Market Exchange

- · Consumer Surplus: Cs = U(x)-p.x
 - take FOC w.r.t x for X(p)
 - integrate X(P) over pdf for aggregate demand QD(P)
- · Aggregate demand · OD(P)
- · Inverse demand: Pp(Q) rearrange agg demand
- · consumers buy if valuation > price, valuation of benefit Jutility
 -use vzp as bounds, integrate over quantity dem.

 D(p) = Sp(y) × f(x) dx.
- · Producer surpus = profit: T = P.x-TC(x)
 - see market power section for setups
 - take FOC w.r.t x for X(p)
 - integrate X(P) over pdf for aggregate supply Qs(P)
 - marginal cost = dTc/dx
 - average cost = TC/x
 - · Total Surplus = cs +ps = cs +tt
 - · In the LR, firms produce if PZAC
 · In the SR, firms produce if PZ average variable cost
 - In SR produce where p=MC on graph
 - SR supply: p. q = Jo Mc dq, solve with q(p)
 - LR supply: p.q = Jog Mc dq, solve with q(p)
 - 'Price takers: P=MC
 Price setters: MR=MC, MR=P(q)+qP'(q)
 - · If there exists another allocation price combination with
 - higher Utility, then the current equilibrium is not efficient or stable

Stability and Elasticity

- Stability: when we are away from an equilibrium,
 - the supply & demand dynamics push us to eq.
 - equilibium may not be stable with a backwards bending supply ourve
- Walrasian price stability: raise price if not demand is positive and lower it net demand is negative
- Marshallian quantity stability: raise supply quantity if demand pince exceeds supply pince
- Elasticity of Demand! E= <u>& Go.</u> P
- Elasticity of Supply: n= sos. P

Costs

- escapable: can be avoided
- Sunk: not escapable
- fixed: inescapable in SR, escapable in UR, invariant to Q
- variable: escapable aways, varies with Q

Merging Markets

- sum supply and demand curves vertically for public goods - Sum supply and demand himsontally for private goods

Market Power

- consumer surplus = benefit cost = B(x)-px.
 - Take FOC for w.r.+ x for x(p)
 - solve for bounds on distribution w.r.t p
 - integrate x(p) over bounds for the aggregate demand OD(p)
- without Mc, monopolists set price where exasticity of demand = 1.

Types of Markets:

- Competitive Markets: T= P.q-Tc(q)
 - take price as given, find Q(P)
- Monopoly: T = P(Q).Q-Tc(O)
- price setters, price is a function of Q. Cartel! $T = P(q_1+q_2) (q_1+q_2) tc(q_1) tc(q_2)$ P(Q) Q TC(Q)
- multiple production units, think about production allocation, $q_1 = q_2$ if same costs - Cournot Duopoly: $\pi_1 = P(q_1 + q_2) q_1 - Tc(q_1)$
- $T_2 = P(q_1 + q_2) q_2 TC(q_2)$
 - set quantities <u>simultaneously</u>
 - solve dual maximization, use symmetry
- Stackleberg competition: same Its as cournot
 - timing matters: 91 -> 92 -> P
 - solve backwards: max T12, get q2(q1), plug q2(q1) into T1, max TI, solve q1, solve q2

Externalities:

- Negotiation: social planner max & Ti

- Coasian Negotiation: T.(QA) - T.(QB) = payment bounds
$\Pi_2(VA) - \Pi_2(VB)$
- property rights well assigned, how much
would one firm pay another firm.
- QA - individual equilibrium for firm w/ rights
- 98- SPP equilibrium
- Limitations: 1) costug bargaining
2) property rights should be defended
3) budget constraint
- Pigouvian Tax: +(x) = cost of externality
Ti=Ti-+(x) firm causing externality
$\Pi_2^1 = \Pi_2$ firm w externality
- Limitations: 1) how can we determine cost of
externality
Permits: price of permit = cost of externality, decrease in welfare
- produce s.t. MB(x) = Pp for externality causing firm
- optimal quantity of permits & (QA, QB) (defined above)
- Limitations: 1) need to know how many permits
to issue

Public Goods

- nonexcudable: public parks, roads, etc
- rival: too many people at the park, traffic, etc
- pure public goods: no competition for use

Samuelson Condition

$$\sum_{i=1}^{n} MRS_{q,w}^{i} = \sum_{i=1}^{n} \frac{u_{q}^{i}}{u_{m}^{i}} = \frac{1}{f'(t)} = MRT_{q,w}$$

$$MRS: \left[\frac{du}{dq}\right] / \left[\frac{du}{dm}\right]$$

MRT: 1/f'(+) conversion of private/public goods

m: private goods (money)

G: public goods

G=f(t): production of public goods

- Resource constraint must still hold Im+ 6= Zw
- Quasilinearity + concavity unique efficient allocation
 - -concave: dulds accreasing as GT [not req. for]
 -quasilinear: duldn = constant [uniqueness]

Lindahl Equilibrium charging different individuals different prices for units of a public good, SPP solution, decentralized

Solve: max u'(xi, G) s.t. xi + pi 6=wi Xi, G

Xi: private good consumed by person i

p: cost of producing I public good G

1: cost of private good (normalized)

wi! endowment for person i

- everyone gets same amount of Gi=G
- Shin of Gi = G (often hormalized to 1)

Other notes

- efficiency: maximize aggregate utility subject to constraints

1. choose location 2. Choose prices - use backwards induction · Spatial competition U(t)=Mo-Pi-t from firm 1 U(t)=Mo-P2-(1-t) from firm 2 Step 1. find indifference point t indifferent > Mo-pi-t= Mo-pz-(1-t) $\rightarrow t^{2} \frac{1}{2} + \frac{\rho_{2} - \rho_{1}}{2}$ } quantity=t $\pi_1 = \rho_1 + \frac{1}{2} + \frac{\rho_2 - \rho_1}{2} \rightarrow \max \rho_1 \quad \text{for } \rho_1^*$ $T_2 = \rho_2 t = \rho_2 \left(\frac{1}{2} + \frac{\rho_1 - \rho_2}{2} \right) \rightarrow \max \rho_2$ for ρ_2^*

Salop Circle

T(N+1) < FC

General Equilibrium

Edgew	outh Box		
7	Χs	B - size of box is size of	
		total endowment, Ex, Zy	
yn		•	
		Ув	
*	X _{ft}		
	1) I dentify initio	al endowment (IE)	
		nce curves through 1E	
	· x ^{1/2} y ^{1/2}	. Cobb Douglas	
		L offer curve goes through points here	
	3) Find demand		
		t RX + RY = PXXIE + RYIE	
		buying value of endowment	
	- solv	e for <i>Xiy</i> as functions of PxiPy	
4) solve for prices using Xi+Xj=X, yi+uj= Y			
Walra		e ratio using only Xi+Xj=X	
		<u> </u>	
Econo	my with production		
- production possibilities set < (inputs Ly, etc): bounds ofler, year			
		0.y(0-w·l → max w.r.+ l	
	take pow as give	in .	
	- max w.r.t l, fin	od l^* , $y(l^*)$, Π^* as functions of wip	
- cov	sumer demand: r	nax Ui st Py= Dw+T(w,p)	
	- max with e, fi	nd Lt, y (Lt) as functions of Wip	
- SO	we for prices: se	2+ $L^{\dagger} = L^{\dagger}$ and $y^{\dagger} = y^{\dagger}$	