ALGORYTMY UCZENIA MASZYNOWEGO

Heart Disease Prediction machine learning

Autor: inż. Wiktor Springer 248970

Prowadząca: mgr inż. Marcin Ochman 19 czerwca 2022

Politechnika Wrocławska

Spis treści

1	Opis problemu													
2	Wizualizacja zbioru danych													
3	Opis programu													
	3.1 Proces uczenia modelu	8												
	3.2 Działanie programu	15												
	3.3 Przykładowe wywołania programu	15												

1 Opis problemu

Tematem projektu było stworzenie programu wykorzystującego algorytmy uczenia maszynowego w procesie predykcji chorób serca. W ramach projektu użyto zbioru danych, którego cechy zostały zaprezentowane poniżej:

- 1. age wiek w latach
- 2. sex płeć (1 = mężczyzna, 0 = kobieta)
- 3. cp ból klatki piersiowej
 - 0: Typowy ból dławicowy: ból w klatce piersiowej spowodowany zmniejszeniem dopływu krwi do serca.
 - 1: Nietypowy ból dławicowy: ból w klatce piersiowej niepowiązany z sercem.
 - 2: Niedławicowy: typowe skurcze przełyku.
 - 3: Bezobjawowy: ból klatki piersiowej niewskazujący sygnał choroby.
- 4. trestbps spoczynkowe ciśnienie krwi (w mm Hg przy przyjęciu do szpitala) wszystko powyżej 130-140 jest zwykle powodem do niepokoju
- 5. chol cholesterol w surowicy w mg/dl
 - surowica = LDL + HDL + 0,2 * triglicerydy
 - powyżej 200 to powód do niepokoju
- 6. fbs (cukier we krwi na czczo $\stackrel{\cdot}{\cdot}$, 120 mg/dl) (1 = prawda; 0 = fałsz)
 - $\bullet > 126 \frac{mg}{dL}$ powód do niepokoju
- 7. restecg wyniki elektrokardiograficzne w stanie spoczynku
 - 0: Nic szczególnego
 - 1: Nieprawidłowa morfologia ST-T
 - może wahać się od łagodnych objawów do poważnych problemów
 - sygnalizuje nieprawidłowe bicie serca
 - 2: Możliwy lub zdecydowany przerost lewej komory
 - Powiększona główna komora pompowania serca
- 8. thalach maksymalne osiagniete tetno
- 9. exang dławica wysiłkowa (1 = tak; 0 = nie)
- 10. oldpeak depresja ST wywołana wysiłkiem fizycznym w stosunku do odpoczynku

- 11. slope nachylenie szczytowego odcinka ST
 - 0: Upsloping: lepsze tętno podczas ćwiczeń
 - 1: Flatsloping: minimalna zmiana (typowe zdrowe serce)
 - 2: Downslopins: oznaki niezdrowego serca
- 12. ca liczba głównych naczyń krwionośnych (0-3) pokolorowanych fluorozopią
 - kolorowe naczynie oznacza, że lekarz widzi przepływającą krew
 - im większy przepływ krwi, tym lepiej (brak skrzepów)
- 13. thal wynik stresu talowego
 - 1,3: stan normalny
 - 6: naprawiona wada: kiedyś była wada, ale teraz ok
 - 7: wada odwracalna: brak prawidłowego przepływu krwi podczas ćwiczeń
- 14. target osoba chora lub nie (1=tak, 0=nie) (= przewidywany atrybut)

2 Wizualizacja zbioru danych

W tym rozdziale przedstawiono podstawowe własności zbioru danych wykorzystanego w procesie testowania oraz nauki modelu.

h	heart.csv														
	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target	
0	52	1	0	125	212	0	1	168	Ō	1.0	2	2	3	0	
1	. 53	1	0	140	203	1	Θ	155	1	3.1	0	0	3	0	
2	70	1	0	145	174	0	1	125	1	2.6	0	0	3	0	
3	61	1	0	148	203	0	1	161	0	0.0	2	1	3	0	
4	62	0	0	138	294	1	1	106	0	1.9	1	3	2	0	
F	irst	10 ro	ws f	rom csv fi	le:										

Rysunek 1: Pierwsze pięć wersów z pliku csv

```
Info
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1025 entries, 0 to 1024
Data columns (total 14 columns):
     Column
               Non-Null Count
                                Dtype
               1025 non-null
                                int64
 0
     age
 1
     sex
               1025 non-null
                                int64
 2
               1025 non-null
                                int64
     ср
 3
     trestbps
               1025 non-null
                                int64
 4
     chol
               1025 non-null
                                int64
 5
    fbs
               1025 non-null
                                int64
    restecg
 6
                                int64
               1025 non-null
 7
     thalach
                                int64
               1025 non-null
 8
               1025 non-null
                                int64
     exang
 9
     oldpeak
               1025 non-null
                                float64
 10
     slope
               1025 non-null
                                int64
 11
                                int64
               1025 non-null
     ca
     thal
 12
               1025 non-null
                                int64
 13
     target
               1025 non-null
                                int64
dtypes: float64(1), int64(13)
memory usage: 112.2 KB
None
```

Rysunek 2: Podstawowe informacje o danych zawartych w pliku csv

Rysunek 3: Histogramy poszczególnych cech z uwzględnieniem zachorowania

Rysunek 4: Histogramy cech zawartych

Rysunek 5: Choroba serca w funkcji wieku i maksymalnego tętna

age	1.00	-0.10	-0.07	0.27	0.22	0.12	-0.13	-0.39	0.09	0.21	-0.17	0.27	0.07	-0.23
sex -	-0.10	1.00	-0.04	-0.08	-0.20	0.03	-0.06	-0.05	0.14	0.08	-0.03	0.11	0.20	-0.28
ც -	-0.07	-0.04	1.00	0.04	-0.08	0.08	0.04	0.31	-0.40	-0.17	0.13	-0.18	-0.16	0.43
trestbps	0.27	-0.08	0.04	1.00	0.13	0.18	-0.12	-0.04	0.06	0.19	-0.12	0.10	0.06	-0.14
chol t	0.22	-0.20	-0.08	0.13	1.00	0.03	-0.15	-0.02	0.07	0.06	-0.01	0.07	0.10	-0.10
- Lps	0.12	0.03	0.08	0.18	0.03	1.00	-0.10	-0.01	0.05	0.01	-0.06	0.14	-0.04	-0.04
estecg	-0.13	-0.06	0.04	-0.12	-0.15	-0.10	1.00	0.05	-0.07	-0.05	0.09	-0.08	-0.02	0.13
halachr	-0.39	-0.05	0.31	-0.04	-0.02	-0.01	0.05	1.00	-0.38	-0.35	0.40	-0.21	-0.10	0.42
slope oldpeak exang thalachrestecg	0.09	0.14	-0.40	0.06	0.07	0.05	-0.07	-0.38	1.00	0.31	-0.27	0.11	0.20	-0.44
oldpeak	0.21	0.08	-0.17	0.19	0.06	0.01	-0.05	-0.35	0.31	1.00	-0.58	0.22	0.20	-0.44
slope o	-0.17	-0.03	0.13	-0.12	-0.01	-0.06	0.09	0.40	-0.27	-0.58	1.00	-0.07	-0.09	0.35
ල -	0.27	0.11	-0.18	0.10	0.07	0.14	-0.08	-0.21	0.11	0.22	-0.07	1.00	0.15	-0.38
thal	0.07	0.20	-0.16	0.06	0.10	-0.04	-0.02	-0.10	0.20	0.20	-0.09	0.15	1.00	-0.34
target	-0.23	-0.28	0.43	-0.14	-0.10	-0.04	0.13	0.42	-0.44	-0.44	0.35	-0.38	-0.34	1.00
	age	sex	cp	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target

- -0.2

- -0.4

Rysunek 6: Macierz korelacji

3 Opis programu

Na potrzeby projektu stworzono program pozwalający na:

- Wyświetlenie właściwości zbioru danych zawartych w pliku csv w postaci histogramów i wykresów oraz w formie tekstu.
- Naukę modelu za pomocą poniższych algorytmów.
 - DecisionTreeClassifier
 - SVC
 - KNeighborsClassifier
- Wizualizację procesu nauczania.
- Zapisywanie wyuczonego modelu.
- Obliczenie podstawowej miary jakości wyuczonego modelu.
- Wykonanie predykcji na podstawie danych zawartych w pliku csv oraz na podstawie danych wprowadzonych ręcznie poprzez terminal.

3.1 Proces uczenia modelu

Program pozwala na naukę modelu za pomocą trzech wcześniej wymienionych algorytmów. Proces nauki składa się również z etapu przygotowania danych, który polega na konwertowaniu wartości kategorialnych na wskaźniki. Dodatkowo pozostałe wartości są skalowane za pomocą **StandardScaler()**.

Użytkownik chcąc stworzyć model zostaje zapytany o stosunek zbioru testowego do treningowego. Następnie program dokonuje nauki modelu za pomocą wybranego algorytmu. Dobór parametrów zostaje wykonany automatycznie za pomocą funkcji **GridSearchCV**. Po zakończeniu procesu wyszukiwania hiperparametrów program wyświetla krzywe uczenia w celu wizualizacji tego procesu oraz oblicza miarę jakości działania modelu na zbiorze testowym i treningowym. Informacja o wybranych parametrach zostaje wyświetlona na wyjściu standardowym oraz w tytule obrazu zawierającego krzywe uczenia.

Poniżej przedstawiono efekty działania programu dla tego samego zbioru danych uczących, testowych i różnych algorytmów.

$\bullet \ \ Decision Tree Classifie$

Rysunek 7: krzywe uczenia DecisionTreeClassifie

Rysunek 8: Raport Test

Rysunek 9: Raport Treningowy

Rysunek 10: krzywe uczenia SVC

Rysunek 11: Raport Test

Rysunek 12: Raport Treningowy

• KNeighborsClassifier

Rysunek 13: krzywe uczenia SVC

Rysunek 14: Raport Test

Rysunek 15: Raport Treningowy

3.2 Działanie programu

Proces korzystania z programu polega na wywoływaniu odpowiednich pliku mani.py z odpowiednimi argumentami. Poniżej lista możliwych do wykonania operacji.

- -h, -help: wyświetlenie listy możliwych do użycia parametrów.
- -p PATH, -path PATH: ścieżka do pliku z danymi w formacie csv
- -his, -histograms: wyświetlenie histogramów związanych z danymi w pliku csv
- -m, -more_text_info: wyświetlenie informacji o zbiorze danych w postaci tekstu
- -l tree,SVC,kne, -learn_model tree,SVC,kne: proces nauki modelu za pomocą wybranego algorytmu
- -s SAVE_MODEL, -save_model SAVE_MODEL: zapisanie wyuczonego modelu do pliku joblib
- -lm LOAD_MODEL, -load_model LOAD_MODEL: wczytanie modelu zapisanego w pliku joblib

3.3 Przykładowe wywołania programu

wiktor@wiktor-Inspiron-5482:~/Desktop/MGR/ML\$ python3 main.py -p heart.csv -his

Rysunek 16: Wyświetlenie informacji graficznych o zbiorze danych

wiktor@wiktor-Inspiron-5482:~/Desktop/MGR/ML\$ python3 main.py -p heart.csv -m

Rysunek 17: Wyświetlenie informacji tekstowych o zbiorze danych

wiktor@wiktor-Inspiron-5482:~/Desktop/MGR/ML\$ python3 main.py -p heart.csv -l tree

Rysunek 18: Proces uczenia modelu na podstawie wybranego algorytmu i zbioru danych

wiktor@wiktor-Inspiron-5482:~/Desktop/MGR/ML\$ python3 main.py -p heart.csv -l tree -s model 1

Rysunek 19: Proces uczenia modelu na podstawie wybranego algorytmu i zbioru danych oraz zapisanie efektów do pliku joblib

wiktor@wiktor-Inspiron-5482:~/Desktop/MGR/ML\$ python3 main.py -p heart.csv -lm model_1

Rysunek 20: Proces predykcji za pomocą wczytanego modelu. Predykcja zostaje dokonana na danych zawartych w pliku csv

wiktor@wiktor-Inspiron-5482:~/Desktop/MGR/ML\$ python3 main.py -lm model_1

Rysunek 21: Proces predykcji za pomocą wczytanego modelu. Predykcja zostaje dokonana na danych wpisanych przez użytkownika