

James Ruse Agricultural High School

Mathematics Advanced

General Instructions

- Reading time 10 minutes
- Working time 3 hours
- Write using black pen
- · Calculators approved by NESA may be used
- A reference sheet is provided
- · A table of z-scores is provided
- Show relevant mathematical reasoning and/or calculations

Total Marks: 100

Section I - 10 marks

- Answer on the Multiple Choice answer sheet provided on the back of this page
- Allow about 15 minutes for this section

Sections II, III, IV - 90 marks in total

- Attempt Questions 11–32
- Answer in the space provided in the question booklet.
- If you need extra space use the extra writing pages provided at the end of Section II. Clearly label the question number you are completing.
- Allow about 2 hours and 45 minutes for this section

Standard Normal Cumulative Probability Table

Cumulative probabilities for NEGATIVE z-values are shown in the following table:

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	8000.0	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.4	0.3440	0.3783	0.3745	0.3330	0.3669	0.3632	0.3594	0.3557	0.3130	0.3121
-0.3 -0.2	0.3021	0.3763	0.3743	0.4090	0.4052	0.3032	0.3974	0.3936	0.3320	0.3463
-0.2	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
	1 3.5555	0000	3023	3000	3 3 . 3	3. 100 1	3	J <u> </u>	5551	3

Standard Normal Cumulative Probability Table

Cumulative probabilities for POSITIVE z-values are shown in the following table:

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.0045	0.0050	0.0005	0.7040	0.7054	0.7000	0.7400	0.7457	0.7400	0.7004
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7 0.8	0.7580 0.7881	0.7611 0.7910	0.7642 0.7939	0.7673 0.7967	0.7704 0.7995	0.7734 0.8023	0.7764 0.8051	0.7794 0.8078	0.7823 0.8106	0.7852 0.8133
0.8 0.9	0.7661	0.7910	0.7939	0.7967	0.7995	0.8023	0.8315	0.8340	0.8365	0.8389
0.9	0.6139	0.0100	0.0212	0.0230	0.0204	0.0209	0.0313	0.6340	0.6363	0.0309
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
4 =	0.0000	0.0045	0.0057	0.0070	0.0000	0.0004	0.0400	0.0440	0.0400	0.0444
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7 1.8	0.9554 0.9641	0.9564 0.9649	0.9573 0.9656	0.9582 0.9664	0.9591 0.9671	0.9599 0.9678	0.9608 0.9686	0.9616 0.9693	0.9625 0.9699	0.9633 0.9706
1.0	0.9041	0.9649	0.9656	0.9004	0.977	0.9744	0.9666	0.9693	0.9699	0.9767
1.9	0.9713	0.97 19	0.9720	0.9732	0.9736	0.9744	0.9750	0.9750	0.9701	0.9707
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.5 2.6	0.9953	0.9940	0.9956	0.9943	0.9959	0.9940	0.9946	0.9949	0.9963	0.9952
2.7	0.9955	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9902	0.9903	0.9904
2.8	0.9903	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9972	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
2.0	0.0001	0.0002	0.0002	0.0000	0.0004	0.0004	0.0000	0.0000	0.0000	0.0000
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for Questions 1-10.

1. For the series,

$$2-1+\frac{1}{2}-\frac{1}{4}+\cdots$$

what is the sum of the first eight terms, correct to two decimal places?

- A. 0.68
- B. 1.31
- C. 1.33
- D. 4.00
- 2. Consider the following graph of a normal distribution, with approximately 95% of the area bounded by the curve, the horizontal axis and x = 100, x = 140.

Which of the following parameters best describes the curve?

- A. $\mu = 100$, $\sigma^2 = 140$
- B. $\mu = 120$, $\sigma^2 = 20$
- C. $\mu = 120$, $\sigma^2 = 10$
- D. $\mu = 120$, $\sigma^2 = 100$

- 3. An integer p is chosen at random from the set $\{5, 7, 9, 11\}$. An integer p is also chosen at random from the set $\{2, 6, 10, 14, 18\}$. What is the probability that n + p = 23?
 - 0.1 A.
 - В. 0.2
 - C. 2.5
 - D. 0.3
- **4.** If $\ln 3a = \ln b 2 \ln c$ where a, b, c > 0, which of the following is true?
 - A. $a = \frac{b c^2}{3}$ B. $a = \frac{b}{3c^2}$

 - C. $\ln 3a = \frac{b}{c^2}$
 - D. $\ln 3a = \frac{\ln b}{\ln c^2}$
- 5. What is the x coordinate of the point on the curve $y = e^{2x}$ where the tangent is parallel to the line y = 4x - 1?
 - $x = \frac{1}{2} \ln 2$

 - B. $x = \ln 2$ C. $x = -\frac{1}{2} \ln 2$
 - D. x = 2
- **6.** A discrete random variable *X* has the following probability distribution:

x	0	1	2	3
P(X=x)	2q	6 <i>q</i>	3q	4q

The mean of X is which of the following?

- A. 1
- B.
- C.
- 2 D.

7. The integral

$$\int_0^6 |x-2| \, dx$$

evaluates to which of the following?

- A. 10
- B. 20
- C. 30
- D. None of the above.
- **8.** Consider the following graphs of two normal distributions, N_1 and N_2 .

Assuming μ_1 , σ_1 are the mean and standard deviation of N_1 , and μ_2 , σ_2 are the mean and standard deviation of N_2 , which of the following statements is true?

- A. $\mu_1 > \mu_2$ and $\sigma_1 > \sigma_2$
- B. $\mu_1 > \mu_2$ and $\sigma_1 < \sigma_2$
- C. $\mu_1 < \mu_2$ and $\sigma_1 > \sigma_2$
- D. $\mu_1 < \mu_2$ and $\sigma_1 < \sigma_2$

9. The graph shows the velocity v of a particle moving along a straight line as a function of time t.

Taking the rightward direction as positive, which statement describes the motion of the particle at the point *P*?

- A. The particle is moving left at increasing speed.
- B. The particle is moving left at decreasing speed.
- C. The particle is moving right at decreasing speed.
- D. The particle is moving right at increasing speed.
- **10.** A probability density function f is given by

$$f(x) = \begin{cases} \frac{1}{12} (8x - x^3) & 0 \le x \le 2\\ 0 & \text{elsewhere} \end{cases}$$

The median m of this function satisfies which of the following equations?

- A. $m^4 16m^2 = 0$
- B. $m^4 16m^2 + 24 = 0.5$
- C. $m^4 16m^2 + 24 = 0$
- D. $16m^2 m^4 6 = 0$

Mathematics Advanced Sections II, III, IV Answer Booklet

90 marks
Attempt Questions 11–32
Allow about 2 hours and 45 minutes for this section.

Instructions

- At the beginning of each section, write your Student Number at the top of the page.
- Answer the questions in the spaces provided. These spaces provide guidance for the expected length of response.
- Your responses should include relevant mathematical reasoning and/or calculations.
- Additional writing spaced is provided at the back of the booklet. If you use this space, clearly indicate which question you are answering.

11. Find the largest domain for which $\sqrt{x^2 - 2x - 8}$ is defined.

2

.....

12. For x and y rational numbers and $(\sqrt{x} + \sqrt{y})^2 = x + y + 2\sqrt{xy}$, write $\sqrt{16 + 2\sqrt{55}}$ in the form $\sqrt{x} + \sqrt{y}$.

.....

13.	Find the values of x and y if the first four terms of a geometric sequence are $3, x, y, 192$.
14.	The patterns below are made using small matchsticks.
	#1 #2 #3
	Pattern #1 requires 6 matchsticks, pattern #2 requires 11 match sticks and pattern #3 requires 16 matchsticks.
a)	Write a formula for the number of sticks, X_n , needed to construct pattern $\#n$.

b)	What is the largest pattern number that can be constructed using 200 matchsticks?	1
c)	How many matchsticks would be needed to construct all patterns from pattern #1 to pattern #20?	1
15.	A curve $y = f(x)$ passes through the point (0,7). Its gradient function is given by	2
	$\frac{dy}{dx} = 1 - 6\sin 3x$ Find the equation of the curve.	

16.	Consider the curve $y = 3x^4 - 16x^3 + 24x^2 - 9$.	
8	Show that the first and second derivatives are respectively	2
	$y'=12x(x-2)^2$	
	y'' = 12(x-2)(3x-2)	
•		
•		
•		
•		
•		
ł	b) Find and classify all stationary points and points of inflexion.	4
•		
•		
•		
•		
•		

Question continues...

c)	Over which interval(s) is the curve decreasing?	1
d)	Sketch the curve, ensuring you demonstrate all features found, including the intercept with the y -axis (you may ignore calculating any intercepts with the x -axis).	3

End Section II

Section	Ш	(35	marks)

Student Number:	
-----------------	--

	eightlifter in training becomes increasingly tired with each lift. Each time he lifts, he can only with 90% of the preceding weight.	y
a)	If his first lift was 200 kg, what will be the weight lifted on the tenth lift, correct to two decimal places?	2
b)	At the given rate, what would be the sum of all weights lifted by the time he were totally exhausted?	1
weig a gol	t shop has a tank of goldfish for sale. All fish in the tank may be taken to have their hts normally distributed with mean 100 g and standard deviation 10 g. Melanie is buying dfish and is invited to catch the one she wants. Sadly, the fish are too fast for Melanie to any particular fish and the one she eventually catches is done so at random.	
Find	the probability that the weight of the fish is:	
	a) over 120 g;	2
		_
	b) between 90 g and 120 g.	2

19.	a) Find $\tan A$ if $\csc A = -\frac{13}{12}$ and $\sec A > 0$.	2
	b) Solve $\cos^2 2x = \frac{1}{2}$ for $0 \le x \le 2\pi$.	2

Examination continues...

Solve $3 \tan \theta - \cot \theta = 5$ for $0^{\circ} \le \theta \le 360^{\circ}$. Give your answers to the nearest degree.
Evaluate:
a)
$\int 1 + e^{7x} \ dx$
b)
$\int_0^3 \frac{8x}{1+x^2} dx$
$J_0 1 + x^2$

22. The diagram below shows the graph of $y = e^x(x + 1)$.

Using a graphical method, determine the number of solutions to the equation

$$2e^x(1+x) = 2 - 3x - 2x^2$$

You may use the diagram above in your solution.

• • • • • • • • •	 • • • • • • • • • • •	• • • • • • • • • • • •	 	• • • • • • • • • • • • •	 		• • • • •
	 •	• • • • • • • • • • •	 	• • • • • • • • • • • •	 •	• • • • • • • • • • • • • • • • • • • •	

Examination continues...

23. The probability distribution of a discrete random variable *X* is given by the table below.

X	0	1	2	3	4
P(X=x)	0.2	$0.6p^2$	0.1	1 - p	0.1

a) Show that $p = \frac{2}{3}$ or p = 1.

2

b) Let $p = \frac{2}{3}$. Calculate, to two decimal places:

: `	$\Gamma(V)$
1)	$F_{i} \cup X$
-,	- (,

2

ii)
$$P(X \ge E(X))$$

iii) The variance of X

1

1

.....

24. A random variable *X* is normally distributed with mean 4.5. It is given that P(X > 5.5) = 0.0465.

a) Show that the standard deviation is 0.595.

2

b) Find the probability that a random observation of *X* lies between 3.8 and 4.8.

2

 	••••	 	 	 	 	••••	 	 	 • • • • • •	 	
 		 	 	 	 	• • • • •	 	 	 	 	

,	tiate $e^{3x}(\cos x - 3\sin x)$.	
0 1 1 1 1 1 1 1 0 1		
b) Hence of	$\int e^{3x} \sin x dx$	
o, nence o		
oj Hence 0.		
<i>o_j</i> Hence 0		
<i>o</i> ₁ frence 0	$\int e^{3x} \sin x dx$	
of fielde 0	$\int e^{3x} \sin x dx$	
<i>o</i> ₁ frence 0	$\int e^{3x} \sin x dx$	
	$\int e^{3x} \sin x dx$	

End Section III

1

26. A telecommunications box is to be placed at some point Q along a road PQR, as shown in the diagram below. Two cables will connect the box to relay stations at A and B. Let AP = 2 km be the perpendicular distance from A to the road, and similarly, let BR = 1 km be the perpendicular distance from B to the road. The distance PR is 5 km.

a) By letting PQ = x kilometres, show that the total length L of the cable is given by

 $L = \sqrt{x^2 + 4} + \sqrt{x^2 - 10x + 26}$

•	•	• •	•	• •	•	• •	•	•	• •	•	• •	•	• •	•	• •	• •	•	• •	• •	•	• •	•	•	•	• •	٠	•	•	•	• •	•	•	• •	٠	• •	•	•	• •	•	•	•	• •	٠	• •	•	• •	• •	•	•	• •	• •	•	•	• •	• •	•	•	• •	•	• •	•	• •	•	• •	•	•	٠	•	• •	٠

.....

.....

Question continues...

b)	Hence find the location of Q such that the total length of the cable is minimised.	3
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		
•••••		

Examination continues...

	$x^2 + y^2 + 4x - 2y - 20 = 0$	
a)	Find the centre and radius of the circle.	2
b)	Hence evaluate	2
ŕ	$\int_{-\infty}^{3}$	
	$\int_{-7}^{3} 1 + \sqrt{21 - 4x - x^2} \ dx$	

27.

The equation of a circle is given by

28.	A boat travelling in a straight line in a still lake has its engine turned off at time $t=0$ seconds. Its velocity v metres per second at time t seconds thereafter is given by
	$v(t) = \frac{100}{(t+2)^2}$

_
2
•••••
2
•••••

29. The diagram below shows the area bounded between two curves, $y = \sqrt{x}$ and y = x.

Consider the region bounded by the curves, the line x = 0 and x = k, where k > 1.

For what value of k will the area to the left of point P be equal to the area to the right of P?

30.	Consider the probability density function f for a random variable X given by	
	$f(x) = \begin{cases} \frac{a}{\sqrt{9+2x}} ; & 0 \le x \le 8\\ 0 & ; \text{ otherwise} \end{cases}$	
	where a is a constant.	
	a) Find the value of a .	2
	b) Find the cumulative distribution function, $F(x)$.	2

c)	Hence find the interquartile range, $Q_3 - Q_1$.
•••••	

3

Examination continues...

31. Let X denote a normally distributed random variable with mean 0 and standard deviation 1.

The random variable *X* has probability density function

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

where $-\infty < x < \infty$.

The diagram below shows the graph of y = f(x).

Complete the table of values for the function given. Give your answer correct to four significant figures.

b) Using the trapezoidal rule and part (a), determine, to four significant figures, the value of

$$P(-2 \le X \le 2) = \int_{-2}^{2} f(x) \ dx$$

1

2

.....

.....

.....

.....

.....

32. The diagram below shows a sphere of radius R and centre O circumscribing a square pyramid. The points A, B, C, D and S all lie on the surface of the sphere and form the vertices of the pyramid with ABCD the base. The point T lies directly beneath O and lies in the base of the pyramid such that $AT \perp OT$.

a) Let x = OT. Show that the volume of the pyramid is

 $V = \frac{2}{3}(R + x)^2(R - x)$

3

Question continues...

b)	Hence find the maximum volume a square pyramid may take when its vertices are circumscribed by a sphere of radius R .	3

END OF EXAMINATION

Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section.

Use the multiple-choice answer sheet for Questions 1-10.

1. For the series,

$$2-1+\frac{1}{2}-\frac{1}{4}+\cdots$$

what is the sum of the first eight terms, correct to two decimal places?

A. 0.68

1.33

4.00

2. Consider the following graph of a normal distribution, with approximately 95% of the area bounded by the curve, the horizontal axis and x = 100, x = 140.

Which of the following parameters best describes the curve?

A.
$$\mu = 100$$
, $\sigma^2 = 140$

B.
$$\mu = 120$$
, $\sigma^2 = 20$

3. An integer n is chosen at random from the set $\{5, 7, 9, 11\}$. An integer p is also chosen at random from the set $\{2, 6, 10, 14, 18\}$. What is the probability that n + p = 23?

0.1

0.2

C. 2.5

0.3 D.

4. If $\ln 3a = \ln b - 2 \ln c$ where a, b, c > 0, which of the following is true?

 $a = \frac{b - c^2}{3}$ $a = \frac{b}{3c^2}$ $\ln 3a = \frac{b}{c^2}$ $\ln 3a = \frac{\ln b}{\ln c^2}$

5. What is the x coordinate of the point on the curve $y = e^{2x}$ where the tangent is parallel to the line y=4x-1?

$$x = \frac{1}{2} \ln 2$$

B.
$$x = \ln 2$$

$$C. x = -\frac{1}{2} \ln 2$$

D.
$$x = 2$$

6. A discrete random variable X has the following probability distribution:

\overline{x}	0	1	2	3
P(X=x)	2 <i>q</i>	6 <i>q</i>	3 <i>q</i>	<u>4q</u>

The mean of X is which of the following?

D.

7. The integral

$$\int_0^6 |x-2|\,dx$$

evaluates to which of the following?

- A.
 - B. 20

10

- C. 30
- D. None of the above.

8. Consider the following graphs of two normal distributions, N_1 and N_2 .

Assuming μ_1 , σ_1 are the mean and standard deviation of N_1 , and μ_2 , σ_2 are the mean and standard deviation of N_2 , which of the following statements is true?

- A. $\mu_1 > \mu_2$ and $\sigma_1 > \sigma_2$
- B. $\mu_1 > \mu_2$ and $\sigma_1 < \sigma_2$

9. The graph shows the velocity v of a particle moving along a straight line as a function of time t.

Taking the rightward direction as positive, which statement describes the motion of the particle at the point P?

A. B. The particle is moving left at increasing speed.

- The particle is moving left at decreasing speed.
- C. The particle is moving right at decreasing speed.
- D. The particle is moving right at increasing speed.
- 10. A probability density function f is given by

$$f(x) = \begin{cases} \frac{1}{12} (8x - x^3) & 0 \le x \le 2\\ 0 & \text{elsewhere} \end{cases}$$

The median m of this function satisfies which of the following equations?

A.
$$m^4 - 16m^2 = 0$$

B.
$$m^4 - 16m^2 + 24 = 0.5$$

C. $m^4 - 16m^2 + 24 = 0$

D.
$$16m^2 - m^4 - 6 = 0$$

2

2

Section II (22 marks)

Student Number: TEACHER.

11. Find the largest domain for which $\sqrt{x^2 - 2x - 8}$ is defined.

Alternatively in Interval form $(-\infty, -2] \cup [4, \infty) \qquad \lim_{k \to \infty} x - 2x - 6x$ answer.

12. For x and y rational numbers and $(\sqrt{x} + \sqrt{y})^2 = x + y + 2\sqrt{xy}$, write $\sqrt{16 + 2\sqrt{55}}$ in the form $\sqrt{x} + \sqrt{y}$. $(\sqrt{x} + \sqrt{y})^2 = x + y + 2\sqrt{xy}$

 $(1) 2 \cdot y = 11.5$

13.	Find the values of x and y is	f the first four terms	of a geometric sequence	e are $3, x, y, 192$
-----	-----------------------------------	------------------------	-------------------------	----------------------

x = 4 = 192	ok. Alternatively
3 x y	k. Alternatively T4 = ar
$(1, x^2 = 3y = 0)$	
	$r^3 = 192$
Subst (2) into (1) $\left(\frac{y^2}{192}\right)^2 = 3y$	$\int dk = 4 \qquad \text{Im} k$
(192)	(2c = 3x 4 = 12)
y 4 = 3y	4 = 12×4=48 Onle
2/0//	J

3

1

14. The patterns below are made using small matchsticks.

1: 2c=12 a y=48: Time

Pattern #1 requires 6 matchsticks, pattern #2 requires 11 match sticks and pattern #3 requires 16 matchsticks.

a) Write a formula for the number of sticks, X_n , needed to construct pattern #n.

Question continues...

Ů,	what is the largest pattern number that can be constructed using 200 matchsticks?	1
	1.15n = 200	
	50 = 199	
	n = 39.8	
	i's 200 matchsticks could make the 39th patte	rn.
	· ·	
c)	How many matchsticks would be needed to construct all patterns from pattern #1 to pattern #20?	1
	Hu patterns requires a sum	
	$3n = \frac{n}{2} (20 + (n-1)d)$ $a = b$	
	d=5	
	All patterns requires a sum $S_n = \frac{n}{2} (2\alpha + (n-1)d) \qquad \alpha = 6$ $S_{20} = \frac{20}{2} (2x6 + 19x5) \qquad n = 20$	
		\sim
	S20 = 1070 -	
	10.70 match sticks required	
15.	A curve $y = f(x)$ passes through the point $(0, 7)$. Its gradient function is given by	2
	$\frac{dy}{dx} = 1 - 6\sin 3x$	
	$\frac{dx}{dx} = 1 - 6 \sin 3x$ Find the equation of the curve.	
	$y = \int 1 - 6\sin 3x dx$	
	$y = x + 6\cos 3x + c \qquad (1)$)
	J 3	
	When $x=0$ $y=7$	
	$7 = 0 + 6\cos 0 + c$	
	$7 = 0 + 6\cos 0 + c$	
	7 = 2 + c /, c=5	
	1 11 or 12 or 3 or +5 · (1)

- 16. Consider the curve $y = 3x^4 - 16x^3 + 24x^2 - 9$.
 - a) Show that the first and second derivatives are respectively

$$y'=12x(x-2)^2$$

$$y'' = 12(x-2)(3x-2)$$

$$y = 3x^{4} - 16x^{2} + 24x^{2} - 9$$

$$y' = 12x^{3} - 48x^{2} + 48x$$

$$= 12x(x^{2} - 4x + 4)$$

$$= 12x(x^{2} - 4x + 4)$$
Note: ans given

$$y'' = 36x^{2} - 96x + 48$$

$$= 12(3x^{2} - 8x + 4) \quad 1 \times -2$$

$$= 12(3x^{2} - 8x + 4) \quad 1 \times -2$$

$$= 12(3x^{2} - 8x + 4) \quad 1 \times -2$$

$$= 12 \left(2c-2\right) \left(32c-2\right)$$
 Note: ans given

Find and classify all stationary points and points of inflexion. Stationary points occur when y' amks for points only

" possible point of inflexion write values in

table, not just Changes sign from concave down to concave, a horizontal point of inflexion

Test to see if other points of inflexion when y''=0 ie 12(x-2)(3x-2)=0 $x=\frac{10}{3}\frac{1}{12}\frac{1}{2}0$

1 Possible POI at (2 -67

1- Horizontal POI labelled at (2,7)

3

End Section II

MATHEMATICS Extension 1: Question	n 1.7	
Suggested Solutions	Marks	Marker's Comments
common ratio = 0.9 First term $a = 2000 \text{ kg}$ Nth term $T_n = a r^{n-1}$ $T_n = 200 (09)^{n-1}$ 10th term $T_{10} = 200 (0.9)^{\frac{9}{2}} = 77.48 \text{ kg}$	1 1	This questron was answered correctly by the majority of students.
b) limiting solution $S\infty = \frac{200}{1-0.9} = 2000 \text{ kg}$ questron 18	1	majority of Students has answered it correctly
a) over 1209 Determine $z = \frac{120-100}{10} = 2$ $P(x>120) = \overline{P(z>2)}$ $= 1-0.9772$ $= 0.0228$	1	most students have answered it correctly

MATHEMATICS Extension 1: Question	n 19	
Suggested Solutions	Marks	Marker's Comments
a) $cosecc A = -\frac{13}{12}$ Se $cA > 0$ Sin $A = -\frac{19}{13}$ Cos $A > 0$ The above information indicates L in the IV quardant	1	majosity of the student
5 M 13 +12	B	the student have answered it correctly.
$tan A = -\frac{12}{5}$	1	
$\cos 2x = \frac{1}{\sqrt{2}} \cos 2x = -\frac{1}{\sqrt{2}} $	1	Some Students did not realise
$9x = \frac{\pi}{4}, \frac{7\pi}{4}, \frac{9\pi}{4}, \frac{9\pi}{4}$ $2x = \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{4\pi}{4}, \frac{4\pi}{4}, \frac{5\pi}{4}, \frac{4\pi}{4}, 4\pi$	13n 4- 'Q	that $0 \le 2 \times \le 40$ is the domain and hence
$x = \frac{1}{8}, \frac{30}{8}, \frac{50}{8}, \frac{70}{8181818988}$	1	were penalized
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Suggested Solutions $3 \tan \theta - \cot \theta = S$ $\cot \theta = \frac{1}{\tan \theta}$ $3 \tan \theta - 1 = S \tan \theta$ $3 \tan \theta - 1 = S \tan \theta$ $3 \tan \theta - S \tan \theta - 1 = 0$ $3 \tan \theta - S \tan \theta - 1 = 0$ $3 \tan \theta - S \tan \theta - 1 = 0$ $3 \tan \theta - S \tan \theta - 1 = 0$ $3 \tan \theta - S \tan \theta - 1 = 0$ $5 \pm \sqrt{35 + 12}$ $\tan \theta = \frac{5 \pm \sqrt{35 + 12}}{6}$ $\tan \theta = \frac{5 \pm \sqrt{37}}{6}$ $\tan \theta = \frac{5 + \sqrt{37}}{6}$ $\tan \theta = \frac{5 + \sqrt{37}}{6}$ $\tan \theta = \frac{5 - \sqrt{37}}{6}$ $\tan \theta = \frac{5 - \sqrt{37}}{6}$ $\tan \theta = \frac{5 + \sqrt{37}}{6}$ $\tan \theta = \frac{5 - \sqrt{37}}{6}$ $\tan \theta = \frac{5 + \sqrt{37}}{6}$ $\tan \theta = \frac{5 - \sqrt{37}}{6}$ $\tan \theta = \frac{5 - \sqrt{37}}{6}$ $\tan \theta = \frac{5 + \sqrt{37}}{6}$ $\tan \theta = \frac{5 - \sqrt{37}}{6}$ $\tan \theta = \frac{5 + \sqrt{37}}{6}$ $\tan \theta = \frac{5 - \sqrt{37}}{6$			
Suggested Solutions Marks Marks Marker's Comments $3 \tan \theta - \cot \theta = S$ $\cot \theta = \frac{1}{\tan \theta}$ $3 \tan \theta - 1 = S \tan \theta$ $3 \tan \theta - S \tan \theta - 1 = 0$ $3 \tan \theta - S \tan \theta - 1 = 0$ $5 \pm \sqrt{37}$ $\tan \theta = \frac{5 \pm \sqrt{37}}{6}$ $\tan \theta = \frac{5 \pm \sqrt{37}}{6}$ $\tan \theta = \frac{5 + \sqrt{37}}$	MATHEMATICS Extension 1: Que	stion 20	
cot $0 = \frac{1}{\tan \theta}$ $3 \tan^2 \theta - 1 = 5 \tan \theta$ $3 \tan^2 \theta - 5 \tan \theta - 1 = 0$ $3 \tan^2 \theta - 5 \tan \theta - 1 = 0$ $5 \pm \sqrt{35 + 12}$ $\tan \theta = \frac{5 \pm \sqrt{37}}{6}$ $\tan \theta = \frac{5 \pm \sqrt{37}}{6}$ $\tan \theta = \frac{5 + \sqrt{37}}{6}$ $\tan \theta = \frac{5 - \sqrt{37}}{6}$ $\tan \theta$	Suggested Solutions		
Λ Δ	cot 0 = taneo $3 tan 0 - 1 = 5 tan 0$ $3 tan 0 - 5 tan 0 - 1 = 0$ $3 tan 0 = 5 tan 0 - 1 = 0$ $3 tan 0 = 5 tan 0 - 1 = 0$ $tan 0 = 5 tan 0 = 5$	1 1	lost made as they did not account for a=350° and

Activity MATHEMATICS Exter	Marion 2
Suggested Solutions	Marks Marker's Comments
a) $\int 1 + e^{7x} dx$ $= x + \frac{e^{7x}}{7} + C$	1 Students were + 1 penalised it they did not write down the constant of wheegration.
$\int_{0}^{3} \frac{83c}{1+x^{2}} dx$ $= 4 \int_{0}^{2x} \frac{2x}{1+x^{2}} dx$ $= 4 \ln (1+x^{2}) \int_{0}^{3} dx$ $= 4 \ln 10$	Some students did not use from dx = In x from use correctle so they were penalised.

Mathemetrics Advanced

22. The diagram below shows the graph of $y = e^x(x + 1)$.

2

Using a graphical method, determine the number of solutions to the equation $2e^x(1+x)=2-3x-2x^2$

You may use the diagram above in your solution.

Here
$$1-1.5x-x^2$$
 meets $e^x(1+x)=1-1.5x-x^2$

Where $1-1.5x-x^2$ meets $e^x(1+x)$, we have solutions.

Sketch: $-(x^2+1.5x)+1=-((x+0.75)^2-0.75^2)+1$
 $=-(x+0.75)^2+1.5625$

Note $x=0$ is a solution. Concave-down, wax at $x=-0.75$, cuts through $(0,2)$ & again on negative side.

So \Rightarrow two solutions.

Examination continues...

MATHEMATICS Extension 1: Questi	9 6)
Suggested Solutions WATHEMATICS Extension 1: Question	Marks	Marker's Comments
a) we know $\leq P(x=\infty)=1$ $x \in X$	1	
$0.2 + 0.6 P^{2} + 0.1 + 1 - P + 0.1 = 1$ $0.6 P^{2} - P + 0.4 = 0$ $3 P^{2} - 5 P + 2 = 0$ $3 P^{2} - 3 P - 2 P + 2 = 0$ $3 P - 2 P - 1 - 2 P - 1 = 0$ $(3P - 2) (P - 1) = 0$		some students come came out with only one value of P, so were penalised
$P = \frac{2}{3} P = 1$ (b) $P = \frac{2}{3}$	1	
i) $E(x) = 0.2 \times 0 + 0.6 \times (\frac{2}{3})^2 + 0.1 \times 2 + (-\frac{2}{3}) \times 3 + 0.1 \times 4$ $= 1.87$	1	This is a sverong or right answer type questron. So students were awarded one mark if rout or zero mark if wrong.

MATHEMATICS Extension 2: Question	m 23	
Suggested Solutions	Marks	Marker's Comments
P(X > E(X)) $P(X > 1.87) = P(X = 2,3,4)$ $= 0.1 + 1-2/3 + 0.1$ $= 0.53 = 0.5$	Ô	most students got it correct.
(iii) $VaY(X) = E(X) - N^{2}$ $= 0 + 0 + 0 \cdot 6 \times (\frac{2}{3})^{2} + 0 \cdot 1 \times 4$ $+ \frac{1}{3} \times 9 + 16 \times 0 \cdot 1 - 1 \cdot 8 \cdot 7^{2}$ $= 5 \cdot 267 - 3 \cdot 497$ $= 1 \cdot 77 (2d \cdot P)$	1	Right or wrong questron most students got it correct.

MATHEMATICS Extension : Question	n 24	<u></u>
Suggested Solutions	Marks	Marker's Comments
a) $\mu = 4.5$ $Z = \frac{5.5 - \mu}{6} \text{ Given } P(x > 5.5)$ $= 0.0465$		
$\frac{x-\mu}{6} > \frac{5.5-\mu}{6}$ $\phi(z > \frac{5.5-\mu}{6}) = 0.0465$		
1-0-0465 = 0-9535		mayority of
Z for this 1-68 from the table $\frac{5.5-1}{1.68}=6$	1	the students got it right
$\frac{1.68}{6} = \frac{5.5 - 4.5}{1.68} = 0.5952$	I	
$P(3.8 < X < 4.8)$ $= \phi(\frac{3.8 - 4.5}{0.595} < 2 = \frac{4.8 - 4.5}{0.595})$		I mundo d
= \$ (-1-186< Z<6.500)	1	I rounded Up z-score to 2d.P.
$= \phi(0.50) + \phi(1.18) - 1$		oten ce variations in answers expected and
= 0.6915 + 0.8810 - 1 $= 0.5725$	1	were given fullo credit.

MATHEMATICS Extension b: Question	n. 25.	
Suggested Solutions	Marks	Marker's Comments
Suggested Solutions a) $\frac{d}{dx} e^{3x} (\cos x - 3 \sin x)$ use product rule $u = e^{3x} (\cos x - 3 \sin x)$ $v = \cos x - 3 \sin x$ $v' = -\sin x - 3 \cos x$ $v' = -\cos x - 3 \cos x$		This per question was fairly done by most students.

 $T:\label{thm:constraint} T:\label{thm:constraint} T:\label{thm:constr$

26. A telecommunications box is to be placed at some point Q along a road PQR, as shown in the diagram below. Two cables will connect the box to relay stations at A and B. Let AP = 2 km be the perpendicular distance from A to the road, and similarly, let BR = km be the perpendicular distance from B to the road. The distance PR is 5 km.

By letting Q = x kilometres, show that the total length L of the cable is given by

 $L = \sqrt{x^2 + 4} + \sqrt{x^2 - 10x + 26}$

A0 = 5	$\chi^2 + 2^2$	QB=V(5-x)2+12	
Bu	Puthagoras	Theorem.	

Question continues...

b) Hence find the location of Q such that the total length of the cable is minimised.	3
dL 2 + 2-5	
$dx \sqrt{x^2+4} \sqrt{x^2-10x+26}$	
Chlipper - VI when di	
Stationary point when dL o	
$= \frac{5-x}{\sqrt{x^2+1}} = \frac{5-x}{\sqrt{x^2-10x+26}}$	
$\sqrt{x^2+1}$ $\sqrt{x^2-10x+26}$	
Squaring both sides (note: this introduces an extra s	olution)
$\chi^2 = (5-x)^2$	
$x^2 + 4$ $x^2 - 10x + 26$	
$x^4 - 10x^3 + 26x^2 = 25x^2 - 10x^3 + x^4 + 100 - 40x + 4$	ײ
$0 = 3x^2 - 40x + 100$ $0 = (3x - 10)(x - 10)$	
$\chi = 10 \text{ or } 10$	
But 10 exceeds construction, and does not satisf	fy (*)
(it is the extra solution introduced by squanhy).	
Hence, $x = 10$ only. $x \mid 0 \mid 10/3 \mid 5$	
du 126	D
$\lambda = \frac{10}{3}$ is a beal minimum.	
a should be located 10 km more man	was a
from P to minimise the length of cal	le.

Examination continues...

27. The equation of a circle is given by

$$x^2 + y^2 + 4x - 2y - 20 = 0$$

a) Find the centre and radius of the circle.

2

$(x+2)^2 + (y-1)^2 = 25$	x + 4x + 4 + 4	$^{2}-2y+1=25$
	$(x+2)^2 + (y-1)^2$	1)2 = 25
5	7	,
	***************************************	•••••

centre: (-2,1)
radius = 5 units

b) Hence evaluate

2

$$\int_{-7}^{3} 1 + \sqrt{21 - 4x - x^2} \ dx$$

$$21 - (x^2 + 4x) = 21 - ((x+2)^2 - 4)$$

 $= 25 - (x+2)^2$

OR
$$(x+2)^2 + (y-1)^2 = 25$$

 $^{2} = 25 - (\chi + 2)^{2}$

y-1 = \(\frac{725-(x+2)}{}

 $y = 1 + \sqrt{21 - 4x - x^2}$ Hence $\int_{-7}^{3} 1 + \sqrt{21 - 4x - x^2} dx$

7 3

 $= 10 + 25\pi u^2 - 0$

2

 $v(t) = \frac{100}{(t+2)^2}$ a) Discuss v(t) as $t \to \infty$ and hence the motion of the boat. So the boat forever slows approaching zero velocity b) Show that the acceleration on the boat is always oppositely directed to its motion. 2 V(t) > 0 as t > 0, $\frac{100}{(t+2)^2} > 0$ Since + 70, (E+2)3 > 0 50 -200 < 0 negatively directed. Hence acceleration opposes notron. To the nearest metre, how far does the boat travel from t = 5 to t = 10 seconds? $z = \int_{0}^{100} (t+2)^{-2} dt$

A boat travelling in a straight line in a still lake has its engine turned off at time t = 0 seconds. Its

velocity v metres per second at time t seconds thereafter is given by

28.

29. The diagram below shows the area bounded between two curves, $y = \sqrt{x}$ and y = x.

Consider the region bounded by the curves, the line x = 0 and x = k, where k > 1.

For what value of k will the area to the left of point P be equal to the area to the right of P?

$$\int_{0}^{1} x^{\frac{1}{2}} - x \, dx = \int_{0}^{1} x - x^{\frac{1}{2}} \, dx - 0$$

$$\begin{bmatrix} \frac{2}{3}x^{\frac{3}{2}} - \frac{2^{2}}{2} \end{bmatrix}_{0}^{1} = \begin{bmatrix} \frac{2}{3}x^{2} & \frac{2x^{\frac{3}{2}}}{3} \end{bmatrix}_{0}^{1}$$

$$\frac{2}{3}x^{\frac{3}{2}} - \frac{2^{2}}{2} \end{bmatrix}_{0}^{1} = \begin{bmatrix} \frac{2}{3}x^{2} & \frac{2x^{\frac{3}{2}}}{3} \end{bmatrix}_{0}^{1}$$

$$\frac{2}{3}x^{\frac{3}{2}} - \frac{2x^{\frac{3}{2}}}{3} = 0$$

$$\frac{2}{3}x^{\frac{3}} - \frac{2x^{\frac{3}{2}}}{3} = 0$$

$$\frac{2}{3}x^{\frac{3}} - \frac{2x^{\frac{3}{2}}}{3} = 0$$

Consider the probability density function f for a random variable X given by 30.

$$f(x) = \begin{cases} \frac{a}{\sqrt{9+2x}} ; & 0 \le x \le 8\\ 0 & ; \text{ otherwise} \end{cases}$$

where a is a constant.

a) Find the value of a.

2

2

b) Find the cumulative distribution function, F(x).

So
$$F(x) = \begin{cases} 0 & \text{for } x < 0 \\ \frac{1}{2} & \text{for } x > 8 \end{cases}$$

c) Hence find the interquartile range, $Q_3 - Q_1$.

3

PQR = Q3 - Q1

 $F(x) = \frac{1}{2} \sqrt{9 + 2x} - \frac{3}{2} \implies x = \left[2\left(\frac{3}{2} + F(x)\right)^2 - 9\right]$

Q3 when F(x) = 3/4

 $Q_3 = \left(2\left(\frac{3}{2} + \frac{3}{4}\right)\right)^2 - 9 + \frac{45}{8} \text{ or } 5.625$

a, when F(x) = 14

 $Q_1 = \left(2\left(\frac{3}{2} + \frac{1}{4}\right)^2 - 9 = \frac{13}{8} \text{ or } 1.625$

 $IQR = Q_3 - Q_1 = 4$

Examination continues...

31. Let X denote a normally distributed random variable with mean 0 and standard deviation 1.

The random variable X has probability density function

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$

where $-\infty < x < \infty$.

The diagram below shows the graph of y = f(x).

Complete the table of values for the function given. Give your answer correct to four significant figures.

X = x 0 1 2 f(x) 0.3989 0.2420 0.05399

b) Using the trapezoidal rule and part (a), determine, to four significant figures, the value of

1

2

 $P(-2 \le X \le 2) = \int_{-2}^{2} f(x) \ dx$

Since f(-x) = f(x) $\int_{-2}^{2} f(x) dx = 2 \int_{0}^{2} f(x) dx$.

So **b** $P(-2 \le X \le 2) = 2 \int_{0}^{2} f(x) dx$ **company**

2 × 1/2 [0.3989+2 × 0.2420 + 0.05399

⇒ 0.9369 (4 significant figures).

.

32. The diagram below shows a sphere of radius R and centre O circumscribing a square pyramid. The points A, B, C, D and S all lie on the surface of the sphere and form the vertices of the pyramid with ABCD the base. The point T lies directly beneath O and lies in the base of the pyramid such that $AT \perp OT$.

a) Let x = OT. Show that the volume of the pyramid is

$$V = \frac{2}{3}(R + x)^2(R - x)$$

3

Base = $2\sqrt{R^2 - \chi^2}\sqrt{R^2 - \chi^2}$ = $2(R^2 - \chi^2)$

Height = x+R — O

 $V = \frac{1}{3} \times 2 \times (R^2 - \chi^2) \times (\chi + R)$

 $= \frac{2}{3} (R+z)(R-x)(R+x)$

 $V = \frac{2}{3} \left(R + z \right)^2 \left(R - z \right).$

.....

Question continues...

b) Hence find the maximum volume a square pyramid may take when its vertices are circumscribed by a sphere of radius R.

3

$$V = \frac{2}{3} (R + \chi)^2 (R - \chi)$$

$$\frac{dV}{dx} = \frac{2}{3} \left[\frac{2(R+x)(R-x) - (R+x)^2}{3} \right]$$

$$0 = \frac{2}{3} \left[2 (R + x) (R - x) - (R + x)^{2} \right]$$

$$0 = (R + x) \left[2(R - x) - (R + x) \right]$$

$$0 = 2R - 2x - R - x \qquad (R \neq -x; R, x > 0 \text{ as lengths}).$$

$$\lambda = \frac{R}{3}$$

$$\frac{d^{2}V}{dx^{2}} = \frac{2}{3} \left[2(-2x) - 2(R + x) \right]$$

$$= -\frac{4}{3} \left(3x + R \right) \qquad \qquad \boxed{0 + est}$$

when
$$x = \frac{R}{3} \frac{d^2 V}{dr^2} = \frac{A}{3} (R+R) (0)$$
 as $R > 0$

Hence max volume :
$$V(\frac{R}{3}) = \frac{2}{3}(R + \frac{R}{3})^2(R - \frac{R}{3})$$

= $\frac{2}{3} \times \frac{16R^2}{3} \times \frac{2R}{3} = \frac{64}{8}R^3$

END OF EXAMINATION