MATH 13.0025 Exam

Problem 1.

$$\mathbf{A} = \begin{bmatrix} 10 & 7 & 8 & 7 \\ 7 & 5 & 6 & 5 \\ 8 & 6 & 10 & 9 \\ 7 & 5 & 9 & 10 \end{bmatrix}$$

- a) Compute the inverse A^{-1} and determine the solution to Ax = b when $b = (4 \ 3 \ 3 \ 1)^T$.
- b) Assume that the right-hand side b is perturbed by a vector $\delta \mathbf{b}$ such that $\|\delta \mathbf{b}\|_{\infty} \leq 0.01$ Give an upper bound for $\|\delta \mathbf{x}\|_{\infty}$, where $\delta \mathbf{x}$ is the corresponding perturbation in the solution.
- c) Compute the condition number $\kappa(A)$ and compare it with the bound for the quotient between $\frac{\|\delta \mathbf{x}\|}{\|\mathbf{x}\|}$ and $\frac{\|\delta \mathbf{b}\|}{\|\mathbf{b}\|}$ which can be derived from (b).

a)
$$A^{-1} = \begin{bmatrix} 25 & -41 & 10 & -6 \\ -41 & 68 & -17 & 10 \\ 10 & -17 & 5 & -3 \\ -6 & 10 & -3 & 2 \end{bmatrix}$$

$$\chi = A^{-1}b = (1, -1, 1, -1)^{T}$$

b)
$$\|\delta\chi\|_{\infty} = \|\chi - \hat{\chi}\|_{\infty} \|A'\|_{\infty} \|b - \hat{b}\|_{\infty}$$

 $\leq \|\chi\|_{\infty} \|A\|_{\infty} \|A'\|_{\infty} \|b - \hat{b}\|_{\infty}$
 $= (1)(33)(136) \|8b\|_{\infty} / (4)$
 ≤ 1122

c)
$$\kappa_{\infty} = ||A||_{\infty} ||A^{-1}||_{\infty} = 4488$$

$$\frac{||\delta x||_{\infty}/||x||_{\infty}}{||\delta b||_{\infty}/||b||_{\infty}}$$

$$= \frac{||\delta x||_{\infty}/||b||_{\infty}}{||\delta b||_{\infty}/||a||}$$

$$\approx \frac{||\delta x||_{\infty}/|a|}{||\delta b||_{\infty}/|a|} = 4488$$

Problem 2.

a. Make algorithms for finding the roots of the equation

$$x\tan(x)=2, \qquad (1)$$

in the interval $x \in [0, \pi/2]$, using:

- 1. Newton-Ralphson Iteration
- 2. The Secant Method
- b. Make a graph of the relative errors vs iteration step for the two algorithms and compare their convergence behavior to that of a quadratic convergence.

Then $f'(x) = x \tan x - 2$ Then $f'(x) = \tan x + x \sec^2 x$ Since $f'(x) \neq 0$, $x \in (0, \pi/2)$, $f(0) \neq a$ and $\tan \pi/2$ is not defined, we can use Newton-Raphson iteration to solve $f(x^*) = 0$, $x^* \in (0, \pi/2)$. Pa 71 of Numerical Methods using Matlab, Matthews and Fink).

See Exam.m

b) The convergence is approximately quadratic.

