

FCC PART 15.407 TEST REPORT

For

Iconnect

No.9, Aly. 58, Ln. 112, Ruiguang Rd., Neihu Dist., Taipei City, Taiwan

FCC ID: 2AB878814

Product Name: Report Type:

802.11ac Long-Range USB Adapter Original Report

Dual-Band 2.4GHz/5GHz

Tom Tong

Test Engineer: Tom Tang

Report Number: RDG170103003B

Report Date: 2017-03-31

Henry Ding

EMC Leader Reviewed By:

Bay Area Compliance Laboratories Corp. (Chengdu)

Test Laboratory: No.5040, Huilongwan Plaza, No.1, Shawan Road,

Jinniu District, Chengdu, Sichuan, China Tel: 028-65523123, Fax: 028-65525125

www.baclcorp.com

Note: This test report was prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Chengdu). Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. This report was valid only with a valid digital signature.

Report No.: RDG170103003B

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGYTEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT EXERCISE SOFTWARE	
EQUIPMENT MODIFICATIONS	
LOCAL SUPPORT EQUIPMENT LIST AND DETAILS	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
FCC §15.407 (f) & §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	
APPLICABLE STANDARD	
FCC §15.203 – ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
Antenna Connector Construction	
FCC §15.407 (b) (6) §15.207 (a) – CONDUCTED EMISSIONS	20
APPLICABLE STANDARD	20
MEASUREMENT UNCERTAINTY	
EUT SETUP	
EMI TEST RECEIVER SETUP	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
TEST RESULTS SUMMARY	
Test Data	22
FCC §15.209, §15.205 & §15.407(b) -UNWANTED EMISSION	25
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	
EUT SETUPEST RECEIVER & SPECTRUM ANALYZER SETUP	26
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST EQUIPMENT LIST AND DETAILS	
Test Data	29
FCC §15.407(b)-OUT- OF-BAND EMISSIONS	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILSTEST DATA	
FCC §15.407(a) –EMISSION BANDWIDTH AND OCCUPIED BANDWIDTH	
APPLICABLE STANDARD	
APPLICABLE STANDARD	106

Page 2 of 195

TEST EQUIPMENT LIST AND DETAILS	106
Test Procedure	106
Test Data	106
FCC §15.407(g)-FREQUENCY STABILITY	127
APPLICABLE STANDARD	127
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	127
Test Data	127
FCC §15.407(a) -MAXIMUM CONDUCTED OUTPUT POWER	129
APPLICABLE STANDARD	129
TEST EQUIPMENT LIST AND DETAILS	130
Test Procedure	
Test Data	130
FCC §15.407(a) - POWER SPECTRAL DENSITY	133
APPLICABLE STANDARD	133
Test Procedure	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	134

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Iconnect*'s product, model number: *AWUS1900 (FCC ID: 2AB878814)* (the "EUT") in this report was a *802.11ac Long-Range USB Adapter Dual-Band 2.4GHz/5GHz*, which was measured approximately: 8.5 cm (L) × 6.2 cm (W) × 2 cm (H), rated input voltage: DC 5V from USB port.

Note: The series product, model AWUS1900, AC1900U, AC1900UH, AWUS1900H, NU1900, UBDo-1900, AWUS036AC-1900, Tube-UAC, ID-1900AC, ID-1900ACH, AWUS036ACM, AWUS036ACHM are electrically identical, the difference between them is the model name, we selected AWUS1900 for fully testing, the details was explained in the attached declaration letter.

*All measurement and test data in this report was gathered from final production sample, serial number: 170103003 (assigned by the BACL, Chengdu). It may have deviation from any other sample. The EUT supplied by the applicant was received on 2017-01-04, and EUT conformed to test requirement.

Objective

This type approval report is prepared on behalf of *Iconnect* in accordance with Part 2-Subpart J, Part 15-Subparts A, B and E of the Federal Communications Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart E, section 15.203, 15.205, 15.207, 15.209 and 15.407 rules.

Related Submittal(s)/Grant(s)

FCC Part 15C DTS submissions with FCC ID: 2AB878814.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Chengdu). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

The uncertainty of any RF tests which use conducted method measurement is ±3.17 dB, the uncertainty of any radiation on emissions measurement is:

30M~200MHz: ±4.7 dB; 200M~1GHz: ±6.0 dB; 1G~6GHz: ±5.13dB; 6G~25GHz: ±5.47dB;

And the uncertainty will not be taken into consideration for all test data recorded in the report.

Report No.: RDG170103003B Page 4 of 195

Test Facility

The test site used by BACL to collect test data is located in the No.5040, Huilongwan Plaza, No.1, Shawan Road, Jinniu District, Chengdu, Sichuan, China

Test site at BACL has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on April 24, 2015. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 560332. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Report No.: RDG170103003B Page 5 of 195

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The EUT was configured for testing in an engineering mode which was provided by the manufacturer.

The system support 802.11a/n ht20/n ht40/ac vht80, the vh20/vht40 were reduced since the identical parameters with 802.11n ht20 and ht40.

For 5150~5250 MHz band, 7 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	44	5220
38	5190	46	5230
40	5200	48	5240
42	5210	1	1

For 5725~5850MHz band, 8 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	157	5785
151	5755	159	5795
153	5765	161	5805
155	5775	165	5825

The worst-case data rates are determined to be as follows for each mode based upon investigations by measuring the average power and PSD across all data rates bandwidths, and modulations. Preliminary tests were perfrmed in difference data rate and all the possible configurations, the worst cases as below table and shown in the report.

Configurations	Test Mode	Data Rate	Channel	Antenna Chain
	802.11a	6Mbps	36,40,48,149, 157, 165	0, 1, 2
SISO	802.11n ht20	MCS0	36,40,48,149, 157, 165	0, 1, 2
	802.11n ht40	MCS0	38,46,151, 159	0, 1, 2
	802.11ac 80	Nss1-MCS0	42, 155	0, 1, 2
	802.11n ht20	MCS8	36,40,48,149, 157, 165	0+1
2*2 MIMO	802.11n ht40	MCS8	38,46,151, 159	0+1
	802.11ac 80	Nss2-MCS8	42, 155	0+1
	802.11n ht20	MCS16	36,40,48,149, 157, 165	0+1+2
3*3 MIMO	802.11n ht40	MCS16	38,46,151, 159	0+1+2
	802.11ac 80	Nss3-MCS16	42, 155	0+1+2

Report No.: RDG170103003B Page 6 of 195

EUT Exercise Software

The software "MP_Kit_RTL11ac_8814AU_USB_v2.24_20151117(BETA)" was used for testing, and the commands were provided by manufacturer. The maximum power and duty cycle was set by commands as following table:

SISO:

			Eroguanav	Data Rate	F	Power Level		
UNII Band	Mode	Channel	Frequency (MHz)	-		Chain 1	Chain 2	
		Low	5180	6	41	46	45	
	802.11 a	Middle	5200	6	41	48	47	
		High	5240	6	41	50	47	
	222 44	Low	5180	MCS0	40	43	42	
5150- 5250MHz	802.11n ht20	Middle	5200	MCS0	40	48	46	
3230WII 12	11120	High	5240	MCS0	40	51	48	
	802.11n	Low	5190	MCS0	39	43	42	
	ht40	High	5230	MCS0	39	46	43	
	802.11 ac80	Middle	5210	Nss1MCS0	38	41	41	
		Low	5745	6	52	53	45	
	802.11 a	Middle	5785	6	52	53	45	
		High	5825	6	52	53	45	
		Low	5745	MCS0	52	53	45	
5725- 5850MHz	5725- 802.11n 5850MHz ht20	Middle	5785	MCS0	52	53	45	
303010112	High	5825	MCS0	52	53	45		
	802.11n ht40	Low	5755	MCS0	52	53	45	
		High	5795	MCS0	52	53	45	
	802.11 ac80	Middle	5775	Nss1MCS0	52	53	45	

MIMO 2TX:

UNII Band	Mode	Channel	Eregueney (MHz)	Data Bata (Mhna)	Power Level
UNII Band	Wode	Channel	Frequency (MHz)	Data Rate (Mbps)	Chain 0&Chain 1
		Low	5180	MCS8	43
	802.11n ht20	Middle	5200	MCS8	43
5150-5250MHz		High	5240	MCS8	43
5150-5250WHZ	802.11n ht40	Low	5190	MCS8	43
	602.1111111 4 0	High	5230	MCS8	43
	802.11 ac80	Middle	5210	Nss2MCS0	41
		Low	5745	MCS8	56
	802.11n ht20	Middle	5785	MCS8	56
EZOE ESEGNALIA		High	5825	MCS8	56
5725-5850MHz 802.11n	902 11 p bt 10	Low	5755	MCS8	54
	002.11N Nt40	High	5795	MCS8	54
	802.11 ac80	Middle	5775	Nss2MCS0	54

Report No.: RDG170103003B Page 7 of 195

MIMO 3TX:

Softwa	are and version		MP_Kit_RTL1	1ac_8814AU_USB_v	v2.24_20151117(BETA)
UNII Band	Mode	Channel	Fraguency (MUz)	Data Rate (Mbps)	Power Level
UNII Ballu	Wode	Chamile	Frequency (MHz)	Data Nate (MDPS)	Chain 0&Chain 1&Chain 2
		Low	5180	MCS16	38
	802.11n ht20	Middle	5200	MCS16	38
5150-5250MHz		High	5240	MCS16	38
3130-3230IVITZ	802.11n ht40	Low	5190	MCS16	38
	002.111111140	High	5230	MCS16	38
	802.11 ac80	Middle	5210	Nss3MCS0	38
		Low	5745	MCS16	60
	802.11n ht20	Middle	5785	MCS16	60
5725-5850MHz	5705 5050MIL	High	5825	MCS16	60
	802.11n ht40	Low	5755	MCS16	62
	002.111111140	High	5795	MCS16	62
	802.11 ac80	Middle	5775	Nss3MCS0	62

Report No.: RDG170103003B Page 8 of 195

The duty cycle as below:

Mode	T _{on} (ms)	T _{on+off} (ms)	Duty Cycle (%)	Minimum Transmission Duration (T) (ms)
802.11 a	5	5	100	/
802.11n ht20	5	5	100	/
802.11n ht40	5	5	100	/
802.11 ac80	5	5	100	/
802.11n ht20_MCS8	5	5	100	/
802.11n ht40_MCS8	5	5	100	/
802.11 ac80_Nss2 MCS0	5	5	100	/
802.11n ht20_MCS16	5	5	100	/
802.11n ht40_MCS16	5	5	100	/
802.11 ac80_Nss3 MCS0	5	5	100	/

802.11a

Report No.: RDG170103003B Page 9 of 195

te: 15.JAN.2017 10:23:41

Center 5.745 GHz

802.11 n40

500 ****s/

Report No.: RDG170103003B Page 10 of 195

802.11 n20_MCS8

Report No.: RDG170103003B Page 11 of 195

802.11 n40_MCS8

802.11 ac80_Nss2 MCS0

Report No.: RDG170103003B Page 12 of 195

802.11 n20_MCS16

802.11 n40_MCS16

Report No.: RDG170103003B Page 13 of 195

Equipment Modifications

No modification was made to the EUT.

Local Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
DELL	Laptop	Inspiron	DD6SX23112221

Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
DC Cable	yes	No	1.3	Adapter	Laptop
USB Cable	yes	No	1.0	USB Port of PC	EUT

Report No.: RDG170103003B Page 14 of 195

Block Diagram of Test Setup

Report No.: RDG170103003B Page 15 of 195

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.407 (f) & §1.1310 & §2.1091	Maximum Permissable Exposure (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.407(b)(6)& §15.207(a)	Conducted Emissions	Compliance
§15.205& §15.209 &§15.407(b)	Undesirable Emission& Restricted Bands	Compliance
§15.407(b)	Out Of Band Emissions	Compliance
§15.407(a) (1)	6 dB Emission Bandwidth	Compliance
§15.407(g)	Frequency Stability	Compliance
§15.407(a)(1),	Conducted Transmitter Output Power	Compliance
§15.407 (a)(1),(5)	Power Spectral Density	Compliance

Report No.: RDG170103003B Page 16 of 195

FCC §15.407 (f) & §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.407(f)and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure									
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)					
0.3–1.34	614	1.63	*(100)	30					
1.34–30	824/f	2.19/f	*(180/f²)	30					
30–300	27.5	0.073	0.2	30					
300–1500	1	1	f/1500	30					
1500–100,000	1	1	1.0	30					

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2 = power density (in appropriate units, e.g. mW/cm²);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

For simultaneously transmit system, the calculated power density should comply with:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} \le 1$$

Report No.: RDG170103003B Page 17 of 195

Calculated Data:

Frequency	Antenna Gain		Tune-up Power		Evaluation	Power	MPE Limit	
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	Distance (cm)	Density (mW/cm²)	(mW/cm ²)	
2400- 2483.5	3	2.00	27	501.19	20.00	0.20	1.0	
5150-5850	4	2.51	22	158.49	20.00	0.08	1.0	

The 2.4GHz and 5GHz band can transmit simultaneously:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}}$$

$$=S_{2.4}/S_{\text{limit-2.4}} + S_5/S_{\text{limit-5}}$$

Result: The device meet FCC MPE at 20 cm distance

Report No.: RDG170103003B Page 18 of 195

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to FCC 47 CFR section 15.407 (a)(1),if transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT have 4 dipole antennas with RP-SMA connector, all the antenna gains are 3.0 dBi in 2.4G band, 4dBi in 5GHz bands, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliance.

Report No.: RDG170103003B Page 19 of 195

FCC §15.407 (b) (6) §15.207 (a) – CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a), §15.407(b) (6).

Measurement Uncertainty

Compliance or non- compliance with a disturbance limit shall be determined in the following manner:

If U_{lab} is less than or equal to U_{cispr} of Table 1, then:

- -compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- -non compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit.

- If U_{lab} is greater than U_{cispr} of Table 1, then:

 -compliance is deemed to occur if no measured disturbance level, increased by ($U_{\text{lab}} U_{\text{cispr}}$), exceeds the disturbance limit:
- -non compliance is deemed to occur if any measured disturbance level, increased by (U_{lab} - U_{cispr}), exceeds the disturbance limit.

Based on CISPR 16-4-2:2011, measurement uncertainty of conducted disturbance at mains port using AMN at Bay Area Compliance Laboratories Corp. (Chengdu) is ±3.17 dB (150 kHz to 30 MHz).

Table 1 – Values of U_{cispr}

Measurement	U cispr
Conducted disturbance at mains port using AMN (150 kHz to 30 MHz)	3.4 dB

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

Report No.: RDG170103003B Page 20 of 195

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter was connected to a 120 V/60 Hz AC power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_C + VDF$$

 $C_f = A_C + VDF$

Herein.

V_C (cord. Reading): corrected voltage amplitude

V_R: reading voltage amplitude

A_c: attenuation caused by cable loss VDF: voltage division factor of AMN

C_f: Correction Factor

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Report No.: RDG170103003B Page 21 of 195

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS 30	836858/0016	2016-12-02	2017-12-01
Rohde & Schwarz	L.I.S.N.	ENV216	3560.6550.06	2016-12-02	2017-12-01
Rohde & Schwarz	PULSE LIMITER	ESH3Z2	357.8810.52	2016-10-31	2017-10-30
N/A	Conducted Cable	NO.5	N/A	2016-11-10	2017-11-09
R&S	Test Software	EMC32	Version8.53.0	N/A	N/A

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

During the conducted emission test, the adapter was connected to the first LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207.

Test Data

Environmental Conditions

Temperature:	23 °C
Relative Humidity:	41 %
ATM Pressure:	95.6 kPa

The testing was performed by Tom Tang on 2017-01-14.

Report No.: RDG170103003B Page 22 of 195

AC120 V, 60 Hz, Line:

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.150000	44.7	9.000	L1	19.7	21.3	66.0	Compliance
0.192030	52.7	9.000	L1	19.7	11.2	63.9	Compliance
0.268355	43.9	9.000	L1	19.7	17.3	61.2	Compliance
0.274848	43.4	9.000	L1	19.7	17.6	61.0	Compliance
0.324910	42.9	9.000	L1	19.7	16.7	59.6	Compliance
4.469698	42.1	9.000	L1	19.7	13.9	56.0	Compliance

Frequency (MHz)	Average (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.196675	39.9	9.000	L1	19.7	13.8	53.7	Compliance
1.239175	31.2	9.000	L1	19.7	14.8	46.0	Compliance
1.289541	32.5	9.000	L1	19.7	13.5	46.0	Compliance
2.234662	30.2	9.000	L1	19.7	15.8	46.0	Compliance
4.469698	31.6	9.000	L1	19.7	14.4	46.0	Compliance
6.764347	31.2	9.000	L1	19.8	18.8	50.0	Compliance

Report No.: RDG170103003B Page 23 of 195

AC120 V, 60 Hz, Neutral:

requency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.195114	52.0	9.000	N	19.6	11.8	63.8	Compliance
0.207957	50.0	9.000	N	19.6	13.3	63.3	Compliance
0.211298	48.2	9.000	N	19.6	15.0	63.2	Compliance
2.030886	41.7	9.000	N	19.7	14.3	56.0	Compliance
2.164561	41.7	9.000	N	19.7	14.3	56.0	Compliance
4.399032	42.0	9.000	N	19.7	14.0	56.0	Compliance

Frequency (MHz)	Average (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.198249	39.2	9.000	N	19.6	14.5	53.7	Compliance
0.268355	30.3	9.000	N	19.6	20.9	51.2	Compliance
1.239175	29.6	9.000	N	19.6	16.4	46.0	Compliance
1.289541	31.3	9.000	N	19.6	14.7	46.0	Compliance
2.164561	31.0	9.000	N	19.7	15.0	46.0	Compliance
4.329484	32.9	9.000	N	19.7	13.1	46.0	Compliance

Report No.: RDG170103003B Page 24 of 195

FCC §15.209, §15.205 & §15.407(b) -UNWANTED EMISSION

Applicable Standard

FCC §15.407; §15.209; §15.205;

- (b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:
- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band: All emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17 dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.
 - (7) The provisions of §15.205 apply to intentional radiators operating under this section.

Measurement Uncertainty

Compliance or non- compliance with a disturbance limit shall be determined in the following manner:

If U_{lab} is less than or equal to U_{cispr} of Table 2, then:

- -compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- -non compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit.
- If U_{lab} is greater than U_{cispr} of Table 2, then:
- –compliance is deemed to occur if no measured disturbance level, increased by ($U_{lab} U_{cispr}$), exceeds the disturbance limit;
- -non compliance is deemed to occur if any measured disturbance level, increased by (U_{lab} U_{cispr}), exceeds the disturbance limit.

Report No.: RDG170103003B Page 25 of 195

Based on CISPR 16-4-2-2011, measurement uncertainty of radiated emission at a distance of 3m at Bay Area Compliance Laboratories Corp. (Chengdu) is:

30M~200MHz: ±4.7 dB; 200M~1GHz: ±6.0 dB; 1G~6GHz: ±5.13dB; 6G~25GHz: ±5.47 dB;

Table 2 – Values of U_{cispr}

Measurement				
Radiated disturbance (electric field strength at an OATS or in a SAC) (30 MHz to 1000 MHz)	6.3 dB			
Radiated disturbance (electric field strength in a FAR) (1 GHz to 6 GHz)	5.2 dB			
Radiated disturbance (electric field strength in a FAR) (6 GHz to 18 GHz)	5.5 dB			

EUT Setup

Below 1 GHz:

Above 1 GHz:

Report No.: RDG170103003B Page 26 of 195

The radiated emission tests were performed in the 3 meters chamber, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.407 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 40 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

30-1000MHz:

	Frequency Range	RBW	Video B/W	IF B/W	Detector
I	30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP

1GHz- 40GHz:

Detector	Duty cycle	RBW	Video B/W	
PK	Any	1MHz	3 MHz	
Ave.	>98%	1MHz	10 Hz	
Ave.	<98%	1MHz	1/T	

Test Procedure

During the radiated emission test, the laptop was connected to the first AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1GHz, peak and Average detection modes for frequencies above 1GHz.

According to KDB 789033 D02 General UNII Test Procedures New Rules v01r03, emission shall be computed as: $E[dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters.

According to C63.10, the above 1G test result shall be extrapolated to the specified distance using an extrapolation factor of 20dB/decade from 3m to 1.5m

Distance extrapolation factor =20 log (specific distance [3m]/test distance [1.5m]) dB Extrapolation result = Corrected Amplitude ($dB\mu V/m$) - distance extrapolation factor (6dB)

Report No.: RDG170103003B Page 27 of 195

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Loss and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Loss + Cable Loss - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Extrapolation result -Limit

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	Amplifier	8447D	2944A10442	2016-12-02	2017-12-01
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2016-12-02	2017-12-01
Sunol Sciences	Broadband Antenna	JB3	A101808	2016-04-10	2019-04-09
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2016-12-02	2017-12-01
ETS	Horn Antenna	3115	003-6076	2016-12-02	2017-12-01
Ducommun Technologies	Horn Antenna	ARH-4223-02	1007726-0113024	2014-06-16	2017-06-15
Mini-circuits	Amplifier	ZVA-183-S+	771001215	2016-05-20	2017-05-19
EMCT	Semi-Anechoic Chamber	966	N/A	2015-04-24	2018-04-23
N/A	RF Cable (below 1GHz)	NO.1	N/A	2016-11-10	2017-11-09
N/A	RF Cable (below 1GHz)	NO.4	N/A	2016-11-10	2017-11-09
N/A	RF Cable (above 1GHz)	NO.2	N/A	2016-11-10	2017-11-09
Ducommun Technolagies	Horn Antenna	ARH-2823-02	1007726-01 1312	2016-08-18	2017-08-18
Quinstar	Amplifier	QLW- 18405536-JO	15964001032	2016-08-18	2017-08-18
Agilent	Spectrum Analyzer	8564E	5943A01752	2016-08-18	2017-08-18

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Report No.: RDG170103003B Page 28 of 195

Test Data

Environmental Conditions

Temperature:	20.9~22.3 °C
Relative Humidity:	47~49 %
ATM Pressure:	94.8~95.2 kPa

^{*} The testing was performed by Tom Tang from 2017-01-15 to 2017-02-23.

Test Mode: Transmitting(Above 1GHz test performed at distance 1.5m from EUT to Antenna)

Report No.: RDG170103003B Page 29 of 195

SISO mode:

5150-5250MHz: 802.11a mode(Chain 0 was the worst)

002	. i ia mode	e(Chain 0 wa								
_	Re	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation		
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result dBµV/m	Limit (dBµV/m)	Margin (dB)
				Low	Channe	l:5180 MHz	7			
5180	67.31	PK	Н	31.72	5.21	0.00	104.24	98.24	N/A	N/A
5180	58.46	AV	Н	31.72	5.21	0.00	95.39	89.39	N/A	N/A
5180	77.03	PK	V	31.72	5.21	0.00	113.96	107.96	N/A	N/A
5180	68.24	AV	V	31.72	5.21	0.00	105.17	99.17	N/A	N/A
5150	31.80	PK	V	31.67	5.18	0.00	68.65	62.65	74	11.35
5150	17.33	AV	V	31.67	5.18	0.00	54.18	48.18	54	5.82
10360	34.76	PK	V	37.37	7.76	26.37	53.52	47.52	74	26.48
10360	22.10	AV	V	37.37	7.76	26.37	40.86	34.86	54	19.14
15540	36.95	PK	V	39.41	10.22	25.32	61.26	55.26	74	18.74
15540	23.80	AV	V	39.41	10.22	25.32	48.11	42.11	54	11.89
1692	29.00	PK	V	24.41	2.82	26.52	29.71	23.71	74	50.29
1692	17.65	AV	V	24.41	2.82	26.52	18.36	12.36	54	41.64
3621	33.54	PK	V	27.48	4.36	26.58	38.8	32.8	74	41.2
3621	20.32	AV	V	27.48	4.36	26.58	25.58	19.58	54	34.42
298.69	52.33	QP	Н	14.09	1.04	27.54	39.92	39.92	46.00	6.08
506.27	45.23	QP	Н	18.16	1.63	28.82	36.20	36.20	46.00	9.80
						el:5200 MF				
5200	67.15	PK	Н	31.76	5.23	0.00	104.14	98.14	N/A	N/A
5200	58.43	AV	Н	31.76	5.23	0.00	95.42	89.42	N/A	N/A
5200	77.82	PK	V	31.76	5.23	0.00	114.81	108.81	N/A	N/A
5200	68.24	AV	V	31.76	5.23	0.00	105.23	99.23	N/A	N/A
10400	34.54	PK	V	37.38	7.79	26.36	53.35	47.35	74	26.65
10400	22.03	AV	V	37.38	7.79	26.36	40.84	34.84	54	19.16
15600	36.76	PK	V	39.42	10.22	25.31	61.09	55.09	74	18.91
15600	23.79	AV	V	39.42	10.22	25.31	48.12	42.12	54	11.88
2009	30.38	PK	V	24.87	3.05	26.82	31.48	25.48	74	48.52
2009	18.17	AV	V	24.87	3.05	26.82	19.27	13.27	54	40.73
3147	36.95	PK	V	25.02	3.65	26.46	39.16	33.16	74	40.84
3147 298.69	24.47	AV		25.02	3.65	26.46	26.68	20.68	54	33.32
506.27	51.86 45.67	QP QP	H	14.09 18.16	1.04 1.63	27.54 28.82	39.45 36.64	39.45	46.00 46.00	6.55 9.36
300.27	43.07	QP QP	П			20.02 el:5240 MHz		36.64	40.00	9.30
5240	67.30	PK	Н	31.83	5.27	0.00	104.4	98.4	N/A	N/A
5240	58.09	AV	H	31.83	5.27	0.00	95.19	89.19	N/A	N/A
5240	77.78	PK	V	31.83	5.27	0.00	114.88	108.88	N/A	N/A
5240	69.15	AV	V	31.83	5.27	0.00	106.25	100.00	N/A	N/A
5350	27.64	PK	V	32.03	5.37	0.00	65.04	59.04	74	14.96
5350	14.90	AV	V	32.03	5.37	0.00	52.3	46.3	54	7.7
10480	33.87	PK	V	37.40	7.84	26.35	52.76	46.76	74	27.24
10480	21.85	AV	V	37.40	7.84	26.35	40.74	34.74	54	19.26
15720	35.87	PK	V	39.44	10.24	25.30	60.25	54.25	74	19.75
15720	23.26	AV	V	39.44	10.24	25.30	47.64	41.64	54	12.36
1810	29.58	PK	V	24.60	2.91	26.63	30.46	24.46	74	49.54
1810	17.87	AV	V	24.60	2.91	26.63	18.75	12.75	54	41.25
3264	35.59	PK	V	25.68	3.83	26.51	38.59	32.59	74	41.41
3264	23.07	AV	V	25.68	3.83	26.51	26.07	20.07	54	33.93
298.69	51.39	QP	Ĥ	14.09	1.04	27.54	38.98	38.98	46.00	7.02
506.27	46.11	QP	H	18.16	1.63	28.82	37.08	37.08	46.00	8.92

Report No.: RDG170103003B Page 30 of 195

802.11n ht20 mode(Chain 0 was the worst)

002		mode(Chain			St)					
Erocuonos	Re	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation	l insit	Manailla
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result dBµV/m	Limit (dBµV/m)	Margin (dB)
				Low	Channe	I:5180 MHz	<u>'</u>			
5180	65.96	PK	Н	31.72	5.21	0.00	102.89	96.89	N/A	N/A
5180	57.20	AV	Н	31.72	5.21	0.00	94.13	88.13	N/A	N/A
5180	76.21	PK	V	31.72	5.21	0.00	113.14	107.14	N/A	N/A
5180	67.79	AV	V	31.72	5.21	0.00	104.72	98.72	N/A	N/A
5150	31.56	PK	V	31.67	5.18	0.00	68.41	62.41	74	11.59
5150	17.50	AV	V	31.67	5.18	0.00	54.35	48.35	54	5.65
10360	34.94	PK	V	37.37	7.76	26.37	53.7	47.7	74	26.3
10360	22.00	AV	V	37.37	7.76	26.37	40.76	34.76	54	19.24
15540	36.61	PK	V	39.41	10.22	25.32	60.92	54.92	74	19.08
15540	24.64	AV	V	39.41	10.22	25.32	48.95	42.95	54	11.05
2113	30.92	PK	V	24.52	3.04	26.84	31.64	25.64	74	48.36
2113	19.20	AV	V	24.52	3.04	26.84	19.92	13.92	54	40.08
2936	37.41	PK	V	24.07	3.37	26.47	38.38	32.38	74	41.62
2936	24.41	AV	V	24.07	3.37	26.47	25.38	19.38	54	34.62
298.69	51.61	QP	Н	14.09	1.04	27.54	39.20	39.20	46.00	6.80
506.27	44.29	QP	Н	18.16	1.63	28.82	35.26	35.26	46.00	10.74
				Middl	e Chann	el:5200 MH	lz			
5200	67.22	PK	Н	31.76	5.23	0.00	104.21	98.21	N/A	N/A
5200	58.41	AV	Н	31.76	5.23	0.00	95.4	89.4	N/A	N/A
5200	78.13	PK	V	31.76	5.23	0.00	115.12	109.12	N/A	N/A
5200	59.86	AV	V	31.76	5.23	0.00	96.85	90.85	N/A	N/A
10400	35.23	PK	V	37.38	7.79	26.36	54.04	48.04	74	19.96
10400	22.14	AV	V	37.38	7.79	26.36	40.95	34.95	54	13.05
15600	36.39	PK	V	39.42	10.22	25.31	60.72	54.72	74	13.28
15600	24.59	AV	V	39.42	10.22	25.31	48.92	42.92	54	5.08
1670	29.31	PK	V	24.37	2.80	26.50	29.98	23.98	74	44.02
1670	17.79	AV	V	24.37	2.80	26.50	18.46	12.46	54	35.54
2897	36.25	PK	V	23.99	3.34	26.51	37.07	31.07	74	36.93
2897	23.24	AV	V	23.99	3.34	26.51	24.06	18.06	54	29.94
298.69	51.88	QP	Н	14.09	1.04	27.54	39.47	39.47	46.00	6.53
506.27	44.43	QP	Н	18.16	1.63	28.82	35.40	35.40	46.00	10.60
						l:5240 MHz				
5240	67.61	PK	Н	31.83	5.27	0.00	104.71	98.71	N/A	N/A
5240	58.02	AV	Н	31.83	5.27	0.00	95.12	89.12	N/A	N/A
5240	78.30	PK	V	31.83	5.27	0.00	115.4	109.4	N/A	N/A
5240	69.73	AV	V	31.83	5.27	0.00	106.83	100.83	N/A	N/A
5350	27.74	PK	V	32.03	5.37	0.00	65.14	59.14	74	14.86
5350	15.19	AV	V	32.03	5.37	0.00	52.59	46.59	54	7.41
10480	33.61	PK	V	37.40	7.84	26.35	52.5	46.5	74	27.5
10480	21.72	AV	V	37.40	7.84	26.35	40.61	34.61	54	19.39
15720	36.21	PK	V	39.44	10.24	25.30	60.59	54.59	74	19.41
15720	22.85	AV	V	39.44	10.24	25.30	47.23	41.23	54	12.77
1625	29.23	PK	V	24.30	2.77	26.45	29.85	23.85	74	50.15
1625	16.73	AV	V	24.30	2.77	26.45	17.35	11.35	54	42.65
3452	34.16	PK	V	26.73	4.11	26.57	38.43	32.43	74	41.57
3452	21.18	AV	V	26.73	4.11	26.57	25.45	19.45	54	34.55
298.69	52.72	QP	Н	14.09	1.04	27.54	40.31	40.31	46.00	5.69
506.27	44.85	QP	Н	18.16	1.63	28.82	35.82	35.82	46.00	10.18

Report No.: RDG170103003B Page 31 of 195

802.11n ht40 mode(Chain 0 was the worst)

Eroguene	Red	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation	Limit	Moreir
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result dBµV/m	(dBµV/m)	Margin (dB)
						I:5190 MHz				
5190	62.07	PK	Н	31.74	5.22	0.00	99.03	93.03	N/A	N/A
5190	53.43	AV	Н	31.74	5.22	0.00	90.39	84.39	N/A	N/A
5190	72.00	PK	V	31.74	5.22	0.00	108.96	102.96	N/A	N/A
5190	63.51	AV	V	31.74	5.22	0.00	100.47	94.47	N/A	N/A
5150	32.72	PK	V	31.67	5.18	0.00	69.57	63.57	74	10.43
5150	18.30	AV	V	31.67	5.18	0.00	55.15	49.15	54	4.85
10380	34.71	PK	V	37.38	7.78	26.37	53.5	47.5	74	26.5
10380	22.37	AV	V	37.38	7.78	26.37	41.16	35.16	54	18.84
15570	36.84	PK	V	39.41	10.22	25.31	61.16	55.16	74	18.84
15570	23.71	AV	V	39.41	10.22	25.31	48.03	42.03	54	11.97
2005	30.37	PK	V	24.88	3.05	26.82	31.48	25.48	74	48.52
2005	18.26	AV	V	24.88	3.05	26.82	19.37	13.37	54	40.63
3147	37.51	PK	V	25.02	3.65	26.46	39.72	33.72	74	40.28
3147	24.16	AV	V	25.02	3.65	26.46	26.37	20.37	54	33.63
298.69	52.25	QP	Н	14.09	1.04	27.54	39.84	39.84	46.00	6.16
506.27	45.29	QP	Н	18.16	1.63	28.82	36.26	36.26	46.00	9.74
				High	Channe	el:5230 MHz	<u>z</u>			
5230	61.68	PK	Н	31.81	5.26	0.00	98.75	92.75	N/A	N/A
5230	52.73	AV	Н	31.81	5.26	0.00	89.8	83.8	N/A	N/A
5230	72.63	PK	V	31.81	5.26	0.00	109.7	103.7	N/A	N/A
5230	63.96	AV	V	31.81	5.26	0.00	101.03	95.03	N/A	N/A
5350	27.99	PK	V	32.03	5.37	0.00	65.39	59.39	74	14.61
5350	15.24	AV	V	32.03	5.37	0.00	52.64	46.64	54	7.36
10460	34.72	PK	V	37.39	7.83	26.36	53.58	47.58	74	26.42
10460	21.45	AV	V	37.39	7.83	26.36	40.31	34.31	54	19.69
15690	36.22	PK	V	39.44	10.24	25.30	60.6	54.6	74	19.4
15690	23.37	AV	V	39.44	10.24	25.30	47.75	41.75	54	12.25
1342	30.36	PK	V	23.69	2.45	26.48	30.02	24.02	74	49.98
1342	18.45	AV	V	23.69	2.45	26.48	18.11	12.11	54	41.89
2693	35.69	PK	V	23.59	3.16	26.70	35.74	29.74	74	44.26
2693	22.76	AV	V	23.59	3.16	26.70	22.81	16.81	54	37.19
298.69	51.78	QP	Н	14.09	1.04	27.54	39.37	39.37	46.00	6.63
506.27	45.73	QP	Н	18.16	1.63	28.82	36.70	36.70	46.00	9.30

Report No.: RDG170103003B Page 32 of 195

802.11n ac80 mode(chain 0 was the worst):

_	Red	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation		
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result dBµV/m	Limit (dBµV/m)	Margin (dB)
				Middl	e Chann	el:5210 MF	lz			
5210	57.97	PK	Н	31.78	5.24	0.00	94.99	88.99	N/A	N/A
5210	49.48	AV	Н	31.78	5.24	0.00	86.5	80.5	N/A	N/A
5210	68.97	PK	V	31.78	5.24	0.00	105.99	99.99	N/A	N/A
5210	60.45	AV	V	31.78	5.24	0.00	97.47	91.47	N/A	N/A
5150	31.13	PK	V	31.67	5.18	0.00	67.98	61.98	74	12.02
5150	18.33	AV	V	31.67	5.18	0.00	55.18	49.18	54	4.82
5350	28.42	PK	V	32.03	5.37	0.00	65.82	59.82	74	14.18
5350	15.40	AV	V	32.03	5.37	0.00	52.8	46.8	54	7.2
10420	35.08	PK	V	37.38	7.80	26.36	53.9	47.9	74	26.1
10420	22.51	AV	V	37.38	7.80	26.36	41.33	35.33	54	18.67
15630	34.03	PK	V	39.43	10.23	25.31	58.38	52.38	74	21.62
15630	22.12	AV	V	39.43	10.23	25.31	46.47	40.47	54	13.53
3720	33.41	PK	V	27.88	4.51	26.57	39.23	33.23	74	40.77
3720	20.46	AV	V	27.88	4.51	26.57	26.28	20.28	54	33.72
298.69	52.72	QP	Н	14.09	1.04	27.54	40.31	40.31	46.00	5.69
506.27	44.85	QP	Н	18.16	1.63	28.82	35.82	35.82	46.00	10.18

Report No.: RDG170103003B Page 33 of 195

5725-5850MHz: 802.11a mode(chain 0 was the worst):

002		e(chain 0 wa			_		_	Extrapolation	vtranolation				
Frequency		ceiver		ntenna	Cable	Amplifier	Corrected	Result	Limit	Margin			
(MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	dBμV/m	(dBµV/m)	(dB)			
						l:5745 MHz							
5745	67.46	PK	Н	32.59	5.74	0.00	105.79	99.79	N/A	N/A			
5745	59.72	AV	Н	32.59	5.74	0.00	98.05	92.05	N/A	N/A			
5745	74.67	PK	V	32.59	5.74	0.00	113	107	N/A	N/A			
5745	66.53	AV	V	32.59	5.74	0.00	104.86	98.86	N/A	N/A			
5725	43.83	PK	V	32.57	5.72	0.00	82.12	76.12	122.2	46.08			
5720	37.03	PK	V	32.56	5.71	0.00	75.3	69.3	110.8	41.5			
5700	26.34	PK	V	32.54	5.70	0.00	64.58	58.58	105.2	46.62			
5650	25.47	PK	V	32.48	5.65	0.00	63.6	57.6	68.2	10.6			
11490	33.12	PK	V	37.99	8.22	26.02	53.31	47.31	74	26.69			
11490	21.37	AV	٧	37.99	8.22	26.02	41.56	35.56	54	18.44			
17235	32.61	PK	٧	42.98	10.82	25.99	60.42	54.42	74	19.58			
17235	21.52	AV	V	42.98	10.82	25.99	49.33	43.33	54	10.67			
4123	33.35	PK	V	29.20	5.01	26.62	40.94	34.94	74	39.06			
4123	21.64	AV	V	29.20	5.01	26.62	29.23	23.23	54	30.77			
298.69	51.27	QP	Н	14.09	1.04	27.54	38.86	38.86	46.00	7.14			
506.27	42.64	QP	Н	18.16	1.63	28.82	33.61	33.61	46.00	12.39			
						el:5785 MF							
5785	67.80	PK	Н	32.64	5.77	0.00	106.21	100.21	N/A	N/A			
5785	60.11	AV	Н	32.64	5.77	0.00	98.52	92.52	N/A	N/A			
5785	74.33	PK	V	32.64	5.77	0.00	112.74	106.74	N/A	N/A			
5785	66.97	AV	٧	32.64	5.77	0.00	105.38	99.38	N/A	N/A			
11570	32.16	PK	V	38.03	8.21	26.00	52.4	46.4	74	27.6			
11570	21.47	AV	V	38.03	8.21	26.00	41.71	35.71	54	18.29			
17355	31.99	PK	V	43.53	11.03	26.16	60.39	54.39	74	19.61			
17355	20.80	AV	V	43.53	11.03	26.16	49.2	43.2	54	10.8			
4176	32.72	PK	٧	29.28	5.04	26.66	40.38	34.38	74	39.62			
4176	21.97	AV	V	29.28	5.04	26.66	29.63	23.63	54	30.37			
298.69	51.54	QP	Н	14.09	1.04	27.54	39.13	39.13	46.00	6.87			
506.27	42.78	QP	Н	18.16	1.63	28.82	33.75	33.75	46.00	12.25			
						el:5825 MHz							
5825	67.57	PK	Н	32.69	5.81	0.00	106.07	100.07	N/A	N/A			
5825	59.32	AV	Н	32.69	5.81	0.00	97.82	91.82	N/A	N/A			
5825	74.91	PK	V	32.69	5.81	0.00	113.41	107.41	N/A	N/A			
5825	66.65	AV	V	32.69	5.81	0.00	105.15	99.15	N/A	N/A			
5850	37.99	PK	V	32.72	5.83	0.00	76.54	70.54	122.2	51.66			
5855	35.12	PK	V	32.73	5.83	0.00	73.68	67.68	110.8	43.12			
5875	25.84	PK	V	32.75	5.85	0.00	64.44	58.44	105.2	46.76			
5925	26.06	PK	V	32.81	5.89	0.00	64.76	58.76	68.2	9.44			
11650	32.30	PK	V	38.06	8.20	25.98	52.58	46.58	74	27.42			
11650	22.71	AV	V	38.06	8.20	25.98	42.99	36.99	54	17.01			
17475	32.35	PK	V	44.09	11.23	26.33	61.34	55.34	74	18.66			
17475	20.86	AV	V	44.09	11.23	26.33	49.85	43.85	54	10.15			
4258	32.75	PK	V	29.41	5.10	26.70	40.56	34.56	74	39.44			
4258	21.47	AV	V	29.41	5.10	26.70	29.28	23.28	54	30.72			
298.69	52.38	QP	Н	14.09	1.04	27.54	39.97	39.97	46.00	6.03			
506.27	43.2	QP	Н	18.16	1.63	28.82	34.17	34.17	46.00	11.83			

Report No.: RDG170103003B Page 34 of 195

802.11n ht20 mode(chain 0 was the worst):

802.11n ht20 mode(chain 0 was the worst):										
Frequency	Re	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation	Limit	Margin
(MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result dBµV/m	(dBµV/m)	(dB)
		•		Low	Channe	l:5745 MHz	7			
5745	63.06	PK	Н	32.59	5.74	0.00	101.39	95.39	N/A	N/A
5745	54.33	AV	Н	32.59	5.74	0.00	92.66	86.66	N/A	N/A
5745	74.00	PK	V	32.59	5.74	0.00	112.33	106.33	N/A	N/A
5745	65.02	AV	V	32.59	5.74	0.00	103.35	97.35	N/A	N/A
5725	33.38	PK	V	32.57	5.72	0.00	71.67	65.67	122.2	56.53
5720	31.04	PK	V	32.56	5.71	0.00	69.31	63.31	110.8	47.49
5700	26.73	PK	V	32.54	5.70	0.00	64.97	58.97	105.2	46.23
5650	25.81	PK	V	32.48	5.65	0.00	63.94	57.94	68.2	10.26
11490	33.12	PK	V	37.99	8.22	26.02	53.31	47.31	74	26.69
11490	22.37	AV	V	37.99	8.22	26.02	42.56	36.56	54	17.44
17235	32.41	PK	٧	42.98	10.82	25.99	60.22	54.22	74	19.78
17235	21.29	AV	V	42.98	10.82	25.99	49.1	43.1	54	10.9
4055	33.26	PK	V	29.09	4.96	26.58	40.73	34.73	74	39.27
4055	21.33	AV	V	29.09	4.96	26.58	28.8	22.8	54	31.2
298.69	51.91	QP	Н	14.09	1.04	27.54	39.50	39.50	46.00	6.50
506.27	43.64	QP	Н	18.16	1.63	28.82	34.61	34.61	46.00	11.39
				Middl	e Chann	el:5785 MF	lz			
5785	67.86	PK	Н	32.64	5.77	0.00	106.27	100.27	N/A	N/A
5785	60.13	AV	Н	32.64	5.77	0.00	98.54	92.54	N/A	N/A
5785	75.45	PK	V	32.64	5.77	0.00	113.86	107.86	N/A	N/A
5785	67.03	AV	V	32.64	5.77	0.00	105.44	99.44	N/A	N/A
11570	33.04	PK	V	38.03	8.21	26.00	53.28	47.28	74	26.72
11570	21.93	AV	V	38.03	8.21	26.00	42.17	36.17	54	17.83
17355	32.47	PK	V	43.53	11.03	26.16	60.87	54.87	74	19.13
17355	20.91	AV	V	43.53	11.03	26.16	49.31	43.31	54	10.69
4106	32.75	PK	V	29.17	4.99	26.61	40.3	34.3	74	39.7
4106	21.44	AV	V	29.17	4.99	26.61	28.99	22.99	54	31.01
298.69	51.44	QP	Н	14.09	1.04	27.54	39.03	39.03	46.00	6.97
506.27	44.08	QP	Н	18.16	1.63	28.82	35.05	35.05	46.00	10.95
		T	•			el:5825 MHz			1	•
5825	60.79	PK	Н	32.69	5.81	0.00	99.29	93.29	N/A	N/A
5825	51.91	AV	Н	32.69	5.81	0.00	90.41	84.41	N/A	N/A
5825	74.34	PK	V	32.69	5.81	0.00	112.84	106.84	N/A	N/A
5825	65.51	AV	V	32.69	5.81	0.00	104.01	98.01	N/A	N/A
5850	32.68	PK	V	32.72	5.83	0.00	71.23	65.23	122.2	56.97
5855	30.52	PK	V	32.73	5.83	0.00	69.08	63.08	110.8	47.72
5875	26.84	PK	V	32.75	5.85	0.00	65.44	59.44	105.2	45.76
5925	27.37	PK	V	32.81	5.89	0.00	66.07	60.07	68.2	8.13
11650	32.80	PK	V	38.06	8.20	25.98	53.08	47.08	74	26.92
11650	21.67	AV	V	38.06	8.20	25.98	41.95	35.95	54	18.05
17475	31.37	PK	V	44.09	11.23	26.33	60.36	54.36	74	19.64
17475	20.78	AV	V	44.09	11.23	26.33	49.77	43.77	54	10.23
4156	32.63	PK	V	29.25	5.03	26.64	40.27	34.27	74	39.73
4156	22.00	AV	V	29.25	5.03	26.64	29.64	23.64	54	30.36
298.69	52.01	QP	Н	14.09	1.04	27.54	39.60	39.60	46.00	6.40
506.27	43.09	QP	Н	18.16	1.63	28.82	34.06	34.06	46.00	11.94

Report No.: RDG170103003B Page 35 of 195

802.11n ht40 mode(chain 0 was the worst):

	Red	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation	1 : 14	Marain
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result dBµV/m	Limit (dBµV/m)	Margin (dB)
				Low	Channe	l:5755 MHz	-			
5755	59.41	PK	Н	32.61	5.74	0.00	97.76	91.76	N/A	N/A
5755	50.90	AV	Н	32.61	5.74	0.00	89.25	83.25	N/A	N/A
5755	70.43	PK	V	32.61	5.74	0.00	108.78	102.78	N/A	N/A
5755	62.00	AV	V	32.61	5.74	0.00	100.35	94.35	N/A	N/A
5725	31.41	PK	V	32.57	5.72	0.00	69.7	63.7	122.2	58.5
5720	30.43	PK	V	32.56	5.71	0.00	68.7	62.7	110.8	48.1
5700	27.25	PK	V	32.54	5.70	0.00	65.49	59.49	105.2	45.71
5650	26.65	PK	V	32.48	5.65	0.00	64.78	58.78	68.2	9.42
11510	32.81	PK	V	38.00	8.22	26.02	53.01	47.01	74	26.99
11510	21.75	AV	V	38.00	8.22	26.02	41.95	35.95	54	18.05
17265	32.85	PK	V	43.12	10.88	26.04	60.81	54.81	74	19.19
17265	21.60	AV	V	43.12	10.88	26.04	49.56	43.56	54	10.44
4155	33.12	PK	V	29.25	5.03	26.64	40.76	34.76	74	39.24
4155	21.95	AV	V	29.25	5.03	26.64	29.59	23.59	54	30.41
298.69	52.28	QP	Н	14.09	1.04	27.54	39.87	39.87	46.00	6.13
506.27	43.23	QP	Н	18.16	1.63	28.82	34.20	34.20	46.00	11.80
				High	Channe	el:5795 MHz	<u>z</u>			
5795	60.27	PK	Н	32.65	5.78	0.00	98.7	92.7	N/A	N/A
5795	51.54	AV	Н	32.65	5.78	0.00	89.97	83.97	N/A	N/A
5795	70.55	PK	V	32.65	5.78	0.00	108.98	102.98	N/A	N/A
5795	61.86	AV	V	32.65	5.78	0.00	100.29	94.29	N/A	N/A
5850	28.00	PK	V	32.72	5.83	0.00	66.55	60.55	122.2	61.65
5855	27.21	PK	V	32.73	5.83	0.00	65.77	59.77	110.8	51.03
5875	27.16	PK	V	32.75	5.85	0.00	65.76	59.76	105.2	45.44
5925	26.96	PK	V	32.81	5.89	0.00	65.66	59.66	68.2	8.54
11590	32.64	PK	V	38.04	8.21	25.99	52.9	46.9	74	27.1
11590	21.77	AV	V	38.04	8.21	25.99	42.03	36.03	54	17.97
17385	31.92	PK	V	43.67	11.08	26.21	60.46	54.46	74	19.54
17385	21.01	AV	V	43.67	11.08	26.21	49.55	43.55	54	10.45
4156	33.59	PK	V	29.25	5.03	26.64	41.23	35.23	74	38.77
4156	21.85	AV	V	29.25	5.03	26.64	29.49	23.49	54	30.51
298.69	53.12	QP	Н	14.09	1.04	27.54	40.71	40.71	46.00	5.29
506.27	43.65	QP	Н	18.16	1.63	28.82	34.62	34.62	46.00	11.38

Report No.: RDG170103003B Page 36 of 195

802.11n ac80 mode(chain 0 was the worst):

	Red	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation	l imale	Manain
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result dBµV/m	Limit (dBµV/m)	Margin (dB)
				Middl	e Chann	el:5775 MH	łz			
5775	68.55	PK	Н	32.63	5.76	0.00	106.94	100.94	N/A	N/A
5775	59.58	AV	Н	32.63	5.76	0.00	97.97	91.97	N/A	N/A
5775	68.77	PK	V	32.63	5.76	0.00	107.16	101.16	N/A	N/A
5775	59.80	AV	V	32.63	5.76	0.00	98.19	92.19	N/A	N/A
5725	32.57	PK	V	32.57	5.72	0.00	70.86	64.86	122.2	57.34
5720	30.84	PK	V	32.56	5.71	0.00	69.11	63.11	110.8	47.69
5700	30.50	PK	V	32.54	5.70	0.00	68.74	62.74	105.2	42.46
5650	27.05	PK	V	32.48	5.65	0.00	65.18	59.18	68.2	9.02
5850	31.67	PK	V	32.72	5.83	0.00	70.22	64.22	122.2	57.98
5855	30.52	PK	V	32.73	5.83	0.00	69.08	63.08	110.8	47.72
5875	28.30	PK	V	32.75	5.85	0.00	66.9	60.9	105.2	44.3
5925	26.78	PK	V	32.81	5.89	0.00	65.48	59.48	68.2	8.72
11550	32.53	PK	V	38.02	8.21	26.01	52.75	46.75	74	27.25
11550	21.78	AV	V	38.02	8.21	26.01	42	36	54	18
17325	33.18	PK	V	43.40	10.98	26.12	61.44	55.44	74	18.56
17325	22.07	AV	V	43.40	10.98	26.12	50.33	44.33	54	9.67
2243	34.53	PK	V	24.07	3.02	26.85	34.77	28.77	74	45.23
2243	23.79	AV	V	24.07	3.02	26.85	24.03	18.03	54	35.97
298.69	52.65	QP	Н	14.09	1.04	27.54	40.24	40.24	46.00	5.76
506.27	44.09	QP	Н	18.16	1.63	28.82	35.06	35.06	46.00	10.94

Report No.: RDG170103003B Page 37 of 195

MIMO mode (Chain 0 & Chain 1):

5150-5250MHz 802.11n ht20 mode

802	.11n ht20	mode								
_	Red	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation		
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result dBµV/m	Limit (dBµV/m)	Margin (dB)
		,	, ,	Low	Channe	l:5180 MHz	7			
5180	64.79	PK	Н	31.72	5.21	0.00	101.72	95.72	N/A	N/A
5180	54.76	AV	H	31.72	5.21	0.00	91.69	85.69	N/A	N/A
5180	76.90	PK	V	31.72	5.21	0.00	113.83	107.83	N/A	N/A
5180	66.16	AV	V	31.72	5.21	0.00	103.09	97.09	N/A	N/A
5150	30.13	PK	V	31.67	5.18	0.00	66.98	60.98	74	13.02
5150	16.87	AV	V	31.67	5.18	0.00	53.72	47.72	54	6.28
10360	34.94	PK	V	37.37	7.76	26.37	53.7	47.7	74	26.3
10360	22.40	AV	V	37.37	7.76	26.37	41.16	35.16	54	18.84
15540	36.96	PK	V	39.41	10.22	25.32	61.27	55.27	74	18.73
15540	24.26	AV	V	39.41	10.22	25.32	48.57	42.57	54	11.43
1627	29.32	PK	V	24.30	2.77	26.45	29.94	23.94	74	50.06
1627	16.64	AV	V	24.30	2.77	26.45	17.26	11.26	54	42.74
3119	36.99	PK	V	24.87	3.61	26.45	39.02	33.02	74	40.98
3119	24.17	AV	V	24.87	3.61	26.45	26.2	20.2	54	33.8
298.69	52.28	QP	Н	14.09	1.04	27.54	39.87	39.87	46.00	6.13
506.27	44.73	QP	Н	18.16	1.63	28.82	35.70	35.70	46.00	10.30
			•			el:5200 MF				
5200	65.99	PK	Н	31.76	5.23	0.00	102.98	96.98	N/A	N/A
5200	55.71	AV	Н	31.76	5.23	0.00	92.7	86.7	N/A	N/A
5200	76.58	PK	V	31.76	5.23	0.00	113.57	107.57	N/A	N/A
5200	66.23	AV	V	31.76	5.23	0.00	103.22	97.22	N/A	N/A
10400	34.93	PK	V	37.38	7.79	26.36	53.74	47.74	74	20.26
10400	22.51	AV	V	37.38	7.79	26.36	41.32	35.32	54	12.68
15600	36.36	PK	V	39.42	10.22	25.31	60.69	54.69	74	13.31
15600	24.53	AV	V	39.42	10.22	25.31	48.86	42.86	54	5.14
1406	30.12	PK	V	23.86	2.54	26.42	30.1	24.1	74	43.9
1406	18.72	AV	V	23.86	2.54	26.42	18.7	12.7	54	35.3
3389	34.31	PK	V	26.38	4.01	26.55	38.15	32.15	74	35.85
3389	21.33	AV	V	26.38	4.01	26.55	25.17	19.17	54	28.83
298.69	53.12	QP	Н	14.09	1.04	27.54	40.71	40.71	46.00	5.29
506.27	45.15	QP	Н	18.16	1.63	28.82	36.12	36.12	46.00	9.88
						1:5240 MHz	<u>z</u>			
5240	64.14	PK	Н	31.83	5.27	0.00	101.24	95.24	N/A	N/A
5240	54.05	AV	Н	31.83	5.27	0.00	91.15	85.15	N/A	N/A
5240	76.31	PK	V	31.83	5.27	0.00	113.41	107.41	N/A	N/A
5240	66.73	AV	V	31.83	5.27	0.00	103.83	97.83	N/A	N/A
5350	27.37	PK	V	32.03	5.37	0.00	64.77	58.77	74	15.23
5350	15.49	AV	V	32.03	5.37	0.00	52.89	46.89	54	7.11
10480	33.95	PK	V	37.40	7.84	26.35	52.84	46.84	74	27.16
10480	21.86	AV	V	37.40	7.84	26.35	40.75	34.75	54	19.25
15720	35.44	PK	V	39.44	10.24	25.30	59.82	53.82	74	20.18
15720	23.64	AV	V	39.44	10.24	25.30	48.02	42.02	54	11.98
1657	28.82	PK	V	24.35	2.79	26.48	29.48	23.48	74	50.52
1657	17.33	AV	V	24.35	2.79	26.48	17.99	11.99	54	42.01
3149	36.73	PK	V	25.03	3.65	26.46	38.95	32.95	74	41.05
3149	24.33	AV	V	25.03	3.65	26.46	26.55	20.55	54	33.45
298.69	52.65	QP	Н	14.09	1.04	27.54	40.24	40.24	46.00	5.76
506.27	45.59	QP	Н	18.16	1.63	28.82	36.56	36.56	46.00	9.44

Report No.: RDG170103003B Page 38 of 195

802.11n ht40 mode

F	Red	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation	1	
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result dBµV/m	Limit (dBµV/m)	Margin (dB)
						1:5190 MHz				
5190	60.47	PK	Н	31.74	5.22	0.00	97.43	91.43	N/A	N/A
5190	50.83	AV	Н	31.74	5.22	0.00	87.79	81.79	N/A	N/A
5190	71.80	PK	V	31.74	5.22	0.00	108.76	102.76	N/A	N/A
5190	62.36	AV	V	31.74	5.22	0.00	99.32	93.32	N/A	N/A
5150	30.14	PK	V	31.67	5.18	0.00	66.99	60.99	74	13.01
5150	17.09	AV	V	31.67	5.18	0.00	53.94	47.94	54	6.06
10380	46.69	PK	V	37.38	7.78	26.37	65.48	59.48	74	14.52
10380	33.55	AV	V	37.38	7.78	26.37	52.34	46.34	54	7.66
15570	37.02	PK	V	39.41	10.22	25.31	61.34	55.34	74	18.66
15570	23.31	AV	V	39.41	10.22	25.31	47.63	41.63	54	12.37
1385	31.92	PK	V	23.80	2.51	26.44	31.79	25.79	74	48.21
1385	18.15	AV	V	23.80	2.51	26.44	18.02	12.02	54	41.98
2864	37.76	PK	V	23.93	3.31	26.54	38.46	32.46	74	41.54
2864	24.88	AV	V	23.93	3.31	26.54	25.58	19.58	54	34.42
298.69	52.18	QP	Н	14.09	1.04	27.54	39.77	39.77	46.00	6.23
506.27	46.03	QP	Н	18.16	1.63	28.82	37.00	37.00	46.00	9.00
				High	Channe	el:5230 MHz	<u>z</u>			
5230	60.24	PK	Н	31.81	5.26	0.00	97.31	91.31	N/A	N/A
5230	50.19	AV	Н	31.81	5.26	0.00	87.26	81.26	N/A	N/A
5230	72.21	PK	V	31.81	5.26	0.00	109.28	103.28	N/A	N/A
5230	62.12	AV	V	31.81	5.26	0.00	99.19	93.19	N/A	N/A
5350	27.96	PK	V	32.03	5.37	0.00	65.36	59.36	74	14.64
5350	15.18	AV	V	32.03	5.37	0.00	52.58	46.58	54	7.42
10460	33.91	PK	V	37.39	7.83	26.36	52.77	46.77	74	27.23
10460	21.24	AV	V	37.39	7.83	26.36	40.1	34.1	54	19.9
15690	36.03	PK	V	39.44	10.24	25.30	60.41	54.41	74	19.59
15690	23.53	AV	V	39.44	10.24	25.30	47.91	41.91	54	12.09
1995	30.25	PK	V	24.89	3.05	26.82	31.37	25.37	74	48.63
1995	17.50	AV	V	24.89	3.05	26.82	18.62	12.62	54	41.38
3614	33.37	PK	V	27.46	4.35	26.58	38.6	32.6	74	41.4
3614	19.90	AV	V	27.46	4.35	26.58	25.13	19.13	54	34.87
298.69	51.22	QP	Н	14.09	1.04	27.54	38.81	38.81	46.00	7.19
506.27	44.67	QP	Н	18.16	1.63	28.82	35.64	35.64	46.00	10.36

Report No.: RDG170103003B Page 39 of 195

802.11n ac80 mode:

F	Red	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation	,	
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result dBµV/m	Limit (dBµV/m)	Margin (dB)
				Middl	e Chann	el:5210 MF	lz			
5210	56.55	PK	Н	31.78	5.24	0.00	93.57	87.57	N/A	N/A
5210	45.50	AV	Н	31.78	5.24	0.00	82.52	76.52	N/A	N/A
5210	68.47	PK	V	31.78	5.24	0.00	105.49	99.49	N/A	N/A
5210	57.33	AV	V	31.78	5.24	0.00	94.35	88.35	N/A	N/A
5150	29.19	PK	V	31.67	5.18	0.00	66.04	60.04	74	13.96
5150	16.75	AV	V	31.67	5.18	0.00	53.6	47.6	54	6.4
5350	28.06	PK	V	32.03	5.37	0.00	65.46	59.46	74	14.54
5350	14.74	AV	V	32.03	5.37	0.00	52.14	46.14	54	7.86
10420	34.57	PK	V	37.38	7.80	26.36	53.39	47.39	74	26.61
10420	21.80	AV	V	37.38	7.80	26.36	40.62	34.62	54	19.38
15630	33.89	PK	V	39.43	10.23	25.31	58.24	52.24	74	21.76
15630	21.50	AV	V	39.43	10.23	25.31	45.85	39.85	54	14.15
3190	36.40	PK	V	25.26	3.72	26.48	38.9	32.9	74	41.1
3190	23.83	AV	V	25.26	3.72	26.48	26.33	20.33	54	33.67
298.69	51.49	QP	Н	14.09	1.04	27.54	39.08	39.08	46.00	6.92
506.27	44.81	QP	Н	18.16	1.63	28.82	35.78	35.78	46.00	10.22

Report No.: RDG170103003B Page 40 of 195

5725-5850MHz 802.11n ht20 mode:

802	.11n ht20	mode:								
_	Re	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation		
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result dBµV/m	Limit (dBµV/m)	Margin (dB)
				Low	Channe	l:5745 MHz				
5745	66.81	PK	Н	32.59	5.74	0.00	105.14	99.14	N/A	N/A
5745	56.92	AV	Н	32.59	5.74	0.00	95.25	89.25	N/A	N/A
5745	78.65	PK	V	32.59	5.74	0.00	116.98	110.98	N/A	N/A
5745	68.99	AV	V	32.59	5.74	0.00	107.32	101.32	N/A	N/A
5725	41.74	PK	V	32.57	5.72	0.00	80.03	74.03	122.2	48.17
5720	36.35	PK	V	32.56	5.71	0.00	74.62	68.62	110.8	42.18
5700	26.83	PK	V	32.54	5.70	0.00	65.07	59.07	105.2	46.13
5650	26.20	PK	V	32.48	5.65	0.00	64.33	58.33	68.2	9.87
11490	32.82	PK	V	37.99	8.22	26.02	53.01	47.01	74	26.99
11490	21.81	AV	V	37.99	8.22	26.02	42	36	54	18
17235	32.45	PK	V	42.98	10.82	25.99	60.26	54.26	74	19.74
17235	21.23	AV	V	42.98	10.82	25.99	49.04	43.04	54	10.96
3025	37.66	PK	V	24.34	3.47	26.42	39.05	33.05	74	40.95
3025	26.93	AV	V	24.34	3.47	26.42	28.32	22.32	54	31.68
298.69	52.18	QP	Н	14.09	1.04	27.54	39.77	39.77	46.00	6.23
506.27	44.53	QP	Н	18.16	1.63	28.82	35.50	35.50	46.00	10.50
	•			Middl	e Chann	el:5785 MF				
5785	66.62	PK	Н	32.64	5.77	0.00	105.03	99.03	N/A	N/A
5785	56.67	AV	Н	32.64	5.77	0.00	95.08	89.08	N/A	N/A
5785	78.73	PK	V	32.64	5.77	0.00	117.14	111.14	N/A	N/A
5785	69.29	AV	V	32.64	5.77	0.00	107.7	101.7	N/A	N/A
11570	32.82	PK	V	38.03	8.21	26.00	53.06	47.06	74	26.94
11570	21.96	AV	V	38.03	8.21	26.00	42.2	36.2	54	17.8
17355	32.35	PK	V	43.53	11.03	26.16	60.75	54.75	74	19.25
17355	20.80	AV	V	43.53	11.03	26.16	49.2	43.2	54	10.8
3104	38.53	PK	V	24.78	3.59	26.45	40.45	34.45	74	39.55
3104	27.49	AV	V	24.78	3.59	26.45	29.41	23.41	54	30.59
298.69	52.17	QP	Η	14.09	1.04	27.54	39.76	39.76	46.00	6.24
506.27	43.26	QP	Ι	18.16	1.63	28.82	34.23	34.23	46.00	11.77
				High		el:5825 MHz	<u>z</u>			
5825	66.71	PK	Н	32.69	5.81	0.00	105.21	99.21	N/A	N/A
5825	57.24	AV	Н	32.69	5.81	0.00	95.74	89.74	N/A	N/A
5825	78.32	PK	V	32.69	5.81	0.00	116.82	110.82	N/A	N/A
5825	68.74	AV	V	32.69	5.81	0.00	107.24	101.24	N/A	N/A
5850	34.72	PK	V	32.72	5.83	0.00	73.27	67.27	122.2	54.93
5855	31.92	PK	V	32.73	5.83	0.00	70.48	64.48	110.8	46.32
5875	26.40	PK	V	32.75	5.85	0.00	65	59	105.2	46.2
5925	27.26	PK	V	32.81	5.89	0.00	65.96	59.96	68.2	8.24
11650	32.92	PK	V	38.06	8.20	25.98	53.2	47.2	74	26.8
11650	21.69	AV	V	38.06	8.20	25.98	41.97	35.97	54	18.03
17475	32.40	PK	V	44.09	11.23	26.33	61.39	55.39	74	18.61
17475	20.51	AV	V	44.09	11.23	26.33	49.5	43.5	54	10.5
3158	37.30	PK	V	25.08	3.67	26.47	39.58	33.58	74	40.42
3158	27.37	AV	V	25.08	3.67	26.47	29.65	23.65	54	30.35
298.69	52.44	QP	Н	14.09	1.04	27.54	40.03	40.03	46.00	5.97
506.27	43.4	QP	Н	18.16	1.63	28.82	34.37	34.37	46.00	11.63

Report No.: RDG170103003B Page 41 of 195

802.11n ht40 mode:

	Re	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation		
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result dBµV/m	Limit (dBµV/m)	Margin (dB)
				Low	Channe	l:5755 MHz	2			
5755	61.96	PK	Н	32.61	5.74	0.00	100.31	94.31	N/A	N/A
5755	53.11	AV	Н	32.61	5.74	0.00	91.46	85.46	N/A	N/A
5755	74.20	PK	V	32.61	5.74	0.00	112.55	106.55	N/A	N/A
5755	64.58	AV	V	32.61	5.74	0.00	102.93	96.93	N/A	N/A
5725	35.27	PK	V	32.57	5.72	0.00	73.56	67.56	122.2	54.64
5720	33.81	PK	V	32.56	5.71	0.00	72.08	66.08	110.8	44.72
5700	28.26	PK	V	32.54	5.70	0.00	66.5	60.5	105.2	44.7
5650	27.47	PK	V	32.48	5.65	0.00	65.6	59.6	68.2	8.6
11510	32.66	PK	V	38.00	8.22	26.02	52.86	46.86	74	27.14
11510	22.15	AV	V	38.00	8.22	26.02	42.35	36.35	54	17.65
17265	32.76	PK	V	43.12	10.88	26.04	60.72	54.72	74	19.28
17265	21.82	AV	V	43.12	10.88	26.04	49.78	43.78	54	10.22
1558	31.64	PK	V	24.19	2.71	26.39	32.15	26.15	74	47.85
1558	20.79	AV	V	24.19	2.71	26.39	21.3	15.3	54	38.7
3025	37.76	PK	V	24.34	3.47	26.42	39.15	33.15	74	40.85
3025	26.39	AV	V	24.34	3.47	26.42	27.78	21.78	54	32.22
298.69	53.28	QP	Н	14.09	1.04	27.54	40.87	40.87	46.00	5.13
506.27	43.82	QP	Н	18.16	1.63	28.82	34.79	34.79	46.00	11.21
				High	Channe	el:5795 MHz	Z			
5795	62.38	PK	Н	32.65	5.78	0.00	100.81	94.81	N/A	N/A
5795	53.27	AV	Ι	32.65	5.78	0.00	91.7	85.7	N/A	N/A
5795	74.12	PK	V	32.65	5.78	0.00	112.55	106.55	N/A	N/A
5795	64.71	AV	V	32.65	5.78	0.00	103.14	97.14	N/A	N/A
5850	27.86	PK	V	32.72	5.83	0.00	66.41	60.41	122.2	61.79
5855	27.00	PK	V	32.73	5.83	0.00	65.56	59.56	110.8	51.24
5875	26.52	PK	V	32.75	5.85	0.00	65.12	59.12	105.2	46.08
5925	26.06	PK	V	32.81	5.89	0.00	64.76	58.76	68.2	9.44
11590	32.95	PK	٧	38.04	8.21	25.99	53.21	47.21	74	26.79
11590	22.33	AV	V	38.04	8.21	25.99	42.59	36.59	54	17.41
17385	32.23	PK	V	43.67	11.08	26.21	60.77	54.77	74	19.23
17385	20.98	AV	V	43.67	11.08	26.21	49.52	43.52	54	10.48
1605	31.49	PK	V	24.27	2.75	26.43	32.08	26.08	74	47.92
1605	20.16	AV	V	24.27	2.75	26.43	20.75	14.75	54	39.25
3158	37.88	PK	V	25.08	3.67	26.47	40.16	34.16	74	39.84
3158	27.70	AV	V	25.08	3.67	26.47	29.98	23.98	54	30.02
298.69	52.81	QP	Н	14.09	1.04	27.54	40.40	40.40	46.00	5.60
506.27	44.26	QP	Н	18.16	1.63	28.82	35.23	35.23	46.00	10.77

Report No.: RDG170103003B Page 42 of 195

802.11n ac80 mode:

F	Red	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation	1.1	N
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result dBµV/m	Limit (dBµV/m)	Margin (dB)
				Middl	e Chann	el:5775 MH	łz			
5775	63.11	PK	Н	32.63	5.76	0.00	101.5	95.5	N/A	N/A
5775	52.72	AV	Н	32.63	5.76	0.00	91.11	85.11	N/A	N/A
5775	73.39	PK	V	32.63	5.76	0.00	111.78	105.78	N/A	N/A
5775	63.27	AV	V	32.63	5.76	0.00	101.66	95.66	N/A	N/A
5725	42.61	PK	V	32.57	5.72	0.00	80.9	74.9	122.2	47.3
5720	40.55	PK	V	32.56	5.71	0.00	78.82	72.82	110.8	37.98
5700	36.88	PK	V	32.54	5.70	0.00	75.12	69.12	105.2	36.08
5650	28.75	PK	V	32.48	5.65	0.00	66.88	60.88	68.2	7.32
5850	40.16	PK	V	32.72	5.83	0.00	78.71	72.71	122.2	49.49
5855	40.38	PK	V	32.73	5.83	0.00	78.94	72.94	110.8	37.86
5875	32.82	PK	V	32.75	5.85	0.00	71.42	65.42	105.2	39.78
5925	29.20	PK	V	32.81	5.89	0.00	67.9	61.9	68.2	6.3
11550	32.57	PK	V	38.02	8.21	26.01	52.79	46.79	74	27.21
11550	22.38	AV	V	38.02	8.21	26.01	42.6	36.6	54	17.4
17325	32.74	PK	V	43.40	10.98	26.12	61	55	74	19
17325	21.37	AV	V	43.40	10.98	26.12	49.63	43.63	54	10.37
1655	31.91	PK	V	24.35	2.79	26.48	32.57	26.57	74	47.43
1655	20.60	AV	V	24.35	2.79	26.48	21.26	15.26	54	38.74
298.69	52.34	QP	Н	14.09	1.04	27.54	39.93	39.93	46.00	6.07
506.27	44.7	QP	Н	18.16	1.63	28.82	35.67	35.67	46.00	10.33

Report No.: RDG170103003B Page 43 of 195

MIMO mode (Chain 0 & Chain 1 & Chain 2):

5150-5250MHz 802.11n ht20 mode

802	.11n ht20	mode								
E	Re	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation	1.1. 11	NA
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result dBµV/m	Limit (dBµV/m)	Margin (dB)
				Low	Channe	l:5180 MHz	7			
5180	62.18	PK	Н	31.72	5.21	0.00	99.11	93.11	N/A	N/A
5180	51.27	AV	Н	31.72	5.21	0.00	88.2	82.2	N/A	N/A
5180	74.49	PK	V	31.72	5.21	0.00	111.42	105.42	N/A	N/A
5180	62.67	AV	V	31.72	5.21	0.00	99.6	93.6	N/A	N/A
5150	28.02	PK	V	31.67	5.18	0.00	64.87	58.87	74	15.13
5150	15.18	AV	V	31.67	5.18	0.00	52.03	46.03	54	7.97
10360	34.48	PK	V	37.37	7.76	26.37	53.24	47.24	74	26.76
10360	21.94	AV	V	37.37	7.76	26.37	40.7	34.7	54	19.3
15540	36.63	PK	V	39.41	10.22	25.32	60.94	54.94	74	19.06
15540	24.64	AV	V	39.41	10.22	25.32	48.95	42.95	54	11.05
1396	29.82	PK	V	23.83	2.53	26.43	29.75	23.75	74	50.25
1396	18.81	AV	V	23.83	2.53	26.43	18.74	12.74	54	41.26
2768	35.76	PK	V	23.74	3.23	26.63	36.1	30.1	74	43.9
2768	21.93	AV	V	23.74	3.23	26.63	22.27	16.27	54	37.73
298.69	52.34	QP	Н	14.09	1.04	27.54	39.93	39.93	46.00	6.07
506.27	44.7	QP	Н	18.16	1.63	28.82	35.67	35.67	46.00	10.33
5000	00.00	DIC				el:5200 MF		00.07	N 1/A	N1/A
5200	62.38	PK	H	31.76	5.23	0.00	99.37	93.37	N/A	N/A
5200	51.49	AV	H V	31.76	5.23	0.00	88.48	82.48	N/A	N/A
5200	74.27 63.11	PK AV	V	31.76 31.76	5.23 5.23	0.00	111.26	105.26	N/A	N/A N/A
5200	34.30	PK	V	37.38	7.79	0.00 26.36	100.1 53.11	94.1 47.11	N/A 74	20.89
10400 10400	22.56	AV	V	37.38	7.79	26.36	41.37	35.37	54	12.63
15600	36.72	PK	V	39.42	10.22	25.31	61.05	55.05	74	12.03
15600	24.30	AV	V	39.42	10.22	25.31	48.63	42.63	54	5.37
1422	29.56	PK	V	23.90	2.56	26.40	29.62	23.62	74	44.38
1422	18.28	AV	V	23.90	2.56	26.40	18.34	12.34	54	35.66
3190	36.60	PK	V	25.26	3.72	26.48	39.1	33.1	74	34.9
3190	23.66	AV	V	25.26	3.72	26.48	26.16	20.16	54	27.84
298.69	52.61	QP	H	14.09	1.04	27.54	40.20	40.20	46.00	5.80
506.27	44.84	QP	H	18.16	1.63	28.82	35.81	35.81	46.00	10.19
						l:5240 MHz				
5240	61.90	PK	Н	31.83	5.27	0.00	99	93	N/A	N/A
5240	51.08	AV	Н	31.83	5.27	0.00	88.18	82.18	N/A	N/A
5240	73.82	PK	V	31.83	5.27	0.00	110.92	104.92	N/A	N/A
5240	62.22	AV	V	31.83	5.27	0.00	99.32	93.32	N/A	N/A
5350	27.49	PK	V	32.03	5.37	0.00	64.89	58.89	74	15.11
5350	14.84	AV	V	32.03	5.37	0.00	52.24	46.24	54	7.76
10480	34.41	PK	V	37.40	7.84	26.35	53.3	47.3	74	26.7
10480	21.18	AV	V	37.40	7.84	26.35	40.07	34.07	54	19.93
15720	36.16	PK	V	39.44	10.24	25.30	60.54	54.54	74	19.46
15720	23.22	AV	V	39.44	10.24	25.30	47.6	41.6	54	12.4
2005	29.49	PK	V	24.88	3.05	26.82	30.6	24.6	74	49.4
2005	17.79	AV	V	24.88	3.05	26.82	18.9	12.9	54	41.1
3527	33.14	PK	V	27.11	4.22	26.59	37.88	31.88	74	42.12
3527	20.44	AV	V	27.11	4.22	26.59	25.18	19.18	54	34.82
298.69	53.45	QP	Н	14.09	1.04	27.54	41.04	41.04	46.00	4.96
506.27	45.26	QP	Н	18.16	1.63	28.82	36.23	36.23	46.00	9.77

Report No.: RDG170103003B Page 44 of 195

802.11n ht40 mode

F	Red	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation	1 114	Manada
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result dBµV/m	Limit (dBµV/m)	Margin (dB)
						I:5190 MHz				
5190	57.79	PK	Н	31.74	5.22	0.00	94.75	88.75	N/A	N/A
5190	47.18	AV	Н	31.74	5.22	0.00	84.14	78.14	N/A	N/A
5190	70.05	PK	V	31.74	5.22	0.00	107.01	101.01	N/A	N/A
5190	59.58	AV	V	31.74	5.22	0.00	96.54	90.54	N/A	N/A
5150	27.92	PK	V	31.67	5.18	0.00	64.77	58.77	74	15.23
5150	15.52	AV	V	31.67	5.18	0.00	52.37	46.37	54	7.63
10380	48.58	PK	V	37.38	7.78	26.37	67.37	61.37	74	12.63
10380	35.21	AV	V	37.38	7.78	26.37	54	48	54	6
15570	36.53	PK	V	39.41	10.22	25.31	60.85	54.85	74	19.15
15570	23.74	AV	V	39.41	10.22	25.31	48.06	42.06	54	11.94
1756	29.53	PK	V	24.51	2.86	26.58	30.32	24.32	74	49.68
1756	17.30	AV	V	24.51	2.86	26.58	18.09	12.09	54	41.91
3005	37.69	PK	V	24.23	3.44	26.41	38.95	32.95	74	41.05
3005	24.88	AV	V	24.23	3.44	26.41	26.14	20.14	54	33.86
298.69	52.98	QP	Н	14.09	1.04	27.54	40.57	40.57	46.00	5.43
506.27	45.7	QP	Н	18.16	1.63	28.82	36.67	36.67	46.00	9.33
				High	Channe	el:5230 MHz	<u>z</u>			
5230	57.69	PK	Н	31.81	5.26	0.00	94.76	88.76	N/A	N/A
5230	47.37	AV	Н	31.81	5.26	0.00	84.44	78.44	N/A	N/A
5230	69.48	PK	V	31.81	5.26	0.00	106.55	100.55	N/A	N/A
5230	59.61	AV	V	31.81	5.26	0.00	96.68	90.68	N/A	N/A
5350	27.64	PK	V	32.03	5.37	0.00	65.04	59.04	74	14.96
5350	14.78	AV	V	32.03	5.37	0.00	52.18	46.18	54	7.82
10460	46.64	PK	V	37.39	7.83	26.36	65.5	59.5	74	14.5
10460	34.08	AV	V	37.39	7.83	26.36	52.94	46.94	54	7.06
15690	35.62	PK	V	39.44	10.24	25.30	60	54	74	20
15690	23.70	AV	V	39.44	10.24	25.30	48.08	42.08	54	11.92
2689	34.06	PK	V	23.58	3.16	26.71	34.09	28.09	74	45.91
2689	22.09	AV	V	23.58	3.16	26.71	22.12	16.12	54	37.88
3326	35.04	PK	V	26.03	3.92	26.53	38.46	32.46	74	41.54
3326	21.86	AV	V	26.03	3.92	26.53	25.28	19.28	54	34.72
298.69	52.51	QP	Н	14.09	1.04	27.54	40.10	40.10	46.00	5.90
506.27	46.14	QP	Н	18.16	1.63	28.82	37.11	37.11	46.00	8.89

Report No.: RDG170103003B Page 45 of 195

802.11n ac80 mode

F	Red	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation		
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result dBµV/m	Limit (dBµV/m)	Margin (dB)
				Middl	e Chann	el:5210 MF	lz			
5210	57.30	PK	Н	31.78	5.24	0.00	94.32	88.32	N/A	N/A
5210	45.49	AV	Н	31.78	5.24	0.00	82.51	76.51	N/A	N/A
5210	67.82	PK	V	31.78	5.24	0.00	104.84	98.84	N/A	N/A
5210	56.31	AV	V	31.78	5.24	0.00	93.33	87.33	N/A	N/A
5150	28.15	PK	V	31.67	5.18	0.00	65	59	74	15
5150	16.53	AV	V	31.67	5.18	0.00	53.38	47.38	54	6.62
5350	27.30	PK	V	32.03	5.37	0.00	64.7	58.7	74	15.3
5350	15.25	AV	V	32.03	5.37	0.00	52.65	46.65	54	7.35
10420	45.22	PK	V	37.38	7.80	26.36	64.04	58.04	74	15.96
10420	33.26	AV	V	37.38	7.80	26.36	52.08	46.08	54	7.92
15630	37.22	PK	V	39.43	10.23	25.31	61.57	55.57	74	18.43
15630	24.32	AV	V	39.43	10.23	25.31	48.67	42.67	54	11.33
3648	35.72	PK	V	27.59	4.40	26.58	41.13	35.13	74	38.87
3648	23.14	AV	V	27.59	4.40	26.58	28.55	22.55	54	31.45
298.69	52.01	QP	Н	14.09	1.04	27.54	39.60	39.60	46.00	6.40
506.27	44.59	QP	Н	18.16	1.63	28.82	35.56	35.56	46.00	10.44

Report No.: RDG170103003B Page 46 of 195

5725-5850MHz 802.11n ht20 mode:

802	.11n ht20	mode:								
1	Red	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation		
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result dBµV/m	Limit (dBµV/m)	Margin (dB)
				Low	Channe	l:5745 MHz	<u> </u>			
5745	70.67	PK	Н	32.59	5.74	0.00	109	103	N/A	N/A
5745	60.89	AV	Н	32.59	5.74	0.00	99.22	93.22	N/A	N/A
5745	80.05	PK	V	32.59	5.74	0.00	118.38	112.38	N/A	N/A
5745	69.33	AV	V	32.59	5.74	0.00	107.66	101.66	N/A	N/A
5725	44.93	PK	V	32.57	5.72	0.00	83.22	77.22	122.2	44.98
5720	38.93	PK	V	32.56	5.71	0.00	77.2	71.2	110.8	39.6
5700	28.05	PK	V	32.54	5.70	0.00	66.29	60.29	105.2	44.91
5650	27.77	PK	V	32.48	5.65	0.00	65.9	59.9	68.2	8.3
11490	32.59	PK	V	37.99	8.22	26.02	52.78	46.78	74	27.22
11490	21.84	AV	V	37.99	8.22	26.02	42.03	36.03	54	17.97
17235	32.45	PK	V	42.98	10.82	25.99	60.26	54.26	74	19.74
17235	21.62	AV	V	42.98	10.82	25.99	49.43	43.43	54	10.57
3215	38.25	PK	V	25.40	3.75	26.49	40.91	34.91	74	39.09
3215	26.80	AV	V	25.40	3.75	26.49	29.46	23.46	54	30.54
298.69	52.26	QP	Н	14.09	1.04	27.54	39.85	39.85	46.00	6.15
506.27	43.07	QP	Н	18.16	1.63	28.82	34.04	34.04	46.00	11.96
			•	Middl	e Chann	el:5785 MF		1		
5785	70.79	PK	Н	32.64	5.77	0.00	109.2	103.2	N/A	N/A
5785	61.04	AV	Н	32.64	5.77	0.00	99.45	93.45	N/A	N/A
5785	80.35	PK	V	32.64	5.77	0.00	118.76	112.76	N/A	N/A
5785	68.77	AV	V	32.64	5.77	0.00	107.18	101.18	N/A	N/A
11570	32.21	PK	V	38.03	8.21	26.00	52.45	46.45	74	27.55
11570	21.73	AV	V	38.03	8.21	26.00	41.97	35.97	54	18.03
17355	32.45	PK	V	43.53	11.03	26.16	60.85	54.85	74	19.15
17355	20.96	AV	V	43.53	11.03	26.16	49.36	43.36	54	10.64
3284	37.12	PK	V	25.79	3.86	26.51	40.26	34.26	74	39.74
3284	26.74	AV	V	25.79	3.86	26.51	29.88	23.88	54	30.12
298.69	52.53	QP	Н	14.09	1.04	27.54	40.12	40.12	46.00	5.88
506.27	43.21	QP	Н	18.16	1.63	28.82	34.18	34.18	46.00	11.82
			1	High	Channe	l:5825 MHz	Z		•	
5825	69.61	PK	Н	32.69	5.81	0.00	108.11	102.11	N/A	N/A
5825	58.96	AV	Н	32.69	5.81	0.00	97.46	91.46	N/A	N/A
5825	80.84	PK	V	32.69	5.81	0.00	119.34	113.34	N/A	N/A
5825	69.91	AV	V	32.69	5.81	0.00	108.41	102.41	N/A	N/A
5850	38.98	PK	V	32.72	5.83	0.00	77.53	71.53	122.2	50.67
5855	34.21	PK	V	32.73	5.83	0.00	72.77	66.77	110.8	44.03
5875	28.62	PK	V	32.75	5.85	0.00	67.22	61.22	105.2	43.98
5925	27.11	PK	V	32.81	5.89	0.00	65.81	59.81	68.2	8.39
11650	32.99	PK	V	38.06	8.20	25.98	53.27	47.27	74	26.73
11650	22.15	AV	V	38.06	8.20	25.98	42.43	36.43	54	17.57
17475	31.41	PK	V	44.09	11.23	26.33	60.4	54.4	74	19.6
17475	20.58	AV	V	44.09	11.23	26.33	49.57	43.57	54	10.43
3358	36.92	PK	V	26.20	3.97	26.54	40.55	34.55	74	39.45
3358	24.67	AV	V	26.20	3.97	26.54	28.3	22.3	54	31.7
298.69	53.37	QP	Н	14.09	1.04	27.54	40.96	40.96	46.00	5.04
506.27	43.63	QP	Н	18.16	1.63	28.82	34.60	34.60	46.00	11.40

Report No.: RDG170103003B Page 47 of 195

802.11n ht40 mode:

	Rec	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Extrapolation		
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result dBµV/m	Limit (dBµV/m)	Margin (dB)
				Low	Channe	l:5755 MHz				
5755	64.60	PK	Н	32.61	5.74	0.00	102.95	96.95	N/A	N/A
5755	54.52	AV	Н	32.61	5.74	0.00	92.87	86.87	N/A	N/A
5755	76.92	PK	V	32.61	5.74	0.00	115.27	109.27	N/A	N/A
5755	67.37	AV	V	32.61	5.74	0.00	105.72	99.72	N/A	N/A
5725	46.01	PK	V	32.57	5.72	0.00	84.3	78.3	122.2	43.9
5720	42.70	PK	V	32.56	5.71	0.00	80.97	74.97	110.8	35.83
5700	31.59	PK	V	32.54	5.70	0.00	69.83	63.83	105.2	41.37
5650	28.01	PK	V	32.48	5.65	0.00	66.14	60.14	68.2	8.06
11510	32.25	PK	V	38.00	8.22	26.02	52.45	46.45	74	27.55
11510	22.00	AV	V	38.00	8.22	26.02	42.2	36.2	54	17.8
17265	32.20	PK	V	43.12	10.88	26.04	60.16	54.16	74	19.84
17265	21.41	AV	V	43.12	10.88	26.04	49.37	43.37	54	10.63
3215	38.59	PK	V	25.40	3.75	26.49	41.25	35.25	74	38.75
3215	26.64	AV	V	25.40	3.75	26.49	29.3	23.3	54	30.7
1667	32.17	PK	V	24.37	2.80	26.49	32.85	26.85	74	47.15
1667	20.28	AV	V	24.37	2.80	26.49	20.96	14.96	54	39.04
298.69	52.9	QP	Н	14.09	1.04	27.54	40.49	40.49	46.00	5.51
506.27	44.07	QP	Н	18.16	1.63	28.82	35.04	35.04	46.00	10.96
				High	Channe	l:5795 MHz	7			
5795	66.22	PK	Н	32.65	5.78	0.00	104.65	98.65	N/A	N/A
5795	56.31	AV	Н	32.65	5.78	0.00	94.74	88.74	N/A	N/A
5795	77.26	PK	V	32.65	5.78	0.00	115.69	109.69	N/A	N/A
5795	67.43	AV	V	32.65	5.78	0.00	105.86	99.86	N/A	N/A
5850	32.60	PK	V	32.72	5.83	0.00	71.15	65.15	122.2	57.05
5855	30.78	PK	V	32.73	5.83	0.00	69.34	63.34	110.8	47.46
5875	28.24	PK	V	32.75	5.85	0.00	66.84	60.84	105.2	44.36
5925	27.18	PK	V	32.81	5.89	0.00	65.88	59.88	68.2	8.32
11590	32.94	PK	V	38.04	8.21	25.99	53.2	47.2	74	26.8
11590	21.75	AV	V	38.04	8.21	25.99	42.01	36.01	54	17.99
17385	32.37	PK	V	43.67	11.08	26.21	60.91	54.91	74	19.09
17385	21.03	AV	V	43.67	11.08	26.21	49.57	43.57	54	10.43
3358	36.14	PK	V	26.20	3.97	26.54	39.77	33.77	74	40.23
3358	25.06	AV	V	26.20	3.97	26.54	28.69	22.69	54	31.31
1689	32.00	PK	V	24.40	2.81	26.52	32.69	26.69	74	47.31
1689	20.76	AV	V	24.40	2.81	26.52	21.45	15.45	54	38.55
298.69	52.43	QP	Н	14.09	1.04	27.54	40.02	40.02	46.00	5.98
506.27	44.51	QP	Н	18.16	1.63	28.82	35.48	35.48	46.00	10.52

Report No.: RDG170103003B Page 48 of 195

802.11n ac80 mode:

	Receiver		Rx Antenna		Cable	Amplifier	Corrected	Extrapolation	Lineit	Manain
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Result dBµV/m	Limit (dBµV/m)	Margin (dB)
	Middle Channel:5775 MHz									
5775	63.10	PK	Ι	32.63	5.76	0.00	101.49	95.49	N/A	N/A
5775	53.00	AV	Н	32.63	5.76	0.00	91.39	85.39	N/A	N/A
5775	75.81	PK	V	32.63	5.76	0.00	114.2	108.2	N/A	N/A
5775	63.96	AV	V	32.63	5.76	0.00	102.35	96.35	N/A	N/A
5725	40.19	PK	V	32.57	5.72	0.00	78.48	72.48	122.2	49.72
5720	39.74	PK	V	32.56	5.71	0.00	78.01	72.01	110.8	38.79
5700	34.65	PK	V	32.54	5.70	0.00	72.89	66.89	105.2	38.31
5650	29.24	PK	V	32.48	5.65	0.00	67.37	61.37	68.2	6.83
5850	39.91	PK	V	32.72	5.83	0.00	78.46	72.46	122.2	49.74
5855	36.56	PK	V	32.73	5.83	0.00	75.12	69.12	110.8	41.68
5875	33.08	PK	V	32.75	5.85	0.00	71.68	65.68	105.2	39.52
5925	27.87	PK	V	32.81	5.89	0.00	66.57	60.57	68.2	7.63
11550	32.54	PK	V	38.02	8.21	26.01	52.76	46.76	74	27.24
11550	21.86	AV	V	38.02	8.21	26.01	42.08	36.08	54	17.92
17325	32.30	PK	V	43.40	10.98	26.12	60.56	54.56	74	19.44
17325	21.22	AV	٧	43.40	10.98	26.12	49.48	43.48	54	10.52
3369	36.55	PK	V	26.27	3.98	26.54	40.26	34.26	74	39.74
3369	25.13	AV	V	26.27	3.98	26.54	28.84	22.84	54	31.16
298.69	52.22	QP	Н	14.09	1.04	27.54	39.81	39.81	46.00	6.19
506.27	43.02	QP	Н	18.16	1.63	28.82	33.99	33.99	46.00	12.01

2.4GHz band and 5 GHz band transmit simultaneously (2.4GHz 3x3 N20 2437MHz + 5.8GHz 2x2 AC80 5775MHz was the worst, Test at 3m distance):

Frequency Receiver		Rx Antenna		Cable	Amplifier	Corrected			
(MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
11550	33.29	PK	Н	38.02	8.21	26.01	53.51	74.00	20.49
11550	22.18	AV	Н	38.02	8.21	26.01	42.40	54.00	11.60
17325	30.74	PK	Н	43.40	10.98	26.12	59.00	74.00	15.00
17325	21.69	AV	Н	43.40	10.98	26.12	49.95	54.00	4.05
4874	34.59	PK	V	31.00	5.09	26.87	43.81	74.00	30.19
4874	22.15	AV	V	31.00	5.09	26.87	31.37	54.00	22.63
7311	32.47	PK	V	34.92	6.21	26.40	47.20	74.00	26.80
7311	19.82	AV	V	34.92	6.21	26.40	34.55	54.00	19.45
3254	43.26	PK	Н	25.62	3.81	26.50	46.19	74.00	27.81
3254	34.77	AV	Н	25.62	3.81	26.50	37.70	54.00	16.30
506.27	46.69	QP	V	18.16	1.63	28.82	37.66	46.00	8.34

Report No.: RDG170103003B Page 49 of 195

FCC §15.407(b)-OUT- OF-BAND EMISSIONS

Applicable Standard

FCC §15.407

- (b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:
- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.
 - (4) For transmitters operating in the 5.725-5.85 GHz band:
- (i) All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- (ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.
- (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.

Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v01r03

Report No.: RDG170103003B Page 50 of 195

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2016-09-21	2017-09-20
N/A RF Cable		N/A	N/A	Each Time	/

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	19~21 °C		
Relative Humidity:	56~58 %		
ATM Pressure:	95.2~96 kPa		

The testing was performed by Tom Tang from 2017-02-22 to 2017-03-31.

Test Result: Pass.

Please refer to the following tables and plots.

Report No.: RDG170103003B Page 51 of 195

1TX 5150-5250MHz(the atenna gain was offset in the display) Chain 0:

802.11a Low Channel

802.11a High Channel

Report No.: RDG170103003B Page 52 of 195

802.11n ht20 Low Channel

802.11n ht20 High Channel

802.11n ht40 Low Channel

22.FEB.2017 11:25:38 Date:

8802.11n ht40 High Channel

22.FEB.2017 11:30:19

802.11n ac80 Middle Channel

Report No.: RDG170103003B Page 55 of 195

Chain 1:

802.11a High Channel

Report No.: RDG170103003B Page 56 of 195

802.11n ht20 Low Channel

802.11n ht20 High Channel

802.11n ht40 Low Channel

0000 44 1440 11 1 01

Report No.: RDG170103003B Page 58 of 195

802.11n ac80 Middle Channel

Report No.: RDG170103003B Page 59 of 195

Chain 2:

802.11a Low Channel

802.11a High Channel

Report No.: RDG170103003B Page 60 of 195

802.11n ht20 Low Channel

802.11n ht20 High Channel

802.11n ht40 Low Channel

8802.11n ht40 High Channel

Report No.: RDG170103003B Page 62 of 195

802.11n ac80 Middle Channel

Report No.: RDG170103003B Page 63 of 195

5725-5850MHz(all emissions under limit 4dB, so the EIRP meet the requirement) Chain 0:

802.11a Low Channel

802.11a High Channel

Report No.: RDG170103003B Page 64 of 195

802.11n ht20 Low Channel

802.11n ht40 Low Channel

802.11n ht40 High Channel

802.11 ac80 Low Channel

Report No.: RDG170103003B Page 67 of 195

Chain 1:

802.11a High Channel

Report No.: RDG170103003B Page 68 of 195

802.11n ht20 Low Channel

802.11n ht20 High Channel

802.11n ht40 Low Channel

802.11n ht40 High Channel

802.11 ac80 Low Channel

Report No.: RDG170103003B Page 71 of 195

Chain 2:

802.11a High Channel

Report No.: RDG170103003B Page 72 of 195

802.11n ht20 High Channel

802.11n ht40 High Channel

802.11 ac80 Low Channel

Report No.: RDG170103003B Page 75 of 195

2TX

5150-5250MHz(the atenna gain was offset in the display, all emissions under limit 3dB, so combined results meet the requirement)
Chain 0:

802.11n ht20 Low Channel

802.11n ht20 High Channel

Report No.: RDG170103003B Page 76 of 195

Date: 22.FEB.2017 18:56:50

8802.11n ht40 High Channel

Date: 22.FEB.2017 18:08:12

802.11n ac80 Middle Channel

Report No.: RDG170103003B Page 78 of 195

Chain 1:

802.11n ht20 High Channel

Report No.: RDG170103003B Page 79 of 195

Date: 22.FEB.2017 19:41:05

8802.11n ht40 High Channel

Date: 22.FEB.2017 19:45:51

802.11n ac80 Middle Channel

Report No.: RDG170103003B Page 81 of 195

5725-5850MHz(the atenna gain was offset in the display, all emissions under limit 3dB, so combined results meet the requirement) Chain 0:

802.11n ht20 Low Channel

802.11n ht20 High Channel

Report No.: RDG170103003B Page 82 of 195

802.11n ht40 High Channel

Page 83 of 195

802.11 ac80 Low Channel

Report No.: RDG170103003B Page 84 of 195

5725-5850MHz Chain 1:

802.11n ht20 Low Channel

802.11n ht20 High Channel

Report No.: RDG170103003B Page 85 of 195

802.11n ht40 High Channel

802.11 ac80 Low Channel

Report No.: RDG170103003B Page 87 of 195

3TX 5150-5250MHz(the atenna gain was offset in the display, all emissions under limits 4.77dB, so combined results meet the EIRP results)
Chain 0:

802.11n ht20 High Channel

Report No.: RDG170103003B Page 88 of 195

Report No.: RDG170103003B Page 89 of 195

802.11n ac80 Middle Channel

Report No.: RDG170103003B Page 90 of 195

Chain 1:

802.11n ht20 High Channel

Report No.: RDG170103003B Page 91 of 195

ice. 23.FEB.2017 09.39.07

802.11n ac80 Middle Channel

Report No.: RDG170103003B Page 93 of 195

Chain 2:

802.11n ht20 High Channel

Report No.: RDG170103003B Page 94 of 195

8802.11n ht40 High Channel

Report No.: RDG170103003B Page 95 of 195

802.11n ac80 Middle Channel

Report No.: RDG170103003B Page 96 of 195

5725-5850MHz(the atenna gain was offset in the display, all emissions under limits 4.77dB, so combined results meet the EIRP results)
Chain 0:

802.11n ht20 Low Channel

802.11n ht20 High Channel

Report No.: RDG170103003B Page 97 of 195

802.11n ht40 High Channel

802.11 ac80 Low Channel

Report No.: RDG170103003B Page 99 of 195

Chain 1:

Report No.: RDG170103003B Page 100 of 195

802.11n ht40 High Channel

802.11 ac80 Low Channel

Report No.: RDG170103003B Page 102 of 195

5725-5850MHz Chain 2:

802.11n ht20 Low Channel

802.11n ht20 High Channel

Report No.: RDG170103003B Page 103 of 195

802.11n ht40 High Channel

802.11 ac80 Low Channel

Report No.: RDG170103003B Page 105 of 195

FCC §15.407(a) –EMISSION BANDWIDTH AND OCCUPIED BANDWIDTH

Applicable Standard

15.407(a) (e)

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2016-09-21	2017-09-20
N/A	RF Cable	N/A	N/A	Each Time	/

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v01r03

Test Data

Environmental Conditions

Temperature:	22.5~25 °C	
Relative Humidity:	35~41 %	
ATM Pressure:	95.6~96.8 kPa	

The testing was performed by Tom Tang from 2017-01-14 to 2017-02-22.

Test Result: Pass.

Please refer to the following tables and plots.

Report No.: RDG170103003B Page 106 of 195

Test mode: Transmitting (Test performed at SISO mode Chain 0)

5150-5250MHz:

112.				
Mode	Channel	Frequency (MHz)	26 dB Emission Bandwidth (MHz)	99% Occupied Bandwidth (MHz)
802.11 a	Low	5180	20.28	17.39
	Middle	5200	20.36	17.39
	High	5240	20.36	17.39
802.11n ht20	Low	5180	20.28	17.39
	Middle	5200	20.2	17.39
	High	5240	20.28	17.39
802.11n ht40	Low	5190	39.92	35.75
	High	5230	39.76	35.75
802.11 ac80	Middle	5210	82.4	75.03

Note: the 99% Occupied Bandwidth have not fall into the band 5250-5350MHz and 5470-5725MHz, please refer to the test plots of 99% Occupied Bandwidth.

5725-5850MHz:

Mode	Channel	Frequency (MHz)	26 dB Emission Bandwidth (MHz)	
802.11 a	Low	5745	28.94	
	Middle	5785	31.34	
	High	5825	31.34	
	Low	5745	27.66	
802.11n ht20	Middle	5785	28.3	
	High	5825	29.9	
802.11n ht40	Low	5755	48.9	
	High	5795	42.16	
802.11 ac80	Middle	5775	117.03	

Note: For 5725-5850MHz band, 26dB bandwidth have not fall into the band 5470-5725MHz.

Mode	Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	Result
802.11 a	Low	5745	16.43	PASS
	Middle	5785	16.35	PASS
	High	5825	16.43	PASS
802.11n ht20	Low	5745	17.15	PASS
	Middle	5785	17.23	PASS
	High	5825	17.15	PASS
802.11n ht40	Low	5755	35.59	PASS
	High	5795	35.75	PASS
802.11 ac80	Middle	5775	76.31	PASS

Report No.: RDG170103003B Page 107 of 195

5150-5250MHz: 26dB Emission Bandwidth:

802.11a Low Channel

802.11a Middle Channel

Report No.: RDG170103003B Page 108 of 195

802.11a High Channel

802.11n ht20 Low Channel

802.11n ht20 Middle Channel

Date: 22.FEB.2017 11:37:39

802.11n ht20 High Channel

Report No.: RDG170103003B

802.11n ht40 Low Channel

Date: 22.FEB.2017 11:23:56

802.11n ht40 High Channel

Report No.: RDG170103003B

802.11ac80 Middle Channel

99% Occupied Bandwidth

802.11a Low Channel

Report No.: RDG170103003B Page 112 of 195

802.11a Middle Channel

802.11a High Channel

802.11n ht20 Low Channel

802.11n ht20 Middle Channel

802.11n ht20 High Channel

000 44... | 1440 | 0|......

Report No.: RDG170103003B Page 115 of 195

802.11n ht40 High Channel

802.11ac80 Middle Channel

5725-5850MHz:26dB bandwidth

802.11a Low Channel

802.11a Middle Channel

Report No.: RDG170103003B Page 117 of 195

802.11a High Channel

802.11n ht20 Low Channel

802.11n ht20 Middle Channel

Report No.: RDG170103003B Page 119 of 195

802.11n ht40 Low Channel

Date: 14.JAN.2017 14:52:51

802.11n ht40 High Channel

Page 120 of 195

Report No.: RDG170103003B

802.11ac80 Middle Channel

Report No.: RDG170103003B Page 121 of 195

6dB Bandwidth:

802.11a Low Channel

802.11a Middle Channel

Report No.: RDG170103003B Page 122 of 195

802.11a High Channel

802.11n ht20 Low Channel

802.11n ht20 Middle Channel

802.11n ht20 High Channel

Report No.: RDG170103003B Page 124 of 195

802.11n ht40 Low Channel

Date: 14.JAN.2017 14:53:12

802.11n ht40 High Channel

Report No.: RDG170103003B Page 125 of 195

802.11n ac80 Middle Channel

Report No.: RDG170103003B Page 126 of 195

FCC §15.407(g)-FREQUENCY STABILITY

Applicable Standard

FCC §15.407(g)

(q) Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the users manual.

Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v01r03

Test Equipment List and Details

Manufacturer	Description	Model Serial Number		Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2016-09-21	2017-09-20
N/A	RF Cable	N/A	N/A	Each Time	1
FLUKE	Multimeter	1587	27870099	2016-12-30	2017-12-29
BACL	High Temperature Test Chamber	BTH-150	30024	2016-12-02	2017-12-01

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	26.3 °C
Relative Humidity:	39 %
ATM Pressure:	95.5 kPa

The testing was performed by Tom Tang from 2017-01-14 to 2017-02-23.

Test Result: Pass.

Report No.: RDG170103003B Page 127 of 195

Un-modulation, channel 5180MHz							
Temperature	Voltage	Measured Frequency	Result				
${\mathbb C}$	V _{DC}	MHz					
-20		5180.001					
-10		5180.006					
10	5	5180.004	Pass				
20] 3	5180.002	Fa55				
30		5180.002					
40		5180.004					

Un-modulation, channel 5745MHz							
Temperature	Voltage	Measured Frequency	Result				
${\mathfrak C}$	V _{DC}	MHz					
-20		5745.002					
-10		5745.006					
10	5	5745.010	Pass				
20] 3	5745.002	Pass				
30		5745.002					
40		5745.012					

Note: the frequency stability range plus the operation bandwidth edge within the operation band.

Report No.: RDG170103003B Page 128 of 195

FCC §15.407(a) -MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

- (a) Power limits:
- (1) For the band 5.15-5.25 GHz.
- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output

Report No.: RDG170103003B Page 129 of 195

power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

- (3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (4) The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
Agilent	Wideband Power Sensor	N1921A	MY54170074	2017-01-03	2018-01-03	
Agilent	P-Series Power Meter	N1912A	MY5000798	2017-01-03	2018-01-03	
N/A	RF Cable	N/A	N/A	Each Time	/	

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v01r03

Test Data

Environmental Conditions

Temperature:	24.6~25 °C
Relative Humidity:	32~35 %
ATM Pressure:	95.6~95.8 kPa

The testing was performed by Tom Tang from 2017-01-14 to 2017-02-23.

Report No.: RDG170103003B Page 130 of 195

Test Mode: Transmitting

1TX:

UNII Band	UNII Band Mode Chann		Frequency	RMS	Channel P (dBm)	Limit	Result	
			(MHz)	Chain 0	Chain 1	Chain 2	(dBm)	
		Low	5180	15.52	17.31	17.36	24	PASS
	802.11 a	Middle	5200	15.7	17.75	18.22	24	PASS
		High	5240	15.86	17.89	18.27	24	PASS
	000.44	Low	5180	15.09	15.62	15.74	24	PASS
5150-	802.11n ht20	Middle	5200	15.18	17.73	17.71	24	PASS
5250MHz	11120	High	5240	15.34	18.25	18.61	24	PASS
	802.11n	Low	5190	14.16	15	14.95	24	PASS
	ht40	High	5230	14.39	15.61	15.35	24	PASS
	802.11 ac80	Middle	5210	14.68	13.66	14.62	24	PASS
		Low	5745	16.09	15.28	16.34	30	PASS
	802.11 a	Middle	5785	15.65	15.22	16.3	30	PASS
		High	5825	15.84	15.68	16.72	30	PASS
	000 44	Low	5745	16.21	15.2	16.41	30	PASS
5725-	802.11n ht20	Middle	5785	15.61	15.1	16.14	30	PASS
5850MHz	11120	High	5825	15.7	15.61	16.53	30	PASS
	802.11n	Low	5755	15.4	14.49	15.56	30	PASS
	ht40	High	5795	15.06	14.63	15.97	30	PASS
	802.11 ac80	Middle	5775	14.98	14.53	16.01	30	PASS

2TX:

UNII Band	Mode	Channel	Frequency (MHz)	RMS Channel Power (dBm)		Total (dBm)	Limit (dBm)	Result
				Chain 0	Chain 1			
	000.44=	Low	5180	14.97	14.64	17.82	24	PASS
	802.11n ht20	Middle	5200	15.44	15.73	18.6	24	PASS
5150-	TILEO	High	5240	15.7	15.44	18.58	24	PASS
5250MHz	802.11n	Low	5190	13.5	13.79	16.66	24	PASS
	ht40	High	5230	13.86	13.89	16.89	24	PASS
·	802.11 ac80	Middle	5210	13.19	12.57	15.9	24	PASS
	000.44	Low	5745	18.16	17.24	20.73	30	PASS
	802.11n ht20	Middle	5785	17.3	17.48	20.4	30	PASS
5725-	11(20	High	5825	17.07	18.17	20.67	30	PASS
5850MHz	802.11n	Low	5755	15.87	14.45	18.23	30	PASS
333311112	ht40	High	5795	14.02	14.74	17.41	30	PASS
	802.11 ac80	Middle	5775	14.07	14.24	17.17	30	PASS

Report No.: RDG170103003B Page 131 of 195

3TX:

UNII Band Mode				requency (dBm)				Limit (dBm)	Result
				Chain 0	Chain 1	Chain 2			
	000 11=	Low	5180	9.24	10.21	7.8	13.96	24	PASS
	802.11n ht20	Middle	5200	9.11	10.03	7.11	13.68	24	PASS
5150-	11(20	High	5240	9.4	9.48	6.76	13.49	24	PASS
5250MHz	802.11n	Low	5190	8.07	9.55	6.36	12.96	24	PASS
	ht40	High	5230	8.42	8.88	5.79	12.66	24	PASS
	802.11 ac80	Middle	5210	8.14	9.41	6.34	12.91	24	PASS
	000.44	Low	5745	15.58	16.6	16.76	21.12	30	PASS
	802.11n ht20	Middle	5785	15.01	15.44	16.69	20.54	30	PASS
5725-	11(20	High	5825	15.11	15.47	16.47	20.49	30	PASS
5850MHz	802.11n	Low	5755	14.86	14.56	16.17	20.03	30	PASS
	ht40	High	5795	14.53	14.42	16.33	19.96	30	PASS
	802.11 ac80	Middle	5775	14.93	14.37	16.41	20.1	30	PASS

Note: the 3 antenna maximum atenna gains are 4dBi, and employed Cyclic Delay Diversity (CDD) for 802.11 MIMO transmitting, per KDB 662911 D01 Multiple Transmitter Output v02r01, for power measurements on IEEE 802.11 devices:

Array Gain = 0 dB (i.e., no array gain) for NANT ≤ 4;

So:

Directional gain = GANT + Array Gain = 4dBi < 6dBi

Report No.: RDG170103003B Page 132 of 195

FCC §15.407(a) - POWER SPECTRAL DENSITY

Applicable Standard

- (a) Power limits:
- (1) For the band 5.15-5.25 GHz.
- (i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
- (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output

Report No.: RDG170103003B Page 133 of 195

power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v01r03

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2016-09-21	2017-09-20
N/A	RF Cable	N/A	N/A	Each Time	1

^{*} **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	24.6~25 °C
Relative Humidity:	32~35 %
ATM Pressure:	95.6~95.8 kPa

The testing was performed by Tom Tang from 2017-01-14 to 2017-02-23.

Test Mode: Transmitting

Test Result: Compliance. Please refer to the following table and plot.

Report No.: RDG170103003B Page 134 of 195

5150-5250MHz

1Tx:

Mode	Frequency	Power	Limits		
	(MHz)	Chain 0	Chain 1	Chain 2	(dBm/MHz)
	5180	4.68	6.65	6.79	11
802.11a	5200	5.06	7.04	7.38	11
	5240	5.13	7.29	7.52	11
	5180	4.38	4.81	4.95	11
802.11n ht20	5200	4.34	7.12	6.89	11
	5240	4.65	7.4	7.8	11
802.11n ht40	5190	0.47	1.14	1.21	11
	5230	0.64	1.82	1.67	11
802.11 ac80	5210	-1.12	0.07	-1.39	11

2Tx:

Mode	Frequency (MHz)	Power Spec (dBm	tral Density /MHz)	Total (dBm/MHz)	Limits (dBm/MHz)
		Chain 0	Chain 1	(ubili/ivinz)	
802.11n ht20	5180	3.84	3.77	6.82	10
	5200	4.69	4.83	7.77	10
	5240	4.89	4.43	7.68	10
802.11n ht40	5190	-0.37	0.23	2.95	10
	5230	1.47	0.38	3.97	10
802.11 ac80	5210	-3.01	-3.52	-0.25	10

Note: the 2 antenna maximum atenna gain are 4dBi, and employed Cyclic Delay Diversity (CDD) for 802.11 MIMO transmitting, per KDB 662911 D01 Multiple Transmitter Output v02r01, for power spectral density (PSD) measurements on the devices:

Array Gain = 10 log(NANT/NSS) dB.

So:

Directional gain = GANT + Array Gain = 4+10*log(2) = 7 dBi > 6dBiPower density Limit = 11 - (7-6) = 10dBm

3Tx:

Mode	Frequency (MHz)	Power Spectral Density (dBm/MHz)			Total	Limits
		Chain 0	Chain 1	Chain 2	(dBm/MHz)	(dBm/MHz)
802.11n ht20	5180	-2.23	-0.74	-2.98	2.89	8.23
	5200	-1.85	-0.72	-4.15	2.75	8.23
	5240	-1.66	-1.45	-4.13	2.52	8.23
802.11n ht40	5190	-6.09	-3.82	-7.65	-0.79	8.23
	5230	-5.6	-4.31	-7.85	-0.91	8.23
802.11 ac80	5210	-8.07	-7.03	-10.18	-3.47	8.23

Note 2:. the 3 antenna maximum atenna gain are 4dBi, and employed Cyclic Delay Diversity (CDD) for 802.11 MIMO transmitting, per KDB 662911 D01 Multiple Transmitter Output v02r01, for power spectral density (PSD) measurements on the devices:

Array Gain = 10 log(NANT/NSS) dB.

So:

Directional gain = GANT + Array Gain = 4+10*log(3) =8.77 dBi > 6dBi Power density Limit = 11- (8.77-6) = 8.23dBm

Report No.: RDG170103003B Page 135 of 195

1TX:

802.11a Middle Channel - Chain0

Report No.: RDG170103003B Page 136 of 195

802.11a High Channel - Chain0

802.11n ht20 Low Channel - Chain0

802.11n ht20 Middle Channel - Chain0

Date: 22.FEB.2017 11:38:31

802.11n ht20 High Channel - Chain0

Report No.: RDG170103003B

802.11n ht40 Low Channel - Chain0

802.11n ht40 High Channel - Chain0

Report No.: RDG170103003B Page 139 of 195

802.11 ac80 Middle Channel - Chain0

802.11a Low Channel - Chain1

Report No.: RDG170103003B Page 140 of 195

802.11a Middle Channel - Chain1

802.11a High Channel - Chain1

802.11n ht20 Low Channel - Chain1

802.11n ht20 Middle Channel - Chain1

Report No.: RDG170103003B Page 142 of 195

802.11n ht20 High Channel - Chain1

802.11n ht40 Low Channel - Chain1

Report No.: RDG170103003B Page 143 of 195

802.11n ht40 High Channel - Chain1

802.11 ac80 Middle Channel - Chain1

802.11a Low Channel - Chain2

Date: 22.FEB.2017 14:43:27

802.11a Middle Channel - Chain2

Date: 22.FEB.2017 14:51:53

802.11a High Channel - Chain2

802.11n ht20 High Channel - Chain2

Report No.: RDG170103003B Page 147 of 195

802.11n ht40 High Channel - Chain2

Report No.: RDG170103003B Page 148 of 195

2TX:

802.11n ht20 Low Channel - Chain0

Report No.: RDG170103003B

Page 149 of 195

802.11n ht20 High Channel - Chain0

Report No.: RDG170103003B Page 150 of 195

802.11n ht40 High Channel - Chain0

Report No.: RDG170103003B Page 151 of 195

802.11n ht20 Low Channel - Chain1

Report No.: RDG170103003B Page 152 of 195

802.11n ht20 High Channel - Chain1

Report No.: RDG170103003B Page 153 of 195

802.11n ht40 High Channel - Chain1

Report No.: RDG170103003B Page 154 of 195

3TX:

802.11n ht20 Low Channel - Chain0

Report No.: RDG170103003B

Page 155 of 195

802.11n ht20 High Channel - Chain0

Report No.: RDG170103003B Page 156 of 195

802.11n ht40 High Channel - Chain0

Report No.: RDG170103003B Page 157 of 195

802.11n ht20 Low Channel - Chain1

Report No.: RDG170103003B Page 158 of 195

802.11n ht20 High Channel - Chain1

Report No.: RDG170103003B Page 159 of 195

802.11n ht40 High Channel - Chain1

Report No.: RDG170103003B Page 160 of 195

802.11n ht20 Low Channel - Chain2

Report No.: RDG170103003B Page 161 of 195

ice. 23.FEB.2017 10.22.10

802.11n ht20 High Channel - Chain2

Date: 23.FEB.2017 10.24.2

802.11n ht40 High Channel - Chain2

Report No.: RDG170103003B Page 163 of 195

Report No.: RDG170103003B Page 164 of 195

5725-5850MHz

1Tx:

Mode	Frequency (MHz)		Spectral I 3m/300kh	•	Power Spectral Density (dBm/500kHz)				
Wode		Chain 0	Chain 1	Chain 2	Chain 0	Chain 1	Chain 2	Limits	
802.11a	5745	1.62	0.68	1.91	3.82	2.88	4.11	30	
	5785	1.01	0.87	1.82	3.21	3.07	4.02	30	
	5825	1.24	1.05	1.93	3.44	3.25	4.13	30	
802.11n ht20	5745	1.58	0.79	1.92	3.78	2.99	4.12	30	
	5785	1.22	0.6	1.55	3.42	2.8	3.75	30	
	5825	1.15	1.09	1.95	3.35	3.29	4.15	30	
802.11n ht40	5755	-2.1	-3.29	-1.81	0.1	-1.09	0.39	30	
	5795	-2.59	-2.91	-1.23	-0.39	-0.71	0.97	30	
802.11 ac80	5775	-4.57	-5.31	-3.76	-2.37	-3.11	-1.56	30	

Note 1: If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

2Tx:

Mode	Frequency (MHz)	Den	Spectral sity 300kHz)	Power Spectral Density (dBm/500kHz)				
		Chain 0	Chain 1	Chain 0	Chain 1	Total	Limits	
802.11n ht20	5745	3.69	2.83	5.89	5.03	8.49	29	
	5785	2.77	2.98	4.97	5.18	8.09	29	
	5825	2.52	3.82	4.72	6.02	8.43	29	
802.11n	5755	-1.69	-2.28	0.51	-0.08	3.24	29	
ht40	5795	-3.66	-1.13	-1.46	1.07	3.00	29	
802.11 ac80	5775	-5.64	-5.87	-3.44	-3.67	-0.54	29	

Note 1: If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

Note 2:. the 2 antenna maximum atenna gain are 4dBi, and employed Cyclic Delay Diversity (CDD) for 802.11 MIMO transmitting, per KDB 662911 D01 Multiple Transmitter Output v02r01, for power spectral density (PSD) measurements on the devices:

Array Gain = 10 log(NANT/NSS) dB.

So:

Directional gain = GANT + Array Gain = 4+10*log(2) =7 dBi > 6dBi Power density Limit = 30 – (7-6) = 29dBm

Report No.: RDG170103003B Page 165 of 195

3Tx:

Mode	Frequency	Power Spectral Density (dBm/300kHz)			Power Spectral Density (dBm/500kHz)					
	(MHz)	Chain 0	Chain 1	Chain 2	Chain 0	Chain 1	Chain 2	Total	Limits	
802.11n ht20	5745	1.21	2.65	2.23	3.41	4.85	4.43	11.24	27.23	
	5785	0.41	1.1	2.54	2.61	3.3	4.74	10.61	27.23	
	5825	0.55	0.99	1.41	2.75	3.19	3.61	10.17	27.23	
802.11n	5755	-2.27	-2.15	-1.27	-0.07	0.05	0.93	7.30	27.23	
ht40	5795	-2.74	-3.26	-1.5	-0.54	-1.06	0.7	6.74	27.23	
802.11 ac80	5775	-5.00	-5.45	-1.31	-2.80	-3.25	0.89	5.67	27.23	

Note 1: If measurement bandwidth of Maximum PSD is specified in 500 kHz, add $10\log(500kHz/RBW)$ to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

Note 2:. the 3 antenna maximum atenna gain are 4dBi, and employed Cyclic Delay Diversity (CDD) for 802.11 MIMO transmitting, per KDB 662911 D01 Multiple Transmitter Output v02r01, for power spectral density (PSD) measurements on the devices:

Array Gain = 10 log(NANT/NSS) dB.

So:

Directional gain = GANT + Array Gain = 4+10*log(3) = 8.77 dBi > 6dBiPower density Limit = 30 - (8.77-6) = 27.23dBm

Report No.: RDG170103003B Page 166 of 195

1TX:

802.11a Low Channel - Chain0

802.11a Middle Channel - Chain0

Report No.: RDG170103003B Page 167 of 195

802.11a High Channel - Chain0

802.11n ht20 Low Channel - Chain0

802.11n ht20 High Channel - Chain0

Report No.: RDG170103003B Page 169 of 195

802.11n ht40 High Channel - Chain0

Report No.: RDG170103003B Page 170 of 195

802.11a Low Channel - Chain1

Report No.: RDG170103003B Page 171 of 195

802.11a High Channel - Chain1

802.11n ht20 Middle Channel - Chain1

Report No.: RDG170103003B Page 173 of 195

802.11n ht20 High Channel - Chain1

802.11n ht40 Low Channel - Chain1

Report No.: RDG170103003B Page 174 of 195

802.11n ht40 High Channel - Chain1

802.11 ac80 Middle Channel - Chain1

Report No.: RDG170103003B Page 175 of 195

802.11a Low Channel - Chain2

802.11a Middle Channel - Chain2

Report No.: RDG170103003B Page 176 of 195

802.11a High Channel - Chain2

802.11n ht20 Low Channel - Chain2

Report No.: RDG170103003B Page 177 of 195

14.JAN.2017 16:14:42 Date:

802.11n ht20 High Channel - Chain2

14.JAN.2017 16:18:21 Date:

802.11n ht40 High Channel - Chain2

Report No.: RDG170103003B Page 179 of 195

2TX:

802.11n ht20 Low Channel - Chain0

Report No.: RDG170103003B Page 180 of 195

802.11n ht20 High Channel – Chain0

Report No.: RDG170103003B Page 181 of 195

802.11n ht40 High Channel - Chain0

Report No.: RDG170103003B Page 182 of 195

802.11n ht20 Low Channel - Chain1

Report No.: RDG170103003B Page 183 of 195

802.11n ht20 High Channel - Chain1

Report No.: RDG170103003B Page 184 of 195

Date: 15.JAN.2017 10:06:40

802.11n ht40 High Channel - Chain1

Report No.: RDG170103003B

3TX:

802.11n ht20 Low Channel - Chain0

Report No.: RDG170103003B

Page 186 of 195

000.44 1.400.11; 1.01

Report No.: RDG170103003B Page 187 of 195

802.11n ht40 High Channel - Chain0

Report No.: RDG170103003B Page 188 of 195

802.11n ht20 Low Channel - Chain1

Report No.: RDG170103003B Page 189 of 195

802.11n ht20 High Channel - Chain1

Report No.: RDG170103003B Page 190 of 195

802.11n ht40 High Channel - Chain1

Report No.: RDG170103003B Page 191 of 195

802.11n ht20 Low Channel - Chain2

Report No.: RDG170103003B Page 192 of 195

Date: 14.JAN.2017 17:26:46

802.11n ht20 High Channel - Chain2

Date: 14.JAN.2017 17:22:14

802.11n ht40 High Channel - Chain2

Report No.: RDG170103003B Page 194 of 195

***** END OF REPORT *****

Report No.: RDG170103003B Page 195 of 195