

Description

The CYMOC302X,CYMOC305X series of devices each consists of a GaAs infrared emitting diode optically coupled to a monolithic silicon photo Triac.

Features

• Peak breakdown voltage,

- 400V: CYMOC302X- 600V: CYMOC305X

- High isolation voltage between input and output (Viso=5000V rms)
- Compact dual-in-line package
- Pb free and RoHS compliant.

Applications

- Isolated Line Receiver
- Solenoid/valve controls
- Light controls
- Static power switch
- AC motor drivers
- E.M. contactors
- Temperature controls
- AC Motor starters
- Solid state relays

Block Diagram and Package

Absolute Maximum Ratings (Ta=25°C)

	Parameter		Symbol	Rating	Unit	
Input	Forward Current		IF	60	mA	
	Reverse Voltage		VR	6	V	
	Power Dissipation		PD	100	mW	
	Derating Factor (above Ta = 85°C)			3.8	mW/°C	
Output	Off-state Output	CYMOC302X	VDRM -	400	V	
	Terminal Voltage	CYMOC305X	VDKM	600] v	
	Peak Repetitive Surge Current (pw=100μs,120pps)		ITSM	1	A	
	On-State RMS Curr	rent	IT(RMS)	100	mA	
	Power Dissipation		D.C.	300	mW	
	Derating Factor (ab	ove $Ta = 85^{\circ}C$	PC	7.4	mW/°C	
Total Power Dissipation			Ptot	330	mW	
Isolation Voltage *			Viso	5000	Vrms	
Operating Temperature			Topr	-55~+100	°C	
Storage Temperature			Tstg	-55~+125	°C	
Soldering Temperature (10s)			Tsol	260	°C	

^{*} AC for 1 minute, R.H.= $40 \sim 60\%$ R.H. In this test, pins 1, 2 & 3 are shorted together, and pins 4, 5 & 6 are shorted together.

CYMOC302X,CYMOC305X

Electrical Characteristics (Ta=25° C, unless specified otherwise)

Characteristics			Symbol	Condition	Min.	Тур.	Max.	Unit
Input	Forward Voltage		VF	IF=20mA		1.18	1.5	V
	Reverse Current		IR	VR=6V			10	μΑ
Output	Peak Blocking Current		IDRM	VDRM=Rated VDRM, IF=0mA			100	nA
	Peak On-state Voltage		VTM	ITM=100mA peak, IF=Rated IFT			2.5	V
	Critical Rate of Rise off-state Voltage	CYMOC302X	- dv/dt	VPEAK =Rated VDRM, IF=0	-	100	-	- V/μs
		CYMOC305X		VPEAK =400V, IF=0	1000			
	Inhibit Voltage (MT1-MT2 voltage above which device will not trigger)		VINH	IF= Rated IFT			20	V
	Leakage in Inhibited State		IDRM2	IF= Rated IFT, VDRM=Rated, VDRM, off state			500	μΑ
Transfer mA Characteristi cs	LED Trigger Current	CYMOC3021	IFT	Main terminal Voltage=3V			15	mA
		CYMOC3051						
		CYMOC3022					10	
		CYMOC3052						
		CYMOC3023					5	
		CYMOC3053						
	Holding Current		IH			250		μА

Fig.1 Forward Voltage VS Forward Current

Fig.2 On-State Characteristics

Fig.3 Trigger Current VS Temperature

Fig.4 Current Required to Trigger VS Pulse Width

Fig.5 Holding Current VS Temperature

CYMOC302X,CYMOC305X

Fig.7 IDRM2, Leakage in Inhibit State VS Temperature

Fig.8 Inhibit Voltage vs. Temperature

Test Circuits

Fig. 12. Static dv/dt Test Circuit & Waveform.

The high voltage pulse is set to the required VPEAK value and applied to the D.U.T. output side through the RC circuit above. LED current is not applied. The waveform VT is monitored using an x100 scope probe. By varying RTEST, the dv/dt (slope) is increased, until the D.U.T. is observed to trigger (waveform collapses). The dv/dt is then decreased until the D.U.T. stops triggering. At this point, τRC is recorded and the dv/dt calculated.

$$dv/dt = \frac{0.632 \times V_{PEAK}}{\tau_{RC}}$$

For example, VPEAK = 400V for HK304X series. The dv/dt value is calculated as follows:

$$dv/\,\mathrm{d}\,t \; = \; \frac{0.\; 632 \, \times \, 400}{\tau_{\rm RC}} \; = \; \frac{252}{\tau_{\rm RC}}$$

Solder Reflow Profile

Outline Dimensions

6-pin DIP

6-pin SMD

CHEUYUI Research and Development co., Itd reserves the right to alter the design or specifications in this data sheet without prior notice. Customers are solely responsible for obtaining the latest version of relevant documents before placing orders. It is the responsibility of the user to ensure that the circuit is fit for the user's application and meets with the user's requirements. No representation or warranty is given and no liability whatsoever is assumed by China Resources Semiconductor with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. CHEUYUI Research and Development co., Itd does not assume any legal responsibility or will not be held legally liable (whether in contract, tort (including negligence), breach of statutory duty, restriction or otherwise) for any damages, loss of profit, business, contract, It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.