浙江大学宁波理工学院 2019-2020 学年 1 学期

《数据结构(A)》课程期末考试试卷(A)

开课分院: 数据与计算机工程学院 , 考试形式	C: <u>闭</u> 卷,允许带入场		
考试日期: <u>2020</u> 年 <u>1</u> 月 <u>14</u> 日,考证	式所需时间: <u>120</u> 分钟		
考生姓名学号考生所在分院:_数据学院_专业班级:			
术语表:			
binary search tree 二叉搜索树	quick sort 快速排序		
linear probing 线性探测法	binary tree 二叉树		
preorder traversal 先序遍历	postorder traversal 后序遍历		
inorder traversal 中序遍历	linear list 线性表		
the minimum spanning tree 最小生成树	the shortest path 最短路径		
time complexity时间复杂度	linked list 链表		
Circular Queue 循环队列	postfix expression 后缀表达式		
quadratic probing 平方探测	complete binary tree 完全二叉树		
singly linked list 单向链表	average search time 平均查找时间		
hash table 散列表	adjacency matrix 邻接矩阵		
hash value 散列值	BFS 宽度优先搜索		
adjacency lists 邻接表	Huffman code 哈夫曼编码		
AVL tree 平衡二叉树	Heap sort 堆排序		
loading density 装填密度	collision 冲突		
命题(组)老师签名:	年月日		
分院主管教学院长或首席主讲教授签名:	年 月 日		

sheet. (15 Points) () 1. $O(N^2)$ is the same as $O(1+2+3+\cdots+N)$. () 2. If the most commonly used operations are to visit a random position and to insert and delete the first element in a linear list, then sequential storage works the fastest.) 3. If keys are pushed onto a stack in the order *abcde*, then it's impossible to obtain the output sequence *cedab* . () 4. There exists a binary tree with 2020 nodes in total, and with 14 nodes having only one child. () 5. If the postorder and inorder traversal sequences of a binary tree are the same, then none of the nodes in the tree has a right child.) 6. Given a binary search tree with 20 integer keys which include 10, 11, and 12, if 10 and (12 are on the same level, then 11 must be their common ancestor. () 7. Insert 1, 2, 3, 4, 5, and 6 one by one into an initially empty AVL tree. Then the preorder traversal sequence of the resulting tree must be {4, 2, 1, 3, 5, 6}.) 8. The preorder traversal sequence of any min-heap must be in sorted (non-decreasing) order. (() 9. In a directed graph, the sum of the in-degrees and out-degrees of all the vertices is twice the total number of edges.) 10. Let M be the minimum spanning tree of a weighted graph G. Then the path in M between (V1 and V2 must be the shortest path between them in G.) 11. After the first run of Insertion Sort, it is possible that no element is placed in its final position.) 12. Store M elements in a hash table which is represented by an array of size S, the loading density is then M/S. () 13. If quadratic probing is used to resolve collisions, then a new insertion must be successful if the size of the hash table is a prime. () 14. In a circular queue which is implemented by an array, the front value must always be no larger than the rear value.

1. Answer the following questions with True or False, and make it on your answer

() 15. The Huffman code is one kind	d of optimal prefix code	es. For a given alphabet and its
characters' frequencies, the Huffman code	es may not be unique, b	out the Huffman code length of
each character is unique.	-	
2. Read each of the following que	estions carefully; c	hoose the best answer(from
among items A, B, C, or D) and	make it on your a	nswer sheet. (30 Points)
() 1. For the following piece of code	,	
x=90;		
y=100;		
while(y>0)		
<i>if</i> (x>100)		
{ x=x-10; y; }		
else x++;		
the time complexity is:		
A. O(1) B. O(N)	C. $O(N^2)$	D. $O(log_2N)$
() 2. For a singly linked list with N	N nodes, which of the	following operations has the time
complexity O(N)?		
A. insert a node after the node at address	s p	
B. delete the first node		
C. traverse the list and find the i-th node	,	
D. delete the node right after the node at	address p	
() 3. Let h be the head of a singly line	ked list without a dumr	ny head node. To insert a new node
t as the first node, we must do:		
A. h=t; t->next=h->next;	B. t->next=h->next;	h=t;
C. h=t; t->next=h;	D. t->next=h; h=t;	
() 4. In order to convert the infix ex	pression 4 * 3 + (6 * 3	- 12) to postfix expression using a
stack S, then the minimum size of S must b	be:	
A. 2 B. 3	C. 4	D. 5
() 5. What is the major difference an	nong lists, stacks, and	queues?
A. Lists use pointers, and stacks and que	eues use arrays	
B. Stacks and queues are lists with inser	tion/deletion constraint	ts
C. Lists and queues can be implemented	using circularly linked	l lists, but stacks cannot
D. Lists are linear structures while stack	s and queues are not	
() 6. Insert {5, 6, 7, 2, 4, 3} one by on	ne into an initially emp	ty binary search tree. The postorder
traversal sequence of the resulting tree is _	?	

A. 2, 3, 4, 7, 6, 5	В. 2,	3, 4, 5, 6, 7		
C. 5, 2, 4, 3, 6, 7	D. 3,	, 4, 2, 7, 6, 5		
() 7. If a binary search	tree of N node	es is also a complete bin	ary tree, then among the follow	ing,
which one is FALSE?				
A. The average search tim	ne is O(logN)			
B. The largest key must b	e on the last le	evel		
C. The smallest key must	be at a leaf no	ode		
D. The median key must b	e at either the	root or in the left subtr	ee of the root	
() 8. Insert {10, 12, 1,	14, 6, 5, 8, 15	5, 3, 9, 7} one by one int	to an initially empty min-heap,	and
then run DeleteMin twice. T	he root of the	resulting heap is:		
A. 5	B. 6	C. 7	D. 9	
() 9. Given a piece of	text which co	onsists of characters {a,	b, c, d, e}, with the frequencie	s of
occurrence being {3, 2, 5, 1	, 1}, respectiv	vely. How many bytes	will this piece of text occupy a	ıfter
Huffman coding?				
A. 40	B. 36	C. 25	D. 12	
() 10. Insert 26, 13, 4	4, 51, 98, 37,	66, 73 into an initially 6	empty AVL tree. Which one of	the
following statements is FAL	SE?			
A. 44 is the root				
B. 37 and 73 are siblings				
C. 26 and 66 are siblings				
D. 26 is the parent of 13				
() 11. Given the adjac	ency matrix o	f a directed graph as the	e following:	
$\begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$				
0 0 0 0				
The out-degree and the in-de	_	ertex 2 (the index starts)	from 0) are, respectively.	
A. 3 and 1	B. 1 and 3			
C. 0 and 2	D. 2 and 0			•••
() 12. Given the adjac	ency lists of a	a directed graph as show	vn by the figure. Starting from	V1,

() 12. Given the adjacency lists of a directed graph as shown by the figure. Starting from V1 a possible BFS sequence is:


```
A. V1, V2, V3, V4, V5
  B. V1,V2,V3,V5,V4
  C. V1,V3,V2,V4,V5
  D. V1,V4,V3,V5,V2
(
       ) 13. Given the adjacency matrix of a weighted graph as shown by the figure. The total weight
of its minimum spanning tree is:
                                                  C. 18
  A. 24
                            B. 23
                                                                D. 17
       ) 14. To sort { 8, 3, 9, 11, 2, 1, 4, 7, 5, 10, 6 } by Shell Sort, if we obtain ( 1, 3, 7, 5, 2, 6, 4, 9,
11, 10, 8) after the first run, and (1, 2, 6, 4, 3, 7, 5, 8, 11, 10, 9) after the second run, then the
increments of these two runs must be ___, respectively.
  A. 3 and 1
                             B. 3 and 2
  C. 5 and 2
                             D. 5 and 3
       ) 15. The average search time of searching a hash table with N elements is:
  A. O(1)
                             B. O(logN)
  C. O(N) O(N)
                             D. cannot be determined
3. Read each of the following programs (originate from the textbook) carefully,
fill in the blanks and make it on your answer sheet. (2 points for each blank, 20
points total)
1. Given the following function to reverse the list L.
typedef struct Node * PtrToNode;
struct Node {
       ElementType Data;
       PtrToNode Next;
};
typedef PtrToNode List;
List Reverse(List L)
{
       PtrToNode Old_head, New_head, Temp;
       Old_head=L;
       New_head=NULL;
```

```
while(Old_head){
            Temp= Old_head->Next;
            Old_head->Next= New_head;
            Old_head=Temp;
      }
      return L;
2. Given the following function to create circle queue and insert element X into queue.
typedef int Position;
typedef struct QNode * PtrToQNode;
struct QNode {
                                /*存储元素的数组*/
      ElementType * Data;
                                /*队列的头、尾*/
      Position Front, Rear;
                                /*队列最大容量*/
      int MaxSize;
};
typedef PtrToQNode Queue;
Queue CreateQueue(int MaxSize)
{
      Queue Q=(Queue)malloc(sizeof(struct QNode));
      Q->Data=(ElementType*)malloc(MaxSize*sizeof(ElementType));
      Q->Front=Q->Rear=0;
      Q->MaxSize=MaxSize;
      return Q;
}
bool IsFull(Queue Q)
{
      }
bool Add(Queue Q, ElementType X)
{
      if(IsFull(Q)){
            printf("Queue is full!");
            return false;
      }else{
```

```
Q->Rear=_ (4)
             Q->Data[Q->Rear] = X;
             return true;
      }
}
3. Given the following program to implement preorder traversal sequences of a binary tree.
typedef struct TNode * Position;
typedef Position BinTree;
struct TNode {
      ElementType Data;
      BinTree Left;
      BinTree Right;
};
void PreorderTraversal(BinTree BT)
{
      if(BT){
             printf("%d", BT->Data);
             PreorderTraversal (________
      }
4. Given the following program to implement levelorder traversal sequences of a binary tree.
typedef struct TNode * Position;
typedef Position BinTree;
struct TNode {
      ElementType Data;
      BinTree Left;
      BinTree Right;
};
void LevelorderTraversal (BinTree BT){
      Queue Q;
      BinTree T;
      if(!BT) return;
                         /*创建空队列Q, 队列操作的相关方法代码省略*/
      Q=CreatQueue();
      AddQ(Q, BT);
      While(!IsEmpty(Q)){
```

5. Given the following program to implement Shell Sort using the Sedgewick incremental sequence. void $ShellSort(ElementType\ A[],\ int\ N)$ {

4. Please write or draw your answers for the following problems on the answer sheet. (35 points)

- 1. (7 points) Use the stack to calculate the value of post-expression: 562/+34*-, please draw the content of the Stack while reading + and -.
- 2. (7 points) The inorder and the postorder traversal sequences of a binary tree are *a b c d e f g* and *a c b g f e d*, respectively. (1) please draw this binary tree; (2) please write the preorder traversal sequences.
- 3. (7 points) For the following weighted graph:

Use Floyed algorithm to calculate the shortest paths between pairs of vertices, please write the construction process step by step for shortest paths length matrix D and shortest path matrix P.

- 4. (7 points) Insert {18, 23, 11, 20, 2, 7, 27, 33, 42, 15} one by one into an initially empty hash table of size 11 with the hash function H(Key)=Key%11, and linear probing is used to resolve collisions.
- (1) Please try to give the final hash table; (2) Please try to calculate the average successful search length (ASL); (3) What is the loading factor α when the first collision occurs?
- 5. (7 points) For the following sequence {48, 62, 6, 25, 90, 17, 84, 96, 49, 72, 27}, please sort it into ascending sequence by Quick Sort algorithm. Write the sequence after first and second sorting operations (Selecting the *last element* as the pivot for each sorting).