Tugas Individu Analisis Regresi Pertemuan

Ghonniyu Hiban Saputra-G1401221012

2024-03-05

Library

```
library(readxl)
## Warning: package 'readxl' was built under R version 4.3.2
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
library(plotly)
## Warning: package 'plotly' was built under R version 4.3.2
## Loading required package: ggplot2
## Warning: package 'ggplot2' was built under R version 4.3.2
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
##
       last_plot
## The following object is masked from 'package:stats':
##
##
       filter
```

```
## The following object is masked from 'package:graphics':
##
##
       layout
library(lmtest)
## Warning: package 'lmtest' was built under R version 4.3.2
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 4.3.2
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
       as.Date, as.Date.numeric
library(car)
## Loading required package: carData
##
## Attaching package: 'car'
## The following object is masked from 'package:dplyr':
##
##
       recode
library(randtests)
library(lmtest)
```

Data

```
data <- read_xlsx("C:/Users/Ghonniyu/Downloads/Anreg Individu.xlsx")</pre>
## New names:
## * '' -> '...1'
data
## # A tibble: 15 x 3
      . . . 1
##
             X Y
     <dbl> <dbl> <dbl>
##
## 1
        1 2
## 2
         2
                    50
              5
```

```
##
            3
                    7
                          45
##
    4
            4
                  10
                          37
##
    5
                  14
                          35
##
    6
            6
                  19
                          25
##
    7
            7
                  26
                          20
    8
            8
                  31
##
                          16
    9
            9
                  34
##
                          18
                  38
## 10
           10
                          13
##
   11
           11
                  45
                           8
                  52
## 12
           12
                          11
##
   13
           13
                  53
                           8
           14
                  60
                           4
##
   14
                           6
## 15
           15
                  65
```

Model Awal

```
model = lm(formula = Y ~ X, data = data)
summary(model)
```

```
##
## Call:
  lm(formula = Y ~ X, data = data)
##
##
## Residuals:
      Min
                                3Q
##
                1Q Median
                                       Max
## -7.1628 -4.7313 -0.9253 3.7386
                                   9.0446
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 46.46041
                           2.76218
                                     16.82 3.33e-10 ***
                                  -10.03 1.74e-07 ***
## X
               -0.75251
                           0.07502
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 5.891 on 13 degrees of freedom
## Multiple R-squared: 0.8856, Adjusted R-squared: 0.8768
## F-statistic: 100.6 on 1 and 13 DF, p-value: 1.736e-07
```

Diperoleh model regresi sebagai berikut

$$\hat{Y} = 46.46041 - 0.75251X + e$$

Model diatas belum bisa dikatakan menjadi model terbaik karena belum melalui serangkaian uji asumsi, sehingga diperlukan eksplorasi kondisi dan pengujian asumsi Gauss Markov dan normalitas untuk menghasilkan model terbaik.

Eksplorasi

Plot Hubungan X dan Y

plot(x=data\$X,y=data\$Y)

Dari plot diatas dapat ditarik kesimpulan hubungan X dan Y memiliki hubungan yang tidak linear dan cenderung membentuk parabola

Plot Sisaan vs Y duga

plot(model,1)

Plot Sisaan v
s Urutan

```
plot(x = 1:dim(data)[1],
y = model$residuals,
type = 'b',
ylab = "Residuals",
xlab = "Observation")
```


Tebaran membentuk pola kurva \rightarrow Sisaan tidak saling bebas, model tidak pas

Sisaan dengan QQ-Plot

plot(model,2)

Uji Normalitas Sisaan

 ${\cal H}_0:$ Sisaan menyebar normal ${\cal H}_1:$ Sisaan tidak menyebar normal

shapiro.test(model\$residuals)

```
##
## Shapiro-Wilk normality test
##
## data: model$residuals
## W = 0.92457, p-value = 0.226
```

Dapat dilihat p-value > alpha, maka tak tolak H_0 , sisaan menyebar normal

Uji Asumsi Gauss-Markov

1. Nilai Harapan Sisaan sama dengan nol

 ${\cal H}_0$: Nilai harapan sama dengan $0{\cal H}_1$: Nilai harapan tidak sama dengan 0

```
t.test(model$residuals,mu = 0,conf.level = 0.95)
```

```
##
## One Sample t-test
```

```
##
## data: model$residuals
## t = -3.5338e-16, df = 14, p-value = 1
## alternative hypothesis: true mean is not equal to 0
## 95 percent confidence interval:
## -3.143811 3.143811
## sample estimates:
## mean of x
## -5.179884e-16
```

Dapat dilihat p-value > alpha , maka tak tolak H_0 , nilai harapan sisaan sama dengan nol

2. Ragam Sisaan Homogen

 H_0 : Ragam sisaan homogen H_1 : Ragam sisaan tidak homogen

```
kehomogenan = lm(formula = abs(model$residuals) ~ X, # y: abs residual
data = data)
summary(kehomogenan)
```

```
##
## Call:
## lm(formula = abs(model$residuals) ~ X, data = data)
## Residuals:
               1Q Median
                               3Q
##
      Min
                                      Max
## -4.2525 -1.7525 0.0235 2.0168 4.2681
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 5.45041
                                    4.284 0.00089 ***
                          1.27241
## X
              -0.01948
                          0.03456 -0.564 0.58266
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
\#\# Residual standard error: 2.714 on 13 degrees of freedom
## Multiple R-squared: 0.02385,
                                   Adjusted R-squared:
## F-statistic: 0.3176 on 1 and 13 DF, p-value: 0.5827
```

bptest(model)

```
##
## studentized Breusch-Pagan test
##
## data: model
## BP = 0.52819, df = 1, p-value = 0.4674
```

Dapat dilihat p-value > alpha, maka tak tolak H_0 , ragam sisaan homogen

3. Sisaan Saling Bebas

 H_0 : Sisaan saling bebas H_1 : Sisaan tidak saling bebas

```
runs.test(model$residuals)

##

## Runs Test

##

## data: model$residuals

## statistic = -2.7817, runs = 3, n1 = 7, n2 = 7, n = 14, p-value =

## 0.005407

## alternative hypothesis: nonrandomness

dwtest(model)

##

## Durbin-Watson test

##
```

Dapat dilihat p-value (pada DW test) < alpha , maka tolak H_0 , sisaan tidak saling bebas.

alternative hypothesis: true autocorrelation is greater than 0

Dari ketiga asumsi diatas menunjukkan adanya asumsi Gauss-Markov yang tidak terpenuhi yaitu pelanggaran asumsi tidak ada autokorelasi. Dapat dilihat dari Durbin Watson Test yang dilakukan.

Transformasi Data

DW = 0.48462, p-value = 1.333e-05

data: model

```
Y_new = sqrt(data$Y)
X_new = sqrt(data$X)
plot(x = X_new,y = Y_new)
```



```
model_new=lm(formula=Y_new~X_new)
summary(model_new)
```

```
##
## Call:
  lm(formula = Y_new ~ X_new)
##
##
## Residuals:
##
                  1Q
        Min
                       Median
                                    ЗQ
                                            Max
## -0.42765 -0.17534 -0.05753 0.21223 0.46960
##
##
  Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
               8.71245
                           0.19101
                                     45.61 9.83e-16 ***
                           0.03445 -23.61 4.64e-12 ***
## X_new
               -0.81339
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2743 on 13 degrees of freedom
## Multiple R-squared: 0.9772, Adjusted R-squared: 0.9755
## F-statistic: 557.3 on 1 and 13 DF, p-value: 4.643e-12
```

Diperoleh model sebagai berikut

$$Y = 8.71245 - 0.81339X + e$$

dwtest(model_new)

```
##
## Durbin-Watson test
##
## data: model_new
## DW = 2.6803, p-value = 0.8629
## alternative hypothesis: true autocorrelation is greater than 0
```

Karena p-value>alpha, maka tak tolak H_0 , sisaan saling bebas.

Kesimpulan

Berdasarkan transformasi yang dilakukan yaitu transformasi $Y^{\frac{1}{2}}$ dan $X^{\frac{1}{2}}$ akan menghasilkan model regresi yang lebih efektif disertai dengan semua asumsi telah terpenuhi dalam analisis regresi linear sederhana.

Model regresi setelah di transformasi adalah sebagai berikut :

$$Y^* = 8.71245 - 0.81339X^* + e$$
$$Y^* = \sqrt{Y}$$
$$X^* = \sqrt{X}$$

Sehingga model terbaik untuk data ini adalah:

$$\hat{Y} = (8.71245 - 0.81339X^{\frac{1}{2}})^2 + e$$

Interpretasi : Model regresi diatas menunjukkan hubungan kuadrat negatif antara Y dan X. Ketika X meningkat, Y cenderung menurun dengan kecepatan yang semakin cepat. Konstanta 8.71245 mewakili nilai Y ketika X sama dengan 0. Koefisien -0.081339 menunjukkan pengaruh perubahan X terhadap Y. Semakin besar nilai absolut koefisien, semakin besar pengaruh X terhadap Y.