Функциональный анализ 6 семестр Конспект лекций Додонова Н. Ю.

shared with \heartsuit by artemZholus

Содержание

1	Сопряженный оператор	2
2	Ортогональное дополнение в банаховых пространствах	3

1 Сопряженный оператор

Здесь и далее, если не оговорено иного, считаем, что мы находимся в В-пространствах.

Определение (Сопряженное пространство). $X^* = \left\{ f : X \xrightarrow{\text{пин.}} \mathbb{R} \right\}$ - пространство сопряженное к X.

Заметим, что это пространство линейных функционалов, а значит, мы можем ввести в нем норму, как норму линейного функционала.

$$||f|| = \sup_{\|x\| \le 1} |f(x)| \tag{1}$$

По свойствам числовой оси, получаем, что X^* - всегда банахово (независимо от X). Рассмотрим теперь $A \in \mathcal{L}(X,Y)$. Пусть $f(x) = \varphi(Ax)$, где $\varphi \in Y^*$.

Определение. Сопряженный оператор к A имеет вид: $A^*(\varphi) = \varphi \circ A$.

Утверждение 1.1. Если A - нерперывный, то A^* - тоже непрерывный.

Доказательство. Пусть A - непрерывен, тогда он ограничен. Тогда мы можем написать

$$||A^*(\varphi)|| \leqslant ||\varphi|| \cdot ||A|| \tag{2}$$

Переходя к sup по φ , получаем, что нужно.

Теорема 1.2. $||A^*|| = ||A||$

Доказательство. Мы доказали неравенство в одну сторону (неравенство 2). Докажем в другую. По определению sup, $\forall \varepsilon > 0, \exists x_{\varepsilon} : \|x_{\varepsilon}\| = 1 \implies \|A\| - \varepsilon < \|Ax_{\varepsilon}\|$. Пусть $Z = \mathcal{L}(Ax_{\varepsilon})$. Рассмотрим $f: Z \to \mathbb{R}$, $f(z) = \alpha \|Ax_{\varepsilon}\|$. Очевидно, что $f \in Y^*$. Поэтому, по теореме Хана-Банаха, распростваним f на все Y, и назовем ее φ_{ε} . Тогда, по свойствам f, $\|\varphi_{\varepsilon}\| = 1$, $\varphi_{\varepsilon}(Ax_{\varepsilon}) = \|Ax_{\varepsilon}\|$. Слудовательно, $\|A\| - \varepsilon < \varphi_{\varepsilon}(Ax_{\varepsilon}) = A^*(\varphi_{\varepsilon}, x_{\varepsilon})$. Тогда, $\|A\| - \varepsilon < \|A^*\| \cdot \|\varphi_{\varepsilon}\| \cdot \|x_{\varepsilon}\| = \|A^*\|$. Переходя к sup по ε получаем нужное неравенство.

Пример: ТООО

Теорема 1.3 (Теорема Рисса). Пусть H - гильбертово пространство. Тогда $\forall f \in H^*$, f можно представить как $f(x) = \langle x, y \rangle$, где $y \in H$, ||f|| = ||y||.

Доказательство. Докажем в 3 этапа:

- 1. Построим соотвестсвующий функционал по данному у.
- 2. Докажем, что этому функционалу соответствует только один у.
- 3. Найдем y для данного функционала f.
- 1. Пусть $g(x) = \langle x, y \rangle$. Очевидно, что это линейный функционал. По неравенству Шварца $|g(x)| \leqslant ||y|| \, ||x|| \implies ||g|| \leqslant ||y||$. Это значит, что g ограничен. Возьмем $x = \frac{y}{||y||}$.

$$g\left(\frac{y}{\|y\|}\right) = \langle \frac{y}{\|y\|}, y \rangle = \frac{1}{\|y\|} \langle y, y \rangle = \|y\|$$

Сопоставляя это с тем, что $||g|| \le ||y||$, получаем, что ||g|| = ||y||.

- 2. Пусть для какого-то $\widetilde{y}, g(x) = \langle x, \widetilde{y} \rangle$. Тогда $0 = \langle x, y \rangle \langle x, \widetilde{y} \rangle = \langle x, y \widetilde{y} \rangle$. Пусть $x = y \widetilde{y}, \implies \langle y \widetilde{y}, y \widetilde{y} \rangle = 0 \implies y = \widetilde{y}$
- 3. Рассмотрим произвольный функционал $f \in H^*$. Как известно, Ker f гиперплоскость, т.е. codim $H_1 = \dim H_2 = 1$, где $H_1 = \operatorname{Ker} f, H_2 = H_1^{\perp}$, и $H = H_1 \oplus H_2$. Это по определению значит, что x единственным образом представим как $x = x_1 + x_2$, где $x_1 \in H_1, x_2 \in H_2$. Поэтому, $f(x) = f(x_1) + f(x_2) = f(x_2) = f(\alpha e) = \alpha \cdot f(e)$, так как $x_1 \in \operatorname{Ker} f$ а e базисный вектор из H_2 . Итак, $\alpha \cdot f(x) = \langle x, y \rangle \Leftrightarrow f(e) = \langle e, y \rangle$. Очевидно, y можно брать из H_2 , так как если y него будет компонента из $\operatorname{Ker} f$, то она будет ортогональна e. Поэтому, считаем, что $y = \beta e$. Получаем $f(e) = \langle e, \beta e \rangle = \beta \cdot \|e\|^2$. Положим $\beta = \frac{f(e)}{\|e\|^2}$, тогда $y = \frac{f(e)}{\|e\|^2}e$.

Пример: ТООО

2 Ортогональное дополнение в банаховых пространствах

Определение (Ортогональное дополнение в *B*- пространстве). Пусть $S \subset X$. Тогда $S^{\perp} = \{f \mid f \in X^*, \forall x \in S \implies f(x) = 0\}.$

Определение (Ортогональное дополнение в сопряженном пространстве). Пусть $S \subset X^*$. Тогда $S^{\perp} = \{x \mid x \in X, \forall f \in S \implies f(x) = 0\}$.

Заметим, что независимо от S, S^{\perp} - замкнуто, в силу непрерывности f(x)

Утверждение 2.1. 1. $X^{\perp} = \{0\}$

2.
$$X^{*\perp} = \{0\}$$

Доказательство. 1. $f \in X^{\perp}$, Если $\forall x \in X, f(x) = 0$, то $f \equiv 0$

2. Рассмотрим $\forall f \in X^*$, очевидно, f(0) = 0, а это значит, что $0 \in X^{*\perp}$. Предположим, $\exists x_0 \neq 0 : x_0 \in X^{*\perp}$. По теореме Хана-Банаха (а точнее, по следствию, которое мы доказали в теореме 1.2), $\exists f \in X^*$, такой, что $f(x_0) = \|x_0\| \neq 0$, следовательно, $x_0 \notin X^{*\perp}$.

Определение. $R(A) \stackrel{\text{def}}{=} \{Ax \mid x \in X\}$

Теорема 2.2. $\operatorname{Cl} R(A) = (\operatorname{Ker} A^*)^{\perp}$

Доказательство. 1. Пусть $y \in R(A)$, это значит, что y = Ax для некоторого x. Рассмотрим $\varphi \in \operatorname{Ker} A^*$. По определению, $A^*\varphi = 0$, это значит, что $\forall x \in X \implies \varphi(Ax) = \varphi(y) = 0$. Следовательно, $y \in (\operatorname{Ker} A^*)^{\perp}$

- 2. Пусть теперь $y \in \operatorname{Cl} R(A) \implies \exists y_n : y_n \to y$. По предыдущему пункту, $y_n \in (\operatorname{Ker} A^*)^{\perp}$. $\forall \varphi \in \operatorname{Ker} A^* \implies \varphi(y_n) = 0$, при этом, φ непрерывен. $\varphi(y_n) \to \varphi(y) = 0 \implies y \in (\operatorname{Ker} A^*)^{\perp}$
- 3. Осталось проверить, что $(\operatorname{Ker} A^*)^{\perp} \subset \operatorname{Cl} R(A)$. Вместо этого, мы проверим эквивалентный факт: $y \not\in \operatorname{Cl} R(a) \implies y \not\in (\operatorname{Ker} A^*)^{\perp}$. Итак, пусть $L = \operatorname{Cl} R(A)$. Очевидно, это линейное подпространство в Y. Пусть $\widehat{L} = \{z + ty \mid z \in L, t \in \mathbb{R}\}$. Очевидно, \widehat{L} линейное подпространство Y. Рассмотрим $\varphi : X \to \mathbb{R}$, $\varphi(z + ty) \stackrel{\text{def}}{=} t$. По теорема Хана-Банаха, его можно продлить на Y с сохранением нормы: $\exists \widehat{\varphi} \in Y^* : \widehat{\varphi}|_{\widehat{L}} = \varphi$. Причем, если $z \in L$, то $\widehat{\varphi}(z) = 0$, значит $\widehat{\varphi} \in \operatorname{Ker} A^*$. Но, при этом $\widehat{\varphi}(y) = 1 \implies y \not\in (\operatorname{Ker} A^*)^{\perp}$.

Теорема 2.3. $R(A) = \operatorname{Cl} R(A) \implies R(A^*) = (\operatorname{Ker} A)^{\perp}$

Доказательство. Рассмотрим $f \in R(A^*)$. По определению, для некоторого φ , $f = A^*\varphi$. Возьмем теперь $x \in \operatorname{Ker} A$. $Ax = 0 \implies f(x) = (\varphi \circ A)(x) = \varphi(Ax) = \varphi(0) = 0$. Значит, $R(A^*) \subset (\operatorname{Ker} A)^{\perp}$.

Пусть теперь $f \in (\operatorname{Ker} A)^{\perp}$. В силу того, что R(A) - B-пространство (как замкнутое линейное подпространство другого B-пространства), Возьмем произвольный $y \in R(A)$, и x такой, что y = Ax, и запишем φ как $\varphi(y) \stackrel{\text{def}}{=} f(x)$. Покажем, что такое определение действительно корректное. Пусть y = Ax'; тогда $A(x-x')=0 \implies x-x' \in \operatorname{Ker} A$. Поэтому $f(x-x')=0 \implies f(x)=f(x')$. Это значит, что значение φ не зависит от выбора конкретного x. Значит, наша формула корректная. Осталось показать ограниченность $\|\varphi\|$. Рассмотрим ассоциированный оператор $\mathcal{U}_A: {}^X/\operatorname{Ker} A \to R(A)$. Покажем, что он непрерывен.

 $\|\mathcal{U}_A\| = \sup_{\|[x]\|=1} \|\mathcal{U}_A[x]\|$, так как $\|[x]\| = \inf_{z \in [x]} \|z\| = 1$, то существует $x' \in [x] : \|x'\| \leqslant 2$. Возьмем x' в качестве представителя. Тогда

$$\|\mathcal{U}_{A}\| = \sup_{\|[x]\|=1} \|\mathcal{U}_{A}\|$$

$$\leqslant \sup_{\|x\| \leqslant 2} \|Ax\|$$

$$\leqslant \sup_{\|y\| \leqslant 1} \|A(2y)\|$$

$$= 2 \sup_{\|y\| \leqslant 1} \|Ay\|$$

$$= 2 \|A\|$$
(3)

Заметим еще, что он биективен, так как все точки x для которых y=Ax (для какого-то одного фиксированного y) лежат в одном классе эквивалентности. Это значит, что по теореме Банаха о гомеоморфизме, \mathcal{U}_A^{-1} непрерывен. Напомним, что норма на элементах $X/\mathrm{Ker}\,A$ определяется как

$$\|[x]\| \stackrel{\text{def}}{=} \inf_{z \in [x]} \|z\| \tag{4}$$

По непрерывности обратного оператора, получаем $\|[x]\| \leqslant K \cdot \|y\|$. Нам нужно сделать неравенство строгим, поэтому считаем, что $\|[x]\| < 2K \cdot \|y\|$. Дальше, по определению инфимума, $\exists z \in [x] : \|z\| < 2K \cdot \|y\|$. Значит, $z-x \in \operatorname{Ker} A$. В силу того, что значение функционала f одно и то же внутри класса эквивалентности, можно вместо x взять z. Таким образом, $|\varphi(y)| \leqslant 2K \cdot \|f\| \cdot \|y\|$, из этого следует, что φ - непрерывен. Далее, по теореме Хана-Банаха, продолжим φ на все пространство и получим, что $\exists \widehat{\varphi} \in Y^* : f = A^* \widehat{\varphi} \implies f \in R(A^*)$