Fiche de synthèse : Fonction Exponentielle

Benjamin L'Huillier

1 Définition et premières propriétés

Definition 1.1: Fonction exponentielle

La fonction exponentielle, notée e^x ou $\exp(x)$, est la seule fonction définie sur $\mathbb R$ telle que :

$$\exp'(x) = \exp(x)$$
 et $\exp(0) = 1$

Propriété 1.1: Propriété fondamentale

Pour tous $x, y \in \mathbb{R}$, on a :

$$\exp(x+y) = \exp(x) \cdot \exp(y)$$

Remarque 1.1: Notation

On utilise les deux notations $\exp(x)$ et e^x de manière interchangeable. La constante e est définie par $e = \exp(1)$, et vaut environ $e \simeq 2{,}718$.

2 Propriétés algébriques

Propriété 2.1: Identités algébriques

Pour tous réels a, b, on a :

- $e^0 = 1$
- $e^{a+b} = e^a \cdot e^b$
- $\bullet \ e^{a-b} = \frac{e^a}{e^b}$
- $e^{ab} = (e^a)^b = (e^b)^a$

Propriété 2.2: Fonctions composées

Pour tout réel a et b, la dérivée de la fonction $f(x) = e^{ax+b}$ est :

$$f'(x) = a \cdot e^{ax+b}$$

3 Variations et limites

Propriété 3.1: Croissance et positivité

- La fonction $x \mapsto e^x$ est strictement croissante sur $\mathbb R$
- Elle est strictement positive : $\forall x \in \mathbb{R}, \ e^x > 0$
- Elle passe par le point (0,1)

Propriété 3.2: Limites

$$\lim_{x \to -\infty} e^x = 0 \qquad \text{et} \qquad \lim_{x \to +\infty} e^x = +\infty$$

4 Tableau de variation

$$\begin{array}{c|ccc}
x & -\infty & +\infty \\
\hline
e^x & \nearrow & \\
0 & & \\
\end{array}$$

5 Représentation graphique

