ECE 485/585 – Computer Organization and Design

HOMEWORK #2 SOLUTION

Solve the following exercises from the textbook (Chapter 2)

1. Exercise 2.7

Little-Endian		Big-Endian	
Address	Data	Address	Data
12	ab	12	12
8	cd	8	ef
4	ef	4	cd
0	12	0	ab

2. Exercise 2.14

r-type, add \$s0, \$s0, \$s0

3. Exercise 2.15

i-type, 0xAD490020

4. Exercise 2.19

2.19.1 0xBABEFEF8

2.19.2 0xAAAAAAA

2.19.3 0x00005545

5. Exercise 2.23

t2 = 3

6. Exercise 2.27

ECE 485/585 – Computer Organization and Design

```
2.27
      addi $t0, $0, 0
      beq $0, $0, TEST1
LOOP1: addi $t1, $0, 0
      beq $0, $0, TEST2
LOOP2: add $t3, $t0, $t1
      sll $t2, $t1, 4
      add $t2, $t2, $s2
           $t3, ($t2)
      SW
      addi $t1, $t1, 1
TEST2: slt $t2, $t1, $s1
      bne $t2, $0, LOOP2
      addi $t0, $t0, 1
TEST1: slt $t2, $t0, $s0
      bne $t2, $0, LOOP1
```

7. Exercise 2.39

Generally, all solutions are similar:

```
lui $t1, top_16_bits
ori $t1, $t1, bottom_16_bits
```

8. Exercise 2.42

```
Yes, range is 0x1FFFF004 + 0x1FFFC = 0x2001F000 to 0x1FFFF004 - 0x20000 = 1FFDF004
```