# COMS 4721: Machine Learning for Data Science Lecture 24, 4/25/2017

Prof. John Paisley

Department of Electrical Engineering & Data Science Institute

Columbia University

MODEL SELECTION

# MODEL SELECTION

# The model selection problem

We've seen how often model parameters need to be set in advance and discussed how this can be done using using cross-validation.

Another type of model selection problem is learning model order.

Model order: The complexity of a class of models

- ► Gaussian mixture model: How many Gaussians?
- ► Matrix factorization: What rank?
- ► Hidden Markov models: How many states?

In each of these problems, we can't simply look at the log-likelihood because a more complex model can always fit the data better.

# MODEL SELECTION

#### Model Order

We will discuss two methods for selecting an "appropriate" complexity of the model. This assumes a good model type was chosen to begin with.





(b) Inappropriate model type.

# EXAMPLE: MAXIMUM LIKELIHOOD

#### **Notation**

We write  $\mathcal{L}$  for the log-likelihood of a parameter under a model  $p(x|\theta)$ :

$$x_i \stackrel{iid}{\sim} p(x|\theta) \iff \mathcal{L} = \sum_{i=1}^N \log p(x_i|\theta)$$

The maximum likelihood solution is:  $\theta_{ML} = \arg \max_{\theta} \mathcal{L}$ .

# Example: How many clusters? (wrong way)

The parameters  $\theta$  could be those of a GMM. We could find  $\theta_{\text{\tiny ML}}$  for different numbers of clusters and pick the one with the largest  $\mathcal{L}$ .

**Problem**: We can perfectly fit the data by putting each observation in its own cluster. Then shrink the variance of each Gaussian to zero.

# NUMBER OF PARAMETERS

# The general problem

- ▶ Models with more degrees of freedom are more prone to overfitting.
- ► The degrees of freedom is roughly the number of scalar parameters, *K*.
- ▶ By increasing *K* (done by increasing #clusters, rank, #states, etc.) the model can add more degrees of freedom.

#### Some common solutions

- ➤ **Stability**: Bootstrap sample the data, learn a model, calculate the likelihood on the original data set. Repeat and pick the best model.
- ▶ **Bayesian nonparametric methods**: Each possible value of *K* is assigned a prior probability. The posterior learns the best *K*.
- ▶ **Penalization approaches**: A penalty term makes adding parameters expensive. Must be overcome by a greater improvement in likelihood.

## PENALIZING MODEL COMPLEXITY

#### General form

Define a *penalty function* on the number of model parameters. Instead of maximizing  $\mathcal{L}$ , minimize  $-\mathcal{L}$  and add a chosen penalty.

Two popular penalties are:

- ▶ Akaike information criterion (AIC):  $-\mathcal{L} + K$
- ▶ Bayesian information criterion (BIC):  $-\mathcal{L} + \frac{1}{2}K \ln N$

When  $\frac{1}{2} \ln N > 1$ , BIC encourages a simpler model (happens when  $N \ge 8$ ).

**Example**: For NMF with an  $M_1 \times M_2$  matrix and rank R factorization,

AIC 
$$\to (M_1 + M_2)R$$
, BIC  $\to \frac{1}{2}(M_1 + M_2)R\ln(M_1M_2)$ 

# EXAMPLE OF AIC OUTPUT



# EXAMPLE: AIC VS BIC ON HMM



| model              | $-\log L$ | AIC   | BIC   |
|--------------------|-----------|-------|-------|
| '1-state HM'       | 391.9189  | 785.8 | 788.5 |
| 2-state HM         | 342.3183  | 692.6 | 703.3 |
| 3-state HM         | 329.4603  | 676.9 | 701.0 |
| 4-state HM         | 327.8316  | 687.7 | 730.4 |
| 5-state HM         | 325.9000  | 701.8 | 768.6 |
| 6-state HM         | 324.2270  | 720.5 | 816.7 |
| indep. mixture (2) | 360.3690  | 726.7 | 734.8 |
| indep. mixture (3) | 356.8489  | 723.7 | 737.1 |
| indep. mixture (4) | 356.7337  | 727.5 | 746.2 |

#### Notice:

- ► Likelihood is always improving
- Only compare location of AIC and BIC minima, not the values.

# DERIVATION OF BIC

# AIC AND BIC

#### Recall the two penalties:

- ▶ Akaike information criterion (AIC):  $-\mathcal{L} + K$
- ▶ Bayesian information criterion (BIC):  $-\mathcal{L} + \frac{1}{2}K \ln N$

#### Algorithmically, there is no extra work required:

- 1. Find the ML solution of the selected models and calculate  $-\mathcal{L}$ .
- 2. Add the AIC or BIC penalties to get scores and pick a model.
- Q: Where do these penalties come from? Currently they seem arbitrary.
- A: We will derive BIC next. AIC also has a theoretical motivation, but we will not discuss that derivation.

Imagine we have r candidate models,  $\mathcal{M}_1, \ldots, \mathcal{M}_r$ . For example, r HMMs each having a different number of states.

We also have data  $\mathcal{D} = \{x_1, \dots, x_N\}$ . We want the posterior of each  $\mathcal{M}_i$ .

$$p(\mathcal{M}_i|\mathcal{D}) = \frac{p(\mathcal{D}|\mathcal{M}_i)p(\mathcal{M}_i)}{\sum_j p(\mathcal{D}|\mathcal{M}_j)p(\mathcal{M}_j)}$$

If we assume a uniform prior distribution on models, then because the denominator is constant in  $\mathcal{M}_i$ , we can pick

$$\mathcal{M} = \arg \max_{\mathcal{M}_i} \ln p(\mathcal{D}|\mathcal{M}_i) = \ln \int p(\mathcal{D}|\theta, \mathcal{M}_i) p(\theta|\mathcal{M}_i) d\theta$$

By integrating out all parameters of the model, we're choosing the model with the largest *marginal likelihood* of the data. This is usually not solvable.

We will see how the BIC arises from the approximation,

$$\mathcal{M} = \arg \max_{\mathcal{M}_i} \ln p(\mathcal{D}|\mathcal{M}_i) \approx \arg \max_{\mathcal{M}_i} \ln p(\mathcal{D}|\theta_{\scriptscriptstyle \mathrm{ML}}, \mathcal{M}_i) - \frac{1}{2} K_i \ln N$$

**Step 1**: Recognize that the difficulty is with the integral

$$\ln p(\mathcal{D}|\mathcal{M}_i) \ = \ \ln \int p(\mathcal{D}|\theta)p(\theta)d\theta.$$

 $\mathcal{M}_i$  determines  $p(\mathcal{D}|\theta)$  and  $p(\theta)$ , but not write  $\mathcal{M}_i$  for now.

Step 2: Approximate this integral using a second-order Taylor expansion.

1. We want to calculate:

$$\ln p(\mathcal{D}|\mathcal{M}) \ = \ \ln \int p(\mathcal{D}|\theta) p(\theta) d\theta \ = \ \ln \int \exp\{\ln p(\mathcal{D}|\theta)\} p(\theta) d\theta$$

**2**. We use a second-order Taylor expansion of  $\ln p(\mathcal{D}|\theta)$  at the point  $\theta_{\text{\tiny ML}}$ ,

$$\begin{split} \ln p(\mathcal{D}|\theta) &\approx & \ln p(\mathcal{D}|\theta_{\text{ML}}) + (\theta - \theta_{\text{ML}})^T \underbrace{\nabla \ln p(\mathcal{D}|\theta_{\text{ML}})}_{= 0} \\ &+ \frac{1}{2} (\theta - \theta_{\text{ML}})^T \underbrace{\nabla^2 \ln p(\mathcal{D}|\theta_{\text{ML}})}_{= -\mathcal{J}(\theta_{\text{ML}})} (\theta - \theta_{\text{ML}}) \end{split}$$

3. Approximate  $p(\theta)$  as uniform and plug this approximation back in,

$$\ln p(\mathcal{D}|\mathcal{M}) \, \approx \, \ln p(\mathcal{D}|\theta_{\text{\tiny ML}}) + \ln \int \exp \left\{ -\frac{1}{2} (\theta - \theta_{\text{\tiny ML}})^T \mathcal{J}(\theta_{\text{\tiny ML}}) (\theta - \theta_{\text{\tiny ML}}) \right\} d\theta$$

Observation: The integral is the normalizing constant of a Gaussian,

$$\int \exp\Big\{-\frac{1}{2}(\theta-\theta_{\rm ML})^T\mathcal{J}(\theta_{\rm ML})(\theta-\theta_{\rm ML})\Big\}d\theta \ = \ \left(\frac{2\pi}{|\mathcal{J}(\theta_{\rm ML})|}\right)^{K/2}$$

Remember the definition that

$$-\mathcal{J}(\theta_{\text{ML}}) \ = \ \nabla^2 \ln p(\mathcal{D}|\theta_{\text{ML}}) \ \stackrel{(a)}{=} \ N \underbrace{\sum_{i=1}^{N} \frac{1}{N} \nabla^2 \ln p(x_i|\theta_{\text{ML}})}_{\text{converges as $N$ increases}}$$

(a) is by the i.i.d. model assumption made at the beginning of the lecture.

4. Plugging this in,

$$\begin{split} \ln p(\mathcal{D}|\mathcal{M}) \; \approx \; \ln p(\mathcal{D}|\theta_{\scriptscriptstyle{\mathrm{ML}}}) \; + \; \frac{K}{2} \ln \left( \frac{2\pi}{|\mathcal{J}(\theta_{\scriptscriptstyle{\mathrm{ML}}})|} \right) \\ \text{and} \; |\mathcal{J}(\theta_{\scriptscriptstyle{\mathrm{ML}}})| = N \, \big| \, \sum_{i=1}^{N} \frac{1}{N} \nabla^2 \ln p(x_i|\theta_{\scriptscriptstyle{\mathrm{ML}}}) \big|. \end{split}$$

Conclusion. Therefore we arrive at the BIC,

$$\ln p(\mathcal{D}|\mathcal{M}) \approx \ln p(\mathcal{D}|\theta_{\text{ML}}) - \frac{1}{2}K \ln N + \underbrace{\text{something not growing with } N}_{O(1) \text{ term, so we ignore it}}$$

SOME NEXT STEPS

# ICML SESSIONS (SUBSET)

The International Conference on Machine Learning (ICML) is one of the top ML conferences. Many of the past session titles should look familiar:

- Gaussian Processes
- ► PCA and Subspace Models
- Supervised Learning
- Matrix Completion and Graphs
- Clustering and Nonparametrics
- Active Learning
- ▶ Clustering
- Boosting and Ensemble Methods
- ► Matrix Factorization
- Kernel Methods
- ▶ Topic models
- ► Time Series and Sequences
- etc.

# ICML SESSIONS (SUBSET)

## Other sessions might not look so familiar:

- ► Reinforcement Learning
- Bandits
- ▶ Optimization: 13 separate sessions last year (a lot!)
- ► Bayesian nonparametrics
- Online learning
- Graphical Models
- ▶ Neural Networks and Deep Learning: 18 separate sessions last year (a lot!)
- Metric Learning and Feature Selection
- etc.

Bayesian methods are relevant to many sessions, as is theoretical computer science. Some relevant future courses to consider are on:

- ▶ Deep learning
- **▶** Optimization
- ► Bayesian methods
- ► Theoretical machine learning