Resolución de Tarea 3 - Divide y Vencerás (Fecha: 16 de Octubre de 2025)

Universidad Simón Bolívar
Departamento de Computación y Tecnología de la Información
CI5651 - Diseño de Algoritmos I
Septiembre - Diciembre 2025
Estudiante: Junior Miguel Lara Torres (17-10303)

Tarea 3 (9 puntos)

Indice

- Resolución de Tarea 3 Divide y Vencerás (Fecha: 16 de Octubre de 2025)
- Indice
- Pregunta 1
- Pregunta 2
 - Justificación
 - Implementación en C++
- Pregunta 3
 - Caso Base (Hojas)
 - Caso Recursivo (Nodos Intermedios)
 - Proceso de Consulta (maxBP(i, j))
 - Implementación en C++

Pregunta 1

Teniendo en cuenta la siguiente version simplificada del **Teorema Maestro**

Para
$$T(n) = aT(\frac{n}{b}) + g(n)$$

$$T(n) = \begin{cases} \Theta(n^k) & \text{si } a < b^k \\ \Theta(n^k \log(n)) & \text{si } a = b^k \\ \Theta(n^{\log_b(a)}) & \text{si } a > b^k \end{cases}$$

Se tiene para los siguientes problemas que

•
$$T(n)=3T(\frac{n}{4})+\frac{7(n^2-1)}{3}$$

Tenemos $g(n)=\frac{7(n^2-1)}{3}\in O(n^2)$, por lo tanto
$$a=3$$

$$b=4 \implies 3<4^2 \implies T(n)\in \Theta(n^2)$$

$$k=2$$

•
$$T(n) = 5T(\frac{n}{5}) + 7n - 4$$

Tenemos $g(n) = 7n - 4 \in O(n)$, por lo tanto
$$a = 5$$

$$b = 5 \implies 5 = 5^1 \implies T(n) \in \Theta(nlog(n))$$

$$k = 1$$

•
$$T(n)=5T(\frac{n}{2})+2n$$

Tenemos $g(n)=2n\in O(n)$, por lo tanto
$$a=5$$

$$b=2 \implies 5>2^1 \implies T(n)\in \Theta(n^{log_2(5)})$$

$$k=1$$

•
$$T(n) = \frac{\displaystyle\sum_{i=1}^{n} (T(\frac{n}{2}) + i)}{n}$$

Manipulando esta expresión un poco, tenemos

$$T(n) = \frac{\sum_{i=1}^{n} (T(\frac{n}{2}) + i)}{\sum_{i=1}^{n} T(\frac{n}{2}) + \sum_{i=1}^{n} i}$$

$$= \frac{nT(\frac{n}{2}) + \frac{n(n+1)}{2}}{n}$$

$$= \frac{nT(\frac{n}{2}) + \frac{n(n+1)}{2}}{n}$$

$$= T(\frac{n}{2}) + \frac{n+1}{2}$$

Por lo que, $g(n) = \frac{(n+1)}{2} \in O(n)$, por lo tanto

$$\begin{array}{ll} a=1 \\ b=2 \\ k=1 \end{array} \implies 1 < 2^1 \implies T(n) \in \Theta(n)$$

Pregunta 2

La recurrencia de Perrin está definida como:

$$P(n) = \begin{cases} 3 & \text{si } n = 0\\ 0 & \text{si } n = 1\\ 2 & \text{si } n = 2\\ P(n-2) + P(n-3) & \text{si } 3 \le n \end{cases}$$

Justificación

Usaremos el principio de "divide y vencerás" para calcular la n-ésima potencia de una matriz de transición en tiempo logarítmico.

Dado que la recurrencia se define por los tres términos anteriores (P(n-2) y P(n-3)), se necesita una matriz de transición de dimensión 3×3 .

Definimos el vector de estado S_n para el paso n:

$$S_n = \begin{pmatrix} P(n) \\ P(n-1) \\ P(n-2) \end{pmatrix}$$

Para encontrar S_n a partir de S_{n-1} , necesitamos una matriz de transición M tal que $S_n = M \cdot S_{n-1}$.

Las relaciones que definen M son: 1. $P(n) = 0 \cdot P(n-1) + 1 \cdot P(n-2) + 1 \cdot P(n-3)$ 2. $P(n-1) = 1 \cdot P(n-1) + 0 \cdot P(n-2) + 0 \cdot P(n-3)$ 3. $P(n-2) = 0 \cdot P(n-1) + 1 \cdot P(n-2) + 0 \cdot P(n-3)$

La matriz de transición M es:

$$M = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Podemos relacionar el estado S_n con el estado base S_2 :

$$S_n = M^{n-2} \cdot S_2$$
 para $n \ge 2$

Donde el vector base es:

$$S_2 = \begin{pmatrix} P(2) \\ P(1) \\ P(0) \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 3 \end{pmatrix}$$

El tiempo de ejecución está dominado por la exponenciación de la matriz M^{n-2} . Dado que la multiplicación de dos matrices 3×3 toma tiempo $O(3^3) = O(1)$ (asumiendo que las operaciones aritméticas elementales son O(1), como se establece en el problema), y la exponenciación se realiza mediante la técnica de divide y vencerás, el tiempo total es $\Theta(\log n)$.

Implementación en C++

A continuación se presenta el código completo en C++ que implementa la lógica anterior.

Utilizamos long long para manejar los valores de P(n), ya que el problema no especifica un límite superior para n, y los números de Perrin crecen exponencialmente.

El archivo funcional se encuentra en Perrin.cpp

```
typedef long long 11;
typedef vector<vector<ll>>> Matrix;
// Tamaño de la matriz para la recurrencia de Perrin (3x3)
const int K = 3;
Matrix multiply(const Matrix& A, const Matrix& B) {
   Matrix C(K, vector<11>(K, 0));
    for (int i = 0; i < K; ++i) {</pre>
        for (int j = 0; j < K; ++j) {
            for (int k = 0; k < K; ++k) {
                C[i][j] += A[i][k] * B[k][j];
            }
        }
    }
    return C;
}
Matrix power(Matrix M, ll n) {
    // Matriz identidad para inicializar el resultado
   Matrix R(K, vector<11>(K, 0));
    for (int i = 0; i < K; ++i) R[i][i] = 1;
   while (n > 0) {
        if (n \& 1) R = multiply(R, M); // Si n es impar
        M = multiply(M, M);
        n >>= 1; // n = n / 2
   return R;
ll perrin(ll n) {
    // Casos base (n=0, 1, 2)
    if (n == 0) return 3;
    if (n == 1) return 0;
    if (n == 2) return 2;
```

```
// 1. Definir la matriz de transición M
    Matrix M = {
        {0, 1, 1},
        \{1, 0, 0\},\
        {0, 1, 0}
    };
    // 2. Calcular M^{\hat{}}(n-2)
    Matrix M_power = power(M, n - 2);
    // 3. Vector base S_2 = \{P(2), P(1), P(0)\} = \{2, 0, 3\}
    vector<11> S_base = \{2, 0, 3\};
    // 4. Calcular S_n = M_power * S_2. P(n) es el primer elemento.
    // P(n) = M_{power*P(2)} + M_{power*P(1)} + M_{power*P(0)}
    11 P_n = 0;
    for (int i = 0; i < K; ++i) {</pre>
        P_n += M_power[0][i] * S_base[i];
    return P_n;
}
```

Pregunta 3

El problema maxBP(i,j) requiere encontrar la longitud de la subcadena bien parentizada más larga dentro del rango S[i..j].

Para resolver esto cada nodo debe almacenar información que permita maximizar el número de pares válidos formados entre sus hijos, respetando la regla de precedencia (un (debe venir antes de su) correspondiente).

Cada nodo del Árbol de Segmentos representará un segmento de la cadena S y almacenará tres componentes esenciales:

Componente	Definición
M (matched_pairs)	El número de pares () perfectamente cerrados y maximizados dentro del subsegmento cubierto por este nodo.
O (unmatched_open)	El número de paréntesis de apertura (
C (unmatched_close)	que quedan sin emparejar. El número de paréntesis de cierre) que quedan sin emparejar.

La longitud final en un segmento es $2 \times M$.

Caso Base (Hojas)

Los nodos hoja representan un único carácter S[i] de la cadena.

- 1. Si S[i] = '(':
 - $\bullet \quad \mathtt{M} = 0$
 - 0 = 1 (Apertura pendiente)
 - C = 0
- 2. Si S[i] = ')':
 - $\mathbf{M} = 0$
 - 0 = 0
 - C = 1 (Cierre pendiente)

Caso Recursivo (Nodos Intermedios)

Un nodo padre U se forma combinando la información de su hijo izquierdo L y su hijo derecho R. La operación crucial aquí es identificar los **nuevos pares** que se pueden formar en la frontera entre L y R.

1. Cálculo de Nuevos Pares (M_{new}) : Los nuevos pares solo se pueden formar si un paréntesis abierto que sobró en el lado izquierdo (L.O) encuentra un paréntesis de cierre que sobró en el lado derecho (R.C).

$$\mathbf{M_{new}} = \min(\mathbf{L.O, R.C})$$

2. Combinación de Pares (*U.M*): El total de pares resueltos en el nodo padre es la suma de los pares resueltos en los hijos, más los nuevos pares formados en la frontera.

$$U.M = L.M + R.M + M_{new}$$

3. Combinación de Paréntesis Abiertos (U.O): La cuenta de 0 es la suma de los abiertos de ambos hijos, menos aquellos que se utilizaron exitosamente para formar M_{new} .

$$\mathbf{U.O} = \mathbf{L.O} + \mathbf{R.O} - \mathbf{M_{new}}$$

4. Combinación de Paréntesis Cerrados (U.C): De manera simétrica, la cuenta de C es la suma de los cierres de ambos hijos, menos aquellos que se utilizaron para formar M_{new} .

$$U.C = L.C + R.C - M_{new}$$

Proceso de Consulta (maxBP(i,j))

Para una consulta de rango [i..j]:

- 1. Se realiza un recorrido estándar del Segment Tree, combinando (utilizando la operación Merge descrita anteriormente) los valores de todos los nodos que cubren exactamente o parcialmente el rango [i..j].
- 2. La función de consulta devuelve un único objeto Node resultante, U_{total} .
- 3. La longitud de la subcadena bien parentizada más larga en el rango S[i..j] es simplemente $2 \times U_{total}.M$.

Dado que la construcción inicial del árbol toma tiempo O(n) (tiempo lineal, ya que el merge es O(1)) y cada consulta requiere solo $O(\log n)$, este algoritmo resuelve el problema.

Implementación en C++

El archivo funcional se encuentra en seq_paren.cpp

```
// Estructura para almacenar la información de subcadenas bien parentizadas
struct Node {
    int matched_pairs;
                        // M: Pares coincidentes totales (longitud = 2*M)
    int unmatched open; // O: Paréntesis abiertos sin coincidir (disponibles a la derecha)
    int unmatched_close; // C: Paréntesis cerrados sin coincidir (disponibles a la izquierd
}:
class MaxBPSubsequenceSegmentTree {
private:
   int n;
    string S;
   vector<Node> tree;
    // Función auxiliar para combinar los resultados de dos nodos hijos (Left y Right)
    Node merge(const Node& L, const Node& R) {
       Node result:
        // 1. Calcular nuevas coincidencias formadas por L.O y R.C
        int new_matches = min(L.unmatched_open, R.unmatched_close);
        // 2. Total de pares coincidentes
       result.matched_pairs = L.matched_pairs + R.matched_pairs + new_matches;
        // 3. Unmatched Open: Suma de los hijos menos los que se acaban de emparejar
       result.unmatched_open = L.unmatched_open + R.unmatched_open - new_matches;
        // 4. Unmatched Close: Suma de los hijos menos los que se acaban de emparejar
        result.unmatched_close = L.unmatched_close + R.unmatched_close - new_matches;
```

```
return result;
// Construcción recursiva del Segment Tree
void build(int v, int tl, int tr) {
    if (tl == tr) {
        // Caso Base: Nodo Hoja
        if (S[t1] == '(') {
            tree[v] = {0, 1, 0}; // M=0, O=1, C=0
        } else if (S[t1] == ')') {
           tree[v] = {0, 0, 1}; // M=0, 0=0, C=1
        } else {
            // Si la cadena solo tiene paréntesis, esto es por seguridad
            tree[v] = \{0, 0, 0\};
        }
    } else {
        // Caso Recursivo: Nodos Intermedios
        int tm = (tl + tr) / 2;
        build(2 * v, tl, tm);
                                      // Hijo izquierdo
        build(2 * v + 1, tm + 1, tr); // Hijo derecho
        // Combinar los resultados de los hijos
        tree[v] = merge(tree[2 * v], tree[2 * v + 1]);
    }
}
// Función de consulta recursiva para obtener la información de un rango [l, r]
Node query_recursive(int v, int tl, int tr, int l, int r) {
    // Inicializar un nodo nulo (cero coincidencias y cero paréntesis pendientes)
    if (1 > r || t1 > tr) {
        return {0, 0, 0};
    if (l == tl && r == tr) {
        // El nodo actual cubre exactamente el rango de consulta [l, r]
        return tree[v];
    int tm = (tl + tr) / 2;
   // Consultar y combinar los resultados de las partes que se superponen con [l, r]
   Node L_result = query_recursive(2 * v, tl, tm, l, min(r, tm));
   Node R_{result} = query_{recursive(2 * v + 1, tm + 1, tr, max(1, tm + 1), r);
    // La combinación debe realizarse si ambos lados retornaron datos válidos
    if (L_result.matched_pairs == 0
```

```
&& L_result.unmatched_open == 0
            && L_result.unmatched_close == 0) {
            return R_result;
        }
        if (R_result.matched_pairs == 0
            && R_result.unmatched_open == 0
            && R_result.unmatched_close == 0) {
            return L_result;
        return merge(L_result, R_result);
    }
public:
    // S_input es la cadena, asumimos índices base O internamente.
    MaxBPSubsequenceSegmentTree(const string& input_S) : S(input_S) {
        n = S.length();
        // Redimensionar para 4*n (tamaño estándar para Segment Trees)
        tree.resize(4 * n + 1);
        if (n > 0) {
            // Construir desde la raíz (v=1), cubriendo [0, n-1]
            build(1, 0, n - 1);
        }
    }
    // Función para realizar la consulta maxBP(i, j)
    // i y j se asumen como índices base 1 (como en S[1..n]).
    // Internamente usamos base 0.
    int maxBP(int i, int j) {
        if (i < 1 || j > n || i > j || n == 0) return 0;
        // Convertir a indices base 0: [i-1, j-1]
        Node result = query_recursive(1, 0, n - 1, i - 1, j - 1);
        // La longitud de la subcadena bien parentizada es 2 * M
        return 2 * result.matched_pairs;
    }
};
```