

Data Analysis with R: Day 2 - Preliminary - Lecture Slides

Sonja Hartnack, Terence Odoch & Muriel Buri

October 2018

What is a data frame in R?

A data frame is used for storing a list of vectors of equal length. For example, the following variable \mathtt{df} is a data frame containing three vectors \mathtt{n} , \mathtt{s} , \mathtt{b} .

```
n <- c(2, 3, 5)
s <- c("aa", "bb", "cc")
b <- c(TRUE, FALSE, TRUE)
df <- data.frame(n, s, b) # df is a data frame</pre>
```

Following are the characteristics of a data frame:

- The column names should be non-empty.
- The row names should be unique.
- Each column should contain same number of data items.

Data frame in R

```
a \leftarrow c(1, 2, 3, 4)
## [1] 1 2 3 4
data.frame(a)
## a
## 1 1
## 2 2
## 3 3
## 4 4
b <- c("d", "h", "h", "d")
dat <- data.frame(a, b)</pre>
dat
## a b
## 1 1 d
## 2 2 h
## 3 3 h
## 4 4 d
```

Data frame in R: How to add a variable (var)

```
my.var \leftarrow c(1.3, 1.5, 1.8, 2.4)
# use "$" to refer to the additional vector variable
dat$my.var1 <- my.var</pre>
dat$my.var2 <- my.var</pre>
dat
## a b my.var1 my.var2
## 1 1 d 1.3 1.3
## 2 2 h 1.5 1.5
## 3 3 h 1.8 1.8
## 4 4 d 2.4 2.4
# What is the dimension (number of rows and columns) of our data frame?
dim(dat) # 4 rows and 3 columns
## [1] 4 4
```

Exercise 2

How to install a package (manually) in R

Using R is like cooking ...

Get into the kitchen	Change working directory
Get specialist electric tools into your kitchen (e.g. blender, ice- cream maker, etc.)	Install packages
Switch on your specialist electric tools	Load packages using the "library" function
Bring in your ingredients	Import data and save to R data frames
Check your ingredients	Use the function "summary" and basic tables to check your data for missing or implausible values (e.g. a number in a variable where "yes" or "no" are expected
Chop things up (if required)	Split or filter data
Cook, using general and specialist tools	Carry out further descriptive and test statistics

How to install a package in R


```
# INSTALL package (only done ONCE!)
install.packages("MASS")
# LOAD package (whenever you use something from it!)
library("MASS")
data(bacteria)
?bacteria
```

Exercise 3

• Google for select observations in R.

Creating and assigning objects in R

Objects are assigned values using <-, an arrow formed out of < and -. For example, the following command assigns the value 1 to the object ${\tt a}.$

```
a <- 1 # ALWAYS use "gets" assignment operator!
# a = 1 # DO NOT USE the equal sign as the assignment operator!
```

After this assignment, the object a contains the value 1. Another assignment to the same object will change the content.

a <- 5

Examples of assigned objects: single number


```
a <- 1
b <- 2
c <- a + b # c = 3
c
```

Examples of assigned objects: vector


```
a <- c(1, 2, 3, 4, 5)
b <- 1
c <- a + b
c
## [1] 2 3 4 5 6
```

Examples of assigned objects: model


```
anova_model <- aov(weight ~ feed, data = chickwts)
summary(anova_model)

## Df Sum Sq Mean Sq F value Pr(>F)

## feed 5 231129 46226 15.37 5.94e-10 ***

## Residuals 65 195556 3009

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Examples of assigned objects: data frame


```
bac <- bacteria
str(bac) # $ week: int 0 2 4 11 0 2 6 11 0 2 ...
## 'data frame': 220 obs. of 6 variables:
##
   $ y : Factor w/ 2 levels "n", "y": 2 2 2 2 2 2 1 2 2 2 ...
   $ ap : Factor w/ 2 levels "a", "p": 2 2 2 2 1 1 1 1 1 1 1 ...
##
##
   $ hilo: Factor w/ 2 levels "hi","lo": 1 1 1 1 1 1 1 1 2 2 ...
##
   $ week: int 0 2 4 11 0 2 6 11 0 2 ...
## $ ID : Factor w/ 50 levels "X01","X02","X03",..: 1 1 1 1 2 2 2 2 3 3 ...
##
   $ trt : Factor w/ 3 levels "placebo", "drug", ...: 1 1 1 1 3 3 3 3 2 2 ...
bac sub <- subset(bac, week == 2)
str(bac_sub) # $ week: int 2 2 2 2 2 2 2 2 2 2 ...
## 'data.frame': 44 obs. of 6 variables:
   $ y : Factor w/ 2 levels "n", "y": 2 2 2 2 2 2 1 2 2 2 ...
##
   $ ap : Factor w/ 2 levels "a","p": 2 1 1 2 2 1 1 2 2 2 ...
##
   $ hilo: Factor w/ 2 levels "hi", "lo": 1 1 2 2 2 2 1 1 2 1 ...
##
   $ week: int 2 2 2 2 2 2 2 2 2 2 ...
##
## $ ID : Factor w/ 50 levels "X01", "X02", "X03", ...: 1 2 3 4 5 6 7 8 9 11 ...
   $ trt : Factor w/ 3 levels "placebo", "drug",..: 1 3 2 1 1 2 3 1 1 1 ...
```

Structure of a R objects

The str function displays the structure of an R object. One line for each "basic" structure is displayed.

```
## 'data.frame': 44 obs. of 6 variables:
## $ y : Factor w/ 2 levels "n","y": 2 2 2 2 2 2 1 2 2 2 ...
## $ ap : Factor w/ 2 levels "a","p": 2 1 1 2 2 1 1 2 2 2 ...
## $ hilo: Factor w/ 2 levels "hi","lo": 1 1 2 2 2 2 1 1 2 1 ...
## $ week: int 2 2 2 2 2 2 2 2 2 2 2 ...
## $ ID : Factor w/ 50 levels "X01","X02","X03",..: 1 2 3 4 5 6 7 8 9 11 ...
## $ trt : Factor w/ 3 levels "placebo","drug",..: 1 3 2 1 1 2 3 1 1 1 ...
```

Exercise 4

Data types in R

numeric


```
data(ToothGrowth)
ToothGrowth$len[1:6]
## [1] 4.2 11.5 7.3 5.8 6.4 10.0
class(ToothGrowth$len[1:6])
## [1] "numeric"
```

integers

```
bacteria$week[1:6]

## [1] 0 2 4 11 0 2

class(bacteria$week[1:6])

## [1] "integer"
```

(un/ordered) factor

```
chickwts$feed[1:6]
## [1] horsebean horsebean horsebean horsebean horsebean
## Levels: casein horsebean linseed meatmeal soybean sunflower
levels(chickwts$feed)[1:3]
## [1] "casein" "horsebean" "linseed"
```

Data types in R: Ordered Factors

Ordinal variables are represented as ordered factors:

```
bac_growth <- c("none", "+", "++", "+", "+++", "+", "none") # vector
bac growth <- factor(bac growth, levels = c("none", "+", "++", "+++"),
                    order = TRUE)
bac_growth
## [1] none + ++ + +++ +
                                   none
## Levels: none < + < ++ < +++
mood <- c("OK", "Well", "Super", "Super", "Don't ask", "OK") # vector</pre>
mood <- factor(mood, levels = c("Don't ask", "Well", "OK", "Super"),</pre>
              order = TRUE)
mood
## [1] OK Well Super Super Don't ask OK
## Levels: Don't ask < Well < OK < Super
```

Exercise 5

Exercise 6

Rules for importing data into R (from Excel)

- First row of excel sheet contains variable names:
 y, ap, hilo, week, ID, trt.
- Columns of excel sheet represent variables.
- Rows of excel sheet represent observations per individual (except for the first row).

Rules for naming variables

Variable names should ...

- start with a letter (not a number):
 y, ap, hilo, week, ID, trt
- longer variables names should be separated with dots:
 time.in.weeks
- do not use special characters, such as /, #, @, &, ★, ...

How to import external data files into R?

- > Import Dataset > From Text (base)... > CSV Files (.csv) or
- > Import Dataset > From Excel...

How to import external data files into R?

- Environment (upper right corner)
- > Import Dataset > From Text (base)... > CSV Files (.csv)

- Import Dataset > From Text (base)... > Text Files (.txt)
- > Import Dataset > From Excel... > Excel Files (.xlsx)

```
install.packages("readxl")
library("readxl")
perulung_ems <- read_excel("perulung_ems.xlsx")
lung <- data.frame(perulung_ems)
head(lung)</pre>
```

How to import .txt and .csv files into R? (1/2)

- Environment (upper right corner)
- > Import Dataset > From Text (base)... > CSV Files (.csv)

How to import .txt and .csv files into R? (1/2)

- Environment (upper right corner)
- > Import Dataset > From Text (base)... > CSV Files (.csv)

How to import .xlsx files into R? (1/3)

- Environment (upper right corner)
- > Import Dataset > From Excel... > Excel Files (.xlsx)

How to import .xlsx files into R? (1/3)

- Environment (upper right corner)
- > Import Dataset > From Excel... > Excel Files (.xlsx)

How to import .xlsx files into R? (2/3)

How to import .xlsx files into R? (3/3)


```
perulung_ems <- read_excel("perulung_ems.xlsx")
lung <- data.frame(perulung_ems)
head(lung)</pre>
```

Exercise 7: perulung

Data from a study of lung function among children living in a deprived suburb of Lima, Peru. Data taken from Kirkwood and Sterne, 2nd edition.

Variables:

- fev1: in liter, "forced expiratory volume in 1 second" measured by a spirometer. This is the maximum volume of air which the children could breath out in 1 second
- age: in years
- height: in cm
- sex: 0 = girl, 1 = boy
- respsymp: respiratory symptoms experienced by the child over the previous 12 months