Data loading and exploring

Loaded both csv files into a pandas dataframe with the ISO-8859-1 encoding. The user_engagement file had no missing data, while the users file had 74% values missing for last_session_creation_time, and 53% values missing for invited_by_user_id.

takehome user engagement data

Converted the timestamp to a datetime_index so that datetime operations could be performed. Sampled data in one-week periods and grouped by user_id. A user was active if he had logged in at least thrice, each time on a separate day of the week. Grouped user_ids per week. If a user had visited three of more times, changed that value to 1 else saved it as 0. Grouped by user_ids and aggregated the total number of visits for each user_id. Added a new column, adopted_user for the target variable. Populated this column with a 1 for three or more visits, and a 0 otherwise. Dropped the visited column as it was not needed anymore. Renamed the user_id column to object_id to make it consistent with the column in the users dataframe. Merged the wrangled data with the takehome users data.

Merged Data

Dropped features that did not seem to have a significant impact on predicting active users. More than 50% of the users were not active/adopted users, and more than 50% had opted out of the mailing list and the marketing drip. There were too many invited_by_users, with a lot of missing data. This feature would not have helped with analysis, so dropped it. There are 1147 org_ids, but the number of users who signed up through org_invite was higher than the other creation sources. So, this seemed to be an important feature in predicting active users.

Model Building and Predicting

This is a Classification problem as it has two binary outcomes.

One-hot encoded the categorical variables. Split the data into train and test, fit the training data to a Random Forest Classifier, and made predictions on the test data.

The model predicted creation_source as an important predictor, with org_invite being the most important amongst the other creation sources.

Conclusion

The model gave an f1-score of 80%. Since dimensionality reduction results in better modeling, grouping the org_id before building the model would have given better results.