SCC0276 – Aprendizado de Máquina

Vetores Binários

Profa. Dra. Roseli Ap. Francelin Romero

- Algumas vezes, objetos p e q têm apenas valores binários
 - Ex.: 0110 e 1100
- Similaridades podem ser computadas usando:
 - M_{01} = número de atributos em que p = 0 e q = 1
 - M_{10} = número de atributos em que p = 1 e q = 0
 - M_{00} = número de atributos em que p = 0 e q = 0
 - M₁₁ = número de atributos em que p = 1 e q = 1

Similaridade entre vetores binários

Coeficiente de Casamento Simples

$$CCS = (M_{11} + M_{00}) / (M_{01} + M_{10} + M_{11} + M_{00})$$

Coeficiente Jaccard

$$J = (M_{11}) / (M_{01} + M_{10} + M_{11})$$

Agrupamento de dados

Exercício

• Que medida de similaridade binária gera o maior valor de similaridade entre vetores p e q?

Similaridade cosseno

- Muito usado quando dados são textos
 - Bag of words
 - Grande número de atributos
 - Vetores esparsos
- Sejam p e q vetores representando documentos
 - $\cos(p, q) = ||p|| ||q|| \cos\theta = (p \cdot q) / (||p|| ||q||)$
 - •: vector produto interno entre vetores
 - || p ||: é o tamanho (norma) do vetor p

- Distância angular entre dois vetores
 - Invariante a escala dos atributos
 - 1 similaridade cosseno

$$dist_{\cos seno} = 1 - \frac{\sum_{k=1}^{m} p_{k}.q_{k}}{\sum_{k=1}^{m} p_{k}^{2}.\sum_{k=1}^{m} q_{k}^{2}}$$

Distância de Pearson

- Muito usada em bioinformática e séries temporais
 - 1 correlação entre dois vetores

$$dist_{Pearson} = 1 - \frac{\sum_{k=1}^{m} (p_k - \bar{p}).(q_k - \bar{q})}{\sqrt{\sum_{k=1}^{m} (p_k - \bar{p})^2.\sum_{k=1}^{m} (q_k - \bar{q})^2}}$$

- Medidas de distância, em geral, têm as seguintes propriedades
 - Seja d(p, q) a distância (dissimilaridade) entre dois objetos p e q
 - $d(p, q) \ge 0 \ \forall \ p \in q \in d(p, q) = 0$ se somente se p = q (definida positiva)
 - $d(p, q) = d(q, p) \forall p \in q \text{ (simetria)}$
 - $d(p, r) \le d(p, q) + d(q, r) \forall p, q \in r$ (designaldade triangular)
- Medidas que satisfazem essas propriedades são denominadas métricas

Propriedade de Distâncias

- Medidas de similaridade também têm propriedades bem definidas:
 - Seja s(p, q) a similaridade entre dois objetos p e q
 - s(p, q) = 1 (similaridade máxima) apenas se p = q
 - $s(p, q) = s(q, p) \forall p \in q$ (simetria)

Input space

