

Vector search and state-of-the-art retrieval for generative Al apps

Pamela Fox Principal Cloud Advocate (Python)

Agenda

- Retrieval-augmented generation (RAG)
- Vectors and vector databases
- · State of the art retrieval with Azure Al Search
- · Data and platform integrations
- · Use cases

Retrieval-augmented generation (RAG)

The limitations of LLMS

Incorporating domain knowledge

Prompt engineering

In-context learning

Fine tuning

Learn new skills (permanently)

Retrieval augmentation

Learn new facts (temporarily)

The benefit of RAG

RAG – Retrieval Augmented Generation

Do my company perks cover underwater activities?

Yes, your company perks cover underwater activities such as scuba diving lessons ¹

User Question Document Search PerksPlus.pdf#page=2: Some of the lessons covered under PerksPlus include: • Skiing and snowboarding lessons • Scuba diving lessons • Surfing lessons • Horseback riding lessons These lessons provide employees with the opportunity to try new things, challenge themselves, and improve their physical skills.....

Large Language Model

Robust retrieval for RAG apps

- Responses only as good as retrieved data
- Keyword search recall challenges
 - "vocabulary gap"
 - · Gets worse with natural language questions
- Vector-based retrieval finds documents by semantic similarity
 - Robust to variation in how concepts are articulated (word choices, morphology, specificity, etc.)

Example

Question:

"Looking for lessons on underwater activities"

Won't match:

"Scuba classes"

"Snorkeling group sessions"

Vectors and vector databases

Vector embeddings

An embedding encodes an input as a list of floating-point numbers.

"dog" \rightarrow [0.017198, -0.007493, -0.057982, 0.054051, -0.028336, 0.019245,...]

Different models output different embeddings, with varying lengths.

Model	Encodes	Vector length
word2vec	words	300
Sbert (Sentence-Transformers)	text (up to ~400 words)	768
OpenAl ada-002	text (up to 8191 tokens)	1536
Azure Computer Vision	image or text	1024

....and many more models!

Demo: Compute a vector with ada-002 (aka.ms/aitour/vectors)

Vector similarity

We compute embeddings so that we can calculate similarity between inputs. The most common distance measurement is **cosine similarity**.

*For ada-002, $cos(\theta)$ values range from 0.7-1

- Demo: Compare vectors with cosine similarity (aka.ms/aitour/vectors)
- <u>ODemo: Vector Embeddings Comparison</u> (aka.ms/aitour/vector-similarity)

Vector search

- 1. Compute the embedding vector for the query
- 2. Find K closest vectors for the query vector
 - · Search exhaustively or using approximations

Demo: Search vectors with query vector (aka.ms/aitour/vectors)

Vector databases

- Durably store and index vectors and metadata at scale
- Various indexing & retrieval strategies
- Combine vector queries with metadata filters
- · Enable access control

PostgreSQL with pgvector example:

```
CREATE EXTENSION vector;
CREATE TABLE items (id bigserial PRIMARY KEY,
 embedding vector(1536));
INSERT INTO items (embedding) VALUES
 ('[0.0014701404143124819,
  0.0034404152538627386,
  -0.012805989943444729,...]');
SELECT * FROM items
ORDER BY
 embedding <=> '[-0.01266181, -0.0279284,...]'
 LIMIT 5;
CREATE INDEX ON items
 USING hnsw (embedding vector cosine ops);
```

Vector databases in Azure

Vectors in Azure databases

Keep your data where it is: native vector search capabilities

Built into Azure Cosmos DB MongoDB vCore and Azure Cosmos DB for PostgreSQL services

Azure Al Search

Best relevance: highest quality of results out of the box

> Automatically index data from Azure data sources: SQL DB, Cosmos DB, Blob Storage, ADLSv2, and more

Azure Al Search

Feature rich, enterprise-ready vector database

Data and platform integration

State-of-the-art retrieval system

Azure Al Search

Feature-rich vector database

Ingest any data type, from any source

Seamless data & platform integrations State-ofthe-art search ranking Enterpriseready foundation

Generally available

Vector search

Public preview

Azure Al Search in Azure Al Studio

Integrated vectorization

Generally available

Semantic ranker

Vector search in Azure Al Search

Feature rich, enterprise-ready

Vector search in Azure Al Search

- · Comprehensive vector search solution
- Enterprise-ready
 - → scalability, security and compliance
- Integrated with Semantic Kernel,
 LangChain, LlamaIndex, Azure OpenAl Service, Azure Al Studio, and more
 - Demo: Azure AI search with vectors (aka.ms/aitour/azure-search)

Vector search strategies

ANN search

- ANN = Approximate Nearest Neighbors
- Fast vector search at scale
- Uses HNSW, a graph method with excellent performance-recall profile
- Fine control over index parameters

Exhaustive KNN search

- KNN = K Nearest Neighbors
- Per-query or built into schema
- Useful to create recall baselines
- Scenarios with highly selective filters
 - · e.g., dense multi-tenant apps

Rich vector search query capabilities

Filtered vector search

- Scope to date ranges, categories, geographic distances, access control groups, etc.
- · Rich filter expressions
- Pre-/post-filtering
 - · Pre-filter: great for selective filters, no recall disruption
 - Post-filter: better for low-selectivity filters, but watch for empty results

https://learn.microsoft.com/azure/search/vector-search-filters

Multi-vector scenarios

- Multiple vector fields per document
- Multi-vector queries
- Can mix and match as needed

Enterprise ready vector database

Data Encryption

Including option for customer-managed encryption keys

Secure Authentication

Managed identity and RBAC support

Network Isolation

Private endpoints, virtual networks

Compliance Certifications

Extensive certifications across finance, healthcare, government, etc.

Not just text

- · Images, sounds, graphs, and more
- · Multi-modal embeddings e.g., images + sentences in Azure Al Vision
- Still vectors \rightarrow vector search applies
- RAG with images with GPT-4 Turbo with Vision
- Demo: Searching images (aka.ms/aitour/image-search)

Azure AI Search:

State-of-the-art retrieval system

Relevance

- Relevance is critical for RAG apps
- Lots of passages in prompt → degraded quality
 - → Can't only focus on recall
- Incorrect passages in prompt >
 possibly well-grounded yet
 wrong answers
 - → Helps to establish thresholds for "good enough" grounding data

Improving relevance

All information retrieval tricks apply!

Complete search stacks do better:

- Hybrid retrieval (keywords + vectors) > pure-vector or keyword
- Hybrid + Reranking > Hybrid

Identify good & bad candidates

- · Normalized scores from Semantic ranker
- Exclude documents below a threshold
- Demo: Compare text, vector, hybrid, reranker (aka.ms/aitour/search-relevance)

Generally available

Semantic ranker

SOTA re-ranking model

Highest performing retrieval mode

New pay-go pricing: Free 1k requests/month, \$1 per additional 1k

Multilingual capabilities

Includes extractive answers, captions and ranking

Retrieval relevance across methods

Impact of query types on relevance

	Q	Y	Y	Y
Query type	Keyword [NDCG@3]	Vector [NDCG@3]	Hybrid [NDCG@3]	Hybrid + Semantic ranker [NDCG@3]
Concept seeking queries	39	45.8	46.3	59.6
Fact seeking queries	37.8	49	49.1	63.4
Exact snippet search	51.1	41.5	51	60.8
Web search-like queries	41.8	46.3	50	58.9
Keyword queries	79.2	11.7	61	66.9
Low query/doc term overlap	23	36.1	35.9	49.1
Queries with misspellings	28.8	39.1	40.6	54.6
Long queries	42.7	41.6	48.1	59.4
Medium queries	38.1	44.7	46.7	59.9
Short queries	53.1	38.8	53	63.9

Azure AI Search:

Seamless Data and Platform Integrations

Data preparation for RAG applications

Chunking

- · Split long-form text into short passages
 - · LLM context length limits
 - · Focused subset of the content
 - · Multiple independent passages
- Basics
 - · ~200–500 tokens/passage
 - · Maintain lexical boundaries
 - · Introduce overlap
- · Layout
 - · Layout information is valuable, e.g., tables

Vectorization

· Indexing-time: convert passages to vectors

O Example: Data preparation process

Integrated vectorization

End-to-end data processing tailored to RAG

In preview

Data source access

- Blob Storage
- ADLSv2
- SQL DB
- CosmosDB
- ..
- + Incremental change tracking

File format cracking

- PDFs
- Office documents
- JSON files
- ..
- + Extract images and text, OCR as needed

Chunking

- Split text into passages
- Propagate document metadata

Vectorization

- Turn chunks into vectors
- OpenAl embeddings or your custom model

Indexing

- Document index
- Chunk index
- Both

Azure Al Studio & Azure Al SDK

- First-class integration
- Build indexes from data in Blob Storage, Microsoft Fabric, etc.
- Attach to existing Azure Al Search indexes

Use cases

Example uses

Developers have used Azure AI search to create RAG apps for...

- Public government data
- · Internal HR documents, company meetings, presentations
- Customer support requests and call transcripts
- Technical documentation and issue trackers
- Product manuals

Next steps

Learn more about Azure Al Search

https://aka.ms/AzureAlSearch

Dig more into quality evaluation details and why Azure AI Search will make your application generate better results

https://aka.ms/ragrelevance

Deploy a RAG chat application for your organization's data https://aka.ms/azai/python

Explore Azure Al Studio for a complete RAG development experience https://aka.ms/AzureAlStudio

Join us to learn together!

Today's workshops:

Workshop: Developing a production-level RAG workflow

12:00-1:15pm

2:15-3:30pm

Build a RAG workflow with Prompt Flow, Azure Al Studio, Azure Al Search, Cosmos DB and Azure OpenAl

See you there!

Upcoming virtual event:

aka.ms/hacktogether/chatapp