Mumbai University

Question Paper

[CBSGS – 60:40 PATTERN] (APRIL – 2014)

DIGITAL

SIGNALS AND SYSTEMS

DIGITAL SIGNALS AND SYSTEMS

B.Sc.IT

(APRIL - 2014 | 60:40 PATTERN)

(SEMESTER - VI)

(5)

(5)

(5)

(5)

(5)

Time: 2 1/2 Hours **Total Marks:** 60

- N.B.: (1) All Question are Compulsory.
 - (2) Make Suitable Assumptions Wherever Necessary And State The Assumptions Made.
 - (3) Answer To The Same Question Must Be Written Together.
 - (4) Number To The Right Indicates Marks.
 - (5) Draw Neat Labeled Diagrams Wherever Necessary.
 - (6) Use of Non Programmable Calculator is allowed.

Q.1 **ATTEMPT ANY TWO QUESTIONS: (10 MARKS)**

- (A) Explain in detail the various types of systems.
- (B) Check whether the given is Power Signal or Energy Signal and find its value

$$x[n] = 3(-1)^n, n \ge 0$$

= 0, n < 0

- Explain in detail with suitable examples the various properties of Fourier Transform. (C)
- (D) Find the Fourier Transform of the Time Function (5)

$$f(t) - 5[u(t+3) + u(t+2) - u(t-2) - u(t-3)]$$

Q.2 **ATTEMPT ANY TWO QUESTIONS: (10 MARKS)**

(A) Find Inverse Laplace Transform of (5)

(i)
$$F_1(S) = \frac{S^2 + 5}{S^3 + 2S^2 + 4S}$$

(ii) $F_2(S) = \frac{3e^{-\frac{S}{3}}}{S^2(S^2 + 2)}$

(ii)
$$F_2(S) = \frac{3e^{-\frac{3}{3}}}{S^2(S^2+2)}$$

- A sinusoidal voltage $25sin\ t$ is applied at the instant t=0 to a series RL Circuit with $R-5\Omega$ and L-(B) (5) $1\,H$. Determine i(t) by using Laplace Transform method.
- The unit step of a network is $(1 e^{-n})$. Determine the Impulse Response h(t) of the network. (C) (5)
- (D) Find the Laplace Transform of
 - (i) e^{-t}
 - (ii) e^{10t}
 - (iii) $2 2e^t + 0.5 \sin 4t$
 - (iv) $e^{-t} \sin 4t$
 - (v) $e^{2t} + 2te^{-2t} t^2$

Q.3 ATTEMPT ANY TWO QUESTIONS: (10 MARKS)

- Explain the following properties of z-transform: (A)
 - (i) Time-reversal
 - (ii) Time Shifting
 - (iii) Time Scaling
 - (iv) Differentiation
 - (v) Convolution
- (5) Determine the causal sequence x(n) for X(z) given by $X(z) = \frac{1+2z^{-1}}{1-2z^{-1}+4z^{-2}}$ (B)
- Determine the causal signal having z-transform $X(z) = \frac{z^2 + z}{\left(z \frac{1}{2}\right)^3 \left(z \frac{1}{2}\right)}$ for the region of convergence (C) (5)

 $|Z| > \frac{1}{2}$

For n low pass RC network, R-1 $M\Omega$ and $C-1\mu l$. Determine the output response for n in the range (D) (5) $C \le n \le 3$ when input has a step response of magnitude 2 V and the sampling frequency $f_1 - 50$ Hz.

[TURN OVER]

MUMBAI B.Sc.IT STUDY

MUMBAI UNIVERSITY

DIGITAL SIGNALS AND SYSTEMS

B.Sc.IT

QUESTION PAPER (APRIL

(APRIL - 2014 | 60:40 PATTERN)

(SEMESTER - VI)

(5)

(5)

Q.4 ATTEMPT ANY TWO QUESTIONS: (10 MARKS)

- (A) Explain the following properties of a Digital Signal Processing System:
 - (i) Linearity
 - (ii) Time-Invariance
 - (iii) Causality
 - (iv) Stability
 - (v) Bounded Input Bounded Output Stability
- (B) Consider a causal and stable LT! system whose input x(n) and output y(n) are relies through the second order difference equation $y(n) \frac{1}{12}y(n-1) \frac{1}{12}y(n-2) = x(n)$
- (C) <u>Determine the impulse response for the systems given by the following difference equations:</u> (5)
 - (i) y(n) + 3y(n-1) + 2y(n-2) = 2x(n) x(n-1)
 - (ii) y(n) = x(n) + 3x(n-1) 4x(n-2) + 2x(n-3)
- (D) Compute the response of the system y(n) = 0.7y(n-1) 0.12y(n-2) + x(n-1) + x(n-2) (5) to the input x(n) = ny(n).

Q.5 ATTEMPT ANY TWO QUESTIONS: (10 MARKS)

- (A) Find the Circular Periodic Convolution using DFT and IDFT of the two sequences: $x(n) = \{1, 1, 2, 2\}$ and $h(n) = \{1, 2, 3, 4\}$
- (B) Compute the Circular Periodic Convolution Graphically of the two sequences: $x(n) = \delta(n) + \delta(n-1) \delta(n-2) \delta(n-3) \text{ and } h(n) = \delta(n) \delta(n-2) + \delta(n-4)$
- (C) Given $x(n) = \{1, 2, 3, 4, 5, 6, 7, 8\}$. Find DFT and DIF FFT Algorithm. (5)
- (D) An FIR Digital Filter has the unit Impulse Response Sequence, $h(n) = \{2, 2, 1\}$. Determine the output sequence in response to the Input Sequence $x(n) = \{3, 0, -2, 0, 2, 1, 0, -2, -1, 0\}$ using the overlap-add convolution Method.

Q.6 ATTEMPT ANY TWO QUESTIONS: (10 MARKS)

(A) A low pass filter has the desired response as given below

 $H_e(e^{f\omega}) = e^{-f3\omega} 0 \le \omega \le \frac{\pi}{2}$ $= 0 \frac{\pi}{2} \le \omega \le \pi$

Determine the filter coefficient h(n) for M=7, using Type-I frequency sampling technique.

- (B) Determine the unit sample response of the Ideal Low Pass Filter? Why is it not realizable? (5)
- (C) Design a High-Pass Digital FIR filter using Kaiser windows satisfying the specification given below. Passband cut-off frequency, $f_p = 3200Hz$, stopband cut-off frequency, $f_a = 1600 Hz$, passband ripple, $A_P = 0.1 dB$, stopband attenuation, $A_S = 40dB$ and sampling frequency, F = 10000 Hz.
- (D) An analog filter has the following system function. Convert this filter into a digital filter using backward difference for the derivative. $H(S) = \frac{1}{(S+0.1)^2+9}$

