Recherche de fonctions par types

Un peu de théorie

1 Signature

Définition 1.1 (signature)

Une signature est un ensemble de symboles de fonctions d'arité finie.

On signifie par $(f:n) \in \Sigma$ le fait que le symbole f de fonction d'arité n appartienne à la signature Σ .

Dans toute la suite, on se donne un ensemble dénombrable $\mathscr V$ de symboles de variables ainsi qu'une signature Σ telle que $\mathscr V \cap \Sigma = \emptyset$, $(unit:0) \in \Sigma$, $(\cdot * \cdot : 2) \in \Sigma$ et $(\cdot \to \cdot : 2) \in \Sigma$.

2 Types

Définition 2.1 (type)

L'ensemble des types, noté T, est défini inductivement par :

$$\frac{1}{\mathscr{V} \subseteq T} \qquad \frac{(f:n) \in \Sigma \quad \forall i \in [1;n], \ \tau_i \in T}{f(\tau_1, \dots, \tau_n) \in T}$$

Définition 2.2 (type-flèche)

Un type-flèche (ou une flèche) est un type de la forme : $\tau_1 \to \tau_2$.

Définition 2.3 (mot sur \mathbb{N})

L'ensemble des mots sur \mathbb{N} est défini inductivement par :

$$\frac{1}{\Lambda \text{ mot vide sur } \mathbb{N}} \qquad \frac{i \in \mathbb{N} \quad p \text{ mot sur } \mathbb{N}}{i.p \text{ mot sur } \mathbb{N}}$$

Définition 2.4 (positions d'un type)

L'ensemble des positions d'un type τ , noté $Pos(\tau)$, est l'ensemble des mots sur \mathbb{N} défini inductivement par :

$$\frac{1}{\Lambda \in Pos(\tau)} \qquad \frac{i \in [1; n] \quad p \in Pos(\tau_i)}{i.p \in Pos(f(\tau_1, \dots, \tau_n))}$$

Définition 2.5 (sous-type)

Le sous-type d'un type τ à la position p, noté $\tau[p]$, est défini par induction sur p par :

$$\tau[\Lambda] = \tau$$
$$f(\tau_1, \dots, \tau_n)[i.q] = \tau_i[q]$$

Définition 2.6 (affectation de types)

Une affectation de types est une fonction de \mathscr{V} dans T.

Définition 2.7 (substitution de types)

Une substitution de type est un endomorphisme de T.

Définition 2.8 (substitution de types induite)

Soit α une affectation de types.

La substitution de types induite par α , notée $\hat{\alpha}$, est la substitution de types dont la restriction à \mathscr{V} est α .

Autrement dit, $\hat{\alpha}$ est définie inductivement par :

$$\hat{\alpha}(v) = \alpha(v)$$

$$\hat{\alpha}(f(\tau_1, \dots, \tau_n)) = f(\hat{\alpha}(\tau_1), \dots, \hat{\alpha}(\tau_n))$$

Définition 2.9 (instance de type)

Un type τ_1 est une instance d'un type τ_2 , noté $\tau_2 \leqslant_T \tau_1$, s'il existe une substitution de types σ telle que $\tau_1 = \sigma(\tau_2)$.

3 Théorie équationnelle

Définition 3.1 (axiome équationnel)

Un axiome équationnel est un couple de types de la forme $\tau_1 \doteq \tau_2$.

Définition 3.2 (instance d'axiome équationnel)

Une instance d'un axiome équationnel $\tau_1 \doteq \tau_2$ est un couple de types (τ'_1, τ'_2) tels que τ'_1 soit une instance de τ_1 et τ'_2 une instance de τ_2 .

Définition 3.3 (théorie équationnelle)

Soit \mathscr{E} un ensemble d'axiomes équationnels.

La théorie équationnelle induite par \mathscr{E} , notée $\cdot \stackrel{\mathscr{E}}{=} \cdot$, est la plus petite congruence sur Σ contenant toutes les instances des axiomes équationnels de \mathscr{E} .

Autrement dit, c'est la plus petite relation binaire satisfaisant les règles d'inférence :

$$\frac{\tau_{1} \doteq \tau_{2} \in \mathscr{E}}{\hat{\alpha}(\tau_{1}) \stackrel{\mathscr{E}}{=} \hat{\alpha}(\tau_{2})} \stackrel{(\mathscr{E}-ax)}{=} \frac{\hat{\alpha}(\tau_{1}) \stackrel{\mathscr{E}}{=} \hat{\alpha}(\tau_{2})}{-\frac{\mathscr{E}}{\tau_{1}} \stackrel{\mathscr{E}}{=} \tau_{1}} \stackrel{(\mathscr{E}-refl)}{=} \frac{\tau_{1} \stackrel{\mathscr{E}}{=} \tau_{2}}{\tau_{1}} \stackrel{\mathscr{E}}{=} \frac{\tau_{3}}{\tau_{3}} \stackrel{(\mathscr{E}-trans)}{=} \frac{\tau_{1} \stackrel{\mathscr{E}}{=} \tau_{2}}{\tau_{2} \stackrel{\mathscr{E}}{=} \tau_{1}} \stackrel{(\mathscr{E}-sym)}{=} \frac{(f:n) \in \Sigma}{\tau_{2} \stackrel{\mathscr{E}}{=} \tau_{1}} \stackrel{(\mathscr{E}-sym)}{=} \frac{(f:n) \in \Sigma}{\tau_{1} \stackrel{\mathscr{E}}{=} \tau_{1}} \stackrel{(\mathscr{E}-congr)}{=} \frac{(\mathscr{E}-congr)}{\tau_{1} \stackrel{\mathscr{E}}{=} \tau_{1} \stackrel{\mathscr{E}}{=} \tau_{1}} \stackrel{(\mathscr{E}-congr)}{=} \frac{(\mathscr{E}-congr)}{=} \frac{(\mathscr{E}$$

Définition 3.4 (\mathscr{E} -équivalence)

Soit $\mathcal E$ un ensemble d'axiomes équationnels.

Deux types τ_1 et τ_2 sont \mathscr{E} -équivalents $ssi \ \tau_1 \stackrel{\mathscr{E}}{=} \tau_2$.

Définition 3.5 (*E*-unifiabilité)

Soit $\mathscr E$ un ensemble d'axiomes équationnels.

Deux types τ_1 et τ_2 sont $\mathscr E$ -unifiables, noté $\tau_1\bowtie_{\mathscr E}\tau_2,\,ssi$:

$$\exists \alpha \in \mathscr{F}(\mathscr{V}, T), \ \hat{\alpha}(\tau_1) \stackrel{\mathscr{E}}{=} \hat{\alpha}(\tau_2)$$

Dans toute la suite, on s'intéressa à l'ensemble $\mathscr E$ des axiomes équationnels (où x, y et z sont des variables) :

$$x*(y*z) \doteq (x*y)*z$$
 (*-assoc)
 $x*y \doteq y*x$ (*-comm)
 $x*y \rightarrow z \doteq x \rightarrow y \rightarrow z$ (curry)

On considérera également la théorie équationnelle $\cdot \stackrel{\mathscr{E}}{=} \cdot$ induite par \mathscr{E} ; on parlera d'équivalence pour l' \mathscr{E} -équivalence et d'unifiabilité pour l' \mathscr{E} -unifiabilité (notée $\cdot \bowtie \cdot$).

4 Premier critère

Définition 4.1 (tête d'un type)

La tête d'un type, notée $\uparrow \cdot$, est définie inductivement par :

$$\uparrow (\tau_1 \to \tau_2) = \uparrow \tau_2$$
$$\uparrow \tau = \tau$$

Lemme 4.1

Si deux types sont équivalents, leurs têtes le sont aussi.

Lemme 4.2

$$\forall \tau \in T, \ \forall \alpha \in \mathscr{F}(\mathscr{V}, T), \ \uparrow \hat{\alpha}(\tau) = \uparrow \hat{\alpha}(\uparrow \tau)$$

Lemme 4.3

La tête d'un type n'est pas une flèche.

Lemme 4.4

$$\forall (f_1: n_1) \in \Sigma, \ \forall (f_1: n_2) \in \Sigma,
\forall (\tau_i^1)_{i \in [1: n_1]} \in T^{n_1}, \ \forall (\tau_i^2)_{i \in [1: n_2]} \in T^{n_2},
f_1(\tau_1^1, \dots, \tau_{n_1}^1) = f_2(\tau_1^2, \dots, \tau_{n_2}^2) \implies f_1 = f_2$$

Théorème 4.1

$$\forall \tau_1 \in T, \ \forall \tau_2 \in T, \\ \tau_1 \bowtie \tau_2 \land (\uparrow \tau_1) [\Lambda] = f_1 \notin \mathscr{V} \land (\uparrow \tau_2) [\Lambda] = f_2 \notin \mathscr{V} \implies f_1 = f_2$$

Démonstration.

Par hypothèse, il existe une affectation de types α telle que :

$$\hat{\alpha}(\tau_1) \stackrel{\mathscr{E}}{=} \hat{\alpha}(\tau_2)$$

Par le lemme 4.1, les têtes sont équivalentes :

$$\uparrow \hat{\alpha}(\tau_1) \stackrel{\mathscr{E}}{=} \uparrow \hat{\alpha}(\tau_2)$$

Par le lemme 4.2, on a donc :

$$\uparrow \hat{\alpha}(\uparrow \tau_1) \stackrel{\mathscr{E}}{=} \uparrow \hat{\alpha}(\uparrow \tau_2)$$

Par hypothèse, il existe $(f_1:n_1)$ et $(f_2:n_2)$ dans Σ ainsi que $(\tau_i^1)_{i\in \llbracket 1;n_1\rrbracket}$ dans T^{n_1} et $(\tau_i^2)_{i\in \llbracket 1;n_2\rrbracket}$ dans T^{n_2} tels que :

$$\tau_1 = f_1(\tau_1^1, \dots \tau_{n_1}^1)$$

$$\tau_2 = f_2(\tau_1^2, \dots \tau_{n_2}^2)$$

Par le lemme 4.3, f_1 et f_2 sont différents de $\cdot \to \cdot$. Par définition de $\uparrow \cdot$ et $\hat{\alpha}$, il vient alors :

$$f_1(\hat{\alpha}(\tau_1^1), \dots, \hat{\alpha}(\tau_{n_1}^1)) \stackrel{\mathscr{E}}{=} f_2(\hat{\alpha}(\tau_1^2), \dots, \hat{\alpha}(\tau_{n_2}^2))$$

Enfin, le lemme 4.4 donne :

$$f_1 = f_2$$

5 Deuxième critère

Définition 5.1 (multiplicité de symbole de fonctions)

La multiplicité d'un symbole de fonction f, notée μ_f , est définie inductivement par :

$$\mu_f(\tau_1 \to \tau_2) = \mu'_f(\tau_1) + \mu_f(\tau_2)$$

$$\mu_f(\tau) = 0$$

$$\mu'_f(\tau_1 * \tau_2) = \mu'_f(\tau_1) + \mu'_f(\tau_2)$$

$$\mu'_f(f(\tau_1, \dots, \tau_n)) = 1$$

$$\mu'_f(\tau) = 0$$

Définition 5.2 (*V*-multiplicité)

La \mathscr{V} -multiplicité est définie inductivement par :

$$\mu_{\mathscr{V}}(\tau_1 \to \tau_2) = \mu'_{\mathscr{V}}(\tau_1) + \mu_{\mathscr{V}}(\tau_2)$$
$$\mu_{\mathscr{V}}(\tau) = 0$$
$$\mu'_{\mathscr{V}}(v) = 1$$
$$\mu'_{\mathscr{V}}(\tau_1 * \tau_2) = \mu'_{\mathscr{V}}(\tau_1) + \mu'_{\mathscr{V}}(\tau_2)$$
$$\mu'_{\mathscr{V}}(\tau) = 0$$

Définition 5.3 (type simpe)

Un type τ est simple si sa \mathscr{V} -multiplicité est nulle.

Lemme 5.1

Si deux type τ_1 et τ_2 sont équivalents, alors, pour tout symbole de fonction f, on a : $\mu_f(\tau_1) = \mu_f(\tau_2)$.

Lemme 5.2

Si un type τ est simple, alors, pour tout symbole de fonction f et toute affectation de types α , on a : $\mu_f(\hat{\alpha}(\tau)) = \mu_f(\tau)$.

Lemme 5.3

La multiplicité de tout symbole de fonction f dans un type est inférieure à celle de toute instance de ce type.

Théorème 5.1

Soit deux types τ_1 et τ_2 .

Si τ_1 et τ_2 sont unifiables et τ_1 simple, alors la multiplicité de tout symbole de fonction dans τ_1 est supérieure à celle dans τ_2 .

Démonstration.

Par hypothèse, il existe une affectation α telle que :

$$\hat{\alpha}(\tau_1) \stackrel{\mathscr{E}}{=} \hat{\alpha}(\tau_2)$$

Soit f un symbole de fonction.

Par le lemme 5.1, les multiplicités sont égales :

$$\mu_f(\hat{\alpha}(\tau_1)) = \mu_f(\hat{\alpha}(\tau_2))$$

Par le lemme 5.2, la simplicité de τ_1 apporte :

$$\mu_f(\hat{\alpha}(\tau_1)) = \mu_f(\tau_1)$$

Par le lemme 5.3, on a par ailleurs:

$$\mu_f(\hat{\alpha}(\tau_2)) \geqslant \mu_f(\tau_2)$$

Il vient donc le résultat attendu:

$$\mu_f(\tau_1) \geqslant \mu_f(\tau_2)$$

6 Normalisation

Définition 6.1 (multi-ensemble)

Un multi-ensemble sur un ensemble X est une fonction de X dans \mathbb{N} . L'ensemble des multi-ensembles sur X est noté X^{\sharp} .

Définition 6.2 (domaine de multi-ensemble)

Le domaine d'un multi-ensemble sur X est l'ensemble des éléments de X dont l'image est non-nulle.

Si le domaine d'un multi-ensemble m est fini, on note ce dernier $\{x_1: m(x_1); \ldots; x_n: m(x_n)\}$ où $(x_i)_{i \in \mathbb{I}^1; n\mathbb{I}}$ est le domaine de m.

Définition 6.3 (somme de multi-ensembles)

La somme de deux multi-ensemble sur X m_1 et m_2 , notée $m_1 +_m m_2$, est le multi-ensemble $x \mapsto m_1(x) + m_2(x)$.

Définition 6.4 (type normalisé)

L'ensemble des types normalisés (ou ν -types), noté N, est défini inductivement par :

$$\frac{\mathscr{V} \subseteq N}{\mathscr{V} \subseteq N}$$

$$\frac{(f:n) \in \Sigma \quad \forall i \in [1:n], \ \nu_i \in N}{f(\nu_1, \dots, \nu_n) \in N}$$

$$\frac{m \in N^{\sharp} \quad \nu \in N}{m \to_{\nu} \nu \in N}$$