DIIT Departamento de Ingenieria e Investigaciones Tecnológicas

Cuerpo rígido | Tensores de inercia

- 1. Se tiene una barra de m=1 kg de sección despreciable frente a l=1 m. De alinear un eje (\hat{z}) con ella,
 - a) ¿cuales son sus momentos de inercia?,
- b) ¿existen los productos de inercia?
- 2. Dibuje sistemas de ejes conveniente para calcular momentos de inercia.

- 3. El sistema que se muestra en la ilustración para t=0 presenta pesos en los extremos de dos brazos. La barra dispuesta verticalmente se mantiene en tal dirección con rulemanes que posibilitan que el eje rote sin fricción con velocidad angular Ω constante respecto el marco inercial O_{xyz} . Para este análisis la masa de brazos y ejes es despreciable frente a la de los pesos m. Calcule
 - a) tensor de inercia $\overline{\overline{I}}(t)$ en función del tiempo respecto a A ,
 - b) momento angular $\vec{L}\Big|_A(t)=\overline{\bar{I}}(t)\vec{\Omega}$ y torque $\vec{\tau}(t)=\dot{\bar{L}}(t)$.
- 4. Calcule los momentos de inercia para una molécula de H_2O . En CNPT se abre con un ángulo de $104,5^{\circ}$ y median 95,84 pm entre O y H.
- 5. Marion (e) ex. 11-3 Tensor de inercia de un cubo con arista b.
 - a) Calcule el tensor de inercia desde el sistema de ejes x_i con origen en el centro de masa O.
 - b) Use la forma general del teorema de ejes paralelos de Steiner para calcularlo en el sistema X_i con origen en el vértice Q
- x_1 x_2 x_3 x_4 x_4 x_5 x_5 x_6 x_8 x_8
- 6. En una plancha metálica se calaron dos aberturas en forma simétrica. Esta pendul'ea desde el punto A manteniendose siempre en el plano x,y por lo que es relevante conocer su momento de inercia I_{zz} . Por pesado se determinó la m de la planchuela calada y se midieron todas las dimensiones que indica la figura. Calcule I_{zz} desde A en función de esos datos.
- g \downarrow χ g \downarrow g \downarrow

7. Landau §32 6

Hallar la energía cinética de un cilindro homogéneo de radio a que rueda en el interior de una superficie cilíndrica de radio R.

8. Landau $\S32$ 2e y Landau $\S32$ 7

Calcule:

- a) En un sistema de ejes conveniente calcule el tensor de inercia de este cono homogéneo de altura h y radio en su base R.
- b) Energía cinética de dicho cono rodando sobre el plano XY. El contacto instantáneo \overline{OA} forma un ángulo de θ con \hat{X} .

