Aplicación de ML Sobre Información Georeferenciada. Predicción de Frecuencia de Cortes Eléctricos

Informe de Mentoría 2020 Diplomatura en Ciencias de Datos FaMAF-UNC

Ariel Rubio Andrés Ruderman Sacha Smrekar

Mentor: Ramiro Caro

Objetivo

Determinar las principales causas que explican la frecuencia de corte del suministro eléctrico en una región determinada de Brasil.

Road Map

Aislar la variable de referencia que describe los cortes

Limpiar y agrupar los dataset

Generar nuevas variables

Utilizar herramientas de Machine learning para aislar las principales causas que expliquen los cortes

Dataset

El dataset fue provisto por la Agencia Nacional de Energía Eléctrica de Brasil. Consta de datos georeferenciados entre los que destacan:

- Unidad Consumidora de Baja Tensión (UCBT)
- Segmento del Sistema de Distribución de Baja Tensión (SSDMT)
- Unidad Transformadora de Distribución (UNTRD)
- Unidad Transformadora de Subestación (UNTRS)
- Segmento Conductor (SEGCON)

Entre otras.

Red eléctrica de Itabaianinha, Sergipe, Brazil

Variable Objetivo

Los factores que inciden en los cortes de energía se pueden estudiar utilizando las variables FIC (Frecuencia de interrupción del servicio) y DIC (Duración de la interrupción del servicio).

Ambas variables están correlacionadas, por lo que elegimos trabajar con la variable FIC.

Agrupamiento del dataset y generación de variables

- Seleccionamos para trabajar el dataset de unidades de transformación de distribución (UNTRD).
- Variables estadísticas agrupando la información de los consumidores de baja tensión (UCBT).
- Variables asociadas a la unidad de transformación de subestación (UNTRS).
- Variables georeferenciadas: distancia a carreteras, distancia a ciudades, densidad de UCBT cercanos, etc.
- Variables asociadas a las propiedades de la red (análisis de grafos), así como variables que tuvieran en cuenta la distancia medida a través de la red.

Primeros Modelos

Como la variable objetivo no está distribuida en clases son los algoritmos de regresión los que se ajustan a nuestro problema.

Modelo	MAE
Regresión Lineal	2.73
Regresión Lineal con regularización L2	2.74
Tree Boosting (XGBRegressor)	1.54

Seleccionamos el algoritmo XGBRegressor para generar los modelos de aprendizaje

Variables más relevantes (XGBRegressor)

Optimización del modelo

Seleccionamos las 20 mejores variables y optimizamos los hiperparámetros del modelo. El MAE fue: 1.34

param_colsample_bytree	param_max_depth	param_min_child_weight	param_min_split_loss	param_subsample	mean_test_score	std_test_score	rank_test_score
0.8	14	4	0.75	1	0.800117	0.020184	4
0.8	14	6	0.75	1	0.799469	0.019984	5
0.9	8	1	0.01	1	0.801118	0.019859	1
0.9	14	5	0.1	1	0.800279	0.020285	3
1	14	2	0.5	1	0.800459	0.017373	2

Clustering

Dificultades halladas

Tuvimos problemas a la hora de identificar puntos importantes como ciudades, subestaciones distribuidoras o a línea costera utilizando los datos georeferenciados.

Este problema se resolvió utilizando QGIS para asignar estas ubicaciones a mano.

Como perspectiva a futuro nos gustaría automatizar esta designación utilizando algún algoritmo.

Conclusiones

- 1. Visualizamos la distribución de los datos, identificamos la variable objetivo FIC y determinamos que el modelo de regresión es el que mejor aplica a nuestro problema.
- 2. Generamos nuevas variables cruzando diferentes datasets e incorporamos los datos georeferenciados.
- Determinamos que el mejor algoritmo para modelar el problema es el XGBRegressor.
- 4. Mediante la selección de las variables más relevantes, el ajuste de hiperparámetros y el agrupamiento de datos mediante técnicas de clustering pudimos reducir el considerablemente el MAE.