Bias-Variance Tradeoff in Machine Learning

Impact of Increasing Model Complexity on Bias and Variance

As you increase the complexity of a machine-learning model by adding more features or including higher-order polynomial terms in a regression model, the effects on bias and variance can be described through the **bias-variance trade-off**.

1. Bias

Bias refers to the error introduced by approximating a real-world problem with a simpler model.

- Low-complexity models (e.g., linear models) typically have **high bias**, as they underfit the data and fail to capture underlying patterns. - As model complexity increases, bias **decreases**, since the model can fit more complex patterns.

2. Variance

Variance refers to the model's sensitivity to small fluctuations in the training data.

- High-complexity models, especially those with many features or higher-order terms, have **high variance** since they can overfit the training data, learning patterns that do not generalize well to unseen data. - As model complexity increases, variance **increases**, as the model becomes too sensitive to the specific training data.

3. Bias-Variance Tradeoff

The bias-variance tradeoff represents the balance between bias and variance:

- Initially, as complexity increases, both training and test errors decrease due to a reduction in bias.
- After a certain point, increasing complexity results in overfitting, which causes an increase in test error due to higher variance.

Graphical Representation

The bias-variance tradeoff can be represented graphically as shown below:

In this graph: - The **x-axis** represents model complexity. - The **y-axis** represents the error (or loss). - The **training error** decreases as complexity increases. - The **test error** initially decreases but then increases due to overfitting. - **Bias** starts high and decreases, while **variance** starts low and increases.

Mathematical Formulation

The total error can be decomposed into three parts:

$$\label{eq:total_total_error} \text{Total Error} = \underbrace{\text{Bias}^2}_{\text{underfitting}} + \underbrace{\text{Variance}}_{\text{overfitting}} + \underbrace{\text{Irreducible Error}}_{\text{Noise}}$$

- Bias: Measures how far the model's predictions are from the true values.
- Variance: Measures the model's sensitivity to changes in the training data.
- Irreducible error: Represents the inherent noise in the data.

Conclusion

In summary, as model complexity increases, bias decreases and variance increases. There exists an optimal point of complexity that minimizes the test error, balancing bias and variance.