

MOSFET

Metal Oxide Semiconductor Field Effect Transistor

CFDA Automotive

650V CoolMOS™ CFDA Power Transistor IPW65R048CFDA

Data Sheet

Rev. 2.0 Final

IPW65R048CFDA

1 Description

CoolMOS™ is a revolutionary technology for high voltage power MOSFETs, designed according to the superjunction (SJ) principle and pioneered by Infineon Technologies. 650V CoolMOS™ CFDA series combines the experience of the leading SJ MOSFET supplier with high class innovation. The resulting devices provide all benefits of a fast switching SJ MOSFET while offering an extremely fast and robust body diode. This combination of extremely low switching, commutation and conduction losses together with highest robustness make especially resonant switching applications more reliable, more efficient, lighter, and cooler.

Features

- · Ultra-fast body diode
- · Very high commutation ruggedness
- Extremely low losses due to very low FOM Rdson*Qg and Eoss
- · Easy to use/drive
- Qualified according to AEC Q101
- Green package (RoHS compliant), Pb-free plating, halogen free for mold compound

Applications

650V CoolMOS™ CFDA is designed for switching applications.

Parameter	Value	Unit
V _{DS}	650	V
RDS(on),max	0.048	Ω
Qg,typ	270	nC
ID,pulse	228	A
Eoss @ 400V	20.5	μJ
Body diode di/dt	900	A/µs
Qrr	1.8	μC
trr	240	ns
Irrm	12	A

Type / Ordering Code	Package	Marking	Related Links
IPW65R048CFDA	PG-TO 247	65F6048A	-

650V CoolMOS™ CFDA Power Transistor

IPW65R048CFDA

Table of Contents

escription	2
able of Contents	3
aximum ratings	4
nermal characteristics	5
ectrical characteristics	6
ectrical characteristics diagrams	8
est Circuits	
ackage Outlines	3
evision History	4
sclaimer 1	4

IPW65R048CFDA

2 Maximum ratings at $T_j = 25$ °C, unless otherwise specified

Maximum ratings Table 2

Parameter	Comple el	Values		11	Note (Tool Occalides		
Faranietei	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Continuous drain current ¹⁾	/ D			63.3	Α	<i>T</i> _C = 25°C	
				40		T _C = 100°C	
Pulsed drain current ²⁾	/ D,pulse			228	Α	<i>T</i> _C = 25°C	
Avalanche energy, single pulse	Eas			1943	mJ	$I_D = 12.7A, V_{DD} = 50V$ (see table 18)	
Avalanche energy, repetitive	<i>E</i> _{AR}			2.94	mJ	$I_D = 12.7A$, $V_{DD} = 50V$	
Avalanche current, repetitive	/ AR			12.7	Α		
MOSFET dv/dt ruggedness	dv/dt			50	V/ns	V _{DS} = 0 400V	
Gate source voltage	V∕GS	-20		20	V	static	
		-30		30		AC (f > 1 Hz)	
Power dissipation (non FullPAK) TO-247	P _{tot}			500	W	<i>T</i> _C = 25°C	
Operating and storage temperature	$\mathcal{T}_{j}, \mathcal{T}_{stg}$	-40		150	°C		
Mounting torque (non FullPAK) TO-247				60	Ncm	M3 and M3.5 screws	
Continuous diode forward current	/ s			63.3	Α	T _C = 25°C	
Diode pulse current	/ S,pulse			228	Α	<i>T</i> _C = 25°C	
Reverse diode dv/dt ³⁾	dv/dt			50	V/ns	$V_{DS} = 0 400V, /_{SD} \le /_{D},$ $T_j = 25^{\circ}C$	
Maximum diode commutation speed	di _f /dt			900	A/µs	(see table 16)	

 $^{^{1)}}$ Limited by T $_{j~max}.$ $^{2)}$ Pulse width t_p limited by T $_{j~max}$ $^{3)}$ Identical low side and high side switch with identical R_G

3 Thermal characteristics

Table 3 Thermal characteristics TO-247

Parameter	Symbol	Values			Unit	Note / Test Condition	
Parameter	Symbol	Min.	Тур.	Max.	Oilit	Note / Test Condition	
Thermal resistance, junction - case	<i>R</i> thJC			0.25	K/W		
Thermal resistance, junction - ambient	R_{thJA}			62	K/W	leaded	
Soldering temperature, wavesoldering only allowed at leads	\mathcal{T}_{sold}			260	°C	1.6 mm (0.063 in.) from case for 10s	

IPW65R048CFDA

Electrical characteristics

at $T_j = 25$ °C, unless otherwise specified

Table 4 Static characteristics

Parameter	0	Values				
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Drain-source breakdown voltage ¹⁾	V _{(BR)DSS}	650			V	$V_{GS} = 0V, I_D = 1mA$
Gate threshold voltage	V _{GS(th)}	3.5	4	4.5	V	$V_{DS} = V_{GS}, I_D = 2.9 \text{mA}$
Zero gate voltage drain current	/ DSS			3	μΑ	$V_{DS} = 650V$, $V_{GS} = 0V$, $T_j = 25^{\circ}C$
			900			$V_{DS} = 650V, V_{GS} = 0V, T_j = 150°C$
Gate-source leakage current	/ GSS			100	nA	V _{GS} = 20V, V _{DS} = 0V
Drain-source on-state resistance	RDS(on)		0.043	0.048	Ω	$V_{GS} = 10V$, $I_D = 29.4A$, $I_j = 25^{\circ}C$
			0.112			$V_{GS} = 10V$, $I_{D} = 29.4A$, $I_{j} = 150$ °C
Gate resistance	<i>R</i> _G		0.6		Ω	f= 1MHz, open drain

Table 5 **Dynamic characteristics**

Parameter	Cumbal	Values			I India	No. 17 To 10 To 1111	
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Input capacitance	Ciss		7440		pF	$V_{GS} = 0V$, $V_{DS} = 100V$, $f = 1MHz$	
Output capacitance	Coss		350		pF		
Effective output capacitance, energy related ²⁾	$C_{ m o(er)}$		250		pF	V _{GS} = 0V, V _{DS} = 0 400V	
Effective output capacitance, time related ³⁾	$C_{o(tr)}$		1260		pF	I_D = constant, V_{GS} = 0V, V_{DS} = 0 400V	
Turn-on delay time	<i>t</i> d(on)		22		ns	V _{DD} = 400V, V _{GS} = 13V,	
Rise time	<i>t</i> r		10		ns	$I_D = 44.2A$, $R_G = 1.8Ω$ (see table 17)	
Turn-off delay time	t _{d(off)}		85		ns	(000 000000 00)	
Fall time	<i>t</i> f		4		ns		

Table 6 Gate charge characteristics

Parameter	Combal	Values				N / / T / A III
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition
Gate to source charge	Q_{gs}		48		nC	$V_{DD} = 480V$, $I_{D} = 44.2A$,
Gate to drain charge	$Q_{ m gd}$		147		nC	$V_{GS} = 0$ to 10V
Gate charge total	Q_{g}		270		nC	
Gate plateau voltage	V _{plateau}		6.4		V	

¹⁾ For applications with applied blocking voltage > 65% of the specified blocking voltage, we recommend to evaluate the impact of the cosmic radiation effect in early design phase. For assessment please contact local Infineon sales office. $^{2)}$ C_{o(er)} is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 400V

 $^{^{3)}}$ $C_{o(tr)}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 400V

650V CoolMOS™ CFDA Power Transistor

IPW65R048CFDA

Table 7 Reverse diode characteristics

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.	Oilit	Note / Test Condition
Diode forward voltage	V ∕sɒ		0.9		V	$V_{GS} = 0V$, $I_F = 44.2A$, $I_j = 25^{\circ}C$
Reverse recovery time	<i>t</i> rr		240		ns	V _R = 400V, / _F = 44.2A,
Reverse recovery charge	Q _{rr}		1.8		μC	d <i>i</i> _F /d <i>t</i> = 100A/μs (see table 16)
Peak reverse recovery current	/ rrm		12		Α	

5 Electrical characteristics diagrams

Table 8

Table 9

Table 10

Table 11

Table 12

Table 13

Table 14

Table 15

6 Test Circuits

Table 16 Diode characteristics

Table 17 Switching times

Table 18 Unclamped inductive

7 Package Outlines

Figure 1 Outline PG-TO 247, dimensions in mm/inches

650V CoolMOS™ CFDA Power Transistor

IPW65R048CFDA

Revision History

IPW65R048CFDA

Revision: 2012-03-28, Rev. 2.0

Previous Revision							
Revision	Date	Subjects (major changes since last revision)					
2.0	2012-03-28	Final datasheet					

Disclaimer ATV

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: **erratum@infineon.com**

Edition 2011-09-30 Published by Infineon Technologies AG 81726 München, Germany © 2011 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Final Data Sheet 14 Rev. 2.0, 2012-03-28