Föreläsning 8

Signalbehandling i multimedia - ETI265

Kapitel 5

LTI-system

LTH 2015

Nedelko Grbic

(mtrl. från Bengt Mandersson)

Department of Electrical and Information Technology Lund University

Exempel på beräkning av utsignal med faltning och ztransform

Exempel E 3.3 (se även övningarna)

Givet:

Differensekvation

$$y(n) - y(n-1) + 3/16y(n-2) = x(n)$$

Insignal

$$x(n) = 0.5^n \ u(n) + \sin(2\pi 1/4 \ n) - \infty < n < \infty$$

Sök: Utsignalen y(n)

Lösning:

Bestäm först
$$H(z) = \frac{1}{1 - z^{-1} + 3/16z^{-2}} = \frac{z^2}{z^2 - z + 3/16}$$

Poler:
$$z^2 - z + 3/16 = 0$$
 ger $\lambda_1 = 0.25$ och $\lambda_2 = 0.75$, dvs

$$H(z) = \frac{1}{(1 - 0.25 z^{-1})(1 - 0.75 z^{-1})} = \dots = \frac{-0.5}{1 - 0.25 z^{-1}} + \frac{1.5}{1 - 0.75 z^{-1}}$$
 och
$$h(n) = (-0.5 \cdot 0.25^{n} + 1.5 \cdot 0.75^{n}) u(n)$$

[H,w]=freqz(1,[1 -1 3/16],'whole'); plot(w,abs(H)); h=impz(1,[1 -1 3/16],64); stem(h), zplane((1,[1 -1 3/16]);

Dela nu upp insignalen enligt

$$x(n) = \underbrace{0.5^n \ u(n)}_{x_1(n)} + \underbrace{\sin(2\pi 1/4 \ n)}_{x_2(n)} - \infty < n < \infty$$

och bestäm utsignalen för varje del separat.

A: Första delen beräknar vi med z-transform

$$Y_1(z) = H(z)X_1(z) = \frac{1}{(1 - 0.25z^{-1})(1 - 0.75z^{-1})} \cdot \frac{1}{1 - 0.5z^{-1}} = \frac{1/2}{1 - 0.25z^{-1}} + \frac{9/2}{1 - 0.75z^{-1}} - \frac{4}{1 - 0.5z^{-1}}$$

Inverstransform ger

$$y_1(n) = 0.5 \cdot 0.25^n u(n) + 4.5 \cdot 0.75^n u(n) - 4 \cdot 0.5^n u(n)$$

Del B: Andra delen beräknar vi enligt (från faltning)

$$x_2(n) = \sin(2 \pi 1/4 n)$$
 $-\infty < n < \infty$
 ger
 $y_2(n) = |H(\omega)|_{\omega = 2\pi 1/4} \sin(2 \pi 1/4 n + \arg\{H(\omega)|_{\omega = 2\pi 1/4}\})$

Vi beräknar nu

$$H(\omega)|_{\omega=2\pi 1/4} = H(z)|_{z=e^{j2\pi 1/4}} = \frac{1}{1 - e^{-j2\pi 1/4} + e^{-j2\pi 2/4}} = 0.77 e^{-j0.88}$$

Detta ger nu

$$y_2(n) = 0.77 \sin(2 \pi 1/4 n - 0.88)$$

Del A + B: Vi får nu hela utsignalen

$$y(n) = y_1(n) + y_2(n) =$$

$$= 0.5 \cdot 0.25^n u(n) + 9/2 \cdot 0.75^n u(n) - 4 \cdot 0.5^n u(n) +$$

$$+ 0.77 \sin(2 \pi 1/4 n - 0.88)$$

$$\lim_{\substack{\text{Input } x[n] \\ 0 \\ -1 \\ 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ 50 \\ 60 \\ 60 \\ 60$$

Plot för $n \ge 0$.

20

40

50

60

Filter

Vi ska nu titta på hur vi kan använda tidsdiskreta filter.

Vi börjar med ett exempel på notchfilter. Vi antar att vi har en signal som störs av en sinuston

$$x(t) = s(t) + \underbrace{\sin(2\pi F_0 n)}_{\text{onskad signal}} + \underbrace{\sin(2\pi F_0 n)}_{\text{störsignal}} \qquad F_0 = 1250 \text{ Hz}$$

och vi vill alltså eliminera sinussignalen med hjälp av ett tidsdiskret filter.

Vi börjar med att sampla signalen med sampelfrekvensen $F_T=10~000~Hz$. Vi får då

$$x[n] = x(t)|_{t=n/F_T} = s[n] + \sin(2\pi \frac{F_0}{F_T}n)$$
 $f_0 = \frac{F_0}{F_T} = 0.125, \ \omega_0 = 2\pi f_0$

Vi vill konstruera ett filter som spärrar frekvensen $f=f_0=0.125$. Vi vill alltså att förstärkningen för denna frekvens ska vara noll, dvs

$$H(f)|_{f=f_0=0.125}=0$$

Vi resonerar i termer av poler och nollställen och konstaterar då att filtret måste ha nollställen i

$$n_{1.2} = e^{\pm j \, 2\pi \, f_0} = e^{\pm j \, 2\pi \, 0.125}$$

Vi kan välja mellan FIR-filter och IIR-filter.

A: Notch FIR-filter

Vid FIR-filter är alla polerna i origo. Vi lägger två poler i origo och får då filtret

$$H(z) = \frac{(z - e^{-j2\pi \cdot 0.125})(z - e^{j2\pi \cdot 0.125})}{z^2} = 1 - 2\cos(2\pi \cdot 0.125)z^{-1} + z^{-2}$$

B: Notch IIR-filter

Vid IIR-filter får polerna ligga valfritt innanför enhetscirklen. Vi lägger två poler strax innanför enhetscirklen nära nollställena och får då filtret

$$H(z) = \frac{(z - e^{-j2\pi \cdot 0.125})(z - e^{j2\pi \cdot 0.125})}{(z - 0.95 e^{-j2\pi \cdot 0.125})(z - 0.95 e^{j2\pi \cdot 0.125})} = \frac{1 - 2\cos(2\pi \cdot 0.125) z^{-1} + z^{-2}}{1 - 2 \cdot 0.95 \cos(2\pi \cdot 0.125) z^{-1} + 0.95^{2} z^{-2}}$$

Fungerar detta? Vi testar på labben

FIR filter med linjär fas

Linjär fas <----> symmetriskt impulssvar

Exempel.
$$h[n] = \{1 \ 0 \ 0 \ 1\}$$

 $H(\omega) = 1 + e^{-j4\omega} = 2 \cos(2\omega) e^{-j2\omega}$

$$h[n] = h[-n]$$
 symmetrisk kring $0 \to H(\omega)$ reell $h[n] = h[N-n]$ symmetrisk kring $N/2 \to H(\omega)$ linjär fas $h[n] = -h[N-n]$ antisymmetrisk kring $N/2 \to H(\omega)$ linjär fas

Vi visar med exempel

Givet:

a) Symmetriskt impulssvar kring n=0

$$h[n] = \{1 \ 2 \ 3 \ 2 \ 1\}$$

b) Kausalt symmetriskt impulssvar

$$h[n] = \{1 \ 2 \ 3 \ 2 \ 1\}$$

c) Kausalt Antisymmetriskt impulssvar

$$h[n] = \{1 -2 \ 0 \ 2 -1\}$$

Visa att $H(\omega)$ har linjär fas (ren fördröjning (delay))

Lösning: a) Symmetriskt icke-kausalt impulssvar

$$H(z) = z^{2} + 2z^{1} + 3 + 2z^{-1} + z^{-2}$$

$$H(\omega) = e^{j2\omega} + 2e^{j\omega} + 3 + 2e^{-j\omega} + e^{-j2\omega} = \underbrace{(3 + 4\cos(\omega) + 2\cos(2\omega))}_{reellt}$$

Omskrivet i belopp och fas får vi

$$H(\omega) = \underbrace{(3 + 4\cos(\omega) + 2\cos(2\omega))}_{reellt, kan var negativt} = \underbrace{[(3 + 4\cos(\omega) + 2\cos(2\omega))]}_{reellt, alltid positivt} e^{\underbrace{j(eventuella fashopp på \pi)}_{eventuella fashopp}}$$

b) Symmetriskt kausalt impulssvar

$$H(z) = 1 + 2z^{-1} + 3z^{-2} + 2z^{-3} + z^{-4}$$

$$H(\omega) = (1 + 2e^{-j\omega} + 3e^{-j2\omega} + 2e^{-j3\omega} + e^{-j4\omega}) =$$

$$= (e^{j2\omega} + 2e^{j\omega} + 3 + 2e^{-j\omega} + e^{-j2\omega}) e^{-j2\omega} =$$

$$= (3 + 4\cos(\omega) + 2\cos(2\omega)) e^{-j2\omega}$$

Omskrivet i belopp och fas får vi

$$H(\omega) = \underbrace{(3 + 4\cos(\omega) + 2\cos(2\omega))}_{reellt, kan \text{ vara negativt}} e^{-j2\omega} = \underbrace{(3 + 4\cos(\omega) + 2\cos(2\omega))}_{reellt, positivt} e^{-j2\omega + j\pi(eventuella fashopp på \pi)}$$

c) Med kausalt antisymmetriskt impulssvar får vi (visa detta)

$$H(z) = 1 - 2 z^{-1} + 2 z^{-3} - z^{-4}$$

$$H(\omega) = \underbrace{(2\sin(2\omega) - 4\sin(\omega))}_{reellt, kan \text{ vara negativt}} e^{-j2\omega + j\pi/2} = \underbrace{(2\sin(2\omega) - 4\sin(\omega))}_{reellt, positivt} e^{-j2\omega + j\pi/2 + j\pi(eventuella fashopp på \pi)}$$

Hur ser egenskapen linjär fas ut i ett pol-nollställesdiagram?

$$H(z) = 1 + 2z^{-1} + 3z^{-2} + 2z^{-3} + z^{-4} =$$

$$= z^{-4} (z^4 + 2z^3 + 3z^2 + 2z + 1) = z^{-4} H(z^{-1})$$

H(z) och $H(z^{-1})$ måste vara noll samtidigt.

Om Z är ett nollställe är Z^{-1} också nollställe (Nollställen är reciproka)

Linjär fas medför reciproka nollställen

Några filtertyper

Idealt lågpassfilter (sen tidigare föreläsning)

Ett idealt lågpassfilter (icke-kausalt) definieras av

$$H_{idealt}(\omega) = \begin{cases} 1 & |\omega| \le \omega_c, & |f| \le f_c \\ 0 & \text{för \"{o}vrigt} \end{cases}$$

$$\frac{1}{0} \frac{|\mathbf{H}(\omega)|}{\mathbf{G}(\omega)} = \frac{1}{0} \frac{|\mathbf{H}(\omega)|}$$

Dess impulssvar blir då

$$h(n) = 2 f_c \frac{\sin \omega_c n}{\omega_c n}$$

Ett kausalt lågpass FIR-filter kan vi få genom att välja ut N värden kring origo och sen fördröja impulssvaret (N-1)/2 (N udda)

$$h(n) = \frac{\omega_c}{\pi} \frac{\sin \omega_c (n - \frac{N-1}{2})}{\omega_c (n - \frac{N-1}{2})}, \quad 0 \le n \le N - 1$$

Matlab: h=fir1(20, 2*.25, 'low', boxcar(21));

Idealt högpassfilter

Ett idealt högpassfilter (icke-kausalt) definieras av

$$H_{\text{h\"{o}gpassidealt}}(\omega) = \begin{cases} 1 & \omega_c \leq |\omega| \leq 2\pi - \omega_c \,, \quad f_c \leq |f| \leq 1 - f_c \\ 0 & \text{f\"{o}r \"{o}vrigt} \end{cases}$$

eller

$$H_{h\ddot{o}gpassidealt}(\omega) = 1 - H_{l\mathring{a}gpassidealt}(\omega)$$

Dess impulssvar blir då

$$h_{h\ddot{o}gpass}(n) = \delta(n) - 2f_c \frac{\sin \omega_c n}{\omega_c n}$$

Ett kausalt högpass FIR-filter kan vi få genom att välja ut N värden kring origo och sen fördröja impulssvaret (N-1)/2 (N udda)

$$h(n) = \delta(n - \frac{N-1}{2}) - 2f_c \frac{\sin \omega_c (n - \frac{N-1}{2})}{\omega_c (n - \frac{N-1}{2})}, \quad 0 \le n \le N-1$$

Matlab: h=fir1(20,2*.25, 'high', boxcar(21));

Digital Signal Processing, Department of Electrical and Information Technology, LTH, Lund University

Example of filtering signals with low pass and high pass filter.

Filtering applied to signals from turbulent blood flow

- 1: Signal measured using a stethoscope from a blood vessel (10s).
- 2: Low pass filtered signal (cut off frequency 100 Hz)
- 3: High pass filtered signal (cut off frequency 100 Hz)
- 4: Envelope of high pass filtered signal

Klassificering av filter

(fyll i förslag till pol-nollställesplacering i figur till höger, se sid 330-346)

Lågpassfilter:

Högpassfilter:

Bandpassfilter:

Bandspärrfilter (Notch är ett skarp bandspärrfilter):

Allpassfilter:

Comb-filter (Kamfilter)

A:
$$h(n) = \{ 1 \ 1 \ 1 \ 1 \}$$

I

B: $h_I(n) = \{1001001001\}$

Minimum fas-system och maximum fas-system

En vanlig klassificering av systemfunktioner är i *minimum fas*-system och *maximum fas*-system.

Ett system (H(z)) som har alla nollställen innanför enhetscirklen kallas ett minimum fas-system. Namnet kommer utav att fasändringen är så "liten" som möjligt. Det kan vi se ur pol-nollställesdiagrammet.

När ett nollställe ligger innanför enhetscirklen blir vinklen för H(w) pga det nollstället mindre. I impulssvaret syns det genom att största delen av energin finns för små värden av n.

Ett system (H(z)) som har alla nollställen utanför enhetscirklen kallas ett maximum fas-system. Namnet kommer utav att fasändringen är så "stor" som möjligt. Det kan vi se ur polnollställesdiagrammet. När ett nollställe ligger utanför enhetscirklen blir vinklen för H(w) pga det nollstället större. I impulssvaret syns det genom att största delen av energin finns för stora värden av n.

Ett system (H(z)) som har nollställen både utanför och innanför enhetscirklen kallas ett mix fas-system.

Vi vill oftast ha ett minimum fas-system.

Sammanställning av kausala FIR och IIR filter

FIR-filter: Impulssvaret har ändlig längd.

Alltid stabilt.

Alla poler i origo. Kan ha linjär fas.

IIR-filter: Impulssvaret har oändlig längd.

Stabilt om alla poler innanför enhetscirklen.

Kan ej ha linjär fas.

Samband mellan antal poler, antal nollställen och impulssvar.

Antal poler = antal nollställen: Impulssvaret börjar för n=0 Ex:

$$h[n] = \{ 1 \ 1 \ 0 \ 0 \ \dots \} \implies H(z) = 1 + z^{-1} = \frac{z-1}{z};$$
 ett nollställe, en pol

Antal poler = antal nollställen + 1 : Impulssvaret börjar för n=1 Ex:

$$h[n] = \{0, 1, 1, 0, ...\} \implies H(z) = z^{-1} + z^{-2} = \frac{z-1}{z^2};$$
 ett nollställe, två poler

Antal poler = antal nollställen + 2 : Impulssvaret börjar för n=2 Ex

$$h[n] = \{0 \ 0 \ 1 \ 1 \ 0 \ ...\} \implies H(z) = z^{-2} + z^{-3} = \frac{z-1}{z^3};$$
 ett nollställe, tre poler

<u>Slutsats: Om antalet poler är större eller lika med antalet nollställen => systemet är kausalt.</u>

Detta gäller generellt för både kausala FIR-filter och kausala IIR-filter.