CSc 360 Operating Systems Introduction

Jianping Pan Fall 2023

About the course

- Introduction to Operating Systems
 - (A01/2) MR 8:30--9:50am, ELL168
 - Bright: "Fall 2023 CSC 360 A01 A02 X"
 - lectures, tutorials, additional resources, etc
 - assignments, gradebook, etc
 - discussion channel hosted on UVic Teams
 - prerequisites
 - Data structures (CSc 225 or 226)
 - Computer architecture (CSc 230 or CENG 255)
 - System programming (CSc/SENG 265, CENG)

Message from Undergrad Advisor

- Email: cscadvisor@uvic.ca
- Do not have the prerequisite course(s)?
 - need to obtain a waiver
 - otherwise, prerequisite drop after the first week
- Taking the course more than twice?
 - need to have a letter from the Chair and the Dean
 - otherwise, being dropped from the class
- Make sure you can receive email from Bright!
 - important email announcement from time to time
 - -9/14/25e UVic Teams first CSc 360

About the course instructor

- Dr. Jianping Pan <pan@uvic.ca>
 - use UVic Teams first, as email not always reliable
 - to help, always include [csc360] in your email subject line
 - office hours: M 1--3pm
 - or by appointment
 - on UVic Teams
 - work experience
 - UVic, industry research labs, UWaterloo postdoc
 - research area
 - computer networks and distributed systems
 - http://web.uvic.ca/~pan

About the lab/tutorial instructors

- Zhiming Huang
 - their email on Brightspace
- Tutorials: start this week!
 - Please attend your registered section only!
 - tutorial lectures
 C, libc, sockets, pthreads, ...
 T01: ECS104 T 1:30pm T02: ECS104 W 1:30pm T03: ECS108 F 12:30pm
 - assignment help
 - spec go-through, common problems, ...
 - practice problems

Course materials

- Required textbook
 - Operating system concepts, 7th or **newer** editions
 - 6th and other editions: different chapter schedules
 - online resources

http://codex.cs.yale.edu/avi/os-book/ or http://os-book.com/

- errata, slides, practice exercises and solutions
- Explore further
 - web links @ course web site
 - Google!

9/11/23

What's operating system?

- OS is a special program (computer software)
 - run "directly" on computer hardware
 - kernel: CPU, memory, I/O, etc
 - support many other programs
 - system programs: shell, compiler, assembler, etc
 - application programs: editor, browser, game, etc
- Examples
 - Linux/Unix, MacOS, Windows, and many others
 - -- Android, iPhone iOS, Symbian, WP/M, Maemo, etc

What does OS offer?

- Computer systems
 - hardware, system programs (OS+), apps, users
- OS: between hardware and other software
 - present a virtual machine to other software
 - hide hardware details, extend hardware features
 - hardware ++
 - provide controlled access to hardware
 - restrict hardware access, manage hardware resources
 - hardware ---

Why do we need OS?

- C&C: control and coordinate
 - allow a program to use computer properly
 - program execution, error detection, ...
 - allow many programs to use computer properly
 - resource allocation, conflict arbitration, ...
- S&S: share and separate (protect)
 - share btw devices, programs, computers, users
 - protect one from all the others

FUN: why "360"?

Why do we study OS?

- How to use OS
 - not as a computer user!
 - point-and-click or copy-and-paste
 - but as a system programmer!
 - programming!!!
- How to design OS
 - or design any complex, large-scale software
- How to implement OS
 - or write any effective and efficient code

9/11/23 CSc 360

Course objectives

- "An introduction to the major concepts of modern operating systems and the relationship between the operating system and the architecture of computer systems."
- Selected topics
 - process: process, thread, scheduling, synch
 - memory: memory management, virtual memory
 - storage: file systems, I/O systems

Your participation

- Lectures
 - essential for doing well in assignments/exams
- Assignments (55% total)
 - 3 programming assignments + 1 written assignment
- Tutorials
 - extra details and hints on assignments
- Exams
 - 3 midterms (15% each on Oct 5, Nov 2, Dec 4, 2023)
- See the course outline for detailed schedules

9/11/23 CSc 360

Suggested approach

- Before lectures
 - read textbook; preview video; find questions
- Attend lectures
 - take notes; ask questions; answer questions!
- After lectures
 - read textbook; explore further
 - write assignments (start early!)
 - get help and help others (discussion forum, etc)
- Do attend tutorials

Common mistakes/complaints

- "Slides are already online"
 - Lectures are much more than just browsing slides
 - Pay attention to in-class questions/discussion too!
- "Slides are too brief"
 - Slides are just guidelines to navigate/understand
 - Take notes in class and read the textbook!
- "Start to do assignments on the due date"
 - Simple fact: you cannot finish, or even start, them
 - Start early and let us know if you have questions!

9/11/23 CSc 360

More systems courses

- Computer networks (CSc 361 ~ networkOS)
 - suggestion: take it after CSC360
- Advanced computer networks (CSc 466)
- Advanced communication networks (CSc 467)
- Wireless and mobile networks (CSc 463)
- Network management and security (topics/DS)
- Embedded systems (CSc 460)
- Multimedia systems (CSc 461)
- Distributed systems (CSc 462)

Your feedback

- Teaching/learning is interactive
 - two-way communications
- Let me know
 - what you think about lectures, assignments, tutorials, exams, topics, ...
 - what you want to know more or probe further
- You can always reach me
 - in class, during office hours, by Teams/email

Course Reps

- Please volunteer yourself!
 - Anonymize
 - Aggregate
 - Amplify
- Feedback to the teaching team
 - lecture and lab/tutorial instructors, markers
 - meet once a month face-to-face or by Teams
 - communicate electronically when necessary

9/11/23 CSc 360

Course policies

- See official course outline
 - late assignments, mark appeals, etc
 - academic integrity
 - zero tolerance on cheating!
 - accommodation, etc
- No group assignment/project
 - collaboration/participation is encouraged
 - responsibility: your submitted work is yours
 - obligation: give credits to references

9/11/23 CSc 360

Assignment 0

- Due on this Friday, Sept 15, 2023
- Through Brightspace
 - Assignment -> A0
 - your academic program
 - things you already known in OS
 - things you want to know in OS
 - issues with course logistics?
 - willing to be the course rep? are you in T01/2/3?
 - your Brightspace and Teams profile photo updated
 - let me know you! e.g., for reference letters in future

Need more challenge?

- ACM International Collegiate Programming Contest (ICPC)
 - UVic has been participating in the last few years
 - https://oac.uvic.ca/programmingclub/
- BCNET Broadband Innovation Challenge, or DMC
 - any applications running over broadband networks
 - previous winning projects (some from UVic)
 - http://www.cs.uvic.ca/~pan/bcnet
- Other student competitions and clubs
 - https://www.uvic.ca/ecs/computerscience/undergraduate/ student-clubs/index.php

This lecture so far

- An introduction to the course
 - who, when, where, what, and why
 - course materials
 - course objectives
 - course topics
 - you and the course

A quick review and a quick overview

Output

Device

Central Processing Unit

Control Unit

Arithmetic/Logic Unit

Memory Unit

Input

Device

Computer organization and architecture

- CPU
- Memory
- I/O: polling, interrupt, DMA
- Operating system
 - The software that manages CPU, memory and I/O, as many more
 - so let's review CPU, memory and I/O first

CPU Computer Organization

Memory

now

CPU

- Access
 - pins: address, data, control, status
- Internals
 - program counter (PC)
 - registers: address, data, control, flags
 - arithmetic logic unit (ALU), FPU, etc
- Benchmarks
 - clock (GHz), instructions/cycle, MIPS

24

9/11/23

CSc 360

* FLOPS * multi-core * GPU/GPGPU * top500.org

CPU operations

- Fetch
 - retrieve instructions from memory (cache)
- Decode
 - instruction: operator, operands; microcode
- Execute
 - arithmetic/logic operation
 - move data between register, memory, I/O
 - change execution flow

9/11/23

CSc 360

25

* CISC vs RISC * x86 vs ARM, etc * what's in your (i)phone?

Memory

SSD

Access

- linear address
- segmented address: segment, index

NVMe

physical address: cylinder, header, sector (disk)

Benchmarks

- clock (MHz); read/write cycles
- width (bits)
- throughput (Mbps)

Memory hierarchies

- Speed vs. size (vs. cost)
 - registers: inside CPU
 - cache: transparent to programs
 - memory: main storage
 - DRAM, DDR, SDRAM, SRAM, etc
 - disks: secondary storage
 - electronic, magnetic, optical, etc
 - tapes: backup storage
 - networked storage: NAS/SAN
- Caching

9/11/23

CSc 360

27

- A large variety of input/output devices
 - keyboard/mouse, video, audio, network, etc
- Access

I/O

- Address
 - port numbers
 - I/O vs. memory space
- Interrupt
- Direct memory access (DMA)
- Synchronous vs asynchronous

(b)

9/11/23

(a)

Interrupts

- Asynchronous operation
- Non-maskable interrupts
 - e.g., hardware fault
- Hardware interrupts
 - hardware events: e.g., I/O completion
 - interrupt controller: priority & arbitration
- Software interrupts
 - trap, system call

Interrupt handling

- Save current state
 - CPU counters, registers, flags at system stack
- Update program counter
 - interrupt controller; interrupt vectors
- Execute interrupt routine
- Restore previous state
- Multiple interrupts
 - priority, masking, reentry

DMA

- High-speed I/O, bulk data transfe
- DMA controller
 - source/destination address

I/O controller

GND) VSS

- counter: the amount of data to be moved
- DMA handling
 - program DMA controller
 - execute DMA concurrently
 - issue an interrupt on DMA completion

Computer architectures

- Single-processor systems
- Multi-processor systems
 - symmetric multiprocessing (SMP)
- Cluster systems
 - interconnected systems
- Distributed systems
 - networked systems
- Grid systems → Cloud → Fog systems

OS: historical view

- Requirements evolve
- Was
 - computers were more expensive than users
 - goals: make computers more efficiently used
 - results: share computers

Now

- users become more "expensive" than computers
- goals: make computers more effectively used
- results: share users (among many computers)

9/11/23 CSc 360 33

* network OS; data-center OS

* "attention" war

OS: generations

- Uniprogramming
 - "One program at a time"
 - start, execute, {wait, execute}*, finish
 - wait for: input/output, other programs, etc
 - CPU may be idle most of the time
- Multiprogramming
 - "Many programs at a time"
 - try to keep CPU always busy
 - handle multiple programs at the same time
 - "share" (a) CPU

Batch processing

- Load a pool of jobs
- Execute one job until it is blocked
- Pick another one to execute

Time sharing

- Execute one job up to a certain time
 - e.g., hardware timer with counter
- Switch to another one to execute
 - job scheduling, memory swapping
- Seem to execute many jobs at the same time
- Batch processing vs time sharing
 - job responsiveness
 - switching overhead

- Interrupt the current job
 - yield: system call trap (e.g., I/O)
 - yank: hardware timer interrupt
 - how about an "abusive" job?
- Dual-mode operation
 - user mode for regular applications
 - kernel mode with privileged instructions
 - trap: user to kernel entry

OS:

operations

Process management

- Process: a running program
 - vs thread
- Create, delete, suspend, resume process
 - resource allocation: CPU, memory, I/O, etc
- Schedule processes/threads
- Synchronize processes
- Communicate between processes
- Handle deadlocks

Memory management

- (Main) memory
 - store instructions for execution
 - store data for processing
- Keep track available memory
- Allocate and reclaim memory
 - provide protected access
 - trap invalid access
- Swap in/out (virtual) memory

Storage and I/O management

- "In Unix, everything is a file"
 - a logical interface: open, read, write
- Create and delete files and directories
 - directory is a special file
 - file system hierarchy
- Manipulate files and directories
 - provide protected access
 - handle device-specific issues (disks, etc)

9/11/23 CSc 360 40

* main reason to see OS (installation disc) grow in size (drivers)

User management

- Authentication
 - who's who
 - user credentials (e.g., password, token)
- Authorization
 - what can do what
 - access control (e.g., read, write, execute)
- Accounting
 - what has been done (e.g., logging)

Specialized OS

- Different requirements and constraints
 - real-time systems
 - "hard" real-time OS in embedded systems
 - "soft" real-time OS in multimedia systems
 - handheld systems
 - almost a full-blown OS, with resource constraints
 - embedded systems
 - very severe resource constraints

The 2nd half of the lecture

- An overview on operating systems
 - Multiprogramming
 - Batch processing vs time sharing
 - Dual-mode operations
 - Issues in
 - process management
 - memory management
 - file management

Next lecture

- Interfaces to OS
 - CLI, GUI, system calls, API
 - read OSC7 Chapter 2 (or OSC6 Chapter 3)