

Adresarea IP

Capitolul 7

- Cum vede un echipament o adresă IP?
- Cum folosește adresa IP pentru a trimite pachete la destinație?

Structura adreselor IPv4

Notația zecimală punctată

- O adresă IP are 32 de biţi
- Aceștia se împart în 4 octeți, fiecare octet fiind transformat într-un număr în baza 10
- Exemplu:

1100 0000	1010 1000	0001 1011	1111 1110
192	168	27	254

=> 192.168.27.254

Binary 0110 0101

Transformarea binar -> zecimal:

 Fiecare bit corespunde unei puteri a lui 2 (notație big-endian)

0	0	0	1	1	Ο	1	1
2 ⁷	2 ⁶	2 5	2 ⁴	2 3	2 ²	2 ¹	2 ⁰
128	64	32	16	8	4	2	1

Binary 0110 0101

Transformarea binar -> zecimal:

 Se adună puterile corespunzătoare biților setați pe 1 => 16 + 8 + 2 + 1 = 27

	Ο	Ο	0	1	1	0	1	1
				2 ⁴	2 3		2 ¹	2 ⁰
Ī				16	8		2	1

• În ordine descrescătoare, puterile lui 2 se scad din număr (dacă e posibil)

Binary 0110 0101

Transformarea zecimal -> binar

 Puterile lui 2 care pot fi scăzute din număr vor avea biții setați pe 1

1	1	0	1	0	0	0	1
2 ⁷	2 ⁶		2 ⁴				2 ⁰
128	64		16				1

Binary 0110 0101

|x|+|Operații logice:

ŞI Logic (x)						
Ope	Rezultat					
0	0	0				
0	1	0				
1	0	0				
1	1	1				

SAU Logic (+)						
Ope	Rezultat					
0	0	0				
0	1	1				
1	0	1				
1	1	1				

Masca de rețea

Ce rol are masca de rețea?

- O adresă IP are 2 părți:
 - Porțiunea de rețea identifică LAN-ul Porțiunea de host – identifică stația
- Masca de rețea delimitează cele 2 porțiuni

Structura măștii de rețea

- Are tot 32 de biţi
- Primii biţi sunt 1, ultimii sunt 0
- Porțiunea unde masca are valoarea 1 este porțiunea de rețea
- Porțiunea unde masca are valoarea o este porțiunea de stație

• IP:

1100 0000 1010 1000 00011011 1111 1110 168 192 27 254

Mască:

Rețea

hackademy

Host

Notația cu prefix

- În funcție de numărul de biți ai porțiunii de rețea, masca poate fi scrisă prescurtat
- Exemplu: Masca 255.255.240.0 are primii 20 de biţi egali cu 1 => masca este /20

Tipuri de adrese

- NU poate fi alocată unui echipament
- Prima adresă dintr-un spațiu
- Are toți biții din porțiunea de host = 0
- Se calculează folosind ȘI logic între o adresă IP și masca ei

Tipuri de adrese

Adresă de broadcast

- NU poate fi alocată unui echipament
- Ultima adresă dintr-un spațiu
- Are toți biții din porțiunea de host = 1
- Se calculează folosind SAU logic între o adresă IP și inversul binar al măștii ei

Tipuri de adrese

Adresă de broadcast

- Poate fi atribuită unui echipament
- Este orice adresă care nu este de rețea sau de broadcast

255

192

Exemplu

	D	í
Ш		i

1100 0000	1010 1000	0001 1011	1111 1110
192	168	27	254

Mască:

0000 0000 1111 1111 1111 1111 1111 0000

240

16

Rețea:

1100 0000 0001 0000 0000 0000 1010 1000

Broadcast:

1100 0000	1010 1000	0001 1111	1111 1111

168 192

31 255

255

168

0

0

Clase de adrese

Adresarea classful

- Inițial, adresele IP au fost împărțite în clase
- Fiecare clasă avea masca ei specifică
- Apartenența la o clasă era determinată în funcție de primul octet al adresei IP

Clasele de adrese

Clasa	Primul octet (zecimal)	Primul octet (binar)	Masca
Α	1-127	0000000 -> 01111111	/8
В	128-191	10000000 -> 10111111	/16
С	192-223	11000000 -> 11011111	/24
D	224-239	<u>1110</u> 0000 -> <u>1110</u> 1111	N/A
E	240-255	<u>1111</u> 0000 -> <u>1111</u> 1111	N/A

Dezavantaje

- Spațiu de adrese prea mic
- Adrese irosite
- Nu a fost gândit pentru o creștere exponențială a numărului de echipamente care au nevoie de adrese IP

Epuizarea adreselor IPv4

- +) Adrese IP private
 - Adrese care nu trebuie să fie unice în lume, ci doar în LAN
 - NU sunt rutate în Internet

Interval	Mască
10.0.0.0 - 10.255.255.255	/8
172.16.0.0 - 172.31.255	/12
192.168.0.0 - 192.168.255.255	/16

Soluții

- +) Adrese IP private
- +) Adresare classless
 - Măștile nu au o lungime prestabilită

Structura adreselor IPv6

De ce IPv6?

- + Epuizarea adreselor IPv4
- + Necesitatea unui spațiu de adrese care să acopere necesitățile tehnologiilor viitoare (ex: Internet of Things)

Tranziția IPv4 <-> IPV6

Suportă IPv4 și v6 pe aceeași interfață

Pachetele IPv6 sunt încapsulate ca IPv4

64 NAT64

- Translatează adrese IPv4 în adrese IPv6 și invers
- Configurare manuală sau automată

Tipuri de adrese IPv6

- Unicast
- Multicast
- Anycast
 - Mai multe echipamente pot avea această adresă
 - Un pachet trimis către o adresă anycast se duce la cel mai apropiat destinatar posibil
- Fără adresă de broadcast

Structura adresei IPv6

- O adresă are 128 de biți
- Un grup de 4 biţi devine un caracter hexa
- Caracterele sunt grupate câte 4:

					0000		
					0000		
					0000		
0001	1000	1101	0000	0000	0000	0000	0000
2001	odb8	acad	0000	0000	0000	0000	0010

=> 2001:0db8:acad:0000:0000:0000:0000

Metode de prescurtare

- Pentru IP:
 - Se elimină o-urile inițiale
 - Se înlocuiesc grupările consecutive de o cu simbolul "::"

```
2001:0db8 acad:0000:0000:0000:0000 0010 2001:db8:acad:10
```

- Pentru mască:
 - Se scrie direct prefixul, fără transformare în hexa

Asignarea adreselor IP

Adrese IP pe stații

Asignare statică

Obtain an IP address auto	omatically
Use the following IP address	ess;
IP address:	192 . 168 . 0 . 10
Subnet mask:	255 . 255 . 255 . 0
Default gateway:	192 . 168 . 0 . 1

Asignare dinamică

Adrese IP pe stații

- Asignare statică
- Asignare dinamică

 Obtain an IP address automatical 	ly	
Use the following IP address:		
IP address:		,
Subnet mask:		
Default gateway:		

 Obtain an IPv6 address auto 	omatically
Use the following IPv6 address	ess:
IPv6 address:	
Subnet prefix length:	
Default gateway:	

Organizații

- IANA = Internet
 Assigned Numbers
 Authority
- RIR = Regional Internet Registries
- ISP = Internet Service Provider

Verificarea conectivității

Verificarea conectivității

- Ping
 - la localhost
 - la default gateway
 - în afara rețelei
- Traceroute

```
PC>ping 10.0.0.1

Pinging 10.0.0.1 with 32 bytes of data:

Request timed out.

Request timed out.

Request timed out.

Reply from 10.0.0.1: bytes=32 time=0ms TTL=255

Ping statistics for 10.0.0.1:

Packets: Sent = 4, Received = 1, Lost = 3 (75% loss),

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 0ms, Average = 0ms
```


Verificarea conectivității

- Ping
- Traceroute
 - Poate determina ruta echipament cu echipament, până la destinație
 - Foloseşte câmpul TTL/Next Hop

Răspunsurile zilei

Răspunsurile zilei

- (!) Cum vede un echipament o adresă IP?
- ! Cum folosește adresa IP pentru a trimite pachete la destinație?

