# The Ideal Continual Learner: An Agent That Never Forgets

Liangzu Peng<sup>1</sup>

Paris V. Giampouras<sup>1</sup>

René Vidal<sup>2,3</sup>

<sup>1</sup>Johns Hopkins University

<sup>2</sup>University of Pennsylvania

<sup>3</sup>NORCE Norwegian Research Centre, Norway



# **Continual Learning: Problem Setup**

$$\mathcal{G}_t \coloneqq \operatorname*{argmin}_{w \in \mathcal{W}} L_t(w; D_t)$$

- $L_t$ : Loss function of task t
- D<sub>t</sub>: Data for task t
- W: Search space
- $\mathcal{G}_t$ : The set of global minimizers
- Tasks 1, ..., T are presented sequentially
- Goal: learn a model  $\widehat{w}_T$  that solves all tasks
- Challenge ("Catastrophic Forgetting"): model  $\widehat{w}_T$  may perform poorly on previous tasks

# **Methods to Prevent Forgetting**

Regularization-based, e.g.,

$$\min_{\mathbf{w}\in\mathcal{W}} L_t(\mathbf{w}; D_t) + \delta \cdot \left| |\mathbf{w} - \widehat{\mathbf{w}}_{t-1}| \right|_2$$

- *Memory-based*, e.g., rehearsal: train with current data and part of previous data
- Expansion-based: tasks ↑ ⇒ parameters ↑,
   only train on new parameters

These methods greatly improved empirical performance in the deep learning context!

Theory that can explain their empirical success has been few and far between!!!

# The Ideal Continual Learner (ICL)

With  $\mathcal{K}_t \coloneqq \mathcal{W}$ , **ICL** is a method that solves  $\mathcal{K}_t \coloneqq \operatorname*{argmin} L_t(w; D_t)$   $\underset{w \in \mathcal{K}_{t-1}}{\mathcal{H}_t}$ 

sequentially, for t = 1, 2, ..., T.

### ICL Never Forgets by Design

Suppose  $\bigcap_{t=1}^T \mathcal{G}_t \neq \emptyset$ . Then:

Bunch & Nielsen (1978)

- / ICL is sufficient to prevent forgetting
- The storage consumption of ICL is minimal to prevent catastrophic forgetting

Witsenhausen (1968)

# Oja (1982), Yang (1995) Chamon et al. (2022) Incremental SVD Streaming PCA Subspace Tracking Constrained Learning Continual Matrix Factorization Continual Matrix Factorization

#### The Ideal Continual Learner



# Take-Away Messages from ICL

History & Future (Figure in the middle)
Connections of ICL to other topics shed light
on historical remarks & research avenues

#### All Roads Lead to Rome

ICL can be viewed as a regularizationbased, memory-based (projection-based), or expansion-based method. Put differently, these methods, designed via engineering insights, are all Ideal Continual Learners.

# Rehearsal is an Ideal Continual Learner

We prove the first generalization guarantee for rehearsal, a highly performant memory-based method

# Wider Networks ⇒ Less Forgetting

By analyzing ICL, we rigorously show, for the first time, that wider neural networks forget less catastrophically.

#### **Conclusion & Limitation**

- ICL is the first general theoretical framework that never forgets by design
- Implementing ICL is challenging, but approximating it is possible

Acknowledgements: Work supported by the project ULEARN "Unsupervised Lifelong Learning" and co-funded under the grant number 316080 of the Research Council of Norway.