MP* KERICHEN 2021-2022

DS no7

Il sera, dans la notation, tenu compte de la présentation et de la qualité de la rédaction. Les résultats devront obligatoirement être soulignés ou encadrés à la règle, le texte et les formules ponctuées, un minimum de 80% des s du pluriel et de 70% des accents est requis.

Pénalités:

- Moins de 80% des s du pluriel ou moins de 70% des accents : -3 points,
- Formules mathématiques non ponctuées : -1 point,
- Recours à des abréviations (tt, qqs, fc., ens...) : -2 points.

L'usage de la calculatrice est interdit.

Dans tout ce sujet, I est un intervalle de \mathbb{R} d'intérieur non vide et w est une fonction continue et strictement positive de I dans \mathbb{R} ; on dit que w est un poids sur I.

Etant donné une fonction continue $f: I \to \mathbb{R}$ telle que fw soit intégrable sur I, on cherche à approcher l'intégrale $\int_I f(x)w(x)dx$ par une expression de la forme

$$I_n(f) = \sum_{j=0}^n \lambda_j f(x_j),$$

où $n \in \mathbb{N}$, $(\lambda_0, \dots, \lambda_n) \in \mathbb{R}^{n+1}$ et $x_0 < x_1 < \dots < x_n$ sont n+1 points distincts dans I. Une telle expression $I_n(f)$ est appelée formule de quadrature et on note

$$e(f) = \int_{I} f(x)w(x)dx - \sum_{j=0}^{n} \lambda_{j}f(x_{j})$$

l'erreur de quadrature associée. On remarque que e est une forme linéaire sur l'espace vectoriel des fonctions f de I dans \mathbb{R} telles que fw est intégrable sur I.

On rappelle qu'un polynôme est dit unitaire si son coefficient dominant est 1.

Etant donné un entier $m \in \mathbb{N}$, on note $\mathbb{R}_m[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à m. On dit qu'une formule de quadrature $I_n(f)$ est exacte sur $\mathbb{R}_m[X]$ si,

$$\forall P \in \mathbb{R}_m[X], \quad e(P) = 0,$$

ce qui signifie que, pour tout polynôme P de degré inférieur ou égal à m,

$$\int_{I} P(x)w(x)dx = \sum_{j=0}^{n} \lambda_{j} P(x_{j}).$$

Enfin, on appelle ordre d'une formule de quadrature $I_n(f)$ le plus grand entier $m \in \mathbb{N}$ pour lequel la formule de quadrature $I_n(f)$ est exacte sur $\mathbb{R}_m[X]$.

Les parties II et III s'appuient sur la partie I et sont indépendantes entre elles.

I. Généralités sur les formules de quadrature

I.A - Exemples élémentaires

Dans cette sous-partie, on se place dans le cas I = [0,1] et $\forall x \in I$, w(x) = 1. On cherche donc à approcher $\int_0^1 f(x)dx$ lorsque f est une fonction continue de [0,1] dans \mathbb{R} .

- 1. Déterminer l'ordre de la formule de quadrature $I_0(f) = f(0)$ et représenter graphiquement l'erreur associée e(f).
- 2. Faire de même avec la formule de quadrature $I_0(f) = f(1/2)$.
- 3. Déterminer les coefficients $\lambda_0, \lambda_1, \lambda_2$ pour que la formule $I_2(f) = \lambda_0 f(0) + \lambda_1 f(1/2) + \lambda_2 f(1)$ soit exacte sur $\mathbb{R}_2[X]$. Cette formule de quadrature est-elle d'ordre 2?

I.B - Construction de formules d'ordre quelconque

On revient au cas général. Soit $n \in \mathbb{N}$. On considère n+1 points distincts dans I, notés $x_0 < x_1 < \cdots < x_n$, et une fonction continue f de I dans \mathbb{R} .

- 4. Montrer que l'application $\varphi : \left| \begin{array}{cc} \mathbb{R}_n[X] & \to & \mathbb{R}^{n+1} \\ P & \mapsto & (P(x_0), P(x_1), \dots, P(x_n)) \end{array} \right| \text{ est un isomorphisme.}$
- 5. Montrer que, pour tout $i \in [0, n]$, il existe un unique polynôme $L_i \in \mathbb{R}_n[X]$ tel que

$$\forall j \in [[0, n]], \quad L_i(x_j) = \begin{cases} 0 & \text{si } j \neq i, \\ 1 & \text{si } j = i. \end{cases}$$

- 6. Montrer que $(L_0, ..., L_n)$ est une base de $\mathbb{R}_n[X]$. Cette base est appelée base de Lagrange associée aux points $(x_0, ..., x_n)$.
- 7. On suppose que, pour tout $k \in \mathbb{N}$, $x \mapsto x^k w(x)$ est intégrable sur I. Montrer que la formule de quadrature $I_n(f) = \sum_{i=0}^n \lambda_j f(x_j)$ est exacte sur $\mathbb{R}_n[X]$ si, et seulement si,

$$\forall j \in [[0, n]], \quad \lambda_j = \int_I L_j(x) w(x) dx.$$

8. On se place dans le cas I = [0,1] et $\forall x \in I$, w(x) = 1. Déterminer la base de Lagrange associée aux points (0,1/2,1) et retrouver ainsi les coefficients de la formule de quadrature $I_2(f)$ de la question ??.

I.C - Noyau de Peano et évaluation de l'erreur

Dans cette sous-partie, on suppose que l'intervalle I est un segment : I = [a, b], avec a < b. Pour tout entier naturel m, on considère la fonction $\varphi_m : \mathbb{R}^2 \to \mathbb{R}$ définie par

$$\forall (x,t) \in \mathbb{R}^2, \quad \varphi_m(x,t) = \begin{cases} (x-t)^m & \text{si } x \ge t, \\ 0 & \text{si } x < t. \end{cases}$$

On observe que φ_m est continue si $m \ge 1$ et discontinue si m = 0.

On considère une formule de quadrature $I_n(f) = \sum_{j=0}^n \lambda_j f(x_j)$.

On note $m \in \mathbb{N}$ l'ordre de cette formule et on cherche à évaluer l'erreur associée :

$$e(f) = \int_a^b f(x)w(x)dx - \sum_{j=0}^n \lambda_j f(x_j).$$

On suppose que f est de classe C^{m+1} sur I.

9. A l'aide de la formule de Taylor avec reste intégral, montrer que $e(f) = e(R_m)$, où R_m est définie par

$$\forall x \in [a,b], \quad R_m(x) = \frac{1}{m!} \int_a^b \varphi_m(x,t) f^{(m+1)}(t) dt.$$

10. En déduire que, si $m \ge 1$,

$$e(f) = \frac{1}{m!} \int_a^b K_m(t) f^{(m+1)}(t) dt,$$

où la fonction $K_m:[a,b]\to\mathbb{R}$ est définie par

$$\forall t \in [a,b], \quad K_m(t) = e(x \mapsto \varphi_m(x,t)) = \int_a^b \varphi_m(x,t)w(x)dx - \sum_{j=0}^n \lambda_j \varphi_m(x_j,t).$$

On pourra utiliser le résultat admis suivant : pour toute fonction continue $g:[a,b]^2 \to \mathbb{R}$, on a

$$\int_a^b \left(\int_a^b g(x,t) dt \right) dx = \int_a^b \left(\int_a^b g(x,t) dx \right) dt.$$

2

La fonction K_m est appelée noyau de Peano associé à la formule de quadrature. On admet que cette expression de e(f) reste valable pour m = 0.

I.D - Exemple : méthode des trapèzes

Dans cette sous-partie, on suppose que I est un segment et $\forall x \in I, w(x) = 1$. On se place d'abord dans le cas I = [0,1] et on considère la formule de quadrature

$$I_1(g) = \frac{g(0) + g(1)}{2},$$

qui est d'ordre m = 1 (on ne demande pas de le montrer).

11. Calculer le noyau de Peano associé $t\mapsto K_1(t)$ et montrer que, pour tout fonction g de classe \mathcal{C}^2 de [0,1] dans \mathbb{R} , on a la majoration suivante de l'erreur de quadrature associée :

$$|e(g)| \le \frac{1}{12} \sup_{x \in [0,1]} |g''(x)|.$$

On se place maintenant dans le cas d'un segment quelconque I = [a, b] (avec a < b), qu'on subdivise en n + 1 points a_0, \ldots, a_n équidistants:

$$\forall i \in [[0, n]], \quad a_i = a + ih,$$

où $h = \frac{b-a}{n}$ est le pas de la subdivision. On considère alors la formule de quadrature

$$T_n(f) = \frac{b-a}{n} \sum_{i=0}^{n-1} \frac{f(a_i) + f(a_{i+1})}{2},$$

appelée méthode des trapèzes. L'erreur de quadrature associée est notée :

$$e_n(f) = \int_a^b f(x)dx - T_n(f).$$

- 12. Représenter graphiquement $T_n(f)$.
- 13. On suppose que f est une fonction de classe \mathcal{C}^2 de [a,b] dans \mathbb{R} . Montrer que

$$e_n(f) = \frac{b-a}{n} \sum_{i=0}^{n-1} e(g_i),$$

où e est l'erreur associée à la formule de quadrature I_1 étudiée à la question ?? et les $g_i:[0,1]\to\mathbb{R}$ sont des fonctions à préciser.

14. En déduire la majoration d'erreur

$$|e_n(f)| \le \frac{(b-a)^3}{12n^2} \sup_{x \in [a,b]} |f''(x)|.$$

II. Polynômes orthogonaux et applications

Dans la suite, on note E l'ensemble des fonctions f continues de I dans \mathbb{R} telles que f^2w est intégrable sur I.

II.A - Etude d'un produit scalaire

- 15. Montrer que, pour toutes fonctions f et q de E, le produit fqw est intégrable sur I.
- 16. Montrer que E est un \mathbb{R} -espace vectoriel.

Pour toutes fonctions f et g de E, on pose

$$\langle f, g \rangle = \int_I f(x)g(x)w(x)dx.$$

17. Montrer qu'on définit ainsi un produit scalaire sur E.

Dans la suite, on munit E de ce produit scalaire et on note $\|\cdot\|$ la norme associée.

II.B - Polynômes orthogonaux associés à un poids

On suppose que, pour tout entier $k \in \mathbb{N}$, la fonction $x \mapsto x^k w(x)$ est intégrable sur I. Cela entraine par linéarité de l'intégrale que E contient toutes les fonctions polynomiales.

On admet qu'il existe une unique suite de polynômes $(p_n)_{n\in\mathbb{N}}$ telle que

- (a) pour tout $n \in \mathbb{N}$, p_n est unitaire
- (b) pour tout $n \in \mathbb{N}$, $\deg(p_n) = n$,
- (c) la famille $(p_n)_{n\in\mathbb{N}}$ est orthogonale pour le produit scalaire $\langle \cdot, \cdot \rangle$, autrement dit $\langle p_i, p_j \rangle = 0$, pour $i \neq j \in \mathbb{N}$.

On dit que les (p_n) sont les polynômes orthogonaux associés au poids w.

On s'intéresse aux racines des polynômes p_n .

On rappelle que \mathring{I} désigne l'intérieur de I, c'est-à-dire l'intervalle I privé de ses éventuelles extrémités.

On a donc I = a, b[, où $a = \inf(I) \in \mathbb{R} \cup \{-\infty\}$ et $b = \sup(I) \in \mathbb{R} \cup \{+\infty\}$.

Soit $n \in \mathbb{N}^*$. On note x_1, \ldots, x_k les racines distinctes de p_n qui sont dans \mathring{I} et m_1, \ldots, m_k leurs multiplicités respectives. On considère le polynôme

$$q(X) = \prod_{i=1}^{k} (X - x_i)^{\varepsilon_i}, \quad \text{avec } \varepsilon_i = \begin{cases} 1 & \text{si } m_i \text{ est impair,} \\ 0 & \text{si } m_i \text{ est pair.} \end{cases}$$

18. En étudiant $\langle p_n, q \rangle$, montrer que p_n possède n racines distinctes dans \mathring{I} .

II.C - Applications : méthodes de quadrature de Gauss

Considérons une formule de quadrature

$$I_n(f) = \sum_{j=0}^n \lambda_j f(x_j),$$

où $n \in \mathbb{N}$, $\lambda_0, \ldots, \lambda_n \in \mathbb{R}$ et $x_0 < x_1 < \cdots < x_n$ sont n+1 points distincts dans I. On suppose que les coefficients $(\lambda_j)_{0 \le j \le n}$ sont choisis comme à la question ?? :

$$\forall j \in [[0, n]], \quad \lambda_j = \int_I L_j(x) w(x) dx,$$

où (L_0, \ldots, L_n) est la base de Lagrange associée aux points (x_0, \ldots, x_n) (définie dans la partie I).

Ainsi, la formule $I_n(f)$ est d'ordre $m \ge n$. Nous allons montrer que dans ces conditions, il existe un unique choix des points $(x_i)_{0 \le i \le n}$ qui permet d'obtenir l'ordre m le plus elevé possible.

- 19. En raisonnant avec le polynôme $\prod_{i=0}^{n} (X x_i)$, montrer que $m \le 2n + 1$.
- 20. Montrer que m = 2n + 1 si et seulement si les x_i sont les racines de p_{n+1} .

II.D - Exemple 1

On se place ici dans le cas où I = [-1, 1] et w(x) = 1.

On est donc bien dans les conditions d'application des résultats précédemment obtenus.

- 21. Déterminer les quatre premiers polynômes orthogonaux (p_0, p_1, p_2, p_3) associés au poids w.
- 22. En déduire explicitement une formule de quadrature d'ordre 5 (on déterminera les points x_j et les coefficients λ_j).

II.E - Exemple 2

Dans cette sous-partie, I =]-1,1[et $w(x) = \frac{1}{\sqrt{1-x^2}}$.

23. Montrer que, pour tout entier $k \in \mathbb{N}$, la fonction $x \mapsto x^k w(x)$ est intégrable sur I.

Cela entraine que E contient toutes les fonctions polynomiales.

Dans la suite, on considère, pour tout entier $n \in \mathbb{N}$, la fonction $Q_n : \begin{vmatrix} [-1,1] \rightarrow \mathbb{R} \\ x \mapsto \cos(n\arccos(x)) \end{vmatrix}$.

- 24. Calculer Q_0, Q_1 et pour tout $n \in \mathbb{N}$, exprimer simplement Q_{n+2} en fonction de Q_{n+1} et Q_n .
- 25. En déduire que, pour tout $n \in \mathbb{N}$, Q_n est polynomiale et déterminer son degré et son coefficient dominant.

Dans la suite, on notera également Q_n le polynôme de $\mathbb{R}[X]$ qui coïncide avec $x \mapsto Q_n(x)$ sur [-1,1].

26. On note $(p_n)_{n\in\mathbb{N}}$ la suite de polynômes orthogonaux associés au poids w. Montrer que

$$\begin{cases} p_0 = Q_0 \\ \forall n \in \mathbb{N}^*, \quad p_n = \frac{1}{2^{n-1}} Q_n. \end{cases}$$

27. Pour $n \in \mathbb{N}$, déterminer explicitement les points $(x_j)_{0 \le j \le n}$ de I telle que la formule de quadrature $I_n(f) = \sum_{j=0}^n \lambda_j f(x_j)$ soit d'ordre maximal.

III. Accélération de la méthode des trapèzes

On dit qu'une fonction S définie sur une partie de \mathbb{C} est développable en série entière au voisinage de θ s'il existe un disque ouvert D non vide de centre 0 et une suite complexe $(\alpha_n)_{n\in\mathbb{N}}$ telle que $\forall z\in D$, $S(z)=\sum_{n=0}^{+\infty}\alpha_nz^n$.

III.A - Nombres b_m et polynômes B_m

On considère une série entière $\sum_{n\geq 0} \alpha_n z^n$, de rayon de convergence $R\neq 0$ et avec $\alpha_0=1$. On note S la somme de cette série entière sur son disque de convergence : pour tout $z\in\mathbb{C}$ vérifiant |z|< R, on a

$$S(z) = \sum_{n=0}^{+\infty} \alpha_n z^n.$$

- 28. Montrer qu'il existe un réel q > 0 tel que $\forall n \in \mathbb{N}, |\alpha_n| \leq q^n$.
- 29. On suppose que $\frac{1}{S}$ est développable en série entière au voisinage de 0 et on note $\sum_{n\geq 0} \beta_n z^n$ son développement. Calculer β_0 et, pour tout $n \in \mathbb{N}^*$, exprimer β_n en fonction de $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_{n-1}$. En déduire que

$$\forall n \in \mathbb{N}, \quad |\beta_n| \le (2q)^n.$$

- 30. Montrer que $\frac{1}{S}$ est développable en série entière au voisinage de 0.
- 31. En utilisant ce qui précède, montrer qu'il existe une unique suite complexe $(b_n)_{n \in \mathbb{N}}$ et un réel r > 0 tels que, pour tout $z \in \mathbb{C}$, si 0 < |z| < r alors

$$\frac{z}{e^z - 1} = \sum_{n=0}^{+\infty} \frac{b_n}{n!} z^n.$$

32. En effectuant un produit de Cauchy, montrer que $b_0 = 1$ et, pour tout entier $n \ge 2$,

$$\sum_{p=0}^{n-1} \binom{n}{p} b_p = 0.$$

- 33. En déduire la valeur de b_1 , b_2 , b_3 et b_4 .
- 34. En utilisant un argument de parité, montrer que $b_{2p+1} = 0$ pour tout entier $p \ge 1$.

Dans la suite du problème, on considère les polynômes B_m définis par

$$\forall m \in \mathbb{N}, \quad B_m(x) = \sum_{k=0}^m \binom{m}{k} b_k x^{m-k}.$$

On remarque que chaque polynôme B_m est unitaire de degré m et que, pour tout $m \in \mathbb{N}$, $B_m(0) = b_m$.

- 35. Déterminer B_0 , B_1 , B_2 et B_3 .
- 36. Montrer que, pour tout entier $m \ge 2$, $B_m(1) = b_m$, puis que, pour tout entier $m \ge 1$, $B'_m = mB_{m-1}$.

III.B - Développement asymptotique de l'erreur dans la méthode des trapèzes

Dans cette sous-partie, on utilise les nombres b_m et les polynômes B_m définis dans la sous-partie III. A pour établir un développement asymptotique à tout ordre de l'erreur de quadrature associée à la méthode des trapèzes (déjà étudiée dans la partie I), pour une fonction suffisament régulière.

Pour tout réel x, on note |x| sa partie entière.

On fixe un entier $n \in \mathbb{N}^*$ et on considère une fonction $g:[0,n] \to \mathbb{R}$ de classe \mathcal{C}^{∞} .

37. Montrer que

$$\int_0^n g(x)dx = \sum_{k=0}^{n-1} \frac{g(k) + g(k+1)}{2} - \int_0^n B_1(x - \lfloor x \rfloor) g'(x) dx.$$

38. En déduire que pour tout entier $m \ge 2$,

$$\int_0^n g(x)dx = \sum_{k=0}^{n-1} \frac{g(k) + g(k+1)}{2} + \sum_{n=2}^m \frac{(-1)^{p-1}b_p}{p!} (g^{(p-1)}(n) - g^{(p-1)}(0)) + \frac{(-1)^m}{m!} \int_0^n B_m(x - \lfloor x \rfloor) g^{(m)}(x) dx.$$

On considère maintenant une fonction $f:[a,b]\to\mathbb{R}$ de classe \mathcal{C}^{∞} et la formule de quadrature déjà étudiée à la partie I :

$$T_n(f) = h \sum_{i=0}^{n-1} \frac{f(a_i) + f(a_{i+1})}{2},$$

(méthode des trapèzes), où $h = \frac{b-a}{n}$ et $\forall i \in [[0,n]], a_i = a+ih$

39. Montrer que, pour tout entier $m \ge 1$,

$$\int_{a}^{b} f(x)dx = T_{n}(f) - \sum_{p=1}^{m} \frac{\gamma_{2p}}{n^{2p}} + \rho_{2m}(n),$$

5

où les coefficients γ_{2p} sont donnés par

$$\gamma_{2p} = \frac{(b-a)^{2p}b_{2p}}{(2p)!} (f^{(2p-1)}(b) - f^{(2p-1)}(a))$$

et $\rho_{2m}(n)$ est un reste intégral vérifiant la majoration

$$|\rho_{2m}(n)| \le \frac{C_{2m}}{n^{2m}}$$

où C_{2m} est une constante à préciser ne dépendant que de m, a et b. On a donc établi, pour tout entier $m \geq 1$, le développement asymptotique

$$T_n(f) = \int_a^b f(x) dx + \frac{\gamma_2}{n^2} + \frac{\gamma_4}{n^4} + \dots + \frac{\gamma_{2m}}{n^{2m}} + O_{n \to +\infty} \left(\frac{1}{n^{2(m+1)}} \right),$$

où les coefficients γ_{2p} sont indépendants de n.

III - Bonnus 5/2

Prouver la formule admise dans la question 10.