State of the Art Presentation Visual Storytelling

CS 698N: Recent Advances in Computer Vision

Vasu Sharma Nishant Rai Amlan Kar

¹Department of Computer Science Indian Institute of Technology, Kanpur

Instructor: Gaurav Sharma

Outline

- The Problem
 - Introduction
 - Types of Tasks
 - Challenges
- 2 Dataset
 - Dataset Collection and Description
- Evaluation Metrics
 - BLEU
 - METEOR
- 4 Baselines
 - Basic Approach
 - Heuristics Used
 - Results

The Problem: Introduction

- Introduced by Huang et al [1] from Microsoft Research at NAACL-2016
- Problem of mapping sequential images to sequential descriptive sentences
- Aim is to generate story like narrations

Figure: Visual Storytelling vs Caption generation

Types of Tasks

Image Sequence descriptions can be produced by a variety of approaches:

- Descriptions of images in-isolation (DII)
- ② Descriptions of images-in sequence (DIS)
- Stories for images-in sequence (SIS)

Figure: Descriptions generated by DII, DIS and SIS approaches

4 / 15

Challenges

- Learning Human like narrative language
- Ability to remember long term context from images and be able to connect their ideas together
- Only Jamie Kiros' Neural Storyteller[2] comes close to achieving this using their SkipThought vectors[3]

Dataset Collection and Description

- 81,743 unique photos in 20,211 sequences with captions and narrative sequences
- Flickr API used to extract photo albums
- Amazon Mechanical Turkers used to get narrative stories and isolated captions
- Data Post-processing performed

Figure: Dataset Collection Crowdsourcing Workflow

Evaluation Metrics

- Evaluating the quality of the generated stories is a non trivial task.
- Intuitive way involves comparison with good (human-made) model stories. But manual evaluation not possible for large sets.
- Need of automatic methods for such evaluations.
- Popular metrics which assign a score to the candidate (based on human-made ground truths) include BLEU, METEOR.

BLEU [4]

- Account for adequacy by calculating word-match precision, account for fluency by computing n-gram precisions
- Smaller sentences get higher scores, thus a length based penalty introduced to prevent it
- More reference human samples result in better and accurate scores
- Designed to approximate human judgement at a corpus level, and performs badly if used to evaluate the quality of individual sentences
- Example:
 - "There is a cat on the mat; The cat is on the mat" vs "the the the the the"
 - "There is a cat on the mat; The cat is on the mat" vs "the cat"

METEOR [6]

- Consistently outperforms BLEU in correlation with human judgments
- Sentence alignment takes variability into account via stemming and synonymy matching
- Combine Recall and Precision as weighted score components
- Align candidate with each reference and take score of the best pairing
- Consider the fragmentation of the candidate-reference alignment

https://www.sharelatex.com/project/57bf30d8ead3386f0bacb570

Figure: Image from Wikipedia [5]

Basic Approach

- A sequence-to-sequence recurrent neural net (seq2seq)[7] used for story generation
- Image sequence encoded by running an RNN over image representations (e.g. the activations of another pre-trained model).
 Used as the initial hidden state to the story decoder model
- The story decoder model produces the story one word at a time from the training data vocabulary
- GRUs are used as the image encoders and story decoders

Heuristics Used

- METEOR score used for comparing model performance
- Multiple heuristics used to further improve results including,
 - Lower Beam Search size
 - Avoid duplicates
 - Penalize Visually-Grounded words

Results

As discussed earlier, METEOR metric used for evaluation

Beam=10	Greedy	-Dups	+Grounded
23.55	19.10	19.21	_

Figure: Scores for generated captions per-image

Beam=10	Greedy	-Dups	+Grounded
23.13	27.76	30.11	31.42

Figure: Scores for generated stories

Bibliography I

T. Huang, F. Ferraro, N. Mostafazadeh, I. Misra, A. Agrawal, J. Devlin, R. Girshick, X. He, P. Kohli, D. Batra, L. Zitnick, D. Parikh, L. Vanderwende, M. Galley, and M. Mitchell. Visual storytelling, 2016.

Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies.

Neural story teller.

https://github.com/ryankiros/neural-storyteller.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio Torralba, and Sanja Fidler. Skip-thought vectors.

In Advances in neural information processing systems, pages 3294–3302, 2015.

Bibliography II

Meteor wiki. https://en.wikipedia.org/wiki/METEOR.

Satanjeev Banerjee and Alon Lavie. Meteor: An automatic metric for mt evaluation with improved correlation with human judgments.

2005.

Bibliography III

Ilya Sutskever, Oriol Vinyals, and Quoc V Le.

Sequence to sequence learning with neural networks.

In Advances in neural information processing systems, pages 3104–3112, 2014.