Learning to Solve Job Shop Scheduling under Uncertainty

G. Infantes¹, S. Roussel², P. Pereira¹, A. Jacquet¹, E. Benazera¹

¹ Jolibrain Toulouse, France

²Onera Université de Toulouse Toulouse, France

CPAIOR 2024

Outline

- Introduction
- 2 Components
- 3 Wheatley: bringing all together
- Experimental Results
- **5** Conclusion and Perspectives

Introduction

Introduction

Classical JSSP

- N jobs
- of M tasks (w/ order)
- using M different machines
- deterministic durations

Stochastic JSSP

- probabilistic durations
- off-line (no reschedule)
- minimize expected makespan

Approach

Main ideas

- Consider JSSP as a graph
- Sequential decision problem: add precedencies in the graph
- Use Deep Reinforcement Learning to learn "dispatch rules"
- Use Graph Neural Network inside DRL to get generalization

Expected benefits

- no time discretization, nor epoch computation
- RL intrinsically accounts for stochasticity

Markov Decision Process

State: Disjunctive Graph

Transitions: select task to dispatch

Reward

- reward is —makespan
- durations drawn from distributions
- makespan evaluated only on complete schedule

Reinforcement Learning

Learn a policy $\pi(state) = action$ by collecting evidence (trials)

Forward : compute all $y^{(l)}$

Stack parameterized functions

$$y_{\theta}^{(L)} = f_{\theta_L}^{(L)} \circ f_{\theta_{L-1}}^{(L-1)} \circ \dots f_{\theta_0}^{(0)}(x)$$

Prediction Error on $\{(x,t)\}$

$$E = loss(y^{(L)}, t)$$

Experimental Results

compute $E(y^{(L)}, t)$

Compute gradient of the error wrt parameters

- after last layer $\delta^{(L+1)} = \frac{\partial E}{\partial \nu^{(L)}}$
 - backpropagate $\delta^{(l)} = \frac{\partial f_{\theta_{l+1}}^{(l+1)}}{\partial \omega^{(l)}} \delta^{(l+1)}$
 - compute all gradient $\frac{\partial E}{\partial \theta_l} = \frac{\partial E}{\partial \nu^{(l)}} \frac{\partial y^{(l)}}{\partial \theta_l} = \delta^{(l)} y^{(l-1)}$

Update parameters towards error reduction using gradient, on minibatches

Graph Neural Networks

Inductive bias

- MLP: $y_i^{(l)}$ use all $y_i^{(l-1)}$: $y_i^{(l)} = a^{(l)} (\sum_k w_{ik}^{(l)} (y_k^{(l-1)}) + b_i^{(l)})$
- CNN: $y_i^{(l)}$ use euclidean neighbors of $y_i^{(l-1)}$ (+ pooling/zoom out)
- GNN: $y_i^{(l)}$ use neighbors of $y_i^{(l-1)}$ in the given graph

Message-Passing GNN: use graph as computational lattice

$$a_v^{(k)} = COMB^{(k)}(a_v^{(k)}, AGG^{(k)}(\{MSG^{(k)}(h_u^{k-1}) : u \in N(v)\}))$$

Node classification/regression

Use final values a_{ν}^{N}

Graph classification/regression

- $POOL(\{a_{ij}^{N}\})$ with $POOL \in$ {MIN, MAX, SUM, AVG...}
- Virtual node g s.t. $N(g) = \{u \in G\}$

General Architecture

Algorithm

```
1 Init actor // actor is \sim current policy \pi_{\theta}
2 Init critic // critic is ~ value function estimator
3 for i = 1, 2, ... N do
       // Collect dataset
       Generate train instances
       Collect trials data \mathcal{D}_i = ((s_t, a_t, r_t, s_{t+1}), ...) using current actor
       For each trial: sample makespan using system simulator (= final cost)
6
       Compute advantages on trials using current critic
       Rewire graphs in trials data
       // PPO update algorithm
       repeat
           Sample a minibatch of n data points over shuffled collected data
10
           Update actor over the minibatch data towards advantage maximization
11
           Update critic by MSE regression
12
       until max number of iterations or KL(current policy, update policy) > threshold
13
       Evaluate current policy (actor) on validation instances
14
```

Wheatley

Rewiring and Embedding

- \rightarrow Jobs precedence (\mathcal{C}) + scheduling precedence choices
- --> Backward jobs precedence + backward scheduling prec. choices
- Machines conflicts

Precedences

jobs definition + reverse (!)

Nodes: MLP embedding

scheduled, selectable, duration, completion time (min max mode)

Conflicts

Both directions

Edges: discrete embedding

type: precedence, reverse precedence, conflict

Some details

Sparse reward

Makespan evaluated on complete schedules

Action selection

 One to one matching between nodes and actions → action selection boils down to node regression

Wheatlev

final action logits = [node logit || graph logit]

Message Passing: Gatv2 + edge attributes (allows soft rewiring(!))

$$e_{ij}^{(I)} = a^{T(I)} LeakyReLU(W_{src}^{(I)} h_i^{(I)} + W_{dst}^{(I)} h_j^{(I)} + W_{edge}^{(I)} f_{ij})$$
 $e^{(I)} = softmax_i(e^{(I)}) - exp(e^{(I)}_{ij})$

$$\alpha_{ij}^{(I)} = softmax_{i}(e_{ij}^{(I)}) = \frac{exp(e_{ij}^{(I)})}{\sum_{j' \in N_{i}} exp(e_{ij'}^{(I)})}$$

$$h_{i}^{(I+1)} = \sum_{i \in N(i)} \alpha_{ii}^{(I)} W_{undate}^{(I)} h_{i}^{(I)}$$

Generalization

Setup

- Generate taillard instances of different sizes
- Learn on given fixed size
- Test on other problems, different sizes

	Deterministic				Stochastic		
Evaluation	W-6×6	W-10×10	W-15×15	W-6×6	W-10×10	W-15×15	
6×6	508	521	521	700	714	715	
10×10	927	890	915	1269	1217	1232	
15×15	1557	1388	1392	2297	1889	1889	
20×15	1798	1583	1622	2585	2181	2188	
20×20	2314	1959	1888	3632	2643	2608	

Table: Comparison of Wheatley wrt training instance sizes.

Learning on $10 \times 10 \rightarrow \text{good compromise training time}$ / performance

Deterministic

Compare W-10×10 to baselines, on different problems sizes

Evaluation	W-10×10	L2D	Best PDR	OR-Tools
6×6	521 (7.4)	571 (17.7)	545 (12.4)	485 (0)
10×10	890 (9.6)	993 (22.3)	948 (16.8)	812 (0)
15×15	1389 (17.2)	1501 (26.7)	1419 (19.8)	1185 (0)
20×15	1583 (16.9)	-	1642 (21.3)	1354 (0)
20×20	1959 (24.9)	2026 (29.2)	1870 (19.3)	1568 (0)
30×10	1829 (5.5)	-	1878 (8.9)	1725 (0)
30×15	2043 (14.5)	-	2092 (17.3)	1784 (0)
30×20	2377 (22.0)	-	2331 (19.7)	1948 (0)
50×15	3060 (8.3)	-	3079 (9.0)	2825 (0)
50×20	3322 (14.9)	-	3295 (14.0)	2891 (0)
60×10	3357 (1.7)	-	3376 (2.3)	3301 (0)
100×20	5886 (6.9)	-	5786 (5.1)	5507 (0)

Good generalization abilities

Stochastic

Compare W-10×10 learned on stochastic instances to baselines

					OR-Tools	
Evaluation	W-10×10	Wd-10×10	MOPNR	CP-stoc	mode	real
6×6	714 (16.3)	817 (33.1)	699 (13.8)	669 (9.0)	728 (18.6)	614 (0)
10×10	1217 (21.5)	1464 (46.1)	1252 (25.0)	1177 (17.5)	1262 (25.9)	1002 (0)
$15{ imes}15$	1889 (29.3)	2406 (64.7)	1988 (36.1)	1872 (28.1)	1925 (31.8)	1461 (0)
20×15	2181 (30.5)	2729 (63.3)	2314 (38.5)	2222 (33.0)	2244 (34.3)	1571 (0)
20×20	2643 (36.4)	3511 (81.2)	2708 (40.0)	2631 (35.8)	2619 (35.1)	1938 (0)
30×10	2425 (14.1)	3511 (65.2)	2532 (19.1)	2476 (16.5)	2598 (22.2)	2126 (0)
30×15	2792 (26.7)	3251 (47.5)	2964 (34.5)	2892 (31.2)	2943 (33.5)	2204 (0)
30×20	3305 (36.9)	4186 (73.3)	3390 (40.4)	3355 (39.0)	3299 (36.6)	2415 (0)
50×15	4043 (16.5)	4413 (27.1)	4262 (22.8)	4239 (22.1)	4435 (27.7)	3472 (0)
50×20	4520 (26.8)	5351 (50.1)	4679 (31.2)	4682 (31.3)	4758 (33.4)	3566 (0)
60×10	4315 (6.3)	4475 (10.2)	4451 (9.6)	4442 (9.4)	4579 (12.8)	4061 (0)
100×20	7591 (11.8)	8377 (23.3)	7956 (17.1)	8203 (20.8)	8188 (20.5)	6793 (0)

OD Table

Conclusion

GNNs are able to learn patterns on precedence graphs and generalize

With RL, stochasticity is naturally handled

Code is available at https://github.com/jolibrain/wheatley

Extending to real-world factory scheduling

- Resources, options, more complex graphs: multi-mode RCPSP
- Opening calendars
- Due dates / tardiness
- Scaling up to thousands of tasks

Earth observation

- over subscribed, time windows: graph varies much more
- lexicographical utility \rightarrow non chronological choice : STN

Beyond RL

- Replace RL with diffusion denoising on graphs
- can be seen as learning heuristic for local / large neighborhood search