Email training, N4 September 15-21, 2019

Problem 4.1. Prove that for all $n \ge 4$ the following inequalities hold $n! > 2^n$ and $2^n \ge n^2$.

Problem 4.2. It is known that a < 1, b < 1 and $a + b \ge 0.5$. Prove that $(1 - a)(1 - b) \le \frac{9}{16}$.

Problem 4.3. Read the proof of Bernouli inequality. Conclude that $8^{91} > 7^{92}$. (https://www.youtube.com/watch?v=7BZWeWZoVcY).

Problem 4.4. By using Bernouli inequality prove that for $n \geq 1$ the following inequality holds

$$1 + \frac{5}{6n - 5} \le 6^{1/n} \le 1 + \frac{5}{n}.$$

Problem 4.5. Let

$$a_n = \frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n}.$$

Prove that for $n \geq 3$ one has $a_{n+1} \geq a_n$ and based on this conclude that $a_{2019} > \frac{3}{5}$.

Problem 4.6. Let a, b, c are positive and less than 1. Prove that

$$1 - (1 - a)(1 - b)(1 - c) > k$$
,

where k = max(a, b, c).

Problem 4.7. In the square ABCD let K is a point on the side BC and the bisector of $\angle KAD$ meets the side CD at point M. Prove that AK = DM + BK.

Problem 4.8. Let ABCD is a square, P is an inner point such that PA:PB:PC=1:2:3. Find $\angle APB$ in degrees.

Solution submission deadline September 21, 2019