

UNIVERSIDAD DE LAS FUERZAS ARMADAS "ESPE" CIENCIAS EXACTAS ESTADÍSTICA

Nombre: Andrés Revelo

NRC: 13899

Manual para la Prueba de Hipótesis de dos muestras dependientes e independientes en Excel

• Muestra independiente

Una vez iniciado el Excel colocamos nuestros datos en este caso la tabla que contiene los valores correspondientes.

Pequeñas Independientes							
Ing Software	TIC'S	X1 ²	X2 ²				
12	21	144	441				
11	23	121	529				
7	25	49	625				
15	27	225	729				
19	29	361	841				
18	15	324	225				
17	8	289	64				
19		361					
118	148	1874	3454				
	Ing Software 12 11 7 15 19 18 17	Ing Software TIC'S 12 21 11 23 7 25 15 27 19 29 18 15 17 8 19	Ing Software TIC'S X1 ² 12 21 144 11 23 121 7 25 49 15 27 225 19 29 361 18 15 324 17 8 289 19 361				

Después de eso es opcional sacar la sumatoria de las columnas y sus cuadrados, en este caso si se lo hizo.

-Cálculos mediante función para datos propuestos.

Para este caso nos vamos a la pestaña de datos dentro de Excel

Luego vamos a análisis de datos

Allí se nos desplegara un recuadro con varias opciones, para ello damos click en la opción "Prueba t para dos muestras suponiendo varianzas iguales"

Se nos desplegara otro recuadro para ingresar nuestros datos:

Vamos a elegir el rango de la variable 1, rango variable 2 si contiene rotulos esos rangos marcamos con un visto la opción, especificamos con que valor de alfa estamos trabajando y finalmente si queremos los resultados en otra hoja, en la misma hoja especificando un rango, en este caso lo hicimos así. Y damos click en aceptar

Y vemos como se nos desplega los cálculos realizados automáticamente por la aplicación

Prueba t para dos muestras suponiendo varianzas iguales					
	Ing Software	TIC'S			
Media	14,75	21,1428571			
Varianza	19,0714286	54,1428571			
Observaciones	8	7			
Varianza agrupada	35,2582418				
Diferencia hipotética de las medias	0				
Grados de libertad	13				
Estadístico t	-2,0802382				
P(T<=t) una cola	0,0289241				
Valor crítico de t (una cola)	1,35017129				
P(T<=t) dos colas	0,0578482				
Valor crítico de t (dos colas)	1,7709334				

Hecho esto, ocupamos estos datos proporcionados para resolver el ejercicio que se nos plantee, ya que es más fácil porque los cálculos ya están hechos. A continuación, se presenta la resolución del ejercicio.

Probar la hi	ipótesis m1= m2 con un alfa de 0,10			
a) m1=m2				
Pasos				
1)	H0: m1=m2			
	H1: m1≠m2			
2)	α= 0,10 = gl = n1 + n2 - 2 = 8+7-2= 13=> 1,771			
3)	t=-2,08			
4)	Ho se acepta si -1,771 ≤ t ≤ 1,771			
-,				
5)	Ho se rechaza; la muestra dos es diferente a la muestra 1			

• Muestra independiente

Una vez iniciado el Excel colocamos nuestros datos en este caso la tabla que contiene los valores correspondientes.

Pequeñas Dependientes Promedio TIC's						
#	Parcial 1	Parcial 2	d	d^2		
1	11,8	12,89	-1,09	1,1881		
2	12,9	15,9	-3	9		
3	13,5	17,67	-4,17	17,3889		
4	18,6	13,67	4,93	24,3049		
5	12	13,00	-1	1		
6	15	14,89	0,11	0,0121		
7	13,78	15,78	-2	4		
8	19,34	18,98	0,36	0,1296		
9	17,56	16,45	1,11	1,2321		
10	10,21	14,65	-4,44	19,7136		
Sumatoria			-9,19	84,4561		

Después de eso es opcional sacar la sumatoria de las columnas y sus cuadrados, en este caso si se lo hizo.

-Cálculos mediante función para datos propuestos.

Para este caso nos vamos a la pestaña de datos dentro de Excel

Luego vamos a análisis de datos

Allí se nos desplegara un recuadro con varias opciones, para ello damos click en la opción "Prueba t para medias de dos muestras emparejadas"

Se nos desplegara otro recuadro para ingresar nuestros datos:

Vamos a elegir el rango de la variable 1, rango variable 2 si contiene rótulos esos rangos marcamos con un visto la opción, especificamos con que valor de alfa estamos trabajando y finalmente si queremos los resultados en otra hoja, en la misma hoja especificando un rango, en este caso lo hicimos así. Y damos click en aceptar.

Y vemos como se nos despliega los cálculos realizados automáticamente por la aplicación

Prueba t para medias de dos muestras emparejadas Parcial 1 Parcial 2 Media 14,469 15,388 Varianza 9,54023222 3,92670667			
	Parcial 1	Parcial 2	
Media	14,469	15,388	
Varianza	9,54023222	3,92670667	
Observaciones	10	10	
Coeficiente de correlación de Pearson	0,46907888		
Diferencia hipotética de las medias	0		
Grados de libertad	9		
Estadístico t	-1,0456115		
P(T<=t) una cola	0,16150474		
Valor crítico de t (una cola)	1,83311293		
P(T<=t) dos colas	0,32300948		
Valor crítico de t (dos colas)	2,26215716		

Hecho esto, ocupamos estos datos proporcionados para resolver el ejercicio que se nos plantee, ya que es más fácil porque los cálculos ya están hechos. A continuación, se presenta la resolución del ejercicio.

Pruebe la hipote:	sis con un nivel de sig	nificancia de	0,05						
a) Ud =0									
Pasos	1)	H0: Ud=0							
		H1:Ud≠0							
	2)	α= 0,05	n-1= 10-1 = 9=> +-2,262						
	3) t= -1,05								
	4) H0 se acepta si -2	epta si -2,262	≥ t ≥ 2,262						
	5) H0 se ace	epta; la difere	encia significati	va no es dife	rente de 0 er	itre los prom	edios del prin	iero y segundo j	oarcia