Vehicle dynamics

Lezione n. 7:

Tire

Structure

Types of carcass

Tire characteristics

Codici di treadwear, trazione e temperatura

Tire-road interaction

 F_x longitudinal force;

 F_{y} lateral force;

 F_z vertical load or normal force;

 M_x overturning moment;

 M_{y} rolling resistance moment;

 M_z self-aligning torque

Longitudinal force

Slip (%) =
$$(1 - \frac{r \omega}{V}) \times 100$$

where:

r = Tire effective rolling radius

 ω = Wheel angular velocity

V = Forward velocity

7

Braking coefficient

Braking coefficient vs Slip ratio

Braking coefficient vs Load

Braking coefficient vs Speed

Lateral force

Lateral slip → lateral force

Lateral force

Lateral force vs Slip angle

Lateral force vs Slip angle vs normal

Spinta di camber (camber thrust)

Combined slip

circle of Kamm

I modelli MF-Tyre, MF-MCTyre e SWIFT-Tyre

Modell o	Descrizione	Tipo analisi	Input	Output	
MF-Tyre	Modello Basato sulla Magic Formula di Pacejka per la modellazione del comportamento stazionario e transitorio dell'interazione pneumatico-strada	Stazionario e Transitorio fino a 8 Hz	slip κ and α Wheel camber γ Vertical force Fz t per analisi transitorio	Fx, Fy Mx, My, Mz In caso di pure o combined slip	
MFC-Tyre	MF-tyre ottimizzato per elevati valori di angoli camber (usato per modellazione di veicoli a due ruote o in caso di analisi di roll over)	Stazionario e Transitorio fino a 8 Hz	slip κ and α Wheel camber γ Vertical force Fz t per analisi transitorio	Fx, Fy Mx, My, Mz In caso di pure o combined slip	
SWIFT- Tyre	Combina i risultati della Magic Formula di Pacejka con un modello ad anello rigido di pneumatico. (studi di durata, analisi shimmy, ABS, ESP, cornering strade dissestate)	Stazionario e Transitorio 60-100 Hz	slip κ and α Wheel camber γ Vertical force Fz t per analisi transitorio	Fx, Fy Mx, My, Mz In caso di pure o combined slip	

Carico normale

Carico Normale

$$F_z = C_z \cdot \dot{\rho} + K_z \cdot \rho$$

Dove ρ : deflessione

ρ: velocità di deflessione

Kz: rigidezza verticale

Cz: smorzamento verticale

Longitudinal slip

Slip Quantities at Combined Cornering and Braking/Traction

Velocità di slip longitudinale:

$$V_{sx} = V_x - \Omega R_e$$

Slip longitudinale

$$\kappa = -\frac{V_{sx}}{V_x}$$

Lateral slip

Slip Quantities at Combined Cornering and Braking/Traction

Velocità di slip laterale:

$$V_{sy} = V_{y}$$

Slip laterale

$$\tan\alpha = \frac{V_{sy}}{|V_x|}$$

Magic Formula (MF-Tyre): braking/cornering

Longitudinal or lateral force

$$Y(x) = D\sin[Carctan\{Bx - E(Bx - arctan(Bx))\}]$$

Magic Formula (MF-Tyre): braking/cornering

 $Y(x) = D\sin[Carctan\{Bx - E(Bx - arctan(Bx))\}]$

Experimental data

Curve fitting

- B stiffness factor
- C shape factor
- D peak value
- E curvature factor

Magic Formula (MF-Tyre): I/O

INPUT							
DESCRIZIONE	SIMBOLO	UNITÀ DI MISURA					
Slip longitudinale	K	-					
Slip laterale	α	-					
Camber	γ	rad					
Forza verticale	Fz	N					

ОИТРИТ						
DESCRIZIONE	SIMBOLO	UNITÀ DI MISURA				
Forza longitudinale	Fx	N				
Forza laterale	Fy	N				
Coppia di ribaltamento	Mx	Nm				
Resistenza al rotolamento	My	Nm				
Coppia di allinamento	Mz	Nm				

Peso computazionale ed applicazioni

