Primeira Avaliação de Circuitos Elétricos II Aplicados – $2^{0}/2017$

Departamento de Engenharia Elétrica — ENE/FT/UnB Faculdade de Tecnologia Universidade de Brasília

Nome:	Turma:
Matrícula:/	
Data:/	
Questão 1	
Questão 2	
Questão 3	
Questão 4	

Questão 1 — Determine $v_o(t)$ no circuito apresentado à direita quando $v_s(t)$ corresponde a forma de onda temporal mostrada na figura à esquerda.

$$C_1 = 1F$$
; $C_2 = 2F$; $R = 3\Omega$.

Questão 2 — O diagrama de polos e zeros pertence à função transferência de um Circuito Linear Invariante no Tempo (CLIT). Determine h(t) utilizando a Transformada de Laplace.

Questão 3 – Utilizando transformada de Laplace, determine a resposta $v_o(t)$ do circuito abaixo a entrada $v_s(t) = u(t)$. $R = 2\Omega$; $C = \frac{1}{2}F$, A = 3.

Questão 4 – A figura a seguir mostra um circuito onde V_1 e V_2 são as fontes de sinais de entradas. Em t=0 a chave é trocada de posição (como indicado na figura). Em $t=0^-$ o circuito tinha atingido a situação de estado permanente. Calcule $v_o(t)$ (para $t \ge 0$) utilizando a Transformada de Laplace. São dados os seguintes parâmetros do circuito:

 $V_1 = 6 \text{ Volts}; V_2 = 9 \text{ Volts}; C = 1F; R = 2\Omega; L = 1H;$

