

AD-A143 222

ARO 19367.1/MA

(2)

Kolmogorov's and Mourier's Strong Laws For Arrays  
with Independent and Identically Distributed Columns

by

Arif Zaman\*

Asad Zaman \*\*

FSU Statistics Report No. M677  
USARO Technical Report No. D-66

February, 1984

The Florida State University  
Department of Statistics  
Tallahassee, Florida 32306

DTIC  
ELECTED  
JUL 18 1984  
S E D

DTIC FILE COPY

Research supported by the U. S. Army Research Office Grant DAAG 29-82K-0168

Key Words and Phrases: Strong Laws for triangular arrays, Mourier's law of  
large numbers, random elements in Banach Spaces.

AMS 1980 subject classification: 60B10; 60F15

This document has been approved  
for public release and sale; its  
distribution is unlimited.

84 07 12 059

### Abstract

↓ Almost sure convergence of averages of the rows is proven for arrays of random variables and for random elements in Banach spaces, which can be extended to square arrays with independent and identically distributed columns. The result requires that each column converge to a limiting random variable. A counterexample is given to show that the result fails without the condition on the columns. ↙

|                     |                                     |
|---------------------|-------------------------------------|
| Accession For       |                                     |
| NTIS GRA&I          | <input checked="" type="checkbox"/> |
| DTIC TAB            | <input type="checkbox"/>            |
| Unannounced         | <input type="checkbox"/>            |
| Justification       |                                     |
| By _____            |                                     |
| Distribution/ _____ |                                     |
| Availability Codes  |                                     |
| Dist                | Avail and/or<br>Special             |
| A-1                 |                                     |



Let  $\{X_{ij}\}$  for  $i \leq j < n_i + 1$ ,  $i = 1, 2, \dots$  be an indexed set of real-valued random variables on a probability space  $(\Omega, \mathcal{B}, P)$ . We shall say that  $\{X_{ij}\}$  is a square array if  $n_i = \infty$  for all  $i$ , a triangular array if  $n_i = i$ , and an array if  $n_i$  is any sequence increasing to infinity. Denote by  $X_{\cdot j}$  the column  $(X_{ij}, X_{i+1,j}, X_{i+2,j}, \dots)$  where  $i = \inf\{i: j \leq n_i\}$  is the first index for which  $X_{ij}$  is defined. The columns  $X_{\cdot j}$  are random variables taking values in  $\mathbb{R}^\infty$ , the space of sequences of real numbers. Independence of the columns is defined as usual, but unlike the usual definition,  $X_{\cdot j}$  and  $X_{\cdot k}$  will be called identically distributed if for  $i = \inf\{i: j \leq n_i$  and  $k \leq n_i\}$ , the random sequences  $(X_{ij}, X_{i+1,j}, \dots)$  and  $(X_{ik}, X_{i+1,k}, \dots)$  have the same distribution.

Suppose an array has independent and identically distributed columns. By analogy with Kolmogorov's law for i.i.d. sequences, one might suppose that if  $E X_{ij} = 0$  for all  $i$  and  $j$  then  $\lim_{i \rightarrow \infty} n_i^{-1} \sum_{j=1}^{n_i} X_{ij} = 0$  almost surely. However, this is not correct, as example 1 below demonstrates. In Theorem 1, we obtain a strong law with the additional condition that each column (equivalently, the first column) converges to a limiting random variable. This result is an extension of Kolmogorov's Law for i.i.d. sequences. The method yields the same result for  $X_{ij}$  random elements in a separable Banach space. This result is given in Theorem 2, which extends Murier's (1953) law of large numbers to arrays.

Example 1: Let every element of a triangular array be i.i.d. obeying a symmetric stable law with characteristic function  $e^{-|t|^\alpha}$ , for some  $1 < \alpha < 2$ . Two properties of this distribution are that  $\sum_{j=1}^n X_{nj}$  has the same distribution as  $n^{1/\alpha} X_{11}$ , and that  $E|X_{11}|^\beta = \infty$  for all

$\beta \geq \alpha$ . Letting  $f(x)$  be the density of  $X_{11}$ ,

$$\begin{aligned} \sum_{n=1}^{\infty} P\left[\sum_{j=1}^n X_{nj} > n\right] &= \sum_{n=1}^{\infty} P[X_{11} > n^{1-1/\alpha}] \\ &\geq \int_1^{\infty} \int_n^{\infty} x^{1-1/\alpha} f(x) dx = \infty, \end{aligned} \quad (1)$$

the next to last inequality resulting from an application of Fubini's theorem, and the final equality follows from the non existence of the  $\alpha/(\alpha-1)$  moment coupled with the fact that  $X_{11}$  has a symmetric distribution. The

sequence  $n^{-1} \sum_{j=1}^n X_{nj}$  is independent for different  $n$ , so the Borell-

Cantelli theorem implies that  $n^{-1} \sum_{j=1}^n X_{nj} > 1$  infinitely often, and hence it does not converge to zero almost surely.

Evidently additional conditions are necessary to obtain a strong law. Theorem 1 below shows that convergence of the first column to a limiting random variable suffices. We do not know if it is possible to further weaken this condition.

Theorem 1: Let  $\{X_{ij}\}$  be an array of real variables with independent and identically distributed columns. Suppose that the first column converges almost surely, i.e. there exists a random variable  $X_1$  such that  $\lim_{i \rightarrow \infty} X_{i1}(\omega) = X_1(\omega)$  a.s. If  $\lim_{i \rightarrow \infty} E(X_{i1}) = 0$  and  $E(\sup_i |X_{i1} - X_1|) < \infty$ ,

then for almost all  $\omega \in \Omega$ ,

$$\lim_{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n_i} X_{nj} = 0$$

Proof: This is a special case of theorem 2, and does not appear to have a simpler proof.

For the case where the array consists of random elements in a separable Banach space, we have the following result, given in theorem 2.

Theorem 2: Let  $\{X_{ij}\}$  be an array of random elements in a separable Banach space  $B$ . Suppose the array has independent and identically distributed columns, and there exists a sequence of random elements  $X_j$  such that  $\lim_{i \rightarrow \infty} X_{ij}(\omega) = X_j(\omega)$  almost surely. Defining  $EX_{ij}$  via the Bochner integral, if  $\lim_{i \rightarrow \infty} EX_{i1} = 0$ , and  $E(\sup_i \|X_{i1} - X_1\|) < \infty$ , then

$$\lim_{i \rightarrow \infty} \left\| \frac{1}{n_i} \sum_{j=1}^{n_i} X_{ij} \right\| = 0,$$

almost surely.

Proof: Let  $\{X'_{ij}\}$  be a square array on a probability space  $(\Omega', \mathcal{B}, P')$ , such that the columns  $X'_{\cdot j}$  are i.i.d. copies of  $X_{\cdot 1}$ . Define  $C_0(B)$  to be the Banach of sequences converging to 0 in  $B$ , normed in the obvious way by  $\|\cdot\|$ , defined as

$$\| (b_1, b_2, \dots) \| = \sup_i \| b_i \|,$$

where  $\|\cdot\|$  is the norm on  $B$ . It is easily verified that  $C_0(B)$  is separable. Define random elements  $Y_j$  in  $C_0(B)$  by

$$Y_j = (X'_{1j} - X_j, X'_{2j} - X_j, \dots).$$

It is easily checked that  $\lim_{i \rightarrow \infty} X_{ij} = X_j$  implies  $\lim_{i \rightarrow \infty} X'_{ij} = X_j$ , and hence  $Y_j$  take values in  $C_0(B)$ , the space of sequences convergent to zero. Clearly  $Y_j$  are also i.i.d. Also,  $E\|Y_j\| = E(\sup_i \|X_{ij} - X_j\|) < \infty$  by assumption. Thus Mourier's (1953) Law of Large Numbers applies, and implies that

$$\lim_{n \rightarrow \infty} \left\| \frac{1}{n} \sum_{j=1}^n Y_j - EY_1 \right\| = 0,$$

almost surely. It is easily checked that this implies the result.

Some concluding comments are in order. Strong laws for arrays, unlike weak laws (see Petrov (1975), for example) or the central limit theorem, appear not to have been widely studied. Thus there do not exist any results for arrays directly comparable to ours. The closest one can come is the following result. Under the conventional assumption that rows consist of independent variables, and no restriction on the columns, the average of the rows centered to have zero means will converge almost surely to zero, provided that  $\sup_{i,j} E|X_{ij}|^{2+\epsilon} < \infty$ , for some  $\epsilon > 0$ . This is easily proven by an appeal to the Borel-Cantelli Lemma, and is also a special case a result due to Taylor (1979).

In terms of applications, the following corollary may be of interest.

Corollary to Theorem 1: Let  $\{X_i\}$  be a sequence of i.i.d. real-valued random variables. Let  $\phi_n: \mathbb{R} \rightarrow \mathbb{R}$  be a sequence of measurable functions such that  $\lim_n \phi_n(x) = \phi(x)$  for some limiting measurable function  $\phi$ , for all  $x \in \mathbb{R}$ . If  $\lim_{n \rightarrow \infty} E\phi_n(X_1) = 0$ , and  $E \sup_n |\phi_n(X_1)| < \infty$ , then

$\frac{1}{n} \sum_{j=1}^n \phi_n(X_j)$  converges to zero almost surely.

Finally, we note that the problem of proving strong convergence of kernel density estimates can be posed as a question about convergence in norm of the averages of rows of a certain array of random variables. Taylor (1979) uses this approach supplemented with a strong law for arrays of random elements in a Banach space to obtain strong convergence of kernel density estimates. Although the array of random elements used in this approach has independent and identically distributed columns, Taylor's strong law uses only the row-wise independence. It seems plausible that use of the i.i.d. structure of the array should permit us to obtain a stronger result. Unfortunately, our Theorem 2 cannot be applied since the columns fail to converge to a limit, in the case of kernel density estimation. Perhaps some variant of Theorem 2 can be obtained which will generate the desired result.

REFERENCES

1. Chung, Kai Lai (1974). A First Course in Probability Theory, Academic Press, N.Y.
2. Gnedenko, B.Y. and A.N. Kolmogorov, (1954). Limit Distributions for Sums of Independent Random Variables, translated by K.L. Chung, Addison-Wesley, Mass.
3. Mourier, E. (1953). "Eléments aleatoire dans un espace de Banach," Annals Institut de Henri Poincaré 13, p. 159-244.
4. Petrov, V.V. (1975). Sums of Independent Random Variables, translated by A.A. Brown Springer-Verlag, New York.
5. Taylor, Robert L. (1978). Stochastic Convergence of Weighted Sums of Random Elements in Linear Spaces, Lecture notes in Mathematics 672, edited by A. Dold and B. Eckmann Springer-Verlag, New York.
6. Taylor, R.L. (1979). "Complete Convergence for Weighted Sums of Arrays of Random Elements," Univ. of South Carolina, Statistics T. R. #48

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

AD-A143222

REPORT DOCUMENTATION PAGE

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------|
| 1. REPORT NUMBER<br>FSU M677<br>USARO D-66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2. GOVT ACCESSION NO.<br>N/A | 3. RECIPIENT'S CATALOG NUMBER<br>N/A                               |
| 4. TITLE(subtitle)<br>Kolmogorov's and Mourier's Strong Laws<br>For Arrays with Independent & Identically<br>Distributed Columns                                                                                                                                                                                                                                                                                                                                                                                              |                              | 5. TYPE OF REPORT & PERIOD COVERED<br>Technical                    |
| 7. AUTHOR(s)<br>Arif Zaman* and Asad Zaman**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              | 6. PERFORMING ORG. REPORT NUMBER<br>FSU Statistics Report No. M677 |
| 9. PERFORMING ORGANIZATION NAME & ADDRESS<br>Department of Statistics<br>Florida State University<br>Tallahassee, Florida 32306                                                                                                                                                                                                                                                                                                                                                                                               |                              | 8. CONTRACT OR GRANT NUMBER(s)<br>USARO GRANT DAAG 29-82-K-0168    |
| 11. CONTROLLING OFFICE NAME & ADDRESS<br>U. S. Army Research Office<br>P. O. Box 12211<br>Research Triangle Park, NC 27709                                                                                                                                                                                                                                                                                                                                                                                                    |                              | 10. PROGRAM ELEMENT, PROJECT, TASK, AREA,<br>& WORK UNIT NUMBERS   |
| 14. MONITORING AGENCY NAME & ADDRESS (if<br>different from Controlling Office)                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | 12. REPORT DATE<br>February, 1984                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 13. NUMBER OF PAGES<br>6                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 15. SECURITY CLASS. (of this report)<br>Unclassified               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 15a. DECLASSIFICATION/DOWNGRADING<br>SCHEDULE                      |
| 16. DISTRIBUTION STATEMENT(of this report)<br>Approved for public release; distribution unlimited.                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |                                                                    |
| 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from<br>report.)<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                         |                              |                                                                    |
| 18. SUPPLEMENTARY NOTES<br>The view, opinions, and/or findings contained in this report are those of the authors<br>and should not be construed as an official Department of the Army position, policy,<br>or decision, unless so designated by other documentation.                                                                                                                                                                                                                                                          |                              |                                                                    |
| 19. KEY WORDS<br>Strong laws for triangular arrays, Mourier's law of large numbers, random elements<br>in Banach Spaces.                                                                                                                                                                                                                                                                                                                                                                                                      |                              |                                                                    |
| 20. ABSTRACT<br>Almost sure convergence of averages of the rows is proven for arrays of random<br>variables and for random elements in Banach spaces, which can be extended to square<br>arrays with independent and identically distributed columns. The Banach space result<br>requires that each column converge to a limiting random variable, while the real-<br>valued random variable holds under a weaker condition. A counterexample is given<br>to show that the result fails without the condition on the columns. |                              |                                                                    |