

Lec2: High Dimensional Inference

Isidoro Garcia Urquieta

2021

► Repaso inferencia estadística

- ► Repaso inferencia estadística
- ▶ Inferencia en Big Data:

- ► Repaso inferencia estadística
- ► Inferencia en Big Data:
- ► Ajuste de Bonferroni

- ► Repaso inferencia estadística
- ► Inferencia en Big Data:
- ► Ajuste de Bonferroni
- ► False Detectable Rate (FDR)

La inferencia estadística se refiere a la disciplina de inferir **parámetros** (β) mediante **estadísticos** ($\hat{\beta}_n$) a partir de una muestra de datos de la población de tamaño n.

- La inferencia estadística se refiere a la disciplina de inferir **parámetros** (β) mediante **estadísticos** ($\hat{\beta}_n$) a partir de una muestra de datos de la población de tamaño n.
- Los parámetros son números fijos.

- La inferencia estadística se refiere a la disciplina de inferir **parámetros** (β) mediante **estadísticos** ($\hat{\beta}_n$) a partir de una muestra de datos de la población de tamaño n.
- Los parámetros son números fijos.
- ► La **población** es el universo total de unidades a observar *i*. Típicamente no observamos toda la población.

- La inferencia estadística se refiere a la disciplina de inferir **parámetros** (β) mediante **estadísticos** ($\hat{\beta}_n$) a partir de una muestra de datos de la población de tamaño n.
- Los parámetros son números fijos.
- La **población** es el universo total de unidades a observar *i*. Típicamente no observamos toda la población.
- La muestra es una porción de esta población. Esta debe ser representativa para poder hacer buenas inferencias.

- La inferencia estadística se refiere a la disciplina de inferir **parámetros** (β) mediante **estadísticos** ($\hat{\beta}_n$) a partir de una muestra de datos de la población de tamaño n.
- Los parámetros son números fijos.
- La **población** es el universo total de unidades a observar *i*. Típicamente no observamos toda la población.
- La muestra es una porción de esta población. Esta debe ser representativa para poder hacer buenas inferencias.
- Los estadísticos se construyen a partir de los datos observados. Ellos estiman lo que puede ser el parámetro. Es por eso que son variables aleatorias.

- La inferencia estadística se refiere a la disciplina de inferir **parámetros** (β) mediante **estadísticos** ($\hat{\beta}_n$) a partir de una muestra de datos de la población de tamaño n.
- Los parámetros son números fijos.
- La **población** es el universo total de unidades a observar *i*. Típicamente no observamos toda la población.
- La muestra es una porción de esta población. Esta debe ser representativa para poder hacer buenas inferencias.
- Los estadísticos se construyen a partir de los datos observados. Ellos estiman lo que puede ser el parámetro. Es por eso que son variables aleatorias.
- Asi, un estimador $\hat{\beta}_n$ va a tener distintos valores para muestras distintas de la población $(n_1, n_2, n_3, ...)$

Algunas propiedades de los estadísticos:

(In)Sesgo: Si promediaramos los estimadores de todas las muestras, que tan cerca o lejos estaríamos del parámetro poblacional

$$Sesgo(\hat{eta}_n) = E(\hat{eta}_n) - eta$$

Error: Cual es la diferencia entre un estimador en particular vs el parámetro?

$$e = \hat{\beta}_n - \beta$$

Varianza: Que tanto difiere cada estimador del promedio de los estimadores (al cuadrado)

$$var(\hat{\beta}_n) = E(\hat{\beta}_n - E[\hat{\beta}_n])^2$$

Error Cuadrático Medio: Esto es el promedio del los errores al cuadrado.

$$ECM(\hat{\beta}_n) = E[(\hat{\beta}_n - \beta)^2] = var(\hat{\beta}_n) + Sesgo(\hat{\beta}_n)^2$$

En general quieres estimadores que sean insesgados y/o que tengan mínima varianza (i.e. El menor *ECM*). En la econometría (siguiente sesión) se enfatiza la **insesgadez**. Veremos que hay un bias+variance tradeoff.

Otras propiedades del comportamiento de los estimadores:

Eficiencia: Queremos el estimador con el menor *ECM*. Por ejemplo, en el mundo de estimadores insesgados, buscamos el que tenga menor varianza.

Consistencia: Si el tamaño de la muestra n crece mucho $(n \to \infty)$, el estimador converge al párametro.

$$\lim_{n\to\infty} \Pr[|\hat{\beta}_n - \beta| < \epsilon] = 1$$

0

$$\hat{\beta}_n \to^p \beta$$

Normalidad: La distribución de los estimadores es normal alrededor del parámetro.

$$\frac{\hat{\beta}_n - \beta}{\sqrt{\frac{\sigma^2}{n}}} \to^D N(0, 1)$$

Ejemplo: Supongamos que tienes una población de 100,000 individuos cuya edad promedio es ~ 23 años. Quieres construir un estimador a partir de muestras de 15,000 personas.

El parámetro es
$$\mu_{edad}=rac{1}{100,000}\Sigma_{i=1}^{100,000}edad_i=23$$

El estimador más obvio sería:
$$\hat{\mu_{edad}} = \frac{1}{15,000} \sum_{i=1}^{15,000} edad_i = X$$

El valor del estimador depende de la **muestra aleatoria** que tomemos! Veamos como se ve en R


```
# Tomamos 100 muestras de 15000 observaciones
muestras < -map(1:100,
              function(x) {
                   set.seed(x)
                   poblacion %>%
                       slice sample(n = 15000, replace = T)
              })
head(map(muestras, ~dim(.)))
## [[1]]
## [1] 15000
##
## [[2]]
## [1] 15000
                  2
##
## [[3]]
  [1] 15000
##
##
   [[4]]
##
   [1] 15000
##
```


Ahora construyamos el estimador $\mu_{15,000}$ para cada muestra:

Veamos como se ven los 100 estimadores vs el parametro 22.98

```
(media<-mean(estimadores$estimador))</pre>
```

```
## [1] 22.98937
```

```
(varianza<-var(estimadores$estimador))</pre>
```

```
## [1] 0.0006647197
```


Notemos algunas cosas:

- \blacktriangleright Sesgo($\hat{\beta}$) = 22.9803 22.9827 = -0.0024
- $ightharpoonup var(\hat{\beta}) = 0.0006785$
- ► Hay 100 errores, uno por cada estimador
- ightharpoonup $ECM(\hat{\beta}) = var(\hat{\beta}_n) + Sesgo(\hat{\beta}_n)^2 = 0.0006842804$
- Es un estimador muy bueno! Poquísimo sesgo, baja varianza.
- ► Se cumple la **normalidad**: Noten como *edad* $\sim \chi_5$ y el estimador igual es normal.
- Nos falta mostrar la consistencia! Recordemos, si hacemos la muestra mas grande, la distribucion debe colapsarse al parametro.

Para 45,000 observaciones

Para 90,000 observaciones

Nota en Normalidad

Vean como mostramos que el estimador:

$$\hat{\beta}_n \to^D N(\beta, \sqrt{\sigma^2/n})$$

Y esto es lo mismo que (estimador estandarizado):

$$\frac{\hat{\beta}_n - \beta}{\sqrt{\frac{\sigma^2}{n}}} \to^D N(0, 1)$$

Pruebas de Hipótesis

Las pruebas de hipótesis ven el estimador estandarizado $t=rac{\hat{eta}_n-eta_{H0}}{\sqrt{rac{\sigma^2}{n}}}\sim N(0,1)$ de una muestra en particular para inferir (intentar probar) el valor de un parámetro.

Esto es, dado el estimador, que tan probable es que nuestra H_0 sea correcta?

Pruebas de Hipótesis

Los conceptos más importantes son:

- ► Hipótesis Nula (*H*₀): Valor que quieres rechazar/no rechazar
- \blacktriangleright Hipótesis Alternativa (H_a): Un rango del valor. Una cola o dos colas
- ▶ Nivel de significancia ($\alpha = Pr[|t|>Z^*] = Pr[Rech H_0|H_0 V]$)
- Estadístico ó Estimador (t)
- ▶ Valor crítico (Z^*): Punto(s) de corte para la significancia elegida
- ightharpoonup P-value: Probabilidad de observar el valor del t bajo H_0
- ▶ Poder: $Pr[Rech\ H_0|H_0\ F]$
- ▶ Problema en Big data: cuanto mas grande la n, mas grande $t = \frac{\hat{\beta}_n \beta_{H0}}{\sqrt{\frac{\sigma^2}{n}}} \sim N(0,1)$. Esto hace que demos muchas pruebas por significativas.

Ejemplo

Volvamos a nuestro ejemplo de la población de 100,000 con una edad promedio de \sim 23.

Tomamos una muestra de 45,000.

```
## [1] 22.98495
```



```
# Tomamos 1 muestra de 45000 observaciones
set.seed(1990)
muestra<-
   poblacion %>%
   slice sample(n = 45000, replace = T)
# Estimadores
# Media
(m<-mean(muestra$edad))</pre>
## [1] 22.99009
# Varianza
(v<-var(muestra$edad))</pre>
## [1] 9.946144
```


Ejemplo

Ahora hagamos una hipótesis simple: La edad promedio de la población es 30 años? (i.e. $\beta_{H_0}=30$)

$$H_0: \beta = 30 \quad H_a: \beta \neq 30$$

El estadístico de prueba es: $\frac{\hat{\beta}_n - \beta_{H_0}}{\sqrt{\frac{\sigma^2}{n}}} = \frac{22.99009 - 30}{\sqrt{\frac{9.946144}{45,000}}} = -471.5104$

```
# El p-value
(est<-sqrt(45000)*(m -30)/sqrt(v))
```

```
## [1] -471.5104
p_value<-pnorm(q = est)
```

 $P[Rechazar \ H_0|\beta=30 \ (H_0 \ verdadera)]=0$. Este p-value es mucho menor que los cortes de (0.01,0.05,0.1). Es decir, rechazamos que la edad promedio sea 30 años y tenemos una probablilidad de 0 de equivocarnos.

Pruebas conjuntas

En las pruebas conjuntas incluimos varios parametros a la vez. Es muy común para evaluar si una regresión explica mas que la media simple de y (i.e. le gana al modelo nulo).

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \epsilon$$

$$H_0: \beta_1 = \beta_2 = \beta_3 = 0$$
 $H_a: \beta_i \neq 0$

El estadístico que se usa es el $F = \frac{SSE/k}{SSR/(n-k-1)}$

Noten como en esta prueba también el estadístico de prueba F es **creciente** en **n**. Es decir, en un mundo de **Big Data** sería demasiado fácil incluir muchas variables en un modelo; aún si estas no fueran realmente relevantes.

Muchas pruebas en Big Data

Supongamos que tenemos una base de dimensiones [n, p]. Queremos hacer pruebas de significancia para cada variable p:

$$H_{01}, H_{02}, H_{03}, ..., H_{0p}: \beta_{i \in p} = 0$$

Supongamos ademas que en $N_0 < p$ de esas pruebas la hipótesis nula es verdadera. Para $N_1 = p - N_0$ la hipótesis nula es falsa.

Veamos los errores:

Real	No_Rechazar	Rechazar
Noise	Negativos Verdaderos	Falsos Positivos
Signal	Falsos Negativos	Positivos verdaderos

Queremos un algoritmo que balanceé ambos errores.

El problema de muchas columnas

Para una significancia α , si corremos muchas pruebas, α por ciento de ellas saldrán significativas sólo por azar.

Veamos un ejemplo de regresión con 100 variables, 5 de ellas realmente significativas. Mas aún, las 5 de ellas las encuentras significativas.

Para las 95 variables restantes (todas ruido), corres pruebas a $\alpha=0.05$. Encontrarías 4.75 variables significantes cuando no lo son (falsos positivos). Más aún, $\frac{4.75}{4.75+5}\approx 50$ de nuestros positivos son falsos!!

Esto es el False Discovery Proportion (FDP)

Noten como depende de la cantidad de verdaderos positivos y de α .

Noten como no podemos conocer el *FDP*, pues depende de los desconocidos verdaderos positivo. *FDP* es un parámetro!

$$FDP = \frac{Total\ falsos\ positivos}{tests\ significantes}$$

Afortunadamente, existe un estimador para FDP, False Discovery Rate, FDR = E[FDP].

Este es un análogo multivariado de α te ayuda a controlar que tu modelo no tenga demasiados falsos positivos.

Con la inferencia tradicional, elegimos α y a partir de ahí se genera un FDR: $\mathit{q}(\alpha)$

Con FDR control, fijamos un nivel de $FDR \leq q$ y de ahí se genera un nuevo corte de significancia: $\alpha(q)$

Algortimo Benjamini + Hochberg:

- ► Eliges un nivel de FDR q (por ejemplo 0.1)
- Rankeas tus N p-values de menor a mayor. El ranking de cada p-value se guarda en un vector k (i.e. el p-value más pequeño es k = 1)
- ► Elige el nuevo corte $p* = max\{p(k) : p(k) \le q \frac{k}{N}\}$
- ▶ Rechazas las H_0 con $p \le p*$ → tu $FDR \le q$

Importante: FDR control asume que las pruebas son indenpendientes entre ellas.

Veamos de vuelta la regla:

$$p* = max\{p(k): p(k) \le q\frac{k}{N}\}$$

Esto es, eliges el máximo de tus p-value cuyo valor es menor al valor proporcional por su ranking.

Ejemplo: Imagina corres una regresión con N=100 variables. Quieres que sólo 10% de tus variables significativas sean falsos positivos (i.e. q=0.1).

Con esto, el p-value más pequeño (p(1)) debe ser menor a $p(1) \leq 0.1 \frac{1}{100} = 0.001$ para 'pasar'. Tu p-value con ranking 80 p(80) debe ser más pequeño que $p(80) \leq 0.1 \frac{80}{100} = 0.08$ para entrar. Así sucesivamente.

El algoritmo de Benjamini simplemente escoge el mayor (último p-value) que cumple con está regla y lo elige como corte de significancia α .

BH Procedure (n=20,q=0.1)

Ejemplo

Esta es la distribucion de p-values de una regresión de 150 variables. Cuántas son significativas si queremos una tasa de falsos positivos de 10 por ciento?

Ejemplo

[1] 1e-05