Inferência Bayesiana

Henrique Nunes de Oliveira

Depto. Zootecnia

UNESP - Jaboticabal

Estatística Fundamental

- Probabilidade e Teorema de Bayes
- Variáveis Aleatórias
- Distribuições de Probabilidade
- Distribuições Conjuntas
- Amostras Aleatórias
- Distribuição condicional e marginal

Probabilidades

- Espaço amostral = conjunto de resultados de um experimento.
- Evento = Possível resultado de um experimento (subconjunto do espaço amostral).
- \square P(A) = Probabilidade de ocorrência de um evento A
- Probabilidades podem ser conhecidas a priori ou calculadas com base em freqüências observadas

Exemplo: Marcadores Moleculares

P

F1

Gametas

Parentais

Recombinantes

Exemplo: Marcadores Moleculares

	Pais	MMQ	QQ x	mm	ıqq
	F1	MmQ	q		
	Gametas F1	MQ	Mq	mQ	mq
Não Ligados (inútil)	Freq(%)	25	25	25	25
Muito Ligados	Freq(%)	48,6	1,4	1,4	48,6

- Espaço amostral marcador: {M,m}
- Espaço amostral QTL: {Q,q}
- □ Espaço amostral conjunto: {MQ,Mq,mQ,mq}
- Eventos : A={M}; B={Q}; H={MQ}; ...
- $P(A) = P(B) = \frac{1}{2}$ (Conhecidas a priori)
- Arr P(H) = ? (Desconhecida: depende de r)

Distribuição Hipotética dos Gametas

Marcador	M	m	TOTAL
QTL			
Q	48,6%	1,4%	50%
q	1,4%	48,6%	50%
TOTAL	50%	50%	100

Eventos nos Gametas

- □ Evento A = Marcador (M)
- \square Evento C = QTL(Q)
- Evento B = Marcador (m)

Eventos	A	В	TOTAL
C	48,6%	1,4%	50%
D	1,4%	48,6%	50%
TOTAL	50%	50%	100

Eventos Mutuamente Exclusivos

- A ocorrência de um implica na não ocorrência do outro:
- □ A e B são mutuamente exclusivos.
- A e C são Não mutuamente exclusivos.

Probabilidade Marginal

 \square P(A); P(B); P(C); P(D)

■ Probabilidade de ocorrência de um determinado evento, ignorando-se eventos associados.

Probabilidade Marginal

	A	В	TOTAL
C	48,6%	1,4%	50%
D	1,4%	48,6%	50%
TOTAL	50%	50%	100

Probabilidade Conjunta

- Eventos Não Mutuamente Exclusivos
- $\overline{\square} P(A e C); P(A e D); P(B e C); P(B e D)$

Probabilidade Conjunta

	A	В	TOTAL
Q	48,6%	1,4%	50%
q	1,4%	48,6%	50%
TOTAL	50%	50%	100

Eventos Independentes

- Eventos independentes
 - A ocorrência de um evento não interfere na probabilidade de ocorrência do outro.
 - P(F e G) = P(F) * P(G)

- Eventos Não Independentes
 - $\overline{-P(A e C)} \Leftrightarrow \overline{P(A)} * P(C)$

Probabilidade Condicional

Probabilidade de ocorrência de um evento, considerando-se que outro evento já tenha ocorrido.

 P(C|A) probabilidade de ocorrência do evento C, dado que ocorreu o evento A.

Eventos	A	B	TOTAL
C	48,6%	1,4%	50%
D	1,4%	48,6%	50%
TOTAL	50%	50%	100

Probabilidade Condicional

- \square P(C|A) = P(AC)/P(A)
- P(A)=P(B)=P(C)=P(D)=50%
- □ P(AC)=48,6%
- \square P(C|A)=0,486/0,5 =0,972
- □ Caso o gameta contenha o Marcador M, a probabilidade de conter o QTL Q é de 97,2%

Probabilidade Condicional

- P(C|B) = 0.014/0.50 = 0.028
- □ Caso o gameta contenha o marcador m, a probabilidade de conter o QTL Q é 2,8%

Teorema de Bayes

- P(B|A) = P(AB)/P(A)
- \square P(AB)=P(B|A)P(A)
- P(A|B) = P(AB)/P(B)
- P(A|B)=P(B|A)P(A)/P(B)

$$P(\theta \mid y) = \frac{P(y \mid \theta) * P(\theta)}{P(y)}$$

$$P(\theta \mid y) \propto P(y \mid \theta) * P(\theta)$$

Exemplo

Genótipo	QQ	Qq	qq
Freq(genótipo)	0.5	0.3	0.2
Pr(Altura >70 genotipo)	0.3	0.6	0.9

Pr(altura > 70) = 0.3*0.5 + 0.6*0.3 + 0.9*0.2 = 0.51

Pr(QQ | altura> 70) =

Pr(altura > 70)

= 0.5*0.3 / 0.51 = 0.294

Estatística Fundamental

- Variáveis Aleatórias
- Distribuições de Probabilidade
- Distribuições Conjuntas
- Amostras Aleatórias
- Distribuição condicional e marginal

É uma função com domínio no espaço amostral de um experimento e contradomínio no conjunto dos Números Reais.

$$X(\omega) = R$$

□ Função definida no espaço amostral e definida no conjunto dos Reais

Dado um experimento aleatório com espaço amostral w, uma variável aleatória (v. a.) é uma função que associa a cada elemento amostral um número real.

□ Portanto: sempre, a qualquer variável aleatória vão estar associados, um experimento (espaço amostral); uma função de probabilidade e valores no conjunto dos reais.

- X é discreta se pode assumir um número contável de valores em um intervalo
- X é continua se puder assumir qualquer valor em um intervalo

Distribuições

□ Funções de distribuição de probabilidade f(x)

Distribuições

- \square Funções de distribuição acumulada: $F_x(.)$
- □ Função com domínio em R e contradomíno em [0,1]:

$$F(x) = P(X \le x)$$

Distribuição Uniforme (n=6)

Distribuições Acumuladas

Propriedades:

$$F_x(-\infty) = \lim_{x \to -\infty} = 0$$

$$F_x(+\infty) = \lim_{x \to +\infty} = 1$$

Distribuições Acumuladas

Propriedades:

Monótona, não decrescente

$$F_x(a) \le F_x(b)$$
 se $a < b$

Variáveis aleatórias discretas

Variáveis contínuas

Uniforme Contínua f(x)=1/(b-a)l_{a,b}(x)

Normal Padrão

$$f(x)=(2\pi)^{-1/2}e^{-x/2}$$

Distribuição Acumulada

Variáveis Discretas

$$F(x) = P(X \le x) = \sum_{-\infty}^{x} f(x)$$

Variáveis Contínuas

$$F(x) = \int_{-\infty}^{x} f(x)dx \iff f(x) = \frac{\partial F(X)}{\partial x}$$

Distribuição Acumulada (discretas)

Uniforme

Binomial

Distribuição Acumulada (contínuas)

Uniforme

Normal Padrão

Amostra aleatória

- Sejam $X_1, X_2, X_3, ... X_n$ variáveis aleatórias tais que $f(x_1, x_2, x_3, ... x_n) = f(x_1) f(x_2) f(x_3) ... f(x_n)$ sendo, $f(x_i)$ uma distribuição comum a cada X_i , então $X_1, X_2, X_3, ... X_n$ é uma amostra aleatória de tamanho n, de uma população com distribuição f(x).
- □ Amostra aleatórias são conj. de variáveis aleatórias independentes e identicamente distribuídas (iid~f(x))

Distribuições conjuntas

		P(x,y)	
X\Y	40	50	60
0	0,300	0,125	0,100
1	0,200	0,125	0,150

Distribuições Marginais

P(x,y)				
X\Y	40	50	60	P(x)
0	0,300	0,125	0,100	0,525
1	0,200	0,125	0,150	0,475
P(y)	0,50	0,25	0,25	1,00

Marginais Discretas

$$P(x) = P(X = x) = \sum_{y} P(x, y)$$

 $P(y) = P(Y = y) = \sum_{x} P(x, y)$

Exemplo

$$P(0) = P(X = 0) = \sum_{y} P(0, y) =$$
 $= P(0,40) + P(0,50) + P(0,60) =$
 $0,300 + 0,125 + 0,100 = 0,425$

Distribuições condicionais

Condicionais Discretas

Condicional

$$P(x|y) = P(X = x|Y = y) = \frac{P(x,y)}{P(y)}$$

$$Ex: P(0|40) = P(X = 0|Y = 40) = \frac{P(0,40)}{P(40)} = \frac{0,300}{0,50} = 0,60$$

Distribuições condicionais

		P(y x)		
X\Y	40	50	60	P(x)
0	0,57	0,24	0,19	0,525
1	0,42	0,26	0,32	0,475
P(y)	0,50	0,25	0,25	1,00

Marginais e Condicionais Continuas

Condicional

$$f(x \mid y) = \frac{f(x,y)}{f(y)}$$

Marginal

$$f(x) = \int_{R_y} f(x, y) dy = \int_{R_y} f(x \mid y) f(y) dy$$

Marginais e Condicionais Discretas

$$\sum_{x} P(x \mid y) = 1$$

$$\sum_{y} P(x \mid y)P(y) = P(x)$$

$$\sum_{y} P(x \mid y)P(y) = \sum_{y} P(x, y)$$

Teorema de Bayes

$$P(x|y) = \frac{P(x,y)}{P(y)} \Leftrightarrow P(x,y) = P(x|y)P(y)$$

$$P(y|x)P(x) = P(x,y) = P(x|y)P(y)$$

$$P(x|y) = \frac{P(y|x)P(x)}{P(y)}$$