Avesh Raza Nagauri 9082425683 aveshnagauri5@gmail.com colab link for project https://colab.research.google.com/drive/1-Hh79_dKVM3IAsWuPcWJ6e6XmrCqfR_y#scrollTo=O3GSom-3Jptb

import numpy as np,pandas as pd import seaborn as sns import matplotlib.pyplot as plt

df = pd.read_csv('aerofit_treadmill.txt')

 ${}^{\prime\prime\prime}{}$ There seems to be a problem with the PDF, as the visualizations and recommendations are not displaying properly. Please use the provided Colab link to review the project.'''

'There seems to be a problem with the PDF, as the visualizations and recommendations \nare not displaying properly. Please use the nrovided Colah link to review the nroiect.

df.head()

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
0	KP281	18	Male	14	Single	3	4	29562	112
1	KP281	19	Male	15	Single	2	3	31836	75
2	KP281	19	Female	14	Partnered	4	3	30699	66
3	KP281	19	Male	12	Single	3	3	32973	85
4	KP281	20	Male	13	Partnered	4	2	35247	47

df.shape

(180, 9)

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 180 entries, 0 to 179 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Product	180 non-null	object
1	Age	180 non-null	int64
2	Gender	180 non-null	object
3	Education	180 non-null	int64
4	MaritalStatus	180 non-null	object
5	Usage	180 non-null	int64
6	Fitness	180 non-null	int64
7	Income	180 non-null	int64
8	Miles	180 non-null	int64

dtypes: int64(6), object(3)

memory usage: 12.8+ KB

df.describe()

	Age	Education	Usage	Fitness	Income	Miles
count	180.000000	180.000000	180.000000	180.000000	180.000000	180.000000
mean	28.788889	15.572222	3.455556	3.311111	53719.577778	103.194444
std	6.943498	1.617055	1.084797	0.958869	16506.684226	51.863605
min	18.000000	12.000000	2.000000	1.000000	29562.000000	21.000000
25%	24.000000	14.000000	3.000000	3.000000	44058.750000	66.000000
50%	26.000000	16.000000	3.000000	3.000000	50596.500000	94.000000
75%	33.000000	16.000000	4.000000	4.000000	58668.000000	114.750000
max	50.000000	21.000000	7.000000	5.000000	104581.000000	360.000000

df.isna().sum()

Product 0

```
Gender 0
Education 0
MaritalStatus 0
Usage 0
Fitness 0
Income 0
Miles 0
dtype: int64
```

Visual representation of product counts for each gender using a countplot.

```
plt.figure(figsize=(10, 6))
sns.countplot(x='Gender', data=df, hue='Product')
plt.title('Countplot of Products by Gender')
plt.xlabel('Gender')
plt.ylabel('Count')
plt.legend(title='Product')
plt.show()
```


. . .

Insight: The data visualization reveals a compelling pattern-KP281 emerges as the top performer across both genders, closely followed by KP481 in the second position and KP781 securing the third spot in sales.

. . .

```
# Identifying the age bracket with the highest customer footfall.
plt.figure(figsize=(10, 6))
sns.boxplot(x='Age', data=df, color='skyblue')
```

```
sns.boxplot(x='Age', data=df, color='skyblue'

plt.title('Boxplot of Age Distribution')
plt.xlabel('Age')
plt.ylabel('Count')
```

plt.show()

Insight: The predominant consumer demographic falls within the age range of 23 to 33, with a notable presence of outliers around the age of 50.

Visual representation of product counts based on marital status using a countplot.

```
sns.countplot(x='Product', data=df, hue='MaritalStatus', palette = 'Set1')
plt.xlabel('Product')
plt.ylabel('Count')
plt.title('Countplot of Products by MaritalStatus')
plt.show()
```


Insight: There is a notable trend where customers with a partner exhibit a higher propensity to purchase products compared to their single counterparts across various product categories.

df['Income'].describe()

count 180.000000 mean 53719.577778 std 16506.684226 min 29562.000000 25% 44058.750000 50% 50596.500000 75% 58668.000000 max 104581.000000 Name: Income, dtype: float64

Examining customers with varying income levels to identify patterns or trends in their behavior or preferences.

pivot_table.reset_index()

Income Bracket Income

Product		KP281	KP481	KP781
0	< 40000	23	9	0
1	40000 - 50000	25	21	5
2	50000 - 60000	26	23	6
3	60000 - 70000	6	7	6
4	70000 - 80000	0	0	4
5	80000+	0	0	19

Creating a grouped bar chart to visualize the data distribution.

```
pivot_table.plot(kind='bar', figsize = (7,5))
plt.title('Product Purchases by Income Bracket')
plt.xlabel('Income Bracket')
plt.ylabel('Count')
plt.show()
```


df['Product'].value_counts().to_frame()

	Product
KP281	80
KP481	60
KP781	40

Bar plot depicting the sales count for each product.

sns.countplot(x='Product', data=df, palette='Set1')

plt.title("Count of Products") plt.xlabel("Products") plt.ylabel("Count")

plt.show()

Insight: The sales data highlights a clear hierarchy among products, with KP281 leading the pack with approximately 80 units sold, followed by KP481 at around 60 units, and KP781 trailing with approximately 40 units.

Counting the occurrences of each unique value in every column of the table.

df['MaritalStatus'].value_counts().to_frame()

	MaritalStatus
Partnered	107
Single	73

Insight: The consumer base analysis reveals that 107 individuals have a partner, while 73 are identified as single, providing valuable insights into the distribution of relationship statuses among the customer demographic.

df['Age'].value_counts().to_frame().head()

	Age
25	25
23	18
24	12
26	12
28	9

df['Gender'].value_counts().to_frame()

	Gender
Male	104
Female	76

. .

Insight: The demographic breakdown indicates that the consumer base consists of 104 males and 76 females, shedding light on the gender distribution within the analyzed dataset.

df['Education'].value_counts().to_frame()

E	ducation
16	85
14	55
18	23
15	5
13	5
12	3
21	3
20	1

df['Usage'].value_counts().to_frame()

	Usage
3	69
4	52
2	33
5	17
6	7
7	2

How many customers have purchased the KP781 product?

```
x = df['Product'] == 'KP781'
x.value_counts().to_frame()
```

	Product
False	140
True	40

. .

The analysis indicates a significant likelihood of customers opting for the premium product 'KP781,' with a probability of 0.22, equivalent to 22%. This insight underscores the product's appeal and suggests potential opportunities for strategic marketing efforts or promotions to further capitalize on this preference and drive sales. Understanding and leveraging such probabilities can contribute to informed decision-making and targeted business strategies.

. . .

df['Miles'].describe()

count	180.000000
mean	103.194444
std	51.863605
min	21.000000
25%	66.000000
50%	94.000000
75%	114.750000

max 360.000000 Name: Miles, dtype: float64

pivot_table.reset_index()

Exploring the correlation between miles traveled by customers and their product preferences.

Miles_Bracket Miles

Product		KP281	KP481	KP781
0	0-25	12.0	4.0	NaN
1	25-50	26.0	16.0	NaN
2	50-75	24.0	23.0	8.0
3	75-100	18.0	16.0	32.0

 $\mbox{\tt\#}$ Visualization of product purchases categorized by miles, presented in a plot.

```
pivot_table.plot(kind ='bar', figsize = (8,5))
plt.title('Product Purchases by Miles')
plt.xlabel('Miles_Bracket')
plt.ylabel('Count')
```


The data visualization indicates a noticeable trend: as customers' mileage increases, there is a corresponding shift towards premium products, specifically KP781.

'\nThe data visualization indicates a noticeable trend: as customers' mileage inc reases. \nthere is a corresponding shift towards premium products. specifically K

 $\hbox{\tt\# Investigating the impact of consumers' weekly product usage on their purchasing behavior.}\\$

usage_heatmap = df.groupby('Usage')['Product'].value_counts().unstack().fillna(0)
usage_heatmap

Product KP281 KP481 KP781

Usage			
2	19.0	14.0	0.0
3	37.0	31.0	1.0
4	22.0	12.0	18.0
5	2 በ	3.0	12 በ

Product preferences influenced by usage patterns depicted in a heatmap.

```
sns.heatmap(usage_heatmap, cmap="YlGnBu", annot=True, fmt=".2f", linewidths=0.5, cbar_kws={'label': 'Count of Consumers'})
plt.title('Heatmap of Data')
plt.xlabel('Products')
```

plt.show()

plt.ylabel('Usage')

Barplot illustrating consumer product preferences based on usage patterns.

```
usage_heatmap.plot(kind='bar', stacked=True, figsize=(10, 6))
```

```
plt.title('Product Preferences Based on Usage')
plt.xlabel('Usage')
plt.ylabel('Count of Customers')
plt.legend(title='Product')
plt.show()
```


Insight: The visualization highlights a distinct trend — customers who use our products more frequently per week tend to opt for the 'KP781' premium product. However, a noteworthy observation is the limited number of customers engaging with our products in a week for 5 to 7 times, suggesting potential areas for targeted engagement and promotion efforts.

፬ 30]

What percentage of customers have acquired KP281, KP481, or KP781?

marginal_prob_table = pd.crosstab(index=df['Product'], columns='Count', normalize=True)
marginal_prob_table

col_0	Count
Product	
KP281	0.44444
KP481	0.333333
KP781	0 222222

Barplot illustrating the probability distribution of products.

```
marginal_prob_table.plot(kind='bar', figsize=(8, 5))
plt.title('Marginal Probability of Products')
plt.xlabel('Product')
plt.ylabel('Probability')
plt.show()
```


Insight: The product selection pattern among customers reveals distinct preferences. Approximately 44.4% of customers favor KP281, followed by 33.3% opting for KP481, and 22.2% choosing KP781. Understanding these probabilities provides valuable insights into consumer choices and can inform targeted strategies for product promotion and marketing efforts.

df.describe()

```
Age Education
                                        Usage
                                                 Fitness
                                                                 Income
                                                                             Miles
     count 180.000000 180.000000 180.000000 180.000000
                                                             180.000000 180.000000
      mean
             28.788889
                        15.572222
                                     3.455556
                                                 3.311111
                                                           53719.577778 103.194444
       std
              6.943498
                          1.617055
                                     1.084797
                                                 0.958869
                                                           16506.684226
                                                                         51.863605
             18.000000
                        12.000000
                                     2.000000
                                                 1.000000
                                                           29562.000000
                                                                         21.000000
      min
      25%
             24.000000
                        14.000000
                                     3.000000
                                                 3.000000
                                                           44058.750000
                                                                         66.000000
# Detecting Outliers (using boxplot, "describe" method by checking the difference
# between mean and median)
numerical_columns = ['Age', 'Miles', 'Usage','Income','Fitness']
# Boxplot for each numerical column
for column in numerical_columns:
    sns.boxplot(x=df[column])
    plt.title(f'Boxplot for {column}')
    plt.show()
# Using describe method to check mean-median difference
desc_stats = df.describe().transpose()
mean_median_diff = desc_stats['mean'] - desc_stats['50%']
print("Descriptive Statistics:")
print(desc_stats)
print("\nDifference between mean and median:")
print(mean_median_diff)
```


Age Boxplot for Miles

35

40

45

50

30

25

20

Boxplot for Usage

Boxplot for Income


```
•••••
```

Likelihood of a male customer purchasing a KP781 treadmill.

```
result = df[(df['Gender'] == 'Male') & (df['Product'] == 'KP781')]
result.count()
     Product
                      33
     Age
                      33
     Gender
                      33
     Education
                      33
     MaritalStatus
                      33
                      33
     Usage
    Fitness
     Income
                      33
    Miles
                      33
     dtype: int64
      ∃ ♥
percent = 33/180*100
percent
     18.333333333333333
      1
```

Insight: The analysis indicates that the probability of a male customer opting for a 'KP781' product is 0.1833, equivalent to 18%. This probability insight sheds light on the likelihood of male customers choosing the specific 'KP781' product within the given dataset.

. . .

```
(180, 9)
```

Likelihood of a female customer purchasing a KP781 treadmill.

```
result.count()

Product 7
Age 7
Gender 7
Education 7
MaritalStatus 7
Usage 7
Fitness 7
```

result = df[(df['Gender'] == 'Female') & (df['Product'] == 'KP781')]

Fitness 7
Income 7
Miles 7
dtype: int64

Fitness 0.311111

percent = 7/180*100

percent

3.8888888888889

. . .

Insight: The data suggests that the probability of a female customer selecting a 'KP781' product is 0.0388, translating to 3.88%. This probability insight provides valuable information about the likelihood of female customers opting for the specific 'KP781' product within the observed dataset.

Recommendations

. . .

^{1.} Targeted Marketing Campaigns: Given the distinct preferences observed in product selection among different demographics and usage patterns, consider implementing targeted marketing campaigns. Tailor promotions to align with the identified preferences

such as highlighting the features or benefits of the preferred 'KP781' product for specific customer segments.

- 2. Engagement Strategies for 5 to 7 Times Usage: Recognizing the limited engagement in the 5 to 7 times per week usage range, develop strategies to boost customer interaction within this frequency bracket. This could involve promoting additional features, offering incentives, or introducing loyalty programs to encourage more frequent product use.
- 3. Diversification of Product Offerings: While 'KP281' is the top choice, diversify the product offerings to cater to a broader audience. Introduce variations or complementary products that align with consumer preferences, ensuring a well-rounded product portfolio.
- 4. Promotional Packages: Create bundled promotional packages that combine preferred products like 'KP781' with others, providing added value for customers and potentially encouraging them to explore and purchase additional products.
- 5. Customer Engagement Surveys: Conduct surveys or feedback sessions to understand customer expectations, preferences, and satisfaction levels. Use the insights gathered to refine product features, enhance customer experience, and address any potential concerns or areas for improvement.
- 6. Market Expansion: Explore opportunities to expand the market reach by identifying untapped demographics or regions. This could involve assessing the feasibility of introducing products tailored to specific local preferences or cultural considerations.
- 7. Customer Education Initiatives: Since product preferences vary, initiate educational campaigns to inform customers about the unique features and benefits of each product. This can empower customers to make informed decisions and potentially lead to increased satisfaction and loyalty.
- 8. Collaborations and Partnerships:** Explore partnerships or collaborations with fitness influencers, gyms, or wellness platforms to enhance brand visibility and credibility. Leveraging influencers can be particularly effective in reaching and influencing specific target demographics.
- 9. E-commerce Optimization: If applicable, optimize the e-commerce platform for a seamless and user-friendly experience. Ensure that product information is clear, and the checkout process is efficient, making it easy for customers to browse, select, and purchase products.
- 10. Data-driven Decision Making: Continue leveraging insights from data analytics to inform strategic decisions. Regularly analyze sales patterns, customer behavior, and market trends to stay adaptable and responsive to changing consumer preferences.

. . .