Nichtstandard Analysis 1

21.1.2020

Klaus Philipp Theyssen

1 Konstruktion von $*\mathbb{R}$

Definition 1.1 R ist der Ring der Folgen $a = (a^{(n)})_{n \in \mathbb{N}}$ reeller Zahlen

(i) Addition, Subtraktion und Multiplikation komponentenweise, für $a,b\in R$

$$(a^{(1)} \pm b^{(1)}, a^{(2)} \pm b^{(2)}, ...)$$
 und $(a^{(1)} * b^{(1)}, a^{(2)} * b^{(2)}, ...)$

Wir wollen aus R den Körper *ℝ konstruieren, dafür fehlt uns die Division.

Definition 1.3 Sei D das Ideal in R, für das gilt:

$$a \in D \iff a^{(n)} = 0$$
 für fast alle $n \in \mathbb{N}$

Satz 1.5 Jedes echte Ideal in einem Ring mit Einselement ist in einem maximalen Ideal enthalten. (mithilfe des Zornsches Lemma).

Definition 1.6 Äquivalenzrelation auf R

$$a \equiv b \mod M \iff a - b \in M$$

Satz 1.7 I maximal $\iff R/I$ ist ein Körper

Definition 1.8 Der Non-Standard Zahlenbereich: $*\mathbb{R} = R/M$

Satz 1.9 Jede Funktion $f: \mathbb{R}^m \to \mathbb{R}$ lässt sich zu einer Funktion $f: \mathbb{R}^m \to \mathbb{R}$ fortsetzen, sodass sie Eigenschaften die im Rahmen der Logik 1. Stufe ausdrückbar sind behält.

Definition 1.10

$$U = U_M = \{Z(a) : a \in M\} \text{ mit } Z(a) = \{n \in \mathbb{N} : a^{(n)} = 0\}$$

U ist ein Filter auf \mathbb{N} , es gelten die folgenden Eigenschaften:

- (i) ∅ ∉ *U*
- (ii) $\mathbb{N} \in U$
- (iii) $Z_1, Z_2 \in U \Rightarrow Z_1 \cap Z_2 \in U$
- (iv) $Z \in U$, $Z \subset A \subset \mathbb{N} \Rightarrow A \in U$

Ist M maximales Ideal so ist U_M ein Ultrafilter, es gelten zusätzlich:

- (v) $A \subset \mathbb{N} \Rightarrow A \in U$ oder $\mathbb{N} \setminus A \in U$
- (vi) $A \subset \mathbb{N}, |\mathbb{N} \setminus A| < \infty \Rightarrow A \in U$

Hilfssatz 1.11 $a \equiv b \mod M \iff \{n : a^{(n)} = b^{(n)}\} \in U_M$

2 Eigenschaften von *R

Satz 2.1 Die Anordnung \leq der reellen Zahlen lässt sich zu einer Anordnung von $*\mathbb{R}$ fortsetzen. Für $a,b\in R$ setzen wir

$$a \leqslant b \mod M : \iff \{n : a^{(n)} \leqslant b^{(n)}\} \in U_M$$

Satz 2.2 * \mathbb{R} besitzt ein Element ω das größer als alle reellen Zahlen ist.

$$\forall r \in \mathbb{R} : r \leq \omega \mod M, \ \omega = (1, 2, 3, ..., n, n + 1, ...)$$

Definition 2.3 $\mathfrak{D} = \{ a \in {}^*\mathbb{R} : |a| \leqslant r, \text{ für ein } r \in \mathbb{R} \}$

Ist echter konvexer Teilring von * \mathbb{R} , die Elemente von $\mathfrak D$ nennt man endliche Größen.

Konvexität bedeutet hier:

$$0 \leqslant b \leqslant a \in \mathfrak{D} \Rightarrow b \in \mathfrak{D}$$

Definition 2.4 $\mathfrak{M} = \{ a \in {}^*\mathbb{R} : |a| \leqslant \epsilon, \text{ für alle } \epsilon \in \mathbb{R}^+ \}$

M ist konvexes Ideal in D, sodass folgende Eigenschaften erfüllt sind

- (i) $a, b \in \mathfrak{M} \Rightarrow a + b \in \mathfrak{M}$
- (ii) $a \in \mathfrak{M}, b \in \mathfrak{D} \Rightarrow a * b \in \mathfrak{M}$
- (iii) $0 \le b \le a \in \mathfrak{M} \Rightarrow b \in \mathfrak{M}$

Die Elemente von \mathfrak{M} bezeichnen wir als unendliche kleine oder infinitesimale Größen. Alle anderen Elemente von $*\mathbb{R}$, die nicht in \mathfrak{M} oder \mathfrak{D} sind bezeichnen wir als unendliche oder infinite Größen.

Definition 2.5 $a, b \in {}^*\mathbb{R}$ heißen benachbart wenn gilt:

$$a-b \in \mathfrak{M}$$
, wir schreiben $a \approx b$

Das heißt a und b unterscheiden sich nur um eine infinitesimale Größe, \approx ist eine Äquivalenzrelation auf * $\mathbb R$

Satz 2.6 Jede endliche Größe $a \in {}^*\mathbb{R}$ ist zu genau einer reellen Zahl r benachbart. r wird dann als der Standardteil $\operatorname{st}(a)$ von a bezeichnet.

Definition 2.7 Eine Funktion $f : \mathbb{R} \to \mathbb{R}$ ist im Punkt $x \in \mathbb{R}$ stetig wenn für alle $\epsilon \in \mathbb{R}^+$, ein $\delta \in \mathbb{R}^+$ existiert, sodass für alle $h \in \mathbb{R}$ gilt:

$$|h| \le \delta \Rightarrow |f(x+h) - f(x)| \le \epsilon$$

Satz 2.8 Die Funktion $f : \mathbb{R} \to \mathbb{R}$ ist im Punkt $x \in \mathbb{R}$ genau dann stetig, wenn für alle $h \approx 0$ gilt:

$$*f(x+h) \approx f(x)$$