

from 
$$\bigcirc$$
 ||w<sub>1</sub>|| =  $\bigcirc$  ||w<sub>1</sub>|| =  $\bigcirc$  ||w<sub>1</sub>|| =  $\bigcirc$  ||w<sub>1</sub>|| +  $\bigcirc$  ||w<sub>1</sub>|| +

|     | 1, Kz are valid kernals                                                                                                                     |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|
| 3 6 | $0)K(x,z) = K(x,z) + K_2(x,z)$                                                                                                              |
|     | (12(01)2)                                                                                                                                   |
|     | : K, K2 are valid => K, K2 are symmetric positive                                                                                           |
|     | definite Kernals                                                                                                                            |
|     | 50                                                                                                                                          |
|     | K, (81,2) = 0 (01), 6 (7)                                                                                                                   |
|     | $K_{1}(n,z) = \phi_{1}(n) \cdot \phi_{2}(z)$ $K_{2}(n,z) = \phi_{2}(n) \cdot \phi_{2}(z)$                                                   |
|     | $\frac{\varphi(x)}{2}(x) = \frac{\varphi(x)}{2}(x)$                                                                                         |
|     | $\Rightarrow \phi(m) = (\phi, (m) \phi_2(n))$                                                                                               |
|     | $\phi(z) = (\phi(z), \phi(z))$                                                                                                              |
|     |                                                                                                                                             |
|     | $\phi(n).\phi(z) = (\phi(n) \phi(n)) \cdot (\phi(z) \phi(z))$                                                                               |
|     | (1) (2) (1) (2)                                                                                                                             |
|     | $= \phi(a) \cdot \phi(z) + \phi(a) \phi(z)$                                                                                                 |
|     |                                                                                                                                             |
|     | $= k(x) + k_2(x, z)$                                                                                                                        |
|     | = K(n,z)                                                                                                                                    |
|     |                                                                                                                                             |
|     | K(n, Z) is expressed as dot polf of (b(n) b(z)                                                                                              |
|     | $k(n,z)$ is expressed as dot pdf of $\phi(n)$ $\phi(z)$ $\Rightarrow k(n,z) \Rightarrow valid$ .                                            |
|     |                                                                                                                                             |
| (4) | $K(m,z) = K_1(m,z) \cdot K_2(m,z) = (\phi_1(m), \phi_1(z))(\phi_2(m), \phi_2(z))$                                                           |
| (   | $K(n,z) = K_1(n,z) \cdot K_2(n,z) = (\phi_1(n), \phi_1(z)) (\phi_2(n), \phi_2(z))$<br>Veing gram matrix K for $K(n,z)$ , we can observe the |
|     | each element of the matrix obtained by element pdt of                                                                                       |
|     | K1, K2.                                                                                                                                     |
|     | - K, k2 are SPOS => K is also SPD.                                                                                                          |
|     | => k is valid Kanal                                                                                                                         |
|     |                                                                                                                                             |
|     |                                                                                                                                             |

(E) K(x,z) = h(K,(x,z)) h is polynomial with + we coeff. => K = a(K,(x,z)) + b(K,(x,z) + ---... K can be expressed as sum of potts of thermals. from @ & (b)

We can say that K is valid kernal. (d) K(n,z) - exp(K,(n,z)) from taylor seins en = 1+ x + 22 + ---e)  $k(8,z) = \exp\left(-\frac{||x|-z||^2}{5^2}\right) = \exp\left(-\frac{|x|^2+|z|^2-2|x||x|}{5^2}\right)$ = e (-171 + -171 + 2101171) -1712 -1712 21711721 = e 2. e 52. e 52 from 6 both are valid -> K(x,z) is realid