Naming Acids

Type 1: Binary Acids

- Only H and another element are present.
- The anion does NOT contain oxygen.
- Ex: HBr (aq) (means HBr dissolved in water)
- Prefix: hydro- Suffix: -ic
 - Hydrobromic acid
- $H_2S_{(aq)} = Hydrosulfuric acid$

Type 2: Oxyacids

- The anion contains oxygen
- If anion ends in ATE suffix is ic
 Ex: H₂SO_{4(aq)} sulphuric acid
 (*** do not use hydro)
- HC₂H₃O_{2(aq)} Acetic acid

Writing Formulas of Oxyacids The "ic" acids

```
H<sub>1</sub>NO<sub>3</sub>
              Nitric Acid
H, CIO3
             Chloric Acid
H_2 CO_3
               Carbonic Acid
H_{2} 5 0_{4}
               Sulfuric Acid
H<sub>2</sub>PO<sub>4</sub>
               Phosphoric Acid
```

Type 2: Oxyacids

If the anion ends in ITE – the suffix is ous
 H₂SO_{3 (aq)} sulphurous acid

HNO_{2(aq)} Nitrous acid

Note: If the anion is a **per...ate** the acid is a **per...ic** acid

HCIO_{4(aq)} Perchloric acid

If the anion is a hypo...ite the acid is a hypo...ous acid

HNO_(aq) Hyponitrous acid

```
HNO<sub>4(aq)</sub> Pernitric acid
HNO<sub>3(aq)</sub> Nitric acid
HNO<sub>2(aq)</sub> Nitrous acid
HNO (aq) Hyponitrous acid
```

Name these!

- H₂SO_{4(aq)}
- HC₂H₃O_{2(aq)}
- H₂SO_{5(aq)}
- H₃PO_{4(aq)}

- e) HF
- f) HNO_{2(aq)}
- g) HCIO_(aq)
- h) HBr_(aq)