Collaborative Filtering Recommenders

David Yang xdyang70@gmail.com

Key Idea of CF

- For Customer X
- Find a set N of other users whose historical ratings (behavior, tastes, ...) are similar to X's ratings
- Recommend item i to X
 - (1) Based on i's distance to items viewed by X and users in N
 - (2) By estimating X's rating of i based on ratings of users in N

Approach 1. User-User Similarity

Approach 1. User-User Similarity

	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6
A	5			5	2	
В	5	5	4	5		
С				4	1	5
D		3		1	4	

$$sim(A,B) = | r_A \cap r_B | / | r_A \cup r_B |$$

$$sim(A,B) = cos(r_A, r_B)$$

User-User Similarity

	A	В	С	D
A	-	8.0	0.6	-0.5
В		-	0.1	-0.2
С			-	-0.8
D				-

Rating Predictions

User x's rating of the i-th item

$$r_{xi} = \sum_{y \in N} s_{xy} r_{yi} / \sum_{y \in N} s_{xy}$$

where
$$s_{xy} = sim(x,y)$$

Approach 2. Item-Item Similarity

Approach 2. User-User Similarity

	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6
A	5			5	2	
В	5	5	4	5		
С				4	1	5
D		3		1	4	

 $Sim(1, 4) = cos(R_1, R_4)$

Item-Item Similarity

	1	2	3	4	5	6
1	-	0.6	0.3	0.9	-0.1	na
2		-	0.3	0.9	0.1	na
3			-	0.6	na	na
4				-	-0.8	0.7
5					-	-0.5
6						-

Rating Predictions

User x's rating of the i-th item

$$r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} s_{ij}}$$

s_{ij}... similarity of items i and j
r_{xj}...rating of user x on item j
N(i;x)... set items rated by x similar to i

Summary of CF Recommenders

Pros

- Usually more powerful than content-based recommenders
- Can handle cases where no features available
- Fully utilize information available in the user-item interaction matrix

Cons

- "Cold Start': new user/item has no historical data to use.
- Require more computing effort: O(n*n) vs O(m*m).

Example 2

In this example, we will learn how to use Scala to implement KNN (K-Nearest Neighbours) method for CF with item-item similarity.

See "Example 2 Collaborative Filtering Recommender.scala"