Bounded Operators & Closed Subspaces

by Francis J. Narcowich November 2014^1

1 Bounded operators & examples

Let V and W be Banach spaces. We say that a linear transformation $L: V \to W$ is bounded if and only if there is a constant K such that $||Lv||_W \le K||v||_V$ for all $v \in V$. Equivalently, L is bounded whenever

$$||L||_{op} := \sup_{v \neq 0} \frac{||Lv||_W}{||v||_V}$$
(1.1)

is finite. $||L||_{op}$ is called the norm of L. Frequently, the same operator may map another space $\widetilde{V} \to \widetilde{W}$, rather than $V \to W$. When this happens, we will need to note which spaces are involved. For instance, if V and W are the spaces involved, we will use the notation $||L||_{V\to W}$ for the operator norm. In addition to the expression given in (1.1), it is easy to show that $||L||_{op}$ is also given by

$$||L||_{op} := \min\{K > 0 \colon ||Lv||_W \le K||v||_V \ \forall v \in V\}.$$
 (1.2)

As usual, we say $L:V\to W$ is continuous at $v\in V$ if and only if for every $\varepsilon>0$ there is a $\delta>0$ such that $\|Lu-Lv\|_W<\varepsilon$ whenever $\|u-v\|_V<\delta$. Of course, this is just the standard definition of continuity. Be aware that it holds whether or not L is linear. When L is linear, the distinction between u,v becomes irrelevant, because $\|Lu-Lv\|_W=\|L(u-v)\|_W$. From this it immediately follows that L will be continuous at every $v\in V$ whenever it is continuous at v=0. The proposition below connects boundedness and continuity for linear transformations. The proof is left as an exercise.

Proposition 1. A linear transformation $L: V \to W$ is continuous if and only if it is bounded.

We will now provide a number of examples of bounded operators and unbounded operators.

¹Revised October 2019

Example 1. Let $L: C[0,1] \to C[0,1]$ be given by $Lu(x) = \int_0^1 k(x,y)u(y)dy$, where $k \in C(R)$, $R = [0,1] \times [0,1]$. We have that $|Lu(x)| \le \int_0^1 |k(x,y)| |u(y)|dy$, so $|Lu(x)| \le ||k||_{C(R)} ||u||_{C([0,1])}$. Consequently, $||L||_{C \to C} \le ||k||_{C(R)} ||u||_{C([0,1])}$

Example 2. Hilbert-Schmidt operators.

Definition 1. Let $R = [0,1] \times [0,1]$ and let $k : R \to \mathbb{R}$. If $k \in L^2(R)$, then k is called a *Hilbert-Schmidt kernel*.

Proposition 2. Let k be a Hilbert-Schmidt kernel. The linear operator $Lu(x) = \int_0^1 k(x,y)u(y)dy$ maps $L^2[0,1] \to L^2[0,1]$ and is bounded. Moreover, $\|L\|_{L^2 \to L^2} \le \|k\|_{L^2(R)}$.

Proof. Since $k(x,y) \in L^2(R)$, $\int_R |k(x,y)|^2 dx dy < \infty$, we have that $|k(x,y)|^2 \in L^1(R)$. Fubini's theorem then implies that $\int_0^1 |k(x,y)|^2 dy$ exists for almost every x and, in x, is in $L^1[0,1]$. But this also implies that for almost every x, $|k(x,y)|^2$ is L^2 in y. Hence, by Schwarz's inequality,

$$|Lu(x)|^2 = \left| \int_0^1 k(x,y) u(y) dy \right|^2 \leq \int_0^1 |k(x,y)|^2 dy \underbrace{\int_0^1 |u(y)|^2 dy}_{\|u\|_{L^2}^2}.$$

Integrating both sides in x then yields $||Lu||_{L^2[0,1]}^2 \le ||k||_{L^2(R)}^2 ||u||_{L^2[0,1]}^2$, so $||Lu||_{L^2[0,1]} \le ||k||_{L^2(R)} ||u||_{L^2[0,1]}$. Then by (1.2), we see that $||L||_{L^2\to L^2} \le ||k||_{L^2(R)}$, which completes the proof.

Example 3. Consider $L^2[0,1]$. The differentiation operator $D=\frac{d}{dx}$ is defined on all $f \in C^1[0,1]$, which is dense in L^2 because it contains the set of polynomials. The question is whether D is bounded, or at least can be extended to a bounded operator on L^2 . The answer is no. Let $u_n(x) := \sqrt{2}\sin(n\pi x)$. These functions are in $C^1[0,1]$ and they satisfy $||u_n||_{L^2} = 1$. Since $Du_n = n\pi\sqrt{2}\cos(n\pi x)$, $||Du_n||_{L^2} = n\pi$. Consequently,

$$\frac{\|Du_n\|_{L^2}}{\|u_n\|_{L^2}} = n\pi \to \infty, \text{ as } n \to \infty.$$

Thus D is an unbounded operator on $L^2[0,1]$.

The situation changes if we use a different space. Consider the Sobolev space $H^1[0,1]$, which has the inner product

$$\langle f, g \rangle_{H^1} = \int_0^1 f(x) \overline{g(x)} + f'(x) \overline{g'(x)} dx.$$

The operator $D: H^1 \to L^2$ turns out to be bounded. In fact, one can show that $||D||_{H^1 \to L^2} = 1$. (It's easy to show that $||D||_{H^1 \to L^2}$ is at most 1. Showing that it's exactly one requires more work.)

2 Closed subspaces

The usual definition of subspace holds for Banach spaces and for Hilbert spaces. Such subspaces inherit norms and/or inner products from the larger spaces. They are said to be *closed* if they contain all of their limit points.

Finite dimensional subspaces are always closed. Earlier, when we discussed completeness of an orthonormal set $U = \{u_n\}_{n=1}^{\infty}$ in a Hilbert space \mathcal{H} , we saw that the space $\mathcal{H}_U = \{f \in \mathcal{H} : f = \sum_n \langle f, u_n \rangle u_n \}$ is closed in \mathcal{H} . When C[0,1] is considered to be a subspace of $L^2[0,1]$, it is not closed. However, C[0,1] is a closed subspace of $L_{\infty}[0,1]$.

Given a subspace V of a Hilbert space \mathcal{H} , we define the *orthogonal complement* of V to be

$$V^{\perp} := \{ f \in \mathcal{H} : \langle f, q \rangle = 0 \ \forall q \in V \}.$$

Proposition 3. V^{\perp} is a closed subspace of \mathcal{H} .

Proof. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence in V^{\perp} that converges to a function $f \in \mathcal{H}$. Since each f_n is in V^{\perp} , $\langle f_n, g \rangle = 0$ for every $g \in V$. Also, because the inner product is continuous, $\lim_{n \to \infty} \langle f_n, g \rangle = \langle f, g \rangle$. It immediately follows that $\langle f, g \rangle = 0$. so $f \in V^{\perp}$. Consequently, V^{\perp} is closed in \mathcal{H} .

Bounded linear operators mapping $V \to W$, where V and W are Banach spaces, have all of the usual subspaces associated with them. Let $L: V \to W$ be bounded and linear. The domain of L is D(L) = V. The range of L is defined as $R(L) := \{w \in W \colon \exists v \in W \text{ for which } Lv = W\}$. Finally, the null space (or kernel) of L is $N(L) := \{v \in V \colon Lv = 0\}$.

Proposition 4. If $L: V \to W$ is bounded and linear, then the null space N(L) is a closed subspace of V.

Proof. The proof again relies on the continuity of L. If $\{f_n\}_{n=1}^{\infty}$ is a sequence in N(L) that converges to $f \in V$. By Proposition 1, L is continuous, so $\lim_{n\to\infty} Lf_n = Lf$. But, because $f_n \in N(L)$, $Lf_n = 0$. Combining this with $\lim_{n\to\infty} Lf_n = Lf$, we see that Lf = 0 and so $f \in N(L)$. Thus, N(L) is a closed subspace of V.

Previous: X-ray tomography and integral equations

Next: the projection theorem, Reisz representation theorem and the Fred-

holm alternative