Code ▼

Hide

Assessing Pesticide Contamination in Illinois Water Supply and the Impact of Agricultural Practices

Carson Edwards

1. Load in libraries

library(purrr)
library(readr)
library(corrplot)
library(forecast)
library(tidyr)
library(randomForest)
library(xgboost)
library(changepoint)
library(urbnmapr)
library(ggplot2)
library(data.table)

TRI PROGRAM DATASET ANALYSIS SECTION

Load and format TRI program data

Hide

```
folder_path <- "C:/Users/carso/Downloads/il_chemicals/"</pre>
file_list <- list.files(path = folder_path, pattern = "\\d{4}_il\\.csv$", full.names = TRUE)</pre>
combined_data <- map_df(file_list, ~ read_csv(.x, col_types = cols(.default = "c")))</pre>
# Clean up column names
cleaned_colnames <- colnames(combined_data) %>%
  gsub("^\\d+\\.\\s*", "", .) %>%
  gsub("\\s+", "_", .) %>%
  tolower()
colnames(combined_data) <- cleaned_colnames</pre>
# Mutate total releases to numeric, convert yes/no to logical, and as numeric
combined_data <- combined_data %>%
  mutate(
    total_releases = as.numeric(total_releases),
    across(where(~ is.character(.) & all(. %in% c("YES", "NO"))), ~ . == "YES"),
    across(where(is.logical), as.numeric)
  )
# Get sums of county, chemical, and year combinations
chemical_by_county <- combined_data %>%
  group_by(county, chemical, year) %>%
  summarise(total_releases = sum(total_releases, na.rm = TRUE))
```

`summarise()` has grouped output by 'county', 'chemical'. You can override using the `.groups` argument.

Hide

```
# Load in our county map data
illinois_counties <- get_urbn_map("counties", sf = FALSE) %>%
  filter(state_abbv == "IL")
head(combined_data)
```

y	trifd	frs_id	facility_name	street_address	city
<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>
2001	60039TCNDSRT31X	110006165746	TC INDUSTRIES INC	3703 S RT 31	CRYSTAL LAKE
2001	62201THYLPMONSA	110000438884	AFTON CHEMICAL CORP	501 MONSANTO AVE	SAUGET
2001	60628SHRWN11541	110008457295	SHERWIN-WILLIAMS CO	11700 S COTTAGE GROVE	CHICAGO
2001	60120HNKLD1345G	110035808837	HENKEL US OPERATIONS CORP.	1345 GASKET DR	ELGIN
2001	61132BRBRC1354C	110066942474	SCHNEIDER-ELECTRIC LLC	1354 CLIFFORD AVE	LOVES P
2001	60901HNKLCSKENS	110043972207	KENSING LLC	2525 S KENSINGTON AVE	KANKAKI
rows	s 1-6 of 122 columns				

head(chemical_by_county)

county <chr></chr>	chemical <chr></chr>	year <chr></chr>	total_releases <dbl></dbl>
ADAMS	2-Phenylphenol	2015	0.0
ADAMS	2-Phenylphenol	2016	0.0
ADAMS	Aluminum oxide (fibrous forms)	2004	72939.0
ADAMS	Aluminum oxide (fibrous forms)	2005	72967.0
ADAMS	Aluminum oxide (fibrous forms)	2006	98633.0
ADAMS	Aluminum oxide (fibrous forms)	2007	86443.2
6 rows			

3. Correlation modeling

Hide

```
# Selecting our numeric data, we have already converted true/false to 1/0
numeric_data <- combined_data %>%
    select_if(is.numeric)
correlation_matrix <- cor(numeric_data, use = "complete.obs")</pre>
```

	<pre>federal_facility elemental_</pre>	_metal_included	clean_air_act_chemical	metal	ca
rcinogen pbt	<pre>pfas total_releases</pre>				
federal_facility	1.000000000	-0.004400299	2.756273e-03	0.010069210	0.0
33442971 4.546254e-02	-0.0004614205 -0.0033693730				
elemental_metal_includ	ed -0.0044002990	1.000000000	4.703926e-02	0.141343327	-0.0
29909940 9.252047e-02	-0.0011087767 0.0037716602				
<pre>clean_air_act_chemical</pre>	0.0027562734	0.047039260	1.000000e+00	-0.048969995	0.1
77330690 6.052090e-07	-0.0115923471 -0.0419258675				
metal	0.0100692104	0.141343327	-4.897000e-02	1.000000000	0.0
65808622 3.302266e-01	-0.0074324551 0.0112175256				
carcinogen 0.0334429714		-0.029909940	1.773307e-01	0.065808622	1.0
00000000 2.413876e-01	0.0023449760 -0.0397761881				
pbt	0.0454625433	0.092520466	6.052090e-07	0.330226619	0.2
41387601 1.000000e+00	-0.0037715181 -0.0328457127				
pfas -0.0004614205		-0.001108777	-1.159235e-02	-0.007432455	0.0
02344976 -3.771518e-03	1.0000000000 -0.0008549982				
total_releases -0.0033693730		0.003771660	-4.192587e-02	0.011217526	-0.0
39776188 -3.284571e-02	-0.0008549982 1.0000000000				

Hide

```
elemental metal included clean air act chemical carcinogen of total releases o monomorphic total releas
```

4. Random forest model for feature importance

```
Hide
```

```
# Only selecting fields of interest
model_data <- combined_data %>%
    select(total_releases, year, federal_facility, elemental_metal_included, clean_air_act_chemical, metal, c
arcinogen, pbt, pfas)

set.seed(123)
rf_model <- randomForest(total_releases ~ ., data = model_data, importance = TRUE, ntree = 500)

print(rf_model)</pre>
```

```
importance(rf_model)
```

Hide

Hide

```
%IncMSE IncNodePurity
year
                         7.674713 2.830637e+12
federal_facility
                         5.625889 3.394976e+10
elemental_metal_included 9.285051 7.679550e+11
clean_air_act_chemical
                        36.188221 1.065696e+13
                        26.927291 4.120005e+12
metal
carcinogen
                        32.283238 7.966650e+12
                        30.601349 5.337563e+12
pbt
pfas
                         6.646834 2.565066e+09
```

```
varImpPlot(rf_model,
    main = "Random Forest Classifier for TRI Program Variable Importance")
```

Random Forest Classifier for TRI Program Variable Importance


```
get_change_points <- function(df) {</pre>
  df$year <- as.numeric(df$year)</pre>
  df <- df[order(df$year), ]</pre>
  if (any(is.na(df$total_releases)) || !is.numeric(df$total_releases)) {
    return(NULL)
  }
  releases <- as.numeric(df$total_releases)</pre>
  max_Q <- length(releases) - 1</pre>
  # The max change points to search for. Taking either length of county chemical combinations or total numb
er of rows. Want less change points rather than more
  Q \leftarrow min(3, max_Q)
  if (Q < 1) {
    return(NULL)
  }
  # Was getting too many warnings with the output
  suppressWarnings({
    cpt <- cpt.mean(releases, method = "BinSeg", penalty = "BIC", Q = Q)</pre>
  })
  return(cpts(cpt))
}
change_points <- list()</pre>
# Only want combinations with at least 3 reported years
valid_data <- chemical_by_county %>%
  group_by(county, chemical) %>%
  filter(n() >= 3) %>%
  ungroup()
# Need unique pairs
unique_combinations <- unique(valid_data[, c("county", "chemical")])</pre>
# For each unique combination of county and chemical, take the subset of data and run get change points fun
ction
for (i in 1:nrow(unique_combinations)) {
  county1 <- unique_combinations$county[i]</pre>
  chemical1 <- unique_combinations$chemical[i]</pre>
  subset_data <- subset(valid_data, county == county1 & chemical == chemical1)</pre>
  result <- get_change_points(subset_data)</pre>
  if (!is.null(result)) {
    change_points[[paste(county1, chemical1, sep = "_")]] <- result</pre>
    change_points[[paste(county1, chemical1, sep = "_")]] <- "No valid data or change points"</pre>
  }
}
```

```
plot change points <- function(df, change points) {</pre>
  df$year <- as.numeric(df$year)</pre>
  # Order by year
  df <- df[order(df$year), ]</pre>
  # Create change point plot of total releases
  change_point_plot <- ggplot(df, aes(x = year, y = total_releases)) +</pre>
    geom_line() +
    geom_point() +
    labs(title = paste(df$county[1], df$chemical[1], "Change Point Detection"),
         x = "Year", y = "Total Releases") +
    theme minimal()
  # Plotting change points using a vertical red line
  if (!is.null(change_points) && length(change_points) > 0) {
    change_point_plot <- change_point_plot + geom_vline(xintercept = df$year[change_points], color = "red",</pre>
linetype = "dashed")
  print(change_point_plot)
}
analyze_change_points <- function(chemical_name, chemical_by_county, change_points) {</pre>
  unique_counties <- unique(chemical_by_county$county$county[chemical_by_county$chemical == chemical_name])</pre>
  change_point_years <- c()</pre>
  # For each county chemical combination, get the change point counts
  for (county1 in unique_counties) {
    subset_data <- subset(chemical_by_county, county == county1 & chemical == chemical_name)</pre>
    change_point_result <- change_points[[paste(county1, chemical_name, sep = "_")]]</pre>
    if (!is.null(change_point_result)) {
      plot change points(subset data, change point result)
      change_point_years <- c(change_point_years, change_point_result) # Collect change point years</pre>
    }
  }
  change_point_year_counts <- table(change_point_years)</pre>
  # Plot the totals
  barplot(change_point_year_counts,
          main = paste("Frequency of Change Point Years for", chemical_name),
          xlab = "Year",
          ylab = "Frequency",
          col = "skyblue",
          las = 2,
          names.arg = as.character(as.numeric(names(change_point_year_counts)) + 2000)) # Have years displa
y correctly
}
```


Frequency of Change Point Years for Ammonia

Benzene example

Hide

analyze_change_points("Benzene", chemical_by_county, change_points)

Frequency of Change Point Years for Benzene

Change point detection by year

```
change_points <- list()

# Group by year and chemical this time
valid_data <- chemical_by_county %>%
  group_by(year, chemical) %>%
  summarise(total_releases = sum(total_releases, na.rm = TRUE)) %>%
  filter(n() >= 3) %>%
  ungroup()
```

`summarise()` has grouped output by 'year'. You can override using the `.groups` argument.

```
# Only unique chemicals since no counties
unique_chemicals <- unique(valid_data$chemical)</pre>
# For each unique chemical, take the subset of data and run get change points function
for (i in 1:length(unique_chemicals)) {
  chemical1 <- unique_chemicals[i]</pre>
  subset_data <- subset(valid_data, chemical == chemical1)</pre>
  result <- get_change_points(subset_data)</pre>
  if (!is.null(result)) {
    change_points[[chemical1]] <- result</pre>
  } else {
    change_points[[chemical1]] <- "No valid data or change points"</pre>
  }
}
plot_change_points <- function(df, change_points) {</pre>
  df$year <- as.numeric(df$year)</pre>
  # Order by year
  df <- df[order(df$year), ]</pre>
  # Create change point plot of total releases
  change_point_plot <- ggplot(df, aes(x = year, y = total_releases)) +</pre>
    geom_line() +
    geom_point() +
    labs(title = paste(df$chemical[1], "Change Point Detection"),
         x = "Year", y = "Total Releases") +
    theme_minimal()
  # Plotting change points using a vertical red line
  if (!is.null(change_points) && length(change_points) > 0) {
    change_point_plot <- change_point_plot + geom_vline(xintercept = df$year[change_points], color = "red",</pre>
linetype = "dashed")
  }
  print(change_point_plot)
}
analyze_change_points <- function(chemical_name, chemical_by_county, change_points) {</pre>
  subset_data <- subset(chemical_by_county, chemical == chemical_name) # Only chemical for this subset
  change_point_result <- change_points[[chemical_name]]</pre>
  if (!is.null(change_point_result)) {
    plot_change_points(subset_data, change_point_result)
    change_point_years <- change_point_result # Collect change point years</pre>
  } else {
    change_point_years <- c()</pre>
  }
}
```

Ammonia change points statewide

Benzene change points statewide

Hide

analyze_change_points("Benzene", valid_data, change_points)

Atrazine change points statewide

analyze_change_points("Atrazine", valid_data, change_points)

2,4-D change points statewide

Hide

analyze_change_points("2,4-D", valid_data, change_points)

Average yearly increase function

Hide

```
plot_avg_yearly_increase <- function(chemical_name, chemical_by_county, illinois_counties) {</pre>
  # Filter by chemical of interest, group by county, arrange by year, calculate yearly change, take the mea
n and drop groups
  avg_increase_data <- chemical_by_county %>%
    filter(chemical == chemical_name) %>%
    group_by(county) %>%
    arrange(year) %>%
    mutate(yearly_change = total_releases - lag(total_releases)) %>%
    summarize(avg_yearly_increase = mean(yearly_change, na.rm = TRUE), .groups = "drop") %>%
    rename(county_name = county)
  # Convert county names to regular format ex "Jo Daviess County"
  avg_increase_data$county_name <- paste(tools::toTitleCase(tolower(avg_increase_data$county_name)), "Count</pre>
y")
  # Set up counties data with average increase data by county name
  spatial_data <- left_join(illinois_counties, avg_increase_data, by = "county_name")</pre>
  # Plot using Albers projection to minimize warping, remove axis labels, and apply nice color scheme
  plot <- ggplot() +
    geom_polygon(data = spatial_data,
                 mapping = aes(x = long, y = lat, group = group, fill = avg_yearly_increase),
                 color = "#ffffff", size = 0.25) +
    coord_map(projection = "albers", lat0 = 39, lat1 = 45) +
    scale_fill_gradient2(midpoint = 0, low = "blue", mid = "lightblue", high = "orange",
                     na.value = "grey", name = "Average Yearly Increase in lbs") +
    labs(title = paste("Average Yearly Increase in Total Releases of", chemical_name)) +
    theme_minimal() +
    theme(axis.title = element blank(),
          axis.text = element_blank(),
          axis.ticks = element_blank())
  print(plot)
}
```

Ammonia average yearly increase (Jo Daviess county of interest)

```
Hide
```

```
plot_avg_yearly_increase("Ammonia", chemical_by_county, illinois_counties)
```

Average Yearly Increase in Total Releases of Ammonia

Benzene average yearly increase (Benzene generally decreasing)

Hide

plot_avg_yearly_increase("Benzene", chemical_by_county, illinois_counties)

Average Yearly Increase in Total Releases of Benzene

2,4-D average yearly increase (Cook county of interest)

plot_avg_yearly_increase("2,4-D", chemical_by_county, illinois_counties)

Average Yearly Increase in Total Releases of 2,4-D

Mercury average yearly increase

Hide

plot_avg_yearly_increase("Mercury", chemical_by_county, illinois_counties)

Average Yearly Increase in Total Releases of Mercury

Hide

plot_avg_yearly_increase("Hydrazine", chemical_by_county, illinois_counties)

Atrazine average yearly increase

Hide

plot_avg_yearly_increase("Atrazine", chemical_by_county, illinois_counties)

Average Yearly Increase in Total Releases of Atrazine

Acetochlor shows no reported releases

Hide

plot_avg_yearly_increase("Acetochlor", chemical_by_county, illinois_counties)

Average Yearly Increase in Total Releases of Acetochlor

USGS WATER QUALITY DATASET ANALYSIS SECTION

1. Load in and format the USGS data

Hide

chemical_data <- fread("C:/Users/carso/Downloads/waterdata/waterdata.csv", sep = "\t", fill = TRUE, quote =</pre> "")

Hide

```
# Format date field
chemical_data$sample_dt <- as.Date(chemical_data$sample_dt, format="%Y-%m-%d")</pre>
chemical_data <- chemical_data %>% drop_na(result_va)
```

Examine data

Hide

head(chemical_data)

agency_cd <chr></chr>	site_no <s3: integer64=""></s3:>	sample_dt sample_ <date> <chr></chr></date>	tm sample_end_dt sample_end_tm <s3: idate=""> <chr></chr></s3:>	•
USGS	3384500	1955-10-01	1955-10-10	
USGS	3384500	1955-10-01	1955-10-10	
USGS	3384500	1955-10-01	1955-10-10	
USGS	3384500	1955-10-01	1955-10-10	
USGS	3384500	1955-10-01	1955-10-10	
USGS	3384500	1955-10-01	1955-10-10	
6 rows 1-6 of 34	columns			

Hide

summary(chemical_data)

agency_cd	site_no	sample_dt	sample_tm	sample_end_dt
sample_end_tm	sample_start_time_datu			
Length: 3742875 Length: 3742875	Min. : 33362 Length:3742875	80 Min. :1901-01	-02 Length:3742875	Min. :1951-05-31
Class :character	1st Qu.: 55275	00 1st Qu.:1984-11	-05 Class :characte	n 1st Qu.:1957-06-30
Class :character	Class :character	00 130 Qu.1130 1 11	os crass tenar acce	130 Qu1337 00 30
Mode :character	Median : 55720	00 Median :1989-10	-31 Mode :characte	Median :1981-06-16
Mode :character	Mode :character			
	Mean : 635590900587			Mean :1979-03-01
	3rd Qu.: 55952	•		3rd Qu.:1990-06-21
	Max. :4237840881334	01 Max. :2024-03 NA's :3534	-08	Max. :2020-02-20 NA's :3725526
tm_datum_rlbty_co	d coll_ent_cd m		oject_cd aqf	_cd tu_id
		type_cd	,	
Length:3742875	Length:3742875 Le	ngth:3742875 Len	gth:3742875 Lengt	n:3742875 Min. :
0 Min. : 6	Length:3742875	Length:3742875		
Class :character			ss :character Class	:character 1st Qu.:
0 1st Qu.:59 Mode :character	Class :character Mode :character Mo	Class :character de :character Mod	e :character Mode	:character Median:
0 Median :94	Mode :character	Mode :character	e .character mode	. Character rieutan .
				Mean : 73
193 Mean :69				
244 2nd Ou •04				3rd Qu.:163
344 3rd Qu.:94				Max. :163
998 Max. :94				11dx103
				NA's :373
	37504			
hyd_event_cd	sample_lab_cm_tx	parm_cd remar	k_cd result	_va val_qual_tx
meth_cd Length:3742875	· -	_lev_va n. : 1 Length	:3742875 Min. :	-3.830e+02 Length:37428
75 Length: 3742	=	Min. : 0	.5/420/5 MIII	-5.050e102 Length: 57420
	· ·		:character 1st Qu.:	1.000e+00 Class :chara
	racter Class :characte	r 1st Qu.: 0		
Mode :character			:character Median :	8.000e+00 Mode :chara
cter Mode :char			Maara	0.1345:03
Mean : 28	Me	an :18787	Mean :	9.134e+03
ricuit . 20	3r	d Qu.:32730	3rd Qu.∶	6.300e+01
3rd Qu.: 8		·	·	
	Ma	x. :99995	Max. :	1.000e+10
Max. :18950				
NA!a .2200007				
NA's :3308987 rpt_lev_cd	lab_std_va pre	n set no n	rep_dt anl_s	et_no anl_dt
. – –	anl_ent_cd V		. cp_uc	uni_uc
	Min. : 0 Len		:20010530 Length	:3742875 Min. :2001
	2875 Length: 3742875	•		
	1st Qu.: 0 Cla		Qu.:20110624 Class	character 1st Qu.:2009
	racter Class :characte		on 120120016 M-J-	chanacton Madday 2012
Mode :character 0825 Mode :char	Median : 0 Mod racter Mode :characte		an :20130916 Mode	character Median :2013
Jozs Houc Char	Mean : 955	Mean	:20137288	Mean :2013
3588				. ,
	3rd Qu.: 1	3rd	Qu.:20170814	3rd Qu.:2017
0731				

Max. :1301508 Max. :20240221 Max. :2024

0307

NA's :3741510 NA's :3421702 NA's :3282

264

2. Load in and format parameter data

Hide

```
param_data <- read.delim("C:/Users/carso/Downloads/waterdata/param_dictionary.txt", sep = "\t", header = FA
LSE, stringsAsFactors = FALSE, col.names = "field")

# Format param data so we can match it. Don't need field
param_data <- param_data %>%
    mutate(
    parm_cd = as.numeric(sub(" - .*", "", field)),
    description = sub("^[0-9]+ - ", "", field)
) %>%
    select(-field)
```

3. Function for filtering by chemicals in the parameter codes and using a SARIMA model to forecast

```
forecast_chemical <- function(chemical_name, start_date, param_data, chemical_data, forecast_horizon = 36)</pre>
{
  # Get data for chemical of interest using grepl
  data <- param_data %>%
    filter(grepl(chemical name, description, ignore.case = TRUE))
  # Get parameter codes that match that chemical and select data after start date
  filtered_chemical_data_after_start <- chemical_data %>%
    filter(parm_cd %in% data$parm_cd, sample_dt > as.Date(start_date)) %>%
    select(site_no, sample_dt, sample_end_dt, result_va, result_lab_cm_tx) %>%
    mutate(year_month = format(sample_dt, "%Y-%m"))
  # Get outlier threshold
  outlier_threshold <- quantile(filtered_chemical_data_after_start$result_va, 0.99, na.rm = TRUE)
  # Remove outliers above the threshold
  filtered_chemical_data_no_outliers <- filtered_chemical_data_after_start %>%
    filter(result_va <= outlier_threshold)</pre>
  # Get data by year month and get mean
  data_by_month <- filtered_chemical_data_no_outliers %>%
    group_by(year_month) %>%
    summarise(result_va = mean(result_va, na.rm = TRUE)) %>%
    ungroup() %>%
    arrange(year_month)
  # Convert year month to date
  data_by_month <- data_by_month %>%
    mutate(year_month = as.Date(paste0(year_month, "-01")))
  # Create time series using the data
  result_va_ts_monthly <- ts(
    data_by_month$result_va,
    start = c(
      as.numeric(format(min(data_by_month$year_month), "%Y")),
      as.numeric(format(min(data_by_month$year_month), "%m"))
    ),
    frequency = 12
  # Fit SARIMA model
  sarima_model <- auto.arima(result_va_ts_monthly, seasonal = TRUE)</pre>
  # Get forecast
  forecast_monthly <- forecast(sarima_model, h = forecast_horizon)</pre>
  # Plot forecast
  plot(
    forecast_monthly,
    main = paste("Forecast of Monthly Average result_va for", chemical_name),
    xlab = "Year",
    ylab = "Average Amount in Water Supply"
  # Extract forecasted values
```

```
forecast_values <- as.data.frame(forecast_monthly)$`Point Forecast`</pre>
  # Calculate the difference between the first and last forecasted values
  forecast_increase <- forecast_values[length(forecast_values)] - forecast_values[1]</pre>
  # Print increase or decrease
  if (forecast_increase > 0) {
    cat("The forecast indicates an increase of", forecast_increase, "over the next", forecast_horizon, "mon
  } else if (forecast_increase < 0) {</pre>
    cat("The forecast indicates a decrease of", abs(forecast_increase), "over the next", forecast_horizon,
"months.\n")
  } else {
    cat("The forecast indicates no significant change over the forecast period.")
  # Print summary
  print(summary(sarima_model))
  # Return the forecast and model summary
  return(list(
   model = sarima_model,
    forecast = forecast_monthly
  ))
}
```

2,4-D SARIMA forecast post 2014 since the EPA approved use in 2014. It picks up a decrease but when reading the chart you can see its just the top end of the season its starting at so note this as possible increase

forecast_horizon = 36

)

```
result <- forecast_chemical(
  chemical_name = "2,4-D",
  start_date = "2014-01-01",
  param_data = param_data,
  chemical_data = chemical_data,</pre>
```

```
The forecast indicates a decrease of 4.559721 over the next 36 months.
Series: result_va_ts_monthly
ARIMA(1,0,0)(1,0,0)[12] with non-zero mean
Coefficients:
         ar1
                sar1
                          mean
      0.2180 0.4260 103.8303
s.e. 0.0899 0.0846
                        6.4850
sigma^2 = 1177: log likelihood = -579.34
AIC=1166.69
              AICc=1167.05
                             BIC=1177.74
Training set error measures:
                                              MPE
                                                                              ACF1
                    ME
                          RMSE
                                    MAE
                                                      MAPE
                                                                 MASE
Training set 0.1651061 33.8604 25.16816 -7.974954 24.06877 0.8373728 -0.006531367
```

Forecast of Monthly Average result_va for 2,4-D

Hide

result

\$model

Series: result_va_ts_monthly

ARIMA(1,0,0)(1,0,0)[12] with non-zero mean

Coefficients:

ar1 sar1 mean 0.2180 0.4260 103.8303 s.e. 0.0899 0.0846 6.4850

sigma^2 = 1177: log likelihood = -579.34
AIC=1166.69 AICc=1167.05 BIC=1177.74

Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
106.73410	62.77299	150.6952	39.50138	173.9668
93.95748	48.96375	138.9512	25.14550	162.7695
90.04299	45.00077	135.0852	21.15685	158.9291
96.62030	51.57577	141.6648	27.73064	165.5100
115.11246	70.06782	160.1571	46.22263	184.0023
143.82212	98.77747	188.8668	74.93227	212.7120
	<dbl><dbl><dbl>106.7341093.9574890.0429996.62030115.11246</dbl></dbl></dbl>	<dbl> <dbl> 106.73410 62.77299 93.95748 48.96375 90.04299 45.00077 96.62030 51.57577 115.11246 70.06782</dbl></dbl>	<dbl> <dbl> 106.73410 62.77299 150.6952 93.95748 48.96375 138.9512 90.04299 45.00077 135.0852 96.62030 51.57577 141.6648 115.11246 70.06782 160.1571</dbl></dbl>	<dbl> <dbl> <dbl> 106.73410 62.77299 150.6952 39.50138 93.95748 48.96375 138.9512 25.14550 90.04299 45.00077 135.0852 21.15685 96.62030 51.57577 141.6648 27.73064 115.11246 70.06782 160.1571 46.22263</dbl></dbl></dbl>

	Point Forecast <dbl></dbl>	Lo 80 <dbl></dbl>	Hi 80 <dbl></dbl>	Lo 95 <dbl></dbl>	Hi 95 <dbl></dbl>
Apr 2024	95.64435	50.59971	140.6890	26.75451	164.5342
May 2024	114.85187	69.80723	159.8965	45.96203	183.7417
Jun 2024	112.65474	67.61009	157.6994	43.76490	181.5446
Jul 2024	115.21937	70.17472	160.2640	46.32952	184.1092
1-10 of 36 rows			Pr	evious 1 2	3 4 Next

Ammonia SARIMA forecast. Slight increase detected though it starts at the bottom of the season. Peaks are higher for years post 2020.

```
result <- forecast_chemical(
  chemical_name = "Ammonia",
  start_date = "2000-01-01",
  param_data = param_data,
  chemical_data = chemical_data,
  forecast_horizon = 36
)</pre>
```

```
The forecast indicates an increase of 0.3990033 over the next 36 months.
Series: result_va_ts_monthly
ARIMA(1,0,1)(1,0,0)[12] with non-zero mean
Coefficients:
         ar1
                         sar1
                 ma1
                                mean
      0.6366 -0.1770 0.2611 1.4056
s.e. 0.0826
            0.1033 0.0624 0.0713
sigma^2 = 0.1626: log likelihood = -144.12
AIC=298.24
            AICc=298.45
                          BIC=316.5
Training set error measures:
                      ME
                               RMSE
                                         MAE
                                                   MPE
                                                           MAPE
                                                                     MASE
                                                                                  ACF1
Training set -0.003353968 0.4003976 0.3046954 -10.10617 25.75158 0.7259315 -0.006283936
```

Forecast of Monthly Average result_va for Ammonia

Hide

result

\$model

Series: result_va_ts_monthly

ARIMA(1,0,1)(1,0,0)[12] with non-zero mean

Coefficients:

ar1 ma1 sar1 mean -0.1770 1.4056 0.2611

0.6366

0.0826 0.1033 0.0624 0.0713 s.e.

sigma^2 = 0.1626: log likelihood = -144.12

AIC=298.24 AICc=298.45 BIC=316.5

	Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
Oct 2023	0.994671	0.4779016	1.511440	0.2043404	1.785002
Nov 2023	1.409832	0.8411104	1.978553	0.5400476	2.279615
Dec 2023	1.225905	0.6374376	1.814373	0.3259215	2.125889
Jan 2024	1.408235	0.8119518	2.004518	0.4962985	2.320171
Feb 2024	1.878981	1.2795596	2.478401	0.9622454	2.795716
Mar 2024	1.557139	0.9564509	2.157826	0.6384660	2.475811

	Point Forecast <dbl></dbl>	Lo 80 <dbl></dbl>	Hi 80 <dbl></dbl>	Lo 95 <dbl></dbl>	Hi 95 <dbl></dbl>
Apr 2024	1.435825	0.8346245	2.037025	0.5163684	2.355281
May 2024	1.447479	0.8460711	2.048887	0.5277050	2.367253
Jun 2024	1.265575	0.6640833	1.867067	0.3456727	2.185478
Jul 2024	1.158952	0.5574259	1.760478	0.2389973	2.078906
1-10 of 36 rows				Previous 1 2	3 4 Next

Atrazine SARIMA forecast. It picks up a decrease but when reading the chart you can see its just the top end of the season its starting at. Note this as possible increase because the bottom line of the prediction looks like it is increasing.

```
result <- forecast_chemical(
  chemical_name = "Atrazine",
  start_date = "2000-01-01",
  param_data = param_data,
  chemical_data = chemical_data,
  forecast_horizon = 60
)</pre>
```

```
The forecast indicates an increase of 9.810902 over the next 60 months.
Series: result_va_ts_monthly
ARIMA(1,0,0)(0,1,2)[12] with drift
Coefficients:
         ar1
                                drift
                 sma1
                         sma2
      0.3471 -0.6308 0.1374 0.8493
s.e. 0.0586
              0.0626 0.0596 0.4157
sigma^2 = 10762: log likelihood = -1655.09
AIC=3320.18
              AICc=3320.4
                            BIC=3338.23
Training set error measures:
                    ME
                           RMSE
                                    MAE
                                              MPE
                                                      MAPE
                                                                MASE
                                                                            ACF1
Training set -0.261197 100.7862 43.3391 -5201.369 5237.927 0.8554528 -0.02752251
```

Forecast of Monthly Average result_va for Atrazine

Hide

result

\$model

Series: result_va_ts_monthly ARIMA(1,0,0)(0,1,2)[12] with drift

Coefficients:

ar1 sma1 sma2 drift 0.3471 -0.6308 0.1374 0.8493 s.e. 0.0586 0.0626 0.0596 0.4157

sigma^2 = 10762: log likelihood = -1655.09
AIC=3320.18 AICc=3320.4 BIC=3338.23

	Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
Oct 2023	185.3289	52.380483	318.2774	-17.998174	388.6560
Nov 2023	146.7128	5.983487	287.4421	-68.514116	361.9397
Dec 2023	105.3472	-36.290642	246.9851	-111.269209	321.9637
Jan 2024	102.6465	-39.100410	244.3935	-114.136714	319.4298
Feb 2024	143.6000	1.839930	285.3601	-73.203327	360.4034
Mar 2024	571.4437	429.682035	713.2054	354.637941	788.2495

	Point Forecast <dbl></dbl>	Lo 80 <dbl></dbl>	Hi 80 <dbl></dbl>	Lo 95 <dbl></dbl>	Hi 95 <dbl></dbl>
Apr 2024	509.5392	367.777377	651.3011	292.733182	726.3453
May 2024	382.9636	241.201671	524.7254	166.157463	599.7696
Jun 2024	219.1350	77.373074	360.8968	2.328865	435.9411
Jul 2024	228.8925	87.130655	370.6544	12.086446	445.6986
1-10 of 60 rows			Previous	1 2 3 4	5 6 Next

Hide

```
result <- forecast_chemical(
  chemical_name = "Atrazine",
  start_date = "2012-01-01",
  param_data = param_data,
  chemical_data = chemical_data,
  forecast_horizon = 60
)</pre>
```

```
The forecast indicates a decrease of 24.82873 over the next 60 months.
Series: result_va_ts_monthly
ARIMA(1,0,0)(2,0,0)[12] with non-zero mean
Coefficients:
        ar1
               sar1
                       sar2
                                 mean
     0.4224 0.4888 0.1316 186.4247
s.e. 0.0769 0.0848 0.0850
                              52.9737
sigma^2 = 26271: log likelihood = -918.06
             AICc=1846.56
AIC=1846.12
                            BIC=1860.86
Training set error measures:
                                             MPE
                  ME
                                                     MAPE
                                                              MASE
                         RMSE
                                   MAE
                                                                         ACF1
```

Training set 7.044405 159.7668 80.60892 -3622.318 3639.897 0.8120273 0.01773624

Forecast of Monthly Average result_va for Atrazine

Hide

result

\$model

Series: result_va_ts_monthly

ARIMA(1,0,0)(2,0,0)[12] with non-zero mean

Coefficients:

ar1 sar1 sar2 mean 0.4224 0.4888 0.1316 186.4247 s.e. 0.0769 0.0848 0.0850 52.9737

sigma^2 = 26271: log likelihood = -918.06
AIC=1846.12 AICc=1846.56 BIC=1860.86

	Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
Oct 2023	206.7542	-0.9627693	414.4711	-110.92147	524.4298
Nov 2023	144.3263	-81.1631498	369.8158	-200.53006	489.1827
Dec 2023	119.8762	-108.6393367	348.3918	-229.60817	469.3606
Jan 2024	119.2531	-109.7982370	348.3045	-231.05070	469.5569
Feb 2024	150.2334	-78.9134265	379.3802	-200.21643	500.6832
Mar 2024	481.0344	251.8705034	710.1982	130.55849	831.5102

	Point Forecast <dbl></dbl>	Lo 80 <dbl></dbl>	Hi 80 <dbl></dbl>	Lo 95 <dbl></dbl>	Hi 95 <dbl></dbl>
Apr 2024	321.8427	92.6757852	551.0096	-28.63784	672.3232
May 2024	272.9874	43.8199581	502.1548	-77.49396	623.4687
Jun 2024	175.2758	-53.8917552	404.4433	-175.20572	525.7573
Jul 2024	178.1494	-51.0181315	407.3170	-172.33211	528.6309
1-10 of 60 rows			Previous '	1 2 3 4 5	6 Next

Hide

```
result <- forecast_chemical(
  chemical_name = "Atrazine",
  start_date = "2012-01-01",
  param_data = param_data,
  chemical_data = chemical_data,
  forecast_horizon = 36
)</pre>
```

```
The forecast indicates a decrease of 30.01999 over the next 36 months.
Series: result_va_ts_monthly
ARIMA(1,0,0)(2,0,0)[12] with non-zero mean
Coefficients:
        ar1
               sar1
                       sar2
                                 mean
     0.4224 0.4888 0.1316 186.4247
s.e. 0.0769 0.0848 0.0850
                              52.9737
sigma^2 = 26271: log likelihood = -918.06
             AICc=1846.56
AIC=1846.12
                            BIC=1860.86
Training set error measures:
                                             MPE
                  ME
                                                     MAPE
                                                               MASE
                         RMSE
                                   MAE
                                                                         ACF1
```

Training set 7.044405 159.7668 80.60892 -3622.318 3639.897 0.8120273 0.01773624

Forecast of Monthly Average result_va for Atrazine

Hide

result

\$model

Series: result_va_ts_monthly

ARIMA(1,0,0)(2,0,0)[12] with non-zero mean

Coefficients:

ar1 sar1 sar2 mean 0.4224 0.4888 0.1316 186.4247 s.e. 0.0769 0.0848 0.0850 52.9737

sigma^2 = 26271: log likelihood = -918.06
AIC=1846.12 AICc=1846.56 BIC=1860.86

	Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
Oct 2023	206.7542	-0.9627693	414.4711	-110.92147	524.4298
Nov 2023	144.3263	-81.1631498	369.8158	-200.53006	489.1827
Dec 2023	119.8762	-108.6393367	348.3918	-229.60817	469.3606
Jan 2024	119.2531	-109.7982370	348.3045	-231.05070	469.5569
Feb 2024	150.2334	-78.9134265	379.3802	-200.21643	500.6832
Mar 2024	481.0344	251.8705034	710.1982	130.55849	831.5102

	Point Forecast <dbl></dbl>	Lo 80 <dbl></dbl>	Hi 80 <dbl></dbl>	Lo 95 <dbl></dbl>	Hi 95 <dbl></dbl>
Apr 2024	321.8427	92.6757852	551.0096	-28.63784	672.3232
May 2024	272.9874	43.8199581	502.1548	-77.49396	623.4687
Jun 2024	175.2758	-53.8917552	404.4433	-175.20572	525.7573
Jul 2024	178.1494	-51.0181315	407.3170	-172.33211	528.6309
1-10 of 36 rows				Previous 1 2	3 4 Next

Benzene SARIMA forecast. Not enough data to predict anything with the model.

```
result <- forecast_chemical(
  chemical_name = "Benzene",
  start_date = "2000-01-01",
  param_data = param_data,
  chemical_data = chemical_data,
  forecast_horizon = 36
)</pre>
```

Hide

```
The forecast indicates no significant change over the forecast period. Series: result_va_ts_monthly
ARIMA(0,0,0) with non-zero mean
Coefficients:
        mean
      8.8200
s.e. 1.3542
sigma^2 = 148.6: log likelihood = -313.05
AIC=630.1 AICc=630.26
                        BIC=634.87
Training set error measures:
                               RMSE
                                         MAE
                                                   MPE
                                                           MAPE
                                                                     MASE
                                                                                ACF1
```

Training set -3.098129e-15 12.11215 6.678332 -1437.831 1465.066 0.7630948 0.04636652

Forecast of Monthly Average result_va for Benzene

Hide

result

\$model

Series: result_va_ts_monthly ARIMA(0,0,0) with non-zero mean

Coefficients:

mean

8.8200

s.e. 1.3542

 $sigma^2 = 148.6$: log likelihood = -313.05

AIC=630.1 AICc=630.26 BIC=634.87

	Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
Sep 2006	8.819998	-6.80028	24.44028	-15.06916	32.70915
Oct 2006	8.819998	-6.80028	24.44028	-15.06916	32.70915
Nov 2006	8.819998	-6.80028	24.44028	-15.06916	32.70915
Dec 2006	8.819998	-6.80028	24.44028	-15.06916	32.70915
Jan 2007	8.819998	-6.80028	24.44028	-15.06916	32.70915
Feb 2007	8.819998	-6.80028	24.44028	-15.06916	32.70915

	Point Forecast <dbl></dbl>	Lo 80 <dbl></dbl>	Hi 80 <dbl></dbl>	Lo 95 <dbl></dbl>	Hi 95 <dbl></dbl>
Mar 2007	8.819998	-6.80028	24.44028	-15.06916	32.70915
Apr 2007	8.819998	-6.80028	24.44028	-15.06916	32.70915
May 2007	8.819998	-6.80028	24.44028	-15.06916	32.70915
Jun 2007	8.819998	-6.80028	24.44028	-15.06916	32.70915
1-10 of 36 rows				Previous 1 2	3 4 Next

Metolachlor SARIMA forecast. Found post 2012 was where most measurements happen. Increase detected

```
Hide
```

```
result <- forecast_chemical(
  chemical_name = "Metolachlor",
  start_date = "2012-01-01",
  param_data = param_data,
  chemical_data = chemical_data,
  forecast_horizon = 60
)</pre>
```

```
The forecast indicates an increase of 20.30976 over the next 60 months.
Series: result_va_ts_monthly
ARIMA(3,1,1)(2,0,0)[12]
Coefficients:
         ar1
                 ar2
                          ar3
                                   ma1
                                          sar1
                                                  sar2
     0.4670 -0.0092 -0.0830 -0.9430 0.2009 0.2915
s.e. 0.0938
             0.0947
                       0.0904
                                0.0306 0.0843 0.0856
sigma^2 = 5145: log likelihood = -795.94
             AICc=1606.73
AIC=1605.88
                            BIC=1626.48
Training set error measures:
                                   MAE
                                             MPE
                                                     MAPE
                                                               MASE
                  ME
                         RMSE
                                                                           ACF1
Training set 8.180157 69.92323 48.94842 -2.731818 30.29614 0.6899594 -0.01712536
```

Forecast of Monthly Average result_va for Metolachlor

Hide

result

\$model

Series: result_va_ts_monthly
ARIMA(3,1,1)(2,0,0)[12]

Coefficients:

ar1 ar2 ar3 ma1 sar1 sar2 0.4670 -0.0092 -0.0830 -0.9430 0.2009 0.2915 0.0306 0.0843 0.0856 s.e. 0.0938 0.0947 0.0904

sigma^2 = 5145: log likelihood = -795.94
AIC=1605.88 AICc=1606.73 BIC=1626.48

	Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
Oct 2023	197.0880	105.16698	289.0090	56.5069437	337.6690
Nov 2023	175.6214	71.84622	279.3967	16.9109318	334.3320
Dec 2023	165.2023	58.00066	272.4039	1.2515446	329.1530
Jan 2024	223.1507	115.50947	330.7920	58.5276290	387.7738
Feb 2024	207.5748	99.79162	315.3581	42.7346376	372.4150
Mar 2024	252.7217	144.79833	360.6450	87.6671505	417.7762

	Point Forecast <dbl></dbl>	Lo 80 <dbl></dbl>	Hi 80 <dbl></dbl>	Lo 95 <dbl></dbl>	Hi 95 <dbl></dbl>
Apr 2024	302.7518	194.60507	410.8986	137.3556384	468.1480
May 2024	312.4816	204.04138	420.9218	146.6366019	478.3265
Jun 2024	247.9121	139.14397	356.6803	81.5655813	414.2587
Jul 2024	250.5685	141.46640	359.6705	83.7112589	417.4257
1-10 of 60 rows			Previous	s 1 2 3 4	5 6 Next

```
result <- forecast_chemical(
  chemical_name = "Metolachlor",
  start_date = "2012-01-01",
  param_data = param_data,
  chemical_data = chemical_data,
  forecast_horizon = 36
)</pre>
```

```
The forecast indicates an increase of 15.71984 over the next 36 months.
Series: result_va_ts_monthly
ARIMA(3,1,1)(2,0,0)[12]
Coefficients:
        ar1
                 ar2
                          ar3
                                   ma1
                                          sar1
                                                  sar2
     0.4670 -0.0092 -0.0830 -0.9430 0.2009 0.2915
s.e. 0.0938
             0.0947
                       0.0904
                                0.0306 0.0843 0.0856
sigma^2 = 5145: log likelihood = -795.94
AIC=1605.88
             AICc=1606.73
                            BIC=1626.48
Training set error measures:
                                             MPE
                  ME
                                                     MAPE
                                                              MASE
                         RMSE
                                   MAE
                                                                          ACF1
Training set 8.180157 69.92323 48.94842 -2.731818 30.29614 0.6899594 -0.01712536
```

Forecast of Monthly Average result_va for Metolachlor

Hide

result

\$model

Series: result_va_ts_monthly
ARIMA(3,1,1)(2,0,0)[12]

Coefficients:

ar1 ar2 ar3 ma1 sar1 sar2 0.4670 -0.0092 -0.0830 -0.9430 0.2009 0.2915 s.e. 0.0938 0.0947 0.0904 0.0306 0.0843 0.0856

sigma^2 = 5145: log likelihood = -795.94
AIC=1605.88 AICc=1606.73 BIC=1626.48

	Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
Oct 2023	197.0880	105.16698	289.0090	56.506944	337.6690
Nov 2023	175.6214	71.84622	279.3967	16.910932	334.3320
Dec 2023	165.2023	58.00066	272.4039	1.251545	329.1530
Jan 2024	223.1507	115.50947	330.7920	58.527629	387.7738
Feb 2024	207.5748	99.79162	315.3581	42.734638	372.4150
Mar 2024	252.7217	144.79833	360.6450	87.667151	417.7762

	Point Forecast <dbl></dbl>	Lo 80 <dbl></dbl>	Hi 80 <dbl></dbl>	Lo 95 <dbl></dbl>	Hi 95 <dbl></dbl>
Apr 2024	302.7518	194.60507	410.8986	137.355638	468.1480
May 2024	312.4816	204.04138	420.9218	146.636602	478.3265
Jun 2024	247.9121	139.14397	356.6803	81.565581	414.2587
Jul 2024	250.5685	141.46640	359.6705	83.711259	417.4257
1-10 of 36 rows				Previous 1 2	3 4 Next

Acetochlor SARIMA forecast. Increase detected

```
result <- forecast_chemical(
  chemical_name = "Acetochlor",
  start_date = "2013-01-01",
  param_data = param_data,
  chemical_data = chemical_data,
  forecast_horizon = 36
)</pre>
```

```
The forecast indicates an increase of 33.41419 over the next 36 months.
Series: result_va_ts_monthly
ARIMA(1,1,3)(1,0,1)[12]
Coefficients:
         ar1
                 ma1
                          ma2
                                   ma3
                                          sar1
                                                   sma1
      -0.7580 0.1155 -0.5537 -0.3269 0.8118 -0.6299
      0.1298 0.1511
                      0.1120
                                0.0859 0.1512
                                                 0.1961
s.e.
sigma^2 = 4671: log likelihood = -720.85
AIC=1455.7 AICc=1456.63
                           BIC=1475.66
Training set error measures:
                                   MAE
                                             MPE
                                                     MAPE
                                                               MASE
                  ME
                         RMSE
                                                                            ACF1
Training set 2.732303 66.46761 45.09393 -7.075041 24.36949 0.7112018 -0.001749886
```

Forecast of Monthly Average result_va for Acetochlor

Hide

result

\$model

Series: result_va_ts_monthly
ARIMA(1,1,3)(1,0,1)[12]

Coefficients:

ar1 ma1 ma2 ma3 sar1 sma1 -0.7580 0.1155 -0.5537 -0.3269 -0.6299 0.8118 0.1511 0.1120 0.1298 0.0859 0.1512 0.1961 s.e.

sigma^2 = 4671: log likelihood = -720.85 AIC=1455.7 AICc=1456.63 BIC=1475.66

	Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
Oct 2023	155.9643	68.37263	243.5561	22.004373	289.9243
Nov 2023	170.8929	77.87231	263.9136	28.630168	313.1557
Dec 2023	176.1579	79.71257	272.6032	28.657487	323.6583
Jan 2024	180.2952	83.84165	276.7487	32.782230	327.8081
Feb 2024	207.0990	108.67142	305.5265	56.567032	357.6309
Mar 2024	238.2643	139.67166	336.8569	87.479886	389.0486

	Point Forecast <dbl></dbl>	Lo 80 <dbl></dbl>	Hi 80 <dbl></dbl>	Lo 95 <dbl></dbl>	Hi 95 <dbl></dbl>
Apr 2024	242.3073	142.38497	342.2296	89.489283	395.1253
May 2024	243.8287	143.56596	344.0914	90.490089	397.1673
Jun 2024	199.4642	98.18505	300.7434	44.571090	354.3574
Jul 2024	196.7184	94.97382	298.4631	41.113471	352.3234
1-10 of 36 rows				Previous 1 2	3 4 Next

Diazinon SARIMA forecast. Data has inconsistent drops and peaks, no forecast

```
result <- forecast_chemical(
  chemical_name = "Diazinon",
  start_date = "2000-01-01",
  param_data = param_data,
  chemical_data = chemical_data,
  forecast_horizon = 36
)</pre>
```

```
The forecast indicates a decrease of 0.02370768 over the next 36 months.
Series: result_va_ts_monthly
ARIMA(0,1,2)
Coefficients:
         ma1
                   ma2
      -0.6385 -0.1300
      0.0579
               0.0557
s.e.
sigma^2 = 23.09: log likelihood = -848.16
AIC=1702.31
            AICc=1702.4
                           BIC=1713.26
Training set error measures:
                    ME
                           RMSE
                                      MAE
                                                MPE
                                                         MAPE
                                                                   MASE
                                                                                ACF1
Training set 0.06639633 4.779556 3.344419 -0.8824121 7.284437 0.6176786 -0.001053708
```

Forecast of Monthly Average result_va for Diazinon

Hide

result

\$model

Series: result_va_ts_monthly

ARIMA(0,1,2)

Coefficients:

ma1 ma2 -0.6385 -0.1300

s.e. 0.0579 0.0557

sigma^2 = 23.09: log likelihood = -848.16
AIC=1702.31 AICc=1702.4 BIC=1713.26

	Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
Oct 2023	54.67059	48.51285	60.82833	45.25313	64.08804
Nov 2023	54.64688	48.09910	61.19466	44.63292	64.66084
Dec 2023	54.64688	47.94575	61.34801	44.39839	64.89538
Jan 2024	54.64688	47.79583	61.49794	44.16910	65.12466
Feb 2024	54.64688	47.64911	61.64465	43.94472	65.34904
Mar 2024	54.64688	47.50542	61.78835	43.72495	65.56881

	Point Forecast <dbl></dbl>	Lo 80 <dbl></dbl>	Hi 80 <dbl></dbl>	Lo 95 <dbl></dbl>	Hi 95 <dbl></dbl>
Apr 2024	54.64688	47.36455	61.92921	43.50952	65.78424
May 2024	54.64688	47.22636	62.06740	43.29818	65.99559
Jun 2024	54.64688	47.09070	62.20306	43.09070	66.20306
Jul 2024	54.64688	46.95743	62.33633	42.88688	66.40688
1-10 of 36 rows			Pr	revious 1 2	3 4 Next

Azoxystrobin SARIMA forecast. Increase detected

```
result <- forecast_chemical(
  chemical_name = "Azoxystrobin",
  start_date = "2000-01-01",
  param_data = param_data,
  chemical_data = chemical_data,
  forecast_horizon = 36
)</pre>
```

```
The forecast indicates an increase of 2.598618 over the next 36 months.
Series: result_va_ts_monthly
ARIMA(1,0,0)(1,1,0)[12]
Coefficients:
        ar1
                sar1
     0.3123 -0.4643
s.e. 0.0886 0.0955
sigma^2 = 21.82: log likelihood = -367.59
AIC=741.17
           AICc=741.37
                          BIC=749.63
Training set error measures:
                   ME
                          RMSE
                                    MAE
                                              MPE
                                                      MAPE
                                                                MASE
                                                                           ACF1
Training set 0.4181157 4.424291 2.443488 -8.475068 41.71326 0.8250618 0.01634823
```

Forecast of Monthly Average result_va for Azoxystrobin

Hide

result

\$model

Series: result_va_ts_monthly
ARIMA(1,0,0)(1,1,0)[12]

Coefficients:

ar1 sar1 0.3123 -0.4643 s.e. 0.0886 0.0955

sigma^2 = 21.82: log likelihood = -367.59
AIC=741.17 AICc=741.37 BIC=749.63

	Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
Oct 2023	4.261333	-1.72511658	10.247783	-4.894152	13.41682
Nov 2023	8.402956	2.13130043	14.674613	-1.188714	17.99463
Dec 2023	3.184986	-3.11380208	9.483773	-6.448179	12.81815
Jan 2024	4.907953	-1.39347543	11.209381	-4.729250	14.54516
Feb 2024	3.680759	-2.62092656	9.982445	-5.956837	13.31836
Mar 2024	3.993377	-2.30833415	10.295088	-5.644258	13.63101

	Point Forecast <dbl></dbl>	Lo 80 <dbl></dbl>	Hi 80 <dbl></dbl>	Lo 95 <dbl></dbl>	Hi 95 <dbl></dbl>
Apr 2024	4.263749	-2.03796386	10.565463	-5.373889	13.90139
May 2024	18.522842	12.22112863	24.824556	8.885203	28.16048
Jun 2024	30.294207	23.99249304	36.595920	20.656567	39.93185
Jul 2024	20.157130	13.85541644	26.458844	10.519491	29.79477
1-10 of 36 rows			Pre	evious 1 2	3 4 Next