Algorithms from the book implemented in GAP

Version 0.1

8 April 2016

Bertín Hernández-Trejo Rafael Villarroel-Flores Citlalli Zamora-Mejía

 ${\bf Bert\'{in}\; Hern\'{a}ndez\text{-}Trejo}\;\; {\bf Email:\; bertin 13@gmail.com}$

Rafael Villarroel-Flores Email: rvf0068@gmail.com

Homepage: http://rvf0068.github.io

Citlalli Zamora-Mejía Email: cizame@gmail.com

Copyright

© 2016 by Bertín Hernández-Trejo, Rafael Villarroel-Flores and Citlalli Zamora-Mejía kreher-stinson package is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

Contents

1				
	1.1	Subsets		
2	Bactracking			
	2.1	Knapsack		
	2.2	Generating all cliques		
	2.3	Exact cover		
	2.4	Bounding functions		
	2.5	Exercises		
3	Heu	ristic Search	1	
	3.1	Uniform graph partition	1	
	3.2	Steiner systems	1	
	3.3	The knapsack problem	1	
In	dev		1	

Chapter 1

Generating Combinatorial Objects

1.1 Subsets

1.1.1 KSSubsetLexRank

▷ KSSubsetLexRank(number, subset)

(function)

Returns the rank of subset as a subset of the set of numbers from 1 to number (Algorithm 2.1).

1.1.2 KSSubsetLexUnrank

▷ KSSubsetLexUnrank(number, rank)

(function)

Returns the subset of {1..number} whose rank is rank. (Algorithm 2.2).

1.1.3 KSkSubsetLexRank

▷ KSkSubsetLexRank(T, k, n)

(function)

Finds the rank of T, among all k-subsets of an n-set.

1.1.4 KSkSubsetLexUnrank

 \triangleright KSkSubsetLexUnrank(r, k, n)

(function)

Given an integer r between 0 and $\binom{n}{k} - 1$, returns the k-subset of an n-set with rank r.

Chapter 2

Bactracking

2.1 Knapsack

2.1.1 KSCheckKnapsackInput

▷ KSCheckKnapsackInput(K)

(function)

Checks for valid input data for the Knapsack problems (Problems 1.1-1.4). *K* is a list, which first element is the vector of profits, the second is the vector of weights, and the third is the capacity of the knapsack, which must be an integer.

2.1.2 KSKnapsack1

▷ KSKnapsack1(K)

(function)

Implementation of Algorithm 4.1. K is a list, which elements are profits, weights, capacity.

2.1.3 KSKnapsack2

▷ KSKnapsack2(K)

(function)

Implementation of Algorithm 4.3. K is a list, which elements are profits, weights, capacity.

2.2 Generating all cliques

2.2.1 KSAllCliques

▷ KSAllCliques(graph)

(function)

Implementation of Algorithm 4.4. A graph G is defined by the list graph, which must be a list of subsets of $\{1,...,n\}$, for some integer n. The neighbors of vertex i are the elements of graph[i].

2.3 Exact cover

2.3.1 KSExactCover

▷ KSExactCover(number, cover)

(function)

Finds an subcollection of cover (which is a set of subsets of $\{1,..,number\}$) that is an exact cover of $\{1,..,number\}$, if it exists.

2.3.2 KSRandomSubsetOfSubsets

▷ KSRandomSubsetOfSubsets(n, delta)

(function)

Generates a random subset of the set of all subsets of $\{1..n\}$, with density delta. This can be used as an instance of the ExactCover problem.

2.4 Bounding functions

2.4.1 KSSortForRationalKnapsack

▷ KSSortForRationalKnapsack(K)

(function)

Given an instance K of the Knapsack Problem, where the two first components of K represent profits and weights, this function returns a list, where the first component is the same instance of the problem, but the profits and weights have been sorted in non-increasing order of values of <code>profits[i]/weights[i]</code>. The second component is the permutation applied to the original problem.

2.4.2 KSRationalKnapsackSorted

▷ KSRationalKnapsackSorted(K)

(function)

Solves the rational Knapsack problem for the instance K. Profits and weights must be sorted in non-increasing order of values of profits[i]/weights[i].

2.4.3 KSRationalKnapsack

▷ KSRationalKnapsack(K)

(function)

Solves the rational Knapsack problem for the instance K.

2.4.4 KSKnapsack3

▷ KSKnapsack3(K)

(function)

Solves the Knapsack problem for the instace *K*, using the function KSRationalKnapsack as bounding function.

2.4.5 KSRandomKnapsackInstance

▷ KSRandomKnapsackInstance(size, maximum_weight)

(function)

Returns a random instance of a Knapsack problem, for size objects. The maximum weight is $maximum_weight$. For each i, the profit P[i] is $2*W[i]*\varepsilon$, where ε is a random number between 0.9 and 1.1.

2.4.6 KSRandomTSPInstance

▷ KSRandomTSPInstance(n, Wmax)

(function)

Returns a random instance of the TSP problem, which is a symmetric n by n matrix, such that its ij entry is the cost to travel from city i to city j. The entries in the diagonal are made equal to ∞ . Each cost is a random integer between 1 and Wmax.

2.4.7 KSTSP1

ightharpoonup (function)

Solves the TSP problem, for the instance *G*, traversing the whole tree space.

2.4.8 KSMinCostBound

▷ KSMinCostBound(V, G)

(function)

A bounding function for the TSP problem.

2.4.9 KSReduce

ightharpoons KSReduce(M) (function)

Reduce function for matrices, which will be useful to implement a secound bounding function for the TSP problem.

2.4.10 KSReduceBound

▷ KSReduceBound(V, M)

(function)

A second bounding function for the TSP problem. V is a partial solution, and M is the problem instance. This implements Algorithm 4.12.

2.4.11 KSTSP2

 \triangleright KSTSP2(G, F) (function)

Solves the TSP problem for instance G, using the bounding function F.

2.4.12 KSMaxClique1

Adapts the function that lists the complete subgraphs of G, to find the size of the largest clique of G. This implements Algorithm 4.14.

2.4.13 KSMaxClique2

▷ KSMaxClique2(G, F)

(function)

Finds the size of the maximum clique in the graph G, using the bounding function F. This implements Algorithm 4.19.

2.4.14 KSSizeBound

▷ KSSizeBound(XX, G, C1)

(function)

A bounding function for the MaxClique problem. XX is a complete subgraph of G, and CI is the set of candidates to extend XX.

2.4.15 KSGenerateRandomGraph

▷ KSGenerateRandomGraph(n)

(function)

Returns a list of edges of a random graph on n vertices. This implements Algorithm 4.20.

2.4.16 KSEdgeListToAdjacencyList

▷ KSEdgeListToAdjacencyList(Ged, n)

(function)

Given the list of edges Ged of a graph with n vertices, returns the adjacency list of such graph.

2.4.17 KSGreedyColor

▷ KSGreedyColor(G)

(function)

Colors the vertices of a graph G using a greedy strategy. This implements Algorithm 4.16.

2.4.18 KSSamplingBound

▷ KSSamplingBound(XX, G, C1)

(function)

A bounding function for the MaxClique problem. XX is a complete subgraph of G, and C1 is the set of candidates to extend XX. This function uses a fixed greedy coloring of the graph G. Implements Algorithm 4.17.

2.4.19 KSInducedSubgraph

```
▷ KSInducedSubgraph(G, L)
```

(function)

Returns the adjacency list of the subgraph of G induced by the vertices in L.

2.4.20 KSGreedyBound

```
▷ KSGreedyBound(XX, G, C1)
```

(function)

A bounding function for the MaxClique problem. XX is a complete subgraph of G, and C1 is the set of candidates to extend XX. This uses a greedy coloring of the subgraph of G induced by L.

2.4.21 KSGenerateRandomGraph2

▷ KSGenerateRandomGraph2(n, delta)

(function)

Returns the list of edges of a random graph on n vertices with edge density delta.

2.4.22 KSTSP3

$$\triangleright$$
 KSTSP3(G , F) (function)

Solves the TSP problem for instance G, using bounding function F, applying the branch and bound technique.

2.5 Exercises

2.5.1 KSQueens

```
▷ KSQueens(size) (function)
```

Solves the *n* queens problem for a size \times size board. (Exercise 4.1.(a))

```
gap> KSQueens(4);
[ 2, 4, 1, 3 ]
[ 3, 1, 4, 2 ]
```

2.5.2 KSWalks

```
▷ KSWalks(number) (function)
```

Finds all non-overlapping walks in the plane of length number. (Exercise 4.1.(b))

Chapter 3

Heuristic Search

3.1 Uniform graph partition

3.1.1 KSRandomkSubset

 \triangleright KSRandomkSubset(k, n) (function)

Returns a randomly chosen k-subset of the set of integers from 1 to n.

3.1.2 KSSelectPartition

▷ KSSelectPartition(n) (function)

Returns a random partition of the set $\{1, 2, ..., 2n\}$ into two subsets of size n each. (Algorithm 5.7)

3.1.3 KSCost

$$ightharpoonup KSCost(G, P)$$
 (function)

Returns the cost of the partition *P* of the vertices of the weighted graph *G*.

3.1.4 KSGain

$$\triangleright$$
 KSGain(G , P , u , v) (function)

P is a partition in equal parts of the vertices of G. This function calculates the change in the value of the cost function when interchanging the vertex u from the first set in the partition P with the vertex v which is in the second set of the partition.

3.1.5 KSRandomCostMatrix

Returns a symmetric n by n matrix, such that its entries are random integers from 0 to Wmax, and with zeros in the main diagonal.

3.1.6 KSAscend

 \triangleright KSAscend(G, P) (function)

Given a partition P of the vertices of the weighted graph G, it returns a partition Q with less cost than P, by exchanging one vertex of the partition, if such partition exists. Otherwise, returns the same partition P.

3.2 Steiner systems

3.2.1 KSConstructBlocks

▷ KSConstructBlocks(v, other)

(function)

Constructs a list of blocks of length v from the list of lists other. (Algorithm 5.12)

3.2.2 KSRevisedStinsonAlgorithm

▷ KSRevisedStinsonAlgorithm(v)

(function)

Constructs a Steiner triple system with v points, using a hill-climbing algorithm. Implements Algorithm 5.19.

3.3 The knapsack problem

3.3.1 KSKnapsackSimulatedAnnealing

▷ KSKnapsackSimulatedAnnealing(K, cmax, TO, alpha)

(function)

Implements Algorithm 5.20. *K* is the instance of the Knapsack problem to solve. *cmax* is the number of iterations to be done. *TO* is the initial "temperature" and alpha is the parameter of the "cooling schedule".

3.3.2 KSRandomFeasibleSolutionKnapsack

▷ KSRandomFeasibleSolutionKnapsack(K)

(function)

Returns a randomly chosen feasible solution to the Knapsack problem instance K.

3.3.3 KSKnapsackTabuSearch

▷ KSKnapsackTabuSearch(K, cmax, L)

(function)

Searches for an optimal solution to the Knapsack problem instance K using a tabu search list. cmax is the maximum number of iterations, and L the length of iterations a tabu search should be kept.

Index

```
KSSubsetLexRank, 4
KSAllCliques, 5
KSAscend, 11
                                           KSSubsetLexUnrank, 4
KSCheckKnapsackInput, 5
                                           KSTSP1, 7
KSConstructBlocks, 11
                                           KSTSP2, 7
KSCost, 10
                                           KSTSP3, 9
KSEdgeListToAdjacencyList, 8
                                           KSWalks, 9
KSExactCover, 6
KSGain, 10
KSGenerateRandomGraph, 8
KSGenerateRandomGraph2, 9
KSGreedyBound, 9
KSGreedyColor, 8
KSInducedSubgraph, 9
KSKnapsack1, 5
KSKnapsack2, 5
KSKnapsack3, 6
KSKnapsackSimulatedAnnealing, 11
KSKnapsackTabuSearch, 11
KSkSubsetLexRank, 4
KSkSubsetLexUnrank, 4
KSMaxClique1, 8
KSMaxClique2, 8
KSMinCostBound, 7
KSQueens, 9
KSRandomCostMatrix, 10
{\tt KSRandomFeasibleSolutionKnapsack}, 11
KSRandomKnapsackInstance, 7
KSRandomkSubset, 10
KSRandomSubsetOfSubsets, 6
KSRandomTSPInstance, 7
KSRationalKnapsack, 6
KSRationalKnapsackSorted, 6
KSReduce, 7
KSReduceBound, 7
KSRevisedStinsonAlgorithm, 11
KSSamplingBound, 8
KSSelectPartition, 10
KSSizeBound, 8
KSSortForRationalKnapsack, 6
```