Сжатый конспект по линейной алгебре (2-й семестр)

Латыпов Владимир (конспектор)
t.me/donRumata03, github.com/donRumata03, donrumata03@gmail.com
Кучерук Елена Аркадьевна (лектор)

13 июня 2022 г.

Содержание

1	Введение	3
2	Сопряжённое пространство	3
3	Тензоры 3.1 р-формы	4 6
4	Евклидовы пространства	7
5	Расстояние до многообразия	10
6	Страсти по операторам 6.1 Сопряжённый	10 10 10
7	Самосопряжённый	11
8	Изометричный	12
9	Разложения	12

1. Введение

Конспект старается быть максимальнго краткой выжимкой из того, что нужно знать для успешной сдачи экзамена по Линейной Алгебре во втором семестре.

Если кто-то сдаёт часть про линейные операторы и говтов по них написать, welcome.

2. Сопряжённое пространство

 V^* пространство линейных форм над V.

Вычисление формы на коордлинатном столбце $f(x) = \mathbf{x}^j a_j$, где строка a_i размера n изоморфно сопоставляется форме.

— Координатные функции относительно базиса, $\omega^i(e_j)=\delta^i_j.$

Они базис V^* , так как их как раз n, а породить любую f можно, предъявив коэффициенты a_i .

По e мы научились находить сопряжённый базис, теперь научимся в обратную сторону находить по базису V* такой базис V, чтобы исходный был к нему сопряжён: возьмём любую сопряжённую пару e,ω и через это получим $\omega' \to (e',\omega')$

Если назвать $S=T_{\omega \to \omega'}^T$, утверждается, что можем получить e' так: $T_{e \to e'}=S^{-1}$

Чтобы доказать — проверим, что ω' — координатные функции e'. То есть что координаты преобразуются правильно: x' = Sx.

Элементы V^* КОвариантные, так как преобразуются (получение новых из старых) с матрицей $T_{e \to e'}$, а элементы V — контравариантные, так как с матрицей $S = T^{-1}$

Доказывам, что можно получить изоморфизм

$$\varphi:V\to (V^*)^*, x\to "x" \quad \text{where} "x"(f)=f(x) \tag{1}$$

Кетати, $\varphi \in \operatorname{Aut}(V \to (V^*)^*)$.

Линйеность φ очевидна, для биективности в силу линейности достаточно проверить, что базис переходиь в базис (что rg $\varphi=n$). Действи-

тельно, " e_j " — координатные функции базиса координатных функций, так как, " e_j " $(f)=f(e_j)=(a_f)_j$.

Отличие от $V \leftrightarrow V^*$ — в том, что теперь оно не зависит от выбора базиса.

— Умеем считать сопряжённый базис через обратную матрицу и матрицы проекторов через сопряжённый базис.

3. Тензоры

Это функция $V^p \times (V^*)^q \to \mathcal{K}$.

То, что «из векторов» — ковариантное, «из форм» — контрвариантное.

$$T_{(p;q)}$$
 — линейное пространство размерности $n^(p+q)$

За счёт линейности при вычислении на наборе векторов, разложенных по базису, можно вынести p+q сумм с координатами, остаются значения тензора на разных размещениях базиса, их мы назовём компонентами относительно базисов e, ω .

 $lpha_{i_1,\dots,i_p}^{j_1,\dots,j_q}$ Сверху пишется q «контравариантных индекса» — из форм. Снизу — р ковариантные индексы — из векторов.

Это можно записать в p + q-мерную матрицу.

Смена базиса. Выразив старые координаты через новые ($\xi^i=t_k^i{\xi'}^k,\eta_j=s_j^m\eta'_m$), подставим в формулу вычисления на наборе векторов, сгруппируем t,s,α скажем, что это новый компонент, а новые координаты как раз останутся.

Другое определение тензора: это многомерная матрица, в которой выделены «ковариантные» и «контравариантные» координаты и которая пересчитывается при смене базиса по той же формуле, что и выше.

Определения эквивалентны.

Тензорное произведение: вводим через второе определение (многомерная матрица), проверяем вариантность.

Говорим, что в терминах линейных форм мы берём каждую от своей части координат и перемножаем результаты.

Базис вводим базис $T_{(p;q)}$ из n^{p+q} тензорных произведений всех размещений e_i, ω_j , помня, что

$$\begin{split} & \omega_j:(V)^1 \to \mathcal{K} \\ & e_i \cong "e_i":(V^*)^1 \to \mathcal{K} \end{split}$$

Доказываем, что это базис, так как количество n^{p+q} и порождающее: за коэффициенты для порождения берём компоненты относительно базиса, доказываем через формулу вычисления на наборе векторов.

Заметим, что матрица тензора из базиса будет содержать одну единицу на соответствующих индексах и все остальные нули.

Вводим свёртку как матрицу, доказываем, что это тензор, помня, что $t^{\kappa_2}_{\tilde{\kappa}}s^{\tilde{\kappa}}_{\kappa_1}=\delta^{\kappa_2}_{\kappa_1}$ и оставляя в сумме только слагаемые, где $\kappa_1=\kappa_2=\kappa$.

Транспонирование:
$$\beta=\sigma(\alpha), \beta_{j_1\cdots j_p}^{i_1\cdots i_q}=\alpha_{j_{\sigma_1}\cdots j_{\sigma_p}}^{i_1\cdots i_q}.$$

То есть набор индексов α переходит в индексы β под действием обратной к σ перестановки.

Доказываем, что тензор (достаточно доказать про транспозиции, так как перестановка раскладывается на композицию транспозиций)

Заметим, что в терминах функций мы переставлем аргументы, тоже с обратной перестановкой.

Транспонирование — изоморфизм, ассоциативно, но коммутаитвно (как и группа перестановок).

Если при любом транспонировании тензора он не меняется, он симметричен, если умножается на $(-1)^{arepsilon(\sigma)}$, то кососимметричен.

Кососимметричен ⇔ равен нулю при повторяющихся аргументах.

Вводим симметрирование, альтенирование.

Оба перестановочны относительно перестановки, причём для симметрирования получается просто симметрирование, а для альтенирования — оно умножить на знак перестановки. (доказывается, используя, что если все перестановки S_n , по которым мы суммируем, пропустить через одну перестановку, получим тоже все перестановки, но в другом порядке — таблица Кэли, иначе не группа)

 α симметричен $\Leftrightarrow \alpha = \operatorname{Sim} \alpha$. α КОСОсимметричен $\Leftrightarrow \alpha = \operatorname{Alt} \alpha$.

Обе идемпотентны, причём ${\rm Sim}\,{\rm Alt}\,\alpha=0$ (то есть симметрирование любого кососимметричного — ноль, ведь можно подставить кососимметричный $\beta={\rm Alt}\,\beta$, тогда ${\rm Sim}\,\beta={\rm Sim}\,{\rm Alt}\,\beta=0$).

Доказывается, заметив, что сумма чётностей по всем перестановкам — это ноль, так как это определитель матрицы со всеми единицами.

Заметим, что пересечение подпространств симметричных и антисимметричных тензоров — тривиально. Более того, если транспозиция одна (по двум индексам), то пространство всех тензоров заданного типа раскладвыаются в дизъюнктную сумму симметричных и антисимметричных (по этим индексам), где $\alpha=\operatorname{Sim}\alpha+\operatorname{Alt}\alpha$

3.1. р-формы

p-формы — антисимметричные ковариантные тензоры, Если от одного аргумента, отождествляют с V^* .

Внешнее произведение: $f \wedge g = \frac{(p_f + p_g)!}{p_f! p_g!} \operatorname{Alt}(f \otimes g)$.

Есть свойства, можно через них раскрывать скобки.

- $\begin{array}{l} \textbf{1.} \ f \wedge g = (-1)^{p_1 p_2} g \wedge f. \ \textbf{2.} \ (f+g) \wedge h = f \wedge h + g \wedge h \ \textbf{1.} \ f \wedge (g+h) = f \wedge g + f \wedge h. \\ \textbf{3.} \ \lambda \cdot (f \wedge g) = (\lambda f) \wedge g = f \wedge (\lambda g). \ \textbf{4.} \ \mathbb{D}_{\Lambda^{p_1} V^*} \wedge g = f \wedge \mathbb{D}_{\Lambda^{p_2} V^*} = \mathbb{D}_{\Lambda^{p_1 + p_2} V^*}. \\ \textbf{5.} \ (f \wedge g) \wedge h = f \wedge (g \wedge h) = \frac{(p_1 + p_2 + p_3)!}{p_1! p_2! p_3!} \ \textbf{Alt} (f \otimes g \otimes h). \end{array}$
- 2, 3, 4 очевидно.
- 1 записываем по определению, сопоставляем у сумм слагаемые, смотрим на количество инверсий между ними, оно как раз $p_f p_g$.

5 — по определению, доказываем, что $\mathrm{Alt}(\mathrm{Alt}(f\otimes g)\otimes h)=\mathrm{Alt}(f\otimes \mathrm{Alt}(g\otimes h))=\mathrm{Alt}(f\otimes g\otimes h).$ По линейности заносим второе тензорное произведение под внутреннюю сумму, потом создаём перестановку, работающую на всех трёх наборах индексов, но переставляющую только первые два как σ , по линейности альтенирования заносим его под сумму, замечаем альтенирование от перестановки, сокращаем (-1), конец.

По индукции можно обобщить формулу для внешнего произведения на несколько векторов.

Есть базис пространства антисимметричных p-форм (антисимметричных тензоров) размера $\binom{n}{p}$ из врешних произведений упорядоченных комбинаций кординатных функций. Координаты в нём называют

существенными, они численно совпадают с координатой для того же набора в пространстве всех тензоров.

Можно вычислить значение внешнего произведения 1-форм на наборе векторов через определитель матрицы применения каждой функции к каждому вектору.

Также можно найти координаты внешнего произведения в базисе внешних произведений, если знаем разложение самих функций по базису пространства линейных форм.

Комбинируя, можно через сумму произведений двух соответствующих опредеителей вычислить функцию, заданную произведением 1-форм, заданных координатами, на наборе векторов, заданных координатами.

4. Евклидовы пространства

Скалярное (линейные пространства над вещественными числами) — функция от двух векторов: симметричность, линейность по первому (\Rightarrow каждому) аргументу, положительная определённость.

Псевдоскалярное (линейные пространства над комплексными числами): то же самое, только симметричность — эрмитова и по второму аргменту становится «эрмитова» однородность, хотя и нормальная аддитивность.

Евклидова норма — корень из скалярного квадрата.

КБШ: $|\langle x,y\rangle|\leqslant ||x||||y||$, причём равенство только при линейной зависимости. Доказываем так: берём положительное $\langle \alpha x+\beta y,\alpha x+\beta y\rangle$, раскрываем, подставляем $\alpha=< y,y>, \beta=-< x,y>$, выносим ||y||, получаем, что искомое положительно. Из равенства в КБШ сдедует зависимость, так как мы берём вот эти альфа и бета, получаем скалярный квадрат ноль. Из зависимости следует равенство: берём $\alpha x+\beta y=0$ по определению л.з., рассматриваем $\langle \alpha x+\beta y,x\rangle=0; \langle \alpha x+\beta y,y\rangle=0$, раскрываем, перемножаем равенства, конец.

Проверка свойств норм для Евклидовой нормы: Положительная определённость, однородность — очевидно. Нер-во треугольника: доказываем про квадраты норм, раскрывая $||x+y||^2$, замечая сумму сопряжённых, применяя КБШ и получая полный квадрат.

Ортогональая система — линейно независима. Доказвается, скалярно

умножая нулевую линейную комибнацию на базисный вектор, по ортогональности остаётся толко его компонент.

Грам-Шмидт: систему векторов можно заменить на ортогональную систему не большего размера с сохранением линейной оболочки. Процессируя очередной вектор, будем вычитать линейную комбинацию предыдущих, уже ортогональных. Так, чтобы новый стал ортогонален каждому. Если на каком-то шаге получится ноль, выкинем его.

Ортонормированную систему можно дополнить до ОНБ.

Примеры: коэффициенты Фурье, полиномы Лежандра.

Формула Родрига:
$$\tilde{e_k} = \lambda_k \left((x^2-1)^k \right)^(k)$$
.

Доказываем, что $\tilde{e_k} \perp x^m \forall m < k$. Берём интегралл, много раз интегрируя по частям, уменьшая степень x^m и уменьшая количество дифференцирований у $\tilde{e_k}$ каждый раз подстановка обнуляется, так как Eсли полином имеет корень кратности k, этот корень — кратности k-1 у производной.

Общая формула Родрига (хотя почему общая?...). Если взять $\lambda_k=\frac{1}{2^k k!}$, то $\tilde{e_k}(1)=1$. Для доказательства вычислим $\tilde{e_k}(1)$ по формуле Лейбница для произведения $(x-1)^k(x+1)^k$, где слагаемые для i!=k обнуляются.

Квадрат нормы полиномов будет $\frac{2}{2k+1}$ (опять интегрируеим по частям, уменьшая степень у одного и поднимая у другого).

Полиномы Чёбышева. Скалярное произведение — с весом $\frac{1}{\sqrt{1-x^2}}$, получаем $T_n=\cos(n\cos^{-1}(x))$. Доказываем, что это полиномы по индукции, что $T_{n+1}+T_{n-1}=2xT_n$.

Полиномы Эрмита. Скалярное произведение — от нуля до $+\infty$ с весом e^{-x^2} . $H_n = e^{x^2} \left(e^{-x^2}\right)^(n)$.

Скалярное произведение в кооринатах: через матрицу Грама для базиса, $\langle x,y \rangle = x^T \Gamma \overline{y}$. Для ортонормированного — матрица единичная.

Матрица Грама сомосопряжена.

Теорема об определителе матрицы Грама: если система зависима, он равен нулю, иначе — произведению скалярных квадратов векторов, получающихся ортогонализацией Грама-Шмидта.

Доказывается, вычитанием в определителе $g(...,a_i,...)$ соответствующих линейных комбинаций одновременно из строк и столбцов \rightsquigarrow на

каждом шаге все a_i в матрице заменяются на b_i . Получаем определитель ортогональной системы, то есть $|\operatorname{diag}(b_i)|$.

Можем посчитать норму ортогонализации нового вектора через отношение матриц нового и старого определителя, если исходная система независима.

Объём параллелепипеда — корень из определителя Грама.

Можно вычислить матрицу Грама системы так: $G(a_1,...,a_i)=A^T\Gamma\overline{A}$. Для ОНБ, понятно, Γ убирается.

Причём, если количество векторов равно размерности пространства, а $\Gamma = E$, объём — это просто определитель матрицы координат.

Объём под действием оператора изменяется в $\det \mathcal{B}$ раз (как определитель системы векторов при применении оператора). Например, при повороте объём сохраняется, а при гомотетии растёт в λ раз.

Матрица Грама базиса положительно определённая, её угловые миноры больше нуля. Она преобразуется при смене базиса: $\Gamma' = T^T \Gamma \overline{T}$. (Доказывается через смену координат в формуле для скалярного произведения и подстановку $x' = e_i, y' = e_j'$, ведь мы уже получили, что скалярное произведение элементов считается через эту матрицу, а значит, и для базисных векторов это тоже верно).

Изометрическая матрица: обратна сопряжению.

Свойства:

- 1. Изометричность равносильна ортонормированности столбцов, как и строк ($\Gamma=E$). Доказыввается через $Q^T\overline{Q}=E$, что соответствует $\langle q_i,q_j\rangle=\delta^i_j$
- 2. Q изометрично $\Leftrightarrow Q^{-1}$ изометрично
- 3. Произведение изометричных изометрично
- 4. $|\det Q| = 1$
- 5. Матрица перехода между ОНБ изометрична (по формуле для Γ').

Ортогональное дополнение

Почему
$$V=L\oplus L^{\perp}$$

Расстояние от точки до линейного многообразия. Через отношение определителей матриц Грама. Задание 1374

5. Расстояние до многообразия

Можно найти используя отношения определителей матрицы Грама.

Матрица грамма в новом базисе: $\Gamma' = T^T \Gamma \overline{T}$

Между многообразиями: $dist(x_1 - x_2; L_1 + L_2)$.

$$dist^2(x,L) = \frac{g(\ldots,x)}{g(\ldots)}$$

6. Страсти по операторам

6.1. Сопряжённый

Матрица $\overline{\Gamma^{-1}}A^*\overline{\Gamma}$, в онб — просто A^* Сопряжение — взаимообратно. Отнсительно компоиции — как транспонирование. Аддитивность, псевдоОднородность. Перестановочность относительно $(.)^{-1}$

Ядро оператора и образ сопряжённого — ортогональные дополнения друг друга, как и образ оператора и ядро сопряжённого.

Собственные числа — сопряжения друг друга. Для не соответствующих — собственные векторы ортогональны, для соответствующих — одинаковые.

Если подпространство инвариантно относительно A, то его ортогональное дополнение — относительно A*.

6.2. Нормальный

 \iff Перестановочен с сопряжённым \iff $\langle Ax,Ay\rangle = \langle A^*x,A^*y\rangle \iff$ В некотором базисе матрицы перестановочны \iff ОПС + собственные пространства ортогональны \iff Существует какой-нибудь ОНБ, что матрица имеет понятно какой блочно-диагональный вид

Не перестанет быть нормальным, если вычесть сколько-то id.

У нормального оператора ядро и образ — ортогональные дополнения друг друга (если удалось получить собственные числа из того же по-

ля, то потому, что это собственное подпространство нуля и все остальные).

Причём ядро не меняется при возведении в степень. И $\operatorname{Ker} A = \operatorname{Ker} A *$. Лемма о комплексификации (оператора):

— Собственные числа сохранются, собственные пропртанства будут комплексификацией соответствующих — Комлексные собственные числа и простанства будут разбиваться на пары сопряжённых. — Нормальность сохраняется — Сопряжённость — перестановочная с комплексификацией

(Лемма очевидна, если учесть, что любое полиномиальное уравнение, верное в подполе, верно и в самом поле)

Канонический вид: — В унитарном: находим ОНБ из собственных подпространств, получаем собственные числа на диаонали

— В евклидовом: если все СЧ — вещ. — аналогично. Иначе — добавляем ещё блоки для пар комплексно-сопряжённых. Матрица перехода всё ещё должна быть ортогональная. Как её найти? Для вещественных собственных чисел — просто собственные векторы. Для пар КС разделяем какой-нибудь вектор на пару вещественной и комплексной части и запишем в таком порядке.

7. Самосопряжённый

(симметричный/эрмитов)

Равносильное определение через скалярное произведение: применить можно как к первому, так и ко второму аргументу, получится то же самое. И в обратную сторону.

Если А и В САМОсопряжены и перестановочны, то произведение самосопряжено.

Самосопряжён <=> нормален + имеет вещественный спектр <=> существует ОНБ, в котором матрица самосопряжена

Если подпространство инвариантно относительно A, то и ортогональное дополнение — тоже.

В каноническом виде просто пропадут блоки, останутся просто (и в унитарном, и в Евклидовом)

8. Изометричный

Унитарный/ортогональный

Равносильное определение через скалярное произведение, что если применить к обоим аргументам, скалярное проиведение не изменится.

... \iff нормален + собственные числа по модулю = 1 \iff существует ОНБ, в котором матрица изометрична \iff Q^{-1} — изометр.

Если подпространство инвариантно относительно Q, то орт. дополнение — тоже.

Каноничечкий вид — В Евклидовом на диагонали останутся только ± 1 — В Унтарном в блоках будут $a^2+b^2=1$

Матрица изометрична \iff её (стобцы \iff строки) ортонормированы.

9. Разложения

L(D)U — нижне-унитреугольная * (Диагональная без нулей на диагонали) * верхне-унитреугольная; Существует \iff Все угловые миноры матрицы A, кроме (возможно) Δ_n не равны нулю. Можно найти одновременным Гауссом A и E без замены строк и столбцов. Слева будет DU, справа — L^{-1}

Если матрица сомосопряжённая, будет $A = LDL^* = U^*DU$. Причём все d вещественные.

Положительная/отрицаельная определённость, то же самое про собственные числа

Разложение Холецкого: самосопряжённая положительно определённая, все угловые миноры кроме, возможно, последнего, не нули \iff можно убрать D, разложить на треугольные с положительными элементами на диагонали.

QR разложение: для невырожденной можно представить как произведение ортогональной на правую. Или же левой на ортогональную. Q находится ортонормированием столбцов исходной.

Полярное (QS или SQ) разлжение: на самосопряжённую (H) положительно определённую и ортогональную (U). Нужно взять $\sqrt{AA*}$ (левый модуль) для получения ортогонального. Далее — через обратную.

Можно также UH, тогда берём $H = \sqrt{A*A}$ (правый модуль).