IMPROPER INTEGRALS

(ADDITIONAL NOTES TO STEWART §7.8)

Definition 1

Suppose that $a \in \mathbb{R}$ and f is continuous on $[a, \infty)$. Then

$$\int_{a}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{a}^{t} f(x) dx$$

provided that this limit exists.

Suppose that $b \in \mathbb{R}$ and f is continuous on $(-\infty, b]$. Then

$$\int_{-\infty}^{b} f(x) dx = \lim_{t \to -\infty} \int_{t}^{b} f(x) dx$$

provided that this limit exists. $\int_a^\infty f(x)\,dx \text{ and } \int_{-\infty}^b f(x)\,dx \text{ are called } improper \ integrals \ of \ Type \ 1. \text{ An improper integral of Type } 1 \text{ is called } convergent \text{ if the limit involved exists, and it is called } divergent \text{ if the limit involved does } 1$

If both $\int_a^\infty f(x) dx$ and $\int_{-\infty}^a f(x) dx$ are convergent (a any number), then we define

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{a} f(x) dx + \int_{a}^{\infty} f(x) dx.$$

 $\int_{-\infty}^{\infty} f(x) dx$ is also called an improper integral of Type 1.

Definition 2

Suppose that f is continuous but unbounded on [a, b]. Then

$$\int_{a}^{b} f(x) dx = \lim_{t \to b-} \int_{a}^{t} f(x) dx$$

provided that this limit exists.

Suppose that f is continuous but unbounded on (a, b]. Then

$$\int_{a}^{b} f(x) dx = \lim_{t \to a+} \int_{t}^{b} f(x) dx$$

provided that this limit exists.

These integrals are called *improper integrals of Type 2*. An improper integral of Type 2 is called convergent if the limit involved exists, and it is called divergent if the limit involved does not exist. Suppose that a < c < b, f is discontinuous at c and f is continuous but unbounded on [a, c) and on (c,b]. If both $\int_a^c f(x) dx$ and $\int_c^b f(x) dx$ are convergent, then we define

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx.$$

Such an integral is also called an improper integral of Type 2.

Definition 3

Suppose that $a \in \mathbb{R}$, f is continuous on (a, ∞) and for any c > a we have that f is unbounded on (a, c]. If the improper integrals $\int_a^c f(x) dx$ (of Type 2) and $\int_c^\infty f(x) dx$ (of Type 1) converge, then we define

$$\int_{a}^{\infty} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{\infty} f(x) dx.$$

Such an integral is called an improper integral of Type 3.

Lemma 4

- 1. Suppose that a < b. If f is continuous on $[a, \infty)$, then $\int_a^\infty f(x) dx$ is convergent if and only if $\int_b^\infty f(x) dx$ is convergent.
- 2. If both $\int_a^\infty f(x) dx$ and $\int_a^\infty g(x) dx$ converge and α and β are numbers, then $\int_a^\infty [\alpha f(x) + \beta g(x)] dx$ converges as well.

Similar results also hold for improper integrals of Type 2.

Lemma 5

Suppose that a < b. Then $\int_b^\infty \frac{1}{(x-a)^p} dx$ is convergent for p > 1 and divergent for $p \le 1$.

Lemma 6

Suppose that $a \in \mathbb{R}$. Then $\int_a^\infty e^{-px} dx$ is convergent for p > 0 and divergent for $p \leq 0$.

Lemma 7

Suppose that a < b. Then $\int_a^b \frac{1}{(x-a)^p} dx$ and $\int_a^b \frac{1}{(x-b)^p} dx$ are convergent if p < 1 and divergent if $p \ge 1$.

Before we can obtain further results, we must first study the concept of a smallest upper bound.

Definition 8

- 1. A set A of real numbers is bounded above if there exists a real number M such that $x \leq M$ for all $x \in A$. We call M an upper bound for A.
- 2. A set A of real numbers is bounded below if there exists a real number m such that $x \ge m$ for all $x \in A$. We call m a lower bound for A.
- 3. A set $A \subset \mathbb{R}$ is bounded if A is both bounded below and bounded above.

4. If $A \subset \mathbb{R}$ is not bounded, we say that A is unbounded.

Definition 9

If a set $A \subset \mathbb{R}$ has a smallest upper bound S, then we call S the *supremum* or *sup* of A and write $S = \sup A$. This means:

- 1. S is an upper bound for A.
- 2. If T is any upper bound for A, then $S \leq T$.

Theorem 10

Let $A \subset \mathbb{R}$. Then $\sup A = S$ if and only if the following two conditions hold:

- 1. S is an upper bound for A.
- 2. For each $\epsilon > 0$ there exists an $x \in A$ such that $x > S \epsilon$.

Proof

If $\sup A = S$, then (1) holds, since S is an upper bound (the smallest one) for A. For any $\epsilon > 0$ we have that $S - \epsilon < S$, and hence $S - \epsilon$ is smaller than the smallest upper bound S, so that $S - \epsilon$ is not an upper bound for A. Hence there exists at least one $x \in A$ such that $x > S - \epsilon$. So (2) holds. Conversely, suppose that (1) and (2) hold. Then S is an upper bound for A. It follows from (2) that each number smaller than S is not an upper bound for A. Hence S is the smallest upper bound for A, i.e. $S = \sup A$. \square

Definition 11

If a set $A \subset \mathbb{R}$ has a greatest lower bound I, then we call I the *infimum* or *inf* of A and write $I = \inf A$. This means:

- 1. I is a lower bound for A.
- 2. If J is any lower bound for A, then $I \geq J$.

Theorem 12

Let $A \subset \mathbb{R}$. Then inf A = I if and only if the following two conditions hold:

- 1. I is a lower bound for A.
- 2. For each $\epsilon > 0$ there exists an $x \in A$ such that $x < I + \epsilon$.

The proof of Theorem 12 is similar to that of Theorem 10.

Finally, we formulate the following axiom:

The Completeness Property of \mathbb{R}

Each non-empty set of real numbers which is bounded above has a smallest upper bound.

Corollary

Each non-empty set of real numbers which is bounded below has a greatest lower bound.

We are now ready to prove the following important theorem:

Theorem 13

Suppose that f is increasing on $[a, \infty)$. Then $\lim_{x\to\infty} f(x)$ exists if and only if f is bounded above on $[a, \infty)$, in which case

$$\lim_{x \to \infty} f(x) = \sup\{f(x) : x \in [a, \infty)\}.$$

Proof

Suppose that f is increasing on $[a, \infty)$.

We first prove that if $\lim_{x\to\infty} f(x)$ exists, then f is bounded above on $[a,\infty)$ (so that $\sup\{f(x):x\in[a,\infty)\}$ exists):

So suppose that $\lim_{x\to\infty} f(x)$ exists, and let $L=\lim_{x\to\infty} f(x)$. Then there exists a number $N\geq a$ so that |f(x)-L|<1 for all $x\geq N$ (take $\epsilon=1$). Hence -1< f(x)-L<1, so that L-1< f(x)< L+1, for all $x\geq N$. In particular, f(N)< L+1. Since f is increasing on $[a,\infty)$, we have that $f(x)\leq f(N)$, so that f(x)< L+1, for all $x\in [a,N]$. It follows that f(x)< L+1 for all $x\in [a,\infty)$, and hence f is bounded above on $[a,\infty)$.

Next we prove that if f is bounded above on $[a, \infty)$, then $\lim_{x \to \infty} f(x)$ exists and $\lim_{x \to \infty} f(x) = \sup\{f(x) : x \in [a, \infty)\}$:

So suppose that f is bounded above on $[a, \infty)$. Let $S = \sup\{f(x) : x \in [a, \infty)\}$. Then there exists for each $\epsilon > 0$ a $y \in [a, \infty)$ such that $S - \epsilon < f(y)$. Since f is increasing on $[a, \infty)$, we have that $f(y) \leq f(x)$, so that $S - \epsilon < f(x)$, for all $x \geq y$. Also, $f(x) \leq S < S + \epsilon$ for all $x \in [a, \infty)$, so that $S - \epsilon < f(x) < S + \epsilon$, i.e. $|S - f(x)| < \epsilon$, for all $x \geq y$. It follows from this that $\lim_{x \to \infty} f(x)$ exists and $\lim_{x \to \infty} f(x) = S$.

The result follows. \square

Using the above theorem we can extend the theory of improper integrals further:

The comparison test for improper integrals of Type 1

Suppose that $a \in \mathbb{R}$ and f and g are continuous functions on $[a, \infty)$ such that $0 \le g(x) \le f(x)$ for all $x \ge a$.

- 1. If $\int_a^\infty f(x) dx$ is convergent, then $\int_a^\infty g(x) dx$ is convergent.
- 2. If $\int_a^\infty g(x) dx$ is divergent, then $\int_a^\infty f(x) dx$ is divergent.

Proof

1. Let $G(t) = \int_a^t g(x) dx$ and $F(t) = \int_a^t f(x) dx$. Since $g(x) \leq f(x)$ for all $x \geq a$, it follows that $G(t) \leq F(t)$ for all $t \geq a$. The fact that $f(x) \geq 0$ and $g(x) \geq 0$ for all $x \geq a$ implies that the functions F and G are increasing on $[a, \infty)$.

Now suppose that $\int_a^\infty f(x)\,dx$ is convergent. Then $\lim_{t\to\infty} F(t)$ exists (with $\lim_{t\to\infty} F(t) = \int_a^\infty f(x)\,dx$). Since F is increasing on $[a,\infty)$ and $\lim_{t\to\infty} F(t)$ exists, it follows from Theorem 13 that $\{F(t):t\in[a,\infty)\}$ is bounded above. Since $G(t)\leq F(t)$ for all $t\geq a$, we have that $\{G(t):t\in[a,\infty)\}$ is bounded above as well. Together with the fact that G is increasing on $[a,\infty)$, it follows from Theorem 13 that $\lim_{t\to\infty} G(t)$ exists, i.e. that $\int_a^\infty g(x)\,dx$ converges.

2. This is the contrapositive of (1).

The comparison test for improper integrals of Type 2

Suppose that a < b, f and g are continuous but unbounded on (a, b] and $0 \le g(x) \le f(x)$ for all $x \in (a, b]$.

- 1. If $\int_a^b f(x) dx$ is convergent, then $\int_a^b g(x) dx$ is convergent.
- 2. If $\int_a^b g(x) dx$ is divergent, then $\int_a^b f(x) dx$ is divergent.

The above theorem also holds if the interval (a, b] is replaced by [a, b). The proofs are similar to the proof of the comparison test for improper integrals of Type 1.

The quotient test for improper integrals of Type 1

Suppose that $a \in \mathbb{R}$ and f and g are continuous functions on $[a, \infty)$ such that $f(x) \geq 0$ and $g(x) \geq 0$ for all $x \geq a$.

- 1. If $\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$ and $\int_a^{\infty} g(x) dx$ is convergent, then $\int_a^{\infty} f(x) dx$ is convergent.
- 2. If $\lim_{x\to\infty}\frac{f(x)}{g(x)}=A>0$, then $\int_a^\infty g(x)\,dx$ is convergent if and only if $\int_a^\infty f(x)\,dx$ is convergent.
- 3. If $\lim_{x\to\infty} \frac{f(x)}{g(x)} = \infty$ and $\int_a^\infty g(x) dx$ is divergent, then $\int_a^\infty f(x) dx$ is divergent.

Proof

- 1. Suppose that $\lim_{x\to\infty}\frac{f(x)}{g(x)}=0$ and $\int_a^\infty g(x)\,dx$ is convergent. Since $\lim_{x\to\infty}\frac{f(x)}{g(x)}=0$, there exists a number N and we may take $N\geq a$ such that $\left|\frac{f(x)}{g(x)}-0\right|<1$ (take $\epsilon=1$), and hence $\frac{f(x)}{g(x)}<1$, or $0\leq f(x)< g(x)$, for all $x\geq N$. By Lemma 4 $\int_N^\infty g(x)\,dx$ is convergent, and hence it follows from the comparison test that $\int_N^\infty f(x)\,dx$ is convergent. Hence it follows from Lemma 4 that $\int_a^\infty f(x)\,dx$ is convergent.
- 2. Suppose that $\lim_{x\to\infty}\frac{f(x)}{g(x)}=A>0$. Let m and M be positive numbers such that m< A< M. Since $\lim_{x\to\infty}\frac{f(x)}{g(x)}=A$, it follows that there exists a number $N\geq a$ such that $m\leq \frac{f(x)}{g(x)}\leq M$ for all $x\geq N$. Hence $0\leq mg(x)\leq f(x)\leq Mg(x)$ for all $x\geq N$. Now suppose that $\int_a^\infty g(x)\,dx$ is convergent. Then $\int_N^\infty g(x)\,dx$ is convergent, so that $\int_N^\infty Mg(x)\,dx$ is convergent, by Lemma 4. By the comparison test it follows that $\int_0^\infty f(x)\,dx$ is convergent, so that $\int_a^\infty f(x)\,dx$ is convergent. Conversely, suppose that $\int_a^\infty f(x)\,dx$ is convergent. Then $\int_N^\infty f(x)\,dx$ is convergent, so that, by the comparison test, $\int_N^\infty mg(x)\,dx$ is convergent. Hence it follows from Lemma 4 that $\int_a^\infty g(x)\,dx$ is convergent.
- 3. Suppose that $\lim_{x\to\infty}\frac{f(x)}{g(x)}=\infty$ and $\int_a^\infty g(x)\,dx$ is divergent. Since $\lim_{x\to\infty}\frac{f(x)}{g(x)}=\infty$, there exists a number N such that $\frac{f(x)}{g(x)}>1$, i.e. $0\leq g(x)< f(x)$, for all $x\geq N$. It follows from Lemma 4 that $\int_N^\infty g(x)\,dx$ is divergent and hence, by the comparison test, that $\int_N^\infty f(x)\,dx$ is divergent. Hence $\int_a^\infty f(x)\,dx$ is divergent. \square

The quotient test for improper integrals of Type 2

Suppose that a < b, f and g are continuous but unbounded on (a, b] and $f(x) \ge 0$ and $g(x) \ge 0$ for all $x \in (a, b]$.

- 1. If $\lim_{x\to a+} \frac{f(x)}{g(x)} = 0$ and $\int_a^b g(x) dx$ is convergent, then $\int_a^b f(x) dx$ is convergent.
- 2. If $\lim_{x\to a+}\frac{f(x)}{g(x)}=A>0$, then $\int_a^b g(x)\,dx$ is convergent if and only if $\int_a^b f(x)\,dx$ is convergent.
- 3. If $\lim_{x\to a+}\frac{f(x)}{g(x)}=\infty$ and $\int_a^b g(x)\,dx$ is divergent, then $\int_a^b f(x)\,dx$ is divergent.

A similar theorem as the above also holds if the interval (a, b] is replaced by [a, b). The proofs are similar to the proof of the quotient test for improper integrals of Type 1.

We conclude with an important concept:

Definition 14

Suppose that f is continuous on $[a, \infty)$. Then $\int_a^\infty f(x) dx$ is absolutely convergent if $\int_a^\infty |f(x)| dx$ is

convergent.

 $\int_a^\infty f(x) dx$ is conditionally convergent if $\int_a^\infty f(x) dx$ is convergent and $\int_a^\infty |f(x)| dx$ is divergent.

Similar definitions also hold for improper integrals of Type 2.

Theorem 15

If $\int_a^\infty f(x) dx$ is absolutely convergent, then $\int_a^\infty f(x) dx$ is convergent.

Proof

For $x \ge a$ we have that $0 \le f(x) + |f(x)| \le 2|f(x)|$. Since $2\int_a^\infty |f(x)| \, dx$ is convergent, it follows using the comparison test that $\int_a^\infty [f(x) + |f(x)|] \, dx$ is convergent. Since f(x) = [f(x) + |f(x)|] - |f(x)|, the result follows from Lemma 4. \square