POSSESSION OF MOBILES IN EXAMS IS A UFM PRACTICE.

Name	Enrolment No
------	--------------

Jaypee Institute of Information Technology, Noida End Semester Examination 2022

Semester - 5th

Course Title: Operating System and Systems Programming

Max. Hours: 2Hr
Course Code: 15B11CI412

Max. Marks: 35

Attempt all questions

1. Consider the following set of processes, with arrival time and execution time reported in milliseconds, along with the priority of each process. Note that Pi has higher priority than Pj if **Priority (Pi) > Priority (Pj):**

[Strict Marking 2 Marks per Algorithm]

[For Each Algorithm: 1 Mark Gantt Chart + .5 Marks Avg Waiting Time+ .5 Avg Turn Around Time]

Process	Arrival Time	Execution Time	Priority
P0	0	5	5
P1	1	2	1
P2	2	1	2
P3	3	4	3
P4	2	4	0
P5	5	3	4

Calculate the average turnaround time and average waiting time for the following scheduling algorithms.

- Round Robin.
- Non-Pre-emptive Priority Scheduling (processes are scheduled in the priority order)
- Shortest Remaining Time First

Assume a scheduling quantum of 1 millisecond. Also, draw a timeline (called a Gantt Chart) illustrating the schedule.

[CO-2][6 MARKS]

2. Consider a virtual memory system that translates addresses using a translation look-aside buffer (TLB) and a two-level page table that resides in the main memory. Each access to the main memory takes 200 ns, while the search in the TLB takes 40 ns. It takes 3 microseconds for each page to be read from or written to the secondary storage. Assume that the hit ratio for the TLB is 85%, and that the page fault rate is 20%. A dirty page must be written back to secondary storage before the needed page can be read from secondary storage, which accounts for 30% of all page faults. TLB update time is insignificant. Determine the average memory access time.

[CO-3][5 MARKS]

S	[5 MARKS FOR CORRECT ANSWER] [STRICT MARKING]				
0	Two-level paging				
\mathbf{L}	Main memory access time= 200 ns	Only Formula =2 Marks			
	TLB access time= 40 ns	Formula + Calculation=3 Marks			
	Secondary memory access time= 3 microsecond = 3000 ns	Formula+ calculation+right			
	TLB hit =85%, Page fault rate= 20%, dirty page= 30%	answer=5 Marks			
	So,				
	Average memory access time=				
	.85(40+200)+.15[.80(40+200+200+200)+.20[.70(40+200+200+200+3000)+.30(40+200+200+200+200+200+200+200+200+200+2				
	00+3000+3000]]				
	=417				
3	Consider the following page reference. Indicate page faults and calculate the total number of page				
	faults for FIFO, optimal, and LRU Page replacement algorithms. The total number of available				
	frames is 4.				
	1,2,3,2,5,6,3,4,6,3,7,3,1,5,3,6,3,4,2,4,3,4,5,1				
		ICO 2114 MA DIZCI			
_	FINE CLUME IN THE COLUMN ASSESSMENT OF THE COLUMN ASSESSMENT ASSES	[CO-3][4 MARKS]			
S	[Flexible Marking, Required complete execution diagram and correct no of page fault]				
0	[FIFO—1 Marks,				
L	Optimum and LRU1.5 MARKS Each]				
-					

Do the following problems:

a) Convert the above diagram into the matrix representation (*i.e Allocation*, *request*, *and Available*) [1.5 Marks for correct Diagram]

b) Write a deadlock detection algorithm.

[1.5 Marks for the correct algorithm, flexible marking]

- c) Do a step-by-step execution of the deadlock detection algorithm. Write all intermediate computational values
 - [2 Marks for correct intermediate steps]
- d) Is there a deadlock? If there is a deadlock, which processes are involved?[1 Mark]

[CO-2][6 MARKS]

S O

[STRICK MARKING, ALL VALUES SHOULD BE CORRECT]

Answer: The matrix representation of the given resource allocation graph is shown below:

a) Available Allocation Request R_1 R_2 R_3 R_4 R_1 R_2 R_3 R_4 R_1 R_2 R_3 R_4 P_1 0 0 0 0 0 2 0 0 1 1 0 P_2 0 0 0 0 0 1 0 1

$\overline{P_3}$ 0 0 0 1 0 0 0 1 P_4 0 1 0 1 1 0 0 0 P_5 0 0 0 1 0 0 0 0

- b) [Partial Marking, theme of algo should be correct]
 - **1.** Let *Work* and *Finish* be vectors of length m and n, respectively. Initialize *Work* = *Available*. For i = 0, 1, ..., n-1, if *Allocation* $i \neq 0$, then *Finish*[i] = false. Otherwise, *Finish*[i] = true.
 - 2. Find an index i such that both
 - a. Finish[i] == false
 - b. $Request_i \leq Work$

If no such *i* exists, go to step 4.

- Work = Work + Allocation_i
 Finish[i] = true
 Go to step 2.
- **4.** If Finish[i] == false for some i, $0 \le i < n$, then the system is in a deadlocked state. Moreover, if Finish[i] == false, then process P_i is deadlocked.

c) [2+1 Marks with all calculations and No Deadlock]

Work and availability are the same in the following calculation.

Because $P_4's$ $Request = [1,0,0,0] \le Available = [2,0,0,0], P_4$ runs and returns is Allocation = [0,1,0,1] making the new Available = [2,0,0,0] + [0,1,0,1] = [2,1,0,1]

Then, we can run P_1 because P_1 's $Request = [0,1,0,0] \le Available = [2,1,0,1]$. After reclaiming P_1 's Allocation = [1,0,0,0], the new Available is old $Avaliable = [2,1,0,1] + P_1's$ Allocation = [1,0,0,0] = [3,1,0,1].

The next process is P_3 because P_3 's $Request = [0,0,0,1] \le Available = [3,1,0,1]$. After P_3 finishes its work, its Allocation = [0,0,1,0] is returned to Available = [3,1,0,1] + [0,0,1,0] = [3,1,1,1]:

Now we can run P_2 and the yields new available is $\begin{bmatrix} 3 & 1 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 2 & 1 & 1 \end{bmatrix}$

Finally, we can run P_5 and all processes are done! And new Available is [3 2 1 2] No Deadlock in the System a) Explain the following security breaches in detail. 5. [.5 Mark Each, should cover the core concept] Trojan Horse Trap Door, Logic Bomb Stack and Buffer Overflow. b) Differentiate between compiler and interpreter. (at least four) [2 Mark (.5 marks for each right difference)] c) Explain the different free space management techniques. Discuss the relevant merit and demerit of each one. [3 Mark (1 mark per Techniques), at least 3 Techniques should be explained with proper merit and demerit] [CO-5][7 MARKS] c)Free space management techniques: S -Bit Vector Techniques 0 -Linked List L -Grouping -Counting Consider the following disk access requests made by multiple processes in the given order. 6. 15, 69, 148, 353, 112, 86, 104, 261, 158, 231, 116, 31, 172, 415, 138, 309 The disk has 500 cylinders (0 to 499), with the head currently positioned at cylinder 220 and moving towards the disk's near end. The average power dissipation when moving the head over 50 cylinders is 7 milliwatts, and 2 milliwatts when reversing the direction of the head movement once. The power dissipation caused by rotational latency and switching of the head between platters is negligible. a) Which disk scheduling algorithm (FCFS, SCAN, SSTF, LOOK) will produce the second shortest average seek time? Display the head movements and compute the average seek time for each algorithm. [4 MARKS] [1 Mark for each Algo. Diagram = .5 Marks and Correct Seek Time = .5 Marks] b) Using the Shortest Seek Time First and C-Look disk scheduling algorithm computes total power consumption in milliwatts to satisfy all of the above disc requests. [3 MARKS] [1.5 MARKS Each, Calculation and correct output should be there] [CO-5][7 MARKS]

(b) C-Look

.5 marks for diagram.

1 mark for complete calculation

Head movement is some as Look

of Lead k-change its direction = 0]