CS 480/680 Introduction to Machine Learning

Lecture 14
Convolutional Neural Networks

Kathryn Simone 05 November 2024

Scaling up Multilayer Perceptrons

- Assume 1 megapixel image:
 10⁶ features
- One layer with 10³ units:
 10⁹ (1 Billion parameters)
- Challenges:
 - Training cost
 - Require data
 - Risks overfitting

What properties of images could be exploited?

What properties of images could be exploited?

Locality

Spatial Invariance

Edge detection in the visual system

The visual system is organized hierarchically

FIGURE 4.8 Response of a single cortical cell to bars presented at various orientations.

Key questions

I. How can a network detect low-level features?

II. How can a network detect higher-level features?

Convolution is a linear operation over two real-valued functions

I: Input (image)

K: (Convolution) kernel, or filter

S: Output or feature map

$$S(i,j) = (K*I)(i,j) = \sum_{m} \sum_{n} I(i+m,j+n)K(m,n)$$

Translation-equivariance:

If
$$g: I'[i,j] \to I[i-1,j]$$
, then $K \square g(I) = g(K \square I)$

Can you compute the output of this convolution?

Convolution kernels *filter* for features in the input

$K = \lceil$	1	-1
--------------	---	----

Output, Filter 1

K =	1
	-1

In	-		•
In	u	u	ш
	\sim	_	

IIIput								
1	1	0	0	0	0	1	1	
1	1	0	0	0	0	1	1	
1	1	0	0	0	0	1	1	
1	1	0	0	0	0	1	1	
1	1	0	0	0	0	1	1	
1	1	0	0	0	0	1	1	
1	1	0	0	0	0	1	1	
1	1	0	0	0	0	1	1	

Output, Titter 1								
0	1	0	0	0	-1	0		
0	1	0	0	0	-1	0		
0	1	0	0	0	-1	0		
0	1	0	0	0	-1	0		
0	1	0	0	0	-1	0		
0	1	0	0	0	-1	0		
0	1	0	0	0	-1	0		
	I							

Output, Filter 2								
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	

Output Filter 2

Padding prevents loss of input pixels

A filter is realized in a CNN through sparse weights

"Fully-Connected" Neural Network

 Every output interacts with every input

Convolutional Neural Network

 Only three outputs are affected by a given input

A filter is realized in a CNN through sparse weights

"Fully-Connected" Neural Network

 Every output interacts with every input

Convolutional Neural Network

• Only three inputs affect an output

Parameter sharing achieves translation-equivariance

"Fully-Connected" Neural Network

 Interactions have distinct parameters

Convolutional Neural Network

Parameters are shared

The network must be able to detect a variety of patterns

A convolutional *stage* generates several feature maps

Convolution kernels with input multiple channels

Stride: Trade off spatial resolution for output channel depth

Dimensionality and parameters of a convolution stage

$$\begin{array}{ll} \text{Input:} & \text{Output:} \\ W_{IN} \times H_{IN} \times D_{IN} & W_{OUT} \times H_{OUT} \times D_{OUT} \\ \\ \text{Hyperparameters:} & W_{OUT} = (W_{IN} + 2P - F)/S + 1 \\ \text{Number of filters } N_k & H_{OUT} = (H_{IN} + 2P - F)/S + 1 \\ \text{Kernel Size } F \times F \times D_{IN} & D_{OUT} = N_k \\ \\ \text{Padding } P & \\ \text{Stride } S & \# \text{Trainable parameters:} \\ N_k \times F \times F \times D_{IN} & \text{weights} \\ \end{array}$$

biases

Convolution is translation equivariant but not invariant

Convolution is not invariant to other transformations

Top: Introduction to Statistical Learning Section 10.3 Bottom: Deep Learning, Section 9.10

Key questions

I. How can a network detect low-level features?

II. How can a network detect higher-level features?

Recall simple and complex cells

FIGURE 4.8 Response of a single cortical cell to bars presented at various orientations.

Fukushima's Neocognitron (1980) and pooling

Pooling over spatial regions confers translation invariance

Pooling over feature maps yields latent object representations

Invariance to small translation confers invariance to distortion

From Neocognitron to CNN (LeCun's LeNet, 1989)

A convolutional layer may apply multiple nonlinearities

Pooling stage

- Summarizes nearby outputs
- Average pooling, L2 norm, Max pooling

Pooling across spatial regions induces some translation *invariance*

Pooling stages summarize their inputs

Deeper layers have indirect interactions with most of the input

CNNs learn a feature space where inner products are meaningful

CNNs learn a feature space where inner products are meaningful

Interpreting the architecture of a CNN

Interpreting the architecture of a CNN

Now that we're at the end of the lecture, you should be able to...

- ★ Compute the grayscale value of an image pixel through **cross-correlation** of a filter and an image.
- ★ Give examples of **low-level filters** used in a CNN for image processing and define their effect with reference to **convolution**.
- ★ Define and explain the role of parameter sharing and local connections in CNNs.
- Construct a convolutional layer using convolution, nonlinearity and pooling operations.
- ★ Describe the information processing occurring at each layer of a Convolutional Neural Network (CNNs), given a schematic of its architecture.
- ★ Sketch the **architecture of a CNN** given its verbal description.
- ★ Determine the number of trainable parameters in a convolutional layer given the hyperparameters to set # of filters, kernel size, padding, stride.