SOSC 5340: Overview of Statistical Inference and Prediction

Han Zhang

Outline

Logistics

Probability

Statistics

Estimation

Inference

Prediction

Summary

Instructor: ZHANG, Han

• Office: 2379

Teaching Assistant: Li, Wei

Instructor: ZHANG, Han

• Office: 2379

Email: zhangh@ust.hk

Teaching Assistant: Li, Wei

Instructor: ZHANG, Han

• Office: 2379

Email: zhangh@ust.hk

Office Hour: Mon 4-5PM; 2379 Academic Building

Teaching Assistant: Li, Wei

Instructor: ZHANG, Han

• Office: 2379

• Email: zhangh@ust.hk

Office Hour: Mon 4-5PM; 2379 Academic Building

Teaching Assistant: Li, Wei

• Office: 3001

Instructor: ZHANG, Han

Office: 2379

• Email: zhangh@ust.hk

Office Hour: Mon 4-5PM; 2379 Academic Building

Teaching Assistant: Li, Wei

Office: 3001

Email: wlick@connect.ust.hk

Instructor: ZHANG, Han

Office: 2379

Email: zhangh@ust.hk

Office Hour: Mon 4-5PM; 2379 Academic Building

Teaching Assistant: Li, Wei

Office: 3001

Email: wlick@connect.ust.hk

Office Hour: TBD

Self Introduction

 Second course in SOSC's statistics sequence for RPG (after SOSC 5090)

- Second course in SOSC's statistics sequence for RPG (after SOSC 5090)
- Three core goals of social sciences:

- Second course in SOSC's statistics sequence for RPG (after SOSC 5090)
- Three core goals of social sciences:
 - 1. Description: describing one variable

- Second course in SOSC's statistics sequence for RPG (after SOSC 5090)
- Three core goals of social sciences:
 - 1. Description: describing one variable
 - 2. Prediction: correlation between two social phenomena.

- Second course in SOSC's statistics sequence for RPG (after SOSC 5090)
- Three core goals of social sciences:
 - 1. Description: describing one variable
 - 2. Prediction: correlation between two social phenomena.
 - 3. Explanation: are the correlation causal?

- Second course in SOSC's statistics sequence for RPG (after SOSC 5090)
- Three core goals of social sciences:
 - 1. Description: describing one variable
 - 2. Prediction: correlation between two social phenomena.
 - 3. Explanation: are the correlation causal?
- Three set of knowledge/skills

- Second course in SOSC's statistics sequence for RPG (after SOSC 5090)
- Three core goals of social sciences:
 - 1. Description: describing one variable
 - 2. Prediction: correlation between two social phenomena.
 - 3. Explanation: are the correlation causal?
- Three set of knowledge/skills
 - 1. Statistical estimation and inference

- Second course in SOSC's statistics sequence for RPG (after SOSC 5090)
- Three core goals of social sciences:
 - 1. Description: describing one variable
 - 2. Prediction: correlation between two social phenomena.
 - 3. Explanation: are the correlation causal?
- Three set of knowledge/skills
 - 1. Statistical estimation and inference
 - 2. Applied regression modeling

- Second course in SOSC's statistics sequence for RPG (after SOSC 5090)
- Three core goals of social sciences:
 - 1. Description: describing one variable
 - 2. Prediction: correlation between two social phenomena.
 - 3. Explanation: are the correlation causal?
- Three set of knowledge/skills
 - 1. Statistical estimation and inference
 - 2. Applied regression modeling
 - 3. Causal inference (second half of the semester)

Grading

Attendance	10%
Assignments	10% 30%
Presentation of a published research (15 min)	10%
Presentation of your final paper (20 min)	15%
Write-up of your final paper	35%

 Homework assignment: short coding homework to make sure that you know how to run models we covered in the lectures.

- Homework assignment: short coding homework to make sure that you know how to run models we covered in the lectures.
 - 3-4 times

- Homework assignment: short coding homework to make sure that you know how to run models we covered in the lectures.
 - 3-4 times
- Our TA will hold tutorial sections to teach you

- Homework assignment: short coding homework to make sure that you know how to run models we covered in the lectures.
 - 3-4 times
- Our TA will hold tutorial sections to teach you
 - how to run these models before assignments.

- Homework assignment: short coding homework to make sure that you know how to run models we covered in the lectures.
 - 3-4 times
- Our TA will hold tutorial sections to teach you
 - how to run these models before assignments.
 - discuss solutions of previous assignment

- Homework assignment: short coding homework to make sure that you know how to run models we covered in the lectures.
 - 3-4 times
- Our TA will hold tutorial sections to teach you
 - how to run these models before assignments.
 - discuss solutions of previous assignment
 - 3-4 times

• A list of academic publications will be distributed later

- A list of academic publications will be distributed later
- These publications reflect use/misuses econometrics in current applied research

- A list of academic publications will be distributed later
- These publications reflect use/misuses econometrics in current applied research
- You are required to select on article, and present it to the entire class (15 minutes)

- A list of academic publications will be distributed later
- These publications reflect use/misuses econometrics in current applied research
- You are required to select on article, and present it to the entire class (15 minutes)
- https://gohkust-my.sharepoint.com/:x: /g/personal/zhangh_ust_hk/
 EVtlu5IA6NBOgHJNoOdsA3YBOJ1eqZXl1Y6AENA26C-r6w?e= 1GoPZd

 As a researcher, you will need to apply what you have learnt to a real social science problem, and write an academic article.

- As a researcher, you will need to apply what you have learnt to a real social science problem, and write an academic article.
- It is very important to write and present your own work.

- As a researcher, you will need to apply what you have learnt to a real social science problem, and write an academic article.
- It is very important to write and present your own work.
- You need to

- As a researcher, you will need to apply what you have learnt to a real social science problem, and write an academic article.
- It is very important to write and present your own work.
- You need to
 - Present your own final paper to the class (15%)

- As a researcher, you will need to apply what you have learnt to a real social science problem, and write an academic article.
- It is very important to write and present your own work.
- You need to
 - Present your own final paper to the class (15%)
 - Write it down (35%)

- As a researcher, you will need to apply what you have learnt to a real social science problem, and write an academic article.
- It is very important to write and present your own work.
- You need to
 - Present your own final paper to the class (15%)
 - Write it down (35%)
- Treat this as a real paper that has the potential to be published at academic journals/presented at academic conferences.

Materials

• Some textbooks that inspired the slides

- Some textbooks that inspired the slides
 - Scott Cunningham. Causal Inference: the Mixtape. Yale
 University, 2021. My weekly schedule is most similar to this
 book. It can be freely viewed at
 https://mixtape.scunning.com/index.html

- Some textbooks that inspired the slides
 - Scott Cunningham. Causal Inference: the Mixtape. Yale
 University, 2021. My weekly schedule is most similar to this
 book. It can be freely viewed at
 https://mixtape.scunning.com/index.html
 - Aronow, Peter M., and Benjamin T. Miller. Foundations of Agnostic Statistics. Cambridge University Press, 2019. (more mathematical; mostly used for the first half of the class).

- Some textbooks that inspired the slides
 - Scott Cunningham. Causal Inference: the Mixtape. Yale
 University, 2021. My weekly schedule is most similar to this
 book. It can be freely viewed at
 https://mixtape.scunning.com/index.html
 - Aronow, Peter M., and Benjamin T. Miller. Foundations of Agnostic Statistics. Cambridge University Press, 2019. (more mathematical; mostly used for the first half of the class).
 - Joshua D. Angrist and Jorn-Steffen Pischke. Mostly Harmless Econometrics: An Empiricists Companion. Princeton University Press, 2009. (more applied; mostly used for the second half of the class).

- Some textbooks that inspired the slides
 - Scott Cunningham. Causal Inference: the Mixtape. Yale
 University, 2021. My weekly schedule is most similar to this
 book. It can be freely viewed at
 https://mixtape.scunning.com/index.html
 - Aronow, Peter M., and Benjamin T. Miller. Foundations of Agnostic Statistics. Cambridge University Press, 2019. (more mathematical; mostly used for the first half of the class).
 - Joshua D. Angrist and Jorn-Steffen Pischke. Mostly Harmless Econometrics: An Empiricists Companion. Princeton University Press, 2009. (more applied; mostly used for the second half of the class).
 - Hansen, Bruce. Econometrics, 2020. Free at the author's website https://www.ssc.wisc.edu/~bhansen/econometrics/

Coding

• We will use R for lectures and tutorials

Coding

- We will use R for lectures and tutorials
- If you prefer Stata, that is okay

Coding

- We will use R for lectures and tutorials
- If you prefer Stata, that is okay
- Scott Cunningham. Causal Inference: the Mixtape has both R and Stata codes.

Three types of social science questions

- 1. Description: describing one variable
- 2. Prediction: correlation between two social phenomena.
- 3. Explanation: are the correlation causal?
- Today's lecture focuses on the first two

Three types of social science questions

- 1. Description: describing one variable
- 2. Prediction: correlation between two social phenomena.
- 3. Explanation: are the correlation causal?
- Today's lecture focuses on the first two
- How do we use statistics to do description and prediction

• Random variable: abstraction of some concept we care about.

- Random variable: abstraction of some concept we care about.
- Examples:

- Random variable: abstraction of some concept we care about.
- Examples:
 - define random variable X as gender; it can take several values from male, female, transgender,...

- Random variable: abstraction of some concept we care about.
- Examples:
 - define random variable X as gender; it can take several values from male, female, transgender,...
 - define random variable X as height; it can take numeric values.

 Descriptive problem: measure the probability distribution of a random variable

- Descriptive problem: measure the probability distribution of a random variable
- Probability density function (PDF): f(x)

- Descriptive problem: measure the probability distribution of a random variable
- Probability density function (PDF): f(x)
 - How likely does random variable X take a particular value x

- Descriptive problem: measure the probability distribution of a random variable
- Probability density function (PDF): f(x)
 - How likely does random variable X take a particular value x
 - f(x) = P(X = x)

- Descriptive problem: measure the probability distribution of a random variable
- Probability density function (PDF): f(x)
 - How likely does random variable X take a particular value x
 - f(x) = P(X = x)
- Cumulative distribution function (CDF): $F(X) = P(X \le x)$

- Descriptive problem: measure the probability distribution of a random variable
- Probability density function (PDF): f(x)
 - How likely does random variable X take a particular value x
 - f(x) = P(X = x)
- Cumulative distribution function (CDF): $F(X) = P(X \le x)$
 - The probability that a random variable X takes a value equal to or less than x?

 Predictive/correlation problem can be addressed by the joint/conditional probabilities of random variables

- Predictive/correlation problem can be addressed by the joint/conditional probabilities of random variables
- Joint probability density function: f(X = x, Y = y)

- Predictive/correlation problem can be addressed by the joint/conditional probabilities of random variables
- Joint probability density function: f(X = x, Y = y)
 - Probability that X takes value x and Y takes value y

- Predictive/correlation problem can be addressed by the joint/conditional probabilities of random variables
- Joint probability density function: f(X = x, Y = y)
 - Probability that X takes value x and Y takes value y
- Conditional probability density function

- Predictive/correlation problem can be addressed by the joint/conditional probabilities of random variables
- Joint probability density function: f(X = x, Y = y)
 - Probability that X takes value x and Y takes value y
- Conditional probability density function
 - Probability that Y takes value y, give that X takes value x.

	Treatment A		Treatm	ent B
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

• Two treatments for kidney stones

	Treatment A		Treatm	ent B
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

• X is whether the patient is cured (1) or not (0)

	Treatment A		Treatment B	
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

- X is whether the patient is cured (1) or not (0)
- What is the conditional probability of being cured, given treatment A and B?

	Treatment A		Treatment B	
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

- X is whether the patient is cured (1) or not (0)
- What is the conditional probability of being cured, given treatment A and B?
 - P(X = 1 | treatment = A)

	Treatment A		Treatment B	
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

- X is whether the patient is cured (1) or not (0)
- What is the conditional probability of being cured, given treatment A and B?
 - P(X = 1 | treatment = A)
 - P(X = 1 | treatment = B)

	Treatment A		Treatment B	
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

- X is whether the patient is cured (1) or not (0)
- What is the conditional probability of being cured, given treatment A and B?
 - P(X = 1 | treatment = A)
 - P(X = 1 | treatment = B)
- P(X = 1 | treatment = A) = 273/350 = 78%

	Treatment A		Treatment B	
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

- X is whether the patient is cured (1) or not (0)
- What is the conditional probability of being cured, given treatment A and B?
 - P(X = 1 | treatment = A)
 - P(X = 1 | treatment = B)
- P(X = 1 | treatment = A) = 273/350 = 78%
- P(X = 1 | treatment = B) = 289/350 = 83%

	Treatment A		Treatment B	
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

- X is whether the patient is cured (1) or not (0)
- What is the conditional probability of being cured, given treatment A and B?
 - P(X = 1 | treatment = A)
 - P(X = 1 | treatment = B)
- P(X = 1 | treatment = A) = 273/350 = 78%
- P(X = 1 | treatment = B) = 289/350 = 83%
- treatment B is more effective in the entire population

	Treatment A		Treatment B	
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

• What is the conditional probability of being cured, conditional on treatment status and stone size?

	Treatment A		Treatm	nent B
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

- What is the conditional probability of being cured, conditional on treatment status and stone size?
- Small Kidney Stone:

	Treatment A		Treatm	ent B
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

- What is the conditional probability of being cured, conditional on treatment status and stone size?
- Small Kidney Stone:
 - P(X = 1 | treatment = A, size = small) = 81/87 = 93%

	Treatment A		Treatm	ent B
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

- What is the conditional probability of being cured, conditional on treatment status and stone size?
- Small Kidney Stone:
 - P(X = 1 | treatment = A, size = small) = 81/87 = 93%
 - P(X = 1 | treatment = B, size = small) = 234/270 = 87%

	Treatment A		Treatm	ent B
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

- What is the conditional probability of being cured, conditional on treatment status and stone size?
- Small Kidney Stone:
 - P(X = 1 | treatment = A, size = small) = 81/87 = 93%
 - P(X = 1 | treatment = B, size = small) = 234/270 = 87%
- Large Kidney Stone:

	Treatment A		Treatment B	
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

- What is the conditional probability of being cured, conditional on treatment status and stone size?
- Small Kidney Stone:
 - P(X = 1 | treatment = A, size = small) = 81/87 = 93%
 - P(X = 1 | treatment = B, size = small) = 234/270 = 87%
- Large Kidney Stone:
 - P(X = 1 | treatment = A, size = large) = 192/263 = 73%

	Treatment A		Treatment B	
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

- What is the conditional probability of being cured, conditional on treatment status and stone size?
- Small Kidney Stone:
 - P(X = 1 | treatment = A, size = small) = 81/87 = 93%
 - P(X = 1 | treatment = B, size = small) = 234/270 = 87%
- Large Kidney Stone:
 - P(X = 1 | treatment = A, size = large) = 192/263 = 73%
 - P(X = 1 | treatment = B, size = large) = 55/80 = 69%

	Treatment A		Treatment B	
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

- What is the conditional probability of being cured, conditional on treatment status and stone size?
- Small Kidney Stone:
 - P(X = 1 | treatment = A, size = small) = 81/87 = 93%
 - P(X = 1 | treatment = B, size = small) = 234/270 = 87%
- Large Kidney Stone:
 - P(X = 1 | treatment = A, size = large) = 192/263 = 73%
 - P(X = 1 | treatment = B, size = large) = 55/80 = 69%
- B is more effective in the entire population, but A is more effect for both patients with small and large kidney stones.

	Treatment A		Treatm	nent B
Kidney Stone	cured	patient	cured	patient
Small	81	87	234	270
Large	192	263	55	80
Total	273	350	289	350

- What is the conditional probability of being cured, conditional on treatment status and stone size?
- Small Kidney Stone:
 - P(X = 1 | treatment = A, size = small) = 81/87 = 93%
 - P(X = 1 | treatment = B, size = small) = 234/270 = 87%
- Large Kidney Stone:
 - P(X = 1 | treatment = A, size = large) = 192/263 = 73%
 - P(X = 1 | treatment = B, size = large) = 55/80 = 69%
- B is more effective in the entire population, but A is more effect for both patients with small and large kidney stones.
- This is known as the Simpson's Paradox. Why?

• Expectation (expected value) E(X):

$$E(X) = \int x \cdot f(x) dx$$

- Expectation (expected value) E(X):
 - The average value of a random variable X

$$E(X) = \int x \cdot f(x) dx$$

- Expectation (expected value) E(X):
 - The average value of a random variable X
- Categorical variable's expectation:

$$E(X) = \int x \cdot f(x) dx$$

- Expectation (expected value) E(X):
 - The average value of a random variable X
- Categorical variable's expectation:
 - Let X be a random variable with a finite number of finite outcomes x_1, x_2, \ldots, x_k occurring with probabilities p_1, p_2, \ldots, p_k

$$E(X) = \int x \cdot f(x) dx$$

- Expectation (expected value) E(X):
 - The average value of a random variable X
- Categorical variable's expectation:
 - Let X be a random variable with a finite number of finite outcomes x_1, x_2, \ldots, x_k occurring with probabilities p_1, p_2, \ldots, p_k
 - E(X) is the weighted average of X, with probability as weights

$$E(X) = \int x \cdot f(x) dx$$

- Expectation (expected value) E(X):
 - The average value of a random variable X
- Categorical variable's expectation:
 - Let X be a random variable with a finite number of finite outcomes x_1, x_2, \ldots, x_k occurring with probabilities p_1, p_2, \ldots, p_k
 - E(X) is the weighted average of X, with probability as weights
 - $E[X] = x_1p_1 + x_2p_2 + \cdots + x_kp_k = \sum_{i=1}^k x_i p_i$

$$E(X) = \int x \cdot f(x) dx$$

- Expectation (expected value) E(X):
 - The average value of a random variable X
- Categorical variable's expectation:
 - Let X be a random variable with a finite number of finite outcomes x_1, x_2, \ldots, x_k occurring with probabilities p_1, p_2, \ldots, p_k
 - E(X) is the weighted average of X, with probability as weights
 - $E[X] = x_1p_1 + x_2p_2 + \cdots + x_kp_k = \sum_{i=1}^k x_i p_i$
- Continuous variable's expectation

$$E(X) = \int x \cdot f(x) dx$$

Expected Value (exercise)

• What is the E(X) of the random variable X?

Χ	P(X)
0	0.8
1	0.1
2	0.06
3	0.03
4	0.04

• Useful formula of expected values

- Useful formula of expected values
 - 1. Linearity of expectation:

$$E(aX + bY + c) = aE(X) + bE(Y) + c$$

- Useful formula of expected values
 - 1. Linearity of expectation:

$$E(aX + bY + c) = aE(X) + bE(Y) + c$$

2. Constant's expectation is constant: E(c) = c

• Conditional expectation E(Y|X=x):

$$\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|X]] = \begin{cases} \sum_{x} \mathbb{E}[Y|X = x]P(X = x) & \text{discrete } X \\ \int_{-\infty}^{\infty} \mathbb{E}[Y|X = x]f(x)dx & \text{continuous } X \end{cases}$$
(1)

- Conditional expectation E(Y|X=x):
 - What is the average value of a random variable Y, when we already know that random variable X takes a fixed value x

$$\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|X]] = \begin{cases} \sum_{x} \mathbb{E}[Y|X = x]P(X = x) & \text{discrete } X \\ \int_{-\infty}^{\infty} \mathbb{E}[Y|X = x]f(x)dx & \text{continuous } X \end{cases}$$
(1)

- Conditional expectation E(Y|X=x):
 - What is the average value of a random variable Y, when we already know that random variable X takes a fixed value x
- Useful formula 3: Law of Iterated Expectation (Law of Total Expectation)

$$\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|X]] = \begin{cases} \sum_{x} \mathbb{E}[Y|X = x]P(X = x) & \text{discrete } X \\ \int_{-\infty}^{\infty} \mathbb{E}[Y|X = x]f(x)dx & \text{continuous } X \end{cases}$$
(1)

- Conditional expectation E(Y|X=x):
 - What is the average value of a random variable Y, when we already know that random variable X takes a fixed value x
- Useful formula 3: Law of Iterated Expectation (Law of Total Expectation)

$$\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|X]] = \begin{cases} \sum_{x} \mathbb{E}[Y|X = x]P(X = x) & \text{discrete } X \\ \int_{-\infty}^{\infty} \mathbb{E}[Y|X = x]f(x)dx & \text{continuous } X \end{cases}$$
(1)

• Basically, this theorem says that:

- Conditional expectation E(Y|X=x):
 - What is the average value of a random variable Y, when we already know that random variable X takes a fixed value x
- Useful formula 3: Law of Iterated Expectation (Law of Total Expectation)

$$\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|X]] = \begin{cases} \sum_{x} \mathbb{E}[Y|X = x]P(X = x) & \text{discrete } X \\ \int_{-\infty}^{\infty} \mathbb{E}[Y|X = x]f(x)dx & \text{continuous } X \end{cases}$$
(1)

- Basically, this theorem says that:
 - if we have knowledge about one variable X(P(X))

- Conditional expectation E(Y|X=x):
 - What is the average value of a random variable Y, when we already know that random variable X takes a fixed value x
- Useful formula 3: Law of Iterated Expectation (Law of Total Expectation)

$$\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|X]] = \begin{cases} \sum_{x} \mathbb{E}[Y|X = x]P(X = x) & \text{discrete } X \\ \int_{-\infty}^{\infty} \mathbb{E}[Y|X = x]f(x)dx & \text{continuous } X \end{cases}$$
(1)

- Basically, this theorem says that:
 - if we have knowledge about one variable X(P(X))
 - and how X relates to Y (through P(Y|X))

- Conditional expectation E(Y|X=x):
 - What is the average value of a random variable Y, when we already know that random variable X takes a fixed value x
- Useful formula 3: Law of Iterated Expectation (Law of Total Expectation)

$$\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|X]] = \begin{cases} \sum_{x} \mathbb{E}[Y|X = x]P(X = x) & \text{discrete } X \\ \int_{-\infty}^{\infty} \mathbb{E}[Y|X = x]f(x)dx & \text{continuous } X \end{cases}$$
(1)

- Basically, this theorem says that:
 - if we have knowledge about one variable X(P(X))
 - and how X relates to Y (through P(Y|X))
 - we can calculate the average of another variable Y.

 The variance measures the dispersion or the "spread" of a probability distribution.

- The variance measures the dispersion or the "spread" of a probability distribution.
- The variance of a random variable X, denoted V(Y), is the expected value of the square of the deviation of Y from its mean:

- The variance measures the dispersion or the "spread" of a probability distribution.
- The variance of a random variable X, denoted V(Y), is the expected value of the square of the deviation of Y from its mean:
- $V(X) = E[(X E(X))^2]$

- The variance measures the dispersion or the "spread" of a probability distribution.
- The variance of a random variable X, denoted V(Y), is the expected value of the square of the deviation of Y from its mean:
- $V(X) = E[(X E(X))^2]$
- Standard deviation: $\sigma = \sqrt{V(X)}$

Definition (Alternative Formula for Variance)

$$V(X) = E[X^2] - E[X]^2$$

Proof.

$$V(X) = E\left[\left(X - E(X)\right)^{2}\right] \tag{2}$$

$$= E[X^2 - 2XE(X) + E(X)^2]$$
 (3)

$$= E(X^{2}) - 2E[XE(X)] + E[E(X)^{2}]$$
 (4)

$$= E(X^{2}) - 2E(X)E(X) + E(X)^{2}$$
 (5)

$$= E(X^2) - E(X)^2 (6)$$

• Probability is defined on population

- Probability is defined on population
- Probability of population is often very hard to obtain;

- Probability is defined on population
- Probability of population is often very hard to obtain;
 - We need to have information of every unit in the population

- Probability is defined on population
- Probability of population is often very hard to obtain;
 - We need to have information of every unit in the population
 - But it's often unrealistic

- Probability is defined on population
- Probability of population is often very hard to obtain;
 - We need to have information of every unit in the population
 - But it's often unrealistic
- Statistics (or sample statistics) is an quantity computed from samples

I.I.D. random variables

 Example: X is height and we want its probability distribution of all HK residents

I.I.D. random variables

- Example: X is height and we want its probability distribution of all HK residents
- We can collect every HKer's height; high cost and population changes

I.I.D. random variables

- Example: X is height and we want its probability distribution of all HK residents
- We can collect every HKer's height; high cost and population changes
- Or we can sample a HKer and record his/her height X_1 , and then sample another HKer get height X_2 .

- Example: X is height and we want its probability distribution of all HK residents
- We can collect every HKer's height; high cost and population changes
- Or we can sample a HKer and record his/her height X_1 , and then sample another HKer get height X_2 .
- This process continues 100 times, we get $(X_1, X_2, \dots, X_{100})$

- Example: X is height and we want its probability distribution of all HK residents
- We can collect every HKer's height; high cost and population changes
- Or we can sample a HKer and record his/her height X_1 , and then sample another HKer get height X_2 .
- This process continues 100 times, we get $(X_1, X_2, \cdots, X_{100})$
- $(X_1, X_2, \dots, X_{100})$ are independent and identically distributed (I.I.D.)

- Example: X is height and we want its probability distribution of all HK residents
- We can collect every HKer's height; high cost and population changes
- Or we can sample a HKer and record his/her height X_1 , and then sample another HKer get height X_2 .
- This process continues 100 times, we get $(X_1, X_2, \cdots, X_{100})$
- $(X_1, X_2, \dots, X_{100})$ are independent and identically distributed (I.I.D.)
 - independent: our i th draw does not depend on the j th draw;

- Example: X is height and we want its probability distribution of all HK residents
- We can collect every HKer's height; high cost and population changes
- Or we can sample a HKer and record his/her height X_1 , and then sample another HKer get height X_2 .
- This process continues 100 times, we get $(X_1, X_2, \cdots, X_{100})$
- $(X_1, X_2, \dots, X_{100})$ are independent and identically distributed (I.I.D.)
 - independent: our *i* th draw does not depend on the *j* th draw;
 - in math: $P(X_i, X_j) = P(X_i)P(X_j)$

- Example: X is height and we want its probability distribution of all HK residents
- We can collect every HKer's height; high cost and population changes
- Or we can sample a HKer and record his/her height X_1 , and then sample another HKer get height X_2 .
- This process continues 100 times, we get $(X_1, X_2, \cdots, X_{100})$
- $(X_1, X_2, \dots, X_{100})$ are independent and identically distributed (I.I.D.)
 - independent: our *i* th draw does not depend on the *j* th draw;
 - in math: $P(X_i, X_j) = P(X_i)P(X_j)$
 - identically distributed: they all come from the same probability distribution: HKer's height.

- Example: X is height and we want its probability distribution of all HK residents
- We can collect every HKer's height; high cost and population changes
- Or we can sample a HKer and record his/her height X_1 , and then sample another HKer get height X_2 .
- This process continues 100 times, we get $(X_1, X_2, \cdots, X_{100})$
- $(X_1, X_2, \dots, X_{100})$ are independent and identically distributed (I.I.D.)
 - independent: our i th draw does not depend on the j th draw;
 - in math: $P(X_i, X_j) = P(X_i)P(X_j)$
 - identically distributed: they all come from the same probability distribution: HKer's height.
 - They are not coming from a different distribution, say, heights of desks

• When the independent assumption may be violated?

- When the independent assumption may be violated?
 - e.g., samples are not random, but HKUST students.

- When the independent assumption may be violated?
 - e.g., samples are not random, but HKUST students.
- When the identically distributed assumption may be violated?

- When the independent assumption may be violated?
 - e.g., samples are not random, but HKUST students.
- When the identically distributed assumption may be violated?
 - e.g., population changes during the sampling process.

Sample Mean of I.I.D. random variables

• Let X_1, \dots, X_n be i.i.d. random samples of random variable X

Definition (Sample Mean)

The sample mean
$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

Sample Mean of I.I.D. random variables

- Let X_1, \dots, X_n be i.i.d. random samples of random variable X
- We do not know E(X) and we want to estimate it using samples

Definition (Sample Mean)

The sample mean $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$

Theorem (The Expected Value of the Sample Mean is the Population Mean)

$$E(\bar{X}) = E(X)$$

Implication:

Theorem (The Expected Value of the Sample Mean is the Population Mean)

$$E(\bar{X}) = E(X)$$

- Implication:
 - Expectation of the sample mean equals population mean

Theorem (The Expected Value of the Sample Mean is the Population Mean)

$$E(\bar{X}) = E(X)$$

- Implication:
 - Expectation of the sample mean equals population mean
 - We cannot directly obtain population mean

Theorem (The Expected Value of the Sample Mean is the Population Mean)

$$E(\bar{X}) = E(X)$$

- Implication:
 - Expectation of the sample mean equals population mean
 - We cannot directly obtain population mean
 - But mean of sample mean is something easier to obtain

The Mean of the Sample Mean is the Population Mean.

$$E(\bar{X}) = E(\frac{1}{n}(X_1 + \dots + X_n)) \tag{7}$$

$$=\frac{1}{n}E(X_1+\cdots+X_n) \tag{8}$$

$$= \frac{1}{n}E(X_1 + \dots + X_n)$$

$$= \frac{1}{n}[E(X_1) + \dots + E(X_n)]$$

$$= \frac{1}{n}[E(X) + \dots + E(X)]$$
(9)

$$=\frac{1}{n}[E(X)+\cdots E(X)] \tag{10}$$

$$= E(X) \tag{11}$$

 Mean of sample mean → suggests that you need to take all possible surveys, calculate the mean from each survey, and take the averages

- Mean of sample mean → suggests that you need to take all possible surveys, calculate the mean from each survey, and take the averages
- Basically it's the average of an average

- Mean of sample mean → suggests that you need to take all possible surveys, calculate the mean from each survey, and take the averages
- Basically it's the average of an average
- In real life, we only have one survey (i.e., one \bar{X}), so we still cannot calculate $E(\bar{X})$, which means that we also do not know the value of E(X)

- Mean of sample mean → suggests that you need to take all possible surveys, calculate the mean from each survey, and take the averages
- Basically it's the average of an average
- In real life, we only have one survey (i.e., one \bar{X}), so we still cannot calculate $E(\bar{X})$, which means that we also do not know the value of E(X)
- How is the one sample mean \bar{X} associates with the population mean E(X)?

Variance of the Sample Mean

• Let X_1, \dots, X_n be i.i.d. random samples of random variable X, with finite variance V(X)

Theorem (Sampling Variance of the Sample Mean) The variance of the sample mean is $V(\bar{X}) = \frac{V(X)}{n}$

Variance of the Sample Mean

• Let X_1, \dots, X_n be i.i.d. random samples of random variable X, with finite variance V(X)

Theorem (Sampling Variance of the Sample Mean) The variance of the sample mean is $V(\bar{X}) = \frac{V(X)}{n}$

• That is, variance of the sample mean decreases, as *n* increases.

Estimation: use (sample) statistics to infer population quantities

Definition (Estimate and Estimator)

Estimator of a population quantity θ is a function of the samples, $\hat{\theta} = h(X_1, \dots, X_n)$; $\hat{\theta}$ is the estimate of θ .

- Estimation: use (sample) statistics to infer population quantities
- Let X_1, \dots, X_n be i.i.d. random samples of random variable X

Definition (Estimate and Estimator)

Estimator of a population quantity θ is a function of the samples, $\hat{\theta} = h(X_1, \dots, X_n)$; $\hat{\theta}$ is the estimate of θ .

- Estimation: use (sample) statistics to infer population quantities
- Let X_1, \dots, X_n be i.i.d. random samples of random variable X
- We care about some population quantity of interest θ (e.g., mean, variance, median, etc)

Definition (Estimate and Estimator)

Estimator of a population quantity θ is a function of the samples, $\hat{\theta} = h(X_1, \dots, X_n)$; $\hat{\theta}$ is the estimate of θ .

- Estimation: use (sample) statistics to infer population quantities
- Let X_1, \dots, X_n be i.i.d. random samples of random variable X
- We care about some population quantity of interest θ (e.g., mean, variance, median, etc)

Definition (Estimate and Estimator)

Estimator of a population quantity θ is a function of the samples, $\hat{\theta} = h(X_1, \dots, X_n)$; $\hat{\theta}$ is the estimate of θ .

 In a nutshell, statistics uses estimator to provide estimate of population quantity

 There are usually many different estimators of the same quantity.

- There are usually many different estimators of the same quantity.
- Example 1:

- There are usually many different estimators of the same quantity.
- Example 1:
 - X_1 is an estimator of E(X).

- There are usually many different estimators of the same quantity.
- Example 1:
 - X_1 is an estimator of E(X).
 - sample mean \bar{X} is also an estimator of E(X)

- There are usually many different estimators of the same quantity.
- Example 1:
 - X_1 is an estimator of E(X).
 - sample mean \bar{X} is also an estimator of E(X)
- Example 2: linear regression coefficients can be estimated by many different estimators: OLS, MLE, GMM, Bayesian

- There are usually many different estimators of the same quantity.
- Example 1:
 - X_1 is an estimator of E(X).
 - sample mean \bar{X} is also an estimator of E(X)
- Example 2: linear regression coefficients can be estimated by many different estimators: OLS, MLE, GMM, Bayesian
- How can we say one estimator is better than the other?

- There are usually many different estimators of the same quantity.
- Example 1:
 - X_1 is an estimator of E(X).
 - sample mean \bar{X} is also an estimator of E(X)
- Example 2: linear regression coefficients can be estimated by many different estimators: OLS, MLE, GMM, Bayesian
- How can we say one estimator is better than the other?
 - What properties should good estimators have?

Desirable Property: Unbiasedness

• For an estimator $\hat{ heta}$, its bias is defined as $E(\hat{ heta}) - heta$

Definition (Unbiased Estimator)

An estimator $\hat{\theta}$ of θ is an unbiased estimator if $E(\hat{\theta}) = \theta$ or bias is 0

see proof here

Desirable Property: Unbiasedness

• For an estimator $\hat{\theta}$, its bias is defined as $E(\hat{\theta}) - \theta$

Definition (Unbiased Estimator)

An estimator $\hat{\theta}$ of θ is an unbiased estimator if $E(\hat{\theta}) = \theta$ or bias is 0

• In plain words: mean of estimated values equals the truth (θ)

see proof here

Desirable Property: Unbiasedness

• For an estimator $\hat{ heta}$, its bias is defined as $E(\hat{ heta}) - heta$

Definition (Unbiased Estimator)

An estimator $\hat{\theta}$ of θ is an unbiased estimator if $E(\hat{\theta}) = \theta$ or bias is 0

- In plain words: mean of estimated values equals the truth (heta)
- Question: sample mean \bar{X} is an unbiased estimator of population mean E(X). Why?

see proof here

Desirable Property: Unbiasedness

• For an estimator $\hat{ heta}$, its bias is defined as $E(\hat{ heta}) - heta$

Definition (Unbiased Estimator)

An estimator $\hat{\theta}$ of θ is an unbiased estimator if $E(\hat{\theta}) = \theta$ or bias is 0

- In plain words: mean of estimated values equals the truth (θ)
- Question: sample mean \bar{X} is an unbiased estimator of population mean E(X). Why?
- Answer: because the expectation of sample mean equals to population mean $(E(\bar{X}) = E(X))$

Desirable property: Consistency

Definition (Consistent Estimator)

An estimator $\hat{\theta}$ is an consistent estimator if $\hat{\theta}$ converges in probability to θ , as $n \to \infty$.

• Convergence in probability:

Desirable property: Consistency

Definition (Consistent Estimator)

An estimator $\hat{\theta}$ is an consistent estimator if $\hat{\theta}$ converges in probability to θ , as $n \to \infty$.

- Convergence in probability:
 - If a and b convergence in probability, it is very likely that their difference will be very small.

Desirable property: Consistency

Definition (Consistent Estimator)

An estimator $\hat{\theta}$ is an consistent estimator if $\hat{\theta}$ converges in probability to θ , as $n \to \infty$.

- Convergence in probability:
 - If a and b convergence in probability, it is very likely that their difference will be very small.
 - $\lim_{n\to\infty} P(|a-b| \le \epsilon) = 1$, for all $\epsilon > 0$.

Law of Large Numbers

• Let X_1, \dots, X_n be i.i.d. random samples of random variable X

Theorem (Weak Law of Large Numbers, Jacob Bernoulli, 1713)

The sample mean \bar{X} converges in probability to the population mean E(X), as $n \to \infty$.

Law of Large Numbers

• Let X_1, \dots, X_n be i.i.d. random samples of random variable X

Theorem (Weak Law of Large Numbers, Jacob Bernoulli, 1713)

The sample mean \bar{X} converges in probability to the population mean E(X), as $n \to \infty$.

Implication of the Weak Law of Large Numbers

Law of Large Numbers

• Let X_1, \dots, X_n be i.i.d. random samples of random variable X

Theorem (Weak Law of Large Numbers, Jacob Bernoulli, 1713)

The sample mean \bar{X} converges in probability to the population mean E(X), as $n \to \infty$.

- Implication of the Weak Law of Large Numbers
 - Sample mean is a consistent estimator of population mean

• Let X_1, \dots, X_n be i.i.d. random samples of random variable X with variance V(X)

- Let X_1, \dots, X_n be i.i.d. random samples of random variable X with variance V(X)
- We see that sample mean \bar{X} is an unbiased and consistent estimator of population mean E(X)

- Let X_1, \dots, X_n be i.i.d. random samples of random variable X with variance V(X)
- We see that sample mean \bar{X} is an unbiased and consistent estimator of population mean E(X)
- Many other population quantities can be estimated in this way

- Let X_1, \dots, X_n be i.i.d. random samples of random variable X with variance V(X)
- We see that sample mean \bar{X} is an unbiased and consistent estimator of population mean E(X)
- Many other population quantities can be estimated in this way
 - 1. express the more complex population quantity as the combinations of some population means

- Let X_1, \dots, X_n be i.i.d. random samples of random variable X with variance V(X)
- We see that sample mean \bar{X} is an unbiased and consistent estimator of population mean E(X)
- Many other population quantities can be estimated in this way
 - 1. express the more complex population quantity as the combinations of some population means
 - 2. plug-in the sample mean in place of population mean

- Let X_1, \dots, X_n be i.i.d. random samples of random variable X with variance V(X)
- We see that sample mean \bar{X} is an unbiased and consistent estimator of population mean E(X)
- Many other population quantities can be estimated in this way
 - 1. express the more complex population quantity as the combinations of some population means
 - 2. plug-in the sample mean in place of population mean
- This is called plug-in estimator

• We want to apply the plug-in principle to estimate population variance V(X).

Definition (Plug-in Variance Estimator) $\hat{V}(X) = \overline{X^2} - \overline{X}^2$

- We want to apply the plug-in principle to estimate population variance V(X).
- Step 1: express $V(X) = E[X^2] E[X]^2$

Definition (Plug-in Variance Estimator) $\hat{V}(X) = \overline{X^2} - \overline{X}^2$

- We want to apply the plug-in principle to estimate population variance V(X).
- Step 1: express $V(X) = E[X^2] E[X]^2$
 - we already know how to estimate E(X): \bar{X}

Definition (Plug-in Variance Estimator)
$$\hat{V}(X) = \overline{X^2} - \overline{X}^2$$

- We want to apply the plug-in principle to estimate population variance V(X).
- Step 1: express $V(X) = E[X^2] E[X]^2$ • we already know how to estimate E(X): \bar{X}
- Step 2: plug-in \bar{X} in place of E(X)

Definition (Plug-in Variance Estimator) $\hat{V}(X) = \overline{X^2} - \overline{X}^2$

- We want to apply the plug-in principle to estimate population variance V(X).
- Step 1: express $V(X) = E[X^2] E[X]^2$
 - we already know how to estimate E(X): \bar{X}
- Step 2: plug-in \bar{X} in place of E(X)

Definition (Plug-in Variance Estimator)

$$\hat{V}(X) = \overline{X^2} - \overline{X}^2$$

• Is this plug-in variance estimator a good estimator?

- We want to apply the plug-in principle to estimate population variance V(X).
- Step 1: express $V(X) = E[X^2] E[X]^2$
 - we already know how to estimate E(X): \bar{X}
- Step 2: plug-in \bar{X} in place of E(X)

Definition (Plug-in Variance Estimator)

$$\hat{V}(X) = \overline{X^2} - \overline{X}^2$$

- Is this plug-in variance estimator a good estimator?
 - As we have learned, an good estimator should have two good properties

- We want to apply the plug-in principle to estimate population variance V(X).
- Step 1: express $V(X) = E[X^2] E[X]^2$
 - we already know how to estimate E(X): \bar{X}
- Step 2: plug-in \bar{X} in place of E(X)

Definition (Plug-in Variance Estimator)

$$\hat{V}(X) = \overline{X^2} - \overline{X}^2$$

- Is this plug-in variance estimator a good estimator?
 - As we have learned, an good estimator should have two good properties
 - unbiased?

- We want to apply the plug-in principle to estimate population variance V(X).
- Step 1: express $V(X) = E[X^2] E[X]^2$
 - we already know how to estimate E(X): \bar{X}
- Step 2: plug-in \bar{X} in place of E(X)

Definition (Plug-in Variance Estimator)

$$\hat{V}(X) = \overline{X^2} - \overline{X}^2$$

- Is this plug-in variance estimator a good estimator?
 - As we have learned, an good estimator should have two good properties
 - unbiased?
 - consistent?

Example 1: Estimator for population variance

• Unbiased estimator means $E(\hat{\theta}) - \theta = 0$

$$E(\hat{V}(X)) = E\left[\overline{X^2} - \bar{X}^2\right] = E[\overline{X^2}] - E\left[\bar{X}^2\right]$$
 (12)

$$= \mathrm{E}\left[X^{2}\right] - \left(\mathrm{E}[X]^{2} + \mathrm{V}[\bar{X}]\right) \qquad (13)$$

$$= \left(\operatorname{E}\left[X^2 \right] - \operatorname{E}[X]^2 \right) - \frac{\operatorname{V}[X]}{n} \quad (14)$$

$$= V[X] - \frac{V[X]}{n} \tag{15}$$

$$=\frac{n-1}{n}V[X] \tag{16}$$

Example 1: Estimator for population variance

- Unbiased estimator means $E(\hat{ heta}) heta = 0$
- Our variance estimator of V(X) is $\hat{V}(X) = \overline{X^2} \overline{X}^2$

$$E(\hat{V}(X)) = E\left[\overline{X^2} - \bar{X}^2\right] = E[\overline{X^2}] - E\left[\bar{X}^2\right]$$
 (12)

$$= \mathrm{E}\left[X^{2}\right] - \left(\mathrm{E}[X]^{2} + \mathrm{V}[\bar{X}]\right) \qquad (13)$$

$$= \left(\operatorname{E}\left[X^2 \right] - \operatorname{E}[X]^2 \right) - \frac{\operatorname{V}[X]}{n} \quad (14)$$

$$= V[X] - \frac{V[X]}{n} \tag{15}$$

$$=\frac{n-1}{n}V[X] \tag{16}$$

Example 1: Estimator for population variance

- Unbiased estimator means $E(\hat{\theta}) \theta = 0$
- Our variance estimator of V(X) is $\hat{V}(X) = \overline{X^2} \overline{X}^2$
- Unbiasedness:

$$E(\hat{V}(X)) = E\left[\overline{X^2} - \bar{X}^2\right] = E[\overline{X^2}] - E\left[\bar{X}^2\right]$$
(12)

$$= \mathrm{E}\left[X^{2}\right] - \left(\mathrm{E}[X]^{2} + \mathrm{V}[\bar{X}]\right) \qquad (13)$$

$$= \left(\operatorname{E}\left[X^2 \right] - \operatorname{E}[X]^2 \right) - \frac{\operatorname{V}[X]}{n} \quad (14)$$

$$= V[X] - \frac{V[X]}{n} \tag{15}$$

$$=\frac{n-1}{n}V[X] \tag{16}$$

Example 1: Estimator for Population Variance

• Plug-in population variance estimator $\hat{V}(X) = \overline{X^2} - \overline{X}^2$ is biased

Theorem (Unbiased Estimator of Population Variance) $\hat{V}(X) = \frac{n}{n-1} (\overline{X^2} - \overline{X}^2)$ is an unbiased and consistent estimator of

population variance V(X)

Example 1: Estimator for Population Variance

- Plug-in population variance estimator $\hat{V}(X) = \overline{X^2} \overline{X}^2$ is biased
- Plug-in population variance estimator $\hat{V}(X) = \overline{X^2} \overline{X}^2$ is consistent (as $n \to \infty$, $\frac{n-1}{n}$ goes to 1)

Theorem (Unbiased Estimator of Population Variance) $\hat{V}(X) = \frac{n}{n-1}(\overline{X^2} - \overline{X}^2)$ is an unbiased and consistent estimator of population variance V(X)

Example 1: Estimator for Population Variance

- Plug-in population variance estimator $\hat{V}(X) = \overline{X^2} \overline{X}^2$ is biased
- Plug-in population variance estimator $\hat{V}(X) = \overline{X^2} \overline{X}^2$ is consistent (as $n \to \infty$, $\frac{n-1}{n}$ goes to 1)
- In general, plug-in estimator is consistent, but may be biased (advanced topic).

Theorem (Unbiased Estimator of Population Variance) $\hat{V}(X) = \frac{n}{n-1} (\overline{X^2} - \overline{X}^2)$ is an unbiased and consistent estimator of population variance V(X)

• What's the variance of sample mean (as an estimate)?

$$\hat{V}(\bar{X}) = \frac{\hat{V}(X)}{n}$$

- What's the variance of sample mean (as an estimate)?
- Try plug-in estimator

$$\hat{V}(\bar{X}) = \frac{\hat{V}(X)}{n}$$

- What's the variance of sample mean (as an estimate)?
- Try plug-in estimator
 - Step 1: express the quantity of interest $V(\bar{X}) = \frac{V(X)}{n}$

$$\hat{V}(\bar{X}) = \frac{\hat{V}(X)}{n}$$

- What's the variance of sample mean (as an estimate)?
- Try plug-in estimator
 - Step 1: express the quantity of interest $V(\bar{X}) = \frac{V(X)}{n}$
 - Step 2: plug-in (since we just shown how to estimate V(X) in the previous slide)

$$\hat{V}(\bar{X}) = \frac{\hat{V}(X)}{n}$$

- What's the variance of sample mean (as an estimate)?
- Try plug-in estimator
 - Step 1: express the quantity of interest $V(\bar{X}) = \frac{V(X)}{n}$
 - Step 2: plug-in (since we just shown how to estimate V(X) in the previous slide)

Theorem (Estimator of the Sampling Variance of the Sample Mean)

$$\hat{V}(\bar{X}) = \frac{\hat{V}(X)}{n}$$

 Plug-in estimator is an unbiased and consistent estimator this time (proof omitted)

- What's the variance of sample mean (as an estimate)?
- Try plug-in estimator
 - Step 1: express the quantity of interest $V(\bar{X}) = \frac{V(X)}{n}$
 - Step 2: plug-in (since we just shown how to estimate V(X) in the previous slide)

$$\hat{V}(\bar{X}) = \frac{\hat{V}(X)}{n}$$

- Plug-in estimator is an unbiased and consistent estimator this time (proof omitted)
- $\sqrt{\hat{V}(\bar{X})}$ is called standard error.

Extensions

Other popular family of estimators

Extensions

- Other popular family of estimators
 - MLE (next week)

- Other popular family of estimators
 - MLE (next week)
 - GMM

- Other popular family of estimators
 - MLE (next week)
 - GMM
 - OLS

- Other popular family of estimators
 - MLE (next week)
 - GMM
 - OLS
 - Bayesian

- Other popular family of estimators
 - MLE (next week)
 - GMM
 - OLS
 - Bayesian
- Estimation theory: theoretical properties about different families of estimators

- Other popular family of estimators
 - MLE (next week)
 - GMM
 - OLS
 - Bayesian
- Estimation theory: theoretical properties about different families of estimators
 - i.e., are plug-in estimator always unbiased? Are MLE already unbiased?

• Estimation is about getting the (point) estimate $\hat{\theta}$ of quantity of interest θ

- Estimation is about getting the (point) estimate $\hat{\theta}$ of quantity of interest θ
 - With unbiased estimator, $\hat{\theta}$ on average equals to θ

- Estimation is about getting the (point) estimate $\hat{\theta}$ of quantity of interest θ
 - With unbiased estimator, $\hat{\theta}$ on average equals to θ
 - With consistent estimator, $\hat{\theta}$ converges to θ with more and more sample data

- Estimation is about getting the (point) estimate $\hat{\theta}$ of quantity of interest θ
 - With unbiased estimator, $\hat{\theta}$ on average equals to θ
 - With consistent estimator, $\hat{\theta}$ converges to θ with more and more sample data
 - But in reality, we have only one $\hat{\theta}$

- Estimation is about getting the (point) estimate $\hat{\theta}$ of quantity of interest θ
 - With unbiased estimator, $\hat{\theta}$ on average equals to θ
 - With consistent estimator, $\hat{\theta}$ converges to θ with more and more sample data
 - But in reality, we have only one $\hat{\theta}$
- Inference is about how certain we are about the estimate $\hat{\theta}$

- Estimation is about getting the (point) estimate $\hat{\theta}$ of quantity of interest θ
 - With unbiased estimator, $\hat{ heta}$ on average equals to heta
 - With consistent estimator, $\hat{\theta}$ converges to θ with more and more sample data
 - But in reality, we have only one $\hat{\theta}$
- Inference is about how certain we are about the estimate $\hat{ heta}$
 - confidence interval; p-values

Definition (Confidence interval)

An α confidence interval for quantity of interest θ is an estimated interval that covers the true value of θ with at least α probability

• Example: in social sciences, we often uses $\alpha = 95\%$ confidence interval that looks like $[\theta_{min}, \theta_{max}]$. The probability that the true θ falls between $[\theta_{min}, \theta_{max}]$ is at least 95%.

Definition (Confidence interval)

An α confidence interval for quantity of interest θ is an estimated interval that covers the true value of θ with at least α probability

- Example: in social sciences, we often uses $\alpha = 95\%$ confidence interval that looks like $[\theta_{min}, \theta_{max}]$. The probability that the true θ falls between $[\theta_{min}, \theta_{max}]$ is at least 95%.
- The easiest way to obtain confidence interval is use "normal" confidence interval

Definition (Confidence interval)

An α confidence interval for quantity of interest θ is an estimated interval that covers the true value of θ with at least α probability

- Example: in social sciences, we often uses $\alpha = 95\%$ confidence interval that looks like $[\theta_{min}, \theta_{max}]$. The probability that the true θ falls between $[\theta_{min}, \theta_{max}]$ is at least 95%.
- The easiest way to obtain confidence interval is use "normal" confidence interval
 - relates to the concept of "Central Limit Theorem"

Definition (Confidence interval)

An α confidence interval for quantity of interest θ is an estimated interval that covers the true value of θ with at least α probability

- Example: in social sciences, we often uses $\alpha = 95\%$ confidence interval that looks like $[\theta_{min}, \theta_{max}]$. The probability that the true θ falls between $[\theta_{min}, \theta_{max}]$ is at least 95%.
- The easiest way to obtain confidence interval is use "normal" confidence interval
 - relates to the concept of "Central Limit Theorem"
- Another general way is called Bootstrap

• Let X_1, \dots, X_n be i.i.d. random samples of random variable X, with finite $E(X) = \mu$ and $V(X) = \sigma^2 > 0$

- Let X_1, \dots, X_n be i.i.d. random samples of random variable X, with finite $E(X) = \mu$ and $V(X) = \sigma^2 > 0$
- Standardized Sample Mean $Z = \frac{\sqrt{n}(\bar{X} \mu)}{\sigma}$

- Let X_1, \dots, X_n be i.i.d. random samples of random variable X, with finite $E(X) = \mu$ and $V(X) = \sigma^2 > 0$
- Standardized Sample Mean $Z = \frac{\sqrt{n}(\bar{X} \mu)}{\sigma}$
 - E(Z) = 0; $V(Z) = \sigma(Z) = 1$; hence the name standardized sample mean.

- Let X_1, \dots, X_n be i.i.d. random samples of random variable X, with finite $E(X) = \mu$ and $V(X) = \sigma^2 > 0$
- Standardized Sample Mean $Z = \frac{\sqrt{n}(\bar{X} \mu)}{\sigma}$
 - E(Z) = 0; $V(Z) = \sigma(Z) = 1$; hence the name standardized sample mean.

Theorem (Central Limit Theorem)

• The distribution of Z converges to a standard normal distribution ($Z \sim N(0,1)$), as $n \to \infty$.

- Let X_1, \dots, X_n be i.i.d. random samples of random variable X, with finite $E(X) = \mu$ and $V(X) = \sigma^2 > 0$
- Standardized Sample Mean $Z = \frac{\sqrt{n}(\bar{X} \mu)}{\sigma}$
 - E(Z) = 0; $V(Z) = \sigma(Z) = 1$; hence the name standardized sample mean.

- The distribution of Z converges to a standard normal distribution ($Z \sim N(0,1)$), as $n \to \infty$.
- Or equivalently, $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$, as $n \to \infty$

Distribution of sample mean is always a normal distribution,

- Distribution of sample mean is always a normal distribution,
 - even when the population distribution is not distributed normally;

- Distribution of sample mean is always a normal distribution,
 - even when the population distribution is not distributed normally;
- $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$

- Distribution of sample mean is always a normal distribution,
 - even when the population distribution is not distributed normally;
- $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$
- Implications:

- Distribution of sample mean is always a normal distribution,
 - even when the population distribution is not distributed normally;
- $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$
- Implications:
 - $\bar{X} = \mu = E(X)$; therefore, CLT automatically implies the Law of Large Numbers

- Distribution of sample mean is always a normal distribution,
 - even when the population distribution is not distributed normally;
- $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$
- Implications:
 - $X = \mu = E(X)$; therefore, CLT automatically implies the Law of Large Numbers
 - Variance of the sample mean equals the variance of this normal distribution

- Distribution of sample mean is always a normal distribution,
 - even when the population distribution is not distributed normally;
- $\bar{X} \sim N(\mu, \frac{\sigma^2}{n})$
- Implications:
 - $X = \mu = E(X)$; therefore, CLT automatically implies the Law of Large Numbers
 - Variance of the sample mean equals the variance of this normal distribution
- Central limit theorem provides a general way for us to infer the uncertainty around our estimate of sample mean

 Central Limit Theorem means that sampling distribution of the sample mean will tend to be approximately normal

Definition (Asymptotic Normal Estimator)

An estimator $\hat{\theta}$ is an asymptotically normal estimator, if $\sqrt{n}(\hat{\theta}-\theta) \sim N(0,\phi^2)$ for finite $\phi > 0$, as $n \to \infty$.

- Central Limit Theorem means that sampling distribution of the sample mean will tend to be approximately normal
- It's the third desirable for estimators

Definition (Asymptotic Normal Estimator)

An estimator $\hat{\theta}$ is an asymptotically normal estimator, if $\sqrt{n}(\hat{\theta}-\theta) \sim N(0,\phi^2)$ for finite $\phi > 0$, as $n \to \infty$.

- Central Limit Theorem means that sampling distribution of the sample mean will tend to be approximately normal
- It's the third desirable for estimators

Definition (Asymptotic Normal Estimator)

An estimator $\hat{\theta}$ is an asymptotically normal estimator, if $\sqrt{n}(\hat{\theta}-\theta) \sim N(0,\phi^2)$ for finite $\phi > 0$, as $n \to \infty$.

Many estimators you will learn in this course is asymptotically normal

- Central Limit Theorem means that sampling distribution of the sample mean will tend to be approximately normal
- It's the third desirable for estimators

Definition (Asymptotic Normal Estimator)

An estimator $\hat{\theta}$ is an asymptotically normal estimator, if $\sqrt{n}(\hat{\theta}-\theta)\sim N(0,\phi^2)$ for finite $\phi>0$, as $n\to\infty$.

- Many estimators you will learn in this course is asymptotically normal
 - But not all estimators have this good property

- Central Limit Theorem means that sampling distribution of the sample mean will tend to be approximately normal
- It's the third desirable for estimators

Definition (Asymptotic Normal Estimator)

An estimator $\hat{\theta}$ is an asymptotically normal estimator, if $\sqrt{n}(\hat{\theta} - \theta) \sim N(0, \phi^2)$ for finite $\phi > 0$, as $n \to \infty$.

- Many estimators you will learn in this course is asymptotically normal
 - But not all estimators have this good property
- The good thing about asymptotically normal estimator is that we can obtain confidence interval easily

Normal Approximation-based Confidence Interval

Definition (Estimating Normal Approximation-based Confidence Interval)

A normal approximation-based confidence interval for $\boldsymbol{\theta}$ can be estimated by:

$$\left(\hat{ heta}-q_{rac{1+lpha}{2}}\sqrt{\hat{V}(\hat{ heta})},\hat{ heta}+q_{rac{1+lpha}{2}}\sqrt{\hat{V}(\hat{ heta})}
ight)$$

• q is the quantile function of a standard normal distribution

Normal Approximation-based Confidence Interval

Definition (Estimating Normal Approximation-based Confidence Interval)

A normal approximation-based confidence interval for $\boldsymbol{\theta}$ can be estimated by:

$$\left(\hat{ heta}-q_{rac{1+lpha}{2}}\sqrt{\hat{V}(\hat{ heta})},\hat{ heta}+q_{rac{1+lpha}{2}}\sqrt{\hat{V}(\hat{ heta})}
ight)$$

- q is the quantile function of a standard normal distribution
 - $\alpha = 0.95$; $q_{0.975} = 1.96$

Normal Approximation-based Confidence Interval

Definition (Estimating Normal Approximation-based Confidence Interval)

A normal approximation-based confidence interval for $\boldsymbol{\theta}$ can be estimated by:

$$\left(\hat{ heta}-q_{rac{1+lpha}{2}}\sqrt{\hat{V}(\hat{ heta})},\hat{ heta}+q_{rac{1+lpha}{2}}\sqrt{\hat{V}(\hat{ heta})}
ight)$$

- q is the quantile function of a standard normal distribution
 - $\alpha = 0.95$; $q_{0.975} = 1.96$
 - $\alpha = 0.99$; $q_{0.995} = 2.58$

Normal Approximation-based Confidence Interval

Definition (Estimating Normal Approximation-based Confidence Interval)

A normal approximation-based confidence interval for $\boldsymbol{\theta}$ can be estimated by:

$$\left(\hat{ heta} - q_{rac{1+lpha}{2}}\sqrt{\hat{V}(\hat{ heta})}, \hat{ heta} + q_{rac{1+lpha}{2}}\sqrt{\hat{V}(\hat{ heta})}
ight)$$

- q is the quantile function of a standard normal distribution
 - $\alpha = 0.95$; $q_{0.975} = 1.96$
 - $\alpha = 0.99$; $q_{0.995} = 2.58$
- Normal Approximation-based Confidence Interval is valid for asymptotically normal estimators

Illustration

Steps to estimate the Normal Approximation-based Confidence Interval for sample mean in a given sample

• Step 1: calculate sample mean \bar{X} and sampling variance of the sample mean $\hat{V}(\bar{X})$

$$\left(ar{X} - q_{rac{1+lpha}{2}}\sqrt{\hat{V}(ar{X})}, ar{X} + q_{rac{1+lpha}{2}}\sqrt{\hat{V}(ar{X})}
ight)$$

$$\left(\bar{X}-1.96\sqrt{\hat{V}(\bar{X})},\bar{X}+1.96\sqrt{\hat{V}(\bar{X})}\right)$$

Steps to estimate the Normal Approximation-based Confidence Interval for sample mean in a given sample

- Step 1: calculate sample mean \bar{X} and sampling variance of the sample mean $\hat{V}(\bar{X})$
- Step 2: construct confidence interval as

$$\left(ar{X} - q_{rac{1+lpha}{2}}\sqrt{\hat{V}(ar{X})}, ar{X} + q_{rac{1+lpha}{2}}\sqrt{\hat{V}(ar{X})}
ight)$$

$$\left(\bar{X}-1.96\sqrt{\hat{V}(\bar{X})},\bar{X}+1.96\sqrt{\hat{V}(\bar{X})}\right)$$

Steps to estimate the Normal Approximation-based Confidence Interval for sample mean in a given sample

- Step 1: calculate sample mean \bar{X} and sampling variance of the sample mean $\hat{V}(\bar{X})$
- Step 2: construct confidence interval as

$$\left(ar{X} - q_{rac{1+lpha}{2}}\sqrt{\hat{V}(ar{X})}, ar{X} + q_{rac{1+lpha}{2}}\sqrt{\hat{V}(ar{X})}
ight)$$

• E.g., for 95% confidence interval

$$\left(\bar{X}-1.96\sqrt{\hat{V}(\bar{X})},\bar{X}+1.96\sqrt{\hat{V}(\bar{X})}\right)$$

Normal Approximation is not the only way to construct valid confidence intervals

- Normal Approximation is not the only way to construct valid confidence intervals
 - It only works for asymptotic normal estimator

- Normal Approximation is not the only way to construct valid confidence intervals
 - It only works for asymptotic normal estimator
 - You have to prove the asymptotic normality first, which is not easy for some complex things

- Normal Approximation is not the only way to construct valid confidence intervals
 - It only works for asymptotic normal estimator
 - You have to prove the asymptotic normality first, which is not easy for some complex things
 - E.g., the first proof of asymptotic normality of matching estimator is in 2006

- Normal Approximation is not the only way to construct valid confidence intervals
 - It only works for asymptotic normal estimator
 - You have to prove the asymptotic normality first, which is not easy for some complex things
 - E.g., the first proof of asymptotic normality of matching estimator is in 2006
- The Bootstrap is more general method to construct confidence intervals; one of the most important modern statistical concept (Efron, 1979)

- Normal Approximation is not the only way to construct valid confidence intervals
 - It only works for asymptotic normal estimator
 - You have to prove the asymptotic normality first, which is not easy for some complex things
 - E.g., the first proof of asymptotic normality of matching estimator is in 2006
- The Bootstrap is more general method to construct confidence intervals; one of the most important modern statistical concept (Efron, 1979)
 - Drawback of Bootstrap: it's a data-driven method; slow; no analytical solutions.

Bootstrap procedures

Assume we already have X_1, \dots, X_n be i.i.d. random samples of random variable X). We are interested in estimating a α confidence interval for a population quantity θ

- 1. Take a with replacement sample of size n from X_1, \dots, X_n
- 2. Calculate the sample analog of θ
- 3. Repeat 1 and 2 for m times. We end up having m estimates of θ , $(\hat{\theta}_1, \dots, \hat{\theta}_m)$
- 4. Take the $\frac{1-\alpha}{2}$ and $\frac{1+\alpha}{2}$ quantile of the values $(\hat{\theta}_1, \dots, \hat{\theta}_m)$. These two quantiles give us the bootstrap confidence intervals.

• Interpretating confidence intervals carefully

- Interpretating confidence intervals carefully
- a 95% confidence interval $[\theta_{min}, \theta_{max}]$ contains the population quantity θ with at least 95% probability.

- Interpretating confidence intervals carefully
- a 95% confidence interval $[\theta_{min}, \theta_{max}]$ contains the population quantity θ with at least 95% probability.
- In reality, we are estimating confidence intervals $[\theta_{min}, \theta_{max}]$.

- Interpretating confidence intervals carefully
- a 95% confidence interval $[\theta_{min}, \theta_{max}]$ contains the population quantity θ with at least 95% probability.
- In reality, we are estimating confidence intervals $[\theta_{min}, \theta_{max}]$.
 - as *n* goes to infinity, the two things are the same

- Interpretating confidence intervals carefully
- a 95% confidence interval $[\theta_{min}, \theta_{max}]$ contains the population quantity θ with at least 95% probability.
- In reality, we are estimating confidence intervals $[\theta_{min}, \theta_{max}]$.
 - as *n* goes to infinity, the two things are the same
 - but for small samples, they are not

- Interpretating confidence intervals carefully
- a 95% confidence interval $[\theta_{min}, \theta_{max}]$ contains the population quantity θ with at least 95% probability.
- In reality, we are estimating confidence intervals $[\theta_{min}, \theta_{max}]$.
 - as *n* goes to infinity, the two things are the same
 - but for small samples, they are not
- How should we interpret 95% estimated confidence interval $[\hat{\theta}_{min}, \hat{\theta}_{max}]$ then?

- Interpretating confidence intervals carefully
- a 95% confidence interval $[\theta_{min}, \theta_{max}]$ contains the population quantity θ with at least 95% probability.
- In reality, we are estimating confidence intervals $[\theta_{min}, \theta_{max}]$.
 - as *n* goes to infinity, the two things are the same
 - but for small samples, they are not
- How should we interpret 95% estimated confidence interval $[\hat{\theta}_{min}, \hat{\theta}_{max}]$ then?
 - Through repeated samples (each time we sample n units), 95% of estimated confidence intervals would contain the population quantity θ

- Interpretating confidence intervals carefully
- a 95% confidence interval $[\theta_{min}, \theta_{max}]$ contains the population quantity θ with at least 95% probability.
- In reality, we are estimating confidence intervals $[\theta_{min}, \theta_{max}]$.
 - as *n* goes to infinity, the two things are the same
 - but for small samples, they are not
- How should we interpret 95% estimated confidence interval $[\hat{\theta}_{min}, \hat{\theta}_{max}]$ then?
 - Through repeated samples (each time we sample n units), 95% of estimated confidence intervals would contain the population quantity θ
 - note that in reality we only have one sample (of n units)

• Now let us move on to two variable setting

- Now let us move on to two variable setting
- Given two variables Y and X, and we observed X takes the value x.

- Now let us move on to two variable setting
- Given two variables Y and X, and we observed X takes the value x.
- A prediction of Y given X is a function g(X) that approximate Y

- Now let us move on to two variable setting
- Given two variables Y and X, and we observed X takes the value x.
- A prediction of Y given X is a function g(X) that approximate Y
- For instance, E(Y|X) is a prediction of Y given X

- Now let us move on to two variable setting
- Given two variables Y and X, and we observed X takes the value x.
- A prediction of Y given X is a function g(X) that approximate Y
- For instance, E(Y|X) is a prediction of Y given X
- Again, there are tons of ways to predict Y given X (e.g., median(Y|X))

Prediction (example)

• Predicting son's height with father's height

• If g(X) = E(Y|X), that is, we use the conditional expectation as the prediction

Property 1: $E(\epsilon) = 0$.

$$E(\epsilon) = E[Y - E(Y|X)] \tag{17}$$

$$= E(Y) - E[E(Y|X)] \tag{18}$$

$$= E(Y) - E(Y)$$
, (Law of Iterated Expectation) (19)

$$=0 (20)$$

- If g(X) = E(Y|X), that is, we use the conditional expectation as the prediction
- The prediction error is $\epsilon = Y E(Y|X)$

Property 1: $E(\epsilon) = 0$.

$$E(\epsilon) = E[Y - E(Y|X)] \tag{17}$$

$$= E(Y) - E[E(Y|X)]$$
 (18)

$$= E(Y) - E(Y),$$
 (Law of Iterated Expectation) (19)

$$=0 (20)$$

- If g(X) = E(Y|X), that is, we use the conditional expectation as the prediction
- The prediction error is $\epsilon = Y E(Y|X)$
- This prediction error has some good properties

Property 1: $E(\epsilon) = 0$.

$$E(\epsilon) = E[Y - E(Y|X)] \tag{17}$$

$$= E(Y) - E[E(Y|X)] \tag{18}$$

$$= E(Y) - E(Y),$$
 (Law of Iterated Expectation) (19)

$$=0 (20)$$

Conditional Expectation as Prediction (cont'd)

Property 2: $E(\epsilon|X) = 0$.

$$E(\epsilon|X) = E[Y - E(Y|X)|X]$$
(21)
= $E(Y|X) - E[E(Y|X)|X]$ (22)
= $E(Y|X) - E(Y|X)$, (Law of Iterated Expectation) (23)
= 0 (24)

 Property 2 means that on conditional on X, the mean of prediction error is 0

- Property 2 means that on conditional on X, the mean of prediction error is 0
- This property is also called mean independent because $E(\epsilon|X) = E(\epsilon) = 0$

- Property 2 means that on conditional on X, the mean of prediction error is 0
- This property is also called mean independent because $E(\epsilon|X) = E(\epsilon) = 0$
 - That is, we only assume that on average X and error are independent

- Property 2 means that on conditional on X, the mean of prediction error is 0
- This property is also called mean independent because $E(\epsilon|X) = E(\epsilon) = 0$
 - That is, we only assume that on average X and error are independent
 - Recall independence means that $P(\epsilon|X) = P(\epsilon)$

Independent, mean independent, and uncorrelated

• Independent: P(XY) = P(X)P(Y)

X, Y are independent $\implies X, Y$ are mean independent $\implies X, Y$ are uncorrelated.

Independent, mean independent, and uncorrelated

- Independent: P(XY) = P(X)P(Y)
- Mean independent: E(Y|X) = E(Y)

X, Y are independent $\implies X, Y$ are mean independent $\implies X, Y$ are uncorrelated.

Independent, mean independent, and uncorrelated

- Independent: P(XY) = P(X)P(Y)
- Mean independent: E(Y|X) = E(Y)
- Uncorrelated: E(XY) = E(X)E(Y)

X, Y are independent $\implies X, Y$ are mean independent $\implies X, Y$ are uncorrelated.

Independent, mean independent, and uncorrelated

- Independent: P(XY) = P(X)P(Y)
- Mean independent: E(Y|X) = E(Y)
- Uncorrelated: E(XY) = E(X)E(Y)
- In general, we have the following relationship (the reverse is not true):

X, Y are independent $\implies X, Y$ are mean independent $\implies X, Y$ are uncorrelated.

Using Conditional Expectation as Prediction

• Property 3 says error is uncorrelated with any other g(X)

Property 3: $E(g(X)\epsilon) = 0$, for any g(X).

$$E[g(X)\epsilon] = E[g(X)(Y - E(Y|X))]$$
(25)

$$= E[g(X)Y - g(X)E(Y|X)]$$
(26)

$$= E[g(X)Y] - E[g(X)E(Y|X)]$$
(27)

$$= E[g(X)Y] - E[E(g(X)Y|X)], (g(X) \text{ is a constant given } X)$$
(28)

$$= E[g(X)Y] - E[g(X)Y], (\text{Law of Iterated Expectation})$$
(29)

$$= 0$$
(30)

Using Conditional Expectation as Prediction

- Property 3 says error is uncorrelated with any other g(X)
- ullet Derived from Property 2 (mean independence) and Property 1 $(E(\epsilon)=0)$

Property 3: $E(g(X)\epsilon) = 0$, for any g(X).

$$E[g(X)\epsilon] = E[g(X)(Y - E(Y|X))]$$
(25)

$$= E[g(X)Y - g(X)E(Y|X)]$$
(26)

$$= E[g(X)Y] - E[g(X)E(Y|X)]$$
(27)

$$= E[g(X)Y] - E[E(g(X)Y|X)], (g(X) \text{ is a constant given } X)$$
(28)

$$= E[g(X)Y] - E[g(X)Y], (\text{Law of Iterated Expectation})$$
(29)

$$= 0$$
(30)

• We have seen that E(Y|X) is a good guess for Y:

- We have seen that E(Y|X) is a good guess for Y:
 - Property 1: mean error is 0

- We have seen that E(Y|X) is a good guess for Y:
 - Property 1: mean error is 0
 - Property 2: error and prediction g(X) is mean independent

- We have seen that E(Y|X) is a good guess for Y:
 - Property 1: mean error is 0
 - Property 2: error and prediction g(X) is mean independent
 - Property 3: error and prediction g(X) is uncorrelated

- We have seen that E(Y|X) is a good guess for Y:
 - Property 1: mean error is 0
 - Property 2: error and prediction g(X) is mean independent
 - Property 3: error and prediction g(X) is uncorrelated
- But mean error $E(\epsilon) = E(Y g(X))$ has one drawback: sensitive to the sign of error

- We have seen that E(Y|X) is a good guess for Y:
 - Property 1: mean error is 0
 - Property 2: error and prediction g(X) is mean independent
 - Property 3: error and prediction g(X) is uncorrelated
- But mean error $E(\epsilon) = E(Y g(X))$ has one drawback: sensitive to the sign of error
- e.g., Y = 0; our guesses g(X) are -100, 100, -100, 100

- We have seen that E(Y|X) is a good guess for Y:
 - Property 1: mean error is 0
 - Property 2: error and prediction g(X) is mean independent
 - Property 3: error and prediction g(X) is uncorrelated
- But mean error $E(\epsilon) = E(Y g(X))$ has one drawback: sensitive to the sign of error
- e.g., Y = 0; our guesses g(X) are -100, 100, -100, 100
 - Intuitively these guesses are not good

- We have seen that E(Y|X) is a good guess for Y:
 - Property 1: mean error is 0
 - Property 2: error and prediction g(X) is mean independent
 - Property 3: error and prediction g(X) is uncorrelated
- But mean error $E(\epsilon) = E(Y g(X))$ has one drawback: sensitive to the sign of error
- e.g., Y = 0; our guesses g(X) are -100, 100, -100, 100
 - Intuitively these guesses are not good
 - But $E(\epsilon) = 0$

• Mean Absolute Error (MAE): E[|Y - g(X)|]

- Mean Absolute Error (MAE): E[|Y g(X)|]
- Mean Square Error (MSE): $E[(Y g(X))^2]$

- Mean Absolute Error (MAE): E[|Y g(X)|]
- Mean Square Error (MSE): $E[(Y g(X))^2]$
- MSE make sure that you get penalized more, if the absolute error is large.

- Mean Absolute Error (MAE): E[|Y g(X)|]
- Mean Square Error (MSE): $E[(Y g(X))^2]$
- MSE make sure that you get penalized more, if the absolute error is large.
 - MSE is perhaps the most widely used error metric

- Mean Absolute Error (MAE): E[|Y g(X)|]
- Mean Square Error (MSE): $E[(Y g(X))^2]$
- MSE make sure that you get penalized more, if the absolute error is large.
 - MSE is perhaps the most widely used error metric
- Both MAE and MSE ≥ 0; a good estimation thus should minimize MAE or MSE

• There are some even better properties of E(Y|X) that make it the best predictor, given Mean Squared Error

Theorem (Conditional Expectation as the Best Predictor) Conditional Expectation Function E(Y|X) is the best predictor of Y because it minimizes Mean Squared Error

• There are some even better properties of E(Y|X) that make it the best predictor, given Mean Squared Error

Theorem (Conditional Expectation as the Best Predictor)

Conditional Expectation Function E(Y|X) is the best predictor of Y because it minimizes Mean Squared Error

• Proof sketch: we have two predictions for Y, E(Y|X) and any other $g(X) \neq E(Y|X)$

• There are some even better properties of E(Y|X) that make it the best predictor, given Mean Squared Error

Theorem (Conditional Expectation as the Best Predictor)

Conditional Expectation Function E(Y|X) is the best predictor of Y because it minimizes Mean Squared Error

- Proof sketch: we have two predictions for Y, E(Y|X) and any other $g(X) \neq E(Y|X)$
- We want to show that the MSE of any other g(X) is not smaller than the MSE of E(Y|X)

• There are some even better properties of E(Y|X) that make it the best predictor, given Mean Squared Error

Theorem (Conditional Expectation as the Best Predictor)

Conditional Expectation Function E(Y|X) is the best predictor of Y because it minimizes Mean Squared Error

- Proof sketch: we have two predictions for Y, E(Y|X) and any other $g(X) \neq E(Y|X)$
- We want to show that the MSE of any other g(X) is not smaller than the MSE of E(Y|X)
- In math term: $E[(Y g(X))^2] \ge E[(Y E(Y|X))^2]$

• There are some even better properties of E(Y|X) that make it the best predictor, given Mean Squared Error

Theorem (Conditional Expectation as the Best Predictor)

Conditional Expectation Function E(Y|X) is the best predictor of Y because it minimizes Mean Squared Error

- Proof sketch: we have two predictions for Y, E(Y|X) and any other $g(X) \neq E(Y|X)$
- We want to show that the MSE of any other g(X) is not smaller than the MSE of E(Y|X)
- In math term: $E[(Y g(X))^2] \ge E[(Y E(Y|X))^2]$
- Hint: use the conditional expectation error $\epsilon = Y E(Y|X)$

Conditional Expectation as the Best Predictor.

$$E[(Y - g(X))^{2}] = E[(\epsilon + E(Y|X) - g(X))^{2}]$$
(31)

$$= E[\epsilon^{2} + 2\epsilon(E(Y|X) - g(X)) + (E(Y|X) - g(X))^{2}]$$
(32)

$$= E[\epsilon^{2}] + 2E[\epsilon(E(Y|X) - g(X))] + E[(E(Y|X) - g(X))^{2}$$
(33)

$$= E[\epsilon^{2}] + E[(E(Y|X) - g(X))^{2}], (Property 3)$$
(34)

$$\geq E[\epsilon^{2}]$$
(35)

$$= E[(Y - E(Y|X))^{2}]$$
(36)

 Conditional expectation gives an upper bound on how well we can make a guess of Y based on X, if we want to minimize MSE

- Conditional expectation gives an upper bound on how well we can make a guess of Y based on X, if we want to minimize MSE
 - If the conditional expectation itself is not a very good predictor, we can still make lots of errors

- Conditional expectation gives an upper bound on how well we can make a guess of Y based on X, if we want to minimize MSE
 - If the conditional expectation itself is not a very good predictor, we can still make lots of errors
 - But in this case, other predictions can only be worse

- Conditional expectation gives an upper bound on how well we can make a guess of Y based on X, if we want to minimize MSE
 - If the conditional expectation itself is not a very good predictor, we can still make lots of errors
 - But in this case, other predictions can only be worse
- E(Y|X) is the best predictor of Y, if the criterion is to minimize MSE

- Conditional expectation gives an upper bound on how well we can make a guess of Y based on X, if we want to minimize MSE
 - If the conditional expectation itself is not a very good predictor, we can still make lots of errors
 - But in this case, other predictions can only be worse
- E(Y|X) is the best predictor of Y, if the criterion is to minimize MSE
 - There are other criteria to evaluation predictions

- Conditional expectation gives an upper bound on how well we can make a guess of Y based on X, if we want to minimize MSE
 - If the conditional expectation itself is not a very good predictor, we can still make lots of errors
 - But in this case, other predictions can only be worse
- E(Y|X) is the best predictor of Y, if the criterion is to minimize MSE
 - There are other criteria to evaluation predictions
- Our next half semester is devoted onto understanding how to estimate E(Y|X)

• Let us compare the MSE under g(X) and under the best prediction E(Y|X)

Bias Variance Decomposition.

$$E\left[\left(Y-g(X)\right)^{2}\right]=E\left[\epsilon^{2}\right]+E\left[\left(E(Y|X)-g(X)\right)^{2}\right] \tag{37}$$

$$= (E(\epsilon^2) + V(\epsilon)) + E[(E(Y|X) - g(X))^2$$
 (38)

$$=V(\epsilon)+E(\mathsf{bias}^2) \tag{39}$$

- Let us compare the MSE under g(X) and under the best prediction E(Y|X)
- Go back to equation (19),

Bias Variance Decomposition.

$$E\left[\left(Y-g(X)\right)^{2}\right]=E\left[\epsilon^{2}\right]+E\left[\left(E(Y|X)-g(X)\right)^{2}\right] \tag{37}$$

$$= (E(\epsilon^2) + V(\epsilon)) + E[(E(Y|X) - g(X))^2$$
 (38)

$$=V(\epsilon)+E(\mathsf{bias}^2) \tag{39}$$

• The MSE of any prediction g(X) is decomposed into two parts:

- The MSE of any prediction g(X) is decomposed into two parts:
- $V(\epsilon)$ is the variance of the best prediction;

- The MSE of any prediction g(X) is decomposed into two parts:
- $V(\epsilon)$ is the variance of the best prediction;
 - That is, this is unrelated to the mode you are going to use

- The MSE of any prediction g(X) is decomposed into two parts:
- $V(\epsilon)$ is the variance of the best prediction;
 - That is, this is unrelated to the mode you are going to use
- $E(bias^2)$ is the mean of the (squared) bias

- The MSE of any prediction g(X) is decomposed into two parts:
- $V(\epsilon)$ is the variance of the best prediction;
 - That is, this is unrelated to the mode you are going to use
- $E(bias^2)$ is the mean of the (squared) bias
 - Bias can be improved by using a better approximation (the ideal case: just let g(X) = E(Y|X)\$)

• Population/sample

- Population/sample
- What is estimator; three good properties of estimator

- Population/sample
- What is estimator; three good properties of estimator
- Inference; confidence interval; normal approximation vs. Bootstrap

- Population/sample
- What is estimator; three good properties of estimator
- Inference; confidence interval; normal approximation vs. Bootstrap
- Conditional expectation is the best predictor in terms of minimizing MSE

 Aronow, Peter M., and Benjamin T. Miller. Foundations of Agnostic Statistics. Cambridge University Press, 2019. (Chapter 2 - 4)

- Aronow, Peter M., and Benjamin T. Miller. Foundations of Agnostic Statistics. Cambridge University Press, 2019. (Chapter 2 - 4)
- Joshua D. Angrist and Jorn-Steffen Pischke. *Mostly Harmless Econometrics: An Empiricists Companion*. Princeton University Press, 2009.

- Aronow, Peter M., and Benjamin T. Miller. Foundations of Agnostic Statistics. Cambridge University Press, 2019. (Chapter 2 - 4)
- Joshua D. Angrist and Jorn-Steffen Pischke. Mostly Harmless Econometrics: An Empiricists Companion. Princeton University Press, 2009.
 - Discuss Conditional expectation is the best predictor (Chapter 3.1)

- Aronow, Peter M., and Benjamin T. Miller. Foundations of Agnostic Statistics. Cambridge University Press, 2019. (Chapter 2 - 4)
- Joshua D. Angrist and Jorn-Steffen Pischke. Mostly Harmless Econometrics: An Empiricists Companion. Princeton University Press, 2009.
 - Discuss Conditional expectation is the best predictor (Chapter 3.1)
 - Motivated differently from Aronow and Miller