Matematică M_mate-info

Varianta 2

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I

(30 de puncte)

- **5p** | **1.** Se consideră numărul complex z = 2 + i. Arătați că $z + \overline{z} + z\overline{z} = 9$, unde \overline{z} este conjugatul lui z.
- **5p** 2. Determinați numărul real m, știind că punctul A(1,m) aparține graficului funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 2x 3$.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $(1 \log_2 x)(2 \log_2 x) = 0$.
- **4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să aibă cifra zecilor strict mai mică decât cifra unităților.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(3,1), B(3,3) și C(0,2). Determinați lungimea medianei din C a triunghiului ABC.
- **5p** 6. Arătați că $(1+tg^2x)\cos^2 x (1+ctg^2x)\sin^2 x = 0$, pentru orice $x \in (0,\frac{\pi}{2})$.

SUBIECTUL al II-lea

(30 de puncte)

1. Se consideră matricea $A(a) = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & a \\ -2 & -1 & 3 \end{pmatrix}$ și sistemul de ecuații $\begin{cases} x+y+2z=0 \\ x+2y+az=0 \end{cases}$, unde a este -2x-y+3z=0

număr real.

- **5p** a) Arătați că $\det(A(9)) = 0$.
- **5p b**) Determinați valorile reale ale lui *a* pentru care sistemul are soluție unică.
- **5p** c) Demonstrați că, dacă sistemul are soluția (x_0, y_0, z_0) , cu x_0 , y_0 și z_0 numere reale nenule, atunci $-x_0 + y_0 + z_0 = 11(x_0 + y_0 + z_0)$.
 - 2. Pe multimea numerelor reale se definește legea de compoziție $x \circ y = xy + 7x + 7y + 42$.
- **5p** a) Arătați că $x \circ y = (x+7)(y+7)-7$, pentru orice numere reale $x \neq y$.
- **5p b**) Determinați numerele reale x, știind că $x \circ x = x$.
- **5p** c) Determinați numărul real a, știind că $2017^a \circ (-6) = 1$.

SUBIECTUL al III-lea

- **1.** Se consideră funcția $f:(1,+\infty) \to \mathbb{R}$, $f(x) = \frac{\ln x}{1-x}$
- **5p a)** Arătați că $f'(x) = \frac{1 x + x \ln x}{x(1 x)^2}, x \in (1, +\infty).$
- **5p b**) Determinați ecuația asimptotei orizontale spre $+\infty$ la graficul funcției f.
- **5p** | **c**) Demonstrați că $x \ln x > x 1$, pentru orice $x \in (1, +\infty)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x + 3x^2$.
- **5p a)** Arătați că $\int_{0}^{1} (f(x) 3x^{2}) dx = e 1$.
- **5p b**) Arătați că $\int_{0}^{1} x f(x) dx = \frac{7}{4}$.
- **5p** c) Determinați numărul natural nenul n, pentru care suprafața plană delimitată de graficul funcției $g: \mathbb{R} \to \mathbb{R}$, $g(x) = f(x) e^x$, axa Ox și dreptele de ecuații x = 0 și x = n are aria egală cu $n^2 n + 1$.

Matematică *M_mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 2

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z + \overline{z} + z\overline{z} = 2 + i + 2 - i + (2 + i)(2 - i) =$	3 p
	$=4+4-i^2=9$	2p
2.	$f(1) = m \Longrightarrow 1 + 2 - 3 = m$	3 p
	m = 0	2p
3.	$1 - \log_2 x = 0 \text{ sau } 2 - \log_2 x = 0$	3 p
	x = 2 sau $x = 4$, care convin	2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	Mulțimea numerelor naturale de două cifre, care au cifra zecilor strict mai mică decât cifra unităților are 36 de elemente, deci sunt 36 de cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{36}{90} = \frac{2}{5}$	1p
5.	M(3,2), unde punctul M este mijlocul segmentului AB	3р
	CM = 3	2p
6.	$ (1 + tg^2x)\cos^2 x - (1 + ctg^2x)\sin^2 x = \left(1 + \frac{\sin^2 x}{\cos^2 x}\right)\cos^2 x - \left(1 + \frac{\cos^2 x}{\sin^2 x}\right)\sin^2 x = $	3p
	$=\cos^2 x + \sin^2 x - \left(\sin^2 x + \cos^2 x\right) = 0, \text{ pentru orice } x \in \left(0, \frac{\pi}{2}\right)$	2 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(9) = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & 9 \\ -2 & -1 & 3 \end{pmatrix} \Rightarrow \det(A(9)) = \begin{vmatrix} 1 & 1 & 2 \\ 1 & 2 & 9 \\ -2 & -1 & 3 \end{vmatrix} = $ $= 6 + (-2) + (-18) - (-8) - (-9) - 3 = 0$	2p 3p
b)	1 1 2	
	$\det(A(a)) = \begin{vmatrix} 1 & 1 & 2 \\ 1 & 2 & a \\ -2 & -1 & 3 \end{vmatrix} = 9 - a$	3 p
	Sistemul are soluție unică $\Leftrightarrow \det(A(a)) \neq 0$, deci $a \in \mathbb{R} \setminus \{9\}$	2p
c)	Sistemul are soluția (x_0, y_0, z_0) , cu x_0 , y_0 și z_0 numere reale nenule, deci $a = 9$ și soluția sistemului este de forma $(5\alpha, -7\alpha, \alpha)$, $\alpha \in \mathbb{R}$	3p
	$-x_0 + y_0 + z_0 = -5\alpha + (-7\alpha) + \alpha = -11\alpha = 11(5\alpha + (-7\alpha) + \alpha) = 11(x_0 + y_0 + z_0)$	2 p
2.a)	$x \circ y = xy + 7x + 7y + 49 - 7 =$	2p
	=x(y+7)+7(y+7)-7=(x+7)(y+7)-7, pentru orice numere reale x și y	3 p

Probă scrisă la matematică *M_mate-info*

Barem de evaluare și de notare

b)	$x \circ x = (x+7)^2 - 7$, deci $(x+7)^2 - 7 = x$	2p
	$(x+7)(x+6) = 0 \Leftrightarrow x = -7 \text{ sau } x = -6$	3 p
c)	$(2017^{a} + 7)(-6 + 7) - 7 = 1 \Leftrightarrow 2017^{a} + 7 - 7 = 1$	3 p
	$2017^a = 1 \Leftrightarrow a = 0$	2p

SUBIECTUL al III-lea

1.a)	$f'(x) = \frac{\frac{1}{x} \cdot (1 - x) - \ln x \cdot (-1)}{(1 - x)^2} =$	3p
	$= \frac{\frac{1-x}{x} + \ln x}{(1-x)^2} = \frac{1-x + x \ln x}{x(1-x)^2}, \ x \in (1, +\infty)$	2 p
b)	$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{\ln x}{1 - x} = \lim_{x \to +\infty} \frac{\frac{1}{x}}{-1} = 0$	3 p
	Dreapta de ecuație $y = 0$ este asimptotă orizontală spre $+\infty$ la graficul funcției f	2p
c)	$g:(1,+\infty) \to \mathbb{R}$, $g(x) = x \ln x - x + 1 \Rightarrow g'(x) = \ln x$, deci $g'(x) > 0$ pentru orice $x \in (1,+\infty)$	3 p
	Funcția g este strict crescătoare pe $(1,+\infty)$ și, cum $\lim_{x\to 1} g(x) = 0$, obținem $g(x) > 0$, deci $x = x + 1$, pentru orice $x \in (1,+\infty)$	2 p
2.a)	$\int_{0}^{1} \left(f(x) - 3x^{2} \right) dx = \int_{0}^{1} \left(e^{x} + 3x^{2} - 3x^{2} \right) dx = \int_{0}^{1} e^{x} dx =$	2p
	$=e^{x}\begin{vmatrix}1\\0=e-1\end{vmatrix}$	3 p
b)	$\int_{0}^{1} x f(x) dx = \int_{0}^{1} \left(x e^{x} + 3x^{3} \right) dx = (x - 1) e^{x} \begin{vmatrix} 1 \\ 0 \end{vmatrix} + \frac{3x^{4}}{4} \begin{vmatrix} 1 \\ 0 \end{vmatrix} =$	3 p
	$=1 \cdot e^0 + \frac{3}{4} = \frac{7}{4}$	2 p
c)	$g(x) = 3x^2 \Rightarrow \mathcal{A} = \int_0^n g(x) dx = \int_0^n 3x^2 dx = x^3 \Big _0^n = n^3$	3 p
	$n^{3} = n^{2} - n + 1 \Leftrightarrow (n-1)(n^{2} + 1) = 0 \Leftrightarrow n = 1$	2p

Examenul de bacalaureat național 2017 Proba E. c) Matematică *M st-nat*

Varianta 2

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Determinați al treilea termen al progresiei aritmetice $(a_n)_{n\geq 1}$, știind că $a_1=4$ și $a_2=7$.
- **5p** 2. Se consideră x_1 și x_2 soluțiile ecuației $x^2 4x + 1 = 0$. Arătați că $4x_1x_2 (x_1 + x_2) = 0$.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $2^{2x+1} = \frac{1}{8}$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să fie multiplu de 15.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(0,1), B(1,1) și C(3,a), unde a este număr real. Determinați numărul real a, știind că punctele A, B și C sunt coliniare.
- **5p 6.** Se consideră triunghiul ABC cu $AB = 4\sqrt{3}$, AC = 4 și $\sin C = \frac{\sqrt{3}}{2}$. Calculați $\sin B$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(x) = \begin{pmatrix} 0 & x \\ x & 0 \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că $\det(A(1)) = -1$.
- **5p b)** Demonstrați că $A(x)A(y) = xyI_2$, pentru orice numere reale x și y, unde $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** c) Determinați numărul real a, știind că $A(3^a)A(3^{a+1})A(3^{a+2}) = A(27)$.
 - **2.** Se consideră polinomul $f = X^3 + mX^2 + 2X 4$, unde *m* este număr real.
- **5p** a) Pentru m=1, arătați că f(1)=0.
- **5p b**) Arătați că, dacă polinomul f se divide cu X + 2, atunci restul împărțirii lui f la X + 3 este egal cu -1.
- **5p** c) Determinați numărul real m, știind că $\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + x_1 + x_2 + x_3 = \frac{1}{2}$, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x + 2017}{e^x}$.
- **5p** a) Arătați că $f'(x) = \frac{-(x+2016)}{e^x}, x \in \mathbb{R}$.
- **5p b)** Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 0, situat pe graficul funcției f.
- **5p** c) Demonstrați că funcția f este convexă pe $[-2015, +\infty)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{1}{x^2 + 1}$.
- **5p a)** Arătați că $\int_{0}^{1} \frac{1}{f(x)} dx = \frac{4}{3}$.
- **5p b**) Determinați primitiva F a funcției f, știind că $F(1) = \frac{\pi}{4} + 1$.
- **5p** c) Determinați numărul natural n, știind că $\int_{0}^{n} x f(x) dx = \frac{1}{2} \ln 5$.

Examenul de bacalaureat național 2017 Proba E. c) Matematică *M_st-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 2

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$r = a_2 - a_1 = 3$	3p
	$a_3 = 10$	2p
2.	$x_1 + x_2 = 4$, $x_1 x_2 = 1$	2p
	$4x_1x_2 - (x_1 + x_2) = 4 \cdot 1 - 4 = 0$	3 p
3.	$2^{2x+1} = 2^{-3} \Leftrightarrow 2x+1 = -3$	3 p
	x = -2	2 p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2 p
	În mulțimea numerelor naturale de două cifre, multiplii de 15 sunt numerele 15, 30, 45, 60, 75 și 90, deci sunt 6 cazuri favorabile	2 p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{6}{90} = \frac{1}{15}$	1p
5.	$m_{AB} = 0$, $m_{AC} = \frac{a-1}{3}$	2p
	$m_{AB} = m_{AC} \Leftrightarrow \frac{a-1}{3} = 0 \Leftrightarrow a = 1$	3 p
6.	$\frac{AB}{\sin C} = \frac{AC}{\sin B} \Rightarrow \sin B = \frac{4 \cdot \frac{\sqrt{3}}{2}}{4\sqrt{3}} =$	3p
	$=\frac{1}{2}$	2p

1.a)	$A(1) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} =$	2p
	=0-1=-1	3 p
b)	$A(x)A(y) = \begin{pmatrix} 0 & x \\ x & 0 \end{pmatrix} \begin{pmatrix} 0 & y \\ y & 0 \end{pmatrix} = \begin{pmatrix} xy & 0 \\ 0 & xy \end{pmatrix} =$	3 p
	$= xy \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = xyI_2$, pentru orice numere reale x și y	2 p
c)	$A\left(3^{a}\right)A\left(3^{a+1}\right)A\left(3^{a+2}\right) = A\left(3^{3a+3}\right)$	3p
	$A(3^{3a+3}) = A(27) \Rightarrow 3^{3a+3} = 3^3$, de unde obţinem $a = 0$	2p
2.a)	$f = X^3 + X^2 + 2X - 4 \Rightarrow f(1) = 1^3 + 1^2 + 2 \cdot 1 - 4 =$	3 p
	=1+1+2-4=0	2 p

b)	$f(-2) = 0 \Rightarrow m = 4$, deci $f = X^3 + 4X^2 + 2X - 4$	3p
	f(-3) = -27 + 36 - 6 - 4 = -1	2 p
c)	$x_1 + x_2 + x_3 = -m$, $x_1x_2 + x_2x_3 + x_3x_1 = 2$, $x_1x_2x_3 = 4$	3 p
	$\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + x_1 + x_2 + x_3 = \frac{x_1 x_2 + x_2 x_3 + x_3 x_1}{x_1 x_2 x_3} + (x_1 + x_2 + x_3) = \frac{1}{2} - m, \text{ deci } m = 0$	2p

1.a)	$f'(x) = \frac{(x+2017)'e^x - (x+2017)(e^x)'}{(e^x)^2} =$	3p
	$= \frac{e^x (1 - x - 2017)}{(e^x)^2} = \frac{-(x + 2016)}{e^x}, \ x \in \mathbb{R}$	2p
b)	f(0) = 2017, f'(0) = -2016	2p
	Ecuația tangentei este $y - f(0) = f'(0)(x-0)$, adică $y = -2016x + 2017$	3 p
c)	$f''(x) = \frac{x + 2015}{e^x}, x \in \mathbb{R}$	2p
	$f''(x) \ge 0$ pentru orice $x \in [-2015, +\infty)$, deci f este convexă pe $[-2015, +\infty)$	3 p
2.a)	$\int_{0}^{1} (x^{2} + 1) dx = \left(\frac{x^{3}}{3} + x\right) \Big _{0}^{1} =$	3p
	$=\frac{1}{3}+1=\frac{4}{3}$	2p
b)	$F: \mathbb{R} \to \mathbb{R}$, $F(x) = \operatorname{arctg} x + c$, unde $c \in \mathbb{R}$	2p
	$F(1) = \frac{\pi}{4} + c \Rightarrow c = 1$, deci $F(x) = \operatorname{arctg} x + 1$	3p
c)	$\int_{0}^{n} x f(x) dx = \int_{0}^{n} \frac{x}{x^{2} + 1} dx = \frac{1}{2} \ln(x^{2} + 1) \Big _{0}^{n} = \frac{1}{2} \ln(n^{2} + 1)$	3р
	$\frac{1}{2}\ln\left(n^2+1\right) = \frac{1}{2}\ln 5$, deci $n^2+1=5$, de unde obţinem $n=2$	2p

Matematică M_tehnologic

Varianta 2

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\left(2+\frac{1}{2}\right)\cdot\frac{4}{5}=2$.
- **5p** 2. Arătați că $\frac{x_1 + x_2 1}{x_1 x_2} = 1$, unde x_1 și x_2 sunt soluțiile ecuației $x^2 4x + 3 = 0$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $2^{x+1} = 8$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, acesta să fie multiplu de 4.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(0,3) și B(4,0). Calculați perimetrul triunghiului OAB.
- **5p 6.** Arătați că $\sin^2 150^\circ + \sin^2 60^\circ = 1$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}$ și $B = \begin{pmatrix} 1 & 1 \\ 1 & a \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că det A = 5.
- **5p b**) Determinați numărul real a pentru care $B \cdot B = 2B$.
- **5p** c) Arătați că $\det(A \cdot B B \cdot A) \ge 0$, pentru orice număr real a.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție $x \circ y = xy 3x 3y + 12$.
- **5p** a) Arătați că $1 \circ 3 = 3$.
- **5p b**) Demonstrați că $x \circ y = (x-3)(y-3)+3$, pentru orice numere reale x și y.
- **5p** c) Determinați numărul real x, pentru care $(x \circ x) \circ x = 3$.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + 6x + 2$.
- **5p** a) Arătați că $f'(x) = 3(x^2 + 2)$, $x \in \mathbb{R}$.
- **5p b)** Arătați că $\lim_{x\to 0} \frac{f'(x)}{x+2} = 3$.
- **5p** c) Demonstrați că $-5 \le f(x) \le 9$, pentru orice $x \in [-1,1]$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 4x^3 x$.
- **5p** a) Arătați că $\int_{0}^{1} (f(x) + x) dx = 1.$
- **5p b**) Arătați că $\int_{0}^{1} \left(4x^3 f(x)\right) e^x dx = 1.$
- **5p** c) Determinați aria suprafeței plane delimitate de graficul funcției f, axa Ox și dreptele de ecuații x = 1 și x = 3.

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 2

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2 + \frac{1}{2} = \frac{5}{2}$	3p
	$\frac{5}{2} \cdot \frac{4}{5} = 2$	2p
2.	1 11 12 1 11 11 11	2p
	$\frac{x_1 + x_2 - 1}{x_1 x_2} = \frac{4 - 1}{3} = 1$	3p
3.	$2^{x+1} = 2^3 \Leftrightarrow x+1=3$	3p
	x=2	2p
4.	Mulțimea A are 9 elemente, deci sunt 9 cazuri posibile	2p
	Multiplii de 4 din mulțimea A sunt 4 și 8, deci sunt 2 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{or or o$	1p
	nr. cazuri posibile 9	-P
5.	$AB = \sqrt{(4-0)^2 + (0-3)^2} = 5$, $AO = 3$, $BO = 4$	3 p
	$P_{\Delta AOB} = AB + AO + BO = 5 + 3 + 4 = 12$	2p
6.	$\sin 150^\circ = \frac{1}{2}$, $\sin 60^\circ = \frac{\sqrt{3}}{2}$	3 p
	$\sin^2 150^\circ + \sin^2 60^\circ = \left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4} + \frac{3}{4} = 1$	2 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 3 & 2 \\ 2 & 3 \end{vmatrix} = 3 \cdot 3 - 2 \cdot 2 =$	3 p
	=9-4=5	2p
b)	$B \cdot B = \begin{pmatrix} 2 & a+1 \\ a+1 & a^2+1 \end{pmatrix}$	2p
	$2B = \begin{pmatrix} 2 & 2 \\ 2 & 2a \end{pmatrix}$, deci $B \cdot B = 2B \Leftrightarrow a = 1$	3 p
c)	$A \cdot B - B \cdot A = \begin{pmatrix} 5 & 3+2a \\ 5 & 2+3a \end{pmatrix} - \begin{pmatrix} 5 & 5 \\ 3+2a & 2+3a \end{pmatrix} = \begin{pmatrix} 0 & 2a-2 \\ 2-2a & 0 \end{pmatrix}$	3 p
	$\det(A \cdot B - B \cdot A) = \begin{vmatrix} 0 & 2a - 2 \\ 2 - 2a & 0 \end{vmatrix} = (2a - 2)^2 \ge 0$, pentru orice număr real a	2p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

Varianta 2

toate calificările profesionale

2.a)	$1 \circ 3 = 1 \cdot 3 - 3 \cdot 1 - 3 \cdot 3 + 12 =$	3 p
	=3-3-9+12=3	2p
b)	$x \circ y = xy - 3x - 3y + 9 + 3 =$	2p
	= x(y-3)-3(y-3)+3=(x-3)(y-3)+3, pentru orice numere reale x şi y	3 p
c)	$x \circ x = (x-3)^2 + 3$, $(x \circ x) \circ x = (x-3)^3 + 3$	3 p
	$(x-3)^3 + 3 = 3 \Leftrightarrow x = 3$	2p

SUBIECTUL al III-lea

1.a)	$f'(x) = (x^3)' + (6x)' + (2)' =$	2p
	$=3x^2+6=3(x^2+2), x \in \mathbb{R}$	3 p
b)	$\lim_{x \to 0} \frac{f'(x)}{x+2} = \lim_{x \to 0} \frac{3(x^2+2)}{x+2} =$	2p
	$=\frac{3(0^2+2)}{0+2}=3$	3 p
c)	$x \in [-1,1] \Rightarrow f'(x) > 0$, deci f este crescătoare pe $[-1,1]$	2 p
	Cum $f(-1) = -5$ și $f(1) = 9$, obținem $-5 \le f(x) \le 9$, pentru orice $x \in [-1,1]$	3 p
2.a)	$\int_{0}^{1} (f(x) + x) dx = \int_{0}^{1} (4x^{3} - x + x) dx = \int_{0}^{1} 4x^{3} dx =$	2p
	$= x^4 \begin{vmatrix} 1 \\ 0 \end{vmatrix} = 1$	3 p
b)	$\int_{0}^{1} (4x^{3} - f(x))e^{x} dx = \int_{0}^{1} (4x^{3} - 4x^{3} + x)e^{x} dx = \int_{0}^{1} xe^{x} dx =$	2p
	$=(x-1)e^{x}\begin{vmatrix}1\\0\\1\end{vmatrix}=1$	3 p
c)	$\mathcal{A} = \int_{1}^{3} f(x) dx = \int_{1}^{3} (4x^{3} - x) dx = \left(x^{4} - \frac{x^{2}}{2}\right) \Big _{1}^{3} =$	3 p
	$=81-\frac{9}{2}-1+\frac{1}{2}=76$	2p

Matematică *M_pedagogic*

Varianta 2

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\left(1 + \left(\frac{1}{2}\right)^3 \frac{1}{4}\right) : \frac{7}{8} = 1$.
- **5p** 2. Determinați numărul real a pentru care f(1) + f(-1) = 2, unde $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + a.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\log_6(x^2 + 2) = \log_6(3x)$.
- **5p 4.** Prețul unui obiect este 300 de lei. Determinați prețul obiectului după ce se ieftinește de două ori, succesiv, cu câte 10%.
- **5p 5.** În reperul cartezian xOy se consideră punctele O(0,0), A(-3,2) și B(3,2). Determinați distanța de la punctul O(0,0) la punctul O(0,0) este mijlocul segmentului O(0,0) la punctul O(0,0) la punctul O(0,0) este mijlocul segmentului O(0,0) la punctul O(0,0)
- **5p 6.** Calculați aria triunghiului ABC, știind că $m(< C) = 45^{\circ}$ și $AB = AC = 2\sqrt{3}$.

SUBIECTUL al II-lea (30 de puncte)

Pe multimea numerelor reale se definește legea de compoziție asociativă x * y = x + y - 6.

- **5p 1.** Arătați că 6*0=0.
- **5p 2.** Arătați că legea de compoziție "*" este comutativă.
- **5p** | **3.** Verificați dacă e = 6 este elementul neutru al legii de compoziție "*".
- **5p** | **4.** Determinați numerele reale x pentru care x * x * x = x.
- **5p** | **5.** Arătați că 1*2*3*4*5*6*7*8*9*10=1.
- **5p 6.** Determinați numerele naturale pare nenule n pentru care $\underbrace{n*n*...*n}_{\text{de 6 ori }n} < 6$.

SUBIECTUL al III-lea (30 de puncte)

Se consideră matricea $A(a) = \begin{pmatrix} a & 2 \\ 4 & 3 \end{pmatrix}$, unde a este număr real.

- **5p 1.** Arătați că $\det(A(1)) = -5$.
- **5p** 2. Demonstrați că A(-a) + A(a) = 2A(0), pentru orice număr real a.
- **5p 3.** Arătați că inversa matricei A(3) este matricea $\begin{pmatrix} 3 & -2 \\ -4 & 3 \end{pmatrix}$.
- **5p 4.** Determinați valorile reale ale lui a pentru care matricea A(a) este inversabilă.
- **5p 5.** Determinați numerele reale a pentru care $A(a^2) 4A(a) + 3A(1) = O_2$, unde $O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$.
- **5p** | **6.** Determinați numerele reale a pentru care $\det(A(a) + A(2)) = a^2 15$.

Matematică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 2

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$1 + \frac{1}{8} - \frac{1}{4} = \frac{7}{8}$	3p
	$\frac{7}{8}:\frac{7}{8}=1$	2p
2.	f(1) = 1 + a, $f(-1) = -1 + a$	2 p
	$f(1) + f(-1) = 2 \Leftrightarrow 2a = 2$, deci $a = 1$	3p
3.	$x^2 + 2 = 3x \Leftrightarrow x^2 - 3x + 2 = 0$	3 p
	x=1 sau $x=2$, care convin	2 p
4.	După prima ieftinire cu 10%, prețul obiectului este $300-10\% \cdot 300 = 270$ de lei	3p
	După a doua ieftinire cu 10%, prețul obiectului este $270-10\% \cdot 270 = 243$ de lei	2 p
5.	M(0,2)	3p
	OM = 2	2 p
6.	$\triangle ABC$ este dreptunghic în A , deci $\mathcal{A}_{\triangle ABC} = \frac{AB \cdot AC}{2} = \frac{2\sqrt{3} \cdot 2\sqrt{3}}{2} =$	3p
	= 6	2p

SUBIECTUL al II-lea (30 de puncte)

1.	6*0=6+0-6=	3 p
	=6-6=0	2p
2.	x * y = x + y - 6 = y + x - 6 =	3 p
	$= y * x$, pentru orice numere reale $x \neq y$, deci legea de compoziție "*" este comutativă	2 p
3.	x*6=x+6-6=x	2 p
	6*x=6+x-6=x=x*6, pentru orice număr real x , deci $e=6$ este elementul neutru al legii de compoziție ,,*"	3 p
4.	x*x=2x-6, $x*x*x=3x-12$	2p
	$3x-12=x \Leftrightarrow x=6$	3p
5.	(1*2)*(3*4)*(5*6)*(7*8)*(9*10) = (-3)*1*5*9*13 =	3 p
	=(-8)*8*13=-6+13-6=1	2 p
6.	$\underbrace{n*n**n}_{\text{de 6 ori} n} = 6n - 30$	2p
	$6n-30 < 6 \Rightarrow n < 6$ şi, cum n este număr natural par nenul, obținem $n=2$ sau $n=4$	3 p

SUBIECTUL al III-lea

(30 de puncte)

Varianta 2

1.
$$A(1) = \begin{pmatrix} 1 & 2 \\ 4 & 3 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 1 & 2 \\ 4 & 3 \end{vmatrix} = 1 \cdot 3 - 4 \cdot 2 =$$

$$= 3 - 8 = -5$$
2p

Ministerul Educației Naționale Centrul Național de Evaluare și Examinare

2.	$A(-a) = \begin{pmatrix} -a & 2 \\ 4 & 3 \end{pmatrix} \Rightarrow A(-a) + A(a) = \begin{pmatrix} 0 & 4 \\ 8 & 6 \end{pmatrix} =$	3p
	$=2\begin{pmatrix} 0 & 2 \\ 4 & 3 \end{pmatrix} = 2A(0)$, pentru orice număr real a	2p
3.	$A(3) \cdot \begin{pmatrix} 3 & -2 \\ -4 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 2 \\ 4 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 & -2 \\ -4 & 3 \end{pmatrix} = \begin{pmatrix} 9-8 & -6+6 \\ 12-12 & -8+9 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$	2p
	$\begin{pmatrix} 3 & -2 \\ -4 & 3 \end{pmatrix} \cdot A(3) = \begin{pmatrix} 9-8 & 6-6 \\ -12+12 & -8+9 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2, \text{ deci matricea} \begin{pmatrix} 3 & -2 \\ -4 & 3 \end{pmatrix} \text{ este inversa}$	3р
4.	matricei $A(3)$	
	$\det(A(a)) = \begin{vmatrix} a & 2 \\ 4 & 3 \end{vmatrix} = 3a - 8$	2 p
	Matricea $A(a)$ este inversabilă $\Leftrightarrow \det(A(a)) \neq 0 \Leftrightarrow 3a - 8 \neq 0 \Leftrightarrow a \in \mathbb{R} \setminus \left\{\frac{8}{3}\right\}$	3 p
5.	$A(a^2) = \begin{pmatrix} a^2 & 2 \\ 4 & 3 \end{pmatrix} \Rightarrow A(a^2) - 4A(a) + 3A(1) = \begin{pmatrix} a^2 - 4a + 3 & 0 \\ 0 & 0 \end{pmatrix}$	2p
	$ \begin{pmatrix} a^2 - 4a + 3 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \Leftrightarrow a^2 - 4a + 3 = 0, \text{ de unde obținem } a = 1 \text{ sau } a = 3 $	3р
6.	$A(a) + A(2) = $ $\begin{pmatrix} a+2 & 4 \\ 8 & 6 \end{pmatrix} \Rightarrow \det(A(a) + A(2)) = \begin{vmatrix} a+2 & 4 \\ 8 & 6 \end{vmatrix} = 6(a+2) - 32 = 6a - 20$	2p
	$6a-20=a^2-15 \Leftrightarrow a^2-6a+5=0$, de unde obţinem $a=1$ sau $a=5$	3p

Varianta de rezerva

Matematică M_mate-info

Varianta 9

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Se consideră numerele complexe $z_1 = 5 + 2i$ și $z_2 = 3 3i$. Arătați că $3z_1 + 2z_2 = 21$.
- **5p 2.** Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, f(x) = x + 1 și $g: \mathbb{R} \to \mathbb{R}$, $g(x) = x^2 x + 2$. Determinați abscisa punctului de intersecție a graficelor celor două funcții.
- **5p** | **3.** Rezolvați în mulțimea numerelor reale ecuația $3^{x^2+3} = 3 \cdot 3^{3x}$
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea numerelor naturale de două cifre, acesta să fie divizibil cu 3 și cu 5.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(0,2), B(2,4) și C(m,0), unde m este număr real. Determinați numărul real m, știind că punctele A, B și C sunt coliniare.
- **5p 6.** Calculați lungimea laturii *BC* a triunghiului *ABC*, știind că AB = 4, AC = 8 și $A = \frac{\pi}{3}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(x) = \begin{pmatrix} 2-x & 0 & x-1 \\ 0 & 1 & 0 \\ 2(1-x) & 0 & 2x-1 \end{pmatrix}$, unde x este număr real.
- **5p** | a) Arătați că $\det(A(2)) = 2$.
- **5p** | **b**) Demonstrați că det $(A(x)A(-x)) \le 0$, pentru orice număr real x.
- **5p** c) Arătați că, dacă numerele naturale m și n verifică relația A(m)A(n) = A(2), atunci m + n = 3.
 - **2.** Se consideră polinomul $f = X^3 + 2X^2 + aX + 1$, unde a este număr real.
- **5p a**) Determinați numărul real a, știind că f(1) = 0.
- **5p b**) Pentru a = 2, calculați câtul și restul împărțirii polinomului f la polinomul $X^2 + X + 1$.
- 5p c) Determinați numerele reale a pentru care rădăcinile polinomului f au modulele egale.

- **1.** Se consideră funcția $f:(-2,+\infty)\to\mathbb{R}$, $f(x)=e^x-1-\ln(x+2)$.
- **5p** a) Arătați că $f'(x) = e^x \frac{1}{x+2}, x \in (-2, +\infty)$.
- **5p b**) Demonstrați că funcția f este convexă pe $(-2, +\infty)$.
- **5p** c) Calculați $\lim_{x \to +\infty} \frac{f(x)}{x}$.
 - **2.** Pentru fiecare număr natural nenul n, se consideră numărul $I_n = \int_1^e x \ln^n x \, dx$.
- **5p** a) Arătați că $\int_{1}^{e} x dx = \frac{e^2 1}{2}$.
- **5p b**) Demonstrați că $I_{n+1} \le I_n$, pentru orice număr natural nenul n.
- **5p** c) Demonstrați că $2I_{n+1} + (n+1)I_n = e^2$, pentru orice număr natural nenul n.

Matematică *M_mate-info*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 9

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$3z_1 + 2z_2 = 3(5+2i) + 2(3-3i) = 15+6i+6-6i =$	3p
	=15+6=21	2p
2.	$x+1 = x^2 - x + 2 \Leftrightarrow x^2 - 2x + 1 = 0$	2p
	x=1	3 p
3.	$3^{x^2+3} = 3^{1+3x} \Leftrightarrow x^2 + 3 = 1 + 3x \Leftrightarrow x^2 - 3x + 2 = 0$	3 p
	x=1 sau $x=2$	2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	Mulțimea numerelor naturale de două cifre, care sunt divizibile cu 3 și cu 5 , are 6 elemente, deci sunt 6 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{6}{90} = \frac{1}{15}$	1p
5.	Ecuația dreptei AB este $y = x + 2$	2p
	Punctul C aparține dreptei $AB \Leftrightarrow m = -2$	3 p
6.	$BC^{2} = AB^{2} + AC^{2} - 2AB \cdot AC \cdot \cos A = 16 + 64 - 2 \cdot 4 \cdot 8 \cdot \frac{1}{2} = 48$	3p
	$BC = 4\sqrt{3}$	2p

1.a)	$\begin{vmatrix} A(2) = \begin{pmatrix} 0 & 1 & 0 \\ -2 & 0 & 3 \end{vmatrix} \Rightarrow \det(A(2)) = \begin{vmatrix} 0 & 1 & 0 \\ -2 & 0 & 3 \end{vmatrix} = \begin{vmatrix} 0 & 1 & 0 \\ -2 & 0 & 3 \end{vmatrix}$	3p
	= 0 + 0 + 0 - (-2) - 0 - 0 = 2	2p
b)	$A(x)A(-x) = \begin{pmatrix} 2+x^2 & 0 & -x^2-1 \\ 0 & 1 & 0 \\ 2+2x^2 & 0 & -2x^2-1 \end{pmatrix} \Rightarrow \det(A(x)A(-x)) = \begin{vmatrix} 2+x^2 & 0 & -x^2-1 \\ 0 & 1 & 0 \\ 2+2x^2 & 0 & -2x^2-1 \end{vmatrix} =$	3p
	$=(x^2+2)(-2x^2-1)-(-x^2-1)(2x^2+2)=-x^2 \le 0$, pentru orice număr real x	2 p
c)	$A(m)A(n) = \begin{pmatrix} 2-mn & 0 & mn-1 \\ 0 & 1 & 0 \\ 2(1-mn) & 0 & 2mn-1 \end{pmatrix} = A(mn)$	3p
	A(mn) = A(2), deci $mn = 2$ şi, cum m şi n sunt numere naturale, obținem $m + n = 3$	2 p
2.a)	$f(1) = 0 \Leftrightarrow 1^3 + 2 \cdot 1^2 + a \cdot 1 + 1 = 0$	2p
	a = -4	3 p

Ministerul Educației Naționale Centrul Național de Evaluare și Examinare

b)	$f = X^3 + 2X^2 + 2X + 1$ și câtul este $X + 1$	3p
	Restul este 0	2 p
c)	$ x_1x_2x_3 = -1 \text{ si } x_1 = x_2 = x_3 \Rightarrow x_1 = x_2 = x_3 = 1$	2 p
	Cum f are cel puțin o rădăcină reală, una dintre rădăcini este egală cu -1 sau cu 1	1p
	Dacă $x_1 = -1$, obținem $f(-1) = 0$, deci $a = 2$, ceea ce convine, deoarece $ x_2 = x_3 = 1$	1p
	Dacă $x_1 = 1$, obținem $f(1) = 0$, deci $a = -4$, ceea ce nu convine, deoarece $ x_2 \neq x_3 $	1p

SUBIECTUL al III-lea

1.a)	$f'(x) = (e^x)' - 1' - (\ln(x+2))' =$	2p
	$=e^{x}-0-\frac{(x+2)'}{x+2}=e^{x}-\frac{1}{x+2}, \ x\in(-2,+\infty)$	3р
b)	$= e^{x} - 0 - \frac{(x+2)'}{x+2} = e^{x} - \frac{1}{x+2}, \ x \in (-2, +\infty)$ $f''(x) = e^{x} + \frac{1}{(x+2)^{2}}, \ x \in (-2, +\infty)$	2p
	$f''(x) \ge 0$, deci funcția f este convexă pe $(-2, +\infty)$	3 p
c)	$\lim_{x \to +\infty} \frac{e^x - 1}{x} = \lim_{x \to +\infty} e^x = +\infty$	2p
	$\lim_{x \to +\infty} \frac{\ln(x+2)}{x} = \lim_{x \to +\infty} \frac{1}{x+2} = 0$	2p
	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(\frac{e^x - 1}{x} - \frac{\ln(x+2)}{x} \right) = +\infty$	1p
2.a)	$\int_{1}^{e} x dx = \frac{x^2}{2} \left \frac{e}{1} \right =$	3р
	$=\frac{e^2}{2} - \frac{1}{2} = \frac{e^2 - 1}{2}$	2p
b)	$x \in [1, e] \Rightarrow 0 \le \ln x \le 1 \Rightarrow \ln x - 1 \le 0$	2p
	$I_{n+1} - I_n = \int_{1}^{e} x \ln^n x (\ln x - 1) dx \le 0$, deci $I_{n+1} \le I_n$, pentru orice număr natural nenul n	3р
c)	$I_{n+1} = \int_{1}^{e} x \ln^{n+1} x dx = \frac{x^2}{2} \ln^{n+1} x \left \frac{e}{1} - \frac{n+1}{2} \int_{1}^{e} x \ln^n x dx \right = \frac{e}{1} \int_{1}^{e} x \ln^{n+1} x dx$	3р
	$=\frac{e^2}{2}-\frac{n+1}{2}I_n$, deci $2I_{n+1}+(n+1)I_n=e^2$, pentru orice număr natural nenul n	2p

Varianta de rezerva

Matematică M_tehnologic

Varianta 9

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că $\left(2 \frac{1}{2}\right) : \frac{1}{2} = 3$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 1$. Calculați $f(-1) \cdot f(1)$.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $3^{2x+2} = 9$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr din mulțimea $A = \{11, 22, 33, 44, 55, 66, 77, 88, 99\}$, acesta să fie multiplu de 2.
- **5p** | **5.** În reperul cartezian xOy se consideră punctele A(2,1) și B(2,-1). Arătați că AO = OB.
- **5p 6.** Arătați că $\sin^2 45^\circ \cos^2 60^\circ = \frac{1}{4}$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix}$ și $B = \begin{pmatrix} 0 & 2 \\ 2 & x \end{pmatrix}$, unde x este număr real.
- **5p** a) Arătați că det A = -8.
- **5p b**) Arătați că $A \cdot A 2A = 8I_2$, unde $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- **5p** c) Demonstrați că $\det(A \cdot B B \cdot A) \ge 0$, pentru orice număr real x.
 - **2.** Se consideră polinomul $f = 2X^3 + 3X^2 X 2$.
- **5p a**) Arătați că f(1) = 2.
- **5p b**) Determinați câtul și restul împărțirii polinomului f la polinomul X + 1.
- **5p** | **c**) Determinați rădăcinile polinomului f.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^4 2x^2 + 12$.
- **5p** a) Arătați că $f'(x) = 4x(x-1)(x+1), x \in \mathbb{R}$.
- **5p b)** Arătați că $\lim_{x \to +\infty} \frac{x^2 + 1}{f(x) x^4} = -\frac{1}{2}$.
- **5p c**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x=1, situat pe graficul funcției f.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3x^2 + 2x 4$.
- **5p** a) Arătați că $\int_{1}^{2} (f(x) 2x + 4) dx = 7$.
- **5p b**) Determinați primitiva F a funcției f pentru care F(1) = 2017.
- **5p** c) Determinați numărul real a pentru care $\int_{1}^{a} f(x) dx = a^3 2$.

Matematică *M_tehnologic*

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 9

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2 - \frac{1}{2} = \frac{3}{2}$	2p
	$\frac{3}{2}:\frac{1}{2}=\frac{3}{2}\cdot\frac{2}{1}=3$	3р
2.	f(-1)=2	2p
	$f(1) = 2 \Rightarrow f(-1) \cdot f(1) = 4$	3 p
3.	2x+2=2	3p
	x = 0	2p
4.	Mulțimea A are 9 elemente, deci sunt 9 cazuri posibile	2p
	Multiplii de 2 din mulțimea A sunt 22, 44, 66 și 88, deci sunt 4 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{1} = \frac{4}{1}$	1
	nr. cazuri posibile 9	1p
5.	$AO = \sqrt{5}$	2p
	$BO = \sqrt{5} \Rightarrow AO = BO$	3 p
6.	$\sin 45^\circ = \frac{\sqrt{2}}{2}, \cos 60^\circ = \frac{1}{2}$	2p
	$\sin^2 45^\circ - \cos^2 60^\circ = \left(\frac{\sqrt{2}}{2}\right)^2 - \left(\frac{1}{2}\right)^2 = \frac{2}{4} - \frac{1}{4} = \frac{1}{4}$	3p

1.a)	$\det A = \begin{vmatrix} 1 & 3 \\ 3 & 1 \end{vmatrix} = 1 \cdot 1 - 3 \cdot 3 =$	3p
	=1-9=-8	2p
b)	$A \cdot A = \begin{pmatrix} 10 & 6 \\ 6 & 10 \end{pmatrix}, \ 2A = \begin{pmatrix} 2 & 6 \\ 6 & 2 \end{pmatrix}$	3 p
	$A \cdot A - 2A = \begin{pmatrix} 10 & 6 \\ 6 & 10 \end{pmatrix} - \begin{pmatrix} 2 & 6 \\ 6 & 2 \end{pmatrix} = \begin{pmatrix} 8 & 0 \\ 0 & 8 \end{pmatrix} = 8 \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 8I_2$	2 p
c)	$A \cdot B = \begin{pmatrix} 6 & 2+3x \\ 2 & 6+x \end{pmatrix}, B \cdot A = \begin{pmatrix} 6 & 2 \\ 2+3x & 6+x \end{pmatrix}$	2 p
	$\begin{vmatrix} A \cdot B - B \cdot A = \begin{pmatrix} 0 & 3x \\ -3x & 0 \end{pmatrix} \Rightarrow \det(A \cdot B - B \cdot A) = \begin{vmatrix} 0 & 3x \\ -3x & 0 \end{vmatrix} = 9x^2 \ge 0, \text{ pentru orice număr real } x$	3 p

2.a)	$f(1) = 2 \cdot 1^3 + 3 \cdot 1^2 - 1 - 2 =$	3 p
	=2+3-1-2=2	2p
b)	Câtul este $2X^2 + X - 2$	3 p
	Restul este 0	2p
c)	$f = (X+1)(2X^2 + X - 2)$	2p
	$x_1 = -1$, $x_2 = \frac{-1 - \sqrt{17}}{4}$ și $x_3 = \frac{-1 + \sqrt{17}}{4}$ sunt rădăcinile polinomului f	3 p

SUBIECTUL al III-lea

1.a)	$f'(x) = 4x^3 - 4x =$	3p
	$=4x(x^2-1)=4x(x-1)(x+1), x \in \mathbb{R}$	2p
b)	$\lim_{x \to +\infty} \frac{x^2 + 1}{f(x) - x^4} = \lim_{x \to +\infty} \frac{x^2 + 1}{-2x^2 + 12} =$	2 p
	$= \lim_{x \to +\infty} \frac{1 + \frac{1}{x^2}}{-2 + \frac{12}{x^2}} = -\frac{1}{2}$	3 p
c)	f(1)=11, f'(1)=0	2 p
	Ecuația tangentei este $y - f(1) = f'(1)(x-1)$, adică $y = 11$	3 p
2.a)	$\int_{1}^{2} (f(x) - 2x + 4) dx = \int_{1}^{2} (3x^{2} + 2x - 4 - 2x + 4) dx = \int_{1}^{2} 3x^{2} dx =$	2 p
	$=x^3\begin{vmatrix} 2\\1=8-1=7 \end{vmatrix}$	3 p
b)	$F: \mathbb{R} \to \mathbb{R}$, $F(x) = x^3 + x^2 - 4x + c$, unde $c \in \mathbb{R}$	3p
	$F(1) = 2017 \Rightarrow c = 2019$, deci $F(x) = x^3 + x^2 - 4x + 2019$	2 p
c)	$\int_{1}^{a} f(x)dx = \left(x^{3} + x^{2} - 4x\right) \Big _{1}^{a} = a^{3} + a^{2} - 4a + 2$	3p
	$a^{3} + a^{2} - 4a + 2 = a^{3} - 2 \Leftrightarrow (a - 2)^{2} = 0$, deci $a = 2$	2p

Varianta 4

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **1.** Calculați suma numerelor întregi din intervalul (-5, 5). **5**p
- **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 1$. Calculați $(f \circ f)(1)$. 5p
- **3.** Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x+3} = x-3$. **5p**
- **4.** Calculați probabilitatea ca, alegând un număr din mulțimea $A = \{1, 2, 3, ..., 100\}$, acesta să fie **5p** multiplu de 11.
- 5. În reperul cartezian xOy se consideră punctele M(2,2) și N(4,2). Determinați coordonatele **5p** punctului P, situat pe axa Ox, astfel încât PM = PN.
- **6.** Calculați lungimea razei cercului circumscris unui triunghi ABC, în care $AB = 6\sqrt{2}$ și $C = \frac{\pi}{4}$. **5**p

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(x) = \begin{vmatrix} 1 & 2^x & 4^x \\ 1 & x & 2x \end{vmatrix}$, unde x este număr real.
- a) Arătați că $\det(A(1))=1$. **5**p
- **b**) Demonstrați că $\det(A(x)) = (2^x 1)(2^x + x x \cdot 2^x)$, pentru orice număr real x.
- c) Arătați că $A(1) + A(2) + A(3) + ... + A(2017) = \begin{pmatrix} 2017 & 2017 & 2017 \\ 2017 & 2(2^{2017} 1) & \frac{4}{3}(4^{2017} 1) \end{pmatrix}$. 5p
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție asociativă x * y = 7xy + 7x + 7y + 6.
- a) Arătați că x * y = 7(x+1)(y+1)-1, pentru orice numere reale x si y. **5**p
- **b)** Determinați numerele reale x pentru care x*x*x=x. **5p**
- **5**p c) Demonstrați că, dacă a, b și c sunt numere naturale astfel încât a*b*c=48, atunci numerele a, b și c sunt egale.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x^2 3}{2^x}$.
- **a)** Arătați că $f'(x) = \frac{-x^2 + 2x + 3}{x}, x \in \mathbb{R}$. **5**p
- b) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x=-1, situat pe **5p** graficul funcției f.
- - c) Demonstrați că $-2e \le f(x) \le \frac{6}{e^3}$, pentru orice $x \in [-1, +\infty)$. 2. Se consideră funcția $f:(0, +\infty) \to \mathbb{R}$, $f(x) = \frac{\sqrt{x}}{(x+1)^2}$.
- **a)** Arătați că $\int_{1}^{2} \frac{x+1}{\sqrt{x}} f(x) dx = \ln \frac{3}{2}$.
- **5p b**) Demonstrați că orice primitivă a funcției f este strict crescătoare pe intervalul $(0,+\infty)$.
- c) Determinați numărul real m, m > 0, știind că suprafața plană delimitată de graficul funcției $g:(0,+\infty)\to\mathbb{R}$, $g(x)=\sqrt{x}(x+1)f(x)$, axa Ox și dreptele de ecuații x=1 și x=2 are aria egală

Matematică *M_mate-info*BAREM DE EVALUARE ȘI DE NOTARE

Varianta 4

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

	` 1	,
1.	(-4)+(-3)+(-2)+(-1)+0+1+2+3+4=	3 p
	=0	2p
2.	f(1) = 0	2p
	$(f \circ f)(1) = f(f(1)) = f(0) = -1$	3 p
3.	$x+3=x^2-6x+9 \Rightarrow x^2-7x+6=0$	3 p
	x=1 care nu convine, $x=6$ care convine	2p
4.	În mulțimea A sunt 100 de numere, deci sunt 100 de cazuri posibile	2p
	În mulțimea A sunt 9 numere care sunt multipli de 11, deci sunt 9 cazuri favorabile	2p
	nr. cazuri favorabile 9	
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{9}{100}$	1p
5.	$P \in Ox \Rightarrow y_P = 0$	2p
	$PM = PN \Leftrightarrow (2 - x_P)^2 + (2 - 0)^2 = (4 - x_P)^2 + (2 - 0)^2 \Leftrightarrow x_P = 3$	3 p
6.	$AB \longrightarrow B \longrightarrow 6\sqrt{2}$	
	$\frac{AB}{\sin C} = 2R \Rightarrow R = \frac{6\sqrt{2}}{2 \cdot \frac{\sqrt{2}}{2}} =$	3 p
	$\frac{2\cdot \overline{2}}{2}$	
	= 6	2p

SODI	(So de j	Junete)
1.a)	$A(1) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 1 & 2 \end{pmatrix} \Rightarrow \det(A(1)) = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 1 & 2 \end{vmatrix} = $	2p
	=4+1+4-2-4-2=1	3р
b)	$\det(A(x)) = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2^{x} & 4^{x} \\ 1 & x & 2x \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 2^{x} - 1 & 4^{x} - 1 \\ 0 & x - 1 & 2x - 1 \end{vmatrix} = (2^{x} - 1) \begin{vmatrix} 1 & 2^{x} + 1 \\ x - 1 & 2x - 1 \end{vmatrix} =$	3p
	$=(2^{x}-1)(2x-1-x\cdot 2^{x}+2^{x}-x+1)=(2^{x}-1)(2^{x}+x-x\cdot 2^{x})$, pentru orice număr real x	2 p
c)	$A(1) + A(2) + A(3) + \dots + A(2017) = \begin{pmatrix} 2017 & 2017 & 2017 \\ 2017 & 2^1 + 2^2 + \dots + 2^{2017} & 4^1 + 4^2 + \dots + 4^{2017} \\ 2017 & 2017 \cdot 1009 & 2017 \cdot 2018 \end{pmatrix} = $	3p
	$= \begin{pmatrix} 2017 & 2017 & 2017 \\ 2017 & \frac{2(2^{2017}-1)}{2-1} & \frac{4(4^{2017}-1)}{4-1} \\ 2017 & 2017 \cdot 1009 & 2017 \cdot 2018 \end{pmatrix} = \begin{pmatrix} 2017 & 2017 & 2017 \\ 2017 & 2(2^{2017}-1) & \frac{4}{3}(4^{2017}-1) \\ 2017 & 2017 \cdot 1009 & 2017 \cdot 2018 \end{pmatrix}$	2p

2.a)	x * y = 7xy + 7x + 7y + 7 - 1 =	2p
	=7x(y+1)+7(y+1)-1=7(x+1)(y+1)-1, pentru orice numere reale x şi y	3 p
b)	$x * x * x = 7^{2} (x+1)^{3} - 1$, deci $7^{2} (x+1)^{3} - 1 = x$	2 p
	$(x+1)(7^2(x+1)^2-1)=0 \Leftrightarrow x=-\frac{8}{7} \text{ sau } x=-1 \text{ sau } x=-\frac{6}{7}$	3 p
c)	$49(a+1)(b+1)(c+1)-1=48 \Leftrightarrow (a+1)(b+1)(c+1)=1$	2 p
	Cum a , b și c sunt numere naturale, obținem $a+1=b+1=c+1=1$, deci $a=b=c$	3 p

	Cum a, b şi c sunt numere naturale, obținem $a+1=b+1=c+1=1$, deci $a=b=c$	3р
SUBI	ECTUL al III-lea (30 de p	uncte)
1.a)	$f'(x) = \frac{(x^2 - 3) \cdot e^x - (x^2 - 3) \cdot (e^x)'}{(e^x)^2} = \frac{2xe^x - (x^2 - 3)e^x}{(e^x)^2} = \frac{(e^x)^2}{(e^x)^2}$	3 p
	$= \frac{e^x (2x - x^2 + 3)}{(e^x)^2} = \frac{-x^2 + 2x + 3}{e^x}, \ x \in \mathbb{R}$	2 p
b)	f(-1) = -2e, $f'(-1) = 0$	2p
	Ecuația tangentei este $y - f(-1) = f'(-1)(x+1)$, adică $y = -2e$	3 p
c)	$f'(x) = 0 \Leftrightarrow x = -1 \text{ sau } x = 3$	1p
	$x \in [-1,3] \Rightarrow f'(x) \ge 0$, deci f este crescătoare pe $[-1,3]$ și $x \in [3,+\infty) \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe $[3,+\infty)$	2p
	Cum $f(-1) = -2e$, $f(3) = \frac{6}{e^3}$, $\lim_{x \to +\infty} f(x) = 0$, obţinem $-2e \le f(x) \le \frac{6}{e^3}$, pentru orice $x \in [-1, +\infty)$	2 p
2.a)	$\int_{1}^{2} \frac{x+1}{\sqrt{x}} f(x) dx = \int_{1}^{2} \frac{x+1}{\sqrt{x}} \cdot \frac{\sqrt{x}}{(x+1)^{2}} dx = \int_{1}^{2} \frac{1}{x+1} dx =$	2p
	$= \ln(x+1) \Big _{1}^{2} = \ln 3 - \ln 2 = \ln \frac{3}{2}$	3 p
b)	F este o primitivă a funcției $f \Rightarrow F'(x) = f(x), x \in (0, +\infty)$	2p
	$F'(x) = \frac{\sqrt{x}}{(x+1)^2} > 0$, pentru orice $x \in (0, +\infty)$, deci F este strict crescătoare pe $(0, +\infty)$	3 p
c)	$g(x) = \frac{x}{x+1} \Rightarrow \mathcal{A} = \int_{1}^{2} g(x) dx = \int_{1}^{2} \frac{x}{x+1} dx = x \Big _{1}^{2} - \ln(x+1) \Big _{1}^{2} = 1 - \ln\frac{3}{2}$	3p
	$1 - \ln \frac{m+1}{m} = 1 - \ln \frac{3}{2} \Rightarrow m = 2$	2p

Examenul de bacalaureat national 2017

Sesiunea speciala

Proba E. c) Matematică *M_st-nat*

Varianta 4

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I

(30 de puncte)

- **1.** Se consideră numerele complexe $z_1 = 3 + 2i$ și $z_2 = 3 2i$. Arătați că numărul $z_1 + z_2$ este real.
- **5**p **2.** Determinați numărul real m, știind că punctul M(2, m) aparține graficului funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 - 3$.
- **3.** Rezolvați în mulțimea numerelor reale ecuația $3^{3x-5} = 3^{-2}$. **5**p
- **4.** Calculați probabilitatea ca, alegând un număr din mulțimea $A = \{1, 2, 3, ..., 20\}$, acesta să fie 5p multiplu de 5.
- **5**p 5. În reperul cartezian xOy se consideră punctele A(2,5), B(1,3) și C(m,1), unde m este număr real. Determinați numărul real m, știind că punctul C aparține dreptei AB.
- **6.** Se consideră $E(x) = \cos \frac{x}{2} + \sin x$, unde x este număr real. Arătați că $E\left(\frac{\pi}{3}\right) = \sqrt{3}$.

SUBIECTUL al II-lea

- **1.** Se consideră matricea $A(x) = \begin{pmatrix} x & x+1 & 1 \\ 2 & x & 1 \\ 3 & 0 & 1 \end{pmatrix}$, unde x este număr real.
- a) Arătați că $\det(A(0))=1$. **5**p
- **b**) Determinați numărul real x, pentru care A(x) + A(x+2) = 2A(2). **5p**
- c) În reperul cartezian xOy se consideră punctele M(n,n+1), N(2,n) și P(3,0). Determinați 5p numărul natural n, știind că punctele M, N și P sunt coliniare.
 - **2.** Se consideră polinomul $f = X^3 + aX^2 + X 1$, unde a este număr real.
- a) Arătați că f(1) f(-1) = 4, pentru orice număr real a. **5**p
- **b**) Pentru a=2, calculați câtul și restul împărțirii polinomului f la polinomul X^2+X+1 . **5p**
- c) Determinați numărul real a pentru care $x_1 + x_2 + x_3 + x_1x_2 + x_1x_3 + x_2x_3 = x_1x_2x_3 1$, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f.

SUBIECTUL al III-lea

- **1.** Se consideră funcția $f:(1,+\infty)\to\mathbb{R}$, $f(x)=\frac{x^2-x+1}{x-1}$.
- **a**) Arătați că $f'(x) = \frac{x(x-2)}{(x-1)^2}, x \in (1,+\infty).$ **5**p
- **5**p **b**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x = 2, situat pe graficul functiei f.
- c) Demonstrați că $\lim_{x \to +\infty} \frac{f(x)}{x^{x}+1} = 0$. **5**p
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x + 2x$.
- a) Arătați că $\int_{0}^{1} (f(x) 2x) dx = e 1.$
- **5**p **b**) Determinați volumul corpului obținut prin rotația în jurul axei Ox a graficului funcției $g:[0,1] \to \mathbb{R}, \ g(x) = f(x) - e^x.$
- c) Determinați numărul real a, știind că $\int_{0}^{a} x f(x) dx = 1 + \frac{2a^{3}}{3}$. **5**p

Matematică *M_şt-nat*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 4

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z_1 + z_2 = (3+2i) + (3-2i) =$	2 p
	= 6, care este număr real	3 p
2.	$f(2) = m \Leftrightarrow 4 - 3 = m$	3p
	m=1	2 p
3.	$3^{3x-5} = 3^{-2} \Leftrightarrow 3x - 5 = -2$	3p
	x=1	2p
4.	Mulțimea A are 20 de elemente, deci sunt 20 de cazuri posibile	2p
	În mulțimea A, multiplii de 5 sunt numerele 5, 10, 15 și 20, deci sunt 4 cazuri favorabile	2p
	nr. cazuri favorabile 4 1	_
	$p = \frac{\text{in eazuri posibile}}{\text{nr. cazuri posibile}} = \frac{1}{20} = \frac{1}{5}$	1p
5.	Ecuația dreptei AB este $y = 2x + 1$	3p
	$C \in AB \Leftrightarrow 1 = 2m + 1 \Leftrightarrow m = 0$	2p
6.	$E\left(\frac{\pi}{3}\right) = \cos\frac{\pi}{6} + \sin\frac{\pi}{3} =$	2p
	$=\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \sqrt{3}$	3 p

1.a)	$\begin{pmatrix} 0 & 1 & 1 \end{pmatrix}$ $\begin{vmatrix} 0 & 1 & 1 \end{vmatrix}$	
	$A(0) = \begin{pmatrix} 0 & 1 & 1 \\ 2 & 0 & 1 \\ 3 & 0 & 1 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 0 & 1 & 1 \\ 2 & 0 & 1 \\ 3 & 0 & 1 \end{vmatrix} =$	2p
	$(3 \ 0 \ 1)$ $ 3 \ 0 \ 1 $	
	=0+0+3-0-0-2=1	3 p
b)	$A(x) + A(x+2) = \begin{pmatrix} x & x+1 & 1 \\ 2 & x & 1 \\ 3 & 0 & 1 \end{pmatrix} + \begin{pmatrix} x+2 & x+3 & 1 \\ 2 & x+2 & 1 \\ 3 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2x+2 & 2x+4 & 2 \\ 4 & 2x+2 & 2 \\ 6 & 0 & 2 \end{pmatrix}$	2p
	$2A(2) = \begin{pmatrix} 4 & 6 & 2 \\ 4 & 4 & 2 \\ 6 & 0 & 2 \end{pmatrix}$, deci $x = 1$	3р
c)	Punctele $M(n,n+1)$, $N(2,n)$ și $P(3,0)$ sunt coliniare \Leftrightarrow $\begin{vmatrix} n & n+1 & 1 \\ 2 & n & 1 \\ 3 & 0 & 1 \end{vmatrix} = 0$	2p
	$n^2 - 2n + 1 = 0$, deci $n = 1$	3 p
2.a)	$f(1) = 1^3 + a \cdot 1^2 + 1 - 1 = a + 1$	2p
	$f(-1) = (-1)^3 + a \cdot (-1)^2 + (-1) - 1 = a - 3 \Rightarrow f(1) - f(-1) = a + 1 - a + 3 = 4$, pentru orice număr real a	3p

b)	$f = X^3 + 2X^2 + X - 1$, câtul este $X + 1$	3 p
	Restul este $-X-2$	2p
c)	$x_1 + x_2 + x_3 = -a$, $x_1x_2 + x_1x_3 + x_2x_3 = 1$, $x_1x_2x_3 = 1$	3 p
	$x_1 + x_2 + x_3 + x_1x_2 + x_1x_3 + x_2x_3 = x_1x_2x_3 - 1 \Leftrightarrow -a + 1 = 1 - 1$, deci $a = 1$	2 p

SUBI	SUBIECTUL al III-lea (30 de pur	
1.a)	$f'(x) = \frac{(2x-1)(x-1) - (x^2 - x + 1) \cdot 1}{(x-1)^2} =$	3р
	$= \frac{x^2 - 2x}{(x - 1)^2} = \frac{x(x - 2)}{(x - 1)^2}, \ x \in (1, +\infty)$	2 p
b)	f(2)=3, f'(2)=0	2p
	Ecuația tangentei este $y - f(2) = f'(2)(x-2)$, adică $y = 3$	3p
c)	$\lim_{x \to +\infty} \frac{f(x)}{e^x + 1} = \lim_{x \to +\infty} \frac{x^2 - x + 1}{(x - 1)(e^x + 1)} = \lim_{x \to +\infty} \left(\frac{x^2 - x + 1}{x(x - 1)} \cdot \frac{x}{e^x + 1} \right) =$	2 p
	=1.0=0, decarece $\lim_{x \to +\infty} \frac{x^2 - x + 1}{x(x - 1)} = 1$ și $\lim_{x \to +\infty} \frac{x}{e^x + 1} = \lim_{x \to +\infty} \frac{1}{e^x} = 0$	3р
2.a)	$\int_{0}^{1} (f(x) - 2x) dx = \int_{0}^{1} (e^{x} + 2x - 2x) dx = \int_{0}^{1} e^{x} dx = e^{x} \Big _{0}^{1} =$	3р
	$=e^{1}-e^{0}=e-1$	2p
b)	$g(x) = 2x \Rightarrow V = \pi \int_{0}^{1} g^{2}(x) dx = \pi \int_{0}^{1} 4x^{2} dx =$	3р
	$= 4\pi \cdot \frac{x^3}{3} \Big _0^1 = \frac{4\pi}{3}$	2 p
c)	$\int_{0}^{a} x f(x) dx = \int_{0}^{a} x (e^{x} + 2x) dx = (x - 1)e^{x} \Big _{0}^{a} + 2 \cdot \frac{x^{3}}{3} \Big _{0}^{a} = (a - 1)e^{a} + 1 + \frac{2a^{3}}{3}$	3р
	$(a-1)e^a + 1 + \frac{2a^3}{3} = 1 + \frac{2a^3}{3} \Leftrightarrow (a-1)e^a = 0 \Leftrightarrow a = 1$	2p

Sesiunea speciala

Matematică M_tehnologic

Varianta 4

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

5p 1. Arătați că
$$\left(2+\frac{1}{3}\right):\frac{7}{6}=2$$
.

5p 2. Arătați că
$$(x_1 + x_2)^2 - 6x_1x_2 = 1$$
, unde x_1 și x_2 sunt soluțiile ecuației $x^2 - 5x + 4 = 0$.

- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $\sqrt{3x-5} = 2$.
- **5p 4.** După o ieftinire cu 25%, prețul unui televizor este 600 de lei. Determinați prețul televizorului înainte de ieftinire.
- **5p 5.** În reperul cartezian xOy se consideră punctele O(0,0) și M(8,6). Calculați distanța dintre punctele O și M.
- **5p 6**. Arătați că $\sin^2 135^\circ + \sin^2 45^\circ = 1$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $A = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$ și $B = \begin{pmatrix} -1 & -2 \\ 2 & 0 \end{pmatrix}$.
- **5p** a) Arătați că det A = 2.
- **5p b**) Arătați că $(A+B)(B-A) = \begin{pmatrix} 0 & 0 \\ 0 & -12 \end{pmatrix}$.
- **5p** c) Determinați matricea $X \in \mathcal{M}_2(\mathbb{R})$, știind că $A \cdot X = B$.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție asociativă x * y = x + y 3.
- **5p** | **a**) Arătați că 1*2=0.
- **5p b**) Determinați numerele reale x pentru care $(x^2) * x = -1$.
- **5p** | **c**) Determinați numerele naturale nenule n pentru care n*n*n*n<3.

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + 2x^2 + x$.
- **5p a)** Arătați că $f'(x) = (x+1)(3x+1), x \in \mathbb{R}$.
- **5p b)** Arătați că $\lim_{x \to +\infty} \frac{f(x)}{x f'(x)} = \frac{1}{3}$.
- **5p** c) Demonstrați că $f(x) \ge -\frac{4}{27}$, pentru orice $x \in [-1, +\infty)$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + x + 1$.
- **5p a)** Arătați că $\int_{0}^{1} (f(x) x^{2} 1) dx = \frac{1}{2}$.
- **5p b**) Demonstrați că funcția $F: \mathbb{R} \to \mathbb{R}$, $F(x) = \frac{1}{3}x^3 + \frac{1}{2}x^2 + x + 2017$ este o primitivă a funcției f.
- **5p c)** Determinați numărul natural n, știind că suprafața plană delimitată de graficul funcției f, axa Ox și dreptele de ecuații x = 0 și x = 2 are aria egală cu $n^2 \frac{7}{3}$.

Matematică *M_tehnologic*

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 4

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$2 + \frac{1}{3} = \frac{7}{3}$	3p
	$\frac{7}{3}:\frac{7}{6}=\frac{7}{3}\cdot\frac{6}{7}=2$	2p
2.	$x_1 + x_2 = 5$, $x_1 x_2 = 4$	2p
	$(x_1 + x_2)^2 - 6x_1x_2 = 25 - 24 = 1$	3p
3.	3x - 5 = 4	3 p
	x = 3, care convine	2p
4.	$p-25\% \cdot p = 600$, unde p este prețul televizorului înainte de ieftinire	3 p
	p = 800 de lei	2p
5.	$OM = \sqrt{(8-0)^2 + (6-0)^2} =$	3 p
	=10	2 p
6.	$\sin 135^\circ = \frac{\sqrt{2}}{2}, \ \sin 45^\circ = \frac{\sqrt{2}}{2}$	2p
	$\sin^2 135^\circ + \sin^2 45^\circ = \left(\frac{\sqrt{2}}{2}\right)^2 + \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{2} + \frac{1}{2} = 1$	3p

1.a)	$\det A = \begin{vmatrix} 1 & 2 \\ 0 & 2 \end{vmatrix} = 1 \cdot 2 - 0 \cdot 2 =$	3p
	=2-0=2	2p
b)	$A + B = \begin{pmatrix} 0 & 0 \\ 2 & 2 \end{pmatrix}$	2p
	$B - A = \begin{pmatrix} -2 & -4 \\ 2 & -2 \end{pmatrix} \Rightarrow (A+B)(B-A) = \begin{pmatrix} 0 & 0 \\ 0 & -8-4 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & -12 \end{pmatrix}$	3p
c)	$\det A \neq 0 , \ A^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & \frac{1}{2} \end{pmatrix}$	3 p
	$X = A^{-1} \cdot B \Rightarrow X = \begin{pmatrix} -3 & -2 \\ 1 & 0 \end{pmatrix}$	2p
2.a)	1*2=1+2-3=	3 p
	=3-3=0	2p

	b)	$x^{2} + x - 3 = -1 \Leftrightarrow x^{2} + x - 2 = 0$ $x = -2 \text{ sau } x = 1$	3p 2p	1
-	c)	x = -2 sau x = 1 $n * n * n * n = 4n - 9$	2p 2p	1
		$4n-9 < 3 \Rightarrow n < 3$ şi, cum <i>n</i> este număr natural nenul, obținem $n=1$ sau $n=2$	3 p	

SUBIECTUL al III-lea

1.a)	$f'(x) = (x^3)' + (2x^2)' + (x)' =$	2p
		2p
	$=3x^2+4x+1=(x+1)(3x+1), x \in \mathbb{R}$	3 p
b)	$\lim_{x \to +\infty} \frac{f(x)}{x f'(x)} = \lim_{x \to +\infty} \frac{x^3 + 2x^2 + x}{x(x+1)(3x+1)} =$	2 p
	$= \lim_{x \to +\infty} \frac{1 + \frac{2}{x} + \frac{1}{x^2}}{\left(1 + \frac{1}{x}\right)\left(3 + \frac{1}{x}\right)} = \frac{1}{3}$	3 p
c)	$f'(x) = 0 \Leftrightarrow x = -1 \text{ sau } x = -\frac{1}{3}$	1p
	$x \in \left[-1, -\frac{1}{3}\right] \Rightarrow f'(x) \le 0$, deci funcția f este descrescătoare pe $\left[-1, -\frac{1}{3}\right]$ și $x \in \left[-\frac{1}{3}, +\infty\right] \Rightarrow f'(x) \ge 0$, deci funcția f este crescătoare pe $\left[-\frac{1}{3}, +\infty\right]$	2 p
	$f(x) \ge f\left(-\frac{1}{3}\right)$ pentru orice $x \in [-1, +\infty)$ și, cum $f\left(-\frac{1}{3}\right) = -\frac{4}{27}$, obținem $f(x) \ge -\frac{4}{27}$, pentru orice $x \in [-1, +\infty)$	2 p
2.a)	pentru orice $x \in [-1, +\infty)$ $\int_{0}^{1} (f(x) - x^{2} - 1) dx = \int_{0}^{1} (x^{2} + x + 1 - x^{2} - 1) dx = \int_{0}^{1} x dx =$	2p
	$=\frac{x^2}{2}\bigg _0^1 = \frac{1}{2} - 0 = \frac{1}{2}$	3 p
b)	$F'(x) = \left(\frac{1}{3}x^3 + \frac{1}{2}x^2 + x + 2017\right)' = \frac{1}{3} \cdot 3x^2 + \frac{1}{2} \cdot 2x + 1 =$	3p
	$= x^2 + x + 1 = f(x), x \in \mathbb{R}$	2p
c)	$= x^{2} + x + 1 = f(x), x \in \mathbb{R}$ $\mathcal{A} = \int_{0}^{2} f(x) dx = \int_{0}^{2} (x^{2} + x + 1) dx = \left(\frac{x^{3}}{3} + \frac{x^{2}}{2} + x\right) \Big _{0}^{2} = \frac{20}{3}$	3p
	Cum <i>n</i> este număr natural, din $n^2 - \frac{7}{3} = \frac{20}{3}$, obținem $n = 3$	2p