Practice Exam 1 Solutions

R	S	Theta	Phi	E	F
-0.5	0.5	0	0	.5	0
0.5	0.5	90	90	1	0
-0.5	0.5	0	0	0.5	0.5

R	S	Theta	Phi	E	F
0.6	0.6	0	0	0	0.4
0.4	0.4	0	0	0	0
0.4	0.4	0	0	0.6	0
0.2	0.2	0	0	0.4	0

- 2. (a) There are three pieces, each scaled by 0.5. The dimension is given by the similarity dimension formula d = Log(N)/Log(1/r) = Log(3)/Log(2).
- (b) $r_1 = 0.6$, $r_2 = r_3 = 0.4$, $r_4 = 0.2$. Because some of the r_i are different, we must use the Moran equation

$$.6^{d} + 2*.4^{d} + .2^{d} = 1.$$

These scaling factors are not integer powers of a common number. Proving this is a bit tricky, so simply stating it suffices.

1 of 4 8/20/12 10:08 AM

3. The time series is divided into five regimes.

For points in A, all combinations of T_1 , T_2 , and T_3 are applied, giving a gasket with corners (0,0), (1,0), and (0,1).

For points in B, only T₃ is applied and the driven IFS points move toward corner (0,1).

For points in C, all combinations of T_3 and T_4 are applied, giving the line between (0,1) and (1,1).

For points in D, only T_4 is applied and the driven IFS points move toward corner (1,1).

For points in E, all combinations of T_2 and T_4 are applied, giving the line between (1,0) and (1,1).

4. From the driven IFS

we see (1) has empty length 2 addresses 14, 41, and 43, while (2) has empty length 2 addresses 23, 31, and 32.

2 of 4 8/20/12 10:08 AM

So in (1) these combinations are forbidden:

 T_1 cannot follow T_4 , T_4 cannot follow T_1 , and T_4 cannot follow T_3 .

This is indicated by table (i)

In (2) these combinations are forbidden:

 T_2 cannot follow T_3 , T_3 cannot follow T_1 , and T_3 cannot follow T_2 .

This is indicated by table (ii)

5. (a) Apply twice the intersection rule:

$$\dim(A\cap(B\cap C)) = \dim(A) + \dim(B\cap C) - n = \dim(A) + (\dim(B) + \dim(C) - n) - n = \dim(A) + \dim(B) + \dim(C) - 2n$$

- (b) $\dim(A \cap B \cap C) = 3 \log(3)/\log(2) 2 \cdot 2 = 0.755$.
- (c) $\dim(A \cap B \cap C) = 3 \log(3)/\log(2) 2 \cdot 3 = -1.245$.

6. For N = 4 the similarity dimension formula gives d = Log(4)/Log(1/r).

If r > 1/2, then 1/r < 2 so Log(1/r) < Log(2) and we have

$$d = Log(4)/Log(1/r) > Log(4)/Log(2) = Log(2^2)/Log(2) = 2Log(2)/Log(2) = 2$$

If r > 1/2, we see the pieces of the fractal overlap:

The similarity dimension formula works only if the pieces do not overlap too much. For r > 1/2 the overlap is too large.

4 of 4