# تمرین شماره ۲

سينا اسكندرى ۹۷۵۲۱۰۵۴

\_1

## الف)

با توجه به نمودار همه optimizer ها در iteration ها اولیه تقریبا عین هم عمل می کنند و در مراحل آخر است که تفاوت بسیار حاصل می شود که adam که ویژگی های مثبت Adagrad و RMSProp را دارد از همه بهتر عمل کرده است بعد از آن نیز SGD + Nesterov عملکرد خوبی داشته است.

ب)

به ُطور کلی adam از بقیه بهتر عمل می کند ولی مثلا اگر گرادیان های پراکنده داشته باشیم adagrad گزینه خوبی است.

https://datascience.stackexchange.com/questions/10523/guidelines-for-selecting-an-optimizer-for-training-neural-networks

| To the second    |                                                                            |
|------------------|----------------------------------------------------------------------------|
| Xo Wo            | → J                                                                        |
| ν, τ             | ->j                                                                        |
|                  |                                                                            |
| data 1:2=5 w     | $x_i + b = 9 - 1 + 1 = 0 \Rightarrow \hat{y} = \delta(z) = 0.99$           |
|                  | $(\hat{y})' \rightarrow \partial J = -(y - \hat{y}) = \hat{y} - g = -0.01$ |
| $\sim$           | 1)=(1-6(2))6(2)= 0/01 x 0/99 = 0/099 ~ 0/1                                 |
| 32 = x = 7       | , dz - N = -1 , dz -1 , db = 1                                             |
| → dJ eve         | 1 x 2 1 x x - x                                                            |
| 1901 = 0101 x 01 | (-0100t) = 1.00t                                                           |
| -> W = Y - (1)   | (-0100K) = 1100K                                                           |
| w,=1-(1)(        | 1.01) = 1,001                                                              |
| b = 11001        |                                                                            |
|                  |                                                                            |

dafa Y: W\_\_ YouT VI = 1,001 1 b= Y,001 Z= 1,00 1 1,001 = 4,001 - 6(Z) = 0,99 41=11001 + 01/2 1/4 01 b= 1/001-011=1,901 2= 3, Vo9 - 1, Yol + 1,901 = 4, Ko9 - 6(2) = 0,99 Wo = 1,901 + 0100 = 1,904 W1 = 1, Yal - 0 fool 5 b=1,901 + 02001=1,901

```
\frac{dafa}{dafa} Y:
Z = 1,9ay - Y_1Y + 1,9aY - 1,YaA \rightarrow QZ - a_1A
\frac{\partial J}{\partial y} = a_1A \qquad \frac{\partial J}{\partial z} = a_1AY
\frac{\partial J}{\partial z} = a_1AY + a_1AY - a_2AY - a
```

\_٣

شبکه ای که تعریف می کنیم به این صورت است.

```
def build_model():
    model = Sequential()
    model.add(layers.Flatten(input_shape=(IMG_WIDTH, IMG_HEIGHT)))
    model.add(layers.Dense(512, activation='relu'))
    model.add(layers.Dense(128, activation='relu'))
    model.add(layers.Dense(10, activation='softmax'))
    return model
```

برای adam نمودار tensorboard به این گونه است



#### :RMSProp



#### :AdaGrad



با توجه به مقادیر بدست آمده RMSProp بهتر عمل کرده است پس این مدل را سیو می کنیم.

### \_4

برای این مسئله چون فقط ۲ کلاس داریم پس مسئله binary classification است. پس برای لایه آخر از یک نورون استفاده میکنیم و اکتیویشن فانکشن مسئله binary classification در لایه آخر نیز تابع sigmoid است، همچنین تابع ضرر نیز binary\_crossentropy است. دقت و loss مدل به این صورت است:

