Normalizing Flows (Part 4)

Dr. Alireza Aghamohammadi

•

Linear Flows

*	We will discuss different invertible network layers or flows, starting with linear flows.
*	Linear Flow Definition:
	\square Form: $f[h] = \beta + \Omega h$
	\square This is a bijection if and only if $\Omega \in \mathbb{R}^{D \times D}$ is an invertible square matrix.
*	Base Distribution Transformation:
	\square Base distribution: Gaussian $P_r(z) = \mathcal{N}(\mu, \Sigma)$ \square After linear transformation: $\mathcal{N}(\beta + \Omega \mu, \Omega \Sigma \Omega^T)$
*	Expressiveness:
	☐ Linear flows alone are not sufficiently expressive. ☐ Useful when combined with nonlinear transformations.
*	The determinant of the Jacobian is simply the determinant of Ω .
*	We need to ensure that the Jacobian determinant and the inverse of the flow are fast to compute.
*	Computational Complexity:
	In general, computing $\det(\Omega)$ and $\det(\Omega^{-1})$ requires $O(D^3)$ time. If Ω is diagonal, the cost is $O(D)$, but the elements of h do not interact. If Ω is triangular, the Jacobian determinant is the product of its diagonal elements, taking $O(D)$ time. Inverting the flow requires solving the triangular system $\Omega h = f[h] - \beta$ using back-substitution, which takes $O(D^2)$ time.