1.0 **SET**

Pengenalan

Suatu senarai, kumpulan atau suatu kelas objek. Contohnya nombor, kereta, sungai dan sebagainya.

Takrif:

Set ialah himpunan objek. Sebarang satu objek dinamakan *unsur* atau *ahli kepada* set tersebut.

Contoh:

Himpunan nombor-nombor 2, 4, 6, 8 ialah satu set dan 2 ialah unsur set itu.

Tatanda Set:

1. Tanda kurungan ikal { } dengan ahlinya

disenaraikan atau diterangkan

Contoh:

2. Dengan memperihalkan sifat keahlian melalui tanda pembina set

Contoh:

asli}

$$A = \{x : 1 \le x \le 4\} = \{1, 2, 3, 4\}$$

 $M = \{n : n \text{ adalah nombor}\}$

• Simbol ∈ ('ahli bagi' atau 'unsur bagi') menunjukkan keahlian dalam suatu set.

Contoh:

Set semesta ξ atau U ialah set am di mana unsur-unsur dari semua set dalam pertimbangan diambil.

Set Piawai

- 1. N = set nombor asli $N = \{1, 2, 3, ...\}$
- 2. Z = set nombor integer $Z = \{ ..., -2, -1, 0, 1, 2, ... \}$
- 3. Q = set nombor nisbah

$$Q = \left\{ \frac{a}{b}, a, b \in Z, b \neq 0 \right\}$$

4. I = set nombor tak nisbah
Unsurnya ialah nombor dengan
perwakilan perpuluhan tidak
berakhir atau tidak berulang

Contoh: $\sqrt{2}$, $\sqrt{3}$, p, $-\sqrt{5}$

5. R = set nombor nyata (-∞,∞)Unsurnya ialah semua nombor nisbah dan nombor tak nisbah

Takrif Kesatuan ∪

Kesatuan bagi dua set A dan B di tulis $A \cup B$ ialah set bagi semua umsur dipunyai samada oleh set A atau B atau oleh kedua-duanya

Contoh:

Jika A =
$$\{1, 2, 3, 4\}$$
 dan B = $\{3, 4, 5\}$
Maka $A \cup B = \{1, 2, 3, 4, 5\}$

Takrif Persilangan ∩

Persilangan bagi dua set A dan B, ditulis $A \cap B$, ialah set semua unsur sepunya kepada kedua-dua A dan B.

Contoh:
Jika A = {1, 2, 3, 4} dan B = {3,4}
Maka
$$A \cap B = \{3,4\}$$

Takrif Subset ⊂

Suatu set A dikatakan subset kepada set B jika semua unsur set A adalah set B dan ditulis $A \subset B$

Contoh: $\{1,2,3\} \subset \{1,2,3,4\}$

Set Kosong

Set nul atau **set kosong** ialah set yang tidak mengandungi unsur, ditulis \emptyset atau $\{\ \}$

$$A = \{ 1,2,3,4 \}$$
 dan $B = \{5,6,7\}$
Maka $A \cap B = \emptyset$

Penafian:

Garis '/' yang ditulis memotong simbol-simbol hubungan tertentu digunakan untuk menunjukkan penafian.

Contoh:

LATIHAN

1. Katalah $A = \{a,b,c,d\}$ dan $B = \{e,f,g\}$

$$A \cup B =$$

$$A \cap B =$$

2. Katalah
$$X=\{1,3,5,7,9\}$$
 dan $Y=\{5,7,9,11,13\}$ $X \cup Y=$

 $X \cap Y$ Selang dan Graf

Bil	Set Nombor Nyata	Tanda Selang	Perwakilan Garis Nombor
1	$\{x:a < x < b\}$	(a , b	110111001
1		$\begin{pmatrix} a, b \\ \end{pmatrix}$	
2	$\{x:a\leq x\leq b\}$	[a , b	
3	$\left\{x:a < x \le b\right\}$	(a , b	
]	
4	$\{x: a \le x < b\}$	[a , b	
)	
5	$\{x:x\geq b\}$	$[b, \infty)$	

BAB 1

6	$\{x:x < b\}$	$(-\infty,b)$	
	j		
7	R	$(-\infty,\infty)$	

1.1 FUNGSI

Takrif fungsi

Fungsi $f:A \rightarrow B$ adalah satu petua yang menghubungkan setiap unsur $x \in A$ dengan hanya satu unsur $y \in B$ dan di tulis y = f(x)

Takrif Domain

Domain bagi satu fungsi y = f(x) adalah nilai-nilai x dimana fungsi f adalah tertakrif atau wujud.

<u>Takrif Julat</u>

Julat bagi satu fungsi y = f(x) adalah nilai-nilai y apabila x terdiri daripada semua nilai dalam domain f.

Jenis-Jenis Fungsi

1. Fungsi malar

Ditakrifkan sebagai f(x) = a di mana a ialah pemalar

2. Fungsi linear

Ditakrifkan sebagai f(x) = ax + b, a, b pemalar dan $a \neq 0$

3. Fungsi Mutlak : f(x) = /x / di mana

$$|x| = \begin{cases} x & jika & x \ge 0 \\ -x & jika & x < 0 \end{cases}$$

4. Fungsi Punca

Fungsi punca ditakrifkan oleh $f(x) = x^{\frac{1}{n}} = \sqrt[n]{x}$

Contoh 1:

$$f(x) = x^{\frac{1}{2}} = \sqrt{x}$$

Contoh 2:

5. Fungsi nisbah

Fungsi nisbah ditakrifkan oleh p(x) dan q(x) polinomial

$$f(x) = \frac{p(x)}{q(x)}$$

$$f(x) = \frac{x}{x+2}$$

Mencari Domain dan Julat

Terdapat dua kaedah dalam menentukan domain dan julat bagi suatu fungsi f(x)

1. Mencari Domain dan Julat secara

Domain
$$f(x) = D[f] = [a,b]$$

Julat $f(x) = J[f] = [c,d]$

i. Tukarkan fungsi y = f (x) dalam sebutan y dan tentukan domain bagi y. Domain bagi y adalah julat bagi x

$$D[f] = J[f^{-1}]$$

 $J[f] = D[f^{-1}]$

Mencari Domain Secara Aljabar

1. Jika f (x) suatu fungsi polinomial maka

$$D[f] = (-\infty, \infty)$$

Contoh:

 $f(x) = x^2 - 1$ maka domainnya semua nombor nyata atau $D[f] = (-\infty, \infty)$

2. Jika fungsi berbentuk $\frac{1}{x}$ maka

$$x \neq 0$$

$$f(x) = \frac{1}{x-1}$$
 maka $x-1 \neq 0, x \neq 1$

$$D[f] = (-\infty,1) \cup (1,\infty)$$

3. Jika fungsi berbentuk \sqrt{x} maka $x \ge 0$

Contoh;

$$f(x) = \sqrt{3-x} \text{ maka } 3-x \ge 0, x \le 3$$

D[f] = $(-\infty,3]$

4. Jika fungsi berbentuk $\frac{1}{\sqrt{x}}$ maka x > 0

$$f(x) = \frac{1}{\sqrt{x+5}} \quad \text{maka} \quad x+5 > 0,$$
$$x > -5$$
$$D[f] = (-5, \infty)$$

Gabungan aljabar bagi fungsi

Takrif:

Jika f(x) dan g(x) adalah 2 fungsi maka

1.
$$(f+g)(x) = f(x) + g(x)$$

2.
$$(f-g)(x) = f(x) - g(x)$$

3.
$$(fg)(x) = f(x) g(x)$$

4.
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$
 , $g(x) \neq 0$

Takrif Fungsi Gubahan

Jika f(x) dan g(x) dua fungsi maka fungsi gubahan $(g \circ f)$ di takrifkan oleh

$$(g \circ f)(x) = g(f(x))$$