

CSCE604135 | Perolehan Informasi (Information Retrieval) Spelling Correction

Radityo Eko Prasojo, PhD

Content

- Wildcard queries
- Approaches for spelling correction

Wildcard Queries

- Sometimes we do not know the exact keyword that we want
 - "Who was that US president? I know his name starts with bar..."
- Can also be useful if the documents contain some unfixed typos, e.g. if it contains "Barrack" instead of "Barack"

- bar* → finds all docs containing words that begin with "bar"
- This is where binary trees (like B-Tree) are useful: we can retrieve all indexes in the range of bar ≤ w < bas
 - Remember: the indexes are sorted alphabetically!
- *bar → finding all indexes ending with "bar" is harder
 - Because the alphabetical order goes from left to right!
 - Solution: maintain another B-tree index backwards, i.e. from right to left!
- How do we process an in-between wildcard query, like "per*ent"?

- Using the usual indexing mechanism, we can only enumerate all terms in the index that match the wildcard query and the corresponding postings
- E.g. "per*cent", we can lookup **per*** AND ***cent** in the B-tree, get all the union of postings for each, and intersect them
- This is a CNF → expensive!
- Solution: permuterm index

- Add \$ to the end of each term
- Add all possible rotations of the term into the B-tree index
- For example: for the term hello, we have:
 - o hello\$, ello\$h, llo\$he, lo\$hel, o\$hell, \$hello, all added into the index
- Empirically, the index quadruples in size
 - Remember: we do not need to duplicate the postings
 - Average english words are 4.7 characters long

 We can now change any wildcard queries so that the * can be moved to the back!

Original query (w/o perm)	Transformed query (w perm)	Example				
X	X\$	hello → hello\$				
X*	\$X*	hel* → \$hel*				
X	X\$	*llo → llo\$*				
X	X*	*ell* → ell*				
X*Y	Y\$X*	h*lo → lo\$h*				

Spelling Correction

- Error detection
- Error correction
 - Generate correction candidates
 - (autocorrect) pick the top 1
 - (user-centric) suggest the top-k to the users

- Non-word errors
 - graffe → giraffe, yagn → yang
- Real-word errors
 - Typographical errors
 - there \rightarrow three, telaah \rightarrow telah
 - Cognitive errors (homophones)
 - piece \rightarrow peace, too \rightarrow two, your \rightarrow you're, bang \rightarrow bank
- Non-word errors are typically context-insensitive (easier)
- Real-world errors are almost always context-sensitive (harder)

Real-word error: need to understand the context

Non-word error: no need to understand the context

UNIVERSITAS INDONESIA PORCE PO

Client: Do you do lemonade?

Me: Do we do... lemonade?

Client: Yes, I was told you do that here.

Me: I'm sorry, this is a graphics and print shop.

Client: I know that. I'm not an idiot.

Me: I'm sorry, I didn't mean to -

Client: Look If you can't lemonade these papers for me then I'll go somewhere else!

Me: Do you mean... laminate?

https://redd.it/eekacy

Trivia: **26%** of web queries contain errors (Wang et al. 2003)

Trivia: **25-40%** of spelling errors are real words (Kukich, 1992)

Detection

Correction

UNPERSITAS INDONESIA INDONESIA COMPUTER SCIENCE

- Non-word error: any word that is not in the dictionary is an error!
- Real-word error: need to see the context
 - E.g. Flying \underline{form} Heathrow to LAX \rightarrow Flying from Heathrow to LAX
 - Checking can be done using language model

- Generate candidates: real words that are similar to the error: using edit distance
- Choose which one is the best: using edit distance and language model

Candidate generation

- Words with similar spellings
 - Small edit distance to the erroneous word
- Words with similar pronunciation
 - Small distance to the pronunciation

- Edit distance between two strings, where edits are:
 - Insertion
 - Deletion
 - Substitution
 - Transposition between two adjacent letters
- Some people/tools count transposition and substitution as 2 edits
 - In this course we treat them all as one edit

Levenshtein distance: candidate generation

- Can be modeled as a graph
- 1 edge represents 1 edit distance
 - Acress → acre = 2 edits
- Some tools treat substitution and transposition as 2 edits
 - e.g. across and caress
- All candidates are cross-checked with a dictionary

Levenshtein distance - also track what changes

Error	Candidate	Correct letter	Error letter	Туре
acress	actress	t	-	deletion
acress	cress	-	а	insertion
acress	caress	ca	ac	transposition
acress	access	С	r	substitution
acress	across	0	е	substitution
acress	acres	-	S	insertion

Can also track the **char index/position** in which the change happens

- 80% of errors are within 1 edit distance, and 99% of errors are within 2
- Also allows some non-alphanumeric character in the edits
 - \circ E.g. spaces and (iam \rightarrow i am, data base \rightarrow database, kupukupu \rightarrow kupu-kupu)
 - Depending on the context or domain of the text, there can be other chars e.g. '@' and '#'
- We can now generate all candidates within 1 edit, and then 2 edit distances → then pick the best one among them
- Note: does not guarantee the best result \rightarrow a recurring theme in IR
 - We strive for good-enough results within a reasonable amount of time/space
 - e.g. in ranking best docs, implementing the best indexing mode, etc.

Picking the best candidate

- Weighted edit distance
- (1) from a heuristic
- (2) from a probabilistic model
- or a combination of both

Heuristic example

- Keyboard distance!
- Instead of the default 1 per edge, assign weights according to the letter distance on the keyboard
- E.g. banj → bank is more likely than band

Keyboard heuristic: weighting example

- Assuming: regular qwerty keyboard, only considering the alphabet
 - Max. horizontal distance: 9 (from Q to P)
 - Max. vertical distance: 2
 - Max. diagonal distance: $sqrt(9^2+2^2) \approx 9.75 \rightarrow also maximum overall distance (z to p)$
- Weight of an edit:

(max overall distance - distance)/max overall distance

- E.g. from banj to bank, the weight is $(9.75 1)/9.75 \approx 0.89$
- From banj to band \rightarrow (9.75 4)/9.75 \approx 0.59
- (self-study) How do we incorporate insertion, deletion, and transposition?

- Given \mathbf{x} a misspelled word, and \mathbf{C} a set of candidate words generated by the edit distance, find the correct word $\hat{\mathbf{w}} \in \mathbf{C}$
- $\hat{\mathbf{w}}$ is modeled by the following formula:

$$\hat{w} = \operatorname*{argmax} P(w|x)$$

$$w \in C$$

Probabilistic Model: Bayes Rule

$$\hat{w} = \underset{w \in C}{\operatorname{argmax}} P(w|x)$$

$$= \underset{w \in C}{\operatorname{argmax}} \frac{P(x|w)P(w)}{P(x)}$$

$$= \underset{w \in C}{\operatorname{argmax}} P(x|w)P(w)$$

 $w \in C$

 \mathbf{x} is given and is not affected by \mathbf{w} , therefore $P(\mathbf{x})$ is constant

Because the denominator is constant, maximizing the formula entails maximizing the **numerator**

 $P(\mathbf{x}|\mathbf{w})$ = probability of getting a typo \mathbf{x} given a real word \mathbf{w}

 $P(\mathbf{w})$ = probability of seeing a real word \mathbf{w}

 Given a collection of documents / a corpus, tokenize all the words, let the total number of words be T, and let C(w)=the number of occurrences of the word w in the corpus

$$P(w) = \frac{C(w)}{T}$$

"Unigram" because it involves only one word/token as parameter

Unigram language model: example

 Counts from 404,253,213 words in Corpus of Contemporary English (COCA)

Word (w)	Frequency of word	$P(\mathbf{w})$				
actress	9,321	.0000230573				
cress	220	.0000005442				
caress	686	.0000016969				
access	37,038	.0000916207				
across	120,844	.0002989314				
acres	12,874	.0000318463				

- From a large corpus, detect all the typos
- Take a sample from the detected typos, then manually fix them
- Count the number of fixes being made

```
    del[x,y]: count(xy typed as x)
    ins[x,y]: count(x typed as xy)
    sub[x,y]: count(y typed as x)
    trans[x,y]: count(xy typed as yx)
```

Make a confusion "matrix"

Confusion matrix example

Kernighan, Church, & Gale, 1990

X					su	b[X	, Y]	= Su	bstit	utio		X (i		rect) fo	r Y	(coı	rect)									
	a	b	С	d	e	f	g	h i	i	k	1	m	n	0	p	G 1		s t	u	v	w	х	V	Z	:			
a	0	0	7	1	342	0	0	2 118	0	1	0	0	3	76	0	0 1	3	5 9	9	0	1	0	5	0	j			$\det[w_{i-1}, w_i]$
b	0	0	9	9	2	2	3	1 (0	0	5	11	5	0 1	0	0 ()	2 1	0	0	8	0	0	0)		- [$\operatorname{der}[w_{i-1},w_i]$
c	6	5	0	16	0	9	5	0 0	0	1	0	7	9	1 1	0	2 5	3	9 40	1	3	7	1	1	0)			
d	1	10	13	0	12	0	5	5 0	0	2	3	7	3	0	1	0 43	3	0 22	0	0	4	0	2	0)			$\overline{\operatorname{count}[w_{i-1}w_i]}$
e	388	0	3	11	0	2	2	0 89	0	0	3	0	5	93	0	0 14	1	2 6	15	0	1	0	18	0)			$coarre[\omega_i = 1 \omega_i]$
f	0	15	0	3	1	0	5	2 0	0	0	3	4	1	0	0	0 6	,	4 12	0	0	2	0	0	0)			•
g	4	1	11	11	9	2	0	0 0	1	1	3	0	0	2	1	3 5	1	3 21	0	0	1	0	3	0)			$\operatorname{ins}[w_{i-1},x_i]$
h	1	8	0	3	0	0	0	0 0	0	2	0	12	14	2	3	0 3	1	1 11	0	0	2	0	0	0)			
i	103	0	0	0	146	0	1	0 0	0	0	6	0	0	19	0	0 ()	2 1	47	0	2	1	15	0)			$\operatorname{count}[w_{i-1}]$,
i	0	1	1	9	0	0	1	0 0	0	0	2	1	0	0	0	0 ()	5 0	0	0	0	0	0	0)	D ()		$count[w_{i-1}]$
k	1	2	8	4	1	1	2	5 0	0	0	0	5	0	2	0	0 ()	6 0	0	0	. 4	0	0	3	3	P(x w) =	/	_
1	2	10	1	4	0	4	5	6 13	0	1	0	0	14	2	5	0 11	1	0 2	0	0	0	0	0	0	1	I(x w) =		$\mathrm{sub}[x_i, w_i]$
m	1	3	7	8	0	2	0	6 0	0	4	4	0 1	80	0	6	0 ()	9 15	13	3	2	2	3	0)	, , , ,		$\sup x_i,w_i $
n	2	7	6	5	3	0	1	19 1	0	4	35	78	0	0	7	0 28		5 7	0	0	1	2	0	2	2			
0	91	1	1	3	116	0	0	0 25	0	2	0	0	0	0 1	4	0 2		4 14	39	0	0	0	18	0)			$\operatorname{count}[w_i]$,
p	0	11	1	2	0	6	5	0 2	9	0	2	7	6	15	0	0 1		3 6	0	4	1	0	0	0)			
a	0	0	1	0	0	0 :	27	0 0	0	0	0	0	0	0	0	0 ()	0 0	0	0	0	0	0	0)			+10.000
r	0	14	0	30	12	2	2	8 2	. 0	5	8	4	20	1 1	4	0 (1	2 22	4	0	0	1	0	0)			$\operatorname{trans}[w_i, w_{i+1}]$
s	11	8	27	33	35	4	0	1 0	1	0	27	0	6	1	7	0 14		0 15	0	0	5	3	20	1				
t	3	4	9	42	7	5	19	5 0	1	0	14	9	5	5	6	0 11	3	7 0	0	2	19	0	7	6	5			$\operatorname{count}[w_i w_{i+1}]$
u	20	0	0	0	44	0	0	0 64	0	0	0	0	2	43	0	0 4		0 0	0	0	2	0	8	0)		ı	$coarre[\omega_i\omega_{i+1}]$
v	0	0	7	0	0	3	0	0 0	0	0	1	0	0	1	0	0 ()	8 3	0	0	0	0	0	0)		•	
w	2	2	1	0	1	0	0	2 0	0	1	0	0	0	0	7	0 6	,	3 3	1	0	0	0	0	0)			
x	0	0	0	2	0	0	0	0 0	0	0	0	0	0	0	0	0 ()	9 0	0	0	0	0	0	0)			
y	0	0	2	0	15	0	1	7 15	0	0	0	2	0	6	1	0 7	3	6 8	5	0	0	1	0	0)			
-	Λ	Λ	٥	7	۸	٥	٥	0 0	0	0	7	5	Λ	۸	n	0 1	2	1 2	0	0	0	0	2	۸				

$$P(x|w) = \begin{cases} \frac{\text{del}[w_{i-1}, w_i]}{\text{count}[w_{i-1} w_i]}, & \text{if deletion} \\ \frac{\text{ins}[w_{i-1}, x_i]}{\text{count}[w_{i-1}]}, & \text{if insertion} \\ \frac{\text{sub}[x_i, w_i]}{\text{count}[w_i]}, & \text{if substitution} \\ \frac{\text{trans}[w_i, w_{i+1}]}{\text{count}[w_i w_{i+1}]}, & \text{if transposition} \end{cases}$$

- Because we rely on sampling, some cases are bound to be left out
 - E.g. there might be typos of 'a' written as 'q', but our sample gets 0 of them
- For these cases, the normal $P(\mathbf{x}|\mathbf{w})$ formula returns 0, which seems unrealistic
- A simple solution is to add 1 to all counts and then if there is a |A| character alphabet, to normalize appropriately.
 - E.g. for substitution:

$$P(x \mid w) = \frac{\sup[x, w] + 1}{\text{count}[w] + A}$$

Example: acress

Candidate	Correct letter	Error letter	Туре	P(x w)	<i>P</i> (w)	P(x w)*P(w)*10 ⁹
actress	t	-	del	.000117	.0000230573	2.7
cress	-	а	ins	.00000144	.0000005442	.00078
caress	са	ac	trans	.00000164	.0000016969	0.0028
access	С	r	subs	.000000209	.0000916207	0.19
across	0	е	subs	.0000093	.0002989314	2.8
acres	-	S	ins	.0000321	.0000318463	1.0

- Wikipedia's list of common English misspelling
- Aspell filtered version of that list
- Birkbeck spelling error corpus
- Peter Norvig's list of errors (includes Wikipedia and Birkbeck, for training or testing)

- …leaving in about fifteen minuets to go to her house.
- The design an construction of the system...
- Can they lave him my messages?
- The study was conducted mainly be John Black

- Detecting and correcting these words require understanding the context
 - → contextual language model

Contextual Language Model

- As opposed to the unigram model, contextual model involves multiple words
- Example: n-gram language model, with n>1

- Given a collection of documents / a corpus, tokenize all the words
- For any n given words, we define a probability

$$P(\mathbf{W}_{n}|\mathbf{W}_{n-1},\mathbf{W}_{n-2},...,\mathbf{W}_{1})$$

by counting the word occurrences after tokenization

- E.g. if we set n=3, given words "saya makan" (e.g. occur 100 times), we can count how many times "nasi" appears after that (e.g. 30 times)
 - \circ P(nasi|makan,saya) = 0.3
- P(nasi|makan,saya) should be higher than P(air|makan,saya)

 For any sequence of words of length q > n, we can compute the probability of such a sequence occurs as:

$$P(\mathbf{W}_{1}...\mathbf{W}_{q}) = P(\mathbf{W}_{1})P(\mathbf{W}_{n}|\mathbf{W}_{n-1},\mathbf{W}_{n-2},...,\mathbf{W}_{1})P(\mathbf{W}_{n+1}|\mathbf{W}_{n},\mathbf{W}_{n-1},...,\mathbf{W}_{2})...P(\mathbf{W}_{q}|\mathbf{W}_{q-1},\mathbf{W}_{q-2},...,\mathbf{W}_{q-n+1})$$

For example, if n = 2, then

$$P(W_1...W_q) = P(W_1)P(W_2|W_1)P(W_3|W_2)...P(W_q|W_{q-1})$$

And for "saya makan nasi goreng":

P(saya makan nasi goreng) = P(saya) P(makan saya) P(nasi makan) P(goreng makan)

- Some word sequence might never appear \rightarrow the probability is then 0
 - E.g. "makan bata" in bigram language model
 - But this might just be because our corpus is not extensive enough.
- 1-smoothing: similar to the bayes rule before:
 - o from original P(bata makan) = count(makan bata)/count(makan)
 - o to **1-smoothed** P(bata|makan) = (count(makan bata)+1)/(count(makan)+|Words|)
- Or, using unigram interpolation
 - \circ P(bata|makan) = $\lambda P_{uniqram}$ (bata) + $(1-\lambda)P_{original}$ (bata|makan)
 - claimed to perform better than the 1-smoothing

Logarithm to handle very small value

- These probabilities can be very small → underflow risk
- Use log to work with bigger number
- For example, if n = 2, then

$$P(\mathbf{W}_{1}...\mathbf{W}_{q}) = P(\mathbf{W}_{1})P(\mathbf{W}_{2}|\mathbf{W}_{1})P(\mathbf{W}_{3}|\mathbf{W}_{2})...P(\mathbf{W}_{q}|\mathbf{W}_{q-1})$$

$$\log(P(\mathbf{W}_{1}...\mathbf{W}_{q})) = \log(P(\mathbf{W}_{1})) + \log(P(\mathbf{W}_{2}|\mathbf{W}_{1})) + \log(P(\mathbf{W}_{3}|\mathbf{W}_{2})) + ... + \log(P(\mathbf{W}_{q}|\mathbf{W}_{q-1}))$$

n-gram model to detect real-word errors

 Set a probability threshold, then run a given sentence into the n-gram model and compute the probability. If it is below the threshold, then we suspect it has some errors.

Can they **lave** him my messages?

- Suppose we use bigram, compute P(they|can), ..., P(messages|my), if
 P(lave|they) and P(him|lave) are below threshold, lave is an error
- A good threshold can be obtained via training (machine learning)

Using contextual model to pick the best fix

- Similar to before: generate candidates using edit distance
- Next, instead of using a unigram language model, we look at the context by using a contextual language model, for example bigram

"a stellar and versatile acress whose combination of sass and glamour..."

- From the Coca corpus with 1-smoothing
 - P(actress|versatile)=.000021, P(whose|actress) = .0010
 P(across|versatile) =.000021, P(whose|across) = .000006
 P("versatile actress whose") = .000021*.0010 = 210 ×10⁻¹⁰
 P("versatile across whose") = .000021*.000006 = 1 ×10⁻¹⁰

Improvements to the discussed models

- Bidirectional model: though most of the times reading is left-to-right, some contextual information can be obtained from right to left
 - E.g.: "Before he became president, Obama ..."
- Pronunciations: e.g. by transforming texts into phonemes
 - Phoneme of "live" is /liv/, whereas "leave" is /liv/, cutting the edit distance from 2 to 1
- Incorporate other heuristics like the keyboard into the probabilistic model

Supported by the Kampus Merdeka grant of Ministry of Education, Culture, Research, and Technology of Republic of Indonesia

Copyright © 2021 by Faculty of Computer Science Universitas Indonesia