MATH 595 (Group Cohomology) Notes

Jiantong Liu

September 8, 2023

1 Aug 21, 2023: Introduction

Group cohomology works over different settings of groups, like finite groups, profinite groups, and topological groups. The course will develop towards

- duality in $H^*(G, -)$, and
- focus on computations, e.g., spectral sequences.

We first establish some notations.

- Let G be a group. If G has a topology, that would also be part of the information of G.
- A (left) G-module is an abelian group M with an action map

$$G \times M \to M$$

 $(g, m) \mapsto g \cdot m = gm$

satisfying

- $-1 \cdot m = m$
- $-(gh) \cdot m = g \cdot (hm),$
- q(m+m') = qm + qm'.

Remark 1.1. If G is a finite group, then the associated (non-commutative) group ring $\mathbb{Z}[G] := \bigoplus_{g \in G} \mathbb{Z}e_g$, where the multiplication is determined by $e_g e_h = e_{gh}$. Therefore, a G-module is just a $\mathbb{Z}[G]$ -module.

Example 1.2. • Trivial module \mathbb{Z} , or any abelian group with the trivial action $g \cdot a = a$.

- C_2 , or any group with $f: G \to C_2$, then G with C_2 as a quotient gives the sign representation \mathbb{Z}_{sgn} , with $g \cdot (a) = (-1)^{\rho(g)}a$.
- $\mathbb{Z}[G]$ is a G-module via the left multiplication action, and/or the conjugation action.

Definition 1.3 (Fixed points/Invariants). The set of fixed points of M over G is $M^G = \{m \in M \mid gm = m \ \forall g \in G\}$.

Definition 1.4 (Orbits/Coinvariants). The set of orbits of M over G is $M_G = M/(gm - m)$.

Example 1.5. If $M = \mathbb{Z}_{sgn}$, then everything gets multiplied by -1, so there are no fixed points. The orbits of M over G would be $\mathbb{Z}_{sgn}/(-2) \cong \mathbb{Z}/2\mathbb{Z}$.

Example 1.6. If
$$M=\mathbb{Z}[G]$$
, then the fixed points are $\mathbb{Z}\left\{\sum_{g\in G}e_g\right\}$.

Thinking in a categorical setting, we have a trivial action function $\mathbb{Z}\text{-Mod} \to G\text{-Mod}$, sending $ga \mapsto a$ for all $g \in G$ and $a \in A$. This gives an exact functor from Ab to G-Mod. Then this functor has a right adjoint () $^G: G\text{-Mod} \to Ab$, and a left adjoint () $_G: Ab \to G\text{-Mod}$. More specifically, M^G becomes the maximal trivial action submodule of M, namely $Hom_G(\mathbb{Z}, M)$; M_G becomes the largest quotient of M with trivial action, namely $\mathbb{Z} \otimes_{\mathbb{Z}[G]} M$. This simplifies to the tensor-hom adjunction in some sense. For a more detailed derivation of this, see Chapter 6.1 of Weibel.

Remark 1.7. In general, as in the category of G-sets, we have the orbit functor $X \mapsto X/G$ and the fixed point functor $X \mapsto X^G$. The orbit functor is left adjoint to the free G-set functor, and the fixed point functor is the right adjoint of the trivial G-set functor.

Remark 1.8. Read more about the setting in profinite groups with their topologies in Neukirch-Schmidt-Wingberg.

Definition 1.9 (Profinite Group). A profinite group of a collection of groups is $G = \varprojlim_i G_i$ as an inverse limit, where each G_i is a finite group of the form G/U_i for some open U_i . This gives a topology to the profinite group.

Remark 1.10. The groups rings $\mathbb{Z}[[G]] = \varprojlim_i \mathbb{Z}[G_i]$. For instance, let $G = \mathbb{Z}_p = \varprojlim_n \mathbb{Z}/p^n\mathbb{Z}$, then $\mathbb{Z}_p[[G]] = \varprojlim_n \mathbb{Z}_p[\mathbb{Z}/p^n\mathbb{Z}]$, where each $\mathbb{Z}[\mathbb{Z}/p^n\mathbb{Z}] \cong \bigoplus_{i=0}^{n-1} \mathbb{Z}\{e_i\}$ where $e_i \cdot e_j = e_{ij}$. Therefore, $\mathbb{Z}_p[[G]]$ is now equivalent to $\varprojlim_n \mathbb{Z}_p[t]/(t^{p^n} - 1_e)$, and hence becomes a power series.

Remark 1.11. By a change of variables, this becomes $\varprojlim_n \mathbb{Z}_p[x]/(x^{p^n})$, but this only works in the finite group \mathbb{Z}_p case, and not in general for \mathbb{Z} .

Example 1.12. $\mathbb{Z}[C_n] \cong \mathbb{Z}\{e\} \oplus \mathbb{Z}\{g\} \oplus \mathbb{Z}\{g^2\} \oplus \cdots \oplus \mathbb{Z}\{g^{n-1}\} \cong \mathbb{Z}[g]/(g^n - 1_e)$.

2 Aug 23, 2023: Cohomology of groups

Definition 2.1. Let G be a group, then we have a diagram

$$EG^{\cdot}:\cdots \Longrightarrow G\times G \Longrightarrow G$$

where the arrows are given by

$$EG^n = G^{n+1} \xrightarrow{d_i} G^n$$

for all $0 \le i \le n$. In the sense of simplicial sets, we have $d_i(g_0, \ldots, g_n) = (g_0, \ldots, \hat{g}_i, \ldots, g_n)$.

Now let M be a G-module, then we define $X^n = X^n(G, M) = \operatorname{Map}_{\operatorname{Set}}(G^{n+1}, M)$. G now has an action on this set, given by

$$(g \circ f)(g_0, \dots, g_n) = gf(g^{-1}g_0, \dots, g^{-1}g_n).$$

The action on d^i 's are contravariant, namely we obtain $d^*_i: X_n \to X^{n+1}$ with an inherited structure. Note that M sits inside X^0 , therefore we have a complex (*):

$$0 \longrightarrow M \stackrel{\partial_0}{\longleftrightarrow} X^0 \stackrel{\partial_1}{\longrightarrow} X^1 \stackrel{\partial_2}{\longrightarrow} X^2 \stackrel{\partial_3}{\longrightarrow} \cdots$$

Here ∂_0 includes M as the constant functions into X, namely $\partial_0(m) = f$ for f(g) = m, and so on. In general, for n > 0, we have

$$\partial_n = \sum_{i=0}^n (-1)^i d_i^*.$$

Lemma 2.2. The complex $(*): M \to X$ is an exact complex of G-modules, i.e., $\partial^2 = 0$ and $\ker(\partial_{n+1}) = \operatorname{im}(\partial_n)$, and the ∂_i 's preserves the G-action. This is called the standard resolution of M as a G-module.

Proof. Exercise. □

Definition 2.3. The G-fixed points of the X^n 's are defined by $C^n(G, M) = (X^n(G, M))^G$, called the homogeneous n-cochains of G with coefficients in M. Because the complex preserves G-actions, then we obtain a complex of $C^n(G, M)$'s, given by

$$0 \longrightarrow C^0(G, M) \xrightarrow{\partial_0} C^1(G, M) \xrightarrow{\partial_1} \cdots$$

Remark 2.4. To see what the induced mapping is, suppose $A \to B$ is a G-module map, then there is an induced map of fixed points $A^G \to B^G$ by the restriction. In particular, let $a \in A$ be fixed with ga = a for all $g \in G$, then f(a) = f(ga) = gf(a).

Remark 2.5. In the complex of Definition 2.3, $\partial^2 = 0$ as well, but in general this is not an exact sequence.

Definition 2.6 (Group Cohomology). The group cohomology of G with coefficients in M is the collection

$$\{H^n(G,M)\}_{n\geqslant 0},$$

where $H^n(G,M):=H^n(C^{\boldsymbol{\cdot}}(G,M))=\ker(\partial:C^n\to C^{n+1})/\operatorname{im}(\partial:C^{n-1}\to C^n)$. We usually use the notion of cocycles $Z^n(G,M)=\ker(\partial:C^n\to C^{n+1})$ and coboundaries $B^n(G,M)=\operatorname{im}(\partial:C^{n-1}\to C^n)$.

Exercise 2.7. Show that $H^0(G, M)$ is isomorphic to M^G .

Definition 2.8. The inhomogeneous cochains $C_i(G, M)$ are given by

- $C_i^0 = M$, and
- for n > 0, $C_i^n = \operatorname{Map}(G^n, M)$,

with coboundary maps $\partial^{n+1}:C_i^n\to C_i^{n+1}$, given by

- $\partial^1(m)(g) = gm m$,
- $\partial^2(f)(g_1,g_2) = g_1f(g_2) f(g_1g_2) + f(g_1)$, and so on, with

•
$$\partial^{n+1}(f)(g_1,\ldots,g_{n+1}) = g_1f(g_2,\ldots,g_{n+1}) + \sum_{i=1}^n (-1)^i f(g_1,\ldots,g_ig_{i+1},\ldots,g_{n+1}) + (-1)^{n+1} f(g_1,\ldots,g_n)$$

This gives the inhomogeneous setting of this cochain.

Lemma 2.9. The maps

$$C^{n}(G, M) \to C_{i}^{n}(G, M)$$

$$(\varphi : G^{n+1} \to M) \mapsto (f : G^{n} \to M)$$

$$f(g_{1}, \dots, g_{n}) := \varphi(1, g_{1}, g_{1}g_{2}, \dots, g_{1}g_{2} \cdots g_{n})$$

give a cochain homotopy equivalence $C^{\cdot}(G,M) \xrightarrow{\sim} C_i(G,M)$, and hence this is a quasi-isomorphism.

Corollary 2.10. The cohomology $H^*(C_i(G, M)) \cong H^*(G, M)$.

Remark 2.11. Any cohomology class can be represented by a normalized inhomogeneous cocycle $f: G^n \to M$, i.e., $f(g_1, \ldots, g_n) = 0$ where $g_i = 1$ for some i.

Remark 2.12. Even for $G = C_2$, C_i^n or C^n get large as n grows.

Remark 2.13. • Using homological algebra, we can find other cochain complexes which computes group cohomology $H^*(G, M)$.

• We would also understand $H^*(G, M)$ as the failure of exactness of () $^G : G\text{-Mod} \to Ab$. Therefore, when taking the fixed points, the exact sequence may not be mapped to another exact sequence. In particular, if we take an exact sequence

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

of G-modules, the induced sequence

$$0 \longrightarrow A^G \longrightarrow B^G \longrightarrow C^G$$

do not give a surjection at $B^G \to C^G$. One needs to take higher cohomology to obtain a long exact sequence. Hence, $()^G : G\text{-Mod} \to \text{Ab}$ is a left exact functor, but not necessarily right exact.

3 Aug 25, 2023: Cohomology of groups, continued

Example 3.1. Let G be C_2 , or any group with a surjection p onto C_2 , then it has an action on \mathbb{Z}_{sgn} given by $g \cdot a = (-1)^{p(g)} a$, therefore we have a short exact sequence

$$0 \longrightarrow \mathbb{Z}_{sgn} \stackrel{\times \, 2}{\longrightarrow} \mathbb{Z}_{sgn} \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$

and taking the fixed point functor we have

$$0 \longrightarrow 0 \longrightarrow 0 \longrightarrow \mathbb{Z}/2\mathbb{Z}.$$

Remark 3.2. Higher homologies measure the failure of exactness.

Remark 3.3. The collection $\{H^n(G,-)\}_{n\in\mathbb{Z}}$ satisfies

- $H^n(G, -) = 0$ for n < 0;
- for short exact sequence $0 \to A \to B \to C \to 0$ in G-Mod, we have a long exact sequence

$$0 \longrightarrow H^0(G,A) \longrightarrow H^1(G,B) \longrightarrow H^1(G,C) \stackrel{\delta}{\longrightarrow} H^1(G,A) \longrightarrow \cdots$$

where δ is the connecting homomorphism.

• the connecting homomorphisms δ are natural, i.e., given a commutating diagram

the induced diagram

$$H^{n}(G,C) \xrightarrow{\delta} H^{n+1}(G,A)$$

$$\downarrow \qquad \qquad \downarrow$$

$$H^{n}(G,C') \xrightarrow{\delta} H^{n+1}(G,A')$$

also commutes, and $\{H^n(G,-)\}_{n\in\mathbb{Z}}$ is a cohomological δ -functor. Note that a δ -functor is additive, and usually occurs in abelian categories.

Definition 3.4 (δ -functor). A map of δ -functors $T^* \to F^*$ is a collection of natural transformations $T^n \to F^n$, commuting with the δ 's, i.e.,

$$T^{n} \longrightarrow F^{n}$$

$$\downarrow_{\delta_{F}} \qquad \qquad \downarrow_{\delta_{F}}$$

$$T^{n+1} \longrightarrow F^{n+1}$$

A δ -functor T^* is universal if, given any other δ -functor F^* , a map $T^* \to F^*$ is uniquely determined by $T^0 \to F^0$.

Proposition 3.5. $H^*(G, -) : G\text{-Mod} \to Ab$ is a δ -functor.

Proof. We need to show:

- each $H^n(G, -)$ is a well-defined functor,
- the connecting homomorphisms δ 's gives a long exact sequence,
- the naturality of δ .

First, let $f: A \to B$ be in G-Mod, then $C^*(G, A) \to C^*(G, B)$ is equivalent to $\operatorname{Map}(G^{*+1}, A)^G \to \operatorname{Map}(G^{*+1}, B)^G$ by composition with f. One can show that this is equivariant, i.e., respects the G-action, so it is well-defined to take the fixed points, and thus commutes with ∂ 's.

Second, we need to apply the snake lemma. Given a short exact sequence $0 \to A \to B \to C \to 0$, we claim:

Claim 3.6. $0 \longrightarrow C^*(G, A) \longrightarrow C^*(G, B) \longrightarrow C^*(G, C) \longrightarrow 0$ is a short exact sequence of cochain complexes, i.e., $C^*(G, -) : G\text{-Mod} \to \text{coCh}$ is an exact functor.

Now take the complex

$$0 \longrightarrow C^{n}(G,A) \longrightarrow C^{n}(G,B) \longrightarrow C^{n}(G,C) \longrightarrow 0$$

$$\downarrow^{\partial} \qquad \qquad \downarrow^{\partial} \qquad \qquad \downarrow^{\partial}$$

$$0 \longrightarrow C^{n+1}(G,A) \longrightarrow C^{n+1}(G,B) \longrightarrow C^{n+1}(G,C) \longrightarrow 0$$

and quotient the boundaries everywhere (and thus lose the injectivity/surjectivity when applicable)

$$C^{n}(G,A)/B^{n}(G,A) \longrightarrow C^{n}(G,B)/B^{n}(G,B) \longrightarrow C^{n}(G,C)/B^{n}(G,C) \longrightarrow 0$$

$$\downarrow \partial \qquad \qquad \downarrow \partial \qquad \qquad \downarrow \partial$$

$$0 \longrightarrow Z^{n+1}(G,A) \longrightarrow Z^{n+1}(G,B) \longrightarrow Z^{n+1}(G,C)$$

Taking the kernels and cokernels on ∂ 's, we obtain a complex

By the snake lemma, we obtain the long exact sequence.

Proposition 3.7. If $0 \to A \to B \to C \to 0$ is a short exact sequence such that $H^*(G,B) = 0$ for *>0 (or at least $H^n(G,B) = 0 = H^{n+1}(G,B)$), then $\delta: H^n(G,C) \to H^{n+1}(G,A)$ is an isomorphism.

Definition 3.8 (Acyclic, Cohomologically Trivial). A G-module M is

- acyclic if $H^*(G, M) = 0$ for * > 0,
- cohomologically trivial if $H^*(H, M) = 0$ for * > 0 and any (closed) subgroup $H \subseteq G$.

Definition 3.9 (Induced Module). Given any G-module M, the induced module $\operatorname{ind}_G(M) = \operatorname{Map}(G, M) = X^0(G, M)$.

Example 3.10. M could have the trivial action.

Exercise 3.11. For any M, the induced module of M over G is isomorphic (under the G-action) to the induced module of module given by forgetful action over G.

Remark 3.12. • $\operatorname{Ind}_G(-): G\operatorname{-Mod} \to G\operatorname{-Mod}$ is exact.

• We say A is an induced module if $A \cong \operatorname{Ind}_G(M)$ for some module M. If A is an induced G-module, then A is induced as an H-module for any subgroup $H \subseteq G$.

Lemma 3.13. Induced modules are cohomologically trivial.

Proof. There is an isomorphism

$$C^*(G, \operatorname{Ind}_G(M)) \cong X^*(G, M).$$

Remark 3.14. We have an equivariant inclusion of fixed points

$$M \hookrightarrow \operatorname{Ind}_G(M)$$

which is an embedding, and we take $Q \cong \operatorname{Ind}_G(M)/M$, then this extends to a short exact sequence

$$0 \longrightarrow M \hookrightarrow \operatorname{Ind}_G(M) \longrightarrow Q \longrightarrow 0$$

then $H^{n+1}(G,M) \cong H^n(G,Q)$. One say that $H^*(G,-)$ is effaceable. By Tohoku, an effaceable is universal.

4 Aug 28, 2023: First Cohomology of Groups

There are three ways to think about $H^1(G, M)$.

4.1 Crossed Homomorphims

Recall that $H^1(G, M) = Z_i^1(G, M)/B_i^1(G, M)$ as inhomogeneous cochains, where

- $Z_i^1(G,M) = \ker(\operatorname{Map}(G,M) \to \operatorname{Map}(G \times G,M)$ where the map sends $f \mapsto (g,h) \mapsto gf(h) f(gh) + f(g)$. The kernel of this is exactly the maps f such that f(gh) = gf(h) + f(g), and note that this is not a group homomorphism.
- $B_i(G,M) = \operatorname{im}(M \to \operatorname{Map}(G,M))$ given by $m \mapsto (g \mapsto gm m)$, where the image is called a principal crossed homomorphism.

Exercise 4.1. $B_i^1(G, M) \cong M/M^G$ as an isomorphism of $\mathbb{Z}[G]$ -modules.

Remark 4.2. If the G-action is trivial, then $H^1(G, M) = \text{Hom}_{Grp}(G, M)$.

Corollary 4.3. If G is a finite group with trivial action, then $H^1(G,\mathbb{Z})=0$.

Theorem 4.4 (Hilbert's Theorem 90). Let L/K be a Galois extension with (finite or profinite) Galois group G, then $H^1(G, L^{\times}) = 0$.

Proof. Let $f:G\to L^\times$ be a crossed homomorphism. We know the addition is given by f(gh)=gf(h)+f(g), and the multiplication is given by $f(gh)=(g\cdot f(h))f(g)$, where \cdot represents the group action. Now for any $l\in L^\times$, the multiplication with respect to l is given by $m_l=\sum\limits_{h\in G}f(h)(h\cdot l)$. We can first choose l so that $m_l\neq 0$, since the Galois

conjugates $h \cdot l$ over $l \in L$ are linearly independent. For $g \in G$, we have

$$g \cdot m_l = \sum_{h \in G} (g \cdot f(h))(gh \cdot l)$$

$$= \sum_{h \in G} \frac{f(gh)}{f(g)}(gh \cdot l)$$

$$= \frac{1}{f(g)} \sum_{h \in G} f(gh)(gh \cdot l)$$

$$= \frac{1}{f(g)} m_l.$$

Therefore, $f(g) = \frac{m_l}{g \cdot m_l}$. For any crossed homomorphism, there exists $m \in L^{\times}$ such that $f(g) = \frac{gm}{m}$, so every crossed homomorphism is principal.

Exercise 4.5. Let G acts over a commutative ring R, then $H^1(G, R^{\times})$ classifies invariant R-modules with a compatible G-action.

4.2 Non-abelian H^1 and Torsors

Let A be a group with G-action, so let the action $g \cdot a = {}^g a$. Hence, $g \cdot (ab) = {}^g a^g b$. Define the G-cocycles to be $f: G \to A$ such that $f(gh) = f(g)^g f(h)$. Two cocycles f and f' are said to be cohomologous as $f \sim f'$ if there exists $a \in A$ such that for all $g \in G$, $f'(g) = a^{-1} f(g)^g a$. This becomes an equivalence relation on the set of G-cocycles with coefficients in A, then $H^1(G,A)$ is the set of equivalence classes of G-cocycles. Now the first cohomology $H^1(G,A)$ has only a pointed set structure with distinguished point $f \equiv 1$, the constant function at 1.

Exercise 4.6. This definition is equivalent to the inhomogeneous cochain definition in the abelian case.

Definition 4.7. An A-torsor is a G-set X with action

$$X \times A \to A$$

 $(x, a) \mapsto xa$

that is free and transitive, i.e., for any $x, y \in G$, there exists a unique $a \in A$ such that y = xa. Moreover, the action $X \times A \to X$ respects the G-action, i.e., $g(xa) = gx^ga$.

Remark 4.8. • A is an A-torsor.

- An isomorphism of A-torsors is a bijection that respects the G- and A- action.
- If $A \subseteq B$ is a sub-G-group, then bA is an A-torsor.
- An A-torsor is a principal A-bundle on the classifying space BG.

Theorem 4.9. There is a canonical bijection of pointed sets

$$H^1(G, A) \cong \operatorname{Torsor}(G, A)$$

• The backwards map $\lambda: \operatorname{Torsor}(G,A) \to H^1(G,A)$ is defined as follows: for $x \in \operatorname{Torsor}(G,A)$, we want to define a cocycle $f(X): G \to A$. For arbitrary $x \in X$, note that for any $g \in G$, there exists a unique $f_x(g) \in A$ such that $g = x f_x(g)$ by the simple transitivity of the A-action on X. To see this is well-defined, if we have another $y \in X$, then y = xb for some $b \in A$, then $f_y(g) = b^{-1} f_x(g)^g b$, so f_x and f_y are cohomologous and define the same class in $H^1(G,A)$, which is defined to be the image $\lambda(X)$.

• To define $\mu: H^1(G,A) \to \operatorname{Torsor}(G,A)$, given a cocycle $f: G \to A$, let X_f be the group A, then the action of A on X_f is by multiplication on the right, and one can twist the G-action on it using cocycle $f: G \to A$ with $\bar{g}_X = f(g)g_X$, which defines an A-torsor. This is well-defined.

Remark 4.10. Suppose

$$1 \longrightarrow A \longrightarrow B \stackrel{p}{\longrightarrow} C \longrightarrow 1$$

is a short exact sequence of G-groups, i.e., A is a sub-G-group and $C \cong B/A$, then there is a long exact sequence

$$1 \longrightarrow A^G \longrightarrow B^G \longrightarrow C^G \stackrel{\delta}{\longrightarrow} H^1(G,A) \longrightarrow H^1(G,B) \longrightarrow H^1(G,C)$$

where δ is given by $\delta(c) = p^{-1}(c)$. For the exactness in the sense of pointed sets to work, the kernel is the subset mapping to the distinguished element.

4.3 EXTENSION SPLITTING

Consider the a split extension

$$1 \longrightarrow A \longrightarrow E \stackrel{p}{\longrightarrow} G \longrightarrow 1$$

That is, E is the direct product $A \times G$ with group action $(a,g)(a',g') = (a^ga',gg')$, and by definition E is the semidirect product $A \times G$. Equivalently, there exists a section (as group homomorphism) $s: G \to E$.

There is an equivalence relation on the set of sections to the projection $p: E \to G$, where the sections $s, s': G \to E$ are conjugates if there exists $a \in A$ such that $s'(g) = a^{-1}s(g)a$. We denote $\sec(E \to G)$ to be the conjugacy class of sections of p. Note that the class of trivial section $s: g \mapsto (1, g) \in E$ is the distinguished element.

Proposition 4.11. The pointed set $H^1(G, A)$ is isomorphic to $\sec(E \to G)$.

Proof. Take $\varphi \in \sec(E \to G)$, then the composition $G \xrightarrow{\varphi} E \xrightarrow{\pi_1} A$, where π_1 is the set-theoretic projection to the first component, defines a cocycle $G \to A$. Conversely, given a cocycle $f: G \to A$, the section is given by $g \mapsto (f(g), g)$. \square

Exercise 4.12. Expand the proof above.

Exercise 4.13. Describe $\mathbb{Z} \rtimes C_2$ where C_2 acts on \mathbb{Z} by inversion. How many sections are there of $\mathbb{Z} \rtimes C_2 \to C_2$?

Exercise 4.14. How many sections are there to the projection $D_{2n} \to C_2$?

5 Aug 30, 2023:
$$H^2$$
, abelian extensions, and Brauer Group

Suppose we have an abelian extension, that is, let A be abelian, the short exact sequence of group extensions

$$0 \longrightarrow A \stackrel{i}{\longleftrightarrow} E \stackrel{p}{\longrightarrow} G \longrightarrow 1$$

is such that $E/i(A) \cong G$. Note that A can be regarded as a normal subgroup in E given this notation.

Note that two extensions are equivalent if there exists a group isomorphism $\varphi: E \to E'$ such that the diagram

commutes.

Consider the continuous functions

$$\varphi: G \times G \to A$$

such that $\varphi(g_1g_2,g_3) + \varphi(g_1,g_2) = \varphi(g_1,g_2g_3) + g_1\varphi(g_2,g_3)$. We know $H^2(G,M)$ is the quotient of all such functions over the coboundaries, i.e., the functions φ such that $\varphi(g_1,g_2) = f(g_1) - f(g_1g_2) + g_1f(g_2)$.

Now $E \cong A \times G$ can be considered as a bijection, so we pick a set-theoretic section $s: G \to E$ with s(1) = 1, and now every element in E is written as as(g) uniquely for some $a \in A$ and $g \in G$, we have

$$s(g)a = s(g)as(g)^{-1}s(g) = {}^gas(g).$$

Note that s may not be a homomorphism, but we have s(g)s(h) = f(g,h)s(gh) since s(g)s(h) and s(gh) are both lifts of gh.

As a consequence, we have

$$(s(g_1)s(g_2))s(g_3) = f(g_1, g_2)s(g_1g_2)s(g_3) = f(g_1, g_2)f(g_1g_2, g_3)s(g_1g_2g_3)$$

and

$$s(g_1)(s(g_2)s(g_3)) = s(g_1)f(g_2,g_3)s(g_2,g_3) = {}^{g_1}f(g_2,g_3)s(g_1)s(g_2g_3) = {}^{g_1}f(g_2,g_3)f(g_1,g_2g_3)s(g_1g_2g_3).$$

In additive notation, we have

$$f(g_1, g_2) + f(g_1g_2, g_3) = g_1f(g_2, g_3) + f(g_1, g_2g_3).$$

Therefore, f becomes an inhomogeneous 2-cocycle.

Proposition 5.1. The induced map $\lambda : \text{ext}(G, A) \to H^2(G, A)$ is a well-defined bijection between the set of equivalence classes of extensions and $H^2(G, A)$.

Example 5.2. The two elements in $H^2(C_2, \mathbb{Z}/4\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$ are given by non-split extension of Q_8

$$0 \longrightarrow \mathbb{Z}/4\mathbb{Z} \longrightarrow Q_8 \longrightarrow C_2 \longrightarrow 1$$

and the identity element given by $D_8\cong \mathbb{Z}/4\mathbb{Z}\rtimes C_2$

$$0 \longrightarrow \mathbb{Z}/4\mathbb{Z} \longrightarrow D_8 \longrightarrow C_2 \longrightarrow 1$$

where D_8 has the action of C_2 over $\mathbb{Z}/4\mathbb{Z}$.

Proposition 5.3. An associative finite-dimensional K-algebra A is a CSA if and only if one of the following equivleent conditions hold:

- 1. Based-changed to the separable closure \bar{K} of K via $\bar{K} \otimes_K A$, $A \cong M_n(\bar{K})$ for some integer $n \geqslant 1$.
- 2. there exists a finite Galois extension L/K such that base-changed to L via $L \otimes_K A$, A becomes isomorphic to a matrix algebra $M_n(L)$ for some integer $n \ge 1$.
- 3. $A \cong M_n(D)$ matrix algebra for some $m \ge 1$ and some finite division algebra D over K.

A CSA A over K is said to be split over L if the above holds, i.e., $A \otimes_K L \cong M_n(L)$. One can define an equivalence class on CSAs, such that $A \sim B$ if and only if $A \otimes_K M_n(K) \cong B \otimes_K M_m(K)$. Now the Brauer group of K is the abelian group of equivalence classes of CSAs over K equipped with tensor product.

Suppose L/K is an extension, then there exists a homomorphism of base-change of algebras $Br(K) \to Br(L)$. We say the kernel $Br(L \mid K)$ is the relative Brauer group of K-CSAs that split over K. The absolute Brauer group is $Br(\bar{K} \mid K) = Br(K)$, then

$$\operatorname{Br}(K) = \bigcup_{L/K \text{ finite}} \operatorname{Br}(L \mid K).$$

Now let L/K be a finite Galois extension with Galois group G, and we pick a normalized inhomogeneous 2-cycle $\varphi: G \times G \to L^{\times}$ as the representative of its class, and we can construct A_{φ} as a K-CSA, then $A_{\varphi} = \bigoplus_{g \in G} Le_g$ has

dimension $|G|^2$, where e_g 's are the generators, with a multiplication operation $(le_g)(me_h) = l(g \cdot m)\varphi(g, h)e_{gh}$ which can be extended via distribution. A_{φ} is said to be the crossed product of L and G via φ .

Theorem 5.4. 1. A_{φ} is a split algebra over L.

- 2. If φ, φ' are two normalized inhomogeneous 2-cocycles, then $A_{\varphi} \sim A_{\varphi'}$ if and only if $\varphi \sim \varphi'$.
- 3. $A_{\varphi\varphi'} \sim A_{\varphi} \otimes_K A_{\varphi'}$.
- 4. Any K-CSA which is split over L is similar to a crossed product A_{φ} for some $\varphi: G \times G \to L^{\times}$.

Corollary 5.5. $H^2(G, L^{\times})$ is isomorphic to $Br(L \mid K)$, and $H^2(Gal(\bar{K}/K), \bar{K}^{\times})$ is isomorphic to Br(K).

6 SEPT 1, 2023: COHOMOLOGY OF CYCLIC AND FREE GROUPS

Recall that we can compute $H^*(G, M)$ using any acyclic resolution of M. We want to describe $H^*(G, M)$ for specific G using nice resolutions.

We have

$$\cdots \to G^3 \xrightarrow{\delta} G^2 \xrightarrow{\delta} G$$

and to obtain $X^*(G, M)$ we map out of the resolution and into M, so $\mathrm{Map}(G, M) \cong \mathrm{Hom}(\mathbb{Z}[G], M)$ as G-modules, and in general we obtain

$$\operatorname{Map}(G^k, M) \cong \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}[G]^{\otimes k}, M)$$

as \mathbb{Z} -modules.

We denote F^{st} to be the standard free resolution given by

$$\mathbb{Z}[G]^{\otimes k} \xrightarrow{d} \mathbb{Z}[G]^{\otimes (k-1)} \to \cdots \to \mathbb{Z}[G]^{\otimes 2} \xrightarrow{d_1 - d_0} \mathbb{Z}[G]$$

To obtain $X^*(G, M)$, we can map this into M. Now the standard resolution becomes an augmentation of \mathbb{Z} that makes $X^*(G, M)$ exact, free, and acyclic. The kernel of $\mathbb{Z}[G] \to \mathbb{Z}$ is the agumentation ideal of G as of $\mathbb{Z}[G]$. Since this is a G-equivariant map, then the augmentation ideal is a G-submodule of $\mathbb{Z}[G]$, as a free abelian group generated by the set $\{(g-1) \mid 1 \neq g \in G\}$.

Lemma 6.1. If $P_* \to \mathbb{Z}$ is any free resolution of \mathbb{Z} as a G-module, then for a G-module M, we have $H^*(G, M) \cong H^*(\operatorname{Hom}(P_*, M))^G$.

Proof. Since each P_i is free, then $\operatorname{Hom}(P_i, M)$ is an acyclic module, so $M \to \operatorname{Hom}(P_*, M)$ is an acyclic resolution of M. Now apply Proposition 2.28 in the notes.

Remark 6.2. $H^*(G, M) \cong \operatorname{Ext}^*_{\mathbb{Z}[G]}(\mathbb{Z}, M)$ as universal δ -functors.

Now let C_n be the cyclic group of order n, generated by element g, then $\mathbb{Z}[C_n] \cong \mathbb{Z}[g]/(g^n-1)$, so we have $0=g^n-1=(g-1)N_g$ in $\mathbb{Z}[C_n]$ where N_g is the norm element $N_g=1+g+\cdots+g^{n-1}$, so we have a free resolution of \mathbb{Z} :

$$\cdots \longrightarrow \mathbb{Z}[C_n] \xrightarrow{1-g} \mathbb{Z}[C_n] \xrightarrow{N_g} \mathbb{Z}[C_n] \xrightarrow{1-g} \mathbb{Z}[C_n] \xrightarrow{\varepsilon} \mathbb{Z}$$

where augmentation ε sends g to 1. This allows us to compute the cohomology of any C_n -modules.

Proposition 6.3. Let M be an C_n -module, then

$$H^i(G,M) = \begin{cases} M^G, & i = 0 \\ \{m \in M \mid N_g m = 0\}/(1-g)M, & i > 0 \text{ odd} \\ M^G/N_g M, & i > 0 \text{ even} \end{cases}$$

Proof. Taking $\operatorname{Hom}(P_*,M)^G$ gives

$$\cdots \longleftarrow M \xleftarrow[1-g]{} M \xleftarrow[N_g]{} M \xleftarrow[1-g]{} M \longleftarrow \cdots$$

Remark 6.4. If M has trivial action, then

$$H^{i}(G,M) = \begin{cases} M, & i = 0\\ M[n], & i > 0 \text{ odd}\\ M/n, & i > 0 \text{ even} \end{cases}$$

where M[n] is the n-torsion in M.

Now if $T = \mathbb{Z}$ be with generator t, then $\mathbb{Z}[T]$ is isomorphic to the Laurent polynomials, so we have a resolution

$$0 \longrightarrow \mathbb{Z}[T] \xrightarrow{1-t} \mathbb{Z}[T] \longrightarrow \mathbb{Z}$$

since (1-t) is not a zero-divisor of $\mathbb{Z}[T]$. Therefore, taking $\operatorname{Hom}(P_*,M)^T$ gives

$$0 \longleftarrow M \xleftarrow[1-t]{} M$$

$$H^{i}(T,M) = \begin{cases} M^{T}, & i = 0\\ M_{T}, & i = 1\\ 0, & \text{otherwise} \end{cases}$$

Now let X be a set, and let G_X be the free group on X.

Proposition 6.5. The augmentation ideal I_X is a free $\mathbb{Z}[G_X]$ -module, generated by the set $\{(x-1) \mid x \in X\}$, and so the exact sequence

$$0 \longrightarrow I_X \longrightarrow \mathbb{Z}[G_X] \longrightarrow \mathbb{Z} \longrightarrow 0$$

is a free resolution of \mathbb{Z} as a G_X -module.

Proof. As \mathbb{Z} -bases of I_X , we have $\{(g-1) \mid g \in G_X\}$, but $\{h(x-1) \mid h \in G, x \in X\}$ is also a \mathbb{Z} -linear basis for I_X . \square

Remark 6.6. Groups are free if and only if they have cohomological dimension 1.

7 Sept 6, 2023: Cup Product

Remark 7.1. 1. A crossed homomorphism would be a group homomorphism when G has trivial action on M.

2. If X is an A-torsor, then there is a given G-action and a right A-action so that $X \times A \to X$ is given by a diagonal action compatible to the G-action. Therefore, $g(x \cdot a) = gx \cdot ga$.

Definition 7.2. Let A and B be G-modules, then there is a notion of tensor product $A \otimes_G B$ as a G-module via the diagonal action $g(a \otimes b) = ga \otimes gb$. On the level of cochain, we have a cup product

$$C^{p}(G, A) \otimes C^{q}(G, B) \xrightarrow{\smile} C^{p+q}(G, A \otimes B)$$

$$(\alpha : G^{p+1} \to A) \otimes (\beta : G^{q+1} \to B) \mapsto (\alpha \smile \beta)$$

$$(g_{0}, \dots, g_{p+q}) \mapsto \alpha(g_{0}, \dots, g_{p}) \otimes \beta(g_{p}, \dots, g_{p+q})$$

Proposition 7.3. $\partial(\alpha \smile \beta) = (\partial \alpha) \cup \beta + (-1)^{|\alpha|} \alpha \smile \partial \beta$.

Corollary 7.4. • If α and β are cocycles, then $\alpha \smile \beta$ is also a cocycle.

• If α is a cocycle β is a coboundary, or vice versa, then $\alpha \smile \beta$ is a coboundary. Indeed, if $\beta = \partial \gamma$, then $\partial(\alpha \smile \gamma) = (-1)^{|\alpha|}\alpha \smile \beta$.

Therefore, on the level of cohomology, we have a (bilinear) cup product as well:

$$H^p(G,A) \otimes H^q(G,B) \to H^{p+q}(G,A \otimes B)$$

Example 7.5. • If p = q = 0, then

$$H^0(G, A) \otimes H^0(G, B) \cong A^G \otimes B^G \to H^0(G, A \otimes B) \cong (A \otimes B)^G$$

 $a \otimes b \mapsto a \otimes b$

• By extending this prioperty, we get a G-equivariant pairing $A \otimes B \to C$ and therefore

$$H^p(G,A) \otimes H^q(G,B) \xrightarrow{\smile} H^{p+q}(G,C).$$

Example 7.6. Let R be a commutative ring, and if there is a G-action on R, then the multiplication $m: R \otimes R \to R$ is G-equivariant, so we have a cup product

$$\smile: H^p(G,R) \otimes H^q(G,R) \to H^{p+q}(R)$$

This has the following properties:

- 1. This is natural in A, B, and C.
- 2. This is compatible with connecting homomorphism and exact sequences, that is,
 - Given short exact sequences

$$0 \longrightarrow A' \longrightarrow A \longrightarrow A'' \longrightarrow 0$$

and

$$0 \longrightarrow C' \longrightarrow C \longrightarrow C'' \longrightarrow 0$$

and pairing $A\otimes B\to C$, then this induces $A\otimes B\to C'$ and in the quotients we have $A''\otimes B\to C''$, so $\delta(\alpha\smile\beta)=\delta\alpha\smile\beta$, so we have a commutative diagram 1

$$A' \otimes B \longrightarrow A \otimes B \longrightarrow A'' \otimes B \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow C' \longrightarrow C \longrightarrow C'' \longrightarrow 0$$

¹This may require the assumption that the modules are flat.

and thus

$$H^{o}(G,A'')\otimes H^{q}(G,B) \longrightarrow H^{p+q}(G,A''\otimes B)$$

$$\downarrow^{\delta\otimes 1} \qquad \qquad \downarrow^{\delta}$$

$$H^{p+1}(G,A')\otimes H^{q}(G,B) \longrightarrow H^{p+q+1}(G,A'\otimes B)$$

• Given

$$0 \longrightarrow B' \longrightarrow B \longrightarrow B'' \longrightarrow 0$$

and

$$0 \longrightarrow C' \longrightarrow C \longrightarrow C'' \longrightarrow 0$$

and pairings

so
$$\delta(\alpha \smile \beta) = (-1)^{|\alpha|} \alpha \smile \delta\beta$$

Proof. Let $\alpha = [a]$ for $a: G^{p+1} \to A$ and $\beta = [b]$ for $b: G^{q+1} \to B''$, then there is a lift $b: G^{q+1} \xrightarrow{\tilde{b}} B \to B''$. Then we have

$$C^{q}/B^{q}(B') \longrightarrow C^{q}/B^{q}(B) \longrightarrow C^{q}/B^{q}(B'') \longrightarrow 0$$

$$\downarrow^{\partial} \qquad \qquad \downarrow^{\partial} \qquad \qquad \downarrow^{\partial}$$

$$0 \longrightarrow Z^{q}(B') \longrightarrow Z^{q+1}(B) \longrightarrow Z^{q+1}(B'')$$

and by the snake lemma we have a connecting homomorphism over group cohomologies.

Recall that we have a chain-level cup product, and we extend it to the level of cohomology. The cup product has the following properties:

1. If p = q = 0, then the cup product is the natural composition

$$A^G \otimes B^G \to (A \otimes B)^G \to C^G$$

- 2. Functoriality.
- 3. We have $\delta(\alpha \smile \beta) = \delta(\alpha) \smile \beta$, and incorporating this with the exact sequence, we have $\delta(\alpha \smile \beta) = (-1)^{|\alpha|}\alpha \smile \delta(\beta)$.

By the universal property of the tensor product, there exists a unique bilinear pairing that also satisfies these properties. To prove this, we use dimension-shifting.

Remark 8.1. Let M be a module, and map it into the induced module with an extended short exact sequence

$$0 \longrightarrow M \longrightarrow \operatorname{Ind}^{G}(M) = \operatorname{Map}(G, M) \cong \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}[G], M) \longrightarrow M_{1} \longrightarrow 0$$

Taking the fixed points, we have

$$0 \longrightarrow M^G \longrightarrow (\operatorname{Ind}^G(M))^G \longrightarrow (M_1)^G \longrightarrow H^1(G,M) \longrightarrow 0 \longrightarrow \cdots$$

$$\cdots \longrightarrow 0 \longrightarrow H^k(G, M_1) \stackrel{\cong}{\longrightarrow} H^{k+1}(G, M)$$

Here $(M_1)^G \to H^1(G, M)$ is a surjection. Now we know $\delta: H^i(G, M_1) \to H^{i+1}(G, M)$ is a surjection for i = 0, and is an isomorphism for i > 0.

Proceeding inductively, we define

$$0 \longrightarrow M_i \longrightarrow \operatorname{Ind}^G(M) \longrightarrow M_{i+1} \longrightarrow 0$$

If we start with $A \otimes B \to C$, then use property (3) repeatedly to the short exact sequence above, we get the uniqueness.

Example 8.2. Consider $G = C_2$, and consider the cohomology ring $H^*(C_2, \mathbb{F}_2)$. The action is obviously trivial. This induced the sequence with augmentation

$$0 \longrightarrow \mathbb{F}_2 \longrightarrow \mathbb{F}_2[C_2] \longrightarrow \mathbb{F}_2 \longrightarrow 0$$

The boundary map is $\delta: H^i(C_2, \mathbb{F}_2) \to H^{i+1}(C_2, \mathbb{F}_2)$ is an isomorphism for all i.

We know $H^i(C_2, \mathbb{F}_2) = \mathbb{F}_2\{x_i\}$, so we can write $x_{i+1} = \delta x_i$. The product $x_i \smile x_j = \delta^i x_0 \smile \delta^j x_0 = \delta^{i+j} x_0 \smile x_0 = \delta^{i+j} x_0 = x_{i+j}$. Hence, $H^*(C_2, \mathbb{F}_2) \cong \mathbb{F}_2[x]$ where $x = |x_1|$. Note that

$$H^{i}(C_{2}, M) = \begin{cases} M^{C_{2}}, & i = 0\\ \ker(N)/(\sim), & i \text{ odd}\\ M^{C_{2}}/N, & i > 0 \text{ even} \end{cases}$$

Remark 8.3. For odd prime p, we want to use the same method to calculate $H^i(C_p, \mathbb{F}_p)$ with trivial action, then this is $\{\mathbb{F}_p, i \geq 0\}$. For instance, if we look at $x_1 \smile x_1$, then this is $(-1)^{|x_1|}x_1 \smile x_1$, so this gives $2x_1 \smile x_1 = 0 \in H^2 = \mathbb{F}_p$, so this gives $x_1 \smile x_1 = 0$. Note that $H^*(C_p, \mathbb{F}_p) \cong \bigwedge(x_1) \otimes \mathbb{F}_p[y]$.

We now talk about the functoriality in G. Given G_1 acting on M_1 and G_2 acting on M_2 , and say $\varphi: G_1 \to G_2$ is a group homomorphism, and a map of modules $f: M_2 \to M_1$, then we say φ and f is a compatible pair of morphisms if for any $g \in G_1$, the diagram

$$\begin{array}{ccc} M_2 & \stackrel{f}{\longrightarrow} & M_1 \\ \varphi(g) & & \downarrow g \\ M_2 & \stackrel{f}{\longrightarrow} & M_1 \end{array}$$

This gives a map $C^*(G_2, M_2) \to C^*(G_1, M_1)$, and hence a map on cohomology $H^*(G_2, M_2) \to H^*(G_1, M_1)$. For instance, if $\varphi = \operatorname{id}$, we obtain the functoriality in M, as we previously saw. Similarly, if $f = \operatorname{id}$, and $M = M_2$ is a G_2 -module, on which $g_1 \cdot m = \varphi(g_1) \cdot m$.

There are some special situations from the relations above.

1. Conjugation: let $H \subseteq G$ be a subgroup, and we consider A to be a G-module, then there is restriction of G-action on A to H, so A becomes a H-module. Let $B \subseteq A$ be a H-submodule in this sense. This is preserved by the action of G, but not necessarily by the action of G. For any $g \in G$, let the right conjugation be $h^g = g^{-1}hg$ on h, and let $gH = gHg^{-1}$ on subgroup G. The compatible morphisms are now

$${}^gH \to H$$
 $h \mapsto h^g$

and

$$B \to gB$$
$$b \mapsto gb$$

Therefore, the induced maps on conjugation is given by $(g)_* = H^*(H, B) \to H^*({}^gH, gB)$. Therefore, $(g_1g_2)_* = (g_1)_*(g_2)_*$.

2. Inflation: suppose $H \lhd G$ is a normal subgroup. We have the canonical map $G \to G/H$. Let A be a G-module, then G/H acts on A^H , and we look at the inclusion $A^H \hookrightarrow A$. Now $\varphi: G \to G/H$ and $f: A^H \hookrightarrow A$ are compatible, so on the level of cohomology, we get an inflation map

$$\inf_{G}^{G/H}: H^*(G/H, A^H) \to H^*(G, A).$$

If we look at $H_1 \subseteq H_2 \triangleleft G$ where $H_i \triangleleft G$, we have $G \to G/H_1 \to G/H_2 \cong (G/H_1)/(H_2/H_1)$, then the inflation is

$$\inf_G^{G/H_1} \circ \inf_{G/H_1}^{G/H_2} = \inf_G^{G/H_2}.$$

3. Restriction: Let $\varphi: H \hookrightarrow G$ and consider A A as G-module and H-module respectively. There is now a restriction map

$$\operatorname{res}_H^G:H^*(G,A)\to H^*(H,A)$$

Now if $H_1 \subseteq H_2 \subseteq G$, then

$$\operatorname{res}_{H_1}^G = \operatorname{res}_{H_1}^{H_2} \circ \operatorname{res}_{H_2}^G$$

Inflation and restriction fit in a long exact sequence.

Finally, we discuss corestriction/transfer/norm. Let G be a finite group and let M be a G-module, then we have $M^G \hookrightarrow M$ as inclusion. On the other way around, we have

$$\label{eq:transform} \begin{split} \operatorname{tr}/N: M \to M^G \\ m \mapsto \sum_{g \in G} gm. \end{split}$$