Equazioni Differenziali Ordinarie	Secondo appello	26 luglio 2006
Cognome	Nome	Firma
Proff. Arioli, Rossi, Vegni	Matricola	Sezione INF

[©] I seguenti quesiti e il relativo svolgimento sono coperti da diritto d'autore; pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale. Ogni abuso sarà perseguito a termini di legge dal titolare del diritto

Esercizio 1 Dato il sistema di equazioni differenziali

$$\begin{cases} x' &= -y + x(25 - x^2 - y^2) \\ y' &= x + y(25 - x^2 - y^2) \end{cases}$$

- (1) Scrivere il sistema in coordinate polari.
- (2) Mostrare l'esistenza di un ciclo limite.
- (3) È possibile determinare l'esistenza di un ciclo limite anche per il sistema seguente?

$$\begin{cases} x' = -y + x(25 - x^2 - 9y^2) \\ y' = x + y(25 - x^2 - 9y^2) \end{cases}$$

Equazioni Differenziali Ordinarie	Secondo appello	26 luglio 2006
Cognome	Nome	Firma
Proff. Arioli, Rossi, Vegni	Matricola	Sezione INF

[©] I seguenti quesiti e il relativo svolgimento sono coperti da diritto d'autore; pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale. Ogni abuso sarà perseguito a termini di legge dal titolare del diritto

Esercizio 2 Studiare qualitativamente l'equazione differenziale ordinaria

$$y' = (e^{2-y^2} - 1)t^3.$$

In particolare:

- (1) Trovare eventuali soluzioni costanti.
- (2) Determinare se sono soddisfatte le ipotesi dei teoremi di esistenza e unicità in piccolo e in grande.
- (3) Disegnare il campo delle direzioni e tracciare alcune soluzioni significative.
- (4) Esistono soluzioni che presentano asintoti orizzontali?
- (5) Stabilire se, in alcuni casi, è possibile garantire l'esistenza globale di soluzioni senza utilizzare il teorema di esistenza in grande.

Equazioni Differenziali Ordinarie	Secondo appello	26 luglio 2006
Cognome	Nome	Firma
Proff. Arioli, Rossi, Vegni	Matricola	Sezione INF

[©] I seguenti quesiti e il relativo svolgimento sono coperti da diritto d'autore; pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale. Ogni abuso sarà perseguito a termini di legge dal titolare del diritto

Esercizio 3 Dato il sistema lineare di equazioni differenziali

$$\begin{cases} x' = -4x - 4y + z \\ y' = 8x + 8y - 3z \\ z' = 8x + 8y - 4z \end{cases}$$

- (1) Data una matrice quadrata A, definire e^A .
- (2) Calcolare la matrice esponenziale associata al sistema dato utilizzando la definizione.
- (3) Scrivere l'integrale generale del sistema.
- (4) Determinare la soluzione del problema di Cauchy con dato iniziale x(1) = 0, y(1) = 0, z(1) = 1.

Equazioni Differenziali Ordinarie	Secondo appello	26 luglio 2006
Cognome	Nome	Firma
Proff. Arioli, Rossi, Vegni	Matricola	Sezione INF

[©] I seguenti quesiti e il relativo svolgimento sono coperti da diritto d'autore; pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale. Ogni abuso sarà perseguito a termini di legge dal titolare del diritto

Esercizio 4 Dato il sistema dinamico discreto

$$x_{n+1} = \alpha \arctan(x_n)$$
:

- (1) Stabilire al variare di $\alpha \in \mathbb{R}$ se esistono soluzioni stazionarie.
- (2) Determinare la stabilità delle soluzioni stazionarie al variare di $\alpha \in \mathbb{R}$.
- (3) Studiare con il diagramma a gradino la soluzione del sistema con $\alpha = \frac{1}{2}$ e dato iniziale $x_0 = 10$.