TeoriaComputacion_2

October 30, 2019

Teoría de la Computación Lenguajes y Gramáticas Prof. Wladimir Rodriguez wladimir.rodriguez@outlook.com Departamento de Computación

1 Contenido

- Definiciones: palabras y lenguajes
- Operaciones con palabras y lenguajes
- Gramáticas
- Jerarquía de Chomsky

2 Alfabetos

- Un alfabeto es un conjunto finito A. Sus elementos se llamarán símbolos o letras. Notación:
- Alfabetos: A, B, C, ...
- Símbolos: a, b, c, \dots o números
- Ejemplos:

$$\begin{array}{l} - \ A = \{0, 1\} \\ - \ B = \{<0, 0>, <0, 1>, <1, 0>, <1, 1>\} \end{array}$$

3 Palabras

• Una palabra sobre el alfabeto A es una sucesión finita de elementos de A.

$$u = a_1 \cdots a_n$$

- donde $a_i \in A, \forall i = 1, \dots, n$.
- Si $A = \{0, 1\}$ entonces 0111 es una palabra sobre este alfabeto
- El conjunto de todas las palabras sobre un alfabeto A se nota como A^* .

- Notación:
 - Palabras: u, v, x, y, z, \cdots
- Si $u \in A^*$, entonces la longitud de la palabra u es el número de símbolos de A que contiene.
- Notación: |u|
- La palabra vacía es la palabra de longitud cero.
- Notación: ϵ
- Notación: El conjunto de cadenas sobre un alfabeto A excluyendo la cadena vacía se nota como A^+ .

4 Operaciones: Concatenación

- Si $u, v A^*$, $u = a_1...a_n$, $v = b_1...b_m$, se llama concatenación de u y v a la cadena u.v (o simplemente uv) dada por $a_1...a_nb_1...b_m$.
- Ejemplo:

- Si
$$u = 011$$
, $v = 1010$, entonces $uv = 0111010$

- Propiedades:
 - 1. $|u.v| = |u| + |v|, \forall u, v \in A^*$
 - 2. Asociativa: $u.(v.w) = (u.v).w, \forall u, v, w \in A^*$
 - 3. Elemento Neutro: $u.\epsilon = \epsilon.u = u, \forall u \in A^*$
- Estructura de monoide

5 Iteración

- La Iteración n-esima de una cadena (u^n) es la concatenación con ella misma n veces.
- Si $u \in A^*$ entonces

$$- u^0 = \epsilon$$

- $u^{i+1} = u^i \cdot u, \forall i \ge 0$

• Ejemplo:

- Si
$$u = 010$$
, entonces $u^3 = 010010010$.

6 Cadena Inversa

- Si $u = a_1 \cdots a_n \in A^*$, entonces la cadena inversa de u es la cadena $u^{-1} = a_n \cdots a_1 \in A^*$.
- Ejemplo:

- Si
$$u = 011$$
, entonces $u^{-1} = 110$.

7 Lenguajes

- Un lenguaje sobre el alfabeto A es un subconjunto del conjunto de las cadenas sobre $A:L\subseteq A^*$.
- Notación:

- Lenguajes: L, M, N, \cdots

• Ejemplos:

$$-L_1 = \{a, b, \epsilon\}$$

$$-L_{2} = \{a^{i}b^{i} \mid i = 0, 1, 2, \dots\}$$

$$-L_{3} = \{uu^{-1} \mid u \in A^{*}\}$$

$$-L_{4} = \{a^{n^{2}} \mid n = 1, 2, 3, \dots\}$$

$$-L_3 = \{uu_2^{-1} \mid u \in A^*\}$$

$$- L_4 = \{a^{n^2} \mid n = 1, 2, 3, \cdots \}$$

Operaciones: Concatenación

- Aparte de las operaciones de unión e intersección de lenguajes, dada su condición de conjuntos existe la operación de concatenación.
- Si L_1 , L_2 son dos lenguajes sobre el alfabeto A, la concatenación de estos dos lenguajes se define como

$$L_1L_2 = \{u_1u_2 \mid u_1 \in L_1, u_2 \in L_2\}$$

• Propiedades:

$$-L\Phi = \Phi L = L$$

– Elemento Neutro:
$$\{\epsilon\}L = L\{\epsilon\} = L$$

- Asociativa:
$$L_1(L_2L_3) = (L_1L_2)L_3$$

Operaciones: Iteración

• La iteración de lenguajes se define de forma recursiva:

$$L^0 = \{\epsilon\},\,$$

$$L^{i+1} = L^i L$$

• Si L es un lenguaje sobre el alfabeto A, la clausura de Kleene de L es:

$$L^* = \cup_{i \ge 0} L^i$$

$$L^+ = \cup_{i \ge 1} L^i$$

• Propiedades:

$$-L^+ = L^* \text{ si } \epsilon \in L$$

$$-L^+ = L^* - \epsilon \text{ si } \epsilon \notin L$$

• El lenguaje inverso de L es el lenguaje dado por:

$$-L^{-1} = \{u \mid u^{-1} \in L\}$$

Ejemplos 10

- Si $L_1 = \{0^i 1^i : i \ge 0\}, L_2 = \{1^i 0^i : i \ge 0\}$ entonces,
- L_1L_2 ?

- $L_1L_2 = \{0^i1^i1^j0^j : i, j\ 0\}$
- Si $L = \{0,01\}$, entonces
- L^* = Conjunto de palabras sobre $\{0,1\}$ en las que un uno va siempre precedido de un cero, incluyendo la palabra vacía
- L^+ = Conjunto de palabras sobre $\{0,1\}$ en las que un uno va siempre precedido de un cero y sin incluir la palabra vacía

11 Operaciones: Cabecera

• La cabecera de L es el lenguaje dado por

$$CAB(L) = \{ u \mid u \in A^* \ y \ \exists v \in A^* \ tal \ que \ uv \in L \}$$

12 Operaciones Homomorfismo

• Si A_1 y A_2 son dos alfabetos, una aplicación

$$h: A_1^* \to A_2^*$$

• se dice que es un homomorfismo si y solo si

$$h(uv) = h(u)h(v)$$

• Consecuencias:

$$h(\epsilon) = \epsilon$$
$$h(a_1 \cdots a_n) = h(a_1) \cdots h(a_n)$$

• Si $A_1 = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}, A_2 = \{0, 1\}$

$$h(0) = 0000, h(1) = 0001, h(2) = 0010, h(3) = 0011$$

 $h(4) = 0100, h(5) = 0101, h(6) = 0110, h(7) = 0111$
 $h(8) = 1000, h(9) = 1001$

$$h(034) = 000000110100, h() =$$

13 Gramáticas

- Una gramática describe la estructura de las frases de un lenguaje y se aplica por igual a:
 - Lenguajes naturales
 - Lenguajes formales
- Una gramática es un *ente formal* para especificar de manera finita el conjunto de cadenas de símbolos que constituyen un lenguaje.

14 Gramáticas Generativas

- Una gramática generativa es una cuádrupla (V, T, P, S) en la que
 - V es un alfabeto, llamado de variables o símbolos no terminales. Sus elementos se suelen representar con letras mayúsculas.
 - T es un alfabeto, llamado de símbolos terminales. Sus elementos se suelen representar con letras minúsculas.
 - -P es un conjunto de pares (α, β) , llamados reglas de producción, donde $\alpha, \beta \in (V \cup T)^*$ y α contiene, al menos un símbolo de V. El par (α, β) se suele representar como $\alpha \to \beta$
 - S es un elemento de V, llamado símbolo de inicio.

15 Gramática

- G = (V, T, P, S)- $V = \{E\}$ - $T = \{+, *, (,), a, b, c\}$
 - P está compuesto por las siguientes reglas de producción

$$E \rightarrow E + E, \quad E \rightarrow E * E, \quad E \rightarrow (E)$$

 $E \rightarrow a, \quad E \rightarrow b, \quad E \rightarrow c$

-S = E

16 Lenguaje Generado: idea intuitiva

• Una gramática sirve para determinar un lenguaje

$$E \rightarrow E + E, \quad E \rightarrow E * E, \quad E \rightarrow (E)$$

 $E \rightarrow a, \quad E \rightarrow b, \quad E \rightarrow c$

- Las palabras son las T^* que se obtienen a partir del símbolo inicial efectuando pasos de derivación. Cada paso consiste en elegir una parte de la palabra que coincide con la parte izquierda de una producción y sustituir esa parte por la derecha de la misma producción.
- E
- E E * E
- E * E (E) * E
- (E) * E (E + E) * E
- (E+E)*E(a+E)*E
- (a+E)*E(a+b)*E
- (a+b)*E(a+b)*b
- (a+b)*b Palabra Generada

17 Paso de Derivación

- Gramática G = (V, T, P, S) y dos palabras $\alpha, \beta \in (V \cup T)^*$, β es derivable a partir de α en un paso $(\alpha \Rightarrow \beta)$ si y solo si
 - existen palabras $\delta_1, \delta_2 \in (V \cup T)^*$,
 - -y una producción $\gamma \to \varphi$ tales que

$$\alpha = \delta_1 \gamma \delta_2, \ \beta = \delta_1 \varphi \delta_2$$

18 Secuencia de Derivación

• β es derivable de α ($\alpha \Rightarrow^* \beta$) si y solo si existe una sucesión de palabras $\gamma_1, \dots, \gamma_n (n \ge 1)$ tales que

$$\alpha = \gamma_1 \Rightarrow \gamma_2 \Rightarrow \cdots \Rightarrow \gamma_n = \beta$$

19 Lenguaje Generado

- Se define como lenguaje generado por una gramática G = (V, T, P, S) al conjunto de cadenas formadas por símbolos terminales y que son derivables a partir del símbolo de partida.
- Es decir,

$$L(G) = \{ u \in T^* \mid S \Rightarrow^* u \}$$

20 Ejemplo

• G = (V, T, P, S), donde $V = \{S, A, B\}$, $T = \{a, b\}$. el símbolo de partida es S y las reglas son:

$$S \rightarrow aB$$
, $S \rightarrow bA$, $A \rightarrow a$, $A \rightarrow aS$
 $A \rightarrow bAA$, $B \rightarrow b$, $B \rightarrow bS$, $B \rightarrow aBB$

• Esta gramática genera el lenguaje

$$L(G) = \{ u \mid u \in \{a, b\}^+ \ y \ N_a(u) = N_b(u) \}$$

• donde $N_a(u)$ y $N_b(u)$ son el número de apariciones de símbolos a y b, en u, respectivamente

21 Demostración

- Esto es fácil de ser interpretando
 - A palabra con una a de más
 - $-\ B$ palabra con una b de más
 - S palabra con igual número de a que de b.

- Hay que demostrar dos cosas:
 - Todas las palabras generadas por la gramática tienen el mismo número de a que de b.
 - Cualquier palabra con el mismo número de a que de b es generada
- Para lo primero, podemos considerar $N_{a,A}(u)$ (número de a + número de A) y $N_{b,B}(u)$ (número de b + número de B) y tener en cuenta lo siguiente para una generación S^*u :
 - Al principio de la generación tenemos:

$$N_{a,A}(S) = N_{b,B}(S) = 0$$

- Al aplicar cualquier regla u_1 u_2 , si

$$N_{a,A}(u_1) = N_{b,B}(u_1), \text{ entonces } N_{a,A}(u_2) = N_{b,B}(u_2)$$

• Luego la final $N_{a,A}(u) = N_{b,B}(u)$, y como u no contiene variables, $N_a(u) = N_b(u)$, como se quería demostrar

22 Algoritmo de Generación

- Generación por la izquierda, un símbolo a la vez.
- Para generar una a
 - Si a último símbolo de la palabra, aplicar $A \rightarrow a$
 - Si no es el último símbolo
 - * Si la primera variable es S aplica $S{
 ightarrow}aB$
 - * Si la primera variable es B aplicar $B \rightarrow aBB$
 - * Si la primera variable es A, aplicar $A \rightarrow a$ si hay mas variables, si no hay más variables aplicar $A \rightarrow aS$
- Generación por la izquierda, un símbolo a la vez.
- Para generar una b
 - Si b último símbolo de la palabra, aplicar $B \rightarrow b$
 - Si no es el último símbolo
 - * Si la primera variable es S aplica $S \rightarrow bA$
 - * Si la primera variable es A aplicar $A \rightarrow bAA$
 - * Si la primera variable es B, aplicar $B \rightarrow b$ si hay mas variables, si no hay más variables aplicar $B \rightarrow bS$

23 Condiciones de Garantía

- Las palabras generadas tienen primero símbolos terminales y después variables.
- Se genera un símbolo de la palabra en cada paso de derivación
- Las variables que aparecen en la palabra pueden ser:
 - Una cadena de A (si hemos generado más b que a)
 - Una cadena de B (si hemos generado más a que b)
 - Una S si hemos generado las mismas a que b
- Antes de generar el último símbolo tendremos como variables:
 - Una A si tenemos que generar a

- Una B si tenemos que generar b
- Entonces aplicamos la primera opción para generar los símbolos y la palabra queda generada.

24 Ejemplo:

• Sea $G = (\{S, X, Y\}, \{a, b, c\}, P, S)$ donde P tiene las reglas,

$$S \rightarrow abc$$
 $S \rightarrow aXbc$ $Xb \rightarrow bX$ $Xc \rightarrow Ybcc$ $bY \rightarrow Yb$ $aY \rightarrow aaX$ $aY \rightarrow aa$

25 Lenguaje Generado

• Esta gramática genera el lenguaje: $\{a^nb^nc^n \mid n=1,2,\cdots\}$.

$$aXbc \Rightarrow abXc \Rightarrow abYbcc \Rightarrow aYbbcc$$

- En este momento podemos aplicar dos reglas:
 - $-aY \rightarrow aa$, en cuyo caso producimos

$$aabbcc = a^2b^2c^2 \in L(G)$$

 $-aY \rightarrow aaX$, en cuyo caso producimos aaXbbcc

26 Jerarquía de Chomsky

- Tipo 0: Cualquier gramática. Sin restricciones. Lenguajes recursivos
- Tipo 1: Lenguajes dependientes del contexto. Si todas las producciones tienen la forma

$$\alpha_1 A \alpha_2 \rightarrow \alpha_1 \beta \alpha_2$$

- donde $\alpha_1, \alpha_2, \beta \in (V \cup T)^*, A \in V$, y $\beta \neq \epsilon$, excepto posiblemente la regla $S \to \epsilon$, en cuyo caso S no aparece a la derecha de las reglas.
- Tipo 2: Lenguajes independientes del contexto. Si cualquier producción tiene la forma

$$A \to \alpha$$

- donde $A \in V$, $\alpha \in (V \cup T)^*$.
- Tipo 3: Conjuntos regulares. Si toda regla tiene la forma

$$A \to uB$$
 $A \to u$

• donde

$$u \in T^*$$
 y $A, B \in V$

.

27 Clases de Lenguajes

- Un lenguaje se dice que es de tipo i(i = 0, 1, 2, 3) si y solo si es generado por una gramática de tipo i.
- La clase o familia de lenguaje de tipo i se denota por L_i .
- Propiedad

$$L_3 \subseteq L_2 \subseteq L_1 \subseteq L_0$$

28 Ejemplo 1

• Demostrar que la gramática

$$G = (\{S\}, \{a, b\}, \{S \rightarrow \epsilon, S \rightarrow aSb\}, S)$$

- genera el lenguaje $L = \{a^i b^i \mid i = 0, 1, 2, \cdots\}$
- Inicialmente tenemos dos opciones:

$$S \Rightarrow \epsilon$$
, $S \Rightarrow aSb$

• Con eso generamos la palabra vacía, o continuamos generando. Otra vez hay dos opciones:

$$S \Rightarrow S \Rightarrow aSb \Rightarrow ab$$
, $S \Rightarrow aSb \Rightarrow aSb \Rightarrow aaSbb$

- Si seguimos este procedimiento, nos encontramos que podemos ir generando todas las palabras de la forma a^ib^i , y siempre nos queda a^iSb^i para seguir generando las palabras de mayor longitud
- Por otra parte, estas son las únicas palabras que se pueden generar.

29 Ejemplo 2

• Encontrar el lenguaje generado por la siguiente gramática $G = (\{S, A, B\}, \{a, b\}, P, S)$ donde P contiene las siguientes producciones:

$$S \rightarrow aAB \quad bB \rightarrow a \quad Ab \rightarrow SBb$$

$$Aa \rightarrow SaB \quad B \rightarrow SA \quad B \rightarrow ab$$

• El resultado es el Lenguaje vacío: nunca se puede llegar a generar una palabra con símbolos terminales. Siempre que se sustituye S aparece A, y siempre que se sustituye A aparece B.

30 Ejercicios

- Encontrar una gramática de libre contexto para generar cada uno de los siguientes lenguajes
 - 1. $L = \{a^i b^j \mid i, j \in N, i \leq j\}$
 - 2. $L = \{a^i b^j a^j b^i \mid i, j \in N\}$
 - 3. $L = \{a^i b^i a^j b^j \mid i, j \in N\}$

$$\begin{array}{l} 4. \ L = \{a^ib^i \mid i \in N\} \cup \{b^ia^i \mid i \in N\} \\ 5. \ L = \{uu^{-1} \mid u \in \{a,b\}^*\} \end{array}$$

5.
$$L = \{uu^{-1} \mid u \in \{a, b\}^*\}$$

6.
$$L = \{a^i b^j c^{i+j} \mid i, j \in N\}$$

• donde N es el conjunto de los números naturales incluyendo el 0.

31
$$L = \{a^i b^j \mid i, j \ N, i \ j\}$$

• Este lenguaje es generado por la siguiente gramática:

$$S \rightarrow aSb$$

$$S \rightarrow \epsilon$$

$$S \rightarrow Sb$$

32
$$L = \{a^i b^j a^j b^i \mid i, j \ N\}$$

• Este lenguaje es generado por la siguiente gramática:

$$S \rightarrow aSb$$

$$S{
ightarrow}B$$

$$B{
ightarrow}bBa$$

$$B \rightarrow \epsilon$$

33
$$L = \{a^i b^i a^j b^j \mid i, j \ N\}$$

• Podemos generar $\{a^ib^i \mid i N\}$ con:

$$S_1 \rightarrow aS_1b$$
, $S_1 \rightarrow \epsilon$

- El lenguaje L se puede generar añadiendo:

$$S \rightarrow S_1 S_1$$

- Siendo S el símbolo inicial.

34 $L = \{a^i b^i \mid i \ N\} \ \{b^i a^i \mid i \ N\}$

• Podemos generar $\{a^ib^i \mid i N\}$ con:

$$S_1 \rightarrow aS_1b$$
, $S_1 \rightarrow \epsilon$

• y $\{b^ia^i \mid i N\}$ con:

$$S_2 \rightarrow bS_2 a, \quad S_2 \rightarrow \epsilon$$

 $\bullet\;$ El lenguaje L se puede generar añadiendo:

$$S \rightarrow S_1, \quad S \rightarrow S_2$$

- siendo S el símbolo inicial

35
$$L = \{uu^{-1} \mid u \{a, b\}^*\}$$

• Este lenguaje se genera con la gramática:

$$S \rightarrow aSa$$

$$S{\rightarrow}bSb$$

$$S \rightarrow \epsilon$$

36
$$L = \{a^i b^j c^{i+j} \mid i, j \ N\}$$

• Este lenguaje se genera con la gramática:

$$S \rightarrow aSc$$

$$S{
ightarrow}B$$

$$B \rightarrow bBc$$

$$B \rightarrow \epsilon$$

37 Ejercicio

• Determinar si la gramática $G=(\{S,A,B\},\{a,b,c,d\},P,S)$ donde P es el conjunto de reglas de producción:

$$S{\rightarrow}AB \quad A{\rightarrow}Ab \quad A{\rightarrow}a$$

$$B{\rightarrow}cB \quad B{\rightarrow}d$$

- genera un lenguaje de tipo 3.
- Esta gramática genera el lenguaje: $\{ab^ic^jd:i,j\ N\}$
- Y este lenguaje se puede generar mediante la gramática de tipo 3

$$S \rightarrow aB$$
, $B \rightarrow bB$, $B \rightarrow C$, $C \rightarrow cC$, $C \rightarrow d$