ACH2011 – Cálculo I (2013.1)

Lista de Exercícios 4

Observação: Parte dos exercícios foram adaptados do livro de B. P. Demidovitch (Б. П. Демидович), Problemas e Exercícios de Análise Matemática, 6.ª edição, Mir (1987) – impresso na U.R.S.S..

Determinar a primeira e segunda derivada das seguintes funções.

$$001) \ f(x) = \left(2 + 4x - x^3\right)^{29}$$

$$002) \ f(x) = \left(\frac{ax^2 + b}{c}\right)^5$$

$$003) \ f(x) = (1+3x)^5$$

$$004) \ f(x) = \left(1 + 3x^4\right)^{56}$$

005)
$$f(x) = \frac{1}{(x-3)^7} - \frac{1}{(x+2)^3}$$
 006) $f(x) = \sqrt{2-x^2}$

$$006) \ f(x) = \sqrt{2 - x^2}$$

$$007) \ f(x) = \sqrt[3]{b + cx^3}$$

$$008) \ f(x) = \left(a^{\frac{4}{3}} - x^{\frac{4}{3}}\right)^{\frac{3}{4}}$$

$$009) \ f(x) = (2 - 3\cos x)^5$$

010)
$$f(x) = -\frac{1}{3}\tan^3 x + \frac{1}{5}\tan^5 x$$
 011) $f(x) = \sqrt{\tan x}$

$$011) \ f(x) = \sqrt{\tan x}$$

$$012) \ f(x) = 2 + 4\cos^3 x$$

013)
$$f(x) = \sec^2 x + \tan^3 x$$

$$014) \ f(x) = -\frac{1}{(1+\sin x)^2}$$

$$015) \ f(x) = \frac{1}{\sin^2 x} + \frac{1}{\cos x}$$

016)
$$f(x) = \sqrt{3 + \arctan x}$$

$$017) f(x) = \left(\arcsin x\right)^3$$

$$018) \ f(x) = \arccos\sqrt{x+1}$$

019)
$$f(x) = \frac{2}{\arctan x}$$

020)
$$f(x) = \sqrt{xe^{x^2} + x}$$

021)
$$f(x) = \arcsin(\arctan x)$$

022)
$$f(x) = \ln^4 x$$

023)
$$f(x) = \sqrt{e^x + \ln x^2}$$

$$024) \ f(x) = \tan \sqrt{x}$$

025)
$$f(x) = \sin x^3 + \tan \frac{1}{x}$$

026)
$$f(x) = \frac{1 + \cos x}{2 + \tan x}$$

$$027) \ f(x) = \frac{\arcsin x}{\ln x}$$

028)
$$f(x) = \arctan\left(\frac{1}{\ln x}\right)$$

$$029) \ f(x) = \sin\left(\arccos\frac{x}{4}\right)$$

030)
$$f(x) = \arctan\left(\frac{1-x}{1+x}\right)$$

031)
$$f(x) = e^{-x^3}$$

032)
$$f(x) = e^{\arctan x}$$

$$033) f(x) = \ln(\tan e^x)$$

$$034) f(x) = \arccos e^x$$

035)
$$f(x) = \cos(\sin x) + x^{\sin 3}$$

$$036) \ f(x) = \ln \sin x$$

037)
$$f(x) = \ln(1+x^2)$$

038)
$$f(x) = \ln(\ln x)$$

039)
$$f(x) = \ln(\sin x + \cos x)$$

040)
$$f(x) = \arctan(\cos x)$$

041)
$$f(x) = \sqrt{\ln \arcsin x}$$

042)
$$f(x) = \ln(\sqrt{x} + 1)$$

043)
$$f(x) = \sin^5(5x)\cos\frac{x}{3}$$

044)
$$f(x) = \frac{x}{\sqrt{x^2 + 4}}$$

045)
$$f(x) = (\ln x)^{\pi}$$

$$046) \ f(x) = \tan\sqrt{\frac{x}{x-2}}$$

$$047) f(x) = e^{\sin^2 x}$$

048)
$$f(x) = \sin(\cos\ln\sqrt{x})$$

049)
$$f(x) = \ln \frac{1 - \sqrt{\cos x}}{1 + \sqrt{\cos x}}$$

050)
$$f(x) = \arctan \sqrt{\arctan x}$$

$$051) \ f(x) = \arctan\left(\frac{\tan x}{2}\right)$$

$$052) f(x) = \sinh\left(\cosh e^x\right)$$

053)
$$f(x) = \tanh\left[\sinh(\sin x)\right]$$

054)
$$f(x) = \cosh\left[\tanh(\ln x)\right]$$

$$055) \ f(x) = e^{\sinh x}$$

$$056) \ f(x) = \ln \tanh(\ln x)$$

057)
$$f(x) = \cosh(\arccos x)$$

058)
$$f(x) = \arcsin(\sinh e^x)$$

$$059) \ f(x) = \sin(\cosh\sqrt{x})$$

060)
$$f(x) = \tan(\tanh\sqrt{\ln x})$$

061~124) Calcular os limites dos exercícios 021 a 084 da lista 2 usando a regra de l' Hospital (quando possível).

Calcular os seguintes limites usando a regra de l'Hospital.

125)
$$\lim_{x \to 0^+} x^{2\sin x}$$

126)
$$\lim_{x \to 1^{-}} x^{\frac{\pi}{1-x}}$$

127)
$$\lim_{x\to 0^+} (\cot x)^{\frac{3}{\ln x}}$$

127)
$$\lim_{x \to 0^+} (\cot x)^{\frac{3}{\ln x}}$$
 128) $\lim_{x \to 0^+} (\cot x)^{\sin(3x)}$

129)
$$\lim_{x \to 0^+} \left(\frac{e}{x}\right)^{\tan x}$$
 130) $\lim_{x \to \infty} \frac{e^x}{x^{666}}$ 131) $\lim_{x \to \infty} \frac{\ln(x^{\pi})}{\sqrt[3]{x}}$ 132) $\lim_{x \to 0^+} \cot x \arcsin x$

130)
$$\lim_{x \to \infty} \frac{e^x}{x^{666}}$$

131)
$$\lim_{x \to \infty} \frac{\ln(x^{\pi})}{\sqrt[3]{x}}$$

132)
$$\lim_{x \to 0^+} \cot x \arcsin x$$

133)
$$\lim_{x \to 1^{+}} (1 - x^{2}) \tan \frac{\pi x}{2}$$
 134) $\lim_{x \to \infty} x^{666} e^{-x}$ 135) $\lim_{x \to 0} (\cos 3x)^{\frac{2}{x^{2}}}$ 136) $\lim_{x \to 0^{+}} \cot x (\cos x - 1)$

134)
$$\lim_{x \to 20} x^{666} e^{-x}$$

135)
$$\lim_{x \to 0} (\cos 3x)^{\frac{2}{x^2}}$$

136)
$$\lim_{x \to 0^+} \cot x (\cos x - 1)$$

137)
$$\lim_{x \to 1^+} \ln(x-1) \ln x$$

138)
$$\lim_{x \to \infty} x^{\frac{2}{3}}$$

139)
$$\lim_{x \to 0^{+}} x^{\frac{2}{1 + \ln x}}$$

$$137) \lim_{x \to 1^{+}} \ln(x-1) \ln x \qquad 138) \lim_{x \to \infty} x^{\frac{2}{x}} \qquad 139) \lim_{x \to 0^{+}} x^{\frac{2}{1+\ln x}} \qquad 140) \lim_{x \to 1^{-}} \left(\tan \frac{\pi x}{4}\right)^{\tan \frac{\pi x}{2}}$$

141)
$$\lim_{n \to 0} (1+x^2)^{\frac{\pi}{a}}$$

$$142) \lim_{x \to \infty} x \sin \frac{1}{x}$$

141)
$$\lim_{x \to 0} (1+x^2)^{\frac{\pi}{x}}$$
 142) $\lim_{x \to \infty} x \sin \frac{1}{x}$ 143) $\lim_{x \to \infty} \frac{x^2 + \sin x}{x^3 - \sin x}$ 144) $\lim_{x \to 0^+} x^x$

144)
$$\lim_{x\to 0^+} x^3$$

Calcular a derivada das seguintes funções

145)
$$f(x) = x^a$$

145)
$$f(x) = x^x$$
 146) $f(x) = x^{x^x}$

147)
$$f(x) = 2^x$$

148)
$$f(x) = x^{\frac{2}{x}}$$

149)
$$f(x) = x^{\sqrt[3]{2}}$$

149)
$$f(x) = x^{\sqrt[3]{x}}$$
 150) $f(x) = (1 + x^{-1})^x$

151)
$$f(x) = (\tan x)^{\cos x}$$
 152) $f(x) = x^{\arctan x}$

152)
$$f(x) = x^{\arctan x}$$

153)
$$f(x) = \pi^{\sinh x}$$

154)
$$f(x) = (\tanh x)^{\tanh x}$$

153)
$$f(x) = \pi^{\sinh x}$$
 154) $f(x) = (\tanh x)^{\tanh x}$ 155) $f(x) = (\sinh x)^{\arcsin x}$ 156) $f(x) = x^{\sin x}$

$$156) \ f(x) = x^{\sin x}$$

157)
$$f(x) = \pi^{\pi^x}$$

$$158) f(x) = (\sin x)^{(\cos x)^5}$$

157)
$$f(x) = \pi^{\pi^x}$$
 158) $f(x) = (\sin x)^{(\cos x)^x}$ 159) $f(x) = (\tanh x)^{\sqrt{\tanh x}}$ 160) $f(x) = x^{2^{x-\sqrt{x}}}$

160)
$$f(x) = x^{2^{x-\sqrt{x}}}$$

Encontrar $\frac{dy}{dx}$.

161)
$$x = y + y^4$$
 162) $x = y + \sin y$ 163) $x^2 + y^2 = 1$ 164) $e^y = x + 2y$ 165) $y^4 = \frac{x + y}{x - y}$

163)
$$x^2 + y^2 =$$

164)
$$e^y = x + 2y$$

165)
$$y^4 = \frac{x+}{x-}$$

166)
$$\tan x = xy$$
 167

166)
$$\tan x = xy$$
 167) $\arcsin(xy) = x$ 168) $\ln y = e^{xy}$ 169) $x^y = y^x + 1$ 170) $2^y = y + x$

169)
$$x^y = y^x + 1$$

170)
$$2^y = y + x$$

Expandir a função f em série de Taylor no ponto a até ordem n (assuma que c seja uma constante).

171)
$$f(x) = e^x$$
, $a = 1$, $n = 3$

172)
$$f(r) = \sin r \ a = 0 \ n = r$$

171)
$$f(x) = e^x$$
, $a = 1$, $n = 5$ 172) $f(x) = \sin x$, $a = 0$, $n = 4$ 173) $f(x) = \tan x$, $a = \frac{\pi}{6}$, $n = 6$

174)
$$f(x) = \cos x$$
, $a = 0$, $n = 3$

175)
$$f(x) = \sqrt{x}, a = 1, n = 6$$

174)
$$f(x) = \cos x$$
, $a = 0$, $n = 5$ 175) $f(x) = \sqrt{x}$, $a = 1$, $n = 6$ 176) $f(x) = \cosh x$, $a = 0$, $n = 5$

177)
$$f(x) = \frac{1}{n}, a = 1, n = 2$$

178)
$$f(x) = \ln x, \ a = 3, \ n = 3$$

177)
$$f(x) = \frac{1}{x}$$
, $a = 1$, $n = 2$ 178) $f(x) = \ln x$, $a = 3$, $n = 3$ 179) $f(x) = \cos x$, $a = 5$, $n = 4$

180)
$$f(x) = \frac{1}{x+3}$$
, $a = 2$, $n = 3$ 181) $f(x) = \frac{x}{x+3}$, $a = 1$, $n = 5$ 182) $f(x) = \frac{2}{\sin x}$, $a = 2$, $n = 3$

181)
$$f(x) = \frac{x}{x+3}$$
, $a = 1$, $n = 5$

182)
$$f(x) = \frac{2}{\sin x}$$
, $a = 2$, $n = 3$

183)
$$f(x) = \sin x$$
, $a = \pi$, $n = 4$ 184) $f(x) = e^{\sin x}$, $a = 0$, $n = 4$ 185) $f(x) = \sin(\ln x)$, $a = e$, $n = 3$

184)
$$f(x) = e^{\sin x}, a = 0, n = 0$$

185)
$$f(x) = \sin(\ln x), a = e, n = 3$$

186)
$$f(x) = x^{\frac{3}{2}}, a = 1, n = 4$$
 187) $f(x) = x, a = c, n = 3$ 188) $f(x) = \ln x, a = e, n = 4$

187)
$$f(x) = x, a = c, n = 3$$

188)
$$f(x) = \ln x, \ a = e, \ n = 4$$

189)
$$f(x) = \tan x, \ a = e, \ n = 5$$
 190) $f(x) = 2^x, \ a = 0, \ n = 3$ 191) $f(x) = \tanh x, \ a = 1, \ n = 4$

190)
$$f(x) = 2^x$$
, $a = 0$, $n = 3$

191)
$$f(x) = \tanh x$$
, $a = 1$, $n = 4$

192)
$$f(x) = \cosh x, \ a = 0, \ n = 5$$

193)
$$f(x) = c, a = c, n = 4$$

192)
$$f(x) = \cosh x$$
, $a = 0$, $n = 5$ 193) $f(x) = c$, $a = c$, $n = 4$ 194) $f(x) = \frac{1}{x^2 + 1}$, $a = c$, $n = 5$

195)
$$f(x) = \frac{1}{x^3}$$
, $a = e$, $n = 4$ 196) $f(x) = e^{\cos x}$, $a = 0$, $n = 5$ 197) $f(x) = \tanh x$, $a = 0$, $n = 5$

196)
$$f(x) = e^{\cos x}, a = 0, n = 3$$

197)
$$f(x) = \tanh x, a = 0, n = 5$$

198)
$$f(x) = e^{x^2}$$
, $a = 0$, $n = 4$

99)
$$f(x) = x^{\frac{1}{3}}, a = c, n = 5$$

198)
$$f(x) = e^{x^2}$$
, $a = 0$, $n = 4$ 199) $f(x) = x^{\frac{1}{3}}$, $a = c$, $n = 5$ 200) $f(x) = \frac{1}{\cosh x}$, $a = 0$, $n = 5$