

Un análisis de la dinámica de las precipitaciones en Barcelona

¿Qué significa RAMBLA?

Suelo por donde las aguas pluviales corren cuando son muy copiosas

Metodología

EDA (Análisis Descriptivo Estadístico) & Análisis Estadístico Diferencial

) 10%

PowerBI

Creación del Dashboard

90% Python

Tratamiento de datos (Pandas, Numpy) Visualización (Matplotlib, Seaborn) Estadística (Scipy.Stats)

Resultados

Sobre el Data Set

Descripción de la variable Precipitación

¿Sequía?

Evaluación de la precipitación en el tiempo

¿Intensidad?

Revisión de la frecuencia e intensidad de los episodios de lluvias fuertes

¿Temperatura?

Efecto de la temperatura en las precipitaciones

Serie Climática desde 1950 de BCN

	ANY	MES	DIA	PPT	TX	TN	INS
0	1950	1	1	0.0	13.1	7.1	-99.9
1	1950	1	2	0.0	12.0	3.9	-99.9
2	1950	1	3	0.0	15.5	6.8	-99.9
3	1950	1	4	0.0	14.6	9.5	-99.9
4	1950	1	5	0.0	14.2	6.5	-99.9

```
P_T_diarias_BCN.info()
 ✓ 0.0s
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 27028 entries, 0 to 27027
Data columns (total 7 columns):
    Column Non-Null Count Dtype
    ANY
            27028 non-null int64
            27028 non-null int64
    MES
    DIA
            27028 non-null int64
    PPT
            27028 non-null float64
    TX
            27028 non-null float64
            27028 non-null float64
    INS
            27028 non-null float64
dtypes: float64(4), int64(3)
memory usage: 1.4 MB
```

Shapiro Test

Test para determinar la normalidad de la distribución de una variable


```
from scipy.stats import shapiro
stat, p_value = shapiro(prec_anual_BCN['PPT_anual'])
```


stat (aprox. 1)

Estadística de la prueba se acerca a la normalidad

P_value > 0.05

Criterio de decisiónSigue una distribución normal

La distribución no es normal: p_value = 0.000376 0.9272110317443841

Distribución de las precipitaciones anuales

PRECIPITACIÓN

Evaluación Precipitación Anual

linregress()

Cálculo de la regresión lineal de los datos, en busca de una tendencia.

 $R2 (r_value) = -1$

Coeficiente de Correlación Relación negativa perfecta

p_value < 0.05

Sinificancia en la relación

Estadísticamente representativo

```
from scipy.stats import linregress
slope, intercept, r_value, p_value, std_err = linregress(
    prec_anual_BCN['ANY'],
    prec_anual_BCN['PPT_anual'])

# Muestro los resultados del calculo de linregress

Tendencia anual: -1.08 mm/año
Intercepto: 2752.85
Coeficiente de correlación: -0.13
Valor p: 0.262
Error estándar: 0.95
```

La tendencia NO es estadísticamente significativa.

Precipitación Anual (Barplot)

Drástico descenso de las precipitaciones en los últimos 3 años

Hipótesis 1: Ha disminuido la precipitación anual a lo largo del tiempo en el áre

Boxplots Lluvias anuales

Identificar periodos de lluvias intensas en los outliers.

Lineplot Lluvias Fuertes

Analizar si los eventos extremos están aumentando en el tiempo

Scatterplot PPT vs. lluvias

Identificar si la cantidad total de lluvia se distribuye en menos días

Boxplots

Lluvias anuales

Identificar periodos de lluvias intensas en los outliers.

(ppt >1mm)

Categorización Días Lluvia Fuerte

```
dias_lluvia_total = P_T_diarias_BCN['PPT'] >= 1
   dias_lluvia_total = P_T_diarias_BCN[dias_lluvia_total]
   dias_lluvia_total['PPT'].describe()
 ✓ 0.0s
         4349.000000
count
           10.280547
mean
std
           13.502939
min
            1.000000
25%
            2.300000
50%
            5.400000
75%
           12.800000
          194.800000
max
Name: PPT, dtype: float64
```


Lineplot Lluvias Fuertes

Analizar si los eventos extremos están aumentando en el tiempo

Correlación Tau-Kendall

Medida no paramétrica para evaluar la relación entre dos variables

 $T (tau_value) = 1$

Correlación positiva perfecta

p_value < 0.05

Significancia estadística significativa

Scatterplot PPT vs. lluvias

Identificar si la cantidad total de lluvia se distribuye en menos días

tau value: 0.42, p_value es: 1.3e-07

tau value: 0.69, p_value es: 3.2e-17

Cantidad de lluvia por la intensidad

```
def clasificar_lluvia(ppt):
    if ppt > 50:
        return 'Extrema'
    elif ppt > 13:
        return 'Fuerte'
    elif ppt > 0:
        return 'Débil'
    else:
        return 'Sin lluvia'
```


Hipótesis 2: Amento de los días en eventos de lluvias intensas.

Precipitaciones Totales Anuales y Temperatura Media Precipitaciones -- Temperatura 1000 -- 38 ي چ Temperatura Máxima Anual (ºC) 800 Precipitaciones (mm) 600 400 - 32 200 -1950 1960 1970 1980 1990 2000 2010 2020

Precipitación vs Temperatura Kendall Tau: -0.38, P-valor: 2.2e-06

Hipótesis 3: Las precipitaciones disminuyen con temperaturas más altas.

w o'i Nuchas gracias!

Ponente

http://www.linkedin.com/in/rosimoreno

https://github.com/RosiMoreno

Rosi Moreno

Hidrogeóloga Analista de Datos Docente