Biclique Máxima Balanceada

Alunos: Carla Nicole e Filipe Falcão **Disciplina:** Pesquisa Operacional

1. Problema

Seja um grafo bipartido $G = (V_1, V_2, E)$, onde V_1 e V_2 denotam os vértices de cada lado do grafo bipartido. Devemos encontrar em G uma biclique balanceada com o maior número de vértices possível. Uma biclique balanceada se trata de um subgrafo de G, bipartido e completo, com o mesmo número de vértices em ambos os seus lados.

2. Modelagem

2.1. Variáveis

Sejam V_1 e V_2 os conjuntos dos vértices pertencentes aos lados do grafo bipartido, de forma que $V = V_1 \cup V_2$. Temos que as variáveis do problema serão:

$$x_u$$
, onde $u \in V_1$.

$$x_v$$
, onde $v \in V_2$.

Ambas são variáveis booleanas que terão o valor 1 quando os vértices u (para V_1) ou v (para V_2) se encontrarem no biclique.

2.2. Objetivo

O objetivo do problema será maximizar a quantidade de vértices presentes no biclique. Logo, a função objetivo será:

$$\max \sum_{u \in V_1} x_u + \sum_{v \in V_2} x_v$$

2.3. Restrições

São necessárias as seguintes restrições:

 $x_u + x_v \le 1$, é necessário para garantir que cada par de vértices não-adjacentes não possa ser selecionado ao mesmo tempo, visando formar um biclique.

$$\sum_{v \in V_2} x_u - \sum_{v \in V_2} x_v = 0$$
, é necessário para garantir que o biclique é balanceado.