

Tecnologias de Realidade Estendida (XR) na cirurgia:

Nuno S. Osório | nosorio@med.uminho.pt

Objetivos de Aprendizagem:

No final da sessão, os participantes serão capazes de:

- 1. Diferenciar entre VR, AR, MR e XR descrevendo suas características principais e papéis distintos na tecnologia médica.
- 2. Identificar aplicações atuais da XR no ensino cirúrgico, no planeamento pré-operatório e no suporte intraoperatório.
- 3. Comparar os principais dispositivos XR (Meta Quest 3, Apple Vision Pro, HoloLens 2, Magic Leap 2) com base nas suas especificações técnicas e usabilidade em contexto cirúrgico.
- 4. Avaliar criticamente dados preliminares e evidências sobre o potencial da XR para melhorar a cirurgia.
- 5. Refletir sobre direções futuras discutindo as necessidades de investigação e a potencial evolução das tecnologias de XR em cirurgia.

Visão global da sessão

- Discussão guiada por slides para introduzir conceitos e promover a construção do conhecimento a partir da interação e reflexão sobre o conteúdo apresentado (Teoria Construtivista).
- 2. Sessão prática com dispositivos XR, aplicações e vídeos cirúrgicos para "fazer" e "refletir" sobre a prática com estas tecnologias (Aprendizagem Experiencial de Kolb).
- 3. Realização de pesquisas temáticas e debates em grupo, incentivando a partilha de perspetivas e a construção colaborativa das aprendizagem (Aprendizagem Colaborativa).

Evolução Tecnológica na Cirurgia

Realidade Virtual (VR)

Ambientes Simulados Imersivos Substitui visão do mundo

Origem nos Anos 50 Sensorama de Morton Heilig (1957)

Características

real

Imersão total, interação, presença

Fonte: wikimedia.com

Exemplo de ambiente de VR para cirurgia. Fonte: OssoVR.com

Realidade Aumentada (AR)

Definição

Sobrepõe informação digital ao mundo real

Características

Combinação real/virtual, interação em tempo real

Dispositivos

Smartphones, tablets, "headsets" e óculos XR

Tipos de AR

AR Baseada em Marcadores

Usa códigos QR ou imagens específicas

AR Sem Marcadores

Usa sensores e visão computacional

Realidade Mista (MR)

Convergência

Fusão de VR e AR

Interatividade

Objetos reais e virtuais interagem

Dispositivos

"Headsets

poderosos", exemplo:

Microsoft HoloLens,

Apple Vision Pro,

Meta Quest

AR vs. MR: como se distingue?

Exemplo de ambiente de AR para cirurgia. Fonte: Augmedics

Augmedics: ambiente de AR sem marcadores e com capacidades avançadas como o "X-ray vision"

Para ser considerado MR teria de permitir interação dinámica, por exemplo:

- Em vez de apenas sobrepor imagens no local, os cirurgiões poderiam manipular e rodar hologramas anatómicos em tempo real, ajustando dinamicamente o plano cirúrgico.
- O sistema forneceria feedback em tempo-real, adaptando-se aos movimentos do cirurgião e sugerindo ajustes com base em análise de IA.
- Através de feedback háptico, os cirurgiões poderiam sentir estruturas virtuais e treinar procedimentos antes da incisão real.

Diferenças Fundamentais

Aplicações na Cirurgia

Cada tecnologia oferece vantagens específicas para diferentes aplicações cirúrgicas:

- Educação médica (VR/AR);
- Planeamento pré-operatório (VR/AR);
- Assistência durante a cirurgia (AR/MR/AI -integração em tempo real de dados).

Tecnologias e Dispositivos Líderes

Série Meta Quest

Quest 2

1832x1920 por olho, 90Hz

Quest 3

Snapdragon XR2 Gen 2, 2064x2208 por olho

Quest Pro

Lentes pancake, rastreamento ocular e facial

Hands-On Training • Medical • Learning surgery

Vantagens para Ensino

Custo do equipamento

Equipamentos poderosos com custo mais reduzido

Desenvolvimento continuado

Sistema operativo e módulos avançados

Ecossistema de aplicações rico e em expansão

Visualização 3D do campo cirúrgico

Apple Vision Pro

23 milhões de pixels, 4K por olho

Rastreamento Avançado

Olhos e mãos para interação intuitiva

Processamento Potente

Chip M2 e coprocessador R1

0

Vantagens para apoio pré-operatório e operatório

Qualidade de imagem

Referencia na qualidade da imagem

• Poder Computacional Elevado

Elevada capacidade de processamento

Aplicações Especializadas

Stryker myMako, FundamentalVR, OssoVR

Microsoft HoloLens

HoloLens 1

Primeira geração de óculos holográficos

— HoloLens 2

Campo de visão 52°, resolução 2k 3:2

Windows Holographic

Sistema operativo dedicado

Vantagens para apoio pré-operatório e operatório

Hologramas 3D interativos

Focado em realidade aumentada e mista em contexto profissional

- Sensores e poder computacional Sesores de elevada qualidade e capacidade de processamento
- Aplicações Especializadas Stanford Mixed-Reality System, Medivis SurgicalAR

Magic Leap 2

Qualidade de Imagem e Ótica

1440×1760 pixels por olho

Campo de Visão

70° de campo de visão (FoV)

Desempenho e Conectividade

Processador AMD Quad-Core Zen2, 16GB RAM

Vantagens para apoio operatório

- Baixo peso e Conforto para uso prolongado
 Processador separado do headset e conectado por um cabo.
 Isso torna o dispositivo mais leve e confortável
- Tecnologia de escurecimento de lentes Permite melhor visibilidade em ambientes claros
- Aplicações Especializadas e certificação
 Brainlab's Spine Mixed Reality Navigation, SimBioSys
 TumorSight, Certificação IEC 60601-1

Análise Comparativa

Dispositivo	Resolução	FOV	Preço (USD)
Meta Quest 3	2064x2208 (ecrãs)	H:110°; V:96°	~ \$500
Apple Vision Pro	~3660x3200 (ecrãs)	H:100-110°; V:90°	~ \$3500
HoloLens 2	1440x936 (combinadores)	H:43°; V:29°	~ \$3500
MagicLeap 2	1440×1760 (combinadores)	H:44°; V:53°	~ \$3500

Potencial da XR na cirurgia

Precisão Aprimorada

O treino em VR pode melhorar a precisão nas tarefas cirúrgicas.

Redução de Erros

Potencial para ocorrem
menos erros durante
procedimentos após treino
com estas tecnologias.

Maior Velocidade de Aprendizagem

Os formandos podem aprender procedimentos cirurgicos mais rapidamente após treino em XR.

Potencial da XR na cirurgia

Resultados Comparáveis

É esperado que as competências adquiridas através de XR são comparáveis ou superiores às aprendidas por métodos tradicionais.

Satisfação dos Formandos

Os formandos relatam níveis mais elevados de satisfação com experiências de aprendizagem integradas com XR.

Feedback Subjetivo

Cirurgiões e formandos que utilizaram estas tecnologias relatam melhorias no planeamento e execução cirúrgica.

Potencial da XR na cirurgia

Estas tecnologias oferecem o potencial para desenvolver protocolos de formação padronizados, feedback imediato e oportunidades para prática repetida.

Examplos em Várias Especialidades Cirúrgicas...

Fatores de Adoção por Especialidade

A adoção precoce e proeminente em áreas como ortopedia e neurocirurgia reflete provavelmente a elevada complexidade e as exigências de raciocínio espacial inerentes a estas disciplinas.

Conclusões e Próximos Passos

Evidências Atuais

As tecnologias XR começam a mostram resultados promissores na melhoria das competências cirúrgicas e potencialmente nos resultados obtidos com os pacientes.

2 — Adoção Variável

Diferentes especialidades estão a adotar estas tecnologias a ritmos diferentes, com base nas suas necessidades específicas.

Investigação Futura

São necessários estudos em grande escala para quantificar com maior detalhe e rigor a validade e o impacto nos diversos campos cirúrgicos.

Na primeira pessoa...

Experimente e verifique as diferentes tecnologias de Headsets XR:

- Lentes (Guias de Onda/Combinadores Óticos):Utilizados no HoloLens e no Magic Leap para fundir as vistas do mundo real com sobreposições digitais em configurações de AR/MR.
- Ecrãs com Lentes de Foco: Utilizados no Meta Quest e no Apple Vision Pro, onde o conteúdo digital é fornecido por ecrãs de alta resolução dedicados. Os sistemas de lentes aqui focalizam e moldam a luz proveniente destes ecrãs para criar um ambiente virtual.

Validação das tecnologias XR na cirurgia

- Visite o site: https://nunososorio.github.io/XR/
- Escolha alguns exemplos de aplicações procure saber como as aplicações funcionam e que evidencias científicas de validação existem

