සියලු ම හිමිකම් ඇවිරිණි / (භූගුට பුනිට්பුලිකාගයු (Language All Rights Reserved)

නව නිර්දේශය/பුதிய பாடத்திட்டம்/New Syllabus

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

ගණිතය I සණ්විතුර I Mathematics I

07 S I

පැය තුනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය

- මිනිත්තු 10 යි

மேலதிக வாசிப்பு நேரம் Additional Reading Time 10 நிமிடங்கள் 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුබත්වය දෙන පුශ්න සංවිධානය

කර ගැනීමටත් යොදාගන්න.

විභාග අංකය

උපදෙස් :

* මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ.

A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).

* A කොටස:

සියලු ම පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

* B කොටස:

පුශ්ත **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- * නියමිත කාලය අවසන් වූ පසු A කොටසෙහි පිළිතුරු පතුය B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- * පුශ්න පතුයෙහි B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙනයාමට ඔබට අවසර ඇත.

පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

කොටස	පුශ්න අංකය	ලකුණු	
	1	-0	
	2	1	
	3	10	
	. 4	-	
	5		
A	6		
	7		
	8		
	9		
	10		
	11		
	12		
	13		
В	14		
	15		
	16		
	17		
	එකතුව		

100		
~	-	
•	2002	2007

ඉලක්කමෙන්	
අකුරෙන්	

සංකේත අංක

උත්තර පතු පරීක්		
පරීක්ෂා කළේ:	1 2	
අධීක්ෂණය කළේ	:	

	~~~	•
4	<b>නො</b> ටැ	-

1.	$A = \left\{x \in \mathbb{R}: \left x+1\right  \le 2\right\}$ හා $B = \left\{x \in \mathbb{R}: \left x-1\right  > 1\right\}$ යැයි ගතිමු. $A \cap B, A \cup B$ හා $A \cap B'$ සොයන්න.
	·
2.	$A$ හා $B$ යනු $S$ සර්වතු කුලකයක උපකුලක යැයි ගනිමු. $(A \cup B) \cap (A \cap B)' = (A \setminus B) \cup (B \setminus A)$ බව පෙන්වන්න.
	More Past Papers at
	More Past Papers at
	More Past Papers at tamilguru.lk

ΔĮ.	/2020/07/S-I(NEW)	- 3 -	විභාග අංකය :
		<i>r</i> යන ස	යුක්ත පුස්තුතය තර්කානුසාරීව තුලා බව පෙන්වන්න.
	- <u> </u>		
4.	වීසංචාද කුමය භාවිතයෙන්, $n^2+6n+3$ ඉරට්ටේ	වේ නඡ්	$\mathfrak{d}$ , $n$ ඔත්තේ වන බව සාධනය කරන්න.
İ			
		• • • • • • • • • • • • • • • • • • • •	
	••••••		

5.	$x$ සඳහා $\log_3 x = 2 - \log_3 (6 - x)$ සමීකරණය විසඳන්න.
	$x$ මෙම අගය ගන්නා විට, $y$ සඳහා $x^y=2-x^{-y}$ සමීකරණය විසඳන්න. (ඉඟිය: $u=x^y$ ආදේශය භාවිත කරන්න.
l	
	·
6.	$x + \frac{6}{x+1} > 4$ අසමානතාව සපුරාලන $x$ හි සියලු ම තාත්ත්වික අගයන් සොයන්න.

7.	$f(x) = rac{1}{x+a} + b$ හි පුස්තාරය රූපසටහනෙහි දැක්වේ. එහි දී ඇති තොරතුරු භාවිතයෙන්, $a$ හා $b$ නියතයන්හි
	අගයන් ලියා දක්වා, $f^{-1}(x)$ සොයන්න.
	$g(x) = x - 5$ බව දී ඇති විට, $f^{-1}(g(x)) = 4$ විසඳන්න.
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	_3
8.	$A\equiv (0,3)$ ලක්ෂාය හරහා යන්නා වූ ද, අනුකුමණය $-2$ ක් වූ ද $l$ සරල රේඛාවේ සමීකරණය ලියා දක්වන්න. $l$ රේඛාව, $y=mx$ රේඛාව $B$ ලක්ෂායේ දී හමු වේ; මෙහි $m\ ( eq -2)$ යනු නියතයක් වේ. $B$ හි $x$ ඛණ්ඩාංකය $m$ ඇසුරින සොයන්න.
8.	l රේඛාව, $y=mx$ රේඛාව $B$ ලක්ෂායේ දී හමු වේ; මෙහි $m$ ( $ eq -2$ ) යනු නියතයක් වේ. $B$ හි $x$ ඛණ්ඩාංකය $m$ ඇසුරින
8.	$l$ රේඛාව, $y=mx$ රේඛාව $B$ ලක්ෂායේ දී හමු වේ; මෙහි $m\ (\neq -2)$ යනු නියතයක් වේ. $B$ හි $x$ ඛණ්ඩාංකය $m$ ඇසුරින සොයන්න. $OAB$ තිකෝණයේ වර්ගඵලය වර්ග ඒකක $\frac{9}{2}$ බව දී ඇති විට, $m$ ට තිබිය හැකි අගයන් සොයන්න; මෙහි $O$ යනු
8.	$l$ රේඛාව, $y=mx$ රේඛාව $B$ ලක්ෂායේ දී හමු වේ; මෙහි $m\ (\neq -2)$ යනු නියතයක් වේ. $B$ හි $x$ ඛණ්ඩාංකය $m$ ඇසුරින සොයන්න. $OAB$ තිකෝණයේ වර්ගඵලය වර්ග ඒකක $\frac{9}{2}$ බව දී ඇති විට, $m$ ට තිබිය හැකි අගයන් සොයන්න; මෙහි $O$ යනු
8.	$l$ රේඛාව, $y=mx$ රේඛාව $B$ ලක්ෂායේ දී හමු වේ; මෙහි $m\ (\neq -2)$ යනු නියතයක් වේ. $B$ හි $x$ ඛණ්ඩාංකය $m$ ඇසුරින සොයන්න. $OAB$ තිකෝණයේ වර්ගඵලය වර්ග ඒකක $\frac{9}{2}$ බව දී ඇති විට, $m$ ට තිබිය හැකි අගයන් සොයන්න; මෙහි $O$ යනු
8.	$l$ රේඛාව, $y=mx$ රේඛාව $B$ ලක්ෂායේ දී හමු වේ; මෙහි $m\ (\neq -2)$ යනු නියතයක් වේ. $B$ හි $x$ ඛණ්ඩාංකය $m$ ඇසුරින සොයන්න. $OAB$ තිකෝණයේ වර්ගඵලය වර්ග ඒකක $\frac{9}{2}$ බව දී ඇති විට, $m$ ට තිබිය හැකි අගයන් සොයන්න; මෙහි $O$ යනු
8.	$l$ රේඛාව, $y=mx$ රේඛාව $B$ ලක්ෂායේ දී හමු වේ; මෙහි $m\ (\neq -2)$ යනු නියතයක් වේ. $B$ හි $x$ ඛණ්ඩාංකය $m$ ඇසුරින සොයන්න. $OAB$ තිකෝණයේ වර්ගඵලය වර්ග ඒකක $\frac{9}{2}$ බව දී ඇති විට, $m$ ට තිබිය හැකි අගයන් සොයන්න; මෙහි $O$ යනු
8.	$l$ රේඛාව, $y=mx$ රේඛාව $B$ ලක්ෂායේ දී හමු වේ; මෙහි $m\ (\neq -2)$ යනු නියතයක් වේ. $B$ හි $x$ ඛණ්ඩාංකය $m$ ඇසුරින සොයන්න. $OAB$ තිකෝණයේ වර්ගඵලය වර්ග ඒකක $\frac{9}{2}$ බව දී ඇති විට, $m$ ට තිබිය හැකි අගයන් සොයන්න; මෙහි $O$ යනු
8.	$l$ රේඛාව, $y=mx$ රේඛාව $B$ ලක්ෂායේ දී හමු වේ; මෙහි $m\ (\neq -2)$ යනු නියතයක් වේ. $B$ හි $x$ ඛණ්ඩාංකය $m$ ඇසුරින සොයන්න. $OAB$ තිකෝණයේ වර්ගඵලය වර්ග ඒකක $\frac{9}{2}$ බව දී ඇති විට, $m$ ට තිබිය හැකි අගයන් සොයන්න; මෙහි $O$ යනු
8.	$l$ රේඛාව, $y=mx$ රේඛාව $B$ ලක්ෂායේ දී හමු වේ; මෙහි $m\ (\neq -2)$ යනු නියතයක් වේ. $B$ හි $x$ ඛණ්ඩාංකය $m$ ඇසුරින සොයන්න. $OAB$ තිකෝණයේ වර්ගඵලය වර්ග ඒකක $\frac{9}{2}$ බව දී ඇති විට, $m$ ට තිබිය හැකි අගයන් සොයන්න; මෙහි $O$ යනු
8.	$l$ රේඛාව, $y=mx$ රේඛාව $B$ ලක්ෂායේ දී හමු වේ; මෙහි $m\ (\neq -2)$ යනු නියතයක් වේ. $B$ හි $x$ ඛණ්ඩාංකය $m$ ඇසුරින සොයන්න. $OAB$ තිකෝණයේ වර්ගඵලය වර්ග ඒකක $\frac{9}{2}$ බව දී ඇති විට, $m$ ට තිබිය හැකි අගයන් සොයන්න; මෙහි $O$ යනු
8.	$l$ රේඛාව, $y=mx$ රේඛාව $B$ ලක්ෂායේ දී හමු වේ; මෙහි $m\ (\neq -2)$ යනු නියතයක් වේ. $B$ හි $x$ ඛණ්ඩාංකය $m$ ඇසුරින සොයන්න. $OAB$ තිකෝණයේ වර්ගඵලය වර්ග ඒකක $\frac{9}{2}$ බව දී ඇති විට, $m$ ට තිබිය හැකි අගයන් සොයන්න; මෙහි $O$ යනු
8.	$l$ රේඛාව, $y=mx$ රේඛාව $B$ ලක්ෂායේ දී හමු වේ; මෙහි $m\ (\neq -2)$ යනු නියතයක් වේ. $B$ හි $x$ ඛණ්ඩාංකය $m$ ඇසුරින සොයන්න. $OAB$ තිකෝණයේ වර්ගඵලය වර්ග ඒකක $\frac{9}{2}$ බව දී ඇති විට, $m$ ට තිබිය හැකි අගයන් සොයන්න; මෙහි $O$ යනු
8.	$l$ රේඛාව, $y=mx$ රේඛාව $B$ ලක්ෂායේ දී හමු වේ; මෙහි $m\ (\neq -2)$ යනු නියතයක් වේ. $B$ හි $x$ ඛණ්ඩාංකය $m$ ඇසුරින සොයන්න. $OAB$ තිකෝණයේ වර්ගඵලය වර්ග ඒකක $\frac{9}{2}$ බව දී ඇති විට, $m$ ට තිබිය හැකි අගයන් සොයන්න; මෙහි $O$ යනු
8.	$l$ රේඛාව, $y=mx$ රේඛාව $B$ ලක්ෂායේ දී හමු වේ; මෙහි $m\ (\neq -2)$ යනු නියතයක් වේ. $B$ හි $x$ ඛණ්ඩාංකය $m$ ඇසුරින සොයන්න. $OAB$ තිකෝණයේ වර්ගඵලය වර්ග ඒකක $\frac{9}{2}$ බව දී ඇති විට, $m$ ට තිබිය හැකි අගයන් සොයන්න; මෙහි $O$ යනු

9.	ඍජුවෘත්තාකාර සිලින්	බීඩරයක අරය $r$	m යන්න	0.5 m s	⁻¹ ශීඝුතාවකි	ත් වැඩි ව:	න අතර	එහි උස /	$\it h$ m යන්	ກ 0.2 m s-
	ශීඝුතාවකින් අඩු වේ.	සිලින්ඩරයේ	පරිමාව ්	V m³ හි ර	වෙනස්වීම <u>ේ</u>	ශීඝුතාව	$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{1}{2}$	$\frac{\pi r}{5}(5h-r)$	r) මගින්	දෙනු ලබප
	බව පෙන්වන්න.						u <i>i</i>	3		
	••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	••,•••••	• • • • • • • • • • •	• • • • • • • •	••••••	•••••	• • • • • • • • • • • • • • • • • • • •
		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •
		•••••		• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
					• • • • • • • • • • • • • • • • • • • •		• • • • • • • • •			•••••
					• • • • • • • • • • • • • • • • • • • •		• • • • • • • •	• • • • • • • • • • • • • • • • • • • •		
					•••••		· · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •		••••••
					•••••	•••••	• • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •
						• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	•••••	•••••	•••••
				• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • •			
				• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
					• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
			••••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
		•••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	
			• • • • • • • • • • • • • • • • • • • •				• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • •		• • • • • • • • •	
10.	$y = 9 - x^2 \text{ so } y = (x - x^2)$	$3)^2$ වකු මගින්	ආවෘත ශ	මපදෙ <del>සෙ</del>	හි වර්ගඵලය	සොයන්	න.			
							;	<b>y</b> <b>N</b>		
				• • • • • • • • • • • • • • • • • • • •						
		•••••			•••••				$\int y$	$y = (x-3)^2$
			•••••	• • • • • • • • • • • • • • • • • • • •	•••••					
							/			
					y =	$=9-x^2$	/			
			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		1	О	7	<b></b> x	
				• • • • • • • • • • • • • • • • • • • •						
			•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
		• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • •		••••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	•••••
			• • • • • • • • • •	• • • • • • • • • •			•••••	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
			•••••			• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
		• • • • • • • • • • • • • • • • • • • •	•••••			• • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••
			•••••	• • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••
	••••		• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	• • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
			• • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••
			• • • • • • • • • • •	• • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •

සියලු ම හිමිකම් ඇවිරිණි/ගුංගුට பதிப்புரிமையுடையது/ $All\ Rights\ Reserved$ ]

### (නව නිර්දේශය/பුනිய பாடத்திட்டம்/New Syllabus

இலங்கைப் புடன்கத் திணைக்களம் இலங்கைப் ப**ட்சைத் திணைக்களம்** இலங்கைப் படிக்கத் திணைக்களம் கடிக்கத் கடிக்கத் கடிக்கத் கடிக்கத் கடிக்கத் கடிக்கத் கடிக்கத் திணைக்களம் இலங்கைப் படிக்கத் திணைக்களம் இலங்கைப் படிக்கத் திணைக்களம் இலங்கைப் படிக்கத் திணைக்களம் இலங்கைப் படிக்கத் திணைக்களம்

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

**ගණිතය I** සණෝපුාර I Mathematics I



#### B කොටස

- * පුශ්න පහකට පමණක් පිළිතුරු සපයන්න.
- 11. (a) වීජ ගණිතය හා ජාහමිතිය අතරෙන් ගණිතයේ කුමන අංශවලට කැමතිදැයි සෙවීමට, පන්තියක සිසුන් 100 ක් යොදාගෙන, සමීක්ෂණයක් කරන ලදී. ජහාමිතියට කැමති සිසුන් ගණන, වීජ ගණිතයට කැමති සිසුන් ගණන මෙන් දෙගුණයකට වඩා 10 කින් වැඩි බව සොයා ගන්නා ලදී. තව ද, සිසුන් 80 ක් එක් අංශයකට පමණක් කැමති බව ද සිසුන් 10 ක් අංශ දෙකටම අකමැති බව ද සොයා ගන්නා ලදී.
  - (i) වීජ ගණිතයට
  - (ii) ජාගමිතියට
  - (iii) ජනාමිතිය හා වීජ ගණිතය යන දෙකටම කැමති සිසුන් ගණන සොයන්න.
  - (b) සතාතා වගු භාවිතයෙන්, පහත දැක්වෙන එක් එක් සංයුක්ත පුස්තුත පුනරුක්තියක් දැයි හෝ විසංවාදයක් දැයි නිර්ණය කරන්න.
    - (i)  $(p \land q) \land (q \Rightarrow \sim p)$
    - (ii)  $(p \land q \land r) \lor (p \land q \land (\sim r)) \lor (\sim (p \land q))$
- 12. (a) **ගණිත අභපුහන මූලධර්මය** භාවිතයෙන්, සියලු  $n\!\in\!\mathbb{Z}^{^+}$  සඳහා

$$\sum_{r=1}^{n} r(3r+2) = \frac{n}{2}(n+1)(2n+3)$$
 බව සාධනය කරන්න.

$$(b)$$
  $r \in \mathbb{Z}^+$  සඳහා  $U_r = \frac{r^2 + r - 1}{(r+1)^2 (r+2)^2}$  යැයි ගනිමු.

$$r \in \mathbb{Z}^+$$
 සඳහා  $U_r = \frac{r}{\left(r+1\right)^2} - \frac{\left(r+1\right)}{\left(r+2\right)^2}$  බව සතාහපනය කරන්න.

$$n \in \mathbb{Z}^+$$
 සඳහා  $\sum_{r=1}^n U_r = \frac{1}{4} - \frac{(n+1)}{(n+2)^2}$  බව පෙන්වන්න.

**ඒ නයින්**,  $\sum_{r=1}^{\infty} U_r$  අභිසාරී වන බව පෙන්වා එහි ඓකාෳය සොයන්න.

$$\sum_{r=0}^{\infty}U_{r}=rac{20}{441}$$
 බව **අපෝහනය** කරන්න.

More Past Papers at tamilguru.lk

13. (a)  $k (\neq 0)$  යනු තාත්ත්වික නියතයක් යැයි ගනිමු.  $2kx^2 + 12x + 2k - 5 = 0$  යන වර්ගජ සමීකරණයට තාත්ත්වික මූල ඇති බව දී ඇත.  $2k^2 - 5k - 18 \leq 0$  බව පෙන්වන්න.

k ට තිබිය හැකි අගයන්හි උපරිමය හා අවමය සොයන්න.

lpha හා eta යනු  $2kx^2+12x+2k-5=0$  යන සමීකරණයේ මූල යැයි ගනිමු.

 $2(\alpha+eta)$  හා 3lphaeta මූල වන වර්ගජ සමීකරණය සොයන්න.

(b)  $f(x) = x^3 + px^2 + q$  හා  $g(x) = x^3 + qx^2 - p$  යැයි ගනිමු; මෙහි p හා q තාත්ත්වික සංඛාා වේ. (x+2) යන්න f(x) හි සාධකයක් ද g(x) යන්න (x+1) න් බෙදූ විට ශේෂය -8 ක් ද බව දී ඇත. p හා q හි අගයන් සොයන්න.

p හා q හි මෙම අගයන් සඳහා, f(x)-g(x) හි අඩුතම අගය සොයන්න.

**14.** (a)  $a, b \in \mathbb{R}$  යැයි ගනිමු. x හි දෙකට වඩා වැඩි බල සහිත පද නොසලකා හරිමින්, x හි ආරෝහණ බල වලින්  $(1+ax)^8$  හි පුසාරණය  $1+24x+bx^2$  වේ. a=3 හා b=252 බව පෙන්වන්න.

**ඒ නයින්**,  $(1.03)^8 + (0.97)^8$  සඳහා ආසන්න අගයක් සොයන්න.

(b) පුද්ගලයෙකුට බැංකුවකින් අවුරුදු 10 කින් ආපසු ගෙවිය යුතු, රු.  $2\,000\,000$  ක ණය මුදලක් ගැනීමට අවශාව ඇත. බැංකුව, මාසිකව වැල් පොලී කරනු ලබන, 6% ක වාර්ෂික පොලියක් අය කරයි. රු.  $A_n$  යනු, n මස අවසානයේ n වෙනි වාරිකය ගෙවීමෙන් පසු ඇති හිඟ මුදල යැයි ගනිමු; මෙහි  $n \le 120$ .  $A_1 = 1.005A - x$  බව පෙන්වන්න; මෙහි A යනු ණය මුදල ද x යනු මාසික වාරිකය ද වේ. A, x හා n ඇසුරින්,  $A_2$  හා  $A_3$  සඳහා පුකාශන ලබාගෙන  $A_n$  ලියා දක්වන්න.

**ඒ නයින්**, x හි අගය සොයන්න.

**15.**  $A \equiv (1, 1)$  හා  $B \equiv (5, 9)$  යැයි ගනිමු.

AB සරල රේඛාවේ සමීකරණය සොයා,  $C\equiv (4,2)$  ලක්ෂාය AB රේඛාව මත නොපිහිටන බව පෙන්වන්න.

C හරහා යන AB ට ලම්බ රේඛාව, D ලක්ෂායේ දී AB ඡේදනය කරයි. D හි ඛණ්ඩාංක සොයා, AD:DB=1:3 බව පෙන්වන්න.

තවද, ADCE සෘජුකෝණාසුයක් වන පරිදි වූ E ලක්ෂායේ ඛණ්ඩාංක සොයන්න.

AB රේඛාවේ හා x+y=k රේඛාවේ ඡේදන ලක්ෂාය F යැයි ගනිමු. F ලක්ෂාය හරහා යන AC රේඛාවට සමාන්තර රේඛාව E ලක්ෂාය හරහා යයි. k නියතයෙහි අගය සොයන්න.

- 16. (a)  $\lim_{x\to 2} \frac{x^4-16}{\sqrt{x-\sqrt{2}}}$  අගයන්න.
  - (b) පහත එක එකක් x විෂයයෙන් අවකලනය කරන්න:
    - (i)  $(2+3x)^5(1+x^2)^{10}$
- (ii)  $\frac{\ln x}{3\ln x + 1}$
- (iii)  $\sqrt{x} e^{-(x^2-1)}$
- (c) පතුලේ දිග එහි පළල මෙන් 3 ගුණයක් වන පරිදි සංවෘත සෘජුකෝණාසුාකාර පෙට්ටියක් සෑදිය යුතුව ඇත. පෙට්ටියේ ඉහළ සහ පහළ මුහුණත් සඳහා වර්ග මීටරයකට රුපියල් 100 ක් ද, පෙට්ටියේ පැති සඳහා වර්ග මීටරයකට රුපියල් 60 ක් ද වැය වේ. පෙට්ටියේ පරිමාව 60  $m^3$  විය යුතු නම්, පෙට්ටිය සෑදීමට යන වියදම C (රුපියල් වලින්) යන්න  $C = 600x^2 + \frac{9600}{x}$  මගින් දෙනු ලබන බව පෙන්වන්න; මෙහි x m යනු පෙට්ටියේ පතුලේ පළල වේ.

පෙට්ටිය සෑදීම සඳහා වියදම අවම වන x හි අගය නිර්ණය කරන්න.

- 17. (a) කොටස් වශයෙන් අනුකලනය කිරීමේ කුමය භාවිතයෙන්,  $\int x^3 (\ln x)^2 \mathrm{d}x$  සොයන්න.
  - (b) පහත වගුවෙන්, 1 හා 2.5 අතර, දිග 0.25 ක් වූ පුාන්තරවලදී x හි අගයන් සඳහා  $f(x) = \ln(1+x^2)$  යන ශිතයෙහි අගයන් දශමස්ථාන තුනකට නිවැරදිව දෙයි.

x	1.00	1.25	1.50	1.75	2.00	2.25	2.50
f(x)	0.693	0.941	1.179	1.402	1.609	1.802	1.981

**සිමිසන් නීතිය** භාවිතයෙන්,  $I=\int\limits_{1}^{2.5} \ln(1+x^2) \mathrm{d}x$  සඳහා ආසන්න අගයක් සොයන්න.

ඒ නයින්,  $\int_{1}^{2.5} \ln\!\left(e^{2x}\sqrt{1+x^2}\right)\!\mathrm{d}x$  සඳහා ආසන්න අගයක් සොයන්න.



# (නව නිඊදේශය/பුதිய பாடத்திட்டம்/New Syllabus)

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

**ගණිතය II** கணிதம் **II** Mathematics **II**  07 S II

පැය තුනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය - මිනිත්තු 10 යි மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුබත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

	$\top$
විභාග අංකය	

#### උපදෙස්:

🛠 මෙම පුශ්න පතුය කොටස් දෙකකින් සමන්විත වේ;

A කොටස (පුශ්න 1 - 10) සහ B කොටස (පුශ්න 11 - 17).

A කොටස:

**සියලු ම** පුශ්නවලට පිළිතුරු සපයන්න. එක් එක් පුශ්නය සඳහා ඔබේ පිළිතුරු, සපයා ඇති ඉඩෙහි ලියන්න. වැඩිපුර ඉඩ අවශා වේ නම්, ඔබට අමතර ලියන කඩදාසි භාවිත කළ හැකි ය.

B කොටස:

පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න. ඔබේ පිළිතුරු, සපයා ඇති කඩදාසිවල ලියන්න.

- st නියමිත කාලය අවසන් වූ පසු f A කොටසෙහි පිළිතුරු පතුය, f B කොටසෙහි පිළිතුරු පතුයට උඩින් සිටින පරිදි කොටස් දෙක අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පතුයෙහි f B කොටස පමණක් විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.
- 💥 සංඛාහන වගු සපයනු ලැබේ.

## පරීක්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි.

(07) ගණිතය II			
කොටස ළශ්න අංකය		ලකුණු	
	1		
	2		
	3		
	4		
	5		
A	6		
	7		
	8		
	9		
	10		
	11		
	12		
İ	13		
В	14		
	15		
	16		
	17		
	එකතුව		

	එකතුව
ඉලක්කමෙන්	
අකුරින්	

	_
A	කොටස

1.	$a,b,c\in\mathbb{R}$	යැයි ගනිම.		
	1			1
		<i>a</i>	2a+b+c	$=-2(a+b+c)^3$ බව පෙන්වන්න.
	a + b + 2a	a+2b+c	b	$=-2(a+b+c)^3$ බව පෙන්වන්න.
	a+b+2c	c	c	
	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	
			•	
	••••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••
	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	
	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	
	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
	• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•	
,		• • • • • • • • • • • • • • • • • • • •	•••••••••••	
•	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	
-	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	
	•••••		••••••	
	•••••			
			•••••••••••	
•	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••••••••••••••••••••••••••••••••••••
•	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	
? <b>.</b> #	$\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ , <b>B</b> =	$ \left(\begin{array}{ccc} 3 & 2 \\ -1 & 2 \\ 1 & 0 \end{array}\right) $	හා $\mathbf{C} = \begin{pmatrix} -1 & 0 \\ 1 & 3 \end{pmatrix}$ යැයි ගනිමු. $\mathbf{AB}$ හා $\mathbf{BC}$ සොයන්න.
A	A(BC) = (AB)	B)C බව සත	` හාපනය කරන	න්න.
			************	
••	*************	• • • • • • • • • • • • • • • • • • • •	**************	
••	• • • • • • • • • • • • • • • • • • • •	•••••••	• • • • • • • • • • • • • • • • • • • •	
••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	
	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	
	• • • • • • • • • • • • • • • • • • • •			
			•	
••	• • • • • • • • • • • • • • • • • • • •	* * * * * * * * * * * * * * * * * * * *	• • • • • • • • • • • • • • • • • • • •	•••••••••••••••••••••••••••••••••••••••
••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	
••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•
• • •	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	
	*******		•	
•••	••••••	• • • • • • • • • • • • • • • • • • • •	•••••••	••••••
•••	•••••	••••••	••••••••	
•••	•••••	••••••	• • • • • • • • • • • • • • • • • • • •	
	•••••	••••••		

3.	නිරීක්ෂණ 10 කින් සමන්විත කුලකයක, මධානාය හා සම්මත අපගමනය පිළිවෙළින් 5 හා 10 වේ. මෙම නිරීක්ෂණවල	
	එකතුව හා වර්ගයන්ගේ එකතුව සොයන්න. අගය 5 වන තවත් නිරීක්ෂණයක් මෙම කුලකයට ඇතුළත් කළේ නම්, මධෳනෳයේ හා සම්මත අපගමනයේ නව	
	අගය 5 වන තවත් නිරක්ෂණයක් මෙම කුල්කයට ඇතුළය කිරීම පාල, ප්රාදේශයේ අගයයන් සොයන්න.	ĺ
	••••••	
	•••••••••••••••••••••••••••••••••••••••	
4	වාාප්තියක මධානය, මධාස්ථය හා සම්මත අපගමනය පිළිවෙළින් 28,32 හා 5 වේ. කාල් පියර්සන්ගේ කුටිකත සංගුණකය ගණනය කර වාාප්තියෙහි හැඩය විස්තර කරන්න. මෙම වාාප්තිය සඳහා මධානය, කේන්දික පුවණතාවයෙහි සාධාරණ මිනුමක්වේ ද? ඔබගේ පිළිතුරට හේස	
		ย
1	දක්වන්න.	ย
	දක්වන්න.	ય
	දක්වන්න.	હ
	දක්වන්න.	સ
	දක්වන්න.	સ
	දක්වන්න.	e
	දක්වන්න.	e
	දක්වන්න.	સ
	දක්වන්න.	ય
	දක්වන්න.	ય
	දක්වන්න.	૯
	දක්වන්න.	૯
	දක්වන්න.	૯
	දක්වන්න.	િ
	දක්වන්න. 	e
	දක්වන්න.	

5.	. අධිවේගී මාර්ගයක එක්තරා කොටසක ගමන් ගන්නා මෝටර් රථවල වේගය, මධානාය $90~{ m km}~{ m h}^{-1}$ ක් ද සම්ම අපගමනය $10~{ m km}~{ m h}^{-1}$ ක් ද සහිතව පුමතව වාාාප්තව ඇත. සසම්භාවී ලෙස තෝරා ගන්නා මෝටර් රථයක වේග $85~{ m km}~{ m h}^{-1}$ හා $100~{ m km}~{ m h}^{-1}$ අතර වීමේ සම්භාවිතාව සොයන්න.
6.	යන්තුයකින් නිපදවනු ලබන ඇණවලින් $10\%$ ක් දෝෂ සහිත බව පෙර වාර්තාවලින් සොයාගෙන ඇත.
	මෙම යන්තුයෙන් නිපදවනු ලබන ඇණ 5 ක් සසම්භාවීව තෝරාගනු ලැබුවහොත්, (i) හරියටම ඇණ 3 ක් දෝෂ සහිත වීමේ.
	(i) හරියටම ඇණ 3 ක් දෝෂ සහිත වීමේ,
	· · · · · · · · · · · · · · · · · · ·
	(i) හරියටම ඇණ 3 ක් දෝෂ සහිත වීමේ, (ii) ඇණ 2 කට වැඩි ගණනක් <b>දෝෂ රහිත</b> වීමේ,
	(i) හරියටම ඇණ 3 ක් දෝෂ සහිත වීමේ, (ii) ඇණ 2 කට වැඩි ගණනක් <b>දෝෂ රහිත</b> වීමේ,
	(i) හරියටම ඇණ 3 ක් දෝෂ සහිත වීමේ, (ii) ඇණ 2 කට වැඩි ගණනක් <b>දෝෂ රහිත</b> වීමේ,
	(i) හරියටම ඇණ 3 ක් දෝෂ සහිත වීමේ, (ii) ඇණ 2 කට වැඩි ගණනක් <b>දෝෂ රහිත</b> වීමේ,
	(i) හරියටම ඇණ 3 ක් දෝෂ සහිත වීමේ, (ii) ඇණ 2 කට වැඩි ගණනක් <b>දෝෂ රහිත</b> වීමේ,
	(i) හරියටම ඇණ 3 ක් දෝෂ සහිත වීමේ, (ii) ඇණ 2 කට වැඩි ගණනක් <b>දෝෂ රහිත</b> වීමේ,
	(i) හරියටම ඇණ 3 ක් දෝෂ සහිත වීමේ, (ii) ඇණ 2 කට වැඩි ගණනක් <b>දෝෂ රහිත</b> වීමේ,
	(i) හරියටම ඇණ 3 ක් දෝෂ සහිත වීමේ, (ii) ඇණ 2 කට වැඩි ගණනක් <b>දෝෂ රහිත</b> වීමේ,
	(i) හරියටම ඇණ 3 ක් දෝෂ සහිත වීමේ, (ii) ඇණ 2 කට වැඩි ගණනක් <b>දෝෂ රහිත</b> වීමේ,
	(i) හරියටම ඇණ 3 ක් දෝෂ සහිත වීමේ, (ii) ඇණ 2 කට වැඩි ගණනක් <b>දෝෂ රහිත</b> වීමේ,
	(i) හරියටම ඇණ 3 ක් දෝෂ සහිත වීමේ, (ii) ඇණ 2 කට වැඩි ගණනක් <b>දෝෂ රහිත</b> වීමේ,
	(i) හරියටම ඇණ 3 ක් දෝෂ සහිත වීමේ, (ii) ඇණ 2 කට වැඩි ගණනක් <b>දෝෂ රහිත</b> වීමේ,
	(i) හරියටම ඇණ 3 ක් දෝෂ සහිත වීමේ, (ii) ඇණ 2 කට වැඩි ගණනක් <b>දෝෂ රහිත</b> වීමේ,

7.	තිකට තීඩකයන් $30$ දෙනෙකුගෙන් සමන්විත කණ්ඩායමකින්, $20$ දෙනෙකු $A$ තීඩා සමාජයට ද, $15$ දෙනෙකු $B$ කීඩා සමාජයට ද කීඩා කර ඇත. සෑම තීඩකයෙක්ම අඩු තරමින් මෙම එක් කීඩා සමාජයකටවත් කීඩා කර ඇත. සසම්භාවී ලෙස තෝරා ගන්නා ලද කීඩකයෙක් $A$ කීඩා සමාජයට කීඩා කර ඇති බව දී ඇති විට, ඔහු $B$ කීඩා සමාජයට ද කීඩා කර තිබීමේ සම්භාවිතාව සොයන්න.
	2 1 2
8.	$A$ හා $B$ යනු $P(A) = \frac{3}{8}$ , $P(A \cap B) = \frac{1}{8}$ හා $P(A \cup B) = \frac{3}{4}$ වන පරිදි වූ $S$ නියැදි අවකාශයක සිද්ධීන් දෙකක් යැරි ගනිමු.
8.	·
8.	ගනිමු.

**9.** X විවික්ත සසම්භාවී විචලාගයක සම්භාවිතා ස්කන්ධ ශුිතය පහත දී ඇත:

x	1	2	3	4	5
P(X=x)	p	2 <i>p</i>	p	2 <i>p</i>	p

p නියතයෙහි අගය සොයා, E(X)=3 බව පෙන්වන්න.

Yයනු 3X-4 මගින් දෙනු ලබන සසම්භාවී විචලාය යැයි ගනිමු. P(Y>X) සොයන්න.

.....

 $oldsymbol{10.}$  X යන සන්තතික සසම්භාවී විචලාායකට

$$f(x) = \left\{ egin{array}{ll} kx - x^2 &, & 0 \leq x \leq 1 \, ext{නම්}, \ 0 &, & ext{desire} & ext{emission} & ext{2} \ \end{array} 
ight.$$

මගින් දෙනු ලබන f(x) සම්භාවිතා ඝනත්ව ශිුතය ඇත; මෙහි k යනු නියතයකි.

 $k=rac{8}{3}$  බව පෙන්වා, E(X) සොයන්න.

සියලු ම හිමිකම් ඇව්රිණි / மුழுப் பதிப்புரிமையுடையது /All Rights Reserved]

## (නව නිඊදේශය/புதிய பாடத்திட்டம்/New Syllabus)

NEW

මේත්තුව ලී ලංකා විශාත දෙපාර්තුල්ත්තුව යි. පොඩ්හුම් දුල්පාත්තුව ලී ලංකා විශාත දෙපාර්තමේත්තුව ලී ලංකා විශාත දෙපාර්තමේත්තුව திணைக்களம் இலங்கைப் ப**டுக்கு இலங்கைப் பிடிய இது இலங்கை**ப் பழீட்சைத் திணைக்களம் lions, Sri Lanka Department of **இலங்கைப் Sri பிரிம்னைத்** ம**திணைக்களம்.** Sri Lanka Department of Examinations, Sri Lanka මේත්තුව ලී ලංකා විශාත දෙපාර්තමේත්තුව ලී ලංකා විශාත දෙපාර්තමේන්තුව ලී ලංකා විශාත දෙපාර්තමේන්තුව ලී ලංකා විශාත දෙපාර්තමේන්තුව திணைக்களம் இலங்கைப் **படுகரு இலங்கைப் ப**ழீட்சைத் திணைக்களம்

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

ගණිතය II සණෝதம் II Mathematics II



B කොටස

* පුශ්න **පහකට** පමණක් පිළිතුරු සපයන්න.

11. එක් කර්මාන්ත ශාලාවක මේස හා පුටු නිෂ්පාදනය කරයි. එක් එක් අයිතමය නිෂ්පාදනය සඳහා කැපීම, එකලස් කිරීම හා නිම කිරීම යන කුියාවලි තුන අවශා වේ.

කැපීම, එකලස් කිරීම හා නිම කිරීම සඳහා භාවිත කළ හැකි උපරිම පැය ගණන පිළිවෙළින් 600, 160 හා 280 ක් චේ. අයිතම එක එකක් නිෂ්පාදනයේ දී එක් එක් කිුිියාවලිය සඳහා අවශෳ පැය ගණන හා එක් අයිතමයක් විකිණීමෙන් ලැබෙන ලාභය පහත වගුවෙන් දෙනු ලැබේ.

	කැපීම සඳහා පැය ගණන	එකලස් කිරීම සඳහා පැය ගණන	නිම කිරීම සඳහා පැය ගණන	ලාභය (රුපියල් දාහේ ඒවා වලින්)
මේස	5	1	1	12
පුටු	6	2	4	15

ලාභය උපරිම කර ගැනීමට කර්මාන්ත ශාලාව බලාපොරොත්තු වේ.

- (i) මෙය රේඛීය පුකුමණ ගැටලුවක් ලෙස සූතුගත කරන්න.
- (ii) ශකාතා පෙදෙසෙහි දළ සටහනක් අඳින්න.
- (iii) පුස්තාරික කුමය භාවිතයෙන්, ඉහත (i) කොටසෙහි සූතුගත කරන ලද ගැටලුවෙහි විසඳුම සොයන්න.
- (iv) ගබඩා ඉඩකඩ හිඟය නිසා නිෂ්පාදනය කරනු ලබන මුළු මේස හා පුටු ගණන වැඩිතරමින් 108 කට සීමා කිරීමට කර්මාන්ත ශාලාවට සිදු වී තිබේ. කර්මාන්ත ශාලාව තවදුරටත් ලාභය උපරිම කිරීමට බලාපොරොත්තු වෙයි නම්, ඉහත සීමා කිරීම නිසා සිදුවන ලාහයෙහි අඩුවීම සොයන්න.

$$egin{aligned} \mathbf{12.}(a) & \mathbf{A} = \left(egin{array}{ccc} 4 & 7 \ -1 & -2 \end{array}
ight)$$
 යැයි ගනිමු.  $\mathbf{A}^{-1}$  ලියා දක්වන්න.

$$\mathbf{B} = \begin{pmatrix} -1 & 3 \\ 0 & 1 \end{pmatrix}$$
 යැයි ගනිමු.

 $\mathbf{AC} = \mathbf{B}$  වන පරිදි  $\mathbf{C}$  නාහසය සොයා,

$$\mathbf{AC} - \mathbf{CA} = \begin{pmatrix} 20 & 43 \\ -11 & -20 \end{pmatrix}$$
 බව පෙන්වන්න.

 ${f AC}-{f DA}={f O}$  වන පරිදි  ${f D}$  නාහාසය සොයන්න; මෙහි  ${f O}$  යනු ගණය  ${f 2}$  වන ශුනා නාහාසය වේ.

(b)  $a \in \mathbb{R}$  යැයි ගනිමු.

$$(a-5)x + 3y = a$$
  
-4x +  $(a + 2)y = 1$ 

යන **සමගාමී** සමීකරණ යුගලය  $\mathbf{P}\mathbf{X}=\mathbf{Q}$  ආකාරයෙන් ලියන්න; මෙහි  $\mathbf{X}=\begin{pmatrix}x\\y\end{pmatrix}$ ද,  $\mathbf{P}$  හා  $\mathbf{Q}$  යනු නිර්ණය කළ යුතු නාහස ද වේ.

$$\Delta = egin{array}{c|c} (a-5) & 3 \ -4 & (a+2) \end{array}$$
 යන්න  $a$  හි වර්ගජ ශිුකයක් ලෙස පුකාශ කරන්න.

 $\Delta=0$  සමීකරණයේ මූල a=1 හා a=2 බව පෙන්වන්න.

ඉහත සමීකරණ යුගලයට

- (i) a=1 විට විසඳුම් අපරිමිත සංඛාාවක් ඇති බවත්,
- (ii) a=2 විට විසඳුම් නොමැති බවත්,
- (iii) a=3 විට අනනා විසඳුමක් ඇති බවත් පෙන්වන්න.
- 13.(a) මුහුණත්වල 1,2,2,3,3,4 ලකුණු කළ නොනැඹුරු ඝනකාකාර දාදු කැටයක් දෙවරක් උඩ දමනු ලැබේ. A යනු ලැබුන සංඛාහවල එකතුව 4 වන සිද්ධිය ද B යනු ලැබුන සංඛාහවල එකතුව ඉරට්ටේ වන සිද්ධිය ද යැයි ගනිමු. P(A), P(B) හා  $P(A \mid B)$  සොයන්න.
  - (b)  $\{1,2,3,4,5,6\}$  යන සංඛාහංක කුලකයෙන් සංඛාහංක 4 ක් පුතිස්ථාපන රහිතව තෝරා ගෙන සංඛාහංක 4 ක සංඛාහවක් සාදනු ලැබේ.
    - (i) සංඛාහාංක 4 කින් යුත් වෙනස් සංඛාහ කීයක් සෑදිය හැකි ද?
    - (ii) මෙම සංඛාහාංක 4 කින් යුත් සංඛාහ අතරින් සංඛාහ කීයක් 3 න් හෝ 5 න් ආරම්භ වේ ද?
  - (c) පිරිමි හතරදෙනෙකු හා ගැහැණු දෙදෙනෙකුගෙන් යුත් සමූහයකින්, හතරදෙනෙකුගෙන් යුත් කණ්ඩායමක් තෝරා ගත යුතුව ඇත.
    - (i) හතරදෙනෙකුගෙන් යුත් වෙනස් කණ්ඩායම් කීයක් තෝරා ගත හැකි ද?
    - (ii) මෙම කණඩායම්වලට ගැහැණු දෙදෙනාවම තෝරාගනු ලැබීමේ සම්භාවිතාව සොයන්න.
- 14. X පෙට්ටියක රතු පාට කාඩ් 4 ක් හා නිල් පාට කාඩ් 6 ක් අඩංගු වේ. Y පෙට්ටියක රතු පාට කාඩ් 3 ක් හා නිල් පාට කාඩ් 2 ක් අඩංගු වේ. හිස ලැබීමේ සම්භාවිතාව  $\frac{2}{3}$  ක් වන නැඹුරු කාසියක් උඩ දමනු ලැබේ. එවිට හිස ලැබේ නම් සසම්භාවීව පුතිස්ථාපන රහිතව X පෙට්ටියෙන් කාඩ් 2 ක් ද, අගය ලැබේ නම් Y පෙට්ටියෙන් සසම්භාවීව පුතිස්ථාපන රහිතව කාඩ් 2 ක් ද ඉවතට ගනු ලැබේ.
  - (i) ගන්නා ලද කාඩ් දෙකම රතු පාට ඒවා වීමේ,
  - (ii) ගන්නා ලද කාඩ්වලින් අඩු තරමින් එකක්වත් රතු පාට එකක් වීමේ,
  - (iii) ගන්නා ලද කාඩ් දෙක වෙනස් වර්ණවල ඒවා වීමේ,
  - (iv) ගන්නා ලද කාඩ්වලින් අඩු තරමින් එකක්වත් රතු පාට බව දී ඇති විට, ගන්නා ලද කාඩ් දෙක වෙනස් වර්ණවල ඒවා වීමේ,

සම්භාවිතාව සොයන්න.

 ${f 15.}(a)$  එක්තරා බස් නැවතුම්පොළකට බස් රථවල අනුයාත පැමිණීම් අතර මිනිත්තු වලින් මනින ලද, කාලය X යන්න

$$f(x) = \begin{cases} \lambda e^{-\lambda x} &, & x > 0 \\ 0 &, &$$
එසේ නොවන විට

සම්භාවිතා ඝනත්ව ශුිතය සහිතව ඝාතීයව වාාප්තව ඇත; මෙහි  $\lambda$  (>0) පරාමිතියක් වේ.

බස් නැවතුම්පොළට පැයකට පැමිණෙන බස් රථ ගණනෙහි මධාෘතාංය 12 ක් නම්,  $\lambda$  හි අගය සොයන්න.

- (i) බස් නැවතුම්පොළට බස් රථයක් පැමිණි පසු ඊළඟ බස් රථය පැමිණීමට ගනු ලබන කාලය
  - (lpha) මිනිත්තු එකකුත් මිනිත්තු තුනකුත් අතර,
  - (eta) මිනිත්තු පහකට අඩු,

වීමේ සම්භාවිතාව සොයන්න.

- (ii) බස් රථයක් බස් නැවතුම්පොළට පැමිණ දැනටමත් මිනිත්තු පහක් ගත වී ඇති බව දී ඇත්නම්, ඊළඟ බස් රථය පැමිණීමට අඩු තරමින් අමතර මිනිත්තු දෙකක් ගතවීමේ සම්භාවිතාව සොයන්න.
- (b) [a,b] පුාත්තරය තුළ X තම් සත්තතික සසම්භාවී විචලාය ඒකාකාරව වාාප්තව ඇත.

P(X < 16) = 0.4 හා P(X > 21) = 0.2 වන පරිදි a හා b හි අගයන් සොයන්න.

16. සිසුන් සියදෙනෙකු ඇතුළත් වීමේ පරීක්ෂණයකට මුහුණ දුන්හ. ඔවුන් ලබාගන්නා ලද ලකුණුවල සංඛානත වනාප්තිය පහත වගුවෙන් දී ඇත:

ලකුණු	සංඛනතය
0 – 20	15
20 – 40	20
40 – 60	40
60 – 80	15
80 – 100	10

(i) පහත එක එකක් නිමානය කරන්න:

ලකුණුවල

- (a) මධානනය,
- (b) සම්මත අපගමනය,
- (c) මධාස්ථය,
- (d) අන්තර් චතුර්ථක පරාසය හා
- (e) මාතය.
- (ii) නැවත සමීක්ෂණයෙන් පසු, උත්තර පතු දෙකක ලකුණු පහත දැක්වෙන පරිදි වෙනස් විය යුතු බව සොයාගන්නා ලදී.

නැවත සමීක්ෂණයට පෙර ලකුණු	නැවත සම්ක්ෂණයට පසු ලකුණු	
50	62	
70	75	

නව ලකුණු වහාප්තියෙහි මධානයය සොයන්න.

17. වපාපෘතියක කිුයාකාරකම් සඳහා ගතවන කාලය හා කිුයාකාරකම්වල ගැලීම පහත වගුවෙන් දී ඇත:

කියාකාරකම	පූර්ච	කාලය (සති වලින්)
A	<u> </u>	03
В	Α	08
C	Α	05
D	Α	03
Е	В	06
F	С	03
G	E, F	04
Н	D, F	06
I	G, H	03

- (i) වාහපෘති ජාලය ගොඩ නගන්න.
- (ii) එක් එක් කි්යාකාරකම සඳහා ආරම්භ කළ හැකි ඉක්මන්ම චේලාව, අවසන් කළ හැකි ඉක්මන්ම චේලාව, ආරම්භ කළ හැකි පුමාදම චේලාව, අවසන් කළ හැකි පුමාදම චේලාව හා ඉපිලුම ඇතුළත් කාර්ය සටහනක් සකස් කරන්න.
- (iii) වහාපෘතිය සඳහා ගතවත මුළු කාලය සොයන්න.
- (iv) වාසාපෘතිය සඳහා ගත වන මුළු කාලය දීර්ඝ නොකර, පමා කළ හැකි කිුියාකාරකම් මොනවා ද?
- (v) මෙම වාාපෘතියේ අවධි පථය ලියා දක්වන්න.
- (vi) අනපේක්ෂිත කරුණක් හේතුවෙන් D කිුයාකාරකම සති දෙකකින් දීර්ඝ කිරීමට සිදු වේ යැයි සිතමු. ඉහත (iii) කොටසෙහි දී ගණනය කරන ලද මුළු කාලය තුළදී ම තවදුරටත් මෙම වසාපෘතිය අවසන් කිරීමට හැකිවේ දැයි නිර්ණය කරන්න.

* * *

More Past Papers at tamilguru.lk