Chi-Square Test

(based on Quinlan, Induction of Decision Trees, 1986)

Notation

- A splitting (branching) attribute (e.g., Test)
- v domain size of attribute A (3: 0-600, 600-700, 700+)
- C_i subset of records containing value *i* of attribute *A* (Test < 600: 2)
- \circ c number of classes (3: low, medium, high)
- e_j number of records belonging to class j in the entire data set C (Low = 1, Medium = 2, High = 2)
- o_{jj} number of records belonging to class j in subset C_{ij}^{j} (Test < 600, GPA = Low : 1)
- 。 α significance level

1

Chi-Square Test (cont.)

- Null Hypothesis: attribute A is <u>irrelevant</u> to classifying the records in data set C
- Alternative Hypothesis: attribute A <u>affects</u> the class distribution in data set C
- Expected number of class j records in C_j:

$$e'_{ij} = \frac{e_j}{\sum_{j=1}^{c} e_j} \sum_{j=1}^{c} o_{ij}$$

Statistic:

$$\sum_{j=1}^{c} \sum_{i=1}^{v} \frac{(o_{ij} - e'_{ij})^{2}}{e'_{ij}} \sim \chi_{\alpha}^{2}((v-1)(c-1))$$

Chi-Square Test – Student $e'_{ij} = \frac{e_j}{\sum_{j=1}^c e_j} \sum_{j=1}^c o_{ij}$

$$e'_{ij} = \frac{e_j}{\sum_{j=1}^{c} e_j} \sum_{j=1}^{c} o_{ij}$$

- Entire data set (before splitting): $e_{Low} = 1$, $e_{Medium} = 2$, $e_{High} = 2$
- Splitting by Test

- $\sum_{i=1}^{c} o_{ij} = 2$
- Test < 600: Low = 1, Medium = 1</p>
 - $e'_{low} = (1/5)*2 = 0.4$, $e'_{medium} = (2/5)*2 = 0.8$. $e'_{hig} = 0.4$ 0.8.
- Test = 600-700: Medium = 1, High = 1
 - e'_{low} = (1/5)*2 = 0.4, e'_{medium_c} = (2/5)*2 = 0.8. e'_{high} = (2/5)*2 = 0.8 0.8.

Chi-Square Test – Student Example (cont.)

		Test Grade	(i)		Total	p_j
GPA (j)		0-600	600-700	Over 700		
Low	Actual	1	0	0	1	0.2
	Expected	0.4	0.4	0.2	1	
	Statistic	0.9	0.4	0.2	1.5	
Medium	Actual	1	1	0	2	0.4
	Expected	0.8	0.8	0.4	2	
	Statistic	0.05	0.05	0.4	0.5	
High	Actual	0	1	1	2	0.4
	Expected	0.8	0.8	0.4	2	
	Statistic	0.8	0.05	0.9	1.75	
Total		2	2	1	3.75	5

Statistic:
$$\sum_{j=1}^{c} \sum_{i=1}^{v} \frac{(o_{ij} - e'_{ij})^2}{e'_{ij}} = 3.75$$

$$\chi^2_{0.05}(4) = 9.49$$

$$\chi^2_{0.05}(4) = 9.49$$

Conclusion: do not split the node on *Test Grade*

April 15, 2018

Pessimistic Error Pruning (PEP)

- Uses training set to estimate error on new data
- Error estimate (relative frequency with continuity correction)
 - o probability of error (apparent error rate)
 - where
 - N = #examples
 - n_C = #examples in majority class

$$q = \frac{N - n_C + 0.5}{N}$$

Pessimistic Error Pruning (cont.)

- Error of a node v (if pruned)
 - where
 - $N_v = \#$ examples at node V
 - $n_{C,v}$ = #examples in majority class at node v
- Error of a subtree T
 - . Where
 - \blacksquare I = leaf node of sub-tree T

$$q(T) = \frac{\sum_{l \in leafs(T)} (N_l - N_{C,l} + 0.5)}{\sum_{l \in leafs(T)} N_l}$$

 $q(v) = \frac{N_v - n_{C,v} + 0.5}{N}$

Prune if

$$q(v) \le q(T)$$

- Prunes in bottom-up fashion
 - fast
 - considered a weakness (on accuracy)

Lecture No. 6 – Decision Tree Learning II

- Discretization of Continuous Attributes
- Alternative Splitting Rules
 - Information Gain Ratio
 - Gini Index
 - Twoing
- CART Overview
- Comparison of Decision Trees

Discretization Algorithm

Discretization Algorithm (continued)

Notation

```
S - entire set of instances
```

- *A* attribute (feature)
- *T* threshold (partition boundary)
- S_1 set of instances below the threshold ($v \le T$)
- \circ S₂ set of instances above the threshold (v > T)

Discretization Algorithm (continued)

• Entropy induced by *T*:

$$E(A,T;S) = \frac{|S_1|}{|S|} Ent(S_1) + \frac{|S_2|}{|S|} Ent(S_2)$$

Information Gain:

• Gain
$$(A,T;S) = Ent(S)$$
 -

E(A,T;S)

Record	1	2	3	4	5
Value	1	1.5	1.5	1.7	2.1
Class	0	1	0	1	1

• Example:

Discretization Example

Record	1	2	3	4	5
Value	1	1.5	1.5	1.7	2.1
Class	0	1	0	1	1

Value <=	Pos (0)	Neg (1)	Total	Prob (0)	Prob (1)
1	1	0	1	1.00	0.00
1.5	2	1	3	0.67	0.33
1.7	2	2	4	0.50	0.50
2.1	2	3	5	0.40	0.60
Value >	Pos (0)	Neg (1)	Total	Prob (0)	Prob (1)
1	1	3	4	0.25	0.75
1.5	0	2	2	0.00	1.00
1.7	0	1	1	0.00	1.00
2.1	0	0	0		

Value <=	plogp	plogp	Total	Entropy	Info Gain
1	0.000		0.000	0.649	0.322
1.5	0.390	0.528	0.918	0.551	0.420
1.7	0.500	0.500	1.000	0.800	0.1/1
2.1	0.529	0.442	0.971	0.971	
Value >	plogp	plogp			
1	0.500	0.311	0.811		
1.5		0.000	0.000		
1.7		0.000	0.000		
2.1					

The best threshold

Lecture No. 6 – Decision Tree Learning II

- Rule Extraction
- Discretization of Continuous Attributes
- Alternative Splitting Rules
 - Information Gain Ratio
 - Gini Index
 - Twoing
- CART Overview
- Comparison of Decision Trees

Splitting Rules

- Possible splitting functions (rules)
 - Entropy (Information Gain and Gain Ratio)
 - Twoing
 - Gini Index

Information Gain Ratio

- ID3 selects the attribute which maximizes the mutual information (information gain):
 - \circ gain(A) = I (p, n) E(A)
 - I (p, n) unconditional entropy (does not depend on the choice of A)
 - E (A) conditional entropy after splitting the root node by the test attribute A
- The information gain is maximal when E (A) is equal to zero
- E(A) = 0 if for each value of A
 - Either all examples are positive
 - Or all examples are negative

Gain Ratio (cont.)

- The problem with multi-valued and continuous attributes in noisy databases
 - The probability of a subset of examples to have the same class increases monotonically with a decrease in the subset size
 - The extreme case is a subset of one example
 - The average size of a subset decreases with an increase in the total number of attribute values (e.g., attribute Date)

Conclusion

 Information gain is biased towards multi-valued and continuous attributes

Gain Ratio (cont.)

- The Gain Ratio Approach
 - "Punish" the multi-valued attributes via dividing (normalizing) their information gain by the Split Information:

$$SplitInfo_{A}(D) = -\sum_{j=1}^{v} \frac{|D_{j}|}{|D|} \times \log_{2}(\frac{|D_{j}|}{|D|})$$

- The Split Information represents the entropy of the tested attribute (in contrast to the entropy of the target attribute)
- The Gain Ratio: Gain(A)/SplitInfo(A)

Training Set

Outlook	Tempreature	Humidity	Windy	Class
sunny	hot	high	false	N
sunny	hot	high	true	N
overcast	hot	high	false	Р
rain	mild	high	false	P
rain	cool	normal	false	Р
rain	cool	normal	true	N
overcast	cool	normal	true	Р
sunny	mild	high	false	N
sunny	cool	normal	false	P
rain	mild	normal	false	Р
sunny	mild	normal	true	Р
overcast	mild	high	true	Р
overcast	hot	normal	false	Р
rain	mild	high	true	N

	T.E.	55	Q.			•	*					the particle of the particle o
s um	class	Sunny	intlook Over	- rain		tem f	,		fum N	I/T	rindy	Sing
5	N	3	0		2	2	_ 1	9	1	3	2	5
9	P	2	Ц	3	2	4	3	3	6	3	6	9
	SUM	5	14	5	4	5	4	7	7	6	8	14
			•									

Gain ratios for weather data

Outlook		Temperature	
Info:	0.693	Info:	0.911
Gain: 0.940-0.693	0.247	Gain: 0.940-0.911	0.029
Split info: info([5,4,5])	1.577	Split info: info([4,6,4])	1.362
Gain ratio: 0.247/1.577	0.156	Gain ratio: 0.029/1.362	0.021
Humidity		Windy	
Info:	0.788	Info:	0.892
Gain: 0.940-0.788	0.152	Gain: 0.940-0.892	0.048
Split info: info([7,7])	1.000	Split info: info([8,6])	0.985
Gain ratio: 0.152/1	0.152	Gain ratio: 0.048/0.985	0.049

Gain Ratio – Student Example

יטרפ םש	החפשמ םש	רדגמ	נ הדיל םוקמ רדגמ		םינויצ עצוממ
First Name	L and Name	Condor	Diago of Dirth	Took Crade	CDA
First Name	Last Name	Gender	Place of Birth	Test Grade	GPA
David	Cohen	M	USA	Over 700	High
Ophir	Levy	М	Israel	600-700	Medium
Sharon	Grosman	F	Israel	600-700	High
Diana	Liberman	F	Russia	0-600	Medium
Anat	Klein	F	Israel	0-600	Low

Let us assume that the attribute "Place of Birth" has three possible values: USA, Israel, and Russia

Information Gain – Place of Birth

	Place of Birth			Total
	Israel	USA	Russia	
Low	1	0	О	1
р	0.333	0.000	0.000	
-logp	1.585	0.000	0.000	
Medium	1	0	1	2
р	0.333	0.000	1.000	
-logp	1.585	0.000	0.000	
High	1	1	0	2
р	0.333	1.000	0.000	
-logp	1.585	0.000	0.000	
Total	3	1	1	5
р	0.60	0.20	0.20	0.80
Entropy	1.585	0.000	0.000	0.951
Gain				0.571

Split Information and Gain Ratio Student Example

	Place of Birth			Total
	Israel	USA	Russia	
Total	3	1	1	5
р	0.60	0.20	0.20	1.00
-logp	0.737	2.322	2.322	1.371
-logp Gain				0.571
Gain Ratio				0.416

22

Split Information
 Information Gain
 Information Gain
 Ratio

Gain Ratio (Test Grade) = **0.474**

Gain Ratio (Gender) = 0.176

Gain Ratio (Place of Birth) = 0.416

Lecture No. 6

Gini index (CART™, IBM IntelligentMiner™)

- All attributes are assumed continuous-valued
- Assume there exist several possible split values for each attribute
- May need other tools, such as clustering, to get the possible split values
- Can be modified for categorical attributes

Reminder

Impurity functions have to

- 1) achieve a maximum at the uniform distribution
- 2) achieve a minimum when $p_i = 1$
- 3) be symmetric with regard to their permutations.

How to Find the Best Split

Measure of Impurity: GINI

Gini Index for a given node t:

$$GINI(t) = 1 - \sum_{j} [p(j | t)]^{2}$$

(NOTE: p(j | t) is the relative frequency of class j at node t).

- Maximum (1 1/n_c) when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

C1	0			
C2	6			
Gini=0.000				

Gini=	0.278
C2	5
C1	1

C1	2
C2	4
Gini=	0.444

C1	3							
C2	3							
Gini=	Gini=0.500							

Examples for computing GINI

$$GINI(t) = 1 - \sum_{j} [p(j | t)]^{2}$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

P(C1) = 1/6 P(C2) = 5/6
Gini = 1 -
$$(1/6)^2$$
 - $(5/6)^2$ = 0.278

P(C1) =
$$2/6$$
 P(C2) = $4/6$
Gini = $1 - (2/6)^2 - (4/6)^2 = 0.444$

Splitting Based on GINI

- Used in CART, SLIQ, SPRINT.
- When a node p is split into k partitions (children), the quality of split is computed as,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child i, n = number of records at node p.

Binary Attributes: Computing GINI

Index

- Splits into two partitions
- Effect of Weighing partitions:
 - Larger and Purer Partitions are sought for.

	Parent
C1	6
C2	6
Gini	= 0.500

Gini(N1)

$$= 1 - (5/6)^2 - (2/6)^2$$

= 0.194

Gini(N2)

$$= 1 - (1/6)^2 - (4/6)^2$$

= 0.528

	N1	N2						
C1	5	1						
C2	2	4						
Gini=0.333								

Gini(Children)

= 7/12 * 0.194 +

5/12 * 0.528

= 0.333

Categorical Attributes: Computing Gini Index

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

Multi-way split

	CarType										
	Family Sports Luxury										
C1	1	2	1								
C2	4	1	1								
Gini	0.393										

Two-way split (find best partition of values)

	CarType								
	{Sports, Luxury}	{Family}							
C1	3	1							
C2	2	4							
Gini	0.400								

	CarType									
	{Sports}	{Family, Luxury}								
C1	2	2								
C2	1	5								
Gini	0.419									

Continuous Attributes: Computing Gini Index

- Use Binary Decisions based on one value
- Several Choices for the splitting value
 - Number of possible splitting values
 Number of distinct values
 - Each splitting value has a count matrix associated with it
 - Class counts in each of the partitions, A < v and A ≥ v</p>
 - Simple method to choose best v
 - For each v, scan the database to gather count matrix and compute its Gini index
 - Computationally Inefficient! Repetition of work.

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Continuous Attributes: Computing Gini Index...

- For efficient computation: for each attribute,
 - Sort the attribute on values
 - Linearly scan these values, each time updating the count matrix and computing gini index
 - Choose the split position that has the least gini index

Sorted કુત્રામુes Positions

Cheat		No		No)	No		Ye	s	s Yes		Υє	es No		No		No		No																																					
				Taxable Income																																																				
		60		70		7	5	85	;	90)	95 100 120					20	12	25		220																																			
	5	5	6	5	7	2	8	0	8	87		37 9		7 9		37 9		87 9		87 9		87 9		87 9		87		87		87 9		87 9		37 9		87 9		37 9		37 9		7 9		37 9		2	9	7	11	10	12	22	17	72	23	0
	\=	>	<=	>	<=	>	<=	>	<=	>	<=	^	<=	>	<=	>	<=	>	<=	>	<=	۸																																		
Yes	0	3	0	3	0	3	0	3	1	2	2	1	3	0	3	0	3	0	3	0	3	0																																		
No	0	7	1	6	2	5	3	4	3	4	3	4	3	4	4	3	5	2	6	1	7	0																																		
Gini	0.4	20	0.4	100	0.3	375	0.3	343	0.4	0.417 0		0.417 0.4		0.400		0.300 <u>0.300</u>		<u>0.300</u> 0.3		0.343		0.375		400 0.4		20																														

• If a data set D contains examples from n classes, gini index, gini(D) is defined as:

$$gini(D) = 1 - \sum_{j=1}^{n} p_{j}^{2}$$

where p_i is the relative frequency of class j in D

■ If a data set D is split on A into two subsets D_1 and D_2 , the gini index gini(D) is defined as

$$gini_A(D) = \frac{|D_1|}{|D|}gini(D_1) + \frac{|D_2|}{|D|}gini(D_2)$$

• Reduction in Impurity: $\Delta gini(A) = gini(D) - gini_A(D)$

6

Gini Splitting Rule

 Looks for the largest class in the data set and strives to isolate it from all other classes

Gini Index

- If a data set T contains examples from n classes, gini index, gini(T) is $de_{gini(T)=1-\sum\limits_{j=1}^{n}p_{j}^{2}}$
 - where p_i is the relative frequency of class j in T.
- If a data set T is split into two subsets T_1 and T_2 with sizes N_1 and N_2 respectively, the gini index of the split data contains examples from n classes, the gini index gini(T) is defined as

$$gini_{split}(T) = \frac{N_1}{N}gini(T_1) + \frac{N_2}{N}gini(T_2)$$

$$\Delta gini(A) = gini(D) - gini_A(D)$$

- Reduction in Impurity:
- The attribute provides the smallest $gini_{split}(T)$ (or the largest reduction in impurity) is chosen to split the node (need to enumerate all possible splitting points for

Twoing Rule

- Another splitting method is the Twoing Rule. This approach does not have anything to do with the impurity function.
- The intuition here is that the class distributions in the two child nodes should be as different as possible and the proportion of data falling into either of the child nodes should be balanced.
- The twoing rule: $\frac{p_L p_R}{4} \left[\sum_j |p(j|t_L) p(j|t_R)| \right]^{2s}$ that maximizes:

Twoing Splitting Rule (CART™)

Source: L. Breiman, J. Friedman, R. Olshen, and C. Stone (1984), *Classification and Regression Trees*, Pacific Grove: Wadsworth

Maximize

$$\frac{p_L p_R}{4} \left[\sum_{j} \left| p(j/t_L) - p(j/t_R) \right| \right]^2$$

- Notation
 - p_L proportion of cases going to the left node
 - p_R proportion of cases going to the right node
 - j − class index
 - p (j/t_L) probability of class j at the left node
 - p (j/t_R) probability of class j at the right node
- Attempts to find groups of up to 50% of the data each
- If impossible power-modified twoing

Twoing Splitting Rule - Example

Which split is better?

Twoing Splitting Rule - Example
$$\frac{p_L p_R}{4} \left[\sum_{j} |p(j/t_L) - p(j/t_R)| \right]^2$$

Split 1

Class:	Α	В	С	D	Total	PI/Pr
Age <= 65	40	0	0	10	50	0.5
Age > 65	0	30	20	0	50	0.5
Total					100	

Better split

Split 2

Class:	Α	В	C	D	Total	PI/Pr
Age <= 65	40	0	0	0	40	0.4
Age > 65	0	30	20	10	60	0.6
Total					100	

Prob			
Α	В	C	D
0.80	0.00	0.00	0.20
0.00	0.60	0.40	0.00

Abs					
Α	В	С	D	Total	Twoing
0.800	0.600	0.400	0.200	2.000	0.250

Prob			
Α	В	C	D
1.00	0.00	0.00	0.00
0.00	0.50	0.33	0.17

Abs					
Α	В	С	D	Total	Twoing
1.000	0.500	0.333	0.167	2.000	0.240

Lecture No. 6 39

Using Splitting Rules (Gini, Twoing, Entropy)

- Gini -- is usually best for yes/no outcomes
- Twoing similar to entropy but more flexible because it has a tuning parameter
 - excellent for multi-class outcomes
 - twoing excellent for hard to classify problems
 - problems where accuracy for all methods will be low
 - inherently difficult problems or low signal/noise ratio
- Entropy- popular in Machine Learning literature

Lecture No. 6 – Decision Tree Learning II

- Rule Extraction
- Discretization of Continuous Attributes
- Alternative Splitting Rules
 - Information Gain Ratio
 - Gini Index
 - Twoing
- CART Overview
- Comparison of Decision Trees

CART™ Algorithm Main Steps

- Grow the maximal tree based on the entire data set
 - A binary splitting procedure
 - Splitting rules
 - Stopping criteria
- Derive a set of pruned sub-trees
 - Create "efficiency frontier"
- Select the best tree by using validation set or cross-validation

CART™: Binary Splitting Procedure

- Continuous (Ordinal) Attributes
 - Each distinct value is considered for threshold
 - Branching rule: $x \le C$
 - M possible splits (M number of distinct values)
- Nominal (Categorical) Attributes
 - o The branching rule is determined separately for each possible value
 - o 2^{M-1} 1 possible splits (M number of values)

CART™: Stopping Criteria

- Splitting is impossible
 - One case left in a node
 - All the cases in the node have the same target value
- Other reasons
 - Too few cases in the node (default = 10 cases)

Pruning Trees

Deriving a set of pruned sub-trees

- Objective: minimizing the cost-complexity function $R_{\alpha}(T) = R(T) + \alpha \cdot \left| \widetilde{T} \right|$
 - ∘ *T* a tree
 - R (T) the training error rate of a tree
 - $_{\circ}$ R_{α} (T) the cost-complexity of a tree
 - $_{\circ}$ $\left|\widetilde{T}
 ight|$ number of terminal nodes in a tree
 - α complexity parameter (real number, greater than zero)

CART™ Pruning Algorithm

$$R_{\alpha}(T) = R(T) + \alpha \cdot \left| \widetilde{T} \right|$$

- Step 1 Initialize the list of optimal trees with the maximal tree
- Step 2 Initialize $\alpha = 0$
- Step 3 Increase α until the tree ceases to be optimal
- Step 4 Find a new sub-tree, which is optimal with the new value of α
- Step 5 Add the new sub-tree to the list of optimal trees.
- Step 6 If the new sub-tree has more than one terminal node, go to Step 3. Otherwise, stop.

CARTTM Student Example Maximal Tree ($\alpha = 0$)

CART™ Student Example (cont'd) Removing *Place of Birth*

- Cost-complexity of the single node t
 - \circ $R_{\alpha}(\{t\}) = R(t) + \alpha *1 = 0.50 + \alpha$
- Cost-complexity of the branch T_t

$$\circ R_{\alpha}(T_{t}) = R(T_{t}) + \alpha^{*}|\check{T}_{t}| = 0 + \alpha^{*}2$$

- The critical value of α
 - $\circ R_{\alpha}(\{t\}) = R_{\alpha}(T_{t})$
 - \circ 0.50 + α = 2 α
 - \circ $\alpha = 0.50$

CART[™] Student Example (cont'd) New Sub-Tree (α = 0.50)

Lecture No. 6 – Decision Tree Learning II

- Rule Extraction
- Discretization of Continuous Attributes
- Alternative Splitting Rules
 - Information Gain Ratio
 - Gini Index
 - Twoing
- CART Overview
- Comparison of Decision Trees

Metrics for Performance Evaluation...

Confusion Matrix:

	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL	Class=Yes	a (TP)	b (FN)		
CLASS	Class=No	c (FP)	d (TN)		

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Confusion Matrix Example

	PREDICTED CLASS					
		Class=Accept	Class=Reject			
ACTUAL	Class=Accept	a = 2 (TP)	b = 1 (FN)			
CLASS	Class=Reject	c = 1 (FP)	d = 2 (TN)			

Accuracy = ?

Cost-Sensitive Measures

	PREDICTED CLASS			
		Class= Yes	Class= No	
ACTUAL	Class=	a	b	
CLASS	Yes	(TP)	(FN)	
	Class=	c	d	
	No	(FP)	(TN)	

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$

F - measure (F) =
$$\frac{2rp}{r+p}$$
 = $\frac{2a}{2a+b+c}$

	PREDICTED CLASS				
		Class=Accept	Class=Reject		
ACTUAL CLASS	Class=Accept	a = 2 (TP)	b = 1 (FN)		
<i>OL</i> , 100	Class=Reject	c = 1 (FP)	d = 2 (TN)		

$$p = ?$$

$$r = ?$$

$$F=3$$

ROC Curve

(TP,FP):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal
- Area Under the ROC curve
 - Ideal:
 - Area = 1
 - Random guess:
 - Area = 0.5 (diagonal line)

Comparison of Decision Trees (based on Lim *et al.*, Machine Learning, 40, 203–228, 2000) Computational Complexity

Comparison of Decision Trees Error Rate

Comparison of Decision Trees Tree Size

Lectures No. 5-6: Summary

- Classification tasks involve model construction and model testing
- Decision trees are one of the most popular classification models
- Decision trees are usually constructed in a top-down recursive divide-and-conquer manner
- Overfitting can be avoided with pre-pruning and post-pruning techniques
- Most popular splitting criteria include Gini,
 Twoing, and Entropy