An LLL algorithm for module lattices

Changmin Lee¹, **Alice Pellet-Mary**², Damien Stehlé¹ and Alexandre Wallet³

 1 ENS de Lyon, 2 KU Leuven, 3 NTT Tokyo

Séminaire Lfant, November 26, 2019

https://eprint.iacr.org/2019/1035

Lattices

Lattice

A (full-rank) lattice L is a subset of \mathbb{R}^n of the form $L = \{Bx \mid x \in \mathbb{Z}^n\}$, with $B \in \mathbb{R}^{n \times n}$ invertible. B is a basis of L.

$$\begin{pmatrix} 3 & 1 \\ 0 & 2 \end{pmatrix}$$
 and $\begin{pmatrix} 17 & 10 \\ 4 & 2 \end{pmatrix}$ are two bases of the above lattice.

Shortest Vector Problem (SVP)

Find a shortest (in Euclidean norm) non-zero vector.

Its Euclidean norm is denoted λ_1 .

Approximate Shortest Vector Problem (approx-SVP)

Find a short (in Euclidean norm) non-zero vector. (e.g. of norm $\leq 2\lambda_1$).

Closest Vector Problem (CVP)

Given a target point t, find a point of the lattice closest to t.

Approximate Closest Vector Problem (approx-CVP)

Given a target point t, find a point of the lattice close to t.

Hardness of lattice problems

Best Time/Approximation trade-off for SVP and CVP (even quantumly): BKZ algorithm [Sch87,SE94]

[Sch87] C.-P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. TCS.

[[]SE94] C.-P. Schnorr and M. Euchner. Lattice basis reduction: improved practical algorithms and solving subset sum problems. Mathematical programming.

Hardness of lattice problems

Best Time/Approximation trade-off for SVP and CVP (even quantumly): BKZ algorithm [Sch87,SE94]

[[]LLL82] A. K. Lenstra, H. W. Lenstra, L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen.

Structured lattices

Motivation

Schemes using lattices are usually not efficient

(storage: n^2 , matrix-vector mult: n^2)

⇒ improve efficiency using structured lattices

Structured lattices

Motivation

Schemes using lattices are usually not efficient

```
(storage: n^2, matrix-vector mult: n^2)
```

⇒ improve efficiency using structured lattices

Example: NIST post-quantum standardization process

- 26 candidates (2nd round)
- 12 lattice-based
- 11 using structured lattices

Structured lattices

Motivation

Schemes using lattices are usually not efficient

(storage: n^2 , matrix-vector mult: n^2)

⇒ improve efficiency using structured lattices

Example: NIST post-quantum standardization process

- 26 candidates (2nd round)
- 12 lattice-based
- 11 using structured lattices

	Frodo (Ivl 1)	Kyber (Ivl 1)
	(unstructured lattices)	(structured lattices)
secret key size (in Bytes)	19888	1632
public key size (in Bytes)	9 616	800

Motivation

Schemes using lattices are usually not efficient

```
(storage: n^2, matrix-vector mult: n^2)
```

 \Rightarrow improve efficiency using structured lattices

Motivation

Schemes using lattices are usually not efficient

```
(storage: n^2, matrix-vector mult: n^2)
```

$$M_{\mathbf{a}} = \begin{pmatrix} a_0 & a_{n-1} & \cdots & a_1 \\ a_1 & a_0 & \cdots & a_2 \\ \vdots & \ddots & \ddots & \vdots \\ a_{n-1} & a_{n-2} & \cdots & a_0 \end{pmatrix}$$

Motivation

Schemes using lattices are usually not efficient

(storage: n^2 , matrix-vector mult: n^2)

$$M_{\mathbf{a}} = \begin{pmatrix} a_0 & a_{n-1} & \cdots & a_1 \\ a_1 & a_0 & \cdots & a_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_{n-2} & \cdots & a_0 \end{pmatrix}$$

multiplication by
$$a_0 + a_1 X + \dots + a_{n-1} X^{n-1}$$
 mod $X^n - 1$

Motivation

Schemes using lattices are usually not efficient

```
(storage: n^2, matrix-vector mult: n^2)
```

$$M_{\mathbf{a}} = \begin{pmatrix} a_0 & -a_{n-1} & \cdots & -a_1 \\ a_1 & a_0 & \cdots & -a_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_{n-2} & \cdots & a_0 \end{pmatrix}$$
 multiplication $a_0 + a_1 X + \cdots$ mod $X^n + 1$ $(n = 2^\ell)$

multiplication by
$$a_0 + a_1 X + \cdots + a_{n-1} X^{n-1}$$
 mod $X^n + 1$ $(n = 2^{\ell})$

Motivation

Schemes using lattices are usually not efficient

```
(storage: n^2, matrix-vector mult: n^2)
```

$$M_{\mathbf{a}} = \begin{pmatrix} a_0 & a_{n-1} & \cdots & a_1 + a_2 \\ a_1 & a_0 + a_{n-1} & \cdots & a_2 + a_3 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_{n-2} & \cdots & a_0 + a_{n-1} \end{pmatrix} \quad \begin{array}{l} \text{multiplication by} \\ a_0 + a_1 X + \cdots + a_{n-1} X^{n-1} \\ \text{mod } X^n - X - 1 \\ \text{$(n$ prime)} \end{array}$$

multiplication by
$$a_0 + a_1 X + \cdots + a_{n-1} X^{n-1} \mod X^n - X - 1$$
 (*n* prime)

Motivation

Schemes using lattices are usually not efficient

(storage: n^2 , matrix-vector mult: n^2)

⇒ improve efficiency using lattices with a structured basis

$$M_{\mathbf{a}} = \begin{pmatrix} a_0 & a_{n-1} & \cdots & a_1 + a_2 \\ a_1 & a_0 + a_{n-1} & \cdots & a_2 + a_3 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_{n-2} & \cdots & a_0 + a_{n-1} \end{pmatrix} \quad \begin{array}{l} \text{multiplication by} \\ a_0 + a_1 X + \cdots + a_{n-1} X^{n-1} \\ \text{mod } X^n - X - 1 \\ \text{$(n$ prime)} \\ \end{array}$$

multiplication by
$$a_0 + a_1 X + \dots + a_{n-1} X^{n-1}$$
 mod $X^n - X - 1$ (n prime)

basis of a (principal) ideal lattice

$$\left\{\sum_{i} t_{i} X^{i} : (t_{0}, \cdots, t_{n-1})^{T} \in \mathcal{L}(M_{\mathbf{a}})\right\} = \langle \mathbf{a} \rangle \subset \mathbb{Z}[X]/(X^{n} - X - 1)$$

Ring R

- ullet $R=\mathbb{Z}[X]/P(X)$ with P monic and irreducible, degree n
- $M_{\mathbf{a}} = \mathsf{basis} \; \mathsf{of} \; \langle \mathbf{a} \rangle \subset R$

Ring R

- ullet $R=\mathbb{Z}[X]/P(X)$ with P monic and irreducible, degree n
- $M_{\mathbf{a}} = \text{basis of } \langle \mathbf{a} \rangle \subset R$

basis of a (free) module lattice

Ring R

- ullet $R=\mathbb{Z}[X]/P(X)$ with P monic and irreducible, degree n
- $M_{\mathbf{a}} = \text{basis of } \langle \mathbf{a} \rangle \subset R$

Is SVP still hard when restricted to module lattices?

Ring R

- ullet $R=\mathbb{Z}[X]/P(X)$ with P monic and irreducible, degree n
- $M_{\mathbf{a}} = \text{basis of } \langle \mathbf{a} \rangle \subset R$

Is SVP still hard when restricted to module lattices?

Ring R

- ullet $R=\mathbb{Z}[X]/P(X)$ with P monic and irreducible, degree n
- $M_{\mathbf{a}} = \text{basis of } \langle \mathbf{a} \rangle \subset R$

Is SVP still hard when restricted to module lattices?

Objective

Lattice reduction over $\mathbb Z$

Module lattices

- ullet large dimension over ${\mathbb Z}$
- small dimension over R

Objective

Lattice reduction over \mathbb{Z}

Module lattices

- ullet large dimension over ${\mathbb Z}$
- small dimension over R

Can we extend the LLL algorithm to lattices over *R*?

[Nap96] LLL for some specific number fields no bound on quality / run-time

[[]Nap96] H. Napias. A generalization of the LLL-algorithm over Euclidean rings or orders. Journal de théorie des nombres de Bordeaux.

[Nap96] LLL for some specific number fields no bound on quality / run-time

[FP96] LLL for any number fields
no bound on quality / run-time
bound on run-time for specific number fields

[[]FP96] C. Fieker, M. E. Pohst. Lattices over number fields. ANTS.

[Nap96] LLL for some specific number fields no bound on quality / run-time

[FP96] LLL for any number fields
no bound on quality / run-time
bound on run-time for specific number fields

[KL17] LLL for norm-Euclidean fields
bound on run-time but not on quality
bound on quality for biquadratic fields

[[]KL17] T. Kim, C. Lee. Lattice reductions over euclidean rings with applications to cryptanalysis. IMACC.

[Nap96] LLL for some specific number fields no bound on quality / run-time

[FP96] LLL for any number fields
no bound on quality / run-time
bound on run-time for specific number fields

[KL17] LLL for norm-Euclidean fields
bound on run-time but not on quality
bound on quality for biquadratic fields

[LPSW19] LLL for any number field bound on quality and run-time if oracle solving CVP in a fixed lattice (depending on R)

[[]LPSW19] C. Lee, A. Pellet-Mary, D. Stehlé, A. Wallet. An LLL algorithm for module lattices. To appear at Asiacrypt 2019.

Outline of the talk

Module lattices

2 LLL algorithm (in dimension 2)

Outline of the talk

Module lattices

2 LLL algorithm (in dimension 2)

Canonical embedding

Reminder

$$R = \mathbb{Z}[X]/P(X)$$

dimension nk over \mathbb{Z}

Canonical embedding

Reminder

$$R = \mathbb{Z}[X]/P(X)$$

Coefficient embedding

$$\sigma$$
: $R \rightarrow \mathbb{R}^n$
$$\mathbf{a} = a_0 + a_1 X + \dots + a_{n-1} X^{n-1} \mapsto (a_0, a_1, \dots, a_{n-1})^T$$

$$\mathbf{a} \longrightarrow M_{\mathbf{a}} = \begin{pmatrix} | & | & | \\ \sigma(\mathbf{a}) & \sigma(X\mathbf{a}) & \cdots & \sigma(X^{n-1}\mathbf{a}) \\ | & | & | \end{pmatrix}$$

Canonical embedding

Reminder

$$R = \mathbb{Z}[X]/P(X)$$

 $\alpha_1, \dots, \alpha_n$ roots of P

dimension k over R

dimension nk over \mathbb{Z}

Canonical embedding

$$\begin{split} \sigma: & & R & \to & \mathbb{C}^n \\ & \mathbf{a} = a_0 + a_1 X + \dots + a_{n-1} X^{n-1} & \mapsto & \left(\mathbf{a}(\alpha_1), \dots, \mathbf{a}(\alpha_n)\right)^T \end{split}$$

$$\mathbf{a} \longrightarrow M_{\mathbf{a}} = \begin{pmatrix} | & | & | \\ \sigma(\mathbf{a}) & \sigma(X\mathbf{a}) & \cdots & \sigma(X^{n-1}\mathbf{a}) \\ | & | & | \end{pmatrix}$$

Reminder:
$$\sigma(\mathbf{a}) = (\mathbf{a}(\alpha_1), \cdots, \mathbf{a}(\alpha_n))^T$$

•
$$K = \mathbb{Q}[X]/P(X) = \{a/b : a, b \in R\}$$

Reminder:
$$\sigma(\mathbf{a}) = (\mathbf{a}(\alpha_1), \cdots, \mathbf{a}(\alpha_n))^T$$

- $K = \mathbb{Q}[X]/P(X) = \{a/b : a, b \in R\}$
- ullet algebraic norm: $\mathcal{N}(\mathbf{a}) = \prod_i \sigma(\mathbf{a})_i$
 - if $\mathbf{a} \in R$ then $\mathcal{N}(\mathbf{a}) \in \mathbb{Z}$

Reminder:
$$\sigma(\mathbf{a}) = (\mathbf{a}(\alpha_1), \cdots, \mathbf{a}(\alpha_n))^T$$

- $K = \mathbb{Q}[X]/P(X) = \{a/b : a, b \in R\}$
- algebraic norm: $\mathcal{N}(\mathbf{a}) = \prod_i \sigma(\mathbf{a})_i$ • if $\mathbf{a} \in R$ then $\mathcal{N}(\mathbf{a}) \in \mathbb{Z}$
- $Log(a) = (log |a(\alpha_1)|, \cdots, log |a(\alpha_n)|)^T$

Reminder:
$$\sigma(\mathbf{a}) = (\mathbf{a}(\alpha_1), \cdots, \mathbf{a}(\alpha_n))^T$$

- $K = \mathbb{Q}[X]/P(X) = \{a/b : a, b \in R\}$
- algebraic norm: $\mathcal{N}(\mathbf{a}) = \prod_i \sigma(\mathbf{a})_i$ • if $\mathbf{a} \in R$ then $\mathcal{N}(\mathbf{a}) \in \mathbb{Z}$
- $Log(a) = (log |a(\alpha_1)|, \cdots, log |a(\alpha_n)|)^T$

Properties of Log

Reminder:
$$\sigma(\mathbf{a}) = (\mathbf{a}(\alpha_1), \cdots, \mathbf{a}(\alpha_n))^T$$

- $K = \mathbb{Q}[X]/P(X) = \{a/b : a, b \in R\}$
- algebraic norm: $\mathcal{N}(\mathbf{a}) = \prod_i \sigma(\mathbf{a})_i$ • if $\mathbf{a} \in R$ then $\mathcal{N}(\mathbf{a}) \in \mathbb{Z}$
- $Log(a) = (log |a(\alpha_1)|, \cdots, log |a(\alpha_n)|)^T$

Let
$$\mathbf{1}=(1,\cdots,1)$$
 and $H=\mathbf{1}^{\perp}$

Properties of Log

Log
$$r = h + a\mathbf{1}$$
, with $h \in H$

- $\bullet \ \mathsf{Log}(r_1 \cdot r_2) = \mathsf{Log}(r_1) + \mathsf{Log}(r_2)$
- $a \ge 0$ if $r \in R$ $(a = \log(\mathcal{N}(r))/n)$

Reminder:
$$\sigma(\mathbf{a}) = (\mathbf{a}(\alpha_1), \cdots, \mathbf{a}(\alpha_n))^T$$

- $K = \mathbb{Q}[X]/P(X) = \{a/b : a, b \in R\}$
- algebraic norm: $\mathcal{N}(\mathbf{a}) = \prod_i \sigma(\mathbf{a})_i$ • if $\mathbf{a} \in R$ then $\mathcal{N}(\mathbf{a}) \in \mathbb{Z}$
- $Log(\mathbf{a}) = (\log |\mathbf{a}(\alpha_1)|, \cdots, \log |\mathbf{a}(\alpha_n)|)^T$

Let
$$\mathbf{1}=(1,\cdots,1)$$
 and $H=\mathbf{1}^{\perp}$

Properties of Log

$$\text{Log } r = h + a\mathbf{1}$$
, with $h \in H$

- $\bullet \ \mathsf{Log}(\mathit{r}_1 \cdot \mathit{r}_2) = \mathsf{Log}(\mathit{r}_1) + \mathsf{Log}(\mathit{r}_2)$
- $a \ge 0$ if $r \in R$ $(a = \log(\mathcal{N}(r))/n)$

Log unit lattice

$$\Lambda = \{ \mathsf{Log}(u) : u \in R^{\times} \}$$

- Λ ⊂ H
- Λ is a lattice

Reminder:
$$\sigma(\mathbf{a}) = (\mathbf{a}(\alpha_1), \cdots, \mathbf{a}(\alpha_n))^T$$

- $K = \mathbb{Q}[X]/P(X) = \{a/b : a, b \in R\}$
- algebraic norm: $\mathcal{N}(\mathbf{a}) = \prod_i \sigma(\mathbf{a})_i$ • if $\mathbf{a} \in R$ then $\mathcal{N}(\mathbf{a}) \in \mathbb{Z}$
- $Log(\mathbf{a}) = (\log |\mathbf{a}(\alpha_1)|, \cdots, \log |\mathbf{a}(\alpha_n)|)^T$

Let
$$\mathbf{1}=(1,\cdots,1)$$
 and $H=\mathbf{1}^{\perp}$

Properties of Log

$$\text{Log } r = h + a\mathbf{1}$$
, with $h \in H$

- $\bullet \ \mathsf{Log}(r_1 \cdot r_2) = \mathsf{Log}(r_1) + \mathsf{Log}(r_2)$
- $a \ge 0$ if $r \in R$ $(a = \log(\mathcal{N}(r))/n)$
- $\|r\| \simeq 2^{\|\operatorname{Log} r\|_{\infty}}$

Log unit lattice

$$\Lambda = \{ \mathsf{Log}(u) : u \in R^{\times} \}$$

- Λ ⊂ H
- Λ is a lattice

Outline of the talk

Module lattices

2 LLL algorithm (in dimension 2)

$$M = \begin{pmatrix} 10 & 7 \\ 2 & 2 \end{pmatrix}$$

$$M = \begin{pmatrix} 10 & 7 \\ 2 & 2 \end{pmatrix}$$

Compute QR factorization

$$M = \begin{pmatrix} 10.2 & 7.3 \\ 0 & 0.6 \end{pmatrix}$$

reduce b_2 with b_1

$$M = \begin{pmatrix} 10.2 & 7.3 \\ 0 & 0.6 \end{pmatrix}$$

"Euclidean division" (over \mathbb{R}) of 7.3 by 10.2

$$M = \begin{pmatrix} 10.2 & -2.9 \\ 0 & 0.6 \end{pmatrix}$$

$$M = \begin{pmatrix} -2.9 & 10.2 \\ 0.6 & 0 \end{pmatrix}$$

$$M = \begin{pmatrix} -2.9 & 10.2 \\ 0.6 & 0 \end{pmatrix}$$

 $M = \begin{pmatrix} -2.9 & 10.2 \\ 0.6 & 0 \end{pmatrix}$

rotation

$$M = \begin{pmatrix} 3 & -10 \\ 0 & -2 \end{pmatrix}$$

reduce b_2 with b_1

$$M = \begin{pmatrix} 3 & -10 \\ 0 & -2 \end{pmatrix}$$

"Euclidean division" (over \mathbb{R}) of -10 by 3

$$b_2 \nearrow b_1$$

$$M = \begin{pmatrix} 3 & -1 \\ 0 & -2 \end{pmatrix}$$

$$b_2$$

$$M = \begin{pmatrix} 3 & -1 \\ 0 & -2 \end{pmatrix}$$

For Gauss' algorithm over R, we need

- rotation
- Euclidean division

$$b_2$$

$$M = \begin{pmatrix} 3 & -1 \\ 0 & -2 \end{pmatrix}$$

For Gauss' algorithm over R, we need

- rotation \Rightarrow ok
- Euclidean division \Rightarrow ?

Inner product over R

For
$$\vec{a}=(a_1,\cdots,a_k)\in K^k$$
 and $\vec{b}=(b_1,\cdots,b_k)\in K^k$,

$$\langle \vec{a}, \vec{b} \rangle_K = \sum_i a_i \overline{b_i} \in K$$

Inner product over R

For
$$\vec{a}=(a_1,\cdots,a_k)\in K^k$$
 and $\vec{b}=(b_1,\cdots,b_k)\in K^k$,

$$\langle \vec{a}, \vec{b} \rangle_K = \sum_i a_i \overline{b_i} \in K$$

Properties

•
$$\operatorname{Tr}(\langle \vec{a}, \vec{b} \rangle_{K}) = \langle \sigma(\vec{a}), \sigma(\vec{b}) \rangle$$
 over \mathbb{C}

$$\Rightarrow \sqrt{\operatorname{Tr}(\langle \vec{a}, \vec{a} \rangle_{K})} = \|(\sigma(a_{1}), \cdots, \sigma(a_{k}))\|$$

$$\operatorname{Tr}(x) = \sum_{i=1}^{n} \sigma(x)_{i}$$

Inner product over R

For
$$\vec{a}=(a_1,\cdots,a_k)\in K^k$$
 and $\vec{b}=(b_1,\cdots,b_k)\in K^k$,

$$\langle \vec{a}, \vec{b} \rangle_{\mathcal{K}} = \sum_{i} a_{i} \overline{b_{i}} \in \mathcal{K}$$

Properties

- $\operatorname{Tr}(\langle \vec{a}, \vec{b} \rangle_K) = \langle \sigma(\vec{a}), \sigma(\vec{b}) \rangle$ over \mathbb{C} $\Rightarrow \sqrt{\operatorname{Tr}(\langle \vec{a}, \vec{a} \rangle_K)} = \|(\sigma(a_1), \cdots, \sigma(a_k))\|$
- $\bullet \ \sqrt{\mathcal{N}(\langle \vec{a}, \vec{a} \rangle_K)} = \Delta_K^{-1/2} \cdot \det(\mathcal{L}(\vec{a}))$

Over \mathbb{Z}

Input: $a, b \in \mathbb{Z}$, $a \neq 0$

Output: $r \in \mathbb{Z}$

such that $|b+ra| \leq |a|/2$

Over \mathbb{Z}

Input: $a, b \in \mathbb{Z}$, $a \neq 0$

Output: $r \in \mathbb{Z}$

such that
$$|b + ra| \le |a|/2$$

CVP in \mathbb{Z} with target -b/a.

$$\mathbb{Z}$$
 $\leq 1/2$

Over \mathbb{Z}

Input: $a, b \in \mathbb{Z}$, $a \neq 0$

Output: $r \in \mathbb{Z}$

such that
$$|b+ra| \leq |a|/2$$

CVP in \mathbb{Z} with target -b/a.

$$\mathbb{Z}$$
 $\leq \frac{1/2}{\bigstar}$

Over R

CVP in R with target -b/a \Rightarrow output $r \in R$

Over \mathbb{Z}

Input: $a, b \in \mathbb{Z}$, $a \neq 0$

Output: $r \in \mathbb{Z}$

such that
$$|b+ra| \leq |a|/2$$

CVP in \mathbb{Z} with target -b/a.

$$\mathbb{Z}$$
 $\leq 1/2$

Over R

CVP in R with target -b/a \Rightarrow output $r \in R$

Difficulty: Typically $||b + ra|| \approx \sqrt{n} \cdot ||a|| \gg ||a||$.

Over \mathbb{Z}

Input: $a, b \in \mathbb{Z}$, $a \neq 0$

Output: $r \in \mathbb{Z}$

such that $|b+ra| \leq |a|/2$

CVP in \mathbb{Z} with target -b/a.

Over R

CVP in R with target -b/a \Rightarrow output $r \in R$

Difficulty: Typically $||b + ra|| \approx \sqrt{n} \cdot ||a|| \gg ||a||$.

Relax the requirement

- $||xa + yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(n)$

Over \mathbb{Z}

Input: $a, b \in \mathbb{Z}$, $a \neq 0$

Output: $r \in \mathbb{Z}$

such that $|b+ra| \leq |a|/2$

CVP in \mathbb{Z} with target -b/a.

Over R

CVP in R with target -b/a \Rightarrow output $r \in R$

Difficulty: Typically $||b + ra|| \approx \sqrt{n} \cdot ||a|| \gg ||a||$.

Relax the requirement

- $||xa + yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(n)$

Over \mathbb{Z}

Input: $a, b \in \mathbb{Z}$, $a \neq 0$

Output: $r \in \mathbb{Z}$

such that $|b+ra| \leq |a|/2$

CVP in \mathbb{Z} with target -b/a.

Over R

CVP in R with target -b/a \Rightarrow output $r \in R$

Difficulty: Typically $||b + ra|| \approx \sqrt{n} \cdot ||a|| \gg ||a||$.

Relax the requirement

- $||xa + yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(n)$

Over \mathbb{Z}

Input: $a, b \in \mathbb{Z}$, $a \neq 0$

Output: $r \in \mathbb{Z}$

such that $|b + ra| \le |a|/2$

CVP in \mathbb{Z} with target -b/a.

Over R

CVP in R with target -b/a \Rightarrow output $r \in R$

Difficulty: Typically $||b + ra|| \approx \sqrt{n} \cdot ||a|| \gg ||a||$.

Relax the requirement

- $||xa + yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(n)$

Over \mathbb{Z}

Input: $a, b \in \mathbb{Z}$, $a \neq 0$

Output: $r \in \mathbb{Z}$

such that $|b+ra| \leq |a|/2$

CVP in \mathbb{Z} with target -b/a.

Over R

CVP in R with target -b/a \Rightarrow output $r \in R$

Difficulty: Typically $||b + ra|| \approx \sqrt{n} \cdot ||a|| \gg ||a||$.

Relax the requirement

Find $x, y \in R$ such that

- $||xa + yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(n)$

⇒ sufficient for Gauss' algo

Computing the Relaxed Euclidean Division

Using the Log space

Objective: find $x, y \in R$ such that

- $||xa + yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(n)$

Objective: find $x, y \in R$ such that

- $||xa + yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(n)$

Difficulty: Log works well with \times , but not with +

Objective: find $x, y \in R$ such that

- $||xa yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(n)$

Difficulty: Log works well with \times , but not with +

Objective: find $x, y \in R$ such that

- $||xa yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(n)$

Difficulty: Log works well with \times , but not with +

(requires to extend Log to take arguments into account)

Objective: find $x, y \in R$ such that

- $||xa yb|| \le ||a||/2$
- $||y|| \leq \operatorname{poly}(n)$

Difficulty: Log works well with \times , but not with +

Solution: If $\| \operatorname{Log}(u) - \operatorname{Log}(v) \| \le \varepsilon$ then $\| u - v \| \lesssim \varepsilon \cdot \min(\| u \|, \| v \|)$

(requires to extend Log to take arguments into account)

New objective

Find $x, y \in R$ such that

- $\| \operatorname{Log}(xa) \operatorname{Log}(yb) \| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \le O(\log n)$

- $\| \operatorname{Log}(xa) \operatorname{Log}(yb) \| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \leq O(\log n)$

- $\| \operatorname{Log}(xa) \operatorname{Log}(yb) \| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \leq O(\log n)$

- $\|(\operatorname{Log}(x) \operatorname{Log}(y)) \operatorname{Log}(b/a)\| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \le O(\log n)$

- $\|(\operatorname{Log}(x) \operatorname{Log}(y)) \operatorname{Log}(b/a)\| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \le O(\log n)$

- $\|(\operatorname{Log}(x) \operatorname{Log}(y)) \operatorname{Log}(b/a)\| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \leq O(\log n)$

Objective: find $x, y \in R$ s.t.

- $\|(\operatorname{Log}(x) \operatorname{Log}(y)) \operatorname{Log}(b/a)\| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \leq O(\log n)$

Solve **exact** CVP in *L* with target *t*

$$L = \begin{pmatrix} \Lambda & \operatorname{Log} r_1 & \cdots & \operatorname{Log} r_{n^2} \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}, \ t = \begin{pmatrix} \operatorname{Log}(b/a) \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

(L is fixed and independent of a and b)

Objective: find $x, y \in R$ s.t.

- $\|(\operatorname{Log}(x) \operatorname{Log}(y)) \operatorname{Log}(b/a)\| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \le O(\log n)$

Solve **exact** CVP in *L* with target *t* with an oracle

$$L = \begin{pmatrix} \Lambda & \operatorname{Log} r_1 & \cdots & \operatorname{Log} r_{n^2} \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}, \ t = \begin{pmatrix} \operatorname{Log}(b/a) \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

(L is fixed and independent of a and b)

Objective: find $x, y \in R$ s.t.

- $\|(\operatorname{Log}(x) \operatorname{Log}(y)) \operatorname{Log}(b/a)\| \le \varepsilon$
- $\| \operatorname{Log}(y) \|_{\infty} \leq O(\log n)$

Solve **exact** CVP in *L* with target *t* with an oracle

$$L = \begin{pmatrix} \Lambda & \log r_1 & \cdots & \log r_{n^2} \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix}, \ t = \begin{pmatrix} \log(b/a) \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

(L is fixed and independent of a and b)

Complexity

Quantum poly time (with the oracle)

Under the carpet

- Heuristics
 - maths justification
 - numerical experiments (in very small dimension)
- Any module / ideal
 - use pseudo-basis
 - ▶ add class group to L (cf [Buc88])
- Full LLL algo over R
 - QR factorization
 - Lovász' swap condition
 - lacktriangle switch between $\mathcal{N}(\cdot)$ and $\|\cdot\|$

[Buc88] J. Buchmann. A subexponential algorithm for the determination of class groups and regulators of algebraic number fields. Séminaire de théorie des nombres.

Summary and impact

LLL algorithm for power-of-two cyclotomic fields

- Approx: quasi-poly(n) $O(k) = 2^{\log(n)O(1).k}$
- Time: quantum polynomial time if oracle solving CVP in L (of dim $O(n^{2+\varepsilon})$)

```
(in general: n \leftarrow \log(\Delta_K))
```

Summary and impact

LLL algorithm for power-of-two cyclotomic fields

- Approx: quasi-poly(n) $O(k) = 2^{\log(n)O(1) \cdot k}$
- Time: quantum polynomial time if oracle solving CVP in L (of dim $O(n^{2+\varepsilon})$)

(in general: $n \leftarrow \log(\Delta_K)$)

In practice? \Rightarrow replace the oracle by a CVP solver

Summary and impact

LLL algorithm for power-of-two cyclotomic fields

- Approx: quasi-poly(n) $O(k) = 2^{\log(n)O(1) \cdot k}$
- Time: quantum polynomial time if oracle solving CVP in L (of dim $O(n^{2+\varepsilon})$)

(in general: $n \leftarrow \log(\Delta_K)$)

In practice? \Rightarrow replace the oracle by a CVP solver

Conclusion

Open problems:

- Better understanding of the lattice L
 - reduce its dimension to O(n)?
 - prove the heuristics?
 - better CVP solver for L?

Conclusion

Open problems:

- Better understanding of the lattice L
 - reduce its dimension to O(n)?
 - prove the heuristics?
 - better CVP solver for L?
- Generalizing LLL to all the BKZ trade-offs?
 - sieving/enumeration in modules?

Conclusion

Open problems:

- Better understanding of the lattice L
 - reduce its dimension to O(n)?
 - prove the heuristics?
 - better CVP solver for L?
- Generalizing LLL to all the BKZ trade-offs?
 - sieving/enumeration in modules?

Thank you