Signals & Systems

Prof. J.C. Kao

University of California, Los Angeles; Department of ECETAs: A. Ghosh, T. Monsoor & G. Zhao

Due Friday, 30 Oct 2019, by 11:59pm to Gradescope.

Covers material up to Lecture 6.

100 points total.

- 1. (20 points) Linear systems Determine whether each of the following systems is linear or not. Explain your answer.
 - (a) $y(t) = \sin(t)x(t)$
 - (b) $y(t) = \frac{d}{dt}(\frac{1}{3}x(t)^3)$
 - (c) $y(t) = e^{x(t)}$
 - (d) y(t) = x(t) + u(t+1)
- 2. (13 points) LTI systems
 - (a) The input x(t) and the corresponding output y(t) of a linear time-invariant (LTI) system

$$x(t) = u(t) - u(t-1)$$
 $\longrightarrow y(t) = r(t) - 2r(t-1) + r(t-2)$

where r(t) is the ramp signal defined in lecture. Determine the outputs $y_i(t)$, i = 1, 2, 3corresponding to the following inputs

- i. (2 points) $x_1(t) = u(t) u(t-1) u(t-2) + u(t-3)$
- ii. (2 points) $x_2(t) = u(t+1) 2u(t) + u(t-1)$
- iii. (3 points) $x_3(t) = \delta(t) \delta(t-1)$
- (b) (6 points) Assume we have a linear system with the following input-output pairs:
 - the output is $y_1(t) = \cos(t)u(t)$ when the input is $x_1(t) = u(t)$;
 - the output is $y_2(t) = \cos(t)(u(t+1) u(t))$ when the input is $x_2(t) = \operatorname{rect}(t + \frac{1}{2})$.

Is the system time-invariant?

- 3. (38 points) Convolution
 - (a) (10 points) For each pair of the signals given below, compute their convolution using the flip-and-drag technique. Please provide a piecewise formula for y(t).

i.
$$f(t) = \delta(t+1) + 2\delta(t-2),$$
 $g(t) = e^{-t}u(t)$

i.
$$f(t)=\delta(t+1)+2\delta(t-2), \qquad g(t)=e^{-t}u(t)$$
 ii. $f(t)=2\ {\rm rect}(t-\frac{3}{2}), \qquad g(t)=2\ r(t-1){\rm rect}(t-\frac{3}{2})$

(b) (10 points) For each of the following, find a function h(t) such that y(t) = x(t) * h(t).

i.
$$y(t) = \int_{t-T}^{t} x(\tau) d\tau$$

ii.
$$y(t) = \sum_{n=-\infty}^{\infty} x(t - nT_s)$$

Note: this last operation creates a periodic extension of x(t) where the period is T_s .

- (c) (10 points) Use the properties of convolution to simplify the following expressions:
 - i. $[\delta(t-3) + \delta(t+2)] * [e^{3t}u(-t) + \delta(t+2) + 2]$
 - ii. $\frac{d}{dt}[(u(t)-u(t-1))*u(t-2)]$, Hint: Show first that u(t)*u(t)=r(t) where r(t) is the ramp function.
- (d) (8 points) Explain whether each of the following statements is true or false.
 - i. If x(t) and h(t) are both odd functions, and y(t) = x(t) * h(t), then y(t) is an even function.
 - ii. If y(t) = x(t) * h(t), then y(2t) = h(2t) * x(2t).

4. (12 points) Impulse response and LTI systems

Consider the following three LTI systems:

- The first system S_1 is given by its input-output relationship: $y(t) = \int_{-\infty}^{t-t_0} x(\tau-2)d\tau$;
- The second system S_2 is given by its impulse response: $h_2(t) = u(t+2)$;
- The third system S_3 is given by its impulse response: $h_3(t) = \delta(t-4)$.
- (a) (4 points) Compute the impulse responses $h_1(t)$ of system S_1 .
- (b) (4 points) The three systems are interconnected as shown below.

Determine the impulse response $h_{eq}(t)$ of the equivalent system.

(c) (4 points) Determine the response of the overall system to the input $x(t) = 0.5 * \delta(t - 2) + \delta(t - 3)$.

5. (17 points) MATLAB

To complete the following MATLAB tasks, we will provide you with a MATLAB function (nconv()), which numerically evaluates the convolution of two continuous-time functions. Make sure to download it from CCLE and save it in your working directory in order to use it.

The function syntax is as follows:

[y, ty] = nconv(x,tx,h,th)

where the inputs are:

x: input signal vector

tx: times over which x is defined

h: impulse response vector

th: times over which h is defined

and the outputs are:

y: output signal vector

ty: times over which y is defined.

The function is implemented with the MATLAB's conv() function. You are encouraged to look at the implementation of the function provided (the explanations are included as comments in the code).

(a) (5 points) Task 1

Using the nconv() function, perform the convolution of two unit rect functions: rect(t)*rect(t). Plot and label the result.

(b) (5 points) Task 2

Using the result of task 1 and the same MATLAB function, calculate y(t) = rect(t) * rect(t) * rect(t). Plot and label the result.

(c) (7 pointss) Task 3

Now, what happens if we consider $\operatorname{rect}(t) * \operatorname{rect}(t) * \cdots * \operatorname{rect}(t) = \operatorname{rect}^{(N)}(t)$? Using for loop, calculate the result of convolving N rect(t) functions together. Plot and label the result (use N = 100).

Side note in case you have taken any probability course before: Convolution is an operator that is also useful in statistics. We use it to compute the pdf (probability density function) of the sum of N independent random variables. So if we have $Y = X_1 + X_2 + X_3$, the pdf of Y is the convolution of the pdfs of X_1 , X_2 and X_3 . In task 4, we are computing the pdf of the sum of N uniform random variables (the pdf of a uniform random variable is a rect function), by convolving N times the rect function. The resulting curve will have a bell-shape. This is related to a theorem in statistics called 'The Central Limit Theorem'.