

## TEMA 2. CRIPTOGRAFÍA T 2.4 FUNCIONES RESUMEN Y MAC

Criptografía y seguridad informática Seguridad en las tecnologías de la información

@ COSEC

Curso 2016-2017

#### Funciones Resumen

- Funciones resumen
- Funciones resumen criptográficas
- Ejemplos

### Message Authentication Code (MAC)

- Generalidades MAC
- Requisitos de seguridad MAC
- MAC Basados en funciones resumen
- MAC Basados en cifrado en bloque



- Funciones Resumen (Hash functions)
  - Funciones resumen
  - Funciones resumen criptográficas
  - Ejemplos
- Message Authentication Code (MAC)
  - Generalidades MAC
  - Requisitos de seguridad MAC
  - MAC Basados en funciones resumen
  - MAC Basados en cifrado en bloque



### Funciones Resumen

Una función resumen (función hash) es una función que acepta un bloque de datos (M) de longitud variable y genera un resumen (hash) de longitud fija

$$H(M) = hash$$

El resumen, de tamaño limitado, identifica de "manera única" el bloque de datos, de longitud no limitada



### Funciones Resumen

#### Colisión

Espacio de resúmenes |h| para una función resumen dada

$$|h| = 2^n$$

Siendo n el número de bits de salida de la función resumen

Dado que una función resumen genera resúmenes de longitud fija, pero el número de mensajes de entrada a la función es teóricamente infinito, es posible encontrar 2 mensajes M y M'/

$$H(M) = H(M') \rightarrow Colisión$$



- Funciones Resumen
  - Funciones resumen
  - Funciones resumen criptográficas
  - Ejemplos
- Message Authentication Code (MAC)
  - Generalidades MAC
  - Requisitos de seguridad MAC
  - MAC Basados en funciones resumen
  - MAC Basados en cifrado en bloque



- Función resumen que debe cumplir los siguientes requisitos:
  - Ser aplicable a mensajes de entrada de cualquier longitud

Producir resúmenes de salida de una longitud fija

La salida generada por la función resumen debe satisfacer los requisitos para pseudo-aleatoriedad.



Compresión

Difusión: si se modifica un solo bit del mensaje M, el resumen debería cambiar la mitad de sus bits aproximadamente

Determinista: la aplicación de la misma función resumen sobre los mismos datos debe producir el mismo resumen

Eficiente: El cálculo del resumen de un mensaje dado debe ser rápido tanto en implementaciones software como hardware



Resistente a preimágenes: Dado un resumen h, es computacionalmente imposible encontrar un mensaje M' cuyo resumen coincida con el primero (propiedad de una sola vía):

Dado h, encontrar 
$$M' / H(M') = h$$

Resistente a segunda preimagen (resistente débil a colisiones): Dado un mensaje M, es computacionalmente imposible encontrar un M' tal que el resumen de ambos coincidan:

Dado M, encontrar 
$$M' \neq M / H(M) = H(M')$$

Resistente a colisiones (resistente fuerte a colisiones): Es computacionalmente imposible encontrar dos mensajes M y M' tales que sus resúmenes coincidan:

Encontrar M y M', M 
$$\neq$$
 M' / H(M) = H(M')



### "Computacionalmente imposible"

- No existe algoritmo o técnica para la búsqueda de colisiones que sea más eficiente que la fuerza bruta.
- Si el espacio de resúmenes generados es suficientemente grande, se puede estimar que, con los recursos HW/SW existentes, la probabilidad de encontrar una colisión es nula en un tiempo razonable

#### La fortaleza de una función resumen radica en:

- Que su diseño sólo permita ataques por fuerza bruta (no criptoanalizable)
- n (longitud del resumen) sea suficientemente grande



Probabilidades de encontrar una colisión (fuerza bruta)

Ataque de preimagen: 
$$\frac{1}{2^n}$$

- Ataque de segunda preimagen:  $\frac{1}{2^n}$
- ► Ataque de colisión:  $\frac{1}{2^{n/2}}$ !!) (p≥50%) (ataque del cumpleaños)
- ▶ En definitiva, la **complejidad algorítmica** (fortaleza) de una función resumen viene determinada por la probabilidad de encontrar una colisión mediante un ataque de colisión.

- Un algoritmo se considera roto cuando existe un algoritmo de complejidad menor al de fuerza bruta, aunque en la práctica resulte inviable el ataque
- La barrera de 2<sup>64</sup> establece el mínimo aceptable para una complejidad algorítmica
- Cualquier ataque que requiera un menor número de operaciones convierte al algoritmo en no seguro



### Posibles ataques:

- Ataque de preimagen
  - Suplantación de identidad en sistemas que almacenen los resúmenes de las contraseñas
  - Forzar falsos positivos en tablas de hashing
- Ataque de segunda preimagen
  - Falsificación de certificados digitales, documentos firmados digitalmente, código fuente, etc.
- Ataque de colisión
  - Ataque del cumpleaños para la falsificación de documentos firmados digitalmente



### Aplicaciones prácticas

- Verificación de integridad de datos
- Firmas digitales
- Uso en funciones MAC (Message Authentication Code)
- Indexación en bases de datos, estructuras de datos, etc.
- Almacenamiento de contraseñas
- Detección de intrusiones
- Patrones de virus
- Generación de números pseudo-aleatorios
- Etc.



- Funciones Resumen
  - Funciones resumen
  - Funciones resumen criptográficas
  - Ejemplos
- Message Authentication Code (MAC)
  - Generalidades MAC
  - Requisitos de seguridad MAC
  - MAC Basados en funciones resumen
  - MAC Basados en cifrado en bloque



# Ejemplos – Estructura Merkle-Damgard

Usada en la mayoría de las funciones resumen actuales



 $CV_0 = IV = valor inicial del resumen$   $CV_i = f(CV_{i-1}, B_{i-1}) \quad I \le i \le L$   $H(M) = CV_L$ 



## Ejemplos – Estructura Merkle-Damgard

- Algoritmo con iteraciones (etapas) encadenadas
- Fase de adecuación del mensaje de entrada
  - ▶ El mensaje se divide en L bloques B de longitud b
  - Al último bloque se le añade la longitud total del mensaje
  - Se añade un relleno (padding) en caso necesario. Dificulta la búsqueda de colisiones:
    - ▶ 2 mensajes de igual longitud que colisionen
    - ▶ 2 mensajes de diferente longitud que, con sus longitudes añadidas, colisionen



## Ejemplos – Estructura Merkle-Damgard

### Función de compresión

- ▶ 2 entradas: salida de la etapa anterior (vector de inicialización si primera etapa) + bloque correspondiente
- Cada etapa produce un resumen de n bits
- El resumen final generado es de longitud n bits
- Si la función de compresión es resistente a colisiones, también lo es la función resumen (lo contrario no tiene porqué ser cierto)
- Diseño de la función de compresión  $\rightarrow$  núcleo de la seguridad
  - El criptoanálisis a una función resumen se centra en la función de compresión



## Ejemplos – MD5

- Diseñada por Ronald L. Rivest en 1991
- Modo de operación
  - ▶ Genera un resumen de 128 bits
  - ▶ El mensaje de entrada se divide en bloques de 512 bits
  - Se produce una operación de relleno sobre el último bloque
  - Cada bloque se descompone a su vez en 16 sub-bloques de 32 bits cada uno
  - Se realizan 4 rondas de 16 operaciones cada una basadas en:
    - Funciones no lineales
    - Suma módulo 2<sup>32</sup>
    - Rotación de bits



## Ejemplos – MD5

### Ataques

- Primeras señales de vulnerabilidad (1996)
- Primeros algoritmos que darían lugar a las primeras colisiones (2004) http://eprint.iacr.org/2004/199
- Lenstra, Wang y Weger, logran construir dos certificados de claves públicas distintas con la misma firma digital (MD5-RSA) (2005) <a href="http://eprint.iacr.org/2005/067">http://eprint.iacr.org/2005/067</a>
- Algoritmo que encuentra colisiones en un minuto (*Preimage attack by Tunneling*) (2006)
  - http://eprint.iacr.org/2006/105



## Ejemplos – SHA-0, SHA-1

#### ▶ SHA-0

- Genera un resumen de 160 bits
- Roto en 2005 al publicarse un algoritmo que encontraba colisiones con tan sólo 2<sup>39</sup> operaciones

#### ▶ SHA-I

- Diseñado por la NSA
- Genera un resumen de 160 bits
- Estructura similar a la de MD5
- ▶ En 2005, Wang, Yin y Yun publican un algoritmo que encuentra colisiones con 2<sup>69</sup> operaciones (2<sup>80</sup> sería con fuerza bruta)
- ▶ En 2005, Wang, Yao y Yao reducen la complejidad del algoritmo a 2<sup>63</sup> operaciones



## Ejemplos – Familia SHA-2

- SHA-224, SHA-256, SHA-384 y SHA-512
- Diseñados por NSA
- Nueva estructura común a todas ellas
- SHA-224 y SHA-384 son versiones truncadas de SHA-256 y SHA-512 (64 rondas en vez de 80 y con valores iniciales diferentes)
- No se han encontrado vulnerabilidades
- Son las opciones que ofrecen más garantías



# Ejemplos

| Algorithm      | Output size         | Internal state size | Block size | Collision  |
|----------------|---------------------|---------------------|------------|------------|
|                |                     |                     |            |            |
| HAVAL          | 256/224/192/160/128 | 256                 | 1024       | Yes        |
| MD2            | 128                 | 384                 | 128        | Almost     |
| MD4            | 128                 | 128                 | 512        | Yes        |
| MD5            | 128                 | 128                 | 512        | Yes        |
| RIPEMD         | 128                 | 128                 | 512        | Yes        |
| RIPEMD-128/256 | 128/256             | 128/256             | 512        | No         |
| RIPEMD-160/320 | 160/320             | 160/320             | 512        | No         |
| SHA-0          | 160                 | 160                 | 512        | Yes        |
| <u>SHA-1</u>   | 160                 | 160                 | 512        | With flaws |
| SHA-256/224    | 256/224             | 256                 | 512        | No         |
| SHA-512/384    | 512/384             | 512                 | 1024       | No         |
| WHIRLPOOL      | 512                 | 512                 | 512        | No         |



## Ejemplos – Familia SHA-3

 Competición para la selección de la nueva familia de funciones resumen SHA-3

### http://csrc.nist.gov/groups/ST/hash/sha-3/

- ▶ 2007: Establecimiento de los requisitos a cumplir.
- > 2008: Envío de propuestas.
- ▶ 2009 (Febrero): Primer Congreso sobre las funciones resumen candidatas. Revisión pública de las candidatas.
- ▶ 2010 (2Q): Segundo Congreso sobre las funciones resumen candidatas. Análisis de resultados y propuesta de mejoras.
- ▶ 2010 (3Q): Selección de las funciones resumen finalistas.
- > 2010 (4Q): Últimos "retoques" por parte de los autores.
- ▶ 2011: Análisis de la comunidad científica mundial.
- 2012 (4Q): Keccak seleccionado como algoritmo ganador (http://csrc.nist.gov/groups/ST/hash/sha-3/documents/Keccak-slides-at-NIST.pdf)



#### Funciones Resumen

- Funciones resumen
- Funciones resumen criptográficas
- Ejemplos

### Message Authentication Code (MAC)

- Generalidades MAC
- Requisitos de seguridad MAC
- MAC Basados en funciones resumen
- MAC Basados en cifrado en bloque



### Generalidades MAC

- Un código de autenticación de mensaje (MAC) es un algoritmo que emplea una clave secreta para producir un valor de longitud fija (código de autenticación) sobre un mensaje de longitud variable
- Cualquier entidad que posea la clave secreta es capaz de verificar la integridad del mensaje
- Un receptor que comparta la clave secreta es capaz de autenticar al origen del mensaje
- En caso que el mensaje incluya un número de secuencia, se evitan ataques por replicación



### Generalidades MAC



### Generalidades MAC

- Una función MAC no tiene porqué ser invertible
- Al igual que con las funciones resumen, se pueden producir colisiones

```
|k| = 2^k

|MAC| = 2^n

|M| = indeterminado
```

- Funciones Resumen
  - Funciones resumen
  - Funciones resumen criptográficas
  - Ejemplos
- Message Authentication Code (MAC)
  - Generalidades MAC
  - Requisitos de seguridad MAC
  - MAC Basados en funciones resumen
  - MAC Basados en cifrado en bloque



## Requisitos de seguridad MAC

Dado un mensaje M y el valor MAC(K, M), es computacionalmente imposible encontrar un mensaje M' cuyo valor MAC(K, M') coincida

Dado M y MAC(K, M), encontrar  $M' \neq M / MAC(K, M') = MAC(K, M)$ 

- MAC(K, M) debe estar uniformemente distribuido, de forma que la probabilidad de encontrar dos mensajes M y M' cuyos valores MAC coincidan es  $\frac{1}{2^n}$
- Sea M' un mensaje resultante de aplicar una transformación a
   M [M' = f(M)]. En tal caso, debe cumplirse lo siguiente:

$$Pr[MAC(K, M) = MAC(K, M')] = \frac{1}{2^{n}}$$



## Requisitos de seguridad MAC

Ataques a funciones MAC

Dado un conjunto de Mi, MAC(K,Mi), el atacante desea generar M', MAC(K,M'), con M' $\neq$ Mi  $\forall$  i=0...n

Fuerza bruta

Ataque al espacio de claves K 
$$(\frac{1}{2^k})$$
 versus Ataque al valor MAC  $(\frac{1}{2^n})$ 

La complejidad computacional es 
$$Min(\frac{1}{2^k}, \frac{1}{2^n})$$

Criptoanálisis

Requiere la existencia de vulnerabilidades en el diseño o implementación en el algoritmo (dependerá de su estructura interna)



- Funciones Resumen
  - Funciones resumen
  - Funciones resumen criptográficas
  - Ejemplos
- Message Authentication Code (MAC)
  - Generalidades MAC
  - Requisitos de seguridad MAC
  - MAC Basados en funciones resumen
  - MAC Basados en cifrado en bloque



### MAC Basados en funciones resumen

- ► HMAC (Hash-MAC)
- Emplean funciones resumen existentes
- Aplican la función resumen sobre una versión del mensaje al que añaden un conjunto de bits calculados a partir de la clave

 $\mathsf{HMAC}(\mathsf{K},\mathsf{M}) = \mathsf{H}[(\mathsf{K}' \oplus \mathsf{opad}) \mid\mid \mathsf{H}[(\mathsf{K}' \oplus \mathsf{ipad}) \mid\mid \mathsf{M}]]$ 

K': K padded con 0's a la izquierda hasta tener longitud b

b: Longitud de cada bloque procesado por la función resumen

ipad: 00110110 (0x36) repetido b/8 veces

opad: 01011100 (0x5C) repetido b/8 veces

||: operación concatenación



- Funciones Resumen
  - Funciones resumen
  - Funciones resumen criptográficas
  - Ejemplos
- Message Authentication Code (MAC)
  - Generalidades MAC
  - Requisitos de seguridad MAC
  - MAC Basados en funciones resumen
  - MAC Basados en cifrado en bloque



## MAC Basados en cifrado en bloque

- Cifran el mensaje mediante un algoritmo de cifrado simétrico en bloque en modo CBC
- ▶ El valor del MAC es el resultado del cifrado del último bloque
- Consiguen que el MAC dependa de todos los bits del mensaje





### **ANEXO**

SEGURIDAD EN LAS TECNOLOGÍAS DE LA INFORMACIÓN Grupo SeTI

Curso 2011-2012

### Paradoja del Cumpleaños

Establece que si hay 23 personas reunidas hay una probabilidad del 50,7% de que al menos dos personas de ellas cumplan años el mismo día.

P("dos cumpleaños coincidan") = I - P("ninguno coincida")

Probabilidad de que ninguno coincida

$$p = \frac{365}{365} \cdot \frac{364}{365} \cdot \frac{363}{365} \cdot \dots \cdot \frac{365 - n + 1}{365}$$

$$p = \begin{cases} \frac{365!}{365^n(365-n)!}, & 0 \le n \le 365 \\ 0, & 365 < n \end{cases}$$

P("dos cumpleaños coincidan") > 0,5 para n= 23







Por el contrario, la probabilidad de que, de un conjunto de n personas, al menos I cumpla años un día concreto, es mucho menor

P("cumpla años el mismo día que yo") = I - P("nadie cumpla cuando yo")

$$1 - \left(\frac{364}{365}\right)^n$$

P("cumpla años el mismo día que yo") > 0,5 para n= 253



- Ataque del cumpleaños (e.g. en procedimiento de firma digital)
  - Dijetivo: generar un par de mensajes M' y M'' que colisionen, y emplearlos de forma fraudulenta
  - Procedimiento
    - ▶ El atacante genera un conjunto C de m mensajes similares a un mensaje M dado (p. ej. mensaje a firmar por la víctima)
    - El atacante genera un conjunto Cf de m mensajes similares al mensaje M, pero con modificaciones que benefician al atacante
    - ▶ El tamaño de los conjuntos (m) debe ser ≥ n/2, siendo n la longitud del resumen generado por la función resumen dada
    - Con probabilidad 50%, y tiempo computacional n/2, se encuentra una pareja  $M' \in C, M'' \in Cf / H(M') = H(M'')$
  - El atacante engaña a la víctima para usar el mensaje M', y posteriormente lo sustituye por el mensaje M'' (fraudulento)

