CS-559 Home Work 1

a) Having Zero covariance is some as being uncorrelated.

COV[X,Y] = E[XY] - E[X]E[Y]

E[x] = E[x] E[y] : Cov[x,y] = 0

X'and Y are independent then ->

 $E[xy] = \left(\left(xy P_{x,y}(x,y) dx dy \right) \right)$

= (xAbxcx) baca)qxqa.

= \ x Px(x) \ (y Py(y) dy) dx.

= ((xbxx)qx) (2 4 6 (A)qA)

= E[X] E[Y] "

b). Suppose X and X are uncorrelated then we cannot conclude X and Y are independent. They can be dependent

For example \rightarrow . $\times \sim N(0,1)$ $Y = X^2$ Y is dependent

I]
$$)E(x) = 0$$
 $)E(x)^2 = 0$ for ND.

$$(OV(x,x)) = E(xx) - E(x)E(x)$$

$$= E(xx^2) - E(x)E(x)$$

$$= E(x)^3 - E(x)E(x)$$

$$= O - O \cdot E(x), \text{ from 1) and 2}$$

$$(OV(x,x)) = 0$$

$$E(x,x) = O \cdot E(x) - E(x) = 0$$

$$E(x,x) = O \cdot E(x) - E(x)E(x)$$

$$= O - O \cdot E(x) - E(x)$$

$$= O - O \cdot E(x)$$

27 b) P(error) = P(error1x)p(x)dx = [I-P(wmaxlx)]p(x)dx $= \int_{\Omega} P(w_{\text{max}}|x)p(x)dx.$ c) From a) and b) P(error) = 1 - 5 P(wmax 1x)p(x)dx $\leq 1 - \left(\frac{1}{2} p(x) dx\right)$ < 1-1 < C-1 3] Given > $P(x|w_1) = N(4,1)$ $\mu = 4$ 6=1. $P(x|w_2) = N(8,1)$ $\mu = 8$ 6=1. Prior probability =. $P(\omega_2) = 1 \qquad P(\omega_1) = 1 - 1 = 3$

By likelihood ratio test \Rightarrow . $P(x|\omega_1) > \lambda_{12} - \lambda_{22} P(\omega_2)$ $P(x|\omega_2) > \lambda_{21} - \lambda_{11} P(\omega_1)$ $> -(x-4)^2 + (x-8)^2$ $\frac{3-0}{1-0} \frac{P(\omega_1)}{P(\omega_1)} = 1$ $\frac{3-0}{1-0} \frac{P(\omega_1)}{P(\omega_1)} = 1$ $\frac{3}{1-0} \frac{1}{P(\omega_1)} + (x-8)^2 = 1$ $\frac{3}{1-0} \frac{1}{P(\omega_1)} + (x-8)^2 = 1$ $\frac{3}{1-0} \frac{1}{P(\omega_1)} + (x-8)^2 = 1$ Taking logs : (x-4) + (x-8) Proc = ln1. -x2+8x-16+x2-16x+64 70 -2x+12 >0 If X < 6. decide W, x > 6 decide w2

a). For i=1,...,c, R(a,1x) = \(\frac{\x}{\infty}\) \(\alpha\) (\(\overline{\pi}\) \(\overline{\pi}\) \(\over = > E P(wjlx). = >5[1-P(w;1x)]. For i = C+1 R(XC+1/X) = Xr Therefore, minimum risk if we decide wi if R(x:1x) < R(x+1/x) i.e $P(w:|x) \ge 1 - \lambda r$ reject other suise. b). If xr = 0, we will reject. c) If $\lambda_{\Gamma} > \lambda_{S}$, we will never reject. 5]) The likelihood Function is >. $L(0|x) = f(x,10), \quad f(x,10).$ $= \Theta_{C-\Theta(x_1 \cdots + \cdots + v_j)},$ Taking log >. In L (0/x) = pln 0 - 0(x, + ... xn) Its tog Gradient wrt 0. $\frac{d}{d\theta} \ln L(\theta|x) = \Omega - (x_1 + \dots \times n)$ comparing it to 0 >. $0 = x + \dots \times n$ WIE . 9 = T

b) $f_{x_1}(x_1:\theta_1,\theta_2) = \frac{1}{\sqrt{2710_2}} - \frac{(x_1-\theta_1)^2}{2}$ Likelihood Function $= \frac{1}{2 \pi^{\frac{Q}{2}} O_{2}^{\frac{1}{2}}} \exp \left(-\frac{1}{2} \sum_{j=1}^{2} (x_{j} - O_{j}^{2})\right)$ Faking LLD $\frac{\ln L(x_1...x_n;0_10_2) = -n \ln(2\pi) - n \ln 0_2}{2}$ $- 1 \sum_{i=1}^{n} (x_i - 0_i)^2$ Taking gradients wrt 0, and 82. $\frac{1}{2} \frac{1}{2} \frac{1}$ $0_2 = \frac{1}{5} \left(x_i - 0_i \right)^2$

As there are only two otherst classes -> y = 0 or y = 1 we can use sigmoid function for classification. P(Y=1/X=x) = E(0+x)4. [1-6(0x)](1-9) L(0) = TT 6 (0Tx)y. [1-6(0Tx(i))] (1-y(i)) Taking log $LL(\Theta) = \sum_{i=1}^{n} y_{i}^{(i)} \log G(\Theta^{T}(X^{(i)}) + (1-y_{i}^{(i)}).$ 109 [1-6(0 x(1))] Taking gradient wrt 0. 2 LL(Q) - 2 ylog E(Qx)+2 (1-y)log [1-E(Qx]. $= \begin{bmatrix} y & -1-y \\ \overline{6(0^Tx)} & 1-\overline{6(0^Tx)} & 30 \end{bmatrix} \cdot \overline{6(0^Tx)} \cdot \underline{6(0^Tx)} \cdot \underline{6(0$ $= \left[\underbrace{y - 1 - y}_{6(0^T x)} \right] \underbrace{- \left[(0^T x) \right] \left[1 - 6(0^T x) \right] x_j}_{1 - 6(0^T x)}$ $= \underbrace{- \left[y - 6(0^T x) \right] x_j}_{1 - 6(0^T x)}$