データサイエンス特論 授業課題 第七回分 (深層学習モデル)

豊橋技術科学大学大学 情報知能工学専攻

音声言語処理研究室 M1 203319 木内貴浩

伝統的な3つの基本的なニューラルネットワーク『全結合型ニューラルネット』(FC)、『畳 込み型ニューラルネット』(CNN)、『再帰型ニューラルネット』(RNN)、ならびに最近頻繁 に利用されている 『Transformer とその関連技術に基づくニューラルネット』の違いを、以 下の表を埋めることで簡潔に記述せよ。表のサイズは適宜、拡張してよい。

	特徴	利点	問題点
FC	特徴量が重みWに	すべての特徴量を用いて	特徴量全体をまんべん
	よって任意の特徴量	何らかの特徴空有間に射	なく見て射影するた
	空間に射影される	影されるため、データ全	め、局所性などの問題
		体を見て射影することが	を解決できない
		できる。	可変長のデータなどに
			対応できない
CNN	シーケンスデータや	入力データの局所性を特	はなれた部分間の関係
	画像などの位置に意	徴量に変換することがで	性などの特徴量への
	味を持ったデータを	きる。	Embedding ができない
	用いて、カーネルご	可変長データの対応可	
	とに特徴量を変換す	Dilated 1D-CNN などを	
	ることができる	使えば Sequence データ	
		にも対応できる	
RNN	NN を逐次的に計算	Sequence データに利用	過去の情報を保持する
	して、Sequence デ	可能	が、限界がある。例え
	ータに応用できるよ	LSTM を用いれば、勾	ば、自然言語処理で最
	うにしたもの。	配消失や爆発などの問題	後の RNN の特徴量を
	時間 t のときに生成	を解決し、より過去の情	利用したとすると、最
	された隠れ状態を	報まで見ることが可能	初のデータの情報は直
	t+1 の NN に渡すこ		近の情報に比べて薄く
	とで、過去の情報を		なっている可能性があ
	保持する		る。

Tranformer	Self-attention を用	Convolution などと併用	パラメータの数が多す
(Self-	いた Transformer で	することで、	ぎるため、膨大な計算
Attention)	は、Sequence デー	Convolution の問題点で	資源が必要となる。ま
	タの各データの関係	あった離れたカーネル間	た、Encoder の部分は
	を特徴量として生成	の関係を Embed するこ	逐次的に実行すること
	することができる。	とができる。その他、	ができないため、リア
	例えば、自然言語処	Encoder-decoder モデル	ルタイム性が無い。
	理を考えると、各ト	により Sequence data を	
	ークンの関係性など	ある特徴量空間に落とし	
	を特徴量空間に射影	込み、それを用いて文章	
	することができる。	生成など、RNN のよう	
		に生成することができ	
		る。	