Limiti e Analisi

Limite

premessa definiano intorno di No l'intervallo Ino ne (no-8; no+8) (1) 5 8

Il limite si utilizza per calcolare valori di una funzione per punti in cui mon e definita Si vuole quindi calcolare il valore della funzione per l'intorno con $\delta \to 0$

Definismo $I_{n_0}^{sx}: n \in (n_0 - \delta_j, n_0)$ (1) $I_{n_0}^{sx}: n \in (n_0, n_0 + \delta)$ (3) $I_{n_0}^{sx}: n \in (n_0, n_0 + \delta)$ (4) $I_{n_0}^{sx}: n \in (n_0, n_0 + \delta)$ (5) $I_{n_0}^{sx}: n \in (n_0, n_0 + \delta)$ (6) $I_{n_0}^{sx}: n \in (n_0, n_0 + \delta)$ (7) $I_{n_0}^{sx}: n \in (n_0, n_0 + \delta)$ (8) $I_{n_0}^{sx}: n \in (n_0, n_0 + \delta)$ (9) $I_{n_0}^{sx}: n \in (n_0, n_0 + \delta)$ (10) $I_{n_0}^{sx}: n \in (n_0, n_0 + \delta)$ (11) $I_{n_0}^{sx}: n \in (n_0, n_0 + \delta)$ (12) $I_{n_0}^{sx}: n \in (n_0, n_0 + \delta)$ (13) $I_{n_0}^{sx}: n \in (n_0, n_0 + \delta)$ (13) $I_{n_0}^{sx}: n \in (n_0, n_0 + \delta)$ (14) $I_{n_0}^{sx}: n \in (n_0, n_0 + \delta)$ (15) $I_{n_0}^{sx}: n \in (n_0, n_0 + \delta)$ (16) $I_{n_0}^{sx}: n \in (n_0, n_0 + \delta)$ (17) $I_{n_0}^{sx}: n \in (n_0, n_0 + \delta)$ (18) $I_{$

M.1 P(n) definità in un certo intervallo, non ne cessarià mento de finito per N=No

 $\lim_{n\to n_0} f(n) = l \iff \forall E > 0 \text{ } \exists \ \delta(E), \ \delta > 0 \text{ } | \underline{\forall n: 0 < |n-n_0| < \delta, |f(n)-l| < E}$ limite finite di una funzione
per n de tende ad un volone
finite $\lim_{n\to\infty} f(n) = l \iff \forall E > 0 \text{ } \exists \ \delta(E), \ \delta > 0 \text{ } | \underline{\forall n: 0 < |n-n_0| < \delta, |f(n)-l| < E}$ $\lim_{n\to\infty} f(n) = l \iff \forall E > 0 \text{ } \exists \ \delta(E), \ \delta > 0 \text{ } | \underline{\forall n: 0 < |n-n_0| < \delta, |f(n)-l| < E}$ $\lim_{n\to\infty} f(n) = l \iff \forall E > 0 \text{ } \exists \ \delta(E), \ \delta > 0 \text{ } | \underline{\forall n: 0 < |n-n_0| < \delta, |f(n)-l| < E}$ $\lim_{n\to\infty} f(n) = l \iff \forall E > 0 \text{ } \exists \ \delta(E), \ \delta > 0 \text{ } | \underline{\forall n: 0 < |n-n_0| < \delta, |f(n)-l| < E}$ $\lim_{n\to\infty} f(n) = l \iff \exists \ \delta(E), \ \delta > 0 \text{ } | \underline{\forall n: 0 < |n-n_0| < \delta, |f(n)-l| < E}$