武汉大学 2016-2017 学年第二学期期末考试高等数学 B2 试题(A)解答 1、(8分)设 \vec{a} =(2,-3,1), \vec{b} =(1,-2,3), \vec{c} =(2,1,2),求同时垂直于 \vec{a} 和 \vec{b} ,且在向量 \vec{c} 上投影 是 14 的向量 \vec{d} .

解:设
$$\vec{d} = (x, y, z)$$
, 由条件可得
$$\begin{cases} \vec{a} \cdot \vec{d} = 2x - 3y + z = 0 \\ \vec{b} \cdot \vec{d} = x - 2y + 3z = 0 \end{cases}$$
, 解之得
$$\vec{c} \cdot \vec{d} = 2x + y + 2z = |\vec{c}| \cdot \Pr j_{\vec{c}} \vec{d} = 42$$

x = 14, y = 10, z = 2. $\dot{a} \vec{d} = (14, 10, 2)$

2、(10 分) 讨论极限 $\lim_{\substack{x\to 0\\y\to 0}} \frac{x^4y^4}{(x^2+y^4)^3}$ 的存在性,若存在求出极限,若不存在说明理由。

解 由于
$$\lim_{x\to 0} \frac{x^4 y^4}{(x^2 + y^4)^3} = 0$$
 …5'

3、(8 分) 过直线 $l:\begin{cases} x+y-z=0 \\ x+2y+z=0 \end{cases}$ 作两个互相垂直的平面,且其中一个过已知点 $M_1(0,1,-1)$, 求这两个平面的方程

设过l 的平面方程为 $x+y-z+\lambda(x+2y+z)=0$ 由过 M_1 点,解得: $\lambda=-2$

故过l且过 M_1 的平面为 π_1 :x + 3y + 3z = 0

设另一个平面为
$$x+y-z+\mu(x+2y+z)=0$$
由与 π_1 垂直,解得 $\mu=-\frac{1}{10}$

故平面为9x + 8y - 11z = 0

4、(10 分)设函数 f(u,v) 由关系式 f(xg(y),y)=x+g(y) 确定, 其中函数 g(y) 可微, 且

$$g(y) \neq 0$$
, $\dot{x} \frac{\partial^2 f}{\partial v \partial u}$.

解: 设
$$\begin{cases} xg(y) = u \\ y = v \end{cases}$$
 得 $f(u,v) = \frac{u}{g(v)} + g(v)$, 关于 v 求导得 $\frac{\partial f}{\partial u} = \frac{1}{g(v)}$,5'

因此
$$\frac{\partial^2 f}{\partial v \partial u} = -\frac{g'(v)}{g^2(v)} \dots 5'$$

5、(8分) 设
$$u = f(x, y, z)$$
, $y = \ln x$, $h(\sin x, e^y, z) = 0$, 且 $\frac{\partial h}{\partial z} \neq 0$, 求 d u .

解: 法一: 对 $y = \ln x$ 两边对x 求导数, 有 $y' = \frac{1}{x}$, 对 $h(\sin x, e^y, z) = 0$ 两边对x 求导数,

有 $h_1 \cdot \cos x + h_2 \cdot e^y \cdot y' + h_3 \cdot z' = 0$,注意由 $y = \ln x$ 可知 $e^y = x$,从而 $z' = -\frac{\cos x \cdot h_1 + h_2}{h}$

对u = f(x, y, z)两边同时对x求导,得

$$f(x, y, z)$$
 两边同时对 x 求守,特 $du = (f_1 + f_2 \cdot y' + f_3 \cdot z') dx = (f_1 + f_2 \cdot \frac{1}{x} + f_3 \cdot \left(-\frac{\cos x \cdot h_1 + h_2}{h_3}\right)) dx$

法二 由 $du = f_x(x, y, z)dx + f_y(x, y, z)dy + f_z(x, y, z)dz$

又 $e^y = x$, $dy = \frac{1}{x}dx$, $h_1 \cos x dx + h_2 e^y dy + h_3 dz = 0$ 故 $dz = -\frac{h_1 \cos x dx + h_2 dx}{h}$

所以有 $du = (f_x + \frac{f_y}{r} - f_z \frac{h_1 \cos x + h_2}{h}) dx$

6、(10 分) 在椭球面 $2x^2 + 2y^2 + z^2 = 1$ 上求一点,使函数 $f(x,y,z) = x^2 + y^2 + z^2$ 在该点沿 $\overrightarrow{j} = \overrightarrow{i} - \overrightarrow{j}$ 的方向导数最大。

解: 函数 f(x, y, z) 的方向导数的表达式为 $\frac{\partial f}{\partial l} = \frac{\partial f}{\partial x} \cos \alpha + \frac{\partial f}{\partial y} \cos \beta + \frac{\partial f}{\partial z} \cos \gamma$ 。
 其中: $\cos \alpha = \frac{1}{\sqrt{2}}$, $\cos \beta = -\frac{1}{\sqrt{2}}$, $\cos \gamma = 0$ 为方向 \vec{l} 的方向余弦。因此 $\frac{\partial f}{\partial l} = \sqrt{2}(x-y)$ 。
 "有这样3".

于是,按照题意,即求函数 $\sqrt{2}(x-y)$ 在条件 $2x^2+2y^2+z^2=1$ 下的最大值。设

意,即求函数
$$\sqrt{2(x-y)}$$
 在 $\sqrt{2(x-y)}$ 在 $\sqrt{2(x-y)}$ 在 $\sqrt{2(x-y)}$ 有 $\sqrt{2(x-$

得 z=0 以及 $x=-y=\pm\frac{1}{2}$,即得驻点为 $M_1=\left(\frac{1}{2},-\frac{1}{2},0\right)$ 与 $M_2=\left(-\frac{1}{2},\frac{1}{2},0\right)$ 。 因最大值必有过 $M_1=\left(\frac{1}{2},-\frac{1}{2},0\right)$ 的大小。由此可知 $M_1=\left(\frac{1}{2},-\frac{1}{2},0\right)$ 为所 我没过 $M_2=\left(\frac{1}{2},-\frac{1}{2},0\right)$ 为所 我没过 $M_1=\left(\frac{1}{2},-\frac{1}{2},0\right)$ 为所 我没过 $M_2=\left(\frac{1}{2},-\frac{1}{2},0\right)$

7、(10 分)设区域 $D = \{(x,y) | x^2 + y^2 \le 4, x \ge 0\}$, 计算二重积分 $\iint_{\Omega} \frac{1+xy}{1+x^2+y^2} dxdy$ 。

解:由于积分区域关于x轴对称,函数 $\frac{1}{1+x^2+v^2}$ 是变量y的偶函数, $\frac{xy}{1+x^2+y^2}$ 是变量y的

 $\iint_{0} \frac{xy}{1+x^2+y^2} dxdy = 0......5'$

$$\iint_{D} \frac{1}{1+x^2+y^2} dxdy = 2 \iint_{D_1} \frac{1}{1+x^2+y^2} dxdy = 2 \int_0^{\frac{\pi}{2}} d\theta \int_0^2 \frac{rdr}{1+r^2} = \frac{\pi}{2} \ln 5,$$

其中 $D_1 = \{(x, y) \mid x^2 + y^2 \le 4, x \ge 0, y \ge 0\}$ 5'

8、(8 分) 计算曲线积分 $\int_{t}^{t} e^{x} (\cos y dx - \sin y dy)$, 其中 L 是从坐标原点起, 经曲线 $y = x^{2}$ 到点

 (a,a^2) 的路径. 解: 因 $\frac{\partial}{\partial x}(-\sin ye^x) = -\sin ye^x = \frac{\partial}{\partial v}(e^x\cos y)$, 所以积分与路径无关,取路径为如下折线

$$(0,0) \to (a,0) \to (a,a^2)$$
,则有

$$\int_{a} e^x (\cos y dx - \sin y dy) = \int_{0}^{a} e^x dx - \int_{0}^{a^2} e^a \sin y dy = e^a \cos a^2 - 1$$

9、(10 分) 试将函数 $f(x) = \ln(1 + x + x^2)$ 展开成 x 的幂级数。

解: 由于
$$f(x) = \ln(1-x^3) - \ln(1-x)$$
 利用 $\ln(1-x) = -\sum_{n=1}^{\infty} \frac{x^n}{n}$ $x \in (-1,1).....5'$

得
$$f(x) = -\sum_{n=1}^{\infty} \frac{x^{3n}}{n} + \sum_{n=1}^{\infty} \frac{x^n}{n} = \sum_{k=0}^{\infty} \left(\frac{x^{3k+1}}{3k+1} + \frac{x^{3k+2}}{3k+2} - \frac{2x^{3k+3}}{3(k+1)} \right) \quad x \in (-1, 1) \dots 5'$$

10、(10分) 计算曲面积分 $I = \iint 2x^3 dydz + 2y^3 dzdx + 3(z^2 - 1)dxdy$,其中 S 是曲面

 $z = 4 - x^2 - y^2 (z \ge 0)$ 的上侧。

解 补辅助面 S_1 : $\begin{cases} x^2 + y^2 = 1, \\ z = 0 \end{cases}$,法向量向下,形成封闭曲面 Ω ,在 Ω 上运用高斯公式可得

$$\int_{S \cup S_1} z x^3 dy dz + 2y^3 dz dx + 3(z^2 - 1) dx dy = \iiint_{\Omega} 6(x^2 + y^2 + z) dx dy dz, \dots 5'$$

作柱坐标变换符

11、(8 分)设 $a_n < b_n < c_n$, n = 1, 2, ...,证明:若级数 $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} c_n$ 收敛,则必有 $\sum_{n=1}^{\infty} b_n$ 收敛,且

有
$$\sum_{n=1}^{\infty} a_n \leq \sum_{n=1}^{\infty} b_n \leq \sum_{n=1}^{\infty} c_n$$
.

证明: 由 $a_n < b_n < c_n$ 可得 $0 < b_n - a_n < c_n - a_n$,由 $\sum_{n=1}^{\infty} a_n$, $\sum_{n=1}^{\infty} c_n$ 收敛知道 $\sum_{n=1}^{\infty} (c_n - a_n)$ 收敛,由

正项级数比较判别法知道 $\sum_{n=1}^{\infty} (b_n - a_n)$ 收敛,从而 $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} [a_n + (b_n - a_n)]$ 收敛。另外设

$$A_n,B_n,C_n$$
分别是 $\sum_{n=1}^\infty a_n$, $\sum_{n=1}^\infty b_n$, $\sum_{n=1}^\infty c_n$ 的部分和数列,则 $A_n < B_n < C_n$, 由数列极限的性质知道

$$\sum_{n=1}^{\infty} a_n \le \sum_{n=1}^{\infty} b_n \le \sum_{n=1}^{\infty} c_n$$