A Languages-and-Automata Examination for Rebecca Ye

November 28, 2021

Question 1

$$Fib(n + 1) =: Fib(n) + Fib(n - 1)$$

Explain why this is not a primitive recursive definition. Show that nevertheless there is a primitive recursive declaration of this function.

Question 2

We think of 0 as false and 1 as true, so we can define if-then-else by

```
IF-THEN-ELSE(0, x, y) = y;
IF-THEN-ELSE(1, x, y) = y.
```

Show that if-then-else is primitive recursive.

A primitive recursive predicate is a property of natural numbers, or—if you prefer—a formula $F(x_1...x_n)$, such that the function $f(x_1...x_n)$ which = 1 if $F(x_1...x_n)$ is true and = 0 if $F(x_1...x_n)$ is false is primitive recursive.

Deduce that if f, g and h are primitive recursive functions then the function

$$F(x) = IF f(x) = 0 THEN g(x) ELSE h(x)$$

is also primitive recusive

Question 3

Let ODD be the function sending odd numbers to 1 and even numbers to 0.

Show that ODD is primitive recursive.

Let DIVTWO be the function sending n to the integer part of n/2 (so that DI-VTWO(0) = DIVTWO(1) = 0; DIVTWO(2) = DIVTWO(3) = 1, DIVTWO(4) = DI-VTWO(5) = 2 etc..)

Show that DIVTWO is primitive recursive.

Question 4

Are all primitive recursive functions total? Are all total functions primitive recursive? Explain your answer.

Question 5

Here are four definitions of what it is for *X* to be a "semidecidable set":

- (i) X is the range of a μ -recursive function;
- (ii) X is the range of a total μ -recursive function;
- (iii) For some μ -recursive function f, X is the set of arguments on which f halts;
- (iv) There is a computable partial function f such that f of a member of X is 1, and f of a nonmember is 0 or is undefined.

Explain why they are all equivalent.

Question 6

Recall that a set X is decidable iff X and $\mathbb{N} \setminus X$ are both semidecidable. Show that X is decidable if and only if there is a computable total function that sends members of X to 1 and members of $\mathbb{N} \setminus X$ to 0.

Question 7

What does " $A \leq_m B$ " mean?

There are two definition of the halting set. One is the set of all $i \in \mathbb{N}$ s.t. the *i*th function halts on input i; The other is the set of pairs $\langle p, i \rangle \in \mathbb{N}^2$ s.t. the *p*th program halts on input i. Show that each of these two sets many-one reduces to the other.

What is the halting problem? Why is it unsolvable?

Show that the set of (codes of) machines that compute total functions is not semidecidable.

Question 8

Give context-free grammars generating the following languages:

- 1. $\{a^p b^p : p \ge 0\}$
- 2. $\{a^p b^q : p < q\}$
- 3. $\{a^p b^q : p \neq q\}$
- 4. $\{a^pb^*c^p: p \ge 0\}$
- 5. $\{a^p b^p c^* : p \ge 0\}$

```
6. \{a^p b^q c^r : p \neq q \text{ or } q \neq r\}
```

7.
$$\{a^p b^q c^r : p \neq q \text{ or } q \neq r\}$$

8. $\{w \in \{a, b\}^* : w \text{ contains exactly twice as many } as \text{ as } bs\}$

Question 9

Which of these statements are correct and which incorrect?

- 1. If a machine has no more than n states then there is a k > n such that it cannot distinguish between strings of length k: it either accepts all of them or none;
- 2. If a machine has no more than n states, and it accepts at least one string, then it must accept a string with no more than n-1 characters;
- 3. If a machine has no more than n states, and it accepts at least one string with more than n characters, then it must accept at least one string with no more than n-1 characters;
- 4. If a machine has no more than *n* states, and it accepts at least one string with more than *n* characters, then it must accept at least one string with more than 2*n* characters;
- 5. Every subset of a regular language is regular.
- 6. Every subset of a regular language is context-free.
- 7. The complement of a regular language is regular.
- 8. The intersection of two regular languages is regular.
- 9. The union of two regular languages is regular.
- 10. $L((r+s)^*) = L((r^*s^*)^*).$
- 11. $L((rs^*)^*) \subseteq L((r^*s^*)^*)$.
- 12. $L((r^*s^*)^*) \subseteq L((rs^*)^*)$.
- 13. $\{ww : w \in \Sigma^*\}$ is regular.
- 14. Ø, (the empty language) is regular.
- 15. Σ^* (the universal language over the alphabet Σ) is regular.
- 16. $\{\epsilon\}$, the language containing only the empty string, is regular.
- 17. $\{w \in \Sigma^* : w \text{ contains an even number of 0's and an even number of 1's} \}$ is regular.
- 18. $\{w \in \Sigma^* : w \text{ contains an odd number of 0's and an odd number of 1's} \}$ is regular.

- 19. $\{w \in \Sigma^* : w \text{ contains the same number of 0's as 1's} \text{ is regular.}$
- 20. $\{w \in \Sigma^* : w \text{ contains an odd number of 0's and an even number of 1's } \text{ is context-free.}$
- 21. $\{w \in \Sigma^* : w \text{ contains more 0's than 1's} \}$ is context-free.
- 22. $\{w \in \Sigma^* : \text{ every initial segment of } w \text{ has at least as many 0's as 1's} \}$ is context-free.
- 23. The set of strings without three consecutive zeroes is a regular language.
- 24. The set of all those strings whose 10th character is a '0' is a regular language.

Question 10

There is an alphabet Σ with six letters a, b, c, d, e and f that represent the six rotations through $\pi/2$ radians of each face of the Rubik cube. Everything you can do to the Rubik cube can be represented as a word in this language. Let L be the set of words in Σ^* that take the cube from its initial state back to its initial state. Is L regular?

Question 11

Let q be a number between 0 and 1. Let L be the set of sequences $s \in \{0, 1\}^*$ such that the binary number between 0 and 1 represented by s is less than or equal to q. Show that L is a regular language iff q is rational. What difference would it have made if we had defined L to be be the set of sequences $s \in \{0, 1\}^*$ such that the binary number between 0 and 1 represented by s is less than q?

Question 12

The **interleaving** of two languages L and M is the set of all words that can be obtained from a word in L and a word in M by interleaving the two words in the way that people shuffle together two halves of a pack of cards.

Prove that the interleaving of two regular languages is regular

Give an example to show that the interleaving of two context free languages is not always context-free.