Beyond Labels: Fine-Grained Detection and Explainable AI for Toxicity in Intimate Dialogues

Nicolò Resta

University of Bari, Aldo Moro

EVALITA 2025

Outline

- Introduction & Motivation
- Dataset Preparation
- Seriments
- Results
- 5 Conclusion & Future Work

The Challenge: Toxicity in Private Conversations

The Problem

Detecting toxicity (harassment, abuse) is a critical NLP task for online safety. However, most research focuses on **public platforms** (e.g., Twitter, Reddit, Facebook, Instagram, Youtube).

Key Gaps in Private Dialogues

- Data Scarcity: Sensitive, private nature makes data acquisition nearly impossible.
- Context is Paramount: Toxicity is subtle, dyadic, and depends on relational history.
- Explainability is Crucial: Simply flagging a chat as "toxic" is insufficient for trust and intervention. We need to answer questions like *how much?* and *why?*

Our Contributions

1 A Novel Synthetic Data Generation Pipeline

We created a psychologically-grounded pipeline to generate realistic, dyadic **Italian** chats.

- Annotated with fine-grained, message-level continuous toxicity scores [-1, 1].
- Includes human-readable narrative explanations for chat dynamics.
- ② A Comprehensive Empirical Study
 We conducted experiments across three distinct tasks
 - Chat-Level Classification (Binary & Multiclass)
 - Message-Level Regression
 - Abstractive Explanation Generation
- A Rigorous Comparative Analysis

We statistically compared traditional ML models vs. transformer architectures, revealing key insights about the task's inherent limitations.

Our Contributions

1 A Novel Synthetic Data Generation Pipeline

We created a psychologically-grounded pipeline to generate realistic, dyadic **Italian** chats.

- Annotated with fine-grained, message-level continuous toxicity scores [-1, 1].
- Includes human-readable narrative explanations for chat dynamics.

A Comprehensive Empirical Study

We conducted experiments across three distinct tasks:

- Chat-Level Classification (Binary & Multiclass)
- Message-Level Regression
- Abstractive Explanation Generation
- A Rigorous Comparative Analysis

We statistically compared traditional ML models vs. transformer architectures, revealing key insights about the task's inherent limitations.

Our Contributions

1 A Novel Synthetic Data Generation Pipeline

We created a psychologically-grounded pipeline to generate realistic, dyadic **Italian** chats.

- Annotated with fine-grained, message-level continuous toxicity scores [-1, 1].
- Includes *human-readable narrative explanations* for chat dynamics.

A Comprehensive Empirical Study

We conducted experiments across three distinct tasks:

- Chat-Level Classification (Binary & Multiclass)
- Message-Level Regression
- Abstractive Explanation Generation

3 A Rigorous Comparative Analysis

We statistically compared traditional ML models vs. transformer architectures, revealing key insights about the task's inherent limitations.

Phase 1, Personas Generation:

- LLM acts as a psychologist.
- Creates detailed profiles: Big Five traits, Attachment styles, Emotional triggers, Personal history, And so on ...

Phase 2. Chat Generation

- Simulates chats across 7 relationship stages (e.g., infatuation, crisis).
- Controlled toxicity by targeting specific mean and std. dev. for message scores.
- Each message annotated with a polarity score in [-1,1].

Phase 3, Explanation Generation:

- LLM acts as a communication expert.
- Generates a narrative rationale explaining the toxic or healthy dynamics of the entire chat.

Result

Phase 1, Personas Generation:

- LLM acts as a psychologist.
- Creates detailed profiles: Big Five traits, Attachment styles, Emotional triggers, Personal history, And so on ...

Phase 2. Chat Generation:

- Simulates chats across 7 relationship stages (e.g., infatuation, crisis).
- Controlled toxicity by targeting specific **mean** and **std. dev.** for message scores.
- Each message annotated with a polarity score in [-1,1].

Phase 3, Explanation Generation:

- LLM acts as a communication expert.
- Generates a narrative rationale explaining the toxic or healthy dynamics of the entire chat.

Result

Phase 1, Personas Generation:

- LLM acts as a psychologist.
- Creates detailed profiles: Big Five traits, Attachment styles, Emotional triggers, Personal history, And so on ...

Phase 2, Chat Generation:

- Simulates chats across 7 relationship stages (e.g., infatuation, crisis).
- Controlled toxicity by targeting specific **mean** and **std. dev.** for message scores.
- Each message annotated with a polarity score in [-1,1].

Phase 3, Explanation Generation:

- LLM acts as a communication expert.
- Generates a narrative rationale explaining the toxic or healthy dynamics of the entire chat.

Result

Phase 1, Personas Generation:

- LLM acts as a psychologist.
- Creates detailed profiles: Big Five traits, Attachment styles, Emotional triggers, Personal history, And so on ...

Phase 2, Chat Generation:

- Simulates chats across 7 relationship stages (e.g., infatuation, crisis).
- Controlled toxicity by targeting specific **mean** and **std. dev.** for message scores.
- ullet Each message annotated with a polarity score in [-1,1].

Phase 3, Explanation Generation:

- LLM acts as a communication expert.
- Generates a narrative rationale explaining the toxic or healthy dynamics of the entire chat.

Result

Dataset Filtering & Labeling

Final Dataset

After regex-parsing, filtering (e.g., max length 512 tokens) and cleaning (e.g. converting emojis to text), we obtained **1809** conversations.

Labeling Scheme for Classification

- ullet Continuous Message Scores o Discrete Chat Labels.
- Multiclass:
 - Toxic: [-1, -0.35)
 - Neutral: [-0.35, 0.35]
 - Healthy: (0.35, 1]
- **Binary:** Toxic vs. Non-Toxic (Neutral + Healthy).
- Aggregation: Chat label is determined by the class of the *minimum* user-average score.

Dataset Distribution

Models & Tasks

1. Chat-Level Classification

Classic Models:

- Multinomial Naive Bayes (NB)
- Logistic Regression (LR)
- Support Vector Classifier (SVC)

Transformer:

• dbmdz/bert-base-italian-cased

2. Message-Level Regression

Transformer:

 BERT to predict continuous message polarity scores.

3. Explanation Generation

Transformer:

 morenolq/bart-it to generate narrative explanations.

Preprocessing & Input Formatting

Classic Models (LR, SVC, NB)

- NLP Pipeline: Tokenization, POS filtering, NER-based anonymization.
- Normalization: Stemming vs. Lemmatization.
- Vectorization: CountVectorizer (NB) and TfidfVectorizer (LR, SVC).

BERT Models We explored various input strategies:

- BERT (Classification): Simple concatenation of all messages.
- **BERT-ST (Classification):** Separating speaker turns with '[SEP]' and using token-type IDs.
- BERT-M (Regression): Full chat as context, target message wrapped in '[SEP]', distinguished with token-type IDs.
- **BERT-MU** (Regression): Role-aware variant of BERT-M with additional learned user embeddings.

Rigorous Evaluation Protocol

Nested Cross-Validation

To get an unbiased performance estimate and tune hyperparameters simultaneously.

- Outer Loop (5-fold): For robust performance estimation.
- Inner Loop (3-fold): For hyperparameter tuning (GridSearchCV).

Preventing Data Leakage

GroupKFold was used in both loops, ensuring all chats from the same couple remain in the same fold. This is crucial for valid results.

Statistical Analysis

We computed means, stds, 95% confidence intervals, and conducted **paired t-tests** on the outer fold scores to determine if performance differences were statistically significant.

Finding 1: A Performance Plateau in Classification

Multiclass Classification (toxic, neutral, healthy)

- Top models converge around a **Weighted F1-score of 0.78**.
- Key Finding: Classic models like Logistic Regression and SVC perform on par with more complex BERT architectures.

Model	Weighted F1	Cost
PosNerStem-LR	$\textbf{0.76} \pm \textbf{0.02}$	0.11 ± 0.01
PosNerStem-SVC	0.77 ± 0.03	0.11 ± 0.01
BERT	0.77 ± 0.03	0.10 ± 0.02
BERT-M (Reg.)	$\textbf{0.78} \pm \textbf{0.04}$	$\textbf{0.10} \pm \textbf{0.02}$

Finding 2: Regression is a Viable Alternative

Message-Level Regression Performance

Both BERT regression models accurately predict continuous toxicity scores.

- Correlation Coefficient ; 0.82 with ground truth.
- Substantial improvement over a naive baseline (e.g., R-MAE 0.46).
- The simpler **BERT-M** model slightly outperformed the role-aware **BERT-MU**.

Table: Message-Level Regression Metrics

Metric	BERT-M	BERT-MU
Correlation Coefficient Relative MAE (R-MAE)	$\begin{array}{c} 0.8335 \pm 0.0264 \\ 0.4618 \pm 0.0372 \end{array}$	

Connecting Regression to Classification

When aggregating regression scores to produce chat-level labels, the **BERT-M** model achieves top-tier classification performance ($\bf 0.78~F1$ multiclass, $\bf 0.87~F1$ binary), proving the validity_{2/16}

Finding 3: Promising Results in Explainability

Abstractive Explanation Generation

The BART model was trained to generate narrative summaries of chat dynamics.

Table: Explanation Generation Test Metrics

Metric	Value
BERTScore (F1)	0.77
ROUGE-1	0.56
ROUGE-2	0.21
ROUGE-L	0.25
BLEU	0.20

Interpretation

- High BERTScore F1 (0.77) indicates strong semantic similarity between generated and reference explanations. The model captures the correct meaning.
- Lower n-gram scores (ROUGE-2, BLEU) are expected in abstractive tasks with high linguistic variability.
- Overall: The model can generate coherent and contextually relevant rationales, a crucial step towards trustworthy AI.

- We introduced a novel, psychologically-grounded pipeline for generating rich synthetic data for toxicity analysis in intimate dialogues.
- Our key finding is a **performance plateau**: a diverse range of models (from LR to BERT) achieve statistically similar peak F1-scores (0.78 multiclass, 0.87 binary).
- This suggests performance is currently bottlenecked by the task's inherent ambiguity and data characteristics, rather than model complexity.
- The fine-grained regression approach is highly effective and performs competitively on classification tasks when its outputs are aggregated.
- Our BART model demonstrates promising capabilities for generating semantically relevant explanations, paving the way for more transparent systems.

- We introduced a novel, psychologically-grounded pipeline for generating rich synthetic data for toxicity analysis in intimate dialogues.
- Our key finding is a **performance plateau**: a diverse range of models (from LR to BERT) achieve statistically similar peak F1-scores (0.78 multiclass, 0.87 binary).
- This suggests performance is currently bottlenecked by the task's inherent ambiguity and data characteristics, rather than model complexity.
- The fine-grained regression approach is highly effective and performs competitively on classification tasks when its outputs are aggregated.
- Our BART model demonstrates promising capabilities for generating semantically relevant explanations, paving the way for more transparent systems.

- We introduced a novel, psychologically-grounded pipeline for generating rich synthetic data for toxicity analysis in intimate dialogues.
- Our key finding is a **performance plateau**: a diverse range of models (from LR to BERT) achieve statistically similar peak F1-scores (0.78 multiclass, 0.87 binary).
- This suggests performance is currently bottlenecked by the **task's inherent ambiguity** and data characteristics, rather than model complexity.
- The fine-grained regression approach is highly effective and performs competitively on classification tasks when its outputs are aggregated.
- Our BART model demonstrates promising capabilities for generating semantically relevant explanations, paving the way for more transparent systems.

- We introduced a novel, psychologically-grounded pipeline for generating rich synthetic data for toxicity analysis in intimate dialogues.
- Our key finding is a **performance plateau**: a diverse range of models (from LR to BERT) achieve statistically similar peak F1-scores (0.78 multiclass, 0.87 binary).
- This suggests performance is currently bottlenecked by the **task's inherent ambiguity** and data characteristics, rather than model complexity.
- The fine-grained regression approach is highly effective and performs competitively on classification tasks when its outputs are aggregated.
- Our BART model demonstrates promising capabilities for generating semantically relevant explanations, paving the way for more transparent systems.

- We introduced a novel, psychologically-grounded pipeline for generating rich synthetic data for toxicity analysis in intimate dialogues.
- Our key finding is a **performance plateau**: a diverse range of models (from LR to BERT) achieve statistically similar peak F1-scores (0.78 multiclass, 0.87 binary).
- This suggests performance is currently bottlenecked by the **task's inherent ambiguity** and data characteristics, rather than model complexity.
- The fine-grained regression approach is highly effective and performs competitively on classification tasks when its outputs are aggregated.
- Our BART model demonstrates promising capabilities for generating **semantically relevant explanations**, paving the way for more transparent systems.

Future Work

Our ongoing research focuses on four key areas:

- Enhancing Data Generation & Quality Assessment Refining the pipeline with automated quality metrics and exploring multi-agent (e.g., critic/generator) frameworks to improve realism.
- Real-World Validation
 Deploying a public demo to collect user feedback, bridging the "sim-to-real" gap and testing model generalization.
- Multi-Task Learning for Enhanced Explainability
 Training a single BART-based model for both regression and explanation generation,
 using explanation as a form of regularization to learn more robust representations.
- Interdisciplinary Collaboration Integrating professional psychologists into the research team to improve psychological fidelity and validate model behaviors.

Thank You!

Questions?