Homework sheet 2 - Tutorial 204 Electrodynamics 2023

17 May 2023

Arnaud Couairon - Centre de Physique Théorique, École Polytechnique Tutorial organizers:

Erik Linnér (erik.linner@polytechnique.edu)

Sylvain Chaty (sylvain.chaty@polytechnique.edu)

Didina Serban (didina.serban@polytechnique.edu)

Max Gilljohann (max.gilljohann@polytechnique.edu)

https://moodle.polytechnique.fr/course/view.php?id=15612

The solutions are to be handed in on the 31st of May 2023 via Moodle. You can work in groups up to 2 students (i.e. 2 names per solution).

Exercise 1: Retarded potential for a point charge (Liénard-Wiechert potentials)

We will now consider a point charge moving along the x-direction towards an observer located at $\mathbf{r} = 0$. We want to find its effective electric and magnetic potentials V and \mathbf{A} .

- a) Based on your naive expectations from the lectures, write down the expression for the retarded electric potential for the charge density ρ of a point charge q moving with velocity v.
- b) Now consider the point charge to be an extended line charge of length a > 0 (parallel to the x-axis, with $a \to 0$. Determine the effective length a' of the line charge as the observer sees it at a given point in time, considering a finite speed c for the propagation of information.
- c) Now use this result to obtain the electric potential $V(\mathbf{r},t)$ and then let $a \to 0$. (*Hint: l'Hopital*) You should obtain a retardation effect depending on v/c. How do you interpret this result?
- d) Generalize your result to arbitrary directions of the point charge's velocity \mathbf{v} and write it as a function of \mathbf{v} and \mathbf{u}_r , where \mathbf{u}_r is the unit vector pointing from the charge to the observer. (*Hint: A geometrical proof is sufficient*).
- e) Derive the magnetic potential \mathbf{A} and write it as a function of the electric potential V. (*Hint: What is the relation between* \mathbf{j} and ρ ?) V and \mathbf{A} are called the Liénard-Wiechert potentials of a point charge. (They arise purely from geometrical considerations and do not take into account relativistic effects yet (like the Doppler effect)).

Exercise 2: Accurate radiation characteristics of an AC loop current

We now want to investigate the exact radiation profile of an oscillating ring current in the x-y-plane as shown in the following figure:

The ring has a radius a and it is charge-neutral. The current is given by

$$I(t) = \begin{cases} 0 & \text{for } t < 0\\ I_0 \sin(\omega t) & \text{for } t \ge 0 \end{cases}$$

Here we will work with the electrostatic CGS units where $\frac{1}{4\pi\epsilon_0} = 1$, $\frac{\mu_0}{4\pi} = \frac{1}{c^2}$. (More information can be found on https://en.wikipedia.org/wiki/Gaussian_units)

- a) Write down the retarded potentials $V(\mathbf{r},t)$, $\mathbf{A}(\mathbf{r},t)$ and the retarded time $t_r = t ||\mathbf{r} \mathbf{r}'||/c$ for points \mathbf{r}' on the ring. (Hint: For this exercise it will be the easiest to work in cartesian coordinates and parametrize the points on the ring by the radius and an angle ϕ , but you are free to use another system).
- b) Use a programming language of your choice to write a code that evaluates the retarded potentials and the electric and magnetic fields $\mathbf{E}(\mathbf{r},t)$, $\mathbf{B}(\mathbf{r},t)$ for arbitrary points \mathbf{r} and time t.

Define all parameters in such a way that they an be easily modified later. You can start with a=1, $\omega=100$, c=10000. For the numerical integrals you can use 40 grid points or more, and for the numerical derivative you can use the finite-difference method with step-size 0.001.

- c) Plot your result for the components of the electric and magnetic fields at a point in the x-y-plane, for example (10a,0,0), as a function of time up to $t_{max} = 2T = 2\frac{2\pi}{\omega}$. Check that your result is converged with respect to the size of the integration grid and step-size. Modify the position and time window if needed to show the relevant behaviour of your result.
- d) How do you interpret your result? Which components of the fields are nonzero, and does it agree with what you expect? Is there a phase factor between the electric and magnetic field?

Investigate the behaviour for different values of c and distances to the ring, and report your findings.