Descripción automática de imágenes

Jose Arias Moncho Victoria Beltrán Domínguez

Índice

- 1. Introducción
- 2. Estado del arte
- 3. Descripción de la tarea
- 4. Preproceso de datos
- 5. Experimentación
- 6. Resultados obtenidos
- 7. Discusión
- 8. Conclusiones
- 9. Trabajo futuro
- 10. Demo

1. Introducción

Describir el contenido de una imagen en palabras.

Necesitamos identificar qué hay (visión por computador) y saber expresarlo en lenguaje natural (procesamiento de lenguaje natural).

¿Para qué podría interesar?

- Anotaciones para personas invidentes
- Clasificación de imágenes para el comercio online
- Redes sociales
- Asistentes virtuales
- ▶ ...

1. Introducción: Facebook's automatic Alt-Text tool

2. Estado del arte

Existen diferentes enfoques que están en proceso de investigación:

1. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention (2015)

2. Estado del arte

2. Image Captioning with Semantic Attention (2016)

2. Estado del arte

3. Meshed-Memory Transformer for Image Captioning (2020)

3. Descripción de la tarea

Objetivo: dada una imagen, generar una descripción automática de esta.

Conjunto de datos: Flickr30k => contiene por cada imagen 5 descripciones en inglés de esta. Estándar para la tarea.

Tamaño del dataset: 31.014 imágenes con 5 descripciones cada una (155.070 descripciones).

Tamaño del vocabulario: 19.698 palabras únicas*

Tamaño de la secuencia más larga a predecir: 78 palabras

Imagen:

Descripción: A man wearing a helmet, red pants with white stripes going down the sides and a white and red shirt is on a small bicycle using only his hands while his legs are up in the air, while another man wearing a light blue shirt with dark blue trim and black pants with red stripes going up the sides is standing nearby, gesturing toward the first man and holding a small figurine of one of the seven dwarves.

4. Preproceso de datos

"A kid with 2 ice-creams is on the park"

Paso 1: pasarlo a minúscula: "a kid with 2 ice-creams is on the park"

Paso 2: limpiar cadena (!"#\$%&'()*+, -./:;<=>?@[\]^_`{|}~):

"a kid with 2 icecreams is on the park"

Paso 3: filtrar valores que no sean palabras:

"a kid with icecreams is on the park"

Paso 4: añadir tokens de principio y fin en cada descripción:

"aaprincipioaa a kid with icecreams is on the park zzfinzz"

4. Preproceso de datos

Paso 5: calcular el vocabulario.

Paso 6: reducir el vocabulario por número de ocurrencias (mínimo 3).

Paso 7: vectorizar con todo el vocabulario.

- TextVectorization
- Python mapping dictionary

Paso 8: separar las imágenes utilizando las particiones de referencia para Flickr30k.

▶ Train: 29.000

Val: 1.014

5. Experimentación: LSTM

5. Experimentación: Transformer

6. Resultados obtenidos

Medidas de precisión: BLEU (nltk.translate.bleu_score.corpus_bleu)

Referencias:

- 1. Un patito anda por la hierba
- 2. Un pato muy pequeño está de pie en la hierba

• • •

Predecido:

Un pato en la hierba

6. Resultados obtenidos

Modelo	Epochs	MAX TAMAÑO FRASE	TAMAÑO VOCAB	BLEU-3	BLEU-4
LSTM + GLOVE6B	60	80	9936	18.7	11.9
TRANSFORMER	60	80	9936	27.9	18.7
Show, Attend and Tell (2015)	-	-	-	29.6	19.9
Image Captioning with Semantic Attention (2016)	-	_	-	53.4	41.2

7. Discusión

LSTM

Gran cantidad de recursos necesarios.

 Falta de mecanismos de atención.

▶ Falta de potencia.

TRANSFORMER

Resultados decentes.

Eficaz y rápido.

Mecanismos de atención.

8. Conclusiones

Image captioning: tarea multidominio.

▶ Flickr30k.

Dos arquitecturas distintas: LSTM vs Transformer.

Resultados decentes pero falta de recursos.

9. Trabajo futuro

Utilizar features maps de las imágenes.

Probar bottom-up approaches.

Mecanismos de atención visual.

Transformer prediction: a dog is running through a grassy area LSTM prediction: a man in a black shirt and jeans is plowing a lawn

Transformer prediction: a group of people are standing in a room LSTM prediction: a man in a red shirt is singing into a microphone

Transformer prediction: a man is standing in front of a large white building LSTM prediction: a man in a blue shirt is sitting on a bench

Transformer prediction: a white dog is jumping over a red and white dog LSTM prediction: a man in a black shirt is playing a guitar

iMuchas gracias!

Jose Arias Moncho Victoria Beltrán Domínguez