

## BUSINESSOBJECTIVES

The Mercedes-Benz company aims to empower junior salespeople with an advanced pricing tool to enhance their decision-making capabilities.

The primary objective is to develop a **predictive model** that accurately estimates the prices of used Mercedes-Benz cars.



## DATASET

Data from kaggle the price range of listed Mercedes Used Car. The model year ranges between 1970-2020.

| model <sup>‡</sup> | year <sup>‡</sup> | price <sup>‡</sup> | transmission | mileage | fuelType | tax <sup>‡</sup> | mpg <sup>‡</sup> | engineSize <sup>‡</sup> |
|--------------------|-------------------|--------------------|--------------|---------|----------|------------------|------------------|-------------------------|
| SLK                | 2005              | 5200               | Automatic    | 63000   | Petrol   | 325              | 32.1             | 1.8                     |
| S Class            | 2017              | 34948              | Automatic    | 27000   | Hybrid   | 20               | 61.4             | 2.1                     |
| SL CLASS           | 2016              | 49948              | Automatic    | 6200    | Petrol   | 555              | 28.0             | 5.5                     |
| G Class            | 2016              | 61948              | Automatic    | 16000   | Petrol   | 325              | 30.4             | 4.0                     |
| G Class            | 2016              | 73948              | Automatic    | 4000    | Petrol   | 325              | 30.1             | 4.0                     |
| SL CLASS           | 2011              | 149948             | Automatic    | 3000    | Petrol   | 570              | 21.4             | 6.2                     |

## PROCESS

- 1. Explore data
- 2. Data preparation
- 3. Model training
- 4. Model evaluation
- 5. Conclusion and recommendations



## DATAEXPLORATION

| model            | year           | price            |  |  |
|------------------|----------------|------------------|--|--|
| Length:13119     | Min. :1970     | Min. : 650       |  |  |
| Class :character | 1st Qu.:2016   | 1st Qu.: 17450   |  |  |
| Mode :character  | Median :2018   | Median : 22480   |  |  |
|                  | Mean :2017     | Mean : 24699     |  |  |
|                  | 3rd Qu.:2019   | 3rd Qu.: 28980   |  |  |
|                  | Max. :2020     | Max. :159999     |  |  |
| transmission     | mileage        | fuelType         |  |  |
| Length:13119     |                | Length:13119     |  |  |
| Class :character | 1st Qu.: 6098  | Class :character |  |  |
| Mode :character  | Median : 15189 | Mode :character  |  |  |
|                  | Mean : 21950   |                  |  |  |
|                  | 3rd Qu.: 31780 |                  |  |  |
|                  | Max. :259000   |                  |  |  |
| tax              | mpg            | engineSize       |  |  |
| Min. : 0 Min.    | : 1.10 Mi      | n. :0.000        |  |  |
| 1st Qu.:125 1st  | Qu.: 45.60 1s  | st Qu.:1.800     |  |  |
| Median :145 Medi | an: 56.50 Me   | edian :2.000     |  |  |
| Mean :130 Mean   | : 55.16 Me     | ean :2.072       |  |  |
| 3rd Qu.:145 3rd  | Qu.: 64.20 3r  | d Qu.:2.100      |  |  |
| Max. :580 Max.   | :217.30 Ma     | ix. :6.200       |  |  |

- The dataset is clean
  - 0 13119 rows
  - 9 columns
- 27 Mercedes-Benz models

#### AVERAGE PRICE BY MODEL



- Model with highest average price is G Class, \$98934
- Followed by GLS Class \$47220
   and S Class \$245075

- Model with lowest average price is CLK, \$3078
- Followed by 230 \$4500 and CLC
   Class \$5517

#### NUMBER OF CARS BY MODEL



 C Class, A Class and E Class are popular models with 63% of the samples in this dataset

Some models have sample size n<50, which is quite small I decide to filter these models out for the model training

## DISTRIBUTION OF PRICES



## DISTRIBUTION OF MPG



### DISTRIBUTION OF ENGINE SIZE



#### CORRELATION PRICE AND MILEAGE



Negative Correlation

## DATAPREPARATION

- 1. Convert variables to the right types
- 2. Filter out models with a sample size less than 50
- 3. Filter out cars with engine size = 0
- 4. Identify and handle outliers

### DISTRIBUTION OF PRICES & MPG





Distribution become quite normal after outliers was removed

#### FINAL DATASET

| model <sup>‡</sup> | year <sup>‡</sup> | price <sup>‡</sup> | transmission | mileage <sup>‡</sup> | fuelType <sup>‡</sup> | tax <sup>‡</sup> | mpg <sup>‡</sup> | engineSize <sup>‡</sup> |
|--------------------|-------------------|--------------------|--------------|----------------------|-----------------------|------------------|------------------|-------------------------|
| SLK                | 2005              | 5200               | Automatic    | 63000                | Petrol                | 325              | 32.1             | 1.8                     |
| S Class            | 2017              | 34948              | Automatic    | 27000                | Hybrid                | 20               | 61.4             | 2.1                     |
| GLE Class          | 2018              | 30948              | Automatic    | 16000                | Diesel                | 145              | 47.9             | 2.1                     |
| S Class            | 2012              | 10948              | Automatic    | 107000               | Petrol                | 265              | 36.7             | 3.5                     |
| GLA Class          | 2017              | 19750              | Automatic    | 15258                | Diesel                | 30               | 64.2             | 2.1                     |

- Final clean dataset are ready for model training
  - o 12,290 rows
  - 9 columns
- Data types are in correct format



# MODELTRAINING

- 1. Train test split (80: 20)
- Model training
  - i. Linear regression as baseline model
  - ii. Random forest
- 3. Scoring
- 4. Model evaluation

# MODELEVALUATION



Random Forest outperforms
Linear Regression with
lower RMSE.

#### MODEL EVALUATION



The model
performed well
with lower RMSE
and MAE.

# GOOD RESULTS



### VARIABLEIMPORTANCE



mileage is the highest important feature.

## ERROR BY MODELS

| model     | avg_price | avg_predict | avg_error | pct_error |
|-----------|-----------|-------------|-----------|-----------|
| A Class   | 18672.212 | 18603.7473  | 68.46     | 0.37      |
| B Class   | 18550.01  | 18913.19292 | 363.18    | 1.96      |
| C Class   | 22986.178 | 23078.80183 | 92.62     | 0.40      |
| CL Class  | 21534.548 | 21416.72625 | 117.82    | 0.55      |
| CLA Class | 20782.192 | 20619.70238 | 162.49    | 0.78      |
| CLS Class | 25501.73  | 25448.74354 | 52.99     | 0.21      |
| E Class   | 24231.968 | 24184.65832 | 47.31     | 0.20      |
| GL Class  | 21218.932 | 21262.23465 | 43.30     | 0.20      |
| GLA Class | 20628.848 | 20667.33801 | 38.49     | 0.19      |
| GLC Class | 31174.744 | 31001.79735 | 172.95    | 0.55      |
| GLE Class | 31221.904 | 31273.3439  | 51.44     | 0.16      |
| GLS Class | 39814.906 | 39242.98514 | 571.92    | 1.44      |
| M Class   | 17019.99  | 16928.29794 | 91.69     | 0.54      |
| S Class   | 29128.89  | 28520.79773 | 608.09    | 2.09      |
| SL CLASS  | 24314.352 | 24344.01562 | 29.66     | 0.12      |
| SLK       | 10979.684 | 11211.28558 | 231.60    | 2.11      |
| V Class   | 29112.412 | 29040.65763 | 71.75     | 0.25      |
| X-CLASS   | 28986.81  | 29325.78719 | 338.98    | 1.17      |

Average % error for most models are under 5%

absolute error on average less than \$700

## RECOMMENDATIONS

- 1. Collect more data
- 2. Try different algorithms
- 3. Hyperparameter tuning

