LZD と LZMW 分解の部分文字列圧縮について

クップル・ドミニク

山梨大学 大学院 総合研究部 工学域電気電子情報工学系 コンピュータ理工学

文字列の分解

- 入力: n の長さを持つ文字列 T
- 出力: T の分解
- 分解の例
 - LZ77
 - LZ78
 - Lyndon 分解
- 目的: $\mathcal{O}(n)$ 時間で出力を計算

今回の分解

LZ78 から生じる分解を研究する

- Lempel–Ziv Double (LZD) Goto'15
- Lempel-Ziv-Miller-Wegman (LZMW) Miller+'85 (割愛)

なぜ?

- lacktriangle LZ78 項の個数は $\Omega(\sqrt{n})$ との下界を持つ
- その一方で、LZD の下界は Ω(lg n)

符号化:

x 番目の項 F_x の長さ $|F_x|$ は x になるため、 $\sum_{x=1}^z |F_x| = n \Leftrightarrow z \in \Theta(\sqrt{n})$

x 番目の項 F_x の長さ $|F_x|$ は x になるため、 $\sum_{x=1}^z |F_x| = n \Leftrightarrow z \in \Theta(\sqrt{n})$

符号化: $\mathrm{a}(1,\mathrm{a})$ x番目の項 F_x の長さ $|F_x|$ は x になるため、 $\sum_{x=1}^z |F_x| = n \Leftrightarrow z \in \Theta(\sqrt{n})$

符号化:a(1,a)(2,a)

符号化:a(1,a)(2,a)(3,a)

x 番目の項 F_x の長さ $|F_x|$ は x になるため、 $\sum_{x=1}^z |F_x| = n \Leftrightarrow z \in \Theta(\sqrt{n})$

符号化:

x 番目の項 F_x の長さ $|F_x|$ は 2^x になるため、 $\sum_{x=1}^z |F_x| = n \Leftrightarrow z \in \Theta(\lg n)$

x 番目の項 F_x の長さ $|F_x|$ は 2^x になるため、 $\sum_{x=1}^z |F_x| = n \Leftrightarrow z \in \Theta(\lg n)$

x 番目の項 F_x の長さ $|F_x|$ は 2^x になるため、 $\sum_{x=1}^z |F_x| = n \Leftrightarrow z \in \Theta(\lg n)$

x 番目の項 F_x の長さ $|F_x|$ は 2^x になるため、 $\sum_{x=1}^z |F_x| = n \Leftrightarrow z \in \Theta(\lg n)$

LZD の形式の定義

項は二組

- 前半と後半は文字または参照先を格納できる
- 前半の項のため、LZ78 のように最長の参照先を選んだあと、後半の計算 を続ける

これから dst_x は項 F_x の開始位置を示す.

LZDの定義

 $T[1..n] = F_1 \cdots F_z$ を F_1, \ldots, F_z の項に分解する LZD は , 以下の状況を満たす .

各 $x \in [1..z]$ に対して $F_x = G_1 \cdot G_2$, ただし

- $G_1, G_2 \in \{F_1, \dots, F_{\kappa-1}\} \cup \Sigma$ かつ
- $lacksymbol{\square}$ G_1 と G_2 は,それぞれに $T[\operatorname{dst}_{\mathsf{x}}...]$ と $T[\operatorname{dst}_{\mathsf{x}}+|G_1|..]$ の最長接頭辞である.

LZDの計算

時間 領域 引用 $\mathcal{O}(n \lg \sigma)$ $\mathcal{O}(n)$ Goto+'15 $\Omega(n^{5/4})$ $\mathcal{O}(z)$ Goto+'15, Badkobeh+'17 $\mathcal{O}(n+z\lg^2n)$ 期待 $\mathcal{O}(z)$ Badkobeh+'17 $\mathcal{O}(n)$ 今回の発表

- Goto+'15 のアルゴリズムは LZD のみ計算する
- lacksquare $\sigma = \mathit{n}^{\mathcal{O}(1)}$ は整数アルファベットのサイズを示す

今回の発表

研究の寄与は

- 全体のテキストに対して、LZD を決定的線形時間で計算 ただし
- 整数アルファベットに対応できる

道具

計算のため、以下のデータ構造を利用

- 接尾辞木 ST Weiner'73
 - □ 線形時間で構築可能 Farach-Colton'00
- 重み付き祖先 (weighted ancestor) データ構造 Gawrychowski'14
 - riangle 任意の ST 葉ノードの任意の文字列深さ d を持つ先祖を $\mathcal{O}(1)$ 時間で検索
 - □ 線形時間で構築可能 Belazzougui'21
- 最深マークされた先祖 (lowest marked ancestor) データ構造 Cole+'05
 - □ 任意の ST ノードを O(1) 時間でマーク
 - riangle 任意の ST 葉ノードの最深マークされた先祖を $\mathcal{O}(1)$ 時間で検索

すべてのデータ構造の領域は $\mathcal{O}(n)$ となる

T\$ = ababbababbabb の接尾辞木

T = ababbababbabb

T\$ = ababbababbabb の接尾辞木

T\$ = ababbababbabb の接尾辞木

■ ST の根は空文字の参照先を表現 する

T = ababbababbabb

T = ababbababbabb

- ST の根は空文字の参照先を表現 する
- 最初の項 F₁ = (e_L, e_R) の 2 組の 計算
- λ₁ は項の開始位置を接尾辞番号として持つ葉ノードを示す
- λ_1 の最深マークされた先祖は根だから、 $e_{\mathsf{L}} = T[1] = \mathtt{a}$

T= ababbababbabb

- ST の根は空文字の参照先を表現 する
- 最初の項 F₁ = (e_L, e_R) の 2 組の 計算
- λ₁ は項の開始位置を接尾辞番号として持つ葉ノードを示す
- $lacksymbol{\lambda}_1$ の最深マークされた先祖は根だから、 $e_{lacksymbol{\mathsf{L}}}=T[1]=\mathtt{a}$
- λ₂ は接尾辞番号 2 を持つ葉ノー ドを示す

T = ab|abbababbabb

- ST の根は空文字の参照先を表現 する
- 最初の項 $F_1 = (e_L, e_R)$ の 2 組の 計算
- λ₁ は項の開始位置を接尾辞番号として持つ葉ノードを示す
- $lacksymbol{\lambda}_1$ の最深マークされた先祖は根だから、 $e_L = T[1] = a$
- だから、 $e_L = T[1] = a$ λ_2 は接尾辞番号 2 を持つ葉ノー
- ドを示す lacktriangle λ_2 の最深マークされた先祖は根だから、 $e_{
 m R}=T[2]={
 m b}$
- 文字列長さ $|F_1|=2$ を持つ λ_1 の 先祖を 1 でマークする 11

F₂ の計算

- lacktriangle λ_1 は F_2 の開始位置を接尾辞番号として持つ葉を示す
- λ_1 の最深マークされた先祖は 3 ので、 $e_L = 1$ (3のマーク)

T = ab|abbabbabb

F₂ の計算

- lacktriangle λ_1 は F_2 の開始位置を接尾辞番号として持つ葉を示す
- **N** λ_1 の最深マークされた先祖は 3 ので、 $e_L = 1$ (3のマーク)
- 前述のように、*e*_R = *T*[2] = b
- 文字列長さ $|F_2| = 3$ を持つ λ_1 の 先祖を 2 でマークする

T = ab|abb|ababbabb

T = ab|abb|ababbabb

F3 の計算

- λ₁ は F₃ の開始位置を接尾辞番号 として持つ葉を示す
- **\Lambda** λ_1 の最深マークされた先祖は 3 ので、 $e_L = 1$ (3のマーク)

T = ab|abb|ababb|abb|

F3 の計算

- λ₁ は F₃ の開始位置を接尾辞番号 として持つ葉を示す
- **N** λ_1 の最深マークされた先祖は 3 ので、 $e_L = 1$ (3のマーク)
- **N** λ_1 の最深マークされた先祖は 7 ので、 $e_L = 2(2 \text{ のマーク})$
- lacktriangle 文字列長さ $|F_3|=5$ を持つ λ_1 の 先祖がない!

F₃を参照先として格納

- F₃ の場所はノード 4 で目撃される
- ノード 4 で F₃ の長さを格納し、 マークする

T = ab|abb|ababb|abb

計算量

各項 F_x の計算のため

- $ightharpoons F_x$ の開始位置 dst_x を接尾辞番号として持つ葉ノード λ_1 を取り
- $lacksymbol{\square}$ λ_1 の最深マークされた先祖 v_1 を計算し
- $lackbox{\Pi}$ v_1 の文字列深さは ℓ_1 とすると、接尾辞番号 ${\sf dst}_x + \ell_1$ を接尾辞番号として持つ葉ノード λ_2 を取り
- F_x の長さは ℓ₁ + ℓ₂ になる
- もし v_1 (または v_2) は陰の項を目撃すれば、 ℓ_1 の変わりに格納された長さを利用する

各演算は定数時間で行い、全ての演算は $\mathcal{O}(z)$ 時間で走らせる、ただしzは項を個数をしめす

まとめ

- lacktriangle LZD を $\mathcal{O}(n)$ 時間で計算できる ただし
 - n は入力文字列の長さ
 - 計算モデル
 - □ 整数アルファベット
 - □ ワード RAM
- 割愛した結果:部分文字列圧縮問題
 - lacktriangle $\mathcal{O}(n)$ 時間の前処理で、LZD・LZMW の部分文字列圧縮問題を $\mathcal{O}(z)$ 時間で解ける

ご清聴ありがとうございました