# 编译原理参考答案

齐王璟 周 帆

# 第五章 自底向上优先分析

4. 已知文法G[S]为

$$S \rightarrow S$$
;  $G|G$ 

$$G \rightarrow G(T)|H$$

$$H \rightarrow a|(S)$$

$$T \rightarrow T + S|S$$

- (1) 构造G[S]的算符优先关系表,并判断G[S]是否为算符优先文法。
- (2) 给出句型a(T+S); H; (S)的短语、句柄、素短语和最左素短语。
- (3) 给出a; (a+a)和(a+a)的分析过程, 说明它们是否为G[S]的句子。
- (4) 给出(3) 中输入串的最右推导, 分别说明两个输入串是否为G[S]的句子。
- (5) 由(3) 和(4) 说明了算符优先分析的哪些缺点?
- (6) 算符优先分析过程和规范归约过程都是最右推导的逆过程吗?

#### 答:

(1)

| $V_N$ | FIRSTVT (V <sub>N</sub> ) | LASTVT (V <sub>N</sub> ) |
|-------|---------------------------|--------------------------|
| S'    | #                         | #                        |
| S     | ;, (, a                   | ;,),a                    |
| G     | (, a                      | ), a                     |
| Н     | (, a                      | ), a                     |
| T     | +, ;, (, a                | +, ;,), a                |

 $\mathbf{h}A \rightarrow aBb$ , 则 a = b, 得 # = #

由 $A \rightarrow aB$ , 则 $a < \cdot FIRSTVT(B)$ , 得

 $\#<\cdot FIRSTVT(S)$ 

;  $< \cdot FIRSTVT(G)$ 

 $(<\cdot FIRSTVT(T)$ 

 $(<\cdot FIRSTVT(S)$ 

 $+<\cdot FIRSTVT(S)$ 

由 $A \rightarrow Bb$  , 则  $LASTVT(B) \cdot > b$  , 得

LASTVT(S)  $\cdot > \#$ 

LASTVT(S)  $\cdot >$ :

LASTVT  $(T) \cdot >$ 

LASTVT (S)  $\cdot >$ )

LASTVT (T)  $\cdot > +$ 

LASTVT (G)  $\cdot >$  (

### 构造文法G[S]的算符优先关系矩阵:

| 14.0.0.4.0[0] |     |    |     |     |    |     |
|---------------|-----|----|-----|-----|----|-----|
|               | ;   | (  | )   | а   | +  | #   |
| ;             | ·>  | ·  | < · | < · | ·> | ·>  |
| (             | < · | ·  | =:  | < · | <. |     |
| )             | ·>  | ·  | ·>  |     | ·> | ·>  |
| а             | ·>  | ·  | ·>  |     | ·> | ·>  |
| +             | <.  | <. | ·>  | <.  | ·> |     |
| #             | <.  | <· |     | <.  |    | = • |

由上表可以看出终结符之间的优先关系是唯一的,或称G[S]的算符优先关系矩阵不含多重入口,因此G[S]是一个算符优先文法。

## (2)



短语: a, T + S, a(T + S), H, a(T + S); H, (S), a(T + S); H; (S)

句柄: a

素短语: a, T + S, (S)

最左素短语: a

(3) 对输入串 a; (a+a)的分析过程如下:

| 步骤   | 栈                         | 优先关系 | 当前符号 | 剩余输入串         | 移进或归约 |
|------|---------------------------|------|------|---------------|-------|
| (1)  | #                         | <·   | а    | ;(a+a)#       | 移进    |
| (2)  | # <b>a</b>                | ·>   | ;    | (a + a)#      | 归约    |
| (3)  | # <b>N</b>                | <.   | ;    | (a + a)#      | 移进    |
| (4)  | # <b>N</b> ;              | <.   | (    | (a + a)#      | 移进    |
| (5)  | # <b>N</b> ;(             | <.   | а    | + <i>a</i> )# | 移进    |
| (6)  | # <b>N</b> ; ( <b>a</b>   | ·>   | +    | <b>a</b> )#   | 归约    |
| (7)  | # <b>N</b> ; ( <b>N</b>   | <.   | +    | <b>a</b> )#   | 移进    |
| (8)  | #N;(N +                   | <.   | а    | )#            | 移进    |
| (9)  | #N; $(N+a)$               | •>   | )    | #             | 归约    |
| (10) | #N; $(N+N)$               | ·>   | )    | #             | 归约    |
| (11) | #N; (N                    | <.   | )    | #             | 移进    |
| (12) | # <b>N</b> ; ( <b>N</b> ) | ·>   | #    |               | 归约    |
| (13) | # <b>N</b> ; <b>N</b>     | ·>   | #    |               | 归约    |
| (14) | # <b>N</b>                |      | #    |               | 接受    |

对输入串(a+a)的分析过程如下:

| 步骤   | 栈             | 优先关系 | 当前符号 | 剩余输入串         | 移进或归约 |
|------|---------------|------|------|---------------|-------|
| (1)  | #             | <.   | (    | (a + a)#      | 移进    |
| (2)  | #(            | <.   | а    | + <i>a</i> )# | 移进    |
| (3)  | #( <b>a</b>   | ·>   | +    | <b>a</b> )#   | 归约    |
| (4)  | #( <b>N</b>   | <.   | +    | <b>a</b> )#   | 移进    |
| (5)  | #(N +         | <.   | а    | )#            | 移进    |
| (6)  | #(N+a)        | ·>   | )    | #             | 归约    |
| (7)  | #(N+N)        | ·>   | )    | #             | 归约    |
| (8)  | #( <b>N</b>   | = ·  | )    | #             | 移进    |
| (9)  | #( <b>N</b> ) | ·>   | #    |               | 归约    |
| (10) | # <b>N</b>    |      | #    |               | 接受    |

则说明a; (a+a)和(a+a)为G[S]的句子。

- (4) 试用规范推导:
  - $S \Rightarrow G \Rightarrow H \Rightarrow (S)$ 由此往下S不可能推导出a; (a+a)和 (a+a), 所以它们不是G[S]的句子。
- (5) 结果说明:由于算符优先分析去掉了单非终结符之间的归约,速度快。 尽管在分析过程中,当决定是否为句柄时采取一些检查措施,但仍难完 全避免把错误的句子得到"正确"的归约。
- (6) 算符优先分析过程不是最右推导的逆过程。规范规约过程是最右推导的逆过程。