交作业时间: 2020年10月26日, 星期一

- 1. 计算向量场 $\mathbf{a} = \mathbf{grad} \left(\arctan \frac{y}{x} \right)$ 沿下列定向曲线的环量:
 - (1) 圆周 $(x-2)^2 + (y-2)^2 = 1, z = 0$, 从 z 轴的正向看去为逆时针方向;
 - (2) 圆周 $x^2 + y^2 = 4$, z = 1, 从 z 轴的正向看去顺时针方向.
- 2. 计算向量场 $\mathbf{r} = xyz(\mathbf{i} + \mathbf{j} + \mathbf{k})$ 在点 M(1,3,2) 处的旋度, 以及在这点沿方向 $\mathbf{n} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$ 的环量面密度.
- 3. 设 $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ 为向量场, f(x, y, z) 为数量场, 证明: (假设函数 a_1, a_2, a_3 和 f 具有必要的连续偏导数)
 - (1) $\operatorname{div}(\operatorname{rot} \mathbf{a}) = 0$;
 - (2) $\mathbf{rot}(\mathbf{grad}\ f) = 0;$
 - (3) $\operatorname{grad}(\operatorname{div} \mathbf{a}) \operatorname{rot}(\operatorname{rot} \mathbf{a}) = \Delta \mathbf{a}$.
- 4. 位于原点的点电荷 q 产生的静电场的电场强度为 $\mathbf{E} = \frac{q}{4\pi\epsilon_0 r^3} (x\mathbf{i} + y\mathbf{j} + z\mathbf{k})$, 其中 $r = \sqrt{x^2 + y^2 + z^2}$, ϵ_0 为真空介电常数. 求 **rot** \mathbf{E} .
- 5. 设 a 为常向量, $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, 验证:
 - (1) $\nabla \cdot (\mathbf{a} \times \mathbf{r}) = 0$;
 - (2) $\nabla \times (\mathbf{a} \times \mathbf{r}) = 2\mathbf{a}$;
 - (3) $\nabla \cdot ((\mathbf{r} \cdot \mathbf{r})\mathbf{a}) = 2\mathbf{r} \cdot \mathbf{a}$.
- 6. 求全微分 $(x^2 2yz)dx + (y^2 2xz)dy + (z^2 2xy)dz$ 的原函数.
- 7. 证明向量场 $\mathbf{a} = \frac{x-y}{x^2+y^2}\mathbf{i} + \frac{x+y}{x^2+y^2}\mathbf{j}$ (x > 0) 是有势场并求势函数.
- 8. 验证:
 - (1) $u = \ln \sqrt{(x-a)^2 + (y-b)^2}$ 为 $\mathbb{R}^2 \setminus \{(a,b)\}$ 上的调和函数;

- (2) $u = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$ 为 **R**³\{(0,0,0)} 上的调和函数.
- 9. 设 u(x,y) 在 \mathbf{R}^2 上具有二阶连续偏导数, 证明 u 是调和函数的充要条件为: 对于 \mathbf{R}^2 中任意光滑封闭曲线 C, 成立 $\int_C \frac{\partial u}{\partial n} ds = 0$, 其中 $\frac{\partial u}{\partial n}$ 为沿 C 的外法线方向的方向导数.
- 10. 设 $B = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1\}$, $\mathbf{F}(x, y, z) : \mathbf{R}^3 \to \mathbf{R}^3$ 为具有连续导数的向量值函数, 且满足

$$\mathbf{F}|_{\partial B} \equiv (0,0,0), \quad \nabla \cdot \mathbf{F}|_{B} \equiv 0.$$

证明: 对于任何 \mathbf{R}^3 上具有连续偏导数的函数 g(x,y,z) 成立

$$\iiint\limits_{p} \nabla g \cdot \mathbf{F} \mathrm{d}x \mathrm{d}y \mathrm{d}x = 0.$$

11. 设 $D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$, u(x,y) 在 \bar{D} 上具有连续二阶偏导数. 进一步, 设 u 在 \bar{D} 上不恒等于0, 但在 D 的边界 ∂D 上恒为0, 且在 D上成立

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \lambda u, \quad (\lambda \ 为常数).$$

证明:

$$\iint\limits_{D} \|\mathbf{grad}u\|^2 dxdy + \lambda \iint\limits_{D} u^2 dxdy = 0.$$

- 12. 设区域 Ω 由分片光滑封闭曲面 Σ 所围成, u(x,y,z) 在 $\bar{\Omega}$ 上具有二阶连续偏导数, 且在 $\bar{\Omega}$ 上调和, 即满足 $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$.
 - (1) 证明

$$\iint_{\Sigma} \frac{\partial u}{\partial n} dS = 0,$$

其中 n 为 Σ 的单位外法向量;

(2) 设 $(x_0, y_0, z_0) \in \Omega$ 为一定点, 证明

$$u(x_0, y_0, z_0) = \frac{1}{4\pi} \iiint_{\Sigma} \left(u \frac{\cos(\mathbf{r}, \mathbf{n})}{r^2} + \frac{1}{r} \frac{\partial u}{\partial n} \right) dS,$$

其中 $\mathbf{r} = (x - x_0, y - y_0, z - z_0), r = |\mathbf{r}|.$