ΤΕΧΝΙΚΕΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης

Καρβουνάρης Παναγιώτης ΑΕΜ 10193

Μέθοδος Διχοτόμου

I = 0.01

ε: μεταβλητό

Για την συνάρτηση f1

Για την συνάρτηση f2

Παρατηρούμε ότι δεν υπάρχουν διαφορές στα διαγράμματα. Σημαίνει ότι ο αλγόριθμος λειτουργεί ανεξάρτητα από την συνάρτηση με τα ίδια αποτελέσματα, όσο το αρχικό διάστημα παραμένει το ίδιο. Επίσης, όσο μεγαλώνει το ε παρατηρούμε ότι αυξάνονται οι υπολογισμοί της συνάρτησης.

Ι = μεταβλητό

$$\epsilon = 0.001$$

Για την συνάρτηση f2

Τα συμπεράσματα είναι ανάλογα με τα παραπάνω

Ι = μεταβλητό

 $\epsilon = 0.001$

Για την συνάρτηση f1

I = 0.005

Για την συνάρτηση f2

I = 0.005

Όσο μεγαλύτερο είναι το Ι τόσο μεγαλύτερο είναι το διάστημα σύγκλισης του αλγορίθμου αλλά έχει μεγαλύτερη ταχύτητα.

Μέθοδος Χρυσού Τομέα

Ι = μεταβλητό

Για την συνάρτηση f1

Για την συνάρτηση f2

Για την συνάρτηση f3

Παρατηρούμε ότι δεν υπάρχουν διαφορές στα διαγράμματα. Σημαίνει ότι ο αλγόριθμος λειτουργεί ανεξάρτητα από την συνάρτηση με τα ίδια αποτελέσματα, όσο το αρχικό διάστημα παραμένει το ίδιο. Επίσης, όσο μεγαλώνει το ε παρατηρούμε ότι αυξάνονται οι υπολογισμοί της συνάρτησης.

Ι = μεταβλητό

I = 0.01

Για την συνάρτηση f2

I = 0.005

Όσο μεγαλύτερο είναι το Ι τόσο μεγαλύτερο είναι το διάστημα σύγκλισης του αλγορίθμου αλλά έχει μεγαλύτερη ταχύτητα.

Μέθοδος Fibonacci

Ι = μεταβλητό

 $\epsilon = 0.001$

Για την συνάρτηση f1

Για την συνάρτηση f2

Παρατηρούμε ότι δεν υπάρχουν διαφορές στα διαγράμματα. Σημαίνει ότι ο αλγόριθμος λειτουργεί ανεξάρτητα από την συνάρτηση με τα ίδια αποτελέσματα, όσο το αρχικό διάστημα παραμένει το ίδιο. Επίσης, όσο μεγαλώνει το ε παρατηρούμε ότι αυξάνονται οι υπολογισμοί της συνάρτησης.

Ι = μεταβλητό

I = 0.005

Για την συνάρτηση f2

I = 0.005

 $\epsilon = 0.001$

I = 0.005

Όσο μεγαλύτερο είναι το Ι τόσο μεγαλύτερο είναι το διάστημα σύγκλισης του αλγορίθμου αλλά έχει μεγαλύτερη ταχύτητα.

Μέθοδος Διχοτόμου με χρήση παραγώγων

Ι = μεταβλητό

Για την συνάρτηση f1

Για την συνάρτηση f2

Για την συνάρτηση f3

Παρατηρούμε ότι δεν υπάρχουν διαφορές στα διαγράμματα. Σημαίνει ότι ο αλγόριθμος λειτουργεί ανεξάρτητα από την συνάρτηση με τα ίδια αποτελέσματα, όσο το αρχικό διάστημα παραμένει το ίδιο. Επίσης, όσο μεγαλώνει το ε παρατηρούμε ότι αυξάνονται οι υπολογισμοί της συνάρτησης.

Ι = μεταβλητό

I = 0.005

I = 0.015

Για την συνάρτηση f2

I = 0.01

I = 0.015

Για την συνάρτηση f3 I = 0.005

I = 0.01

I = 0.015

Όσο μεγαλύτερο είναι το Ι τόσο μεγαλύτερο είναι το διάστημα σύγκλισης του αλγορίθμου αλλά έχει μεγαλύτερη ταχύτητα.