

Fernanda Coimbra 27th April, 2023

PROFILE INFORMATION

NAME	Fernanda Coimbra
ORGANISATION	On Morumbi Clinica Medica
DATE OF BIRTH	3 rd March, 1989
GENDER	Female
HEIGHT	167cm / 65in
WEIGHT	56kg / 123lb
AGE	34

Cervical Spine Flexion/Extension Range of Motion Assessment

Cervical Spine Flexion (forward) / Extension (backwards) calculated by taking the inclination of the head relative to the line of the trunk in the sagittal plane (side view).

RESULTS

KEY RESULTS	STARTING POSITION	PEAK FLEXION	PEAK EXTENSION	TOTAL RANGE
Flexion/Extension	0.0°	10.6°	27.9°	38.4°
Trunk Flexion	4.0° Posterior	1.8° Posterior	4.8° Posterior	N/A
Trunk lateral flexion	2.2°	2.2° Right ▼	4.1° Right ▼	N/A

Cervical Spine Lateral Flexion Range of Motion Assessment

Cervical Spine Lateral Flexion (left and right) is calculated by taking the inclination of the head relative to the line of the trunk in the frontal plane (front view).

RESULTS

PEAK LEFT LATERAL FLEXION

KEY RESULTS	PEAK FLEXION (LEFT)	PEAK FLEXION (RIGHT)	IMBALANCE
Lateral Flexion	20.3°	26.0°	+5.7°
Trunk Flexion	3.9° Posterior	1.7° Posterior	N/A
Trunk lateral flexion at Peak Flexion	0.3° Left ▼	8.3° Right ▼	+8.0°

Shoulder Adduction/Abduction

Range of Motion Assessment

Shoulder Adduction/Abduction is calculated by taking the angle created by the humerus (upper arm) relative to the line of the trunk in the frontal plane (front view).

RESULTS

PEAK AD	PEAK ADDUCTION		PEAK ABDUCTION	
LEFT	RIGHT	LEFT	RIGHT	
IECY S	IECY	IECT CONTRACTOR OF THE CONTRAC	IECY A STATE OF THE STATE OF TH	
KEY RESULTS	LEFT	RIGHT	IMBALANCE	
Shoulder Adduction	33.4°	24.0°	+9.4°	
Shoulder Abduction	182.8°	179.7°	+3.0°	
Trunk lateral flexion at Peak Abduction	3.9° Right ▼	1.1° Right ▼	+2.7°	
PRACTITIONER COMMENTS (LEFT)		PRACTITIONER COMMEN	TS (RIGHT)	

Shoulder Flexion/Extension

Range of Motion Assessment

Shoulder Flexion/Extension is calculated by taking the angle created by the humerus (upper arm) relative to the line of the trunk in the sagittal plane (side view).

RESULTS

PEAK	FLEXION	PEAK EX	TENSION
LEFT	RIGHT	LEFT	RIGHT
I I I I I I I I I I I I I I I I I I I			
KEY RESULTS	LEFT	RIGHT	IMBALANCE
Shoulder Flexion	179.8°	193.8°	+14.0°
Shoulder Extension	43.9°	64.6°	+20.7°
Trunk lateral flexion at Peak Flexion	2.1° Right ▼	0.3° Left ▼	+1.7°
PRACTITIONER COMMEN	TS (LEFT)	PRACTITIONER COMMEN	TS (RIGHT)

Shoulder Internal/External Rotation

Range of Motion Assessment

Shoulder Internal/External Rotation calculated by taking the angle created by the forearm relative to horizontal in the sagittal plane (side view).

RESULTS

PEAK INTERNAL ROTATION

LEFT

RIGHT

PEAK EXTERNAL ROTATION

LEFT

RIGHT

KEY RESULTS	LEFT	RIGHT	IMBALANCE
Shoulder Internal Rotation	68.6°	60.5°	+8.1°
Shoulder External Rotation	93.2°	88.0°	+5.2°
Total ROM	161.8°	148.5°	+13.3°
Trunk lateral flexion at Peak Internal Rotation	1.2° Right ▼	3.5° Right ▼	+2.3°

PRACTITIONER COMMENTS (LEFT)

PRACTITIONER COMMENTS (RIGHT)

Hip Internal/External Rotation Range of Motion Assessment

Hip Internal/External Rotation is calculated by taking the angle created by the tibia relative to vertical in the frontal plane (front view) while seated with 90° of hip flexion.

RESULTS

LEFT

RIGHT

LEFT RIGHT

PRACTITIONER COMMENTS (RIGHT)

ganho de mobilidade

KEY RESULTS	LEFT	RIGHT	IMBALANCE
Peak Internal Rotation	33.9°	34.1°	+0.2°
Peak External Rotation	50.6°	48.3°	+2.3°
Total ROM	84.5°	82.4°	+2.1°

PRACTITIONER COMMENTS (LEFT)

ganho de mobilidade

Single Leg Stand Balance Assessment

Standing balance over time is assessed while standing on one leg.

Eyes Open Surface Stable Time 10.0 s

RESULTS

BALANCE RESULTS (LEFT)

SNAPSHOT - START OF TEST

KEY METRICS	RESULTS
Ellipse Area	1.44 cm-2
COM Path Length	15.01 cm
Range - ML	2.87 cm
Range – AP	2.77 cm
Pelvis Lateral Tilt	5.7° Left ▼
Trunk lateral flexion	2.9° Left ▼

Single Leg Stand Balance Assessment

Standing balance over time is assessed while standing on one leg.

Eyes Open Surface Stable Time 10.0 s

RESULTS

BALANCE RESULTS (RIGHT)

SNAPSHOT - START OF TEST

CENTER OF MASS PATH

KEY METRICS	RESULTS
Ellipse Area	0.99 cm-2
COM Path Length	19.09 cm
Range - ML	2.26 cm
Range – AP	3.70 cm
Pelvis Lateral Tilt	8.3° Right ▼
Trunk lateral flexion	3.6° Right ▼

Lunge Lower Body Dynamic Assessment

The Lunge assesses the strength and range of motion of the knees and hips.

RESULTS

PEAK KNEE FLEXION

LEFT

KEY METRICS	LEFT LEG	RIGHT LEG	ASYMMETRY
Peak Hip Flexion	67.0°	52.7°	21.3%
Peak Knee Flexion	89.2°	75.4°	15.4%
Peak Spine Lateral Tilt	2.3° Posterior	0.3° Posterior	N/A
Peak Pelvic Lateral Tilt	4.9° Right	0.8° Right	N/A

PRACTITIONER COMMENTS (LEFT)

PRACTITIONER COMMENTS (RIGHT)

Squat Lower Body Dynamic Assessment

Squat is a dynamic movement assessment providing insight into an individual's balance, stability, flexibility, and strength.

RESULTS

REP 1: REP 2: REP 3: **START** PEAK KNEE FLEXION PEAK KNEE FLEXION PEAK KNEE FLEXION **KEY RESULTS** REP 1 REP 2 REP 3 Peak Knee Flexion (Left 119.6° 120.2° 118.1° Peak Knee Flexion (120.9° 123.3° 123.6° Right) Spine Tilt 39.0° Anterior 36.1° Anterior 33.7° Anterior at Peak Knee Flexion Trunk lateral flexion 3.7° Right ▼ 2.0° Right ▼ 2.9° Right ▼ at Peak Knee Flexion

Overhead Squat Lower Body Dynamic Assessment

Overhead squat is a dynamic movement assessment providing insight into an individual's balance, stability, flexibility, and strength.

RESULTS

REP 1: PEAK KNEE FLEXION

REP 2: PEAK KNEE FLEXION

KEY RESULTS	REP 1	REP 2	REP 3
Peak Knee Flexion (Left)	127.5°	130.8°	133.0°
Peak Knee Flexion (Right)	129.3°	131.9°	134.5°
Trunk Flexion at Peak Knee Flexion	27.3° Anterior	26.0° Anterior	27.6° Anterior
Trunk lateral flexion at Peak Knee Flexion	3.1° Right ▼	2.7° Right ▼	1.8° Right ▼

Countermovement Jump

Lower Body Dynamic Assessment

The Countermovement Jump assesses the landing posture during an explosive dynamic exercise.

RESULTS

PEAK KNEE FLEXION after landing

KEY METRICS (TORSO)

Jump Height	33.06 cm

Peak Spine Tilt	17.6° Anterior
after landing	17.0 Antenoi

Peak Lateral Spine Tilt after landing 1.7° Right

Peak Lateral Pelvic Tilt	4.2° Diaht
after landing	4.3° Right

J			
KEY METRICS (LEGS)	LEFT LEG	RIGHT LEG	ASYMMETRY
Peak Hip Flexion after landing	64.1°	62.4°	2.6%
Peak Knee Flexion after landing	81.7°	83.4°	2.1%
Peak Knee Valgus/Varus after landing	16.7° Varus	21.3° Varus	21.7%

Drop Jump Lower Body Dynamic Assessment

Drop Jump is used to assess coordination, balance, joint stability and power, requiring the patient to drop from a box or platform and transition from landing into an explosive jump .

Height

unspecified

RESULTS

PHASE	Initial Contact		Peak Knee Flexion	
SNAPSHOTS				
Result				
Knee-Ankle Separation Ratio	0.9	1.	3	
Hip Flexion (Left)	44.4°	10	08.0°	
Hip Flexion (Right)	42.3°	10	01.1°	
Knee Flexion (Left)	62.3°	11	17.1°	
Knee Flexion (Right)	60.3°	11	12.5°	
vee-aukle seb. ratio	5000	10000	KASR Initial Contact Peak Knee Flexion Full Knee Extension	

Single Leg Squat

Lower Body Dynamic Assessment

Single Leg Squat is a dynamic movement assessment that provides insight into an individual's balance, stability, flexibility, and strength.

RESULTS

LEFT LEG REP 1: REP 2: REP 3: **START** PEAK KNEE FLEXION PEAK KNEE FLEXION PEAK KNEE FLEXION **KEY RESULTS** REP 2 REP 3 REP 1 95.3° 106.5° 101.3° Peak Knee Flexion **Knee Displacement** 15.8 cm 25.4 cm 20.0 cm (total) Peak Knee Valgus 12.6° Valgus 16.6° Valgus 12.7° Valgus

4.8° Varus

1.1° Left ▼

PRACTITIONER COMMENTS

Peak Knee Varus

at Peak Knee Flexion

Trunk lateral flexion

5.9° Varus

2.3° Left ▼

0.9° Varus

0.2° Right ▼

RESULTS

RIGHT LEG

SNAPSHOTS

START

REP 3: PEAK KNEE FLEXION

KEY RESULTS	REP 1	REP 2	REP 3
Peak Knee Flexion	104.9°	100.4°	110.0°
Knee Displacement (total)	21.3 cm	14.7 cm	15.4 cm
Peak Knee Valgus	12° Valgus	21° Valgus	9.5° Valgus
Peak Knee Varus	2.2° Varus	3.9° Varus	3.9° Varus
Trunk lateral flexion	4.3° Right ▼	1.2° Right ▼	7.5° Right ▼