Fake News detection on Twitter

-KARAN MANKAR

Introduction

- Social media is a big part of our daily life.
- Heavy reliance on microblogging sites
 - Present our views or opinions.
 - Follow influential personalities.

- Problem of fake news to shape the public discourse is of growing concern
 - Exaggerated claims over the Hillary emails.
 - NHS bus that was roaming the streets of London (heavily publicized by the pro-Brexit camp using Twitter).

Business Understanding

- Information quality over social media is of increasing concern as our reliance on the web platforms grows.
- Widely used to undertake crucial tasks such as coordinating relief effort in times of disaster.
 - Influencers coordinating medicine and oxygen information in India during the recent Second wave.
- Fake news during such trying times can lead to irreparable losses and so detecting Fake news before being widely disseminated is of paramount importance.
- A system to detect fake news is presented in this project
 - The system will analyze:
 - Tweet content
 - Retweet data
 - Tweet source information
 - Sentiment of the tweet.

Literature Review

1. FakeBERT: Fake news detection in social media with a BERT-based deep learning approach

- The FakeBERT system uses Deep Learning techniques like:
 - LSTM
 - Convolution Neural Networks
 - BERT transformer
- Accuracy gain of approximately 90% using data acknowledged as fake news and from reputable tabloids like the New York Times and Washington Post.

2. Fake News Detection Using Machine Learning Ensemble Methods

- Highlights the grave issue of lack of enough reliable open-sourced data
- Has created a dataset MisInfoText.
- Contribution for collecting data from various fact checking websites required.

Literature Review

3. Fake News Stance Detection Using Deep Learning Architecture (CNN-LSTM)

- Al-powered analytic tools such as stance-classification
- Determine whether the headline of the news matches the body
- Text processing to analyze the author's writing style
- Image forensics to detect photoshop use.
- Real time anomaly detection to detect anomalies in text indicating a pre-determined text that the owner of the handle just posted after being told to.

Data Understanding

- Datasets used:
 - Politifact Dataset
 - Pheme RumourDataset

Politifact Dataset:

- Consists of tweets, urls and Retweet ids
- Divided into two folders
 - Real
 - Fake

<pre>df.head()</pre>			
	news_url	title	tweet_ids
id			
politifact15014	speedtalk.com/forum/viewtopic.php?t=51650	BREAKING: First NFL Team Declares Bankruptcy O	937349434668498944\t937379378006282240\t937380
politifact15156	politics2020.info/index.php/2018/03/13/court-o	Court Orders Obama To Pay \$400 Million In Rest	972666281441878016\t972678396575559680\t972827
politifact14745	www.nscdscamps.org/blog/category/parenting/467	UPDATE: Second Roy Moore Accuser Works For Mic	929405740732870656\t929439450400264192\t929439
politifact14355	https://howafrica.com/oscar-pistorius-attempts	Oscar Pistorius Attempts To Commit Suicide	886941526458347521\t887011300278194176\t887023
politifact15371	http://washingtonsources.org/trump-votes-for-d	Trump Votes For Death Penalty For Being Gay	915205698212040704\t915242076681506816\t915249

Data Understanding

Pheme Rumour Dataset:

Data Preparation

- Data preparation was done separately for both the datasets.
- Python Script for Pheme Rumour Dataset
- Sentiment Analysis using VaderSentiment Library
- Removal of stopwords, URLs, emojis, @-mentions, hashtags from tweets
- Conversion of tweet_ids to number of retweets

df.head()

	news_url	title	no_of_retweets	label	length
0	speedtalk.com	BREAKING: First NFL Team Declares Bankruptcy O	163	1	64
1	politics2020.info	Court Orders Obama To Pay \$400 Million In Rest	102	1	53
2	nscdscamps.org	UPDATE: Second Roy Moore Accuser Works For Mic	220	1	69
3	howafrica.com	Oscar Pistorius Attempts To Commit Suicide	22	1	42
4	washingtonsources.org	Trump Votes For Death Penalty For Being Gay	550	1	43

Length of all the tweets

```
df['length'].plot(bins=50, kind='hist')
```

<matplotlib.axes._subplots.AxesSubplot at 0x21dcb125788>

Total number of retweets per news article

```
df['no_of_retweets'].plot(bins=50, kind='hist')
```

<matplotlib.axes._subplots.AxesSubplot at 0x21dcc4cd688>

Length vs Label

```
df.hist(column='length', by='label', bins=50,figsize=(12,4))
```


Number of retweets vs label

```
df.hist(column='no_of_retweets', by='label', bins=100,figsize=(12,4))
array([<matplotlib.axes._subplots.AxesSubplot object at 0x0000021DCD24DC48>, <matplotlib.axes._subplots.AxesSubplot object at 0x00000021DCD20C048>],
        dtype=object)
                                   0
                                                                                                             1
                                                                           1200
 2000
                                                                           1000
 1500
                                                                             800
                                                                            600
 1000
  500
                                                                            200
                                                  80000
                                                                                                10000
                                                                                                                     25000
                                                                                                                            30000
```

Sentiment vs Label

```
df.hist(column='sentiment', by='label', bins=50,figsize=(12,4))
array([<matplotlib.axes._subplots.AxesSubplot object at 0x00000021DCCB31BC8>,
```


Vectorization

- Bag of words transformation
- Convert raw text data into vectors for modelling
- Sparse Matrix of both tweet text and source URL
- TF-IDF vectorization on tweet text and source URL

```
print('Shape of Sparse Matrix: ', tweets_bow.shape)
print('Amount of Non-Zero occurences: ', tweets_bow.nnz)

Shape of Sparse Matrix: (4057, 9479)
Amount of Non-Zero occurences: 37214

print('Shape of Sparse Matrix: ', news_url_bow.shape)
print('Amount of Non-Zero occurences: ', news_url_bow.nnz)

Shape of Sparse Matrix: (4057, 1356)
Amount of Non-Zero occurences: 4057
```

Modeling

Three models used:

- Naïve Bayes
- Support Vector Machines
- K Means Clustering

Naïve Bayes

	Accuracy	Precision	Recall	F1-Score
Naïve Bayes	0.42	0.47	0.48	0.40

```
print(confusion_matrix(y_test, predictions))
print(classification report(y test, predictions))
[[148 584]
 [117 369]]
              precision
                           recall f1-score
                                              support
                   0.56
                             0.20
                                       0.30
                                                  732
                   0.39
                             0.76
                                       0.51
                                                  486
                                       0.42
                                                 1218
    accuracy
                   0.47
                             0.48
                                       0.40
                                                 1218
   macro avg
weighted avg
                   0.49
                             0.42
                                       0.38
                                                 1218
```

Support Vector Machines

	Accuracy	Precision	Recall	F1-Score
SVM	0.60	0.60	0.51	0.39

```
print(confusion_matrix(y_test,predictions))
print(classification_report(y_test, predictions))
```

[[726 [477	6] 9]]				
		precision	recall	f1-score	support
	0	0.60	0.99	0.75	732
	1	0.60	0.02	0.04	486
accı	uracy			0.60	1218
macro	o avg	0.60	0.51	0.39	1218
weighted	d avg	0.60	0.60	0.47	1218

K Means Clustering

	Accuracy	Precision	Recall	F1-Score
K Means	0.60	0.30	0.50	0.38

```
print(confusion_matrix(y_test,predictions))
print(classification_report(y_test, predictions))
```

```
[[732
 486
      0]]
                          recall f1-score
             precision
                                             support
                  0.60
                            1.00
                                      0.75
                                                 732
                  0.00
                            0.00
                                      0.00
                                                 486
                                      0.60
                                                1218
   accuracy
                  0.30
                            0.50
                                      0.38
                                                1218
   macro avg
weighted avg
                  0.36
                            0.60
                                      0.45
                                                1218
```

Evaluation

	Accuracy	Precision	Recall	F1-Score
Naïve Bayes	0.42	0.47	0.48	0.40
SVM	0.60	0.60	0.51	0.39
K Means	0.60	0.30	0.50	0.38

The End