Neural Vector Representations beyond Words: Sentence and Document Embeddings

Gerard de Melo

http://gerard.demelo.org

Rutgers University

Outline

- Word Representations
- Phrase Representations
- Sentence Representations
- Document Representations
- Applications and Outlook

Sentences vs. Documents

Source: Jeff Dean, Google

Sentences vs. Documents

For sentences, we care about **detailed semantics**

Sentences vs. Documents

For sentences, we care about detailed semantics

For documents, we typically need to capture aboutness

Galapagos finches caught in act of becoming new species

BBC News - Nov 23, 2017

RELATED COVERAGE

Rapid hybrid speciation in Darwin's finches | Science

Most Referenced - Science - 23h ago

Researchers Say New Species Are Evolving at an Unbelievable Rate

Futurism - 4h ago

Galápagos Galapagos study finds that new species can develop in as little as two generations

Islands

MORE ABOUT

Highly Cited - Phys. Org - Nov 23, 2017

Darwin's finches

View full coverage →

Bag-of-Words Vectors

D1
dog food
and
cat food

	D1	D2
dog	1	1
food	2	1
cat	1	1
good	0	1
:	0	0

D2
good food
for dogs
and cats

TF-IDF Bag-of-Words Vectors

good dog food and good cat food

Assume N=10 documents

	f(t)		
dog food	1		
food	2		
cat	1		
good	2		
	0		

$$tfidf(t) = (1 + \log f(t)) \times \log \frac{N}{n(t)}$$

Conceptual Vector Spaces

"new"	1.0
"york"	1.0
"jaguar"	1.0
"automobile"	0.0
"car"	0.0
"10th"	1.0
"street"	1.0
"show"	1.0

[&]quot;10th street new york jaguar show"

Similar:

New_York	1.0
Jaguar (car)	0.0
Jaguar (animal)	1.0
Automobile/Car	0.0
10th Street	1.0
Performance	1.0
Animal	0.5
Vehicle	0.0

Expansion (de Melo & Siersdorfer)

Similar:

- "10th street nyc jaguar show"
- "10th street nyc animal show"
- "Exposición de jaguares Nueva York"

Gerard de Melo, Stefan Siersdorfer. Multilingual Text Classification using Ontologies

[&]quot;10th New show in York"

[&]quot;New Jaguar show"

[&]quot;Show New Street in York"

[&]quot;10th street new york jaguar show"

Semantic Hashing

Salakhutdinov & Hinton, 2007

Semantic Hashing

Autoencoder approach

Used RBM-based pretraining

Salakhutdinov & Hinton, 2007

Composition from Sentences

Hermann & Blunsom. Multilingual Models for Compositional Distributed Semantics

Paragraph Vectors

(a) Wikipedia nearest neighbours to "Lady Gaga" using Paragraph Vectors. All articles are relevant.

(b) Wikipedia nearest neighbours to "Lady Gaga" - "American" + "Japanese" using Paragraph Vectors. Note that Ayumi Hamasaki is one of the most famous singers, and one of the best selling artists in Japan. She also has an album called "Poker Face" in 1998.

Article	Cosine Similarity	Article	Cosine Similarity
Christina Aguilera	0.674	Ayumi Hamasaki	0.539
Beyonce	0.645	Shoko Nakagawa	0.531
Madonna (entertainer)	0.643	Izumi Sakai	0.512
Artpop	0.640	Urbangarde	0.505
Britney Spears	0.640	Ringo Sheena	0.503
Cyndi Lauper	0.632	Toshiaki Kasuga	0.492
Rihanna	0.631	Chihiro Onitsuka	0.487
Pink (singer)	0.628	Namie Amuro	0.485
Born This Way	0.627	Yakuza (video game)	0.485
The Monster Ball Tour	0.620	Nozomi Sasaki (model)	0.485

Aka "Doc2Vec"

Paragraph Vectors

Title	Cosine Similarity
Evaluating Neural Word Representations in Tensor-Based Compositional Settings	0.771
Polyglot: Distributed Word Representations for Multilingual NLP	0.764
Lexicon Infused Phrase Embeddings for Named Entity Resolution	0.757
A Convolutional Neural Network for Modelling Sentences	0.747
Distributed Representations of Words and Phrases and their Compositionality	0.740
Convolutional Neural Networks for Sentence Classification	0.735
SimLex-999: Evaluating Semantic Models With (Genuine) Similarity Estimation	0.735
Exploiting Similarities among Languages for Machine Translation	0.731
Efficient Estimation of Word Representations in Vector Space	0.727
Multilingual Distributed Representations without Word Alignment	0.721

Nearest neighbours in 886,000 full arXiv papers For "Distributed Representations of Sentences and Documents" (original Paragraph Vectors paper)

Andrew M. Dai, Christopher Olah, Quoc V. Le. Document Embedding with Paragraph Vectors. ArXiv 2015

Paragraph Vectors

Andrew M. Dai, Christopher Olah, Quoc V. Le. Document Embedding with Paragraph Vectors. ArXiv 2015

Word Vector-based Document Vectors

Additional weights

E.g. 0 for stop words IDF

Word Vector-based Doc. Vectors: Cross-Lingual Evaluation

Model	Dim	en → de	de → en
Majority class	40	46.8	46.8
MT	40	68.1	67.4
I-Matrix (Klementiev et al., 2012)	40	77.6	71.1
BAE-cr (Sarath Chandar et al., 2014)	40	91.8	74.2
CVM-Add (Hermann and Blunsom, 2014)	40	86.4	74.7
DWA (Kočiský et al., 2014)	40	83.1	75.4
BilBOWA (Gouws et al., 2015)	40	86.5	75
UnsupAlign (Luong et al., 2015)	40	87.6	77.8
Trans-gram (Coulmance et al., 2015)	40	87.8	78.7
BRAVE-S(EP)	40	88.1	78.9
BRAVE-D(CL-APR)	40	69.4	67.9
CVM-BI (Hermann and Blunsom, 2014)	128	86.1	79.0
UnsupAlign (Luong et al., 2015)	128	88.9	77.4
BRAVE-S(EP)	128	89.7	80.1
BRAVE-D(CL-APR)	128	70.4	70.6

Although neural document models do well (e.g. BRAVE), simply using IDF (or TF-IDF)-weighted word vector sums is almost as good

N-Gram Vector Averaging as in fastText

a library for efficient text classification and word representation

N-Gram Vector Averaging as in fastText

$$\vec{v}_S = \frac{1}{|S|} \sum_{w \in S} \vec{v}_w$$

fast Text

Consider S not as bag of words, but as bag of n-grams

Word vectors for unigrams obtained using regular fastText approach. For n-grams, use feature hashing with 10M or 100M bins.

Minmin Chen. Efficient Vector Representation for Documents Through Corruption. ICLR 2017

Component-Wise Aggregation

Min. Aggregation: For each dimension, take the min. value across all word vectors

Max. Aggregation: For each dimension, take the max. value across all word vectors

Min/Max Aggregation: Concatenate Min./Max. Aggregation Vectors

Component-Wise Aggregation

Min. Aggregation: For each dimension, take the min. value across all word vectors

Max. Aggregation: For each dimension, take the max. value across all word vectors

Min/Max Aggregation: Concatenate Min./Max. Aggregation Vectors

Performed best

Exploit Document Labels

Title: Spotlight on Global Malnutrition: A Continuing Challenge in the 21st Century.

Abstract: Malnutrition as undernutrition, overnutrition, or an imbalance of specific nutrients, can be found in all countries and in both community and hospital settings around the world. The prevalence of malnutrition is unacceptably high . . .

MeSH terms: Acute Disease, Chronic Disease, Food Habits, Global Health, Humans, Malnutrition, Nutritional, Support, Overnutrition, Risk Factors, Socioeconomic Factors

Title: Fetal and early-postnatal developmental patterns of obese-genotype piglets exposed to prenatal programming by maternal over- and undernutrition.

Abstract: The present study evaluated the effect of nutritional imbalances during pregnancy, either by excess or deficiency, on fertility and conceptus development in obese-genotype swine (Iberian pig). Twenty-five multiparous sows were ...

MeSH terms: Animals, Newborn Animals, Body Weight, Fetal Development, Genotype, Malnutrition, Obesity, Overnutrition, Pregnancy, Prenatal Exposure Delayed Effects, Swine

Title: Predictors of maternal and child double burden of malnutrition in rural Indonesia and Bangladesh

Abstract: BACKGROUND: Many developing countries now face the double burden of malnutrition, defined as the coexistence of a stunted child and overweight mother within the same household. OBJECTIVE: This study sought to ...

MeSH terms: Adult, Body Mass Index, Preschool Child, Cost of Illness, Cross-Sectional Studies, Developing Countries, Family Characteristics, Humans, Indonesia, Infant, Logistic Models, Malnutrition, Mothers, Overnutrition, Population Surveillance, Prevalence Risk Factors, Rural Health, Urban Health

Exploit Document Labels

Loza Mencía, de Melo, Nam (2016). Medical Concept Embeddings via Labeled Background Corpora

Exploit Document Labels: Biomedical Representations

Title: Spotlight on Global Malnutrition: A Continuing Challenge in the 21st Century.

Abstract: Malnutrition as undernutrition, overnutrition, or an imbalance of specific nutrients, can be found in all countries and in both community and hospital settings around the world. The prevalence of malnutrition is unacceptably high ... MeSH terms: Acute Disease, Chronic Disease, Food Habits, Global Health, Humans, Malnutrition, Nutritional, Support, Overnutrition, Risk Factors, Socioeconomic Factors

Title: Fetal and early-postnatal developmental patterns of obese-genotype piglets exposed to prenatal programming by maternal over- and undernutrition.

Abstract: The present study evaluated the effect of nutritional imbalances during pregnancy, either by excess or deficiency, on fertility and conceptus development in obese-genotype swine (Iberian pig). Twenty-five multiparous sows were ...

MeSH terms: Animals, Newborn Animals, Body Weight, Fetal Development, Genotype, Malnutrition, Obesity, Overnutrition, Pregnancy, Prenatal Exposure Delayed Effects, Swine

Title: Predictors of maternal and child double burden of malnutrition in rural Indonesia and Bangladesh

Abstract: BACKGROUND: Many developing countries now face the double burden of malnutrition, defined as the coexistence of a stunted child and overweight mother within the same household. OBJECTIVE: This study sought to ...

MeSH terms: Adult, Body Mass Index, Preschool Child, Cost of Illness, Cross-Sectional Studies, Developing Countries, Family Characteristics, Humans, Indonesia, Infant, Logistic Models, Malnutrition, Mothers, Overnutrition, Population Surveillance, Prevalence Risk Factors, Rural Health, Urban Health

Angina Dyspnea Xanax Ativan Hernias Earache Ataxia Ethanol Overnutrition Malnutrition Cirrhosis Hematemesis Anosmia Constipation Pallor Iron Starvation Anorexia

Application: Cross-Lingual Text Classification

- Given: training documents with class labels
- Goal: guess class labels for test documents in some other language
- better than plain machine translation

			Reuters Spanish			
Map to		Topics		Geography		
concepts		F_1	error rate	F_1	error rate	
	В	80.97	18.61 ± 0.30	81.86	18.12 ± 0.30	
	CM	89.23	10.49 ± 0.24	85.74	14.58 ± 0.28	
	ORM	89.53	10.36 ± 0.24	87.33	12.97 ± 0.26	
	ORM+B	91.88	8.04 ± 0.21	91.92	8.22 ± 0.21	
	T	90.96	8.80 ± 0.22	88.76	11.43 ± 0.25	
	TCM	90.75	9.06 ± 0.22	91.12	9.16 ± 0.23	
	TORM	91.12	8.74 ± 0.22	93.89	6.28 ± 0.19	
	TORM+T	92.46	7.43 ± 0.20	94.44	5.68 ± 0.18	

	Wikipedia Japanese		
	F_1	error rate	
T	86.26	14.00 ± 0.38	
TCM	85.38	15.10 ± 0.40	
TORM	86.67	13.52 ± 0.38	
		12.86 ± 0.37	

Application: Cross-Lingual Text Classification

- Given: training documents with class labels
- Goal: guess class labels for test documents in some other language
- better than plain machine translation

	Wikipedia Japanese		
	F_1	error rate	
T	86.26	14.00 ± 0.38	
TCM	85.38	15.10 ± 0.40	
TORM	86.67	13.52 ± 0.38	
TORM+T	87.29	12.86 ± 0.37	

Application: Dataless Text Classification

Newsgroup Name	Expanded Label	
talk.politics.guns	politics guns	
talk.politics.mideast	politics mideast	
talk.politics.misc	politics	
alt.atheism	atheism	
soc.religion.christian	society religion christianity christian	
talk.religion.misc	religion	
comp.sys.ibm.pc.hardware	computer systems ibm pc hardware	
comp.sys.mac.hardware	computer systems mac macintosh apple hardware	
sci.electronics	science electronics	
comp.graphics	computer graphics	
comp.windows.x	computer windows x windowsx	
comp.os.ms-windows.misc	computer os operating system microsoft windows	
misc.forsale	for sale discount	
rec.autos	cars	
rec.motorcycles	motorcycles	
rec.sport.baseball	baseball	
rec.sport.hockey	hockey	
sci.crypt	science cryptography	
sci.med	science medicine	
sci.space	science space	

Instead of supervision from labeled data, use proximity to representation of the label In concept-based representation space for classification

Chang et al. Importance of Semantic Representation: Dataless Classification Song et al. Cross-Lingual Dataless Classification for Many Languages

Application: Information Retrieval via Siamese Models

Convolutional Deep Structured Semantic Model (CDSSM)

Semantic layer h

Max pooling layer v

Convolutional layer c_t

Word hashing layer f_t (character trigrams)

Word sequence x_t

Application: Information Retrieval via Siamese Models

Convolutional Deep Structured Semantic Model (CDSSM)

Semantic layer h

Max pooling layer ν

Convolutional layer c_t

Word hashing layer f_t (character trigrams)

Word sequence x_t

Application: Information Retrieval via Relevance Matching (Co-PACRR)

Asymmetry of Query and Document:
Support for proximity of query term matches within document,
but permutation of query term order as regularization

Kai Hui, Andrew Yates, Klaus Berberich, Gerard de Melo. PACRR: A Position-Aware Neural IR Model for Relevance Matching. EMNLP 2017.

Kai Hui, Andrew Yates, Klaus Berberich, Gerard de Melo. Co-PACRR: A Context-Aware Neural IR Model for Ad-hoc Retrieval. WSDM 2018