

4. 결합확률분포(Joint probability distribution)

① 하나의 확률실험에서 두 개 이상의 확률변수를 정의하는 경우

한 개의 확률변수를 정의하는 경우	두 개 이상의 확률변수를 정의하는 경우
임의의 30세 성인, 키가 160cm에서 165cm 사이일 확률은?	임의의 30세 성인, 키가 160cm~165cm 사이이면서 동시에 몸무게가 60~70kg이 될 확률은?
$P(160 \le H \le 165)$	$P(160 \le H \le 165, 60 \le W \le 70)$
$P(160 \le H \le 165)$	$P(160 \le H \le 165, 60 \le W \le 70)$
$= \int_{160}^{165} p(h)dh$	$= \int_{60}^{70} \int_{160}^{165} p(h, w) dh dw$

② 이산확률변수와 연속확률변수의 결합확률분포함수

이산확률변수 X 와 Y 의 결합확률질량함수 $p_{XY}(x,\ y)$	연속확률변수 X 와 Y 의 결합확률밀도함수 $f_{XY}(x,\ y)$
$\bigcirc \sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} p_{XY}(x, y) = 1$	$\bigcirc \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x, y) dx dy = 1$
$\ \ \bigcirc P\{(x,y) \in A\} = \sum_{A} p_{XY}(x,y)$	
$X = \{x \mid x = 0, 1, 2\}, Y = \{y \mid y = 0, 1, 2, 3\}$ $A = \{(x, y) \mid x + y \le 2\}$ 에 대한 $P[(x, y) \in A]$	$f_{XY}(x, y) = \frac{1}{3}(x+y)$ $(0 < x < 1, 0 < y < 2)$

③ 두 확률변수 X, Y에 대한 결합확률분포함수가 주어진 상태에서 각각의 확률변수의 확률분포를 주변분포(marginal distribution)라 한다. 주변분포는 결합확률분포함수로부터 한 가지 확률변수에 대한 정보만 알 수 있다.

이산확률변수 X , Y 의 $p_{XY}(x, y)$	연속확률변수 X , Y 의 $f_{XY}(x, y)$
각 확률변수의 주변확률질량함수	각 확률변수의 주변확률밀도함수
$\bigcirc p_X(x) = P(X = x) = \sum_{y = -\infty}^{\infty} p_{XY}(x, y)$	
$\bigcirc p_Y(y) = P(Y=y) = \sum_{x=-\infty}^{\infty} p_{XY}(x, y)$	$\bigcirc f_Y(y) = \int_{-\infty}^{\infty} f_{XY}(x, y) dx$

4-1. 이산확률변수의 결합분포

4-1-1. 결합확률질량함수

① 이산확률변수 X와 Y의 결합확률질량함수

$$p_{XY}(x, y) = P(X = x, Y = y)$$

② 성질

$$\bigcirc p_{XY}(x, y) \ge 0$$

$$\bigcirc \sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} p_{XY}(x, y) = 1$$

[예] 검은 구슬 3개, 붉은 구슬 2개, 흰 구슬 3개에서 임의로 2개를 꺼낼 때, 검은 구슬 개수를 X, 붉은 구슬 개수를 Y라고 하면 X와 Y의 결합확률분포는?

$$A = \{(x, y) | X + Y \le 1\}$$
일 때 $P[(x, y) \in A]$?

[풀이]

- 검은 구슬
$$X : {}_{3}C_{x} (0 \le x \le 3)$$

- 붉은 구슬
$$Y: {}_{2}C_{y} (0 \le y \le 2)$$

- 흰 구슬 :
$${}_{3}C_{2-x-y}$$

따라서 X와 Y의 결합확률분포함수는

$$P(X=x, Y=y) = \frac{{}_{3}C_{x} \times {}_{2}C_{y} \times {}_{3}C_{2-x-y}}{{}_{8}C_{2}}$$

이다. 오른쪽 표는 X와 Y의 결합확률분포표이다.

Y	0	1	2	p_{Y}
0	3/28	9/28	3/28	15/28
1	6/28	6/28	0	12/28
2	2/28	0	0	1/28
p_X	10/28	15/28	3/28	1

또한,
$$A = \{(x, y) | X + Y \le 1\}$$
이므로 $A = \{(0, 0), (0, 1), (1, 0)\}$ 이므로 $P[(x, y) \in A] = (3+9+6)/28 = 9/14$ 이다.

[[a]] 위 예에서 X와 Y의 주변질량함수와 X의 주변평균 및 X의 주변분산은?

[풀이]

$$p_X(x) = P(X=x) = \frac{{}_{3}C_x \times {}_{5}C_{2-x}}{{}_{8}C_2} (x=0, 1, 2)$$

$$p_Y(y) = P(Y=y) = \frac{{}_{2}C_{y} \times {}_{5}C_{2-y}}{{}_{8}C_{2}} (y=0, 1, 2)$$

$$X$$
의 주변평균 $\mu_X = E(X) = \sum_{x=-\infty}^{\infty} x p_x(x) = 0 \times \frac{10}{28} + 1 \times \frac{15}{28} + 2 \times \frac{3}{28}$

$$X$$
의 주변분산 $\sigma_X^{\ 2} = V(X) = \sum_{x=-\infty}^{\infty} (x - \mu_x)^2 p_x(x) = \frac{45}{112}$

4-1-2. 조건부확률질량함수

- ① 두 이산확률변수 X, Y의 결합확률질량함수 $p_{XY}(x, y)$ 에 대하여
 - \bigcirc X=x로 주어진 확률 변수 Y의 조건부 확률질량함수 $p_{Y|_{T}}(y)$

$$p_{Y|x}(y) = \frac{p_{XY}(x, y)}{p_{Y}(x)} = \frac{P(X=x, Y=y)}{P(X=x)}$$

 \bigcirc Y=y로 주어진 확률 변수 X의 조건부 확률질량함수 $p_{Y|_{u}}(x)$

$$p_{X|y}(x) = \frac{p_{XY}(x, y)}{p_{Y}(y)} = \frac{P(X=x, Y=y)}{P(Y=y)}$$

- ③ $\sum_{R_-} p_{Y|x}(y) = 1$, $R_x = \{(X, Y)$ 의 치역에서 X = x를 만족하는 부분집합}
 - 《예》 다음 결합확률분포표를 참고하여 X = 3일 때 Y의 조건부 분포를 구하시오.

$p_{XY}(x, y)$		Y				$p_X(x)$		
p_{XY}	(x, y)	0	1	2	3	4	$p_X(x)$	
	0	0.00000	0.00000	0.00002	0.00004	0.00004	0.0001	
	1	0.00003	0.00035	0.00138	0.00184	*	0.0036	
X	2	0.00194	0.0156	0.0311	*	*	0.0486	
	3	0.0583	0.2333	*	*	*	0.2916	
	4	0.6561	*	*	*	*	0.6561	
p_{Y}	L(y)	0.7164	0.24925	0.0325	0.00184	0.00004	1.0000	

[풀이]

x = 3일 때, Y의 가능한 값은 0, 1뿐이다.

즉,
$$R_x = \{(x, y) : x = 3\} = \{(3, 0), (3, 1)\}$$
이다.

$$p_{Y|3}(0) = P\left(\left. Y = 0 \,|\, X = 3 \right. \right) = \frac{P(X = 3, \; Y = 0)}{P(X = 3)} = \frac{0.0583}{0.2916} = 0.1999$$

$$p_{Y|3}(1) = P(Y=1 | X=3) = \frac{P(X=3, Y=1)}{P(X=3)} = \frac{0.2333}{0.2916} = 0.8001$$

이다. 따라서
$$\sum_{y=0}^{1} p_{Y|3}(y) = 0.1999 + 0.8001 = 1.0$$
이다.

4-2. 연속확률변수의 결합분포

4-2-1. 결합확률밀도함수

- ① 두 연속확률변수 X와 Y의 결합확률밀도함수 $f_{XY}(x,\ y)$; 2차원 평면상에서 정의
- ② 성질
 - $\bigcirc f_{XY}(x, y) \ge 0$

$$\bigcirc \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x, y) dx dy = 1$$

© 2차원 평면상의 임의의 영역 *R*에 대해

$$P\{[X, Y] \in R\} = \iint_R f_{XY}(x, y) dxdy$$
 : 체적

[[a]] 두 연속확률변수 X, Y의 결합확률밀도함수

$$f_{XY}(x, y) = axy (1 < x < 3, 2 < y < 4, a는 상수)$$

에서 상수
$$a$$
, $P(1 \le X \le 2, 2 \le Y \le 3)$ 은?

[풀이]

$$\int_{2}^{4} \int_{1}^{3} axy \ dxdy = a \int_{2}^{4} 4y \ dy = 24a = 1$$
이므로 상수 a 의 값은 $\frac{1}{24}$ 이다.

$$P(1 \le X \le 2, 2 \le Y \le 3) = \int_{2}^{3} \int_{1}^{2} \frac{1}{24} xy \, dx dy = \frac{15}{96}$$

Q? X의 주변밀도함수 $f_X(x)$ 는?

[풀이]

$$f_X(x) = \int_2^4 \frac{1}{24} xy \, dy = \frac{1}{4} x \ (1 < x < 3)$$

$$X$$
의 주변평균 $\mu_X=\int_{-\infty}^{\infty}xf_X(x)\,dx=\int_{-1}^3x\,rac{1}{4}x\,dx=rac{13}{6}$

$$X$$
의 주변분산 $\sigma_X^{\ 2} = V(x) = \int_{-\infty}^{\infty} (x - \mu_X)^2 f_X(x) \, dx = \int_{1}^{3} \left(x - \frac{13}{6} \right)^2 \frac{1}{4} x \, dx = \frac{11}{36}$

4-2-2, 조건부확률밀도함수

① 두 연속확률변수 X, Y의 결합확률밀도함수 $f_{XY}(x,y)$ 에서 X=x를 가정한 Y의 조건부 확률밀도함수 $f_{Y|x}(y)$ 는

$$f_{Y|x}(y) = \frac{f_{XY}(x, y)}{f_X(x)}$$
 (단, $f_X(x) > 0$)

- $② f_{Y|x}(y) \ge 0$
- ③ $\int_{R_x} f_{Y|x}(y) dy = 1$ $(R_x = \{(X, Y) \text{의 치역에서 } X = x 를 만족하는 부분집합\}$
- ④ Y=y를 가정한 X의 조건부 확률밀도함수 $f_{X|y}(x)$

《예》 두 연속확률변수 X, Y의 결합확률질량함수

$$f_{XY}(x, y) = \frac{1}{3}(x+y) (0 < x < 1, 0 < y < 2)$$

일 때, Y = y를 가정한 X의 조건부 확률밀도함수?

[풀이]

$$f_{X|y}\left(x\right) = \frac{f_{XY}(x,\ y)}{f_{Y}(y)} = \frac{\frac{1}{3}(x+y)}{\frac{1}{3}\int_{0}^{1}(x+y)\,dx} = \frac{2(x+y)}{2y+1} \quad (0 < x < 1,\ 0 < y < 2)$$

【참고】 두 변수 X와 Y의 독립 확인

결합확률질량함수	결합확률밀도함수
① 실숫값 x, y 에 대해	① 실숫값 x, y에 대해
$p_{XY}(x, y) = p_X(x)p_Y(y)$	$f_{XY}(x, y) = f_X(x)f_Y(y)$
② $p_X(x) > 0$ 인 모든 x, y 에 대해	② $f_X(x) > 0$ 인 모든 x, y 에 대해
$p_{Y x}(y) = p_Y(y)$	$f_{Y x}(y) = f_Y(y)$
③ $p_Y(y) > 0$ 인 모든 x, y 에 대해	$\Im \ f_Y(y) > 0$ 인 모든 x, y 에 대해
$p_{X y}(x) = p_X(x)$	$f_{X y}(x) = f_X(x)$