Krisnadi Bima Widyastana

1301164014, IF 40-10

- a. Kelebihan/Kelemahan k-Means
 - 1. Simpel untuk diimplementasikan dan menghasilkan output yang mudah diinterpretasi
 - 2. Dapat mengolah dataset yang besar
 - 3. Efisien dalam mensegmentasikan dataset yang clusternya berbentuk hyperspherical.
 - 4. Memiliki kompleksitas linear O(tknd), t adalah jumlah iterasi, k adalah jumlah cluster, n jumlah data untuk setiap dimensi (d)
 - 1. Efek uniform meskipun input data yang dimasukan berbeda ukurannya.
 - 2. Tidak ada jumlah cluster yang optomal, operator harus menset jumlah clusternya
 - 3. K-means sensitif terhadap posisi inisialisasi titik centroid
 - 4. Sensitif terhadap perubahan data anomali/outlier
 - 5. Clustering berbentuk lingkaran
- b. Agglomerative Clustering

Agglomerative clustering adalah salah satu teknik hierarchical clustering untuk mengklasifikasikan data secara hirarkis. "Agglomerative" berarti mulai secara bottom-up. Algoritma dasar:

Input: Sebuah list data C
Lakukan perulangan sampai tersisa 1 kluster
Cari pasangan dari clusters yang terdekat minD(c_i,c_j)
Gabung clusters c_i, c_j menjadi cluster baru c_{i+j}

Hapus c_i , c_j dari list data C, masukan cluster baru tadi ke list C

Agglomerstive Clustering bekerja dengan mengklasifikasi secara bottom up

Gambar 1 contoh data input

Pada contoh ini, algortima mengklasifikasi data b, c lalu d, e. Data f diklasifikasikan dengan de. Data bc, def, digabungkan dengan a.

Gambar 2 Setelah diproses menjadi tree

c. Hasil clustering dengan SOM

Gambar 3Inisialisasi Training

Titik biru adalah data mentahnya sedangkan biru tua adalah peta SOMnya. Ini adalah hasil akhirnya.

Hasil train neuron, click close untuk clasification

Gambar 4Hasil Training

Gambar 5Hasil Klasifikasi

Parameter:

```
epochs = 10000
neighbour = 1
col = 5
row = 3
learing_rate = 0.4
```

Algoritmanya:

- 1. Inisialisasi array untuk node SOM panjang \times lebar \times dimensi dan learning rate
- 2. Lakukan perulangan hingga dengan epochs tertentu
- 3. Pilih data random dari data set
- 4. Cari BMU (best matching unit) dengan menggunakan rumus ecludian untuk data tersebut terhadap setiap kolom dan baris neuron SOM
- 5. Update SOM tersebut dengan rumus berikut som[x][y] = som[x][y] + currentRate * -(som[x][y] dataRandomYangDipilih)