

(11)Publication number:

11-097482

(43) Date of publication of application: 09.04.1999

(51)Int.CI.

H01L 21/60 C09J 7/00

CO9J 9/02

(21)Application number: 09-250459

(22)Date of filing:

16.09.1997

(71)Applicant: HITACHI CHEM CO LTD

(72)Inventor: YANAGAWA TOSHIYUKI

WATANABE ITSUO FUJINAWA MITSUGI GOTO YASUSHI

(54) ELECTRODE CONNECTING METHOD AND ELECTRODE CONNECTION **STRUCTURE**

(57)Abstract:

PROBLEM TO BE SOLVED: To reduce thermal influences, by a method wherein connection terminals of two circuit members are facing each other, and a film-like circuit connection material of which essential components are an optical curing resin, an optical start agent, a high polymer resin of a molecular weight of a specified value or more and conductive particles resides therebetween, and they are connected by heating, pressing and optical irradiation.

SOLUTION: At least one of a pair of circuit members has an optical transmission, and a first connection terminal and a second connection terminal thereof are disposed counter to each other, and a film-like circuit connection material of which essential components are a thermosetting resin, an optical start agent, a high polymer resin of a molecular weight 10,000 or more and conductive particles resides therebetween, and the first connection terminal and the second connection terminal disposed counter to each other by heating, pressing and light irradiation are electrically connected to each other. Since curing of the film-like circuit connection material is performed mainly by light curing, the temperature is in the range of 80 to 140° C. Accordingly, it is possible to enhance handling and unifomize a connection thickness, and to attain an excellent adhering face and favorable electric conductivity.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-97482

(43)公開日 平成11年(1999)4月9日

(51) Int.Cl. ⁶	識別記号	FΙ	
H01L 21	/60 3 1 1	H01L	21/60 3 1 1 S
C09J 7	/00	C 0 9 J	7/00
9,	/02		9/02

審査請求 未請求 請求項の数7 OL (全 8 頁)

(21) 出願番号	特願平9-250459	(71) 出願人 000004455
		日立化成工業株式会社
(22)出願日	平成9年(1997)9月16日	東京都新宿区西新宿2丁目1番1号
		(72) 発明者 柳川 俊之
		茨城県つくば市和台48 日立化成工業株式
•		会社筑波開発研究所内
		(72)発明者 渡辺 伊津夫
		茨城県つくば市和台48 日立化成工幾株式
		会社筑波陨兜研究所内
		(72)発明者
		茨城県つくば市和台48 日立化成工業株式
		会社筑波開発研究所内
		(74)代理人 弁理士 若林 邦彦
		最終頁に続く

(54) 【発明の名称】 電極の接腕方法および電極の接腕精造

(57)【要約】

【課題】 回路部材に対する熱的影響を軽減し、かつ接続後における接続部の信頼性に優れ、さらには簡便な取扱い性の品質に影響を与えない、フィルム状回路接続材料を用いた電極の接続方法を提供する。

【解決手段】 光硬化成分を含有するフィルム状回路接続材料を用いて、接続材料の溶融流動に必要な加熱を行い、これと光照射を併用する電極の接続方法。

【特許請求の範囲】

【請求項1】少なくとも一方が光透過性を有する2つの 回路部材、すなわち第一の接続端子を有する第一の回路 部材と、第二の接続端子を有する第二の回路部材とを、 第一の接続端子と第二の接続端子を対向して配置し、前 記対向配置した第一の接続端子と第二の接続端子の間 に、光硬化性樹脂、光開始剤、分子量が10,000以 上の高分子樹脂および導電性粒子を必須成分とするフィ ルム状回路接続材料を介在させ、一定時間の加熱加圧お よび一定時間の光照射を併用することによって、前記対 10 向配置した第一の接続端子と第二の接続端子を電気的に 接続させることを特徴とする電極の接続方法。

【請求項2】 加熱加圧を終了した後、光照射を継続し て行う請求項1記載の電極の接続方法。

【請求項3】 加熱加圧を終了した後、接続されるべき 2つの回路部材が加圧された状態で光照射を継続して行 う請求項1記載の電極の接続方法。

加熱加圧と光照射を同時に終了する請求 【請求項4】 項1記載の電極の接続方法。

【請求項5】 一定時間の加熱加圧開始後1~数秒の間 20 隔を設け、所定間隔経過後に一定時間の光照射を開始す る請求項1~4記載の電極の接続方法。

【請求項6】 フィルム状回路接続材料が異方導電接着 剤である請求項1~5記載の電極の接続方法。

【請求項7】 請求項1~6のいずれかに記載の電極の 接続方法によって得られ、第一の回路部材と第二の回路 部材が電気的に接続している電極の接続構造。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電極の接続方法お 30 よび電極の接続構造にかんする。

[0002]

【従来の技術】フィルム状回路接続材料は、金属粒子等 の導電性粒子を所定量含有した接着剤からなるもので、 このフィルム状回路接続材料を電子部品と電極や回路の 間に設け、加圧または加熱加圧を行うことによって、両 者の電極同士が電気的に接続されると共に、隣接電極間 の絶縁性を付与して、電子部品と回路とが接着固定され るものである。フィルム状回路接続材料に用いられる接 着剤としては、スチレン系やポリエステル系等の熱可塑 性物質や、エポキシ系やシリコーン系等の熱硬化性物質 が知られている。これらの物質を含む接着剤を硬化させ るには硬化剤が必要であり、さらにその硬化剤には、フ ィルム状回路接続材料の保存安定性を高めるために、常 温では不活性であり、活性温度以上でのみ反応するとい う潜在性が伴っていなければならない。このため接着剤 を硬化させるためには、樹脂成分の流動性の向上および 硬化反応の促進のための加熱加圧が必要となる。すなわ ち、接着剤を溶融、流動させ、導電性粒子を変形して回

めるために温度や圧力が必要となり、これらは接着剤の 種類や硬化成分による。この他にフィルム状以外の形態 を有する回路接続材料としては、光硬化性樹脂を用いた ペースト状材料が知られているが、これらの回路接続材 料は加圧もしくは加熱加圧によって回路部材を接続し、 その後光照射によって接着剤を硬化させることを特徴と している。

[0003]

【発明が解決しようとする課題】しかしながら、樹脂硬 化の際の加熱加圧に伴う回路部材に対する熱や圧力の影 響はその大小を問わず存在し、特に熱的な影響に関して は、回路部材自体への影響のみならず、回路部材接続時 の影響も大きい。すなわち前者の場合、例えば液晶パネ ル等の回路部材を接続する際、偏光板等液晶パネル自体 に対する影響が懸念され、これによって従来より低温で の接続、あるいは従来より短時間での接続が要求されて いる。また後者の場合、加熱加圧時の温度が高い条件で 接続を行うと、対向する2つの回路部材が異なっており それぞれの熱膨張係数 (α) の差が大きい場合には、回 路の位置ずれが発生する可能性が高い。これは隣接回路 間のピッチが狭くなるにつれてさらに発生確率が高くな る。本発明はこのような状況に鑑みなされたもので、光 照射を併用することによって従来より低温での接続が可 能で、回路部材に対する熱的影響を軽減し、かつ接続後 における接続部の信頼性に優れ、さらには従来より有す る簡便な取扱い性の品質に影響を与えない、フィルム状 回路接続材料を用いた電極の接続方法を提供するもので ある。

[0004]

【課題を解決するための手段】本発明は、光硬化成分を 含有するフィルム状回路接続材料を用いて、接続材料の 溶融流動に必要な加熱を行い、これと光照射を併用する 電極の接続方法に関する。

【0005】本発明の電極の接続方法は、少なくとも一 方が光透過性を有する2つの回路部材、すなわち第一の 接続端子を有する第一の回路部材と、第二の接続端子を 有する第二の回路部材とを、第一の接続端子と第二の接 続端子を対向して配置し、前記対向配置した第一の接続 端子と第二の接続端子の間に、光硬化性樹脂、光開始 剤、分子量が10,000以上の高分子樹脂および導電 性粒子を必須成分とするフィルム状回路接続材料を介在 させ、一定時間の加熱加圧および一定時間の光照射を併 用することによって、前記対向配置した第一の接続端子 と第二の接続端子を電気的に接続させることを特徴とす るものである。また、一定時間の加熱加圧開始後1~数 秒の間隔を設け、所定間隔経過後に一定時間の光昭射を 開始することを特徴とし、光照射を加熱加圧と同時に終 了するか、あるいは光照射を加熱加圧工程終了後も暫時 継続して行うことを特徴とするものである。本発明にお 路との接触面積を増大し、かつ回路部材との密着性を髙 50 いて、回路部材としては半導体チップ、抵抗体チップ、

3 コンデンサチップ等のチップ部品、プリント基板等の基板、液晶パネル等が用いられる。これらの回路部材には接続端子が通常は多数(場合によっては単数でも良い)設けられており、少なくとも一方が光透過性を有する前記回路部材の少なくとも1組を、それらの回路部材に設けられた接続端子の少なくとも1部を対向配置し、対向配置した接続端子間に接着剤を介在させ、加熱加圧および光照射して対向配置した接続端子同士を電気的に接続して接続体とする。この時、光透過性を有する回路部材の厚みは、1.2mm以下が光透過性の面で好ましい。【0006】また、光硬化性樹脂を含有する回路接続材料の形態をフィルム状とすることで、従来のペースト状回路接続材料に比べて取扱い性が優れている点や接続厚みの均一化が図れる点等で有利である。さらに、回路部材との密着性を高めるために、硬化反応がほとんど進行

せず樹脂が流動する程度の加熱を行う場合、接続材料の

加熱を行って接続端子-導電性粒子-接続端子間の導通

を確保した後、冷却工程を導入することによって接続材

料の溶融粘度を再上昇させることが可能であり、これによって加熱 - 冷却のみによる導電性粒子の圧接状態を維

持し樹脂の固定が図れる。これはペースト状の回路接続

材料では不可能である。

【0007】請求項1に示した方法では、第一の接続端 子と第二の接続端子とを対向配置し、その間に光硬化性 樹脂、光開始剤、分子量が10、000以上の高分子樹 脂および導電性粒子を必須成分とするフィルム状回路接 続材料を介在させ、加熱加圧および光照射によって前記 対向配置した第一の接続端子と第二の接続端子を電気的 に接続させる。フィルム状回路接続材料の硬化は主とし て光硬化によって行なわれるために、加熱加圧工程の役 30 割としては、接着剤を溶融、流動させ、接続端子と導電 性粒子が接触する部分周辺の樹脂成分を十分に排除し、 接続端子間に導電性粒子を充分に圧接させることであ る、と考えることができる。このため接着剤のTg以 上、もしくは導電性粒子の十分な変形に必要な接着剤の 流動が得られる温度まで加熱すればよく、その温度はフ ィルム形成材料である高分子樹脂の種類にもよるが、概 ね80~140℃の範囲内である。これは従来の熱硬化 性樹脂を硬化成分として用いているフィルム状回路接続 材料の接続に必要な加熱温度である150~190℃よ りも低い。したがって上記方法によって回路部材の接続 温度の低温化を図ることができる。

【0008】また光硬化性樹脂、分子量が10,000 以上の高分子樹脂および導電性粒子を必須成分とすることによって、光硬化が可能なフィルム状の回路接続材料を提供することが可能である。これは、分子量が10,000以上の高分子樹脂がほとんどが常温で固形であり、フィルム形成能力が高いことに起因している。この高分子樹脂と光硬化性樹脂を混合することによって、従来の、光硬化性樹脂を用いた回路接続材料の短所であっ50 た、取扱い性の向上や接続厚みの均一化等を図ることが 可能である。

【0009】さらには、加熱加圧と光照射を同時に行う 場合は、接着剤の流動によって導電性粒子の接触を十分 に行うために、溶融流動性と光照射能力との調整が必要 である。ととでいう光照射能力は、用いる光照射装置の 光源に依存しており、光量の少ない光源を使用している 光照射装置の場合には、接着剤の硬化速度が遅くなり、 その間に樹脂流動が十分に行なわれるため、加熱加圧と 光照射を全く同時に行うことができる。また光量の多い 10 光源を使用している光照射装置の場合には、樹脂流動を 優先させるために加熱加圧工程と光照射工程の間に1~ 数秒の間隔を設け、加熱加圧開始後に光照射を行うこと もできる。との場合光照射を遅延して行うため、樹脂が 流動し導電性粒子による接続端子の導通が確保された 後、光量を増加して短時間で急速に硬化させてもよい。 【0010】請求項2、請求項3、請求項4はいずれも 加熱加圧工程および光照射工程を併用する場合における 各工程の終了方法についてであるが、加熱加圧によって 接着剤樹脂が十分に溶融流動し、導電性粒子が回路部材 間で十分に圧接された状態で、なおかつ光照射によって 接着剤樹脂が十分に硬化しており、その後の接着力、初 期抵抗、接続信頼性等の諸特性に何ら影響を与えない場 合には、加熱加圧工程および光照射工程を同時に終了す ることができる(請求項4)。また回路部材のさらなる 低温接続化が必要な場合、加熱加圧時間自体の接続温度 の低温化と共に、加熱加圧時間の短縮化が要求され、場 合によっては低温化・短時間化の両方が同時に要求され ることもある。しかしこのように接続時間を短縮を図る 場合、加熱加圧工程と光照射工程を同時に終了させる と、光照射能力が同一の場合、接着剤樹脂を反応させる のに要する光エネルギーが少なくなることから接着剤の 反応率が低下し、上述したような諸特性の低下が懸念さ れる。これを解決するための手段が請求項2に記載した 方法であり、回路部材にかかる熱的影響を軽減するため に、加熱加圧時間は接着剤樹脂が溶融流動し、導電性粒 子が回路部材に対して十分に圧接するような条件で行 う。光照射はその間併用して用い、上記状態が保持され るような条件で行って接着剤樹脂の硬化を開始する。光 照射による接着剤樹脂の硬化が不十分であっても、上記 圧接状態が保持されているならば加熱加圧工程は終了さ せてよく、光照射のみを引き続き行い、接着剤樹脂を完 全に硬化させる。また請求項3の方法では、接続体は加 圧された状態で加熱のみを終了することから、接続体に これ以上の加熱が行なわれない状態を保持して、加熱加 圧工程が開始された位置に固定されることになる。した がって接続体の光照射の位置ずれの可能性を危惧すると となく、引き続き接着剤樹脂が完全に硬化するまで光照 射を継続して行うことができる。

【0011】請求項5は、一定時間の加熱加圧および一

定時間の光照射を行う際の順序に関してであるが、前述 した様に溶融流動性と光照射能力との調整を行い、加熱 加圧と光照射を同時に開始し同時に終了するのが、その 所要時間を考えると最も理想的であるが、より優れた接 続信頼性を確実に得るには、加熱加圧工程と光照射工程 との間に適当な間隔を設け、接着剤樹脂が十分に流動す るための時間を確保する方法が最適である。設ける間隔 は加熱加圧を開始し、接着剤樹脂の流動がほぼ完全に終 了するまでの時間とするのが理想的であり、1〜数秒と するのがより好ましい。ここで言う「数秒」とは接着剤 10 樹脂の溶融粘度により変動するが、2~5秒であること が好ましい。

[0012]

【発明の実施の形態】本発明に用いるフィルム状回路接 続材料としては光硬化性樹脂に、フィルム形成性を付与 するための固形高分子樹脂を混合した接着剤成分、そし て導電性粒子から成っており、接続材料をフィルム状と することで回路部材接続時の取扱い性の向上を図ること ができる。

【0013】本発明に用いる光硬化性樹脂としては、エ 20 ポキシアクリレートオリゴマー、ウレタンアクリレート オリゴマー、ポリエーテルアクリレートオリゴマー、ポ リエステルアクリレートオリゴマー等の光重合性オリゴ マー、トリメチロールプロパントリアクリレート、ポリ エチレングリコールジアクリレート、ポリアルキレング リコールジアクリレート、ベンタエリスリトールアクリ レート等の光重合性多官能アクリレートモノマー等とい ったアクリル酸エステル、およびこれらと類似したメタ クリル酸エステル等に代表される光重合型の樹脂があ り、必要に応じてこれらの樹脂を単独あるいは混合して 用いてもよいが、接着剤硬化物の硬化収縮を抑制し、柔 軟性を与えるためにはウレタンアクリレートオリゴマー を配合するのが好ましい。また上述した光重合性オリゴ マーは髙粘度であるために、粘度調整のために低粘度の 光重合性多官能アクリレートモノマー等のモノマーを配 合するのが好ましい。

【0014】これらの光硬化性樹脂は光開始剤を用いて 重合、硬化させる。本発明に用いる光開始剤としてはべ ンゾインエチルエーテル、イソプロピルベンゾインエー テル等のベンゾインエーテル、ベンジル、ヒドロキシシ クロヘキシルフェニルケトン等のベンジルケタール、ベ ンゾフェノン、アセトフェノン等のケトン類およびその 誘導体、チオキサントン類、ビイミダゾール類等があ り、これらの光開始剤に必要に応じてアミン類、イオウ 化合物、リン化合物等の増感剤を任意の比で添加しても よい。この際、用いる光源の波長や所望の硬化特性等に 応じて最適な光開始剤を選択する必要がある。また、こ れらの光硬化性樹脂とポリエチレン、酢酸エチル、ポリ プロピレン等の熱可塑性樹脂や、髙耐熱性を有するポリ エーテルスルホン、ポリエーテルイミド、ポリイミド等 50 に溶解して、固形分40%の溶液とした。光硬化性樹脂

の樹脂やエポキシ樹脂等の熱硬化性樹脂、あるいはフェ ノキシ樹脂やエラストマー等とを混合して用いることが できる。

【0015】また、被着体が無機物の場合にはシランカ ップリング剤を接着剤樹脂に混合して被着体との接着力 を高めることが可能である。シランカップリング剤とし てはピニルトリクロルシラン、ビニルトリエトキシシラ ン、ビニルートリスー (βメトキシエトキシ) シラン、 γ-メタクリロキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、アーアミノ プロピルトリエトキシシラン、β-(3, 4エポキシシ クロヘキシル) エチルトリメトキシシラン、イソイアン 酸プロピルトリエトキシシラン等があるが、光硬化性樹 脂との反応性を高めるにはケーメタクリロキシプロピル トリメトキシシランを用いるのがより好ましい。

【0016】硬化に用いる光は、一般的に広く使用され ている紫外線を用いることができ、水銀ランプ、メタル ハライドランプ、無電極ランプ等で発生させることがで きる。また、硬化反応としてラジカル反応を用いた場 合、酸素が反応禁止剤として作用するので、光照射の雰 囲気中の酸素量は光硬化性樹脂の硬化に影響を与える。 これは光硬化性樹脂、光開始剤、増感剤等の種類や濃度 にも大きく左右されるので、個々の配合系で詳細に検討 する必要がある。

【0017】導電性粒子としては、Au、Ag、Ni、 Cu、はんだ等の金属粒子やカーボン等があり、これら および非導電性のガラス、セラミック、プラスチック等 に前記した導通層を被覆等によって形成したものでもよ い。ブラスチックを核とした場合や熱溶融金属粒子の場 合、加熱加圧によって変形性を有するので接続時に電極 との接触面積が増加し信頼性が向上するので好ましい。 導電性粒子は、接着剤成分100容量部に対して、0. 1~30容量部の広範囲で用途によって使い分ける。過 剰な導電性粒子による隣接回路の短絡等を防止するため には、0.2~15容量部とするのがより好ましい。こ の時の導電性粒子の平均粒径は、その添加量にもよるが 1~15μmとするのがより好ましい。また導電性粒子 の圧縮弾性率は、加熱加圧および光照射を中断した時 に、接着剤の弾性による粒子の復元を抑制するために、 1000~10000MPaの範囲内とすることが好ま しい。

[0018]

【実施例】以下に、本発明を実施例に基づいて詳細に説 明するが、本発明はこれに限定されるものではない。

フェノキシ樹脂(ユニオンカーパイド株式会社製、商品 名PKHA) 40gを、重量比でトルエン (沸点11 0.6℃、SP値8.90)/酢酸エチル (沸点77. 1℃、SP値9. 10)=50/50の混合溶剤60g

40

は、エポキシアクリレートオリゴマー(新中村化学工業 株式会社製、商品名NKオリゴEA-1020)および アクリレートモノマー(新中村化学工業株式会社製、商 品名NKエステルA-TMM-3L)を、3/1の重量 比で用いた。光開始剤はベンゾフェノンを用い、これに 増感剤として4, 4'-ビスジエチルアミノベンゾフェ ノン(保土ケ谷化学工業株式会社製、商品名EAB) を、光開始剤/増感剤=5/1となるように混合して用 いた。ポリスチレンを核とする粒子の表面に、厚み0. 2μmのニッケル層を設け、このニッケル層の外側に、 厚み0.02μmの金層を設け、平均粒径5μm、比重 2. 5の導電性粒子を作製した。固形重量比でフェノキ シ樹脂50、光硬化性樹脂50、光開始剤5、増感剤1 となるように配合し、さらに導電性粒子を3体積%配合 分散させ、厚み80μmのフッ素樹脂フィルムに塗工装 置を用いて塗布し、70℃、10分の熱風乾燥によって 接着剤層の厚みが20μmのフィルム状回路接続材料を 得た。上記製法によって得たフィルム状回路接続材料を 用いて、ライン幅50μm、ピッチ100μm、厚み1 8μmの銅回路を500本有するフレキシブル回路板 (FPC)と、0.2μmの酸化インジウム(ITO) の薄層を形成したガラス(厚み1.1mm、表面抵抗2 ○ Ω / □)とを、紫外線照射併用型熱圧着装置(加熱方 式:コンスタントヒート型、東レエンジニアリング株式 会社製)を用いて図1に示すように130°C、2MPa で20秒間の加熱加圧および ITOガラス側からの紫外 線照射を同時に行って幅2mmにわたり接続し、時間経 過後圧力開放して、接続体を作製した。接着剤に照射さ れる紫外線量(以下紫外線照射量)は2.0 J/c m² とした。この時、あらかじめITOガラス上に、フィル 30 ム状回路接続材料の接着面を貼り付けた後、70℃、 0. 5MPaで5秒間加熱加圧して仮接続し、その後、 フッ素樹脂フィルムを剥離してもう一方の被着体である FPCと接続した。

【0019】実施例2

実施例1のフィルム状回路接続材料を用いて、ライン幅 50μm、ピッチ100μm、厚み18μmの銅回路を 500本有するフレキシブル回路板 (FPC) と、0. 2μmの酸化インジウム (ΙΤΟ) の薄層を形成したガ ラス (厚み 1. 1 m m 、表面抵抗 2 0 Ω / □) とを、紫 外線照射併用型熱圧着装置(加熱方式:コンスタントヒ ート型、東レエンジニアリング株式会社製)を用いて図 1に示すように130℃、2MPaで5秒間の加熱加圧 およびITOガラス側からの紫外線照射を同時に行って 幅2mmにわたり接続し、時間経過後圧力開放して、接 続体を作製した。との時、あらかじめITOガラス上 に、フィルム状回路接続材料の接着面を貼り付けた後、 70°C、0.5MPaで5秒間加熱加圧して仮接続し、 その後、フッ素樹脂フィルムを剥離してもう一方の被着 体であるFPCと接続した。また、図1における5秒間 50

の接続の際、加熱加圧のみを開始して2秒経過した後3 秒間の紫外線照射を開始した。そして加熱加圧開始5秒 後に加熱加圧工程を終了させ、接続体に引き続き15秒 の紫外線照射を行った。この時の総紫外線照射量、すな わち加熱加圧中に行なわれた照射量と継続して行なわれ た照射量の和は3.6J/cm'とした。

【0020】実施例3

実施例1のフィルム状回路接続材料を用いて、ライン幅 50μm、ピッチ100μm、厚み18μmの銅回路を 500本有するフレキシブル回路板 (FPC) と、O. 10 2μmの酸化インジウム(ITO)の薄層を形成したガ ラス(厚み1.1mm、表面抵抗20Q/□)とを、紫 外線照射併用型熱圧着装置(加熱方式:コンスタントヒ ート型、東レエンジニアリング株式会社製)を用いて図 1に示すように130℃、2MPaで5秒間の加熱加圧 およびITOガラス側からの紫外線照射を同時に行って 幅2mmにわたり接続し、時間経過後圧力開放して、接 続体を作製した。この時、あらかじめITOガラス上 に、フィルム状回路接続材料の接着面を貼り付けた後、 70℃、0.5MPaで5秒間加熱加圧して仮接続し、 その後、フッ素樹脂フィルムを剥離してもう一方の被着 体であるFPCと接続した。また、図1における5秒間 の接続の際、加熱加圧のみを開始して2秒経過した後3 秒間の紫外線照射を開始した。そして加熱加圧開始5秒 後に加熱工程のみをを終了させ、接続体に圧力が加わっ た状態で引き続き15秒の紫外線照射を行った。との時 の総紫外線照射量、すなわち加熱加圧中に行なわれた照 射量と継続して行なわれた照射量の和は3.6J/cm 'とした。

【0021】実施例4

実施例1のフィルム状回路接続材料を用いて、ライン幅 50μm、ピッチ100μm、厚み18μmの銅回路を 500本有するフレキシブル回路板(FPC)と、0. 2μmの酸化インジウム(ITO)の薄層を形成したガ ラス(厚み1.1mm、表面抵抗200/□)とを、紫 外線照射併用型熱圧着装置(加熱方式:コンスタントヒ ート型、東レエンジニアリング株式会社製)を用いて図 1に示すように 1 3 0 °C、2 M P a で 1 0 秒間の加熱加 圧およびITOガラス側からの紫外線照射を同時に行っ て幅2mmにわたり接続し、時間経過後圧力開放して、 接続体を作製した。紫外線照射量は1.6 J/c m'と した。この時、あらかじめITOガラス上に、フィルム 状回路接続材料の接着面を貼り付けた後、70℃、0. 5MPaで5秒間加熱加圧して仮接続し、その後、フッ 素樹脂フィルムを剥離してもう一方の被着体であるFP Cと接続した。また、図1における10秒間の接続の 際、加熱加圧のみを開始して2秒経過した後8秒間の紫 外線照射を開始し、加熱加圧10秒後に2工程が同時に 終了するようにした。

【0022】実施例5

実施例1~4で使用したフィルム状回路接続材料の導電性粒子を、平均粒径5μmのニッケル粒子(大同特殊網株式会社製、商品名DSP3101、比重8.5)に代えた他は、実施例2と同様にして接続体を作製した。【0023】実施例6

実施例 I ~ 4 で使用したフィルム状回路接続材料の光硬化性樹脂を、ウレタンアクリレートオリゴマー(新中村化学工業株式会社製、商品名NKオリゴUA - 5 1 2) およびアクリレートモノマー(A - T MM - 3 L) に代えた他は、実施例 2 と同様にして接続体を作製した。【0024】比較例 1

実施例1~4で使用したフィルム状回路接続材料を用い て、ライン幅50μm、ピッチ100μm、厚み18μ mの銅回路を500本有するフレキシブル回路板(FP C) と、0.2 μmの酸化インジウム (ITO) の薄層 を形成したガラス(厚み1.1mm、表面抵抗20Ω/ □)とを、コンスタントヒート型熱圧着装置(当社製) を用いて130℃、2MPaで20秒間加熱加圧して幅 2mmにわたり接続し、時間経過後圧力開放して、これ を接続終了とした。この時、あらかじめITOガラス上 20 に、フィルム状回路接続材料の接着面を貼り付けた後、 70°C、0.5MPaで5秒間加熱加圧して仮接続し、 その後、フッ素樹脂フィルムを剥離してもう一方の被着 体であるFPCと接続した。上記方法によって得た接続 体に、紫外線照射装置(コンベア移動式、ウシオ電機株 式会社製)を用いて、図2に示すようにITOガラス側 から紫外線を照射して接続体を作製した。この時の紫外 線照射量は2.0J/cm'とした。

【0025】比較例2

実施例1~4で使用したフィルム状回路接続材料を用い て、ライン幅50μm、ピッチ100μm、厚み18μ mの銅回路を500本有するフレキシブル回路板(FP C) と、0.2 μmの酸化インジウム (ITO) の薄層 を形成したガラス(厚み1.1mm、表面抵抗20Ω/ □)とを、紫外線照射併用型熱圧着装置(加熱方式:コ ンスタントヒート型、東レエンジニアリング株式会社 製)を用いて図1に示すように130℃、2MPaで1 0秒間の加熱加圧および I TOガラス側からの紫外線照 射を同時に行って幅2mmにわたり接続し、時間経過後 圧力開放して、接続体を作製した。紫外線照射量は5. OJ/cm²とした。この時、あらかじめITOガラス 上に、フィルム状回路接続材料の接着面を貼り付けた 後、70℃、0.5MPaで5秒間加熱加圧して仮接続 し、その後、フッ素樹脂フィルムを剥離してもう一方の 被着体であるFPCと接続した。

【0026】比較例3

実施例 1 ~ 4 で使用したフィルム状回路接続材料を用いて、ライン幅5 0 μ m、ピッチ 1 0 0 μ m、厚み 1 8 μ mの飼回路を5 0 0 本有するフレキシブル回路板(F P C)と、0.2 μ m の酸化インジウム(I T O)の薄層

を形成したガラス(厚み1.1mm、表面抵抗20Ω/□)とを、紫外線照射併用型熱圧着装置(加熱方式:コンスタントヒート型、東レエンジニアリング株式会社製)を用いて図1に示すように130℃、2MPaで5秒間の加熱加圧およびITOガラス側からの紫外線照射を同時に行って幅2mmにわたり接続し、時間経過後圧力開放して、接続体を作製した。紫外線照射量は0.6 J/cm²とした。この時、あらかじめITOガラス上に、フィルム状回路接続材料の接着面を貼り付けた後、70℃、0.5MPaで5秒間加熱加圧して仮接続し、その後、フッ素樹脂フィルムを剥離してもう一方の被着体であるFPCと接続した。また、図1における5秒間の接続の際、加熱加圧のみを開始して2秒経過した後3秒間の紫外線照射を開始した。そして加熱加圧開始5秒後に加熱工程のみをを終了するようにした。

【0027】比較例4

実施例1~6、比較例1~3で使用したフィルム状回路 接続材料の配合樹脂であるフェノキシ樹脂と、マイクロ カブセル型潜在性硬化剤を含有する液状エポキシ樹脂 を、固形重量比でフェノキシ樹脂50、液状エポキシ樹 脂50となるように配合し、さらに実施例1で用いた導 電性粒子を3体積%配合分散させ、厚み80μmのフッ 素樹脂フィルムに塗工装置を用いて塗布し、70℃、1 O分の熱風乾燥によって接着剤層の厚みが20μmのフ ィルム状回路接続材料を得た。上記製法によって得たフ ィルム状回路接続材料を用いて、ライン幅50 μm、ピ ッチ100μm、厚み18μmの銅回路を500本有す るフレキシブル回路板(FPC)と、0.2μmの酸化 インジウム(ITO)の薄層を形成したガラス(厚み 1. 1 m m 、表面抵抗20Ω/□) とを、コンスタント ヒート型熱圧着装置(当社製)を用いて130°C、2M Paで20秒間加熱加圧して幅2mmにわたり接続し、 時間経過後圧力開放して、これを接続終了とした。この 時、あらかじめITOガラス上に、フィルム状回路接続 材料の接着面を貼り付けた後、70℃、0.5MPaで 5秒間加熱加圧して仮接続し、その後、フッ素樹脂フィ ルムを剥離してもう一方の被着体であるFPCと接続し た。

【0028】比較例5

40 光硬化性樹脂は、エポキシアクリレートオリゴマー(新中村化学工業株式会社製、商品名NKオリゴEA-1020)およびアクリレートモノマー(新中村化学工業株式会社製、商品名NKエステルA-TMM-3L)を、3/1の重量比で用い、光開始剤にはベンゾフェノンを用い、これに増感剤として4、4'ービスジエチルアミノベンゾフェノン(保土ケ谷化学工業株式会社製、商品名EAB)を、光開始剤/増感剤=5/1となるように混合して用いた。また、ポリスチレンを核とする粒子の表面に、厚み0.2μmのニッケル層を設け、このニッケル層の外側に、厚み0.02μmの金層を設け、平均

粒径5μm、比重2.5の導電性粒子を作製した。これ らを用い、固形重量比で光硬化性樹脂100、光開始剤 5、増感剤1となるように配合し、さらに導電性粒子を 3体積%配合分散させ、ペースト状回路接続材料を得 た。上記製法によって得たペースト状回路接続材料を用 いて、ライン幅50μm、ピッチ100μm、厚み18 μmの銅回路を500本有するフレキシブル回路板(F PC)と、0.2μmの酸化インジウム(ITO)の薄 層を形成したガラス(厚み1.1mm、表面抵抗20Ω ∕□)とを、パルスヒート型熱圧着装置(日本アビオニ 10 クス株式会社製)を用いて130℃、2MPaで20秒 間加熱加圧して幅2mmにわたり接続し、時間経過後圧 力開放して、これを接続終了とした。この時、あらかじ め「TOガラス上に、ペースト状回路接続材料を適量塗 布し、もう一方の被着体であるFPCと接続した。上記 方法によって得た接続体に、紫外線照射装置(コンベア 移動式、ウシオ電機株式会社製)を用いて、図2に示す ようにITOガラス側から紫外線を照射して接続体を作 製した。この時の紫外線照射量は2.01/cm'とし た。

【0029】実施例1~6、比較例1~5で得た接続体について初期抵抗、接着性および回路の補修性について評価した。初期抵抗については、回路部材の接続後、上記接続部を含むFPCの隣接回路間の抵抗値を、マルチメータで測定した。測定電流は1mAとし、抵抗値は隣接回路間の抵抗150点の平均(x+3σ)で示した。FPCならびに1TOガラスに対する接着性については、接着力をJIS-Z0237に準じて90度剥離法で測定し、評価した。測定装置は東洋ボールドウィン株式会社製テンシロンUTM-4(剥離速度50mm/m 30in、25℃)を使用した。

【0030】これらの結果をすべての実施例、比較例に ついて図3の表1に示した。加熱加圧と紫外線照射を同 時に開始、終了している実施例1では、初期抵抗、接着 力のいずれも良好な値を示した。また実施例2の場合、 加熱加圧に要する時間は5秒と非常に短く、わずか3秒 の紫外線照射しか行っていないが、加熱加圧終了後に引 き続いて15秒の紫外線照射を行って接着剤樹脂の硬化 反応を促進しているために、実施例1と比較してさらに 回路部材に与える熱的影響を抑制することができ、なお 40 かつ良好な初期接続特性を得ることができている。加え て、樹脂の流動および導通の確保を優先するために光照 射開始を2秒遅らせたために、接続抵抗に関して実施例 1より良好な結果が得られた。実施例3は実施例2と類 似しているが、加圧状態が保持されているために、継続 して行う15秒の紫外線照射を、回路部材が固定された 状態で行うことが可能であるという点で、実施例2より

有利であると考えられる。実施例4は実施例2、実施例3より長い10秒の加熱加圧、8秒の紫外線照射を2秒の間隔を設けて行い、紫外線もも1.6J/cm²と実施例1に近い量が照射されているため、良好な接続特性を有する接続体が得られた。さらに導電性粒子、光硬化性樹脂を代えた実施例5、実施例6においても良好な接続状態である。

【0031】一方、冷却工程を設けていない接続方法で ある比較例1の場合、接着力に関しては紫外線照射によ って十分に接着剤が硬化しているために実施例1~4と ほぼ同等の値を示しているが、冷却工程がないために接 着剤が固定されないととから導電性粒子の変形が維持さ れず、回路部材との接触面積が小さくなるため、初期抵 抗は著しく高くなっている。また、実施例1に対して、 光照射量5.0 J/c m'の条件下で加熱加圧と紫外線 照射を同時に行った比較例2では、接着剤の硬化反応が 樹脂の流動よりも早く進行するため、導電性粒子が回路 部材に十分に接触しておらず、導通不良となった。比較 例3の場合は3秒の紫外線照射のみで接着剤樹脂の硬化 を行っており、その照射量も0.6 J/c m² しかなく 20 反応不足を招いているため、初期抵抗に関しては良好で あるが初期接着力は芳しくなかった。熱硬化性樹脂を主 成分とした接着剤を用いている比較例4では、130 ℃、2MPa、20秒の接続条件では接着剤の反応率が 低くなるため、十分な硬化が得られず、接着力がかなり 低くなり初期抵抗も高くなった。比較例5の場合には、 フィルム形成性を付与する高分子樹脂が含有されていな いために、取扱い性の点でフィルム状材料より不利であ った。

[0032]

【発明の効果】本発明によれば、接着剤に光硬化性樹脂をおよび導電性粒子を必須成分とするフィルム状回路接続材料を介在させ、加熱加圧と同時に、あるいは加熱加圧後に光照射によって回路部材を接続するため、接続に要する温度を従来より低くすることが可能で、優れた接着力や良好な電気的導通を得ることができる。

【図面の簡単な説明】

【図1】 本発明のフィルム状回路接続材料を用いた接続方法を説明する断面図である。

【図2】 本発明のフィルム状回路接続材料を用いた接続方法を説明する断面

【図3】 実施例、比較例について初期抵抗、接着力の値を示す表である。

【符号の説明】

1…ITOガラス、2…導電性粒子、3…FPC回路、 4…FPC基材、5…接着剤、6…光源、7…光、8… ベース、9…加熱加圧ヘッド、

【図3】

娶 1

6 1	初期抵抗(Ω)	接潜力(N/m)
実施例 1	2. 4	7 2 0
実施例2	1, 7	680
実施例3	1. 9	7 5 0
実施例4	2. 0	6 5 0
夹施例5	1. 6	6 2 0
実施例 6	1. 9	680
比較例1	5 9. 7	6 9 0
比較例2	5 2. 4	5 7 0
比較例3	1. 8	280
比較例4	8. 5	3 3 0
比較何5	17.5	490

フロントページの続き

(72)発明者 後藤 泰史

茨城県つくば市和台48 日立化成工業株式

会社筑波開発研究所内