Преобразование типа конечных элементов для прочностного расчета (*Element type*):
 - ...=> Switch Elem Type => ETCHG=Thermal to structural => Ok.
 - 3. Назначение опции осесимметрии для выбранного элемента (*Element type*):
 - $\dots \Rightarrow Options \Rightarrow K3 = Axisymmetric \Rightarrow Ok \Rightarrow Close$
 - 4. Приложение нагрузок и закрепление детали (*Define loads*).
 - А) Чтение температур в каждом узле сетки из теплового расчета:
- ... => Apply => Structural => Temperature => $From\ Therm\ Analy$ => B появившемся диалоговом меню следует нажать кнопку **BROWSE** и выбрать файл с расширением *.rth (файл с рассчитанным полем температур) => Ok.
- E) Закрепление диска вдоль оси $\mathsf{O} Y$ от перемещений по одной из линий, соответствующей месту соединения диска с валом.
 - 5. Запуск расчета (*Solve*).
- 6. Просмотр поля эквивалентных напряжений (von Mises). Необходимо сохранить эпюры для выполнения отчета.

Задача 4. Расчет напряжений от действия тепловых и силовых нагрузок.

- 1. Приложение нагрузок (Define loads).
- А) Назначение угловой частоты вращения диска:
- ... => Apply => Structural => Inertia => $Angular\ Veloc$ => Global => в соответствие с вариантом задать численное значение угловой скорости относительно оси OY => Ok.

Б) Приложение контурной нагрузки:

ПРИМЕЧАНИЕ: Следует помнить, что положительный вектор давления направлен по нормали к поверхности внутрь материала. Для имитации растягивающих напряжений на поверхности числовое значение давления следует задавать с минусом.

... => Apply => Structural => Pressure => $On\ Lines$ => выбрать линию максимального радиуса диска и в соответствие с вариантом задать численное растягивающих напряжений, создаваемых лопаточным венцом и замковой частью => Ok.

Приложенные в задаче 3 узловые температуры и закрепления сохраняются, поэтому повторно их определять не следует.

- 2. Запуск расчета (Solve).
- 3. Просмотр поля эквивалентных напряжений (von Mises). Необходимо сохранить эпюры для выполнения отчета.

Приложение

Таблица А – Варианты заданий для расчета граничных условий в тепловом анализе

Вариант	1	2	3	4	5	6	7	8	9
Т_{КВД} , К	600	630	670	700	730	770	800	840	600
п _{вд} , об/мин	8000	9000	10000	11000	12000	13000	14000	15000	16000
о рл, МПа	200	220	190	180	170	160	150	140	240
Вариант	10	11	12	13	14	15	16	17	18
Т_{КВД,} К	650	700	750	800	850	680	700	750	800
п _{вд} , об/мин	17000	10500	11500	12500	13500	14500	14000	15000	15500
о рл, МПа	210	130	120	110	100	90	150	200	210

Температуру $\mathbf{T}_{\Gamma P}$ для расчета граничных условий по ободу диска (наружный радиус) во всех вариантах принять на 150 К больше T_{KBJ} .

Давление за компрессором для всех вариантов принять равным 1.8 МПа.