

Summer Internship Report

Tyler Jones

Engineering Intern

Supervised By: Kyle Schneider

Custom Equipment Design

Manufacturing

Presented To: Executive Team

Tweet/Garot Mechanical Inc.

Summer 2024

Manufacturing Overview

- Process Improvement
 - Reduce programming lead time
 - Improve tracking of shop inventory
 - Increase estimating accuracy

Manufacturing Process Improvement

Goal

- Bridge the gap between field employees and shop programmers to reduce programming lead time

 - Improve tracking of inventory, Bills of Materials (BOMs), and Bills of Operations (BOOs), and increase estimating accuracy.

Workflow

- Receive Hand Drawings: Design request from shop scheduler
- **Design:** Create part(s) or assembly via CAD (Autodesk Inventor)
- Engineering Drawings: Create engineering drawings and import files to Autodesk Vault
- Data Integration: Transfer metadata into manufacturing software (SAP)
- Release Process: Finalize and release the process for production

Example: Georgia Pacific – Dust Collector

Example: Tyson Warren – I-Beam Cross Supports

Custom Equipment Design Overview

- Conagra Foods
 - Feeder Platforms
 - Access Platforms
 - Conveyor Lid Counterweight
- Tyson Foods
 - Peeler Table
- Great Lakes Cheese
 - Blender Platform

Access Platform: A

Access Platform: B

Assess Design Safety

- Enhance Structural Integrity: Add stiffeners between legs
- Finite Element Analysis (FEA)
- Validate NASTRAN Results: Compare with benchmark case
- Perform Detailed FEA
- Analyze Results

Horizontal displacement of benchmark case (~5.2E-07 in)

- Benchmark Test Case on 2D Plate
 - Uniformly distributed compressive load along top edge
 - Max Error (infinity norm) ~ 3.2E-07 in

Displacement Results

Type: X Displacement Unit: in 8/6/2024, 12:24:18 PM 0.3914 Max 0.2349 0.1566

Without Stiffeners

Stress Results

With Stiffeners

Without Stiffeners

With Stiffeners

FEA Results

- Horizontal Load Displacement
 - 11.61% reduction
- Von Mises Stress
 - 2.62% reduction
 - Max Stress w/stiffeners: 16.42 ksi
 - Yield Strength of 303/304 SS: 30 ksi
- Conclusion
 - Rigid body remains in linear elastic regime
 - Yes, this design is safe, and the stiffeners reduce deformation/stress. More importantly, welders have more contact edges

Conveyor Lid Counterweight

Conveyor Lid Counterweight

Conveyor Lid Counterweight

- Force required by operator to lift cover Two different approaches
 - Target required force: ~25 lbf
 - Calculated required force: ~11 lbf

Inventor: Dynamic Simulation

My Programmed Solution via Fortran

tweetearot

Peeler Table

Peeler Table: Sheet Metal

Peeler Table: Frame

Blender Platform

- Task
 - Design handrails for the stairs, gates, and main platform
- Tool: Frame Generator
 - Create 2D/3D sketch conforming to surrounding geometry
 - Cope members to reduce lead time in the shop
- Advantage Process Improvement
 - Using frame generator → frame members are cut/coped on MAZAK 6-axis tube laser
 - Shop workers 'only' need to bend and weld instead of cope manually

Applications from Education

- Computational Engineering
 - CFD for HVAC
 - FEA for Custom Equipment Design team
 - Programming: Fortran and MATLAB
- Engineering Mechanics
 - Mechanics of Materials
 - Material Science
 - Static/Dynamic Analysis
 - Stress Analysis
- Computer Aided Design
 - Autodesk Inventor
 - Design for Manufacturing

Channel flow around a box via streamline-vorticity formulation (MATLAB)

Channel flow around a cylinder via streamlinevorticity formulation (MATLAB)

tweetarot

Close Support

- Manufacturing
 - Kyle Schneider Production Manager
 - Bethany VanSickle Manufacturing Engineer
 - Jason Waligursky Shop Scheduler
 - All shop and field employees
- Custom Equipment Design
 - Rod Jones CED Manager
 - Brandon Blochowiak CED Engineer
 - Tony Vertz Virtual Designer
 - Amber Hady Virtual Designer
 - Leon Xiong Virtual Designer

THANK YOU!