数字与模拟转换

程晨闻 东南大学电气工程学院

〉内容概要

- 数字/模拟转换器DAC 的工作原理
- 模拟/数字转换器ADC的工作原理
- 电路板上的DAC操作

> 内容概要

- 数字/模拟转换器DAC 的工作原理
- 电路板上的DAC操作
- 模拟/数字转换器ADC的工作原理

连续变化的物理量 > 模拟量

> 数字量-时间和数值上都离散的量

> DAC

- DAC是将数字量转换成模拟量输出的设备
- DAC将输入的二进制数字量转换成模拟量,以电压或电流的形式输出
- DAC可看作是一个**译码器**(解码器),提供了数字量到模拟量的映射功能
 - 一般常用的线性D/A转换器,其输出模拟电压uO和输入数字量Dn之间成**正比**关系。 U_{REF} 为参考电压

$$u_O = D_n U_{REF}$$

東南大學電氣工程學院

➤ DAC的组成(倒T型网络DAC)

- 缓冲寄存器
- 模拟电子开关
- 参考电压
- 解码网络

東南大學電氣工程學院

束南大學電氣工程學院

➤ 倒T型网络DAC

输入量Dn的每一位,控制一个电子开关

- $I_{out1} = Dn(0) \cdot I_0 + Dn(1) \cdot I_1 + Dn(2) \cdot I_2 + Dn(3) \cdot I_3$
- = $V_{REF}/2R \times (Dn(0) \cdot 1/8 + Dn(1) \cdot 1/4 + Dn(2) \cdot 1/2 + Dn(3) \cdot 1)$
- $V_{out} = Iout1 \times Rfb$
- 若Rfb =R
- $V_{out} = -V_{REF} \times [(Dn(0) \cdot 2^0 + Dn(1) \cdot 2^1 + Dn(2) \cdot 2^2 + Dn(3) \cdot 2^3) /2^4]$

$$V_{out} = - (Dn/2^n) \times V_{REF}$$

➢ 应用示例(10位DAC CB7520)

CB7520电路原理图

> 其他结构的DAC

- 倒T型网络DAC也被称作R2R 架构DAC
- 除此之外,常用的还有电阻串(R-String)结构的DAC

1. 转换精度

输出模拟电压的实际值与理想值之差,也称最大静态转换误差

2. 分辨率

DAC模拟输出电压可能被分离的等级数;输入数字量位数越多,分辨率越高

3. 线性度

通常用非线性误差的大小表示DAC的线性度

DNL 是微分线性度; INL 是积分线性度

12/42

4. 偏移

增益偏差 零位偏差

5. 转换时间

建立时间(Settling time) 压摆率 slew rate 线性稳定时间 linear settling

6. 毛刺

7. 温度系数

- 在输入不变的情况下,输出模拟电压随温度变化产生的变化量。
 一般用满刻度输出条件下温度每升高1℃,输出电压变化的百分数作为温度系数。
- 单位为**PPM**, 即温度上升或者下降1摄氏度时, 输出的变化为百万分之几

〉内容概要

- 数字/模拟转换器DAC 的工作原理
- 电路板上的DAC操作
- 模拟/数字转换器ADC的工作原理

18/42

➤ 使用I2C发送DAC数据

- 2. 线路连接
 - 将PB8连接到SCL
 - 将PB9连接到SDA
 - 将P29的VCC连接至P8的3.3V插针

- 1. MCP4725芯片
 - 12bitDAC芯片
 - EEPROM存储
 - I2C接口 (8个可选地址, 100kbps/400kbps/3.4Mbps)
 - 工作为从机模式
 - LSB

Block Diagram

EQUATION 4-1:

$$LSB_{Ideal} = \frac{V_{REF}}{2^{n}} = \frac{(V_{Full \ Scale} - V_{Zero \ Scale})}{2^{n} - 1}$$

Where:

 V_{REF} = The reference voltage = V_{DD} in the MCP4725. This V_{REF} is the ideal full scale voltage range

The number of digital input bits. (n = 12 for MCP4725)

- 2. MCP4725芯片—工作模式 (PD0、PD1)
 - Normal mode
 - Power-down mode
 - 低功耗模式,关闭除了I2C接口的其他电路
 - 没有数据转换
 - Vout没有输出
 - 输出从运放的输出转换为阻性负载

TABLE 5-2: POWER-DOWN BITS

PD1	PD0	Function	
0	0	Normal Mode	
0	1	1 kΩ resistor to ground ⁽¹⁾	
1	0	100 kΩ resistor to ground ⁽¹⁾	
1	1	500 kΩ resistor to ground ⁽¹⁾	

Note 1: In the power-down mode: V_{OUT} is off and most of internal circuits are disabled.

FIGURE 5-1: Down Mode Output Stage for Power-

- 2. MCP4725芯片
 - 器件地址
 - ✓ Device code + address bits + R/W bit
 - ✓ Device code is always 1100
 - ✓ Three address bits: A2, A1, A0; A2 and A1 are
 O1; A0 bit is determined by the logic state of A0
 pin (0 in this design)
 - ✓ Thus, the address of MCP4725 chip is
 1100010b

Part Number	Address Option	Code	
MCP4725A0T E/CH	//0 (00)	AJNN	
MCP4725A1T-E/CH	A1 (01)	APNN	\triangleright
MCP4725A21-E/CH	A2 (10)	AQNN	
MCP4725A3T-E/CH	A3 (11)	ARNN	

- 2. MCP4725芯片
 - 写操作: Fast mode (C2, C1=0, 0)
 - ✓ 用于改变DAC寄存器, EEPROM不受影响
 - ✓ 升级下电模式选择位 (PD1和PD0), 以及 DAC寄存器中的12位输入数据

Fast Mode Write Command.

- 2. MCP4725芯片
 - 写操作:写DAC寄存器、EEPROM (C2, C1=0, 1)

FIGURE 6-2: Write Commands for DAC Input Register and EEPROM.

- 2. MCP4725芯片
 - 写操作
 - ✓ 输入数值和输出电压对应关系如下表
 - ✓ 高位先发送

TABLE 6-1: INPUT DATA CODING

Input Code	е	Nominal Output Voltage (V)
1111111111111	(FFFh)	V _{DD} - 1 LSB
111111111111	(FFEh)	V _{DD} - 2 LSB
000000000010	(002h)	2 LSB
000000000001	(001h)	1 LSB
00000000000	(000h)	0

- 3. 使用STM32F401芯片操作MCP4725芯片
 - 配置PB8为SCL,配置PB9为SDA

- 3. 使用STM32F401芯片操作MCP4725芯片

```
void WriteMCP4245(uint32 t val){
            uint32 t MCP4245Addr;
            MCP4245Addr=0x62;
            uint8 t dacData[2];
            dacData[0]=val>>8;
            dacData[1]=val&0xff;
          HAL_I2C_Master_Transmit(&hi2c1,MCP4245Addr<<1,dacData,2,100);</pre>
                              Write DAC Register using Fast Mode Write Command: (C2, C1) = (0, 0)
                                                                                                 see Note 2
                                                      ACK (MCP4725)
                                                                            ACK (MCP4725)
                                                                                            ACK (MCP4725)
                                 1st byte (Device Addressing)
                                                              2nd byte
                                                                                   3rd byte
                                                                      DAC Register Data (12 bits)
                                                                                                 STOP Bit
                                                                Power Down Select
                              START Bit
                                           see Note 1
                                                           Fast Mode Command (C2, C1 = 0, 0)
                                                      Read/Write Command
```

29/42

南京 四牌楼2号

http://ee.seu.edu.cn

- 3. 使用STM32F401芯片操作MCP4725芯片
 - 向DAC芯片发送一个递增变量 (三角波)
 - 用示波器观察DAC输出

〉内容概要

- 数字/模拟转换器DAC 的工作原理
- 电路板上的DAC操作
- 模拟/数字转换器ADC的工作原理

模拟量

数字量

> A/D转换技术分类

- 计数器式
- 逐次逼近式
- 双积分式
- 并行式
- Delta-Sigma

> 计数器式A/D转换器

以最低位为增减量 单位的逐步计数法

转换结束

数字输出

> 逐次逼近式A/D转换器

从最高位开始 的逐位试探法

数字输出

转换结束

> 逐次逼近式A/D转换器

- 其工作原理可用天平秤重过程作比喻
 - 若有四个砝码共重15克
 - 每个重量分别为8、4、2、1克
 - 设待秤重量Wx = 13克

顺序	砝 码 重	比较判断	暂时结果
1	8 g	8g < 13g , 保留	8 g
2	8 g + 4 g	12g < 13g , 保留	12 g
3	8 g + 4 g + 2 g	14g > 13g, 撤去	12 g
4	8 g + 4 g + 1 g	13g =13g, 保留	13g

> 逐次逼近式A/D转换器

- DAC为4位
- 参考电压V_{REF}=8V
- 输入电压U_i = 5.52V

顺序	d_3	d_2	d_1	d_0	$U_{\rm A}({ m V})$	比较判断	"1"留否
1	1	0	0	0	4V	$U_{\rm A} < U_{ m I}$	留
2	1	1	0	0	6V	$U_{\rm A} > U_{\rm I}$	去
3	1	0	1	0	5V	$U_{\rm A} < U_{ m I}$	留
4	1	0	1	1	5. 5V	$U_{\rm A} \approx U_{\rm I}$	留

> 逐次逼近式A/D转换器——采样和保持

- 逐次逼近式ADC转换过程中,需要多次比较才能得到最终结果。
- 在比较的过程中,输入电压Ui需要保持不变
- ADC的模拟-数字转换需经过四个步骤:采样、保持、 量化、编码
- 一般前两步由采样-保持电路完成,量化和编码由ADC 完成

> 并行式A/D转换器

直接比较法

➤ Delta-Sigma转换器

SCHOOL OF ELECTRICAL ENGINEERING, SE

> A/D 转换器的主要技术指标

1. 分辨率

以输出二进制数的位数表示分辨率。位数越多,误差越小,转换精度越高。

2. 转换速度

完成一次A/D转换所需要的时间,即从它接到转换控制信号起,到输出端得到稳定的数字量输出所需要的时间。

3. 精度

精度是反映转换器的实际输出接近理想输出的精确程度的物理量。实际 转换值和理想特性之间的最大偏差。

4. 量化误差 (Quantizing Error)

由于AD的有限分辩率而引起的误差,即有限分辩率AD的阶梯状转移特性 曲线与无限分辩率AD(理想AD)的转移特性曲线(直线)之间的最大偏差。 通常是1个或半个最小数字量的模拟变化量,表示为1LSB、1/2LSB。

5. 偏移误差(Offset Error)

输入信号为零时输出信号的值。

6. 满刻度误差(Full Scale Error)

满度输出时对应的输入信号与理想输入信号值之差。

7. 线性度(Linearity)

实际转换器的转移函数与理想直线的最大偏移。

> 作业

- 如果12位逐次逼近ADC的参考电压为3.3V,转换的结果为0x101,那么输入电压是多少伏?

谢谢!