Bindung in mehratomigen Molekülen: Hybridorbitale

"Berylliumhydrid BeH₂"

BeH₂ ist als Monomer nicht existent. Es dient hier als Modellverbindung für das lineare Be(CH₃)₂.

Elektronenkonfiguration: Be (1s², 2s²)

Be (Grundzustand)

Be: $2s^2 2p_x^0 2p_y^0 2p_z^0$

Be* (angeregter Zustand)

Be*: $2s^1 2p_x^1 2p_y^0 2p_z^0$

Dieses BeH₂-Molekül hätte unterschiedliche Bindungslängen und wäre gewinkelt.

drei sp²-Hybridorbitale Bindungswinkel: 120°

Bindungsverhältnisse im Methan CH₄

C (Grundzustand)

C: $2s^2 2p_x^1 2p_y^1 2p_z^0$ C*: $2s^1 2p_x^1 2p_y^1 2p_z^1$

C* (angeregter Zustand)

sp³-Hybrid-AO

CH₄-Tetraeder

Bindungswinkel HCH: 109.5°

Bindungsverhältnisse im Ethen C₂H₄

C* (angeregter Zustand)

C (hybridisierter Zustand)

 $C^*: 2s^1 2p_x^1 2p_y^1 2p_z^1$

keine Wechselwirkung der p_z-Orbitale wegen zu grossem Atomabstand Doppelbindung wird nicht beobachtet.

"Klassische Doppelbindungsregel": Elemente der höheren Perioden können keine p $_{\pi}$ - p $_{\pi}$ - Doppelbindungen ausbilden.

Hybridorbitale

AO	Тур	Anzahl	Räumliche Anordnung	Beispiel
s, p _x	sp	2	linear	Be(CH ₃) ₂
s, p_x, p_y	sp ²	3	trigonal-planar	BF ₃
s, p_x, p_y, p_z	sp ³	4	tetraedrisch	CH ₄
d_{z2} , s, p_x , p_y , p_z	dsp ³	5	trigonal-	PF ₅
			bipyramidal	
$d_{z2}, d_{x2-y2},$	d ² sp ³	6	oktaedrisch	SF ₆
s, p_x, p_y, p_z				

VSEPR-Modell: 2 oder 3 Aufenthaltsräume

Einsame E-Paare: 0 Molekültyp: AL₂
Geometrie: linear
Beispiele: BeH₂, CO₂, HgCl₂

Einsame E-Paare: 0 Molekültyp: AL₃

Geometrie: trigonal-planar Beispiele: BF₃, SO₃, NO₃

Einsame E-Paare: 1 Molekültyp: AL₂E Geometrie: V-förmig Beispiele: NO₂, SO₂, O₃

VSEPR-Modell: 4 Aufenthaltsräume

Einsame E-Paare: 0 Molekültyp: AL₄

Geometrie: tetraedrisch Beispiele: CH₄, NH₄⁺, SO₄²⁻,

POCl₃, SO₂Cl₂

Einsame E-Paare: 1 Molekültyp: AL₃E

Geometrie: trigonal pyramidal Beispiele: NH₃, SO₃²⁻, H₃O⁺, SbCl₃

Einsame E-Paare: 2 Molekültyp: AL₂E₂ Geometrie: V-förmig Beispiele: H₂O, H₂S, SCl₂

VSEPR-Modell: 5 Aufenthaltsräume

Einsame E-Paare: 0

Molekültyp: AL₅
Geometrie: trigonal-bipyramidal
Beispiele: PF₅, PCl₅, SOF₄

Einsame E-Paare: 1 Molekültyp: AL₄E Geometrie: verzerrt tetraedrisch Beispiele: SF₄, SeF₄, XeO₂F₂

Einsame E-Paare: 2 Molekültyp: AL₃E₂ Geometrie: T-förmig Beispiele: CIF₃, BrF₃

Einsame E-Paare: 3 Molekültyp: AL₂E₃ Geometrie: linear Beispiele: XeF₂, I₃-, ICl₂-

VSEPR-Modell: 6 Aufenthaltsräume

Einsame E-Paare: 0 Molekültyp: AL₆ Geometrie:oktaedrisch Beispiele: SF₆, PCl₆

Einsame E-Paare: 1 Molekültyp: AL₅E Geometrie:quadratisch-pyramidal Beispiele: BrF₅, IF₅

Einsame E-Paare: 2 Molekültyp: AL₄E₂ Geometrie:quadratisch

planar

Beispiele: XeF₄, ICl₄

MO-Schema für zweiatomige Moleküle

MO-Schema für zweiatomige Moleküle

MO-Schema für zweiatomige Moleküle am Beispiel von Stickstoff und Sauerstoff

Vergleich der MO-Schemata von NO und NO⁺

MO-Schemata der O₂ⁿ⁽⁺⁾ - Spezies

	Dioxygenyl-Kation	Triplett-Sauerstoff	Singulett-Sauerstoff	Hyperoxid-Anion	Peroxid-Anion
σ^*_z					
π^*_{x}, π^*_{y}	<u> </u>		↑	1 1	↑ ↑
π_{x},π_{y} σ_{z}	 	 	 - - - - - - - - - - - -	 	
σ^*_s	_∱↓_		- 	-∱↓-	
σ_{s}	_ ↑ ↓_	-↑↓-	- 	- 	
	O ₂ +	³ O ₂	¹ O ₂	O ₂ -	O ₂ ²⁻
BO:	2.5	2.0	2.0	1.5	1.0
Bindungs- länge:	112 pm	121 pm		133 pm	149 pm
	⊙ =⊙•	• 0-0• ?	⊙ =⊙	•o-o•	

Singulett-Sauerstoff

 $\underline{https://www.cci.ethz.ch/mainpic.html?picnum=-1\&control=0\&language=0\&ismovie=1\&expnum=80$