Chapter 3

Multiple Linear Regression

Chapter 3a

Multiple linear regression models – examples (pages 3-5)

Multiple linear regression model (page 6)

Data for multiple linear regression model (page 7)

Example – Delivery time data (pages 8-12)

Least-squares function and least-squares regression (page 13)

Least-squares normal equations and estimates of regression coefficients (pages 14-15)

Example – Delivery time data (page 16)

Least-squares estimation – matrix approach (pages 17-21)

Example – Delivery time data (pages 22-24)

Example – Cholesterol age data (pages 25-26)

Fitting straight line and quadratic models (pages 27-30)

Multiple linear regression models

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

$$E(y) = 50 + 10x_1 + 7x_2$$

interaction term

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \varepsilon$$
$$E(y) = 50 + 10x_1 + 7x_2 + 5x_1 x_2$$

quadratic component

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{12} x_1 x_2 + \varepsilon$$

$$E(y) = 800 + 10x_1 + 7x_2 - 8.5x_1^2 - 5x_2^2 + 4x_1 x_2$$

Multiple linear regression model

The multiple linear regression model for a response variable y and regressor variables $x_1, x_2, ..., x_k$ can be written as

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + ... + \beta_k x_{ik} + \epsilon_i, \ i = 1, 2, ..., n,$$

$$= \beta_0 + \sum_{j=1}^k \beta_j x_{ij} + \epsilon_i, \ i = 1, 2, ..., n,$$
 K regressor variably

where $E(\epsilon_i) = 0$, $Var(\epsilon_i) = \sigma^2$, i = 1, 2, ..., n and ϵ_i 's are independent. Note that the number of regressor variables is k and the number of regression coefficients is p = k + 1.

The coefficients β_j , j=1,2,...,k are called partial regression coefficients. The parameter β_j represents the expected change in the response per unit change in x_j when all the remaining regressor variables are held constant.

Data for Multiple Linear Regression

		Regressors				
Observation, i	$\overline{x_1}$	<i>x</i> ₂		$\dots x_k$		
1	y 1	x_{11}	<i>x</i> ₁₂		x_{1k}	
2	y_2	x_{21}	x_{22}	•••	x_{2k}	
2 3					:	
n	y_n	x_{n1}	x_{n2}	•••	x_{nk}	

$$y_{i} = \beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \dots + \beta_{k}x_{ik} + \varepsilon_{i} \qquad i = 1, 2, \dots, n$$

$$\begin{cases} \xi_{i} = y_{i} - (\beta_{0} + \beta_{1}x_{i1} + \dots + \beta_{k}x_{ik}) & \frac{\partial S}{\partial \beta_{i}} = 0 \\ \xi_{i} = 0, & \frac{\partial S}{\partial \beta_{i}} = 0 \end{cases}$$

$$\begin{cases} \xi_{i} = y_{i} - (\beta_{0} + \beta_{1}x_{i1} + \dots + \beta_{k}x_{ik}) & \frac{\partial S}{\partial \beta_{i}} = 0 \\ \xi_{i} = 0, & \frac{\partial S}{\partial \beta_{i}} = 0 \end{cases}$$

$$\begin{cases} \xi_{i} = y_{i} - (\beta_{0} + \beta_{1}x_{i1} + \dots + \beta_{k}x_{ik}) & \frac{\partial S}{\partial \beta_{i}} = 0 \\ \xi_{i} = 0, & \frac{\partial S}{\partial \beta_{i}} = 0 \end{cases}$$

$$\begin{cases} \xi_{i} = y_{i} - (\beta_{0} + \beta_{1}x_{i1} + \dots + \beta_{k}x_{ik}) & \frac{\partial S}{\partial \beta_{i}} = 0 \\ \xi_{i} = 0, & \frac{\partial S}{\partial \beta_{i}} = 0 \end{cases}$$

$$\begin{cases} \xi_{i} = y_{i} - (\beta_{0} + \beta_{1}x_{i1} + \dots + \beta_{k}x_{ik}) & \frac{\partial S}{\partial \beta_{i}} = 0 \\ \xi_{i} = 0, & \frac{\partial S}{\partial \beta_{i}} = 0 \end{cases}$$

$$\begin{cases} \xi_{i} = y_{i} - (\beta_{0} + \beta_{1}x_{i1} + \dots + \beta_{k}x_{ik}) & \frac{\partial S}{\partial \beta_{i}} = 0 \\ \xi_{i} = 0, & \frac{\partial S}{\partial \beta_{i}} = 0 \end{cases}$$

$$\begin{cases} \xi_{i} = y_{i} - (\beta_{0} + \beta_{1}x_{i1} + \dots + \beta_{k}x_{ik}) & \frac{\partial S}{\partial \beta_{i}} = 0 \\ \xi_{i} = 0, & \frac{\partial S}{\partial \beta_{i}} = 0 \end{cases}$$

$$\begin{cases} \xi_{i} = y_{i} - (\beta_{0} + \beta_{1}x_{i1} + \dots + \beta_{k}x_{ik}) & \frac{\partial S}{\partial \beta_{i}} = 0 \\ \xi_{i} = 0, & \frac{\partial S}{\partial \beta_{i}} = 0 \end{cases}$$

$$\begin{cases} \xi_{i} = y_{i} - (\beta_{0} + \beta_{1}x_{i1} + \dots + \beta_{k}x_{ik}) & \frac{\partial S}{\partial \beta_{i}} = 0 \\ \xi_{i} = 0, & \frac{\partial S}{\partial \beta_{i}} = 0 \end{cases}$$

$$\begin{cases} \xi_{i} = y_{i} - (\beta_{0} + \beta_{1}x_{i1} + \dots + \beta_{k}x_{ik}) & \frac{\partial S}{\partial \beta_{i}} = 0 \\ \xi_{i} = 0, & \frac{\partial S}{\partial \beta_{i}} = 0 \end{cases}$$

$$\begin{cases} \xi_{i} = y_{i} - (\beta_{0} + \beta_{1}x_{i1} + \dots + \beta_{k}x_{ik}) & \frac{\partial S}{\partial \beta_{i}} = 0 \\ \xi_{i} = 0, & \frac{\partial S}{\partial \beta_{i}} = 0 \end{cases}$$

$$\begin{cases} \xi_{i} = y_{i} - (\beta_{0} + \beta_{1}x_{i1} + \dots + \beta_{k}x_{ik}) & \frac{\partial S}{\partial \beta_{i}} = 0 \\ \xi_{i} = 0, & \frac{\partial S}{\partial \beta_{i}} = 0 \end{cases}$$

$$\begin{cases} \xi_{i} = y_{i} - (\beta_{i} + \beta_{i}x_{i1} + \dots + \beta_{k}x_{ik}) & \frac{\partial S}{\partial \beta_{i}} = 0 \\ \xi_{i} = 0, & \frac{\partial S}{\partial \beta_{i}} = 0 \end{cases}$$

$$\begin{cases} \xi_{i} = y_{i} - (\beta_{i} + \beta_{i}x_{i1} + \dots + \beta_{k}x_{ik}) & \frac{\partial S}{\partial \beta_{i}} = 0 \\ \xi_{i} = 0, & \frac{\partial S}{\partial \beta_{i}} = 0 \end{cases}$$

$$\begin{cases} \xi_{i} = y_{i} - (\beta_{i} + \beta_{i}x_{i1} + \dots + \beta_{k}x_{ik}) & \frac{\partial S}{\partial \beta_{i}} = 0 \end{cases}$$

$$\begin{cases} \xi_{i} = y_{i} - (\beta_{i} + \beta_{i}x_{i1} + \dots + \beta_{k}x_{ik}) & \frac{\partial S}{\partial \beta_{i}} = 0 \end{cases}$$

$$\begin{cases} \xi_{i} = y_{i} - (\beta_{i} + \beta_{i}x_{i1} + \dots + \beta_{k}x_{i1} + \dots + \beta_{k}x_{i1} + \dots + \beta_{k}x_{i1} + \dots + \beta_{k}x_{i1} + \dots + \beta_{k}x$$

The delivery time data

The response y is the amount of time in minutes required by a route driver to stock the vending machines with beverage products and do minor maintenance of the machines in an outlet. The two regressor variables are (i) number of cases of products stocked (x_1) , and (ii) the distance walked in feet (x_2) . The data set is displayed below.

	4	(time)	case	dict	vegressor able
response	1	16.68	7	560	y wanable
2001/aple	2	11.50	3	220	
100	3	12.03	3	340	
	4	14.88	4	80	
	5	13.75	6	150	
	6	18.11	7	330	
	7	8.00	2	110	
	8	17.83	7	210	
	9	79.24	30	1460	
	10	21.50	5	605	
		40.33	16	688	
	12	21.00	10	215	
	13	13.50	4	255	
	14	19.75	6	462	
	15	24.00	9	448	
	16	29.00	10	776	
	17	15.35	6	200	
	18	19.00	7	132	
	19	9.50	3	36	
	20	35.10	17	770	
	21	17.90	10	140	
	22	52.32	26	810	
	23	18.75	9	450	
	24	19.83	8	635	
	25	10.75	4	150	

```
1 #install.packages("scatterplot3d") # install package
 2 library(scatterplot3d)
 3 library(MASS)
 4 \text{ rm(list} = \text{ls()})
 5 dat <- read.csv("D:\\nus_teaching\\st3131\\data\\Delivery_Time.csv",</pre>
 6
                     header = T, sep=",")
    dat
 8 obs <- dat[,1]</pre>
 9 time <- dat[,2]</pre>
10 case <- dat[,3]
11 dist <- dat[,4]
12
13 # 2d scatter plots
14
    plot(case, time, pch=16, col="red")
    plot(dist, time, pch=16, col="blue")
15
16
17 # 3d scatter plot
18
    scatterplot3d(case, dist, time, main="3D Scatterplot",
                   pch=16,color="red",angle=145)
19
```


Least-squares function and least-squares regression

The least-squares function is the error sum of squares

$$S = \sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{k} \beta_j x_{ij} \right)^2.$$

Least-squares regression means fitting a model that minimizes the error

sum of squares.
$$\frac{\partial S}{\partial \beta_0} = \frac{1}{2} \left\{ \sqrt{3} - \beta_0 - \sum_{i=1}^{k} \beta_{2i} x_{i,i} \right\} (-1)$$

Least-squares normal equations and estimates of regression coefficients

The least-squares estimates $\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_k$ of $\beta_0, \beta_1, ..., \beta_k$ are obtained by minimizing the error sum of squares with respect to $\beta_0, \beta_1, ..., \beta_k$. This is done by (i) Differentiate S with respect to $\beta_0, \beta_1, ..., \beta_k$ to obtain $\frac{\partial S}{\partial \beta_0}, \frac{\partial S}{\partial \beta_1}, ..., \frac{\partial S}{\partial \beta_k}$, and (ii) Set $\frac{\partial S}{\partial \beta_0}, \frac{\partial S}{\partial \beta_1}, ..., \frac{\partial S}{\partial \beta_k}$ equal to zero to find $\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_k$.

(i) Differentiate S with respect to $\beta_0, \beta_1, ..., \beta_k$,

$$\frac{\partial S}{\partial \beta_0} = \sum_{i=1}^n 2\left(y_i - \beta_0 - \sum_{j=1}^k \beta_j x_{ij}\right) (-1),$$

$$\frac{\partial S}{\partial \beta_j} = \sum_{i=1}^n 2\left(y_i - \beta_0 - \sum_{j=1}^k \beta_j x_{ij}\right) (-x_{ij}), \ j = 1, 2, ..., k.$$

(ii) Set $\frac{\partial S}{\partial \beta_0}$, $\frac{\partial S}{\partial \beta_1}$, ..., $\frac{\partial S}{\partial \beta_k}$ equal to zero:

$$0 = -2\sum_{i=1}^{n} \left(y_i - \hat{\beta}_0 - \sum_{j=1}^{k} \hat{\beta}_j x_{ij} \right),$$

$$0 = -2\left[\sum_{i=1}^{n} x_{ij} y_i - \hat{\beta}_0 \sum_{i=1}^{n} x_{ij} - \sum_{i=1}^{n} x_{ij} \left(\sum_{j=1}^{k} \hat{\beta}_j x_{ij} \right) \right], \quad j = 1, 2, ..., k.$$

use hat as it is now an estimate

The k+1 equations can be simplified to obtain

$$n\hat{\beta}_{0} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i1} + \hat{\beta}_{2} \sum_{i=1}^{n} x_{i2} + \dots + \hat{\beta}_{k} \sum_{i=1}^{n} x_{ik} = \sum_{i=1}^{n} y_{i}$$

$$\hat{\beta}_{0} \sum_{i=1}^{n} x_{i1} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i1}^{2} + \hat{\beta}_{2} \sum_{i=1}^{n} x_{i1} x_{i2} + \dots + \hat{\beta}_{k} \sum_{i=1}^{n} x_{i1} x_{ik} = \sum_{i=1}^{n} x_{i1} y_{i}$$

$$\hat{\beta}_{0} \sum_{i=1}^{n} x_{i2} + \hat{\beta}_{1} \sum_{i=1}^{n} x_{i2} x_{i1} + \hat{\beta}_{2} \sum_{i=1}^{n} x_{i2}^{2} + \dots + \hat{\beta}_{k} \sum_{i=1}^{n} x_{i2} x_{ik} = \sum_{i=1}^{n} x_{i2} y_{i}$$

$$\vdots$$

$$\hat{\beta}_0 \sum_{i=1}^n x_{ik} + \hat{\beta}_1 \sum_{i=1}^n x_{ik} x_{i1} + \hat{\beta}_2 \sum_{i=1}^n x_{ik} x_{i2} + \dots + \hat{\beta}_k \sum_{i=1}^n x_{ik}^2 = \sum_{i=1}^n x_{ik} y_i$$

The k+1 equations can then solved to find $\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_k$.

Delivary time data Fitting multiple linear regression model

```
22 # fit multiple linear regression model
  23 fitted.model <- lm(time ~ case + dist)
  24 summary(fitted.model)
  25
  26
 19:4 (Top Level) $
Console Background Jobs X
R 3.4.1 · ⋈
> # fit multiple linear regression model
> fitted.model <- lm(time ~ case + dist)</pre>
> summary(fitted.model)
Call:
lm(formula = time ~ case + dist)
Residuals:
            10 Median 30
   Min
                                   Max
-5.7880 -0.6629 0.4364 1.1566 7.4197
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.341231 1.096730 2.135 0.044170 *
case 1.615907 0.170735 9.464 3.25e-09 ***
dist 0.014385 0.003613 3.981 0.000631 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 3.259 on 22 degrees of freedom
Multiple R-squared: 0.9596, Adjusted R-squared: 0.9559
F-statistic: 261.2 on 2 and 22 DF, p-value: 4.687e-16
```

Least-squares estimation - matrix approach

1. Multiple linear regression model in terms of the n observations:

2. Multiple linear regression model in matrix notation:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ \vdots \\ y_n \end{bmatrix}_{n \times 1}$$

$$\mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1k} \\ 1 & x_{21} & x_{22} & \dots & x_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{nk} \end{bmatrix}_{n \times (k+1)}$$

$$oldsymbol{eta} = egin{bmatrix} eta_0 \ eta_1 \ \vdots \ eta_k \end{bmatrix}_{(k+1) imes 1} & oldsymbol{\epsilon} = egin{bmatrix} \epsilon_1 \ \epsilon_2 \ \vdots \ \vdots \ \epsilon_n \end{bmatrix} & oldsymbol{\epsilon} = egin{bmatrix} \epsilon_1 \ \epsilon_2 \ \vdots \ \vdots \ \epsilon_n \end{bmatrix}$$

3. Least-squares function

$$S = \sum_{i=1}^{n} \epsilon_i^2$$

$$= \epsilon' \epsilon$$

$$= (y - X\beta)'(y - X\beta)$$

$$= (y' - \beta'X')(y - X\beta)$$

$$= y'y - y'X\beta - \beta'X'y + \beta'X'X\beta$$

$$= y'y - 2y'X\beta + \beta'X'X\beta \quad \because y'X\beta = \beta'X'y$$

4. Least-squares normal equations

$$\frac{\partial \mathcal{S}}{\partial \boldsymbol{\beta}} = -2\boldsymbol{X'}\boldsymbol{y} + 2\boldsymbol{X'}\boldsymbol{X}\boldsymbol{\beta} \qquad \therefore \frac{\partial (\boldsymbol{a'}\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = \boldsymbol{a}, \quad \frac{\partial (\boldsymbol{\beta'}\boldsymbol{A}\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = 2\boldsymbol{A}\boldsymbol{\beta}$$

vector
$$\mathbf{0} = -2 oldsymbol{X'} oldsymbol{y} + 2 oldsymbol{X'} oldsymbol{X} \hat{oldsymbol{eta}}$$

$$X'X\hat{eta} = X'y$$

$$\sum_{i=1}^{n} x_{ik} \sum_{i=1}^{n} x_{ik} x_{i1} \sum_{i=1}^{n} x_{ik} x_{i2} \dots \sum_{i=1}^{n} x_{ik}^{2} \left[\hat{\beta}_{k} \right]$$

$$\begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{\beta}_2 \\ \cdot \\ \cdot \\ \vdots \\ \hat{\beta}_k \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n y_i \\ \sum_{i=1}^n x_{i1} y_i \\ \sum_{i=1}^n x_{i2} y_i \\ \cdot \\ \cdot \\ \vdots \\ \sum_{i=1}^n x_{ik} y_i \end{bmatrix}$$

5. Least-squares estimates of $\hat{\beta}$

$$\hat{eta} = (X'X)^{-1}X'y$$

6. Predicted response \hat{y} and residual e

$$\hat{y} = X\hat{\beta}$$
 $\forall x \in \mathbb{Z}^3 + \mathcal{E}$

$$= X(X'X)^{-1}X'y$$

$$= Hy \text{ where } H \text{ is called the hat matrix.}$$

The side of
$$e = y - \hat{y}$$
 (absented - predicted) $= y - X\hat{\beta}$ $= y - Hy$ $= (I_n - H)y$

Delivery time data

```
30 # scatter matrix plot
31 pairs(dat, pch=16)
32 
(Top Level) 

(Top Le
```


Delivery time data

$$\begin{bmatrix} 1 & 7 & 560 \\ 1 & 3 & 220 \\ 1 & 3 & 340 \\ 1 & 4 & 80 \\ 1 & 6 & 150 \\ 1 & 7 & 330 \\ 1 & 7 & 330 \\ 1 & 10 & 10 \\ 1 & 7 & 210 \\ 1 & 5 & 605 \\ 1 & 16 & 688 \\ 1 & 10 & 215 \\ 1 & 6 & 462 \\ 1 & 9 & 448 \\ 1 & 10 & 776 \\ 1 & 9 & 448 \\ 1 & 10 & 776 \\ 1 & 6 & 200 \\ 1 & 13 & 36 \\ 1 & 7 & 132 \\ 1 & 3 & 36 \\ 1 & 10 & 140 \\ 1 & 10 & 15 \\ 1 & 10 & 140 \\ 1 & 10 & 15 \\ 1$$

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$
$$\hat{y} = 2.34123 + 1.61591 x_1 + 0.01438 x_2$$

$$\mathbf{X'X} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 7 & 3 & \cdots & 4 \\ 560 & 220 & \cdots & 150 \end{bmatrix} \begin{bmatrix} 1 & 7 & 560 \\ 1 & 3 & 220 \\ \vdots & \vdots & \vdots \\ 1 & 4 & 150 \end{bmatrix} = \begin{bmatrix} 25 & 219 & 10,232 \\ 219 & 3,055 & 133,899 \\ 10,232 & 133,899 & 6,725,688 \end{bmatrix}$$

$$\mathbf{X'y} = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 7 & 3 & \cdots & 4 \\ 560 & 220 & \cdots & 150 \end{bmatrix} \begin{bmatrix} 16.68 \\ 11.50 \\ \vdots \\ 10.75 \end{bmatrix} = \begin{bmatrix} 559.60 \\ 7,375.44 \\ 337,072.00 \end{bmatrix}$$

$$3 \times 1$$

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

$$\begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_1 \\ \hat{\beta}_2 \end{bmatrix} = \begin{bmatrix} 25 & 219 & 10,232 \\ 219 & 3,055 & 133,899 \\ 10,232 & 133,899 & 6,725,688 \end{bmatrix}^{-1} \begin{bmatrix} 559,60 \\ 7,375,44 \\ 337,072.00 \end{bmatrix}$$

$$= \begin{bmatrix} 0.11321518 & -0.00444859 & -0.00008367 \\ -0.00444859 & 0.00274378 & -0.00004786 \\ -0.00008367 & -0.00004786 & 0.00000123 \end{bmatrix}^{-1} \begin{bmatrix} 559,60 \\ 7,375,44 \\ 337,072.00 \end{bmatrix}$$

$$= \begin{bmatrix} 2.34123115 \\ 1.61590712 \\ 0.01438483 \end{bmatrix}$$

```
33 # matrices and finding betas
  34 one <- rep(1,length(time))</pre>
  35 X <- array(c(one,case,dist), dim=c(length(time),3))</pre>
  36 y <- array(time, dim=c(length(time),1))</pre>
      XPX \leftarrow t(X) \%\% X
  37
                     matrix multiplication
      XPX
  38
  39
      XPy \leftarrow t(X) \%\% y
  40 XPy
  41 betahat <- solve(XPX, XPy)
  42 betahat
  43 ∜ ■
      (Top Level) $
 33:1
Console Background Jobs X
R 3.4.1 · ♠
> y <- array(time, dim=c(length(time),1))</pre>
> XPX <- t(X) %*% X
> XPX
      [,1] [,2] [,3]
        25 219 10232
[1,]
[2,]
     219 3055 133899
[3,] 10232 133899 6725688
> XPy <- t(X) %*% y
> XPy
         [,1]
     559.60
[1,]
[2,]
     7375.44
[3,] 337071.69
> betahat <- solve(XPX, XPy)</pre>
> betahat
            [,1]
[1,] 2.34123115
[2,] 1.61590721
[3,] 0.01438483
```

Cholesterol age data

	age	cholesterol_level		age	<pre>cholesterol_level</pre>
1	15	1.2	18	31	3.8
2	17	1.3	19	40	3.2
3	16	1.1	20	43	3.8
4	19	1.7	21	46	3.5
5	18	1.8	22	48	4.2
6	20	2.3	23	49	4.0
7	20	1.9	24	50	3.3
8	22	2.1	25	52	4.0
9	22	2.5	26	52	4.3
10	24	2.5	27	57	4.1
11	25	3.0	28	57	4.5
12	28	2.3	29	63	4.6
13	28	2.9	30	65	4.5
14	29	3.3	31	66	4.6
15	30	2.6	32	67	4.0
16	33	3.0	33	69	4.4
17	34	3.2			

Cholesterol age data

Straight line model

$$cholesterol = \beta_0 + \beta_1 \ age + \epsilon$$

Quadratic line model

$$cholesterol = \beta_0 + \beta_1 \ age + \beta_2 \ age^2 + \epsilon$$

Cholesterol age data

```
2 #install.packages("np")
 3 library(MASS)
 4 library(np)
 5 rm(list=ls())
 7 dat <- read.csv("D:\\nus_teaching\\st3131\\data\\cho]esterol_age.csv",
                    header = T, sep=",")
 9 age <- dat[,1]
10 cholesterol <- dat[,2]
11
12 #Fit straight line model
13 mod1 <- lm(cholesterol~age)</pre>
14 COEF <- coef(mod1)
15 names(COEF) <- NULL
16 beta0 <- COEF[1]
17 beta1 <- COEF[2]
18 plot(age,cholesterol,pch=16,col="blue")
19 abline(beta0,beta1,lty=1,col="red")
20 summary(mod1)
21
22 #Fit quadratic model
23 mod2 <-lm(cholesterol~age + I(age^2))
24 mod2
25 COEF2 <- coef(mod2)</pre>
26 names(COEF2) <- NULL
27 COEF2
28 beta2.0 <- COEF2[1]
29 beta2.1 <- COEF2[2]
30 beta2.2 <- COEF2[3]
31 beta2.0
32 beta2.1
33 beta2.2
34 summary(mod2)
35 plot(age,cholesterol,pch=16,col="blue")
36 curve(beta2.0+x*beta2.1+x*x*beta2.2, add=TRUE, lty=1,col="red")
19:1 (Top Level) *
```


The End