Real Analysis

Assignment №10

Instructor: Dr. Eric Westlund

David Oniani

Luther College

oniada01@luther.edu

January 12, 2021

6.2.1 (a)

$$f(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{nx}{1 + nx^2} = \frac{1}{x}$$

(b) Notice that

$$f(x) = \frac{1}{x} - \frac{1}{\frac{1}{nx} + x} = \frac{1}{nx^3 + x}$$

Then it is easy to see that the convergence is **not uniform** since $\forall \epsilon > 0$ and $\forall n \in \mathbb{N}$, we can always have $x = \frac{1}{2n}$ s.t. $\frac{1}{nx^3+x} = \frac{8n^2}{4n+1} > \epsilon$ which shows that $|f(x) - f_n(x)| > \epsilon$.

- (c) Similar to (b), it is **not uniform** on (0,1) since $\forall \epsilon > 0$ and $\forall n \in \mathbb{N}$, we can always have $x = \frac{1}{2n}$ s.t. $\frac{1}{nx^3+x} = \frac{8n^2}{4n+1} > \epsilon$ which shows that $|f(x) f_n(x)| > \epsilon$.
- (d) We have:

$$\left|\frac{x}{nx^2+x} - \frac{1}{x}\right| = \left|\frac{1}{nx^3+x}\right| < \frac{1}{n}$$

Hence, $\forall \epsilon > 0$ and $\exists N$ s.t. $\forall n \geq N, \frac{1}{n} < \epsilon$ and $|f(x) - f_n(x)| < \epsilon$. Finally, we got that the convergence **is uniform** on $(1, \infty)$.

6.2.3 (a) We have:

$$\lim_{n \to \infty} g_n(x) = \lim_{n \to \infty} \frac{x}{1 + x^n} = x \text{ if } x < 1$$

$$\lim_{n \to \infty} g_n(x) = \lim_{n \to \infty} \frac{x}{1 + x^n} = \frac{1}{2} \text{ if } x = 1$$

$$\lim_{n \to \infty} g_n(x) = \lim_{n \to \infty} \frac{x}{1 + x^n} = 0 \text{ if } x > 1$$

$$and$$

$$\lim_{n \to \infty} h_n(x) = 0 \text{ if } x = 0$$

$$\lim_{n \to \infty} h_n(x) = 1 \text{ if } x > 0$$

Hence, (g_n) converges pointwise to

$$g(x) = \begin{cases} x & \text{if } x < 1 \\ \frac{1}{2} & \text{if } x = 1 \\ 0 & \text{if } x > 1 \end{cases}$$

And (h_n) converges pointwise to

$$g(x) = \begin{cases} 0 \text{ if } x - 1\\ 1 \text{ if } x > 1 \end{cases}$$

- (b) It follows by **Theorem 6.2.6 (Continuous Limit Theorem)**, that both (g_n) (pick x = 1) and (h_n) (pick x = 0) do not converge uniformly on $[0, \infty)$.
- (c) For (g_n) consider a half-open interval [0,1). Then we have:

$$|g_n(x) - g(x)| = \frac{x^n}{1 + x^n} < x^n$$

Now, as x < 1, it follows that $\forall \epsilon > 0, \exists N \text{ s.t. } \forall n \geq N, x^n < \epsilon$ and therefore the convergence is uniform on [0,1).

For (h_n) consider a half-open interval $[1, \infty)$. Pick N = 2, then $\forall \epsilon > 0$ and $\forall n \geq N$ we have:

$$|h_n(x) - h(x)| = 1 - 1 = 0 < \epsilon$$

Hence, the convergence is uniform on $[1, \infty)$.

6.2.5 We first prove the theorem directly and then its converse. Suppose (f_n) converges uniformly on A to some function f. Let $\epsilon > 0$. Then, by definition, $\exists N \in \mathbb{N}$ s.t. $\forall x \in A, n \geq N$ implies $|f_n(x) - f(x)| < \frac{\epsilon}{2}$. Now, if $m, n \geq N$, then, by the triangle inequality, we have:

$$|f_n(x) - f_m(x)| = |f_n(x) - f(x) + f(x) - f_m(x)|$$

$$\leq |f_n(x) - f(x)| + |f(x) - f_m(x)|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$< \epsilon$$

Hence, $|f_n(x) - f_m(x)| < \epsilon|$.

Conversely, suppose that $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall x \in A \text{ and } \forall m, n \geq N, |f_n(x) - f_m(x)| < \epsilon$. Now, notice that $(f_n(x))$ is a Cauchy sequence and per **Theorem 2.6.4 (Cauchy Criterion)**, it converges. Now, since this is true $\forall x \in A$, we can define $f(x) = \lim_{n \to \infty} (f_n(x))$ and we now have to show that f_n converges to f uniformly. Let $\epsilon > 0$ be given. Then we know that $\exists N \in \mathbb{N} \text{ s.t. } x \in A \text{ and } \forall m, n \geq N, |f_n(x) - f_m(x)| < \epsilon$. Then it follows by the **Algebraic Limit Theorem** that $\lim_{m \to \infty} f_n(x) - f_m(x) = f_n(x) - f_m(x)$. Finally, per the **Order Limit Theorem**, we get that for $x \in A$ and $\forall n \geq N, |f_n(x) - f(x)| < \epsilon$. Hence, we got that f_n uniformly converges to f.

Finally, we have shown that a sequence of functions (f_n) defined on a set $A \subseteq \mathbb{R}$ converges uniformly on A if and only if for every $\epsilon > 0$ there exists an $N \in \mathbb{N}$ such that $|f_n(x) - f_m(x)| < \epsilon$ whenever $m, n \geq N$ and $x \in A$.

6.3.1 (a) Let $\epsilon > 0$ be given. Then on the closed interval [0,1], we have:

$$|g_n(x) - g_m(x)| = \left|\frac{x^n}{n} - \frac{x^m}{m}\right|$$

Now, if we have m, n > N with $\epsilon > \frac{1}{N}$, we then get:

$$|g_n(x) - g_m(x)| < \left|\frac{x^n}{n}\right| \le \frac{1}{N} < \epsilon$$

It follows that (g_n) converges uniformly on [0,1]. We have:

$$0 \le g(x) = \lim_{n \to \infty} \frac{x^n}{n} \le \lim_{n \to \infty} \frac{1}{n} = 0$$

Thus, $\forall x \in [0,1], g(x) = 0$. Hence, g(x) is differentiable on [0,1] and $\forall x \in [0,1], g'(x) = 0$.

(b) Notice that $g'_n(x) = n \times \frac{x^{n-1}}{n} = x^{n-1}$. Now, notice that we have:

$$h(x) = \lim_{n \to \infty} g_n(x) = \begin{cases} 0 \text{ if } 0 \le x \le 1\\ 1 \text{ if } x = 1 \end{cases}$$

Then the convergence is not uniform. To show this we set $x_n = \frac{1}{\sqrt[n]{3}}$. We get:

$$|g'_{n+1}(x_n) - h(x_n)| = \frac{1}{3}$$

Now $\forall n \in \mathbb{N}, \exists x \in [0,1]$ s.t. $|g_n(x) - g(x)| \geq \frac{1}{3}$ and therefore, the convergence is not uniform. Also, notice that g' and h are not the same since g'(1) = 0 and h(1) = 1.

6.3.3 (a) Notice that we have:

$$(f_n(x))' = \frac{1 - nx^2}{(1 + nx^2)^2}$$

Then the maximum and minimum should occur when $1 - nx^2 = 0$ or in other words, $x = \pm \frac{1}{\sqrt{n}}$. Now, we get $f'(\frac{1}{\sqrt{n}}) = \frac{1}{4\sqrt{n}}$ and $f'(-\frac{1}{\sqrt{n}}) = -\frac{1}{4\sqrt{n}}$. Now, it follows that $\frac{1}{4\sqrt{n}}$ is the maximum since $f_n(0) = 0$ and if x > 0, $f_n(x) > 0$. Moreover, notice that if $x < \frac{1}{4\sqrt{n}}$, f'(x) > 0 and thus, f is increasing. Similarly, if $x > \frac{1}{4\sqrt{n}}$, f'(x) < 0 and f is decreasing. Therefore, $\frac{1}{4\sqrt{n}}$ is the maximum. By the similar argument, $-\frac{1}{4\sqrt{n}}$ is the minimum. Now, let $\epsilon > 0$ be given and choose $N = \frac{1}{16\epsilon^2}$. Then for n > N, we have $n > \frac{1}{16\epsilon^2} \to \epsilon > \frac{1}{4\sqrt{n}}$. Thus, $\forall x \in \mathbb{R}$, we get $|f_n(x) - 0| \le \frac{1}{4\sqrt{n}} < \epsilon$ and it follows that f_n converges uniformly to 0.

The limit function is $f(x) = \lim_{n \to \infty} \frac{x}{1+nx^2} = 0$.

(b) From the part (a), we have:

$$(f_n(x))' = \frac{1 - nx^2}{(1 + nx^2)^2} = \frac{1 - nx^2}{n^2x^4 + 2nx^2 + 1}$$

Now, assuming $x \neq 0$, we can divide both the numerator and the denominator by n^2 (given $n \neq 0$) and get:

$$\left(f_n(x)\right)' = \frac{\frac{1}{n^2} - \frac{x^2}{n}}{\frac{1}{n^2} + 2\frac{x^2}{n} + x^4}$$

Since $\forall m \in \mathbb{N}$, $\lim \frac{1}{n^m} = 0$, it follows by the **Algebraic Limit Theorem** that $\lim f'_n(x) = 0$. Now, suppose that x = 0. Then $f'_n = 0$ and if $x \neq 0$, we get $\lim f'_n(x) = f'(x)$.

6.4.3 (a) Let $k \in \mathbb{R}$ be fixed. Then we have:

$$|g(x) - g(k)| = \left| \sum_{n=1}^{\infty} \frac{\cos(2^n x)}{2^n} - \sum_{n=1}^{\infty} \frac{\cos(2^n k)}{2^n} \right|$$

$$= \left| \sum_{n=1}^{\infty} \frac{\cos(2^n x) - \cos(2^n k)}{2^n} \right|$$

$$= \left| \sum_{n=1}^{\infty} 2 \sin\left(\frac{2^n (x+k)}{2}\right) \times \sin\left(\frac{2^n (k-x)}{2}\right) \times \frac{1}{2^n} \right|$$

$$= \left| \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} \sin(2^{n-1} (x+k)) \sin(2^{n-1} (k-x)) \right|$$

And by applying the triangle inequality, we get:

$$|g(x) - g(k)| \le \left| \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} \sin\left(2^{n-1}(x+k)\right) \sin\left(2^{n-1}(k-x)\right) \right| \le \sum_{n=1}^{\infty} \frac{1}{2^{n-1} |\sin\left(2^{n-1}(k-x)\right)|}$$

Hence, g(x) is continuous on all of \mathbb{R} .

6.4.5 (a) Let $h_n(x) = \frac{x^n}{n^2}$. Then $h_n(x)$ is continuous on the closed interval [-1,1]. Furthermore, $\frac{x^n}{n^2} \leq \frac{1}{n^2}$ and since $\sum_{n=1}^{\infty} n^{-2}$ converges, by Corollary 6.4.5 (Weierstrass M-Test), $\sum_{n=1}^{\infty} h_n(x)$ also converges. Finally, by Theorem 6.4.2 (Term-by-term Continuity Theorem), h(x) is continuous on [-1,1].