Machine Learning Support Vector Machines (SVMs), Part 1

Slides adapted from David Sontag, who adapted from Luke Zettlemoyer, Vibhav Gogate, and Carlos Guestrin

Linear Separators

 If training data is linearly separable, perceptron is guaranteed to find some linear separator

Which of these is optimal? How do we define

optimal?

Support Vector Machine (SVM)

 SVMs (Vapnik, 1990's) choose the linear separator with the largest margin

Robust to outliers!

V. Vapnik

- Good according to intuition, theory, practice
- SVM became famous when, using images as input, it gave accuracy comparable to neural-network in a handwriting recognition task

Support vector machines: 3 key ideas

1. Use **optimization** to find solution with largest margin

2. Seek **large margin** separator while allowing for some test errors

3. Use **kernel trick** to make large non-linear feature spaces computationally efficient

Optimization Problem

Assume for now data is linearly separable

- Goal: Formulate the max margin problem as a tractable optimization problem:
 - Maximize an objective function subject to constraints, giving optimal w and b.

A Few Words About Linear Programming

- Class of constrained optimization problems
- Examples given on board
- Well studied, can solve problems with millions of variables and constraints
 - Many software packages, textbooks
- Quadratic programs are also tractable by similar techniques.

Going to Show for Linearly Separable Case

Theorem: Let w, b be an optimal solution to:

Minimize
$$||w||^2 = w_1^2 + w_2^2 + ... + w_n^2$$
 subject to:

$$y^{(i)}(\mathbf{w} \cdot \mathbf{x}^{(i)} + b) \ge 1$$
 for all $i = 1, 2, ..., m$

Then $\mathbf{w} \cdot \mathbf{x} + \mathbf{b} = 0$ is a hyperplane that provides the maximum margin.

Maximize Margin Optimization Problem

For data point $\mathbf{x}^{(i)}$ let $\delta^{(i)}$ be the distance to the plane. The **margin** is $\delta := \min \delta^{(i)}$

We want to find a hyperplane (ie, \mathbf{w} and \mathbf{b}) that maximizes δ . To this end, let's calculate $\delta^{(i)}$

How can we calculate $\delta^{(i)}$?

Quiz: find $\delta^{(i)}$ in terms of **w**, b, and $\mathbf{x}^{(i)}$

- Let z be point on plane nearest to x⁽ⁱ⁾
- $-\delta^{(i)} = |\mathbf{x}^{(i)} \mathbf{z}|$
- (Assume first $\mathbf{x}^{(i)}$ and \mathbf{w} on same side of plane.)
- Note \mathbf{w} and $\mathbf{x}^{(i)} \mathbf{z}$ point in same direction
- $(x^{(i)} z) / \delta^{(i)} = w / ||w||$
- Since **z** is on plane:

$$w \cdot z + b = 0$$

Complete quiz!

Answer:

$$\delta^{(i)} = y^{(i)}(\mathbf{w} \cdot \mathbf{x}^{(i)} + \mathbf{b})/|\mathbf{w}|$$

Thus if:

$$y^{(i)}(\mathbf{w} \cdot \mathbf{x}^{(i)} + \mathbf{b})/|\mathbf{w}| \ge \delta$$
 for all i

then margin will be at least δ .

Margin Optimization Problem

Therefore, to maximize the margin, want to choose **w** and b to

maximize δ

subject to:

$$y^{(i)}(\mathbf{w} \cdot \mathbf{x}^{(i)} + \mathbf{b})/|\mathbf{w}| \ge \delta$$
 for all $i = 1, ..., m$

Problem: Constraints are nonlinear. Difficult to solve.

Convert to Tractable Problem

Claim: If data is linearly separable, there exists w, b such that:

- for all positive examples (y⁽ⁱ⁾ = 1):
 w•x⁽ⁱ⁾ + b ≥ 1
- for all negative examples (y⁽ⁱ⁾ = -1):
 w•x⁽ⁱ⁾ + b ≤ -1

Prove it now!

Thus, $y^{(i)}(\mathbf{w} \cdot \mathbf{x}^{(i)} + b) \ge 1$ for all i = 1, 2, ..., m

Maximum Margin: Tractable

Theorem: Let w, b be an optimal solution to:

Minimize
$$||w||^2 = w_1^2 + w_2^2 + ... + w_n^2$$
 subject to:

$$y^{(i)}(\mathbf{w} \cdot \mathbf{x}^{(i)} + b) \ge 1$$
 for all $i = 1, 2, ..., m$

Then $\mathbf{w} \cdot \mathbf{x} + \mathbf{b} = 0$ is a hyperplane that provides the maximum margin.

Proof: You will prove this in HW.

(Hard margin) Support Vector Machines

Minimize ||w||² subject to:

 $y^{(i)}(\mathbf{w} \cdot \mathbf{x}^{(i)} + \mathbf{b}) \ge 1$ for all i

Example of a **convex optimization** problem

- A quadratic program
- Polynomial-time algorithms to solve!

Non-support Vectors:

- everything else
- moving them will not change w

Support Vectors:

 data points on the margin lines

But what if you have:

Natural Approach

- Allow for some of the data points to be within the margin.
- Tradeoff: As margin gets bigger, more data points inside
- Can penalize for the # of points inside: maximize: margin – C × (# points inside)
- But difficult to solve. Instead use distance from margin for violating points.

"Soft margin SVM"

Minimize_{**w**,b, ξ} **w•w +** C $\Sigma_i \xi^{(i)}$ subject to $(\mathbf{w} \bullet \mathbf{x}^{(i)} + \mathbf{b}) \mathbf{y}^{(i)} \ge 1 - \xi^{(i)}$ for all i $\xi^{(i)} \ge 0$ for all i

Slack penalty C > 0:

- Want to find **w**, b so that the the margin is large and the # of errors is small.
- Want large margin to prevent overfitting.
- Solve optimization problem for different values of C. Choose the C that gives the smallest validation error.

Can Remove the Constraints

Minimize_{w,b,\xi} w•w + C $\Sigma_i \xi^{(i)}$ subject to $(\mathbf{w} \bullet \mathbf{x}^{(i)} + \mathbf{b}) \mathbf{y}^{(i)} \ge 1 - \xi^{(i)}$ for all i $\xi^{(i)} \ge 0$ for all i

At optimal solution, for each data point:

- •If $(\mathbf{w} \bullet \mathbf{x}^{(i)} + \mathbf{b}) \mathbf{y}^{(i)} \ge 1$, $\xi^{(i)} = 0$
- •If $(\mathbf{w} \bullet \mathbf{x}^{(i)} + b)y^{(i)} < 1$, $\xi^{(i)} = 1 (\mathbf{w} \bullet \mathbf{x}^{(i)} + b)y^{(i)}$ (constraint binding)

So
$$\xi^{(i)} = \max(0, 1 - (\mathbf{w} \cdot \mathbf{x}^{(i)} + \mathbf{b})\mathbf{y}^{(i)})$$

Summary: SVM Soft-Margin Optimization Problem

```
Minimize<sub>w,b,\xi</sub> w•w + C \Sigma_i \xi^{(i)} subject to (\mathbf{w} \bullet \mathbf{x}^{(i)} + \mathbf{b})\mathbf{y}^{(i)} \ge 1 - \xi^{(i)} for all i, \xi^{(i)} \ge 0 for all i
```

Or equivalently, the non-linear unconstrained problem:

```
Minimize<sub>w,b</sub> w•w + C \Sigma_i max( 0, 1 - y^{(i)} (w•x<sup>(i)</sup>+b)) regularization
```

Cross validation

- Divide labeled examples into 10 parts.
 - For each part
 - Use that part for validation, other 9 parts for training (optimization problem). Obtain validation error.
 - Calculate the average validation error over the 10 parts.
- Do for each C.
- Choose the C that has the lowest average validation error.