BASIC STRUCTURAL ANALYSIS

CIVIL ENGINEERING VIRTUAL LABORATORY

EXPERIMENT: 3

CONTINUOUS BEAMS

INTRODUCTION:

Continuous beams, which are beams with more than two supports and covering more than one span, are not statically determinate using the static equilibrium laws

e = strain

 σ = stress (N/m²)

E = Young's Modulus = σ /e (N/m²)

y = distance of surface from neutral surface (m).

R = Radius of neutral axis (m).

I = Moment of Inertia (m⁴ - more normally cm⁴)

 $Z = section modulus = I/y_{max}(m^3 - more normally cm^3)$

M = Moment (Nm)

w = Distributed load on beam (kg/m) or (N/m as force units)

W = total load on beam (kg) or (N as force units)

F= Concentrated force on beam (N)

L = length of beam (m)

x = distance along beam (m)

OBJECTIVE:

To find the shear force diagram and bending moment diagram for a given continuous beam.

THEORY:

Beams placed on more than 2 supports are called continuous beams. Continuous beams are used when the span of the beam is very large, deflection under each rigid support will be equal zero.

BMD for Continuous beams:

BMD for continuous beams can be obtained by superimposing the fixed end moments diagram over the free bending moment diagram.

EXPERIMENT: 3 CONTINUOUS BEAMS BSA-CEVL

Three - moment Equation for continuous beams THREE MOMENT EQUATION

FREE B.M.

$$\begin{split} M_{A} \left(\frac{L_{1}}{E_{1} I_{1}} \right) + 2 M_{B} \left(\frac{L_{1}}{E_{1} I_{1}} + \frac{L_{2}}{E_{2} I_{2}} \right) + M_{C} \left(\frac{L_{2}}{E_{2} I_{2}} \right) \\ = & \frac{-6 a_{1} \overline{x_{1}}}{E_{1} I_{1} L_{1}} - \frac{6 a_{2} \overline{x_{2}}}{E_{2} I_{2} L_{2}} - 6 \left[\frac{\delta_{A} - \delta_{B}}{L_{1}} + \frac{\delta_{C} - \delta_{B}}{L_{2}} \right] \end{split}$$

The above equation is called generalized 3-moments Equation. MA, MB and Mc are support moments E_1 , $E_2 \rightarrow Young's$ modulus of Elasticity of 2 Spans.

 $I_1, I_2 \rightarrow M O I of 2 spans,$

 $a_1, a_2 \rightarrow Areas of free B.M.D.$

12 x and x \rightarrow Distance of free B.M.D. from the end supports, or outer supports. (A and C)

 δ_A , δ_B and $\delta_C \rightarrow$ are sinking or settlements of support from their initial position.

EXPERIMENT: 3 CONTINUOUS BEAMS BSA-CEVL

Normally Young's modulus of Elasticity will be same throughout than the Equation reduces to

$$\begin{split} M_{A} & \left(\frac{L_{1}}{I_{1}} \right) + 2M_{B} \left(\frac{L_{1}}{I_{1}} + \frac{L_{2}}{I_{2}} \right) + M_{C} \left(\frac{L_{2}}{I_{2}} \right) \\ & = \frac{-6a_{1}\overline{x_{1}}}{I_{1}L_{1}} - \frac{6a_{2}\overline{x_{2}}}{I_{2}L_{2}} - 6 \left[\frac{\delta_{A} - \delta_{B}}{L_{1}} + \frac{\delta_{C} - \delta_{B}}{L_{2}} \right] \end{split}$$

If the supports are rigid then $\Box A = \Box B = \Box C = 0$

$$M_A L_1 + 2M_B (L_1 + L_2) + M_C L_2 = \frac{-6a_1 \overline{x_1}}{L_1} - \frac{6a_2 \overline{x_2}}{L_2}$$

Note:

1.

If the end supports are simple supports then $M_A = M_C = 0$.

2.

$$M_C = -WL_3$$

If three is overhang portion then support moment near the overhang can be Computed directly.

3.

If the end supports are fixed assume an extended span of zero length and apply 3- Moment equation.

NOTE:

i)

EXPERIMENT: 3 CONTINUOUS BEAMS BSA-CEVL

In this case centroid lies as shown in the figure.

Observation Table:

Section type	Types of loads	Length of member (L)	Breadt h(b)	Depth(d)	Weight (W)	At a distance from section 'X'	Bendin g Momen t (Knm)	S.F (Kn)	Deflectio n(Delta)
continuo' s beams	Two Equal Spans – Uniform Load on One Span								
	Two Equal Spans – Concentrat ed Load at Center of One Span								

Two Equal Spans – Concentrat ed Load at Any Point			
Two Equal Spans – Uniformly Distributed Load			
Two Equal Spans – Two Equal Concentrat ed Loads Symmetrica lly Placed			
Two Unequal Spans – Uniformly Distributed Load			
Two Unequal Spans – Concentrat ed Load on Each Span Symmetrica Ily Placed			

<u>O</u>	u	t	p	u	t	
			_			

Bending moment	(Knm)
2. Shear Force	(KN)

3 Deflections____(Yc)

EXPERIMENT: 3 CONTINUOUS BEAMS BSA-CEVL

References:

1. Theory of Structures volume: 1 by S.P.Guptha and G.S.Pandit

2. Reference taken from N.D.S.

PART – 2
ANIMATION STEPS

PART – 3 VIRTUAL LAB FRAME