Quasitriangularity and Enveloping Algebras for Inhomogeneous Quantum Groups

P. Podleś*†
Department of Mathematics
University of California
Berkeley, CA 94720, USA

Abstract

Coquasitriangular universal \mathcal{R} matrices on quantum Lorentz and quantum Poincaré groups are classified. The results extend (under certain assumptions) to inhomogeneous quantum groups of [10]. Enveloping algebras on those objects are described.

0 Introduction

Possible R-matrices for the fundamental representations of inhomogeneous quantum groups were found in Proposition 3.14 of [10]. In the present paper we describe universal \mathcal{R} matrices for those objects (under certain assumptions which are fulfilled in the case of quantum Poincaré groups [11]). Our study will be useful in developing a simple physical model [8] of free particles on a quantum Minkowski space [11].

In Section 1 we show how to construct co(quasi)triangular (*-)bialgebras and Hopf (*-)algebras whose relations are given by means of intertwiners: we simplify and extend results of [7]. Next, in Section 2 we classify co(quasi)triangular (*-)structures \mathcal{R} on quantum Lorentz groups [18]. Using the results of Sections 1 and 2, in Section 3 we classify such structures on quantum Poincaré groups [11] and also, more generally, on inhomogeneous quantum groups [10] (certain natural assumptions regarding mainly restriction of those structures to the homogeneous quantum group are made). In Section 4 we use \mathcal{R} to define enveloping algebras for inhomogeneous quantum groups.

^{*}On leave from Department of Mathematical Methods in Physics, Faculty of Physics, University of Warsaw, Hoża 74, 00-682 Warszawa, Poland

 $^{^\}dagger \text{This}$ research was supported in part by NSF grant DMS-9508597 and in part by Polish KBN grant No. 2 P301 020 07

We sum over repeated indices (Einstein's convention). We work over the field \mathbb{C} . We write $a \sim b$ if $a = \lambda b$ for $\lambda \in \mathbb{C} \setminus \{0\}$. If V, W are vector spaces then $\tau : V \otimes W \to W \otimes V$ is given by $\tau(x \otimes y) = y \otimes x$, $x \in V$, $y \in W$. If \mathcal{A} is an algebra, $v \in M_N(\mathcal{A})$, $w \in M_K(\mathcal{A})$, then the tensor product $v \otimes w \in M_{NK}(\mathcal{A})$ is defined by $(v \otimes w)_{ij,kl} = v_{ik}w_{jl}$, $i, k = 1, \ldots, N$, $j, l = 1, \ldots, K$. We set dim v = N. If \mathcal{A} is a *-algebra then the conjugate of v is defined as $\bar{v} \in M_N(\mathcal{A})$ where $\bar{v}_{ij} = v_{ij}^*$, $i, j = 1, \ldots, N$.

Throughout the paper quantum groups H are abstract objects described by the corresponding (*-)bialgebras $\operatorname{Poly}(H) = (\mathcal{A}, \Delta)$. We denote by Δ, ε, S the comultiplication, counit and (if exists) coinverse of $\operatorname{Poly}(H)$. We say that v is a representation of H (i.e. $v \in \operatorname{Rep} H$) if $v \in M_N(\mathcal{A}), N \in \mathbb{N}$, and $\Delta v_{ij} = v_{ik} \otimes v_{kj}, \varepsilon(v_{ij}) = \delta_{ij}, i, j = 1, \ldots, N$. The conjugate of a representation and tensor product of representations are also representations. Matrix elements of representations of H span \mathcal{A} as a linear space. The set of nonequivalent irreducible representations of H is denoted by $\operatorname{Irr} H$. If $v, w \in \operatorname{Rep} H$, then we say that $A \in M_{\dim w \times \dim v}(\mathbb{C})$ intertwines v with w (i.e. $A \in \operatorname{Mor}(v, w)$) if Av = wA. The dual vector space \mathcal{A}' is an algebra w.r.t. the convolution defined by $\rho * \rho' = (\rho \otimes \rho')\Delta$. It has a unit $I_{\mathcal{A}'} = \varepsilon$. For $\rho \in \mathcal{A}'$, $a \in \mathcal{A}$, we set $\rho * a = (id \otimes \rho)\Delta a$, $a * \rho = (\rho \otimes id)\Delta a$.

1 Coquasitriangular bialgebras

In this section we discuss bialgebras $\operatorname{Poly}(G) = (\mathcal{B}, \Delta)$ defined by several fundamental representations of G and intertwiners among them. We provide necessary and sufficient conditions for the existence of coquasitriangular structure \mathcal{R} for G. Hopf and * structures are also investigated. The results generalize results of Theorem 1.4 of [7] (see also Theorem 1.1 of [18]).

Proposition 1.1 Let \mathcal{B} be an algebra generated by w_{mn}^{α} , $m, n = 1, \ldots, d_{\alpha}$, $\alpha \in \mathcal{J}$ and relations $(0 \in \mathcal{J}, d_0 = 1)$

$$w^{\alpha} \otimes w^{0} = w^{0} \otimes w^{\alpha} = w^{\alpha}, \ \alpha \in \mathcal{J}, \tag{1.1}$$

$$W_m(w^{\alpha_{m1}} \otimes w^{\alpha_{m2}} \otimes \dots w^{\alpha_{ms_m}}) = (w^{\beta_{m1}} \otimes \dots \otimes w^{\beta_{mt_m}})W_m, \ m \in K.$$
 (1.2)

Then $w^0 = (I_B)$ and there exists a unique Δ such that $\operatorname{Poly}(G) = (\mathcal{B}, \Delta)$ is a bialgebra and w^{α} , $\alpha \in \mathcal{J}$, representations of G.

Proof is the same as in Theorem 1.4 of [7].

Let us recall

Definition 1.1 (cf. [1], [2], [4]) We say that $(\mathcal{B}, \Delta, \mathcal{R})$ is a coquasitriangular (CQT) bialgebra if (\mathcal{B}, Δ) is a bialgebra and $\mathcal{R} \in (\mathcal{B} \otimes \mathcal{B})'$ satisfies

$$\mathcal{R}(I \otimes x) = \mathcal{R}(x \otimes I) = \varepsilon(x), \tag{1.3}$$

$$\mathcal{R}(xy \otimes z) = \mathcal{R}(x \otimes z^{(1)})\mathcal{R}(y \otimes z^{(2)}), \tag{1.4}$$

$$\mathcal{R}(x \otimes yz) = \mathcal{R}(x^{(1)} \otimes z)\mathcal{R}(x^{(2)} \otimes y), \tag{1.5}$$

$$y^{(1)}x^{(1)}\mathcal{R}(x^{(2)}\otimes y^{(2)}) = \mathcal{R}(x^{(1)}\otimes y^{(1)})x^{(2)}y^{(2)}$$
(1.6)

where we have used the Sweedler's notation $\Delta(x) = x_i^{(1)} \otimes x_i^{(2)} \equiv x^{(1)} \otimes x^{(2)}$.

Remark 1.1 (cf. [5], [4], Proposition 1.3 of [7]) Let $\operatorname{Poly}(G) = (\mathcal{B}, \Delta)$ be a bialgebra and $\mathcal{R} \in (\mathcal{B} \otimes \mathcal{B})'$. For each $v, w \in \operatorname{Rep} G$ one can define $R^{vw} \in \operatorname{Lin}(\mathbf{C}^{\dim v} \otimes \mathbf{C}^{\dim w}, \mathbf{C}^{\dim w} \otimes \mathbf{C}^{\dim v})$ by

$$(R^{vw})_{ij,kl} = \mathcal{R}(v_{jk} \otimes w_{il}), \ j, k = 1, \dots, \dim v, \ i, l = 1, \dots, \dim w.$$
 (1.7)

Then

$$(\mathbb{1} \otimes S)R^{v_1w} = R^{v_2w}(S \otimes \mathbb{1}) \text{ if } S \in \text{Mor}(v_1, v_2), \tag{1.8}$$

$$(S \otimes 1)R^{vw_1} = R^{vw_2}(1 \otimes S) \text{ if } S \in \text{Mor}(w_1, w_2),$$
 (1.9)

 $v, w, v_1, w_1 \in \text{Rep } G$. Suppose that $L \subset \text{Rep } G$ is such that the matrix elements of representations $v \in L$ linearly span \mathcal{B} (e.g. L = Rep G). Consider the conditions

$$R^{0v} = R^{v0} = 1, \ v \in L, \tag{1.10}$$

$$R^{v_1 \otimes v_2, w} = (R^{v_1 w} \otimes 1)(1 \otimes R^{v_2 w}), \ v_1, v_2, w \in L, \tag{1.11}$$

$$R^{v,w_1 \otimes w_2} = (\mathbb{1} \otimes R^{vw_2})(R^{vw_1} \otimes \mathbb{1}), \ v, w_1, w_2 \in L, \tag{1.12}$$

$$R^{vw} \in \operatorname{Mor}(v \otimes w, w \otimes v), \ v, w \in L.$$
 (1.13)

Then $(1.10) \Leftrightarrow (1.3), (1.11) \Leftrightarrow (1.4), (1.12) \Leftrightarrow (1.5), (1.13) \Leftrightarrow (1.6).$

Theorem 1.1 Let $\operatorname{Poly}(G) = (\mathcal{B}, \Delta)$ be a bialgebra defined in Proposition 1.1 and $R^{\alpha\beta} \in Lin(\mathbf{C}^{d_{\alpha}} \otimes \mathbf{C}^{d_{\beta}}, \mathbf{C}^{d_{\beta}} \otimes \mathbf{C}^{d_{\alpha}}), \ \alpha, \beta \in \mathcal{J}.$

The following are equivalent

1) there exists $\mathcal{R} \in (\mathcal{B} \otimes \mathcal{B})'$ such that $(\mathcal{B}, \Delta, \mathcal{R})$ is a CQT bialgebra and $R^{\alpha\beta} = R^{w^{\alpha}w^{\beta}}$.

$$R^{0\alpha} = R^{\alpha 0} = 1, \ \alpha \in \mathcal{J}, \tag{1.14}$$

$$(\mathbb{1} \otimes W_m) R^{\alpha_{m1} \cdot \dots \cdot \alpha_{ms_m}, \gamma} = R^{\beta_{m1} \cdot \dots \cdot \beta_{mt_m}, \gamma} (W_m \otimes \mathbb{1}), \ m \in K, \ \gamma \in \mathcal{J} \setminus \{0\},$$

$$(1.15)$$

$$R^{\gamma,\beta_{m1}\cdot\ldots\cdot\beta_{mt_m}}(\mathbb{1}\otimes W_m) = (W_m\otimes\mathbb{1})R^{\gamma,\alpha_{m1}\cdot\ldots\cdot\alpha_{ms_m}}, \ m\in K, \ \gamma\in\mathcal{J}\setminus\{0\},$$
(1.16)

$$R^{\alpha\beta} \in Mor(w^{\alpha} \otimes w^{\beta}, \ w^{\beta} \otimes w^{\alpha}), \ \alpha, \beta \in \mathcal{J} \setminus \{0\},$$
 (1.17)

where $R^{\delta_1 \cdot \dots \cdot \delta_{k+1}, \gamma} = (R^{\delta_1 \cdot \dots \cdot \delta_k, \gamma} \otimes \mathbb{1})(\mathbb{1} \otimes R^{\delta_{k+1}\gamma}), R^{\gamma, \delta_1 \cdot \dots \cdot \delta_{k+1}} = (\mathbb{1} \otimes R^{\gamma \delta_{k+1}})(R^{\gamma, \delta_1 \cdot \dots \cdot \delta_k} \otimes \mathbb{1}), \gamma, \delta_1, \dots, \delta_{k+1} \in \mathcal{J}, k = 1, 2, \dots$

Moreover, such \mathcal{R} is unique.

Remark. In special cases related statements can be found in [6], [4], [2] and Theorem 1.4 of [7]. Cf. [5].

Proof. Assume condition 1). According to Remark 1.1, (1.10)–(1.13) follow. Thus we get (1.14), (1.17). Using (1.8)–(1.9) for $S = W_m$ (see (1.2)) and (1.11)–(1.12), one obtains (1.15)–(1.16) and the condition 2) is proved.

Moreover, $R^{w^{\alpha}w^{\beta}} = R^{\alpha\beta}$ uniquely determine R^{vw} , where $v, w \in L_0$,

 $L_0 = \{\text{tensor products of some number of copies of representations } w^{\alpha}, \alpha \in \mathcal{J}\}.$

Using (1.7) and the fact that the matrix elements of representations from L_0 linearly span \mathcal{B} , the uniqueness of \mathcal{R} follows. It remains to prove

 $(2) \Rightarrow 1$: Assume condition 2). Using (1.14), we can replace $\mathcal{J} \setminus \{0\}$ by \mathcal{J} in (1.15)-(1.17). We define the homomorphisms $\mathcal{R}^{\beta} : \mathcal{B} \to M_{d_{\beta}}(\mathbf{C}), \beta \in \mathcal{J}$, by

$$[\mathcal{R}^{\beta}(w_{ij}^{\alpha})]_{kl} = R_{ki,jl}^{\alpha\beta}, \quad \alpha \in \mathcal{J}$$
(1.18)

(later on we will have $\mathcal{R}_{kl}^{\beta} = \mathcal{R}(\cdot \otimes w_{kl}^{\beta})$). They preserve the relations (1.1)–(1.2) due to (1.14)–(1.15). Setting $\alpha = 0$ in (1.18), we show that \mathcal{R}^{β} are unital. Setting $\beta = 0$ in (1.18), one gets $\mathcal{R}_{11}^{0} = \varepsilon$ (it is true on the generators w_{ij}^{α}). Hence $\mathcal{R}_{11}^{0} * \mathcal{R}_{kl}^{\beta} = \mathcal{R}_{kl}^{\beta} * \mathcal{R}_{11}^{0} = \mathcal{R}_{kl}^{\beta}$. Let

$$X = \{x \in \mathcal{B} : W_{b_1 \dots b_{t_m}, a_1 \dots a_{s_m}}(\mathcal{R}_{a_{s_m} c_{s_m}}^{\alpha_{ms_m}} * \dots * \mathcal{R}_{a_1 c_1}^{\alpha_{m1}})(x)$$

= $(\mathcal{R}_{b_{t_m} d_{t_m}}^{\beta_{mt_m}} * \dots * \mathcal{R}_{b_1 d_1}^{\beta_{1t_1}})(x) W_{d_1 \dots d_{t_m}, c_1 \dots c_{s_m}}, m \in K\}.$

It is straightforward to show that X is an algebra. According to (1.16), $u_{kl}^{\gamma} \in X$ $(k, l = 1, \ldots, d_{\gamma}, \gamma \in \mathcal{J})$. Thus $X = \mathcal{B}$. Hence there exists a linear antihomomorphism $\theta : \mathcal{B} \to \mathcal{B}'$ such that $\theta(w_{kl}^{\beta}) = \mathcal{R}_{kl}^{\beta}$, $k, l = 1, \ldots, d_{\beta}, \beta \in \mathcal{J}$ (θ preserves (1.1)–(1.2)). Setting $\mathcal{R}(x \otimes y) = [\theta(y)](x)$, $x, y \in \mathcal{B}$, we obtain an $\mathcal{R} \in (\mathcal{B} \otimes \mathcal{B})'$ which satisfies (1.5), (1.3). Moreover, (1.18) yields $R^{\alpha\beta} = R^{w^{\alpha}w^{\beta}}$. Let $Y = \{z \in \mathcal{B} : \forall x, y \in \mathcal{B} \ \mathcal{R}(xy \otimes z) = \mathcal{R}(x \otimes z^{(1)})\mathcal{R}(y \otimes z^{(2)})\}$. Then Y is an algebra (we use (1.5)) and $w_{kl}^{\beta} \in Y$. Hence, $Y = \mathcal{B}$ and (1.4) follows. Thus (Remark 1.1) we get (1.10)–(1.12) for $L = L_0$. That and (1.13) for $v, w \in \{w^{\alpha} : \alpha \in \mathcal{J}\}$ (see (1.17)) give (1.13) for $L = L_0$, hence (Remark 1.1) (1.6) and the condition 1) is satisfied.

Remark 1.2 The unital antihomomorphism $\theta: \mathcal{B} \to \mathcal{B}'$ introduced in the above proof exists for each CQT bialgebra (cf. [5]) and satisfies $(\theta \otimes \theta)\Delta = \Delta'\theta$ where $\Delta': \mathcal{B}' \to (\mathcal{B} \otimes \mathcal{B})'$ is defined by $\Delta'(\varphi) = \varphi \circ m, \varphi \in \mathcal{B}'$, cf. Appendix of [7].

Let us now pass to the Hopf algebra structure.

Proposition 1.2 (cf. [16], Proof of Theorem 1.4.1 **of [7])** Let $Poly(G) = (\mathcal{B}, \Delta)$ be a bialgebra and w, w', w'' be representations of G. Suppose there exist $E \in Mor(I, w \otimes w')$, $E' \in \mathcal{B}$

Mor $(w'' \otimes w, I)$ such that E is left nondegenerate, i.e. $E_{i-} = (E_{ij})_{j=1}^{\dim w'}$, $i = 1, \ldots, \dim w$, are linearly independent and E' is right nondegenerate, i.e. $E'_{-k} = (E'_{mk})_{m=1}^{\dim w''}$, $k = 1, \ldots, \dim w$, are linearly independent. Then w^{-1} exists.

Proposition 1.3 (cf. [16], Proof of Theorem 1.4.1 **of [7])** Let (\mathcal{B}, Δ) be the bialgebra defined in Proposition 1.1. Suppose $(u^{\alpha})^{-1}$ exist, $\alpha \in \mathcal{J}$. Then (\mathcal{B}, Δ) is a Hopf algebra.

A CQT bialgebra $(\mathcal{B}, \Delta, \mathcal{R})$ such that (B, Δ) is a Hopf algebra is called CQT Hopf algebra.

Proposition 1.4 (cf. Proposition 1.3.1.*b* of [7]) Let $\operatorname{Poly}(G) = (\mathcal{B}, \Delta)$ and $(\mathcal{B}, \Delta, \mathcal{R})$ be a CQT Hopf algebra. Then $(R^{vw})^{-1}$ exist for any $v, w \in \operatorname{Rep} G$. Moreover $\mathcal{R}' = \mathcal{R}(S \otimes id)$ satisfies

$$\mathcal{R}'(x^{(1)} \otimes y^{(1)}) \mathcal{R}(x^{(2)} \otimes y^{(2)}) = \mathcal{R}(x^{(1)} \otimes y^{(1)}) \mathcal{R}'(x^{(2)} \otimes y^{(2)}) = (\varepsilon \otimes \varepsilon)(x \otimes y)$$

(i.e. $\mathcal{R}' = \mathcal{R}^{-1}$) and

$$\mathcal{R}'(v_{il} \otimes w_{jk}) = (R^{vw})_{ij,kl}^{-1}, i, l = 1, \dots, \dim v, j, k = 1, \dots, \dim w.$$

We say that (\mathcal{B}, Δ) is a *-bialgebra if (\mathcal{B}, Δ) is a bialgebra, \mathcal{B} is a *-algebra and

$$(*\otimes *)\Delta(x) = \Delta(x^*) \tag{1.19}$$

for $x \in \mathcal{B}$. A Hopf algebra which is a *-bialgebra is called Hopf *-algebra.

Proposition 1.5 Let (\mathcal{B}, Δ) be the bialgebra defined in Proposition 1.1. Suppose there exists an involution $\sim: \mathcal{J} \to \mathcal{J}$ such that $\tilde{0} = 0$, $d_{\tilde{\alpha}} = d_{\alpha}$ and $\tilde{W}_m \in \operatorname{Mor}(w^{\tilde{\alpha}_{ms_m}} \otimes \ldots \otimes w^{\tilde{\alpha}_{m1}}, w^{\tilde{\beta}_{mt_m}} \otimes \ldots \otimes w^{\tilde{\beta}_{m1}})$ where $(\tilde{W}_m)_{i_t,\ldots,i_1,j_s,\ldots,j_1} = \overline{(W_m)_{i_1,\ldots,i_t,j_1,\ldots,j_s,m}}$. Then there exists a unique $*: \mathcal{B} \to \mathcal{B}$ such that (\mathcal{B}, Δ) is a *-bialgebra and $\overline{w^{\alpha}} = w^{\tilde{\alpha}}$, $\alpha \in \mathcal{J}$ (- was defined in the Introduction).

Proof. Uniqueness is trivial. Our assumptions imply that $z_{ij}^{\alpha} = w_{ij}^{\tilde{\alpha}}$ satisfy (1.1)–(1.2) in the conjugate algebra \mathcal{B}^{j} (conjugate vector space and opposite multiplication). Therefore the desired * exists (we check *² = id and (1.19) on the generators w_{ij}^{α}).

Proposition 1.6 (cf. the proofs of Proposition 1.3.d.ii and Theorem 1.4.6 of [7]) Let $(\mathcal{B}, \Delta, \mathcal{R})$ be a CQT bialgebra and $Poly(G) = (\mathcal{B}, \Delta)$ be a *-bialgebra. Suppose $M \subset \mathbb{R}$ Rep G is such that the matrix elements of representations from M generate \mathcal{B} as unital algebra. The following are equivalent:

1)
$$\overline{\mathcal{R}(y^* \otimes x^*)} = \mathcal{R}(x \otimes y), \ x, y \in \mathcal{B}$$

2)

$$\overline{(R^{\bar{w}\bar{v}})_{ji,lk}} = R^{vw}_{ij,kl}, \ j, k = 1, \dots, \dim v, \ i, l = 1, \dots, \dim w, \ v, w \in M.$$
(1.20)

If one of the above conditions is satisfied, $(\mathcal{B}, \Delta, \mathcal{R})$ is called CQT *-bialgebra. If moreover (\mathcal{B}, Δ) is a Hopf algebra, $(\mathcal{B}, \Delta, \mathcal{R})$ is called CQT Hopf *-algebra (see Definition 1.1 of [7]).

Proposition 1.7 (cf. [5]) Let $Poly(G) = (\mathcal{B}, \Delta)$ be a bialgebra and $\mathcal{R} \in (\mathcal{B} \otimes \mathcal{B})'$. Suppose $M \subset \text{Rep } G$ is such that the matrix elements of representations from M generate \mathcal{B} as unital algebra. The following are equivalent:

1)
$$\mathcal{R}(x^{(1)} \otimes y^{(1)}) \mathcal{R}(y^{(2)} \otimes x^{(2)}) = (\varepsilon \otimes \varepsilon)(x \otimes y), \ x, y \in \mathcal{B} \ (i.e. \ \mathcal{R}_{21} = \mathcal{R}^{-1})$$

2)
$$(R^{vw})^{-1} = R^{wv}, \ v, w \in M.$$
 (1.21)

If one of the above conditions is satisfied, we replace CQT by CT (cotriangular) in all definitions (cf. [1]).

Proof. Using (1.10)–(1.12), one can assume that (in the condition 2)) matrix elements of representations from M linearly span \mathcal{B} . Then in 1) it is enough to consider $x = v_{ij}$, $y = w_{kl}$, $i, j = 1, \ldots, \dim v$, $k, l = 1, \ldots, \dim w$, $v, w \in M$. Then 1) is equivalent to (1.21).

2 Quasitriangular structures on quantum Lorentz groups

In this section we classify coquasitriangular (*-) structures on quantum Lorentz groups of [18]. For the quantum Lorentz group of [9] examples of such structures were given in [14] and Remark 7 of Section 3 of [7]. We also classify (cf. [17]) coquasitriangular (*-) structures on (complex) $SL_q(2)$ groups and their real forms.

We first recall the definition of Hopf *-algebra corresponding to a quantum Lorentz group [18] essentially repeating the arguments of Theorem 1.1 of [18]. The bialgebra structure of (\mathcal{A}, Δ) is obtained by the construction of Proposition 1.1 with $\{w^{\alpha} : \alpha \in \mathcal{J}\} = \{w^{0}, w, \tilde{w}\}$. Here the relations (1.1) mean that $w^{0} = (I_{\mathcal{B}})$ and the relations (1.2) are given by

$$(w \otimes w)E = Ew^0, (2.1)$$

$$(\tilde{w} \otimes \tilde{w})\tilde{E} = \tilde{E}w^0, \tag{2.2}$$

$$E'(w \otimes w) = w^0 E', \tag{2.3}$$

$$\tilde{E}'(\tilde{w} \otimes \tilde{w}) = w^0 \tilde{E}', \tag{2.4}$$

$$X(w \otimes \tilde{w}) = (\tilde{w} \otimes w)X, \tag{2.5}$$

where

$$\tilde{E} = \tau \bar{E}, \ \tilde{E}' = \bar{E}'\tau,$$
 (2.6)

 $E \in \operatorname{Lin}(\mathbf{C}, \mathbf{C}^2 \otimes \mathbf{C}^2), E' \in \operatorname{Lin}(\mathbf{C}^2 \otimes \mathbf{C}^2, \mathbf{C}), X \in \operatorname{Lin}(\mathbf{C}^2 \otimes \mathbf{C}^2, \mathbf{C}^2 \otimes \mathbf{C}^2)$ satisfy

$$(E' \otimes 1)(1 \otimes E) = 1, \tag{2.7}$$

$$(X \otimes \mathbb{1})(\mathbb{1} \otimes X)(E \otimes \mathbb{1}) = \mathbb{1} \otimes E, \tag{2.8}$$

$$\tau \bar{X}\tau = \beta^{-1}X,\tag{2.9}$$

 $E'E \neq 0$, X is invertible, $\beta \in \mathbb{C} \setminus \{0\}$.

Warning: Our choice of X may differ from the choice of [18] by a multiplicative nonzero constant.

Moreover, (2.7) implies that E and E' are inverse one to another as matrices,

$$(\mathbb{1} \otimes E')(E \otimes \mathbb{1}) = \mathbb{1}. \tag{2.10}$$

Hence, E is left nondegenerate, E' is right nondegenerate, w^{-1} exists (see Proposition 1.2). Similarly, $(\mathbb{1} \otimes \tilde{E}')(\tilde{E} \otimes \mathbb{1}) = \mathbb{1}$, \tilde{E} is left nondegenerate, \tilde{E}' is right nondegenerate, \tilde{w}^{-1} exists. But $(w^0)^{-1} = w^0$ and Proposition 1.3 implies that (\mathcal{A}, Δ) is a Hopf algebra.

Setting $w^{\sim} = \tilde{w}$, $\tilde{w}^{\sim} = w$, $w^{0\sim} = w^0$, the assumptions of Proposition 1.5 are satisfied and (\mathcal{A}, Δ) becomes a *-bialgebra where * is defined by $\bar{w} = \tilde{w}$. It has the same Poincaré series as the classical $SL(2, \mathbb{C})$ group (Theorem 1.2 of [18]). We may assume that

- 1. $E = e_1 \otimes e_2 qe_2 \otimes e_1$, $q \in \mathbb{C} \setminus \{0, i, -i\}$, $X = \alpha \tau Q$, Q is given by (13)–(19) of [18] (q = -1 in (17) (19)), $\alpha = t^{-1/2}$ for (13), $\alpha = (-t)^{-1/2}$ for (14), $\alpha = q^{1/2}$ for (15), $\alpha = (-q)^{1/2}$ for (16), $\alpha = (s^2 1)^{-1/2}$ for (17), $q = (p^2 1)^{-1/2}$ for (18), $\alpha = 1/2$ for (19), or
- 2. $E = e_1 \otimes e_2 e_2 \otimes e_1 + e_1 \otimes e_1$ (in that case we set q = 1), $X = \tau Q$, Q is given by (20)-(21) of [18],

 e_1, e_2 is the canonical basis of \mathbb{C}^2 . Moreover, $\beta = t/|t|$ for (13)–(14), $\beta = q/|q|$ for (15), $\beta = -q/|q|$ for (16), $\beta = -i \operatorname{sgn} \operatorname{Im}(s)$ for (17), $\beta = \operatorname{sgn}(|p| - 1)$ for (18), $\beta = 1$ for (19)–(21). In all cases $\beta^4 = 1$.

We shall find all $\mathcal{R} \in (\mathcal{A} \otimes \mathcal{A})'$ such that $(\mathcal{A}, \Delta, \mathcal{R})$ is a CQT Hopf algebra. So (cf. Theorem 1.1) we need to determine R^{ww} , $R^{\bar{w}\bar{w}}$, $R^{\bar{w}\bar{w}}$, $R^{w\bar{w}}$ such that 20 relations (1.15)–(1.16) and 4 relations (1.17) are satisfied (we assume (1.14)). We shall use them in the following. Irreducibility of $w \otimes \bar{w}$ (see [18]) and (2.5) give $R^{w\bar{w}} = \varepsilon_X X$, $R^{\bar{w}w} = \varepsilon_X' X^{-1}$, where $\varepsilon_X, \varepsilon_X' \in \mathbb{C} \setminus \{0\}$ (cf. Proposition 1.4). Moreover, $D = R^{ww}$ and $\tilde{D} = \beta R^{\bar{w}\bar{w}}$ must satisfy (2.11) and (2.17)–(2.20) of [11] (with L, \tilde{L} replaced by D, \tilde{D}), hence they are given by (2.21)–(2.22) of [11], i.e. $R^{ww} = L_i$, $R^{\bar{w}\bar{w}} = \tau L_j^{-1} \tau$, i, j = 1, 2, 3, 4, $L_i = q_i(\mathbb{1} + q_i^{-2} E E')$, $q_{1,2} = \pm q^{1/2}$, $q_{3,4} = \pm q^{-1/2}$. Using (2.1), (2.3)–(2.4) of [11], we obtain $\varepsilon_X = \pm 1$, $\varepsilon_X' = \pm 1$, $\beta = \pm 1$. After some calculations one gets that the 24 relations are satisfied. So we get $4 \cdot 4 \cdot 4$ \mathcal{R} for $q \neq \pm 1$, $\beta = \pm 1$, $2 \cdot 2 \cdot 4$ \mathcal{R} for $q = \pm 1$, $\beta = \pm 1$ and no \mathcal{R} for $\beta = \pm i$.

Set $M = \{w, \bar{w}\}$. According to Proposition 1.6, we get a CQT Hopf *-algebra iff 4 relations (1.20) are satisfied iff $\beta = 1$ and $q_j = q_i^{-1}$ (4 · 4 \mathcal{R} for $q \neq \pm 1$, $\beta = 1$, 1. According to Proposition 1.7, we get CT Hopf algebra iff 4 relations (1.21) are satisfied iff q = 1, $\varepsilon'_X = \varepsilon_X$ (2 · 2 · 2 \mathcal{R} for q = 1, $\beta = \pm 1$, no \mathcal{R}

otherwise). Clearly, we get CT Hopf *-algebra iff $q = \beta = 1$ and $q_j = q_i^{-1}$, $\varepsilon_X' = \varepsilon_X$ (2 · 2 \mathcal{R} for $q = \beta = 1$, no \mathcal{R} otherwise).

Let us also recall $SL_q(2)$ groups [15], [1]. The bialgebra structure is obtained by the construction of Proposition 1.1 with $\{w^{\alpha} : \alpha \in \mathcal{J}\} = \{w^0, w\}$, the relations (1.1) mean that $w^0 = (I_{\mathcal{B}})$ and those of (1.2) are given by (2.1), (2.3), where E, E' are as above with $q \in \mathbb{C} \setminus \{0\}$ (only the case 1.). One gets that (\mathcal{A}, Δ) is a Hopf algebra.

We shall describe (cf. [17]) all $\mathcal{R} \in (\mathcal{A} \otimes \mathcal{A})'$ such that $(\mathcal{A}, \Delta, \mathcal{R})$ is a CQT Hopf algebra. Due to Theorem 1.1 we should find $D = R^{ww} \in \text{Mor}(w \otimes w, w \otimes w)$ satisfying 4 relations (1.15)–(1.16). This means $D = L_i$, i = 1, 2, 3, 4, so we get 4 \mathcal{R} for $q \neq \pm 1$, 0, and 2 \mathcal{R} for $q = \pm 1$. In other words $R^{ww} = \pm L_1^{\pm 1}$ where $L_1 = q^{1/2}(\mathbb{1} + q^{-1}EE')$. We get CT Hopf algebras iff $L_1^2 = \mathbb{1}$ (see Proposition 1.7 with $M = \{w\}$) iff q = 1.

Let us pass to real forms. Then (\mathcal{A}, Δ) becomes a Hopf *-algebra where * is defined by $\bar{w} = v^c$, $v = BwB^{-1}$, B = 1 for $SU_q(2)$, B = diag(1, -1) for $SU_q(1, 1)$, $q \in \mathbf{R} \setminus \{0\}$ (cf. [15], [12], [7]), $\bar{w} = w$ for $SL_q(2, \mathbf{R})$, |q| = 1 (cf. [12] and Proposition 1.5). For $SU_q(2)$, $SU_q(1, 1)$ we get CQT Hopf *-algebras iff L_1 is hermitian w.r.t. the canonical scalar product in \mathbf{C}^2 (see Proposition 1.6.2 with $M = \{w\}$ and the proof of Theorem 1.4.6 of [7]) iff q > 0. For $SL_q(2, \mathbf{R})$ we get CQT Hopf *-algebras iff $\tau \bar{L}_1 \tau = L_1$ (see Proposition 1.6.2 with $M = \{w\}$) iff q = 1. So we have CT Hopf *-algebras iff q = 1 (for each real form).

3 Quasitriangular structures on inhomogeneous quantum groups

For any Hopf algebra $\operatorname{Poly}(H) = (\mathcal{A}, \Delta)$ satisfying certain properties one can construct [10] a Hopf algebra $\operatorname{Poly}(G) = (\mathcal{B}, \Delta)$ which describes an inhomogeneous quantum group. For certain CQT Hopf algebra structures $(\mathcal{A}, \Delta, \mathcal{R}_{\mathcal{A}})$ we find all CQT Hopf algebra structures $(\mathcal{B}, \Delta, \mathcal{R})$ such that $\mathcal{R}_{|_{\mathcal{A} \otimes \mathcal{A}}} = \mathcal{R}_{\mathcal{A}}$. The *-structures and cotriangularity are studied as well. In particular we find all C(Q)T Hopf (*-) algebra structures on quantum Poincaré groups.

Throughout the Section $Poly(H) = (A, \Delta)$ is any bialgebra such that

- (a) each representation of H is completely reducible,
- (b) Λ is an irreducible representation of H,
- (c) $\operatorname{Mor}(v \otimes w, \Lambda \otimes v \otimes w) = \{0\}$ for any two irreducible representations v, w of H.

Moreover, we assume that f_{ij} , $\eta_i \in \mathcal{A}'$, $i, j = 1, ..., N = \dim \Lambda$, are given and satisfy

1.
$$A \ni a \to \rho(a) = \begin{pmatrix} f(a) & \eta(a) \\ 0 & \varepsilon(a) \end{pmatrix} \in M_{N+1}(\mathbf{C})$$
 is a unital homomorphism,

2.
$$\Lambda_{st}(f_{tr} * a) = (a * f_{st})\Lambda_{tr}$$
 for $a \in \mathcal{A}$,

- 3. $R^2 = 1$ where $R_{ij,sm} = f_{im}(\Lambda_{is})$,
- 4. $(\Lambda \otimes \Lambda)_{kl,ij}(\tau^{ij} * a) = a * \tau^{kl}$ for $a \in \mathcal{A}$ where $\tau^{ij} = (R-1)_{ij,mn}(\eta_n * \eta_m \eta_m(\Lambda_{ns})\eta_s + T_{mn}\varepsilon f_{nb} * f_{ma}T_{ab}),$
- 5. $A_3\tilde{F} = 0$ where $A_3 = \mathbb{1} \otimes \mathbb{1} \otimes \mathbb{1} R \otimes \mathbb{1} \mathbb{1} \otimes R + (R \otimes \mathbb{1})(\mathbb{1} \otimes R) + (\mathbb{1} \otimes R)(R \otimes \mathbb{1}) (R \otimes \mathbb{1})(\mathbb{1} \otimes R)(R \otimes \mathbb{1}), \ \tilde{F}_{ijk,m} = \tau^{ij}(\Lambda_{km}),$
- 6. $A_3(Z \otimes \mathbb{1} \mathbb{1} \otimes Z)T = 0$, RT = -T where $Z_{ij,k} = \eta_i(\Lambda_{jk})$.

In particular, 4. and 5. are satisfied if $\tau^{ij} = 0$.

The inhomogeneous quantum group G corresponds to the bialgebra $Poly(G) = (\mathcal{B}, \Delta)$ defined (cf. Corollary 3.8.a of [10]) as follows: \mathcal{B} is the universal unital algebra generated by \mathcal{A} and y_i , i = 1, ..., N, with the relations $I_{\mathcal{B}} = I_{\mathcal{A}}$,

$$y_s a = (a * f_{st}) y_t + a * \eta_s - \Lambda_{st} (\eta_t * a), \ a \in \mathcal{A}, \tag{3.1}$$

$$(R - 1)_{kl,ij}(y_i y_j - \eta_i(\Lambda_{js})y_s + T_{ij} - \Lambda_{im}\Lambda_{jn}T_{mn}) = 0.$$
(3.2)

Moreover, (\mathcal{A}, Δ) is a subbialgebra of (\mathcal{B}, Δ) and $\Delta y_i = \Lambda_{ij} \otimes y_j + y_i \otimes I$ (y_i were denoted by p_i in [10]). In particular, $\mathcal{P} = \begin{pmatrix} \Lambda & y \\ 0 & I \end{pmatrix}$ is a representation of G.

Remark 3.1 If H is a matrix group, Λ its fundamental representation and (\mathcal{A}, Δ) its corresponding Hopf algebra (generated by Λ_{ij} , Λ_{ij}^{-1}) then, assuming (a)–(c) and setting $f_{ij} = \delta_{ij}\varepsilon$, $\eta_i = 0$, T = 0, (\mathcal{B}, Δ) corresponds to

$$G = H \bowtie \mathbf{R}^N = \left\{ g = \begin{pmatrix} h & a \\ 0 & 1 \end{pmatrix} \in M_{N+1}(\mathbf{C}) : h \in H, \ a \in \mathbf{R}^N \right\},$$

$$f(g) = f(h), y_i(g) = a_i, f \in A, i = 1, ..., N, g \in G.$$

According to Corollary 3.8.b and the proof of Proposition 3.12 of [10], the bialgebra (\mathcal{B}, Δ) can be obtained by the construction of Proposition 1.1 with $\{w^{\alpha} : \alpha \in \mathcal{J}\} = \text{Irr } H \cup \{\mathcal{P}\}$. Here the relations (1.1) mean that $w^{0} \equiv (I_{\mathcal{A}}) = (I_{\mathcal{B}})$ and the relations (1.2) are given by

$$(\mathcal{P} \otimes \mathcal{P})R_P = R_P(\mathcal{P} \otimes \mathcal{P}), \tag{3.3}$$

$$(\mathcal{P} \otimes w)N_w = N_w(w \otimes \mathcal{P}), \ w \in \text{Irr } H,$$
 (3.4)

$$(w \otimes w') S_{ww'w''}^{\alpha} = S_{ww'w''}^{\alpha} w'', \ w, w', w'' \in \text{Irr } H, \ \alpha = 1, \dots, c_{ww'}^{w''},$$
 (3.5)

$$\mathcal{P}i = i\Lambda, \tag{3.6}$$

$$s\mathcal{P} = w^0 s, \tag{3.7}$$

where

$$R_{P} = \begin{pmatrix} R & Z & -R \cdot Z & (R - 1 1)T \\ 0 & 0 & 1 1 & 0 \\ 0 & 1 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, N_{w} = \begin{pmatrix} G_{w}, H_{w} \\ 0, 1 1 \end{pmatrix},$$
(3.8)

 $(G_w)_{iC,Dj} = f_{ij}(w_{CD}), (H_w)_{iC,D} = \eta_i(w_{CD}), w \in \text{Rep } H, R = G_\Lambda, Z = H_\Lambda, S^{\alpha}_{ww'w''}$ $(\alpha = 1, \dots, c^{w'''}_{ww'})$ form a basis of $\text{Mor}(w'', w \otimes w'), i : \mathbf{C}^N \to \mathbf{C}^N \oplus \mathbf{C}, s : \mathbf{C}^N \oplus \mathbf{C} \to \mathbf{C}$ are the canonical mappings. In the following we assume that (\mathcal{A}, Δ) is a Hopf algebra. Then (Proposition 3.12 of [10]) (\mathcal{B}, Δ) is also a Hopf algebra and G^{-1}_w exist:

$$(G_w^{-1})_{Ak,lB} = f_{kl}(w_{AB}^{-1}). (3.9)$$

If (\mathcal{A}, Δ) is a Hopf *-algebra then we also assume $\bar{\Lambda} = \Lambda$,

$$f_{ij}(S(a^*)) = \overline{f_{ij}(a)}, \ \eta_i(S(a^*)) = \overline{\eta_i(a)}, \ i, j = 1, \dots, N, \ a \in \mathcal{A},$$

$$(3.10)$$

 $\tilde{T} - T \in \text{Mor}(w^0, \Lambda \otimes \Lambda)$, where $\tilde{T}_{ij} = \overline{T_{ji}}$. Then [10] (\mathcal{B}, Δ) has a unique Hopf *-algebra structure such that (\mathcal{A}, Δ) is its Hopf *-subalgebra and $y_i^* = y_i$.

In the following we assume Mor $(I, \Lambda \otimes \Lambda) \cap \ker (R + 1) = \{0\}$, i.e. Mor $(I, \Lambda \otimes \Lambda) \subset \ker (R - 1)$. Then (using (4.14) of [10]) $\tilde{T} = T$. The main result of the present paper is contained in

Theorem 3.1 Let $\operatorname{Poly}(H) = (\mathcal{A}, \Delta)$, $\operatorname{Poly}(G) = (\mathcal{B}, \Delta)$ be as above, $(\mathcal{A}, \Delta, \mathcal{R}_{\mathcal{A}})$ be a CQT Hopf algebra such that

$$R^{v\Lambda} = c_v G_v, \quad R^{\Lambda v} = c_v' G_v^{-1}, \quad v \in \text{Irr } H, \tag{3.11}$$

 $c_v, c_v' \in \mathbf{C} \setminus \{0\}$. We are interested in CQT Hopf algebra structures $(\mathcal{B}, \Delta, \mathcal{R})$ such that

$$\mathcal{R}_{|_{\mathcal{A}\otimes\mathcal{A}}} = \mathcal{R}_{\mathcal{A}}.\tag{3.12}$$

One has:

1. Such a structure exists iff

$$\tau^{ij} = 0, \ i, j = 1, \dots, N, \tag{3.13}$$

$$R^{v\Lambda} = G_v, \ R^{\Lambda v} = G_v^{-1}, \ v \in \text{Irr } H.$$
 (3.14)

2. Suppose (3.13)-(3.14). Then such structures are in one to one correspondence with $m \in \operatorname{Mor}(w^0, \Lambda \otimes \Lambda)$ satisfying

$$(f_{jb} * f_{ia})m_{ab} = m_{ij}\varepsilon, \quad i, j = 1, \dots, N,$$
(3.15)

and are determined by

$$R^{vw} = R^{vw} \text{ for } \mathcal{R}_{\mathcal{A}}, \ v, w \in \text{ Irr } H,$$
 (3.16)

$$R^{vP} = N_v, \ R^{Pv} = N_v^{-1}, \ v \in \text{Irr } H,$$
 (3.17)

$$R^{\mathcal{P}\mathcal{P}} = R_P + m_P \tag{3.18}$$

where

3. Let \mathcal{R} be as in 2. and let (\mathcal{A}, Δ) , (\mathcal{B}, Δ) be Hopf *-algebras as in the text before the Theorem. Then $(\mathcal{B}, \Delta, \mathcal{R})$ is a CQT Hopf *-algebra iff $(\mathcal{A}, \Delta, \mathcal{R}_{\mathcal{A}})$ is a CQT Hopf *-algebra and

$$m_{ij} = \overline{m_{ji}}, \quad i, j = 1, \dots, N. \tag{3.20}$$

4. Let \mathcal{R} be as in 2. Then $(\mathcal{B}, \Delta, \mathcal{R})$ is a CT Hopf algebra iff $(\mathcal{A}, \Delta, \mathcal{R}_{\mathcal{A}})$ is a CT Hopf algebra and m = 0.

Proof. Ad 1–2. Each such structure is (see Theorem 1.1) uniquely determined by R^{vw} , $R^{v\mathcal{P}}$, $R^{\mathcal{P}v}$ and $R^{\mathcal{P}\mathcal{P}}$ satisfying (1.15)–(1.17) (we assume (1.14)), $v, w \in \text{Irr } H$. Using (3.12), we get (3.16). In virtue of the properties of $\mathcal{R}_{\mathcal{A}}$ the formula (1.17) for R^{vw} follows. Moreover, (1.15)–(1.16) for (3.6) and $w^{\gamma} = v \in \text{Irr } H \text{ mean } R^{v\mathcal{P}}(\mathbb{1} \otimes i) = (i \otimes \mathbb{1})R^{v\Lambda}$, $R^{\mathcal{P}v}(i \otimes \mathbb{1}) = (\mathbb{1} \otimes i)R^{\Lambda v}$. That and (3.11) give

$$R^{v\mathcal{P}} = c_v \begin{pmatrix} G_v, ? \\ 0, ? \end{pmatrix} = c_v N_v, \ R^{\mathcal{P}v} = c_v' \begin{pmatrix} G_v^{-1} & ? \\ 0 & ? \end{pmatrix} = c_v' N_v^{-1}$$

where the second equalities follow from (1.17) for $R^{v\mathcal{P}}$, $R^{\mathcal{P}v}$, (3.4), the independence of 1, y_i (i = 1, ..., N) over \mathcal{A} (in left and also in right module, see Corollary 3.6 and (1.4) of [10]) and the condition (c). Using (1.15)–(1.16) for (3.7) and $w^{\gamma} = v \in \text{Irr } H$, one obtains $c_v = c'_v = 1$, we get (3.14), (3.17). In virtue of (1.15)–(1.16) for (3.6)–(3.7) and $w^{\gamma} = \mathcal{P}$

$$R^{\mathcal{PP}} = \begin{pmatrix} R & Z & -R \cdot Z & ? \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = R_P + m_P$$

for some $m \in \text{Mor}(w^0, \Lambda \otimes \Lambda)$ where the second equality uses (1.17) for $R^{\mathcal{PP}}$, (3.3) and (3.19). Thus (3.18) follows. We set $R_Q = R_P + m_P = R^{\mathcal{PP}}$ and replace (3.3) by equivalent (assuming (3.5)) relation

$$(\mathcal{P} \otimes \mathcal{P})R_Q = R_Q(\mathcal{P} \otimes \mathcal{P}). \tag{3.21}$$

The relations (1.15)–(1.16) for (3.21), (3.4) and any $w^{\gamma} \in \text{Irr } H \cup \{\mathcal{P}\}$ are equivalent to

$$(R_Q \otimes \mathbb{1})(\mathbb{1} \otimes R_Q)(R_Q \otimes \mathbb{1}) = (\mathbb{1} \otimes R_Q)(R_Q \otimes \mathbb{1})(\mathbb{1} \otimes R_Q), \tag{3.22}$$

$$(\mathbb{1} \otimes N_v)(N_v \otimes \mathbb{1})(\mathbb{1} \otimes R_O) = (R_O \otimes \mathbb{1})(\mathbb{1} \otimes N_v)(N_v \otimes \mathbb{1}), \ v \in \text{Irr } H, \tag{3.23}$$

$$(\mathbb{1} \otimes R^{vw})(N_v \otimes \mathbb{1})(\mathbb{1} \otimes N_w) = (N_w \otimes \mathbb{1})(\mathbb{1} \otimes N_v)(R^{vw} \otimes \mathbb{1}), \ v, w \in \text{Irr } H.$$
 (3.24)

According to Proposition 3.14 of [10] and its proof, (3.22) is equivalent to $\tilde{F} = 0$. Let us denote the standard basis elements in $\mathbf{C}^{\dim v}$, $v \in \operatorname{Irr} H$, by h_i^v , $i = 1, \ldots, \dim v$, $e_i = h_i^{\Lambda}$ and in \mathbf{C} by f = 1. Using (3.65) of [10] and

$$N_v(h_i^v \otimes e_j) = (G_v)_{kl,ij} e_k \otimes h_l^v, N_v(h_i^v \otimes f) = f \otimes h_i^v + (H_v)_{kl,i} e_k \otimes h_l^v,$$

we find that (3.23) on $h_i^v \otimes e_j \otimes e_k$ follows from the last formula before Proposition 3.14 in [10], on $h_i^v \otimes e_j \otimes f$, $h_i^v \otimes f \otimes e_j$ follows from (2.18) of [10], on $h_i^v \otimes f \otimes f$ is equivalent (using Rm = m) to $\tau^{ij}(v_{AB}) = 0$ and (3.15) applied to v_{AB} for all i, j, A, B. So (3.23) is equivalent to (3.13) (which implies $\tilde{F} = 0$) and (3.15). We also get that (3.24) on $h_i^v \otimes h_j^w \otimes e_k$ follows from ($\mathbb{I} \otimes R^{vw}$)($R^{v\Lambda} \otimes \mathbb{I}$)($\mathbb{I} \otimes R^{w\Lambda}$) = ($R^{w\Lambda} \otimes \mathbb{I}$)($\mathbb{I} \otimes R^{v\Lambda}$)($R^{vw} \otimes \mathbb{I}$) (it can be obtained using (1.13), (1.8) for $\mathcal{R}_{\mathcal{A}}$ – cf. [1], [4], (1.14) of [7]), on $h_i^v \otimes h_j^w \otimes f$ follows from the equality obtained by acting η_i on (1.17) for R^{vw} and using condition 1. (see the beginning of the Section).

The relations (1.15)–(1.16) for (3.5) and $w^{\gamma} \in \text{Irr } H$ follow from (1.8), (1.11) for $\mathcal{R}_{\mathcal{A}}$ while for $w^{\gamma} = \mathcal{P}$ are equivalent to

$$(N_w \otimes \mathbb{1})(\mathbb{1} \otimes N_{w'})(S^{\alpha}_{ww'w''} \otimes \mathbb{1}) = (\mathbb{1} \otimes S^{\alpha}_{ww'w''})N_{w''}.$$

That on $h_i^{w''} \otimes e_j$ follows from (1.8), (1.11) for $\mathcal{R}_{\mathcal{A}}$, on $h_i^{w''} \otimes f$ follows from the equality obtained by acting η_i on (3.5).

- Ad 3. We need to check (1.20) for $M = \text{Irr } H \cup \{\mathcal{P}\}$. For R^{vw} , $v, w \in \text{Irr } H$, it is equivalent to the fact that $(\mathcal{A}, \Delta, \mathcal{R}_{\mathcal{A}})$ is a CQT Hopf *-algebra, for $R^{\mathcal{P}v}$ and $R^{v\mathcal{P}}$ follows from (3.9), (3.10) and the properties of η_i , for $R^{\mathcal{P}\mathcal{P}}$ it is equivalent (using (4.14) and the next formula of [10], Rm = m, RT = -T) to (3.20).
- Ad 4. We need to check (1.21) for $M = \operatorname{Irr} H \cup \{\mathcal{P}\}$. For R^{vw} , $v, w \in \operatorname{Irr} H$, it is equivalent to the fact that $(\mathcal{A}, \Delta, \mathcal{R}_{\mathcal{A}})$ is a CT Hopf algebra, for $R^{\mathcal{P}v}$ and $R^{v\mathcal{P}}$ follows from (3.17), for $R^{\mathcal{P}\mathcal{P}}$ it is equivalent (using $R_{\mathcal{P}}^2 = 1$) to m = 0.

Remark. If the first formula of the condition 6. is replaced by $0 \neq A_3(Z \otimes 1 - 1 \otimes Z)T \in$ Mor $(I, \Lambda \otimes \Lambda \otimes \Lambda)$ (this is allowed by [10]) then (3.22) is not satisfied and there is no CQT Hopf algebra structure on (\mathcal{B}, Δ) .

As an application we shall consider $(A, \Delta) = \text{Poly}(L)$ where L is a quantum Lorentz group. The corresponding inhomogeneous quantum groups are called quantum Poincaré groups and are (almost) classified in [11]. The classification of C(Q)T Hopf (*-) algebra structures on them is given in

Theorem 3.2 Let $Poly(P) = (\mathcal{B}, \Delta)$ be the Hopf *-algebra corresponding to a quantum Poincaré group P [11] described by an admissible choice of quantum Lorentz group (cases 1)-7)), $s = \pm 1$, H and T.

- 1. Let us consider CQT Hopf algebra structures $(\mathcal{B}, \Delta, \mathcal{R})$ on P. One has:
- a) In the cases 1) (except s=1, t=1, $t_0 \neq 0$ see Remark 1.8 of [11] 1), 2), 3), 4) (except s=1, $b \neq 0$), 5) (except $s=\pm 1$, t=1, $t_0 \neq 0$), 6), 7) each such structure is uniquely determined by

$$R^{ww} = kL, \ R^{w\bar{w}} = kX, \ R^{\bar{w}w} = qkX^{-1}, \ R^{\bar{w}\bar{w}} = qk\tilde{L}$$

and (3.17)–(3.19), where

$$m = cm_0, \ m_0 = (V^{-1} \otimes V^{-1})(\mathbb{1} \otimes X \otimes \mathbb{1})(E \otimes \tau E), \ L = sq^{1/2}(\mathbb{1} + q^{-1}EE'), \ \tilde{L} = q\tau L\tau,$$

where $s = \pm 1$, E, E' are fixed for fixed P and given in [11], $k = \pm 1$ (two possible \mathcal{R} for each $c \in \mathbf{C}$).

- b) In the other cases there is no such structure.
- 2. Let \mathcal{R} be as in 1. We get CQT Hopf*-algebra iff q = 1 (which excludes the cases 5), 6), 7)) and $c \in \mathbf{R}$.
- 3. Let \mathcal{R} be as in 1. We get CT Hopf algebra iff q = 1 (which excludes the cases 5), 6), 7)) and c = 0 (then it is also CT Hopf *-algebra).

Proof. Ad 1. We shall use Theorem 3.1, the results of [11] and Section 2. Thus H is a quantum Lorentz group, $\Lambda = V^{-1}(w \otimes \bar{w})V$ with $V_{CD,i} = (\sigma_i)_{CD}$ ($\sigma_0 = \mathbb{1}, \sigma_1, \sigma_2, \sigma_3$ are the Pauli matrices), $q = \beta = \pm 1$, the assumptions about H and G are satisfied. Moreover, $G_w = (V^{-1} \otimes \mathbb{1})(\mathbb{1} \otimes X)(L \otimes \mathbb{1})(\mathbb{1} \otimes V)$, $G_{\bar{w}} = (V^{-1} \otimes \mathbb{1})(\mathbb{1} \otimes \tilde{L})(X^{-1} \otimes \mathbb{1})(\mathbb{1} \otimes V)$, where $L = sq^{1/2}(\mathbb{1} + q^{-1}EE')$ and $\tilde{L} = q\tau L^{-1}\tau = q\tau L\tau$. The possible η and T are described in [11]. According to the results of Section 2, each CQT Hopf algebra structure on (\mathcal{A}, Δ) is uniquely characterized by $R^{ww} = \varepsilon_L L$, $R^{\bar{w}\bar{w}} = \varepsilon_L'\tilde{L}$, $R^{w\bar{w}} = \varepsilon_X X$, $R^{\bar{w}w} = \varepsilon_X' X^{-1}$, where $\varepsilon_L^2 = \varepsilon_L'^2 = \varepsilon_X^2 = \varepsilon_X'^2 = 1$ (16 possible $\mathcal{R}_{\mathcal{A}}$). Using (1.8)–(1.9), (1.11)–(1.12), one gets (3.11) for v = w, \bar{w} with $c_w = \varepsilon_L \varepsilon_X$, $c_{\bar{w}} = \varepsilon_L' \varepsilon_X'$, $c_w' = q\varepsilon_L \varepsilon_X'$, $c_w' = q\varepsilon_X \varepsilon_L'$. In virtue of Proposition 2.1 of [11] and (1.8)–(1.9), (1.11)–(1.12) the condition (3.11) is satisfied for all $v \in I$ rr H.

¹In the old version of Remark 1.8 of [11] one should replace t by t_0 (except of expressions t = 1). That t_0 is identified with t of (3)–(4) of Ref. 16 of [11].

Due to Proposition 3.13.2 and Proposition 4.8 of [10], (3.13) is equivalent to $\tau^{ij}(w_{AB}) = 0$, i, j = 0, 1, 2, 3, A, B = 1, 2, which means (cf. the proof of Theorem 1.6 of [11]) $\lambda = 0$, which excludes the case 4), s = 1, $b \neq 0$, the case 1), s = 1, t = 1, $t_0 \neq 0$ and the case 5), $s = \pm 1$, t = 1, $t_0 \neq 0$ where $t_0 \in \mathbf{R}$ is introduced in Remark 1.8 of [11]. Moreover, (3.14) means that $\varepsilon'_X = \varepsilon'_L = qk$, $\varepsilon_X = \varepsilon_L = k$ for some $k = \pm 1$. Using Theorem 3.1.1–2, $\operatorname{Mor}(w^0, \Lambda \otimes \Lambda) = \mathbf{C}m_0$ and (3.15) for $m = m_0$ (it is enough to prove it on w_{AB} , w_{AB}^* when it follows from the 20 relations considered in Section 2), we get 1.

Ad 2. We use $q = \beta = 1$ (which implies $q_j = q_i^{-1}$), $(m_0)_{ij} = \overline{(m_0)_{ji}}$ and Theorem 3.1.3. **Ad 3**. We use q = 1 (which implies $\varepsilon_X' = \varepsilon_X$) and Theorem 3.1.4.

4 Enveloping algebras

In this section we study enveloping algebras of inhomogeneous quantum groups. We assume that $(A, \Delta, \mathcal{R}_A)$ and (B, Δ, \mathcal{R}) are CQT Hopf algebras as in Theorem 3.1.1–2 (e.g. as in Theorem 3.2.1).

We essentially follow the scheme of [12] and [13] but now we don't assume Z = T = 0. We define $l_{il} \in \mathcal{B}', j, l = 1, ..., N, +$, by

$$l_{jl}(x) = \mathcal{R}(x \otimes \mathcal{P}_{jl}) \tag{4.1}$$

(in CT case l corresponds to L^{\pm} of [12] on the subalgebra generated by \mathcal{P}_{ac}). According to (1.5) and (1.13) for $v = w = \mathcal{P}$,

$$\begin{array}{lcl} R_{ab,cd}^{\mathcal{PP}}l_{df}(x^{(1)})l_{ce}(x^{(2)}) & = & R_{ab,cd}^{\mathcal{PP}}\mathcal{R}(x^{(1)}\otimes\mathcal{P}_{df})\mathcal{R}(x^{(2)}\otimes\mathcal{P}_{ce}) \\ & = & \mathcal{R}(x\otimes R_{ab,cd}^{\mathcal{PP}}\mathcal{P}_{ce}\mathcal{P}_{df}) \\ & = & \mathcal{R}(x\otimes\mathcal{P}_{ac}\mathcal{P}_{bd}R_{cd,ef}^{\mathcal{PP}}) \\ & = & \mathcal{R}(x^{(1)}\otimes\mathcal{P}_{bd})\mathcal{R}(x^{(2)}\otimes\mathcal{P}_{ac})R_{cd,ef}^{\mathcal{PP}} \\ & = & l_{bd}(x^{(1)})l_{ac}(x^{(2)})R_{cd,ef}^{\mathcal{PP}}, \end{array}$$

hence

$$R_{ab,cd}^{\mathcal{PP}}(l_{df} * l_{ce}) = (l_{bd} * l_{ac})R_{cd,ef}^{\mathcal{PP}}, \ a, b, e, f = 1, \dots, N, +. \tag{4.2}$$

Setting $l_{ab}=L_{ab}$, $l_{a+}=M_a$, and using $l_{+a}=0$, $l_{++}=\varepsilon$, $a,b=1,\ldots,N$, and (3.18), (4.2) is equivalent to

$$R_{ab,cd}(L_{df} * L_{ce}) = (L_{bd} * L_{ac})R_{cd,ef}, \tag{4.3}$$

$$R_{ab,cd}(M_d * L_{ce}) + Z_{ab,c}L_{ce} = (L_{bd} * L_{ac})Z_{cd,e} + L_{be} * M_a,$$
(4.4)

$$R_{ab,cd}(L_{df} * M_c) - (RZ)_{ab,d}L_{df} = -(L_{bd} * L_{ac})(RZ)_{cd,f} + M_b * L_{af},$$
(4.5)

$$R_{ab,cd}M_d * M_c + Z_{ab,c}M_c - (RZ)_{ab,d}M_d + s_{ab}\varepsilon = (L_{bd} * L_{ac})s_{cd} + M_b * M_a,$$
(4.6)

a, b, e, f = 1, ..., N, where s = (R - 1)T + m. Let us notice that (4.5) follows from (4.3)–(4.4). Moreover, using (1.4), (1.3), $l_{ac}(xy) = l_{ab}(x)l_{bc}(y)$, $l_{ac}(I) = \delta_{ac}$, $a, c = 1, ..., N, +, x, y \in \mathcal{B}$. Thus $L_{ac}(I) = \delta_{ac}$, $M_a(I) = 0$,

$$L_{ac}(xy) = L_{ab}(x)L_{bc}(y), \tag{4.7}$$

$$M_a(xy) = L_{ab}(x)M_b(y) + M_a(x)\varepsilon(y), \tag{4.8}$$

 $a, b = 1, ..., N, \ x, y \in \mathcal{B}.$ Also $l_{jl}(\mathcal{P}_{ab}) = \mathcal{R}(\mathcal{P}_{ab} \otimes \mathcal{P}_{jl}) = R_{ja,bl}^{\mathcal{PP}}, \ l_{jl}(w_{AB}) = \mathcal{R}(w_{AB} \otimes \mathcal{P}_{jl}) = R_{jA,Bl}^{\mathcal{PP}} = (N_w)_{jA,Bl} \text{ (see (4.1), (1.7), (3.17), (3.8))}, \ a, b, j, l = 1, ..., N, +, A, B = 1, ..., \dim w, w \in \text{Rep } H.$ Therefore

$$L_{jl}(\Lambda_{ab}) = R_{ja,bl},\tag{4.9}$$

$$L_{jl}(y_a) = -(RZ)_{ja,l}, (4.10)$$

$$L_{jl}(w_{AB}) = (G_w)_{jA,Bl}, (4.11)$$

$$M_j(\Lambda_{ab}) = Z_{ja,b},\tag{4.12}$$

$$M_i(y_a) = s_{ia}, \tag{4.13}$$

$$M_j(w_{AB}) = (H_w)_{jA,B},$$
 (4.14)

 $a, b, j, l = 1, ..., N, A, B = 1, ..., \dim w, w \in \text{Rep } H.$ It is clear that l_{jl} generate a unital subalgebra of \mathcal{B}' (w.r.t. convolution *). Endowing it with Δ' of Remark 1.2, we get a bialgebra U with l as its corepresentation. Adding $l_{ij}^{(m)} = l_{ij} \circ S^m$, one obtains a Hopf algebra \hat{U} with coinverse $S'(l^{(m)}) = l^{(m+1)}$ and corepresentations $l^{(2k)}$, $(l^{(2k+1)})^T$, k = 0, 1, 2, ... Acting S'^m on (4.2), one obtains

$$\begin{array}{rcl} R_{ab,cd}^{\mathcal{PP}}(l_{df}^{(2k)}*l_{ce}^{(2k)}) & = & (l_{bd}^{(2k)}*l_{ac}^{(2k)})R_{cd,ef}^{\mathcal{PP}}, \\ R_{ab,cd}^{\mathcal{PP}}(l_{ce}^{(2k+1)}*l_{df}^{(2k+1)}) & = & (l_{ac}^{(2k+1)}*l_{bd}^{(2k+1)})R_{cd,ef}^{\mathcal{PP}}. \end{array}$$

 \hat{U} is called enveloping algebra of (\mathcal{B}, Δ) . It can be sometimes too small. It happens e.g. in the classical case (see Remark 3.1) with $\mathcal{R} = \varepsilon \otimes \varepsilon$ when $\hat{U} = \mathbf{C}\varepsilon$. Cf. also [3].

Notice that $L_{jl}|_{\mathcal{A}} = f_{jl}$, $M_j|_{\mathcal{A}} = \eta_a$, $l_{|\mathcal{A}} = \rho$. According to the proof of Theorem 1.1, there exists antihomomorphism $\theta : \mathcal{B} \to \mathcal{B}'$ (given by \mathcal{R}) such that $\theta(\Lambda_{jl}) = L_{jl}$, $\theta(y_j) = M_j$, $\theta(I) = \varepsilon$. Therefore the formulae (3.60), (3.46) and (1.12) of [10] yield (4.4), (4.6) (with s replaced by (R-1)T) and (4.3) which give

$$f_{be} * \eta_a = R_{ab,cd} \eta_d * f_{ce} + Z_{ab,c} f_{ce} - (f_{bd} * f_{ac}) Z_{cd,e}$$

(cf. (2.18) of [10]), the condition $\tau^{ij} = 0$ and the last formula before Proposition 3.14 in [10].

Suppose $(\Lambda \otimes \Lambda)k = kw^0$, $n(\Lambda \otimes \Lambda) = w^0n$ $(w^0 = (I_{\mathcal{B}}))$. Applying θ , we get

$$(L_{bd} * L_{ac})k_{cd} = k_{ab}\varepsilon, \ n_{ab}(L_{bd} * L_{ac}) = n_{cd}\varepsilon, \ a, b, c, d = 1, \dots, N.$$
 (4.15)

Let us set $X_{lj} = L_{jl} \circ S \in \hat{U}, j, l = 1, \dots, N.$

Then

$$X_{ik}(xy) = X_{ij}(x)X_{jk}(y), \ X_{ik}(I) = \delta_{ik}, \ x, y \in \mathcal{B},$$
 (4.16)

$$X_{ik}(a) = f_{ki}(S(a)), \ a \in \mathcal{A}, \ i, k = 1, \dots, N.$$
 (4.17)

Using the last equation in the proof of Proposition 3.12 of [10], (4.7), (3.9) and (4.10), we obtain

$$X_{ik}(y_l) = Z_{lk,i}. (4.18)$$

Moreover, (4.15) yields

$$k_{ab}(X_{ac} * X_{bd}) = k_{cd}\varepsilon, \quad (X_{ac} * X_{bd})n_{cd} = n_{ab}\varepsilon. \tag{4.19}$$

As in the proof of Proposition 3.1.2 of [8], there exists a unital homomorphism $X : \mathcal{B} \to M_{N+1}(\mathbf{C})$ such that

$$X = \begin{pmatrix} (X_{jl})_{j,l=1}^{N} & (Y_{j})_{j=1}^{N} \\ 0 & \varepsilon \end{pmatrix}$$

for some $Y_j \in \mathcal{B}'$ satisfying $Y_j(a) = 0$, $a \in \mathcal{A}$, $Y_j(y_k) = \delta_{jk}$, j, k = 1, ..., N. Setting $X_{j+} = Y_j$, $X_{+j} = 0$, $X_{++} = \varepsilon$, j = 1, ..., N, the commutation relations among X_{ij} , i, j = 1, ..., N, +, are the same as in (3.7) of [8], i.e.

$$(X_{ab} * X_{cd})K_{bd,st} = K_{ac,bd}(X_{bs} * X_{dt}), \ a, c, s, t = 1, \dots, N, +,$$

$$(4.20)$$

where

$$K = \left(\begin{array}{cccc} R^T & 0 & 0 & 0\\ 0 & 0 & 1\!\!1 & 0\\ 0 & 1\!\!1 & 0 & 0\\ 0 & 0 & 0 & 1 \end{array}\right)$$

(it is also possible to replace K in (4.20) by $K + n_P$, where $n \in \text{Mor}(\Lambda \otimes \Lambda, w^0)$ – see (3.19), (4.19)).

Defining $X_{ij}^{(m)} = X_{ij} \circ S^m$, i, j = 1, ..., N, +, m = 0, 1, 2, ..., one gets a Hopf algebra \hat{V} generated (as an algebra) by $l_{ij}^{(m)}$ and $X_{ij}^{(m)}$. Clearly $S'(X^{(m)}) = X^{(m+1)}$; $X^{(2k)}$, $[X^{(2k+1)}]^T$, k = 0, 1, ..., are corepresentations of \hat{V} . Letting S' act on (4.20), one obtains

$$(X_{ab}^{(2k)} * X_{cd}^{(2k)}) K_{bd,st} = K_{ac,bd} (X_{bs}^{(2k)} * X_{dt}^{(2k)}), (X_{cd}^{(2k+1)} * X_{ab}^{(2k+1)}) K_{bd,st} = K_{ac,bd} (X_{dt}^{(2k+1)} * X_{bs}^{(2k+1)}).$$

 \hat{V} is called enlarged enveloping algebra of (\mathcal{B}, Δ) . It would be interesting to find the commutation relations between M_i and Y_j .

Acknowledgment

The author is grateful to Professor W. Arveson and other faculty members for their kind hospitality at UC Berkeley.

References

- [1] Drinfeld, V. G., Quantum groups, in *Proceedings ICM-1986*, Berkeley, (1987), 798–820.
- [2] Hayashi, T., Quantum groups and quantum determinants, *Journal of Algebra*, **152:1** (1992), 146–165.
- [3] Kosiński, P. and Maślanka, P., The duality between κ -Poincaré algebra and κ -Poincaré group, hep-th 9411033.
- [4] Larson, R. G. and Towber, J., Two dual classes of bialgebras related to the concepts of "quantum group" and "quantum Lie algebra", *Comm. Algebra*, **19** (1991), 3295–3345.
- [5] Lyubashenko, V. V., Hopf algebras and vector symmetries, Russian Math. Surveys, 41:5
 (1986), 153-4. Russian original: Uspekhi Mat. Nauk, 41:5 (1986), 185-186.
- [6] Majid, S., Quasitriangular Hopf algebras and Yang–Baxter equations, *Int. Journal of Modern Phys. A*, **5:1** (1990), 1–91.
- [7] Podleś, P., Complex quantum groups and their real representations, *Publ. RIMS, Kyoto Univ.*, **28** (1992), 709–745.
- [8] Podleś, P., Solutions of Klein–Gordon and Dirac equations on quantum Minkowski spaces, q-alg 9510019, UC Berkeley preprint, PAM-654.
- [9] Podleś, P. and Woronowicz, S. L., Quantum deformation of Lorentz group, *Commun. Math. Phys.*, **130** (1990), 381–431.
- [10] Podleś, P. and Woronowicz, S. L., On the structure of inhomogeneous quantum groups, hep-th 9412058, UC Berkeley preprint, PAM-631.
- [11] Podleś, P. and Woronowicz, S. L., On the classification of quantum Poincaré groups, hep-th 9412059, UC Berkeley preprint, PAM-632.
- [12] Reshetikhin, N. Yu., Takhtadzyan, L. A. and Faddeev, L. D., Quantization of Lie groups and Lie algebras, *Leningrad Math. J.*, 1:1 (1990), 193–225. Russian original: *Algebra i* analiz, 1:1 (1989), 178–206.

- [13] Schlieker, M., Weich, W. and Weixler, R., Inhomogeneous quantum groups and their quantized universal enveloping algebras, *Lett. Math. Phys.*, **27** (1993), 217–222.
- [14] Takeuchi, M., Finite dimensional representations of the quantum Lorentz group, *Commun. Math. Phys.*, **144** (1992), 557–580.
- [15] Woronowicz, S. L., Twisted SU(2) group. An example of a non-commutative differential calculus, *Publ. RIMS, Kyoto Univ.*, **23** (1987), 117–181.
- [16] Woronowicz, S. L., Tannaka–Krein duality for compact matrix pseudogroups. Twisted SU(N) groups, $Inv.\ Math.$, 93 (1988), 35–76.
- [17] Woronowicz, S.L., private information.
- [18] Woronowicz, S. L. and Zakrzewski, S., Quantum deformations of the Lorentz group. The Hopf *-algebra level, Comp. Math., **90** (1994), 211–243.