Résumé - Traitement du Signal

22 Janvier, 2024

Louis Thevenet

Table des matières

1.	Corrélations et Spectres	. 2
	1.1. Transformée de Fourier	. 2
	1.2. Classes de signaux déterministes et aléatoires	. 2
	1.3. Déterministes à énergie finie	. 2
	1.4. Déterministes périodiques	. 3
	Filtrage Linéaire	
	Traitements non linéaires	

1. Corrélations et Spectres

1.1. Transformée de Fourier

1.2. Classes de signaux déterministes et aléatoires

Théorème 1.2.1: Classes de signaux

- 1. Déterministes à **énergie finie**
- 2. Déterministes périodiques à puissance finie
- 3. Déterministes non périodique à puissance finie
- 4. Aléatoires stationnaires

1.3. Déterministes à énergie finie

Théorème 1.3.1: Signaux à énergie finie

Définition $E = \int_{\mathbb{R}} \left| x(t) \right|^2 dt = \int_{\mathbb{R}} \left| X(f) \right|^2 df < \infty$

Fonction d'autocorrélation $R_x(\tau) = \int_{\mathbb{R}} x(t) x^*(t-\tau) \mathrm{d}t = \langle x(t), x(t-\tau) \rangle$

Fonction d'intercorrélation $R_{\{xy\}}(\tau) = \int_{\mathbb{R}} x(t) y^*(t-\tau) \mathrm{d}t = \langle x(t), y(t-\tau) \rangle$

Produit scalaire $\langle x,y\rangle=\int_{\mathbb{R}}x(t)y^*(t)\mathrm{d}t$

Définition 1.3.1: On définit la densité spectrale d'énergie par

$$s_x(f)=\operatorname{TF} R_x(\tau)$$

Proposition 1.3.1: $s_x(f) = |X(f)|^2$

 $Exemple: x(t) = \Pi_T(t)$ avec T la largeur de la fenêtre

On cherche la fonction d'autocorrélation et la densité spectrale d'énergie de x(t).

- Méthode 1
 - Calcul de $R_x(\tau) \int_{-T}^{\frac{T}{2}} x(\tau) x(t-\tau) dt$
 - Premier cas : $\tau \frac{T}{2} > \frac{T}{2} \Leftrightarrow \tau > T \ R_x(\tau) = \int 0 \mathrm{d}t = 0$
 - Deuxième cas : $\begin{cases} \tau \frac{T}{2} < \frac{T}{2} \\ \tau + \frac{T}{2} > \frac{T}{2} \end{cases} \Leftrightarrow \tau \in]0, T[\ R_x(\tau) = \int_{-\frac{T}{2}}^{\tau \frac{T}{2}} 1 \times 1 \mathrm{d}t = T \tau$

- Comme R_x est paire, il suffit de la connaître entre 0 et ∞ . Ainsi $R_x(\tau) = T\Lambda_T(\tau)$ Calcul de s_x (f) $s_x(f) = \mathrm{TF}(R_x(\tau)) = T \times T \mathrm{sinc}^2(\pi \tau f) = T^2 \mathrm{sinc}^2(\pi \tau f)$
- Méthode 2
 - Calcul de $s_x(f) = |x(f)|^2$

$$\begin{split} x(\tau) & \xrightarrow{\mathrm{TF}} X(f) = T \operatorname{sinc}(\pi \tau f) \\ & \xrightarrow{\mid \; \mid^2} s_{x(f)} = \left| X(f) \right|^2 = T^2 \operatorname{sinc}^2(\pi \tau f) \end{split}$$

• Calcul de $R_r(\tau)$

$$\begin{split} R_x(\tau) &= \mathrm{TF}^{-1}\,s_x(f) \\ &= T^{-1}(\mathrm{sinc}(\pi\tau f)) \\ &= T\Lambda_T(\tau) \end{split}$$

1.4. Déterministes périodiques

Définition 1.4.1:

Definition
$$P = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} |x(t)|^2 dt < \infty$$

Fonction d'autocorrélation
$$R_x(\tau) = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x(t) x^*(t-\tau) \mathrm{d}t = \langle x(t), x(t-\tau) \rangle$$

Fonction d'intercorrélation
$$R_{xy}(\tau) = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x(t) y^*(t-\tau) \mathrm{d}t = \langle x(t), y(t-\tau) \rangle$$

Produit scalaire
$$\langle x,y \rangle = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x(t) y^*(t) \mathrm{d}t$$

Définition 1.4.2: On définit la densité spectrale de puissance par

$$s_x(f)=\operatorname{TF} R_x(\tau)$$

3

Proposition 1.4.1:

$$s_x(f) = \sum_{k \in \mathbb{Z}} \left| c_k \right|^2 \! \delta(f - k f_0)$$

avec $x(t) = \sum_{k \in \mathbb{Z}} c_k \exp(j2\pi k f_0 t)$

Exemple: $x(t) = A\cos(2\pi f_0 t)$

$$\begin{split} R_x(\tau) &= \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} A \cos(2\pi f_0 t) A \cos(2\pi f_0 (t-\tau)) \mathrm{d}t \\ &= \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \frac{A^2}{2} \underbrace{\cos(4\pi f_0 t - 2\pi f_0 \tau) + \cos(2\pi f_0 \tau)}_{\cos(a)\cos(b) = \frac{1}{2}(\cos(a+b)) + \cos(a-b)} \\ &= 0 + \frac{1}{T_0} \frac{A^2}{2} \left(\int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} \mathrm{d}t \right) \cos(2\pi f_0 \tau) \\ &= \frac{A^2}{2} \cos(2\pi f_0 \tau) \end{split}$$

• Méthode 1

$$\begin{split} s_x(f) &= \mathrm{TF}(R_x(\tau)) \\ &= \underbrace{\frac{A^2}{4}(\delta(f-f_0) + \delta(f+f_0))}_{\text{Deux fréquences pures}} \end{split}$$

• Méthode 2

On a

$$\begin{split} x(t) &= A \cos(2\pi f_0 t) = \underbrace{\frac{A}{2}}_{c_1} e^{j2\pi f_0 t} + \underbrace{\frac{A}{2}}_{c_{-1}} e^{-j2\pi f_0 t} \\ R_x(\tau) &= \frac{A^2}{4} \underbrace{\mathrm{TF}^{-1}[\delta(f-f_0)]}_{e^{j2\pi f_0 \tau}} + \underbrace{\frac{A^2}{4}}_{e^{-j2\pi f_0 \tau}} \underbrace{\mathrm{TF}^{-1}[\delta(f+f_0)]}_{e^{-j2\pi f_0 \tau}} \\ &= \frac{A^2}{2} \cos(2\pi f_0 \tau) \end{split}$$

4

Remarque : $R_x(0) = \text{puissance} = \frac{A^2}{2}$

2. Filtrage Linéaire

3. Traitements non linéaires