	Utech
Name:	
Roll No.:	A Annua (YE) working and Explana
Invigilator's Signature :	

CS/B.Tech(BT)/SEM-3/BT-304/2010-11 2010-11

INDUSTRIAL STOICHIOMETRY

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for the following : $10 \times 1 = 10$
 - i) Degree of reduction of ethanol is
 - a) 6

b) 12

c) 11

- d) 2.
- ii) Specific heat capacity of water is
 - a) $4.184 \text{ kJ/g}^{\circ}\text{C}$
- b) 1 cal/kg°C
- c) $4.184 \text{ kJ/kg}^{\circ}\text{C}$
- d) 1 kcal/g°C.
- iii) An ideal liquid solution follows
 - a) Charles law
 - b) equation of state
 - c) Raoults law and Henry's law
 - d) none of these.

3054 [Turn over

CS/B.Tech(BT)/SEM-3/BT-304/2010-11

- iv) The temperature at which the first drop of vapour is formed is
 - a) bubble point
- b) dew point
- c) boiling point
- d) melting point.
- v) Heat of formation of carbon is
 - a) 0 kJ/mol
- b) -393 kJ/mol
- c) -241.82 kJ/mol
- d) none of these.
- vi) Volume per cent of a gas in a mixture is equal to
 - a) pressure per cent
 - b) mole per cent
 - c) weight per cent
 - d) mole per cent only for ideal gas.
- vii) Standard atmospheric pressure is equal to
 - a) 10 psia
- b) 1.033 kg/cm^2
- c) 760 mm Hg
- d) both (b) and (c).
- viii) Dimension of viscosity is
 - a) $ML^{-1}T^{-1}$
- b) ML 2 T $^{-1}$

c) MLT^{-1}

d) $ML^2 T$.

- ix) Prandtl number is
 - a) $\mu Cp/K$

b) V²/gD

c) hD/K

- d) μ/KCp .
- x) In a biochemical process, the recycle stream is purged for
 - a) increasing the yield
- b) enriching the product
- c) limiting the inerts
- d) heat conservation.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$

2. A natural gas has following composition by volume:

CO
$$_2\,$$
 - 0.8%, N $_2\,$ - 3.2% and CH $_4\,$ - 96%.

Calculate: (a) the composition in weight percentage (b) the average molecular weight.

3. Mass flow through a nozzle as a function of gas pressure and temperature is given by $m = 0.0549 \text{ (P/T}^{0.5}\text{)}$, where m is in lb/min, P is in psi and T is in °R. Obtain an expression of mass flow rate in kg/sec with P in atmospheres and T in Kelvin. Given T°R = T°F + 460;

$$14.7 \text{ psi} = 1 \text{ atm.}$$

CS/B.Tech(BT)/SEM-3/BT-304/2010-11

- 4. An heat exchanger for cooling a hot hydrocarbon liquid uses 10,000 kg/hr of cooling water, which enters the exchanger at 294 K. The hot oil at the rate of 5000 kg/hr enters at 423 K and leaves at 338 K and has an average heat capacity of 2.51 kJ/KgK. Calculate the outlet temperature of water.
- 5. Define or state the following:
 - a) Heat capacity
 - b) First law of thermodynamics
 - c) Heat of formation
 - d) Degree of reduction
 - e) Ideal solution.
- 6. A continuous distillation column is used to regenerate solvent for use in a solvent extraction unit. The column treats 200 kmol/hr of a feed containing 10% (mol) ethyl alcohol and the rest is water. The overhead product is 89% (mol) alcohol and the bottom product is 0·3% (mol) alcohol. The overhead is sent to the extraction unit and the bottom is wasted. What is the daily requirement of make-up alcohol in the solvent extraction unit?

3054 4

(Long Answer Type Questions)

Answer any three of the following.

- 7. Consider the convective mass transfer of a fluid flowing in by forced convection through a pipe. The fluid is flowing at a velocity v, through a pipe of diameter D and has the density $\rho,$ viscosity μ and the diffusivity $D_{AB}^{}$. Relate the mass transfer coefficient K_c to the variables D, ρ , μ , v and D_{AB} using the Buckingham pi theorem.
- 8. Pure CO_2 may be prepared by treating limestone with aqueous $H_2 SO_4$. The limestone contains $CaCO_3$ and ${\rm MgCO}_3$ and the remaining is insoluble matter. The acid is 12% $\rm{H}_{2}\,\rm{SO}_{4}$. The residue from the process has the following composition:

CaSO ₄	8.56%
MgSO $_4$	5.23%
H $_2$ SO $_4$	1.05%
Inert	0.53%
CO_2	0.12%
Water	84.51%

Calculate:

- Composition of limestone used a)
- % excess acid used. b)

$$CaCO_{3} + H_{2}SO_{4} = CaSO_{4} + CO_{2} + H_{2}O$$
 $MgCO_{3} + H_{2}SO_{4} = MgSO_{4} + CO_{2} + H_{2}O.$
 $8 + 7$

- 9. Wet solid is fed to a drier to reduce the moisture content from 80% to 15%. The product leaving the drier again passed through an oven and further moisture is reduced to 2%. If the drier can handle 1000 kg of wet solid per day, Calculate:
 - a) The weight of products leaving the drier and oven per day,
 - b) The percentage of the original water that is removed in the drier and oven. 8+7
- 10. Flue gases leaving the stack of a boiler at 533 K have the following molar composition :

CO
$$_2$$
 = 11·31%, H $_2$ O = 13·04%, O $_2$ = 2·17% and N $_2$ = 73·48%. Calculate the heat loss in kmol of gas mixture above 298 K. Also calculate the average heat capacity of dry flue gas.

C $_{\rm p}$ in kJ/kmolK is given in the following table,

$$C_p = a + bT + CT^2$$

	а	<i>b</i> ∞ 10 ³	$C \propto 10^{6}$
CO ₂	21.3655	64.284	- 41.0506
H ₂ O	18.56	33.23	- 52·16
O 2	26.0257	11.7551	- 2:3426
N ₂	19·2494	52·1135	11.973

11. a) Carbon monoxide and water vapour react in stoichiometric amounts to form carbon dioxide and hydrogen. The feed enters at 25°C and the product leaves at 540°C with a carbon monoxide conversion of 75%. Determine the total amount of heat which must be added or removed in the reactor per 100 kg of hydrogen product. The following data may be used:

Component	Heat of formation at 25°C, kJ/kmol	Heat capacity 25°C, kJ/(kmol K)
CO	- 110600	30.35
H ₂ O	- 241980	36.00
CO ₂	- 393770	45.64
H ₂	0	29.30

12

b) Define adiabatic flame temperature.

3