140 (46 MA) 400 KB (40 MA) 400 MA

NMAM INSTITUTE OF TECHNOLOGY, NITTE

Off-Campus Centre of Nitte (Deemed to be University)
Second Semester B.Tech (CBCS) Degree Examinations

May 2025

CS1005-2 - INTRODUCTION TO PYTHON PROGRAMMING

(For BT, ME, AD, AM, CB, CC, CS, IS, RI)

Duration: 3 Hours Max. Marks: 100

Note:

Part – A: Multiple Choice Questions: Answer all Twenty questions in the OMR Sheet provided. Each question carries equal marks.

Part – B: Descriptive Answer Questions: Answer Five full questions choosing Two full questions from Unit – I & Unit – II each and One full question from Unit – III.

	PART - A: MULTIPLE CH	OIC	E QUESTIONS	20 Marks
2.	 What does the 'continue' keyword do in a loop? A) Pauses the loop C) Skips the rest of the code inside the loop for the current iteration / What will this code output? x = 0 if x: 	B) D)	Stops the loop Exits the program	
	print("True") else: print("False") A) True C) Error		False No Output	
3.	What will be the output of the following Python count = 0 while count = 3: print("Hello") count = 1 else:	cod	e?	
	print("Else block") A) Prints "Hello" three times and then prints "Else block."	B)	Prints "Hello" four times.	
4.	C) Prints "Else block" three times. What will be the output of the following code? for i in range(1, 6): if i == 3: continue print(i)	D)	Raises a Syntax Error	
	A) 12 C) 1245	B) D)	123 124	
5.	Which keyword is used for function? A) Fun	B)	Define	
	C) def /		Function	
6.	What is the purpose of the return statement in	a fu	nction?	
	A) To stop the execution of the function C) To return a value to the caller		To print a value to the console To define a recursive function	

7.	are the arguments passed to a functi	on in	correct positional order.
	A) Required arguments (B)	Ken	word arguments
	C) Default arguments D)	Var	iable-length arguments
8.	What will be the output of the following code snip	net?	
	def add(a, b=10):		
	return a + b		
	result = add(5)		
	print(result)		
		10	
	C) 15 D) Err	ror
9.	What will be the output of the following Python co	de?	
	str1="helloworld"		
	print(str1[::-1])		
	A) dirowolleh	San and the san and	
	C) world) ne	illoworld
10.	Which of the following methods is used to add an	elen	nent to the end of a norm
	A) append()) ac	10()
)) ex	tend()
11.		n (0	4.60
	1.9 (1, 2, 0, 1, 2, 0)	A	(,4,6) rror
12.		3) 2	Citetry . 3)).
			rror
13.		3) .	and
	7.1)	1. (C	
	is the second ('a') mode	in fil	le handling?
14.	What is the primary use of the append ('a') mode	R) T	o write new content to the file and erase old
	A) To delete the file content	٠, ,	content
	C) To add new content to the end of the file		To read the file content
4.5	of to ded flow obtained and the file in ones.	ed us	ing the open() function in Python?
15.		RI F	Read mode ('r')
	71) 111000 (17)		Binary mode ('rb')
	C) Append mode ('a')What is the purpose of the csv.reader() method		
16.	What is the purpose of the csv.reader() method	B)	To read data from a CSV file
	A) To write data to a CSV file		To rename a CSV file
2.00	C) To delete data from a CSV file Which block is executed if no exception occurs	with	in the try block?
17.	V2181	R)	finally
	A) except		raise
	C) else	<i>U</i>	14133
18.			
	try:		
	x = 1/0		
	except ZeroDivisionError:		
	x = 0		
	print(x)	Di	
	A) 1	B)	0 /
	C) An exception will be raised		0.5
19.	Which Python library is used for data visualiza	tion	Boule
	A) NumPy	B)	Pandas
	C) Matplotlib	D)	SciPy
20.	s to the second using plt plot(x y)	?	
1.0.	A) Bar chart	B)	Line plot
	C) Scatter plot	D)	Histogram
	C) Scatter plot	,	

PART - B: DESCRIPTIVE ANSWER QUESTIONS

		Unit – I	Marks	BT*	CO*	PO*
1.	a)		4	L*2	1	1
		What is module? Explain the various methods of importing mod	lules			
		in Python programs.	8	L2	2	1
	C)	Write a python program to find the sum of digits and number	er of	10		2
		occurrences of digit in a number.	_4	L3		- 4
2.	a)	What is a variable? What are the rules for writing an identifier?	4	L1	1	1
	b)	List the different types of operators. Explain the following opera-	ators			
		with an example program.				
		i. Logical Operators ii. Identity Operators	8	1.2	1	1
	c)	Define recursive functions. Develop a python program to find fact				
		of a number using recursion.	4	L3	2	2
3.	a)	Explain nested if conditional statement in python with syntax	and	_		
		programming example.	4	L2	1	. 1
	b)	Explain different type of arguments used in python functions	with			
	- 1	example program.	8	L2	2	1
	C)	Explain membership operators with a programming example.	4	L2		18
	-1	Unit – II	_			
4.	a)	Define file. Illustrate read and write operation in file with a snippet.	code 4	L2	4	1
	b)	Explain the following methods in list with an example:	7			
	-/-	i) len() ii)insert() iii)pop() iv)sort()	8	L2	3	1
	c)		user,			
		calculates and prints the total number of characters in the sente				
		and creates a dictionary containing the frequency of letters and	5-0		2	2
		in the sentence.	4	_ L3	3	2
5.	a)	Write a Python program to read a list of n integers (positive as w				
		negative). Create 2 new lists, one having all positive numbers		1.0	_	0
	ы	others having all negative numbers from the given list. Print all 3	lists. 4	L3	3	2
	D)	Explain the following methods in a dictionary with example: i) keys() ii) values() iii) items() iv) copy()	8	L2	3	- 1
	C)					
	- ,	["Name", "Age", "Grade"], ["Alice", 23, "A"], ["Bob", 21, "B"]				
		Python's csv module.	4	L3	4	2
6.	a)	How is a tuple different from a list and what function is used to co	onvert			
		list to tuple? Explain.	4	1 L2	2 3	1
	b)			3 L3	3 4	2
	c)					
		i) spam[1:6:2] ii) spam[4:-12:-1] iii) spam[5:0:-2] iv) spam	(:::1) _4	1 L	3 3	1
7.	a)	Explain finally keyword with programming example.		4 L2	2 5	1
	b)					
		using matplotlib to represent the sales of different products in a				
		by displaying appropriate labels for the axes and title for the Use different colors for each bar.	criart.			
		Product Sales (in units)				
		Laptop 160				
		Phone 350				
		Tablet 200				
		Headphones 250		0 1	2	
		Smartwatch 140		8 L	S :	5 2
		-5				

	c)	Write a Python program that performs division of two numbers. The program should handle ZeroDivisionError and ValueError (if the input is not a number) and print custom error messages.	4	L3	5	2
8	3. a)	What is Pandas in Python? Write a Python program to create a Pandas DataFrame from the following dictionary and access the third				
		row of the DataFrame.				
		data={ 'Name': ['Alice', 'Bob', 'Charlie', 'David'], 'Age': [25, 30, 35, 40], 'Salary': [50000, 60000, 70000, 80000] }	4	L3	5	2
	b)	What are Exceptions? Explain the use of try, except, else blocks in Python. Provide examples to show how each block works.	8	L2	5	1
	C)	Compare Syntax Error and Exception. Write a Python program that executes an operation on a list and handles an IndexError exception if the index is out of range.	4	L3	5	2

Off-Campus Centre of Nitte (Deemed to be University)

Second Semester B.Tech (CBCS) Degree Examinations

May 2025

EC1002-2 - APPLIED DIGITAL LOGIC DESIGN

(For AC, EC, EE, VL, AD, AM, CB, CC, CS, IS, RI)

Duration: 3 Hours

Max. Marks: 100

Note:

2.

3.

Part – A: Multiple Choice Questions: Answer all **Twenty** questions in the **OMR Sheet** provided. Each question carries equal marks.

Part – B: Descriptive Answer Questions: Answer Five full questions choosing Two full questions from Unit – I & Unit – II each and One full question from Unit – III.

PART - A: MULTIPLE CHOICE QUESTIONS

20 Marks

- 1. OR gate and----- will form the NOR gate?
 - A) OR gate
 - C) NOT gate

- B) NAND gateD) AND gate
- Decimal equivalent of binary number 10101 is
- A) 21/
- C) 22

- B) 12 D) 31
- A three variable karnaugh map has
- A) Eight cells
- C) Sixteen Cells

- B) Three cells
- D) Four cells
- 4. Which of the following is a SOP expression?
 - A) (A+B) (A+C)
 - C) Both a and b

- B) AB+AC
- D) (A+B) (C+D)
- 5. Which of the following logic expressions represents the logic diagram shown?

- A) X=AB'+A'B
- C) X=(AB)'+A'B'

- B) X=(AB)'+AB
- D) X=A'B'+AB
- 6. The decimal equivalent of the binary number 1011.0112 is
 - A) 11.375₁₀
 - C) 11.175₁₀

- B) 10.123₁₀
- D) 9.23₁₀
- 7. Which of the following is not considered for forming groups in K-map?
 - A) Rolling
 - C) Vertical

- B) Diagonal
- D) Horizontal
- 8. The output of an exclusive-NOR gate is 1. Which input combination is correct?
 - A) A = 1, B = 0
 - C) A = 0, B = 0

- B) A = 0, B = 1
- D) none of these
- 9. How is JK flip-flop made to toggle
 - A) J = 0, K = 0
 - C) I = 1, K = 1

- B) J = 1, K = 0
- D) J = 0, K = 1
- 10. The characteristic equation for S-R flip flop is
 - A) $\overline{S} + \overline{RO}$
 - C) S+RQ

- B) $\overline{S} + R\overline{O}$
- D) S + RO
- -1-

-2-

3.	a)	Design a combinational logic circuit to generate an output whenever a majority of four inputs is logic 1 and output function is not specified whenever the number of 0's and 1's is equal in the inputs. However, the output is logic zero for the remaining			2	1
	b)	conditions. Using the QM method simplify the following function $f(a,b,c,d) = \sum m (2,6,8,9,10,11,14,15)$	8	L3 L3	2	1
4.	a)	Unit – II Implement $f(a, b, c) = \sum m(1,4,5,7)$ using				
1	EV	i) 8:1 MUX ii) 4:1 MUX	6	L3	3	1
	b)	With logic diagram and function table explain the operation of Set- Reset latch made with NOR gates. Convert JK flip flop to T flip flop.	6 4	L2 L3	4	1
5.	a) b)	Explain the working of D flip flop with relevant logic diagram and truth table. Implement the given function using 3 to 8 decoder with minimum	6	L2	4	1
	c)	number of gate inputs. i) $F1(a,b,c) = \sum m(0,1,3)$ ii) $F2(x,y,z) = \sum m(0,2,3,5,7)$ iii) $F3(p,q,r) = \pi M(1,2,3,5,6,7)$ Explain the working of 8 to 3 line Encoder	6 4	L3 L2	3 3	1
6.	a)	What are the characteristic equations of Flip flop? Obtain the characteristic equation for i) JK Flip flop				
	b)	ii) D Flip Flop Explain the working of a 4-bit binary parallel adder/subtractor using XOR gates with a relevant block diagram and with an	6	L3	4	1
	c)	example Design the full adder using 4:1 multiplexer.	6	L2 L2	3	1
7.	a) b)	Unit – III Design a synchronous counter to sequence 0 → 4 → 1 → 2 → 6 → 0 using positive edge triggered D flip flops with minimal combinational gating. What is a Ripple counter? Sketch the logic diagram of a 3-bit ripple-up counter using asynchronous positive edge triggered T	8	L3	5	1
		flip flops. Explain its working with the sequence table and output waveforms.	8	L2	5	1
8.	a) b)	Design a synchronous counter to sequence $0 \rightarrow 2 \rightarrow 3 \rightarrow 6 \rightarrow 5 \rightarrow 1 \rightarrow 0$ using positive edge triggered T flip flops with minimal combinational gating. What is a shift register? With the help of a suitable example explain the following operations:	8	L3	5	1
		i) SIPO ii) PISO	8	L2	5	1

Off-Campus Centre of Nitte (Deemed to be University)
Second Semester B.Tech (CBCS) Degree Examinations

May 2025

EE1001-2 - BASIC ELECTRICAL ENGINEERING

(For AD, AM, CB, CC, CS, IS, RI)

Duration: 3 Hours Max. Marks: 100

Note:

Part – A: Multiple Choice Questions: Answer all Twenty questions in the OMR Sheet provided. Each question carries equal marks.

Part – B: Descriptive Answer Questions: Answer Five full questions choosing Two full questions from Unit – I & Unit – II each and One full question from Unit – III.

PART - A: MULTIPLE CHOICE QUESTIONS

20 Marks

1.	Capacitor does not allow the sudden change of	f	
	A) Current	B)	Power
	C) Voltage	D)	Frequency
2.	Which quantity consists of a unit 1 KWh		
	A) Energy	B)	Time
	C) Power	D)	Charge
3.	KCL works on the principle of which of the following	owing	
	A) Law of conservation of energy		Law of conservation of charge
	C) Conservation of momentum	D)	Conservation of potential energy
4.	How many cycles will an AC signal make in 2 se	econ	ds if its frequency is 100 Hz?
	A) 50	B)	200 /
	C) 100	D)	150
5.	In series RLC circuit, voltage across resistor, in	iduct	or and capacitor are 5V, 2V and 2V
	respectively. Find total voltage		
	A) 9V	B)	2V
	C) 4V	D)	5V~
6.	Which of the following can vary with AC, but ne	ver v	vith DC?
	A) Power	B)	Voltage
	C) Frequency	D)	Amplitude
7.	In ac circuit the ratio of kW/KVA is		
	A) Power factor	B)	Load factor
	C) Form factor	D)	Peak factor
8.	What is the angle between the line voltage and	the p	hase voltage in a star connection?
	A) 60 degrees	B)	90 degrees
	C) 0 degrees	D)	30 degrees
9.	The back emf in a DC motor is		
	A) Inversely proportional to the speed of the	B)	Directly proportional to the speed of the motor
	motor		
	Independent of the speed of the motor	D)	Equal to the supply voltage
10.	A DC series motor has		
	A) Low starting torque	B)	Constant speed
	C) High starting torque	D)	Low speed regulation
11.	In a transformer, the primary and secondary wir	nding	is are
-	A) Electrically connected -	B)	Magnetically coupled
	Both electrically connected and magnetically	D)	Neither electrically connected nor magnetically
	coupled	16	coupled

		EE1001-2		SEE-May 20
12.	Th	e EMF equation of a transformer is		
	A)	$\frac{E_1}{E_2} = \frac{N_1}{N_2}$	B)	F N.
		=======================================	_,	$\frac{E_1}{E_2} = \frac{1}{2}$
		$E_2 N_2$		$\frac{E_1}{E_2} = \frac{N_2}{N_1}$
	C)	$E_1 E_2 = N_1 N_2$		$E_1 + E_2 = N_1 + N_2$
13.	As	single phase autotransformer has		
	\sim	One winding	B)	Two windings
	C)	Three windings	D)	Four windings
14.	Sli	in an induction motor is	-,	
	A)	The ratio of synchronous speed to rotor speed	B)	The ratio of slip speed to synchronous speed
	C)	The difference between synchronous speed and rotor speed	D)	The sum of synchronous speed and rotor spee
15.	The	e rotor of a three-phase induction motor		
	A)	Rotates at synchronous speed	DI	Rotates at a speed slightly less than
		at synchronous speed	B)	synchronous speed
	C)	Rotates at a speed slightly more than	DI	Does not rotate
		Sylichronous speed		
16.	A r	otating magnetic field is produced in a three-	ohas	se induction motor by
	77)	Single-phase AC supply	B)	Three-phase AC supply
	C)	DC supply		All of these supply
17.	Wh	at does MCB stand for?		
	A)	Miniature Circuit Breaker	B)	Main Control Board
10	(J)	Motor Control Box	D)	Maximum Current Breaker
10.	VV	at is the advantage of PMSM over induction n	noto	rs?
		Simpler design		Larger size
a		Lower cost	D)	Higher efficiency /
J.	Δ)	sk converter is also called as Step up converter	D)	Ctan I In Ctan days and the
		Step down converter		Step Up - Step down converter
0.			TO C	Step down - step up converter urrent to ground and protect personnel from
nedali.	the	danger of shock?	90 01	arrent to ground and protect personner from
		Fuse	B)	Earthing
	100	Circuit Breaker	- 50	Insulator
			-	

PART - B: DESCRIPTIVE ANSWER QUESTIONS

				FARI -	D. DESC	NIP III	VE ANSWER QU	DESTIONS				
1.	a) b)	value for sinu	usoidal a	c quanti	ty for one	quantity cycle.	y. Also mention ross the 3Ω resis		Marks 04	BT*	CO*	PO*
			a	1Ω —-////	b	2Ω 	C					
		*	gv _		§ 3Ω		12V					
	c)	Deduce the e	expressio	n for act	fig. five power	er in ser	ries RL circuit. A	Iso represent	06	L3	1	1,2
		instantaneous	s power	using wa	ave forms	3.	-2-		06	L2	2	1,2

EE1001-2 SEE-May 2025 Define power factor and define various forms of power in single phase 04 L3 1.2 Use nodal analysis to find the voltage across and current through $2\boldsymbol{\Omega}$ resistor in Figure. 2b 1Ω ≶ ≨9Ω \$8Ω 10V-₹2Ω 50V Figure 2b 06 L3 1,2 Deduce the relation between line and phase parameters of three phase star connection. L2 2 06 1,2 a) List the advantages of three phase connection over single phase connection. 04 L1 2 1.2 b) A pure resistance of 50Ω is in series with a capacitance of $50\mu F$. The series combination is connected across a 230V, 50Hz supply. Find impedance, current and power factor of the circuit. L3 2 06 1.2 Define root mean square value of an alternating quantity. Derive an expression for RMS value of an alternating current. 06 L2 1,2 State Faradays laws of electromagnetic induction. 4. a) 04 L1 3 1,2 Discuss the working principle of three phase induction motor. b) 1,2 06 L2 The primary and secondary windings of a 100 kVA transformer have resistances of 0.20 Ω and 0.001 Ω respectively. The primary and secondary voltages are 2000V and 200 V respectively and the core loss is 1kW. Calculate the efficiency of the transformer at full load and unity power factor. 06 L3 3 1,2 5. a) A four pole DC Motor is connected to a 200V DC supply and takes an armature current of 50A. The resistance of the armature is 0.2Ω. The armature is lap wound with 200 conductors and useful flux per pole is 0.02 Wb. Calculate the back emf and speed of the motor. L3 04 3 1,2 b) Derive the EMF equation of a single phase transformer. 06 L1 4 1.2 In an induction motor, prove that stator magnetic field has constant magnitude and it rotates at synchronous speed. 06 L2 3 1,2 With neat diagram explain constructional features of three phase induction a) motor. 04 L1 3 1.2 L2 b) 06 4 1,2

What is an Autotransformer? List its advantages and applications.

A 6 pole 3 phase induction motor operates from a supply whose frequency is 50Hz. Calculate: i) The speed at which the magnetic field of the stator is rotating, ii) The speed of the rotor when the slip is 0.02 iii) Frequency of the rotor currents when the slip is 0.04.

List necessity of earthing electrical system. 04 L2 5 1,2 7. a) Explain the working principle of BLDC motor. 06 L1 5 1,2 b) With a neat diagram, elaborate the major part of an electric vehicle. L2 06 5 1,2 C) 04 L2 5 1,2 List the necessity of UPS. 8. a)

Discuss the principle of operation of boost converter. b)

What is earthing? With a neat diagram, explain plate earthing.

BT* Bloom's Taxonomy, L* Level; CO* Course Outcome; PO* Program Outcome

06

06

06

L3

L2

L2

3

5

5

1,2

1,2

1,2

Off-Campus Centre of Nitte (Deemed to be University)

Second Semester B.Tech (CBCS) Degree Examinations

May 2025

CY1003-1 - MATERIALS CHEMISTRY FOR COMPUTER SYSTEMS

(For AD, AM, CB, CC, CS, IS, RI)

Duration: 3 Hours

C) 109 m

Note:

Max. Marks: 100

Part - A: Multiple Choice Questions: Answer all Twenty questions in the OMR Sheet provided. Each question carries equal marks. Part - B: Descriptive Answer Questions: Answer Five full questions choosing Two full questions from Unit - I & Unit - II each and One full guestion from Unit - III. 20 Marks PART - A: MULTIPLE CHOICE QUESTIONS The device which converts electrical energy into chemical energy 1. B) Fuel cell A) Galvanic Cell D) Solar cell C) Electrolytic Cell-What is the electrode potential of the calomel electrode with saturated KCI solution at 298K? 2. B) 0.281 V A) 0.334 V D) 0.0591 V C) 0.242 V Which of the following is NOT a component of battery? 3. B) Salt-bridge A) Cathode D) Electrolyte C) Anode Special properties of 'Li' metal that make it advantageous as an electrode material include 4. B) Low electrical conductivity A) Light weight D) Low cost C) High electrode potential Which of the following is suitable for powering portable devices such as smartphones and 5. laptops? B) Lithium-ion battery A) Lead-acid battery D) Vanadium flow battery C) Methanol-oxygen fuel cell The total number of functional groups or bonding sites present in a monomer molecule is 6. called Degree of Polymerization A) Functionality D) Polymer C) Molecular Weight Which of the following is a monomer? 7. B) Ethyl chloride A) Ethane -D) Ethyl alcohol C) Ethene In the conductometric titration of, the conductance increases gradually till equivalence 8. point and then rises sharply. Strong acid vs weak base A) Strong acid vs strong base D) Weak acid vs weak base C) Weak acid vs strong base The driving force in electroless plating isreaction on a pretreated active surface. 9. A) Autocatalytic Oxidation B) Autocatalytic reduction C) Autocatalytic displacement D) Autocatalytic redox The reference electrode used in the electrochemical gas sensing of NO_x is 10. B) Zn/ZnCl₂ A) Ag/AgCl D) Cu/CuSO₄ C) Fe/FeCl₂ 1 nm = B) 10-9 m -A) 10-7 m D) 10⁻³ m

	CY	1003-1				SE	E-May 2	2025
12.								
	A)	nich is the preferred precursor in the sol-gel Metal chlorides	met	nod?				
	C)	Metal hydroxides		Metal nitrates				
13.		M is defined as	D)	Metal alkoxides				
	A	Read Out Memory		Tanana Marri	orvi			
	6)	Read Only Memory	B)	Read Once Mem	EV.			
14.	W	rich computer	D)	Read One Memo	rite oper	ations	?	
. 31	Δ)	nich computer memory chip allows simultan	eous	both read and w	ille ope.			
	(C)	PROM	B)	RAM				
15.	VAL	rich property of	D)	EEPROM-	mamory	devic	es?	
1.4/4	0.1	nich property of polymers makes them suita	ble fo	or applications in	liku		331	
	70	riigii electrical resistance	B)	Low thermal stab	uity			
16.	(C)	Bistable state	D)	Brittle nature				
10.	LIC	juid crystal displays (LCDs) work based on	the p	rinciple of:	-antinne			
	~	Electromagnetic induction	B)	Electrochemical r	eaction			
	C)	Opto-electronic effect	D)	Liquid crystal pola	mzanon			
17.		cycling of e-waste has a direct impact on						
	A)		B)	Economy	ant nor o	eanam	V	
	C)	Both environment and economy	D)	Neither environm	ent nor e	GOHOIII	У	
18.	Ex	traction of metals by treatment with HCl is o	alled	as 10	acning.			
	A)	Cyanide	B)	Thiourea				
	C)	Acid	D)	Thiosulphate		and bu	conklas	
19.	- ln	which process are the electronic componen	ts ha	rvested from e-w	aste witi	tout bi	eaking	J
	the	em into smaller components?						
	A)		B)	Direct recycling				
	C)		D)	Electrolysis				
20.	Sp	litting of water into hydrogen and oxygen us	sing	energy is called				
	A)		B)	Fusion				
	C)	Electrolysis	D)	Photosynthesis				
				UED OUTSTIONS				
		PART - B: DESCRIPTIVE A	ANSV	VER QUESTIONS	Marks	BT*	CO*	PO*
	- 4	Unit-I				ы	00	10
1.	a)	Define reference electrode. Explain the const	truction	on and working or	8	L*2	4	4
		calomel electrode.		Later Mandan	0	LZ		1
	b)	Explain the construction and working of lithiur	n-ion	battery. Mention		1.0	4	1
		its applications.			8	L2	3	- 1
-		E. I. S. M	a a finda	200	7	L2	2	1
2.	a)	Explain the mechanism of conduction in polya	cetyr	site,	- 1	L. K.	£.,	,
	b)	Calculate the number and weight average n	noiec	O 200 malagulas				
		polymer with 200 molecules of molecular mass	ss ou	o, 300 molecules	G	L3	2	2
		of molecular mass 2000 and 500 molecules of	mole	cular mass 3500.	6	LS	4	4
	C)	Mention the advantages of instrumental tech	nique	s over traditional	- 0	1.4	2	4
		methods.			3	L1	2	1
		VI I I I I I I I I I I I I I I I I I I	ther	all of unknown				
3.	a)	How is glass electrode used to determine	the	pri oi unknown		1.0	4	1
- 20		solution?	-1.00	2014	4	L2	1	1
	b)	Calculate the cell potential of the following cell	at Z	JON	0	1.0		
		Ag Ag*(0.001M) Ag*(0.50M) Ag	1 30000	Company of the same	3	L3	1	2
	c)	Describe the basic principle and working of	cond	uctometry for the		1.6		
		estimation of strong and weak acid.			9	L2	2	1
		Unit – II						
		Unit - II						

L2

L3

3

3

6

10

Highlight the principle governing electrochemical sensors. How is it

b) Demonstrate the process of PCB fabrication using electroless plating

4. a)

used to detect SOx?

5.	a)	CY1003-1 Describe the electronic memory storing capacity of organic molecules by taking the example of parts.				
	b)	by taking the example of pentacene. Explain the opto-electronic effect observed in LCs. Demonstrate their	8	L2	4	1
		application in LCDs.	8	L3	4	1
6.	a)	Discuss the working of amperometric and optical sensors in the determination of DO.	6	L2	3	1
	b)	Classify the electronic memory based on volatility.	10	L1	4	1
7.	a)	Explain the steps involved in the table to the steps involved in the steps involved in the steps in the steps in the steps involved in the steps involved in the steps in the step in the ste				
		Explain the steps involved in the hydrometallurgical extraction method for metal recovery from e-waste.	8	L2	5	1
	b)	Enumerate the properties of hydrogen fuel. Demonstrate the generation of green hydrogen by PEM method.	8	L1	5	1
8.	a)	Explain the construction and working of solar photovoltaic (PV) cell.				
	b)	What are the advantages of PV cell? Explain the stages involved in the process of gold recovery from e-	9	L2	5	1
1		waste.	7	L2	5	1

Off-Campus Centre of Nitte (Deemed to be University) Second Semester B.Tech (CBCS) Degree Examinations

May 2025

MA1007-1 - DISCRETE MATHEMATICS AND TRANSFORM TECHNIQUES

(For AD, AM, CB, CC, CS, IS, RI)

Dura	ition: 3 Hours		Max. Marks: 100
Note	;		
Part	- A: Multiple Choice Questions: Answer all T	wen	ty questions in the OMR Sheet provided
Each	question carries equal marks.		ty questions in the court short provides.
Part	- B: Descriptive Answer Questions: Answer F	ive	full questions choosing One full question
from	each Unit.		run questions encoung one run question
	PART - A: MULTIPLE CH	OIC	E QUESTIONS 20 Marks
1.	Let p be the proposition "It is sunny this after	moo	n" and a be the proposition "We will go
	swimming", Which of the following is the symb	olic	form the statement "We will go swimming
	only if it is sunny this afternoon".		ionii are caatement too am ge caamiing
	A) $p \rightarrow q$	B)	$q \rightarrow p \checkmark$
	C) pvq	D)	$p \wedge q$
2.	The conclusion of the hypothesis "If George	does	not have eight legs, then he is not an
	insect" and "George is an insect" is		
	George does not have eight legs		George is not an insect
	C) George has eight legs ✓	D)	Can't conclude anything from the given
3.	Contrapositive statement of the statement		hypothesis
٥.	Contrapositive statement of the statement $\neg p$. A) $\neg p \rightarrow \neg q$		•
	C) $\neg q \rightarrow p$		$p \to q$
4.	In proving $\sqrt{5}$ as irrational, we begin with assur	nnti	$q \rightarrow p$
	A) Direct proof		Proof by Contradiction
	C) Mathematical Induction	D)	
5.	Which of the following statement is not correct		
	A) A reflexive relation has a cycle of length one		The matrix of reflexive relation must have all
	at every vertex.		1's in its main diagonal.
	C) If R is reflexive relation on A, then	D)	The matrix of reflexive relation must have all
	Domain(R) = Range(R) = A.		0's in its main diagonal.
6.	If $p = (2,3,4,7)$ is a permutation of the set A =	{1,2	.3,4,5,6,7,8} then p ⁻¹ is:
	A) (4,7,2,3)		(7,4,3,2)
	C) (7,4,2,3)		(3,4,7,2)
7.	The complete graph with eight vertices has		edges.
	A) 64	B)	24
	C) 28-	D)	36
8.	A simple graph can have		
	A) multiple edges	B)	- A
	C) parallel edges	D)	the segment of the parameter
0	The seat of the secretic Y C C C C C		edges -
9.	The root of the equation $xe^x - 3 = 0$ lies in the		
	A) (0,1)	B)	(1,2)
	C) (2,3)	D)	(-1,0)

10. The Newton-Raphson formula to find the $(n+1)^{th}$ approximation to the root of f(x) = 0 is :

A)
$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

B)
$$x_{n+1} = x_n + \frac{f(x_n)}{f'(x_n)}$$

C)
$$x_{n+1} = x_n - \frac{f'(x_n)}{f(x_n)}$$

D)
$$\chi_{n+1} = \chi_n - \frac{f'(x_n)}{f''(x_n)}$$

11. The method which approximates the curve of the tangent to find root of an algebraic equation is

A) Regula Falsi Method

B) Newton-Raphson Method

C) Euler's Method

D) Taylor's Method

B) 0.5

D) 2

13. The Fourier series expansion of
$$x^3$$
 in the interval $-1 \le x \le 1$, periodic with $f(x+2) = f(x)$ has:

A) Only Sine terms.

- B) Only Cosine terms
- C) Both Sine and Cosine terms
- Only Sine terms and a non-zero constant
- 14. The Fourier series expansion of the function f(x) in the interval $(\alpha, \alpha + 2L)$ is

A)
$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx)$$

B)
$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) + \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{L}\right)$$

C)
$$\frac{a_0}{2} + \sum_{n=0}^{\infty} a_n \cos\left(\frac{n\pi x}{L}\right) + \sum_{n=0}^{n-1} b_n \sin\left(\frac{n\pi x}{L}\right)$$
 D)

$$a_0 + \sum_{n=0}^{n=1} a_n \cos(nx) + \sum_{n=0}^{n=1} b_n \sin(nx)$$

Which of the following functions is odd

A)
$$-x-x^3$$

B)
$$\sin x^2 + x^5$$

C)
$$\cos 5x + 3e^{-x}$$

D)
$$e^{-x} + e^{x}$$

16. Fourier transform of the function
$$f(t) = \underline{\dots}$$

A)
$$\int_{-\infty}^{\infty} f(t)e^{-\omega t}dt$$

B)
$$\int_{0}^{\infty} f(t)e^{-i\omega t}dt$$

C)
$$\int_{-\infty}^{\infty} f(t)e^{-i\omega t}dt$$

D)
$$\int_{0}^{\infty} f(t)e^{-\omega t}dt$$

17. $Z(a^{nt})$ where a, t are constants is:

A)
$$\frac{z}{z+a^t}$$

B)
$$\frac{z}{z-a^t}$$

C)
$$\frac{z}{z+a^{-t}}$$

D)
$$\frac{z}{z-a^{-t}}$$

18. If
$$Z(u_n) = U(z)$$
, then $Z(-u_n)$ is:

A)
$$U(-z)$$

B)
$$-U(z)$$

C)
$$U\left(-\frac{1}{z}\right)$$

B)
$$-U(z)$$
D) $U\left(\frac{1}{z}\right)$

19. If
$$a,b,c$$
 are constants and u_n , v_n , w_n are any discrete functions, then $Z(au_n + bv_n - cw_n)$ is

A)
$$a Z(u_n) \frac{bZ(v_n)}{c} Z(w_n)$$

B)
$$a Z(u_n) + bZ(v_n) - c Z(w_n)$$

C)
$$a Z(u_n) - bZ(v_n) - c Z(w_n)$$

D)
$$a Z(u_n) b Z(v_n) c Z(w_n)$$

20. If
$$Z(u_n) = U(z)$$
 then $\lim_{z \to \infty} U(z)$ is :

A) 0

B)

C) u0 /

D) u1

BT*

L2

L3

L1

12

L2

L1

L2

L1

2

2

CO*

PO*

1

2

2

1

2

2

Marks

6

6

4

6

4

6

6

6

PART - B: DESCRIPTIVE ANSWER QUESTIONS

- Unit I
 Using rules of Inference, Show that the premises "If you send me an e-mail message, then I will finish writing the program," "If you do not send me an e-mail message, then I will go to sleep early," and "If I go to sleep early, then I will wake up feeling refreshed" lead to the conclusion "If I do not finish writing the program, then I will wake up feeling refreshed."
 - b) Use mathematical induction to show $1+2+2^2+\cdots 2^n=2^{n+1}-1$ for all non-negative integers n.
 - c) Let p and q be the propositions "The election is decided" and "The votes have been counted," respectively. Express each of these compound propositions as an English sentence.
 i) ¬p ii) p ∨ q iii) ¬p ∧ q iv) q → p
- 2. a) Define tautology and contingency. By constructing a truth table verify the statement $[(p \to q) \land (q \to r)] \to (p \to r)$ is a tautology or not?
 - b) Prove that $\sqrt{2}$ is irrational by giving proof by contradiction.
 - c) Show that the propositions $\neg(p \lor (\neg p \land q))$ and $\neg p \land \neg q$ are logically equivalent by developing a series of logical equivalence.

Unit - II

- 3. a) Let A = {1,2,3,4,5,6}, R be a relation on A defined by aRb if and only if b is a multiple of a. i) Find a relation R ii) Give the matrix representation of R iii) Draw the digraph of R iv) Find the indegree and out-degree of every vertex of R v) Find the domain and range of R.
 - b) Let $A = \{1,2,3,4\}$ and let $R = \{(1,2), (2,3), (3,4), (2,1)\}$. Find the transitive closure of R using Warshall's algorithm.
 - Write the adjacency matrix and incidence matrix of the following graph.

4. a) Determine whether the following relation R on a set A is an equivalent relation or not?

A = set of real numbers; aRb if and only if $a^2 + b^2 = 4$.

- b) State handshaking theorem. Prove that undirected graph has an even number of vertices of odd degree.
- Define odd and even permutations.
 - i) determine whether the permutation

$$p = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 4 & 2 & 1 & 6 & 5 & 8 & 7 & 3 \end{pmatrix}$$
 is even or odd

ii) Find p^2 .

6	L2	2	1

L1, 4 L2 2 2

		MA1007-1 Unit – III	SEE-May 2025			
5.	a)	Using Modified Euler's method find an approximate value of v when				
	b)	$x=0.2$, given that $\frac{dy}{dx}=x+y$, $y(0)=1$ and $h=0.2$. Carry out 3 iterations. Solve Laplace equation $u_{xx}+u_{yy}=0$ for $0 < x < 1$, $0 < y < 1$; $u(x,0)=u(0,y)=0$; $u(x,1)=6x$; $0 < x \le 1$, $u(1,y)=3y$, $0 < y < 1$. Divide the region into $0 < x < 1$, $u(1,y)=3y$, $0 < y < 1$.	6	L1	3	2
	C)	Find the root of the equation $5x = e^x$ in (0.1) using Regula Falsi	6	L3	3	1
0	-1	method correct to four decimal places. Carry out 4 iterations.	4	L2	3	1
6.	a) b)	Using Runge-Kutta method solve the initial value problem $10y' = x^2 + y^2$, $y(0) = 1$, find $y(0.1)$ taking $h = 0.1$. Find the value of $u(x,t)$ satisfying the equation $\frac{\partial u}{\partial t} = 4 \frac{\partial^2 u}{\partial x^2}$ and the	6	L3	3	1
		boundary condition $u(0,t) = 0 = u(8,t); u(x,0) = 4x - \frac{1}{2}x^2; x =$				
		$i, i = 0,1,2,3,4,5,6,7,8, t = \frac{1}{8}j, j = 0,1,2,3,4,5.$				
	c)	Find an approximate value of y when $x = 0.1$, if $y' = x^2y - 1$, $y(0) = 1$ and $h = 0.1$. Using Taylor's series method unto third	6	L1	3	1
		degree terms.	4	L1	3	1
7.	a)	Unit – IV				
		Find the Fourier Series expansion of $f(x) = \begin{cases} 0 & -2 < x < 0 \\ 1 & 0 < x < 2 \end{cases}$;				
	b)	Find the Fourier series for $f(x) = e^{-x}$ in the interval $0 < x < 2\pi$.	6	L3 L2	4	1
	c)	Find the half range Fourier cosine series of $f(x) = x^2$ in $0 \le x \le \pi$.	4	L1	4	1
8.	a) b)	Find the Fourier transforms of $f(x) = e^{-a x }$. State and prove convolution theorem for Fourier transforms.	6	L1 L1,	4	1
	c)	Find the Fourier size to a feet of each	6	L3	4	2
		Find the Fourier sine transform of $\frac{e^{-ax}}{x}$, $a > 0$.	4	L1	4	1
9.	a)	Unit – V Find the Z-transform of				
	b)	i) $\cos n\theta$ ii) $\sin n\theta$ State and prove convolution theorem for Z-transform.	6	L1 L1,	5	1
	c)	Find Z-transform of $(2^n + 2^n n + 3^{-n} n + 3)$.	6	L3 L1	5 5	2
10.	a)	Find the inverse Z-transform of $\frac{z^2}{(z^2-7z+12)}$.				
	b)	Using Z-transform solve the difference equation $u_{n+2} - 4u_n = 0$,	6	L2	5	1
		given $u_0 = 0$ and $u_1 = 2$. Prove that $Z_T(n^k) = -z \frac{d}{dz} (Z_T(n^{k-1}))$, where k is a positive integer.	6	L2	5	1
		$dz = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) \right)$, where k is a positive integer.	4	L1	5	1