НАЗВАНИЕ СТАТЬИ, РАЗБИТОЕ НА СТРОКИ

 Π . А. Первый-Автор,^{1,*} В. А. Второй-Автор,^{1,**} Т. А. Третий-Автор,^{2,***} Ч. А. Четвертый-Автор^{3,****}

 $^1 Mecmo$ работы u/uли адрес первого и второго авторов

 2 Место работы u/uли a дрес третьего автора

 $^3 Mecmo$ работы u/uли адрес четвертого автора

В этом примере статьи содержатся некоторые необходимые автору сведения и примеры того, как набрать статью в REVTEX 4 для журналов, издаваемых Международной академической издательской компанией «Наука/Интерпериодика».

1. ВВЕДЕНИЕ

Процесс оформлении статьи с помощью REVT_EX 4 подробно описан в руководстве по работе с REVT_EX 4 [?]. Большую помощь в разрешениии возникших Т_EX'нических вопросов могут оказать книги [??].

Для набора кавычек "лапок"используйте команды \glqq и \grqq, а для кавычек «елочек»— \flqq и \frqq. Описание этих и других макросов зависящих от русского языка можно найти в [?] страницы 29-30. Знак номера вводится командой \No.

Для статей на русском языке используется стандартная русификация и LH-шрифты, включенная в состав пакета \LaTeX 2 ε . Кодировка \Tau 2 ε СР866 (альтернативная).

Особенностью пакета REVT_EX 4 является использование rty-файла (см. [?], стр. 15, раздел "Job Macro Package"). В файле maik.rty подключаются в правильном порядке необходимые пакеты LaTex 2e, переопределяются некоторые команды REVTeX 4 и LaTeX 2e, связанные с оформлением русского варианта статьи в MAИК. Не желательно использование пакетов LaTeX 2e отличных от включенных в maik.rty. Не вносите ни-

^{*} Electronic address: First.Author@institution.ras.ru

^{**} Electronic address: Second.Author@institution.ras.ru

^{***} Electronic address: Third.Author@univ.edu

^{*****}Electronic address: Fourth.Author@inst.ras.ru

каких изменений в файл maik.rty. Файл maik.rty необходимо разместить в директории доступной для поиска TeX-компилятору.

Небольшой файл **<имя статьи>.rty** должен присутствовать в той же директории, что и TeX-файл со статьей. В этом файле происходит вызов файла maik.rty. Этот файл должен иметь то же название, что и TeX-файл со статьей, но только с расширением .rty, его подключение REVTeX 4 производит автоматически в процессе компиляции.

В простейшем и наиболее желательном случае, когда отсутствуют макрокоманды \LaTeX 2ε , введенных автором, файл ${\tt чмя}$ статьи ${\tt vms}$ стать

\input maik.rty

\endinput

В конце файла **<имя статьи>.rty** перед командой **\endinput** могут быть помещены специфичные для данной статьи макрокоманды. Убедительная просьба не разбрасывать такие команды по всему Т_ЕX-файлу со статьей.

2. ЗАГОЛОВОК ПЕРВОГО УРОВНЯ РАЗДЕЛЕН НА СТРОКИ

Заголовки в статье бывают трех уровней и определяются командами \section, \subsection и \subsubsection (глава, подглава, подраздел). Разбиение заголовка на строки делается при помощи команды \protect\\.

2.1. Заголовок второго уровня

Ссылки на литературу в тексте оформляются с использованием команд \cite{#1} или \onlinecite{#1}. Метка #1 может иметь название, состоящее как из букв, так и из цифр. В библиографическом разделе¹ эта ссылка тоже имеет метку #1 и начинается командой \bibitem{#1}.

С помощью команды \cite{GG} получается ссылка [?], если нужно сослаться сразу на несколько источников: [??], то в фигурных скобках указываются ссылки на источники через запятую: \cite{GG,L}. При использовании команды \onlinecite{#1}

¹ См. конец статьи.

ссылка не будет заключена в квадратные скобки: см. ?, стр. 8. Если идет ссылка на источники с последовательными номерами, например, [1,2,3,6,7,8], то на печати автоматически сслыка примет вид [1-3,6-8].

ВЫКЛЮЧНЫЕ ФОРМУЛЫ

3.1. Еще один заголовок второго уровня

В РТку е существует много способов размещения выключных формул на странице и их выравнивания. По умолчанию формулы всегда центрируются.

3.1.1. Однострочные формулы

$$\Theta$$
 (1)

Ниже приведены примеры однострочных уравнений:

$$\chi_{+}(p) \lesssim [2|\mathbf{p}|(|\mathbf{p}| + p_{z})]^{-1/2} \begin{pmatrix} |\mathbf{p}| + p_{z} \\ px + ip_{y} \end{pmatrix},$$

$$\left\{ 1 234567890abc123\alpha\beta\gamma\delta1234556\alpha\beta \frac{1\sum_{b}^{a}}{A^{2}} \right\}.$$
(2)

$$\left\{ 1 234567890abc123\alpha\beta\gamma\delta1234556\alpha\beta \frac{1\sum_{b}^{a}}{A^{2}} \right\}.$$
(3)

Вторая формула имеет номер (??), который задается командой \label{one}. Первой формуле присвоен номер (1), однако на нее нельзя сослаться при помощи аппарата автоматических ссылок, так как она не имеет метки.

Если формулу нумеровать не нужно, используется окружение \[, \], с помощью которого и получена следующая формула:

$$g^+g^+ \to g^+g^+g^+g^+\dots$$
, $q^+q^+ \to q^+g^+g^+\dots$

3.1.2. Многострочные формулы

Многострочные формулы набираются с использование окружения eqnarray:

$$\mathcal{M} = ig_Z^2 (4E_1 E_2)^{1/2} (l_i^2)^{-1} \delta_{\sigma_1, -\sigma_2} (g_{\sigma_2}^e)^2 \chi_{-\sigma_2}(p_2) \times [\epsilon_i l_i \epsilon_i]_{\sigma_1} \chi_{\sigma_1}(p_1), \tag{4}$$

$$\sum |M_g^{\text{viol}}|^2 = g_S^{2n-4}(Q^2) N^{n-2}(N^2 - 1) \times \left(\sum_{i < j}\right) \sum_{\text{perm}} \frac{1}{S_{12}} \frac{1}{S_{12}} \sum_{\tau} c_{\tau}^f.$$
 (5)

Если формулу нумеровать не нужно, то в конце строки перед знаком \\ нужно поставить команду \nonumber. Никогда не используйте в одной строчке команды \nonumber и \label{#1}, так как это может привести к ошибке в автоматической нумерации ссылок.

Если нужно набрать несколько формул без номера, можно использовать окружение eqnarray* (звездочка означает отмену нумерации):

$$\sum |M_g^{\text{viol}}|^2 = g_S^{2n-4}(Q^2) N^{n-2}(N^2 - 1) \times \left(\sum_{i < j}\right) \left(\sum_{\text{perm}} \frac{1}{S_{12}S_{23}S_{n1}}\right) \frac{1}{S_{12}}.$$

Чтобы пронумеровать формулы вручную, используется команда $\tag\{\#1\}$, в которой #1 — нужный номер формулы. Вот как получается формула с номером (??):

$$g^+g^+ \to g^+g^+g^+g^+ \dots , \quad q^+q^+ \to q^+g^+g^+ \dots$$
 (2.6')

При включении однострочных и многострочных формул в окружение subequations каждая формула "нумеруется" дополнительно буквой, как показано в уравнениях (??) и (??):

$$\left\{abc123456abcdef\alpha\beta\gamma\delta1234556\alpha\beta\frac{1\sum_{b}^{a}}{A^{2}}\right\},\tag{6a}$$

$$\mathcal{M} = ig_Z^2 (4E_1 E_2)^{1/2} (l_i^2)^{-1} (g_{\sigma_2}^e)^2 \chi_{-\sigma_2}(p_2) \times [\epsilon_i]_{\sigma_1} \chi_{\sigma_1}(p_1).$$
(6b)

Если поставить метку сразу после \begin{subequations}, то ее можно использовать далее как ссылку на все уравнения этого окружения. Например, можно сослаться на уравнения (??) этого примера.

Для набора многострочных формул можно использовать окружения multline, gather и align. Окружение multline хорошо использовать для набора длинных выключных фор-

мул, которые не помещаются на одной строчке:

$$\int_{a_{1}}^{a_{2}} f(x) dx + \int_{a_{2}}^{a_{3}} f(x) dx + \dots + \int_{a_{n-1}}^{a_{n}} f(x) dx
+ \int_{a_{1}}^{a_{2}} g(x) dx + \int_{a_{2}}^{a_{3}} g(x) dx + \dots + \int_{a_{n-1}}^{a_{n}} g(x) dx
+ \int_{a_{1}}^{a_{2}} h(x) dx + \int_{a_{2}}^{a_{3}} h(x) dx + \dots + \int_{a_{n-1}}^{a_{n}} h(x) dx
= \int_{a_{1}}^{a_{n}} f(x) + g(x) + h(x) dx. \quad (7)$$

Эта формула автоматически нумеруется, если формулу нумеровать не нужно, то надо воспользоваться окружением multline*.

Окружение gather центрирует включенные в него формулы:

$$\int_{a_{1}}^{a_{2}} f(x) dx + \int_{a_{2}}^{a_{3}} f(x) dx + \dots + \int_{a_{n-1}}^{a_{n}} f(x) dx
+ \int_{a_{1}}^{a_{2}} g(x) dx + \int_{a_{2}}^{a_{3}} g(x) dx + \dots + \int_{a_{n-1}}^{a_{n}} g(x) dx
+ \int_{a_{1}}^{a_{2}} h(x) dx + \int_{a_{2}}^{a_{3}} h(x) dx + \dots + \int_{a_{n-1}}^{a_{n}} h(x) dx
= \int_{a_{1}}^{a_{n}} f(x) + g(x) + h(x) dx.$$
(8)

(8)

Каждая строчка автоматически нумеруется, если строчку нумеровать не надо, то перед \\ в этой строке нужно поставить команду \notag. При использовании окружения gather* формулы нумероваться не будет.

Окружение align позволяет выравнивать формулы по вашему усмотрению:

$$\int_{a_{1}}^{a_{2}} f(x) dx + \int_{a_{2}}^{a_{3}} f(x) dx + \dots + \int_{a_{n-1}}^{a_{n}} f(x) dx
+ \int_{a_{1}}^{a_{2}} g(x) dx + \int_{a_{2}}^{a_{3}} g(x) dx + \dots + \int_{a_{n-1}}^{a_{n}} g(x) dx
+ \int_{a_{1}}^{a_{2}} h(x) dx + \int_{a_{2}}^{a_{3}} h(x) dx + \dots + \int_{a_{n-1}}^{a_{n}} h(x) dx
= \int_{a_{1}}^{a_{n}} f(x) + g(x) + h(x) dx.$$
(12)

Подробнее о работе с этими окружениями можно прочитать в книге [?].

4. РИСУНКИ И ТАБЛИЦЫ

REVT_EX 4 автоматически нумерует разделы, формулы, таблицы и рисунки. Рисунки и таблицы помещайте в конце статьи после списка литературы. Подписи к рисункам делаются после рисунка, а подписи к таблицам — перед таблицей, как показано в примерах в конце. В таблицах сноски² не работают.

БЛАГОДАРНОСТИ

В конце статьи пишутся благодарности.

ПРИЛОЖЕНИЕ А: ЭТО ПРИЛОЖЕНИЯ

Чтобы перейти к разделу приложений, нужно использовать команду \appendix. После нее все разделы будут именоваться словом Приложение и соответствующей буквой, в команде \section можно ничего не указывать, тогда приложение не будет иметь названия.

ПРИЛОЖЕНИЕ В

Приложение может содержать подглавы и подразделы.

1. $\operatorname{refitem}\{url\}$

REVTEX 4 Author's Guide

http://publish.aps.org/revtex4/augide.ps;

 $\operatorname{refitem}\{url\}$

Differences between REVTEX 4 and REVTEX 3

http://publish.aps.org/revtex4/differ.ps;

 $\operatorname{refitem}\{url\}$

 $^{^{2}}$ Сноски в таблицах можно попытаться сделать вручную.

REVTEX 4 Command and Options Summary

http://publish.aps.org/revtex4/summary.ps.

2. $\text{refitem}\{book\}$

 Γ рэтцер Γ . // Первые шаги в ІАТ_БХ'е. М.: Мир, 2000.

3. $\text{refitem}\{book\}$

Львовский С.М. // Набор и верстка в пакете №Т_ЕX, 2-е издание. М.: Космосинформ, 1995.

4. $\lceil book \rceil$

 $\mathit{Kнуm}\ \mathcal{A}$. // Все про Т_ЕХ. Протвино: АО RDTeX, 1993.

5. $\lceil book \rceil$

Cnueaк M. // Восхитительный ТеХ. М.: Мир, 1993.

6. $\text{refitem}\{book\}$

Котельников И., Чеботаев П. // Издательская система IATEX 2ε . Новосибирск: Сибирский хронограф, 1998.

7. $\text{refitem}\{book\}$

 Γ уссенс М., Миттельбах Ф., Самарин А. // Путеводитель по пакету Γ ЕХ. М.: Мир, 1999.

8. $\lceil book \rceil$

Kopka H. and Daly P. // A Guide to \LaTeX 2ε . Addison-Wesley, Reading, MA, 1995.

9. $\text{refitem}\{book\}$

Goossens M., Rahtz S., and Mittelbach F. // The LaTeX 2ε Graphics Companion. Addison-Wesley, Reading, MA, 1997.

10. $\text{refitem}\{book\}$

Goossens M., Rahtz S. et al. // The LATEX 2_{ε} Web Companion:Integrating TeX, HTML and XML. Addison-Wesley, Reading, MA, 1999.

11. \refitem{misc}

Reckdahl K. // Using Imported Graphics in LATEX 2ε . Version 2.0, 1997. \texmf\doc\lambdalatex\graphics\epslatex.pdf

12. $\text{refitem}\{misc\}$

J. Braams. Babel, a multilingual package for use with LATEX's standard document class. \texmf\doc\generic\babel\user.dvi

13. \refitem{ article}

```
N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963);
    \refitem{ article}
    M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
14. S. L. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D 2, 1285 (1970).
15. \refitem{ article}
    T. D. Lee and C. S. Wu, Annu. Rev. Nucl. Part. Sci. 15, 381 (1965);
    \refitem{ article; ibid}
    16, 471 (1966).
16. \lceil refitem \lceil report \rceil
    A. R. Barker and S. H. Kettell, hep-ex/0009024;
    \refitem{article;prevau}
    Annu. Rev. Nucl. Part. Sci. 50, 249 (2000).
17. \text{refitem}\{article\}
    A. I. Vaĭnshteĭn et al., Pis'ma Zh. Éksp. Teor. Fiz. 22, 123 (1975)
    \refitem{article;rusjou}
    [JETP Lett. 22, 55 (1975)];
    \refitem{article;prevau}
    Nucl. Phys. B 120, 316 (1977).
18. \refitem{article}
    A. Vainshtein, Int. J. Mod. Phys. A 14, 4705 (1999).
19. \refitem{article}
    NA-31 Collab. (H. Burkhardt et al.), Phys. Lett. B 206, 169 (1988);
    \refitem{ article}
    NA-31 Collab. (G. D. Barr et al.), Phys. Lett. B 317, 233 (1993).
20. \text{refitem}\{book\}
    L. B. Okun, Leptons and Quarks (Nauka, Moscow, 1990; North-Holland, Amsterdam,
    1984);
    \refitem{book}
    L. B. Okun, Particle Physics (Nauka, Moscow, 1988; Harwood, Chur, 1985).
21. \refitem{ article}
    Yu. R. Rivin, Int. J. Geomagn. Aeron. 1 (3), (1998);
```

ENGLISH NAME OF PAPER

F. Author, S. Author, T. Author, F. Author

Abstract in English. Abstract in English.

Test Figure

Рис. 1. Название рисунка, оформленное при помощи пакета caption2.

Wide Test Figure

Рис. 2. Однострочная подпись к рисунку, оформленная при помощи пакета caption2.

Таблица 1. Для вставки таблиц используется окружение table, подписи к таблицам оформляются аналогично подписям к рисункам. Это пример таблицы, многострочное название которой оформлено при помощи пакета **caption2**.

	r_c (Å)	r_0 (Å)	κr_0		r_c (Å)	r_0 (Å)	κr_0
Cu	0.800	14.10	2.550	Sn	0.680	1.870	3.700
Ag	0.990	15.90	2.710	Pb	0.450	1.930	3.760
Au	1.150	15.90	2.710	Ca	0.750	2.170	3.560
Mg	0.490	17.60	3.200	Sr	0.900	2.370	3.720
Zn	0.300	15.20	2.970	Li	0.380	1.730	2.830
Cd	0.530	17.10	3.160	Na	0.760	2.110	3.120
Hg	0.550	17.80	3.220	K	1.120	2.620	3.480
Al	0.230	15.80	3.240	Rb	1.330	2.800	3.590
Ga	0.310	16.70	3.330	Cs	1.420	3.030	3.740
In	0.460	18.40	3.500	Ba	0.960	2.460	3.780
Tl	0.480	18.90	3.550				

Таблица 2. Название этой таблицы — однострочное.

	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	8	10	12
3	3	6	9	12	15	18