Методы обучения с подкреплением и их применение

Лекция 6

Киселёв Глеб Андреевич к.т.н., старший преподаватель ФФМиЕН РУДН

тел.:+79067993329

email: kiselev@isa.ru

Конечные автоматы (finite state machine)

Формальный язык – множество конечных слов (строк, цепочек) над конечным алфавитом. Пример: языки программирования

 $Aлфавит \Sigma$ - непустое конечное множество символов. Например, $\Sigma = \{0,1\}$ — бинарный алфавит, ASCII, Unicode — алфавиты для машинного кода.

Слово (строка, цепочка) w — последовательность символов алфавита, например (a,b,a) = aba Пустое слово ε — последовательность из 0 символов. Не входит в алфавит. Формальный язык L — множество слов в алфавите Σ .

Автомат — математическая модель устройства, имеющая 1 вход, 1 выход и в 1 момент времени находящаяся в 1 состоянии.

Конечный автомат – автомат, число возможных внутренних состояний которого конечно.

Детерминированный конечный автомат (ДКА) — кортеж из 5 элементов: $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ Q — множество состояний, Σ — конечный входной алфавит, δ : $Q \times \Sigma \to Q$ — функция переходов, q_0 - начальное состояние, F — множество конечных состояний.

Язык L называется *регулярным*, если существует M, который распознает L.

Автомат распознает слова вида а b^* с

Автомат распознает язык со словами а или b

Автомат распознает слова аа, baa, bb, но не слова bbb, abab, abb. s_4 - состояние ловушка. Формально все слова автомата можно описать: ab^*a , bab^*a или bb.

Недетерминированные конечные автоматы

Hедетерминированный конечный автомат (HKA) – кортеж из 5 элементов: $A = \langle Q, \Sigma, E, Q_0, F \rangle$

Q – множество состояний, Σ – конечный входной алфавит, $E: Q \times \Sigma \times Q$ – функция (отношение) переходов, Q_0 - множество начальных состояний, F – множество конечных состояний.

Основное отличие – из одного и того же состояния может быть несколько равноценных переходов по одной и той же букве в разные состояния.

Автомат распознает язык состояний из слов с не менее, чем двумя символами «а» или язык $\{a,b\}^*a\{a,b\}^*a\{a,b\}^*$.

Вероятностные автоматы

Вероятностный автомат — кортеж из 5 элементов: $M = \langle S, F_r, M, \mu(a^-, f | a, s), \pi_0 \rangle$ S — конечное множество входных сигналов; F — конечное множество выходных сигналов (действий) автомата; M — конечное или счётное множество состояний автомата; $\mu(a^-, f | a, s)$ - условная вероятность перехода автомата из состояния «а» при входном сигнале (действии) «s» в состояние « a^- » при выходном сигнале (действии) «f»; π_0 - стартовое распределение вероятностей состояний.

Автомат Мура определяется выражением М и предположением, что при $\mu(a^-|a,s) \neq 0$, выполнено $\mu(a^-,f|a,s) = \mu(f|a^-)$

Пусть $s \in \{-1, +1\}$. Автомат функционирует в стационарной случайной среде, $C(p_1, p_2, ..., p_r)$, если его действие f_i , произведенное в момент времени t (t=0,1,2,...) влечёт появление на входе автомата в момент времени t+1 сигнала s = -1 (штрафа) с вероятностью p_i и сигнала s = +1 (выигрыша) с вероятностью $q_i = 1 - p_i$, где i = 1, 2, ..., r. Т.е. при одинаковой последовательности входных сигналов, поступающих при использовании *разных* действий, автомат должен вести себя *одинаково*.

Пример

Пусть задан τ — детерминированный вероятностный автомат. $\tau = [0,0,1,1,0], c=(c_0,c_1,c_2,c_3,c_4)$

Требуется найти суммарные финальные вероятности пребывания этого автомата в z_2 и z_3

$$c_1 = c_4$$
 $c_2 = 0.75c_2 + 0.4c_3$
{
 $c_3 = c_1$
 $c_4 = 0.25c_2 + 0.6c_3$
 $c_1 + c_2 + c_3 + c_4 = 1$

$$c_1 = \frac{5}{23}$$
 $C_2 = \frac{8}{23}$ $C_3 = \frac{5}{23}$ $C_4 = \frac{5}{23}$ $C_4 = \frac{5}{23}$ $C_5 = \frac{5}{23}$ $C_6 = \frac{5}{23}$ $C_7 = \frac{5}{23}$ $C_7 = \frac{5}{23}$ $C_8 = \frac{5}{23}$

При бесконечной работе заданного τ - детерминированного вероятностного автомата, на его выходе формируется двоичная последовательность с вероятностью появления единицы 0,5652

Многорукие бандиты

В какой последовательности и как часто дергать ручки автоматов, чтобы максимизировать выигрыш.

 ${\bf k}$ – количество автоматов, P_i , ${\bf i}=1,...$, ${\bf k}$ – вероятность выигрыша.

В t агент выбирает 1 из автоматов и получает награду $r_{i,t}$ - случайную величину из P_i с мат. ожиданием μ_i . Все случайные величины автоматов независимы. После получения награды агент обновляет знания о среде и переходит к следующей итерации.

Цель – максимизация выигрыша.

Функция потерь $R = \sum_{t=1}^{T} r_{i,t}^* - r_{i,t}$ - минимизируя эту функцию алгоритм находит оптимальное действие с наибольшей наградой.

Пример:

Интернет магазин. Контекст — пользовательские признаки, действия — признаки рекомендуемых товаров, агент — алгоритм, награда +1 за клик по товару, 0 — за отсутствие клика.

Виды алгоритмов

Название алгоритма	Описание	Особенности и недостатки
Наивный	1. Совершает каждое действие N раз 2. Составляем эмпирическое $\widehat{\mu_{*,t}}$	 Нет исследования в процессе Нет уверенности в оптимальном выборе
arepsilon —greedy	1. С вероятностью ε выбираем случайное действие 2. С вероятностью $1-\varepsilon$ — действие с максимальным мат. ожиданием $\widehat{\mu_{i,t}}$ 3. Если ε = 0 — жадный алгоритм (этап использования) 4. Если ε = 1 — случайный алгоритм (этап исследования	После найденного оптимального действия ε становится не нужен (и его минимизируют)
UCB	1. Алгоритм выбирает действие и применяет его; 2. Если успешно — используем действие дальше; 3. Если не успешно — уменьшаем величину доверительного интервала (чем чаще выбираем a_i , тем точнее $\widehat{\mu_{i,t}}$, тем уже доверительный интервал); 4. Ширина доверительного интервала строится на основе неравенства Хёфдинга (отклонения мат. ожидания от истины)	Оценивается не только $\widehat{\mu_{i,t}}$, но и ширину доверительного интервала $\widehat{\mu_{i,t}}$ (на сколько алгоритм уверен в выборе $\widehat{\mu_{i,t}}$. Используется принцип оптимизации в условиях неопределённости. https://habr.com/ru/articles/689364/
Thomson Sampling	В большинстве задач награды распространяются по закону Бернулли и принимают значение $r_i \in \{0,1\}$. Алгоритм составляет априорное предположение о μ_i , совершает действие и строит апостериорное Бета-распределение с плотностью вероятности $p(\theta) = \frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{B(\alpha,\beta)}$, где α и β — параметры В-распределения, $B(\alpha,\beta)$ — бета функция (нужна для нормализации вероятности и θ — вероятность успеха в испытаниях Бернулли.	https://habr.com/ru/companies/vk/article s/673914/

Обучение с подкреплением. RL.

В отличии от многоруких бандитов:

- Наблюдения. Агент исследует среду и использует знания для выбора следующего действия.
- Отсроченный выигрыш. Все действия взвешиваются не только на основе сиюминутного выигрыша, но и на основе отсроченной награды.

Чем оперируем:

- 1. Действия все возможные действия агента в среде;
- 2. State (S,s) текущее состояние, возвращается окружением (средой);
- 3. Reward мгновенная награда. Синтезируется окружением, как оценка последнего действия;
- 4. Policy стратегия (политика), которую использует агент для синтеза следующего действия;
- 5. Estimation ожидаемая награда. Синтезируется стратегией для текущего состояния s.
- 6. Q-value Q-оценка стратегии на основе исполнения действия «а»

RL agents learn continually from experience

Supervised learning: passive learning from a static dataset to make predictions

Reinforcement learning: continual learning from changing experience to maximize rewards

Источник: https://habr.com/ru/companies/wunderfund/articles/667654/

Материал к изучению:

https://habr.com/ru/companies/newprolab/articles/343834/

https://habr.com/ru/articles/443240/

Пример. Q-learning.

$$Q(s,a) = Q(s,a) + \alpha[r + \gamma \max_{a'} Q(s',a') - Q(s,a)]$$

- α скорость обучения (каждый раз, когда следующее действие a^- выбирается для максимизации Q —значения следующих состояний, вместо того, чтобы следовать текущей стратегии. (его основная цель избежать больших изменений в одном обновлении);
- ε коэффициент изучения окружающей среды;
- γ коэффициент влияния отложенной награды.

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., \epsilon-greedy)
Take action A, observe R, S'
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]
S \leftarrow S'
until S is terminal
```

Пример взят из https://habr.com/ru/articles/443240/

UP

```
U: -6.76  U: -6.70  U: -6.42  U: -6.14  U: -5.82  U: -5.51  U: -5.12  U: -4.58  U: -4.01  U: -3.57  U: -2.65  U: -2.26  U: -2.65  U: -2.26  U: -6.73  D: -6.74  D: -6.53  D: -6.09  D: -5.77  D: -5.37  D: -4.97  D: -4.49  D: -4.02  D: -3.37  D: -2.69  D: -1.90  D: -1.90  D: -6.75  D: -6.75  D: -6.75  D: -6.75  D: -4.97  D: -4.49  D: -4.02  D: -3.37  D: -2.69  D: -1.90  D: -1.90  D: -1.90  D: -1.90  D: -1.90  D: -1.90  D: -4.49  D: -4.02  D: -3.37  D: -2.69  D: -1.90  D: -6.71  D: -6.80  D: -6.71  D: -6.81  D: -6.08  D: -5.68  D: -5.21  D: -4.68  D: -4.09  D: -3.44  D: -2.71  D: -1.90  D: -1.00  D: -6.96  D: -6.71  D: -6.43  D: -6.08  D: -5.68  D: -5.21  D: -4.68  D: -4.09  D: -3.44  D: -2.71  D: -1.90  D: -1.00  D: -6.98  D: -6.75  D: -6.75  D: -6.98  D: -5.68  D: -5.21  D: -4.68  D: -4.09  D: -3.44  D: -2.71  D: -1.90  D: -1.00  D: -6.89  D: -6.75  D: -6.75  D: -6.98  D: -5.88  D: -5.98  D: -5.88  D: -5.98  D: -4.92  D: -4.93  D: -4.40  D: -4.
```

```
# Initialize Q arbitrarily, in this case a table full of zeros
q_values = np.zeros((num_states, num_actions))
# Iterate over 500 episodes
for in range(500):
   state = env.reset()
   done = False
   # While episode is not over
   while not done:
        # Choose action
        action = egreedy policy(q values, state, epsilon=0.1)
        # Do the action
        next_state, reward, done = env.step(action)
        # Update q values
        td_target = reward + gamma * np.max(q_values[next_state])
        td error = td target - q values[state][action]
        q values[state][action] += learning rate * td error
        # Update state
        state = next state
```

Пример применения RL-агентов:

- Симулятор реакций человеческого тела:

 https://www.researchgate.net/publication/341036633_A_closed-loop_healthcare_processing_approach_based_on_deep_reinforcement_learning
- Улучшение распознавания медицинских снимков: https://aapm.onlinelibrary.wiley.com/doi/full/10.1002/acm2.13898
- Увеличение точности постановки диагноза (диабет 2 типа): https://www.sciencedirect.com/science/article/pii/S0950705122009704?dgcid=rss_sd_all

Спасибо за внимание!

Руководитель проекта Когнитивный ассистент старший преподаватель, к.т.н. Киселёв Г.А. +79067993329 kiselev@isa.ru