

Universidade Federal de Pernambuco Departamento de Física—CCEN

Prof. Clécio C. de Souza Silva

Introdução a Métodos Computacionais em Física – 2022.1 Atividade 2: Caos no Pêndulo Forçado

Objetivo: Estudar, numericamente, não-linearidade e caos em um sistema mecânico simples. Aprender a construir um diagrama de Poincaré.

Considere um pêndulo plano amortecido, de comprimento ℓ , massa m e constante de amortecimento b, forçado por um torque externo $A\cos\Omega t$ de frequência $\Omega/2\pi$ e amplitude A. A equação do movimento correspondente pode ser escrita como

$$\ddot{\theta} = -\frac{b}{m\ell^2}\dot{\theta} - \frac{g}{\ell}\sin\theta + \frac{A}{m\ell^2}\cos\Omega t. \tag{1}$$

- 1. Adimensionalização do problema. Multiplique a equação acima por $\tau^2 = \ell/g$. Note que τ é o período de pequenas oscilações do pêndulo e, portanto, tem unidade de tempo. Defina o tempo adimensional $\tilde{t} = t/\tau$. Encontre formas adimensionais para as demais variáveis e parâmetros (θ, b, A, Ω) e reescreva a Eq. (1) na forma adimensional. Em seguida, decomponha essa nova equação em duas equações diferenciais de primeira ordem.
- 2. Forçamento fraco e tempo transiente. Considere os seguintes parâmetros adimensionais do pêndulo forçado: $\tilde{b} = 0.05$, $\tilde{\Omega} = 0.7$ e $\tilde{A} = 0.3$. Para esta amplitude do torque externo, o pêndulo entrará em movimento estacionário de libração, com uma frequência de oscilação igual $\tilde{\Omega}/(2\pi)$, após um certo tempo transiente t_{trans} .
 - a) Simule o movimento do pêndulo nessas condições e faça gráficos de $\theta \times t$ e $\omega \times \theta$. Certifiquese que você consegue identificar os dois regimes, transiente e estacionário, e faça uma estimativa de t_{trans} .
 - b) Repita o item anterior para as amplitudes $\tilde{A} = 0.4$ e 0.6. Você ainda consegue identificar movimento periódico do pêndulo? Consegue estimar o transiente?
- 3. Diagrama de Poincaré. Uma forma muito eficiente de identificar se certos sistemas dinâmicos são periódicos ou potencialmente caóticos é através da construção de um mapa estroboscópico, conhecido como diagrama de Poincaré. Para o caso do pêndulo forçado, esse mapa consiste em anotar as coordenadas (θ, ω) do espaço de fase cada vez que a fase do torque externo der uma volta completa, ou seja, cada vez que $\tilde{\Omega}t = 2\pi n$, onde $n = 0, 1, 2, \ldots$ Se o movimento for periódico, (θ_n, ω_n) serão registrados sempre num mesmo ponto, se o período de oscilação do sistema coincidir com o período do agente externo, em dois pontos, se o período do sistema for o dobro, e assim por diante. Se o movimento for caótico, o diagrama de Poincaré revelará uma nuvem de pontos de formato peculiar, de estrutura fractal, refletindo o fato de que o movimento do pêndulo nunca se repete.

Construa diagramas de Poincaré para as seguintes amplitudes $A=0.4,\ 0.5,\ 0.6,\ 0.7,\ 0.8$ e 0.9, identificando em quais casos o movimento é regular e em quais outros o movimento é potencialmente caótico. Em caso de movimento periódico, identifique o período de oscilação.

Orientações importantes:

• Para um bom diagrama de Poincaré, é importante que o período P das seções estro-

Universidade Federal de Pernambuco Departamento de Física—CCEN

Prof. Clécio C. de Souza Silva

boscópicas (no caso, o período do torque externo) contenha um número inteiro de passos de integração, ou seja: $dt = P/N_P$, onde N_P é o número (inteiro) de passos que cabem em um período. Usando o algoritmo de Runge-Kutta de 4a. ordem, $N_P = 100$ a 200 já produz resultados bastante satisfatórios.

- A estrutura fractal do diagrama de Poincaré no caso de movimento caótico só se revela para um grande número de seções estroboscópicas. Portanto, o tempo total de simulação deve ser $N_t = N*N_P$, onde $N \gg 1$. Para N = 200, já é possível ver a nuvem se formando, mas a estrutura fractal ainda não é muito clara. Use N = 2.000 ou maior. Note que, nesse caso, a simulação poderá demorar vários segundos ou mesmo alguns minutos para terminar. Para acelerar a execução do seu programa, use a compilação just-in-time (jit) da biblioteca numba (antes, consulte o professor sobre como usar o jit). O jit fará uma pré-compilação das suas funções, tornando sua simulação de 10 a 100 vezes mais rápida.
- 4. Sensibilidade a condições iniciais.
 - a) Simule simultaneamente dois pêndulos forçados idênticos (e independentes), sob a ação do mesmo torque externo, durante 50 períodos do torque. Use um valor de A para o qual observa-se comportamento caótico. Para o primeiro pêndulo, adote as condições iniciais $\omega_1(0) = 0$ e $\theta_1(0) = 0$ e para o segundo use $\omega_2(0) = 0$, mas um $\theta_2(0)$ ligeiramente diferente (p.ex. $\theta_0 = 0.001$. Plote as curvas $\omega_1(t)$ e $\omega_2(t)$ num mesmo gráfico e descreva o que é observado. Se os comportamentos dos pêndulos continuarem similares, dobre o valor do intervalo.
 - b) Agora repita o item anterior, mas substituindo sen θ por θ . O que acontece? Compare com o resultado anterior e discuta.
- 5. Conclusão. Faça uma discussão geral sobre as atividades anteriores usando os argumentos e comentários que julgar pertinentes. Discuta também eventuais dificuldades encontradas.