Exercise 1: (Elves and Vampires)

Exercise 2: (Borromean formulas)

Choose

$$A_1 = A \wedge B$$

$$A_2 = B \wedge C$$

$$A_3 = \neg C \vee \neg A$$

-
$$A_1 \wedge A_2 = A \wedge B \wedge B \wedge C = A \wedge B \wedge C$$
 satisfiable for $A = B = C = 1$

$$-A_1 \wedge A_3 = (A \wedge B) \wedge (\neg C \vee \neg A) = B \wedge ((A \wedge \neg C) \vee (A \wedge \neg A)) = B \wedge A \wedge \neg C$$

satisfiable for A = B = 1, C = 0

-
$$A_2 \wedge A_3 = \text{similar to } A_1 \wedge A_2$$
, now choose $B = C = 1$, $A = 0$ to satisfy formula

-
$$A_1 \wedge A_2 \wedge A_3 = A \wedge B \wedge B \wedge C \wedge (\neg C \vee \neg A) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = \underset{unsatisfiable}{(\neg C \wedge C) \vee (\neg A \wedge \neg C)} = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge B \wedge ((\neg C \wedge C) \vee (\neg A \wedge \neg C)) = A \wedge ((\neg C \wedge C) \vee ($$

 $\underset{unsatisfiable}{A \wedge \neg A} \wedge B \wedge C = 0$, for all possible inputs

Exercise 3: (XOR)

AB	$A \oplus B = 1 \text{ iff } A \neq B$	$(A \lor B) \land \neg (A \lor B)$
0.0	0	0
0 1 1 0 1 1	1	1
1 0	1	1
1 1	0	0

The truth table shows that both formulas evaluate to the same value for all possible inputs, hence they are equivalent.

Exercise 4: (Truth value tables)

$$F_1 = \neg(A \implies B) = \neg(\neg A \lor B) = A \land \neg B$$

$$F_2 = \neg(\neg A \lor \neg(\neg B \lor \neg A)) = A \land (\neg B \lor \neg A) = (A \land \neg B) \lor (A \land \neg A) = A \land \neg B$$

$$F_3 = (A \land B) \land (\neg B \lor C) = (A \land B \land \neg B) \lor (A \land B \land C) = A \land B \land C$$
unsatisfiable

 $F_4 = A \Leftrightarrow (B \Leftrightarrow C)$

Evaluated in a truth table:

C A B	F_1	F_2	F_3	F_4
0 0 0	0	0	0	1
$0\ 0\ 1$	0	0	0	0
$0\ 1\ 0$	1	1	0	0
0 1 1	0	0	0	0
$1 \ 0 \ 0$	-	-	0	0
101	_	-	0	0
1 1 0	-	-	0	0
1 1 1	-	-	1	1

From the lecture we know that two Formulas are equivalent if their truth tables are equivalent, hence F_1 and F_2 are equivalent, F_3 and F_4 are not, F_1 and F_3 aren't either.