

Compétences évaluées

- Présenter son travail de modélisation à l'oral
- Déployer un modèle via une API dans le Web
- Utiliser un logiciel de version de code pour assurer l'intégration du modèle
- Rédiger une note méthodologique afin de communiquer sa démarche de modélisation
- Réaliser un dashboard pour présenter son travail de modélisation

Plan

- I. Contexte + Données disponibles
- II. Traitement des données
- III. Méthodologie : entraînement de modèles
- IV. Choix d'un algorithme adapté
 - a) Métriques + fonction coût
 - b) API
- V. Interprétabilité
 - a) Importance des Features
 - b) Dashboard
- VI. Limites et améliorations

Problématique + données

Contexte

- Data Scientist pour « Prêt à dépenser »
 - Crédits à la consommation
 - personnes avec peu ou pas d'historique de prêt

• Souhait:

- Développer modèle de scoring : probabilité défaut de paiement
- Informations générales : identité, données comportementales, données provenant d'autres institutions bancaires

Objectifs

• Objectifs:

- Analyse d'un jeu de données :
 - Préprocessing
 - Détermination algorithme optimal
 - Métrique bancaire
- API:
 - Probabilité défaut paiement
- Dashboard interactif
 - Visualisation score + interprétation
 - Visualisation informations descriptives d'un clients précis
 - Interprétation prédiction modèle

Données Disponibles

- Service « Home Credit » : fourniture de crédits à la population non bancarisée
- 9 fichiers:
 - 307 511 clients pour 122 Indicateurs
 - Client : informations générales + informations sur les prêts précédents
 - Je me base sur les informations générales (âge, revenus, crédit en cours, ...)
 - Pour chaque client : capacité ou non de payer crédit (solvabilité)
- Fort déséquilibre entre les personnes solvables et les personnes non solvables.

Déséquilibre de la Target

Traitement des données

Preprocessing

• Enrichir par de nouvelles variables : pourcentage du montant des crédits sur la totalité des revenus, la durée totale du paiement des crédits, ...

В

• Gestion des données manquantes : suppression lignes et colonnes Nombre de lignes (A) et de colonnes supprimées (B) en fonction d'un taux de remplissage

Imputation Nan, standardisation, encodage des variables catégorielles

Méthodologie : entraînement de modèles

Choix d'algorithmes

- But :
 - Problème de classification
 - Déterminer un algorithme optimal
- Comparaison de modèles :
 - Régression Logistique
 - Random Forest
 - XGBoost
 - Light-GBM (LGBM Classifier)

Méthode

- Division de la base de données:
 - Train (80%)
 - Test (20%)

- Optimisation hyperparamètres
 - Modèle adapté aux données
 - Train : Validation croisée
 - Test : Evaluation du modèle

2017.18

Déséquilibre

- Déséquilibre entre les clients solvables et non solvables :
 - Impact performance + Prédiction faussée
- Approches pour pallier à ce déséquilibre :
 - Class weights : pénaliser les poids associés aux observations de la classe surreprésentée
 - Over-sampling : dupliquer aléatoirement des données existantes de la classe sous-représentée
 - SMOTE : créer de nouvelles données à partir des données déjà existantes pour la classe sous-représentée
 - Under-sampling : sélectionner des données de la classe sur-représentée = prendre un sous ensemble
- Chaque modèle est entraîné selon ces méthodes

Fonction coût

- classes prédites VS classes réelles
 - matrice de confusion : représentation des erreurs

		Classe réelle					
		Negatif (0)	Positif (1)				
Classe prédite	Negatif (0)	TN	FP				
classe predite	Positif (1)	FN	TP				

- Classe 0 = Solvabilité -> négatif au refus de l'accord de prêt
- Classe 1= Difficulté de paiement -> positif au refus de l'accord de prêt

Fonction coût

		Classe	réelle
		Negatif (0)	Positif (1)
Classa prádita	Negatif (0)	TN	FP
ciasse predite	Classe prédite Positif (1)		TP

- FN : Accorder un crédit à un client ne pouvant pas le rembourser par la suite = perte
- TN : Accorder un crédit à un client qui le remboursera par la suite = gain
- TP: Ne pas accorder le prêt à un client qui ne pourra pas le rembourser= ni perte, ni gain.
- FP : Ne pas accorder le prêt alors que le client pouvait rembourser = perte de client donc d'argent

Métriques d'évaluation

Efficacité modèles :

Accuracy =
$$\frac{Vrai\ positif + Vrai\ négatif}{Total}$$

$$Recall = \frac{Vrai\ positif}{Vrai\ positif + faux\ n\'egatif}$$

$$Precision = \frac{Vrai\ positif}{Vrai\ positif + Faux\ positif}$$

$$F_1 = 2 imes rac{ ext{precision} imes ext{recall}}{ ext{precision} + ext{recall}}$$

 AUC = Aire sous la courbe ROC : capacité d'un classificateur à distinguer les classes

A Maximiser	A Minimiser
AUC, F1, Recall, TP	FN

Fonction coût

• Société de crédit = cherche à maximiser son gain d'argent

- Pénaliser impact des erreurs décision d'octroi de crédit:
 - Coefficient négatif : FN et FP
 - Coefficient positif : TN

		Classe	réelle				
		Negatif (0) Positif (1					
Classe prédite	Negatif (0)	TN	FP				
l	Positif (1)	FN	TP				

• $gain_total = (TN * coeff_tn + FP * coeff_fp + FN * coeff_fn + TP * coeff_tp)$

Fonction coût

•
$$gain = \frac{(gain_total - gain_min)}{(gain_max - gain_min)}$$

Avec :

$$- gain_min = (TN + FP) * coeff_fp + (TP + FN) * coeff_fn$$

$$gain_max = (TN + FP) * coeff_tn + (TP + FN) * coeff_tp$$

Coefficient arbitraire :

$$-$$
 FN ==> -100

$$-$$
 TP ==> 0

$$-$$
 TN ==> +10

$$-$$
 FP ==> -1

		Classe réelle					
		Negatif (0)	Positif (1)				
Classe prédite	Negatif (0)	TN	FP				
ciasse predite	Positif (1)	FN	TP				

Modèle Optimum

- Meilleurs compromis entre
 - maximiser le gain
 - contraintes des métriques d'évaluation

3 RandomOverSampler - LGBMClassifier 0.744299 0.759012 0.629108 0.252902 1340 0.158261 790 0.703110	time	e Gain	scor	FN	Precision	TP	F1	ll class 1	Recal:	AUC	Accuracy	Modele	
2 RandomUnderSampler - LGBMClassifier 0.689426 0.754453 0.683099 0.232317 1455 0.139958 675 0.687163 3 RandomOverSampler - LGBMClassifier 0.744299 0.759012 0.629108 0.252902 1340 0.158261 790 0.703110	1.080430	603242	0	2101	0.568627	29	0.026593	0.013615		0.742908	0.931432	Baseline - XGBoost	0
3 RandomOverSampler - LGBMClassifier 0.744299 0.759012 0.629108 0.252902 1340 0.158261 790 0.703110	1.237642	702272	0	783	0.157030	1347	0.251588	0.632394		0.760122	0.741167	Class Weight - LGBMClassifier	1
The supplier of the supplier o	1.307599	687163	0	675	0.139958	1455	0.232317	0.683099		0.754453	0.689426	RandomUnderSampler - LGBMClassifier	2
4 000000 100000 000000 000000 000000 000000	1.275609	703110	0	790	0.158261	1340	0.252902	0.629108		0.759012	0.744299	RandomOverSampler - LGBMClassifier	3
4 SMOTE - LGBMClassifier 0.931497 0.754088 0.016432 0.031949 35 0.573770 2095 0.604291	1.475769	604291	0	2095	0.573770	35	0.031949	0.016432		0.754088	0.931497	SMOTE - LGBMClassifier	4

Coefficient optimal

- Fonction coût : coefficients arbitraires = optimums ?
- Coefficient FN: Bon ordre de grandeur?

Coefficient FN : -1000 = Trop Strict

Coefficient FN : -10 = Trop Laxiste

Coefficient FN: -100 = Correct

Seuil de probabilité

Généralement seuil de probabilité : 0,5 = pas optimal

- Disponible à l'URL :
 - Avec interface graphique

https://api-p7-scoring-avec-interface.herokuapp.com/

Sans interface graphique

https://api-p7-scoring-sans-interface.herokuapp.com/

Features Importance

EXT_SOURCE : sources normalisées créées à partir de sources de données externes

CREDIT_REFUND_TIME : durée que va mettre un client à rembourser un prêt en années

DAYS_BIRTH : nombre de jours depuis la naissance des clients donc l'âge

Features Importance

EXT_SOURCE_2 EXT SOURCE 3 AMT GOODS PRICE CODE GENDER CREDIT REFUND TIME EXT SOURCE 1 AMT CREDIT DAYS_ID_PUBLISH FLAG OWN CAR NAME_EDUCATION_TYPE_Secondary_/_secondary_special DAYS BIRTH DAYS_EMPLOYED_PERCENT REGION POPULATION RELATIVE NAME CONTRACT TYPE DAYS EMPLOYED FLAG DOCUMENT 3 AMT ANNUITY DAYS_REGISTRATION NAME_FAMILY_STATUS_Married NAME EDUCATION TYPE Higher education

EXT_SOURCEs : plus les valeurs sont faibles, plus la probabilité de défaut de paiement augmente donc plus il y a de chance que le prêt ne soit pas accordé

CREDIT_REFUND_TIME : plus le temps de remboursement des crédits est grand plus il y a de chance que le prêt ne soit pas accordé

- Disponible à l'URL :
 - https://dashboard-p7.herokuapp.com/

Analyse générale

Analyses possibles

Quelle variable voulez-vous voir ?

£

Accord prêt bancaire: Analyse détaillée

Cette application prédit la probabilité qu'un client de la banque "Prêt à dépenser" ne rembourse pas son prêt.

La probabilité maximale de défaut de remboursement autorisée par la banque est de : 0.6

Pour information : Liste des identifiants possibles

100001

Veuillez entrer l'Identifiant d'un client

Made with Streamlit

Limites et améliorations

- Définir plus précisément ces coefficients
- Modèle tend à être éthique :
 - Toutes les variables discriminantes n'ont pas été enlevées
 - Comparaison modèles avec et sans ces variables
 - Perte de précision des prédictions ? Perte de rentabilité pour la banque?
- Traitement des données superficiel
 - Intégrer d'autres informations sur historique de prêt
 - Créer de nouvelles variables
- Adaptation du Dashboard aux souhaits de la banque

- Lien git général :
 - https://github.com/AmandineLecerfDefer/P7 Implementing Scoring

Fin de la présentation

Merci pour votre attention