

Vienna, 2024

27.5% (2610/9473) (144 orals, 191 spotlights and 2275 posters)

Best Papers

- 1. VideoPoet: A Large Language Model for Zero-Shot Video Generation (Google Deepmind)
- 2. Genie: Generative Interactive Environments (Google, generate interactive and playable environments for Al agents)
- 3. Stealing part of a production language model (Google Deepmind & ETH & OpenAl & McGill, attack algorithms, recovering the embedding projection layer, hidden dimension of gpt-3.5)
- 4. Debating with More Persuasive LLMs Leads to More Truthful Answers (UCL & Anthropic & FARAI)
- 5. Probabilistic Inference in Language Models via Twisted Sequential Monte Carlo (UoT & Vector Institute)
- 6. Discrete Diffusion Modeling by Estimating the Ratios of the Data Distribution (Stanford & Pika Labs)
- 7. Scaling Rectified Flow Transformers for High-Resolution Image Synthesis (Stability AI)
- 8. Information Complexity of Stochastic Convex Optimization: Applications to Generalization, Memorization, and Tracing
- 9. Position: Considerations for Differentially Private Learning with Large-Scale Public Pretraining
- 10. Position: Measure Dataset Diversity, Don't Just Claim It

VideoPoet: A Large Language Model for Zero-Shot Video Generation

ICML 2024 Best Paper Presenter: Lijun Yu

https://sites.research.google/videopoet/

	autoregressively g	enerated output			
task tokens text tokens	visual tokens	audio tokens	control tokens	visual tokens	audio tokens

Modality-specific tokenizers

optical flow

Raw signal

Encode & Compress

💶 Decode & Decompress 🔄

Token

visual tokens task tokens audio tokens control tokens visual tokens text tokens audio tokens Sound Sound t5 MAGVIT-v2 MAGVIT-v2 Stream Stream encoder encoder decoder encoder decoder An astronaut starts dancingon Mars. Colorful fireworks then explode in the output audio audio background. cropped or image depth & text output video

masked video

MAGVIT-v2 Video Tokenizer

Defining the visual "language"

- Quantized VAE w/ temporally causal 3D CNN
 - Image as a prefix of video for joint training
 - Seamless support for long videos

MAGVIT-v2 Video Tokenizer

Defining the visual "language"

- Quantized VAE w/ temporally causal 3D CNN
 - Image as a prefix of video for joint training
 - Seamless support for long videos

Fig. 1. Block diagram for the vector quantization.

MAGVIT-v2 Video Tokenizer

Defining the visual "language"

- Quantized VAE w/ temporally causal 3D CNN
 - Image as a prefix of video for joint training
 - Seamless support for long videos

Quantizer

a measure of how much information (in bits) is used to represent each pixel in an image or video frame.

262,144 discrete tokens

- Scalable quantizer w/ 2¹⁸ large vocabulary for higher prediction bandwidth
- Better compression than VVC with reconstructive and adversarial training H.266

SoundStream Audio Tokenizer

Defining the audio "language"

Quantized VAE w/ causal 1D CNN

- Training

 O1 O2 O3 Q4 O5 O6 ...

 Decoder

 Denoising on/off

 Discriminator
- Residual vector quantizer
- Better compression than Opus

Out-of-the-box LLM transformer on discrete token sequences

Out-of-the-box LLM transformer on discrete token sequences

- Flexibility: any to any task setup in a single model
- Training efficiency: learning entire sequence in a single step with causal attention
- Inference efficiency: various acceleration techniques such as caching,
 where full decoding FLOPs equal to one full forward pass

Training Data

Mixture of pre-existing sources and formats, in two training phases

Pretraining uses everything, including unlabeled and noisy data

Source	Video	Audio	Image	Text	Sample Count	Pretrain
Α	V	V			~170M	V
В	V	•			~50M	~
С	V			V	~50M	V
D			V	V	~1B images	~

Training Data

Mixture of pre-existing sources and formats, in two training phases

- Pretraining uses everything, including unlabeled and noisy data
- Task adaptation uses task-specific high quality data

Source	% Video	Audio	Image	Text	Sample Count	Pretrain	Adapt T2V
Α	V	V			~170M	V	
В	V				~50M	V	
С	V			V	~50M	V	V
D			V	V	~1B images	V	

Training Tasks

Self-supervised

Output	Continue 🔽	Video 🞇	Audio 🔊		Image 🌁
O Unconditional		$\overline{\checkmark}$	▽	$\overline{\checkmark}$	~
% Video					
Audio					
Video + Audio					
Image		V			

Training Tasks

Self-supervised

Output	Continue 🔼	Video 🞇	Audio 🔊		Image 🌁
O Unconditional			~	V	
% Video	~	V ++	▽		
Audio	~	\overline{lack}			
Video + Audio	▽				
Image		V			

Training Tasks

Self-supervised + Supervised

Output	Continue 🔽	Video 🎇	Audio 🔊		Image 🌁	Style 🎨
O Unconditional		$\overline{\checkmark}$	▽	V	$\overline{\mathbf{V}}$	
% Video		V ++	~			~
Audio		$\overline{\checkmark}$				
Video + Audio						
Image		✓				
AB Text		✓		✓	✓	

Automatic Benchmarks

Zero-shot text-to-video generation comparison with state-of-the-art

Google DeepMind

Human Evaluations

Zero-shot text-to-video generation comparison with prior and concurrent works

Future Research Directions

- Real-time streaming video generation interactive neural gaming, neural user interface for OS / APPs
- Universal multimodal generative model
 SOTA generation of text & video (& audio & ...) and reasoning
 c.f., human-level machine translation (~18') -> ChatGPT (23')

Query: Can you show me how to tie this shoe with a single hand?

Summary

VideoPoet represents a distinct approach to video generation

- State-of-the-art quality, challenging the diffusion monopoly
- Multi-task flexibility, going beyond the text to video translation paradigm
- Video-first foundation model,
 building upon LLM infrastructure for native integration