J.N. AAKASH: 814421106001

Market Basket Analysis Phase 4

Introduction

Another exciting topic in marketing analytics is Market Basket Analysis. This is the topic of this publication. At the beginning of this post I will be introducing some key terms and metrics aimed at giving a sense of what "association" in a rule means and some ways to quantify the strength of this association. Then I will show how to generate these rules from the dataset 'Online Retail' using the Apriori Algorithm.

For this post the dataset Online Retail from the statistic platform "Kaggle" was used. You can download it from my "GitHub Repository".

What is Market Basket Analysis?

Market Basket Analysis is a analysis technique which identifies the strength of association between pairs of products purchased together and identify patterns of co-occurrence.

Market Basket Analysis creates If-Then scenario rules (association rules), for example, if item A is purchased then item B is likely to be purchased. The rules are probabilistic in nature or, in other words, they are derived from the frequencies of co-occurrence in the observations. Frequency is the proportion of baskets that contain the items of interest. The rules can be used in pricing strategies, product placement, and various types of cross-selling strategies.

How association rules work

Association rule mining, at a basic level, involves the use of machine learning models to analyze data for patterns, or co-occurrences, in a database. It identifies frequent if-then associations, which themselves are the association rules.

An association rule has two parts: an antecedent (if) and a consequent (then). An antecedent is an item found within the data. A consequent is an item found in combination with the antecedent.

Association rules are created by searching data for frequent if-then patterns and using the criteria support and confidence to identify the most important relationships. Support is an indication of how frequently the items appear in the data. Confidence indicates the number of times the if-then statements are found true. A third metric, called lift, can be used to compare confidence with expected confidence, or how many times an if-then statement is expected to be found true.

Association rules are calculated from itemsets, which are made up of two or more items. If rules are built from analyzing all the possible itemsets, there could be so many rules that the rules hold little meaning. With that, association rules are typically created from rules well-represented in data.

Dive into code - Import Libraries / Data

```
import gc
import os
import time
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import datetime as dt
import mlxtend.preprocessing
import mlxtend.frequent_patterns
df = pd.read_excel("./data/Retail.xlsx", sheet_name="Online Retail")
df
```

	Invoice No	StockCo de	Description	Quanti ty	InvoiceDa te	UnitPri ce	CustomerI D	Countr
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	2010-12- 01 08:26:00	2.55	17850.0	United Kingdo m
1	536365	71053	WHITE METAL LANTERN	6	2010-12- 01 08:26:00	3.39 17850.0		United Kingdo m
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	2010-12- 01 08:26:00	2.75	17850.0	United Kingdo m
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	2010-12- 01 08:26:00	3.39	17850.0	United Kingdo m
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	2010-12- 01 08:26:00	3.39	17850.0	United Kingdo m
•••	•••	•••		•••	•••	•••	•••	
54190 4	581587	22613	PACK OF 20 SPACEBO Y NAPKINS	12	2011-12- 09 12:50:00	0.85	12680.0	France

	Invoice No	StockCo de	Description	Quanti ty	InvoiceDa te	UnitPri ce	CustomerI D	Countr
54190 5	581587	22899	CHILDRE N'S APRON DOLLY GIRL	6	2011-12- 09 12:50:00	2.10	12680.0	France
54190 6	581587	23254	CHILDRE NS CUTLERY DOLLY GIRL	4	2011-12- 09 12:50:00	4.15	12680.0	France
54190 7	581587	23255	CHILDRE NS CUTLERY CIRCUS PARADE	4	2011-12- 09 12:50:00	4.15	12680.0	France
54190 8	581587	22138	BAKING SET 9 PIECE RETROSP OT	3	2011-12- 09 12:50:00	4.95	12680.0	France

$541909 \text{ rows} \times 8 \text{ columns}$

df.shape
 (541909, 8)
 df.describe()

	Quantity	UnitPrice	CustomerID
count	541909.000000	541909.000000	406829.000000
mean	9.552250	4.611114	15287.690570
std	218.081158	96.759853	1713.600303
min	-80995.000000	-11062.060000	12346.000000
25%	1.000000	1.250000	13953.000000
50%	3.000000	2.080000	15152.000000
75%	10.000000	4.130000	16791.000000
max	80995.000000	38970.000000	18287.000000

Preprocess the dataset

```
Create an indicator column stipulating whether the invoice number begins with 'C'
'''

df['Is_C_Present'] = (
```

```
df['InvoiceNo']
```

- .astype(str)
 .apply(lambda x: 1 if x.find('C') != -1 else 0))

df									
		StockC	_	_					
	No	ode	on	ity	ate	ice	rID	ry	sent
0	536365	85123A	WHITE HANGIN G HEART T-LIGHT HOLDER	6	2010-12- 01 08:26:00	2.55	17850.0	United Kingd om	0
1	536365	71053	WHITE METAL LANTER N	6	2010-12- 01 08:26:00	3.39	17850.0	United Kingd om	0
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	2010-12- 01 08:26:00	2.75	17850.0	United Kingd om	0
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	2010-12- 01 08:26:00	3.39	17850.0	United Kingd om	0
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	2010-12- 01 08:26:00	3.39	17850.0	United Kingd om	0
•••						•••	•••		•••
5419 04	581587	22613	PACK OF 20 SPACEB OY NAPKINS	12	2011-12- 09 12:50:00	0.85	12680.0	France	0
5419 05	581587	22899	CHILDRE N'S APRON DOLLY GIRL	6	2011-12- 09 12:50:00	2.10	12680.0	France	0
5419 06	581587	23254	CHILDRE NS CUTLER Y DOLLY	4	2011-12- 09 12:50:00	4.15	12680.0	France	0

	Invoice No	StockC ode	Descripti on	Quant ity	InvoiceD ate	UnitPr ice	Custome rID	Count ry	Is_C_Pre sent
			GIRL						
5419 07	581587	23255	CHILDRE NS CUTLER Y CIRCUS PARADE	4	2011-12- 09 12:50:00	4.15	12680.0	France	0
5419 08	581587	22138	BAKING SET 9 PIECE RETROS POT	3	2011-12- 09 12:50:00	4.95	12680.0	France	0

$541909 \text{ rows} \times 9 \text{ columns}$

InvoiceNo

```
df.Is C Present.value counts
<bound method IndexOpsMixin.value counts of 0</pre>
1
          0
2
          0
3
          0
          0
541904
         0
541905
541906
541907
          0
541908
Name: Is C Present, Length: 541909, dtype: int64>
Filter out all transactions having either zero or a negative number of
items.
Remove all invoice numbers starting with 'C' (using columns
'Is C Present').
Subset the dataframe down to 'InvoiceNo' and 'Descritpion'.
Drop all rows with at least one missing value.
df clean = (
    df
    # filter out non-positive quantity values
    .loc[df["Quantity"] > 0]
    # remove InvoiceNos starting with C
    .loc[df['Is C Present'] != 1]
    # column filtering
    .loc[:, ["InvoiceNo", "Description"]]
    # dropping all rows with at least one missing value
    .dropna()
)
df clean
```

Description

	InvoiceNo	Description
0	536365	WHITE HANGING HEART T-LIGHT HOLDER
1	536365	WHITE METAL LANTERN
2	536365	CREAM CUPID HEARTS COAT HANGER
3	536365	KNITTED UNION FLAG HOT WATER BOTTLE
4	536365	RED WOOLLY HOTTIE WHITE HEART.
•••	•••	
541904	581587	PACK OF 20 SPACEBOY NAPKINS
541905	581587	CHILDREN'S APRON DOLLY GIRL
541906	581587	CHILDRENS CUTLERY DOLLY GIRL
541907	581587	CHILDRENS CUTLERY CIRCUS PARADE
541908	581587	BAKING SET 9 PIECE RETROSPOT

$530693 \text{ rows} \times 2 \text{ columns}$

```
Transform the data into a list of lists called invoice item list
invoice item list = []
for num in list(set(df clean.InvoiceNo.tolist())):
    # filter data set down to one invoice number
    tmp df = df clean.loc[df clean['InvoiceNo'] == num]
    # extract item descriptions and convert to list
    tmp items = tmp df.Description.tolist()
    # append list invoice item list
    invoice item list.append(tmp items)
print(invoice item list[1:3])
[['HAND WARMER UNION JACK', 'HAND WARMER RED POLKA DOT'], ['ASSORTED COLOUR
BIRD ORNAMENT', "POPPY'S PLAYHOUSE BEDROOM ", "POPPY'S PLAYHOUSE KITCHEN",
'FELTCRAFT PRINCESS CHARLOTTE DOLL', 'IVORY KNITTED MUG COSY ', 'BOX OF 6
ASSORTED COLOUR TEASPOONS', 'BOX OF VINTAGE JIGSAW BLOCKS ', 'BOX OF
VINTAGE ALPHABET BLOCKS', 'HOME BUILDING BLOCK WORD', 'LOVE BUILDING BLOCK
WORD', 'RECIPE BOX WITH METAL HEART', 'DOORMAT NEW ENGLAND']]
```

To be able to run any models the data, currently in the list of lists form, needs to be encoded and recast as a dataframe.

Outputted from the encoder is a multidimensional array, where each row is the length of the total number of unique items in the transaction dataset and the elements are Boolean variables, indicating whether that particular item is linked to the invoice number that row presents.

With the data encoded, we can recast it as a dataframe where the rows are the invoice numbers and the columns are the unique items in the transaction dataset.

```
# Initialize and fit the transaction encoder
```

```
online_encoder = mlxtend.preprocessing.TransactionEncoder()
online_encoder_array = online_encoder.fit_transform(invoice_item_list)

# Recast the encoded array as a dataframe
online_encoder_df = pd.DataFrame(online_encoder_array,
columns=online_encoder.columns_)

# Print the results
online encoder df
```

Association Rules

The Apriori algorithm is one of the most common techniques in Market Basket Analysis to find the association between events

It is used to analyze the frequent itemsets in a transactional database, which then is used to generate association rules between the products.

```
Run the Apriori Algorithm with min_support = 0.01 (by default 0.5)

apriori_model = mlxtend.frequent_patterns.apriori(online_encoder_df,
min_support=0.01)
apriori model
```

apriori_moder									
	support	itemsets							
0	0.013359	(8)							
1	0.015793	(14)							
2	0.012465	(20)							
3	0.017630	(21)							
4	0.017978	(22)							
•••	•••								
1849	0.011025	(1840, 1827, 1837, 1838)							
1850	0.011174	(2010, 2015, 2014, 2007)							
1851	0.010280	(2010, 2015, 2020, 2007)							
1852	0.010181	(2015, 2020, 2014, 2007)							
1853	0.010131	(3937, 706, 707, 2823, 3509)							

$1854 \text{ rows} \times 2 \text{ columns}$

```
Run the same model again, but this time with use_colnames=True.
This will replace the numerical designations with the actual item names.

apriori_model_colnames = mlxtend.frequent_patterns.apriori(
    online_encoder_df,
    min_support=0.01,
    use_colnames=True
)
```

apriori_model_colnames

	support	Itemsets
0	0.013359	(SET 2 TEA TOWELS I LOVE LONDON)
1	0.015793	(10 COLOUR SPACEBOY PEN)
2	0.012465	(12 MESSAGE CARDS WITH ENVELOPES)
3	0.017630	(12 PENCIL SMALL TUBE WOODLAND)
4	0.017978	(12 PENCILS SMALL TUBE RED RETROSPOT)
•••	•••	
1849	0.011025	(JUMBO BAG RED RETROSPOT, JUMBO SHOPPER VINTAG
1850	0.011174	(LUNCH BAG RED RETROSPOT, LUNCH BAG BLACK SKU
1851	0.010280	(LUNCH BAG RED RETROSPOT, LUNCH BAG BLACK SKU
1852	0.010181	(LUNCH BAG RED RETROSPOT, LUNCH BAG PINK POLKA
1853	0.010131	(CHARLOTTE BAG PINK POLKADOT, STRAWBERRY CHARL

$1854 \text{ rows} \times 2 \text{ columns}$

apriori model colnames

	support	Itemsets	length
0	0.013359	(SET 2 TEA TOWELS I LOVE LONDON)	1
1	0.015793	(10 COLOUR SPACEBOY PEN)	1
2	0.012465	(12 MESSAGE CARDS WITH ENVELOPES)	1
3	0.017630	(12 PENCIL SMALL TUBE WOODLAND)	1
4	0.017978	(12 PENCILS SMALL TUBE RED RETROSPOT)	1
•••			
1849	0.011025	(JUMBO BAG RED RETROSPOT, JUMBO SHOPPER VINTAG	4
1850	0.011174	(LUNCH BAG RED RETROSPOT, LUNCH BAG BLACK SKU	4
1851	0.010280	(LUNCH BAG RED RETROSPOT, LUNCH BAG BLACK SKU	4
1852	0.010181	(LUNCH BAG RED RETROSPOT, LUNCH BAG PINK POLKA	4
1853	0.010131	(CHARLOTTE BAG PINK POLKADOT, STRAWBERRY CHARL	5

Examine one case

The output gives us the support value for '12 PENCIL SMALL TUBE WOODLAND'. The support value says that this specific item appears in 1,76% of the transactions.

```
apriori_model_colnames[
    (apriori_model_colnames['length'] == 2) &
        (apriori_model_colnames['support'] >= 0.02) &
        (apriori_model_colnames['support'] < 0.021)</pre>
```

	support	Itemsets	length
836	0.020759	(ALARM CLOCK BAKELIKE PINK, ALARM CLOCK BAKELI	2
887	0.020362	(CHARLOTTE BAG SUKI DESIGN, CHARLOTTE BAG PINK	2
923	0.020610	(STRAWBERRY CHARLOTTE BAG, CHARLOTTE BAG SUKI	2
1105	0.020560	(JUMBO BAG BAROQUE BLACK WHITE, JUMBO BAG PIN	2
1114	0.020908	(JUMBO SHOPPER VINTAGE RED PAISLEY, JUMBO BAG	2
1116	0.020957	(JUMBO BAG BAROQUE BLACK WHITE, JUMBO STORAGE	2
1129	0.020560	(JUMBO BAG RED RETROSPOT, JUMBO BAG ALPHABET)	2
1137	0.020163	(JUMBO BAG APPLES, JUMBO BAG PEARS)	2
1203	0.020709	(JUMBO SHOPPER VINTAGE RED PAISLEY, JUMBO BAG	2
1218	0.020560	(JUMBO BAG RED RETROSPOT, JUMBO STORAGE BAG SK	2
1236	0.020610	(JUMBO BAG RED RETROSPOT, RECYCLING BAG RETROS	2
1328	0.020610	(LUNCH BAG APPLE DESIGN, LUNCH BAG BLACK SKULL.)	2
1390	0.020610	(LUNCH BAG PINK POLKADOT, LUNCH BAG SUKI DESIGN)	2
1458	0.020610	(WHITE HANGING HEART T-LIGHT HOLDER, NATURAL S	2
1581	0.020362	(SET OF 6 SPICE TINS PANTRY DESIGN, SET OF 3 C	2
1607	0.020163	(STRAWBERRY CHARLOTTE BAG, WOODLAND CHARLOTTE	2
1615	0.020262	(WHITE HANGING HEART T-LIGHT HOLDER, WOODEN PI	2

This dataframe contains all the item sets (pairs of items bought together) whose support value is in the range between 2% and 2.1% of transactions.

When you are filtering on support, it is important to specify a range instead of a sprecific value since it is quite possible to pick a value for which there are no item sets.

```
apriori_model_colnames.hist("support", grid=False, bins=30)
plt.title("Support")
Text(0.5, 1.0, 'Support')
```

Deriving Association Rules

```
Generate derive association rules for the online retail dataset.

Here we use confidence as the measure of interestingness.

Set the minimum threshold to 0.6.

Return all metrics, not just support.

'''

rules = mlxtend.frequent_patterns.association_rules(
    apriori_model_colnames,
    metric="confidence",
    min_threshold=0.6,
    support_only=False
)
```

rules

	antecedents	consequents	ent	consequ ent support	suppo rt	confide nce	Lift	levera ge	convict ion
0	(ALARM CLOCK BAKELIKE CHOCOLA TE)	(ALARM CLOCK BAKELIKE GREEN)	0.02125	0.04866 9	0.0137 56	0.64719 6	13.297 902	0.0127 22	2.69648 8
1	(ALARM CLOCK BAKELIKE CHOCOLA TE)	(ALARM CLOCK BAKELIKE RED)	0.02125 5	0.05219	0.0145 01	0.68224	13.071 023	0.0133 92	2.98279 8
2	(ALARM CLOCK BAKELIKE ORANGE)	(ALARM CLOCK BAKELIKE GREEN)	0.02210	0.04866 9	0.0135 58	0.61348	12.605 201	0.0124 82	2.46129
3	(ALARM CLOCK BAKELIKE GREEN)	(ALARM CLOCK BAKELIKE RED)	0.04866 9	0.05219 5	0.0317 84	0.65306 1	12.511 932	0.0292 44	2.73190 8
4	(ALARM CLOCK BAKELIKE RED)	(ALARM CLOCK BAKELIKE GREEN)	0.05219 5	0.04866 9	0.0317 84	0.60894 4	12.511 932	0.0292 44	2.43272
49	 (CHARLOT	(STRAWBE	0.01633	0.02016	0.0101	0.62006	30.752	0.0098	2.57893

	antecedents	consequents	anteced ent support	consequ ent support	suppo rt	confide nce	Lift	levera ge	convict ion
3	TE BAG SUKI DESIGN, RED RETROSPO T CHAR	RRY CHARLOTT E BAG, WOODLAN D CHARLOTT E	9	3	31	1	572	02	1
49	(STRAWBE RRY CHARLOTT E BAG, CHARLOTT E BAG SUKI	CHARLOTT	0.01504 8	0.02592 4	0.0101	0.67326 7	25.971 094	0.0097 41	2.98126 4
49 5	RRY CHARLOTT E BAG, RED RETROSPO	TE BAG SUKI DESIGN, CHARLOTT	0.01624	0.02036 2	0.0101	0.62385	30.638 801	0.0098	2.60440 5
49 6	RRY CHARLOTT E BAG,	(WOODLA ND CHARLOTT E BAG, CHARLOTT E BAG PINK PO	0.01658 7	0.01961 7	0.0101	0.61077 8	31.135 784	0.0098 06	2.51883
49	(CHARLOT TE BAG SUKI DESIGN, RED RETROSPO T CHAR	(STRAWBE RRY CHARLOTT E BAG, CHARLOTT E BAG PINK	0.01668 7	0.01882	0.0101	0.60714	32.257 067	0.0098 17	2.49754 4

$498 \text{ rows} \times 9 \text{ columns}$

```
print("Number of Associations: {}".format(rules.shape[0]))
Number of Associations: 498
rules.plot.scatter("support", "confidence", alpha=0.5, marker="*")
plt.xlabel("Support")
plt.ylabel("Confidence")
plt.title("Association Rules")
plt.show()
```

Initial Finding

There are not any association rules with both extremly high confidence and extremely high support.

This make sense. If an item set has high support, the items are likely to appear with many other items, making the chances of high confidence very low.

Conclusion

With this kind of analysis from the field of mareting you can now determine which products are most often bought in combination with each other. With this knowledge it is possible to arrange the products efficiently in the store. In the best case, products that are often bought together are positioned in the opposite direction in the store so that customers are forced to walk past as many other products as possible.

Furthermore, one can now consider targeted discount campaigns. If you discount a product that is often bought in combination with others, you increase the chance of buying these products in combination, whereby a small discount is granted on only one.