(-2) × 4 + 2 × x 3 + (6) × x + 0 × x + 9 × x P_H · X^M + P_{M-1} · X^{M-1} + P_{M-2} · X^{M-2} + ... + P_q · X + P_p ·

Evaluate $2m \times 20$ $(R \cdot X) = (1 + R_1 \cdot X) = (1 + R_2 \cdot X) = 0$ $(R \cdot X) = (1 + R_1 \cdot X) = 0$ $(R \cdot X) = (1 + R_2 \cdot X) = 0$ $(R \cdot X) = (1 + R_1 \cdot X) = 0$ $(R \cdot X) = (1 + R_2 \cdot X) = 0$ $(R \cdot X) = (1 + R_1 \cdot X) = 0$ $(R \cdot X) = (1 + R_2 \cdot X) = 0$ $(R \cdot X) = (1 + R_1 \cdot X) = 0$ $(R \cdot X) = (1 + R_2 \cdot X) = 0$ $(R \cdot X) = (1 + R_1 \cdot X) = 0$

=) (Si N ask gain , sucure solution (Si N esk impain, solution cumpue: XFO