Chapter 04

Mingjia Huo

February 16, 2019

Problem 4.1. Proof. Consider an adversary \mathcal{A} for a message authentication code $\Pi = (\text{Gen, Mac, Vrfy})$, such that the Mac-forge_{\mathcal{A},Π}(n) works in the following procedure:

- A key k is generated by running $Gen(1^n)$.
- The adversary \mathcal{A} is given input 1^n , then randomly select a tag t with uniform distribution. (For the length of tags is t(n), each tag will be selected with probability $2^{-t(n)}$.) Then \mathcal{A} uniformly draws m from the message space and outputs (m, t).
- Because \mathcal{A} doesn't make any query to the oracle $\operatorname{Mac}_k(\cdot)$, \mathcal{A} succeeds if and only if $\operatorname{Vrfy}_k(m,t)=1$, which means $\operatorname{Mac-forge}_{\mathcal{A},\Pi}(n)=1$.

Assume when we select m with uniform distribution, the probability of tag t is Pr[T=t]. (Here T is a random variable.) Then we compute:

$$\begin{aligned} & \Pr[\operatorname{Mac-forge}_{\mathcal{A},\Pi}(n) = 1] \\ &= \sum_{t} \Pr[T = t] \times \Pr[t \text{ is selected by } \mathcal{A}] \\ &= 2^{-t(n)} \sum_{t} \Pr[T = t] \\ &= 2^{-t(n)}. \end{aligned}$$

If $t(n) = \mathcal{O}(\log n)$, we have $2^{-t(n)} = \mathcal{O}(\frac{1}{n^d})$, which is not $\operatorname{negl}(n)$. So t must be super-logarithmic.

Problem 4.6. The algorithm is not secure.

Proof. Construct an adversary A:

- 1. \mathcal{A} generates three different messages m_1, m_2, m_3 with length n-1.
- 2. Then \mathcal{A} gets access to oracle $\operatorname{Mac}_k(\cdot)$ and the oracle tells him $t_a = \operatorname{Mac}_k(m_0||m_1)$ and $t_b = \operatorname{Mac}_k(m_1||m_2)$.

3. \mathcal{A} combines the first half of $\operatorname{Mac}_k(m_0||m_1)$ with the second half of $\operatorname{Mac}_k(m_1||m_2)$, then he get t'.

4. Output $(m_0||m_2,t')$.

Assume the length of output value is $l_{out}(n)$ in the pseudorandom function F, and $F_k(0||m_0) = t_0$, $F_k(0||m_1) = t_1$, $F_k(1||m_1) = t_2$, $F_k(1||m_2) = t_3$. By the definition of Mac, we have

$$t_a = \text{Mac}_k(m_0||m_1) = F_k(0||m_0)||F_k(1||m_1) = t_0||t_2,$$

$$t_b = \operatorname{Mac}_k(m_1||m_2) = F_k(0||m_1)||F_k(1||m_2) = t_1||t_3.$$

Then

$$t' = \operatorname{Mac}_k(m_0||m_2) = F_k(0||m_0)||F_k(1||m_2) = t_0||t_3.$$

We construct $\operatorname{Vrfy}(m_0||m_2,t')=1$ with $m=m_0||m_2$ wasn't queried by \mathcal{A} with probability 1, so the algorithm is not secure.

Problem 4.12. Advantages:

The modification changes length l to a single bit 0 or 1. The advantage is obvious:

- It shortens the length of message by $\mathcal{O}(\log n)$ bits and has better performance in practice.
- Without using the length, we can make encryption while reading the message.

Proof. Assume \mathcal{A} is a probabilistic polynomial-time adversary, Π is the MAC for arbitrary-length messages, and Π' is a MAC for fixed-length messages.

Just like the proof in textbook, we define:

- Repeat: The same random identifier $r_i = r_j$ appear in two of the tags returned by the MAC oracle.
- NewBlock: At least one of the blocks $r||j||i||m_i, j = 0, 1$ was never previously authenticated by the oracle.

So

$$\begin{split} & \Pr[\operatorname{Mac-forge}_{\mathcal{A},\Pi}(n) = 1] \\ & = \Pr[\operatorname{Mac-forge}_{\mathcal{A},\Pi}(n) = 1 \land \operatorname{Repeat}] \\ & + \Pr[\operatorname{Mac-forge}_{\mathcal{A},\Pi}(n) = 1 \land \overline{\operatorname{Repeat}} \land \operatorname{NewBlock}] \\ & + \Pr[\operatorname{Mac-forge}_{\mathcal{A},\Pi}(n) = 1 \land \overline{\operatorname{Repeat}} \land \overline{\operatorname{NewBlock}}]. \end{split}$$

We show the three part is negligible respectively:

1. $\Pr[\text{Mac-forge}_{\mathcal{A},\Pi}(n) = 1 \land \text{Repeat}] \leq \Pr[\text{Repeat}]$. And the probability of event Repeat is exactly the probability that $r_i = r_j$ for some $i \neq j$. Applying birthday bound in the textbook, we have $\Pr[\text{Repeat}] \leq \frac{q(n)^2}{2^{n/4}}$. Since \mathcal{A} makes only polynomially many queries, this value is negligible.

- 2. $\Pr[\text{Mac-forge}_{\mathcal{A},\Pi}(n) = 1 \land \overline{\text{Repeat}} \land \text{NewBlock}] \leq \Pr[\text{Mac-forge}_{\mathcal{A},\Pi}(n) = 1 \land \text{NewBlock}].$ It is also negligible by $Claim\ 10$ in the textbook.
- 3. Finally, we prove that

$$\Pr[\text{Mac-forge}_{A,\Pi}(n) = 1 \land \overline{\text{Repeat}} \land \overline{\text{NewBlock}}] = 0.$$

Let q = q(n) denote the number of MAC oracle queries made by \mathcal{A} , and r_i denote the denote the random identifier used to answer the *i*th oracle query. Let (m, t) be the output of \mathcal{A} .

Because there is no NewBlock, we have $r \in \{r_1, \dots, r_q\}$. Assume $r = r_j$, and the jth query is about $m^{(j)}$, which is represented by d' blocks.

Consider the total block number d of (m, t) output by A:

- (a) d = d': If Mac-forge_{A,Π}(n) = 1, then we must have $m \neq m^{(j)}$. Since m and $m^{(j)}$ have equal length, there must be at least one index i for which $m_i \neq m_i^{(j)}$. Since the ith block is $r||0||i||m_i$ with i represents the position of block, it was then never authenticated in the jth Mac query. So this is a NewBlock, a contradiction.
- (b) $d \neq d'$: Consider the last block $r||1||d||m_d$. In the jth Mac query, there is only one block $r||1||d'||m_{d'}^{(j)}$ which has "1" to represent it's the last block. But $d \neq d'$, so $r||1||d||m_d$ is a NewBlock, a contradiction.

Thus

$$\Pr[\text{Mac-forge}_{A,\Pi}(n) = 1 \land \overline{\text{Repeat}} \land \overline{\text{NewBlock}}] = 0.$$

To sum up,

$$\Pr[\text{Mac-forge}_{\mathcal{A},\Pi}(n) = 1]$$

 $\leq \text{negl}(n) + \text{negl}(n) + 0$
 $= \text{negl}(n).$

So it's secure.

Problem 4.25. Firstly, since F is a permutation, so \mathcal{A} just randomly chooses $c \in \{0,1\}^n$, there is always a r and m, such that $\operatorname{Enc}(r||m) = c$, and $\operatorname{Dec}(c) = m$. So

$$\Pr[\text{Enc-Forge}_{\mathcal{A},\Pi}(n) = 1] = 1,$$

which means this scheme Π is not unforgeable and is not a authenticated encryption scheme.

Next we prove it's CCA-secure.

Proof. Without loss of generality, assume the permutation is fixed length Given any adversary \mathcal{A} , we can construct a distinguisher D which access an oracle $\mathcal{O}:\{0,1\}^n \to \{0,1\}^n$ and \mathcal{O}^{-1} . In detail:

1. Run $A(1^{2n})$.

- 2. When \mathcal{A} queries its encryption oracle on a message $m \in \{0,1\}^n$, answer this query in the following way:
 - (a) choose uniform $r \in \{0, 1\}^n$.
 - (b) Query $\mathcal{O}(r||m)$ and obtain response y.
 - (c) Return the ciphertext y to \mathcal{A} .
- 3. When \mathcal{A} queries its decryption oracle on a ciphertext $c \in \{0,1\}^n$, answer this query in the following way: compute $\mathcal{O}^{-1}(c)$ and the second half is m.
- 4. When \mathcal{A} outputs messages $m_0, m_1 \in \{0, 1\}^n$, choose a uniform bit $b \in \{0, 1\}$ and then:
 - (a) choose uniform $r_0 \in \{0, 1\}^n$.
 - (b) Query $\mathcal{O}(r_0||m_b)$ and obtain response y.
 - (c) Return the ciphertext y to \mathcal{A} .
- 5. Continue answering encryption and decryption oracle queries of \mathcal{A} as before until \mathcal{A} outputs a bit b'. Output 1 if b' = b, and 0 outherwise.

Thus, D outputs 1 if and only if \mathcal{A} succeeds. Let Π denotes our construction, and $\widetilde{\Pi}$ denotes the theme when we replace F_k with a uniform permutation $f \in \operatorname{Perm}_n$. Then:

$$\Pr[\Pr[\Pr[K_{\mathcal{A},\Pi}^{cca}(2n) = 1] = \Pr_{k \leftarrow \{0,1\}^{2n}}[D^{F_k(\cdot),F_k^{-1}(\cdot)}(1^{2n}) = 1],$$

$$\Pr[\operatorname{PrivK}_{\mathcal{A},\widetilde{\Pi}}^{cca}(2n) = 1] = \Pr_{f \leftarrow \operatorname{Perm}_{2n}}[D^{f(\cdot),f^{-1}(\cdot)}(1^{2n}) = 1].$$

By the definition of pseudorandom permutation, we have

$$|\Pr[D^{F_k(\cdot),F_k^{-1}(\cdot)}(1^{2n})=1] - \Pr[D^{f(\cdot),f^{-1}(\cdot)}(1^{2n})=1]| \le \operatorname{negl}(2n).$$

Thus, to prove $\Pr[\operatorname{PrivK}^{cca}_{\mathcal{A},\Pi}(n)=1] \leq \frac{1}{2} + \operatorname{negl}(n)$, we only need to prove:

$$\Pr[\operatorname{PrivK}^{cca}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] \le \frac{1}{2} + \operatorname{negl}(n)$$

Let C be the set of all ciphertext that has been asked by A or answer by the oracle. That is, $\operatorname{Enc}(m_{ask}) = c$ or $\operatorname{Dec}(c)$ is asked. Let **Repeat** be the event that when A output (m_0, m_1) , the ciphertext $c^* = \operatorname{Enc}(m_b)$ is in C. So,

$$\begin{aligned} &\Pr[\operatorname{PrivK}^{cca}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] \\ &= \Pr[\operatorname{PrivK}^{cca}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \operatorname{Repeat}] + \Pr[\operatorname{PrivK}^{cca}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \overline{\operatorname{Repeat}}] \end{aligned}$$

Separately:

1. $\Pr[\operatorname{PrivK}_{A,\widetilde{\Pi}}^{cca}(n) = 1 \land \operatorname{Repeat}]$:

There are two cases:

- (a) There is some m asked by \mathcal{A} , such that $\operatorname{Enc}(m)$ outputs c^* . If $m \neq m_b$, the probability is 0; and if $m = m_b$, the probability is equal to the probability that their r are equal. There are at most q(n) queries, so the probability is $\leq \frac{q(n)}{2^{n/2}} = \operatorname{negl}(n)$.
- (b) \mathcal{A} asks c before the experiment outputs (m_0, m_1) . Since there are $2^{-n/2}$ values that $\operatorname{Enc}(m_b)$ have, so the probability is also $\operatorname{negl}(n)$.

To sum up, $\Pr[\operatorname{PrivK}^{cca}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \land \operatorname{Repeat}] = \operatorname{negl}(n)$.

2. $\Pr[\operatorname{PrivK}_{A\widetilde{\Pi}}^{cca}(n) = 1 \land \overline{\operatorname{Repeat}}]$:

Let's first have a deep insight to the queries.

We know that $f \in \operatorname{Perm}_n$. Then a query can delete some impossible functions and save the possible ones. When there is no **Repeat**, the encryption and decryption can be viewed as the same: to match a ciphertext $c \in \{0, 1\}^n$ to a message $m \in \{0, 1\}^{n/2}$.

After q(n) queries, assume there are n_0 ciphertexts which matches m_0 and n_1 ciphertexts which matches m_1 . And the number of r they used is also n_0 and n_1 , denotes as sets R_0, R_1 .

So there are $2^{n/2}-n_0$ ciphertexts waiting to be matched to m_0 , and $2^{n/2}-n_1$ ciphertexts waiting to be matched to m_1 .

Since f is uniformly drawn from permutations, so given r not involved in the queries of m_0, m_1 , we have

$$\Pr[f(r||m_0) = c^*] = \Pr[f(r||m_1) = c^*] = p.$$

The probability taken over uniform chosen of functions f which satisfy \mathcal{A} 's queries and the output of $c^* = \operatorname{Enc}(m_b)$. Furthermore,

$$\sum_{r \notin R_0} \Pr[f(r || m_0) = c^*] = (2^{n/2} - n_0) \times p$$

$$\sum_{r \notin R_1} \Pr[f(r || m_1) = c^*] = (2^{n/2} - n_1) \times p$$

Thus, when $c = \text{Enc}(m_b)$.

$$\begin{split} &\Pr[\operatorname{Dec}(c) = m_0 \wedge \overline{\operatorname{Repeat}}] \\ &= \Pr[\operatorname{Dec}(c) = m_0 \mid \overline{\operatorname{Repeat}}] \times \Pr[\overline{\operatorname{Repeat}}]] \\ &= \frac{\sum_{r \not \in R_0} \Pr[f(r || m_0) = c^*]}{\sum_{r \not \in R_0} \Pr[f(r || m_0) = c^*] + \sum_{r \not \in R_1} \Pr[f(r || m_1) = c^*]} \times (1 - \operatorname{negl}(n)) \\ &= \frac{2^{n/2} - n_0}{2^{n/2 + 1} - n_0 - n_1} \times (1 - \operatorname{negl}(n)) \\ &\leq \frac{1}{2} + \operatorname{negl}(n) \end{split}$$

The last inequality holds because n_0, n_1 are polynomial of n.

Similarly, $\Pr[\operatorname{Dec}(c) = m_1 \wedge \overline{\operatorname{Repeat}}] \leq \frac{1}{2} + \operatorname{negl}(n)$. So whatever b' that \mathcal{A} outputs,

$$\Pr[\operatorname{PrivK}_{\mathcal{A},\widetilde{\Pi}}^{cca}(n) = 1 \land \overline{\operatorname{Repeat}}]$$

$$= \Pr[\operatorname{Dec}(c) = m_0 \land \overline{\operatorname{Repeat}}] \Pr[b = 0] + \Pr[\operatorname{Dec}(c) = m_1 \land \overline{\operatorname{Repeat}}] \Pr[b = 1]$$

$$\leq \frac{1}{2} + \operatorname{negl}(n)$$

To sum up,

$$\begin{split} &\Pr[\mathrm{PrivK}^{cca}_{\mathcal{A},\widetilde{\Pi}}(n) = 1] \\ &= \Pr[\mathrm{PrivK}^{cca}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \wedge \mathrm{Repeat}] + \Pr[\mathrm{PrivK}^{cca}_{\mathcal{A},\widetilde{\Pi}}(n) = 1 \wedge \overline{\mathrm{Repeat}}] \\ &\leq \mathrm{negl}(n) + \frac{1}{2} + \mathrm{negl}(n) \\ &= \frac{1}{2} + \mathrm{negl}(n), \end{split}$$

which finishes the proof of CCA-secure.

Problem 10. First, give F'_k as:

$$F'_k(m) = \begin{cases} 0^{|m|}, & m = k \\ F_k(k), & m = F_k^{-1}(0^{|m|}) \\ F_k(m), & others \end{cases}$$

Since F_k is a permutation, then we exchange two matches in F_k to get F'_k , so F'_k is also a permutation.

Construct D which can access oracle $\mathcal{O}.\mathcal{O}^{-1}$:

- 1. Given 1^n , then \mathcal{A} simply asks $\mathcal{O}^{-1}(0^n)$.
- 2. Assume the answer is k. Then uniformly select a message $m \in \{0,1\}^n$, and queries $\mathcal{O}(m) = c$.
- 3. If $c = F_k(m)$, output 1; otherwise, output 0.

If
$$\mathcal{O} = f$$
, then $\Pr[D^{f(\cdot),f^{-1}(\cdot)}(1^n) = 1] = \frac{1}{2^n} = \operatorname{negl}(n)$.
If $\mathcal{O} = F'_k$, then $\Pr[D^{F'_k(\cdot),F'_k^{-1}(\cdot)}(1^n) = 1] \le 1 - \frac{2}{2^n} = 1 - \operatorname{negl}(n)$.
Thus,
 $|\Pr[D^{f(\cdot),f^{-1}(\cdot)}(1^n) = 1] - \Pr[D^{F'_k(\cdot),F'_k^{-1}(\cdot)}(1^n) = 1]| > \operatorname{negl}(n)$.

So the theme is not a strong pseudorandom permutation.

Next, we prove that this theme is a **pseudorandom permutation**.

Proof. Prove by contradiction: Assume D' can use oracle \mathcal{O}' to distinguish F' from random function f, that is

$$|\Pr[D'^{F'_k(\cdot)}(1^n) = 1] - \Pr[D'^{f(\cdot)}(1^n) = 1]| > \operatorname{negl}(n).$$

Without loss of generation, let

$$\Pr[D'^{F'_k(\cdot)}(1^n) = 1] - \Pr[D'^{f(\cdot)}(1^n) = 1] > \operatorname{negl}(n).$$

Let Bingo be the event that at least one of k and $m_0 = F_k^{-1}(0^{|m|})$ have been asked by D'. Assume there are q(n) queries. Compute

$$\Pr[D'^{F_k(\cdot)}(1^n) = 1]$$

$$= \Pr[D'^{F_k(\cdot)}(1^n) = 1 \land \operatorname{Bingo}] + \Pr[D'^{F_k(\cdot)}(1^n) = 1 \land \overline{\operatorname{Bingo}}]$$

$$\leq \Pr[D'^{F_k(\cdot)}(1^n) = 1 \mid \operatorname{Bingo}] \times \Pr[\operatorname{Bingo}] + \Pr[D'^{F_k(\cdot)}(1^n) = 1 \land \overline{\operatorname{Bingo}}]$$

$$\leq 1 \times \Pr[\operatorname{Bingo}] + \Pr[D'^{F_k(\cdot)}(1^n) = 1 \land \overline{\operatorname{Bingo}}]$$

First, we prove Pr[Bingo] = negl(n).

If there is a \mathcal{PPT} A', such that Pr[Bingo] > negl(n), construct D'' with oracle \mathcal{O} :

- 1. Run 1^n . Run A'.
- 2. If A' asks m, then A compute $F_m(m) = c'$ and asks $\mathcal{O}(m) = c$.
- 3. If $c = 0^n$ or c = c', output 1 and return. If not, give c to A'.
- 4. If $c = 0^n$ or c = c' don't happen in all the queries and A' ends, uniformly output $b \in \{0, 1\}$.

If $\mathcal{O} = f$, $\Pr[c = 0^n \lor c = c'] \le 2 \times \frac{q(n)}{2^n} = \operatorname{negl}(n)$. So $\Pr[D''^{f(\cdot)}(1^n) = 1] \le \frac{1}{2} + \operatorname{negl}(n)$. If $\mathcal{O} = F_k$, then when A' asks k, then c = c' happens; and when A' asks m_0 , $c = 0^n$ happens. (If D'' doesn't return, it means Bingo doesn't happen in A'.) So

$$\Pr[c = 0^n \lor c = c'] \ge \Pr[\text{Bingo}] > \text{negl}(n),$$

which means $\Pr[D''^{F_k(\cdot)}(1^n) = 1] > \frac{1}{2} + \operatorname{negl}(n)$. Thus

$$\Pr[D''^{F_k(\cdot)}(1^n) = 1] - \Pr[D''^{f(\cdot)}(1^n) = 1] > \operatorname{negl}(n),$$

which contradicts that F_k is a pseudorandom permutation.

So Pr[Bingo] = negl(n).

Use the conclusion above, if

$$\Pr[D'^{F'_k(\cdot)}(1^n) = 1] - \Pr[D'^{f(\cdot)}(1^n) = 1] > \operatorname{negl}(n),$$

then

$$\Pr[D'^{F_k(\cdot)}(1^n) = 1 \land \overline{\operatorname{Bingo}}] - \Pr[D'^{f(\cdot)}(1^n) = 1] > \operatorname{negl}(n).$$

Construct D based on D' with oracle \mathcal{O} .

- 1. Given 1^n . Run D the same as D'.
- 2. When D' asks to encrypt a message m, run $\mathcal{O}(m) = c$ and give c to D'.
- 3. Output the same value with D.

Analysis:

1. If $\mathcal{O} = f$, D and D' behave the same. So

$$\Pr[D'^{f(\cdot)}(1^n) = 1] = \Pr[D^{f(\cdot)}(1^n) = 1]$$

2. If $\mathcal{O} = F_k$,

$$\Pr[D^{F_k(\cdot)}(1^n) = 1]$$

$$\geq \Pr[D^{F_k(\cdot)}(1^n) = 1 \land \overline{\text{Bingo}}]$$

$$= \Pr[D'^{F'_k(\cdot)}(1^n) = 1 \land \overline{\text{Bingo}}],$$

So

$$\Pr[D^{F_k(\cdot)}(1^n) = 1] - \Pr[D^{f(\cdot)}(1^n) = 1]$$

$$> \Pr[D^{F_k(\cdot)}(1^n) = 1 \land \overline{\text{Bingo}}] - \Pr[D'^{f(\cdot)}(1^n) = 1]$$

$$= \Pr[D'^{F_k(\cdot)}(1^n) = 1 \land \overline{\text{Bingo}}] - \Pr[D'^{f(\cdot)}(1^n) = 1]$$

$$> \operatorname{negl}(n),$$

a contradiction.

To sum up, F'_k is a **pseudorandom permutation**.