EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

09098569

PUBLICATION DATE

08-04-97

APPLICATION DATE

03-10-95

APPLICATION NUMBER

07279631

APPLICANT:

SHINDENGEN ELECTRIC MFG CO

LTD;

INVENTOR:

HATAKEYAMA HARUHIKO;

INT.CL.

: H02M 3/28 H02M 3/335 H02M 7/21

TITLE

: SYNCHRONOUS RECTIFIER CIRCUIT

ABSTRACT :

PROBLEM TO BE SOLVED: To enhance the efficiency of power supply by reducing the loss due to change and discharge through the input capacitance of an N channel MOSFET for synchronous rectification.

SOLUTION: The tertiary winding 6 of a transformer is connected with a diode 8 and only a positive voltage is applied to the gate of an N channel MOSFET 7 for synchronous rectification. Charges stored in the input capacitance Ciss of N channel MOSFET 7 for synchronous rectification are drawn out by a P channel MOSFET 12 connected between the gate and source of N channel MOSFET 7 for synchronous rectification when the polarity of voltage on the tertiary winding 6 of a transformer is inverted. Consequently, the loss due to charge and discharge through the input capacitance Ciss of N channel MOSFET for synchronous rectification is minimized.

COPYRIGHT: (C)1997,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-98569

(43)公開日 平成9年(1997)4月8日

(51) Int.Cl. ⁸		識別記号	庁内整理番号	FI	0.100			技術表示箇所
H 0 2 M	3/28		8726 – 5H	H02M	3/28 3/335 7/21		F B	E1,F1 E1,F1
	3/335 7/21						A	
				審査請求	え 未請求	請求項の数 2	F	D (全 3 頁)
(21)出願番号		特願平7-279631	(71) 出願人		000002037 新電元工業株式会社			
(22)出願日		平成7年(1995)10月3日			東京都	千代田区大手町	2丁	目2番1号
				(72)発明者				
					埼玉県 (会社工)		13号	新電元工業株式
				(72)発明者				
					埼玉県	飯能市南町10番	13号	新電元工業株式
					会社工	場内		

(54) 【発明の名称】 同期整流回路

(57)【要約】

【目的】 トランスの3次巻線の電圧により、同期整流 用NチャネルMOSFETをオン、オフさせる同期整流 回路に於いて、同期整流用NチャネルMOSFETの入 力容量Cissの充放電による損失を少なくし、電源の効 率を高める。

【構成】 トランスの3次巻線にダイオードを接続し、同期整流用NチャネルMOSFETのゲートに正電圧のみ加える。同期整流用NチャネルMOSFETの入力容量Cissに蓄えられた電荷はトランスの3次巻線の電圧の極性が反転した時、同期整流用NチャネルMOSFETのゲートーソース間に接続されたPチャネルMOSFETによって引き抜かれる。これにより同期整流用NチャネルMOSFETの入力容量Cissの充放電による損失が最小に抑えられる。

【特許請求の範囲】

【請求項1】 スイッチング案子をオンオフさせ、変換 用トランスの1次巻線を介して交流電圧を取り出す回路 において、前記変換用トランスの2次巻線に第一のMO SFETを接続し、前記変換用トランスに設けた3次巻 線により前記2次巻線と同期した信号をダイオードを介 して前記MOSFETのゲート・ソース間に加えると共 に、前記MOSFETのゲート・ソース間に抵抗と第2 のMOSFETを直列に接続し、前記2次巻線と同期し た信号を前記第二のMOSFETのゲート・ソース間に 10 加えるようにしたことを特徴とする同期整流回路。

【請求項2】 前記第一のMOSFETにNチャネルM OSFETを用い、前記第2のMOSFETにPチャネ ルMOSFETを使用した請求項1の同期整流回路。

【発明の詳細な説明】

【発明の属する分野】本発明は、電圧変換装置に用いる 同期整流用MOSFETを最適制御するのに適した回路 に関するものである。

【従来の技術】とのような同期整流回路の一例として は、例えば特願平3-321524に於いて図2に示す 20 ような回路が提案されている。これは、整流素子として NチャネルMOSFETを用い、そのオン、オフをトラ ンスの3次巻線6で発生する電圧でおこなう事により、 ショットキバリアダイオード等の整流ダイオードで整流 回路を構成したものに比べて、導通損失が小さくなり、 電源全体の効率を髙めるようにしたものである。しか し、トランスの3次巻線の電圧は、図3(b)のように 正負に変化し、オン時とオフ時の電圧差が大きく同期整 流用NチャネルMOSFET7の入力容量Cissの充放 電による損失が大きく、効率はあまり改善されなかっ

【発明の目的】本発明は、トランスの3次巻線電圧をダ イオードで整流し、同期整流用NチャネルMOSFET のゲートに加わる電圧を正電圧のみにする事で、同期整 流用NチャネルMOSFETの入力容量Cissの充放電 による損失を減らし、電源の効率を高める事を目的とす る。

【実施例】図1は、本発明の一実施例を示す回路図であ る。図3(a)は主スイッチ用NチャネルMOSFET 3のゲート信号電圧波形である。始めに、主スイッチ用 40 NチャネルMOSFET3がオフすると、トランスの3 次巻線6の電圧は図3(b)のように正になる。トラン スの3次巻線6で発生した電圧により電流がダイオード 8と抵抗9を通り、同期整流用NチャネルMOSFET 7の入力容量C issを充電し、NチャネルMOSFET 7をオンする。この時、NチャネルMOSFET7のド レイン-ソース間電圧は図3(d)の様に、ほぼ0Vに

なりトランスに蓄えられたエネルギーは、NチャネルM OSFET7を通って負荷へ流れる。NチャネルMOS FET7を流れる電流は図3(e)のようになる。次 に、主スイッチ用NチャネルMOSFET3がオンする と、トランスの3次巻線6の電圧の極性が反転して図3 (b) のように負の電圧になる。この為ダイオード8は 逆バイアスされオフする。一方PチャネルMOSFET 12はオンし、NチャネルMOSFET7の入力容量C issに充電された電荷は抵抗10を通って 引き抜かれ、 NチャネルMOSFET7はオフする。NチャネルMO SFET7がオフすると直流電源1からのエネルギーは トランスに蓄えられ最初の状態へ戻る。前記の作用によ り、同期整流用NチャネルMOSFET7のゲート信号 電圧は図3(c)のように正電圧だけになる。この為、 NチャネルMOSFET7の入力容量Cissでの充放電 による損失が正電圧がかかった時のみに抑えられる。 【効果の説明】このように、同期整流用NチャネルMO SFETの入力容量Cissの充放電による損失が少ない ので、従来の方式の同期整流回路よりも電源の効率が高 い。従ってDC5Vなどの低電圧出力の電源に利用でき る、産業上利用可能性大なるものである。

【図面の簡単な説明】

【図1】本発明の同期整流回路

【図2】従来の同期整流回路

【図3】本発明回路の各部波形

【符号の説明】

1 直流電源

30

- 2 入力コンデンサ
- 3 主スイッチ用NチャネルMOSFET
- 4 トランスの1次巻線
- 5 トランスの2次巻線
- 6 トランスの3次巻線
- 7 同期整流用NチャネルMOSFET
- ダイオード 8
- 9,10,11 抵抗
- 12 PF+ネルMOSFET
- 13 出力コンデンサ
- 14 負荷
- (a)主スイッチ用NチャネルMOSFET3のゲート 信号電圧
 - (b)トランスの3次巻線6の電圧
 - (c)同期整流用NチャネルMOSFET7のゲート信 号電圧
 - (d) 同期整流用NチャネルMOSFET7のドレイン -ソース間電圧
 - (e) 同期整流用NチャネルMOSFET7のドレイン 電流

