Bridging multi-omic time series data and dynamic modelling

Krutik Patel

2nd Year PhD student
Newcastle University

Supervisors:
Daryl Shanley
Carole Proctor
David Young

Top down approach to build dynamic models from big data

Multi-omic time series data

Computational Method

Time series chondrogensis data

Time points (days): 0, 1, 3, 6, 10, 14.

STEM CELL TECHNOLOGY: EPIGENETICS,
GENOMICS, PROTEOMICS AND
METABONOMICS

mRNA + microRNA

siCon

Genome-Wide MicroRNA and Gene Analysis of Mesenchymal Stem Cell Chondrogenesis Identifies an Essential Role and Multiple Targets for miR-140-5p

MATT J. BARTER, MARIA TSELEPI, RODOLFO GÓMEZ, STEVEN WOODS, WANG HUI, GRAHAM R. SMITH, DARYL P. SHANLEY, IAN M. CLARK, DAVID A. YOUNG

Key Words. Mesenchymal stem cells • miRNA • Chondrogenesis • Gene expression • Differentiation • Epigenetics

siDICER1

Defects in 3 day old chondrocyte disks when DICER is removed. DICER is involved in the maturation of microRNAs. MicroRNAs are important chondrogenesis.

Layers of complexity in the data

Big data

Time Series

Multi-omic (mRNAs and microRNAs)

Big data bioinformatics and dynamic modelling

Generic bioinformatic approaches

- Differential expression
- Gene ontology analysis

Tell us what is occuring on a global scale.

Dynamic modelling is an approach to investigate interactions between biological processes.

Is there a method to link these disicples which lacks biased?

- Handle multi-omic time series data
- Reduce complexity
- Does not reduce the biology
- Empirical data

What can deal with large multiomic time series data?

BIG DATA 34,602 mRNAs 1,059 microRNAs

Network and data integration tool (Pathvisio) to create multi-omic time series networks

Multi-omic time series network for Endochondral Ossification

Log2FC +2

C

1D/0D | 3D/0D | 6D/0D | 10D/0D | 14D/0D

Multi-omic time series network for Endochondral Ossification

Log2FC

1D/0D | 3D/0D | 6D/0D | 10D/0D | 14D/0D

MIR140 RNA based Gene Regulatory Network

The model fits well

Modelling allows for the exploration of different topologies

Conclusions

The mutli-omic time series network generation pipeline reduced the complexity of big data to start building dynamic models.

Modelling allows for the exploration of different toplogies to investigate how a small signalling network functions.

- Genes fit better if they do not interact with MIR140.
- Genes fit worse if they do not interact with MIR140.
- MIR140 targets may require other MIR140 targets to be present to indirectly be beneficial to one anothers fits.

Thanks

Daryl Shanley

Carole Proctor

Ciaran Welsh

Alvaro Martinez-Guimera

Sharmilla

Chandrasegaran

David Hodgson

Neil Mcdonald

David Young

Matt Barter

Silvia Lecci

Yao Hao

Dan Hayman

Sarah Charlton

Marta Radwan

Andreas Panagiotopoulos

Adrian Falconer

David Wilkinson

Hua Lin

Julia Falk

Marjolein Burgers

References

- 1) D. Diaz and S. Draghici, "mirintegrator: Integrating mirnas into signaling pathways," R package, 2015.
- M. Vila-Casadesús, M. Gironella, and J. J. Lozano, "Mircomb: an r package to analyse mirna-mrna interactions. examples across five digestive cancers," PloS one, vol. 11, no. 3, p. e0151127, 2016.
- 3) A. R. Pico, T. Kelder, M. P. Van Iersel, K. Hanspers, B. R. Conklin, and C. Evelo, "Wikipathways: pathway editing for the people," PLoS biology, vol. 6, no. 7, p. e184, 2008.
- 4) M. Kutmon, M. P. van Iersel, A. Bohler, T. Kelder, N. Nunes, A. R. Pico, and C. T. Evelo, "Pathvisio 3: an extendable pathway analysis toolbox," PLoS computational biology, vol. 11, no. 2, p. e1004085, 2015.
- 5) M. E. Smoot, K. Ono, J. Ruscheinski, P.-L. Wang, and T. Ideker, "Cytoscape 2.8: new features for data integration and network visualization," Bioinformatics, vol. 27, no. 3, pp. 431–432, 2010.
- 6) G. K. Smyth, "Limma: linear models for microarray data," in Bioinformatics and computational biology solutions using R and Bioconductor, pp. 397–420, Springer, 2005.
- 7) M. J. Barter, M. Tselepi, R. Gómez, S. Woods, W. Hui, G. R. Smith, D. P. Shanley, I. M. Clark, and D. A. Young, "Genome-wide microrna and gene analysis of mesenchymal stem cell chondrogenesis identifies an essential role and multiple targets for mir-140-5p," Stem Cells, vol. 33, no. 11, pp. 3266–3280, 2015.
- 8) Martina Kutmon et al. "Integrative network-based analysis of mRNA and microRNA expression in 1, 25-dihydroxyvitamin D 3-treated cancer cells". In: Genes & nutrition 10.5 (2015), p. 35.