

CMOS 16-BIT 3.3V TO 5V LEVEL SHIFTING TRANSCEIVER WITH 3-STATE OUTPUTS

IDT74ALVC164245

FEATURES:

- 0.5 MICRON CMOS Technology
- Typical tsk(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- VCCA = 2.7V to 3.6V
- VCCB = $5V \pm 0.5V$
- CMOS power levels (0.4μ W typ. static)
- · Rail-to-Rail output swing for increased noise margin
- Available in SSOP and TSSOP packages

DRIVE FEATURES:

- High Output Drivers: ±24mA
- · Suitable for heavy loads

DESCRIPTION:

This 16-bit 3.3V to 5V level shifting transceiver is manufactured using advanced dual metal CMOS technology. The ALVC164245 contains two separate supply rails; B port has VCCB, which is set at 5V, and A port has VCCA, which is set to operate at 3.3V. This allows for translation from a 3.3V to 5V environment and vice-versa. This device is designed for asynchronous communication between data buses.

The ALVC164245 has been designed with a ± 24 mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

APPLICATIONS:

- · Mixed 3.3V and 5V High Speed Systems
- 5V PCI Interface to 3.3V PC Bus Structures
- Telecommunication Legacy Systems with transitions from 5V to 3.3V

FUNCTIONAL BLOCK DIAGRAM

 $IDT and the \, IDT logo \, is \, a \, registered \, trademark \, of \, Integrated \, Device \, Technology, \, Inc. \, Device \, Technology \, and \, the \, IDT \, and \, t$

INDUSTRIAL TEMPERATURE RANGE

JULY 2018

PIN CONFIGURATION

TOP VIEW

Package Type	Package Code	Order Code
TSSOP	PAG48	PAG
SSOP	PVG48	PVG

PIN DESCRIPTION

Pin Names Description	
<u>xOE</u> (1)	Output Enable Inputs (Active LOW)
xDIR ⁽¹⁾	Direction Output Controls
хАх	Port A Inputs or 3-State Outputs
хВх	Port B Inputs or 3-State Outputs

NOTE:

1. All control inputs are powered off Vcca.

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +6	٧
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to +6	V
Tstg	Storage Temperature	-65 to +150	°C
lout	DC Output Current	-50 to +50	mA
lıĸ	Continuous Clamp Current, VI < 0 or VI > Vcc	±50	mA
Іок	Continuous Clamp Current, Vo < 0	-50	mA
lcc Iss	Continuous Current through each Vcc or GND	±100	mA

NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, F = 1.0MHz, VCCA = 3.3V)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	A Port Input Capacitance	VIN = 0V	6.5	_	pF
CI/O	A Port I/O Capacitance	VIN = 0V	8.5	_	pF

NOTE:

1. As applicable to the device type.

CAPACITANCE (TA = +25°C, F = 1.0MHz, VCCB = 5V)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	B Port Input Capacitance	VIN = 0V	6.5	-	pF
CI/O	B Port I/O Capacitance	VIN = 0V	6.5	_	pF

NOTE

1. As applicable to the device type.

FUNCTION TABLE (EACH 8-BIT SECTION) (1)

Inputs		
хОE	xDIR	Outputs
L	L	Bus B Data to Bus A
L	Н	Bus A Data to Bus B
Н	Χ	High Z State

NOTE:

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
 - Z = High Impedance

16-BIT 3.3V TO 5V LEVEL SHIFTING TRANSCEIVER WITH 3-STATE OUTPUTS

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (B PORT)(1)

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $TA = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Test Cond	itions	Min.	Typ. ⁽²⁾	Max.	Unit
VIH	Input HIGH Voltage Level	VCCB = 4.5V to 5.5V		2	_	-	V
VIL	Input LOW Voltage Level	VCCB = 4.5V to 5.5V		_	_	0.8	V
lih	Input HIGH Current	VCCB = 5.5V	VI = VCC	_	_	±5	μA
lıL	Input LOW Current	VCCB = 5.5V	VI = GND	_	_	±5	μΑ
lozh	High Impedance Output Current	Vccb = 5.5V	Vo = Vcc	_	_	±10	μΑ
lozl	(3-State Output pins)		Vo = GND	_	_	±10	
VH	Input Hysteresis	VCCB = 4.5V		_	100	_	mV
ICCL ICCH ICCZ	Quiescent Power Supply Current	VCCB = 5.5V VIN = GND or VCCB		_	0.1	40	μΑ
Δlcc	Quiescent Power Supply Current Variation	One input at 3.4V, other inputs at	VCCB or GND	_	_	750	μΑ

NOTES:

- 1. VCCA = 2.7V to 3.6V.
- 2. Typical values are at Vcc = 5V, +25°C ambient.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (A PORT)(1,2)

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $TA = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Test	Conditions	Min.	Typ. ⁽³⁾	Max.	Unit
VIH	Input HIGH Voltage Level	VCCA = 2.7V to 3.6V		2	_	_	V
VIL	Input LOW Voltage Level	VCCA = 2.7V to 3.6V		_	_	0.8	V
Іін	Input HIGH Current	VCCA = 3.6V	VI = VCC	_	_	±5	μA
lıL	Input LOW Current	VCCA = 3.6V	VI = GND		_	±5	μA
lozн	High Impedance Output Current	VCCA = 3.6V	Vo = Vcc	_	_	±10	μΑ
lozL	(3-State Output pins)		Vo = GND	_	_	±10	1
Vн	Input Hysteresis	VCCA = 3.3V	•	_	100	_	mV
Iccl Iccн Iccz	Quiescent Power Supply Current	VCCA = 3.6V VIN = GND or VCCA		_	0.1	40	μΑ
∆lcc	Quiescent Power Supply Current Variation	One input at Vcca - 0.6V, ot	her inputs at Vcca or GND	_	_	750	μA

NOTES:

- 1. $VCCB = 5V \pm 0.5V$.
- 2. Control inputs xDIR, $\overline{\text{OE}}$ are supplied from Vcca.
- 3. Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS, Vcca = 3.3V ± 0.3V (A PORT)

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
Vон	Output HIGH Voltage	VCCA = 2.7V to 3.6V	IOH = - 0.1mA	VCCA-0.2	_	V
	(B Port to A Port)	VCCA = 2.7V	IOH = - 12mA	2.2	_	
		VCCA = 3V		2.4	_	
		VCCA = 3V	IOH = - 24mA	2	_	
Vol	Output LOW Voltage	VCCA = 2.7V to 3.6V	IoL = 0.1mA	_	0.2	V
	(B Port to A Port)	VCCA = 2.7V	IoL = 12mA	_	0.4	
		VCCA = 3V	IoL = 24mA	_	0.55	

NOTE:

OUTPUT DRIVE CHARACTERISTICS, VCCB = 5V ± 0.5V (B PORT)

Symbol	Parameter	Test Con	ditions ⁽¹⁾	Min.	Max.	Unit
Voн	Output HIGH Voltage	VCCB = 4.5V	IOH = - 0.1mA	4.3	_	V
	(A Port to B Port)	VCCB = 5.5V		5.3	_	
		VCCB = 4.5V	Iон = - 24mA	3.7	_	
		VCCB = 5.5V		4.7	_	
Vol	Output LOW Voltage	VCCB = 4.5V	IoL = 0.1mA	_	0.2	V
	((A Port to B Port)	VCCB = 5.5V		_	0.2	
		VCCB = 4.5V	IoL = 24mA	_	0.55	
		VCCB = 5.5V		_	0.55	

NOTE:

^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = -40°C to + 85°C; Vcca = 3.3V ± 0.3V.

^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range.

TA = - 40°C to + 85°C; VccB = 5V ± 0.5V.

OPERATING CHARACTERISTICS, TA = 25°C

			VCCA = 3.3V, VCCB = 5V	
Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance, Outputs enabled (A port or B port)	CL = 0pF, f = 10Mhz	56	pF
CPD	Power Dissipation Capacitance, Outputs disabled (A port or B port)		6	

SWITCHING CHARACTERISTICS(1)

		$VCCB = 5V \pm 0.5V$				
		Vcca	= 2.7V	Vcca = 3.	3V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
t PLH	Propagation Delay	_	5.9	1	5.8	ns
t PHL	xAx to xBx					
t PLH	Propagation Delay	_	6.7	1.2	5.8	ns
t PHL	xBx to xAx					
tpzh	Output Enable Time	_	9.3	1	8.9	ns
tpzl	\overline{XOE} to xBx					
tpzh	Output Enable Time	_	10.2	2	9.1	ns
tpzl	\overline{XOE} to xAx					
tphz	Output Disable Time	_	9.2	2.1	9.4	ns
tplz	\overline{xOE} to xBx					
tphz	Output Disable Time	_	9	2.9	8.6	ns
tPLZ	xOE to xAx					

NOTE:

^{1.} See TEST CIRCUITS AND WAVEFORMS. TA = -40°C to +85°C.

TEST CIRCUITS AND WAVEFORMS FOR VCCA = 3.3V ± 0.3V AND VCCA = 2.7V

TEST CONDITIONS

Symbol	VCCA = 3.3V±0.3V	Vcca = 2.7V	Unit
VLOAD	6	6	V
Vih	3	3	V
VT	1.5	1.5	V
VLZ	300	300	mV
Voh - Vhz	300	300	mV
CL	50	50 pF	

Test Circuit for All Outputs

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to Zout of the Pulse Generator.

NOTE:

1. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tr \leq 2.5ns; tr \leq 2.5ns.

SWITCH POSITION

Test	Switch		
Disable Low Enable Low	VLOAD		
Disable High Enable High	GND		
All Other Tests	Open		

Propagation Delay

Enable and Disable Times

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

TEST CIRCUITS AND WAVEFORMS FOR VCCB = 5V ± 0.5V

TEST CONDITIONS (USE VCCA TEST CIRCUIT)

Symbol	$V_{CCB}^{(1)} = 5V \pm 0.2V$	Unit
VLOAD	2 x Vccb	V
VIH	2.7	V
VT	1.5 or VccB / 2	V
VLZ	20% of VccB	mV
VHZ	80% of Vccb	mV
CL	50	pF

NOTE:

1. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns.

Propagation Delay

NOTES:

- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.

Enable and Disable Times

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

ORDERING INFORMATION

Orderable Part Information

Speed (ns)	Orderable Part ID	Pkg. Code	Pkg. Type	Temp. Grade
	74ALVC164245PAG	PAG48	TSSOP	С
	74ALVC164245PAG8	PAG48	TSSOP	С
	74ALVC164245PVG	PVG48	SSOP	С
	74ALVC164245PVG8	PVG48	SSOP	С

Datasheet Document History

07/30/2018

Pg. 2, 8

Added table under pin configuration diagram with detailed package information. Updated the ordering information diagram adding Tube, Tape and Reel. Added new table of orderable part information.

CORPORATE HEADQUARTERS

6024 Silver Creek Valley Road San Jose, CA 95138 for SALES:

800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com

for Tech Support: logichelp@idt.com