Package 'KFPLS'

January 10, 2023

	January 10, 2025
Title Kernel Functional Part	tial Least Squares
Version 1.0	
veloped for functional	rnel functional partial least squares (KFPLS) method. KFPLS method is denonlinear models, and the method does not require strict contart structures. The crucial function of this package is KFPLS().
License GPL (>= 3)	
Encoding UTF-8	
RoxygenNote 7.1.1	
Imports fda, splines, stats	
NeedsCompilation no	
Author Rou Zhong [aut, cred Jingxiao Zhang [aut]	;],
Maintainer Rou Zhong <zh< td=""><td>long_rou@163.com></td></zh<>	long_rou@163.com>
Repository CRAN	
Date/Publication 2023-01-	10 13:03:12 UTC
R topics document	ed:
Index	5
KFPLS	Kernel functional partial least squares method

Description

Kernel functional partial least squares (KFPLS) method for functional nonlinear models with scalar response and functional predictors. The Gaussian kernel is used.

2 KFPLS

Usage

```
KFPLS(X, Y, obser_time, nfold, n_comp, sigm_list, basis)
```

Arguments

Χ An array with three indices. The (i, j, k)-th element of it corresponds to the measurment of the i-th subject for the k-th functional predictor at j-th observation grid. Υ A vector with length n, where n is the sample size. The i-th element of it corresponds to the measurement of the scalar response for the i-th subject. obser_time A vector denoting the observation times of the functional predictors. nfold An integer denoting the number of folds for the selection of the tuning parameters by cross-validation. A vector denoting the candidates of the number of components. n_comp sigm_list A vector denoting the candidates of the tuning parameter for the Gaussian ker-A basis object denoting the basis that used for the smoothing of the functional basis predictors. It is created by functions in fda package, such as create.bspline.basis.

Value

A list containing the following components:

n A scalar denoting the sample size. A scalar denoting the number of functional predictors. р nk A scalar denoting the selected number of components. Т A matrix denoting the value of T at convergence. U A matrix denoting the value of U at convergence. Κ A matrix denoting the Gram matrix. A matrix denoting the centralized Gram matrix. K_c Xfd_list A list of length p. The k-th entry corresponds to the functional data object of the k-th functional predictor. XX list A list of length p. The k-th entry corresponds to the matrix that denotes the inner product of the k-th functional predictor for all subjects. Y_c A vector denoting the centralized scalar response. meanY A scalar denoting the sample mean of the scalar response. Y_hat A vector denoting the prediction of the scalar response. A vector denoting the observation times of the functional predictors. obser_time basis A basis object denoting the basis that used for the smoothing of the functional predictors. A scalar denoting the selected tuning parameter for the Gaussian kernel. sigm A matrix denoting the CV scores. CVscore time A scalar denoting the computation time.

predict.KFPLS 3

Examples

```
# Generate data
n <- 200
t_range <- c(0, 1)
obser_time <- seq(0, 1, length.out = 51)
beta_fun <- function(t)\{2 * \sin(2 * pi * t)\}
basis <- fda::create.bspline.basis(t_range, nbasis = 13, norder = 4,</pre>
breaks = seq(0, 1, length.out = 11))
beta_fd <- fda::smooth.basis(obser_time, beta_fun(obser_time), basis)$fd</pre>
X_basis <- fda::create.bspline.basis(t_range, nbasis = 23, norder = 4,</pre>
breaks = seq(0, 1, length.out = 21))
Bbeta <- fda::inprod(X_basis, beta_fd)</pre>
Xi_B \leftarrow splines::bs(obser_time, knots = seq(0, 1, length.out = 21)[-c(1, 21)],
degree = 3, intercept = TRUE)
a \leftarrow array(0, dim = c(n, 23, 1))
X <- array(0, dim = c(n, 51, 1))
Y <- NULL
for(i in 1:n){
a[i, , 1] <- stats::rnorm(23)
X[i, , 1] \leftarrow Xi_B %*% a[i, , 1]
aBbeta <- as.numeric(t(a[i, , 1]) %*% Bbeta)
Y[i] \leftarrow aBbeta + stats::rnorm(1, mean = 0, sd = 0.05)
}
# KFPLS
KFPLS_list <- KFPLS(X, Y, obser_time, nfold = 5, n_comp = 5, sigm_list = 0.005, basis)</pre>
plot(KFPLS_list$Y_hat, Y)
lines(Y, Y)
```

predict.KFPLS

Prediction by KFPLS

Description

Prediction of the scalar response by KFPLS.

Usage

```
## S3 method for class 'KFPLS'
predict(object, newdata, ...)
```

Arguments

object A KFPLS object obtained from KFPLS.

newdata An array with three indices denoting the new observations of the functional

predictors. The (i, j, k)-th element of it corresponds to the measurment of the

i-th subject for the k-th functional predictor at j-th observation grid.

... Not used.

4 predict.KFPLS

Value

A vector denoting the prediction of the scalar response.

Index

```
create.bspline.basis, 2 KFPLS, 1, 3 predict.KFPLS, 3
```