Prova di Comunicazioni Numeriche

20 Febbraio 2018

Es. 1 - Sia dato un processo stazionario W(t) bianco in banda B, cioè con densità spettrale di potenza pari a $S_W(f) = \frac{N_0}{2} rect \left(\frac{f}{2B}\right)$. Il processo W(t) costituisce l'ingresso di un sistema LTI con risposta impulsiva $h(t) = \delta(t) + \delta(t - T)$. 1) Si calcolino modulo e fase della risposta in frequenza del sistema LTI. 2) Si calcoli la potenza del processo all'uscita con $B = \frac{1}{2T}$.

Es. 2 - In un sistema di comunicazione numerico in banda passante il segnale trasmesso è $s(t) = \sum_k x [k] p(t-kT) \cos(2\pi f_0 t + \varphi)$, con $f_0 \gg \frac{1}{T}$, dove i simboli x[k] appartengono all'alfabeto $A = \{-2, +3\}$ e hanno probabilita' a priori $P(-2) = \frac{3}{4}$ e $P(3) = \frac{1}{4}$, e $P(f) = \begin{cases} \sqrt{1 - |fT|} & |fT| \leq 1 \\ 0 & altrove \end{cases}$. La risposta impulsiva del canale è $c(t) = \delta(t)$. Il canale introduce anche rumore w(t) Gaussiano additivo bianco in banda la cui densità spettrale di potenza è $S_W(f) = \frac{N_0}{2} \left[\text{rect} \left(\frac{f-f_0}{2/T} \right) + \text{rect} \left(\frac{f+f_0}{2/T} \right) \right]$. Il segnale ricevuto r(t) è in ingresso al ricevitore in Figura 1. La risposta impulsiva del filtro in ricezione è $H_R(f) = P(f)$. Il segnale in uscita al filtro in ricezione è campionato con passo di campionamento T e i campioni costituiscono l'ingresso del decisore che ha soglia di decisione pari a $\lambda = 0$. A questo punto si calcolino

1) l'energia media per simbolo trasmesso, 2) il valore di θ per cui si ha assenza di cross-talk, 3) la potenza di rumore in uscita al filtro in ricezione P_{nu} , 4) la probabilità di errore sul bit, $P_E(b)$.

Fig. 1