Modelos y Simulación

Resolución Ejercicio 11 - Guía 5

Sea X una variable aleatoria que tiene distribución de Cauchy con parámetro $\lambda=1.$ Entonces, su función densidad es

$$f(x) = \frac{1}{\pi (1 + x^2)}, \qquad x \in R$$
 (1)

Item a)-i): Pruebe que el conjunto $C_f = \{(u,v) \mid 0 < u < \sqrt{f(v/u)}\}$ es el semicírculo derecho centrado en (0,0) de radio $\sqrt{1/\pi}$.

Si $(u, v) \in C_f$ entonces

$$0 < u^{2} < f(v/u) = \frac{1}{\pi \left(1 + \left(\frac{v}{u}\right)^{2}\right)} = \frac{u^{2}}{\pi \left(u^{2} + v^{2}\right)}$$

si y sólo si

$$\pi(u^2 + v^2) < 1$$
 y $0 < u$

si y sólo si,

$$\sqrt{(u^2 + v^2)} < \sqrt{\frac{1}{\pi}} \quad \text{y} \quad 0 < u$$

Es decir, (u,v) dista del (0,0) en a lo sumo $\sqrt{1/\pi}$, lo que significa que (u,b) está en el semicírculo derecho centrado en (0,0) de radio $\sqrt{1/\pi}$.

Item b): Pruebe que si X tiene distribución de Cauchy con parámetro 1, entonces λX tiene distribución de Cauchy con parámetro λ .

Si X tiene distribución Cauchy de parámetro 1, entonces su función de densidad es la dada en (1) y su correspondiente función de distribución acumulada es $F_X(x) = \frac{1}{\pi} \left(\arctan(x) + \frac{\pi}{2} \right)$.

Veamos como es la distribución de la variable λX .

 $F_{\lambda X}(z) = P(\lambda X \leq z) = P(X \leq z/\lambda) = F_X(z/\lambda) = \frac{1}{\pi} \left(\arctan(z/\lambda) + \frac{\pi}{2}\right)$. La cual es la función de distribución acumulada de una variable con distribución Cauchy de parámetro λ .