國立虎尾科技大學機械設計工程系機械工程實驗(二)熱流力實驗

實驗 2. 水衝擊實驗

指導教授: 周榮源老師

班級:四設四乙

學 生: 詹耀賢 41023241

陳瑨維 41023228

葉桓亞 41023240

莊雨薰 41023203

陳靚芸 41023205

組 別: 第5組

中華民國 1 1 3 年 1 1 月 1 3 日

目錄

目錄-		1
實驗	目的	2
儀器」	與設備	3
實驗	原理	4
實驗		8
實驗統	吉果	9
參考:	資料1	2

一、實驗目的

本實驗的主要目的是探討水流衝擊不同形狀與角度的板面時, 所產生的衝擊力變化與其影響因素,並驗證理論計算值與實際量測 值之間的差異。透過改變噴嘴直徑(如 8 mm 和 5 mm)、板面形狀 (平面、45 錐形、半圓形),測量在不同條件下水流對板面的實際 衝擊力,並計算出相應的理論衝擊力。此實驗將分析水流量、速度 及板面特性對衝擊力的影響,以理解水流動力學中的基本原理。最 終,本實驗期望能提供在工業領域中進行水流控制和衝擊力預測的 參考依據,協助優化設計並提升系統效率。

瞭解流體流動時,其動量變化與其承受力量間之關係,以驗證 動量方程式。

二、儀器與設備

水衝擊實驗係由一水循環泵、驅動馬達、儲水槽、實驗台架、柏登壓力錶、流量控制閥、水衝擊台一套(包括有透明壓克力套筒、噴嘴、各種形式之衝擊檔板、動量平衡器)、以及三角形堰(流量計)、和稱重器等構成整套儀器。

	(10)		
1	出口水壓計	11	浮沉式流量計
2	測量流速用水箱	12	馬達開關
3	水量刻度表	13	馬達速度控制表錶
4	測量流速用水箱之洩放閥	14	流量控制閥
5	儲水槽	15	水衝擊器
6	輪子	16	重量平衡器(秤重)
7	離心泵及馬達	17	平衡指標
8	進口閥	18	重量塊
9	進口水壓計		
10	機架底座		

三、實驗原理

水衝擊實驗的原理基於流體動力學中的動量守恆定律,當水流撞擊到障礙物時會產生衝擊力。此實驗透過調整噴嘴直徑、噴射角度和板面形狀,分析水流在不同條件下的衝擊力變化。根據動量定理,水流撞擊板面時會發生速度變化,這種變化會產生一個作用力,稱為衝擊力。理論上,衝擊力下可透過公式 $F=\rho QV$ 計算,其中 Q 為水的密度 Q 為流量、V 為噴嘴速度。

實驗中將測量實際衝擊力並與理論值比較,以了解流速、流量和板面特性對水衝擊力的影響,驗證理論計算的準確性。

1.水平硯板

衝擊水流作用在水平硯板之流動情形如圖(2)所示,此硯板在 X 方向之受

力由於左右對稱故其受力 F_x 為 0,在 y 方向之受力 F_y =流出之動量)y-流入之動量) y,其中流出 之動量在 y 方向之分量為 0,流入之動量則為 ρQV ,故 y 方向之動量方程式式為

$$-F_y=0-\rho QV$$
 得 $F_v=\rho QV$ (5)

2.圓錐形硯板

圓錐形硯板受水流作用之情形如圖(3)所示,同樣的因在X方向為對稱,故 $F_x=0$,而在y方向流出之動量為 $\rho QV cos \theta$,流入之動量則為 ρQV ,故得

$$-Fy=ρQVcosθ-ρQV$$

将 $Fy=ρQV(1-cosθ)$ (6)

3.半圓形硯板

半圓形硯板受水流衝擊的情形如圖(4)所示,其水流在衝擊後成 180°之折返,故流出之動量為負 y 方向,而流入之動量則與前面所述想同,故得

$$-F_y = -\rho QV) \text{ a.s.} -\rho QV) \text{ a.s.}$$
 Fy $= 2\rho QV$ (7)

在(5)(6)(7)式中,若ρ以 kg/m³,Q 以 m³/s,V 以 m/s 為單位,則計算所得之 F 單位為 $[F_y] = [kg/m^3] [m^3/s] [m/s] = [kg×m/s^2] = [N]$

圖 4 半球形硯板

噴出一段距離而作用於葉板之速度 ui(m/sec):

由柏努利公式:

$$\frac{P_0}{\gamma} + \frac{u_0^2}{2g} + z_0 = \frac{P}{\gamma} + \frac{u_1^2}{2g} + z \qquad (6-4)$$

【註】

試驗儀器之有關資料

及符號說明:

噴嘴直徑:

0.01m

噴嘴斷面積:

$$0.0000785 \text{ m}^2 \left(= \frac{\pi}{4} 0.01^2 \right)$$

葉板中心至支點距離:

0.15m

噴嘴至葉板距離 S:

0.035 mm

砝碼離零點距離:

y (m)

四、實驗步驟

Step1. 將 110V 之電源連接妥當。

Step 2. 儲水槽加入之水量約九分滿。

Step 3. 將噴嘴及硯板裝入水衝擊器內。

Step 4. 將動量平衡器先預加上荷重約 350~450gms,使其壓縮彈簧 約 80%之壓縮量(勿將彈簧完 全壓縮,否則會產生很大的誤差),並將平衡 指標切口對準與平板同高,此時需將試重之 實際重量〔包括容器、即 杯子〕計錄下來,此即為預負荷。

Step 5. 按下啟動馬達開關,並逐漸打開流量控制閥至某一特定流量。 Step 6. 同時衝擊水流對硯板產生衝擊,而將硯板上推至最高點。此時 開始加入荷重,至平板回 到原來之平衡位置為止,取下容杯重新稱 重,即得總負荷。總負荷減去預負荷,所得之重 量即為水對硯板之衝 擊力。

Step 7.逐漸打開流量控制閥(出口閥),以改變流量,重覆上述步驟,流量由小至大,至少取 五種,並詳細記錄各值。

Step 8. 關閉電源,並將出口閥關閉。

Step 9. 依序更換噴嘴或硯扳,重覆 3~8 之步驟完成同樣之量測。

Step 10. 實驗結束,關閉電源,並將流量測量槽內之水排放至儲水槽。

五、實驗結果

實驗數據:

水衝擊實驗報告											
水温:26℃ 密度(ρ):1000kg/m³											
次別 項目	,	實嘴	預負荷	預負 荷 (gw) W ₂	實際測得之衝擊力		實際量測流量		噴嘴	理論	誤
	直徑 (mm)	硯板 型式	何 (gw) W1		公斤 重 (kgw)	牛頓 (N)	測量 水量 (L/min)	測量 Q(m³/s)	速度 V(m/s)	力 F(N)	差 (%)
1		水平硯板	230	870	0.64	6.27	33	0.00055	10.9	6.02	4.2
1	8mm	45°圓錐 形硯板	230	520	0.29	2.84	32	0.00053	10.6	2.69	5.8
1		半圓形	230	990	0.76	7.45	26	0.00043	8.6	7.47	0.3
1		水平硯板	230	820	0.59	5.78	20	0.00033	17.0	5.66	2.2
1	5mm	45°圓錐 形硯板	250	735	0.485	4.75	25.5	0.00043	21.6	4.37	8.9
1		半圓形	230	1005	0.775	7.59	18	0.00028	14.4	8.18	7.1

實驗照片:

8mm 噴頭搭配水平硯板測量結果為 870gw, 測得之水量為 33L/min

8mm 噴頭搭配 45 度硯板測量結果為 735gw, 測得之水量為 32L/min

8mm 噴頭搭配半圓形硯板測量結果為 $1005 \mathrm{gw}$,測得之水量為 $26 \mathrm{L/min}$

5mm 噴頭搭配水平硯板測量結果為 820gw, 測得之水量為 20L/min

5mm 噴頭搭配 45 度硯板測量結果為 735gw,測得之水量為 25.5L/min

5mm 噴頭搭配半圓形硯板測量結果為 1005gw, 測得之水量為 18L/min

六、參考資料

http://dspace.fcu.edu.tw/bitstream/2377/31787/2/D0471350106

<u>175. pdf</u>