

数据结构与算法

Data Structures and Algorithms

谢昊

xiehao@cuz.edu.cn

第二章

半线性结构 Semi-Linear Structures

大纲

- 1. 基本术语
- 2. 树
- 3. 二叉树

几种特殊的二叉树

二叉树的性质

二叉树的存储结构

4. 小结

表 1: 线性结构的优势与不足

	顺序列表	链式列表
访问元素 增删元素	O(1) $O(n)$	O(n) $O(1)$

表 1: 线性结构的优势与不足

	顺序列表	链式列表
访问元素 增删元素	O(1) $O(n)$	O(n) $O(1)$

半线性结构: 可去二者之糟粕, 取二者之精华

树 (tree) 与森林 (forest)

- ・半线性 (semi-linear) 结构一般指树
- 树由 $n \cap 1$ 顶点 (vertex) 2与连接于其间的若干条边 (edge) 组成
- 空树既无结点亦无边
- 非空树应满足如下条件
 - 有且仅有1个特定结点为根 (root) 结点
 - 除根结点外的其余结点被分为 $d \cap {}^3$ 互不相交 的子树 (subtree)
 - 子树与根之间由边相连,但不形成**环 (ring)**
- 子树亦为树,满足上述性质(递归定义)
- m 棵4互不相交的树的集合为森林

 $n \in \mathbb{Z} \cap [0, +\infty)$

²又名结点 (node)

 $^{^{3}}d \in \mathbb{Z} \cap [0, +\infty)$

 $^{^4}m \in \mathbb{Z} \cap [0, +\infty)$

图 1: 几种树与非树

图 2: 思维导图亦为树

树的特点

- 根结点无前驱,其余结点有且仅有1个直接前驱
- 所有结点均可有 n 个 5 直接后继
- 前驱类似线性,后继则不同,故称半线性

 $⁵n \in \mathbb{Z} \cap [0, +\infty)$

度 (degree)

- 结点的度指其子树个数
- 树的度指其最大结点度
- •叶 (leaf) 结点度为 0, 亦称终端结点
- 其余结点为分支结点

图 3: 结点的度

结点亲缘关系

• 结点的子树根为该结点的子 (child) 结点

$$b = child(a), \quad c = child(a)$$

• 该结点为子树根的父 (parent) 结点

$$a = parent(b), \quad a = parent(c)$$

• 同一结点的所有子结点互为兄弟 (sibling)

$$b = sibling(c), \quad c = sibling(b)$$

图 4: 结点间的关系6

 $^{^{6}}a$ 为 b 或 c 的父结点, b 或 c 为 a 的子结点, b 与 c 互为兄弟

路径 (path)、深度 (depth) 与高度 (height)

• 若结点序列 $\{n_i\}_{i=0}^k$ 满足:

$$n_i = parent(n_{i+1}), \quad i = 0, 1, \dots, k-1$$

则称之为自 n_0 至 n_k 的一条**路径**

- 所过边数为路径长度 (length)
- 若存在自 $n_a \cong n_b$ 的路径,则该路径唯一,且 n_a 为 n_b 的祖先 (ancestor), n_b 为 n_a 的子孙 (descendant)
- 结点深度⁷为根至其的路径长度
- 结点高度为其最大子孙深度8
 - 树的高度为其根的高度

图 5: 路径、高度与深度

⁷又称结点所在**层数 (layer)**,根在第 0 层

⁸此处范围仅限于以其为根的子树内,一般为该子树最大叶深

与线性结构的比较

线性 半线性

首元素无前驱 根结点无父结点 尾元素无后继 叶结点无子结点 其他元素单前驱单后继 其他结点单父结点多子结点

树的存储结构

• 可采用顺序或链式存储结构

• 每结点须记录: 数据信息、与其他结点的逻辑关系

树的存储结构

- 可采用顺序或链式存储结构
- 每结点须记录: 数据信息、与其他结点的逻辑关系

树的结点关系表示方法

- 父结点表示法: 只记录父结点信息
- 子结点表示法: 只记录子结点信息
- 父子结点表示法: 同时记录父子结点信息
- 长子兄弟表示法: 同时记录第一个子结点与兄弟结点信息

父结点表示法

- 采用数组按层存储各结点
- 每结点包括数据信息与父结点序号

复杂度

- 空间: O(n)
- 时间:
 - 查找父结点 O(1)
 - 但查找子结点*O*(*n*)

图 6: 父结点表示法

```
typedef struct {

DataType data; // 数据信息

int parent; // 父结点序号

TreeNode;
```


В Ε H

(b) 存储表示

图 7: 父结点表示法

子结点表示法

- 采用数组按层存储各结点
- 每结点包括数据信息与子结点序号链表

i data children

图 8: 子结点表示法

复杂度

- 空间: O(n)
- 时间:
 - 查找子结点 $O(d)^9$
 - 但查找父结点O(n)

```
typedef struct {

DataType data; // 数据信息

LinkedList children; // 子结点序号链表

TreeNode;
```

⁹若该结点度数为 d

图 9: 子结点表示法

父子结点表示法

• 结合上述二者

复杂度

- 空间: O(n)
- 时间:
 - 查找子结点 O(d)
 - 但查找父结点 O(1)

图 10: 父子结点表示法

```
typedef struct {

DataType data; // 数据信息

int parent; // 父结点序号

LinkedList children; // 子结点序号链表

TreeNode;
```


图 11: 父子结点表示法

父子结点表示法的性质

• 优势: 一定程度上兼顾了查找效率

• 不足: 插入/删除结点操作需大量修改链表, 效率偏低

父子结点表示法的性质

- 优势: 一定程度上兼顾了查找效率
- 不足: 插入/删除结点操作需大量修改链表, 效率偏低

基本术语

- 若同一结点的所有子结点间具备某种线性次序,则称之为有序树 (ordered tree)
- 有序树的任意非叶结点均有且仅有 1 个长子 (eldest son)

长子兄弟表示法

- 采用数组按层存储各结点
- 每结点包括
 - 数据信息
 - 长子结点序号
 - 首个兄弟结点序号

图 12: 长子兄弟表示法

```
typedef struct {

DataType data; // 数据信息

int eldest_son; // 长子结点序号

int sibling; // 兄弟结点序号

TreeNode;
```


A	1	-1
В	3	2
С	-1	-1
D	6	4
Е	-1	5
F	8	-1
G	-1	7
Н	-1	-1
I	-1	-1

(b) 存储表示

图 13: 长子兄弟表示法

二叉树

二叉树

二叉树 (binary tree)

- 度不大于 2 的有序树
- 子结点可按左右区分

将树转化为二叉树

- 令长子为左子结点、首个兄弟为右子结点
- 任何树均可按此法转化为二叉树
- 因二叉树的表示与运算相对方便,故树的问题均可转化为二叉树形式进行研究

二叉树

图 14: 将树转化为二叉树

左斜树10

- 所有非叶结点均有且仅有 1 个左子树
- 每层均有且仅有1 个结点
- 已退化为线性结构

图 15: 斜树

¹⁰右斜树与之类似,只需将左改作右

满二叉树 (full binary tree)

- 所有叶结点均在最后一层
- 所有非叶结点度均为 2

性质

- 同深度的二叉树中满二叉树结点最多
- 同深度的二叉树中满二叉树叶结点最多

图 16: 满二叉树

图 17: 非满二叉树

完全二叉树 (proper binary tree)

- 若去除最后一层结点,则为满二叉树
- 最后一层结点自左至右连续11排列

性质

- 同结点数的二叉树中完全二叉树最矮
- 满二叉树亦为完全二叉树的一种

图 18: 完全二叉树

¹¹指中间无空结点

二叉树的性质

性质甲

• 令 N 层二叉树第 k 层结点数为 $n_l(k)$,则有

$$1 \le n_l(k) \le 2^k, \ k \in \mathbb{Z} \cap [0, N)$$

二叉树的性质

性质甲

• 令 N 层二叉树第 k 层结点数为 $n_l(k)$,则有

$$1 \le n_l(k) \le 2^k, \ k \in \mathbb{Z} \cap [0, N)$$

证明

- 1. 左侧不等式显然成立
- 2. 右侧不等式当 k = 0 时,第 0 层仅有根结点,故 $n_l(0) = 1 = 2^0$ 显然成立
- 3. 假设当 k=n< N-1 时成立,即 $n_l(n)\leq 2^n$,因所有结点的度均不大于 2,故

$$n_l(n+1) \le 2 \cdot n_l(n) \le 2 \cdot 2^n = 2^{n+1}$$

于是当 k = n + 1 时,归纳假设成立

27/41

性质乙

• 令 k 层二叉树的结点总数为 n(k),则有

$$k \le n(k) \le 2^k - 1$$

性质乙

• 令 k 层二叉树的结点总数为 n(k),则有

$$k \leq n(k) \leq 2^k - 1$$

证明

- 1. 由性质甲, $1 \le n_l(i) \le 2^i$, $i \in \mathbb{Z} \cap [0, k)$
- 2. 经累加后,有

$$k = \sum_{i=0}^{k-1} 1 \le n(k) = \sum_{i=0}^{k-1} n_i(i) \le \sum_{i=0}^{k-1} 2^i = 2^k - 1$$

思考

- 满足 n(k) = k 的二叉树一定是斜树么?
- 满足 $n(k) = 2^k 1$ 的二叉树一定是满二叉树么?

性质丙

• 令二叉树中度为 d 的结点数为 n_d , $(d \in \{0,1,2\})$, 则有

$$n_0 = n_2 + 1$$

性质丙

• 令二叉树中度为 d 的结点数为 n_d , $(d \in \{0,1,2\})$,则有

$$n_0 = n_2 + 1$$

证明

1. 一方面,结点总数由各种度的结点构成,故总结点数 n 满足

$$n = \sum_{d=0}^{2} n_d = n_0 + n_1 + n_2$$

2. 另一方面,每个非根结点均由 1 个结点生成,故度为 d 的结点可生成 d 个结点,即

$$n = \sum_{d=0}^{2} d \cdot n_d + 1 = n_1 + 2n_2 + 1$$

思考

• 有 n 个结点的完全二叉树有多少叶结点?

思考

• 有 n 个结点的完全二叉树有多少叶结点?

提示

- 在完全二叉树中,度为1的结点数不多于1
- 当 n 为偶数时, $n_1 = 1$, $n_0 = n/2$, $n_2 = n/2 1$
- 当 n 为奇数时, $n_1 = 0$, $n_0 = (n+1)/2$, $n_2 = (n-1)/2$
- 故 $n_0 = \lceil n/2 \rceil$, $n_2 = \lfloor (n-1)/2 \rfloor$

性质丁

• 具有 n 个结点的完全二叉树层数 $k = \lfloor \log_2 n \rfloor + 1$

性质丁

• 具有 n 个结点的完全二叉树层数 $k = \lfloor \log_2 n \rfloor + 1$

证明

1. 由完全二叉树性质与性质乙可得,k 层完全二叉树结点数 n 满足

$$2^{k-1} - 1 < n \le 2^k - 1 \stackrel{?}{\text{id}} 2^{k-1} \le n < 2^k$$

2. 取对数

$$k - 1 \le \log_2 n < k$$
 或 $\log_2 n < k \le \log_2 n + 1$

3. 注意到 $k \in \mathbb{Z}$,于是得证

完全二叉树按层序编号

- 可为完全二叉树结点按层序依次编号
- 约定根编号为 1,依次递增
- 称如此编号为 k 的结点为结点 k

图 19: 为完全二叉树按层序编号

性质戊

- 为含有 n 个结点的完全二叉树按层序对结点编号 12 ,则有
 - 1. 结点 k 的左右子结点序号分别为 2k 与 2k + 1, $k \in \mathbb{Z} \cap [1, \lfloor n/2 \rfloor]$
 - 2. 结点 k 的父结点序号为 $\lfloor k/2 \rfloor$, $k \in \mathbb{Z} \cap (1, n]$

¹²根结点为 1

性质戊

- 为含有 n 个结点的完全二叉树按层序对结点编号¹²,则有
 - **1.** 结点 k 的左右子结点序号分别为 2k 与 2k + 1, $k \in \mathbb{Z} \cap [1, \lfloor n/2 \rfloor]$
 - 2. 结点 k 的父结点序号为 $\lfloor k/2 \rfloor$, $k \in \mathbb{Z} \cap (1, n]$

证明

- 1. 考察结论 1,当 k=1 时,显然其左右子结点序号分别为 2 与 3,成立
- 2. 假设当 k = m 时成立,即结点 m 的左右子结点序号分别为 2m 与 2m + 1,
 - 因结点 m+1 的左子结点必为结点 m 的右子结点的后继
 - 故结点 m+1 的左子结点序号为 (2m+1)+1=2(m+1)
 - 且结点 m + 1 的右子结点序号为 2(m + 1) + 1

则当 k = m + 1 时,假设成立,故结论 1 成立

3. 由结论1知结论2成立

¹²根结点为 1

顺序存储

- 按完全二叉树层序编号方式为二叉树编号,跳过不存在结点的编号
- 以静态数组方式存储,留空不存在的结点

图 20: 二叉树的顺序存储示例

图 21: 右斜树的顺序存储示例

顺序存储的特点

- 可利用性质戊快速访问各结点: O(1)
- 增删结点可能需要大幅调整存储
- 在存储含有稀疏结点的二叉树时需耗费大量存储空间
- 仅适合存储含有稠密结点的完全二叉树

链式存储

- 采用二/三叉链表表示结点
- 结点除存信息包括
 - 数据信息
 - 左、右子结点地址
 - 可选的父结点地址
- 为后续处理方便,设置虚拟首结点

```
data left right parent
```

图 22: 二叉树结点的链式存储结构

```
typedef struct BinaryTreeNode {
DataType data; // 数据信息
struct BinaryTreeNode *left; // 左子结点地址
struct BinaryTreeNode *right; // 右子结点地址
struct BinaryTreeNode *parent; // 可选的父结点地址
BinaryTreeNode;

typedef struct {
BinaryTreeNode *head; // 虚拟首结点
BinaryTree:
```


图 23: 二叉树的链式存储示例

未完待续 . . .

小结

小结

