04E 12622

HM6264 Series

Maintenance Only

(Substitute HM6264A)

T-46-23-12

8192-word x 8-bit High Speed CMOS Static RAM

FEATURES

Fast access Time

Low Power Standby

100ns/120ns/150ns (max.) 0.1mW (typ.) Standby: 10μW (typ.) L-/LL-version Operating: 200mW/MHz (typ.)

Low Power Operation

Single +5V Supply

Completely Static Memory..... No clock or Timing Strobe Required

Equal Access and Cycle Time

Common Data Input and Output, Three State Output

Directly TTL Compatible: All Input and Output

Standard 28pin Package Configuration

Pin Out Compatible with 64K EPROM HN482764

Capability of Battery Back Up Operation (L-/LL-version)

ORDERING INFORMATION

Type No.	Access Time	Package
HM6264P-10	100ns	
HM6264P-12	120ns	`
НМ6264Р-15	150ns	
HM6264LP-10	100ns	COO!! GO!-
HM6264LP-12	120ns	600 mil 28 pin
HM6264LP-15	150ns	Plastic DIP
HM6264LP-10L	100ns	1
HM6264LP-12L	120ns	
HM6264LP-15L	150ns	
HM6264FP-10	100ns	
HM6264FP-12	120ns	
HM6264FP-15	150ns	
HM6264LFP-10	100ns	20 -1-
HM6264LFP-12	120ns	28 pin Plastic SOP
HM6264LFP-15	150ns	(Note)
HM6264LFP-10L	100ns	(11010)
HM6264LFP-12L	120ns	
HM6264LFP-15L	150ns	

Note) A character T is added to the end of type No. for SOP of 3.00 mm (max.) thickness.

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Rating	Unit
Terminal Voltage *1	VT	-0.5*2 to +7.0	V
Power Dissipation	PT	1.0	W
Operating Temperature	Topr	0 to +70	°C
Storage Temperature	Tatg	-55 to +125	°C
Storage Temperature Under Bias	Thias	10 to +85	°C

*1. With respect to V_{SS}
*2. -3.0V for pulse width ≤ 50ns

HM6264P Series (DP-28) HM6264FP Series

■ PIN ARRANGEMENT

Note) This device is not available for new application.

04E 12623

HM6264 Series

T-16-23-12

BLOCK DIAGRAM

m ! K	וחוט	ADL	Ξ,	05 0			
WE	CS.	cs.	ŌĒ	. Mode .	I/O Pin	V _{CC} Current	Note
×	н	X	X	Not Selected	High Z	/SB, /SB1	
×	X	L	X	(Power Down)	High Z	/SB, /SB2	
H	L	H	H	Output Disabled	High Z	/cc,/cc1	
H	L	H	L	Read	Dout	/cc,/cc1	
L	L	H	H	***	Din	/cc, /cc1	Write Cycle (1)
L	L	H	L	Write	Din	Icc, Icc1	Write Cycle (2)

L L X: H or L

■ RECOMMENDED DC OPERATING CONDITIONS ($T_a = 0 \text{ to } +70^{\circ}\text{C}$)

Item	Şymbol	min	typ	max	Unit
C 1 . 11 . 12	Vcc	4.5	5.0	5.5	v
Supply Voltage	VSS	0	0	0	V
Input Voltage	VIH	2.2	_	6.0	V
	V_{IL}	-0.3°1		0.8	V

Note) *1. -3.0V for pulse width ≤ 50ns

DC AND OPERATING CHARACTERISTICS ($V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$, $T_c = 0$ to $+70^{\circ}$ C)

Item	Symbol	Test Condition	min	typ*1	max	Unit
Input Leakage Current	$ I_{LI} $	Vin=VSS to VCC			2	μΑ
Output Leakage Current	lI _{LO}	$\overline{\text{CSI}}=V_{IH}$ or $\overline{\text{CS}}=V_{IL}$ or $\overline{\text{OE}}=V_{IH}$ or $\overline{\text{WE}}=V_{IL}$, $V_{I/O}=V_{SS}$ to V_{CC}		-	2	μΑ
Operating Power Supply Current	Icc	$\overline{\text{CSI}} = V_{IL}$, CS2= V_{IH} , $I_{I/O}$ =0mA		40	80	mA
Average Operating Current	I _{CC1}	Min. cycle, duty=100%, I _{I/O} =0mA	-	60	110	mA
	I_{SB}	CS1=V _{IH} or CS2=V _{IL}	–	1	3	mA
	I _{SB1} +2		T -	0.02	2	mA
		CS1 ≥ <i>V_{CC}</i> -0.2V, CS2≥ <i>V_{CC}</i> -0.2V or CS2≤0.2V	_	2*3	100*3	
Standby Power Supply Current		CS2 20.2V	_	2*4	50+4	μΑ
				0.02	2	mA
	I _{SB2+2}	CS2≦0.2V		2+3	100*3	·
•	1000		_	2*4	50*4	μΑ
	VOL	I _{OL} = 2.1mA	-	-	0.4	v
Output Voltage	V _{OH}	I _{OH} = -1.0 mA	2.4	-	_	v

Notes) *1. Typical limits are at V_{CC} =5.0V, T_a =25°C and specified loading.
*2. V_{IL} min=-0.3V
*3. This characteristics is guaranteed only for L-version.
*4. This charactoristics is guaranteed only for LL-version.

@HITACHI

04E 12624

— HM6264 Series 7-44-23-12

CAPACITANCE (f = 1 MHz, $T_a = 25^{\circ}\text{C}$)

Item	Symbol	Test Condition	typ	max	Unit
Input Capacitance	Cin	$V_{in} = 0V$	-	6	pF
Input/Output Capacitance	C1/0	$V_{I/O} = 0V$	_	8	pF

Note) This parameter is sampled and not 100% tested.

■ AC CHARACTERISTICS (VCC = 5V±10%, Ta = 0 to +70°C)

• AC TEST CONDITIONS

Input Pulse Levels: 0,8 to 2,4V Input Rise and Fall Times: 10ns

Input and Output Timing Reference Level: 1.5V

Output Load: 1TTL Gate and C_L (100pF) (including scope and jig)

• READ CYCLE

Item		Symbol	HM6264-10		HM6264-12		HM6264-15		T
			min	max	min	max	min	max	Unit
Read Cycle Time		1RC	100	_	120	T = -	150	 _	ns
Address Access Time		IAA		100	<u> </u>	120	_	150	ns
Chip Selection to Output CS2		tco1	_	100	_	120	_	150	ns
		ICO2		100	-	120		150	1
Output Enable to Output Valid		†OE		50		60		70	ns
Chip Selection to	CSI	tLZ1	10	_	10	-	15		ns
Output in Low Z	CS2	tLZ2	10	-	10	_	15	- <u>-</u>	ns
Output Enable to Output in	Low Z	IOLZ	5		5		5		
Chip Deselection to	CSI	tHZI	O	35	0	40	0	50	ns ns
Output in High Z	CS2	tHZ2	0	35	0	40	0	50	
Output Disable to Output in High Z 101		IOHZ	0	35	0	40	0	50	ns
Output Hold from Address Change		tон	10	_	10		15	- 30	ns ns

Notes) 1. t_{HZ} and t_{OHZ} are defined as the time at which the outputs achieve the open circuit condition and are not referred to output voltage levels.

At any given temperature and voltage condition, tHZ max is less than t_{LZ} min both for a given device and from device to device.

• READ CYCLE

Hitachi America Ltd. • 2210 O'Toole Ave. • San Jose, CA 95131 • (408) 435-8300

04E 12625

HM6264 Series • WRITE CYCLE

Item		Symbol	mbol HM6264-10		HM6264-12		HM6264-15		*1
		Symbol	min	max	min	max	min	max	Unit
Write Cycle Time		twc .	100		120	-	150	-	ns
Chip Selection to End of	Write	tcw	80	-	85	-	100	_	ns
Address Setup Time		†AS	0	-	0		0	~- · ·	ns
Address Valid to End of Write		l'AW	80	-	85	-	100	-	ns
Write Pulse Width		twp	60	-	70	-	90	-	ns
Write Recovery Time	CS1, WE	twn1	5	-	5		10	-	ns
Witte Recovery Thine	CS2	łWR2	15	-	15	-	15	_	ns
Write to Output in High Z		twHZ	0	35	0	40	0	50	ns
Data to Write Time Overlap t _{DW}		40	-	50	-	60	-	ns	
Data Hold from Write Time t _{DH}		0	-	0		0	-	ns	
OE to Output in High Z IOHZ		0	35	0	40	0	50	пs	
Output Active from End	of Write	tow	5	_	5	-	10	-	ns

WRITE CYCLE (1) (OE clock)

04E 12626 D HM6264 Series

DE

T-46-23-12

- Notes) 1. A write occurs during the overlap of a low $\overline{CS1}$, a high CS2 and a low \overline{WE} . A write begins at the latest transition among $\overline{CS1}$ going low, CS2 going high and \overline{WE} going low. A write ends at the earliest transition among $\overline{CS1}$ going high, CS2 going low and \overline{WE} going high, t_{WP} is measured from the beginning of write to the end of write.
 - 2. tcw is measured from the later of CS1 going low or CS2 going high to the end of write.
 - 3. t_{AS} is measured from the address valid to the beginning of write.
 - 4. fwn is measured from the end of write to the address change.

 fwn applies in case a write ends at CSI or WE going high. twR2 applies in case a write ends at CS2 going low.
 - 5. During this period, I/O pins are in the output state, therefore the input
 - signals of opposite phase to the outputs must not be applied.

 6. If $\overline{CS1}$ goes low simultaneously with \overline{WE} going low or after \overline{WE} going low, the outputs remain in high impedance state.
 7. Dout is the same phase of the latest written data in this write cycle.

 - 8. Dout is the read data of next address.

 9. If CSI is low and CS2 is high during this period, I/O pins are in the output state. Therefore, the input signals of opposite phase to the outputs must not be applied to them.

4496203 HITACHI/ LOGIC/ARRAYS/MEM HM6264 Series

04E 12627

T-46-23-12

■ LOW V_{CC} DATA RETENTION CHARACTERISTICS ($T_a = 0 \text{ to } +70^{\circ}\text{C}$)

This characteristics is guaranteed only for L/LL-version.

Item	Symbol	Test Condition	min	typ	max	Unit
VCC for Data Retention	V_{DRI}	$\overline{\text{CS1}} \ge V_{CC}$ -0.2V, $\text{CS2} \ge V_{CC}$ -0.2V or $\text{CS2} \le 0.2\text{V}$	2.0	-	-	v
	V_{DR2}	CS2≦0.2V	2.0	_		v
Data Retention Current	ICCDR1	$V_{CC} = 3.0 \text{V}, \overline{\text{CS1}} \ge V_{CC} - 0.2 \text{V}$		1*1	50*1	<u> </u>
	- CODA	$CS2 \ge V_{CC} - 0.2V$ or $CS2 \le 0.2V$	_	1*2	25*2	μA
•	7	Was a day one of a sec		1*1	50*1	
	ICCDR2	$V_{CC} = 3.0 \text{V}, \text{CS2} \le 0.2 \text{V}$	-	1*2	25*2	μA
Chip Deselect to Data Retention Time	tCDR		0	-	_	ns
Operation Recovery Time	t _R	See Retention Waveform			ļ —	
Martin Ar III	l		tRC*3	_	i - !	ns

Notes) *1. V_{IL} , min = -0.3V, 20 μ A max at T_a =0 to 40°C. This characteristics is guaranteed only for L-version. *2. V_{IL} min = -0.3V, 10 μ A max at T_a =0 to 40°C. This characteristics is guaranteed only for LL-version. *3. t_{RC} = Read Cycle Time

◆ LOW Vcc DATA RETENTION WAVEFORM (1) (CST Controlled)

• LOW Vcc DATA RETENTION WAVEFORM (2) (CS2 Controlled)

NOTE: In Data Retention Mode, CS2 controls the Address, WE, CS1, OE and Din buffer. If CS2 controls data retention mode, Vin for these inputs can be in the high impedance state. If $\overline{CS1}$ controls the data retention mode, CS2 must satisfy either CS2 \geq Vcc-0.2V or CS2 \leq 0.2V. The other input levels (address, WE, \overline{OE} , I/O) can be in the high impedance state.

D

4496203 HITACHI/ LOGIC/ARRAYS/MEM

04E 12628

HM6264 Series

SUPPLY CURRENT vs. SUPPLY VOLTAGE

SUPPLY CURRENT VS. 7-4/6-23-12 AMBIENT TEMPERATURE

SUPPLY CURRENT vs. FREQUENCY

ACCESS TIME vs. LOAD CAPACITANCE

ACCESS TIME VS. SUPPLY VOLTAGE

ACCESS TIME VS.
AMBIENT TEMPERATURE

@HITACHI

04E 12629 D

T=46-23-12

INPUT LOW VOLTAGE vs. SUPPLY VOLTAGE

INPUT HIGH VOLTAGE VS. SUPPLY VOLTAGE

DE

OUTPUT CURRENT vs. OUTPUT VOLTAGE

OUTPUT CURRENT VS.
OUTPUT VOLTAGE

STANDBY CURRENT vs. AMBIENT TEMPERATURE

STANDBY CURRENT vs. SUPPLY VOLTAGE

@HITACHI

Hitachi America Ltd. • 2210 O'Toole Ave. • San Jose, CA 95131 • (408) 435-8300