

Les neutrinos, une collaboration fructueuse

1896 : Becquerel découvre la radioactivité

1913 : Les expériences de Rutherford (diffusion de particules α sur une feuille d'or) conduisent à une première image de l'atome, avec un noyau massif (contenant 2Z protons et Z électrons) entouré de Z électrons

1914 : Chadwick mesure le spectre en énergie des rayons β issus de la désintégration du ^{210}Bi : le spectre est continu, contrairement aux spectres α et γ qui présentent des raies discrètes (désintégration à deux corps ou désexcitation nucléaire). Il écrit à Rutherford : « there is probably some silly mistake somewhere ». Mais la suite de l'histoire confirme que la particule β n'emporte qu'une partie de l'énergie de la désintégration.

Introduction

Crise du spin et de l'énergie

1928 : nouveau problème lié au spin-entier du noyau d'azote 14 (qui devrait contenir 14 protons + 7 électrons soit un nombre impair de fermions -> charge du noyau = +7).

Certains théoriciens comme Bohr vont jusqu'à remettre en cause la conservation de l'énergie, qui ne serait vérifiée que de façon statistique

Mais Pauli ne peut se résoudre à abandonner la conservation de l'énergie

Il soumet par lettre en décembre 1930 une explication basée sur l'existence d'une particule neutre de spin 1/2 au sein du noyau, qu'il appelle "neutron" (le neutron n'avait pas encore été découvert - 1932).

Lettre de Wolfgang Pauli du 4 décembre 1930

Chers dames et messieurs radioactifs

4 Décembre 1930 Gloriastr. Zürich

Je vous prie d'écouter avec beaucoup de bienveillance le message de cette lettre. Il vous dira que pour pallier à la statistique « fausse » des noyaux N-14 et Li-6 et le spectre bêta continu, j'ai découvert un remède désespéré pour sauver les lois de la conservation de l'énergie et les statistiques. Il s'agit de la possibilité d'existence dans les noyaux de particules neutres, de spin 1/2, obéissant au principe d'exclusion, mais différentes des photons parce qu'elles ne se meuvent pas à la vitesse de la lumière, et que j'appelle neutrons. La masse des neutrons devrait être du même ordre de grandeur que celle des électrons et ne doit en aucun cas excéder 0.01 fois la masse du proton. Le spectre bêta serait alors compréhensible si l'on suppose que, pendant la désintégration bêta, avec chaque électron est émis un neutron, de manière que la somme des énergies du neutron et de l'électron soit constant...

J'admets que mon remède puisse paraître invraisemblable car on aurait dû voir ces neutrons bien plus tôt si réellement ils existaient. Mais seul celui qui ose gagne, et la gravité de la situation, due à la nature continue du spectre bêta, est éclairée par une remarque de mon honoré prédécesseur, monsieur Debye, qui me disait récemment à Bruxelles : "Oh! Il vaut mieux ne pas y penser du tout, comme pour les nouveaux impôts.". Dorénavant, on doit discuter sérieusement toute voie d'issue. Ainsi, cher peuple radioactif, examinez et jugez. Malheureusement, je ne pourrai pas être moi même à Tubingen, ma présence étant indispensable ici pour un bal qui aura lieu pendant la nuit du 6 au 7 décembre.

Votre serviteur le plus dévoué,

W. Pauli

Li-6 dont le noyau était censé à l'époque renfermer 6 protons et 3 électrons

Introduction

→ Explication

Désintégration β^-

$${}^{3}_{1}H \rightarrow {}^{3}_{2}He + e^{-}$$
 $Q = 18.6 \text{ keV} > 0$

On détecte l'électron

Observations

e et X se partagent l'énergie disponible

$${}^{3}_{1}H \rightarrow {}^{3}_{2}He + e^{-} + X$$

Spectre continu observé!

Pour satisfaire la conservation de l'énergie et du moment cinétique et comprendre le spectre observé

- ⇒ Il faudrait une 3ème particule dans la désintégration (X)
- \rightarrow de spin 1/2
- \rightarrow de masse très petite devant $m_p c^2$
- → emportant une partie de l'énergie disponible

Crise du spin et de l'énergie

- (7 protons + 7 « neutrons »)x 1/2 = entier! *Crise du spin ok*
- Lors de la désintégration du noyau, cette particule est émise en même temps que l'électron
 Crise du spectre continu ok

Pauli vient d'inventer à la fois le terme neutron et le neutrino

1932 : Chadwick découvre expérimentalement le « vrai » neutron

1934 : Fermi propose une théorie de la désintégration eta et appelle neutrino la particule de Pauli

Introduction

Origine : décroissance β

particule postulée par W. Pauli,

confirmée par Enrico Fermi dans sa théorie,

masse \cong 0 MeV, spin = 1/2, charge = 0

fermion élémentaire de la matière

Interagit très peu avec la matière

- → Difficile à étudier car peut traverser la terre sans être arrêté
- → Particule d'interaction faible

 \Rightarrow Il faut attendre 1956 pour que Cowan et Reines observent expérimentalement des (anti)neutrinos électronique issus de réacteurs (la section efficace de capture d'un neutrino ν_e par un nucléon est de l'ordre de 10^{-47} m² pour un neutrino de quelques MeV, et elle augmente avec l'énergie, jusqu'à des valeurs voisines de 10^{-42} m² à un GeV, et 10^{-40} m² à 100 GeV).

1956 : Cowan et Reines découvrent l'(anti)neutrino électronique (émis par des réacteurs nucléaires)

Introduction

1955 : Violation maximale de parité dans les désintégrations β

1956 : Théorie V-A, postulant que seuls les neutrinos de chiralité/hélicité gauche interagissent

1962 : Découverte d'une deuxième saveur de neutrinos : $\nu_{\mu} \neq \nu_{e}$

1970-1990: Utilisation intensive des neutrinos pour sonder la structure nucléaire

1990 : 3 familles de neutrinos à partir de la largeur du Z⁰ au LEP

1994: Annonce d'oscillations de neutrinos dans LSND (Liquid Scintillator Neutrino Detector)

1995 : Déficit de neutrinos solaires confirmé par GALLEX

1999 : Oscillations de neutrinos → GALLEX, SUPER-KAMIOKANDE

2000 : Découverte de la troisième saveur de neutrino $v_{ au}$

MODELE STANDARD MINIMAL: 3 familles de neutrinos sans masse

2002 : Prix Nobel de Physique conjoint (M. Koshiba de KAMIOKANDE).

1994-2008 : Oscillations de saveur des neutrinos \rightarrow les neutrinos sont massifs

Les sources naturelles de neutrinos

Les désintégrations isobariques : émission d'(anti)neutrinos

Les neutrinos émis par le soleil

$$p + p \rightarrow e^+ + d + v_e$$
Les neutrinos émis par le soleil, témoins de la synthèse de l'hélium.
$$d + p \rightarrow {}^{3}He + \gamma$$

$${}^{3}He + {}^{3}He \rightarrow {}^{4}He + 2p$$

Les (anti)neutrinos issus d'explosion de supernovae... et les neutrinos atmosphériques présents dans les rayonnements cosmiques

Neutrinos issus des supernovae $e^- + p \rightarrow n + v_e$ et du cosmos $e^+ + e^- \rightarrow v + v^-$

Sources de neutrinos

Les sources artificielles de neutrinos

Les centrales nucléaires

La centrale nucléaire de Chooz, dans les Ardennes, représente 3 10²⁰ fissions/s soit 18 10²⁰ (anti)neutrinos/s

Le détecteur CHOOZ, situé à une distance de 1 km de la centrale, est installé à une profondeur de 100 m. Un deuxième détecteur est installé à 350 m de distance.

CLOSE DETICION SO IN

WEST REACTOR

VEST REACTOR

S CASSMAN DETICAL SOLUTION

C C CASSMAN DETICAL SOLUTION

C C CASSMAN DETICAL SOLUTION

C C

Les bombes thermonucléaires

Les familles de neutrinos

Oscillations, masse et nature des neutrinos

Neutrinos et modèle standard

neutrino = fermion élémentaire de la matière, lepton neutre 3 saveurs pour 3 familles

Les familles de neutrinos

Le neutrino : connaissance et questions

• Le neutrino a-t-il une masse?

Masse nulle dans le modèle standard mais oscillations observées!

Question : si la masse des ν est non nulle, pourquoi est-elle si faible ? Limites actuelles les plus contraignantes sont données par les observations cosmologiques

 $\Sigma m_{
m V} < 0.12~eV$ à 95% CL (N. Palanque-Delabrouille et al 2015 JCAP 11 011)

Rq. Si $m_{\nu}c^2 \sim 10^{-6}~m_ec^2$ alors la masse de l'univers est dominée par les neutrinos

• Existe-t-il une échelle de masse absolue pour les neutrinos ?

Les oscillations donnent des écarts en masse carrée

→ insuffisant car une échelle de masse absolue est fondamentale pour la cosmologie et pour obtenir une théorie unifiée des interactions

Hiérarchie de masse?

Les familles de neutrinos

Le neutrino : connaissances et questions

• Le neutrino a-t-il un moment magnétique ?

Si oui alors il existe une interaction électromagnétique entre e^- et ν_e

- Quelle est la nature du neutrino ?
- → Dans le MS, les neutrinos sont gauches et les antineutrinos sont droits, et ce sont deux particules différentes (Dirac)

 \rightarrow A-t-on $\nu \equiv \bar{\nu}$?

⇔ neutring
→ un se avec de

 \Leftrightarrow neutrino de Majorana \rightarrow un seul état de neutrino, avec deux états de chiralité ν_L , ν_R

Si masse et

Dirac ou Majorana

⇔ oscillations possibles

Les familles de neutrinos

Oscillations de saveur

La matrice de mélange : les paramètres manquants

$$\begin{pmatrix} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

U = Matrice de mélange MNSP (Maki-Nakagawa-Sakata-Pontecorvo)

3 masses m_1 , m_2 , m_3

3 angles : θ_{12} , θ_{13} , θ_{23}

plus 1 phase de violation de CP δ_{CP}

La matrice de mélange : les paramètres manquants

Atmosphérique Réacteurs (CHOOZ) K2K Accélérateurs (JPARC)

Solaire Réacteurs

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & e^{i\delta_{CP}}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{CP}}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}. Diag\{1, e^{i\phi_1}, e^{i\phi_2}\}$$

 δ_{CP} = phase Dirac de violation de CP

 ϕ_1, ϕ_2 = phases Majorana de violation de CP

Si les neutrinos sont de Dirac (pas de phases de Majorana), le produit des trois matrices donnant la matrice MNSP est exactement de la forme de la matrice CKM de mélange des quarks

1 - échelle de masse absolue

Temps de vol des neutrinos – Explosion de SN $m_{
m v} < 20~eV$

Fin du spectre $m{\beta}$ du Tritium $m_{
u} < 2.2~eV$

Fluctuations du CMB (cosmologie) : WMAP $m_{\nu} < 0.33 \ eV$ (conservatif)

2 - nature Dirac/Majorana

Recherche de la double désintégration sans neutrinos $\beta\beta 0\nu$ (qui peut être reliée à l'échelle de masse absolue)

3 - matrice de mélange, violation de CP, hiérarchie de masse

Les oscillations de saveur

Il faut utiliser toutes les sources possibles de neutrinos : radioactivité naturelle, soleil, réacteurs, ν atmosphériques, accélérateurs à des énergies diverses + astronomie neutrino (ANTARES, AMANDA) ...

mesures directes de la masse

$$^3H \rightarrow ^3He^+ + e^- + \overline{\nu_e}$$

$^3H ightarrow \ ^3He^+ + e^- + \overline{\nu_e}$ désintégration bêta du tritium

Spectre en énergie de l'électron (a), et région proche de la fin du spectre (b), pour une masse nulle de neutrino et pour $m_{\nu}c^2 = 1 \ eV$.

Expériences MAINZ et TROITSK : $m_{\nu_e}c^2 < 2.2 \ eV$ (95% C.L.)

Projet en cours de construction : KATRIN, pour mesurer $m_{\nu_{\phi}}c^2 < 0.2~eV$

mesures directes de la masse

cosmologie

Les expériences comme PLANCK et SDSS permettent de calculer la somme des masses des neutrinos $\Sigma_i m_i$

 $\Sigma m_{\nu} < 0.12 \text{ eV}$

(2015)

nature Dirac/Majorana : double désintégration bêta sans émission de neutrinos

Processus $\beta\beta 0\nu: (A,Z) \rightarrow (A,Z+2) + 2e^{-}$

Une découverte impliquerait pour le nombre leptonique $\Delta L=2$ et neutrino de Majorana $\nu\equiv\bar{\nu}$

→ physique au-delà du Modèle Standard

Si le processus se produit par échange d'un neutrino massif léger alors la demi-vie $T_{1/2}^{0\nu}$ (temps au bout duquel la moitié des atomes se sont désintégrés) dépendra de la masse effective du neutrino.

 $\langle m_{\nu} \rangle$: masse effective du neutrino

$$\langle m_{\nu} \rangle = \begin{bmatrix} \sum_{i=1}^{3} U_{ei}^{2} m \\ U_{ei} \end{bmatrix}$$
 m_i: masse des états propres de ν U_{ei}: éléments de la matrice de mélange (voir plus loin dans ce cours)

 $\langle m_{
u}
angle$ pourrait donner une échelle absolue pour la masse des neutrinos

Limites $\beta\beta0\nu$ obtenues sur les différents isotopes

Isotope	T _{1/2} (90%CL) (ans)	<m<sub>v> (eV)</m<sub>	Masse (kg.an)	Expérience
⁴⁸ Ca	> 1.4 10 ²²	< 7.2 – 44.7	0.005	Candles
⁷⁶ Ge	> 1.9 10 ²⁵	< 0.35 - 1.05	35.5	Heidelberg- Moscou
⁷⁶ Ge	>1.57 10 ²⁵	< 0.33 - 1.31	8.9	IGEX
82 Se	> 1.0 10 ²³	< 1.71 – 4.86	1.007	NEMO3
⁹⁶ Zr	> 1.0 10 ²¹	< 23	0.008	NEMO2
¹⁰⁰ Mo	> 4.6 10 ²³	< 0.66 – 2.81	7.47	NEMO3
¹¹⁶ Cd	> 0.7 10 ²³	< 1.7	0.159	Solotvina
130Те	>2.4 10 ²⁴	< 0.18 – 0.97	3.16	CUORICINO
¹³⁶ Xe	> 4.4 10 ²³	<1.8 – 5.2	2.27	Gotthard
150 N d	> 1.2 10 ²¹	< 3	0.009	TPC M.Moe

Résultat conservatif utilisé :< $m_{\nu}c^2 > < 1eV$

Expérience NEMO3 (Neutrino Ettore Majorana Observatory) au LSM (tunnel du Fréjus)

Meilleure limite actuelle ⁷⁶Ge (Heidelberg-Moscou / IGEX)

Résultat : $m_{\nu} < 0.5$ à 1 eV

Futurs projets: SuperNEMO

Oscillations de saveur

Exemple du mélange de 2 saveurs $\nu_e ightarrow \nu_\mu$

Un état propre de saveur $|\nu_e\rangle$, $|\nu_\mu\rangle$ ou $|\nu_\tau\rangle$ correspond au mélange d'angle θ de deux états propres de masse $|\nu_1\rangle$ et $|\nu_2\rangle$

$$|\nu_e\rangle = \cos\theta \ |\nu_1\rangle + \sin\theta \ |\nu_2\rangle |\nu_\mu\rangle = -\sin\theta \ |\nu_1\rangle + \cos\theta \ |\nu_2\rangle$$

A t = 0, seulement des v_e , avec $|v(t=0)\rangle = |v_e\rangle$

At > 0,
$$|v(t)\rangle = e^{-iE_1t}\cos\theta |v_1\rangle + e^{-iE_2t}\sin\theta |v_2\rangle$$

La probabilité d'oscillation $\nu_e \to \nu_\mu$ est définie par : $P(\nu_e \to \nu_\mu) = |\langle \nu_\mu | \nu(t) \rangle|^2$

On peut démontrer (voir par exemple Thomson chap 13) que cette probabilité est proportionnelle à : $\sin^2\left(\frac{(m_1^2-m_2^2).L}{4E_{\nu}}\right)$

Avec $m_1^2 - m_2^2$ la différence des masses au carré des neutrinos et L la distance parcourue.

oscillations de saveur

Neutrinos atmosphériques

Neutrinos solaires

Il faut un modèle solaire pour les différents flux

Détection des neutrinos solaires par diffusion élastique

ES (elastic scattering) : $\nu_e + e^- \rightarrow \nu_e + e^-$

SK = SuperKamiokande (Japon)

Piscine remplie d'eau ultra-pure entourée de PMs

Détection des neutrinos solaires et neutrinos atmosphériques

Introduction

Super Kamiokande au Japon

Image en neutrinos du soleil pris par Super Kamiokande. Temps de pose pour la "photo" : 500 jours...

SK = SuperKamiokande (Japon)

Exemple de résultats sur les neutrinos atmosphériques

Rayon cosmique

Pour des rayons cosmiques de plus de 2 GeV sans disparition de ν_{μ} (c'est-à-dire sans oscillations), on attend

$$\Rightarrow \frac{\phi_{\nu_{\mu}}(up)}{\phi_{\nu_{\mu}}(down)} = 1$$

mais Super-Kamiokande a montré que pour E_{ν} > 1.3 GeV : $\frac{\phi_{\nu_{\mu}}(up)}{\phi_{\nu_{\mu}}(down)} = 0,54 \pm 0,04$

(asymétrie up/down)

SNO = Sudbury Neutrino Observatory (Canada)

(détecteur rempli de deutérium)

v Reactions in SNO

- -Good measurement of ν_e energy spectrum
- -Weak directional sensitivity ∝ 1-1/3cos(θ)
- v_e only.
 - NC $\nu_x + d \Rightarrow p + n + \nu_x$ neutral current
 - Equal cross section for all v types
 - Measure total $^8\text{B}\ \nu$ flux from the sun.

ES
$$\nu_X + e^- \Rightarrow \nu_X + e^-$$
 elastic scattering $\Phi_{ssm} = 5.05^{+1.01}_{-0.81} \Phi_{sno} = 5.09^{+0.44}_{-0.43}^{+0.46}$

Strong evidence of flavor change

Expériences MINOS aux USA et OPERA (Oscillation Project with Emulsion-tRacking Apparatus), du CERN au Gran Sasso...

OPERA au LNGS pour détecter l'apparition des ν_{τ} produits par les oscillations $\nu_{\mu} \rightarrow \nu_{\tau}$ sur les 730 km de trajet CERN-Gran Sasso

DUNE (Deep Underground Neutrino Experiment)

Le plus intense faisceau de neutrinos au monde. Prototype du détecteur DUNE construit au CERN

Prototype de 12 m x 12 m x 12 m pouvant contenir 800 tonnes d'argon liquide

Les 2 détecteurs définitifs seront 20 fois plus grands !

http://www.dunescience.org/ https://home.cern/fr/about/updates/2017/10/meet-dunes

La matrice de mélange : les paramètres manquants

Trois hiérarchies de masse sont compatibles avec les différents résultats (notamment du fait de la non-connaissance du signe de Δm_{23}^2): hiérarchie normale (NH), hiérarchie inverse (IH) et masses quasi-dégénérées (QD)

Conclusions

Résultats en faveur de neutrinos massifs (ν solaires, ν atmosphérique, ν de réacteurs). Oscillations observées et confirmées (SK, SNO et KamLAND)

→ donc neutrinos massifs (pas dans le modèle standard minimal)

Mais la relation entre états propres de saveur et états propres de masse n'est que partiellement connue (paramètres de la matrice de mélange des neutrinos). Notons que les nombres leptoniques de saveur ne sont pas conservés pendant le phénomène d'oscillation.

Questions ouvertes sur les neutrinos

Les neutrinos sont-ils stables ? Echelle de masse absolue de neutrino ? Nature du neutrino ? (Dirac ou Majorana) Y a-t-il violation de CP dans le secteur des neutrinos ? (c'est-à-dire leptogénèse au lieu de baryogénèse) Physique au-delà du MS ? (si $\beta\beta0\nu$ alors ΔL = 2) Existe-t-il des neutrinos droits stériles (LSND) ?

Lecture complémentaire conseillée

Lecture pour aller plus loin: Thomson: Chap 9

