ATLAS activities at Sydney

Carl Suster, Shyam Balaji, Kevin Varvell, Bruce Yabsley The University of Sydney

 $\mathrm{May}\ 3,\ 2019$

Current LHC status

LHC long-term schedule

The ATLAS pp datasets in run 2

Physics with ATLAS

- Supersymmetry searches
- Exotics searches
- Higgs and diboson searches
- Higgs physics
- Standard Model
- Top physics
- Heavy ion physics
- B physics and light states
- Physics modelling
- + hardware, upgrades, operations, organisation, ...

Physics with ATLAS

- Supersymmetry searches
- Exotics searches
- Higgs and diboson searches search for a heavy neutral Higgs
- Higgs physics
- Standard Model
- Top physics single top tW production, AIDA
- Heavy ion physics
- B physics and light states quarkonium production spectroscopy
- Physics modelling
- + hardware, upgrades, operations, organisation, \dots

Search for a heavy neutral Higgs [Shyam]

- 2HDM has 5 Higgs bosons after EWSB: h and H (CP-even), A (CP-odd), and H^{\pm} (charged).
- For 2HDM EW baryogenesis we need 125 GeV $< m_H < m_A \lesssim 800$ GeV.
- Search for $A \to ZH$ with $Z \to \ell^+\ell^-$ (clean) and $H \to b\bar{b}$ (high branching fraction).

gluon-gluon fusion

- Then scan over m_A , searching for resonances in $m_{\ell\ell bb}$.
- Main backgrounds are Z+jets and $t\bar{t}/tW$.
- Scan over mass points ensuring $m_A m_H \ge 100 \, \text{GeV}$.

- Shyam is involved in the update of this search to the full dataset:
 - optimising the event selection using machine learning, and
 - signal interpolation.
- Recent improvements in b-jet tagging will help the analysis.
- There will be a focus on making the results re-interpretable.

- Shyam is also involved in improving photon reconstruction at ATLAS.
- He is also pursuing several theory projects:
 - \bullet B physics: SU(4) unified models to explain the $R_{K}^{(*)}$ and $R_{D}^{(*)}$ anomalies,
 - Higgs portal dark matter models, and
 - simplified dark matter models.

Single top tW production [Carl]

- Top quark production at the LHC is predominantly via $t\bar{t}$.
- Rarer weak force processes produce top quarks singly, proportional to $|V_{tb}|$.
- The tW channel was first observed in run 1 of the LHC at ATLAS and CMS.
- We use events with exactly two oppositely-charged electrons or muons (dilepton).

	t-channel	t W	s-channel
Branching fraction Sensitive to	73%	24%	3%
4-fermion operators	\checkmark	×	\checkmark
tWb vertex corrections	\checkmark	\checkmark	\checkmark

$$\begin{split} \sigma_{tW} &= 94~\pm~10~{\rm (stat.)}~^{+28}_{-22}~{\rm (syst.)}~\pm~2~{\rm (lumi.)}~{\rm pb} \\ \sigma_{tW} &= 71.7~\pm~1.8~{\rm (scale)}~\pm~3.4~{\rm (PDF)}~{\rm pb} \end{split} \qquad \text{(nnlo+nnll)}$$

• First measurement of the shape of tW production.

• Differential with respect to 6 quantities.

- I am continuing in the effort to update these measurements.
- Collaborators: Universität Bonn, Duke & Boston Universities.
- We will improve the precision of the measurements.
- Aim to inform tW modelling, particularly interference with $t\bar{t}$.

An inclusive dilepton analysis (LHC run 1)

- Our involvement in top physics began as a collaboration with Duke (Mark Kruse).
- Simultaneous measurement of $t\bar{t}$, W^+W^- and $Z/\gamma^* \to \tau\tau$: Phys. Rev. D 91 (2015) 052005
- \bullet We've been planning to resume this analysis, subject to funding for a new postdoc.

