ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ

Σειρά ασκήσεων 1 Ακαδημαϊκό έτος 2021-2022 7° εξάμηνο

Νικόλαος Μπέλλος | ΑΜ : el18183

Άσκηση 1

1.

Hill Climbing

Βήμα	Μέτωπο αναζήτησης	Κλειστό Σύνολο	TK	Παιδιά ΤΚ
1	(s,9) ^s	{}	S	b:5, c:2, d:4
2	(c,2) ^{sc}	{s}	С	h:5

^{*} ΤΚ : Τρέχουσα κατάσταση

Ο αλγόριθμος σταματάει στο κόμβο c καθώς όλα τα παιδιά του έχουν μεγαλύτερη τιμή ευριστικής από εκείνον (τερματίζει χωρίς να βρει λύση)

Best First

Βήμα	Μέτωπο αναζήτησης	Κλειστό Σύνολο	TK	Παιδιά ΤΚ
1	(s,9) ^s	{}	S	b:5, c:2, d:4
2	$(c,2)^{sc}$, $(d,4)^{sd}$, $(b,5)^{sb}$	{s}	С	h:5
3	$(d,4)^{sd}$, $(h,5)^{sch}$, $(b,5)^{sb}$	{s, c}	d	h:5, i:2
4	$(i,2)^{sdi}$, $(h,5)^{sch}$, $(b,5)^{sb}$	{s, c, d}	i	j:6
5	(h,5) ^{sch} , (b,5) ^{sb} , (j,6) ^{sdij}	{s, c, d, i}	h	j:6, i:2
6	(b,5) ^{sb} , (j,6) ^{sdij}	{s, c, d, i, h}	b	e:5, k:2
7	(k, 2) ^{sbk} , (e, 5) ^{sbe} , (j, 6) ^{sdij}	{s, c, d, i, h, b}	k	g:0, h:5
8	$(g, 0)^{\text{sbkg}}, (e, 5)^{\text{sbe}}, (j, 6)^{\text{sdij}}$	{s, c, d, i, h, b, k}	g	-

Ο αλγόριθμος τερματίζει (με επιτυχία), καθώς ο πρώτος κόμβος στη λίστα είναι ο κόμβος στόχος. Η διαδρομή που ακολουθήθηκε είναι η **sbkg** με **κόστος διαδρομής = sb + bk + kg = 12**

A star

Βήμα	Μέτωπο αναζήτησης	Κλειστό Σύνολο	TK	Παιδιά ΤΚ
1	(s,0:9) ^s	{}	s	b:2:7, c:1:3, d:2:6
2	(c,1:3) ^{sc} , (d,2:6) ^{sd} , (b,2:7) ^{sb}	{s}	С	h:7:12
3	(d,2:6) ^{sd} , (b,2:7) ^{sb} , (h,7:12) ^{sch}	{s, c}	d	h:4:9, i:12:14
4	$(b,2:7)^{sb}$, $(h,4:9)^{sdh}$, $(i,12:14)^{sdi}$	{s, c, d}	b	e:5:10, k:3:5
5	(k,3:5) ^{sbk} , (h,4:9) ^{sdh} , (e,5:10) ^{sbe} , (i,12:14) ^{sbi}	{s, c, d, b}	k	g:12:12, h:4:9
6	(h,4:9) ^{sdh} , (h:4:9) ^{sbkh} , (e,5:10) ^{sbe} , (g,12:12) ^{sbkg} , (i,12:14) ^{sdi}	{s, c, d, b, k}	h	j:11:17, i:7:9
7	(i,7:9) ^{sdhi} , (e,5:10) ^{sbe} , (g,12:12) ^{sbkg} , (j,11:17) ^{sdhj}	{s, c, d, b, k, h}	i	j:14:20
8	(e,5:10) ^{sbe} , (g,12:12) ^{sbkg} , (j,11:17) ^{sdhj}	{s, c, d, b, k, h, i}	е	g:11:11
9	(g,11:11) ^{sbeg} , (j,11:17) ^{sdhj}	{s, c, d, b, k, h, i, e}	g	-

^{*}Κάθε στοιχείο στο μέτωπο αναζήτησης έχει τη μορφή **(κατάσταση, άθροισμα μονοπατιού : άθροισμα μονοπατιού** + **ευριστική**)^{μονοπάτι}

Ο αλγόριθμος τερματίζει (με επιτυχία), καθώς ο πρώτος κόμβος στη λίστα είναι ο κόμβος στόχος. Η διαδρομή που ακολουθήθηκε είναι η **sbeg** με **κόστος διαδρομής = sb + be + eg = 11**

2. Το πρόβλημα έχει πολλές πιθανές διαφορετικές λύσεις οι οποίες είναι 9 συνολικά. Από αυτές μόνο μία βρίσκει το βέλτιστο μονοπάτι το οποίο έχει μήκος 11. Παρακάτω είναι οι λύσεις του κάθε αλγορίθμου:

Hill Climbing : $sc(\delta \epsilon v \tau \epsilon \rho \mu \alpha \tau (\zeta \epsilon \iota)$

Best First : sbkg \rightarrow κόστος 12

A star: sbeg \rightarrow κόστος 11 (βέλτιστο)

Η λύση είναι βέλτιστη μόνο στη περίπτωση του αλγορίθμου **A***. Στη γενική περίπτωση μπορούμε να γνωρίζουμε εκ των προτέρων ότι ο αλγόριθμος αυτός θα βρεί τη βέλτιστη λύση μόνο όταν οι ευριστικές για όλους του κόμβους είναι ίσες ή και μικρότερες από τις πραγματικές αποστάσεις. Όμως, στη στο συγκεκριμένο παράδειγμα, επειδή η παραπάνω υπόθεση δεν ισχύει για όλους του κόμβους (βλ. κόμβο j) δεν μπορούμε να γνωρίζουμε από πριν αν θα βρεί τη βέλτιστη λύση.

Άσκηση 2

1.

2. Οι τιμές των κόμβων που θα επισκεφτεί ο αλγόριθμος καθώς και οι κόμβοι που δεν θα επισκεφθεί είναι σημειωμένοι επάνω στο παρακάτω γράφημα.

Επίσης η σειρά με την οποία θα τους επισκεφτεί είναι η εξής :

$$1 \to 2 \to 5 \to 11 \to 23 \to 24 \to 12 \to 25 \to 6 \to 13 \to 28 \to 29 \to 14 \to 30 \to 3 \to 7 \to 16 \to 33 \to 4 \to 9 \to 18 \to 38 \to 39 \to 19 \to 41 \to 42 \to 10 \to 20 \to 43 \to 44$$

^{*} Στη συνθήκη κλαδέματος έχουν χρησιμοποιηθεί τα \leq / \geq για τις συγκρίσεις (όχι τα < / >)