Amendments to the Claims:

Please cancel claims 1-73 and add new claims 74-109. This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

2

sample presenting surface.

1-73 (canceled)

74 (new): A probe for laser desorption/ionization mass spectrometry, wherein 1 the probe comprises at least one sample presenting surface and a moiety that binds to biotin 2 3 immobilized by chemical bonding to the sample presenting surface. 1 75 (new): The probe of claim 74, wherein the moiety binds biotin with an affinity constant of $K_{\dot{a}} = 10^{15} \text{ M}^{-1}$. 2 76 (new): The probe of claim 74, wherein the moiety on the sample presenting 1 surface is bound to the biotin group of at least one biotinylated protein. 2 77 (new): The probe of claim 76, wherein the probe further comprises a matrix. 1 78 (new): The probe of claim 74, wherein the sample presenting surface 1 2 comprises two or more moieties that bind to biotin arranged in a predetermined array. 79 (new): The probe of claim 74, wherein the moiety that binds to biotin is 1 2 selected from the group consisting of streptavidin and avidin. 1 80 (new): The probe of claim 74, wherein the moiety is covalently bonded to the

l	81 (new): A method comprising the steps of:
2	a) providing a probe comprising at least one sample presenting surface and a
3	moiety that binds to biotin immobilized by chemical bonding to the sample presenting surface;
4	b) contacting the probe with at least one biotinylated protein under conditions
5	allowing the biotin group to bind to the moiety that binds to biotin; and
5	c) performing laser desorption/ionization mass spectrometry on the proteins
7	bound on the surface of the probe.
1	82 (new): The method of claim 81, further comprising after step b) the step of:
2	washing to remove unbound molecules from the probe.
1	83 (new): The method of claim 81, wherein the moiety binds biotin with an
2	affinity constant of $K_a = 10^{15} M^{-1}$.
1	84 (new): The method of claim 81, wherein the probe comprises two or more
2 -	moieties that bind to biotin arranged in a predetermined array.
1	85 (new): The method of any one of claims 81-84, wherein the moiety is
2	covalently bonded to the sample presenting surface.
1	86 (new): The method of any one of claims 81-84, further comprising the step of
2	applying a matrix after allowing the biotin group to bind to the moiety that binds to biotin.
1	87 (new): The method of any one of claims 81 or 82, wherein the moiety that
2	binds to biotin is selected from the group consisting of streptavidin and avidin.
1	88 (new): The method of claim 87, wherein the moiety is covalently bonded to
2	the sample presenting surface.
1	89 (new): The method of claim 87, further comprising the step of applying a
,	matrix after allowing the higtin group to hind to the mojety that hinds to biotin.

l	90 (new): A mass spectrometry apparatus comprising:
2	a) a probe comprising at least one sample presenting surface and a moiety that
3	binds to biotin immobilized by chemical bonding to the sample presenting surface;
4	b) an energy source that directs laser energy to the sample presenting surface for
5	desorbing and ionizing a biotinylated protein captured by the moiety; and
6	c) a detector that detects the desorbed, ionized biotinylated protein.
1	91 (new): The apparatus of claim 90, further comprising:
2	d) a spectrometer tube into which ionized biotinylated protein is accelerated; and
3	e) means for applying an accelerating electrical potential to the desorbed, ionized
4	protein; wherein the mass spectrometer is a time-of-flight mass spectrometer.
1	92 (new): The apparatus of claim 91, further comprising:
2	f) vacuum means for applying a vacuum to the interior of the tube.
1	93 (new): The apparatus of claim 90, wherein the detector comprises an electron
2	multiplier.
1	94 (new): The apparatus of claim 90, wherein the moiety binds biotin with an
2	affinity constant of $K_a = 10^{15} M^{-1}$.
1	95 (new): The apparatus of claim 90, wherein the moiety on the probe is bound
2	to the biotin group of at least one biotinylated protein.
1	96 (new): The apparatus of claim 95, wherein the probe further comprises a
2	matrix.
1	97 (new): The apparatus of claim 90, wherein the probe comprises two or more
2	moieties that bind to biotin arranged in a predetermined array.
1	98 (new): The apparatus of claim 90, wherein the moiety that binds to biotin is
2	selected from the group consisting of strentavidin and avidin

1	99 (new): The apparatus of claim 91, wherein the moiety that binds to biotin is
2	selected from the group consisting of streptavidin and avidin.
1	100 (new): The apparatus of claim 92, wherein the moiety that binds to biotin is
2	selected from the group consisting of streptavidin and avidin.
1	101 (new): The apparatus of claim 93, wherein the moiety that binds to biotin is
2	selected from the group consisting of streptavidin and avidin.
1	102 (new): The apparatus of claim 90, wherein the moiety is covalently bonded
2	to the sample presenting surface.
1	103 (new): The apparatus of claim 95, wherein the moiety is covalently bonded
2	to the sample presenting surface.
1	104 (new): The apparatus of claim 96, wherein the moiety is covalently bonded
2	to the sample presenting surface.
1	105 (new): The apparatus of claim 98, wherein the moiety is covalently bonded
2	to the sample presenting surface.
1	106 (new): The apparatus of claim 99, wherein the moiety is covalently bonded
2	to the sample presenting surface.
1	107 (new): The apparatus of claim 100, wherein the moiety is covalently bonded
2	to the sample presenting surface.
1	108 (new): The apparatus of claim 101, wherein the moiety is covalently bonded
2	to the sample presenting surface.
1	109 (new): The apparatus of claim 90, wherein the energy source is energy from
2	a nitrogen laser or an Nd-YAG laser.