᠆.	选择题	(每小题3分	、共30分)
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, , , , , , , , , ,

1. 设 A 是 $m \times n$ 矩阵,则 m < n 是齐线性方程组 AX = 0 有非零解的()

A. 充分条件; B. 等价条件; C. 充要条件;

D. 必要条件

2. 矩阵 A 经过初等行变换变成 B,则方程组 AX=0 与 BX=0(

都有非零解 B. 必有相同解; C. 解集不相同; D. 解集不确定

3. 若向量 $b \neq 0$,向量 $a \in b$ 上的**投影(数)** a_b 为 ()

A. $a_b = \frac{a \cdot b}{|a|}$; B. $a_b = a \cdot b$; C. $a_b = \frac{a \cdot b}{|b|}$; D. $a_b = |b| \cos \theta$

4. $(\vec{a} \times \vec{b}) \cdot \vec{b} + (\vec{a} \times \vec{b}) \cdot \vec{a} = ($

A. $|\vec{a}| + |\vec{b}|$; B. $|\vec{a}| |\vec{b}|$; C. $2|\vec{a}| |\vec{b}|$; D. 0

5. 设 $\vec{a} \perp \vec{b}$, $|\vec{a}| = 4$, $|\vec{b}| = 2$, 且 $\vec{a} + t\vec{b} \perp \vec{a} - t\vec{b}$, 则常数t = (

B. ±4; C. 1; D. 4

6. 向量 $\mathbf{b} = (4, -3, 4)$ 在 $\mathbf{a} = (2, 2, 1)$ 上的**投影(数)为**()

A. 4; B. 2; C. -2; D. -4

7. 已知 $\vec{a} + \vec{b} + \vec{c} = 0$, $|\vec{a}| = 3$, $|\vec{b}| = 2$, $|\vec{c}| = 1$,则 $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = 0$

A. 4; B. 7; C. -7; D. -4

8. 两平面x-y+2z-6=0和2x+y+z-5=0的夹角余弦为()

A. 0.2;

B. 0.4; C. -0.1; D. 0.5

9. 点 A(3,2,3)到平面 2(x+5)+3(y+5)+6(z-1)=0 的距离 d=(

A. 7;

B. 6;

C. 5;

D. 3

10. $\partial a \times b + b \times c + c \times a = 0$, 则 $(a \times b) \cdot c = ($

A. 0; B. 1; C. 2; D. 3

- 二.填空题 (共 20 分, 每小题 4 分).
- 1.向量 $\vec{a} = (1,1,2), \vec{b} = (1,-1,1), \vec{c} = (6,4,11)$ 的混合积 $(\vec{a},\vec{b},\vec{c}) =$ ______
- 2. 设 $\vec{a} \perp \vec{b}$ 正交,则 $|\vec{a} \vec{b}|^2 + 2|\vec{a} \times \vec{b}| (|\vec{a}| + |\vec{b}|)^2 =$ ______
- 4.方程组 $\begin{cases} 2x_1 x_2 x_3 = 0 \\ x_1 + x_2 2x_3 = 0 \end{cases}$ 的通解为_____
- 5.设 A(a,0,0), B(0,b,0), C(0,0,c), $abc \neq 0$,则三角形△ABC 面积为_____
- 三.计算题 (共15分).
- 1. 设非零向量a, b, c互相垂直, 且d = xa + yb + zc, 求系数x, y, z

2.设 $\vec{a} \perp \vec{b} \perp \vec{c}$ 互相正交,且 $|\vec{a}| = 3$, $|\vec{b}| = 4$, $|\vec{c}| = 5$, 令 $\vec{s} = \vec{a} + \vec{b} + \vec{c}$. (1)求模长 $|\vec{s}|$, (2)求 \vec{s} 与 \vec{c} 的夹角 θ

3.设 A(a,0,0), B(0,b,0), C(0,0,c), $abc \neq 0$.(1)求平面 ABC 的方程; (2)求原点到平面 ABC 的距离

四.计算题 (共 12 分).

日.
$$\vec{q}$$
 = (1,1,2), \vec{b} = (1,-1,1), \vec{c} = (6,4,11), \vec{x} \vec{x} , \vec{y} 使 \vec{c} = \vec{x} \vec{a} + \vec{y} \vec{b}

$$2.$$
求直线
$$\begin{cases} x-y+z=0\\ x+2y-z-1=0 \end{cases}$$
 在 xOy 面上的投影直线

五.(8 分)求两条异面直线
$$L_1: \frac{x-5}{1} = \frac{y}{-4} = \frac{z+2}{1}$$
和 $L_2: \frac{x-2}{2} = \frac{y+3}{1} = \frac{z-3}{2}$ 的距离 d

四.计算题 (共12分).

2.求直线 $\begin{cases} x-y+z=0 \\ x+2y-z-1=0 \end{cases}$ 在xOy 面上的投影直线

五.(8 分)求两条异面直线 L_1 : $\frac{x-5}{1} = \frac{y}{4} = \frac{z+2}{1}$ 和 L_2 : $\frac{x-2}{2} = \frac{y+3}{1} = \frac{z-3}{2}$ 的距离 d

六.(7分)设 M_1 是直线 L外一点,M是直线 L上任一点,且直线的方向向量为 \vec{s} .

七.(8分)讨论 b 取何值时方程组有解, 并求通解

并求通解 $\begin{cases} x_1 + x_2 + x_3 + bx_4 = 1 \\ x_1 + bx_2 + x_3 + x_4 = 1 \\ x_1 + x_2 + bx_3 + x_4 = 2 \end{cases}$