CS410 HW4

Russell Miller

November 9, 2011

2.14 The geometric distribution arises as the distribution of the number of times we flip a coin until it comes up heads. Consider now the distribution of the number of flips X until the kth head appears, where each coin flip comes up heads independently with probability p. Prove that this distribution is given by

$$\Pr(X = n) = \binom{n-1}{k-1} p^k (1-p)^{n-k}$$
for $n > k$.

We would like to know when the kth head is flipped. Let X_1 be a geometric random variable that is the distribution of the number of times we flip the coin until the first heads, and so on for all values of $i = \{1, 2, ..., k\}$.

$$X = \sum_{i=1}^{k} X_i$$

For each of these geometric random variables X_i , the distribution for the jth head is

$$Pr(X_i = j) = (1 - p)^{j-1}p$$

So the distribution of X would be

$$\Pr(X = n) = \sum_{k=1}^{n} (1 - p)^{k-1} p$$

SO LOST