Recitation 11: DiD and IV approaches to Treatment Effects

Seung-hun Lee

Columbia University
Introduction to Econometrics II Recitation

April 18th, 2022

Difference-in-Difference estimation

Simple DiD regression: 2 Groups and 2 periods

- 'Before and after' (t_0 and t_1) and treated vs untreated ($G_i = 1$ and $G_i = 0$)
- No one treated at t_0 but $G_i = 1$ group is treated at t_1 , $G_i = 0$ are never treated
- We can define a treatment framework as

$$y_{i,t} = G_i y_i(1,t) + (1 - G_i) y_i(0,t) \ (t \in \{t_0, t_1\})$$

- What we observe: $(y_{i,t_1}, y_{i,t_0}, G_i, X_i)$ for every unit i
- What we do not: $y_i(1, t_1)$ for those in $G_i = 0$ and $y_i(0, t_1)$ for those in $G_i = 1$

Parallel trend is a CIA assumption in this setup

We define it as

$$(y_i(1,t_1)-y_i(1,t_0),y_i(0,t_1)-y_i(0,t_0)) \perp G_i|X_i$$

Or we can let $y_i(G_i, t_0) = y_i(t_0)$ for $G_i \in \{0, 1\}$ since no one is treated then and write

$$(y_i(1, t_1) - y_i(t_0), y_i(0, t_1) - y_i(t_0)) \perp G_i|X_i$$

- Changes in treatment outcome for both groups are independent of G_i with X_i controlled for
 - ► Violated if uncontrolled factors affect the changes in the outcome or if there are differences in the trends of *y*_{i,t} across treated and control groups before the experiment.

Parallel trend is a CIA assumption in this setup

• Let $D_i = G_i$ and write

$$y_{i} = y_{i,t_{1}} - y_{i,t_{0}} = D_{i}(\underbrace{y_{i}(1,t_{1}) - y_{i}(1,t_{0})}_{y_{i}(1)}) + (1 - D_{i})(\underbrace{y_{i}(0,t_{1}) - y_{i}(0,t_{0})}_{y_{i}(0)})$$

$$= D_{i}y_{i}(1) + (1 - D_{i})y_{i}(0)$$

Thus, we can write $(y_i(1), y_i(0)) \perp \!\!\!\perp D_i | X_i$

- Testing for this is technically not feasible
 - As a close approach: Select a time period $\tilde{t} < t_0$ and find out if the difference $y_i(t_0) y_i(\tilde{t})$ is independent with G_i
 - ▶ Do this by plotting pre-treatment outcome (not perfect: does not perfectly take into account the influence of unobserved factors)
 - ▶ If nonzero difference/pre-trends observed: Sure sign of nonparallel trends

Not to difficult to implement

We can write

$$y_{it} = \beta_0(X_i) + \beta_1(X_i) \cdot \mathbb{I}[t = t_1] + \beta_2(X_i) \cdot G_i + \beta_3(X_i) \cdot G_i \cdot \mathbb{I}[t = t_1] + \epsilon_{it}$$

• In this context, the treatment effect for $X_i = x$ would be

$$TE(x) = E[y_i(1) - y_i(0)|X_i = x]$$

$$= E[(y_i(1, t_1) - y_i(1, t_0)) - (y_i(0, t_1) - y_i(0, t_0))|X_i = x]$$

$$= x \cdot E[\{(\beta_0 + \beta_1 + \beta_2 + \beta_3) - (\beta_0 + \beta_2)\} - \{(\beta_0 + \beta_1) - (\beta_0)\}|X_i = x]$$

$$= x \cdot E[(\beta_1 + \beta_3) - \beta_1|X_i = x]$$

$$= \beta_3 x$$

So β_3 would be our parameter of interest.

Extending to TWFE

in 2 × 2 setup, DiD is equivalent to TWFE

$$y_{it} = a_i + b_t + cD_{it} + e_{it}$$

where $D_{it} = 1$ if unit i is treated at period t and 0 if otherwise

- Treatments can be implemented in multiple periods: Let $D_{i\tau}=0$ if $D_{it}=1$ and $\tau>t$
- New problem: Overall trend in the data is reversed or attenuated relative to a trend that appears in the groups composing the data (Simpson's paradox)
 - ▶ In the case where there is a strong heterogeneity of treatment across groups or time, the coefficient of c may be reversed from the true effect

Treatment effect as an weighted average of $i \times t$ cells

- Let G_i be the first period in which i is treated ($G_i = \infty$ if never treated)
- By applying (two-step) within estimation, we can get

$$\hat{c} = \frac{\sum_{i.t} \widetilde{y}_{it} \widetilde{D}_{it}}{\sum_{i.t} \widetilde{D}_{it}^2}$$

• By FWL, we get the same estimate by regressing y_{it} onto the residual of

$$D_{it} = a_i + b_i + u_{it}$$

In this way, we can write

$$\hat{c} = \frac{\sum_{i,t} y_{it} \hat{u}_{it}}{\sum_{i,t} \hat{u}_{it}^2} = \sum_{i,t} y_{it} \left(\frac{\hat{u}_{it}}{\sum_{i,t} \hat{u}_{it}^2} \right)$$

Problematic case: Early-adopters with negative weights at large t

- Some observations end up getting negative weights.
 - ▶ This happens since \hat{u}_{it} is not necessarily binary, and those whose treatment intensity is below the mean gets negative weights.
 - ► Early adopters in later years (high unit-level treatment mean and time-level treatment mean) end up with negative weights.
- Minimum requirement is to vary the coefficient c across different implementation period, $c(G_i)$ (a simple event-study)
- Not enough: We want to compare the average treatment effect for those treated earlier vs. later. Specifically, for a specific $g \le t$, and for any g' > t, write

$$E[y_{it}(g) - y_{it}(\infty)|G_i = g] = E[y_{it} - y_{i,g-1}|G_i = g] - E[y_{it} - y_{i,g-1}|G_i = g']$$

• It is nicer to have those who are never treated (pure control)

Selection on unobservables: Setup and

IV approach

Violation of CIA: Selection on unobservables

- Even with controls, assignment may fail to be random
 - Participants self-select based on expected benefit: Failure to predict expected benefit with observables
 - Participants may be selected, consciously or not, to join: Participants and nonparticipants systematically differ on something that is not usually observed.
 - There may be equilibrium effects: Outcomes may be subject to spillover effects (Think of control groups that are also inadvertently exposed to treatment)
- Mathematically, we end up with

$$E[y_{i}|D_{i} = 1, x] - E[y_{i}|D_{i} = 0.x] = \mu(x, 1) - \mu(x, 0) + E[\epsilon_{i}(1)|D_{i} = 1, x] - E[\epsilon_{i}(0)|D_{i} = 0, x]$$

$$= TE + \underbrace{E[\epsilon_{i}(1)|D_{i} = 1, x] - E[\epsilon_{i}(0)|D_{i} = 0, x]}_{\text{(Positive/Negative) selection bias}}$$

 \blacktriangleright $E[\epsilon(d)|D_i,X_i]$ no longer zero, and $(\epsilon_i(1),\epsilon_i(0))$ and the u_i in $D_i=\mathbb{I}[u_i< p(x_i)]$ can covary

Old approach: Heckman's two-step estimates

We have a data generating process

$$y_i = \max\{X_i\beta + \sigma\eta_i, 0\}, \eta_i \sim N(0, 1)$$

So we only see y_i if $X_i\beta + \sigma\eta_i > 0$. We are able to observe D_i , specified as

$$D_i = egin{cases} 1 & ext{if } \eta > -rac{X_i eta}{\sigma} \ 0 & ext{otherwise} \end{cases}$$

- Then, for the observed sample, we are likely to have an η_i that is positively selected
- Adjust by regressing D_i on X_i to get $(\widehat{\beta/\sigma})$ and include estimate of $\frac{\phi(X_i\beta/\sigma)}{\Phi(X_i\beta/\sigma)}$ into the regression $(y_i = X_i\beta + \gamma \frac{\widehat{\phi(X_i\beta/\sigma)}}{\Phi(X_i\beta/\sigma)} + \epsilon_i)$
- Not recommended: If errors are non-normal, incorrect specification

IV approach: Relevance, Exclusion, and Monotonic

- Relevancy: It effects the propensity score $p(w, z) = Pr(D_i = 1 | W_i = w, Z_i = z)$
- Exclusion: Distribution of the counterfactual outcomes and u_i does not depend on $Z_i|X_i$. To put it in mathematical notation,

$$(y_i(1), y_i(0), u_i) \perp \!\!\!\perp Z_i | W_i$$

- Monotonicity: For a given $W_i = w$, z changes the treatment in the same direction for everyone. This is also called a no two-way movement condition.
 - ▶ Only partially testable: For each i, only one of z or z' exists (intuition and proxy based on changes in treatment enrollment after changes in Z_i)

We identify treatment effects on compliers!

- Exclusion: u_i and the outcome can be correlated, but the changes in Z_i not affect u_i and outcome conditional on W_i
 - ▶ In that regard, we need to rewrite our $y_i(d)$ notation as

$$y_i(d) = \mu(w, d) + \epsilon_i(d)$$

- Relevance: By moving from p(w, z) to some larger p(w, z'), we find compliers, a group of individuals who do not get treated at p(w, z) but do get treated at p(x, z')
 - Also: Always-takers and never-takers
- Monotonicity: Prevents the case where $u_i < p(w, z)$ when $Z_i = z$ but $u_i' > p(x, z') > p(w, z)$ when $Z_i = z'$
 - ► This groups is referred to as defiers
 - u_i moves with Z_i and in an opposite direction: This violate exclusion as well (and monotonicity is also known as no two-way movement)

Local average treatment effect: Treatment localized to compliers!

- Narrow the interest to compliers, and get average treatment effect on this group
- Setup
 - ightharpoonup Fix $W_i = w$
 - \triangleright Z_i will be a binary instrumental variable. Think of this as a variable that affects eligibility but not related to outcome
 - ▶ $D_i(w, z)$ can be characterized as $D_i(w, z) = \mathbb{I}[u_i < p(w, z)]$. Note that as z rises, so will p(w, z) due to relevance condition.
 - ► Z_i itself has no bearing, at least directly, on the outcome. So $y_i(d) = \mu(w, d) + \epsilon_i(d)$. So we still have $(\epsilon_i(1), \epsilon_i(0), u_i) \perp \!\!\! \perp Z_i \mid X_i$.
- LATE is defined as

$$LATE(w, z, z') = E[y_i(1) - y_i(0)|p(w, z) < u_i < p(w, z'), W_i = w]$$

Obtaining LATE from the data: Other group ruled out

Breaking down the equation

$$\begin{split} E[y_{i}|X_{i} = x'] - E[y_{i}|X_{i} = x] &= E[\mathbb{I}[u_{i} < p(x')]y_{i}(1) + \mathbb{I}[u_{i} > p(x')]y_{i}(0)|x'] \\ - E[\mathbb{I}[u_{i} < p(x)]y_{i}(1) + \mathbb{I}[u_{i} > p(x)]y_{i}(0)|x] \\ &= E[\mathbb{I}[u_{i} < p(x')]y_{i}(1) + \mathbb{I}[u_{i} > p(x')]y_{i}(0)] \\ - E[\mathbb{I}[u_{i} < p(x)]y_{i}(1) + \mathbb{I}[u_{i} > p(x)]y_{i}(0)] & (\because \text{ Exclusion}) \\ &= E[(\mathbb{I}[u_{i} < p(x')] - \mathbb{I}[u_{i} < p(x)])y_{i}(1) \\ - (\mathbb{I}[u_{i} > p(x')] - \mathbb{I}[u_{i} < p(x)])y_{i}(0)] \\ &= E[(\mathbb{I}[u_{i} < p(x')] - \mathbb{I}[u_{i} < p(x)])(y_{i}(1) - y_{i}(0))] \\ &= \Pr[\mathbb{I}[u_{i} < p(x')] - \mathbb{I}[u_{i} < p(x')] - \mathbb{I}[u_{i} < p(x)] = 1] \end{split}$$

- $\mathbb{I}[u_i < p(x')] \mathbb{I}[u_i < p(x)] = 0$ for never-takers and always-takers
- Defiers ruled out by monotonicity

Obtaining LATE from the data: LATE as Wald

As a result, we get

$$Pr(\mathbb{I}[u_i < \rho(x')] - \mathbb{I}[u_i < \rho(x)] = 1)E[y_i(1) - y_i(0)|\mathbb{I}[u_i < \rho(x')] - \mathbb{I}[u_i < \rho(z)] = 1]$$

$$= Pr(\rho(x) < u_i < \rho(x'))E[y_i(1) - y_i(0)|\rho(x) < u_i < \rho(x')]$$

Therefore, we are able to back out the definition of the LATE and can identify them as

$$LATE(w, z, z') = \frac{E[y_i | X_i = x'] - E[y_i | X_i = x]}{\Pr(p(x) < u_i < p(x'))} = \frac{E[y_i | X_i = x'] - E[y_i | X_i = x]}{p(x') - p(x)}$$

• We can go further: Estimate propensity scores with $p(w, z) = E[D_i | W_i = w, Z_i = z]$ and get

$$LATE(w, z, z') = \frac{E[y_i|w, z'] - E[y_i|w, z]}{E[D_i|w, z'] - E[D_i|w, z]}$$

Estimating LATE

- To obtain this from regressions, we follow these steps (parametrically or nonparametrically):
 - 1. Regress *D* on *Z* and other covariates *W* to get $\widehat{D} = \widehat{p}(w, z)$
 - 2. Regress Y on other covariates W and \widehat{D} .

The LATE estimator can then be obtained here is called the Wald estimator.

IV with continuous variation: Marginal treatment effect

- The marginal treatment effect at p(w, z) = p is defined as the treatment effect on individuals whose $u_i = p(w, z)$
- We can write

$$MTE(p) = E[y_i(1) - y_i(0)|u_i = p]$$

The conditional expectation above is not directly obtainable from the data. Heckman and Vytlacil show that

$$MTE(p) = \frac{\partial E[y_i|p(w,z) = p]}{\partial p}$$

• By changing *p* slightly, we identify 'marginal compliers' who change treatment assignment. MTE measures the treatment effect on this group

19 / 25

Deriving MTE, optional

• Let $G(p) = E[y_i \cdot \mathbb{I}[p(w, z) = p]]$, which we can rewrite as

$$G(p) = E[y_i(1) \cdot \mathbb{I}[u_i < p(w, z)] \cdot \mathbb{I}[p(w, z) = p] + y_i(0) \cdot \mathbb{I}[u_i > p(w, z)] \cdot \mathbb{I}[p(w, z) = p]]$$

= $E[y_i(1) \cdot \mathbb{I}[u_i < p] \cdot \mathbb{I}[p(w, z) = p]] + E[y_i(0) \cdot \mathbb{I}[u_i > p] \cdot \mathbb{I}[p(w, z) = p]]$

• By the exclusion and since $u_i \sim U[0,1]$ (so $f(u_i) = 1$),

$$E[y_{i}(1) \cdot \mathbb{I}[u_{i} < p] \cdot \mathbb{I}[p(w, z) = p]] = E[y_{i}(1) \cdot \mathbb{I}[u_{i} < p]] \Pr(p(w, z) = p)$$

$$= \int_{0}^{p} E[y_{i}(1)|u = t] dt \Pr(p(w, z) = p)$$

$$E[y_{i}(0) \cdot \mathbb{I}[u_{i} > p] \cdot \mathbb{I}[p(w, z) = p]] = \int_{p}^{1} E[y_{i}(0)|u = t] dt \Pr(p(w, z) = p)$$

Deriving MTE, optional

Combine the two to get

$$G(p) = E[y_i \cdot \mathbb{I}[p(w, z) = p]] = \left(\int_0^p E[y_i(1)|u = t]dt + \int_p^1 E[y_i(0)|u = t]dt\right) \Pr(p(w, z) = p)$$

• Since $E[y_i \cdot \mathbb{I}[p(w,z) = p]] = E[y_i|p(w,z) = p] \cdot \Pr(p(w,z) = p)$, this implies that

$$E[y_i|p(w,z) = p] = \frac{G(p)}{\Pr(p(w,z) = p)} = \int_0^p E[y_i(1)|u = t]dt + \int_p^1 E[y_i(0)|u = t]dt$$

Then, by Leibniz's integral rule

$$\frac{\partial E[y_i|p(w,z)=p]}{\partial p} = E[y_i(1)|u=p] - E[y_i(0)|u=p] = MTE(p)$$

Estimating MTE

- **1.** Estimate $p(w, z) = Pr(D_i = 1 | W_i = w, Z_i = z)$
- 2. Regress y_i on the estimated p(w, z) and W_i in a flexible setting preferably not just linearly but with some nonlinearities and interaction between W_i and p(w, z).
- 3. Take a derivative with respect to p. (or local linear estimator)
- 4 For treatment effects, evaluate the $E[y_i|p(w,z),x]$ at p(w,z)=1 and p(w,z)=0 and identify the difference. (You can obtain $E[y_i|\cdot]$ by getting the predicted values).

Caveats for LATE and MTE

- Z belongs in the treatment equation (relevancy): $D_i = 1(u_i < p(W_i, Z_i))$
- Z does not belong in the outcome equation (exclusivity): $y_i(d) = \mu(w, d) + \epsilon_i(d)$
- In other words, we get $(\epsilon_i(1), \epsilon_i(0), u_i) \perp \!\!\! \perp Z_i | W_i$
- (MTE): p(w, z) should be continuous with z so that derivatives are defined

Testing for CIA condition

Recall that conditional independence assumption is satisfied when

$$(\epsilon_i(1), \epsilon_i(0)) \perp u_i | X_i$$

• In cases where this is true, then the outcomes are independent of u_i conditional on X_i .

$$MTE(x,p) = E[Y_i(1) - Y_i(0)|X_i = x, u_i = p] = E[Y_i(1) - Y_i(0)|X_i = x]$$

- We know that $MTE(x,p) = \frac{\partial E[Y_i|X_i=x,p(w,z)=p]}{\partial p}$
- This suggests that $E[Y_i|X_i=x,p(x,z)=p]$ is linear in p if CIA holds.
- Thus, it is highly recommended to put polynomial terms of p^k , k = 1, 2, 3, ... when you estimate marginal treatment effects. Then, test to find whether the nonlinear terms have coefficient zero. This is feasible if you have 3 or more points of Z|W

MTE is presented in graphs like these

(a) Carneiro, Lee (2009)

(b) Johnson, Taylor (2019)