Lecture 4

Law of Total Probability & Bayes' Rule

STAT 330 - Iowa State University

1/14

Tree Diagram

Tree Diagram

Example 1: Suppose you randomly select one of 3 boxes, and then randomly select a coin from inside the box. The contents of the boxes are ...

Box 1 Box 2

- Box 1: 2 gold coins, 1 silver coin
- Box 2: 3 gold coins
- Box 3: 1 gold coin, 4 silver coins

Let events $B_i = i^{th}$ box is selected for i = 1, 2, 3, G = gold coin selected, and S = silver coin selected.

We can visualize this *step-wise procedure* with a *tree diagram*.

2/14

Using a Tree Diagram

A tree diagram shows all possible outcomes of step-wise procedures

$$P(B_i) = \frac{1}{3} \text{ for } i = 1, 2, 3$$

 $P(G|B_1) = \frac{2}{3}, P(S|B_1) = \frac{1}{3}$
 $P(G|B_2) = 1$
 $P(G|B_3) = \frac{1}{5}, P(S|B_3) = \frac{4}{5}$

Using a Tree Diagram Cont.

What is the probability of choosing a gold coin P(G)?

• What are the "total" different paths to get to gold coin?

 $(B_1 \cap G)$ or $(B_2 \cap G)$ or $(B_3 \cap G)$

• These are disjoint events

mulfiply

along branch add up

probability $P(G) = P(B_1 \cap G) + P(B_2 \cap G) + P(B_3 \cap G)$ $= P(B_1)P(G|B_1) + P(B_2)P(G|B_2) + P(B_2)P(G|B_2)$ $= (\frac{1}{3})(\frac{3}{3}) + (\frac{1}{3})(1) + (\frac{1}{3})(\frac{1}{5}) = 0.62$

the relevant This calculation is done using Law of Total Probability.

4 / 14

Law of Total Probability

Cover/Partition

Definition:

A collection of events $B_1, \dots B_k$ is a *cover* or *partition* of Ω if

- 1. the events are pairwise disjoint $(B_i \cap B_j = \emptyset \text{ for } i \neq j)$, and
- 2. the union of the events is Ω ($\bigcup_{i=1}^k B_i = \Omega$).

We can represent a cover using a Venn diagram:

Note: In a tree diagram, the branches of the tree form a cover.

5/14

Law of Total Probability

Theorem (Law of Total Probability)

If the collection of events B_1, \ldots, B_k is a cover of Ω , and A is an event, then

$$P(A) = \sum_{i=1}^{k} P(A|B_i)P(B_i).$$

Proof

- $A = (B_1 \cap A) \cup \ldots \cup (B_k \cap A)$
- $P(A) = P(B_1 \cap A) + ... + P(B_k \cap A)$ = $P(A|B_1)P(B_1) + ... + P(A|B_k)P(B_k)$

Bayes' Rule

Bayes' Rule

Theorem (Bayes' Rule)

If
$$B_1, \ldots, B_k$$
 is a cover or partition of Ω , and A is an event, then
$$P(B_j|A) = \frac{P(A|B_j)P(B_j)}{\sum_{i=1}^k P(A|B_i)P(B_i)} \leftarrow \frac{P(A \cap B_i)}{P(A)}$$
(by Lotp)

Why?

$$P(B_j|A) = \frac{P(A \cap B_j)}{P(A)} = \frac{P(A|B_j)P(B_j)}{\sum_{i=1}^{k} P(A|B_i)P(B_i)}$$

- ullet Bayes rule o way to "flip" conditional probabilities.
- If we know $P(A|B_j)$ and $P(B_j)$, then we can obtain $P(B_j|A)$
- Extremely useful for real world applications!

Applying Bayes Rule

Example 2:

My email is divided into 3 folders: Normal, Important, Spam. From past experience, the probability of emails belonging to these folders is 0.2, 0.1, and 0.7 respectively. P(N) = 0.2, P(I) = 0.1, P(S) = 0.7

- Out of normal emails, "free" occurs with probability 0.01. P(F|N) = 0.01
- Out of important emails, "free" occurs with probability 0.01. P(F|I) = 0.01
- Out of spam emails, "free" occurs with probability 0.9. P(FIS) = 0.90

My spam filter reads an email that contains the word "free". What is the probability that this email is spam? P(S|F) = ?

8 / 14

Applying Bayes Rule Cont.

Define events:

N = email is normal, I = email is important, S = email is spam $F = \text{email contains "free"}, \overline{F} = \text{email doesn't contain "free"}$

Given:

Given:

$$P(N) = 0.2, P(I) = 0.1, P(S) = 0.7$$

 $P(F|N) = 0.01$
 $P(F|S) = 0.9$
 $P(S|F) = ?$ (This is what we want to know)
 $P(S|F) = ?$ (This is what we want to know)
 $P(S|F) = ?$ (This is what we want to know)
 $P(S|F) = ?$ (This is what we want to know)

Applying Bayes Rule Cont.

What is the probability that my email is spam given that it contains the word "free"?

$$P(S|F) = \frac{P(S \cap F)}{P(F)}$$

$$= \frac{P(S)P(F|S)}{P(S)P(F|S) + P(I)P(F|I) + P(N)P(F|N)} = P(F) \quad \text{Lotp}$$

$$= \frac{(0.7)(0.9)}{(0.7)(0.9) + (0.1)(0.01) + (0.2)(0.01)}$$

$$= \frac{0.63}{0.63 + 0.002}$$

$$= 0.995$$

10 / 14

Applying Bayes Rule Cont.

Conceptual understanding:

- Before knowing anything
 - \rightarrow probability that email is spam was P(S) = 0.7.
- After knowing that the email contains the word "free"
 → update probability based on this knowledge.
- After knowing the email contains "free"
 - \rightarrow probability of the email being spam is P(S|F) = 0.995.
- Since this probability is more than 50% we can *classify* this email as spam.
- In machine learning/statistics, this procedure is called a naive Bayes classifier.

Example

Bayes' and LOTP Example

```
Example 3: Approximately 1% of women aged 40-50 have breast
C = has cancer
                 cancer. A woman with breast cancer has 90% chance of testing
C = doesn't have
                 positive for cancer from a mammogram. A woman without breast
      cancer
                 cancer has a 5% chance of testing positive for cancer (called a
+ = tests pos.
                 "false positive"). What is the probability that a woman has breast
     for cancer
                 cancer given that she tested positive? P(C|+) = ?
  = tests neg.
      for cancer
                  Given
                                           P(\bar{c}) = 0.99
                 P(C) = 0.01
                 P(+|C) = 0.90
                                 P(-1c) = 0.10
                 P(+|\bar{c}|) = 0.05 P(-|\bar{c}|) = 0.95
                 what is P(C1+) = ?
            (Since want to "Flip" the condition,)
                                                                         12/14
```

P(c)

Bayes' and LOTP Example Cont.

Bayes Rule
$$P(C1+) = \frac{P(C)P(+1C)}{P(C)P(+1C)} = \frac{P(C)P(+1C)}{P(C)P(+1C)}$$

$$= \frac{P(C)P(+1C)}{P(C)P(+1C)}$$

Use Lotp to get denominator (obtained from branches of the diagram)
$$P(COT) = P(C)P(T) + P(T)P(T)$$

$$= (0.01)(0.9) + (0.99)(0.05)$$

$$= 0.009 + 0.0495$$

$$= 0.0585$$

13 / 14

Bayes' and LOTP Example Cont.

$$P(C|+) = \frac{P(C)P(+|C)}{P(C)}$$

$$= \frac{P(C)P(+|C)}{P(C)P(+|C)}$$

$$= \frac{P(C)P(+|C)}{P(C)P(+|C)} + \frac{P(C)P(+|C)}{P(C)P(+|C)}$$

$$= \frac{(0.01)(0.9)}{(0.01)(0.9) + (0.99)(0.05)} = \frac{(0.01)(0.9)}{0.0585}$$

$$= 0.1538$$

Ends Exam 1 Material