Math 323 HW14

Minh Bui

June 12, 2017

Problem 9.9b: Let A be a set and B_i with $i \in \mathcal{I}$ be a family of sets. Prove:

$$A \cup \left(\bigcup_{i \in \mathcal{I}} B_i\right) = \bigcup_{i \in \mathcal{I}} (A \cup B_i).$$

Proof. Let A be a set and B_i with $i \in \mathcal{I}$ be a family set. We will need to prove 2 claims.

1.
$$A \cup \left(\bigcup_{i \in \mathcal{I}} B_i\right) \subseteq \bigcup_{i \in \mathcal{I}} (A \cup B_i)$$

Assume $a \in A \cup \left(\bigcup_{i \in \mathcal{I}} B_i\right)$. We have two posibilities.

i. $a \in A$.

Assume $a \in A$. Then $a \in A \cup B_i$ for some $i \in \mathcal{I}$. So then

ii. $a \in \bigcup_{i \in \mathcal{I}}^{i \in \mathcal{I}} B_i$. Assume $a \in \bigcup_{i \in \mathcal{I}} B_i$. So $\exists k \in \mathcal{I} \text{ s.t } a \in B_k$. Then $a \in B_k \cup A$. Thus $a \in \bigcup_{i \in \mathcal{I}} (A \cup B_i)$.

2.
$$A \cup \left(\bigcup_{i \in \mathcal{I}} B_i\right) \supseteq \bigcup_{i \in \mathcal{I}} (A \cup B_i)$$

2. $A \cup \left(\bigcup_{i \in \mathcal{I}} B_i\right) \supseteq \bigcup_{i \in \mathcal{I}} (A \cup B_i)$ Assume $a \in \bigcup_{i \in \mathcal{I}} (A \cup B_i)$. We have two possibilities.

Assume $a \in A$. Then $a \in A \cup \left(\bigcup_{i \in \mathcal{I}} B_i\right)$.

Assume $a \notin A$. Then $\exists k \in \mathcal{I} \text{ s.t } a \in B_k$. Then $a \in \bigcup_{k \in \mathcal{I}} B_i$. Thus

$$a \in \left(\bigcup_{k \in \mathcal{I}} B_i\right) \cup A.$$

Proving 2 above claims entails: $A \cup \left(\bigcup_{i \in \mathcal{I}} B_i\right) = \bigcup_{i \in \mathcal{I}} (A \cup B_i)$.

Problem 9.13: Prove that $\bigcap_{n\in\mathbb{N}} (0, \frac{n+1}{n}) = (0, 1].$

Proof. Since $n \in \mathbb{N}$, $\frac{n+1}{n} = 1 + \frac{1}{n}$. We will need to prove 2 claims.

1. $\bigcap_{n \in \mathbb{N}} (0, 1 + \frac{1}{n}) \subseteq (0, 1].$

Precisely, we need to prove: if $x \in \bigcap_{n \in \mathbb{N}} (0, 1 + \frac{1}{n})$, then $x \in (0, 1]$. We proceed by proving the contrapositive of the statement. So we want to show that: if $x \notin (0, 1]$, then $x \notin \bigcap_{n \in \mathbb{N}} (0, 1 + \frac{1}{n})$.

Assume $x \notin (0,1]$. This means x < 0 or x > 1.

- 1. x < 0. Assume x < 0. Then $\forall n \in \mathbb{N}, x \notin (0, 1 + \frac{1}{n})$. So $x \notin \bigcap_{n \in \mathbb{N}} (0, 1 + \frac{1}{n})$.
- 2. x > 1. Assume x > 1. Since $x \in \mathbb{R}$, x - 1 > 0 and $x - 1 \in \mathbb{R}$. By the corollary of the Archimedean principle, $\exists t \in \mathbb{N}$ s.t $\frac{1}{t} < x - 1$. So then $\frac{1}{t} + 1 < x$. This means $x \notin (0, 1 + \frac{1}{t})$ for some $t \in \mathbb{N}$. Then $x \notin \bigcap_{n \in \mathbb{N}} (0, 1 + \frac{1}{n})$.

Thus $0 < x \le 1$ and hence $x \in (0, 1]$.

 $\begin{array}{l} 2. \ \bigcap_{n \in \mathbb{N}} (0, 1 + \frac{1}{n}) \supseteq (0, 1]. \\ \text{Assume } x \in (0, 1]. \ \text{Then } 0 < x \leq 1. \ \text{Then } \forall n \in \mathbb{N}, \ 0 < x < 1 + \frac{1}{n}. \\ \text{This means } x \in \bigcap_{n \in \mathbb{N}} (0, 1 + \frac{1}{n}). \end{array}$

So
$$\bigcap_{n\in\mathbb{N}} (0, \frac{n+1}{n}) = (0, 1].$$

Problem 9.17: For each $s \in \mathbb{Q}$, let $E_s = \{1, \frac{1}{2}, s\}$.

(a) Find $\bigcup_{t\in\mathbb{Q}} E_t$ and prove your answer is correct.

$$\bigcup_{t\in\mathbb{Q}} E_t = \mathbb{Q}.$$

Proof. We will need to prove 2 things.

1. We want to show $\bigcup_{t\in\mathbb{Q}} E_t \subseteq \mathbb{Q}$. Assume $q \in \bigcup_{t\in\mathbb{Q}} E_t$. So then exactly one of these holds: q = 1,

 $q=\frac{1}{2}, \text{ or } q=t \text{ for some } t\in\mathbb{Q}. \text{ Since } \frac{1}{2}\in\mathbb{Q},\, 1\in\mathbb{Q}, \text{ and } t\in\mathbb{Q}, q\in\mathbb{Q}.$

2. We also want to show $\mathbb{Q} \subseteq \bigcup_{t \in \mathbb{Q}} E_t$. Assume $q \in \mathbb{Q}$. Then $q \in E_q$. Then $q \in \bigcup_{t \in \mathbb{Q}} E_t$.

Thus $\bigcup_{t\in\mathbb{Q}} E_t = \mathbb{Q}$.

(b) Find $\bigcap_{t\in\mathbb{O}} E_t$ and prove your answer is correct.

 $\bigcap_{t\in\mathbb{O}} E_t = \{1, \frac{1}{2}\}.$

Proof. We will need to show that.

- 1. $\bigcap_{t \in \mathbb{Q}} E_t \subseteq \{1, \frac{1}{2}\}.$ Assume $q \in \bigcap_{t \in \mathbb{Q}} E_t$. So then $\forall t \in \mathbb{Q}, q \in E_t$. So then exactly one of these holds: q = 1 or $q = \frac{1}{2}$ which means $q \in \{1, \frac{1}{2}\}.$
- 2. $\{1, \frac{1}{2}\} \subseteq \bigcap_{t \in \mathbb{Q}} E_t$. Assume $q \in \{1, \frac{1}{2}\}$. Then $q \in \{1, \frac{1}{2}, t\} \forall t \in \mathbb{Q}$. Thus $q \in \bigcap_{t \in \mathbb{Q}} E_t$.

Hence, $\bigcap_{t\in\mathbb{O}} E_t = \{1, \frac{1}{2}\}.$

(c) Is the statement: If $E_s = E_r$, then s = r true or false? Prove your answer.

True.

Proof. Assume $E_s = E_r$. This means

- 1. $E_s \subseteq E_r$. Assume $q \in E_s$. Then exactly one of these has to be true: $q=1, q=\frac{1}{2}$, or q=s. But s=r. So then exactly one of these holds: $q=1, q=\frac{1}{2}$, or q=r. This means $q \in E_r$.
- 2. $E_r \subseteq E_s$. Assume $q \in E_r$. Then exactly one of these has to be true: $q = 1, q = \frac{1}{2}$, or q = r. But r = s. So then exactly one of these holds: $q = 1, q = \frac{1}{2}$, or q = s. This means $q \in E_s$.

Thus: If $E_s = E_r$, then s = r.

- Problem 10.4: Consider the relation on \mathbb{Z} defined by $n\mathcal{R}m$ if n+m is even.
 - (a) Is \mathcal{R} reflexive? Yes.

Proof. Let $n \in \mathbb{Z}$. We need to show $n\mathcal{R}n$ if n+n is even. Regardless of whether n is even or n is odd, n+n=2n is always even.

(b) Is \mathcal{R} symmetric? Yes

Proof. Let $n, m \in \mathbb{Z}$. We need to show: if $n\mathcal{R}m$ then $m\mathcal{R}n$. Assume $n\mathcal{R}m$. This means n+m is even. But then n+m=m+n, which is also even. So m+n is even. Thus $m\mathcal{R}n$.

(c) Is \mathcal{R} transitive? Yes.

Proof. Let a, b, and $c \in \mathbb{Z}$. We need to show: If $a\mathcal{R}b$ and $b\mathcal{R}c$, then $a\mathcal{R}c$.

Assume $a\mathcal{R}b$ and $b\mathcal{R}c$. Respectively we have,

$$\exists k \in \mathbb{Z} \text{ s.t } a+b=2k$$
$$\exists l \in \mathbb{Z} \text{ s.t } b+c=2l$$

Consider a + b + b + c

$$a+b+b+c = 2k + 2l$$

$$a+2b+c = 2k + 2l$$

$$a+c = 2k + 2l - 2b$$

$$a+c = 2(k+l-b)$$

We know $(k+l-b) \in \mathbb{Z}$. So the relation R is transitive. \square

(d) Does \mathcal{R} have trichotomy? No since \mathcal{R} is symmetric.

Problem 10.5: Consider the relation on \mathbb{R} defined by $n \subseteq m$ if $n - m \in \mathbb{Z}$.

(a) Is \simeq reflexive? Yes

Proof. Assume $n \in \mathbb{R}$. We want to show $n \subseteq n$. This means we want $n - n \in \mathbb{Z}$. Since $n - n = 0 \in \mathbb{Z}$, the relation \subseteq is reflexive.

(b) Is \leq symmetric? Yes

Proof. Assume $n, m \in \mathbb{R}$. We want to show: if $n \subseteq m$, then $m \subseteq n$. Assume $n \subseteq m$. This means $\exists k \in \mathbb{Z} \text{ s.t } n-m=k$. Multiply both sides by -1: m-n=-k. We know $-k \in \mathbb{Z}$ so the relation \subseteq is symmetric.

(c) Is \simeq transitive? Yes

Proof. Assume $m, n, p \in \mathbb{R}$. We want to show: if $n \subseteq m$ and $m \subseteq p$, then $n \subseteq p$.

Assume $n \subseteq m$ and $m \subseteq p$. Respectively we have,

$$\exists k \in \mathbb{Z} \text{ s.t } n - m = 2k$$
$$\exists l \in \mathbb{Z} \text{ s.t } m - p = 2l$$

Consider
$$(n-m)+(m-p)$$

$$n-m+m-p=2k+2l$$

$$n-p=2k+2l$$

We know $2k+2l \in \mathbb{Z}$. So $n \subseteq p$. Thus the relation \subseteq is transitive. \square

(d) Does \backsimeq have trichotomy? No because \backsimeq is symmetric.