직접 힌지를 만들어 실험을 하는 과정을 반복하다보니 상당히 번거롭고 불편한 작업이 되었다. 힌지, 레일플레이트, 암 부분만을 간단한 수학적 모형으로 만들어 컴퓨터를 통해 효율적으로 시뮬레이션을 수행하여, 정해진 기준에 따라 최적의 암길이 및 레일플레이트 길이를 구해보자.

1. 모델 정의

위 그림과 같이 레일플레이트와 힌지만을 간단하게 나타내어 보자. 레일플레이트가 힌지와 고정된 지점을 P, 서보모터의 회전축의 위치를 O, 즉 원점, 어퍼암과 레일플레이트의 연결점을 P, 로워암과 어퍼암의 연결점을 P, 로워암을 선분 \overline{OQ} , 어퍼암을 선분 \overline{QR} 라고 하자. 또한 선분 \overline{OQ} 의 길이를 P, 선분 \overline{QR} 의 길이를 P, 선분 \overline{PR} 의 길이를 P 라고 하자. 또한, P 를 각 P 축의 단위 기저벡터라고 하자. 일반적으로 한 점에 대해 볼드체로 표현된 경우는 위치벡터로, 그렇지 않은 경우 제한적으로 좌표평면 상의 한 점으로 취급한다.

레일플레이트의 최대 회전한도 θ_{limit} 가 주어졌을때, 레일플레이트는 $-\theta_{limit}$, θ_{limit} 범위 내에서 회전 가능하다. 그렇다면 점 R은 반지름이 α 이고, $-\theta_{limit}$, θ_{limit} 사이에서 정의된 호 위의 한점이다.

정리 1. 점 P에서부터 반지름을 α , $[-\theta_{limit}, \theta_{limit}]$ 사이에 정의된 호 \widehat{lm} 위의 임의의 점 R를 잡자. $R = P + (\alpha \cos \theta_1, \alpha \sin \theta_1)$ 를 성립하는 벡터 R이 주어졌을때 R - P 와 -u 사이의 각을 θ_1 , $(-\theta_{limit} \le \theta_1 \le \theta_{limit})$, 벡터 Q와 u 사이의 각을 θ_2 , $(0 \le \theta_2 \le 2\pi)$ 라고 하자. 그러면 코사인 정리에 의해 삼각형 ORQ가 성립하는 모든 점 R에 대해, 점 R을 삼각형 ORQ의 세 변의 길이인 x, y, |R| 과 삼각형의 한 각 $\angle \overline{ROQ}$ 로 표현할수 있다.

정리 2. \triangle ORQ 가 성립하는 임의의 점 R가 주어지면, \triangle ORQ이 해결되므로 $\angle \overline{QOR}$ 도 마찬가지로 코사인 정리를 통해 구할수 있다. 그러면 θ_R 가 R과 u사이의 각일때, θ_2 의 크기는 θ_R \pm \angle QOR 가되고, 이로 인해 형성된 점 Q는 \overline{OR} 에 대해 대칭이다.

 θ_1 이 주어졌을 때, 점 R에 대한 위치벡터 $R = P + (\alpha \cos(\pi - \theta_1), \alpha \sin(\pi - \theta_1))$ 로 표현된다. 그러면 정리 1 에 의해:

$$\angle QOR = \arccos \frac{|R|^2 + x^2 - y^2}{2x|R|}$$

마찬가지로:

$$\angle OQR = \arccos \frac{x^2 + y^2 - |R|^2}{2xy}$$

$$\theta_R = \arccos \frac{R \cdot u}{|R|}$$

하지만 θ_R 의 경우 $0 \le \theta_R \le \pi$ 에서 정의되었으므로 **R**의 y 축방향에 따라 $0 \le \theta_R \le 2\pi$ 로 바꿔줘야 한다:

$$\theta_R = \begin{cases} 2\pi - \theta_R & \text{if } \frac{\mathbf{R} \cdot \mathbf{v}}{|\mathbf{R}|} < 0 \\ \theta_R & \text{otherwise} \end{cases}$$

 θ_2 의 경우, 정리 2 에 의해 두개의 Q가 생성된다. 그중 \overline{OR} 의 왼쪽에 항상 있는 Q를 사용하도록 제한하자. 이 조건은 서보모터가 레일플레이트의 각도 θ_1 를 증가시키기 위해선 시계방향으로, 감소시키기 위해선 시계 반대방향으로만 회전하게끔 제한하는 역할을 한다. 위와 같은 조건을 수학적으로 변형하여 Q를 선택하기 위해선, 정리 2 를 활용하여 다음 조건을 구성할수 있다:

벡터 R을 $\frac{\pi}{2}$ 만큼 회전하여 R과 수직인 새로운 벡터 R'을 만들었을때, \overline{OR} 의 왼쪽에 있는 벡터 $Q \vdash R' \cdot Q > 0$ 가 되어야 한다. 즉 임의의 벡터를 $\frac{\pi}{2}$ 만큼 회전시키는 회전행렬 T가 있을 때:

$$\mathbf{Q} \vdash \mathbf{R}' \cdot Q > 0 \text{ 가 되어야 한다. 즉 임의의 벡터를 } \frac{\pi}{2} \text{만큼 회전시키는 회전행렬 } T \text{가 있을 때:}$$

$$\theta_2 = \begin{cases} \theta_R - \angle \text{QOR} & \text{if } \left(x \cos(\theta_R - \angle QOR), x \sin(\theta_R - \angle QOR) \right) \cdot TR > 0 \\ \theta_R + \angle QOR & \text{if } \left(x \cos(\theta_R + \angle QOR), x \sin(\theta_R + \angle QOR) \right) \cdot TR > 0 \end{cases}$$

만약 두 조건을 전부 만족하지 않는 경우, $m{Q}$ 의 제약을 만족하는 $m{ heta}_2$ 가 주어진 $m{x}, m{y}, m{lpha}, m{P}$ 에 대해 존재하지 않는다.

마지막으로 점 Q를 다음과 같이 구할수 있다: $Q = (x \cos\theta_2, x \sin\theta_2)$

해석의 편리함을 위해 -v와 같은 방향일 경우를 0 으로 두기 위해 $\theta_2 = \pi - \theta_2$ 로 변환한다. 이경우 로워암의 최대 회전한도를 지정하는데 더욱 수월하다.

이제 최적 암의 길이를 고르는 기준에 대해 생각해보자. 먼저 Q의 방향을 제한함으로써 서보모터는 증가, 감소를 각각 한 방향으로만 할수 있게된다. 원활한 구동을 위해선 일차적으로 각로워암과 어퍼함의 회전범위, 각 θ_2 , $\angle OQR$ 에 대해 제한을 둬야한다.

두번째로 레일플레이트의 미세한 조정과 안정성을 위해서는, θ_2 의 변화량이 θ_1 의 변화량에 최대한 민감하지 않게끔 설정하는 것이 좋을 것이라 생각된다. 이는 위에서 설정한 각도 범위제한과 비슷한 역할을 하며, 특히 레일플레이트의 회전량이 클 때 암을 지나치게 기울게 만드는 암들의 길이를 필터링할 역할을 해줄 것이라고 생각된다.

이를 표현하기 위해선 레일플레이트 각도에 대한 서보모터의 각도함수 $\theta_2 = g(\theta_1)$ 를 구한 이후, (θ_1,θ_2) 쌍들에 대해 선형회귀를 시행하여 평균 절대 오차를 기준으로 암을 정렬하였다. 놀랍게도 선형회귀 오차는 암의 안정성에 대해 상당히 정확한 점수 역할을 하였다.

위 그림은 평균 절대 오차가 0.59 인 암, 레일조합의 각도함수를 그린 결과이다. 그림에서 보이듯이 각도함수가 빨간색 선형함수에 큰 오차없이 들어맞는걸 확인할 수가 있다. 실제로 해당 암의 시뮬레이션 결과(good_arm.mp4)를 보면, 어퍼암이 크게 움직이지 않아도 로워암이 안정적으로 레일플레이트를 기울이게 된다.

반면 오차가 0.82 로 조금 큰 서보모터 각도함수의 경우, 선형회귀로 근사한 일차함수랑 상당한 오차가 존재하는걸 확인할수 있고, 특히 레일의 각도가 클수록 오차가 두드러진다. 마찬가지로 시뮬레이션 결과(bad_arm.mp4)를 관찰해보면, 시작점부터 암의 배열이 불안정하고, 레일플레이트를 기울이기 위해 어퍼암, 로워암 모두 많이 회전해야 하는걸 볼수 있다.

마지막으로 오차가 2.23 으로 나온 각도함수이며, 비선형성을 넘어 단조 증가하지 않는걸 관찰할수 있다. 실제로 시뮬레이션(failed_arm.mp4)을 보면, 어퍼암이 스스로 오르락내리는 물리적으로 불가능한 회전을 보여준다. 이는 각도함수의 단조 증가/감소는 주어진 레일플레이트의 각도를 물리적으로 가능케 만드는 서버모터 각도의 존재를 위한 필요조건임을 알 수 있다.

이처럼 선형회귀를 통한 오차를 사용하게 될 경우, 의도했던 레일플레이트, 서보모터 간의 선형성을 최대한 보존하는 암을 찾을 수 있게 해주며, 이는 대체적으로 매우 안정적인 암의 형태가 된다. 또한, 선형회귀의 오차인 만큼, 실제로 아두이노로 구현 시 선형함수로 두 각도간의 관계를 근사했을 경우 가장 적은 오차를 가진 암이 되므로, 이론적으로 가장 정밀한 제어가 가능한 암이 된다.

2. 격자검색을 통한 최적 암, 레일플레이트 고정길이 탐색

이제 위의 기준들을 통해, 모형을 여러 암 길이 조합에 적용하여 최적 암을 선택해야 한다. 각 x,y,α 를 정해진 범위 내에서 고른 간격으로 선정한 후, 각 길이를 조합하여 최종길이를 선택했다. 실험을 위해선 서보모터 축을 (0,0)으로 둔 후, 레일플레이트 힌지의 위치 P와 각 어퍼암, 로워암, 레일플레이트의 최소, 최대길이를 지정해 주었다. 이후 지정한 범위 내에서 가능한 모든 로워암, 어퍼암, 레일플레이트 길이의 조합에 대해 위의 모형을 적용하여 서보모터 각도의 범위와 선형회귀 오차를 구하였다. 이후 회전범위 제한을 통해 1 차 필터링을 한 후, 가장 작은 회귀오차를 가진 조합을 시뮬레이션을 통해 정상작동을 확인하였고, 최종적으로 두개의 하드보드 모형을 만들었다.

3. 결론

직접 여러 테스트 암을 구성하지 않고 많은 암 길이의 조합을 실험해볼수 있었다는 점에서 효율적이었으나, 실제로 만들어서 실험해본 것에 비해 정확도와 신뢰도가 낮을수 있다는 점, 또한 측정/계산 오차들이 존재할수 있다는 점이 한계이다. 하지만 이론적으로 매우 정확한 선형함수를 구하였고, 향후 직접 서버모터 제어를 아두이노에서 구현할 때 매우 유용할 것이라고 생각한다. 결론적으로 실제 테스팅을 대체하기보단 만들어 봐야할 암의 개수를 대폭 줄일 수 있는 것이 이모형의 사용 효과라고 볼 수 있겠다.