Project 2

Ames Housing Data and Kaggle Challenge

Presented by: Aw Boon Jun

INTRODUCTION

Ames is a city in Story County, Iowa, United States approximately 30 miles north of Des Moines in central Iowa. It is best known as the home of Iowa State University, with leading Agriculture, Design, Engineering, and Veterinary Medicine colleges.

In this project, datasets obtains from the Ames Assessor's Office (through Kaggle) are used to create a regression model that predicts the price of houses in Ames, IA.

PROBLEM STATEMENT

To build a regression model with the

lowest error

to predict Sales Price of houses sold in Ames

DATASETS

Data set contains information from the Ames Assessor's Office used in computing assessed values for individual residential properties sold in Ames, IA from 2006 to 2010.

Source: https://www.kaggle.com/c/dsi-us-6-project-2-regression-challenge/

Train.csv

2051

81

Observations

variables

Test.csv

879

80

Observations

variables

Train.csv 23 21 20 17
Ordinal Nominal Continuous Discrete

For model selection & fitting

DATASETS

Test.csv 23 21 19 17
Ordinal Nominal Continuous Discrete

For prediction of house price to submit to Kaggle

WORKFLOW

Data Cleaning

- Null handling
- Combine/remove
- Outlier removal
- EDA

One-Hot Encoding

- Encode category variable
- Ensure same shape for Train & Test

Feature Engineering

- Lasso Selection
- 30 variables

Modeling & Prediction

- 4 model: LR, Lasso,
 Ridge, Elastic
- Predict with LR

EDA

Correlation heatmap to eliminate variables

Plotting distribution histogram to eliminate skewed distributed variables

WORKFLOW

Data Cleaning

- Null handling
- Combine/remove
- Outlier removal
- EDA

One-Hot Encoding

- Encode category variable
- Ensure same shape for Train & Test

Feature Engineering

- Lasso Selection
- 30 variables

Modeling & Prediction

- 4 model: LR, Lasso,
 Ridge, Elastic
- Predict with LR

FEATURES ENGINEERING

Using Lasso to select top 15 +ve & -ve coefficients as final variables for model selection

WORKFLOW

Data Cleaning

- Null handling
- Combine/remove
- Outlier removal
- EDA

One-Hot Encoding

- Encode category variable
- Ensure same shape for Train & Test

Feature Engineering

- Lasso Selection
- 30 variables

Modeling & Prediction

- 4 model: LR, Lasso,
 Ridge, Elastic
- Predict with LR

MODEL SELECTION

Linear Regression

minimize:
$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} \left(y_i - \left(\beta_0 + \sum_{j=1}^{p} \beta_j x_j \right) \right)^2$$

Elastic Net

minimize:
$$RSS + Ridge + Lasso = \sum_{i=1}^{n} \left(y_i - \left(\beta_0 + \sum_{j=1}^{p} \beta_j x_j \right) \right)^2 + \alpha \rho \sum_{j=1}^{p} |\beta_j| + \alpha (1 - \rho) \sum_{j=1}^{p} \beta_j^2$$

Ridge

$$\sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij}\right)^2 + \lambda \sum_{j=1}^p \beta_j^2 = \text{RSS} + \lambda \sum_{j=1}^p \beta_j^2,$$

where $\lambda \geq 0$ is a *tuning parameter*, to be determined separately.

Lasso

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|.$$

MODEL SELECTION

- 1. Train/Test Split: 0.25 test size
- 2. Validation of model by comparing scores of 4 models

Model	R2 Score
Linear Regression	0.8852429133130981
Ridge	0.8851807633561328
Lasso	0.8852429122211832
Elastic Net	0.8727541829079618

- 3. Select Linear Regression and fit X, y (Before split data)
- 4. Predict with test data set

PREDICTION WITH LR

Name	Submitted	Wait time	Execution time	Score
arget.csv	just now	0 seconds	0 seconds	275706.49149

R2 Score

0.8871977269985987

SUMMARY

Model	R2 Score
Linear Regression	0.8852429133130981
Lasso	0.8852429122211832

Small differences in R2 score with lasso = model is not over-fitted

Covers 88.5% of the dataset

SUMMARY

- Being in the neighborhood Green Hills will increase the Sale Price by USD 16,899
- Having house exterior covered with cement board (Exterior 2nd_CmentBd) will decrease the prices by USD 44,892
- Total Square Feet & Age of House will not affect house sale price as much
- Green Hills, Stone Bridge, North Ridge Height, North Ridge neighborhood houses affect sale prices the most among others in Ames
- Planned Unit Development (PUD) houses will decrease the sale price (MS SubClass 160 & 120)

SUMMARY

- Green Hills close to Iowa University
- North Ridge, North Ridge Height and Stone Bridge are in upper class neighborhood

THANK YOU

