This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(1) Publication number:

0 126 974 A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 84104614.7

22 Date of filing: 25.04.84

(a) Int. Cl.³: **C 07 C 103/52**C 07 D 207/16, C 07 C 103/50
C 07 C 103/18, C 07 C 103/28
C 07 C 103/29
//A61K37/02

30 Priority: 26.04.83 GB 8311286

(43) Date of publication of application: 05.12.84 Bulletin 84/49

(84) Designated Contracting States: BE CH DE FR GB IT LI NL SE (7) Applicant: G.D. Searle & Co. Box 1045 Skokie, Illinois 60076(US)

(72) Inventor: McCullagh, Keith 30 Manor Park Avenue Princess Risborough Buckinghamshire(GB)

(2) Inventor: Wadsworth, Harry 82 St. Margarets Grove Great Kingshill Buckinghamshire(GB)

122 Inventor: Hann, Michael 34 Brook Street Watlington Oxon(GB)

(4) Representative: Werner, Hans-Karsten, Dr. et al, Deichmannhaus am Hauptbahnhof D-5000 Köln 1(DE)

54 Carboxyalkyl peptide derivatives.

(57) This invention encompasses novel carboxyalkyl peptide derivatives which are collagenase inhibitors

A 4/8 07! O 7:

This invention relates to novel compounds having pharmacological activity, to the production thereof, to compositions containing them, and to their use in pharmacy.

A number of compounds have been described which are competitive reversible inhibitors of zinc-containing metalloproteinase enzymes. Such competitive reversible inhibitors are for example those which are inhibitors for the angiotensin converting enzymes (ACE). The utility of such an inhibitor is that it acts to block conversion of the decapeptide angiotensin I to antiotensin II, this last-mentioned compound being a potent pressor substance. ACE inhibitors are therefore potentially of use in the treatment of hypertension. Compounds of this type are for example described in European Patent Application A-OO12401. Related inhibitors of the enzyme enkephalinase are described in EPA 0054862.

We have found a group of compounds which act as innibitors of mammalian collagenase [EC 3.4.24.7] which initiates collagen breakdown. There is now compelling evidence [see for example Arthritis and Rheumatism, 20, 1231, (19770] implicating the involvement of the zinc metalloproteinase, collagenase, as one of the key enzymes in the degradation of articular cartilage and bone in rheumatoid arthritis. Collagen is ont of the major components of the protein matrix of cartilage and bone. Potent inhibitors of collagenase are useful in the treatment of rheumatoid arthritis and associated diseases in which collagenolytic activity is a contributing factor. These diseases include corneal ulceration, periodontal disease, tumour invasion and dystrophic epidermolysis bullosa.

These compounds have substantially no ACEinhibiting-activity. ACE is a carboxydipeptidase - it
cleaves a peptide substrate two residues from the Cterminus. Consequently the C-terminal carboxylic acid is a
prime recognition site for both substrates and inhibitors;

removal of this ionic binding group drastically reduces inhibitory potency. Collagenase, on the other hand, is an endopeptidase and, as such, has no prerequisite for this binding interaction. Additionally the structure of collagen differs essentially from angiotensin-I, which as noted above is a decapeptide and is cleaved at a phenylalanine-histidine bond to give an octapeptide (angiotensin-II) and a dipeptide (histidylleucine). Collagen is much more complex, in being a triple helix, each strand of the helix containing of the order of 1,000 amino acid residues, the sequence of amino acids around the site cleaved by collagenase being completely different from that around the cleavage site of Collagenase cleaves this triple helix at Angiotensin I. a single locus on each chain approximately two-thirds of the way along the chain from the N-terminus. The amide bond which is cleaved by collagenase is either a glycine-leucine or a glycine-isoleucine bond.

BRIEF DESCRIPTION OF THE INVENTION

The present invention provides compounds of the general formula I:

mula I:
$$A - A - Y - (CH_2)_{n} + NH = 0$$

$$A - A - Y - (CH_2)_{n} + NH = 0$$

I

and pharmaceutically acceptable salts thereof in which n = 1-4

R¹ represents hydroxy, alkoxy, aralkoxy or hydroxy-amino;

R² represents hydrogen or alkyl; R³ represents hydrogen,

alkyl,

may be one or more of the groups selected from hydroxy, alkoxy, aryloxy, aralkoxy, mercapto, alkylthio, arylthio, alkylsulphinyl (e.g. SOCH₃), alkylsulphonyl (e.g. SO₂CH₃), carboxy, carboxamido (e.g. CONH₂), carboxyalkyl (e.g. CO₂CH₃), carboxyaralkyl (e.g. CO₂CH₂Ph), aralkoxycarbonylamino (e.g. NHCOOCH₂Ph), amino, dialkylamino, acylamino (e.g. NHCOPh) and trihalomethyl (e.g. CF₃),

aralkyl,

substituted aralkyl wherein the

substituent on the aryl moiety may be
one or more groups selected from
halogen (e.g. fluorine, chlorine,
bromine, iodine), alkyl, hydroxy,
alkoxy, aralkoxy, amino, aminomethyl
(CH₂NH₂), cyano, alkylamino,
dialkylamino, carboxy, sulphonamido,
alkylthio, nitro and phenyl,

or heteroaralkyl;

Y represents NR^4 wherein R^4 represents H or alkyl; or for certain values of A^1 , A^2 may alternatively be a direct chemical bond.

When Y represents NR4,

 A^1 represents a group of formula R^5 wherein R^5 may be hydrogen,

alkyl,

aralkyl,

aryl,

substituted aryl wherein the substituent may
be one or more groups selected from
halogen alkyl, hydroxy, alkoxy, aralkoxy,
aralkoxyamino, aminomethyl, cyano,
acylamino, dialkylamino, carboxy,
sulphonamido, alkylthio, nitro and phenyl,

acyl (e.g. CH₃CO), aroyl (e.g. PhCO), aralkylacyl (e.g. PhCH₂CO), alkoxycarbonyl (e.g. (CH₃)₃OCO), or aralkoxycarbonyl (e.g. PhCH₂OCO);

A¹ may also represent a group of the formula:

wherein R^6 represents a group having the meanings defined above for R^5 ;

R⁷ and R⁸ which may be the same or different represent hydrogen, alkyl or aralkyl; or

R⁷ and R⁸ may together represent an alkylene chain of 2-4 carbon atoms so to form with the adjacent nitrogen atom a nitrogen-containing ring having 4-6 atoms; R⁹ represents hydrogen,

alkyl,

substituted alkyl wherein the substituent is exactly as defined for this moiety above,

aralkyl,

substituted aralkyl wherein the substituent is exactly as defined for this moiety above,

or heteroaralkyl;

 ${\tt A}^2$ represents a group of the formula

wherein

R¹⁰ and R¹¹ which may be the same or different represent groups having the meanings given above for R⁷ or together represent an alkylene chain of 2-4 carbon atoms so as to form with the adjacent nitrogen a nitrogen-containing ring having 4 to 6 atoms;

 R^{12} represents a group having the meanings given above for R^9 .

Additionally, A^1 and A^2 taken together may represent hydrogen,

alkyl,

aralkyl,

```
heteroaralkyl,
          alkylsulphonyl,
          arylsulphonyl,
          aralkylsulphonyl,
          or a group R<sup>13</sup>CO wherein R<sup>13</sup> represents
          hydrogen,
          alkyl,
          alkoxy,
          aryl,
          aralkyl,
          aralkoxy,
          substituted aryl (as defined in R<sup>3</sup>),
               substituted aralkyl (as defined in R<sup>3</sup>) and
               substituted aralkoxy wherein the
               substituent on the aromatic moiety of the
               aralkoxy is as defined for aralkyl
           phenethenyl (PhCH=CH-),
          phenethynyl (PhC≡C-),
           alkylamino,
           arylamino,
           aralkylamino,
           or dialkylamino;
In a further aspect of this invention, Y may also
                                        In this instance, A1
represent a direct chemical bond.
and A<sup>2</sup> taken together represent
      hydrogen,
      alkyl,
       aryl,
       alkoxy,
```

aralkoxy,

substituted aryl (an in R³) and substituted 974

aralkoxy (as in R³) wherein

the substituent on the aromatic moiety of the aralkoxy is as defined for aralkyl,

hydroxy,

mercapto,

alkylthio,

arylthio,

aralkylthio,

carboxy,

or carboxyalkyl;

A³ represents a group of the formula

R14

or

wherein

R¹⁴ represents amino,

alkylamino,
dialkylamino,
hydroxyamino,
or aralkylmino,

and R^{15} , R^{16} and R^{17} which may be the same or different represent groups having the meaning given above for R^{10} , R^{11} and R^{12} respectively and R^{18} represents amino,

alkylamino, dialkylamino,

substituted alkylamino wherein the substituent is amino, hydroxy, alkoxy, carboxy, carboxamido, carboxyalkyl, alkylthio, alkylsulphonyl,

hydroxyamino, alkoxyamino, aralkylamino, alkoxy, aralkoxy,

or alkylaminoalkoxy.

all with the exception that when ${\tt A}^3$ is alkylamino one of ${\tt R}^2$ and ${\tt R}^3$ is not hydrogen and the other alkyl or hydroxyalkyl.

DETAILED DESCRIPTION OF THE INVENTION

The term alkyl as used herein to designate a group or a part thereof includes reference to both straight and branched alkyl groups and to cycloalkyl groups which may contain from 1 to 10, preferably 1 to 6, carbon atoms in the case of straight or branched chain non-cyclic alkyl groups (for example methyl, ethyl, propyl, isopropyl) and from 3 to 10, preferably 3 to 7 in the case of cyclic alkyl groups (for example cyclopentyl, norbornyl).

By the term aryl, is meant phenyl or naphthyl.

The terms aralkyl and aralkoxy include in particular those groups containing 1 to 4 carbon atoms in the alkyl portion, and those groups in which aryl has the meaning just given.

By the term heteroaralkyl we mean in particular groups containing 1 to 4 carbon atoms in the alkyl moiety. The term heteroaryl includes for example, pyridyl, thienyl, furyl, indolyl, imidazolyl and thiazolyl.

Typical pharmaceutically acceptable addition salts are those derived from mineral and organic acids such as hydrochloric, hydrobromic, hydroiodic, p-toluene sulphonic, sulphuric, perchloric, acetic, benzoic, trifluoroacetic and the like.

There are several chiral centres in the compounds according to the invention because of the presence of asymmetric carbon atoms. These centres may be racemised or in any optically active form. We have found surprisingly that those compounds in which the chiral centre indicated below by an asterisk in the group shown is in the R form are preferred.

Certain groups of compounds according to the invention are preferred, these including the following. A group of preferred compounds are those in which the group ${\tt A}^3$ has the following meaning

in which R¹⁷ represents substituted alkyl (wherein the substituent is alkoxy, aralkoxy, alkoxycarbonylamino, aralkoxycarbonylamino, carboxyalkyl or carboxyaralkyl); or substituted aralkyl (wherein the aryl substituent is one or more groups selected from alkyl, alkoxy, alkyl thio or aralkoxy). In this preferred group of compounds, R³ should have the meanings described hereinbefore but excluding aralkyl or heteroalkyl.

Within this definition of A^3 , there is a preferred subclass of compounds in which $A^1 + A^2$ taken together represent H, Y is a direct chemical bond, R^2 represents H, and R^3 represents alkyl or substituted alkyl where the substituent(s) is one or more trifluoromethyl groups.

Therefore this first sub-class of preferred compounds may be defined by the formula

wherein R^3 and R^{17} are as defined above. A most preferred set of compounds within this group are those in which R^{17} is benzyloxymethyl (PhCH₂OCH₂-), 1-benzyloxyethyl (PhCH₂OCH(CH₃)-), 4-benzyloxyphenylmethyl (4-PhCH₂OC₆H₄CH₂-) or 4-methoxyphenylmethyl (4-CH₃OC₆H₄CH₂-).

In a second preferred sub-class of compounds within the preferred definition of A^3 , Y represents NR⁴, and A^1+A^2 represent a group R¹³CO wherein R¹³ represents alkyl,

aryl,

aralkyl,

aralkoxy,

substituted aryl, substituted aralkyl and substituted aralkoxy wherein the substituent on the aromatic moiety is exactly as defined hereinbefore,

alkylamino,

arylamino,

.. aralkylamino

or dialkylamino.

Therefore this second sub-class of preferred compounds may be defined by the formula

Particularly preferred examples are those in which R⁴ is H and R³, R¹⁷ and R¹⁸ are as defined for the first preferred sub-class of compounds. A most preferred series of compounds within this sub-class is where n is 2, R¹³ is benzyloxy (PhCH₂O), substituted benzyloxy (where the aromatic substituent is selected from 4-chloro, 2-chloro, 4-methyl, 4-nitro or 4-amino), benzylamino (PhCH₂NH), phenyl or substituted phenyl (where the aromatic substituent is selected from 4-chloro, 2-chloro, 4-methyl, 4-nitro or 4-amino).

A further preferred embodiment of the invention is a compound of the formula

and the pharmaceutically acceptable acid addition salts thereof wherein x represents hydrogen, alkoxy or benzyloxy; y represents a radical selected from alkyl, alkylthioalkyl,

wherein v is 2 or 3,

$$z = \begin{bmatrix} 0 \\ 1 \\ C \\ N \\ H \end{bmatrix} = CH_2 - CH_2 -$$

wherein z represents hydrogen or nitro; W_1 and W_2 represent methyl or trifluoromethyl; and R^1 represents hydroxy or alkoxy and the stereochemistry of the carbon marked by the asterisk is R.

Specific compounds according to the invention are those, the preparation of which is described in the Examples.

- 15 -

The compounds according to the invention exhibit inhibitory action against collagenase. This was determined following the procedure of Cawston and Barrett, Anal. Biochem., 99, 340-345 (1979) whereby the lmM of the inhibitor being tested or dilutions thereof are incubated at 37°C for 16 hours with native collagen and collagenase (buffered with Tris HCl-CaCl,; The collagen is acetyl 14C collagen. samples are centrifuged to sediment undigested collagen and an aliquot of the radiactive supernatant removed for assay on a scintillation counter as a measure of hydrolysis. The collagenase activity in the presence of 1mM inhibitor, or a dilution thereof, is compared to activity in a control devoid of inhibitor and the results reported as that inhibitor concentration effecting 50% inhibition of the collagenase. illustrates the activity of compounds of this invention.

For use in treatment of rheumatoid arthritis the compounds of this invention can be administered by any convenient route preferably in the form of a pharmaceutical composition adapted to such route and in a dose effective for the intended treatment. In the treatment of arthritis administration may conveniently be by the oral route or by injection intraarticularly into the affected joint. The daily dosage for a 70 kilogram mammal will be in the range of 10 milligrams to 1 gram.

The compounds of this invention can be formulated in compositions such as tablets, capsules or elixirs for oral administration or in sterile solutions or suspensions for parenteral administration. About 10 to 500 mg of a compound according to the invention is compounded with a physiologically acceptable vehicle, carrier, excipient, binder, preservative, stabilizer, flavour, etc., in a unit dosage from as called for by accepted pharmaceutical practice. (See for example, Remington's Pharmaceutical Science Mach Publishing Co., Easton, Penn. 1965). The amount of active substance in these compositions or preparations is such that a suitable dosage in the range indicated is obtained.

The compounds according to the invention may be made by methods which are generally known in peptide chemistry for analogous compounds. In particular it is to be understood that reactive groups not involved in a particular reaction (e.g. amino, carboxy, hydroxy etc.,) may be protected by methods standard in peptide chemistry prior to reactions of other groups and subsequently deprotected.

The intermediates of use in the production of the end-products are either known compounds or can be made by known methods, as described in the Examples.

The following description of the preparative methods

10

15

indicates generally the routes which may be used for the production of the compounds according to the invention.

Process 1, Route A

5 This process involves reductive amination

$$A^{1}-A^{2}-Y-(CH_{2})n-\dot{C}=0 \qquad NH_{2} \xrightarrow{R^{2}-R^{3}} C-A^{3} \longrightarrow I$$
II III

A keto acid (or derivative) of formula II is condensed with a peptide of formula III. This condensation is conveniently carried out in a suitable solvent (e.g.aqueous tetrahydrofuran, methanol) at a pH between 6 and 7 in the presence of sodium cyanoborohydride which effects

15 reduction to give the desired compound of formula I.

Alternatively, II and III may be reacted in the solvent medium to form a Schiff's Base as an intermediate and this may then be reduced catalytically to yield the desired compound of formula I for example by hydrogenation in the presence of Raney Nickel or palladium on charcoal.

As an alternative to Process , Route A , the compound of formula II can be concensed with an amino acid of formula IV below (or protected derivative thereof) under the same conditions as given in Process 1 to yield an intermediate of formula V. This intermediate is then

subsequently coupled with an amino acid or peptide derivative of the formula ${\tt A}^3$ to give the compound of formula I.

$$A^{1}-A^{2}-Y-(CH_{2})_{n} \xrightarrow{C} 0 \qquad NH_{2} \xrightarrow{R^{2}R^{3}} CO_{2}H \longrightarrow IV$$

$$A^{1}-A^{2}-Y-(CH_{2})_{n} \xrightarrow{COR^{1}R^{2}R^{3}} A^{3} \longrightarrow I$$

$$V$$

10 The known processes for peptide bond formation referred to above and also in the following processes encompass reactive group protection during the coupling reaction, e.g., for amines employing N-t-butyloxycarbonyl or Nbenzyloxycarbonyl followed by their removal. Condensing 15 agents are typically those useful in peptide chemistry such as dicyclohexylcarbodiimide, water soluble carbodiimide $[N-ethyl-N^{1}-(3-dimethylaminopropyl)-carbodiimide]$, diphenyl phosphoryl azide or V may be activated via the intermediary of active esters such as those derived from 1-hydroxybenzotriazole, 4-nitro phenol, 4-picolyl alcohol. 20 (where $R^4 = H$) Process 1 Route B

In an alternative reductive amination process as shown below, the starting materials providing the groups A^1-A^2 on the one hand and the group A^3 on the other are reversed. Otherwise the process is the same as

Process 1 Route A. This process is applicable to the production of compounds in which \mathbb{R}^4 = H.

$$A^{1}-A^{2}-Y-(CH_{2}) \xrightarrow{R^{3}} O \xrightarrow{R^{3}} C-A^{3} \longrightarrow I$$

$$VI \qquad (R^{4} = H)$$

The amino acid (or derivative) VI is condensed with the ketone (VII) under the conditions given in Route A.

As an alternative to Process 1, Route B the synthesis can be performed in a step wise manner by condensing VI with the keto acid (or derivative) VIII to yield the intermediate IX. By known processes (summarised above), IX can then be condensed with an amino acid or peptide derivative A³ to give I.

VI +
$$O \longrightarrow CO_2H \longrightarrow A^1-A^2-Y-(CH_2) \cap NH \longrightarrow CO_2H \longrightarrow I$$

VIII IX $(R^4=H)$

Process 2 Route A

This process is essentially an alkylation.

$$A^{1}-A^{2}-Y-(CH_{2})_{n} \xrightarrow{COR^{1}} NH_{2} \xrightarrow{R^{3}} R^{4} \xrightarrow{C-A^{3}} I$$

25 In this process the peptide III is alkylated with the

appropriate α -haloacid (or derivative) X or α -sulphonyloxy acid in a suitable solvent (e.g. CH_2Cl_2 , CH_3CN , etc.) in the presence of a base (e.g. triethylamine).

As an alternative to this process, the synthesis can be performed in a stepwise fashion firstly to produce an intermediate IX which is then condensed by standard processes above with a peptide derivative ${\bf A}^3$ to give the compound of formula I, as described above for the alternative for Process 1, Route A.

10
$$A^1-A^2-Y-(CH_2)$$
 n NH_2 CO_2H \longrightarrow IX I

Process 2 Route B

In an alternative alkylation shown below the starting materials providing the groups A^1-A^2 on the one hand and A^3 on the other are reversed. Otherwise the method is the same as Process 2, Route A.

$$A^{1}-A^{2}-Y-(CH_{2}) \xrightarrow{COR^{1}} NH_{2} \qquad X \xrightarrow{C-A^{3}} \longrightarrow I$$

$$VI \qquad XI$$

20

The amino acid (or derivative) VI is alkylated with the $\alpha\text{-haloacetyl}$ or $\alpha\text{-sulphonyloxyacetyl}$ peptide derivative XI under the conditions described in Route A .

As an alternative to Process 2, Route B the 25 synthesis can be performed in a stepwise fashion by

condensing an amino acid (or derivative) VI with a substituted α -haloacetic acid or α -sulphonyloxy acetic acid (XII) to yield the intermediate IX which by standard processes is condensed with a peptide derivative A^3 to give the compound of formula I

$$A^{1}-A^{2}-Y-(CH_{2}) \xrightarrow{n} NH_{2} XII$$

$$X \xrightarrow{R^{3}} R^{4} \xrightarrow{A^{3}} IX \xrightarrow{A^{3}} I$$

It should be noted that when A¹ and/or A² represent amino acid residues, that these residues may be introduced by standard coupling procedures at any convenient stage of the synthesis.

The starting materials which are required for the above processes are either known in the literature, or can be made by standard processes from known starting materials, or are described in the Examples.

When R^1 in I represents hydroxy, these compounds may be derived from those described above (wherein R^1 = alkoxy or aralkoxy) by hydrolysis in a suitable solvent (such as aqueous methanol) containing a base such as sodium or lithium hydroxide. Alternatively, when R^1 = aralkoxy (such as PhCH₂O), this group may be removed by hydrogenolysis.

As mentioned above there are various potentially

10

15

asymmetric centres in the amide derivatives of this invention. In particular the carbon atom which bears the groups $(CH_2)_n$, COR^1 and NH is asymmetric as is that which bears the groups NH, COA^3 , R^2 and R^3 (when R^2 and R^3 are not simultaneously hydrogen). The above synthesis can utilize racemates, enantiomers or diastereoisomers as starting materials, the products can therefore exist in racemic or optically active forms. invention therefore encompasses the racemic form as well as any other optically active forms. As noted 10 above, however, and in contrast to inhibitors of other zinc metalloproteinases (such as angiotensin converting enzyme), the preferred isomer has R-stereochemistry at the carbon atom bearing the groups $(CH_2)_n$, COR^1 and NH whilst having the stereochemistry of the natural amino acids at the other asymmetric centres.

The compounds according to the invention include pharmaceutically acceptable salts of the compounds of formula I. Such salts may include acid addition salts as well as amine salts, etc., and the processes described above for the production of the compounds may include as a final step the conversion of the compound I into such a salt, or the compound may be isolated as such salt.

It is understood that the compounds which bind most effectively to collagenase have R¹ equal to either hydroxy or hydroxyamino. When R¹ is alkoxy or aralkoxy, these compounds function as orally active prodrugs of the parent carboxylic acids; once absorbed these esters are rapidly hydrolysed by non specific plasma esterases to yield the active species.

In order that the invention may be more fully

understood the following Examples are given by way of illustration and should not limit the invention in spirit or scope.

Example 1

5

0

15

20

25

N-(1-Methoxycarbonylethyl)-L-leucyl-L-valine N-Hexylamide N-(Tertiarybutyloxycarbonyl) -L-leucyl-L-valine N-Hexylamide (2g) was treated with trifluoroacetic acid (20ml) at room temperature for forty-five minutes. The excess trifluoroacetic acid was removed in vacuo and the residue dissolved in methanol (20ml). The solution was adjusted to pH7 with triethylamine. Dried 3A molecular sieve (10g), sodium cyanoborohydride(0.75g) and methyl pyruvate (1.5g) were added and the reaction mixture stirred at room temperature for 2 days. The reaction mixture was then filtered and the filtrate concentrated in vacuo to a gum. The residue was taken up in dichloromethane and the organic phase washed in turn with saturated sodium hydrogen carbonate solution and then 1M citric acid solution and dried over sodium sulphate. material isolated after evaporation of the dichloromethane was chromatrographed on silica developed in a gradient of 20% ethyl acetate in hexane to 60% ethyl Elution with 40% ethyl acetate acetate in hexane. hexane afforded

N[1-(S)-methoxycarbonylethyl]-L-leucyl-L-valine N-hexylamide (0.4g), which crystallised from methanol/water as needles m.p. $70-71^{\circ}C$; $[\alpha]_{p}^{20} = -31.4^{\circ}$ (c = 0.2, MeOH); (Found: C,63.0; H,10.2; N,10.5. $C_{21}H_{41}N_{3}O_{4}$ requires C,63.1; H,10.3; N,10.5%); V_{max} (Nujo1): 3400, 1740 and 1610 cm⁻¹; (a) δ (CDCl₃) 0.9 (15H, m, 2xCH(CH₃)₂ and $CH_{2}CH_{3}$); 1.3(3H, d, J=6Hz, $CH_{3}CH$); 1.2-2.4 (12H, m, 2xCH(CH₃)₂, CHCH₂CH and $CH_{2}O_{4}$); 3.0-3.4 (5 H, m, 3x CH and $CH_{2}OH$); 3.7 (3H,s; $CH_{3}OH$), 4.3(1H, t, J=8Hz,NH); 6.94 (1H,m,NH) and 7.85 (1H,d,NH).

Elution with 50% ethyl acetate hexane afforded 10 N[1-(R)-methoxycarbonylethyl]-L-leucyl-L-valine Nhexylamide, (0.5g) which crystallised from methanol/ water as needles m.p. 98-101°C; $[\alpha]_{0}^{20} = -43^{\circ}$ (C=0.2, MeOH); (Found: C,62.7; H,10.2; N,10.5. C₂₁H₄₁N₃O₄ requires C,63.1; H,10.3; N,10.5%); y_{max} (Nujol) 3250, 3060, 1730 cm⁻¹; $\S(CDCl_3)$ 0.9 (15H,m, $2xCH(CH_3)_2$ and 15 CH_2CH_3); 1.3 (3H,d,J=6Hz, CH_3 CH); 1.2-2.4 (12H,m, $2xC\underline{H}(CH_3)_2$, $CHC\underline{H}_2CH$ and $(C\underline{H}_2)_4$); 3.0-3.3 (4H,m, 2xNHCHCO,CH₂); 3.44(1H,q,J=7Hz,val α -CH); 3.7(3H,s CH_3-0); 4.28 (1H, q. J=7Hz,NH); 7.16 (1H,m,NH); and 7.92 (1H,d, J=8Hz,NH). 20

The N-(t-butyloxycarbonyl)-L-leucyl-L-valine N-hexylamide used as a starting material was prepared as follows:

N-Tertiarybutyloxycarbonyl-L-valine N-hexylamide 25 (15g) in dichloromethane (30ml) was treated with tri-

fluoroacetic acid (30ml) at room temperature for 45 The excess trifluoroacetic acid was removed in vacuo and the residue redissolved in dichloromethane. The solution was adjusted to pH7 with triethylamine, N-tertiarybutyloxycarbonyl-L-leucine (13g), 1-hydroxybenzotriazole (7g) and DCC (10g) were added and the reaction mixture stirred at room temperature overnight. The reaction mixture was filtered and the organic phase washed with aqueous sodium hydrogen carbonate, 1M citric acid and then water, dried over sodium sulphate and concentrated in vacuo to a gum. was chromatographed on silica developed in a gradient of 20% ethyl acetate to 50% ethyl acetate in petrol to afford N-tertiarybutyloxycarbonyl-L-leucyl-L-valine N-nexylamide (19g) which crystallised from ether hexane as needles; m.p. 115-116°C; (Found: C,63.2; H,10.3; N,10.1. $C_{22}^{H_{43}N_3O_4.1/4H_2O}$ requires C,63.2; H,10.5; N 10.1%); \mathcal{V}_{max} (nujol) 3300, 3080, 1680, 1630 and 1520 cm⁻¹; δ (CDCl₃) 0.9 (15H,m, 2xCH(CH₃)₂ and $CH_2C\underline{H}_3$); 1.1-2.3 (12H,m, $(C\underline{H}_2)_4$, $C\underline{H}_2C\underline{H}(CH_3)_2$, $CHC\underline{H}(CH_3)_2$); 1.45 (9H,s,C(CH₃)₃); 3.25 (2H,m,NHC \underline{H}_2); 4.12 (1H,m, 20 α -CH from leucyl residue); 4.2 (1H,t, J=5Hz., α -CH from valyl residue); 5.07 (1H,m,NH); 6.55 (1H,m,NH) and 6.80 (1H,d,J = 10 Hz, NH).

The N-t-butyloxycarbonyl-L-valine N-hexylamide required as a starting material in the preparation 25

5

10

above was synthesised as follows:

Tertiarybutyloxycarbonyl-L-valine (25g) in dichloromethane (200ml) was treated with 1-hydroxybenzotriazole (15.5g) hexylamine (11.6g) and DCC (26g) at room temperature for 2 days. The solution was filtered and the organic phase washed with aqueous sodium hydrogen carbonate, aqueous citric acid (1M) and water, dried over sodium sulphate and concentrated in vacuo to afford tertiary butyloxycarbonyl-L-valine N-hexylamide (28g) which crystallised 10 from methanol-water as needles; m.p. 74-76°C; (Found: C,63.8; H,10.6; N,9.4. $C_{16}^{H}_{32}^{N}_{20}^{0}_{3}$ requires C,64.0; H,10.7; N,9.32%); γ_{max} (Nujol): 3280 and 1630 cm⁻¹; δ (CDCl₃) 0.8-1 (9H,m, 3 x CH₃); 1.3 (8H,m,(CH₂)₄); 1.45 (9H,s, $(CH_3)_3C$); 2.1 (1H,m, $CH(CH_3)_2$); 3.3 (2H,m, NHC \underline{H}_2); 3.9 (1H,dd, J=8Hz and 5Hz., α -C \underline{H}); 5.2 (1H,d, J = 8Hz, CONH) and 6.26 (1H, m, NH).

Example 2

N-[1-(R)-Methoxycarbonylethyl]-L-leucyl-O-benzyl-Ltyrosine N-Methylamide

N-Boc-O-benzyl-L-tyrosine methylamide (3g, 7.7mM) was dissolved in 1:1 TFA/CH $_2$ Cl $_2$ (100ml). After 15 min. the solvent was removed in vacuo and the residue taken up in H $_2$ O (100 ml), neutralised with NaHCO $_3$ and extracted into CH $_2$ Cl $_2$ (3 x 100 ml). The organic extract

20

was dried and evaporated in vacuo to yield a white solid This material in CH₂Cl₂ (50 ml) and DMF (5 ml) was treated at 0° with N-[1-(R)-methoxycarbonylethyl]-L-leucine (1.3g, 6mM), 1-hydroxybenzotriazole (960 mg, 6.4mM) and dicyclohexylcarbodiimide (1.3g, 6.5mM) and the mixture allowed to warm to room temperature over 2h. After a further 12h the reaction mixture was filtered, washed with sat. NaHCO $_3$ and then brine, dried and then evaporated in vacuo to yield a solid, 2.5g (68%). Recrystallisation) from CH₂Cl₂/hexane gave the <u>title compound</u>; m.p.65-68°; $[\alpha]_b^{20} = -3.3^{\circ} (C=0.2, MeOH);$ (Found: C, 66.72; H, 7.61; N, 8.72. $C_{27}H_{37}N_{3}O_{5}$ requires C, 67.02; H, 7.71; N, 8.69%); V_{max} (nujol) 3280 br, 1735, 1635 and 1510 cm⁻¹; $S(CDCl_3)$ 0.87 and 0.9 (each 3H, each d, J=4Hz. and 2.5 Hz, $(CH_3)_2CH$); 1.1(1H,m, (CH₃)₂CH₂CH₁); 1.3 (3H,d,J=8.5 Hz., CH₃CH); 1.45 (2H,m, (CH₃)₂CH₂CH); 1.58 br (1H,s, CHNHCH, exch); 2.77 (3H,d,J=6Hz, NHC \underline{H}_3); 3.0 (1H,dd,J=12 and 8Hz, $\underline{CH}_2C_6H_4$); 3.07 (lH,m, (CH₃)₂CH₂CH₁); 3.18 (lH,dd,J=12 and 6Hz, CHCH₂C₆H₄); 3.38 (lH,q,J=8.5Hz, CH₃CH); 3.68 (3H,s,OCH₃),4.62 (1H,q,J=7Hz, NHC \underline{H} (CH₂C₆H₄)CO); 5.02 (2H,s,OC \underline{H} ₂C₆H₅); 6.71 br (lH,q,J \underline{ca} 5Hz, exch. NHCH₃); 6.89 and 7.12 (each 2H, each d, each J=8Hz, C_6H_4); 7.4 (5H,m, C_6H_5) and 7.75 (1H,d, J=9Hz, exch, CONHCHCO); m/e 484 (100%, $[M + 1]^{+}$), 381 (27) and 172 (28).

The syntheses for the two starting materials required in the preparation above are described in the following

paragraphs.

(a) N-t-Butyloxycarbonyl-O-benzyl-L-tyrosine N-Methylamide

N-t-Butyloxycarbonyl-0-benzyl-L-tyrosine (7.4g, 20mM), 1-hydroxybenzotriazole (3g, 20mM), methylamine hydrochloride 5 (1.3g, 20mM) and N-methyl morpholine were dissolved in CH2Cl2 (200 ml) and cooled to 0°C. Dicyclohexylcarbodiimide (4.2g, 20mM) was added and the reaction allowed to warm to room temperature over 4h. After a further 12h the reaction mixture was filtered; the filtrate was 10 washed with sat NaHCO3, 3N citric acid and brine, dried and evaporated in vacuo to give the required N-methylamide which was recrystallised from CH2Cl2 and hexane $(4.5g, 58%); m.p. 165-172°; [a]_{p}^{20} = +15.2° (C=0.2,$ (Found: C, 68.85; H, 7.43; N, 7.39. C₂₂H₂₈N₂O₄ requires C, 68.73; H, 7.34; N,7.29%); Y max (nujol) 3330, 1685, 1672, 1655 and 1520 cm^{-1} ; $cm^{ (CH_3)_3C)$; 2.91 (3H,d, J=5Hz, NHCH₃); 3.0 (2H,m,CH₂C₆H₄); 4.26 (1H,q, J=7.5Hz, NHCH(CH₂)CO); 5.04 (2H,s, OCH₂C₆H₅); 5.08 br (lH,s, exch, NH); 5.84 br (lH,s,exch); 6.91 and 20 7.09 (each 2H, each d, each J=8Hz., C_6H_4) and 7.4 (5H,m, C_6H_5);

(b) N-[1-(R)-Methoxycarbonylethyl]-L-leucine

This was prepared in two steps from L-leucine benzyl ester as illustrated below:

m/e 385 (68%, $[M+1]^+$), 329 (100), 285 (66) and 267 (58).

L-Leucine benzyl ester, para-toluene sulphonic acid salt (120g, 0.3M) was dissolved in dry methanol (300ml)

and the pH (moist pH paper) adjusted to-6 using Et₃N and acetic acid. Methyl pyruvate (62.4g, 0.6M) in dry methanol (10.0ml) and 3A molecular sieves were added; the mixture was cooled to 5° and then NaBH₃CN (100g,

- 1.58M) in methanol (600ml) added. After stirring for 3 days the reaction mixture was filtered and evaporated in vacuo. The residual white solid was partitioned between H₂O (500ml) and CH₂Cl₂ (4 x 200ml); the organic phase was evaporated to a yellow oil and then partitioned
 - between hexane (250ml) and lM oxalic acid (4 x 250ml). The aqueous phase was neutralised with NaHCO₃ and extracted into CH₂Cl₂ (4 x 250ml). The organic phase was dried and evaporated in vacuo to yield a yellow oil (90g), which was chromatographed on SiO₂ using a gradient of
- 15 EtOAc in hexane as eluant. The faster running diastereo-isomer,

N-[1-(R)-methoxycarbonylethyl]-L-leucine benzyl ester, was isolated as an oil (22g, 20%); $[\alpha]_b^{20} = -49.5^\circ$ (C=0.2, MeOH); (Found: C, 66.06; H, 8.19; N, 4.75. $C_{17}^{H}_{26}^{NO}_{4}$ requires

- 20 C, 66.42; H, 8.19; N, 4.54); V_{max} (nujol) 1735 cm⁻¹; $S(\text{CDCl}_3)$ 0.89 and 0.92 (each 3H, each d, each J=3.5 Hz., $(\text{CH}_3)_2$); 1.29 (3H,d,J=7Hz; CH₃); 1.5 (2H,m,CH₂CH): 1.74 (2H,m,NH and CH₂ CH (CH₃)₂); 3.34 (1H,q, J=7Hz, CHCH₃), 3.39 (1H,t,J=7Hz, CH₂CH (NH)CO); 3.69 (3H, s, OCH₃);
- 25 5.15 $(2H,m,OCH_2C_6H_5)$ and 7.35 $(5H,s,C_6H_5)$; m/e 308 $(100\%, [M+1]^+)$; 232 (53) and 172 (44).

The slow running diastereoisomer,

N-[1-(S)-methoxycarbonylethyl)-L-leucine benzyl ester, was isolated as an oil (l1.3g, l0%); $[\alpha]_{\lambda}^{20} = 1.73^{\circ}$ (C=0.2, MeOH); (Found: C, 66.42; H, 8.30; N, 4.54. $C_{17}^{H}_{26}^{NO}_{4}$ requires C, 66.42; H, 8.19; N, 4.55%) \forall_{max} (film) 1730cm^{-1} ; δ (CDCl₃) 0.87 and 0.9 (each 3H, each d, each J=5.5Hz, (CH₃)₂CH); 1.27 (3H,d,J=7Hz, CH₃CH); 1.49 (2H,m, (CH₃)₂-CHCH₂); 1.74 (lH, heptet, J=7Hz, (CH₃)₂CH); 2.2 br (lH,s,NH), 3.3 (2H,m,CHNHCH), 3.65 (3H,s,OCH₃); 5.13 (2H,s,OCH₂C₆H₅) and 7.35 (5H,s,C₆H₅); m/e 308 (100%, [M+1]⁺) and 172 (100).

The R-benzyl ester (13g, 42mM) was dissolved in methanol (300ml) and hydrogenated over 10% palladium on charcoal at atmospheric pressure. The catalyst was removed 15 by filtration through celite and the filtrate evaporated in vacuo to yield a white gum, which was crystallised from MeOH/Et20 to give the required leucine derivative as a white crystalline solid (7.5g, 82%); mp 150-151°; (Found: C, 55.27; H, 8.72; N, 6.43. $C_{10}^{H_{19}NO_{4}}$ requires 20 C, 55.3; H, 8.81; N, 6.45%); $[\alpha]_{b}^{20}$ 8.4 (C=0.2, MeOH); ν_{max} (nujol) 3400 br, 2500 br and 1755 cm⁻¹; (d⁶DMSO) 0.85 (6H, m, $(CH_3)_2CH_2$); 1.17 (3H,d,J=7Hz, CH_3CH); 1.38 (2H,m, (CH₃)₂CHCH₂); 1.74 (1H, heptet, J=6Hz, (CH₃)₂CH); 3.14 (1H, t, J=7Hz, NHCH(CH₂)CO₂H); 3.29 (1H,q,J=7Hz, $CH_3CH)$ and 3.6 (3H, s,OCH₃); m/e 218 (100%, [M+1]⁺), 172 25 (27) and 158 (17).

EXAMPLE 3

5

N-[2-N-[N-(2,4-Dinitrophenyl)-L-prolyl-L-leucyl]amino-l(R)-methoxycarbonylethyl]-L-leucyl-0-benzyl-L-threonine
N-Methylamide

This was prepared starting from methyl N-t-butyloxy-carbonyl-N-benzyloxycarbonyl(R)-2,3-diaminopropionate and benzyl 4-methyl-2-oxo-pentanoate in the steps described in the following paragraphs.

(a) N-[2-N-(t-Butyloxycarbonyl)amino-l-(R)-methoxycarbonyl-.

ethyl]-L-leucine Benzyl ester

To a stirred solution of methyl N-t-butyloxycarbonyl-N-benzyl oxycarboxyl-(R)-2,3-diaminopropionate (25g) in THF (150ml) and acetic acid (8ml) was added palladised charcoal (10%, 2q) and the mixture hydrogenated at 25° and 760 mmHg 15 for 2h. The catalyst was removed by filtration and to the filtrate was added THF (50ml), benzyl 4-methyl-2-oxopentanoate (50q, from the corresponding acid by treatment at reflux with benzyl alcohol in the presence of para-toluene sulphonic acid and azeotropic removal of water) in THF (50ml) and finally water (70ml). The pH of the rapidly 20 stirred solution was adjusted to 6.5 with triethylamine and sodium cyanoborohydride (4.5g) was added portionwise over 0.5h. The pH was maintained at 6.5 by periodic addition of acetic acid. After 16h at 20°, a further portion of sodium cyanoborchydride (2g) was added and 25 stirring continued for 24h. The reaction mixture was

concentrated in vacuo and the residue was partitioned be-

tween CH_2Cl_2 (200ml) and water (100ml). The aqueous layer was washed with fresh CH2Cl2 (2 x 100ml) and the combined organic extracts washed successively with 3N-citric acid solution water and finally saturated aqueous sodium hydrogen carbonate solution and then dried over MgSO4. 5 isolated from the CH2Cl2 was purified by chromatography on silica eluting with CH_2Cl_2 in an increasing ethyl acetate gradient to give the required benzyl ester (9.6g) as an oil which slowly crystallised, m.p. 59.5-61° (from ether- $[\alpha]_{P}^{25} = 22.1^{\circ} (C = 1.1, MeOH);$ (Found: C, 62.40; H, 8.08; N, 6.57. $C_{22}H_{34}N_2O_6$ requires C, 62.54; H, 8.11; N, 6.36%); Y_{max} (CHCl₃) 1730 and 1705 cm⁻¹; S (CDCl₃) 0.89 (6H, t, J=6.3Hz, CH($C\underline{H}_3$)₂); 1.43 (9H,s, $C(C\underline{H}_3)_3$); (2H, m, CH_2CH); 1.76 (2H, m, CH_2CH (CH₃)₂ and NH); 3.35 $(4H, m, CH_2N \text{ and } 2x \alpha - CH); 3.67 (3H, s, OCH_3); 4.98 br$ (lH,s,NHCOO), 5.12 (2H,d, J=11.5Hz, CH₂Ph) and 7.36 (5H, $m/e 423 ([M+1]^+).$ m, C₆H₅);

(b) N-[2-N-(t-Butyloxycarbonyl)amino-l-(R)-methoxycarbonylethyl]-L-leucyl-0-benzyl-L-threonine NMethylamide

The foregoing benzyl ester (6g) in methanol (50ml) was hydrogenated at S.T.P. over 10% palladised charcoal (100mg) for 0.5h. The catalyst was removed by filtration and the material recovered from the methanol was recrystallised from methanol-ether to give the intermediate carboxylic acid (4.5g),

m.p. 147-148°. A portion of this material (2.8g) in CH_2Cl_2

20

- (100ml) and DMF (20ml) was treated at 0° with 1hydroxybenzotriazole(1.3g), and N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide hydrochloride (1.6lg). After
 0.5h at 0°, L-0-benzyl-threonine N-methylamide (1.86g)
- in CH₂Cl₂ (10ml) was added and the mixture allowed to warm to 20° over lh. After 36h at 20°, the reaction mixture was washed in turn with saturated sodium hydrogen carbonate solution, 3N-citric acid solution and finally brine and then dried and evaporated <u>in vacuo</u>. Crystallisation of the
- 10 resulting oil from ether-pentane gave N-[2-N-(t-butyloxy-carbonyl)amino-l-(R)-methoxycarbonylethyl]-L-leucyl-0-benzyl-L-threonine N-methylamide (3g), m.p. 95-97°; (Found; C, 60.42; H, 8.20; N, 10.44. C₂₇H₄N₄O₇ requires C, 60.43; H, 8.26; N, 10.44%); § (CDCl₃) 0.94 (6H,d, J=6.2Hz.,
- 15 CH(CH₃)₂); 1.13 (3H,d,J=6.4Hz, CHCH₃); 1.43 (9H,s,C(CH₃)₃); 1.54-1.85 (3H,m,CH₂CH); 1.95 broad (1H,s, NH); 2.82 (3H,d, J=4.8Hz, NHCH₃); 3.1-3.62 (4H,m,NCH₂, OCH and αCH), 3.65 (3H,s,OCH₃), 4.3 (1H,m,α-CH), 4.45 (1H,dd, J=6.3 and 2.3Hz, α-CH); 4.54 and 4.62 (each 1H, each d, each J=11.6Hz,
- 20 CH₂Ph); 5.05 broad (1H,s, NHCOO), 7.05 (1H,m,NHCH₃), 7.32 (5H,m,C₆H₅) and 7.88 (1H,d, J=8.4Hz, NH).
 - (c) N-[2-N-[N-(2,4-Dinitrophenyl)-L-prolyl-L-leucyl]aminol-(R)-methoxycarbonylethyl]-L-leucyl-O-benzyl-Lthreonine N-Methylamide
- To a stirred solution of the foregoing t-butyloxy-

carbonyl protected peptide (536mg) in CH2Cl2 (3ml) was added trifluoroacetic acid (3ml) at 0°. The solution was allowed to warm to 20° and then stirred at this temperature The residue after evaporation of the organic solvents was taken into CH2Cl2 and the solution washed with saturated sodium hydrogen carbonate solution, dried (Na2SO4) and evaporated in vacuo to yield N-[2-amino-1-(R)methoxycarbonylethyl]-L-leucyl-O-benzyl-L-threonine Nmethylamide (330 mg). This material in CH2Cl2 (10ml) was 10 added to a solution of N-[N-(2,4-dinitrophenyl)-L-prolyl]-L-leucine (330mg) in CH₂Cl₂ (10ml) containing 1-hydroxybenzotriazole (132mg) and N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide hydrochloride (191mg) stirred at 5°. After 16h at 4° the solvent was removed in vacuo and the 15 residue in ethyl acetate washed in turn with water, saturated sodium hydrogen carbonate solution and finally 3N-citric acid solution. The material isolated from the ethyl acetate was recrystallised from CH2Cl2- ether to give the required peptide (440mg), m.p. 138-142°; (Found: C, 57.34; H, 6.92; N, 13.61. $C_{39}^{H}_{56}^{N}_{80}_{11}$ requires C, 57.62; H, 6.94; 13.78%); V_{max} (CHCl₃) 3295, 1730 and 1635 cms⁻¹; \S (CDCl₃) 0.95 (12H,m, $2xCH(CH_3)_2$); 1.14 (3H,d,J=6.3Hz, CH_3CH); 1.3-2.15 and 2.45 (10H, m, CH_2CH_2 and $2xCH_2CH_3$; 2.74 $(3H,s,NHCH_3)$; 3.3 $(3H,m,CH_2N)$ and CHO); 3.56 $(3H,m,CH_2N)$ and $\alpha - CH$); 3.63 (3H,s,OCH₃); 4.06, 4.25 and 4.56 (1H,2H and lH respectively, each m, $4x\alpha CH$); 4.43 and 4.55 (each

1H, each d, J=11.7Hz, CH_2Ph); 7.00 (1H,d, J=9.5Hz, $.6-H in C_{6}^{H}_{3}$; 7.28 (5H,s,C₆H₅); 8.16 (1H,dd, J=9.5) and 2.8Hz, 5-H in C_6H_3) and 8.54 (1H,d, J=2.8Hz, 3-H in $C_{6}^{H_{3}}$); m/e 813 ([M+1]⁺).

O-Benzyl-1-threonine N-methylamide used in step (b) above was prepared from N-t-butyloxycarbonyl-0-benzyl-Lthreonine N-methylamide by exposure to trifluoroacetic acid in CH2Cl2. This in turn was prepared from N-t-butyloxycarbonyl-O-benzyl-L-threonine and methylamine using 10 the procedure described in Example 2 for the tyrosine analogue.

N-[N-(2,4-Dinitrophenyl)-L-prolyl]-L-leucine used as starting material in stage (c) was prepared from N-(2,4-dinitrophenyl)-L-proline and leucine methyl ester 15 using the coupling procedure involving N-ethyl-N'-(3dimethylaminopropyl)carbodiimide hydrochloride as the condensing agent in the presence of 1-hydroxybenzotriazole (as illustrated in Example 3) followed by hydrolysis of the methyl ester with 2N-sodium hydroxide solution (see 20 Example 5).

Methyl NB-t-butyloxycarbonyl-Na-benzyloxycarbinyl-(R)-2,3-diaminopropionate, used as the starting material in stage (a), was prepared as follows:

To a stirred suspension of N-benzyloxycarbonyl-(R)-2,3-diaminopropionic acid [19.5g; from Na-benzyloxycarbonyl-D-asparagine exactly as described for the L-isoner in

Synthesis, 266, (1981)] in dry methanol (60ml) at -20° was added thionyl chloride (30g) dropwise over 40min. The reaction mixture was allowed to warm to 20° over 1h and then heated at 50° for lh. The residue after removal of the solvent was recrystallised from methanol-ether to give methyl Na-benzyloxycarbonyl-R-2,3-diaminopropionate hydrochloride (22.5g); m.p. 170-172°; (Found: C,49.86; H, 5.89; N, 9.53. C₁₂H₁₇N₂O₄Cl requires C, 49.91; H, 5.93; N, 9.70%); V_{max} (Nujol) 3305, 1735 and 1688 cm⁻¹; 10 \S (d⁶ DMSO) 3.00-3.32 (2H,m,CH₂NH₂); 3.7 (3H,s,OCH₃); 4.45 $(1H, m, \alpha-CH)$; 5.09 $(2H, s, CH_2Ph)$; 7.36 $(5H, s, C_6H_5)$; 7.95 (lH,d,J=7.5Hz, NHCOO) and 8.28 broad (3H,s, NH $_3$); m/e 253 ([M+1] +). A portion of this material (22.5g) in DMF (150ml) was treated with Et_3N until the pH was 10. Di-tbutyl dicarbonate (16.8g) was added to the solution stirred at 5°. After a further 2h at 20°, the reaction mixture was filtered and evaporated in vacuo residue partitioned between ether and water. The aqueous layer was extracted twice more with fresh ether and the combined organic extracts washed in turn with ice cold lN-hydrochloric acid, saturated sodium hydrogen carbonate solution and finally water. The oil isolated from the ether was crystallised from ethyl acetate-hexane to give methyl NB-t-butyloxycarbonyl-Na-benzyloxycarbonyl-(R)-2,3-diaminopropionate (22.5g); m.p. 89-91°; (Found: C, 57.86; 25 H, 6.95; N, 7.93. $C_{17}^{H}_{24}^{N}_{20}^{0}_{6}$ requires C, 57.94; H, 6.86;

N, 7.95%); v_{max} (CHCl₃) 3600 and 1700 cm⁻¹; 6 1.4 (9H,s, $C(CH_3)_3$); 3.5 broad (2H, s, CH_2N); 3.72 (3H, s, OCH_3); 4.4 (1H, α -CH); 5.09 (2H, s, CH_2Ph); 5.2 broad (1H,s, NHCOO); 6.06 (1H, d, J=7.3Hz, NHCOO) and 7.32 (5H, s, C_6H_5).

EXAMPLE 4

N-[1-(R)-Methoxycarbonylethyl]-L-leucyl-0-benzyl-Ltyrosine N-Methylamide

Leucine benzyl ester para-toluene sulphonic acid salt (113g) in dry acetonitrile (800ml) was treated with methyl 2-bromopropionate (62.7ml) and N-methyl morpholine (100ml) under reflux for 16h. The reaction mixture was concentrated in vacuo and the residue in ethyl acetate washed with brine, dried (Na₂SO₄) and evaporated. Chromatography of the resulting oil on silica in 1:4 ethyl acetate-hexane gave N-[1-(R)-methoxycarbonylethyl]-L-leucine benzyl ester (45g) as the faster running fraction. This material was treated exactly as described above in Example 2 to give the title compound.

20 EXAMPLE 5

N[1-(R)-Carboxyethyl]-L-leucyl-0-benzyl-L-tyrosine
N-Methylamide

The methyl ester (1.5g, 3.1mM) from Example 2
was dissolved in methanol (20ml) and treated with 1N
solium hydroxide (3.5ml, 3.5mM). After 18h, the pH was
adjusted to 5 with acetic acid and the solvent removed in

vacuo to yield a white solid. Recrystallisation first , from water and then from methanol-ether yielded the N-[1-(R)carboxyethyl]-L-leucyl-0-benzyl-L-tyrosine N-methylamide as a white powder (1.02g), m.p. 195°; $[\alpha]_{b}^{20} = +7.2^{\circ}$ (C = 0.2, MeOH); (Found: C, 63.76; H, 7.64; N, 8.57. $C_{26}H_{35}N_{3}O_{5}.H_{2}O$ requires C, 64.05; H, 7.65; N, 8.62%); V_{max} (Nujol) 3540 (br), 3330 and 1680 cm⁻¹; § (d⁶DMSO) 0.82 (3H,d, J=6Hz, (CH₃)₂CH); 0.87 (3H,d, J=6Hz, (CH₃)₂CH); 1.13 (3H,d, J=7Hz., CH3CH); 1.24 (2H,t, J=6Hz., CHCH2CH: 1.59 (1H,m, (CH₃)₂C $\underline{\text{HCH}}_2$); 2.63 (3H,d, J=5Hz, NH $\underline{\text{CH}}_3$); 2.72 (lH,dd, J=11 and l2Hz, CHC \underline{H}_2 C $_6$ H $_4$); 2.8 (lH,q, J=7Hz, $CH_3CH(NH)CO_2H)$; 2.95 (lH,dd, J=12 and 5Hz, $CHCH_2C_6H_4$); 3.21 (lH,t, J=7.5Hz, NHC \underline{H} (CH₂CH(CH₃)₂CO); 4.53 br (lH,m, NHCH (CH₂C₆H₄)CO); 5.08 (2H,s,C₆H₄OCH₂C₆H₅); 6.93 and 7.17 (each 2H, each d, each J=7.5Hz, $C_{6}H_{4}O$); 7.48 (5H,m, $C_{6}H_{5}$); 15 7.98 br (lH,q, J=5Hz, $NHCH_3$, exch) and 8.1 (lH,d, J=9Hz., CHCONHCH, exch); m/e 470 (88% $[M+1]^+$), 452 (51), 424. (29), 285 (100) and 158 (49).

Example 6

N11-1R)-Carboxyethyll-L-Leucine N-Phenethylamide

N[1-(R)-Ethoxycartonylethyl]-L-Lcucine

N-phenethylamide (710mg, 2.1mM) was dissolved in MeOH (50ml) and treated with IN NaOH (3ml, 3mM) at room temperature. After 12h, the reaction mixture was acidified with AcOH and evaporated in vacuo to a solid which was washed with H₂O and dried to yield the title compound (400mg); m.p. 201-205°; (Found: C,66.44;

10 H,8.55; N,9.11; $C_{17}^{H}_{26}^{N}_{2}^{O}_{3}$ requires C,66.64; H,8.55; N,9.14%); \mathcal{V}_{max} (Nujol) 3330, 1660 and 1530 cm⁻¹; $\mathcal{C}_{(d^{6}DMSO)}$ 0.825 (6H,t,J=6.2Hz, (CH₃)₂CH), 1.15 (3H,d, J=6.8Hz, CH₃CH), 1.29 (2H,m,CH₂CH), 1.55 (1H, heptet,J=7Hz, CH(CH₃)₂), 2.71 (2H,t,J=7Hz, CH₂C₆H₅), 3.0

(1H,q,J=7Hz, CHCH₃), 3.14 (1H,t,J=7Hz, с+CH), 3.32 (2H,q,J=6Hz, NHCH₂CH₂), 7.12 (5H,m,C₆H₅), 7.5 (2H,br s,OH and CHNHCH) and 8.15 (2H,t,J=5Hz, NHCH₂).

The N[1-(R)-ethoxycarbonylethy1]-L-leucine N-phenethylamide required in the preparation above was synthesised as follows:

N[1-(R)-Ethoxycarbonylethyl]-L-leucine (1.39g, 6mM),
N-ethyl-N'-(3-dimethylaminopropyl)-carbodiimide
hydrochloride (1.16g, 6mM), 1-hydroxybenzotriazole
(0.93g, 6mM) and phenethylamine (0.7g, 6mM) were
dissolved in DMF (50ml) at -6°. N-Methyl-morpholine
(0.62g, 6.2mM) was added and the reaction mixture
allowed to warm to room temperature. After 12h the

20

solvent was removed in vacuo. The residue in EtOAc (150ml) was washed with $\rm H_2O$ (2 x 100ml), dried and evaporated in vacuo to yield an oil which was purified by chromatography on $\rm SiO_2$ in EtOAc to give

- N[1-(R)-ethoxycarbonylethyl]-L-leucine N-phenethylamide as an oil (1.84g). For analysis, a portion of this material was dissolved in MeOH, treated with anhydrous HCl in Et₂O and evaporated in vacuo to yield the corresponding hydrochloride as a foam; (Found: C,60.28;
- 10 H,8.54; N,7.35; $C_{19}^{H_3} S_{20}^{N_2} S_{3}^{O_3} \cdot HC1.0.4 \, H_2O$ requires C,60.35; H,8.48; N,7.41%); $[A]_{D}^{20} = +9.4^{\circ}$ (c=0.2, MeOH); O_{max} (Nujol) 3400 (br), 3100 (br), 2510 (br), 2400 (br), 1740, 1670 and 1550 cm⁻¹; O_{max} (CDCl₃) 0.92 and 0.95 (6H, each d, each J=7Hz, (CH₃)₂CH), 1.27 (3H, t,
- 15 J=6.5Hz, CH_3CH_2), 1.28 (3H,d,J=7Hz, CH_3CH), 1.3-1.7 (3H,m,CH₂CH), 2.85 (2H,t,J=6Hz,CH₂CH₂C₆H₅), 3.21 (1H,dd,J=1 $^{\circ}$ Hz and 4Hz, $^{\circ}$ -CH), 3.27 (3H,q,J=6.5Hz, CH₃CH), 3.54 (2H,q,J=7Hz, NHCH₂CH₂), 4.16 and 4.18 (2H, each q, each J=6.5Hz, OCH₂CH₃) and 7.25 (6H,m,C₆H₅ and NHCO).
- The starting material required in the preparation given above was synthesised in two steps from leucine benzyl ester as follows:
 - (a) N[1-(R)-Ethoxycarbonylethyl]-L-Leucine Benzylester L-Leucine benzyl ester (186.65g, Ø.843M), ethyl
- 25 2-bromopropionate (153.1g, 0.846M) and
 N-methylmorpholine (165ml, 1.5M) were dissolved in dry
 CH₃CN (800ml) and refluxed for 12h. The solvent was

remained in yarne and the residue partitioned between EgO (21) and EtOAc (3 x 11). The organic phase was washed with brine, dried and evaporated in yacuo. resulting oil was chromatographed on SiO, in 7.5% EtOAc in hexane to give the title compound (70g) as the faster running fraction; (Found: C,67.02; H,8.42; N,4.25; $C_{18}H_{27}NO_4$ requires C,67.26; H,8.47; N,4.36%); γ_{max} film 1730cm^{-1} ; $\Im(\text{CDCl}_3)$ 0.88 and 0.9 (each 3H, each d, each J=6.5Hz, $CH(CH_3)_2$) 1.23 (3H,t,J=7Hz, CH_3CH_2O), 1.27 (3H,d,J=7Hz,CH₃CH), 1.5 (2H,m,CHCH₂), 1.7 (1H, heptet, 10 J=7Hz, $CH(CH_3)_2$, 2.2 (1H, br s,NH), 3.32 (2H,m, CHNHCH), 4.10 and 4.12 (each 1H, each q, each J=7Hz, OCH_2CH_3), 5.12 (2H,s, $OCH_2C_6H_5$) and 7.34 (5H,s, C_6H_5); m/e 322 (100%; [m+1])⁺, 260 (15), 186 (26) and 112 (28). (b) N[1-(R)-Ethoxycarbonylethyll-L-leucine 15

N[1-(R)-Ethoxycarbonylethyl]-L-leucine benzyl ester (69.09g, 0.215M) was dissolved in MeOH (300ml) and hydrogenated at 1 atmosphere over 5% palladium on charcoal (5g). After 1.5h, the catalyst was removed by filtration and the filtrate evaporated in vacuo to yield a solid (46.8g) which was recrystallised from MeOH/Et₂O to yield the title compound (24g); m.p. 149-150°; [\forall] 26 =8.8° (C=1.4, MeOH); (Found: C,57.14; H,9.06; N,6.02; C₁₁H₂₁NO₄ requires C,57.12; H,9.15; N,6.06%); $\mathcal{V}_{\rm max}$ (hujol) 3090 (br), 2300 (br), 1755 and 1560 cm⁻¹; ζ (d⁶DMSO) 0.86 and 0.87 (6H, each d, each J=6.5Hz, $(CH_3)_2CH)$, 1.19 $(6H, m, OCH_2CH_3)$ and $CHCH_3)$, 1.36 $(2H, m, CH_3)_2CH$

5

20

CHCH₂CH), 1.74 (1H, heptet, J=6.5Hz, $CH_2CH(CH_3)_2$), 3.14 (1H,t,J=6.2Hz, \times CH), 3.27 (1H,q,J=6.8Hz,NHCHCH₃) and 4.07 (2H,q,J=7Hz,OCH₂CH₃); m/e 232 (100%, [m+1] +), 186 (3) and 158 (7).

5

Example 7

N[l-(R)-Carboxy-3-methylthiopropyl]-L-leucyl-0-methyl-L-tyrosine N-Methylamide

This was prepared from D-methionine methyl ester

10 hydrochloride, 2-oxo-4-methylpentanoic acid and

0-methyl-2-tyrosine in the steps described in the

following paragraphs.

- (a) NII-(R)-Carbomethoxy-3-methylthiopropyll-L-leucyl-O-methyl-L-tyrosine N-Methylamide
- 15 D-Methionine methyl ester hydrochloride (10g, 50mM) and 2-oxo-4-methylpentanoic acid t-butyl ester (9.3g, 50mM) were dissolved in THF (75ml) and ${
 m H}_2{
 m O}$ (25ml). pH was adjusted to 6.5 with N-methylmorpholine, $NaCNBH_3$ (630mg, 10mM) was added, followed after 2h by a 20 further portion (400mg). After 18h the reaction mixture was evaporated in vacuo and then partitioned between EtOAc (100ml) and sat.NaHCO3 solution (2x100ml). The oil isolated from the organic layer was chromatographed on SiO, using a gradient of 5-10% EtOAc 25 in hexane. The faster running fraction afforded the required isomer as an oil (1.4g). $\mathcal{E}(CDCl_3)$ 0.96 (6H,m, $(CH_3)_2CH)$, 1.5 (9H,m, $(CH_3)_3C$), 1.4-2.0 (5H,m, CH_2CH and

SCH₂CH₂CH), 2.1 (3H,S,CH₃S), 2.62 (2H,m,SCH₂CH₂), 3.17 and 3.38 (each lH, t, each J=7Hz, CHNHCHØ and 3.7 (3H,S,OCH₃)]. The slower running isomer was also obtained as an oil (1.2g). § (CDCl₃) Ø.95 (6H,m, (CH₃)₂CH), 1.5 (9H,S, (CH₃)₃C), 1.5-2.1 (5H,m, SCH₂CH₂CH and CH₂CH), 2.09 (3H,S,CH₃S), 2.6 (2H,m, SCH₂CH₂), 3.08 and 3.22 (each lH, each dd, each J=7Hz, CHNHCH) and 3.7 (3H,S,OCH₃)].

The faster running t-butyl ester (2.9g, 9mM) from above was dissolved in TFA (50ml) and $\rm H_2O$ (0.5ml). 10 After 3h the mixture was evaporated in vacuo, toluene (50ml) was added and the solution was reevaporated in vacuo. The resulting oil was dissolved in CH2Cl2 (100ml) and the pH adjusted to 7 (moist pH paper). O-Methyl-L-tyrosine N-methylamide (2.0g, 10mM) and 15 1-hydroxybenzotriazole (1.5g, 10mM) were added. The reaction mixture was cooled to 0°, treated with dicyclohexylcarbodiimide (2.1g, 10mM) and then allowed to warm slowly to room temperature. After 18h, the mixture was filtered and the filtrate washed with H20 20 and sat. NaHCO3 solution. After drying, the solvent was removed in vacuo to yield an oil which was chromatographed on SiO, in 1:1 EtOAc/hexane. relevant fractions yielded, after recrystallisation from Et₂O/hexane, the <u>title compound</u> (1.4g); m.p. 108-111; 25 (Found: C,58.62; H,7.91; N,8.85; C₂₃H₃₅N₃O₅S requires C,59.07; H,7.97; N,8.96%); $\gamma_{\rm max}$ (Nujol) 3380

5

(br), 1740, 1610 and 1560 cm⁻¹; (CDCl₃) 0.86 and 0.87 (each 3H, each d, each J=6Hz, (CH₃)₂CH), 1.15 and 1.4 (each 1H, each m, CH₂CH(CH₃)₂), 1.6 (1H,m,CH), 1.90 (2H,m,SCH₂CH₂), 2.08 (3H,s,CH₃S), 2.5 (2H,m, SCH₂), 2.77 (3H,d,J=6Hz, NHCH₃), 3.05 (3H,m,CH₂C₆H₅ and (X-CH) 3.47 (1H,t,J=5Hz, X-CH), 3.7 (3H,s,OCH₃), 3.8 (3H,s,CO₂CH₃), 4.63 (1H,q,J=7Hz, X-CH), 6.69 (1H,brq,J=6Hz, NHCH₃), 6.82 and 7.13 (each 2H, each d, J=9Hz,C₆H₄) and 7.53 (1H,d,J=9Hz, CONHCH); m/e 468 (100%, [m+1]⁺) and 232 (27).

(b) N[1-(R)-Carboxy-3-methylthiopropyl]-L-leucyl-O-methyl-L-tyrosine N-Methylamide

N[1-(R-)-Carbomethoxy-3-methylthiopropyl]-L-leucyl-O-methyl-L-tyrosine N-methylamide (100mg, 0.2mM) was dissolved in MeOH (10ml) and treated with IN NaOH 15 (Ø.25ml, Ø.25mM). After 18h another portion of IN NaOH (0.5ml, 0.5mM) and H_2O (2ml) were added. further 18h the reaction mixture was acidified with AcOH and evaporated in vacuo. The resulting white solid was chromatographed on C_{18} -Silica eluting with a gradient of 20 10% to 40% MeOH in H₂O. The relevant fractions were pooled and evaporated in vacuo; the residue was recrystallised from hot H2O to yield the title compound (20mg); m.p. 170-180; (Found: C,56.88; H,7.49; N,9.05; calculated for C₂₂H₃₅N₃O₅S,.0.6H₂O: C,56.90; 25 H,7.86; N,9.0 5%); \mathcal{V}_{max} (Nujol) 3340, 1650 and 1625 cm⁻¹; $\Im(d^6DMSO)$ 0.82 (6H,t,J=7Hz, (CH₃)₂CH), 1.17 and

1.5-1.9 (5H,m, $CH_2CH(CH_3)_2$ and SCH_2CH_2), 2.04 (3H,s, CH_3S), 2.3 (2H,m,- SCH_2), 2.6 (3H,d,J=SHz, $NHCH_3$), 2.6-2.95 (3H,m, $CH_2C_6H_4$ and (CH_1)), 3.14 (1H,t,J=7Hz, (CH_1) , 3.7 (3H,s, OCH_3), 4.25 (1H,m, - CH_1), 6.8 and 7.12 (2x2H, each d, each J=9Hz, C_6H_4), 7.88 (1H,q,J=SHz, $NHCH_3$) and 8.18 (1H,d,J=SHz, $NHCH_3$); m/e 454 (100%, $[m+1]^+$).

O-Methyl-L-tyrosine N-methylamide used in stage (a) above was prepared from Z-L-tyrosine as follows:

10 (i) Z-L-Tyrosine-O-methyl ether

Z-L-Tyrosine (150g, 0.476 M) was dissolved with stirring in dilute aqueous sodium hydroxide (42g, 1.05H Dimethyl sulphate (51ml, 0.54 M) was in $750ml H_{2}O$). then added dropwise over 30 min. to this solution at 15 room temperature. After 2h further NaOH was added (4.2g, 0.105 M in 40ml H_2 0) followed by dimethyl sulphate (5.1ml) after which the reaction was allowed to stir overnight at room temperature. The reaction was then acidified to pH 2, extracted with CH2Cl2 and the CH2Cl2 layer washed with aqueous sodium chloride, dried 20 (MgSO $_4$) and concentrated in vacuo to yield the crude Recrystallisation from ethyl acetate/hexane gave the required methyl ether (155g); m.p. 114-115°; (Found: C,65.84; H,5.82; N,4.22. C₁₈H₁₉NO₅ requires C,65.64; H,5.81; N,4.25%); V_{max} (CHCl₃) 3412 and 1715 cm⁻¹; $S(CDCl_3)$ 3.1 (2H,m, $CH_2C_6H_4$); 3.76 (3H,s, OCH_3); 4.66 (1H,dd,J=8 and 3Hz, <<-CH); 5.1 (2H,m,CH₂C₆H₅);

5.23 (1H,d,J=8Hz, NH); 6.8 (2H,d,J=8.6Hz,Tyr H-3,H-5);
7.05 (2H,d,J=8.6 Hz,Tyr H-2,H-6); 7.33 (5H, broad
s,C₆H₅); m/e 330 (68% [M+1]⁺), 285 (100% [M-CO₂H]⁺).
(ii) N-(Benzyloxycarbonyl)-O-methyl-L-tyrosine

N-Methylamide

To a stirred solution of N-(Benzyloxycarbonyl)-O-methyl-L-tyrosine (155g, 0.471M) in dry CH2Cl2 was added 1-hydroxybenzotriazole (63.6g, $\emptyset.471$ M) followed by a solution of DCC (97.2g, $\emptyset.471$ M) in CH2Cl2 (100 ml) added slowly at OOC. After warming 10 to room temperature over 1hr, a solution of methylamine (30g) in CH_2Cl_2 (250ml) was added dropwise to the reaction mixture which was then stirred overnight at The reaction was then filtered, room temperature. washed with saturated aqueous sodium bicarbonate (x2), 15 dried (MgSO₄) and concentrated in vacuo to give a solid. Recrystallisation from ethyl acetate/hexane gave the desired amide (142g); m.p. 167-170°; (Found: C,66.72; H,6.58; N,8.29. C₁₉H₂₂N₂O₄ requires C,66.65; H,6.48; N,8.18%) \mathcal{V}_{max} (CHCl₃) 3440, 1710 and 1672 cm⁻¹; $\delta(CDCl_3)$ 2.70 (3H,d,J=5Hz,NCH₃); 2.98 (2H,m,CH₂C₆H₄); 3.77 (3H,s,OCH₃); 4.30 (1H,dd,J=7.6 and 3Hz, X-CH); 5.06 (2H, m, OCH₂C₆H₅); 5.43 (1H, m, OCONH); 5.84 (1H, m, CONH); 6.80 (2H, d, J=8.6Hz, Tyr H-3 and H-5); 7.15 (2H,d,J=8.6Hz, Tyr H-2 and H-6); 7.32 (5H, π , C_6H_5); 25 m/e 343 (100%, $[m+1]^+$).

(iii) O-Methyl-L-tyrosine N-Methylamide

To a solution of N-(Benzylocycarbonyl)-O-methyl-Ltyrosine N-methylamide (15.6g, 0.056 M) in ethanol (200ml) and DMF (200ml) was added 10% Pd/C (lg) and trifluoroacetic acid (4ml). Hydrogen was then passed 5 through the solution for 3h after which the reaction was filtered and concentrated in vacuo. The residue was dissolved in H_2O (150ml), neutralised with sodium bicarbonate and extracted into CH2Cl2 (150ml x 5). combined organic extracts were dried (Na₂SO₄) and concentrated in vacuo to yield an oil which subsequently 10 crystallised. Recrystallisation from ethyl acetate/hexane gave O-methyl-L-tyrosine N-methylamide (9.0g), m.p. 90-91°; (Found: C,63.49; H,7.71; N,13.44 C₁₁H₁₆N₂OA requires C,63.44; H,7.74; N,13.45%) 15 y_{max} (CHCl₃) 3350 and 1660cm⁻¹; δ (CDCl₃) 1.3 (2H, br, NH₂); 2.64 (1H, dd, J=13.8 and 9.2Hz, CHC₆H₄);2.80 (3H,d,J=5Hz,NC H_3); 3.18 (1H,dd,J=13.8Hz and 4Hz, CHC_6H_A); 3.55 (1H,dd,J=9Hz and 4Hz, (C-CH) 3.78 $(3H,s,OCH_3)$; 6.85 (2H,d,J=8,2Hz,Tyr H-3 and H-5); (2H,d,J=8,2Hz, Tyr H-2 and H-6); 7.28 (1H,br,CONH). 20

Example 8

N-[4-N-(benzyloxycarbonyl)amino-l-(R)-methoxycarbonyl-butyll-L-leucyl-O-methyl-L-tyrosine N-Methylamide

To a solution of methyl 5-N-(benzyloxycarbonyl)amino -2-bromo-pentanoate (10.3g, 0.03 M),

L-leucyl-O-methyl-L-tyrosine N-methylamide (9.6g, 0.03M)

and N-methyl morpholine in dry acetonitrile (100ml) was added sodium iodide (4.5g, 0.03 M). The mixture was then stirred and heated under reflux for 24hr. cooled reaction mixture was then filtered and evaporated 5 in vacuo to yield an oil. Chromatography on silica eluting with dichloromethane in an increasing ethyl acetate gradient gave the title compound (2.8g); m.p. 124-127°; (Found: C,63.7; H,7.52; N,9.56. $C_{31}H_{44}N_{4}O_{7}$ requires C,63.68; H,7.58; N,9.58%); y_{max} (CHCl₃) 3400, 1718 and 1660 cm⁻¹; \Re (CDCl₃) 0.85 and 0.87 (each 3H, each d, each J=6Hz, CH) CH_3) 2) 1.0-1.85 (8H,m,NHCH₂CH₂CH₂, CH₂CH and NH); 2.74 $(3H,d,J=5Hz,NCH_3);$ 2.96-3.42-(6H,m,NHCH₂, $(C-CH \times 2)$ $CH_2C_6H_4$); 3.66 (3H,s,OCH₃); 3.75 (3H,s,OCH₃); 4.6 (1H,dd,J=13Hz and 6Hz, \propto -CH); 5.0 (1H,m,OCONH); 5.1 15 $(2H,s,CH_2C_6H_5);$ 6.71 (1H,br,CONH); 6.80 (2H,d,J=8.6Hz, Tyr H-3 and H-5); 7.10 (2H,d,J=8.6Hz, Tyr H-2 and H-6); 7.35 (5H,m,C₆H₅); 7.56 (1H,m,CONH); m/e 585 (100% $[m+1]^{+}$).

- The starting materials used in this preparation were synthesised as follows:
- (a) L-Leucyl-O-methyl-L-tyrosine N-methylamide

 To a solution of BOC-L-Leucine (5.26g, Ø.021 M) in

 CH₂Cl₂ (40ml) and DMF (10ml) stirred at Ø^O was added

 N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide

 hydrochloride (4g, Ø.021 M). After 15 min., N-methyl

 morpholine (C.021 M) was added followed by, after a

further 10 min. at 0° , a solution of O-methyl-L-tyrosine N-Methylamide (4.3g, 0.019 M) in CH_2Cl_2 . The reaction mixture was allowed to warm to room temperature and stirred overnight. The reaction was then concentrated in vacuo, and the residue in CH2Cl2, washed in turn with 5 $\rm H_{2}O$ (200ml), saturated aq. $\rm NaHCO_{3}$ (200ml), dilute HCl (lM; 200ml), saturated aq. NaHCO $_3$ (200ml) and water (150ml), dried (Na $_2$ SO $_4$) and evaporated in vacuo to a Recrystallisation from ethyl acetate/hexane solid. gave N-(Tertiarybutoxycarbonyl)-L-leucyl-O-methyl-Ltyrosine N-mathylamide as a white crystalline solid, (4.5g), m.p. 159-161; (Found: C,62.65; H,8.33; N,9.96. $C_{22}H_{35}N_3O_5$ requires C,62.69; H,8.37; N9.97%). y_{max} (CDCl₃) 3400, 1700 and 1662 cm⁻¹; 0 (CDCl₃) 0.91 (6H,dd,J=7 and 14Hz, CH(CH₃)₂); 1.37 (9H,s, OC(CH₃)₃); 1.47-1.7 (3H,m,CH₂CH(CH₃)₂); 2.71 (3H,d,J=4.7Hz, NHCH₃), 2.98 and 3.14 (each 1H, each m, $CH_2C_6H_A$); (3H,s,OCH₃); 4.0 and 4.61 (each 1H, each m, 2 x (X-CH); 4.86, (1H, br s, OCONH); 6.40 and 6.55 (each 1H, each br s, CONH x 2); 6.82 (2H,d,J=8.4Hz, Tyr H-3 and H-5); 7.08 (2H,d,J=8.4Hz, Tyr H-2 and H-6); m/e 422 (70%, $[m+1]^+$), 365 $(70\%, [m-58]^+$).

To a stirred solution of

N-Tertiarybutoxycarbonyl)-L-leucyl-O-methyl-L-tyrosine

N-methylamide (7.0g, N) in CH₂Cl₂ (40ml) cooled at 10^o

was added trifluoroacetic acid (70ml) and the resulting
solution stirred at room temperature for lh. The

reaction was then concentrated in vacuo, and the residue dissolved in water, neutralised with sodium bicarbonate and extracted with CH₂Cl₂. The organic extracts were dried (Na₂SO₄), filtered and concentrated in vacuo to give L-leucyl-O-methyl-L-tyrosine N-methylamide (5.2g); m.p. 128-132°; (Found: C,60.04; H,8.72; N,12.26 C₁₇H₂₇N₃O₃ requires C,60.16; H,8.61; N,12.38 %); \mathcal{V}_{max} (CDCl₃) 3325 and 1655 cm⁻¹; [X]_D²⁰ = 10.2° (C=2.00, MeOH); \mathcal{E} (CD₃OD) 0.88 and 0.92 (each 3H, each d; 1.2-1.4

- 10 (lH,m,CH₂CH(CH₃)₂); l.44-l.8 (2H,m,CHCH(CH₃)₂); 2.73 (3H,d,J=5Hz, NCH₃); 2.82-3.3 (4H,m,NH₂,CH₂C₆H₄); 3.46 (lH,m,CH); 3.76 (3H,s,OCH₃); 4.58 (lH,q,dd,J=8 and 3Hz, \bigcirc -CH); 6.56 (lH,br,CONH); 6.82 (2H,d,J=8.6Hz, Tyr H-3 and H-5); 7.13 (2H,d,J=8.6Hz, Tyr H-2 and H-6); 7.96 (lH,d,J=8Hz,CONH); m/e 322 (100% [m+1] +).
 - (b) Methyl 5-N-(Benzyloxycarbonyl)amino-2-bromopentanoate

To a stirred solution of \mathcal{E} -2-ornithine (53.2g, 0.1M) in dilute $\mathrm{H_2SO_4}$ (2.5N, 500ml) at 0° was added KBr (60g, 0.5 M). To this solution was then added portionwise sodium nitrite (7.6g, 0.11 M) whilst the reaction temperature was maintained at 0° by the addition of ice. After stirring for 1h at 0° the reaction mixture was allowed to warm to room temperature over 2h. Diethyl ether (500ml) was then added and the aqueous layer was re-extracted with diethylether (500,; x 3). The combined ethereal extracts, were washed with water and

then brine, dried (EgSO₄), filtered and concentrated to an oil in vacuo.

To the crude bromo-acid (45g, Ø.136 M) in dry methanol (300ml) cooled to -30° was added dropwise thionyl chlorice (33.7ml, 0.405 M) at such a rate that 5 the temperature did not exceed -15°. The reaction mixture was warmed to 100 over 2h and stirred at room temperature for 30 min. and then at 40° for 30 min. The resulting solution was then concentrated in vacuo, dissolved in CH2Cl2 and washed in turn with water, 10 saturated aq. NaECO3 and water. The residue isolated from the organic layer was chromatographed on silica in 5% ethylacetate in CH2Cl2 to give the title compound as an oil (10.3g), (Found: C,48.61; H,5.61; N,4.00. 15 C₁₄H₁₈BrNO₄ requires C,48.85; H,5.27; N,4.07%); $(CDCl_3)$ 1.5-1.8 and 1.9-2.2 (each 2H, each m, CH_2CH_2), 3.23 $(2H,q,J=6Hz,NCH_2)$, 3.77 $(3H,s,OCH_3)$, 4.25 $(1H, dd, J=7 \text{ and } 14Hz, \chi-CH), 4.8-4.9 (1H, broad s, NH),$ 5.10 (2H,s,OCH₂) and 7.35 (5H, broad s, C_6H_5).

20

Example 9

N-[4-N-(Benzyloxycarbonyl)amino-l-(R)-carboxybutyll-L-leucyl-O-methyl-L-tyrosine N-Methylamide

To a solution of the ester (650mg, 1.14 M) from
25 Example 8 in methanol/water (10:1, 11ml) was added
dilute NaON (IN, 2.3ml). The reaction mixture was
stirred for 6h at room temperature, acidified with

Yacuo. This was partitioned between ethyl acetate and water and the resulting solid was filtered, washed with water and ethyl acetate and dried in vacuo to give the title compound (585mg); m.p. 164-169°; (Found: C,61.59; H,7.24; N,9.40. C₃₀H₄₂N₄O₇ requires C,61.21; H,7.53; N,9.52%); V_{max} (Nujol) 3320, 1690 and 1645 cm⁻¹; (d⁶DMSO) 0.85 (6H,m,CH(CH₃)₂); 0.96-1.8 (7H,m,CH₂CH(CH₃)₂, NHCH₂CH₂CH₂); 2.57

(3H,d,J=5Hz,NCH₃); 2.5-3.2 (6H,m,NHCH₂, CH₂C₆H₄; d-CHx2); 3.70 (3H,s,OCH₃); 4.42 (1H,m,d-CH); 5.0 (2H,s,CH₂C₆H₅); 6.78 (2H,d,J=8.6Hz, Tyr H-3 and H-5); 7.10 (2H,d,J=8.6Hz, Tyr H-2 and H-6); 7.20 (1H,m,CONH); 7.35 (5H,m,C₆H₅); 7.88 (1H,m,CONH); 8.18 (1H,m,CONH).

15

Example 10

N-[4-N-[N-(Acetyl)-L-prolyl-L-leucyl]amino-l-(R)-carboxy butyl]-L-leucyl-O-methyl-L-tyrosine N-Methylamide

This was synthesised from Z-proline, leucine methyl
ester and N-[4-N-(benzyloxycarbonyl)amino-l-(R)methoxycarbonylbutyl]-L-leucyl-O-methyl-L-tyrosine
N-methylamide as described in the following paragraphs:

- (a) N-(Benzyloxycarbonyl)-L-prolyl-L-leucine Ethyl Ester
 To a stirred solution of Z-L-proline (12.7g, 0.051M)
- in $\mathrm{CH_2Cl_2}$ (200 ml) cooled to 0° was added 1-hydroxy benzctriazole (7.0g) followed by a solution of DCC (10.6g) in $\mathrm{CH_2Cl_2}$ (50 ml). After 30 min. at 0°

L-lcucine ethyl ester (10.0g, 0.051 molk) was added followed by triethylamine (15 ml) and the reaction mixture was then left to stir and warm up to room temperature overnight. The reaction mixture was then filtered and washed in turn with saturated aq. NaHCO₃ (250 ml x 3), H₂O (250 ml), dilute aq. HCl (1M, 250 ml x 3) and water (250 ml x 2). The organic layer was dried (Na₂SO₄), filtered and concentrated in vacuo to an oil which subsequently crystallised. Recrystallisation from ethyl acetate/hexane gave N-(benzyloxycarbonyl)-L-prolyl-L-leucine ethyl ester as a white crystalline solid, 15.5g, (78%); m.p. 67-68°; (Found: C,64.55; H,7.79; N,7.22. C₂₁H₃₀N₂O₅ requires C,64.61; H,7.74; N,7.17%); N_{max} (CHCl₃) 1740 and 1680cm⁻¹; (CDCl₃)

15 Ø.7-Ø.95 (6H,m,CH(CH₃)₂); 1.18 (3H,m,OCH₂CH₃);

1.3-1.95 and 2.Ø5-2.25 (7H,m,CH₂CH₂, CH₂CH(CH₃)₂); 3.4

(2H,m,CH₂N); 4.Ø5 (2H,m,OCH₂CH₃); 4.25 (2H,m,X-CH);

4.98 and 5.Ø5 (together 2H, respectively q,J=7Hz, and m, CH₂C₆H₅); 7.35 (5H, broad s, C₆H₅) and 8.26

(1H,m,CONH); m/e 391 (1ØØ%, [m+1]⁺).

(b) N-Acetyl-L-proline-L-leucine Ethyl Ester

To a solution of N-(benzyloxycarbonyl)-L-prolyl-L-leucine ethyl ester (7.5g, 0.02 mM) in methanol (100 ml) was added acetic acid and 10% Pd/C (0.8g). After stirring under hydrogen for 3h at room temperature the reaction was filtered and concentrated to an oil in yacuo. Trituation of the residue with ether and

25

recrystallisation from ethyl acetate/hexane gave
L-prolyl-L-leucyl ethyl ester as the acetate salt

(5.0g), m.p. 87-89°. γ max 1760 and 1660 cm⁻¹; γ (CDCl₃)

0.94 (6H,m,CH(CH₃)₂); 1.27 (3H,t,J=7Hz,OCH₂CH₃);

1.45-2.35 (7H,m,CH₂CH₂, CH₂CH(CH₃)₂); 2.2

(3H,s,CH₃CO₂); 3.1 (2H,m,CH₂N); 4.15 (1H,m,C+CH);

4.19 (2H,q,J=7Hz, OCH₂CH₃); 4.55 (1H,m,X-CH); 7.24

(2H,br,NH,CO₂H); 7.87 (1H,d,J=7Hz,CONH); m/e (100% [m+1]⁺)].

- To a solution of the foregoing amine (3.0g, 11.7mM)10 in CH₂Cl₂ (50ml) was added p-nitrophenylacetate (2g, 12MM). After stirring the reaction mixture at room temperature for 3 days it was diluted with CH_2Cl_2 (350ml), washed with water, dried (Na_2SO_4) and concentrated to an oil in vacuo. Chromatography on silica in 1:1 ${\rm CH_2Cl_2/EtOAc}$ followed by 9:1 ${\rm CH_2Cl_2/MeOH}$ yielded N-acetyl-L-prolyl-L-leucine ethyl ester as a pale yellow oil (2.2g); (Found $[m+1]^+$ = 299.19764. $c_{15}H_{27}N_2O_4$ requires [m+1] +=299.19707); V_{max} (CHCl₃) 3600-3100 (broad), 1735, 1675 and 1625 cm⁻¹; \Re (CDCl₂) 0.95 (6H, m, CH(CH_3)₂); 1.25 (3H, t, J=7Hz, OCH₂CH₃); 1.44-2.5 (7H,m,CH₂CH₂, CH₂CH(CH₃)₂); 2.12 (3H,s,CH₃CO); 3.36-3.7 (2H, m, CH₂N); 4.18 (2H, t, J=7Hz, OCH₂CH₂);
 - (c) N-14-N-(N-(Acetyl)-L-prolyl-L-leucyllamino-l-(R)methoxycarbonylbutyll-L-leucyl-O-methyl-L-tyrosine

7.35 (1H, each d, J=7Hz, CONH).

4.25-4.55 (1H,m, CH Pro); 4.6 (1H, CH Leu); 6.38 and

N-methylamide

5

To a solution of N-[4-N-(benzyloxycarbonyl)amino-l-(R)-methoxycarbonylbutyl]-L-leucyl-O-mcthyl-L-tyrcsine N-Methylamide (570mg, 0.97 mM) in methanol (8ml) was added 10% Pd/C and dilute HCl (1M, 2ml). After stirring the reaction mixture under hydrogen for 2h at room temperature it was filtered and concentrated in vacuo to a solid, (490mg) (100%), which was used as such in the next step.

10 N-Acetyl-L-prolyl-L-leucine (271mg, 1.06 KM; obtained from the foregoing ethyl ester by hydrolysis in methanol with one equivalent of IN-sodium hydroxide solution at 20° over 16h followed by neutralisation with dilute HC1) in CH2Cl2 (2ml) and DMF (2ml) was stirred at \emptyset^{O} and 1-hydroxy benzotriazole (162mg, 1.06 mE) and 15 N-ethyl-N'-(dimethylaminopropyl)carbodiimide hydrochloride (246mg, 1.06 mM) were then added. After 5 min N-methylmorphine (107mg, 1.06 mli) was added followed, after 15 min, by the amine hydrochloride (prepared above) (485mg, 6.96 mN). 20 After stirring overnight at $0-4^{\circ}$, the reaction mixture was concentrated in vacuo, dissolved in CH_2Cl_2 and washed in turn with water, saturated ag. NaHCO $_3$ and dilute HCl. layer was separated, neutralised with NaHCO3 and extracted with CH2Cl2. The organic extracts were 25 dried, (Na₂SO₄) and evaporated in vacuo to yield the title compound as a foam (570mg); m.p. 68-72°;

C,59.99; H,8.35; N,11.65. $C_{36}^{H}_{56}^{N}_{6}^{O}_{8}^{1}_{12}^{O}$ requires C,59.98; H,8.39; N,11.66%); $\int_{0}^{\infty} (d^{6}) DMSO$ Ø.82 (12H,m, $C_{11}^{H}(C_{11}^{H}_{3})_{2} \times 2$); 1.0-2.34 (14H,m, $C_{11}^{H}_{2}^{C}_{11}^{H}_{2} \times 2$, $C_{11}^{H}_{2}^{H}_{2}^{H}_{3}^{H}_{2}^{H}_{3}^{H}_{3}^{H}_{3}^{H}_{3}^{H}_{3}^{H}_{4}^{H}$

10 (d) N-[4-N-[N-(Acetyl)-L-prolyl-L-leucyllamino-l-(R)-carboxybutyll-L-leucyl-O-methyl-L-tyrosine N-Methylamide

To a solution of the preceeding ester (380mg, Ø.54mM) in methanol (5ml) was added dilute NaOH (1M, After stirring overnight at room temperature, the reaction mixture was neutralised with acetic acid 15 and concentrated in vacuo. Chromatography on reverse phase silica in 1:1 MeOH/H2O gave the title compound (280mg); m.p. 97-101°; (Found: C,58.52; H,7.93; N,11.46. $C_{36}H_{56}N_{6}O_{8}.1.5H_{2}O$ requires C,58.72; H,8.31; N,11.74%). \mathcal{N}_{max} (Nujol) 3700-3140 (broad) and 1635 20 cm⁻¹; δ (CD₃OD) $\mathfrak{g}.9$ (12H,M,2xCH(CH₃)₂); 1.4-2.25 (14H,M,2xCH₂CH₂, 2xCH₂CH(CH₃)₂); 1.98 and 2.0 (together 3H, each s, CH₃CO); 2.68 and 2.72 (together 3H, each s, CH_3N), 2.75-3.8 (8H,m, $CH_2C_6H_5$, CH_2Nx2 , 2x CH); 3.75 $(3H,s,OCH_3)$; 4.25-4.65 (3H,m, %CH), 6.78 (2H,d,J=8.6Hz, 25 Tyr H-3 and H-5); 7.11 (2H,d,J=8.6Hz, Tyr H-2 and H-6). Example 11

N-[3-N-(Benzyloxycarbonyl)amino-l-(R)-carboxypropyl]-Lleucyl-O-methyl-L-tyrosine N-Methylamide

5 4-N-(benzyloxycarbonyl)amino-2-bromo-butanoate and L-leucyl-O-methyl-L-tyrosine N-methylamide as described below:

This was prepared in two stages from methyl

- (a) N-13-N-(Benzyloxycarbonyl)amino-1-(R)-methoxycarbonyl propyll-L-leucyl-O-methyl-L-tyrosine
- 10 N-Methylamide

Methyl 4-N-(benzyloxycarbonyl)amino-2-bromobutanoate (30g), L-leucyl-O-methyl-L-tyrosine N-methylamide (30g) and N-methyl morpholine (9.4g) in acetonitrile (250ml) was stirred and heated under reflux overnight. A further portion of the amine (1.1g) was 15 then added and the solution was heated under reflux for a further 4h. The reaction mixture was then concentrated in vacuo, dissolved in chloroform and the solution washed with saturated ag. sodium bicarbonate solution. The material isolated from the organic layer 20 was chromatographed on silica with ethyl acetate as eluant to yield N-[3-N-(Renzyloxycarbonyl)amino-l-(R)-methoxycarbonyl-

Propyll-L-leucyl-O-methyl-L-tyrosine N-methylamide

25 (11.7q);(Found: C,63.09; H,7.46; N,9.59. $C_{36}H_{42}N_{4}O_{7}$ requires C,63.16; H,7.37; N.9.83%); V_{max} (CHCl₃) 3400, 1720 and 1660 cm⁻¹; $\frac{1}{5}$ (CDCl₃) 0.86

(6H, m, CH (CH₃)₂); 1.2-2.1 (6H, m, NHCH₂CH₂CH, CH₂CH (CH₃)₂, NH); 2.77 (3H, d, J=5Hz, NCH₃); 2.95-3.45 (5H, m, NHCH₂, CH₂C₆H₄, YCH); 3.66 and 3.76 (each 3H, each s, 2xOCH₃); 3.8 and 4.61 (each 1H, each m, 2x CH); 5.10 (2H, m, CH₂C₆H₅); 5.21 (1H, m, OCONH); 6.72 (1H, m, CONH); 6.81 (2H, d, J=8.6Hz, Tyr H-3 and H-5); 7.12 (2H, d, J=8.6Hz, Tyr H-2 and H-6); 7.35 (5H, s, C₆H₅); 7.55 (1H, d, J=8Hz, CONH); m/e 571 (100% [m+1]⁺).

The methyl 4-N-(benzyloxycarbonyl)amino-2
10 bromobutanoate required in this preparation was made from L-glutamic acid as described in the following paragraphs:

L-Glutamic acid (105g, 0.713 M) was dissolved in concentrated sulphuric acid (300ml) and to this was added chloroform (300ml). To the stirred bi-phasic mixture at 0° was added portionwise over 30 min. sodium azide (60g, Ø.9 mole). The reaction mixture was stirred at $5-10^{\circ}$ for 30 min. and was then allowed to slowly warm to room temperature. The reaction mixture was then slowly heated to 80° for one hour the reaction was cooled, poured into water (1.5 1) and the aqueous layer was separated. The aqueous extract was diluted (to 20 litres) and was then applied to Dowex 50WX8, 16-40 mesh, H⁺ resin. The column was washed with water and then with 1:1 880 Ammonia/Water and the fractions containing the product were lyophilised.

The crude product obtained above was dissolved in

15

20

25

water (I litre) and to this was added basic copper The stirred mixture was heated under carbonate (100g). reflux for 40 min. and the hot solution was filtered. The solution was cooled to 35° and NaHCO, (6fg) and CHCl₃ (300ml) were added. After stirring for 30 min. at room temperature, benzyloxycarbonyl chloride (75ml) was added and the mixture was then allowed to stir at A further portion of room temperature overnight. benzyloxycarbonyl chloride (30ml) was then added and stirring was continued for a further 24h. crystalline copper complex which had precipitated was then filtered, washed with water and added to a solution of EDTA (di Na salt) (120g) in water (1.5 litre). resulting mixture was stirred and heated under reflux for 3h and was then cooled to 5°. After 40h at 5° the crystalline product was collected by filtration, washed with water and acetore and dried in vacuo at 45°.

The 4-z-diamino-butyric acid from above (120g) was suspended in a mixture of dilute sulphuric acid (1M, 600ml), water (200ml) and potassium bromide (240g). Sufficient water (200ml) was then added to form a single phase. To the resulting solution stirred at -7 to -9°, was added a solution of sedium mitrite (44g) in $\rm H_2O$ dropwise over 1h. After 30 min at -7°, the mixture was warmed to room temperature over 1h. Diethyl ether (1.5 litres) was added and the separated aqueous layer was washed with a further portion of ether. The dried

10

20

ethereal extracts were concentrated in vacuo and the residue in methanol (1 litre) was cooled to 0° and treated dropwise with thionyl chloride (65ml). reaction was then concentrated in vacuo and the residue was partitioned between diethyl ether and saturated aq. 5 sodium bicarbonate. The material isolated from the ether was chromatographed on silica eluting with a gradient of ethyl acetate in hexane to give methyl 4-N-(benzyloxycarbonyl)amino-2-bromo-butanoate (90g) as an oil which crystallised on standing, m.p. $46-50^{\circ}$; 10 (Found: C,47.17; H,5.01; N,4.16. C₁₃H₁₆BrNO₄ requires C,47.29; H,4.88; N,4.24%); S(CDCl₃) 2.08-2.45 (2H,m,CH₂); 3.37 (2H,m,NHCH₂); 3.76 (3H,s,OCH₃); (1H,dd,J=10Hz and 6Hz, CH); 4.97 (1H,broad s, OCONH); 5.09 (2H,s,OCH₂) and 7.34 (5H,s,C₆H₅). 15 (b) N-[3-N-(Benzyloxycarbonyl)amino-l-(R)-carboxy-

(b) N-[3-N-(Benzyloxycarbonyl)amino-l-(R)-carboxy-propyll-L-leucyl-O-methyl-L-tyrosine N-Methylamide

To a solution of the preceeding ester (171mg, 0.3mm) in methanol (10ml) stirred at 0° was added dilute NaOH (1N, 0.6ml). After stirring overnight at 0° a further portion of NaCH (1N, 0.3ml) was added and the solution was then stirred for 6h at room temperature. The reaction mixture was then acidified with acetic acid and concentrated to a solid in vacuo. Recrystallisation of this material from methanol/H₂O gave the title compound (150mg); m.p. 170-172°; (Found: C,60.97; H,7.11; N,9.68. C₂₉H₄₀N₄O₇+0.8 H₂O requires C,60.99; H,7.34;

N,9.81%); \mathcal{V}_{max} (Nujol) 3330, 1696 and 1640 cm⁻¹; $\mathcal{V}_{\text{CD}_3\text{OD}}$ 0.88 (6H,dd,J=14Hz and 7Hz, CH(CH₃)₂); 1.2-1.95 (5H,m,NHCH₂CH₂, CH₂CH(CH₃)₂); 2.69 (3H,s,NCH₃); 2.75-3.65 (6H,m,NHCH₂, CH₂C₆H₄, and $\mathcal{V}_{\text{CHx2}}$); 3.74 (3H,s,OCH₃); 4.54 (1H,dd,J=10Hz and 6Hz, \mathcal{V}_{CH}); 5.08 (2H,m,CH₂C₆H₅); 6.82 (2H,d,J=8.6Hz, Tyr H-3 and H-5); 7.12 (2H,d,J=8.6Hz, Tyr H-2 and H-6); 7.35 (5H,m,C₆H₅).

10 Example 12

N-[3-N-(Benzyloxycarbonyl)amino-l-(R)-methoxycarbonylpropyl]-L-leucyl-O-methyl-L-tyrosine N-Methylamide

To a solution of N-(Tertiarybutoxycarbonyl)-L-

leucyl-O-methyl-L-tyrosyl N-methylamide (4.2g, 0.01 M)

in CH₂Cl₂ (5ml) at 18⁰ was added trifluoroacetic acid
(8ml). After stirring for 2h at room temperature the
reaction was concentrated in vacuo and was then
trituated with dry ether to yield a gum. This was
taken up in methanol (25ml), methyl

4-N-(benzyloxycarbonyl)amino-2-oxo-butanoate (4.0g;
0.015 M; Synthesis, (1982), 41) was added and the pH of
the solution adjusted to 6.5 with triethylamine. To
this solution stirred at 60 was added sodium
cyanoborohydride (400mg) portionwise whilst the pH was
periodically re-adjusted to 6.5 by the addition of
acetic acid. After 1h further sodium cyanoborohydride
(400mg) was added and the reaction was stirred overnight

at room temperature. After concentration in yacuo the residue was partitioned between $\mathrm{CH_2Cl_2}$ (100ml) and water (50ml). The $\mathrm{CH_2Cl_2}$ layer was separated, washed in turn with dilute HCl (1M, 20ml), water (25ml), saturated sodium bicarbonate solution (2x30ml), dried and evaporated to an oil. Chromatography on silica in $\mathrm{CH_2Cl_2}$ in an increasing ethyl acetate gradient gave the title compound as a foam (1.0g) which had physical data identical to that given above in Example 11.

10

5

Example 13

N-13-Amino-1-(R)-carboxypropyll-L-leucyl-O-methyl-Ltyrosine N-Methylamide

The acid (320mg, 0.56 mM) from Example 11 in methanol (10ml) was treated with dilute HCl (1M, 1ml). 15 This solution was hydrogenated over 10% palladium on charcoal (60mg) for 90 min. at room temperature, filtered and then concentrated in vacuo to give the title compound as its dihydrochloride salt; m.p. 149-152° (from CH₂Cl₂-ether); (Found: C,48.17; 20 $H_{1}6.98$; $N_{1}0.49$. $C_{21}H_{34}N_{4}O_{5}.2HC1+0.5$ $CH_{2}Cl_{2}$ requires C,48.01; H,6.93; N,10.42%); \mathcal{V}_{max} (Nujol) 3650-2460 (br), 1730 and 1650 cm⁻¹; δ (CD₃OD) 0.92 and 0.95 (each 3H, each d, each J=15Hz,CH(CH_3)₂); 1.45-1.90 · $(3H, m, CH_2CH(CH_3)_2);$ 2.25 $(2H, m, NHCH_2CH_2);$ 2.68 25 $(3H,s,OCH_3)$; 3.04 $(4H,m,NHCH_2 \text{ and } CH_2C_6H_4)$; 3.58 (1H,dd,J=8Hz and 6Hz,0(-CH); 3.77 (3H,s,OCH₃);

(1H,dd,J=8Hz and 4Hz, $\sqrt{-CH}$); 4.64 (1H,dd,J=13Hz and 6Hz, $\sqrt{-CH}$); 6.88 (2H,d,J=8.6Hz, Tyr H-3 and H-5) and 7.16 (2H,d,J=8.6Hz, Tyr H-2 and H-6).

5 Example 14

N-[3-N-(p-Nitrobenzyloxycarbonyl)amino-l-(R)-carboxypropyll-L-leucyl-O-methyl-L-tyrosine.
N-Methylamide

(a) N-[3-N-(p-Nitrobenzyloxycarbonyl)amino-l-(R)
10 methoxycarbonylpropyll-L-leucyl-O-methyl-L-tyrosine
N-Methylamide

A solution of

N-[3-N-(benzylcxycarbonyl)amino-l-(R)-methoxycarbonyl propyl]-L-leucyl-O-methyl-L-tyrosine N-methylamide

(1.24g, mM) in methanol (25ml) containing ethereal HCl (1ml of a 2.6M solution) was hydrogenated over 10% palladised charcoal (0.3g) for 6h at 20°. The solution was filtered and concentrated in vacuo to give N-[3-N-amino-l-(R)-methoxycarbonylpropyl]-L-leucyl-O-methyl-L-tyrosine N-methylamide dihydrochloride as a foam (1.2g) which was used in the next step without further purification.

To a suspension of N-[3-N-amino-l-(R)-methoxy-carbonylpropyl]-L-leucyl-G-methyl-L-tyrosine

N-methylamide dihydrochloride (400mg, 0.808 mM) in dry CH₂Cl₂ (6ml) cooled in an ice bath, was added p-nitrobenzyloxycarbonyl chloride (400mg) in dry CH₂Cl₂.

To this was then added dropwise a solution of N-methyl morpholine (270mg, 2.67 mM) in dry CH_2Cl_2 (2ml). 30 min at 0° , a further portion of p-nitrobenzyloxycarbonyl chloride (400mg) in dry CH_2Cl_2 (lml) was added followed by a solution of NMM (100mg) in After a further 0.5h at 0° the dry CH₂Cl₂ (1ml). reaction mixture was diluted with CH_2Cl_2 (20ml), washed in turn with water (20ml), aq. citric acid solution (20ml) and saturated aq. NaHCO₂ (20ml). 10 extract was concentrated in vacuo and purified by chromatography on silica eluting with CH2Cl2 in a rapidly increasing ethyl acetate gradient to give the title compound as a foam (450mg, 90%); (Found: $[m+1]^+=616.3012$. $C_{30}H_{42}N_5O_9$ requires $[m+1]^+=616.2983$); max (CHCl₃) 3380, 1742 and 1660 cm⁻¹; m/e 616 (5% 15 $[m+1]^+);$ 153 (100% $[O_2NC_6H_4CH_2OH]^+). <math>S(CDC1_3 0.87)$ (6H, m, CH(CH₃)₂); 1.1-2.0 (5H, m, NHCH₂CH₂, $CH_2CH(CH_3)_2$, NH) 2.76 (3H,d,J=5Hz,NCH₃); 2.9-3.5 (6H,m,NHCH₂,CH₂C₆H₄, χ -CHx2) 3.68 and 3.77 (each 3H, each s, 2xOCH₃); 4.60 (1H,dd,J=13Hz and 6Hz, (-CH); 20

5.10 (2H,s,CH₂C₆H₄NO₂); 5.45 (1H,m,OCONH); 6.50 (1H, broad s, OCONH); 6.82 (2H,d,J=8.6Hz, Tyr H-3 and H-5); 7.11 (2H,d,J=8.6Hz, Tyr H-2 and H-6); 7.45 (1H,d,J=8Hz, CONH); 7.52 (2H,d,J=9Hz, benzoy1 H-2 and H-6); 8.21 (2H,d,J=9Hz, benzoyl H-3 and H-5):

(b) N-13-N-(p-Nitrobenzyloxycarbonyl)amino-l-(R)carboxypropyll-L-leucyl-O-methyl-L-tyrosine N-methylamide

To a solution of the preceeding ester (360mg, Ø.58mM) in methanol (6ml) at Ø was added dilute NaOH 10 (1N, 1.2ml). After standing at 6° for 48h, the solution was acidified with acetic acid and concentrated to a solid in vacuo. Trituration with ethyl acetate and water gave the title compound (56mg); m.p. 167-170°; (Found: C,56.56; H,6.58; N,11.21. $C_{29}H_{39}N_5O_9+6.8H_2O$ requires C,56.54; H,6.64; N,11.37%); $y_{\rm max}$ (Nujol) 3250, 1690 and 1642 cm⁻¹; \lesssim (d⁶DMSO) 0.8 (6H, m, CH(CH₃)₂; 1.1-2.0 (5H, m, NHCH₂CH₂, CH₂CH(CH₃)₂); 2.57 (3H,d,J=5Hz,NCH₃); 2.62-3.85 (7H, π ,NCH₂, \dot{X} -C \underline{H} x2,

 $CH_2C_6H_4$, OH); 3.67 (3H,s,OCH₃); 4.43 (1H,m, χ -CH); $(2H,s,OCH_2)$; 6.78 (2H,d,J=8.6Hz, Tyr H-3 and H-5); 7.13 (2H,d,J=8.6Hz, Tyr H-2 and H-6); 7.95 (1H,m,CONH); 8.07 (2H,d,J=8.6Hz, Benzoyl H-2 and H-6); 8.25 (1H,m,CONH); 8.31 (2H,d,J=8.6Hz, Benzeyl H-3 and H-5);

9.12 (1H, m, CONH). 25

Evanule 15

N-[3-N-(Benzoyl)amino-l-(R)-carboxy-propyll-L-leucyl-L-tyrosine N-Methylamide

This was prepared in two steps from

N-[3-N-amino-l-(R)-methoxycarbonylpropyl]-L-leucyl-Omethyl-L-tyrosine N-methylamide as described below:

(a) N-[3-N-(Benzoyl)amino-l-(R)-methoxycarbonylpropyl]-L-leucyl-L-tyrosine N-Methylamide

To a stirred suspension of N-[3-N-amino-l-(R)
methoxycarbonylpropyl]-L-leucyl-O-methyl-L-tyrosine
N-methylamide dihydrochloride (539mg, 1 mM) and benzoyl
chloride (186mg, 1mM) in dry CH₂Cl₂ (30ml) at 0° was
added dropwise N-methyl morphline (439mg, 4.3 mM). The
reaction mixture was then stirred overnight,

- concentrated in vacuo and chromatographed on silica eluting with ethyl acetate in an ethyl acetate/methanol gradient to yield the title compound (350mg); m.p. 145-148°; (Found: C,63.97; H,7.38; N,10.20. C₂₉H₄₆N₄O₆+0.2H₂O requires C,64.00; H,7.48; N,10.29%).
- 20 $S(CDCl_3)$ 0.85 and 0.86 (each 3H, each d, each J=6.5Hz, $CH(CH_3)_2$); 1.18-1.80 (4H,m,NHCH₂CH₂CH and $CH_2CH(CH_3)_2$,NH); 2.0 (2H,dd,J=13 and 6Hz, $CH_2CH(CH_3)_2$); 2.75 (3H,d,J=5Hz,NCH₃); 3.06 and 3.4-3.7 (6H,m,NHCH₂, $CH_2C_6H_4$ and $N-CH_2C_3$); 3.64 and 3.74 (each 3H, each s,
 - 2xOCH₃) 4.60 (1H,dd,J=15Hz and 6Hz, \times -CH); 6.5 and 6.75 (each 1H, each m, 2xCONH); 6.82 (2H,d,J=8.6Hz, Tyr H-3 and H-5); 7.15 (2H,d,J=8.6Hz, Tyr H-2 and H-6); 7.5 (5H,m,C₆H₄) and 7.77 (1H,d,J=8Hz,CONH).

25

(b) N-13-N-(Benzovl)amino-1-(R)-carboxypropyll-Lleucyl-L-tyrosine N-Methylamide

To the preceeding ester (150mg, 0.27 mM) in methanol (10ml) was added dilute NaOH (1N, 1ml) and the solution was then stirred at room temperature for 3 5 The reaction mixture was acidified with acetic acid and was concentrated in vacuo. Recrystallisation of the residue from methanol-H2O gave the title compound (110mg); m.p. 175-177°; (Found: C,61.41; H,7.71; N,10.17. C₂₈H₃₈N₄O₆+1.2H₂O requires C,61.34; H,7.34; N,10.22%); \bigvee max (Nujol) 3320 and 1645 cm⁻¹; $\{(\bar{a}^6) \text{ MSO}\}$ 0.82 $\{(6H, m, CH(CH_3)_2)\}$; 1.05-2.0 (5H,m,NHCH₂CH₂,CH₂CH(CH₃)₂); 2.58 (3H,d,J=5Hz,NCH₃); 3.65-4.55 (6H,m,NHCH₂),CH₂C₆H₄ and \angle -CHx2); 3.68 (3H,s,OCH₃); 4.42 (1H,m,J-CH); 6.78 (2H,d,J=8.6Hz, Tyr H-3 and H-5); 7.11 (2H,d,J=8.6Hz, Tyr H-2 and H-6); 7.46 (3H,m,CONH and 2 protons from $C_{6}^{H_{5}}$); 7.86 (3H,m, 3 protons from $C_{6}H_{5}$); 8.20 (2H,d,J=8Hz,CONH); 8.51

20

Example 16

(lH,m,CONH).

N-13-N-(P-Nitrobenzoyl)amino-l-(R)-carboxypropyll-Lleucyl-O-methyl-L-tyrosine. N-Mothylamide

This was prepared exactly as described for the

N-benzcyl derivative in Example 15 except that
p-nitrobenzcyl chloride was used in place of benzoyl
chloride in the first step. After hydrolysis of the

intermediate ester, the resulting solid was recrystallised from methanol-water to give the title compound, (450mg); m.p. 170-185°; (Found: C,57.38; H,6.82; N,11.86. C₂₈H₃₇N₅O₈+0.8H₂O requires C,57.39; H,6.64; N,11.95%; V_{max} (Nujol) 3340 and 1645 cm⁻¹; (d⁶DMSO) 0.82 (6H,m,CH(CH₃)₂; 1.05-2.05 (5H,m,NCH₂CH₂CH, CH₂CH(CH₃)₂); 2.58 (3H,m,NCH₃); 2.6-3.65 (6H,m,NHCH₂A-CHx2 and CH₂C₆H₄); 3.7 (3H,m,OCH₃); 4.45 (1H,m,A-CH); 6.8 (2H,d,J=8.6Hz, Tyr H-3 and H-5); 7.12 (2H,d,J=8.6Hz, Tyr H-2 and H-6); 7.88 (1H,m,CONH); 8.08 (2H,d,J=8Hz, Benzoyl H-2 and H-6); 8.2 (1H,d,J=8Hz,CONH); 8.33 (2H,d,J=8Hz, Benzoyl H-3 and H-5) and 8.88 (1H,m,CONH).

15 Example 17

N-[3-N-(p-Aminobenzoyl)amino-l-(R)-cart oxypropyll-Lleucyl-O-methyl-L-tyrosine N-Methylamide

The acid (351mg), from Example 16 was dissolved in methanol (25ml) and to this solution was added 10% Pd/C (400mg) and dilute ethereal HCl (2.6M, 2ml). after stirring the reaction mixture under hydrogen for 2.5h at room temperature it was filtered and concentrated in Yacho to yield the title compound as a foam (290mg); m.p. 155-160°; (Found: C,50.39; H,6.68; N,10.23.

25 C₂₈H₃₉N₅O₆ 3HCl+1H₂O requires C,50.26; H,6.62; N,10.463); V_{max} (Nujol) 3650-2120 (broad), 1730 and 1645 cm⁻¹; V_{max} (Nujol) 3650-2120 (broad), 1730 and 1645 cm⁻¹; V_{max} (Nujol) 0.81 and 0.87 (each 3H, each s, CH(CH₃)₂); 1.3-1.8 (3H,m,CH(CH₃)₂); 2.05

(2H,m,NHCH₂CH₂CH); 2.58 (3H,d,NCH₃); 2.75 and 2.98 (together 2H, each m, CH₂C₆H₄); 3.2-3.5 (3H,m,NHCH₂ and ≪-CH); 3.7 (3H,s,OCH₃); 3.97 (1H,m,≪-CH); 4.58 (1H,m,≪-CH); 6.83 (2H,d,J=8.6Hz, Tyr H-3 and H-5); 7.01 (2H,d,J=8Hz, benzcyl H-3 and H-5); 7.10 (2H,d,J-6.8Hz, Tyr H-2 and H-6); 7.81 (2H,d,J=8Hz, benzcyl H-2 and H-6); 7.81 (2H,d,J=8Hz, CONH); 8.67 (1H,m,CONH); 9.11 (1H,d,J=8Hz,CONH) and 9.5 (3H,br,NH₃).

10

Example 18

N-[3-(N'-Benzyl)carbamoyl-l-(R)-carboxypropyl]-L-leucyl-O-methyl-L-tyrosine N-Methylamide

This was prepared according to the following steps:

15 (a) N-[3-(N'-Benzyl)carbamovl-l-(R)-methoxycarbonyl-propvll-L-leucyl-O-methyl-L-tyrosine N-Methylamide

methoxy-carbonylpropyl]-L-leucyl-O-methyl-L-tyrosyl
N-Methylamide dihydrochloride (496mg, 0.78 mM) in dry

CH₂Cl₂ (10ml) at 0° was added benzyl isocyanate (104 / 1,
1.56 mM). A solution of N-methyl morpholine (189mg,
1.87 mM) in dry CH₂Cl₂ (5ml) was then added dropwise
over 5 min. After 30 min at 0°, a further portion of
benzyl isocyanate (25,1) was added and this was repeated

after an additional 30 min. at 0°. The reaction
mixture was then allowed to warm to room temperature
over 3h. Water (50ml) and CH₂Cl₂ (50ml) were then
added and the material isolated from the organic

extracts was chromatographed on silica in 5% MeOH in CH₂Cl₂ to afford the title compound (223mg); 61-69°; (Found: C,62.77; H,7.64; N,12.03. C₃₀H₄₃N₅O₆+0.3H₂O requires C,62.65; H,7.64; N,12.18%); (CDCl₃) 0.87

5 (6H,m,CH(CH₃)₂) 1.10-2.0 (6H,m,NHCH₂CH₂,CH₂CH(CH₃)₂ and NH) 2.64 (3H,d,J=5Hz,NCH₃); 2.85-3.54 (6H,m,NHCH₂, CH₂C₆H₄ and C(-CHx2); 3.67 and 3.78 (each 3H, each s, 2xOCH₃); 4.37 (2H,dd,15Hz and 2Hz,CH₂C₆H₅); 4.56 (1H,dd,J=13Hz and 6Hz,X-CH); 5.16, 5.42 and 6.44 (each 10 lH, each broad s, 3xCONH) 6.80 (2H,d,J=8.6Hz, Tyr H-3 and H-5); 7.08 (2H,d,J=8.6Hz, Tyr H-2 and H-6); 7.3 (5H,m,C₆H₅) and 7.7 (1H,d,J=8Hz,CONH).

- (b) N-[3-(N'-Benzyl)carbamoyl-l-(R)-carboxypropyl]-L-leucyl-O-methyl-L-tyrosine N-Methylamide
- To a solution of the preceeding ester (240mg, 15 Ø.42mM) in methanol (25ml) at room temperature, was added dilute NaOH (1N, 1.5ml). After standing overnight at room temperature the reaction mixture was acidified with acetic acid and concentrated in vacuo. Chromatography on reverse phase silica eluting with a 20 methanol/H2O gradient gave the title compound (107mg); m.p. 104-108°; (Found: C,60.88; H,7.44; N,12.12. C₂₉H₄₁N₅O₆H₂O requires C,60.71; H,7.55; N,12.20%); \mathcal{V}_{max} (Nujol) 3399 and 1640 cm⁻¹; $\mathcal{S}(\text{d}^6\text{DMSO})$ 0.8 25 (6H, m, CH(CH₃)₂) 0.95-1.85 (5H, m, NHCH₂CH₂ and $CH_2CH(CH_3)_2$); 2.2-3.4 (6H,m,NHCH₂, N-CHx2 and $CH_2C_6H_4$); 2.56 (3H,d,J=5Hz, NHCH3); 3.70 (3H,s,OCH3); 4.22

 $(2H, m, CH_2C_6H_5)$; 4.45 $(1H, m, \frac{1}{2}C_1)$; 6.0 and 6.42 (each

1H, each m, 2xCONH); 6.82 (2H,d,J=8.6Hz, Tyr H-3 and H-5); 7.12 (2H,d,J=8.6Hz, Tyr H-2 and H-6); 7.28 (5H,m,C₆H₅); 7.94 (1H,m,CONH) and 8.25 (1H,d,J=Hz,CONH).

5

Example 19

N-[3-N-(Benzyloxycarbonyl)amino-l-(R)-carboxypropyll-Lleucine N-Phenethylamide

N-(Tertiarybutoxycarbonyl)-L-leucine (10g, 0.04M in a mixture of CH2Cl2 (100ml) and DMF (10ml) was cooled to 10 Ø^O. to this was added 1-hydroxybenzotriazole (6.2g, Ø.04 M) followed dropwise by a solution of DCC (8.2g, $\emptyset.94 \text{ mole}$) in CH_2Cl_2 . After $10 \text{ min. at } 0^{O}$ a solution of phenethylamine (4.84g, Ø.04 M) in CH2Cl2 (15ml) was added dropwise and the stirred solution was then allowed 15 to warm to room temperature overnight. The reaction mixture was then filtered, concentrated in vacuo and dissolved in ethyl acetate (150ml). The ethyl acetate solution was washed in turn with water (40ml), saturated aq. NaHCO3 (50mlx2), aqueous citric acid (50ml) and 20 saturated aq. NaHCO3 (50ml). The residue after evaporation of the solvent was recrystallised from ethyl acetate/hexane to give

N-(tertiarybutoxycarbonyl)-L-leucyl-N-phenethylamide as a white powder (9.6g); m.p. $86-88^{\circ}$; \mathcal{V}_{max} (CHCl₃) 3415 and 1676 cm^{-1} ; \mathcal{V}_{max} (CECl₃) 6.85 (6H,m,CH(CH₃)₂); 1.35 (9H,s,OC(CH₃)₃); 1.3-1.75 (3H,m,CH₂CH(CH₃)₂); 2.69 (2H,t,J=7.2Hz, CH₂C₆H₅); 3.3-3.6 (2H,m,NCH₂); 4.65

(1H, m, X-CH); 4.9 (1H, m, OCONH); 6.2 (1H, m, CONH); 7.2-7.4 $(5H, m, C_6H_5)$.

N-(tertiarybutoxycarbonyl)-L-leucine
N-phenethylamide (6.17g, mole) was dissolved in a 1:1

5 TFA/CH₂Cl₂ mixture (60ml). After stirring for 6h at 20° the reaction mixture was concentrated in yaçuo and the residue in CH₂Cl₂ (50ml) washed with saturated ag.

NaHCO₃ (100ml). The aqueous extract was back extracted with CH₂Cl₂ (50mlx3) and the combined organic extracts

10 concentrated to an oil in yacuo. The crude L-leucine N-phenethylamide so obtained was used as such in the next step.

To a solution of methyl

4-N-(benzyloxycarbonyl)amino-2- bromo-butanoate (330mg, 15 1 mmole) in dry acetonitrile (10ml) was added L-leucine N-phenethylamide (235mg, 1 mM) and N-methyl morpholine (110mg, 1 mM). The solution was heated at reflux overnight, sodium iodide (150mg, 1mH) was added and the reaction was reheated to reflux for a further 7h. The 20 reaction mixture was then filtered and concentrated to an oil in vacuo. Chromatography of the residue on silica in 1:1 EtOAc/Hexane gave N-[3-N-(benzyloxycarbonyl)amino-l-(R,S)methoxycarbonylpropyl]-L-leucine N-phonethylamide 25 Rechromatography on silica then gave the R diasterecisomer as an oil.

To a solution of the foregoing R-isomer (ll0mg) in methanol (4ml) was added dilute NaOH (lN, 0.5ml).

After standing overnight at 20° the reaction mixture was acidified with acetic acid and concentrated to a solid in vacuo. Chromatography on reverse phase silica eluting with 1:1 MeOH/H₂O gave the title compound as a white powder (55mg), m.p. 130-135°; (Found: C,65.62; H,7.59; N,8.85. C₂₈H₃₅N₃O₅+8.3H₂O requires C,65.75; H,7.55; N,8.85%); V_{max} (Nujol) 1690, 1655 and 1630 cm⁻¹; O(d⁶DMSO) 0.83 (6H,m,CH(CH₃)₂); 1.1-1.85 (6H,m,NCH₂CH₂CH₂CH(CH₃)₂ and NH); 2.69

10 (2H,t,J=7.2Hz,CH₂C₆H₅); 3.0-3.6 (7H,NCH₂x2,½-CHx2,

CO₂H); 5.0 (2H,s,OCH₂C₆H₅); 7.1-7.5 (10H,m,C₆H₅x2); 8.05 (1H,m,CONH).

Example 20

15 N-15-N-(Benzyloxycarbonyl)amino-l-(R)-methoxycarbonyl
pentyl)-L-leucyl-O-methyl-L-tyrosine N-Methylamide

To a stirred solution of crude methyl 6-N-(benzyloxycarbonyl)amino-2-cxo-hexanoate (7.03g, 24mM; Tet.Lett., (1982), 23, 1875) and

L-leucyl-O-methyl-L-tyrosine N-Methylamide (1.86g, 6 mM) in methanol (50ml) was added acetic acid to bring the pH to 6.5. Sodium cyanoborohydride (400mg, 6.5mM) was then added portionwise whilst the pH of the solution was continually re-adjusted to 6.5 by the addition of acetic acid. After 1.5h at room temperature a further portion of sodium cyanoborohydride (400mg) was added and the pH was again re-adjusted to 6.5 with acetic acid. After a further 1h at room temperature, the reaction mixture was

concentrated in yacup and the residue in CH2Cl2 (50ml) was washed in turn with water (30ml), dilute HCl (1M, 30ml) and saturated aq.NaHCO $_3$. The material isolated from the organic layer was purified by column chromatography on silica in CH_2Cl_2 in an increasing ethyl acetate gradient to give the title compound as an oil (360mg); (Found: $[m+1]^+ = xxx.xxxx. C_{32}H_{44}N_4O_7$ requires $[m+1]^+ = xx.xxxx$; $(CDCl_3) 0.88 CH(CH_3)_2$; 1.0-1.86 (10H, m, NHCH(CH_2)₃), $CH_2CH(CH_3)_2$ and NH); 2.74 $(3H,d,J=5Hz,NCH_3)$; 2.85-3.4 $(6H,m,NHCH_2,CH_2C_6H_4$ and $(C-CHx^2)$; 3.65 and 3.75 (each 3H, each s, $2xOCH_3$); 4.64 (1H,dd,J=13Hz and 6Hz, <<-CH); 5.10 (2H,s,CH2C6H5); 6.78 (2H,d,J=8.6Hz, Tyr H-3 and H-5); 7.10 (2H,d,J=8.6Hz, Tyr H-2 and H-6); 7.35 (5H,m, C_6H_5) and 7.64 (1H,d,J=10Hz,CONH). 15

Example 21

N-15-N-(Benzyloxycarbonyl)amino-l-(R)-carboxypentyl]-Lleucyl-O-methyl-L-tyrosine N-Methylamide

To a solution of the ester from Example 20 (140mg, 0.23 mM) in methanol (10ml) at 0° was added dilute NaOH (1N, 0.5ml). After 48h at 0°, a further portion of NaOH (1N, 0.4ml) was added and the solution stirred at 20° for a further 24h. The reaction mixture was then acidified with acetic acid and concentrated in yacue to give a semi-solid which was purified by partition between ethyl acetate and water at 0°. The resulting solid was filtered, washed with water and ethyl acetate

and was dried in vacuo to give the title compound (110mg); 122-128°; (Found: [m+1] + 585.3290 C₃₁H₄₄N₄O₇ requires [m+1] + 585.3288) \(\mathcal{V} \) max (Nujol) 3340, 1688 and 1640 cm⁻¹; \(\oldsymbol{O}(CD_3OD) \) \(\ell \) .88 (6H,m,CH(CH₃)₂); 1.0-1.86 (9H,m,NHCH₂(CH₂)₃ and CH₂CH(CH₃)₂); 2.74 (3H,s,NCH₃); 2.8-3.6 (6H,m,NHCH₂,CH₂C₆H₄ and \(\oldsymbol{C}-CH\times 2); 3.77 (3H,s,OCH₃); 4.60 (1H,m,\(\oldsymbol{A}-CH\times 2); 5.10 (2H,s,CH₂C₆H₅); 6.78 (2H,d,J=8.6Hz, Tyr H-3 and H-5); 7.05 (1H,m,CONH); 7.10 (2H,d,J=8.6Hz Tyr H-2 and H-6) and 7.35 (5H,m,C₆H₅); m/e 585 (1%, {m+1} + 1), 567 (20% [m+1-H₂O] + 1).

Example 22

15

N-[5-N-[N-Acetyl-L-prolyl]amino-l-(R)-carboxypentyl]-L-leucyl-O-methyl-L-tyrosine N-Methylamide

N-[5-N-(Benzyloxycarbonyl)amino-l-(R)-methoxycarbonylpentyl)-L-leucyl-C-methyl-L-tyrosine N-methylamide
(400mg, 0.66 mM) in methanol (20ml) was treated with

20 dilute HCl (lN, 1.2ml) and PdCl₂ (50mg). The reaction
mixture was stirred under hydrogen for 20 min. at room
temperature and was then filtered. Concentration of
the resulting solution in yacuo gave
N-[5-amino-l-(R)-methoxycarbonylpentyl]-L
leucyl-O-methyl-L-tyrosine N-methylamide hydrochloride

leucyl-O-methyl-L-tyrosine N-mcthylamide hydrochloride as an oil. This was dissolved in CH₂Cl₂ (20ml) and DMF (5ml) and to the resulting solution was added N-methyl morpholine (300mg) and N-acetyl-L-proline p-nitrophenyl

ester (191mg). After standing at 20° for 72h, the reaction mixture was concentrated in vacuo and the residue in ethyl acetate (20ml) was washed with aq. citric acid solution. These aqueous washings were 5 concentrated in vacuo and the resultant oil was purified by chromatography on reverse phase silica eluting with a gradient of methanol in H2O to give N-[5-N-(N-acetyl-L-prolyl)amino-l-(R)-methoxycarbonylpen tyl]-L-leucyl-O-methyl-L-tyrosine N-methylamide (350mg) $S(CDCl_3)$ 0.84 (6H,dd,J=14Hz and 7Hz,CH(CH₃)₂); 10 1.05-2.4 (13H, m, NHCH₂ (CH₂)₃, CH₂CH(CH₃)₂ and CH₂CH₂); 2.08 (3H,s,COCH₃); 2.70 (3H,s,NCH₃); 2.76-3.82 (8H,m,NCH₂,NHCH₂C₆H₄ and \angle -CHx2); 3.66 and 3.74 (each 3H, each s, $2xOCH_3$); 4.32 (1H, m, χ -CH); 4.56 (1H,dd,J=13Hz and 6Hz, χ -CH); 6.80 (2H,d,J=8.6Hz, tyr H-3 and H-5) and 7.12 (2H,d,J=8.6Hz, Tyr H-2 and H-6).] A portion of this material (130mg) in methanol (5ml) was treated at 0° with dilute NaOH (1N, 0.5ml). After standing overnight at room temperature, a further portion of NaOH was added (lN, Ø.2ml) and this was then 20 repeated 6h later. After a further 18h at 20° the reaction mixture was acidified with acetic acid and concentrated to an oil in vacuo. Chromatography on reverse phase silica eluting with water in an increasing methanol gradient gave the title compound (100mg); m.p. 25 97-101°; (Found: $[m+1]^+$ =590.3552 $C_{30}H_{47}N_5O_7$ requires

[m+1] $^{+}$ =590.3554); \mathcal{V}_{max} (Nujol 3280 (br) and 1625 (br)

 cm^{-1} ; $C(CD_3CD)$ Ø.94 (6H,m,CH(CH₃)₂); 1.2-2.4

(13H, m, NHCH₂ (CH₂)₃, CH₂CH(CH₃)₂ and CH₂CH₂); 2.12 (3H, s, COCH₃); 2.68 (3H, s, NCH₃); 2.75-4.1 (8H, m, NCH₂, NHCH₂, CH₂C₆H₄ and \swarrow -CH×2); 3.77 (3H, s, OCH₃); 4.33 and 4.58 (each 1H, each m, 2×2CH); 6.85 (2H,d,J=8.6Hz, Tyr H-3 and H-5); 7.16 (2H,d,J=8.6Hz, Tyr H-2 and H-6) and 8.03 (1H, m, CONH); m/e 590 (2%, [m+1]⁺, 572 (10% [m+1-H₂O⁺).

Example 23

10 N-[2-(S)-N-{1-(R)-Carboxyethyl)amino-4,4-dimethylpentanoyll
-L-alanine N-Butylamide

N-[2-(S)-N(1-(R)-Methoxycarbonylethyl)] amino-4,4dimethylpentanoyl]-L-alanine N-butylamide (65mg) in methanol (30ml) was treated with IN-sodium hydroxide (3ml) at 20° for 6h. Excess acetic acid was then added 15 and the solvent evaporated in vacuo. The residue was chromatographed on reverse phase silica (RF 18) in a gradient of 20%-80% methanol in water. Elution in 70% methanol in water afforded the title compound (30mg) as a freeze-dried powder, m.p. 137-138°; (Found: 20 $[m+1]^{+}=344.2548.$ $C_{17}H_{34}N_{3}O_{4}$ requires $[m+1]^{+}=344.2549);$ $\delta(D_2O)$ 0.9 (3H,t,J=6Hz,CH₂CH₃); 0.94 (5H,s,C(CH₃)₃); 1.2-1.8 (6H,m,(CH₂)₂ and CH₂); 1.4 (3H,d,J=8Hz,CH₃); 1.52 (3H,d,J=7Hz,CH₃); 3.18 (2H,t,J=6Hz,NHCH₂); 3.66 (1H,q,J=5Hz,CHCO); 3.88 (1H,d,J=10Hz,CHCH₂) and 4.38 $(1H,q,J=5Hz,CHCH_3)$.

The starting material required in the proceeding preparation was synthesised as described in the

following paragraphs:

(a) Benzyl 2-Bromo-4.4-dimethylpentanoate

4,4-Dimethylpentanoic acid (40g; Chem Lett, (1980), 571) was treated at 20° for 16h with thionyl chloride (40g) and the mixture distilled under reduced pressure to yield 4,4-dimethylpentanoyl chloride (38g) b.p. 52-56° at 10mm Hg; S (CDCl₃) 0.94 (9H,s,C(CH₃)₃; 1.66 (2H,t,J=9Hz,CH₂) and 2.88 (2H,t,J=9Hz,CH₂CO).

A portion of this material (20g) was treated at

10 110 with bromine (20g) for 4h. Further bromine (5g)

was then added and the reaction continued for 1h.

Distillation under reduced pressure afforded

2-bromo-4,4-dimethylpentanoyl chloride (26g), b.p.

92-96 at 10mmHg; (CDCl₃) 1.0 (9H,s,C(CH₃)₃); 1.94

(1H,dd,J=15 and 5Hz, CHCHBr); 2.42 (1H,dd,J=15 and 8Hz,

CHCHBr) and 4.64 (1H,dd,J=8 and 5Hz,CHBr).

The bromo-acid chloride (12g) in CH₂Cl₂ (160ml) was treated with benzyl alcohol (8.8g) and N-methyl morpholine (4.06g) at 0° for 16h. The solution was then washed successively with dilute HCl and Sat.aq.NaHCO₃ solution. The residue after evaporation of the solvent was purified by chromatography on silica in 26% ether-hexane to give the desired bromo ester (11.2g) as an oil; (Found: C,56.3; H,6.4; Br,26.8; C₁₆H₁₉Br,O requires C,56.2; H,6.4; Br,26.7%); \(\) max 2940 and 1730 cm⁻¹ \(\) O(CDCl₃) 0.88 (9H,s,(CH₃)₃C); 1.92 (1H,dd,J=15 and 4Hz,CHCHBr); 2.38 (1H,dd,J=15 and 10Hz,CHCHBr); 4.34 (1H,dd,J=10 and 4Hz CHBr); 5.2

 $(2H_1S_1OC_{12}^{H_2}-C_6H_5)$ and 7.4 $(5H_1M_1C_6H_5)$.

(b) Benzyl 2-(S)-N-(1-(R)-Methoxycarbonylethyl)amino-4.4-dimethylpentanoate

Benzyl-2-bromo-4,4-dimethylpentanoate (20g) in dry dimethyl sulphoxide (250ml) was treated with D-alanine 5 methylester hydrochlorice (9.33g), N-methyl morpholine (6.78g) and tetrabutyl ammonium iodide (24.7g) at 90° under an atmosphere of argon for 2 days. The reaction mixture was allowed to cool to room temperature, poured into water (500ml) and the products recovered by 10 extraction into dichloromethane (3x25@ml). material isolated from the organic extracts was purified by chromatography on silica developed in a gradient of Elution with 30% ether-hexane afforded 15 benzyl 4,4-dimethylpent-2-enoate (14g). Elution with 40% ether in hexane afforded the title compound (350mg) as a gum; (Found: $[m+1]^+=322.2022$. $C_{18}H_{27}N_1O_4$ requires $[m+1]^+=322.2018$); \mathcal{V}_{max} (film) 1735 cm⁻¹; δ(CDC1₃) Ø.9Ø (9H,s,C(CH₃)₃); 1.28 (3H,d,J=7Ez CHCH₃); 2.46 and 2.68 (2H, each dd, J=12 and 5Hz, $CH_2(CH_3)_3$); 20 3.30 (lH,q,J=5Hz $CH-CH_3$); 3.36 (lH,t,J=5Hz, $CH-CH_2$); 3.66 (3H,s,OCH₃); 5.12 (2H,s,OCH₂) and 7.36 (5H,s,C₆H₅). Elution with 45% ether in hexane afforded benzyl 2-(R)-N-(1-(R)-methorycarbonylethyl)amino-4,4-dimethylpentanoate (340mg); 25 $[m+1]^{+}=322.2922.$ $C_{11}H_{27}NO_{4}$ requires 322.2918); \mathcal{N}_{max} (film) 3360 and 1735 cms⁻¹; 5 (CDCl₃) 0.90 (SH,s,

 $C(CH_3)_3$; 1.28 (3H,d,J=6Hz, $CHC\underline{H}_3$); 1.44 and 1.72 (2H,

each dd,J=5 and 12.5Hz,CH₂); 3.32 (1H,q,J=7Hz, CHCH₃); 3.44 (1H,t,J=6Hz, CHCH₂); 3.69 (3H,s,OCH₃), 5.24 (2H,s,OCH₂) and 7.36 (5H,m,C₆H₅).

(c) N-[2-(S)-N(1-(R)-Methoxycarbonylethyl)amino-4.4-dimethylpentanovl]-L-alanine N-Butylamide

The foregoing benzyl ester (450mg) in methanol (50ml) was treated with palladium on charcoal (10% 400mg) under 1 atmosphere of hydrogen with continuous stirring. When the uptake of hydrogen had ceased (15 min) the solution was filtered and the filtrate concentrated in vacuo to afford 2-(S)-N-(1-(R)-methoxycarbonylethyl)amino-4,4-dimethyl-pentanoic acid (210mg); m.p. 120-124° (from ether).

This material (200mg) in CH₂Cl₂ (50ml) was treated

15 with L-alanine N-butylamide hydrochloride (220mg),

N-ethyl-N'-(3-

dimethylamino propyl) carbodiimide hydrochloride (200mg) and 1-hydroxybenzotriazole (120mg) at 0°C. The pH of the reaction mixture was adjusted to 7 by the addition of N-methyl morpholine. After 16h at 20°, the solution was washed in turn with saturated sodium hydrogen carbonate solution and 1M citric acid solution. The material isolated after evaporation of the dichloromethane was chromatographed on silica developed in a gradient of 26% ethyl acetate in dichloromethane to

60% ethyl acetate in dichloromethane to afford the title compound (110mg) as a colourless oil, (Found:

 $[m+1]^{+}=358.2705$. $C_{18}^{H}_{35}^{N}_{3}^{O}_{4}$ requires $[m+1]^{+}=358.2706$);

5

10

(CDCl₃) Ø.92 (3H,t,J=7.5Hz,CH₂CH₃); 1.0 (9H,s,C(CH₃)₃); 1.36 and 1.40 (each 3H, each t, J=6Hz,2xCH₃); 1.2-1.9 (6H,m,3xCH₂); 3.24 (2H,m,NHCH₂); 3.46 (1H,q,J=6Hz,CH); 3.77 (3H,s,OCH₃), 4.46 (1H,t,J=6Hz,CHCH₂); 4.5 (1H,q,J=6Hz,CH), 7.15 (1H,m,NH) and 7.73 (1H,d,J=8Hz,NH).

The L-alanine N-butylamide hydrochloride used in

step (c) was prepared from

N-tertiarybutoxycarbonyl-L-alanine N-butylamide by

exposure to TFA in CH₂Cl₂ followed by treatment with

ethereal ECl. This in turn was prepared from

N-tertiarybutoxy-L-alanine and n-butylamine following

the procedure described in Example 2 for

N-tertiarybutoxy-O-

15 benzyl-L-tyrosine N-methylamide except that butylamine was used in place of methylamine hydrochloride.

Example 24

N-(1-(R)-Carboxyethyl)-S-norleucyl-S-alanine.

20 N-Eutvlamide

This was prepared from tertiarybutoxycarbonyl-L-norleucine, L-alanine N-butylamide and 2-bromopropionic acid methyl ester as described in the following steps:

(a) Tertiaryhutoxycarbonyl-L-norleucyl-L-alaning N-

25 <u>butylamide</u>

Tertiarybutoxycarbonyl-L-norleucine (13.2g) in CH_2Cl_2 (200ml) was treated at 0° with L-alanine N-butylamide (5.25g), DCC (7.77g) and

1-hydroxybenzotriazole (5g). The pH of the reaction mixture was adjusted to 7 with N-methyl morpholine and allowed to warm to room temperature overnight. precipitated urea was filtered off and the filtrate washed successively with saturated aqueous sodium hydrogen carbonate, water and lM citric acid. organic phase was dried over sodium sulphate and the solvent evaporated in vacuo. The residue was chromatographed on silica in a gradient of 30-70% ethyl 10 acetate in dichloromethane. Elution with 50% ethyl acetate in dichloromethane afforded the title compound (7.6g) which crystallised from ethyl acetate as needles m.p. 108-112°; (Found: C,60.8; H,9.8; N,11.8. $C_{18}H_{35}N_{3}O_{4}$ requires C,60.5; H,9.9; N,11.75%); γ_{max} (Nujol) 3280, 3340 1675 and 1640 cms⁻¹ \sim (CDCl₃) 0.9 15 and 0.91 (each 3H, each t, each J=5Hz,2xCH3); 1.1-1.9 $(10H, m, (CH_2)_3 \text{ and } (CH_2)_2); 1.38 (3H, d, J=5Hz, 6H_2 CHCH_3);$ 1.44 (9H,s, C(CH₃)₃); 3.24 (2H,tt,J=5Hz NHCH₂) and 4.1 and 4.48 (each lH, each m, 2x CH).

20 (b) L-Norleucine-L-alanine N-butylamide

Tertiarybutonycarbonyl-L-norleucine-L-alanine
N-butylamide (5g) in dichloromethane (20ml) was treated
with trifluroacetic acid (20ml) at room temperature for
2h. The solvents were evaporated in vacuo and the
residue in water was treated with excess sodium hydrogen
carbonate and the free amine recovered in
dichloromethane. Evaporation of the CH₂Cl₂ and
crystallisation of the residue from ether-hexane gave

the title compound (3.1g); m.p. 83-84°; (Found: C,60.7; H,10.4; N,16.0. C₁₃H₂₇N₃O₂ requires C,60.6; H,10.6; N,16.3%);) max (Nujol): 3360, 3280, 1635 and 1675 cm⁻¹; (CDCl₃) 0.94 (6H,t,J=5Hz,2xCH₂CH₃); 1.40 (3H,d,J=6Hz CH-CH₃); 1.4-1.9 (16H,m,(CH₂)₃ and (CH₂)₂); 3.26 (2H,dt, each J=5Hz,NH-CH₂-); 3.35 (1H,dd,J=4 and 8Hz, CH-CH₂); 4.50 (1H,dq, each J=6Hz, CH-CH₃); 6.9 (1H,m,NH); 7.86 (1H,d,J=7Hz,NH).

(c) N-(1-(R)-Methoxycarbonylethyl)-S-norleucyl-S-

10 <u>alanine N-Butylamide</u>

5

L-Norleucine-L-alanine N-butylamide (lg) in acetonitrile (10ml) was treated with N-methyl morpholine (0.4g) and methyl 2-bromopropionate (0.64g) under reflux The solvent was removed in vacuo and the residue in dichloromethane washed successively with 1M 15 citric acid, water and saturated aqueous sodium hydrogen The residue after evaporation of the CH2Cl2 carbonate. was chromatographed on silica in a gradient of ethyl acetate in CH2Cl2. Elution with 60% ethyl acetate in CH2Cl2 afforded N-(1-(S)-methoxy-20 carbonylethyl)-S-norleucyl-S-alanine N-butylamide (210mg); (Found: $[m+1]^+=344.2547$. $C_{17}H_{34}N_3O_4$ requires $[\pi+1]^+=344.2582);$ \nearrow may (Nujol) 3320 and 1740 cms⁻¹; CCCC13) 0.95 (6H,t,J=7Hz,2xCH₂CH₃); 1.36 and 1.40 (each 3H, each d, each J=6Hz,2xCHC \underline{H}_3); 1.2-1.8 25 $(16H, m, (CH_2)_2 \text{ and } (CH_2)_3); 2.98 (1H, dd, J=4 \text{ and } 5Hz,$ CHCH₂); 3.24 (3H, m, NHCH₂ and CHCO); 3.7 (3H, s, OCH₃); 4.56 (1H,dq,J=5Hz,CH) and 7.04 and 7.9 (each 1H, each m, 2xNE).

5

Continued elution with 65% ethyl acetate in CH₂Cl₂ gave the title compound (190mg), m.p. 84-88° (from ethyl acetate); (Found: C,59.2; H,9.5; N,12.2. C₁₇H₃₃N₃O₄ requires C,59.6; H,9.4; N,12.3%);) max (Nujol) 3280 and 1740 cms⁻¹; (CDCl₃) Ø.94 (6H,t,J=6Hz,2xCH₂CH₂); 1.38 and 1.42 (each 3H, each d, each J=5Hz, 2xCHCH₃); 1.3-1.9 (10H,m, (CH₂)₂); 3.06 (1H,dd,J=5 and 8Hz, CHCH₂); 3.24 (2H,dt,J=5 and 6Hz,NHCH₂); 3.46 (1H,q,J=6Hz,CHCO); 3.72 (3H,s,OCH₃); 4.67 (1H,dq,J=5 and 7Hz,CHCH₃); 6.84 (1H,m,NH) and 7.82 (1H,d,J=7Hz,NH).

(d) N-(1-(R)-Carboxyethyl)-S-norleucyl-S-alanine. N-Butylamide

The foregoing methyl ester (150mg) in CH_3OH (50ml) 15 was treated with 1M NaOH (1ml) at room temperature for Excess acetic acid was added and the solvents 72h. evaporated in vacuo. The residue was chromatographed on reverse phase silica (RP18) in a gradient of 0-60%methanol in water. Elution with 50% methanol in water 20 afforded the title compound (110mg) as needles from ether/herane; m.p. 185-196°; (Found: C,56.7; H,9.2; N,12.4. C₁₆H₃₁N₃O₄.H₂O requires C,56.8; H,9.5; N,12.4%); γ_{max} (Nujol) 3269 and 1650 cm⁻¹; $\varepsilon_{\text{(CD_3CD)}}$ 0.92 and 0.94 (each 3H, each t, each $J=6Hz,2xCH_2CH_3$); 1.36 and 1.48 (each 3H, each d, each J=6Hz,2xCHCH3); 1.2-1.9 (16H, m, (CH₂)₂ and (CH₂)₃); 3.26 (2H, t, J=6Hz $NH-CH_2$); 3.56 (1H,q,J=6Hz,CHCO₂H); 3.86

The compounds of Examples 25 to 131 and their routes of preparation are exemplified within the following Tables.

Using the methods illustrated in examples 1-24 further examples 25-131 in Table 1 are prepared.

Compounds N-[2-(S)-N-(1-(R)-carboxyethyl)

amino-4,4-di-(trifluoromethyl)butancyl]-O-methyl-L
tyrosine N-methylamide and

N-[2-(S)-N-(3-(benzyloxycarbonyl)

amino-1-(R)-carboxypropyl)amino-4,4-di-(trifluoromethyl)

butancyl]-O-methyl-L-tyrosine N-methylamide are likewise

prepared by methods described in examples 1-24.

	s:					86				•	-	0	1 2	697	74
	MP. OC R = OH	74-77	87-95	175-186	190-193	200-203	180-185	183-185	150-160	185-188	145-148	147-152 0	87-92	33	
	STEREO- NP. OC CHEM R-OCH3	82-84	•		. *.		138-139	180-185	183-187	94-98	62-67	61-64	٠		
	STEREO- CHEM	RS	RS	SS	RSS	SSS	RSS	SSS	RSR	SSR	RSSR	SSSR	RS	SS	RS
	ь3	Glynhc _a H _o n	GlynhC ₄ H ₉ n	GLynhc ₄ H ₉ n	ValNHC ₆ H ₁₃ n	ValNIIC ₆ II ₁₃ n	LeuNIIC ₄ II ₉ n	LeunhC4H9n	LeuNHC4H9	LeunhC _{AH9} n	Thr (OBZ) NHCAHO	Thr (OBZ) NHC _A H _o n	ValGlyoch ₁	ValGlyOCH ₃	ValGlyocn ₃
	R3	сн (сн ₃) сн ₂ сн ₃	CH ₂ CH (CH ₃) ₂	СН ₂ СН (СН ₃) ₂	CH ₂ CH (CH ₃) ₂	CH_2 CH (CH $_3$) $_2$	CH_2 CH (CH_3) $_2$	$^{\mathrm{CH}}_{2}^{\mathrm{CH}}$ ($^{\mathrm{CH}}_{3}$) $_{2}^{\mathrm{CH}}$	$^{\mathrm{CH}}_{2}^{\mathrm{CH}}$ ($^{\mathrm{CH}}_{3}$) $_{2}^{\mathrm{CH}}$	$^{\mathrm{CH}_2}^{\mathrm{CH}}$ ($^{\mathrm{CH}_3}$) $_2$	$^{\mathrm{CH}_2\mathrm{CH}}(^{\mathrm{CH}_3})_2$	СH ₂ СВ (СН ₃) ₂	CH ₂ CH (СИ ₃) ₂	СН2 СН (СН3)2	сн ₂ сн (сн ₃) ₂
	R2	Ħ	H	H	H	Ħ	ш	H	Œ	H	H	iii			Œ
	E	-	Н	٦	-	ч	-			-	~		m	<u>س</u>	
	×	i.	i	1	i	t	1	l	ı	1	ı	1	1	.1	1
•	A	H	ш	ш	H	E	н	н	ш	н	н	Н			н
•	√ ^γ		1	i	ı	ı	1	1	1	ı	ı	1			
	PRO CESS	17	14	17	17	17	17	A L	A		7.	4	77	1A -	١ ٨
	0 0 0	25	56			C)	e:	~ ,	74 (m	4	ഗ	۳ 90	37 1	e e e

TABLE 1

						_					•	•			
oi C)	16	9			- 8	/ -		D				01	269	74	1
MP. O(194-197	105-129		80-85		193		115-120		56-57		90-95		105-197	
STEREO- MP. OC MP. OC CHEM R=OCH ₃ R ² =OH	72-76	162-164			·	97		foam		oil		157-161	¢	131-133	
STEREO- CHEM	RSSR	- RSSR		- RSSR		- RSSR		- RSSR	•	RSSR					
л ³	The (OBZ) nhch ₃	Thr $(OBZ)NH(CH_2)_2$ - RSSR	scu ₂ cu ₃	Thr (OBZ) NH (CH2) 2- RSSR	SOCH ₂ CH ₃	Thr $(OBZ)NH(CH_2)_3$ - RSSR	CONII2	Thr (OBZ) NH(CH2) 5- RSSR	CONH2	Thr (OB %) N (CH 3) -	c _{4 Hg} n	Thr (OBZ) NH (CH2) 2- RSSR	so ₂ cH ₂ cH ₃	Thr $(0BZ)$ NH $(CH_2)_5$ - RSSR	:
R ² R ³	$^{\mathrm{CH}_2\mathrm{CH}}(^{\mathrm{CH}_3})_2$	${\rm CH}_2{\rm CH}$ (${\rm CH}_3$) $_2$		${\rm CH}_2{\rm CH}({\rm CH}_3)_2$		${\rm CH}_2{\rm CH}({\rm CH}_3)_2$		$\mathrm{CH}_2\mathrm{CH}\left(\mathrm{CH}_3\right)_2$		$^{\mathrm{CH}_2}^{\mathrm{CH}}$ ($^{\mathrm{CH}_3}$) $_2$		$\mathrm{CH}_2\mathrm{CH}(\mathrm{CH}_3)_2$		$^{\mathrm{CH}_2\mathrm{CH}}(^{\mathrm{CH}_3})_2$	
R2	Ħ	Ħ		H		æ		æ		H		.		H	
Ľ	- i	Н		-		H		H		H		-		н	
>	i	i		ı		ŧ		ı		i		ı		i	
$^{\lambda^2}$	m	Ħ		nı		н		Ħ		н		¤		H	
λ^1	1	ı		ı		ı		ı		ı		ı		ı	
PRO CESS	17	17		17		14		77		17		17	•	17	
٥ ٥	39	23 7		۲,		4.2		65.		4.4		<i>ر</i> .		ζ.	

•	~					88	-							26	97	4		
MP. OC	174-182		188-190	212-217	186-191		163-166		ייני	-	158-162	176-182	01 891-991	26021-211	23-69	-	160-164	84-88
1)- MP. ^O C R = OCH,	107-112		61-64	•	71-74		110-112			•	174-176			62-64	79-88		72-54	87-90
1 STEREO- CHEM	2- RSS		RSS	RSS	- RSS		- RSS		- au		RSS	SSS	RSS	SSSR	RSSR	4	Kook	RSS
Λ ³	NHCH (CONHCH ₃) CH ₂ - RSS	$^{\rm NHCO}_2$ C(CH $_3$) $_3$	Ser (OB $_{2}$) NHCH $_{3}$	Tyrnhch ₃	NHCH (CONIICH ₃) CH ₂ -	NHCOPh	NHCH (CONHCH ₃) CH ₂ -	NHZ	Thruh(CH2), CONH.	Alama n n		Alanhch ₃	Alanhch ₃	Thr (OB Z) NHCH ₂	Thr (OBZ) NHCH2	Thr (ORZ) NIICH		Alanhch ₃
R ² R ³	$^{\mathrm{CH}_2}$ CH ($^{\mathrm{CH}_3}$) $_2$		$^{\mathrm{CH}_2\mathrm{CH}}$ ($^{\mathrm{CH}_3}$) $_2$	$^{\mathrm{CH}_2\mathrm{CH}}(^{\mathrm{CH}_3})_2$	$^{\mathrm{CH}_2\mathrm{CH}}(^{\mathrm{CH}_3})_2$		$^{\mathrm{CH}_2}$ CH ($^{\mathrm{CH}_3}$) $_2$		CH ₂ CH (CH ₃),	CH ₂ CH (CH ₂)	2 3 2	$^{\text{CH}}_{2}^{\text{CH}}$ (CH $_{3}$) $_{2}^{\text{CH}}$	$\mathrm{CH}_2\mathrm{CH}(\mathrm{CH}_3)_2$	$^{\mathrm{CH}_2\mathrm{CH}}$ ($^{\mathrm{CH}_3}$) $_2$	$^{\mathrm{CH}_2\mathrm{CH}}(^{\mathrm{CH}_3})_2$	CH, CH (CH,),	7.6	CH2CH(CH3)2
R2	H		H	æ	н		H		E	Ħ	:	r;	m; ·	H	H	Œ	5	=
c	Н			Н	7		H		H	-	c	7	7	9	9	7	_	1
≯	ı		1	ŧ	i		ı		1	1	UN	H.	HN	ı	ı	HN	ı	
$^{\Lambda^2}$	H		Ħ	H	ш		н		ž:;	н	23	1 1	. 7	H	· H	2	н	
$^{\lambda^1}$	i		ı	1 .	1		1		1	1	,		ı	ı		•		
PRO CESS	17	;	VT	17	17		17		۲.	. A.	1.A			_	- - VI	17 -	1A -	
ox.	47	9	3	64	20		51		52	53	54	ת רי				53	59 1.	

				-	- 89	_			. :				
MP. OC R = O!!	115-116	77-80	100-105	186-191		115-121		177-179	162-164	145-150	191-198	176-189	269 1-991
STEREO- MP. OC CHEM RI=OCH3	116-119	160-175	99-102	155-159	·: ·	115-1203		150-153	170-172				
STEREO- CHEM	RSS	RS	RSS	RS (RS)		RSS		RS	RSS	SRSS	RSS	SSS	RSS
, у	Phenncn ₃	Sarnhch ₃	Pronhcii ₃	NHCH (CONHCH ₃) -	(CH ₂) 6CH ₃	N-CH3-TYr (OB2)-	NHCH ₃	1so-AbaNHCH3	N -Z-Lysnich ₃	Tyr (OCH3) NHCH3	SerNHCH ₃	AlanhCH ₃	Alanhchg
, к	$^{\mathrm{CH}_2}_{2}^{\mathrm{CH}}(^{\mathrm{CH}_3})_{2}$	си ₂ сн (си ₃) ₂	$^{\mathrm{CH}_2}_{\mathrm{CH}}$ ($^{\mathrm{CH}_3}$) $_2$	$\mathrm{CH}_2\mathrm{CH}\left(\mathrm{CH}_3\right)_2$		$\mathrm{CH}_2\mathrm{CH}$ (CH_3) $_2$		CH_2 сн (CH_3) $_2$	${\rm CH}_2{\rm CH}$ (${\rm CH}_3$) $_2$	CE_2 CH (CH $_3$) $_2$	$^{\mathrm{CH}}_{2}^{\mathrm{CH}}$ ($^{\mathrm{CH}}_{3}$) $_{2}^{\mathrm{CH}}$	СИ2СН (СН3)2	${\rm CH}_2{\rm CH}$ (${\rm CH}_3$) $_2$
R2	Ħ	Ħ	Ħ	H		Œ		Ħ	Ħ	æ	H	H	· ==
E	Н		-	H		н		H	Н	7	Н	8	7
¥	i	1	ı	ì		ı		ı	1	NH	í	NH	NH
A ²	::: ;	æ	==	æ		ш		æ	H	Leu	5 23	2	. 13
N^{1}	i	i	ı	ı		ı		i	ľ	2	ı	ſ	ı
PRO CESS	1.4	1A	14	17		17		14	17	17	17	17	17
0%	บี9	19	62	63		79		65	99	67	6 8	6) 9	J &

			*			- 90) -		:			. •					
c	MP. OC R =011	105-107	108-112	100-102	114-118	86-98	112-115	108-115		130-132	193-196	266-292	101-001	165-17	220-22	231-234	95-103
c	MP. OC R ¹ =0CII ₃		131-132	133-134	95-97	123-124			124-128	64-66	117-119	96-97	60-62				
•	STEREO- N CHEM I	RSSR	RSSR	RRSR	RSSR	RRSR	SSRSSR	SSRRSR	R(RS)S	RSS	RSS	RSS	SSS	RSS	(RS) SS	(SR) SS	RSS
	٧3	Thr (OBZ) NHCH ₃	Thr (OB 2) $^{\mathrm{OB}}$	Thr (OBZ) NHCH3	Thr (OBZ) NHCH ₃	Thr (OBZ) NHCH ₃	The (OB2) nhch $_3$	Thr (OB Z) NHCH 3	Tyr (OCH_3) NHCH $_3$	Tyr (OCH_3) NHCH $_3$	Tyr (OB z) NH_2	\mathtt{TYr} (OCH ₃) NHCH ₃	AlanhC ₄ H ₉ n	AlanhC ₄ Hg ⁿ	AlanhC ₄ H ₉ n	$AlanhC_4H_9^n$	His (BZ) NHCH ₃
	R ₃	$^{\mathrm{CH}_2\mathrm{CH}}$ ($^{\mathrm{CH}_3}$) $_2$	$^{\mathrm{CH}_2\mathrm{CH}}(^{\mathrm{CH}_3})_2$	${\rm CH_2CH(CH_3)_2}$	${\rm CH}_2{\rm CH}({\rm CH}_3)_2$	${\rm CH}_2{\rm CH}\left({\rm CH}_3\right)_2$	${\rm CH}_2$ CH (CH $_3$) $_2$	$\mathrm{CH}_2\mathrm{CH}\left(\mathrm{CH}_3\right)_2$	$\mathrm{CH}_2\mathrm{CH}\left(\mathrm{CH}_3\right)_2$	$CH_2CH(CH_3)_2$	$^{\mathrm{CH}}_{2}^{\mathrm{CH}}$ ($^{\mathrm{CH}}_{3}$) $_{2}^{\mathrm{CH}}$	$CH_2CH(CH_3)_2$	CH (CH ₃) ₂	$CH(CH_3)_2$	CH ₃	CH ₃	$\mathrm{CH}_2\mathrm{CH}\left(\mathrm{CH}_3\right)_2$
	R2	Ħ	H	Ħ	Ħ	m	Ħ	æ	Ħ	Ħ	æ	Œ	Ħ	æ	Н	æ	Ħ
	E	~	-	Н	H	-	Н	-	-	Н	H	~	-	Н	-	н	-
	×	HN	NH	NH	HN	HN	HN	NH	ı	1	ı	ı	ı	ı	ı	1	ı
	Λ ²	н	сн ³ со	сн ³ со	$(CH_3)_3$ coco	(CH ₃) ₃ coco	ro Leu	ro Leu	Ph(CH ₂) ₂ NHCO	HO2C	ш	н	Ħ	ni	н	н	n.
	$^{\lambda^1}$	ı	ı	ı	ı	ı	DnpPro	DnpPro	ı	1	ı	1	ı	1	i	1	ı
	PRO CESS	13	18	18	18	18	1B	18	13	13	2A	2Λ	2Λ	2N	2N .	2A .	. ZV
	0 %	7.1	72	73	74	75	9 /	77	78	79	80	81	82	83	84	52	98

_
41
F
0
C
$\overline{}$
-
国
H
m,
IZ
H

					- 9	1 -			:								
MP. OC R =011	192-196	98-168	.219-238	199-201	150	155-159		173-178	158-162	162-164	162-163	95-165 D	26,21-891	149-153	174-179	171-175	
STEREO- NP. OC CHEM R ¹ =OCH ₃				84-85	101-104	foam				98-94	114-118				102-103		
STEREO- CHEN	RSS	RSSR	RSS	R(RS)S	RSS	RSS	RS (RS)	(RS) SS	RSS	RSS	RSS	(RS) S	RSS	RSS	SRSS	RSS	
۸3	Alanhoch ₃	Thr (OC4Hg ^t) NHCH3	TYrnH2	AlanhC4Hgn	Tyr (OCII ₃) NHCH ₃	AlanhC4119	NHCH (CH ₃) CH ₂ Ph	Alanic, iig	Alanic ₄ Hg	Alanic, Hgn	Tyr (OCII ₃) niich ₃	AlanhC ₄ IIg	Tyr (OCH $_3$) NHCH $_3$	Tyr (och ₃) nhch ₃	Tyr (och $_3$) nhch $_3$	Tyr (OCII3) NIICH3	
R ₃	$^{\mathrm{CII}_2}$ CH (CH $_3$) $_2$	${ m CH}_2{ m CH}$ (CH $_3$) $_2$	$^{\mathrm{CH}_2}$ CH ($^{\mathrm{CH}_3}$) $_2$	$(CH_2)_2CH_3$	${\rm CH}_2{\rm CH}$ (${\rm CH}_3$) $_2$	$(CH_2)_2SCH_3$	$^{\mathrm{CH}_2\mathrm{CH}}$ (CH ₃) ₂	CH2C6H5	CH2OCH2Ph	CH(CH3)CH2CH3	${\rm CH}_2{\rm CH}({\rm CH}_3)_2$	-(CII ₂) ₅ -	CH ₂ CH (CH ₃) ₂	СH ₂ СH (СH ₃) ₂	^{СН} 2СН (СН3)2	СH ₂ CH (СП ₃) ₂	
ж ₂	æ	H	Œ	H	H	Æ	Ħ	æ	Ħ	H	Æ) <u> </u>	E	H	Ħ	Ħ	
Ħ	H	~	H	Н	ന		H	-1	-	~	7	H	~	7	7	7	
×	1	ŧ	1	1	NH	ı	ı	t	1	i	NH	1	HN	HN	HN	HN	
N ²	, H	11 ;	æ	Ħ	cıı ³ co	11		н	E	æ	$Ph(CH_2)_2co$	ш	$(CH_3)_2$ CHC H_2 CO	снзосо	Pro	$(CH_3)_2$ CHCH $_2$ OCO	
-1	í	1	ı	1	ı	1	1	1	ı	1	1	ı	ι	i	. 23	1	
PRO CESS	27	2Λ	2A	2A	2A	2λ	2A	21	2A	2Λ	27	2N	2Λ	2A	2A	2.N	
NO O	87	88	e) Q	90	16	92	93	70	9 5	96	97	อธ	C)	100	101	162	

MP. OC R =011	188-181	158-163	187-192	101-102	164-167	2	167-173	141-091	761-861	173-179	168-17	2-166	¢9	74	176-173	; [
	_	Ä					16	9	0 -	7 -	16	16		7	17(; }
STEREO- MP. OC CHEM R ^I =OCH ₃	•	109	105-108		141-143			58-55)) () ()))						
STERE	RSS	RSS	RSS	RSS	RSS		RSS	RSS	RSS	RSS	RSS	RSS		888	RSS	
У3	Tyr (och $_3$) nhch $_3$	TYr (OCH ₃) NHCH ₃	Tyr (OCH ₃) NHCH ₃	Tyr (OCH ₃)OC _A H ₉ ^E	Tyr (OCH ₃) NHCH ₃		Tyr (OCH ₃) nech ₃	Tyr (OCH ₂) NHCH ₂	Tyr (OCH ₂) NHCH ₂	Tyr (OCH ₂) NHCH ₂	Tyr (OCH ₃) NHCH ₂	$Tyr (OCH_3) NHCH_3$	•	Tyr (OCH,) NHCH,	Tyr (OCII ₃) NHCH ₃)
R ³	CH_2 CH (CH $_3$) $_2$	$CH_2CH(CH_3)_2$	CH ₂ CH (CH ₃) ₂	$^{\text{CH}}_{2}$ CH (CH $_{3}$) $_{2}$	CH ₂ CH (CH ₃) ₂		$CH_2CH(CH_3)_2$	CH ₂ CH (CH ₃) 2	CH ₂ CH (CH ₁),	CH ₂ CH (CH ₃),	CH ₂ CH (CH ₃) ₂	CH ₂ CH (CH ₃) ₂		сн ₂ сн (сн _{3.)} 2	сн ₂ сн (сн ₃) ₂	1
R2	æ	Ħ	Ħ	н	æ		H	Ħ	æ	Ħ	H	H .		H	Œ	
ជ	7	7	7	7	7		7	7	~	7	7	7		7	7	
×	NH	NH	NH	NH	NH		NH	NH	HN	HN	HN	NH		NH	HN	
$^{\Lambda^2}$	PhCH=CHCO	$^{2-C1-C_{6}H_{4}}$ co	$4-c1-c_{6114}$ co	23	4-CH3-C6H4CH2-	000	4 -c1- 6 H $_4$ CH $_2$ OCO	$^{\mathrm{HO}_2\mathrm{C}}(\mathrm{cH}_2)_2\mathrm{co}$	4-CH3-C6H4CO	PhcH ₂ co	$2-c1-c_{6H_4}$ CH $_2$ OCO	4-CH3O-C6H4CH2-	000	Bornyl-OCO	$^{2-CH_3-C_6H_4CH_2-}$	000
PRO A ¹ CESS		1	1	ı	ł		ı	t	1	1	1	ı		ı	ı	
PRC	2N	21	2A	27	27		2 <i>N</i>	2A	2.7	2Λ	2N	2N		2N	2.h	
N O	1:3	184	105	166	107		3 68	109	110	111	112	113		114 2	115 2	

					- 9	ა -						- م				
Mp. °C R ^J ≖O‼	147-151	174-178	36-96	162-172	167-173	161-166	182-184		168-171			1 2	69	75-11-241	155-157	
- MP. OC R = OC113		50-60	65-70	148-153	67-71		85-86		92-98						81-85	
STEREO- CHEN	RSS	RSS	RSS	RSS	RSS	RSS	RSS		RSS		RSS	RSS	RSS	RSS	RSS.	SSRSS
ν ₃	Tyr (OCH3) NHCH ₃	Tyr (OCH $_3$) NHCH $_3$	Tyr (och ₃) nhch ₃	Tyr (OCII ₃) NHCH ₃	Tyr (OCII ₃) nhch ₃	Tyr (och ₃) nhch ₃	Tyr (OCH ₃) NHCH ₃		туг (осн $_3$) инсн $_3$		Tyr (och ₃) nhch ₃	$ ext{Tyr}$ (OCII $_3$) NHCH $_3$	Tyr (OCH3) NHCH ₃	Tyr (OB2) nhch ₃	$\mathtt{Tyr}(OC_5H_{11}^n)$ nhch ₃	$ ext{Tyr}$ (ос $ ext{II}_3$) инс $ ext{I}_3$
ъ ³	${\rm CH}_2{\rm CH}({\rm CH}_3)_2$	${\rm CH_2CH(CH_3)_2}$	$\mathrm{CH}_2\mathrm{CP}\left(\mathrm{CH}_3\right)_2$	сн ₂ сн (сн ₃) ₂	$^{\mathrm{CH}_2}$ CH ($^{\mathrm{CH}_3}$) $_2$	CH_2 CH (CH $_3$) $_2$	$\mathrm{CH}_2\mathrm{CH}\left(\mathrm{CH}_3\right)_2$		СН ₂ СН (СН3)2		$\mathrm{CH}_2\mathrm{CH}$ (CH_3) $_2$	$^{\mathrm{CH}_2}_{2}^{\mathrm{CH}}$ (CF $_3$) $_2$	$^{\mathrm{CH}_2}$ CH (CF $_3$) $_2$	$^{\mathrm{CH}_2}$ CH ($^{\mathrm{CH}_3}$) $_2$	^{СН} 2СН (СН3)2	^{СН} 2СН (СН3)2
R2	=	H	Ħ	m	m	Ħ	H		Œ		æ	E:	#4	H	E	æ
Ħ	8	7	~	8	7	- I	7		~		~	H	7	~	7	7
> 1	NH	NII	HN	NH	HN	1	HN		NH		HN	i	NH	NH	HN	NH
Λ^2	Ph (CII ₂) ₂ 0co	$^{\mathrm{PhCH}}_2\mathrm{so}_2$	$PhCH_2N(CH_3)$ CO	2-NaphthylCO	1-NaphthylCO	Ph	$1-NaphthylCH_2-$	000	$2-NaphthylCH_2-$	000	PhC≖CCO		2	23		Leu
7 V S	ŧ	ı	ī	ſ	ī	ı	i		t		ı	, t	i	ŀ		ZPro
PRO Cess	27	2,7	2λ	21	21	2A	21		21		21	21	21	2A	2A	2A 2
NO No	116	117	118	119	120	121	122		1.23		7	125	126	127	128	129

(Cont'd.)	
-	
TABLE	

STEREO- NP. OC MP. OC CHEM R-OCH3 R-OH	SS	133-135 110-120
STEI	SSRSS	RSS
_N 3	$Tyr(OCH_3)NHCH_3$	$ exttt{Tyr}$ (OCH $_3$) nech $_3$
ж 3	$^{\mathrm{CH}_2\mathrm{CH}}$ ($^{\mathrm{CH}_3}$) $_2$	$\mathrm{CH}_2\mathrm{CH}\left(\mathrm{CH}_3\right)_2$
R ² R ³	н	Ħ
E	7	7
₩	HN	t
$^{\Lambda^2}$	Pro	110 ₂ C
No PRO A ¹ CESS	138 2A ZPro	131 2B -

Notes for TABLE 1:

- Stereochemistry-optical centres labelled from left to right.
- Of hydrated form where appropriate.
- m.p. of HCl salt.
- 4. $R^1 = OC_2H_5$ not OCH_3 $Gly = glycyl = NHCH_2CO$ Phe = phenylalanyl = NHCHCO $CH_2C_6H_5$

Ph = pheny1 =
$$C_6H_5$$

Bz = $CH_2C_6H_5$
Z = $PhCH_2O.CO$

DNP = 2,4-dinitrophenyl

 $Sar = Sarcosyl = N(CH_3)CH_2CO$

The activities of representative compounds according to the invention are given below in Table II.

TABLE II

Example No.	IC ₅₀ (µM) Human Rheumatoid Synovial Collagenase
5	1.7
6	42
7	5.5
9 -	9.5
11	0.8
13	91
14	1.2
15	3.1
16	4.9
18	1.3
19	51
21	11
22	42
23	25
24	19

What is claimed is:

1. A compound of the general formula

and pharmaceutically acceptable salts thereof wherein n is 1 to 4 inclusive;

R1 represents hydroxy, alkoxy, aralkoxy or hydroxyamino;

R² represents hydrogen or alkyl;

R³ represents hydrogen,

alkyl,

substituted alkyl wherein the

substituent may be one or more of the groups selected from hydroxy, alkoxy, aryloxy, aralkoxy, mercapto, alkylthio, arylthio, alkylsulphinyl, alkylsulphonyl, carboxy, carboxamide, carboxyalkyl, carboxyaralkyl, aralkoxycarbonylamino, amino, dialkylamino, acylamino, aroylamino and trihalomethyl;

aralkyl,

substituted aralkyl wherein the

substituent on the aryl moiety may be one or more groups selected from halogen, alkyl, hydroxy, alkoxy, aralkoxy, amino, aminomethyl, cyano, alkylamino, dialkylamino, carboxy, sulphonamido, alkylthio, nitro and phenyl;

or heteroaralkyl;

Y represents NR^4 wherein R^4 represents hydrogen or alkyl or Y represents a direct chemical bond; When Y represents NR^4 ,

A¹ represents a group of formula R⁵ wherein
R⁵ may be hydrogen, alkyl, aralkyl, acyl, aroyl,
aralkylacyl, alkoxycarbonyl, or
aralkoxycarbonyl,
aryl,

substituted aryl wherein the substituent

may be one or more groups selected from

halogen, alkyl, hydroxy, alkoxy, aralkoxy,

aralkoxyamino. aminomethyl, cyano,

acylamino. dialkylamino. carbexy,

sulphonamido, alkylthio, nitro and phenyl;

Al may also represent a group of the formula:

wherein R^6 represents a group having the meanings defined above for R^5 ;

 ${\ensuremath{\mathtt{R}}}^{7}$ and ${\ensuremath{\mathtt{R}}}^{8}$ which may be the same or different represent hydrogen, alkyl or aralkyl; or

R⁷ and R⁸ may together represent an alkylene chain of

2-4 carbon atoms so to form with the

adjacent nitrogen atom a

nitrogen-containing ring having 4-6 atoms;

 ${\tt R}^9$ is the same as ${\tt R}^3$ defined above.

A² represents a group of the formula

wherein

 R^{10} and R^{11} which may be the same or different

represent groups having the meanings given above for R⁷ or tegether represent an alkylene chain of 2-4 carbon atoms so as to form with the adjacent nitrogen a nitrogen-containing ring having 4 to 6

atoms;

 R^{12} represents a group having the meanings given above for R^9 ;

alkyl, aralkyl, heteroaralkyl,
alkylsulphonyl, arylsulphonyl,
aralkysulphonyl or a group R¹³CO wherein
R¹³ represents hydrogen, alkyl, aralkyl,
aryl, alkoxy, aralkoxy, alkylamino.
arylamino, aralkylamino, phenethenyl,
phenethynyl, dialkylamino; or substituted
aryl as in R⁵, substituted aralkyl as in
R³ and substituted aralkoxy wherein the
substituents on the aromatic moiety are as
defined for substituted aralkyl

when Y represents a direct chemical bond, A^1 and A^2 taken together represent

hydrogen, alkyl, aryl, alkoxy, aralkoxy, substituted aryl and substituted aralkoxy wherein the substituent on the aromatic moiety of the aralkoxy are as defined for substituted aralkyl, hydroxy, mercapto, alkylthio, arylthio,

- 102 -

aralkylthio,
carboxy,
or carboxyalkyl;

 ${\tt A}^3$ represents a group of the formula ${\tt R}^{14}$.

or

$$\begin{array}{c|c}
R^{15} & O \\
N & C \\
R^{16} & R^{17}
\end{array}$$

wherein

R¹⁴ represents amino,

alkylamino.

dialkylamino,

hydroxyamino,

or aralkylamino.

and R^{15} , R^{16} and R^{17} which may be the same or different represent groups having the meaning given above for R^{16} , R^{11} and R^{12} respectively and R^{18} represents amino,

alkylamino.

dialkylamino.

substituted alkylamino wherein the substituent is amino, hydroxy, alkoxy, carboxy, carboxamido, carboxyalkyl alkylthio, alkylsulphinyl, or

- 103 -

alkylsulphonyl,

hydroxyamino,
alkoxyamino,
aralkylamino,
alkoxy,
aralkoxy,

or alkylaminoalkoxy,

all with the exception that when ${\tt A}^3$ is alkylamino one of ${\tt R}^2$ and ${\tt R}^3$ is not hydrogen and the other alkyl or hydroxyalkyl.

2. A compound according to Claim 1 having the formula

and the pharmaceutically acceptable acid addition salts thereof wherein A^1 , A^2 , Y, n, R^1 , R^2 and R^{18} are as in Claim 1;

R¹⁷ represents substituted alkyl wherein the substituent is alkoxy, aralkoxy, aralkoxycarbonylamino, carboxyalkyl, carboxyaralkyl or substituted aralkyl wherein the substituent is one or more groups selected from alkyl,

- 104 -

alkoxy, alkythio or aralkoxy and \mathbb{R}^3 represents hydrogen,

alkyl,

substituted alkyl wherein the

substituent may be one or more of the groups selected from hydroxy, alkoxy, aryloxy, aralkoxy, mercapto, alkylthio, arylthio, alkylsulphinyl, alkylsulphonyl, carboxy, carboxamido, carboxyalkyl, carboxyaralkyl, aralkoxycarbonylamino, amino, dialkylamino, acylamino, aroylamino and trihalomethyl; or

substituted aralkyl wherein the substituent on the aryl moiety may be one or more groups selected from halogen, alkyl, hydroxy, alkoxy, aralkoxy, amino. aminomethyl, cyano, alkylamino. dialkylamino. carboxy, sulphonamido, alkylthio, nitro and phenyl.

A co-spound according to Claim 1 having the formula

$$H(CH_2)_n = C \xrightarrow{COR^1}_{NH} = R^3 = H \xrightarrow{O}_{NH} = CH = CH = CH = CH = R^{18}$$

- 105 -

and the pharmaceutically acceptable salts thereof wherein R¹ represents hydroxy, alkoxy, or aralkoxy; n is 1 to 4 inclusive; R³ represents alkyl or alkyl substituted with one or two trifluoromethyl groups;

R¹⁷ represents substituted alkyl wherein the substituent is alkoxy, aralkoxy, aralkoxycarbonyamino, carboxyalkyl, carboxyaralkyl or substituted aralkyl wherein the substituent is one or more groups selected from alkyl, alkoxy, alkylthio or aralkoxy; and

R¹⁸ represents amino. alkylamino. dialkylamino. hydroxyamino, alkoxyamino, aralkylamino. alkoxy, aralkoxy, alkylaminoalkoxy or substituted alkylamino wherein the substituent is amino. hydroxy, alkoxy, carboxy, carboxamido, carboxyalkyl, alkylthio, alkylsulphinyl or alkylsulphonyl.

4. A compound according to Claim 3 wherein n, R¹,

R³, and R¹⁸ are as defined in Claim 3 and R¹⁷ represents benzyloxymethyl, 1-benzyloxyethyl, 4-benzyloxyphenylmethyl or 4-methoxyphenylmethyl.

5. A compound according to Claim 1 having the formula

$$R^{13}$$
 CO - N - (CH₂) n C NH C NH C NH C NH R 17

and the pharmaceutically acceptable salts thereof wherein R^4 , R^1 , R^{17} , R^{18} , and n are as defined in Claim 1;

R¹³ represents alkyl, aryl, aralkyl, aralkoxy, alkoxy, alkylamino. arylamino. aralkylamino. dialkylamino or substituted aryl, substituted aralkyl, and substituted aralkoxy wherein the substituent on the aromatic moiety is maybe one or more groups selected from halogen, alkyl, hydroxy, alkoxy, aralkoxy, aralkoxyamino. aminomethyl, cyano, acylamino, dialkylamino, carboxy,

sulphonamido, alkylthio, nitro and phenyl; and

R³ represents alkyl or alkyl substituted with one or two trifluoromethyl groups.

6. A compound according to Claim 5 having the formula

and the pharmaceutically acceptable salts thereof wherein R¹, R³, R¹⁷, and R¹⁸ are as described in Claim 5; and R¹³ represents benzyloxy; benzyloxy substituted with 4-chloro, 2-chloro, 4-methyl, 4-nitro or 4-amino; benzylamino; phenyl or phenyl substituted with 4-chloro, 2-chloro, 4-methyl, 4-nitro or 4-amino.

- .7. A compound according to Claim 1 which is N(1-(R)-carboxyethyl)-L-leucyl-O-benzyl-L-tyrosine
 N-methylamide and the pharmaceutically acceptable salts thereof.
- 8. A compound according to Claim 1 which is N[1-(R)-carboxy-3-methylthiopropyl]-L-leucyl-Omethyl-L-tyrosine N-methylamide and the pharmaceutically acceptable salts thereof.
- 9. A compound according to Claim 1 which is N-[4-N-(benzyloxycarbonyl)amino-l-(R)-carboxybutyl]-Lleucyl-O-methyl-L-tyrosine N-methylamide and the pharmaceutically acceptable salts thereof.
- .10. A compound according to Claim 1 which is N-[3-N-(benzyloxycarbonyl)amino-1-(R)-carboxypropyl]-L-leucyl-0-methyl-L-tyrosine N-methylamide and the pharmaceutically acceptable salts thereof.
- 11. A compound according to Claim 1 which is N-[3-N-(p-nitrobenzyloxycarbonyl)amino-1-(R)-carboxypropyl]-L-leucyl-O-methyl-L-tyrosine N-methylamide and the pharmaceutically acceptable salts thereof.
- 12.A compound according to Claim 1 which is N-[3-N-(benzoy1)amino-1-(P)-carboxypropy1]-L-

leucyl-O-methyl-L-tyrosine N-methylamide and the pharmaceutically acceptable salts thereof.

- 13.A compound according to Claim 1 which is

 N-[3-(N'-benzyl)carbamoyl-1-(R)-carboxypropyl]-L
 leucyl-0-methyl-L-tyrosine N-methylamide and the

 pharmaceutically acceptable salts thereof.
- 14.A compound according to Claim 1 which is

 N-[2-(S)-N-(1-(R)-carboxyethyl
 amino-4,4-di-(trifluoromethyl)butanoyl]
 O-methyl-L-tyrosine N-methylamide and the
 pharmaceutically acceptable salts thereof.
- 15.A compound according to Claim 1 which is

 N-[2-(S)-N-(3-N-(benzyloxycarbonyl)amino-1-(R)
 carboxypropyl)amino-4,4-di-(trifluoromethyl)
 butanoyl]-O-methyl-L-tyrosine N-methylamide and the

 pharmaceutically acceptable salts thereof.
- 16. A compound of the formula

and the pharmaceutically acceptable acid addition salts thereof wherein x represents hydrogen, alkoxy or benzyloxy;

y represents a radical selected from alkyl, alkylthioalkyl,

wherein v is 2 or 3,

$$z = \begin{bmatrix} 0 \\ 1! \\ C \\ N \\ H \end{bmatrix} - CH_2 -$$

wherein z represents hydrogen or nitro; W_1 and W_2 represent methyl or trifluoromethyl; and R^1 represents hydroxy or alkoxy and the stereochemistry of the carbon marked by the asterisk is R.

EUROPEAN SEARCH REPORT

0126974 Application number

EP 84104614.7

DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document with indication, where appropriate, of relevant passages Relevant **CLASSIFICATION OF THE** Category APPLICATION (Int. Cl. 7) D,X EP - A1 - 0 012 401 (MERCK & CO. 1 C 07 C 103/52 INC.) C 07 D 207/16 * Claim 1 * C 07 C 103/50 D,A * Abstract * 2-16 C 07 C 103/18 C 07 C 103/28 P,X EP - A1 - O 081 094 (MERCK & CO. 1 C 07 C 103/29// INC.) A 61 K 37/02 * Claim 1 * P,A * Abstract * 2-16 D,A EP - A1 - O 054 862 (SCHERING 1 CORPORATION) * Claim 1 * TECHNICAL FIELDS SEARCHED (Int. Cl. ³) A EP - A1 - 0 050 800 (SCHERING 1 CORPORATION) * Claim 1 * C 07 C 103/00 C 07 D 207/00

Date of completion of the search

27-07-1984

P: intermediate document

Place of search

VIENNA

X: particularly relevant if taken alone
Y: particularly relevant if combined with another document of the same category technological background non-written disclosure

CATEGORY OF CITED DOCUMENTS

The present search report has been drawn up for all claims

 $\underline{\mathtt{T}}$: theory or principle underlying the invention earlier patent document, but published on, r

after the filing date

D: document cited in the application L: document cited for other reasons

& : member of the same patent family, corresponding document

Examiner

PETROUSEK