Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Отчёт по лабораторной работе N5

Дисциплина: Телекоммуникационные технологии **Тема:** Автокорреляция

Работу выполнил: Ляшенко В.В. Группа: 3530901/80201 Преподаватель: Богач Н.В.

 ${
m Caнкт-}\Pi{
m e}{
m Te}{
m p}{
m бург}$

Оглавление

1	Упражнение 5.1	4
2	Упражнение 5.2 2.1 Функция estimate_fundamental	6 6
3	Упражнение 5.3	9
4	Упражнение 5.4	11
5	Выводы	16

Список иллюстраций

1.1	Автокорреляция первого сегмента	4
1.2	Автокорреляция второго сегмента	٠
2.1	Спектрограмма сегмента	7
2.2	Спектрограмма сегмента	8
3.1	Данные о BitCoin	ć
3.2	Автокорреляция BitCoin	LC
4.1	Спектр сегмента	[]
4.2	Автокорреляция	[2
4.3	Спектр без основной частоты	[
4.4	Автокорреляция	[4
4.5	Фильтрованный спектр	Į
4.6	Автокорреляция фильтрованного спектра	Ę

Листинги

1.1	Получение сегмента
1.2	Использование автокорреляцию
1.3	Уточнение значения lag
1.4	Нахождение частоты
1.5	Получение сегмента
2.1	Функция estimate_fundamental
2.2	Применение функции
2.3	Построение спектрограммы
2.4	Наложение оценки высоты на спектрограмму
3.1	Получение данных о BitCoin
3.2	Вычисление автокорреляции
4.1	Выделение сегмента
4.2	Построение спектра сегмента
4.3	Получение треугольной волны
4.4	Функция автокорреляции
4.5	Применение функции
4.6	Удаление освновной частоты
4.7	Фильтрания гармоник

Упражнение 5.1

Блокнот Jupyter chap05.ipynb содержит приложение, в котором можно вычислить автокорреляции для различных lag. Воспользуемся им и оценим высоту тона вокального чирпа для нескольких времен начала сегмента.

Для начала скачаем запись с чирпом и выделим небольшой сегмент.

```
wave = read_wave('28042__bcjordan__voicedownbew.wav')
wave.normalize()
segment = wave.segment(start=0.1, duration=0.01)
Листинг 1.1: Получение сегмента
```

Теперь используем автокорреляцию (Рис.1.1).

```
lags, corrs = autocorr(segment)
plt.plot(lags, corrs)
decorate(xlabel='Lag (index)', ylabel='Correlation')
```

Листинг 1.2: Использование автокорреляцию

Рис. 1.1: Автокорреляция первого сегмента

Первый пик находится близко к lag = 100. Уточним значение, используя argmax.

```
low=70
high=150
lag = np.array(corrs[low:high]).argmax() + low
lag
```

Листинг 1.3: Уточнение значения lag

Полученное значение lag = 91.

Затем вычислим частоту для найденного lag.

```
period = lag / segment.framerate
frequency = 1 / period
frequency
```

Листинг 1.4: Нахождение частоты

Полученная частота: 485 Гц.

Возьмем теперь другой сегмент того же сигнала и выполним те же действия (Рис.1.2).

segment2 = wave.segment(start=0.6, duration=0.01)

Листинг 1.5: Получение сегмента

Рис. 1.2: Автокорреляция второго сегмента

Полученое значение $\log = 125$. Полученная частота: 353 Γ ц. Таким образом, при увеличении времени начала сегмента частота уменьшается.

Упражнение 5.2

Функция estimate fundamental 2.1

Пример кода в chap05.ipynb показывает, как использовать автокорреляцию для оценки основной частоты переодического сигнала. Инкапсулируем этот код в функцию, названную estimate_fundamental.

```
def estimate_fundamental(segment, low=70, high=150):
lags, corrs = autocorr(segment)
lag = np.array(corrs[low:high]).argmax() + low
period = lag / segment.framerate
frequency = 1 / period
return frequency
               Листинг 2.1: Функция estimate fundamental
```

Используем ее для отслеживания высоты тона записанного звука.

```
wave = read_wave('28042__bcjordan__voicedownbew.wav')
wave.normalize()
segment = wave.segment(start=0.6, duration=0.01)
freq = estimate_fundamental(segment)
freq
```

Листинг 2.2: Применение функции

Полученная частота: 353 Гц.

Спектрограмма 2.2

```
Проверим ее работу функции.
В начале построим спектрограмму записи (Рис.2.1).
   wave.make_spectrogram(2048).plot(high=4200)
   decorate(xlabel='Time (s)', ylabel='Frequency (Hz)')
                   Листинг 2.3: Построение спектрограммы
```


Рис. 2.1: Спектрограмма сегмента

Теперь будем накладывать оценки высоты на спектрограмму.

```
step = 0.05
starts = np.arange(0.0, 1.4, step)

ts = []
freqs = []

for start in starts:
    ts.append(start + step/2)
    segment = wave.segment(start=start, duration=duration)
    freq = estimate_fundamental(segment)
    freqs.append(freq)

wave.make_spectrogram(2048).plot(high=900)
plt.plot(ts, freqs, color='white')
decorate(xlabel='Time (s)', ylabel='Frequency (Hz)')
```

Листинг 2.4: Наложение оценки высоты на спектрограмму

Рис. 2.2: Спектрограмма сегмента

Как мы можем видеть из рис.2.2, наложение оценки совпадает с кривой на спектрограмме, что говорит нам о правильной работе функции.

Упражнение 5.3

Используя данные о BitCoin из предыдущей лабораторной (Рис.3.1), вычислим автокорреляцию цен в платежной системе BitCoin.

```
import pandas as pd
from thinkdsp import Wave

df = pd.read_csv('files/BTC_USD_2020-04-12_2021-04-11-CoinDesk.csv',
    parse_dates=[0])
ys = df['Closing Price (USD)']
ts = df.index
wave = Wave(ys, ts, framerate=1)
wave.plot()
decorate(xlabel='Time (days)')
```

Листинг 3.1: Получение данных о BitCoin

Рис. 3.1: Данные о BitCoin

Вычислим автокорреляцию.

```
lags, corrs = autocorr(wave)
plt.plot(lags, corrs)
decorate(xlabel='Lag', ylabel='Correlation')
```

Листинг 3.2: Вычисление автокорреляции

Рис. 3.2: Автокорреляция BitCoin

Как мы можем видеть на рис.3.2, автокорреляция спадает не очень быстро по мере увеличения задержки, что указывает на то, что перед нами розовый шум.

Упражнение 5.4

spectrum.plot(high=3000)

Воспользуемся блокнотом saxophone.ipynb, в котором исследуются автокорреляция, восприятие высоты тона и явление под названием «подавленная основная». Запустим примеры из него. Затем выберем другой сегмент записи и внось поработаем с примерами. Пусть новый сегмент будет иметь ту же длину, но начнётся с 5 с.

```
start = 5.0
duration = 0.5
segment = wave.segment(start=start, duration=duration)
segment.make_audio()
Листинг 4.1: Выделение сегмента
Построим спектр этого сегмента (Рис.4.1).
spectrum = segment.make_spectrum()
```

```
decorate(xlabel='Frequency (Hz)', ylabel='Amplitude')
Листинг 4.2: Построение спектра сегмента
```


Рис. 4.1: Спектр сегмента

Затем получим все пики спектра. Пики в спектре находятся на частотах 552, 1106 и 1660 Гц.

Высота $552~\Gamma$ ц, которую мы воспринимаем, является основной, но не доминирующей. Сравним ее с треугольной волной на частоте $552~\Gamma$ ц.

```
from thinkdsp import TriangleSignal
TriangleSignal(freq=552).make_wave(duration=0.5).make_audio()
Листинг 4.3: Получение треугольной волны
```

У них одинаковая воспринимаемая высота звука.

Чтобы понять, почему мы воспринимаем основную частоту, даже если она не является доминирующей, используем автокорреляцию.

Рис. 4.2: Автокорреляция

Из рис.4.2 мы видим, что первый главный пик находится рядом с lag = 75.

Затем используем функцию find_frequency, которая находит самую высокую корреляцию в заданном диапазоне задержек и возвращает соответствующую частоту. Находим lag самого высокого пика и его частоту.

Полученный значения: lag = 80, частота = 551 Γ ц.

Высота звука, которую мы воспринимаем, соответствует наивысшему пику автокорреляционной функции, а не самому высокому компоненту спектра.

Теперь попробуем удалить основную частоту (Рис.4.3).

```
spectrum2 = segment.make_spectrum()
spectrum2.high_pass(600)
spectrum2.plot(high=3000)
decorate(xlabel='Frequency (Hz)', ylabel='Amplitude')
Листинг 4.6: Удаление освновной частоты
```


Рис. 4.3: Спектр без основной частоты

Послушаем полученный сегмент. Воспринимаемая высота звука по-прежнему составляет $551~\Gamma$ ц, хотя на этой частоте нет мощности. Это явление называют «подавленная основная».

Чтобы понять, почему мы слышим частоту, которой нет в сигнале, посмотрим на функцию автокорреляции (Puc.4.4).

Рис. 4.4: Автокорреляция

Третий пик, соответствующий 551 Гц, по-прежнему самый высокий.

Но есть еще два пика, соответствующие 1521 Γ ц и 558 Γ ц. Но мы их не воспринимаем, так как высшие компоненты, которые присутствуют в сигнале, представляют собой гармоники 551 Γ ц, а не гармоники 558 или 1521 Γ ц.

Наше ухо интерпретирует высокие гармоники как свидетельство того, что «правильная» основная частота составляет 551 Γ ц.

Если избавиться от высоких гармоник, эффект исчезнет. Вот спектр с удаленными гармониками выше 1200 Гц (Рис.4.5).

```
spectrum4 = segment.make_spectrum()
spectrum4.high_pass(600)
spectrum4.low_pass(1200)
spectrum4.plot(high=3000)
decorate(xlabel='Frequency (Hz)', ylabel='Amplitude')
```

Листинг 4.7: Фильтрация гармоник

Рис. 4.5: Фильтрованный спектр

Рис. 4.6: Автокорреляция фильтрованного спектра

Теперь воспринимаемая высота звука 1106 Γ ц. Если мы посмотрим на функцию автокорреляции (Рис.4.6), то самый высокий пик будет на lag = 40, что соответствует 1102 Γ ц.

Таким образом, эти эксперименты показывают, что восприятие высоты звука не полностью основано на спектральном анализе, но также определяется автокорреляцией.

Выводы

В результате выполнения данный работы мы познакомились с понятием автокорреляции и научились использовать ее для оценки высоты тона.

Также мы исследовали понятие «подавленная основная».