<u>Painel</u> / <u>Meus cursos</u> / <u>SC26EL</u> / <u>Avaliações Eletrônicas</u> / <u>Prova 1 EL</u>

Iniciado em quinta, 6 out 2022, 08:22

Estado Finalizada

Concluída em quinta, 6 out 2022, 09:43

Tempo 1 hora 20 minutos

empregado

Avaliar 10,0 de um máximo de 10,0(100%)

Questão **1** Correto

Atingiu 2,5 de 2,5

Considere o sistema descrito na figura abaixo onde $G(s)=\frac{10}{s^2+2}$. Deseja-se que o sistema, em malha fechada, tenha um par de polos conjugados complexos que forneçam um sobressinal de 5% e tempo de acomodação de 1 segundo (critério de 2%). Projete um controlador PD na forma $C(s)=K_c(s+z)$ para satisfazer os requisitos do projeto. Preencha as lacunas com as respostas adequadas considerando 3 algarismos significativos.

Para atender os requisitos de projeto, o coeficiente de amortecimento dos polos dominantes de malha fechada deve ser: $\zeta =$

0,691

✔ .

Para atender os requisitos de projeto, a frequência natural dos polos dominantes de malha fechada deve ser: $\omega_n =$

5,796

✓ rad/s.

Os polos de malha fechada dominantes devem estar em: s =

-4,000

✓ ± j

4,195

V

A contribuição angular que o compensador PD deve inserir no lugar das raízes é: $\phi =$

90,689

graus.

O zero do compensador deve estar em: s =

-3,950

~

O ganho do compensador projetado é: $K_c =$

0,800

~

Questão **2**Correto
Atingiu 2,5 de 2,5

Considere o sistema descrito na figura abaixo.

Este sistema, tem polo dominante em s=-0,7. Para uma referência R(s) do tipo degrau unitário, o erro E(s) em regime permanente é de $e(\infty)=0$, 625. Para uma referência do tipo degrau unitário, deseja-se que $e(\infty)=0$, 05 sem alterar o polo dominante s=-0,7. Projete um compensador de atraso da forma $C(s)=K_c\frac{s+z}{s+p}$ e complete as lacunas com as respostas adequadas. Considere 3 algarismos significativos após a vírgula.

Para o problema, deve-se considerar a Constante de Erro Estático de Posição . O valor mínimo desta constante para atender o problema é

19

~

Para atender os requisitos de projeto o valor mínimo de β é:

31,67

V

Considerando o valor de β definido acima, e que o zero do compensador esteja em s=-0, 1, seu polo deve estar em s=-0,0032

V

Considerando o polo dominante s=-0, 7, o ganho do compensador projetado é $K_c=$

1,161

~

Questão **3** Correto

Atingiu 2,5 de 2,5

Considere o sistema descrito na figura abaixo onde $G(s)=\frac{10}{s^2+2}$. Deseja-se que o sistema, em malha fechada, tenha um par de polos conjugados complexos que forneçam um sobressinal de 5%, tempo de acomodação de 1 segundo (critério de 2%) e erro em regime permanente nulo para uma entrada do tipo degrau.

Escolha uma ou mais:

- a. Pode-se utilizar um controlador PD para atender as especificações.
- ☑ b. Pode-se utilizar um controlador PID para atender as especificações.
- c. Pode-se utilizar um controlador P para atender as especificações.
- d. Pode-se utilizar um controlador PI para atender as especificações.

A resposta correta é: Pode-se utilizar um controlador PID para atender as especificações.

Questão 4	
Correto	
Atingiu 2,5 de 2,5	

Considere o sistema abaixo onde $G(s) = \frac{2}{s^3 + 4s^2 + 6s + 4}$

Deseja-se projetar um controlador PID C(s) utilizando-se o método de Ziegler-Nichols. O controlador é implementado na forma $C(s) = K_p + \frac{K_i}{s} + K_d s$. Com essas informações, marque a(s) alternativa(s) correta(s).

Escolha uma ou mais:

- ☑ Pode-se utilizar o segundo método de Ziegler-Nichols.
- \square A soma dos ganhos K_p , K_i e K_d é 25,2.
- Nenhum dos métodos de Ziegler-Nichols podem ser utilizados.
- \square A soma dos ganhos K_p , K_i e K_d é 13,6.
- Pode-se utilizar o primeiro método de Ziegler-Nichols.

A resposta correta é: Pode-se utilizar o segundo método de Ziegler-Nichols.

→ Aula prática 2 - Controle P e PI

Seguir para...

Recuperação 1 EL ►