Corrigé exercice 81:

1.
$$D_f = D_{f'} = \mathbb{R}$$
 et, pour tout $x \in \mathbb{R}$, $f'(x) = -9\sin(3x + 5)$.

2.
$$D_f = D_{f'} = \mathbb{R}$$
 et, pour tout $x \in \mathbb{R}$, $f'(x) = -10\cos(3+5x)$.

3.
$$D_f = D_{f'} = \mathbb{R}$$
 et, pour tout $x \in \mathbb{R}$, $f'(x) = -3\sin(5x - 3) - 3\cos(\frac{-3x}{4} + 1)$.

4.
$$D_f = D_{f'} = \mathbb{R}$$
 et, pour tout $x \in \mathbb{R}$, $f'(x) = 3x^2 \cos(x) - x^3 \sin(x)$.

Corrigé exercice 82:

1.
$$D_f = D_{f'} = \mathbb{R}$$
 et, pour tout $x \in D_{f'}$, $f'(x) = \cos x - x \sin x$.

2.
$$D_f = D_{f'} = \mathbb{R}$$
 et, pour tout $x \in D_{f'}$, $f'(x) = \sin x + x \cos x$.

3.
$$D_f = D_{f'} = \mathbb{R} \setminus \{0\}$$
 et, pour tout $x \in D_{f'}$, $f'(x) = \frac{-x \sin x - \cos x}{x^2}$.

4.
$$D_f = D_{f'} = \mathbb{R} \setminus \{0\}$$
 et, pour tout $x \in D_{f'}$, $f'(x) = \frac{x \cos x - \sin x}{x^2}$.

5.
$$D_f = D_{f'} = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \right\}$$
 où $k \in \mathbb{Z}$ et, pour tout $x \in D_{f'}$, $f'(x) = \frac{\cos x + x \sin x}{\cos^2 x}$.

6.
$$D_f = D_{f'} = \mathbb{R} \setminus \{k\pi\}$$
 où $k \in \mathbb{Z}$ et, pour tout $x \in D_{f'}$, $f'(x) = \frac{\sin x - x \cos x}{\sin^2 x}$.

Corrigé exercice 99:

On obtient les réponses suivantes à l'aide de la calculatrice.

- 1. $f(0) \neq -2$: l'affirmation de l'énoncé est fausse.
- 2. $f\left(\frac{\pi^2}{6}\right) = \frac{-5}{4}$: l'affirmation de l'énoncé est vraie.
- 3. La fonction f est paire.
- 4. La fonction f n'est pas périodique de période 2π : l'affirmation de l'énoncé est fausse.
- 5. L'équation f(x) = 0 admet 6 solutions sur $[-2\pi; 2\pi]$.
- 6. La fonction f n'admet pas de limite en $+\infty$.
- 7. f'(0) = 0.
- 8. $f'\left(\frac{\pi^2}{6}\right) \neq \frac{-12}{\pi}$: l'affirmation de l'énoncé est fausse.
- 9. Il s'agit bien de l'expression de la fonction f': l'affirmation de l'énoncé est vraie.

Corrigé exercice 100:

- 1. $f(x) = 0 \Leftrightarrow \cos(2x) = \frac{1}{2}$ soit $2x = \frac{\pi}{3} + 2k\pi$ ou $2x = -\frac{\pi}{3} + 2k\pi$, avec $k \in \mathbb{Z}$. Cette équation a pour solution les nombres de la forme $\frac{\pi}{6} + k\pi$ ou $\frac{-\pi}{6} + k\pi$ avec $k \in \mathbb{Z}$.
- 2. La fonction cosinus est 2π -périodique donc la fonction $x \mapsto \cos(2x)$ est π -périodique. Ainsi la fonction f admet pour plus petite période $T = \pi$.
- 3. Pour tout $x \in \mathbb{R}$, $f(-x) = 2\cos(-2x) 1 = 2\cos(2x) 1 = f(x)$ puisque la fonction cosinus est paire. On en déduit que la fonction f est paire sur \mathbb{R} . De plus, la fonction f est, d'après la question précédente, π -périodique. Ainsi, on peut restreindre son étude sur $\left[0; \frac{\pi}{2}\right]$. Par parité, on connaît alors la fonction f sur $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ et, par périodicité, on obtient l'étude sur \mathbb{R} .
- 4. La fonction f est dérivable sur $\left[0; \frac{\pi}{2}\right]$ et, pour tout $x \in \left[0; \frac{\pi}{2}\right]$, $f'(x) = -4\sin(2x)$. Or, si $0 \leqslant x \leqslant \frac{\pi}{2}$ alors $0 \leqslant 2x \leqslant \pi$ donc $\sin(2x) \geqslant 0$ et ainsi $f'(x) \leqslant 0$.
- 5. D'après la question précédente, f est strictement décroissante sur $\left[0; \frac{\pi}{2}\right]$. Par parité, on en déduit que f est strictement croissante sur $\left[-\frac{-\pi}{2}; 0\right]$. Enfin, la π -périodicité de la fonction f nous permet d'étendre ces résultats sur l'intervalle $[-\pi; \pi]$.

