CORRIGÉ DM N°1 : ÉTUDE D'ENDOMORPHISMES DE $\mathbb{K}[X]$

PARTIE A

Commençons par démontrer le résultat préliminaire suivant, très classique :

Si $(P_k)_{k\in\mathbb{N}}$ est une famille de polynômes de $\mathbb{K}[X]$ tels que $\deg(P_k)=k$ pour tout $k\in\mathbb{N}$, c'est une base de $\mathbb{K}[X]$.

 $D\'{e}monstration:$

- La famille $(P_k)_{k\in\mathbb{N}}$ est libre, car formée de polynômes de degrés distincts (cf. cours).
- Pour tout entier $n \in \mathbb{N}$, la famille $(P_k)_{0 \le k \le n}$ est une base de $\mathbb{K}_n[X]$ car :
 - Les P_k pour $0 \le k \le n$ appartiennent bien à $\mathbb{K}_n[X]$;
 - cette famille est libre;
 - et elle est formée de n+1 éléments dans un espace vectoriel de dimension n+1.
- Soit alors $P \in \mathbb{K}[X]$. Il existe alors $n \in \mathbb{N}$ tel que $P \in \mathbb{K}_n[X]$; d'après ce qui précède, P est alors combinaison linéaire de la famille $(P_k)_{0 \le k \le n}$, donc aussi de la famille $(P_k)_{k \in \mathbb{N}}$.

Ainsi, la famille $(P_k)_{k\in\mathbb{N}}$ engendre $\mathbb{K}[X]$ et, finalement, c'en est bien une base.

- **1.** - Si P est constant, on a u(P) = 0, donc $P \in \operatorname{Ker} u$. Ainsi : $\mathbb{K}_0[X] \subset \operatorname{Ker} u$.
 - Soit $P \in \mathbb{K}[X]$ tel que u(P) = 0. Si P était non constant, on aurait $\deg(P) \ge 1$ et $\deg(u(P)) = \deg(P) 1 \ge 0$, ce qui est contradictoire.

P est donc nécessairement constant, donc $\operatorname{Ker} u \subset \mathbb{K}_0[X]$.

- En conclusion : $\operatorname{Ker} u = \mathbb{K}_0[X]$.
- La famille $(X^k)_{k \in \mathbb{N}}$ forme une base de $\mathbb{K}[X]$. D'après un théorème du cours, Im u est le sous-espace vectoriel de $\mathbb{K}[X]$ engendré par les $u(X^k)$, $k \in \mathbb{N}$. Or $u(X^k)$, pour $k \geqslant 1$, est de degré k-1, donc la famille $\{u(X^k), k \in \mathbb{N}^*\}$ est une base de $\mathbb{K}[X]$ d'après le résultat préliminaire.

On en déduit : $\operatorname{Im} u = \mathbb{K}[X]$.

2. a) L'application $\varphi : \mathbb{K}_n[X] \longrightarrow \mathbb{K}$ est une forme linéaire non nulle sur $\mathbb{K}_n[X]$, et $E_n = \operatorname{Ker} \varphi$. $P \longmapsto P(0)$

Donc E_n est un hyperplan de $\mathbb{K}_n[X]$, et dim $E_n = n$.

Autre solution: on pouvait aussi remarquer que

$$P \in E_n \iff X \text{ divise } P \iff \exists Q \in \mathbb{K}_{n-1}[X] \text{ tq } P = XQ$$

ce qui permet de montrer que $E_n = \text{Vect}(X, X^2, \dots, X^n)$.

b) Notons v l'application : $v: E_n \longrightarrow \mathbb{K}_{n-1}[X]$ (v est bien à valeurs dans $\mathbb{K}_{n-1}[X]$ d'après les hypothèses $P \longmapsto u(P)$

faites sur u).

v est alors une application linéaire (car u est linéaire); elle est injective : en effet,

 $\operatorname{Ker} v = \operatorname{Ker} u \cap E_n = \{ P \in \mathbb{K}_0[X] \text{ tq } P(0) = 0 \} = \{ 0_{K[X]} \}.$

Puisque, de plus, dim $E_n = n = \dim \mathbb{K}_{n-1}[X]$, il résulte alors d'un théorème du cours que :

v est un isomorphisme de E_n sur $\mathbb{K}_{n-1}[X]$.

Autre solution : On pouvait aussi utiliser le fait que l'image de E_n par u est le sous-espace vectoriel de $\mathbb{K}[X]$ engendré par les images des vecteurs de la base (X, X^2, \dots, X^n) . Or pour tout $k \in [1; n]$ $u(X^k)$ est un polynôme de degré k-1 donc les vecteurs $u(X^k)$ forment une base de $\mathbb{K}_{n-1}[X]$.

- c) La restriction v de u à E_1 est un isomorphisme de E_1 sur $\mathbb{K}_0[X]$. Il existe donc un et un seul polynôme $P_1 \in E_1$ tel que $v(P_1) = 1$, soit $u(P_1) = P_0$. On a bien $P_1(0) = 0$ (car $P_1 \in E_1$) et $\deg(P_1) = 1$ (car $\deg u(P_1) = \deg(P_1) 1 = 0$).
 - On construit ainsi, par récurrence, les polynômes P_k satisfaisant aux conditions de l'énoncé : si P_0, P_1, \ldots, P_k ont été construits et vérifient les conditions voulues, u étant un isomorphisme de E_{k+1} sur $\mathbb{K}_k[X]$, il existe un et un seul polynôme $P_{k+1} \in E_{k+1}$ tel que $u(P_{k+1}) = P_k$, avec $P_{k+1}(0) = 0$ et deg $P_{k+1} = \deg(P_k) + 1 = k + 1$.
 - Enfin, les P_k pour $k \in \mathbb{N}$ forment bien une base de $\mathbb{K}[X]$ d'après le résultat préliminaire.

- 3. Si $(P_k)_{k\in\mathbb{N}}$ vérifie la condition (\mathcal{B}) , il s'agit bien d'une base de $\mathbb{K}[X]$ d'après le résultat préliminaire.
 - D'après le cours (un endomorphisme est entièrement déterminé par l'image d'une base), il existe donc un et un seul endomorphisme u de $\mathbb{K}[X]$ tel que $u(P_0)=0$ et $u(P_k)=P_{k-1}$ pour $k\in\mathbb{N}^*$.
 - On aura bien alors:
 - si $P = cste = \lambda$, $u(P) = u(\lambda P_0) = \lambda u(P_0) = 0$.
 - si $\deg(P) = n \geqslant 1$, puisque (P_0, \dots, P_n) forme une base de $\mathbb{K}_n[X]$, il existe $(\lambda_0, \dots, \lambda_n) \in \mathbb{K}^{n+1}$ tel que $P = \sum_{i=0}^n \lambda_i P_i$, et $\lambda_n \neq 0$ (sinon le degré de P serait < n).

On aura alors : $u(P) = \sum_{i=1}^{n} \lambda_i P_{i-1}$, d'où $\deg(u(P)) = n - 1 = \deg(P) - 1$.

- En conclusion : u vérifie bien la condition (\mathcal{D}) , et la base $(P_k)_{k\in\mathbb{N}}$ est adaptée à u.
- **4.** Si Q appartient à $\mathbb{K}_n[X]$, puisque (P_0, \dots, P_n) forme une base de $\mathbb{K}_n[X]$, il existe $(\lambda_0, \dots, \lambda_n) \in \mathbb{K}^{n+1}$ tel que $Q = \sum_{k=0}^n \lambda_k P_k$.

Soit $k \in \mathbb{N}$. On a : $u(P_k) = 0$ si k = 0 et $u(P_k) = P_{k-1}$ sinon, d'où $u^2(P_k) = 0$ si $k \in \{0,1\}$ et $u^2(P_k) = P_{k-2}$ sinon, etc... Plus généralement, si i et k sont des entiers, on a : $u^i(P_k) = \begin{cases} 0 & \text{si } i > k \\ P_{k-i} & \text{si } i \leq k \end{cases}$.

Donc, si $i \in [0; n]$, on aura : $u^i(Q) = \sum_{k=0}^n \lambda_k u^i(P_k) = \sum_{k=i}^n \lambda_k P_{k-i}$. Or $P_{k-i}(0) = 0$ si k > i et $P_0(0) = 1$, donc $u^i(Q)(0) = \lambda_i$, et l'on a bien : $Q = \sum_{k=0}^n u^k(Q)(0) P_k$.

- 5. Soit $u: \left\{ \begin{array}{c} \mathbb{K}[X] & \longrightarrow & \mathbb{K}[X] \\ P & \longmapsto & P' \end{array} \right.$ u est un endomorphisme de $\mathbb{K}[X]$ vérifiant bien la condition (\mathcal{D}) (immédiat). On vérifie facilement quer la base adaptée à u est celle formée des polynômes $\frac{X^k}{k!}$ pour $k \in \mathbb{N}$. La formule précédente s'écrit alors : $\forall Q \in \mathbb{K}_n[X]$ $Q = \sum_{k=0}^n \frac{Q^{(k)}(0)}{k!} X^k$. Il s'agit de la formule de Taylor-Mac-Laurin pour les polynômes vue en cours.
- 6. a) Immédiat.
 - **b)** Soit $\Delta : \left\{ \begin{array}{ccc} \mathbb{K}[X] & \longrightarrow & \mathbb{K}[X] \\ P & \longmapsto & P(X+1) P(X) \end{array} \right.$
 - Δ est bien un endomorphisme de $\mathbb{K}[X]$ (immédiat).
 - Δ vérifie la condition (\mathcal{D}) ; en effet :
 - si P est constant, $\Delta(P) = 0$.
 - si $\deg(P) = n \geqslant 1$, soit $P = \sum_{k=0}^{n} a_k X^k$ avec $a_n \neq 0$. On a alors $P(X+1) = \sum_{k=0}^{n} a_k (X+1)^k$, et le terme dominant de $\Delta(P) = P(X+1) P(X)$ est égal à $na_n X^{n-1}$ avec $na_n \neq 0$, donc $\deg(\Delta(P)) = n 1 = \deg(P) 1$.
 - On a : $\Delta(N_0) = 0$ et, pour $k \ge 1$:

$$\Delta(N_k) = N_k(X+1) - N_k(X) = \frac{1}{k!} [(X+1)X \dots (X-k+2) - X(X+1) \dots (X-k+1)]$$

$$= \frac{1}{k!} X(X-1) \dots (X-k+2) [(X+1) - (X-k+1)]$$

$$= \frac{1}{(k-1)!} X(X-1) \dots (X-k+2) = N_{k-1}[X).$$

2/6

Donc, d'après **A.3**, Δ est bien l'opérateur associé à la base $(N_k)_{k\in\mathbb{N}}$.

PARTIE B

- 1. $\operatorname{Id}_E \in \mathcal{C}(u)$ car $u \circ \operatorname{Id}_E = \operatorname{Id}_E \circ u = u$.
 - Si $\varphi, \psi \in \mathcal{C}(u)$, et si $\lambda \in \mathbb{K}$, $\lambda \varphi + \psi$ appartient à $\mathcal{C}(u)$ puisque : $(\lambda \varphi + \psi) \circ u = \lambda \varphi \circ u + \psi \circ u = \lambda u \circ \varphi + u \circ \psi = u \circ (\lambda \varphi + \psi).$
 - Si $\varphi, \psi \in \mathcal{C}(u)$, $\varphi \circ \psi$ appartient à $\mathcal{C}(u)$ puisque : $(\varphi \circ \psi) \circ u = \varphi \circ (\psi \circ u) = \varphi \circ (u \circ \psi) = (\varphi \circ u) \circ \psi = (u \circ \varphi) \circ \psi = u \circ (\varphi \circ \psi).$

Cela prouve (cf.cours) que C(u) est une sous-algèbre de $L(\mathbb{K}[X])$.

- **2.** Les u^k $(k \in \mathbb{N})$ sont évidemment des éléments de $\mathcal{C}(u)$.
 - Pour montrer que la famille $(u^k)_{k\in\mathbb{N}}$ est libre, il suffit de démontrer que toute sous-famille $(u^k)_{0\leqslant k\leqslant n}$ pour $n\in\mathbb{N}$ l'est.

Soient alors a_0, \ldots, a_n des scalaires tels que $\sum_{k=0}^n a_k u^k = 0$. En considérant une base $(P_k)_{k \in \mathbb{N}}$ adaptée à

u, on aura en particulier $\sum_{k=0}^{n} a_k u^k(P_n) = 0$, soit $\sum_{k=0}^{n} a_k P_{n-k} = 0$. En prenant alors la valeur en 0, on

obtient $a_n = 0$, donc $\sum_{k=0}^{n-1} a_k u^k = 0$. En appliquant alors cette égalité à P_{n-1} , on obtiendra de la même façon $a_{n-1} = 0$ etc...

Ainsi, par récurrence, tous les a_k sont nuls, ce qui démontre le résultat.

- 3. L'écriture $\varphi = \sum_{k=0}^{+\infty} a_k u^k$ a bien un sens puisque, pour tout polynôme $P \in \mathbb{K}[X]$, si P est de degré n, on a $u^k(P) = 0$ dès que k > n, donc on aura $\varphi(P) = \sum_{k=0}^{n} a_k u^k(P)$ qui est une somme finie.
 - On vérifie facilement que φ est bien un endomorphisme de $\mathbb{K}[X]$: en effet, si $P,Q\in\mathbb{K}[X]$, si $\lambda\in\mathbb{K}$ et si on note N le plus grand des degrés de P et de Q, on a :

$$\varphi(\lambda P + Q) = \sum_{k=0}^{N} a_k u^k (\lambda P + Q) = \lambda \sum_{k=0}^{N} a_k u^k (P) + \sum_{k=0}^{N} a_k u^k (Q) = \lambda \varphi(P) + \varphi(Q).$$

- Soit $P \in \mathbb{K}[X]$.
 - Si $deg(P) = n \ge 1$ on a :

$$\varphi[u(P)] = \sum_{k=0}^{n-1} a_k u^k(u(P)) \quad \text{(puisque } \deg(u(P)) = n-1)$$

$$= \sum_{k=0}^{n-1} a_k u^{k+1}(P) = \sum_{k=0}^{n} a_k u^{k+1}(P) \quad \text{(car } u^{n+1}(P) = 0)$$

$$= u\left(\sum_{k=0}^{n} a_k u^k(P)\right) = u[\varphi(P)]$$

– Si P est constant, alors $\varphi(P) = a_0 P$ est constant et l'on a $u[\varphi(P)] = 0 = \varphi[u(P)]$.

On a donc bien $u \circ \varphi = \varphi \circ u$, et finalement : $\varphi \in \mathcal{C}(u)$.

4. a) • On a $u(Q_0) = u \circ \varphi(P_0) = \varphi[u(P_0)] = \varphi(0) = 0$, donc $Q_0 \in \operatorname{Ker} u$, c'est-à-dire que Q_0 est un polynôme constant.

Puis, pour $k \geqslant 1$: $u(Q_k) = u \circ \varphi(P_k) = \varphi[u(P_k)] = \varphi(P_{k-1}) = Q_{k-1}$, et il est facile d'en déduire par récurrence que :

$$\forall k \in \mathbb{N} , \deg(Q_k) = k.$$

• On a alors, d'après A.4. :

$$Q_n = \sum_{k=0}^n u^k(Q_n)(0)P_k = \sum_{k=0}^n u^k \circ \varphi(P_n)(0)P_k.$$

Or u et φ commutent, donc pour tout entier k, u^k et φ commutent égale ment également (cf. cours). On aura donc :

$$Q_n = \sum_{k=0}^n u^k \circ \varphi(P_n)(0) P_k = \sum_{k=0}^n \varphi[u^k(P_n)](0) P_k = \sum_{k=0}^n \varphi(P_{n-k})(0) P_k = \sum_{k=0}^n Q_{n-k}(0) P_k$$

ce qui donne le résultat (avec $a_{n-k} = Q_{n-k}(0)$).

b) Si l'on pose $\psi = \sum_{k=0}^{+\infty} a_k u^k$, on a, pour tout $n \in \mathbb{N}$:

$$\psi(P_n) = \sum_{k=0}^n a_k u^k(P_n) = \sum_{k=0}^n a_k P_{n-k}$$
 soit $\psi(P_n) = \sum_{k=0}^n a_{n-k} P_k = Q_n = \varphi(P_n)$.

Ainsi, les endomorphismes φ et ψ coïncident sur la base $(P_n)_{n\in\mathbb{N}}$ de $\mathbb{K}[X]$ et sont par conséquent égaux. Cela démontre que l'on a bien : $\varphi = \sum_{k=0}^{+\infty} a_k u^k$.

- c) La question précédente et la question **B.2** montrent que $\mathcal{C}(u)$ est exactement l'ensemble des endomorphismes de la forme $\varphi = \sum_{k=0}^{+\infty} a_k u^k$ lorsque (a_k) décrit l'ensemble des suites d'éléments de \mathbb{K} .
- **5.** a) i) Soit $P \in \mathbb{K}_N[X]$; $\psi(P) = \sum_{k=0}^N b_k u^k(P)$ et puisque $\deg(\psi(P)) \leqslant N$ on a :

$$\varphi \circ \psi(P) = \sum_{k=0}^{N} a_k u^k(\psi(P)) = \sum_{k=0}^{N} a_k u^k \left(\sum_{k'=0}^{N} b_{k'} u^{k'}(P) \right)$$

$$= \sum_{(k,k') \in [0;N]^2} a_k b_{k'} u^{k+k'}(P) = \sum_{\substack{(k,k') \in [0;N]^2 \\ k+k' \le N}} a_k b_{k'} u^{k+k'}(P).$$

Pour $n \leqslant N$, le coefficient de $u^n(P)$ dans cette somme sera donc $\sum_{k+k'=n} a_k b_{k'}$.

En posant : $c_n = \sum_{k+k'=n} a_k b_{k'} = \sum_{k=0}^n a_k b_{n-k}$, on a donc :

$$\forall P \in \mathbb{K}_N[X], \ \varphi \circ \psi(P) = \sum_{n=0}^N c_n u^n(P) \quad \text{soit} \quad \varphi \circ \psi = \sum_{n=0}^{+\infty} c_n u^n.$$

Les a_k et les $b_{k'}$ jouant le même rôle, on aura aussi; $\varphi \circ \psi = \psi \circ \varphi$.

b) $\varphi = \sum_{k=0}^{+\infty} a_k u^k$ est inversible si et seulement si il existe $\psi \in \mathscr{L}(\mathbb{K}[X])$ tel que $\varphi \circ \psi = \psi \circ \varphi = \mathrm{Id}_{\mathbb{K}[X]}$.

Cela exige $\psi \in \mathcal{C}(u)$ donc il existe une suite $(b_k)_{k \in \mathbb{N}}$ d'éléments de \mathbb{K} telle que $\psi = \sum_{k=0}^{+\infty} b_k u^k$.

D'après le calcul fait à la question précédente, et puisque la famille $(u^k)_{k\in\mathbb{N}}$ est libre, l'égalité $\varphi\circ\psi=\mathrm{Id}_{\mathbb{K}[X]}$ équivaut à

$$\begin{cases} a_0 b_0 = 1\\ \sum_{k=0}^{n} a_k b_{n-k} = 0 \text{ pour tout } n \geqslant 1 \end{cases}$$

soit:

$$\begin{cases} a_0b_0 = 1\\ a_1b_0 + a_0b_1 = 0\\ a_2b_0 + a_1b_1 + a_0b_2 = 0\\ \text{etc...} \end{cases}.$$

Ce système, d'inconnues les b_k , possède une solution si et seulement si $a_0 \neq 0$. Ainsi :

$$\varphi$$
 inversible $\iff a_0 \neq 0$.

6. a) Δ vérifie la condition \mathcal{D} , et une base adaptée est formée par la famille $(N_k)_{k\in\mathbb{N}}$ des polynômes de Newton. Il est facile de vérifier que d commute avec Δ , et on peut donc appliquer les résultats précédents avec $u = \Delta$.

On a ici : $P_k = N_k$, d'où $Q_k = d(N_k) = N'_k$ et $a_k = Q_k(0) = N'_k(0)$.

Or $N_0 = 1$ donc $a_0 = 0$, et, pour tout $k \ge 1$, $N_k = \frac{1}{k!}X(X-1)\dots(X-k+1)$; puisque $N_k'(0)$ est le coefficient du terme en X dans N_k d'après la formule de Taylor, on a :

$$N'_k(0) = \frac{1}{k!}(-1)(-2)\dots(-k+1) = \frac{(-1)^{k+1}}{k}$$

On a donc, d'après **B.4.b** : $d = \sum_{k=1}^{+\infty} \frac{(-1)^{k+1}}{k} \Delta^k.$

b) d vérifie la condition \mathcal{D} , et une base adaptée est formée des polynômes $P_k = \frac{X^k}{k!}$. Puisque Δ commute avec d, on peut appliquer les résultats précédents. On aura $Q_k = \Delta(P_k) = \frac{(X+1)^k - X^k}{k!}$ et $b_k = Q_k(0)$ donc $b_0 = 0$ et $b_k = \frac{1}{k!}$ pour $k \ge 1$.

Donc: $\Delta = \sum_{k=1}^{+\infty} \frac{d^k}{k!}.$

- c) Pour les 5/2: La dernière égalité pourrait s'écrire : $\Delta = \exp(d) \operatorname{Id}$ (cf. développement en série entière de l'exponentielle...). La première rappelle le développement en série entière de la fonction ln et on pourrait ainsi, abusivement, écrire « $d = \ln(\operatorname{Id} + \Delta)$ »...
- 7. a) Là encore, on vérifie facilement que θ_a commute avec Δ . On aura donc $\theta_a = \sum_{k=0}^{+\infty} a_k \Delta^k$ avec, si $Q_k = \theta_a(N_k)$, $a_k = Q_k(0)$.

Cela donne : $Q_k = N_k(X+a)$ donc $a_k = N_k(a) = \binom{a}{k}$ avec les notations de l'énoncé. On trouve donc

bien : $\theta_a = \sum_{k=0}^{+\infty} \binom{a}{k} \Delta^k.$

b) On pourrait bien sûr procéder ici encore de la même façon. Mais il s'agit en fait, tout simplement, de la formule de Taylor : en effet, si $P \in \mathbb{K}_n[X]$:

$$\theta_a(P) = P(X+a) = \sum_{k=0}^{n} \frac{a^k}{k!} P^{(k)}(X) = \sum_{k=0}^{n} \frac{a^k}{k!} d^k(P)(X)$$

ce qui permet d'écrire : $\theta_a = \sum_{k=0}^{+\infty} \frac{a^k}{k!} d^k.$

PARTIE C

1. Pour tout $P \in \mathbb{K}_{n-1}[X]$, on a $\Delta^n(P) = 0$ (car si P est non constant, $\deg(\Delta(P)) = \deg(P) - 1$). Or pour tout polynôme P on a : $(\theta_1 - \operatorname{Id})(P) = P(X+1) - P(X) = \Delta(P)(X)$ soit $\theta_1 - \operatorname{Id} = \Delta$. Puisque θ_1 et Id commutent, la formule du binôme s'écrit

$$\Delta^n = (\theta_1 - \text{Id})^n = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} \theta_1^k.$$

Donc pour tout polynôme $P \in \mathbb{K}_{n-1}[X]$ on aura :

$$\Delta^n(P) = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} \theta_1^k(P) = 0 \quad \text{soit} \quad (-1)^n \left[P + \sum_{k=1}^n (-1)^k \binom{n}{k} \theta_1^k(P) \right] = 0$$

et enfin, puisque $\theta_1^k(P) = P(X+k)$ on trouve : $\forall P \in \mathbb{K}_{n-1}[X]$, $P = \sum_{k=1}^n (-1)^{k-1} \binom{n}{k} P(X+k)$.

2. a) Déjà, si un polynôme Q_k vérifie $\Delta(Q_k) = X^k$, il est nécessairement de degré k+1.

D'après $\mathbf{A.2.b}$, la restriction de Δ à $E_{k+1} = \{P \in \mathbb{K}_{k+1}[X] \text{ tq } P(0) = 0\}$ est un isomorphisme de E_{k+1} sur $\mathbb{K}_k[X]$. Le polynôme X^k possède donc un unique antécédent par cet isomorphisme, c'est-à-dire qu'il existe bien un et un seul $Q_k \in \mathbb{K}_{k+1}[X]$ tel que $\Delta(Q_k) = X^k$ et $Q_k(0) = 0$.

b) Pour les calculs, il est plus judicieux de travailler dans la base (N_k) que dans la base canonique; on utilisera ainsi la propriété : $\Delta(N_k) = N_{k-1}$ et $N_k(0) = 0$ pour $k \ge 1$.

$$- \ Pour \ k=1 \ : X=N_1 \ \mathrm{donc} \ \left\{ \begin{matrix} \Delta(Q_1)=N_1 \\ Q_1(0)=0 \end{matrix} \right. \Longleftrightarrow Q_1=N_2 \ \mathrm{soit} : \boxed{Q_1=\frac{X(X-1)}{2}.}$$

- Pour
$$k = 2$$
: $X^2 = X^2 - X + X = 2N_2 + N_1$ donc
$$\begin{cases} \Delta(Q_2) = 2N_2 + N_1 \\ Q_2(0) = 0 \end{cases} \iff Q_2 = 2N_3 + N_2, \text{ soit,}$$

après simplification : $Q_2 = \frac{X(X-1)(2X-1)}{6}.$

- Pour k=3: $X^3=N_1+6N_2+6N_3$ (en utilisant **A.4** par exemple), soit $X^3=\Delta(N_2+6N_3+6N_4)$ d'où $Q_3=N_2+6N_3+6N_4$ et après simplification on trouve $Q_3=\frac{X^2(X-1)^2}{4}$.
- c) On a donc:

$$\begin{split} S_k &= \Delta(Q_k)(1) + \Delta(Q_k)(2) + \dots + \Delta(Q_k)(n) \\ &= \left[Q_k(2) - Q_k(1) \right] + \left[Q_k(3) - Q_k(2) \right] + \dots + \left[Q_k(n+1) - Q_k(n) \right] \\ &= Q_k(n+1) - Q_k(1) = Q_k(n+1) \quad \text{pour } k \geqslant 1 \text{ (car alors } Q_k(1) = Q_k(1) - Q_k(0) = \Delta(Q_k)(0) = 0). \end{split}$$

A l'aide des résultats précédents, on retrouve alors les formules bien connues :

$$S_1 = \frac{n(n+1)}{2}$$
 , $S_2 = \frac{n(n+1)(2n+1)}{6}$, $S_3 = \frac{n^2(n+1)^2}{4}$.

- **3.** a) Si $k \ge n$, $N_n(k) = \frac{1}{n!}k(k-1)\dots(k-n+1) = \binom{k}{n}$.
 - Si $k \in [0; n-1]$ (avec $n \ge 1$): $N_n(k) = 0$ car, le facteur X k figurant dans la définition de N_n , k est racine de N_n .

- Si
$$k \le -1$$
: $N_n(k) = \frac{1}{n!} (-1)^n (-k) (-k+1) \dots (-k+n-1) = (-1)^n \binom{n-k-1}{n}$.

- Les coefficients binomiaux étant des nombres entiers, on en déduit que, dans tous les cas, $N_n(k)$ est un nombre entier.
- b) On déduit immédiatement du résultat précédent que, si les coordonnées de P dans la base $(N_n)_{n\in\mathbb{N}}$ sont des nombres entiers, alors $P(k)\in\mathbb{Z}$ pour tout $k\in\mathbb{Z}$.
 - Réciproquement, supposons $P(k) \in \mathbb{Z}$ pour tout $k \in \mathbb{Z}$. D'après **A.4**, les coordonnées de P dans la base $(N_n)_{n \in \mathbb{N}}$ sont les $\Delta^n(P)(0)$.

Or
$$\Delta = \theta_1 - \operatorname{Id}$$
 d'où $\Delta^n = (\theta_1 - \operatorname{Id})^n = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} \theta_1^k$ puis $\Delta^n(P) = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} P(X+k)$, et enfin :

$$\Delta^{n}(P)(0) = \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} P(k).$$

Ainsi, si les P(k) sont des entiers, il en est de même des nombres $\Delta^n(P)(0)$: cqfd.