

					Pri	inte	l Pa	ge: 1	of 2
				Sub	ject	Cod	le: k	CA	.015
Roll No:									

MCA (SEM III) THEORY EXAMINATION 2023-24 COMPILER DESIGN

TIME: 3 HRS M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1.	Attempt all questions in brief.	2 x 10	=20
Q no.	Question	Marks	CO
a.	What do you mean by Cross Compiler?	2	1
b.	What is the role of lexical analysis phase?	2	1
c.	Describe the concepts of Predictive Parsing.	2	2
d.	What are the various conflicts that occur during shift reduce parsing?	2	2
e.	Give example for inherited and synthesized translation.	2	3
f.	Translate the arithmetic expression a* -(b+c) into 3-address code.	2	3
g.	What is heap allocation?	2	4
h.	Give the fields in an activation record.	2	4
i.	What do you mean by flow graph?	2	5
j.	Define code generation.	2	5

SECTION B

2.	Attempt any three of the following:	10 x 3	= 30
a.	Define an ambiguous grammar. Give an example of unambiguous	10	1
	grammar and proof it is unambiguous.	· (O) · (
b.	Explain various problems associated with top down parser.	10	2
c.	For the given assignment statements, write down the syntax directed definition –	10	3
	$S \rightarrow id = E$		
	E→E + E		
	E→E * E		
	E→-E		
	E→id		
d.	Differentiate between stack allocation and heap allocation.	10	4
e.	Discuss various issues in design of code generator and code loop	10	5
	optimization.		

SECTION C

3.	Attempt any <i>one</i> part of the following:	10 x 1	=10
a.	Define left factoring and left recursion of grammar. Is the following	10	1
	grammar is left recursive –		
	E→E+E E*E a b		
b.	Write short note on Formal grammar.	10	1

4.	Attempt any one part of the following:	$10 \times 1 = 1$	<u> 10</u>
a.	For the given grammar, construct SLR parsing table –	10 2	
	E' → E		
	E → E+E		
	E → E*E		
	E→id		

					Pri	inted	l Pa	ge: 2	2 of 2	
				Sub	ject	Cod	le: ŀ	KCA	015	
Roll No:										

MCA (SEM III) THEORY EXAMINATION 2023-24 COMPILER DESIGN

TIME: 3 HRS M.MARKS: 100

b.	Construct parse tree for the following grammar and make operator precedence table.	10	2
	$E \rightarrow E+T \mid T$		
	$T \rightarrow T*F \mid F$		
	$F \rightarrow id$		

5.	Attempt any one part of the following:	10 x	1 = 10
a.	For the following code fragment, generate three address code –	10	3
	While(a>b)		
	{		
	If(c < d)		
	X=y+z;		
	Else		
	X=y-z;		
b.	Write short note on Syntax directed translation scheme.	10	3

6.	Attempt any one part of the following:	10 x 1	= 10
a.	What are lexical phase error and syntactic error? Also suggest methods for recovery of errors.	10	4
b.	Write short note on data structure for symbol table.	10	4

7.	Attempt any one part of the following:	10 x 1	= 10
a.	What are the various advantages of DAG? Discuss peephole optimization.	10	5
b.	How induction variables can be detected and eliminated from the given intermediate code. Discuss.	10	5
	B2: $i := i+1$ T1 := 4*i		
	T2:=a[T1]		
	If $T2 < 10$ goto B2		