Problema 1.

Se tienen dos progresiones de números reales, una aritmética $(a_n)_{n\in\mathbb{N}}$ y otra geométrica $(g_n)_{n\in\mathbb{N}}$ no constante. Se cumple que $a_1=g_1\neq 0$, $a_2=g_2$ y $a_{10}=g_3$. Decidir, razonadamente, si para cada entero positivo p, existe un entero positivo m, tal que $g_p=a_m$.

Solución.

Sean d y $r \neq 1$ la diferencia y la razón, respectivamente, de las progresiones aritmética $(a_n)_{n \in \mathbb{N}}$ y geométrica $(g_n)_{n \in \mathbb{N}}$. En primer lugar tenemos $g_1r = g_2 = a_2 = a_1 + d = g_1 + d$ de donde $d = g_1(r-1)$. En segundo lugar $g_1r^2 = g_3 = a_{10} = a_1 + 9d = g_1 + 9g_1(r-1)$. De aquí sale $r^2 - 9r + 8 = 0$ puesto que $g_1 \neq 0$. Las soluciones son r = 1 (que debemos descartar ya que la progresión geométrica no es constante) y r = 8 que es la razón buscada. De aquí también resulta $d = 7g_1$.

Sea p un entero positivo cualquiera. Debemos encontrar un m tal que $g_p = a_m$, es decir $g_p = g_1 8^{p-1} = a_m = a_1 + (m-1)d = g_1 + (m-1)7g_1$ que es equivalente a $8^{p-1} + 6 = 7m$. Puesto que las potencias de 8 módulo 7 siempre son 1, resulta que $8^{p-1} + 6$ es siempre múltiplo de 7 y siempre podremos encontrar $m = \frac{8^{p-1} + 6}{7}$.

Problema 2.

Sea p un número primo positivo dado. Demostrar que existe un entero α tal que $\alpha(\alpha-1)+3$ es divisible por p si y sólo si existe un entero β tal que $\beta(\beta-1)+25$ es divisible por p.

Solución.

Sean
$$f(x) = x(x-1) + 3 = x^2 - x + 3$$
, $g(x) = x(x-1) + 25 = x^2 - x + 25$.

Caso p = 2. No podemos encontrar ni un tal α ni un tal β porque para cualesquiera α y β enteros, $f(\alpha)$ y $g(\beta)$ son impares, es decir, no múltiplos de p simultáneamente, y por lo tanto el enunciado se cumple.

Caso p = 3. Ahora f(1) = 3, g(2) = 27 y el enunciado también se cumple.

Caso $p \geq 5$. Decir que p divide a $f(\alpha)$ es lo mismo que decir que $f(\alpha) \equiv 0 \mod p$. En adelante seguiremos con esta notación de congruencias sobreentendiendo el módulo p. El enunciado es equivalente a ver que las congruencias $f(x) = x^2 - x + 3 \equiv 0$ y $g(x) = x^2 - x + 25 \equiv 0$ tengan o no tengan solución simultáneamente.

Puesto que 2 no es congruente con p, se puede dividir por 2 módulo p. Tenemos

$$x^{2} - x + 3 \equiv \left(x - \frac{1}{2}\right)^{2} + \frac{11}{4} \equiv 0 \iff x \equiv \frac{1 \pm \sqrt{-11}}{2}.$$

Análogamente

$$x^{2} - x + 25 \equiv \left(x - \frac{1}{2}\right)^{2} + \frac{99}{4} \equiv 0 \iff x \equiv \frac{1 \pm 3\sqrt{-11}}{2}.$$

En consecuencia las congruencias $f(x) \equiv 0$ y $g(x) \equiv 0$ tienen o no solución (a la vez) según que -11 sea cuadrado perfecto módulo p o no lo sea.

Observación. Recordemos que esto se cumplirá según que

$$(-11)^{\frac{p-1}{2}} \equiv 1$$
 o $(-11)^{\frac{p-1}{2}} \equiv -1$.

Problema 3.

En la circunferencia circunscrita al triángulo ABC, sea A_1 el punto diametralmente opuesto al vértice A. Sea A' el punto en el que la recta AA_1 corta al lado BC. La perpendicular a la recta AA' trazada por A' corta a los lados AB y AC (o a sus prolongaciones) en M y N, respectivamente. Demostrar que los puntos A, M, A_1 y N están en una circunferencia cuyo centro se encuentra en la altura desde A en el triángulo ABC.

Primera solución.

Sea O el circuncentro de ABC, y D el pie de la altura desde A. Es conocido que AO y la altura desde A son rectas isogonales en cualquier triángulo. En nuestro caso, los son en los dos triángulos ABC y AMN, por la manera como se construye el triángulo AMN.

En ABC, AA_1 es diámetro de la circunferencia circunscrita Γ y la recta AD es altura. En AMN, AO es altura, así que el centro de la circunferencia circunscrita Γ' estará en la recta AD (isogonal de AO en AMN).

Para terminar el problema hay que probar que A_1 pertenece a Γ' . En primer lugar, es fácil demostrar que los triángulos ABC y AMN son semejantes $(\widehat{AMN} = 90^{\circ} - \alpha = \hat{C})$. Escribiendo la proporcionalidad entre sus lados, obtenemos,

 $\frac{AB}{AC} = \frac{AN}{AM},$

y esto quiere decir que las rectas MC y BN son antiparalelas y el cuadrilátero BMCN es cíclico. Sea Γ'' la circunferencia que pasa por los vértices de dicho cuadrilátero.

El eje radical de Γ y Γ'' es BC; el de Γ' y Γ'' es MN. La intersección de las rectas BC y MN, es decir, A', es el centro radical de las tres circunferencias. El eje radical de Γ y Γ' debe, necesariamente, pasar por A y A', luego no puede ser otro que AA' y por lo tanto A_1 estará en la circunferencia Γ' .

Segunda solución.

Sean Γ y Γ' las circunferencias circunscritas a ABC y AMN, respectivamente y AA_1 un diámetro de Γ (por construcción). El triángulo ABA_1 es rectángulo en B y su ángulo en A_1 es \hat{C} por ver, desde A_1 la cuerda AB de Γ . En consecuencia, los triángulos

 ABA_1 y ADC son semejantes

y los ángulos marcados en A son iguales, $\alpha = 90^{\circ} - \hat{C}$.

El segmento MA_1 se ve desde A' y desde B bajo ángulo recto (el primero por construcción y el segundo por inscrito que ve un diámetro). Esto nos dice que los cuatro puntos B, M, A', A_1 son concíclicos. Y esto nos lleva a que $\gamma = \delta$. De forma similar, el segmento A_1N se ve desde A' y C bajo ángulo recto y los puntos A_1, A', C, N son concíclicos. De ahí que $\gamma' = \delta = \gamma$.

Se tiene que $\widehat{BA_1C} = 180^{\circ} - \hat{A}$ por ser inscrito en Γ y ver la cuerda BC desde el arco contrario al vértice A. Tenemos que $\widehat{MA_1N} = \widehat{BA_1C} + \gamma' - \gamma = 180^{\circ} - \hat{A}$. Esto nos indica que A_1 tiene que estar sobre la circunferencia Γ' en el arco opuesto al del vértice A.

Como que el triángulo AA'M es rectángulo por construcción, resulta que $\widehat{AMA'} = \widehat{C}$. Los puntos M y P de Γ' ven sobre esta circunferencia la cuerda AN. Luego $\widehat{APN} = \widehat{C}$. En el triángulo APN los ángulos en A y en P suman 90°, luego $\widehat{ANP} = 90$ ° y AP es un diámetro de Γ' .

Problema 4.

Sean $m \ge 1$ un entero positivo, a y b enteros positivos distintos mayores estrictamente que m^2 y menores estrictamente que $m^2 + m$. Hallar todos los enteros d, que dividen al producto ab y cumplen $m^2 < d < m^2 + m$.

Solución.

Sea d un entero positivo que divida a ab y tal que $d \in (m^2, m^2 + m)$. Entonces d divide a $(a-d)(b-d) = ab - da - db + d^2$. Como que |a-d| < m y |b-d| < m, deducimos que $|(a-d)(b-d)| < m^2 < d$ lo que implica que (a-d)(b-d) = 0. Así d = a o d = b.

Problema 5.

De entre todas las permutaciones (a_1, a_2, \ldots, a_n) del conjunto $\{1, 2, ..., n\}$, $(n \ge 1 \text{ entero})$, se consideran las que cumplen que $2(a_1 + a_2 + \cdots + a_m)$ es divisible por m, para cada $m = 1, 2, \ldots, n$. Calcular el número total de estas permutaciones.

Solución.

Sea \mathcal{P}_n el conjunto de permutaciones de $\{1, 2, \dots, n\}$ que cumplen las condiciones del enunciado. El problema consiste en calcular $|\mathcal{P}_n|$. Observemos que, para cualquier n, las condiciones se cumplen siempre para m=1, para m=2 y para m=n, de manera que \mathcal{P}_1 , \mathcal{P}_2 y \mathcal{P}_3 son, en cada caso, el conjunto de todas las permutaciones y $|\mathcal{P}_1|=1$, $|\mathcal{P}_2|=2$ y $|\mathcal{P}_3|=6$.

Supongamos que $(a_1,\ldots,a_n)\in \mathcal{P}_n$. Tomando m=n-1, debe cumplirse que $(n-1)|2(a_1+\cdots+a_{n-1})=2(a_1+\cdots+a_n)-2a_n=n(n+1)-2a_n$. Mirando esta relación en forma de congruencias, tenemos $2-2a_n\equiv 0\mod(n-1)$, o bien que $2(a_n-1)$ es múltiplo de n-1, que es equivalente a que a_n-1 sea múltiplo de $\frac{n-1}{2}$. Dada la acotación obvia $a_n-1\leq n-1$, resulta que los únicos valores que puede tomar a_n-1 son $0,\frac{n-1}{2}$ o n-1. Entonces a_n solamente puede ser $1,\frac{n+1}{2}$ o n.

Si fuese $a_n = \frac{n+1}{2}$, entonces n debería ser impar. La propiedad de \mathcal{P}_n para m = n-2 nos dice, con un cálculo parecido al hecho antes, que $(n-2)|2(a_1+\cdots+a_{n-2})=n(n+1)-2a_{n-1}-2a_n=(n-1)(n+1)-2a_{n-1}$. Mirando esta relación en forma de congruencias módulo (n-2) queda $3-2a_{n-1}\equiv 0$ mod (n-2), de manera que $2a_{n-1}-3$ tiene que ser múltiplo de n-2 y esto solo sucede si es n-1. Pero esto conduce a que $a_{n-1}=\frac{n+1}{2}=a_n$, que es absurdo.

En conclusión, a_n solamente puede tomar los valores 1 y n. Estudiemos estos dos casos.

Caso $a_n = n$. Entonces (a_1, \ldots, a_{n-1}) es una permutación de $\{1, 2, \ldots, n-1\}$. Se comprueba fácilmente que es de \mathcal{P}_{n-1} . Entonces habrá tantas permutaciones de \mathcal{P}_n con $a_n = n$ como permutaciones en \mathcal{P}_{n-1} .

Caso $a_n = 1$. Ahora $a_1, a_2, \ldots, a_{n-1} > 1$ y $(a_1 - 1, a_2 - 1, \ldots, a_{n-1} - 1)$ es una permutación de \mathcal{P}_{n-1} . La correspondencia $(a_1, a_2, \ldots, a_{n-1}, 1) \rightleftharpoons (a_1 - 1, a_2 - 1, \ldots, a_{n-1} - 1)$ es biyectiva. Habrá tantas permutaciones de \mathcal{P}_n con $a_n = 1$ como permutaciones en \mathcal{P}_{n-1} .

En definitiva, $|\mathcal{P}_n| = 2|\mathcal{P}_{n-1}|$ si n > 3, de donde, $|\mathcal{P}_n| = 3 \cdot 2^{n-2}$.

Observación: La demostración anterior nos da el algoritmo recurrente para obtener todas las permutaciones que cumplen la condición. Por ejemplo, conocemos que las permutaciones de \mathcal{P}_3 son todas. Añadiendo un 4 al final de cada una obtenemos la mitad de las de \mathcal{P}_4 . La otra mitad sale de sumar 1 a cada elemento de cada permutación y añadir un 1 al final.

Problema 6.

Sea $n \geq 2$ un número entero. Determinar el menor número real positivo γ de modo que para cualesquiera números reales positivos x_1, x_2, \ldots, x_n y cualesquiera números reales y_1, y_2, \ldots, y_n con $0 \leq y_1, y_2, \ldots, y_n \leq \frac{1}{2}$ que cumplan $x_1 + x_2 + \ldots + x_n = y_1 + y_2 + \ldots + y_n = 1$, se tiene que

$$x_1 x_2 \dots x_n \le \gamma (x_1 y_1 + x_2 y_2 + \dots + x_n y_n),$$

Solución.

Sean $M=x_1x_2\dots x_n$ y $X_i=\frac{M}{x_i}$ para $1\leq i\leq n$. Consideremos la función $\varphi:(0,+\infty)\to\mathbb{R}$ definida por $\varphi(t)=\frac{M}{t}$ que es convexa como se prueba fácilmente. Como los números no negativos $y_i,\ (1\leq i\leq n)$, son tales que $y_1+y_2+\dots+y_n=1$, entonces aplicando la desigualdad de Jensen a la función φ se tiene

$$\varphi\left(\sum_{i=1}^{n} y_i x_i\right) \le \sum_{i=1}^{n} y_i \varphi(x_i),$$

es decir.

$$M\left(\sum_{i=1}^{n} y_i x_i\right)^{-1} \le \sum_{i=1}^{n} y_i \frac{M}{x_i} = \sum_{i=1}^{n} y_i X_i.$$
 (1)

Ahora se trata de encontrar la menor cota superior del término de la derecha de (1). Sin pérdida de generalidad, podemos suponer que $x_1 \leq x_2, \leq \ldots \leq x_n$ e $y_1 \geq y_2 \geq \ldots \geq y_n$. Entonces se tiene que $X_1 \geq X_2 \geq \ldots \geq X_n$ como se comprueba inmediatamente. Aplicando la desigualdad del reordenamiento, sabemos que entre todas las sumas de la forma $\sum_{i=1}^n y_i X_i$ la que alcanza el valor máximo es la que se obtiene cuando $y_1 \geq y_2 \geq \ldots \geq y_n$ y $X_1 \geq X_2 \geq \ldots \geq X_n$.

Ahora observamos que

$$\sum_{i=1}^{n} y_i X_i = y_1 X_1 + (y_2 X_2 + \ldots + y_n X_n) \le y_1 X_1 + (y_2 + \ldots + y_n) X_2 = y_1 X_1 + (1 - y_1) X_2.$$

Al ser $0 \le y_1 \le 1/2$, se tiene que

$$\sum_{i=1}^{n} y_i X_i \le \frac{1}{2} (X_1 + X_2) = \frac{1}{2} \left((x_1 + x_2) x_3 \dots x_n \right) \le$$

$$\le \frac{1}{2} \left(\frac{(x_1 + x_2) + x_3 + \dots + x_n}{n - 1} \right)^{n - 1} = \frac{1}{2} \left(\frac{1}{n - 1} \right)^{n - 1}$$

donde se ha utilizado la desigualdad entre las medias aritmética y geométrica y la condición $x_1 + x_2 + \dots + x_n = 1$. De lo anterior y (1), resulta

$$M \le \left(\sum_{i=1}^{n} y_i x_i\right) \left(\sum_{i=1}^{n} y_i X_i\right) \le \frac{1}{2} \left(\frac{1}{n-1}\right)^{n-1} \left(\sum_{i=1}^{n} y_i x_i\right)$$

у

$$\gamma \le \frac{1}{2} \left(\frac{1}{n-1} \right)^{n-1}.$$

Si tomamos $x_1 = x_2 = \frac{1}{2(n-1)}$, $x_3 = x_4 = \dots = x_n = \frac{1}{n-1}$ e $y_1 = y_2 = \frac{1}{2}$, $y_3 = y_4 = \dots = y_n = 0$, entonces

$$M = x_1 x_2 \dots x_n = \frac{1}{4} \left(\frac{1}{n-1} \right)^n =$$

$$= \frac{1}{2} \left(\frac{1}{n-1} \right)^{n-1} (y_1 x_1 + y_2 x_2) = \frac{1}{2} \left(\frac{1}{n-1} \right)^{n-1} \sum_{i=1}^n y_i x_i$$

$$M = x_1 x_2 \dots x_n = \frac{1}{4} \left(\frac{1}{n-1} \right)^n = \frac{1}{2} \left(\frac{1}{n-1} \right)^{n-1} (y_1 x_1 + y_2 x_2) = \frac{1}{2} \left(\frac{1}{n-1} \right)^{n-1} \sum_{i=1}^n y_i x_i$$

y se concluye que

$$\gamma = \frac{1}{2} \left(\frac{1}{n-1} \right)^{n-1}.$$