Máquinas de Turing Ábacos

Prof. Edson Alves

Faculdade UnB Gama

Sumário

- 1. Ábacos
- 2. Exemplos
- 3. Computabilidade por ábacos

Contexto histórico

- As máquinas de Turing tem muitas limitações: uma delas é trabalhar exclusivamente com inteiros positivos, o que exclui o zero
- ▶ Além disso, elas foram propostas antes do surgimento dos computadores digitais
- De fato, as máquinas de Turing contribuíram significativamente no desenvolvimento destes computadores
- Uma importante característica presente nos computadores digitais e ausentes nas máquinas de Turing é o acesso aleatório à memória
- Além disso, o sistema numérico subjacente é o sistema binário, e não o monádico
- O acréscimo destas duas características às máquinas de Turing levam aos ábacos

Ábaco

Definição

Uma **máquina de Lambek** ou uma **máquina de ábaco** é uma versão idealizada de computador, com as seguintes características:

- (a) acesso ao um número **ilimitado** de registradores R_0,R_1,R_2,\dots
- (b) cada registrador pode armazenar um número natural (positivos e o zero) de tamanho **arbitrário**
- (c) cada registrador tem seu próprio **endereço**, de modo que é possível se mover do registrador R_i para o registrador R_j diretamente, sem precisar passar, passo a passo, pelos registradores intermediários $R_{i+1}, R_{i+2}, \ldots, R_{j-1}$

Notação

- lackbox Os registradores são representados pela letra maiúscula R e pelo subscrito i, indicando o número do registrador
- lacktriangle A notação [m] indica o número que está armazenado no registrador R_m
- Um registrador pode estar vazio, isto é, armazenar o valor zero
- A instrução "Coloque a soma dos números armazenados em R_m e em R_p " pode ser escrita como

$$[m] + [n] \to p$$

O número à direita da seta indica o registrador que armazenará o resultado da instrução

Programas em ábaco

Um **programa** em um ábaco consiste em uma lista de instruções numeradas. Cada uma destas instruções é de uma das duas formas abaixo:

 $\left(q
ight)$ acrescente um à caixa m e vá para a instrução r

ou

 $\left\{ \begin{array}{l} \text{se a caixa } m \text{ n\~ao est\'a vazia}, & \text{ent\~ao subtraia um da caixa } m \text{ e v\'a para } r \\ \text{se a caixa } m \text{ est\'a vazia}, & \text{ent\~ao v\'a para } s \end{array} \right.$

Diagramas correspondentes às duas instruções dos ábacos

Instrução: Acrescente um ao número armazenado no registrador ${\cal R}_n$

Instrução: Se R_n estiver vazio, saia pela seta e; caso contrário, subtraia um e saia pela outra seta

Exemplo: Esvaziar o registrador R_n

O programa a seguir, que consiste em uma única instrução, esvazia o conteúdo do registrador R_n :

 $\begin{array}{ll} (1) & \left\{ \begin{array}{ll} \mbox{se } [n] \mbox{ \'e diferente de zero,} & \mbox{ent\~ao} \mbox{ subtraia um e permaneça em } 1 \\ \mbox{se } [n] \mbox{ \'e igual a zero,} & \mbox{ent\~ao} \mbox{ pare} \end{array} \right. \end{array}$

Exemplo: Esvaziar o registrador R_m no registrador R_n

O programa abaixo esvazia o conteúdo do registrador R_m no registrador R_n , assumindo que ambos registradores são distintos.

Exemplo: Esvaziar R_m em R_n

Exemplo: Adicionar R_m a R_n , sem perda de R_m

Para adicionar o conteúdo de R_m em R_n , sem perda de R_m , é preciso um registrador auxiliar R_p , inicialmente vazio.

Exemplo: Adicionar R_m a R_n , sem perda de R_m

Exemplo: Multiplicação

O ábaco abaixo computa o produto dos números armazenados em R_a e R_b . O resultado ficará armazenado em R_n e, inicialmente, tanto R_n quanto R_p devem estar vazios.

(b) Diagrama de Blocos

Exemplo: Multiplicar R_a e R_b

Exemplo: Multiplicação

Figura: Fluxograma completo

Equivalência entre ábacos e máquinas de Turing

Teorema

Toda função computável por ábaco é Turing computável.

Referências

1. BOOLOS, George S.; BURGESS, John P.; JEFFREY, Richard C. Computabilidade e Lógica, Editora Unesp, 2012.