

Computer Engineering WS 2010

Digitale Systeme

HTM - SHF - SWR

μC – FPGA Kommunikation

- **μC FPGA Kopplung**
- Kommunikation zwischen asynchronen Clock-Bereichen
- Vier-Phasen Handshake
- Handshake FSM
- > Tristate Schnittstellen
- > ISR Kommunikation mit FPGA
- Macros zur Port-Steuerung
- Meßergebnisse

CE-Labor-System

Asynchrone Eingänge

FPGA-intern:

- Synchrone Systeme mit einer Clock als Referenzsignal.
- Taktflankenereignis bestimmt die Datenaufnahme und die Ausgangsaktualisierung.
- Bedingung: T_{CLK} > T_{PQ} + T_{LOGIK} + T_{SU}

Externe Eingänge:

- Pegeländerungen treten unabhängig von der FPGA-Clock auf.
- > μC-Clock ist kein ganzes Vielfaches der FPGA-Clock.
- Phasenlage der Clocks ist unbestimmt.
- Variable Taktanzahl pro C-Anweisung.

Asynchrone Kommunikation

Ereignisgesteuerte Effekte an den FPGA-Eingängen erfordern Ansatz ohne Abhängigkeit von einem gemeinsamen oder übertragenen Clock-Signal.

- Sender-Empfänger-Kommunikation mit einem Protokoll, das verzögerungsunabhängige Signalisierungskonventionen nutzt.
- > Jede Komponente arbeitet mit seiner eigenen Taktrate.
- Nur für Interaktionen findet eine Kommunikation mit synchronisierten Abläufen statt.

Asynchrone Kommunikation μC - Beschleuniger

- Eingangssignale werden durch D-FFs auf den FPGA-Takt synchronisiert:
 - Pegel ändern sich gleichzeitig.
 - Weniger, kürzere Hazards.
- Ausgangsregister liefern eine parallele Pegelaktualisierung.
- D-FFs in den Input-Output-Blocks (IOBs) stehen für beide Richtungen zur Verfügung.
- Abstimmungseingangssignale (REQ, RW), die die getaktete Zustandssequenz in der FSM beeinflussen, sind einer speziellen Synchronisation zu unterziehen.

μC – FPGA Interface

Datentransfer-Phasen im Handshake-Zyklus (2)

Asynchrone Kommunikation μC - Beschleuniger

Security Board Interface

Transfersteuerung µC - FPGA

Schreibvorgang: B -> A

Transfersteuerung FPGA - μC

Lesevorgang: A -> B

Write - Sequenz in ISR

```
// Macro-Definitionen dazu in hwconfig.h
 #include <stdint.h>
 int32 t outdata;
 int32 t *indata;
                      /** LPC-2468 Write to FPGA **/
 PSI ENABLE WRITE; /* Datenflussrichtung: B -> A */
                      /* 1. Phase: Anforderung */
 PSI SET REQ;
 PSI_WAIT_ACK_SET; /* 2. Phase: Bestätigung */
 PSI_WRITE_DATA( outdata ); /* 10 Bit Datum schreiben*/
                     /* 3. Phase */
 PSI CLR REQ;
 PSI_WAIT_ACK_CLR; /* 4. Phase; ACK = '0' Polling */
```


Read – Sequenz in ISR

```
/** LPC-2468 Read from FPGA **/
                          /* Ergebnisse verfügbar ?*/
PSI WAIT RESULT SET;
                          /* Datenflussrichtung: A -> B */
PSI ENABLE READ;
                          /* 1. Phase: FPGA schreibt */
PSI SET REO;
                          /* 2. Phase */
PSI WAIT ACK SET;
PSI READ DATA( *indata ); /* 10 Bit Datum lesen */
                          /* 3. Phase: Lesebestätigung */
PSI CLR REQ;
                         /* 4. Phase: Lesesequenz beendet */
PSI WAIT ACK CLR;
/* Datenausgabe an DAC und PWM */
```


Pin-Belegung

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Daten-/Steuersignale				Development Boards						
Name	Тур	Anmerkung	Transfer	TI-LPC	SECUR	ITYv2.1		NEXYS2		
				uC	Bustreiber	Connector		FPGA		Connector
				Port[Pin]		Тур	Pin	Signal	Pin	FX2-100 Port-Pin
PSI_REQ	S	Auftrag	unidirektional	P1[12]	IOB4	X2	24	IOB4<3>	F11	J1A-34
PSI_ACK	S	Auftragsbestätigung	unidirektional	P1[0]	IOB3	X2	38	IOB3<0>	G09	J1A-23
PSI_RW	S	Schreiben/Lesen	unidirektional	P1[11]	IOB4	X2	23	IOB4<4>	E12	J1A-35
PSI_RESULT	S	Auftragsfertigstellung	unidirektional	P1[1]	IOB3	X2	36	IOB3<1>	F09	J1A-24
PSI_ADDR[0]	S	Adresse des	unidirektional	P1[15]	IOB4	X2	33	IOB4<0>	B11	JA1-31
PSI_ADDR[1]		Prozessorelements		P1[14]			34	IOB4<1>	C11	JA1-32
PSI_ADDR[2]				P1[13]			29	IOB4<2>	E11	JA1-33
PSI_DATA[0]	D	Datum	bidirektional	P0[5]	IOB1	Х3	36	IOB1<0>	A4	J1A-07
PSI_DATA[1]				P1[10]		X2	26	IOB1<1>	C3	J1A-08
PSI_DATA[2]				P0[13]			5	IOB1<2>	C4	J1A-09
PSI_DATA[3]				P0[14]			7	IOB1<3>	B6	J1A-10
PSI_DATA[4]				P0[19]		Х3	15	IOB1<4>	D5	J1A-11
PSI_DATA[5]				P0[20]			14	IOB1<5>	C5	J1A-12
PSI_DATA[6]				P0[21]		X2	19	IOB1<6>	F7	J1A-13
PSI_DATA[7]				P0[22]			18	IOB1<7>	E7	J1A-14
PSI_DATA[8]				P0[29]	IOB2		6	IOB2<0>	A6	J1A-15
PSI_DATA[9]				P0[30]			15	IOB2<1>	C7	J1A-16
IOB1_DIR	S	IOB1 -> PSI_DATA[7:0]	unidirektional	P2[3]	IOB1	Х3	32			
IOB2_DIR	s	IOB2 -> PSI_DATA[9,8]	- unidirektional -	P2[4]	10B2	- X3	- 33 -			

Macros in hwconfig.h

```
//Abfragen von Statusleitungen
 #define PSI ACK PIN PORT1 IOB3 DATAO PIN PORT1 // P1.0
 #define PSI WAIT ACK CLR
          while( (FIO1PIN & (1<<PSI ACK PIN PORT1)) != 0){}
 #define PSI WAIT ACK SET
          while( (FIO1PIN & (1<<PSI_ACK_PIN_PORT1)) == 0){}
 #define PSI RESULT PIN PORT1 IOB3 DATA1 PIN PORT1 //P1.1
 #define PSI WAIT RESULT_SET
        while( (FIO1PIN & (1<<PSI_RESULT_PIN_PORT1)) == 0){}</pre>
 //Setzen der Steuerleitungen
 #define PSI REQ PIN PORT1
                               IOB4 DATA3 PIN PORT1 //P1.12
 #define PSI CLR REQ
                           FIO1CLR = (1<<PSI REQ PIN PORT1)
--#define-PSI-SET-REQ------FIO1SET-=-(-1<<PSI-REQ-PIN-PORT1-)--
                          CE WS10
 20
```


DAC-Wurzel-Kennlinie

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

REC(rot) – RESULT(blau)

