

Image Representation

Color models

Color Models

- Abstract mathematical model describing the way colors can be represented as tuples of numbers
- Example
 - □ RGB, CMYK, ...
- Why do we need multiple color models?

RGB

- □ Red
- □ Green
- □ Blue
- Additive color mixing

CMYK

- □ Cyan
- Magenta
- □ Yellow
- Black
- Subtractive color mixing
- Used in printing

HSL and **HSV**

- □ Hue
- Saturation
- □ Lightness, Value

HSL and HSV - motivation

User friendly

YUV

- □ Y − luma
- UV chrominance
- □ TV (PAL)

Other Color Spaces

- \square XYZ
 - Based on human color perception
- YiQ
 - Rotated YUV (NTSC)
- YDbDr
 - Rotated YUV (SECAM)
- YPbPr, YCbCr
 - Scaled YUV, mostly digital
- LAB
 - Device independent model

- Sc The source element color value.
 - \square Sca = Sc*Sa
- □ Sa The source element alpha value.
- Dc The canvas color value prior to compositing.
 - \Box Dca = Dc*Da
- Da The canvas alpha value prior to compositing.
- Dc' The canvas color value post compositing.
 - Dca' = Dc'*Da'
- Da' The canvas alpha value post compositing.

- \Box C_s
 - Source color
 - Top layer
- \Box c_b
 - Backdrop color
 - Bottom layer
- \Box C(c_b, c_s)
 - Final color

Multiply

□ At least as dark as either of the two components

$$C(c_s, c_b) = c_s c_b$$

Screen

At least as light as either of the two components

$$C(c_s, c_b) = 1 - [(1 - c_s)(1 - c_b)] = c_s + c_b - c_s c_b$$

Overlay

 Top layer overlays the bottom while preserving its highlights and shadows

$$C(c_s, c_b) = \begin{cases} Multiply(c_s, 2c_b) & \text{if } c_b \le 0.5\\ Screen(c_s, 2c_b - 1) & \text{if } c_b > 0.5 \end{cases}$$

Darken

Replace color if the top layer is darker

$$C(c_s, c_b) = \min(c_s, c_b)$$

Lighten

Replace if the top layer is lighter

$$C(c_s, c_b) = \max(c_s, c_b)$$

Color Dodge

 Brightens the bottom layer color to reflect the top layer color

$$C(c_{s}, c_{b}) = \begin{cases} \min(1, c_{b} / (1 - c_{s})) & \text{if } c_{s} < 1 \\ 1 & \text{if } c_{s} = 1 \end{cases}$$

Color Burn

 Darkens the bottom layer color to reflect the top layer color

$$C(c_s, c_b) = \begin{cases} 1 - \min(1, (1 - c_b)/c_s) & \text{if } c_s > 1 \\ 1 & \text{if } c_s = 0 \end{cases}$$

Hard Light

- Similar to Overlay
- Swap layers

$$C(c_s, c_b) = \begin{cases} Multiply(2c_s, c_b) & \text{if } c_s \le 0.5\\ Screen(2c_s - 1, c_b) & \text{if } c_s > 0.5 \end{cases}$$

Soft Light

□ Softer version of overlay

$$C(c_s, c_b) = \begin{cases} c_b - (1 - 2c_s)c_b(1 - c_b) & \text{if } c_s \le 0.5 \\ c_b + (2c_s - 1)(D(c_b) - c_b) & \text{if } c_s > 0.5 \end{cases}$$

where
$$D(x) = \begin{cases} 16x^3 - 12x^2 + 4x & \text{if } x \le 0.25 \\ \sqrt{x} & \text{if } x > 0.25 \end{cases}$$

Soft and Hard Light – Comparison

Hard Lite

Soft Light

Difference

 Subtracts the darker of the two constituent colors from the lighter color

$$C(c_s, c_b) = |c_s - c_b|$$

Exclusion

 Produces an effect similar to that of the Difference mode but lower in contrast

$$C(c_s, c_b) = c_b + c_s - 2c_b c_s$$

Questions ???