INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA SÃO PAULO Canpus São João de Boa Vista

Relatório 4 – Grupo G2

OBJETIVO:

• Estudar o MRU através do movimento do carrinho no trilho de ar.

MATERIAL UTILIZADO:

• 01 Conjunto Básico do Trilho de Ar (trilho, fonte de ar, mangueira, cabos elétricos).

PROCEDIMENTO EXPERIMENTAL

Imagem 1: Erros de medida associados ao tempo e posição.

Erro Tempo	Erro Posição	
±5ms	±0.5cm	

Tabela 1: Tempo medido entre os deslocamentos demarcados, para impulso com massa de 10g.

X _F (cm)	ΔX (cm)	Δt 1 (s)	Δt 2 (s)	Δt 3 (s)	Média Δt (s)
(45 ± 0.5)	(10 ± 0.5)	(0.350 ± 0.005)	(0.349 ± 0.005)	(0.354 ± 0.005)	(0.351 ± 0.005)
(55 ± 0.5)	(20 ± 0.5)	(0.703 ± 0.005)	(0.699 ± 0.005)	(0.701 ± 0.005)	(0.701 ± 0.005)
(65 ± 0.5)	(30 ± 0.5)	(1.067 ± 0.005)	(1.065 ± 0.005)	(1.065 ± 0.005)	(1.066 ± 0.005)
(75 ± 0.5)	(40 ± 0.5)	(1.449 ± 0.005)	(1.445 ± 0.005)	(1.429 ± 0.005)	(1.441 ± 0.005)
(85 ± 0.5)	(50 ± 0.5)	(1.799 ± 0.005)	(1.798 ± 0.005)	(1.794 ± 0.005)	(1.797 ± 0.005)
(95 ± 0.5)	(60 ± 0.5)	(2.176 ± 0.005)	(2.161 ± 0.005)	(2.165 ± 0.005)	(2.167 ± 0.005)

Tabela 2: Tempo medido entre os deslocamentos demarcados, para impulso com massa de 20g.

X _F (cm)	ΔX (cm)	Δt 1 (s)	Δt 2 (s)	Δt 3 (s)	Média Δt (s)
(45 ± 0.5)	(10 ± 0.5)	(0.286 ± 0.005)	(0.284 ± 0.005)	(0.284 ± 0.005)	(0.285 ± 0.005)
(55 ± 0.5)	(20 ± 0.5)	(0.585 ± 0.005)	(0.581 ± 0.005)	(0.580 ± 0.005)	(0.582 ± 0.005)
(65 ± 0.5)	(30 ± 0.5)	(0.869 ± 0.005)	(0.879 ± 0.005)	(0.874 ± 0.005)	(0.874 ± 0.005)
(75 ± 0.5)	(40 ± 0.5)	(1.179 ± 0.005)	(1.169 ± 0.005)	(1.169 ± 0.005)	(1.172 ± 0.005)
(85 ± 0.5)	(50 ± 0.5)	(1.457 ± 0.005)	(1.462 ± 0.005)	(1.479 ± 0.005)	(1.466 ± 0.005)
(95 ± 0.5)	(60 ± 0.5)	(1.737 ± 0.005)	(1.756 ± 0.005)	(1.748 ± 0.005)	(1.747 ± 0.005)

Tabela 3: Tempo medido entre os deslocamentos demarcados, para impulso com massa de 30g.

X _F (cm)	ΔX (cm)	Δt 1 (s)	Δt 2 (s)	Δt 3 (s)	Média Δt (s)
(45 ± 0.5)	(10 ± 0.5)	(0.252 ± 0.005)	(0.252 ± 0.005)	(0.252 ± 0.005)	(0.252 ± 0.005)
(55 ± 0.5)	(20 ± 0.5)	(0.516 ± 0.005)	(0.514 ± 0.005)	(0.513 ± 0.005)	(0.514 ± 0.005)
(65 ± 0.5)	(30 ± 0.5)	(0.776 ± 0.005)	(0.778 ± 0.005)	(0.777 ± 0.005)	(0.777 ± 0.005)
(75 ± 0.5)	(40 ± 0.5)	(1.069 ± 0.005)	(1.071 ± 0.005)	(1.074 ± 0.005)	(1.071 ± 0.005)
(85 ± 0.5)	(50 ± 0.5)	(1.336 ± 0.005)	(1.349 ± 0.005)	(1.337 ± 0.005)	(1.341 ± 0.005)
(95 ± 0.5)	(60 ± 0.5)	(1.630 ± 0.005)	(1.626 ± 0.005)	(1.631 ± 0.005)	(1.629 ± 0.005)

Gráfico representando os resultados das tabelas 1, 2 e 3:

^{*}Barras de erros aumentadas em 10x para melhor visualização

Os gráficos de espaço em relação ao tempo das três tabelas representam funções afins no formato y = ax + b, ou seja, o tipo de movimento é o mesmo para as três tabelas, pois a posição do carrinho varia linearmente de acordo com o tempo. No entanto, as diferenças entre as funções ocorrem em relação ao tempo que o carrinho leva para percorrer uma determinada distância. Esse fato se deve ao aumento de peso que proporciona a velocidade do carrinho em cada tabela.

Dessa forma, de acordo com a análise acima, é previsto que o movimento apresentado seja Retilíneo Uniforme (MRU), uma vez que para cada tabela a velocidade média é constante e a posição do corpo em relação ao tempo ocorre de forma linear.

Tabela 4: Coeficientes angular e linear das tabelas.

	Coeficiente Angular	Coeficiente Linear
Tabela 1	27,460	35,570
Tabela 2	34,104	35,180
Tabela 3	36,225	36,284

Considerando a propagação de erros nas medições, é notável que os coeficientes lineares das funções representam o mesmo que o valor da posição inicial do carrinho, ou seja, o valor de X no instante zero. Observa-se que temos a posição inicial como X0 = 35 cm e os valores dos coeficientes lineares com valores que diferem um pouco de 35. É importante ressaltar que, independentemente da massa que impulsiona o carrinho, a posição inicial deve permanecer a mesma.

Tabela 5: Valor médio das velocidades obtidas na tabela 1 (10g).

X _F (cm)	ΔX (cm)	Média Δt (s)	V _m (cm/s)
(45 ± 0.5)	(10 ± 0.5)	(0.351 ± 0.005)	(28 ± 2)
(55 ± 0.5)	(20 ± 0.5)	(0.701 ± 0.005)	(28.5 ± 0.9)
(65 ± 0.5)	(30 ± 0.5)	(1.066 ± 0.005)	(28.1 ± 0.6)
(75 ± 0.5)	(40 ± 0.5)	(1.441 ± 0.005)	(27.8 ± 0.4)
(85 ± 0.5)	(50 ± 0.5)	(1.797 ± 0.005)	(27.8 ± 0.4)
(95 ± 0.5)	(60 ± 0.5)	(2.167 ± 0.005)	(27.7 ± 0.3)
		Velocidade Média:	(28.1 ± 0.7)

Tabela 6: Valor médio das velocidades obtidas na tabela 2 (20g).

X _F (cm)	ΔX (cm)	Média Δt (s)	V _m (cm/s)
(45 ± 0.5)	(10 ± 0.5)	(0.285 ± 0.005)	(35 ± 2)
(55 ± 0.5)	(20 ± 0.5)	(0.582 ± 0.005)	(34 ± 1)
(65 ± 0.5)	(30 ± 0.5)	(0.874 ± 0.005)	(34.3 ± 0.8)
(75 ± 0.5)	(40 ± 0.5)	(1.172 ± 0.005)	(34.1 ± 0.6)
(85 ± 0.5)	(50 ± 0.5)	(1.466 ± 0.005)	(34.1 ± 0.5)
(95 ± 0.5)	(60 ± 0.5)	(1.747 ± 0.005)	(34.3 ± 0.4)
		Velocidade Média:	(34 ± 1)

Tabela 7: Valor médio das velocidades obtidas na tabela 3 (30g).

X _F (cm)	ΔX (cm)	Média Δt (s)	V _m (cm/s)
(45 ± 0.5)	(10 ± 0.5)	(0.252 ± 0.005)	(40 ± 3)
(55 ± 0.5)	(20 ± 0.5)	(0.514 ± 0.005)	(39 ± 1)
(65 ± 0.5)	(30 ± 0.5)	(0.777 ± 0.005)	(38.6 ± 0.9)
(75 ± 0.5)	(40 ± 0.5)	(1.071 ± 0.005)	(37.3 ± 0.6)
(85 ± 0.5)	(50 ± 0.5)	(1.341 ± 0.005)	(37.3 ± 0.5)
(95 ± 0.5)	(60 ± 0.5)	(1.629 ± 0.005)	(36.8 ± 0.4)
		Velocidade Média:	(38 ± 1)

Considerando a propagação de erros nas medições, conclui-se que os coeficientes angulares representam os valores da velocidade média do carrinho para cada tabela. Ao

contrário dos coeficientes lineares, os coeficientes angulares variam de acordo com a massa que impulsiona o carrinho, pois afetam diretamente a velocidade que ele terá durante o movimento.

Equação padrão do MRU: $S = S_0 + V_m * t$

Tabela 8: Equação Horária do movimento das tabelas.

	Equação Horária
Tabela 1	S = 35,570 + 27,460t
Tabela 2	S = 35,180 + 34,104t
Tabela 3	S = 36,284 + 36,225t

Gráfico Velocidade x Tempo da tabela 1 (10g):

Gráfico Velocidade x Tempo da tabela 2 (20g):

Gráfico Velocidade x Tempo da tabela 3 (30g):

Os gráficos acima apresentam retângulos formados pelas suas áreas, o que permite perceber que, à medida que o tempo aumenta, a velocidade permanece constante.

Ao fim de toda a análise, considerando os gráficos acima, em que a velocidade se mantém constante durante todo o movimento, ou seja, com aceleração nula, conclui-se que o movimento realizado pelo carrinho é realmente um Movimento Retilíneo Uniforme (MRU).