Universidad Nacional de San Agustín de Arequipa Escuela Profesional de Ciencia de la Computación Curso: Computación Molecular Biológica

Práctica 05

MSc. Vicente Machaca Arceda

16 de junio de 2020

DOCENTE	CARRERA	CURSO
MSc. Vicente Machaca Arceda	Escuela Profesional de Ciencia de la	Computación Molecular
	Computación	Biológica

PRÁCTICA	TEMA	DURACIÓN
05	Alineamiento de Secuencias con	3 horas
	Programación Dinámica	

1. Competencias del curso

- Aplica las bases matemáticas y la teoría de la informática en algoritmos de Bioinformática.
- Analiza, diseña y propone soluciones frente a problemas bioinformáticos.
- Sabe cómo utilizar y conoce las bases computacionales de herramientas modernas de secuenciamiento, alineamiento, árboles filogenéticos y mapeo de genomas.

2. Competencias de la práctica

 Aplica las bases matemáticas y la teoría de la informática en algoritmos de Alineamiento de Secuencias con Programación Dinámica.

3. Equipos y materiales

- Latex
- Conección a internet
- Python
- Matplotlib
- Numpy
- BioPython
- Cuenta en Github

4. Entregables

- Se debe elaborar un informe en Latex donde se responda a cada ejercicio de la Sección 5.
- En el informe se debe agregar un enlace al repositorio Github donde esta el código.
- En el informe se debe agregar el código fuente asi como capturas de pantalla de la ejecución y resultados del mismo.

5. Ejercicios

- 1. Implemente el algoritmo de alineamiento de secuencias utilizando programación dinámica (Needleman–Wunsch). Evalue sus resultados con las secuencias:
 - S_1 : AGC
 - S_2 : AAG

Utilice gapOpen = gapEXTEND = -5 y la siguiente matriz de sustitución:

La salida debe incluir el score matrix y todos los alineamientos posibles.

- 2. Utilice el algoritmo implentado anteriormente, pero esta vez con secuencies reales. Se recomienda utilizar las secuencias de proteinas de la Práctica 3. Utilice gapOpen=gapEXTEND=-5, identicalMatch=2 y mismatch=-2
- 3. Evalue la pregunta anterior con otros valores de gapOpen, gapEXTEND, identicalMatch y mismatch. Verifique si obtiene el mismo alineamiento y comente sus resultados.