Tutorial 8: SHA-256

- 1. Write a string of your full name and high school alma mater. Full string must be between 20 and 40 characters only.
- 1.1 Convert this message into bytes and write them in hexadecimal.

```
M = 4D756861 6D6D6164 20497A68 616D2053 4D4B2054 756E2050 6572616B M = 'Muhammad Izham SMK Tun Perak'.
```

1.2 There are L = 28.8 = 224 bits. Add another bit '1' which will give us 8 in hexa. Then, add $E0_{16} = 224_{10}$ at the end of 512 bits = 64 bytes array.

1.3 Convert them into 16 unsigned long of 32 bits.

$M_0^{(0)}$	4D756861
$M_1^{(0)}$	6D6D6164
$M_2^{(0)}$	20497A68
$M_3^{(0)}$	616D2053
$M_4^{(0)}$	4D4B2054
$M_5^{(0)}$	756E2050
$M_6^{(0)}$	6572616B
$M_7^{(0)}$	80000000
$M_8^{(0)}$	00000000
$M_9^{(0)}$	00000000
$M_{10}^{(0)}$	00000000
$M_{11}^{(0)}$	00000000
$M_{12}^{(0)}$	00000000
$M_{13}^{(0)}$	00000000
$M_{14}^{(0)}$	00000000
$M_{15}^{(0)}$	000000 <mark>E0</mark>

2. In this tutorial we will do only one round for $j=0,\,1,\,2,\,...,\,31.$ for $j=0,\,1,\,...,\,15$ $W_j=M_j{}^{(f)}$

W_0	=	$M_0^{(0)}$	=	4D756861			
\mathbf{W}_1	=	$M_1^{(0)}$	=	6D6D6164			
W_2	=	$M_2^{(0)}$	=	20497A68			
W_3	=	$M_3^{(0)}$	=	616D2053			
W_4	=	$M_4^{(0)}$	=	4D4B2054			
W_5	=	$M_5^{(0)}$	=	756E2050			
W_6	=	$M_6^{(0)}$	=	6572616B			
W_7	=	$M_7^{(0)}$	=	80000000			
W_8	=	$M_8^{(0)}$	=	00000000			
W_9	=	$M_9^{(0)}$	=	00000000			
W_{10}	=	$M_{10}^{(0)}$	=	00000000			
W_{11}	=	$M_{11}^{(0)}$	=	00000000			
W_{12}	=	$M_{12}^{(0)}$	=	00000000			
W_{13}	=	$M_{13}^{(0)}$	=	00000000			
W_{14}	=	$M_{14}^{(0)}$	=	00000000			
W_{15}	=	$M_{15}^{(0)}$	=	000000E0			

for
$$j=16$$
 to 63 {
$$W_{j} = \sigma_{1}(W_{j-2}) + W_{j-7} + \sigma_{0}(W_{j-15}) + W_{j-16}$$
 }

3. Initialize the value of the 32-bit registers a, b, c, d, e, f, g, h for $i = 1^{st}$ 512-bit block.

From
$$H_1^{(0)} = 6A09E667$$

 $H_2^{(0)} = BB67AE85$
 $H_3^{(0)} = 3C6EF372$
 $H_4^{(0)} = A54FF53A$
 $H_5^{(0)} = 510E527F$
 $H_6^{(0)} = 9B05688C$
 $H_7^{(0)} = 1F83D9AB$
 $H_8^{(0)} = 5BE0CD19$

а	11	$\mathrm{H_1}^{(i-1)}$	=	6A09E667
b	=	$\mathrm{H}_2^{(i-1)}$	=	BB67AE85
c	=	$\mathrm{H_3}^{(i-1)}$	=	3C6EF372
d	=	$H_4^{(i-1)}$	=	A54FF53A
e	=	$\mathrm{H}_5^{(i-1)}$	=	510E527F
f	=	$\mathrm{H_6}^{(i-1)}$	=	9B05688C
g	=	$\mathrm{H}_{7}^{(i-1)}$	=	1F83D9AB
h	=	$H_8^{(i-1)}$	=	5BE0CD19

4. Apply the SHA-256 compression function to update registers a, b, c, d, e, f, g, h, In this tutorial we will do only **one round** for j = 0. Take round keys as cube roots of the first 64 primes.

Consider the following notation of the 7 operations in Secure Hashing Algorithm SHA-2:

Symbol	Operation
\oplus	Bitwise XOR
\wedge	Bitwise AND
V	Bitwise OR
\neg	Bitwise complement
+	Mod 2 ³² addition
R^n	Right shift by <i>n</i> bits >>n
S ⁿ	Right rotation by <i>n</i> bits

Table 1: Notations on 32-bit operations

All of these operators act on 32-bit words. Unsigned long 32-bit register is popular programming variable in the year 2000 onwards.

```
Let us compute T_1 = h + \Sigma_1(e) + \lambda(e, f, g) + K_j + W_j,
First, we need to compute \Sigma_1(e)
where \Sigma_1(x) = S^6(x) \oplus S^{11}(x) \oplus S^{25}(x)
       \Sigma_1(e) = \Sigma_1(510E527F) = ?
S^6(e) = S^6(510E527F) = FD443949
       01010001000011100101001001111111
       010100010000111001010010011111111
       11111101010001000011100101001001
       1111 1101 0100 0100 0011 1001 0100 1001
S^{11}(e) = S^{11}(510E527F) = 4FEA21CA
       01010001000011100101001001111111
       01001111111010100010000111001010
       0100 1111 1110 1010 0010 0001 1100 1010
S^{25}(e) = S^{25}(510E527F) = 87293FA8
       01010001000011100101001001111111
       100001110010100100111111110101000
       1000 0111 0010 1001 0011 1111 1010 1000
\Sigma_1(510E527F) = S^6(510E527F) \oplus S^{11}(510E527F) \oplus S^{25}(510E527F)
               = FD443949 ⊕ 4FEA21CA ⊕ 87293FA8
               = 3587272B
Second, we need to compute \lambda(e, f, g)
where
       \lambda(x, y, z) = (x \land y) \oplus (\neg x \land z)
       \lambda(e, f, g) = \lambda(510E527F, 9B05688C, 1F83D9AB)
```

```
= (510E527F^9B05688C) \oplus (\neg 510E527F^1F83D9AB)
              = 1104400C \oplus 0E818980
              = 1F85C98C
Note: \neg 510E527F = AEF1AD80.
Coming back to compute
       T_1 = h + \Sigma_1(e) + \lambda(e, f, g) + K_0 + W_0,
       = 5BE0CD19 + 3587272B + 1F85C98C + 428A2F98 + 4D756861,
       = 140ED55C9
       = 40ED55C9 (mod 2^{32})
Note: K_0 is a preset from 32-bit fractional on cube root of prime 2.
Third, we need to compute T_2 = \Sigma_0(a) + \mu(a, b, c)
              \Sigma_0(a) = S^2(a) \oplus S^{13}(a) \oplus S^{22}(a) where a = 6A09E667
              \Sigma_0(6A09E667) = S^2(6A09E667) \oplus S^{13}(6A09E667) \oplus S^{22}(6A09E667)
S^{2}(6A09E667) = S^{2}(01101010000010011110011001111)
              = 11011010100000100111100110011001
                   11011010100000100111100110011001
              = DA827999
S^{13}(6A09E667) = S^{13}(0110101000001001111001100111)
              = S^{13}(01101010000010011110011001100111)
                     00110011001110110101000001001111
                     00110011001110110101000001001111
              = 333B504F
\mathbf{S}^{22}(\text{6A09E667}) = \mathbf{S}^{22}(\text{01101010000010011110011001100111})
              = S^{22}(01101010000010011110011001100111)
                      00100111100110011001110110101000
                      00100111100110011001110110101000
              = 27999DA8
\Sigma_0(6A09E667) = S^2(6A09E667) \oplus S^{13}(6A09E667) \oplus S^{22}(6A09E667)
              = DA827999 ⊕ 333B504F ⊕ 27999DA8
              = CE20B47E
\mu(x, y, z) = (x \wedge y) \oplus (x \wedge z) \oplus (y \wedge z)
\mu(a, b, c) = (a \land b) \oplus (a \land c) \oplus (b \land c)
= (6A09E667 \land BB67AE85) \oplus (6A09E667 \land 3C6EF372) \oplus (BB67AE85 \land 3C6EF372)
= 2A01A605 \oplus 2808E262 \oplus 3866A200
= 3A6FE667
```

```
Fourth, we can compute T_2 = \Sigma_0(a) + \mu(a, b, c)
= CE20B47E + 3A6FE667
= 108909AE5
= 08909AE5 (mod 2<sup>32</sup>)
```

Lastly, from the previous values of registers a, b, c, d, e, f, g, h,

a	=	$H_1^{(i-1)}$	=	6A09E667		
b	=	$H_2^{(i-1)}$	=	BB67AE85		
С	=	$H_3^{(i-1)} = 3C6EF372$				
d	=	$H_4^{(i-1)}$	=	A54FF53A		
e	=	$H_5^{(i-1)}$	=	510E527F		
f	=	$H_6^{(i-1)}$	=	9B05688C		
g	=	$\mathrm{H}_{7}^{(i-1)}$	=	1F83D9AB		
h	=	$H_8^{(i-1)}$	=	5BE0CD19		

Update on the register to get ready to go to next round,

```
h = g = 1F83D9AB

g = f = 9B05688C

f = e = 510E527F

e = d + T_1 = A54FF53A + 40ED55C9 = E63D4B03

d = c = 3C6EF372

c = b = BB67AE85

b = a = 6A09E667

a = T_1 + T_2 = 40ED55C9 + 08909AE5 = 497DF0AE
```

Fill up the new values of the 32-bit registers after the first loop j=0. At the end of the computation, Block 1 has been processed. The values of $\{H_j\}$ are

а		497DF0AE
b	Ш	6A09E667
С	Ш	BB67AE85
d	=	3C6EF372
e		E63D4B03
f	=	510E527F
g		9B05688C
h	=	1F83D9AB

Register: a	b	С	d	е	f	g	h
497DF0AE	6A09E667	BB67AE85	3C6EF372	E63D4B03	510E527F	9B05688C	1F83D9AB

\\ After the full 64 loops, we may compute the i^{th} intermediate hash value $H^{(i)}$

Muhammad Izham Bin Norhamadi B032020039 3BITZ

$$\begin{aligned} & \mathbf{H_1}^{(i)} = a + \mathbf{H_1}^{(i-1)} \\ & \mathbf{H_2}^{(i)} = b + \mathbf{H_2}^{(i-1)} \\ & \mathbf{H_3}^{(i)} = c + \mathbf{H_3}^{(i-1)} \\ & \mathbf{H_4}^{(i)} = d + \mathbf{H_4}^{(i-1)} \\ & \mathbf{H_5}^{(i)} = e + \mathbf{H_5}^{(i-1)} \\ & \mathbf{H_6}^{(i)} = f + \mathbf{H_6}^{(i-1)} \\ & \mathbf{H_7}^{(i)} = g + \mathbf{H_7}^{(i-1)} \\ & \mathbf{H_8}^{(i)} = h + \mathbf{H_8}^{(i-1)} \end{aligned}$$

Finally,

The message digest is, at the moment, after an initial round 0, ready for the next round j=1.

```
B387D715 257194EC F7D6A1F7 E1BEE8AC 374B9D82 EC13BB0B BA894237 7B64A6C4
```

=

B387D715257194ECF7D6A1F7E1BEE8AC374B9D82EC13BB0BBA8942377B64A6C4