Top-Down Parsing

CS164 Lecture 5-6

Intro to Top-Down Parsing

 Terminals are seen in order of appearance in the token stream:

- · The parse tree is constructed
 - From the top
 - From left to right

Recursive Descent Parsing

Consider the grammar

```
E \rightarrow T + E \mid T

T \rightarrow (E) \mid int \mid int * T
```

- Token stream is: int * int
- · Start with top-level non-terminal E
- Try the rules for E in order

· Consider the grammar

$$E \rightarrow T + E \mid T$$

 $T \rightarrow (E) \mid int \mid int * T$

· Token stream is: int * int

Recursive-Descent Parsing

```
void match-A() {
          choose an A-production A \rightarrow X_1 X_2 ... X_n
          for (i = 1 to n)
                    if (X_i \text{ is non-terminal})
                              call match-X<sub>i</sub>()
                    else if (X_i \text{ is a terminal and } X_i = \text{current input symbol a})
                              advance the input to next symbol
                    else
```

Recursive Descent Parsing. Example (Cont.)

- Try $E_0 \rightarrow T_1 + E_2$
- Then try a rule for $T_1 \rightarrow (E_3)$
 - But (does not match input token int
- Try $T_1 \rightarrow int$. Token matches.
 - But + after T₁ does not match input token *
- Try $T_1 \rightarrow int * T_2$
 - This will match but + after T_1 will be unmatched
- Have exhausted the choices for T_1
 - Backtrack to choice for E₀

Recursive Descent Parsing. Example (Cont.)

- Try $E_0 \rightarrow T_1$
- Follow same steps as before for T_1
 - And succeed with $T_1 \rightarrow \text{int *} T_2$ and $T_2 \rightarrow \text{int}$
 - With the following parse tree

Profs. Sen CS 164

Recursive-Descent Parsing

- Parsing: given a string of tokens $t_1 t_2 ... t_n$, find its parse tree
- Recursive-descent parsing: Try all the productions exhaustively
 - At a given moment the fringe of the parse tree is: $t_1 t_2 ... t_k A ...$
 - Try all the productions for A: if $A \rightarrow BC$ is a production, the new fringe is $t_1 t_2 \dots t_k BC \dots$
 - Backtrack when the fringe doesn't match the string
 - Stop when there are no more non-terminals

Another Example

• $S \rightarrow S0 \mid 1$ and match 10

When Recursive Descent Does Not Work

- Consider a production $5 \rightarrow 5$ a:
 - In the process of parsing 5 we try the above rule
 - What goes wrong?
- A <u>left-recursive grammar</u> has a non-terminal $S \rightarrow 5 \rightarrow 5\alpha$ for some α
- Recursive descent does not work in such cases
 - It goes into an infinite loop

Elimination of Left Recursion

Consider the left-recursive grammar

$$S \rightarrow S \alpha \mid \beta$$

- 5 generates all strings starting with a β and followed by a number of α
- · Can rewrite using right-recursion

$$S \rightarrow \beta S'$$

 $S' \rightarrow \alpha S' \mid \epsilon$

Elimination of Left-Recursion. Example

Consider the grammar

$$5 \rightarrow 1 \mid 50$$
 ($\beta = 1$ and $\alpha = 0$)

can be rewritten as

$$\mbox{S} \rightarrow \mbox{1 S'}$$
 $\mbox{S'} \rightarrow \mbox{0 S'} \mid \epsilon$

More Elimination of Left-Recursion

In general

$$S \rightarrow S \alpha_1 \mid ... \mid S \alpha_n \mid \beta_1 \mid ... \mid \beta_m$$

- All strings derived from 5 start with one of $\beta_1,...,\beta_m$ and continue with several instances of $\alpha_1,...,\alpha_n$
- · Rewrite as

$$S \rightarrow \beta_1 S' \mid ... \mid \beta_m S'$$

 $S' \rightarrow \alpha_1 S' \mid ... \mid \alpha_n S' \mid \epsilon$

General Left Recursion

The grammar

$$S \rightarrow A \alpha \mid \delta$$

 $A \rightarrow S \beta$

is also left-recursive because

$$S \rightarrow^+ S \beta \alpha$$

- · This left-recursion can also be eliminated
- See book, Section 4.3 for general algorithm

Summary of Recursive Descent

- Simple and general parsing strategy
 - Left-recursion must be eliminated first
 - ... but that can be done automatically
- Unpopular because of backtracking
 - Thought to be too inefficient
- Often, we can avoid backtracking ...

Predictive Parsers

- Like recursive-descent but parser can "predict" which production to use
 - By looking at the next few tokens
 - No backtracking
- · Predictive parsers accept LL(k) grammars
 - L means "left-to-right" scan of input
 - L means "leftmost derivation"
 - k means "predict based on k tokens of lookahead"
- In practice, LL(1) is used

LL(1) Languages

- In recursive-descent, for each non-terminal and input token there may be a choice of production
- LL(1) means that for each non-terminal and token there is only one production that could lead to success
- · Can be specified as a 2D table
 - One dimension for current non-terminal to expand
 - One dimension for next token
 - A table entry contains one production

Predictive Parsing and Left Factoring

Recall the grammar

```
E \rightarrow T + E \mid T

T \rightarrow int \mid int * T \mid (E)
```

- · Impossible to predict because
 - For T two productions start with int
 - For E it is not clear how to predict
- A grammar must be <u>left-factored</u> before use for predictive parsing

Left-Factoring Example

Recall the grammar

$$E \rightarrow T + E \mid T$$

 $T \rightarrow int \mid int * T \mid (E)$

· Factor out common prefixes of productions

$$E \rightarrow TX$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid \text{int } Y$
 $Y \rightarrow * T \mid \varepsilon$

LL(1) Parsing Table Example

Left-factored grammar

$$E \rightarrow TX$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \varepsilon$

• The LL(1) parsing table (\$ is a special end marker):

	int	*	+	()	\$
T	int Y			(E)		
Ε	ΤX			ΤX		
X			+ E		3	3
У		* T	3		3	3

LL(1) Parsing Table Example (Cont.)

- · Consider the [E, int] entry
 - "When current non-terminal is E and next input is int, use production $E \to T X$
 - This production can generate an int in the first place
- Consider the [Y,+] entry
 - "When current non-terminal is Y and current token is +, get rid of Y"
 - We'll see later why this is so

LL(1) Parsing Tables. Errors

- · Blank entries indicate error situations
 - Consider the [E,*] entry
 - "There is no way to derive a string starting with * from non-terminal F"

Using Parsing Tables

- Method similar to recursive descent, except
 - For each non-terminal 5
 - We look at the next token a
 - And choose the production shown at [5,a]
- We use a stack to keep track of pending nonterminals
- · We reject when we encounter an error state
- · We accept when we encounter end-of-input

LL(1) Parsing Algorithm

```
initialize stack = <S,$> and next (pointer to tokens) repeat case stack of <X, rest> : if T[X,*next] = Y_1...Y_n then stack \leftarrow <Y_1... Y_n rest>; else error (); <t, rest> : if t == *next ++ then stack \leftarrow <rest>; else error (); until stack == < >
```

LL(1) Parsing Example

<u>Stack</u>	Input	Action
E\$	int * int \$	ΤX
TX\$	int * int \$	int Y
int Y X \$	int * int \$	terminal
Y X \$	* int \$	* T
* T X \$	* int \$	terminal
TX\$	int \$	int Y
int Y X \$	int \$	terminal
Y X \$	\$	3
X \$	\$	3
\$	\$	ACCEPT

Constructing Parsing Tables

- LL(1) languages are those defined by a parsing table for the LL(1) algorithm
- · No table entry can be multiply defined
- Once we have the table
 - The parsing algorithm is simple and fast
 - No backtracking is necessary
- · We want to generate parsing tables from CFG

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

int * int + int

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

- The leaves at any point form a string $\beta A \gamma$
 - β contains only terminals
 - The input string is $\beta b \delta$
 - The prefix β matches
 - The next token is b

int * int + int

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

- The leaves at any point form a string $\beta A \gamma$
 - β contains only terminals
 - The input string is $\beta b \delta$
 - The prefix β matches
 - The next token is b

- Top-down parsing expands a parse tree from the start symbol to the leaves
 - Always expand the leftmost non-terminal

- The leaves at any point form a string $\beta A \gamma$
 - β contains only terminals
 - The input string is $\beta b \delta$
 - The prefix β matches
 - The next token is b

Constructing Predictive Parsing Tables

- Consider the state $S \rightarrow^* \beta A \gamma$
 - With b the next token
 - Trying to match $\beta b \delta$

There are two possibilities:

- 1. b belongs to an expansion of A
 - Any $A \to \alpha$ can be used if b can start a string derived from α

In this case we say that $b \in First(\alpha)$

Or...

Constructing Predictive Parsing Tables (Cont.)

- 2. b does not belong to an expansion of A
 - The expansion of A is empty and b belongs to an expansion of γ (e.g., $b\omega$)
 - Means that b can appear after A in a derivation of the form $S \to^* \beta A b \omega$
 - We say that $b \in Follow(A)$ in this case
 - What productions can we use in this case?
 - Any $A \rightarrow \alpha$ can be used if α can expand to ϵ
 - We say that $\varepsilon \in \mathsf{First}(\alpha)$ in this case

Computing First Sets

```
Definition First(X) = { b | X \rightarrow^* b\alpha} \cup {\epsilon | X \rightarrow^* \epsilon}
1. First(b) = { b }
```

- 2. For all productions $X \rightarrow A_1 \dots A_n$
 - Add First(A_1) { ϵ } to First(X). Stop if $\epsilon \notin First(A_1)$
 - Add First(A_2) { ϵ } to First(X). Stop if $\epsilon \notin First(A_2)$
 - •
 - Add First(A_n) $\{\epsilon\}$ to First(X). Stop if $\epsilon \notin First(A_n)$
 - Add ε to First(X)

First Sets. Example

Recall the grammar

$$E \rightarrow TX$$

 $T \rightarrow (E) \mid int Y$

$$X \rightarrow + E \mid \epsilon$$

 $Y \rightarrow * T \mid \epsilon$

First sets

```
First(() = {(}
First()) = {)}
First(int) = {int}
First(+) = {+}
First(*) = {*}
```

First(T) = {int, (}
First(E) = {int, (}
First(X) = {+,
$$\epsilon$$
 }
First(Y) = {*, ϵ }

Computing Follow Sets

```
Definition Follow(X) = { b | S \rightarrow^* \beta X b \omega }
```

- 1. Compute the First sets for all non-terminals first
- 2. Add \$ to Follow(S) (if S is the start non-terminal)
- 3. For all productions $Y \rightarrow ... \times A_1 ... A_n$
 - Add First(A_1) { ϵ } to Follow(X). Stop if $\epsilon \notin First(A_1)$
 - Add First(A_2) { ϵ } to Follow(X). Stop if $\epsilon \notin First(A_2)$
 - •
 - Add First(A_n) { ϵ } to Follow(X). Stop if $\epsilon \notin First(A_n)$
 - Add Follow(Y) to Follow(X)

Follow Sets. Example

Recall the grammar

$$E \rightarrow TX$$

 $T \rightarrow (E) \mid int Y$

$$X \rightarrow + E \mid \varepsilon$$

 $Y \rightarrow * T \mid \varepsilon$

Follow sets

Constructing LL(1) Parsing Tables

- · Construct a parsing table T for CFG G
- For each production $A \rightarrow \alpha$ in G do:
 - For each terminal $b \in First(\alpha)$ do
 - T[A, b] = α
 - If $\varepsilon \in \text{First}(\alpha)$, for each $b \in \text{Follow}(A)$ do
 - T[A, b] = α

Constructing LL(1) Tables. Example

Recall the grammar

$$E \rightarrow TX$$
 $X \rightarrow + E \mid \varepsilon$
 $T \rightarrow (E) \mid int Y$ $Y \rightarrow * T \mid \varepsilon$

- Where in the line of Y we put $Y \rightarrow T$?
 - In the lines of First(*T) = { * }
- Where in the line of Y we put $Y \to \varepsilon$?
 - In the lines of Follow(Y) = { \$, +,) }

Notes on LL(1) Parsing Tables

- If any entry is multiply defined then G is not LL(1)
 - If G is ambiguous
 - If G is left recursive
 - If G is not left-factored
 - And in other cases as well
- Most programming language grammars are not LL(1)
- There are tools that build LL(1) tables

Review

- For some grammars there is a simple parsing strategy
 - Predictive parsing (LL(1))
 - Once you build the LL(1) table, you can write the parser by hand