离散数学 习题 参考答案

第一音 命题逻辑

- 习题-

- 1、构造公式 $(p \land q) \lor (\neg p \land \neg q)$ 、 $p \leftrightarrow q$ 的真值表。
- 2、构造公式¬ $(p \lor q)$ 与¬ $p \land ¬q$ 的真值表。
- 3、构造公式 p、 $p \land p$ 、 $p \lor p$ 的真值表。
- 4、构造公式 $p \lor (q \land r)$ 、 $(p \lor q) \land (p \lor r)$ 的真值表。
- 5、构造公式 $p \lor (p \land r)$ 、p 的真值表。
- 6、构造公式 $p \land (p \lor r)$ 、p 的真值表。
- 7、构造公式 $p \leftrightarrow q$ 、 $\neg q \leftrightarrow \neg p$ 的真值表。
- 8、构造公式 $(p\rightarrow q)\land (p\rightarrow \neg q)$ 、 $\neg p$ 的真值表。
- 9、构造公式 p、¬¬p 的真值表。
- 10、构造公式 p∨¬p、p∧¬p 的真值表

略

- 习题二

- 一、分别用等算演算与真值表法,判断下列公式是否存在主 析取范式或主合取范式,若有,请写出来。
- $(1)(\neg p{\rightarrow} q){\rightarrow} (\neg q \lor p)$
- $(2)(\neg p \rightarrow q) \rightarrow (q \land r)$
- $(3)(p \lor (q \land r)) \rightarrow (p \lor q \lor r)$
- $(4) \neg (q \rightarrow \neg p) \land \neg p$
- $(5)(p \land q) \lor (\neg p \lor r)$
- $(6)(p\rightarrow (p \lor q)) \lor r$
- $(7)(p \land q) \lor r$
- $(8) (p \rightarrow q) \land (q \rightarrow r)$
- $(9) (p \land q) \rightarrow q$
- $(10) \neg (r \leftrightarrow p) \land p \land q$

解:	(1)					
р	q	¬р	$(\neg p \rightarrow q)$	¬q	$(\neg q \lor p)$	$(\neg p \rightarrow q) \rightarrow (\neg q \lor p)$
0	0	1 0 1		1	1	
0	1	1	1	0	0	0
1	0	0	1	1	1	1
1	1	0	1	0	1	1

存在主析取范式=成真赋值对应的小项的析取

- $= m \vee m \vee m = (\neg p \wedge \neg q) \vee (p \wedge \neg q) \vee (p \wedge q)$
- 主析取范式=成假赋值对应的大项的合取
- $=M = p \vee \neg q$

等值演算:

 $(\neg p \rightarrow q) \rightarrow (\neg q \lor p)$

- $\Leftrightarrow \neg (\neg \neg p \lor q) \lor (p \lor \neg q)$
- $\Leftrightarrow \neg (p \lor q) \lor (p \lor \neg q)$
- $\Leftrightarrow (\neg p \land \neg q) \lor (p \lor \neg q)$
- $\Leftrightarrow (\neg p \lor (p \lor \neg q)) \land (\neg q \lor (p \lor \neg q))$
- $\Leftrightarrow (\neg p \bigvee p \bigvee \neg q) \bigwedge (\neg q \bigvee p \bigvee \neg q)$
- $\Leftrightarrow (1 \lor \neg q) \land (p \lor \neg q)$
- $\Leftrightarrow (p \lor \neg q)$

这是大项, 故为大项的合取, 称为主合取范式

 $(\neg p \rightarrow q) \rightarrow (\neg q \lor p)$

- $\Leftrightarrow (p \lor \neg q)$
- \Leftrightarrow (p) \bigvee (\neg q)
- \Leftrightarrow $(p \land 1) \lor (1 \land \neg q)$
- $\Leftrightarrow (p \land (q \lor \neg q)) \lor ((p \lor \neg p) \land \neg q)$
- $\Leftrightarrow (p \land q) \lor (p \land \neg q) \lor (p \land \neg q) \lor (\neg p \land \neg q)$
- $\Leftrightarrow (p \land q) \lor (p \land \neg q) \lor (\neg p \land \neg q)$

因为一个公式的值不是真,就是假,因此当我们得到一个公的取值为真的情况时,剩下的组合是取值为假,因此当得到小项的析取组成的主析取范式后,可以针对剩下的组合写出主合取范式。

如当我们得到(¬ $p\rightarrow q$)→(¬q∨p)的大项之合取(p∨¬q)后,使 (p∨¬q)为假时(p,q)的值为(0,1),故其标记为M ,剩余的取 值为(0,0),(1,0),(1,1),故小项之析取为m ∨m 01 m 。

反之,若先得到其小项的析取,也可得到其大项的合取。反 正这两者将其所有组合瓜分完毕。

(2)(-	¬p→q)	→(q / \ :	<u>r)</u>			
р	q	r	¬р	¬p→q	$(q \wedge r)$	结果
0	0	0	1	0	0	1
0	0	1	1	0	0	1
0	1	0	1	1	0	0
0	1	1	1	1	1	1
1	0	0	0	1	0	0
1		1	0	1	0	0

主析取范式=m \vee m \vee m \vee m $=(\neg p \wedge \neg q \wedge \neg r) \vee (\neg p \wedge \neg q \wedge r) \vee (\neg p \wedge q \wedge r) \vee (\neg p \wedge q \wedge r)$

0

(3)(r	$(3)(p \lor (q \land r)) \rightarrow (p \lor q \lor r)$										
р	q	r	$(q \wedge r)$	(p∨(q ∧r))	(p∨q ∨r)	$(p \lor (q \land r))$ $\to (p \lor q \lor r)$					
0	0	0	0	0	0	1					
0	0	1	0	0	0	1					
0	1	0	0	0	1	1					
0	1	1	0	0	1	1					
1	0	0	0	1	1	1					
1	0	1	0	1	1	1					
1	1	0	1	1	1	1					
1	1	1	1	1	1	1					

永真式, 所有小项的析取得到其主析取范式

 $= (\neg p \land \neg q \land \neg r) \lor (\neg p \land \neg q \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land \neg q \land r) \lor (p \land q \land \neg r) \lor (p \land q \land r)$

由于没为假的指派,所以没有为假赋值,所对应的大项合取构成的合取,即没有主合取范式。

 $\neg (p \lor (q \land r)) \lor (p \lor q \lor r) = (\neg p \land \neg (q \land r)) \lor (p \lor q \lor r) = ((\neg p \land \neg q) \lor (\neg p \land \neg r)) \lor (p \lor q \lor r) =$

 $(\neg p \land \neg q) \lor (\neg p \land \neg r) \lor p \lor q \lor r = \neg (p \lor q) \lor (\neg p \land \neg r) \lor p \lor q \lor r = 1 永真$

$(4) \neg (q \rightarrow \neg p) \land \neg p$							
p	q	¬p	(q→¬p)	¬(q→¬p)	结果		

0	0	1	1	0	0
0	1	1	1	0	0
1	0	0	1	0	0
1	1	0	0	 1	0

没有成真的赋值,从而没有对应的小项,因此没有小项构成的主析取范式

永假式即矛盾式,为假指派对应的大项合取= $(p \lor q) \land (p \lor \neg q) \land (\neg p \lor q) \land (\neg p \lor \neg q)$

原式=¬(¬q \lor ¬p) \land ¬p=(q \land p) \land ¬p=0

_p	q	r	$(p \land q)$	¬р	$(\neg p \lor r)$	$(p \land q) \lor (\neg p \lor r)$
0	0	0	0	1	1	1
0	0	1	0	1	1	1
0	1	0	0	1	1	1
0	1	1	0	1	1	1
1	$\boldsymbol{\varrho}$	Q	$\boldsymbol{\varrho}$	$\boldsymbol{\varrho}$	$\boldsymbol{\varrho}$	o
1	0	1	0	0	1	1
1	1	0	1	0	0	1
1	1	1	1	0	1	1

主析取范式

 $(\neg p \land \neg q \land \neg r) \lor (\neg p \land \neg \mathbf{q} \land r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land q \land r) \lor (p \land q \land r) \lor (p \land q \land r)$

主合取范式

 $M = \neg p \lor q \lor r$

原式= $((p \land q) \lor \neg p) \lor r = ((p \lor \neg p) \land (\neg p \lor q)) \lor r = (1 \land (\neg p \lor q)) \lor r = \neg p \lor q \lor r$ 这就是大项也

剩下的赋值对应的就是小项

$(6)(p \rightarrow (p \lor q)) \lor r$

p	q	r	$(p \lor q)$	$(p \rightarrow (p \lor q))$	$(p \rightarrow (p \lor q)) \lor r$
0	0	0	0	1	1
0	0	1	0	1	1
0	1	0	1	1	1
0	1	1	1	1	1
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	1	1

永真式, 只有小项组成的主析取范式。

没有为假的赋值,所以没有成假赋值对应的大项的合取,即 没有主合取范式。

原式= $(\neg p \lor (p \lor q)) \lor r = (1 \lor q) \lor r = 1$

$(7)(p \land q) \lor r$

· · · · · · · · · · · · · · · · · · ·	•			
р	q	r	(p∧q)	$(p \land q) \lor r$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	0	1
1	0	0	0	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	1

主析取范式=m ∨m ∨m ∨m ∨m =

 $(\neg p \land \neg q \land r) \lor (\neg p \land q \land r) \lor (\neg p \land q \land r) \lor (\neg p \land \neg q \land r) \lor (p \land q \land \neg r) \lor (p \land q \land$

主合取范式 =M \bigwedge M \bigwedge M=(p \bigvee q \bigvee r) \bigwedge (p \bigvee ¬q \bigvee r) \bigwedge

 $(\neg p \lor q \lor r)$

 $(p \land q) \lor r$

 $=(p \land q \land 1) \lor (1 \land 1 \land r)$

 $= (p \land q \land (\neg r \lor r)) \lor ((\neg p \lor p) \land (\neg q \lor q) \land r)$

 $= (p \land q \land \neg r) \lor (p \land q \land r) \lor (\neg p \land \neg q \land r) \lor (\neg p \land q \land r) \lor (p \land \neg q \land r)$

 $(p \land q) \lor r$

 $=(p \lor r) \land (q \lor r)$

 $=(p \lor 0 \lor r) \land (0 \lor q \lor r)$

 $= (p \vee (\neg q \wedge q) \vee r) \wedge ((\neg p \wedge p) \vee q \vee r)$

 $= (p \vee \neg q \vee r) \wedge (p \vee q \vee r) \wedge (\neg p \vee q \vee r) \wedge (p \vee q \vee r)$

 $= (p \vee \neg q \vee r) \wedge (p \vee q \vee r) \wedge (\neg p \vee q \vee r)$

$(8) (p \rightarrow q) \land (q \rightarrow r)$

р	q	r	(p→q)	$(q\rightarrow r)$	$(p\rightarrow q)\wedge(q\rightarrow r)$
0	0	0	1	1	1
0	0	1	1	1	1
0	1	0	1	0	0
0	1	1	1	1	1
1	0	0	0	1	0
1	0	1	0	1	0
1	1	0	1	0	0
1	1	1	1	1	1

主析取范式=m Vm Vm Vm

 $= (\neg p \land \neg q \land \neg r) \overset{000}{\lor} (\neg p \overset{001}{\land} \neg q \land r) \overset{011}{\lor} (\neg p \overset{111}{\land} q \land r) \lor (p \land q \land r)$

主合取范式=M $\wedge M$ $\wedge M$ $\wedge M$ =

 $= (p \bigvee \neg q \bigvee r) \bigwedge (\stackrel{010}{\neg p} \bigvee q \bigvee^{100} r) \bigwedge (\stackrel{101}{\neg p} \bigvee q \bigvee^{110} \neg r) \bigwedge (\neg p \bigvee \neg q \bigvee r)$

 $(p \rightarrow q) \land (q \rightarrow r) = (\neg p \lor q) \land (\neg q \lor r)$

 $= (\neg p \lor q \lor 0) \land (0 \lor \neg q \lor r)$

 $= (\neg p \lor q \lor (\neg r \land r)) \land ((\neg p \land p) \lor \neg q \lor r)$

 $= (\neg p \lor q \lor \neg r) \land (\neg p \lor q \lor r) \land (\neg p \lor \neg q \lor r) \land (p \lor \neg q \lor r)$

 $(p \rightarrow q) \land (q \rightarrow r) = (\neg p \lor q) \land (\neg q \lor r)$

 $= (\neg p \land \neg q) \lor (\neg p \land r) \lor (q \land \neg q) \lor (q \land r)$

 $= (\neg p \land \neg q \land 1) \lor (\neg p \land 1 \land r) \lor (1 \land q \land r)$

 $= (\neg p \land \neg q \land (\neg r \lor r)) \lor (\neg p \land (\neg q \lor q) \land r) \lor ((\neg p \lor p) \land q \land r)$

 $= (\neg p \land \neg q \land \neg r) \lor (\neg p \land \neg q \land r) \lor (\neg p \land \neg q \land r) \lor (\neg p \land q \land r)$

 $\bigvee (\neg p \land q \land r) \lor (p \land q \land r)$

 $= (\neg p \land \neg q \land \neg r) \lor (\neg p \land \neg q \land r) \lor (\neg p \land q \land r) \lor (p \land q \land r)$

$(9) (p \land q) \rightarrow q$

D	a	(p∧g)	(p∧q)→q
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	1

永真式,只有小项的析取构成的主析取范式=(¬p \land ¬q) \lor (¬p \land q) \lor (p \land ¬q) \lor (p \land ¬q)

没有为假的指派,所以没有由大项的合取构成的主合取范式 $(p \land q) \rightarrow q$

 $=\neg(p \land q) \lor q$

 $=(\neg p \lor \neg q) \lor q$

 $=\neg p \lor \neg q \lor q$

=1

$(10) \neg (r \leftrightarrow p) \land p \land q$

р	q	r	r↔p	¬(r↔p)	$\neg (r \leftrightarrow p) \land p \land q$
0	0	0	1	0	0
	0	1	0	1	0
0	1	0	1	0	0
0	1	1	0	1	0

0 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 0 0 1 1 1

主析取范式=m = $p \land q \land \neg r$

主合取范式= M^{110}_{000} \wedge M \wedge M

 $= (p \lor q \lor r) \land (p \lor q \lor \neg r) \land (p \lor \neg q \lor r) \land (p \lor \neg q \lor \neg r) \land (\neg p \lor q \lor \neg r) \land (\neg p \lor \neg q \lor \neg r)$

 $\neg (r \leftrightarrow p) \land p \land q$

 $= \neg ((\neg p \lor r) \land (p \lor \neg r)) \land p \land q$

 $= ((p \land \neg r) \lor (\neg p \land r)) \land p \land q$

 $= (p \land \neg r \land p \land q) \lor (\neg p \land r \land p \land q)$

 $= (p \land q \land \neg r)$ $\neg (r \leftrightarrow p) \land p \land q$

 $=\neg((p \land r) \lor (\neg p \land \neg r)) \land p \land q$

 $= ((\neg p \vee \neg r) \wedge (p \vee r)) \wedge p \wedge q$

 $= (\neg p \lor \neg r) \land (p \lor r) \land p \land q$

 $= (\neg p \vee \neg r) \wedge ((p \vee r) \wedge p) \wedge q$

 $= (\neg p \lor \neg r) \land p \land q$

 $= (\neg p \lor (\neg q \land q) \lor \neg r) \land (p \lor (\neg q \land q) \lor (\neg r \land r)) \land ((\neg p \land p) \lor q) \lor (\neg r \land r))$

 $= (\neg p \vee \neg q \vee \neg r) \wedge (\neg p \vee q \vee \neg r) \wedge$

 $(p \vee \neg q \vee \neg r) \wedge (p \vee \neg q \vee r) \wedge (p \vee q \vee \neg r) \wedge \ (p \vee q \vee r) \ \wedge \\$

 $\wedge (\neg p \vee q \vee \neg r) \wedge (\neg p \vee q \vee r) \wedge (p \vee q \vee \neg r) \wedge (p \vee q \vee r)$

二、应用题

1、某次课间休息时,1位同学作为主持人与另外3位同学进行猜数游戏,主持人说这个数是30、50、70中的某一个,你们三位同学各猜一次,然后主持人分析每人猜数的结果,从而最终确定是哪个数。

同学1说:这个数是30,不是50

同学2说:这个数是50,不是70

同学3说:这个数既不是30,也不是50

主持人听后说道: 你们3人中,有一人全对,有二人对了一半,请问到底是哪个数。

解: 令S表示"这个数是30", W表示"这个数是50", Q表示"这个数是70"

同学1的话:S/¬W

同学2的话: W / ¬Q

同学3的话: ¬S∧¬W

对于每个人来说,只有二个选择:全对、对一半,对一半又分成:第一句对第二句错、第一句错第二句对,因此每个同学的对错情况为:√√、√×、×√,因此3个人共有3*3*3=27种可能的情况,其中有些情况不符合"有一人全对,有二人对了一半"而剔除。

我们按" $\sqrt{\cdot}$ 、 $\sqrt{\cdot}$ 、 \times 、 \times "顺序,构造"类真值表"来分析其组合情况

	同学2	同学3	命题公式	
$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	不必写	不可能全对
$\sqrt{}$	$\sqrt{}$	$\sqrt{\times}$	不必写	不可能有2个对
$\sqrt{}$	$\sqrt{}$	$\sqrt{\times}$	不必写	不可能有2个对
$\sqrt{}$	$\sqrt{\times}$	$\sqrt{}$	不必写	不可能有2个对
$\sqrt{}$	$\sqrt{\times}$	$\sqrt{\times}$	$S \land \neg W \land W \land Q \land \neg S \land W = 0$	真值为0不对
$\sqrt{}$	$\sqrt{\times}$	$\sqrt{\times}$	$S \land \neg W \land W \land Q \land S \land \neg W = 0$	真值为0不对
$\sqrt{}$	$\sqrt{\times}$	$\sqrt{}$	不必写	不可能有2个对
$\sqrt{}$	$\sqrt{\times}$	$\sqrt{\times}$	$S \land \neg W \land \neg W \land Q \land \neg S \land W = 0$	真值为0不对
	$\sqrt{\times}$	$\sqrt{\times}$	$S \land \neg W \land \neg W \land \neg Q \land S \land \neg W = S \land \neg W \land \neg Q$	可能对的,是30 不是50,不是70
$\sqrt{\times}$	$\sqrt{}$	$\sqrt{\times}$	$S \wedge W \wedge W \wedge \neg Q \wedge \neg S \wedge W = 0$	不可能
$\sqrt{\times}$	$\sqrt{}$	$\sqrt{\times}$	$S \wedge W \wedge W \wedge \neg Q \wedge S \wedge \neg W = 0$	不可能
$\sqrt{\times}$	$\sqrt{\times}$	$\sqrt{}$	$S \wedge W \wedge W \wedge Q \wedge \neg S \wedge \neg W = 0$	不可能
$\sqrt{\times}$	$\sqrt{\times}$	$\sqrt{}$	$S \wedge W \wedge \neg W \wedge \neg Q \wedge \neg S \wedge \neg W = 0$	不可能
$\sqrt{\times}$	$\sqrt{}$	$\sqrt{\times}$	\times S, \neg W,W, \neg Q,S,W=0	不可能
\times	$\sqrt{}$	$\times $	$\neg S, \neg W, W, \neg Q, S, \neg W=0$	不可能
\times	$\sqrt{\times}$	$\sqrt{}$	$\neg S, \neg W, W, Q, \neg S, \neg W=0$	不可能
\times	\times	$\sqrt{}$	$\neg S$, $\neg W$, $\neg W$, $\neg Q$, $\neg S$, $\neg W =$	3个数都不是,不可能_

答案是: 是30, 不是50, 不是70

同学1说:这个数是30,不是50全对

同学2说:这个数是50,不是70 第一句错第二句对

同学3说:这个数既不是30,也不是50 第一句错第二句对

2、设计一个如下的电路图:它有三个输入 p1、p2、p3,当 其中有2个及以上的值为1时输出的结果为1,其他情况下输 出0。请给出其真值表,同时针对此真值表给出主析取范式、 主合取范式,并给出其最简单的表达式。

答:与课堂例题一样

在真实的教材将其换成了如下习题

2、设计一个如下的电路图:它有三个输入 p1、p2、p3,当 其中任意二个的值为 0 时输出的结果为 1,其他情况下输出 0。请给出其真值表,同时针对此真值表给出主析取范式、 主合取范式,并给出其最简单的表达式。

p1	p2	р3	表达式的值
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

其主析取范式=m Vm Vm Vm

 $= (\neg p1 \land \neg p2 \land \neg p3)^{000} \lor (\neg p1 \land \neg p2 \land p3)^{100} \lor (\neg p1 \land p2 \land \neg p3) \lor (p1 \land \neg p2 \land \neg p3)$

 $= ((\neg p1 \land \neg p2) \land (\neg p3 \lor \land p3)) \lor (((\neg p1 \land p2) \lor (p1 \land \neg p2)) \land \neg p3)$

 $= (\neg p1 \land \neg p2) \lor (((\neg p1 \land p2) \lor (p1 \land \neg p2)) \land \neg p3)$

其主合取范式=M $\wedge M$ $\wedge M$ $\wedge M$

 $= (p1 \lor \neg p2 \lor \neg p3)^{011} (\neg p \lor p2 \lor \neg p3)^{101} (\neg p \lor p2 \lor \neg p3) \land (\neg p1 \lor \neg p2 \lor p3) \land (\neg pq \lor \neg p2 \lor \neg p3)$

 $= (((p1 \lor \neg p2) \land (\neg p1 \lor p2)) \lor \neg p3) \land (\neg p1 \lor \neg p2)$

- 3、某年级要从1班、2班、3班、4班、5班中选出一名才子主持元旦晚会,每班最多一人,也可能没有,这些人满足如下条件,请确定最终选择哪些班级的学生:
- (1)如果1班有人选中,则2班有人选中。
- (2)若5班有人选上则1班与2班均有人选上。
- (3)5班与4班必有一班有被选中。
- (4)3班与4班同时有人选上或同时没人选上。

解:用 One 表示 1 班选了人,Two 表示 2 班选了人,Three 表示 3 班选了人,Four 表示 4 班选了人,Five 表示 5 班选了人。

则这4个条件依次为

One→Two, Five→(One \ Two), Four \ Five, Three→Four 满足这4个条件,即这4个条件的值均为真即为1,所以其合取为1

(One \rightarrow Two) \land (Five \rightarrow (One \land Two)) \land (Four \lor Five) \land (Three \leftrightarrow Four)=1,

将以上合取范式转换为主析取范式,因此双条件应转换为析取式的合取式

原式=

 $(\neg One \lor Two) \land (\neg Five \lor (One \land Two)) \land (Four \lor Five) \land ((\neg Three \lor Four) \land (Three \lor \neg Four))$

 $= [(\neg One \lor Two) \land (\neg Five \lor (One \land Two))] \land (Four \lor Five)$

 $\land (\neg \text{Three} \lor \text{Four}) \land (\text{Three} \lor \neg \text{Four})$

= $[(\neg One \land \neg Five) \lor (\neg One \land (One \land Two) \lor (Two \land \neg Five) \lor (Two \land (One \land Two)] \land (Four \lor Five) \land (\neg Three \lor Four) \land (Three \lor \neg Four)$

={ $[(\neg One \land \neg Five) \lor (Two \land \neg Five) \lor (Two \land One)] \land (Four \lor Five)$ }

 $\land (\neg \text{Three} \lor \text{Four}) \land (\text{Three} \lor \neg \text{Four})$

 $= \{ [(\neg One \land \neg Five \land Four) \lor (Two \land Four) \lor (Tw$

One \land Four) \lor (Two \land One \land Five)]

 $\land (\neg \text{Three} \lor \text{Four}) \} \land (\text{Three} \lor \neg \text{Four})$

 $=\{(\neg One \land \neg Five \land Four \land \neg Three) \lor$

 $(\neg \text{One} \land \neg \text{Five} \land \text{Four}) \lor$

 $(\text{Two} \land \neg \text{Five} \land \text{Four} \land \neg \text{Three}) \lor$

 $(\text{Two} \land \neg \text{Five} \land \text{Four}) \lor$

 $(Two \land One \land Four \land \neg Three) \lor$

 $(Two \land One \land Four) \lor$

 $(Two \land One \land Five \land \neg Three) \lor$

 $(\text{Two} \land \text{One} \land \text{Five} \land \text{Four}) \land (\text{Three} \lor \neg \text{Four})$

 $=(\neg One \land \neg Five \land Four \land Three) \lor$

 $(\text{Two} \land \neg \text{Five} \land \text{Four} \land \neg \text{Three}) \lor$

 $(\text{Two} \land \text{One} \land \text{Four} \land \text{Three}) \lor$

 $(\text{Two} \land \text{One} \land \text{Five} \land \neg \text{Three} \land \neg \text{Four}) \lor$

 $(\text{Two} \land \text{One} \land \text{Five} \land \text{Four} \land \text{Three})$

= $(\neg One \land Three \land Four \land \neg Five) \lor$

(Two \wedge Three \wedge Four $\wedge \neg$ Five) \vee

 $(One \land Two \land Three \land Four) \lor$

 $(One \land Two \land \neg Three \land \neg Four \land Five) \lor$

 $(One \land Two \land Three \land Four \land Five)$

	一班	二班	三班	四班	五班	条 件	条件	条 件	条件
方案一		一不限						满足	满足
方案二	不限	有	有	有	_ 无	满足	满足	满足	满足
方案三	有一	—有—	—有—	—有—		満足	满足	满足	满足
方案四	有 有	一有一 一有	一无 有	一无一 有	 有 有	満足 満足	満足 満足	満足 満足	満足 満足

(1)如果1班有人选中,则2班有人选中。

- (2)若5班有人选上则1班与2班均有人选上。
- (3)5班与4班必有一班有被选中。
- (4)3班与4班同时有人选上或同时没人选上。

按照某位帅哥的质疑,经仔细思考,应该将其转换为主析取范式,所以最终结果为:

= $(\neg One \land 1 \land Three \land Four \land \neg Five) \lor$

 $(1 \land \text{Two} \land \text{Three} \land \text{Four} \land \neg \text{Five}) \lor$

(One \land Two \land Three \land Four \land **1**) \lor

 $(One \land Two \land \neg Three \land \neg Four \land Five) \lor$

(One \land Two \land Three \land Four \land Five)

= $(\neg One \land \neg Two \land Three \land Four \land \neg Five) \lor (\neg One \land Two \land Three \land Four \land \neg Five) \lor$

 $(\neg One \land Two \land Three \land Four \land \neg Five) \lor (One \land Two \land Three \land Four \land \neg Five) \lor$

(One \land Two \land Three \land Four \land ¬Five) \lor (One \land Two \land Three \land Four \land Five) \lor

(One \land Two \land ¬Three \land ¬Four \land Five) \lor (One \land Two \land Three \land Four \land Five)

= $(\neg One \land \neg Two \land Three \land Four \land \neg Five) \lor (\neg One \land Two \land Three \land Four \land \neg Five) \lor$

(One \land Two \land Three \land Four $\land \neg$ Five) \lor (One \land Two \land Three \land Four \land Five) \lor

 $(One \land Two \land \neg Three \land \neg Four \land Five)$

		二 _班_	三	四班	五班	条件 1	条件 2	条件 3	条件 4
方案	无	无	有	有	无	满足	满足	满足	满足
方案	无	有	有	有	无	满足	满足	满足	满足
方案	有	有	有	有	无	满足	满足	满足	满足
方案	有	有	有	有	有	满足	满足	满足	满足
方案	有	有	无	无	有	满足	满足	满足	满足

- (1)如果1班有人选中,则2班有人选中。
- (2)若5班有人选上则1班与2班均有人选上。
- (3)5班与4班必有一班有被选中。
- (4)3班与4班同时有人选上或同时没人选上。
- 4、某公司要从A、B、C、D、E选派一些人去参观世博会, 必须满足如下条件:
- (1)若A去则B肯定不能去;
- (2)若A与C只能去一个;
- (3)C与D两人同去或同不去;
- (4)若B去则C肯定去
- (5)若E去则B, C, D肯定有一人陪同。

证明:是否存在满足以上条件的人选?若存在则请给出全部方案。

解:这句知表示为:

 $(A \rightarrow \neg B) \land ((A \land \neg C) \lor (\neg A \land C)) \land (C \leftrightarrow D) \land (B \rightarrow C) \land (E \rightarrow (B \lor C \lor D))$

满足5个条件,则每个条件的值为真,故其合取为真,将其转换为主析取范式,则可以判断是否有可能的方案。

 $\begin{array}{ll} (A \rightarrow \neg B) & \wedge ((A \wedge \neg C) \vee (\neg A \wedge C)) & \wedge (C \leftrightarrow D) & \wedge & (B \rightarrow C) & \wedge \\ (E \rightarrow (B \vee C \vee D)) & & & \end{array}$

 $= \{ (\neg A \lor \neg B) \land ((A \land \neg C) \lor (\neg A \land C)) \} \land ((C \land D) \lor (\neg C \land \neg D)) \land (\neg E \lor B \lor C \lor D)$

 $= \{ [(\neg A \land C) \lor (A \land \neg C \land \neg B) \lor (\neg A \land C \land \neg B)] \land ((C \land D) \lor (\neg C \land \neg D)) \} \land (\neg E \lor B \lor C \lor D)$

 $=\{(\neg A \land C \land D) \lor (A \land \neg B \land \neg C \land \neg D) \lor (\neg A \land \neg B \land C \land D)\} \land$

 $(\neg E \lor B \lor C \lor D)$

 $= (\neg A \land C \land D \land \neg E) \lor (\neg A \land C \land D \land B) \lor (\neg A \land C \land D) \lor (A \land \neg B \land \neg C \land \neg D \land \neg E) \lor (A \land \neg B \land \neg C \land D)$

 $(\neg A \land \neg B \land C \land D \land \neg E) \lor (\neg A \land \neg B \land C \land D)$

 $= (A \land \neg B \land \neg C \land \neg D \land \neg E) \lor (\neg A \land \neg B \land C \land D \land \neg E) \lor (\neg A \land \neg B \land C \land D) \lor (\neg A \land C \land D) \lor (\neg A \land C \land D) \land \neg E) \lor (\neg A \land C \land D)$

 $=(A \land \neg B \land \neg C \land \neg D \land \neg E) \lor$

 $(\neg A \land \neg B \land C \land D \land \neg E) \lor$

 $\vee (\neg A \wedge \neg B \wedge C \wedge D \wedge \neg E) \vee$

 $(\neg A \land \neg B \land C \land D \land E) \lor$

 $(\neg A \land B \land C \land D \land \neg E) \lor$

 $(\neg A \land B \land C \land D \land \neg E) \lor$

 $(\neg A \land \neg B \land C \land D \land \neg E)$ \lor

 $(\neg A \land B \land C \land D \land \neg E)$

 $(\neg A \land \neg B \land C \land D \land \neg E) \lor$

 $(\neg A \land \neg B \land C \land D \land E) \lor$

 $(\neg A \land B \land C \land D \land \neg E) \lor$

 $(\neg A \land B \land C \land D \land E)$

 $=(A \land \neg B \land \neg C \land \neg D \land \neg E) \lor$

 $(\neg A \land \neg B \land C \land D \land \neg E) \lor$

 $(\neg A \land \neg B \land C \land D \land E) \lor$

 $(\neg A \land B \land C \land D \land \neg E) \lor$

 $(\neg A \land B \land C \land D \land E)$

	条件 1	条件 2	条件 3	条件 4	条件 - 5
(A △¬B △¬C △¬D △¬E) A 去 B 不 C 不 D 不 E 不	満足	满足	满足	满足	满足
(¬A∧¬B ∧C ∧D∧¬E) A不B不C去D去E不	满足	满足	满足	满足	满足
(¬A∧¬B ∧C ∧D∧E) A不B不C去D去E去	满足	满足	满足	满足	满足
(¬A∧B ∧C∧D∧¬E) A不B去C去D去E不去	满足	满足	满足	满足	满足
(¬A∧B ∧C∧D∧E) A不B去C去D去E去	满足	满足	满足	满足	满足

●──习题三

- 1、利用定义1.6.1,并利用等值演算或真值表,证明如下各推理式,要注明每步的理由。
- $1 \cdot (A \rightarrow B) \land \neg B \Rightarrow \neg A$
- (1)¬B为真前提条件
- (2) A→B为真前提条件
- (3)¬B→¬A为真因为¬B→¬A⇔A→B为真
- (4)¬A为真 (¬B→¬A) ∧ ¬B⇒¬A假言推理
- $2, (A \lor B) \land \neg B \Rightarrow A$
- (1)¬B为真前提条件
- (2) (A \ B)为真前提条件
- (3)¬B→A为真因为¬B→A⇔A∨B为真
- (4)A为真 (¬B→A) ∧ ¬B→A假言推理
- $3, (A \leftrightarrow B) \land (B \leftrightarrow C) \Rightarrow (A \leftrightarrow C)$
- (1)(A↔B)为真前提条件
- $(2)(A \rightarrow B) \land (B \rightarrow A)$ 为真因 $(A \leftrightarrow B) \Leftrightarrow (A \rightarrow B) \land (B \rightarrow A)$
- (3) (A→B)为真由(2)及合取的定义
- (4)(B→A)为真由(2)及合取的定义
- (5) (B↔C)为真前提条件
- $(6)(B\rightarrow C)\land (C\rightarrow B)$ 为真因 $(B\leftrightarrow C)\Leftrightarrow (B\rightarrow C)\land (C\rightarrow B)$
- (7) (B→C)为真由(6)及合取的定义

- (8) (C→B)为真由(6)及合取的定义
- (9) (C→A)为真由(8)(4)及传递律
- (10) (A→C)为真由(3)(7)及传递律
- (11) (A↔C)为真由(9)(10)及双条件的定义
- $(4) (A \rightarrow B) \land (\neg A \rightarrow B) \Rightarrow B$
- $((A \rightarrow B) \land (\neg A \rightarrow B)) \rightarrow B$
- $\Leftrightarrow \neg((\neg A \lor B) \land (\neg \neg A \lor B)) \lor B$
- $\Leftrightarrow \neg((\neg A \lor B) \land (A \lor B)) \lor B$
- $\Leftrightarrow ((A \land \neg B) \lor (\neg A \land \neg B)) \lor B$
- $\Leftrightarrow ((A \lor \neg A) \land \neg B)) \lor B$
- $\Leftrightarrow (1 \land \neg B)) \lor B$ $\Leftrightarrow \neg B \lor B$

⇔1

故为永真式

 $(A \rightarrow B) \land (\neg A \rightarrow B) \Rightarrow B$

- 2、采用定义1.6.2方法证明如下推理式,并注明每步理由,可采用CP规则、反证法。
- 1, $\neg p \lor q$, $\neg q \lor r$, $r \rightarrow s$, $p \Rightarrow s$
 - (1) p
 - $(2) \neg p \lor q$
 - (3) q (1)(2) \/ 的定义,或(1)(2)分离原则
 - $(4) \neg q \lor r$
 - (5) r (4)(5) ∨的定义,或(4)(5)分离原则
 - $(6) r \rightarrow s$
 - (7) s (5)(6)分离原则
- $2, p \rightarrow (q \rightarrow r), q \rightarrow (r \rightarrow s) \Rightarrow (p \land q) \rightarrow s$
 - (1) (p∧q) 附加条件
 - (2) p (1)与 \ 的定义附加条件
 - (3) q (2)与 \ 的定义附加条件
 - $(4) p \rightarrow (q \rightarrow r)$
 - (5) q→r **(2)**与**(4)**分离原则
 - (6) r (3)与(5)分离原则
 - $(7) q \rightarrow (r \rightarrow s)$
 - (8) r→s **(3)**与**(7)**分离原则
 - (9) s (6)与(8)分离原则
- 3, $p \rightarrow (q \rightarrow r)$, p, $q \Rightarrow r \lor s$
 - (1) p为真前提条件
 - (2) p→(q→r)为真前提条件
 - (3) (q→r)为真 (1)(2)假言推理
 - (4)q为真前提条件
 - (5)r为真 (4)(3)假言推理
 - (6)r \s为真 (5)与析取的定义
- $4, p \rightarrow q, \neg(p \land r), r \Rightarrow \neg p$
 - (1)¬(p∧r)为真前提条件
 - (2)¬p∨¬r为真 (1)与德摩律
 - (3)r→¬p为真与(2)等值
 - (4) r为真前提条件

 - (5) ¬p为真 (4)(3)假言推理 反证法
 - (1)¬¬p为真反证法即假设结论为真
 - (2)p为真否定的否定为真
 - (3)¬ $(p \land r)$ 为真前提条件
 - (4)¬p∨¬r为真 (3)与德摩律
 - (5) p→¬r为真与(4)等值
 - (6)¬r为真 (2)(5)假言推理
 - (7)r为真前提条件
- 显然(6)(7)矛盾,故假设错了,即"¬¬p为真"错了,所以¬p为真
- $5, p \rightarrow q \Rightarrow p \rightarrow (p \land q)$
 - (1)p为真附加前提
 - (2) p→q为真前提条件

- (3)q为真 (1)(2)假言推理
- (4) (p∧q)为真 (1)(3)及合取的性质
- 6, $q \rightarrow p$, $q \leftrightarrow s$, $s \leftrightarrow t$, $t \leftrightarrow r, r \Rightarrow p \land q$
 - (1) t↔r为真前提条件
 - (2) (t→r) ∧(r→t)为真与(1)等值
 - (3) (r→t)为真 (2)及合取的定义
 - (4)r为真前提条件
 - (5)t为真 (3)(4)假言推理
 - (6) s↔t为真前提条件
 - (7) (s→t) ∧(t→s)为真与(6)等值
 - (8) (t→s)为真 (7)及合取的定义
 - (9)s为真 (5)(8)与假言推理
 - (10) q↔s为真前提条件
 - $(11)(q\rightarrow s) \land (s\rightarrow q)$ 为真与(10)等值
 - (12) (s→q)为真 (11)与合取的定义
 - (13)q为真 (9)(12)与假言推理
 - (14) q→p为真前提条件
 - (15)p为真 (13)(14)假言推理
 - (16)p/q为真 (13)(15)及合取的定义
- 7, $p \rightarrow r$, $q \rightarrow s$, $p \land q \Rightarrow r \land s$
 - (1) p∧q为真前提条件
 - (2)p为真 (1)与合取的性质
 - (3)q为真 (1)与合取的性制
 - (4) p→r为真前提条件
 - (5)r为真 (2)(4)假言推理
 - (6) q→s为真前提条件
 - (7)s为真 (3)(6)及假言推理
 - (8) r∧s为真 (5)(7)及合取的性质
- 8, $\neg p \lor r$, $\neg q \lor s$, $p \land q \Rightarrow t \rightarrow r \land s$
 - (1)t为真附件前提
 - (2) p / q 为真前提条件
 - (3)p为真 (2)与合取的定义
 - (4)q为真 (2)与合取的定义
 - (5)¬p∨r为真前提条件
 - (6)p→r为真与(5)等值
 - (7)r为真 (6)(3)与假言推理
 - (8) ¬q∨s为真前提条件
 - (9) q→s为真与(8)等值
 - (10)s为真 (9)(4)与假言推理
 - (11) r∧s为真 (7)(10)与合取的性质
- $9, p \rightarrow (q \rightarrow r), s \rightarrow p, q \Rightarrow s \rightarrow r$
 - (1)s为真附加前提
 - (2) s→p为真前提条件
 - (3)p为真 (1)(2)假言推理
 - (4) p→ (q→r)为真前提条件
 - (5) (q→r)为真 (3)(4)假言推理
 - (6)q为真前提条件
 - (7)r为真 (5)(6)假言推理
- 10, $(p \lor q) \to (r \land s)$, $(s \lor t) \to u \Rightarrow p \to u$
 - (1)p为真附加前提
 - (2)p V q为真 (1)及析取的性质
 - $(3) (p \lor q) \rightarrow (r \land s)$ 为真前提条件
 - (4) (r∧s)为真 (2)(3)与假言推理
 - (5)s为真 (4)与合取的定义
 - (6) (s ∨t)为真 (5)与析取的定义
 - (7) (s∨t) →u为真前提条件
 - (8)u为真 (6)(7)假言推理
- 11、 $p \rightarrow \neg q$, $\neg r \lor q$, $r \land \neg s \Rightarrow \neg p$ 反证法
 - (1)¬¬p为真结论的否定
 - (2)p为真 (1)的否定之否定
 - (3) p→¬q为真前提条件
 - (4)¬q为真 (2)(3)假言推理

- (5)¬r∨q为真前提条件
- (6)¬q→¬r为真与(5)等值
- (7) ¬r为真 (4)(6)假言推理
- (8) r∧¬s为真前提条件
- (9) r为真 (8)及合取的定义
- 故(7)(9)矛盾,从而假设"¬¬p为真"是错的,只能"¬¬p为 假",所以¬p为真
- 12, $p \lor q$, $p \rightarrow r$, $q \rightarrow s \Rightarrow r \lor s$

结论为r∨s⇔¬r→s,所以上式等价于证明

- $p \lor q$, $p \rightarrow r$, $q \rightarrow s \Rightarrow \neg r \rightarrow s$
 - (1) ¬r为真附加条件
 - (2) p→r为真前提条件
 - (3) ¬r→¬p为真与(2)等值
 - (4) ¬p为真 (1)(3)假言推理
 - (5) p \/ q为真前提条件
 - (6)¬p→q为真与(5)等值
 - (7)q为真 (4)(6)与假言推理
 - (8) q→s为真前提条件
 - (9)s为真 (7)(8)与假言推理
- 3、将下面各段话用命题逻辑公式表示,并构造其自然逻辑的证明过程。
- (1)只要A曾到过受害者的房间,并且11点以前没有离开,A就是谋杀嫌犯。A曾到过受害者房间。如果A在11点前离开,看门人会看见他。看门人没看见他。所以A是谋杀嫌犯。
- 解: P1表示"A曾到过受害者的房间"

P2表示"A人11点以前离开"

P3表示"A是谋杀嫌犯"

P4表示"看门人看见A"

则以上语句表示: (P1 △¬P2)→P3, P1, P2→P4, ¬P4⇒P3

- (1)¬P4为真前提条件
- (2) P2→P4为真前提条件
- (3) ¬P4→¬P2为真与(2)等值
- (4) ¬P2为真 (1)(3)进行假言推理
- (5)P1为真前提条件
- (6) (P1 △¬P2)为真 (4)(5)与合取的定义
- (7) (P1 △¬P2)→P3为真前提条件
- (8)P3为真 (6)(7)进行假言推理
- (2)如果今天是星期六,我们就要橘州公园看烟火晚会或者步行街去逛街。如果步行街人太多,我们就不去步行街。今天是星期六,步行街由于搞活动人太多了。所以我们去橘州公园看烟火晚会。
- 解: P1: 今天星期六
 - P2: 我们到橘州公园看烟火晚会
 - P3: 我们到步行街去逛街
 - P4: 步行街人太多
 - 则以上语句可表示为: P1→(P2 ∨ P3), P4→¬P3, P1,

P4⇒P2

- (1) P1为真前提条件
- (2) P1→(P2∨P3)为真前提条件
- (3) (P2 \/ P3)为真 (1)(2)进行假言推理
- (4)P4为真前提条件
- (5) P4→¬P3为真前提条件
- (6)¬P3为真 (4)(5)进行假言推理
- (7) ¬P3→ P2为真与(3)等值 (8) P2为真 (6)(7)进行假言推理
- (3)如果肖寒是理科生,那么他的逻辑思维能力应该不差。如果肖寒不是文科生,一定是理科生。肖寒的逻辑思维能力很差,所以肖寒一定是文科生。
- 解: P1: 肖寒是理科生
 - P2: 肖寒逻辑思维能力差
 - P3: 肖寒是文科生
 - 则以上推理过程可写成: P1→¬P2, ¬P3→P1, P2⇒P3
 - (1)P2为真前提条件

- (2) P1→P2为真前提条件
- (3) P2→ P1为真与(2)等值
- (4) P1为真(1)(3进行假言推理
- (5) P3→P1 为真前提条件
- (6) P1→ P为真与(5)等值
- (7) P为真(4)(6进行假言推理

习题四

采用定义1.6.2方法、消解法证明如下推理式。 1、 $p \lor q$, $q \lor r$, $r \rightarrow s$, $p \cdot s$ 证明:

- (1) pVq为真前提条件
- (2) 办真前提条件
- (3) 办真因为(1)(2为真, 故其消解式为真
- (4) q\r为真前提条件
- (5)为真因为(3)(4为真,故其消解式为真
- (6) r→为真前提条件
- (7) r√s为真与(6)等值
- 2, $p \rightarrow (q \rightarrow r)$, $q \rightarrow (r \rightarrow s)$ $(p \land q) \rightarrow s$
 - (1) p→(q→为真前提条件
 - (2) pV (qVr)为真与(1)等值,条件式的等值
 - (3) p∨ q∨r为真与(2)等值,结合律
 - (4) q→(r→为真前提条件
 - (5) q V (r V s) 为真与(4) 等值
 - (6) q∨ r∨s为真与(5)筹值, 结合律
 - (7) p∨ q∨s为真因为(3)(6为真, 故其消解式为真
 - (8) (p∧q) ∨s为真与(7)等值, 德摩律
 - (9) (Aq)→为真与(8)等值,因为条件式的等值式
- 3, $p \rightarrow (q \rightarrow r)$ p, q $r \lor s$
 - (1) p→(q→为真前提条件
 - (2) pV (qVr)为真与(1)等值,条件式的等值
 - (3) pV qVr为真与(2) 等值, 结合律
 - (4) 办真前提条件
 - (5) q V r为真因为(3)(4为真, 故其消解式为真
 - (6) 办真前提条件
 - (7) 为真因为(5)(6为真, 故其消解式为真
 - (8) ¥s为真由(7)与析取的定义可知
- $4, p \rightarrow q, (p \land r), r p$
 - (1) (p∧r)为真前提条件
 - (2) p∨ r为真与(1)等值, 德摩律
 - (3) 为真前提条件
 - (4) p为真因为(2)(3为真, 故其消解式为真
- $5, p \rightarrow q p \rightarrow (p \land q)$
 - (1) 办真附加前提
 - (2) p→ 如真前提条件
 - (3) p V q 为真与(2)等值
 - (4) 办真(1)(3为真, 故其消解式为真
 - (5) (Aq)为真(1)(4与合取的定义
- 5, $q \rightarrow p$, qs , st , tr , r $p \land q$
 - (1) tr为真前提条件
 - (2)(t√r)∧(t√ r)为真与(1)等值
 - (3) (t r)为真(2)与合取的定义
 - (4) 为真前提条件
 - (5) 为真因为(3)(4为真, 故其消解式为真
 - (6) st为真前提条件
 - (7)(s∨t)∧(s∨ t)真与(6)等值
 - (8) 似 t为真(7)与合取的定义

 - (10) qs 为真前提条件
 - (11)(q∨s)∧(q∨ s)为真与(10)等值

- (12) (g/s)为真(11)与合取的定义
- (13) 办真(9)(12为真,故消解式为真
- (14)q→p为真前提条件
- (15) q\p为真与(14)等值
- (16) 办真 (13) (15) 真, 故消解式为真
- (17) Aq为真 (13)(16为真及合取的性质
- 7, $p \rightarrow r$, $q \rightarrow s$, $p \land q$ $r \land s$
 - (1) 於q为真前提条件
 - (2) 办真(1) 与合取的定义
 - (3) 办真(2)与合取的定义
 - (4) p→为真前提条件
 - (5) p\r为真与(4)等值
 - (6) 为真(2)(5为真,故其消解式为真
 - (7) q→为真前提条件
 - (8) q V s 为真与 (7) 等值

 - (10) As为真(6)(9为真及合取的性质
- 8, $p \lor r$, $q \lor s$, $p \land q t \rightarrow A \land s$
 - (1) 於q为真前提条件
 - (2) 办真(1) 与合取的定义
 - (3) 办真(2)与合取的定义
 - (4) pVr为真前提条件
 - (5) 为真(2)(4为真,故其消解式为真
 - (6) q V s 为真前提条件
 - (7) 为真(3)(6为真,故其消解式为真
 - (8) As为真(5)(7为真及合取的性质
 - (9) t√(As) 为真(8)与析取的定义
 - (10) t→/\rs为真与(9)等值
- 9, $p \rightarrow (q \rightarrow r)$ $s \rightarrow p$, $q \rightarrow r$
 - (1) p→ (q→为真前提条件(2) p∨(q∨r)为真与(1)等值
 - (3) pV qVr为真与(2)等值
 - (4) 办真前提
 - (5) p\r为真因为(3)(4为真,故其消解式为真
 - (6) s→为真前提条件
 - (7) s∨p为真与(6)等值
 - (8) s√r为真(5)(7为真,故其消解式为真
 - (9) s→为真与(8)等值
- 10, $(p \lor q) \rightarrow (xs)$, $(s \lor t) \rightarrow u p \rightarrow u$
 - (1) (p/q) → /xs)为真前提条件
 - (2) (p\/q) \/(r\s)为真与(1)等值
 - (3) (p∧ q) ∨(r∧s)为真与(2)等值, 德摩律
 - (4)(p ∨r)∧(p∨s)∧(q∨r)∧(q∨s)为真与(3)

等值

- (5) (≰t) → 为真前提条件
- (6) (s√t) √u为真与(5)等值
- (7) (s∧ t) ∨u为真与(6)等值
- (8) (s \u) ∧ (t\u)为真与(7)等值
- (9) (s \u)为真(8)与合取的定义
- (10) (p\s)为真(4)与合取的定义
- (11) p ∨u为真 (9)(10为真, 故其消解式为真
- (12) p→为真与(11)等值
- 11, $p \rightarrow q$, $r \lor q$, $r \land s$
 - (1) A s为真前提条件
 - (2) 为真(1)与合取的定义
 - (3)r∨q为真前提条件
 - (4) 办真(2)(3消解式 (5) p→q为真前提条件
 - (6) pV q为真与(5)等值
 - (6) p为真(4)(6消解式
- 12, $p \lor q$, $p \rightarrow r$, $q \rightarrow s$ $r \lor s$
 - (1) ⋈q为真前提条件
 - (2) p→为真前提条件

- (3)¬p∨r为真与(2)等值
- (4) q∨r为真 (1)(3)消解式
- (5) q→s为真前提条件
- (6) ¬q∨s为真与(5)等值
- (7) r∨s为真 (4)(6)消解式为真

__ - 习题-

1、指出下列公式 $\forall x \exists y (F(x,y) \land G(y,z)) \lor \exists x H(x,y,z)$ 中的指导变元,量词的辖域,各个体变项的自由出现和约束出现。解:全称量词的指导变元为 x,第一个存在量词的指导变元为y,第2 个存在量词的指导变元为x。

在 $\forall x \exists y (F(x,y) \land G(y,z))$ 中约束变元为x 与y,自由变元为z。在 $\exists x H(x,y,z)$ 中的约束变元为x,自由变元为y,z。

- 2、给定解释I 如下:
- (a)个体域为实数集R;
- (b)特定元素a=0;
- (c)函数f(x,y)=x-y, x 与y 为实数。
- (d)谓词F(x,y)为x=y,G(x,y)为x<y,x 与y 为实数。
- 给出下列公式在解释 I 下的真值。
- (1) $\forall x \ \forall y (F(f(x,y),a) \rightarrow G(x,y))$
- $(2) \ \forall x \ \forall y (G(f(x,y),a) \rightarrow F(x,y))$
- $(1) \ \forall x \ \forall y (F(f(x,y),a) \rightarrow G(x,y))$
- 解: 原式= $\forall x \ \forall y(F(x-y,0) \to G(x,y))$ = $\forall x \ \forall y(x-y=0 \to x < y)$ 当 $x-y=0 \ 为1 \ 时, x < y \ 为0,$
 - 故此式的值为 0。
- (2) $\forall x \ \forall y (G(f(x,y),a) \rightarrow F(x,y))$
- $= \forall x \ \forall y (G(x-y,0) \rightarrow F(x,y))$ $= \forall x \ \forall y ((x-y<0) \rightarrow x=y)$
- 当x-y<0 即x<y 时即前件成立时,后件x=y 不可能成立即为 0,

故此式的值为 0。

- 3、给定解释I 如下:
- (a)个体域D=自然数N;
- (b)特定元素a=2;
- (c)函数f(x,y)=x+y, g(x,y)=x*y;
- (d)谓词F(x,y)为x=y;
- 给出下列各式在 I 下的解释,并讨论它们的真值:
- $(1) \ \forall x \forall y (F(f(x,a),y) \rightarrow F(f(y,a),x))$
- $(2) \exists x (F(f(x,x),g(x,x)))$
- (1) $\forall x \forall y (F(f(x,a),y) \rightarrow F(f(y,a),x))$
- $= \forall x \forall y (F(f(x,2),y) \rightarrow F(f(y,2),x))$
- $= \forall x \forall y (F(x+2,y) \rightarrow F(y+2,x))$
- $= \forall x \forall y ((x+2=y) \rightarrow (y+2=x))$
- 当x+2=y 时即x-y=-2 即前件为1 时,后件y+2=x 即x-y=2 是不可能的,也即后件为0,

故此式的值为 0。

- $(2) \exists x (F(f(x,x),g(x,x)))$
- $= \exists x (F(x+x,x*x))$
- $=\exists x(x+x=x*x)$
- $= \exists x (2x = x * x)$
- $=\exists x(2=x)$
- 当x为任意值,x=2时上式为真。 故原式为真。

- 4、设个体域D={a,b,c},在D上展开下列公式中的量词。
- (1) $\forall x \forall y (F(x) \lor G(y))$
- (2) $\forall x(F(x,y) \rightarrow \exists yG(y))$
- (1) $\forall x \forall y (F(x) \lor G(y))$
 - $= \forall x ((F(x) \lor G(a)) \land (F(x) \lor G(b)) \land (F(x) \lor G(c)))$
 - $= \forall x (F(x) \lor (G(a) \land G(b) \land G(c)))$
 - $= \forall x (F(x)) \lor (G(a) \land G(b) \land G(c)))$
 - $= (F(a) \land F(b) \land F(c)) \lor (G(a) \land G(b) \land G(c)))$
- (2) $\forall x(F(x,y) \rightarrow \exists yG(y))$
 - $= \forall x (F(x,y) \rightarrow (G(a) \lor G(b) \lor G(c)))$
 - $= (F(a,y) \rightarrow (G(a) \lor G(b) \lor G(c))) \land (F(b,y) \rightarrow (G(a) \lor G(b) \lor G(c)))$
- G(c)) \land $(F(c,y) \rightarrow (G(a) \lor G(b) \lor G(c)))$
- 5、在给定解释I如下:
- (a)个体域D={3,4}
- (b)f(3)=4,f(4)=3
- (c)F(3,3)=F(4,4)=0,F(3,4)=F(4,3)=1

试求下列公式在I下的真值:

- (1) $\forall x \exists y F(x,y)$
- (2) $\exists x \forall y F(x,y)$
- (1) $\forall x \exists y F(x,y)$
 - $= \forall x (F(x,3) \lor F(x,4))$
 - $=(F(3,3) \lor F(3,4)) \land (F(4,3) \lor F(4,4))$
 - $=(0 \lor 1) \land (1 \lor 0)=1$
- (2) $\exists x \forall y F(x,y)$
 - $=\exists x(F(x,3) \land F(x,4))$
 - $=(F(3,3) \land F(3,4)) \lor (F(4,3) \land F(4,4))$
 - $=(0 \land 1) \lor (1 \land 0)=0$
- 6、利用代换实例判断下列公式的类型
- $(1) (\forall x A(x) \rightarrow \forall x A(x)) \rightarrow (\neg \exists y B(y) \lor \exists y B(y))$
- $(2) \neg (\forall x F(x) \rightarrow \exists x B(x)) \land \exists x B(x)$

解:

 $\forall x A(x) \rightarrow \forall x A(x)$ 可看成 $p \rightarrow p$ 的代换实例,而 $p \rightarrow p \Leftrightarrow \neg p \lor p \Leftrightarrow 1$,所以 $\forall x A(x) \rightarrow \forall x A(x) \Leftrightarrow 1$

 $(\neg \exists y B(y) \lor \exists y B(y))$ 可看成 $\neg p \lor p$ 的代换实例,而 $\neg p \lor p \Leftrightarrow 1$,故 $(\neg \exists y B(y) \lor \exists y B(y)) \Leftrightarrow 1$

故(1) ⇔1→1⇔1,故(1)为永真式

(2)

 $\neg(\forall x F(x) \rightarrow \exists x B(x)) \land \exists x B(x)$

 $\Leftrightarrow \neg (\neg \forall x F(x) \ \lor \exists x B(x)) \land \exists x B(x)$ 是 $p \rightarrow q \Leftrightarrow \neg p \lor q$ 的代换实例

 \Leftrightarrow (¬¬ \forall xF(x) \land ¬ \exists xB(x)) \land 3xB(x) 是德摩律的代换实例 \Leftrightarrow (\forall xF(x) \land ¬ \exists xB(x)) \land 3xB(x) 是否定之否定的代换实例

 $\Leftrightarrow \forall x F(x) \land (\neg \exists x B(x) \land \exists x B(x))$ 是结合律的代换实例

- $⇔∀xF(x) \land 0$ 是¬p \land p ⇔0的代换实例
- ⇔0 是p∧0⇔0的代换实例

故为永假式

以后在所有的证明中,可将"代换实例"这几个省略不写, 如直接写德摩律,条件式的等值式,就像在命题逻辑进行等 值演算一样。

- 习题二

- 1、求证 $\forall x \forall y (P(x) \rightarrow Q(y)) \Leftrightarrow \exists x P(x) \rightarrow \forall y Q(y)$ $\forall x \forall y (P(x) \rightarrow Q(y))$
 - ⇔ $\forall x \forall y (\neg P(x) \lor Q(y))$ 条件式的等值式
 - $\Leftrightarrow \forall x (\neg P(x) \lor \forall y Q(y))$ 辖域的扩充与收缩规律
 - ⇔∀x¬P(x)∨∀yQ(y) 辖域的扩充与收缩规律
 - ⇔¬∃xP(x) ∨ ∀yQ(y) 量词的德摩律
 - $\Leftrightarrow \exists x P(x) \rightarrow \forall y Q(y)$ 条件式的等值式

- 2、把下列各式转换为前束范式
- (1) $\exists x(\neg(\exists y P(x,y) \rightarrow (\exists z Q(z) \rightarrow R(x))))$ $\Leftrightarrow \exists x(\neg(\exists y P(x,y) \rightarrow (\neg \exists z Q(z) \lor R(x))))$ 条件式的等值式
- $\Leftrightarrow \exists x (\neg(\neg \exists y P(x,y) \lor (\neg \exists z Q(z) \lor R(x))))$ 条件式的等值式
 - \Leftrightarrow $\exists x((¬¬∃yP(x,y) \land (¬¬∃zQ(z) \land ¬R(x))))$ 徳摩律
 - $\Leftrightarrow \exists x((\exists y P(x,y) \land (\exists z Q(z) \land \neg R(x))))$ 否定的否定
- \Leftrightarrow $\exists x\exists y\exists z \; ((P(x,y) \land (Q(z) \land \neg R(x)))) \;$ 量词辖域的扩张与收缩
- $\Leftrightarrow \exists x \exists y \exists z \ (P(x,y) \land Q(z) \land \neg R(x))$ 量词辖域的扩张与 收缩
- (2) $\forall x \forall y ((\exists z P(x,y,z) \land \exists u Q(x,u)) \rightarrow \exists v Q(y,v))$
- $\Leftrightarrow \forall x \forall y (\neg(\exists z P(x,y,z) \land \exists u Q(x,u)) \lor \exists v Q(y,v))$ 条件式的等值式
- $\Leftrightarrow \forall x \forall y ((\neg \exists z P(x,y,z) \ \lor \neg \exists u Q(x,u)) \ \lor \exists v Q(y,v))$ 徳摩律
- $\Leftrightarrow \forall x \forall y ((\forall z \neg P(x,y,z) \quad \forall \forall u \neg Q(x,u)) \quad \forall \exists v Q(y,v))$ 徳摩律
- $\Leftrightarrow \forall x \forall y \forall z \forall u \exists v \ (\ (\neg P(x,y,z) \ \lor \ \neg Q(x,u)) \ \lor Q(y,v))$ 徳摩律
- $\Leftrightarrow \forall x \forall y \forall z \forall u \exists v (\neg P(x,y,z) \lor \neg Q(x,u) \lor Q(y,v))$ 徳摩律
- (3) $\forall x F(x) \rightarrow \forall y P(x,y)$
- ⇔ \forall zF(z)→ \forall yP(x,y) 约束变元与自由变元同名,故约束变元 改名
- ⇔¬∀zF(z)∨∀yP(x,y) 条件式的等值式
- ⇔∃z¬F(z)∨∀yP(x,y) 德摩律
- ⇔∃z∀y(¬F(z)∨P(x,y)) 德摩律
- (4) $\forall x (P(x,y) \rightarrow \exists y Q(x,y,z))$
- ⇔∀x(P(x,y)→∃sQ(x,s,z)) 约束变元y与自由变元y同名,故约束变元改名
- $\Leftrightarrow \forall x(\neg P(x,y) \ \lor \exists s Q(x,s,z))$ 条件式的等值式
- $\Leftrightarrow \forall x \exists s (\neg P(x,y) \lor Q(x,s,z))$ 辖域的扩充与收缩
- (5) $\forall x (P(x,y) \leftrightarrow \exists y Q(x,y,z))$
- $\Leftrightarrow \forall x(P(x,y) \leftrightarrow \exists sQ(x,s,z))$ 约束变元y与自由变元y同名,故约束变元改名
- $\Leftrightarrow \forall x((P(x,y) \to \exists s Q(x,s,z)) \land (\exists s Q(x,s,z) \to P(x,y)))$ 双条件的等值式
- $\Leftrightarrow \forall x((P(x,y)\to \exists sQ(x,s,z)) \land (\exists tQ(x,t,z)\to P(x,y)))$ 后面约束变元与前面同则后面换名
- $\Leftrightarrow \forall x ((\neg P(x,y) \lor \exists s Q(x,s,z)) \land (\neg \exists t Q(x,t,z) \lor P(x,y)))$ 条件式的等值式
- $\Leftrightarrow \forall x ((\neg P(x,y) \lor \exists s Q(x,s,z)) \land (\forall t \neg Q(x,t,z) \lor P(x,y)))$ 德摩律 $\Leftrightarrow \forall x \exists s \forall t ((\neg P(x,y) \lor Q(x,s,z)) \land (\neg Q(x,t,z) \lor P(x,y)))$ 辖域的 扩充与收缩
- (6) $\forall x(F(x) \rightarrow G(x,y)) \rightarrow (\exists yH(y) \rightarrow \exists zL(y,z))$
- $\Leftrightarrow \forall x(F(x) \to G(x,y)) \to (\exists sH(s) \to \exists zL(y,z))$ 约束变元改名
- $\Leftrightarrow \neg \forall x(F(x) \to G(x,y)) \lor (\exists sH(s) \to \exists zL(y,z))$ 条件式的等值式
- $\Leftrightarrow \neg \forall x (\neg F(x) \lor G(x,y)) \lor (\neg \exists s H(s) \lor \exists z L(y,z))$ 条件式的等值式
- $\Leftrightarrow \exists x \neg (\neg F(x) \lor G(x,y)) \lor (\neg \exists s H(s) \lor \exists z L(y,z))$ 徳摩律
- $\Leftrightarrow \exists x \neg (\neg F(x) \lor G(x,y)) \lor (\forall s \neg H(s) \lor \exists z L(y,z))$ 徳摩律
- $\Leftrightarrow \exists x (\neg \neg F(x) \land \neg G(x, y)) \lor (\forall s \neg H(s) \lor \exists z L(y, z))$ 徳摩律
- $\Leftrightarrow \exists x(F(x) \land \neg G(x,y)) \lor (\forall s \neg H(s) \lor \exists z L(y,z))$ 否定的否定
- $\Leftrightarrow \exists x \forall s \exists z (F(x) \land \neg G(x,y)) \lor (\neg H(s) \lor L(y,z))$ 辖域的扩充与收缩
- $(7) \exists x F(x, y) \rightarrow (F(x) \rightarrow \neg \forall y G(x, y))$
- $\Leftrightarrow \exists sF(s,y) \rightarrow (F(x) \rightarrow \neg \forall yG(x,y))$ 约束变元改名

- $\Leftrightarrow \exists sF(s,y) \rightarrow (F(x) \rightarrow \neg \forall tG(x,t))$ 约束变元改名
- $\Leftrightarrow \neg \exists s F(s, y) \lor (\neg F(x) \lor \neg \forall t G(x, t))$ 条件式的等值式
- ⇔ $\forall s \neg F(s, \mathbf{y}) \lor (\neg F(\mathbf{x}) \lor \exists t \neg G(\mathbf{x}, t))$ 德摩律
- $\Leftrightarrow \forall s \exists t \neg F(s,y) \lor (\neg F(x) \lor \neg G(x,t))$ 辖域的扩充与收缩
- $\Leftrightarrow \forall s \exists t \neg F(s,y) \lor \neg F(x) \lor \neg G(x,t)$ 结合律

一、证明如下推理式

- 1. $\exists x F(x) \rightarrow \forall y ((F(y) \lor G(y)) \rightarrow R(y)), \exists x F(x) \Rightarrow \exists x R(x)$
 - (1) ∃xF(x) 前提条件
 - (2) $\exists x F(x) \rightarrow \forall y ((F(y) \lor G(y)) \rightarrow R(y))$ 前提条件
 - (3) ∀y((F(y) ∨G(y))→R(y)) (1)(2)假言推理
 - (4)F(c) (1)存在量词指定
 - (5) F(c) ∨G(c) (4)及析取的定义
 - (6) (F(c) ∨G(c)) →R(c) (3)全称量词指定
 - (7)R(c)(5)(6)假言推理
 - (8) 3xR(x) (7)存在推广
- 2. $\forall x(F(x) \rightarrow (G(a) \land R(x))), \exists xF(x) \Rightarrow \exists x(F(x) \land R(x))$
 - (1) ∃xF(x)前提条件
 - (2)F(c) (1)存在量词指定
 - (3) \forall x(F(x)→G(a) \land R(x)))前提条件
 - (4) F(c)→G(a) ∧ R(c))(3) 全称指定, 尤其x=c应成立
 - (5) G(a) \(\lambda R(c) (2)(4) 假言推理或分离原则
 - (6)R(c)(5)与合取的定义
 - (7) F(c) \(\lambda R(c) (2)(6) 与合取的定义
 - (8) ∃x(F(x) ∧ R(x)(7) 存在推广
- $3 \cdot \forall x (F(x) \lor G(x)), \exists \neg G(x) \Rightarrow \exists x F(x)$
 - (1) ∃¬G(x)前提条件
 - (2) ∀x¬G(x)(1)的等值
 - (3)¬G(x0)(2)全称指定,x0为任意变元
 - (4) ∀x(F(x) ∨G(x))前提条件
 - (5) (F(x0) ∨G(x0))(4)全称指定为x0
 - (6)¬G(x0)→F(x0)(5)等值变换
 - (7) F(x0)(3)(6)分离原则或假言推理
 - (8) ∃xF(x) (7)存在推广
- 4. $\forall x(F(x) \ \lor G(x)), \ \forall x(\neg R(x) \ \lor \neg G(x)), \ \forall xR(x) \Rightarrow \exists xF(x)$
 - $(1) \forall x(F(x) \lor G(x))$ 前提条件
 - (2) (F(x0) ∨G(x0)) (1)全称指定, x0为任意变元
 - $(3) \forall x(\neg R(x) \lor \neg G(x))$ 前提条件
- (4) (¬R(x0) \vee ¬G(x0)) (3)全称指定,变元x指定为(2)中确定的变元x0,即是同一个x0
 - (5) ∀xR(x)前提条件
 - (6)R(x0)(5)全称指定,与(2)中的x0为同一个
 - (7) R(x0) →¬G(x0) (4)的等值变换
 - (8)¬G(x0)(6)(7)分离原则或假言推理
 - (9)¬G(x0)→F(x0)(2)的等值变换
 - (10)F(x0) (8)(9)分离原则或假言推理
 - (11)∃xF(x)(10)存在推广
 - 其实也可推出∀xF(x),因为其中的x0是任意的
- $5 \cdot \forall x(F(x) \rightarrow \neg G(x)), \forall x(H(x) \rightarrow G(x)) \Rightarrow \forall x(H(x) \rightarrow \neg F(x))$
 - (1) ∀x(F(x) →¬G(x))前提条件
- (2) F(x0) →¬G(x0) (1)全称指定x为x0
- (3) ∀x(H(x) →G(x))前提条件
- (4) H(x0) →G(x0) (3)全称指定,尤其将x指定(2)中的x0
- (5) G(x0) →¬ F(x0) (2)等值演算

- (6) H(x0) →¬F(x0)(4)(5)的传递律
- (7)∀ $x(H(x) \rightarrow \neg F(x))$ (6)的全称扩充,因为其中的x0是任意的
- $6 \cdot \exists x F(x) \rightarrow \forall x G(x) \Rightarrow \forall x (F(x) \rightarrow G(x))$
 - (1) ∃xF(x) →∀xG(x) 前提条件
 - (2)¬∃xF(x) ∨∀xG(x)(1)等值演算
- (3) ∀x¬F(x) ∀∀xG(x) (2)等值演算
- (4) ∀x(¬F(x) ∨ G(x)) (3)推理定律
- (5) ∀x(F(x) →G(x)) (4)等值演算
- 7. $\forall x(F(x) \rightarrow G(x)) \Rightarrow \forall xF(x) \rightarrow \forall xG(x)$
 - (1) ∀xF(x)附加条件
 - (2) F(x0) (1)全称指定, x0为任意值
 - (3) ∀x(F(x) →G(x))前提条件
 - (4) (F(x0)→G(x0)) (3)全称指定,尤其指定为(2)中的x0
 - (5) G(x0) (2)(4)假言推理或分离原则
 - (6) ∀xG(x)(5)全称推广, x0为任意变元
- 8. $\forall x (F(x) \ \lor G(x)) \Rightarrow \neg \forall x F(x) \rightarrow \exists x G(x)$
 - (1)¬∀xF(x)附加前提条件
 - (2) ∃x¬F(x)(1)等值演算
 - (3) ¬F(c) (2)存在指定, 当x=c时成立
 - (4) ∀x(F(x) ∨G(x))前提条件
 - (5) F(c) ∨G(c)(4)全称指定,当x=c时肯定成立。
 - (6) ¬F(c) → G(c) (5)等值演算
 - (7) G(c) (3)(6)假言推理即分离原则
 - (8) 3xG(x) (7)存在推广

二、应用题

在自然推理系统中,构造下面的推理,要求先将如下语句用谓词公式表示出来,再证明结论的正确性。

1、没有白色的乌鸦,北京鸭是白色的,因此北京鸭不是乌鸦。

解: W(x)表示 x 是白色,A(x)表示 x 是乌鸦,B(x)表示 x 是 北京鸭

前提: $\exists \neg (W(x) \land A(x)), \forall x(B(x) \rightarrow W(x))$

结论: $\forall x(B(x) \rightarrow \neg A(x))$

证明:

- (1) ∃¬(W(x) ∧A(x)) 前提条件
- (2) ∀x¬(W(x) ∧A(x))(1)等值演算
- (3)¬(W(x0) △A(x0))(2)全称指定
- (4)¬W(x0) ∨¬A(x0)(3)等值演算
- (5) W(x0) →¬ A(x0) (4)等值演算
- $(6) \forall x(B(x) \rightarrow W(x))$ 前提条件
- (7) B(x0) →W(x0) (6)全称指定,与(2)指定的x0是同一个
- (8) B(x0) →¬A(x0) (7)(5)传递律
- (9) \forall x(B(x) →¬A(x)) (8)全称推广,由于x0是任意的。
- 2、偶数都能被2整除,8是偶数,所以8能被2整除。
- 解: A(x)表示x整数是偶数

B(x)表示整数x能被2整除

 $\forall x(A(x) \rightarrow B(x)), A(8) \Rightarrow B(8)$

- (1) ∀x(A(x)→B(x))为真前提条件
- (2) A(8)→B(8)为真 (1)全称指定,尤其x=8
- (3)A(8)为真前提条件
- (4)B(8)为真 (2)(3)假言推理
- 3、凡IT行业的从业人员都是辛苦的,王军从事IT行业,所以他是辛苦的。
- 解: A(x)表示x人是IT行业的从业人员

B(x)表示x人是辛苦的

 $\forall x (A(x) \rightarrow B(x)), A(\Xi \Xi) \Rightarrow B(\Xi \Xi)$

- (1) ∀x(A(x)→B(x))为真前提条件
- (2) A(王军)→B(王军)为真 (1)全称指定,尤其x=王军

- (3)A(王军)为真前提条件
- (4)B(王军)为真 (2)(3)假言推理
- 4、每个喜欢步行的人都喜欢骑自行车,每个人可能喜欢骑自行车或喜欢步行,有的人不喜欢骑自行车,所以,有的人不喜欢步行(论域为人类)。
- 解: W(x)表示x人喜欢步行

R(x)表示x人喜欢骑自行车

 $\forall x(W(x) \rightarrow R(x)), \ \forall x(W(x) \lor R(x)), \ \exists x? \ R(x) \Rightarrow \exists x \neg W(x)$

- (1) ∃x¬R(x)为真前提条件
- (2)¬R(c)为真存在指定,如x=c
- (3) ∀x(W(x)→R(x))为真前提条件
- (4) W(c)→R(c)为真全称指定,特别x=c
- (5)¬R(c)→¬W(c)为真与(4)等值
- (6)¬W(c)为真 (2)(5)假言推理
- (7) $\exists x \neg W(x)$ 为真存在推广,只要有一个 c 使公式为真,则可加上存在量词 $\exists x$
- 5、每个科学工作者都是刻苦钻研的,每个刻苦钻研而又聪明的人在他的事业中都将获得成功,任正翔是科学工作者,并且是聪明的,所以任正翔在他的事业中将获得成功(论域为人类)。
- 解: A(x)表示x人是科学工作者
 - B(x)表示x人是刻苦钻研的
 - C(x)表示x人是聪明的
 - D(x)表示x人获得成功

 $\forall x(A(x) \rightarrow B(x)), \ \forall x(A(x) \land B(x) \ \land C(x) \rightarrow D(x)), \ A(任 正翔), \ C(任正翔) \Rightarrow D(任正翔)$

- (1) ∀x(A(x) →B(x))为真前提条件
- (2) A(任正翔) →B(任正翔)为真 (1)全称指定,尤其x=任正翔
- (3) \forall x(A(x) \land B(x) \land C(x) \rightarrow D(x)) 为真前提条件
- (4)A(任正翔) \land B(任正翔) \land C(任正翔) \rightarrow D(任正翔)为真 (3) 全称指定,尤其x=任正翔
- (5) A(任正翔) 为真前提条件
- (6) C(任正翔) 为真前提条件
- (7)B(任正翔)为真 (2)(5)假言推理
- (8) A(任正翔) $\triangle B$ (任正翔) $\triangle C$ (任正翔) 为真 (5)(6)(7)与合 取的性质
- (9) D(任正翔)为真 (4)(8)假言推理

● - | 习题一

一、求下列集合的幂集

1、{杨,李,石}

2、{{1,2},{2,1,1},{2,1,1,2}}

原集合={{1,2},{2,1},{2,1}}={{1,2}}, 只有一个元素, 其幂集只有 2 个元素 $P={{},{1,2}}$

- 二、利用包含排斥原理、求解以下各题。
- 1、对 60 人调查, 25 读《每周新闻》, 26 读《时代》, 26 人读《财富》, 9 人读《每周新闻》和《财富》, 11 读《每周新闻》和《时代》, 8 人读《时代》与《财富》, 还有 8 人什么都不读, 请计算:
 - (1)阅读全部三种杂志的人数。
 - (2)分别求只阅读每周新闻、时代、财富杂志的人数。解:

令 $A=\{$ 每周新闻的读者 $\}$, $B=\{$ 时代的读者 $\}$, $C=\{$ 财富的读 者}。

由于 8 人什么都不读,故只有 52 人读杂志,即IA∪B \cup CI=52

|A|=25, |B|=26, |C|=26 $|A \cap C|=9$, $|A \cap B|=11$, $|B \cap C|=8$ \boxplus 包含排斥原理可知

 $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap C| - |A \cap B| - |B \cap C| + |A \cap B \cap C|$,故 $52=25+26+26-9-11-8+|A\cap B\cap C|$

故| A∩B∩C|=3 即同时读三种杂志的人为 3 人

 $|A-B-C|=|A|-|A\cap B|-|A\cap C|+|$ A \cap B \cap C|=25-9-11+3=8 人只 读每周新闻的人

|B-A-C|=|B|-|B∩A|-|B∩C|+| A∩B∩C|=26-11-8+3=10 人只 时 代 的 人 $|C-A-B|=|C|-|C\cap A|-|C\cap B|+|$ A ∩ B ∩ C |= 26-9-8+3=12 人只读财富的人

2、某班 25 个学生, 14 人会打篮球, 12 人会打排球, 6 人 会篮球和排球, 5 人会打篮球和网球, 还有 2 人会打这三 种球, 己知 6 人会网球的都会篮球或排球, 求不会打球的 人。

解: 先求出会打球的人, 25-会打球的人=不会打球的人。

I网∩篮I+I网∩排I-I网∩篮∩排I=6

5+Ⅰ网∩排Ⅰ-2=6,故 I网∩排⊫3

由包含排斥原理可知

|篮∪排∪网⊫|籃|+|排|+|网|-|篮∩排|-|篮∩网|-|排∩网|+|篮∩ 排∩网Ⅰ

=14+12+6-6-5-3+2=20 故不会打球的有5人

- 3、在 1 到 300 的整数中(1 和 300 包含在内),分别求 满足以下条件的整数个数
 - (1)同时能被 3, 5, 7 整除;
 - (2)不能被 3 和 5 整除,也不能被 7 整除的数;
 - (3)可以被 3 整除,但是不能被 5 和 7 整除;
- (4)可以被 3 或 5 整除,但不能被 7 整除; (5)只被 3,5,7 中一个整除的数; A_3 示能被 3 整除的数, A_5 能被 5 整除, A₂能被 7 整除的数

|A3| = 300/3 = 100

|A5| = 300/5 = 60

|A7| = 300/7 = 42

 $|A_2| = 300/15 = 20$ $|A_3 \cap A_7| = 300/21 = 100/7 = 14$

 $|A_{\varepsilon} \cap A_{\tau}| = 300/35 = 60/7 = 8$

 $|A_3 \cap A_5 \cap A_7| = 2 |A3 \cup A5 \cup A7| =$

 $|A3|+|A5|+|A7|-|A_3\cap A_5|-|A_3\cap A_7|-|A_5\cap A_7|+|A_3\cap A_5\cap A_7|=100$ +60+42-20-14-8+2

=162

(1)同时能被 3, 5, 7 整除

解:能被[3,5,7]即其最小公倍数 105 整除的数, 300/105=2.x, 只有 2 个数, 分别 105,

210

 $|A_3 \cap A_5 \cap A_7| = 2$

(2)不能被 3 和 5 整除, 也不能被 7 整除的数解: 所有 的数-能被 3 或能被 5 或能被 7 整除的数

 $=300-|A3 \cup A5 \cup A7|=300-162=138$

(3)可以被 3 整除,但是不能被 5 和 7 整除 解

 $|A3-A5-A7| = |A_2| - |A_2| - |A_3| - |A_3| - |A_3| + |A_3| - |A_3| - |A_3| = 100 - 20 - 14 + 2 = 100 - 100$

(4)可以被 3 或 5 整除,但不能被 7 整除 $|A3 \cup A5-A7|$

 $=|A3 \cup A5| - |(A3 \cup A5) \cap A7|$

 $=|A3 \cup A5|-|(A3 \cap A7) \cup (A5 \cap A7)|$

 $|A3 \cup A5| = |A3| + |A5| - |A3 \cap A5| = 100 + 60 - 20 = 140$ $|(A3 \cap A7) \cup (A5 \cap A7)| = |(A3 \cap A7)| + |(A5 \cap A7)| - |(A3 \cap A7)|$ \cap (A5 \cap A7)

 $= |(A3 \cap A7)| + |(A5 \cap A7)| - |A3 \cap A7 \cap A5|$

=14+8-2=20

 $|A3 \cup A5 - A7| = 140 - 20 = 120$

(5)只被 3,5,7 中一个整除的数解:

只 被 整 数 3 除 的 =|A3|-|A3∩A5|-|A3∩A7|+|A3∩A5∩A7|=100-20-14+2=68 只被 除 的 =|A5|-|A3∩A5|-|A5∩A7|+|A3∩A5∩A7|=60-20-8+2=34 只被 7 除 的 $=|A7|-|A3\cap A7|-|A5\cap A7|+|A3\cap A5\cap A7|=42-14-8+2=22$

4、求 1~120 之间的素数。

提示:采用筛选法求不超过 120 之间的素数。由 120<121, 故 120 平方根<11, 只要去掉 2,3,4,5,6,7,8,9,10 的 倍数,则剩下来的数不可能有因数存在,即为素数。而 6、 8、10 为 2 倍数, 9 为 3 的倍数, 10 为 5 的倍数, 因此 只要去掉{2,3,5,7}的倍数,则剩下来的数不可能有因数存在, 即为素数。

素数=120-1-{2,3,5,7}的倍数+4,其中"减 1"表示 1 不是 素数,"+4"表示加上 2,3,5,7

这 4 个数,这 4 个数在{2,3,5,7}的倍数中已被减去过一 次。

令 A2 为 2 倍数,A3 为 3 的倍数, A5 为 5 的倍数, A7 为 7 的倍数,故 $\{2,3,5,7\}$ 的倍数 $=|A2 \cup A3 \cup A5 \cup A7|$ 。

|A2|=120/2=60 能被 2 整除的

|A3|=120/3=40 能被 3 整除

|A5|=120/5=24 能被 5 整除

|A7|=120/7=17 能被 7 整除

 $|A2 \cap A3| = 120/6 = 20$ C(4,2)=6

 $|A2 \cap A5| = 120/10 = 12$

 $|A2 \cap A7| = 120/14 = 60/7 = 8$

 $|A3 \cap A5| = 120/15 = 40/5 = 8$

 $|A3 \cap A7| = 120/21 = 40/7 = 5$

 $|A5 \cap A7| = 120/35 = 24/7 = 3$ $|A2 \cap A3 \cap A5| = 120/(2*3*5) = 60/(3*5) = 20/5 = 4$ C(4,3) = C(4,1) = 4 $|A2 \cap A3 \cap A7| = 120/(2*3*7) = 60/(3*7) = 20/7 = 2$ $|A3 \cap A5 \cap A7| = 120/(3*5*7) = 40/(5*7) = 8/7 = 1$ $|A2 \cap A5 \cap A7| = 120/(2*5*7) = 60/(5*7) = 12/7 = 1$ $|A2 \cap A3 \cap A5 \cap A7| = 120/(2*3*5*7) = 60/(3*5*7) = 20/(5*7) = 4/7 = 0$

1,2,3,4,5,6,7,8,9,10 4 4 11,12,13,14,15,16,17,18,19,20 2 21,22,23,24,25,26,27,28,29,30 31,32,33,34,35,36,37,38,39,40 3 41,42,43,44,45,46,47,48,49,50 51,52,53,54,55,56,57,58,59,60 61,62,63,64,65,66,68,67,69,70 3 71,72,73,74,75,76,77,78,79,80 81,82,83,84,85,86,87,88,89,90 2 91,92,93,94,95,96,97,98,99,100 1 101,102,103,104,105,106,107,108,109,110 4 111,112,113,114,115,116,117,118,119,120 1 共 30 个

5、在 1 和 10000 之间(包括 1 和 10000 在内)不能被 4、5、6 整除的数有多少个?

解 A 表示被 4 整除的数, B 表示被 5 整除的数, C 表示被 6 整除的数

|A|=10000/4=2500

|B|=10000/5=2000

|C|=10000/6=1666

 $|A \cap B| = 10000/[4,5] = 10000/20 = 1000/2 = 500$

 $|A \cap C| = 10000/[4,6] = 10000/12 = 2500/3 = 833$

 $|B\cap C|=10000/[6,5]=10000/30=1000/3=333$

 $|A \cap B \cap C| = 10000/[6,5,4] = 10000/60 = 1000/6 = 166$

 $|A \cup B \cup C|$

 $=|A|+|B|+|C|-|A\cap B|-|A\cap C|-|B\cap C|+|A\cap B\cap C|$

=2500+2000+1666-(500+833+333)+166

=6166-1666+166

=4666

10000- $|A \cup B \cup C|=10000$ -4666=5334

6、在 1 和 10000 之间(包括 1 和 10000)既不是某个整数的平方,也是不是某个整数的立方的数有多少?

解: 设 A={x|1<=x<=10000,x=a²},则 a²<=10000,则 a<=100, 这样的 a 有 1~100 个,|A|=100。

设 B={y|1<=y<=10000,y=b³}, 则 b³<=10000, 则 b<=21, 这 样 b 有 21 个,|B|=21

 $|A \cap B| = \{x | 1 \le x \le 10000, x = a^2, x = b^3\},$

既是某个数的平方,又是某个数的立方,这样的数必须是1~21之间的某些数,要求 a²=b³,即要求 a=b*sqrt(b),

sqrt(b)必须整数,即 b 必须可开平方,而 b 在[1,21]之间能 开 平 方 的 数 , b 只 能 是 1,4,9,16 , 对 应 的 a= b*sqrt(b)=1,8,27,64,这时 a²=1,64,729,4096,b³=1,64,729,4096 |A \cap B|=4

|A ∪ B|=|A|+|B|-|A∩B|=100+21-4=117 満足题意的数 =10000-117=9883

7、在 1 和 1000000 之间(包括 1 和 10000)在多少个整数包含了 1, 2, 3 和 4。

1~10000 同时包含 1, 2, 3, 4, 则至少有 4 位, 最小 1234, 最大 4321, 共有 4!=16

若是 1~1000000 , 则为 6 位整数, 相当于 6 个格子让 4 个数去选, 则为

P(6,4)=6!/3!=6*5*4*3=30*12=360,

剩下的 2 个格子可填数字 0~9 任何一个,并且可以重复,共有 10~10=100 可能性根据乘法原则应有 =360~100=36000 个。

分析:这中间可能存在一些重复的情况数字,如102344,红色的数字是 1,2,3,4 选定的位置,而黑色数字是 0~9 十个数字去选的位置它也可以看成是 102344,其中红色是的是 1,2,3,4 的另一种选定,这是二种不同的红色即 1,2,3,4 的不同排列方式,但却是同一个数字,显然重复了。 另解:

A1=表示不含数字 1 的整数, 让 0, 2, 3, 4, 5, 6, 7, 8, 9 去构成 6 位整数, 这 6 个格子中数字可以重复出现,每个格子有 9 种可能性, 故有 96= 531441 显然|A1|= 531441 A2=表示不含数字 2 的整数,显然|A2|= 531441

A3=表示不含数字 3 的整数,显然|A3|= 531441 A3=表示不含数字 4 的整数,显然|A4|= 531441

同时含有 1, 2, 3, 4 应是~A1∩~A2∩~A3∩~A4=~(A1∪A2 ∪A3∪A4)=S-(A1∪A2∪A3∪A4),

所以关键要求出I(A1∪A2∪A3∪A4)I, 计算过程如下:

 $|A1\cap A2|=|\{$ 不 含 有 数 字 1 与 数 字 $2\}|=|\{$ 含 有 数 字 $0,3,4,5,6,7,8,9\}|=86=262144 |A1\cap A3|=|\{$ 不含有数字 1 与数字 $3\}|=|\{$ 含有数字 $0,2,4,5,6,7,8,9\}|=86=262144$

 $|A1\cap A4|=|\{$ 不 含 有 数 字 1 与 数 字 $4\}|=|\{$ 含 有 数 字 $0,2,3,5,6,7,8,9\}|=86=262144$ $|A2\cap A3|=|\{$ 不含有数字 2 与数字 $3\}|=86=262144$

|A2∩A4|=|{不含有数字 2 与数字 3}|=86=262144

|A3∩A4|=|{不含有数字 2 与数字 3}|=86=262144

|A1∩A2∩A3|=|{不含有数字 1, 2 与 3}|=76=117649

|A1∩A2∩A4|=|{不含有数字 1, 2 与 4}|=76=117649

|A1∩A3∩A4|=|{不含有数字 1, 3 与 4}|=76=117649

|A2∩A3∩A4|=|{不含有数字 1, 2 与 3}|=76=117649

 $|A1 \cap A2 \cap A3 \cap A4|$ = $|\{$ 不含有数字 1,2、3 与 4 $\}$ =66=46656 $|(A1 \cup A2 \cup A3 \cup A4)|$ = 4*531441-6*262144+4*117649-46656 =2125764-1572864+470596-46656=976840

含有 1, 2, 3, 4 应是~A1∩~A2∩~A3∩~A4=~(A1∪A2∪A3 ∪A4)=S-(A1∪A2∪A3∪A4),

 $|S-(A1 \cup A2 \cup A3 \cup A4)| = 10000000 - 976840 = 23160$

- 习题二

1 、已知 $A=\{\emptyset,\{\emptyset\}\}$,求 $A\times P(A)$,如果不好理解,可以换成

 $A=\{a,b\},P(A)=\{\emptyset,\{a\},\{b\},\{a,b\}\}.$

解: $P(A)=\{A00,A01,A10,A11\}=\{\emptyset,\{\{\emptyset\}\},\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}\}$ $A\times P(A)=\{\emptyset,\{\emptyset\}\}\times\{\emptyset,\{\{\emptyset\}\},\{\emptyset\},\{\emptyset,\{\emptyset\}\}\}\}$ $=\{\langle\emptyset,\emptyset\rangle,\langle\emptyset,\{\{\emptyset\}\}\rangle,\langle\emptyset,\{\emptyset\}\}\rangle,$

<{Ø},Ø>,<{Ø},{{Ø}}>,<{Ø},{Ø}}>,

如果不好理解,可以换成 $A=\{a,b\},P(A)=\{\emptyset,\{a\},\{b\},\{a,b\}\}\}$ $A\times P(A)=\{a,b\}\times \{\emptyset,\{a\},\{b\},\{a,b\}\}$

再将 a 换成 \emptyset , b 换成 $\{\emptyset\}$ 则以结果为

2、设 A={1,2,4,6},列出下列关系所包含的序偶,并判断关系所属的类型(自反、反自反、对称、反对称、传递)。

 $(1)R = \{ \langle x, y \rangle | x, y \in A \land x + y \neq 2 \}$

(2) $R = \{ \langle x,y \rangle | x,y \in A \land x/y \in A \}$ (1) $R = \{ \langle x,y \rangle | x,y \in A \land x+y\neq 2 \}$

R={<1,2>,<1,4>,<1,6>,<2,1>,<2,2>,<2,4>,<2,6>,<4,1>,<4,2>,<4,4>,<4,6>,<6,1>,<6,2>,<6,4>,<6,6>}

 $(2)R = \{\langle x,y \rangle | x,y \in A \land x/y \in A\}$

解 R={<1,1>,<2,1>,<2,2>,<4,1>,<4,2>,<4,4>,<6,1>,<6,6>}

3 、设 $A=\{0,1,2,3\}$ R 是 A 上 的 关 系 , 且 $R=\{<0,0>,<0,3>,<2,0>,<2,1>,<2,3>,<3,2>\}$,给出 R 的关系矩 阵和关系图,并判断关系所属的类型(自反、反自反、对称、反对称、传递)。

解:

A 上的关系可以只用一排结点来表示

4、给定 A={1,2,3,4}, A 上的关系

R={<1,3>,<1,4>,<2,3>,<2,4>,<3,4>}, 试画出 R 的关系图、 关系矩阵,并判断关系所属的类型(自反、反自反、对称、 反对称、传递)。解:_____

不是自反的,是反自反的(因为没有任何结点有自旋)不是对称的,是反对称的(因为都只有单有向边)

1 可到 3,3 可到 4,1 可传递到 4,确实 1-4 直达边 2 可到 3,3 可到 3,2 可传递到 4,确实 2-4 直达边。因此是可的传递或者

R°R={<1,3>,<1,4>,<2,3>,<2,4>,<3,4>}°{<1,3>,<1,4>,<2,3>,<2,4>,<3,4>}

={<1,4>,<2,4>} R, 所以它是可传递的。

5、A={a,b,c,d} , R1,R2 为 A 上的关系, 其中

R1={<a,a>,<a,b>,<b,d>} , R2={<a,d>,<b,c>,<b,d>,<c,b>}, 求 R_1 ° R_2 , R_2 ° R_1 , R_1 2, R_2 3,要求直接利用序偶即定义进行复后,基于关系进行复合。

解 :

 $\begin{array}{l} R_{_1}{}^{\circ}R_{_2} = \{<a,a>,<a,b>,<b,d>\}{}^{\circ}\{<a,d>,<b,c>,<b,d>,<c,b>\} = \{<a,d>,<a,c>\} \end{array}$

 $R_{2}^{\circ}R_{1}^{=}\{\langle a,d\rangle,\langle b,c\rangle,\langle b,d\rangle,\langle c,b\rangle\}^{\circ}\{\langle a,a\rangle,\langle a,b\rangle,\langle b,d\rangle\}=\{\langle c,d\rangle,\langle b,c\rangle,\langle b,d\rangle\}$

 $R_1^{\circ}R_1^{=}\{\langle a,a\rangle,\langle a,b\rangle,\langle b,d\rangle\}^{\circ}\{\langle a,a\rangle,\langle a,b\rangle,\langle b,d\rangle\}=\{\langle a,a\rangle,\langle a,b\rangle,\langle a,d\rangle\}$

 $R_2^{\circ}R_{=}\{\langle a,d\rangle,\langle b,c\rangle,\langle c,b\rangle\}^{\circ}\{\langle a,d\rangle,\langle b,c\rangle,\langle b,d\rangle,\langle c,b\rangle\}$ = $\{\langle b,b\rangle,\langle c,c\rangle,\langle c,d\rangle\}$

 R^2_2 ° R_2 ={<b,b>,<c,c>,<c,d>}°{<a,d>,<b,c>,<b,d>,<c,b>}={<b,c>,<b,d>,<c,b>} 也可用矩阵运算

$$\begin{pmatrix}
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} \times \begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} \times \begin{pmatrix}
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} = \begin{pmatrix}
1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix} = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

6、R 的关系图如图 3.47,写出 R 的关系矩阵与所包含的序偶、利用关系图求出 r(R),s(R),利用关系图、关系矩阵及 WarShall 算法求 t(R)。

 $R = \{ \langle a,b \rangle, \langle b,c \rangle, \langle c,d \rangle, \langle d,c \rangle, \langle b,e \rangle, \langle e,e \rangle \}$

 $R^{\circ}R=\{\langle a,b\rangle,\langle b,c\rangle,\langle c,d\rangle,\langle d,c\rangle,\langle e,e\rangle\}^{\circ}\{\langle a,b\rangle,\langle b,c\rangle,\langle c,d\rangle,\langle d,c\rangle,\langle b,e\rangle,\langle e,e\rangle\}$

={<a,c>,<a,e>,<b,d>,<c,c>,<d,d>}

 $R^{2^{\circ}}R = \{\langle a,c \rangle, \langle a,e \rangle, \langle b,d \rangle, \langle c,c \rangle, \langle d,d \rangle\}^{\circ} \{\langle a,b \rangle, \langle b,c \rangle, \langle c,d \rangle, \langle d,c \rangle, \langle c,c \rangle, \langle c,c \rangle, \langle c,d \rangle\}^{\circ} \{\langle a,b \rangle, \langle b,c \rangle, \langle c,d \rangle, \langle d,c \rangle\}^{\circ} \{\langle a,b \rangle, \langle c,c \rangle, \langle c,d \rangle, \langle d,c \rangle\}^{\circ} \{\langle a,b \rangle, \langle c,c \rangle, \langle c,d \rangle, \langle c,c \rangle\}^{\circ} \{\langle a,b \rangle, \langle c,c \rangle, \langle c,d \rangle, \langle c,c \rangle, \langle c,d \rangle\}^{\circ} \{\langle a,b \rangle, \langle c,c \rangle, \langle c,d \rangle, \langle c,c \rangle, \langle c,c \rangle, \langle c,c \rangle\}^{\circ} \{\langle a,b \rangle, \langle c,c \rangle, \langle c,c$

 $=\{<a,d>\}$

R³°R={<a,d>}°{<a,b>,<b,c>,<c,d>,<d,c>,<b,e>,<e,e>} 没有新增的序偶

7、设 A={1,2,3,4,5,6}, R 为 A 上的关系, R 的关系图如 图 3.48。

(1)利用关系矩阵求 R2,R3 表达式。

(2)利用关系矩阵求 t(R),s(R),r(R)的集合表达式。

R={<1,5>,<2,5>,<4,5>,<3,1>,<3,3>} R²={<1,5>,<2,5>,<4,5>,<3,1>,<3,3>}°{<1,5>,<2,5>,<4,5>,<3, 1>,<3,3>}={<3,5>,<3,3>,<3,1>}

 R^{2} ° $R=\{<3,5>,<3,3>,<3,1>\}$ ° $\{<1,5>,<2,5>,<4,5>,<3,1>,<3,3>\}$

={<	\mathcal{I}, \mathcal{I}	╱,╲	\mathcal{L},\mathcal{L}	╱,╲	\mathcal{O}, \mathcal{O}	/													
Ó	Ó	Ó	Ó	ĺ	Ó	(0	0	0	0	1	0)	(0	0	0	0	0	0	
0	0	0	0	1	0	0	0	0	0	1	0		0	0	0	0	0	0	
1	0	1	0	0	0	1	0	1	0	0	0		1	0	1	0	1	0	
0	0	0	0	1	0	0	0	0	0	1	0	-	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	
0	0	0	0	0	0)	0	0	0	0	0	0		0	0	0	0	0	0	
\int_{0}^{∞}	0	0	0	0	0	(0)	0	0	0	1	0)) (0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	1	0		0	0	0	0	0	0	
1	0	1	0	1	0	0 1	0	1	0	0	0		1	0	1	0	1	0	
0	0	0	0	0	0	0	0	0	0	1	0	-	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	
0	0	Λ	Λ	0	0	0	Λ	Λ	0	0	0		0	0	Λ	Λ	0	0	

 $r(R) = \{<1,5>,<2,5>,<4,5>,<3,1>,<3,3>\} \cup I \\ = \{<1,5>,<2,5>,<4,5>,<3,1>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>,<6 \\ ,6>\}$

 $s(R) = \{\langle 1,5 \rangle, \langle 2,5 \rangle, \langle 4,5 \rangle, \langle 3,1 \rangle, \langle 3,3 \rangle\} \cup \{\langle 5,1 \rangle, \langle 5,2 \rangle, \langle 5,4 \rangle, \langle 1,3 \rangle, \langle 3,3 \rangle\} = \{\langle 1,5 \rangle, \langle 2,5 \rangle, \langle 4,5 \rangle, \langle 3,1 \rangle, \langle 3,3 \rangle, \langle 5,1 \rangle, \langle 5,2 \rangle, \langle 5,4 \rangle, \langle 1,3 \rangle\}$

 $t(R)=R \cup R^2 \cup R^3=\{<1,5>,<2,5>,<4,5>,<3,1>,<3,3>\} \cup \{<3,5>,<3,3>,<3,1>\}$

={<1,5>,<2,5>,<4,5>,<3,1>,<3,3>,<3,5>}

8、设 A={a,b,c,d}, A 上的等价关系

 $R=\{\langle a,b\rangle,\langle b,a\rangle,\langle c,d\rangle,\langle d,c\rangle\}\cup I_A$,画出 R 的关系图,并求出 A 中各元素的等价类。

解:

 $[a]_{R} = \{a,b\}, [c]_{R} = \{c,d\}$

9、设 A={1,2,3,4}, 在 A ×A 上定义二元关系 R: <<u,v>,<x,y>>∈R⇔u+y=v+x

证明 R 是 $A \times A$ 上的等价关系,确定由 R 引起的对 $A \times A$ 的划分。证明:

- (1.1) R 是自反关系: 任取元素<u,v>∈A ×A, 由于 u+v=v+u 则<<u,v>,<u,v>>∈R
- (1.2) R 是对称关系: <<u,v>,<x,y>>∈

 $R \Rightarrow u+y=v+x \Rightarrow x+v=y+u \Rightarrow << x,y>, < u,v>> \in R$

(1.3) R 是可传递关系:

 $<< u,v>,< x,y>> \in R,$ $<< x,y>,< r,s>> \in R$ u+y=v+x

- $(1) \qquad x+s=y+r$
- (2) 在(1)式两边各加 s 得到(3)式,在(2)式两边各加 v 得到 (4)式。 u+s+v=v+x+s
- $(3) \qquad x+s+v=y+r+v$
- (4) 则 u+s+y= y+r+v, 故 u+s=r+v, 故<<u,v>,<r,s>>∈R

A×A={1,2,3,4}×{1,2,3,4}={<1,1>,<1,2>,<1,3>,<1,4>,<2,1>,<2,2>,<2,3>,<2,4>,<3,1>,<3,2>,<3,

3>,<3,4>,<4,1>,<4,2>,<4,3>,<4,4>}=16 个元素,其可能的组合有 256 个。

<<u,v>,<x,y>> ∈ R⇔u+y=v+x⇔u-v=x-y⇔第一个序偶的差 = 第二个序偶差,因此

R= 第一个序偶的差 =第二个序偶差 =0 U 第一个序偶的差 = 第二个序偶差=1 U 第一个序偶的差=第二个序偶差=2 U 第一 个序偶的差=第二个序偶差 =3 U 第一个序偶的差 =第二个序 偶差=-1 U 第一个序偶的差=第二个序偶差=-2 U

第一个序偶的差=第二个序偶差=-3

第一个序偶的差=第二个序偶差=0: $\{<1,1>,<2,2>,<3,3>,<4,4>\}$ 第一个序偶的差 =第二个序偶差 =-1: $\{<1,2>,<2,3>,<3,4>\}$ 第一个序偶的差=第二个序偶差=-2: $\{<1,3>,<2,4>\}$ 第一个序偶的差=第二个序偶的差=第二个序偶的差=第二个序偶差=-3: $\{<1,4>\}$ 第一个序偶的差=第二个序偶差=1: $\{<2,1>,<3,2>,<4,3>\}$ 第一个序偶的差 =第二个序偶差=2: $\{<3,1>,<4,2>\}$

第一个序偶的差=第二个序偶差=3:{<4,1>}

- 10、对于下列集合与整除关系,画出哈斯图。
 - (1) {1,2,3,4,6,8,12,24}
 - $(2)\{1,2,3,4,5,6,7,8,9,10,11,12\}$

解:

1 可以整除所有的数,1 与所有的整数都有关系,1 在所有的元素的左边,1 是最小元。

11、针对图 3.49、图 3.50 二个哈斯图,分别写出其偏序关系。

哈斯图去掉了自旋,去掉可传递的直达边、方向为向上,因 此重构关系时,需要加上自旋对应的相等序偶,加上传递所 得到的序偶,第一个元素在左边。

(a) 集合={1,2,3,4,5}

关系

R={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>,<1,3>,<3,5>,<2,4>,<4,5>,<1,5>,<2,5>}

(b) 集合={a,b,c,d,e,f} 关系

R={<a,a>,<b,b>,<c,c>,<d,d>,<e,e>,<f,f>,<a,b>,<c,d>,<e,f>}(c) 集合={1,2,3,4,5}

关系

R={<1,1>,<2,2>,<3,3>,<4,4>,<5,5>,<1,2>,<1,3>,<2,4>,<3,4>,<4,5>,<1,4>,<1,5>,<2,5>,<3,5>}

_ - 习题-

- 1、判断下列集合关于指定的运算是否构成半群,独异点和群。
 - (1)a 是实数, G={anln 是整数}, 运算是普通的乘法。
 - (2)Q*为正有理数,运算是普通的乘法。
 - (3)Q*为正有理数,运算是普通的加法。
 - (4)一元实系数多项式的集合关于多项式的加法。
 - (5)一元实系数多项式的集合关于多项的乘法
- (1) a 是实数, G={anln 是整数}, 运算是普通的乘法。解:

封闭性: G 中任取二个元素 x 与 y,则 x=an,y=am,则 $x \times y = am \times an = am + n$,仍是 a 的(m+n)幂次方,即仍是 G 中的元素。 可结合性: G 中任取三个元素 x、y 与 z,则 x = am, y = an, z = an,则三个元素相乘的结果 $x \times y \times z = am + n + p$,显然满足可结合性。 单位元 e = 1 = a0.

逆元 x=a^m,则 x-¹=a-^m. 所以是群。

(2)Q*为正有理数,运算是普通的乘法。解:

封闭性:两个正有理数的乘积仍是正有理数。

可结合性: 三个正有理数显然满足

单位元 e=1, 1 是正有理数

逆元 a=m/n,m 与 n 都是正有理数,则其逆元为 a-1=n/m. 故为群。

(3) **Q***为正有理数,运算是普通的加法。封闭性:两个正有理数相加仍是正有理数可结合性:显然满足单位元:不存在,0 不是正有理数,故为半群。

逆元: 逆元为负有理数。

(4)一元实系数多项式的集合关于多项式的加法封闭性:多项式相加是系数相加,实系数相加仍是实系数,故仍为实系数 多项式。

可结合性: 三个多项式相加,实际上是系数相加,实数相加仍是满足可结合性。

单位元: 0, 即各项系数均为 0 的多项式,实际上就是数字 0.

逆元: 各项系数的相反数, 即为逆元。

(5)一元实系数多项式的集合关于多项的乘法封闭性:是实系数相乘,指数相加,结果仍是实系数,故仍为实系数多项式。可结合性: 3 个多项式相乘,是系数相乘后再相加,指数相加,满足可结合性。

单位元:实数 1 为单位元,即多项式退化为常数 1。逆元:两个多项式相乘为结果 1,(x+1)xy=1,则 y=1/(1+x)显然 1/(1+x)不是多项式,因此不存在逆元。

2、在实数 R 中定义二元运算*: a*b=a+b+ab, 证明<R,*>构成独异点。

证: 封闭性: a 与 b 是实数,则 a+b 是实数, ab 也是实数, (a+b)+ab 也是实数,故满足封闭性。

可结合律: 任取三个实数 a,b,c,则 (a*b)*c=(a+b+ab)*c =(a+b+ab)+c+(a+b+ab)c

= a+b+c+ab+ac+bc+abc a*(b*c)=a*(b+c+bc) =a+(b+c+bc)+a(b+c+bc) =a+b+c+bc+ab+ac+abc

故(a*b)*c= a*(b*c), 所以满足可结合律。

单位元: a*e=a,则 a+e+ae=a,故 e+ae=0,故 e(1+a)=0,考 虑到 a 的任意性,要使该式

为 0,只有 e=0 了,显然 a*e=a+e+ae=a,故 0 为单位元<R,*>构成独异点。

逆元: a*b=e,即 a*b=0,即 a+b+ab=0,即 -a=b(1+a),故 b=-a/(1+a),因此当 a+1 不为 0 时才有逆元,因此并不是所有的实数都有逆元。当 a=-1 时,a*b=0 为-1+b-b=0,即-1=0,而这是矛盾,故 a=-1 时没有逆元。

3、S={a,b,c}, S 上的*运算定义为: x*y=x, 证明 S 关于* 构成半群证明:

封闭性: 当 x,y 是 S 的元素时, x*y=x 仍是 S 的元素, 故满足封闭性。

可结合性: 当 x,y,z 是 S 的元素时,注意到运算后的结果为第一个元素,则可知

(x*y)*z=(x*y)=x,同样 x*(y*z)=x,故(x*y)*z= x*(y*z)单位元:若 x*e=e*x=x,则根据*运算的定义可知,x*e=x 即为第一个元素,而 e*x=e 即为第一个元素,则 x=e,即集合中只有一个元素时,这是不可能的,所以不可能含有单位元,只能构成半群。

4、设 V=<{a,b},*>是半群,且 a*a=b,证明:(a) a*b=b*a,(b)b*b=b

(a)的证明

(1) a*b=a*(a*a) 因为 b=a*a (2)a*(a*a)=(a*a)*a 因为满足结合律 (3)(a*a)*a=b*a 因为 a*a=b (4)a*b=b*a 因为(1)(2)(3)

(b)的证明因为 V 是封闭的,故 $\{a*a,b*b,a*b,b*a\}\subseteq \{a,b\}$ 又 a*a=b,a*b=b*a,故集合 $\{a*a,b*b,a*b,b*a\}=\{b,b*b,a*b\}\subseteq \{a,b\}$ a*b 只能是 a 或 b 中某一个。

当 a*b=a 时,两边同乘 a 可知 a*(a*b)=a*a,故(a*a)*b=a*a,故 b*b=b

当 a*b=b 时,两边同乘 a 可知 a*(a*b)=a*b,故(a*a)*b=a*b,故 b*b=b

5、设 Z 是整数集合,在 Z 上定义二元运算°为: x°y=x+y-2, 是否构成群?解: Z

封闭性: $x^\circ y = x + y - 2 \in \mathbb{Z}$ 是整数,故封闭 可结合律: $(x^\circ y)^\circ z = (x^\circ y) + z - 2 = (x + y - 2) + z - 2 = x + y + z - 4$ $x^\circ (y^\circ z) = x + (y^\circ z) - 2 = x + (y + z - 2) - 2 = x + y + z - 4$ 故满足结合律单位元 $x^\circ e = e^\circ x = x$,则 x + e - 2 = e + x - 2 = x,故 e = 2。 逆元 $x^\circ y = y^\circ x = e$,则 x + y - 2 = y + x - 2 = 2,故 x + y - 2 = 2,故 y = 4 - x 故构成群。

6、设 G=<a>是 15 阶群循环群, (1)求 G 的所有生成元, (2)求出 G 的所有子群。解: G={a⁰,a¹,a²,···.,a¹⁴} 由定 理 10.11 可知, n阶循环群, 对于任何小于n而与n互素 的自然数r,a^r是是G的生成元。n=15,小于 15 而与 15 互素的整数是 1,2,4,7,8,11,13,14 故其生成元有 a¹,a²,a⁴,a⁷,a⁸,a¹¹,a¹³,a¹⁴.

由 Lagrang 定理可知,G 的子群的阶必是 n 的因素数,而 15 的因素数是 1,3,5,15,而 1 与 15 是平凡子群,即 $\{e\}$ 与 G本身,因此只考虑非平凡的 3 阶与 5 阶子群,且 $a^{15}=e$ 再由定理 10.12 可知,n 阶循环群,对于 n 的每个正因子,G 恰有一个 d 阶子群,因此 G 只有一个 3 阶子群与一个 5 阶子群。

3 阶子群的生成元是 a^{15/3}=a⁵, 即为{e,a⁵,a¹⁰}

1、确定图 5.36 中各点的度数,判断是否满足握手定理,是否构成一个欧拉图?是否满足哈密尔顿的充分条件,并用 Powell 着色方法对其各个结点进行着色?给出其对偶图,并对对偶图的结点进行着色?给出其邻接矩阵,算出任意二点之间长度为 1、2、3、.....、n-1 的路的条数,从而判断它是否连通?给出其生成树?用 Prim 给出其最小生成树,用 Kruskal 给出其最小生成树。

解:

- (1) Deg(A)=3,deg(B)=3,deg(C)=3,deg(D)=2,deg(E)=5,deg(F)=2 点的度数和=3+3+3+2+5+2=18 边数=9,所以度数和=边数的 2 倍,从而满足握手定理。
- (2)度数为奇数的结点 4 个,不可能存在欧拉路,也不可能存在欧拉回路。
- (3)n=6, (A,B)=6, (A,C)=6, (A,D)=5, (A,E)=8, (A,F)=5, (B,C)=6,(B,D)=5,(B,E)=8,(B,F)=5,
- (C,D)=5, (C,E)=8, (C,F)=5, (D,E)=7, (D,F)=4<n-1, 不满足哈密尔顿路存在的充分条件,但它确实存在 H 回路,说明该充分条件并不是必要的。
- (4)用 Powell 方法染色时,先要按结点的度数进行排序: deg(E)>deg(A)=deg(B)= deg(C)

>deg(D)=deg(F) $_{\circ}$ E-A-B-C-D-F

用 1 号色对结点 E 进行染,未着色有: A-B-C-D-F 用 2 号色对结点 A 进行染色,与 A 不相邻的 B 也染 2 号色,未着色 C-D-F 用 3 号色对 C 染色,与 C 不相邻的 D 染 3 号色,与 C、D 均不相邻的 F 也染 3 号色。

(5)其对偶图如下: deg(5)=6>deg(1)=deg(2)=deg(3)=deg(4)=3

结点 5 着 1 号色, 结点 1 着 2 号色, 结点 3 与 1 不相 邻着 2 号色, 结点 2 着 3 号色, 结点 4 与 2 不相邻着 3 号色。

(6)其邻接矩阵为:

$$\begin{pmatrix} 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

(7)长为 1, 2, 3,, n-1 的路之条数长为 1 的路的条数

```
\begin{pmatrix} 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}
```

长为 2 的路的条数,即为邻接矩阵的平方

$$\begin{pmatrix} 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} \times \begin{pmatrix} 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 2 & 1 & 1 & 2 & 1 \\ 2 & 3 & 1 & 1 & 2 & 1 \\ 1 & 1 & 3 & 2 & 2 & 2 \\ 1 & 1 & 2 & 2 & 1 & 1 \\ 2 & 2 & 2 & 1 & 5 & 1 \\ 1 & 1 & 2 & 1 & 1 & 2 \end{pmatrix}$$

长为 3 的路的条数,即邻接矩阵的 3 次方

3	2	1	1	2	1)		0	0	1	0	1	1)		4	4	7	4	8	5)	
2	3	1	1	2	1		0	0	1	1	1	0		4	4	7	5	8	4	
1	1	3	2	2	2		1	1	0	0	1	0		7	7	4	3	9	3	
1	1	2	2	1	1	×	0	1	0	0	1	0	=	4	5	3	2	7	2	
2	2	2	1	5	1		1	1	1	1	0	1		8	8	9	7	8	7	
1	1	2	1	1	2)		1	0	0	0	1	0		5	4	3	2	7	2)	

长为 4 的路条数,即邻接矩阵的 4 次方

$$\begin{pmatrix} 4 & 4 & 7 & 4 & 8 & 5 \\ 4 & 4 & 7 & 5 & 8 & 4 \\ 7 & 7 & 4 & 3 & 9 & 3 \\ 4 & 5 & 3 & 2 & 7 & 2 \\ 8 & 8 & 9 & 7 & 8 & 7 \\ 5 & 4 & 3 & 2 & 7 & 2 \end{pmatrix} \times \begin{pmatrix} 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 20 & 19 & 16 & 12 & 24 & 12 \\ 19 & 20 & 16 & 12 & 24 & 12 \\ 16 & 16 & 23 & 16 & 24 & 16 \\ 12 & 12 & 16 & 12 & 16 & 11 \\ 24 & 24 & 24 & 16 & 39 & 16 \\ 12 & 12 & 16 & 11 & 16 & 12 \end{pmatrix}$$

长度为 5 的路的条数,即邻接矩阵的 5 次方

(20	19	16	12	24	12		0	0	1	0	1	1)	(52	52	63	43	79	44)	
				24								0		52	52	63	44	79	43	
16	16	23	16	24	16	V	1	1	0	0	1	0	_	63	63	56	40	87	40	
12	12	16	12	16	11	^	0	1	0	0	1	0		43	44	40	28	63	28	
24	24	24	16	39	16		1	1	1	1	0	1		79	79	87	63	104	63	
12	12	16	11	16	12		1	0	0	0	1	0		44	43	40	28	63	28	

(8)由于任何二点之间均存在长度为 2 的路,即任意二点之间经过二条边均可达,所以它是连通的。

(9)给出其生成树? n=6, 任取 5 条不构成回路的边, 便构成一棵生成树, 如 AC,AE,AF,EB,ED。

(10)用 Prim 给出其最小生成树

解:以边为角度,寻找边权最小的 5 条边。

ED(1), EC(2), AF(3), FE(4), BC(4)

(11)用 Kruskal 给出其最小生成树。

解: 从结点 A 出发, 依次找出与已知结点最近的结点与相应边

 $U=\{A,F\}$ $T=\{AF\}$

 $U=\{A,F,E\}$ $T=\{AF,FE\}$

 $U=\{A,F,E,D\}$ $T=\{AF,FE,ED\}$

 $U=\{A,F,E,D,C\}$ $T=\{AF,FE,ED,EC\}$

U={A,F,E,D,C,B}, T={AF,FE,ED,EC,CB}

2、确定图 5.37 中各点的度数、入度、出度,判断是否满足握手定理,是否构成一个欧拉图?是否满足哈密尔顿的充分条件,并用 Powell 着色方法对其各个结点进行着色?给出其对偶图,并对对偶图的结点进行着色?给出其邻接矩阵,算出任意二点之间长度为 1.2.3......n-1 的路的条数,从而判断它是否连通?给出其生成树?给出其根树,用 Prim给出其最小生成树,用 Kruskal 给出其最小生成树。(1)各点的度数: deg(1)=2, deg(2)=2, deg(3)=3, deg(4)=2, deg(5)=3, deg(6)=2, deg(2)=1, deg(3)=1, deg(4)=1, deg(5)=1, deg(6)=2, deg(6)=0, 和=7 出度:

和=入度和,所有点度数 14=边数 7 的两倍

(2)如果不考虑边的方向,度数为奇数的结点 3、5, 所以存在一条无向的 Euler 路, 但

不存在无向的 Euler 回路。如: 31-12-23-35-54-46-65 如果考虑边的方向,由于结点 3、5、6 的入度不等于出度,所以不存在有向 Euler 路,

也不存在有向 Euler 回路。

(3)n=6,不考虑边的方向,存在 Hamilton 路的充分条件是,任意二点的度数>=5, deg(1)+deg(6)=4<5,所以不满足该充分条件,但是跨越每个点一次的路是存在的,如 1-2-3-5-4-6,所以该充分条件并不是必要的。

(4) Powell 着色方法对其各个结点进行着色,先按节点的度数进行排队: deg(3)=deg(5)>deg(1)=deg(2)=deg(4)=deg(6),队列为 3-5-1-2-4-6 用 1 号色着结点 3,与 3 不相邻的 4 着 1 号色,未着色 5-1-2-6 用 2 号色着结点 5,与 5 不相邻的 1 着 2 号色,未着色 2-6 用 3 号色着结点 2,与 2 不相邻的 6 着 3 号色。

(4)由于原图只有 2 个封闭的区域,与一个完全开放的区域, 因此其对偶图只有 3 个结点,跨越原图每边,得到对偶图 的边,因此最终的对偶图如下图所示。

Deg(A)=3, deg(B)=3, deg(C)=7, 由于任意二点之间均有边相连,则需要 3 种颜色。____

(5)给出其邻接矩阵

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

(6)算出任意二点之间长度为 1、2、3、.....、n-1 的路的条数,从而判断它是否连通?长度为 1 的路就是邻接矩阵

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

长度为 2 的路就是跨越 2 条边可达的路之条数,即邻接矩阵的平方

长度为 3 的路就是跨越 3 条边可达的路之条数,即邻接矩阵的 3 次方

长度为 4 的路就是跨越 4 条边可达的路之条数,即邻接矩阵的 4 次方

																			1)
																			1
0	0	1	0	0	1		1	0	0	0	1	0		1	0	0	0	1	0
0	0	0	0	0	0	×	0	0	0	0	0	1	=	0	0	0	0	0	0
																			0
0	0	0	0	0	0		0	0	0	0	0	0		0	0	0	0	0	0

长度为 5 的路就是跨越 5 条边可达的路条数,即邻接矩阵的 5 次方

(0	1	0	1	0	1)	1	0	0	0	0)		0	0	1	0	0	1)
0	0	1	0	0	1	()	0	1	0	0	0		1	0	0	0	1	0
1	0	0	0	1	0		l	0	0	0	1	0		0	1	0	1	0	0
0	0	0	0	0	0	× ()	0	0	0	0	1	=	0	0	0	0	0	0
0	0	0	0	0	0	()	0	0	1	0	1		0	0	0	0	0	0
0	0	0	0	0	0)	0	0	0	0	0		0	0	0	0	0	0

(7)不考虑边的方向,任找 5 条不构成回路的边得到其生成树: 12,23,35,54,56。

(8) 考虑边的方向, 从结点 1 出发的生成树, 即根树为 12,23,35,54,56

(9)最小生成树是指不考虑边的方向,生成边权最小的树: 31(1),23(1),56(2),35(3),46(3)

(10)Kruskal 生成树:

 $U=\{1,3\},T=\{31\}$

 $U=\{1,3,2\},T=\{31,23\}$

 $U=\{1,3,2,5\},T=\{31,23,35\}$

 $U=\{1,3,2,5,6\},T=\{31,23,35,56\}$

U={1,3,2,5,6,4},T={31,23,35,56,46}

3、给定权值 1(A)、4(S)、9(D)、16(F)、25(G)、36(H)、49(J)、64(K)、81(L)、100(M),

构造出表 5.1 所示的构造表,并给出图 5.23 所示的 Huffman 树,要遵循"左小右大、组合优先,左 0 右 1,不足补 0"的原则,得到唯一的最优二叉树,对 ASDFGHJKLM 进行编码,并对"1101100000110110011111"译码。解:权值已从底到高排列好,先构造数据表,然后构造 Huffman 树。

1	4	9	16	25	36	49	64	81	100
	5	9	16	25	36	49	64	81	100
		14	16	25	36	49	64	81	100
			30	25	36	49	64	81	100
			55		36	49	64	81	100
			55			85	64	81	100
						85	119	81	100
						166	119		100
						166	219		
						2000	385		

A:1101000 S:1101001 D:110101 F:11011 G:1100 H:010 J:011 K:111 L:00 M:10 11011 00 00 011 01 100 111 1100:FLLJJLKG

4、用 Dijkstra 方法求图 5.25 中, 求结点 A 到其他各点的最短距离。

见书上的解答

5、用 Edmond-Karp 方法求图 5.38 中源头 s 到汇聚 t 的 最大流量。

第一轮标记:

a(s+,3) c(s+,4), b(a+,3), d(a+,1), t(b+,2), 增流 s-a-b-t, 增量为

第二轮标记:

A(s+,1),c(s+,4), b(a+,1), d(a+,1), t(d+,1), 增流路径 s-a-d-t, 增量为 1,得到流分布如下:

第三轮标记:

C(s+,4),b(c+,1),d(c+,2),t(d+,2),增流路径: s-c-d-t,增量为 2,得到流分布如下:

第四轮标记:

C(s+,2),b(c+,1),a(b-,1),到 a 只能退回到 s 即源头,而 s 出 发又退回到 s 是不允许的,又不能往前走,所以无法标记了,故标记过程结束,上图为最终分布图,所以从源头流到 汇聚点的量为 5 个单位。