Universidad Nacional de La Matanza

Secretaría Académica

Dirección de Gestión del Curso de Ingreso

Examen de Matemática

Fecha: 29/10/24 Tema: 3

Apellido/s:	No	mbre/s:							. DNI:	
Carrera:		A	ula de e	xamen:		A	ula de	cursada	ı:	
EJERCICIOS	1a)	1b)	2a)	2b)	3a)	3b)	4a)	4b)	5)	6)
Puntaje del Ej.	1.5	0.5	1.5	0.5	1	1	1	0.5	1.5	1
Calificación c/u										
Nota final				Firm	a docei	nte				

En cada ejercicio escribe todos los razonamientos que justifican la respuesta en forma clara y precisa. No necesariamente se debe respetar el orden de los ejercicios. Todos los cálculos auxiliares deben figurar en la hoja de manera prolija y clara. Se puede usar calculadora. No se puede usar el celular en ningún momento del examen.

- 1. a) Hallar el complejo Z: $6i^{33} Z = (3 i)^2$
 - b) Representar el complejo Z y su conjugado.
- 2. a) Resolver la siguiente inecuación: -3. $|2x 4| \ge -27$
 - b) Representar el conjunto solución como intervalos y representar en la recta numérica.
- 3. Responder V ó F a cada una de las siguientes proposiciones justificando la respuesta:
 - a) El cociente que se obtiene de la siguiente división $(6x^4 2x^3 + x 1)$: $(x^3 2)$ es 6x-2
 - **b)** Si $Q(x) = 3.x^2$ entonces $Q(5.10^{-6}) = 7.5.10^{-13}$
- **4.** Al diseñar la construcción de una ruta, la velocidad máxima permitida en ella en km/h (V) varía en forma lineal con la longitud de la carretera (L). Se presentan dos constructoras para hacerla y cada una establece que dicha relación es: V = 5L + 50 (constructora 1) y V = 3L + 70 (constructora 2).
 - a) ¿Para qué cantidad de km de ruta construidos, las dos constructoras tendrán la misma velocidad máxima? ¿Cuántos km de ruta van a construir para dicha velocidad? Resolver el problema en forma analítica.
 - **b)** Graficar ambas rectas para verificar la solución hallada en el punto anterior, usando escalas adecuadas para los ejes cartesianos.
- 5. Resolver la siguiente división indicando cuáles son los valores para los cuales la operación está definida:

$$\frac{\frac{5x^2 + 25x}{15x}}{\frac{x^3 + 3x^2 - 10x}{18x^2}} =$$

6. Si la presión de un tanque de combustible es función de su volumen mediante la siguiente expresión: $p(v) = 2 \cdot \left[3^{\left(-\frac{v}{100}\right)}\right]$. Hallar analíticamente el valor del volumen del tanque cuando la presión es de 1,7 unidades.

Universidad Nacional de La Matanza

Secretaría Académica

Dirección de Gestión del Curso de Ingreso

Examen de Matemática

Fecha: 29/10/24 Tema: 3

Apellido/s:	 DNI:
Carrera:	 Aula de cursada:

SOLUCIÓN TEMA 3 MATEMÁTICA PRIMERA INSTANCIA 2025

	,					
EJERCICIO	PUNTAJE					
1a) $z = -8 + 12i$ b) Z conjugado	1.5 0.5					
2a) $ 2x - 4 \le 9$ $x \le \frac{13}{2} \land x \ge -\frac{5}{2} \text{ o bien } -\frac{5}{2} \le x \le \frac{13}{2}$	1.5					
b) $S = \left[-\frac{5}{2}; \frac{13}{2}\right]$ Recta numérica -2 0 2 4 6	0.5					
3a) Verdadera para justificar deben hacer la división $C(x) = 6x - 2 R(x) = 13x - 5$ b) Falsa la idea es que apliquen notación científica						
$Q(5.10^{-6}) = 3.(5.10^{-6})^2 = 3.(25.10^{-12}) = 75.10^{-12} = 7,5.10^{-11}$ 4a) Deben resolver en forma	1					
analítica el sistema de ecuaciones S=(10;100) y dar una respuesta es decir la velocidad máxima será de 100km/h y construirán 10 km de ruta. b)	0.5					
$5) \frac{\frac{5x(x+5)}{15x}}{\frac{x.(x-2).(x+5)}{18x^2}} = \frac{6x}{x-2} \qquad x \neq 0, x \neq 2, \ x \neq -5$	1 punto factoreo, simplificación y operación 0.5 valores que se deben descartar para x					
6) Plantear y resolver (sin unidades) $1.7 = 2.3^{\frac{-v}{100}} \Rightarrow v = -100.\log_3 0.85 \cong 14.79$	1					