

دانشکده فنی و مهندسی

بیان روشی به منظور تخصیص ماشین های مجازی برای جلوگیری از سربار شدن میزبان های فیزیکی با هدف بهبود کیفیت سرویس در مراکز داده ابری

پایاننامه برای دریافت درجه کارشناسی ارشد M.SC پایاننامه برای در رشته مهندسی کامپیوتر گرایش نرمافزار

صائب ملایی ندیکی

استاد راهنما

دكترمحمدصادق حاجمحمدى

تابستان ۱۳۹۶

تأییدیهی هیأت داوران جلسهی دفاع از پایاننامه

نام دانشکده: دانشکده فنی و مهندسی

نام دانشجو: صائب ملايي نديكي

عنوان پایاننامه: بیان روشی به منظور تخصیص ماشین های مجازی برای جلوگیری از سربار شدن میزبان های فیزیکی با هدف بهبود کیفیت سرویس در مراکز داده ابری

تاریخ دفاع: تابستان ۱۳۹۶

رشته: مهندسي كامپيوتر

گرایش: نرمافزار

امضا	دانشگاه یا مؤسسه	نام و نام خانوادگی	سمت	ردیف
	دانشگاه اسلامی سیرجان	دكتر	استاد راهنما	١
		محمدصادق حاجمحمدي		
	دانشگاه		استاد مدعو	۲

تأییدیهی صحت و اصالت نتایج

باسمه تعالى

اینجانب صائب ملایی ندیکی به شماره دانشجویی ۹۳۰۵۹۴۱۳۱ دانشجوی رشته مهندسی کامپیوتر مقطع تحصیلی کارشناسی ارشد M.SC تأیید می نمایم که کلیهی نتایج این پایان نامه حاصل کار اینجانب و بدون هرگونه دخل و تصرف است و موارد نسخه برداری شده از آثار دیگران را با ذکر کامل مشخصات منبع ذکر کرده ام. درصورت اثبات خلاف مندرجات فوق، به تشخیص دانشگاه مطابق با ضوابط و مقررات حاکم (قانون حمایت از حقوق مؤلفان و مصنفان و قانون ترجمه و تکثیر کتب و نشریات و آثار صوتی، ضوابط و مقررات آموزشی، پژوهشی و انضباطی …) با اینجانب رفتار خواهد شد و حق هرگونه اعتراض در خصوص احقاق حقوق مکتسب و تشخیص و تعیین تخلف و مجازات را از خویش سلب می نمایم. در ضمن، مسؤولیت هرگونه پاسخگویی به اشخاص اعم از حقیقی و حقوقی و مراجع ذی صلاح (اعم از اداری و قضایی) به عهده ی اینجانب خواهد بود و دانشگاه هیچگونه مسؤولیتی در این خصوص نخواهد داشت.

نام و نام خانوادگی: صائب ملایی ندیکی تاریخ و امضا:

مجوز بهرهبرداري از پاياننامه

ردیت <i>ی</i> که توسط استاد راهنما به	بهرهبرداری از این پایاننامه در چهارچوب مقررات کتابخانه و با توجه به محدو
	شرح زیر تعیین می شود، بلامانع است:
	\square بهرهبرداری از این پایاننامه برای همگان بلامانع است.
	🗆 بهرهبرداري از اين پاياننامه با اخذ مجوز از استاد راهنما، بلامانع است.
	□ بهرهبرداری از این پایاننامه تا تاریخممنوع است.
دكتر محمد صادق	استاد راهنما:
حاجمحمدى	
	تاريخ:
	امضا:

الكساندرا الباكيان

"که با شعار "برای حذف همه موانع از راه علم"

To remove all barriers in the way of science

همه موانع از راه علم

هما معلم معلم الله علم الله علم الله علم المحانى علم المحانى المحا

قدرداني

در آغاز وظیفه خود میدانم از زحمات بیدریغ استاد راهنمای خود، جناب آقای دکتر جاج محمدی صمیمانه تشکر و قدردانی کنم که قطعاً بدون راهنماییهای ارزنده ایشان، این مجموعه به انجام نمی رسید.

همچنین لازم میدانم از فعالان حوزه نرمافزار آزاد که بدون هیچ چشمداشتی پاسخ همه پرسشهای علاقهمندان به این حوزه را میدهند و منابع فعالیتهای خود را در اختیار همهگان میگذارند.

در پایان از پدیدآورندگان بسته زی پرشین، مخصوصاً جناب آقای وفا خلیقی، که این پایاننامه با استفاده از این بسته، آماده شده است و همه دوستانمان در گروه پارسی لاتک کمال قدردانی را داشته باشم.

صائب ملایی ندیکی تابستان ۱۳۹۶

چکیده

در حال حاضر چالش های متنوعی در زمینه رایانش ابری مطرح است .تخصیص منابع یکی از چالش های مهم در سیستم های ابری است برای بیان مساله خود در این تحقیق ما به دنبال راهکاری هستیم تا از سریز شدن میزبان های فیزیکی جلوگیری کنیم . به این دلیل که سریز شدن میزبان های فیزیکی نقض کیفیت سرویس را به همراه دارد .در این رساله قصد داریم به این مساله بپردازیم که تخصیص ماشین های مجازی به میزبان های فیزیکی را به چه نحوی انجام دهیم که تا جای ممکن از سریز شدن میزبان های فیزیکی با تخصیص مناسب ماشین های مجازی روی آن ها جلوگیری کنیم .

واژگان کلیدی: سرویس ابری، ماشین مجازی، ترکیب، کلودسیم

فهرست مطالب

خ	صاویر	فهرست تص
د	. داول	فهرست ج
ذ	گوريتم ها	فهرست الاً
١	مقدمه	فصل ١:
۲	مقدمه ای بر رایانش ابری	1_1
۲	لایه ها و سرویس های سیستم های رایانش ابری	۲_۱
٣	مجازی سازی منابع و مفهوم ترکیب در سیستم های ابری	٣_١
۵	پرسش اصلی	4-1
۵	تعريف مساله	۵_۱
۵	اهداف تحقیق به صورت کلی و جزئی	۶_۱
۵	فرضیههای تحقیق	٧_١
۶	ابزارهای اندازهگیری	۸_۱
۶	جنبه نوآوری و جدید بودن تحقیق در چیست	9_1
۶	۱ مراحل پایاننامه	· • _ 1
٧	مروری بر روشهای انجام شده	فصل ۲:
٨	مروری بر روشهای انجام شده	1_7
٨	روش چوی	۲_۲
٩	روش چین	٣_٢
٩	روش باسكار	4_7

Z	فهرست مطالب
---	-------------

وش اسماعیل	۶_۲ ر
وش راجو	۲_۷ ر
وش دوان	۲_۸ ر
وش پاتل	۲_۹ ر
وش پیشنهادی	
قدمه	
جزیه و تحلیل روش پیشنهادی	
روش ترکیب ماشینهای مجازی	
ـ ست آورن میزان انرژی مصرفی	
لدست آوردن میزان نقض کیفیت سرویس	: ۵ <u>-</u> ۳
رسی و ارزیابی راه حل پیشنهادی	فصل ۴: بر
حيط آزمايش	
ایج مربوط به شبیه سازی	: Y_¥
جمع بندی و کارهای آینده	فصل ۵: ۔
جمع بندی و کارهای آینده	. 1_0
79	مراجع

فهرست تصاوير

۲۳	•	•	•	•	•			•	•			•	•	•	•		•	٨	ИM	Т	ىت	ىياس	ا س	ی ب	رژ	، ان	رف	ىص	ىه ە	تقايس	3	1_1
																														قايس		
																														عداد		
																														عداد		
																														قايس		
																														قايس		

فهرست جداول

۲۱	•														ی	مشخصات ماشینهای مجاز	١_	_ 4
۲۱																مشخصات ميزبان فيزيكي	۲_	_۴

فهرست الكوريتمها

فصل ۱ مقدمه

١

فصل ۱ . مقدمه

ا ـ ۱ مقدمه ای بر رایانش ابری 1

امروزه با پیشرفت روز افزون فناوری اطلاعات و افزایش برنامههای کاربردی، بیشک نیاز به محاسبات مسنجم و یکپارچه برای کاربران ضروری میباشد. همچنین با توجه به نیازهای کاربردی که کاربران دارند، نیاز است که کاربران بتوانند کارهای پیچیده خود را بدون اینکه نیازی به داشتن سخت افزارها و نرمافزارهای گران قیمت داشته باشند، از طریق اینترنت بتوانند انجام دهند. در واقع با این پردازشهای سخت و سنگین، نیاز به پردازندههای متنوع و زیاد دارند تا بتوانند این کارهای پیچیده را با آنها انجام دهند. بنابراین استفاده از تکنولوژی مانند رایانش ابری که با توجه به نیاز کاربران، پردازشهای محاسباتی آنها آنها را انجام دهد و نتایج را به آنها نمایش دهد، لازم میباشد. سیستمهای کاربران، بردازشهای محازی داده را با طراحی به صورت شبکههای مجازی، از نظر سختافزار، پایگاهداده، نرمافزار و ... توانمند کردند، بهطوری که کاربران بتوانند برنامههای کاربردی و موردنیاز خود را از هر جایی با کمترین هزینه دریافت کنند.

انجمن ملی استاندارها و تکنولوژی سیستمهای رایانش ابری را اینگونه تعریف میکند: سیستمهای رایانش ابری مدلی برای فراهم کردن دسترسی اَسان بر طبق نیاز کاربران به مجموعه ای از منابع که قابل تغییر از طریق اینترنت هی باشد. [۱]

۱-۲ لایه ها و سرویس های سیستم های رایانش ابری

سیستمهای رایانش ابری از مجموعه ای از لایهها تشکیل شده است که برنامههای کاربران بر روی این لایهها نصب و اجرا می گردد. این لایهها در سه سطح متفاوت به نامهای زیرساخت تحت یک سرویس (laas) ، پلت فرم تحت یک سرویس (Paas) و نرم افزار تحت یک سرویس (Saas) ارائه می شوند. در زیر به معرفی هر سرویس می پردازیم:

۱. سطح اول که با laaS شناخته می شود ، سرویسهای زیرساخت ابری نام دارد که سیستمی را که عموما به صورت یک بستر مجازی سازی شده می باشد را به صورت سرویس ارائه می دهند. در این سطح، کاربران به جای خرید سخت افزار ، نرم افزار و تجهیزات شبکه، تمام این امکانات و زیر ساختها را به صورت یک سرویس مجازی خریداری می کنند. درواقع تجهیزات مورد نیاز براساس یک مدل که بر پایه قیمت گذاری براساس استفاده آنها از منابع می باشد، ارائه می شود از آنجا که این منبع ممکن است تغییر کند، این چار چوب براساس استفاده آنها از منابع می باشد، ارائه می شود از آنجا که این منبع ممکن است تغییر کند، این چار چوب

¹ Infrastructure as a Service

² Platform as a Service

³ Software as a Service

فصل ۱. مقدمه

هم به صورت پویا براساس نیاز به منابع تغییر میکند. نمونه ارائه کننده این سرویسها مانند شرکت آمازون می باشد.

- ۲. در سطح بعدی که با PaaS نمایش داده می شود، محیطی برای تولید برنامه ها و همچنین تست آن ها را فراهم می آورد.
- ۳. در سطح بعدی که با SaaS نمایش داده می شود، در واقع این سطح نرمافزاری است که از طریق اینترنت و براساس الگوی قیمت گذاری مشخص شده براساس مصرف کاربر در اختیار آنها قرار داده می شود. برای نمونه می توانیم به گوگل داک در سایت گوگل اشاره کرد [۳، ۴].

۱_۳ مجازی سازی منابع و مفهوم ترکیب در سیستمهای ابری

مجازی سازی سطح جدیدی از انعطاف پذیری را برای استفاده از منابع ماشین های فیزیکی † (PM) فراهم می کند و امکان یکپارچه سازی منابع فیزیکی در قالب منابع مجازی را ایجاد می کند. در محیط سیستم های رایانش ابری از تکنیک مجازی سازی استفاده می شود. تکنیک مجازی سازی این امکان را فراهم می کند که چندین نرمافزار که در واقع روی ماشین های مجازی $^{\circ}$ (VM) قرار داده می شوند را همزمان بر روی تنها یک کامپیوتر اجرا کنیم از جمله مهم ترین اهداف مجازی سازی می توانیم به موارد زیر اشاره کنیم.

• بهرهوری و بهینه سازی در استفاده از منابع

با ویژگی مجازی سازی، ماشین های مجازی می توانند یکپارچه شوند و به سیستم های بیکار یا در حال استفاده فرستاده شوند. با استفاده از مجازی سازی، سیستم های موجود می توانند یکپارچه شوند. در واقع مجازی سازی یک فرصت برای یکپارچه سازی و بهینه سازی معماری سیستم ها، زیرساخت برنامه ها، پایگاه های داده، را فراهم می آورد که کارایی بالاتر را نتیجه می دهد.

- کمتر مصرف کردن برق و در نتیجه کاهش هزینه ها استفاده از مجازی سازی این امکان را فراهم می آورد که میزان انرژی مصرفی کاهش یابد و در هزینه ها و سرمایه های استفاده شده به طور قابل توجهی صرفه جویی به عمل آید.
- صرفه جویی شدن در فضا بزرگ بودن و جاگیر بودن سرورهای فیزیکی یک مساله بزرگ در مراکز داده ابری میباشد. مجازی سازی می تواند این مشکل را با یکپارچه کردن تعداد زیادی ماشین های مجازی بر روی

⁴ Physical machine

⁵ Virtual macine

فصل ۱ . مقدمه

تعداد کمی میزبانهای فیزیکی بر طرف کند.

در سیستمهای مجازی سازی ما از مفاهیمی مانند ماشین مجازی، ماشین فیزیکی، مهاجرت و ترکیب و استفاده می کنیم، طبق بیانات قبلی، ماشین مجازی مانند یک سیستم واقعی است که بر روی این ماشین می توانیم نرم افزارها و یا سیستم عامل های مورد نیاز کاربران را نصب کنیم، بعد از نصب نرم افزارها و یا سیستم عامل های مورد نظر روی این ماشین های مجازی، در نهایت این ماشین های مجازی بر روی یک ماشین فیزیکی که در واقع یک سرور کامپیوتری با قابلیت های بالایی است، اجرا می شود. هر ماشین فیزیکی می توانید به طور همزمان چندین ماشین مجازی با نیاز به منابع متفاوت را بر روی خودش اجرا کند. بین ماشین های فیزیکی زمانی که یک ماشین فیزیکی بار زیادی روی آن قرار بگیرد و منابع لازم را برای ماشین مجازی نداشته باشد، از امکانی به نام مهاجرت در بین ماشینهای فیزیکی می توانیم استفاده کنیم، استفاده می شود. با مهاجرت ماشین های مجازی می توانیم ماشین های مجازی را تا جای ممکن که آن ماشین فیزیکی ظرفیت دارد بر روی آن قرار دهیم و از منابع ماشین فیزیکی حداکثر استفاده را بکنیم و ماشین های فیزیکی مصرف انرژی را کاهش می دهد. این است که با بالا بردن بهره وری از منابع و حداقل کردن تعداد ماشین های فیزیکی مصرف انرژی را کاهش می دهد. این ماشینهای فیزیکی بیکار به میزبانهای دیگر و سپس تغییر وضعیت تکنیک با مهاجرت ماشینهای فیزیکی بیکار به میزبانهای دیگر و سپس تغییر وضعیت ماشینهای فیزیکی بیکار به میزبانهای دیگر و سپس تغییر وضعیت ماشینهای فیزیکی بیکار به حالت خواب سعی دارد مصرف انرژی را کاهش دهد و از منابع به طور موثری استفاده کند. [۵، ۲۰]

اگرچه ترکیب پویای ماشینهای مجازی ممکن است کارایی مراکز داده را بهبود بخشد، اما بهدلیل قرار گرفتن چندین ماشین مجازی روی یک ماشین فیزیکی، تضمینکردن سرویسهای مورد نظر به کاربران یکی از چالشهای بزرگ مربوط به این تکنیک میباشد. کیفیت سرویس مربوط به کاربران معمولاً با توافق نامه سطح خدمات ۱ رائه میشود [۷]

ترکیب بهینه ماشینهای مجازی شامل سه بخش می باشد:

- ۱. شناسایی ماشینهای فیزیکی سربار شده
- ۲. شناسایی ماشینهای فیزیکی کمبار شده
- ۳. انتخاب ماشینهای مجازی برای مهاجرت از ماشینهای سربار

⁶ Consolidation

⁷ Service level agreement

فصل ۱ . مقدمه

۱_۴ پرسش اصلی

در این رساله قصد داریم به این پرسش پاسخ دهیم که به چه نحوی عمل جایابی ماشینهای مجازی را به میزبانهای فیزیکی انجام دهیم تا از منابع میزبانهای فیزیکی به گونه ای مناسب استفاده کنیم تا بتوانیم در بهبود کیفیت سرویس و توان مصرفی موثر واقع شویم.

۱_۵ تعریف مساله

امروزه با چالشهای متنوعی در زمینه سیستمهای رایانش ابری مواجه هستیم که یکی از این چالشها چگونگی تخصیص منابع به منظور بهبود کیفیت سرویس و کاهش مصرف انرژی در مراکز داده ابری میباشد. افزایش مصرف انرژی در سیستمهای رایانش ابری اثرات مخربی از جمله افزایش گرمای جهانی، آلودگی محیط و ... را در پی خواهد داشت. برای بیان مسئله خود در این تحقیق ما به دنبال راهکاری هستیم تا از سرریز شدن میزبانهای فیزیکی جلوگیری کنیم. به این دلیل که سرریز شدن میزبانهای فیزیکی نقض کیفیت سرویس را به همراه دارد. در این رساله قصد داریم به این مساله بپردازیم که تخصیص ماشینهای مجازی به میزبانهای فیزیکی را به چه نحوی انجام دهیم که تا جای ممکن از سریز شدن میزبانهای فیزیکی با تخصیص مناسب ماشینهای مجازی روی آنها جلوگیری کنیم.همچنین به منظور مهاجرت ماشینهای مجازی کنترلی روی آنها به منظور مدیریت موثر تر صورت داده ایم.

۱_۶ اهداف تحقیق به صورت کلی و جزئی

هدف ما در این پایان نامه ارائه روشی برای کاهش میزبانهای فیزیکی سریز شده به منظور جلوگیری از نقض کیفیت خدمات و کاهش توان مصرفی میباشد. برای این منظور قصد داریم با جایابی بهینه ماشینهای مجازی تا جای ممکن از سریز شدن میزبانهای فیزیکی جلوگیری کنیم. همچنین قصد داریم با کنترل مهاجرت، در بهبود مصرف انرژی و کیفیت سرویس تاثیر بگذاریم.

۱_۷ فرضیههای تحقیق

- در محیط مورد نظر فرض کردیم ماشینهای مجازی و میزبانهای فیزیکی از یک نوع نیستند.یعنی محیط ناهمگن است.
 - درخواستها هیچ وابستگی به هم ندارند و مستقل هستند

فصل ۱. مقدمه

• هر درخواست روی یک ماشین مجازی قرار می گیرد.

۱_۸ ابزارهای اندازهگیری

برای ارزیابی روش پیشنهادی خود آن را با شبیه ساز کلادسیم مورد بررسی و ارزیابی قرار داده ایم .

۱_۹ جنبه نوآوری و جدید بودن تحقیق در چیست

در واقع قصد داریم با قرار دادن مناسب ماشینهای مجازی به میزبانی که منابع لازم را برای آن ماشین مجازی دارد از اضافه باری آن میزبان جلوگیری کنیم. همچنین اگر میزبانی در آینده دچار اضافه باری شد با اعمال سیاستی مناسب برای انتخاب ماشین مجازی از آن میزبان بتوانیم در بهبود کیفیت سرویس موثر تر واقع شویم.

۱ - ۱۰ مراحل پایاننامه

در ادامه تحقیق، در فصل دوم به بررسی روشهای قبلی بیان شده در زمینه کیفیت سرویس و مصرف انرژی می پردازیم. در فصل سوم، روش پیشنهادی به طور کامل شرح داده می شود. سپس در فصل چهارم به بررسی و ارزیابی روش پیشنهادی و کار مورد مقایسه می پردازیم. در نهایت، در فصل پنجم به جمع بندی پایان نامه و کارهای آینده می پردازیم.

فصل ۲

مروری بر روشهای انجام شده

۲_۱ مروری بر روشهای انجام شده

در مراکز داده ابری منابع مورد نیاز ماشینهای مجازی ممکن است از ظرفیت سروری که روی آنها میزبانی می شوند بیشتر شود. در نتیجه در مقیاس بزرگ این منابع نیاز به مدیریت خودکار دارند. انرژی مصرفی در محیطهای ابری از دو جنبه مورد بررسی قرار می گیرد جنبه اول مدیریت استاتیک انرژی که بیشتر مربوط به تجهیزات و سخت افزاری می باشد. در محیط ابری عمل ترکیب پویای ماشینهای مجازی با استفاده از مهاجرت ماشینهای مجازی و خاموش کردن میزبانهای فیزیکی بیکار باعث بهینه شدن مصرف منابع و کاهش مصرف انرژی می شود. با توجه به افزایش روز افزون محبوبیت سیستم های ابری، اگر انرژی ای که در منابع ارائه دهنده خدمات آن مصرف می شود کنترل نگردد، آنگاه هزینه ارائه سرویسهای آنها افزایش می یابد و در پی آن روی هزینه پرداختی سرویس گیرندگان تأثیر خواهد گذاشت. مسئله مهمتر اینکه این مسئله سهم زیادی در افزایش آلودگی محیط زیست خواهد داشت. لذا کشف راهکارهای بهره وری انرژی بسیار حیاتی است. در این فصل قصد داریم به بررسی روش های انجام شده در زمینه مدیریت ماشینهای مجازی، بهبود کیفیت سرویس و کاهش مصرف انرژی ببردازیم.

۲_۲ روش چوی

در این مقاله ا [۸] یک مرکز داده که در آن ارائهدهنده خدمات، ماشینهای مجازی را روی میزبانهای فیزیکی برای مشترکان خود برای محاسبات در شکل تقاضا است، تامین میکنند. برای مرکز داده ابری، یک الگوریتم ترکیب کار مبتنی بر دسته بندی کار (به عنوان مثال محاسباتی و داده ای) و استفاده منابع (مثل CPU و RAM) پیشنهاد شده است. علاوه بر این، یک الگوریتم ترکیب ماشین مجازی برای تعادل زمان اجرای کار و مصرف انرژی بدون نقض توافق نامه سطح خدمات الگوریتم ترکیب ماشین مجازی برای تعادل زمان اجرای کار و مصرف انرژی بدون نقض یا زمانبندی که از طرحهای آستانه تک استفاده میکنند، در این مقاله بر روی طرح دو آستانه (بالا و پایین) که برای ترکیب ماشین مجازی استفاده می شود، تمرکز شده است. به طور خاص، زمانی که یک میزبان با استفاده از منابع کمتر از آستانه پایین عمل میکند، همه ماشینهای مجازی روی میزبان برای مهاجرت به میزبانهای دیگر زمانبندی خواهند شد و پس از آن میزبان مربوطه خاموش خواهد شد، در حالیکه زمانی که یک میزبان با بهره وری منابع بالاتر از حد بالای آستانه عمل میکند، یک ماشین مجازی برای جلوگیری از ۱۰۰۰ درصد استفاده از منابع مهاجرت داده خواهد شد. براساس ارزیابی تجربی با داده های واقعی، ثابت شده که دسته بندی کارها براساس الگوریتم ترکیب انرژی محور به براساس ارزیابی تجربی با دادههای واقعی، ثابت شده که دسته بندی کارها براساس الگوریتم ترکیب انرژی محور به براساس ارزیابی تجربی با دادههای واقعی، ثابت شده که دسته بندی کارها براساس الگوریتم ترکیب انرژی محور به

¹ Choi

² service level agreement

كاهش قابل توجه انرژي بدون نقض SLA دست يافته است.

۲_۳ روش چین^۳

مهاجرت ماشینهای مجازی در محیط محاسبات ابری یک موضوع مهم برای حل خیلی از مسائل مانند توازن بار است که می تواند با مهاجرت ماشینهای مجازی از سرورهای بیش از حد بار شده و پربار و ترکیب سرورها که بار آنها بعد از مهاجرت به دیگر سرورها می تواند پایین آید. در این مقاله [۹] یک الگوریتم مهاجرت ماشین مجازی مبتنی بر حداقل سازی مهاجرت در رایانش ابری برای بهبود بهرهوری و پاسخ نیازها برای کاربر و محدودیت در نقض سطح کیفیت سرویس که به فرم SLA شناخته می شود، پیشنهاد شده است نتایج آزمایشات موثر بودن الگوریتم پیشنهاد شده را در مقایسه با الگوریتمهای موجود نشان می دهد اثر بخشی این تکنیکها به حل خیلی از مسائل مثل موازنه بار ، حفظ سیستم و غیره به منظور افزایش کارایی با استفاده از سیستمهای ابری و همچنین کیفیت خدمات به مشتریان کمک می کند. در این مقاله یک الگوریتم تصمیم گیری کارامد مهاجرت ماشین مجازی در محیط ابری برای حل مسائل بالا ارائه شده است.

۲_۲ روش باسکار^۴

با رشد اخیر رایانش ابری، چالش بزرگ ارائه دهندگان سرویس مساله طراحی استراتژی موثری برای مدیریت منابع اشتراکی با برنامههای متفاوت است. مکانیزم مدیریت منابع باید اشتراک گذاری موثری از منابع را برای ماشینهای مجازی با تضمین بهره برداری بهینه از منابع میزبانهای فیزیکی در دسترس انجام دهد. مکانیزم مدیریت منابع به کاربران ابر و همچنین ارائه دهندگان خدمات اجازه می دهد که استفاده موثری از منابع در دسترس خود داشته باشند. این مقاله [۱۰] برنامه ای از مدل مجموعه راف برای فراهم کردن ماشینهای مجازی پیشنهاد داده است روش پیشنهاد شده از مشخصات/ دانش براساس روشهای کاهش استفاده میکند این روش قوانین را برای کاهش ویژگیهای غیرضروری برای ماشینهای مجازی تولید میکند این قوانین به مدیریت ماشینهای مجازی برای انتخاب موثر ماشین مجازی کمک میکند. این مقاله مشکلات تامین ماشین مجازی مورد تقاضا را مورد بررسی قرار داده است . تکنیک کاهش مبتنی بر دانش برای مساله تامین ماشین مجازی براساس منابع موجود را در نظر گرفته است . روش پیشنهاد شده قوانینی برای تصمیمات موثر در انتخاب و نگاشت برنامهها به ماشینهای مجازی برای مدیریت ماشینهای مجازی برای مدیریت ماشینهای مجازی برای مدیریت ماشینهای مجازی برای کند.

³ Chein

⁴ Bhaskar

۲_۵ گودرزی^۵

در این کار [۱۱]، یک توافقنامه سطح خدمات (SLA) مبتنی بر روش مدیریت منابع برای مراکز داده ابری ارائه شده است، که انرژی سرورهای موجود، محدودیت اوج انرژی و مصرف توان خنک کنندهها را در نظر گرفته است. هدف این مدیر منابع به حداقل رساندن هزینههای عملیاتی مراکز داده است. ساختار سلسله مراتبی روش پیشنهاد شده مديريت منابع را مقياس پذير مي سازد. روش مديريت منابع پيشنهاد شده به طور همزمان سرور و مصرف توان خنک کنندهها را در نظر میگیرد و پیچیدگی تصمیم گیری در مدیریت منابع و SLA را در سیستمهای رایانش ابری تضمین میکند. در نظر گرفتن SLA و حالت مراکز داده در شناسایی مقدار منابع مورد نیاز برای تخصیص به برنامه ها باعث کاهش قابل توجهی در هزینههای عملیاتی مراکز داده شده است. اثربخشی طرح مدیریت پیشنهاد شده در مقایسه با كارهاى قبلى با استفاده از يك ابزار شبيه سازى جامع نشان داده شده است. الگوريتمهاى مديريت منابع پيشنهاد شده هزینه های عملیاتی مراکز داده را حدود ۴۰ درصد کاهش داده در حالی که SLA حفظ شده است و همچنین کاهش زمان اجرای الگوریتمهای مدیریت تا ۸۶ درصد با توجه به روش مدیریت متمرکز را بیان میکند .در این مقاله یک ساختار سلسله مراتبی مدیریت منابع برای سیستم ابری پیشنهاد شده است. ساختار ارائه شده مقیاس پذیری و کارایی بالایی را در مقایسه با یک ساختار متمرکز در کارهای قبلی نشان میدهد. علاوه بر انعطاف پذیری مبتنی بر SLA با توجه به ویژگی ماشینهای مجازی برای مساله مدیریت منابع، که یک فاکتور مهم برای عملکرد بالاتر روش در مقایسه با روشهای قبلی است. علاوه بر این، از دست دادن کارایی روش غیرمتمرکز با توجه به نسخه متمرکز شده الگوریتم کمتر از ۲ درصد ۲۷ بار زمان اجرای کوتاهتری داشته است. نتایج الگوریتم پیشنهاد شده در تناسب انرژی بالاتر در کل مراکز داده، نقض SLA و هزینه مهاجرت کمتر و بهره وری سیستمهای خنک کننده بالاتری را نتیجه شده است. ساختار مدیریت پیشنهاد شده برای مهاجرت ماشینهای مجازی محلی و تنظیم تخصیص منابع برای جلوگیری از افزایش دما، اوج توان و شرایط SLA ضروری است.

۲_۶ روش اسماعیل^۶

به منظور اجرای بهینه ترکیب ماشینهای مجازی تحت محدودیتهای کیفیت سرویس (QoS) مبتنی بر مصرف انرژی در مراکز داده ابری که حاوی منابع فیزیکی ناهمگن است، باید یک چارچوب که ترکیبی از بسیاری از الگوریتمهای زیر سیستمی میباشد که شامل پیشبینی انتخاب، قرار دادن، و غیره است ایجاد شود. چندین استراتژی به منظور حداقل رساندن مصرف انرژی در محیط ابری می تواند استفاده شود، اما مهمتر از آن این است که به حداقل رساندن

⁵ Goudarzi

⁶ Ismaeel

از طریق خاموش کردن میزبان انتخاب شده کم بار بعد از جابجایی همه ماشین های مجازی روی سرور انتخاب شده انجام می شود. پیش بینی منابع مورد نیاز در یک دوره زمانی معین درحال حاضر اولین و مهمترین گام در تامین پویا برای براورد انتظارات Qos در بارکاریهای متغییر میباشد. به عبارت دیگر، در این مقاله [۱۲] از الگوهای استفاده شده قبلی برای برآورد بارکاری درخواست شده برای آینده ماشین مجازی در مراکز داده استفاده شده است. اولین گام در فرایند پیش بینی چارچوب مصرف انرژی به دسته دادههای تاریخی (مهم) است. در این مقاله، یک دسته برای هر دو کاربر و درخواستهای ماشین مجازی پیشنهاد شده است. بررسی گوگل واقعی که از ویژگیهای بیش از ۲۵ میلیون کار جمع آوری شده بیش از یک دوره ۲۹ روزه به عنوان مثال در این مقاله استفاده شده است. نظارت باید برای جمع آوری داده از سطوح متفاوت از زیرساخت کل محاسبات (مثل ماشین مجازی، شبکه و ذخیره سازی) و منابع نرم افزاری (مثل وب سرور ، دیتابیس سرور و برنامه ماشین مجازی) با استفاده از ابزاری مثل اپناستک استفاده شود. انرژی مصرف شده با هر بخش از سخت افزار در مراکز داده می تواند با استفاده از ابزاری مثل مدیر زیرساخت مراکز داده (DCIM) نظارت شود. روش ارائه شده در این مقاله برای پیش بینی ماشین مجازی دسته کاربر و دسته ماشین مجازی برای دست یافتن به پیش بینی بهتر مصرف انرژی مراکز داده ابری ترکیب شده است. الگوریتم فازی c-means نتایج بهتری را از روش مبتنی بر k-means برای هر دو دسته، دسته کاربر و ماشین مجازی برای تعداد كمي از دسته ها كه بسيار مهم در كاهش تعداد ورودي در يك سيستم پيش بيني هستند نشان مي دهد. صرف نظر از الگوریتم دسته بندی استفاده شده، دو هدف باید در نظر گرفته شود: کاهش خطا و حفظ سربار کم. به عبارت دیگر، اگرچه افزایش تعداد دسته ها در یک الگوریتم خطا را کاهش می دهد، این کار مساله پیش بینی و در نتیجه بهینه سازی مصرف انرژی را در مراکز داده ابری پیچیده میکند.

ee روش راجو ee

محاسبات ابری یک الگوی رایانشی توزیعشده در مقیاس بزرگ است که در آن یک استخر از منابع به صورت پویا مقیاس پذیر و مجازی مثل توان محاسباتی، ذخیره سازی، سیستم عامل و سرویس و تقاضا برای مشتریان خارجی از طریق اینترنت تحویل داده می شود. در زمانبندی محاسبات ابری فرایند تصمیم گیری برای تخصیص منابع در قالب ماشین های مجازی برای برنامه های در خواست شده می باشد. در این مقاله [۱۳] دو مرحله زمانبندنی مهلت آگاه برای زمانبندی ماشین های مجازی برای برنامه های در خواست شده در محاسبات ابری از مشتریان دریافت شده پیشنهاد شده است. در این مدل هر برنامه به دو نوع ماشین مجازی برای تکمیل آن کار نیاز دارد. این مدل ماشین های مجازی را به عنوان منابع برای برنامه ها با در نظر گرفتن به عنوان منابع برای برنامه با در نظر گرفتن

⁷ Raju

مهلت با توجه به زمان پاسخ و زمان انتظار تخصیص می دهد. یک محیط شبیه سازی توسعه داده شده و ارزیابی شده برای ارزیابی این مدل با درنظر گرفتن معیارهای ارزیابی از میانگین زمان چرخش، میانگین زمان انتظار و نقض در مهلت زمانی که با الگوریتمهای اول بهترین (FCFS) و استراتژی زمانبندی کوتاهترین اول (SJF) مقایسه شده است. این مدل معیارهای ارزیابی را با فاکتور ثابت در مقایسه با سایر روشهای زمانبندی کاهش می دهد. زمانبندی ۱ جاب روی دو نوع از ماشینهای مجازی با استفاده از الگوریتم زمانبندی مهلت آگاه دو مرحله ای عملکرد بهتری را در مقایسه با دیگر روشهای زمانبندی می دهد نتایج تجربی نشان می دهد که الگوریتم زمانبندی دو مرحله ای مهلت آگاه زمان انتظار میانگین، زمان برگشت میانگین، نقض مهلت با توجه به زمان انتظار میانگین نقض مهلت با توجه به زمان انتظار میانگین و مرحله ای کاهش می دهد. تعداد نقض مهلت جابها با توجه به زمان پاسخ و زمان انتظار با در نظر گرفتن فاکتور ثابت در الگوریتم دو مرحله ای مهلت آگاه در مقایسه با الگوریتمهای قبلی کاهش یافته است.

$^{\wedge}$ روش دوان $^{\wedge}$

یکی از چالشهای موجود در زمینه سیستمهای ابری، چگونگی کاهش مصرف انرژی با حفظ ظرفیت محاسباتی بالا است. روشهای موجود اساساً برروی افزایش بهرهبرداری منابع تمرکز کردهاند . برنامههای کاربردی با منابع مورد نیاز متفاوتی برروی ماشینهای مجازی اجرا می شوند که برروی کارایی سیستم و مصرف انرژی تأثیر میگذارند. همچنین ممکن است که اوج بار ^۹ لحظهای منجر به این شود که در سودمندی مصرف انرژی تأثیر بگذارد .در تحقیق دیگری ممکن است که اوج بار ^۹ لحظهای منجر به این شود که در سودمندی مصرف انرژی تأثیر بگذارد .در تحقیق دیگری اله آلگوریتم زمانبندی جدیدی با نام PreAntPolicy ارائه شده است که شامل مدل پیش بینی براساس مکانیزمهای فرکتال ^{۱۹} و زمانبندی براساس بهبود الگوریتم کلونی است. محققین مقاله با استفاده از تحلیلهای زیاد و آزمایشات شبیهسازی در بارکاری واقعی محاسبات کلاسترهای گوگل توانستند کارایی کار خود را در سودمندی مصرف انرژی و بهرهوری منابع نشان دهند. علاوه بر این روش پیشنهادی محققین مقاله مدل ذخیره تأمین ظرفیت پویای مؤثری را برای برنامههای کاربردی با نیازهای منابع متفاوت در محیط محاسبات ناهمگن را پیشنهاد میکند که می تواند مصرف منابع سیستم و انرژی را کاهش دهد به طوری که زمانبندی مناسبی را در زمان اوج بار فراهم میکند. در آزمایشات شبیهسازی خود از الگوریتمهای زمانبندی اول بهترین حریصانه ۱۱ ، نوبت چرخشی ۱۲ (که معمولاً توسط برخی از شبیهسازی خود از الگوریتمهای و حداقل توان مهاجرت استفاده کردند. نتایج شبیهسازی نشان می دهد که روش محاسبات ابری استفاده می شود) و حداقل توان مهاجرت استفاده کردند. نتایج شبیهسازی نشان می دهد که روش

⁸ Duan

⁹ Peak loads

¹⁰ Fractal

¹¹ Greedy First-Fit (FF)

¹² Round-Robin (RR)

پیشنهادی مقاله در مقایسه با الگوریتم اول بهترین %۱۷/۷۶ و در مقایسه با الگوریتم نوبت چرخشی %۱۸/۷۵ کاهش در مصرف انرژی داشتهاست، در حالیکه از نقض کیفیت سرویس درخواست شده تا جای ممکن جلوگیری شده است.

۲_۹ روش پاتل^{۱۳}

یکی از چالشهای مهم در سیستمهای ابری، تخصیص منابع است. در تحقیق دیگری [10] الگوریتمیبه نام بهترین کاهش اصلاح شده ^{۱۴} به صورت الگوریتم انرژی محور EABFD پیشنهاد شده است روش EABFD در ابتدا دو صف از میزبانهای فیزیکی کم بار و خالی را تشکیل می دهد. صف میزبانهای فیزیکی خالی و صف میزبانهای کم بار را در ابتدا با هدف بهبود تخصیص ماشینهای مجازی مقداردهی اولیه میکند. طبق این الگوریتم، همه ماشینهای مجازی براساس کاهش بهره وری از پردازنده آنها مرتب می شوند. سپس این الگوریتم ، بهترین میزبان فیزیکی را در میان همه میزبانهای کم بار و خالی پیدا میکند. برای این منظور، در ابتدا، میزبانهای کم بار را بررسی میکند ،در نهایت ،اگر در میان همه میزبانهای کم بار، میزبان فیزیکی مورد نیاز را پیدا نکند، این الگوریتم یک میزبان از میزبانهای حالی لیست برای تخصیص ماشین مجازی روی آن را روشن میکند. این الگوریتم تلاش دارد تعداد میزبانهای روشن را به منظور کاهش مصرف انرژی حداقل کند در این مقاله صرفه جویی در میزان انرژی با ترکیب موثر ماشینهای مجازی انجام می شود.

¹³ Pate

¹⁴ Modified best fit decreasing

فصل ۳ روش پیشنهادی

۱_۳

بهبود و حفظ کیفیت سرویس یکی از موضوعات مهم در زمینه سیستمهای رایانش ابری است. برای این منظور، نیاز است تا برنامه ریزی های مختلف و سیاستهای متفاوتی در زمینه مدیریت این سیستمها در نظر گرفته شود تا بتوانیم با مدیریت مناسب منابع از افزایش مصرف انرژی و نقض شدن کیفیت سرویس جلوگیری کنیم. اگر مدیریت مناسب و روشهای مناسبی در جای دهی ماشینهای مجازی به ماشینهای فیزیکی صورت گیرد می توانیم در بهبود کیفیت سرویس و انرژی مصرفی تاثیر بگذاریم. سوالاتی که قصد داریم در این تحقیق به آنها بپردازیم به شرح زیر است:

- به چه نحوی می توانیم جای دهی مناسبی از ماشینهای مجازی روی ماشینهای فیزیکی فراهم آوریم ؟
 - به چه نحوی در استفاده مناسب از منابع ماشین های فیزیکی تاثیر میگذاریم؟
- چه روشی برای کنترل مهاجرت ماشینهای مجازی به منظور انتخاب ماشین مجازی مناسب استفاده کنیم؟

آنچه در این پایاننامه قصد داریم به آن توجه کنیم شامل جای دهی مناسب ماشینهای مجازی به ماشینهای فیزیکی و مدیریت کردن مهاجرت ماشینهای مجازی میباشد. در ادامه به بررسی روش پیشنهاد شده و پارامترهای مورد ارزیابی می پردازیم.

۲-۳ تجزیه و تحلیل روش پیشنهادی

سیستم رایانش ابری مورد استفاده در روش پیشنهادی یک محیط سطح Iaas با ماشینهای فیزیکی متنوع و ناهمگن می باشد. در سیستمهای ابری، چندین کاربر مستقل درخواستهایشان را برای N ماشین مجازی ناهمگن که توان پردازشی آنها (بهره پردازنده) در واحد MIPs تعریف می شود و همچنین مقدار حافظه و پهنای باند شبکه است، ارسال میکنند. به این ترتیب فراهم آورنده ی ابر باید بر روی میزان منابع داده شده به ماشین مجازی و بار آن و نیز تغییرات مصرف انرژی ماشین فیزیکی مورد نظر نظارت داشته باشد. برای بیان روش خود، درخواستها بر روی ماشینهای مجازی قرار می گیرند. ماشینهای مجازی به صورت مجموعه $VM = (VM_1, VM_2, ..., VM_n) = VM$ قرار می شوند و این ماشینهای مجازی بر روی ماشین فیزیکی به صورت $VM = (PM_1, PM_2, ..., PM_n) = PM$ قرار می گیرند. زمانی که ماشینهای مجازی بر روی ماشینهای فیزیکی قرار می گیرند، بعد از این جای دهی ممکن است می میزبان با استفاده زیاد از منابع آن دچار اضافه باری شود و نتواند به درخواست کاربر پاسخ دهد و نقض کیفیت سرویس را ایجاد می کند. در این کار سعی داریم با جایابی بهینه ماشینهای مجازی تا جای ممکن از سرریز شدن میزبانهای فیزیکی جلوگیری کنیم.

¹Millions Instructions Per Second

هدف ما در این پایان نامه ارائه روشی برای کاهش ماشینهای فیزیکی سرریز شده به منظور جلوگیری از نقض کیفیت خدمات و کاهش توان مصرفی میباشد. به منظور جای دهی مناسب ماشینهای مجازی به ماشینهای فیزیکی با توجه به منابع مورد نیاز ماشین مجازی و منابع در دسترس میزبان فیزیکی، میزان منابع اختصاص داده شده به ماشین مجازی را تخمین میزنیم و هر ماشین مجازی به میزبانی تخصیص میدهیم که منابع اختصاص داده شده به آن ماشین مجازی بیشتر از میزبان درخواست شده توسط آن ماشین مجازی باشد. برای این منظور معیاری که در فرمول (۳–۱) در زیر بیان شده است را مطرح میکنیم.

$$Factor = \frac{VM_{resource\ requirements}}{PM_{available\ resource}} \tag{1-7}$$

برای هر ماشین فیزیکی این معیار را محاسبه میکنیم و میزبانی را به عنوان میزبان مورد نظر برای جای دهی ماشین مجازی انتخاب میکنیم که کمترین مقدار را در بین دیگر ماشین های فیزیکی دارد. علت این انتخاب این است که هرچه مقدار این معیار کمتر باشد نشان دهنده این است که منابع موجود ماشین فیزیکی نسبت به منابع مورد نیاز ماشین مجازی بیشتر است و احتمال کمتری وجود دارد که آن میزبان دچار سرریزی شود.

۳-۳ روش ترکیب ماشینهای مجازی

بعد از اینکه ماشینهای مجازی به ماشین فیزیکی مناسب تخصیص داده می شود، مسئله ی ترکیب پویای ماشینهای مجازی به منظور استفاده بهینه از منابع و بهبود کیفیت سرویس به T بخش تقسیم می شود که شامل شناسایی میزبانهای فیزیکی که به عنوان پربار در نظر گرفته می شوند که نیاز به مهاجرت یک یا چند ماشین مجازی از این میزبان فیزیکی برای جلوگیری از نقض کیفیت خدمات می باشد. در مرحله بعد انتخاب ماشین مجازی از ماشین فیزیکی سرریز شده می باشد تا از نقض کیفیت سرویس جلوگیری شود. گام بعدی شناسایی زمانی که یک میزبان فیزیکی به عنوان کمبار 2 در نظر گرفته می شود که نیاز به مهاجرت همه ی ماشینهای مجازی از این ماشین فیزیکی دارد و تغییر حالت ماشین فیزیکی به حالت خاموش است [۹، ۱۵] . همچنین ما قصد داریم کنترلی در سیاست انتخاب ماشین مجازی از ماشین فیزیکی مناسب تخصیص داده فیزیکی پربار اعمال کنیم . برای این منظور ، بعد از اینکه ماشین های مجازی به ماشین فیزیکی مناسب تخصیص داده می شود ممکن است باز هم میزبانی وجود داشته باشد که دچار اضافه باری شود . براساس مقاله [۹، ۱۵] از حد آستانه می شناسایی ماشین های سرریز شده استفاده می کنیم .

این حد آستانه به صورت پویا براساس بار قرار گرفته روی هر میزبان تعریف می شود. زمانی که یک میزبان دچار

²Under load

³Upper threshold

اضافهبار می شود نیاز است یک یا تعدادی از ماشینهای مجازی آن میزبان به منظور جلوگیری از نقض کیفیت خدمات کاربر مهاجرت داده شود. در مقاله [۱۵] سه سیاست برای انتخاب ماشین مجازی از ماشین فیزیکی سرریز شده ارائه شده است. روش اول MU یا حداقل بهره پردازنده، که در این روش ماشین مجازی برای مهاجرت از میزبان سرریز شده انتخاب می شود که دارای حداقل استفاده از پردازنده است. روش دوم روش تصادفی است که یک ماشین مجازی به صورت تصادفی انتخاب می شود. روش بعدی برای مهاجرت ماشینهای مجازی، روش زمان مهاجرت حداقل به صورت تصادفی انتخاب می شود. روش بعدی برای مهاجرت ماشینهای باند کمتری را دارد را برای مهاجرت انتخاب می کند. فرمول (۳–۲) این سیاست را بیان می کند: [۱۵]

$$v \in V_j | \forall a \in V_j, \frac{RAM_u(v)}{NET_j} \le \frac{RAM_u(a)}{NET_j}$$
 (Y_Y)

زمان مهاجرت با مقدار RAM استفاده شده VM تقسیم بر پهنای باند شبکه در دسترس برای ماشین فیزیکی j برآورد می شود. یک مجموعه از VM های است که اخیراً به میزبان فیزیکی j تخصیص یافته است. مقدار RAM استفاده شده اخیر توسط j است. مهنای باند شبکه در دسترس برای میزبان فیزیکی j است. ما سعی داریم تغییری در این سیاستها اعمال کنیم تا بتوانیم در انتخاب ماشین مجازی مناسب موثر تر واقع شویم. اگر چندین ماشین مجازی مقدار حافظه یکسان داشته باشند در روش MMT

فاکتوری را برای این حالت در نظر نگرفته است. ما قصد داریم زمانی که این حالت اتفاق افتاد ماشین مجازی که استفاده از پردازنده بیشتری دارد را برای مهاجرت انتخاب کنیم. زیرا با این انتخاب آن میزبان فیزیکی احتمال بیشتری دارد که از حالت اضافه باری خارج شود. همچنین در حالت MU اگر چند ماشین مجازی دارای بهره پردازنده یکسان بودند آن ماشین مجازی را انتخاب کنیم که حداقل مقدار حافظه را دارد تا زمان مهاجرت را حداقل کرده و از نقض کیفیت سرویس جلوگیری کنیم. برای شناسایی میزبانهای فیزیکی با بار کمتر از حد نرمال، طبق [1۵] ماشین فیزیکی که نسبت به دیگر ماشینهای فیزیکی از منابع خود کمتر استفاده میکند به عنوان کم بار در نظر گرفته می شود. در نهایت برای قرار دادن ماشینهای مجازی از این ماشین فیزیکی روی ماشین های فیزیکی دیگر تلاش میکند و ماشین فیزیکی مبدأ زمانی که همهی ماشینهای مجازی مهاجرت داده شد به حالت خواب تغییر پیدا میکند.

۳_۴ بدست آورن میزان انرژی مصرفی

برای بدست آوردن میزان انرژی استفاده شده توسط ماشینهای فیزیکی از فرمول ارائه شده در [۱۵] استفاده میکنیم. طبق آزمایشات انجام شده ، بهرهوری و استفاده از پردازنده در مقایسه با دیگر منابع یک ماشین فیزیکی انرژی مصرف

⁴Minimum Migration Time

فصل ۳. روش پیشنهادی

میکند. برای این منظور فرمولی که برای محاسبه انرژی مصرفی ماشین فیزیکی بیان شده است براساس بهره وری و استفاده از پردازنده میباشد. فرمول (۳–۳) در رابطه زیر، فرمول انرژی را بیان میکند: [۱۵]

$$E = \int_{t_0}^{t_1} P(u(t)) dt$$
 (r_r)

طبق فرمول بالا، از آنجا که استفاده از پردازنده ممکن است با گذشت زمان به علت تغییر پذیری بار کاری، تغییر کند، از این رو، بهره وری پردازنده تابعی از زمان است و به عنوان (u(t) ارائه میشود. E به صورت انتگرال تابع مصرف انرژی روی یک دوره زمانی تعریف می شود که در رابطه بالا نمایش داده شده است. در روش پیشنهادی طبق فرمول بالا به محاسبه مصرف توان ماشینهای فیزیکی و سپس مصرف انرژی آنها به صورت منفرد محاسبه شده و به صورت زیر مجموع مصرف انرژی ابر را محاسبه می کنیم: [10]

$$ET_t = \sum_{i=1}^n Ei \tag{f-r}$$

طبق فرمول بالا، n تعداد کل ماشین های فیزیکی، Ei انرژی مصرف شده توسط میزبان i ام تا زمان t، ETt مجموع کل انرژی مصرفی ابر در زمان t است.

-2 بدست آوردن میزان نقض کیفیت سرویس

کیفیت سرویس بحث مهمی در زمینه سیستم های ابری است. نقض شدن کیفیت در خواست شده از طرف کاربر برای فراهم آورنده ی ابر بسیار نامطلوب خواهد بود. به این دلیل که باید در مقابل کیفیت سرویس نقض شده جریمه های مالی پرداخت شود. کیفیت سرویس در محیط ابر معمولاً به فرم SLA (توافق نامه سطح خدمات) شناخته می شوند. از آنجایی که بر روی یک ماشین فیزیکی بیش از ظرفیت آن ماشین مجازی قرار داده شده است، پارامتری که می تواند مورد نظارت قرارگیرد، میزان مصرف منابع آن ماشین فیزیکی می باشد. در محیط ابری عواملی مثل مهاجرت و سربار شدن میزبان های فیزیکی باعث نقض خدمات می شود. برای این منظور از دو پارامتر طبق [۱۵، ۱۵] برای محاسبه نقض کیفیت خدمات استفاده می کنیم. این دو پارامتر شامل: زمان نقض های هر میزبان (SLATAH) زمانی که میزبانها از تمام بهره خود استفاده می کنند که باعث نقض خدمات می شود فرمول ۳ ـ ۵ برای این منظور در زیر بیان شده است: [۱۶]

$$SLATAH = \frac{1}{N} \sum_{i=1}^{N} \frac{T_{si}}{T_{ai}}$$
 (0-r)

فصل ۲. روش پیشنهادی

از تمام بهره خود استفاده میکند که نقض T_{si} زمان کل در طولی که ماشین فیزیکی از تمام بهره خود استفاده میکند که نقض کیفیت خدمات را ایجاد میکند. T_{ai} زمان کل ماشین فیزیکی ا که در حالت فعال است. پارامتر بعدی کاهش کارایی کیفیت خدمات را ایجاد میکند. T_{ai} زمان کل ماشین فیزیکی ا که مربوط به زمانی است که مهاجرتی صورت میگیرید که باعث کل با مهاجرت ماشینهای مجازی (PDM) است که مربوط به زمانی است که مهاجر T_{ai} نقض کارایی می شود: [۱۶]

$$PDM = \frac{1}{M} \sum_{j=1}^{m} \frac{C_{dj}}{C_{rj}}$$
 (9_\mathbf{T})

M تعداد VM ها، C_{rj} نقض کارایی VM_j که با مهاجرت ایجاد می شود را برآورد می کند. C_{rj} کل ظرفیت پردازنده MIPS در طول دوره زندگی آن است.در آزمایشات C_{dj} با VM_j از بهره پردازنده در خواست شده توسط VM_j برآورد شده است.

این دو معیار هر دو در نقض کیفیت سرویس موثر هستند.هم زمانی که یک ماشین فیزیکی دچار اضافه باری می شود و هم زمانی که مهاجرتی صورت می گیرد. برای این منظور از یک معیار ترکیبی که شامل هر دو معیار است استفاده می شود [۱۶].

$$SLAV = SLATAH.PDM (V_{-}Y)$$

در این فصل روش پیشنهادی به طور کامل شرح داده شد. در فصل بعدی پارامترهای ارزیابی تعریف میشود و روش پیشنهادی به کمک آنها مورد ارزیابی قرار میگیرد.

فصل ۴

بررسی و ارزیابی راه حل پیشنهادی

جدول ۲-۱: مشخصات ماشین های مجازی

VM	Ram	MIPS	PesNumber	BW
0	۸۷۰	۵۰۰	1	10/000
١	1740	1/000	١	10/000
۲	1740	7/000	١	10/000

جدول ۲-۲: مشخصات میزبان فیزیکی

Host	Ram	MIPS	PesNumber	BW				
0	*GB	7990	۲	1/000/000				
١	*GB	۱۸۶۰	۲	1/000/000				

۱_۴ محیط آزمایش

به منظور بررسی و ارزیابی کار خود و روش مورد مقایسه ، شبیه ساز انتخاب شده کلودسیم ا

ورژن ۳/۰ می باشد که یکی از ابزارهای مهم و معروف شبیه سازی در سیستم های ابری می باشد. کلودسیم یک چارچوب شبیه سازی جدید، عمومی و قابل توسعه می باشد این ابزار به عنوان یک چارچوب شبیه سازی در دانشگاه Melbourne توسعه یافته است. امکان مدلسازی بدون لایه، شبیه سازی روی زیرساخت طراحی شده محاسبات ابری را فراهم می آورد این ابزار پلتفرمی است که می تواند برای مدل کردن مراکز داده ،ماشین های فیزیکی مماشین های مجازی به میزبان های فیزیکی استفاده شود این ،ماشین های مجازی به میزبان های فیزیکی استفاده شود این چارچوب یک موتور مجازی سازی را با جنبه های افزوده ای برای مدلسازی ایجاد و مدیریت موتورهای مجازی در یک مرکز داده ای ارائه می کند [۱۷] . به منظور شبیه سازی روش خود ، محیط را ناهمگن در نظر گرفته ایم . برای این منظور، طبق مقاله [۱۵] که به عنوان مقاله پایه در نظر گرفته شده است، ماشین های فیزیکی را در دو حالت دوم بهره گرفته ایم در خالت اول ، بهره پردازنده با ۱۸۶۰ میلیون دستورالعمل در ثانیه (MIPS) ۲ می باشد و در حالت دوم بهره پردازنده ماشین فیزیکی با ۲۶۶۰ میلیون دستورالعمل در ثانیه می باشد . مقدار حافظه RAM ۴ گیگابایت و پهنای باند شبکه ۱ GB/s برای هر ماشین فیزیکی در نظر گرفته ایم ،ماشین های مجازی نیز دارای ویژگی های ناهمگن می باند شبکه ۱ GB/s برای هر ماشین فیزیکی در نظر گرفته ایم ،ماشین های مجازی نیز دارای ویژگی های ناهمگن می باشد برای ماشین های مجازی نیز طرفیت پردازشی ۱۵۰۰۰ ، ۲۰۰۰ و پهنای باند ۱۰۰۰۰ در نظر گرفته ایم .

¹ CloudSim

² Million Instructions Per Second

۲_۲ نتایج مربوط به شبیه سازی

 B_M در نمودارهای مورد آزمایش ، برای بیان کردن روش خود از واژه $S_S^{"}$ و برای بیان روش مورد مقایسه از واژه $S_M^{"}$ استفاده کرده ایم.

برای مقایسه کار خود و روش مورد مقایسه طبق شبیه ساز کلودسیم به بررسی انرژی مصرف شده در کل اجرای برنامه و نقض کیفیت سرویس رخ داده شده که در فصل ۳ آن را بررسی کردیم ، پرداخته ایم.

در شکل (۲-۱) و (۲-۲) به بررسی توان مصرف شده با سیاست MMT و MW پرداخته ایم. توان مصرفی کل مراکز داده بر حسب کیلو وات اندازه گیری می شود. به منظور مقایسه کار خود ،کار خود و مقاله پایه را با تعداد ماشین های مجازی متفاوتی که شامل ۱۰۰، ۱۵۰، ۲۵۰ می باشد مورد بررسی قرار داده ایم.

³ Suggested solution

⁴ Basic method

شکل ۴_۱: مقایسه مصرف انرژی با سیاست MMT

شكل ٢-٢: مقايسه مصرف انرژي با سياست MU

همانطور که از شکل (+1) و (+1) ملاحظه می شود، با تعداد متفاوتی از ماشین های مجازی در حالات مختلف توان مصرف شده روش پیشنهادی نسبت به کار مورد مقایسه کاهش داشته است. دلیل این کاهش در این است که ما در ابتدا زمانی که ماشین های مجازی را به میزبان های فیزیکی تخصیص دادیم سعی کردیم از منابع میزبان های فیزیکی مناسب استفاده کنیم سعی کردیم با اعمال جای دهی مناسب در حفظ تعادل بار که در بهبود توان مصرف تاثیر گذار است ، موثر واقع شویم.

شکل ۴_۳: تعداد مهاجرتهای رخ داده با سیاست MMT

در شکل (*-*) و (*-*) به بررسی تعداد مهاجرت های رخ داده در کل اجرای برنامه ها پرداخته ایم تعداد ماشین های مجازی ۱۵۰، ۱۵۰، و ۲۵۰ در نظر گرفته شده است.

همانطور که در شکل (۴_۳) ملاحظه می شود، به ازای تعداد مختلف ماشین های مجازی روش پیشنهادی بهبودی در تعداد مهاجرت های رخ داده نسبت به روش پایه داشته است.علت این بهبود در این است که با تغییراتی در سیاستهای MMT و MU و با انتخاب سیاست مناسب در انتخاب ماشین مجازی برای مهاجرت و جای دهی مناسب سعی کردیم در کاهش تعداد مهاجرت ها که عامل موثری در نقض کیفیت سرویس می باشد، تاثیر بگذاریم.

شکل ۴_۴: تعداد مهاجرتهای رخ داده با سیاست MU

در شکل $(^{4}-^{6})$ و $(^{4}-^{9})$ به بررسی کیفیت سرویس نقض شده پرداخته ایم کیفیت سرویس معمولاً به فرم SLA در محیط ابری شناخته می شود . تعداد ماشین های مجازی $(^{8}-^{1})$ مصاهده می شود . تعداد ماشین های مجازی نقض کیفیت سرویس کمتری در مقایسه با روش همانطور که در شکل $(^{4}-^{1})$ مشاهده می شود، ، روش پیشنهادی نقض کیفیت سرویس کمتری در مقایسه با روش مورد مقایسه دارد . در روش $[^{8}-^{1}]$ با انتخاب مناسب ماشین مجازی برای مهاجرت و جای دهی مناسب ماشین های مجازی سعی کردیم از منابع ماشین های فیزیکی به طور موثر بهره مند شویم و احتمال وقوع نقض کیفیت سرویس را بهبود بخشیم . در این فصل به بررسی و شبیه سازی روش پیشنهادی و روش مورد مقایسه پرداختیم . در فصل بعد به نتیجه گیری و کارهای آینده می پردازیم .

شكل ۴_۵: مقايسه كيفيت سرويس نقض شده در روش پيشنهادي و موردمقايسه با سياست MMT

شكل ۴_۶: مقايسه كيفيت سرويس نقض شده در روش پيشنهادي و موردمقايسه با سياست MU

فصل ۵

جمع بندی و کارهای آینده

۵-۱ جمع بندی و کارهای آینده

امروزه سیستم های پردازش ابری یکی از موضوعات حیاتی و مهم در زمینه فناوری اطلاعات می باشد. به کارگیری این تکنیک در کاهش هزینه ها ، کاهش زمان اجرا و تاثیر گذار است.مباحثی مانند توان مصرفی مراکز داده ، زمان یاسخ ، کیفیت سرویس کاربر و هزینه ها از مباحث مهمی است که درحوزه سیستم های پردازش ابری مورد توجه زیادی قرار گرفته است.در نتیجه استفاده از راهکارهای موثر و مدیریت مناسب ماشین های مجازی و کنترل مهاجرت های رخ داده می تواند در کاهش مواردی مانند توان مصرفی، تعداد مهاجرت ها و نقض کیفیت سرویس تاثیر بگذارد.کارهای زیادی در حوزه بهبود بهره وری انرژی و کیفیت سرویس در مراکز داده ابری صورت گرفته است روش هایی همچون جای دهی و ترکیب پویای ماشین های مجازی در مراکز داده ابری روش های موثری برای کاهش توان مصرفی می باشد. روش های مربوط به ترکیب پویای ماشین های مجازی این ویژگی را فراهم می کند تا با استفاده از امکان مهاجرت ماشین های مجازی از ماشین های فیزیکی حداقلی در مراکز داده استفاده شود. در این پایان نامه ما سعی کردیم با استفاده مناسب از منابع موجود ماشین های فیزیکی و جای دهی درست و مناسب و در نهایت با انتخاب ماشین مجازی مناسب به منظور مهاجرت به اهداف همچون بهبود توان مصرفی و کیفیت خدمات دست یابیم. در این پایان نامه روشی به منظور جای دهی اولیه ماشینهای مجازی به همراه اعمال کنترلی در انتخاب ماشین مجازی به منظور مهاجرت در نظر گرفته شده است.روش پیشنهاد شده از طریق شبیه ساز کلودسیم مورد بررسی و ارزیابی قرار گرفته است. نتایج آزمایشات نشان می دهد که اعمال روش مناسب در جای دهی و کنترل کردن مهاجرت به منظور جلوگیری از مهاجرت اضافی می تواند ما را در دست یافتن به اهدافی مانند بهبود توان و کیفیت سرویس کمک کند. برای این منظور ، از جمله کارهایی که در آینده بیشتر تمایل داریم به آن ها توجه کنیم، می توانیم به تکنیک های مربوط زمانبدی که در کاهش زمان اجرای برنامه تاثیر گذار است اشاره کنیم همچنین با اعمال پارامتر های مربوط به هزینه ها و اعمال دستگاه های خنک کننده می توانیم در کاهش هزینه ها نیز بکوشیم.

مراجع

- [1] Mell, P., & Grance, T. (2011). The NIST definition of cloud computing.
- [2] Rittinghouse, J. W., & Ransome, J. F. (2016). Cloud computing: implementation, management, and security. CRC press.
- [3] Höfer, C. N., & Karagiannis, G. (2011). Cloud computing services: taxonomy and comparison. Journal of Internet Services and Applications, 2(2), 81-94.
- [4] Da Cunha Rodrigues, G., Calheiros, R. N., Guimaraes, V. T., Santos, G. L. D., de Carvalho, M. B., Granville, L. Z., ... & Buyya, R. (2016, April). Monitoring of cloud computing environments: concepts, solutions, trends, and future directions. In Proceedings of the 31st Annual ACM Symposium on Applied Computing (pp. 378-383). ACM.
- [5] García-Valls, M., Cucinotta, T., & Lu, C. (2014). Challenges in real-time virtualization and predictable cloud computing. Journal of Systems Architecture, 60(9), 726-740.
- [6] Yang, M., Li, Y., Jin, D., Zeng, L., Wu, X., & Vasilakos, A. V. (2015). Software-defined and virtualized future mobile and wireless networks: A survey. Mobile Networks and Applications, 20(1), 4-18.
- [7] Subramanian, M., Bodge, A., & Pattabhi, R. (2016). U.S. Patent No. 20,160,019,265. Washington, DC: U.S. Patent and Trademark Office.
- [8] Choi, H., Lim, J., Yu, H., & Lee, E. (2016). Task Classification Based Energy-Aware Consolidation in Clouds. Scientific Programming, 2016.

[9] Chien, N. K., Dong, V. S. G., Son, N. H., & Loc, H. D. (2016, March). An Efficient Virtual Machine Migration Algorithm Based on Minimization of Migration in Cloud Computing. In International Conference on Nature of Computation and Communication (pp. 62-71). Springer International Publishing.

- [10] Bhaskar, R., & Shylaja, B. S. (2016). KNOWLEDGE BASED REDUCTION TECHNIQUE FOR VIRTUAL MACHINE PROVISIONING IN CLOUD COMPUTING. International Journal of Computer Science and Information Security, 14(7), 472.
- [11] Goudarzi, H., & Pedram, M. (2016). Hierarchical SLA-driven resource management for peak power-aware and energy-efficient operation of a cloud datacenter.
- [12] Ismaeel, S., Miri, A., & Al-Khazraji, A. (2016, March). Energy-consumption clustering in cloud data centre. In 2016 3rd MEC International Conference on Big Data and Smart City (ICBDSC) (pp. 1-6). IEEE.
- [13] Raju, I. R. K., Varma, P. S., Sundari, M. R., & Moses, G. J. (2016). Deadline aware two stage scheduling algorithm in cloud computing. Indian Journal of Science and Technology, 9(4).
- [14] Duan, H., Chen, C., Min, G., & Wu, Y. (2016). Energy-aware scheduling of virtual machines in heterogeneous cloud computing systems. Future Generation Computer Systems.
- [15] Patel, R., Patel, H., & Patel, S. (2015). Quality of Service Based Efficient Resource Allocation in Cloud Computing, International Journal For Technological Research In Engineering Volume 2, Issue 9.
- [16] Beloglazov, A., & Buyya, R. (2013). "Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers." Concurrency and Computation: Practice and Experience, 24(13), 1397-1420.

[17] Tani, H. G., & El Amrani, C. (2016). Cloud Computing CPU Allocation and Scheduling Algorithms using CloudSim Simulator. International Journal of Electrical and Computer Engineering, 6(4), 1866.