Gaussian Process for Time Series Analysis

Dr. Juan Orduz

PyData Berlin 2019

Overview

Introduction

Regularized Bayesian Linear Regression

The Kernel Trick

Gaussian Process Regression

Parameter Estimation

The Kernel Space

Time Series

Multivariate Normal Distribution

 $X=(X_1,\cdots,X_d)$ has a **multivariate normal distribution** if every linear combination is normally distributed. In this case it has density of the form

$$p(x|m, K_0) = \frac{1}{\sqrt{(2\pi)^d |K_0|}} \exp\left(-\frac{1}{2}(x-m)^T K_0^{-1}(x-m)\right)$$

where $m \in \mathbb{R}^d$ is the **mean vector** and $K_0 \in M_d(\mathbb{R})$ is the (symmetric, positive definite) **covariance matrix**.

Figure: Left: Multivariate Normal Distribution, Right: Non-Multivariate Normal Distribution

Regularized Bayesian Linear Regression

Let $x_1, \dots, x_n \in \mathbb{R}^d$ and y_1, \dots, y_n be a set of observations (data). We want to fit the linear model

$$f(x) = x^T b$$
 and $y = f(x) + \varepsilon$, with $\varepsilon \sim N(0, \sigma_n^2)$

where $b \in \mathbb{R}^d$ denotes the parameter vector. Let $X \in M_{d \times n}$ be denote the observation matrix.

We want to compute p(b|X, y) using the Bayes theorem

$$p(b|X,y) = \frac{p(y|X,b)p(b)}{p(y|X)} \propto \text{likelihood} \times \text{prior}$$

Prior Distribution

Likelihood

$$p(y|X,b) = \prod_{i=1}^{n} p(y_i|X_i,b) = N(X^Tb, \sigma_n^2I)$$

▶ Prior

$$b \sim \textit{N}(0, \Sigma_{\textit{p}}), \quad \Sigma_{\textit{p}} \in \textit{M}_{\textit{d}}(\mathbb{R})$$

Figure: Prior Distribution

Posterior Distribution

Posterior

$$p(b|y,X) = N\left(\bar{b} = \frac{1}{\sigma_n^2}A^{-1}Xy, A^{-1}\right)$$

where
$$A = \sigma_n^{-2} X X^T + \Sigma_p^{-1}$$

Figure: Posterior Distribution

Predictive Distribution

$$p(f_*|X_*, X, y) = \int p(f_*|X_*, b)p(b|X, y)db$$
$$= N\left(\frac{1}{\sigma_n^2}X_*^T A^{-1}Xy, X_*^T A^{-1}X_*\right)$$

Figure: Left: Join Posterior Distribution, Right: Prediction + Confidence Interval

The Kernel Trick

Let us consider a map $\phi : \mathbb{R}^d \longrightarrow \mathbb{R}^N$ and consider the model

$$f(x) = \phi(x)^T b$$
 and $y = f(x) + \varepsilon$, with $\varepsilon \sim N(0, \sigma_n^2)$.

It is easy to verify that the analysis for this model as analogous to the standard linear model replacing X with $\Phi := \phi(X)$. Set $\phi_* = \phi(x_*)$,

$$p(f_*|X_*,X,y) = N\left(\underbrace{\frac{1}{\sigma_n^2}\phi_*^T A^{-1}\Phi y}_{(2)},\underbrace{\phi_*^T A^{-1}\phi_*}_{(2)}\right)$$

(1) =
$$\phi_*^T \Sigma_p \Phi (\Phi^T \Sigma_p \Phi + \sigma_n^2 I)^{-1} y$$

(2) = $\phi_* \Sigma_n \phi_* - \phi_*^T \Sigma_n \Phi (\Phi^T \Sigma_n \Phi + \sigma_n^2 I)^{-1} \Phi^T \Sigma_n \phi_*$

This motivates the definition of the covariance function or kernel

$$k(x, x') := \phi(x)^T \Sigma_n \phi(x')$$

Gaussian Process

- ► A **Gaussian Process** is a collection of random variables, any finite number of which have a joint Gaussian distribution.
- ▶ A Gaussian process $f \sim \mathcal{GP}(m, k)$ is completely specified by its mean function m(x) and covariance function k(x, x'). Here $x \in \mathcal{X}$ denotes a point on the index set \mathcal{X} .

$$m(x) = E[f(x)]$$
 and $k(x, x') = E[(f(x) - m(x))(f(x') - m(x'))]$

Example: The map $f(x) = \phi(x)^T b$ (with prior $b \sim N(0, \Sigma_p)$) defines a Gaussian process with m(x) = 0 and $k(x, x') = \phi(x)^T \Sigma_p \phi(x)$.

The specification of a covariance function implies a distribution over functions.

Figure: Prior (left) and posterior (right) distribution for linear model.

References

Slides and notebook available at juanitorduz.github.io

