Banknote authentication Dataset

Solution:

(b)

(i)Class 0 is red, Class 1is green.

10

5

Curtosis

15

20

-0.0015 -10

-5

0

In this picture we can only see Class 1 in green color, because data in Class 0 is totally behind Class 1. So I separate two classes of data and print them in one picture as below:

(ii)

Code: "boxplots_1.py"

(c)
Code: "KNN_1.py" and "KNN_2.py"

We can see that when $K^* = 19$, it is the most suitable value.

We can calculate true positive rate, true negative rate, precision, F-score with confusion matrix given by picture:

true positive rate =
$$200/(200+0) = 100\%$$

true negative rate = $0/(200+0) = 0\%$
precision = $200/200 = 100\%$
F-score = 0%

(d)

(i)

Code: "KNN_3.py"

Test_error:

0.00E+00

0.00E+00

1.19E-04

2.42E-04

6.10E-05

4.90E-05

1.64E-04

2.11E-04

2.78E-04

2.47E-04

2.97E-04

2.93E-04

2.69E-04

3.05E-04

3.01E-04

3.31E-04
3.26E-04
3.51E-04
3.31E-04
3.53E-04
3.86E-04
3.55E-04
3.85E-04
3.57E-04
3.73E-04
3.78E-04
3.83E-04
3.78E-04
3.74E-04
3.78E-04
3.65E-04
3.54E-04
3.82E-04
3.85E-04
3.89E-04

4.13E-04
4.16E-04
4.18E-04
4.20E-04
4.80E-04
4.80E-04
5.05E-04
5.11E-04
5.05E-04
5.10E-04
5.10E-04
5.15E-04
5.36E-04
5.56E-04
5.70E-04
5.99E-04
6.21E-04
6.38E-04
6.26E-04
6.47E-04

6.44E-04
6.55E-04
6.39E-04
6.24E-04
6.22E-04
6.07E-04
5.97E-04
5.88E-04
5.74E-04
5.62E-04
5.49E-04
5.45E-04
5.37E-04
5.36E-04
5.35E-04
5.35E-04
5.70E-04
6.07E-04
6.19E-04
6.24E-04

•
6.19E-04
6.08E-04
6.10E-04
6.05E-04
6.10E-04
6.12E-04
6.07E-04
6.09E-04
6.02E-04
5.95E-04
5.88E-04
5.81E-04
5.74E-04
5.68E-04
5.61E-04

We can see that $k^* = 11$.

(ii)

Code: "KNN_4.py"

When k = 11, $log10(p) \in \{0.1,0.2,0 \ log10(p) \in \{0.1,0.2,0.3,...,1\}$, we can print the error in one figure and we can find that the best is log10(1):

When p = 0.1, it becomes Chebyshev Distance

(e)

Code: "KNN_5.py"

When use Euclidean distance with weighted decision,

When use Manhattan distance with weighted decision,

When use Chebyshev distance with weighted decision,

We can see that the best tese_error are all 0%.

(f)

The lowest training error rate I achieved in this exercise is 0%.