Variables Aleatorias Discretas Especiales

Clase 5

Alvarez - Arceo - Aurucis -Casparian - Castro - Chan -Howlin - Maulhardt- Spano -Stein - Calvo

Organización

- Distribución Bernoulli
- 2 Distribución Binomia
- 3 Distribución Hipergeométrica
- 4 Distribución Poissor

Concepto

Una variable aleatoria se dice Bernoulli

cuando modela un experimento dicotómico (con sólo dos resultados) que se denominan éxito y fracaso. Es decir cuentan '1' cuando cierto evento ocurre, es decir éxito y '0' cuando no ocurre.

La distribución Bernoulli depende de un único parámetro $p \in [0; 1]$ si:

- X toma valor 1 o 0, siendo
 - P(X = 1) = p
 - P(X = 0) = 1 p = q

Notación y Ejemplos

Notación

Para denotar que una variable aleatoria X sigue una distribución Bernoulli de parámetro p, lo escribiremos de la siguiente manera: $X \sim Be(p)$

- Tiro una moneda con una probabilidad $p = \frac{1}{2}$ de que salga cara, asignando X = 1 si salió cara y X = 0 si salió cruz.
- Saco una carta de un mazo de barajas españolas y veo si es un oro con probabilidad $p = \frac{1}{4}$.
- Disparo a un blanco y doy en el centro con probabilidad p o no, con probabilidad 1 - p.

Ejemplos

Resumiendo

Una manera más general de plantear el experimento sería decir que X=1 en caso de éxito, y X=0 en caso de fracaso, estando el "éxito" y el "fracaso" definido por el contexto del experimento.

En la Vida Cotidiana

El modelo de Bernoulli se utiliza para esquematizar, por ejemplo los votos a favor o en contra de un candidato. Si p es la proporción de la población que vota a favor de un candidato, entonces el voto de un individuo tomado al azar podría ser modelado por $X \sim Be(p)$.

Probabilidad Puntual y Distribución (p=0.5)

Χ	p(X)	F(X)
0	0,5	0,5
1	0,5	1

Distribución Hipergeométrica

(a) Tabla para $X \sim Be(0,5)$

- (b) Probabilidad Puntual
- (c) Distribución Acumulada

F. Probabilidad Puntual y F. Distribución

X	p(X)	F(X)
0	1-p	1-р
1	р	1

Distribución Hipergeométrica

- (a) Tabla para $X \sim Be(p)$
- (b) Probabilidad Puntual
- (c) Distribución Acumulada

Esperanza y Varianza

E(X) y $E(X^2)$

A partir de la tabla de función de probabilidad puntual se puede calcular la Esperanza de la siguiente manera.

$$E(X) = P(X = 1).1 + P(X = 0).0 = p.1 + (1 - p).0 = p$$

 $E(X) = p$
 $E(X^2) = P(X = 1).1^2 + P(X = 0).0^2 = p.1^2 + (1 - p).0^2 = p$

Utilizando la Fórmula de Cálculo de la Varianza

$$V(X) = E(X^2) - [E(X)]^2$$

$$Var(X) = E(X^2) - [E(X)]^2 = p - p^2 = p.(1 - p) = p.q$$

Organización

- Distribución Binomial

Experimento Binomial

Definición y Características

Experimento Binomial Satisface los siguientes cuatro requerimientos:

- El experimento consiste de n ensayos Bernoulli, siendo n fijo.
- Las pruebas son idénticas y en cada prueba hay sólo dos resultados posibles, que denominaremos Éxito (E) y Fracaso (F).
- Las pruebas son independientes, es decir que el resultado de una prueba no influye sobre el de las otras.
- La probabilidad de Éxito (P(E)=p) se mantiene constante en todas las pruebas.

Notación y Ejemplos

Son ejemplos de experimentos binomiales:

- Se arroja una moneda n veces y se llama Éxito al suceso "sale cara".
 - 2 Se arroja un dado equilibrado n veces y se llama Éxito al suceso "se obtiene un as".
 - Se extraen 4 bolillas con reposición de una urna que contiene 5 bolillas blancas y 3 negras y se denomina Éxito al evento sale blanca.

Variable Aleatoria Binomial

Notación y Recorrido

Variable Aleatoria Binomial

Consideremos un experimento binomial que consiste de n repeticiones y en el cual P(E) = p. Denominaremos v.a. binomial a la variable X: número de éxitos en las n repeticiones.

Notación: $X \sim Bi(n, p)$

$$R_X = \{0, 1, \cdots, n\}$$

Probabilidad Puntual

Probabilidad Puntual

P(X=k) es la probabilidad de obtener k 'éxitos' en los n ensayos del experimento.

Vamos a intentar pensar en un experimento con 3 repeticiones y probabilidad de éxito p en cada una de ellas. Lo representamos a continuación:

Experimento Binomial

Probabilidad Puntual

Del diagrama de árbol inferimos que:

- $P(X = 0) = q^3$
- $P(X = 1) = 3pa^2$
- $P(X = 2) = 3p^2q$
- $P(X = 3) = p^3$

Observación

$$q^3 + 3pq^2 + 3p^2q + p^3 = (p+q)^3 = 1^3 = 1$$

Las probabilidades de esta función son los términos de un desarrollo binomial.

Probabilidad Puntual- Generalización

Probabilidad Puntual

Para un experimento binomimal con probabilidad p de éxito y n ensayos, siendo $k \in \{0, 1, 2, \cdots, n\}$

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k} = \binom{n}{k} p^k q^{n-k}$$

Siendo $\binom{n}{k}$ las distintas formas de elegir las posiciones donde suceden los k éxitos dentro de los n ensayos.

Ejemplo

Lanzamos 5 veces una moneda equilibrada

Queremos hallar la probabilidad de obtener exactamente dos caras en los 5 lanzamientos.

Si quisiera calcular la probabilidad de obtener 2 caras al tirar 5 veces la moneda, debería averiguar P(X=2). Sabiendo que:

- Probabilidad de cara $\rightarrow p = 0.5$.
- Probabilidad de cruz $\rightarrow 1 p = q = 0.5$.

Solución del Ejemplo

La probabilidad de obtener 2 caras

implica también que se obtuvieron 3 cruces.

- Probabilidad de 2 caras $\rightarrow p^2$.
- Probabilidad de 3 cruces $\rightarrow (1-p)^3$.
- Probabilidad de 2 caras y 3 cruces $p^2 \cdot (1-p)^3$

Pero debemos recordar que existen varias maneras de obtener 2 caras en 5 tiradas. Por ejemplo:

- (O,O,X,X,X)
- (O,X,O,X,X)
- ...
- (X,X,X,O,O)

Distribución Binomial (ejemplo)

Dado que:

$$B(k;n,p) = \begin{cases} \binom{n}{k}.p^k.(1-p)^{n-k} & si & k = 0,1,2,...n \\ 0 & \text{de lo contrario} \end{cases}$$

Entonces

- n: Cantidad de ensayos (5)
- p: Probabilidad de éxito (0.5)
- k: Cantidad de éxitos (X=2)
- $P(X = 2) = \binom{5}{2} p^2 (1-p)^3$

Variable Aleatoria Binomial

Como suma de variables Bernoulli

IMPORTANTE

Todo ensayo Binomial puede pensarse como suma de n ensayos Bernoulli independientes. Además conocemos la Esperanza y la Varianza de una variable aleatoria Bernoulli: $X \sim Be(p)$ es E(X) = p.

Simbólicamente

La variable aleatoria $Y \sim Bi(n, p)$ es la suma de n variables aleatorias independientes X_i , con distribución Bernoulli $X_i \sim Be(p)$

$$Y = X_1 + X_2 + X_3 + ... + X_n \rightarrow Y \sim Bi(n, p)$$

Esperanza y Varianza

Luego, la Esperanza y Varianza de Y, pueden pensarse:

$$E(Y) = E(X_1 + X_2 + X_3 + ... + X_n) = E(X_1) + E(X_2) + E(X_3) + ... + E(X_n)$$

 $E(Y) = n.p$

Obtenemos la varianza de Y de la misma manera:

$$V(Y) = V(X_1 + X_2 + X_3 + ... + X_n) = V(X_1) + V(X_2) + V(X_3) + ... + V(X_n)$$

 $V(Y) = n.p.q$

Forma de las Funciones

(a) Probabilidad Puntual

(b) Distribución Acumulada

Organización

- Distribución Bernoull
- 2 Distribución Binomia
- 3 Distribución Hipergeométrica
- 4 Distribución Poisson

Distribución Hipergeométrica

Presentación del Experimento

Se tiene

- Una población se compone de N individuos.
- Dentro de esos individuos R < N tienen cierta característica C.
- Se extrae una muestra de $n \le N$ individuos de esta población (sin reposición!).
- Interesa saber cuántos indidividuos de la muestra tienen la propiedad.

La Variable aleatoria Hipergeométrica cuenta

el número de elementos de la muestra que tienen la característica C.

Recorrido, Notación y Probabilidad Puntual

Notación

 $X \sim H(n,R,N)$, siendo x la cantidad de éxitos en la muestra de tamaño n extraída de la población de N elementos de los cuales R tienen la propiedad C.

Recorrido

$$\max \{0, n - (N - R)\} \le X \le \min \{n, R\}$$

Probabilidad Puntual

$$P(X = x) = H(x, n, R, N) = \frac{\binom{R}{x} \binom{N-R}{n-x}}{\binom{N}{n}}$$

Esperanza y Varianza

Expresiones

Si X es una variable aleatoria hipergeométrica $X \sim H(n, R, N)$ entonces

- $E(X) = n.\frac{R}{N}$
- $V(X) = \left(\frac{N-n}{N-1}\right) . n. \frac{R}{N} \left(1 \frac{R}{N}\right)$

Comparación con la Binomial

Si consideramos que en la primer extracción $\frac{R}{N}$ es la proporción p* de éxitos en la población, y la reemplazamos en las expresiones dadas:

- E(X) = n.p*
- $V(X) = n.p * (1 p*) \left(\frac{N-n}{N-1}\right)$

Las varianzas difieren en un factor conocido como factor de corrección por muestra finita y en que p* no es constante!.

Ejemplo

Enunciado

De una urna que contiene 3 bolillas rojas y 7 azules se extraen 4 bolillas sin reposición y se define

X: número de bolillas rojas extraídas.

Queremos hallar

- a) Qué cantidad de bolillas rojas es más probable extraer?
- b) El valor esperado de bolillas rojas.

Ejemplo

$$P(X=0) = \frac{\binom{3}{0}\binom{7}{4}}{\binom{10}{4}} = \frac{1 \times 35}{210} = \frac{1}{6}$$

$$P(X=1) = \frac{\binom{3}{1}\binom{7}{3}}{\binom{10}{4}} = \frac{3 \times 35}{210} = 0.5**$$

$$P(X=2) = \frac{\binom{3}{2}\binom{7}{2}}{\binom{10}{4}} = \frac{3 \times 21}{210} = 0.3$$

•
$$P(X=3) = \frac{\binom{3}{3}\binom{7}{1}}{\binom{10}{4}} = \frac{3 \times 21}{210} = \frac{1}{30}$$

5
$$E(X) = 4 \times \frac{3}{10} = 1.2$$

- Distribución Bernoull
- 2 Distribución Binomia
- 3 Distribución Hipergeométrica
- Distribución Poisson

Presentación Notación y Recorrido

Qué modela?

La variable aleatoria Poisson, modela ocurrencias discretas sobre un espacio contínuo. Por ejemplo:

- Llegada de autos a un peaje por minuto.
- Llamadas que llegan a un call center por hora.
- Cantidad de infectados por coronavirus en un día.
- Baches en una ruta por km.
- Fallas en una tela por m^2 .

Esta variable aleatoria depende de una constante λ

Que se denomina intensidad del proceso de Poisson y la notación usual es $X \sim Po(\lambda)$ siendo $X \in \{0,1,2,\cdots\}$ la intensidad del proceso o tasa de ocurrencias en cierto continuo.

Distribución Hipergeométrica

Variable Aleatoria Poisson

Función de Probabilidad Puntual

Probabilidad Puntual

En este caso no vamos a describir un experimento pero luego le daremos sentido a esta variable.

$$p_{\lambda}(k) = \frac{e^{-\lambda}\lambda^k}{k!}$$

Siendo:

$$ullet$$
 $k\in\{0,1,2,\ldots\}$, y $\lambda\in(0,\infty)$

Para que sea una función de probabilidad puntual, debe cumplir que:

$$\sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^k}{k!} = 1$$

Función de Probabilidad Puntual

Demostración

Si recordamos por serie de Taylor:

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

Volviendo a la Función de Probabilidad Puntual y operando, obtenemos:

$$\sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!}$$

$$\sum_{k=0}^{\infty} \frac{e^{-\lambda} \lambda^k}{k!} = e^{-\lambda} e^{\lambda} = 1$$

Quedando demostrado que es una Función de Probabilidad Puntual

Esperanza

Deducción del Valor

$$E(X) = \sum_{k=0}^{\infty} kP(X = k) = \sum_{k=0}^{\infty} k \frac{e^{-\lambda} \lambda^k}{k!}$$

$$E(X) = \lambda \sum_{k=0}^{\infty} k \frac{e^{-\lambda} \lambda^{k-1}}{k(k-1)!}$$

$$E(X) = \lambda \sum_{k=1}^{\infty} \frac{e^{-\lambda} \lambda^{k-1}}{(k-1)!} = \lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = \lambda e^{-\lambda} e^{\lambda} = \lambda$$

$$E(X) = \sum_{k=1}^{\infty} k \frac{e^{-\lambda} \lambda^{k-1}}{(k-1)!} = \lambda$$

(日) (日) (日) (日)

Varianza

Cálculo

Para calcular la Varianza, primero debemos hallar $E(X^2)$:

$$E(X^{2}) = \sum_{k=0}^{\infty} k^{2} P(X = k) = \sum_{k=0}^{\infty} (k^{2} - k) P(X = k) + \sum_{k=0}^{\infty} k P(X = k)$$

Sabiendo que:

$$E(X) = \sum_{k=1}^{\infty} kP(X = k) = \lambda$$

Varianza

Cálculo (Continuación)

$$E(X^{2}) = \sum_{k=0}^{\infty} (k^{2} - k) \frac{e^{-\lambda} \lambda^{k}}{k!} + \lambda$$

$$E(X^{2}) = \sum_{k=0}^{\infty} k(k-1) \frac{e^{-\lambda} \lambda^{k}}{k(k-1)(k-2)!} + \lambda$$

$$E(X^2) = \sum_{k=2}^{\infty} \frac{e^{-\lambda} \lambda^{k-2} \lambda^2}{(k-2)!} + \lambda = \lambda^2 e^{-\lambda} \sum_{k=2}^{\infty} \frac{\lambda^{k-2}}{(k-2)!} + \lambda$$

$$E(X^2) = \lambda^2 e^{-\lambda} e^{\lambda} + \lambda = \lambda^2 + \lambda \Longrightarrow V(X) = \lambda^2 + \lambda - \lambda^2 = \lambda$$

Probabilidad Puntual y Distribución

(a) Probabilidad Puntual

(b) Distribución Acumulada

Ejemplo

Enunciado

Una máquina analiza pruebas de laboratorio y hace en promedio 6 muestras por hora. Calcular:

- 1 la probabilidad de que no se analice ninguna muestra en media hora.
- 2 Se analicen al menos dos muestras en una hora.
- 3 El valor más probable de muestras a realizarse en media hora.
- El valor esperado de muestras para quince minutos.
- 5 El valor de muestras superado por al menos el 50% de las horas.

Ejemplo

Respuestas

$$P_{\lambda=3}(X=0) = \frac{e^{-3}3^0}{0!} \approx 0.0497$$

$$P_{\lambda=6}(X \ge 2) = 1 - P(X = 0) - P(X = 1) = 1 - \frac{e^{-6}6^0}{0!} - \frac{e^{-6}6^1}{1!}$$

$$P_{\lambda=6}(X \ge 2) = 0.9826$$

on hay un único valor!

	X	0	1	2	3	4	5
-	$p_{\lambda=3}(x)$	0.0498	0.1494	0.224	0.224	0.168	0.1008

 $\lambda = 6/4 = 1.5$

Relación entre la Distribución Binomial y la Poisson

Propiedad |

Se puede probar que la distribución binomial converge a la distribución de Poisson cuando el parámetro n tiende a infinito y el parámetro p tiende a ser cero, bajo la condición de que el producto de n por p sea una cantidad constante λ .

Simbólicamente:

$$\lim_{n \longrightarrow +\infty \land p \longrightarrow 0 \land n.p = \lambda} P_{Bi(n,p)}(X) = P_{Po(\lambda)}(x)$$

MUCHAS GRACIAS!!

