Advanced Network Technologies

Multimedia 1/2

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Dr. Wei Bao| Lecturer School of Computer Science

Multimedia

> Streaming stored video Project Exam Help

https://powcoder.com

Voice-over-IP

Add WeChat powcoder

> RTP/SIP

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Multimedia networking: 3 application types

- > streaming, stored audio, video
 - streaming: can begin playout before downloading entire file
 - stored (at server): can transpit faster than audio/yideo will be rendered (implies storing/buffering at client)
 - e.g., YouTube, Neltflixpsป/powcoder.com
- > conversational voice/video over IP Add WeChat powcoder
 - interactive nature of human-to-human conversation limits delay tolerance
 - e.g., Skype
- > streaming live audio, video
 - e.g., live sporting event

Multimedia audio

 analog audio signal sampled at constant rate

- telephone: 8,000 samples/sec

- CD music: 44, 100 samples/sec Project Exam Help

> each sample quantized tips://powcoder.com

- e.g., 28=256 possible quantize that provided values

 each quantized value represented by bits, e.g., 8 bits for 256 values

Rate=44100 samples/sec * 8bit/sample = 352800 bps

- Video: sequence of images displayed at constant rate
 - e.g. 24 images/sec
- Each image: array of pixels: Resolution: e.g. 480*640
 Assignment Project Exam Help
 - each pixel: 3 colors
 - Red, Green, Blue (RGP)tps://powcoder.com
 - Each color has 2⁸=256 possible quantized values (8 bit)
 - Data rate: 8*3*480*640*24 = 177 Mbps. Too large!

coding: use redundancy within and between images to decrease # bits used to encode image

spatial (within image)

temporal (from one image to next)

Assignment Project Exam Help

https://powcoder.com

• examples:

• MPEG 1 (CD-ROM) 1.5 Nd bp We Chat power per

MPEG2 (DVD) 3-6 Mbps

 MPEG4 (often used in Internet, < 1 Mbps)

MPEG: Moving Picture Experts Group

temporal coding example:

instead of sending complete frame at i+1, send only differences from frame i

spatial coding example: instead of sending N values of same color (all purple), send only two values: color value (purple) and number of repeated values (N)

frame *i*+1

Streaming Stored Wideo

https://powcoder.com

Add WeChat powcoder

Streaming stored video

Streaming stored video: challenges

- continuous playout constraint: once client playout begins, playback must match original timing
- ... but networks per a per yariatelea (jitter), pso will need client-side buffer to match playout requirements https://powcoder.com
- - client interactivity: pause, fast powcoder jump through video
 - video packets may be lost, retransmitted

Streaming stored video: revisited

 client-side buffering and playout delay: compensate for networkadded delay, delay jitter

Streaming stored video: revisited

Streaming stored video: revisited

- > Increase playout delay: fewer buffer underflows
- initial playout delay tradeoff

Client-side buffering, playout

Client-side buffering, playout

- Initial fill of buffer until playout begins at t_p
- 2. playout begins at $t_{p,}$
- 3. buffer fill level Q(t) varies over time as fill rate x(t) varies and playout rate r is constant
- 4. $Q(t+1)=Q(t)+x(t), t \le t_{p_i}Q(t+1)=max[Q(t)+x(t)-r, 0], t > t_{p_i}$
- 5. Q(t)+x(t)-r<0: buffer underflow

Client-side buffering, playout

playout buffering: average fill rate Fax polayout rate r

- >E(x) < r: buffer eventually empties (causing freezing of video playout until buffer fills again)
- E(x) ≥ r: buffer will not empty, provided initial playout delay is large enough to absorb variability in x(t)
 - initial playout delay tradeoff: buffer starvation less likely with larger delay, but larger delay until user begins watching

Streaming multimedia: UDP

- server sends at rate appropriate for client
 - often: send rate = encoding rate = constant rate
 Assignment Project Exam Help
 transmission rate can be oblivious to congestion levels

https://powcoder.com

- short playout delay (2-5 seconds) to remove network jitter Add WeChat powcoder
- > error recovery: application-level, time-permitting
- > RTP [RFC 2326]: multimedia payload types
- UDP may not go through firewalls

Streaming multimedia: HTTP

- multimedia file retrieved via HTTP GET
- send at maximum possible rate under TCP

- fill rate fluctuates due to TCP congestion control, retransmissions (in-order delivery)
-) larger playout delay: smooth TCP delivery rate
- > HTTP/TCP passes more easily through firewalls

Streaming multimedia: DASH

- DASH: Dynamic, Adaptive Streaming over HTTP
- > server:
 - divides video file into multiple chunks
 Assignment Project Exam Help
 each chunk stored, encoded at different rates

 - manifest file: provide STRIPGE GOTONKS

> client:

Add WeChat powcoder

- periodically measures server-to-client bandwidth
- consulting manifest, requests one chunk at a time
 - chooses maximum coding rate sustainable given current bandwidth
 - can choose different coding rates at different points in time (depending on current available bandwidth)

Streaming multimedia: DASH

Streaming multimedia: DASH

- > DASH: Dynamic, Adaptive Streaming over HTTP
- "intelligence" at client: client determines
 - when to request chunk (so that buffer starvation does not occur)
 - what encoding rate to request (higher quality when more bandwidth available)
 - https://powcoder.com
 where to request chunk (can request from URL server that is "close" to client or has high available bandwidth)
 Add WeChat powcoder

Content distribution network

- challenge: how to stream content (selected from millions of videos) to hundreds of thousands of simultaneous users?
- > option 1: single, saignment Peroject Exam Help
 - single point of failure https://powcoder.com
 - point of network congestion
 - long path to distant Aichts WeChat powcoder
 - multiple copies of video sent over outgoing link
-quite simply: this solution doesn't scale

Content distribution network

- challenge: how to stream content (selected from millions of videos) to hundreds of thousands of simultaneous users?
- option 2: store serve multiple Exples of Factor at faultiple geographically distributed sites (CDN)

 https://powcoder.com

Add WeChat powcoder

CDN: "simple" content access scenario

Bob (client) requests video http://netcinema.com/6Y7B23V

video stored in CDN at http://KingCDN.com/NetC6y&B23V

CDN cluster selection strategy

- challenge: how does CDN DNS select "good" CDN node to stream to client
 - pick CDN node geographically closest to client
 - pick CDN node with shortest the ayo (pectin #xxxxxxx) Help (CDN nodes periodically ping access ISPs, reporting results to CDN DNS)

https://powcoder.com

- > alternative: let client degide give client a list of several CDN servers
 - client pings servers, picks "best"
 - Netflix approach

30% downstream US traffic in 2011

- Owns very little infrastructure, uses 3rd party services:

 Assignment Project Exam Help

 own registration, payment servers

 - Amazon (3rd party) topsd/sprojectsoder.com
 - Create multiple versions of movie (different encodings) in Amazon cloud
 - Upload versions from cloud to CDNs powcoder
 - Cloud hosts Netflix web pages for user browsing
 - three 3rd party CDNs host/stream Netflix content: Akamai, Limelight, Level-3

Case study: Netflix

Assignment Broject Exam Help

https://powcoder.com

Add WeChat powcoder

Voice-over-IP (VoIP)

- > VoIP end-end-delay requirement: needed to maintain "conversational" aspect
 - higher delays noticeable, impair interactivity
 - < 150 msec: Assignment Project Exam Help
 - > 400 msec: bad
 - https://powcoder.com includes application-level (playout), network delays
- > session initialization And of Wes Callete protvecting of P address, port number, encoding algorithms?
- value-added services: call forwarding, screening, recording
- > emergency services: 911/000

VoIP characteristics

- > speaker's audio: alternating talk spurts, silent periods.
 - 64 kbps during talk spurt
 - chucks generated only during talk spurts
 - 20 msec: chucks ago kbytes/sec: piecty Exam Help
- > application-layer hardes address a place of the party o
- > chunk+header encapsulated into UDP or TCP segment Add WeChat powcoder
- application sends segment into socket every 20 msec during talkspurt

VoIP: packet loss, delay

- network loss: IP datagram lost due to network congestion (router buffer overflow)
- delay loss: IP datagram arrives too late for playout at receiver
 - delays: processing grapheing in the fiver k, Fransmis in proportion.
 - typical maximum tolerable delay: 400 ms
- https://pow.coder.com > loss tolerance: depending on voice encoding, loss concealment, packet loss rates between 1% and 10% can be tolerated Add WeChat powcoder

VoIP: fixed playout delay

- receiver attempts to playout each chunk exactly q msecs after chunk was generated.
 - chunk has time stamp t: play out chunk at t+q
 - chunk arrives after 1+q. roject Exam Help for playout: data "lost".//powcoder.com
- tradeoff in choosing q:
 Add WeChat powcoder
 large q: less packet loss

 - small q: better interactive experience

VoIP: fixed playout delay

- sender generates packets every 20 msec during talk spurt.
- first packet received at time r
- first playout schedule: begins at p
- > second playout Assignment in Braisct Exam Help

Adaptive playout delay

> goal: low playout delay, low late loss rate

Adaptive playout delay

- goal: low playout delay, low late loss rate
- > approach: adaptive playout delay adjustment:
 - estimate network delay, adjust playout delay at beginning of each talk spurt Assignment Project Exam Help - silent periods compressed and elongated
- > adaptively estimate hatchet/delaw (EMMAcomponentially weighted moving average, recall TCP RTT estimate):

Add WeChat powcoder

Adaptive playout delay (cont'd)

also useful to estimate average deviation of delay, v.:

$$V_i = (1-\beta)V_{i-1} + \beta |r_i - t_i - d_i|$$

Assignment Project Exam Help estimates d_i , v_i calculated for every received packet, but used only at start of talk spurthttps://powcoder.com

Add WeChat powcoder

for first packet in talk spurt, playout time is:

$$playout-time_i = t_i + d_i + Kv_i$$

Adaptive playout delay (cont'd)

- Q: How does receiver determine whether packet is first in a talkspurt?
- > if no loss, receverigoussantu Bregiste timestantelp
 - difference of successive stamps > 20 msec ⇒ talk spurt begins. https://powcoder.com
- with loss possible, receiver roushlot parwonding stamps and sequence numbers
 - difference of successive stamps > 20 msec *and* sequence numbers without gaps ⇒ talk spurt begins.

Adaptive playout delay (cont'd)

VoIP: recovery from packet loss

- Challenge: recover from packet loss given small tolerable delay between original transmission and playout
- > each ACK/NAK takes ~ one RTT
- > alternative: Forward Error Correction (FEC)
 - send enough bits to allow recovery without retransmission

https://powcoder.com

simple FEC

- for every group of *n* childk We cate tepowient bounk by exclusive OR-ing *n* original chunks
- send n+1 chunks, increasing bandwidth by factor 1/n
- can reconstruct original n chunks if at most one lost chunk from n+1 chunks
- Send $x_1, x_2, x_3, \dots x_n$, and $y=x_1 xor x_2 xor x_3, \dots, xor x_n$, $1 \quad 0 \quad 1 \quad 0$
- > If x_3 is lost, can re-compute x_3 from $x_1, x_2, x_4, \dots x_n$, and y
 - 1 0 ? 0 1 XOR 0 XOR $x_3 = 0$ $x_3 = 1$

VoIP: recovery from packet loss (cont'd)

another FEC scheme:

 "piggyback lower quality stream"

audio stream as redundant informalities://powcoder.com

e.g., nominal stream at 64 kbps and redundant stream at 13 kbps

VoiP: recovery from packet loss (cont'd)

interleaving to conceal loss:

- audio chunks divided into smaller units, e.g. four 5 msec units per 20 msec audio chunk
- packet contains small units from different chunks

- if packet lost, still have most of every original chunk
- no redundancy overhead, but worse delay performance

VoiP: recovery from packet loss (cont'd)

https://powcoder.com

e.g., word missing e.g. syllable missing, acceptable

Add WeChat powcoder

Subjective feeling is improved

Real-time Conversational Assignment Project Exam Help Applications https://powcoder.com

Add WeChat powcoder

Real-Time Protocol (RTP)

- > RTP specifies packet structure for packets carrying audio, video
 Assignment Project Exack Leto data
- >RTP runs in end systems
- encapsulated in UDP https://powcgder.coms > RFC 3550
- > RTP packet provide WeChatnteropeleability: if two
 - payload type identification
 - packet sequence numbering
 - time stamping

VoIP applications run RTP, they may be able to work together

RTP runs on top of UDP

RTP libraries provide transport-layer interface that extends UDP:

- port numbers, IP addresses (already existing) assignment Project Exam Help payload type identification
- packet sequence numbering

time-stamping Add WeChat powcoder

Application
RTP
UDP
IP
Data Link
Physical

example: sending 64 kbps PCM µlaw encoded voice over RTP

PCM: Pulse-code modulation: a method used to digitally represent encoding in each sampled analog signals ment Project Exam Help packet

μ-law: Special quatization Sample rate 8000samples/second Quantization 8bit/sarAptled WeChat powcoder conference

application collects encoded data in chunks, e.g., every 20 msec = 160 bytes in a chunk

audio chunk + RTP header form RTP packet, which is encapsulated in UDP segment

>RTP header indicates type of audio/video

powcoder can change

>RTP header also contains sequence numbers, timestamps

> RTP does not provide any mechanism to ensure timely data delivery or other QoS guarantees

Assignment Project Exam Help

- > RTP encapsulation only seen at end systems (*not* by intermediate routers)
 - routers provide best-affortse vinating of special effort to ensure that RTP packets arrive at destination in timely manner

payload type

sequence number type

time stamp

Synchronization Source ID (SSRC)

Miscellaneou s fields

payload type (7 bits): indicates type of encoding currently being used. If sender changes encoding during call, assignment Project Exam Help sender informs receiver via payload type field

https://powcoder.com
 Payload type 0: PCM u-law, 64 kbps
 Payload type 3: GSM, 13 kbps

Payload type 7: LPC, 2.4 kbps Payload type 26: Motion JPEG

Payload type 31: H.261

Payload type 33: MPEG2 video

- sequence # (16 bits): increment by one for each RTP packet sent
 - detect packet loss, restore packet sequence

RTP header

payload type

sequence number type

time stamp

Synchronization Source ID (SSRC)

Miscellaneou s fields

- > timestamp field (32 bits long): sampling instant of first byte in this RTP data packsignment Project Exam Help
 - for audio, timestamp clock increments by one for each sampling period (e.g., each 125 use disting 8: Khrosampling colors)
 - if application generates chunks of 160 encoded samples (20ms), 20ms/125us=160 Add WeChat powcoder
 - timestamp increases by 160 for each RTP packet when source is active.
 Timestamp clock continues to increase at constant rate when source is inactive.

RTP header

payload type

sequence number type

time stamp

Synchronization
Source ID (SSRC)

Miscellaneou s fields

- > sequence # + timestamp: knows new spurts
- > SSRC field (32 bits fong): Identifies source of RTP stream.

 Each stream in RTP session has distinct SSRC

Add WeChat powcoder

SIP: Session Initiation Protocol [RFC 3261]

long-term vision:

- > all telephone calls, video conference calls take place over Internet
- people identified by names or e-mail addresses, rather than by phone number Assignment Project Exam Help
- roams, no matter what process desires), no matter where callee

Add WeChat powcoder

SIP provides mechanisms for call setup:

- determine current IP address of callee:
- maps mnemonic identifier Assignment Project Exam Helphress
- -for caller to let callee know she wants to://powcoalemanagement:
 establish a called WeChat powcoaler

 add new media streams
- so caller, callee can agree on media type, encoding
- invite others

call

- to end call

- transfer, hold calls

change encoding during

Example: setting up call to known IP address

Setting up a call (cont'd)

- codec negotiation:
 - suppose Bob doesn't have
 - PCM µlaw encoder replies "busy," "gone,"

 Assignment Project Exam Help payment required," - Bob will instead reply with
 - 606 Not Acceptatives Repoly, coder. com "forbidden"
 - listing his encoders. Alice can then send new

 - INVITE message,
 - advertising different
 - encoder

- rejecting a call
 - Bob can reject with
- media can be sent
- VeChat powceder or some
 - other protocol

Name translation, user location

time of day (work, home)

- caller wants to call callee, result can be based on:
 - but only has callee's
 - name or e-mail address.
- Assignment Project Leval of Playant boss to need to get IP address of call you at home)
- - callee's currenthtost://powcoder.com status of callee (calls sent
 - user moves around WeChat to wicemail when callee is
 - DHCP protocol (dynamically assign IP address)
 - user has different IP devices (PC, smartphone, car device)

- already talking to someone)

- one function of SIP server: registrar
- when Bob starts SIP client, client sends SIP REGISTER message to Bob's registrar server Assignment Project Exam Help

register message: https://powcoder.com

```
REGISTER sip:domain.com WeChat powcoder
```

Via: SIP/2.0/UDP 193.64.210.89

From: sip:bob@domain.com

To: sip:bob@domain.com

Expires: 3600

- another function of SIP server: proxy
- Alice sends invite message to her proxy server

 - proxy responsible for routing SIP messages to callee, possibly through multiple proxies

 https://powcoder.com
- https://powcoder.com

 Bob sends response back through same set of SIP proxies
- > proxy returns Bob's Alpde Spensbate Bob's
 - contains Bob's IP address
- > SIP proxy analogous to local DNS server

SIP example: alice@umass.edu calls bob@poly.edu

