

Some Applications of Trigonometry Ex 12.1 Q22

Answer:

Let BG be the distance of tall Boy x and he walks towards the building, makes an angle of elevation at top of building increase from 30° to 60°.

Therefore $\angle A$ = 30° and $\angle F$ = 60° given CE = 30 m, AB = 15 m, FG = 1.5 and DE = 28.5, GC = X – x and FD = X – x

We have to find x

The corresponding figure is as follows

In ΔAED

$$\Rightarrow \qquad \tan A = \frac{ED}{AD}$$

$$\Rightarrow \tan 30^{\circ} = \frac{28.5}{X}$$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{28.5}{X}$$

$$\Rightarrow X = 49.36$$

Again in △*EFD* .

$$\Rightarrow \tan F = \frac{DE}{FD}$$

$$\Rightarrow \tan 60^\circ = \frac{28.5}{X - x}$$

$$\Rightarrow \sqrt{3} = \frac{28.5}{49.36 - x}$$

$$\Rightarrow 28.5 = 49.36\sqrt{3} - \sqrt{3}x$$

$$\Rightarrow x = \frac{57}{\sqrt{3}}$$

Hence the required distance is 19

 $x = 19\sqrt{3}$

Answer:

Let AB be the tower of height h given the shadow of tower DC = 40 m. attitude of sun are $\angle D=30^{\circ}$ and $\angle C=60^{\circ}$. Here we have to find height of tower. Let BC=x and DC=40 .

In
$$\Delta ACB$$

$$\Rightarrow \qquad \tan C = \frac{AB}{BC}$$

$$\Rightarrow$$
 $\tan 60^\circ = \frac{h}{x}$

$$\Rightarrow \sqrt{3} = \frac{h}{x}$$

$$\Rightarrow$$
 $x = \frac{h}{\sqrt{3}}$

Again in $\triangle ADB$

$$\Rightarrow$$
 $\tan D = \frac{AB}{DB}$

$$\Rightarrow$$
 $\tan 30^\circ = \frac{h}{40 + x}$

$$\Rightarrow \frac{1}{\sqrt{3}} = \frac{h}{40 + x}$$

$$\Rightarrow$$
 40 + x = $\sqrt{3}h$

Put
$$x = \frac{h}{\sqrt{3}}$$

$$\Rightarrow 40 + \frac{h}{\sqrt{3}} = \sqrt{3}h$$

$$\Rightarrow 40 = \sqrt{3}h - \frac{h}{\sqrt{3}}$$

$$\Rightarrow 40 = \frac{2h}{\sqrt{3}}$$

$$\Rightarrow h = 20\sqrt{3}$$

Hence height of tower is $|20\sqrt{3}|$ m

Some Applications of Trigonometry Ex 12.1 Q24

Answer:

Let AB be the building of height $20\,\mathrm{m}$ and BC the transmission tower of height h meter. Again let the angle of elevation of the bottom and top of tower at the point O is 45° and 60° respectively.

Again in $\triangle OAC$

$$\Rightarrow \tan 60^{\circ} = \frac{AC}{OA}$$

$$\Rightarrow \sqrt{3} = \frac{h+20}{x}$$

$$\Rightarrow \sqrt{3}x = h+20$$

$$\Rightarrow 20\sqrt{3} = h+20$$

$$\Rightarrow h = 20\sqrt{3}-20$$

$$\Rightarrow h = 20\left(\sqrt{3}-1\right)$$

Hence the height of tower is

$$20(\sqrt{3}-1)$$
 m.

********* FND *******