GATE ECOLOGY AND EVOLUTION QUICK ACHIEVER COURSE

Dr. SAGAR ADHURYA

Postdoctoral Researcher, Kyunghee
University, South Korea
GATE (Ecology and Evolution) 2016: AIR 08

Email: sagaradhurya@gmail.com WhatsApp: +91 9474739327

ECOPHYSIOLOGY

Ecophysiology

- Ecophysiology (from Gr. oikos "house(hold)", physis "nature, origin", and -logia "study of"), Also known as **environmental physiology** or **physiological ecology**, it is the branch of biology that examines how an organism's physiology responds to environmental conditions.
- It is broadly divided into:
 - Plant Ecophysiology
 - Animal Ecophysiology
- Adaptation: A genetically determined trait that enhances an organism's ability to survive and reproduce in a specific environment. It involves the acquisition of heritable traits that improve performance or survival over successive generations.
- **Acclimatisation:** Physiological, anatomical, or morphological adjustments within an individual organism that enhance performance or survival in response to environmental change. It occurs over a short period (days to weeks) within the organism's lifetime.

PLANT ECOPHYSIOLOGY

Photosynthetic Responses to Light

- Compensation Point: The light intensity at which the rate of photosynthesis equals the rate of respiration.
- Light Saturation Point: The PAR
 (Photosynthetically Active Radiation) value beyond
 which no further increase in photosynthesis
 occurs.
- Shade-adapted Plants (Sciophytes): Reach saturation at low PAR.
- Sun-adapted Plants (Heliophytes): Reach saturation at high PAR.
- Photoinhibition: In some shade-adapted plants, photosynthetic rate decreases when light intensity exceeds the optimum level.
- **Euphotic Zone:** The photosynthetically active layer of a water body.

Photosynthetic Responses to Light

Shade-grown plants typically have a lower light compensation point and a lower light saturation point than do sun-grown plants.

Red oak (Quercus rubra) leaves vary in size and shape from the top to the bottom of the tree.

Top leaf: Narrow, more lobed and thick

Bottom leaf: Less lobed, broad

Photoperiodism

- Flowering plants use photoreceptor proteins such as phytochrome and cryptochrome to detect seasonal changes in night length (photoperiod), which serve as cues for flowering.
- Obligate Photoperiodic Plants: Require a specific long or short night before flowering.
- Facultative Photoperiodic Plants: Flower more readily under one photoperiodic condition but can flower otherwise as well.
- Long-day Plants: Flower when night length falls below the critical photoperiod. Usually, flower in late spring or early summer, as days become longer.
- Short-day Plants: Flower when night length exceeds the critical photoperiod. Do not flower under short nights or if night is interrupted by artificial light. Moonlight or lightning is insufficient to affect flowering.

Light

- 1. Production of chlorophyll
- 2. Transpiration
- 3. Stomatal regulation
- 4. Plant distribution
- 5. Photoperiodism
- 6. Photosynthetic efficiency

Temperature Hazards and Plant Responses

High Temperature:

- Causes protein denaturation, heat shock, and ROS production.
- Induces synthesis of heat shock proteins (HSPs).
- Leads to membrane fluidity increase and metabolic imbalance.

Low Temperature:

- Results in enzyme inactivation, slow catalysis, and membrane rigidity.
- Triggers production of antifreeze proteins and dehydrins.
- Causes freezing injury and reduced membrane transport.

Temperature Hazards and Plant Responses

Common Effects and Adaptations:

- Reactive Oxygen Species (ROS) build up under temperature stress; neutralised by antioxidant systems.
- Membrane Composition Adjustment:
 - More unsaturated fatty acids in cold conditions.
 - More saturated fatty acids in hot conditions.
- Overheating Avoidance:
 - Reduced sunlight absorption using reflective hairs, scales, and waxes.
 - Wind and transpiration enhance cooling.
 - Some species (e.g. *Macroptilium purpureum*) display **paraheliotropism** to avoid direct sun.
- Cold avoidance
 - Microclimate modification, e.g. Raoulia ("vegetable sheep") forms compact cushions to insulate tissues and resist cooling winds.

Raoulia eximia

Water Stress in Plants

Water Deficit (Drought):

- Insufficient water causes tissue dehydration and may lead to plant death.
- Root structure and root cell water potential determine water uptake efficiency (Soil-Plant-Atmosphere Continuum).
- Under low soil moisture, plants adjust their water potential to sustain water flow from roots to leaves.
- **Stomata close** to minimise transpiration, often regulated by **abscisic acid** (ABA) from roots.
- Prolonged drought causes loss of turgor pressure and wilting.
- Adaptive responses include:
 - Osmotic adjustment (lowering cell water potential)
 - Increased root growth
 - Xerophytic adaptations to conserve or protect water.

Water Stress in Plants

Waterlogging and Anoxia

- Excess soil water leads to anoxic (low-oxygen) conditions that can kill roots within days.
- Some species transport oxygen from aerial tissues to roots through internal air spaces (aerenchyma).
- Specialised surface roots develop near the soil—air interface to aid gas exchange.
- Surviving roots may shift to less oxygen-dependent respiration.
- Plants frequently submerged (e.g. mangroves) form aerial roots (pneumatophores) to maintain root oxygen levels.

- Types of Xerophytic Habitats:
 - Physical Dryness: Soil contains very little water due to low rainfall or poor water-holding capacity.
 - Physiological Dryness:
 Water is present but unavailable to plants, e.g. in saline or acidic soils.

Classification of Xerophytes (Based on Adaptive Features)

- Ephemeral Annuals (Drought Escapers):
 - Complete life cycle before dry season; not true xerophytes.
 - Example: Argemone mexicana
- Succulents (Drought Endurers):
 - Store water in stems, roots, or leaves; remain internally hydrated.
 - Examples: Aloe, Opuntia
- Non-succulent Xerophytes (Drought Resisters):
 - Withstand external and internal dryness; true xerophytes.
 - Examples: Calotropis procera, Casuarina equisetifolia

Argemone mexicana

Aloe

Casuarina equisetifolia

CO₂ Uptake and Water Loss

- Plants absorb CO₂ through stomatal pores on their leaves.
- As CO₂ enters, water vapour escapes, creating a trade-off between CO₂ gain and water loss vital for plant productivity.
- The trade-off intensifies because **Rubisco**, the CO₂-fixing enzyme, works efficiently only at **high internal CO₂ concentrations**.
- Some plants overcome this by concentrating CO₂ via C₄ carbon fixation or Crassulacean Acid Metabolism (CAM).
- Most plants use C₃ carbon fixation, keeping stomata open during photosynthesis for CO₂ uptake.

C3 Pathway (Calvin Cycle)

- CO₂ is fixed when **RuBP** (ribulose-1,5-bisphosphate) combines with CO₂ to form two molecules of 3-PGA (3-phosphoglycerate).
- This **carboxylation reaction** is catalysed by **Rubisco** (ribulose bisphosphate carboxylase-oxygenase).
- 3-PGA is converted into G3P (glyceraldehyde-3-phosphate) using ATP and NADPH from the light reactions.
- **G3P** is used to:
 - Produce glucose (C₆H₁₂O₆), starch, and other carbohydrates.
 - Regenerate **RuBP** for the next cycle (requires additional ATP).
- **Light dependency:** ATP and NADPH availability links **dark reactions** to **light intensity**.

Drawback:

- Rubisco also acts as an oxygenase, catalysing O₂ with RuBP.
- This oxygenation reaction releases CO₂ and reduces C3 photosynthesis efficiency.

C4 Pathway

- CO₂ fixation: CO₂ combines with PEP (phosphoenolpyruvate) in mesophyll cells, catalysed by PEP carboxylase, forming OAA (oxaloacetate).
- Formation of C4 acids: OAA is converted into malate and aspartate (four-carbon compounds).
- Transport to bundle sheath: C4 acids move to bundle sheath cells.
- CO₂ release and C3 cycle: Enzymes release CO₂ from the C4 acids, which enters the C3 pathway using RuBP and Rubisco to produce sugars.
- Distribution:
 - Mostly grasses in tropical/subtropical regions.
 - Some **shrubs** in arid or saline environments.
 - **Absent** in algae, bryophytes, ferns, gymnosperms, and primitive angiosperms.

C4 Pathway

Advantages of C4 Photosynthesis

- Avoids photorespiration: PEP does not react with O₂, unlike RuBP, eliminating CO₂ loss from Rubisco oxygenation.
- CO₂ concentration: Malate and aspartate release CO₂ in bundle sheath cells, raising CO₂ levels and increasing Rubisco efficiency.
- Higher photosynthetic rate: C4 plants generally achieve higher maximum photosynthesis than C3 plants.
- **Greater water-use efficiency:** More carbon is fixed per unit of water lost, an advantage in **hot, dry climates**.

Drawback

Energy cost: Requires additional ATP to regenerate PEP and operate PEP carboxylase.

CAM Pathway (Crassulacean Acid Metabolism)

- Found in **desert succulents** (e.g., *Cactaceae*, *Euphorbiaceae*, *Crassulaceae*).
- Similar to C4 pathway, but both steps occur in the mesophyll cells at different times.

Night:

- Stomata open to take up CO₂.
- CO₂ is fixed with **PEP** into **malic acid**, stored in mesophyll cells.

• Day:

- Stomata close to conserve water.
- Malic acid is converted back to CO₂ for fixation via the C3 cycle.

Advantages:

- Greatly **reduces water loss** by nocturnal stomatal opening.
- Increases water-use efficiency in hot, arid environments.

Limitations:

• CO₂ fixation is **slower and less efficient** than in C3 or C4 plants.

Night

Day

CAM

cycle

Simple sugars

CO₂ incorporated into four-carbon organic acids (carbon fixation)

Organic acids release CO₂ to Calvin cycle

Comparison between C3, C4 and CAM

Feature	C3 Pathway	C4 Pathway	CAM Pathway
Main CO₂ Fixation Enzyme	Rubisco	PEP carboxylase (initial), then Rubisco	PEP carboxylase (night), then Rubisco (day)
First Stable Product	3-Phosphoglycerate (3C)	Oxaloacetate (4C) → Malate/Aspartate	Oxaloacetate (4C) → Malic acid
Site of CO ₂ Fixation	Mesophyll cells	Mesophyll (initial) & Bundle sheath (final)	Mesophyll cells (both steps, but at different times)
Separation Type	No separation	Spatial separation	Temporal separation
Photorespiration	High	Negligible (avoids it)	Negligible
Water-use Efficiency	Low	High	Very high
Optimum Conditions	Cool, moist, moderate light	High light, warm temperature	Hot, arid environments
Examples	Wheat, Rice, Barley, Oat	Maize, Sugarcane, Sorghum	Cactus, Pineapple, Agave
Advantages	Simple, less energy demand	Avoids photorespiration; high photosynthetic rate	Minimises water loss; survives extreme drought
Limitations	Loses CO ₂ via photorespiration	Requires extra ATP for PEP regeneration	Slow CO₂ fixation; low productivity

Effects of Wind on Plants

- Mass & Energy Exchange: Renews air around leaves through convection, influencing evaporation, CO₂ uptake, and heat transfer.
- Signal Response (Thigmomorphogenesis): Acts as a mechanical signal triggering growth modification, structural strengthening, and wind hardening.
- Physical Damage: Causes leaf abrasion, branch or stem breakage, tree uprooting (windthrow), and crop lodging.

Effects of Wind on Plants

Exchange of Mass and Energy

- Boundary Layer Effect: In still air, a moist boundary layer forms around leaves, insulating them from heat and water loss.
- Wind Influence: Increased wind disrupts this layer, linking the leaf microclimate with the surrounding air enhancing cooling but increasing water loss.
- Leaf Adaptations: Fine hairs (trichomes) and specific leaf or canopy structures help maintain the boundary layer and regulate heat and moisture exchange.

Acclimation (Thigmomorphogenesis)

- Wind Signal Response: Higher wind speeds inhibit shoot elongation and promote radial growth and root development.
- Outcome: Produces shorter, sturdier plants with stronger stems and improved anchorage a process known as wind hardening.

ANIMAL ECOPHYSIOLOGY

Homeostasis

• Homeostasis is the property of a living organism to regulate its internal environment to maintain a stable, constant condition under varying environmental conditions.

Thermoregulation in Animals

- **Poikilotherms:** Cannot maintain a constant body temperature; body temperature varies with the environment. *Examples:* Insects, fishes, reptiles.
- Homeotherms: Maintain a constant body temperature through metabolic regulation, irrespective of environmental fluctuations. *Examples:* Birds, mammals.
 - **Cold Climate:** Increase metabolic rate or improve insulation to retain heat.
 - Hot Climate: Reduce heat production and enhance heat loss through sweating or panting.

TABLE 6-1 Terms associated with body temperature homeostasis.				
Homeothermy	Maintenance of a constant body temperature, usually warmer than that of the environment (hence "warm-blooded")*			
Endothermy	Use of elevated metabolism in response to body cooling to maintain homeothermy			
Ectothermy	Reliance on external sources of heat (solar radiation, conduction of heat from warm surfaces) to maintain an elevated body temperature			
Poikilothermy	Failure to regulate body tempera- ture; hence, conformance to environmental temperature ("cold-blooded") [†]			
Heterothermy	Facultative reduction in body temperature by an endothermic animal			
Facultative	Increase in body temperature of			

an ectothermic animal by means

of some physiological process

endothermy

Thermoregulation in Animals

Poikilotherms

- Energy Use: Low metabolic rate; conserve energy.
- Survival Strategy: Can shut down activity during resource scarcity (food, water, oxygen).
- Cold Tolerance:
 - Freeze-tolerant: Survive extracellular ice formation.
 - Freeze-susceptible: Cannot survive freezing.
- Advantage: Can survive long periods with minimal energy expenditure.

Homeotherms

- Energy Use: High metabolic rate; metabolically "extravagant."
- Activity: Maintain activity even when resources are limited.
- **Temperature Regulation:** Adjust metabolism, insulation, or cooling mechanisms to maintain constant body temperature.
- Trade-off: Excellent performance in resource-rich environments, but high energy demands can be a disadvantage under scarcity.

Influence of Temperature on Animal Size

Small Animals

- Surface Area: Large relative to volume.
- Heat Generation: Less metabolically active tissue per unit surface area.
- Effect of Cold: Lose heat rapidly and are more vulnerable to low temperatures.

Large Animals

- Surface Area: Small relative to volume.
- Heat Retention: Cool down slowly in cold environments.

• Advantage: Better resistance to heat loss in cold conditions.

Cube 1: 2 × 2 × 2 cm

Surface Area (SA): 24 cm²

Volume (V): 8 cm³

SA:V ratio = $SA \div V = 24 \div 8 = 3:1$

Cube 2: $5 \times 5 \times 5$ cm

Surface Area (SA): 150 cm²

Volume (V): 125 cm³

SA:V ratio = $SA \div V = 150 \div 125 = 1.2:1$

Temperature—Body Size Relationships

Bergmann's Rule

- **Definition:** In endothermic vertebrates, body size correlates with environmental temperature.
- **Principle:** Individuals in **cooler climates** tend to be **larger** than those in warmer climates.
- Reason: Larger bodies have lower surface area-to-volume ratio, reducing heat loss.
- Memory Trick: "Bergmann = Bigger in the cold"

Allen's Rule

- Definition: Extremity size in endothermic animals correlates with climate.
- Principle: Animals in colder climates have shorter extremities (ears, tails) than those in warmer climates.
- Reason: Shorter extremities reduce heat loss; longer extremities in warmth help heat dissipation.
- Memory Trick: "Allen = Appendages adjust"

Polar bear showing a big body size

Bigger appendages of Desert fox

Hibernation (Winter Sleep)

- Observed in certain mammals. The warm-blooded animals that hibernate in winter are called **heterotherms**.
- The shelter used for hibernation is known as the hibernaculum.
- As winter approaches, these homeothermic animals temporarily behave like poikilotherms, thereby reducing metabolic activity and conserving energy.
- However, they differ from true poikilotherms when the temperature of their hibernaculum nears freezing, they increase heat production to prevent body freezing.
 - Phibernate to save energy, but never freeze!

Shelford's law of tolerance

- A species can survive only within a certain range (limits) of environmental conditions.
- Upper and lower tolerance limits define the boundaries of survival for that species.
- Species vary in their degree of tolerance to different factors:
 - **Steno-** → Narrow range of tolerance
 - **Eury-** → Wide range of tolerance

"Steno = Strict, Eury = Easy"

Factor	Narrow tolerance	Wide tolerance
Temperature	Stenothermal	Eurythermal
Water	Stenohydric	Euryhydric
Salinity	Stenohaline	Euryhaline
Food	Stenophagic	Euryphagic
Habitat selection	Stenoecious	Euryecious

Shelford's law of tolerance

- A species can survive only within a certain range (limits) of environmental conditions.
- Upper and lower tolerance limits define the boundaries of survival for that species.
- Species vary in their **degree of tolerance** to different factors:
 - Steno- → Narrow range of tolerance
 - **Eury-** → Wide range of tolerance
 - 🦞 Trick to Remember:
 - "Steno = Strict, Eury = Easy"

Ecological Laws and Rules of Adaptation

Leibig's Law of Minimum

- Proposed by Justus von Liebig.
- Growth or productivity is controlled by the most limiting factor among all essential environmental requirements.
- Even if other factors are optimal, deficiency in one limits growth.
- Example: A plant short of nitrogen cannot grow further even with abundant sunlight and water.

Trick to Remember: "Growth stops where the least is dropped."

The minimum available resource limits the maximum growth.

Gloger's Rule

- Proposed by C. W. L. Gloger (1833).
- Among endothermic animals, darker pigmentation occurs in warm and humid regions, whereas lighter colouration dominates in cold or dry areas.
- Example: Tropical species of birds and mammals show darker plumage or skin tones than those in temperate zones.

Trick to Remember:

"Gloger = Glow near the equator."

More humidity and heat → more melanin → darker colouration.