# Assignment 2 solutions

# Feasible space:



## Canonical form:

$$\max 5x_1 + 2x_2$$
s.t.  $2x_1 + x_2 + x_3 = 15$ 
 $3x_1 - 2x_2 + x_4 = 12$ 
 $x_1 + 2x_2 + x_5 = 15$ 
 $-x_1 + 3x_2 + x_6 = 15$ 
 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$ 

# <u>Iteration 1</u>:

Basic variables  $x_3, x_4, x_5, x_6$ Non basic variables  $x_1, x_2$ 

Tableau:

|                  | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | RHS | Ratio Test |
|------------------|-------|-------|-------|-------|-------|-------|-----|------------|
| $\overline{x_3}$ |       |       |       |       | 0     |       | 15  | 7.5        |
| $x_4 \\ x_5$     | 3     | -2    | 0     | 1     | 0     | 0     | 12  | 4          |
| $x_5$            | 1     | $^2$  | 0     | 0     | 1     | 0     | 15  | 15         |
| $x_6$            | -1    | 3     | 0     | 0     | 0     | 1     | 15  | -          |
| $\overline{z}$   | -5    | -2    | 0     | 0     | 0     | 0     | 0   |            |

$$A_B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = A_B^{-1} \qquad y = \begin{bmatrix} 2 \\ 3 \\ 1 \\ -1 \end{bmatrix}$$

Basic solution is (0,0,15,12,15,15), corresponding extreme point is (0,0). Entering variable is  $x_1$ , exiting variable is  $x_4$ .

#### Iteration 2:

Basic variables  $x_3, x_1, x_5, x_6$ Non basic variables  $x_4, x_2$ 

Tableau:

|       | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | RHS | Ratio Test |
|-------|-------|-------|-------|-------|-------|-------|-----|------------|
| $x_3$ | 0     | 7/3   | 1     | -2/3  | 0     | 0     | 7   | 3          |
| $x_1$ | 1     | -2/3  | 0     | 1/3   | 0     | 0     | 4   | -          |
| $x_5$ | 0     | 8/3   | 0     | -1/3  | 1     | 0     | 11  | 33/8       |
| $x_6$ | 0     | 7/3   | 0     | 1/3   | 0     | 1     | 19  | 57/7       |
| z     | 0     | -16/3 | 0     | 5/3   | 0     | 0     | 20  |            |

$$A_B = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} A_B^{-1} = \begin{bmatrix} 1 & -2/3 & 0 & 0 \\ 0 & 1/3 & 0 & 0 \\ 0 & -1/3 & 1 & 0 \\ 0 & 1/3 & 0 & 1 \end{bmatrix} y = \begin{bmatrix} 7/3 \\ -2/3 \\ 8/3 \\ 7/3 \end{bmatrix}$$

Basic solution is (4, 0, 7, 0, 11, 19), corresponding extreme point is (4, 0). Entering variable is  $x_2$ , exiting variable is  $x_3$ .

#### Iteration 3:

Basic variables  $x_2, x_1, x_5, x_6$ Non basic variables  $x_4, x_3$ 

Tableau:

|                  | $x_1$ | $x_2$ | $x_3$ | $x_4$  | $x_5$ | $x_6$ | RHS |
|------------------|-------|-------|-------|--------|-------|-------|-----|
| $\overline{x_2}$ | 0     | 1     | 0.429 | -0.286 | 0     | 0     | 3   |
| $x_1$            | 1     | 0     | 0.286 | 0.143  | 0     | 0     | 6   |
| $x_5$            | 0     | 0     | -1.14 | 0.429  | 1     | 0     | 3   |
| $x_6$            | 0     | 0     | -1    | 1      | 0     | 1     | 12  |
| $\overline{z}$   | 0     | 0     | 2.29  | 0.143  | 0     | 0     | 36  |

$$A_B = \begin{bmatrix} 1 & 2 & 0 & 0 \\ -2 & 3 & 0 & 0 \\ 2 & 1 & 1 & 0 \\ 3 & -1 & 0 & 1 \end{bmatrix} A_B^{-1} = \begin{bmatrix} 0.429 & -0.29 & 0 & 0 \\ 0.29 & 0.14 & 0 & 0 \\ -1.14 & 0.43 & 1 & 0 \\ -1 & 1 & 0 & 1 \end{bmatrix}$$

Basic solution is (6,3,0,0,3,12), corresponding extreme point is (6,3). There are no negative reduced costs, so this is the optimal solution.

## Marking:

- (1 mark) Correct sketch of the feasible region
- (1 mark) Correct labelling of the sketch (equations and points)
- (1 mark) Correct canonical tableau at the start of each iteration
- (1 mark) Correct display of  $A_B, A_B^{-1}$  and y
- (1 mark) "Logical" path to optimal (i.e. picking a variable with negative reduced costs)
- (1 mark) Correct path to optimal (as shown in solutions)
- (1 mark) Correct optimal solution