k-nearest neighbors (knn)

What's in it for you?

- Why do we need KNN?
- What is KNN?
- How do we choose the factor 'K'?
- When do we use KNN?
- How does KNN Algorithm work?

Why KNN?

By now, we all know
Machine learning models
makes predictions by
learning from the past
data available

CATS

Sharp Claws, uses to climb

Smaller length of ears

Meows and purrs

Doesn't love to play around

DOGS

Dull Claws

Bigger length of ears

Barks

Loves to run around

No dear, you can differentiate between a cat and a dog based on their characteristics

No dear, you can differentiate between a cat and a dog based on their characteristics

Length of ears →

Now tell me if it's a cat or a dog?

Length of ears →

Why KNN?

Because KNN is based on feature similarity, we can do classification using KNN Classifier!

KNN - K Nearest Neighbors, is one of the simplest **Supervised** Machine Learning algorithm mostly used for

Classification

It classifies a data point based on how its neighbors are classified

KNN stores all available cases and classifies new cases based on a similarity measure

k in KNN is a parameter that refers to the number of nearest neighbors to include in the majority voting process

Here, the unknown point would be classified as red, since 4 out of 5 neighbors are red

KNN Algorithm is based on feature similarity: Choosing the right value of k is a process called parameter tuning, and is important for better accuracy

KNN Algorithm is based on feature similarity: Choosing the right value of k is a process called parameter tuning, and is important for better accuracy

KNN Algorithm is based on feature similarity: Choosing the right value of k is a process called parameter tuning, and is important for better accuracy

To choose a value of k:

Sqrt(n), where n is the total number of data points

Odd value of K is selected to avoid confusion between two classes of data

When do we use KNN Algorithm?

Consider a dataset having two variables: height (cm) & weight (kg) and each point is classified as Normal or Underweight

Weight(x2)	Height(y2)	Class
51	167	Underweight
62	182	Normal
69	176	Normal
64	173	Normal
65	172	Normal
56	174	Underweight
58	169	Normal
57	173	Normal
55	170	Normal

On the basis of the given data we have to classify the below set as Normal or Underweight using KNN

57 kg 170 cm ?

To find the nearest neighbors, we will calculate Euclidean distance

According to the **Euclidean distance** formula, the **distance** between two points in the plane with coordinates (x, y) and (a, b) is given by:

dist(d)=
$$\sqrt{(x - a)^2 + (y - b)^2}$$

Let's calculate it to understand clearly:

$$dist(d1) = \sqrt{(170-167)^2 + (57-51)^2} = 6.7$$

$$dist(d2) = \sqrt{(170-182)^2 + (57-62)^2} = 13$$

$$dist(d3) = \sqrt{(170-176)^2 + (57-69)^2} = 13.4$$

Similarly, we will calculate Euclidean distance of unknown data point from all the points in the dataset

Unknown data point

Now, lets calculate the nearest neighbor at k=3

Weight(x2)	Height(y2)	Class	Euclidean Distance
51	167	Underweight	6.7
62	182	Normal	13
69	176	Normal	13.4
64	173	Normal	7.6
65	172	Normal	8.2
56	174	Underweight	4.1
58	169	Normal	1.4
57	173	Normal	3
55	170	Normal	2

57 kg	170 cm	?
-------	--------	---

Class	Euclidean Distance	
Underweight	6.7	
Normal	13	
Normal	13.4	
Normal	7.6	
Normal	8.2	
Underweight	4.1	
Normal	1.4	k = 3
Normal	3	
Normal	2	

So, majority neighbors are pointing towards 'Normal'

Hence, as per KNN algorithm the class of (57, 170) should be 'Normal'

Recap of KNN

Recap of KNN

- A positive integer k is specified, along with a new sample
- We select the k entries in our database which are closest to the new sample
- We find the most common classification of these entries
- This is the classification we give to the new sample

Thank you!