THE SOURCE OF THE PROPERTY OF

VANYSEK, J. (5458)

Diisopropylfluorofosfat - Nove miotikum Diisopropylfluorophosphate - a new miotic Ceskoslovenska Ofthalmologie 1949, 5/1 (8-14) In a normal eye, 0.05 % oily solution of DFP produced a prolonged maximal missis lasting up to a week. The intraocular pressure was not influenced in most cases. Disturbances due to ciliary spasm and headache, especially in the bones of the orbit, were present and could be temporarily abolished by 1% homatropine. In several cases missis of the other. untreated, eye was observed, due to resorption of DFP and its action on blood cholinesterase. No systemic distrubances were observed. In a boy aged ten a paradoxical mydriasis soon followed the initial miosis. This can be explained as a compensatory hyperfunction of the parasympathetic system. In an atropinized eye, 0.1% solution of DFP abolished the effect of 1% atropine. This makes DFP the most potent of the known migtics. Hyperaemia of the iris occurred in one eye with recent contusion. Thus, DFP is unsuitable if inflammatory changes of the iris are present. As regards glaucoma, DFP seems to be especially indicated in glaucoma simplex; 0.05% preved to be a suitable solution, instillations once to twice a week sufficing. A good effect was observed in six cases of chronic inflammatory glaucoma with instillation twice a week. Experience in acute inflammatory glaucoma was less favourable. A good effect was observed in secondary glaucoma accompanying intumescent cataract and aphakia. No effect was observed in secondary glaucoma thrombosis of the central vein of the retina, or in a case of lens subluxation where the pain became more severe in spite of lowering of the intraocular pressure.

Klima - Prague (Sec. XII)

So: Excerpta Medica, Vol. II, No. 10, Sect. II, Oct. 1949

VANALALK, J.

VANYSEK J.

Dassni indikace a vysledky transplantaci rohovky. Fresent indications and results of corneal grafts Lek. listy 5:9 1 May 50 p. 249-52.

1. Of the Eye Clinic of the Medical Faculty, Charles University, in Hradce Kralove, (Head - Prof. Jan Vanyack, M.D.).

VANYSEK, J.

Present indication and results of the corneal grafts. Lek.listy 5 no.8:228-230; contd. Ap '50. (CLML 19:2)

1. Of the Eye Clinic of the Medical Faculty, Charles University, in Hradce Kralova, (Head -- Prof. Jan Vanysek, M.D.).

VANYSEK, J.

Significance of climate therapy of ocular tuberculosis.

Cesk. ofth. 6 no.2:91-96 1950. (CLML 20:1)

1. Of the Eye Clinic in Hradec Kralove (Head--Prof. Jan Vanysek, M. D.).

VANYSEK, J.

Present indications and results of corneal grafts. Lek.listy 5 no.9: 249-252 1 My '50. (CIML 19:2)

1. Of the Eye Clinic of the Medical Faculty, Charles University, in Hrdace Kralove, (Head -- Prof. Jan Vanysek, M.D.).

REZEK, V.; VANYSEK, J.

Transplantation of the vitreous. Cesk.ofth. 6 no.5:257-265 1950. (CIML 20:7)

1. Of the Eye Clinic of the Medical Faculty of Charles University Branch in Hradec Kralove (Head--Prof. Jan Vanysek, M.D.).

VAMYSEK, J.

Implantation of resins into the orbit. Cesk.ofth. 7 no.5:319-329 1951. (CIML 21:1)

1. Of the Eye Clinic of Charles University, Branch in Hradec Kralove (Head--Prof.Jan Vanysek, M.D.).

VANYSEK, J; VAVRA, R; ZELENY, V.

Method of electroretinography in man. Gesk. ofth. 8 no.1:1-8 Jan 1952. (CLML 22:2)

1. Of the Institute of Experimental Pathology and of the Eye Clinic of the Military Medical Academy in Hradec Kralove.

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858530010-0"

subnormal or absent, predominance of negative components. Retinal detachment gives a subnormal ERG, with on the borders also a supernormal ERG. Retinitis pigmentosa has no Aand B wave, with negative predominance and C wave. In glaucoma the character of the ERG is not in accordance with the amount of visual loss. Amblyopia in hypermetropia has a subnormal slow ERG. Protanopia and deuteranopia may be revealed with electroretinography. Hemeralopia may be detected. The book is extensively illustrated by numerous recordings of ERGs. The author is of the opinion that electroretinographic examination should consist of several examinations. Examination of the photopic ERG, of the influence of

the time of exposure on the ERG, of the influence of spectral light, of photopic and scotopic ERG, of the central time. As complementary investigations are considered examination by intermittent accelerating flashes, influence of dark adaptation on ERG and electroretinographic perimetry. Winkelman - Amsterdam

1411 CONT

•	BY VANYSEK J. Klin. Ocznej Czechoslowackiej, Wojskowej A. M. Ajaskra w obrazie elektropetinograficznym. The ERG in glaucoma KLIN. OCZNA 1955, 25/4 (235-248) Graphs 8 Tables 1 No logical correlation was found between the ERG and the course of the disease. No logical manifestations during the disease is caused by the affected interdepathological manifestations during the disease is caused by the affected interdependence between stimulation and inhibition of neural action which takes place pendence between stimulation and inhibition of neural action which takes place in the retina presumably.	
* 1		
		· ·

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858530010-0"

"APPROVED FOR RELEASE: 08/31/2001

CIA-RDP86-00513R001858530010-0

VANYSEK, J.

MESCALLED BURNEY

Our clinical experience with electroretinography. Rev. Czech. M. 2 no.3:205-215 1956.

1. From The Opthalmology Dept., Masaryk University, Brno. Director: Prof. J. Vanysek.

(RETINA, physiol.

dynamics, determ. by electroretinography)

VANYSEK, Jan

Electroretinographic studies of the effect of the central nervous system on adaptation of the human reting. Cesk. of th. 12 no.4: 233-238 Aug 56.

1. Z ocni kliniky MU v Brne. Prednosta: prof. Dr. J. Vanysek.

(REFINA, physiology,
electroretinography of dark adaptation, role of CNS
(Cz))

(ADAPTATION, OCULAR,
dark, electroretinography & role of CNS (Cz))

(CENTRAL NERVOUS SYSTEM, physiology,
regulation of dark adaptation, electroretinography (Cz))

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858530010-0"

VANYSEK, Jan; KOZOUSEK, Vladimir

Some eye legions in brain concussion. Cesk. ofth. 17 no.4/5:281-287 Jl '61.

1. Ocni klinika University J. Ev. Purkyne v Brne, predn. prof. MUDr. Jan Vanysek.

(BRAIN wds & inj) (EYE pathol)

VANYSEK, Jan; KOZOUSEK, Vladimir

Some tapetoretinal degenerations in the electroretinographic picture. Cesk. ofth. 17 no.7:481-486 N 61.

1. Ocni klinika University J. Ev. Purkyne, prednosta prof. dr. Jan Vanysek.

(ELECTRORETINOGRAPHY) (RETINA pathol)

VANYSEK, J.; PREISOVA, J.

Diagnostic evaluation of ultrasound in ophthalmology. Rev. czech. med. 10 no.2:73-85 passim. *64

1. Ophthalmological Glinic, Medical Faculty, J.E.Purkyne University, Brno; Director: Prof. J.Vanysek, M.D., D.Sc,

VANYSEK, J.; MOSTER, M.

Relation of mucoproteins, electrolytes and coemzyme A in the serum of patients with glaucoma. Cesk. oftal. 20 no.4:280-288 Jl. 64.

1. Ocni klinika lekarske fakulty UJEvP [University J.E.Purkyne) v Brne; prednosta: prof. dr. J.Vanysek, DrSc.

VANYSEK, J.; PREISOVA, J.

On the possibilities of untrasonic diagnosis in ophthalmology. Cas.lek. cesk. 103 no.8:193-198 21 F'64

1. Ocni klinika lekarske fakulty UJEvP v Brne; prednosta: prof. dr. J. Vanysek, DrSc.

*

THE LOCAL METERS OF THE PROPERTY OF THE PROPER

VANYSEK, J., prof. dr., DrSc.; KVAPILIKOVA, K.

Early and late experiences with intracameral lenses. Cesk. oftal. 21 no.3:159-166 My 165

1. Ocni klinika lekarske fakulty University J.E. Purkyne v Brne (prednosta: prof. dr. J. Vanysek, DrSc).

PREISOVA, J.; VANYSEK, J.

Our experiences with ultrasound diagnosis of eye diseases. Cesk. oftal. 21 no.5:361-369 S *65.

1. Ocni klinika lekarske fakulty University J.E. Purkyne v Brne (prednosta prof. dr. J. Vanysek, DrSc.)

WALTEL, V.

"Eclipses of Stars by the Moon." p. 138. (MATEMATICKO-PRIRODOVEDECKE ROZHLEDY, Vol. 32, no. 5, 1953, Praha, Gzechoslovakia)

So: Monthly List of East European Accessions, IC, Vol. 3, No. 5, May 1954/Unclassified

VANYSEK, V.

"Polar telescope." (p.153). RISE HVEZD. (Ceskoslovenska spolecnost astronomicka)

Praha. Vol. 34, No. 7, Sept. 1953.

SO: East European Accessions List, Vol. 3, No. 8, Aug 1954.

VANYSEK, V.

Vanysek, V. Notes from a trip to Poland. p.65.

Vol. 4, No. 5, Oct. 1954 CASOPIS CESEOSLOUENSKYCH USTAVU ASTRONOMICKYCH Praha, Czechoslovakia

SO: Monthly List of East European Accessions, (EEAL), LC, Vol. 5, No. 2 February, 1956

VANYSEK, V.; HREBIK, F.

"The Dependence of the Photometric Constant II of Comets on the Helio-centric Distance. In English." p. 65 (BIUTLETEN ASTRONOMICHESKIKH INSTITUTOV CHEKHOSLOVAKII. BULLETIN OF THE ASTRONOMICAL INSTITUTES OF CZECHOSLOVAKIA. Vol. 5, No. 1, July. 1951; Praha, Czech.)

So: Monthly List of East European Accessions, (EEAL), IC, Vol. 4, No. 4, April 1955, Uncl..

```
VANYSEK, Dy. V.

POJER, J., prof. Dr; ERAZDA, J., Dr; VANYSEK, V., kNDr

Incidence of myocardial infarction. Lek. listy, Brno 9 no.21:
481-484 1 Nov 54.

1. Z III. vnitrni kliniky M.U. a astronomického ustavu M.U.
Prednosta prof. Dr J. Mohr.
(MYOCARDIAL INFARCT, epidemiology,
in Grech., seasonal factors)
(GLIMATH,
seazonal variations in incidence of myocardial infarct
in Grech.)
```

USSR/Astro	
Card 1/1	Pub. 8 - 12/13
Authors	Ruprekht, Ya., and Vanysek, Y.
Title	Regarding the question on disintegration of masses considered by V. V.
Periodical	interaction Astron. zhur. 31/1. 93-94. Jan-Feb 1955
Abstract	* The deduction from the solution of the three body problem made by Radzievskiy, i.e. the possibility of the disintegration of masses near the sur, are criticised. Three references: 1 USA and 2 USER (1934-1954).
Institution	: Czechoslovakian Acad. of Scs., Astronomical Institute
Submitted	* ****
an propantion.	in terretain broad a sen in de comment de la comment d Reference de la commentación de la

APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858530010-0"

RUPREKHT, Ya.; VANYSEK, V

Problem of the dispersion of scattered clusters as applied by V.V.Radzievskii to a general solution of an unlimited problem of three bodies with a Newton-Hook interaction. Astron.zhur. 32 no.1:93-94 Ja-F 155. (MIRA 8:2)

1. Astronomiuneskiy institut Chekhoslovatskoy Akademii nauk. (Stars--Clusters) (Problem of three bodies)

VANYSEK, V.

Dispersion of velocities of bright stars and interstellar gas. Isv.Krym.astrofis.obser. 16:189-191 '56. (MIRA 13:4)

1. Astronomicheskiy institut Chekhosldvatskoy akademii nauk, Praga.

(Stars) (Gases, Interstellar)

VANYSEK, V.

Physical properties of interstellar matter. p. 81. (Pokroky Matematiky, Fysiky A Astronomie, Vol. 2, no. 1, 1957. Praha, Czechoslovakia)

SO: Monthly List of East European Accessions (EEAL) LC, Vol. 6, no. 10, October 1957. Uncl.

VANYSEK, V.; RAJCHL, J.

The probable explosion of the comet,

P. 57, (Casopis Ceskslovenskych Ustava Astronomickych) Vol. 7, no. 5, June 1957 Praha, Czechoslovakia

SO: Monthly Index of East European Acessions (EEAI) Vol. 6, No. 11 November 1957

VANYSEK, V.

Arend-Roland 1956 h Comet.

p. 68 (Casopis Ceskoslovenskych Ustavu Astronomickych. Vol. 7, No. 5, 1957, Fraha, Czechoslovakia)

Monthly Index of East European Accessions (EEAI) LC, Vol. 7, No. 2, February 1958

VANYSEK, V.

The determination of the quality of dust in cometary atmosphere. In English. p. 195.

PUBLICATIONS. (Cekoslovenska akademie ved. Astronomicky ustav.) Praha, Czechoslovakia, No. 34/42, 1958.

Monthly List of East European Accessions (EEAI), LC, Vol. 8, no. 11, Nov. 1959 uncl.

VANYSEK, V.; HRUSKA, A.

Physical properties of comets based on photometric data. In English. p. 345.

PUBLICATIONS. (Cekoslovenska akademie ved. Astronomicky ustav.) Praha, Czechoslovakia, No. 34/42, 1958.

Monthly List of East European Accessions (EEAI), LC, Vol. 8, no. 11, Nov. 1959 uncl.

VANYSEK, V.; GRYGAH, J.; SEKANINA, Z.

Initial velocity in the tail of comet 1956h. In English. p. 115.

BULLETIN OF THE ASTRONOMICAL INSTITUTES OF CZECHOSLOVAKIA. (Ceskoslovenska akademie ved. Astronomicky ustav) Praha, Czechoslovakia, Vol. 10, no. 4, July 1959.

Monthly List of East European Accessions (EEAI), LC, Vol. 8, no. 11, Nov. 1959

"APPROVED FOR RELEASE: 08/31/2001

CIA-RDP86-00513R001858530010-0

VANYTHE, J.: TREETO, J.

Thotosleastic measurements of intensity distribution in asset 1961e, 1961f, and 1963b, mist obtain do in po.6:233-240 ...

T. Frostry of Machematics and thy dos of the Charles University; Progue (for Venyack). i. As remominal institute of the slowes follows of Sciences, Skalnete the a for Terming).

	L 41519-65 ARG/EEOL2/EMG(J)/E.T(d)/FBD/FSS-2/E.G(r)/E.T(1)/FBO/E.P(c)/EMC()/EMT(m)/FS(v)-3/EPF(c)/EEC(k)-2/E.G(a)-2/E.T(1)/E.G(v)/E.P(c)/E.T(c)/E.P(v)/EMC(J)/T-2/EMG(a)-2/E.P(h)/EPA(bb)-2/EEC(c)-2/EED-2/E.G(c)/FES(k)/E.P(v)/EMA(1)/EPA/MAG(S)10 P1-4/Pa-4/Pa-4/Pa-4/Pa-4/Pa-4/Pa-4/Pa-4/Pa
, u.t.	Card 1/0 2
·	

- -1719-6 **AN**4045110 Ruml, Vladimir, (Candidate of Medical Sciences, Doctor); Sadil, Josef, (Doctor of

Physiological Sciences); Schnal, Ladiclav; Stverak, Jiri, (Doctor); Svestka, Zdenck, (Doctor); Tama, Jarcolav, (Candidate of Physical and Mathematical Sciences, Doctor); Tama, Vaciav, (Docent, Engineer); Illehla, Ivan, (Candidate of Technical Sciences, Professor, Doctor); Valnicek, Doris, (Candidate of Physical and Mathematical Sciences, Doctor); Vanysek, Vladimir, (Candidate of Physical and Mathematical Sciences, Docent, Doctor); Vlassk, Marian, (Candidate of Physical and Mathematical Sciences; Doctor); Voda, Miloslav, (Engineer)

Principles of astronauties (Zaklady kosmonautiky) Prague, Orbis, 1964. 445 p. illus., biblio. 5000 copies printed.

TOPIC TAGS: commonautics, rocket, satellite, space flight, missile

PURPOSE AND COVERAGE: This publication is a popular scientific reference book for people working in commonautics. The book presents a survey of commonautics and space flight up to 1 June 1963.

TABLE OF CONTENTS:

Cara 2/8 :

L 41519-65

16(1) 16,500

68970

AUTHORS:

Areynes, M.A., Vanyshteyn, I.A.

S/020/60/131/02/008/071

COLUMN CONTROLL PROGRAMMENT TO THE RESIDENCE OF THE PROGRAMMENT OF THE

and Ayzenshtat, N.D.

TITLE:

An Instance of a Lattice Which Cannot be Approximated by

حاد

PERIODICAL: Doklady Akademii nauk SSSR, 1960, Vol 131, Nr 2, pp 249-252 (USSR)

Let G be a plane set homeomorphic to the closed square. Three families of curves A, B, C in G are denoted as a lattice S = A,B,C in G if they satisfy the following conditions: 1) through every point of G there goes one curve of the femilies A, B, C each; 2) two curves of two families intersect at most in one point; 3) for every pair of these families there exists a topological mapping of G for which all curves of the pair go over into straight lines. S is called rectifiable if there exists a topological mapping of G for which all curves of A,B,C go over into straight lines. Let z = f(x,y) be defined in R: $x \in x \leq \overline{x}$, $y \leq y \leq \overline{y}$. The families of curves x = const, y = const, z = const form the lattice corresponding to the

Card 1/2

68970

An Instance of a Lattice Which Cannot be Approximated by Rectifiable Lattices

S/020/60/131/02/008/071

Let $p(t) = \begin{cases} -\frac{1}{12(t-1)^7 + \frac{7}{12(t-1) + \frac{1}{2}}} & \text{for } 0 \le t \le 2 \\ 1 & \text{for } t > 2 \end{cases}$, and p(t) = p(-2t) for t < 0. $z = f(x,y) \equiv x+y-1, 1p(x)p(y)p(x+y)-\frac{1}{2}$

 $-0,0001xy(x-2)(x-3)(y+1)(y-\frac{3}{2})$ in the square R: $|x| \le 3,5$, $|y| \le 3,5$ cannot be approximated by

There are 3 references, 2 of which are Soviet, and 1 German.

PRESENTED: November 17, 1959, by A.N.Kolmogorov, Academician

SUBMITTED: November 17, 1959

Card 2/2

VANYTRAUB, I.A. Studying soybean seed globulins by paper electrophoresis. Trudy po khim. prirod. soed. no.3:193-198 '60. (MIRA 16:2)

1. Kishinevskiy gosudarstvennyy universitet. Laboratoriya khimii belka.

(Paper electrophoresis) (Soybean) (Globulin)

VANYUKHINA, E.P., inzh.

Using electronic computers for accounting wages. Machinestranie no.4:11 14 Jl-Ag 165. (MIRA 18:8)

VANYUKOV, A.P., aspirant; GONOKHOV, A.G.

Voltage stabilizer. Elek.i tepl. tiaga 5 no.12:16-17 D '61. (MIRA 15:1)

等。其中的对象是不多的的数据的数据的数据的数据。这些是是的对象,但是自然的一个,也是是可以是一个。这一个是可以是是<mark>的对象,是这种的数据的数据的数据的数据的数据的数据</mark>

1. Kafedra "Elektrosnabzheniye zheleznykh dorog" Leningradskogo instituta inzhenerov zheleznodorozhnogo transporta (for Vanyukov).

2. Zamestitel' nachal'nika uchastka energosnabzheniya, stantsiya Bogotol Vostochno-Sibirskoy dorogi (for Gonokhov).

(Voltage regulators)

VANYUKOV, A.P., inzh.

A three-phase 100 kv.-a. power stabilizing system for supplying electric power consumers from a contact network carrying single-phase current. [Trudy] LIIZHT no.193:154-177 162. (MIRA 15:12)

1. Leningradskiy institut inzhenerov zheleznodorozhnogo transporta.

(Electric power distribution)
(Electric railroads—Corrent supply)

VANYUKOV, A. V. Card. Tech. Sci.

Dissertation: "Study of Gold Distribution Fetween Dross and Work Ical." Mescow Inst of Monferrous Metals and Gold imeni M. I. Kalinia, 15 May AV.

SC: Vechernyaya Moskve, May, 1947 (Project #17036)

VANYUKOV, V.A., professor, doktor; VANYUKOV, A.V., dotsent; KUDRIN, A.H., inzhener.

Sulfidizing oxidized nickel ores during smelting in sheft furnaces.

(MIRA 10:10)

TSvet.met.27 no.3:17-20 My-Je '54.

(Eickel--Metallurgy)

"APPROVED FOR RELEASE: 08/31/2001 C

CIA-RDP86-00513R001858530010-0

VANYUKOV, V.A., prof., doktor; VANYUKOV, A.V. idots.; KUDRIN, A.N., ingh.

Lowering fuel consumption in shaft maces. TSvet.met. 28
(MIRA 10:10)

no.2:23-26 Mr-AP '55.
(Blast furnaces) (Combustion)

Reducing the loss	of nickel in	raste slag.	TSvet.met. 28 no.4:9-16 (MIRA 10:11)	
J1-Ag '55.	(Nickel)	(Slag)	-	
•				

VANYUKOV, V.A.; VANYUKOV, A.V.; YUDINA, I.N.

Investigation of the reaction of natural nickel silicate with

iron sulfides. TSvet.met. 28 no.4:17-22 Jl-Ag '55. (MIRA 10:11)

iron sulfides) (Nickel silicates)

VANYUKOV, A.V.

BEREGOVSKIY, Vladimir Iosifovich; GUDIMA, Nikolay Vasil'yevich; VANYUKOV,
V.A., professor doktor, zasluzhennyy deyatel' nauki i tekhniki,
retsenzent; VANYUKOV, A.V., dotsent, kandidat tekhnicheskikh nauk,
retsenzent; III'ICHEV, C.V., in:hener, retsenzent; ZADIKYAN, A.A.,
inzhener, retsenzent; RESHETNICOV, F.G., redaktor; ARKHANGEL'SKAYA,
M.S., redaktor izdatel'stva; ATTOPOVICH, M.K., tekhnicheskiy
redaktor

[Nickel metallurgy; a textbook for schools and courses for specialists]
Metallurgiia nikelia; uchebnoe posobie dlia shkol i kursov masterov.
Moskva, Gos. nauchno-tekhn. izd-vo lit-ry po chernoi i tsvetnoi
metallurgii, 1956. 355 p.

(Nickel--Metallurgy)

Yanyukov. AV.

LAKERNIK, Mark Moiseyevich; SEVRYUKOV, Nikolay Nikolayevich; BELYAYEV, A.I., prof., dokt.; retsenzent; VELLER, R.L., kand.tekhn.nauk; retsenzent; VANYUKOV, A.V., retsenzent; KROL!, L.Ya., retsenzent; SAMSONOV,G.V., Tetsenzent; LEONIDOV, N.K., inzh., retsenzent; ZHEMCHUZHINA, Ye.A., red.; EL'KINA, L.M., red.izdatel'stva; MIKHAYLOVA, V.V., tekhn.red.

[Metallurgy of nonferrous metals] Metallurgiia tavetnykh metallov. Moskva, Gos.nauchno-tekhn.izd-vo lit-ry po chernoi i tsvetnoi metallurgii, 1957. 535 p. (Nonferrous metals -- Hetallurgy)

CIA-RDP86-00513R001858530010-0" APPROVED FOR RELEASE: 08/31/2001

137-58-6-11334

Translation from: Referativnyy zhurnal, Metallurgiya, 1958, Nr 6, p 11 (USSR)

Vanyukov, A.V. AUTHOR:

Preparation for Concentration and Flotation of Oxidized Nickel TITLE:

Ores (Podgotovka k obogashcheniyu i flotatsii okislennykh nik-

elevykh rud)

Materialy Soveshchaniya po vopr. intensifik. i usoversh. dobychi i tekhnol. pererabotki medno-nikelevykh i nikelevykh PERIODICAL:

rud. 1956 g. Moscow, Profizdat, 1957, pp 252-260

A method of presulfidation (P), whereby Ni is converted to a ABSTRACT:

suifide phase, is suggested. The resultant sulfides are separated by flotation. Specimens of silicate containing 26-30% Ni were employed in the investigation. Pyrite was used as the sulfidizing agent. The experiments showed the P process to be fairly vigorous. At 800-900°C, the conversion of Ni to the sulfide form in 5 m n is ≥95%. When pyrite is used, the process proceeds successfully only at higher temperature. Experiments were set up to study the degree to which S vapors were

employed in the P process. It is found that the utilization of S depends upon temperature and the nature of the medium. In the

Card 1/2

CIA-RDP86-00513R001858530010-0" APPROVED FOR RELEASE: 08/31/2001

137-58-6-11334

Preparation for Concentration and Flotation of Oxidized Nickel Ores

presence of a small amount (3%) of reductant, the degree of utilization of the 5 vapors rises: 33% at 700° and 55% at 900°. On P by pyrite, Ni sulfides form to a considerable degree owing to elementary S. The P of pre-reduced ore makes it possible to attain a high degree of conversion of oxygen compounds of Ni to sulfides. It is equally important that particles of adequate size be obtained. When the material is heated to 1150-12000 and held at that temperature for 2 hours, it is possible to derive the bulk of the sulfides in the form of inclusions measuring 0.3-0.5 mm. The sulfides may be obtained in the desired form by changing the conditions of cooling. A table of results of flotation of sulfided Ni ores is appended. A.Sh.

1. Nickel ores--Preparation 2. Nickel ores--Flotation

Card 2/2

137-58-4-6575

Translation from: Referativnyy zhurnal, Metallurgiya, 1958, Nr 4, p 37 (USSR)

Vanyukov, A.V., Utkin, N.I. AUTHORS:

The Surface Tension of Slag Melts (O poverkhnostnom natya-TITLE:

zhenii shlakovykh rasplavov)

Sb. nauchn. tr. Mosk. in-t tsvetn, met. i zolotal VNITO PERIODICAL:

tsvetn. metallurgii. 1957, Nr 26, pp 41-53

ABSTRACT:

The surface tension 6 of synthetic melts of FeO-SiO₂ -(aO(I) at 1200/1400°C and of multi-component slags SiO₂ FeO, CaO, MgO, Al2O3 (9.5%)] (II) at 13500 was determined by the method of maximum bubble pressure. Iron crucibles and capillaries were used, and nitrogen was the working gas employed. In I, with a constant FeO: CaO ratio, O diminishes as (SiO2) rises from 460 (27% SiO₂) to 380 ergs/cm² (58% SiO₂). As the FeO CaO ratio rises from 0.5 to 3.2 at constant (SiO2), O diminishes within the 460-410 interval (at 33% SiO2) and 400-385 ergs/crn2 (at 58% SiO2). The dO'/dT of slags differing in SiO2 contents is positive at a FeO: CaO ratio of 1.5. At constant (SiO2), a rise in (FeO) causes the do/dT to move out of the negative and into the positive values. In II, a rise in (SiO2) from 36 to 44% or of

Card 1/2

137-58-4-6575

The Surface Tension of Slag Melts

NAMES OF STREET AND STREET OF STREET STREET OF STREET STREET, STREET STREET, STREET, STREET, STREET, STREET, ST

Al₂O₃ from 7.5 to 10.5% causes O to decline, while as (CaO) rises from 18 to 24%, (FeO) from 16 to 22%, or MgO from 8 to 14%, O will increase at a rate rising from CaO to MgO. The results are explained, in their qualitative aspect, by a change in interionic reaction. In particular, the rise in O with increase in the basic acid contents and temperature is due to subdivision of the complex silicon oxide anions resulting in a strengthening of their bonds with the cations.

S.P.

1. Ores -- Melting -- Surface tension

Card 2/2

137-58-4-6576

Translation from: Referativnyy zhurnal, Metallurgiya, 1958, Nr 4, p 3? (USSR)

Vanyukov, V.A., Vanyukov, A.V., Utkin, N.I.

Surface Phenomena, and the Losses of Metal in Slags (Pover-AUTHORS: TITLE:

khnostnyye yavleniya i poteri metalla so shlakami)

Sb. nauchn. tr. Mosk. in-t tsvetn. met. i zolota i VNiTO tsvetn. metallurgii, 1957, Nr 26, pp 54-62 PERIODICAL:

Interphase tension (6) at the slag-matte interface and the wetting (angle of contact V) of slag by matte were measured. ABSTRACT:

The dimensions of rapidly cooling drops of matte in the slag (17.95% FeO, 20.35% CaO, 39.7% SiO₂, 9.25% Al₂O₃, 10.25% MgO) were determined, and a graphic method (RzhMet. 1956, Nr 2, abstract 1006) was used to calculate of thereon. As the S contents of the matte rose from 8.8 (16.4% Ni) to 31.7% (23.0% Ni), 6 dropped from 240 to 99 dynes/cm, and the Ni content of the slag increased from 0.04 to 0.3%. As temperature

rose from 1200 to 1350°C, O rose from 193 to 234 dynes/cm, and the Ni content of the slag dropped simultaneously from 0.63

to 0.17%. The rise in 6 with temperature is explained by the subdivision of the silicon oxide complexes. Holding of melts in

Card 1/2

电影性性的 电影响 1999年 1999年

137-58-4-6576

Surface Phenomena, and the Losses of Metal in Slags

an oxidizing atmosphere (5% O_2) was accompanied by a reduction in O_2 , while when held in a reducing atmosphere, O increased. In a neutral atmosphere, the introduction of magnetite induced a decline in O. Wetting of the slag by the matte is impaired as the SiO₂ and CaO contents of the latter rise, and also as FeO diminishes. T is 27-37% and drops by about 100 as the following various changes occur in the slag: SiO2 from 38 to 44%, CaO from 20.5 to 24%, FeO from 22 to 16%. An increase in MgO contents from 10 to 12% caused $\sqrt[3]{}$ to rise from 31 to 50°. It is noted that $\sqrt[3]{}$ and $\sqrt[3]{}$ rise with the concentration in the slag of cations that do not go into the matte (Ca²⁺, Mg²⁺). Simultaneously, a reduction in loss of metal with the slags was observed. 3. Slags

2. Slags--Test methods 1. Slags--Surface tension--Measurement --Test results 4. Metals--Losses

Card 2/2

VANYUKOV, A.V.

137-58-5-9348

Translation from: Referativnyy zhurnal, Metallurgiya, 1958, Nr 5, p 78 (USSR)

Vanyukov, V.A., Utkin, N.I., Vanyukov, A.V.

A Study of the Kinetics of Distillation of Zinc From Molten Slags AUTHORS: TITLE:

(K voprosu izucheniya kinetiki otgonki tsinka iz shlakovykh

rasplavov)

Sb. nauchn. tr. Mosk. in-t tsvetn. met. i zolota i VNITO PERIODICAL:

tsvetn. metallurgii, 1957, Nr 26, pp 63-73

A study of the kinetics of a process in which, under the action of solid C, Zn is distilled from molten slags of various composi-ABSTRACT:

tion. Ten samples of slags containing different amounts of SiO2, FeO, and CaO, and having a constant ZnO content (10%) were investigated. Chemically pure substances were employed in preparing the slags. The rate of distillation of Zn from liquid slags is determined to a considerable degree by the temperature of the process and the composition of slag; it increases as the temperature and the content of FeO in the slag become greater.

Acidic and ferrous slags react differently to the addition of CaO. An increase in the CaO content increases the rate of volatiliza-

tion of Zn from ferrous slags and decreases it in the case of Card 1/2

137-58-5-9348

A Study of the Kinetics of Distillation of Zinc From Molten Slags

acidic slags. The process of reduction of Zn from liquid slags falls into the category of diffusion processes; this is corroborated by the values of the rate constants, the magnitude of the apparent energy of activation, and the value of the temperature rate coefficient. The results of the experimental smeltings justify the assumption that the distillation of Zn proceeds with the aid of metallic Fe, which is an active intermediate product of the reaction. This assumption is substantiated by the appearance of Fe beads in selected samples and in the final slag, by an increase in the rate of Zn distillation when the FeO concentration in the liquid slags is increased, and by the magnitude of the apparent energy of activation.

1. Slags--Preparation 2. Slags--Properties 3. Zinc--Separation 4. Zinc

Card 2/2

VANYUKOV, AV.

137-58-3-5838

Translation from: Referativnyy zhurnal, Metallurgiya, 1958, Nr 3, p195 (USSR)

AUTHORS: Vanyukov, V. A., Vanyukov, A. V., Tarashchuk, N. T.

TITLE: Phase Diagram Studies of the Fe-Ni-S System (K voprosu izucheniya diagrammy sostoyaniya zhelezo-nikel*-sera)

PERIODICAL: Sb. nauchn. tr. Mosk. in-t tsvetn. met. i zolota i VNITO tsvetn. metallurgii, 1957, Nr 26, pp 108-119

The phase diagram of the Fe-Ni-S system was investigated up to the pseudo-binary segment FeS-NiS (35 per ent S) by means ABSTRACT: of thermal analysis, metallographic and mineralogical methods, and by microhardness studies of the individual phases. It is assumed that a compound 4NiS FeS (with an open maximum) exists, which forms an unstable, ternary, solid solution at low temperatures. At temperatures below 625°C, the 4NiS FeS (contained in the ternary solid solution) reacts with the FeS and forms a pentlandite solid solution (PSS). The PSS and a solid solution of metals may form in industrial mattes at slow cooling rates. In the process of cooling intermediate metal sulfide products obtained by bessemerization of matter, Ni6S5 and the eutectic Ni6S5+PSS, are formed. Significant amounts of an independent Ni6S5 phase form only in alloys with increased S content. Card 1/1

VANYUKOV, A.V.; UTKIN, N.I.

Hiffect of cations on surface tension of silicate melts. Izv. vys.

Hiffect of cations on surface tension of silicate melts. Izv. vys.

(NIRA 11:8)

1. Koskovskiy institut tsvetnykh metallov i zolota. Kafedra metallurgii tyazhelykh tsvetnykh metallov.

(Base exchanging compounds) (Surface tension)

(Surface tension)

INSOVSKIY, D.I.; VANYUKOV, A.V.; MAMEVSKIY, A.Yu.; SHAPIRO, Yu.L.

Investigating shaft furnace smelting of oxidezed nickel orcs by freezing the furnace. Isv. vys. ucheb. zav.; tsvet. met. no.25 (MIRA 11:8) 55-70 '58.

1. Moskovskiy institut tsvetnykh metallov i zolota. Mafedra metallurgii tyazhelykh tsvetnykh metallov.

(Nickel-Metallurgy)

CIA-RDP86-00513R001858530010-0 "APPROVED FOR RELEASE: 08/31/2001

sov/163-59-3-4/49 Vanyukov, A. V., Utkin, N. I. AUTHORS:

Surface Tension of the Melts in the Systems Fe0-Si0,-Ca0 (Poverkhnostnoye natyazheniye rasplavov sistemy FeOZSiO2-CaO) TITLE:

Nauchnyye doklady vysshey shkoly. Metallurgiya, 1958, PERIODICAL:

Nr 3, pp 22 - 24 (USSR)

The surface tension of the melts in the system Fe0-Si0,-Ca0 ABSTRACT:

was determined. The experiments were carried out with synthetically produced melts in hermetically sealed furnaces at 1350° in gas atmosphere. From the diagram of the surface tension of the melt may be seen that an increase of the SiO_2 -content in acid helts effects a decrease of the surface tension, but that a substitution of FeO by CaO causes the surface tension to increase. The decrease of the surface tension by increasing the acidity of the melt is explained by the increase of the capillary activity of the complexes in the melts. The complex anions accumulate at the surface of the melt and

reduce the surface tension. The substitution of the

Card 1/2

"APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858530010-0

Surface Tension of the Melts in the Systems

SOV/163-58-3-4/49

FeO-SiO2-CaO

cations Fe2+ by Ca2+ leads to a destruction of the silicon-oxygen complexes, to a decrease of the capillary activity, and consequently to an increase of the surface tension in the silicate melts. There are 1 figure, 1 table, and 7 references, 6 of which are Soviet.

ASSOCIATION: Moskovskiy institut tsvetnykh metallov i zolota (Moscow

Institute of Non-Ferrous Metals and Gold)

SUBMITTED:

January 16, 1958

Card 2/2

"APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858530010-0

VANTUKOV, V.A. [Caceased]; VANTUKOV, A.V.; TOROFOVA, T.G.

Decomposition of zinc ferrate by sulfur dioxide and sulfur trioxide.

Isv.vys. ucheb. zav.; tsvet. met. no.3:66-67 ' 58. (MRA 11:11)

1. Koskovskiy institut tsvetnykh metallov i solota. Severokavkasskiy gornometallurgicheskiy institut.

(Zinc ferrates) (Sulfur oxides)

sov/149-58-5-4/18

Vangukov, A.V. and Odinets, Z.K. AUTHORS:

On the Form of Metal Losses in Slags (O forme poter

Izvestiya Vysshikh Uchebnykh Zavedeniy, Tsvetnaya metallov so shlakami) TITIE: . Metallurgiya, 1958, Nr 5, pp 27 - 37 (USSR) PERIODICAL:

ABSTRACT: Waste slags constitute the main source of losses of

metals during their extraction by pyrometallurgical methods. According to a rough estimate, lowering of the nickel content in the waste slags produced by the Yuzhural'nikel Combine by only 0.01% would result in an annual saving of 3.5 million roubles. There are indications that metals can be present in slags in the form of dissolved sulphides, mechanically entrapped matte inclusions and various silicates and oxides, but data on the quantitative relationship between these various forms of metal losses are lacking. Solubility of FeS, CaB and MgS in slags is said to be high, that of ZnS limited, while data on the solubility of NiS, Cu2S and

11

The object of the present investigation was to determine

Card1/8

On the Form of Metal Losses in Slags

the effect of various factors on the relative concentration of nickel, copper and cobalt in the matte and in the slag. The composition of the experimental slags is given in Table 1. They were synthetised by melting under nitrogen, in iron crucibles, calculated quantities of fayalite, pure SiO2 powder and reactive CaO calcined at 900 °C, the final product being ground to 60 mesh, Fayelite was prepared in the same manner from ferric oxalate and pure SiO2 powder and according to the results of microscopic examination no magnetite was present in the final product. The experimental mattes were prepared from pure sulphides melted in alumina crucibles under purified argon. The iron and nickel sulphides were obtained by passing H28 over "Armco" iron shavings and nickel powder at 700 and 900 C, respectively. The copper and cobalt sulphides were prepared by direct fusion of the components in graphite crucibles. The chemical analysis of the sulphides is given in Table 2. Radioactive tracer technique was used for determination of the form in which the investigated metals were present

Card2/8

On the Form of Metal Losses in Slags

in the slag that had been melted in contact with a matte of a given composition. On the assumption (later werified experimentally) that gold is not soluble in slag, a radio-active isotope Au 198 had been introduced into all the experimental mattes. On the completion of each experiment in which matte of a given composition was melted under purified argon (partial oxygen pressure;

less than 0.6×10^{-11} atm) in contact with one of the experimental slags, the radioattivity of the slag was therefore proportional to the amount of the matte inclusions mechanically entrapped in the slag. On the assumption that the composition of the matte inclusions was the same as that of the original material, the quantity of metals carried by these inclusions was calculated from the known values of the radioactivity of the slag and the matte. The total metal content of the slag was determined by chemical analysis and the quantity of metals dissolved in the slag was found by difference. The experimental apparatus is illustrated diagrammatically

Card3/8

On the Form of Metal Losses in Slags

in Figure 1 and the results are reproduced graphically. To check the eliability of the radioactive tracer technique, one series of experiments with a nickel matte was repeated under the same conditions using the following method. A small, cylindrical crucible provided with a small orifice half way up its wall was placed in a larger crucible. The nickel matte was placed in the small crucible below the level of the orifice. Slag was placed in both crucibles, its level in the large crucible being slightly larger than in the small one. It was assumed that small dimensions of the orifice in the smaller crucible would prevent the matte inclusions finding their way to the slag contained in the large crucible, so that the total metal content of this slag would correspond to metals dissolved in the slag. As can be seen from Table 5, there was a close agreement between the results obtained by the two different methods. the results obtained by the two distribution of the effect of replacing FeO by CaO on the distribution of the effect of replacing FeO by CaO on the distribution of the effect of replacing FeO by CaO on the distribution of the effect of replacing FeO by CaO on the distribution of the effect of replacing FeO by CaO on the distribution of the effect of replacing FeO by CaO on the distribution of the effect of replacing FeO by CaO on the distribution of the effect of replacing FeO by CaO on the distribution of the effect of replacing FeO by CaO on the distribution of the effect of replacing FeO by CaO on the distribution of the effect of replacing FeO by CaO on the distribution of the effect of replacing FeO by CaO on the distribution of the effect of replacing FeO by CaO on the distribution of the effect of replacing FeO by CaO on the distribution of the effect of replacing FeO by CaO on the effect of replacing FeO by CaO on the distribution of the effect of replacing FeO by CaO on the effect of replacing FeO by CaO on the effect of replacing FeO by CaO on the effect of the effect of replacing FeO by CaO on the effect of the effect of replacing FeO by CaO on the effect of the The effect of replacing reo by Gao on the distribution of Cu, Ni and Co in the slag of constant acidity at 1 300 °C shown in Figure 2. Scale on the left side - dissolved Ni (Curve 1) and Cu (Curve 2). Scale on the right side - (Curve 1) and Cu (3), mechanical losses of Cu (4) and Co (5).

Card4/8

A PLANTING HAVE BEEN AND THE PARTY OF THE PA

On the Form of Metal Losses in Slags

SOV/149-58-5-4/18

The effect of acidity of the slag is shown in Figure 3: left - dissolved Ni (1) and Cu (2), mechanical losses of Co (5); right - dissolved Co (3), mechanical losses of Cu (4). Figure 4 shows the effect of the sulphur content of the matte with a constant metal content on the quantity of the matte with a constant metal content on the quantity of metals dissolved in the slag: Curve 1 - Ni, Curve 2 - Cu and Curve 3 - Co. The effect of the metal content of the matte (at constant S content) on the distribution of metals in the slag is shown in Figure 5: left - dissolved metals in the slag is shown in Figure 5: left - dissolved Ni (1) and Cu (2) and mechanical losses of Co (5); right dissolved Co (3) and mechanical losses of Cu (4) and Ni (6). The effect of temperature is shown in Figure 6: left - dissolved Ni (1) and Cu (2): right - dissolved Co (3) and dissolved Ni (1) and Cu (4) and Co (5). Figure 7 shows the mechanical losses of Cu (4) and Co (5). effect of the oxygen content of the matte on the quantity of copper dissolved (Curve 1) and mechanically entrapped (Curve 2) in the slag. The effect of the temperature, matte composition and replacing FeO by CaO on the solubility of FeS in the slag is shown in Figure 8, that of the acidity of the slag, matte composition and temperature is illustrated in Figure 9.

Card5/8

On the Form of Metal Losses in Slags

The results of the present investigation show that: (i) in a neutral atmosphere, the quantities of Ni and Cu dissolved in the slag amount to little more than 0.001 and 0.01% respectively. Owing to higher solubility of CoS and the reversibility of the reaction

CoS + (FeO) → FeS + (CoO) ,

the amount of Co dissolved in the slag is considerably (ii) the quantity of metals dissolved in the slag depends higher and can exceed 0.1%; to a large extent on the FezO4 content of the matte and The higher the Fe₃0₄ content of the matte and the higher the proportion on the composition of the gaseous phase. of O present in the gaseous phase the higher is the proportion of metals dissolved in the slag. Presence of oxygen-bearing nickel compounds in industrial slags obtained during smelting of nickel oxide ores can be explained either by the fact that the sulphiding reaction does not proceed to completion, or by the entrapment of the burden fines in the slag. This means that nickel losses in the

Card6/8

807/149-58-5-4/18

上的第三人称形式的形式的形式 在一个的现在分词是一种"这种是是有效的的最高的数据,我们就是这种是一种的现在分词,这种是这种是是这种的数据中国的是是

On the Form of Metal Losses in Slags

slags can be considerably reduced by application of preliminary sulphiding treatment during the sintering process and by improving the quality of the sintered agglomerate. It is also necessary to limit to a minimum the Fe₃O₄ content in the raw agglomerate by sintering in

a tube furnace. Lowering of the magnetite content in the sinter cake entering the reverberatory copper smelting furnace can be attained by introducing a reducer in the bottom hearth of the sintering furnace. The practice of introducing the converter slags containing a large proportion of magnetite in the reverberatory furnace is not to be recommended;

not to be recommended;
(iii) losses of Ni and Cu in the slags œur mainly by
way of the mechanically entrapped matte inclusions. These
losses become smaller under conditions which favour the
coalescence of the sulphide droplets and their separation
from the slag. The fact that with increasing acidity of
the slag the mechanical losses of metals decrease indicates
that in some cases the surface properties which govern the
process of coalescence are of primary importance;

Card7/8

On the Form of Metal Losses in Slags

(iv) since increasing the temperature lowers the proportion of mechanically entrapped matte inclusions without significantly increasing the quantity of metals dissolved in the slag, it appears that in order to lower the total metal content of the waste slags the melt should be overheated. There are 9 figures, 5 tables and 24 references, 16 of which are Soviet, 7 English and 1 German.

ASSOCIATION:

Moskovskiy institut tsvetnykh metallov i zolota. Kafedra metallurgii tyazhelykh tsvetnykh metallov. (Moscow Institute of Non-ferrous Metals and Gold. Chair of Metallurgy of Heavy Non-ferrous Metals)

July 16, 1958 SUBMITTED:

Card 8/8

SOV/149-58-6-5/19

AUTHORS:

Vanyukov, A.V. and Utkin, N.I.

TITIE:

The Effect of Temperature on the Surface Tension of Silicate Melts (Vliyaniye temperatury na poverkhnostnoye natyazheniye silikatnykh rasplavov)

PERIODICAL:

Izvestiya Vysshikh Uchebnykh Zavedeniy, Tsvetnaya

Metallurgiya, 1958, Nr 6, pp 43 - 48 (ÚSSR)

ABSTRACT:

The temperature dependence of the surface tension of binary silicate melts was extensively studied by King (Ref 5) who used a modified ring method for measuring the surface tension. King established that the temperature coefficient of the surface tension of some mixtures was positive and that it increased with increasing acidity of the melts and with increasing field strength of the cations, the latter effect having been also observed by Boni and Derge (Ref 3). On the other hand, it had been found by other investigators (Refs 7,8) that the surface tension of the FeO-SiO2 and FeO-Fe2O3 systems was practically unaffected by the temperature variation. The present authors studied the surface tension of of yarious synthetic silicate melts in the 1 200 - 1 400 C temperature range using the

Card1/5

SOV/149-58-6-5/19 The Effect of Temperature on the Surface Tension of Silicate Melts method of the maximum pressure of a gas (nitrogen) bubble, the experimental technique having been described elsewhere (Refs 9, 10). The effect of the temperature on σ of the melts of the FeO-SiO₂-CaO system was studied on seven mixtures representing typical slags formed in a majority of processes used in extraction of non-ferrous metals. The composition of these experimental slags (in mol%) is given in Table 1, the last column of which shows the acidity of the melts as measured by $K = O(SiO_2)/O(\Sigma MeO)$. The results of the first series of experiments are given in Table 2, showing the values of o (in dynes/cm) at various temperatures and the temperature coefficient of (in dynes/cm per C) for the investigated temperature range. With the exception of the melt containing the maximum proportion of CaO, the temperature coefficient of of was positive and its magnitude increased with the increasing FeO/CaO ratio and with increasing acidity of the melts. In the second stage of the investigation, the effect of temperature on o of melts of the Card2/5

Card3/5

SOV/149-58-6-5/19 The Effect of Temperature on the Surface Tension of Silicate Melts FeO-SiO2-Me2O(MeO) systems was studied on mixtures containing (in mol.%) 34.5 FeO, 43 SiO and 22.5 Me₂O alkali metal oxide) or MeO (an alkaline earth metal oxide). The temperature dependence of σ of the melts containing K20, Na₂0 and Li₂0 is shown in Figure 1 (graphs 1, 2 and 3, respectively). The same relationship for the melts containing BeO, BaO, SrO, CaO and MgO is shown in Figure 2 (graphs 1-5, respectively). The relationship between the temperature coefficient of o of silicate melts and the ionic potential : = Z/r of some cations is illustrated in Figure 3. The surface tension of the melt containing K20 decreased with increasing temperature and the temperature coefficient of o of the melt containing Na20 was equal zero. In all the other cases the temperature coefficient of σ was positive. The following conclusions were reached: i) the temperature dependence of o of the investigated silicate melts containing FeO confirmed the micro-heterogeneity of melts of this type; ii) the high

Card4/5

SOV/149-58-6-5/19 The Effect of Temperature on the Surface Tension of Silicate Melts degree of micro-heteregeneity exhibited by the melts in the presence of the Fe2+ cation is caused by oxygen breaking away from the complex anions and by the cybotactic groups consisting of complex anions and weak cations being forced out to the surface layers of the melt; iii) in the case of the cations of the alkali and alkaline earth metals characterised by ionic potential lower than 2, the micro-heterogeneity of the melts containing the Fe ions increases with the decreasing field strength of the cations and the temperature coefficient of o correspondingly decreases; iv) the decrease of the temperature coefficient of o observed when CaO is substituted by MgO or BeO is an indication of the tendency of the ${\rm Mg}^{2+}$ and ${\rm Be}^{2+}$ cations to form complexes; v) the increase of the temperature coefficient of σ of the melts of the FeO-SiO2-CaO system resulting from the increase of the acidity and of the FeO/CaO/is associated with the breakdown of the silicate anions and with homogenisation of the melt; vi) the magnitude and the sign of the

CIA-RDP86-00513R001858530010-0

SOV/149-58-6-5/19

The Effect of Temperature on the Surface Tension of Silidate Melts

temperature coefficient of σ of silicate melts is determined by: a) a decrease of the strength of the forces binding the ions; b) breakdown of the complex anions resulting from weakening of the bond between the Fe²⁺ and O²⁻ ions and c) homogenisation of the melt at higher temperatures. The decisive part played by the two last factors can be inferred from the positive values of the temperature coefficient of σ of the majority of the investigated melts. There are 3 figures, 2 tables and 14 references, 12 of which are Soviet and 2 English.

ASSOCIATION:

Moskovskiy institut tsvetnykh metallov i zolota. Kafedra metallurgii tyazhelykh tsvetnykh metallov (Moscow Institute of Non-ferrous Metals and Gold. Chair of the Metallurgy of Heavy Non-ferrous Metals)

SUBMITTED:

January 14, 1958

Card 5/5 '

"APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858530010-0

18(6) AUTHORS: Vanyukov, A. V., Utkin, N. I.

sov/163-59-1-3/50

TITLE:

Influence of Chromium Upon the Surface Tension in Nickel-smelt Slags (Vliyaniye khroma na poverkhnostnoye natyazheniye shlakov

nikelevoy plavki)

PERIODICAL:

Nauchnyye doklady vysshey shkoly. Metallurgiya, 1959, Nr 1,

pp 11-13 (USSR)

ABSTRACT:

Reference is made of the fact that by an addition of as little as 0.001 gram mols of Cr203 the surface tension of glasses is reduced by 200-225 dynes/cm, which phenomenon has been discovered by Appen et al. (Ref 3). The work reported in this paper was carried out to check this allegation. The influence of chromium upon the surface tension (o) in the slags of smelts of oxidized nickel ores was investigated. The surface tension was determined according to the method of the maximum pressure of a gas bubble (nitrogen) at three temperatures, at 1,300, 1,350, and 1,400 (Ref 4). Synthetic slags, fused from chemically pure oxides, were used in the experiments. Ferrous oxide was added as iron silicate (2Fe0.Si02). The Cr203

Card 1/3

content in the slags varies from 0 to 5 %. It appears from

Influence of Chromium Upon the Surface Tension in

sov/163-59-1-3/50

the experimental data that the surface tension decreases if the chromium oxide content increases. The concentration the chromium oxide content increases. The surface tension decrease of Cr₂O₃ lies at about 1 %. The surface tension decreases by about 5 dynes/cm. It is shown that the decrease of the surface tension with increasing concentration is conformed with the increase of the capillary activity of the nected with the increase of the capillary activity. This is also demonstrated by the positive

temperature coefficient $\frac{d\sigma}{dT}$, of the slags investigated. The

experimental information, however, does not indicate such a pronounced decrease of σ with an increase of the Cr_2O_3 content in the slags, which with glass has been found by Appen (Ref 3). It was found in the course of the experiments that the interesse of the Cr_2O_3 -content in the slags results in a decrease of the interface tension ($\sigma_{1,2}$) at the boundary between the slag and the iron crucible. A similar influence of the slag and the variation of the surface tension σ should be chromium upon the variation of the surface tension σ should be expected to occur at the boundary between the slag and the

Card 2/3

CIA-RDP86-00513R001858530010-0 "APPROVED FOR RELEASE: 08/31/2001

Influence of Chromium Upon the Surface Tension in

sov/163-59-1-3/50

Nickel-smelt Slags

lining, which forms during the melting of oxidized nickel ores in cupola furnaces. The reduction of the interface tension is closely connected with the ability of chromium to disperse among the liquid smelt products. A low interface tension is an inconvenient phenomenon, as in this case the separation of the liquid smelt products becomes more difficult and the losses of valuable metals in the slags increase. There are 2 tables and 8 references, 7 of which are Soviet.

ASSOCIATION:

Moskovskiy institut tsvetnykh metallov i zolota (Moscow Insti-

tute of Non-ferrous Metals and Gold)

SUBMITTED:

May 26, 1958

Card 3/3

CIA-RDP86-00513R001858530010-0" APPROVED FOR RELEASE: 08/31/2001

"APPROVED FOR RELEASE: 08/31/2001

CIA-RDP86-00513R001858530010-0

VANYUKOV, A.V.; CHZHOU CHZHUN-KHUA [Chou Chung-hua]

Kinetics of iron sulfide oxidation. Izv.vys.ucheb.zav.; tsvet.

met. 2 no.1:41-50 '59. (MIRA 12:5)

1. Moskovskiy institut tsvetnykh metallov i zolota. Kafedra metallurgii tyazhelykh tsvetnykh metallov.
(Iron sulfides) (Ore dressing)

"APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858530010-0

VANYUKOV, A.V.; CHZHOU CHZHUN-KHUA [Chou Chung-hua]

Mechanism of iron sulfide exidation. Izv. vys. ucheb. zav.; tsvet. met. 2 no.2:29-34 159. (MIRA 12:7)

1. Moskovskiy institut tsvetnykh metallev i solota. Kafedra metallurgii tyazhelykh tsvetnykh metallev.

(Iron sulfides) (Oxidation-reduction reaction)

CIA-RDP86-00513R001858530010-0 "APPROVED FOR RELEASE: 08/31/2001

18.5000

75384 SOV/149-2-5-10/32

AUTHORS:

Vanyukov, A. V., Montil'o, I.

TITLE:

Study of Calcium, Iron, Nickel, and Sulfur Diffusion

in Liquid Slags

PERIODICAL:

Izvestiya Vysshikh uchebnykh zavedeniy. Tsvetnaya met-

allurgiya, 1959, Vol 2, Nr 5, pp 60-67 (USSR)

ABSTRACT:

Diffusion determines in many cases the course of metallurgical processes. The work done on diffusion in liquid slags mostly covers transfer of matter in a system CaO-Al₂O₃-SiO₂. Problems of mass transfer in

nonferrous metallurgy are not adequately studied as yet. Therefore the authors undertook a study of the diffusion of calcium, sulfur, iron and nickel in molten slag containing 39.9% S10,, 21% CaO, 19.1% FeO, 9.8%

 $A1_20_3$, and 10.2% MgO. To trace the transfer of matter, radioactive isotopes Ca 45 , S 35 , Fe 59 , and Ni 63 were

Card 1/4

Study of Calcium, Iron, Nickel, and Sulfur Diffusion in Liquid Slags

75384 307/149-2-5-10/32

A PODE CHILDREN CONTRACTOR PROPERTY ENGINEER SERVICE S

used. Slags were prepared with chemically pure oxides and fayalite, melted in an iron crucible in a stream of purified nitrogen. Melting was done under vacuum

(less than 10^{-3} mm Hg). The degree of diffusion was determined by dipping a corundum capillary filled with neutral slag into a slag bath tagged with a radioactive isotope. Upon diffusion, the capillary was subjected layerwise to a radiometric test. This method permits an accurate evaluation of the duration of the process and shows a clear boundary of contacting masses. It eliminates convective mixing. The data so obtained indicate that nickel, iron, and calcium are diffused as simplest ions. The diffusion coefficients obtained experimentally for sulfur as well as the activation energy of mass transmission suggest the possibility of an electron exchange between sulfur and oxygen ions with the help of iron, as shown by Kozheurov, V. A. The smaller the size of a particle, the greater its transfer velocity and the lower its

Card 2/4

用学科文学的经验中的企业的经验的企业,可能可能是这一个人们,在全个人的一个人们的企业的工程的中的发生工作的。第二次的基础的发生,这种的企业的主义的企业的主义的企业的

Study of Calcium, Iron, Nickel, and Sulfur Diffusion in Liquid Slags

75384 SOV/149-2-5-10/32

activation energy. When the content of CaO in slag rises from 18% to 21%, the diffusion coefficient of nickel (at 1400°) changes from 5.87 · 10⁻⁶ to 7.79 · 10⁻⁶. A small difference in the energy of diffusion activation between the two slags indicates an increase in the number of holes in the slag caused by the CaO addition. This is confirmed by a study of the viscosity. There are 7 figures; 3 tables; and 34 references, 24 Soviet, 2 Japanese, 6 U.S., 1 British, 1 German. The most recent U.S. references are: Towers, H., Paris, M., Chipman, J., J. Metals, Nr 11, S 1, 1455, 1953, and Vol 9, Nr 6, 769, 1957; Li, J. C., Machang, P., J. Phys. Vol 23, Nr 23, Nr 3, 518, 1955; Hoffman, R. E., J. Chem. Phys., Vol 20, Nr 10, 1567, 1952; Tomlinson, J. W., Phys. Chem. Metals, 1953. The British reference is: Crank, J., The Mathematics of Diffusion, Oxford, 1956.

ASSOCIATION: Card 3/4

Krasnoyarsk Institute of Nonferrous Metals. Chair of Heavy Metals Metallurgy (Krasnoyarskiy institut tsve-

"APPROVED FOR RELEASE: 08/31/2001 CIA-RDP86-00513R001858530010-0

Study of Calcium, Iron, Nickel, and Sulfur Diffusion in Liquid Slags

75384 **SOV**/149-2-5-10/32

nykh metallov. Kafedra metallurgii tyazhelykh met-

allov)

SUBMITTED:

April 22, 1959

Card 4/4

VANYUKOV, A.V.; MONTIL'O, I .

Chemism of sulfidizing in shaft furnace smelting of oxidized nickel ores. Izv.vys.ucheb.zav.; tsvet.met. 2 no.6:66-75 (MIRA 13:4)

第二章 医克里克斯氏征 1910年,1910年

1. Krasnoyarskii institut tsvetnykh metallov. Kafedra metallurgii tyashelykh tsvetnykh metallov.
(Nickel ores--Metallurgy) (Ore dressing)