Particle spectrograph

Wave operator and propagator

SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0^{+}}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\ \alpha}$	1
$\tau_1^{\#2\alpha} + 2ik \sigma_1^{\#2\alpha} =$	$= 0 \partial_{\chi} \partial_{\beta} \partial^{\alpha} \tau^{\beta \chi} = \partial_{\chi} \partial^{\chi} \partial_{\beta} \tau^{\alpha \beta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \sigma^{\alpha \beta \chi}$	3
$\tau_1^{\#1\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} =$	$= 0 \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} + \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} + \partial_{\chi} \partial^{\chi} \tau^{\alpha \beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2^{+}}^{\sharp 1\alpha\beta} - 2ik \sigma_{2^{+}}^{\sharp 1\alpha\beta}$	$==0 -i (4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} -$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{\delta} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} -$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi}$ -	
	$4 \bar{\imath} \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon}_{\delta}) == 0$	
Total constraints/	gauge generators:	16

	${\cal A}_{1}^{\#1}{}_{lphaeta}$	$\mathcal{A}_{1}^{\#2}{}_{lphaeta}$	$f_{1^{+}\alpha\beta}^{\#1}$	${\mathscr R}_{1^- lpha}^{\sharp 1}$	${\mathcal H}_{1^{-}lpha}^{{ extstyle #}2}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{#2}$
$\mathcal{A}_{1}^{\sharp 1}\dagger^{lphaeta}$	$k^2 (2r_3 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
$\mathcal{A}_{1}^{\sharp 2}\dagger^{lphaeta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$f_{1}^{\#1}\dagger^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\mathcal{A}_{1}^{\sharp 1}$ † lpha	0	0	0	$k^2 \left(-r_1 + 2 r_3 + r_5 \right) + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	<u>ikt</u> 1 3
$\mathcal{A}_{1}^{ ext{#2}}\dagger^{lpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>t</u> 1 3	0	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{1}{3}ikt_1$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{i}{k(1+2k^2)(r_1-2r_3-r_5)}$	$\frac{i(6k^2(r_1-2r_3-r_5)-t_1)}{\sqrt{2}k(1+2k^2)^2(r_1-2r_3-r_5)t}$	0	$\frac{1}{\frac{-r_1+2r_3+r_5}{(1+2k^2)^2}} + \frac{6k^2}{t_1}$	
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0	
$\sigma_{1^-\alpha}^{\#2}$	0	0	0	$\frac{1}{\sqrt{2} (k^2 + 2k^4) (r_1 - 2r_3 - r_5)}$	$\frac{1}{\frac{-r_1+2r_3+r_5}{2(k+2k^3)^2}} + \frac{6k^2}{t_1}$	0	$-\frac{i(6k^2(r_1-2r_3-r_5)-t_1)}{\sqrt{2}k(1+2k^2)^2(r_1-2r_3-r_5)t_1}$	
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 (-r_1 + 2 r_3 + r_5)}$	$\frac{1}{\sqrt{2} (k^2 + 2k^4) (r_1 - 2r_3 - r_5)}$	0	$\frac{i}{k(1+2k^2)(-r_1+2r_3+r_5)}$	$\sigma_{0}^{#1} \dagger \frac{1}{6}$ $\tau_{0}^{#1} \dagger \frac{1}{6}$ $\tau_{0}^{#2} \dagger \frac{1}{6}$ $\sigma_{0}^{#1} \dagger \frac{1}{6}$
$\tau_1^{\#1}\!$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_3+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2 k^4 (2 r_3 + r_5) + k^2 t_1}{(1 + k^2)^2 t_1^2}$	0	0	0	0	$\mathcal{A}^{\sharp 1}_{0^+}\dagger$
$\sigma_{1}^{\#2}_{\alpha\beta}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2 k^2 (2 r_3 + r_5) + t_1}{(1 + k^2)^2 t_1^2}$	$\frac{i(2k^3(2r_3+r_5)\cdot kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0	$f_{0^{+}}^{#1} \dagger$ $f_{0^{+}}^{#2} \dagger$ $\mathcal{R}_{0^{-}}^{#1} \dagger$
$\sigma_{1}^{\#1}{}_{+}$ $_{lphaeta}$	0	$\frac{\sqrt{2}}{t_1 + k^2 t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0	$\sigma_{2}^{\#1}\dagger^{\alpha}$
	$\sigma_1^{\#1} + \alpha \beta$		$t_1^{#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} + \alpha$	$\tau_{1}^{\#1} + ^{\alpha}$	$ au_1^{\#2} + ^{lpha}$	$\tau_{2}^{\#1} \dagger^{\alpha}$ $\sigma_{2}^{\#1} \dagger^{\alpha\beta}$

		$\sigma_{0^+}^{\#1}$	$ au_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\sharp 1}$			
$\sigma_{0}^{\#1}$ †	$\frac{1}{6k^2}$	$\frac{1}{r_1+r_3}$	0	0	0			
$\tau_{0^{+}}^{\#1}$ †		0	0	0	0			
$\tau_{0^{+}}^{\#2}$ †		0	0	0	0			
$\sigma_0^{\#1}$ †		0	0	0	$-\frac{1}{t_1}$			
•		${\cal R}_{0}^{\#1}$		$f_{0^{+}}^{#1}$	$f_{0}^{#2}$	\mathcal{F}	7 <mark>#1</mark>	
$\mathcal{A}_{0}^{\#1}$ †	6	k ² (-r ₁ +	· r ₃)	0	0		0	
$f_{0}^{#1}$ †		0	0	0		0		
$f_{0+}^{#2} \dagger$	-	0		0	0		0	
$\mathcal{A}_{0}^{\#1}$ †	-	0		0	0	-	t_1	
		$\sigma_{2}^{\#1}{}_{\alpha_{i}}$	β	$\tau_2^{\#}$	1 + αβ		$\sigma_2^{\#}$	[±] 1 αβχ
$\sigma_{2}^{\sharp 1}$ †	$L^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2}$	$\frac{1}{2t_1}$	- 2 i	$\frac{\sqrt{2} k}{k^2)^2 t}$	_ 1		0
$ au_{2}^{\#1}$ †	$(1+2k^2)^2 t_1$ $\frac{2i\sqrt{2}k}{(1+2k^2)^2 t_1}$ $\alpha\beta\chi$ 0			$\frac{4k^2}{(1+2k^2)^2t_1}$				0
$\sigma_2^{\#1}$ †	αβχ	0		0			$\frac{1}{2k^2}$	r_1+t_1

Massive and massless spectra

ic	le	? /
	$-\frac{1}{r_1} > 0$	
	5	?
	$-\frac{t_1}{}>0$?

Odd

Quadratic pole				
Pole residue:	$\frac{1}{(r_1 - 2r_3 - r_5)t_1^2} > 0$			
Polarisations:	2			

Unitarity conditions

 $r_1 < 0 \&\& r_5 < r_1 - 2 r_3 \&\& t_1 > 0$