

DPWM Driver User Guide V1.00.01

Support Chips:

ISD9160

Support Platforms:

Nuvoton

Content

Content	
1. DPWM Driver	
1.1 DPWM Introuction	
1.2 DPWM Feature	3
1.3 Type Definition	
1.4 Functions	
DrvDPWM_Open	
DrvDPWM_Close	
DrvDPWM_AltPins	
DrvDPWM_SetSampleRate	
DrvDPWM_GetSampleRate	
DrvDPWM_SetDPWMClk	
DrvDPWM_SetFrequency	
DrvDPWM_GetFrequency	
DrvDPWM_SetDeadtime	
DrvDPWM_GetDeadtime	
DrvDPWM_Dither	9
DrvDPWM_Enable	10
DrvDPWM_Disable	10
DrvDPWM_IsFIFOFull	11
DrvDPWM_IsFIFOEmpty	11
DrvDPWM_EnablePDMA	12
DrvDPWM_DisablePDMA	12
DrvDPWM_WriteFIFO	13
DrvDPWM_GetVersion	
2. Revision History	1

1. DPWM Driver

1.1 DPWM Introuction

The ISD91XX series includes a differential Class D (PWM) speaker driver capable of delivering 1W into an 8Ω load at 5V supply voltage. The driver works by up-sampling and modulating a PCM input to differentially drive the SPK+ and SPK- pins. The speaker driver operates from its own independent supply VCCSPK and VSSSPK. This supply should be well decoupled as peak currents from speaker driver are large.

1.2 DPWM Feature

- Differential Bridge-Tied-Load structure to directly drive 8Ω Speaker.
- Power delivery up to 1W @5V into 8Ω .
- Power efficiency of up to 85%.
- Configurable input sample rate.
- 16 Sample FIFO for audio output.
- PDMA data channel for streaming of PCM audio data.

1.3 Type Definition

E_DRVDPWM_FREQ

Enumeration Identifier	Value	Description
eDRVDPWM_FREQ_0	0	Carrier frequency type 0
eDRVDPWM_FREQ_1	1	Carrier frequency type 1
eDRVDPWM_FREQ_2	2	Carrier frequency type 2
eDRVDPWM_FREQ_3	3	Carrier frequency type 3
eDRVDPWM_FREQ_4	4	Carrier frequency type 4
eDRVDPWM_FREQ_5	5	Carrier frequency type 5
eDRVDPWM_FREQ_6	6	Carrier frequency type 6
eDRVDPWM_FREQ_7	7	Carrier frequency type 7

$E_DRVDPWM_DEADTIME$

Enumeration Identifier	Value	Description
eDRVDPWM_DEADTIME_OFF	0	Dead time is off.
eDRVDPWM_DEADTIME_ON	1	Dead time is on.

$E_DRVDPWM_DPWMCLK$

Enumeration Identifier	Value	Description
E_DRVDPWM_DPWMCLK_HCLK,	0	DPWM operation clock is 1xHCLK
E_DRVDPWM_DPWMCLK_HCLKX2	1	DPWM operation clock is 2xHCLK.

E_DRVDPWM_ DITHERTYPE

Enumeration Identifier	Value	Description
eDRVDPWM_DITHER_NONE	0	Dither is off.
eDRVDPWM_DITHER_ONE	1	Dither level is 1.
eDRVDPWM_DITHER_TWO	3	Dither level is 2.

Error Code Identifier	Value	Description
E_DRVDPWM_ARGUMENT	1	Invalid argument

1.4 Functions

DrvDPWM_Open

Prototype

void

DrvDPWM_Open(void);

Description

Open DPWM IP and config the parameter.

Parameters

None

Include

Driver\DrvDPWM.h

Return Value

None

Example

```
/* Open DPWM IP, enable the clock for operation */
DrvDPWM_Open()
```

DrvDPWM_Close

Prototype

void

DrvDPWM_Close(void);

Description

Close DPWM IP, return to default state and stop clock.

Parameters

None

Include

Driver\DrvDPWM.h

Return Value

None

Example

```
/* Close DPWM IP */
DrvDPWM_Close();
```

DrvDPWM_AltPins

Prototype


```
void
    DrvDPWM_AltPins(
    int32_t Enable
    );
  Description
    Specify SPK alternate output on GPA12/13 or not.
  Parameters
    Enable [in]
    TRUE: SPK alternate output on GPA12/13.
    FALSE: GPA12/13 is normal GPIO state.
  Include
    Driver\DrvDPWM.h
  Return Value
    None
  Example
    /* Let SPK alternate output on GPA12/13 */
    DrvDPWM_AltPins(TRUE);
DrvDPWM_SetSampleRate
  Prototype
    uint32_t
    DrvDPWM_SetSampleRate(
    uint32_t u32SampleRate
    );
  Description
    Set the sample rate.
  Parameters
    u32SampleRate [in]
    Sample Rate in Hz
  Include
    Driver\DrvDPWM.h
  Return Value
    Actual sample rate set.
  Example
    /* Set DPWM sample rate 16000 Hz */
    DrvDPWM_SetSampleRate(16000);
```


DrvDPWM_GetSampleRate

```
Prototype
```

uint32_t

DrvDPWM_GetSampleRate(void);

Description

Get the sample rate of DPWM.

Parameters

None

Include

Driver\DrvDPWM.h

Return Value

Current sample rate DPWM is set to in Hz.

Example

```
/* Get the sample rate of DPWM */
printf("Current sample rate of DPWM =%d Hz\n", DrvDPWM_GetSampleRate());
```

DrvDPWM_SetDPWMClk

Prototype

void

DrvDPWM_SetDPWMClk(

E_DRVDPWM_DPWMCLK eDpwmClk

);

Description

Set DPWM clock is one or two times of system clock.

Parameters

eDpwmClk [in]

E_DRVDPWM_DPWMCLK_HCLK

 $E_DRVDPWM_DPWMCLK_HCLKX2$

Include

Driver\DrvDPWM.h

Return Value

None

Example

```
/* Set DPWM clock is two times of system clock. */
```

DrvDPWM_SetDPWMClk(E_DRVDPWM_DPWMCLK_HCLKX2)

DrvDPWM_SetFrequency

void

```
Prototype
    void
    DrvDPWM_SetFrequency(
    E_DRVDPWM_FREQ eFrequency
    );
  Description
    Specify DPWM frequency setting.
  Parameters
    Frequency [in]
    eDRVDPWM_FREQ_0~7
  Include
    Driver\DrvDPWM.h
  Return Value
    None
  Example
    /* Specify DPWM frequency setting */
    DrvDPWM_SetFrequency(eDRVDPWM_FREQ_3);
DrvDPWM_GetFrequency
  Prototype
    uint32_t
    DrvDPWM_GetFrequency(void);
  Description
    Get current DPWM frequency setting.
  Parameters
    None
  Include
    Driver\DrvDPWM.h
  Return Value
    Return the DPWM frequency setting.
  Example
    /* Get current DPWM frequency setting. */
    printf("Current DPWM frequency setting=%d\n", DrvDPWM_GetFrequency());
DrvDPWM_SetDeadtime
  Prototype
```



```
DrvDPWM_SetDeadtime(
   E_DRVDPWM_DEADTIME eDeadTime
   );
 Description
   Specify DPWM Dead time on/off.
 Parameters
   eDeadTime [in]
   eDRVDPWM_DEADTIME_ON
   eDRVDPWM\_DEADTIME\_OFF
 Include
   Driver\DrvDPWM.h
  Return Value
    None
 Example
   /* Turn DPWM dead time on */
   DrvDPWM_SetDeadtime(eDRVDPWM_DEADTIME_ON);
DrvDPWM_GetDeadtime
 Prototype
   uint32_t
   DrvDPWM_GetDeadtime(void);
 Description
   Get current DPWM dead time setting.
 Parameters
   None
 Include
   Driver\DrvDPWM.h
  Return Value
   The DPWM Dead Time setting.
 Example
   printf("DPWM dead time=%d\n", DrvDPWM_GetDeadtime());
DrvDPWM_Dither
 Prototype
    void
   DrvDPWM_Dither(
   E_DRVDPWM_DITHERTYPE eDitherType
```



```
);
  Description
    Specify dither type.
  Parameters
    eDitherType [in]
    Specify the dither type. It could be
    eDRVDPWM_DITHER_NONE
    eDRVDPWM_DITHER_ONE
    eDRVDPWM_DITHER_TWO
  Include
    Driver\DrvDPWM.h
  Return Value
    None
 Example
    /* specify dither type 1 */
    DrvDPWM_Dither(eDRVDPWM_DITHER_ONE);
DrvDPWM_Enable
 Prototype
    void
    DrvDPWM_Enable(void);
  Description
    Enable DPWM function.
  Parameters
    None
  Include
    Driver\DrvDPWM.h
  Return Value
    None
  Example
    /* Enable DPWM function */
    DrvDPWM_Enable();
DrvDPWM_Disable
  Prototype
```

void

DrvDPWM_Disable(void);

Description

Disable DPWM function.

Parameters

None

Include

Driver\DrvDPWM.h

Return Value

None

Example

/* Disable DPWM function */

DrvDPWM_Disable();

DrvDPWM_IsFIFOFull

Prototype

BOOL

DrvDPWM_IsFIFOFull(void);

Description

Check if DPWM FIFO is full or not.

Parameters

None

Include

Driver\DrvDPWM.h

Return Value

TRUE: FIFO is full.

FALSE: FIFO is not full.

Example

/* check DPWM FIFO status */

DrvDPWM_IsFIFOFull();

DrvDPWM_IsFIFOEmpty

Prototype

BOOL

DrvDPWM_IsFIFOEmpty(void);

Description

Check if DPWM FIFO is empty or not.

Parameters

None

Include

Driver\DrvDPWM.h

Return Value

TRUE: FIFO is empty.

FALSE: FIFO is not empty.

Example

/* check DPWM FIFO status */
DrvDPWM_IsFIFOEmpty();

DrvDPWM_EnablePDMA

Prototype

void

DrvDPWM_EnablePDMA(void)

Description

Enable DPWM for PDMA transfer.

Parameters

None

Include

Driver\DrvDPWM.h

Return Value

None

Example

/* Enable DPWM for PDMA transfer. */
DrvDPWM_EnablePDMA();

DrvDPWM_DisablePDMA

Prototype

void

DrvDPWM_DisablePDMA(void);

Description

Disable DPWM for PDMA transfer.

Parameters

None

Include

 $Driver \backslash DrvDPWM.h$

Return Value

None

Example

```
/* Disable DPWM for PDMA transfer. */
DrvDPWM_DisablePDMA();
```

DrvDPWM_WriteFIFO

Prototype

```
int32_t
DrvDPWM_WriteFIFO(
int32_t *pi32Stream,
int32_t i32count
);
```

Description

Write to DPWM FIFO for transmit.

Parameters

pi32Stream [in]

Pointer of input data stream for transmit.

i32count [in]

Transmit sample count.

Include

Driver\DrvDPWM.h

Return Value

Remain sample count not fill in fifo.

Example

```
int32_t Count;
```

Count=DrvDPWM_WriteFIFO(&SrcArray[0],16);

DrvDPWM_GetVersion

Prototype

```
uint32_t
```

DrvDPWM_GetVersion(void);

Description

Get the version number of ISD9160 DPWM driver.

Parameters

None

Include

Driver\DrvDPWM.h

Return Value

Version number:

31:24	23:16	15:8	7:0
00000000	00000000 MAJOR_NUM		BUILD_NUM

Example

printf("Driver version:%x\n", DrvDPWM_GetVersion());

2. Revision History

Version	Date	Description
1.00.01	Mar. 2011	Preliminary DPWM Driver User Guide of ISD9160