# Reporte entrega 2

Grupo 123 Alonso Venegas González Manuel Cifuentes Cabello

# **Diagrama**



## Esquema relacional

**Personal**(id int,nombre varchar(30) NOT NULL,rut varchar(30) NOT NULL,edad int NOT NULL,sexo varchar(10) NOT NULL,tienda int NOT NULL,PRIMARY KEY (id),FOREIGN KEY(tienda) REFERENCES Tienda(id) ON DELETE CASCADE)

id → nombre, rut, edad, sexo, tienda

rut  $\rightarrow$  id, nombre, edad, sexo, tienda

**BCNF** 

**Tienda**(id int,nombre varchar(50) NOT NULL,dirección int UNIQUE, jefe int NOT NULL,PRIMARY KEY (id),FOREIGN KEY(dirección) REFERENCES Direccion(id)) id → nombre, jefe, direccion direccion → id, nombre, jefe BCNF

**Despacha**(id\_tienda int NOT NULL,id\_comuna int NOT NULL,PRIMARY KEY (id\_tienda, id\_comuna),FOREIGN KEY(id\_tienda) REFERENCES Tienda(id)FOREIGN KEY(id\_comuna) REFERENCES Comuna(id))

**Comuna**(id int,nombre varchar(30) NOT NULL,PRIMARY KEY(id)) id → nombre BCNF

**Direccion**(id int,nombre varchar(50) NOT NULL,comuna int NOT NULL, PRIMARY KEY (id),FOREIGN KEY(comuna) REFERENCES Comuna(id)) id → nombre, comuna BCNF

**Residencia**(id\_usuario int NOT NULL,id\_direccion int NOT NULL,PRIMARY KEY (id\_direccion, id\_usuario),FOREIGN KEY(id\_direccion) REFERENCES Direccion(id), FOREIGN KEY(id\_usuario) REFERENCES Usuario(id))

**Usuario**(id int,nombre varchar(50) NOT NULL,rut varchar(30) NOT NULL,edad int NOT NULL,sexo varchar(10) NOT NULL,PRIMARY KEY (id)) id  $\rightarrow$  rut, sexo, nombre, edad rut  $\rightarrow$  id, sexo, nombre, edad BCNF

 $\label{eq:productos} \begin{aligned} &\textbf{Productos}(\text{id int}, \text{nombre varchar}(30) \ \text{NOT NULL}, \\ &\text{descripcion varchar}(100), \\ &\text{PRIMARY} \\ &\text{KEY}(\text{id}) \ ) \\ &\text{id} \rightarrow \text{nombre}, \ \text{descripcion} \\ &\text{BCNF} \end{aligned}$ 

Compras(id int,id\_usuario int NOT NULL,id\_direccion int NOT NULL,id\_tienda int NOT NULL,PRIMARY KEY(id),FOREIGN KEY(id\_tienda) REFERENCES Tienda(id) ON DELETE CASCADE,FOREIGN KEY(id\_usuario) REFERENCES Usuario(id) ON DELETE CASCADE,FOREIGN KEY(id\_direccion) REFERENCES Direccion(id) ON DELETE CASCADE)

 $\mbox{id} \rightarrow \mbox{id\_tienda, id\_usuario, id\_direccion} \\ \mbox{BCNF}$ 

**Boleta\***(id\_compra int NOT NULL,id\_producto int NOT NULL,cantidad int NOT NULL, PRIMARY KEY (id\_compra, id\_producto),FOREIGN KEY(id\_compra) REFERENCES Compras(id),FOREIGN KEY(id\_producto) REFERENCES Productos(id)) id\_compra, id\_producto → cantidad BCNF

**Stock**(id\_producto int NOT NULL,id\_tienda int NOT NULL,PRIMARY KEY (id\_tienda, id\_producto),FOREIGN KEY(id\_tienda) REFERENCES Tienda(id),FOREIGN KEY(id\_producto) REFERENCES Productos(id))

**No\_Comestible**(id\_producto int NOT NULL,precio int,largo int,alto int,ancho int,peso float,PRIMARY KEY (id\_producto),FOREIGN KEY(id\_producto) REFERENCES Productos(id))

id\_producto → largo, alto, ancho, peso BCNF

Comestible(id\_producto int NOT NULL,precio int,fecha\_caducidad DATE,PRIMARY KEY (id\_producto),FOREIGN KEY(id\_producto) REFERENCES Productos(id)) id\_producto → fecha\_caducidad BCNF

Congelado(id\_producto\_congelado int NOT NULL,peso float,PRIMARY KEY (id\_producto\_congelado),FOREIGN KEY(id\_producto\_congelado) REFERENCES Comestible(id\_producto)) id\_producto → peso BCNF

Frescos(id\_producto\_fresco int NOT NULL,duracion\_sin\_conservar int,PRIMARY KEY (id\_producto\_fresco),FOREIGN KEY(id\_producto\_fresco) REFERENCES Comestible(id\_producto)) id\_producto → duracion\_sin\_conservar BCNF

Conserva(id\_producto\_conserva int NOT NULL,metodo\_conserva varchar(20),PRIMARY KEY (id\_producto\_conserva),FOREIGN KEY(id\_producto\_conserva) REFERENCES Comestible(id\_producto)) id\_producto → metodo\_conserva BCNF

Los que están con negrita son entidades mientras que los que están con negrita y cursiva, son relaciones entre entidades.

\*Boleta es una relación entre la entidad productos y compras, pero como tiene su propio atributo que es cantidad, la justificamos con el modelo BCNF y la escribimos sin cursiva.

#### Justificación

Todo nuestro esquema se encuentra en BCNF porque nos basamos principalmente en ese modelo para modelar, valga la redundancia, nuestras dependencias funcionales , ya que por lo visto en clases, creemos que es el mejor método a la hora de crear tablas.

### Consultas SQL

- 1- select tienda.nombre,comuna.nombre from tienda,despacha,comuna where tienda.id=despacha.id\_tienda and despacha.id\_comuna=comuna.id order by tienda.id
- 2- select distinct personal.id,personal.nombre,personal.rut,personal.edad,personal.sexo from tienda,personal,despacha,comuna where tienda.jefe=personal.id and tienda.id=despacha.id\_tienda and despacha.id\_comuna=comuna.id and comuna.nombre like '%\$comuna b%'
- 3- Usamos un dropdown que luego seleccionaba un condicional para ver cual desplegar. En el caso de Comestibles: SELECT distinct tienda.nombre from comestible,stock,tienda where stock.id\_tienda=tienda.id and stock.id\_producto=comestible.id\_producto

En el caso de No Comestibles: SELECT distinct tienda.nombre from no\_comestible,stock,tienda where stock.id\_tienda=tienda.id and stock.id\_producto=no\_comestible.id\_producto

#### 4- select distinct

usuario.id,usuario.nombre,usuario.rut,usuario.edad,usuario.sexo,productos.nombre from usuario, compras, boleta, productos where usuario.id=compras.id\_usuario AND compras.id=boleta.id\_compra AND boleta.id\_producto=productos.id AND productos.descripcion like '%\$descripcion\_b%

- 5- select avg(personal.edad) from personal, tienda, direccion, comuna where personal.tienda=tienda.id and tienda.dirección=direccion.id and direccion.comuna=comuna.id and comuna.nombre like '%\$comuna%
- 6- Al igual que en la tercera consulta usamos un dropdown que luego seleccionaba un condicional para ver cual desplegar.

En el caso de comestibles: select tienda.nombre, sum(boleta.cantidad) from comestible, boleta, compras, tienda where comestible.id\_producto=boleta.id\_producto and boleta.id\_compra=compras.id and compras.id\_tienda=tienda.id group by tienda.id order by sum(boleta.cantidad) desc limit 5

En el caso no comestibles: select tienda.nombre, sum(boleta.cantidad) from no\_comestible, boleta, compras, tienda where no\_comestible.id\_producto=boleta.id\_producto and boleta.id\_compra=compras.id and compras.id\_tienda=tienda.id group by tienda.id order by sum(boleta.cantidad) desc limit 5

### <u>Supuestos</u>

-Hicimos el supuesto de que las tiendas no tenían un cantidad definida de stock de un producto, ya que había veces donde habían compras que excedian la cantidad de productos que tenia una tienda, esto lo vemos en la tabla *productosV2.csv* donde habían casos de filas iguales, es decir una tienda tenía dos veces el mismo producto, lo cual llevaría a pensar que se repetían porque tenia 2 veces el mismo producto, pero como mencionamos al principio, esto significaria que aquellas compras que tienen más cantidad que las disponibles por la tienda tendrían que ser invalidadas, lo cual no era el objetivo de esta

tarea, por lo cual llegamos a la conclusión de eliminar esas filas repetidas en el csv y solo dejar una fila por producto.

-Decidimos que en el caso de que en algún campo de texto no se ingrese nada, mostraremos todos los resultados posibles para todos los inputs posibles.