jméno a příjmení	login	cvičící
		Fuchs / Hliněná / Tůma

IDM, 15.1.2024

Т	1	2	3	1	5	6	Σ
•	1		9	1	0	U	

Zkouška se skládá ze dvou částí, testu za **20 bodů** a písemky za **60 bodů**. Z testu musíte získat **aspoň 15 bodů**, v opačném případě písemka nebude hodnocena a celá zkouška bude hodnocena 0 body.

TEST

Každá otázka je za 2 body. Odpovědi napište na tento list do vymezeného prostoru pod otázkou.

- 1. Znegujte následující tvrzení: Jestliže je relace diagonální, pak je symetrická i antisymetrická. Odpověď: klasická negace jen přepsat do slov: negace je diagonální a není symetrická a nebo není asymetrická
- 2. Rozhodněte, zda pro množinu $M = \{1, 2, 3, 4\}$ a relaci $R = \{[1, 2], [1, 3]\}$ platí formule

$$\forall a, b, c \in M : ([b, a] \in R \land [c, a] \in R) \Rightarrow b = c.$$

Odpověď:

- 3. Nechť $s_n=1+3+5+\cdots+(4n-1)$. Určete s_{n+1} . Odpověď: Jako v matematické indukci $1+3+5+\ldots+(4n-1)+(4n+1)+(4n+3)$
- **4.** $A = \{\{a\}\}, B = \{a\}$. Určete $\mathcal{P}(A \cup B)$. Odpověď:
- 5. $A = \{1, 2, 3, 4\}, B = \{1, 3, 4, 6\}, C = \{2, 3, 4, 6\}.$ Určete $A \triangle B \triangle C$. Odpověď:
- **6.** Funkce $f: \mathbb{R} \to \mathbb{R}$ je dána předpisem f(x) = |2 x|. Určete $f^{-1}(\{0, 1\})$. Odpověď: úplně klasicky, ale máme 3 různé body
- 7. $S = \{[a,b],[c,c],[d,b]\}$. Určete S^{-1} . Odpověď:
- 8. Napište rozklad množiny $M = \{a, b, c, d, e, f\}$ určený relací ekvivalence

$$R = \{[a,a], [b,b], [c,c], [d,d], [d,e], [d,f], [e,d], [e,e], [e,f], [f,d], [f,e], [f,f]\}.$$

 $Odpověď: {a},{b},{c},{d,e,f}}$

- 9. Na množině reálných čísel je dána operace \circ následovně: $a \circ b = a + b 1$. Je operace \circ komutativní? Odpověď:
- **10.** Na množině $\{a, b, c, d, e, f\}$ nakreslete svaz, který není komplementární. *Odpověď*:

PÍSEMKA

Každý příklad je za 10 bodů. Písemku vypracujte na vlastní papíry. U každého příkladu přehledně napište postup řešení a jasně označte výsledek.

1. Nechť $M = \{1, 2, 3, 4, 5, 6\}$. Najděte všechny dvojice množin X, Y, pro které platí:

$$X \cup Y = M \land X \cap Y = \emptyset \land \forall x \in X \exists y \in Y : x - y = 2.$$

2. Dokažte, že pro libovolné dvě množiny A,B platí: pro vše chny X platí takové Y, že x-2 = 2

$$A\setminus (A\setminus B)=A\cap B.$$

3. Je zadána relace $R = \{[m, n] \in \mathbb{R}^2 : m + n \leq 1\}$. Zjistěte, zda relace R na množině \mathbb{R} je a) reflexivní, b) ireflexivní, c) symetrická, d) antisymetrická, e) tranzitivní. Svoje tvrzení zdůvodněte.

relace může nebýt reflexivní ani ireflexivní najednou

- **4.** Na množině $A = \{1, 2, 4, 8, 12, 24\}$ je dána relace \sim následovně: $a \sim b \Leftrightarrow a \mid b$.
 - a) Dokažte, že relace \sim je uspořádání na množině A. Nakreslete hasseovský diagram.
 - b) Dokažte, že (A, \sim) je svazově uspořádaná množina. Určete operace infima a suprema.
 - c) Zjistěte, zda je tento svaz distributivní, modulární a komplementární.
- **5.** Na množině $M = \{a, b, c, d, e, f\}$ je dán rozklad $S = \{\{a, b, c\}, \{d\}, \{e, f\}\}.$
 - a) Určete relaci ekvivalence R, která je dána rozkladem S.
 - b) Na množině M určete operaci o tak, aby R byla kongruence na M vzhledem k operaci o a aby faktorová algebra byla grupa.
- $\bf 6.~a)$ Najděte nejkratší cestu z vrcholu A do vrcholu B v grafu na obrázku. Postup vyznačte do obrázku.

b) Je možné graf s posloupností stupňů 3, 3, 3, 3, 3, 3 nakreslit rovinně?