Playing Cards with Machines

Robert Grönsfeld

Baloise

2022

Motivation

- Idea for Code Camp: Extend Open Source Project for Poker with additional functionality
- DeepStack.ai: Leduc Hold'em
- Problem: Project too old and not maintained
- Found another project RLCard
- ▶ Implement Mau-Mau as simple card game into the framework

What we played: MauMau

Figure: MauMau = Uno +

Figure: Card values

Mau-Mau Rules

- Card deck: 32 cards, 5 hand cards at start
- Process
 - play a card with the same rank or suit
 - if not possible: draw a card
- ► Goal: play all hand cards
- Special cards
 - ► (7♣)(7♦)(7♠): next players has to draw 2 cards
 - ► 8♠8♥8♠8♠: next player misses a turn
 - ► (V♣)(V♦)(V♠): can be played on any suit, player can wish a suit for the next card

Part I

RLCard Toolkit

RI Card

- ► Toolkit for Reinforcement Learning in Card Games
- DATA Lab at Texas A&M University
- Programming language Python
- different games (also Poker)
- different Reinforcement Learning algorithm
- possibility to play against trained model
- possibility for UI with RLCard Showdown (game specific)

Figure: RL Card Showdown

Implementation

- Structure for implemented games
 - ► Game: contains players, dealer, round, payoffs
 - ▶ Round: process of a round in a game
 - Dealer: shuffling and giving cards
 - Player: plays the cards following a strategy
 - Judger: determines winner
- ► Train different models to the implemented game

Important Methods

- perform_draw_action: handling when player draws a card
- perform_card_action: handling when player plays a card
- ▶ get_legal_actions: allowed cards in the given situation
- ▶ Reward function get_payoffs: Decides how many points the winner/penalty points the loser gets
- ▶ RL algorithm tries to optimize the reward function

Part II

Theory

Artificial Intelligence

- hard to define, since intelligence itself is precisely defined
- "Artificial intelligence leverages computers and machines to mimic the problem-solving and decision-making capabilities of the human mind."
- distinction: strong and weak AI
 - strong: generic Al that can solve generic issues
 - weak/narrow: for one specific issue

Figure: Deep Neuronal Network

Deep Learning vs. Reinforcement Learning

Deep Learning is essentially an autonomous, self-teaching system in which you use existing data to train algorithms to find patterns and then use that to make predictions about new data.

Reinforcement Learning

- is an autonomous, self-teaching system that essentially learns by trial and error
- performs actions with the aim of maximizing rewards, or in other words: learning by doing
- are both systems that learn autonomously.
- aren't mutually exclusive.

Markow Decision Process

A Markov decision process is a 4-tuple (S, A, P_a, R_a) , where:

- > S is a set of states called the state space,
- ▶ A is a set of actions called the action space (alternatively, A_s is the set of actions available from state s),
- $P_a(s,s') = \Pr(s_{t+1} = s' \mid s_t = s, a_t = a)$ is the probability that action a in state s at time t will lead to state s' at time t+1,
- $Arr R_a(s,s')$ is the immediate reward (or expected immediate reward) received after transitioning from state s to state s', due to action a
- S is a set of states

Optimizing for highest reward

Algorithms supported by RLCard

► DMC: Deep Monte Carlo

► DQN: Deep Q-Network

► NFSP: Neural Fictitious Self-Play

► CFR: Counterfeit Regret Minimization

Part III

Training

Training

- 1. Effect of payoff function
- 2. Effect of time
- 3. Effect of algorithm
- 4. Playing with oneself
- 5. Training with existing models
- 6. Tournament

Effect of payoff function

Figure: DQN: win or lose

Figure: DQN: count points

- ▶ Deep-Q Learning, $t \approx 2500000$, random agents
- Average payoff stagnates or increases
- Quality of payoff function determines success

Effect of time

Figure: DQN: count points

- ▶ Deep-Q Learning, $t \approx 100\,000\,000$, random agent
- Reward at global maximum after 20 000 000 steps
- Longer training will not lead to better results per se

Effect of algorithm

Figure: NFSP: win or lose

Figure: NFSP: count points

- Neural Fictitious Self-Play, $t \approx 2500000$, random agents
- ▶ Regardless of the payoff function the Al can not beat a random player

Playing against oneself

- ▶ Deep-Q Learning, $t \approx 8\,000\,000$, experienced DQN agent
- Beats experienced agent after 2 000 000 time steps
- Only slightly better average payoff, even after 8 000 000 steps
- DQN agents do not seem to improve iteratively

Figure: DQN vs DQN: count points

Training with existing models

Figure: DQN vs DMC

- ▶ Deep-Q Learning, $t \approx 2\,000\,000$, Deep Monte-Carlo agent
- Beats adversary after 1 000 000 time steps
- Eventually achieves a slightly better average payoff

Tournament

	DMC4	NFSP	DQN_{DMC}	DQN_{DQN}	<i>DQN</i> 100	Random
DMC4	1.3	3.4	-0.7	0.2	-0.3	4.5
NFSP	-1.8	-0.2	-2.5	-2.3	-2.4	2.0
$\overline{DQN_{DMC}}$	1.2	4.0	0.7	1.4	1.6	4.7
$\overline{DQN_{DQN}}$	0.9	3.5	0.2	1.2	0.6	5.3
<i>DQN</i> 100	1.0	3.6	0.7	1.3	1.4	5.1
Random	-3.1	-1.5	-4.0	-3.2	-3.3	0.5

- ▶ Deep-Q Agent trained with Deep Monte-Carlo agent wins the tournament
- All agents are better than a random player
- ▶ Player position gives an advantage of up to 1.4 points

Part IV

Conclusion

Conclusions

- games with much randomness impact algorithm performance
- leads to good results for stable, easy to simulate scenarios with clear rules
- algorithms show significantly different results / learning effects
- reward function is very important
- ▶ easy to implement
- learning was slow on CPU; using GPU may lead to better results
 - no strategy knowledge required
 - only define rules
 - no need to know AI in depth

Sources

- https://arxiv.org/pdf/1910.04376.pdf
- https://www.forbes.com/sites/bernardmarr/2018/10/22/artificial-intelligence-whats-the-difference-between-deep-learning-and-reinforcement-learning/?sh=5c1f658a271e
- https://www.ibm.com/cloud/learn/what-is-artificial-intelligence
- https://hci.iwr.uniheidelberg.de/system/files/private/downloads/541645681/dammann_reinfocementlearning-report.pdf
- https://arxiv.org/pdf/1910.04376.pdf
- https://www.simplilearn.com/tutorials/deep-learning-tutorial/neural-network
- https://rlcard.org/

