

Latent Diffusion Model

#LDMs

一般的DMs(diffusion Model)所需的算力是需要非常大的,如GPU、Memory或訓練 時的parameters,也要耗費非常多的時間。

因此Latent Diffusion Model想要把diffusion的步驟在Latent Space上操作同時也能有 更有彈性的加入conditions,藉此降低整體的算力和花費。

LDMs

分為Pixel Space、Latent Space、Conditioning 三個部分

一開始圖片先透過encoder轉換成在Latent Space的向量Z(Latent Vector),之後再做 Diffusion Process也就是加噪音(gaussian),得到一個含噪音的新向量ZT(Noise Latent Vector)。之後再一步一步Denoising(Reverse Diffusion Step)得到結果的Latent Vector,再透過decoder成結果圖(原圖),而在denosing的過程中可能會加一些 condition。

Latent Space 操作

當輸入圖片透過VAE(encoder)成Latent Vector後,會開始加入gaussian noise(t1~tN)noise慢慢變多也就是ZT,之後再透過Attention U-Net預測此noise vector(ti)的noise,之後再相減就能得到noise vector(ti-1),重複此步驟直到t0(noise 完全去除),再decoder回去原圖。

Condition

Condition(text, image, etc)會透過Condition Encoder 成condition embedding 再結合 到Attention U-Net(cross attention)

Loss function不含condition

$$L_{LDM} := \mathbb{E}_{\mathcal{E}(x), \epsilon \sim \mathcal{N}(0,1), t} \left[\|\epsilon - \epsilon_{\theta}(z_t, t)\|_2^2 \right]$$

Loss function含condition

$$L_{LDM} := \mathbb{E}_{\mathcal{E}(x), y, \epsilon \sim \mathcal{N}(0, 1), t} \Big[\| \epsilon - \epsilon_{\theta}(z_t, t, \tau_{\theta}(y)) \|_2^2 \Big]$$

Diffusion Model在Pixel Space的Loss Function

$$L_{DM} = \mathbb{E}_{x,\epsilon \sim \mathcal{N}(0,1),t} \left[\|\epsilon - \epsilon_{\theta}(x_t, t)\|_2^2 \right]$$

Cross Attention

Attention
$$(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d}}\right) \cdot V$$

$$Q = W_Q^{(i)} \cdot \varphi_i(z_t), \ K = W_K^{(i)} \cdot \tau_\theta(y), \ V = W_V^{(i)} \cdot \tau_\theta(y)$$

Q是在Latent Space Vector的image做線性轉換,K、V則是condition embedding做線性變換,W是線性變換的矩陣,藉此方式就能將condition加入其中。

Edit profile

Written by Rich

2 Followers · 5 Following

No responses yet

Ĵ ••

What are your thoughts?

More from Rich