In []: # Preparing notebook and loading data import pandas as pd df = pd.read_csv('data.csv') # Identifying missing or null values missing_values = df.isnull().sum() # Imputing missing values df['column'].fillna(value, inplace=True) # Checking for data types data_types = df.dtypes # Assigning correct data types df['column'] = pd.to_datetime(df['column']) # Dealing with duplicated data df.drop_duplicates(inplace=True) Sorting and Filtering In []: # Sorting dataset df.sort_values(by='column', ascending=False, inplace=True) # Boolean indexing filtered_data = df[df['column'] > 5] # Query Method filtered_data = df.query('column > 5') # isin Method filtered_data = df[df['column'].isin([1, 2, 3])] # Combining Conditions filtered_data = df[(df['column1'] > 5) & (df['column2'] < 10)]</pre> # Using Loc and iloc subset = df.loc[:, ['column1', 'column2']] **Data Joining** In []: # Data joining merged_data = pd.merge(df1, df2, on='key_column') # Data concatenation concatenated_data = pd.concat([df1, df2], axis=0) **EDA** methods In []: # Value counts method value_counts = df['column'].value_counts() # Describe data description = df.describe() # Group by analysis grouped_data = df.groupby('column').mean() pivot_table = pd.pivot_table(df, values='values', index=['index_column'], columns=['column']) # Crosstab analysis cross_tab = pd.crosstab(df['column1'], df['column2']) # Correlation analysis correlation_matrix = df.corr() # Data Visualisations In []: import matplotlib.pyplot as plt # Bar charts plt.bar(x_values, y_values) plt.xlabel('X-axis label') plt.ylabel('Y-axis label') plt.title('Bar Chart') plt.show() # Pie charts plt.pie(sizes, labels=labels, autopct='%1.1f%%') plt.title('Pie Chart') plt.show() # Line charts plt.plot(x_values, y_values) plt.xlabel('X-axis label') plt.ylabel('Y-axis label') plt.title('Line Chart') plt.show() # Histogram plt.hist(data, bins=10) plt.xlabel('X-axis label') plt.ylabel('Frequency') plt.title('Histogram') plt.show() # Scatterplot plt.scatter(x_values, y_values) plt.xlabel('X-axis label') plt.ylabel('Y-axis label') plt.title('Scatter Plot') plt.show() # Heatmap import seaborn as sns sns.heatmap(data, cmap='viridis') plt.title('Heatmap') plt.show() # Boxplot plt.boxplot(data) plt.xlabel('X-axis label') plt.ylabel('Y-axis label') plt.title('Box Plot') plt.show() **Data Transformations** In []: # Checking the distribution sns.distplot(data) # Normality test from scipy.stats import shapiro stat, p = shapiro(data)**if** p > 0.05: print('Data looks normally distributed') print('Data does not look normally distributed') # Square root transformation sqrt_transformed_data = np.sqrt(data) # Logarithmic transformation log_transformed_data = np.log(data) # Boxcox transformation from scipy.stats import boxcox boxcox_transformed_data, _ = boxcox(data) # Yeo-Johnson transformation from scipy.stats import yeojohnson yeo_johnson_transformed_data, _ = yeojohnson(data) Statistical Tests In []: # One sample t-test from scipy.stats import ttest_1samp stat, p = ttest_1samp(data, popmean) # Independent sample t-test from scipy.stats import ttest_ind stat, p = ttest_ind(data1, data2) # One-way ANOVA from scipy.stats import f_oneway stat, $p = f_{oneway}(data1, data2, data3)$ # Chi-square test for independence from scipy.stats import chi2_contingency stat, p, dof, expected = chi2_contingency(observed) # Pearson correlation correlation_matrix = df.corr() # Linear regression analysis import statsmodels.api as sm $X = sm.add_constant(X)$ model = sm.OLS(y, X)results = model.fit() print(results.summary()) Feature Engineering In []: # Dealing with date df['date_column'] = pd.to_datetime(df['date_column']) df['year'] = df['date_column'].dt.year df['month'] = df['date_column'].dt.month df['day'] = df['date_column'].dt.day # Feature encoding encoded_data = pd.get_dummies(df['categorical_column']) # Feature binning bins = [0, 25, 50, 75, 100]labels = ['Low', 'Medium', 'High', 'Very High'] df['binned_feature'] = pd.cut(df['feature'], bins=bins, labels=labels) # Feature mapping mapping_dict = {'low': 0, 'medium': 1, 'high': 2} df['mapped_feature'] = df['feature'].map(mapping_dict) # Creating dummies dummy_variables = pd.get_dummies(df['categorical_feature']) **Data Preprocessing** In []: **from** sklearn.preprocessing **import** StandardScaler, MinMaxScaler from sklearn.decomposition import PCA from sklearn.model_selection import train_test_split # Selecting features X = df[['feature1', 'feature2']] # Standard scaler scaler = StandardScaler() X_scaled = scaler.fit_transform(X) # MinMax scaler scaler = MinMaxScaler() X_scaled = scaler.fit_transform(X) # Principal component analysis $pca = PCA(n_components=2)$ X_pca = pca.fit_transform(X_scaled) # Train test split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) Regression ML In []: from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error, accuracy_score # Linear regression ML model linear_regression_model = LinearRegression() linear_regression_model.fit(X_train, y_train) linear_regression_predictions = linear_regression_model.predict(X_test) linear_regression_mse = mean_squared_error(y_test, linear_regression_predictions) # Decision Tree regressor ML model decision_tree_model = DecisionTreeRegressor() decision_tree_model.fit(X_train, y_train) decision_tree_predictions = decision_tree_model.predict(X_test) decision_tree_mse = mean_squared_error(y_test, decision_tree_predictions) # Random Forest regressor ML model random_forest_model = RandomForestRegressor() random_forest_model.fit(X_train, y_train) random forest predictions = random forest model.predict(X test) random_forest_mse = mean_squared_error(y_test, random_forest_predictions) print("Linear Regression MSE:", linear_regression_mse) print("Decision Tree MSE:", decision_tree_mse) print("Random Forest MSE:", random_forest_mse) Classification ML In []: from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import classification_report # Logistic regression ML model logistic_regression_model = LogisticRegression() logistic_regression_model.fit(X_train, y_train) logistic_regression_predictions = logistic_regression_model.predict(X_test) logistic_regression_accuracy = accuracy_score(y_test, logistic_regression_predictions) # Decision Tree classification ML model decision_tree_model = DecisionTreeClassifier() decision_tree_model.fit(X_train, y_train) decision_tree_predictions = decision_tree_model.predict(X_test) decision_tree_accuracy = accuracy_score(y_test, decision_tree_predictions) # Random Forest classification ML model random_forest_model = RandomForestClassifier() random_forest_model.fit(X_train, y_train) random_forest_predictions = random_forest_model.predict(X_test) random_forest_accuracy = accuracy_score(y_test, random_forest_predictions) print("Logistic Regression Accuracy:", logistic_regression_accuracy) print("Decision Tree Accuracy:", decision_tree_accuracy) print("Random Forest Accuracy:", random_forest_accuracy) **KMeans Clustering** In []: from sklearn.cluster import KMeans import matplotlib.pyplot as plt # Calculate WCSS for different values of k WCSS = []**for** i **in** range(1, 11): kmeans = KMeans(n_clusters=i, init='k-means++', random_state=42) kmeans.fit(X) wcss.append(kmeans.inertia_) # Plot the elbow method graph plt.figure(figsize=(10,6)) plt.plot(range(1, 11), wcss, marker='o', linestyle='--') plt.title('Elbow Method') plt.xlabel('Number of Clusters (k)') plt.ylabel('WCSS') plt.xticks(range(1, 11)) plt.grid(True) plt.show() # Choose the optimal number of clusters based on the elbow method # From the graph, select the point where the decrease in WCSS breaks down (elbow point) # In this example, let's assume the optimal number of clusters is 3 # Build KMeans clustering model with the optimal number of clusters $optimal_k = 3$ kmeans = KMeans(n_clusters=optimal_k, init='k-means++', random_state=42) kmeans.fit(X)

Get cluster labels for each data point

cluster_labels = kmeans.labels_

Data Cleaning