Jeofizik Müh. Lineer Cebir Final Sınav Soruları

22.05.2015

S. 1)	$2A - B = \begin{bmatrix} 6 & -7 \\ -8 & 9 \end{bmatrix}$	ve $3A + 2B = \begin{bmatrix} -5 & 0 \\ -5 & 10 \end{bmatrix}$ eşitliklerini sağlayan A ve B matrislerini bulunuz.
S.2)		lineer denklem sisteminin çözüm kümesini artırılmış matris yöntemiyle bulunuz.
S.3)		lineer denklem sisteminin çözüm kümesini Cramer yöntemiyle bulunuz.
S.4)	1 2 -1 1 2 0 0 4 0 1 1 1 3 -2 1 0	determinantını, ikinci satıra göre Laplace açılımını yaparak , hesaplayınız.
S.5)	2x+3y=3 $x-2y=5$ $3x+ky=4$	lineer denklem sisteminin çözümünün olması için k ne olmalıdır ?

NOT: Herhangi dört soruyu cevaplayınız. Sorular eşit puanlıdır. Süre 60 dakikadır.

1)
$$2A-B = \begin{bmatrix} 6-7 \\ -89 \end{bmatrix}$$
 $4A-2B = \begin{bmatrix} 72-14 \\ -16 \end{bmatrix}$
 $3A+2B = \begin{bmatrix} -5 & 0 \\ -5 & 10 \end{bmatrix}$
 $3A+2B = \begin{bmatrix} -5 & 0 \\ -5 & 10 \end{bmatrix}$
 $3A+2B = \begin{bmatrix} -5 & 0 \\ -5 & 10 \end{bmatrix}$
 $3A+2B = \begin{bmatrix} -5 & 0 \\ -5 & 10 \end{bmatrix}$
 $3A+2B = \begin{bmatrix} -7 & -14 \\ -21 & 28 \end{bmatrix}$ den

$$A = \frac{1}{7} \begin{bmatrix} 7 & -14 \\ -21 & 28 \end{bmatrix} = \begin{bmatrix} 1-2 \\ -3 & 4 \end{bmatrix}$$
 bulunur Bunu biring.
$$A = \begin{bmatrix} 1-2 \\ -3 & 4 \end{bmatrix} - B = \begin{bmatrix} 6-7 \\ -89 \end{bmatrix} = \begin{bmatrix} 2-4 \\ -68 \end{bmatrix} - \begin{bmatrix} 6-7 \\ -89 \end{bmatrix} = B$$

$$A = \begin{bmatrix} 2-6 & -4+7 \\ -6+8 & 8-9 \end{bmatrix} = \begin{bmatrix} -4 & 3 \\ 2 & -1 \end{bmatrix}$$
 dir. Böylece
$$A = \begin{bmatrix} 1-2 \\ -3 & 4 \end{bmatrix}$$
 ve $B = \begin{bmatrix} -4 & 3 \\ 2 & -1 \end{bmatrix}$ bulunur.

2 [A,B] =
$$\begin{bmatrix} 1 & 1 & 1 & 6 \\ 2 & 3 & -3 & -1 \\ -1 & 1 & 2 & 7 \end{bmatrix}$$
 $S_{1}S_{2}$ $\begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & -5 & -13 \\ 0 & 2 & 3 & 13 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 1 & 6 \\ 2 & 3 & -3 & -1 \\ -1 & 1 & 2 & 7 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & -5 & -13 \\ 0 & 0 & 13 & 13 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & -5 & -13 \\ 0 & 0 & 13 & 13 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 1 & 6 \\ 0 & 1 & 3 & 3 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 1 & 6 \\ 2 & 3 & 3 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 1 & 6 \\ 2 & 3 & 3 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 1 & 6 \\ 2 & 3 & -3 \\ 2 & 3 & -3 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 1 & 6 \\ 2 & 3 & -3 \\ 2 & 1 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 1 & 6 \\ 2 & 3 & -3 \\ 2 & 3 & -3 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 1 & 6 \\ 2 & 3 & -3 \\ 2 & 1 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 1 & 6 \\ 2 & 3 & -3 \\ 2 & 1 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 1 & 6 \\ 2 & 3 & -3 \\ 2 & 1 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 1 & 6 \\ 2 & 3 & -3 \\ 2 & 1 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 1 & 1 & 6 \\ 1 & 1 & 1 & 6 \\ 2 & -1 & -3 & -2 \\ -1 & 7 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 6 & 1 & 1 \\ 2 & -1 & -3 \\ -1 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 6 & 1 \\ 2 & -1 & -3 \\ -1 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 6 & 1 \\ 2 & -1 & -3 \\ -1 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 6 & 1 \\ 2 & -1 & -3 \\ -1 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 6 & 1 \\ 2 & -1 & -3 \\ -1 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 6 & 1 \\ 2 & -1 & -3 \\ -1 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 6 & 1 \\ 2 & -1 & -3 \\ -1 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 6 & 1 \\ 2 & -1 & -3 \\ -1 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 6 & 1 \\ 2 & -1 & -3 \\ -1 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 6 & 1 \\ 2 & -1 & -3 \\ -1 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 6 & 1 \\ 2 & -1 & -3 \\ -1 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 6 & 1 \\ 2 & -1 & -3 \\ -1 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 6 & 1 \\ 2 & -1 & -3 \\ -1 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 6 & 1 \\ 2 & -1 & -3 \\ -1 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 6 & 1 \\ 2 & -1 & -3 \\ -1 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 6 & 1 \\ 2 & -1 & -3 \\ -1 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 6 & 1 \\ 2 & -1 & -3 \\ -1 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 6 & 1 \\ 2 & -1 & -3 \\ -1 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 6 & 1 \\ 2 & -1 & -3 \\ 2 & -1 & -3 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 6 & 1 \\ 2 & -1 & -3 \\ 2 & -1 & -3 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 6 & 1 \\ 2 & -1 & -3 \\ 2 & -1 & -3 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 6 & 1 \\ 2 & -1 & -3 \\ 2 & -1 & -3 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 6 & 1 \\ 2 & -1 & -3 \\ 2 & -1 & -3 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 6 & 1 \\ 2 & -1 & -3 \\ 2 & -1 & -3 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 6 & 1 \\ 2 & -1$

$$\Delta_3 = \begin{vmatrix} 1 & 1 & 6 \\ 2 & 3 & -1 \\ -1 & 1 & 7 \end{vmatrix} = 21 + 1 + 12 + 18 + 1 - 14 = 53 - 14 = 39 \quad \text{olip}$$

$$x = \frac{\Delta_1}{\Delta} = \frac{13}{13} = 1$$
, $y = \frac{\Delta_2}{\Delta} = \frac{26}{13} = 2$, $z = \frac{\Delta_3}{\Delta} = \frac{39}{13} = 3$

den Gözüm hünnesi G= { (1, 2, 3) } dür.

$$= 2 \cdot (-1) \cdot \left[0 + 2 + 1 - \left(-2 - 0 + 2 \right) \right] + 4 \cdot 1 \cdot \left[1 + 6 + 0 - \left(-3 + 0 - 2 \right) \right]$$

$$= 2 \cdot (-1) \cdot \left[0 + 2 + 1 - \left(-2 - 0 + 2 \right) \right] + 4 \cdot 1 \cdot \left[1 + 6 + 0 - \left(-3 + 0 - 2 \right) \right]$$

$$= -2 \cdot 3 + 4 \cdot (7 + 5) = -6 + 4 \cdot 12 = 48 - 6 = 42 / 1$$

meselà Cramer Gontenni ite bulalun:

selâ Cramer Yontemi ite bulallin

$$2x+3y=3$$
 $\frac{1}{3}$ $\Rightarrow \Delta = \begin{vmatrix} 2 & 3 \\ 1 & -2 \end{vmatrix} = -4-3=-7$,
 $x-2y=5$ $\Delta_1 = \begin{vmatrix} 3 & 3 \\ 5 & -2 \end{vmatrix} = -6-15 = -21$

$$\Delta_2 = \begin{vmatrix} 2 & 3 \\ 1 & 5 \end{vmatrix} = 10 - 3 = 7$$
 obep

 $x = \frac{\Delta_1}{\Delta} = \frac{-21}{-7} = 3$ re $y = \frac{\delta_2}{\Delta} = \frac{7}{-7} = -1$ den

 $(3,-1)$ ilitisi ilk iki denklemli sistemin

çözümüdün Bu çözüm son denklemi de

saflarsa, verilen lineer denklem sistembin

bir çözümü vardır. Bunz göre

 $3x + \log = 4 \implies 3 \cdot 3 + k \cdot (-1) = 4 \implies 9 - k = 5$ den

 $9 - 5 = k \implies \lfloor k = 5 \rfloor$ bulunur

 $k = 5$ icin verilen lineer denklem

sisteminin tek çözümü vardır.

NOT: Çözümlerde işlem hatası varsa lütfen bildiriniz. (22.05.2015)