Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem (Even) Examination May-2022 EC3CO12 VLSI Design

Programme: B.Tech. Branch/Specialisation: EC

Duration: 3 Hrs. Maximum Marks: 60

		1 1	Internal choices, if any, are indicated instead of only a, b, c or d.	I. Answers of
Q.1	i.	How is the current propo	ortional to aspect ratio?	1
		(a) Directly	(b) Inversly	
		(c) Not Proportional	(d) Square of aspect ratio	
	ii.	The Substrate Fermi pote	ential of φ is	1
		(a) Negative in nmos po	sitive in pMOS	
		(b) Negative in nmos neg	gative in pMOS	
		(c) Positive in nmos neg	ative in pMOS	

- iii. In the region where inverter exhibits gain, the two transistors are in 1

 ______ region.
 - (a) Linear (b) Cut-off

(d) Positive in nmos positive in pMOS

- (c) Non-saturation (d) Saturation
- iv. If both transistors are in Saturation, then they act as___.
 - (a) Current source(b) Voltage source(c) Divider(d) Buffer
- v. Number of states required to simulate a computer with memory 1 capable of storing '3' words each of length '8' is ____.
- (a) $3x2^8$ (b) 2^3x8 (c) $2^{(3+8)}$ (d) None of these vi. There are _____ tuples in finite state machine.
 - (a) 4 (b) 5 (c) 6 (d) Unlimited
- vii. Table that is not a part of asynchronous analysis procedure is____. 1
 - (a) Transition table (b) State table
 - (c) Flow table (d) Excitation table

P.T.O.

1

	viii. In case of asynchronous FSM change in the internal stage of the circuis reflected by-			1
		(a) Vertical move	(b) Horizontal move	
		(c) Diagonal move	(d) Upward move	
	ix.	The chemical used for shielding the	` ' 1	1
		oxide growth is		
		(a) Silver Nitride	(b) Silicon nitride	
		(c) HCL	(d) Polysilicon	
	х.	The process by which aluminium is	` ' •	1
		the contact cuts is	,	
		(a) Sputtering		
		(b) CVD		
		(c) Epitaxial growth		
		(d) Ion implantation		
Q.2	i.	Define the terms w.r.t MOSFET - Cl	nannel length Modulation	2
	ii.	Explain the working of transmission	_	3
		Transmission Gate.		
	iii.	Derive the expression for threshold v	voltage for nMOS transistor.	5
OR	iv.	Derive the expression for linear		5
		transistor.		
Q.3				
•	i.	Explain noise margin in detail.		2
	i. ii.	Explain noise margin in detail. Compare the voltage transfer characteristics.	etertics of inverter having resistive	2
		Explain noise margin in detail. Compare the voltage transfer character load and n-type MOSFET load.	etertics of inverter having resistive	
OR		Compare the voltage transfer characteristics		8
OR	ii.	Compare the voltage transfer characteristic load and n-type MOSFET load.	for CMOS inverter. Derive the	8
	ii. iii.	Compare the voltage transfer characteristic load and n-type MOSFET load. Draw and explain VTC curve the expression for $V_{\rm IL},V_{\rm IH}$, $V_{\rm OH},V_{\rm OL}$ for	for CMOS inverter. Derive the	8
OR Q.4	ii. iii. i.	Compare the voltage transfer characteristic load and n-type MOSFET load. Draw and explain VTC curve the expression for V_{IL} , V_{IH} , V_{OH} , V_{OL} for Compare Mealy & Moore machine.	for CMOS inverter. Derive the r CMOS inverter	8 8 3
	ii. iii.	Compare the voltage transfer characteristic load and n-type MOSFET load. Draw and explain VTC curve to expression for V _{IL} , V _{IH} , V _{OH} , V _{OL} for Compare Mealy & Moore machine. Design a Finite State Machine for	For CMOS inverter. Derive the r CMOS inverter modulo-8 converter that converts	8
	ii. iii. i.	Compare the voltage transfer characteristic load and n-type MOSFET load. Draw and explain VTC curve the expression for V_{IL} , V_{IH} , V_{OH} , V_{OL} for Compare Mealy & Moore machine.	For CMOS inverter. Derive the r CMOS inverter modulo-8 converter that converts	8 8 3

OR	iii.	Minimize	the number	of states	in the	following	state table
----	------	----------	------------	-----------	--------	-----------	-------------

Present state	Next state, output		
	x=0	x=1	
a	f,0	b,0	
b	d,0	c,0	
С	f,0	e,0	
d	g,1	a,0	
e	d,0	c,0	
f	f,1	b,1	
g	g,0	h,1	
h	g,1	a,0	

Tabulate the reduced state table and draw state diagram.

Q.5 i. State and compare the mode of operation of asynchronous machines.

ii. Define and explain the following with example:

(b) Non-critical path (c) Races (d) Cycles

7

6

5

OR iii. Minimize the state table given below also encircle the stable state in 6 each row:

Present	Next state, output			
state	00	01	10	11
a	a,0	b,1	-	d,0
b	b,1	b,1	c,1	e,1
С	-	b,1	c,1	e,1
d	a,0	b,1	-	d,0
e	a,0	e,0	f,0	e,1
f	-	e,0	f,0	d,0

Q.6 Attempt any two:

(a) Critical path

i. Compare the logic structure of CPLD & FPGA

ii. Explain with diagram IC fabrication steps for n-well process

iii. Write layout design rules for – minimum separation between two 5 layers, minimum Overlap of two layers, minimum Layer width(3each).
 Using these design rules design CMOS inverter

Marking Scheme EC3CO12 VLSI Design

Q.1	i.	How is the current proportional to aspect ratio?	1		
	ii.	(b) Inversly The Substrate Fermi potential of φ is	1		
		(a) Negative in nmos positive in pMOS			
	iii.	In the region where inverter exhibits gain, the two transistors are in region. (d) Saturation	1		
	iv.	If both transistors are in Saturation, then they act as (a) Current source	1		
	V.	Number of states required to simulate a computer with memory capable of storing '3' words each of length '8' is (d) None of these	1		
	vi.	There are tuples in finite state machine. (b) 5	1		
vi	vii.	Table that is not a part of asynchronous analysis procedure is (d) Excitation table			
	viii.	In case of asynchronous FSM change in the internal stage of the circuit is reflected by- (a) Vertical move	1		
	ix.	The chemical used for shielding the active areas to achieve selective oxide growth is (b) Silicon nitride	1		
	Х.	The process by which aluminium is grown over the entire wafer, and the contact cuts is (a) Sputtering	1		
Q.2	i.	Definition 2 Marks	2		
	ii.	Explain the working of transmission gate. 1 Mark Design XOR gate using Transmission Gate. 2 Marks	3		
	iii.	All Parameters 2 Marks Description 3 Marks	5		
OR	iv.	Linear Current Derivation 2.5 Marks Saturation current Derivation 2.5 Marks	5		

Q.3	i. ii.	Noise margin in detail. Each Comparison	(As per explanation) (2 Marks*4)	2 8
OR	iii.	Derive the expression for		8
		$ m V_{IL}$	2 Marks	
		$ m V_{IH}$	2 Marks	
			Marks	
		V_{OL} 2	Marks	
Q.4	i.	Each difference	1 Mark*3	3
	ii.	State Diagram	2 Marks	7
		Transistion table	2 Marks	
		K- map	2 Marks	
		Implementation	2 Marks	
OR	iii.	Merger table/merger graph/partition method	2 Marks	7
		Equivalent state	1 Mark	
		Reduce state table	2 Marks	
		Reduced state diagram	1 Mark	
Q.5	i.	Each Comparison	(1 Mark*4)	4
Q.5	ii.	Define and explain the following with examp	` /	6
	11,	(a) Critical path	1.5 Marks	U
		(b) Non-critical path	1.5 Marks	
		(c) Races	1.5 Marks	
		(d) Cycles	1.5 Marks	
OR	iii.	Encircle stable state	1 Mark	6
on	111.	Minimization	3 Marks	v
		Reduced state table	2 Marks	
Q.6		Attempt any two:		
	i.	Each difference	(1.5 Marks)	5
	ii.	Each step	(0.5 Marks*10)	5
	iii.	Layout Design Rule	2 Marks	5
		Inverter layout design	3 Marks	
