COMPUTER SCIENCE CHEAT SHEET

Greek Alphabet

A	α	Alpha	I	$\mid \iota \mid$	Iota	P	ρ	Rho
B	β	Beta	K	κ	Kappa	\sum	σ	Sigma
Γ	γ	Gamma	Λ	λ	Lambda	$\mid T \mid$	$\mid au$	Tau
Δ	δ	Delta	M	μ	mu	Y	$\mid v \mid$	Upsilon
$oxed{E}$	ϵ	Epsilon	N	ν	nu	Φ	ϕ	Phi
Z	ζ	Zeta	[1]	ξ	Xi	X	χ	Chi
H	η	Eta	O	0	Omicron	Ψ	$ \psi $	Psi
Θ	θ	Theta	П	π	Pi	Ω	ω	Omega

e

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$$

$$\frac{1}{e} = \lim_{n \to \infty} \left(1 - \frac{1}{n}\right)^n$$

$$e = \sum_{n=0}^{\infty} \frac{1}{n!}$$

$$e = \lim_{x \to 0} (1 + x)^{\frac{1}{x}}$$

Inequalities

$$\left(\frac{n}{k}\right)^k \le \binom{n}{k} < \left(\frac{en}{k}\right)^k$$

$$\forall x > 0 \qquad \left(1 + \frac{1}{x}\right)^x < e < \left(1 + \frac{a}{x}\right)^{x+1}$$

$$\forall x > 1 \qquad \left(1 - \frac{1}{x}\right)^x < \frac{1}{e} < \left(1 - \frac{1}{x}\right)^{x-1}$$

$$1 + x \le e^x$$

$$\left(\pi_{i=1}^n a_i\right)^{\frac{1}{n}} \le \frac{1}{n} \sum_{i=1}^n a_i$$

Approximation Formulas

Stirling's formula $n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$

Abstract Algebra

Field

A set F with two binary operations + and \cdot ia a *field* if: $1 \cdot +$ and \cdot are commutative

 $2. + \text{and} \cdot \text{are associative}$

 $3. + \text{ and } \cdot \text{ have identities}, 0 \text{ and } 1 \text{ respectively}, 0 \neq 1$

4. every element $a \in F$ has inverse for +, written -a

5. every element $a \in F$ has inverse for \cdot , written a^{-1}

 $6. \, \forall a, b, c \in F, \ a \cdot (b+c) = a \cdot b + a \cdot c$

Vector Space

A set V over a field F with a binary operation + is a vector space if:

1. + is commutative

2. + is associative

 $3. + \text{has identity } \vec{0}$

4. every $\vec{x} \in V$ has inverse for +, written $-\vec{x}$

 $5. \alpha(\vec{x} + \vec{y}) = \alpha \vec{x} + \alpha \vec{y}$

 $6. (\alpha + \beta)\vec{x} = \alpha \vec{x} + \beta \vec{x}$

 $7. (\alpha \beta) \vec{x} = (\alpha) (\beta \vec{x})$

 $8.\,1\vec{x} = \vec{x}$

Linear Algebra

Linear Map

Let V and W be vector spaces over the same field K. A function $f: V \to W$ is a linear map if for any two vectors $\mathbf{u}, \mathbf{v} \in V$ and any scalar $c \in K$:

1. $f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v})$

 $2. f(c\mathbf{u}) = cf(\mathbf{u})$

Probability

Jensen's Inequality: for any convex function f

 $E[f(X)] \ge f(E[X])$

Markov's inequality:

$$P(X \ge \alpha E[X]) \le \frac{1}{\alpha}$$

Complexity

Misc

Geometric Series

$$\sum_{i=1}^{n} aq^{i} = \frac{a(1-q^{n})}{1-q}$$