Magnetic dipole simulation

Ruby Shi

05/18/21

results

Beena's dipole manipulation paper

Math: B-expression

- In 3d space, magnetic field of a point dipole located at origin is $\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \left[\frac{3\vec{r}(\vec{m}\cdot\vec{r})}{r^5} \frac{\vec{m}}{r^3} \right]$
- That is, magnetic field of N Bohr magneton is $\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} N \mu_B \left[\frac{3\vec{r}(\hat{m}\cdot\vec{r})}{r^5} \frac{\hat{m}}{r^3} \right]$
- Now ignore constant coefficient $\frac{\mu_0}{4\pi}N\mu_B$ and consider a dipole located at $r_d=(x_d,y_d,z_d)$. At \vec{r} , it creates a magnetic field $\vec{B}(\vec{r})=\frac{3(\vec{r}-\vec{r_d})(\widehat{m}\cdot(\vec{r}-\vec{r_d}))}{|\vec{r}-\vec{r_d}|^5}-\frac{\widehat{m}}{|\vec{r}-\vec{r_d}|^3}$
- Consider a dipole in xy-plane, rotated at θ to x-axis: $\hat{m}=(cos\theta,sin\theta,0)$, $\overrightarrow{r_d}=(x_d,y_d,0)$
- Then $\widehat{m} \cdot (\overrightarrow{r} \overrightarrow{r_d}) = cos\theta(x x_d) + sin\theta(y y_d)$
- And $\vec{B}(x, y, z) = \frac{3[(x x_d)\hat{x} + (y y_d)\hat{y} + z\hat{z}][\cos\theta(x x_d) + \sin\theta(y y_d)]}{[(x x_d)^2 + (y y_d)^2 + z^2]^{5/2}} \frac{\cos\theta\hat{x} + \sin\theta\hat{y}}{[(x x_d)^2 + (y y_d)^2 + z^2]^{3/2}}$

Math: planes

- Now project vector B-field to a plane by multiplying \overrightarrow{B} by the plane's unit normal vector
- For example: $B_{z}(x, y, z) = \vec{B} \cdot \hat{z} = \frac{3z \left[cos\theta(x x_d) + sin\theta(y y_d) \right]}{\left[(x x_d)^2 + (y y_d)^2 + z^2 \right]^{5/2}}$
- Therefore: $B_{\phi}(x, y, z) = \vec{B} \cdot \hat{\phi} = \frac{3[-(y-y_d)\sin\phi + z\cos\phi][\cos\theta(x-x_d) + \sin\theta(y-y_d)]}{[\cos\theta(x-x_d)^2 + (y-y_d)^2 + z^2]^{\frac{5}{2}}} + \frac{\sin\phi\sin\phi}{\sin\phi\sin\theta}$

$$\frac{1}{[(x-x_d)^2+(y-y_d)^2+z^2]^{3/2}}$$

• Physically, the z-plane is the scanning plane – we conduct touchdowns to define a plane that is parallel to sample and scan at finite height. The ϕ -plane is SQUID pickup loop plane. We align the SQUID at a small angle tilt to the sample. The aligning angle is ϕ

Math: SQUID layout

- As a result, for a small area segment of the pickup loop, $B_{\phi}(x,y,z)$ is what is sees, as the SQUID scans around sample surface.
- Of course, every small segment on SQUID pickup loop has a different height. I fix center of SQUID(blue dot in figure) at nominal scanning height.
- From the way we align, scanning height is higher where y > 0 in SQUID layout, and lower where y < 0.
- In addition, every small segment sees the dipole differently. If I fix dipole at center of scanning area, the center of SQUID sees a dipole at (0,0,0), whereas other segments see a displaced dipole. For example, green dot sees a dipole at (-2, 0), and red dot sees a dipole at (0, -2).

Real SQUID pickup loop layout. Center of SQUID(blue dot), or center of 3um radius circle is fixed at origin of SQUID's own coordinates.

Math: adjusted height

- As there is only one rotation angle here, it is a simple calculation. $\Delta z = \sin \phi y_0$
- Alternatively, one can project any point in ϕ -plane to z-axis. A point in ϕ -plane is $\mathbf{r}' = x_0 \hat{x'} + y_0 \hat{y'} \cdot \hat{z} \cdot r' = sin\phi y_0$. Same result.

	Normal vector	In plane orthogonal vector
z – plane	\hat{Z}	\hat{x},\hat{y}
φ – plane	$\hat{\phi}$ = $cos\phi\hat{z}$	$\widehat{x'} = \widehat{x},$ $\widehat{y'} = \cos\phi\widehat{y} + \sin\phi\widehat{z}$

 $-\sin\phi\hat{v}$

Logic diagram

 $processing \ time = 69 * 69 * 1.8ms = 8.5s$

Math: two tilt angles

 $\phi = 8^{\circ}, z = 2um$

Dipole at origin, $\sigma=10^{\circ}$

expected

• Now rotate ϕ - plane along y-axis by σ degrees

•
$$B_{\sigma}(x,y,z) = \overrightarrow{B} \cdot \widehat{\sigma} = \frac{3[-(y-y_d)\sin\phi\cos\sigma + (x-x_d)\sin\sigma + z\cos\phi\cos\sigma] \left[\cos\theta(x-x_d) + \sin\theta(y-y_d)\right]}{\left[(x-x_d)^2 + (y-y_d)^2 + z^2\right]^{\frac{5}{2}}} + \frac{[(x-x_d)^2 + (y-y_d)^2 + z^2]^{\frac{5}{2}}}{[(x-x_d)^2 + (y-y_d)^2 + z^2]^{\frac{3}{2}}}$$

Math: adjusted height for two angles

- This is done by identifying correct in-plane unit vectors
- A point in σ -plane is $\mathbf{r}'' = x_0 \widehat{x''} + y_0 \widehat{y''}$. Then $\widehat{z} \cdot r'' = sin\phi y_0 sin\sigma cos\phi x_0$

	Normal vector	In plane orthogonal vector
z – plane	\hat{Z}	\widehat{x},\widehat{y}
φ – plane	$\hat{\phi} = \cos\!\phi \hat{z} - \sin\!\phi \hat{y}$	$\widehat{x'} = \widehat{x},$ $\widehat{y'} = \cos \phi \widehat{y} + \sin \phi \widehat{z}$
σ — plane	$ \hat{\sigma} \\ = \cos \sigma \cos \phi \hat{z} \\ - \cos \sigma \sin \phi \hat{y} + \sin \sigma \hat{x} $	$\widehat{x''} = \cos\sigma\widehat{x'} - \sin\sigma\widehat{\phi}$ $= \cos\sigma\widehat{x'} + \sin\sigma\sin\phi\widehat{y} - \sin\sigma\cos\phi\widehat{z}$ $\widehat{y''} = \widehat{y'} = \cos\phi\widehat{y} + \sin\phi\widehat{z}$

Nominal scanning height $z_0 = 5$ um, $\phi = 30^\circ$, $\sigma = 30^\circ$

results

issue	Origin of issue
Simulations lack round feature	Dipole in Beena's paper has a z component
Simulation peak to peak magnitude is smaller	I am not using the correct height (1.5um is more like it)

"The sensing area is \sim 7 µm away and 1 µm above the contact point " – Beena's paper

Beena's <u>dipole manipulation paper</u> $\phi=8^{\circ}, z=2um, \sigma=2^{\circ}$

