IFT3395 Devoir1 Partie Pratique

Paul Chaffanet et Émile Labbé 12 Octobre 2017

Information générale

Nom	Paul Chaffanet	Émile Labbé
Matricule	1009543	20019813
Courriel	paul.chaffanet@umontreal.ca	emile.labbe@umontreal.ca

3. Estimation de densité

3.1 à 3.3

Voir le fichier TP1_3.3.py La dimension choisie a été la première dimension. La valeur de l'hyper-paramètre trop petit est celui égal à 0.02, la valeur trop grande est de 0.5 tandis que la valeur jugée appropriée est de 0.1

3.4

Voir le fichier TP1_3.4.py Les dimensions choisies ont été la première et la troisième dimension. La valeur de l'hyper-paramètre trop petit est celui égal à 0.04, la valeur trop grande est de 1 tandis que la valeur jugée appropriée est de 0.3.

4. Classificateur de Bayes

4.1 à 4.3

Voir le fichier TP_4.py Tout les graphes et les calculs sont dans l'ordre demandé.Lorsque la classification se fait en 2D, les dimensions utilisées sont la première et la troisième.

4.4

Le meilleur taux d'erreur obtenu est de 2.2% Ce résultat a été obtenu par le classificateur de Bayes basé sur les densités gaussiennes diagonales à 4 dimensions et également par le classificateur de Bayes basé sur les densités de

Parzen à 4 dimensions avec une valeur de l'hyper-paramètre sigma de 0.182. Les deux algorithme sont donc parvenu au même résultat. Par contre en deux dimensions, l'algorithme à base de densité de Parzan a été supérieur puisqu'il a permis d'avoir un taux d'erreur de 6.6% (avec sigma =0.2) comparativement un taux de 13.3% pour l'autre méthode implémentée. De façon générale, nous croyons que l'algorithme à base de densité de Parzan est un meilleur choix.