جمعية أصدقاء الرياضيات

ASSOCIATION DES AMIS DE MATHEMATIQUES

Epreuve de maths

2ème Bac Blanc

Niveau: 7D Durée:41

Proposée le 20 mars 2014 de 8h à 12h

EXERCICE 1 (3 POINTS)

Cet exercice est un QCM (questionnaire à choix multiples). Pour chaque question, quatre affirmations sont proposées. Une et une seule est exacte. On demande de la préciser.

Dans le plan rapporté à un repère orthonormal, la courbe (C) ci-contre représente une fonction f définie et dérivable sur \mathbb{R} . La tangente à la courbe (C) au point d'abscisse 1 est horizontale. La droite d'équation y = 1 est asymptote à la courbe (C) en $-\infty$. D'après la courbe (C):

Affirmation Réponses	7 1 1 2A 1 2	(1) B22 7	mcat	lo D
1) On a	f(0) = -1	f(0) = 1	f'(0) = 0	$\mathbf{f}(-1) = 0$
2) On a:	f(1) = -2	f(-1) = -1	f'(1) = e - 1	f'(1) = 0
3) On a :	$\lim_{x\to +\infty} f(x) = 0$	$\lim_{x \to 0} f(x) = +\infty$	$\lim_{x \to +\infty} \frac{f(x)}{x} = 0$	$\lim_{x\to +\infty} \frac{f(x)}{x} = +\infty$
4) L'équation $f(x) = 0$ admet deux	$\alpha > 2$ et	$1 < \alpha < 2$ et	$0 < \alpha < 1$ et	$0 < \alpha < 1$ et
solutions α et β tels que :	β < -2	$-2 < \beta < -1$	$-2 < \beta < -1$	$-1 < \beta < 0$
5) L'équation $f(x) = -1$ admet	aucune	1 solution	2 solutions	<u>3</u> solutions
exactement :	solution >	ami	mat	h 1
6) $A = \int_0^{\alpha} f(x) dx$ où α est la solution	A = 3	A < -1	A > 1	2 < A < 3
positive de l'équation $f(x) = 0$. Alors:				

EXERCICE 26 POINTS NIMath.mr

Le plan complexe est rapporté à un repère orthonormé (O; u, v).

On considère les points A, B et C d'affixes respectives $z_A = 2 + 2i$, $z_B = -2 - i$ et $z_C = \frac{3 - 3i}{27}$.

Pour tout nombre complexe z tel que $z \ne 2+2i$ on pose : $f(z) = \frac{z+2+i}{z-2-2i}$.

- 1) Calculer le nombre $\alpha = f(1+2i)$ puis l'écrire sous formes algébrique et trigonométrique.
- 2) Résoudre l'équation f(z) = i et donner sa solution sous forme trigonométrique.
- 3.a) Placer les points A, B et C dans le plan. Quelle est la nature du triangle ABC ? Justifier.
- b) Déterminer et représenter dans le repère précédent le point D tel que ABCD soit un parallélogramme.
- 4) Déterminer et représenter dans le même repère les ensembles Γ_k des points M du plan d'affixe z dans chacun des cas suivants :
- a) Γ_1 tel que $|\mathbf{f}(\mathbf{z})| = 1$.
- b) Γ_2 tel que f(z) soit imaginaire pur.
- c) Γ_3 tel que f(z) soit réel.
- d) Γ_4 tel que |f(z)-1|=3.

EXERCICE 3 (5 POINTS)

On considère les suites numériques (U_n) et (V_n) définies pour tout n de IN* par:

$$\begin{cases} U_1 = 1 \\ U_{n+1} = \frac{3n+3}{4n} U_n \end{cases} et \qquad V_n = \frac{1}{n} U_n.$$

- 1.a) Calculer U_2 , U_3 , V_1 , V_2 .
- b) Montrer par récurrence que la suite (U_n) est positive.
- c) Montrer que la suite (U,) est décroissante. Que peut-on en déduire ?
- 2.a) Montrer que (V_n) est une suite géométrique convergente vers 0.
- b) Exprimer $V_{\scriptscriptstyle \parallel}$ puis $V_{\scriptscriptstyle \parallel}$ en fonction de n. $C(U_{\scriptscriptstyle \parallel},M)$
- 3) On pose $W_n = \ln V_n$, $S_n = \frac{U_1}{1} + \frac{U_2}{2} + \frac{U_3}{3} + \dots + \frac{U_n}{n}$ et $S_n' = W_1 + W_2 + W_3 + \dots + W_n$.
- a) Calculer $\lim_{n\to +\infty}W_n$, en déduire $\lim_{n\to +\infty}U_n$. b) Calculer S_n en fonction de n, puis calculer $\lim_{n\to +\infty}S_n$.
- c) Montrer que $S_n' = \frac{n^2 n}{2} \ln \left(\frac{3}{4} \right)$, puis calculer $\lim_{n \to +\infty} S_n'$.

EXERCICE 4 (7 POINTS)

On considère la fonction numérique f définie sur l'ensemble [0;+∞ par :

$$\begin{cases} f(x) = x^2 - 2x \ln x - 2, & x > 0 \\ f(0) = -2, & \text{and in a cut } 1. \end{cases}$$
 Soit (C) sa courbe représentative dans un repère orthonormé (O; i, j).

- 1.a) Montrer que f est continue à droite de 0.
- b) Montrer que $\lim_{x\to 0^+} \frac{f(x)-f(0)}{C(x)} = +\infty$ et interpréter.
- c) Justifier que $\lim_{x \to +\infty} f(x) = +\infty$ et $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$ et donner une interprétation graphique.
- 2.a) Calculer f'(x) où f' est la fonction dérivée de f et montrer que la courbe (C) admet au point d'abscisse $x_0 = 1$ une tangente horizontale dont –on donnera une équation.
- b) Calculer f''(x) où f'' est la fonction dérivée de f' et en déduire les variation f'et le signe de f'(x).
- c) Dresser le tableau de variation de f .
- 3.a) Montrer que l'équation f(x) = 0 admet dans $[0; +\infty[$ exactement une solution α vérifiant $2,7 < \alpha < 2,8$.
 - b) Construire la courbe (C).
 - 4. a) Justifier que f réalise une bijection de [0;+∞ sur un intervalle J que l'on déterminera.

 - b) Dresser le tableau de variation de la fonction f⁻¹ réciproque de f .
 c) Construire, dans le repère précèdent, la courbe (C') représentative de f⁻¹.
- 5. a) Utiliser une intégration par parties pour calculer $G(x) = \int_{0}^{x} t \ln t dt$.
 - b) En déduire une primitive F de f sur l'intervalle [0;+∞[.
- 6) Soit A_n l'aire du domaine plan limité par la courbe (C), l'axe des abscisses et les droites d'équation

respectives $x = \alpha$ et $x = \frac{1}{\alpha}$.

- a) Justifier que $A_n = -\int_{\frac{1}{2}}^{\alpha} f(t)dt$ puis calculer A_n en fonction de α et n.
- b) Calculer $\ell = \lim_{n \to \infty} A_n$ et donner un encadrement par deux entiers consécutifs de cette limite. Interpréter graphiquement.

Fin.