เครื่องวัดการใช้พลังงานอัจฉริยะและการพยากรณ์ด้วย การเรียนรู้ของเครื่องแบบการถดถอยเชิงเส้น

Smart Meter and forecast by Machine Learning with Linear Regression

นายอรรถกร นาราช 67011578

นายพิชาพงศ์ ติดเทียน 67010635

รายงานเล่มนี้เป็นส่วนหนึ่งของการศึกษาในรายวิชา
01236256 Microcontroller and Embedded Systems
หลักสูตรวิศวกรรมระบบไอโอทีและสารสนเทศ
ภาควิชาวิศวกรรมไอโอทีและสารสนเทศ
คณะวิศวกรรมศาสตร์
สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

กิตติกรรมประกาศ

โครงงานเรื่อง เครื่องวัดการใช้พลังงานอัจฉริยะและการพยากรณ์ด้วยการเรียนรู้ของเครื่องแบบถดถอยเชิงเส้น (Smart Meter and forecast by Machine Learning with Linear Regression) ฉบับนี้ สำเร็จลุล่วงได้ด้วยดี ด้วยความกรุณาและการสนับสนุนจากผู้มีส่วนเกี่ยวข้องหลายฝ่าย ดังนี้

คณะผู้จัดทำขอกราบขอบพระคุณ **ผู้ช่วยศาสตราจารย์ ดร.นัชนัยน์ รุ่งเหมือนฟ้า** อาจารย์ที่ปรึกษา โครงงาน ที่ได้มอบความรู้ คำปรึกษา และคำแนะนำอันเป็นประโยชน์ยิ่ง ตลอดจนให้แนวทางที่ถูกต้องในการพัฒนา ชิ้นงานและการจัดทำรายงานฉบับนี้อย่างใกล้ชิด ทำให้โครงงานมีความสมบูรณ์ยิ่งขึ้น

ขอขอบคุณ **นายณัฐวิทย์ โนวังหาร** และ **นายธนทร ภิญโญเมธากุล** ที่ได้อนุเคราะห์ให้คณะผู้จัดทำนำ ชิ้นงานมาต่อยอดพัฒนา ทำให้สามารถนำองค์ความรู้ที่ได้ศึกษามาประยุกต์ใช้ได้อย่างเป็นรูปธรรม

ขอขอบคุณ **นายอังศุลชวาล สมิตชาติ** ที่ได้ให้คำแนะนำ แนวคิด รวมถึงคอยให้คำปรึกษาด้านการเขียน โปรแกรมและการต่อวงจรอย่างสม่ำเสมอ จนชิ้นงานสามารถทำงานได้ตามวัตถุประสงค์ที่ตั้งไว้

ท้ายที่สุด คณะผู้จัดทำขอขอบพระคุณทุกท่านที่มีส่วนร่วมในการสร้างสรรค์และสนับสนุนการจัดทำ โครงงานฉบับนี้ หากมีข้อผิดพลาดประการใด คณะผู้จัดทำขอน้อมรับไว้เพื่อนำไปปรับปรุงแก้ไข และหวังเป็นอย่าง ยิ่งว่ารายงานฉบับนี้จะเป็นประโยชน์แก่ผู้ที่สนใจศึกษาต่อไปในอนาคต

คณะผู้จัดทำ

สารบัญ

บทที่ 1

บทน้ำ

1.1. ที่มาและความสำคัญ

ปัจจุบันการใช้พลังงานไฟฟ้าเป็นปัจจัยพื้นฐานที่สำคัญต่อการดำรงชีวิต ทั้งในด้านการอุปโภค บริโภค การคมนาคม และการทำงาน อย่างไรก็ตาม ปัญหาสำคัญที่ผู้ใช้ไฟฟ้าต้องเผชิญคือ ความผันผวนของค่าใช้จ่ายไฟฟ้า ที่ไม่สม่ำเสมอในแต่ละเดือน ทำให้ผู้ใช้งานไม่สามารถวางแผนค่าใช้จ่ายได้อย่างมีประสิทธิภาพและส่งผลกระทบต่อ การบริหารจัดการการเงินในชีวิตประจำวัน

คณะผู้จัดทำจึงได้พัฒนาเครื่องวัดพลังงานอัจฉริยะ (Smart Meter) ขึ้นเพื่อแก้ไขปัญหาดังกล่าว โดย เครื่องมือนี้มีคุณสมบัติในการวัดการใช้พลังงานแบบเรียลไทม์ และที่สำคัญคือ สามารถพยากรณ์ค่าพลังงานไฟฟ้าใน อนาคตได้ นอกจากนี้ยังช่วยแสดงข้อมูลพฤติกรรมการใช้พลังงานของผู้ใช้งาน เพื่อให้สามารถปรับเปลี่ยนพฤติกรรม และลดค่าใช้จ่ายได้

1.2. วัตถุประสงค์

- 1.2.1. เพื่อออกแบบและสร้างเครื่องวัดพลังงานอัจฉริยะที่สามารถวัดค่า แรงดันไฟฟ้ากระแสสลับ กระแสไฟฟ้ากระแสสลับ และ ตัวประกอบกำลัง ได้อย่างถูกต้อง
- 1.2.2. เพื่อพัฒนาแบบจำลองการพยากรณ์ด้วยวิธีการถดถอยเชิงเส้น (Linear Regression) ให้ สามารถพยากรณ์ค่าพลังงานไฟฟ้าในอนาคต และสร้าง Dashboard สำหรับการแสดงการใช้ พลังงานไฟฟ้าได้

1.3. หลักการทำงาน

ในการสร้างชิ้นงานจะออกแบบให้มีการวัดพลังงานไฟฟ้าด้วยโมดูลการวัดพลังงาน PZEM-004T เป็นโมดูล ที่สามารถวัดแรงดันไฟฟ้ากระแสสลับ กระแสไฟฟ้ากระแสสลับ และตัวประกอบกำลังได้ จากนั้นคณะผู้จัดทำจะนำ ข้อมูลที่ได้รับจากโมดูล มาแสดงผลผ่าน Dashboard และวิเคราะห์ด้วยวิธีการถดถอยเชิงเส้น (Linear Regression) เพื่อพยากรณ์ค่าพลังงานไฟฟ้าที่เกิดขึ้นโดยมีการวัดความแม่นยำด้วยวิธีการทางคณิตศาสตร์

บทที่ 2

ทฤษฎีและงานวิจัยที่เกี่ยวข้อง

ในบทนี้อธิบายถึงทฤษฎีและงานวิจัยที่เกี่ยวข้องกับ เครื่องวัดการใช้พลังงานอัจฉริยะและการพยากรณ์ ด้วยการเรียนรู้ของเครื่องแบบถดถอยเชิงเส้น (Smart Meter and forecast by Machine Learning with Linear Regression) เพื่อใช้เป็นแนวทางสำหรับการดำเนินการโครงงาน ซึ่งประกอบไปด้วยหัวข้อ

- 1) ไฟฟ้ากระแสสลับ (Alternating Current)
- 2) กำลังของไฟฟ้ากระแสสลับ และค่าตัวประกอบของกำลังไฟฟ้า (Power of Alternaing Current and Power Factor)
- 3) PZEM-004T โมดูลการวัดการใช้พลังงาน
- 4) การใช้งานฐานข้อมูล (Database) ด้วย PosgreSQL
- 5) การถดถอยเชิงเส้น (Linear Regression)

2.1. ไฟฟ้ากระแสสลับ (Alternating Current)

ไฟฟ้ากระแสสลับ (Alternating Current) คือ ไฟฟ้าที่มีการเปลี่ยนแปลงทิศทางการไหลของกระแสไฟฟ้า แบบกลับไปกลับมาตลอดเวลา และไม่มีขั้วบวกหรือขั้วลบของไฟฟ้า ซึ่งอัตราการเปลี่ยนทิศทางของกระแสไฟฟ้า เรียกว่า ความถี่ของไฟฟ้ากระแสสลับ มีหน่วยวัดเป็น เฮิรตซ์ [Hertz, Hz] โดยประเทศไทยจะมีความถี่ของไฟฟ้า กระแสสลับเท่ากับ 50 เฮิรตซ์ หรือว่ามีการเปลี่ยนแปลงของทิศทางไฟฟ้าทั้งหมด 50 ครั้งต่อวินาที และ แรงดันไฟฟ้ากระแสสลับของประเทศไทยจะมีแรงดันอยู่ที่ 220 โวลต์

รูปที่ 2.1 ภาพของกราฟไฟฟ้ากระแสสลับ

ประเภทของไฟฟ้ากระแสสลับมีทั้งหมด 2 ประเภท ประกอบด้วย 1. ไฟฟ้ากระแสสลับ 1 เฟส 2. ไฟฟ้า กระแสสลับ 3 เฟส

- 1. ไฟฟ้ากระแสสลับ 1 เฟส (Single Phase Alternating Current) คือ กระแสไฟฟ้าที่มีแรงดันไฟฟ้า เท่ากับ 220 โวลต์ และมีความถี่เท่ากับ 50 เฮิรตซ์ เป็นระบบไฟฟ้าที่ใช้กันในครัวเรือนปกติ
- 2. ไฟฟ้ากระแสสลับ 3 เฟส (Three Phase Alternating Current) คือ ไฟฟ้ากระแสสลับที่มี แรงดันไฟฟ้าเท่ากับ 380 400 โวลต์ เป็นระบบไฟฟ้าที่ใช้ในโรงงานอุตสาหกรรม

ไฟฟ้ากระแสสลับ (Alternating Current) คือ กระแสไฟฟ้าที่มีการเปลี่ยนแปลงของทิศทางกลับไปกลับมา จึงสามารถเขียนเป็นสมการทางคณิตศาสตร์ได้เป็น

$$v(t) = V_m cos(\omega t + \Phi) \tag{1}$$

โดยที่ $\mathit{V}_m = \mathit{V}_p$ คือ แรงดันไฟฟ้าที่มีค่ามากที่สุด (Peak Voltage)

ไฟฟ้ากระแสสลับ (Alternating Current) คือ กระแสไฟฟ้าที่มีการเปลี่ยนแปลงของทิศทางกลับไปกลับมา ดังนั้น หากต้องการจะวัดด้วยอุปกรณ์สำหรับการวัดด้วยไฟฟ้าอย่าง โวลต์มิเตอร์ (Volt Meter) หรือ แอมป์มิเตอร์ (Amp Meter) จะไม่สามารถวัดได้ จึงต้องมีค่ายังผลของไฟฟ้ากระแสสลับ (Effective Value) หรือเรียกว่า ค่า มิเตอร์ (Meter Value) สามารถเขียนเป็นสมการทางคณิตศาสตร์ได้เป็น

1. ค่ายังผลของแรงดันไฟฟ้ากระแสสลับ (RMS Voltage) :

$$V_{rms} = \frac{V_{max}}{\sqrt{2}} = 0.707 \times V_{max} \tag{2}$$

2. ค่ายังผลของกระแสไฟฟ้ากระแสสลับ (RMS Current):

$$I_{rms} = \frac{I_{max}}{\sqrt{2}} = 0.707 \times I_{max} \tag{3}$$

โดยที่ $extit{V}_{rms}$ คือ ค่ายังผลของแรงดันไฟฟ้ากระแสสลับ (Root Mean Square Voltage)

 I_{rms} คือ ค่ายังผลของกระแสไฟฟ้ากระแสสลับ (Root Mean Square Current)

 V_{max} คือ แรงดันไฟฟ้าที่มากที่สุด (Peak Voltage)

 I_{max} คือ กระแสไฟฟ้าที่มากที่สุด (Peak Current)

2.2. กำลังของไฟฟ้ากระแสสลับและค่าตัวประกอบของกำลังไฟฟ้า (Power of Alternating Current and Power Factor)

กำลังของไฟฟ้ากระแสสลับ (Power of Alternating Current) คือ พลังงานไฟฟ้าที่ใช้ไปในเวลา 1 วินาที มีหน่วยเป็น วัตต์ (Watt : W) หรือ จูลต่อวินาที (Joule/second ; J/s) ในการคำนวณหากำลังของไฟฟ้ากระแสสลับ จะสามารถหาได้จากสมการทางคณิตศาสตร์

$$P = V_{rms}I_{rms}cos(\emptyset_{v} - \emptyset_{I}) \tag{4}$$

โดยที่ $oldsymbol{\phi}_{oldsymbol{
u}}$ คือ มุมเฟสของแรงดันไฟฟ้า

 $oldsymbol{\emptyset}_I$ คือ มุมเฟสของกระแสไฟฟ้า

โดยทั่วไปจะนิยมวัดพลังงานไฟฟ้าที่ใช้กับเครื่องใช้ไฟฟ้าเป็นหน่วยที่ใหญ่กว่าหน่วยจูล โดยกำลังไฟฟ้าจะ ใช้เป็นหน่วยกิโลวัตต์ (Kilo Watt : kW) และเวลาจะใช้เป็นชั่วโมง (hours : hrs) จะเรียกว่าหน่วย หรือ ยูนิต (Unit) ในระบบไฟฟ้ากระแสสลับ การวัดค่ากำลังไฟฟ้าสามารถวัดแยกได้ 3 แบบ คือ

- 1.กำลังไฟฟ้าจริง (Active Power ; P) มีหน่วยเป็น วัตต์ (Watt : W)
- 2. กำลังไฟฟ้ารีแอกทีฟ (Reactive Power ; Q) มีหน่วยเป็น วาร์ (Var)
- 3.กำลังไฟฟ้าที่ปรากฏ (Apperant Power ; S) มีหน่วยเป็น โวลต์-แอมป์ (Volt-Amp : VA)

ค่าตัวประกอบกำลังไฟฟ้า (Power Factor) คือ อัตราส่วนของกำลังไฟฟ้าที่ใช้งานจริง หารด้วยกำลังงาน ที่ปรากฏ สามารถเขียนเป็นสมการทางคณิตศาสตร์เป็น

$$Power\ Factor = \frac{P}{S} = cos(\emptyset_v - \emptyset_I)$$

โดยที่ $oldsymbol{\phi}_{oldsymbol{v}}$ คือ มุมเฟสของแรงดันไฟฟ้า

 $oldsymbol{\emptyset}_I$ คือ มุมเฟสของกระแสไฟฟ้า

2.3. PZEM-004T โมดูลวัดการใช้พลังงาน

PZEM-004T เป็นโมดูล (Module) สำหรับการวัดแรงดันไฟฟ้ากระแสสลับ (V_{AC}), กระแสไฟฟ้ากระแสสลับ (I_{AC}), กำลังไฟฟ้าจริง (P), ความถี่ (f), ค่าประกอบกำลัง (Power Factor) และพลังงานแอคทีฟ (E)

รูปที่ 2.2 ภาพโมดูลวัดการใช้พลังงาน PZEM-004T

2.3.1. คุณสมบัติการวัดค่าต่าง ๆ ของ PZEM-004T

- 1. แรงดันไฟฟ้า (Voltage)
 - ช่วงการวัด : 80 ~ 260 V
 - ความละเอียด : 0.1 V
 - ความแม่นย้ำ : 0.5%
- 2. กระแสไฟฟ้า (Current)
 - ช่วงการวัด : 0 \sim 10 A (รุ่น PZEM-004T-10A) หรือ 0 \sim 100 A (รุ่น PZEM-004T-100A)
 - ความละเอียด : 0.001 A
 - ความแม่นย้ำ : 0.5%
- 3. กำลังไฟฟ้าแอคทีฟ (Active Power)
 - ช่วงการวัด : 0 ~ 2.3 kW (รุ่น PZEM-004T-10A) หรือ 0 ~ 23 kW (รุ่น PZEM-004T-100A)
 - ความละเอียด : 0.1 W
 - ความแม่นยำ : 0.5%
- 4. ตัวประกอบกำลัง (Power Factor)
 - ช่วงการวัด : 0.00 ~ 1.00
 - ความละเอียด : 0.01
 - ความแม่นย้ำ : 1%

5. ความถี่ (Frequency)

ช่วงการวัด : 45 Hz ~ 60 Hz

• ความละเอียด : 0.1 HZ

• ความแม่นยำ : 0.5%

6. พลังงานแอคทีฟ (Active Energy)

• ช่วงการวัด : 0 ~ 9999.99 kWh

• ความละเอียด : 1 Wh

• ความแม่นย้ำ : 0.5%

สามารถ Reset ค่าพลังงานได้ด้วย Software

2.3.2. หลักการทำงานของ PZEM-004T

PZEM-004T มีหลักการทำงานเป็นการวัดแรงดันไฟฟ้ากระแสสลับ กระแสของไฟฟ้ากระแสสลับ ฯลฯ ที่มี ลักษณะเป็นสัญญาณแอนะล็อก (Analog Signal) ผ่านระบบการวัด (Measurement System) มีการเปลี่ยน สัญญาณแอนะล็อกเป็นสัญญาณดิจิทัล แล้วส่งค่าผ่านวงจร Optocoupler Isolation เพื่อทำการลดสัญญาณ รบกวน (Noise) ที่มีสาเหตุจากไฟฟ้ากระแสสลับ ผ่านการสื่อสาร TTL (TTL: Transistor – Transistor Logics) แล้วส่งผ่าน Microcontroller ต่อไป

Picture 3.1 PZEM-004T-10A Functional block diagram

รูปที่ 2.3 PZEM-004T Functional Block Diagram

2.4. การใช้งานฐานข้อมูล (Database) ด้วย PosgreSQL

2.5. การวิเคราะห์การถดถอยเชิงเส้น (Linear Regression)

การวิเคราะห์การถดถอยเชิงเส้น (Linear Regression) คือ การวิเคราะห์ข้อมูลรูปแบบหนึ่งที่หาความ สัมพันธระหว่างตัวแปรต้นและตัวแปรตาม โดยจะสามารถแบ่งการวิเคราะห์การถดถอยเชิงเส้นได้ออกเป็น 2 ประเภท ซึ่งประกอบไปด้วย

- 1) การวิเคราะห์การถดถอยแบบเชิงเส้นแบบง่าย (Simple Linear Regression)
- 2) การวิเคราะห์การถดถอยแบบเชิงเส้นแบบพหุ (Multiple Linear Regression)

2.5.1. การวิเคราะห์การถดถอยเชิงเส้นแบบง่าย (Simple Linear Regression)

การวิเคราะห์การถดถอยเชิงเส้นแบบง่าย (Simple Linear Regression) คือ การศึกษาความสัมพันธ์ของ ตัวแปรต้นและตัวแปรตาม ซึ่งจะประกอบด้วยตัวแปรต้นจำนวน 1 ตัว และตัวแปรตามจำนวน 1 ตัว การวิเคราะห์ เป็นการหาความสัมพันธ์ของตัวแปรทั้งสอง และสร้างรูปแบบสมการทางคณิตศาสตร์ (model) ที่เป็นการพยากรณ์ ค่าของตัวแปรตาม

$$Y_i = \alpha_0 + \beta_1 X_i + \varepsilon_i$$

โดยที่ Y_i คือ ตัวแปรตาม หรือตัวแปรไม่อิสระ

 X_i คือ ตัวแปรต้น หรือตัวแปรอิสระ

 $lpha_0$ คือ ค่าคงที่

 $oldsymbol{eta_1}$ คือ สัมประสิทธิ์ประมาณค่าพารามิเตอร์

 \mathcal{E}_{i} คือ ความคลาดเคลื่อน

i คือ ลำดับของข้อมูล

รูปที่ 2.4 กราฟแสดงความสัมพันธ์ในรูปแบบการถดถอยแบบเชิงเส้น

2.5.2. การวิเคราะห์การถดถอยแบบเชิงเส้นพหุ (Multiple Linear Regression)

การวิเคราะห์การถดถอยแบบเชิงเส้นพหุ (Multiple Linear Regression) คือ การศึกษาความสัมพันธ์ ระหว่างตัวแปรต้นและตัวแปรตาม ซึ่งจะประกอบด้วยตัวแปรต้นจำนวนมากกว่า 1 ตัวขึ้นไป และตัวแปรตาม จำนวน 1 ตัว วิเคราะห์ความสัมพันธ์ของตัวแปรเหล่านั้น และสร้างรูปแบบสมการทางคณิตศาสตร์ (model) เพื่อ การพยากรณ์ค่าของตัวแปรเหล่านั้น

$$Y_i = \alpha_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_n X_n + \varepsilon_i$$

โดยที่ Y_i คือ ตัวแปรตาม หรือตัวแปรไม่อิสระ

 $X_{
m n}$ คือ ตัวแปรต้น หรือตัวแปรอิสระ

 $lpha_0$ คือ ค่าคงที่

 $oldsymbol{eta_n}$ คือ สัมประสิทธิ์ประมาณค่าพารามิเตอร์

 \mathcal{E}_{i} คือ ความคลาดเคลื่อน

n คือ ลำดับของข้อมูล

รูปที่ 2.4 ตัวอย่างกราฟแสดงความสัมพันธ์แบบการถดถอยแบบเชิงเส้นพหุ