of a drift chamber tracking system for the ICEA experiment at FCC-ee

pour Tehrani (CERN), Benedikt Hegner, Giovanni Francesco Tassielli, Francesco Grancagnolo IEEE Nuclear Science Symposium and Medical Imaging Conference, Sydney, Australia

The Future Circular Collider Experiment (FCC)

- A future possibility for the post-LHC era
- 3 options of circular colliders
 - FCC-ee: electron positron collisions
 - FCC-hh: proton proton collisions
 - FCC-eh: electron proton collisions
- \sim 100 km tunnel in Geneva area
- FCC-ee collider parameters:

Stages	Z	WW	H (ZH)	tī
Beam energy [GeV]	45.6	80	120	182.5
Average bunch spacing [ns]	19.6	163	994	3396

The IDEA detector concept for FCC-ee

- The IDEA detector is one of the two detector concepts for the FCC-ee experiment
- Ultimate goal for the IDEA detector concept
 - Vertex detector: MAPS
 - Ultra-light drift chamber with particle identification
 - Double readout calorimetry
 - Aditional silicon disk layers placed in the space between the drift chamber and the dual readout calorimeter to increase the forward coverage
 - 2 T solenoidal magnetic field
 - Instrumented return yoke
 - Large tracking volume (R \sim 8 m) for very weakly coupled (long-lived) particles

FCCSW: Physics and Detector simulations with FCCSW

- Common software for all FCC experiments (ee, hh & eh)
- Detector and physics studies
 - Fast & full simulations
 - One software stack from event generation to physics analysis
- Collaborative approach with other CERN experiments
 - Gaudi from LHC
 - DD4hep from CLIC & LHCb
 - New solutions where needed

Geometry	Segmen-	Geant	Digiti-	
DDhep	tation	simulat	zation	

Simulation of the IDEA drift chamber within FCCSW

The IDEA detector as simulated with FCCSW

The simulation of the drift chamber & coverage

- The first layer of the drift chamber
- Wires are illustrated using different colors
- The wires are rotated by a stereo angle to increase the hit resolution

- In the barrel region, the drift chamber has a high coverage of \sim 112 wires in average.
- In the forward region, silicon disks are foresean to increase the number of layers measuring the tracks.

Main sources of beam-induced backgrounds

- Three main sources of beam-induced backgrounds
 - Incoherent e^+e^- pairs du to bremstrahlung photons \Rightarrow highest source of background
 - $\gamma\gamma \rightarrow$ hadrons \Rightarrow Expected to have a very low impact
 - Synchrotron radiation (SR) \Rightarrow Dictates
 - the design of the interaction region (IR) • Defines the beampipe radius, the design of the
 - shielding (in Tungesten) Mostly stopped by the shielding, few SR photons can hit the detector

• The trajectory of the e^+e pairs in a 2 T magnetic field.

z [mm]

Summary of beam-induced backgrounds & conclusions

Background Average occupancy $E_{cm} = 91.2 \text{ GeV } E_{cm} = 365 \text{ GeV}$ e^+e^- pair background 2.9% 1.1% $\gamma\gamma \rightarrow \text{hadrons}$ 0.001% 0.035% Synchrotron radiation 0.2%

• The overall impact remains low and the results are promising for the track reconstruction with this detector.

3 main sources of beam-induced backgrounds at the top stage

• Incoherent e^+e^- pairs

• $\gamma\gamma \rightarrow$ hadrons

• $\gamma\gamma \rightarrow$ hadrons

