

CLAIMS

1. An asparagine-linked α 2,3-oligosaccharide derivative having undeca- to hepta-saccharides and represented by the formula (1) given below

5 wherein R¹ and R² are each a hydrogen atom or one of the groups represented by the formulae (2) to (5) and may be the same or different, provided that one of R¹ and R² should always be the group of the formula (2).

10 R, R' and R'' are in the following combinations

- (a) R=F, R'=OH, R''=OH
- (b) R=OH, R'=F, R''=OH
- (c) R=OH, R'=OH, R''=F
- (d) R=OH, R'=OH, R''=OH

15

2. An asparagine-linked α 2,6-oligosaccharide derivative having undeca- to hepta-saccharides, containing fluorine and represented by the formula (6) given below

5 wherein R^X and R^Y are each a hydrogen atom, a group represented by the formula (7) or one of the groups represented by the formulae (3) to (5), provided that one of R^X and R^Y should always be a group of the formula (7).

10 R, R' and R'' are in the following combinations

- (a) R=F, R'=OH, R''=OH
- (b) R=OH, R'=F, R''=OH
- (c) R=OH, R'=OH, R''=F

3. An asparagine-linked α 2,3-oligosaccharide having undeca-to hepta-saccharides and represented by the formula (8) given below

wherein R¹ and R² are as defined above.

4. An asparagine-linked α 2,6-oligosaccharide having undeca-to hepta-saccharides, containing fluorine and represented by the formula (9) given below

5 wherein R^x and R^y are as defined above.

5. An α 2,3-oligosaccharide having undeca- to hepta-saccharides and represented by the formula (10) given below

wherein R^1 and R^2 are as defined above.

6. An α 2,6-oligosaccharide having undeca- to hepta-saccharides, containing fluorine and represented by the formula (11) given below

5 wherein R^X and R^Y are as defined above.

7. A process for preparing an asparagine-linked α 2,3-disialooligosaccharide derivative having undecasaccharide and represented by the formula (12) given below, the process being characterized by transferring sialic acid or a sialic acid derivative to an asparagine-linked oligosaccharide protected with a lipophilic protective group using a sialic acid transferase, and subjecting the resulting asparagine-linked oligosaccharide protected with a lipophilic protective group to chromatography for separation

wherein R¹ and R² are each a group represented by the formula (2).

8. A process for preparing an asparagine-linked α 2,3-monosialooligosaccharide derivative having decasaccharide and represented by the formula (13) given below, the process being characterized by transferring sialic acid or a sialic acid derivative to an asparagine-linked oligosaccharide protected with a lipophilic protective group using a sialic acid transferase, and subjecting the resulting asparagine-linked oligosaccharide protected with a lipophilic protective group to chromatography for separation

10

wherein one of R¹ and R² is a group represented by the formula (2), and the other thereof is a group represented by the formula (3).

9. A process for preparing an asparagine-linked α 2,3-monosialooligosaccharide derivative having nonasaccharide and represented by the formula (14) given below, the process being characterized by hydrolyzing an asparagine-linked monosialooligosaccharide derivative represented by the formula (13) using a galctosidase

wherein one of R¹ and R² is a group represented by the formula (2), and the other thereof is a group represented by the formula (4).

10. A process for preparing an asparagine-linked α 2,3-monosialooligosaccharide derivative having octasaccharide and represented by the formula (15) given below, the process being characterized by hydrolyzing an asparagine-linked
- 5 monosialooligosaccharide derivative represented by the formula (14) using an N-acetylglucosaminidase

wherein one of R¹ and R² is a group represented by the formula (2), and the other thereof is a group represented by the formula (5).

11. A process for preparing an asparagine-linked α 2,3-monosialooligosaccharide derivative having heptasaccharide and represented by the formula (16) given below, the process being characterized by hydrolyzing an asparagine-linked
- 5 monosialooligosaccharide derivative represented by the formula (15) using a mannosidase

wherein one of R¹ and R² is a group represented by the formula (2), and the other thereof is a hydrogen atom.

12. A process for preparing an asparagine-linked α 2,6-

disialooligosaccharide derivative having undecasaccharide and represented by the formula (17) given below, the process being characterized by transferring sialic acid or a sialic acid

- 5 derivative to an asparagine-linked oligosaccharide protected with a lipophilic protective group using a sialic acid transferase, and subjecting the resulting asparagine-linked oligosaccharide protected with a lipophilic protective group to chromatography for separation

10

wherein R^x and R^y are each a group represented by the formula (7).

13. A process for preparing an asparagine-linked α 2,6-monosialooligosaccharide derivative having decasaccharide and represented by the formula (18) given below, the process being characterized by transferring sialic acid or a sialic acid

- 5 derivative to an asparagine-linked oligosaccharide protected with a lipophilic protective group using a sialic acid transferase, and subjecting the resulting asparagine-linked oligosaccharide protected with a lipophilic protective group to chromatography for separation

10

wherein one of R^x and R^y is a group represented by the formula (7),

and the other thereof is a group represented by the formula (3).

14. A process for preparing an asparagine-linked α 2,6-monosialooligosaccharide derivative having nonasaccharide and represented by the formula (19) given below, the process being characterized by hydrolyzing an asparagine-linked
 5 monosialooligosaccharide derivative represented by the formula (18) using a galactosidase

wherein one of R^x and R^y is a group represented by the formula (7), and the other thereof is a group represented by the formula (4).

15. A process for preparing an asparagine-linked α 2,6-monosialooligosaccharide derivative having octasaccharide and represented by the formula (20) given below, the process being characterized by hydrolyzing an asparagine-linked
 5 monosialooligosaccharide derivative represented by the formula (19) using an N-acetylglucosaminidase

wherein one of R^x and R^y is a group represented by the formula (7), and the other thereof is a group represented by the formula (5).

16. A process for preparing an asparagine-linked α 2,6-

monosialooligosaccharide derivative having heptasaccharide and represented by the formula (21) given below, the process being characterized by hydrolyzing an asparagine-linked

- 5 monosialooligosaccharide derivative represented by the formula (20) using a mannosidase

wherein one of R^x and R^y is a group represented by the formula (7), and the other thereof is a hydrogen atom.

17. A process for preparing an aspareagine-linked α 2,3-oligosaccharide having undeca- to hepta-saccharides and represented by the formula (8), the process being characterized by removing the protective group from an asparagine-linked α 2,3-oligosaccharide
5 derivative having undeca- to hepta-saccharides and represented by the formula (1).

18. A process for preparing an aspareagine-linked α 2,6-oligosaccharide having undeca- to hepta-saccharides and represented by the formula (9), the process being characterized by removing the protective group from an asparagine-linked α 2,6-oligosaccharide
5 derivative having undeca- to hepta-saccharides and represented by the formula (6).

19. A process for preparing an α 2,3-oligosaccharide having undeca- to hepta-saccharides and represented by the formula (10), the process being characterized by removing the asparagine residue

from an asparagine-linked α 2,3-oligosaccharide having undeca- to
5 hepta-saccharides and represented by the formula (8).

20. A process for preparing an α 2,6-oligosaccharide having undeca- to hepta-saccharides and represented by the formula (11),
the process being characterized by removing the asparagine residue
from an asparagine-linked α 2,6-oligosaccharide having undeca- to
10 hepta-saccharides and represented by the formula (9).

21. An asparagine-linked (α 2,3) (α 2,6)-oligosaccharide derivative having undecasaccharides and represented by the formula (22) given below

wherein R^1 is a group represented by the formula (2), R^Y is a group
5 represented by the formula (7) below.

R , R' and R'' are in the following combinations

- (a) $R=F$, $R'=OH$, $R''=OH$
- (b) $R=OH$, $R'=F$, $R''=OH$
- 10 (c) $R=OH$, $R'=OH$, $R''=F$

(d) R=OH, R'=OH, R''=OH

22. An asparagine-linked (α 2,3) (α 2,6)-oligosaccharide derivative having undecasaccharides and represented by the formula (23) given below

wherein R² is a group represented by the formula (2), R^x is a group
5 represented by the formula (7) below.

R, R' and R'' are in the following combinations

(a) R=F, R'=OH, R''=OH

(b) R=OH, R'=F, R''=OH

10 (c) R=OH, R'=OH, R''=F

(d) R=OH, R'=OH, R''=OH

23. An asparagine-linked oligosaccharide derivative containing at least one fucose in N-acetylglycosamine on the nonreducing terminal side of an asparagine-linked oligosaccharide wherein the asparagine has amino group protected with a lipophilic
5 protective group.

24. A fucose-containing asparagine-linked oligosaccharide derivative according to claim 23 wherein the asparagine-linked oligosaccharide having the protected amino group in the asparagine thereof with a lipophilic protective group is an asparagine-linked α 2,3-oligosaccharide having undeca- to hepta-saccharides and represented by the formula (1).

25. A fucose-containing asparagine-linked oligosaccharide derivative according to claim 23 wherein the asparagine-linked oligosaccharide having the protected amino group in the asparagine thereof with a lipophilic protective group is an asparagine-linked α 2,6-oligosaccharide having undeca- to hepta-saccharides, containing fluorine and represented by the formula (6).

26. A fucose-containing asparagine-linked oligosaccharide derivative according to claim 23 wherein the asparagine-linked oligosaccharide having the protected amino group in the asparagine thereof with a lipophilic protective group is an asparagine-linked α 2,6-oligosaccharide having undeca- to hexa-saccharides and represented by the formula (6)

wherein R^x and R^y are each a hydrogen atom, a group represented by the formula (7) or one of the groups represented by the formulae (3) to (5), provided that one of R^x and R^y should always be a group of the formula (7) or (3)

where $R = OH$, $R' = OH$ and $R'' = OH$.

27. A process for preparing an asparagine-linked oligosaccharide derivative containing at least one fucose in N-acetylglucosamine on the nonreducing terminal side of an asparagine-linked oligosaccharide wherein the asparagine has amino group protected with a lipophilic protective group, the process being characterized by transferring fucose to the asparagine-linked oligosaccharide wherein the asparagine has the protected amino group with a lipophilic protective group using a fucosyl transferase, and subjecting the resulting asparagine-linked oligosaccharide protected with the lipophilic protective group to chromatography for separation.
- 5
- 10