# Lasso estimatoren og dens generaliseringer

20. juni 2018

Louise N. Christensen Trine Graff

Aalborg universitet



### Lasso estimatoren



The Least Absolute Shrinkage Selection Operator (lasso) løser optimeringsproblemet

$$\widehat{\beta}^{\text{lasso}} = \arg\min_{\beta \in \mathbb{R}^p} \left\{ \sum_{i=1}^n \left( y_i - \sum_{j=1}^p x_{ij} \beta_j \right)^2 \right\}, \text{ u.h.t. at } \sum_{j=1}^p |\beta_j| \leqslant t,$$

som kan omskrives til et lagrange problem

$$\widehat{\boldsymbol{\beta}}^{lasso} = \mathop{\text{arg min}}_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \|_2^2 + \lambda \| \boldsymbol{\beta} \|_1 \right\}.$$

Ridge regression estimatoren findes ud fra

$$\begin{split} \widehat{\boldsymbol{\beta}}^{\text{ridge}} &= \underset{\boldsymbol{\beta} \in \mathbb{R}^{\rho}}{\text{erg min}} \left\{ \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \|_2^2 + \lambda \| \boldsymbol{\beta} \|_2^2 \right\} \\ &= \left( \boldsymbol{X}^T \boldsymbol{X} + \lambda \boldsymbol{I}_{\rho} \right)^{-1} \boldsymbol{X}^T \boldsymbol{y}. \end{split}$$

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

) Lasso og dens generaliseringer

Statistisk infernes

ovarians testen

Data

Benchmark modellen

Benchmark modellen

Crydsvalidering

Lasso modellen og den generaliseringer



### Lasso estimatoren





Figur: Estimations illustration for lasso (venstre) og ridge regression (højre). De blå arealer er betingelsesområderne  $|\beta_1|+|\beta_2|\leqslant t$  og  $\beta_1^2+\beta_2^2\leqslant t^2$ , mens de røde ellipser er konturkurver for SSR. Konturkurverne har centrum i OLS estimatoren,  $\widehat{\beta}^{\text{OLS}}$ .

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

2 Lasso og dens generaliseringer

Statistisk infernes

Statistisk infernes

Kovarians testen

Data

Benchmark modellen

Senchmark modellen

ydsvalidering

Lasso modellen og den generaliseringer



# Generaliseringer af lasso estimatoren

Naiv elastisk net



Selvom lasso har vist succes i mange tilfælde, har den også nogle begrænsninger:

- ▶ Hvis p > n, da udvælger lasso højst n variable
- ► Hvis der eksisterer en gruppe af variable med høj parvis korrelation, da vil lasso blot udvælge én variabel fra denne gruppe og denne variabel udvælges tilfældigt

Naiv elastisk net løser optimeringsproblemet

$$\widehat{\boldsymbol{\beta}}^{\text{naivEN}} = \underset{\boldsymbol{\beta} \in \mathbb{R}^p}{\text{arg min}} \left\{ \| \boldsymbol{y} - \boldsymbol{X} \boldsymbol{\beta} \|_2^2 + \lambda \left[ \frac{1}{2} (1 - \alpha) \| \boldsymbol{\beta} \|_2^2 + \alpha \| \boldsymbol{\beta} \|_1 \right] \right\}.$$

- ▶ Hvis  $\alpha = 0$ , da reduceres det til den kvadrerede  $\ell_2$ -norm svarende til strafleddet for ridge regression
- ▶ Hvis  $\alpha = 1$  reduceres strafleddet til  $\ell_1$ -normen svarende til strafleddet for lasso.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk inferne

Kovarians testen

Data

Benchmark modellen

ordinate descent

Lasso modellen og den generaliseringer

# Generaliseringer af lasso estimatoren



Antag prædiktorerne er opdelt i J grupper, hvor  $p_j$  er antallet i gruppe j. Group lasso løser følgende optimeringsproblem

$$\widehat{\boldsymbol{\theta}}_{j}^{\text{group lasso}} = \operatorname*{arg\ min}_{\boldsymbol{\theta}_{j} \in \mathbb{R}^{\rho_{j}}} \left\{ \frac{1}{2} \| \mathbf{y} - \sum_{j=1}^{J} \mathbf{Z}_{j} \boldsymbol{\theta}_{j} \|_{2}^{2} + \lambda \sum_{j=1}^{J} \sqrt{p_{j}} \| \boldsymbol{\theta}_{j} \|_{2} \right\}.$$

- ► Alle indgange i  $\widehat{\theta}_j^{\text{group lasso}}$  vil være lig nul eller ikke-nul afhængig af  $\lambda$ .
- ▶ Når  $p_j = 1$ , da har vi, at  $\|\theta_j\|_2 = |\theta_j|$ , således at alle grupper består af én prædiktor, dermed reduceres optimeringsproblemet til standard lasso.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske varjable

MAOK9 5,2018

Lasso og dens generaliseringer

Statistisk inferne

Kovarians testen

Date

Benchmark modellen

encomark modellen

rydsvalidering

Lasso modellen og den: generaliseringer

# Generaliseringer af lasso estimatoren



Antag  $\widetilde{\beta}$  er rod-n konsistent til  $\beta^*$ . Vælg  $\gamma>0$ , da er adaptive lasso estimaterne givet ved

$$\widehat{\boldsymbol{\beta}}^{\mathsf{AL}} = \operatorname*{arg\;min}_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ \| \mathbf{y} - \mathbf{X} \boldsymbol{\beta} \|_2^2 + \lambda \sum_{j=1}^p \frac{|\beta_j|}{|\widetilde{\beta}_j|^{\gamma}} \right\}.$$

- ▶ Antag  $\frac{\lambda_n}{\sqrt{n}} \to 0$  og  $\lambda_n n^{\frac{\gamma-1}{2}} \to \infty$ , da opfylder adaptive lasso orakelegenskaberne:
  - ► Konsistent variabeludvælgelsen:  $\lim_{n\to\infty} \mathbb{P}(\mathcal{A}_n^{AL} = \mathcal{A}) = 1$ .
  - ► Asymptotisk normalitet:  $\sqrt{n} \left( \widehat{\boldsymbol{\beta}}_{\mathcal{A}}^{\text{AL}} \boldsymbol{\beta}_{\mathcal{A}}^* \right) \stackrel{d}{\rightarrow} N(\mathbf{0}, \sigma^2 \boldsymbol{C}_{11}^{-1}).$

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

) Lasso og dens generaliseringer

Statistisk inferne

Covarians testen

Dat

Benchmark modellen

nordinate descent

Krydsvali BIC

Lasso modellen og den generaliseringer

### Kovarians testen



- ► Anvendes på LARS algoritmen med lasso modifikation
- Giver p-værdier til prædiktorerne når de indgår i den aktive mængde, som noteres  $\mathcal{A}$
- $\blacktriangleright$  Vi ønsker, at teste om prædiktoren j, som tilføjes i  $\mathcal{A}_k$  i trin k, er signifikant

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Kovarians toston

Benchmark modellen

generaliseringer



### Kovarians testen



- ▶ Lad  $A_{k-1}$  være den aktive mængde i trin k-1 inden den j'te prædiktorer tilføjes
- ► Lad  $\tilde{\beta}_{\mathcal{A}_{k-1}}^{lasso}(\lambda_{k+1})$  være løsningen i  $\lambda_{k+1}$  ved at kun anvende prædiktorerne i  $\mathcal{A}_{k-1}$ , dvs

$$\mathbf{\tilde{\beta}}_{\mathcal{A}_{k-1}}^{\text{lasso}}\left(\lambda_{k+1}\right) = \underset{\boldsymbol{\beta}_{\mathcal{A}_{k-1}} \in \mathbb{R}^{|\mathcal{A}_{k-1}|}}{\text{arg min}} \left\{ \left\| \boldsymbol{y} - \boldsymbol{X}_{\mathcal{A}_{k-1}} \boldsymbol{\beta}_{\mathcal{A}_{k-1}} \right\|_{2}^{2} + \lambda_{k+1} \left\| \boldsymbol{\beta}_{\mathcal{A}_{k-1}} \right\|_{1} \right\}$$

- ▶ Lad  $\widehat{\beta}$  ( $\lambda_{k+1}$ ) betegne løsningen i  $\lambda_{k+1}$  ud fra prædiktorerne i  $\mathcal{A}_{k-1} \cup \{j\}$
- ► Teststørrelsen:

$$T_k^{\mathsf{cov}} = \frac{1}{\sigma^2} \left( \left\langle \mathbf{y}, \mathbf{X} \widehat{\boldsymbol{\beta}}^{\mathsf{lasso}} \left( \lambda_{k+1} \right) \right\rangle - \left\langle \mathbf{y}, \mathbf{X}_{\mathcal{A}_{k-1}} \widetilde{\boldsymbol{\beta}}_{\mathcal{A}_{k-1}}^{\mathsf{lasso}} \left( \lambda_{k+1} \right) \right\rangle \right)$$

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk inferne

Kovarians testen

Benchmark modellen

oordinate descent

Lasso modellen og der generaliseringer



### Kovarians testen



▶ Under  $\mathcal{H}_0$ :  $\mathcal{A}_{k-1} \supseteq \text{supp}(\beta^*)$ , har teststørrelsen en asymptotisk standard eksponentiel fordeling

$$T_k^{\text{cov}} \stackrel{d}{\to} Exp(1)$$

- ► Tilfælde hvor vi har ukendt  $\sigma^2$  og n > p:
  - ▶ Teststørrelsen

$$\begin{split} F_k &= \frac{T_k}{\widehat{\sigma}^2/\sigma^2} \\ &= \frac{1}{\widehat{\sigma}^2} \left( \left\langle \mathbf{y}, \mathbf{X} \widehat{\boldsymbol{\beta}}^{\text{lasso}} \left( \lambda_{k+1} \right) \right\rangle - \left\langle \mathbf{y}, \mathbf{X}_{\mathcal{A}_{k-1}} \widetilde{\boldsymbol{\beta}}^{\text{lasso}}_{\mathcal{A}_{k-1}} \left( \lambda_{k+1} \right) \right\rangle \right) \overset{d}{\to} F_{2,n-p}, \end{split}$$

hvor 
$$\widehat{\sigma}^2 = \left\| \mathbf{y} - \mathbf{X} \widehat{\boldsymbol{\beta}}^{OLS} \right\|_2^2 / (n - p).$$

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer





ata

Benchmark modellen

Benchmark modellen
Coordinate descent

Coordinate descent

Lasso modellen og dens generaliseringer



# Polyede lemmaet

► Variableudvælgelse af LARS og lasso kan karakteriseres som et polyede

► Giver p-værdier og konfidensintervaller efter et polyede variableudvælgelse



modellen med anvendelse inden for prædiktion af makroøkonomiske variable

Inferens i lasso

MAOK9 5.2018

Lasso og dens generaliseringer

TG testen

Benchmark modellen

Lasso modellen og dens generaliseringer



Aalborg universitet



► Vi betragter en statisk model på formen

$$\textbf{\textit{y}} = \boldsymbol{\mu} + \boldsymbol{\epsilon}, \ \boldsymbol{\epsilon} \sim \textit{N}\left(\textbf{0}, \sigma^2 \textbf{I}_n\right)$$

hvor  $\mathbf{y} \sim N(\mu, \Sigma)$ ,  $\mu$  er en ukendt  $n \times 1$  vektor, og  $\Sigma$  er en kendt  $n \times n$  matrix.

▶ Betragt polyedet

$$\mathcal{P} = \{ \mathbf{y} : \Gamma \mathbf{y} \geqslant \mathbf{u} \},$$

hvor  $\Gamma$  er en  $m \times n$  matrix,  $\boldsymbol{u}$  er en fast  $m \times 1$  vektor.

- ▶ Vi ønsker, at lave inferens om  $η^T μ$  givet y ∈ P, hvor η er en givet n × 1 vektor
  - $\blacktriangleright \ \mathcal{H}_0: \boldsymbol{\eta}^{\scriptscriptstyle T}\boldsymbol{\mu} = \textbf{0, givet } \boldsymbol{y} \in \mathcal{P}$
- ► Vi udleder en teststørrelse med egenskaben

$$T(\boldsymbol{y}, \mathcal{P}, \boldsymbol{\eta}) \stackrel{\mathbb{P}_0}{\sim} \textit{Unif}(0, 1).$$

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

10 TG testen

Data

Benchmark modellen

Coordinate descent

IC

Lasso modellen og den generaliseringer





### Polyede lemma

For ethvert  $\Sigma$  og  $\eta$ , hvor  $\eta^T \Sigma \eta \neq 0$ , gælder der at

$$\Gamma \textbf{\textit{y}} \geqslant \textbf{\textit{u}} \Leftrightarrow \mathcal{V}^{-}\left(\textbf{\textit{y}}\right) \leqslant \boldsymbol{\eta}^{T} \textbf{\textit{y}} \leqslant \mathcal{V}^{+}\left(\textbf{\textit{y}}\right), \quad \mathcal{V}^{0}\left(\textbf{\textit{y}}\right) \leqslant \textbf{\textit{0}},$$

hvor

$$\mathcal{V}^{-}(\mathbf{y}) = \max_{j:\rho_{j}>0} \frac{u_{j} - (\Gamma \mathbf{y})_{j} + \rho_{j} \mathbf{\eta}^{T} \mathbf{y}}{\rho_{j}}$$

$$\mathcal{V}^{+}(\mathbf{y}) = \min_{j:\rho_{j}<0} \frac{u_{j} - (\Gamma \mathbf{y})_{j} + \rho_{j} \mathbf{\eta}^{T} \mathbf{y}}{\rho_{j}}$$

$$\mathcal{V}^{0}(\mathbf{y}) = \max_{j:\rho_{j}=0} u_{j} - (\Gamma \mathbf{y})_{j},$$

hvor  $\rho=rac{\Gamma\Sigma\eta}{\eta^{T}\Sigma\eta}$ . Yderligere er  $\eta^{T}$  og  $\left(\mathcal{V}^{-}\left(\emph{\emph{y}}\right)$ ,  $\mathcal{V}^{+}\left(\emph{\emph{y}}\right)\mathcal{V}^{0}\left(\emph{\emph{y}}\right)\right)$  uafhængige.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

> tatistisk inferne Covarians testen

TG testen

Data

Benchmark modellen

Coordinate descent

BIC

Lasso modellen og den generaliseringer





- ► Illustrationen er for p = 2, og  $\Sigma = I_n$
- $> y = P_n y + P_{n^{\perp}} y$
- ►  $P_{\eta}$ **y** =  $\eta \eta^{T}$  er projektionen af **y** på  $\eta$



Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infern

Covarians testen

12 TG testen

Benchmark modellen

Coordinate descent

Lasso modellen og dens generaliseringer



Lad  $\Phi$  (x) betegne fordelingsfunktionen af en standard normalfordeling, da er fordelingsfunktionen af en trunkeret normalfordelt stokastisk variabel med middelværdi  $\mu$  og varians  $\sigma^2$  indenfor intervallet [a, b] givet ved

$$F_{\mu,\sigma^{2}}^{[a,b]}(x) = \frac{\Phi\left(\frac{x-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)}{\Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)}.$$

Hvis  $\eta^T \Sigma \eta \neq 0$ , da er  $F_{\eta^T u, \eta^T \Sigma \eta}^{[\mathcal{V}^-, \mathcal{V}^+]} (\eta^T y)$  givet  $\Gamma y \geqslant \mathbf{u}$  en standard uniform fordeling, dvs

$$\mathbb{P}\left(F_{\eta^{\mathsf{T}}\mu,\eta^{\mathsf{T}}\Sigma\eta}^{[\mathcal{V}^{-},\mathcal{V}^{+}]}\left(\eta^{\mathsf{T}}\mathbf{y}\right)\leqslant\alpha\,\big|\,\Gamma\mathbf{y}\geqslant\mathbf{u}\right)=\alpha,$$

for ethvert  $0 \leqslant \alpha \leqslant 1$ 

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

TG testen

Data

Benchmark modellen

coordinate descent

asso modellen og den

generaliseringer





Af polyede lemmaet kan fordeling af enhver lineær funktion  $\eta^T y$  givet  $\Gamma y \geqslant u$  skrives som en følgende betinget fordeling

$$\eta^{\mathsf{T}} y \, \big| \, \mathcal{V}^{-} \, (y) \leqslant \eta^{\mathsf{T}} y \leqslant \mathcal{V}^{+} \, (y)$$
 ,

da  $\eta^T y$  er normalfordeling er overstående trunkeret normalfordelt.

For enhver lineær funktion  $\eta^T y$  kan vi udregne p-værdier for nulhyptesen at  $\mathcal{H}_0: \eta^T y = 0$  og tilhørende betingede konfidensintervaller

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens

Statistisk infernes

Kovarians te

14 TG test

Data

Benchmark modellen

Coordinate descent

Coordinate descent Krydsvalidering

Lasso modellen og den generaliseringer



### **Data**



#### ► Datasæt fra FRED

- ▶ 128 variable
- ► 1. januar 1959 1. november 2017 (707 observationer)
- ► Opdelt i 8 grupper:
  - Output og indkomst ■
  - 2. Arbejdsmarked
  - 3. Bolig
  - Forbrug, ordrer og varebeholdninger
- ► Transformerede datasæt
  - ► 123 variable
  - ► 1. januar 1960 1. juli 2017 (691 observationer)
    - ► Træningsmængde: 1. januar 1960 1. december 2005 (552 observationer)

5. Penge og kredit

8 Aktiemarked

7. Priser

6. Renter og valutakurser

- ► Testmængde: 1. januar 2006 1. juli 2017 (139 observationer)
- ► centre responsvariablen og standardiser prædiktorerne

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk inferne

Kovarians testen

Data

, 5010

Benchmark modellen

rydsvalidering HC

Lasso modellen og der generaliseringer







Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes Kovarians testen

#### 16 Data

Benchmark modellen

Coordinate descent Krydsvalidering

Lasso modellen og den generaliseringer

017

### Benchmark modellen

Den autoregressive model



ightharpoonup ordenen bestemmes ud fra BIC, hvor  $p=1,\ldots,12$ 

| $\widehat{\varphi}_1$ | -0.0162   |
|-----------------------|-----------|
| $\widehat{\Phi}_2$    | 0.1992*** |
| $\widehat{\Phi}_3$    | 0.1873*** |
| $\widehat{\varphi}_4$ | 0.1686*** |
| BIC                   | -3.5651   |
| $R_{adj}^2$           | 12.31%    |
| LogLik                | 211.8617  |

Tabel: Estimationsresultater for en AR (4), BIC, justeret R<sup>2</sup> og log-likehood. Det opløftede symbol betegner signifikans ved henholdsvis \*\*\* 0.1%, \*\*1%, \*5% og †10%.

- ► afviser normalitet samt at de første 10 autokorrelationer er nul
- MAE på 0.1312 og MSE på 0.0272

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

#### Benchmark modellen

generaliseringer





► Antallet af faktorer bestemmes ud fra følgende informationskriterier, hvor  $k = 1, \dots, 20$ :

► 
$$IC_1(k) = \ln V\left(k, \widehat{\mathbf{F}}\right) + k \frac{p+T}{pT} \ln \left(\frac{pT}{p+T}\right),$$

► IC<sub>1</sub> (k) = ln V (k, 
$$\hat{\mathbf{F}}$$
) +  $k \frac{p+T}{pT} \ln \left( \frac{pT}{p+T} \right)$ ,  
► IC<sub>2</sub> (k) = ln V (k,  $\hat{\mathbf{F}}$ ) +  $k \frac{p+T}{pT} \ln \left( \min\{p, T\} \right)$ ,

$$\blacktriangleright \mathsf{IC}_3(k) = \mathsf{In}\,V\left(k,\widehat{\mathbf{F}}\right) + k\frac{\mathsf{In}\left(\mathsf{min}\left\{p,T\right\}\right)}{\mathsf{min}\left\{p,T\right\}},\,$$

hvor 
$$V\left(k,\widehat{\mathbf{F}}\right) = (pT)^{-1} \sum_{j=1}^{p} \sum_{t=1}^{T} \left(x_{jt} - \lambda_j \widehat{\mathbf{F}}_t\right)^2$$
.

- ▶ Lad  $\widehat{\mathbf{Z}} = (\widehat{\mathbf{F}}^T \mathbf{\omega}^T)^T$  være en  $(k+m) \times T$  matrix, hvor  $\widehat{\mathbf{F}}$  er en  $T \times k$  matrix af estimerede faktorer og  $\omega$  er en  $T \times m$  matrix af laggede værdier af arbejdsløshedsraten. Lad m=4, da fjernes de første 4 rækker i  $\widehat{\mathbf{Z}}$ .
- $\blacktriangleright \ \ \text{Parametrene} \ \widehat{\beta} = \left(\widehat{\beta}_{\textbf{F}}^{\, \intercal} \ \widehat{\beta}_{\textbf{G}}^{\, \intercal}\right)^{\! \intercal} \text{ estimeres med OLS}.$

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

generaliseringer

#### Benchmark modellen

generaliseringer

### Benchmark modellen

Faktor modellen



| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                          |          |                                 |                 |             |          |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------|-----------------|-------------|----------|--|--|--|--|--|
| $k$ 6 $-0.3519$ $15.79\%$ $224.3621$ Faktor model (IC <sub>2</sub> )  Værdi IC <sub>2</sub> $R_{adj}^2$ LogLik $k$ 11 $-0.5314$ 16.85% 230.3414 |          | Faktor model (IC <sub>1</sub> ) |                 |             |          |  |  |  |  |  |
| Faktor model (IC <sub>2</sub> )  Værdi IC <sub>2</sub> R <sub>adj</sub> LogLik  k 11 -0.5314 16.85% 230.3414                                    | L        |                                 |                 | ,           | _        |  |  |  |  |  |
| Værdi IC <sub>2</sub> R <sup>2</sup> <sub>adj</sub> LogLik<br>k 11 -0.5314 16.85% 230.3414                                                      | <i>n</i> |                                 | 224.3021        |             |          |  |  |  |  |  |
| k 11 -0.5314 16.85% 230.3414                                                                                                                    |          | Faktor model (IC <sub>2</sub> ) |                 |             |          |  |  |  |  |  |
|                                                                                                                                                 |          | Værdi                           | $IC_2$          | $R^2_{adj}$ | LogLik   |  |  |  |  |  |
| Faktor model (IC <sub>3</sub> )                                                                                                                 | k        | 11                              | -0.5314         | 16.85%      | 230.3414 |  |  |  |  |  |
|                                                                                                                                                 |          | Faktor model (IC <sub>3</sub> ) |                 |             |          |  |  |  |  |  |
| Værdi IC <sub>3</sub> R <sub>adj</sub> LogLik                                                                                                   |          | Værdi                           | IC <sub>3</sub> | $R_{adj}^2$ | LogLik   |  |  |  |  |  |
| k 20 —0.6931 17.87% 238.3753                                                                                                                    | k        | 20                              | -0.6931         | 17.87%      | 238.3753 |  |  |  |  |  |

Tabel: Antal faktorer, værdien af informationskriteriet, justeret  $R^2$  samt log-likehood for faktormodellerne valgt ud fra  $IC_1$ ,  $IC_2$  og  $IC_3$ , som betegnes faktor model ( $IC_1$ ), faktor model ( $IC_2$ ) og faktor model ( $IC_3$ ).

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

tatistisk infernes

ovarians testen

Data

Benchmark modellen

Benchmark modellen

Coordinate descent

Krydsvalidering

Lasso modellen og dens generaliseringer





- ► Faktor model (IC<sub>1</sub>): afviser normalitet, men kan ikke afvise at de første 10 autokorrelationer er nul
- ► Faktor model (IC<sub>2</sub>): kan ikke afvise normalitet samt at de første 10 autokorrelationer er nul

|     | Faktor model (IC <sub>1</sub> ) | Faktor model (IC <sub>2</sub> ) |
|-----|---------------------------------|---------------------------------|
| MAE | 0.1190                          | 0.1111                          |
| MSE | 0.0221                          | 0.0187                          |

Tabel: MAE og MSE for faktor modellerne valgt ud fra IC<sub>1</sub> og IC<sub>2</sub>.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5,2018

Lasso og dens generaliseringer

tatistisk infernes

lovarians testen

) oto

Benchmark modellen

coordinate descent

sso modellen og den

Lasso modellen og den generaliseringer



### Coordinate descent



- ▶ Coordinate descent
  - ► Koordinat k er valgt i iteration t, så er opdatering givet ved

$$\beta_k^{t+1} = \operatorname*{arg\,minf}_{\beta_k} \left( \beta_1^t, \ldots, \beta_{k-1}^t, \beta_k, \beta_{k+1}^t, \ldots, \beta_p^t \right)$$

- ► Krydsvalidering
  - $\triangleright$   $CV_k = \frac{1}{k} \sum_{i=1}^k MSE_i$
- ▶ BIC
  - ►  $BIC = \log \widehat{\sigma_p^2} + \frac{p \log T}{T}$

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Benchmark modellen

Coordinate descent

Lasso modellen og dens generaliseringer





- ▶ Elastik net (CV),  $\alpha = 1$
- ▶ Adaptive lasso med OLS vægte (CV),  $\gamma = 0.5$
- ▶ Adaptive lasso med lasso vægte (CV),  $\gamma = 0.5$

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

Vounziane toeton

Benchmark modellen

Benchmark modellen





Lasso modellen og dens generaliseringer





|                        |                | Lass       | o (CV)  |                  |          | Ridge regression (CV) |                               |        |     |                  |          |
|------------------------|----------------|------------|---------|------------------|----------|-----------------------|-------------------------------|--------|-----|------------------|----------|
|                        | $log(\lambda)$ | MSE        | р       | R <sub>adj</sub> | LogLik   |                       | $log(\lambda)$                | MSE    | р   | $R_{adj}^2$      | LogLik   |
| $\lambda_{min}$        | -6.6361        | 0.0019     | 28      | 94.52%           | 983.956  | $\lambda_{min}$       | -4.3800                       | 0.0045 | 126 | 93.96%           | 1014.633 |
| $\lambda_{\text{1sd}}$ | <b>-5.7057</b> | 0.0020     | 14      | 94.46%           | 973.765  | $\lambda_{1sd}$       | -4.1939                       | 0.0047 | 126 | 93.96 %          | 1014.633 |
| Group lasso (CV)       |                |            |         |                  |          |                       | Adap. lasso m. OLS vægte (CV) |        |     |                  |          |
|                        | log (\lambda)  | MSE        | р       | R <sub>adj</sub> | LogLik   |                       | log (\lambda)                 | MSE    | р   | R <sub>adi</sub> | LogLik   |
| $\lambda_{min}$        | -8.2644        | 0.0022     | 126     | 93.96%           | 1014.633 | $\lambda_{min}$       | -5.1333                       | 0.0018 | 5   | 94.44%           | 968.274  |
| $\lambda_{\text{1sd}}$ | <b>-7.6365</b> | 0.0023     | 119     | 94.03%           | 1013.333 | $\lambda_{1sd}$       | <b>-3.4586</b>                | 0.0019 | 2   | 94.28%           | 959.0402 |
|                        | Adap           | . lasso m. | lasso v | ægte (CV)        |          |                       |                               |        |     |                  |          |
|                        | $log(\lambda)$ | MSE        | р       | $R_{adj}^2$      | LogLik   |                       |                               |        |     |                  |          |
| $\lambda_{\text{min}}$ | -6.3897        | 0.0017     | 6       | 94.48%           | 970.5874 |                       |                               |        |     |                  |          |
| $\lambda_{1sd}$        | -3.5057        | 0.0018     | 2       | 94.28%           | 959.0402 |                       |                               |        |     |                  |          |

Tabel: Logaritmen af  $\lambda_{min}$  og  $\lambda_{1sd}$ , gennemsnitlig krydsvalideringsfejl, som er målt i MSE, antallet af parametre, justeret R² og log-likelihood for lasso og dens generaliseringer. De valgte tuning parametre er markeret med tykt.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

varians testen

Data

Benchmark modellen

Saardinata daasant

Coordinate des Krydsvalidering

Lasso modellen og dens generaliseringer

Out-of-sample

44







Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Benchmark modellen

Krydsvalidering

Lasso modellen og dens generaliseringer





| Prædiktor       | Koefficient | Z-score | <i>p</i> -værdi | Konfidensinterval | $\left[\mathcal{V}^{-}$ , $\mathcal{V}^{+} ight]$ |
|-----------------|-------------|---------|-----------------|-------------------|---------------------------------------------------|
| DPCERA3M086SBEA | -0.002      | -1.362  | 0.671           | [-0.009, 0.027]   | [0.002, 0.004]                                    |
| IPDMAT          | -0.003      | -1.113  | 0.265           | [-0.012, 0.006]   | [0.000, 0.004]                                    |
| HWIURATIO       | 0.002       | 0.717   | 0.199           | [-0.003, 0.014]   | [-0.002, 0.004]                                   |
| CLF16OV         | 0.243       | 36.671  | 0               | [0.232, 0.259]    | [0.203, 0.252]                                    |
| CE16OV          | -0.266      | -37.393 | 0               | [-0.280, -0.254]  | [0.230, 0.278]                                    |
| UEMPLT5         | 0.001       | 0.240   | 0.402           | [-0.005, 0.008]   | [-0.011, 0.009]                                   |
| UEMP5TO14       | 0.000       | -0.118  | 0.430           | [-0.006, 0.004]   | [-0.010, 0.005]                                   |
| UEMP15OV        | 0.004       | 1.593   | 0.056           | [0.000, 0.009]    | [-0.006, 0.013]                                   |
| PAYEMS          | 0.001       | 0.280   | 0.219           | [-0.007, 0.030]   | [-0.002, 0.002]                                   |
| USCONS          | -0.002      | -0.883  | 0.566           | [-0.009, 0.016]   | [0.001, 0.004]                                    |
| TB6MS           | -0.001      | -0.480  | 0.682           | [-0.009, 0.026]   | [0.000, 0.004]                                    |
| GS5             | -0.003      | -1.130  | 0.219           | [-0.025, 0.007]   | [0.001, 0.004]                                    |
| EXUSUKx         | 0.003       | 1.307   | 0.870           | [-0.071, 0.003]   | [0.002, 0.006]                                    |
| lag1            | -0.009      | -4.065  | 0.003           | [-0.013, -0.004]  | [0.005, 0.015]                                    |

Tabel: Koefficienter, Z-scores, p-værdier, konfidensintervaller og trunkeret intervaller for lasso<sub>76</sub> (CV). Den estimeres standard afvigelse er 0.043, og resultaterne er for  $\lambda_{76} = \lambda_{1sd} \cdot 548 \approx 1.823$  med  $\alpha = 0.1$ .

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

ovarians testen

. .

Benchmark modellen

'a a sella a ta a la a a a a t



Lasso modellen og dens

generaliseringer



### BIC

▶ Elastik net (BIC),  $\alpha = 1$ 

▶ Adaptive lasso med OLS vægte (BIC),  $\gamma = 2$ • Adaptive lasso med lasso vægte (BIC),  $\gamma = 0.5$ 



modellen med anvendelse inden for prædiktion af makroøkonomiske variable

Inferens i lasso

MAOK9 5.2018

generaliseringer

Statistisk infernes

Benchmark modellen

Lasso modellen og dens generaliseringer





|                   |                                                           | Lasso          | (BIC)   |                            |                    | Ridge regression (BIC) |                                                           |                |                 |                            |                    |  |
|-------------------|-----------------------------------------------------------|----------------|---------|----------------------------|--------------------|------------------------|-----------------------------------------------------------|----------------|-----------------|----------------------------|--------------------|--|
| $\lambda_{BIC}$   | $\begin{array}{c} \log{(\lambda)} \\ -6.2639 \end{array}$ | BIC<br>-6.1608 | р<br>17 | R <sub>adj</sub><br>94.46% | LogLik<br>974.9938 | $\lambda_{\text{BIC}}$ | $\begin{array}{c} \log{(\lambda)} \\ -4.4730 \end{array}$ | BIC<br>-3.3230 | <i>p</i><br>126 | R <sub>adj</sub><br>93.96% | LogLik<br>1014.633 |  |
| Group lasso (BIC) |                                                           |                |         |                            |                    |                        | Adap. lasso m. OLS vægte (BIC)                            |                |                 |                            |                    |  |
| $\lambda_{BIC}$   | $\begin{array}{c} \log{(\lambda)} \\ -7.2876 \end{array}$ | BIC<br>-5.0721 | р<br>99 | R <sub>adj</sub><br>94.17% | LogLik<br>1007.311 | $\lambda_{\text{BIC}}$ | $\begin{array}{c} \log{(\lambda)} \\ -4.3308 \end{array}$ | BIC<br>-6.3143 | р<br>2          | R <sub>adj</sub><br>94.28% | Loglik<br>959.0402 |  |
|                   | Adap                                                      | . lasso m. la  | sso va  | ægte (BIC)                 |                    |                        |                                                           |                |                 |                            |                    |  |
| $\lambda_{BIC}$   | log (λ)<br>-4.9440                                        | BIC<br>-6.3191 | р<br>3  | R <sub>adj</sub><br>94.4%  | LogLik<br>965.2423 |                        |                                                           |                |                 |                            |                    |  |

Tabel: Logaritmen af  $\lambda_{BIC}$ , antallet af parametre, BIC, justerede  $R^2$  og log-likelihood for lasso og dens generaliseringer.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

Kovarians testen

Dat

Benchmark modellen

coordinate descent

7 BI

Lasso modellen og dens

generaliseringer









Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

Kovarians testen

Doto

Benchmark modellen

oordinate descent

28 BIC

Lasso modellen og dens generaliseringer



| Prædiktor       | Koefficient | Z-score | <i>p</i> -værdi | Konfidensinterval | $\left[\mathcal{V}^{-}$ , $\mathcal{V}^{+} ight]$ |
|-----------------|-------------|---------|-----------------|-------------------|---------------------------------------------------|
| DPCERA3M086SBEA | -0.002      | -0.960  | 0.093           | [-0.071, 0.003]   | [0.001, 0.002]                                    |
| IPDMAT          | -0.002      | -0.680  | 0.159           | [-0.032, 0.005]   | [-0.001, 0.002]                                   |
| CLF16OV         | 0.241       | 36.686  | 0               | [0.235, 0.350]    | [0.200, 0.242]                                    |
| CE160V          | -0.264      | -37.339 | 0               | [-0.455, -0.260]  | [0.142, 0.264]                                    |
| UEMPLT5         | 0.000       | 0.027   | 0.777           | [-0.029, 0.005]   | [-0.001, 0.013]                                   |
| UEMP5TO14       | -0.001      | -0.266  | 0.599           | [-0.007, 0.014]   | [-0.001, 0.004]                                   |
| UEMP15OV        | 0.004       | 1.299   | 0.249           | [-0.005, 0.008]   | [0.001, 0.010]                                    |
| CLAIMSx         | 0.001       | 0.387   | 0.689           | [-0.030, 0.011]   | [0.000, 0.002]                                    |
| USCONS          | -0.001      | -0.591  | 0.100           | [-0.088, 0.004]   | [0.000, 0.001]                                    |
| USTRADE         | 0.000       | -0.118  | 0.988           | $[0.007, \infty)$ | [0.000, 0.006]                                    |
| AMDMNOx         | -0.002      | -0.813  | 0.641           | [-0.008, 0.020]   | [0.001, 0.004]                                    |
| TB6MS           | -0.001      | -0.415  | 0.677           | [-0.008, 0.023]   | [0.000, 0.005]                                    |
| GS5             | -0.003      | -1.207  | 0.144           | [-0.032, 0.005]   | [0.001, 0.004]                                    |
| EXUSUKx         | 0.003       | 1.449   | 0.303           | [-0.007, 0.012]   | [0.002, 0.004]                                    |
|                 | 0.002       | 0.855   | 0.865           | [-0.054, 0.003]   | [0.001, 0.009]                                    |
| lag 1           | -0.010      | -4.362  | 0.499           | [-0.011, 0.033]   | [0.009, 0.021]                                    |
| lag 4           | 0.002       | 1.106   | 0.311           | [-0.014, 0.028]   | [0.001, 0.003]                                    |

**Tabel:** Koefficienter, Z-scores, p-værdier, konfidensintervaller og trunkeret intervaller for lasso $_{TG}$ (BIC). Den estimeres standard afvigelse er 0.043, og resultaterne er for  $\lambda_{TG} = \lambda_{BIC} \cdot 548 \approx 1.0432$  $med \alpha = 0.1$ 

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

Benchmark modellen

Lasso modellen og dens generaliseringer



### LARS



- ► Fitter en model for hvert trin
  - ► LARS algoritmen foretager 127 trin
  - ► LARS algoritmen med lasso modifikationen udfører 192 trin
- ▶ Igen anvendes krydsvalidering og BIC til at estimere tuning parameteren, som for LARS algoritmen er fraktionen af  $\ell_1$ -normen  $f = \frac{|\beta|}{\max |\beta|}$ , hvor  $f \in [0, 1]$ .
  - ightharpoonup f = 0: ingen variabler tilføiet til den aktive mængde
  - ightharpoonup f = 1: alle variable inkluderet

Inferens i lasso modellen med anyendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Benchmark modellen

Lasso modellen og dens generaliseringer







Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Benchmark modellen

Lasso modellen og dens

generaliseringer

Figur: 10-fold krydsvalideringsfeil som funktion af fraktionen af  $\ell_1$ -normen LARS og lasso LARS.





|   | LARS (CV) |               |   |       |                    |   |  | Lasso LARS (CV) |   |                  |         |  |
|---|-----------|---------------|---|-------|--------------------|---|--|-----------------|---|------------------|---------|--|
| f | Værdi     | MSE<br>0.0019 | , | a a g | LogLik<br>974.8317 | 1 |  | MSE<br>0.0019   | , | R <sub>adj</sub> | Loglike |  |
|   |           |               |   |       | 967.2669           |   |  |                 |   |                  |         |  |

**Tabel:** Værdien af  $f_{\min}$  og  $f_{1sd}$ , gennemsnitlig krydsvalideringsfejl, som er målt i MSE, antallet af parametre, justeret  $R^2$  og log-likelihood for LARS og lasso LARS. De valgte tuning parametre er markeret med tykt.

▶ 22 trin udføres for lasso LARS (CV), hvor variablerne CUMFNS, MANEMP og GS1 tilføjes og fjernes igen og variablen TB6MS bliver tilføjet, fjernet og så tilføjet igen.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk inferne

Covarians testen

Data

Benchmark modellen

oordinate descent

32 Lasso modellen og dens generaliseringer







Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Benchmark modellen

Lasso modellen og dens generaliseringer

Figur: Estimerede koefficienter for LARS (CV) og lasso LARS (CV).



| Prædiktor | Cov test | <i>p</i> -værdi |
|-----------|----------|-----------------|
| HWIURATIO | 864.6317 | 0               |
| UEMP15OV  | 161.3770 | 0               |
| UEMPLT5   | 163.0670 | 0               |
| UEMP5TO14 | 122.3840 | 0               |
| CE16OV    | 14.7416  | 0               |
| PAYEMS    | 0.3356   | 0.7151          |
| USGOOD    | 5.0872   | 0.0066          |
| CLF16OV   | 221.9181 | 0               |
| IPDMAT    | 0.0668   | 0.9354          |
| GS5       | 0.3856   | 0.6803          |
| lag1      | 0.8897   | 0.4115          |
| TB6MS     | 0.0419   | 0.9590          |
| USCONS    | 0.0132   | 0.9869          |
|           |          |                 |

Tabel: Kovarians testen for lasso LARS (CV). Vi viser kun p-værdier for prædiktorer som medtages og bliver i modellen, dvs hvis en prædiktor medtages i et trin og senere forlader modellen, vises denne prædiktor ikke. p-værdier  $< 2.2 \cdot 10^{-16}$  sættes lig 0.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

atistisk infernes

ovarians testen

ata

Benchmark modellen

oordinate descent

ryasvai IC

Lasso modellen og dens generaliseringer





| Prædiktor       | Koefficient | Z-score | p-værdi | Konfidensinterval   | [V-,V+]        |
|-----------------|-------------|---------|---------|---------------------|----------------|
| HWIURATIO       | 0.002       | 0.694   | 0.160   | $(-\infty, \infty)$ | [0.002, 0.002] |
| UEMP15OV        | 0.004       | 1.606   | 0.923   | $(-\infty, 0.032]$  | [0.004, 0.005  |
| UEMPLT5         | 0.001       | 0.149   | 0.064   | $[-0.018, \infty)$  | [0.000, 0.001] |
| MANEMP          | 0.002       | 0.486   | 0.273   | $[-0.171, \infty)$  | [0.002, 0.003] |
| UEMP5TO14       | -0.001      | -0.242  | 0.077   | $(-\infty, 0.016]$  | [0.000, 0.001] |
| CE16OV          | -0.267      | -37.446 | 0.130   | $(-\infty, 0.532]$  | [0.267, 0.267] |
| PAYEMS          | 0.000       | 0.006   | 0.563   | $(-\infty, \infty)$ | [0.000, 0.000] |
| USGOOD          | -0.003      | -0.498  | 0.638   | $(-\infty, \infty)$ | [0.003, 0.003] |
| CUMFNS          | 0.002       | 0.404   | 0.478   | $(-\infty, \infty)$ | [0.002, 0.002] |
| CLF16OV         | 0.243       | 36.643  | 0.179   | $(-\infty, \infty)$ | [0.243, 0.243] |
| IPDMAT          | -0.006      | -1.626  | 0.874   | $[-0.125, \infty)$  | [0.006, 0.006] |
| TB6MS           | -0.005      | -0.715  | 0.569   | $(-\infty, \infty)$ | [0.005, 0.006] |
| INDPRO          | 0.003       | 0.513   | 0.328   | $(-\infty, \infty)$ | [0.003, 0.003] |
| GS1             | 0.006       | 0.577   | 0.473   | $(-\infty, \infty)$ | [0.006, 0.006] |
| GS5             | -0.005      | -1.146  | 0.037   | $(-\infty, -0.025]$ | [0.005, 0.005] |
| lag1            | -0.009      | -3.949  | 0.910   | $(-\infty, \infty)$ | [0.009, 0.009] |
| DPCERA3M086SBEA | -0.003      | -1.436  | 0.233   | $(-\infty, \infty)$ | [0.003, 0.003] |
| EXUSUKx         | 0.003       | 1.383   | 0.964   | $(-\infty, -0.053]$ | [0.003, 0.003] |
| CLAIMSx         | 0.002       | 0.813   | 0.226   | $(-\infty, \infty)$ | [0.002, 0.002] |

**Tabel:** Koefficienter, Z-scores, p-værdier, konfidensintervaller og trunkeret intervaller for LARS<sub>TG</sub> (CV). Den estimeres standard afvigelse er 0.043, og resultaterne er for  $f_{\rm lad} = 0.2542$  med  $\alpha = 0.1$ .

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

tatistisk infernes

ovarians testen

.

Benchmark modellen

Coordinate descent

ryasvaliae BIC

Lasso modellen og dens generaliseringer







|           |                 | LARS |  |                    | Lasso L | ARS (I | BIC) |  |  |
|-----------|-----------------|------|--|--------------------|---------|--------|------|--|--|
| $f_{BIC}$ | Værdi<br>0.2623 |      |  | LogLik<br>975.2909 |         |        |      |  |  |

Tabel: Værdien af  $f_{BIC}$ , antallet af parametre, BIC, justeret  $R^2$  og log-likelihood for LARS og lasso LARS.

 32 trin udføres for lasso LARS (BIC), hvor variablerne CUMFNS, MANEMP, GS1, HWIURATIO, PAYMENS og USGOOD tilføjes og fjernes igen og variablen TB6MS bliver tilføjet, fjernet og så tilføjet igen. Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk inferne

Kovarians testen

Data

Benchmark modellen

oordinate descent

Lasso modellen og dens generaliseringer









Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Benchmark modellen

Lasso modellen og dens

generaliseringer







| Prædiktor       | Cov test | <i>p</i> -værdi |
|-----------------|----------|-----------------|
| UEMP15OV        | 161.3770 | 0               |
| UEMPLT5         | 163.0670 | 0               |
| UEMP5TO14       | 122.3840 | 0               |
| CE16OV          | 14.7416  | 0               |
| CLF16OV         | 221.9181 | 0               |
| IPDMAT          | 0.0668   | 0.9354          |
| GS5             | 0.3856   | 0.6803          |
| lag1            | 0.8897   | 0.4115          |
| TB6MS           | 0.0419   | 0.9590          |
| USCONS          | 0.0132   | 0.9869          |
| DPCERA3M086SBEA | 0.0254   | 0.9750          |
| EXUSUKx         | 0.2309   | 0.7939          |
| CLAIMSx         | 0.0082   | 0.9919          |
| AMDMNOx         | 0.0464   | 0.9546          |
| lag4            | 0.2281   | 0.7962          |
|                 | 0.0719   | 0.9307          |
| USTRADE         | 0.0029   | 0.9971          |

Tabel: Kovarians testen for lasso LARS (BIC). Vi viser kun p-værdier for prædiktorer som medtages og bliver i modellen, dvs hvis en prædiktor medtages i et trin og senere forlader modellen, vises denne prædiktor ikke. p-værdier  $< 2.2 \cdot 10^{-16}$  sættes lig 0.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

tatistisk infernes

ovarians testen

D - 4 -

Benchmark modellen

oordinate descent

Lasso modellen og dens

generaliseringer







| Prædiktor       | Koefficient | Z-score | <i>p</i> -værdi | Konfidensinterval   | $\left[ \mathscr{V}^{-},\mathscr{V}^{+}\right]$ |
|-----------------|-------------|---------|-----------------|---------------------|-------------------------------------------------|
| HWIURATIO       | 0.002       | 0.720   | 0.161           | $(-\infty, \infty)$ | [0.002, 0.002]                                  |
| UEMP15OV        | 0.004       | 1.596 4 | 0.920           | $(-\infty, 0.034]$  | [0.004, 0.005]                                  |
| UEMPLT5         | 0.001       | 0.148   | 0.065           | $[-0.018, \infty)$  | [0.000, 0.001]                                  |
| MANEMP          | 0.003       | 0.561   | 0.766           | $(-\infty, 0.120]$  | [0.003, 0.003                                   |
| UEMP5TO14       | 0.001       | -0.261  | 0.093           | $(-\infty, 0.023]$  | [0.000, 0.001]                                  |
| CE16OV          | -0.267      | -37.412 | 0.130           | $(-\infty, 0.574]$  | [0.266, 0.267]                                  |
| PAYEMS          | 0.000       | 0.012   | 0.428           | $(-\infty, \infty)$ | [0.000, 0.000                                   |
| USGOOD          | -0.004      | -0.584  | 0.721           | $(-\infty, \infty)$ | [0.004, 0.004                                   |
| CUMFNS          | 0.002       | 0.390   | 0.455           | $(-\infty, \infty)$ | [0.002, 0.002                                   |
| CLF16OV         | 0.243       | 36.646  | 0.179           | $(-\infty, \infty)$ | [0.243, 0.243]                                  |
| IPDMAT          | -0.006      | -1.618  | 0.869           | $[-0.130, \infty)$  | [0.006, 0.006                                   |
| TB6MS           | -0.006      | -0.790  | 0.615           | $(-\infty, \infty)$ | [0.006, 0.006                                   |
| INDPRO          | 0.003       | 0.591   | 0.494           | $(-\infty, \infty)$ | [0.003, 0.003                                   |
| GS1             | 0.007       | 0.675   | 0.571           | $(-\infty, \infty)$ | [0.007, 0.007                                   |
| GS5             | -0.006      | -1.240  | 0.302           | $(-\infty, \infty)$ | [0.006, 0.006                                   |
| lag1            | -0.009      | -3.914  | 0.912           | $(-\infty, \infty)$ | [0.009, 0.009                                   |
| DPCERA3M086SBEA | -0.002      | -1.331  | 0.225           | $(-\infty, \infty)$ | [0.002, 0.002                                   |
| EXUSUKx         | 0.003       | 1.357   | 0.964           | $(-\infty, -0.051]$ | [0.003, 0.003                                   |
| CLAIMSx         | 0.001       | 0.629   | 0.208           | $(-\infty, \infty)$ | [0.001, 0.001]                                  |
| AMDMNOx         | -0.002      | -0.904  | 0.855           | $(-\infty, \infty)$ | [0.002, 0.002                                   |

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

ovarians testen

D - t -

Benchmark modellen

Benchmark modellen

Krydsvalid BIC

Lasso modellen og dens generaliseringer

Out-of-sample

**Tabel:** Koefficienter, Z-scores, p-værdier, konfidensintervaller og trunkeret intervaller for LARS<sub>TG</sub> (BIC). Den estimeres standard afvigelse er 0.043, og resultaterne er for  $\widehat{f}_{BIC} = 0.2623$  med  $\alpha = 0.1$ .

# Oversigt over in-sample resultater



| Inkluderingsrate | Variable  | Beskrivelse                                |
|------------------|-----------|--------------------------------------------|
| 100%             | CLF16OV   | Civilarbejdsstyrke                         |
| 100%             | CE16OV    | Civilbeskæftigelse                         |
| 94.44%           | lag 1     | Den tidligere værdi af arbejdsløshedsraten |
| 88.89%           | IPDMAT    | Holdbart materiale                         |
| 88.89%           | UEMPLT5   | Civile arbejdsløse - mindre end 5 uger     |
| 88.89%           | UEMP5TO14 | Civile arbejdsløse i 5 - 14 uger           |
| 88.89%           | UEMP15OV  | Civile arbejdsløse i 15 - 26 uger          |
| 88.89%           | TB6MS     | 6-måneders statsskat                       |
| 88.89%           | GS5       | 5-årig statsobligationsrente               |

Tabel: Inkluderingsraten af de 9 hyppigst valgte variable for de ialt 18 modeller samt beskrivelse af variablerne.

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Benchmark modellen

Lasso modellen og dens generaliseringer



# Out-of-sample



|                                  | MAE    | $R^{MAE}$ | MSE    | $R^{MSE}$ |
|----------------------------------|--------|-----------|--------|-----------|
| Benchmark model                  | 0.1111 | 1         | 0.0187 | 1         |
| AR(4)                            | 0.1312 | 1.1811    | 0.0272 | 1.454     |
| Faktor model (IC <sub>1</sub> )  | 0.119  | 1.0717    | 0.0221 | 1.1798    |
| Lasso (CV)                       | 0.032  | 0.2877    | 0.0016 | 0.0876    |
| Lasso (BIC)                      | 0.0308 | 0.277     | 0.0015 | 0.0795    |
| Ridge regression (CV)            | 0.0582 | 0.5239    | 0.0052 | 0.28      |
| Ridge regression (BIC)           | 0.0573 | 0.5155    | 0.0051 | 0.270     |
| Group lasso (CV)                 | 0.0352 | 0.3168    | 0.0019 | 0.1042    |
| Group lasso (BIC)                | 0.0382 | 0.3437    | 0.0022 | 0.1202    |
| Adap. lasso m. OLS vægte (CV)    | 0.0304 | 0.2733    | 0.0014 | 0.0729    |
| Adap. lasso m. OLS vægte (BIC)   | 0.0310 | 0.2787    | 0.0014 | 0.0743    |
| Adap. lasso m. lasso vægte (CV)  | 0.0298 | 0.2684    | 0.0013 | 0.071     |
| Adap. lasso m. lasso vægte (BIC) | 0.0304 | 0.274     | 0.0014 | 0.0729    |
| $Lasso_{TG}$ (CV)                | 0.0303 | 0.2724    | 0.0014 | 0.0744    |
| Lasso <sub>TG</sub> (BIC)        | 0.031  | 0.279     | 0.0014 | 0.076     |
| LARS (CV)                        | 0.0307 | 0.2761    | 0.0015 | 0.080     |
| LARS (BIC)                       | 0.0305 | 0.2747    | 0.0015 | 0.0793    |
| Lasso LARS (CV)                  | 0.0352 | 0.317     | 0.002  | 0.1089    |
| Lasso LARS (BIC)                 | 0.0322 | 0.2901    | 0.0017 | 0.090     |
| LARS <sub>TG</sub> (CV)          | 0.0300 | 0.2701    | 0.0014 | 0.0745    |
| LARS <sub>TG</sub> (BIC)         | 0.0301 | 0.2708    | 0.0014 | 0.0750    |

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

ovarians testen

Data

Benchmark modellen

Benchmark modellen

oordinate descen Grydsvalidering

Lasso modellen og dens

Lasso modellen og der generaliseringer

Out-of-sample

**Tabel:** Den gennemsnitlige absolutte og kvadrerede fejl samt gennemsnitlig tabs ratio mellem hver model og benchmark modellen.



# Out-of-sample





Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

Lasso og dens generaliseringer

Statistisk infernes

Kovarians testen

10 103

Benchmark modellen

oordinate descent

Coordinate desce

Lasso modellen og der

generaliseringer

Figur: Rullende gennemsnitlig absolut tabs ratio.

### Out-of-sample Diebold-Mariano testen



|                                  | Absolutte fejl         | Kvadrerede fej         |
|----------------------------------|------------------------|------------------------|
| AR(4)                            | 0.0021                 | 0.0032                 |
| Faktor model (IC <sub>1</sub> )  | 0.1692                 | 0.1183                 |
| Lasso (CV)                       | 0                      | $2.933 \cdot 10^{-12}$ |
| Lasso (BIC)                      | 0                      | $2.728 \cdot 10^{-12}$ |
| Ridge regression (CV)            | $6.418 \cdot 10^{-13}$ | $3.551 \cdot 10^{-9}$  |
| Ridge regression (BIC)           | $2.85 \cdot 10^{-13}$  | $2.507 \cdot 10^{-9}$  |
| Group lasso (CV)                 | 0                      | $5.999 \cdot 10^{-12}$ |
| Group lasso (BIC)                | 0                      | $8.845 \cdot 10^{-12}$ |
| Adap. lasso m. OLS vægte (CV)    | 0                      | $2.797 \cdot 10^{-12}$ |
| Adap. lasso m. OLS vægte (BIC)   | 0                      | $2.905 \cdot 10^{-12}$ |
| Adap. lasso m. lasso vægte (CV)  | 0                      | $2.676 \cdot 10^{-12}$ |
| Adap. lasso m. lasso vægte (BIC) | 0                      | $2.814 \cdot 10^{-12}$ |
| Lasso <sub>TG</sub> (CV)         | 0                      | 0                      |
| Lasso <sub>TG</sub> (BIC)        | 0                      | 0                      |
| LARS (CV)                        | 0                      | $2.64 \cdot 10^{-12}$  |
| LARS (BIC)                       | 0                      | $2.615 \cdot 10^{-12}$ |
| Lasso LARS (CV)                  | 0                      | $4.694 \cdot 10^{-12}$ |
| Lasso LARS (BIC)                 | 0                      | $3.328 \cdot 10^{-12}$ |
| LARS <sub>TG</sub> (CV)          | 0                      | 0                      |
| $LARS_{TG}$ (BIC)                | 0                      | 0                      |

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

generaliseringer

Benchmark modellen

Lasso modellen og dens generaliseringer

Out-of-sample

Tabel: p-værdier for Diebold-Mariano testen for hver model imod benchmark modellen. p-værdier  $< 2.2 \cdot 10^{-16}$  sættes til 0.



# Out-of-sample



| $T_R$                            |                                  | T <sub>max</sub>                 |                                 |  |
|----------------------------------|----------------------------------|----------------------------------|---------------------------------|--|
| $\alpha = 0.1$                   | $\alpha = 0.2$                   | $\alpha = 0.1$                   | $\alpha = 0.2$                  |  |
| Benchmark model                  | Benchmark model                  | Benchmark model                  | Benchmark model                 |  |
| AR(4)                            | AR(4)                            | AR(4)                            | AR(4)                           |  |
| Lasso (CV)                       | Lasso (CV)                       | Faktor (IC <sub>1</sub> )        | Lasso (CV)                      |  |
| Lasso (BIC)                      | Lasso (BIC)                      | Lasso (CV)                       | Lasso (BIC)                     |  |
| Group lasso (CV)                 | Group lasso (CV)                 | Lasso (BIC)                      | Ridge regression (CV)           |  |
| Group lasso (BIC)                | Group lasso (BIC)                | Ridge regression (CV)            | Ridge regression (BIC)          |  |
| Adap. lasso m. OLS vægte (CV)    | Adap. lasso m. OLS vægte (CV)    | Ridge regression (BIC)           | Group lasso (CV)                |  |
| Adap. lasso m. OLS vægte (BIC)   | Adap. lasso m. OLS vægte (BIC)   | Group lasso (CV)                 | Group lasso (BIC)               |  |
| Adap. lasso m. lasso vægte (CV)  | Adap. lasso m. lasso vægte (CV)  | Group lasso (BIC)                | Adap. lasso m. OLS vægte (CV)   |  |
| Adap. lasso m. lasso vægte (BIC) | Adap. lasso m. lasso vægte (BIC) | Adap. lasso m. OLS vægte (CV)    | Adap. lasso m. OLS vægte (BIC)  |  |
| $Lasso_{\mathit{TG}}$ (BIC)      | $Lasso_{TG}$ (BIC)               | Adap. lasso m. OLS vægte (BIC)   | Adap. lasso m. lasso vægte (CV) |  |
| LARS (CV)                        | LARS (CV)                        | Adap. lasso m. lasso vægte (CV)  | Adap. lasso m. lasso vægte (BIC |  |
| LARS (BIC)                       | LARS (BIC)                       | Adap. lasso m. lasso vægte (BIC) | $Lasso_{TG}$ (CV)               |  |
| Lasso LARS (CV)                  | Lasso LARS (CV)                  | Lasso $_{TG}$ (CV)               | $Lasso_{TG}$ (BIC)              |  |
| Lasso LARS (BIC)                 | Lasso LARS (BIC)                 | Lasso $_{TG}$ (BIC)              | LARS (CV)                       |  |
|                                  |                                  | LARS (CV)                        | LARS (BIC)                      |  |
|                                  |                                  | LARS (BIC)                       | Lasso LARS (CV)                 |  |
|                                  |                                  | Lasso LARS (CV)                  | Lasso LARS (BIC)                |  |
|                                  |                                  | Lasso LARS (BIC)                 | $LARS_{TG}$ (CV)                |  |
|                                  |                                  | $LARS_{TG}$ (CV)                 | LARS <sub>TG</sub> (BIC)        |  |
|                                  |                                  | $LARS_{TG}$ (BIC)                |                                 |  |

Inferens i lasso modellen med anvendelse inden for prædiktion af makroøkonomiske variable

MAOK9 5.2018

generaliseringer

Statistisk infernes

Benchmark modellen

Lasso modellen og dens generaliseringer

Out-of-sample

Tabel: 80% og 90% model confidence set for arbejdsløshedsraten for absolutte og kvadrerede fejl.