Mikhail Hushchyn

Quality Metrics

Classification and Regression

2021

Outline

- Quality metrics for regression
- Quality metrics for classification

Quality Metrics for Regression

Problem formulation

Consider a dataset X, y and a linear regression model:

$$\hat{y} = Xw$$

where w – weights of the model.

The goal is to measure the quality of this model, estimate how close predictions \hat{y} to the real values y.

Popular quality metrics

Root Mean Squared Error (RMSE):

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2}$$

Mean Absolute Error (MAE):

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |\hat{y}_i - y_i|$$

It is hard to tell if a model is good: RMSE=1 represents the different quality of a model for $\bar{y}=100$ and $\bar{y}=1$

Other quality metrics #1

Mean Absolute Percentage Error (MAPE):

$$MAPE = \frac{100}{N} \sum_{i=1}^{N} \left| \frac{\hat{y}_i - y_i}{y_i} \right|$$

- Measures relative error of the prediction
- Easy to understand quality of the model
- Sensitive to y scale

Other quality metrics #2

Relative Squared Error (RSE):

$$RSE = \sqrt{\frac{\sum_{i=1}^{N} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{N} (y_i - \bar{y})^2}}$$

Relative Absolute Error (RAE):

$$RAE = \frac{\sum_{i=1}^{N} |y_i - \hat{y}_i|}{\sum_{i=1}^{N} |y_i - \bar{y}|}$$

- RSE shows how the prediction errors differ from the standard deviation of the real values
- Robust to y scale

Other quality metrics #3

Root Mean Squared Logarithmic Error (RMSLE):

$$RMSLE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (\log(y_i + 1) - \log(\hat{y}_i + 1))^2}$$

It is a great choice, when y_i changes in several orders: $y_i \in [0, 10^6]$

Metric	No outliers
RMSE	0.67
MAE	0.59
MAPE, %	1035
RSE	0.39
RAE	0.40

MAPE fails because of y scale and y_i that are close to 0

Metric	No outliers	With outlier
RMSE	0.67	1.93
MAE	0.59	0.96
MAPE, %	1035	1040
RSE	0.39	0.92
RAE	0.40	0.58

- Outliers significantly affect the metrics
- MAE and RAE are more robust

Quality Metrics for Classification

Problem formulation

Consider a binary classification problem with a data sample and a classifier.

The goal is to measure the quality of the classifier, estimate how well it separates objects of different classes.

Confusion matrix

- TP (True Positive) correctly predicted positives
- FP (False Positive) predicted as positives, but negatives (1st order error)
- TN (True Negative) correctly predicted negatives
- FN (False Negative) predicted as negatives, but positives (2nd order error)

PREDICTIVE VALUES

POSITIVE (1) NEGATIVE (0)

TP	FN
FP	TN

AL VALUE (1)

NEGATIVE (0)

Confusion matrix

- TP (True Positive) correctly predicted positives
- FP (False Positive) predicted as positives, but negatives (1st order error)
- TN (True Negative) correctly predicted negatives
- FN (False Negative) predicted as negatives, but positives (2nd order error)

Confusion matrix

All positives (Pos):

$$Pos = TP + FN$$

All negatives (Neg):

$$Neg = TN + FP$$

All positive predictions (PosPred):

$$PosPred = TP + FP$$

All negative predictions (NegPred):

$$NegPred = TN + FN$$

Quality metrics #1

Accuracy:

Accuracy =
$$\frac{TP + TN}{TP + FN + TN + FP} = \frac{TP + TN}{Pos + Neg}$$

Error rate:

Error rate
$$= 1 - Accuracy$$

They measure classification quality for both classes

Quality metrics #2

Precison:

$$Precison = \frac{TP}{TP + FP} = \frac{TP}{PosPred}$$

Recall:

$$Recall = \frac{TP}{TP + FN} = \frac{TP}{Pos}$$

 $ightharpoonup F_1$ -score:

$$F_1 = \frac{2 \cdot \text{Precison} \cdot \text{Recall}}{\text{Precision} + \text{Recall}}$$

Example

Metric	Value
Accuracy	0.89
Precision	0.89
Recall	0.89
F_1	0.89

- In this symmetric case values of all metrics are the same
- Latter, we will see other cases

Class label vs class probability

Predict 1 if $p \ge 0.5$ Predict 0 if p < 0.5

Probability of positive class p:

ROC curve

- PROC (Receiver operating characteristic) curve is a dependency of $TPR(\mu)$ from $FPR(\mu)$ for different thresholds μ of the probability of positive class p
- ► $TPR(\mu)$ (True Positive Rate):

$$TPR(\mu) = \frac{1}{Pos} \sum_{i \in Pos} I[p_i \ge \mu] = \frac{TP(\mu)}{Pos}$$

► $FPR(\mu)$ (False Positive Rate):

$$FPR(\mu) = \frac{1}{Neg} \sum_{i \in Neg} I[p_i \ge \mu] = \frac{FP(\mu)}{Neg}$$

ROC curve

ROC curve

In physics, very often plot dependency of background reduction from signal efficiency

Here:

- ► Signal efficiency = TPR
- Background reduction = 1 FPR

ROC AUC

- ROC curves can be compared using area under the ROC curve (ROC AUC)
- ▶ ROC AUC \in [0, 1] range
- ► ROC AUC = 0.5 means random guessing
- ► ROC AUC = 1 means ideal classification
- ► ROC AUC = 0 also means ideal classification, but for opposite labels ©

Img: https://glassboxmedicine.com/2019/02/23/measuring-performance-auc-auroc/

Precision-Recall curve

- Similarly to ROC curve, you can plot
 Precision-Recall curve (PR)
- PR is dependency of $Precision(\mu)$ from $Precision(\mu)$ for different thresholds μ of the positive class probability p

Metric	1:1	1:10	10:1
Accuracy	0.89		
Precision	0.89		
Recall	0.89		
F_1	0.89		
ROC AUC	0.97		

- Let's train a model on a sample with equal number of objects in each class
- We fix the model and will change class balance in test sample

Metric	1:1	1:10	10:1
Accuracy	0.89	0.89	
Precision	0.89	0.99	
Recall	0.89	0.89	
F_1	0.89	0.94	
ROC AUC	0.97	0.97	

With the class balance changing, some metrics change

Metric	1:1	1:10	10:1
Accuracy	0.89	0.89	0.89
Precision	0.89	0.99	0.47
Recall	0.89	0.89	0.89
F_1	0.89	0.94	0.61
ROC AUC	0.97	0.97	0.97

For Accuracy it is not true in general case

Summary

Summary

- Quality metrics for regression
 - RMSE, MAE, MAPE
 - RSE, RAE, RMSLE
- Quality metrics for classification
 - Confusion matrix
 - Accuracy, precision, recall, F_1 -score
 - ROC curve, ROC AUC
 - Precision-Recall curve