2022-2023 学年线性代数 II (H) 期中

任课老师:吴志祥 考试时长:90分钟

- 一、 (15 分) 求通过直线 L: $\begin{cases} 2x+y-3z+2=0\\ 5x+5y-4z+3=0 \end{cases}$ 的两个互相垂直的平面 π_1 和 π_2 , 使 π_1 过点 (4,-3,1).
- 二、 (15 分) 求直线 $l_1: \begin{cases} x-y=0 \\ z=0 \end{cases}$ 与直线 $l_2: \frac{x-2}{4} = \frac{y-1}{-2} = \frac{z-3}{-1}$ 的距离.
- 三、 (15 分) 设 $\mathbf{R}[X]$ 是实系数多项式构成的线性空间,令 $W = \{(x^3 + x^2 + 1)h(x) \mid h(x) \in \mathbf{R}[x]\}.$
 - (1) 证明: $W \in \mathbf{R}[x]$ 的子空间;
 - (2) 求 $\mathbf{R}[x]/W$ 的一组基和维数.
- 四、(15 分) 设 V 和 W 是数域 \mathbf{F} 上的线性空间, V_1, V_2, \ldots, V_n 是 V 的 n 个子空间且 $V = V_1 \oplus V_2 \oplus \cdots \oplus V_n$. 证明: $\mathcal{L}(V, W)$ 和 $\mathcal{L}(V_1, W) \times \mathcal{L}(V_2, W) \times \cdots \times \mathcal{L}(V_n, W)$ 同 构.
- 五、 (10 分) 设 V 是一个有限维线性空间, $T \in \mathcal{L}(V)$ 是同构映射, 记其逆映射为 T^{-1} . 设 W 是 T 的不变子空间, 证明: W 是 T^{-1} 的不变子空间.
- 六、(15 分)设 $M_n(\mathbf{C})$ 是 n 阶复矩阵全体构成的线性空间, $U = \{A \in M_n(\mathbf{C}) \mid A^{\mathrm{T}} = A\}, W = \{B \in M_n(\mathbf{C}) \mid B^{\mathrm{T}} = -B\}.$ 在 $M_n(\mathbf{C})$ 上定义二元映射 $\langle , \rangle : M_n(\mathbf{C}) \times M_n(\mathbf{C}) \to \mathbf{C}$,使得对于任意的 $A, B \in M_n(\mathbf{C})$,有 $\langle A, B \rangle = \operatorname{tr}(AB^{\mathrm{H}})$,其中 B^{H} 表示 B 的共轭转置矩阵.
 - (1) 证明: $(M_n(\mathbf{C}), \langle \rangle)$ 是复内积空间;
 - (2) 证明: $U = W^{\perp}$;
 - (3) 设 $A \in M_n(\mathbf{C})$,试求 $B \in U$ 使得 $\forall D \in U$,有 $||A B|| \leq ||A D||$,其中 $||A|| = \sqrt{\langle A, A \rangle}$.
- 七、 (15 分) 设 $\mathbf{R}[x]_3$ 是由次数小于 3 的实系数多项式构成的线性空间. 对于 $g(x) \in \mathbf{R}[x]_3$, 定义 $f_1(g(x)) = \int_0^1 g(x) dx$, $f_2(g(x)) = \int_0^2 g(x) dx$, $f_3(g(x)) = \int_0^{-1} g(x) dx$.
 - (1) 证明: $f_1, f_2, f_3 \in \mathbf{R}[x]_3$ 对偶空间的一组基;
 - (2) 求 $\mathbf{R}[x]_3$ 的一组基 $g_1(x), g_2(x), g_3(x)$,使得 f_1, f_2, f_3 是 $g_1(x), g_2(x), g_3(x)$ 的对 偶基.