Star Clusters

- Colour-magnitude diagrams
- Open Clusters
- Globular Clusters
- Chemical evolution
- Stellar populations

Star Clusters

- Star clusters are a collection of stars that are concentrated in space
- They all formed together out of the same cloud and at the same time

Class Example

 Estimate the difference in distance (in pc) between stars on the near and far side of a cluster that has an angular diameter of 1° at an average distance of 1000 pc?

$$I = qd$$
= $\frac{1^3600}{206265}$ 1000 pc
= 17 pc

i.e. ~2% error if we assume all the stars are at 1000 pc

Colour-Magnitude Diagrams

 for star clusters m_V (or V) is equivalent (apart from an offset) to M_V since all stars are at the same distance

$$m_V - M_V = 5 \log d - 5$$

- can also use colour, e.g. B-V as a measure of temperature
- hence colour-magnitude diagrams (CMDs) for star clusters are similar to H-R diagrams

Star Clusters

- There are two common types of star cluster
 - Open clusters
 - Globular clusters

Open Clusters

- Typically have of order 1000 members
- Not gravitationally bound will disperse over time
- Located in spiral arms of spiral galaxies
- Consist of young, hot, blue main sequence stars

Open cluster NGC 457. Credit: ROBERT GENDLER/SCIENCE PHOTO LIBRARY

Colour-magnitude diagram of the Pleiades open cluster

© ANDREW JAMES (2008) adapted from Raboud, D., Mermilliod, J.-C. A&A., 329, 101 (1998)

Globular Clusters

- Typically have of order 10⁵ members
- Gravitationally bound
- Found in the Galactic halo
- Consist of old, cool, red, stars

Globular cluster M80. HST

Globular cluster Omega Centauri. HST

Colour-magnitude diagram for the globular cluster M 3.

Buonanno, R.; Corsi, C. E.; Buzzoni, A.; Cacciari, C.; Ferraro, F. R.; Fusi Pecci, F. Astron. Astrophys. 290, 69-103 (1994)

Ages of Clusters

 The point where stars are leaving the main sequence gives the age of the cluster

https://courses.lumenlearning.com/astronomy/chapter/checking-out-the-theory/

Class Example

• The centres of globular clusters can have around 1000 stars per cubic pc. Use this to *estimate* the average separation (in pc) of stars in such an environment.

Number density of stars

$$n = 1000 \, {\rm stars} \, pc^{-3}$$

Typical separation

$$x \approx \frac{1}{n^{\frac{1}{3}}} \approx \frac{1}{1000^{\frac{1}{3}}} \approx 0.1 \text{ pc}$$

10X closer than in the rest of Galaxy

Chemical Evolution

- The first stars to form were made from material left over from the Big Bang
- This was almost pure hydrogen and helium
- Nucleosynthesis within stars due to fusion of light nuclei produces heavy elements
- These are returned to the interstellar medium via supernovae explosions and planetary nebulae

Supernova remnant

Planetary nebula

- This enriched material is then the raw material for the next generation of stars
- Hence, successive generations become progressively more enriched in heavy elements or 'metals'
- Can be tracked by measuring the composition via the spectra of stars

Stellar populations

- Stellar populations are divided into two groups
- Population I stars
 - young
 - -10^7 to 10^9 years
 - metal-rich
 - ->1% metals by mass
 - ongoing or recent star formation
 - e.g. open clusters

Population II stars

- old
- -10^{10} years
- metal-poor
- $\sim 0.1\%$ metals by mass
- no star formation for a long time
- e.g. globular clusters

Summary

- Colour-magnitude diagrams for star clusters enable us to determine their age
- They are a key tool in the study of stellar and galaxy evolution
- Stellar populations are divided into old, metal-poor stars and young, metal-rich stars