Modélisation linéaire du programme d'optimisation

Matthieu Roux

13 mars 2018

1 Données

- commandes c_i , : $1 \le i \le N_{commandes}$
- instant où la commande c_i est passée : t_i
- instant où la production peut commencer : T_{debut}
- boissons b_{ij} , : $1 \le i \le N_{commandes}$, $1 \le j \le N_i \le A_{max}$
- N_i nombre de boissons dans la commande c_i
- nombre total de boissons : N_{total}
- clusters cl_k , : $1 \le k \le N_{total}$
- types de boissons différentes : $1 \le z \le N_{types}$
- $\bullet\,$ taille max d'un cluster produisant des boissons de type z : $taille_z$
- \bullet paramètres de production des boissons de type z : $a_z^1,a_z^2,a_z^3,~$ avec $a_z^1>a_z^3>a_z^2\geq 0$
- $\bullet\,$ temps d'attente d'une commande jugé "raisonnable" : τ
- facteur de pénalisation des temps d'attente trop longs : α

2 Paramètres

- type de boissons produites au cluster cl_k (vaut 0 si le cluster est vide) : B_k
- \bullet instant de début de production du cluster cl_k : T_k
- instant de fin de production : T_{fin}
- $\bullet\,$ nombre de boissons dans le cluster cl_k : n_k

- $\bullet\,$ variables intermédiaires de production du cluster cl_k : h_k^1, h_k^2, g_k
- indique si les clusters cl_k et cl_{k-1} sont de même type (vaut 0 si c'est le cas, 1 sinon ; on pose $\beta_1=1$) : β_k

3 Fonction objectif

$$min \sum_{i=1}^{N_{commandes}} (l_i - t_i) + \alpha \eta_i$$

4 Contraintes

$$y_{ijk} = \left\{ \begin{array}{ll} 1 & \text{si } b_{ij} \text{ dans le cluster } cl_k \\ 0 & \text{sinon} \end{array} \right.$$

 b_{ij} affectée à 1 et 1 seul cluster :

$$\forall i, \forall j, \quad \sum_{k=1}^{N_{total}} y_{ijk} = 1$$

$$w_{kz} = \begin{cases} 1 & \text{si cluster } cl_k \text{ de type } z \\ 0 & \text{sinon} \end{cases}$$

Chaque cluster est affecté à la production d'un seul type de boisson :

$$\forall k, \quad \sum_{z=1}^{N_{types}} w_{kz} = 1$$

Type de boissons produites au cluster cl_k :

$$\forall k, \quad B_k = \sum_{z=1}^{N_{types}} z w_{kz}$$

Toutes les boissons d'un cluster sont d'un même type :

$$\forall k, \forall i, \forall j, \quad b_{ij}y_{ijk} = B_k$$

Taille du cluster cl_k :

$$\forall k, \quad n_k \ge \sum_{i=1}^{N_{commandes}} \sum_{i=1}^{N_i} y_{ijk}$$

On ne met pas plus de boissons dans un cluster que la taille max autorisée par le type produit :

$$\forall k, \quad n_k \leq taille_{B_k}$$

$$\forall k$$
 :

$$h_k^1 \ge 0$$

$$h_k^1 \le n_k$$

$$h_k^1 \le 1$$

$$h_k^2 = n_k - h_k^1$$

$$\beta_1 = 1$$

 $\forall 2 \leq k \leq N_{total}$:

$$g_k \ge B_k - b_{k-1}$$
$$g_k \ge B_{k-1} - B_k$$
$$\beta_k \ge 0$$
$$\beta_k \le 1$$
$$\beta_k \le g_k$$

Temps de production :

$$T_1 \ge T_{debut}$$

$$\forall 2 \leq k \leq N_{total}, \quad T_k \geq T_{k-1} + h_k^1 (a_{B_k}^3 + (a_{B_k}^1 - a_{B_k}^3) \beta_k) + h_k^2 a_{B_k}^2$$

$$T_{fin} \geq T_{N_{total}} + h_{N_{total}}^1 (a_{B_{N_{total}}}^3 + (a_{B_{N_{total}}}^1 - a_{B_{N_{total}}}^3) \beta_k) + h_{N_{total}}^2 a_{B_{N_{total}}}^2$$

Temps de livraison des commandes :

$$\forall i, \forall 1 \leq N_i, \quad l_i \geq \sum_{k=1}^{N_{total}} y_{ijk} T_k$$

Pénalisation des temps d'attentes par commande trop long :

$$\forall i, \quad l_i - t_i \leq \tau + \eta_i$$