The purpose of the project is to make a model which identifies the name of the landmark in given images. In the project, I used matplotlib to visualize the data, numpy to create a container for images, and tensorflow to create the model. From tensorflow, I imported keras and used it to create the model. The image dataset used for the model is "Google-Landmarks Dataset" from Kaggle.com.

After I imported the libraries, I set the batch size, image height, and image weight to 32, 180, and 180 respectively. Then, I classified 80% of the image to the training dataset, and 20% of the image to the validation dataset. To create the model, I normalized the images in the training dataset and used a sequential model from keras to construct the model. In the model, I included a Rescaling, two Conv2Ds, two MaxPooling2Ds, Flattern, and two Denses.

Layer (type)	Output Shape	Param #
rescaling_1 (Rescaling)		0
conv2d (Conv2D)	(None, 180, 180, 16)	448
max_pooling2d (MaxPooling2D)	(None, 90, 90, 16)	0
conv2d_1 (Conv2D)	(None, 90, 90, 32)	4640
max_pooling2d_1 (MaxPooling 2D)	(None, 45, 45, 32)	0
flatten (Flatten)	(None, 64800)	0
dense (Dense)	(None, 128)	8294528
dense_1 (Dense)	(None, 12)	1548

After I trained the model for 10 epochs, I found out that the accuracy of the model was close to 100%, but the validation accuracy was only about 80%.

Therefore, I used data augmentation to modify the images to fix the overfitting of the model. In the data augmentation process, I used RandomFlip, RandomRotation, RandomZoom, and RandomContrast methods from keras.

Also, I added two more Conv2Ds and MaxPooling2Ds to upgrade the model. Then, I included Dropout after the last MaxPooling2D to make the model more consistent.

ayer (type)	Output Shape	Param #
equential_1 (Sequential)		0
rescaling_2 (Rescaling)	(None, 180, 180, 3)	0
conv2d_2 (Conv2D)	(None, 180, 180, 16)	448
nax_pooling2d_2 (MaxPooling D)	(None, 90, 90, 16)	0
conv2d_3 (Conv2D)	(None, 90, 90, 32)	4640
nax_pooling2d_3 (MaxPooling D)	(None, 45, 45, 32)	0
onv2d_4 (Conv2D)	(None, 45, 45, 32)	9248
nax_pooling2d_4 (MaxPooling D)	(None, 22, 22, 32)	0
onv2d_5 (Conv2D)	(None, 22, 22, 64)	18496
max_pooling2d_5 (MaxPooling D)	(None, 11, 11, 64)	0
conv2d_6 (Conv2D)	(None, 11, 11, 64)	36928
ax_pooling2d_6 (MaxPooling D)	(None, 5, 5, 64)	0
ropout (Dropout)	(None, 5, 5, 64)	0
latten_1 (Flatten)	(None, 1600)	0
lense_2 (Dense)	(None, 128)	204928
lense_3 (Dense)	(None, 12)	1548

After I trained the model for 80 epochs, I found out that the accuracy and the validation accuracy followed similar trends throughout the training, and they approached to about 85%.

