

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Seunghyun Lee*, Byung Cheol Song Department of Electrical and Computer Engineering, Inha University, Republic of Korea

Introduction

Search-based filter pruning

- Search the best sub-network with a given FLOPS
- Supernet:

Network trained to have sorted filters according to importance

Problem definition

- (1) Validation loss does not represent its potential
- (2) Fine-tuning for the pruned network is essential but has not been researched so far

Key ideas

- (1) Define a novel measurement to evaluate sub-network
- → Loss landscape smoothness
- (2) Distill knowledge from the search phase and utilze it in both search and fine-tuning phase
- → Indirect solution to achieve (1)

Advantages

- EKG needs only <u>negligible computational cost</u>
- → SOTA performance using acceptable GPU hours

Methods

♦ (1) Accurate potential performance evaluation

- The higher generalization, The smoother loss landscape
- Hessian requires to check smoothness, which is too costy
- → Knowledge distillation as an indirect solution

$$\mathcal{R}(\Theta_i, \phi_{i,l}) = -\mathcal{L}(\mathcal{D}^{val}; \Theta_i \setminus \phi_{i,l}) - \mathcal{L}(\mathcal{T}_i; \Theta_i \setminus \phi_{i,l})$$

(2) Search with ensemble knowledge guidance

- Define interim sub-networks, i.e., by-products of search as teacher networks
- Store and ensemble teacher network's knowledge into memory bank
- → Give a **gentle guidance by ensemble knowledge** with a negligible cost

$$\mathcal{T}_i = \frac{1}{i+1} \sum_{j=0}^{i} \mathcal{O}(\mathcal{D}^{val}; \Theta_j)$$

(2) Fine-tuning with ensemble knowledge guidance

Sample some of interim sub-networks from the sub-network search phase

$$\mathcal{M} = \{ \mathbf{M}_k = \mathcal{O}(\mathcal{D}^{train}, \mathcal{T}_k) | 1 \le k \le K \}$$

$$\mathcal{T}_k = \underset{\Theta}{\operatorname{argmin}} \left| \frac{K - k}{K} \mathcal{L}(\Theta^*) + \frac{k}{K} \mathcal{L}(\Theta_0) - \mathcal{L}(\Theta_i) \right|$$

- Contrastive learning strategy is adopted to prevent overfitting
- → Make augmented features clustered into the fixed teacher knowledge

$$\mathcal{L}^{ft} = \sum_{a=1}^{2} \mathcal{L}(\mathcal{D}^{train}, \mathcal{A}_a; \Theta^*) + \mathcal{L}(\overline{\mathbf{M}}; \Theta_i \setminus \phi_{i,l})$$

$$\overline{\mathbf{M}} = \mathbb{E} \left\{ \mathbf{M}_k \middle| \begin{array}{c} 1 \leq k \leq K \\ \mathcal{L}(\mathbf{M}_k) \leq \mathcal{L}(\mathcal{D}^{train}; \Theta^*) \end{array} \right.$$

Overall algorithm

search

fine-tuning

phase

phase

Algorithm 1: The proposed pruning algorithm

Input : $\Theta_0, \mathcal{D}^{train}, r$ Output : Fine-tuned network 1: Sample \mathcal{D}^{subset} and \mathcal{D}^{val} in \mathcal{D}^{train} and fine-tune Θ_0 in an epoch on \mathcal{D}^{subset}

2: Store initial ensemble knowledge \mathcal{T}_0

3: Repeat Compute filter importance scores $S(\theta)$ by Eq. (9)

Sample candidates Φ_i in each layers with r. Select $\phi_{i,l}^*$ by Eq. (4) that maximizes Eq. (7). Get next pruned network Θ_{i+1} by Eq. (3).

Update ensemble knowledge \mathcal{T}_{i+1} by Eq. (8) i = i + 1

10: Until FLOPs reduction rate reaches the goal 11: $\Theta^* = \Theta_i$

12: Build memory bank by Eq. (10)

13: Repeat

Get training sample in \mathcal{D}^{train} and apply two augmentation functions.

Minimize loss function in Eq. (12).

16: **Until** Training is done

Experimental results

Feasibility check for the loss landscape smoothness

Comparison of potential loss vs validation loss and condition number

Comparison of EKG and conventional search manner

Ablation study

Teacher		ResNet-56			MobileNet-v2		
Search	Fine-tune	CIFAR10	CIFAR100	GPU hours	CIFAR10	CIFAR100	GPU hours
Baseline		93.84	72.62	0.44	94.21	76.07	1.83
None	None	$93.78 \ (\pm 0.07)$	$71.63 \ (\pm 0.21)$	0.19 / 0.50	$93.69 \ (\pm 0.06)$	$74.27 \ (\pm 0.18)$	0.31 / 1.35
Single	None	$93.54 \ (\pm 0.09)$	$71.66 \ (\pm 0.17)$	0.21 / 0.50	$93.73 (\pm 0.04)$	$74.10 \ (\pm 0.12)$	$0.35 \ / \ 1.35$
Ensemble	None	$93.85 (\pm 0.10)$	$71.82 \ (\pm 0.20)$	0.21 / 0.50	$93.89 (\pm 0.04)$	$74.53 \ (\pm 0.16)$	0.35 / 1.35
Ensemble	Single	$94.02 \ (\pm 0.08)$	$72.62\ (\pm0.15)$	0.22 / 0.88	$94.44 (\pm 0.09)$	$76.11\ (\pm0.15)$	$0.38 \ / \ 2.36$
Ensemble	Ensemble	94.09 (± 0.07)	72.93 (± 0.16)	0.22 / 0.68	$94.52 (\pm 0.05)$	76.29 (± 0.17)	0.38 / 1.64

Comparison of the way to utilize knowledge in each phase

Performance comparison of ResNet-family trained on ImageNet

