Universidad Torcuato Di Tella Maestría en Economía & Finanzas Segundo Trimestre 2025

Machine Learning para Finanzas Problem Set 1

Alumna: Paola Nuñez Profesor: Lionel Modi

1 Introducción

Este trabajo presenta EstimadorOLS, un implementador propio de regresión lineal de mínimos cuadrados ordinarios (OLS), desarrollado para ser compatible con la API de scikit-learn [1]. El estimador cuenta con la opcionalidad de incluir o no el intercepto y garantiza la validación de los inputs con validate_data, así como la integración con get_params() y set_params(). Para validar su correcto funcionamiento se incorporaron pruebas que cubren tanto el ajuste con constante, sin constante, como escenarios de error de dimensiones.

La implementación respeta las convenciones de docstrings de NumPy y el estilo PEP8.

2 Estructura del proyecto

El código fuente completo está disponible en GitHub: https://github.com/nunezpaola/MLforfinance. El repositorio está organizado de la siguiente manera en la carpeta raíz:

- ps/ps1.py: definición de la clase EstimadorOLS, con sus métodos fit y predict, validación de entradas y atributos aprendidos.
- ps/ps1_test.py: pruebas unitarias que cubren:
 - Ajuste con intercepto.
 - Ajuste sin intercepto.
 - Escenario de error por dimensiones inválidas.
- ps/ps1_logs.txt: registros de terminal generados al ejecutar ps1_test.py en los tres casos de prueba.
- mlfin/printing.py: utilidades para formatear e imprimir los resultados de validación (función print_validation_results) y otras utilidades de logging.

3 Documentación

3.1 Estimador

La clase EstimadorOLS está definida en ps/ps1.py. A continuación se describen sus componentes principales:

3.1.1 Constructor (__init__)

El constructor recibe el parámetro opcional

fit_intercept: bool = True

que decide si se incluye una columna de unos en la matriz de diseño para estimar el intercepto. No realiza cálculos colaterales, asegurando compatibilidad con los métodos get_params() y set_params() de scikit-learn.

3.1.2 Método fit

El método fit(X, y, sample_weight=None):

- 1. Valida y convierte X e y con validate_data, asegurando formato, dimensiones y tipo de datos.
- 2. Verifica que el número de muestras sea adecuado (debe ser mayor o igual al número de variables, más uno si hay intercepto).
- 3. Construye la matriz de input X_fit, añadiendo columna de unos si corresponde.
- 4. Resuelve la fórmula cerrada de OLS, manejando singularidad si corresponde.
- 5. Asigna intercept_ y coef_ como atributos aprendidos.
- 6. Retorna la instancia ajustada (self).

3.1.3 Método predict

El método predict(X):

- Usa check_is_fitted para garantizar que el modelo fue entrenado.
- Valida X con validate_data para mantener compatibilidad con la API.
- Retorna predicciones.

3.2 Pruebas y validación

El módulo ps1_test.py incluye:

- Fijación de semilla (seed=1234) y generación de datos sintéticos con make_regression (1000 muestras, 10 variables, bias=5, noise=10).
- Validación cruzada 5-fold mediante print_validation_results, mostrando puntuaciones, media y desviación estándar.
- Comparación de coeficientes originales vs. estimados tras ajuste completo.
- Tres escenarios de prueba configurables via test_type:
 - Ajuste con intercepto.
 - Ajuste sin intercepto.
 - Error por dimensiones inválidas.
- Chequeos de API con check_estimator de scikit-learn.
- ps/ps1_logs.txt contiene los logs de terminal correspondientes.

3.3 Resultados

La muestra sintética generada cuenta con 1000 observaciones de 10 variables, una constante de 5 y desvío estándar del error de 10. Las Tablas 1 y 2 presentan los resultados de validación cruzada y la comparación de coeficientes (con y sin intercepto), respectivamente.

Test	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Mean	Std
Con intercepto Sin intercepto							

Table 1: Resultados de validación cruzada (5-fold)

Parámetro	Original	Estimado (a)	Estimado (b)
Intercepto	5.00	5.16	_
Coef. 1	91.24	91.60	91.42
Coef. 2	35.27	34.95	35.08
Coef. 3	54.25	54.28	54.60
Coef. 4	94.50	94.21	94.35
Coef. 5	93.60	94.00	94.05
Coef. 6	13.35	13.26	13.32
Coef. 7	99.02	99.42	99.79
Coef. 8	67.12	67.28	67.39
Coef. 9	55.41	55.24	55.19
Coef. 10	88.83	88.97	88.83

Table 2: Comparación de los coeficientes verdaderos generados por make_regression (columna "Original") con los estimados por EstimadorOLS entrenado (a) con intercepto y (b) sin intercepto. Todos los valores están redondeados a dos decimales.

References

- [1] Scikit-learn Developers Guide, "Rolling your own estimator", https://scikit-learn.org/stable/developers/develop.html#rolling-your-own-estimator. Último acceso: Julio 2025.
- [2] NumPy Documentation Guide, "Docstring Standard", https://numpydoc.readthedocs.io/en/latest/format.html. Último acceso: Julio 2025.
- [3] PEP 8 Style Guide for Python Code, https://www.python.org/dev/peps/pep-0008/. Último acceso: Julio 2025.