Dictionary-Guided Editing Networks for Paraphrase Generation

Shaohan Huang†, Yu Wu‡, Furu Wei†, Ming Zhou†
†Microsoft Research, Beijing, China

‡State Key Lab of Software Development Environment, Beihang University, Beijing, China

AAAI 2018

Background

- Paraphrase generation aims to generate restatements of the meaning of a text or passage using other words
- Application information retrieval, question answering, and conversation systems
- Prakash et al. (2016) employ the residual recurrent neural networks for paraphrase generation, that is one of the first major words that uses a deep learning model for this task
- Gupta et al. (2017) propose a combination of VAE and sequenceto-sequence model to generate paraphrase

Introduction

- Existing work on paraphrase generation focuses on generating paraphrase sentences from scratch (e.g. seq2seq [Lin+, 2014])
- However, an intuitive way for a human to write paraphrase sentences by replacing words or phrases in the original sentence

Figure 1: The dictionary-guided editing networks model first retrieves a group of paraphrased pairs and then generates a paraphrase using the original sentence as a prototype.

• Novelty: it jointly learns the (i) selection of the appropriate paraphrase pairs and (ii) generation of fluent sentences.

Methodology

Methodology – Retrieve

- Original Sentence X "What are the best ways to overcome boredom?"
- Paraphrased pairs D such as ("overcome", "get rid of"), ("the best ways", "the most suitable ways"), and ("the best ways", "the most efficient ways")

```
[VBD] ||| combined ||| blends ||| PPDB2.0Score=3.55781 PPDB1.0Score=15.479350 -logp(
LHS|e1)=3.39490 -logp(LHS|e2)=3.48857 -logp(e1|LHS)=9.97208 -logp(e1|e2)=5.68093 -logp(
e1|e2,LHS)=1.11850 -logp(e2|LHS)=14.18324 -logp(e2|e1)=9.79842 -logp(e2|e1,LHS)=5.32966
AGigaSim=0.51410 Abstract=0 Adjacent=0 CharCountDiff=-2 CharLogCR=-0.28768 ContainsX=0
Equivalence=0.269878 Exclusion=0.001897 GlueRule=0 GoogleNgramSim=0.03067 Identity=0
Independent=0.230379 Lex(e1|e2)=62.39060 Lex(e2|e1)=62.39060 Lexical=1 LogCount=0.69315
MVLSASim=NA Monotonic=1 OtherRelated=0.183808 PhrasePenalty=1 RarityPenalty=0.00002
ReverseEntailment=0.314039 SourceTerminalsButNoTarget=0 SourceWords=1 TargetComplexity=0.99275
TargetFormality=0.99686 TargetTerminalsButNoSource=0 TargetWords=1 UnalignedSource=0
UnalignedTarget=0 WordCountDiff=0 WordLenDiff=-2.00000 WordLogCR=0 ||| 0-0 ||| ReverseEntailment
[VBD] ||| overcome ||| addressed ||| PPDB2.0Score=3.55781 PPDB1.0Score=16.528730 -logp(
LHS|e1)=9.65618 -logp(LHS|e2)=1.72090 -logp(e1|LHS)=16.22013 -logp(e1|e2)=8.92465 -logp(
e1|e2,LHS)=11.91261 -logp(e2|LHS)=6.96427 -logp(e2|e1)=7.60408 -logp(e2|e1,LHS)=2.65676
AGigaSim=0.59570 Abstract=0 Adjacent=0 CharCountDiff=1 CharLogCR=0.11778 ContainsX=0
Equivalence=0.012291 Exclusion=0.000686 GlueRule=0 GoogleNgramSim=0.04294 Identity=0
Independent=0.418977 Lex(e1|e2)=62.90141 Lex(e2|e1)=62.90141 Lexical=1 LogCount=0 MVLSASim=NA
Monotonic=1 OtherRelated=0.321855 PhrasePenalty=1 RarityPenalty=0.36788 ForwardEntailment=0.246191
SourceTerminalsButNoTarget=0 SourceWords=1 TargetComplexity=0.99429 TargetFormality=0.99876
TargetTerminalsButNoSource=0 TargetWords=1 UnalignedSource=0 UnalignedTarget=0 WordCountDiff=0
WordLenDiff=1.00000 WordLogCR=0 ||| 0-0 ||| Independent
[VBN] ||| redistributed ||| split ||| PPDB2.0Score=3.55781 PPDB1.0Score=19.245440 -logp(
LHS|e1)=0.18102 -logp(LHS|e2)=1.50019 -logp(e1|LHS)=11.52214 -logp(e1|e2)=11.09932 -logp(
```

Ranking Function

$$score_r = \sum_{w \in o_i \cap x} t f_w \cdot i df_w + score'(o_i, p_i)$$

• 取10*M 个cadidates rank最后取top M 个

Methodology – Dictionary-Guided Editing

For each paraphrased pair in \mathcal{E} , we employ the same encoding method and obtain $2 \times M$ vectors $\mathcal{E}' = \{(o_r^i, p_r^i)\}_{i=1}^M$. In the next section, we will introduce leveraging our paraphrased dictionary to generate a paraphrase.

Methodology – Dictionary-Guided Editing

$$\tilde{\mathbf{h}}_{\mathbf{t}} = tanh(\mathbf{W}_{\mathbf{c}} \cdot (\mathbf{h}_{\mathbf{t}} \oplus \mathbf{c}_{\mathbf{t}} \oplus \mathbf{c}_{\mathbf{t}}'))$$

• C'_t is computed as the weighted average of the original hidden states

the weighted average of o_r^i and p_r^i as follows:

$$\mathbf{c_t} = \sum_{i=1}^{M} \mathbf{a_{t,i}} \cdot o_r^i \oplus \sum_{i=1}^{M} \mathbf{a_{t,i}'} \cdot p_r^i$$

$$\mathbf{y_t} = softmax(\mathbf{W_y}[\mathbf{y_{t-1}} \oplus \tilde{\mathbf{h_t}} \oplus \mathbf{c_t} \oplus \mathbf{c_t'}] + \mathbf{b_y})$$

Experiments

Objective function minimizing the negative log-likelihood

$$\mathcal{J} = -\log(p(\mathbf{y}^*|\mathbf{x}, \mathcal{E}'))$$

- Dataset
 - MSCOCO (Lin et al. 2014) a large-scale captioning dataset which contains **five human annotated captions** of over 120K images
 - Quora dataset is related to the problem of identifying duplicate questions. It consists of over 400K potential question duplicate pairs.
- **Evalutions**: BLEU (Papineni et al. 2002) and METEOR (Lavie and Agarwal 2007). (Correlate human judgments in paraphrase generation, Wubben+, 2010; Madnani+, 2012)

Results

Table 1: Results on MSCOCO dataset. Higher BLEU and METEOR score is better. Scores of the methods marked with * are taken from (Gupta et al. 2017).

Model	Beam size	BLEU	METEOR
Seq2Seq	1	29.9	24.7
VAE-SVG*	1	39.2	29.2
VAE-SVG-eq*	1	37.3	28.5
Our method	1	40.3	30.1
Seq2Seq*	10	33.4	25.2
Residual LSTM*	10	37.0	27.0
VAE-SVG*	10	41.3	30.9
VAE-SVG-eq*	10	39.6	30.2
Our method	10	42.6	31.3

Table 2: Results on Quora dataset. Higher BLEU and METEOR score is better. Scores of the methods marked with * are taken from (Gupta et al. 2017).

Model	Beam size	BLEU	METEOR
Seq2Seq	1	25.9	25.8
Residual LSTM	1	26.3	26.2
VAE-SVG*	1	25.0	25.1
VAE-SVG-eq*	1	26.2	25.7
Our method	1	27.6	29.9
Seq2Seq	10	27.9	29.3
Residual LSTM	10	27.4	28.9
VAE-SVG-eq*	10	37.1	32.0
Our method	10	28.4	30.6

Figure 3: Visualization of dictionary-guided attention in the decoder. Each column in the diagram corresponds to the weights of the decoder and items in the paraphrased dictionary.

Case Study

- red denotes paraphrased dictionary pairs
- blue denotes phrases which are found in the paraphrased dictionary

these two cats are playing in a room that
has a large tv and a laptop computer.
a cat being lazy and a cat being nozy in a
living room with tv and a laptop
displaying the same things.
two cats are playing in a living room with
a television.
(a tv, a television)
(a large and, a great and)
(playing a, to play a)

Source	a large passenger airplane flying through
	the air.
Reference	an airplane that is , either , landing or just
	taking off.
Generated	a large jetliner flying through a blue sky.
	(the airplane, the aeroplane)
Dictionary	(airplane, jetliner)
	(a large, a great)

Source	a large passenger airplane flying through
	the air .
Reference	an airplane that is, either, landing or just
	taking off .
Generated	a large jetliner flying through a blue sky.
	(the airplane, the aeroplane)
Dictionary	(airplane, jetliner)
	(a large, a great)

Source	what are ways i can make money online?
Reference	can i earn money online ?
Generated	how can i earn money online easily?
	(make money, earn money)
Dictionary	(indicate in what ways, indicate how)
	(making money, earn money)

Source	can you offer me any advice on how to		
	lose weight?		
Reference	how can i efficiently lose weight?		
Generated	can you give me some advice on losing		
	weight?		
	(offer advice, provide advice)		
Dictionary	(offer advice, give advice)		
	(you lost weight, you 've lost weight)		

Conclusion

• The system **jointly** learns the selection of the appropriate word level and phrase level paraphrase pairs in the context of the original sentence from the Paraphrase Database (PPDB)

• The proposed model is able to replace some words or phrases in the original sentence based on the dictionary and **makes necessary changes** to ensure the new sentence is grammatically correct and fluent

END & Thanks