

AP Calculus In-Class Two – Limit and Continuity. 1.4 Other Basic Limits; 1.5 Asymptotes

1. If c is a nonnegative real number and $0 \le f(x) \le c$ for every x. Prove that $\lim_{x\to 0} x^2 f(x) = 0$.

Proof: Let $h(x) = x^2 f(x)$. consider $x \in [-\frac{1}{2}, \frac{1}{2}]$,

2. Find limits.

(a)
$$\lim_{x \to 0} \frac{\sin x}{\sqrt[3]{x}}$$

(b)
$$\lim_{x \to 0} \frac{x + \tan x}{\sin x}$$

(c)
$$\lim_{t\to 0} (1-t)^{1/t}$$

- 3. Suppose $\lim_{x \to -3^-} f(x) = -1$, $\lim_{x \to -3^+} f(x) = -1$, and f(-3) is not defined. Which of the following statement is (are) true?
 - $I. \quad \lim_{x \to -3} f(x) = -1$
 - II. f is continuous everywhere except at x = -3.
 - III. f has a removable discontinuity at x = -3.
 - (A) None of them
- (B) I only
- (C) III only

- (D) I and III only
- (E) All of them

4. Find a value of *c* that makes h(x) is continuous at x = 0.

$$h(x) = \begin{cases} \frac{1 - \cos 3x}{x^2}, & \text{if } x \neq 0\\ c, & \text{if } x = 0 \end{cases}$$

5. Find all asymptotes of the graph of $y = \frac{2x^2 + 2x + 3}{4x^2 - 4x}$.

6. Find all asymptotes for the graph of $g(x) = \arctan x$.

7. Find all vertical and horizontal asymptotes for the graph of $y = \frac{\ln x}{1 - \ln x}$.

8. Show that equation $|x| = \cos x$ has at least one positive root.