

Ballon stratosphérique Lycée Touchard Washington

Étudiants : ABRAHAM Thomas, BROCHARD Damien, AUTHIER Ruben

Professeurs référents : Le Cren Anthony, Simier Philippe, Bernard Didier, Patrice Hérisson

Table des matières

Ballon stratosphérique Lycée Touchard Washington	1
Compte Rendu d'expériences Ballon 2024	3
1 Présentation générale	3
2 Prévision de la trajectoire du ballon-sonde	3
3 Pesée - Vitesse de montée	
4 Le suivi de la trajectoire du ballon	5
5 Éclatement du ballon	
6 Atterrissage & récupération de la nacelle	9
7 Photos du ballon transmises en SSTV	10
8 Alimentation de la charge utile	11
9 Fréquences et Indicatifs utilisés	12
10 La mesure des radiations	13
11 Evolution de la température avec l'altitude	15
12 Température minimale à l'intérieur de la nacelle	16
13 Evolution de la pression avec l'altitude	
14 Trames APRS via LoRA	18
15 Source des logiciels sur Github	19
16 Conclusions générales	

Compte Rendu d'expériences Ballon 2024

1 Présentation générale

Le projet de ballon stratosphérique a été réalisé par trois étudiants dans le cadre de leur projet de deuxième année de BTS Systèmes Numériques, option Informatique, durant l'année scolaire 2023-2024. Les principales motivations de ce projet étaient de vérifier la loi des gaz parfaits et d'expérimenter la transmission radiofréquence en LoRa, à la fois en montée et en descente. Le ballon a été lancé le 31 mai 2024 depuis Le Mans (72), suivi par une voiture, et récupéré quelques temps après son atterrissage. Malgré quelques petits problèmes, les résultats des expériences se sont révélés intéressants et exploitables.

2 Prévision de la trajectoire du ballon-sonde

Le site <u>predict.sondehub.org</u> est l'outil en ligne utilisé pour la prévision de la trajectoire. Il permet de prévoir la trajectoire du ballon-sonde stratosphérique en fonction des conditions météorologiques et des données de lancement. Cela inclut la direction et la distance que le ballon parcourra avant d'atteindre sa hauteur maximale et de redescendre.

En prévoyant où le ballon atterrira, cela nous aide à organiser la récupération du ballon et de sa charge utile. Cela est crucial pour notre projet car les données enregistrées par les instruments à bord doivent être récupérées.

3 Pesée - Vitesse de montée

Le ballon s'élève dans l'atmosphère grâce à la poussée d'Archimède.

La masse de la nacelle est de **1610 g**, respectant ainsi la limite de 1800 g exigée par le cahier des charges du CNES. Le gonflage du ballon a été ajusté avec 5,5 m³ d'hélium afin de garantir une portance permettant une vitesse ascensionnelle de **5,3 m/s**.

Vitesse ascensionnelle décollage = 4,74 m/s

Vitesse ascensionnelle à $4000 \text{ m} = \frac{5,21 \text{ m/s}}{2}$

Vitesse ascensionnelle à 20000 m = $\frac{5,41 \text{ m/s}}{}$

Vitesse ascensionnelle à 30000 m = 6.57 m/s

4 Le suivi de la trajectoire du ballon

Le taux de mise à jour pour le suivi est d'une fois par minute sur la fréquence 433 MHz (Lora) et d'une fois toutes les deux minutes pour les fréquences 137,05 MHz (APRS FX25)

Temps de vol

Départ 13h 14' 15'' Arrivée 16h 29' 55'' durée 2h 45' 40''

5 Éclatement du ballon

À mesure que le ballon s'élève, la pression de l'air environnant diminue. En conséquence, l'hélium occupe un volume de plus en plus grand, ce qui entraîne la dilatation du ballon jusqu'à ce qu'il éclate.

Le centre de gravité étant situé dans la partie supérieure de la nacelle (côté opposé à la caméra), lorsque le ballon éclate, la nacelle bascule sur le côté, permettant ainsi à la caméra de filmer les restes de l'enveloppe du ballon. L'altitude à l'éclatement était de 34 295 m. Les années précédentes, la nacelle était plus lourde (1800 g), ce qui nécessitait un volume d'hélium plus important et provoquait l'éclatement du ballon vers 30 000 m. En conclusion, un ballon contenant moins d'hélium éclate à une altitude plus élevée.

A ce moment, la chaîne de vol redescend vers la terre. Le parachute inséré initialement « en sapin » entre l'enveloppe du ballon et le réflecteur radar, joue alors son rôle de frein.

On remarque une vitesse de montée presque constante, entre 5 m/s et 6 m/s, et une vitesse de descente qui suit bien celle de la masse volumique de l'air.

Indicatif de la voiture suiveuse F4KMN-10

le parcours de la voiture suiveuse

6 Atterrissage & récupération de la nacelle

Le véhicule suiveur a emprunté l'autoroute et est arrivé près du point de chute prévisionnel environ 30 minutes avant l'atterrissage. Sa présence est cruciale car, lorsque la nacelle est proche du sol, il relaie les trames LoRa vers le serveur aprs.fi. Finalement, il est arrivé sur la zone du point de chute peu après l'atterrissage, ce qui a permis une recherche rapide et réussie. La charge utile, avec son réflecteur et son parachute, se sont accrochés à un arbre de petite taille dans la forêt domaniale de Chinon. Heureusement, la récupération n'a pas posé de problèmes insurmontables.

7 Photos du ballon transmises en SSTV

La SSTV (Slow Scan Television) est une méthode de transmission d'images fixes via des ondes radio, utilisée principalement par les radioamateurs. Contrairement à la télévision traditionnelle qui transmet des images à un rythme de plusieurs dizaines par seconde, la SSTV transmet une seule image en 116 secondes, avec le mode utilisé Martin 1. Les images sont converties en signaux audio, envoyées en modulation BLU via la fréquence radio 29,000 Mhz, puis reconverties en images à la réception au sol.

Photos reçues pendant le vol:

Les photos sont de bonne qualité et comportent en incrustation l'indicatif du radio-club du lycée ainsi que l'heure de la prise de vue.

Les photos sont transmises à raison d'une toutes les 5 minutes.

8 Alimentation de la charge utile

L'alimentation de la charge utile du ballon est un élément crucial pour le succès du projet. Sa conception est complexe et peut entraîner l'échec total du projet si elle n'est pas bien réalisée. Plusieurs contraintes doivent être prises en compte :

- La masse limitée de la charge utile, qui oblige à limiter le nombre de batteries et à surveiller leur taux de charge.
- Le courant de pointe, car alimenter l'électronique d'instrumentation et un émetteur à partir de la même source est un défi.
- Les conditions de température, car les caractéristiques des batteries sont mal documentées à température ambiante et inconnues à des températures très basses.

Bilan électrique

Les cartes électroniques doivent être alimentées avec une

- Tension d'alimentation continu de 5V et de 12V pour l'amplificateur radio
- Consommation moyenne 350 mA .

Réalisation

Trois accumulateurs **18650** (lithium-ion) d'une capacité de 3000 mAh chacun sont utilisés. Leur tension nominale est de 3,6 V. Montés en série, la tension aux bornes de l'ensemble atteint 12,6 V lorsqu'ils sont complètement chargés et 9,6 V lorsqu'ils sont déchargés.

La surveillance de ces accumulateurs est assurée par une carte électronique de gestion appelée BMS (Battery Management System). Le BMS interrompt la décharge

des cellules avant que cela n'affecte leur durée de vie de manière critique. Il arrête également la charge des cellules avant qu'elles ne soient surchargées. De plus, il optimise un chargement homogène entre les cellules et vérifie leur température.

Un convertisseur DC-DC buck (hacheur série) réduit la tension des batteries à 5 V. Le capteur INA219 est également utilisé pour mesurer le courant et la tension des accumulateurs. Cela permet de connaître en temps réel leur état de charge grâce au calcul du SOC (State of Charge) en pourcentage.

Une carte spécifique a été développée pour connecter tous les éléments.

Avant le lancement, les batteries sont maintenues chargées à l'aide d'une alimentation externe à la nacelle. Juste avant le lancement, cette alimentation externe est déconnectée.

La tension au décollage était de **12,1 V** et, à la fin du vol, de **11,3 V**. La charge restante était de 68 % de la capacité nominale.

L'alimentation a parfaitement rempli sa fonction.

9 Fréquences et Indicatifs utilisés

La nacelle est équipée de quatre émetteurs radiofréquences:

- APRS sur LoRa fréquence **433,775 MHz** indicatif **F4KMN-11** localisation
- APRS sur FX25 fréquence 137,05 MHz indicatif F4KMN-13 localisation et télémétrie
- APRS sur LoRa fréquence 433,775 MHz indicatif F4KMN-9 télémétrie
- SSTV sur BLU fréquence 29,000 MHz indicatif F4KMN télévision

Pour éviter les interférences et les collisions entre les deux émetteurs opérant sur la même fréquence, les émissions sont décalées dans le temps.

- trame APR FX25 toutes les 2 minutes à la seconde 57
- trame APRS Lora toutes les 2 minutes à la seconde 20 pour la localisation
- trame APRS Lora toutes les 2 minutes à la seconde **30** pour la télémétrie
- image SSTV toutes les 5 minutes à la seconde **0**

10 La mesure des radiations

Une des expériences embarquées consiste à mesurer la radioactivité en altitude, ce qui présente plusieurs difficultés. Divers capteurs sont possibles, mais les contraintes de masses et de coût limitent énormément les possibilités. En définitive, nous avons fait au plus simple, en choisissant un compteur Geiger du commerce, ce qui permet de mesurer le flux de particules d'une certaine énergie dans l'élément sensible. Le compteur, choisi pour son coût, sa simplicité et sa disponibilité, est un modèle **radiation watch.** (Plage de mesure de 0,05 uSv/h à 10 mSv/h entre 0,01 cpm et 300 Kcpm)

Le rayonnement est composé de photons gamma et de particules capables de provoquer, directement ou indirectement, la formation d'ions (par arrachement d'électrons) dans la matière qu'ils traversent.

La détection du rayonnement ionisant repose sur un type particulier de diode, la **diode PIN**. PIN pour Positive Intrisic Negative fait référence directement à la manière dont est constitué le composant. Dans une diode PIN on trouve entre les zones P et N une zone non dopée dite intrinsèque.

La structure PIN permet la détection de photons, un peu à la manière d'un tube Geiger-Muller avec un effet cascade et une brève conductivité. Cela signifie que si un rayon de haute énergie est absorbé, un signal détectable d'électrons est généré. l'absorption photoélectrique est dominante dans la région d'énergie gamma d'intérêt entre 5 keV et 100 keV. Les détecteurs basés sur **l'absorption directe dans le silicium** constituent une alternative peu coûteuse par rapport au détecteur à gaz (tube Geiger-Muller).

Notre expérience vise à confirmer les données concernant le maximum **Regener-Pfotzer**. Nous n'avons trouvé aucune étude européenne sur le maximum de Regener-Pfotzer lors de nos recherches.

Lors de nos mesures nous avons constaté un maximum à 69369 pieds = $21 \ 143 \ m \rightarrow 107 \ cpm$ La dose de rayonnement diminue comme prévu lorsque le capteur atteint des altitudes plus élevées que ce Maximum dit de Regener-Pfotzer .

radiation en fonction de l'altitude

Conclusion : Nous observons bien un maximum pour l'altitude 20000m. La hausse due au rayonnement apparaît plus tardivement lors de la descente, car la vitesse de descente est plus importante que celle de la montée à ces altitudes.

11 Evolution de la température avec l'altitude

La température extérieure est mesurée par un thermocouple de type K (Plage :-100°C à 500°C). La difficulté dans l'utilisation du thermocouple est que la tension à mesurer est très faible, avec des variations d'environ 50 uV par °C avec une compensation de température froide. Pour toutes ces raisons, nous utilisons une puce d'interface **MAX31855** qui fera le gros du travail, nous permettant d'intégrer facilement le capteur sans trop de difficulté.

La température minimale a été atteinte à 37355 pieds = 11 385 m \rightarrow -45 °C

Le gradient thermique dans la troposphère est : -5,9 °C/Km
Le gradient thermique dans la tropopause est : +0 °C/km
Le gradient thermique dans la stratosphère est : +2,22 °C/km

Conclusion les valeurs de température mesurée sont proches des valeurs de l'atmosphère standard dite «ISA» (*International Standard Atmosphere*)

12 Température minimale à l'intérieur de la nacelle

Un capteur mesure la température à l'intérieur de la nacelle. L'objectif est d'avoir une température positive à l'intérieur de la nacelle pendant toutes les phases du vol.

Ainsi la nacelle a été entièrement recouverte d'une couverture de couleur or pour retenir la chaleur interne.

La couverture est revêtue de deux faces métallisées distinctes, respectivement dorée et argentée. Ces faces répondent à deux fonctions distinctes : le côté argenté, réfléchit 90% du rayonnement infrarouge, tandis que le côté doré absorbe 50% de la chaleur incidente. De ce fait, en positionnant la face dorée vers l'extérieur, la nacelle est protégée du froid, en retenant sa chaleur.

La température minimale, lors du vol, a été de **+2,2 °C** obtenue pendant la descente à 7000m d'altitude.

La nacelle s'est refroidie pendant la montée jusqu'à 22000m, puis elle s'est réchauffée. En descente, au environ de 7000m la température minimale est atteinte. Il y a donc eu un refroidissement continu de la nacelle par conduction thermique.

Les hausses de température observées dans les altitudes basses et hautes sont dues aux transferts de chaleur par rayonnement infra-rouge.

13 Evolution de la pression avec l'altitude

La pression est réduite :

- d'un facteur 2 à l'altitude 5500 m (513 hPa)
- d'un facteur 10 à 16547m (100 hPa).

Ces mesures sont conformes au <u>tableau de la pression atmosphérique nominale selon l'altitude</u>, dans la troposphère.

14 Trames APRS via LoRA

Durant le vol, une trame est émise chaque minute, pour un total de 177 trames transmises. Les trames ont été captées et relayées par les relais suivants.

Comme on peut le voir sur la carte, les trames émises en modulation LoRa peuvent être reçues dans un rayon de 700 km.

Source des logiciels sur Github **15**

Les programmes informatiques sont disponibles sur les dépôts Github des étudiants et des professeurs.

Logiciel carte APRS Lora & iGate Anthony Le Cren

Logiciel carte APRS FX25 Philippe Simier

16 Conclusions générales

Pour conclure, nous pouvons maintenant répondre aux questions que nous nous sommes posées au début de notre projet. Le flux de rayonnement augmente-t-il réellement en altitude et, si tel est le cas, la différence de niveaux de rayonnement est-elle suffisamment importante pour constituer une menace pour les humains ?

Nous avons pu constater qu'il y a une augmentation constante du rayonnement à mesure que l'altitude augmente en raison de l'effet de protection de l'atmosphère, jusqu'à une hauteur d'environ 20 km où le rayonnement cosmique secondaire est le plus intense en raison de la formation des cascades de particules.

Le ballon a occupé une place importante pour nous tous et durant toute une année. L'organisation de projet, les connaissances théoriques acquises, les difficultés levées et le savoir-faire développé marquent déjà le projet d'une très grande réussite.

Après de nombreuses péripéties le jour du départ du fait de la météo orageuse, le ballon a pu prendre son envol. Malgré quelques difficultés les résultats obtenus sont intéressants et en tout cas confirment le succès technique du projet.