Bioinformatics

Ahmet Sacan

Phylogenetic analysis

Phylogeny

• Definition:

- the line of descent or evolutionary development of any plant or animal species
- the origin and evolution of a division, group or race of animals or plants

• Goals:

- Understand the evolutionary history
- Assist in epidemiology
 - · infectious diseases
 - genetic defects
- Aid in functional prediction of genes
- Understand microbial evolution
- Understand adaptive immunity

Ernst Haeckel, 1866

Closest living relatives of human?

pre-molecular view

mitochondrial/nuclear DNA, DNA-DNA hybridization

Forensic Analysis of HIV Sequence Data

Page & Holmes. Molecular Evolution: a phylogenetic approach.

Genetic anthropology

- Mithochondrial DNA (mtDNA)
 - Transmitted through maternal lineage
 - 16.5 Kb circular DNA
 - -13 proteins, 22 tRNA, 2 rRNA
 - mutation rate 10x faster than nuclear DNA: useful for comparing closely related individuals
- Y-chromosome
 - Paternal lineage

Projects

- Genographic Project
 - Largest DNA database for genetic anthropology
 - 5000 key populations, 100,000 people
- HapMap
 - haplotype map of the human genome
 - common patterns of genetic variation
- · Journey of Mankind
 - Global journey of modern man over 160,000 years.

Rooted/Unrooted Trees

- Rooted: indicates direction of evolution
- · Unrooted: only reflects the distance

Types of rooted trees

- Cladogram
 - branch lengths irrelevant
- Additive tree
 - branch lengths measure evolutionary divergence
 - but no information on time
- Ultrametric tree
 - molecular clock: constant mutation rate in all branches
- Example of rooting an unrooted tree using an outgroup.

Example: UPGMA clustering

 UPGMA: Unweighted Pair Group Method with Arithmetic Mean

		Turtle	Man	Tuna	Chicken	Moth	Monkey	Dog
		Α	В	С	D	Е	F	G
Turtle	Α	0	19	27	8	33	18	13
Man	В	19	0	31	18	36	1	13
Tuna	С	27	31	0	26	41	32	29
Chicken	D	8	18	26	0	31	17	14
Moth	E	33	36	41	31	0	35	28
Monkey	F	18	1	32	17	35	0	12
Dog	G	13	13	29	14	28	12	0

Fitch & Margoliash. Construction of Phylogenetic Trees. Science, 1967.

		Turtle	Man	Tuna	Chicken	Moth	Monkey	Dog
		Α	В	С	D	Е	F	G
Turtle	Α	0	19	27	8	33	18	13
Man	В	19	0	31	18	36	1	13
Tuna	С	27	31	0	26	41	32	29
Chicken	D	8	18	26	0	31	17	14
Moth	E	33	36	41	31	0	35	28
Monkey	F	18	1	32	17	35	0	12
Dog	G	13	13	29	14	28	12	0

		Turtle	Man	Tuna	Chicken	Moth	Monkey	Dog
		Α	В	С	D	Е	F	G
Turtle	Α	0	19	27	8	33	18	13
Man	В	19	0	31	18	36	1	13
Tuna	С	27	31	0	26	41	32	29
Chicken	D	8	18	26	0	31	17	14
Moth	E	33	36	41	31	0	35	28
Monkey	F	18	1	32	17	35	0	12
Dog	G	13	13	29	14	28	12	0

		Turtle	Man	Tuna	Chicken	Moth	Monkey	Dog
		Α	В	С	D	Е	F	G
Turtle	А	0	19	27	8	33	18	13
Man	В	19	0	31	18	36	1	13
Tuna	С	27	31	0	26	41	32	29
Chicken	D	8	18	26	0	31	17	14
Moth	Е	33	36	41	31	0	35	28
Monkey	F	18	1	32	17	35	0	12
Dog	G	13	13	29	14	28	12	0

		Turtle	Man	Tuna	Chicken	Moth	Monkey	Dog
		Α	В	С	D	Е	F	G
Turtle	А	0	19	27	8	33	18	13
Man	В	19	0	31	18	36	1	13
Tuna	С	27	31	0	26	41	32	29
Chicken	D	8	18	26	0	31	17	14
Moth	Е	33	36	41	31	0	35	28
Monkey	F	18	1	32	17	35	0	12
Dog	G	13	13	29	14	28	12	0

		Turtle	Man	Tuna	Chicken	Moth	Monkey	Dog
		Α	В	С	D	Е	F	G
Turtle	А	0	19	27	8	33	18	13
Man	В	19	0	31	18	36	1	13
Tuna	С	27	31	0	26	41	32	29
Chicken	D	8	18	26	0	31	17	14
Moth	Е	33	36	41	31	0	35	28
Monkey	F	18	1	32	17	35	0	12
Dog	G	13	13	29	14	28	12	0

		Turtle	Man	Tuna	Chicken	Moth	Monkey	Dog
		Α	В	С	D	Е	F	G
Turtle	А	0	19	27	8	33	18	13
Man	В	19	0	31	18	36	1	13
Tuna	С	27	31	0	26	41	32	29
Chicken	D	8	18	26	0	31	17	14
Moth	Е	33	36	41	31	0	35	28
Monkey	F	18	1	32	17	35	0	12
Dog	G	13	13	29	14	28	12	0

Dividing trees into splits/partitions

 Cutting each branch defines a split

Newick/NewHampshire format:

```
{(
((raccoon,bear),dog),
(sea lion,seal)
], weasel},
cat),
monkey}
```


raccoon	bear	dog	sea lion	seal	weasel	cat	monkey
*	*						
*	*	*					
			*	*			
*	*	*	*	*			
*	*	*	*	*	*		

• (B:6.0,(A:5.0,C:3.0,E:4.0):5.0,D:11.0);

Bootstrap and condensed trees

- Bootstrap analysis estimates the support in the data for a given split
- A condensed tree can be obtained by removing all branches that are supported by less than e.g., 60% of bootstrap tests.

Species tree vs. Gene Tree

- Species tree of 7 eukaryotes
 - Xenopus: a frog
 - Catostomus: a fish
 - Drosophila: a fruit fly
 - Artemia: the brine shrimp

- Gene tree of Na+K+ ion pump proteins
- Small squares: gene duplications
- Homology: Orthologs, paralogs, ohnologs, xenologs
- · NCBI: Homologene

Choice of data for evolutionary reconstruction

- · Requirements for an ideal genomic region:
 - occurring in every species only once
 - doesn't include any horizontal gene transfer
 - rate of change fast enough to distinguish closely related species; but not too fast so remotely related species can still be accurately aligned. --> a single sequence with highly conserved and variable domains would do.
- Small ribosomal subunit rRNAs has been found to be well suited for evolutionary reconstruction of species

Evolutionary models estimate evolutionary distance

p-distance

- fraction of nonidentical alignment positions
- underestimates the number of mutations that actually occurred.

• Causes of error:

- Positions mutate several times.
- Rate of substitution is not the same for all bases or at all locations

Distance correction

- Estimate the actual number of mutations that have occurred.

Transitions are more common than transversions

- Blue: transition mutations
- Red: transversion mutations

Coding sequence mutations have higher selective pressure

- Different codon positions have different mutation rates
- Synonymous/nonsy nonymous ratio can help identify the type of selection (positive/negative)

Poisson Distribution

- A discrete probability distribution that describes the probability of a given number of events occurring (in a fixed time/space).
- Examples:
 - Number of emails you receive per day.
 - Number of patients arriving in emergency room between midnight and 6am.
 - Number of goals in a soccer game.
- Assumptions:
 - Events are independent. (Occurrence of one event does not affect the probability of another)
 - $-\lambda$: rate at which events occur is constant
- $P(k \text{ events in interval}) = \frac{\lambda^k e^{-\lambda}}{k!}$
- $P(k = 0 \text{ events in interval}) = e^{-\lambda}$

Poisson model corrects for multiple mutations at the same site

- Assume probability of mutation at a site follows a Poisson distribution, with uniform <u>mutation rate</u> r per site per time point.
- After time t, average number of mutations at each site is rt. Number of mutations is then: Poisson($\lambda = rt$)
- Probability of n mutations having occurred at time t:

$$-e^{-rt}(rt)^n/n!$$

• Probability of no mutations at a site:

$$-e^{-rt}$$

- No mutations in either sequence:
 - $-e^{-2rt}$
 - The sequences are an evolutionary distance 2rt = d from each other.

$$-e^{-d}=1-p$$

$$- d = -\ln(1 - p)$$

Other corrections

- Gamma correction takes into account differing mutation rates at different positions.
- Jukes-Cantor model handles mutations giving rise to identical sites; and is a widely accepted correction for nucleotide sequences.
- Other corrections involve:
 - distinguishing rates of transitions/transversions
 - unequal base compositions