Customer LifeTime Value Prediction

Sai Jyothi Gurram

Data Overview

- Brazilian Ecommerce dataset had various features tying an order to it's product, customer, seller, marketing(MQL & lead characteristic data).
- After careful analysis, the marketing metrics had a lot of missing data and therefore haven't been used in this analysis.
- All the data sources were combined and the redundent features were removed.
- Finally a dataframe with order_id, customer_id, customer_unique_id, product_category, revenue, order_date was created.

Problem Statement

• Predict the Customer Revenue at transaction level.

Null Values

```
Data columns (total 11 columns):
order id
                                 112650 non-null object
order item id
                                 112650 non-null int64
product id
                                 112650 non-null object
seller id
                                 112650 non-null object
shipping limit date
                                 112650 non-null datetime64[ns]
price
                                 112650 non-null float64
freight value
                                 112650 non-null float64
product category name english
                                 111023 non-null object
customer id
                                 112650 non-null object
order purchase timestamp
                                 112650 non-null datetime64[ns]
customer unique id
                                 112650 non-null object
```

- There weren't any null values in most of the columns except product category
- Imputed missing product categories as Other

Outliers

```
count
         112643.000000
             140.648172
mean
             190.729357
std
min
               6.080000
25%
              55.225000
50%
              92.320000
75%
             157.940000
           6929.310000
max
```

Name: Revenue, dtype: float64

- Clearly there are outliers in the revenue based on the above results and boxplot. There are many values beyond the 4rth Quartile.
- Removed all the outliers that are not within 1.5*times InterQuartile Range (16674 rows).

Revenue Distribution - EDA

Revenue

The Revenue distribution consistently increased with a peak in November 2017

Customer Distribution - EDA

Similar to Revenue the number of unique customers also increased consistently.

Average Order Size -EDA

Average order is consistent across all months (except December 2016)

New Vs Existing Customers - EDA

New vs Existing

- Created a new feature user_type to distinguish New customer vs existing customer.
- Existing customers Revenue contribution is negligible i.e organization wasn't able to retain existing customers.

Recency Distribution - EDA

Created a new feature Recency – Difference between maximum order date and actual order date More than 70% of customers were acquired within last year.

K-Means Clustering for Recency Feature

	count	mean	std	min	25%	50%	75%	max
RecencyCluster								
0	17254.0	484.022256	59.580103	399.0	436.0	475.0	527.0	695.0
1	27968.0	183.385333	34.977054	123.0	154.0	183.0	214.0	248.0
2	25484.0	61.972179	36.124201	0.0	28.0	62.0	97.0	122.0
3	25263.0	313.890749	43.341408	249.0	276.0	307.0	351.0	398.0

- Used Elbow Method to identify optimal k value(here 4)
- Divided Recency into 4 clusters
- Recency 0 Very Old , Recency1 Less Recent, Receny2 Recent, Recency3 Old

K-Means Clustering for Product Category Count Feature

- There are 72 distinct product categories
- Created New feature category count (the count of various product categories)
- Used K-means elbow method and clustered into 3 categories
- Category0 High, Category1 Medium, Category2 Low

Base Model

	Actual	model_1	model_2	Ensemble
48173	86.40	88.940870	0.494812	89.435682
12479	46.75	90.896047	-0.117988	90.778060
56644	116.94	88.940870	0.494812	89.435682
70179	25.75	88.940870	0.494812	89.435682
67632	64.03	91.355188	-0.117988	91.237200

- Created a Base decision tree model and predicted the revenue
- Created a second model by training the model on model1 errors
- Finally created an ensemble
- The ensemble now has lower error compared to model1

Correlation

Model Selection

Average Error

Tree Count					
1	62.747418				
2	43.924619				
3	30.748293				
4	21.524089				
5	15.067433				
6	10.547623				
7	7.383321				
8	5.168529				
9	3.618196				
10	2.532704				

- The target variable revenue is not normally distributed to use Linear regression algorithm.
- Created a base Decision Tree model and as the number of trees increased, the average prediction error decreased.

XGBoost Performance

- Used an XGBoost ensemble to create the best model.
- Used GridSearchCV to identify the best parameters.
- Log Loss Curve indicates no overfitting.

mse: 2278.3776892635356

Actual_Revenue: 2149498.27 Predicted_Revenue: 2156111.0

Summary

- This ensemble model can now be used to predict future revenue.
- As the number of existing customers were less, I haven't included any related feature to cluster audience segments.

Areas of Improvement:

- The geographical locations of customers and sellers can determine why customers in few areas are purchasing more compared to the others.
- Creating new segments with respect to customer behavior, channels can improve model's performance.