Vertex of the Quadratic

 $w_1 = -\frac{b}{2a}$ namely $d(w_1) = C - \frac{b^2}{4a}$ Now compute the same quadratic at $\mathsf{w}_{1} ext{+}\mathsf{h}$, namely

Given a quadratic $d(w) = a w^2 + b w + c$ compute its value at

 $d(W_1+h) = -\frac{b^2}{4a} + a h^2 + c$

Compute $\triangle = d(w_1 + h) - d(w_1) = a h^2$ Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the

global minimum!

Example 1. $d(w) = 3 w^2 + 6 w + 36$

-800