Kaggle Inclusive Images Challenge

Problem statement

Given a large set of images from one geographic region train a model generalized on another regions.

Evaluation metric: F2 score (like F1, but recall is more important than precision).

Shopkeeper, Person

Physician, Hospital, Person

Drummer, Person

Nature, Beauty

Transport, Person, Public transport

Sports, Child, Soccer, Training, Person

Food

Dataset

Train

- 1.7 millions images
- More than 7000 classes
- Wikipedia text data

Test (stage1)

- 32 thousand images
- Ground truth labels for 1 thousand images for tuning models locally

Restrictions

- Pretrained models are not allowed;
- No other data allowed;
- Predictions should be made based on image input only (not metadata);
- Model should be uploaded by the Stage1 deadline;

Foxes after convolution

Right one is pooled version of the left one

Data distribution

OpenImages Distribution (See Shankar et al., 2017)

Challenge Stage 1 Distribution (Illustrative)

Challenge Stage 2 Distribution (Illustrative)

Key idea

- 1. Train convolutional neural network on the train dataset;
- 2. Freeze all layers except the last one and use 1000 images from Stage1 for tuning;
- 3. Ensemble different models;

Training details

- Input image size: 224x224;
- 100k images for validation;
- Reduce learning rate on plateau;
- Architecture is important;
- Larger batch size is better;

How to use 1000 labels from Stage1

- Freeze a network and adapt only the last layer to perform better on these images;
- 2. Adapt the last layers to perform better on both validation and images from Stage1 test.

Model architectures

- PNASNet-5-Large
- NASNet-A-Large
- SENet154
- ResNet152
- ResNet101
- Densenet121

Other findings

- Best single model PNASNet-5-Large gives 4th place;
- The final solution contains ~300 models;
- The distribution on images doesn't matter while distribution of targets does;

How not to overfit

- Use cross-validation while tuning the last layer;
- Use dropout and strong augmentation while tuning the last layer;
- Choose correct weights in ensemble to perform well both on validation and public leaderboard;

Data distribution

OpenImages Distribution (See Shankar et al., 2017)

Challenge Stage 1 Distribution (Illustrative)

Challenge Stage 2 Distribution (Illustrative)

Pavel Ostyakov

Deep Learning Engineer at Samsung Al Center Moscow, Russia Joined 3 years ago · last seen in the past day

O in

Followers 85 Following 12

Home (

Competitions (23)

Kernels

els Discussion (58)

Datasets · · ·

Edit Profile

Competitions Grandmaster		
	Rank 11 of 93,421	
6	2	2
Inclusive Images Challenge		1 st of 468
The 2nd You	Tube-8M Vide go - Top 1%	2 nd of 312
Google Landmark Recognit • 6 months ago • Top 1%		4 th of 477

How to win on Kaggle

- Write clean code which could be reused in the future;
- Read all messages on forum;
- Merge with other people;
- Generate many different ideas and discuss then with your teammates/friends;

How to win on Kaggle [2]

- Use ods.ai community;
- Practice, more practice. You should spend as much time as possible;
- Read papers and their implementations;
- Don't think you cannot get a gold medal, you can!

Contacts

- ODS: ostyakov
- pavelosta@gmail.com