3. LU-factorization of a matrix. Presentation of the algorithm. Discussion of pivoting and pivoting strategies. Give examples using lugui.

Numerical Analysis E2021

Institute of Mathematics Aalborg University





### Numerical Analysis E2021

## Motivation

LU Factorisation

Pivoting

eneral LU-algorith

Pivoting strategie

- Inverting a matrix is literally a breach on several human rights acts
  - problems with condition number
  - efficiency and accuracy
  - memory usage
- One method, among many, to dodge this is using LU factorisation

Numerical Analysis E2021

Motivation

LU Factorisation

General LU-algorithm

Pivoting strategies

Any square-matrix  $\boldsymbol{A}$  can be written as PLU using elementary row operations.

Elementary row operations can easily be represented using elementary matrices, and their inverses are also easily determined. Thus,

$$U = E_n E_{n-1} \dots E_1 C \tag{1}$$

$$L = E_1^{-1} \dots E_{n-1}^{-1} E_n^{-1} \tag{2}$$

Using this we can easily solve a given linear system

$$Cx = LUx = b (3)$$

by using forward substitution on Lc = b, and backwards substitution on Ux = c.



Numerical Analysis E2021

Motivation

LU Factorisation

### Pivoting

General LU-algorithm

Pivoting strategies

Consider

$$A = \begin{bmatrix} 10^{-20} & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 10^{20} & 1 \end{bmatrix} \begin{bmatrix} 10^{-20} & 1 \\ 0 & 1 - 10^{20} \end{bmatrix} = LU$$
 (4)

Assuming we do this in floating-point arithmetic, then the number  $1-10^{20}$  can be represented as  $-10^{20}$  on a computer with  $\varepsilon_m=10^{-16}$ . The floating-point representations will then be

$$\tilde{L} = \begin{bmatrix} 1 & 0 \\ 10^{20} & 1 \end{bmatrix}, \quad \tilde{U} = \begin{bmatrix} 10^{-20} & 1 \\ 0 & -10^{20} \end{bmatrix}$$
 (5)

but

$$\tilde{L}\tilde{U} = \begin{bmatrix} 10^{-20} & 1\\ 1 & 0 \end{bmatrix} \tag{6}$$

Remedy to aforementioned problem will be pivoting, where we, in general, will attempt to make our pivots as large as possible.



# General LU-algorithm

### Numerical Analysis E2021

Motivation

LU Factorisation

Pivoting

General LU-algorithm

Pivoting strategies

The following method describes LU-factorisation without permutation / row exchanges.

```
1: for j = 1 to min{m, n} do
       for i = i to m do
 2:
           if a_{ii} \neq 0 then
 3.
              for k = i + 1 to m do
4:
                  Multiply row i by -a_{ki}/a_{ii} and add to row k
 5:
           end if
 6.
          if a_{ii} = 0 then
              for k = i + 1 to m do
 8.
                  if a_{ki} \neq 0 then
                      STOP
10.
           end if
11:
```

If one encounters the statement **STOP** then A does not have an LU factorisation without row exchanges.

To carry out the LU factorisation with row exchanges one then exchanges rows i and k each time the **STOP** statement is encountered, and then returns to the previous **if** statement for the column below the new row i.

5



## Pivoting strategies

#### Numerical Analysis E2021

Motivation

LU Factorisation

Pivoting

eneral LU-algorith

Pivoting strategies

Several pivoting strategies can be employed.

- Diagonal pivoting
  - ► The diagonal element is used as the pivot
- Complete pivoting
  - Largest element in absolute value in unaltered submatrix is used as pivot
- Partial pivoting
  - Largest element in absolute value in unreduced part of the current column
- ► Manual pivoting

MATLAB demo of lugui