A Discrete Büchi Automata Distance for Formal Methods Based Control

Garrett Thomas

Supervisor: Lars Lindemann

Examiner: Professor Dimos V. Dimarogonas

Automatic Control Department Royal Institute of Technology, KTH

June 28th, 2017

- Problem and Motivation
 - Formal Methods Based Control
 - The Product Automaton
 - Execution: Path Finding
- Our Contribution
 - Büchi Distance and Algorithm
- Performance on Common Formulas
 - Workspace
 - Reachability While Avoiding Regions
 - Sequencing

- Problem and Motivation
 - Formal Methods Based Control
 - The Product Automaton
 - Execution: Path Finding
- Our Contribution
 - Büchi Distance and Algorithm
- Performance on Common Formulas
 - Workspace
 - Reachability While Avoiding Regions
 - Sequencing

Linear Temporal Logic

• We will be using **Linear Temporal Logic (LTL)**, defined recursively as $\varphi ::= \top |\alpha| \neg \varphi_1| \varphi_1 \vee \varphi_2 |\mathbf{X} \varphi_1| \varphi_1 \mathcal{U} \varphi_2$

Linear Temporal Logic

- We will be using Linear Temporal Logic (LTL), defined recursively as $\varphi ::= \top |\alpha| \neg \varphi_1 |\varphi_1 \vee \varphi_2| \mathbf{X} \varphi_1 |\varphi_1 \mathcal{U} \varphi_2$
- Why?LTL formulas are versatile; LTL allows us to encode statements about the robot and workspace, and also how events relate to each other in the time domain.

Ex. from [Guo15] $\varphi = \diamond (\text{rball} \land \diamond \text{basket}) \land \diamond \neg r1$

"Eventually pick up the red ball and put it in one of the baskets."

Then go home to r1"

LTL Motion and task planning is done in three Steps [BBE+07]

- LTL Motion and task planning is done in three Steps [BBE+07]
- Specification: Create a graph (the product automaton) based on the workspace, robot motion, and LTL formula such that all paths in this graph satisfy the specification.

- LTL Motion and task planning is done in three Steps [BBE+07]
- Specification: Create a graph (the product automaton) based on the workspace, robot motion, and LTL formula such that all paths in this graph satisfy the specification.
- Execution: Find a discrete path in this graph using an optimality criterion.*

- LTL Motion and task planning is done in three Steps [BBE+07]
- Specification: Create a graph (the product automaton) based on the workspace, robot motion, and LTL formula such that all paths in this graph satisfy the specification.
- Execution: Find a discrete path in this graph using an optimality criterion.*
- Implementation: Calculate the continuous controllers such that the continuous path will satisfy the discrete path.

- Problem and Motivation
 - Formal Methods Based Control
 - The Product Automaton
 - Execution: Path Finding
- Our Contribution
 - Büchi Distance and Algorithm
- 3 Performance on Common Formulas
 - Workspace
 - Reachability While Avoiding Regions
 - Sequencing

Finite-State Transition System

• The product automaton is the of a *finite-state transition system* and a *Büchi automaton*

Finite-State Transition System

• The product automaton is the of a *finite-state transition system* and a *Büchi automaton*

Finite-State Transition System (FTS)

An FTS is a tuple $\mathcal{T}=(\Pi,\to,\Pi_0,AP,L_D)$ where Π is the set of states, $\to\subseteq\Pi\times\Pi$ is the transitions, $\Pi_0\subseteq\Pi$ is the initial state(s), AP is the set of atomic propositions, and $L:\Pi\to 2^{AP}$ is the labelling function (goes from a state to the set of atomic propositions that are true in that state).

Büchi Automaton

Büchi Automaton

A Büchi automaton is a tuple $\mathcal{A}_{\varphi} = (\mathcal{Q}, 2^{AP}, \delta, \mathcal{Q}_0, \mathcal{F})$ where \mathcal{Q} is a finite set of states, $\mathcal{Q}_0 \subseteq \mathcal{Q}$ is the set of initial states, 2^{AP} is the alphabet, $\delta : \mathcal{Q} \times 2^{AP} \to 2^{\mathcal{Q}}$ is a transition relation, and $\mathcal{F} \subseteq \mathcal{Q}$ is the set of accepting states.

- A path on a Büchi automaton is accepting if it passes through an accepting state infinitely many times.
- For any LTL formula φ over AP, there exists a Büchi automaton over 2^{AP} corresponding to φ [BKL08]

Reachability while avoiding regions $\varphi = \neg \pi_4 \mathcal{U} \pi_5$

Product Automaton

Product Automaton

$$\begin{split} \mathcal{A}_{p} &= \mathcal{T}_{w} \otimes \mathcal{A}_{\varphi} = (Q', \delta', Q'_{0}, \mathcal{F}', W_{p}), \text{ where} \\ Q' &= \Pi \times Q = \{\langle \pi, q \rangle \in Q' | \forall \pi \in \Pi, \ \forall q \in Q\}; \ \delta' : Q' \rightarrow 2^{Q'}. \\ \langle \pi_{j}, q_{n} \rangle &\in \delta'(\langle \pi_{i}, q_{m} \rangle) \text{ iff } (\pi_{i}, \pi_{j}) \in \rightarrow_{c} \text{ and } q_{n} \in \delta(q_{m}, L_{d}(\pi_{j})); \\ Q'_{0} &= \{\langle \pi, q \rangle | \pi \in \Pi_{0}, \ q_{0} \in Q_{0}\}, \ \mathcal{F}' = \{\langle \pi, q \rangle | \pi \in \Pi, q \in \mathcal{F}\} \end{split}$$

Also a Büchi automaton

- Problem and Motivation
 - Formal Methods Based Control
 - The Product Automaton
 - Execution: Path Finding
- Our Contribution
 - Büchi Distance and Algorithm
- 3 Performance on Common Formulas
 - Workspace
 - Reachability While Avoiding Regions
 - Sequencing

Accepted Algorithm

We prefer a prefix, suffix structure

$$R = \langle R_{pre}, R_{suf} \rangle = q_0' q_1' \dots q_f' [q_f' q_{f+1}' \dots q_n']^{\omega}$$

Here is the algorithm currently used in the literature [Guo15],[FGKGP09],[KB08],[STBR10]

Procedure 1 OptRun() [Guo15]

Input: Input A_p

Output: R_{opt}

- 1: For initial state $q_0' \in \mathcal{Q}_0'$, find the optimal path to each $q_f' \in \mathcal{F}$.
- 2: For each accepting state $q_f' \in \mathcal{F}'$, calculate the optimal path back to q_f' .
- 3: Find the pair of $(q'_{0,opt}, q'_{f,opt})$ that minimizes the total cost
- 4: Optimal accepting run R_{opt} , prefix: shortest path from q'_{0*} to q_{f*} ; suffix: the shortest cycle from q'_{f*} and back to itself.

- Problem and Motivation
 - Formal Methods Based Control
 - The Product Automaton
 - Execution: Path Finding
- Our Contribution
 - Büchi Distance and Algorithm
- 3 Performance on Common Formulas
 - Workspace
 - Reachability While Avoiding Regions
 - Sequencing

Büchi Distance Measure

 We introduce a discrete Büchi distance measure, which is the least number of transitions possible to get to an accepting state

Büchi Distance Measure

 We introduce a discrete Büchi distance measure, which is the least number of transitions possible to get to an accepting state

Ex. Sequencing $\diamond(\pi_3 \land \diamond \pi_5)$

Büchi Distance Measure

 We introduce a discrete Büchi distance measure, which is the least number of transitions possible to get to an accepting state

Ex. Sequencing $\diamond(\pi_3 \land \diamond \pi_5)$

• Denoted $d_p: \mathcal{Q} \to \mathbb{Z}$, e.g. $d_p(q_2) = 1$

Note: Transitions with && are removed from LTL2BA because regions do not overlap

Our Algorithm

- Motivation for our algorithm: $\mathcal{F}' = \{\langle \pi, q \rangle | \pi \in \Pi, q \in \mathcal{F} \}$
- We greedily find the optimal path which reduces the Büchi distance at each step

Procedure 2 GreedyRun()

Input: Input $A_{p,d}$

Output: R_g

- 1: LEVEL = $d_p(q_0' \in \mathcal{Q}_0')$
- 2: while LEVEL > 0 do
- 3: find optimal path down to q_n' s.t. $d_p(q_n') == LEVEL 1$
- 4: Level = Level 1
- 5: Find optimal path from q'_n back to itself
- 6: Accepting run R_g , prefix: the optimal paths calculated in the while loop concatenated together; suffix: optimal path from q'_n back to itself.

Why?

- We approximate the globally optimal path with a series of locally optimal paths
- We sacrifice a degree of optimality for easier computation!

- Problem and Motivation
 - Formal Methods Based Control
 - The Product Automaton
 - Execution: Path Finding
- Our Contribution
 - Büchi Distance and Algorithm
- 3 Performance on Common Formulas
 - Workspace
 - Reachability While Avoiding Regions
 - Sequencing

Workspace

- Problem and Motivation
 - Formal Methods Based Control
 - The Product Automaton
 - Execution: Path Finding
- Our Contribution
 - Büchi Distance and Algorithm
- 3 Performance on Common Formulas
 - Workspace
 - Reachability While Avoiding Regions
 - Sequencing

Figure: Büchi automaton corresponding to $\neg(\pi_1 \lor \pi_2 \lor \dots \pi_n)\mathcal{U}\pi_{n+1}$

$$d_p(q_1)=1$$
 and $d_p(q_2)=0$

- Problem and Motivation
 - Formal Methods Based Control
 - The Product Automaton
 - Execution: Path Finding
- Our Contribution
 - Büchi Distance and Algorithm
- 3 Performance on Common Formulas
 - Workspace
 - Reachability While Avoiding Regions
 - Sequencing

• We look at the sequencing formula $\diamond(\pi_1 \land \diamond(\pi_2 \land \diamond \pi_3))$

Figure: Büchi Automaton Corresponding to $\diamond(\pi_3 \land \diamond \pi_5)$

References I

- Calin Belta, Antonio Bicchi, Magnus Egerstedt, Emilio Frazzoli, Eric Klavins, and George J Pappas, *Symbolic planning and control of robot motion [grand challenges of robotics]*, IEEE Robotics & Automation Magazine **14** (2007), no. 1, 61–70.
- Christel Baier, Joost-Pieter Katoen, and Kim Guldstrand Larsen, *Principles of model checking*, MIT press, 2008.
- Georgios E Fainekos, Antoine Girard, Hadas Kress-Gazit, and George J Pappas, *Temporal logic motion planning for dynamic robots*, Automatica **45** (2009), no. 2, 343–352.
- Meng Guo, *Hybrid control of multi-robot systems under complex temporal tasks*, Ph.D. thesis, KTH Royal Institute of Technology, 2015.

References II

Stephen L Smith, Jana Tumova, Calin Belta, and Daniela Rus, Optimal path planning under temporal logic constraints, Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, IEEE, 2010, pp. 3288–3293.