

Mestrado Integrado em Engenharia Informática e Computação Microprocessadores e Computadores Pessoais (EIC0016) Exame (estudantes com frequência)

2013/14 1° ano, 2° sem. Duração: 2:00 Sem consulta

Este exame tem 10 questões, num total de 200 pontos. Fundamente todas as respostas.

 Sistemas	de entrada	/saída	
		/	

- 1. Uma empresa pretende usar um sistema RAID-5 com 5 grupos de proteção para armazenar a sua base de dados, que ocupa 40 TB. Existem duas opções: discos do modelo D1 com capacidade para 1 TB ou discos do modelo D2 com capacidade para 2 TB.
- [10] (a) Determinar o número de discos que é necessário comprar para cada opção.

Resposta: Com existem cinco grupos de proteção, cada grupo deve ter capacidade útil de $40\,\mathrm{TB}/5 = 8\,\mathrm{TB}$. Além disso, cada grupo deve ter um disco adicional que corresponde à informação de paridade. Logo:

D1 Número de discos: $5 \times (8+1) = 45$,

D2 Número de discos: $5 \times (4+1) = 25$.

[10] (b) Determinar qual das opções leva a um sistema mais fiável.

Resposta: O sistema D1 suporta 1 falha em cada grupo, i.e., 1 falha em cada 9 discos. O sistema D2 também suporta 1 falha em cada grupo, i.e., 1 falha em cada 5 discos. Logo, o sistema D2 é mais fiável.

- 2. Um recetor GPRS (usado para comunicação de dados via rede de telemóvel) suporta uma taxa máxima de transferência de 16000 bit/s. Este periférico agrupa os dados recebidos em blocos de 400 bit. Sempre que um bloco de dados está completo, o processador deve transferi-lo do periférico para a memória. O recetor só recebe mais dados quando o bloco já completado tiver sido transferido (tempo de transferência desprezável).
- [10] (a) Assumindo que a gestão do periférico é feita por varrimento, determinar de quanto em quanto tempo é necessário fazer um varrimento de forma a garantir que não se perdem dados.

Resposta: Primeiro é preciso determinar quanto blocos devem ser transferidos por segundo. Como o computador pode receber no máximo 16000 bit/s, o número máximo de blocos é 16000/400 = 40.

É preciso fazer um varrimento para transferir um bloco, logo é necessário garantir que são feitos 40 varrimentos por segundo, i.e., um varrimento cada 25 ms.

[10] (b) Assumir agora que o atendimento do periférico é feito com uso de interrupções e que que o computador está, em média, a receber dados durante 10% do tempo. Determinar quantas vezes por segundo, em média, é que a sub-rotina de atendimento é executada.

Resposta: Em média, num segundo, o computador recebe 10% de 16000 bit, ou seja, 1600 bit. A sub-rotina de atendimento de interrupções é chamada sempre que um bloco de 400 bit está completo. Num segundo, a sub-rotina é chamada 1600/400 = 4 vezes.

Análise de código

3. Considere o seguinte programa em assembly IA-32.

```
1
   include mpcp.inc
2
3
  SBR
        proto p1:ptr byte, p2:ptr byte, n:dword
4
5
         .data
6
   cad1 byte "As armas e os baroes assinalados", 0
7
   cad2 byte lengthof cad1 dup(?)
8
        byte "%s",0
9
10
         .code
11 main:
       invoke SBR, offset cad1, offset cad2, lengthof cad1
12
13
       invoke printf, offset res, offset cad2
14
       invoke _getch
15
       invoke ExitProcess, 0
16
17
  TAM proc uses esi p:ptr byte
18
       mov esi, p
19
        .while (byte ptr [esi] != ' ' && byte ptr [esi] != 0)
20
            inc esi
21
        .endw
22
       mov eax, esi
23
       sub eax, p
24
       ret
25
  TAM endp
26
27
  SBR proc uses esi edi p1:ptr byte, p2:ptr byte, n:dword
28
       mov esi, p1
29
       mov edi, p2
30
       add edi, n
31
        .repeat
32
            invoke TAM, esi
33
            inc
                 eax
34
            mov
                 ecx, eax
35
            sub
                 edi, eax
36
       @@: movsb
37
            loop @B
38
                 edi, eax
            sub
39
        .until (byte ptr [esi-1] == 0)
```

```
40 mov edi, p2
41 mov byte ptr [edi+eax-1], ', '
42 add edi, n
43 mov byte ptr [edi-1], 0
44 ret
45 SBR endp
46 end main
```

[10] (a) Indique para que efeito é utilizada a sub-rotina TAM e determine quantas vezes é invocada durante a execução do programa.

Resposta:

A sub-rotina TAM é usada para determinar o tamanho de cada palavra da cadeia de carateres definida por cad1. Portanto, é executada 6 vezes.

[10] (b) Indique o que é apresentado no monitor quando o programa é executado e descreva a função realizada pela sub-rotina SBR.

Resposta:

No monitor aparece: assinalados baroes os e armas As

A sub-rotina SBR recebe o endereço de uma cadeia de carateres e cria uma nova cadeia composta pelas mesmas palavras da cadeia original por ordem inversa.

[10] (c) Considere a execução da primeira iteração do ciclo .repeat. Determine o número de acessos a memória durante a execução das instruções entre as linhas 36 e 39, inclusive.

Resposta: Na primeira iteração a sub-rotina TAM devolve EAX=2, correspondente ao tamanho da palavra "As", pelo que a instrução movsb é executada três vezes. Em cada uma delas é feita uma leitura e uma escrita, originando 6 acessos a memória. Na avaliação da condição na diretiva .until é feita uma leitura de memória.

Conclusão: o número de acessos a memória é 7.

[10] (d) A tabela ao lado apresenta o estado da pilha (valores em hexadecimal) imediatamente após a execução do prólogo da subrotina TAM na primeira vez em que é invocada.

O valor 011F5770H aparece em três posições da pilha. Indique a que se refere este valor e determine o endereço das posições de memória ocupadas pelos dados declarados no programa.

Endereço	Conteúdo		
001AFBBC	011F5770		
001AFBB8	011F1B21		
001AFBB4	001AFBD0		
001AFBB0	00000000		
001AFBAC	00000000		
001AFBA8	011F5770		
001AFBA4	011F1B71		
001AFBA0	001AFBB4		
001AFB9C	011F5770		

Resposta:

A execução do prólogo da sub-rotina TAM foi antecedida da invocação da sub-rotina SBR, execução do respetivo prólogo e invocação de TAM. Atendendo às instruções push executadas nestas operações pode deduzir-se o significado de cada conteúdo da pilha.

A tabela seguinte apresenta o significado do conteúdo em cada endereço da pilha e a operação que o originou.

Endereço	Conteúdo	Significado	Operação
001AFBBC	011F5770	Endereço de cad1	Invocação de SBR
001AFBB8	011F1B21	Endereço de retorno a main	Invocação de SBR
001AFBB4	001AFBD0	Valor de EBP	Prólogo de SBR
001AFBB0	00000000	Valor de ESI a preservar (uses)	Prólogo de SBR
001AFBAC	00000000	Valor de EDI a preservar (uses)	Prólogo de SBR
001AFBA8	011F5770	Valor de ESI (endereço de cad1)	Invocação de TAM
001AFBA4	011F1B71	Endereço de retorno a SBR	Invocação de TAM
001AFBA0	001AFBB4	Valor de EBP	Prólogo de TAM
001AFB9C	011F5770	Valor de ESI a preservar (uses)	Prólogo de TAM

O valor 011F5770H que ocorre nas posições 001AFBBCH, 001AFBA8H e 001AFB9CH é o endereço da cadeia de carateres definida em memória por cad1.

Os dados definidos pela diretiva .data são três sequências de bytes, traduzindo cadeias de carateres. cad1 tem 33 (=21H) carateres (incluindo o delimitador), tal como cad2. A última cadeia, res, possui apenas 3 carateres. O total de carateres (bytes) é 69 = 45H. Portanto, os dados em memória ocupam os endereços de 011F5770H a 011F57B4H.

Programação

4. Considere duas sequências S1 e S2, com N1 e N2 inteiros positivos (N1>0, N2>0), respetivamente. Cada elemento ELEM de S1 é índice de um elemento de S2. Para cada elemento de S1, pretende-se obter a soma dos elementos de S2 a partir desse índice ELEM. Este índice é válido se for menor que N2. Pretende-se criar uma sequência SEQRES, formada pelas somas assim obtidas e determinar o seu tamanho.

Exemplo: se $S1=\{2, 4, 0, 9, 1\}$ (N1=5) e $S2=\{8, 5, 1, 0, 3, 2\}$ (N2=6) então $SEQRES=\{6, 5, 19, 11\}$ e o tamanho é 4. O elemento 9 não é um índice válido de S2, não originando qualquer termo em SEQRES.

[20] (a) Implementar a sub-rotina SUBSOMA que determina a soma dos elementos de uma sequência SEQ, com N elementos, a partir do índice dado por ELEM. Caso esse índice seja válido (ELEM < N) a sub-rotina deve retornar a soma, senão deve retornar o valor -1. O protótipo desta sub-rotina é:

SUBSOMA proto ELEM: dword, SEQ:ptr dword, N:dword

```
Resposta:
SUBSOMA proc uses esi ebx ELEM: dword, SEQ:ptr dword, N:dword
     mov esi, SEQ
     mov ecx, N
     sub ecx, ELEM
     .if (sdword ptr ecx>0)
         mov eax, 0
         mov ebx, ELEM
             ebx, 2
         {	t shl}
         add
             esi, ebx
  @@:
         add eax, [esi]
         add esi, 4
         loop @B
     .else
         mov
              eax, -1
     .endif
     ret
SUBSOMA endp
```

[20] (b) Utilizar a sub-rotina anterior para implementar a sub-rotina SEQSOMAS que executa a tarefa descrita inicialmente (preenche SEQRES e retorna o respetivo tamanho). O protótipo da sub-rotina é:

```
SEQSOMAS proto S1:ptr dword,N1:dword,S2:ptr dword,N2:dword, SEQRES:ptr dword
```

```
Resposta:
SEQSOMAS proc uses esi edi ebx S1:ptr dword, N1:dword,
                 S2:ptr dword, N2:dword, SEQRES:ptr dword
          ecx, N1
      mov
      mov esi, S1
      mov edi, SEQRES
           ebx, ebx; Tamanho de SEQRES
  00: push ecx
      invoke SUBSOMA, dword ptr [esi], S2, N2
           ecx
       .if (sdword ptr eax>=0)
           mov [edi], eax
           add edi, 4
           inc ebx
       .endif
       add esi, 4
      loop @B
      mov eax, ebx
      ret
SEQSOMAS endp
```

5. Considerar a seguinte série de potências de um valor real x em que todos os coeficientes são números inteiros:

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots, \qquad a_i \in \mathbb{Z}, x \in \mathbb{R}$$

[20] (a) Escrever a sub-rotina serie, que recebe uma sequência de N+1 coeficientes inteiros e um valor real X e calcula a função real f(x). O protótipo da sub-rotina é:

serie proto A:ptr sdword, N:dword, X:real8

```
Resposta:
serie PROC a:ptr SDWORD, n: DWORD, x: REAL8
              edx, a
        mov
        fild
              SDWORD PTR [edx]
              edx, type SDWORD
        add
        mov
              ecx, n
        fld1
ciclo:
        fmul
        fild SDWORD PTR [edx]
        fmul st(0), st(1)
        faddp st(2),st(0)
        add
               edx, type sdword
        loop
              ciclo
        fstp
              st(0)
        ret
serie ENDP
```

[20] (b) A função exponencial pode ser aproximada por:

$$e^x \approx \frac{360 + 120x + 12x^2}{360 - 240x + 72x^2 - 12x^3 + x^4}$$

Usando a sub-rotina da alínea anterior, escrever um programa que apresenta no monitor o valor aproximado de e^x para $x=0,0.05,0.1,0.15,\ldots 2.0$ (21 valores). Cada linha deve incluir o valor de x e o valor aproximado de e^x correspondente.

```
Resposta:
NPONTOS = 21
serie PROTO a: ptr SDWORD, n: DWORD, x: REAL8
        .data
output
         BYTE
               "exp(%f) = %f", 13, 10, 0
contador dword 0
coef_a sdword 360, 120, 12
         sdword 360, -240, 72, -12, 1
coef_b
xval
         real8 0.0
res
        real8
с5
         real8
               0.05
       .code
main:
  .WHILE contador < NPONTOS
   invoke serie, offset coef_a, lengthof coef_a - 1, xval
```

```
fstp
   invoke serie, offset coef_b, lengthof coef_b - 1, xval
   fdivr
   fstp
          res
   invoke printf, offset output, xval, res
   fld
          xval
   fadd
  fstp
          xval
          contador
   inc
   .ENDW
   invoke _getch
   invoke ExitProcess, 0
end main
```

Escolha múltipla

[8] 6. Supondo que AL=54h, indique qual das instruções tem como resultado AL=45h.

```
A. ror AL,3 B. rol AL,4 C. rcr AL,3 D. rcr AL,4
```

```
Resposta: B.
```

[8] 7. Supondo que inicialmente ECX=2 e EDI=200000h, o fragmento de código

std
xor eax,eax
rep stosd

preenche com zero a zona de memória compreendida entre:

A. 200000h e 200007h

B. 200002h e 200009h

C. 1FFFFCh e 200003h

D. 1FFFF8h e 1FFFFFh

Resposta: C.

[8] 8. A declaração em C++ da rotina calc é:

```
extern "C" double calc(int n, double f);
```

Indique o cabeçalho da correspondente sub-rotina em linguagem assembly.

- A. calc proc C uses edi esi n:dword, f:real8
- B. calc proc C uses ebx n:sdword, f:real8
- C. calc proc C n:sword, f:real10
- D. calc proc C n:sdword, f:real4

Resposta: B.

[8] 9. O modelo de disco magnético M1 roda a 7500 RPM. O modelo M2 é idêntico, mas tem uma velocidade de rotação de 15000 RPM.

Para ler um setor, o disco M1 tem um tempo médio de acesso t_1 e o disco M2 um tempo médio t_2 . Indique a afirmação verdadeira.

A.
$$t_2 = \frac{t_1}{2}$$
 B. $t_1 = t_2$ C. $t_2 < \frac{t_1}{2}$ D. $\frac{t_1}{2} < t_2 < t_1$

Resposta: D.

[8] 10. Considere o seguinte fragmento:

mov edi, 07004000H mov esi, 07005000H mov ecx, 16 rep movsw

Quantos bytes de dados são mudados de posição durante a execução do fragmento?

A. 32 B. 16 C. 0 D. 64

Resposta: A.

Fim do enunciado.