Работа 3.6.1.

Спектральный анализ электрических сигналов.

Спектральный анализ электрических сигналов.

Цель работы: изучение спектрального состава периодических электрических сигналов.

Оборудование: анализатор спектра СК4-56, генератор прямоугольных импульсов Γ 5-54, генератор сигналов специальной формы Γ 6-34, осциллограф Γ 1-76.

Многие физические процессы можно моделировать с помощью линейных дифференциальных уравнений. К решениям таких уравнений применим принцип суперпозиции: разнообразные сложные явления удобно представлять в виде суммы простых решений линейных уравнений. Для линейных уравнений такими простыми решениями являются гармонические функции. Математическая теория представления сложных функций в виде сумм гармонических составляющих получила название теории рядов и интегралов Фуръе.

В радиотехнике широко используется разложение сложных сигналов на гармонические колебания различных частот ω . Функция $F(\omega)$, описывающая зависимость амплитуды гармоник от их частоты, называется амплитудной спектральной характеристикой - спектром исходного сигнала. Представление сложного периодического сигнала в виде суммы гармонических сигналов в математике называется разложением в ряд Фуръе. Непериодические сигналы представляются в виде интеграла Фурье.

Пусть заданная функция f(t) периодически повторяется с частотой $\Omega_1=2\pi/T,$ где T - период повторения. Ее разложение в ряд Фурье имеет вид

$$f(t) = \frac{a_0}{2} + \sum_{i=1}^{\infty} [a_n \cos(n\Omega_1 t) + b_n \sin(n\Omega_2 t)]$$

$$\tag{1}$$

ИЛИ

$$f(t) = \frac{A_0}{2} + \sum_{i=1}^{\infty} A_n \cos(n\Omega_1 t - \psi_n). \tag{2}$$

где $a_0/2=A_0/2$ - среднее значение $f(t),\,a_n$ и b_n - амплитуды членов разложения, определяющиеся по формулам

$$a_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \cos(n\Omega_1 t) dt,$$

$$b_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \sin(n\Omega_1 t) dt,$$

точку t_1 можно выбрать произвольно. При этом между коэффициентами существует следующая связь:

$$A_n = \sqrt{a_n^2 + b_n^2}; \quad \psi_n = \arctan \frac{b_n}{a_n}$$

Таким образом, видно, что сигнал раскладывается в сумму сигналов с частотами Ω_1 , $2\Omega_1$, $3\Omega_1$, и т.д. Представляя $\cos \alpha$ в виде

$$\cos \alpha = \frac{e^{i\alpha} + e^{-i\alpha}}{2}$$

и подставляя в (2):

$$f(t) = \frac{1}{2} \left(A_0 + \sum_{n=1}^{\infty} A_n e^{-i\psi_n} e^{in\Omega_1 t} + \sum_{n=1}^{\infty} A_n e^{i\psi_n} e^{-in\Omega_1 t} \right)$$

Вводя комплексные амплитуды

$$\widetilde{A_n} = A_n e^{-i\psi_n}; \quad \widetilde{A_{-n}} = A_n e^{i\psi_n}; \quad \widetilde{A_0} = A_0$$
 (3)

получим

$$f(t) = \frac{1}{2} \sum_{n = -\infty}^{\infty} \widetilde{A_n} e^{in\Omega_1 t}$$
(4)

Видно, что введение отрицательных частот $(-n\Omega_1)$ позволяет записать разложение Фурье простым способом. (3) обеспечивают действительность суммы (4): каждой частоте $k\Omega_1$ соответствует в (2) один член (n=k), а в (4) - два (n=k) и n=-k). Формулы (3) позволяют переходить от комплексного представления и обратно.

Для рассчета комплексных амплитуд умножим левую и правую части (4) на $e^{-ik\Omega_1 t}$ и проинтегрируем за период, например, от 0 до $2\pi/\Omega_1$. В правой части обнулятся все члены, кроме n=k, дающего $A_kT/2$. Поэтому

$$A_k = \frac{2}{T} \int_0^T f(t)e^{-ik\Omega_1 t} dt.$$

Теперь рассмотрим функции, исследуемые в работе.

Периодическая последовательность прямоугольных сигналов с амплитудой V_0 , длительностью τ , частотой повторения $f_{\text{повт}}=1/T$, где T - период повторения импульсов.

Найдем среднее значение:

$$\langle V \rangle = \frac{a_0}{2} = \frac{A_0}{2} = \frac{1}{T} \int_{-\tau/2}^{\tau/2} V_0 dt = V_0 \frac{\tau}{T}$$

Рис. 1: Периодическая последовательность прямоугольных импульсов

Амплитуды косинусных составляющих будут равны

$$a_n = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_0 \cos(n\Omega_1 t) dt = 2V_0 \frac{\tau}{T} \frac{\sin(n\Omega_1 \tau/2)}{n\Omega_1 \tau/2} \sim \frac{\sin(x)}{x}$$

Рис. 2: Спектр периодической последовательности прямоугольных импульсов

Поскольку функция четная, все амплитуды синусоидальных гармоник будут нулевыми. Амплитуды гармоник меняются по закону $\frac{\sin(x)}{x}$. На графике изображен случай, когда T крастно τ . Назовем шириной спектра $\Delta \nu$ расстояние от первого максимума, возникающего от главного максимума до первого нуля, возникающего при $\Omega_1 = 2\pi/T$. При этом $\Delta \omega \tau \approx 2\pi$, или $\Delta \nu \Delta t \approx 1$.

Периодическая последовательность цугов гармонического колебания $V_0\cos(\omega_0 t)$ с длительностью цуга τ и периодом повторения T.

Функция также симметричная относительно t=0. Амплитуда n-й гармоники определяется выражением

$$A_n = a_n = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_0 \cos(\omega_0 t) \cdot \cos(n\Omega_1 t) dt =$$

Рис. 3: Периодическая последовательность цугов

$$=V_0 \frac{\tau}{T} \left(\frac{\sin[(\omega_0 - n\Omega_1)\frac{\tau}{2}]}{(\omega_0 - n\Omega_1)\frac{\tau}{2}} + \frac{\sin[(\omega_0 + n\Omega_1)\frac{\tau}{2}]}{(\omega_0 + n\Omega_1)\frac{\tau}{2}} \right)$$

Рис. 4: Спектр периодической последовательности цугов

Такое спектральное распределение $F(\omega)$ для случая, когда T кратно τ , представлено на рис. 5. Сравнивая этот график с аналогичным для прямоугольных импульсов, видим, что они аналогичны, но максимумы сдвинуты на почастоте на ω_0 .

Амплитудно-модулированные сигналы. Рассмотрим гармонические колебания частоты ω_0 , амплитуда которых медленно меняется по гармоническому закону с частотой Ω ($\Omega \ll \omega_0$):

$$f(t) = A_0[1 + m\cos(\Omega t)]\cos(\omega t) \tag{5}$$

Коэффициент m называется глубиной модуляции. При m < 1 амплитуда ко-

Рис. 5: Гармонические колебания, модулированные по амплитуде

лебаний меняется от минимальной $A_{min} = A_0(1-m)$ до максимальной $A_{max} = A_0(1+m)$. Глубина модуляции может быть представлена в виде

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}}$$

Преобразовывая уравнение (5), получим спектр:

$$f(t) = A_0 \cos(\omega_0 t) + A_0 m \cos(\Omega t) \cos(\omega_0 t) =$$

$$= A_0 \cos(\omega_0 t) + \frac{A_0 m}{2} \cos(\omega + \Omega)t + \frac{A_0 m}{2} \cos(\omega - \Omega)t$$

Рис. 6: Спектр гармонических колебания, модулированных по амплитуде

Спектр $F(\omega)$ таких колебаний содержит три составляющих. Основная компонента представляет собой исходное немодулированное колебание с несущей частотой ω_0 и амплитудой $A_{\rm och}=A_0$ - первое слагаемое в правой части последнего уравнения. Боковые компоненты спектра соответствуют гармоническим колебаниям с частотами $(\omega_0+\Omega)$ и $(\omega_0-\Omega)$ - второе и третье слагаемые. Амлитуды этих колебаний одинаковы и составляют m/2 от амплитуды немодулированного сигнала: $A_{\rm fok}=A_0m/2$.

А. Исследование спектра периодической последовательности прямоугольных импульсов

Экспериментальная установка.

Схема для исследования спектра периодической последовательности прямоугольных импульсов представлена на рис. 7. Сигнал с выхода генератора прямоугольных импульсов Г5-54 подаётся на вход анализатора спектра и одновременно - на вход У осциллографа. С генератора импульсов на осциллограф подаётся также сигнал синхронизации, запускающий ждущую развёртку осциллографа. При этом на экране осциллографа можно наблюдать саму последовательность прямоугольных импульсов, а на экране ЭЛТ анализатора спектра - распределение амплитуд спектральных составляющих этой последовательности.

В наблюдаемом спектре отсутствует информация об амплитуде нулевой гармоники, т. е. о величине постоянной составляющей; её местоположение (начало отсчёта шкалы частот) отмечено небольшим вертикальным выбросом.

Рис. 7: Схема для исследования периодической последовательности приямоугольных импульсов

Б. Исследование спектра периодической последовательности цугов гармонических колебаний

Экспериментальная установка.

Исследование спектра периодически чередующихся цугов гармонических колебаний проводится по схеме, изображённой на рис. 8. Генератор Гб-34 вырабатывает синусоидальные колебания высокой частоты. На вход АМ (амплитудная модуляция) генератора Гб-34 подаются прямоугольные импульсы с генератора Г5-54 и синусоида модулируется - «нарезается» на отдельные куски - цуги. Эти цуги с выхода генератора Гб-34 поступают на вход спектроанализатора и одновременно на вход У осциллографа. Сигнал синхронизации подаётся на вход Х осциллографа с генератора импульсов.

Рис. 8: Схема для исследования периодической последовательности цугов высокочастотных колебаний

В. Исследование спектра гармонических колебаний, модулированных по амплитуде

Экспериментальная установка.

Схема для исследования амплитудно-модулированного сигнала представлена на рис. 9. Модуляционный генератор встроен в левую часть генератора сигналов Гб-34. Синусоидальный сигнал с частотой модуляции $f_{\text{мод}}=1$ к Γ ц подаётся с модуляционного генератора на вход АМ (амплитудная модуляция) генератора, вырабатывающего синусоидальный сигнал высокой частоты (частота несущей $\nu_0=25$ к Γ ц). Амплитудно-модулированный сигнал с основного выхода генератора поступает на осциллограф и на анализатор спектра.

Рис. 9: Схема для исследования спектра высокочастотного гармонического сигнала, промодулированного по амплитуде низкочастотным гармоническим сигналом