Introduction to Data Science (IDS) course

# Instruction of Clustering and Frequent Itemsets

Instruction 7







|   | Math | Physics |
|---|------|---------|
| 1 | 2    | 20      |
| 2 | 3    | 4       |
| 3 | 7    | 3       |
| 4 | 4    | 7       |
| 5 | 6    | 2       |
| 6 | 6    | 4       |
| 7 | 3    | 8       |
| 8 | 7    | 4       |
| 9 | 20   | 19      |

The following dataset shows the scores of two courses for nine students. We implement both k-means and k-medoids algorithms on this dataset and compare the results with each other.



#### **Steps of K-means algorithm:**

- (1) Randomly choose k examples from the dataset as initial centroids.
- (2) All the data points that are most similar to a centroid will create a cluster.
- (3) Now, we have new clusters which need centers. The new value of the centroid is going to be the mean of all the examples in a cluster.
- (4) We'll keep repeating steps 2 and 3 until the centroids stop moving.



(1) Points 2 and 8 are initial centroids. (3,4) and (7,4)

|    | Math | Physics |
|----|------|---------|
| 1  | 2    | 20      |
| 2  | 3    | 4       |
| 3  | 7    | 3       |
| 4  | 4    | 7       |
| 5  | 6    | 2       |
| 6  | 6    | 4       |
| 7  | 3    | 8       |
| 8  | 7    | 4       |
| 9  | 8    | 5       |
| 10 | 20   | 19      |



#### (2) All the data points that are most similar to a centroid will create a cluster. (Use

#### **Euclidean distance**)

$$d(i,j) = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{ip} - x_{jp})^2}$$

|    | Math | Physics | Distance<br>from C1 | Distance from C2 |
|----|------|---------|---------------------|------------------|
| 1  | 2    | 20      | 16                  | 16.76            |
| 2  | 3    | 4       | 0                   |                  |
| 3  | 7    | 3       | 4.12                | 1                |
| 4  | 4    | 7       | 3.16                | 4.24             |
| 5  | 6    | 2       | 3.6                 | 2.23             |
| 6  | 6    | 4       | 3                   | 1                |
| 7  | 3    | 8       | 4                   | 5.65             |
| 8  | 7    | 4       |                     | 0                |
| 9  | 8    | 5       | 5.09                | 1.41             |
| 10 | 20   | 19      | 22                  | 19.84            |

(3) Now, we have new clusters, which need centers. The new value of a centroid is going to be the mean of all the examples in a cluster.

|    | Math | Physics | Distance from C1 | Distance from C2 |
|----|------|---------|------------------|------------------|
| 1  | 2    | 20      | 16               | 16.76            |
| 2  | 3    | 4       | 0                |                  |
| 3  | 7    | 3       | 4.12             | 1                |
| 4  | 4    | 7       | 3.16             | 4.24             |
| 5  | 6    | 2       | 3.6              | 2.23             |
| 6  | 6    | 4       | 3                | 1                |
| 7  | 3    | 8       | 4                | 5.65             |
| 8  | 7    | 4       |                  | 0                |
| 9  | 8    | 5       | 5.09             | 1.41             |
| 10 | 20   | 19      | 22               | 19.84            |



|    | Math | Physics | Distance from C1       | Distance from C2 |
|----|------|---------|------------------------|------------------|
| 1  | 2    | 20      | 16                     | 16.76            |
| 2  | 3    | 4       | 0                      |                  |
| 3  | 7    | 3       | 140                    |                  |
| 4  | 4    | 7       | New ce                 |                  |
| 5  | 6    | 2       | (3, 9.75)<br>(9, 6.16) |                  |
| 6  | 6    | 4       |                        |                  |
| 7  | 3    | 8       | 4                      | 5.65             |
| 8  | 7    | 4       |                        | 0                |
| 9  | 8    | 5       | 5.09                   | 1.41             |
| 10 | 20   | 19      | 22                     | 19.84            |





(2) All the data points that are most similar to a centroid will create a cluster.(Use

**Euclidean distance)** 

|    | Math | Physics | Distance<br>from C1 | Distance from C2 |
|----|------|---------|---------------------|------------------|
| 1  | 2    | 20      | 10.29               | 15.5             |
| 2  | 3    | 4       | 5.75                | 6.37             |
| 3  | 7    | 3       | 7.84                | 3.73             |
| 4  | 4    | 7       | 2.92                | 5.06             |
| 5  | 6    | 2       | 8.31                | 5.12             |
| 6  | 6    | 4       | 6.48                | 3.69             |
| 7  | 3    | 8       | 1.75                | 6.27             |
| 8  | 7    | 4       | 7                   | 2.94             |
| 9  | 8    | 5       | 6.89                | 1.52             |
| 10 | 20   | 19      | 20.11               | 17.15            |

(4) We'll keep repeating step 2 and 3 until the centroids stop moving.

No change in clusters occurred!
We have final clusters.



#### Some weaknesses of k-means algorithm

- Number of clusters needs to be decided beforehand.
- It is sensitive to outliers.
- It can only discover spherical clusters (compare to density-based methods).

For practice, please choose two other centroids and repeat the algorithm. Compare the results with each other.



(1) Choose randomly two medoids.

|    | Math | Physics |
|----|------|---------|
| 1  | 2    | 20      |
| 2  | 3    | 4       |
| 3  | 7    | 3       |
| 4  | 4    | 7       |
| 5  | 6    | 2       |
| 6  | 6    | 4       |
| 7  | 3    | 8       |
| 8  | 7    | 4       |
| 9  | 8    | 5       |
| 10 | 20   | 19      |



#### (2) Assign each object to the closest representative object. Use Manhattan metric.

$$d(i,j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$

|    | Math | Physics | Distance from C1 | Distance from C2 |
|----|------|---------|------------------|------------------|
| 1  | 2    | 20      | 17               | 21               |
| 2  | 3    | 4       | 0                |                  |
| 3  | 7    | 3       | 5                | 1                |
| 4  | 4    | 7       | 4                | 6                |
| 5  | 6    | 2       | 5                | 3                |
| 6  | 6    | 4       | 3                | 1                |
| 7  | 3    | 8       | 4                | 8                |
| 8  | 7    | 4       |                  | 0                |
| 9  | 8    | 5       | 6                | 2                |
| 10 | 20   | 19      | 32               | 28               |

(2) Assign each object to the closest representative object. Use Manhattan metric.

| d(i, j) = | $ x_{i1} - x_{i1} $ | $  +   x_{i2}$ | $-x_{i2} +\cdots$ | $\cdot +  x_{ip} - x_{jj} $ | <sub>D</sub> |
|-----------|---------------------|----------------|-------------------|-----------------------------|--------------|
| ( , ) )   | 111                 | 1 1 10012      | 11/21             | - $P$                       | PΙ           |



|    | Math | Physics | Distance from C1 | Distance from C2 |
|----|------|---------|------------------|------------------|
| 1  | 2    | 20      | 17               | 21               |
| 2  | 3    | 4       | 0                |                  |
| 3  | 7    | 3       | 5                | 1                |
| 4  | 4    | 7       | 4                | 6                |
| 5  | 6    | 2       | 5                | 3                |
| 6  | 6    | 4       | 3                | 1                |
| 7  | 3    | 8       | 4                | 8                |
| 8  | 7    | 4       |                  | 0                |
| 9  | 8    | 5       | 6                | 2                |
| 10 | 20   | 19      | 32               | 28               |



(2) Assign each object to the closest representative object. Use Manhattan metric.



Calculate the cost: The dissimilarity of each non-medoid point with the medoids is calculated:

cost: 17+4+4+1+3+1+2+28=60



- (3) For each representative object, randomly select a non representative object O.
- □ Choose a random object O1 (2,20). In this step notice that you do not the same experiment twice.
- Swap O8 and O1.
- Calculate the cost again.



(4) Assign each object to the closest representative object. Use Manhattan metric.

$$d(i, j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$

|    | Math | Physics | Distance<br>from C1 | Distance from C2 |
|----|------|---------|---------------------|------------------|
| 1  | 2    | 20      |                     | 0                |
| 2  | 3    | 4       | 0                   |                  |
| 3  | 7    | 3       | 5                   | 22               |
| 4  | 4    | 7       | 4                   | 15               |
| 5  | 6    | 2       | 5                   | 22               |
| 6  | 6    | 4       | 3                   | 20               |
| 7  | 3    | 8       | 4                   | 13               |
| 8  | 7    | 4       | 4                   | 21               |
| 9  | 8    | 5       | 6                   | 21               |
| 10 | 20   | 19      | 32                  | 19               |

(4) Assign each object to the closest representative object. Use Manhattan metric.

$$d(i, j) = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$



5+4+5+3+4+4+6+19=50

|    | Math | Physics | Distance<br>from C1 | Distance from C2 |
|----|------|---------|---------------------|------------------|
| 1  | 2    | 20      |                     | 0                |
| 2  | 3    | 4       | 0                   |                  |
| 3  | 7    | 3       | 5                   | 22               |
| 4  | 4    | 7       | 4                   | 15               |
| 5  | 6    | 2       | 5                   | 22               |
| 6  | 6    | 4       | 3                   | 20               |
| 7  | 3    | 8       | 4                   | 13               |
| 8  | 7    | 4       | 4                   | 21               |
| 9  | 8    | 5       | 6                   | 21               |
| 10 | 20   | 19      | 32                  | 19               |

(4) Assign each object to the closest representative object. Use Manhattan metric.





If new cost is less than previous cost replace the representative object with o random.

50<60 It is good to replace O8 and O3.

- (6) We try other non-medoids points to get minimum distance...
- (7) Back to step 1, until no change.



# Comparison of k-means and k-medoids

- K-medoids is more robust to noise and outliers but:
- □ The complexity of each iteration is high: O(k(n-k)^2)
   (k: number of representative objects, n: total number of objects)



# **Frequent Itemsets**

#### **Basic ideas of Apriori algorithm**

 Apriori rule: All the non-empty sub-itemsets of frequent itemsets must be frequent.



| TI<br>D | Items                      |
|---------|----------------------------|
| 1       | sugar, fruit, water        |
| 2       | bread, fruit, juice        |
| 3       | sugar, bread, fruit, juice |
| 4       | bread, juice               |
| 5       | sugar, fruit, juice        |



| Itemset | Count |
|---------|-------|
| sugar   | 3     |
| bread   | 3     |
| juice   | 4     |
| fruit   | 4     |
| water   | 1     |

Due to the minsupport-count= 2, we remove water from the table.



L1 Ite

ItemsetCountsugar3bread3juice4fruit4

C2



Due to the min-supportcount= 2, we remove {sugar, bread}.



**L2** 

| Itemset        | Count |
|----------------|-------|
| {sugar, juice} | 2     |
| {sugar, fruit} | 3     |
| {bread, juice} | 3     |
| {bread, fruit} | 2     |
| {juice, fruit} | 3     |

**C**3



If an itemset is frequent, each subset of that should be frequent

| Itemset                                                                  | In L2 |
|--------------------------------------------------------------------------|-------|
| {sugar, juice, fruit}<br>{sugar, juice},{juice,<br>fruit},{sugar, fruit} | Yes   |
| {sugar, juice, bread}<br>{sugar, juice},{sugar,<br>bread},{juice, bread} | No    |
| {sugar, fruit, bread}<br>{sugar, fruit},{sugar,<br>bread},{fruit, bread} | No    |
| {bread, fruit, juice} {bread, fruit},{fruit, juice},{bread, juice}       | Yes   |

C3

| Itemset               | Support |
|-----------------------|---------|
| {sugar, juice, fruit} | 2       |
| {bread, fruit, juice} | 2       |

Minsupportcount= 2

L3

| Itemset               | Support |
|-----------------------|---------|
| {sugar, juice, fruit} | 2       |
| {bread, fruit, juice} | 2       |

For making L4, look at the first dataset.



C4 Itemset In L3

{sugar, juice, fruit, bread}
{sugar, juice, fruit},{sugar, juice,
bread},{fruit, juice, bread}

✓ The Apriori algorithm takes the advantage of the fact that any subset of a frequent itemset should also be frequent.

