ECE/CS/ME 539 - Fall 2024 — Activity 33

Problem Statement

Consider a Gated Recurrent Unit (GRU) with scalar inputs $x_t \in \mathbb{R}$, hidden states $h_t \in \mathbb{R}$, and output $o_t \in \mathbb{R}$. The GRU equations for a single timestep are given by:

$$z_t = \sigma(W_{xz}x_t + W_{hz}h_{t-1} + b_z)$$

$$r_t = \sigma(W_{xr}x_t + W_{hr}h_{t-1} + b_r),$$

$$\tilde{h}_t = \tanh(W_{xh}x_t + W_{hh}(r_t \odot h_{t-1}) + b_h)$$

$$h_t = z_t \odot h_{t-1} + (1 - z_t) \odot \tilde{h}_t$$

where σ is the sigmoid function, and \odot denotes element-wise multiplication.

The system is unrolled for T timesteps, with known input values x_1, \ldots, x_T and initial state $h_0 = 0$. The goal is to minimize the mean squared error between the output at the final timestep and a target value y:

$$L = \frac{1}{2}(h_T - y)^2.$$

Questions

1. Forward Pass:

• Compute the forward pass for T=2, given:

$$x_1 = 0$$
, $x_2 = 1.0$, $y = 2$, $h_0 = 0$

and the parameter values:

$$W_{\rm xz} = 0.5, \quad W_{\rm hz} = 0.1, \quad b_z = 0.0,$$

 $W_{\rm xr} = 0.4, \quad W_{\rm hr} = 0.2, \quad b_r = 0.0,$
 $W_{\rm xh} = 0.3, \quad W_{\rm hh} = 0.3, \quad b_h = 0.0,$

Compute h_t for t = 1, 2.

2. Backward Pass:

- Compute $\frac{\partial L}{\partial h_T}$.
- Compute $\frac{\partial L}{\partial W_{xz}}$.
- Compute $\frac{\partial L}{\partial W_{\rm xh}}$.

3. Gradient Stability:

• Why do GRUs help mitigate gradient vanishing or explosion compared to simple RNNs?