Logic and Logical Inference

- Recall basic concepts of logic
- Logical inference
 - >> deduction
 - » abduction
 - » induction
- Clausal Logic
- Deductive Inference (e.g. resolution)
- Abductive Inference
 - >> semantics
 - » algorithm

Logic (a recap)

☐ Humans capable of manipulating logical information and making logical inference

The red block is on the green block.

The green block is somewhere above the blue block.

The green block is not on the blue block.

The yellow block is on the green block or the blue block.

There is some block on the black block.

There can be only one block on another.

A block cannot be two colors at once.

on(red, green) ∧¬on(green, blue)

 $\exists X [block(X) \land on(green, X) \land on(X, blue)]$

on(yellow, green) V on(yellow, blue)

 $\exists X [block(X) \land on(X, black)]$

block(red) \(\Lambda \) block(yellow) \(\Lambda \) block(blue) \(\Lambda \) block(back) \(\Lambda \) block(green)

 $\forall X, Y, Z [on(X, Y) \land on(Z, Y) \rightarrow X = Z)]$

Facts

Background

knowledge

Logic (a recap)

Propositional Logic

- » propositional variables p, q, r, s,
- » connectives

sentences

$$\neg$$
, \land , \lor , \rightarrow

$$((p \land q) \lor r) \to (p \land r))$$

» interpretation assigns each propositional variable a unique true value. Interpretation of sentences is constructed from a given interpretation and truth tables.

$$p^i = T$$
, $q^i = F$, $r^i = T$ $((p \land q) \lor r) \rightarrow (p \land r))^i = T$

» logical entailment of a sentence from a set of sentences, given as premises, is when the sentence is true in all interpretations that satisfy the given premises.

$$\{p, p \rightarrow q\} \models q$$

Syntax

Logic (a recap)

Predicate Logic

» propositional letters raining, snowing, wet.....

» constants table, block1, block2, etc. ¬

 $\mathbf{X}, \mathbf{X}_1, \mathbf{Y}, \mathbf{Y}_1, \text{ etc.}$

» functions size, color, etc.

» predicates on, above, clear, block, etc.

sentences ¬block(table)

 $\forall X \text{ block}(X) \leftrightarrow X = \text{block1} \lor X = \text{block2} \lor X = \text{block3}$

 $\forall X, Y \text{ (block}(X) \land \text{block}(Y) \land \text{size}(X) = \text{size}(Y) \rightarrow \text{sameSize}(X,Y))$

Terms

 $\forall X \operatorname{clear}(X) \longleftrightarrow (\operatorname{block}(X) \land \neg \exists Y \operatorname{on}(Y, X))$

 $\forall X, Y (on(X,Y) \leftrightarrow (block(X) \land block(Y)) \lor Y = table)$

- » interpretation of sentences is $I = \langle D, i \rangle$ where D is a universe of discourse and i maps:
 - constants to objects in D
 - functions to functions over D
 - predicates to tuples over D
- » an interpretation and variable assignment satisfy a sentence if given the assignment the sentence is interpreted to be true. A sentence is satisfied if there is an interpretation and variable assignment that satisfy it.

Computational Logic

Predicate Logic helps modeling human reasoning

Make computation logical

Expresses relations between things using logic. Programs describe *what* to compute instead of *how* to compute

Make logic computational

Develop practical algorithms for a subset of logic that is computationally tractable.

Three forms of logic-based reasoning

Deduction

Reasoning from the general to reach the particular: what follow necessarily from given premises.

Induction

Reasoning from the specifics to reach the general: process of deriving reliable generalisations from observations.

Abduction

Reasoning from observations to explanations: process of using given general rules to establish causal relationships between existing knowledge and observations.

Three forms of logic-based reasoning

Deduction

Rule

Case

Results

All beans in this bag are white

These beans are from this bag

These beans are white

Induction

Case

Results

Rule

These beans are from this bag

These beans are white

All beans in this bag are white

Abduction

Rule

Results

Case

All beans in this bag are white

These beans are white

These beans are from this bag

Clausal Representation

- Formulae in special form
 - Theory: set (conjunction) of clauses $\{pv \neg q; r; s\}$
 - Clause: disjuction of literals
 p∨¬q
 - Literal: atomic sentence or its negation
 p ¬q
- Every formula can be converted into a clausal theory

```
\begin{array}{ccccc} (p \lor q) & \to \neg p & & & \\ \neg (p \lor q) & \lor \neg p & & & \text{eliminate} \to & & \\ (\neg p \lor \neg q) & \lor \neg p & & & \text{push the} \neg \text{inwards} \\ (\neg p \lor \neg p) & \land (\neg q \lor \neg p) & & & \text{distribute} \ \lor \text{over} \ \land & & \\ \neg p & \land (\neg q \lor \neg p) & & \text{collect terms:} \ \neg p \lor \neg p \ \text{gives} \ \neg p \end{array}
```

What about formulae in Predicate Logic?

Clausal Representation

- Atomic sentences may have terms with variables
 - Theory: set (conjunction) of clauses $\{p(X) \lor \neg r(a, f(b, X)) ; q(X, Y)\}$
 - All variables are understood to be universally quantified

$$\forall X, Y [(r(a,f(b,X)) \rightarrow p(X))] \land \forall X, Y q(X,Y)$$

• Substitution $\theta = \{v_1/t_1, v_2/t_2, v_3/t_3,\}$ if l is a literal, $l\theta$ is the resulting literal after substitution $\theta = \{X/a, Y/g(b,Z)\}$ $p(X,Y)\theta = p(a, g(b,Z))$

- A literal is *ground* if it contains no variables
- A literal l' is an instance of l, if for some θ , $l' = l\theta$

Clausal Representation

Conversion in CNF

- Skolemisation $\exists X p(X) \Rightarrow p(c)$ new constant $\forall X \exists Y p(X,Y) \Rightarrow \forall X p(X,f(X))$
- Remove universal quantifiers

Propositional resolution

• Given two clauses of the form $p \vee C_1$ and $\neg p \vee C_2$, then the clause $C_1 \vee C_2$ is the inferred clause, called resolvent.

Resolution is refutation complete

fg

¬fgvc

Predicate logic resolution

Main idea: a literal (with variables) stands for all of its instances; so we can allow to infer all such instances in principle.

- Given two clauses of the form $\varphi_1 \vee C_1$ and $\neg \varphi_2 \vee C_2$,
 - rename variables so that they are distinct in the two clauses φ_1 and $\neg \varphi_2$
 - for any θ such that $\varphi_1\theta = \varphi_2\theta$, then infer $(C_1 \vee C_2)\theta$
 - \triangleright ϕ_1 unifies with ϕ_2 and θ is the unifier of the two literals

Predicate logic resolution

Answer to the query may return unification values as well

Course: 304 Logic-Based Learning

Herbrand Theorem

Some predicate cases can be handled by converting them to a propositional form

Given a set Th of clauses

- Herbrand Domain of Th is the set of all ground terms formed using only the constants and function symbols that appear in Th.
- Herbrand Base of Th is the set of all ground atoms that can be formed using the predicate symbols in Th and ground terms in the Herbrand Domain.
- Grounding of Th is the set of all cθ ground clauses such that c∈Th and the unifier θ replaces variables in c by terms in the Herbrand Domain.

Theorem

A clausal theory Th is satisfiable iff the grounding of Th is satisfiable

Note: Grounding of Th has no variable so it is essentially propositional.

Horn Clauses

Particular types of clauses with at most one positive literal.

definite clauses exactly one positive literals denials no positive literals

$$\neg b_1 \lor \neg b_2 \lor \dots \lor \neg b_n \lor h$$
$$\neg b_1 \lor \neg b_2 \lor \dots \lor \neg b_n$$

Definite clauses can be represented as rules/facts. Denials as constraints:

$$\begin{array}{lll} \neg b_1 \lor \neg b_2 \lor \dots \lor \neg b_n \lor h & h \leftarrow b_1, b_2, \dots, b_n & (rule) \\ h & h & (fact) \\ \neg b_1 \lor \neg b_2 \lor \dots \lor \neg b_n & \leftarrow b_1, b_2, \dots, b_n & (constraint) \end{array}$$

Herbrand Interpretation of a set Th of definite clauses is a set of ground atoms over the constant, function and predicate symbols occurring in Th.

Herbrand Model: an Herbrand interpretation I is a model of a set Th of clauses iff for all clauses $\neg b_1 \lor \neg b_2 \lor ... \lor \neg b_n \lor h_1 \lor ... \lor h_m$ in Th and ground substitutions θ ,

if
$$\{b_1\theta, b_2\theta, \dots, b_n\theta\} \in I$$
 then $\{h_1\theta, \dots, h_m\theta\} \cap I \neq \emptyset$

Least Herbrand Model

Some set of clauses may have multiple Herbrand models, and some model may be a subset of another model.

```
\begin{aligned} \text{human}(X) &\leftarrow \text{male}(X) \\ \text{human}(X) &\leftarrow \text{female}(X) \\ \text{female}(X) &\vee \text{male}(X) &\leftarrow \text{human}(X) \\ \text{human}(\text{john}) \end{aligned}
```

- ➤ What is the Herbrand Domain?
- Example of Herbrand model?
- Example of Herbrand interpretation that is not a model?
- ➤ How many Herbrand models?

An Herbrand model is a Minimal Herbrand model if and only if none of its subsets is an Herbrand model.

Any satisfiable set Th of definite clauses has a UNIQUE minimal Herbrand model, called the *least Herbrand model*.

SLD derivation

SLD inference rule

where θ is the mgu(ϕ_1 , ϕ_1 ') ϕ_i and β_i are atoms

SLD derivation

Given a denial (goal) G_0 and a set Th of definite clauses, an SLD-derivation of G_0 from Th is a (possibly infinite) sequence of denials

where G_{i+1} is derived directly from G_i and a clause C_i with variables appropriately renamed.

The composition $\theta = \theta_1 \theta_2 \cdots \theta_n$ of mgus, defined in each step, gives the substitution computed by the whole derivation.

Example of SLD derivation

KB

```
proud(X) \leftarrow parent(X,Y), newborn(Y)
parent(X,Y) \leftarrow father(X,Y)
parent(X,Y) \leftarrow mother(X,Y)
father(adam, mary).
newborn(mary).
```

 $\blacksquare \exists Z. \operatorname{proud}(Z)$

SLD Trees

When selected sub-goal can unify with more than one clause multiple SLD derivations can be computed:

Normal Clausal Logic

Extends Horn Clauses by permitting atoms in the body of rules or of denials to be prefixed with a special operator *not* (read as "fail").

Normal clauses

$$\mathbf{h} \leftarrow \mathbf{b}_1, ..., \mathbf{b}_n, not \ \mathbf{b}_{n+1}, ..., not \ \mathbf{b}_{m}$$

Normal denials

$$\leftarrow$$
 b₁, b₂, ..., b_n, not b_{n+1}, ..., not b_m

- *not* operator is the \+ used in Prolog.
- computational meaning of *not* p
 - *not* p succeeds if and only if

p fails finitely

• *not* p fails

if and only if

p succeeds

fundamental constraint:

when executing *not* p, p must be ground

SLDNF derivation

We omit a formal definition of an SLDNF derivation.

KB

SLDNF derivation

We omit a formal definition of an SLDNF derivation.

KB

connected \leftarrow not unconnected unconnected \leftarrow node(X), not arc(X,Y) succ(X) \leftarrow arc(X,Y) node(a) node(b) arc(a, b) arc(b, c)

Any floundered branch in a tree containing no success branch (refutation) must flounder the node in the parent tree

So far reasoning has been primarily *deductive*. What about if our knowledge base is incomplete?

Deductive inference would fail, due to lack of information. We could assume (as possible hypothesis) what is not known.

Different type of question: "What would explain soreElbow?"

Multiple equally good explanations:

$$\Delta_1$$
 = {tennisElbow}
 Δ_2 = {arthritis, untreated}

Abductive reasoning computes explanations of observations with respect to given KB

An abductive model of a problem domain is:

Given an abductive model, an abductive solution (called explanation) of a given observation O is a set Δ of ground literals such that:

$$\triangleright$$
 $\Delta \sqsubseteq Ab$ belong to a predefined language of abducibles

$$\triangleright$$
 KB $\cup \Delta \models O$ provide missing information needed to prove observation

$$ightharpoonup KB \cup \Delta \not\models \bot$$
 is consistent with knowledge base

$$\triangleright$$
 KB $\cup \Delta \models$ IC it entails the constraints

Consider the following example:

KB

wobblyWheel ← brokenSpokes wobblyWheel ← flatTyre flatTyre ← leakyValve flatTyre ← puncturedTube

Ab

brokenSpokes puncturedTube leakyValve

0

wobblyWheel

```
\Delta_1 = \{brokenSpokes\}
```

 $\Delta_2 = \{\text{leakyValve}\}$

 $\Delta_3 = \{\text{puncturedTube}\}\$

Alternative explanations

Consider the following example:

KB

wobblyWheel ← brokenSpokes wobblyWheel ← flatTyre flatTyre ← leakyValve flatTyre ← puncturedTube smoothRide.

← puncturedTube, smoothRide

Ab

brokenSpokes puncturedTube leakyValve 0

wobblyWheel

```
\Delta_1 = \{brokenSpokes\}
```

$$\Delta_2 = \{\text{leakyValve}\}$$

 $\Delta_3 = \{\text{puncturedTube}\}$

Constraints may eliminate explanations

Consider the following example:

KB

wobblyWheel ← brokenSpokes wobblyWheel ← flatTyre flatTyre ← leakyValve flatTyre ← puncturedTube. ← not puncturedTube, leakyValve

Ab

brokenSpokes puncturedTube leakyValve

\mathbf{O}

wobblyWheel

```
\Delta_1 = {brokenSpokes}

\Delta_2 = {leakyValve, puncturedTube}

\Delta_3 = {puncturedTube}
```

Constraints may force abducibles in explanations

Abductive reasoning

KB

wobblyWheel ← brokenSpokes wobblyWheel ← flatTyre flatTyre ← leakyValve flatTyre ← puncturedTube

Ab

brokenSpokes puncturedTube leakyValve

0

wobblyWheel

Abductive reasoning

KB

wobblyWheel ← brokenSpokes wobblyWheel ← flatTyre flatTyre ← leakyValve flatTyre ← puncturedTube smoothRide. ← puncturedTube, smoothRide Ab

brokenSpokes puncturedTube leakyValve O

wobblyWheel

Abductive reasoning

Abductive Proof Procedure

Let <KB, Ab, IC> be an abductive model expressed in normal clausal logic and let O be a ground observation:

Abductive derivation

$$G_1 = O$$
, initially $\Delta = \{\}$

Select a subgoal L from G_i ; let $G_i' = G_i - \{L\}$

- ■L ∉ Ab and L is a positive atom if H←B in KB such that L = Hθ $G_{i+1} = B\theta \cup G_i$ and $\Delta_{i+1} = \Delta_i$
- •L $\in \Delta_i$ then $G_{i+1} = G_i$ and $\Delta_{i+1} = \Delta_i$
- ■L ∈ Ab and L ∉ Δ_i and not L ∉ Δ_i then

Consistency derivation

Abductive Proof Procedure

Let <KB, Ab, IC> be an abductive model expressed in normal clausal logic and let O be a ground observation:

Example: Abduction for Normal Clauses

KB $p(X) \leftarrow not \ q(X)$ $q(X) \leftarrow b(X)$ $\leftarrow not \ p(X), \ p(X)$ $\leftarrow not \ q(X), \ q(X)$ $\leftarrow not \ b(X), \ b(X)$

```
Ab O Abductive solution b(a), not b(a) p(a) \Delta = \{not \ q(a), not \ b(a)\} not p(a) not p(a)
```

abductive phase

Summary

- Summarised propositional and predicate logic.
- Two of types of formal reasoning: deduction and abduction.
- Resolution: one of the main deductive proof procedures used in computational logic.
- Focused on Horn clauses and SLD resolution.
- Illustrated SLDNF for normal clauses
- Abductive inference; role of constraints in an abductive proof procedure