Pass 1:

- Trajectory = Path followed, with the time required
 - Can be planned in joint space, or in Cartesian
 - Joint = angles
 - Cartesian = position + orientation
 - more directly allows geometric constraints of external world, BUT involves inverse kinematics :(

• Issues

- Specific target from initial starting point
- Obstacle avoidance
- Staying within manipulator capabilities

Polynomial trajectories

- Not higher than n = 5 (too many wiggles)
- Linear, quadratic (acceleration can be constant), cubic (jerk is constant)
- Multi-segment
 - Splicing
 - Parabolic blend
 - Ramping up and ramping down is I think what this is talking about
- Cartesian trajectory planning
 - Piecewise eqns
- Interpolating 3D rotations
 - It looks like you do half rotation on each side
 - Taylor trajectory for orientation

POLYMOMIAL TRAJECTORIES

Stationary
$$\chi(t) = a_0 + \sum_{i=1}^{n} a_i t^n$$
 $t_0 < t < t_1$

LINEAR	QUADPATIC CONSTANT ACCELERATION 2012	CUBIC & CONSTANT JERK (Gas)
relify:	Steury:	Speufy
. BEGINNING POSITION (X.)	EMPRONT POSITIONS (X, X,)	. EMOPOINT POSITIONS (X, X,)
· VELOCITY (x')	· INITIAL VELOCITY (X')	END POINT VELOCITIES (X, X, 1)
0° = X °	$\underline{x}_1 = \underline{x}_0 + \underline{x}_0^{\dagger} + a_1 + a_2 + a_2^{\dagger}$ $0 = \underline{x}_0$	4 ₀ = X ₅
a, = × '	a, = x, -4.	4₀ = x₀ A₁ = x o
VELOCITY CONSTANT	$a_2 = \frac{\underline{x_1} - \underline{x_0} - \underline{x_0}^{\dagger} t_1}{t_1^{2}}$ $a_1 = \underline{x_0}^{\dagger}$	$Z(x, -x_0) - Z(x_0' + x') + .$
	·	$a_2 = \frac{3(\underline{x}_1 - \underline{x}_0) - Z(\underline{x}_0^1 + \underline{x}_1^1) + 1}{t_1^2}$
		2 (xº - x̄') + (x̄' + x̄') +
		$a_3 = \frac{1}{\xi_1^3}$

x, (t) = a. + \(\sum_{i=1}^{n} \) a; t \(\text{i} \) o \(\text{t} \) t,	
$\underline{x}_{i}(t) = a_{i} + \sum_{i=1}^{n} a_{i} t$ of the t_{i}	
	UNARY VS BINARY CONSTRAINTS
xz = bo + En bit thetetz	FOSTTION + VELOCITY
<u> </u>	Continuous $x_1(\xi_1) = x_2(\xi_1)$
	×,(+,)= ×,(+,)
APPLICATION COOPS LIKE	
x(t) = a0+a1+a2t2+a3t3	
7/(1/2 018 - 4/145(- 4-43)	GIVEN 7 CONSTRAINTS $(x, (t_i) = x_i, t_i) = x_i$
x2(1) = 60 + 61 (t-t1) + 62 (1-t1)2	
χ ₂ (t) = 0 ₀ + ω (t-t ₁) + ω ₂ (t-τ ₁)	$x_1(t_1) = x_2(t_1)$
	=> ONE POLYMOMENT IS $x_i(o) = x_i(0) = 0$
	Degree 3, the other $x_2(\ell_2) = x_2$
	is n=2
SEGMENT WPARABOLIC BLEND	
Sequeda, 100 Milliantic Brand	