Größenvergleich zwischen Rotation und Translation

Emil Staikov

In den bisherigen Ausarbeitungen haben wir verschiedene Äquivalenzen zwischen Größen in der Rotations- und Translationsbewegung gefunden, hier halten wir sie tabellarisch fest.

Translation	Rotation
$\operatorname{Weg} s$	Winkel φ
Geschwindigkeit $v = \frac{\Delta s}{\Delta t}$	Winkelgeschwindigkeit $\omega = \frac{\Delta \varphi}{\Delta t}$
Beschleunigung $a = \frac{\Delta v}{\Delta t}$	Winkelbeschleunigung $\alpha = \frac{\Delta\omega}{\Delta t}$
Kraft F	Drehmoment $M = rF \sin \theta \ (\theta = \angle \vec{r}\vec{F})$
Masse m	Trägheitsmoment $I = \sum_{i=0}^{n} m_i r_i^2$
2. Newton'sches Axiom $F = ma$	2. Newton'sches Axiom $M = I\alpha$
Kin En.der Translation $E_{kin} = \frac{1}{2}mv^2$	Kin. En. der Rotation $E_{kin} = \frac{1}{2}I\omega^2$
Impuls $p = mv$	Drehimpuls $L = I\omega$
Impulserhaltung $\sum F = 0 \implies p = const.$	Drehimpulserhaltung $\sum M = 0 \implies L = const.$