Hypothesis Testing

Daniel A. Menascé
Department of Computer Science
George Mason University

© 2001 D. A. Menascé. All rights reserved.

Hypothesis Testing

- <u>Purpose</u>: make inferences about a population parameter by analyzing differences between observed sample statistics and the results one expects to obtain if some underlying assumption is true.
- Null hypothesis: H_0 : $\mathbf{m} = x$
- Alternative hypothesis: $H_1 : \mathbf{m} \neq x$
- If the null hypothesis is rejected then the alternative hypothesis is accepted.

2

Test statistic:
$$Z = \frac{\overline{X} - m}{\frac{s}{\sqrt{n}}}$$

© 2001 D. A. Menascé. All rights reserved.

Risks in Decision Making

- Type I Error occurs if H_o is rejected when it is true.
 - Pr [H_o is rejected | true] = α
- Type II Error occurs if H_o is not rejected when it is false.
 - $-\Pr[H_o \text{ is not rejected} \mid false] = \beta$
- Confidence coefficient:
 - Pr [H $_{\!o}$ not rejected | true]= 1- α
- Power of the test:
 - $-\Pr[H_o \text{ is rejected } | \text{false}] = 1-\beta$

© 2001 D. A. Menascé. All rights reserved.

ļ

	Actual Situation		
	H _o true	H _o false	
Accept H _o	Correct decision Confidence=1-α	Type II Error: Pr[Type II]=β	
Reject H _o	Type I Error P[Type I]=α	Correct Decision Power=1-β	

5

© 2001 D. A. Menascé. All rights reserved.

Example of Hypothesis Testing

• A sample of 50 files from a file system is selected. The sample mean is 12.3Kbytes. The standard deviation is known to be 0.5 Kbytes.

Ho: $\mu = 12.5$ Kbytes

 H_1 : $\mu \neq 12.5$ Kbytes

Confidence: 0.95

6

Z Test of Hypothesis for the Mean				
Null Hypothesis	m= 12.5			
Level of Significance	0.05			
Population Standard Deviat	ntion 0.5			
Sample Size	50			
Sample Mean	12.3			
Standard Error of the Mean	0.070710678			
Z Test Statistic	-2.828427125			
Two-Tailed Test				
Lower Critical Value	-1.959961082			
Upper Critical Value	1.959961082			
p-Value	0.00467786			
Reject the null hypothesis				

© 2001 D. A. Menascé. All rights reserved.

Steps in Hypothesis Testing

- 1. State the null and alternative hypothesis.
- 2. Choose the level of significance α .
- 3. Choose the sample size n. Larger samples allow us to detect even small differences between sample statistics and true population parameters. For a given α , increasing n decreases β .
- 4. Choose the appropriate statistical technique and test statistic to use (Z or t).

© 2001 D. A. Menascé. All rights reserved.

۵

Steps in Hypothesis Testing

- 5. Determine the critical values that divide the regions of acceptance and non-acceptance.
- 6. Collect the data and compute the sample mean and the appropriate test statistic (e.g., Z).
- 7. If the test statistic falls in the non-reject region, H_o cannot be rejected. Else H_o is rejected.

10

The p-value Approach

p-value: observed level of significance.
 Defined as the probability that the test statistic is equal to or more extreme than the result obtained from the sample data, given that H_o is true.

11

© 2001 D. A. Menascé. All rights reserved.

12

Computing p-values

Z Test of Hypothesis for the Mean				
Null Hypothesis	m=	12.5		
Level of Significance		0.05		
Population Standard D	0.5			
Sample Size		50		
Sample Mean	12.3			
Standard Error of the Me	ean	0.070710678		
Z Test Statistic		-2.828427125		
Two-Tailed Test				
Lower Critical Value		-1.959961082		
Upper Critical Value		1.959961082		
p-Value		0.00467786		
Reject the null hypothesis				

NORMDIST(-2.828427125,0,1,TRUE)

The null hypothesis is rejected because p (0.0047) is less than the level of significance (0.05).

© 2001 D. A. Menascé. All rights reserved.

Steps in Determining the p-value.

- 1. State the null and alternative hypothesis.
- 2. Choose the level of significance α .
- 3. Choose the sample size n. Larger samples allow us to detect even small differences between sample statistics and true population parameters. For a given α , increasing n decreases β .
- 4. Choose the appropriate statistical technique and test statistic to use (Z or t).

16

Steps in Determining the p-value.

- 5. Collect the data and compute the sample mean and the appropriate test statistic (e.g., Z).
- 6. Calculate the p-value based on the test statistic
- 7. Compare the p-value to α .
- 8. If $p \ge \alpha$ then do not reject H_0 , else reject H_0 .

17

© 2001 D. A. Menascé. All rights reserved.

One-tailed Tests

• Null hypothesis is an inequality.

 $H_0 \ge 3.5$

 $H_1 < 3.5$

Test statistic: $Z = \frac{\overline{X} - m}{\frac{S}{\sqrt{n}}}$

© 2001 D. A. Menascé. All rights reserved.

Example of One-Tailed Test

• A sample of 50 files from a file system is selected. The sample mean is 12.35Kbytes. The standard deviation is known to be 0.5 Kbytes.

Ho: $\mu \ge 12.3$ Kbytes

 H_1 : μ < 12.3 Kbytes

Confidence: 0.95

20

19

Example of One-Tailed Test

$$Z = \frac{\overline{X} - \mathbf{m}}{\mathbf{s} / \sqrt{n}} = \frac{12.35 - 12.3}{0.5 / \sqrt{50}} = 0.707$$
 (test statistic)

Critical value = NORMINV(0.05,0,1)= -1.645.

Region of non-rejection: $Z \ge -1.645$.

So, do not reject H_o. (Z exceeds critical value)

21

© 2001 D. A. Menascé. All rights reserved.

Test statistic:
$$Z = \frac{\overline{X} - m}{\frac{S}{\sqrt{n}}}$$

© 2001 D. A. Menascé. All rights reserved.

One-tailed Test

Z Test of Hypothesis for the Mean				
Null Hypothesis	12.3			
Level of Significance	0.05			
Population Standard Deviation	0.5			
Sample Size	50			
Sample Mean	12.35			
Standard Error of the Mean	0.070710678			
Z Test Statistic	0.707106781			
Lower-Tail Test				
Lower Critical Value	-1.644853			
p-Value	0.760250013			
Do not reject the null hypothesis				

23

© 2001 D. A. Menascé. All rights reserved.

Hypothesis Tests with Unknown σ

- If the population is assumed to be normally distributed the sampling distribution for the mean follows a t distribution with n-1 degrees of freedom.
- t statistic for unknown σ :

$$t = \frac{\overline{X} - m}{\frac{s}{\sqrt{n}}}$$
 Use sample standard deviation

24

Example of Hypothesis Testing

• A sample of 50 files from a file system is selected. The sample mean is 12.3Kbytes. The sample standard deviation is 0.5 Kbytes.

Ho: $\mu = 12.35$ Kbytes

 H_1 : $\mu \neq 12.35$ Kbytes

Confidence: 0.95

25

© 2001 D. A. Menascé. All rights reserved.

t Test of Hypothesis for the M	/lean
Null Hypothesis m=	12.35
Level of Significance	0.05
Sample Size	50
Sample Mean	12.3
Sample Standard Deviation	0.5
Standard Error of the Mean	0.070710678
Degrees of Freedom	49
t Test Statistic	-0.707106781
Two-Tailed Tes	st
Lower Critical Value	-2.009574018
.05,49)—Upper Critical Value	2.009574018
p-Value	0.482849571
Do not reject the null h	vpothesis

TINV(

The t test statistic is between the lower and critical values. So, do not reject the null hypothesis.

© 2001 D. A. Menascé. All rights reserved.