Module 7. Time series analysis

Sabine De Vreese Stijn Lievens Lieven Smits Bert Van Vreckem 2021–2022

Contents

Time series and predictions

Time series models

Mathematical model

General

Estimating the parameters

Moving average
Simple moving average
Weighted moving average
Double exponential smoothing
Forecasting
Triple exponential smoothing

Learning goals

- Concepts, time series models
- Moving average
- Exponential smoothing

Remark

You should not memorize the formulas in this module, but you should understand them!

Time series

A time series is a sequence of observations of some variable over time.

- Monthly demand for milk
- Annual intake of students at HOGENT
- Price of a share or bond on the stock exchange (hourly, daily, ...)
- Number of HTTP requests per second for a website
- Evolution of disk usage on a backup server

May decisions in business operations depend on a forecasst of some quantity

- General development of future plans (investments, capacity ...)
- Budget planning to avoid shortcomings (operating budget, marketing budget ...)
- Procurement planning (e.g. storage capacity)
- Support for financial objectives
- Avoid uncertainty

Time series are a **statistical** problem: observations vary with time

Figure: Number of heavily wounded in car accidents in Flanders.

Time series components

- Level
- Trend
- Seasonal fluctuations
- Cyclic patterns
- Random noise (residuals)

Time series decomposition

Time series models

Mathematical model time series

The simplest model:

$$X_t = b + \varepsilon_t \tag{1}$$

- \bullet X_t : estimate for time series, at time t
- ullet b: the level (a constant), based on **observations** x_t
- ε_t : random **noise**. We assume that $\varepsilon_t \sim Nor(\mu = 0; \sigma)$

Mathematical model time series

We could also assume that there is a linear relationship:

$$X_t = b_0 + b_1 t + \varepsilon_t \tag{2}$$

with **level** b_0 and **trend** b_1 .

Equation 1 and 2 are special cases of the **polynomial** case:

$$X_{t} = b_{0} + b_{1}t + b_{2}t^{2} + \dots + b_{n}t^{n} + \varepsilon_{t}$$
(3)

General expression time series

$$X_{t} = f(b_{0}, b_{1}, b_{2}, ..., b_{n}, t) + \varepsilon_{t}$$
 (4)

We make these assumptions:

- We consider two components of variability:
 - O the mean of the predictions changes with time
 - O the variations to this mean vary randomly
- The residuals of the model $(X_t x_t)$ have a constant variance in time (homoscedastic)

Estimating the parameters

Make **predictions** based on the time series model:

- 1. select the most suitable model
- 2. estimation for parameters $b_i(i:1,...,n)$ based on observations

The estimations $\hat{b_i}$ are selected so that they approximate the observed values as close as possible.

Example

Number of heavily wounded in car accidents in Flanders

Example: parameter estimation

- We select the constant model of Equation 1
- ullet You choose which observations you use to determine \hat{b} , e.g.
 - O First 70 observations: $\hat{b} = \frac{1}{70} \sum_{t=1}^{70} x_t = 346.4$
 - O Last 50 observations: $\hat{b} = \frac{10}{50} \sum_{t=47}^{96} x_t = 290.68$

Example: parameter estimation

If we want to model the observations with a linear function $X_t = b_0 + b_1 t + \varepsilon_t$, then we can use linear regression!

Moving average

Moving average

Moving Average

The moving average is a series of averages (means) of the last \boldsymbol{m} observations

- Notation: SMA
- Hide short-term fluctuations and show long-term trends
- \bullet Parameter m is the time window

$$SMA(t) = \sum_{i=k}^{t} \frac{x_i}{m}$$

with k = t - m + 1.

Example

Example: "Golden cross"

Moving averages are used in the **technical analysis** of stock prices to discover trends:

Weighted moving average

- For SMA, the weights of the observations are equal
- For a weighted moving average (WMA), more recent observations gain relatively more weight
- A specific form of this is single exponential smoothing or the exponential moving average (EMA):

$$X_{t} = \alpha X_{t-1} + (1 - \alpha)X_{t-1}$$
 (6)

with α the smoothing constant (0 < α < 1), and $t \ge 3$

Exponential smoothing

Equation 6 is only valid from t = 3. Hence, we need to choose a suitable value for X_2 ourselves. There are several options:

- \bullet $X_2 = X_1$
- $X_2 = \frac{1}{m} \sum_{i=1}^m x_i$ (so the mean of the first m observations)
- ullet make X_2 equal to a specific objective
- ..

Exponential Smoothing

Example of calculation ($\alpha = 0.1$)

$$X_1$$
 = undefined
 X_2 = X_1
 X_3 = 0.1 × 10 + 0.9 × 8 = 8.2
 X_4 = 0.1 × 13 + 0.9 × 8.2 = 8.68

Why "exponential"?

$$\begin{split} X_t &= \alpha x_{t-1} + (1-\alpha) X_{t-1} \\ &= \alpha x_{t-1} + (1-\alpha) \left[\alpha x_{t-2} + (1-\alpha) X_{t-2} \right] \\ &= \alpha x_{t-1} + \alpha (1-\alpha) x_{t-2} + (1-\alpha)^2 X_{t-2} \\ &\text{or in general:} \end{split}$$

$$= \alpha \sum_{i=1}^{t-2} (1-\alpha)^{i-1} X_{t-i} + (1-\alpha)^{t-i} X_{t-i}, t \ge 2$$

In other words: older observations have an exponentially smaller weight.

Exponential smoothing

α	$(1 - \alpha)$	$(1 - \alpha)^2$	$(1 - \alpha)^3$	$(1 - \alpha)^4$
0.9	0.1	0.01	0.001	0.0001
0.5	0.5	0.25	0.125	0.062
0.1	0.9	0.81	0.729	0.6561

Table: Values for α and $(1 - \alpha)^n$

The speed at which the old observations are "forgotten" depends on the value of α . For a value of α close to 1, old observations are quickly forgotten, whereas for α close to 0, this goes less fast.

Example

Figure: Single exponential smoothing with α = 0.1, 0.5

Forecasting

As a forecast for time t + m (m time units in the "future"), we always take the last estimate of the level:

Double exponential smoothing

Basic exponential smoothing does not work well if there is a trend in the data

Figure: Exponential smoothing with a trend: the errors keep getting bigger

Double exponential smoothing

We add an additional term to model the trend. We use b_t for the estimation of the trend at time t > 1:

$$X_t = \alpha X_t + (1 - \alpha)(X_{t-1} + b_{t-1})$$

$$b_t = \beta(X_t - X_{t-1}) + (1 - \beta)b_{t-1}$$

with $0 < \alpha < 1$ and $0 < \beta < 1$

- \bullet b_t is an estimate for the slope of the trend line
- Added to the first equation to ensure that the trend is followed
- $X_t X_{t-1}$ is positive or negative, this corresponds to an increasing/decreasing trend

Double exponential smoothing

Again, there are different options for selecting the initial values:

$$X_{1} = X_{1}$$

$$b_{1} = X_{2} - X_{1}$$

$$b_{1} = \frac{1}{3} [(x_{2} - x_{1}) + (x_{1} - x_{2}) + (x_{4} - x_{3})]$$

$$b_{1} = \frac{x_{n} - x_{1}}{n - 1}$$

Predicting (forecasting)

To make a prediction (forecast) F(t + 1) for time t + 1 we use:

$$F(t+1) = X_t + b_t$$

or in general for time t + m:

$$F(t+m) = X_t + mb_t$$

Example

Comparison of Single/Double Exponential Smoothing forecasts

Triple exponential smoothing

Some time series have recurring (seasonal) patterns, e.g.

Triple exponential smoothing

Or Holt-Winter's Method

Notation:

- L: length of the seasonal cycle (number of time units)
- \bullet c_r : term that models the seasonal variations
- γ (gamma): smoothing factor for the seasonal variation

$$X_{t} = \alpha \frac{x_{t}}{c_{t-L}} + (1 - \alpha)(X_{t-1} + b_{t-1})$$
 Smoothing
$$b_{t} = \beta(X_{t} - X_{t-1}) + (1 - \beta)b_{t-1}$$
 Trend smoothing
$$c_{t} = \gamma \frac{x_{t}}{X_{t}} + (1 - \gamma)c_{t-L}$$
 Seasonal smoothing

Triple exponential smoothing

Prediction at time t + m:

$$F_{t+m} = (X_t + mb_t)c_{t-L+m}$$

Example

Quality of a time series model

Quality of a time series model

Compare forecast results with actual observations, when they become available:

- Mean absolute error: $MAE = \frac{1}{m} \sum_{i=t+1}^{t+m} |x_i F_i|$
- Mean squared error $MSE = \frac{1}{m} \sum_{i=t+1}^{t+m} (x_i F_i)^2$

If square root of MSE is well below standard deviation over all observations, you have a good model!

