QUIZZ : Modèle linéaire

1 Général:

- 1) Que vaut $Cov(X + \mu)$ pour tout $\mu \in \mathbb{R}^p$ déterministe, et tout vecteur aléatoire $X \in \mathbb{R}^p$?
- 2) Que vaut Cov(AX), pour toute matrice $A \in \mathbb{R}^{m \times p}$ et tout vecteur aléatoire $X \in \mathbb{R}^p$?
- 3) Donner un modèle naturel pour "un lancer de dé" (non-nécéssairement équilibré)?
- 4) Soit x_1, x_2, \ldots, x_n i.i.d. tel que $\mathbb{E}[x_1^2] < \infty$. Quel estimateur $\hat{\mu}$ minimise $\sum_{i=1}^n (x_i \mu)^2$? Donner son biais et sa variance, pour tout n > 1.
- 5) Que vaut le biais de $\frac{1}{n}\sum_{i=1}^{n}(y_i-\overline{y}_n)^2$ (\overline{y}_n est la moyenne empirique) pour des y_i i.i.d, gaussiens, centrés et de variance σ^2 ?
- 6) On suppose que l'on observe y_1, \ldots, y_n , des variables réelles i.i.d., gaussiennes, centrées et de variance σ^2 . Quel est le risque quadratique de l'estimateur $\frac{1}{n} \sum_{i=1}^{n} (y_i \overline{y}_n)^2$ de σ^2 (\overline{y}_n est la moyenne empirique)?
- 7) Quelle est la projection orthogonal du vecteur $\mathbf{y} \in \mathbb{R}^n$ sur $\operatorname{Vect}(1_n)$, avec $1_n = (1, \dots, 1)^{\top} \in \mathbb{R}^n$?
- 8) Quels sont les vecteurs $\mathbf{y} \in \mathbb{R}^n$ tels que $\operatorname{var}_n(\mathbf{y}) = 0$ (var_n est la variance empirique)?

2 Moindres carrés unidimensionnels :

On observe $\mathbf{y} = (y_1, \dots, y_n)^{\top}$ et $\mathbf{x} = (x_1, \dots, x_n)^{\top}$

- 1) La fonction $(\theta_0, \theta_1) \to \frac{1}{2} \sum_{i=1}^n (y_i \theta_0 \theta_1 x_i)^2$ est elle convexe ou concave?
- 2) Donner la formule $(\hat{\theta}_0, \hat{\theta}_1)$ des estimateurs des moindres carrés où $\hat{\theta}_0$ correspond au coefficient des constantes et $\hat{\theta}_1$ correspond à l'influence de \mathbf{x} sur \mathbf{y} . On les exprimera en fonction des $x_i, y_i, \overline{x}_n, \overline{y}_n$

3 Moindres carrés :

On note ici $\mathbf{y} = (y_1, \dots, y_n)^{\top} \in \mathbb{R}^n$ et $X \in \mathbb{R}^{n \times p}$ (sauf mention contraire).

- 1) Écrire un pseudo-code de descente de gradient pour résoudre le problème des moindres carrés.
- 2) Pour une matrice $X \in \mathbb{R}^{n \times p}$, que vaut $\operatorname{Ker}(X^{\top}X)$?
- 3) Pour une matrice $X \in \mathbb{R}^{n \times (p+1)}$, n > 1 et $p \ge 1$, qui possède comme première colonne une colonne de 1, notons $(1, \tilde{X}_i^\top) \in \mathbb{R}^{p+1}$, les lignes de X. Montrer que $X^\top X$ non-inversible est équivalent à

$$\sum_{i=1}^{n} (\tilde{X}_i - \hat{\mu}_n)(\tilde{X}_i - \hat{\mu}_n)^T \text{ non-inversible,}$$

où
$$\hat{\mu}_n = \sum_{i=1}^n \tilde{X}_i$$
.

- 4) Si la matrice $X \in \mathbb{R}^{n \times p}$ est de plein rang, donner une formule exacte de l'estimateur des moindres carrés.
- 5) Si la matrice $X \in \mathbb{R}^{n \times p}$ n'est pas de plein rang, donner une formule pour un estimateur des moindres carrées.
- 6) Décrire les 2 cas possibles quant à la définition de l'estimateur des moindre carrées (existence et unicité).
- 7) Quand l'estimateur des moindre carrées est non-unique, quel est l'ensemble des solutions du problème d'optimisation associé?
- 8) Si la matrice $X \in \mathbb{R}^{n \times p}$ est de plein rang, donner la matrice de covariance de l'estimateur des moindres carrés (dans l'hypothèse d'un bruit $\varepsilon = \mathbf{y} X\theta^*$ centré et de matrice de covariance $\sigma^2 \mathrm{Id}_n$).
- 9) Donner un estimateur sans biais du niveau du bruit σ^2 (dans le cas où le X est déterministe).
- 10) On suppose que X est de rang plein et on note $\hat{\boldsymbol{\theta}}_n$ l'estimateur OLS. On note $\tilde{X} = (\tilde{X}_1, \dots, \tilde{X}_p)$. On change l'échelle d'une des variables : \tilde{X}_k est remplacé par $\tilde{X}_k b$, où b > 0.
 - (a) Soit $X_b = (1, X_1, \dots, X_k b, \dots, X_p)$. Montrer que $X_b = XD$ où D est une matrice diagonale que l'on précisera.
 - (b) Soit $\hat{\theta}_{b,n}$ l'estimateur OLS associé à X_b . Exprimer $\hat{\theta}_{b,n}$ en fonction de $\hat{\theta}_n$ et D.
 - (c) Donner la variance de $\hat{\theta}_{b,n}$.
 - (d) On a vu que l'estimateur $\hat{\theta}_n$ était affecté par un changement d'échelle. Qu'en est-il de la valeur prédite par le modèle?
- 11) Donner une formule explicite du problème arg $\min_{\boldsymbol{\theta}} \frac{1}{2} (\mathbf{y} X\boldsymbol{\theta})^{\top} \Omega(\mathbf{y} X\boldsymbol{\theta})$ pour une matrice $\Omega = \operatorname{diag}(w_1, \dots, w_n)$ définie positive, dans le cas où X est de plein rang.
- 12) Dans le cas du modèle de régression avec design aléatoire, décrire l'asymptotique de l'estimateur des moindre carrées. On donnera la loi asymptotique de $\sqrt{n}(\hat{\beta} \beta^*)$.
- 13) Dans le cas du modèle de régression avec design déterministe et bruit gaussien centré de variance σ^2 , donner la loi de l'estimateur des moindre carrées $\hat{\beta}$.
- 14) Dans le cas du modèle de régression avec design déterministe où X est de plein rang p, donner la valeur du risque de prédiction.

4 Ridge:

On note $\hat{\theta} = \arg\min_{\theta} \frac{1}{2} \|\mathbf{y} - X\theta\|_2^2 + \frac{\lambda}{2} \|\theta\|_2^2$ l'estimateur Ridge

- 1) Donner une formule explicite pour l'estimateur Ridge en fonction de y et λ quand $X = \mathrm{Id}_n$.
- 2) Donner une formule explicite pour l'estimateur Ridge en fonction de X, y et λ .
- 3) Donner la variance de l'estimateur Ridge sous l'hypothèse que le bruit $\mathbf{y} X\boldsymbol{\theta}^*$ est centré et de variance $\sigma^2 \mathrm{Id}_n$.
- 4) Donner en fonction de $X, y, D \in \mathbb{R}^{p \times p}$ et λ , une formule explicite de

$$\hat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 + \frac{\lambda}{2} \|D\boldsymbol{\theta}\|_2^2,$$

5 Lasso:

1) Exprimer $\eta_{\lambda}(z) = \arg\min_{x \in \mathbb{R}} x \mapsto \frac{1}{2}(z-x)^2 + \lambda |x|$ en fonction du signe de x et de la partie positive $(\cdot)_+$.

- 2) Donner en tout point la sous-différentielle de la fonction réelle $x \mapsto (x)_+ = \max(x,0)$.
- 3) Donner l'étape de mise à jour principale en descente par coordonnée pour résoudre le problème de l'*Elastic Net* : $\hat{\boldsymbol{\theta}}_{\lambda} = \arg\min_{\boldsymbol{\theta} \in \mathbb{R}^p} \left[\frac{1}{2} \|\mathbf{y} X\boldsymbol{\theta}\|_2^2 + \lambda \left(\alpha \|\boldsymbol{\theta}\|_1 + (1-\alpha) \frac{\|\boldsymbol{\theta}\|_2^2}{2} \right) \right]$.
- 4) Donner l'étape de mise à jour principale en descente par coordonnée pour résoudre le problème du Lasso Positif : $\hat{\boldsymbol{\theta}}_{\lambda} = \arg\min_{\boldsymbol{\theta} \in \mathbb{R}_+^p} \frac{1}{2} \|\mathbf{y} X\boldsymbol{\theta}\|_2^2 + \lambda \|\boldsymbol{\theta}\|_1$.
- 5) Donner l'étape de mise à jour principale en descente par coordonnée pour résoudre le problème :

$$\hat{\boldsymbol{\theta}}_{\lambda} = \operatorname*{arg\,min}_{\boldsymbol{\theta} \in \mathbb{R}^p, s.c. \Omega \boldsymbol{\theta} \geqslant 0} \frac{1}{2} \| \mathbf{y} - X \boldsymbol{\theta} \|_2^2,$$

avec $\Omega = \operatorname{diag}(w_1, \dots, w_n)$.

6) On suppose que l'on dispose d'un solveur Lasso (X, y, λ) qui résout le problème du Lasso $\hat{\boldsymbol{\theta}}_{\lambda} = \arg\min_{\boldsymbol{\theta} \in \mathbb{R}^p} \frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 + \lambda \|\boldsymbol{\theta}\|_1$. En utilisant ce solveur, comment résoudre le problème suivant : $\hat{\boldsymbol{\theta}}_{\lambda} = \arg\min_{\boldsymbol{\theta} \in \mathbb{R}^p} \frac{1}{2} \|\mathbf{y} - X\boldsymbol{\theta}\|_2^2 + \lambda \sum_{j=1}^p w_j |\theta_j|$, pour des $w_j \ge 0$?

6 ACP/SVD:

- 1) Donner la formulation de la pseudo inverse de X connaissant sa SVD : $X = \sum_{i=1}^{r} s_i \mathbf{u}_i \mathbf{v}_i^{\top}$, avec $r = \operatorname{rg}(X)$ et $s_1 \ge \cdots \ge s_r > 0$.
- 2) Que vaut $\begin{cases} \max_{u \in \mathbb{R}^n, v \in \mathbb{R}^p} u^{\top} X v \\ \text{s.c. } ||u||_2^2 = 1 \text{ et } ||v||_2^2 = 1 \end{cases}$?

$7 \quad \text{Test}:$

- 1) Pour des X_1, \ldots, X_n identiquement distribuées à valeur dans $\{0, 1\}$, décrire une procédure de test de l'hypothèse $p = P(X_1 = 1) = 1/2$ contre son contraire.
- 2) Soient X_1, \ldots, X_n des variables aléatoires i.i.d selon des lois gaussiennes de moyenne (inconnue) μ et de variance connue σ^2 , i.e., $X_i \sim \mathcal{N}(\mu, \sigma^2)$. Décrire une procédure de test de l'hypothèse $\mu = 1$ contre son contraire.
- 3) Soient X_1, \ldots, X_n des variables aléatoires indépendantes et distribuées selon des lois gaussiennes de moyenne (inconnue) μ et de variances connues σ_i^2 , i.e., $X_i \sim \mathcal{N}(\mu, \sigma_i^2)$. Décrire une procédure de test de l'hypothèse $\mu = 1$ contre son contraire.

8 Bootstrap:

- 1) Soient $\epsilon_1, \ldots, \epsilon_n$ des variables aléatoires i.i.d. de loi gaussienne de moyenne (inconnue) μ et de variance (connue) σ^2 , i.e., $\epsilon_i \overset{i.i.d}{\sim} \mathcal{N}(\mu, \sigma^2)$. On observe $(y_i, x_i)_{i=1,\dots,n}$ tel que, pour chaque $i = 1, \dots, n$, $y_i = x_i^T \beta + \epsilon_i$ et x_i déterministe.
 - (a) La variable y_1 est-elle indépendante de y_2 ? La variable y_1 a-t-elle même loi que y_2 ? Donner la distribution de y_i .
 - (b) Soit $\hat{\beta}$ l'estimateur OLS du modèle $y_i = x_i^T \beta + \epsilon_i$. A l'aide de résidus bootstrap $(\epsilon_i^*)_{i=1,\dots,n} \overset{i.i.d}{\sim} \mathcal{N}(\mu,\sigma^2)$, calculer $(y_i^*)_{i=1,\dots,n}$ et donner leur loi. Calculer l'estimateur bootstrap $\hat{\beta}^*$ et donner la loi de $\sqrt{n}(\hat{\beta}^* \hat{\beta})$.
- 2) Proposer une procédure bootstrap sur les résidus pour estimer l'écart quadratique moyen de la méthode des moindres carrées dans le cas d'une régression linéaire.