# Recommendation Systems

Unclassical embeddings / W2V

# Vector embeddings

Eugeny Malyutin



# Previously:

$$TF-IDF(w,d,C) = rac{count(w,d)}{count(d)} * log(rac{\sum_{d' \in C} 1(w,d')}{|C|})$$

# One-hot encoding drawback:

- "monkeys eat bananas" and "apes consume fruits" similarity equals to 0
- «Pouteria is widespread throughout the tropical regions of the world and monkeys eat their fruits»(c). What is Pouteria? Is it a tree?
- «a word is characterized by the company it keeps» John Rupert Firth
- Ideally, we want vector representations where similar words end up with similar vectors.
   Dense vectors. And when I say similar a mention some similarity measure (cosine).
- Even better, we'd want more similar representations when the words share some properties such as if they're both plural or singular, verbs or adjectives or if they both reference to a male.

### Word2vec scheme:

- It has an input layer that receives **D** one-hot encoded words which are of dimension **V** (the size of the vocabulary).
- It «averages» them, creating a single input vector.
- That input vector is multiplied by a weights
  matrix W (that has size VxD, being D nothing less than
  the dimension of the vectors that you want to create).
  That gives you as a result a D-dimensional vector.
- The vector is then multiplied by another matrix (R reverse W), this one of size DxV. The result will be a new V-dimensional vector.
- That V-dimensional vector is normalized to make all the entries a number between 0 and 1, and that all of them sum 1, using the softmax function, and that's the output. It has in the i-th position the predicted probability of the i-th word in the vocabulary of being the one in the middle for the given context.



# The skipgram model

 We assume that, given the central target word, the context words are generated independently of each other.

P(the, man, his, son | loves) = P(the | loves) \* P(man | loves) \* P(his | loves) \* P(son | loves)

• And 
$$p(w_o | w_c) = \frac{exp(u_o^T v_c)}{\sum_{i \in V} exp(u_i^T v_c)}$$
 cond. probability, u and v — vector representations.

u\_0 - context,v\_c - central target.

The likelihood function of the skip-gram model:

$$\prod_{i=1}^{T} \prod_{-m \le j \le m} P(w^{(t+j)} | w^t)$$



# Skipgram model training

• Loss function 
$$-\sum_{t=1}^{T}\sum_{-m\leq j\leq m,\ j\neq 0}\log\mathbb{P}(w^{(t+j)}\mid w^{(t)})$$

- If we want to SGD it we need to compute gradient of conditional probability:
- Through differentiation, we can get the gradient from the formula above.
- Any problems?

$$\log \mathbb{P}(w_o \mid w_c) = \mathbf{u}_o^{\mathsf{T}} \mathbf{v}_c - \log \left( \sum_{i \in \mathcal{V}} \exp(\mathbf{u}_i^{\mathsf{T}} \mathbf{v}_c) \right)$$

$$\frac{\partial \log \mathbb{P}(w_o \mid w_c)}{\partial \mathbf{v}_c} = \mathbf{u}_o - \frac{\sum_{j \in \mathcal{V}} \exp(\mathbf{u}_j^\top \mathbf{v}_c) \mathbf{u}_j}{\sum_{i \in \mathcal{V}} \exp(\mathbf{u}_i^\top \mathbf{v}_c)}$$

$$= \mathbf{u}_o - \sum_{j \in \mathcal{V}} \left( \frac{\exp(\mathbf{u}_j^\top \mathbf{v}_c)}{\sum_{i \in \mathcal{V}} \exp(\mathbf{u}_i^\top \mathbf{v}_c)} \right) \mathbf{u}_j$$

$$= \mathbf{u}_o - \sum_{i \in \mathcal{V}} \mathbb{P}(w_j \mid w_c) \mathbf{u}_j.$$

# Skipgram model training

• Loss function 
$$-\sum_{t=1}^{T}\sum_{-m\leq j\leq m,\ j\neq 0}\log\mathbb{P}(w^{(t+j)}\mid w^{(t)})$$

- If we want to SGD it we need to compute gradient of conditional probability:
- Through differentiation, we can get the gradient from the formula above:
- Its computation obtains the conditional probability for all the words in the dictionary given the central target word w\_c
   We then use the same method to obtain the gradients for other word vectors.

$$\log \mathbb{P}(w_o \mid w_c) = \mathbf{u}_o^{\mathsf{T}} \mathbf{v}_c - \log \left( \sum_{i \in \mathcal{V}} \exp(\mathbf{u}_i^{\mathsf{T}} \mathbf{v}_c) \right)$$

$$\begin{split} \frac{\partial \log \mathbb{P}(w_o \mid w_c)}{\partial \mathbf{v}_c} &= \mathbf{u}_o - \frac{\sum_{j \in \mathcal{V}} \exp(\mathbf{u}_j^\top \mathbf{v}_c) \mathbf{u}_j}{\sum_{i \in \mathcal{V}} \exp(\mathbf{u}_i^\top \mathbf{v}_c)} \\ &= \mathbf{u}_o - \sum_{j \in \mathcal{V}} \left( \frac{\exp(\mathbf{u}_j^\top \mathbf{v}_c)}{\sum_{i \in \mathcal{V}} \exp(\mathbf{u}_i^\top \mathbf{v}_c)} \right) \mathbf{u}_j \\ &= \mathbf{u}_o - \sum_{j \in \mathcal{V}} \mathbb{P}(w_j \mid w_c) \mathbf{u}_j. \end{split}$$

# Negative sampling:

• Given a context window for the central target word  $w_{-}c$ , we will treat it as an event for context word  $w_{-}o$  to appear in the context window and compute the probability of this event from

$$\mathbb{P}(D=1\mid w_c, w_o) = \sigma(\mathbf{u}_o^{\mathsf{T}}\mathbf{v}_c),$$

• Now we consider maximizing the joint probability  $\prod^T \prod P(D=1 \mid w^{(t)}, w^{(t+j)})$ .

$$\prod_{t=1}^{T} \prod_{-m \le j \le m, \ j \ne 0} \mathbb{P}(D = 1 \mid w^{(t)}, w^{(t+j)})$$

However, the events included in the model only consider positive examples. We need to sample additional negative events (never occurred in the same context) and then:

$$\mathbb{P}(w^{(t+j)} \mid w^{(t)}) = \mathbb{P}(D=1 \mid w^{(t)}, w^{(t+j)}) \prod_{k=1, w_k \sim \mathbb{P}(w)}^K \mathbb{P}(D=0 \mid w^{(t)}, w_k).$$

# Negative sampling:

Now we consider maximizing the joint probability

$$\prod_{t=1}^{T} \prod_{-m \le j \le m, \ j \ne 0} \mathbb{P}(D = 1 \mid w^{(t)}, w^{(t+j)}).$$

 However, the events included in the model only consider positive examples. We need to sample additional negative K events (never occurred in the same context) and then:

$$\mathbb{P}(w^{(t+j)} \mid w^{(t)}) = \mathbb{P}(D=1 \mid w^{(t)}, w^{(t+j)}) \prod_{k=1, w_k \sim \mathbb{P}(w)}^{K} \mathbb{P}(D=0 \mid w^{(t)}, w_k).$$

- The logarithmic loss for the conditional probability above is  $-\log \mathbb{P}(w^{(t+j)} \mid w^{(t)}) = -\log \mathbb{P}(D=1 \mid w^{(t)}, w^{(t+j)}) \sum_{k=1}^{K} \log \mathbb{P}(D=0 \mid w^{(t)}, w_k)$
- Here, the gradient computation in each step of the training is no longer related to the dictionary size, but linearly related to K

$$= -\log \sigma \left(\mathbf{u}_{i_{t+j}}^{\mathsf{T}} \mathbf{v}_{i_{t}}\right) - \sum_{k=1, w_{k} \sim \mathbb{P}(w)}^{K} \log \left(1 - \sigma \left(\mathbf{u}_{h_{k}}^{\mathsf{T}} \mathbf{v}_{i_{t}}\right)\right)$$

$$= -\log \sigma \left(\mathbf{u}_{i_{t+j}}^{\mathsf{T}} \mathbf{v}_{i_{t}}\right) - \sum_{k=1, w_{k} \sim \mathbb{P}(w)}^{K} \log \sigma \left(-\mathbf{u}_{h_{k}}^{\mathsf{T}} \mathbf{v}_{i_{t}}\right).$$

# Negative sampling:

• The logarithmic loss for the conditional probability above is

$$-\log \mathbb{P}(w^{(t+j)} \mid w^{(t)}) = -\log \mathbb{P}(D = 1 \mid w^{(t)}, w^{(t+j)}) - \sum_{k=1, w_k \sim \mathbb{P}(w)}^K \log \mathbb{P}(D = 0 \mid w^{(t)}, w_k)$$

 Here, the gradient computation in each step of the training is no longer related to the dictionary size, but linearly related to K

$$= -\log \sigma \left(\mathbf{u}_{i_{t+j}}^{\mathsf{T}} \mathbf{v}_{i_{t}}\right) - \sum_{k=1, w_{k} \sim \mathbb{P}(w)}^{K} \log \left(1 - \sigma \left(\mathbf{u}_{h_{k}}^{\mathsf{T}} \mathbf{v}_{i_{t}}\right)\right)$$

$$= -\log \sigma \left(\mathbf{u}_{i_{t+j}}^{\mathsf{T}} \mathbf{v}_{i_{t}}\right) - \sum_{k=1, w_{k} \sim \mathbb{P}(w)}^{K} \log \sigma \left(-\mathbf{u}_{h_{k}}^{\mathsf{T}} \mathbf{v}_{i_{t}}\right).$$

 Key idea: sample additional negatives and learn your positive probabilities «opposite to» them.

# So what? (Synonyms)

```
get_similar_tokens('chip', 3, glove_6b50d)

get_similar_tokens('baby', 3, glove_6b50d)

cosine sim=0.856: chips
cosine sim=0.749: intel
cosine sim=0.749: electronics

get_similar_tokens('baby', 3, glove_6b50d)

cosine sim=0.839: babies
cosine sim=0.800: boy
cosine sim=0.893: gorgeous
cosine sim=0.830: wonderful
```

- get\_similar\_tokens top-K words by cosine measure to the target word;
- glove\_6b50d glove model on some common corpora (Wikipedia?) with 6B of words and vector dimension equals to 50;

# So what? (2) (Finding Analogies)

```
get_analogy('man', 'woman', 'son', glove_6b50d)

'daughter'
```

get\_analogy('bad', 'worst', 'big', glove\_6b50d)
'biggest'

get\_analogy('do', 'did', 'go', glove\_6b50d)

'went'

"Capital-country" analogy

"Adjective-superlative adjective" analogy

"Present tense verb-past tense verb" analogy

- And it's only x = vec(c) + vec(b) vec(a)
- And then top word for x

# So what? (country-capital)



Based on Wikipedia training corpora

# Any problems?

Out-of-vocabulary

How we can train it? How big our doc's collection should be?

Stop, firstly we talk about text and word2vec is about words

# Any problems?

Out-of-vocabulary

Yeah, it's true. But there are few extensions; (fastText)

• Stop, firstly we talk about **text** and word2vec is about **words** 

Ok, average it; Or average with weights; Or do not average and learn some averaging embedding; (look to BERT model)

• How we can train it? How big our doc's collection should be?

Really big; Starting from 10+M of symbols; Use pertained vectors;

## Word2Vec in RecSys

- Negative sampling
- Next item in sequence as a task
- Good initialisation for «Embedding layer»

• Filter your datasets, please



## Word2Vec in RecSys

- Negative sampling
- Next item in sequence as a task
- Good initialisation for «Embedding layer»



Problem?

Filter your datasets, please

Word2vec offline model with embeddings

## W2V:

- No user vector:
  - Sum all items user interacted with
  - Sum with weights ~ activity
  - Sum with TF-IDF
  - Cluster and select medoid...
  - Feed to an attent...

#### Pros:

- Easy to realise
- No need to limit users interaction
- Good at similars
- Session-based
- Consume CPU, not GPU

#### Cons:

- Nothing except interactions
- Cold start with items
- No user vector

### **W2V**

### Discussion notes

- Items are limited by number of interactions how to overcome it?
- Intrinsic evaluation. What to do?













Rare items lost their similars quality, why?