1. bilinear regression

we have a dataset $z[\omega]$ that has noise $\eta[\omega]$, $z[\omega] = z0[\omega] + \eta[\omega]$, where $\eta[\omega]$ is has power spectrum $\pi[\omega] = (1/\Omega) \langle \langle \eta[\omega]^* \eta[\omega] \rangle \rangle$, where Ω is the total time which sets the coarse graining of frequency $\Delta \omega = \frac{2\pi}{\Omega}$ (similar to crustal unit cell). We fit this to a function $Z_{\lambda 1, \lambda 2, \ldots, \lambda N}$ [ω] where $\lambda 1$, $\lambda 2$, ... λN are fitting parameters. The best fit values $\Delta 1$, $\Delta 2$, ... ΔN of the parameters are determined by minimizing the goodness function

(1) $G = \int d\omega \ W[\omega] \ (z[\omega] - Z_{\{\lambda_i\}} \ [\omega])^* \ (z[\omega] - Z_{\{\lambda_i\}} \ [\omega]) + c.c. \rightarrow min$ where $W[\omega]$ is weight function. The best fit values $\Lambda 1$, $\Lambda 2$, ... ΛN of the parameters depend on the noise $\eta[\omega]$ in the

data and therefore the values of $\Lambda 1$, $\Lambda 2$, ... ΛN will be spread over a finite range when averaged over all configuration of the noise.

Question: given the power spectrum $\pi[\omega]$ of the noise $\eta[\omega]$, what is the variance of each parameter, $\langle\langle\delta\Lambda 1^2\rangle\rangle$, $\langle\langle\delta\Lambda 2^2\rangle\rangle$, ... $\langle\langle\delta\Lambda N^2\rangle\rangle$ averaged over the noise $\eta[\omega]$. What is the distribution function of the $\Lambda 1$, $\Lambda 2$, ... ΛN given the distribution function of the noise ?

Answer:

Noise with power spectrum

(2 a) $\pi[\omega] = (1/\Omega) \langle \langle \eta[\omega]^* \eta[\omega] \rangle \rangle$ has a probability distribution function

(2)
$$\mathbb{P}\left\{\eta\left[\omega\right]\right\} = \operatorname{const} \times e^{-\int d\omega \frac{\eta\left[\omega\right]^* \cdot \eta\left[\omega\right]}{\pi\left[\omega\right]}}$$

the probability distribution function of the values of the best fit parametrs Ω $\{\Lambda_i + \delta \Lambda_i\}$ for small deviations $\delta \Lambda_i$ away from their avarage Λ_i is given by the same function where $\eta[\omega]$ is replaced by the difference of the fit $Z_{\{\lambda_i\}}[\omega]$ and the data $z[\omega]$, $\eta[\omega] \to z[\omega] - Z_{\{\Lambda_i + \delta \Lambda_i\}}[\omega]$

(3)
$$\delta \Lambda_{i} \} = \text{const} \times e^{-\int d\omega} \frac{\left(z[\omega] - Z_{\{\Lambda_{i} * \delta \Lambda_{i}\}}[\omega]\right)^{*} \left(z[\omega] - Z_{\{\Lambda_{i} * \delta \Lambda_{i}\}}[\omega]\right)}{\pi[\omega]}$$

For small $\delta \Lambda_i$ we can expand the exponent

$$(4) \ \mathsf{G}_{\eta \, \{\lambda_i\}} \, \{ \mathsf{z} [\omega] \} = \int \! \mathsf{d}\omega \, \frac{(\, \mathsf{z} [\omega] \, - \, \mathsf{Z}_{\{\lambda_i\}} \, [\omega])^* \, (\, \mathsf{z} [\omega] \, - \, \mathsf{Z}_{\{\lambda_i\}} \, [\omega])}{\pi [\omega]}$$

(5)
$$G_{\eta} \{ \Lambda_{i} + \delta \Lambda_{i} \} = A_{\eta} + (B_{\eta})_{i} \delta \Lambda_{j} + \delta \Lambda_{i} (C_{\eta})_{ij} \delta \Lambda_{j},$$

where $(C_{\eta})_{ij}$ is the matrix of second derivatives

(6)
$$\left(C_{\eta}\right)_{ij} = \left(\frac{d^2 G_{\eta}}{d\lambda_i d\lambda_j}\right)_{\lambda_i = \Lambda_i}$$

the variances $\langle \langle \delta \Lambda_i \delta \Lambda_j \rangle \rangle$ =

 $\left<\delta\Lambda_i\;\delta\Lambda_j\right>$ - $\left<\delta\Lambda_i\right>\left<\delta\Lambda_j\right>$ of the best fit parameters are given by

(7)
$$\langle \langle \delta \Lambda_i \delta \Lambda_j \rangle \rangle = (C_{\eta}^{-1})_{ij}$$

In particular,

(8)
$$\langle \langle \delta \Lambda 1^2 \rangle \rangle = (C_{\eta}^{-1})_{11}$$

 $\langle \langle \delta \Lambda 2^2 \rangle \rangle = (C_{\eta}^{-1})_{22}$
...
 $\langle \langle \delta \Lambda N^2 \rangle \rangle = (C_{\eta}^{-1})_{NN}$

2. noise in the calorimeter response function $R[\omega]$

the calorimeter response $R[\omega]$ is

$$(2.1) \ R[\omega] = \frac{\Delta T_{Therm}[\omega]}{\Delta P_{heater}[\omega]} \\ = \frac{\Delta T_{Therm}[\omega]}{\Delta V_{heater}[\omega/2] \ \Delta I_{heater}[\omega/2]} \\ = \left(\frac{d \log T_{therm}}{d \log R_{therm}}\right) \frac{\Delta V_{Therm}[\omega+\omega 1] \ / \Delta I_{Therm}[\omega 1]}{\Delta V_{heater}[\omega/2] \ \Delta I_{heater}[\omega/2]} \\ \text{where } \alpha = \left(\frac{d \log T_{therm}}{d \log R_{therm}}\right) \text{ is a thermometer calibration factor} \\ \text{each of the four quantities }, \ \Delta V_{Therm}[\omega+\omega 1], \ \Delta I_{Therm}[\omega 1], \ \Delta V_{heater}[\omega/2], \\ \Delta I_{heater}[\omega/2] \text{ are independently measured by the lockin } -- \text{ theroefore,} \\ \text{each accumulating its noise} -- \text{ and the calorimeter responce} = \\ \text{Eq. (2.1) is calculated digitally using results of these four measurements.}$$

We now consider noise in $R[\omega]$ as a result of the noise in $\Delta V_{Therm}[\omega + \omega 1]$, $\Delta I_{\text{Therm}}[\omega 1]$, $\Delta V_{\text{heater}}[\omega / 2]$.

The noise in the 4 quantities is not uncorrelated because the of the coupling on the calorimeter and in the wiring between calorimetr andf the lockin. First,

assume that only one of the four $\Delta V_{\text{Therm}}[\omega + \omega 1]$, is noisy. Then the noise $\eta[\omega]$ in $R[\omega]$ is

(2.2)
$$\eta[\omega] = \delta R[\omega] = \delta V_{\text{Therm}}[\omega + \omega 1] \frac{\alpha / \Delta I_{\text{Therm}}[\omega 1]}{\Delta V_{\text{heater}}[\omega / 2] \Delta I_{\text{heater}}[\omega / 2]}$$

the noise $\delta V_{\text{Therm}}[\omega + \omega 1]$ includes

- (1) the thermal noise on the thermometer resistor (probably small at cryo temperatures)
- (2) the vibration in field and antenna noise in the < calorimeter → lockin > wires
- (2) amplifyer noise on the channels processing $\Delta V_{Therm}[\omega + \omega 1]$

we need to estimate the power spectrum $\pi_{\text{Vtherm}}[\omega] = \frac{1}{o} \langle \langle \delta V_{\text{Therm}}[\omega + \omega \mathbf{1}]^* \delta V_{\text{Therm}}[\omega + \omega \mathbf{1}] \rangle \rangle$, of $\delta V_{\text{Therm}}[\omega + \omega 1]$. The assumption of the white noise is not satisfactory as in the calorimneter spectroscoipy the frequency changes by 10⁵ over the measured frequency range.

On top of that, $\eta[\omega]$ has an additional ω - dependent factor, $\eta[\omega] = \phi_{\text{Therm}}[\omega] \delta V_{\text{Therm}}[\omega]$, where

(2.3)
$$\phi_{\text{Therm}}[\omega] = \frac{\alpha / \Delta I_{\text{Therm}}[\omega 1]}{\Delta V_{\text{heater}}[\omega / 2] \Delta I_{\text{heater}}[\omega / 2]}$$

which is not constant in frequency because the amplitudes of the AC components of $\Delta I_{heater}[\omega/2]$ and $\Delta I_{Therm}[\omega 1]$ are contunuously adjusrtedin the experiment as frequency is swept to maintain comfortable S / N conditions

Ovearall, the power spectrum $\pi[\omega]$ =

 $(1/\Omega)$ $\langle\langle \eta[\omega]^* \eta[\omega] \rangle\rangle$ in the calorimeter response R[ω] is given by

$$(2.4) \ \pi[\omega] \ = \ (1 \ / \ \Omega) \ \left<\left<\eta[\omega]^* \ \eta[\omega]\right>\right> \ = \ \left| \ \phi_{\mathsf{Therm}}[\omega] \ \right|^2 \frac{1}{\Omega} \ \left<\left<\ \delta \mathsf{V}_{\mathsf{Therm}}[\omega + \omega \mathbf{1}]^* \ \delta \mathsf{V}_{\mathsf{Therm}}[\omega + \omega \mathbf{1}]\right>\right>$$

If all four voltages are noisy then (2.4) will have a corresponding contribution form nise in each of them as well as terms coming from the cross - neise between different channels.

3. question -- what is the power spectrum of the noise in the thermometer voltage

$$\frac{1}{\Omega} \langle \langle \delta V_{\text{Therm}} [\omega + \omega 1]^* \delta V_{\text{Therm}} [\omega + \omega 1] \rangle \rangle$$

after lockin amplification?

?
$$\frac{nV}{\sqrt{Hz}}$$
 or equivalent temperature ? What is its frequency

dependence in the range between 0.01 Hz and 4 kHz?

4. Derivation of Eq.(3)

For a given data $z[\omega]$, the best fit value $\Lambda_1, \Lambda_1, \ldots \Lambda_N$, of parameters $\lambda 1, \lambda 2, \ldots$, λN can be calculated as an average value over the probability distribution

(10)
$$P[\{\lambda_1, \ldots, \lambda_{1N}\}] = e^{\frac{G\theta_T\{z[\omega]\}}{T}} e^{-\frac{G\{\lambda_i\}\{z[\omega]\}}{T}}$$

$$e^{-\frac{G\theta_{T}\left\{z\left[\omega\right]\right\}}{T}} = \int\! d\lambda_{1} \ldots d\lambda_{1\,N} \ e^{-\frac{G_{\lambda_{1},\lambda_{2},\,\ldots,\,\lambda_{N}}\left\{z\left[\omega\right]\right\}}{T}}$$

where T is a parameter. The average value of each

parameter $\langle \lambda_i \rangle_T$ at the temperature T is determined from

$$(11) \qquad \langle \lambda_i \rangle_T \ = \ e^{\frac{6\theta_T \{z\{\omega\}\}}{T}} \int \! d\lambda_1 \ldots d\lambda_{1\,N} \ \lambda_i \ e^{-\frac{1}{T} \, G_{\{\lambda_i\}} \, \{z[\omega]\}} \ , \ \text{etc.}$$

the best fit values $\Lambda_1, \Lambda_1, \ldots \Lambda_N$,

are equal to the average value of parameters $\lambda 1,\,\lambda 2,\,\,\ldots$ in the limit T ightarrow 0 .

(12)
$$\Lambda_{i} = \lim_{T \to 0} \langle \lambda_{i} \rangle_{T}$$

The averages $(\lambda_i)_T$ -- as well as the best fit Λ_i -- depend on the data and noise $z[\omega]$ + $\eta[\omega]$ and therefore will be distributed over the finite range even in the limit of T \rightarrow 0. For a given noise configuration $\eta[\omega]$,

(13)
$$P[\{\lambda_1, \ldots, \lambda_{1N}\}; T, \eta[\omega]] = e^{\frac{G\Theta_T \{z[\omega] + \eta[\omega]\}}{T}} e^{-\frac{G[\lambda_1] \{z[\omega] + \eta[\omega]\}}{T}}$$

Becasue noise is random,

the values of the Λ_i are themselves distributed over a vinite range when we consider all configurations of noise. The probability distribution of the noise is

(14)
$$\mathbb{P}\left\{\eta\left[\omega\right]\right\} = \text{const } e^{-\int d\omega \frac{\eta\left[\omega\right]^* \circ \eta\left[\omega\right]}{\pi\left[\omega\right]}}$$

where $\pi[\omega] = \langle \eta[\omega]^* \times \eta[\omega] \rangle$ is propoertional to the power spectrum. The probability distribution Ω { Λ_i } for the best fit values Λ_i is

in the limit of T \rightarrow 0 the function $GO_T \{z[\omega] + \eta[\omega]\}$ depends very weakly on $\eta[\omega]$ (see SI 1) and therefore we can absorb it into the definition of the const. Therefore, at small T the probability distribution Ω { Λ_i } is

$$\begin{array}{lll} \text{(16)} & \text{\&} & \{\Lambda_i\} & = & e^{\frac{F_T}{T}} \times \int \! \mathcal{D}\eta \left[\omega\right] \times \mathcal{D}\eta \left[\omega\right]^* \ e^{-\int \! d\omega} \, \frac{\eta \left[\omega\right]^* \cdot \eta \left[\omega\right]}{\pi \left[\omega\right]} \ e^{-\frac{G_{\left[\lambda_i\right]} \cdot \left\{z \left[\omega\right] + \eta \left[\omega\right]\right\}}{T}} \\ & e^{-\frac{F_T}{T}} & = \int \! \mathcal{D}\eta \left[\omega\right] \times \mathcal{D}\eta \left[\omega\right]^* \int \! d\lambda_1 \ldots d\lambda_{1\,N} \ e^{-\int \! d\omega} \, \frac{\eta \left[\omega\right]^* \cdot \eta \left[\omega\right]}{\pi \left[\omega\right]} \ e^{-\frac{G_{\left[\lambda_i\right]} \cdot \left\{\eta \left[\omega\right]\right\}}{T}} \end{array}$$

and all averages are done with

(17)
$$\langle \ldots \rangle = \int d\lambda_1 \ldots d\lambda_{1N} \Re \{\Lambda_i\} (\ldots)$$

To evaluate \mathbf{p} $\{\Lambda_i\}$ we need to integrate over all noise configurations

(18)
$$\int \mathcal{D}\eta \left[\omega\right] \times \mathcal{D}\eta \left[\omega\right]^* e^{-\int d\omega} \frac{\eta\left[\omega\right]^* \cdot \eta\left[\omega\right]}{\pi\left[\omega\right]} e^{-\frac{G_{\left\{\lambda_{i}\right\}}\left\{z\left[\omega\right] + \eta\left[\omega\right]\right\}}{T}} = \\ \int \mathcal{D}\eta \left[\omega\right] \times \mathcal{D}\eta \left[\omega\right]^* e^{-\int d\omega} \frac{\eta\left[\omega\right]^* \cdot \eta\left[\omega\right]}{\pi\left[\omega\right]} e^{-\int d\omega} W\left[\omega\right] \frac{(\eta\left[\omega\right] - (Z\left[\omega\right] - Z\left[\omega\right]))^* (\eta\left[\omega\right] - (Z\left[\omega\right] - Z\left[\omega\right]))}{T} =$$

The integral is a product of simple gaussian integrals at each ω , which are evaluated using an identity

$$= \int dxdy e^{-\frac{\frac{2}{11+2}\frac{T1}{12}}{2}a1^{2}+\left(2+\frac{T1}{T2}\right)\left(\eta1-\frac{2a1}{\left(2+\frac{T1}{T2}\right)}\right)^{2}+(\eta1\to\eta2, a1\to a2)}}{T1}$$

$$= \frac{\pi T1}{\left(2+\frac{T1}{T2}\right)} e^{-\frac{2\left(a1^{2}+a2^{2}\right)}{T1+2T2}}$$

Note that the parameters T1 and T2 enter as a sum only in the exponent

(the prefactor is not important). This reflects the fact that when T1 goes to 0, the value of a is very close to η , however,

distribution of a is still broad because η is distributed broadly. In other words, the temperature T rather then being zero, is set by the power spectrum $\pi[\omega]$.

We have

$$\begin{aligned} & \lim_{T \to 0} \int \mathcal{D}\eta \left[\omega\right] \times \mathcal{D}\eta \left[\omega\right]^* \ e^{-\int d\omega} \, \frac{\eta\left[\omega\right]^* \cdot \eta\left[\omega\right]}{\pi\left[\omega\right]} \ e^{-\frac{G_{\left\{\lambda_{i}\right\}}\left\{\eta\left[\omega\right\}\right\}}{T}} \ = \\ \\ & \lim_{T \to 0} \int \mathcal{D}\eta \left[\omega\right] \times \mathcal{D}\eta \left[\omega\right]^* \ e^{-\int d\omega} \, \frac{\frac{T/M(\omega)}{\pi\left[\omega\right]} \, \eta\left[\omega\right]^* \cdot \eta\left[\omega\right] + \left(|\eta\left[\omega\right] - \left(Z_{\left\{\lambda_{i}\right\}}\left[\omega\right] - Z\left[\omega\right]\right)\right)^* \left(|\eta\left[\omega\right] - \left(Z_{\left[\lambda_{i}\right]}\left[\omega\right] - Z\left[\omega\right]\right)\right)}}{T/M(\omega)} \ = \\ & \text{Const e}^{-\int d\omega} \, \frac{\left(Z_{\left\{\lambda_{i}\right\}}\left[\omega\right] - Z\left[\omega\right]\right)^* \left(Z_{\left\{\lambda_{i}\right\}}\left[\omega\right] - Z\left[\omega\right]\right)}{\pi\left[\omega\right]} \end{aligned}$$

Finally, the probablity distribution $\mathbf{\wp}$ $\{\Lambda_i\}$ for the parameters λ_i when $\mathbf{z}[\omega]$ is characterized by the noise power spectrum $\pi[\omega]$ is

(21)
$$\Re \{ \Lambda_i \} = e^F e^{-G_{\eta \{ \lambda_i \}} \{ z[\omega] \}},$$

$$e^{-F} = \int d\lambda_1 ... d\lambda_{1N} e^{-G_{\eta \{ \lambda_i \}} \{ z[\omega] \}},$$

where the "noise-goodness" $G_{n \{\lambda_i\}} \{z[\omega]\}$ is

determined by by the properties of the noise alone,

(22)
$$G_{\eta \{\lambda_i\}} \{z[\omega]\} = \int d\omega \frac{1}{\pi[\omega]} (Z_{\{\lambda_i\}}[\omega] - z[\omega])^* (Z_{\{\lambda_i\}}[\omega] - z[\omega])$$

Note that $G_{\eta \; \{\lambda_i\}} \; \{z \, [\omega] \; \}$ is equivalent to a specific choice of Weight

function in the goodness function discussed above. The noise spectrum

 $\langle \eta[\omega]^* \times \eta[\omega] \rangle = \pi[\omega]$ simply sets the (frequency -- dependent) value of T in the representation of the best fit value of parameters.

Note that one could obtain Ω $\{\Lambda_i\}$ by simply replacing $\eta[\omega]$ with $Z_{\{\lambda_i\}}[\omega]$ $z[\omega]$ in the noise distribution functioon $\mathbb{P} \{ \eta[\omega] \}$,

(21 a)
$$\Omega$$
 { Λ_i } = \mathbb{P} { $\eta[\omega] \rightarrow Z_{\{\lambda_i\}}[\omega] - Z[\omega]$ }

The averages $\langle\langle \Lambda_i \rangle\rangle$ and the variances $\langle\langle \delta \Lambda_i^2 \rangle\rangle$ of the fit parameters are determined in a standard way by their probility distribution Ω $\{\Lambda_i\}$

We will now calculate the variance $\left<\left<\delta\Lambda_i^2\right>\right>$. Near the minimum we expand G_η $\{\Lambda_i+\delta\Lambda_i\}$ as

(24)
$$G_{\eta} \{\Lambda_{i} + \delta \Lambda_{i}\} = A_{\eta} + (B_{\eta})_{i} \delta \Lambda_{j} + \delta \Lambda_{i} (C_{\eta})_{ij} \delta \Lambda_{j},$$

where $(C_{\eta})_{ii}$ is the matrix of second derivatives

(25)
$$\left(C_{\eta}\right)_{ij} = \frac{d^2 G_{\eta}}{d\delta \Lambda_i d\delta \Lambda_i}$$

of G_n near its minimum. We note that if we used a different goodness function G_W to find the best fit values Λ_i for parameters λ_i ,

$$(26) \Lambda_i \leftarrow \left\{ \frac{dG_W}{d\Lambda_i} = 0 \right\}$$

then these values are not at the minimum of G_{η} { Λ_i } and therefore $\left(B_{\eta}\right)_i$ are nonzero.

To calculate the averages $\left<\left<\delta\Lambda_{i}^{2}\right>\right>$ we use a characteristic function X $\{\mathcal{E}_{i}\}$ defined via

(27)
$$e^{-X \{\mathcal{G}_i\}} = \int d\delta \Lambda_1 \cdot \cdot \cdot d\delta \Lambda_N e^{-G_{\eta} \{\Lambda_i + \delta \Lambda_i\} + i \delta \Lambda_i \mathcal{G}_i}$$

(28)
$$X \{ \xi_i \} - A_n$$

$$= - log \int \! d\delta \Lambda_1 \ldots d\delta \Lambda_N \ e^{-(B_\eta)_{\,i} \, \delta \Lambda_j \, - \, \delta \Lambda_i \, \, (C_\eta)_{\,ij} \, \delta \Lambda_j \, + \, \dot{\mathbf{n}} \, \delta \Lambda_i \, \xi_i}$$

$$= - log \left[d\delta \Lambda_1 \ldots d\delta \Lambda_N \right. e^{-\delta \Lambda_i \cdot (C_\eta)_{ij} \cdot \delta \Lambda_j \, + \, (\dot{\mathbf{1}} \cdot \mathcal{E}_i - (B_\eta)_{i}) \cdot \delta \Lambda_j}$$

$$= - \log \int d\delta \Lambda_1 \dots d\delta \Lambda_N e^{-\delta \Lambda_i (C_\eta)_{ij} \delta \Lambda_j + (i \xi_i - (B_\eta)_i) \delta \Lambda_j}$$

$$= -\log \left(\sqrt{\frac{\pi}{\det \left(C_{\eta} \right)}} e^{-\frac{1}{4} \left(i \mathcal{L}_{i} - \left(B_{\eta} \right)_{i} \right) \left(\left(C_{\eta} \right)^{-1} \right)_{ij} \left(i \mathcal{L}_{j} - \left(B_{\eta} \right)_{j} \right) \right) \right)$$

$$= \frac{1}{4} \left(i \mathcal{E}_{i} - \left(B_{\eta} \right)_{i} \right) \left(\left(C_{\eta} \right)^{-1} \right)_{ij} \left(i \mathcal{E}_{j} - \left(B_{\eta} \right)_{j} \right) + \frac{1}{2} \log \det \left(C_{\eta} \right)$$

The averages are calculated as derivatives of the characteristic function $X \{ \mathcal{E}_i \}$,

(29)
$$\langle \delta \Lambda_i \rangle = \frac{1}{\dot{\mathbf{n}}} \left(e^{\mathbf{x} \{ \xi_i \}} \frac{d}{d \xi_i} e^{-\mathbf{x} \{ \xi_i \}} \right)_{\xi \to 0} = -\frac{1}{\dot{\mathbf{n}}} \left(\frac{d \mathbf{x}}{d \xi_i} \right)_{\xi \to 0}$$

$$\begin{split} &(30) \qquad \left\langle \delta \Lambda_{i} \; \delta \Lambda_{j} \right\rangle \\ &= \left(\frac{1}{ii} \right)^{2} \left(e^{x \; \{\mathcal{E}_{i}\}} \; \frac{d}{d\mathcal{E}_{i}} \; \frac{d}{d\mathcal{E}_{j}} \; e^{-x \; \{\mathcal{E}_{i}\}} \right)_{\mathcal{E} \to 0} \\ &= \; \left(\frac{1}{ii} \right)^{2} \left(e^{x \; \{\mathcal{E}_{i}\}} \; \frac{d}{d\mathcal{E}_{i}} \left(- \; \frac{dx \; \{\mathcal{E}_{i}\}}{d\mathcal{E}_{j}} \; e^{-x \; \{\mathcal{E}_{i}\}} \right) \right)_{\mathcal{E} \to 0} \\ &= \; \left(\frac{1}{ii} \right)^{2} \left(e^{x \; \{\mathcal{E}_{i}\}} \; \left(- \; \frac{d^{2} \; x \; \{\mathcal{E}_{i}\}}{d\mathcal{E}_{i} \; d\mathcal{E}_{j}} + \frac{dx \; \{\mathcal{E}_{i}\}}{d\mathcal{E}_{i}} \; \frac{dx \; \{\mathcal{E}_{i}\}}{d\mathcal{E}_{j}} \right) e^{-x \; \{\mathcal{E}_{i}\}} \right)_{\mathcal{E} \to 0} \\ &= \; \left(\frac{1}{ii} \right)^{2} \; \left(- \; \frac{d^{2} \; x \; \{\mathcal{E}_{i}\}}{d\mathcal{E}_{i} \; d\mathcal{E}_{j}} + \frac{dx \; dx \; dx}{d\mathcal{E}_{j}} \right)_{\mathcal{E} \to 0} \\ &= \; \left(\frac{1}{ii} \right)^{2} \; \left(- \; \frac{d^{2} \; x \; \{\mathcal{E}_{i}\}}{d\mathcal{E}_{i} \; d\mathcal{E}_{j}} \right)_{\mathcal{E} \to 0} + \; \left(\frac{1}{ii} \right)^{2} \; \left\langle \delta \Lambda_{i} \; \right\rangle \; \left\langle \delta \Lambda_{j} \; \right\rangle \end{split}$$

$$\begin{array}{ll} (\ 31\) & \left\langle \left\langle \delta \Lambda_{i} \ \delta \Lambda_{j} \right\rangle \right\rangle \\ & = \ \left\langle \left(\delta \Lambda_{i} - \left\langle \delta \Lambda_{i} \right\rangle \right) \left(\delta \Lambda_{j} - \left\langle \delta \Lambda_{j} \right\rangle \right) \right\rangle \\ & = \ \left\langle \delta \Lambda_{i} \ \delta \Lambda_{j} \right\rangle - \left\langle \delta \Lambda_{i} \right\rangle \left\langle \delta \Lambda_{j} \right\rangle \\ & = \ \left(- \frac{d^{2} \ x}{d \mathcal{E}_{i} \ d \mathcal{E}_{j}} + \frac{d x}{d \mathcal{E}_{i}} \, \frac{d x}{d \mathcal{E}_{j}} \right)_{\mathcal{E} \rightarrow 0} - \left(- \left(\frac{d x}{d \mathcal{E}_{j}} \right)_{\mathcal{E} \rightarrow 0} \right) \left(- \left(\frac{d x}{d \mathcal{E}_{j}} \right)_{\mathcal{E} \rightarrow 0} \right) \\ & = \left(\frac{1}{\dot{\mathbf{n}}} \right)^{2} \left(- \frac{d^{2} \ x}{d \mathcal{E}_{i} \ d \mathcal{E}_{j}} \right)_{\mathcal{E} \rightarrow 0} \\ & = \ \frac{1}{4} \left(\left(C_{\eta} \right)^{-1} \right)_{ij} \end{array}$$

SI₀

$$\begin{split} \delta G &= \delta \Lambda \ A \ \delta \Lambda \ + \ B \ \delta \Lambda \\ e^{-\frac{x \ (\mathcal{E}_1^i)}{T}} &= \int \! d \delta \Lambda_1 \ d \delta \Lambda_2 \dots \ d \delta \Lambda_N \ e^{-\frac{\delta \Lambda A \delta \Lambda + B \ \delta \Lambda}{T} + \dot{\mathbf{1}} \ \delta \Lambda_1^i \ \mathcal{E}_1^i} \\ \delta \Lambda \ A \ \delta \Lambda \ + \ B \ \delta \Lambda \ + \ \dot{\mathbf{1}} \ \delta \Lambda \ \mathcal{E} \ = \\ \left(\delta \Lambda \ + \ \frac{1}{2} \ A^{-1} \ B + \frac{\dot{\mathbf{1}}}{2} \ A^{-1} \ \mathcal{E} \right) A \left(\delta \Lambda \ + \ \frac{1}{2} \ A^{-1} \ B \ + \ \dot{\mathbf{1}} \ A^{-1} \ \mathcal{E} \right) - \frac{1}{4} \ (B + \dot{\mathbf{1}} \ \mathcal{E}) \ A^{-1} \ (B + \dot{\mathbf{1}} \ \mathcal{E}) \ = \\ X \ = \ \frac{1}{4} \ (B + \dot{\mathbf{1}} \ \mathcal{E}) \ A^{-1} \ (B + \dot{\mathbf{1}} \ \mathcal{E}) \end{split}$$

5. dependence of $e^{-\frac{GO_T\{z[\omega] + \eta[\omega]\}}{T}}$ on $\eta[\omega]$?

$$\begin{cases} \text{(S1) } e^{\frac{-6\pi_{12}(1-1)\pi_{12}(1-1)}{3}} \\ = \int d\lambda 1 \, d\lambda 2 \dots \, d\lambda N \\ = \int d\lambda 1 \, d\lambda 2 \dots \, d\lambda N \\ = \frac{1}{1} \int d\omega W(\omega) \left(Z_{(A_1)}(\omega) - Z(\omega) - \eta(\omega) + \frac{dZ_{(A_1)}(\omega)}{dA_1} \, dA_1 + \frac{dZ_{(A_1)}(\omega)}{dA_2} \, dA_2 \, dA_2 \right)^{1} \left(Z_{(A_1)}(\omega) - Z(\omega) - \eta(\omega) + \frac{dZ_{(A_1)}(\omega)}{dA_2} \, dA_1 \, dA_2 \right)^{1} \\ = \int d\lambda 1 \, d\lambda 2 \dots \, d\lambda N \, e^{-\frac{1}{1}} \int d\omega W(\omega) \cdot \left(A(\omega) - \eta(\omega) + B_1(\omega) \, dA_1 + C_{11}(\omega) \, dA_1 \, dA_2 \right)^{1} \cdot \left(A(\omega) - \eta(\omega) + B_1(\omega) \, dA_1 \, cA_2 \right)^{1} \cdot \left(A(\omega) - \eta(\omega) + B_1(\omega) \, dA_1 \, cA_2 \right)^{1} \\ = \int d\lambda 1 \, d\lambda 2 \dots \, d\lambda N \, e^{-\frac{1}{1}} \int d\omega \, W(\omega) \cdot \left(A(\omega) - \eta(\omega) + B_1(\omega) \, dA_1 \, cA_2 \right)^{1} \cdot \left(A(\omega) - \eta(\omega) + B_1(\omega) \, dA_1 \, cA_2 \right)^{1} \\ = \int d\omega \, W(\omega) \, \left(B_1(\omega) \right)^{1} \cdot \left(A(\omega) \right)^{1} \cdot \left(Z_{(A_1)}(\omega) \right)^{1}$$

$$\left(d\Lambda_{j} - \frac{1}{2} \left(B_{i} [\omega]^{*} B_{j} [\omega] + (A[\omega] - \eta[\omega])^{*} C_{ij} [\omega] + c.c. \right)^{-1} (\eta[\omega]^{*} B_{i} [\omega] + c.c.) \right)$$

$$- \frac{1}{4} \left(\eta[\omega]^{*} B_{j} [\omega] + c.c. \right) \left(B_{i} [\omega]^{*} B_{j} [\omega] + (A[\omega] - \eta[\omega])^{*} C_{ij} [\omega] + c.c. \right)^{-1}$$

$$\left(\eta[\omega]^{*} B_{j} [\omega] + c.c. \right)$$

Therefore,

$$(S1) = \int d\lambda 1 \ d\lambda 2 \dots d\lambda N \ e^{-\frac{1}{T} \int d\omega \ W[\omega] \times \left(A[\omega] - \eta[\omega] + B_{i}[\omega] \ d\Lambda_{i} + C_{ij}[\omega] \ d\Lambda_{i} \ d\Lambda_{j}\right)^{*} \times \left(A[\omega] - \eta[\omega] + B_{i}[\omega] \ d\Lambda_{i} \ d\Lambda_{j}\right)} =$$

$$= \sqrt{\frac{1}{Det_{ij} \left[\frac{1}{T} \int d\omega \ W[\omega] \ \left(B_{i}[\omega]^{*} B_{j}[\omega] + (A[\omega] - \eta[\omega])^{*} C_{ij}[\omega] + c.c.\right)\right]} \times$$

$$\times e^{-\frac{1}{T} \int d\omega \ W[\omega] \times (A[\omega] - \eta[\omega])^{*} \times (A[\omega] - \eta[\omega])} \times$$

$$\times e^{-\frac{1}{T} \int d\omega \ W[\omega] \times (A[\omega] - \eta[\omega])^{*} \times (A[\omega] - \eta[\omega])} \times$$

$$\times e^{-\frac{1}{T} \int d\omega \ W[\omega] \times (A[\omega] - \eta[\omega])^{*} \times (A[\omega] - \eta[\omega])} \times$$

The last two factors are equivalent to gaussian distribution of $\eta[\omega]$

 $const \times e^{-\int \! d\omega \ \frac{\eta[\omega]^* \eta[\omega]}{p[\omega]}}, \ where \ p[\omega] \ \propto \ T \ and, \ therefore, \ it vanishes in the \ T \to 0 \ limit.$

Therefore, we can assume that the normalization factor $e^{-\frac{6\theta_T \{z[\omega] + \eta[\omega]\}}{T}}$ depends weakly on $\eta[\omega]$ in thie T \rightarrow 0 limit.

6.
$$\int d\eta d\eta^* e^{-\frac{\frac{T_1}{T_2} \eta^* \eta - (\eta - a)^* (\eta - a)}{T_1}}$$

the integral is done using identity

$$\int d\eta d\eta^* e^{-\frac{\tau_1}{\tau_2} \eta^* \eta - (\eta - a)^* (\eta - a)}$$

$$= \int dx dy e^{-\frac{\tau_1}{\tau_2} (x^2 + y^2) + (x - iy - al + ia2) (x + iy - al - ia2) + c.c.}$$

$$= \int dx dy e^{-\frac{\tau_1}{\tau_2} (x^2 + y^2) + 2 ((al - x)^2 + (a2 - y)^2)}$$

$$= \int dxdy e^{-\frac{\frac{2 a1^2 T1}{T1+2 T2} + \left(2 + \frac{T1}{T2}\right) \left(x - \frac{2 a1}{\left(2 + \frac{T1}{T2}\right)}\right)^2 + (x \to y, a1 \to a2)}{T1}$$

$$= \frac{\pi T1}{\left(2 + \frac{T1}{T2}\right)} e^{-\frac{2 (a1^2 + a2^2)}{T1+2 T2}}$$

$$\left(2 + \frac{T1}{T2}\right) \left(\frac{2 a1^2 T1 T2}{(T1 + 2 T2)^2}\right) = \frac{2 a1^2 T1}{T1 + 2 T2}$$

$$\frac{2 \text{ a} 1^2 \text{ T1}}{\text{T1} + 2 \text{ T2}} + \left(2 + \frac{\text{T1}}{\text{T2}}\right) \left(x - \frac{2 \text{ a} 1}{\left(2 + \frac{\text{T1}}{\text{T2}}\right)}\right)^2$$

$$(16) \int dx dy \, e^{-\frac{\frac{71}{12} \left(x^2 + y^2\right) + 2 \left((\text{a} 1 - x)^2 + (\text{a} 2 - y)^2\right)}{\text{T1}}} =$$

$$\int dx dy \, e^{-\frac{\frac{2 \text{ a} 1^2 \text{ T1}}{\text{T1} + 2 \text{ T2}} + \left(2 + \frac{\text{T1}}{\text{T2}}\right) \left(x - \frac{2 \text{ a} 1}{\left(2 + \frac{\text{T1}}{\text{T2}}\right)}\right)^2 + (\text{x} \rightarrow y, \text{ a} 1 \rightarrow \text{a} 2)}}$$

$$= \frac{\pi \text{ T1}}{\left(2 + \frac{\text{T1}}{\text{T1}}\right)} \, e^{-\frac{2 \left(\text{a} 1^2 + \text{a} 2^2\right)}{\text{T1} + 2 \text{ T2}}}$$

7. × 2 x2 matrix diagonalization and ellipse

```
 \begin{pmatrix} \cos \left[\phi\right] \\ \sin \left[\phi\right] \end{pmatrix}^{\mathsf{T}} \cdot \begin{pmatrix} \mathsf{a} + \mathsf{b} \cos \left[2\,\theta\right] & \mathsf{b} \sin \left[2\,\theta\right] \\ \mathsf{b} \sin \left[2\,\theta\right] & \mathsf{a} - \mathsf{b} \cos \left[2\,\theta\right] \end{pmatrix} \cdot \begin{pmatrix} \cos \left[\phi\right] \\ \sin \left[\phi\right] \end{pmatrix} // \, \mathsf{Tr} \; // \; \mathsf{FullSimplify} 
 a + b Cos[2 (\theta - \phi)]
    \begin{pmatrix} a + b \cos[2\theta] & b \sin[2\theta] \\ b \sin[2\theta] & a - b \cos[2\theta] \end{pmatrix} // \text{ Eigensystem} // \text{ FullSimplify} 
 \{\{a-b, a+b\}, \{\{-Tan[\theta], 1\}, \{Cot[\theta], 1\}\}\}
   \{\{a-b, a+b\}, \{\{-Sin[\theta], Cos[\theta]\}, \{Cos[\theta], Sin[\theta]\}\}\}
    \left(\left(\begin{array}{cc} \mathsf{Cos}\left[\theta\right] & -\mathsf{Sin}\left[\theta\right] \\ \mathsf{Sin}\left[\theta\right] & \mathsf{Cos}\left[\theta\right] \end{array}\right) \cdot \left(\begin{array}{cc} \sqrt{\mathsf{a}-\mathsf{b}} & 0 \\ 0 & \sqrt{\mathsf{a}+\mathsf{b}} \end{array}\right) \cdot \left(\begin{array}{cc} \mathsf{Cos}\left[\phi\right] \\ \mathsf{Sin}\left[\phi\right] \end{array}\right)\right)^\intercal \cdot \left(\begin{array}{cc} \mathsf{a}+\mathsf{b}\,\mathsf{Cos}\left[2\,\theta\right] & \mathsf{b}\,\mathsf{Sin}\left[2\,\theta\right] \\ \mathsf{b}\,\mathsf{Sin}\left[2\,\theta\right] & \mathsf{a}-\mathsf{b}\,\mathsf{Cos}\left[2\,\theta\right] \end{array}\right) \cdot \left(\begin{array}{cc} \mathsf{Cos}\left[\phi\right] \\ \mathsf{Sin}\left[\phi\right] \end{array}\right) \cdot \left(\begin{array}{cc} \mathsf{cos}\left[\phi\right] \\ \mathsf{b}\,\mathsf{Sin}\left[2\,\theta\right] & \mathsf{a}-\mathsf{b}\,\mathsf{Cos}\left[2\,\theta\right] \end{array}\right) \cdot \left(\begin{array}{cc} \mathsf{cos}\left[\phi\right] \\ \mathsf{cos}\left[\phi\right] \\ \mathsf{cos}\left[\phi\right] \end{array}\right) \cdot \left(\begin{array}{cc} \mathsf{cos}\left[\phi\right] \\ \mathsf{
                                         \begin{pmatrix} \cos[\theta] & -\sin[\theta] \\ \sin[\theta] & \cos[\theta] \end{pmatrix} \cdot \begin{pmatrix} \sqrt{a-b} & 0 \\ 0 & \sqrt{a+b} \end{pmatrix} \cdot \begin{pmatrix} \cos[\phi] \\ \sin[\phi] \end{pmatrix} // \text{ Tr } // \text{ FullSimplify} 
   (a - b) (a + b)
 \left( \begin{pmatrix} \mathsf{Cos}[\theta] & -\mathsf{Sin}[\theta] \\ \mathsf{Sin}[\theta] & \mathsf{Cos}[\theta] \end{pmatrix} \cdot \begin{pmatrix} \frac{\sqrt{\mathsf{a-b}}}{\sqrt{(\mathsf{a-b})\ (\mathsf{a+b})}} & 0 \\ 0 & \frac{\sqrt{\mathsf{a+b}}}{\sqrt{\mathsf{a-b}}\sqrt{\mathsf{a-b}}} \end{pmatrix} \right)^\intercal \cdot \begin{pmatrix} \mathsf{a} + \mathsf{b}\,\mathsf{Cos}[2\,\theta] & \mathsf{b}\,\mathsf{Sin}[2\,\theta] \\ \mathsf{b}\,\mathsf{Sin}[2\,\theta] & \mathsf{a} - \mathsf{b}\,\mathsf{Cos}[2\,\theta] \end{pmatrix}.
                                     \begin{pmatrix} \cos[\theta] & -\sin[\theta] \\ \sin[\theta] & \cos[\theta] \end{pmatrix} \cdot \begin{pmatrix} \frac{\sqrt{a-b}}{\sqrt{(a-b)(a+b)}} & 0 \\ 0 & \frac{\sqrt{a+b}}{\sqrt{(a-b)(a+b)}} \end{pmatrix} // \text{ FullSimplify // MatrixForm} 
\left( \left( \begin{array}{ccc} \cos[\theta] & -\sin[\theta] \\ \sin[\theta] & \cos[\theta] \end{array} \right) \cdot \left( \begin{array}{ccc} \frac{1}{\sqrt{a+b}} & 0 \\ 0 & \frac{1}{\sqrt{a-b}} \end{array} \right) \right)^{\mathsf{T}} // \text{ Inverse} \right) -
                                  \left(\left(\begin{array}{cc} \sqrt{a+b} & 0 \\ 0 & \sqrt{a-b} \end{array}\right), \left(\begin{array}{cc} \cos[\theta] & \sin[\theta] \\ -\sin[\theta] & \cos[\theta] \end{array}\right)\right)^{\mathsf{T}} // \text{ FullSimplify } // \text{ MatrixForm}
```

$$\left(\left(\begin{array}{ccc} \sqrt{a+b} & 0 \\ 0 & \sqrt{a-b} \end{array} \right) \cdot \left(\begin{array}{ccc} Cos[\theta] & Sin[\theta] \\ -Sin[\theta] & Cos[\theta] \end{array} \right)^\intercal \cdot \\ \left(\begin{array}{ccc} 1 & 0 \\ 0 & 1 \end{array} \right) \cdot \left(\left(\begin{array}{ccc} \sqrt{a+b} & 0 \\ 0 & \sqrt{a-b} \end{array} \right) \cdot \left(\begin{array}{ccc} Cos[\theta] & Sin[\theta] \\ -Sin[\theta] & Cos[\theta] \end{array} \right) \right) - \\ \left(\begin{array}{ccc} a+b & Cos[2\theta] & b & Sin[2\theta] \\ b & Sin[2\theta] & a-b & Cos[2\theta] \end{array} \right) // \text{ Full Simplify } // \text{ Matrix Form} \\ \left(\begin{array}{ccc} 0 & 0 \\ 0 & 0 \end{array} \right) \\ \left(\begin{array}{ccc} a+b & Cos[2\theta] & b & Sin[2\theta] \\ b & Sin[2\theta] & a-b & Cos[2\theta] \end{array} \right) = \left(\left(\begin{array}{ccc} \sqrt{a+b} & 0 \\ 0 & \sqrt{a-b} \end{array} \right) \cdot \left(\begin{array}{ccc} Cos[\theta] & Sin[\theta] \\ -Sin[\theta] & Cos[\theta] \end{array} \right) \right)^\intercal \cdot \\ \left(\begin{array}{cccc} 1 & 0 \\ 0 & 1 \end{array} \right) \cdot \left(\left(\begin{array}{cccc} \sqrt{a+b} & 0 \\ 0 & \sqrt{a-b} \end{array} \right) \cdot \left(\begin{array}{cccc} Cos[\theta] & Sin[\theta] \\ -Sin[\theta] & Cos[\theta] \end{array} \right) \right)$$
 errors

errors

$$\begin{split} \frac{\delta G}{G} &= \left(\frac{1}{a} \frac{\delta \lambda}{\lambda}\right)^2 \\ \left(\frac{\frac{\delta \lambda 1}{\lambda 1}}{\frac{\delta \lambda 2}{\lambda 2}}\right) &= \\ \frac{1}{30} \left(\frac{\text{Cos}[\theta]}{\text{Sin}[\theta]} - \frac{\text{Sin}[\theta]}{\text{Cos}[\theta]}\right) \cdot \left(\frac{\frac{1}{\sqrt{a+b}}}{0} \frac{\theta}{\frac{1}{\sqrt{a-b}}}\right) \cdot \left(\frac{1}{1}\right) &= \frac{1}{30} \left(\frac{\text{Cos}[\theta]}{\text{Sin}[\theta]} - \frac{\text{Sin}[\theta]}{\text{Cos}[\theta]}\right) \cdot \left(\frac{\frac{1}{\sqrt{a+b}}}{\frac{1}{\sqrt{a-b}}}\right) \end{split}$$

check

$$\int d\eta d\eta^* e^{-\frac{\eta^* \eta}{T^2} - \frac{i}{\hbar} \xi \eta}$$

$$= \int d\eta d\eta^* e^{-\frac{\left(\eta - \frac{\tau_2}{2} \pm \xi\right)^* \left(\eta - \frac{\tau_2}{2} \pm \xi\right)}{T^2} + \frac{\tau_2}{4} \xi^* \xi}$$

$$= \pi T2 e^{\frac{T_2}{4} \xi^* \xi}$$

8. digression on $\pi[\omega]$

Noise with power spectrum $\pi[\omega] = \langle \langle \eta[\omega]^* \eta[\omega] \rangle \rangle$ has a probability distribution function (2) $\mathbb{P}\left\{\eta\left[\omega\right]\right\} = \text{const} \times e^{-\int d\omega \frac{\eta\left[\omega\right]^{*} \eta\left[\omega\right]}{\pi\left[\omega\right]}}$

whats missing is the total time . We assume that the total time is Ω -- this is analogous to the crystal size

$$\begin{split} &\eta \left[\omega_{n}\right] \; = \; \int \! \mathrm{d}t \, \eta \left[t\right] \, \mathrm{e}^{-\,\mathrm{i}\,\omega_{n}\,t} \\ &\eta \left[t\right] \; = \; \int \! \frac{\mathrm{d}\omega}{2\,\pi} \, \eta \left[\omega\right] \, \mathrm{e}^{\mathrm{i}\,\omega\,t} \; = \; \frac{\Delta\omega}{2\,\pi} \, \sum \, \eta \left[\omega_{n}\right] \, \mathrm{e}^{\mathrm{i}\,\omega_{n}\,t} \end{split}$$

the size of the "unit cell" in time is $\Delta \omega = \frac{1}{2\pi\Omega}$ -- this provides regularization

$$\langle\langle\eta[\mathsf{t2}]\times\eta[\mathsf{t1}]\rangle\rangle$$
 is intesive (not proportional to "volume" Ω)

$$\langle\langle\eta[\omega_n]^*\eta[\omega_n]\rangle\rangle$$
 is extensive (yes proportional to "volume" Ω)

< power spectrum >

is is intesive (not proportional to "volume" Ω) -- it is "per unit volume"

$$\begin{split} & \left<\left<\eta\left[\texttt{t2}\right]\times\eta\left[\texttt{t1}\right]\right>\right> \ = \ \left(\frac{\Delta\omega}{2\,\pi}\right)^2\sum \left.\left<\left<\eta\left[\omega_n\right]^*\,\eta\left[\omega_m\right]\right>\right> e^{\frac{i}{n}\left(\omega_n+\omega_m\right)\,\frac{(\texttt{t1-t2})}{2}+\left(\omega_n-\omega_m\right)\,\frac{(\texttt{t1-t2})}{2}} \\ & = \ \left(\frac{\Delta\omega}{2\,\pi}\right)^2\sum \left.\left<\left<\eta\left[\omega_n\right]^*\,\eta\left[\omega_n\right]\right>\right> \delta_{nm}\,e^{\frac{i}{n}\left(\omega_n+\omega_m\right)\,\frac{(\texttt{t1-t2})}{2}+\left(\omega_n-\omega_m\right)\,\frac{(\texttt{t1-t2})}{2}} \\ & = \ \left(\frac{\Delta\omega}{2\,\pi}\right)^2\sum \left.\left<\left<\eta\left[\omega_n\right]^*\,\eta\left[\omega_n\right]\right>\right> e^{\frac{i}{n}\omega_n\,\left(\texttt{t1-t2}\right)} \\ & = \ \left(\frac{\Delta\omega}{2\,\pi}\right)\int\frac{d\omega}{2\,\pi}\,\left<\left<\eta\left[\omega\right]^*\,\eta\left[\omega\right]\right>\right> e^{\frac{i}{n}\omega_n\,\left(\texttt{t1-t2}\right)} \end{split}$$

9. relation between power spectrum and $\pi[\omega]$

the probability distribution $\mathbb{P}\left\{\eta\left[\omega_{n}\right]\right\} = \text{const}\times e^{-\int d\omega\,\frac{\eta\left[\omega\right]^{*}\cdot\eta\left[\omega\right]}{\pi\left[\omega\right]}}$ in a discreet form $\int d\omega \, \frac{\eta[\omega]^* \times \eta[\omega]}{\pi[\omega]} = \sum \Delta\omega \, \frac{\eta[\omega_n]^* \times \eta[\omega_n]}{\pi[\omega_n]}$ $\mathbb{P} \left\{ \eta \left[\omega_{n} \right] \right\} = \text{const} \times e^{-\sum \Delta \omega} \frac{\eta \left[\omega_{n} \right]^{*} \cdot \eta}{\pi \left[\omega_{n} \right]}$ $\mathbf{e}^{-\mathsf{X}\left\{\mathcal{E}\left[\omega_{\mathsf{n}}\right]\right\}} \; = \; \int \! \mathcal{D}\eta \left[\omega_{\mathsf{n}}\right] \times \mathcal{D}\eta \left[\omega_{\mathsf{n}}\right]^* \, \mathbf{e}^{-\sum_{\mathsf{n}} \Delta \omega} \, \frac{\eta \left[\omega_{\mathsf{n}}\right]^* \cdot \eta \left[\omega_{\mathsf{n}}\right]}{\pi \left[\omega_{\mathsf{n}}\right]} - \sum_{\mathsf{n}} \Delta \omega \, \left(\mathcal{E}\left[\omega_{\mathsf{n}}\right]^* \cdot \eta \left[\omega_{\mathsf{n}}\right] + \mathcal{E}\left[\omega_{\mathsf{n}}\right] \, \eta \left[\omega_{\mathsf{n}}\right]^*\right)$ $= \prod \int \! d\eta \, [\omega_n] \times d\eta \, [\omega_n]^* \, e^{-\Delta\omega \, \frac{\eta[\omega_n]^* \rtimes \eta[\omega_n]}{\pi[\omega_n]} - \Delta\omega \, (\xi[\omega_n]^* \rtimes \eta[\omega_n] + \xi[\omega_n] \, \eta[\omega_n]^*)}$

$$\begin{split} &\int \! d\eta \left[\omega_{n} \right] \times d\eta \left[\omega_{n} \right]^{*} \, e^{-\Delta \omega} \, \frac{\sigma(\omega_{n})^{*} \cdot \eta(\omega_{n}) + \xi(\omega_{n}) \cdot \eta(\omega_{n}) + \xi(\omega_{n}) \cdot \eta(\omega_{n}) \cdot \eta($$

$$\left(e^{-a \, x^2 - b \, x \, - c} \, D \left[D \left[e^{a \, x^2 + b \, x \, + c} \, , \, x \right] \, , \, x \right] \, - \, \left(e^{-a \, x^2 - b \, x \, - c} \, D \left[e^{a \, x^2 + b \, x \, + c} \, , \, x \right] \right)^2 \right) \, / \cdot \, x \, \rightarrow \, 0 \, / / \, \, \text{FullSimplify}$$

2 a

IGNORE

We now assume that noise is weak and we can taylor expand the fitting function $Z_{\{\lambda i\}}[\omega]$ in deviadions $\delta \lambda_i$

$$Z_{\{\Lambda_i+\lambda_i\}}[\omega]$$

$$const \int d\lambda 1 d\lambda 2 \dots d\lambda N e^{-\int d\omega \frac{(Z[\omega] - z\theta[\omega])^{s_{\nu}}(Z[\omega] - z\theta[\omega])}{T2}} =$$

$$\text{const} \int \! d\lambda 1 d\lambda 2 \dots d\lambda N \, e^{-\int \! d\omega \, \frac{\left[Z_{\left\{\Lambda_{i}\right\}}\left[\omega\right] - Z\left[\omega\right] + \frac{dZ_{\left\{\Lambda_{i}\right\}}\left[\omega\right]}{d\Lambda_{i}} \, d\Lambda_{i} + \frac{dZ_{\left\{\Lambda_{i}\right\}}\left[\omega\right]}{d\Lambda_{i}} \, d\Lambda_{i} \, d\Lambda_{j}\right]^{*} \left[Z_{\left[\omega\right] - Z\left[\omega\right] + \frac{dZ_{\left\{\Lambda_{i}\right\}}\left[\omega\right]}{d\Lambda_{i}} \, d\Lambda_{i} + \frac{dZ_{\left\{\Lambda_{i}\right\}}\left[\omega\right]}{d\Lambda_{i}} \, d\Lambda_{i} \, d\Lambda_{j}\right]} } \right] }$$

$$\left(Z_{\{\Lambda_{i}\}}[\omega] - Z[\omega] + \frac{dZ_{\{\Lambda_{i}\}}[\omega]}{d\Lambda_{i}} d\Lambda_{i} + \frac{dZ_{\{\Lambda_{i}\}}[\omega]}{d\Lambda_{i} d\Lambda_{j}} d\Lambda_{i} d\Lambda_{j}\right)^{*}$$

$$\left(Z[\omega] - Z[\omega] + \frac{dZ_{\{\Lambda_{i}\}}[\omega]}{d\Lambda_{i}} d\Lambda_{i} + \frac{dZ_{\{\Lambda_{i}\}}[\omega]}{d\Lambda_{i} d\Lambda_{j}} d\Lambda_{i} d\Lambda_{j}\right)$$

$$(Z_{\{\Lambda_i\}}[\omega] - z[\omega])^* (Z_{\{\Lambda_i\}}[\omega] - z[\omega])$$

$$+ \left(\frac{dZ_{\{\Lambda_i\}}[\omega]}{d\Lambda_i}\right)^* (Z_{\{\Lambda_i\}}[\omega] - z[\omega]) d\Lambda_i + i (\Lambda_i + d\Lambda_i) \mathcal{E}_i$$

$$+ \left(\left(\frac{\mathsf{dZ}_{\{\Lambda_i\}} \left[\omega\right]}{\mathsf{d}\Lambda_i} \right)^* \frac{\mathsf{dZ}_{\{\Lambda_i\}} \left[\omega\right]}{\mathsf{d}\Lambda_j} + \left(\frac{\mathsf{dZ}_{\{\Lambda_i\}} \left[\omega\right]}{\mathsf{d}\Lambda_i \; \mathsf{d}\Lambda_j} \right)^* \left(\mathsf{Z}_{\{\Lambda_i\}} \left[\omega\right] - \mathsf{z}\left[\omega\right] \right) \right) \mathsf{d}\Lambda_i \; \mathsf{d}\Lambda_j$$

$$\begin{array}{l} (B_{i} + \,\dot{\mathtt{i}}\,\,\mathcal{\zeta}_{i})\,\,d\Lambda_{i} \,+\, A_{ij}\,\,d\Lambda_{i}\,\,d\Lambda_{j} \,=\,\,d\Lambda_{i}\,\,A\,\,d\Lambda_{j} \,+\, (B_{i} + \,\dot{\mathtt{i}}\,\,\mathcal{\zeta}_{i})\,\,d\Lambda_{i} \\ = \,\,\left(d\Lambda_{j} + (B_{i} + \,\dot{\mathtt{i}}\,\,\mathcal{\zeta}_{i})\,\,A^{-1}\right)\,A\,\left(d\Lambda_{j} + A^{-1}\,\,\left(B_{i} + \,\dot{\mathtt{i}}\,\,\mathcal{\zeta}_{i}\right)\right) \,-\,\,\left(B_{i} + \,\dot{\mathtt{i}}\,\,\mathcal{\zeta}_{i}\right)\,A^{-1}\,\,\left(B_{i} + \,\dot{\mathtt{i}}\,\,\mathcal{\zeta}_{i}\right) \\ \end{array}$$

$$\int \! d\lambda 1 d\lambda 2 \ldots d\lambda N \, e^{-\int \! d\omega} \, \frac{ \left[z_{\left\{ A_{i}\right\}} \left[\omega\right] - z\left[\omega\right] + \frac{dz_{\left\{ A_{i}\right\}} \left[\omega\right]}{dA_{i}} \, dA_{i} + \frac{dz_{\left\{ A_{i}\right\}} \left[\omega\right]}{dA_{i}} \, dA_{i} \, dA_{j} \right]^{*} \left[z_{\left\{ A_{i}\right\}} \left[\omega\right] - z\left[\omega\right] + \frac{dz_{\left\{ A_{i}\right\}} \left[\omega\right]}{dA_{i}} \, dA_{i} + \frac{dz_{\left\{ A_{i}\right\}} \left[\omega\right]}{dA$$

$$e^{\frac{1}{T}\int d\omega (B_i + i T \zeta_i) A^{-1} (B_i + i T \zeta_i)} =$$