Теория автоматов и формальных языков Регулярные языки

Лектор: Екатерина Вербицкая

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

13 сентября 2016г.

В предыдущей серии

- Формальные языки повсюду. Язык множество строк над алфавитом
- Существует множество способов описать язык
- Задачи теории формальных языков
 - Как представить язык?
 - Какие есть характеристики у разных представлений языка?
 - ▶ Как определить, принадлежит ли строка данному языку?

В предыдущей серии

- Формальная грамматика
 - (Терминалы, Нетерминалы, Правила, Стартовый нетерминал)
 - Однозначность (любая строка имеет единственный вывод) и неоднозначность
- Вывод: транзитивное и рефлексивное замыкание отношения выводимости
 - Левосторонний (на каждом шаге заменяем самый левый нетерминал) и правосторонний
- Дерево вывода
 - Дерево: листья соответствуют терминалам, внутренние вершины нетерминалам; для каждого внутреннего узла существует правило грамматики, правая часть которого совпадает с метками детей узла
- Контекстно-свободная грамматика
 - ightharpoonup все правила имеют вид A olpha

Регулярная грамматика

Праволинейная грамматика — грамматика, все правила которой имеют следующий вид:

ullet A o aB или A o a, где $A,B\in V_N,a\in V_T$

Леволинейная грамматика — грамматика, все правила которой имеют следующий вид:

ullet A o Ba или A o a, где $A,B\in V_N,a\in V_T$

Регулярная грамматика

Праволинейная грамматика — грамматика, все правила которой имеют следующий вид:

ullet A o aB или A o a, где $A,B\in V_N,a\in V_T$

Леволинейная грамматика — грамматика, все правила которой имеют следующий вид:

ullet A o Ba или A o a, где $A,B\in V_N,a\in V_T$

Теорема

Пусть L — формальный язык.

 $\exists G_r$ — праволинейная грамматика, т.ч. $L = L(G_r) \Leftrightarrow \exists G_l$ — леволинейная грамматика, т.ч. $L = L(G_l)$

Регулярная грамматика

Праволинейная грамматика — грамматика, все правила которой имеют следующий вид:

ullet A o aB или A o a, где $A,B\in V_N,a\in V_T$

Леволинейная грамматика — грамматика, все правила которой имеют следующий вид:

ullet A o Ba или A o a, где $A,B\in V_N,a\in V_T$

Теорема

Пусть L — формальный язык.

 $\exists G_r$ — праволинейная грамматика, т.ч. $L = L(G_r) \Leftrightarrow \exists G_l$ — леволинейная грамматика, т.ч. $L = L(G_l)$

Регулярная грамматика — праволинейная или леволинейная грамматика

Конечный автомат

Конечный автомат — $\langle Q, \Sigma, \delta, q_0, F \rangle$

- $Q \neq \emptyset$ конечное множество состояний
- Σ Конечный входной алфавит
- ullet δ отображение типа $Q imes \Sigma o Q$
- ullet $q_0 \in Q$ начальное состояние
- ullet $F\subseteq Q$ множество конечных состояний

Пример конечного автомата

$$Q = \{0, 1, 2, 3\}, \Sigma = \{0, 1, -\}, q_0 = 0, F = \{1, 2\}$$

$$\delta(0, 0) = 1; \delta(0, 1) = 2; \delta(0, -) = 3; \delta(3, 1) = 2; \delta(2, 0) = 2; \delta(2, 1) = 2$$

Путь в конечном автомате

- Путь кортеж $\langle q_0, e_1, q_1, \dots, e_n, q_n \rangle$
 - n > 0
 - $\forall i.e_i = \langle q_{i-1}, w_i, q_i \rangle \in \delta$
 - ▶ q₀ начало пути
 - ▶ q_n конец пути
 - ▶ w_0, w_1, \dots, w_n **метка** пути
 - ▶ п длина пути
- ullet Путь успешен, если q_0 начальное состояние, а $q_n \in F$
- Состояние q достижимо из состояния p, если существует путь из состояния p в состояние q

Пример пути

 $\langle 0, \langle 0, '-', 3 \rangle, 3, \langle 3, '1', 2 \rangle, 2, \langle 2, '1', 2 \rangle, 2, \langle 2, '0', 2 \rangle, 2 \rangle$ — успешный путь с меткой "-110" длины 4

Такт работы КА (шаг)

- Конфигурация (Мгновенное описание) КА $\langle q,\omega
 angle$, где $q \in Q, \omega \in \Sigma^*$
- Такт работы бинарное отношение \vdash : если $\langle p, x, q \rangle \in \Delta$ и $\omega \in \Sigma^*$, то $\langle p, x\omega \rangle \vdash \langle q, \omega \rangle$
- Бинарное отношение \vdash^* рефлексивное, транзитивное замыкание \vdash

Распознавание слова конечным автоматом

- ullet Цепочка ω распознается КА, если \exists успешный путь с меткой ω
- Язык, распознаваемый конечным автоматом:

```
\{\omega \in \Sigma^* \mid \exists p — успешный путь с меткой \omega\}
```

Распознавание слова конечным автоматом

Теорема

Рассмотрим конечный автомат $M = \langle Q, \Sigma, \delta, q_0, F \rangle$. Слово $\omega \in \Sigma^*$ принадлежит языку $L(M) \Leftrightarrow \exists q \in F. \langle q_0, \omega \rangle \vdash^* \langle q, \varepsilon \rangle$.

Распознавание слова конечным автоматом

Обобщаем функцию перехода:

- $\delta'(q,\varepsilon) = q$
- $oldsymbol{\delta}'(q,xa)=\delta(\delta'(q,x),a)$, где $x\in\Sigma^*,a\in\Sigma$

Теорема

Цепочка ω распознается КА $\langle Q, \Sigma, \delta, q_0, F \rangle \Leftrightarrow \exists p \in F.\delta'(q, \omega) = p$

Язык, распознаваемый конечным автоматом:

$$\{\omega \in \Sigma^* \mid \exists p \in F.\delta'(q_0, \omega) = p\}$$

Свойство конкатенации строк

Теорема

$$\langle \mathbf{q}_1, \alpha \rangle \vdash^* \langle \mathbf{q}_2, \varepsilon \rangle, \langle \mathbf{q}_2, \beta \rangle \vdash^* \langle \mathbf{q}_3, \varepsilon \rangle \Rightarrow \langle \mathbf{q}_1, \alpha \beta \rangle \vdash^* \langle \mathbf{q}_3, \varepsilon \rangle$$

Эквивалентность конечных автоматов

- Конечные автоматы A_1 и A_2 эквивалентны, если распознают один и тот же язык
- Как проверить что автоматы эквиваленты?

Проверка на эквивалентность автоматов

• Запустить обход в ширину

Минимальный конечный автомат

• Минимальный конечный автомат — автомат, имеющий наименьшее число состояний, распознающий тот же язык, что и данный

Классы эквивалентности

Отношение эквивалентности — рефлексивное, симметричное, транзитивное отношение

• xRx; $xRy \Leftrightarrow yRx$; xRy, $yRz \Rightarrow xRz$

Теорема

 $\forall R$ — отношение эквивалентности на множестве S Можно разбить S на k непересекающихся подмножеств $I_1 \dots I_k$, т.ч. $aRb \Leftrightarrow a,b \in I_i$

Множества $I_1 \dots I_k$ называются классами эквивалентности

Эквивалентные состояния

- $\omega \in \Sigma^*$ различает состояния q_i и q_j , если $\delta'(q_i,\omega) = t_1, \delta'(q_i,\omega) = t_2 \Rightarrow (t_1 \notin F \Leftrightarrow t_2 \in F)$
- q_i и q_j эквивалентны $(q_i \sim q_j)$, если $orall \omega \in \Sigma^*.\delta'(q_i,\omega) = t_1, \delta'(q_j,\omega) = t_2 \Rightarrow (t_1 \in F \Leftrightarrow t_2 \in F)$
 - Является отношением эквивалентности

Лемма

$$\mathcal{A}=\langle Q,\Sigma,\delta,q_0,F
angle,$$
 $p_1,p_2,q_1,q_2\in Q,$ $q_i=\delta(p_i,c)$ $\omega\in\Sigma^*$ различает q_1 и $q_2.$ Тогда с ω различает p_1 и p_2

Доказательство

$$\delta'(p_i, c\omega) = \delta'(\delta(p_i, c), \omega) = \delta'(q_i, \omega) = t_i$$