BIRKBECK

(University of London)

MSc EXAMINATION FOR INTERNAL STUDENTS

Department of Economics, Mathematics and Statistics

Econometrics / Econometrics for Postgraduate Certificate

EMEC026S7 / BUEM007H7

Thursday, 06 June 2019, 9.30 am - 11.40 pm (includes 10 minutes reading time)

2 hours 10 minutes

This paper has five questions. Answer **ANY THREE** questions. All questions carry the same weight; the relative weight of sub-questions is indicated in square brackets.

1. Consider the simultaneous equations model

$$y_{1t} = \beta_1 y_{2t} + u_{1t},$$

$$y_{2t} = \beta_2 y_{1t} + \gamma_1 x_{1t} + \gamma_2 x_{2t} + u_{2t},$$

where (y_{1t}, y_{2t}) are endogenous variables, (x_{1t}, x_{2t}) are strictly exogenous variables, and (u_{1t}, u_{2t}) are homoskedastic and serially uncorrelated random disturbances with zero mean.

- (a) Discuss the identifiability of the coefficients in each of the two equations in terms of the order and rank conditions for identification. [25%]
- (b) Explain why the ordinary least squares estimator of β_1 is inconsistent. [20%]
- (c) Describe, step by step, how to estimate any identifiable coefficients using two-stage least squares. Explain how the two-stage least squares estimator is related to an appropriately constructed instrumental variables estimator. [30%]
- (d) Explain how to test for endogeneity of y_{2t} in the first equation using a Wu–Durbin–Hausman test. State clearly what the null and alternative hypotheses for the test are. [25%]

- 2. Suppose that X_1, X_2, \ldots, X_n is a random sample of size $n \ge 4$ from the Laplace distribution with location parameter μ $(-\infty < \mu < \infty)$ and scale parameter $\beta > 0$. Let $\theta = (\mu, \beta)'$.
 - (a) Explain how to estimate θ by the generalized method of moments (GMM) using the fact that $\mathsf{E}(X_1) = \mu$ and $\mathsf{E}[(X_1 \mu)^2] = 2\beta^2$. (Note that you are not required to obtain a closed-form expression for the GMM estimator of θ). [25%]
 - (b) Explain how your answer to (a) would change if you used the additional information that $\mathsf{E}[(X_1 \mu)^4] = 24\beta^4$. [25%]
 - (c) Explain how to obtain an asymptotically efficient GMM estimator of θ using the moment conditions of part (b). [25%]
 - (d) Explain how to test the validity of the moment conditions used to compute the GMM estimator of θ in part (c). Give the formula for the appropriate test statistic and state its asymptotic null distribution. [25%]

3. Consider the structural vector autoregressive (VAR) model

$$\mathbf{B}\mathbf{y}_t = \mathbf{\Phi}\mathbf{y}_{t-1} + \mathbf{u}_t,$$

where \mathbf{y}_t is an $m \times 1$ vector of observable variables, \mathbf{B} and $\mathbf{\Phi}$ are $m \times m$ matrices of coefficients, with $\det \mathbf{B} \neq 0$, and $\{\mathbf{u}_t\}$ is an unobservable m-dimensional white noise process with $\mathsf{E}(\mathbf{u}_t) = \mathbf{0}$ and $\mathsf{E}(\mathbf{u}_t \mathbf{u}_t') = \mathbf{I}_m$, where \mathbf{I}_m is the $m \times m$ identity matrix. The model is structural in the sense that the elements of \mathbf{u}_t have clear interpretations in terms of an underlying economic model. Assume that $\{\mathbf{y}_t\}$ is covariance stationary.

(a) Show that the model can be represented in reduced form as

$$\mathbf{y}_t = \mathbf{A}\mathbf{y}_{t-1} + \varepsilon_t,$$

where $\mathbf{A} = \mathbf{B}^{-1}\mathbf{\Phi}$ and $\varepsilon_t = \mathbf{B}^{-1}\mathbf{u}_t$, with $\mathsf{E}(\varepsilon_t) = \mathbf{0}$ and $\mathsf{E}(\varepsilon_t\varepsilon_t') = \mathbf{B}^{-1}(\mathbf{B}^{-1})'$. [15%]

- (b) Show that the first three coefficient matrices in the moving-average representation $\mathbf{y}_t = \sum_{k=0}^{\infty} \mathbf{\Psi}_k \varepsilon_{t-k}$ of the reduced-form VAR are $\mathbf{\Psi}_0 = \mathbf{I}_m$, $\mathbf{\Psi}_1 = \mathbf{A}$ and $\mathbf{\Psi}_2 = \mathbf{A}^2$. Explain what the elements of $\mathbf{\Psi}_1$ and $\mathbf{\Psi}_2$ represent. [35%]
- (c) Explain what the 'orthogonalized impulse responses' of the reducedform VAR are. Explain how to compute the orthogonalized impulse responses using the Cholesky factorization of the matrix $\Sigma = \mathsf{E}(\varepsilon_t \varepsilon_t')$ and why orthogonalization of ε_t is important. [35%]
- (d) Are there any advantages to using **B** instead of the matrix associated with the Cholesky factorization of Σ when orthogonalizing ε_t ? Explain. [15%]

4. Consider the linear regression model

$$y_t = \beta x_t + \varepsilon_t, \qquad t = 1, 2, \dots, n,$$

where x_t is a non-stochastic explanatory variable. The disturbances $\{\varepsilon_t\}$ satisfy

$$\varepsilon_t = z_t \left(\alpha_0 + \alpha_1 \varepsilon_{t-1}^2 + \alpha_2 \varepsilon_{t-2}^2 \right)^{1/2},$$

where $\alpha_0 > 0$, $\alpha_1 \ge 0$, $\alpha_2 \ge 0$, and $\{z_t\}$ are independent and identically distributed random variables having the N(0,1) distribution (z_t is independent of ε_{t-i} for $i \ge 1$).

- (a) Show that $\mathsf{E}(\varepsilon_t) = 0$, $\mathsf{E}(\varepsilon_t^2) = \alpha_0/(1 \alpha_1 \alpha_2)$, and $\mathsf{E}(\varepsilon_t \varepsilon_{t-k}) = 0$ for all $k \geqslant 1$. What assumption(s) do you need to make to ensure that $\{\varepsilon_t\}$ is covariance stationary? [30%]
- (b) What statistical properties does the ordinary least squares estimator of β have? Explain how to obtain an asymptotically efficient estimate of $(\beta, \alpha_0, \alpha_1, \alpha_2)$. [25%]
- (c) Explain how to test the null hypothesis that $\alpha_1 = \alpha_2 = 0$ using the Lagrange multiplier principle. [20%]
- (d) Explain why the autocorrelation function and partial autocorrelation function of $\{\varepsilon_t^2\}$ may be useful in assessing the validity of the second-order ARCH assumption about $\{\varepsilon_t\}$. [25%]

5. Consider a univariate time series $\{y_t\}$ satisfying the local level model

$$y_t = \mu_t + \varepsilon_t,$$
 $t = 1, 2, \dots, n,$
 $\mu_t = \mu_{t-1} + u_t,$

where $\{\varepsilon_t\}$ and $\{u_t\}$ are independent and identically distributed random variables with $\mathsf{E}(\varepsilon_t) = \mathsf{E}(u_t) = 0$, $\mathsf{E}(\varepsilon_t^2) = \sigma_\varepsilon^2$ and $\mathsf{E}(u_t^2) = \sigma_u^2$. The disturbances $\{\varepsilon_t\}$ and $\{u_t\}$ are mutually independent as well as independent of the initial value μ_0 . The trend component μ_t of the time series and the disturbances (ε_t, u_t) are unobservable but y_t is observable.

- (a) Show that, if $\sigma_{\varepsilon}^2 > 0$, then y_t satisfies an ARIMA(0,1,1) model. What is the ARIMA representation of y_t when $\sigma_{\varepsilon}^2 = 0$? [40%]
- (b) What does the restriction $\sigma_u^2 = 0$ imply about the behaviour of the trend component μ_t ? Explain. [15%]
- (c) Let $Y_{t-1} = \{y_1, \dots, y_{t-1}\}$ be the information set available at time t-1. Assume that the conditional distribution of y_t given Y_{t-1} is $\mathsf{N}(\hat{\mu}_{t|t-1}, f_t)$, where $\hat{\mu}_{t|t-1}$ is the optimal forecast of μ_t based on Y_{t-1} and f_t is the variance of the forecast error $\nu_t = y_t \hat{\mu}_{t|t-1}$ computed by the Kalman filter. Explain how you may estimate the parameters $(\sigma_{\varepsilon}^2, \sigma_u^2)$ and state what the statistical properties of the proposed estimator will be. (Note that you are not required to describe how $\hat{\mu}_{t|t-1}$ and f_t are computed.) [30%]
- (d) Explain what the difference between a filtered estimate and a smoothed estimate of μ_t is. Is there any advantage to using a smoothed estimate instead of a filtered estimate? Explain. [15%]