92586 Computational Linguistics

Lesson 3. Naïve Bayes

Alberto Barrón-Cedeño

Alma Mater Studiorum-Università di Bologna a.barron@unibo.it @_albarron_

03/03/2020

Previously

• Pre-processing (e.g., tokenisation, stemming, stopwording)

Previously

- Pre-processing (e.g., tokenisation, stemming, stopwording)
- BoW representation

Previously

- Pre-processing (e.g., tokenisation, stemming, stopwording)
- BoW representation
- One rule-based sentiment analyser

Table of Contents

Naïve Bayes

Training a Machine Learning Model

Introduced in the IR community by Maron (1961)

- Introduced in the IR community by Maron (1961)
- First machine-learning approach

- Introduced in the IR community by Maron (1961)
- ② First machine-learning approach
- It is a supervised model

- Introduced in the IR community by Maron (1961)
- ② First machine-learning approach
- 3 It is a supervised model
- 4 It applies Bayes' theorem with strong (naïve) independence assumptions between the features (they are independent; they contribute the same)

- Introduced in the IR community by Maron (1961)
- ② First machine-learning approach
- 3 It is a supervised model
- 4 It applies Bayes' theorem with strong (naïve) independence assumptions between the features (they are independent; they contribute the same)

Let us take it easy this time

Machine Learning

"the scientific study of algorithms and statistical models that computer systems use to perform a specific task without using explicit instructions, relying on patterns and inference instead"

Machine Learning

A change of paradigm

From hand-crafted rules.

Machine Learning

A change of paradigm

From hand-crafted rules.

To training

Diagrams borrowed from L. Moroney's Introduction to TensorFlow for Artificial Intelligence, Machine Learning, and Deep Learning

Supervised vs Unsupervised

Supervised The algorithms build a mathematical model of a set of data that contains **both the inputs and the desired outputs**

Supervised vs Unsupervised

Supervised The algorithms build a mathematical model of a set of data that contains **both the inputs and the desired outputs**Unsupervised The algorithms take a set of data that contains **only inputs**, and find structure in the data

A conditional probability model Given an instance represented by a vector

$$\mathbf{x} = (x_1, \dots, x_n) \tag{1}$$

representing *n* **independent** features

A conditional probability model

Given an instance represented by a vector

$$\mathbf{x} = (x_1, \dots, x_n) \tag{1}$$

representing *n* **independent** features

The model assigns the instance the probability

$$p(C_k \mid x_1, \dots, x_n) \tag{2}$$

for each of the k possible outcomes C_k

A conditional probability model

Given an instance represented by a vector

$$\mathbf{x} = (x_1, \dots, x_n) \tag{1}$$

representing *n* **independent** features

The model assigns the instance the probability

$$p(C_k \mid x_1, \dots, x_n) \tag{2}$$

for each of the k possible outcomes C_k

Using Bayes' Theorem

The conditional probability $p(C_k \mid x_1, \dots, x_n)$ can be decomposed as

$$p(C_k \mid \mathbf{x}) = \frac{p(C_k) \ p(\mathbf{x} \mid C_k)}{p(\mathbf{x})}$$
(3)

Using Bayes' Theorem

The conditional probability $p(C_k \mid x_1, \dots, x_n)$ can be decomposed as

$$p(C_k \mid \mathbf{x}) = \frac{p(C_k) \ p(\mathbf{x} \mid C_k)}{p(\mathbf{x})}$$
(3)

How to read this

$$posterior = \frac{prior \times likelihood}{evidence}$$

Using Bayes' Theorem

The conditional probability $p(C_k \mid x_1, \dots, x_n)$ can be decomposed as

$$p(C_k \mid \mathbf{x}) = \frac{p(C_k) \ p(\mathbf{x} \mid C_k)}{p(\mathbf{x})}$$
(3)

How to read this

$$posterior = \frac{prior \times likelihood}{evidence}$$

But p(x) does not depend on the class (it's constant!):

$$p(C_k \mid \mathbf{x}) = p(C_k) \ p(\mathbf{x} \mid C_k) \tag{4}$$

From https://en.wikipedia.org/wiki/Naive_Bayes_classifier

Going deeper (assuming a binary classifier)

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})}$$
 (5)

$$posterior \ probability = \frac{class \ prior \ probability \times likelihood}{predictor \ prior \ probability}$$

¹Symbol | means "given": the probability of the class given the representation yector. ○

Going deeper (assuming a binary classifier)

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})}$$
 (5)

$$posterior \ probability = \frac{class \ prior \ probability \times likelihood}{predictor \ prior \ probability}$$

 $p(C \mid \mathbf{x})$ Posterior probability of the class given the input¹

¹Symbol | means "given": the probability of the class given the representation vector. ○

Going deeper (assuming a binary classifier)

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})}$$
 (5)

$$posterior \ probability = \frac{class \ prior \ probability \times likelihood}{predictor \ prior \ probability}$$

 $p(C \mid \mathbf{x})$ Posterior probability of the class given the input¹

```
if p > 0.5:
```

class = positive

else:

class = negative

¹Symbol | means "given": the probability of the class given the representation vector >

Going deeper (assuming a binary classifier)

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})}$$
(6)

$$posterior \ probability = \frac{class \ prior \ probability \times likelihood}{predictor \ prior \ probability}$$

Going deeper (assuming a binary classifier)

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})}$$
(6)

$$posterior \ probability = \frac{class \ prior \ probability \times likelihood}{predictor \ prior \ probability}$$

p(C) Prior probability of the class

Going deeper (assuming a binary classifier)

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})}$$
(6)

$$posterior \ probability = \frac{class \ prior \ probability \times likelihood}{predictor \ prior \ probability}$$

p(C) Prior probability of the class How many of the instances I have seen in the past (during training) are positive?

Going deeper (assuming a binary classifier)

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})} \tag{7}$$

$$posterior \ probability = \frac{class \ prior \ probability \times likelihood}{predictor \ prior \ probability}$$

Going deeper (assuming a binary classifier)

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})} \tag{7}$$

$$posterior \ probability = \frac{class \ prior \ probability \times likelihood}{predictor \ prior \ probability}$$

 $p(\mathbf{x} \mid C)$ Prior probability of the class

Going deeper (assuming a binary classifier)

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})} \tag{7}$$

 $posterior \ probability = \frac{class \ prior \ probability \times likelihood}{predictor \ prior \ probability}$

 $p(\mathbf{x} \mid C)$ Prior probability of the class The probability of the document given the class

• The value of a particular feature is **independent** of the value of any other feature, given the class variable

- The value of a particular feature is independent of the value of any other feature, given the class variable
- All features contribute the same to the classification

- The value of a particular feature is independent of the value of any other feature, given the class variable
- All features contribute the same to the classification
- It tries to find keywords in a set of documents that are predictive of the target (output) variable

- The value of a particular feature is independent of the value of any other feature, given the class variable
- All features contribute the same to the classification
- It tries to find keywords in a set of documents that are predictive of the target (output) variable
- The internal coefficients will try to map tokens to scores

Rough Idea

- The value of a particular feature is independent of the value of any other feature, given the class variable
- All features contribute the same to the classification
- It tries to find keywords in a set of documents that are predictive of the target (output) variable
- The internal coefficients will try to map tokens to scores
- Same as VADER, but this time the machine will find the best scores!

A toy example: Should I play calcio today?

One single factor: weather

(get ready for some of the densest slides I have ever made!)

A toy example: Should I play calcio today?

Dataset		
Outlook	Play	
sunny	yes	
overcast	yes	
sunny	no	
rainy	yes	
sunny	yes	
overcast	yes	
sunny	yes	
overcast	yes	
rainy	yes	
sunny	no	
rainy	no	
overcast	yes	
rainy	no	
rainy	no	

A toy example: Should I play calcio today?

Dataset		
Outlook	Play	
sunny	yes	
overcast	yes	
sunny	no	
rainy	yes	
sunny	yes	
overcast	yes	
sunny	yes	
overcast	yes	
rainy	yes	
sunny	no	
rainy	no	
overcast	yes	
rainy	no	
rainy	no	

Computing **all** the probabilities by "counting"

A toy example: Should I play calcio today?

Dataset		
Outlook	Play	
sunny	yes	
overcast	yes	
sunny	no	
rainy	yes	
sunny	yes	
overcast	yes	
sunny	yes	
overcast	yes	
rainy	yes	
sunny	no	
rainy	no	
overcast	yes	
rainy	no	
rainy	no	

Computing **all** the probabilities by "counting"

Frequency table		
	Play	
Outlook	yes	no
sunny	3	2
overcast	4	0
rainy	2	3

A toy example: Should I play calcio today?

Dataset		
Outlook	Play	
sunny	yes	
overcast	yes	
sunny	no	
rainy	yes	
sunny	yes	
overcast	yes	
sunny	yes	
overcast	yes	
rainy	yes	
sunny	no	
rainy	no	
overcast	yes	
rainy	no	
rainy	no	

Computing **all** the probabilities by "counting"

Frequency table		
	Play	
Outlook	yes	no
sunny	3	2
overcast	4	0
rainy	2	3

Likelillood table		
	Play	
Outlook	yes	no
sunny	3/9	2/5
overcast	4/9	0/5
rainy	2/9	3/5

A toy example: Should I play calcio today?

	Play	
Outlook	yes	no
sunny	3/9	2/5
overcast	4/9	0/5
rainy	2/9	3/5
	9/14	5/14

A toy example: Should I play calcio today?

	Play	
Outlook	yes	no
sunny	3/9 ¹	2/5
overcast	4/9	0/5
rainy	2/9	3/5
	9/14	5/14

¹
$$p(x \mid c) = p(\text{sunny} \mid \text{yes}) = 3/9 = 0.33$$

A toy example: Should I play calcio today?

	Play	
Outlook	yes	no
sunny	3/9 ¹	2/5
overcast	4/9	0/5
rainy	2/9	3/5
	9/14 ²	5/14

¹
$$p(x \mid c) = p(\text{sunny} \mid \text{yes}) = 3/9 = 0.33$$

$$p(c) = p(yes) = 9/14 = 0.64$$

A toy example: Should I play calcio today?

	Play	
Outlook	yes	no
sunny	3/9 ¹	2/5
overcast	4/9	0/5
rainy	2/9	3/5
	9/14 ²	5/14

¹
$$p(x \mid c) = p(\text{sunny} \mid \text{yes}) = 3/9 = 0.33$$

² $p(c) = p(\text{yes}) = 9/14 = 0.64$
 $p(x) = p(\text{sunny}) = 5/14 = 0.36$

A toy example: Should I play calcio today?

Likelihood table

	Play	
Outlook	yes	no
sunny	3/9 ¹	2/5
overcast	4/9	0/5
rainy	2/9	3/5
	9/14 ²	5/14

¹
$$p(x \mid c) = p(\text{sunny} \mid \text{yes}) = 3/9 = 0.33$$

² $p(c) = p(\text{yes}) = 9/14 = 0.64$
 $p(x) = p(\text{sunny}) = 5/14 = 0.36$

What is the Naïve Bayes' probability of playing if it's **sunny**?

A toy example: Should I play calcio today?

Likelihood table

	Play	
Outlook	yes no	
sunny	3/9 ¹	2/5
overcast	4/9	0/5
rainy	2/9	3/5
	9/14 ²	5/14

¹
$$p(x \mid c) = p(\text{sunny} \mid \text{yes}) = 3/9 = 0.33$$

² $p(c) = p(\text{yes}) = 9/14 = 0.64$
 $p(x) = p(\text{sunny}) = 5/14 = 0.36$

What is the Naïve Bayes' probability of playing if it's **sunny**?

$$p(c \mid x) = p(c)p(x \mid c)/p(x)$$

A toy example: Should I play calcio today?

Likelihood table

	Play		
Outlook	yes	no	
sunny	3/9 ¹	2/5	
overcast	4/9	0/5	
rainy	2/9	3/5	
	9/14 ²	5/14	

¹
$$p(x \mid c) = p(\text{sunny} \mid \text{yes}) = 3/9 = 0.33$$

² $p(c) = p(\text{yes}) = 9/14 = 0.64$
 $p(x) = p(\text{sunny}) = 5/14 = 0.36$

What is the Naïve Bayes' probability of playing if it's **sunny**?

$$p(c \mid x) = p(c)p(x \mid c)/p(x)$$

$$p(\text{yes} \mid \text{sunny}) = p(\text{yes})p(\text{sunny} \mid \text{yes})/p(\text{sunny})$$

Adapted from http://www.saedsayad.com/naive_bayesian.htm

A toy example: Should I play calcio today?

Likelihood table

	Play		
Outlook	yes no		
sunny	3/9 ¹	2/5	
overcast	4/9	0/5	
rainy	2/9	3/5	
	9/14 ²	5/14	

¹
$$p(x \mid c) = p(\text{sunny} \mid \text{yes}) = 3/9 = 0.33$$

² $p(c) = p(\text{yes}) = 9/14 = 0.64$
 $p(x) = p(\text{sunny}) = 5/14 = 0.36$

What is the Naïve Bayes' probability of playing if it's **sunny**?

$$p(c \mid x) = p(c)p(x \mid c)/p(x)$$

$$p(\text{yes} \mid \text{sunny}) = p(\text{yes})p(\text{sunny} \mid \text{yes})/p(\text{sunny})$$

$$p(\text{yes} \mid \text{sunny}) = 0.64 * 0.33/0.36$$

Adapted from http://www.saedsayad.com/naive_bayesian.htm

A toy example: Should I play calcio today?

Likelihood table

	Play	
Outlook	yes no	
sunny	3/9 ¹	2/5
overcast	4/9	0/5
rainy	2/9	3/5
	9/14 ²	5/14

¹
$$p(x \mid c) = p(\text{sunny} \mid \text{yes}) = 3/9 = 0.33$$

² $p(c) = p(\text{yes}) = 9/14 = 0.64$
 $p(x) = p(\text{sunny}) = 5/14 = 0.36$

What is the Naïve Bayes' probability of playing if it's **sunny**?

$$p(c \mid x) = p(c)p(x \mid c)/p(x)$$

$$p(\text{yes} \mid \text{sunny}) = p(\text{yes})p(\text{sunny} \mid \text{yes})/p(\text{sunny})$$

$$p(\text{yes} \mid \text{sunny}) = 0.64 * 0.33/0.36$$

$$p(\text{yes} \mid \text{sunny}) = 0.59$$

A toy example: Should I play calcio today?

If. . .

bring the ball!

A toy example: Should I play calcio today?

Considering more data

Outlook	Temp	Humidity	Windy	Play
rainy	hot	high	false	no
rainy	hot	high	true	no
overcast	hot	high	false	yes
sunny	mild	high	false	yes
sunny	cool	normal	false	yes
sunny	cool	normal	true	no
overcast	cool	normal	true	yes
rainy	mild	high	false	no
rainy	cool	normal	false	yes
sunny	mild	normal	false	yes
rainy	mild	normal	true	yes
overcast	mild	high	true	yes
overcast	hot	normal	false	yes
sunny	mild	high	true	no

Adapted from http://www.saedsavad.com/naive bavesian.htm

A toy example: Should I play calcio today? Frequency tables

Outlook	yes	no
sunny	3	2
overcast	4	0
rainy	2	3

Outlook	yes	no
sunny	3/9	2/5
overcast	4/9	0/5
rainy	2/9	3/5

A toy example: Should I play calcio today? Frequency tables

Outlook	yes	no
sunny	3	2
overcast	4	0
rainy	2	3

Humid	yes	no
high	3	4
normal	6	1

Outlook	yes	no
sunny	3/9	2/5
overcast	4/9	0/5
rainy	2/9	3/5

	3/3
yes	no
3/9	4/5
6/9	1/5
	yes 3/9

A toy example: Should I **play** calcio today? **Frequency tables**

Outlook	yes	no
sunny	3	2
overcast	4	0
rainy	2	3

Humid	yes	no
high	3	4
normal	6	1

Temp	yes	no
hot	2	2
mild	4	2
cool	3	1

Outlook	yes	no
sunny	3/9	2/5
overcast	4/9	0/5
rainy	2/9	3/5

Humid	yes	no
high	3/9	4/5
normal	6/9	1/5

Temp	yes	no
hot	2/9	2/5
mild	4/9	2/5
cool	3/9	1/5

A toy example: Should I **play** calcio today? **Frequency tables**

Outlook	yes	no
sunny	3	2
overcast	4	0
rainy	2	3

Humid	yes	no
high	3	4
normal	6	1

Temp	yes	no
hot	2	2
mild	4	2
cool	3	1

Windy	yes	no
false	6	2
true	3	3

Outlook	yes	no
sunny	3/9	2/5
overcast	4/9	0/5
rainy	2/9	3/5

yes	no
3/9	4/5
6/9	1/5
	3/9

Temp	yes	no
hot	2/9	2/5
mild	4/9	2/5
cool	3/9	1/5

Windy	yes	no
false	6/9	2/5
true	3/9	3/5

Naïve Bayes Likelihood tables

Outlook	yes	no
sunny	3/9	2/5
overcast	4/9	0/5
rainy	2/9	3/5

yes	no
3/9	4/5
6/9	1/5
	3/9

Temp	yes	no
hot	2/9	2/5
mild	4/9	2/5
cool	3/9	1/5

Windy	yes	no
false	6/9	2/5
true	3/9	3/5

Naïve Bayes Likelihood tables O. . . l . . . l .

normal

Outlook	yes	no
sunny	3/9	2/5
overcast	4/9	0/5
rainy	2/9	3/5
Humid	yes	no
high	3/9	4/5

Temp	yes	no
hot	2/9	2/5
mild	4/9	2/5
cool	3/9	1/5

Windy	yes	no
false	6/9	2/5
true	3/9	3/5

outlook	temp	humidity	windy	play
rainy	cool	high	true	?

Outlook	yes	no
sunny	3/9	2/5
overcast	4/9	0/5
rainy	2/9	3/5
Lla.id		

Humid	yes	no
high	3/9	4/5
normal	6/9	1/5

Temp	yes	no
hot	2/9	2/5
mild	4/9	2/5
cool	3/9	1/5

Windy	yes	no
false	6/9	2/5
true	3/9	3/5

$$p(\text{yes} \mid x) = \frac{p(\text{yes})p(\text{rainy} \mid \text{yes})p(\text{cool} \mid \text{yes})p(\text{high} \mid \text{yes})p(\text{true} \mid \text{yes})}{p(\text{rainy})p(\text{cool})p(\text{high})p(\text{true})}$$

Likelihood tables

Outlook	yes	no
sunny	3/9	2/5
overcast	4/9	0/5
rainy	2/9	3/5

пинни	yes	110
high	3/9	4/5
normal	6/9	1/5

Temp	yes	no
hot	2/9	2/5
mild	4/9	2/5
cool	3/9	1/5

Windy	yes	no
alse	6/9	2/5
rue	3/9	3/5

outlooktemphumiditywindyplayrainycoolhightrue?

$$p(\text{yes} \mid x) = \frac{p(\text{yes})p(\text{rainy} \mid \text{yes})p(\text{cool} \mid \text{yes})p(\text{high} \mid \text{yes})p(\text{true} \mid \text{yes})}{p(\text{rainy})p(\text{cool})p(\text{high})p(\text{true})}$$
$$= \frac{9/14 \times 2/9 \times 3/9 \times 3/9 \times 3/9}{5/14 \times 4/14 \times 7/14 \times 6/14}$$

Likelihood tables

Outlook	yes	no
sunny	3/9	2/5
overcast	4/9	0/5
rainy	2/9	3/5

Hulliu	ycs	110
high	3/9	4/5
normal	6/9	1/5

yes	no
2/9	2/5
4/9	2/5
3/9	1/5
	2/9 4/9

	,	
Windy	yes	no
alse	6/9	2/5
rue	3/9	3/5

outlooktemphumiditywindyplayrainycoolhightrue?

$$p(\text{yes} \mid x) = \frac{p(\text{yes})p(\text{rainy} \mid \text{yes})p(\text{cool} \mid \text{yes})p(\text{high} \mid \text{yes})p(\text{true} \mid \text{yes})}{p(\text{rainy})p(\text{cool})p(\text{high})p(\text{true})}$$

$$= \frac{9/14 \times 2/9 \times 3/9 \times 3/9 \times 3/9}{5/14 \times 4/14 \times 7/14 \times 6/14}$$

$$= 0.00529/0.02811$$

Outlook	yes	no
sunny	3/9	2/5
overcast	4/9	0/5
rainy	2/9	3/5

Hulliu	yes	110
high	3/9	4/5
normal	6/9	1/5

Temp	yes	no
hot	2/9	2/5
mild	4/9	2/5
cool	3/9	1/5

	/	
Windy	yes	no
false	6/9	2/5
true	3/9	3/5

$$p(\text{yes} \mid x) = \frac{p(\text{yes})p(\text{rainy} \mid \text{yes})p(\text{cool} \mid \text{yes})p(\text{high} \mid \text{yes})p(\text{true} \mid \text{yes})}{p(\text{rainy})p(\text{cool})p(\text{high})p(\text{true})} \\
= \frac{9/14 \times 2/9 \times 3/9 \times 3/9 \times 3/9}{5/14 \times 4/14 \times 7/14 \times 6/14} \\
= 0.00529/0.02811 = 0.188 \sim 0.2$$

Likelihood tables

Outlook	yes	no
sunny	3/9	2/5
overcast	4/9	0/5
rainy	2/9	3/5

Hullilla	yes	110
high	3/9	4/5
normal	6/9	1/5

yes	no
2/9	2/5
4/9	2/5
3/9	1/5
	2/9 4/9

	,	
Windy	yes	no
alse	6/9	2/5
rue	3/9	3/5

outlooktemphumiditywindyplayrainycoolhightrue?

$$\begin{aligned}
 \rho(\text{yes} \mid x) &= \frac{p(\text{yes})p(\text{rainy} \mid \text{yes})p(\text{cool} \mid \text{yes})p(\text{high} \mid \text{yes})p(\text{true} \mid \text{yes})}{p(\text{rainy})p(\text{cool})p(\text{high})p(\text{true})} \\
 &= \frac{9/14 \times 2/9 \times 3/9 \times 3/9 \times 3/9}{5/14 \times 4/14 \times 7/14 \times 6/14} \\
 &= 0.00529/0.02811 = 0.188 \sim 0.2 \text{ no game}
 \end{aligned}$$

Back to the math...

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})}$$
(8)

Back to the math...

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})}$$
(8)

The probability p(x) is constant for any given input!

Back to the math...

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})}$$
(8)

The probability p(x) is constant for any given input!

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})} \tag{9}$$

Back to the math...

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})}$$
(8)

The probability $p(\mathbf{x})$ is constant for any given input!

$$p(C \mid \mathbf{x}) = \frac{p(C) \ p(\mathbf{x} \mid C)}{p(\mathbf{x})} \tag{9}$$

$$p(c \mid \mathbf{x}) \propto p(c)p(\mathbf{x} \mid c)$$
 (10)

Back to the math...

$$p(c \mid \mathbf{x}) \propto p(c)p(\mathbf{x} \mid c)$$
 (11)

Back to the math...

$$p(c \mid \mathbf{x}) \propto p(c)p(\mathbf{x} \mid c) \tag{11}$$

But x is a vector

Back to the math...

$$p(c \mid \mathbf{x}) \propto p(c)p(\mathbf{x} \mid c)$$
 (11)

But x is a vector

$$p(c \mid x_1 \dots x_n) \propto p(c)p(x_1 \mid c) \times p(x_2 \mid c) \times \dots \times p(x_n \mid c)$$
 (12)

Back to the math...

$$p(c \mid \mathbf{x}) \propto p(c)p(\mathbf{x} \mid c)$$
 (11)

But x is a vector

$$p(c \mid x_1 \dots x_n) \propto p(c)p(x_1 \mid c) \times p(x_2 \mid c) \times \dots \times p(x_n \mid c)$$
 (12)

Eq.(12) can be rewritten as

$$p(c \mid x_1 \dots x_n) \propto p(c) \prod_{i=1}^n p(x_i \mid c)$$
 (13)

The classification process

$$p(\text{yes} \mid x) \propto p(\text{yes})p(\text{rainy} \mid \text{yes})p(\text{cool} \mid \text{yes})p(\text{high} \mid \text{yes})p(\text{true} \mid \text{yes})$$

The classification process

$$p(\text{yes} \mid x) \propto p(\text{yes})p(\text{rainy} \mid \text{yes})p(\text{cool} \mid \text{yes})p(\text{high} \mid \text{yes})p(\text{true} \mid \text{yes})$$

 $\propto 9/14 \times 2/9 \times 3/9 \times 3/9 \times 3/9$

The classification process

$$p(\text{yes} \mid x) \propto p(\text{yes})p(\text{rainy} \mid \text{yes})p(\text{cool} \mid \text{yes})p(\text{high} \mid \text{yes})p(\text{true} \mid \text{yes})$$

$$\propto 9/14 \times 2/9 \times 3/9 \times 3/9 \times 3/9$$

$$\propto 0.00529$$

The classification process

$$p(\text{yes} \mid x) \propto p(\text{yes})p(\text{rainy} \mid \text{yes})p(\text{cool} \mid \text{yes})p(\text{high} \mid \text{yes})p(\text{true} \mid \text{yes})$$

 $\propto 9/14 \times 2/9 \times 3/9 \times 3/9 \times 3/9$
 $\propto 0.00529 \text{ not a probability!}$

The classification process

Back to the toy example

$$p(\text{yes} \mid x) \propto p(\text{yes})p(\text{rainy} \mid \text{yes})p(\text{cool} \mid \text{yes})p(\text{high} \mid \text{yes})p(\text{true} \mid \text{yes})$$

 $\propto 9/14 \times 2/9 \times 3/9 \times 3/9 \times 3/9$
 $\propto 0.00529$ **not a probability!**

Classification: the maximum for all the classes

$$c \propto \arg\max_{c} p(c) \prod_{i=1}^{n} p(x_i \mid c)$$
 (14)

The classification process

Back to the toy example

$$p(\text{yes} \mid x) \propto p(\text{yes})p(\text{rainy} \mid \text{yes})p(\text{cool} \mid \text{yes})p(\text{high} \mid \text{yes})p(\text{true} \mid \text{yes})$$

 $\propto 9/14 \times 2/9 \times 3/9 \times 3/9 \times 3/9$
 $\propto 0.00529$ **not a probability!**

Classification: the maximum for all the classes

$$c \propto \arg\max_{c} p(c) \prod_{i=1}^{m} p(x_i \mid c)$$
 (14)

```
compute p(yes|x)
compute p(no|x)
if p(yes|x) > p(no|x):
    yes
else:
```

Training a Machine Learning Model

kind examples			
	kind	examples	

kind	examples
binary	$\{ positive, negative \} \ \{ 0, 1 \} \ \{ -1, 1 \}$

kind	examples
binary	{positive, negative}
	{0, 1}
	{-1, 1}
multiclass	{positive, neutral, negative}
	{0,1,2}

We need a bunch of documents with their associated class

kind	examples
binary	{positive, negative}
	{0, 1}
	$\{-1, 1\}$
multiclass	{positive, neutral, negative}
	{0,1,2}

In our case, we need the positivity sentiment:

d_1	pos	d_5	neg	d_9	neu
d_2	neu	d_6	neg	d_{10}	pos
d_3	pos				
d_4	pos	d_8	pos	d_{12}	neg

Option 1 You use a corpus created by somebody else

Option 1 You use a corpus created by somebody else Option 2 You build your own corpus

- Option 1 You use a corpus created by somebody else
- Option 2 You build your own corpus
 - You have/hire an expert to do it

- Option 1 You use a corpus created by somebody else
- Option 2 You build your own corpus
 - You have/hire an expert to do it
 - You engage non-experts through gamification

- Option 1 You use a corpus created by somebody else
- Option 2 You build your own corpus
 - You have/hire an expert to do it
 - You engage non-experts through gamification
 - You hire non-experts through explicit crowdsourcing

- Option 1 You use a corpus created by somebody else
- Option 2 You build your own corpus
 - You have/hire an expert to do it
 - You engage non-experts through gamification
 - You hire non-experts through explicit crowdsourcing
 - There are many other ways to get annotated data

- Option 1 You use a corpus created by somebody else
- Option 2 You build your own corpus
 - You have/hire an expert to do it
 - You engage non-experts through gamification
 - You hire non-experts through explicit crowdsourcing
 - There are many other ways to get annotated data

Let us go and build a classifier with a corpus built by Hutto and Gilbert $(2014)^2$

Let us go and build a classifier with a corpus built by Hutto and Gilbert $(2014)^2$

For this, you have to download and install the software companion of NLP in Action:

https://github.com/totalgood/nlpia

²http://comp.social.gatech.edu/papers/icwsm14.vader.hutto.pdf ← ≥ → ← ≥ → ⊃ ← → ⊃ ←

What I did on OsX

I use pipenv³

\$ pipenv install --skip-lock nlpia

On Github they explain how to install it with conda or pip if you plan to contribute to the project

³https://pipenv.readthedocs.io/en/latest/

References

Hutto, C. and E. Gilbert

2014. VADER:A parsimonious rule-based model for sentiment analysis of social media text. In *Eighth International Conference on Weblogs and Social Media (ICWSM-14)*, Ann Arbor, MI.

Lane, H., C. Howard, and H. Hapkem

2019. Natural Language Processing in Action. Shelter Island, NY: Manning Publication Co.

Maron, M.

1961. Automatic indexing: An experimental inquiry. *Journal of the ACM*, 8:404–417.