# Schottky Barrier project 2021

**Dmitry Skachkov** 

Center for Molecular Magnetic Quantum Materials (M2QM)

https://efrc.ufl.edu/

2021

#### The structure of SB program





Calculate charge density  $\rho(z)$  and potential V(z) self-consistently connected

SCF cycle. Initial approximation to  $\rho(z)$  and V(z) are formulas (20) and (22)

Calculate  $\rho(z)$  using formulas (12) – (16)

Mixing old and new  $\rho(z)$  for next iteration

Calculate V(z) using formulas (8) and (10)

Mixing old and new V(z) for next iteration

Calculate  $\Delta E$  using formula (18)

Repeat SCF cycle until  $\rho(z)$  calculated from V(z) will correspond to the V(z) calculated from  $\rho(z)$ 

Additional modules:

QSL3D.f – subroutine for accurate integration of oscillating function

Parallel.f90 – MPI commands for parallelization over *z*-mesh points

### Input data files:

- 1 DOS of the bulk SC (dos\_bulk\_.dat)
- 2 PDOS of interfacial layer (3d layer kpdos\_int\_3.dat, 4th layer kpdos\_int\_4.dat, and surface layer DOS0.dat)
- 3 CBS data (a set of data files from CBS calculation bands.Si.im1,...)
- 4 k-mesh data (k\_mesh.dat)
- 5 Polarization data (polarization.dat)

### **Prepare calculations:**

- 1 DOS of bulk semiconductor
- 2 k-separated PDOS for interface calculations for NxNx1 k-mesh
- $3\ \text{CBS}$  calculation for k-mesh corresponding to interface calculation

### **Compile the program:**

>./compile\_mpi.sh

## To run the program:

```
> schottky 300. 1.35 0. > output  T \hspace{0.5cm} E_F \hspace{0.5cm} \text{gate}
```

### The calculated results:

1 data file for densities po\_.dat (in the format of z, poh, poe, poMIGS, po)

2 data file for potential elpot\_.dat (in the format of z, V\_el, E\_field)

3 output file contains all Schottky barrier parameters