Dokumentacja projektu

Linefollower

Jan Jędrzejowski

Michał Zelek

1) Założenia projektu:

Projekt Line Follower to automatyczny robot, który ma zdolność poruszania się po linii na podstawie odczytu sygnałów z czujników. Jest on obsługiwany za pomocą interfejsu graficznego, na którym wyświetlana jest jego trasa.

- Cel: Celem projektu jest stworzenie robota zdolnego do śledzenia i
 poruszania się wzdłuż linii na podłodze. Robot ma automatycznie
 dostosowywać swoje ruchy w zależności od odczytów z czujników.
 Ma komunikować się za pośrednictwem Bluetooth z komputerem
- Mechanizm poruszania się: Robot wyposażony dwa koła z indywidualnymi silnikami, umożliwiające mu poruszanie się po podłodze
- Czujniki linii: Robot wyposażony w czujniki odbiciowe, które będą odczytywać informacje o bieżącym położeniu linii. Będą one informować robota, czy linia jest z lewej czy z prawej strony.
- Algorytm śledzenia linii: Robot powinien mieć
 zaimplementowany algorytm, który będzie analizował odczyty z
 czujników i podejmował odpowiednie decyzje w celu utrzymania
 robota na linii (algorytm PID). Jego głównym celem jest
 skorygowanie ruchu robota, aby pozostał on na linii.
- Algorytm rysowania trasy: Robot powinien mieć zaimplementowany algorytm, który będzie analizował odczyty z enkoderów magnetycznych umieszczonych na obu kołach. Ma on za zadanie przeniesienie obrotów kół na płaszczyznę XY.
- Obudowa: Robot powinien być umieszczony w odpowiedniej obudowie, która zapewnia ochronę elektroniki oraz stabilność podczas poruszania się po linii.
- **Źródło zasilania:** Robot powinien mieć źródło zasilania, takie jak baterie, które dostarczą energię do napędów i elektroniki.
- Języki programowania: Do zaprogramowania robota zostaną użyte języki Python i C++

2) Schematy połączeń elektrycznych

3) Schematy blokowe algorytmów

Tabela 3			
regulatora	Optymalne nastawy regulatorów		
	K _p	Ti	T _d
Р	0,45K _{kr}	-	_
PI	0,45K _{kr}	0,85T _{kr}	_
PID	0,6K _{kr}	0,5T _{kr}	0,12T _{kr}

Interfejs jest minimalistyczny i intuicyjny w obsłudze.

Przebyta trasa rysowana jest w czasie rzeczywistym na płaszczyźnie XY.

Przed uruchomieniem robota należy dokonać kalibracji.

Możliwe jest także modyfikowanie zapisanych parametrów regulatora PID.

5) Opis uzyskanych rezultatów

Robot dosyć poprawnie podąża za linią. Można zaobserwować lekkie chybotanie się na boki. Powodem tego prawdopodobnie są nieidealny kontrast między czarną linią, a zielonym podłożem oraz nie najoptymalniejsze parametry PID.

Parametry PID otrzymano używając metody strojenia Zieglera-Nicholsa, jednak wyznaczone parametry nie były optymalne z uwagi na niedokładne obliczenie okresu oscylacji układu będącego na granicy stabilności.

Robot komunikuje się z interfejsem graficznym. Jego trasa jest rysowana w czasie rzeczywistym, ale nie odpowiada rzeczywistej trasie. Brak pokrycia trasy rysowanej z rzeczywistą wynika z błędów połączeniowych na płytce uniwersalnej, a najpewniej zwarcia wyjść kwadraturowych enkoderów magnetycznych, przez co na ilość otrzymywanych impulsów wpływa prędkość obrotowa silnika.