

Institute of Psychiatry, Psychology and Neuroscience 08/2020

Zahra Abdulla

Department: Biostatistics and Health Informatics

Module Title: Introduction to Statistics

Session Title: Multiple Independent Variables

Topic title: Binary Logistic Regression

After working through this session you should be able to:

- Interpret a binary logistic regression model with multiple independent variables.
- Run a binary logistic regression analysis with multiple predictors in a software package.

Dealing with third variables

Both confounder, mediator and moderator, are third variables that explain a part (or most) of the association between an independent and dependent variable.

A confounder (C) has a common effect on the independent and dependent variables. A confounder is extrinsic to the causal pathway.

A mediator (M) is caused by the independent variable which in turn causes the dependent variable. A mediator is in the causal pathway

A moderator (Z)
modifies the effect of an independent variable on a dependent variable.
The association varies depending on the values/levels of Z

The logistic transformation: Multiple predictors

Just as we would be able to develop a Multiple Linear Regression model we are able to build a Binary logistic regression with multiple independent variables. This includes investigating

- Confounding Variables
- Mediators
- Effect Modifiers or Interaction Terms.

Independent or Predictor variables can be numerical or categorical

$$\ln\left(\frac{\pi}{1-\pi}\right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_i x_i$$

This is just the odds.

The (adjusted) odds ratio is the estimated change in odds for a unit change in x1 (holding x2 x3,...xi constant)

For variables coded as binary or dummy variables 'one unit' usually means a comparison between the group of interest and a reference group.

SPSS Slide

Download the data that we are going to use during the lecture. The dataset is the lecture_10_data.sav.

<u>F</u> ile <u>E</u>	dit	<u>V</u> iew <u>l</u>	<u>D</u> ata <u>T</u> ransfor	m <u>A</u> nalyze	<u>G</u> raphs <u>!</u>	<u>U</u> tilities E <u>x</u> te	nsions <u>V</u>	<u>V</u> indow <u>H</u> elp
	H			~ ₫			h \blacksquare	
		🗞 sex		🚜 class	🔗 height		🧳 id	🗞 malcat1
1		1	27	7	173	72.33	1	1.00
2		1	23	2	157	41.28	2	1.00
3		1	30	2	174	58.29	3	1.00
4		1	15	4	170	69.17	4	1.00
5		1	26	2	161	51.03	5	1.00
6		1	28	1	182	71.67	6	1.00
7		- 1	13	1	170	62.14	7	1.00

The dataset contains data from 42 babies, with respect to their

Specific body measurements at birth: headcircumf, length, weight (lbs)

Gestation: Gestational age at birth

Information about the baby's mother: smoker, motherage, mnocig, mheight, mppwgt

Information about the baby's father: fage, fedyrs, fnocig, fheight

lowbwt: Low birthweight Baby 0 = No, 1 = Yes

Mage35: 0=under 35, 1=Over 35

SPSS slide: 'how to'

Is there an association between having a baby of low birth weight with mothers who smoked through pregnancy adjusting for mother's weight pre-pregnancy?

Step 1: Use the appropriate test, here: 'Binary Logistic Regression'.

Analyse -> Regression> Binary Logistic

SPSS slide: 'how to'

<u>Step 2</u>: Define any categorical variables and choose the <u>Reference category</u>

Step 3: In Options choose the CI for exp (β)

Output and Interpretation

Omnibus Tests of Model Coefficients							
Chi-square df							
Step 1	Step	8.573	2	.014			
	Block	8.573	2	.014			
	Model	8.573	2	.014			

a. The cut value is .500

A p-value (sig) of less than 0.05 for block means that the final model is a significant improvement to the constant only model. (chi-square=8.573, df=2, p=.014)

Nagelkerke $R^2 = 24.8\%$ of the variation in lowbwt can be explained by the final model.

Classification Table ^a								
	Predicted							
		Low birth w	eight baby	Percentage				
	Observed		No Yes		Correct			
Step 1	Step 1 Low birth weight baby		19	5	79.2			
		Yes	7	11	61.1			
	Overall Percentage				71.4			

 Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

The correct classification rate has increased by 14.3% to 71.4%

Model Summary

 -2 Log likelihood
 Cox & Snell R Square
 Nagelkerke R Square

 1
 48.791^a
 .185
 .248

Output and Interpretation

	Variables in the Equation									
			95% C.I.for EX							
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper	
Step 1ª	Smoker(1)	1.575	.709	4.936	1	.026	4.831	1.204	19.386	
	Mothers pre-pregnancy weight (lbs)	040	.023	3.130	1	.077	.961	.919	1.004	
	Constant	3.898	2.840	1.884	1	.170	49.306			

a. Variable(s) entered on step 1: Smoker, Mothers pre-pregnancy weight (lbs).

Regression Equation

$$\ln \frac{p}{1-p} = 3.898 + 1.575 smoker + -0.040 mpp wt$$

Odds ratio for the effect of mothers who smoked during pregnancy on low birth weight $Exp(\beta) = 4.831$ once adjusted for mothers prepregnancy wgt (lbs). Mothers who smoke during pregnancy have a 4.831 times larger odds of having a baby born with low birth weight compared to a mother who did not smoke during pregnancy adjusting for mother's pre-pregnancy weight. This was a significant association 95%CI 1.204 to 19.386, p=0.026.

One lbs increase in mothers pre-pregnancy weight would lead to a 4% reduction ($\exp(\beta) = 0.961$) in the odds of having a baby of low birth weight, if the mother is a non-smoker. This is not a significant association 95% CI (0.919 to 1.004), p=0.077

Reference Categories and Dummy Variables

- Categorical Independent dichotomous variables:
 - E.g. Gender defined at birth
 - One category is treated as a baseline, or reference category.
 - Reference Category is arbitrarily coded 0, comparison group coded 1
- Categorical independent variables with more than two levels need to be recoded into dummy variables
 - A "dummy variable" is a numerical variable used in regression analysis to represent subgroups of the sample in your study.
 - E.g. Variable X has three levels, create two new variables, each comparing one level to the baseline or reference category
 - Coding represents a contrast between categories.

Building Models

Which predictor variables should I include?

- Literature
- Researcher theory
- Iterative Multivariable Logistic Regression
 - Often have too many variables to legitimately include in the logistic regression model.
 - At least 50 times as many subjects as predictors
 - Used to find a good subset of variables
 - A subset that includes only **statistically** significant predictors and that results in good negative and positive predictive values (more about this in the next section).
- Forward, backward Stepwise regression

Model Building Strategies

The log likelihood (LL), the deviance (-2LL), or the likelihood ratio(LR) give an overall goodness of fit measurement for the model.

Forward Selection

- Variables are tested one at a time.
- First variable added has the smallest LR (and is statistically significant).
- Other variables added if their LR is also significant when adjusted for other variables in the model.
- Model Building stops.
 - •All variables have been entered.
 - •LR is non-significant for all variables not entered.

Backward Selection

- Start with all the predictors (significant and not significant).
- Variables are tested one at a time.
- First variable removed has a LR with the largest probability that is greater than alpha.
- Continue until only statistically significant variables remain.

Stepwise Selection

- Combination of forward and backward.
- Each variable is tested for entry to the model.
- When a predictor is entered, other variables are tested for removal.
- Continue until no more variables can be entered or removed.

Knowledge Check

Q1. The researcher was also interested to see if the length of gestation had a impact on low birth weight of babies alongside other factors already tested. Interpret these results.

Omnibus Tests of Model Coefficients							
		df	Sig.				
Step 1	Step	9.078	3	.028			
	Block	9.078	3	.028			
	Model	9.078	3	.028			

Model Summary							
Step	-2 Log likelihood	Cox & Snell R Square	Nagelkerke R Square				
1	48.286 ^a	.194	.261				
- F-1'1' t'ttt''tt							

Estimation terminated at iteration number 4
 because parameter estimates changed by less than .001.

Variables in the Equation										
			95% C.I.for E)							
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper	
Step 1ª	Smoker(1)	1.557	.715	4.746	1	.029	4.746	1.169	19.271	
	Mothers pre-pregnancy weight (lbs)	037	.023	2.496	1	.114	.964	.921	1.009	
	Gestational age at birth (weeks)	100	.141	.497	1	.481	.905	.686	1.194	
	Constant	7.326	5.701	1.651	1	.199	1519.126			

a. Variable(s) entered on step 1: Smoker, Mothers pre-pregnancy weight (lbs), Gestational age at birth (weeks).

Knowledge Check Solutions

Q1. The chi-square is significant (chi-square=9.078, df=3, p=0.028) so our new model is significantly better. Nagelkerke's R² suggests that the model explains roughly 26.1% of the variation in the outcome.

For every unit increase in the length of gestation, the odds of a mother having a lowbwt baby is decreased by 9.5%, 95% CI of the odds (0.686, 1.194) adjusting for Mothers smoking status and mothers pre-pregnancy weight, this result was statistically non significant (Wald = 0.497, df=1, p=0.481)

Omnibus Tests of Model Coefficients							
		df	Sig.				
Step 1	Step	9.078	3	.028			
	Block	9.078	3	.028			
	Model	9.078	3	.028			

Model Summary							
Step	-2 Log likelihood	Cox & Snell R Square	Nagelkerke R Square				
1	48.286 ^a	.194	.261				
a. Estimation terminated at iteration number 4							

Estimation terminated at iteration number 4
 because parameter estimates changed by less
than .001.

Variables in the Equation									
		95% C.I.for E)						or EXP(B)	
		В	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Step 1ª	Smoker(1)	1.557	.715	4.746	1	.029	4.746	1.169	19.271
	Mothers pre-pregnancy weight (lbs)	037	.023	2.496	1	.114	.964	.921	1.009
	Gestational age at birth (weeks)	100	.141	.497	1	.481	.905	.686	1.194
	Constant	7.326	5.701	1.651	1	.199	1519.126		

a. Variable(s) entered on step 1: Smoker, Mothers pre-pregnancy weight (lbs), Gestational age at birth (weeks).

References

Field, Andy. Discovering statistics using IBM SPSS statistics. Sage, 2013. (Chapter 19) Agresti, Alan. Categorical data analysis. John Wiley & Sons, 2014.

Thank you

Contact details/for more information:

Zahra Abdulla

Zahra.abdulla@kcl.ac.uk

Department of Biostatistics and Health Informatics (BHI)

IoPPN

© 2020 King's College London. All rights reserved

