```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
data = pd.read csv('sales data.csv')
data.head()
                  Product Region Quantity Sold Unit Price Total
         Date
Sales \
                                              6
0 2023-01-01 Smartwatch
                            West
                                                      64.09
384.54
1 2023-01-02
                                             27
                   Camera
                            West
                                                     379.07
10234.89
2 2023-01-03
                 Keyboard North
                                              8
                                                     459.29
3674.32
3 2023-01-04 Headphones
                            East
                                              2
                                                     435.81
871.62
4 2023-01-05
                  Monitor South
                                             12
                                                     484.03
5808.36
     Month
  January
1 January
2 January
3 January
4 January
# Ensure "Date" is in datetime format
data['Date'] = pd.to datetime(data['Date'])
# Extract month and year for grouping
data['Month'] = data['Date'].dt.month name()
sales by month = data.groupby('Month')['Total Sales'].sum()
best month = sales by month.idxmax()
best month sales = sales by month.max()
print(f"The best month for sales is {best month} with total sales of $
{best month sales:.2f}.")
The best month for sales is January with total sales of $264770.06.
plt.figure(figsize=(10, 6))
sales_by_month = sales by month.sort index(key=lambda x:
pd.to datetime(x, format='%B'))
sales_by_month.plot(kind='bar', color='purple', edgecolor='black')
plt.title('Total Sales by Month')
plt.xlabel('Month')
plt.ylabel('Total Sales ($)')
plt.xticks(rotation=45)
```

plt.tight_layout() plt.show()

<pre># Sales by Region and Product region_product_sales = data.groupby(['Region', 'Product'])['Total Sales'].sum().unstack() print(region_product_sales)</pre>						
Product	Camera	Headphones	Keyboard	Laptop	Monitor	Mouse
\ Region						
East	44269.35	46724.80	55554.82	46328.52	44645.10	73708.33
North	21458.83	32504.22	39291.04	63921.03	38667.18	62482.97
South	40980.53	78190.12	55193.42	64445.66	62820.80	19867.82
West	85964.92	51951.32	61721.46	67533.93	86347.30	45955.55
Product	Printer	Smartphone	Smartwatch	h Table	t	
Region East	44323.46	79321.39	37241.70	6 18610.5	4	
North	78757.80	44204.17	43292.3			
South	40617.56	44841.31	45105.92			
West	34717.46	60875.44	86202.09	9 48075.8	5	

```
# Heatmap of Sales by Region and Product
plt.figure(figsize=(12, 8))
sns.heatmap(region_product_sales, annot=True, fmt=".2f",
cmap="YlGnBu", cbar=True)
plt.title('Sales by Region and Product')
plt.xlabel('Product')
plt.ylabel('Region')
plt.show()
```



```
# Correlation Between Quantity and Total Sales
plt.figure(figsize=(8, 5))
sns.scatterplot(data=data, x='Quantity Sold', y='Total Sales',
hue='Region', palette='tab10')
plt.title('Quantity Sold vs. Total Sales')
plt.xlabel('Quantity Sold')
plt.ylabel('Total Sales ($)')
plt.legend(title='Region')
plt.grid()
```

```
plt.tight_layout()
plt.show()
```



```
# 1. Top 5 Products by Total Sales
top products = data.groupby('Product')['Total
Sales'].sum().sort_values(ascending=False).head(5)
print("Top 5 Products by Sales:")
print(top products)
Top 5 Products by Sales:
Product
Laptop
              242229.14
Monitor
              232480.38
Smartphone
              229242.31
Smartwatch
              211842.11
Keyboard
              211760.74
Name: Total Sales, dtype: float64
# Plot top products
plt.figure(figsize=(8, 5))
top products.plot(kind='bar', color='skyblue', edgecolor='black')
plt.title('Top 5 Products by Sales')
plt.xlabel('Product')
plt.ylabel('Total Sales ($)')
plt.xticks(rotation=45)
```

```
plt.tight_layout()
plt.show()
```



```
#Region with Highest Sales
sales_by_region = data.groupby('Region')['Total Sales'].sum()
best_region = sales_by_region.idxmax()
print(f"The region with the highest sales is {best_region}.")

The region with the highest sales is West.

#sales by region
plt.figure(figsize=(8, 5))
sales_by_region.plot(kind='bar', color='coral', edgecolor='black')
plt.title('Total Sales by Region')
plt.xlabel('Region')
plt.ylabel('Total Sales ($)')
plt.xticks(rotation=0)
plt.tight_layout()
plt.show()
```



```
#Monthly Trends for Top 3 Products
top_3_products = top_products.index[:3]
monthly trends =
data[data['Product'].isin(top_3_products)].groupby(['Month',
'Product'])['Total Sales'].sum().unstack()
#Plot monthly trends
plt.figure(figsize=(12, 6))
monthly trends.plot(kind='line', marker='o')
plt.title('Monthly Sales Trends for Top 3 Products')
plt.xlabel('Month')
plt.ylabel('Total Sales ($)')
plt.legend(title='Product')
plt.grid()
plt.tight_layout()
plt.show()
<Figure size 1200x600 with 0 Axes>
```

Monthly Sales Trends for Top 3 Products


```
#Profitability Analysis
profit margin = 0.3
data['Profit'] = (data['Total Sales'] * profit_margin).round(2)
# Profit by Region
profit by region = data.groupby('Region')['Profit'].sum()
print("Profit by Region:")
print(profit by region)
Profit by Region:
Region
East
         147218.41
North
         139245.20
         137076.86
South
West
         188803.56
Name: Profit, dtype: float64
# Plot profit by region
plt.figure(figsize=(8, 5))
profit_by_region.plot(kind='bar', color='pink', edgecolor='black')
plt.title('Profit by Region')
plt.xlabel('Region')
plt.ylabel('Profit ($)')
```

```
plt.xticks(rotation=0)
plt.tight_layout()
plt.show()
```



```
# Customer Purchase Behavior (Quantity vs. Unit Price)
plt.figure(figsize=(8, 5))
sns.scatterplot(data=data, x='Unit Price', y='Quantity Sold',
hue='Region', palette='tab10')
plt.title('Customer Purchase Behavior: Quantity vs Unit Price')
plt.xlabel('Unit Price ($)')
plt.ylabel('Quantity Sold')
plt.legend(title='Region')
plt.grid()
plt.tight_layout()
plt.show()
```

