Exercises 7.6.3 — Problem 6

Problem. Prove that the family of all polynomials of degree $\leq N$ with coefficients in [-1,1] is uniformly bounded and uniformly equicontinuous on any compact interval.

Proof. Let p(x) be a such a polynomial on a compact interval [a, b]. That is, $p(x) = c_0 + c_1 x + c_2 x^2 + \cdots + c_i x^i$ for $x \in [a, b]$ a compact interval, $c_i \in [-1, 1]$, and $0 \le i \le N$.

First we will bound all such polynomials. Choose $m = \max(|a|,|b|)$ then any $c_j x^j \le |c_j x^j| = |c_j||x^j| \le 1m^j = m^j$ and take $M = \sum_{i=0}^N m^i$. Then, term for term, we have $p(x) \le M$ for any of the polynomials in the family. Thus, the family is uniformly bounded.

Now we show that the family is uniformly equicontinuous. For any such p(x), consider $p'(x) = c_1 + 2c^2x + 3c_3x^2 + \cdots + Nc_Nx^{N-1}$. Then $p'(x) \leq M' = \sum_{i=0}^{N-1} N*m^i$ since $N*m^i$ is larger term for term. Thus by the MVT we have the following for some $z \in (x,y)$: $|p(x) - p(y)| \leq |p'(z)||x-y| \leq M'|x-y|$. Then for a given 1/m we can choose 1/n = 1/(Mm) to satisfy equicontinuity.