Changement de référentiel

Chapitre 7

I. Point de vue cinématique

1. Vecteur rotation

$$\overrightarrow{\Omega_{\mathcal{R}'/\mathcal{R}}} = \omega \, \overrightarrow{u_z}$$

 $\dfrac{\omega}{u_z}$: vitesse de rotation de \mathcal{R}'/\mathcal{R}

2. Formule de Varignon

$$\boxed{\left(\frac{d\vec{u}}{dt}\right)_{\mathcal{R}} = \left(\frac{d\vec{u}}{dt}\right)_{\mathcal{R}'} + \overline{\Omega_{\mathcal{R}'/\mathcal{R}}} \wedge \vec{u}}$$

3. Composition de vitesses et d'accélérations

	Composition	Cas particuliers et formules
Vitesses	$\overrightarrow{v_a} = \overrightarrow{v_r} + \overrightarrow{v_e}$	$\overrightarrow{v_e} = \underbrace{\overrightarrow{v_{O'/\mathcal{R}}}}_{\text{e on rotation}} + \underbrace{\overrightarrow{\Omega} \wedge \overrightarrow{O'M}}_{\text{e on translation}}$
Accélérations	$\boxed{\overrightarrow{a_a} = \overrightarrow{a_r} + \overrightarrow{a_e} + \overrightarrow{a_c}}$	$\overrightarrow{a_e} = \underbrace{\overrightarrow{a_{O'/\mathcal{R}}}}_{\text{origines communes}} + \underbrace{\overrightarrow{\Omega} \wedge (\overrightarrow{\Omega} \wedge \overrightarrow{O'M})}_{\text{e o en translation}}$ $\overrightarrow{a_e} = -\omega^2 \overrightarrow{HM} \text{ (en rot° si origines communes)}$ $\overrightarrow{a_c} = 2\overrightarrow{\Omega} \wedge \overrightarrow{v_r}$

II. Point de vue dynamique

1. Principe de la relativité galiléenne

Si (\mathcal{R}) est en translation rectiligne uniforme par rapport à un référentiel galiléen (\mathcal{R}_0) , (\mathcal{R}) est aussi galiléen.

Les lois de la dynamique sont identiques dans tous les référentiels galiléens.

2. PFD dans un référentiel non galiléen

 (\mathcal{R}) non galiléen, (\mathcal{R}_0) galiléen.

$$\boxed{m \ \overrightarrow{a_{M/\mathcal{R}}} = \overrightarrow{F} + \overrightarrow{F_{l_c}} + \overrightarrow{F_{l_e}}}$$
 Force d'inertie d'entrainement : $\overrightarrow{F_{l_e}} = -m\overrightarrow{a_e}$ Force d'inertie de Coriolis : $\overrightarrow{F_{l_c}} = -m\overrightarrow{a_c}$

3. Termes de marées

$$a_{M/\mathcal{R}_g} = \overrightarrow{G_T(M)} + \underbrace{\overrightarrow{G_S(M)} - \overrightarrow{G_S(T)}}_{\overrightarrow{T_S(M)}} + \underbrace{\overrightarrow{G_L(M)} - \overrightarrow{G_L(T)}}_{\overrightarrow{T_L(M)}}$$

4. Le poids d'un corps

$$\vec{P} = \underbrace{-\frac{GM_Tm}{R_T^2}}_{\vec{F}_g} \vec{u}_T + \underbrace{m\omega^2 \vec{H}\vec{M}}_{\vec{F}_{le}}$$