

S6 P4 Numerical retracker

Algorithms Technical Baseline
 Description –

Project Reference: JC-DD-ISR-GP-0219

isardSAT Reference: ISARD_ESA_S6_P4_GPP_ATBD_1287

Issue: 1.b

Prepared by: Alba Granados and Charlie McKeown

February 20th, 2024

Activity: S6 P4 L1 GPP CCN6

isardSAT Ref.: ISARD_ESA_S6_P4_GPP_ATBD_1287

Issue: 1.b/ Date: February 20th, 2024

Page: 2 of 21

This page has been intentionally left blank

isardSAT Ref.: ISARD_ESA_S6_P4_GPP_ATBD_1287 Issue: 1.b/ Date: February 20th, 2024

Page: 3 of 21

Change Record

Date	Issue	Section	Comment
September 22nd, 2023	1.a	all	First issue
February 20th, 2024	1.b	§3.1.4, §3.1.5, §4.2.4, §4.2.5	Include Input/Output variable lists

Control Document

Process	Name	Date
Written by:	Alba Granados and Charlie McKeown	February 20th, 2024
Reviewed by: Ester Vendrell		February 20th, 2024
	Mònica Roca i Aparici	
Approved by:	_	February 20th, 2024

Distribution List

Company	Name
ESA	Marco Fornari
	Luisella Giulicchi
	Robert Cullen
isardSAT	Ester Vendrell
	Mònica Roca i Aparici

Page: 4 of 21

Table of contents

C	hang	ge Record	3
C	ontr	ol Document	3
D	istri	bution List	3
\mathbf{L}	ist o	f Figures	6
\mathbf{L}	ist o	f Tables	7
\mathbf{L}	ist of	f Symbols	8
1	Intr	roduction	11
_	1.1	Scope of the document	11
	1.2	Acronyms	11
	1.3	Reference	12
	1.0	1.3.1 Applicable documents	12
		1.3.2 Reference documents	$\frac{12}{12}$
	1.4	Assumptions	12
	1.1	1.4.1 L1B input products	12
		1.4.2 Auxiliary files	13
	1.5	Conventions and remarks	13
	1.0	1.5.1 Scope of sections	13
		1.5.2 Block diagrams legend	13
		1.5.2 Block diagrams legend	13
		1.0.0 Troduct types	10
2	Inp	ut files description	14
	2.1	L1B products	14
		2.1.1 L1B HR product	14
	2.2	Calibration products	14
		2.2.1 CAL1 L1B Pulse CAL product	14
		2.2.2 CAL1 L1B SAR product	15
	2.3	Auxiliary files	15
		2.3.1 Characterisation file (CHD)	15
		2.3.2 Retracker Configuration file (CNF)	15
		2.3.3 Constants file (CST)	15
3	Aux	xiliary data selection	16
	3.1	CAL1 L1B selection	16
		3.1.1 Purpose and scope	16
		3.1.2 Data block diagram	16
		3.1.3 Mathematical description	16
		3.1.4 Input variable list	17
		3.1.5 Output variable list	17
1	N	merical retracker	18
4	4.1	Introduction	18
	$\frac{4.1}{4.2}$	Pre-processing	18
	4.4		18
		T T	
			18
			19 19
		4.2.3.2 Incremental time	19
		4.2.4 Input variable list	19
		4.2.5 Output variable list	19

isardSAT Ref.: ISARD_ESA_S6_P4_GPP_ATBD_1287 Issue: 1.b/ Date: February 20th, 2024

Page: 5 of 21

Aı	Annex													20
A	A Flat surface impulse	respons	se with	non-	zero	misp	oint	ing						20
	A.1 Purpose and scop	e							 	 		 	 	20
	A.2 Mathematical des	cription							 	 		 	 	20

isardSAT Ref.: ISARD_ESA_S6_P4_GPP_ATBD_1287

Issue: 1.b/ Date: February 20th, 2024

Page: 6 of 21

List of Figures

1-1	Colour and symbols diagram legend	13
3-2	CAL1 Pulse CAL selection block diagram	16
4-3	Pre-processing block diagram	18

isardSAT Ref.: ISARD_ESA_S6_P4_GPP_ATBD_1287

Issue: 1.b/ Date: February 20th, 2024

Page: 7 of 21

List of Tables

2-1	Input data list of the retracker	14
3-2	Input variable list of the Auxiliary data selection	17
3-3	Output variable list of the Auxiliary data selection	17

isardSAT Ref.: ISARD_ESA_S6_P4_GPP_ATBD_1287

Issue: 1.b/ Date: February 20th, 2024

Page: 8 of 21

List of Symbols

Indexes:

i	Beam number
l_i	Beam index
j	Two-way incremental time index
t_j	Two-way incremental time
t_j'	Two-way incremental time after delay compensation
b_i'	Index of the beam pointing to a specific surface

Variables, constants and functions:

α	Earth curvature
c	Light Velocity
$\delta heta_{look}$	Angular Doppler resolution
δt_{l_i}	Time delay applied to beam l_i
e_{meas}	Noise floor of the measured multilooked power waveform
e_{model}	Noise floor of the modelled multilooked waveform
G_0	Boresight antenna gain
γ	Beamwidth parameter
$\mathbf{H}_{\mathrm{mask}}(t_j', l_i)$	delay/Doppler mask matrix
H_s	Significant wave height
j_0	First range gate considered in the fitting
j_L	Leading edge sample
j_N	Range gate before leading edge with notable power increase
j_P	Range gate closest to leading edge with a power peak
k_0	Epoch
θ_p, α_r	Mispointing angles
θ	Three-dimensional parameter vector
$ heta_{3dB}$	Half-power antenna beamwidth

isardSAT Ref.: ISARD_ESA_S6_P4_GPP_ATBD_1287

Issue: 1.b/ Date: February 20th, 2024

Page: 9 of 21

0	T1.	a malaa
θ_{look}	LOOK	angles

 θ_0 Initial guess of the geophysical parameters estimates vector

 θ_{look,b'_i} Look angle of the *i*-th beam pointing to a specific surface

 λ_s Ocean skewness

 λ Radar wavelength

h Satellite altitude

 N_s Number of range samples (non zero-padded)

 N_p Number of pulses per burst

 N_{eff} Number of effective looks

 OS_AL Oversampling along track

 OS_AC Oversampling across track

 P_u Waveform amplitude

 $P(t_j, l_i)$ Power waveform at time t_j and Doppler index l_i

 $p(t_j)$ Probability density function of the heights at time t_j

 $P_{FSIR}(t_j, l_i)$ Flat surface impulse response at time t_j and Doppler index l_i

 $P_{I}(t_{j}, l_{i})$ Average surface impulse response at time t_{j} and Doppler index l_{i}

 $P_{PTR}(t_i, l_i)$ Point target response at time t_i and Doppler index l_i

 $P_{DC}^{mask}(t_i, l_i)$ Power waveform after delay compensation and masking

 $P_{AIR}(l_i)$ Azimuth point target response

 $P_{RIR}(t_i)$ Range point target response

 $P_{DC}(t'_i, l_i)$ Waveforms forming the stack after delay compensation

PRF Pulse repetition frequency

PRI Pulse repetition interval

R Earth's radius

 r_j Residual of the optimisation function

 $\rho(t_i)$ Range projected on the surface

 $\rho_L(\cdot)$ Loss function

 $s_i \equiv s(t_i')$ Noise-free modelled multilooked waveform

 $\tilde{s}(t_i')$ Noisy modelled multilooked waveform

 σ_s Root mean square height relative to the mean sea level

 σ^0 Normalized backscatter radar cross section

isardSAT Ref.: ISARD_ESA_S6_P4_GPP_ATBD_1287

Issue: 1.b/ Date: February 20th, 2024 Page: 10 of 21

t Two-way incremental time

 T_s Sampling period

 $U(\cdot)$ Heaviside function

 $oldsymbol{v}_s$ Satellite velocity vector

 y_{t_j,l_i} Along track distance at time t_j and Doppler look l_i

ZP Zero padding factor

 ϕ_{t_j,l_i} Azimuth angle at time t_j and Doppler index l_i

 ψ_j Measured power waveform at sample j

 ψ_{max} Maximum power of the measured power waveform

isardSAT Ref.: ISARD_ESA_S6_P4_GPP_ATBD_1287

Issue: 1.b/ Date: February 20th, 2024

Page: 11 of 21

1 Introduction

1.1 Scope of the document

This document contains the theoretical description and implementation of a numerical retracker performed as part of the WP160 of the CCN #6 [AD. 2] of the contract Poseidon-4 Ground Processor Prototype [AD. 3].

The scope of this document is to describe the algorithms technical baseline of the retracker for Poseidon-4 (P4), the Sentinel-6 (S6) mission altimeter.

1.2 Acronyms

AIR Azimuth impulse response

CAL1 Calibration file

DDP delay/Doppler Processing (usually written as SAR processing)

EUMETSAT European Organisation for the Exploitation of Meteorological Satellites

ESA European Space Agency

FFT Fast Fourier Transform GMSL Global mean sea level

HR High Resolution (referred to the DDP products)

Lib Level-1B. Output file with fully calibrated multilooked unfocussed SAR power

echoes for HR

 $\begin{array}{ccc} LSQ & Least-squares \\ LUT & Look-up-table \end{array}$

MSE Mean square error

P4 Poseidon-4

PDAP Payload Data Acquisition and Processing

PRI Pulse Repetition Interval

PTR Point Target Response

PRF Pulse Repetition Frequency

RIR Range Impulse Response

isardSAT Ref.: ISARD_ESA_S6_P4_GPP_ATBD_1287

Issue: 1.b/ Date: February 20th, 2024

Page: 12 of 21

RMS Root-mean-square

SSH Sea surface height

S6 Sentinel-6

SAR Synthetic Aperture Radar

UTC Universal Time Coordinated

ZP Zero Padding

1.3 Reference

Unless stated otherwise, the latest issue of the documents at the date of the issue of this document is valid. The valid issue of the documents is recorded in the document status list. In the following, each document item consists of 3 entries: bookmark ID (specific to this document), document title.

1.3.1 Applicable documents

- AD. 1 Sentinel-6 P4 L1 GPP Algorithm Technical Baseline Description. JC-DS-ISR-SY-0013, issue 7.a, 6 November 2019.
- AD. 2 Contract Change Notice No. 6 to Contract No. 4000112536/14/NL/BJ

1.3.2 Reference documents

- Nelder, J. A. and Mead, R. (1965). A Simplex Method for Function Minimization. *Comput. J.*, 7:308–313.
- Ray, C., Martin-Puig, C., Clarizia, M. P., Ruffini, G., Dinardo, S., Gommenginger, C., and Benveniste, J. (2015). SAR altimeter backscattered waveform model. *IEEE Transactions on Geoscience and Remote Sensing*, 53(2):911–919.

1.4 Assumptions

In the following sub-section we provide a list of further assumptions used in the development of this software.

1.4.1 L1B input products

The L1B input files used by the retracker are listed and defined in §2.1.

Issue: 1.b/ Date: February 20th, 2024

isardSAT Ref.: ISARD_ESA_S6_P4_GPP_ATBD_1287

Page: 13 of 21

1.4.2 Auxiliary files

The software configuration and constant files shall be managed by the user. The instrument characterisation file shall be defined by the instrument team. The list of auxiliary files used by the software is provided in §2.3

1.5 Conventions and remarks

1.5.1 Scope of sections

Each of the algorithms described in this document follows the same general structure. The purpose and scope section gives a brief description of the algorithm, followed by a data block diagram that shows the main steps that are performed. The mathematical description included in each algorithm provides a description of the algorithm in mathematical terms. The terminology used in the mathematical description is usually generic and uses mathematical symbols. After that, the input and output variables destination is provided in order to ease the understanding of the whole chain.

1.5.2 Block diagrams legend

All the block diagrams have the same legend, for the sake of clarity. The legend is shown in Figure 1-1.

Figure 1-1: Colour and symbols diagram legend.

1.5.3 Product types

The different product types according to their level of processing are:

- L1B HR: Fully calibrated and geolocated power echoes.
- CAL1 L1B Pulse CAL, CAL1 L1B SAR: output of calibration processor
- L2 HR: output ocean geophysical retrievals not corrected for atmospheric and geophysical effects.

Issue: 1.b/ Date: February 20th, 2024

isard SAT Ref.: ISARD_ESA_S6_P4_GPP_ATBD_1287

Page: 14 of 21

2 Input files description

This section contains the description and reference of all the input data files. These files can be divided in:

- L1B products
- Calibration products
- Auxiliary files

The following chapters provide a list of the input files with a brief description, and Table 2-1 below indicates for each input file if it is mandatory or optional.

Table 2-1: Input data list of the retracker

Data	
L1B HR	Mandatory
CAL1 L1B Pulse CAL	Optional
CAL1 L1B SAR	Optional
Characterisation file	Mandatory
Retracker configuration file	Mandatory
Constant file	Mandatory

2.1 L1B products

2.1.1 L1B HR product

The L1B HR product is the final output of the L1 HR processor. It contains geo-located and fully calibrated multilooked High Resolution power echoes in Ku-band.

2.2 Calibration products

2.2.1 CAL1 L1B Pulse CAL product

The CAL1 L1B Pulse CAL is the output of the Pulse CAL Processor. It contains oversampled CAL1 power waveforms along the orbit for Ku-band.

isardSAT Ref.: ISARD_ESA_S6_P4_GPP_ATBD_1287

Issue: 1.b/ Date: February 20th, 2024

Page: 15 of 21

2.2.2 CAL1 L1B SAR product

The CAL1 L1B SAR is the output of the CAL1 SAR Processor. It contains an oversampled CAL1 power waveforms for Ku-band.

2.3 Auxiliary files

2.3.1 Characterisation file (CHD)

The characterisation file contains the system on-ground characterisation.

2.3.2 Retracker Configuration file (CNF)

The configuration file contains all processing parameters, which can be modified by the user.

2.3.3 Constants file (CST)

The constants file contains the main physical constants used by the processor.

Issue: 1.b/ Date: February 20th, 2024

isardSAT Ref.: ISARD_ESA_S6_P4_GPP_ATBD_1287

Page: 16 of 21

3 Auxiliary data selection

This section describes the procedures to select the right set of the parameters of the different calibration files.

3.1 CAL1 L1B selection

3.1.1 Purpose and scope

The purpose of this algorithm is to select the impulse response stored in CAL1 L1B products according to the processing flags defined in the retracker configuration file.

3.1.2 Data block diagram

Figure 3-2: CAL1 Pulse CAL selection block diagram. CAL1 SAR products contain a sole measurement.

3.1.3 Mathematical description

The processor will check the PTR_type_ac retracker configuration flag to select the type of impulse response in range (RIR). If it is set to 'numerical', then follow the next steps.

The source is defined by the user in the run_ file. The processor will check whether this source corresponds to a CAL1 L1B Pulse CAL or a CAL1 L1B SAR product. If a Pulse CAL file is detected, then for each altimeter time tag (in UTC), the selected values corresponds to the closest CAL1 time tag (in UTC) from the L1B Pulse Cal processing product. Alternatively, a sole measurement is stored in the CAL1 product, and this is the one selected.

isard SAT Ref.: ISARD_ESA_S6_P4_GPP_ATBD_1287

Issue: 1.b/ Date: February 20th, 2024

Page: 17 of 21

3.1.4 Input variable list

 ${\bf Table~3-2:}~{\bf Input~variable~list~of~the~Auxiliary~data~selection$

Field name	Description	Units	Type
time_l1b	Time in UTC of the L1B HR product	S	double
time_l1CAL	Time in UTC of the CAL1 L1B product	s	double
PTR_type_ac	String indicating the PTR across track used for the convolutional model: 'analytical' (sinc), 'numerical'	_	string

3.1.5 Output variable list

Table 3-3: Output variable list of the Auxiliary data selection

Field name	Description	Units	Type
index_from_l1CAL	Array of indices of the CAL1 time vector closest to the L1B HR time vector	_	int
cal1_power_waveform	The CAL1 waveform corresponding to the current index_from_l1CAL index, converted to Watt via waveform_scale_factor	W	double
range_oversampling_factor	Oversampling factor applied to the CAL1 waveform	_	int

isardSAT Ref.: ISARD_ESA_S6_P4_GPP_ATBD_1287 Issue: 1.b/ Date: February 20th, 2024

Page: 18 of 21

4 Numerical retracker

4.1 Introduction

Cite like this (Ray et al., 2015) or (Ray et al., 2015; Nelder and Mead, 1965)

4.2 Pre-processing

4.2.1 Purpose and scope

The objective of this processing step is to generate...

4.2.2 Block diagram

The block diagram depicted in Figure 4-3 illustrates the main pre-processing steps.

Figure 4-3: Pre-processing block diagram.

isardSAT Ref.: ISARD_ESA_S6_P4_GPP_ATBD_1287

Issue: 1.b/ Date: February 20th, 2024

Page: 19 of 21

4.2.3 Mathematical description

4.2.3.1 Leading edge estimation

An estimate of the leading edge...

4.2.3.2 Incremental time

The two-way incremental ranging time vector t, dependent on the epoch k_0 , is equally spaced and ranges from

$$t_0 = \left(-\left(N_s - \frac{N_s}{2}\right) ZP + \left(\frac{N_s \cdot ZP}{2} - k_0\right)\right) \cdot \frac{T_s}{ZP}$$
(4-1a)

to

$$t_{N_s \cdot \text{ZP-OS_AL}-1} = \left(\left(N_s - \frac{N_s}{2} \right) \text{ZP} + \left(\frac{Ns \cdot \text{ZP}}{2} - k_0 \right) \right) \cdot \frac{T_s}{\text{ZP}}$$
(4-1b)

where ...

4.2.4 Input variable list

4.2.5 Output variable list

isardSAT°

ANNEX A. FLAT SURFACE IMPULSE RESPONSE WITH NON-ZERO MISPOINTING

- A.1 Purpose and scope
- A.2 Mathematical description

isardSAT Ref.: ISARD_ESA_S6_P4_GPP_ATBD_1287

Issue: 1.b/ Date: February 20th, 2024

Page: 21 of 21

End of document