CS 446/ECE 449: Machine Learning

Shenlong Wang

University of Illinois at Urbana-Champaign, 2024

Gaussian Mixture Models

Recall: Linear regression (discriminative)

$$p(y^{(i)}|x^{(i)}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(y^{(i)} - \mathbf{w}^{\top}\phi(x^{(i)}))^2\right)$$

Now: (generative)

$$p(x^{(i)}|\underbrace{\mu,\sigma}_{\theta \text{ or } \mathbf{w}}) = \mathcal{N}(x^{(i)}|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x^{(i)}-\mu)^2\right)$$

Important difference: we are now interested in modeling the distribution of the data $x^{(i)}$ and not the class labels $y^{(i)}$. Though it is sometimes ambiguous what you call data or labels.

$$p(x^{(i)}|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x^{(i)}-\mu)^2\right)$$

$$p(x^{(i)}|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x^{(i)}-\mu)^2\right)$$

Minimize negative log-likelihood

$$p(x^{(i)}|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x^{(i)}-\mu)^2\right)$$

Minimize negative log-likelihood

Program:

$$p(x^{(i)}|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(x^{(i)}-\mu)^2\right)$$

Minimize negative log-likelihood

Program:

$$\min_{\mu,\sigma} - \log \prod_{i \in \mathcal{D}} p(x^{(i)} | \mu, \sigma) := \sum_{i \in \mathcal{D}} \frac{1}{2\sigma^2} (x^{(i)} - \mu)^2 + \frac{N}{2} \log(2\pi\sigma^2)$$

$$\min_{\mu,\sigma} - \log \prod_{i \in \mathcal{D}} p(x^{(i)} | \mu, \sigma) := \sum_{i \in \mathcal{D}} \frac{1}{2\sigma^2} (x^{(i)} - \mu)^2 + \frac{N}{2} \log(2\pi\sigma^2)$$

$$\min_{\mu,\sigma} - \log \prod_{i \in \mathcal{D}} p(x^{(i)} | \mu, \sigma) := \sum_{i \in \mathcal{D}} \frac{1}{2\sigma^2} (x^{(i)} - \mu)^2 + \frac{N}{2} \log(2\pi\sigma^2)$$

$$\min_{\mu,\sigma} - \log \prod_{i \in \mathcal{D}} p(x^{(i)} | \mu, \sigma) := \sum_{i \in \mathcal{D}} \frac{1}{2\sigma^2} (x^{(i)} - \mu)^2 + \frac{N}{2} \log(2\pi\sigma^2)$$

$$\frac{\partial}{\partial \mu}$$
: $\frac{1}{\sigma^2} \sum_{i \in \mathcal{D}} (x^{(i)} - \mu) = 0$ \Longrightarrow

$$\frac{\partial}{\partial \sigma}: \frac{-1}{\sigma^3} \sum_{i \in \mathcal{D}} (x^{(i)} - \mu)^2 + \frac{N}{\sigma} = 0$$
 \Longrightarrow

$$\min_{\mu,\sigma} - \log \prod_{i \in \mathcal{D}} p(x^{(i)} | \mu, \sigma) := \sum_{i \in \mathcal{D}} \frac{1}{2\sigma^2} (x^{(i)} - \mu)^2 + \frac{N}{2} \log(2\pi\sigma^2)$$

$$\frac{\partial}{\partial \mu}$$
: $\frac{1}{\sigma^2} \sum_{i \in \mathcal{D}} (x^{(i)} - \mu) = 0 \implies \mu = \frac{1}{N} \sum_{i \in \mathcal{D}} x^{(i)}$

$$\frac{\partial}{\partial \sigma}: \frac{-1}{\sigma^3} \sum_{i \in \mathcal{D}} (x^{(i)} - \mu)^2 + \frac{N}{\sigma} = 0$$
 \Longrightarrow

$$\min_{\mu,\sigma} - \log \prod_{i \in \mathcal{D}} p(x^{(i)} | \mu, \sigma) := \sum_{i \in \mathcal{D}} \frac{1}{2\sigma^2} (x^{(i)} - \mu)^2 + \frac{N}{2} \log(2\pi\sigma^2)$$

$$\frac{\partial}{\partial \mu}$$
: $\frac{1}{\sigma^2} \sum_{i \in \mathcal{D}} (x^{(i)} - \mu) = 0 \implies \mu = \frac{1}{N} \sum_{i \in \mathcal{D}} x^{(i)}$

$$\frac{\partial}{\partial \sigma}: \quad \frac{-1}{\sigma^3} \sum_{i \in \mathcal{D}} (x^{(i)} - \mu)^2 + \frac{N}{\sigma} = 0 \qquad \implies \sigma^2 = \frac{1}{N} \sum_{i \in \mathcal{D}} (x^{(i)} - \mu)^2$$

$$\min_{\mu,\sigma} - \log \prod_{i \in \mathcal{D}} p(x^{(i)} | \mu, \sigma) := \sum_{i \in \mathcal{D}} \frac{1}{2\sigma^2} (x^{(i)} - \mu)^2 + \frac{N}{2} \log(2\pi\sigma^2)$$

Optimality condition:

$$\frac{\partial}{\partial \mu}: \qquad \frac{1}{\sigma^2} \sum_{i \in \mathcal{D}} (x^{(i)} - \mu) = 0 \qquad \Longrightarrow \mu = \frac{1}{N} \sum_{i \in \mathcal{D}} x^{(i)}$$

$$\frac{\partial}{\partial \sigma}: \quad \frac{-1}{-3} \sum_{i \in \mathcal{D}} (x^{(i)} - \mu)^2 + \frac{N}{\sigma} = 0 \qquad \Longrightarrow \sigma^2 = \frac{1}{N} \sum_{i \in \mathcal{D}} (x^{(i)} - \mu)^2$$

Issue:

$$\min_{\mu,\sigma} - \log \prod_{i \in \mathcal{D}} p(x^{(i)} | \mu, \sigma) := \sum_{i \in \mathcal{D}} \frac{1}{2\sigma^2} (x^{(i)} - \mu)^2 + \frac{N}{2} \log(2\pi\sigma^2)$$

Optimality condition:

$$\frac{\partial}{\partial \mu}: \qquad \frac{1}{\sigma^2} \sum_{i \in \mathcal{D}} (x^{(i)} - \mu) = 0 \qquad \Longrightarrow \mu = \frac{1}{N} \sum_{i \in \mathcal{D}} x^{(i)}$$

$$\frac{\partial}{\partial \sigma}: \quad \frac{-1}{\sigma^3} \sum_{i \in \mathcal{D}} (x^{(i)} - \mu)^2 + \frac{N}{\sigma} = 0 \qquad \Longrightarrow \sigma^2 = \frac{1}{N} \sum_{i \in \mathcal{D}} (x^{(i)} - \mu)^2$$

Issue: single Gaussian isn't that flexible

Goals of this lecture

- Understanding Gaussian mixture models
- Getting to know more details about generative modeling
- Learning the relationship between Gaussian mixture models and kMeans

Reading material:

K. Murphy; Machine Learning: A Probabilistic Perspective;
 Chapter 11

$$p(x^{(i)}|\underbrace{\pi,\mu,\sigma}_{ ext{all components}}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x^{(i)}|\mu_k,\sigma_k)$$

$$p(x^{(i)}|\underbrace{\pi,\mu,\sigma}_{ ext{all components}}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x^{(i)}|\mu_k,\sigma_k)$$

Constraints:

$$p(x^{(i)}|\underbrace{\pi,\mu,\sigma}_{ ext{all components}}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x^{(i)}|\mu_k,\sigma_k)$$

Constraints:

$$\sum_{k=1}^K \pi_k = 1 \qquad \pi_k \ge 0$$

$$p(x^{(i)}|\underbrace{\pi,\mu,\sigma}_{\text{all components}}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x^{(i)}|\mu_k,\sigma_k)$$

Constraints:

$$\sum_{k=1}^K \pi_k = 1 \qquad \pi_k \ge 0$$

Minimize negative log-likelihood:

$$p(x^{(i)}|\underbrace{\pi,\mu,\sigma}_{\text{all components}}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x^{(i)}|\mu_k,\sigma_k)$$

Constraints:

$$\sum_{k=1}^K \pi_k = 1 \qquad \pi_k \ge 0$$

Minimize negative log-likelihood:

$$\min_{\pi,\mu,\sigma} - \log \prod_{i \in \mathcal{D}} p(x^{(i)}|\pi,\mu,\sigma) := -\sum_{i \in \mathcal{D}} \log \sum_{k=1}^K \pi_k \mathcal{N}(x^{(i)}|\mu_k,\sigma_k)$$

$$p(x^{(i)}|\underbrace{\pi,\mu,\sigma}_{\text{all components}}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x^{(i)}|\mu_k,\sigma_k)$$

Constraints:

$$\sum_{k=1}^K \pi_k = 1 \qquad \pi_k \ge 0$$

Minimize negative log-likelihood:

$$\min_{\pi,\mu,\sigma} - \log \prod_{i \in \mathcal{D}} p(x^{(i)} | \pi, \mu, \sigma) := -\sum_{i \in \mathcal{D}} \log \sum_{k=1}^K \pi_k \mathcal{N}(x^{(i)} | \mu_k, \sigma_k)$$

How to optimize:

$$p(x^{(i)}|\underbrace{\pi,\mu,\sigma}_{ ext{all components}}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x^{(i)}|\mu_k,\sigma_k)$$

Constraints:

$$\sum_{k=1}^K \pi_k = 1 \qquad \pi_k \ge 0$$

Minimize negative log-likelihood:

$$\min_{\pi,\mu,\sigma} - \log \prod_{i \in \mathcal{D}} p(x^{(i)}|\pi,\mu,\sigma) := -\sum_{i \in \mathcal{D}} \log \sum_{k=1}^K \pi_k \mathcal{N}(x^{(i)}|\mu_k,\sigma_k)$$

How to optimize:

No closed form solution. Gradient descent is possible.

Alternative:

Alternative: auxiliary/latent variable $z_{ik} \in \{0,1\}$ with $\sum_{k=1}^K z_{ik} = 1 \ \forall i$

$$p(z_{ik} = 1) = \pi_k$$
 $p(z_i) =$

$$p(z_{ik} = 1) = \pi_k$$
 $p(\boldsymbol{z}_i) = \prod_{k=1}^K \pi_k^{z_{ik}} \text{ where } \boldsymbol{z}_i = [z_{i1}, \dots, z_{iK}]^{\top}$

$$p(z_{ik}=1)=\pi_k$$
 $p(\boldsymbol{z}_i)=\prod_{k=1}^K\pi_k^{z_{ik}}$ where $\boldsymbol{z}_i=[z_{i1},\ldots,z_{iK}]^{\top}$

Conditional

$$p(z_{ik}=1)=\pi_k \qquad p(oldsymbol{z}_i)=\prod_{k=1}^K \pi_k^{z_{ik}} ext{ where } oldsymbol{z}_i=[z_{i1},\ldots,z_{iK}]^{ op}$$

Conditional

$$p(x^{(i)}|z_{ik}=1)=$$

$$p(z_{ik} = 1) = \pi_k$$
 $p(\boldsymbol{z}_i) = \prod_{k=1}^K \pi_k^{z_{ik}} \text{ where } \boldsymbol{z}_i = [z_{i1}, \dots, z_{iK}]^\top$

Conditional

$$p(x^{(i)}|z_{ik}=1) = \mathcal{N}(x^{(i)}|\mu_k,\sigma_k)$$

$$p(z_{ik} = 1) = \pi_k$$
 $p(\boldsymbol{z}_i) = \prod_{k=1}^K \pi_k^{z_{ik}} \text{ where } \boldsymbol{z}_i = [z_{i1}, \dots, z_{iK}]^{\top}$

Conditional

$$p(x^{(i)}|z_{ik}=1) = \mathcal{N}(x^{(i)}|\mu_k,\sigma_k)$$

Marginal for $x^{(i)}$

$$p(x^{(i)}|\pi,\mu,\sigma) =$$

=

$$p(z_{ik} = 1) = \pi_k$$
 $p(\boldsymbol{z}_i) = \prod_{k=1}^K \pi_k^{z_{ik}} \text{ where } \boldsymbol{z}_i = [z_{i1}, \dots, z_{iK}]^\top$

Conditional

$$p(x^{(i)}|z_{ik}=1) = \mathcal{N}(x^{(i)}|\mu_k,\sigma_k)$$

Marginal for $x^{(i)}$

$$p(x^{(i)}|\pi,\mu,\sigma) = \sum_{\mathbf{z}_i} p(x^{(i)}|\mathbf{z}_i)p(\mathbf{z}_i) =$$

_

$$p(z_{ik} = 1) = \pi_k$$
 $p(\boldsymbol{z}_i) = \prod_{k=1}^K \pi_k^{z_{ik}} \text{ where } \boldsymbol{z}_i = [z_{i1}, \dots, z_{iK}]^\top$

Conditional

$$p(x^{(i)}|z_{ik}=1) = \mathcal{N}(x^{(i)}|\mu_k,\sigma_k)$$

Marginal for $x^{(i)}$

$$p(x^{(i)}|\pi,\mu,\sigma) = \sum_{\mathbf{z}_i} p(x^{(i)}|\mathbf{z}_i)p(\mathbf{z}_i) = \sum_{\mathbf{z}_i} \prod_{k=1}^K \pi_k^{z_{ik}} \mathcal{N}(x^{(i)}|\mu_k,\sigma_k)^{z_{ik}}$$

_

$$p(z_{ik} = 1) = \pi_k$$
 $p(\boldsymbol{z}_i) = \prod_{k=1}^K \pi_k^{z_{ik}} \text{ where } \boldsymbol{z}_i = [z_{i1}, \dots, z_{iK}]^\top$

Conditional

$$p(x^{(i)}|z_{ik}=1) = \mathcal{N}(x^{(i)}|\mu_k,\sigma_k)$$

Marginal for $x^{(i)}$

$$p(x^{(i)}|\pi,\mu,\sigma) = \sum_{\mathbf{z}_i} p(x^{(i)}|\mathbf{z}_i)p(\mathbf{z}_i) = \sum_{\mathbf{z}_i} \prod_{k=1}^K \pi_k^{z_{ik}} \mathcal{N}(x^{(i)}|\mu_k,\sigma_k)^{z_{ik}}$$
$$= \sum_{k=1}^K \pi_k \mathcal{N}(x^{(i)}|\mu_k,\sigma_k)$$

$$p(z_{ik} = 1) = \pi_k$$
 $p(\boldsymbol{z}_i) = \prod_{k=1}^K \pi_k^{z_{ik}} \text{ where } \boldsymbol{z}_i = [z_{i1}, \dots, z_{iK}]^\top$

Conditional

$$p(x^{(i)}|z_{ik}=1) = \mathcal{N}(x^{(i)}|\mu_k,\sigma_k)$$

Marginal for $x^{(i)}$

$$p(x^{(i)}|\pi,\mu,\sigma) = \sum_{\mathbf{z}_i} p(x^{(i)}|\mathbf{z}_i)p(\mathbf{z}_i) = \sum_{\mathbf{z}_i} \prod_{k=1}^K \pi_k^{z_{ik}} \mathcal{N}(x^{(i)}|\mu_k,\sigma_k)^{z_{ik}}$$
$$= \sum_{k=1}^K \pi_k \mathcal{N}(x^{(i)}|\mu_k,\sigma_k)$$

Posterior:

Alternative: auxiliary/latent variable $z_{ik} \in \{0,1\}$ with $\sum_{k=1}^{K} z_{ik} = 1 \ \forall i$ Marginal for z_{ik}

$$p(z_{ik} = 1) = \pi_k$$
 $p(\boldsymbol{z}_i) = \prod_{k=1}^K \pi_k^{z_{ik}} \text{ where } \boldsymbol{z}_i = [z_{i1}, \dots, z_{iK}]^\top$

Conditional

$$p(x^{(i)}|z_{ik}=1) = \mathcal{N}(x^{(i)}|\mu_k,\sigma_k)$$

Marginal for $x^{(i)}$

$$p(x^{(i)}|\pi,\mu,\sigma) = \sum_{\mathbf{z}_i} p(x^{(i)}|\mathbf{z}_i)p(\mathbf{z}_i) = \sum_{\mathbf{z}_i} \prod_{k=1}^K \pi_k^{z_{ik}} \mathcal{N}(x^{(i)}|\mu_k,\sigma_k)^{z_{ik}}$$
$$= \sum_{k=1}^K \pi_k \mathcal{N}(x^{(i)}|\mu_k,\sigma_k)$$

Posterior:

$$r_{ik} = p(z_{ik} = 1 | x^{(i)}) =$$

Alternative: auxiliary/latent variable $z_{ik} \in \{0,1\}$ with $\sum_{k=1}^{K} z_{ik} = 1 \ \forall i$ Marginal for z_{ik}

$$p(z_{ik}=1)=\pi_k$$
 $p(\boldsymbol{z}_i)=\prod_{k=1}^K\pi_k^{z_{ik}}$ where $\boldsymbol{z}_i=[z_{i1},\ldots,z_{iK}]^{\top}$

Conditional

$$p(x^{(i)}|z_{ik}=1)=\mathcal{N}(x^{(i)}|\mu_k,\sigma_k)$$

Marginal for $x^{(i)}$

$$p(x^{(i)}|\pi,\mu,\sigma) = \sum_{\mathbf{z}_i} p(x^{(i)}|\mathbf{z}_i)p(\mathbf{z}_i) = \sum_{\mathbf{z}_i} \prod_{k=1}^K \pi_k^{z_{ik}} \mathcal{N}(x^{(i)}|\mu_k,\sigma_k)^{z_{ik}}$$
$$= \sum_{k=1}^K \pi_k \mathcal{N}(x^{(i)}|\mu_k,\sigma_k)$$

Posterior:

$$r_{ik} = p(z_{ik} = 1 | x^{(i)}) = \frac{p(z_{ik} = 1)p(x^{(i)} | z_{ik} = 1)}{\sum_{\hat{k}=1}^{K} p(z_{i\hat{k}} = 1)p(x^{(i)} | z_{i\hat{k}} = 1)} = 0$$

Alternative: auxiliary/latent variable $z_{ik} \in \{0, 1\}$ with $\sum_{k=1}^{K} z_{ik} = 1 \ \forall i$ Marginal for Zik

$$p(z_{ik}=1)=\pi_k$$
 $p(\boldsymbol{z}_i)=\prod_{k=1}^K\pi_k^{z_{ik}}$ where $\boldsymbol{z}_i=[z_{i1},\ldots,z_{iK}]^{\top}$

Conditional

$$p(x^{(i)}|z_{ik}=1)=\mathcal{N}(x^{(i)}|\mu_k,\sigma_k)$$

Marginal for $x^{(i)}$

$$p(x^{(i)}|\pi,\mu,\sigma) = \sum_{\mathbf{z}_i} p(x^{(i)}|\mathbf{z}_i)p(\mathbf{z}_i) = \sum_{\mathbf{z}_i} \prod_{k=1}^K \pi_k^{z_{ik}} \mathcal{N}(x^{(i)}|\mu_k,\sigma_k)^{z_{ik}}$$
$$= \sum_{k=1}^K \pi_k \mathcal{N}(x^{(i)}|\mu_k,\sigma_k)$$

Posterior:

$$r_{ik} = p(z_{ik} = 1 | x^{(i)}) = \frac{p(z_{ik} = 1)p(x^{(i)} | z_{ik} = 1)}{\sum_{\hat{k}=1}^{K} p(z_{i\hat{k}} = 1)p(x^{(i)} | z_{i\hat{k}} = 1)} = \frac{\pi_k \mathcal{N}(x^{(i)} | \mu_k, \sigma_k)}{\sum_{\hat{k}=1}^{K} \pi_{\hat{k}} \mathcal{N}(x^{(i)} | \mu_{\hat{k}}, \sigma_{\hat{k}})}$$

$$\min_{\pi,\mu,\sigma} - \log \prod_{i \in \mathcal{D}} p(x^{(i)}|\pi,\mu,\sigma) := -\sum_{i \in \mathcal{D}} \log \sum_{k=1}^K \pi_k \mathcal{N}(x^{(i)}|\mu_k,\sigma_k) \text{ s.t. } \sum_{k=1}^K \pi_k = 1$$

$$\min_{\pi,\mu,\sigma} - \log \prod_{i \in \mathcal{D}} p(x^{(i)}|\pi,\mu,\sigma) := -\sum_{i \in \mathcal{D}} \log \sum_{k=1}^K \pi_k \mathcal{N}(x^{(i)}|\mu_k,\sigma_k) \text{ s.t. } \sum_{k=1}^K \pi_k = 1$$

$$\min_{\pi,\mu,\sigma} - \log \prod_{i \in \mathcal{D}} p(x^{(i)}|\pi,\mu,\sigma) := -\sum_{i \in \mathcal{D}} \log \sum_{k=1}^K \pi_k \mathcal{N}(x^{(i)}|\mu_k,\sigma_k) \text{ s.t. } \sum_{k=1}^K \pi_k = 1$$

$$\frac{\partial}{\partial \mu_{\pmb{k}}}$$
 :

$$\frac{\partial}{\partial \sigma_k}$$
 :

$$\frac{\partial}{\partial \pi_k}$$
 :

$$\min_{\pi,\mu,\sigma} - \log \prod_{i \in \mathcal{D}} p(x^{(i)} | \pi, \mu, \sigma) := -\sum_{i \in \mathcal{D}} \log \sum_{k=1}^K \pi_k \mathcal{N}(x^{(i)} | \mu_k, \sigma_k) \text{ s.t. } \sum_{k=1}^K \pi_k = 1$$

$$\frac{\partial}{\partial \mu_k}$$
: $-\sum_{i \in \mathcal{D}} r_{ik} \left(-\frac{1}{2\sigma^2} (x^{(i)} - \mu_k) \right) = 0$

$$\frac{\partial}{\partial \sigma_k}$$
:

$$\frac{\partial}{\partial \pi_k}$$
:

$$\min_{\pi,\mu,\sigma} - \log \prod_{i \in \mathcal{D}} p(x^{(i)} | \pi, \mu, \sigma) := -\sum_{i \in \mathcal{D}} \log \sum_{k=1}^K \pi_k \mathcal{N}(x^{(i)} | \mu_k, \sigma_k) \text{ s.t. } \sum_{k=1}^K \pi_k = 1$$

$$\frac{\partial}{\partial \mu_k}: \quad -\sum_{i \in \mathcal{D}} r_{ik} \left(-\frac{1}{2\sigma^2} (x^{(i)} - \mu_k) \right) = 0 \quad \Longrightarrow \quad \mu_k = \frac{1}{N_k} \sum_{i \in \mathcal{D}} r_{ik} x^{(i)}$$

$$\frac{\partial}{\partial \sigma_k}$$
 :

$$\frac{\partial}{\partial \pi_k}$$
:

$$\min_{\pi,\mu,\sigma} - \log \prod_{i \in \mathcal{D}} p(x^{(i)} | \pi, \mu, \sigma) := -\sum_{i \in \mathcal{D}} \log \sum_{k=1}^K \pi_k \mathcal{N}(x^{(i)} | \mu_k, \sigma_k) \text{ s.t. } \sum_{k=1}^K \pi_k = 1$$

$$\frac{\partial}{\partial \mu_k}: \quad -\sum_{i \in \mathcal{D}} r_{ik} \left(-\frac{1}{2\sigma^2} (x^{(i)} - \mu_k) \right) = 0 \quad \Longrightarrow \quad \mu_k = \frac{1}{N_k} \sum_{i \in \mathcal{D}} r_{ik} x^{(i)}$$

$$\frac{\partial}{\partial \sigma_k}$$
: $\sum_{i \in \mathcal{D}} r_{ik} \left(\frac{1}{\sigma} - \frac{1}{\sigma^3} (x^{(i)} - \mu_k)^2 \right) = 0 \implies$

$$\frac{\partial}{\partial \pi_k}$$
 :

$$\min_{\pi,\mu,\sigma} - \log \prod_{i \in \mathcal{D}} p(x^{(i)} | \pi, \mu, \sigma) := -\sum_{i \in \mathcal{D}} \log \sum_{k=1}^K \pi_k \mathcal{N}(x^{(i)} | \mu_k, \sigma_k) \text{ s.t. } \sum_{k=1}^K \pi_k = 1$$

$$\frac{\partial}{\partial \mu_k}$$
: $-\sum_{i \in \mathcal{D}} r_{ik} \left(-\frac{1}{2\sigma^2} (x^{(i)} - \mu_k) \right) = 0 \implies \mu_k = \frac{1}{N_k} \sum_{i \in \mathcal{D}} r_{ik} x^{(i)}$

$$\frac{\partial}{\partial \sigma_k}: \sum_{i \in \mathcal{D}} r_{ik} \left(\frac{1}{\sigma} - \frac{1}{\sigma^3} (x^{(i)} - \mu_k)^2 \right) = 0 \implies \sigma_k^2 = \frac{1}{N_k} \sum_{i \in \mathcal{D}} r_{ik} (x^{(i)} - \mu_k)^2$$

$$\frac{\partial}{\partial \pi \nu}$$
:

$$\min_{\pi,\mu,\sigma} - \log \prod_{i \in \mathcal{D}} p(x^{(i)} | \pi, \mu, \sigma) := -\sum_{i \in \mathcal{D}} \log \sum_{k=1}^K \pi_k \mathcal{N}(x^{(i)} | \mu_k, \sigma_k) \text{ s.t. } \sum_{k=1}^K \pi_k = 1$$

$$\frac{\partial}{\partial \mu_k}$$
: $-\sum_{i \in \mathcal{D}} r_{ik} \left(-\frac{1}{2\sigma^2} (x^{(i)} - \mu_k) \right) = 0 \implies \mu_k = \frac{1}{N_k} \sum_{i \in \mathcal{D}} r_{ik} x^{(i)}$

$$\frac{\partial}{\partial \sigma_k}: \sum_{i \in \mathcal{D}} r_{ik} \left(\frac{1}{\sigma} - \frac{1}{\sigma^3} (x^{(i)} - \mu_k)^2 \right) = 0 \implies \sigma_k^2 = \frac{1}{N_k} \sum_{i \in \mathcal{D}} r_{ik} (x^{(i)} - \mu_k)^2$$

$$\frac{\partial}{\partial \pi_k}$$
: with Lagrange multiplier: $\sum_{i \in \mathcal{D}} \frac{\mathcal{N}(x^{(i)}|\mu_k, \sigma_k)}{\sum_{k=1}^K \pi_k \mathcal{N}(x^{(i)}|\mu_k, \sigma_k)} + \lambda = 0$

$$\min_{\pi,\mu,\sigma} - \log \prod_{i \in \mathcal{D}} p(x^{(i)} | \pi, \mu, \sigma) := -\sum_{i \in \mathcal{D}} \log \sum_{k=1}^K \pi_k \mathcal{N}(x^{(i)} | \mu_k, \sigma_k) \text{ s.t. } \sum_{k=1}^K \pi_k = 1$$

$$\frac{\partial}{\partial \mu_k}: \quad -\sum_{i \in \mathcal{D}} r_{ik} \left(-\frac{1}{2\sigma^2} (x^{(i)} - \mu_k) \right) = 0 \quad \Longrightarrow \quad \mu_k = \frac{1}{N_k} \sum_{i \in \mathcal{D}} r_{ik} x^{(i)}$$

$$\frac{\partial}{\partial \sigma_k}: \sum_{i \in \mathcal{D}} r_{ik} \left(\frac{1}{\sigma} - \frac{1}{\sigma^3} (x^{(i)} - \mu_k)^2 \right) = 0 \implies \sigma_k^2 = \frac{1}{N_k} \sum_{i \in \mathcal{D}} r_{ik} (x^{(i)} - \mu_k)^2$$

$$rac{\partial}{\partial \pi_k}$$
: with Lagrange multiplier: $\sum_{i \in \mathcal{D}} rac{\mathcal{N}(\mathbf{x}^{(i)}|\mu_k, \sigma_k)}{\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}^{(i)}|\mu_k, \sigma_k)} + \lambda = \mathbf{0}$ multiplication with π_k and summation over k : $\lambda = -N$

$$\min_{\pi,\mu,\sigma} - \log \prod_{i \in \mathcal{D}} p(x^{(i)} | \pi, \mu, \sigma) := -\sum_{i \in \mathcal{D}} \log \sum_{k=1}^K \pi_k \mathcal{N}(x^{(i)} | \mu_k, \sigma_k) \text{ s.t. } \sum_{k=1}^K \pi_k = 1$$

$$\frac{\partial}{\partial \mu_k}: \quad -\sum_{i \in \mathcal{D}} r_{ik} \left(-\frac{1}{2\sigma^2} (x^{(i)} - \mu_k) \right) = 0 \quad \Longrightarrow \quad \mu_k = \frac{1}{N_k} \sum_{i \in \mathcal{D}} r_{ik} x^{(i)}$$

$$\frac{\partial}{\partial \sigma_k}: \sum_{i \in \mathcal{D}} r_{ik} \left(\frac{1}{\sigma} - \frac{1}{\sigma^3} (x^{(i)} - \mu_k)^2 \right) = 0 \implies \sigma_k^2 = \frac{1}{N_k} \sum_{i \in \mathcal{D}} r_{ik} (x^{(i)} - \mu_k)^2$$

$$\frac{\partial}{\partial \pi_k}: \qquad \text{with Lagrange multiplier: } \sum_{i \in \mathcal{D}} \frac{\mathcal{N}(\mathbf{x}^{(i)} | \mu_k, \sigma_k)}{\sum_{\hat{k}=1}^K \pi_{\hat{k}} \mathcal{N}(\mathbf{x}^{(i)} | \mu_{\hat{k}}, \sigma_{\hat{k}})} + \lambda = 0$$
 multiplication with π_k and summation over k :
$$\lambda = -N$$
 multiplication with π_k and rearranging:
$$\frac{\lambda}{\pi_k} = \frac{N_k}{N}$$

$$\min_{\pi,\mu,\sigma} - \log \prod_{i \in \mathcal{D}} p(x^{(i)} | \pi, \mu, \sigma) := -\sum_{i \in \mathcal{D}} \log \sum_{k=1}^K \pi_k \mathcal{N}(x^{(i)} | \mu_k, \sigma_k) \text{ s.t. } \sum_{k=1}^K \pi_k = 1$$

Stationary point: (per cluster weight $N_k = \sum_{i \in \mathcal{D}} r_{ik}$)

$$\frac{\partial}{\partial \mu_k}: \quad -\sum_{i \in \mathcal{D}} r_{ik} \left(-\frac{1}{2\sigma^2} (x^{(i)} - \mu_k) \right) = 0 \quad \Longrightarrow \quad \mu_k = \frac{1}{N_k} \sum_{i \in \mathcal{D}} r_{ik} x^{(i)}$$

$$\frac{\partial}{\partial \sigma_k}: \sum_{i \in \mathcal{D}} r_{ik} \left(\frac{1}{\sigma} - \frac{1}{\sigma^3} (x^{(i)} - \mu_k)^2 \right) = 0 \implies \sigma_k^2 = \frac{1}{N_k} \sum_{i \in \mathcal{D}} r_{ik} (x^{(i)} - \mu_k)^2$$

$$\frac{\partial}{\partial \pi_k}: \qquad \text{with Lagrange multiplier: } \sum_{i \in \mathcal{D}} \frac{\mathcal{N}(x^{(i)} | \mu_k, \sigma_k)}{\sum_{k=1}^K \pi_k \mathcal{N}(x^{(i)} | \mu_k, \sigma_k)} + \lambda = 0$$
 multiplication with π_k and summation over k : $\lambda = -N$ multiplication with π_k and rearranging: $\pi_k = \frac{N_k}{N}$

Not a closed form solution

• Initialize μ, σ, π

- Initialize μ, σ, π
- Iterate:

- Initialize μ, σ, π
- Iterate:
 - E-Step: Update

$$r_{ik} = \frac{\pi_k \mathcal{N}(\mathbf{x}^{(i)}|\mu_k, \sigma_k)}{\sum_{\hat{k}=1}^K \pi_{\hat{k}} \mathcal{N}(\mathbf{x}^{(i)}|\mu_{\hat{k}}, \sigma_{\hat{k}})}$$

- Initialize μ, σ, π
- Iterate:
 - E-Step: Update

$$r_{ik} = \frac{\pi_k \mathcal{N}(\mathbf{x}^{(i)}|\mu_k, \sigma_k)}{\sum_{\hat{k}=1}^K \pi_{\hat{k}} \mathcal{N}(\mathbf{x}^{(i)}|\mu_{\hat{k}}, \sigma_{\hat{k}})}$$

M-Step: Update

$$\mu_k = \frac{1}{N_k} \sum_{i \in \mathcal{D}} r_{ik} x^{(i)}$$

$$\sigma_k^2 = \frac{1}{N_k} \sum_{i \in \mathcal{D}} r_{ik} (x^{(i)} - \mu_k)^2$$

$$\pi_k = \frac{N_k}{N}$$

 r_{ik} is an assignment of sample i to cluster k, albeit a soft assignment

- r_{ik} is an assignment of sample i to cluster k, albeit a soft assignment
- μ_k are the cluster centers

- r_{ik} is an assignment of sample i to cluster k, albeit a soft assignment
- μ_k are the cluster centers

Can we make this similarity formal?

 $\operatorname{Fix} \sigma_k^2 = \epsilon \ \forall k$

Fix
$$\sigma_k^2 = \epsilon \ \forall k$$

$$r_{ik} = \frac{\pi_k \exp(-\frac{1}{2\epsilon} (x^{(i)} - \mu_k)^2)}{\sum_{\hat{k}=1}^K \pi_{\hat{k}} \exp(-\frac{1}{2\epsilon} (x^{(i)} - \mu_{\hat{k}})^2)}$$

Fix
$$\sigma_k^2 = \epsilon \ \forall k$$

$$r_{ik} = \frac{\pi_k \exp(-\frac{1}{2\epsilon}(x^{(i)} - \mu_k)^2)}{\sum_{\hat{k}=1}^K \pi_{\hat{k}} \exp(-\frac{1}{2\epsilon}(x^{(i)} - \mu_{\hat{k}})^2)}$$

Fix
$$\sigma_k^2 = \epsilon \ \forall k$$

$$r_{ik} = \frac{\pi_k \exp(-\frac{1}{2\epsilon}(x^{(i)} - \mu_k)^2)}{\sum_{\hat{k}=1}^K \pi_{\hat{k}} \exp(-\frac{1}{2\epsilon}(x^{(i)} - \mu_{\hat{k}})^2)}$$

What happens for $\epsilon \to 0$?

• In the denominator the term for which $(x^{(i)} - \mu_{\hat{k}})^2$ is smallest goes to zero slowest

Fix
$$\sigma_k^2 = \epsilon \ \forall k$$

$$r_{ik} = \frac{\pi_k \exp(-\frac{1}{2\epsilon}(x^{(i)} - \mu_k)^2)}{\sum_{\hat{k}=1}^K \pi_{\hat{k}} \exp(-\frac{1}{2\epsilon}(x^{(i)} - \mu_{\hat{k}})^2)}$$

- In the denominator the term for which $(x^{(i)} \mu_{\hat{k}})^2$ is smallest goes to zero slowest
- All responsibilities will go to zero except the one for which $(x^{(i)} \mu_{\hat{k}})^2$ is smallest, which will go to unity

Fix
$$\sigma_k^2 = \epsilon \ \forall k$$

$$r_{ik} = \frac{\pi_k \exp(-\frac{1}{2\epsilon}(x^{(i)} - \mu_k)^2)}{\sum_{\hat{k}=1}^K \pi_{\hat{k}} \exp(-\frac{1}{2\epsilon}(x^{(i)} - \mu_{\hat{k}})^2)}$$

- In the denominator the term for which $(x^{(i)} \mu_{\hat{k}})^2$ is smallest goes to zero slowest
- All responsibilities will go to zero except the one for which $(x^{(i)} \mu_{\hat{k}})^2$ is smallest, which will go to unity
- Responsibilities are hard assignments

Fix
$$\sigma_k^2 = \epsilon \ \forall k$$

$$r_{ik} = \frac{\pi_k \exp(-\frac{1}{2\epsilon}(x^{(i)} - \mu_k)^2)}{\sum_{\hat{k}=1}^K \pi_{\hat{k}} \exp(-\frac{1}{2\epsilon}(x^{(i)} - \mu_{\hat{k}})^2)}$$

- In the denominator the term for which $(x^{(i)} \mu_{\hat{k}})^2$ is smallest goes to zero slowest
- All responsibilities will go to zero except the one for which $(x^{(i)} \mu_k)^2$ is smallest, which will go to unity
- Responsibilities are hard assignments
- Cost function can be shown to be identical in the limit

 What is the maximum likelihood solution of fitting the mean and variance of a Gaussian?

- What is the maximum likelihood solution of fitting the mean and variance of a Gaussian?
- Why do we consider mixtures of Gaussians?

- What is the maximum likelihood solution of fitting the mean and variance of a Gaussian?
- Why do we consider mixtures of Gaussians?
- How do we find the means, variances and responsibilities of the Gaussian mixture model?

Generative modeling intuition

- Generative modeling intuition
- Gaussian mixture model

- Generative modeling intuition
- Gaussian mixture model
- Relationship between Gaussian mixture model and kMeans

- Generative modeling intuition
- Gaussian mixture model
- Relationship between Gaussian mixture model and kMeans

What's next

- Generative modeling intuition
- Gaussian mixture model
- Relationship between Gaussian mixture model and kMeans

What's next

Generalizing the Gaussian mixture model concept