Тема 1. Методы нулевого порядка.

- 1. Безусловная оптимизация многих переменных. Методы нулевого порядка. Задача многомерной оптимизации.
- 2. Методы нулевого порядка. Сущность симплексного метода. Построение нового симплекса. Графическая иллюстрация.
 - 3. Методы нулевого порядка. Алгоритм поиска симплексным методом.
- 4. Методы нулевого порядка. Сущность метода Нелдера Мида. Геометрическая иллюстрация построения нового симплекса процедуры сжатия и растяжения.
 - 5. Методы нулевого порядка. Алгоритм поиска методом Нелдера-Мида.
- 6. Методы нулевого порядка. Сущность метода Хука Дживса. Исследующий поиск. Поиск по образцу.
- 7. Методы нулевого порядка. Сущность метода Хука Дживса. Графическая иллюстрация поиска точки минимума методом Хука-Дживса
 - 8. Методы нулевого порядка. Алгоритм поиска методом Хука-Дживса.
- 9. Рельеф функции. Котловинный рельеф. Овражный рельеф. Разрешимый овраг. Неупорядоченный тип рельефа. Примеры.

Задачи.

1. Реализовать первую итерацию для целевой функции симплексным методом с точностью $\varepsilon = 0,1.$

$$f(\overline{x}) = x_1^2 - x_1 x_2 + 3x_2^2 - x_1$$

Начальная точка симплекса $\overline{x^{(0)}}=(0,0)^{\mathrm{T}}$ и длина ребра симплекса m=0,25.

2. Реализовать первую итерацию для целевой функции методом Нелдера-Мида с точностью $\varepsilon = 0.1$.

$$f(\overline{x}) = x_1^2 - x_1 x_2 + 3x_2^2 - x_1$$

Начальная точка симплекса $\overline{x^{(0)}} = (0,0)^{\mathrm{T}}$, длина ребра симплекса m=1, параметр растяжения $\beta=2.8$ и параметр сжатия $\gamma=0.4$.

3. Реализовать первую итерацию для целевой функции методом Хука-Дживса с точностью $\varepsilon = 0,1$.

$$f(\overline{x}) = x_1^2 - x_1x_2 + 3x_2^2 - x_1$$

Начальная точка $\overline{x^{(0)}} = (0,0)^{\mathrm{T}}$, шаг по координатным направлениям h = 0.2 и коэффициент уменьшения шага d = 2.

Тема 2. Методы первого порядка.

- 1. Безусловная оптимизация многих переменных. Методы первого порядка.
- 2. Методы первого порядка. Сущность метода градиентного спуска с постоянным шагом. Графическая иллюстрация.
- 3. Методы первого порядка. Алгоритм метода градиентного спуска с постоянным шагом.
- 4. Методы первого порядка. Сущность метода наискорейшего градиентного спуска. Матрица Гессе. Графическая иллюстрация.
- 5. Методы первого порядка. Алгоритм метода наискорейшего градиентного спуска.
- 6. Методы первого порядка. Сущность метода покоординатного спуска. Графическая иллюстрация.
 - 7. Методы первого порядка. Алгоритм метода покоординатного спуска.
- 8. Методы первого порядка. Сущность метода Флетчера-Ривса. Графическая иллюстрация.
 - 9. Методы первого порядка. Алгоритм метода Флетчера-Ривса.

Задачи.

1. Реализовать первую итерацию целевой функции методом градиентного спуска с постоянным шагом с точностью $\varepsilon = 0,1$.

$$f(\bar{x}) = x_1^2 - x_1x_2 + 3x_2^2 - x_1$$

Начальная точка $\overline{x^{(0)}} = (0,0)^{\mathrm{T}}$, величина шага h = 0,4.

2. Реализовать первую итерацию целевой функции методом наискорейшего градиентного спуска с точностью $\varepsilon = 0,1$.

$$f(\bar{x}) = x_1^2 - x_1 x_2 + 3x_2^2 - x_1$$

Начальная точка $\overline{x^{(0)}} = (0,0)^{\mathrm{T}}$.

3. Реализовать первую итерацию целевой функции методом покоординатного спуска с точностью $\varepsilon = 0,1.$

$$f(\bar{x}) = x_1^2 - x_1x_2 + 3x_2^2 - x_1$$

Начальная точка $\overline{x^{(0)}} = (0,0)^{\mathrm{T}}$.

4. Реализовать первую итерацию целевой функции методом Флетчера-Ривса с точностью $\varepsilon = 0,1.$

$$f(\bar{x}) = x_1^2 - x_1 x_2 + 3x_2^2 - x_1$$

Начальная точка $\overline{x^{(0)}} = (0,0)^{\mathrm{T}}$.

Тема 3. Методы второго порядка.

- 1. Методы второго порядка. Сущность метода Ньютона
- 2. Методы второго порядка. Алгоритм метода Ньютона.
- 3. Методы второго порядка. Сущность метода Ньютона-Рафсона.
- 4. Методы второго порядка. Алгоритм Ньютона-Рафсона.

Задачи.

1. Реализовать первую итерацию целевой функции методом Ньютона с точностью $\varepsilon = 0.1$.

$$f(\bar{x}) = x_1^2 - x_1 x_2 + 3x_2^2 - x_1$$

Начальная точка $\overline{x^{(0)}} = (0,0)^{\mathrm{T}}$.

2. Реализовать первую итерацию целевой функции методом Ньютона— Рафсона с точностью $\varepsilon = 0.1$.

$$f(\bar{x}) = x_1^2 - x_1 x_2 + 3x_2^2 - x_1$$

Начальная точка $\overline{x^{(0)}} = (0,0)^{\mathrm{T}}$.