Paradigmas de Programación

Sistemas deductivos Deducción natural para lógica proposicional

2do cuatrimestre de 2024

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Deducción natural para lógica proposiciona

Semántica bivaluada

Motivación

Queremos poder hacer **afirmaciones matemáticamente precisas** sobre programas en distintos lenguajes de programación.

Ejemplos de afirmaciones que querríamos hacer

- ► El tipo (Bool -> Int) está sintácticamente bien formado.
- ► La expresión map tiene tipo ((a -> b) -> [a] -> [b]).
- ▶ La expresión map tiene tipo ((a -> a) -> [a] -> [a]).
- La expresión map tiene tipo Bool.
- ► El programa while (true) {} no termina.
- ► El resultado de evaluar (factorial 7) es 5040.
- Los algoritmos quickSort y mergeSort son indistinguibles.

Queremos tener mecanismos para demostrar dichas afirmaciones.

En este contexto, las afirmaciones se llaman **juicios**.

Un **sistema deductivo** sirve para razonar acerca de **juicios**.

Está dado por reglas de inferencia, de la forma:

$$\frac{\langle \mathsf{premisa}_1 \rangle \quad \langle \mathsf{premisa}_2 \rangle \quad \dots \quad \langle \mathsf{premisa}_n \rangle}{\langle \mathsf{conclusi\'on} \rangle} \langle \mathsf{nombre\ de\ la\ regla} \rangle$$

Las reglas que no tienen premisas (n = 0) se llaman **axiomas**.

Las premisas son condiciones suficientes para la conclusión.

- Lectura de arriba hacia abajo: si tenemos evidencia de que valen las premisas, podemos deducir que vale la conclusión.
- Lectura de abajo hacia arriba: si queremos demostrar que vale la conclusión, alcanza con demostrar que valen las premisas.

Ejemplo — el sistema deductivo ${\cal A}$

El sistema ${\mathcal A}$ predica sobre juicios de la forma "X>Y". Incluye tres axiomas:

$$\rightarrow \blacksquare$$
 ax1 $\blacksquare > \blacktriangle$ ax2 $\blacksquare > \bullet$ ax3

y un esquema de regla, donde X, Y, Z son variables esquemáticas (que se pueden instanciar de manera arbitraria):

$$\frac{X > Y \quad Y > Z}{X > Z} \text{trans}$$

Demostrar el juicio ★ > ● de dos maneras distintas.

Una **derivación** es un árbol finito formado por reglas de inferencia. Parte de ciertas premisas y llega a una conclusión.

Un juicio es **derivable** si hay alguna derivación sin premisas que lo concluye.

Ejemplo — fórmulas

Suponemos dado un conjunto infinito de variables proposicionales:

$$\mathcal{P} = \{P, Q, R, \ldots\}$$

El siguiente sistema predica sobre juicios de la forma "X FORM".

$$\frac{P \in \mathcal{P}}{P \text{ FORM}} \mathsf{FP} \quad \frac{\tau \text{ FORM} \quad \sigma \text{ FORM}}{(\tau \wedge \sigma) \text{ FORM}} \mathsf{F} \wedge \quad \frac{\tau \text{ FORM} \quad \sigma \text{ FORM}}{(\tau \Rightarrow \sigma) \text{ FORM}} \mathsf{F} \Rightarrow$$

$$\frac{\tau \text{ FORM} \quad \sigma \text{ FORM}}{(\tau \vee \sigma) \text{ FORM}} \mathsf{F} \vee \quad \frac{\tau \text{ FORM}}{\bot \text{ FORM}} \mathsf{F} \bot \quad \frac{\tau \text{ FORM}}{\neg \tau \text{ FORM}} \mathsf{F} \neg$$

- 1. Derivar el juicio $\neg (P \Rightarrow (Q \Rightarrow P))$ FORM.
- 2. Demostrar que si τ FORM es un juicio derivable, entonces τ tiene el mismo número de "(" que de ")". Proceder por inducción estructural en la derivación.

Deducción natural para lógica proposicional

Semántica bivaluada

Fórmulas de la lógica proposicional

Las **fórmulas** son las expresiones que se pueden generar a partir de la siguiente gramática:

$$\tau, \sigma, \rho, \ldots := P \mid (\tau \wedge \sigma) \mid (\tau \Rightarrow \sigma) \mid (\tau \vee \sigma) \mid \bot \mid \neg \tau$$

Observación

La gramáticas definen sistemas deductivos de manera abreviada.

Una expresión τ se puede generar a partir de la gramática de arriba si y sólo si el juicio τ FORM es derivable en el sistema de antes.

Convenciones de notación

1. Omitimos los paréntesis más externos de las fórmulas.

$$\tau \wedge \neg(\sigma \vee \rho) = (\tau \wedge \neg(\sigma \vee \rho))$$

2. La implicación es asociativa a derecha.

$$\tau \Rightarrow \sigma \Rightarrow \rho = (\tau \Rightarrow (\sigma \Rightarrow \rho))$$

3. Ojo: los conectivos (\land,\lor) **no** son conmutativos ni asociativos.

$$\tau \vee (\sigma \vee \rho) \neq (\tau \vee \sigma) \vee \rho \qquad \tau \wedge \sigma \neq \sigma \wedge \tau$$

Contextos y juicios

Un contexto es un conjunto finito de fórmulas.

Los notamos con letras griegas mayúsculas $(\Gamma, \Delta, \Sigma, \ldots)$.

Por ejemplo:

$$\Gamma = \{P \Rightarrow Q, \neg Q\}$$

Generalmente omitimos las llaves; p. ej.: $P \Rightarrow Q, \neg Q$.

El sistema de deducción natural predica sobre juicios de la forma:

$$\Gamma \vdash \tau$$

Informalmente, un juicio afirma que a partir de las hipótesis en el contexto Γ es posible deducir la fórmula de la tesis.

Por ejemplo, los siguientes van a ser juicios derivables:

$$P \Rightarrow Q \vdash \neg Q \Rightarrow \neg P$$
 $P, Q \land R \vdash R \land P$

Reglas de inferencia — axioma

El sistema de deducción natural tiene muchas reglas de inferencia. (Vamos de a poco)

Axioma

$$\frac{1}{\Gamma, \tau \vdash \tau}$$
ax

Ejemplo

$$P \vdash P$$
 ax $P \Rightarrow Q, R \vdash P \Rightarrow Q$ ax $P, Q \land R, S \vdash Q \land R$ ax

Los siguientes juicios no se deducen de la regla ax:

$$P, Q \vdash R \quad \vdash P \Rightarrow P \quad P \land Q \vdash Q \land P \quad \neg \neg P \vdash P$$

Reglas de inferencia — conjunción

Introducción de la conjunción

$$\frac{\Gamma \vdash \tau \quad \Gamma \vdash \sigma}{\Gamma \vdash \tau \land \sigma} \land_i$$

Eliminación de la conjunción

$$\frac{\Gamma \vdash \tau \land \sigma}{\Gamma \vdash \tau} \land_{e_1} \qquad \frac{\Gamma \vdash \tau \land \sigma}{\Gamma \vdash \sigma} \land_{e_2}$$

- 1. Dar una derivación de $P \wedge Q \vdash Q \wedge P$.
- 2. Dar una derivación de $P \wedge (Q \wedge R) \vdash (P \wedge Q) \wedge R$.

Reglas de inferencia — implicación

Introducción de la implicación

$$\frac{\Gamma, \tau \vdash \sigma}{\Gamma \vdash \tau \Rightarrow \sigma} \Rightarrow_i$$

Eliminación de la implicación

$$\frac{\Gamma \vdash \tau \Rightarrow \sigma \quad \Gamma \vdash \tau}{\Gamma \vdash \sigma} \Rightarrow_{e}$$

- 1. Dar una derivación de $\vdash P \Rightarrow P$
- 2. Dar una derivación de $\vdash P \Rightarrow Q \Rightarrow (Q \land P)$
- 3. Dar una derivación de $P \Rightarrow Q, Q \Rightarrow R \vdash P \Rightarrow R$.

Reglas de inferencia — disyunción

Introducción de la disyunción

$$\frac{\Gamma \vdash \tau}{\Gamma \vdash \tau \lor \sigma} \lor_{i_1} \quad \frac{\Gamma \vdash \sigma}{\Gamma \vdash \tau \lor \sigma} \lor_{i_2}$$

Eliminación de la disyunción

$$\frac{\Gamma \vdash \tau \lor \sigma \quad \Gamma, \tau \vdash \rho \quad \Gamma, \sigma \vdash \rho}{\Gamma \vdash \rho} \lor_{e}$$

- 1. Dar una derivación de $\vdash P \Rightarrow (P \lor P)$.
- 2. Dar una derivación de $\vdash (P \lor P) \Rightarrow P$.
- 3. Dar una derivación de $P \lor Q \vdash Q \lor P$.

Reglas de inferencia — falsedad

El conectivo \perp representa la falsedad (contradicción, absurdo).

El conectivo \perp **no** tiene reglas de introducción.

Eliminación del falso

(principio de explosión o ex falso quodlibet)

$$\frac{\Gamma \vdash \bot}{\Gamma \vdash \tau} \bot_e$$

- 1. Dar una derivación de $(P \lor Q) \Rightarrow \bot \vdash P \Rightarrow Q$
- 2. Dar una derivación de $(P \land Q) \Rightarrow \bot \vdash P \Rightarrow Q \Rightarrow R$
- 3. Mostrar que hay infinitas derivaciones de $\bot \vdash \bot$.

Reglas de inferencia — negación

Introducción de la negación

(reducción al absurdo intuicionista)

$$\frac{\Gamma, \tau \vdash \bot}{\Gamma \vdash \neg \tau} \neg_i$$

Eliminación de la negación

$$\frac{\Gamma \vdash \tau \quad \Gamma \vdash \neg \tau}{\Gamma \vdash \bot} \neg_{e}$$

- 1. Dar una derivación de $\vdash P \Rightarrow \neg \neg P$.
- 2. Dar una derivación de $\vdash \neg (P \land \neg P)$.
- 3. Dar una derivación de $P \lor Q \vdash \neg(\neg P \land \neg Q)$.

Deducción natural **intuicionista** (NJ) — reglas completas

	$\overline{\Gamma, audash au}^{ax}$	
	Introducción	Eliminación
^	$\frac{\Gamma \vdash \tau \Gamma \vdash \sigma}{\Gamma \vdash \tau \land \sigma} \land_{i}$	$\frac{\Gamma \vdash \tau \land \sigma}{\Gamma \vdash \tau} \land_{e_1} \frac{\Gamma \vdash \tau \land \sigma}{\Gamma \vdash \sigma} \land_{e_2}$
\Rightarrow	$\frac{\Gamma, \tau \vdash \sigma}{\Gamma \vdash \tau \Rightarrow \sigma} \Rightarrow_{i}$	$\frac{\Gamma \vdash \tau \Rightarrow \sigma \Gamma \vdash \tau}{\Gamma \vdash \sigma} \Rightarrow_{e}$
V		$\frac{\Gamma \vdash \tau \lor \sigma \Gamma, \tau \vdash \rho \Gamma, \sigma \vdash \rho}{\Gamma \vdash \rho} \lor_{\mathbf{e}}$
\perp	$\frac{\Gamma \vdash \bot}{\Gamma \vdash \tau} \bot_{\mathbf{e}}$	
¬	$\frac{\Gamma,\tau\vdash\bot}{\Gamma\vdash\neg\tau}\neg_{i}$	$\frac{\Gamma \vdash \tau \qquad \Gamma \vdash \neg \tau}{\Gamma \vdash \bot} \neg_{e}$

Propiedades del sistema

Teorema (Debilitamiento)

(weakening)

Si $\Gamma \vdash \tau$ es derivable, entonces $\Gamma, \sigma \vdash \tau$ es derivable.

$$\frac{\Gamma \vdash \tau}{\Gamma, \sigma \vdash \tau} \mathsf{W}$$

Se puede demostrar por inducción estructural en la derivación. (Se hará como ejercicio en la práctica).

Ejemplo

$$\frac{\overline{P \land Q, R \vdash P \land Q}^{\mathsf{ax}}}{P \land Q, R \vdash Q} \land_{\mathsf{e}_{2}} \frac{\overline{P \land Q, R \vdash P \land Q}^{\mathsf{ax}}}{P \land Q, R \vdash P} \land_{\mathsf{e}_{1}}}{P \land Q, R \vdash Q \land P} \land_{\mathsf{e}_{1}}$$

$$\frac{P \land Q, R \vdash Q \land P}{P \land Q, R \vdash Q \land P} \Rightarrow_{\mathsf{i}}$$

Reglas derivadas

Veamos que las siguientes reglas se deducen de las anteriores. (No es necesario agregarlas al sistema deductivo).

Modus tollens

$$\frac{\Gamma \vdash \tau \Rightarrow \sigma \quad \Gamma \vdash \neg \sigma}{\Gamma \vdash \neg \tau} \mathsf{MT}$$

Introducción de la doble negación

$$\frac{\Gamma \vdash \tau}{\Gamma \vdash \neg \neg \tau} \neg \neg_{i}$$

Principios de razonamiento clásicos

Eliminación de la doble negación

¿Se puede deducir la siguiente regla a partir de las anteriores?

$$\frac{\Gamma \vdash \neg \neg \tau}{\Gamma \vdash \tau} \neg \neg_e$$

Principio del tercero excluido

(Law of Excluded Middle)

¿Se puede deducir la siguiente regla a partir de las anteriores?

$$\frac{}{\Gamma \vdash \tau \lor \neg \tau} \mathsf{LEM}$$

No es posible deducir estas reglas de las anteriores.

Sin embargo, se pueden deducir la una de la otra. Veamos que:

- 1. Usando la regla LEM se puede deducir la regla $\neg \neg_e$.
- 2. Usando la regla $\neg \neg_e$ se puede deducir la regla LEM.

Principios de razonamiento clásicos

Las reglas $\neg \neg_e$ y LEM son principios de razonamiento **clásicos**. Otro principio de razonamiento clásico, equivalente a $\neg \neg_e$ y LEM:

Reducción al absurdo clásico

(Proof by Contradiction)

$$\frac{\Gamma, \neg \tau \vdash \bot}{\Gamma \vdash \tau} \mathsf{PBC}$$

Ejercicio

Ver que usando PBC se puede deducir LEM y viceversa.

Lógica intuicionista vs. lógica clásica

Dos sistemas deductivos

NJ sistema de deducción natural intuicionista.NK sistema de deducción natural clásica.

- **NK** extiende a **NJ** con principios de razonamiento clásicos. Alcanza con agregar uno de ellos, por ejemplo $\neg \neg_e$.
- Si un juicio es derivable en NJ, también es derivable en NK.
- ▶ **NJ** es más restrictiva. No permite usar $\neg \neg_e$, LEM, PBC, etc.
- Para hacer matemática, comúnmente usamos lógica clásica.

Interés de la lógica intuicionista en computación

- Permite razonar acerca de información. ¿Qué significa (hay vida en Marte ∨ ¬hay vida en Marte)?
- Las derivaciones en NJ se pueden entender como programas.
 NJ es la base de un lenguaje de programación funcional.

Deducción natural clásica (NK) — reglas completas

$$\frac{\Gamma}{\Gamma, \tau \vdash \tau} \text{ax} \qquad \frac{\Gamma}{\Gamma \vdash \tau} \xrightarrow{\Gamma} e$$
Introducción
$$\frac{\Gamma \vdash \tau}{\Gamma \vdash \tau \land \sigma} \land_{i} \qquad \frac{\Gamma \vdash \tau \land \sigma}{\Gamma \vdash \tau \land \sigma} \land_{e_{2}} \qquad \frac{\Gamma \vdash \tau \land \sigma}{\Gamma \vdash \tau} \land_{e_{2}}$$

$$\Rightarrow \qquad \frac{\Gamma, \tau \vdash \sigma}{\Gamma \vdash \tau \Rightarrow \sigma} \Rightarrow_{i} \qquad \frac{\Gamma \vdash \tau \Rightarrow \sigma}{\Gamma \vdash \tau} \Rightarrow_{e} \qquad \frac{\Gamma \vdash \tau \Rightarrow \sigma}{\Gamma \vdash \tau} \Rightarrow_{e}$$

$$\vee \qquad \frac{\Gamma \vdash \tau}{\Gamma \vdash \tau \lor \sigma} \lor_{i_{1}} \qquad \frac{\Gamma \vdash \sigma}{\Gamma \vdash \tau \lor \sigma} \lor_{i_{2}} \qquad \frac{\Gamma \vdash \tau \lor \sigma}{\Gamma \vdash \rho} \lor_{e}$$

$$\perp \qquad \frac{\Gamma \vdash \bot}{\Gamma \vdash \tau} \bot_{e}$$

$$\frac{\Gamma, \tau \vdash \bot}{\Gamma \vdash \tau} \Rightarrow_{i} \qquad \frac{\Gamma \vdash \tau}{\Gamma \vdash \tau} \Rightarrow_{e}$$

$$\frac{\Gamma \vdash \tau}{\Gamma \vdash \tau} \vdash \neg \tau}{\Gamma \vdash \tau} \Rightarrow_{e}$$

Deducción natural para lógica proposiciona

Semántica bivaluada

Valuaciones

Una valuación es una función $v: \mathcal{P} \to \{V, F\}$ que asigna valores de verdad a las variables proposicionales.

Una valuación v **satisface** una fórmula τ si $v \models \tau$, donde:

$$v \models P$$
 si y sólo si $v(P) = V$
 $v \models \tau \land \sigma$ si y sólo si $v \models \tau \ y \ v \models \sigma$
 $v \models \tau \Rightarrow \sigma$ si y sólo si $v \not\models \tau \ o \ v \models \sigma$
 $v \models \tau \lor \sigma$ si y sólo si $v \models \tau \ o \ v \models \sigma$
 $v \models \bot$ nunca vale
 $v \models \neg \tau$ si y sólo si $v \not\models \tau$

Una valuación v satisface un contexto Γ (notación: $v \models \Gamma$) si y sólo si v satisface a todas las fórmulas de Γ .

Un contexto Γ satisface una fórmula τ (notación: $\Gamma \vDash \tau$) si y sólo si cualquier valuación v que satisface a Γ también satisface a τ .

Valuaciones

Ejemplo

- 1. Probar que $P \wedge Q \models P$.
- 2. Probar que $P \vee Q$, $\neg Q \models P$.
- 3. Probar que no vale $P \lor Q \vDash Q$.
- 4. Probar que $P \vDash Q \lor \neg Q$.

Corrección y completitud

Teorema (Corrección y completitud)

Son equivalentes:

- 1. $\Gamma \vdash \tau$ es derivable en **NK**.
- 2. $\Gamma \models \tau$

Demostración de corrección

 $\Gamma \vdash_{\mathsf{NK}} \tau \text{ implica } \Gamma \vDash \tau$

Supongamos que $\Gamma \vdash \tau$ es derivable en **NK**.

Demostramos que $\Gamma \vDash \tau$ por inducción estructural en la derivación.

Hay que analizar 13 casos, uno por cada regla de NK.

Por ejemplo, para la regla \Rightarrow_e :

$$\frac{\Gamma \vdash \tau \Rightarrow \sigma \quad \Gamma \vdash \tau}{\Gamma \vdash \sigma} \Rightarrow_{\mathbf{e}}$$

Queremos ver que $\Gamma \vDash \sigma$.

Sea v tal que $v \models \Gamma$ y veamos que $v \models \sigma$.

Por HI sabemos que $\Gamma \vDash \tau \Rightarrow \sigma$ y que $\Gamma \vDash \tau$.

Como $v \models \Gamma$ tenemos que $v \models \tau \Rightarrow \sigma$ y $v \models \tau$.

Por definición de $v \vDash \tau \Rightarrow \sigma$, tenemos entonces que $v \nvDash \tau$ o $v \vDash \sigma$.

Pero teníamos $v \vDash \tau$, con lo cual concluímos $v \vDash \sigma$.

▶ Intentar probar los 12 casos restantes.

Demostración de completitud $(\Gamma \vDash \tau \text{ implica } \Gamma \vdash_{NK} \tau)$

Definición

- 1. Un contexto Γ **determina** una variable $P \in \mathcal{P}$ si vale que $P \in \Gamma$ o que $\neg P \in \Gamma$.
- 2. Un contexto Γ **determina** un conjunto de variables $X \subseteq \mathcal{P}$ si determina a todas las variables de X.

Para probar el teorema de completitud, necesitamos:

Lema principal

Si Γ determina a todas las variables que aparecen en τ , entonces:

- 1. O bien $\Gamma \vdash \tau$ es derivable en **NK**.
- 2. O bien $\Gamma \vdash \neg \tau$ es derivable en **NK**.

Asumamos que el lema vale, lo demostraremos después.

Demostración de completitud $(\Gamma \vDash \tau \text{ implica } \Gamma \vdash_{NK} \tau)$

Supongamos que $\sigma_1, \ldots, \sigma_n \vDash \tau$.

Queremos ver que $\sigma_1, \ldots, \sigma_n \vdash \tau$ es derivable en **NK**.

Sea
$$\rho = (\sigma_1 \wedge \ldots \wedge \sigma_n) \Rightarrow \tau$$
. Sabemos que $\models \rho$. ¿Por qué? Alcanza con probar que $\vdash \rho$ es derivable en **NK**. ¿Por qué?

Sea $X = \{P_1, \dots, P_n\}$ el conjunto de variables que aparecen en ρ . Usando LEM y \vee_e podemos considerar 2^n casos, de la forma:

$$\tilde{P}_1,\ldots,\tilde{P}_n\vdash\rho$$

donde cada \tilde{P}_i es o bien P_i o bien $\neg P_i$.

Por el lema principal, se da uno de los dos casos siguientes:

- 1. O bien $\tilde{P}_1, \dots, \tilde{P}_n \vdash \rho$ es derivable en **NK** (y listo).
- 2. O bien $\tilde{P}_1, \dots, \tilde{P}_n \vdash_{\sim} \neg \rho$ es derivable en **NK**.

Por corrección vale $\tilde{P}_1, \dots, \tilde{P}_n \models \neg \rho$. Sea v una valuación tal que $v(P_i) = \mathbb{V}$ si y sólo si $\tilde{P}_i = P_i$. Luego $v \models \neg \rho$. Absurdo pues sabíamos $\models \rho$.

Demostración del lema principal

Recordemos el enunciado:

Lema principal

Si Γ determina a todas las variables que aparecen en τ , entonces:

- 1. O bien $\Gamma \vdash \tau$ es derivable en **NK**.
- 2. O bien $\Gamma \vdash \neg \tau$ es derivable en **NK**.

Lo demostramos por inducción estructural en au.

Hay 6 casos $(P, \land, \Rightarrow, \lor, \bot, \lnot)$.

Por ejemplo, supongamos que $\tau = (\sigma \wedge \rho)$.

Por hipótesis inductiva sobre σ , sabemos que:

- 1. O bien $\Gamma \vdash \sigma$ es derivable en **NK**.
 - Por hipótesis inductiva sobre ρ , sabemos que:
 - 1.1 O bien $\Gamma \vdash \rho$ es derivable en **NK** y tenemos $\Gamma \vdash \sigma \land \rho$.
 - 1.2 O bien $\Gamma \vdash \neg \rho$ es derivable en **NK** y tenemos $\Gamma \vdash \neg(\sigma \land \rho)$.
- 2. O bien $\Gamma \vdash \neg \sigma$ es derivable en **NK** y tenemos $\Gamma \vdash \neg (\sigma \land \rho)$.
 - Intentar probar los 5 casos restantes.