SME0110 – Programação Matemática – Turma 2

Professora: Maristela Oliveira dos Santos

1°Sem. 2011 Sala 5-00

Seg. 08:10/09:50 – Sala 5-003 Sex. 08:10/09:50- Sala 5-103

Objetivo

Capacitar o aluno a perceber, formular e resolver problemas de otimização.

Programa

Definição e formulação de problemas de programação matemática. Teoria da programação linear e o método simplex. O método simplex com variáveis canalizadas. Programação dinâmica e aplicações. Programação inteira e o algoritmo de separação e avaliação (branch-and-bound).

Bibliografia Básica

- Livro Texto: ARENALES, M; ARMENTANO, V; MORABITO, R.; YANASSE, H. Pesquisa operacional Ed. Campus, 2006.Pesquisa Operacional, 2. ed., Rio de Janeiro, Prentice-Hall do Brasil, 1986
- WINSTON, W.L. Operations Research Applications and Algorithms IE-THOMSON, 4a Edição, 2004
- GOLDBARG, M.C. e LUNA, H.P.L Otimização Combinatória e Programação Linear Modelos e Algoritmos Editora CAMPUS, 2ª Edição 2005.
- BERTSIMAS, D. E TSITSIKLIS, J.N. Introduction to Linear Optimization, Athena Scientific, 1997.
- HILLIER, F.S.; LIEBERMAN, G.J.- Introdução à Pesquisa Operacional, Rio de Janeiro, RJ, Campus, 1988.
- BAZARAA,M.S.; JARVIS,J.J., Linear Programming and Network Flows, John Wiley and Sons, N.Y., 1977.
- BREGALDA,P.; BORNSTEIN,C. Introdução a Programação Linear, Editora Campus, 1981.
- LUENBERGER, D.G. Linear and Nonlinear Programming, 2. ed., Reading, Mass, Addison-Wesley; 1984.

Critério de Avaliação

Duas Avaliações teóricas – Média de Provas: **MP** = (**P1+P2**)/2 Trabalhos Práticos – Média Aritmética dos Trabalhos: **MT** = (**T1+T2**)/2

Se MP \geq 5.0 e MT \geq 5.0

Então Média Final = 08 MP + 0,2 MT Senão Média Final = Mínimo{MP, MT}

Datas das Avaliações Teóricas Datas de Entrega dos Trabalhos

Primeira Avaliação: Trabalho 1: Segunda Avaliação: Trabalho 2:

Avaliação Substitutiva:

Recuperação: Só terão direito à recuperação os alunos com 3.0 ≤ MF< 5.0 e com freqüência superior a 70%.

Para as disciplinas de código SCE, a Nota Final (**RF**) a ser atribuída após o processo de Recuperação, deverá ser calculada segundo os seguintes critérios:

- se Mrec >= 7.5 ==> RF = NP + (Mrec/2.5)
- se $\mathbf{Mrec} < \mathbf{5} \Longrightarrow \mathbf{RF} = \mathbf{Max} \{ \mathbf{NP}, \mathbf{Mrec} \}$
- se $5 \le Mrec < 7,5 ==> RF = 5$

onde:

RF = nota Final de Recuperação

NP = média final do semestre anterior (nota do passado)

Mrec = média obtida da prova de recuperação

Planejamento (Proposta – Pode ser alterado durante o semestre)

n. aula	DATA	Planejamento
1	21/02	Apresentação e Critérios
	25/02	Concurso – Sem aulas
2	28/02	Definição e formulação de problemas de programação matemática e exemplos
		com solução gráfica
3	04/03	Definição e formulação de problemas de programação matemática
	07/03	Não haverá aulas - Carnaval
4	11/03	Modelagem matemática e exercícios.
5	14/03	Teoria básica (solução gráfica)
5	18/03	Exercícios
6	21/03	Teoria básica (forma padrão, partição básica)
7	25/03	Teoria Básica.
8	28/03	Método Simplex.
9	01/04	Método Simplex.
10	04/04	Método Simplex - Obtendo uma solução factível
11	08/04	Método Simplex Tabelas
12	11/04	exercícios
13	15/04	Primeira avaliação de Conteúdo.
	18/04	SEMANA SANTA
	22/04	SEMANA SANTA
14	25/04	Modelagem com Variáveis inteiras
15	29/04	Modelagem com Variáveis inteiras
16	02/05	Modelagem com Variáveis inteiras
17	06/05	Programação inteira (branch-and-bound).
18	09/05	Programação inteira (branch-and-bound).
19	13/05	Programação inteira (branch-and-bound).
20	16/05	Exercícios programação inteira.
21	20/05	Exercícios programação inteira.
22	23/05	Heurísticas.
23	27/05	Heurísticas.
24	30/05	Programação dinâmica e aplicações.
		Exercícios.
25	03/06	Programação dinâmica e aplicações.
_		Exercícios.
26	06/06	Programação dinâmica e aplicações.
	40.00	Exercícios.
27	10/06	Entrega dos trabalhos
28	13/06	Exercícios
29	17/06	Segunda Avaliação Teórica.
30	20/06	Avaliação Substitutiva (Mal)
31	27/06	Finalização do Semestre
	01/01	

Propostas de trabalhos para Discutir:

<u>1º Proposta: Implementação do algoritmo simplex tabelas (conforme algoritmo do livro).</u> <u>Mostrar durante as iterações do método, quadro a quadro.</u>

<u>2º Proposta: Utilização de um software de otimização (CPLEX) para resolução de um problema clássico utilizando biblioteca de dados.</u>

<u>3º Proposta: Implementação de uma heurística para um problema clássico da literatura (Caixeiro viajante, problema da mochila, localização de facilidades e outros)</u>

Comentários Sobre as propostas:

Proposta 1:

O algoritmo SIMPLEX TABELAS está nas páginas 97 e 98, porém não tem a fase I (caso não tenha a identidade de maneira obvia). Tem que fazer este passo.

Tem que mostrar, de maneira didática, as iterações do método. O aluno pode optar por mostrar mais de um quadro em cada tela. Tente pensar no material como se alguém fosse utilizar como material de apoio. Coloque o nome do grupo (máximo 3) na parte superior (com algum e-mail) de modo a não atrapalhar a visualização do processo.

Procurem exemplos de interfaces como: http://www.prolin.ufv.br/index.html

Proposta 2

No arquivo cislot1pamela.zip tem dois formatos de implementação. Uma usando o *IBM* ILOG *CPLEX* Optimization Studio (arquivos .mod e .dat) e outra usando o concert cplex (C++). Os dois exemplos implementam o mesmo problema. A facilidade do concert (cplusplus.cpp) é que pode usar o c++ para implementar as restrições e função objetivo rapidamente.

Os problemas interessantes que podem implementar:

Dimensionamento de lotes (lot sizing problem)

Localização de facilidades e outros.

No site: http://miplib.zib.de/ vocês podem encontrar dados de problemas clássicos.

Tem outras bibliotecas, procurem e referenciem.

Proposta 3

Os alunos podem escolher problemas clássicos e discutir as heurísticas "comigo" ou com monitor antes de decidir a implementação.