教育數據探勘與應用#3

陸嘉康 110590045

8.12 Threshold: 0.5

Tuple 1: P (0.95 >= 0.5) → TP Tuple 2: N (0.85 >= 0.5) → FP Tuple 3: P (0.78 >= 0.5) → TP Tuple 4: P (0.66 >= 0.5) → TP Tuple 5: N (0.60 >= 0.5) → FP Tuple 6: P (0.55 >= 0.5) → TP Tuple 7: N (0.53 >= 0.5) → FP Tuple 8: N (0.52 >= 0.5) → FP Tuple 9: N (0.51 >= 0.5) → FP Tuple 10: P (0.40 < 0.5) → FN

True Positives (TP): 4
False Positives (FP): 5
True Negatives (TN): 0
False Negatives (FN): 1

TPR: 4 / (4 + 1) = 0.8FPR: 5 / (5 + 0) = 1

8.16 Balance the training set,

Oversampling: Oversample the minority class.

Under-sampling: Randomly eliminate tuples from majority class

Synthesizing: Synthesize new minority classes

At the algorithm level,

Threshold-moving: Move the decision threshold, t, so that the rare class tuples are easier to classify, and hence, less chance of costly false negative errors **Class weight adjusting**: Since false negative costs more than false positive, we can give larger weight to false negative

Ensemble techniques: Ensemble multiple classifiers introduced in the following chapter

I would use oversampling to balance the data set, and use class weight adjusting to find potential fraudulent cases. Those reported cases could then be manually reviewed by human.

9.4 Eager Classification:

Advantages:

- Efficiency during prediction: Eager classifiers construct a model during the training phase. Prediction for new instances is typically faster as the model is already built.
- **Regularization**: Eager classifiers often have built-in regularization mechanisms to prevent overfitting.

Disadvantages:

- **Static model**: Once trained, the model is static and doesn't adapt to changes in the data distribution without retraining.
- **Resource intensive training**: Training eager classifiers can be computationally expensive.

Lazy Classification:

Advantages:

- Adaptability: Lazy classifiers adapt to changes in the data distribution without retraining. They are suitable for dynamic or evolving datasets.
- No upfront training cost: Lazy classifiers have no upfront training cost.
 Prediction time is the only time cost, and it depends on the size of the training dataset.

Disadvantages:

- Computational cost during prediction: Prediction time for lazy classifiers can be higher because they need to compute distances or similarities during prediction.
- **Sensitivity to noise**: Lazy classifiers can be sensitive to noise and irrelevant features in the dataset.