Name: _____ Group: _____

Future Technologies Industry Cluster College of VE, RMIT University AD026 Electrical Principles EEET 2276

Tutorial # 2a

Tutorial # 2a			
Topics included in this tutorial are covered in the lectures of			
weeks 1 & 2 as shown below: 1. Electrical fundamental quantities			
	3. Ohm's Law		
	4. Series circuits		
	5. Parrallel circuits6. Series – Parallel circuits		
	o. Series – Paranei circuits		
1.	The energy expended in moving a charge of 30		
	coulomb through a potential difference of 0.6	a	
	volts is:		
	(a) 0.50 joules	b	
	(b) 10 joules		
	(c) 18 joules	c	
	(d) 12 joules	d	
		u	
2.	If 0.18 coulomb of charge passes by a point	a	
	every 7.5 ms then the current in amperes is	L	
	equal to:	b	
	(a) 24 Amps		
	(b) 15 Amps	c	
	(c) 1 Amps		
	(d) 0 Amps	d	
3.	Cutting the area of a conductor in half	a	
		<u> </u>	
	(a) cuts the resistance in half	b	
	(b) doubles the resistance		

(c) increases resistance 4 times

(d) decreases resistance 4 times

4.	A 560 Ω with \pm 5% tolerance resistor has the	a
	following colour code:	
	(a) green, blue, red, red	b
	(b) green, blue, black, brown	С
	(c) green, blue, brown, silver(d) green, blue, brown, gold	С
	(a) green, orde, brown, gold	d
5.	A 20 k Ω resistor has a conductance of:	a
	() 7 10-3	
	(a) 7×10^{-3} (b) 6×10^{6}	b
	(c) 5×10^{-5}	c
	(d) 4×10^5	C
		d
6.	Four 220 Ω , ±5% resistors are measured with	a
	an ohmmeter. One of the measured resistor	
	values is not within the $\pm 5\%$ tolerance. Which one of the following readings is out of bounds?	b
		c
	(a) 207Ω (b) 210Ω	С
	(c) 218Ω	d
	(d) 228Ω	
7.	A resistor has colour bands brown, black,	a
	silver and gold. The value of this resistor equals to:	
	equals to:	b
	(a) $0.1 \Omega \pm 10\%$ (b) $1 \Omega \pm 20\%$	c
	(c) $100 \Omega \pm 1\%$	
	(d) $0.1 \Omega \pm 5\%$	d
8.	A clock has an internal resistance of 8.2k Ω .	a
	The current through the clock if it is powered by a 220V outlet equals to:	
	by a 220 voulet equals to.	b
	(a) 1 mAmp	С
	(b) 26.83 mAmp (c) 50 Amp	
	(d) 2 Amp	d

9.	A system with an input power of 70 watts and
	an output power of 25 watts has an efficiency
	in percent of

a

(a) 1%

b

(b) 35.7%

С

(c) 2.8% (d) 50%

d

10. How many joules of energy will a 15 watts lamp dissipates in one hr?

(a) 54000 joules

b

(b) 540 joules

(c) 5400 joules(d) 54 joules

1

11. If a voltage in a circuit changes from 4 V to 8 V and the current in the same circuit changes from 3 mA to 5 mA, the resistance of the circuit is:

(a) 5Ω

h

(b) $1 \text{ k}\Omega$

c

(c) 10Ω (d) $2 k\Omega$ d

12. For the circuit shown in Fig 1, the equivalent resistor for this circuit is:

- (a) $3 k\Omega$
- (a) 3 K
- (c) $4.4 \text{ k}\Omega$
- (d) 2Ω

Fig 1

13. For the same circuit shown in Fig 1, the total current flowing from the battery equals to:

a

(a) 5.1 mAmp

(b) 2.27 mAmp

С

(c) 10 mAmp (d) 2.5 mAmp

Д

Page 4 of 8

RMIT Classification: Trusted

14. For the same circuit shown in Fig 1, the total power dissipated in the circuit equals to

(a) 11.5 mW

(b) 22.7 mW

(c) 2.1 mW (d) 0 mW

For the circuit shown in Fig 2, the power 15. dissipated by R5 is equal to:

(a) 4 mW

 R_1 lkΩ

lkΩ

10V

(b) 5 mW

(c) 10 mW

(d) 11 mW

lkΩ Fig 2

16. For the circuit shown in Fig 2, if R₃ is shortcircuited, how much power is dissipated in the circuit?

(a) 0.15 W

(b) 1 W

(c) 0.025 W

(d) 10 W

For the circuit shown in Fig 3, state which of 17. the following KVL equations is correct:

4.7 kΩ

(a) $+10 + V_1 + V_2 - 15 + V_3 = 0$

(b) $+10 - V_1 - V_2 - 15 - V_3 = 0$

(c) $-10 - V_1 - V_2 + 15 - V_3 = 0$ (d) $+10 - V_1 - V_2 + 15 - V_3 = 0$

Fig 3

If the voltage drop across a resistor increases by a factor of 2 (double), the power dissipated by the resistor

(a) increases by a factor of 4

(b) increases by a factor of 200.

(c) increases by a factor of 10

(d) decreases.

19. For resistors in a series circuit, state which of the following statements is correct.

Electrical Principles

a

(a) Each resistor dissipates the same power, regardless of its resistance value.

b

(b) Large-value resistors dissipate more power than small-value resistors,

(c) Small-value resistors dissipate more power than large-value resistors

d

- (d) The smallest resistor drops the largest voltage
- 20. Kirchhoff's current law states that:

a

(a) the sum of the currents around a closed loop is zero

b

(b) the sum of the currents entering a junction must equal the sum of the currents leaving the junction

c

(c) the sum of the currents entering a junction must equal zero

d

- (d) the total current entering a given junction is constant, even with changes in supply voltage.

Fig 4

21. As shown in Fig 4, a 6.8 k Ω resistor and a 2.2 k Ω resistor are connected in parallel across a 10 V battery. The total resistance of the circuit is:

- (a) $2.7 \text{ k}\Omega$
- (b) $1.662 \text{ k}\Omega$
- (c) $9 k\Omega$
- (d) $1 k\Omega$
- 22. For the circuit shown in Fig 4,the current flowing in the circuit is equal to:

a

(a) 3 mA

h

(b) 1 mA (c) 4 mA

С

(d) 6 mA

d

Page 6 of 8

- 23. For the circuit shown in Fig 5, the total resistance R_T equals to:
 - (a) $5.1 \text{ k}\Omega$
 - (b) $12.5 \text{ k}\Omega$
 - (c) $1.23 \text{ k}\Omega$
 - (d) $4.5 \text{ k}\Omega$

- 24. For the circuit shown in Fig 5, if the total current $I_T = 10 \text{mA}$ then I_2 equals to:
 - (a) 1.5 mA
 - (b) 1.8 mA
 - (c) 1.0 mA
 - (d) 10 mA

For the circuit shown in Fig 6: 25.

Complete Table 1 (show all calculation) **Table 1**

Table 1	
V _{AB} =	$V_{AD} =$
	$V_{DB} =$
	$V_{CB} =$

26. For the circuit shown in Fig 7:

a.	Calculate the equivalent resistance of the circuit. (Show all work).

b	Calculate the total current in the circuit.

Electrical Principles Tut 02a.DOC

For the circuit shown in Fig 8: 27.

a.	Fig 8 Calculate currents I ₁ , I ₂ , I ₃ and voltages V ₁ & V ₂
	, , ,