Solução da 44 OBM (2022)

- **1.** Dado 0 < a < 1, determine todas as funções f: $\mathbb{R} \to \mathbb{R}$ contínuas em x = 0 tais que $f(x) + f(ax) = x, \forall x \in \mathbb{R}$
- 2. Considere o conjunto G de matrizes 2×2 dado por

$$G = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | a, b, c, d \in \mathbb{Z}, ad - bc = 1, c \text{ \'e m\'ultiplo de 3} \right\}$$

e as matrizes em G

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad B = \begin{pmatrix} -1 & 1 \\ -3 & 2 \end{pmatrix}.$$

Mostre que qualquer matriz de G pode ser escrita como por um produto M_1, M_2, \ldots, M_r com $M_i \in \{A, A^{-1}, B, B^{-1}\}, \forall i \leq r$.

- **3.** Seja $(a_n)_{n\in\mathbb{N}}$ uma sequência de inteiros. Definimos $a_n^{(0)}=a_n$, para todo n natural. Para todo inteiro $M\geq 0$, definimos $(a_n^{(M+1)})_{n\in\mathbb{N}}:a_{n+1}^{(M)}-a_n^{(M)}, \forall n\in\mathbb{N}$. E dizemos que $(a_n)_{n\in\mathbb{N}}$ é (M+1)-autorreferente se existem k_1 e k_2 naturais fixados, tais que $a_{n+k_1}=a_{n+k_2}^{(M+1)}, \forall n\in\mathbb{N}$.
 - a) Existe uma sequência de inteiros tal que o menor M para o qual ela éM-autorreferente é M=2022?
 - b) Existe uma sequência estritamente crescente de inteiros positivos tal que o menor M para o qual ela é M-autorreferente é M=2022?
- **4.** Dados c, a > 0, considere a sequência $(x_n)_{n \ge 1}$ definida por $x_1 = c$ e $x_{n+1} = x_n e^{-x_n^a}$ para $n \ge 1$. Para quais valores reais de β a série $\sum_{n=1}^{\infty} x_n^{\beta}$ é convergente?

Solução: Primeiramente, notemos que, como $e^r > 0, \forall r \in \mathbb{R}, x_n > 0$ para todo $n \ge 1$. Logo, x_n^a também é positivo para $n \ge 1$, donde $-x_n^a < 0$.

Agora, para analizar a convergência, aplicamos o teste da razão, isto é

$$\lim_{n\to\infty}\frac{x_{n+1}^\beta}{x_n^\beta}=\lim_{n\to\infty}(\frac{x_{n+1}}{x_n})^\beta,$$

onde, substituindo x_{n+1} por sua relação de recorrência, temos

$$\lim_{n\to\infty}(\frac{x_ne^{-x_n^a}}{x_n})^\beta=\lim_{n\to\infty}(e^{-x_n^a})^\beta=\lim_{n\to\infty}e^{-\beta x_n^a}.$$

Para uma série convergir, é necessário que o limite acima seja menor que 1. Assim, temos que $e^{-\beta x_n^a} < 1$, donde $-\beta x_n^a < 0$, ou seja, $\beta > 0$. Finalmente, para $\beta = 0$, note que a série seria a soma

de termos constantes iguais a 1, o que diverge. Logo, a série converge para todo $\beta \in \mathbb{R}$ tal que $\beta > 0$.

- **5.** Dado $X \subset \mathbb{N}$, definimos d(X) como sendo o maior $c \in [0,1]$ tal que, para quaisquer a < c e $n_0 \in \mathbb{N}$, existem $m, r \in \mathbb{N}$ com $r > n_0$ e $|X \cap [m, m+r)|/r \ge a$. Sejam $E, F \subset \mathbb{N}$ com d(E)d(F) > 1/4. Prove que, para qualquer p primo e $k \in \mathbb{N}$, existem $m \in E$ e $n \in F$ com $m \equiv n \pmod{p^k}$.
- **6.** Seja $p \equiv \pmod{4}$ um número primo, e seja θ um ângulo tal que $\tan(\theta)$ é racional. Prove que $\tan((p+1)\theta)$ é um número racional cujo númerador é múltiplo de p, ou seja $\tan((p+1)\theta) = \frac{u}{v}$ com $u, v \in \mathbb{Z}, v > 0$, $\mathrm{mdc}(u, v) = 1$ e $u \equiv 0 \pmod{p}$.