Contents

Contents			7
Ι	Disc	rete Structures	15
1	Inti	roduction	17
	1.1	Knight's Tour	17
	1.2	15 Puzzle	23
	1.3	Notes	28
2	Ma	thematical Arguments	31
	2.1	Statements	31
	2.2	Logical Operations	32
	2.3	Logical Equivalence	40
	2.4	Logical Consequence	45
	2.5	Formal Arguments	48
	2.6	Predicates and Quantifiers	54
	2.7	Negations	58
	*2.8	First-Order Languages	61
	2.9	Proofs	67
	2.10	Notes	75
3	Set	S	77
	3.1	Background and Motivation	77
	3.2	Fundamental Concepts	78
	3.3	Intersections and Unions	85
	3.4	Differences and Symmetric Differences	89
	3.5	Cartesian Products	92
	3.6	Relations	95
	3.7	Functions	98
	3.8	Numbers	103
	3.9	Cardinality	107
	3.10	Notes	113
4	\mathbf{Pro}	ofs by Induction	115

	4.1	Perfect Squares	115
	4.2	Bernoulli's Inequality	119
	4.3	Fibonacci Numbers	121
	4.4	Geometric Series	123
	4.5	Binomial Theorem	125
	4.6	Strong Induction	127
	*4.7	Wellfounded Induction	131
	*4.8	Recursion	143
	*4.9	Recursively Defined Sets	147
	4.10	Notes	156
5	Equ	ivalence Relations	159
	5.1	Generalities	159
	5.2	Integers	165
	5.3	Modular Arithmetic	166
	5.4	Rational Numbers	168
	5.5	Real Numbers	170
	5.6	Notes	174
6	Par	tial Orders and Lattices	175
	6.1	Partial Orders	175
	6.2	Strict Order	177
	6.3	Cover Relations and Hasse Diagrams	179
	6.4	Dilworth's Theorem	182
	6.5	Lower and Upper Bounds	186
	6.6	Extensions of Partial Orders	190
	6.7	Monotonic Functions	192
	6.8	Lattices	195
	6.9	Notes	198
7	Flo	or and Ceiling Functions	199
	7.1	Rounding Up and Down	199
	7.2	Divisibility and Primes	205
	7.3	Functions of Floors and Ceilings	208
	7.4	Notes	211
8	Nur	nber Theory	213
	8.1	Divisibility	213
	8.2	The Greatest Common Divisor	215
	8.3	Linear Diophantine Equations	219
	8.4	Linear Congruence Equations	224
	8.5	The Chinese Remainder Theorem	226
	8.6	The RSA Public Key Cryptosystem	230
	8.7	Notes	233

II Sur	235	
9 Sun	ıs	237
9.1	A Motivating Example	237
9.2	Difference Calculus	239
9.3	Falling Factorial Powers	245
9.4	Stirling Numbers	249
9.5	The Fundamental Theorem of Summation	252
9.6	Summation by Parts	259
9.7	Analysis of Programs	264
9.8	Notes	267
10 Estimating Sums		269
10.1	Monotonic Functions	269
*10.2	Bernoulli Polynomials	273
*10.3	Euler's Summation Formula	280
*10.4	Harmonic Numbers and Euler's Constant	286
	Stirling's Approximation	288
10.6	Notes	291
11 Asy	mptotic Analysis	293
11.1	Asymptotic Equality	293
11.2	Limit Superior and Limit Inferior	299
11.3	Asymptotically Tight Bounds	306
	Asymptotic Upper Bounds	310
	Asymptotic Lower Bounds	315
	Analysis of Algorithms	316
11.7	Notes	320
III Co	ombinatorics	321
12 Cou	inting	323
12.1	Fundamental Counting Principles	323
12.2	Permutations and Combinations	329
12.3	Combinatorial Proofs	332
12.4	Selections with Repetitions	340
12.5	Set Partitions	345
	The Inclusion-Exclusion Principle	347
12.7	Pigeonhole Principle	352
12.8	Notes	355
13 Ger	nerating Functions	357
13.1	The Basic Concept	357
13.2	Operations on Generating Functions	359
13.3	Elementary Generating Functions	367

13.4 Giving Change	370
14 Recurrence Relations	375
14.1 Recurrence Relations	375
14.2 A Motivating Example	379
14.3 Fibonacci Sequence	381
14.4 Partial Fractions	384
14.5 Reciprocal Polynomials	387
14.6 Linear Homogeneous Recurrence Relations	389
14.7 Characteristic Polynomials	392
14.8 Inhomogeneous Linear Recurrence Relations	395
14.9 Catalan Numbers	399
14.10Notes	403
15 Graphs	405
15.1 Undirected Graphs	405
15.2 Common Graphs	410
15.3 Connected Graphs	414
15.4 Trees	418
15.5 Planar Graphs	420
15.6 Graph Coloring	423
15.7 Hamiltonian Cycles and Paths	430
16 Probability Theory	439
16.1 Motivation	439
16.2 Probability Spaces	443
16.3 Set Limits	450
16.4 Conditional Probabilities	455
16.5 Independence	$\boldsymbol{459}$
16.6 Random Variables	464
16.7 Expectation	470
16.8 The Probabilistic Method	477
16.9 Notes	482
Bibliography	483
Index	489