

KOD	PESEL						

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

Marzec 2016

POZIOM PODSTAWOWY

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1-34). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego próbny egzamin.
- 2. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 3. Odpowiedzi do zadań zamkniętych (1-25) przenieś na kartę odpowiedzi, zaznaczając je w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (26-34) może spowodować, że za to rozwiązanie nie będziesz mógł dostać pełnej liczby punktów.
- 5. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 6. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 7. Pamietaj, że zapisy w brudnopisie nie beda oceniane.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.
- 9. Na karcie odpowiedzi wpisz swój numer PESEL.
- 10. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

Czas pracy: 170 minut

Liczba punktów do uzyskania: 50

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1.

Liczba $\frac{(9 \cdot 5^{16} - 5^{15}) \cdot 16^3}{4^7 \cdot 625^4}$ równa jest

A.
$$\frac{9}{4}$$

B.
$$\frac{11}{5}$$

B.
$$\frac{11}{5}$$
 C. $\frac{9}{2^2 \cdot 5^{15}}$ **D.** $\frac{1}{2 \cdot 5^{12}}$

D.
$$\frac{1}{2.5^{12}}$$

Zadanie 2. (1 pkt)

Wyrażenie $(x + 4)(4 - x) - (1 - x)^2$ zapisać można w postaci

A.
$$15 + 2x - 2x^2$$

B.
$$15 - 2x$$

C.
$$2x - 17$$

C.
$$2x - 17$$
 D. $2x^2 - 2x - 17$

Zadanie 3. (1 pkt)

Poniżej przedstawiony jest wykres funkcji y = f(x).

Wskaż wykres funkcji y = f(-x).

C.

B.

D.

Zadanie 4. (1 pkt)

Ciąg $3, x^2, 27$ jest ciągiem geometrycznym, gdy

A. tylko
$$x = -3$$

B. tylko
$$x = 3$$

C.
$$x = -3 \text{ lub } x = 3$$
 D. $x = -9 \text{ lub } x = 9$

$$\mathbf{D} \mathbf{x} = -9 \ln h \mathbf{x} = 9$$

Zadanie 5. (1 pkt)

Kąt α jest ostry i $\cos \alpha = \frac{\sqrt{5}}{3}$. Wówczas

A.
$$tg\alpha = \frac{4\sqrt{5}}{5}$$
 B. $tg\alpha = \frac{\sqrt{5}}{2}$ **C.** $tg\alpha = \frac{2\sqrt{5}}{5}$

B.
$$tg\alpha = \frac{\sqrt{5}}{2}$$

$$\mathbf{C.} \ tg\alpha = \frac{2\sqrt{5}}{5}$$

D.
$$tg\alpha = \frac{2}{3}$$

Zadanie 6. (1 pkt)

Obwód kwadratu, którego przeciwległe wierzchołki mają współrzędne A = (-3,5)i C = (5,1) jest równy

A.
$$2\sqrt{10}$$

B.
$$4\sqrt{5}$$

C.
$$8\sqrt{10}$$

D.
$$16\sqrt{5}$$

Zadanie 7. (1 pkt)

Dane są dwa okręgi styczne wewnętrznie o promieniach $r_1 = 10 \ cm \ i \ r_2 = 4 \ cm$. Zatem odległość między ich środkami jest równa

Zadanie 8. (1 pkt)

Rozwiązaniem równania $\frac{(x-2)(x+3)}{x^2-2x} = 0$ jest

A.
$$x = 2 i x = -3$$
 B. $tylko x = 2$ **C.** $tylko x = -3$ **D.** $x = 0 i x = 2$

B.
$$tylko x = 2$$

C.
$$tylko x = -3$$

D.
$$x = 0$$
 i $x = 2$

Zadanie 9. (1 pkt)

Długość tworzącej stożka jest równa 6, a obwód jego podstawy wynosi $6\sqrt{3}\pi$. Kąt rozwarcia tego stożka ma miarę

$$\mathbf{A.30}^{\circ}$$

Zadanie 10. (1 pkt)

Średnia arytmetyczna zestawu danych 11,1,5,9, x, 3,7,12 o medianie 7,5 jest równa

Zadanie 11. (1 pkt)

Suma wyrazów ciągu wyraża się wzorem $S_n = 2n^2 - 4n$, zatem

A.
$$a_2 = -2$$

B.
$$a_2 = -1$$

C.
$$a_2 = 0$$

D.
$$a_2 = 2$$

Zadanie 12. (1 pkt)

Na rysunku przedstawiono wykres funkcji liniowej f(x) = ax + b. Zatem:

A.
$$a > 0$$
 i $b > 0$

B.
$$a < 0 i b < 0$$

C.
$$a > 0$$
 i $b < 0$

D.
$$a < 0 i b > 0$$

Zadanie 13. (1 pkt)

Punkt P = (-8,15) znajduje się na końcowym ramieniu kąta α . Wówczas

A.
$$cos\alpha = -\frac{8}{17}$$
 B. $cos\alpha = -\frac{8}{15}$ **C.** $cos\alpha = \frac{8}{17}$

B.
$$cos\alpha = -\frac{8}{15}$$

C.
$$cos\alpha = \frac{8}{17}$$

D.
$$cos\alpha = \frac{15}{17}$$

Zadanie 14. (1 pkt)

Punkt 0 jest środkiem okręgu. Kąt środkowy α ma miarę

$$\mathbf{A}.\,50^{\circ}$$

$$\mathbf{B}.\ 100^{\circ}$$

$$\mathbf{D}.\ 260^{\circ}$$

Zadanie 15. (1 pkt)

Pole równoległoboku o bokach długości 6 cm i 10 cm i kącie rozwartym o mierze $\alpha = 120^{\circ}$ jest równe

A.
$$30\sqrt{3}cm^2$$

B.
$$30cm^2$$

C.
$$15\sqrt{3}cm^2$$
 D. $15cm^2$

D.
$$15cm^2$$

Zadanie 16. (1pkt)

Równanie prostej prostopadłej do prostej 2x + y - 3 = 0 i przechodzącej przez punkt P = (4, -2) ma postać

A.
$$y = \frac{1}{2}x + 3$$

A.
$$y = \frac{1}{2}x + 3$$
 B. $y = \frac{1}{2}x - 4$

C.
$$y = -\frac{1}{2}x$$

D.
$$y = 2x - 10$$

Zadanie 17. (1 pkt)

Dany jest wykres funkcji y = f(x).

Dziedziną D i zbiorem wartości ZW tej funkcji jest

A.
$$D = \langle -2, 4 \rangle, ZW = (-5, 6)$$

B.
$$D = \langle -5.6 \rangle, ZW = \langle -2.4 \rangle$$

C.
$$D = (-5,6), ZW = \langle -2, 4 \rangle$$

D.
$$D = \langle -2, 4 \rangle, ZW = \langle -5, 6 \rangle$$

Zadanie 18. (1 pkt)

Przekrojem prostopadłościanu zawierającym przekątną podstawy i przekątne sąsiednich ścian bocznych wychodzących z tego samego wierzchołka jest

A. kwadrat

B. prostokat

C. trójkat

D. trapez

Zadanie 19. (1 pkt)

Ania wyjeżdżając na wakacje zamknęła walizkę za pomocą kodu czterocyfrowego. Pamiętała, że druga liczba jest liczba pierwszą mniejszą od 7, trzecia jest liczbą nieparzystą, a czwarta to 5, ale zapomniała pierwszej liczby. Ile maksymalnie prób musi wykonać, aby otworzyć walizkę?

$$\mathbf{A.9} \cdot 4 \cdot 5 \cdot 5$$

B.
$$10 \cdot 3 \cdot 5 \cdot 1$$

C.
$$10 \cdot 4 \cdot 5 \cdot 1$$
 D. $9 \cdot 3 \cdot 5 \cdot 5$

D.
$$9 \cdot 3 \cdot 5 \cdot 5$$

Zadanie 20. (1 pkt)

Największa wartość funkcji kwadratowej $f(x) = -x^2 + 6x - 5$ w przedziale $\langle -2, 4 \rangle$ jest równa

A. 35

B. 22

C. 4

D. 3

Zadanie 21. (1 pkt)

 $\frac{x+2}{2} - \frac{x-1}{4} < \frac{3}{4}x$ jest przedział Ilustracją graficzną zbioru rozwiązań nierówności

C.

B.

Zadanie 22. (1 pkt)

Cena towaru z 22% podatkiem VAT wynosi 183 zł. Cena tego towaru z 7% podatkiem VAT jest równa

A. 160,50 *z*ł

B. 195,81 *z*ł

C. 210,45 *z*ł

D. 223,26 *z*ł

Zadanie 23. (1 pkt)

Dany jest fragment wykresu pewnej funkcji kwadratowej y = f(x). Funkcja ta ma wzór

A.
$$f(x) = -2x^2 + 12x - 16$$

B.
$$f(x) = 2x^2 + 12x + 16$$

C.
$$f(x) = 2x^2 - 12x - 1$$

D.
$$f(x) = -2x^2 - 12x - 16$$

Zadanie 24. (1 pkt)

Liczba $log_5 8 - 3log_5 2$ jest równa

A. log_556

B. $log_5 \frac{16}{6}$

 $C. log_5 1$

D. $3log_5 2$

Zadanie 25. (1 pkt)

Wzór ogólny ciągu arytmetycznego, w którym $a_3 = 30 i a_{41} = 524$, to

A. $a_n = 13n - 9$ **B.** $a_n = 13n + 4$

C. $a_n = 52n - 52$

D. $a_n = 52n$

ZADANIA OTWARTE

Rozwiązania zadań o numerach od 26. do 34. należy zapisać w wyznaczonych miejscach pod treścią zadania. **Zadanie 26.** (2 pkt)

Głośność (w dB) obliczamy ze wzoru $D=10\log\frac{I}{I_0}$, gdzie $I_0=10^{-12}\frac{W}{m^2}$. Oblicz głośność krzyku niemowlęcia, dla którego natężenie $I=10^{-4}\frac{W}{m^2}$.

Zadanie 27. (2 pkt)

Ze zbioru liczb {1,2,3,4,5,6,7,8,9} losujemy kolejno bez zwracania trzy liczby, zapisujemy je w kolejności losowania i tworzymy liczbę trzycyfrową w taki sposób, że pierwsza wylosowana liczba jest cyfrą setek, druga jest cyfrą dziesiątek, a trzecia – cyfrą jedności. Oblicz prawdopodobieństwo zdarzenia, że otrzymana liczba trzycyfrowa jest podzielna przez 4. Wynik przedstaw w postaci ułamka nieskracalnego.

Zadanie 28. (2 pkt)

Dwa okręgi o środkach A i B są styczne zewnętrznie i każdy z nich jest jednocześnie styczny do ramion tego samego kąta prostego. Wykaż, że stosunek obwodu większego z tych okręgów do obwodu mniejszego jest równy $3 + 2\sqrt{2}$.

Zadanie 29. (2 pkt)

Rozwiąż nierówność $x^2 - (3 - x)(x + 2) \ge 4$.

Zadanie 30. (2 pkt)

Oblicz wartość wyrażenia
$$\frac{\sqrt{2}\cos\alpha - 3\sin\alpha}{4\cos\alpha}$$
 wiedząc, że $tg\alpha = \sqrt{2}$ i $\alpha \in (0^{\circ}, 90^{\circ})$.

Zadanie 31. (2 pkt)

Liczba naturalna n przy dzieleniu przez 5 daje resztę 3, liczba m również przy dzieleniu przez 5 resztę 2. Udowodnij, że reszta z dzielenia iloczynu liczb $n \cdot m$ przez 5 daje resztę 1.

Zadanie 32. (4 pkt)

W ostrosłupie prawidłowym czworokątnym *ABCDS* krawędź boczna ma długość 6, a kąt nachylenia ściany bocznej do płaszczyzny podstawy ostrosłupa ma miarę 30°. Oblicz objętość tego ostrosłupa.

Zadanie 33. (5 pkt)

Ciąg (b_n) jest arytmetyczny i $S_{60} - S_{39} = 105$, gdzie S_n oznacza sumę n początkowych wyrazów tego ciągu. Oblicz x, wiedząc, że liczby I, $(b_{47} + b_{53})x$, $5x + b_{50}$ tworzą rosnący ciąg geometryczny.

Zadanie 34. (4 pkt)

Dany jest trójkąt ABC, w którym A=(-2;-2) i B=(2;I). Wierzchołek C leży na prostej o równaniu y=2x-3. Oblicz współrzędne wierzchołka C, dla którego suma kwadratów długości boków trójkąta jest najmniejsza.

Odpowiedź:

P	ES	SE	L			

WYPEŁNIA ZDAJĄCY

				1			
Nr	Odpowiedzi						
zad.	A	В	ပ	D			
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							
21							
22							
23							
24							
25							

WYPEŁNIA EGZAMINATOR

Nr	Punkty					
zad.	0	1	2	3	4	5
26						
27						
28						
29						
30						
31						
32						
33						
34						

SUMA	
PUNKTÓW	