Ved Prakash Pathak

Aspiring <u>ML engineer | MLOps engineer | Data scientist</u> with a keen interest in leveraging cutting-edge technologies to solve complex problems and drive innovation in the field of machine learning and artificial intelligence.

https://github.com/IAMPathak2702
https://iampathak2702.github.io/Resume/

Libraries and Framework

Programming Language	Python	
Deep learning Framework	Tensorflow	
Machine learning Libraries	Scikit-learn , XGBoost	
Visulization Libraries	Matplotlib , Seaborn , Plotly	
Cloud Platform	GCP, AWS	
Workflow Orchestration	Apache Airflow, Kubeflow,	
	MLFlow	
Machine Learning pipeline:	TFX, Vertex AI, Sagemaker	
Continuous Integration/Continuous	GitHub Actions, Jenkins,	
Deployment (CI/CD):	Cloud Build	
Monitoring and Visualization	Grafana, MLFlow	
Web Framework / Rest API	Streamlit, Flask, FastApi,	
	HTML, CSS	
	•	
ETL pipelines	Apache Spark	

TensorFlow on Google Cloud	Google
Recommendation Systems on Google Cloud	Google
Production Machine Learning Systems	Google
ML pipelines on Google Cloud	Google
Machine Learning Operations (MLOps):	Google
MLOps with Vertex AI	Google
Computer Vision Fundamentals with Google Cloud	Google
Feature Engineering	Google
Kubeflow Bootcamp	ûdemy
TensorFlow Developer	ûdemy
The data science Course	ûdemy

Certifications

Projects

Project Name	Domain	Key Listings of Project		Summary		
				Proficient use of Scikit-learn and TensorFlow for modeling, TFX and Airflow for pipeline orchestration, MLFlow for experiment tracking, CI/CD and Jenkins for		
Loan Status Prediction	Structured Data	Scikit-learn	TensorFlow	automated deployment and continuous integration, Model Packaging for efficien		
		TFX	Airflow	distribution, and Streamlit for providing a user-friendly web interface for predictions.		
		MLFlow	Jenkins	with cloud deployment utilizing Docker and Kubernetes for scalable and reliable		
				infrastructure.		
	Comp vision	TensorFlow	MLFlow	Proficient use of TensorFlow Keras for modelling, Airflow for pipeline orchestration,		
Intel Image Classification	primarily based on	Streamlit	AWS/GCP	MLFlow for experiment tracking, CI/CD and Jenkins for automated deployment and		
	Resnet and Custom	Airflow	Jenkins	continuous integration, Model Packaging for efficient distribution, and Streamlit for		
Classification		Resnetv50	Conv2D	providing a user-friendly web interface for predictions, with cloud deployment		
	layer Architecture			utilizing Docker and Kubernetes for scalable and reliable infrastructure.		
Disaster Tweets	NLP	TensorFlow	Scikit-Learn			
		Text-	Embedding	This project aims to classify tweets as either related to real disasters or not using		
		Vectorization		Natural Language Processing (NLP) techniques. The dataset used for training and		
		Pre-Built	TensorFlow-	evaluation contains tweets collected during natural disasters.		
		Transformers	hub			
Bitcoin Price				We gather Bitcoin price data, format it for time series, split into training/test sets, and		
Prediction	Time series Analysis	LSTM	1D CNN	visualize patterns. Then, we apply supervised learning, deep learning models, and		
i i Guiction	Prediction			ensembling for forecasting.		
				This Project contains implementations of various image detection projects using the		
YOLO OBJECT	Object Detection	Yolov8		YOLO (You Only Look Once) object detection algorithm. Projects include ca		
DETECTION				counting, people counting, Personal Protective Equipment (PPE) detection, and		
22.200.1				Poker hand detection. Each project utilizes specific YOLO models trained for the respective tasks.		

NOTE : - Please note that more projects can be found on my GitHub profile. Thank you for your interest.

Education

Course / Degree	University	Grades	Year	
MECHANICAL ENGINEERING	RAJIV GANDHI PROUDYOGIK VISHWAVIDYALAYA. BHOPAL	7.54	2015-2019	