第十一章 習題解答

6. 高鐵通車,為沿線帶來相當的噪音,陸續有縣市政府環保局針對高鐵噪音開出罰單,因此,高鐵實施了一連串的改善計畫,以降低噪音對民眾帶來的困擾。計畫實施後,高鐵想知道成果是否符合預期要求,於是每天紀錄沿線 10個觀測點的噪音值(單位:分貝),一連紀錄 30 天,如下表。試利用樣本平均數與樣本標準差管制圖來監控噪音值是否在穩定的管制狀態。

天	樣本平均噪音值	樣本標準差	天	樣本平均噪音值	樣本標準差
1	70.0	5.73	16	68.2	4.92
2	70.3	5.12	17	70.8	5.79
3	68.2	3.39	18	66.0	3.80
4	69.2	5.55	19	71.6	3.53
5	68.7	4.81	20	72.1	3.93
6	67.3	3.74	21	69.7	5.27
7	71.6	1.90	22	67.9	6.24
8	69.4	6.15	23	67.5	5.04
9	66.6	6.57	24	69.4	6.75
10	69.8	4.83	25	71.1	5.84
11	69.9	4.77	26	71.2	6.60
12	71.5	5.46	27	69.4	5.68
13	71.4	4.70	28	68.9	6.21
14	68.2	3.55	29	69	4.71
15	71.7	6.55	30	70	5.14

【解】

(1) 求 \overline{X} 和 \overline{s}

$$\overline{\overline{X}} = \frac{\sum_{i=1}^{30} \overline{X}_i}{30} = \frac{2086.6}{30} = 69.55$$

$$\overline{s} = \frac{\sum_{i=1}^{30} s_i}{30} = \frac{152.29}{30} = 5.064$$

- (2) 樣本大小 n=10,查附表 8 得 $A_3=0.975$, $B_4=1.716$, $B_3=0.284$
- (3) 計算管制界限
 - S管制圖的三倍標準差管制界限為

$$UCL_S = B_4 \bar{s} = 1.716 \times 5.064 = 8.691$$
 $CL_S = \bar{s} = 5.064$
 $LCL_S = B_3 \bar{s} = 0.284 \times 5.064 = 1.437$
 \bar{X} 管制圖的三倍標準差管制界限為
 $UCL_{\bar{X}} = \bar{X} + A_3 \bar{s} = 69.55 + 0.975 \times 5.064 = 74.49$
 $CL_{\bar{X}} = \bar{X} = 69.55$
 $UCL_{\bar{X}} = \bar{X} - A_3 \bar{s} = 69.55 + 0.975 \times 5.064 = 64.61$

- (4) 使用 MINITAB 套裝軟體,我們只要選擇 Stat>Control Charts>Variables Charts for Subgroups>Xbar-S 等指令就可以繪製 \bar{X} S 管制圖,如圖下所示。
- (5) 在建構 \bar{X} 管制圖的三倍標準差管制界限時,我們需要用到製程標準差 σ 或製程標準差 σ 的估計值,若監控製程變異的 S 管制圖不在管制狀態,則 \bar{X} 管制圖的管制界限就沒有多大意義,所以在建構 $\bar{X}-S$ 管制圖時,最好先判斷 S 管制圖是否在管制狀態,若 S 管制圖顯示製程變異是在管制狀態,我們再去判斷 \bar{X} 管制圖是否在管制狀態。
- (6) 由 S 管制圖可以看出沒有樣本點落在管制界限外,且樣本點的散佈是隨機的,故目前的製程變異是在管制狀態下,從 \bar{X} 管制圖可以看出沒有樣本點落在管制界限外,且樣本點的散佈是隨機的,故目前的製程平均亦是在管制狀態下,所以高鐵目前的行車噪音值在穩定的管制狀態。

7. 竊盜犯罪一直是社會大眾關心及在乎的社會問題,為了有效降低竊盜率,保

障民眾生命及財產安全,警方著手進行許多預防計畫,如廣設巡邏箱,增加警察巡邏次數,加強預防犯罪的宣導,提高社區自主巡邏隊的意願及素質等。經過幾年的實行,警方想驗收計畫成果,因此,隨機抽選 100 件案件,並紀錄竊盜犯罪的件數,共 20 筆觀測值,如下表。試利用 c 管制圖來監控竊盜數是否在穩定的管制狀態。

樣本號碼	竊盜件數	樣本號碼	竊盜件數
1	55	11	55
2	61	12	69
3	63	13	64
4	56	14	57
5	54	15	61
6	65	16	54
7	55	17	56
8	62	18	58
9	68	19	65
10	70	20	54

【解】

(1) 計算警方每 100 件犯罪的平均竊盜案數

$$\overline{c} = \frac{50 + 61 + 63 + \dots + 65 + 54}{20} = \frac{1202}{30} = 60.1$$

(2) c 管制圖的 3 倍標準差管制界限為

$$UCL_{C} = \overline{c} + 3\sqrt{\overline{c}} = 60.1 + 3 \times \sqrt{60.1} = 83.36$$

 $CL_{C} = \overline{c} = 60.1$
 $LCL_{C} = \overline{c} - 3\sqrt{\overline{c}} = 60.1 - 3 \times \sqrt{60.1} = 36.84$

- (3) 使用 MINITAB 套裝軟體,我們只要選擇 Stat>Control Charts>Attributes Charts>c 等指令就可以繪製 c 管制圖,如下圖所示。
- (4) 由 c 管制圖可以看出沒有樣本點落在管制界限外,且樣本點的散佈是隨機的,所以目前的竊盜案件是在穩定的管制狀態。

8. TFT-LCD 「薄膜電晶體液晶顯示器」(Thin Film Transistor Liquid Crystal Display)於 1962 年由美國 RCA 實驗室率先發明至今,不到半個世紀全球幾乎每2 部電腦,就有一部配置液晶顯示器。相較一般所使用的 CRT「陰極射線管」(Cathode Ray Tube)顯示器,TFT-LCD 螢幕具有省電、超薄輕便、環保、無輻射等優勢。不過受限於液晶分子旋轉速度的限制,反應時間的極小化一直是各家廠商努力的目標。友友電子研發出一種新的液晶分子,以降低液晶分子扭轉的速限,有效突破面板反應時間至5毫秒,為了瞭解此新技術的穩定性,友友電子每次隨機抽取5片面板,共取得25組觀測資料,資料如下表。試利用樣本平均數與全距管制圖來監控面板反應時間是否在穩定的管制狀態。

樣本號碼 -		面板	反應時間(毫秒)		\overline{X}_{i}	D
脉平沉响 —	X_1	X_2	X_3	X_4	X_5	Λ_i	R_{i}
1	5.92	5.88	5.24	4.72	4.73	5.30	1.20
2	4.86	5.52	4.73	5.51	4.67	5.06	0.84
3	4.54	5.49	4.78	4.94	4.99	4.95	0.95
4	5.22	5.22	5.61	6.24	4.75	5.41	1.49
5	5.29	4.68	5.22	5.45	4.52	5.03	0.93
6	4.98	4.01	5.40	4.67	5.09	4.83	1.39
7	5.34	4.57	4.54	5.80	4.88	5.02	1.26
8	5.68	5.06	4.94	4.38	4.68	4.95	1.30
9	5.63	4.52	5.16	4.95	5.57	5.17	1.11
10	4.22	4.89	4.57	4.92	5.03	4.73	0.81
11	4.79	5.15	5.46	4.41	6.31	5.22	1.90

12 4.39 4.85 4.99 4.50 5.49 4.84 1.1 13 5.33 4.19 5.28 5.52 4.23 4.91 1.3 14 4.89 5.45 4.83 4.48 4.41 4.81 1.0 15 5.42 4.18 5.36 4.59 4.89 4.89 1.2 16 5.18 5.14 4.75 5.26 5.48 5.16 0.7 17 4.75 4.40 5.31 4.61 4.52 4.72 0.9 18 5.57 4.87 4.95 4.60 4.63 4.92 0.9 19 5.26 3.59 5.43 5.17 4.59 4.81 1.8 20 4.76 4.95 5.64 4.96 4.12 4.89 1.5
14 4.89 5.45 4.83 4.48 4.41 4.81 1.0 15 5.42 4.18 5.36 4.59 4.89 4.89 1.2 16 5.18 5.14 4.75 5.26 5.48 5.16 0.7 17 4.75 4.40 5.31 4.61 4.52 4.72 0.9 18 5.57 4.87 4.95 4.60 4.63 4.92 0.9 19 5.26 3.59 5.43 5.17 4.59 4.81 1.8
15 5.42 4.18 5.36 4.59 4.89 4.89 1.2 16 5.18 5.14 4.75 5.26 5.48 5.16 0.7 17 4.75 4.40 5.31 4.61 4.52 4.72 0.9 18 5.57 4.87 4.95 4.60 4.63 4.92 0.9 19 5.26 3.59 5.43 5.17 4.59 4.81 1.8
16 5.18 5.14 4.75 5.26 5.48 5.16 0.74 17 4.75 4.40 5.31 4.61 4.52 4.72 0.94 18 5.57 4.87 4.95 4.60 4.63 4.92 0.94 19 5.26 3.59 5.43 5.17 4.59 4.81 1.84
17 4.75 4.40 5.31 4.61 4.52 4.72 0.9 18 5.57 4.87 4.95 4.60 4.63 4.92 0.9 19 5.26 3.59 5.43 5.17 4.59 4.81 1.8
18 5.57 4.87 4.95 4.60 4.63 4.92 0.9 19 5.26 3.59 5.43 5.17 4.59 4.81 1.8
19 5.26 3.59 5.43 5.17 4.59 4.81 1.8
20 4.76 4.95 5.64 4.96 4.12 4.89 1.5
21 4.53 4.08 5.74 5.15 5.16 4.93 1.6
22 5.72 5.89 5.27 4.70 4.84 5.28 1.1
23 4.47 5.55 5.64 5.45 4.73 5.17 1.1
24 5.32 4.51 4.45 5.28 4.33 4.78 1.0
25 5.00 6.39 4.84 5.87 4.84 5.39 1.5

【解】

(1) 求 \overline{X} 和 \overline{R}

$$\overline{\overline{X}} = \frac{\sum_{i=1}^{25} \overline{X}_i}{25} = \frac{125.17}{25} = 5.007$$

$$\overline{R} = \frac{\sum_{i=1}^{25} R_i}{25} = \frac{30.42}{25} = 1.209$$

- (2) 樣本大小n=5,查附表 8 得 $A_2=0.577$ 、 $D_4=2.115$ 、 $D_3=0$
- (3) 計算管制界限

R 管制圖的 3 倍標準差管制界限為

$$UCL_R = D_4 \overline{R} = 2.115 \times 1.209 = 2.557$$

 $CL_R = \overline{R} = 1.209$

$$LCL_R = D_3 \overline{R} = 0 \times 1.209 = 0$$

 \overline{X} 管制圖的 3 倍標準差管制界限為

$$UCL_{\overline{X}} = \overline{\overline{X}} + A_2\overline{R} = 5.007 + 0.577 \times 1.209 = 5.704$$

$$CL_{\overline{X}} = \overline{\overline{X}} = 5.007$$

$$LCL_{\overline{X}} = \overline{\overline{X}} - A_2\overline{R} = 5.007 - 0.577 \times 1.209 = 4.309$$

- (4) 使用 MINITAB 套裝軟體,我們只要選擇 Stat>Control Charts>Variables Charts for Subgroups>Xbar-R 等指令就可以繪製 \overline{X} R 管制圖,如下圖所示。
- (5) 在建構 \bar{X} 管制圖的三倍標準差管制界限時,我們需要用到製程標準差 σ 或製程標準差 σ 的估計值,若監控製程變異的 R 管制圖不在管制狀態,則 \bar{X} 管制圖的管制界限就沒有多大意義,所以在建構 \bar{X} R 管制圖時,最好先判斷 R 管制圖是否在管制狀態,若 R 管制圖顯示製程變異是在管制狀態,我們再去判斷 \bar{X} 管制圖是否在管制狀態。
- (6) 由 R 管制圖可以看出沒有樣本點落在管制界限外,且樣本點的散佈是隨機的,故目前的製程變異是在管制狀態下,從 \overline{X} 管制圖可以看出沒有樣本點落在管制界限外,且樣本點的散佈是隨機的,故目前的製程平均亦是在管制狀態下,所以友友電子的面板反應速度其製程在穩定的管制狀態。

