Rappels : espace euclidien

Espaces affine euclidiens

isomethes vectorienes

lsométries affines

M53 - Partie 2

septembre 2015

Rappels : espace euclidien Définition Norme

Espaces affines euclidiens

Isométries vectorielles

Isométries affines

Un espace vectoriel réel $\overrightarrow{\mathcal{E}}$ de dimension finie est dit euclidien s'il est muni d'une forme bilinéaire

$$\begin{array}{c} \overrightarrow{\mathcal{E}} \times \overrightarrow{\mathcal{E}} \longrightarrow \mathbb{R} \\ (\overrightarrow{v}, \overrightarrow{w}) \mapsto \langle \overrightarrow{v} \, | \overrightarrow{w} \rangle \end{array}$$

- symétrique : $\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \langle \overrightarrow{w} | \overrightarrow{v} \rangle$,
- $définie: \langle \overrightarrow{v} | \overrightarrow{v} \rangle = 0 \Leftrightarrow \overrightarrow{v} = 0,$
- **positive** : $\langle \overrightarrow{v} | \overrightarrow{v} \rangle \geq 0$.

La structure euclidienne standard sur \mathbb{R}^n est définie par

$$\langle (x_1,\ldots,x_n)|(y_1,\ldots,y_n)\rangle = x_1y_1+\cdots+x_ny_n.$$

Tout espace euclidien est isomorphe à \mathbb{R}^n (avec sa structure standard), via le choix (non canonique) d'une b.o.n.

Rappels : espace euclidien Définition Norme Notations

euclidiens

Isomètries vectorielles

Innue (Auton offices

Un espace vectoriel réel $\overrightarrow{\mathcal{E}}$ de dimension finie est dit euclidien s'il est muni d'une forme bilinéaire

$$\vec{\mathcal{E}} \times \vec{\mathcal{E}} \longrightarrow \mathbb{R} \\
(\vec{v}, \vec{w}) \mapsto \langle \vec{v} | \vec{w} \rangle$$

- symétrique : $\langle \vec{v} | \vec{w} \rangle = \langle \vec{w} | \vec{v} \rangle$,
- $definie: \langle \overrightarrow{v} | \overrightarrow{v} \rangle = 0 \Leftrightarrow \overrightarrow{v} = 0,$
- **positive** : $\langle \overrightarrow{v} | \overrightarrow{v} \rangle \geq 0$.

La structure euclidienne standard sur \mathbb{R}^n est définie par

$$\langle (x_1,\ldots,x_n)|(y_1,\ldots,y_n)\rangle = x_1y_1+\cdots+x_ny_n.$$

Tout espace euclidien est isomorphe à \mathbb{R}^n (avec sa structure standard), via le choix (non canonique) d'une b.o.n.

Rappels : espace euclidien Définition Norme Notations

Espaces affines euclidiens

Isometries vectorielles

Isométries affines

Un espace vectoriel réel $\overrightarrow{\mathcal{E}}$ de dimension finie est dit euclidien s'il est muni d'une forme bilinéaire

$$\vec{\mathcal{E}} \times \vec{\mathcal{E}} \longrightarrow \mathbb{R} \\
(\vec{v}, \vec{w}) \mapsto \langle \vec{v} | \vec{w} \rangle$$

- symétrique : $\langle \vec{v} | \vec{w} \rangle = \langle \vec{w} | \vec{v} \rangle$,
- $\bullet \text{ définie}: \langle \overrightarrow{v} | \overrightarrow{v} \rangle = 0 \Leftrightarrow \overrightarrow{v} = 0,$
- **positive** : $\langle \overrightarrow{v} | \overrightarrow{v} \rangle \ge 0$.

La structure euclidienne standard sur \mathbb{R}^n est définie par

$$\langle (x_1,\ldots,x_n)|(y_1,\ldots,y_n)\rangle = x_1y_1+\cdots+x_ny_n.$$

Tout espace euclidien est isomorphe à \mathbb{R}^n (avec sa structure standard),via le choix (non canonique) d'une b.o.n.

Rappels : espace euclidien Définition Norme Notations

Espaces affines euclidiens

isometries vectorielles

1 / / 60

Un espace vectoriel réel $\vec{\mathcal{E}}$ de dimension finie est dit euclidien s'il est muni d'une forme bilinéaire

$$\overrightarrow{\mathcal{E}} \times \overrightarrow{\mathcal{E}} \longrightarrow \mathbb{R} \\
(\overrightarrow{v}, \overrightarrow{w}) \mapsto \langle \overrightarrow{v} | \overrightarrow{w} \rangle$$

- symétrique : $\langle \vec{v} | \vec{w} \rangle = \langle \vec{w} | \vec{v} \rangle$,
- $définie: \langle \overrightarrow{v} | \overrightarrow{v} \rangle = 0 \Leftrightarrow \overrightarrow{v} = 0,$
- **positive** : $\langle \vec{v} | \vec{v} \rangle \ge 0$.

La structure euclidienne standard sur \mathbb{R}^n est définie par

$$\langle (x_1,\ldots,x_n)|(y_1,\ldots,y_n)\rangle = x_1y_1+\cdots+x_ny_n.$$

Tout espace euclidien est isomorphe à \mathbb{R}^n (avec sa structure standard),via le choix (non canonique) d'une b.o.n.

Rappels : espace euclidien Définition Norme Notations

Espaces affines euclidiens

Isométries vectorielles

Isométries affines

Un espace vectoriel réel $\overrightarrow{\mathcal{E}}$ de dimension finie est dit euclidien s'il est muni d'une forme bilinéaire

$$\vec{\mathcal{E}} \times \vec{\mathcal{E}} \longrightarrow \mathbb{R} \\
(\vec{v}, \vec{w}) \mapsto \langle \vec{v} | \vec{w} \rangle$$

- symétrique : $\langle \vec{v} | \vec{w} \rangle = \langle \vec{w} | \vec{v} \rangle$,
- lacksquare définie : $\langle \overrightarrow{\mathbf{v}} \, | \, \overrightarrow{\mathbf{v}} \rangle = 0 \Leftrightarrow \overrightarrow{\mathbf{v}} = 0$,
- positive : $\langle \vec{v} | \vec{v} \rangle \ge 0$.

La structure euclidienne standard sur \mathbb{R}^n est définie par

$$\langle (x_1,\ldots,x_n)|(y_1,\ldots,y_n)\rangle = x_1y_1+\cdots+x_ny_n.$$

Tout espace euclidien est isomorphe à \mathbb{R}^n (avec sa structure standard),via le choix (non canonique) d'une b.o.n.

Rappels : espace euclidien

Définition

Norme

Notations

Espaces affine euclidiens

Isomètries vectorielles

Un espace vectoriel réel $\overrightarrow{\mathcal{E}}$ de dimension finie est dit euclidien s'il est muni d'une forme bilinéaire

$$\vec{\mathcal{E}} \times \vec{\mathcal{E}} \longrightarrow \mathbb{R}$$
$$(\vec{v}, \vec{w}) \mapsto \langle \vec{v} | \vec{w} \rangle$$

- symétrique : $\langle \vec{v} | \vec{w} \rangle = \langle \vec{w} | \vec{v} \rangle$,
- $définie: \langle \overrightarrow{v} | \overrightarrow{v} \rangle = 0 \Leftrightarrow \overrightarrow{v} = 0,$
- positive : $\langle \vec{v} | \vec{v} \rangle \ge 0$.

La structure euclidienne standard sur \mathbb{R}^n est définie par

$$\langle (x_1,\ldots,x_n)|(y_1,\ldots,y_n)\rangle = x_1y_1+\cdots+x_ny_n.$$

Tout espace euclidien est isomorphe à \mathbb{R}^n (avec sa structure standard), via le choix (non canonique) d'une b.o.n.

Rappels : espace euclidien

Définition

Norme

Notations

euclidiens

Isometries vectorielles

Innue (Auton offices

Un espace vectoriel réel $\overrightarrow{\mathcal{E}}$ de dimension finie est dit euclidien s'il est muni d'une forme bilinéaire

$$\vec{\mathcal{E}} \times \vec{\mathcal{E}} \longrightarrow \mathbb{R}$$
$$(\vec{v}, \vec{w}) \mapsto \langle \vec{v} | \vec{w} \rangle$$

- symétrique : $\langle \vec{v} | \vec{w} \rangle = \langle \vec{w} | \vec{v} \rangle$,
- $définie: \langle \overrightarrow{v} | \overrightarrow{v} \rangle = 0 \Leftrightarrow \overrightarrow{v} = 0,$
- positive : $\langle \vec{v} | \vec{v} \rangle \ge 0$.

La structure euclidienne standard sur \mathbb{R}^n est définie par

$$\langle (x_1,\ldots,x_n)|(y_1,\ldots,y_n)\rangle = x_1y_1+\cdots+x_ny_n.$$

Tout espace euclidien est isomorphe à \mathbb{R}^n (avec sa structure standard), via le choix (non canonique) d'une b.o.n.

Rappels : norme euclidienne

- Rappels : espace euclidien Définition
- Notations

 Fenaces affines
- euclidiens
- Isométries vectorielle
- euciidiens

- **1** La norme euclidienne de cet espace est : $\|\vec{v}\| = \sqrt{\langle \vec{v} | \vec{v} \rangle}$
- **2** Et une formule inverse (de polarisation) est :

$$\langle \vec{v} | \vec{w} \rangle = \frac{1}{2} (\| \vec{v} + \vec{w} \|^2 - \| \vec{v} \|^2 - \| \vec{w} \|^2).$$

3 De plus la norme et la produit scalaire sont reliés par l'inégalité de Cauchy-Schwarz

$$\left|\left\langle \overrightarrow{v} \middle| \overrightarrow{w} \right\rangle \right| \leq \left\| \overrightarrow{v} \right\| \left\| \overrightarrow{w} \right\|.$$

On dit que l'angle entre \overrightarrow{v} et \overrightarrow{w} est $\alpha \in [0, \pi]$ si

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \cos(\alpha) \| \overrightarrow{v} \| \| \overrightarrow{w} \|.$$

Rappels: norme euclidienne

Rappels : espace euclidien Définition

Espaces affine

Isométries vectorielles

1 La norme euclidienne de cet espace est : $\|\vec{v}\| = \sqrt{\langle \vec{v} | \vec{v} \rangle}$.

Et une formule inverse (de nelexisation) est :

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \frac{1}{2} (\| \overrightarrow{v} + \overrightarrow{w} \|^2 - \| \overrightarrow{v} \|^2 - \| \overrightarrow{w} \|^2).$$

3 De plus la norme et la produit scalaire sont reliés par l'inégalité de Cauchy-Schwarz

$$\left|\left\langle \overrightarrow{v} \middle| \overrightarrow{w} \right\rangle \right| \leq \left\| \overrightarrow{v} \right\| \left\| \overrightarrow{w} \right\|.$$

On dit que l'angle entre \overrightarrow{v} et \overrightarrow{w} est $\alpha \in [0, \pi]$ s

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \cos(\alpha) \| \overrightarrow{v} \| \| \overrightarrow{w} \|.$$

Rappels: norme euclidienne

Rappels : espace euclidien ^{Définition} Norme

Espaces affin

Isométries vectorielles

Isométries affine

- **1** La norme euclidienne de cet espace est : $\|\vec{v}\| = \sqrt{\langle \vec{v} | \vec{v} \rangle}$.
- **2** Et une formule inverse (de polarisation) est :

$$\langle \vec{v} | \vec{w} \rangle = \frac{1}{2} (\| \vec{v} + \vec{w} \|^2 - \| \vec{v} \|^2 - \| \vec{w} \|^2).$$

3 De plus la norme et la produit scalaire sont reliés par l'inégalité de Cauchy-Schwarz

$$\left| \left\langle \overrightarrow{v} \, \middle| \, \overrightarrow{w} \right\rangle \right| \le \left\| \overrightarrow{v} \right\| \left\| \overrightarrow{w} \right\|.$$

On dit que l'angle entre \vec{v} et \vec{w} est $\alpha \in [0, \pi]$ s

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \cos(\alpha) \| \overrightarrow{v} \| \| \overrightarrow{w} \|.$$

Rappels : norme euclidienne

Rappels : espace euclidien Définition Norme

Espaces affine euclidiens

Isométries vectorielles

Isométries affine

- **1** La norme euclidienne de cet espace est : $\|\vec{v}\| = \sqrt{\langle \vec{v} | \vec{v} \rangle}$.
- **2** Et une formule inverse (de polarisation) est :

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \frac{1}{2} (\| \overrightarrow{v} + \overrightarrow{w} \|^2 - \| \overrightarrow{v} \|^2 - \| \overrightarrow{w} \|^2).$$

De plus la norme et la produit scalaire sont reliés par l'inégalité de Cauchy-Schwarz

$$\left| \left\langle \overrightarrow{v} \, \middle| \, \overrightarrow{w} \right\rangle \right| \leq \left\| \overrightarrow{v} \right\| \left\| \overrightarrow{w} \right\|.$$

On dit que l'angle entre \overrightarrow{v} et \overrightarrow{w} est $\alpha \in [0, \pi]$ si

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \cos(\alpha) \| \overrightarrow{v} \| \| \overrightarrow{w} \|$$
.

Rappels : norme euclidienne

Rappels : espace euclidien ^{Définition} Norme

Espaces affine euclidiens

Isométries vectorielles

Isométries affine

- **1** La norme euclidienne de cet espace est : $\|\vec{v}\| = \sqrt{\langle \vec{v} | \vec{v} \rangle}$.
- **2** Et une formule inverse (de polarisation) est :

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \frac{1}{2} (\| \overrightarrow{v} + \overrightarrow{w} \|^2 - \| \overrightarrow{v} \|^2 - \| \overrightarrow{w} \|^2).$$

De plus la norme et la produit scalaire sont reliés par *l'inégalité de Cauchy-Schwarz*

$$\left| \left\langle \overrightarrow{v} \right| \overrightarrow{w} \right\rangle \right| \leq \left\| \overrightarrow{v} \right\| \left\| \overrightarrow{w} \right\|.$$

4 On dit que l'angle entre \vec{v} et \vec{w} est $\alpha \in [0, \pi]$ si

$$\langle \overrightarrow{v} | \overrightarrow{w} \rangle = \cos(\alpha) \| \overrightarrow{v} \| \| \overrightarrow{w} \|.$$

Rappels : espace euclidien Définition

Espaces affines euclidiens

Notations

Isométries vectorielles

Icométries affines

$$\overrightarrow{v} \perp \overrightarrow{w} \Leftrightarrow \langle \overrightarrow{v} | \overrightarrow{w} \rangle = 0.$$

- 2 Soit $\overrightarrow{\mathcal{F}} \subset \overrightarrow{\mathcal{E}}$, alors $\overrightarrow{\mathcal{F}}^{\perp} = \{ \overrightarrow{v} \in \overrightarrow{\mathcal{E}} \mid \forall \overrightarrow{w} \in \overrightarrow{\mathcal{F}}, \overrightarrow{v} \perp \overrightarrow{w} \}.$
- $\exists \ \mathsf{Soit} \ \overrightarrow{\mathcal{F}}_1, \overrightarrow{\mathcal{F}}_2 \subset \overrightarrow{\mathcal{E}}, \ \mathsf{alors} \ \overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_1 \subset \overrightarrow{\mathcal{F}}_2^\perp,$
- 4 \mathcal{E} est la somme directe orthogonale de deux sous-espaces vectoriels $\vec{\mathcal{F}}_1$ et $\vec{\mathcal{F}}_2$, noté $\vec{\mathcal{E}} = \vec{\mathcal{F}}_1 \stackrel{\leftarrow}{\oplus} \vec{\mathcal{F}}_2$, si $\vec{\mathcal{E}} = \vec{\mathcal{F}}_1 \oplus \vec{\mathcal{F}}_2$ et $\vec{\mathcal{F}}_1 \perp \vec{\mathcal{F}}_2$. Nous avons : $\vec{\mathcal{E}} = \vec{\mathcal{F}}_1 \oplus \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1^{\perp} = \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_2^{\perp} = \vec{\mathcal{F}}_1$.

Rappels : espace euclidien

Espaces affine euclidiens

Notations

Isométries vectorielles

Isométries affine

- $\overrightarrow{v} \perp \overrightarrow{w} \Leftrightarrow \langle \overrightarrow{v} | \overrightarrow{w} \rangle = 0.$
- 2 Soit $\overrightarrow{\mathcal{F}} \subset \overrightarrow{\mathcal{E}}$, alors $\overrightarrow{\mathcal{F}}^{\perp} = \{ \overrightarrow{v} \in \overrightarrow{\mathcal{E}} \mid \forall \overrightarrow{w} \in \overrightarrow{\mathcal{F}}, \overrightarrow{v} \perp \overrightarrow{w} \}.$
- $\qquad \qquad \text{Soit } \vec{\mathcal{F}}_1, \vec{\mathcal{F}}_2 \subset \vec{\mathcal{E}} \text{, alors } \vec{\mathcal{F}}_1 \perp \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1 \subset \vec{\mathcal{F}}_2^\perp.$
- \mathcal{E} est la somme directe orthogonale de deux sous-espaces vectoriels $\overrightarrow{\mathcal{F}}_1$ et $\overrightarrow{\mathcal{F}}_2$, noté $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \stackrel{\leftarrow}{\oplus} \overrightarrow{\mathcal{F}}_2$, si $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \oplus \overrightarrow{\mathcal{F}}_2$ et $\overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2$. Nous avons : $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \oplus \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_1^{\perp} = \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_2^{\perp} = \overrightarrow{\mathcal{F}}_1$.

Rappels : espace euclidien Définition Norme

Espaces affines euclidiens

Notations

Isométries vectorielles

Isométries affine

$$\overrightarrow{v} \perp \overrightarrow{w} \Leftrightarrow \langle \overrightarrow{v} | \overrightarrow{w} \rangle = 0.$$

- $2 \text{ Soit } \overrightarrow{\mathcal{F}} \subset \overrightarrow{\mathcal{E}}, \text{ alors } \overrightarrow{\mathcal{F}}^{\perp} = \big\{ \overrightarrow{v} \in \overrightarrow{\mathcal{E}} \, \big| \, \, \forall \overrightarrow{w} \in \overrightarrow{\mathcal{F}}, \, \overrightarrow{v} \perp \overrightarrow{w} \big\}.$
- $\exists \ \mathsf{Soit} \ \overrightarrow{\mathcal{F}}_1, \overrightarrow{\mathcal{F}}_2 \subset \overrightarrow{\mathcal{E}}, \ \mathsf{alors} \ \overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_1 \subset \overrightarrow{\mathcal{F}}_2^\perp,$
- \mathcal{E} est la somme directe orthogonale de deux sous-espaces vectoriels $\overrightarrow{\mathcal{F}}_1$ et $\overrightarrow{\mathcal{F}}_2$, noté $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \stackrel{\leftarrow}{\oplus} \overrightarrow{\mathcal{F}}_2$, si $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \oplus \overrightarrow{\mathcal{F}}_2$ et $\overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2$. Nous avons : $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \oplus \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_1^{\perp} = \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_2^{\perp} = \overrightarrow{\mathcal{F}}_1$.

Rappels : espace euclidien Définition Norme

Espaces affines euclidiens

Notations

Isométries vectorielles

Isométries affines

$$\overrightarrow{v} \perp \overrightarrow{w} \Leftrightarrow \langle \overrightarrow{v} | \overrightarrow{w} \rangle = 0.$$

- $2 \text{ Soit } \vec{\mathcal{F}} \subset \vec{\mathcal{E}}, \text{ alors } \vec{\mathcal{F}}^{\perp} = \left\{ \vec{v} \in \vec{\mathcal{E}} \middle| \ \forall \vec{w} \in \vec{\mathcal{F}}, \vec{v} \perp \vec{w} \right\}.$
- $\mbox{Soit } \overrightarrow{\mathcal{F}}_1, \overrightarrow{\mathcal{F}}_2 \subset \overrightarrow{\mathcal{E}} \mbox{, alors } \overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_1 \subset \overrightarrow{\mathcal{F}}_2^{\perp}.$
- 4 \mathcal{E} est la somme directe orthogonale de deux sous-espaces vectoriels $\overrightarrow{\mathcal{F}}_1$ et $\overrightarrow{\mathcal{F}}_2$, noté $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \stackrel{\perp}{\oplus} \overrightarrow{\mathcal{F}}_2$, si $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \oplus \overrightarrow{\mathcal{F}}_2$ et $\overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2$. Nous avons : $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \stackrel{\perp}{\oplus} \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_1^{\perp} = \overrightarrow{\mathcal{F}}_2 \Leftrightarrow \overrightarrow{\mathcal{F}}_2^{\perp} = \overrightarrow{\mathcal{F}}_1$.

Rappels : espace euclidien Définition Norme

Espaces affines euclidiens

Isométries vectorielles

Isométries affines

$$\overrightarrow{v} \perp \overrightarrow{w} \Leftrightarrow \langle \overrightarrow{v} | \overrightarrow{w} \rangle = 0.$$

- 2 Soit $\vec{\mathcal{F}} \subset \vec{\mathcal{E}}$, alors $\vec{\mathcal{F}}^{\perp} = \{ \vec{v} \in \vec{\mathcal{E}} \mid \forall \vec{w} \in \vec{\mathcal{F}}, \vec{v} \perp \vec{w} \}$.
- $\mbox{Soit } \vec{\mathcal{F}}_1, \vec{\mathcal{F}}_2 \subset \vec{\mathcal{E}} \mbox{, alors } \vec{\mathcal{F}}_1 \perp \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1 \subset \vec{\mathcal{F}}_2^{\perp}.$
- 4 $\overrightarrow{\mathcal{E}}$ est la somme directe orthogonale de deux sous-espaces vectoriels $\overrightarrow{\mathcal{F}}_1$ et $\overrightarrow{\mathcal{F}}_2$, noté $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \overset{\perp}{\oplus} \overrightarrow{\mathcal{F}}_2$, si $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \oplus \overrightarrow{\mathcal{F}}_2$ et $\overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2$.

Nous avons : $\vec{\mathcal{E}} = \vec{\mathcal{F}}_1 \stackrel{\perp}{\oplus} \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1^{\perp} = \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_2^{\perp} = \vec{\mathcal{F}}_1$

Rappels : espace euclidien Définition Norme

Espaces affines euclidiens

Notations

Isométries vectorielles

Isométries affines

$$\overrightarrow{v} \perp \overrightarrow{w} \Leftrightarrow \langle \overrightarrow{v} | \overrightarrow{w} \rangle = 0.$$

- $2 \text{ Soit } \vec{\mathcal{F}} \subset \vec{\mathcal{E}}, \text{ alors } \vec{\mathcal{F}}^{\perp} = \left\{ \vec{v} \in \vec{\mathcal{E}} \middle| \forall \vec{w} \in \vec{\mathcal{F}}, \vec{v} \perp \vec{w} \right\}.$
- $\mbox{Soit } \vec{\mathcal{F}}_1, \vec{\mathcal{F}}_2 \subset \vec{\mathcal{E}} \mbox{, alors } \vec{\mathcal{F}}_1 \perp \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1 \subset \vec{\mathcal{F}}_2^{\perp}.$
- 4 $\overrightarrow{\mathcal{E}}$ est la somme directe orthogonale de deux sous-espaces vectoriels $\overrightarrow{\mathcal{F}}_1$ et $\overrightarrow{\mathcal{F}}_2$, noté $\overrightarrow{\mathcal{E}}=\overrightarrow{\mathcal{F}}_1\overset{\perp}{\oplus}\overrightarrow{\mathcal{F}}_2$, si $\overrightarrow{\mathcal{E}}=\overrightarrow{\mathcal{F}}_1\oplus\overrightarrow{\mathcal{F}}_2$ et $\overrightarrow{\mathcal{F}}_1\perp\overrightarrow{\mathcal{F}}_2$.

Nous avons : $\vec{\mathcal{E}} = \vec{\mathcal{F}}_1 \stackrel{\perp}{\oplus} \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1^{\perp} = \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_2^{\perp} = \vec{\mathcal{F}}_1$

Notations

$$\overrightarrow{v} \perp \overrightarrow{w} \Leftrightarrow \langle \overrightarrow{v} | \overrightarrow{w} \rangle = 0.$$

- 2 Soit $\vec{\mathcal{F}} \subset \vec{\mathcal{E}}$, alors $\vec{\mathcal{F}}^{\perp} = \{ \vec{v} \in \vec{\mathcal{E}} \mid \forall \vec{w} \in \vec{\mathcal{F}}, \vec{v} \perp \vec{w} \}.$
- Soit $\vec{\mathcal{F}}_1, \vec{\mathcal{F}}_2 \subset \vec{\mathcal{E}}$, alors $\vec{\mathcal{F}}_1 \perp \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1 \subset \vec{\mathcal{F}}_2^{\perp}$.
- $\overrightarrow{\mathcal{E}}$ est la somme directe orthogonale de deux sous-espaces vectoriels $\vec{\mathcal{F}}_1$ et $\vec{\mathcal{F}}_2$, noté $\vec{\mathcal{E}} = \vec{\mathcal{F}}_1 \stackrel{\perp}{\oplus} \vec{\mathcal{F}}_2$, si $\vec{\mathcal{E}} = \vec{\mathcal{F}}_1 \oplus \vec{\mathcal{F}}_2$ et $\vec{\mathcal{F}}_1 \perp \vec{\mathcal{F}}_2$.

Rappels : espace euclidien Définition Norme

Espaces affines euclidiens

Isométries vectorielles

Icométrice affines

$$\overrightarrow{v} \perp \overrightarrow{w} \Leftrightarrow \langle \overrightarrow{v} | \overrightarrow{w} \rangle = 0.$$

- 2 Soit $\vec{\mathcal{F}} \subset \vec{\mathcal{E}}$, alors $\vec{\mathcal{F}}^{\perp} = \{ \vec{v} \in \vec{\mathcal{E}} \mid \forall \vec{w} \in \vec{\mathcal{F}}, \vec{v} \perp \vec{w} \}$.
- $\mbox{Soit } \vec{\mathcal{F}}_1, \vec{\mathcal{F}}_2 \subset \vec{\mathcal{E}} \mbox{, alors } \vec{\mathcal{F}}_1 \perp \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1 \subset \vec{\mathcal{F}}_2^{\perp}.$
- 4 $\overrightarrow{\mathcal{E}}$ est la somme directe orthogonale de deux sous-espaces vectoriels $\overrightarrow{\mathcal{F}}_1$ et $\overrightarrow{\mathcal{F}}_2$, noté $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \overset{\perp}{\oplus} \overrightarrow{\mathcal{F}}_2$, si $\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}}_1 \oplus \overrightarrow{\mathcal{F}}_2$ et $\overrightarrow{\mathcal{F}}_1 \perp \overrightarrow{\mathcal{F}}_2$.

Nous avons : $\vec{\mathcal{E}} = \vec{\mathcal{F}}_1 \overset{\perp}{\oplus} \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_1^{\perp} = \vec{\mathcal{F}}_2 \Leftrightarrow \vec{\mathcal{F}}_2^{\perp} = \vec{\mathcal{F}}_1$.

Rappels : espace euclidien

Espaces affines euclidiens

Distance entre parties

Isométries vectorielles

Isométries affir

Définition

Un ensemble \mathcal{E} est métrique s'il est muni d'un application distance

$$\mathcal{E} \times \mathcal{E} \longrightarrow \mathbb{R}_+$$
$$(M, N) \mapsto d(M, N)$$

- symétrique : d(M, N) = d(N, M),
- séparée : $d(M, N) = 0 \Leftrightarrow M = N$,
- inégalité triangulaire : $d(M, N) + d(N, P) \ge d(M, P)$.

Définition

Un espace affine \mathcal{E} est dit euclidien si son espace vectoriel de directions $\overrightarrow{\mathcal{E}}$ est muni d'une structure euclidienne.

$$d(A,B) = \left\| \overrightarrow{AB} \right\|$$

Rappels : espace euclidien

Espaces affines euclidiens

Distance entre parties

Isométries vectorielles

Isométries affin

Définition

Un ensemble \mathcal{E} est métrique s'il est muni d'un application distance

$$\mathcal{E} \times \mathcal{E} \longrightarrow \mathbb{R}_+$$
$$(M, N) \mapsto d(M, N)$$

- symétrique : d(M, N) = d(N, M),
- séparée : $d(M, N) = 0 \Leftrightarrow M = N$,
- inégalité triangulaire : $d(M, N) + d(N, P) \ge d(M, P)$.

Définition

Un espace affine \mathcal{E} est dit euclidien si son espace vectoriel de directions $\overline{\mathcal{E}}$ est muni d'une structure euclidienne.

$$d(A,B) = \left\| \overrightarrow{AB} \right\|$$

Rappels : espace euclidien

Espaces affines euclidiens

Isométries affir

Définition

Un ensemble \mathcal{E} est métrique s'il est muni d'un application distance

$$\mathcal{E} \times \mathcal{E} \longrightarrow \mathbb{R}_+$$
$$(M, N) \mapsto d(M, N)$$

- symétrique : d(M, N) = d(N, M),
- séparée : $d(M, N) = 0 \Leftrightarrow M = N$,
- inégalité triangulaire : $d(M, N) + d(N, P) \ge d(M, P)$.

Définition

Un espace affine \mathcal{E} est dit euclidien si son espace vectoriel de directions $\overline{\mathcal{E}}$ est muni d'une structure euclidienne.

$$d(A,B) = \left\| \overrightarrow{AB} \right\|$$

Rappels : espace euclidien

Espaces affines euclidiens

Définition

Isométries vectorielle

Isométries affir

Définition

Un ensemble $\mathcal E$ est métrique s'il est muni d'un application distance

$$\mathcal{E} \times \mathcal{E} \longrightarrow \mathbb{R}_+$$
$$(M, N) \mapsto d(M, N)$$

- symétrique : d(M, N) = d(N, M),
- séparée : $d(M, N) = 0 \Leftrightarrow M = N$,
- inégalité triangulaire : $d(M, N) + d(N, P) \ge d(M, P)$.

Définition

Un espace affine \mathcal{E} est dit euclidien si son espace vectoriel de directions $\overline{\mathcal{E}}$ est muni d'une structure euclidienne.

$$d(A,B) = \left\| \overrightarrow{AB} \right\|$$

Rappels : espace euclidien

Espaces affines euclidiens Définition

Isométries vectorielle

Isométries affin

Définition

Un ensemble $\mathcal E$ est métrique s'il est muni d'un application distance

$$\begin{array}{c} \mathcal{E} \times \mathcal{E} \longrightarrow \mathbb{R}_+ \\ (\textit{M}, \textit{N}) \mapsto \textit{d}(\textit{M}, \textit{N}) \end{array}$$

- symétrique : d(M, N) = d(N, M),
- séparée : $d(M, N) = 0 \Leftrightarrow M = N$,
- inégalité triangulaire : $d(M, N) + d(N, P) \ge d(M, P)$.

Définition

Un espace affine \mathcal{E} est dit euclidien si son espace vectoriel de directions $\overrightarrow{\mathcal{E}}$ est muni d'une structure euclidienne.

$$d(A,B) = \left\| \overrightarrow{AB} \right\|$$

Rappels : espace euclidien

Espaces affines euclidiens

Définition

Isométries vectorielle

Isométries affir

Définition

Un ensemble $\mathcal E$ est métrique s'il est muni d'un application distance

$$\mathcal{E} \times \mathcal{E} \longrightarrow \mathbb{R}_+$$
$$(M, N) \mapsto d(M, N)$$

- symétrique : d(M, N) = d(N, M),
- séparée : $d(M, N) = 0 \Leftrightarrow M = N$,
- inégalité triangulaire : $d(M, N) + d(N, P) \ge d(M, P)$.

Définition

Un espace affine \mathcal{E} est dit <u>euclidien</u> si son espace vectoriel de directions $\overrightarrow{\mathcal{E}}$ est muni d'une structure euclidienne.

$$d(A, B) = \left\| \overrightarrow{AB} \right\|.$$

Rappels : espace euclidien

Espaces affin euclidiens

Définition

Distance entre parties

isomethes vectoriene

Isométries affin

Définition

$$d(\mathcal{A},\mathcal{B}) = \inf_{(M,N)\in\mathcal{A}\times\mathcal{B}} d(M,N).$$

- I Si \mathcal{A} est compacte et \mathcal{B} est fermée, les deux non vides, alors il existe un couple de points $(M,N) \in \mathcal{A} \times \mathcal{B}$ tel que $d(\mathcal{A},\mathcal{B}) = d(M,N)$. Et pour \mathcal{A} seulement fermée?
- La propriété précédente reste vraie pour A et B des sous-espaces affines. De plus $\widehat{MN} \perp (\widehat{A} + \widehat{B})$.
- Deux hyperplans \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $d(\mathcal{F},\mathcal{G}) > 0$. Et pour s.e.a. quelconques?
- Deux sous-espaces affines \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $\forall (M, N) \in \mathcal{F} \times \mathcal{G}, d(M, \mathcal{G}) = d(\mathcal{F}, \mathcal{G}) = d(\mathcal{F}, N).$

Rappels : espace euclidien

Espaces affi

Distance entre parties

Isométries vectorielles

Isométries affin

Définition

$$d(\mathcal{A},\mathcal{B}) = \inf_{(M,N)\in\mathcal{A}\times\mathcal{B}} d(M,N).$$

- I Si \mathcal{A} est compacte et \mathcal{B} est fermée, les deux non vides, alors il existe un couple de points $(M, N) \in \mathcal{A} \times \mathcal{B}$ tel que $d(\mathcal{A}, \mathcal{B}) = d(M, N)$. Et pour \mathcal{A} seulement fermée?
- La propriété précédente reste vraie pour A et B des sous-espaces affines. De plus $\overrightarrow{MN} \perp (\overrightarrow{A} + \overrightarrow{B})$.
- Deux hyperplans \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $d(\mathcal{F},\mathcal{G}) > 0$. Et pour s.e.a. quelconques?
- Deux sous-espaces affines \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi: $\forall (M, N) \in \mathcal{F} \times \mathcal{G}, d(M, \mathcal{G}) = d(\mathcal{F}, \mathcal{G}) = d(\mathcal{F}, N).$

Rappels : espace euclidien

Espaces afl euclidiens

Distance entre parties

Isométries vectorielles

Isométries affine

Définition

$$d(\mathcal{A},\mathcal{B}) = \inf_{(M,N)\in\mathcal{A}\times\mathcal{B}} d(M,N).$$

- I Si \mathcal{A} est compacte et \mathcal{B} est fermée, les deux non vides, alors il existe un couple de points $(M,N) \in \mathcal{A} \times \mathcal{B}$ tel que $d(\mathcal{A},\mathcal{B}) = d(M,N)$. Et pour \mathcal{A} seulement fermée?
- 2 La propriété précédente reste vraie pour A et B des sous-espaces affines. De plus $\overrightarrow{MN} \perp (\overrightarrow{A} + \overrightarrow{B})$.
- Deux hyperplans \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $d(\mathcal{F},\mathcal{G}) > 0$. Et pour s.e.a. quelconques?
- Deux sous-espaces affines \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $\forall (M, N) \in \mathcal{F} \times \mathcal{G}, d(M, \mathcal{G}) = d(\mathcal{F}, \mathcal{G}) = d(\mathcal{F}, N).$

Rappels : espace euclidien

Espaces affi euclidiens

Distance entre parties

Isométries vectorielles

Isométries affine

Définition

$$d(\mathcal{A},\mathcal{B}) = \inf_{(M,N)\in\mathcal{A}\times\mathcal{B}} d(M,N).$$

- I Si \mathcal{A} est compacte et \mathcal{B} est fermée, les deux non vides, alors il existe un couple de points $(M,N) \in \mathcal{A} \times \mathcal{B}$ tel que $d(\mathcal{A},\mathcal{B}) = d(M,N)$. Et pour \mathcal{A} seulement fermée?
- 2 La propriété précédente reste vraie pour A et B des sous-espaces affines. De plus $\overrightarrow{MN} \perp (\overrightarrow{A} + \overrightarrow{B})$.
- Deux hyperplans \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $d(\mathcal{F},\mathcal{G}) > 0$. Et pour s.e.a. quelconques?
- Deux sous-espaces affines \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi. $\forall (M, N) \in \mathcal{F} \times \mathcal{G}, d(M, \mathcal{G}) = d(\mathcal{F}, \mathcal{G}) = d(\mathcal{F}, N).$

Rappels : espace euclidien

Espaces affi euclidiens

Distance entre parties

Isométries vectorielles

Isométries affin

Définition

$$d(\mathcal{A},\mathcal{B}) = \inf_{(M,N)\in\mathcal{A}\times\mathcal{B}} d(M,N).$$

- I Si \mathcal{A} est compacte et \mathcal{B} est fermée, les deux non vides, alors il existe un couple de points $(M,N) \in \mathcal{A} \times \mathcal{B}$ tel que $d(\mathcal{A},\mathcal{B}) = d(M,N)$. Et pour \mathcal{A} seulement fermée?
- 2 La propriété précédente reste vraie pour A et B des sous-espaces affines. De plus $\overrightarrow{MN} \perp (\overrightarrow{A} + \overrightarrow{B})$.
- Deux hyperplans \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $d(\mathcal{F},\mathcal{G}) > 0$. Et pour s.e.a. quelconques?
- Deux sous-espaces affines \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $\forall (M, N) \in \mathcal{F} \times \mathcal{G}, d(M, \mathcal{G}) = d(\mathcal{F}, \mathcal{G}) = d(\mathcal{F}, N).$

Rappels : espace euclidien

Espaces afleuclidiens

Distance entre parties

sométries vectorielles

Isométries affin

Définition

$$d(\mathcal{A},\mathcal{B}) = \inf_{(M,N)\in\mathcal{A}\times\mathcal{B}} d(M,N).$$

- I Si \mathcal{A} est compacte et \mathcal{B} est fermée, les deux non vides, alors il existe un couple de points $(M,N) \in \mathcal{A} \times \mathcal{B}$ tel que $d(\mathcal{A},\mathcal{B}) = d(M,N)$. Et pour \mathcal{A} seulement fermée?
- 2 La propriété précédente reste vraie pour A et B des sous-espaces affines. De plus $\overrightarrow{MN} \perp (\overrightarrow{A} + \overrightarrow{B})$.
- Deux hyperplans \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $d(\mathcal{F},\mathcal{G}) > 0$. Et pour s.e.a. quelconques?
- Deux sous-espaces affines \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $\forall (M,N) \in \mathcal{F} \times \mathcal{G}, d(M,\mathcal{G}) = d(\mathcal{F},\mathcal{G}) = d(\mathcal{F},N).$

Rappels : espace euclidien

Espaces aff euclidiens

Distance entre parties

Définition

$$d(\mathcal{A},\mathcal{B}) = \inf_{(M,N)\in\mathcal{A}\times\mathcal{B}} d(M,N).$$

- I Si \mathcal{A} est compacte et \mathcal{B} est fermée, les deux non vides, alors il existe un couple de points $(M,N)\in\mathcal{A}\times\mathcal{B}$ tel que $d(\mathcal{A},\mathcal{B})=d(M,N)$. Et pour \mathcal{A} seulement fermée?
- 2 La propriété précédente reste vraie pour A et B des sous-espaces affines. De plus $\overrightarrow{MN} \perp (\overrightarrow{A} + \overrightarrow{B})$.
- Deux hyperplans \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $d(\mathcal{F},\mathcal{G}) > 0$. Et pour s.e.a. quelconques?
- 4 Deux sous-espaces affines \mathcal{F} et \mathcal{G} de \mathcal{E} sont parallèles ssi $\forall (M, N) \in \mathcal{F} \times \mathcal{G}, d(M, \mathcal{G}) = d(\mathcal{F}, \mathcal{G}) = d(\mathcal{F}, N).$

Rappels : isométrie vectorielle

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Définiti

Groupe orthogonal
Petites dimensions
Forme standard
Décomposition

Isométries affine

Définition-Proposition

L'application linéaire $\overrightarrow{\phi}$ est une isométrie (dit également orthogonale) de $\overrightarrow{\mathcal{E}}$ si elle satisfait une des conditions équivalentes

 $\mathbf{1} \ \forall \overrightarrow{v} \in \overrightarrow{\mathcal{E}},$

$$\|\overrightarrow{\phi}(\overrightarrow{v})\| = \|\overrightarrow{v}\|.$$

 $\forall \vec{v}, \vec{w} \in \vec{\mathcal{E}}$

$$\langle \overrightarrow{\phi}(\overrightarrow{v}) | \overrightarrow{\phi}(\overrightarrow{w}) \rangle = \langle \overrightarrow{v} | \overrightarrow{w} \rangle$$

3

$$\overrightarrow{\phi} \circ \overrightarrow{\phi}^t = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^t \circ \overrightarrow{\phi} = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^{-1} = \overrightarrow{\phi}$$

Rappels : isométrie vectorielle

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Définiti

Groupe orthogonal
Petites dimensions
Forme standard
Décomposition

Isométries affine

Définition-Proposition

L'application linéaire $\overrightarrow{\phi}$ est une isométrie (dit également orthogonale) de $\overrightarrow{\mathcal{E}}$ si elle satisfait une des conditions équivalentes

$$\|\vec{\phi}(\vec{v})\| = \|\vec{v}\|.$$

$$\mathbf{v}, \vec{w} \in \overrightarrow{\mathcal{E}},$$

$$\langle \overrightarrow{\phi}(\overrightarrow{v}) | \overrightarrow{\phi}(\overrightarrow{w}) \rangle = \langle \overrightarrow{v} | \overrightarrow{w} \rangle.$$

$$\overrightarrow{\phi} \circ \overrightarrow{\phi}^t = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^t \circ \overrightarrow{\phi} = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^{-1} = \overrightarrow{\phi}$$

euclidiens

Isométries vectorielles

Définiti

Groupe orthogonal
Petites dimensions
Forme standard

Isométries affine

Définition-Proposition

$$\forall \vec{v} \in \vec{\mathcal{E}}$$
,

$$\left\| \overrightarrow{\phi}(\overrightarrow{v}) \right\| = \left\| \overrightarrow{v} \right\|.$$

$$\mathbf{2} \ \forall \overrightarrow{v}, \overrightarrow{w} \in \overrightarrow{\mathcal{E}},$$

$$\langle \overrightarrow{\phi}(\overrightarrow{v}) | \overrightarrow{\phi}(\overrightarrow{w}) \rangle = \langle \overrightarrow{v} | \overrightarrow{w} \rangle.$$

$$\overrightarrow{\phi}^t \circ \overrightarrow{\phi} = \operatorname{Id} \quad \epsilon$$

Rappels : isométrie vectorielle

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Définition

Petites dimensi

Isométries affine

Définition-Proposition

$$1 \forall \vec{v} \in \vec{\mathcal{E}},$$

$$\|\vec{\phi}(\vec{v})\| = \|\vec{v}\|.$$

$$\mathbf{2} \ \forall \overrightarrow{v}, \overrightarrow{w} \in \overrightarrow{\mathcal{E}},$$

$$\langle \overrightarrow{\phi}(\overrightarrow{v}) | \overrightarrow{\phi}(\overrightarrow{w}) \rangle = \langle \overrightarrow{v} | \overrightarrow{w} \rangle.$$

$$\overrightarrow{\phi} \circ \overrightarrow{\phi}^t = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^t \circ \overrightarrow{\phi} = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^{-1} = \overrightarrow{\phi}^t$$

euclidiens

Isométries vectorielle

Définition

Petites dimensio

Isométries affine

Définition-Proposition

$$1 \forall \vec{v} \in \vec{\mathcal{E}},$$

$$\|\vec{\phi}(\vec{v})\| = \|\vec{v}\|.$$

$$\forall \vec{v}, \vec{w} \in \vec{\mathcal{E}},$$

$$\langle \overrightarrow{\phi}(\overrightarrow{v}) | \overrightarrow{\phi}(\overrightarrow{w}) \rangle = \langle \overrightarrow{v} | \overrightarrow{w} \rangle.$$

$$\overrightarrow{\phi} \circ \overrightarrow{\phi}^t = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^t \circ \overrightarrow{\phi} = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^{-1} = \overrightarrow{\phi}^t$$

euclidiens

Isométries vectorielles

Définition

Petites dimension Forme standard

Isométries affine

Définition-Proposition

$$1 \quad \forall \vec{v} \in \vec{\mathcal{E}},$$

$$\left\| \overrightarrow{\phi}(\overrightarrow{v}) \right\| = \left\| \overrightarrow{v} \right\|.$$

$$\forall \vec{v}, \vec{w} \in \vec{\mathcal{E}}$$
,

$$\langle \vec{\phi}(\vec{v}) | \vec{\phi}(\vec{w}) \rangle = \langle \vec{v} | \vec{w} \rangle.$$

$$\overrightarrow{\phi} \circ \overrightarrow{\phi}^t = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^t \circ \overrightarrow{\phi} = \operatorname{Id} \quad \Leftrightarrow \quad \overrightarrow{\phi}^{-1} = \overrightarrow{\phi}^t$$

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Définition

- Groupe orthog
- Forme standard
- Décomposition
- Isométries affin

II Si une isométrie $\overrightarrow{\phi}$ de $\overrightarrow{\mathcal{E}}$ préserve un s.e.v. $\overrightarrow{\mathcal{F}}$ (c.-à-d. $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) \subset \overrightarrow{\mathcal{F}} \Leftrightarrow \overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) = \overrightarrow{\mathcal{F}}$), alors elle préserve aussi son orthogonal,

$$\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}^\perp) = \overrightarrow{\mathcal{F}}^\perp$$

En particulier, si $\overline{\mathcal{F}}$ n'est pas trivial, $\overline{\mathcal{E}}$ se décompose en somme directe orthogonale de deux sous-espaces stables par $\overline{\phi}$:

$$\vec{\mathcal{E}} = \vec{\mathcal{F}} \oplus \vec{\mathcal{F}}_{\perp}^{\perp}.$$

Si on note $\phi_1 = \phi|_{\overline{\mathcal{F}}}$ et $\phi_2 = \phi|_{\overline{\mathcal{F}}^{\perp}}$, alors ϕ_1 et ϕ_2 sont orthogonales et

$$\overline{\phi} = \overline{\phi}_1 \oplus \overline{\phi}_2.$$

 ${\color{red} {\rm I\hspace{-.07cm} I}}$ Si λ est valeur propre (réelle) de ϕ alors $\lambda=\pm 1$

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Définition

- Groupe orthogon Petites dimension Forme standard
- Décompositio
- Isométries affir

1 Si une isométrie $\overrightarrow{\phi}$ de $\overrightarrow{\mathcal{E}}$ préserve un s.e.v. $\overrightarrow{\mathcal{F}}$ (c.-à-d. $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) \subset \overrightarrow{\mathcal{F}} \Leftrightarrow \overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) = \overrightarrow{\mathcal{F}}$), alors elle préserve aussi son orthogonal,

$$\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}^{\perp}) = \overrightarrow{\mathcal{F}}^{\perp}.$$

En particulier, si $\widetilde{\mathcal{F}}$ n'est pas trivial, $\widetilde{\mathcal{E}}$ se décompose en somme directe orthogonale de deux sous-espaces stables par $\widetilde{\phi}$:

$$\vec{\mathcal{E}} = \vec{\mathcal{F}} \oplus \vec{\mathcal{F}}^{\perp}$$
.

Si on note $\phi_1 = \phi|_{\overline{\mathcal{F}}}$ et $\phi_2 = \phi|_{\overline{\mathcal{F}}^\perp}$, alors ϕ_1 et ϕ_2 sont orthogonales et

$$\overrightarrow{\phi} = \overrightarrow{\phi}_1 \stackrel{.}{\oplus} \overrightarrow{\phi}_2.$$

lacksquare Si λ est valeur propre (réelle) de ϕ alors $\lambda=\pm 1$

Rappels : espace euclidien

euclidiens

Isométries vectorielle

Définition

Groupe orthogon Petites dimension Forme standard

Isométries affin

1 Si une isométrie $\overrightarrow{\phi}$ de $\overrightarrow{\mathcal{E}}$ préserve un s.e.v. $\overrightarrow{\mathcal{F}}$ (c.-à-d. $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) \subset \overrightarrow{\mathcal{F}} \Leftrightarrow \overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) = \overrightarrow{\mathcal{F}}$), alors elle préserve aussi son orthogonal,

$$\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}^{\perp}) = \overrightarrow{\mathcal{F}}^{\perp}.$$

En particulier, si $\mathcal F$ n'est pas trivial, $\mathcal E$ se décompose en somme directe orthogonale de deux sous-espaces stables par $\overline\phi$:

$$\vec{\mathcal{E}} = \vec{\mathcal{F}} \stackrel{\perp}{\oplus} \vec{\mathcal{F}}^{\perp}$$
.

Si on note $\phi_1 = \phi|_{\overline{\mathcal{F}}}$ et $\phi_2 = \phi|_{\overline{\mathcal{F}}^\perp}$, alors ϕ_1 et ϕ_2 sont orthogonales et

$$\phi = \phi_1 \oplus \overline{\phi}_2.$$

lacksquare Si λ est valeur propre (réelle) de ϕ alors $\lambda=\pm 1$

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Définition

- Groupe orthogonal Petites dimensions Forme standard Décomposition
- Isométries affir

I Si une isométrie $\overrightarrow{\phi}$ de $\overrightarrow{\mathcal{E}}$ préserve un s.e.v. $\overrightarrow{\mathcal{F}}$ (c.-à-d. $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) \subset \overrightarrow{\mathcal{F}} \Leftrightarrow \overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) = \overrightarrow{\mathcal{F}}$), alors elle préserve aussi son orthogonal,

$$\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}^{\perp}) = \overrightarrow{\mathcal{F}}^{\perp}.$$

En particulier, si ${\mathcal F}$ n'est pas trivial, ${\mathcal E}$ se décompose en somme directe orthogonale de deux sous-espaces stables par ϕ :

$$\vec{\mathcal{E}} = \vec{\mathcal{F}} \oplus \vec{\mathcal{F}}^{\perp}$$
.

Si on note $\phi_1 = \phi|_{\overline{\mathcal{F}}}$ et $\phi_2 = \phi|_{\overline{\mathcal{F}}^\perp}$, alors ϕ_1 et ϕ_2 sont orthogonales et

$$\phi = \phi_1 \oplus \phi_2.$$

 $f Si~\lambda$ est valeur propre (réelle) de ϕ alors $\lambda=\pm 1$

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Définition

Petites dimension Forme standard Décomposition

Isométries affin

I Si une isométrie $\overrightarrow{\phi}$ de $\overrightarrow{\mathcal{E}}$ préserve un s.e.v. $\overrightarrow{\mathcal{F}}$ (c.-à-d. $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) \subset \overrightarrow{\mathcal{F}} \Leftrightarrow \overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) = \overrightarrow{\mathcal{F}}$), alors elle préserve aussi son orthogonal,

$$\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}^{\perp}) = \overrightarrow{\mathcal{F}}^{\perp}.$$

 ${\Bbb Z}$ En particulier, si ${\cal F}$ n'est pas trivial, ${\cal E}$ se décompose en somme directe orthogonale de deux sous-espaces stables par $\overline{\phi}$:

$$\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}} \stackrel{\perp}{\oplus} \overrightarrow{\mathcal{F}}^{\perp}.$$

Si on note $\phi_1 = \phi|_{\overline{\mathcal{F}}}$ et $\phi_2 = \phi|_{\overline{\mathcal{F}}^\perp}$, alors ϕ_1 et ϕ_2 sonttogonales et

$$\overrightarrow{\phi} = \overrightarrow{\phi}_1 \oplus \overrightarrow{\phi}_2.$$

lacksquare Si λ est valeur propre (réelle) de ϕ alors $\lambda=\pm 1$.

Rappels : espace euclidien

euclidiens

Isométries vectorielle

Définiti

Petites dimension Forme standard Décomposition

Isométries affin

I Si une isométrie $\overrightarrow{\phi}$ de $\overrightarrow{\mathcal{E}}$ préserve un s.e.v. $\overrightarrow{\mathcal{F}}$ (c.-à-d. $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) \subset \overrightarrow{\mathcal{F}} \Leftrightarrow \overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) = \overrightarrow{\mathcal{F}}$), alors elle préserve aussi son orthogonal,

$$\vec{\phi}(\vec{\mathcal{F}}^{\perp}) = \vec{\mathcal{F}}^{\perp}.$$

2 En particulier, si $\overrightarrow{\mathcal{F}}$ n'est pas trivial, $\overrightarrow{\mathcal{E}}$ se décompose en somme directe orthogonale de deux sous-espaces stables par $\overrightarrow{\phi}$:

$$\overrightarrow{\mathcal{E}} = \overrightarrow{\mathcal{F}} \stackrel{\perp}{\oplus} \overrightarrow{\mathcal{F}}^{\perp}$$
.

Si on note $\phi_1 = \phi|_{\vec{\mathcal{F}}}$ et $\phi_2 = \phi|_{\vec{\mathcal{F}}^{\perp}}$, alors ϕ_1 et ϕ_2 sont orthogonales et

$$\overrightarrow{\phi} = \overrightarrow{\phi}_1 \stackrel{\perp}{\oplus} \overrightarrow{\phi}_2.$$

 \blacksquare Si λ est valeur propre (réelle) de ϕ alors $\lambda=\pm 1$.

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Définitio

Petites dimens

Isométries affin

I Si une isométrie $\overrightarrow{\phi}$ de $\overrightarrow{\mathcal{E}}$ préserve un s.e.v. $\overrightarrow{\mathcal{F}}$ (c.-à-d. $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) \subset \overrightarrow{\mathcal{F}} \Leftrightarrow \overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) = \overrightarrow{\mathcal{F}}$), alors elle préserve aussi son orthogonal,

$$\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}^{\perp}) = \overrightarrow{\mathcal{F}}^{\perp}.$$

2 En particulier, si $\overrightarrow{\mathcal{F}}$ n'est pas trivial, $\overrightarrow{\mathcal{E}}$ se décompose en somme directe orthogonale de deux sous-espaces stables par $\overrightarrow{\phi}$:

$$\vec{\mathcal{E}} = \vec{\mathcal{F}} \overset{\perp}{\oplus} \vec{\mathcal{F}}^{\perp}.$$
 Si on note $\vec{\phi}_1 = \vec{\phi}|_{\vec{\mathcal{F}}}$ et $\vec{\phi}_2 = \vec{\phi}|_{\vec{\mathcal{F}}^{\perp}}$, alors $\vec{\phi}_1$ et $\vec{\phi}_2$ sont orthogonales et

$$\overrightarrow{\phi} = \overrightarrow{\phi}_1 \stackrel{\perp}{\oplus} \overrightarrow{\phi}_2.$$

 $f Si \ \lambda \ est \ valeur \ propre \ (réelle) \ de \ \phi \ alors \ \lambda = \pm 1$

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Définition

Petites dimens

Isométries affin

I Si une isométrie $\overrightarrow{\phi}$ de $\overrightarrow{\mathcal{E}}$ préserve un s.e.v. $\overrightarrow{\mathcal{F}}$ (c.-à-d. $\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) \subset \overrightarrow{\mathcal{F}} \Leftrightarrow \overrightarrow{\phi}(\overrightarrow{\mathcal{F}}) = \overrightarrow{\mathcal{F}}$), alors elle préserve aussi son orthogonal,

$$\overrightarrow{\phi}(\overrightarrow{\mathcal{F}}^{\perp}) = \overrightarrow{\mathcal{F}}^{\perp}.$$

2 En particulier, si $\overrightarrow{\mathcal{F}}$ n'est pas trivial, $\overrightarrow{\mathcal{E}}$ se décompose en somme directe orthogonale de deux sous-espaces stables par $\overrightarrow{\phi}$:

$$\vec{\mathcal{E}} = \vec{\mathcal{F}} \overset{\perp}{\oplus} \vec{\mathcal{F}}^{\perp}.$$
 Si on note $\vec{\phi}_1 = \vec{\phi}|_{\vec{\mathcal{F}}}$ et $\vec{\phi}_2 = \vec{\phi}|_{\vec{\mathcal{F}}^{\perp}}$, alors $\vec{\phi}_1$ et $\vec{\phi}_2$ sont orthogonales et

$$\overrightarrow{\phi} = \overrightarrow{\phi}_1 \stackrel{\perp}{\oplus} \overrightarrow{\phi}_2.$$

3 Si λ est valeur propre (réelle) de $\overrightarrow{\phi}$ alors $\lambda=\pm 1$.

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Définition

Groupe orthogonal

Petites dimension

Décompositio

Isométries affine

```
Le groupe des isométries de \overrightarrow{\mathcal{E}} est noté O(\overrightarrow{\mathcal{E}}).
Et on note O_n = O(\mathbb{R}^n).
```

Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$ alors $\det(\overrightarrow{\phi}) = -$

On note O[†](E) ou SO(E) (resp. O[†]_E ou SO_n) l'ensemble des sométries à déterminant 1, dites directes, de E (resp. 22°).
 De même l'ensemble des semétries à déterminant = 1, dites.

inductives, est noté $O^{\circ}(\widetilde{\mathcal{E}})$ (resp. $O_{\widetilde{\mathcal{F}}}$)

 $(O^+(\overline{\mathcal{E}})$ est un sous-groupe du groupe compact $O(\overline{\mathcal{E}})$, mais $O^-(\overline{\mathcal{E}})$ n'en est pas un.)

Rappels : espace euclidien

euclidiens

somètries vectorielles

Groupe orthogonal

Petites dimensi

Forme standa

Décomposition

Isométries affin

■ Le groupe des isométries de $\vec{\mathcal{E}}$ est noté $O(\vec{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$.

$$(O_n = \{ M \in M_2(\mathbb{R}) \big| M^t M = I_n \}.)$$

■ Soit $\phi \in O(\mathcal{E})$, alors $\det(\phi) = \pm 1$.

 De même l'ensemble des isone indirectes, est noté O (E) (E)

 $(O^+(\overline{\mathcal{E}})$ est un sous-groupe du groupe compact $O(\overline{\mathcal{E}})$, mais $O^-(\overline{\mathcal{E}})$ n'en est pas un.)

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Groupe orthogonal

Forme standard

Décomposition

Isométries affin

- Le groupe des isométries de $\overrightarrow{\mathcal{E}}$ est noté $O(\overrightarrow{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$. $(O_n = \{ M \in M_2(\mathbb{R}) | M^t M = I_n \}.)$
- Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\det(\overrightarrow{\phi}) = \pm 1$.

isométries à déterminant 1, dites directes, de \mathcal{E} (resp. \mathbb{R}^p) w. De même l'ensemble des isométries à déterminant -1, ditte

 $(O^+(\overline{\mathcal{E}})$ est un sous-groupe du groupe compact $O(\overline{\mathcal{E}})$, mais $O^-(\overline{\mathcal{E}})$ n'en est pas un.)

Rappels : espace euclidien

euclidiens

Définition

Groupe orthogonal

Forme standar Décomposition

. ...

Isométries affin

- Le groupe des isométries de $\overrightarrow{\mathcal{E}}$ est noté $O(\overrightarrow{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$. $(O_n = \{M \in M_2(\mathbb{R}) | M^t M = I_n\}.)$
- $\blacksquare \ \, \mathsf{Soit} \ \, \overrightarrow{\phi} \in \mathit{O}(\overrightarrow{\mathcal{E}}) \mathsf{, \ alors \ } \mathsf{det}(\overrightarrow{\phi}) = \pm 1.$
 - On note $O^+(\mathcal{E})$ ou $SO(\mathcal{E})$ (resp. O_n^+ ou SO_n) l'ensemble des isométries à déterminant 1, dites directes, de $\widetilde{\mathcal{E}}$ (resp. \mathbb{R}^n).
 - De même l'ensemble des isométries à déterminant -1, dites indirectes, est noté $O^-(\vec{\mathcal{E}})$ (resp. O_n^-).

 $(O^+(\overrightarrow{\mathcal{E}})$ est un sous-groupe du groupe compact $O(\overrightarrow{\mathcal{E}})$, mais $O^-(\overrightarrow{\mathcal{E}})$ n'en est pas un.)

Rappels : espace euclidien

euclidiens

Définition

Groupe orthogonal

Forme standar Décomposition

Isométries affin

- Le groupe des isométries de $\overrightarrow{\mathcal{E}}$ est noté $O(\overrightarrow{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$. $(O_n = \{M \in M_2(\mathbb{R}) | M^t M = I_n\}.)$
- Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\det(\overrightarrow{\phi}) = \pm 1$.
 - On note $O^+(\vec{\mathcal{E}})$ ou $SO(\vec{\mathcal{E}})$ (resp. O_n^+ ou SO_n) l'ensemble des isométries à déterminant 1, dites directes, de $\vec{\mathcal{E}}$ (resp. \mathbb{R}^n).
 - De même l'ensemble des isométries à déterminant -1, dites indirectes, est noté $O^-(\overrightarrow{\mathcal{E}})$ (resp. O_n^-).

Rappels : espace euclidien

Espaces attines euclidiens

Isométries vectorielles

Définition

Groupe orthogonal

Petites dimension

Forme standar Décomposition

Isométries affin

- Le groupe des isométries de $\vec{\mathcal{E}}$ est noté $O(\vec{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$. $(O_n = \{ M \in M_2(\mathbb{R}) | M^t M = I_n \}.)$
- Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\det(\overrightarrow{\phi}) = \pm 1$.
 - On note $O^+(\vec{\mathcal{E}})$ ou $SO(\vec{\mathcal{E}})$ (resp. O_n^+ ou SO_n) l'ensemble des isométries à déterminant 1, dites directes, de $\vec{\mathcal{E}}$ (resp. \mathbb{R}^n).
 - De même l'ensemble des isométries à déterminant -1, dites indirectes, est noté $O^-(\vec{\mathcal{E}})$ (resp. O_n^-).

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Définition

Groupe orthogonal

Forme standard Décomposition

Isométries affin

Le groupe des isométries de $\overrightarrow{\mathcal{E}}$ est noté $O(\overrightarrow{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$. $(O_n = \{ M \in M_2(\mathbb{R}) | M^t M = I_n \}.)$

- Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\det(\overrightarrow{\phi}) = \pm 1$.
 - On note $O^+(\vec{\mathcal{E}})$ ou $SO(\vec{\mathcal{E}})$ (resp. O_n^+ ou SO_n) l'ensemble des isométries à déterminant 1, dites directes, de $\vec{\mathcal{E}}$ (resp. \mathbb{R}^n).
 - De même l'ensemble des isométries à déterminant -1, dites indirectes, est noté $O^-(\vec{\mathcal{E}})$ (resp. O_n^-).

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Définition

Groupe orthogonal

Forme standard Décomposition

Isométries affir

- Le groupe des isométries de $\overrightarrow{\mathcal{E}}$ est noté $O(\overrightarrow{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$. $(O_n = \{M \in M_2(\mathbb{R}) | M^t M = I_n\}.)$
- Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\det(\overrightarrow{\phi}) = \pm 1$.
 - On note $O^+(\vec{\mathcal{E}})$ ou $SO(\vec{\mathcal{E}})$ (resp. O_n^+ ou SO_n) l'ensemble des isométries à déterminant 1, dites directes, de $\vec{\mathcal{E}}$ (resp. \mathbb{R}^n).
 - De même l'ensemble des isométries à déterminant -1, dites indirectes, est noté $O^-(\vec{\mathcal{E}})$ (resp. O_n^-).

Rappels : espace euclidien

Espaces affine euclidiens

Isométries vectorielles

Définition

Groupe orthogonal

Forme standard
Décomposition

Isométries af

■ Le groupe des isométries de $\vec{\mathcal{E}}$ est noté $O(\vec{\mathcal{E}})$. Et on note $O_n = O(\mathbb{R}^n)$. $(O_n = \{M \in M_2(\mathbb{R}) | M^t M = I_n\}.)$

- Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\det(\overrightarrow{\phi}) = \pm 1$.
 - On note $O^+(\vec{\mathcal{E}})$ ou $SO(\vec{\mathcal{E}})$ (resp. O_n^+ ou SO_n) l'ensemble des isométries à déterminant 1, dites directes, de $\vec{\mathcal{E}}$ (resp. \mathbb{R}^n).
 - De même l'ensemble des isométries à déterminant -1, dites indirectes, est noté $O^-(\vec{\mathcal{E}})$ (resp. O_n^-).

Espaces affines euclidiens

Isométries vectorielles

Définition

roupe orthogo

Petites dimensions

Forme standard

Décomposition

Isométries affine

$$O_1 = \{1, -1\}.$$

$$O_2 = O_2^+ \sqcup O_2^-$$
, où

$$O_2^+ = \left\{ \overrightarrow{R}_{\alpha} = \begin{pmatrix} \cos(\alpha) - \sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \middle| \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \right\}$$

Les règles de composition sont :

 $\approx R_{\alpha} \circ R_{\beta} = R_{\alpha+\beta} (-20) = 20$

 $= \underline{S}_{\alpha} \circ \underline{S}_{\beta} = \underline{R}_{\alpha - \beta}$

 $=S_{\alpha}\circ R_{\gamma}=S_{\alpha-\gamma}\text{ et }R_{\gamma}\circ S_{\beta}=S_{\gamma+\beta}$

Dimensions 1 et 2

Rappels : espace euclidien

Espaces affines euclidiens

sométries vectorielles

Définitio

Groupe orthogo

Petites dimensions

Forme standard

Décompositio

Isométries affine

- $O_1 = \{1, -1\}.$
- $O_2 = O_2^+ \sqcup O_2^-$, où

$$O_2^+ = \left\{ \begin{array}{l} \overrightarrow{R}_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{array} \right) \middle| \alpha \in \mathbb{R}/2\pi\mathbb{Z}$$
 est le sous-groupe des rotations

Les règles de composition sont

Espaces affines euclidiens

Isométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard

Isométries affine

$$O_1 = \{1, -1\}.$$

$$lacksquare O_2^+\sqcup O_2^-$$
, où

$$O_2^+ = \{ \overrightarrow{R}_\alpha = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} | \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \}$$
 est le sous-groupe des rotations,

$$\bullet O_2^- = \{ \overrightarrow{S}_\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{Z} \}$$
 est l'ensemble des réflexions.

(S_lpha est la symétrie par rapport à la droite d'angle lpha/2.)

Les règles de composition sont :

$$lacksquare \overrightarrow{R}_{lpha} \circ \overrightarrow{R}_{eta} = \overrightarrow{R}_{lpha+eta} \ (\Rightarrow SO_2 \cong \mathbb{S}^1),$$

$$\bullet \hat{S}_{\alpha} \circ \hat{S}_{\beta} = \hat{R}_{\alpha-\beta},$$

$$oldsymbol{S}_{lpha}\circ oldsymbol{ec{R}}_{\gamma}=oldsymbol{ec{S}}_{lpha-\gamma}$$
 et $oldsymbol{ec{R}}_{\gamma}\circ oldsymbol{ec{S}}_{eta}=oldsymbol{ec{S}}_{\gamma+eta}$

euclidiens

Isométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard

Isométries affine

$$O_1 = \{1, -1\}.$$

$$lacksquare O_2^+\sqcup O_2^-$$
, où

$$\begin{array}{c} \bullet \quad O_2^+ = \big\{ \overrightarrow{R}_\alpha = \left(\begin{smallmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{smallmatrix} \right) \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \big\} \\ \text{est le sous-groupe des rotations,} \end{array}$$

$$O_2^- = \{ \overrightarrow{S}_\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \}$$
 est l'ensemble des réflexions.

(S_{lpha} est la symétrie par rapport à la droite d'angle lpha/2.)

Les règles de composition sont :

$$\mathbf{R}_{\alpha} \circ \widetilde{R}_{\beta} = \widetilde{R}_{\alpha+\beta} \ (\Rightarrow SO_2 \cong \mathbb{S}^1),$$

$$S_{\alpha} \circ S_{\beta} = R_{\alpha-\beta},$$

$$\hat{S}_{lpha} \circ \hat{R}_{\gamma} = \hat{S}_{lpha - \gamma} ext{ et } \hat{R}_{\gamma} \circ \hat{S}_{eta} = \hat{S}_{\gamma + eta}.$$

Dimensions 1 et 2

Rappels : espace euclidien

Espaces affine euclidiens

Isométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard
Décomposition

Isométries affine

$$O_1 = \{1, -1\}.$$

$$lacksquare O_2^+ \sqcup O_2^-$$
, où

$$O_2^+ = \big\{ \overrightarrow{R}_\alpha = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{pmatrix} \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \big\}$$
 est le sous-groupe des rotations,

•
$$O_2^- = \{ \vec{S}_{\alpha} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{Z} \}$$
 est l'ensemble des réflexions.

 $(\overline{S}_lpha$ est la symétrie par rapport à la droite d'angle lpha/2.)

Les règles de composition sont

- \blacksquare $R_{\alpha} \circ R_{\beta} = R_{\alpha+\beta} \ (\Rightarrow SO_2 \cong \mathbb{S}^1),$
- $S_{\alpha} \circ S_{\beta} = R_{\alpha-\beta},$
- $S_{\alpha} \circ R_{\gamma} = S_{\alpha-\gamma} \text{ et } R_{\gamma} \circ S_{\beta} = S_{\gamma+\beta}$

Espaces affines euclidiens

Isométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard
Décomposition

Isométries affine

$$O_1 = \{1, -1\}.$$

$$lacksquare O_2^+ \sqcup O_2^-$$
, où

$$O_2^- = \{ \overrightarrow{S}_\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{Z} \}$$
 est l'ensemble des réflexions.

$$(S_{\alpha}$$
 est la symétrie par rapport à la droite d'angle $\alpha/2$.)

Les règles de composition sont :

- \blacksquare $R_{\alpha} \circ R_{\beta} = R_{\alpha+\beta} \ (\Rightarrow SO_2 \cong \mathbb{S}^1),$
- $S_{\alpha} \circ R_{\gamma} = S_{\alpha-\gamma} \text{ et } R_{\gamma} \circ S_{\beta} = S_{\gamma+\beta}$

Définition
Groupe orthogonal
Petites dimensions
Forme standard
Décomposition

Isométries affine

$$O_1 = \{1, -1\}.$$

$$lacksquare O_2^+ \sqcup O_2^-$$
, où

$$\begin{array}{c} \bullet \quad O_2^+ = \big\{ \overrightarrow{R}_\alpha = \Big(\begin{smallmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{smallmatrix} \Big) \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \big\} \\ \text{est le sous-groupe des rotations,} \end{array}$$

■
$$O_2^- = \{ \vec{S}_{\alpha} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) - \cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{Z} \}$$
 est l'ensemble des réflexions. $(\vec{S}_{\alpha} \text{ est la symétrie par rapport à la droite d'angle } \alpha/2.)$

Les règles de composition sont :

$$\overrightarrow{R}_{\alpha} \circ \overrightarrow{R}_{\beta} = \overrightarrow{R}_{\alpha+\beta} \ (\Rightarrow SO_2 \cong \mathbb{S}^1),$$

 $S_{\alpha} \circ S_{\beta} = R_{\alpha-\beta}$

 $S_{\alpha} \circ R_{\gamma} = S_{\alpha-\gamma} \text{ et } R_{\gamma} \circ S_{\beta} = S_{\gamma+\beta}$

Définition
Groupe orthogonal
Petites dimensions
Forme standard
Décomposition

Isométries affine

$$O_1 = \{1, -1\}.$$

$$lacksquare O_2^+ \sqcup O_2^-$$
, où

$$\begin{array}{c} \bullet \quad O_2^+ = \big\{ \overrightarrow{R}_\alpha = \Big(\begin{smallmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{smallmatrix} \Big) \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \big\} \\ \text{est le sous-groupe des rotations,} \end{array}$$

■
$$O_2^- = \{ \vec{S}_\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{Z} \}$$
 est l'ensemble des réflexions.
 $(\vec{S}_\alpha \text{ est la symétrie par rapport à la droite d'angle } \alpha/2.)$

Les règles de composition sont :

$$\overrightarrow{R}_{\alpha} \circ \overrightarrow{R}_{\beta} = \overrightarrow{R}_{\alpha+\beta} \ (\Rightarrow SO_2 \cong \mathbb{S}^1),$$

 $S_{\alpha} \circ S_{\beta} = R_{\alpha-\beta}$

$$lacksquare$$
 $S_{lpha} \circ R_{\gamma} = S_{lpha - \gamma}$ et $R_{\gamma} \circ S_{eta} = S_{\gamma + \beta}$

Définition
Groupe orthogonal
Petites dimensions
Forme standard
Décomposition

Isométries affine

$$O_1 = \{1, -1\}.$$

$$lacksquare O_2^+ \sqcup O_2^-$$
, où

$$\begin{array}{c} \bullet \quad O_2^+ = \big\{ \overrightarrow{R}_\alpha = \left(\begin{smallmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{smallmatrix} \right) \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \big\} \\ \text{est le sous-groupe des rotations,} \end{array}$$

■
$$O_2^- = \{ \vec{S}_\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{Z} \}$$
 est l'ensemble des réflexions.
 $(\vec{S}_\alpha \text{ est la symétrie par rapport à la droite d'angle } \alpha/2.)$

Les règles de composition sont :

$$lackbox{igwedge} ec{R}_{lpha} \circ ec{R}_{eta} = ec{R}_{lpha+eta} \ (\Rightarrow SO_2 \cong \mathbb{S}^1)$$
,

$$S_{\alpha} \circ S_{\beta} = R_{\alpha-\beta},$$

$$\overrightarrow{S}_{\alpha} \circ \overrightarrow{R}_{\gamma} = \overrightarrow{S}_{\alpha-\gamma} \text{ et } \overrightarrow{R}_{\gamma} \circ \overrightarrow{S}_{\beta} = \overrightarrow{S}_{\gamma+\beta}.$$

Dimensions 1 et 2

Rappels : espace euclidien

Espaces affine euclidiens

Isométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard
Décomposition

Isométries affine

$$O_1 = \{1, -1\}.$$

$$lacksquare O_2^+\sqcup O_2^-$$
, où

$$\begin{array}{c} \bullet \quad O_2^+ = \big\{ \overrightarrow{R}_\alpha = \left(\begin{smallmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{smallmatrix} \right) \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \big\} \\ \text{est le sous-groupe des rotations,} \end{array}$$

■
$$O_2^- = \{ \vec{S}_\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{Z} \}$$
 est l'ensemble des réflexions.
 $(\vec{S}_\alpha \text{ est la symétrie par rapport à la droite d'angle } \alpha/2.)$

Les règles de composition sont :

$$ightharpoonup ec{R}_{lpha} \circ ec{R}_{eta} = ec{R}_{lpha+eta} \; (\Rightarrow \mathit{SO}_2 \cong \mathbb{S}^1)$$
,

$$\overrightarrow{S}_{\alpha} \circ \overrightarrow{S}_{\beta} = \overrightarrow{R}_{\alpha-\beta},$$

$$\overrightarrow{S}_{\alpha} \circ \overrightarrow{R}_{\gamma} = \overrightarrow{S}_{\alpha - \gamma} \text{ et } \overrightarrow{R}_{\gamma} \circ \overrightarrow{S}_{\beta} = \overrightarrow{S}_{\gamma + \beta}.$$

Définition
Groupe orthogonal
Petites dimensions
Forme standard
Décomposition

Isométries affine

$$O_1 = \{1, -1\}.$$

$$lacksquare O_2^+ \sqcup O_2^-$$
, où

$$\bullet O_2^+ = \big\{ \overrightarrow{R}_\alpha = \left(\begin{smallmatrix} \cos(\alpha) & -\sin(\alpha) \\ \sin(\alpha) & \cos(\alpha) \end{smallmatrix} \right) \big| \ \alpha \in \mathbb{R}/2\pi\mathbb{Z} \big\}$$
 est le sous-groupe des rotations,

■
$$O_2^- = \{ \vec{S}_\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{Z} \}$$
 est l'ensemble des réflexions.
 $(\vec{S}_\alpha \text{ est la symétrie par rapport à la droite d'angle } \alpha/2.)$

Les règles de composition sont :

$$lackbox{igwedge} ec{R}_{lpha} \circ ec{R}_{eta} = ec{R}_{lpha+eta} \ (\Rightarrow SO_2 \cong \mathbb{S}^1)$$
,

$$\overrightarrow{S}_{\alpha} \circ \overrightarrow{S}_{\beta} = \overrightarrow{R}_{\alpha-\beta},$$

$$\overrightarrow{S}_{\alpha} \circ \overrightarrow{R}_{\gamma} = \overrightarrow{S}_{\alpha - \gamma} \text{ et } \overrightarrow{R}_{\gamma} \circ \overrightarrow{S}_{\beta} = \overrightarrow{S}_{\gamma + \beta}.$$

euclidiens

Isométries vectorielles

Groupe orthogo
Petites dimension

Isométries affin

- $O_1 = \{1, -1\}.$
- $lacksquare O_2^+ \sqcup O_2^-$, où

 - $O_2^- = \{ \vec{S}_\alpha = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ \sin(\alpha) & -\cos(\alpha) \end{pmatrix} | \alpha \in \mathbb{R}/2\pi\mathbb{Z} \}$ est l'ensemble des réflexions. $(\vec{S}_\alpha \text{ est la symétrie par rapport à la droite d'angle } \alpha/2.)$

Les règles de composition sont :

$$lackbox{lack} ec{R}_{lpha} \circ ec{R}_{eta} = ec{R}_{lpha+eta} \; (\Rightarrow \mathit{SO}_2 \cong \mathbb{S}^1)$$
,

$$\overrightarrow{S}_{\alpha} \circ \overrightarrow{S}_{\beta} = \overrightarrow{R}_{\alpha-\beta},$$

$$\overrightarrow{S}_{\alpha} \circ \overrightarrow{R}_{\gamma} = \overrightarrow{S}_{\alpha - \gamma} \text{ et } \overrightarrow{R}_{\gamma} \circ \overrightarrow{S}_{\beta} = \overrightarrow{S}_{\gamma + \beta}.$$

Les isométries de \mathbb{C} (dimension 2)

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Définition

Groupe orthogonal

Petites dimensions

Forme standard

Isométries affin

En identifiant l'espace euclidien \mathbb{R}^2 avec \mathbb{C} , le produit scalaire s'écrit :

$$\langle z|w\rangle = \frac{\overline{z}w + z\overline{w}}{2}$$

Toute élément de $O(\mathbb{C})$ est de la forme

- $\sigma_a: z \mapsto a\overline{z}$ avec |a|=1, et dans ce cas c'est une réflexion par rapport à l'axe engendré par \sqrt{a} .

L'identification entre O_2 et $O(\mathbb{C})$ est donnée par

$$\sigma_{e^{i\theta}} = S_{\theta}$$

Les isométries de \mathbb{C} (dimension 2)

Rappels : espace euclidien

euclidiens

sométries vectorielles

Définition
Groupe orthogonal
Petites dimensions

Isométries affine

En identifiant l'espace euclidien \mathbb{R}^2 avec \mathbb{C} , le produit scalaire s'écrit :

$$\langle z|w\rangle = \frac{\overline{z}w + z\overline{w}}{2}$$

Toute élément de $O(\mathbb{C})$ est de la forme

- $\sigma_a: z \mapsto a\overline{z}$ avec |a|=1, et dans ce cas c'est une réflexion par rapport à l'axe engendré par \sqrt{a} .

L'identification entre O_2 et $O(\mathbb{C})$ est donnée par

$$ho_{e^{i heta}}=R_{ heta}$$

$$\sigma_{e^{i\theta}} = S_{\theta}$$

Les isométries de \mathbb{C} (dimension 2)

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard

Isométries affine

En identifiant l'espace euclidien \mathbb{R}^2 avec \mathbb{C} , le produit scalaire s'écrit :

$$\langle z|w\rangle = \frac{\overline{z}w + z\overline{w}}{2}$$

Toute élément de $O(\mathbb{C})$ est de la forme

- $ho_a: z\mapsto az$ avec |a|=1, et dans ce cas c'est une rotation d'angle $\arg(a)$, ou
- $\sigma_a: z \mapsto a\overline{z}$ avec |a|=1, et dans ce cas c'est une réflexion par rapport à l'axe engendré par \sqrt{a} .

L'identification entre O_2 et $O(\mathbb{C})$ est donnée par

- lacksquare $ho_{e^{i heta}}=R_{ heta}$
- $\sigma_{e^{i\theta}} = S_{\theta}$

Rappels : espace euclidien

Espaces affine euclidiens

Isométries vectorielles

Définition

Groupe orthogonal

Petites dimensions

Isométries affine

En identifiant l'espace euclidien \mathbb{R}^2 avec \mathbb{C} , le produit scalaire s'écrit :

$$\langle z|w\rangle = \frac{\overline{z}w + z\overline{w}}{2}$$

Toute élément de $O(\mathbb{C})$ est de la forme

- $ho_a: z\mapsto az$ avec |a|=1, et dans ce cas c'est une rotation d'angle $\arg(a)$, ou
- $\sigma_a: z \mapsto a\overline{z}$ avec |a|=1, et dans ce cas c'est une réflexion par rapport à l'axe engendré par \sqrt{a} .

L'identification entre O_2 et $O(\mathbb{C})$ est donnée par

- $\rho_{e^{i\theta}} = R_{\theta}$
- $\sigma_{e^{i\theta}} = S_{\theta}$

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Définition

Petites dimension

Isométries affine

En identifiant l'espace euclidien \mathbb{R}^2 avec \mathbb{C} , le produit scalaire s'écrit :

$$\langle z|w\rangle = \frac{\overline{z}w + z\overline{w}}{2}$$

Toute élément de $O(\mathbb{C})$ est de la forme

- $ho_a: z\mapsto az$ avec |a|=1, et dans ce cas c'est une rotation d'angle $\arg(a)$, ou
- $\sigma_a: z \mapsto a\overline{z}$ avec |a|=1, et dans ce cas c'est une réflexion par rapport à l'axe engendré par \sqrt{a} .

L'identification entre \mathcal{O}_2 et $\mathcal{O}(\mathbb{C})$ est donnée par :

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Définition

Petites dimension

Isométries affine

En identifiant l'espace euclidien \mathbb{R}^2 avec \mathbb{C} , le produit scalaire s'écrit :

$$\langle z|w\rangle = \frac{\overline{z}w + z\overline{w}}{2}$$

Toute élément de $O(\mathbb{C})$ est de la forme

- $ho_a: z\mapsto az$ avec |a|=1, et dans ce cas c'est une rotation d'angle $\arg(a)$, ou
- $\sigma_a: z \mapsto a\overline{z}$ avec |a|=1, et dans ce cas c'est une réflexion par rapport à l'axe engendré par \sqrt{a} .

L'identification entre \mathcal{O}_2 et $\mathcal{O}(\mathbb{C})$ est donnée par :

Rappels : espace euclidien

Espaces affines euclidiens

Définition

Petites dimension Forme standard

Isométries affin

En identifiant l'espace euclidien \mathbb{R}^2 avec \mathbb{C} , le produit scalaire s'écrit :

$$\langle z|w\rangle = \frac{\overline{z}w + z\overline{w}}{2}$$

Toute élément de $O(\mathbb{C})$ est de la forme

- $ho_a: z \mapsto az$ avec |a|=1, et dans ce cas c'est une rotation d'angle arg(a), ou
- $\sigma_a: z \mapsto a\overline{z}$ avec |a|=1, et dans ce cas c'est une réflexion par rapport à l'axe engendré par \sqrt{a} .

L'identification entre \mathcal{O}_2 et $\mathcal{O}(\mathbb{C})$ est donnée par :

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielle

Définition

Petites dimensions Forme standard

Soit $\vec{\mathcal{E}}$ un espace vectoriel de dimension 3 et $\vec{\phi} \in O(\vec{\mathcal{E}})$.

 $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme

$$\overrightarrow{R}_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0\\ \sin(\alpha) & \cos(\alpha) & 0\\ 0 & 0 & 1 \end{pmatrix}$$

Dans ce cas $\overrightarrow{\phi} = \overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ est la rotation de α autour de l'axe orienté engendré par \overrightarrow{w} .

 $\overline{\phi} \in O^-(\overline{\mathcal{E}})$ ssi il existe une b.o.n $\{\overline{u}, \overline{v}, \overline{w}\}$ dans laquelle la matrice de $\overline{\phi}$ est sous la forme

$$\begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0\\ \sin(\alpha) & \cos(\alpha) & 0\\ 0 & 0 & -1 \end{pmatrix}$$

Dans ce cas $\overline{\phi}$ est la composée de la rotation $\overline{\rho}_{\overline{w},\alpha}$ avec la symétric $\overline{\sigma}_{(\overline{u},\overline{v})}$ par rapport au plan engendré par \overline{u} et \overline{v} , et on dit que $\overline{\phi}$ est une anti-rotation.

Rappels : espace euclidien

Espaces affines

Isométries vectorielles

Définition
Groupe orthogonal
Petites dimensions
Forme standard

Isométries affine

Soit $\vec{\mathcal{E}}$ un espace vectoriel de dimension 3 et $\vec{\phi} \in O(\vec{\mathcal{E}})$.

 $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme

$$\overrightarrow{R}_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Dans ce cas $\phi = \overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ est la rotation de α autour de l'axe orienté engendré par \overrightarrow{w} .

 $\phi \in O^{-}(\mathcal{E})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de ϕ est sous la forme

$$\begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Dans ce cas $\overrightarrow{\phi}$ est la composée de la rotation $\overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ avec la symétr $\overrightarrow{\sigma}_{(\overrightarrow{u},\overrightarrow{v})}$ par rapport au plan engendré par \overrightarrow{u} et \overrightarrow{v} , et on dit que $\overrightarrow{\phi}$ est une anti-rotation

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Groupe orthogor

Forme standard Décomposition

Isométries affine

Soit $\vec{\mathcal{E}}$ un espace vectoriel de dimension 3 et $\vec{\phi} \in O(\vec{\mathcal{E}})$.

 $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme

$$\overrightarrow{R}_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Dans ce cas $\overrightarrow{\phi} = \overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ est la rotation de α autour de l'axe orienté engendré par \overrightarrow{w} .

 $\phi \in O^{-}(\mathcal{E})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de ϕ est sous la forme

$$\begin{pmatrix}
\cos(\alpha) & -\sin(\alpha) & 0 \\
\sin(\alpha) & \cos(\alpha) & 0 \\
0 & 0 & -1
\end{pmatrix}$$

Dans ce cas $\overrightarrow{\phi}$ est la composée de la rotation $\overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ avec la symétr $\overrightarrow{\sigma}_{(\overrightarrow{u},\overrightarrow{v})}$ par rapport au plan engendré par \overrightarrow{u} et \overrightarrow{v} , et on dit que $\overrightarrow{\phi}$ est une anti-rotation.

Dimension 3

Rappels : espace euclidien

Espaces affines euclidiens

Définition
Groupe orthogonal
Petites dimensions
Forme standard
Décomposition

Soit $\vec{\mathcal{E}}$ un espace vectoriel de dimension 3 et $\vec{\phi} \in O(\vec{\mathcal{E}})$.

 $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme

$$\overrightarrow{R}_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0\\ \sin(\alpha) & \cos(\alpha) & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

Dans ce cas $\overrightarrow{\phi} = \overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ est la rotation de α autour de l'axe orienté engendré par \overrightarrow{w} .

 $\overrightarrow{\phi} \in O^{-}(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme

$$\begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0\\ \sin(\alpha) & \cos(\alpha) & 0\\ 0 & 0 & -1 \end{pmatrix}.$$

Dans ce cas $\overrightarrow{\phi}$ est la composée de la rotation $\overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ avec la symétri $\overrightarrow{\sigma}_{\langle \overrightarrow{u},\overrightarrow{v}_{\rangle}}$ par rapport au plan engendré par \overrightarrow{u} et \overrightarrow{v} , et on dit que $\overrightarrow{\phi}$ est une anti-rotation.

Dimension 3

euclidien

euclidiens

Isométries vectorielle

orme standard écomposition

omátrias

Soit $\overrightarrow{\mathcal{E}}$ un espace vectoriel de dimension 3 et $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$.

 $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme

$$\overrightarrow{R}_{\alpha} = \begin{pmatrix} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Dans ce cas $\overrightarrow{\phi} = \overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ est la rotation de α autour de l'axe orienté engendré par \overrightarrow{w} .

 $\overrightarrow{\phi} \in O^{-}(\overrightarrow{\mathcal{E}})$ ssi il existe une b.o.n $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme

$$\left(\begin{array}{ccc} \cos(\alpha) & -\sin(\alpha) & 0 \\ \sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & -1 \end{array} \right).$$

Dans ce cas $\overrightarrow{\phi}$ est la composée de la rotation $\overrightarrow{\rho}_{\overrightarrow{w},\alpha}$ avec la symétrie $\overrightarrow{\sigma}_{\langle \overrightarrow{u},\overrightarrow{v}\rangle}$ par rapport au plan engendré par \overrightarrow{u} et \overrightarrow{v} , et on dit que $\overrightarrow{\phi}$ est une anti-rotation.

Forme standard des isométries

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Définition
Groupe orthogona
Petites dimension
Forme standard

Isométries affine

Proposition

Soit $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$, alors il existe une b.o.n. dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme (dim $\overrightarrow{\mathcal{E}} = 2k + p$)

Et pour $\phi \in O^-(\widetilde{\mathcal{E}})$, à la place du dernier 1 il y a un -1 (donc p > 0)

Forme standard des isométries

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

SOMETRIES VECTORIE!

Définition

Groupe orthogonal

Petites dimensions

Forme standard

Isométries affine

Proposition

Soit $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$, alors il existe une b.o.n. dans laquelle la matrice de $\overrightarrow{\phi}$ est sous la forme (dim $\overrightarrow{\mathcal{E}} = 2k + p$)

Et pour $\overrightarrow{\phi} \in O^{-}(\overrightarrow{\mathcal{E}})$, à la place du dernier 1 il y a un -1 (donc p > 0).

Rappels : espace euclidien

euclidiens

isometries vectorielle

Groupe orthog

Forme standa

Décomposition

Isométries affin

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cet espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

Soient $\overrightarrow{\mathcal{E}}$ de dimension $\dim \overrightarrow{\mathcal{E}} = n$, et $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$.

Alors ϕ est le produit de $k(\leq n)$ réflexions : $\phi = \rho_1 \circ \cdots \circ \rho_k$

Si k est pair $\phi \in O^+(\mathcal{E})$, si k est impair $\phi \in O^-(\mathcal{E})$

Rappels : espace euclidien

euclidiens

isometries vectorielles

Groupe orthogo Petites dimension

Décomposition

Isométries affin

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cet espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

Soient $\overrightarrow{\mathcal{E}}$ de dimension dim $\overrightarrow{\mathcal{E}}=n$, et $\overrightarrow{\phi}\in O(\overrightarrow{\mathcal{E}})$. Alors $\overrightarrow{\phi}$ est le produit de $k(\leq n)$ réflexions : $\overrightarrow{\phi}=\rho_1\circ\cdots$

Si k est pair $\overline{\phi} \in O^+(\overline{\mathcal{E}})$, si k est impair $\overline{\phi} \in O^-(\overline{\mathcal{E}})$

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Groupe orthogon Petites dimensio

Décomposition

Isométries affine

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cet espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

Soient $\overline{\mathcal{E}}$ de dimension dim $\overline{\mathcal{E}} = n$, et $\overline{\phi} \in O(\overline{\mathcal{E}})$. Alors $\overline{\phi}$ est le produit de $k(\leq n)$ réflexions : $\overline{\phi} = \rho_1 \circ \cdots$

Si k est pair $\phi \in O^+(\mathcal{E})$, si k est impair $\phi \in O^-(\mathcal{E})$

Rappels : espace euclidien

euclidiens

Définition

Forme standare Décomposition

Isométries affi

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cet espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

Soient $\overrightarrow{\mathcal{E}}$ de dimension dim $\overrightarrow{\mathcal{E}} = n$, et $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$. Alors $\overrightarrow{\phi}$ est le produit de $k(\leq n)$ réflexions : $\overrightarrow{\phi} = \rho_1 \circ \cdots \circ \rho_k$ Si k est pair $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$, si k est impair $\overrightarrow{\phi} \in O^-(\overrightarrow{\mathcal{E}})$.

Rappels : espace euclidien

euclidiens

Définition

Groupe orthogonal

Décomposition

Isométries affin

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cet espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

Soient $\overrightarrow{\mathcal{E}}$ de dimension dim $\overrightarrow{\mathcal{E}} = n$, et $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$. Alors $\overrightarrow{\phi}$ est le produit de $k(\leq n)$ réflexions : $\overrightarrow{\phi} = \rho_1 \circ \cdots \circ \rho_k$ Si k est pair $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$, si k est impair $\overrightarrow{\phi} \in O^-(\overrightarrow{\mathcal{E}})$.

Rappels : espace euclidien

euclidiens

Définition

Groupe orthogonal

Petites dimensions

Décomposition

Isométries affine

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cet espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

Soient $\overrightarrow{\mathcal{E}}$ de dimension $\dim \overrightarrow{\mathcal{E}} = n$, et $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$.

Alors ϕ est le produit de $k(\leq n)$ réflexions : $\phi = \rho_1 \circ \cdots \circ \rho_k$ Si k est pair $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$, si k est impair $\overrightarrow{\phi} \in O^-(\overrightarrow{\mathcal{E}})$.

Rappels : espace euclidien

Espaces affines euclidiens

Isométries vectorielles

Définition

Petites dimension Forme standard

Décomposition

Isométries affine

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cet espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

 $\textit{Soient} \; \overrightarrow{\mathcal{E}} \; \textit{ de dimension } \dim \overrightarrow{\mathcal{E}} = \textit{n, et } \overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}}).$

Alors $\overrightarrow{\phi}$ est le produit de $k(\leq n)$ réflexions : $\overrightarrow{\phi} = \rho_1 \circ \cdots \circ \rho_k$.

Si k est pair $\overline{\phi} \in O^+(\overline{\mathcal{E}})$, si k est impair $\overline{\phi} \in O^-(\overline{\mathcal{E}})$

Rappels : espace euclidien

euclidiens

Isométries vectorielles

Petites dimens

Décomposition

Isométries affine

Toute symétrie orthogonale par rapport à un sous espace vectoriel est une isométrie, directe si la codimension de cet espace est paire, ou indirecte si la codimension est impaire.

Définition

Une symétrie orthogonale par rapport à un hyperplan est appelée une réflexion.

(Une réflexion est une isométrie indirecte.)

Proposition

Soient $\overrightarrow{\mathcal{E}}$ de dimension $\dim \overrightarrow{\mathcal{E}} = n$, et $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$.

Alors ϕ est le produit de $k(\leq n)$ réflexions : $\phi = \rho_1 \circ \cdots \circ \rho_k$.

Si k est pair $\overrightarrow{\phi} \in O^+(\overrightarrow{\mathcal{E}})$, si k est impair $\overrightarrow{\phi} \in O^-(\overrightarrow{\mathcal{E}})$.

Rappels : espace euclidien

euclidiens

isomethes vectoriene:

Isométries affin

Définition

C. .

Datitas dim

Décomposition

Définition-Proposition

On dit qu'une application affine $\phi \in \mathsf{Aff}(\mathcal{E})$ est une isométrie si une des conditions équivalentes est satisfaite :

$$\blacksquare \ \forall A, B \in \mathcal{E}, \ d(\phi(A), \phi(B)) = d(A, B);$$

$$\vec{\phi} \in O(\vec{\mathcal{E}}).$$

On note $\mathsf{Iso}(\mathcal{E})$ l'ensemble des isométries de \mathcal{E} . Ainsi que $\mathsf{Iso}^{\pm}(\mathcal{E})$ l'ensemble des isométries dont la partie linéaire est Rappels : espace euclidien

euclidiens

isomethes vectorienes

Isométries affin

Définition

C. .

Petites dime

Décomposition

Définition-Proposition

On dit qu'une application affine $\phi \in \mathsf{Aff}(\mathcal{E})$ est une isométrie si une des conditions équivalentes est satisfaite :

$$\blacksquare$$
 $\forall A, B \in \mathcal{E}, \ d(\phi(A), \phi(B)) = d(A, B);$

$$\phi \in O(\overrightarrow{\mathcal{E}}).$$

On note $\mathsf{Iso}(\mathcal{E})$ l'ensemble des isométries de \mathcal{E} . Ainsi que $\mathsf{Iso}^{\pm}(\mathcal{E})$ l'ensemble des isométries dont la partie linéaire est dans $O^{\pm}(\overrightarrow{\mathcal{E}})$.

Définition

Définition-Proposition

On dit qu'une application affine $\phi \in Aff(\mathcal{E})$ est une isométrie si une des conditions équivalentes est satisfaite :

- $\forall A, B \in \mathcal{E}, \ d(\phi(A), \phi(B)) = d(A, B);$
- $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}}).$

Définition

Définition-Proposition

On dit qu'une application affine $\phi \in Aff(\mathcal{E})$ est une isométrie si une des conditions équivalentes est satisfaite :

- $\forall A, B \in \mathcal{E}, \ d(\phi(A), \phi(B)) = d(A, B);$
- $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}}).$

On note $\mathsf{Iso}(\mathcal{E})$ l'ensemble des isométries de \mathcal{E} .

Rappels : espace euclidien

euclidiens

sometries vectorielles

Isométries affine

Définition Propriétés

Structure

Petites dimension Décomposition

Définition-Proposition

On dit qu'une application affine $\phi \in \mathsf{Aff}(\mathcal{E})$ est une isométrie si une des conditions équivalentes est satisfaite :

- $\forall A, B \in \mathcal{E}, \ d(\phi(A), \phi(B)) = d(A, B);$
- $\vec{\phi} \in O(\vec{\mathcal{E}}).$

On note $lso(\mathcal{E})$ l'ensemble des isométries de \mathcal{E} .

Ainsi que $\operatorname{Iso}^{\pm}(\mathcal{E})$ l'ensemble des isométries dont la partie linéaire est dans $O^{\pm}(\vec{\mathcal{E}})$.

Rappels : espace euclidien

euclidiens

isometries vectoriene

Isomètries affin

Définition Propriétés

Structure

Petites dimension

- Iso(\mathcal{E}) est un sous-groupe de Aut(\mathcal{E}).
- \blacksquare Iso⁺(\mathcal{E}) est un sous-groupe de Iso(\mathcal{E}).
- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathrm{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'ill existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- l'oute translation est le produit de deux réflexions

Rappels : espace euclidien

euclidiens

isomethes vectoriene:

Isometries affin

Définition Propriétés

Petites dimension

- $Iso(\mathcal{E})$ est un sous-groupe de $Aut(\mathcal{E})$.
- $lso^+(\mathcal{E})$ est un sous-groupe de $lso(\mathcal{E})$.
- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathrm{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- l'oute translation est le produit de deux réflexions

Rappels : espace euclidien

euclidiens

isomethes vectorienes

isometries affine

Définition Propriétés

Petites dimensio

- $Iso(\mathcal{E})$ est un sous-groupe de $Aut(\mathcal{E})$.
- lacksquare Iso $^+(\mathcal{E})$ est un sous-groupe de Iso (\mathcal{E}) .
- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathrm{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'ille existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- Toute translation est le produit de deux réflexions

Propriétés

- Iso(\mathcal{E}) est un sous-groupe de Aut(\mathcal{E}).
- $lso^+(\mathcal{E})$ est un sous-groupe de $lso(\mathcal{E})$.
- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc

Rappels : espace euclidien

euclidiens

isometries vectorienes

Isométries affine

Définition Propriétés

Petites dimension

- $\mathsf{Iso}(\mathcal{E})$ est un sous-groupe de $\mathsf{Aut}(\mathcal{E})$.
- $\mathsf{Iso}^+(\mathcal{E})$ est un sous-groupe de $\mathsf{Iso}(\mathcal{E})$.
- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathrm{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'i existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- Toute translation est le produit de deux réflexions

Rappels : espace euclidien

euclidiens

isomethes vectorienes

Isométries affin

Définition

Propriétés Structure

Petites dimensio

- $\mathsf{Iso}(\mathcal{E})$ est un sous-groupe de $\mathsf{Aut}(\mathcal{E})$.
- lacksquare Iso $^+(\mathcal{E})$ est un sous-groupe de Iso (\mathcal{E}) .
- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathrm{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- Toute translation est le produit de deux réflexions

Rappels : espace euclidien

euclidiens

Isométries affines

Définition

Propriétés

Petites dimension

- Iso(\mathcal{E}) est un sous-groupe de Aut(\mathcal{E}).
- $\mathsf{Iso}^+(\mathcal{E})$ est un sous-groupe de $\mathsf{Iso}(\mathcal{E})$.
- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathsf{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- Toute translation est le produit de deux réflexions

Rappels : espace euclidien

euclidiens

lana (talan affirma

Isometries affin

Propriétés

Petites dimension

- Iso(\mathcal{E}) est un sous-groupe de Aut(\mathcal{E}).
- $\mathsf{Iso}^+(\mathcal{E})$ est un sous-groupe de $\mathsf{Iso}(\mathcal{E})$.
- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathsf{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- Toute translation est le produit de deux réflexions

Propriétés

■ Iso(\mathcal{E}) est un sous-groupe de Aut(\mathcal{E}).

- $lso^+(\mathcal{E})$ est un sous-groupe de $lso(\mathcal{E})$.
- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathsf{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- Toute translation est le produit de deux réflexions.

Rappels : espace euclidien

euciidiens

Lance Code and Code

Isométries affin

Propriétés

Petites dimensio

Définition

■ $\mathsf{Iso}(\mathcal{E})$ est un sous-groupe de $\mathsf{Aut}(\mathcal{E})$. ■ $\mathsf{Iso}^+(\mathcal{E})$ est un sous-groupe de $\mathsf{Iso}(\mathcal{E})$.

- Les translations sont des isométries.
- Une homothétie de rapport λ multiplie les distances par $|\lambda|$, et donc n'est isométrie que si c'est l'identité ou une symétrie centrale.
- $\phi \in \mathsf{Aff}(\mathcal{E})$ est dite symétrie (affine) orthogonale (resp. réflexion) s'il existe $\Omega \in \mathcal{E}$ telle que ϕ est une symétrie (vectorielle) orthogonale (resp. réflexion) dans \mathcal{E}_{Ω} . Les symétries orthogonales sont des isométries.
- Toute translation est le produit de deux réflexions.

Structure des isométries affines

Rappels : espace euclidien

euclidiens

isometries vectorielles

Isométries affin

Définition

Structure

Petites dimens

Décomposition

Lemme

Soit
$$\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$$
, alors $\overrightarrow{\mathcal{E}} = \operatorname{Ker}(\overrightarrow{\phi} - \operatorname{Id}) \stackrel{\perp}{\oplus} \operatorname{Im}(\overrightarrow{\phi} - \operatorname{Id})$.

Proposition

Soit $\phi \in Iso(\mathcal{E})$, alors

- lacksquare soit ϕ possède un point fixe Ω , et dans ce cas $\phi \in O(\mathcal{E}_{\Omega})$,
- soit il existe un unique $\vec{v}(\neq 0)$, vecteur fixe de $\vec{\phi}$, tel que $T_{\vec{v}} \circ \phi = \phi \circ T_{\vec{v}}$ possède (au moins) un point fixe.

Structure des isométries affines

Rappels : espace euclidien

euclidiens

isometries vectorienes

Isométries affin

Définition

Structure Petites dimension

Petites dimensi

affines

Lemme

Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\overrightarrow{\mathcal{E}} = \operatorname{Ker}(\overrightarrow{\phi} - \operatorname{Id}) \stackrel{\perp}{\oplus} \operatorname{Im}(\overrightarrow{\phi} - \operatorname{Id})$.

Proposition

Soit $\phi \in Iso(\mathcal{E})$, alors

- soit ϕ possède un point fixe Ω , et dans ce cas $\phi \in O(\mathcal{E}_{\Omega})$,
- soit il existe un unique $\vec{v}(\neq 0)$, vecteur fixe de ϕ , tel que $T_{\vec{v}} \circ \phi = \phi \circ T_{\vec{v}}$ possède (au moins) un point fixe.

Structure des isométries affines

Rappels : espace euclidien

euclidiens

lsométries vectorielles

Isométries affin

Définition Propriétée

Structure Petites dimension

Lemme

Soit
$$\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$$
, alors $\overrightarrow{\mathcal{E}} = \operatorname{Ker}(\overrightarrow{\phi} - \operatorname{Id}) \stackrel{\perp}{\oplus} \operatorname{Im}(\overrightarrow{\phi} - \operatorname{Id})$.

Proposition

Soit $\phi \in Iso(\mathcal{E})$, alors

- soit ϕ possède un point fixe Ω , et dans ce cas $\phi \in O(\mathcal{E}_{\Omega})$,
- soit il existe un unique $\vec{v}(\neq 0)$, vecteur fixe de $\vec{\phi}$, tel que $T_{\vec{v}} \circ \phi = \phi \circ T_{\vec{v}}$ possède (au moins) un point fixe.

Structure des isométries affines

Rappels : espace euclidien

euclidiens

sométries vectorielles

Isométries affin

Propriétés

Structure Petites dimension Lemme

Soit $\overrightarrow{\phi} \in O(\overrightarrow{\mathcal{E}})$, alors $\overrightarrow{\mathcal{E}} = \operatorname{Ker}(\overrightarrow{\phi} - \operatorname{Id}) \stackrel{\perp}{\oplus} \operatorname{Im}(\overrightarrow{\phi} - \operatorname{Id})$.

Proposition

Soit $\phi \in Iso(\mathcal{E})$, alors

- soit ϕ possède un point fixe Ω , et dans ce cas $\phi \in \mathcal{O}(\mathcal{E}_{\Omega})$,
- soit il existe un unique $\vec{v}(\neq 0)$, vecteur fixe de $\vec{\phi}$, tel que $T_{\vec{v}} \circ \phi = \phi \circ T_{\vec{v}}$ possède (au moins) un point fixe.

Dimensions 1 et 2

Petites dimensions

Espaces affines euclidiens

isomethes rectorience

isometries affine

Definition

Structure

Petites dimensions

D/ 10

 $(\phi$ est la composée d'au plus 2 réflexions.)

 $\phi \in \mathsf{ISO}^+(\mathsf{IR}^+)$ SSI

 $= \phi \in \mathsf{ISO} \ \left(\mathsf{IK}^{\diamond}\right) \, \mathsf{SSI}$

 $(\phi$ est la composée d'au plus 3 réflexions.

- (ϕ est la composée d'au plus 2 réflexions.)

- (ϕ est la composée d'au plus 2 réflexions.)
- $\operatorname{Iso}(\mathbb{R}^2) = \operatorname{Iso}^+(\mathbb{R}^2) \sqcup \operatorname{Iso}^-(\mathbb{R}^2)$.
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^2)$ ssi

Espaces affines euclidiens

isometries vectorienes

Isométries affir

Définition

Propriete

Structure

Petites dimensions

• $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. (ϕ est la composée d'au plus 2 réflexions.)

- - $\quad \bullet \in \mathrm{Iso}^+(\mathbb{R}^2) \,\, \mathrm{ssi}$

 $\phi = R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou $\phi = T_{\overline{V}}$ est une translation.

 $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi

φ = 5_Y est la symétrie par rapport à une droite affine D, ou
 φ = T_Y o S_Y avec V ≠ 0 est un vecteur fixe par la symétrie φ, dans ce cas on dit que φ est une symétrie glissée.

 $(\phi \text{ est la composée d'au plus } 3 \text{ réflexions.})$

Espaces affine

isometries vectorielles

Isométries affii

isomethes and

Définition

Structure

Petites dimensio

Décres différision

- $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. (ϕ est la composée d'au plus 2 réflexions.)
- - $\quad \bullet \in \mathrm{Iso}^+(\mathbb{R}^2) \,\, \mathrm{ssi}$
 - $lack \phi = R_{\Omega,lpha}$ est la rotation de centre Ω d'angle lpha, ou

 $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi

 $(\phi \text{ est la composée d'au plus } 3 \text{ réflexions.})$

Espaces affin euclidiens

isometries vectorielles

Isométries affin

Définition

Structure

Petites dimensio

Petites dimension

- $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. (ϕ est la composée d'au plus 2 réflexions.)
- $\blacksquare \mathsf{Iso}(\mathbb{R}^2) = \mathsf{Iso}^+(\mathbb{R}^2) \sqcup \mathsf{Iso}^-(\mathbb{R}^2).$
 - $\quad \bullet \in \mathrm{Iso}^+(\mathbb{R}^2) \,\, \mathrm{ssi}$
 - lacktriangledown $\phi=R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation.
 - $\phi \in \mathrm{Iso}^-(\mathbb{R}^2)$ ssi

 $(\phi \text{ est la composée d'au plus } 3 \text{ réflexions.})$

Espaces affine euclidiens

isometries vectorienes

Isométries affii

Définition

Structure

Petites dimension

Petites dimension

- $\phi \in Iso(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b$. (ϕ est la composée d'au plus 2 réflexions.)
- $\blacksquare \mathsf{Iso}(\mathbb{R}^2) = \mathsf{Iso}^+(\mathbb{R}^2) \sqcup \mathsf{Iso}^-(\mathbb{R}^2).$
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^2)$ ssi
 - lacktriangledown $\phi=R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou
 - ullet $\phi = T_{\overrightarrow{v}}$ est une translation.
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi

■ $\phi = S_{\mathcal{D}}$ est la symétrie par rapport à une droite affine \mathcal{D} , ou $\phi = T_{\overline{V}} \circ S_{\mathcal{D}}$ avec $\overline{V} \neq 0$ est un vecteur fixe par la symétrie $\overline{\phi}$, et dans ce cas on dit que ϕ est une symétrie glissée.

 $(\phi$ est la composée d'au plus 3 réflexions.)

Dimensions 1 et 2

- $\phi \in \mathsf{Iso}(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b.$ (ϕ est la composée d'au plus 2 réflexions.)
- \blacksquare Iso(\mathbb{R}^2) = Iso⁺(\mathbb{R}^2) \sqcup Iso⁻(\mathbb{R}^2).
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^2)$ ssi
 - $\phi = R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation.
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi
 - ullet $\phi = S_{\mathcal{D}}$ est la symétrie par rapport à une droite affine \mathcal{D}_{+} ou

- $\phi \in \mathsf{Iso}(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b.$ (ϕ est la composée d'au plus 2 réflexions.)
- $\mathsf{Iso}(\mathbb{R}^2) = \mathsf{Iso}^+(\mathbb{R}^2) \sqcup \mathsf{Iso}^-(\mathbb{R}^2)$.
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^2)$ ssi
 - $\phi = R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation.
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi
 - ullet $\phi = S_{\mathcal{D}}$ est la symétrie par rapport à une droite affine \mathcal{D} , ou
 - $\phi = T_{\vec{v}} \circ S_{\mathcal{D}}$ avec $\vec{v} \neq 0$ est un vecteur fixe par la symétrie $\vec{\phi}$ et

- $\phi \in \mathsf{Iso}(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b.$ (ϕ est la composée d'au plus 2 réflexions.)
- \blacksquare Iso(\mathbb{R}^2) = Iso⁺(\mathbb{R}^2) \sqcup Iso⁻(\mathbb{R}^2).
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^2)$ ssi
 - $\phi = R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation.
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi
 - ullet $\phi = S_{\mathcal{D}}$ est la symétrie par rapport à une droite affine \mathcal{D} , ou
 - $\phi = T_{\vec{v}} \circ S_{\mathcal{D}}$ avec $\vec{v} \neq 0$ est un vecteur fixe par la symétrie $\vec{\phi}$, et dans ce cas on dit que ϕ est une symétrie glissée.

- $\phi \in \mathsf{Iso}(\mathbb{R}) \Rightarrow \phi(x) = \pm x + b.$ (ϕ est la composée d'au plus 2 réflexions.)
- \blacksquare Iso(\mathbb{R}^2) = Iso⁺(\mathbb{R}^2) \sqcup Iso⁻(\mathbb{R}^2).
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^2)$ ssi
 - $\phi = R_{\Omega,\alpha}$ est la rotation de centre Ω d'angle α , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation.
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^2)$ ssi
 - ullet $\phi = S_{\mathcal{D}}$ est la symétrie par rapport à une droite affine \mathcal{D} , ou
 - $\phi = T_{\vec{v}} \circ S_{\mathcal{D}}$ avec $\vec{v} \neq 0$ est un vecteur fixe par la symétrie $\vec{\phi}$, et dans ce cas on dit que ϕ est une symétrie glissée.

(ϕ est la composée d'au plus 3 réflexions.)

euclidiens

Isomètries affine

Définitio

Christian

Petites dimensions

r etites difficilisio

Rappel : Les application affines de l'espace euclidien $\mathbb C$ sont de la forme $z \mapsto \alpha z + \beta \overline{z} + \gamma$.

$$\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$$

 $\phi \in \mathsf{Iso}^+(\mathbb{C})$ ssi $\phi(z) = az + b$ avec |a| = 1

m Si a=1, alors ϕ est la translation du

 $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = a\overline{z} + b \text{ avec } |a| = 1.$

= Sinon A est una sumátria elissão

Les isométrie affines de C

Rappel: Les application affines de l'espace euclidien $\mathbb C$ sont de la forme $z \mapsto \alpha z + \beta \overline{z} + \gamma$.

$$\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$$

- $\phi \in \mathrm{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = az + b \text{ avec } |a| = 1.$
- $\phi \in \mathrm{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = a\overline{z} + b \text{ avec } |a| = 1.$

 $z \mapsto \alpha z + \beta \overline{z} + \gamma$.

 $\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$

- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = \mathsf{a}z + \mathsf{b} \text{ avec } |\mathsf{a}| = 1.$
 - Si $a \neq 1$, alors ϕ est la rotation de centre $\frac{b}{1-a}$.
 - Si a=1, alors ϕ est la translation de b.
- $\phi \in \mathrm{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = a\overline{z} + b \text{ avec } |a| = 1.$

Rappel: Les application affines de l'espace euclidien $\mathbb C$ sont de la forme

euclidiens

isometries vectoriene

Isométries affin

Propriétés

Structure

Petites dimensi

Rappel : Les application affines de l'espace euclidien $\mathbb C$ sont de la forme $z \mapsto \alpha z + \beta \overline{z} + \gamma$.

$$\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$$

- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = \mathsf{a}z + \mathsf{b} \text{ avec } |\mathsf{a}| = 1.$
 - Si $a \neq 1$, alors ϕ est la rotation de centre $\frac{b}{1-a}$.
 - Si a=1, alors ϕ est la translation de b.
- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = a\overline{z} + b \text{ avec } |a| = 1.$
 - Si $\overline{a}b^2 \in \mathbb{R}_+$, alors ϕ est une symétrie d'axe $\sqrt{a}\mathbb{R} + b/2$.
 - Sinon ϕ est une symétrie glissée.

euclidiens

isomethes vectoriene

Isométries affine

Propriétés

Structure Potitor dia

Petites dimensio

Rappel : Les application affines de l'espace euclidien \mathbb{C} sont de la forme $z \mapsto \alpha z + \beta \overline{z} + \gamma$.

$$\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$$

- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = \mathsf{a}z + \mathsf{b} \text{ avec } |\mathsf{a}| = 1.$
 - Si $a \neq 1$, alors ϕ est la rotation de centre $\frac{b}{1-a}$.
 - Si a = 1, alors ϕ est la translation de b.
- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = a\overline{z} + b \text{ avec } |a| = 1.$
 - Si $ab^2 \in \mathbb{R}_+$, alors ϕ est une symétrie d'axe $\sqrt{a\mathbb{R} + b/2}$
 - **Sinon** ϕ est une symétrie glissée.

euclidiens

isometries vectorielle

Isométries affine

Propriétés

Petites dimensi

retites dimensio

Rappel : Les application affines de l'espace euclidien $\mathbb C$ sont de la forme $z \mapsto \alpha z + \beta \overline{z} + \gamma$.

$$\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$$

- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = \mathsf{a}z + \mathsf{b} \text{ avec } |\mathsf{a}| = 1.$
 - Si $a \neq 1$, alors ϕ est la rotation de centre $\frac{b}{1-a}$.
 - Si a = 1, alors ϕ est la translation de b.
- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = a\overline{z} + b \text{ avec } |a| = 1.$
 - Si $\overline{a}b^2 \in \mathbb{R}_-$, alors ϕ est une symétrie d'axe $\sqrt{a}\mathbb{R} + b/2$.
 - Sinon ϕ est une symétrie glissée.

Rappel: Les application affines de l'espace euclidien $\mathbb C$ sont de la forme $z \mapsto \alpha z + \beta \overline{z} + \gamma$.

$$\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$$

- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = az + b \text{ avec } |a| = 1.$
 - Si $a \neq 1$, alors ϕ est la rotation de centre $\frac{b}{1-a}$.
 - Si a=1, alors ϕ est la translation de b.
- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = a\overline{z} + b \text{ avec } |a| = 1.$
 - Si $\bar{a}b^2 \in \mathbb{R}_-$, alors ϕ est une symétrie d'axe $\sqrt{a}\mathbb{R} + b/2$.
 - \blacksquare Sinon ϕ est une symétrie glissée.

Rappel: Les application affines de l'espace euclidien $\mathbb C$ sont de la forme $z \mapsto \alpha z + \beta \overline{z} + \gamma$.

 $\mathsf{Iso}(\mathbb{C}) = \mathsf{Iso}^+(\mathbb{C}) \sqcup \mathsf{Iso}^-(\mathbb{C})$

- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = az + b \text{ avec } |a| = 1.$
 - Si $a \neq 1$, alors ϕ est la rotation de centre $\frac{b}{1-a}$.
 - Si a=1, alors ϕ est la translation de b.
- $\phi \in \mathsf{Iso}^+(\mathbb{C}) \text{ ssi } \phi(z) = a\overline{z} + b \text{ avec } |a| = 1.$
 - Si $\bar{a}b^2 \in \mathbb{R}_-$, alors ϕ est une symétrie d'axe $\sqrt{a}\mathbb{R} + b/2$.
 - Sinon ϕ est une symétrie glissée.

Petites dimensions

Petites dimensions

■ $\operatorname{Iso}(\mathbb{R}^3) = \operatorname{Iso}^+(\mathbb{R}^3) \sqcup \operatorname{Iso}^-(\mathbb{R}^3)$.

 $\phi \in \mathsf{Iso}^+(\mathbb{R}^3)$ ssi

- $\operatorname{Iso}(\mathbb{R}^3) = \operatorname{Iso}^+(\mathbb{R}^3) \sqcup \operatorname{Iso}^-(\mathbb{R}^3)$.
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^3)$ ssi

- $\operatorname{Iso}(\mathbb{R}^3) = \operatorname{Iso}^+(\mathbb{R}^3) \sqcup \operatorname{Iso}^-(\mathbb{R}^3)$.
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^3)$ ssi
 - ullet $\phi = R_{\mathcal{D},\alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou

- $\operatorname{Iso}(\mathbb{R}^3) = \operatorname{Iso}^+(\mathbb{R}^3) \sqcup \operatorname{Iso}^-(\mathbb{R}^3)$.
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^3)$ ssi
 - ullet $\phi = R_{\mathcal{D},\alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou
 - $\phi = T_{\vec{v}}$ est une translation, ou

Espaces affine

Isométries vectorielle

Isométries affin

D/E to

Dronviátás

Structure

Petites dimension

- - $\quad \bullet \in \mathrm{Iso}^+(\mathbb{R}^3) \,\, \mathrm{ssi}$
 - $lack \phi = R_{\mathcal{D}, lpha}$ est la rotation d'angle lpha autour de l'axe \mathcal{D} , ou
 - ullet $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\overrightarrow{v}} \circ R_{\mathcal{D},\alpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^3)$ ssi

 $m \ \phi = T_{V} \circ S_{H} \text{ avec } V \neq 0 \text{ are } c \in \mathbb{Z}_{N}$ dans co as on dit que $\phi = 0$

 $\phi = R_{D,n} \circ S_{H}$ avec $D \perp \mathcal{H}_{r}$ et dans ce cas on dit que ϕ

Espaces affin euclidiens

Isomètries vectorielles

Isométries affin

Définition

Propriete

Darker discussion

retites dimension

- - $\quad \blacksquare \ \phi \in \operatorname{Iso}^+(\mathbb{R}^3) \ \operatorname{ssi}$
 - $lack \phi = R_{\mathcal{D}, lpha}$ est la rotation d'angle lpha autour de l'axe \mathcal{D} , ou
 - ullet $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\overrightarrow{v}} \circ R_{\mathcal{D},\alpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .

Espaces affines euclidiens

Isométries vectorielle

Isométries affin

Difficial

Definition

Structure

Petites dimension

- - $\quad \bullet \phi \in \mathrm{Iso}^+(\mathbb{R}^3) \,\, \mathrm{ssi}$
 - $lack \phi = R_{\mathcal{D}, \alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou
 - ullet $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\overrightarrow{v}} \circ R_{\mathcal{D},\alpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\quad \quad \bullet \in \mathrm{Iso}^-(\mathbb{R}^3) \,\, \mathrm{ssi}$
 - $lacktriangledown \phi = S_{\mathcal{H}}$ est la symétrie par rapport au plan affine \mathcal{H} , ou
 - $\phi = I_{\nabla} \circ S_{\mathcal{H}}$ avec $v \neq 0$ est un vecteur fixe par la symétrie ϕ , et dans ce cas on dit que ϕ est une symétrie glissée.
 - $\phi = R_{\mathcal{D},\alpha} \circ S_{\mathcal{H}}$ avec $\mathcal{D} \perp \mathcal{H}$, et dans ce cas on dit que ϕ est une anti-rotation.

euclidiens

isometries vectorielles

Isométries affin

Définition

Propriétés

Structure

Petites dimension

- - $\quad \bullet \phi \in \mathrm{Iso}^+(\mathbb{R}^3) \,\, \mathrm{ssi}$
 - $lack \phi = R_{\mathcal{D}, lpha}$ est la rotation d'angle lpha autour de l'axe \mathcal{D} , ou
 - lacktriangledown $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\overrightarrow{v}} \circ R_{\mathcal{D},\alpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^3)$ ssi
 - ullet $\phi = \mathcal{S}_{\mathcal{H}}$ est la symétrie par rapport au plan affine \mathcal{H} , ou
 - $\phi = I_{\nabla} \circ S_{\mathcal{H}}$ avec $v \neq 0$ est un vecteur fixe par la symetrie ϕ , et dans ce cas on dit que ϕ est une symétrie glissée.
 - $\phi = R_{\mathcal{D},\alpha} \circ S_{\mathcal{H}}$ avec $\mathcal{D} \perp \mathcal{H}$, et dans ce cas on dit que ϕ est une anti-rotation.

- $\mathsf{Iso}(\mathbb{R}^3) = \mathsf{Iso}^+(\mathbb{R}^3) \sqcup \mathsf{Iso}^-(\mathbb{R}^3)$.
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^3)$ ssi
 - $\phi = R_{\mathcal{D},\alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\vec{v}} \circ R_{\mathcal{D},\alpha}$, avec $\vec{\mathcal{D}} = \langle \vec{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^3)$ ssi
 - ullet $\phi = S_{\mathcal{H}}$ est la symétrie par rapport au plan affine \mathcal{H} , ou
 - $\phi = T_{\vec{v}} \circ S_{\mathcal{H}}$ avec $\vec{v} \neq 0$ est un vecteur fixe par la symétrie ϕ , et

Espaces affine euclidiens

Isométries vectorielles

Isométries affin

Définition

Propriétés

Potitor dimor

- etites difficision

- - $\quad \bullet \phi \in \mathrm{Iso}^+(\mathbb{R}^3) \,\, \mathrm{ssi}$
 - $lack \phi = R_{\mathcal{D}, lpha}$ est la rotation d'angle lpha autour de l'axe \mathcal{D} , ou
 - ullet $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\overrightarrow{v}} \circ R_{\mathcal{D},\alpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^3)$ ssi
 - $lack \phi = \mathcal{S}_{\mathcal{H}}$ est la symétrie par rapport au plan affine \mathcal{H} , ou
 - $\phi = T_{\overrightarrow{v}} \circ S_{\mathcal{H}}$ avec $\overrightarrow{v} \neq 0$ est un vecteur fixe par la symétrie ϕ , et dans ce cas on dit que ϕ est une symétrie glissée.

est la composée d'au plus 4 réflexions)

- $\mathsf{Iso}(\mathbb{R}^3) = \mathsf{Iso}^+(\mathbb{R}^3) \sqcup \mathsf{Iso}^-(\mathbb{R}^3)$.
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^3)$ ssi
 - $\phi = R_{\mathcal{D},\alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\vec{v}} \circ R_{\mathcal{D},\alpha}$, avec $\vec{\mathcal{D}} = \langle \vec{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^3)$ ssi
 - ullet $\phi = S_{\mathcal{H}}$ est la symétrie par rapport au plan affine \mathcal{H} , ou
 - $\phi = T_{\vec{v}} \circ S_{\mathcal{H}}$ avec $\vec{v} \neq 0$ est un vecteur fixe par la symétrie ϕ , et dans ce cas on dit que ϕ est une symétrie glissée.
 - $\phi = R_{\mathcal{D},\alpha} \circ S_{\mathcal{H}}$ avec $\mathcal{D} \perp \mathcal{H}$, et dans ce cas on dit que ϕ est une

Espaces affines euclidiens

Isomètries vectorielles

Isométries affine

Définition

Structure

Petites dimension

- - $\quad \bullet \in \mathrm{Iso}^+(\mathbb{R}^3) \,\, \mathrm{ssi}$
 - $lack \phi = R_{\mathcal{D}, lpha}$ est la rotation d'angle lpha autour de l'axe \mathcal{D} , ou
 - ullet $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\overrightarrow{v}} \circ R_{\mathcal{D},\alpha}$, avec $\overrightarrow{\mathcal{D}} = \langle \overrightarrow{v} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\quad \bullet \in \mathrm{Iso}^-(\mathbb{R}^3) \,\, \mathrm{ssi}$
 - ullet $\phi = \mathcal{S}_{\mathcal{H}}$ est la symétrie par rapport au plan affine \mathcal{H} , ou
 - $\phi = T_{\overrightarrow{v}} \circ S_{\mathcal{H}}$ avec $\overrightarrow{v} \neq 0$ est un vecteur fixe par la symétrie ϕ , et dans ce cas on dit que ϕ est une symétrie glissée.
 - $\phi = R_{\mathcal{D},\alpha} \circ S_{\mathcal{H}}$ avec $\mathcal{D} \perp \mathcal{H}$, et dans ce cas on dit que ϕ est une anti-rotation.

- $\mathsf{Iso}(\mathbb{R}^3) = \mathsf{Iso}^+(\mathbb{R}^3) \sqcup \mathsf{Iso}^-(\mathbb{R}^3)$.
 - $\phi \in \mathsf{Iso}^+(\mathbb{R}^3)$ ssi
 - $\phi = R_{\mathcal{D},\alpha}$ est la rotation d'angle α autour de l'axe \mathcal{D} , ou
 - $\phi = T_{\overrightarrow{v}}$ est une translation, ou
 - $\phi = T_{\vec{\mathbf{v}}} \circ R_{\mathcal{D},\alpha}$, avec $\hat{\mathcal{D}} = \langle \vec{\mathbf{v}} \rangle$ et $\alpha \neq 0$. Dans ce cas on dit que ϕ est un vissage d'axe \mathcal{D} et d'angle α .
 - $\phi \in \mathsf{Iso}^-(\mathbb{R}^3)$ ssi
 - ullet $\phi = S_{\mathcal{H}}$ est la symétrie par rapport au plan affine \mathcal{H} , ou
 - ullet $\phi = T_{\overrightarrow{v}} \circ S_{\mathcal{H}}$ avec $\overrightarrow{v} \neq 0$ est un vecteur fixe par la symétrie ϕ , et dans ce cas on dit que ϕ est une symétrie glissée.
 - $\phi = R_{\mathcal{D},\alpha} \circ S_{\mathcal{H}}$ avec $\mathcal{D} \perp \mathcal{H}$, et dans ce cas on dit que ϕ est une anti-rotation.

 $(\phi \text{ est la composée d'au plus } 4 \text{ réflexions.})$

Rappels : espace euclidien

euclidiens

isomethes vectoriene

Isométries affine

Définition

Propriété

Structure

Petites dimens

Décomposition

Rappel: Une réflexion est une isométrie indirecte.

Proposition

Soient \mathcal{E} un espace affine de dimension n, et $\phi \in Iso(\mathcal{E})$.

Alors ϕ est le produit de $k (\leq n+1)$ réflexions :

$$\phi = \rho_1 \circ \cdots \circ \rho_k$$

Si k est pair $\phi \in Iso^+(\mathcal{E})$, et si k est impair $\phi \in Iso^-(\mathcal{E})$.

Rappels : espace euclidien

euclidiens

isomethes vectoriene

Isométries affin

Définition

Propriétés

D. ...

Décomposition

Rappel: Une réflexion est une isométrie indirecte.

Proposition

Soient \mathcal{E} un espace affine de dimension n, et $\phi \in Iso(\mathcal{E})$.

Alors ϕ est le produit de $k(\leq n+1)$ réflexions :

$$\phi = \rho_1 \circ \cdots \circ \rho_k$$

Si k est pair $\phi \in \mathsf{Iso}^+(\mathcal{E})$, et si k est impair $\phi \in \mathsf{Iso}^-(\mathcal{E})$.

Rappels : espace euclidien

euclidiens

isometries vectoriene

Isométries affin

Propriétés

Daties discour

Décomposition

Rappel: Une réflexion est une isométrie indirecte.

Proposition

Soient \mathcal{E} un espace affine de dimension n, et $\phi \in Iso(\mathcal{E})$. Alors ϕ est le produit de $k(\leq n+1)$ réflexions :

$$\phi = \rho_1 \circ \cdots \circ \rho_k.$$

Si k est pair $\phi \in \mathsf{Iso}^+(\mathcal{E})$, et si k est impair $\phi \in \mathsf{Iso}^-(\mathcal{E})$.

Décomposition

Rappel: Une réflexion est une isométrie indirecte.

Proposition

Soient \mathcal{E} un espace affine de dimension n, et $\phi \in Iso(\mathcal{E})$.

Alors ϕ est le produit de $k(\leq n+1)$ réflexions :

$$\phi = \rho_1 \circ \cdots \circ \rho_k.$$

Si k est pair $\phi \in \mathsf{Iso}^+(\mathcal{E})$, et si k est impair $\phi \in \mathsf{Iso}^-(\mathcal{E})$.