Axel Böhm

December 13, 2021

- Introduction
- SAG
- SAGA
- 4 SVRG
- 6 Katyusha

The finite sum probem

A common Task in (supervised) machine learning:

$$\min_{x \in \mathbb{R}^d} f(x) := \frac{1}{n} \sum_{i=1}^n \underbrace{f_i(x)}_{\text{loss for } i\text{-th sample}} + \underbrace{\psi(x)}_{\text{regularize}}$$

where the *i*-th sample is (a_i, y_i) .

Examples:

- \diamond linear regression: $f_i(x) = (a_i^T x y_i)^2$, and $\psi = 0$
- ⋄ logistic regression: $f_i(x) = \log(1 + e^{-y_i a_i^T x})$, and $\psi = 0$ "sigmoid function" and logistic loss.
- \diamond Lasso: f_i as for linear regression but $\psi(x) = \|x\|_1$
- \diamond SVM: $f_i(x) = \max\{0, 1 y_i a_i^T x\}$ and $\psi(x) = \|x\|^2$

Algorithm (batch) GD

- 1: **for** k = 1, 2, ... **do**
- 2: $x_{k+1} = x_k \alpha_k \nabla f(x_k)$
 - gradient can be computed via

$$\nabla f(x) = \nabla \left(\sum_{i=1}^n f_i(x)\right) = \sum_{i=1}^n \nabla f_i(x_k)$$

- good convergence properties
- ⋄ can be expensive if n is large!

Stochastic gradient descent

Algorithm SGD

- 1: **for** k = 1, 2, ... **do**
- 2: pick i_k uniform at random in [n]
- 3: $x_{k+1} = x_k \alpha_k \nabla f_{i_k}(x_k)$

We already noticed that:

- \diamond unbiased: $\mathbb{E}[\nabla f_{i_k}(x)] = \sum_{i=1}^n \mathbb{P}[i=i_k] \nabla f_i(x) = \sum_{i=1}^n \frac{1}{n} \nabla f_i(x)$
- ♦ large stepsizes fail to suppress noise in the stoch. gradients
 → leads to oscillations
- decreasing stepsizes mitigate this problem but slows down convergence (too conservative)

Recall SGD

template

$$x_{k+1} = x_k - \alpha_k g_k$$

- \diamond g_k is an unbiased estimator of the true gradient $\nabla F(x_k)$
- ♦ convergence depends on variance $\mathbb{E}[\|g_k \nabla F(x_k)\|] \le \sigma_g$ (not strictly necessary)
- \diamond vanilla SGD uses $g_k = \nabla f_{i_k}(x_k)$ issue: σ_g is non-negligible even close to the solution
- \diamond **Q**: can we choose g_k in a different way to reduce variability?

000000

Algorithm minibatch SGD

- 1: **for** k = 1, 2, ... **do**
- pick I_k random subset of [n] with $|I_k| = b$
- $x_{k+1} = x_k \alpha_k \sum_{i \in I_k} \nabla f_i(x_k)$ 3:
 - \diamond typically we make a (uniform) random choice $i_k \in [n] = \{1, \dots, n\}$ (or random reshuffling)
 - \diamond by increasing the size to a random subset $I_k \subset [n]$ of size $b \ll n$ we can
 - decrease variance
 - increase cost only moderately,
 - no improvement in the rate

A simple idea

Consider

- \diamond estimator X for parameter μ ($\mathbb{E}[X] = \mu$ and $\mathbb{V}[X] = \sigma^2$)
- want to keep unbiased but reduce variance
- \diamond find Y such that $\mathbb{E}[Y] = 0$ but Cov(X, Y) is large and define

$$\tilde{X} := X - Y$$

- remains unbiased
- $\diamond \ \mathbb{V}[\tilde{X}]$ can be much smaller than $\mathbb{V}[X]$ if X,Y are highly correlated

$$\mathbb{V}[\tilde{X}] = \mathbb{V}[X] + \mathbb{V}[Y] - 2\operatorname{Cov}[X, Y]$$

Stochastic average gradient (SAG), 2013

- \diamond maintain table containing gradients g_i of f_i
- \diamond pick random $i_k \in [n]$ and

$$g_{i_k}^k := \nabla f_{i_k}(x^k)$$

set $g_i^k = g_i^{k-1}$ for all $i \neq i_k$ (remain the same)

Update

$$x^{k+1} = x^k - \alpha_k \frac{1}{n} \sum_{i=1}^n g_i^k.$$

- gradient estimator no longer unbiased
- Isn't it expensive to average these gradients?

$$x^{k+1} = x^k - \alpha_k \left(\frac{g_{i_k}^k}{n} - \frac{g_{i_k}^{k-1}}{n} + \underbrace{\frac{1}{n} \sum_{i=1}^n g_i^{k-1}}_{i} \right)$$

SAG variance reduction

Gradient estimator in SAG:

$$x^{k+1} = x^k - \alpha_k \frac{1}{n} \left(\underbrace{g_{i_k}^k}_{X} - \underbrace{g_{i_k}^{k-1} - \sum_{i=1}^n g_i^{k-1}}_{Y} \right)$$

- ⋄ Indeed $\mathbb{E}[X] = \nabla f(x^k)$, but $\mathbb{E}[Y] \neq 0$ → is biased estimator
- \diamond X and Y are correlated as $X Y \rightarrow 0$:
 - lacksquare x^k and x_{k-1} both converge to $x^* \Rightarrow \nabla f_i(x_k) \nabla f_i(x_{k-1}) \to 0$
 - ▶ the last term converges to $\nabla f(x^*) = 0$

As always, initialization plays a role: $D^2 := ||x^0 - x^*||^2$.

SAG:
$$\frac{n}{k}(f(x^0) - f^*) + \frac{L}{k}D^2$$
GD:
$$\frac{L}{k}D^2$$
SGD:
$$\frac{L}{\sqrt{k}}D^2$$

- Achieves linear convergence in the strongly convex setting.
- proofs are difficult (and computer-aided)

Same gradient oracle cost as SGD, but same converge rate as GD.

Experiments from the original paper

Figure: Solving ℓ_2 -regularized logistic regression.

More "naive" implementation

- does not work well out of the box
- \diamond needs a warm up to get good $(g_1^0, g_2^0, \dots, g_m^0)$
 - achieved by running one full epoch of SGD
- reguires hand tuned stepsize or line search

Very similar to SAG:

- \diamond maintain table containing gradients g_i of f_i
- \diamond pick random $i_k \in [n]$ and

$$g_{i_k}^k := \nabla f_{i_k}(x^k)$$

set $g_i^k = g_i^{k-1}$ for all $i \neq i_k$ (remain the same)

Update

$$x^{k+1} = x^k - \alpha_k \left(g_{i_k}^k - g_{i_k}^{k-1} + \frac{1}{n} \sum_{i=1}^n g_i^k \right)$$

estimator now unbiased!

SVRG

For Comparison

SAGA gradient estimate:

$$g_{i_k}^k - g_{i_k}^{k-1} + \frac{1}{n} \sum_{i=1}^n g_i^k.$$

SAG gradient estimate:

$$\frac{1}{n}g_{i_k}^k - \frac{1}{n}g_{i_k}^{k-1} + \frac{1}{n}\sum_{i=1}^n g_i^k.$$

Experiments from the original paper

Figure: Solving regularized logistic regression. First row is ℓ_2 -regularized; second row is ℓ_1 .

More "naive" implementation

Stochastic Variance Reduced Gradient (SVRG), 2013

Algorithm SVRG

```
1: for k=1,2,\ldots do
2: Set x^1=\tilde{x}=\tilde{x}^k
3: Compute \tilde{\mu}:=\nabla f(\tilde{x}) //update snapshot
4: for l=1,2,\ldots,m do //m iterations per epoch
5: pick i_l uniform at random in [n]
6: Set x^{l+1}=x^l-\alpha(\nabla f_{i_l}(x^l)-\nabla f_{i_l}(\tilde{x})+\tilde{\mu})
7: \tilde{x}^{k+1}=x^{m+1}
```

- Does not need to store full table of gradients.
- requires batch gradient computation every epoch
- \diamond per iteration cost is comparable to that of SGD if $m \geq n$
- 🜣 convergence rates similar to SAGA, but simpler analysis. 👚 🔭 🚆 🔧 🤉

key idea: by storing old point we can

$$\underbrace{\nabla f_{i_k}(x^k) - \nabla f_{i_k}(x^{\text{old}})}_{\rightarrow 0 \text{ if } x \approx x^{\text{old}}} + \underbrace{\nabla f(x^{\text{old}})}_{\rightarrow 0 \text{ if } x^{\text{old}}}$$

- \diamond is an unbiased estimate of $\nabla f(x^k)$
- \diamond converges to 0 (meaning reduced variability) if $x^k \approx x^{\text{old}} \approx x^*$

Each f_i is convex and L-smooth, and sum is μ -strongly convex.

Theorem

Choose m large enough s.t. $ho=rac{1}{\mulpha(1-2Llpha)m}+rac{2Llpha}{1-2Llpha}<1$, then

$$\mathbb{E}[F(x_s^{old}) - F(x^*)] \le \rho^s [F(x_0^{old}) - F(x^*)]$$

Computational cost:

- \diamond per epoch: (m+n)
- \diamond inner loop is annoying (has to choose m) \rightarrow loopless variant

Denote $g_{\varepsilon}^{k} = \nabla f_{ij}(x_{\varepsilon}^{k}) - \nabla f_{ij}(x_{\varepsilon}^{old}) + \nabla F(x_{\varepsilon}^{old})$. Conditioning on everything prior to x_{ϵ}^{k+1} we get

$$\mathbb{E}[\|x_s^{k+1} - x^*\|^2] = \mathbb{E}[\|x_s^k - \alpha g_s^k - x^*\|^2]$$

$$= \|x_s^k - x^*\|^2 - 2\alpha (x_s^k - x^*)^T \mathbb{E}[g_s^t] + \alpha^2 \mathbb{E}[\|g_s^k\|^2]$$

$$= \|x_s^k - x^*\|^2 - 2\alpha (x_s^k - x^*)^T \nabla F(x_s^t) + \alpha^2 \mathbb{E}[\|g_s^k\|^2]$$

$$\leq \|x_s^k - x^*\|^2 - 2\alpha (F(x_s^k) - F(x^*)) + \alpha^2 \mathbb{E}[\|g_s^k\|^2]$$

 \diamond key step: control $\mathbb{E}[\|g_{\varepsilon}^{k}\|^{2}]$

Lemma

Introduction

$$\mathbb{E}[\|g_s^k\|^2] \le 4L[F(x_s^k) - F(x^*) + F(x_s^{old} - F(x^*))]$$

Comparison

f is L-smooth and μ -strongly convex. Condition number: $\kappa = L/\mu$.

Strongly convex problems: number gradient calls to compute

 $\mathbb{E}[f(x_k)] - f^* \le \epsilon$ is given by

$$\frac{\mathsf{SVRG} / \mathsf{SAGA} \quad \mathsf{GD} \quad \mathsf{SGD}}{(n+\kappa)\log\frac{1}{\epsilon} \quad n\kappa\log\frac{1}{\epsilon} \quad \kappa^2/\epsilon}$$

	SAGA	SAG	SVRG
Low Storage Cost	X	X	✓
Simple(-ish) Proof	✓	X	✓

Figure: Summary of other relevant properties.

SVRG

Variance reduction + momentum/acceleration

Katyusha

Strongly convex problems: number gradient calls to compute

$$\mathbb{E}[f(x_k)] - f^* \le \epsilon$$
 is given by

Katyusha SVRG / SAGA GD NAG SGD
$$(n+\sqrt{n\kappa})\log\frac{1}{\epsilon}$$
 $(n+\kappa)\log\frac{1}{\epsilon}$ $n\kappa\log\frac{1}{\epsilon}$ $n\sqrt{\kappa}\log\frac{1}{\epsilon}$ κ^2/ϵ

 \diamond Improvement critical for ill conditioned ($\kappa \gg n$) problems.

just convex problems: number gradient calls to compute $\mathbb{E}[f(x_k)] - f^* \le \epsilon$ is given by

Almost matches lower bound.

Summary

Introduction

- Variance reduction recovers the rates of batch (deterministic methods)
- but (more or less) keeps number of gradient calls of SGD
- still require batch gradient computations sometimes
- requires offline setting (multiple passes through data)
- requires knowledge of (multiple) parameters to get good stepsize

Check out this fantastic review paper: https://ieeexplore-ieee-org.uaccess.univie.ac.at/stamp/stamp.jsp?tp=arnumber=9226504