taken from the Library.

CRPL-F 107

Library, M. W. Edg.

IONOSPHERIC DATA

ISSUED JULY 1953

U. S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
CENTRAL RADIO PROPAGATION LABORATORY
WASHINGTON, D. C.

NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY WASHINGTON,D.C.

Issued 24 July 1953

IONOSPHERIC DATA

CONTENTS

	Page
Symbols, Terminology, Conventions	2
World-Wide Sources of Ionospheric Data	5
Hourly Ionospheric Data at Washington, D. C	7. 13. 25. 53
Ionospheric Storminess at Washington, D. C	7. 37
Radio Propagation Quality Figures	8, 38
Observations of the Solar Corona	9. 40
Relative Sunspot Mumbers	10, 48
Observations of Solar Flares	10, 50
Indices of Geomagnetic Activity	11, 51
Sudden Ionosphere Disturbances	12, 52
Tables of Ionospheric Data	13
Graphs of Ionospheric Data	53
Index of Tables and Graphs of Ionospheric Data in CRPL-F107	89

SYMBOLS, TERMINOLOGY, CONVENTIONS

Beginning with data reported for January 1952, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Sixth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Geneva, 1951. Excerpts concerning symbols and terminology from Document No. 626-E of this Meeting are given on pages 2-7 of the report CRPL-F89, "Ionospheric Data," issued January 1952. Reprints of these pages are available upon request.

Beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

The following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given in Document No. 626-E referred to above.

a. For all ionospheric characteristics:

Values missing because of A, C, F, L, M, H, Q, S, or T are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of foF2 (and foE near sunrise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of h'F2 (and h'E near sunrise and sunset) missing for this reason are counted as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count.

Values missing because of D are counted as equal to or greater than the upper limit of the recorder.

Values missing because of G are counted:

- 1. For foF2, as equal to or less than foF1.
- 2. For h F2, as equal to or greater than the median.

The symbol W is included in the median count only when it replaces a height characteristic. This practice represents a change from that listed in issues previous to CRPL-F78.

Values missing for any other reason are omitted from the median count.

c. For MUF factor (M-factors):

Values missing because of G or W are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Es):

Values of fEs missing because of E or G (and B when applied to the daytime E region only) are counted as equal to or less than the median foE, or equal to or less than the lower frequency limit of the recorder.

Values of fEs missing for any other reason, and values of h'Es missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

- 1. If only four values or less are available, the data are considered insufficient and no median value is computed.
- 2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.
- 3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRPL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18.

The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of the errors are due to:

- e. Differences in scaling records when spread echoes are present.
- b. Omission of values when foF2 is less than or equal to foF1. leading to erroneously high values of monthly averages or median values.
- c. Omission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report IRPL-F5.

Ordinarily, a blank space in the fEs column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder or less than the corresponding values of foE. Blank spaces at the beginning and end of columns of h'Fl, foFl, h'E, and foE are usually the result of diurnal variation in these characteristics. Complete absence of medians of h'Fl and foFl is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. Thus, inasmuch as the predicted contours are for the center of each zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.

c. There is no indication on the graphs of the relative reliability of the data; it is necessary to consult the tables for such information.

The following predicted smoothed 12-month running-average Zurich sunspot numbers were used in constructing the contour charts:

Month			Predic	cted Su	nspot M	ımber			
	1953	1952	1951	1950	1949	1948	1947	1946	1945
December November October September August July June May April March February January	21 22 24 27 29 30	33 38 43 46 49 51 52 52 52 52 52 51	53 52 52 54 57 60 63 68 74 78 82 85	86 87 90 91 96 101 103 102 101 103 103	108 112 114 115 111 108 108 108 109 111 113	114 115 116 117 123 125 129 130 133 133 133	126 124 119 121 122 116 112 109 107 105 90 88	85 83 81 79 77 73 67 67 62 51 46 42	38 36 23 22 20

WORLD - WIDE SOURCES OF IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 72 and figures 1 to 144 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL prediction of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

Commonwealth of Australia, Ionospheric Prediction Service of the Commonwealth Observatory:

Brisbane, Australia Canberra, Australia Hcbart, Tasmania Townsville, Australia

University of Graz: Graz, Austria

Meteorological Service of the Belgian Congo and Ruanda-Urundi: Leopoldville, Belgian Congo British Department of Scientific and Industrial Research, Radio Research Board:

Falkland Is.

Inverness, Scotland

Khartoum, Sudan (University College of Khartoum)

Port Lockroy

Singapore, British Malaya

Slough, England

Defence Research Board, Canada:

Beker Lake, Cenada

Churchill, Canada

Fort Chimo, Canada

Ottawa, Canada

Prince Eupert, Canada

Winnipeg, Canada

Radio Wave Research Laboratories, National Taiwan University, Taipeh, Formosa, China:

Formosa, China

French Ministry of Maval Armaments (Section for Scientific Research):

Dakar, French West Africa

Djibouti, French Somaliland

Tananarive, Madagascar

Mational Laboratory of Radio-Electricity (French Ionospheric Bureau):

Poitiers, France

Institute for Ienespheric Research, Lindau Uber Mortheim, Hannover, Germany:

Lindau/Harz, Germany

The Royal Metherlands Meteorological Institute:

De Bilt, Holland

Icelandic Post and Telegraph Administration:

Reykjavik, Iceland

Ministry of Postal Services, Radio Research Laboratories, Tokyo, Japan:

Akita, Japan

Tokyo (Kokubunji), Japan

Wakkenai, Japan

Yamagawa, Japan

Morwegian Defence Research Establishment, Kjeller per Lillestrom, Norway:

Oslo, Horway

Tromso. Norway

Manila Observatory:

Baguio, P. I.

South African Council for Scientific and Industrial Research: Capetown, Union of South Africa Johannesburg, Union of South Africa Nairobi, Kenya (East African Meteorological Department)

Research Laboratory of Electronics, Chalmers University of Technology, Gothenburg, Sweden:
Kiruna, Sweden

Research Institute of National Defence, Stockholm, Sweden: Upsala, Sweden

Post, Telephone and Telegraph Administration, Berne, Switzerland: Schwarzenburg, Switzerland

United States Army Signal Corps:
Adak, Alaska
Okinawa I.
White Sands, New Mexico

National Bureau of Standards (Central Radio Propagation Laboratory):

Anchorage, Alaska
Baton Rouge, Louisiana (Louisiana State University)
Fairbanks, Alaska (Geophysical Institute of the University of Alaska)
Guam I.

Huancayo, Peru (Instituto Geofisico de Huancayo)
Maui, Hawaii
Narsarssuak, Greenland
Panama Canal Zone
Point Barrow, Alaska
Puerto Rico, W. I.
San Francisco, California (Stanford University)
Washington, D. C.

HOURLY IONOSPHERIC DATA AT WASHINGTON, D. C.

The data given in tables 73 through 84 follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference," pages 36 to 39, and the median values are determined by the conventions given above under "Symbols, Terminology, Conventions." Beginning with September 1949, the data are taken at Ft. Pelvoir, Virginia.

IONOSPHERIC STORMINESS AT WASHINGTON, D.C.

Table 85 presents ionosphere character figures for Washington, D.C., during June 1953, as determined by the criteria given in the report IRPL-R5, "Criteria for Ionospheric Storminess," together with Cheltenham, Maryland, geomagnetic K-figures, which are usually covariant with them.

Tables 86a and 86b give for May 1953 the radio propagation quality figures for the North Atlantic area. CRPL advance and short-term forecasts, a summary geomagnetic activity index and sundry comparisons, specifically as follows:

(a) radio propagation quality figures, separately for each 6-hour interval of the Greenwich day, viz., 00-06, 06-12, 12-18, 18-24 hours UT (Universal Time or GCT).

(b) whole-day radio quality indices (beginning October 1952). Each index is a weighted average of the four quarter-day W-figures, before rounding off, with half weight given to quality grades 5 and 6. This procedure tends to give whole-day indices suitable for comparison with whole-day advance forecasts which designate whenever possible the days when significant disturbance or unusually quiet conditions will occur.

(c) short-term forecasts, issued by CRPL every six hours (nominally one hour before 00°, 06°, 12°, 18° UT) and applicable to the period 1 to 13 (especially 1 to 7) hours ahead. Note that new scoring rules have been adopted beginning with October 1952 data.

(d) advance forecasts, issued semiweekly (CRPI-J reports) and applicable 1 to 3 or 4 days ahead, 4 or 5 to 7 days ahead, and 8 to 25 days ahead. These forecasts are scored against the whole-day quality indices.

(e) half-day averages of the geomagnetic K indices measured by the Cheltenham Magnetic Observatory of the U. S. Coast and Geodetic Survey.

(f) illustration of the comparison of short-term forecasts and Q-figures.

(g) illustration of the outcome of advance forecasts (1 to 3 or 4 days ahead) and for comparison the outcome of a type of "blind" forecast. For the latter the frequency for each quality grade, as determined from the distribution of quality grades in the four most recent months of the current season, is partitioned among the grades observed in the current month in proportion to the frequencies observed in the current month.

The radio propagation quality figures are prepared from radio traffic data reported to CRPL by American Telephone and Telegraph Company. Mackay Radio and Telegraph Company, RCA Communications, Inc., Marconi Company, British Admiralty Signal and Radar Establishment, and the following agencies of the U. S. government:— FCC, Coast Guard, Navy, Army Signal Corps, and State Department. The method of calculation, summarized below, is similar to that described in a 1946 report, IRPL-R31, now out of print. Beginning with recalculated figures for January 1952, only reports of radio transmission on North Atlantic paths closely approximating New York-London are included in the estimation of quality. Observations of selected ionospheric characteristics, even though strongly correlated with radio transmission quality, and traffic reports for paths such as New York-Stockholm or New York-Tangier, previously included in the quality-figure determination with low weight, have been left out of the present calculations inasmuch as a sufficient number of homogeneous reports are now available.

The original reports are submitted on various scales and for various time intervals. The observations for each 6-hour interval are averaged on the quality scale of the original reports. These 6-hour indices are then adjusted to the 1 to 9 quality-figure scale by a conversion table prepared by comparing the distribution of these indices for at least four months, usually a year,

with a master distribution determined from analysis of the reports originally made on the 1 to 9 quality-figure scale. A report whose distribution is the same as the master is thereby converted linearly to the Q-figure scale. The 6-hourly quality figures are (subjectively) weighted means of the reports received for that period. These 6-hourly quality figures replace, beginning January 1953, the half-daily quality figures which formerly appeared in this table.

These quality figures are, in effect, a consensus of reported radio propagation conditions in the North Atlantic area. The reasons for low quality are not necessarily known and may not be limited to ionospheric storminess. For instance, low quality may result from improper frequency usage for the path and time of day. Although, wherever it is reported, frequency usage is included in the rating of reports, it must often be an assumption that the reports refer to optimum working frequencies. It is more difficult to eliminate from the indices conditions of low quality because of multipath, interference, etc. These considerations should be taken into account in interpreting research correlations between the Q-figures and solar, auroral, geomagnetic or similar indices.

Note. The North Pacific quality figures, which were published through October 1951, have been temporarily discontinued. Since the establishment of the North Pacific Radio Warning Service at Anchorage, Alaska, a larger number of reports are being received than were previously available in Washington. The preparation of the quality figures will be resumed when sufficient data have been accumulated for determination of conversion tables for these new reports.

OBSERVATIONS OF THE SOLAR CORONA

Tables 87 through 89 give the observations of the solar corona during June 1953, obtained at Climax, Colorado, by the High Altitude Observatory of Harvard University and the University of Colorado. Tables 90 through 92 list the coronal observations obtained at Sacramento Peak, New Mexico, during June 1953, derived by Harvard College Observatory as a part of its performance of a research contract with the Upper Air Research Observatory, Geophysical Research Directorate, Air Force Cambridge Research Center. The data are listed separately for east and west limbs at 5-degree intervals of position angle north and south of the Solar Equator at the limb. The time of observation is given to the nearest tenth of a day, GCT.

Table 87 gives the intensities of the green (5303A) line of the emission spectrum of the solar corona; table 88 gives similarly the intensities of the first red (6374A) coronal line; and table 89, the intensities of the second red (6702A) coronal line; all observed at Climax in June 1953.

Table 90 gives the intensities of the green (5303A) coronal line; table 91, the intensities of the first red (6374A) coronal line; and table 92, the intensities of the second red (6702A) coronal line; all observed at Sacramento Peak in June 1953.

The following symbols are used in tables 87 through 92: a, observation of low weight; -, corona not visible; and X, position angle not included in plate estimates.

Tables 93 and 94 give details of the Climax, Colorado, and Sacramento Peak, New Mexico, observations, respectively, from January 1953 through June 1953. The first column lists the Greenwich date of observation; the following columns give the threshold or lowest observable intensity of 5303A for each spectrum plate centered at the astronomical position angle indicated; the last two columns indicate the observer and the person responsible for the intensity estimates of the observation. These tables continue the presentation of coronal data in the manner of table 1 of CRPL-1-4 and appear in the F series regularly at intervals of six months.

RELATIVE SUNSPOT NUMBERS

Table 95 lists the daily provisional Zürich relative sunspot number, R_Z, as communicated by the Swiss Federal Observatory. Table 96 continues the new series of American relative sunspot numbers, R_A:. Beginning with 1951, the observations collected by the Solar Division, AAVSO, have been reduced according to a new procedure, such that only high quality observations of experienced observers are combined into R_A:. Observatory coefficients for each of the 28 selected observers were recomputed on data for 1948-1950, years when there was a wide range of solar activity. Otherwise, the procedure is that outlined in Publication of the Astronomical Society of the Pacific, 61, 13, 1949. The scale of the American numbers in 1951 differs from that of the reports for earlier years because of these changes, and the new series is designated R_A: rather than R_A. The American relative sunspot numbers appear monthly in these pages as communicated by the Solar Division.

OBSERVATIONS OF SOLAR FLARES

Table 97 gives the preliminary record of solar flares reported to the CRPL. These reports are communicated on a rapid schedule at the sacrifice of detailed accuracy. Definitive and complete records are published later in the Quarterly Bulletin of Solar Activity, I.A.U., in various observatory publications, and elsewhere. The present listing serves to identify and roughly describe the phenomena observed. Details should be sought from the reporting observatory.

Reporting directly to the CRPL are the following observatories: Mt. Wilson, McMath-Hulbert, U. S. Naval, Wendelstein, Kanzel and High Altitude at Sacramento Peak, New Mexico. The remainder report to Meudon (Paris) and the data are taken from the Paris-UESIgram broadcast, monitored fairly regularly by the CRPL. The data on solar flares reported from Sacramento Peak, New Mexico, communicated by the High Altitude Observatory at Boulder, Colorado, are provided by Harvard University as the result of work undertaken on an Air Materiel Command Research and Development Contract administered by the Air Force Cambridge Research Laboratories.

The table lists for each flare the reporting observatory, date, times of beginning and ending of observation, duration (when known), total area (corrected for foreshortening), and heliographic coordinates. For the maximum phase of the flare is given the time, intensity, area relative to the total area, and the importance. The column "SID observed" is to indicate when a sudden ionosphere disturbance, noted elsewhere in these reports, occurred at the time of a flare. Times are in Universal Time (GCT).

INDICES OF GEOMAGNETIC ACTIVITY

Table 98 lists various indices of geomagnetic activity based on data from magnetic observatories widely distributed throughout the world. The indices are: (1) preliminary international character-figures, C; (2) geomagnetic planetary three-hour-range indices, Kp; (3) magnetically selected quiet and disturbed days.

The C-figure is the arithmetic mean of the subjective classification by all observatories of each day's magnetic activity on a scale of 0 (quiet) to 2 (storm). The magnetically quiet and disturbed days are selected by the international scheme outlined on pages 219-227 in the December 1943 issue of Terrestrial Magnetism and Atmospheric Electricity. The details of the currently used method follow. For each day of a month, its geomagnetic activity is assigned by weighting equally the following four criteria: (1) C; (2) the sum of the eight Kp's; (3) the greatest Kp; and (4) the sums of the squares of the eight Kp's.

Kp is the mean standardized K-index from 11 observatories between geomagnetic latitudes 47 and 63 degrees. The scale is 0 (very quiet) to 9 (extremely disturbed), expressed in thirds of a unit, e.g., 5- is. 4 2/3, 50 is 5 0/3, and 5+ is 5 1/3. This planetary index is designed to measure solar particle-radiation by its magnetic effects, specifically to meet the needs of research workers in the ionospheric field. A complete description of Kp has appeared in Bulletin 12b, "Geomagnetic Indices C and K, 1948," published in Washington, D. C., 1949, by the Association of Terrestrial Magnetism and Electricity, International Union of Geodesy and Geophysics. Tables of Kp for 1945-48 are in Bulletin 12b; for 1940-44

and 1949. in these CRPL-F reports, 765-67; for 1950, monthly in 768 and following issues. Current tables are also published quarterly in the Journal of Geophysical Research along with data on sudden commencements (sc) and solar flare effects (sfe).

The Committee on Characterization of Magnetic Disturbance, ATME, 1000, has kindly supplied this table. The Meteorological Office, De Bilt. Holland, collects the data and compiles C and selected days. The Chairman of the Committee computes the planetary index. At the meeting of ATME held in Brussels in August 1951, it was decided that the computation of Kw would be discontinued after the month of December 1951 since Kp is available from January 1, 1940. Kw, therefore, no longer appears in these reports.

SUDDEN IONOSPHERE DISTURBANCES

Table 99 shows that no sudden ionosphere disturbances were observed during the month of June 1953 at Washington, D. C.

Washis	Washington, D. C. (38.7°E, 77.1°W)												
Time	P.ES	foF2	h'Fl	foFl	h1E	fol	fBe	(M3000)F2					
00	(270)	3.1					2.7	3.0					
01	(280)	2,8					2.8	3.0					
02	(270)	2.5					2.8	3.0					
03	(270)	2,2					2.6	3.0					
04	(270)	2,1					2.4	3.0					
05	250	3.0	220	-	120	-	2.7	3.2					
06	320	3.7	220	3.3	110	2.1	3.4	3.1					
07	390	4.1	220	3.7	110	2.4	3.8	2.9					
08	440	4.4	230	3.9	100	2,8	4.4	2.7					
09	420	4.6	210	4.0	100	3.0	4.4	2.8					
10	400	4.8	200	4.2	100	3.2	4.2	2.9					
11	440	4,8	190	4.3	100	3.2	4.6	2.8					
12	420	4.8	200	4.3	100	3.2	4.6	2.8					
13	460	4.6	200	4.3	100	3.2	4.6	2.7					
14	420	4.8	200	4.2	100	3.2	3.8	2.8					
15	400	4.8	200	4.1	100	3.2	3.7	2,9					
16	350	5.0	220	4.0	110	3.0		3.0					
17	320	5,0	220	3.7	110	2.7	4.1	3.0					
3.8	300	5.2	220	3.4	110	2,2	3.5	3.1					
19	260	5.4	230	GPO/MG	110		3.8	3.2					
20	240	5.2	-				3.9	3.2					
21	240	4.8					2.8	3.1					
22	260	3.8					3.2	3.1					
23	260	3.5					3.0	3.0					

23. 1 260. 3.5. Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Table 3

Fairba	nks, Alas	ka (64.9	°N, 147.	8017)				May 1953
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
01	(280) 300	(3.4) 3.6					5.6 4.8	(3.0) 2.9
05	320	3.6					4.0	2.9
03	320	3.9					4.2	2.9
04	340	4.0	240	3.0			4.0	2.9
05	360	4.0	21,0	3.3				2.9
06	330	4.1	230	3.5				2.9
07	400	4.1	210	3.6				2.8
08	420	4.1	200	3.7	110			2.7
09	150	4.2	200	3.8				2.7
10	G	< 4.0	200	3.3				G
11	420	4.3	210	3.8				2.6
12	1,20	4.5	210	3.8				2.9
13	(1,60)	4.3	220	3.9				(2.7)
1), 15	450	4.3	220	3.8				2.7
15	420	4.3	220	3.7				2.7
16	380	4.4	220	3.8				3.0
17	340	4.4	< 250	3.6				3.1
18	320	4.5	230	3.1				3.0
19	280	4.4	240			~		3.1
20	260	4.2						3.2
5,7	260	4.4					3.2	3.2
22	250	4.0					4.1	3.1
23	260	3.4					3.8	3.0

Time: 150.00%. Sweep: 1.0 lic to 25.0 He in 15 seconds.

Nerser	Table 5 Sarsarceuak, Greenland (61.2°N, 45.4°W)											
Time	h'F2	foF2	h'Fl	foFl	h !E	foE	fEs	(M3000)F2				
00	320	(3,4)					4.9	(2.8)				
01	340	(3.2)					4.4	(2.8)				
02	(320)	(3.4)					4.6	(3.0)				
03	_	(3.0)					6.0	(3 .0)				
04	(290)	(3.4)	-	-	-		4.9	(3.2)				
05	(300)	< 3.6		-	-	-	4.5	(3.2)				
06	(370)	(4.0)	230	(3.6)	100	2.2	4.6	3.2				
07	360	4.0	220	3.8	100	2.6	3.8	3.1				
80	(400)	4.5	210	3.8	100	2.8	2.9	3.0				
09	380	4.4	210	4.0	100	2.8		3.0				
10	420	(4.6)	210	(4.0)	100	3.0		(2.9)				
11	420	4.7	210	4.0	100	3.0		2.9				
12	390	(4.7)	200	4.1	100	3,1		2.9				
13	400	(4.8)	210	4.1	100	3.0		(2.9)				
14	(420)	(4.8)	200	4.0	100	2.9		(2.8)				
15	380	(4.8)	220	4.0	100	2.9	3.4	(2.9)				
16	400	(4.6)	230	3.9	100	2.7	4.0	(3.0)				
17	(380)	(4.5)	(240)	(3.8)	100	2.5	4.3	(3.0)				
18	(380)	(4.3)	240	(3.6)	(110)	2.3	4.4	(3.0)				
19	(320)	(4.1)	280	(3.3)			4.8	(3.0)				
20	(270)	(3.9)					6.9	(3.1)				
21	(260)	(3.9)					4.9	(3.0)				
22	300	(3.5)					6.4	(3.0)				
23	(300)	(3.5)					5.2	(2 .9)				

Time: 45.0°W. Sweep: 1.0 Mc to 25.0 Mc in 30 seconds.

Ттольо.	Norwey	(69.7°N.	(800.91	Table	2			May 1953
		-						
Time	P.ES	foF2	h'Fl	foFl	h *E	fcE	fEs	(M3000)F2
00	(310)	4.0					3.6	2.9
01	316	3.6					3.5	3.0
02	(31,5)	3.8	260	-	120		3.4	(3.0)
03	(335)	3.8	250		110	1.5	3.1	3.0
04	(385)	3.6	250	3.3	110	1.8	3.0	2.9
0.5	(460)	4.0	240	3.3	110	2.0	3.1	2.9
06	(475)	4.1	235	3.4	105	2.2	2.8	2.8
07	390	4.4	230	3.7	110	2.4	3.1	2.8
08	415	4.4	220	3.8	100	2.6	3.2	2.8
09	380	4.7	220	3.9	100	2.6	2.9	2.9
10	375	4.6	220	4.0	105	2.6	3.0	3.0
11	400	4.6	220	4.0	110			2.9
12	380	4.4	215	4.0	110	2.8	2.8	2.9
13	380	4.4	215	3.9	115	2.8		3.0
14	400	4.4	215	3.9	110	2.7	3.0	3.0
15	390	4.3	215	3.8	110	2.5	3.1	3.0
16	385	4.2	550	3.7	110	2.4	2.6	3.0
17	35 5	4.2	240	3.6	110	2.2	3.0	3.0
18	360	4.1	240	3.4	110	2.0	3.1	3.1
19	330	4.0	240		110	1.8	3.3	3.1
20	285	4.2			120		3.8	3.1
21	(290)	(4.0)			110		3.5	(3.1)
22	(305)	(4.0)			-		3.2	(3.0)
23	(315)	(4.0)					3.6	3.0

23 (315) (4.0) -- 3.6

Time: 15.0°Z.

Sweep: 0.6 Mc to 25.0 Mc in 5 minutee, automatic operation.

				Table	8 4			
Anchor	age, Alas	ka (61.	2 ⁰ N, 149.	.9°W)				May 1953
Time	h*F2	foF2	h'F1	foFl	h¹Ε	foE	fEs	(M3000)F:
00	300	3.1					2.3	2.8
01	300	2.7					1.9	2.8
02	300	2.5					1.6	2.8
03	305	3.1	260		140	1.2	2.1	2.8
04	385	3.4	250	2.9	130	1.6	1.9	2.7
05	430	3.8	240	3.2	110	1.8	2.4	2.7
06	440	3.9	220	3.4	110	2.2		2.7
07	450	4.0	220	3.6	110	2.4		2.7
08	510	4.0	220	3.7	110	2.6		2.6
09	500	4.4	210	3.8	100	2.8		2.6
10	500	4.3	210	3.9	110	2.8		2.4
11	470	4.4	215	4.0	110	2.9		2.6
12	445	4.5	210	4.0	110	2.9		2.7
13	510	4.3	210	4.0	110	2.9		2.6
14	515	4.3	210	3.9	110	2.9		2.6
15	450	4.3	210	3.9	110	2.8		2.7
16	420	4.4	220	5.8	110	2.6		2.8
17	370	4.4	230	3.7	110	2.4		2.9
18	345	4.5	240	3.5	120	2.2		3.0
19	300	4.5	240	3.1	120	1.9		3.1
20	270	4.4					2.6	3.1
21	250	4.2					2.6	3.1
22	260	3.8					2.3	3.0
23	270	3.2					2.4	3.0

23 270 3.2 Time: 150.00W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

elo, l	Norway (60	0.0°B, 1	1.1°E)	Table	6			May 1953
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00 ·	250	3.3						3.0
01	275	2.8					2.2	2.9
02	260	2.8			-	-	2.7	2.9
03	265	2.8			120	1.0	1.7	2.9
04	280	3.3	250		110	1.4	2.1	3.0
05	(G)	3.5	240	3.0	100	1.7	3.6	(2.9)
06	(440)	3.9	220	3.6	100	2.1	3.8	(2.7)
07	370	4.2	220	3.6	100	2.3	3.8	2.9
08	420	4.4	210	3,8	100	2.5	3.8	2.9
09	410	4.5	200	3.9	100	2.6	4.0	2.9
10	395	4.7	200	4.0	100	2.8	3.9	2.9
11	375	4.8	200	4.1	100	2.8	4.2	3.0
12	385	4.7	200	4.1	100	2.9	4.0	3.0
13	360	4.8	200	4.1	100	2.9	3.8	3.1
14	370	4.8	200	4.1	100	2.9	3.8	3.0
15	375	4.7	200	4.0	100	2.8	3.7	3.0
16	355	4.8	220	3.9	100	2.6	3.9	3.0
17	346	4.8	220	3.7	100	2.4	4.0	3.0
18	310	4.8	240	3.5	106	2.2	2.8	3.1
19	280	4.9	240		110	1.8	2.9	3.1
20	260	4.8	250		110	1.6	2.0	3.2
21	250	4.4					1.8	3.1
22	250	4.2						3.1
23	265	3.8						3.0

Time: 15.0° E. Sweep: 0.6 Mc to 14.0 Mc in 8 minutee, automatic operation.

		1== -0==	0	Tab]	0 7			N - 30F8
Opsala,	Swedon	(59.8°E,	17.6°E)					May 1953
Time	h*F2	foF2	h'F1	foFl	h 'E	roE	fEs	(M3000)F2
00	275	3.0					2.3	3.0
01	275	2.6					2.4	3.0
02	280	2.5					2.8	3.0
03	275	2.8			Country	-	2.8	3.0
04	265	3.3	240	2.9	-	-	3.1	3.0
05	350	3.7	240	3.3	125	1.8	3.2	3.0
06	430	4.0	230	3.5	115	2.3	3.3	2.5
07	425	4.2	225	3.7	110	2.4	3.6	3.9
08	400	4.4	220	3.9	110	2.6	3.6	¥.0
09	415	4.6	21.0	4.0	110	3.7	3.7	2.9
2.0	328.0	4.8	210	4.0	105	2.8	2.3	3.0
11	360	4.8	210	4.1	105	2.9	3.6	3.0
12	380	4.8	210	4.2	105	2.9	3.3	3.0
13	370	4.8	210	4.1	105	2.9	3.6	3.1
14	380	4.6	215	4.1	105	2.8	3.3	3.1
15	370	4.7	215	4.0	105	2.6	3.4	3.0
16	360	4.8	220	3.9	110	2.5	3.3	3.1
17	335	4.7	225	3.7	110	2.2	3.4	3.1
18	300	4.8	235	3.3	115	2.0	3.6	3.1
19	265	4.9	245	2.8	1,35	1.6	3.4	3.2
20	250	4.5					2.8	3.2
21	250	4.5			40-000		2.6	3.2
22	255	4.1					2.3	3.1
23	260	3.5					2.2	3.0

Time: 15.0°E. Sweep: 1.4 Mc to 17.0 Ms in 6 minutes, automatic operation.

		/ A =	35 59=1	fable	9			W 2057
Uzaz,	Auetria	(47.1°E,	10.5.E)					May 1953
Time	h'F2	foF2	h'Fl	foFl	h'Ε	foE	fEs	(M3000)F2
00	280	3.8						
01	290	3.5						
02	290	3.3						
03	300	3.2						
04	300	3.2						
05	260	3.6						
06	280	4.2	220	3.5				
07	280	4.9	210	3.8			3.8	
08	300	5.2	200	4.0			4.4	
09	300	5.1	200	4.2	100	(3.0)	3.8	
1.0	300	5.5	200	4.2	110	(3.2)	3.7	
11	300		190	4.3	100	3.2	3.8	
12	300	5.2	200	4.3	100	3.4	3.6	
13	310	5.2	200	4.3		3.4	3.6	
14	300	5.2	200	4.2	100	3.3	3.7	
1.5	-500	5.2	200	4.2	100	3.1	3.7	
16	300	5.2	200	4.0		(2.9)	4.2	
3.7	280	5.3	200	3.8			4.0	
18	270	5.6	225	3.5			3.6	
19	240	6.0					3.0	
20	230	6.1						
21	240	5.1						
2?	250	4.8						
23	260	4.1						

Time: 15.00E. Sweep: 2.5 Me to 12.0 Me in 2 mimutes.

Table 11 White Sands, New Mexico (32.3°H, 106.5°W) May 1953 h'F2 (M3000)F2 Time foF2 h'Fl foFl h 'E fil fEs 2.4 2.9 00 01 02 03 04 05 06 07 09 10 11 12 13 14 15 16 17 18 19 300 3,1 3.0 3.0 2.9 3.0 290 2.4 280 270 3.0 270 270 300 3.0 2.8 3.1 3.2 3.1 3.0 2.9 2.9 2.8 3.0 3.0 3.1 2.3 3.0 < 4.2 4.7 5.4 220 110 100 100 100 100 100 100 100 100 1.9 2.4 2.8 3.0 3.1 3.1 3.2 3.2 3.1 3.0 3.6 3.9 4.1 4.2 4.5 5.0 4.5 4.5 3.2 3.6 3.9 4.1 4.3 4.3 4.3 4.3 4.1 4.0 3.7 340 340 320 360 220 210 5.5 5.5 5.8 5.9 5.8 200 200 340 360 360 200 200 210 5.9 6.0 6.0 5.9 5.0 330 320 210 4.0 4.0 3.6 3.2 220 110 110 2.8 300 280 260 1.9 3.2 5.8 230 3.0 3.3 2.7 3.3 20 220 21 22 230 260 4.2 3.4 3.0 2.9 23 3.2 2.9

290

Time: 105.00W. Sweep: 1.0 No to 25.0 Mc in 30 seconds. Sweep:

	1.9-2, 1						May 1953
h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
280	3.7						2.9
290	3.4						2.9
	3.1					2.1	2.8
300	3.0						2.9
340	3.2	280	2.5		E		2.8
420	3.7	260	3.0	130	1.8		2.7
430	4.1	240	3.4	120			2.7
420	4.4	240	3.6	110			2.8
420	4.6	230	3.9				2.7
450	4.4	220	4.0				2.8
460	4.5	210					2.7
430	4.7	220					2.9
440	4.7	210					2,6
420	4.8	220					2.8
440							2.7
430	4.5						2.8
400	4.4						2.9
360	4.6	240					3.0
320	4.8	250					3.1
280	4.9	260					3.1
							3.0
260							3.0
							3.0
							3.0
	h F2 280 290 300 340 420 420 450 440 420 430 440 430 20 200 270	h1F2 foF2 280 3.7 290 3.4 300 3.1 300 3.1 300 3.0 340 3.2 420 3.7 420 4.1 420 4.6 450 4.4 420 4.6 450 4.4 450 4.5 430 4.7 420 4.8 40 4.5 430 4.5 430 4.7 420 4.8 40 4.5 40 4.6 530 4.7 420 4.8 40 4.5 40 4.5 40 4.6 530 4.7 420 4.8 40 4.5 40 4.5 40 4.5 40 4.5 40 4.6 530 4.9	280 3.7 290 3.4 300 3.1 300 3.1 300 3.7 280 420 3.7 260 420 4.1 240 420 4.6 230 450 4.4 220 460 4.5 210 430 4.7 220 440 4.7 220 440 4.8 220 440 4.4 230 320 4.8 250 450 4.4 230 320 4.8 250 270 5.1 280 4.9 260	Arka (51.9°T, 176.6°W)			h'F2 foF2 h'F1 foF1 h'E foE fEs 280 3.7 290 3.4 300 3.1 2.1 300 3.0 3.0 2.5 — E 2.7 420 3.7 260 3.0 130 1.8 3.1 430 4.1 240 3.6 110 2.2 2.9 420 4.6 230 3.9 110 2.8 5.0 450 4.4 220 4.0 110 3.0 6.4 450 4.6 230 3.9 110 2.8 5.0 450 4.6 220 4.0 110 3.0 6.4 450 4.4 220 4.0 110 3.0 6.4 450 4.4 220 4.0 110 3.0 6.4 450 4.6 220 4.1 110 3.0 6.4 440 4.7

Pine: 180.0°%.

Sweep: 1.0 Mo to 25.0 Mc in 30 seconds.

San Fr	ancieco.	Californ	La (37.4		20W)			May 1953
Mine	h:F2	foF2	h'Fl	foFl	h'Ε	foE	fEs	(M3000)F2
00	(280)	(3.1)					2.7	(3.0)
01	(280)	(3.0)					3.8	(3.0)
02	280	(2.9)					2.7	(3.0)
03	(270)	(2.8)					3.2	(3.1)
04	(260)	(2.7)					2.5	(3.2)
05	260	3.0					2.4	(3.2)
06	340	(3.6)	220	(3.1)	110	1.9	4.0	3.2
07	350	(4.2)	210	3.4	100	(2.4)	4.0	3.2
08	360	4.5	200	3.7	100	(2.6)	4.7	3.0
09	410	4.8	200	(4.0)	100	(2.8)	4.5	2.9
10	390	5.0	190	4.0	110	(3.0)	4.6	2.9
11	370	5.0	190	(4.1)	110	(3.1)	4.5	2.9
12	400	4.9	190	4.1	100	3.3	4.3	2.9
13	380	5.0	200	4.2	100		4.3	2.9
14	360	5.3	200	(4.1)	100	(3.0)	4.4	3.0
15	340	5.3	210	4.0	100	(3.0)	4.0	3.1
16	330	5.0	220	(3.9)	100	(2.8)	4.1	3.1
17	300	5.0	220	(3.6)	100	2.5	4.0	3.2
18	280	5.1	220	(3.3)	110	2.0	3.7	3.3
19	240	5.2	240				3.8	3.3
20	220	5.1					3.0	3.3
21	(230)	(4.4)					3.7	(3.2)
22	(250)	(3.7)					3.0	(3.1)
23	(270)	(3.3)					3.1	(3.0)

Time: 120.00W.

Sweep: 1.0 Mc to 25.0 Mc in 15 eeconde.

Okinew	a I. (26.	30N, 12	7.80E)	Tabl	0 12			May 1953
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	290	5,2					5.2	3.0
Ol	270	5.1					5.0	3.1
02	240	4.4					4.2	3.3
03	250	3.6					3.8	3.2
04	250	3.3					3.1	3.2
05	250	3.3					2.8	3.2
06	240	4.9			110		3.9	3.5
07	250	5.2	230		110	(2.4)	5.1	3.5
08	280	5.5	220		110	2.7	6.0	3.3
09	< 320	5.8	220		110	3.0	6.6	3.1
10	360	6.0	220	4.3	110	3.1	6.9	2.9
11	370	7.0	230	4.4	110	3.2	7.0	5.8
12	350	8.2	220	4.4	110	3.2	5.6	2.9
13	330	9.8	220	4.4	110	3.2	5.8	3.0
14	310	10.5	220	4.4	110	3.2	5.2	3.0
15	300	10.5	230	4.2	110	3.1	5.0	3.1
16	290	10.6	230	4.0	110	2.8	4.9	3.2
17	260	10.5	230	W100 00	110	2.4	4.8	3.2
18	250	8.6	-			-	4.8	3.3
19	250	7.2					4.0	3.2
20	270	6.1					5.4	3.0
21	280	5,4					3.7	2.9
22	310	5.3					4.2	2.8
23	300	5.6					4.7	2.9

Time: 127.5°E.
Sweep: 1.0 No to 25.0 Mc in 15 econds.

				7able					
Maui,	Hawaii (2	0.8°W, 1	.56.5°₩)					May 1953	
Time	h'F2	foF2	h'Fl	foFl	h°Ε	foE	fEs	(M3000)F2	
00	290	5.2					2.9	2.9	
01	270	5.1					3.0	3.1	
02	260	4.4					3.0	3.1	
03	260	3.7					2.5	3.1	
04	270	3.4					2.9	3.0	
05	270	3.1					3,0	3.1	
06	260	3.9	250	-	140	(1.4)	2.4	3.2	
07	(310)	4.7	230	(3,7)	120	(2.2)	4.9	3.0	
80	390	5.4	550	4.1	110	2.7	5.2	2.7	
09	420	6.0	210	4.3	110	3.0	5.0	2.6	
10	420	7.4	220	4.3	110	3.2	8.4	2.6	
11	390	8.4	230	4.4	110	3.3	5.5	2.7	
12	370	9.1	230	4.4	110	3.4	5.7	2.8	
13	340	9.9	220	4.4	110	3.4	5.0	2.9	
14	310	10.3	550	4.3	110	3.3	4.3	3.0	
15	310	10.0	220	4.2	110	3.1	4.5	3.0	
16	310	9.7	550	4.1	110	2.9	3.7	3.0	
17	290	10.0	240	3.9	110	2.5	3.9	3.1	
18	270	9.4	240		120	2.0	3.7	3.1	
19	240	8.8					3.7	3.2	
20	240	7.1					4.0	3.1	
21	260	6.1					3,7	3.0	
22	280	5.4					2,8	2.9	
23	290	5.4					2.8	2.8	

Time: 150.0°W.
Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Guan I.	(3.6°N,	144.90	E)	Table 15 Hay 19					
Time	h•F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2	
00	320	4.5					2.3	2.8	
01	300	4.2					2.6	3.0	
02	290	4.0					2.4	3.0	
03	280	3.6						3.1	
04	250	3.4						3.4	
05	240	3, 3						3,8	
Q6	240	3.7					2.2	3.4	
07	230	5.2	-		130	2.2	3.0	3.5	
08	290	5.8	230	-	110	2.7	3.8	3.3	
09	320	5.2	320	4.2	110	3.0	7.1	3.1	
10	. 350	6.6	220	4.3	110	3.2	7.2	2.8	
11	390	7.1	200	4.3	110	3.3	7.2	2.8	
12	390	7.5	200	4.3	110	3.4	6.4	2.5	
13	390	7.8	500	4.3	110	3.3	8.5	2.5	
14	380	8.3	200	4.2	110	(3.2)	6.6	2.5	
15	360	8.2	210	4.2	110	3.1	8.8	2.6	
16	340	8.2	210	4.0	110	2.9	8.8	2.7	
17	310	8.7	220		110	2.4	6.2	2.8	
18	250	9.2	240				3.7	3.0	
19	250	9.3					3.7	3.1	
50	260	7.5					2.7	3.1	
21	280	6.0					1.9	2.9	
22	300	5.3						2.8	
23	330	4.8					2.7	2.8	

Time: 150.0°E. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Eiruna,	Sweden		April 1953					
Time	h*F2	foF2	h'Fl	foFl	h 'E	foE	fEs	(M3000)F2
00	(300)	(3.2)					4.1	(3.0)
01	(320)	(3.1)					3.2	(2.8)
02	31.5	3.2					2.2	2.8
03	(300)	3.1						2.8
04	(290)	(3.2)						(2.9)
05	260	3.8			115	2.1		3.0
06	290	3.9	230	3.4	115	2.2		3.1
07	400	4.0	220	3.4	110	2.4		2.8
08	430	4.1	220	3.6	110	2.7		2.8
09	390	4.2	210	3.8	110	2.9		2.9
10	400	4.3	210	3.9	110	3.0		2.8
11	360	4.5	220	3.9	110	3.0		G
12	360	4.5	215	4.0	110	3.0		2.9
13	360	4.6	215	3.9	110	2.9		3.0
14	330	4.7	215	3.9	110	2.8		3.0
15	31ō	4.7	550	3.8	110	2.6		3.1
16	310	4.2	240	3.6	110	2.5		3.2
17	290	4.2	235	3.4	110	2.2		3.2
18	270	4.0	240	3.1		2.1		3.1
19	260	4.0					2.2	3.1
20	265	3.6					3.2	3.1
21	305	3.3					3.2	3.0
22	(300)	(3.6)					3.2	(3.0)
23	(300)	(3.4)					3.7	(3.0)

Time: 15.0°E. Sweep: 0.8 Mc to 15.0 Mc in 30 eeconds.

Puerto Rico, V.Y. (18.5°N. 67.2°V) Nay 195									
								May 1953	
Time	h'F2	foF2	h 'Fl	foFl	h'Ε	foE	fEs	(M3000)F	
00	270	4.5					2.8	3.1	
01	250	4.8					2.4	3.1	
02	240	4.3					2.9	3.3	
03	340	3.7					3.2	3.4	
04	240	3.4					2.5	3.4	
05	240	2.8					2.6	3.4	
08	230	3.5			100		3.0	3.5	
07	250	4.7	200	-	100	2.1	3.4	3.6	
08	280	5.1	200	3.9	90	2.6	4.4	3.3	
09	310	5.4	200	4.2	90	3.0	4.6	3.2	
10	360	5.7	200	4.3	90	3.2		3.0	
11	360	6.5	210	4.4	100	3.4	4.7	2.9	
12	340	7.6	200	4.4	100	3.4	4.4	3.0	
13	310	8.5	200	4.4	100	3.4		3.0	
14	300	8.8	210	4.4	100	3.4	4.6	3.1	
15	280	9.4	210	4.3	100	3.2	4.7	3.2	
16	280	9.1	210	4.1	100	3.0	4.5	3.2	
17	250	8.6	210	3.8	100	2.6	4.6	3.3	
18	230	8.4	210		100		3.8	3.4	
19	210	7.4					3.3	3.4	
20	230	5.8					3.1	3.2	
21	250	5.3					3, 2	3.1	
22	260	4.5					3.1	3.1	
23	280	4.4					2.9	3.1	

Time: 60.0°W.
Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Panama	Canal Zo	ne (9.4°	N, 79.9°	Table W)	Y6			May 1953
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	270	5.0						2.9
01	270	4.6						2.9
02	280	4.1					2.0	2.9
03	270	4.0					1.8	2.9
04	260	3.7					1.7	3.0
05	250	3.0					2.8	3.1
06	260	3.3					3.0	3.1
07	270	4.7	230		1.20	2.2	3.8	3.2
08	340	5.0	230	4.1	110	2.7	4.6	3.0
09	410	5.5	220	4.2	110	(3.0)	4.2	2,8
10	420	6.7	220	4.3	110	3.2	4.3	2.5
11	430	7.6	220	4.3	110	3.4	4.4	2.6
12	390	8.9	220	4.4	110	3.4	4.3	2,6
13	370	9.8	220	4.3	110	3.4	4.4	2.7
14	350	10.6	220	4.3	110	3.3	4.6	2.8
15	330	10.8	230	4.2	110	3.1	4.6	2.8
16	310	10.8	230	4.1	110	2.8	4.6	2.9
17	290	10.3	230	3.8	120	(2.5)	4.3	3.0
18	260	9.4	250				3.9	3.0
19	240	8.0					3.4	3.0
20	260	6.6					2.8	2.8
21	280	5.9					2.4	2.8
22	280	5.5					2.2	2.8
23	280	5.1					_,_	2.8

23 280 5.1

Time: 75.0°W.
Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Reykja	vik, Icel	and (64		April 1953				
Time	h'F2	foF2	h'Fl	foF1	h 'E	foE	fEs	(M3000)F2
00		(3.0)					4.8	
01							5.1	
03							4.6	
03	(340)	(2.3)					4.6	(2.9)
04	(300)	(2.6)					4.0	(3.0)
05	(270)	< 2.7		-				3.3
06	(280)	3.2	220	3.1				3.3
07	(280)	3.8	210	3.3	(100)			3.2
08	(360)	4.0	210	3.4	100			3.0
09	390	4.1	200	3.7	100	2.5		2.9
10	410	4.4	200	3.8	100	2.7		2.8
11	370	4.5	200	3.8	100	2.8		3.0
12	370	4.6	200	3.8	100	2.8		3.0
13	390	4.6	200	3.9	90	(2.8)		2.8
14	370	4.6	200	3.8	100	2.8		2.9
15	340	4.8	200	3.8	100	2.6		3.0
16	340	4.5	210	3.7	100	2.6		3.0
17	320	4.2	220	3.4	100	2.2	3.2	3.1
18	290	4.0	220		100	2.2	3.8	3.2
19	280	3.8	230	-			4.2	3.2
20	300	3.7					4.2	3.1
21	(300)	(3.4)					5.8	(3.2)
22	(340)	(3.2)					5.2	(3.1)
23		(2.9)					5.2	(3.0)

23 -- (2.9)
Time: 15.0°W.
Sweep: 1.0 Mc to 25.0 Mc in 18 seconds.

				Table	18			
Nar sai	esuak, Gr	eenland	(67°SoA	45.4°W)				April 1955
Time	h'F2	foF2	h'Fl	foFl	h'Ε	foE	fEs	(M3000)F2
00	(340)	(2.9)					4.9	(2.7)
01	(320)	(2.8)					4.3	(2.7)
02		(3.3)					5.0	434000
03		(3.1)					5.2	-
04							5.2	er mariti
05	(290)	(3.1)		-			5.0	(3.1)
06	(280)	3.6	-			per manager	4.7	3.1
07	(280)	4.0	250		100	3.4	4.1	5.1
80	(340)	(4.2)	220	3.6	100	2.6		(5.0)
09	(390)	(4.3)	220	3.9	100	2.8		(2.9)
10	420	(4.6)	210	3.9	100	2.8		(2.8)
11	(460)	4.6	210	(3.9)	100	2.9		2.7
1.2	420	4.7	210	4.0	100	2.9		2.5
13	400	4.7	220	4.0	100	2.9		2.9
14	400	4.7	220	3.9	100	2.8		2.9
1.5	400	(4.5)	220	3.8	100	2.7		(2.9)
16	390	(4.4)	230	3.7	100	2.6	3,6	(2.9)
17	380	4.4	260	3.5	100	2,3	4.3	2.9
18	320	(4.0)	-		-		4.6	3.0
19	300	(4.0)			-		5.6	(3.0)
20	260	(3.7)					6.4	(8.0)
21	(290)	(3.5)					5.2	(2.9)
22	(290)	(3.2)					6.8	(2.8)
23	(300)	(3.1)					5.2	(2.8)

Time: 45.0°W. Sweep: 1.0 Mc to 25.0 Mc in 30 seconds.

Prince	Ampert,	Canada	(54.3°E,	<u>Table</u> 130.3°W)				pril 1953
Time	h*F2	foF2	h'F1	foFl	h*E	foE	fEs	(M3000)F2
00	300	1.9						
01	300	1.8					1.4	
02	320	1.7					1.0	
03	310	1.9					2.2	
0-2	320	1.8					3.1	
05	300	2.0					3.1	(3.1)
06	270	2.8			110	1.8	2.8	3.2
07	250	3.1	220	3.2	110	2.0		3.2
08	560	<3.6	220	3.4	110	2.4		G
09	G	<3.7	210	3.7	110	2.6		G
10	G	< 3.8	200	3.8	110	2.8		G-
11	G.	<4.0	200	3.9	100	2.9		G
12	490	4.4	200	4.0	100	3.0		2.4
13	500	4.4	200	4.0	100	3.0		2.7
14	440	4.5	210	4.0	110	3.0		2.8
16	440	4.4	220	4.0	110	2.9		G
16	390	4.4	220	3.8	110	2.7		2.9
17	320	4.4	220	3.7	110	2.5		3.1
18	280	4.3	240	-	110	2.2		3.2
19	260	4.1			140	1.9		3.2
20	260	3.6			130	1.4		3.2
21	260	3.1					1.4	3.1
22	260	2.7					1.8	(3.1)
23	270	2.0					2.1	(3.0)

Time: 120.0°W.
Sweep: (Day) 1.0 Mc to 10.0 Mc in 15 seconds.
(Night) 0.5 Mc to 4.0 Mc in 15 seconds.

Winnipe	Winnipag, Canada (49.9°H, 97.4°W) <u>Table 21</u> April 1953											
Time	h*F2	foF2	h'Fl	foFl	h 'E	foE	fEs	(M3000)F2				
00	320	2.6										
01	360	2.5					2.8					
02	330	2.6					3.0					
03	340	2.3					2.9					
04	320	2.3					2.8					
05	320	2.5					2.2					
06	270	2.9			130	1.9		3.1				
07	250	3.3	230	3.1	120	2.2		(3.0)				
08	G-	< 3.7	220	3.5	120	2.5		G				
09	G-	< 3.8	210	3.8	110	2.0		G				
10	G-	< 4.1	200	3.9	110	3.0		G.				
11	500	4.2	200	4.0	110	3.0		G-				
12	510	4.2	200	4.0	110	3.0		G				
3.3	500	4.4	210	4.0	110	3.1		(2.7)				
14	490	4.5	220	4.0	110	3.0		G				
15	430	4.4	220	3.9	110	2.9		2.8				
16	410	4.4	230	3.8	110	2.8		2.8				
17	360	4.4	230	3.7	120	2.4		3.0				
18	300	4.4	240	3.2	120	2.2		2.9				
19	260	4.1			130	1.8		3.0				
20	260	3.9						3.0				
21	270	3.2						(3.0)				
22	290	3.0										
23	330	2.7										

Time: 90.0°W.
Swamp: 1.0 Mc to 10.0 Mo in 16 seconds.

			O	Tab	le 20			
Chares.	111, Cans	8,63) Ab	¥, 94.2	PY)				April 1953
Time	h'F2	foF2	h*F1	foFl	h E	foE	fEs	(M3000)F2
00	280	3.0					6,2	
01	300	2.9			110	2.2	5.9	_
02	310	2.9			110	(2.6)	4.2	(2.9)
03	300	2,7			130	2.0	5.2	
04	300	2.6			120	2.0	3.8	(3.0)
05	300	3.2			110	2.5	3.8	(3.1)
06	290	3.5			120	2.6	4.1	(3.2)
07	340	< 3.8	340	3.8	100	3.1		(2.7)
09	(560)	3.8	\$50	3.7	110	3.3	5.5	G
09	640	4.0	240	3.9	110	3.1	5.4	2.3
10	510	4.0	220	3.8	110	3.0	3.8	2.6
11	580	<4.0	220	3.9	110	3.0	•••	Ğ.
12	520	4.2	280	3.9	110	3.0		2.6
13	450	4.5	230	3.9	110	3.1		2.7
14	440	4.5	230	3.9	110	3.0		2.7
15	410	4.6	230	3.8	110	2.9		2.8
16	380	4.6	240	3.8	110	2.8		2.8
17	360	4.4	250	3.5	110	2.6		3.0
18	30,0	4.4	250	3.1	110	2.7		3.0
19	37.0	4.0	-		110	3.0		3.0
20	300	3.8			110	2.9	6.5	(3.0)
20.	290	3.5			120	2.5	7.8	(3.0)
22	290	3.2			120	2.8	8.7	(3.0)
23	300	3.2			130	1.7	9.2	

Time: 90.0°W. Sweep: 1.0 Mc to 10.0 Ne in 15 seconds.

De Bil	t, Bollan			pril 1953				
Time	h'F2	foF2	h'F1	foFl	h*E	foE	fEs	(M3000)F2
00	290	3.0						3.0
01	290	3.0						3.0
03	290	2.8						3.0
03	230	2.6						3.0
04	270	2.5					2.1	3.1
05	245	3.0				E		3.3
06	230	4.0	210		110	2.0		3.4
07	300	4.3	205	3.6	105	2.3		3.2
08	300	4.7	200	3.9	100	2.6		3.2
09	330	4.8	200	4.0	100	2.9		3.1
10	340	5.2	200	4.2	100	3.0		3.0
11	300	5.4	200	4.2	100	3.0	3.9	3.2
12	300	5.5	200	4.3	100	3.1	3.6	3.3
13	310	5.6	200	4.3	100	3.0	3.5	3.2
14	300	5.6	205	4.2	100	3.0	3.5	3.2
15	300	5.3	210	4.0	100	2.8		3.2
16	290	5.4	210	3.8	105	2.5		3.2
17	270	5.4	220	3.4	110	2.1	2.4	3.3
18	240	5.4	225			E		3.3
19	230	5.5	,			-		3.2
20	220	5.0						3.2
21	230	4.2						3.2
22	270	3.4						3.1
23	280	3.3						3.0

Time: 0.0°. Swep: 1.4 Mo to 11.2 Mc in 6 mimutes, automatic operation.

Schwar	zenburg,	Switzerl	and (46.	8°N, 7.3				April 1953
Time	h*F2	foF2	h 'Fl	foFl	h 'E	fcE	fEs	(M3000)F2
00	300	3.2						3.1
01	3 00	3.3						3.1
02	300	3.2						3.1
03	300	3.0						3.2
04	280	3.0						3.2
05	250	2.7						3.4
06	220	3.2						3.7
07	200	3.8			100	2.0		3.7
08	230	4.4	200	3.6	100	2.4		3.6
09	300	4.9	200	3.9	100	2.7		3.5
10	300	5.0	200	4.0	100	2.8		3.4
11	300	5.4	200	4.1	100	3.0		3.4
12	310	5.5	200	4.2	100	3.0		3.3
13	300	5.5	200	4.2	100	3.0		3.4
14	300	5.6	200	4.1	100	3.0		3.4
15	300	5.8	200	4.0	100	3.0		3.5
16	300	5.8	200	4.0	100	2.8		3.5
17	250	5.6	200	3.7	100	2.5		3.5
18	210	5.5			100	2.0		3.5
19	220	5.5						3.5
20	210	5,5						3.5
21	220	5.0						3.5
22	215	4.2						3.5
23	260	3.5						3.2

7 250 3.5 7 250 3.5 7 250 3.5 7 250 3.5 7 250 3.5 7 250 3.5

Ottawa,	Canada	(45.4°N,	75.7°W)	Inbla				April 1953
Time	h'F2	foF2	h'Fl	foFl	h ºE	fcE	fEs	(M3000)F2
00	310	2.2						3.0
01	340	2.2						(3.0)
02	(360)	2.2					2.3	(3.0)
03		(2.0)					2.0	-
04		(2.0)						
05	280	2.1						3.2
06	280	3.0	230	3.2	120	1.9		3.2
67	-	<3.6	220	3.4	110	2.3		Q.
80		<3.8	210	3.7	110	2.7		. 0
09		<3.9	SS0	3.9	110	2.8		G-
10		4.2	210	3.9	110	3.0		o
11	480	4.3	200	4.0	110	3.1		2.6
12	420	4.5	200	4.1	110	3.2		2.8
13	420	4.6	220	4.0	110	3.1		3.0
14	400	4.8	220	4.0	110	3.0		3.0
15	360	4.9	320	3.9	110	2.9		3.0
16	330	4.8	220	3.8	110	2.8		3.1
17	310	4.8	230	3.4	110	2.4		3.2
18	280	4.9	240	-	120	2.0		3.2
19	260	4.8						3.1
20	250	4.4						3.1
21	260	3.8						3.1
55	270	2.7						3.1
23	300	2.4						3.1

Time: 75.0°W.
Sweep: 1.0 Me to 10.0 Mc in 15 seconds.

Formosa,	China	(25.0°H,	121.5°E)	Table	27			April 1953
Time	h'F2	foF2	h'F1	foFl	h E	foE	fEs	(M3000)F2
00	290	5.0					3.0	2,8
01	270	5.0					3.4	3.1
02	240	4.4					3.2	3.2
03	245	3.7					2.9	3.4
04	275	2.9					3.0	2.9
05	260	2.6					2.4	3.0
06	240	4.8			(100)		2,7	3.4
07	240	6.2			(100)		3.6	3.5
08	260	7.0	230	4.1	(100)		4.1	3.3
09	280	7.2	230	4.4	(100)	3.2	4.2	3.1
10	31.0	8.5	210	4.8	(110)		4.8	3.1
11	320	9.4	200	(4.5)	(110)		4.6	3.0
12	320	10.8	500	4.6	(110)		4.6	3.1
13	305	13.0	220	4.6	(110)		4.5	3.2
14	310	12.6	220	4.5	(110)		4.8	3.2
15	280	12.8	220	4.3	(110)		4.2	3.3
16	270	12.2	210	4.0	(100)		4.1	3.3
17	240	11.2	230	3.8	(100)		3.7	3.5
18	220	8.9			(100)		3.3	3.4
19	220	7.4					3.2	3.4
20	230	5.9					3.2	3.1
21	280	4.9					2.4	2.9
22	315	4.8					3.0	2.7
23	320	5.1					3.1	2.8

Sweep: 1.1 Mc to 19.5 Mc in 15 minutes, manual operation.

Panaza	Fanana Canal Zone (9.4°N, 79.9°W) Table 29											
Time	h*F2	foF2	h*F1	foFl	h'E	foE	fEs	(M3000)F2				
00	260	5.6						2.9				
01	250	5.5						3.1				
02	240	4.3					2.1	3.1				
03	260	3.3					1.8	2.9				
04	260	3.1						2.9				
05	260	2.9						3.0				
06	270	3.0					1.7	3.0				
07	260	4.9	230		120	2.0	2.8	3.2				
80	300	5.7	240	(4.2)	110	2.7	3.5	3.0				
09	350	6.5	220	4.5	110	3.0	3.8	2.7				
10	360	7.9	240	4.6	110	3.3	4.2	2.7				
11	370	9.1	230	4.6	110	3,5	4.2	2.7				
12	360	10.0	230	4.6	110	3.5	4.1	2.7				
13	340	10.9	220	4.6	110	3.5	4.8	2.8				
14	320	11.3	220	4.5	110	3.4	4.7	2.9				
15	300	11.5	230	4.4	110	3.2	4.7	3.0				
16	280	11.2	230	4.3	110	3.0	4.4	3.0				
17	270	10.9	240	(4.0)	120	2.5	4.0	3.0				
18	250	9.7					3.5	3.2				
19	240	7.8					3.4	2.9				
20	260	7.1					2.4	2.8				
21	270	6.7						2.8				
22	270	6.5						2.9				
23	270	5.6						2.8				

23 270 5.6 Time: 75.00W. Sweep: 1.0 Ma to 25.0 Mc in 15 seconds.

Baten	Rouge, Lo	ulsiana	(30.5°N,	<u>Table</u> 91.2°W)				April 1953
Time	h'F2	foF2	h *F1	foFl	h*E	foE	fEs	(M3000)F2
00	280	3.4						3.0
01	280	3.2						3.0
02	270	3.2						3.1
03	270	3.2						3.1
04	270	3.0						3.1
05	280	3.0						3.1
06	250	4.0				-		3.3
07	280	5.0	230	3.6	120	2.1	3.2	3.3
08	280	5.4	220	8.8	110	2.6	5.2	3.4
09	320	5.2	310	4.1	110	2.9	5.4	3.2
10	350	5.3	200	4.2	110	3.0	5.7	3.0
11	350	5.6	200	4.3	110	3.1	4.0	3.0
12	340	6.1	200	4.4	110	3.2		3.0
13	330	6.4	220	4.4	110	3.2	3.7	3.1
14	320	6.4	-220	4.2	110	3.2	3.9	3.1
15	310	6.6	230	4.2	110	3.0	4.1	3.1
16	290	6.2	230	4.0	110	2.8	3.9	3.2
17	280	6.1	230		120	2.3	3.9	3.3
18	250	6.1					3.4	3.4
19	230	6.0					2.4	3.4
20	230	4.8						3.3
21	260	3.8						3.1
22	280	3.6						3.0
23	290	3.4						3.0

23 290 3.4 Time: 90.0°W. Sweep: 1.0 Me to 25.0 Me in 30 seconds.

Baguis	, P.I. (1	6.4°N, 1	20.6°E)	Table	April 1953			
Time	h'F2	foF2	h*F1	foFl	h E	foE	fEs	(M3000)F2
00	270	7.1						3.0
01	230	7.6					2.2	3.4
02	210	6.3					2.5	3.5
03	220	4.3						3.3
04	240	3.3					2.4	3.2
05	250	3.1					2.5	3.3
06	240	4.7					3.8	3.3
07	230	6.4			100	2.2	5.0	3.4
08	(270)	7.3			100	2.8	5.5	3.1
09	(310)	8.2	220		100	(3.0)	5.6	2.8
10	330	9.0	500	4.4	100	3.2	6.2	2.5
11	340	9.6	200	4.5	100	(3.3)	8.2	2.4
12	340	9.6	190	4.4	100	(3.5)	6.2	2.5
13	330	10.2	190	4.4	100	3.4	5.9	2.8
14	320	10.4	190	4.4	100	3.2	5.6	2.7
1.5	300	10.8	200	(4.2)	100	3.0	5.3	2.9
16	280	11.3	220		100	2.7	4.8	3.1
17	230	11.3			100	2.2	4.1	3.2
18	230	10.6					3.8	3.2
19	230	9.2					3,2	3.1
20	250	9.0					2.5	3.0
21	260	8.3					2.4	3.0
23	270	7.6						3.0
23	300	7.0						2.9

23 | 300 7.0 Time: 120.0°E. Sweep: 1.0 Mo to 25.0 Me in 15 seconds.

	dville, B	April 1953						
Time	h F2	foF2	h'F1	foFl	h*E	foE	fEs	(M3000)F2
00	220	5.4						2.5
01	230	4.1						2.4
02	235	3.4					2.2	2.4
03	225	2.6					2.1	2.6
04	(240)	2.1					2.9	2.6
05	240	3.5					2.6	2.5
06	240	5.7	230		125	2.3	3.4	2.6
07	275	6.5	230		120	2.8	3.7	2.4
08	300	7.4	220	4.3	120	3.2	4.0	2.3
09	315	8.2	210	4.5	115	3.4	3.7	2.1
10	350	9.2	200	4.6	115	3.5		2.0
11	340	10.3	200	4.6	115	3.6		2.1
12	33.0	11.4	200	4.4	115	3.5	4.0	2.2
13	300	11.8	220	4.5	115	3.3	4.0	2.2
14	300	11.9	220	4.3	120	3.1	4.0	2.2
15	290	11.9	235		120	2.7	3.8	2.2
16	265	11.8	245		120	2.3	3.4	2.3
17	235	11.6				2.0	2.8	2.4
18	220	11.2					2.6	< 2.5
19	210	10.2					2.2	2.6
20	205	7.7					٠. ۵	2.5
21	220	6.2					1.8	2.2
22	225	5.6					2.0	2.2
23	240	5.2					2.0	2.4

Time: 0.0°. Sweep: 1.0 Mo to 16.0 Mc in 7 seconds.

				Tabl	e 31			
Rounca	yo, Peru	(12.0°5,	75.3°W)					April 1953
Time	h'F2	foF2	h*Fl	foFl	h*E	foE	fEs	(M3000)F2
00	230	5.8						3,3
01	230	6.6					3.6	3.2
02	230	5.7						3.3
03	240	4.8						3.3
04	250	4.2						3.3
05	270	3.5						3.2
05	270	3.4				R	4.8	3.0
07	240	6.5	240		120	2.1	5.5	3.3
08	280	8.1	220		110	2.5	11.1	3.1
09	300	8.6	210	4.3	110	-	11.5	2,8
10	320	8.2	200	4.4	110	-	12.0	2,5
1.1	340	7.4	200	4.5	100		12.3	2.6
12	360	7.6	200	4.5	100	40 mm	12.3	2.5
13	330	8.0	200	4.4	110		12.0	2.6
14	320	8.4	200	4.3	100		11.7	2.7
15	(300)	8.5	200		100	-	11.2	2.7
16	(270)	9.0	200		110		10.2	2.7
17	240	8.5	240		110	2.4	6.4	2.6
18	270	8.5			110			2.5
19	300	7.8						2.7
20	270	7.5						2.7
21	240	8.2					4.1	3,0
22	230	8.0					4.5	3.2
23	230	7.0					4.4	3.2

23 230 7.0 Time: 75.0° W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

	Table 33

				Table	33			
Capetor	wn, Union	of S. A	frice (3	4.2°S, 1	8.3°E)			April 1953
Time	h*F2	foF2	h*Fl	foFl	h*E	fcE	fEs	(M3000)F2
00	250	3.0					2,1	3.1
01	260	3.0					1.8	3.0
02	270	3.1					1.9	3.0
03	260	3.2						3.0
04	250	3.2						3.2
05	240	3.1						3.1
06	250	3.0						3.2
07	230	3.6						3.3
08	220	5.6	220		120	2.0		3.5
09	240	5.3	220	3.6	110	2.6		3.5
10	260	6.9	220	4.0	110	2.9	3.4	2.3
11	270	7.1	210	4.3	110	3.1	3.8	3.2
12	260	7.8	21.0	4.3	110	3.2	3.7	2.1
13	280	8.6	200	4.4	110	3.2	3.3	3,1
14	270	8.9	210	4.3	110	3.2	3.5	3.1
15	270	8.8	230	4.1	110	3.0	3.5	3.2
3.5	250	8.5	230	3.8	110	2.8	3.3	3.3
17	240	7.9	230	3.2	120	2.3	3.1	3.4
18	220	8.7		0.0	110	1.9	2.5	3.4
19	21.0	5.0			-20	2.5	1.5	3.4
20	230	3.3					1.9	3.3
31	240	3.3					1.8	3.2
22	240	3.0					2.1	3.3
23	250	3.0					1.8	3.2

Time: 30.0°E. Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

Baker	Lake, Oar	P.	larch 1953					
lime	h'F2	foF2	h'F1	foFl	h*E	foE	fEs	(M3000)F2
00	260	2.4					8.0	3.0
01	260	2.2					5.0	3.0
02	260	1.9					4.4	2.9
03	260	1.9					4.0	2.9
04	270	1.9			-		4.0	3.0
05	280	2.1				E	5.2	2.9
05	260	2.4	-		110	1.7	4.0	3.0
07	260	2.9	49-50-40		110	1.9	5.0	3.0
08	280	3.2			110	2.4	5.3	3.0
09	280	3.5	210	3.0	110	2.5	5.0	3.0
10	300	3.8	250	3.3	110	2.8	3.8	3:0
11	280	4.0	220	3.6	100	2.9	4.1	3.0
12	330	4.0	240	3.5	100	2.8	4.0	2.9
13	370	3.8	220	3.5	110	2.7	3.1	2.8
14	370	4.2	220	3.5	100	2.5		2.9
15	310	4.3	220	3.4	110	2.5	3.1	2.9
15	300	4.0	250	3.2	110	2.5	4.2	2.9
17	280	4.0	260		120	2.4	5.5	3.0
18	250	3.7			120	1.9	4.3	3.0
19	260	3, 2			110	1.8	4.0	2.9
20	280	2.8				E	5.9	2.9
21	260	2.8				E	5.0	2.9
22	260	2.9					4.0	2.9
23	250	2.5					4.8	2.9

Time: 90.0°W. Sweep: 1.0 Me to 25.0 Me in 15 seconds.

Teble 32

Johann	್ತಾಬುಕಾ	Urion of	S. Africa	(26.20	S, 28.1	0E)	April 1953		
Time	h:F2	foF2	h'Fl	fcFl	h ! E	foE	fEs	(M3000)F2	
60	260	3,2					2.4	3.0	
07.	- 260	3.1					2.4	3.0	
02:	280	2.2					2,6	3.0	
03	280	3,2					2.1	3.2	
06	340	3.1					1.9	3.2	
05	240	2.3					1.8	3.2	
05	240	3.0						3.2	
07	2:30	5.4	-		130	2.0		3.5	
08	240	6.5	550	3.7	110	2.6		3.5	
09	250	6.8	220	4.1	110	2.9	3.3	3.4	
10	260	7.5	21.0	4.4	110	3.1	3,7	3.3	
11	270	8.0	220	4.5	110	3.2	3.7	3.2	
13	280	7,6	200	4.5	110	3.3	3.6	3.1	
13	280	8.1	200	4.5	110	3.3	3.5	3.1	
14	270	8.4	220	4.4	110	3.2	3.8	3.2	
15	260	8.3	220	4.1	110	3.0	3.7	3.2	
15	250	8.0	220	3.6	210	2.7	3.4	3.3	
17	230	7.1	230	-	120	2.0	2.9	3,4	
18	230	6.1			-	-	2.4	3.4	
19	220	4.6					2.0	3.3	
20	230	3.6					1.7	3.3	
22	240	3.5						3.2	
22	220	3.4						3.2	
23	240	3.2					1.9	3.1	

Time: 30.0°E. Sweep: 1.0 Me to 15.0 Me in 7 seconds.

				Table	34			
Point	Barrew, A	laska (7	1.3°N, 1	£5.8°₩)				March 1953
Time	h+F2	foF2	h'Fl	foFl	h#E	fok	fEs	(M3000)F2
00	280	(3.2)					7.0	(3.0)
01.	(280)						7.5	
02	300	(2.8)					4.5	(3.2)
03	(320)	(2.1)					4.5	
04	(300)						4.1	
05	(330)						4.6	
06	350	(3.1)					4.2	(2.8)
07		47-7549	-				4.6	
80	(290)	(3.0)	-				4.9	(2.9)
09	(290)	3.4		-	-		4.8	3.1
10	(210)	3.5	-				4.0	3.1
11	300	3.7	210		120	2.0	3,2	3.1
12	(300)	3.9	220		120		3.2	(3.2)
13	300	3.8	240		120		2.9	3.1
14	310	3.8	250	3.4	120	2.1		3.1
15	280	4.0	240		120			3.1
15	300	3.9	240	-	1.20			3.0
17	270	4.0	270	-			2,2	3.2
18	270	3.4	-	-			3.2	3.2
19	290	3.2					3.9	3.2
20	(270)						4.5	
21	(320)	-					4.9	market 100
22							5.0	- methods
23							6.2	

Time: 160.00W. Sweep: 1.0 Mg to 25.0 Mc in 15 seconds.

				160.	10			
Reykja	vik, Icel	and (64.	1°N, 21.	8°W)				March 1953
Time	h¹F2	foF2	h'F1	foFl	h *E	foE	fEs	(M3000)F2
00							5.3	
01							5.2	
02							5,0	-
03							5.2	
04							5.0	
05		-					4.4	
06	(275)	(2.1)					3.4	(3.3)
07	240	3.0			110			3.4
08	240	3.5	220		110	(1.8)		3.4
09	240	3.9	210		100	2.1		3.4
10	(250)	4.0	210	3.3	100	(2.3)		3.2
11	300	4.2	200	3.6	100	2.4		3.2
12	285	4.5	200	3.4	100	2.5		3.3
13	290	4.7	200	3,5	100	2.5		3.3
14	300	4.3	200	3.5	110	2.4		3.2
15	300	4.4	220	3.4	110	2.3		3.2
16	270	4.3	550	3.2	110	(2.0)		3.3
17	250	4.2	230		120	1.8	2.3	3.3
18	270	(3.6)					3.9	(3.2)
19	(230)	(2,6)					4.4	(3.4)
20							5.5	
21							4.5	
55	(000)						5.6	
23	(290)						4. B	

23 (290) ——
Time: 15.00W.
Super: 1.0 Me to 25.0 Me in 13 soconds.

Church	ill, Cena	Karch 1953						
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	300	2.4					8.0	
01	300	2.5			110	4.0	7.0	-
02	(300)	2.3			110	3.4	4.0	
03	300	2.1			120	1.9	5.2	
04	(200)	<2.2			110	2.3	4.0	
05		< 2.8			110	2.8	3.6	
06		2.6			110	3.0	4.1	
07	(300)	3.2			110	3.2	4.0	(3.1)
08	(290)	3.8			110	3.6		2.8
09	310	3.8	220	3.4	110	2.8	3.4	3.0
10	380	4.0	230	3.8	110	2.8	3.3	2.7
12	380	4.0	220	3.7	110	2.8		2.8
12	430	4.2	220	3.8	110	2.8		2.5
13	410	4.2	210	3.8	110	2.8		2.6
14	380	4.4	220	3.7	110	2.8		2.8
15	350	4.5	230	3.6	110	2.8		2.9
16	320	4.4	230	3.4	110	2.6		2.9
17	300	4.0	240	3.2	110	2.4		2.8
18	290	3.8			110	2.4	3.4	2.8
19	300	3,3			110	3.0	4.4	2.9
20	310	3.0			110	2,8	6.5	(3.0)
21	300	2.7			120	2.8	6.1	(2.8)
22	300	2.8			120	2.8	6.2	(2.8)
23	300	2.8			120	2,1	7.3	(2.9)

Time: 90.0°W. Sweep: 1.0 Mc to 10.0 Mc in 15 seconds.

Prince	Rupert.	Oanada	(54.3°¥,	130.3°W)	39			March 1952
Time	h'F2	foF2	h'Fl	foF1	h •E	foE	fEs	(M3000)F2
00	280	1.6					1.0	
61	300	1.5					1.8	
02	320	1.7					2.8	
03	350	2.0					2.4	
04	(320)	(2.0)	1				>4.0	
05	(320)	(2.0)	1				3.6	
06	300	1.8					1.6	
07	270	2.5			120	1.6	1.5	3.2
08	250	3.3	230	3.2	110	2.0		3.4
09	G	<3.6	210	3.4	110	2.3		G
10	580	<4.0	200	3.6	110	2.5		G
11	530	4.0	200	3.8	110	2.8		G
12	440	4.2	200	3.8	110	2.8		<2.8
13	440	4.2	200	3.8	110	2.9		2.4
14	380	4.4	210	3.8	110	2.8		2.8
15	370	4.4	230	3.7	110	2.7		3.0
16	320	4.5	220	3.6	110	2.5		3.2
17	250	4.4	230	3.5	120	2,2		3.2
18	240	4.0			120	1.9		3.3
19	250	3.9						3.2
20	250	3.0						3.0
21	260	2.2						
22	260	1.9						
23	280	1.7					1.0	

22 260 1.9
23 280 1.7
Time: 120.0°W.
Sweep: (Pay) 1.0 Mc to 10.0 Mc in 15 seconds.
(Hight) 0.5 Mc to 4.0 Mc in 15 seconds.

			Table 41		
inden/Harz,	Germany	(51.6°N,	10.101)	Xarok	1953

Linden	/Harz, Ge	rmany (5	51.6°N, 1	0.103)				March 1953
Time	h*F2	foF2	h'F1	foFl	h'E	foE	fEs	(M3000)F2
00	280	2.7						3.0
01	280	2.6					2.0	3.0
02	270	2.4					2.0	3.0
03	270	2.4					2.0	3.0
04	275	2.2					2.0	3.0
05	260	1.9					2.0	هبج
06	255	2.2			_	1	2.0	3,3
07	245	3.5	230	3.2		18	2.0	3.5
08	270	4.2	220	3.4	115	2.0	2.3	3.4
09	290	4.6	21.5	3.7	110	2.4	3.1	8.4
10	280	5.0	21.5	3.8	110	2.6	3.2	3.4
12	290	5.0	210	3.9	105	2.7	3,4	3,4
12	300	5.2	200	4.0	110	2.8	3,3	3.3
13	290	5.2	210	3.9	105	2.8	3, 2	3.3
14	290	5.2	210	3.9	110	2.7	2.9	3.4
15	280	5.2	210	3.7	110	2.8	2.4	3.3
16	260	5.1	220	3.5	115	2.4	2.5	3.4
17	250	5.0	230		120	2.0	2.4	3.4
18	240	4.7	240		-	E	2.1	3.4
19	230	4.7				E	2.0	3.3
20	240	4.2					2.0	3.2
21	240	3.6					1.7	3.2
22	260	3.0						3.2
23	290	2.8						3.0

Time: 15.0°E.
Sweep: 1.0 Mc to 18.0 Mc in 8 minutes.

Fort O	himo, Can	ada (58.	1ºH, 68.	3°W) Tabl	<u>a 38</u>			March 1953
Time	h'F2	foF2	h'Fl	foFl	h°E	foE	fEs	(M3000)F2
00	(350)	2.4			110	3.0	5.0	(2.9)
01	(300)	2.2			110	3.0	4.5	
02	(360)	2.3			110	2.8	4.2	
03		<3.0			100	3.1		-
04		<3.0			100	3.2		
05		-			100	3, 2		-
08	(310)	3.3			110	3.0		(3.0)
07	300	<3.5			100	3.1		3.0
08	350	3.8	260	3.7	110	2,6		3.0
09	360	4.0	240	3.6	100	2.5		3.0
10	380	4.2	230	3.8	100	2,8		3.0
11	400	4.2	220	3.8	100	2.9		2.9
12	400	4.3	230	3.8	110	3.0		2.8
13	400	4.4	220	3.8	110	2.8		2.8
14	400	4.5	230	3.7	110	2.8		2.8
15	310	4.7	260	3.4	110	2.6		2.9
16	300	4.2	290	3, 2	110	2.6		2.9
17	300	4.0	-		110	2.8		2.9
18	300	3.8			110	3.0	3.8	2.9
19	300	3.2			110	2.4	4.6	3.0
20	300	2.8			100	2.2	5.0	2.9
21	300	2.8			120	2.4	5.8	3.0
22	(280)	<2.8			120	2.8	7.0	(3.0)
23	300	2.5			100	3.2	4.8	(3.0)

23 300 2.5 Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

	t, Hollar	• /			March 1953			
lime .	h'F2	foF2	h'Fl	foFl	h*E	foE	fEs	(M3000)F:
00	295	2.5						2.9
01	295	2.3						2.9
02	290	2.1					2.2	3.0
03	300	2.1					1.9	3.0
04	280	1.9						3.0
05	260	1.8						3.0
06	245	2.8				E		3.2
07	225	3.8	-		115	2.0		3.4
08	260	4.4	205	3.4	105	2.3		3.4
09	280	4.6	205	3.8	105	2.5	2.6	3.4
10	290	4.9	200	3.9	100	2.7	3.2	3.3
11	295	5.1	200	3.9	100	2.8	2.8	3.3
12	300	5.2	200	3.9	100	2.8		3.3
13	300	5.1	205	3.9	100	2.8		3.3
14	280	5.2	205	3.8	105	2,6		3.3
1.5	285	5.2	21.5	3.5	105	2.4		3.3
16	250	5,1	220	3.3	110	2.2		3.4
17	230	4.9	235		125	1.8		3.3
18	220	5.0				-•-		3.2
19	225	4.5						3.2
50	230	3.7						3.2
21	250	3.0						3.1
22	280	2.7						3.0
23	<290	2.5						3.0

Time: 0.00. Sweep: 1.4 Mc to 11.2 Mc in 6 minutes, automatic operation.

			(10)	8°¥, 7.3	/			March 1953
Time	h'F2	foF2	h*F1	foFl	h'E	foE	fEs	(M3000)F2
00	290	3.0						3.2
01	300	3.0						3.3
05	290	2.9						3.2
03	280	2.7						3.3
04	275	2.7						3.3
05	250	2.4						3.5
06	280	2.3						3.5
07	210	3.2						3.7
08	200	4.1		-	100	2.1		3.8
09	210	4.5	200	3.6	100	2.4		3.6
10	260	5.0	200	3.8	100	2.6		3.5
11	300	5.3	200	4.0	100	2.8		3.6
12	280	5.4	200	4.0	100	2.8		3.6
13	300	5.4	200	4.0	100	2.8		3.5
14	290	5.6	200	4.0	100	2.8		3.6
15	260	5.6	200	3.8	100	2.7		3.6
16	230	5.2	200	3.8	100	2.5		3.7
17	200	5.4			100	2.2		3.7
18	210	5.1						3.7
19	200	5.0						3.7
20	210	4.5						3.6
21	215	4.0						3.5
22	230	3.5						3.5
23	280	3,2						3.3

23 280 3.2

Time: 15.0°E.
Sweep: 1.0 Mc to 25.0 Mc in 30 seconds.

Bagnio	, P.I. (1e	5.4°E, E	20.6°E)	And)	<u> 53</u>			March 1953
Time	h'F2	foF2	h'Fl	foFl	h !E	foE	fE3	(M3000)F2
00	260	6,2			and the second			2.1
01	240	5.9						3.2
03	530	5.3						5.4
03	200	3.6						3.5
04	220	3.1						3.5
05	260	(1.7)						3.3
06	250	3.0					1.9	3,2
07	230	5.6			100	2.0	2.2	3.6
08	(260)	6.4	220	-	100	2.6	4.1	3.3
09	(300)	7.7	200	-	100	2.9	4.2	3.0
10	320	8.9	200	4.5	100	3.1	5.4	2.7
11	520	9.2	200	4.3	100	3.2	5.4	2.6
13	320	9.3	190	4.4	100	(3.3)	5.1	2.4
13	320	9.4	180	4.5	100	3.2	5.0	2.6
1-6	320	9.7	190	4.3	100	3,1	4.8	2.7
15	300	10.4	200		100	3.0	4.1	2.9
16	270	10.6	230		100	2.6	3.7	3.1
17	230	10.4			100	2.2	3.3	5.8
18	240	10.3					3.3	3.3
10	230	10.0						3.1
20	220	9.4						3.2
21	220	8.3						3.3
22	230	7.3						3.0
23	560	6.6						3.0
Of man	120 098							

Time: 120.0°E. Sweep: 1.0 Me to 25.0 Me is 15 seconds.

Capoto	vn. Union	02 8. 4	Lirion (2	Table 4.803, 1	8.3°E)			March 1953
Timo	7185	2013	h'Fl	fofl	h'E	foE	fEs	(13000)155
00	260	8.8				-		3.1
01	250	3.2						3.1
62	260	5.1						3.0
03	260	3.0						3.1
06	260	3.0						3.1
0.5	250	2.0						3,1
06	250	3.7						3,0
07	340	5, 9			140	1.7		3.3
08	200	5.0	230	5, 2	1.20	3.2		3.3
09	280	5.7	220	5.9	110	3.6		5.8
10	890	6.1	220	4.1	110	2.9	3. 8	3.1
11	300	4,2	570	4.2	110	3.1	3.8	3.1
12	320	6.8	23.0	4.3	110	3.3	3.6	3.0
13	300	7.0	210	4.4	110	3.8	8,4	5,0
24	200	7.0	220	4.8	110	3.3	3, 5	5.0
1.6	300	7.1	220	4.2	110	8.1		8.1
3.6	290	6.9	220	4.1	110	2.9	3.5	3.2
3.7	370	5.8	230	3.8	110	3.6	8.2	8.3
3.69	240	6.2	280	8.1	180	3, 1	3.0	3,4
1.0	5230	6.8	200		-		3.6	3.4
20	230	4.5					1.0	3.3
83	340	3,7						6.8
23	<260	3.4						3.0
23	260	3.4						3.1

Plant ELOZ. Sweeps 1.0 Ms to 15.0 Ms in 7 seconds.

Aki Go.	Jeyen (3	February 1953						
Time	h°F2	8085	hיא	foFl	h'E	foE	fEs	(N3000)F2
00	280	8.4					2.3	2.9
01	250	3.3					3,2	8,0
0.3	270	8,3					2.0	3.0
03	260	3,2					2.0	3,0
04	250	3.4					2.0	3.2
0.5	250	2.8					3,2	3.1
06	250	2.7						3.2
07	240	4.5			140	1.6	3.2	3.5
CS.	340	5.5	230	3.2	1.20	2.2	3.0	3.6
09	250	5.9	230	3.8	110	2.5	3.4	3.5
10	250	6.2	550	4.0	110	2.8	3.5	3.3
11	270	7.0	230	4.2	110	3.0	3.5	3.3
12	270	7.8	230	4.2	110	3.0	3.5	3.3
13	360	7.0	230	4.0	110	3.0	3.5	3.4
14	260	6.3	330	3.9	110	2.8	3.4	3.4
1.5	250	6.0	230	3.5	110	2.5	3.4	3.4
16	240	5.5	240	3.0	1.20	3.2	2.9	3.5
17	230	4.7			130	1.7	3.4	3.5
1.8	230	3.7					2.4	3.3
19	250	8.6					2.3	3.2
20	250	8, 2					2.2	3.2
21	260	3.2					2.3	5.1
22	290	3.1					2.3	3.0
23	290	3,2					2.3	3.0

Time: 185.0°E.
Sweep: 0.85 He to 22.0 Me in 6 minutes, automatic operation.

				Table				
40pss	esburg, I	go gots	3.Africa	(25.205	. 28.10	March 1953		
Time	h'F2	foF2	hiFl	foFl	h E	foE	Tis	(M3000)F2
00	250	3.2						3.0
01	250	3.2						3.1
02	240	3.2						3.2
03	240	3.0						3.2
04	240	2.6						3.1
05	<260	3.4						8.0
05	250	3.0						3.2
07	240	4.9	240		1.20	2.0		3.4
90	280	6.0	230	3.9	110	2.6		3.3
09	280	6.3	220	4.2	110	2.9	3.6	3.3
10	290	6.7	200	4.3	110	3.1	5.8	3.3
13	31.0	6.7	200 .	4.5	110	3.3	3.6	3.0
73	300	7.4	210	4.5	110	3.4	3.7	5.1
13	300	7.3	220	4.5	110	3,4	8.6	3,0
14	300	7.6	210	6.4	110	3,2	3.7	3.1
15	280	7.8	230	4.2	110	3.1	4.0	3,2
16	270	7.1	220	4.0	110	2.8	3,7	3,2
17	250	7.0	230	3.6	110	2.4	3, 6	5.3
18	230	6.3			110	1.8	2.9	3.4
19	220	5.5					2.3	8.8
20	230	4,4					1.9	2.3
21	260	3.7					1.9	3.1
23	260	3.5					1.6	3,0
23	260	3.5						3.0

Time: 30.0°E. Sweep: 1.0 Me to 15.0 Me in ? seconds.

7able 56 7abrand, Japan (65.4°E, 141.7°E) February 193										
Time	h'F2	gors.	hiFl	A STATE OF THE PERSON NAMED IN COLUMN 2				fEp (H3000)F2		
			N.L.	1011	0.0	102	1.00			
00	800	3.1						2.9		
02	300	3.0						3.0		
03	300	3.1						2.0		
08	500	5.1						3.9		
04	300	3.4						2.9		
0.5	290	2.9						2.9		
Q6 I	280	5.8						2.9		
07	260	4.2			110	-		2.2		
08	(280)	(5.7)			120	2.0		(3.1)		
09	280	(5.8)	260	3.6	130	2.5		(3.1)		
10	300	(6.2)	250		180	2,6		(3.0)		
11	800	9.4	250	5.6	1.80	2.7		3.1		
12	280	7.0	270	5,9	1.00	2,7		8.2		
13	300	6.4	980	3,8	120	8,6		5,1		
14	290	6,2	280	3.6	120	2.6		3,2		
1.5	280	6.0	-	-	110	2,2		8,1		
16	270	5.4	340	~~~	120	2.0		3,3		
17	260	4.4						3,1		
16	270	3.1						I,B		
1.9	280	8.0						3.0		
30	290	2,8						5.0		
21	200	3.0						3.0		
22	300	8.8						2,8		
35	800	5, 2						2.9		

Sine: 135.0°%. Sweep: 1.0 Mo to 15.5 Me in 3 minutes.

Tekyo,	Jagen (S	5.7°E, 1	E9.5°3)	Table	46		February 1958		
Time	p1E5	foF2	h Pl	forl	h®.	foE	fks	(1/3000)P2	
00	300	3.0						2,9	
OT.	270	3, 2						2.0	
03	370	3,0					1.3	5.0	
03	260	3.1						3.0	
04	230	3.3						3.3	
06	250	2.5						3,0	
06	270	3,5						8.0	
07	230	4.5			140	1.9	2.4	8.4	
08	240	5.6	230	3.4	1.20	2.3	2.9	5.4	
09	250	6.0	230	4.0	120	2.6	3.2	3.4	
10	270	6, 5	220	4.1	1.20	2.8	3.0	3,3	
11	270	6.6	230	4.2	110	3.0		3.3	
12	270	7.0	220	4.2	110	3.1		3.3	
13	270	7.2	230	4.2	110	3.0		3.2	
14	260	6.9	240	4.0	1.20	3.0	3.5	3.3	
1.5	250	6.3	230	3.7	1.20	2.6	3.0	5.4	
16	240	5.8	230	3.2	1.20	2.2	3.0	3.4	
17	230	5.0					2,7	3.4	
1.8	230	3.7					2.6	3.3	
19.	250	3.4					2.5	3.1	
20	250	3.2					2,3	3.1	
21	360	3.0					3.4	3.0	
22	280	2.9					2,3	5.0	
28	300	3.0					2.5	2.9	

Fine: 135.0%. Sweep: 1.0 Me to 17.2 Me in 2 nimites.

Yanaga	Table \$9 Yamagawa, Japan (31.2°E, 130.6°E) February 1963											
Time	h¹F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2				
00	300	2.9						3.0				
01	280	2, 9						3.1				
02	270	2.9					2.0	3.2				
03	260	2.9					1.7	5.2				
04	240	3.2						3.4				
05	240	2.8						3.2				
06	290	2.4						3.1				
07	240	3.4						3.4				
80	230	5.0			130	2.0		3.5				
09	250	6.0	240	4.0	110	2.4		3.4				
10	270	6.2	230	4.2	100	2.8		5.4				
11	280	7.0	220	4.4	100	3.0		3.3				
12	270	7.2	200	4.6	100	3.0		3.4				
13	280	7.4	220	4.4	100	3.0		3.3				
14	270	7.9	220	4.2	100	3.0	3.3	3.4				
15	250	6.8	240	4.0	100	2.9		3.4				
16	250	6.3	220	3.7	110	2.5	3.3	3.5				
17	230	5.4	240	2.8	120	2.3	3.0	3.6				
18	220	4.7					2.3	3.6				
19	550	3.5					2.2	3.4				
50	240	3.0					2.3	3.3				
21	250	3.0					2.0	3.2				
22	260	2.7					2.0	3.2				
23	280	2.8					2.0	3.1				

Time: 135.0°E. Sweep: 1.0 Ma to 22.0 Me in 2 minutes.

<u>Table 51</u> Brisbans, Australia (27.5°6, 153.0°E) Jam											
Time	h°F2	foF2	h'Fl	foFl	h *E	foE	fEs	(M3000)F2			
00	250	5.5					4.2	3.1			
01	230	4.8					3.9	3.2			
02	245	3.6					3.0	3.2			
03	270	3,2					3.1	3.1			
04	280	3,2					2.6	3.0			
05	270	5.2					2.0	3.1			
06	240	4.4	230	3.4	120			3.4			
07	280	5.1	210	3.9	100			3.2			
80	320	5.1	210	4.1	100			3.1			
09	310	6.3	200	4.3	100	-	4.0	3.1			
10	340	6.3	200	4.4	100			3.0			
11	340	6.6	200	4.6	100	3.5		3.0			
12	340	7.0	200	4.6	100		4.2	3.0			
13	320	7.0	200	4.6	100		4.2	3.0			
14	310	6.6	200	4.4	100	3.2		3.0			
15	300	6.7	210	4.4	100		3.6	3.1			
16	300	6.1	220	4.0	100	2.9		3.1			
17	280	6.0	230	3.8	110	2.6		3.1			
18	260	5.8	230	3.2	125			3.2			
19	240	5.9				3	3.4	3.0			
20	260	6.0					4.0	3.0			
21	290	5.9					3.1	2.9			
22	265	5.9					3.5	2.9			
23	270	5.8					4.1	3.0			

Sweep: 1.0 Me to 16.0 Mc in 1 minute 55 seconds.

		Table 53		
asmania	(42.8°8,	147.4°E)	Jamary	195

Jamary	1953
E foE fEs (M300	0)F2
3.	
3.	
2.	
3.	
3.	
 12 2. 5 3.	
00 2.2 2. 6 5.	
	0
3.	.0
000	0 2.6 3.5 3. 3.0 4.2 2 5.5 2 5.3 2 4.3 3 4.3 2 4.3 2 4.1 3. 0 3.0 3.5 4.8 3. 0 2.5 4.0 3. 3.0 3.0 3.5 3. 3.0 3.0 3.5 3. 3.0 3.0 3.5 3.

Time: 150.0°E. Sweep: 1.0 Mc to 13.0 Mc in 1 mimute 55 seconds.

Table 50

Zawaav	ille, Aus	threatte (19.708	146 80R)	Jamery 1953			
Time	p.ES	foF2	h'Fl	foFl	h B	fox	fEs	(M3000)F2
				2012	. 41.13	20,7		(10000)12
00	260	5.3					3.5	3,2
01	220	5,8					4.3	3.3
02	220	4.2					3.1	3.1
03	240	3.8					2.6	3.0
04	260	3.1					2.5	2.9
05	250	2,8			**********	29		3.0
06	240	3,4			1.30	1.8	3.0	3.1
07	240	5.0	ecological	3,8	110	2,3	4.2	3.2
C8	300	5,8	220	4.0	110	2.8	4.8	3.2
09	300	6.4	200	8.3	110	3.2	5.8	3,2
1.0	250	6.8	200	4.4	1.00	3,5	5.4	2.9
11	260	7.4	200	4.4	110	3.4	5.4	2.9
12	340	8.3	200	4.8	110	3.5	4.8	3.0
13	300	9.2	500	4.5	100	2.5	5.0	3.0
14	800	9.3	23.0	4.5	100	3.4	5.3	3.0
16	300	8.9	200	4.3	100	3, 3	4.7	3.1
16	230	8.3	20.0	4.2	115	3.0	4.7	3.2
17	280	7.4	210	4.0	110	2.7	4.0	
10	240	8.0	220	1000	110	2.2		3.1
19	260	5.8	5400		110	3.2	4.0	3.1
50	230	5.9			equicos.	.00	3.5	3.0
21.	280	5.8					5.4	3.0
22	300	5.8					4.1	3.0
23	270						2,6	2.9
60	210	5.3					3,5	3.0

Time: 150.0 E. Sweep: 1.0 Ms to 16.0 Mc in I minute 55 seconds.

				4000	-0.0				
едрега	a, Anstro	11s (35	.3 3, 14	9.0°E)			Jenuary 1953		
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2	
00	250	4.9					4.0	3.1	
03.	240	4.5					3.9	3.1	
02	240	4.0					3.8	3,1	
03	(240)	3.7					3.3	(3.1)	
04	240	(3.2)					2.9	(3.1)	
05	250	3.3				25	3.1	3.3	
06	240	4.2	1041.00		110	1.8	3.5	3.2	
07	350	4.7	230	4.0	100	2.6	3.8	3.1	
68	37.0	5.4	20.0	4.1	100	3.0	5.8	5.2	
09	340	6.1	200	4.2	100	3.2	5.6	3.0	
10	320	6.6	200	4.3	100	3.4	6.0	8.2	
11	37.5	6.1	190	4.4	100	3.5	6.5	3.1	
13	340	5.6	190	4.5	100	3.5	6.4	3.1	
13	350	5.8	190	4.6	100	3.5	4.7	3.0	
14	340	6.0	200	4.5	100	3.5	4.5	3.0	
15	325	6.0	210	4.4	100	3.3	4.0	3.1	
16	310	6.0	210	4.2	100	3.2	4.0	3.1	
17	290	5.6	220	4.0	100	2.8	4.0	3.2	
18	270	5.6	240	(3.5)	100	2.2	4.0	3.2	
19	240	5.7	-		-	1.6	3.8	3.1	
20	240	6.0					3.8	3.0	
21	260	5,9					4.0	2.9	
22	260	6.0					3.8	2.9	
23	250	5.5					3.8	3.0	

Time: 150.0°E.

Sweep: 1.0 Ms to 16.0 Ms in 1 minute 55 seconds.

Table 540

				20020	0.0			
Invern	ees, Soot	land (57	.4°N, 4.	2 ⁸ ₩)			December 1952	
Time	h'F2	foF2	h'Fl	foFl	h*E	foE	fEs	(M3000)F2
00	345	(1.5)						(2.7)
01	230	(1.5)						2.7
02	320	1.5						(2.7)
03	330	1.6						2.7
04	320	1.6					1.8	2.7
05	305	(1.6)						2.8
06	300	< 1.6						2.9
07	(325)	(1.6)						(2.8)
08	280	(2.2)						(2.8)
09	230	3.8				(1.7)	2.7	3.4
10	220	4.7			(140)	1.9	2.5	3.6
11	225	5.2			(140)	2.0	2.4	3.6
12	225	5,8			145	2.1	2.4	3.5
13	225	b.9			145	2.1	2.5	3.6
14	225	5.8			(148)	1.9	2.6	3.6
15	220	5.1			(160)	1.7	2.3	3.5
16	225	4.5					2.3	3.3
17	235	3.7						3. 2
18	255	2.8						3.1
19	265	2.0						3.1
20	31.5	1.8						(2.8)
21	335	(1.8)						
22	(340)	(1.6)						
23	(345)	< 1.6						

Time: 0.00.

Time: O.V. Sweep: 0.67 Me to 25.0 Me in 5 minutes. *Average values except for2 and 25e, which are median values.

Slough	, England	(81 5°N,	0.6%	Table :	20"		De	cember 1952
Time	h'F2	foF2	h Fl	foFl	h'E	foE	fEs	(M3000)F2
00	280	2 ,					2.6	2.9
01	275	2.8					2.9	2.3
02	275	2.8					3.1	2.8
03	270	2.4					3.0	2.9
04	265	2.3					3.8	2.9
05	265	2.1					3.3	3.0
06	270	1.9					3.6	3.0
07	270	2.0					3.2	3.0
08	225	5.8	230	2.11	1309	1.76	4.0	3.5
09	220	5.0	220	3.0	135	1.8	4.7	3.8
10	230	6.0	530	3.2	130	2.2	4.2	3,6
11	230	6.0	220	3.4	130	2.3	4.2	3.6
12	250		220	5.5	1.50	2.4	4.6	3.6
13	23 1	6.4	225	3.3	130	2.3	4.7	5.5
14	2.5	6.1	550-3	2.94	130	2.1	4.2	5.5
15	201	5.8			140	19	3.3	3.5
16	220	5.3					3.1	3.4
1.7	225	4.1					2.5	3.3
18	240	5 ~					2.4	3.2
19	250	3.0					2 4	3.2
20	265	2.7					2.5	3.0
21	20	2.3					2.3	3.0
22	2.5	0.6					2.5	2.9
23	285	2.9					2.6	2.9

Time: 0.0°.

Sweep: 0.55 Mc to 16.5 Mc in 5 minutes.

Average values except feFS and fEs, which are median values.

One or two observations only.

				Ta018				
Singap	ore, Brit	ish Hals	ya (1.3°	N, 103.8	PE)		De	cember 1952
Time	h1F2	f F2	h¹Fl	foFl	h*E	foE.	îEs	(M3000)F2
00	250	3.8					2.4	2.9
OI.	275	3.4					1.8	2.9
02	280	3.4					1.9	2.8
0.3	280	5.0					1.9	2.9
04	285	3.0					1.8	3.0
05	275	2.5					3.4	3.1
06	260	3.9					3.5	3.1
07	255	6.5	540		(1.20)	2.3	4.1	3.2
08	295	7.1	225		1.20	2.8	5.2	2.8
09	340	7.7	220	(4.5)	115	3.1	5.9	2.5
10	370	8 0	27.0	4.6	110	3.4	6.5	2.5
11	41.0	8.0	205	4.6	110	3.5	6.1	2.1
12	405	8.8	205	4.6	110	3.5	5.7	2.0
13	400	8.7	200	4.6	110	3.5	6.4	2.2
14	385	8.7	200	4.5	110	3.3	5.9	2.2
15	355	8.7	215		110	3.1	4.8	2.2
16	335	8.8	230		115	2.7		2.3
17	260	8.7			120	2.2	3.4	2.4
18	270	8.6			(145)	(1.6)	3.0	2.4
19	305	8.0					3.1	2.5
20	510	7.2					3.0	2.6
27	265	7.5					3.0	2.9
22	220	7.4					2.6	3.2
23	220	4.5					2.4	3.1

Time: 105.00E.

Sweep: 0.67 Mc to 25.0 Mc in 5 minutes.

"Everage values except foF2 and fEs, which are median values.

				Table :	59*			
Slough,	England	(51.5°N,	0.5°%)				Nov	ешвет 1952
Time	h*F2	foF2	h¹Fl	foFl	h'E	foŁ	fEs	(M3000)F2
00	295	2.9					2.6	2.8
01	290	3.0					2.8	2.8
02	285	2.9					3.0	2.8
03	275	2.6					2.8	2.8
04	270	2.3					3.7	2.9
05	265	2.1					3.8	3.0
06	265	1.9					3.1	3.0
07	245	3.0					3.0	3.2
08	225	4.8	220	2.8	135	1.9	3.4	3.6
09	230	5.8	220	3.3	125	2.2	3.8	3.5
10	235	6.3	225	3.5	125	2.4	4.0	3.4
11	235	7.0	220	3.7	125	2.5	4.3	3.4
12	240	6.8	220	5.6	130	2.6	4.5	3.4
13	235	6.7	225	3.5	130	2.5	4.6	3.5
14	235	6.6	235	3.5	1.30	2.3	4.2	3.4
15	230	6.1	235	3.5∳	135	2.0	3.9	3.4
16	220	5.4			150#	1.8%	3.4	3.4
17	230	4.7					3.0	3.2
18	235	4.1					2.6	3.2
19	245	3.4					2.6	3.2
20	255	2.9					2.4	5.1
21	290	2.6					2.6	2.8
22	295	2.6					2.4	2.8
23	300	2,8					2.6	2.8

Time: 0.0°.
Sweep: 0.55 Mc to 16.5 hc in 6 minutes.
*Avorage values except for2 and fEs, which are median values.
*One or two observations only.

Table	56°
-------	-----

				Table	56*			
Pharto	um, Sudai	a (15.6°)	7, 32.6°E	:)			Dec	ember 1952
Time	h·F2	foF2	h'Fl	foFl	'n*E	fcE	fEs	(M3000)F2
00	275	5.3						2.9
01	270	5.7						3.1
02	250	6.0						3,2
03	250	4.4						3.9
0.1	220	3.0				(1.2)		3.5
0.5	250	2.2				1.0		3.3
06	270	3.2				1.2	2.6	3.0
07	240	6.0			130	2.1	4.0	3.5
30	250	7.5	220		120	2.7	4.2	3.2
09	230	9.2	220	(4.3)	120	3.0	4.0	3.1
10	300	9.6	220	4.6	120	3.3	3.9	2.9
11	310	9.8	220	4.6	120	3.4		2.9
12	330	9.9	220	4.7	120	3.3		2.7
13	320	10.2	230	4.7	120	3.3		2.8
14	23.0	10.5	220	4.6	120	3.2	4.0	2.9
15	290	10.2	230	4.3	120	2.9	3.5	3.0
1.8	260	10.1	230		120	2.5	4.4	3.2
17	250	10.2			130	1.8	5.6	3.2
1.8	240	10.4				(1.3)	2.7	3.3
. 0	240	8.4					3.6	3.0
20	250	7.5					4.2	3.2
21	260	7.0						3.1
22	250	6.5						3.1
23	220	5 7						0.0

Z3 Z60 5.3

Time: 30.0°E,
Sweep: 0.67 Mc to 25.0 Mc in 5 minutes.
*Average values except foP2 and fEe, which are median values.

Invern	ese, Scot	land (57	.4°N, 4.	SoM)			Nov	ember 1952
Time	h'F2	foF2	h'Fl	foFl	h'Ε	foE	fEs	(M3000)F2
00	335	(1.7)						2.8
03	330	(1.6)						2.7
02	320	1.6					1.0	2.7
03	330	(1.6)					1.2	2.7
04	31.0	1.5					2.1	2.8
05	310	1.5					2.2	2.8
06	300	(1.5)						
07	31,5	(1.8)						3.0
08	240	3.5				(1.7)	1.7	3.2
09	230	4.5			(145)	1.9	2.0	3.4
10	225	5.3	(225)	(3.1)	135	2.2	2.3	3.4
11	240	5.6	(230)	(3.3)	(130)	2.2	2.3	3.5
12	240	6.2	(230)	(3.3)	(130)	2.3	2.3	3.5
13	230	6.1	(225)	(3.2)	(130)	(2.3)	2.0	3.6
14	235	5.9	(225)		(135)	2.1	1.9	3.5
15	225	5.6			(155)	1.9	2.0	3.5
1.6	225	5.1					2.3	3.3
17	240	4.4					2.3	3.2
13	245	3.9						5.2
19	265	2.7						3.1
20	295	2.2						3.0
21	355	(1.8)						3.0
22	(355)	(1.7)						2.7
23	350	(1.7)						

Tine: 0.0°. Sweep: 0.67 Kc to 25.0 Mc in 5 minutes. "Average values except foF2 and fEs, which are median values.

Kharto	um, Sudar	(15.6°N,	32.6°E)	Table	60°		Nove	nber 1952
Time	h'F2	foF2	h'Fl	foFl	h*E	foE	fEs	(M3000)F2
00	290	6.4						2.9
01	260	7.0						3.2
02	230	(7.3)						3.7
03	210	(4.4)						3.5
04	230	2.4						3.3
0.5	250	1.6						3.5
06	260	4.4			145	1.6		3.3
07	240	7.0			130	2.3		3.3
08	275	(8.6)	230		120	2.8	(5.4)	3.0
09	300	(9.6)	230	4.5	120	2.9	(4.8)	3.7
10	290	(9.7)	23.0	4.7	120	3.3		2.7
11	305	(9.7)	210	4.5	120	3.4		2.8
1,2	320	(10.0)	210	4.7	120	3.5		2.8
13	300	11.5	220	4.7	120	3.4		3.0
14	290	11.6	220	4.4	120	3.2		3.0
15	270	11.4	230	4.2	120	2.9	4.2	3.2
16	260	11.7	240	3.8	130	2.5	5.2	3.2
17	245	11.3			120	1.9	5.7	3.4
18	246	10.1					(3.8)	3.1
19	250	9.2					3.9	3.0
20	250	8.5					4.0	3.1
21	260	7.5					2.5	2.9
22	280	6.9						3.0
23	295	(6.1)						3.0

Time: 30.0°E.
Sweep: 0.67 Ke to 25.0 Mc in 5 minutes.
"Average values except foF2 and ffs, which are median values.

	Tab	l e	61	Ф
--	-----	-----	----	---

	re, Brit	d a.a. 1/-1 a.	(g g0	T 305 5	Om l		Zo.	rember 1952
Singapo								
Time	h'F2	foF2	h*F1	foFl	h 'E	foE	fEs	(M3000)F2
00	240	4.4					2.5	3.0
01	260	3.8					2.3	2.9
02	270	3.6					2.2	2.9
03	270	3.4					2,1	5.9
04	265	3.2					1.8	3.0
05	250	3,0					3.4	3.2
06	255	4.6				1.5	3.5	3.1
07	265	6.9	235		1,20	2.4	3.7	3.1
08	265	7.6	825		115	2.9	3.9	2.9
09	340	8.1	215	4.0	175	3.2	5.6	2.4
10	375	8.7	210	4.7	110	3.4	6.5	2.2
11	380	9.2	210	4.7	110	3.5	5.8	2.0
12	375	9.1	200	4.7	110	3.5	5.3	2.1
13	355	9.2	205	4.6	110	3.5	5.3	2.2
14	340	9.3	210	4.6	110	2.3	4.7	2.3
15	330	9.4	220		115	3.0	5.6	2.4
16	32.0	9.5	235		115	2.7	5.4	2.4
17	255	9.5			125	2.2	4.6	2.4
18	275	9.4					3.0	2.5
19	310	8.9					3.1	2.5
20	300	8.5					3.0	2.7
21	260	8.6					3.0	3.0
22	215	8.9					3.0	3.4
23	210	5.3					2.9	3.2

23 210 5.3 2.9

Time: 105.0°?.

Sweep: 0.67 %c to 25.0 %c in 5 minutes.

*Average values except foF2 and f2s, which are zecian values.

Port I	ockroy (C	4.8°S, 6	3.5°W)	Table	634		Nove	November 1952		
Time	h*F2	foF2	h*F1	foFl	h'E	foE	fEs	(M3000)F2		
00	(270)	(7.0)			-		(3.0)			
01	(270)	(6.0)					(2.8)			
02	(275)	(5.6)								
03		(4.5)								
04		~~~								
05	(275)	(5.0)								
06		-					(4.3)			
07	(280)	(5.0)					(4.5)			
08		(5.3)			(105)	(2.8)	4.4			
09	1	(5.2)			(110)	(2.8)	4.5			
10	(320)	(5.5)					(5.1)			
11	(320)	5.2		(4.3)	(105)	(3.0)	4.4			
12	(305)	5.4	(215)	(4,2)	(105)	(2.9)	4.5			
13	(31.5)	5.4	(210)	(4.2)			4.6			
14	(295)	5.6	(310)	(4.3)						
15	(295)	(5.4)		(4.0)						
16	(280)	(5.4)		(3.8)			3.6			
17	(285)	5.7	(210)	(3.7)						
18	(270)	6.0	(225)	(3.6)						
19	(265)	(6.3)								
50	(255)	7.1								
21	(250)	7.1								
22	(260)	(7.2)								
23	(260)	7.8								

Zo (2007) 7.0
Time: 60,0 N.
Sweep: 1.1 No to 16.0 Nc, manual operation.
*Average values except for 2 and ffs, which are median values.

Port L	ockroy (6	4.8°S, 6	3.5°W)	Table	65°	October 1952		
Time	h'F2	foF2	h'Fl	foFl	h 'E	foE	fEs	(M3000)F2
00	270	5.1						2.9
01	265	4.8						2,9
02	270	4.2						2.9
03	265	4.2						3.0
04	250	4.0						3.0
0.5	240	4.0						3,2
06	235	4.5				(2.2)		3.3
07	225	4.6	(215)		120	2.3		3.4
08	230	5.2	205	3.6	115	2.5		(3.4)
09	245	5.4	210	3.8	110	2.7		(3.4)
10	270	5.8	205	4.0	105	2.8		(3.4)
11	260	5.0	205	4.0	105	2.9		(3.4)
12	265	6.0	200	4.0	100	2.9		(3.4)
13	255	6.4	205	4.0	205	2.9		(3.4)
14	250	6.3	200	3.8	105	2.8		(3.5)
15	250	6.0	205	3.8	105	2.7		3.5
16	230	5.9	210	3.5	110	2.5		3,5
17	230	5.8	STO	(3,3)	(115)	2.4		3.4
18	230	5.8	(225)	,,	,	(2.1)		3.3
19	235	6.2				,,		3.2
20	245	6.8						3.1
21	250	6,7						3.0
22	255	6.3						2.9.
23	260	5.9						2.9

Time: 60.00%.

Sweep: 1.1 Mc to 16.0 Mc, manual operation.

*Average values except foF2 and fRe, which are median values.

Falkla	nd Is, (5	1.7° & . 5	7.8°V)	Teble	e.ch		For	ember 1952
Timo	h'F2	foF2	h*Fi	foFl	hºΣ	foE	fEs	(M3000)F2
ΟÛ	275	6.2					2.4	3.5
J.O	290	6.1					2.8	2.7
02	285	5.9					2.3	2.8
03	270	5.8					1.0	2.9
04	270	5.8	(235)		170	(1.6)		2.9
0.5	260	5,8	250	(3.0)	120	1.8	2.4	3.0
06	290	5.6	245	3.8	115	2.3	3.1	3.1
07	(375)	5.7	214.	6.1	110	2.7	4.8	3.C
08	(350)	6.1	353	4.3	105	2.9	4.6	3.0
09	245	6.3	230	4.5	105	3.1	4.8	3.0
1.0	330	6.5	230	4.5	105	3.2	5.1	3.0
31	335	6.8	225	4.5	105	3.2	4.6	3.0
12	330	6.8	230	4.5	105	3.3	4.0	3.0
13	320	7.0	240	4.5	105	2.2	4.2	3.0
14	37.5	6.8	SIS	4.4	105	3.1	4. %	3.1
15	300	8.8	220	4.3	110	3.0	3.8	3.1
16	295	6.5	24	4.1	115	2.8	3.5	3.2
17	275	5.7	220:	3.9	115	2.5	4.2	3.2
18	250	6.6	2333	(3.0)	1.26	2.1	3.8	3.3
19	260	6.1					3.8	3,1
2.0	273	6,2					3.5	2.9
21	290	6.5					3,2	2.8
22	295	6.3					3.0	2.8
23	830	6.2					50.7	2.5

25 S.O 6.2 G.1

First 60.79%.
Sweep: 0.67 % to 25.0 Ms 1. 5 mirates.
*Average values exist for and f2s, which are median values.

F.Ibla	nd Is. (ö	51.4° 1. 3	7.8°4)	Table	64	00	Cotober 1952		
Time	hirs	foF2	h'Fl	foFl	h†E	foE	TEs	(M3000)F2	
CO	210	5.4						2.7	
01	200	5.2						2.8	
02	285	5.0						2.8	
0.3	996	4.8						8.8	
04	275	4.5						2,8	
G5	945	5.2			1.60	1.7		3.1	
06	235	5.5			1.25	2.0	2.5	3.4	
07	340	6.0	205		115	(2.5)	3.1	3.3	
05	280	6.2	230	(4.1)	310		2.6	3,2	
09	290	6.6	225	(4.2)	110		3.8	3.1	
10	305	7.6	220	4.4	110	(3.1)	3.7	5.1	
11	205	8.2	215	4.5	110	(3.3)	3.7	3,1	
12	200	8.6	215	4.5	110	,	3.7	3.2	
13	265	8.7	220	4.5	110	(3.2)	3.6	3.2	
3.4	260	7.6	220	4.4	110	(3.0)	3.1	3.3	
15	260	6.7	220	4.1	110	2.9	2.8	3.3	
1G	250	6.7	320	(3,4)	115	2.6	2.7	3.5	
3.7	240	5.4	320	(2,4)	1.25	2.1	2.4	3.3	
18	230	6.0			145	(1.7)	2.0	3.8	
19	255	6.1					2.1	3.0	
20	270	6,3					2.1	2.9	
21	275	8.1						2.8	
22	285	5.6					1.3	2,8	
23	290	5.6						2.7	

Time: 60.0°%. Sweep: 0.67 No to 25.0 No in 5 minutes. "Average values except for2 and fig. which are median values.

Poitie	re, Franc	e (45.6°	n, o.s ^o i	() Tebl	September 1952			
Time	h:F2	foF2	h*Fl	foFl	h*E	foE	fEs	(M3000)F2
60	< 280	3.8					2.1	2.8
Cl	< 2''3	3.7					2.0	2.8
02	< 275	5.4						2.9
03	< 255	3,4					2.0	2.ಇ
04	260	3.2					2.0	5.0
05	245	2,8					2.4	5.1
06	240	3.9	en-drain	-		1.8	2.4	3.3
07	250	4.4	220	3.0	120	2,2	2.7	2.4
08	280	5.1	220	4.0	115	2.6	3,1	3.4
09	253	5.6	215	6.1	110	2.8	3.4	3.6
10	300	5.9	205	4.3	110	3.0	3.4	3.4
11	295	5.6	200	4.4	110	3.0	3.5	6.2
12	33.0	5.3	200	4.4	110	3.0	3.4	3.3
13	280	6.3	205	4.4	110	3.0	3.2	3.3
14	280	6.0	210	4.3	110	3.0	3.2	3.4
15	375	6.0	220	4.1	1.10	2.9	3,2	3.3
16	260	5.0	250	3.8	110	2.5	3.1	3.2
17	255	6.5	235	3.5	115	2.2	3.0	3.3
18	240	6.5	777000	-		B0-10011	3.0	3.3
19	230	5.9					3.0	3.2
20	230	5.4					3.0	3,2
21	205	4.9					2,6	3.2
22	< 250	4.2					2.3	3.0
23	(255)	3.9					2,3	2.9

Time: 0.00.

Sweap: 1.6 Me to 16.8 Me in 1 minute.

				Table 6	5'7			
Tanone	rive, Mad	TESBASA	(18.8°S,	47.8°E)			Soc. e	mber 1982
Time	h*T2	foF?	htel	foFl	h#5	300	Fign	(M3∩∪)F2
CJ	240	4 '						3.7
CI	20.	3. "						5.7
62	240	2.6						5. C
03	< 290	2.5						2.8
0-1	29	2.0						3.0
C.	280	2.5						2.9
0.5	250	4.1			1.62	< 1.4	1.8	3.3
07	250	6 2	240	etter aurette	1.23.	2.2	2.5	3.3
08	2.70	7.0	235	4.2	115	2.8	3	2.1
09	2.	8 4	225	4.5	113	5.0	5.4	3.1
10	2	0.2	225	4.7	113	3.8	\$ 8	3,1
13		9.4	215	4.6	113	3.4	3.8	0.8
12	278	8.1	23.0	4,7	113	2,4	8.5	5.3
13	2-3	7.5	200	4.6	113	3.4	2.5	9 3
1.4	230	7.6	215	4.5	111	0.2	0.0	5.5
15	20	7.6	220	4.4	115	5.0	2.4	2.1
16	21.0	7.0	230		13.0	2.7	8.5	3.3
17	24	7.0	258		126	2.2	2.5	3.2
18	25.7	L.3			10000-1000	< 1.5	2.3	3.2
19	2.0	F.S					2 .	2.0
20	24	4.7					2:	2.3
21	2	1.2						6 5 .
22	27.	4.0						1.3
23	20	4.0						5.1

Time: Local.
Supep: 1.25 Ms to 30.0 Me in 10 minutes, subonatic operation.

				Mable	69			
Djibon	ti, Ton	oh Commali	land (1)	Б ⁰ И. 4:	3.1°E)			May 1052
Time	h*F2	foft	hiFl	foFl	7	1.08	TE3	(M3: 60)F2
(0	3.35	(2.1)					2.0	(.9)
1]	31,5	(5)					'. ō	10000
02	FLO	(4.3)					2.5	*****
03	235	(4,5)					2.6	(3.3)
0.6	235	4.0					-3	(3.6)
65	213	3.2						3.5
06	230	4.6			-	< 1.4	0.8	3.4
57	2,5		215	and describe	1.05	2.4	1, 2	5.5
80	275	. 7	23.0		105	0.8	4.1	2.3
09	1 20	15.3	23,0	-1,6	10,000		6.3	2.9
2.0	340	6.2	202	4.8		~cmert ib	7.6	0.7
1.1	5.50	7.7	200	4.9	1.00		3.8	2.7
12	560	8.1	200	4,8			8.0	11.7
13	245	0.0	190	4.8	-	1.000000	0.0	3.7
3.4	330	8.8	200	4, 2			7.4	2.7
15	520	9.0	200	4,5	Non-0192	P-180000	3.5	(3.8)
1.6	3.5	(9.:)	57.0	4.2	10017488		5.7	(2.9)
17	20	> 3 .0	208				4.4	2.9
18	~~)	(10.3)		*****		Free \$10,000 \$P	5.7	(0.9)
19	223	(10. s)					7.5	(5,4)
20	250	> 9.0					2.3	(5.1)
10.	260	(7.5)					.3	(8.9)
22	305	5.9					6	2,9
23	313	(5.4)					256	(2.7)

Time: Local.
Secopt 1.65 Mc to 20.0 Mc in 10 minutes, automatic operation.

				Dable				
Djibou	ti, Fren	ch Someli	land (11	.5°N, 43	.1°E)			April 1952
Time	h*F2	foF7	htFl	foFl	h'E	fri	i E.s	(M3000)F2
00	3/ 0	(8.0)					2.5	
01	235	(6.5)						(2,9)
02	250	(5.5)					1.1	8,1
03	240	5.8						3.4
04	220	5.0						3.5
05	320	3.3						5.6
06	240	5.7				1.4		3. S
07	235	7.0		· detection yets	128	2.3	5	2,5
08	270	8,4	220	4114000	103	5.9	0.0	3.3
09	300	5,	21,0	(4.8)	105	(3.3)	4.5	9
10	320	SB	210	(4.9)	***	(3,4)	7.3	∴.6
11	320	> 9	200	(5.0)	through the same	3.6	2.3	. 5
1.2	330	10.0	200	(5.0)	Act 0771000	(3.7)	8.0	2.7
25	530	10.2	205	(5.0)		3.7	.5	
14	120	17.0	200	(4,9)	er-resis age	3.6	', ')	5,7
15	300	12.0	205	(4.3)	106	(3.4)	7.9	
3.6	290	12.7	23.5	(4.9)	(105)	(3.2)	4.5	9, 9
17	240	11.0	. 50			2.7	4.6	0
18	240	11.8	01110				3 3	2.9
19	030	11.5					3.0	. 1.3)
20	275	>10.0					3.0	1, 8
21	280	>9.6					2.5	(2.6)
22	250	>9.0					2.4	(0.8)
23	190	. 8					2.7	. 3

Time: Local.
Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

Poitie	rs, P no	o (4. 5°	n, 0.3°E) <u>1.391</u>	<u> </u>			August 1952
Ti =	h'i.	for?	h:Fl	foFl	h:E	foE	fEs	(M3000)F2
01	5,2	4.2					2.7	2.9
0.	280	3.9					2.4	2.9
0_	<25E	3.6					2.6	8.3
0.0	< 290	3.4					2.6	2.9
-	<2'5	21.6					2.7	2.9
UE	260	3.8	Market and				2.9	3.1
6.	200	4.4	240	3.3	120	2.0	3.4	3.3
0"	30	3.0	230	3.9	110	2.4	3.6	3.3
Gc	300	5.4	21.7	1	105	2.8	4.8	5.4
09	30.6	5.7	205	4.4	105	5.0	4.4	3.2
11	JL 1	8.0	200	4.5	105	3.2	4.5	3,3
1	2	5.0	200	4.5	105	3.1	3.8	3.2
1 -	0.0	5.5	300	4.6	105	3.2	3.7	(3.3)
11.	275	5,5	200	4.6	105	3.2	5.8	3.2
7	225	5.9	210	4,5	105	3.0	4.0	(3.1)
1.5	540	5.9	210	4.4	105	3.0	3,6	3.2
1	731	5.6	230	4.2	110	2.9	3.6	3.1
2	50	5.5	225	3.9	110	2.6	3,6	3.2
18	250	6.J	245	3.4	115	2.0	3.4	5.1
19	250	6.1		(2.0)			5.4	8.2
2	2.5	6.4					3,1	3,1
21	245	6.0					3.5	3,2
2:7	245	5.0					2,8	3.2
2.	<280	4.1					2.6	3.0

Time: 0.0°. Sweep: 1.6 Me to 16.8 Me in 1 minute.

Fairol	d, Eer.a	(1.3°£,	36.2°E)	Table	70			May 1952
Ture	h152	foF2	h·Fl	foFl	PiE	foE	fEs	(M3000)F2
60	246	>8.0						3,2
01	. 20	8.7					2.4	3.2
02	220	6.3					3.1	5.3
03	220	>4.8					2.6	3.1
1)4	250	4.1					2.9	3.2
05	(240)	2,8					3.5	(3.2)
05	2.50	3.3					3.3	3.4
07	2-10	8.4	240	Mindle acc	120		3,1	3.4
	260	9.0	230	-	110	2.7	3.3	3.3
0.9	270	9.1	220	4.3	110	3.1		3.5
3.0	200	9.5	210	4.8	110	3.3		5.1
11	300	10.2		4.7	110	3.4		3.0
1.3	3.0	11.1	0.0-70000	4.9	110	3.5		2.9
13	320	>11.0		am 1-0-44	110			5.0
14	320	>11.3	*****		110			2.9
1.5	23.0	12.2	*******	4.6	100	3,2	3.4	2.9
16	700	>11.0			110	3.0	3.3	3.0
17	270	10.9	240		110	2.4	3.4	5.1
3.8	250	11.3	250				3.5	3.1
19	H-10483	and the first of						-
20		money to						mp 2/8
	200	>7.0						900-P2
w3	215	7.0						3.3
23	240	7.4						3.0

23 240 >7.4 Zine: 45.0°Z. Swop: 1.0 Ma to 15.0 Mc in 7 seconds.

Liber,	Freuch W	l. Africa	(14.6°M,	Table 17.4°W			Jaz	mery 1952
Ti.e	h:F2	foFC	h'Fl	foFl	n'E	÷ E	fEs	(M3000)F2
-0	270	8.7						2.6
0.1	275	8.5						2.3
0.2	250	6.4						3.1
3	850	5.9						3.1
0.1	270	4.5						3.0
05	J.:5	3.4						2.8
0.6	250	2,3					5.1	3.0
07	245	5.6	255	-		(1.9)	2.7	3.2
1.8	275	8.8	255		119	2.7	4.2	3.1
-09	275	11.2	230	4.6	1.11	3.0	4.3	0.1
10	~~5	11.8	550	4.8	108	3.3	4.6	3.0
.1	785	11.4	210	4.8	105	3.4	4.6	2.8
12	100	11.5	208	5.0	107	3.5	4.4	2.6
3	335	11.9	212	4.9	105	(3,6)	4.6	2.6
1/2	310	11.8	230	(4.7)	110	3.4	4.3	2.6
5	37.0	11.8	230	4.6	111	3.2	4.1	(2.6)
16	(275)	11.4	238		107	2.8	4.2	2.6
1.7	275	12.2	260		111	2.2	4.3	(2.8)
3.8	970	11.6					3.4	(2.7)
3.9	270	11.4					3.1	(2.6)
5.0	250	11.6					2.3	(2.3)
1.1	255	12.4						(2.8)
23	245	(10.8)						3.0
_3	245	8.3						(2.9)

ime: Local, weep: lass No to 20.0 Kc in 10 minutes, automatic operation.

 $TABLE \ 73$ Central Radio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

Characteristic) (Unit) (Month) 19 53

Scaled by: MCC., L.A. L. Standards E.J.W. Colculated by: MCC 3 L.A.L., E.J.W.

E.J.W.	E.J.W.		3	5			2(A	Ø		A				5	W	5	X			5					۶.				5				
Institution)	1	23	(380)5	(310)5	280	390	(280)5		[260]	A (08C)	270	A (2550)A	A 250	5 260	260	(230)	(290)		250	450	230	(280)5	240	380	B	260	(270)	260	250	250	(310)	5 290		360	
L.A.L.	1 TA	22	280	250	290	270	250	(300) A	(270)4		240		(270)	(260)	A 270	230	(080)	(240)A	255	320	A 230	310	200		9 (270)4	240	340	240	260	9 270	330	(260)5		260	
4	». McC	12	200	A 260	220	200	(500)	280	230	8(045)	240	A (260) A	730	310	(270)	230	230	240	450	220	(240)	200	200	-	A (250)A	230	220	253	4 250	(240)	(280)	(450)		240	,
Scaled by: MCC.	Colculated by: MCC. \$	20	" (240)A	[022]	260	230	230	240	240	(230) 4	240	A [260]A	(25-0)	230	230	230	Ø.	230	200	230	340	340	220	990	(652)	A [245]A	320		[450]4	250	A 270	2 260		240	2.7
Scale	Colc	6	[270]	K (280) A	270	250	750	240	K 270	250	(082)		В	750	[360]	270	[360]	(260)	(270)	250	750	270	250	200	8	A (250) A	260		(250)"	270	(3/0)	[390]		260	,
		8	300	380	320	300	330	290	K	310	300	290	8	250	(300)5	300	290	290	280	300	270	250	240	A 240	8	[300]4	3/0	(300)4	270	300	300	320		300	27
		11	240	[390]	280	370	300	310	K A ,	320	320	360	360	280	330	470	310	320	350	320	360	310	280	[320]	A	A 340	320	(320)4	330	400	330	330		320	0:
		9	330	100	x 400	390	320	100	6)	340	400	A [340]#	H 330	330	350	360	350	330	280	320	350	520	300	550	330	(340)	370	350	340	5	400	360		350	.,
(13	390	KAK	× 4110	400	140	380	, b	400	370	[380]#	340	300	1400JA	[360]A	480	360	360	(380)"	450	350	360	000	350	(000)	430	00/2	370	4	5	4 4/60		400	7
	Time	4	540	৬	K 5.50	470	420	001	, y	370	340	540	400	300	160	376	520	370	350	400	430	00/2	360	S	420	R	330	530	017	8	460	٠.৬		420	2.6
2	— Mean Time	13	570	K	ر لا	350	450	P	x 5	473	4	Ÿ	380	350	В	430	400	380	340	400	5,0	() ()	760	A	,µ	7.	400	520	Ŀ	350	Ŀ	¥ 5		466	7
	75° W	2	৬	420	৬	390	420	420	, A	8	(420)A	В	360	420	A	380	420	000	460	400	390	350	450	440	360	¥	410	5	0//5	440	420	, S		420	2
	']	=	B	<i>ل</i> ا لا	ر ر بر	450	6	4)	K A	N	330	a	380	083	*	· y	4,00	300	430	240	330	390	390	320	360	A	5	8	A 550	4	340	, 5		440	200
2		으	4110	χ	* \ \	260	5	380	320	690	400	P	350	3	A	350	330	340	400	5	[420]#	360	[350]#	450	320	A	(340)	400	(370)	(380)	400	, b		400	r,
		60	4.50	'n	ر ب	ß	420	340	420	443	440	420	N 350	380	340	4 5	380	290	350	Ŀ	460	350	310	520	430	A	280	380	390	370	470	* 5		420	29
		80	500	45	, y	Ş	P	Ŀ	460	[340]#	550	440	360	430	K	¥ 5	Й	055	340	S.	420	320	В	430	200	R	350	380	340	(09/1)	رق	, 5		240	26
		20	380	x 290	, 5 X	9	હ	Ŋ	350	340	320	400	5	.b	A	k G k	А	330	370	(3/0)	200	300	A	*	310	Ŀ	s	.5	320	380	5	ν υ		290	26
		90	230	270	580	<i>A</i>	Ÿ	7	250	[200]	(300)	₹	220	370	G	5	H H	\$ 5.10	320	280	120	510	H	4 4	252	5	340	ؿ	200	090	230	ر د د		320	~
	_ 1	02	240	250	300	(0/2)	230	240	2 2 40	230	250	250	760	A (25.6) A	5 260	H	(245)	1 (260) A	230	240	240	230	A 270	(250)	5 250	300	230	230	270	230	5 25€	500		-	7.
(11111111111111111111111111111111111111	77.1° W	04	230	120073	2 2 13	(300)	250	(500)	5 [200]	760	(250)	5 270	(270)3	(3/0)4	[280]5		(280)5	(240)2	_	(300)	-	(260)	(260)	[240]	(270)5	S	(280)5	(220)5	S	(270)5	(270)5	XX		(270)	1
.1	5	03	S	v	1,240]3	300	[260]	\vdash	(320)5	170	150	5(000)	(280)5	4 [300] A	(300) 3	, H	(300)5	(300]"	(240)5	H	270	\$ (0/2)	270	H (240) A	240	В	5 [240]	220	5	5 270	270	(320)		(270)	3.0
Washington, D.C.	Lat 38.7°N	02	S	[280]	220	(270)5	260	280	[280] A	280	5 (250) 5	(300) 5	(240)5	A (280)A	[300]	R	A [300] A	(310) A	(270)3	5)	240	[360]	5	[360]	430		(300)	0 3/6 0	(440)3	(260)5	250	(320)		(21.70)	20
Washin	Lot	ō	(290)5	370	(330)5	(280)	A	015	240	(270)5	(250)	(300)5	6 (280) 8	[260]"	5 (290) 5	S A X	(240)	1 [J 90]A	2,50	(260)3	4 250	240	Ч	280	250	(300) 5	(300) 3	5 (280) 5	270	220	¥	[300] A		(280)	26
Observed of M		8	S	270	310	(300)3	S	(000)	270	250	(×50)5	(280)A	(220) A	150	(270)5	(270)	270	(270)4	(250)5	(230)"	(270) A	240	¥	260	250	R	(280)5	(270)5	260	260	A	280		(270)	25
Obser		Doy	-	2	ю	4	2	9	_	8	6	0	=	12	13	4	5	91	-	18	61	20	2	22	23	24	25	26	27	28	59	30	3	Median	Count

Sweep 1.0 Mc to 25.0 Mc in 0.25 min

Monual C Automatic 🛭

TABLE 74

Central Radia Prapagation Labaratary, National Bureau of Standards, Washington 25, D C

ONOSPHERIC

E.J.₩ National Bureau of Standards Calculated by. McC., L.A. McC., L.A.L Scaled by:

953

June

ğ

fo F2

0.0

Observed of Washington.

5.23 E.S. X 7-4 133 η; η; 13.41 9:4 3.5 (3.4) 3.1 5 7.7 000 4.3 3.6 8 5x C (3.2) F (3:1) (3.7) 8 14215 S(2.4) (8.4) il il 3.9 4.0 3.6 4.4 0.7 4.7 22 1: 30 3 1 7 * 1.7" 24 3.6 (5.4) 4.3 4.3 6.7 21 45 1 4.5 4.50 7.7 1 (5,4. 4.0 3 4.5 3.5 3 4 3 x x x 1.7 5 3 4.2 6 R/9:5) 2/85 0.9 07 7.9 5:5 0.3 5.7 5+ 4 5:0 33 0.5 75 4.7 0.9 4.3 00 2.6 , X 20 5.5 15.13 4.2 % 49.7 4.5.4 10.01 0.9 5.4 5.5 5 24 4 5.7 4.9 6.4 15 0 8.0 3.6 4.0 33 6 1.0 ¥ 0 ¥ (52) \$ 457 4.3 4 8:4 3.6 14:5 i Ç 75 4.7 [6.3] 0.5 0:0 43 29 4:5 5.6 0.5 5.4 55 3 5.7 3 1 5.3 75 S 7.6 00 4 (5.6 A (4.2) a (0.5) x 8 x 47 A 5.5 3 4.5 4.4 4 21 4.9 5.5 4:0 0:5 6.3 5.4 4.7 5.0 8.0 99 8 00 4.5 0.0 G. 4 50 すい 5.3 2:0 <u>_</u> Á 4 4.5× 5 0.4V 4.7 4 25.87 3 4.5 ナイン 19.77 6.0 5.0 0.9 6.4 4 8 13 4.7 4.4 30 5.5 45 4 73 3 50 13 8:4 3.5 8:8 φ シーナン 0: 3 <3.8 G 4.4.4 0 9 + 0.5 1 1 45 4:0 18:4 4.5 5.6 7:0 23 9 3 0. 4 4.8 4 8 6.7 8 4 0 0 T 43 % 14.00 x 00 0,5 C x 4.00 7: 4 7-4.7 35 4.0 14 7. 40 9.9 1. 7:5 1 4 147 P 4 4.4 74.36 7.0 6 1 + 2 8 X + 7 K (4.3 6 (3.9 € (4.9 3 1.47 シベナン 6 + 9.7 76 44 4.6 25 5 6 4.7 20 8.4 33 5.5 9 + 4.9 9.7 7.4 10 53 A 142 x 142 4 ď. Ø レナスの 4 (9 t) 493 (4.8) 5 44 4 46 4.8 75° W 4 5 50 00 + 7 5.0 4.7 2 1 7. 9 + 100 T 0 17 A A Ą V. 1420 5/4> 5445 101.75 <43G なイトスで 45 (3.9 × 140 % 1 0 x C+26 47 4 5.4 J. 0,5 5. 4 3. 7 _ 3 4 7 A Ţ (4.7.3 14.87 A 74.0 x 4.9.47 406 C436 (4.8) " 000 4:0 4.7 4.4 (6.4) 5.4 5,4 5.0 145 (6.t) 0.0 9-4 ノメノ 5 3 5.0 63 1.7 0 200 ¥ i Ţ 74.0 % (5.0) 454 57 ロメン 50 4.7 4.7 17 4.7 (3 %) 43 9 % 77 19 7 15 4.3 8.7 4.5 17 4.9 75 9.7 c 60 o. (399 40 4.9 (3.7 A (396 50 5 13.5 × 9 1376 13.6 KG 386 1+0 11/5 7 1 20 4 ハシン 45 7 7 30 08 4.4 40 4.6 4.7 4.6 9.7 3.50 ₹ T 4 (3.8 6 < 3 7 G 1441A 73.4 x 2000 143 8 13.6" (360 + + 00 t 5.7 + 4 C3.7 7 7 7 (3.7 6.50 1 4 1 -+ V 3 95) 1369 135 4. 4.3 ŧ 5 ---07 V 1 4 (336 0 + 13 2 E <308> (3.36 9. 3. Xx 1381 4 70 9 30 7.4 · . 3.7 90 1 3 is So 3 ω ω V 1 V P. 4 2.7.6 3.0 3,5 5 7.4 5 3 S 3 ck Oo (,D) W 10 do N. [9:5] 5.3 5 12.7 C. 3.0 05 v. 3. 3 es c 30 ik J L 300 205 73 (2.0.5 2.1 F (8.1) Lot 38.7°N, Lang 77.1°W S J. 7 4 77 m 17 0 4 3, 1.9 0 /* · 8 6.1 20 i, 0. 0: 11.9.3 (1.8) 3 2.1.5 6(1.9) 23 6 (2.5) 3 [35] (7+×) 1. 1.8 1.8 49 3. S × (8) 4.2 3 33 7 7 10.77 , s 7.4 03 3 C.E 4 7 6.1 T 7.7 2.6 1.2.1 7 13:6 9 30 7 23 7 24 7.4 7.4 J. S. Si 02 1.5 3 17 5 5 9.0 36 300 3 Ţ 30 x + 2 28 20 [23]4 2.5 % 29 63614 17:50 200 (3.0) 3 3.1 29 29 (33) 2 (3.0) ~ 3.3 Si 7. 200 2 L. 5 62) 623 ō q. 7° E d Ch 314 2.5 (33)5 35 F [3 4]" (2.8) 3.1 F (35)" 337 308 0 29 3.1 7 3 00 9.7 7.9 5 30 200 3/ 3.6 4 Median Caunt N W 4 8 9 Ō -3 9 2 ∞ o 12 4 5 80 <u>0</u> 20 2 22 23 24 25 23 28 29 30 2

Sweep 1.0 Mc ta 25 0 Mc in 0.25 min

Manual (1) Autamatic (8)

 $TABLE \quad 75$ Central Radio Propagatian Lobaratory, National Bureau of Standards, Woshington 25, D. C.

Form doopted June 1946

National Bureau of Standards scaled by McC., E.J.W. it.A.L.

53

(Month)

Observed at Washington, D.C. foF2 Mc (Unaracteristic) (Unit)

IONOSPHERIC DATA

																																				2
	The same of the sa	-	and the latest	Section				D-2000		promote di co					O Storenson	e e e e								3300 700 3			CONTRACTOR OF THE PERSON OF TH					2000				
✓		2330	5	2,3	5.2	03.7	22	305	(3019	43	بى دى د درا	4.0 9	326	500	3.3 H	2.3	75.5	(34)	3.51		3.6	(3.6)	(2.2) F	26	4	200	3.0	5	. Y	3.2	ž. / F.	3.4			23	600
E J W	11	2230 2	- 1	(3.0)	- 1	30 E		-	139/98		32)5	45	0	(3.4)		-	5.5		4.3)	4.0	(3.4)	4.0	0	367	¢	36	5.2	2.2	4.2	4.0	22.7 E	20			3.6	600
McC	41	2130	-	7 X X	_	4 17	00 (h)			b.10	-	4 00 10 00 10 00	35	20	077	4.5		2	54 (4.7	1195	4256	3,13	6.5	48	4.3	0,	47	2,3	,t.)	~			4.2	GE .
1	à	2030	4.7	(3.8)	(46)5	(3.9) 5	2 6	0		S 0 5	5. /	5 8	5.8	(F. (2) S	(5,3)	5.0	4.5	54	6.0	7.00	5.4	0	(56)3	5.0	25	(5.6)3A	12.31	45°	D. 3.			¥ 05%			0.5	50
600000000000000000000000000000000000000	Calcul	1930	485	4.5° X	N.O. X	5.53	25	4.7	4.7 K	0	5,0	(5.0)	0.8	5.8	HETHER.	(A)	5,4	10,00	ς. Σ.	5	5.5	o6 (2)	00 V)	5.6	(5.0.7)	(V)	0.9	5.5	7. 7	t)	J. A.	1.44.1.E.	TLORO.	W SETERAL	5.4	9 6
	ON THE PROPERTY AND ADDRESS OF	1830	50	/ E	1/6 K	5.3	5.5		4.5%	4.7	46	200	65.77	2,0	\sim	(n)	5.6	25	54	5/	4	22	56	5.4	∢	5 3	5.5	5.33	C,	.5 4/	4.3	(41) S			5.3	60
	Standarder Strainbranch	1730	5/	4.0 x	4/.4/ K	49	200	50	A A	4.7	5.1	49	18.5	23	(50)5	4.9	5/	5.6	5,3		r _s	20	5	54	Q	60.03	7.4	5/	5.57	50	5.0	1 1			5. 7	S people
	A CHARLES AND A	1630	5.6	4.3 K	4.0 K	4.7	73 (7)	50	V !	20	50	5.5	0.00	26	(5,5)	112	Z.	54	(c)	5.4	49	0		25.2	R	75	C. S.	(V)	r)		5	2 [8/5]			5.7	30
	CHARLES STANDARD CHARLES CHARL	1530	18	A	1.5 K	4.6	2.1	4.5	140K	7.0	50	(4.7)	57	00	40	49	4.3	5.2	() ()	5. /	5.0	δς ¥5		8.14	V:	5.2	49	in S	10	4.	4.65	K (4.4)			5.0	9 9
į	l Ime	1430	50	X Q X	4.4.	4.9	46	677	V	4.0	7	49	5.63	20	10%	5:0	K 8.74	17 5	53	5	4.9	46	r)	5(64)	S	4	7.7	- (4.7)5	×4.26	A 50 17	2.5	4.3			67	S CO
	ΙĐ	1330	6 4.7	T	K 4.1 K	4.6	45		S 1.4.1 S	4.7	S 60/00	0.00	5.0	10	Q	49	(5:0)	7 52	5	4.9	475	10) 10	5.3	44.36	5	4	0.5	6 4/4/6	Ŕ	5,2		JR ~ 4 3 G			4.3	7
75° W		1230	6 440	4	S ~ 1.1.	4.5	4.5	3 4 4	× × 40	Q	74	₹	20	7.7 1.7	Q	6 4.8	49		52	4.8	- (ς)	Ġ.	4.7	6	5.3	< □	20	4.4.4	.5,		15.0]	C			4.8	30
	Į.	1130	64.03	4	× 40	48	4	647	A	Ø	4.9	Q	4.9	5.5	Q	A 45.33	5.0	11 5.4	50	_			3	5.2	5 50	7	18) 1736	51177	611 3	×4.36	77	(4.1)			4.8	70
	Annual sections	030	\rightarrow	4 < 3.9 K	8 × (40)	4.9	777		19.70	A		7	-	56	S	x 4.36	5.4	1/5	4.7	- Ch	H(3.4)	5 50	T	(0)	[5.1]		7	-	x 4.3	14.7	041	N C			4.2	0.2
	The state of the s	0 0930	14	6 × 3.9	6 440	5 4.7	B 4.4	677	6 47	7.60	_		_	5.3	V	X 4.5	5.3	1 3		1.		_		5 44.5	5.0	24.76	5.0	7.	49	2.5	7	C3 -X	1 }		4.7	29
	- ja	0 0830	3 44	56 < 3.6K	\$ 13 S	50 × 40G	S < 3 RG		2 4.11	1 4.5	× 4.06	5 4.5	2 467	76	26 4.4		4.7		~				sannin	2 20	Married I	DESTRUCTIVE OF	14 (504	9.7	10 4.7	11.7	3	V			0) 4.5	500
	-	30 0730	9 4	2 /K < 3.5K	¥	66 <3.86	6 2 8 6	56 < 366		144	27 48	2 46	26 4.5			10 < 38 %	< _	-OF 1	3 (49)5	P.D. ID.	144	1/5	_	14 43	S	3-12-376	14.67A		" <376	4.3	7	G 4.1.5			9 (4.0)	C C C
	-	30 0630	87	2 132	3.5		6 53.6 4	0	-	1.4.1	7	3 40	4.3.8	6 [39]	5	A < 346	Q	1		ר	5 45	-	-	7 41	× 0	- Y	36		152	_	4	×			4 <3.	28
Mo	:11	0430 0530	6.	1 02.2	63	-m	305	(3)	P)	(32)		_	-		h .0	D. 23 K.		5	3.7	v2-	35 35		3	20 39	2 40	L 0	51/5	25 K326	22 31		n	3			77	30
77 10	-11		(1.7)	00.00	(0.0)	2.2)4	l _o	7	6.9	S 50	4 de la consta	>	L I	7	> 10		(2.2/5 2.3	30 60	(a)	50	4 2	-	-	200	5 500	(21) 5		(0.0)		2.00	tondromer.	54			4.00	27 30
38 7°N	, [0	0230 0330	1) 6	55		. 0	(2.5)	27 F 2			235		300	26 [26]	S	A K	(3.0) (0.0)	[0,0]		X0	4.3	L.	4		5.5	SVI	52.22		_			S (0			5.3	60
78.7	5	0130 05	2.3		ų į	285	(0.3)	5 7(5,0)	26 0		5.7	2	1.3	3.2	50	¥ C	(c.c) (c	_	0.00			4 50	-	1 0 C	_	6	200		-	-	10	57			2.6	96
1		0030 0	2.4	3/	_	28 5	63					. 6	1	200		nx	_	T !	5.	ď	P) P)	3.15	₹_	8	34 3	2.7 0	2.7	9.00	7 /	Ďn	1/2	7 2			29 2	30
Observed at	MADE TO STATE OF STREET	Day	6	2	Ю	4	ເດ	9	7	80	6	0	=	12	3	7	15	91	17	18	6	20	12000	22	23	24	25	56	27	28	29	30	31		edion)aunt

Sweep_10_Mc to,250_Mc In,0,25 min Monual Cl. Automatic IX

Form daopted June 1946

 $TABLE \quad 76$ Central Rodia Propagatian Laboratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

1953

Chorocteristic) (Unit) (Month)

h' Fi

Scoled by MCC., E.J.W. L.A.I

Observed at V	Washington	D.C.				J											Sc	Scoled by: MCC.		E.J.W.		L.A	-
	Lot 38.7° N	, Lang	77.1° W	>						75	75° W	Mean Time	9				ŏ	Colcutated by:	McC.	-	E. J.W.	L.A.L.	B.W.
Day 00	01 02	03	0.4	0.5	90	07	08	60	0	=	12	13		15	1 91	17 18	9 19	20	21	22	23		
-					310	210	210	210	190 "	200	210	180 1	190 2		150 622	L240]A (25	A 4 (057)						
2					200	x 180 x	200	× 00 K	180 %	220 4		[230] (i			AKA	(250) x	A 7 (0	¥					
М					2400	A 310	K 210 K	200 K	300 K	180 *	210 K	190 H	216 K 2	200 4 2	200 € 230	30 K (230)	A 7 (0.	¥					
4					2.50	210 H	220	210	200	190	061	320	2002	200 2	210 2,	210 1220	0 1 A 230	0					
5					200	200 H	200	210	200	140	200	230 2			230 [2	[220]8 220	0 220	0					
9					430 %	H 230	[220]#	220	200 W	230	240	Н		200 M 2	230 (32	220)6 2	240 (230)	W (
7					8	220	210	210	3	AK	A K	220 K	×	200 x 2	210 K A		V.	¥					
8					a	(220)	([210] A	200	190	N	A	(210) A 3	200 2	200 # 2.	220 W 210	3	0 0						
0					250	(230)"	230	200	200	8	A	200 (2	(230) A (2	(220) (2.	(220)A 220	×	[220]A 210						
01					240	210	230	000	A	И) &	A	B	8	-	6	e M A						
=					a	220	(430) A	[210] A	140	700	180 0	200 2	200 2	200 M /	170 4 140	A W 0'	N				_		
12					R	(240)	(220)4	220	190	170	180 H	210 2	210 2	200 4 3.	240 W 210	7	0 5%	0					
13					220	И		061	A	R	R	8	(230) # [2	[200]" (2	(=50)A A	8	0						
4					220 K	120 K	100 K	260 K	200		190	220 2	200 17		220 210		(250) A (250) R	36					
15					A	8	9	200	200	200	310	2000 2	200 4 2		200 2	220 A	0						
91					И	В	210 H	И	Q	H 061	330 H	190 2	7000	130 1	140 2,	220 240	0 A						
17					230	210	410	200	200	190	2,00	190 2	210 2	230 2	230 210	0 1 200	0 240	-					
18					730	180	× 00%	180	230 "	140	190	230 H	190 4 2	210 2	200 H 200	203	330	2					
61					a	200	(230) 4	(2007)	[210]	(230)4	200 (240) 4 2	220 %	200 2	200 300	200	0 "0						
20					200	200	200	P	A	520	210	200		1 028	140 140	022 4 0	10 230	0					
21 .					3	A	8	180	[183] A	110	1 1	200 1	180 2	210 /2	(210) " 210	061 0	0 # 0.30	0					
22					9	9	200	210	310	200	(310) 5 ((170) H a	220 2	200 2	210 A	Q	7		e				
23				220	130	[sage	220	140	230 W	R	X	В	2 8	200	150 A	7	1						
24				200	220	8	R	A	Q	A	8	Q	A	6	A 230	30 A	K						
25				0	210	(018)	A (210) A	200 W	210 4	140 1	11507 8	1.80 2	2002	200 ×	×10 1 300	10 (230)	17 410				_		
26				(220)	(200)"	440	200	180	130 "	081	400	200		200 4	430 A	1 1	4						
27				200	[220]"	230	220 H	210	(210)4	[200]	140 %	ν,	HAZ	210 3	×30 40	430 W 230	\$ 08						
28				0	220	330	310	210	[200] A	200 #	250	320	d.	A Si	410 FAS	[230] (25	150) 40						
59				a	a	230	220	310	200 11	220	190	(240) 4	200 22	0	230 2								
30				230 K	252	220,	200 E	220 K	210 €	190 *	180 K		210 HZ	210 2	230 W 210	10 K 200	0 # C	¥					
31																							
Median				220	220	230	310	210	200	190	200	200	200 2	200 1	330 34	220 220	20 230	0					
Count				7	30	34	20	1/2	24		23	30	3.0	26 47	7 34	24	7					_	

Sweep 1.0 Mc to 250 Mc in 0 25 min

Manual

Automatic

Manual

Form adapted June 1946

 $TABLE \ \, 77$ Central Radia Propagatian Laboratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

1953

June (Month)

foFI Mc (Characteristic) (Unit)

National Bureau of Standards

	03 04	0 4 M	90	90 90	3.6 4.0	8 09	0 1 1 1 1 1 1 1 1 1	= 3	12	13	13 14	15 4.0	3.4	17 A S S S S S S S S S S S S S S S S S S	81 7	61 K 0	50	19 20 21 2 7 4	22	23	. A.
			131	*	2 V Z	₹₹	4	1.0 K	× 0.7	7 7 9	7 0 0	3.9.8	3. 8. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	1 1	×	7 K					
				\vdash	3	H	+	4.6	4.5	4.2	\vdash			Ø	30	7				-	
			7	3.6 4 3.6	8.6 3.8	0.7	\vdash	4.1	4.7	4.7	Н	ī	3.4		3.2						
				4 3.7	7 3.9	- 1	* / 7	*	× K	4.2 K				×	X	7 4					
					3.7 (3.1)	01- 41	17	"	7	4.3	(4.1)		¥ 0.4		50	Į.					
				(33) A	3.1	4.0	1.1-	14110	(4.2)	2.3	7 7%	[4.2]	1 1	3.7 K	3.1	7		-			
				ر بی می در	1 4:0	4.0	~	×	7	4.3	4.2	₹			3.4 4	· †					
				2	3.1	147	0.4	4.3	4.3	4.2	4.3	H / 1		3.7 "	A	7					
			''	3.3 4.1	0.1.	7 6	(4.3)	4.3	1 1 1 1	(4.4)3	42		(4.0) 5	3.9 4	7	7					
				5 5	7 4	1.3	7	N	11		1, (1.4)	[4.1]	4.0	1 (3.5)	S	0					
			5	J. 2 7 3	37 4 3.5	(3.9) 4 1.5	4.2	4.2	44	4.2		4.1	4.0	3.7	3.4	7					
				, K	4 4	4.6	4.3	4.4	* *	4.3	4.3 M	4.2	4.0	3.7	H	0					
			-3	3.8		414 4.8	[4.2]	4.3 #	2 27	* *	5.4	4.2	4.0	3, %	7	H					
			- 7	34 3.8	8 4.0	2.1.	4.2	4.4	7. 7.	4.3	4.2	4.2	4.1	H /*	7	7			_	m-wno.	art runda
	-		(3.4) 1 3.1	1 3.1	4.0	4.3 #	(4.3)	* *	4.2 #	W 6.74	4.2	4.0 H	3.8	36	7					
	_			3.6	1.4. 9	1.2	[4.2]		e	H # #	4.3	7.8	11/	(34) 5	3.6 4	(3)					
				34 3.8	8 4.0	0 4.214	14 4.3	44	. 7.	44	7.7	4.3	4.0		3.6	7				man Hu	
				4	11	/ /	14.21"	4.3	. X.	4.3	4.3	_	(4.0)4	3.8	3. K K	7				_	
-				4 4	1.0	1.4.1	4.	4.3	(4.3)	43 W	(4.3)	2.7	4.0	14	7	7					
			7	7	177	1. 1. 7.	(4. s) H	* 5	" X	7	3	2 4	4.0	9	7	7					
			2.1	35 37	7 " 1	H	75	4.	``	¥	4	1	1	3.7	N	A.					
			9 1	(3.2) " 3.8		1311 141) "(15)	W = 1/2 W	4.3	14] A	42	4.2	0%	4.0 K	38	-25.50	7					
				36 4 5.7		1.0	4.3.4	* 5	.t.	* *	7.4	4.2	3.4	[34]# ((3.4)4	7			_	_	
			7.0 6	[2.8] A 3.5	5 3.7	1.4	(42)"	7 4	3	(4.3)4	4.2 K		4,0	39 H	2.50	Н					
			0,	32 5	1 40	2.75		4.2 #	4.2	4.2	A	H	4.0	3.8	3.4	7					
			a	0 3.	7 3.0	40	4 ÷ 4	4.4	7.2	(38) 8	3.9	5.8	2.8	3.7	3.4	'+					
			1.9 4	30 * 54	1 3.6	1 , y	x 1/4	4.2 X	(42) K	(42)"	4.1 K (3.9) K		28 K	3.6 X	33 H	Cx	_		_		
																-					
			1	ن کی کی	3.7 3.7	1 40	4.2	4.3	4.3	4.3	4.5	1/*	4.0	3.7	3. 4	(-	
			7	20 25	3	2,9		25	25 27	27	27	2 %	5.0	36	4					_	

Sweep 10 Mc to 250 Mc In 025 min

Monual [] Automatic [3]

Form apopted June 1946

National Bureau of Standards

Mc C, E.J.W, L.A.L

Scaled by:

 $\mathsf{TABLE} \quad \mathsf{78}$ Central Radia Propagatian Laboratary, Natlanal Bureau af Standards, Washington 25, D C.

IONOSPHERIC DATA

June (Month)

Kana)

Washington, D.C.

Observed at

Sweep 1.0 Mc to 25.0 Mc In 0.25 min Manual

Automatic

Manual TABLE 79

Central Radia Prapagatian Labaratary, Natianal Bureau af Standards, Washingtan 25, D.C.

IONOSPHERIC DATA

Observed of Washington, D.C.

Scoled by: McC.

National Bureau of Standards

E.J.W.

L.A.L

B.W. E. J.W. 23 Colculated by: MCC. LAL 22 2 20 8 <u>o</u> T S 4 ₹ N T U N S V S ₹ T 1 12214 X 0.X A(1:2) (2.3)H 2. K 24 23 3 222 22 22 N 3 3 7.4 2 3 33 3 7 4 Ø 4 T ¢ BK [2.5] A (27) # (24)B (25/K 26 % 784 (28)A 27 # 5 2.7 3 2.7 27 27 7 25 27 200 8.00 A ω T 4 <u>-</u> (2.9)R 7 8 X [3.0]A (30)5 BK (8 x) æ x (30)P 3.0 3.0 29 29 30 3.0 30 30 30 2 29 3.0 0.0 0 30 (4 3.0 23 A A 9 Т T < (30) 30K 3.0 K (2.9)P B 31 # (3.2) 32 3.2 32 32 31 3. 31 3 7 32 32 В 2 T 4 4 T 4 32K (31)3 B [1.E] (31) 31 K (33) (31)A 3 30 30 8.3 32 32 3 / 3 34 61 3.1 W W 33 4 T T ч K T T T T 4 B 7 [32] A 32 K [3.]] A [32] A (3.1)P 32 K (30)P (3.1)P 23 × ¥ 32 32 32 32 34 (y) 34 10 3 ₹ 2 ∢ 4 T œ ∢ T T V K K K ₹ (32)" (31) B 3.2 K 338 (33)P 32 K 32 × 3.2 [34]A (3.3)A χ (75° W 3.2 33 3.2 3.2 3.4 3 8.3 3.2 2 T ₹ T Þ T T T T T 4 (32)4 32 # (32)A 324 32 K (32) R 32 (2.7) ω 134)6 32 3 33 3.1 33 32 3 32 3.2 T T К = T T T T K 30 K 3.2 K (27)P [32] 4 (32)P 3. K (32)A A(0.E) 32 31 9 32 32 3.2 3 (32) 32 32 ω 23 3.1 3 3.1 9 T T Ţ K T T [31] A (30)P 29 K 30 K 30 × A(8 2) 8 (9.2) 30 # [3 0] A 1118 8.0 3.1 K 0 30 3.2 30 30 3.2 3 50 7 60 3/ 31 31 V 5 T T T 4.7 H 25 X (2.7)R 29 K 2.7 # 1284 (30)4 [30]A 7 6 × 0 200 3.0 2 30 00 8 8 2 50 4 200 5 29 2.7 25 08 T T T ₹ Þ (2.3)A 74 4 17 FT 7 (22)2 25 x [24] A 2 4 K 74 7 74 7 4 2.5 23 2.5 3 4 25 74 4.4 25 74 بې وم 27 4 25 2 07 T 4 T 4 ₹ × 1.7 × (21) 4 (2.1) A [19]4 [18] A A(0 K) 20 1.8 7:1 2.0 ~ 7 19 7.7 90 2 ₹ (22) 7.7 11 K ₹ T T K T T К ⋖ T 13 K 1.3 S 0 0 0.5 S ₹ T S S S S S S S S S 4 N ∢ T 7 2 2 T 1 7 Ś Lot 38. 7° N , Long 77. 1° W 0 03 02 5 00 edian Day íю 8 4 ၈ 0 13 9 8 6 2 2 aunt 9 80 = 4 5 17 59 8 = ω 22 23 24 56 27 88

25

Sweep 1.0 Mc ta 25.0 Mc in 0.25 min Monual

Automatic

Manual Form doopted June 1946

 $TABLE \quad 80 \\ \text{Central Radia Prapagation Loboratory, National Gureau of Standards, Washington 25, D.C.}$

1953

Mc, Km

Washington, D.C.

Observed at

ONOSPHERIC DATA

National Bureau of Standards E. J. W. L.A.L McC. Scaled by:

F. J. ₩. McC, L.A.L. Calculated by:

110 32 110 0 0 23 W 37,30 33120 36,20 38/30 3.2 340 22 30 4 9,20 43110 47100 #3,00 20 54110 2.00 0 2 145/20 56120 3.9 20 311,30 4.8/30 3.1/30 54 120 130 36/20 6/30 66,20 78,10 34,00 34,00 245,30 341,00 4.7/20 58,00,58,00 60,20 56,10 31,20 55/20 54/20 66 20 130 00 0 100/6 45120 145/40 3.1/20 56110 8.0100 34,20 30 B b 8 37,20 00/69 64130 13,00 74/20 58,00 64,100 371,10 Ġ 4 B 5 Y 30 7 b b . 02/85 3.77,20 45110 00/0.5 25,10 G * b 30 Ġ 9 S b Ġ B 55/20 56 110 00/46 1/120 50,10 66/20 4 51,10 36,10 52 110 68 110 56,00 38,20 38,20 01/0.4 47/20 38/30 38/20 37 30 2 b P b b G Ġ Ġ 00 B P 01/169 39 140 29,00 47/20 5.2 100 4 51,20 45/30 44,00 35,100 7411064120 4.0,20 36,20 7.01,20 38 120 (N) 30 4 S b J B Ġ 4.3 Mean Time 4.6 01104 3.7/120 3/30 3/120 00'12h 011 48 01106 b Ġ 2 B 30 Y 20 4.87,20 14/00 44/20 39,20 39 110 4 5.2 110 47/120 50/20 45,00 58 110 4 4,20 02189 100 100 75°W 60,00 9 + B Ŋ 30 12 S b J 39,20 50110 00'09 46/120 011 4.8 011 49 50/00 4.1,00 01/189 011 5.9 110 56 110 4.9,00 38,00 51 110 53 110 66110 46/10 100 # 2/00 9 4 30 b b P = 4.0,00 38 60/00 47120 361,00 4.0/10 2.9 120 47,20 4.7 110 10 4.2 Ġ B b 0 B 6 01108 4.3 110 7.3 110 7.0 100 4 4 120 14.5/20 10.5,00 54,00 00/14 391/20 30/20 48,20 48,04 1 4 40/20 47 110 44/20 30 60 J P J b O b 31/30 4/20 48/20 01144 50110 011 4 4 39130 64 /10 45/20 54 110 4.120 011 49 42,20 6.61,30 4.4 08 5 Y Ġ Y B 4 37/120 321110 36130 5.0,00 4.2110 13.000 36,30 35 130 46/20 5.2 120 4.9120 3.7/30 120 72/00 351,30 35,20 300 26/20 58/20 92/10 50 110 3.2,00 3.7 110 76,00 30 07 Ŀ b 00 7.01/20 4.77/10 30,20 25,20 #1,30 1011 64 1.000 3.1 130 34/20 3.7110 01109 3.3 110 24 130 3.2 120 9.0 ,00 34 37 110 3.27 110 2.91,30 351,20 3.3 110 30 90 b b 139,100 25/120 47/20 1.8 130 241,00 701/00 0110.9 36,20 35,00 4 6,00 17120 14/20 4/100 9,20 481,20 7.7 ш 0.5 B b Y b b 105 125/20 681,00 24110 2.4,00 35 110 45,00% 31 110 Lot 38.7°N, Lang 77.1°W 52110 26,00 251/20 5.6/10 42118 33110 27/10 М 74 0 4 W Ш 30 V W ш ш Ш 801110 2.51/20 47110 3.91,00 43/10 26,110 4 41/00 40,000 701,20 110 38 110 100/49 42,00 28,00 70 130 03 30 A W W W W Ш 30/00 42/10 126 110 011 48 39 110 2 6/110 44100 25110 42,20 00/004 42,00 3.8/100 02 Ш 200 30 331,02.911038 40/30 26110 25/20 4 0,000 011 #6 92100 24/20 44/00 100 4 001 7.2/10 33/00/26/00 66/00/66/00 34/10 47/10 2.8 Ę ¥ 20 0 Ш 497,00 24 110 ×3 110x 54/12 52110 30 10 2.7 00 30 W Ш Ш Ш ш 30 0 Count 27 Median O 2 00 = 4 17 8 6 20 24 56 28 59 30 9 2 10 5 9 21 22 23 25 m

MEDIAN foe, OR LESS LIMIT OF RECORDER MEDIAN FES LESS THAN THAN LOWER FREQUENCY *

Sweep_1 0 Mc lo 25 0 Mc In 0 25 min Manual [3] Autamatic [8]

Standards E. J. W.

ů.

Bureau Mc C.

(Institution)

Scaled by:

Form adopted June 1946

 $\overline{\infty}$

Centrol Rodio Propogation Laborotory, Notional Bureou of Standards, Woshington 25, D.C. TABLE

DATA IONOSPHERIC

Observed of Washington, D.C.

M1500)F2

National

E. J. W. Mc C, L A L Calculated by:

(0.1) 5 (0.0) (c2.1)3 1.9 F (19)F (4.9) (0.0) (167) (30)3 6.9) 3 2(61) 9 0.0 2.0 0.0 6.7 20 5.0 20.00 0 3 ŝ £0 03 1 5 (0.0) 18 F (22) (0.0) (0.1) (0.6) (07.1)5 2(6.7) 2,2 0,0 0 20 22.0 5.00 0,00 22 3 20 3.7 ô 22 1.50 6.7 0.0 1.60 100 8. 14915 5(6.5) (0.0) (23) F (00,1)5 S(20) 18(0,0) 5. 7.00 9.5 0,0 100 3 0,00 5 0.00 0.00 200 5.3 30 2 2 78 67 6. 150 70 X (0.1) 2.3 6.1 2.2 23.3 20 C 120 1.00 h d (c. a) A 27.02 23.3 23 3 2.4 00 03 300 0.0 52.3 22.2 1.9 33 233 0.00 6 100 20 C 8 U V d (0.63) 5(0.0) 500 52.53 9.0 0 0.0 500 000 80 3.1 3 3 27 1.50 50 2.1 7 8 7.00 (6.7) (0.1) 3 (0.0) 00 20 0.0 6.7 0.0 90 61 20.00 0.0 20 6. 7. T 3.1 61 1 _ < 0. 000 0.0 67 6 50 00 1.0 60 20 2.0 00 0.00 61 19 200 0.1 0.70 000 2.0 6.1 60 0 T 9 9 d (87) J (18) 000 1.2 6.1 67 200 1.2 6 0. 0.0 0 6 0.0 3.0 61 8.0 1.7 0. 6.7 U 6.7 200 3 12 4 V 9 (0.0) 60 0 67 00 6.7 67 42 67 0.50 67 4 1.2 16 0.0 67 0 67 D 9.7 61 U 67 S ଐ O Mean Time (19) 67 0.0 90 00 8 0.00 67 200 0 0.0 8 1.7 5 3 03.1 Ů 0 4 1 4 U (1) ◁ O O Ø P(61) (87) 6.7 75° W 67 0 3.0 00 9 0 67 67 6.1 50 2 J 4 Q V d 61 67 8 d 3 O 20,00 3 8 22 6. 9 67 0.0 1.00 C 4.2 = r ∢ d S O U (1) \triangleleft O 0 Q (0.0) 9 (H) 5(8.7) (20) H (18) J (1.9) 30 6.9 60.00 30 3 6.7 8 0.0 6: 1.8 200 (3.1) 6. 30 Q d 9 a (5 ◁ \bigcirc (1) D d 1.9 11 89. (0.0) 7 1.0 6:1 1.8 (7:7) 5 6:1 0 6.7 6.7 60 60 67 6. 200 8.1 1.2 8 G 4 U (1) Ø CH U (67) 21) 0.70 0.00 000 000 S (81) 3 00 6.9 1.8 3 00 6. 08 U (1) C r 2.1 U (1) ∢ D C D 1 Ó O 5(00) 2.5K 200 رش ري 2.4 233 00 6 23 00 2.0 3 Q 07 G O 0 C Y 4 U (1) O S O C \triangleleft y (2.5)A (4:0) 24 K (2.3) T 50.00 50 3.3 00 30 90 24 3 3 24 6.7 5 3 d U C r Q d D Q y O C (2.3) T(1.6) 2(50) 182.03 20 20.00 3 23 5,00 0.20 3.3 6.50 0.50 533 2.4 22.52 4.00 000 05 23 60 7.50 4 (00) (0.0) (1.9)5 (00) (21)3 3(8.0) (1.8) (20)3 235 Lat 38.7° N . Long 77.1°W 2(61) 0.0 0,0 17:00 0.0 04 20 0,0 3 2.0 0,0 50 3 40 20 Q N (20) 5 (0.1) 19 8 1.915 (87) (2.02)3 (020)5 (2.3)A 2(61) 00 1.00 200 4.0 20 60 3 2.0 20 20 00 30 50 6 Q 5 d d S E(21) 100 (4.2) 5(00) 205 E(5,50) \$ (0.6) 19 K (20) 5 (2.3)5 26 0.0 2.0 (87) 0.5 ,67 60 67 1,50 250 64 0.50 02 0.0 23 8 3.1 ₹ V d H 0.50 (00) 2(1,0) (2.3) A(0.0) P(1.0) 0.0 1.9 2.0 0. 21 ŝ 000 0.0 0.0 61 00 ō 2.0 0 6.9 0.00 6. 19 d D V 1.9 5 (43.1)5 (0.0) 2.15 (21) 5 5(00) 20 2.0 50 0.00 0.0 g G 0.00 0. 1.00 1.00 3 20 6.7 6.1 1.9 0.50 00 20 6. 6.2 80 d d 12 Median Count ĸ 4 ß 9 ~ Day ς, Φ 0 0 2 Ю 4 5 91 6 20 22 23 24 25 56 88 59 8 8 2 5

Sweep 1.0 Mc to 250 Mc in 025 min

33

Monual

Automotic

Monual

Form coopted June 1946

 $TABLE \ 8.2$ Central Radia Prapagation Laboratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

1953

June (Month)

Observed of Washington, D.C. (M3000)F2, (Unit)

National Bureau of Standards (Institution) E. J. W. E. J. W. Scaled by:__

	Lat 00.1		, Lang	77.1°W							7	75° W	Mean Ti	Tıme					Calcul	Calculated by: Mc	Mc C.	L.A.	Li i	J. W.
	0 10	02 0	03	0.4	0.5	90	07	90	60	01	=	12	13	4	15	91	17	18	61	20	21	22	23	
. ~	30 3	_	(31)3	3 /	34	34	30	26	200	29	Ŀ	Ŀ	74	7 #	29	30	32	31	31	31	31	30	29	
3	0 2	9 3	0	u.	(31)7	348	35 E	G *	A P	G K	, y	2.7 K	X X	4 P	A A	29 K	AK	29 K	3 C A	32 * {	12913	(30) F	(29)F	
3	30 5 31	W.	(27) 5 ((30)5	30 K	2.3 K	G K	6 4	GK	G K	X P	G K	4 P	25 K	2.9 K	2 8 K	78K	30 K	31 *	31 K	314	29	187	
3	2 8 (2	7)F 2	L Oo	295	32	9	B	Ġ	P	29	38	30	31	26	29	30 H	2.9	31	33	33 F	30 €	29 F	31.5	
1	4 3	20	(32) \$	32 F	34	9	6	6	28	Ŀ	IJ	38	27	28	27	30	32	30	32	32	133) 7	31	0	
3	0	0		90	20	Ġ	J	ij	3 /	3.1	IJ	5 7	ĿĿ	N Y	30	2 4	16	9	34	31	30	\$(.0.5)	1 ?	
4	00 A	3	0	4	30	34	3.2	2.7	29	32 K	¥	*	×	× 3	* 9	×	* 4	X V	32 *	3 /	3 /	A(2 E)	A(1:)	
W	3	2 F (3	2) 5	32	33 ((35)A	(32)}	4	784	(21)	A	4	27	30	29	31	3	31	32	32	32	31	7(12)	
w	115 3	0 3	_	(30) \$	32	32	32	30	8 2	(29)"	33	(48)4	ی	67	29	oo Y	3.0	4	3 2	31	31	32	0 8	
0	0 (2)	9/3 3	0	30	32 #	9		5 (8 %)	38	(27) }	A	A	9	25	¥	A	(29) A	34	32	4	31	30	.4	
W	0	9 3		30	31	31	y	30#	(31) A	31	31	30	30	30	314	32	28	A	A	5 5	75	31	105	
3	0 3	1 6	A	30 (.	33)J	30	S	30	30	32	32	28	29	29	29	V	30	3.3	31	14	000	3 /	(50/3	
N	5	8)3	(29) 3 (-	(38)3	23	ß	₹	4	31	¥	₹	F	A	27	4	3.0	30	(30)3	U	31	5 7	29	(36/2)	
\ \	X	<	× K	×	× ×	×	, y	x G	G K	32	6	2.9	28	(30)3	(27) JA	30	27	30	30	31	32	14 5	24 25	
2	9 A	8	0	5	34	A	A	A	7.9 H	(38) 5	33	28	(2 K) J	25	(2.7) H	31	32	32	∢	3.1	3.1	13/3	(30)3	
	AB	0	A	29	32	32	32	(31) 3	33	30	3.2	33 H	30	2.9	30	31	30	3/	3 5	32	31	3.1	30	
E	0 3	0 3	0	30	\perp	32	30	30	30	28	38	27	29	30	30	3.5	29	31	29	131)5	(3.0)5	(31)3	3.1 #	
6	1 # 1	95	A ((30) 5 ((32)3 ((34)5	34	9	6	P	36	29	30	29	30 4	31	30	31	31	32	(3/)5	2 2	30	
3	3	2 3	0 F	32	32	33	33	38	27	A	30	29	32	38	2.7	3.0	30	32	53	33	(3.2/5	3.3	31	
5	(32) 5 (32	2)3	(2.9) & (.	(31)3	32	33	33	33	(30) A	30	5 %	29	31	29	29	3.0	79	30	31	(3.2)3	(36)5	S	3 /	
7	9 2	u.v.		(28)3	34	T	4	¥	34	A	30	27	: · · · · · · · · · · · · · · · · · · ·	30	30	32	(31) 3	31	31	33	34	(34)3	(30)3	
0	0 F 3	7	(34) x ((33)}	34 ((33) F	¥	27	36	27	31	(27) 5	A	5	29	30	A	31	33	32	30	30	28 F	
31	31 (3.2)	2) 3 3.	2	316	35	34	32	35	38	33	31	3.0	30	29	29	0 8	t	A	(33)4	3.3	29	30	× K	
N	9 (3	5/0) 5	(30)5	30	بي	6	A	A	₹	K	₹	4	T	26	29	28	(3213	2	V	0 8	32	30	
J.	9 3	0 2	0	30	36	31	9	31	35	(29) J.	J	(3 O)A	27	30	38	3.0	31	30	31	33	3.2	31 "	3.0	
3	0	1 3	5 (33) 3	35	ß	G	30	30	30	5	6	26	25	2.9	30	(31) A	31	4 5	33	30	3.0	3.0	
(3	(30) \$ (3.	3/5 3	3 F	5	32	32	33	29	38	(31)4	34	38	Ġ	38	30	31	3.0	31	33	31	3.0	31	3.1	
3	(33)3 3	1 3	0	30	30	29	30	11.(25)	32	(30)4	G	3 8	30	¥	¥	P	38	31	30	32	33	3.0	31	
3	1 3	2 3	7	29F	23	3.1	9	ıs	26	200	31	28	6	25	b	2.7	3.0	0.5	30	8	00 7	4.7	3 (8.2)	
`	A 28	8 F K (2)	9)5	E K	32 K	G *	G K	7	Y b	×	x b	\ \	X S	G X	2.7 K	3.0 K	314	3.1 K	C x	3.0 A	3/	(2.9) 8	8 (2 2)	
,,)	30 3	0	0	30	32	3.1	29	27	200	2.9	28	2.8	2.7	28	29	30	30	31	32	32	3/	31	3.0	
7	26 27		25	25	29	28	26	25	29	26	74	25	7 0	27	76	29	2 7	27	36	28	0	29	29	

Sweep 1 0 Mc ta 25.0 Mc In 0.25 min

Manual [] Autamotic [8]

TABLE 83
Central Radio Propogation Laboratory, National Bureau of Standards, Washington 25, D.C.

form adopted June 1946

National Bureau of Standards

L.A.L

(Institution)

Mc C.

Scaled by:__

IONOSPHERIC DATA

Observed at Washington, D.C.

7

2 Ξ 4

2 21 23 24 25 56 27 28 33 31

(M3000)F1 (Unit)

L.A.L 23 E. J. W. 22 Mc C. 2 Calculated by: 20 20 <u>o</u> æ 8 Þ V R Ţ Þ Þ A D Z. V 2 V 1 ~ J a Q 2 V. 3.5 3.5 is is 3.7.2 K ₩ Ą 3.8 3.4 3.6 3.7 3.6 <u>@</u> F 3.6 3.7 3.7 3.7 4 3.6 1 Ŕ P V) P (3 2) 3.7 x 30 3.7 % * 4 3.5 いられ 3.7 2.7 8 3.6 39 8 83.7 3.4 30 <u>-</u> Ø (3.8) F D F 30 (4.0) \$ 200 404 3. 5. (3.7) CE 300 3.7 " 7 3.7 3.7 3.7 3.7 3 3.7 37 3.6 8. 3.6 3.7 30 39 4.0 3 3.6 9 8 3.7 3.7 3.7 D 4 4 3.7 1 3.9 " 1,5 4.7. 2 3.6 x (3.8) F 3.9 8 4 ů 3.6 3.9 3.9 <u>2</u> w 00 3.8 D. w 40 3.5 300 33 T d. ġ 3.9 30 4 \mathcal{F} 83. 85 84 4.1.4 4.0 3.9 " 2.9.4 (4:0)3 2 22 23 26 26 Sweep 10 Mc 10 25.0 Mc In 0.25 min 3.8 (20) 4 w oo 4.0 3.8 30 4.0 0 + 4.0 4.0 3.6 4: 3,00 3.0 4.0 3.9 30 w is 4: 30 D A A Mean Time 3.9 \$ 600 (3.7) R (3.E) (3.7) 3.9 4.0 4.0 4.0 4.0 4.0 4.0 3.7 4.0 10 4.0 7: 300 ŝ A 40 30 3.0 7 4.0 1:4 ŝ P T 3.9 % (4.3)A 3.4 4.3# 40.4 4.0 30 (4.11) 4:0 12° W 1.4 40 4:1 4.0 8.9 (++t) 4.4 4.0 X.0. 1.7 4. 3.9 1 W Pô is Sign ∾ P # P # # ¥ ŧ x 7 x 4.04 4.2 3.93 4.2 x in 3.6 3.4 4.0 30 (4.3) 4.0 4.0 4.2 4.0 4.0 1.4 4.0 3.7 3.7 42 3.0 w i 4.1 = 4 \$ A Æ A 7 4 V 4.0 % 4.04 3.6 # 3.9 # (4.2) A 3.8 # 3.7 x 3.9.8 3. is 23 4.0 0 # (0:4) 3.9 33 4.0 4. 3.9 3.9 (3.5) + + 40 # D. Ţ 9 4 A # A H 3.9 3.7 4 3.94 4.0 40.t) 3.9 3.6 4.0 4.0 3.9 33.7 3.9 3.7 4.21 4:1 4.0 F. XI 3.9 (U) 4.0 3. 30 4:1 3.0 $\frac{\omega}{\rho^{\circ}}$ ψ_{ϕ} 23 w s o Ø 4 60 A 3.00 3.6 8 x (30 # 3,6 # (3.7)3 300 3.8 3.7 is 3.9 24 Š 3.9 3.9 3.5 3.7 90 8 R 3.7 W G 4.0 3 1. 83 P P 4 Þ ig oo 3.6 4.0x 3.0 4 3.7 3.7 * : x 3.9 3.7 3.7 3.6 3.4 3.7 3.7 3.7 3.6 63 E 3.9 3.7 3.4 3.6 3.7 0 P V 4 3.0 w oo A D (3.6) 3 (3.4) H 83 12 3.5 3.6 3.5 (3.6) 3.4 3.5 35 4.0 3.7 3.8 3.7 3.6 3.6 ŝ 20 90 33 Æ T P Q A A Ø T T 9 0.4 3.00 05 3.7 30 J 4 T T Ø Lat 38.7°N , Long 77.1°W 04 03 02 ō 00 edian Day ю 4 2 ount 8 ø 5 00 ø, 2 5 6 2 8 6 22 59

Manual 🔲 Automatic 図

Form adopted June 1946

 $\label{eq:TABLE} \text{TABLE 84}$ Central Rodio Propogotion Laboratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

(Characterstic) (Unit) (Month) 1953

Observed at Washington, D. C.

National Bureau of Standards (Institution) McC., E.J.W., L. A. L.

Scaled by: __

Observed of 10, 38.7°N	100	38.7°N	500	77. I° W	N						75° W		Mean Time					Colc	lated by:	Coloulated by: MCC.	E. J. W.	M. L.A. L.
		6		2	400	90	20	ac	000	2	-	1	2	ū	9	17	o.	0	6	10	00	E C
+	5	20	2		S 4	88	4 0	4:3	4 2	1	100	+	-	Ŧ	2 7	4.0	4.2	0	3	3	22	6.3
2						434		4.54	4.3 ×	-	12	4	1.4	+	-		* + ×	, v				
3					×	S	\sim	(43) K	4.3 *	4.4.4	4.4.4	3 x + 3	3 + (+1)	5 t 3 x	x 0.4	7/7	+3 ×	3				
4					А	A	42	4.5	A	A	A	.5 43	3 A	H	Q	H	В	S				
5					A	42	И	57	4	А	4.3 4	8 (43)	3, 4 4.3	(4.4.b)	43	8	D	5				
9					S	4.3	4.3	4.3	A(+++)	A	A	43 8	2	Ø	(43)	D	47	4				
7					S	4.1	43	4.1	0.4	4.34	4.3 4	43 4 40	4.7	* S	B	(43 R	4.3 *	8				
80					S	A	4.37	t 5 t	8(5.4)	h) (9. +)	(7.t)	B	(FF)	4.27	4 3	77	43	4				
6					8	A	А	A	# + +	454	+++	(++)" A	43	B	Z	A	4 3	2				
10					2	3.9	A	4.3 4	(42)P	++	A	AA	Ø	B	A	#	0.4	A				
· =					S	Ą	1.7	43	A	(4.4)	4. +) A	H.5 A	43	4.2	(+x,p)	++	A	,			-	
						42	43	H	4.4		4.5 4	4.6 43	3 (43)	5 4.3	<i>i</i> +	4.1	4:30	A				
					5	4.1	1 #	43	4.3	4.3	4	A	3.9	4.7	4.7	H	42	2				
						(4.1) R	4.3×	+.4 K	4.2 K	R	4.2 4	4.3 4.3	3 4.2	4.3	4.7	# 1:+	4 7	4				
					8	4.4	4.3	А	Н	А	A	4	3 4.1	4.2	4.1	4.3	+3					
					5	(43)A	4.3	(4.3)A	4.4	43 (4	(4.4)P	A 4.3	3 A	4.1	#3	4.1 4	++	8				
					5	1 +	1.4	4.2	(4.3)P	H H	43 4	3 4.3	3 A	A	4.3	4.1	t	5				
					А	A	4	A	4	4.4	t) ++	(+3)° A	t. +	. 4.3	1:#	42	1.0	V				
					5	42	4.3	4.3	42	4.2	4.3 4	4.3 4.2	2 4.3	4.2	A	4.2	4.3	1.4				
					И	A	4.4	4.3	4.4	φ	A	AB	A	4.2	4.3	7+	42	S				
					А	A	45	4.5	4.4	4.4	H	AA	4.5	4.4	* *	4.5	4.5	A				
		-			4	А	И	А	A	А	В	AA	¥	4.4	4.3	43	4.3	4				
					5	A	4.5	4.5	A	4.5,0	4	AA	A	42	42	(4.1)A	43	H				, , , , , , , , , , , , , , , , , , ,
					5	A	4.4	4.3	43	4.3	43 1	A A	(A.4)	4	A	4.4	(43 A	N				arygo. Associ
					5	(4.1) A	A	A	H	4	B	AA	A	42	4.7	4.3	4	A				
					>	A(0.4)	4.3	A	4.3	4.1	A	AA	4.7	4.7	7.7	43	45	S				
					A	42	4.3	43	4.3	42 ((4.3)A	A	*	(4.3)F	1.4	4.0	4.0	A				
28					4.0	А	4.2	4.2	4.3 (447	7 1.4	B (4.3)	87 13	3.9	(4.0) 5	4.1	4.7	A				
29					5	A	4	4.3	42	43	42 (4	(4.3,A H	A	А	A	4.3	4.4	8				
30					4.3 K	X	(43) 8	4.21 x	434	434 (4	4.3.K A	7 x A	X	× (4.3)#	K (4.2) R	(42) #	(4.2.H	C x				
31																						
														+								
Median					1	42	4.3	4.3	4.3	4	4.3 4	3 4	3 4.3	7	-		4.3					
Count					7	15	m 7	23	77	71	19 /	14 13	17	22	3	23	75				-	

Sweep 10 Mc to 250 Mc in 025 min Manual Autamatic 18

Table 85

Ionospheria Storminess at Washington, D. C.

June 1953

Day		charactere	Principa Beginnin GCT		Geomagnetic 00-12 GCT	character** 12-24 GCT
2	3 2	3 4	1100	0200	2 4	2 4
3 4 5	2 2 3 2	4 2 3 3 4	1000	0300	5 4 3	3 3 3 3
5 6 7 8 9	2 1 1 2	2 2 3 2	1500	0100	3 3 2 1	333322232
11 12 13 14 15	1 1 3 4 2	3 2 3 2	0 500	1500	2 2 3 3	4 3 3 2
16 17 18 19 20	3 1 1	2 1 1 1 2			1 2 2 2 2	2 3 2 2 4
21 22 23 24	2 1 0 2	3 1 2 3 3			3 3 1 2	3 3 2 2
25 26 27 28	2 2 1 1	3 1 1			2 0 1 2	2 2 2 2 5
30 30	3	2 4	0700		3 5	5 3

*Ionosphere character figure (I-figure) for ionospheric storminess at Washington, D. C., during 12-hour period, on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

----Dashes indicate continuing storm.

Table 86a

Radio Propagation Quality Figures (Including Comparisons with Short-Term and Advance Forecasts)

May 1953

Day	North Atlantic 6-hourly quality figures	Short-term forecasts issued about one hour in advance of:	Whole day quality index	(J-re whole	ce forecasts eports) for day; issued advance by:	Geomag- netic KCh
•	00 06 12 18 to to to to 06 12 18 24	00 06 12 18		l-4 days	4-7 8-25 days days	Half day (1) (2)
1 2 3 4 5	7 6 7 7 7 7 7 7 7 6 7 7 7 6 7 7 7 6 7 7	5 5 6 5 6 5 6 6 6 6 6 6 6 6 7 6 5 6 7	7 7 7 7 7	5 6 6 7 7	5 5 6 6 6	2 2 2 1 1 2 3 2 3 2
6 7 8 9 10	6 (4) 5 5 (4) (3) 6 6 5 (4) (4) 7 6 6 5 6 7	6 5 5 5 (4) (4) (4) (4) (4) (4) 5 5 (4) (4) 5 5 (4) (4) 6 6	5 (4) 5 5 6	6 5 5 6	6 5 5 6 6	(4) (4) (5) 3 (5) (4) (4) 3 3 3
11 12 13 14 15	6 6 7 7 6 6 7 7 7 7 7 7 7 6 7 7 7 5 6 (4)	5 5 6 6 6 5 6 7 6 6 7 6 7 6 6 6 6 6 5	6 7 7 7 6	6 5 (4) (4) 5	6 5 (4) X (4) X	3 2 2 2 2 1 2 2 2 (5)
16 17 18 19 20	(3) (2) (4) (3) (2) (2) 5 5 5 (3) 5 6 5 (3) 5 6 5 (4) 7 6	(4) (3) 5 (4) (3) (2) (4) (4) (4) (3) 5 (4) (4) (4) 5 5 (4) (4) 5 5	(3) (3) (4) (4) 5	(4) (4) (4) (4) (4)	5 (4) X (4) X (4) X (4) X	(5) (5) (4) 3 3 3 (4) 3 3 3
21 22 23 24 25	5 5 6 6 5 5 7 6 6 6 7 7 7 6 7 7 7 6 7 7	5 (4) 6 6 5 5 6 6 5 (4) 6 6 6 5 6 7 6 5 6 7	6 6 6 7 7	5 5 6 6 6	5 6 6 6 7	2 2 3 3 3 2 1 3 1 2
26 27 28 29 30 31	7 5 7 7 7 (4) 5 7 6 5 7 7 7 6 7 7 7 6 7 7 8 6 7 7	6 6 6 7 7 5 6 5 5 (\(\frac{1}{4}\)) 6 6 6 5 6 6 6 6 7 7 6 6 6 7	7 6 6 7 7 7	7 7 7 7 7	7 7 7 7 7	2 2 (5) 3 3 2 2 2 2 2 2 2
<u>Score</u> : Qui	et periods S	5 6 8 11 19 13 19 11, 2 1 2 2	1	11 11	10	
	F	1 1 1 2		2	3 2	
Disturb	ed periods P S U F	2 5 0 0 2 5 1 2 0 0 0 0 0 0 0		2 3 0 0	2 2 1 0	

Scales:

Q-scale of Radio Propagation Quality

- te of Radio Propagat
 (1) useless
 (2) very poor
 (3) poor
 (4) poor to fair
 5 fair
 6 fair to good
 7 good

- 7 good 8 very good 9 excellent

K-scale of Geomagnetic Activity 0 to 9, 9 representing the greatest disturbance; $K_{\rm Ch} \gg \frac{1}{2}$ indicates significant disturbance, enclosed in () for emphasis

Scoring: (beginning October 1952)

P - Perfect: forecast quality equal to observed
S - Satisfactory: (beginning October 1952)
forecast quality one grade different from observed

U - Unsatisfactory: forecast quality two or more grades different from observed when both forecast and observed were ≥5, or both≤5

F - Failure: other times when forecast quality two or more grades different from observed

Symbols:

X - probable disturbed date

Note: All times are UT (Universal Time or GCT)

Short-Term Forecasts -- May 1953

Outcome of Advance Forecasts (1 to 4 days ahead) -- May 1953

40

Table 87a

Coronal observations at Climax, Colorado (5303A), east limb

Date								h o											-00				Deg	gree	8 8	out	h c	of 1	he	60]	ar	equ	ato	r			
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	-5	00	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1953																																					
Jun 1.9a	-	_	_	_	_	-	_	_	2	2	2	1	1	1	1	1	1	-	-	-	-	-	-	_	_	_	-	-	_	-	_	_	_	_	•	_	_
2.3a	-	_	_	-	_	_	-	-	-	-	_	_	_	-	_	-	_	_	-	-	_	-	-	_	3	3	3	-	60	_	_	_	-	_	-	_	-
3.8	-	-	-	-	-	-	_	-	-	2	3	2	_	-	-	-	-	_	-	-	-	-	-	_	_	-	-	-	-	-	_	-	-	-	-	-	-
1.7a	-	-	-	60	-	-	***	-	-	-	-	-	-	-	-	-	3	3	-	-	-	-	-	_	-	-	-	-	-	_	-	-	-	-	-	-	-
5.6a	X	X	X	X	X	-	-	-	-	-	-	-	-	-	3	2	2	_	-	-	-	-	-	_	-	-	-	-	-	-	_	-	_	-	-	-	
8.0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	1	1	4	1	-	-	-	-	1	2	2	1	-	-	-	_	-	-	-	-	-	-
8.Ga	-	-	-	-	-	-	2	2	1	1	-	-	-	-	-	2	3	3	-	-	-	-	1	1	1	1	1	1	1	-	-	-	_	-	-	-	-
9.8	-	-	-	-	-	2	2	1	1	3	3	2	1	2	3	2	3	1	1	1	1	1	1	1	1	1	3	1	2	1	_	-	-	-	-	-	CID
10.6a		-	-	_	-	2	2	2	1	1	1	1	2	2	3	4	2	_	-	-	-	-	-	-	-	-	-	-	-	-	4.0	-	-	-	-	-	-
11.6a	-	-	-	-	-	-	-	80	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	_	***
12.7	-	-	60	_	can	1	4	4	3	3	2	2	2	3	3	5	6	7	5	3	2	2	2	1	-	-	_	-	_	-	-	-	-	-	-	_	-
13.7	-	-	-	-	_	-	-	2	2	2	2	2	2	3	5	9	13	6	5	3	2	1	-	_	-	_	-	eto.	-	-	_	-	-	-	-	-	-
15.0a	-	-	-	-	-	_	_	-	_	_	_	-	_	_	_	_	-	-		-	_	-		_	-	_	-	-	_	_	_	_	-	_	-	-	X-
15.8	-	-	_	-	-	-	1	1	1	Ţ	1	Ţ	2	3	3	6	9	14	14	12	7	4	2	Ţ		-	=	-	_	-	-	_	-	-	-	-	-
16.7a	-	-	-	_	-	_	-	-	-	1	2	2	Ţ	2	2	3	5	6	6	6	3	3	3	Ţ	1	-		_	_	-	_	-	-	-	-	_	
17.7a	-	-	-	-	-	-	-	-	-	-	1	1	Ţ	Ţ	3	3	3	2	3	4	3	2	Ţ	1	-	-	-	-	-	-	-	_	-	-	-	_	_
18.7a	-	-	-	_	_	-	-	-	-	_	Τ	1	Τ	Τ	3	3	5	4	4	3	ی	ی	2	Ţ	_	-	_	_	_	_	_	-	_	_	-	-	-
20.8a	-	-	-	-	_	_	-	-	-	-	_	-	_	-	_	_	_	_	_	-	-	-	_	-	-	_	-	-	_	-	-	-	_	_	_	_	_
21.8a	_	-	_	-	-	-	-	-	_	-	_	_	_	_		_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_
22.7a	_	_	_	-	_	-	_	_	_	_	_	-	_	_	_	_	_	_	-		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
23.7a	-	463-	-	_	-	_	-	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
24.8a 25.7a	-	-	-	_	-	_	_	_	_	_	_	_	-	2	2	4	1	7	ı	2	4	5	3	3	3	1	_	_	_	_	_	-	_	_	_	_	_
27.7a	_	-	-	_	_	_	-	_	_	2	3	7	3	4	4	5	5	2	3	3	3	_	-	_	-	_	_	_	_	_	_	_	_	_	-	_	_
28.7a	can _	_	_		_	_	_	_	_	-	_	-	-	-	_	-	_	-	_	_	-	_	_	_	_	_	40	_	_	_	_	_	_	_	_	_	_
20.7a	_	-	-	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	-	-	_	-	_	-	-	_	-
23.08.	-	-	_			_	_		_		_	_	_	_																_							

Table 88a

Coronal observations at Climax, Colorado (6374A), east limb

1953 Jun 1.9a 3 2.9a 3 3.8 4.7a 2 5.6a 3 8.0 8.0 8	3 3 3 2 X	5 8 3 3 3 2 X 2 2 2 2 2	3 2 2 2 X - 2 1	5 70 2 : 2 : 1 : 2 : X :	2 2 2 2 1 1 2 2 X 1	nort 60	55 1 1 - 2 1	50 1 1 - 2 1	1 1 1 - 2	1 2 2 2 2 2	1 2 3 2 2	2 2 2 3 2	4 3 3 2	2 4 5	2 5 4	3 3 5	4 3	3 3	5 3 2	3 2	3 2	3 2	25 <u>3</u> 2	3 2	35 ¹ 3 2	3 2	2 2	2 2 2	2 2 2	2 1	2 1 2	70 2 1 2	75 3 1 2	3 1 2	3 1 3	2 1
1953 Jun 1.9a 3 2.9a 3 3.8 4.7a 2 5.6a 3 8.0 8.0 8	3 3 3 2 X 2 2	3 3 3 2 X 2	3 2 2 2	2 2		2 1 2 1 4 -	1 1 - 2 1 -	1 1 - 2 1	1 1 - 2 1	1 2 2 2 2	1 2 3	2	4 3 3 2	2 4 5		3	3		_	3 2	3 2	3 2	3 2	3 2	3 2	3 2	2 2	2 2 2	2 2	2 1 2	2 1 2	2 1 2	3 1 2	1	3 1 3	1
2.9a 3 3.8 3 4.7a 2 5.6a 3 8.0 2 8.5a 2	3 3 2 X 2 2	3 3 2 X 2	2	2 : 2 : 1 : 2 : X : 1 : 1 : 1	2 2 2 2 1 1 1 2 2 2 X 1 1 1 1 1 1 1 1 1	2 1	1 1 2 1 -	1 1 - 2 1	1 - 2 1 -	1 2 2 2	3	2 3 2 1	4 3 3 2	2 4 5	2 5 4	3	3		_	3 2	3 2	3 2	3 2	3 2	3 2	3	2	2	2	2	2	2 1 2	3 1 2	1	3 1 3	1
2.9a 3 3.8 3 4.7a 2 5.6a 3 8.0 2 8.5a 2	3 2 X 2 2 2	3 2 X 2 2	2	2 : 1 : 2 : X : 1 : 1 : 1	2 2 1 1 2 2 X 1 	2 1 1 - 2 2 1 1	1 2 1	1 - 2 1	1 2 1	2 2 2	3	2 3 2 1	3 2	4 5	5 4			3	2	2	2	2	2	2	2	2	2	2	2	1	1	1 2	1	1 2	1	1
4.7a 2 5.6a 2 8.0 2 8.\$a 2 9.8 2	2 X 2 2	2 X 2	2	1 : 2 : X : X : 1 : 1 : 1	1 1 2 2 X 1 	2 2 1 1	2	2 1	2	2 2	-	3 2 1	3 2	5	4	5	- 1									_	0	2	2	2	2	2	2	2	3	
5.6a 2 8.0 2 8.5a 2 9.8 2	X 2 2 2	X 2 2		2 X X X X X X X X X X X X X X X X X X X	2 2 X 1 1 1	2 2 1 1	1 -	2	2	2	2	2	2	0		·	5	5	5	5	4	5	4	5	3	2	4	4	4	-	~				-	3
8.0 2 8.5a 2 9.8 2	2 2 2	2	X 2 1	X :	X 1	1 1	1	1	1	2	2	1		4	3	4	4	4	4	3	3	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
8.5a 2	2		2 1	1	1 1		-	-	_	_		-	1	1	3	3	4	4	3	3	3	4	4	3	3	3	1	1	1	1	1	1	1	1	2	2
9.8 2	2		2 1	1	1 1	1 7				1	2	2	2	2	4	5	6	4	3	3	3	2	2	2	1	1	1	1	1	1	1	1	1	1	1	1
	-	2	1	3			1	1	1	3	3	3	3	3	4	6	5	4	5	4	4	4	4	2	2	2	2	2	2	2	2	2	2	2	2	3
	2	2		Δ.	1 1	1 1	1	1	1	2	3	3	3	4	3	3	4	3	3	4	5	5	4	3	2	2	3	2	2	2	2	2	2	2	2	3
	_	400	1	1 .			-	-	-	-	2	3	2	2	2	4	3	4	5	5	6	5	5	4	3	1	1	2	2	2	2	2	2	2	2	2
11.6a -	_	-	-				-	-	-	-	-	-	-	-	-	-	3	4	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2	3 .	3	2	1 -	-	-	-	-	-	-	1	1	1	1	2	9	10	8	2	3	4	5	5	3	2	1	1	1	1	2	2	3	3	3	3
	3	2	1	1 .		- 2	-	-	-	-	-	-	-	-	1	6	6	5	2	2	2	3	4	2	1	1	1	1	1	1	1	1	2	2	2	2
15.0a -	-	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	X
	2	2	1					-	-	-	-	-	-	-	-	3	4	5	4	1	2	2	1	2	1	1	1	1	1	1	1	1	1	1	1	2
	2	2	-				-	-	-	-	_	-	-	-	-	-	-	3	3	3	3	3	2	-	-	-	_	-	-	-	-	-	-	-	-	-
	2	-	-				-	-	-	-	-	-	-	-	-	_	1	1	1	2	2	3	-	-	-	-	-	-	-	-	-	-	-	-	_	-
	2	2	1	1 .			-	-	-	-	-	-	1	2	3	1	1	1	1	1	1	2	3	1	1	1	1	1	1	1	1	1	1	1	1	1
	3	2	1	1	1]	1	1	1	1	1	1	1	1	2	1	2	1	2	2	2	3	3	1	1	1	1	1	1	1	1	1	1	1	1	1	1
21.9a -	-	-	-	-			-	3	3	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	-	2	2	-	-	-	-	-	-	2	-
	3	3	2	-			-	-	-	-	-	-	-	-	-	-	-	2	3	3	3	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-
	2	1	-				-	-	-	-	-	-	-	-	-	-	-	3	3	3	3	4	-	-	-	-	-	-	-	-	-	-	-	-	-	-
24.8a -	-	***	-	-			-	-	-	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	~	-
25.7a -	-	-	-	-		-	-	-	-	2	3	3	3	3	3	3	3	3	3	3	6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
27.7a -	-	-	-	-			-	-	**	-	-	-	3	4	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
28.7a -	-	-	-	-			-	-	-	-	-	-	-	3	3	3	3	3	3	3	3	3	3	-	-	-	-	-	-	-	-	-	-	2	2	2
29.6a -	-	2	2	2	2 2	2 2	2	2	2	2	2	2	2	2	2	2	2	3	2	2	2	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-

 $\frac{\text{Table 87b}}{\text{Coronal observations at Climax, Colorado } (5303A), \; \underline{\text{west limb}}$

Date					ree													T	_				Deg	ree	s n	ort	h o	ft	he	sol	ar	eou	ato	r			—
GCT	90	85	80	75	70	65	50	55	50	45	40	35	30	25	20	15	10	5	0°	3	10	15	20	25	30	35	40	45	50	55	60	55	70	75	80	85	90
1953	-																																				
Jun 1.9	_	-	_	_	-	-	_	_	_	-	_	80	-	-	40	4	4	6	5	6	10	8	9	4	3	2	2	2	2	2	3	3	_	_	_	_	_
2.9a	-	-	-	-	-	-	_	_	-	-	-	_	-	400	_	_	2	5	4	4	5	6	6	3	3	3	2	_	_	_	_	_	_	-	_	_	_
3.8	-	-	-	-		-	_	-	-	-	_	-	-	-	3	4	6	6	8	10	10	7	7	4	3	2	2	2	2	2	2	2	3	-	-	_	_
4.7a	-	_	_	_	_	-	_	-	cont	-	-	geo	-		2	4	5	5	5	-5	5	5	4	3	3	2	2	ī	1		-	_	_	_	_	_	-
5.6a	-	-	-	_	_	_	_	_	-	_	-	-	(Ea	_		_	-	1	1	2	3	5	4	2	2	3	-	_	_		_	_	_	-	-	_	X
8.0	-	-	_	-	_	_	X	_	-	-	-	-	2	2	_	_	_	-	-	_	_	_	-	_	-		es	_	_	2	2		-	-		-	-
8.6	-	-	-	-	-	-	2	3	2	-	-		_	-	-	-	-	-	-	-	_	1	1	1	1	1	1	1	1	1	1	-	-	_	-	_	_
9.8	-	-	-	-	-	-	-	-	-	-	_	-	-	-	_	-	_	-	-	-	_	_	-	_	-	_	_	_	-	_	_	ton	_	-	-	_	_
10.6	-	-	_	-	-	-	-	-	-	-	-	-	-	3	3	5	4	3	ı	_	-	_	_		_	_		-		-	_	_	-	_	_	_	_
11.6a	-	-	-	-	-	-	-	-	_	-	-	-	_	_	_	-	-	-	-	-	_	-	_	-	_	х	х	Х	Х	Х	Х	Х	Х	_	-	_	_
12.7	-	_	-	-	-	-	-	-	-	gta	-	_	_	-	3	5	4	2	ı	1	_	_	3	5	3	2	2	2	2	-	_	_	_	_	_	-	_
13.7	-	-	_	-	-	-	-	-	-	-	_	-	-	-	_	-	-	-	-	-	1	4	7	4	_	_	_	_	_	-	_	_	_	-	_	_	-
15.0	X	X	Х	Х	X	X	Х	Х	Х	X	X	Х	X	X	X	Х	X	X	х	Х	Х	X	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	х	Х	Х	-
15.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	_	-	_	_	2	3	2	-	_	_	_	_	_	_	_	_	_
16.7a	-	-	_	-	-	_	_	_	-	-	-	-	-	-		_		-	-		-	-	-	_	-	-	_	_	-	-	_	-	-	-	-	_	-
17.7a	-	-	-	-	-	•	-	-	-	-	-	-	-	_	-	-	-	-	-	-	_	-	-	-	_	-	-	010	_	-	-	_	_	-	-	_	
18.7a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	gt.o	-	_	-	-	-	_	_	-	_	_	_	_	Х	Х	Х	_
20.8a	-	-	-	÷	-	-	-	_	_	-	-	_	_	-	2	2	1	-	-	_	_	-	_	_	_	_	_	-	_	-	_	_	_	_	_	_	-
21.3a	- 40	-	-	_	-	-	-	-	_	-	-	-	-	-	-	_	-	-	-	-	-	_	_	_	_	_	-	_	-		_	_	_	_	_	_	-
22.7a	-	-	_	-	-	-	-	_	_	_	-	_	-	_	_	-	_	_	-	_	_	-	_	_	_	-	_	_	_	_	-	_	_	_	_	_	_
23.7a	-	-	-	-	-	-	-	_	-	**	_	-	-	-	_	-	_	-	-	_	_	_	_	_	_	_	_	-	_		_	_	_		_		_
24.8a	-	-	-	-	-	-	-	\neg	-	-	-	-	-	-	_	_	_	-	-	_	_	-	_	-	_	_	_	_	-	_	_	_	_	_	_	_	_
25.7a	-	-	_	-	-	-	_	_	-	-	_	-	-	-	-	-	-	-	-	2	5	2	1	-	-	_	_	2	2	3	_	_	_	_	-	_	_
27.7a	-	-	-	-	-	_	-	_	_	_	_	_	2	2	2	2	2	2	2	3	7	7	3	2	_			_	_	_	_	_	_	_	_	_	_
28.7a	-	-	-	-	-	-	-	-	-	_	-	-	-	-	_	-	_	_	-	_	3	4	4	3	3	3	2	1	1	1	1	_	_	_		_	_
29.6a	-	-	-	-	-	-	-	-	<u> </u>	-	-	_	-	-	-		-	3	3	4	3	-	-	-	_	-	-	_	_	_	_	-	_	_	_	_	_

Table 88b

Coronal observations at Climax, Colorado (6374A), west limb

Date				Deg	ree	s s	out	h o	ft	he	sol	ar	eou	ato	r]	Degi	rees	s n	orti	1 0	ftl	he :	sol	ar	equ	ato	r			
GCT	90	85														15	10	3	00	5	10	15	20	25	30	35	10	45	50	55_	60	55	70	75	80_	85	90
1953																																					
Jun 1.9	2	1	1	1	1	1	1	ı	1	2	2	2	2	3	2	2	2	2	2	5	7	6	6	1	1	1	1	1	1	1	1	1	2	2	2	3	3
2.9a	1	_	-	-	-	-	-	-	2	2	2	2	2	2	2	2	2	3	3	4	4	3	=	-	-	_	-	-	-	-	-	-	-	-	3	3	3
3.8	3	3	3	3	3	2	2	2	2	2	2	3	3	3	2	3	3	2	2	10	3	6	2	2	2	2	2	2	2	2	2	2	2	2	2	3	3
4.7a	2	2	2	2	2	2	2	2	2	2	2	3	3	3	2	3	3	2	2	5	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
5.6a	2	2	2	2	2	2	2	1	1	1	1	1	2	3	2	1	1	1	1	1	2	5	3	-	-	-	-	-	-	-	-	-	-	-	-	-	X
8.0	1	1	1	1	2	1	Х	1	1	1	1	1	1	1	3	2	2	2	3	4	3	3	3	2	2	2	3	2	2	2	2	2	2	1	2	2	2
8.6	3	3	3	3	3	2	2	2	2	2	2	2	2	2	2	3	3	3	4	4	2	2	2	2	2	2	3	3	2	2	2	2	2	2	2	3	2
9.8	3	3	3	2	2	2	2	1	1	1	2	2	2	3	4	5	5	4	4	5	4	3	3	2	2	2	2	3	2	2	1	1	1	1	2	2	2
10.3	2	3	2	2	2	2	2	2	3	3	2	2	3	3	3	5	5	5	4	2	2	1	1	1	1	1	1	1	2	1	1	1	1	1	2	2	2
11.6a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	3	4	2	-	-	-	-	-	-	Х	X	Х	Х	Х	Х	Х	X	-	-	-	-
12.7	3	3	3	3	2	2	2	1	1	1	2	3	3	2	5	5	3	3	3	3	3	4	5	4	3	2	2	1	1	1	1	1	1	1	1	2	2
13.7	2	2	2	2	2	1	1	1	1	2	2	2	2	3	3	4	3	4	4	3	9	8	8	5	2	2	2	1	1	1	1	1	1	1	2	2	3
15.0	X	Χ	Х	Х	Х	Х	X	Х	Х	X	Х	X	Х	X	Х	X	X	X.	, i	X	X	X	Х	X	X	75	X	X	Х	Х	Х	Х	Х	X	X	. X	-
15.3	2	1	1	1	1	1	1	1	1	1	1	3	4	3	2	3	4	4	3	4	4	6	5	3	3	2	2	1	1	1	1	1	1	1	2	2	2
16.7a	-	-	-	-	•	-	-	-	-	1	1	1	1	2	2	3	4	3	2	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1	2	2	2
17.7a	-	-	100	-	-	-	-	-	-	-	-	-	-	-	2	2	2	2	2	2	2	2	2	2	2	2	2	1	1	1	1	1	1	2	2	2	2
18.7a	1	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	Х	Х	Х.	2
20.3a	1	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	3	3
21.8a	-	3	2	1	1	2	2	2	2	1	2	2	2	3	2	2	2	2	2	2	3	3	1	1	1	1	-	-	-	-	-	-	-	-	-	-	-
22.7a	-	-	-	-	-	-	-	-	-	-	-	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	2	2	2	2	2	.5	2	2	2	3
23.7a	-	-	-	-	-	-	-	-	-	3	3	3	3	3	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	3	3	2
24.8a	-	-	•	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
25.7a	-	-	-	-	-	-	-	-	-	-	-	-	1	3	3	3	3	3	5	6	7	3	2	1	-	-	-	-	-	-	-	-	-	-	-	-	-
27.7a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	3	.9	4	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-
28.7a	2	2	2	-	-	-	-	-	-	-	-	-	2	2	1	1	2	2	2	3	4	2	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-
29 .€a	-	-	-	-	-	-	-	-	-	3	-	-	-	_	-	-	-	-	-	-	_	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-

Table 89a

Coronal observations at Climax, Colorado (6702A), east limb

ate	Γ			Deg	ree	s n	crt	h c	of t	he	30	ar	equ	ate	r				00				JER.	reel	5 5	ouc	1.0	1	50	501	-60	Ze	700	75	BO	05	0
GCT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	_51		5	10	15 2	20 :	25	50	22	40	42	20	<u> 22</u>	00	equ 65	10	15	00	05	
1953																		-																			
un 1.9a	-	-	-	_	-	_	-	a.s	-	-	-	-	-	-	-	-	-	-	-	-	40	-	4.00	-	679	158	-	-	-	-	_	-	-	-	_	_	
2.9a	-	_	_	-	gelà	-	-	-	600	42	-	-	стр	_	-	-	444	-	-	-	-	-	·		000	•	-	_	-	-	-	-	_	_	_	_	
3.8	-	_	-	_	-	-	-	-	-	est.	**	487	-	-	-	-	-	- !	-	-	ec	***	40	co	-	-	-	-	-	-	-	-	_	_	_	_	
4.7a	-	-	_	-	_	-	-	-	-	-	_	***	-	-	-	_	-	-	-	-	400	_	-	_	_	bis.	-	_	-	-	-	-		_	_	_	
5.6a	X	$\overline{\lambda}$	\mathcal{X}	X	X	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9039	-		9:0	_	-	-	-	-	-	-	-		_	_	
8.0	-	-	_	_	-	-	-	-	_	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	_	_	_	_	-	-	-	-		-	_	
8.5a	-	-	_	_	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	9	-	-	-	_	-	-	_	en	_		_	-	_	_	
9.8	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	83	-	-	-	-	_	-	COP	-	_	-	-	-	co-	_	_	_	_	
10.6a	-	_	-	-	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	_	_	_	_	_	_		
11.62	-	_	_	_	_	_	-	_	_	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	_	_	_	_	
12.7	_	_	_	_	-	-	-	-	-	-	-	-	-	-	-	_	2	2	1	-	-		-	400	_	-	-	_	_	-	-	-	_	_	_	_	
13.7	-	_	_	_	-	-	-	-	-	-	-	-	***	1	2	3	3	3	2	2	2	2	1	-	-	-	-	-	-	-	-	_	_	_	_	_	
15.0a	-	-	_	-	-	-	-	-	_	-	-	-	_	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	_	_	_	_	_	_	
15.8	-	_	-	_	-	-	-	-	-	-	-	-	-	-	-	-	2	2	2	2	2	2	-	_	-	_	-	-	-	-		_	_	_	_	_	
16.7a	-	_	_	-	_	-	-	-	-	-	-	-	-	-	-	-	-	~	c#	-	-	-	-	-	_	-	-	-	_	-	_	_	_	_	_	_	
17.7a	-	-	_	_	-	_	-	-	-	-	-	-	-	-	-	-	***	-	-	-	-	-	-	-	_	-	-	-	-	_	_	_	_	_	_	_	
18.7a	-	-	_	-	-	-	-	-	-	•	-	-	-	-	-	-	_	-	-	-	-	-	4.0	-	_	-	-	_	_	_	_	_	_	_	_		
20.8a	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	_	-	_	_	_	_	_	_	_		_	
21.8a	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	•	_	_	-	_	_	_	_						
22.7a	-	_	_	_	-	_	-	-	_			-			-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	_	•
23.7a	_	-	_	_	_	-	-	-	-			-			-		_	-	-	-	-	-	-	-	-	-	-	-	_	-	_	-	_	_	_		ľ
24.8a	-	-	_	-	-	-	-		40						-		-	-	-	-	-	-	-	-	-	-	-	-	_	-	_	_	_	_	_	_	_
35.78	-	-	_	-	-	-	-	-	-							-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	_	_	-		_
27.7a	-	-	_	_	-	-	-		-								-	-	-	-	-	0.00	-	-	-	-	-	-	_	-	-	_	_		_		_
28.7a			-	-	-	-	-		-					-			-	-	-	-	-	-	_	-	-	-	-	_	_	-	-	_	_	_	_		_
29.€a				-	-	-	-		-	٠,٠			-				-	_	-	-	-	-	-	-	-	-	-	-	_	-	_	-	_	_	_		_

Table 90a

Coronal observations at Sacramento Peak, New Mexico (5303A), east limb

Da	te				Deg	ree	s n	ort	h o	er t	he	sol	ar	equ	ato	r			1					Deg	ree	8 8	out	h c	of t	he	80]	Lar	equ	iato)T			
G	CT .	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	00	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
19	53																																					
Jun	3.7a	-	-	-	-	2	3	2	2	3	3	3	2	3	2	2	3	3	2	3	3	2	2	3	2	2	2	-	-	_	-	-	-	-	-	-	-	
	4.7a	-	-	-	_	-	-	_	-	400	2	3	3	2	2	3	2	2	2	2	3	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	5.7a	-	-	_	-	2	3	2	2	2	2	3	3	3	2	2	2	2	-	2	2	2	2	3	3	3	2	3	2	4	4	3	2	2	-	-	-	
	6.7a	-	-	-	-	_	2	2	3	3	5	5	4	3	2	3	3	3	3	3	4	4	3	3	3	2	3	3	3	3	2	2	-	-	-		-	
	7.7	-	-	-	-	-	-	_	2	3	3	4	3	2	2	2	2	3	5	4	3	2	2	2	2	2	3	3	3	3	2	-	_	-	-	-	-	
	8.7a	-	-	-	-	-	-	-	-	2	2	2	2	2	3	3	3	3	3	3	3	3	2	3	2	2	2	-	3	2	2	2	-	-	-	-	-	
	15.7a	-	-	-	-	-	-	2	3	3	4	3	3	3	3	4	5	8	12	11	5	4	3	2	3	3	٠3	2	2	2	-	-	-	-	-	-	-	
	18.8	-	-	-	2	2	2	2	2	3	2	2	3	3	4	5	6	14	13	7	5	5	4	4	3	3	2	2	-	-	2	3	2	2	-	-	-	
	20.8a		-	-	-	-	2	2	2	3	4	3	3	3	3	4	4	3	3	3	3	3	3	4	3	4	3	2	2	2	-	-	-	-	-	-	-	
	21.7a	-	-	-	-	2	2	3	3	3	3	4	3	4	4	4	3	3	4	3	3	3	3	2	2	2	2	2	2	3	3	3	3	2	-	-	-	
	22.7a	-	-	-	-	-		2	2	2	2	2	3	3	3	3	3	3	3	3	2	2	3	3	3.	3	3	2	2	3	2	2	-	-	-	-	_	
	23.9a	-	-	-	-	-	3	3	3	3	3	3	2	3	2	2 °	3	4	4	3	3	3	3	3	3	4	4	2	2	2	2	2	3	3	2	2	-	
	25.7	-	-	-	-	_	2	2	2	-	-	2	2	3	3	3	2	3	3	2	2	2	6	11	6	3	2	2	2	2	-	3	3	-	-	-	-	
	29.7a	_	-	-	_	-	4	4	4	3	4	3	2	3	3	2	3	3	3	4	3	3	4	4	5	4	3	3	3	4	3	3	3	3	-	-	-	
	30.79	-	_	-	2	3	4	4	4	5	4	3	3	3	3	4	4	4	3	-	-	-	-	-	-	-	_	-	-	-	-		-	-	-	-	-	

Table 89b

Coronal observations at Climax, Colorado (6702A), west limb

Date					Deg	ree	25	301	ut	h o	ft	he	so.	lar	ec	ua	tor					00				Deg	ree 25	s n	ort	h o	ft	he	sol	ar	equ	ato	r		- 1	_
GCT	90	8	5 7	30	75	70	65	50	0	55	50	115	40	35	30) 2	5 2	20	15	10	- 5	00	5	10	15	20	25	30	35	40	45	50	55	60	<u> 55</u>	70	75	80	85	90
1953																						Γ,																		
Jun 1.9	_		-	-	-		-		-		-	_	٠.	_	-	-	40	-	0	-	100	-	43	-	-		400	-	-	-	-	-	-	-	-	-	-	-	-	4
2.9a	-		-	-	-	-	-		•	-	_	-			•		•	-		_	40	-	-	_	_	-	-	-	+40	-	-	-	-	_	-	-		-	-	
3.8	-		-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	*
4.7a	-		o#	_	_	-	_		63	90	-		qn	_		-	-	-	0	-	-	-	-	_	-	-		-	-	440	-	-	-	-	-	-	-	-	-	•
5.6a	-		-	-	_	-	-		-	-	_	-	-	-	-		_	-		-	-		-		-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	7
8.0	-		-	-	_		_	. :	X	_		-	-	_			•	-		_	_	-	_	_	-	_	-	-	-	-	_	-	-	-		-	-	-	-	
8.6			-		-	-			-	-	-		-	-			_		-	-	410	-	-	-		-		-	-	-	-	æ	-	-	-	-	_	-	-	4
9.8	-			_	_		-		-	-							-	-	-	-	-	-	-	-	_	_	400	_	_	_	-	-	-	-	-	_	-	-	-	4
10.6	-		-	-	-	-	-		-		-	-	-	-			-	-		-	-	-	-	_	_	-	-	-	_		-	-	_	_	-	-	-		-	
11.6a	-			_	_	-	_		-	-	-	-	-	_			-	-	-	-	***	-	-	-	-	-		-	Х	Х	Х	Х	Х	Х	X	Х	-	-	-	
12.7	-			-	-	-				-							-	_		-	-	-	-	_		_			-			_	-	-	-	-	_	-	_	
13.7	-		,						-									_				-		2	2	2	2	2	1	_	_	-	1	1	1	-	_	-	_	
15.0	X	2	(Х	X	Х	Х	: :	χ	Х	X	Х	Х	Х	2	(X	Х	X	Х	Х	х	Х	X	Х	Х	Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
15.8	-		_	-	-	100	-		-	_	-	-	-	_			_	_	_	-	-	-	-	-	-	-	_	-	_	_	_	_	-	-	_	-	_	400	-	
16.7e.	-			_	-	-	-		_	-	-	-	-	_			_	_		_	_	-	-	-	_	-	_		-		_	-	-	_	_	_	_	-	_	
17.7a	-				-	-	-		_		_	-					_	_	-	_	-	_	-	_	-		_	-	_	_	_	-	-		-	-	_	_		
18.7a	_			_			-	. ,	_		-	_		_					_	-	-	_		_	_	-		_		-			-	_	_	-	Х	Х	Х	
20.8a	_				_		_		_	_	_		-	-			_	_	-	-	-	-	_	-	-	_	_	-	_	_	_	_	_				-	_	-	
21.8a	-			ф		_	-		-	-	qu.			_			60	-	-	400		-	_	_		-	-	-	-	-	_	-	_	-	_	_	_	_	-	
22.7a	_			_	_	100			ten.		_	**	_	_			_	_	-	_	_	_	_	_	_	_	_	_		-	_	_	_	_	_	_	_	_	-	
23.7a	_		_	_	_	-	-		-	_		_	-	_		-	_	-	_		-	_	-			_	-		_	_	_		-	_	-	_	_	_	_	
24.8a	_		_	_	-	_	_		_	-	_	-	_	_		-	_	_	_	_	_	_		_	_	_	-		_	-	_	_	_		-	_	_	_	_	
25.7a			_	_	-	-			_				_	_			_		_		_	-	_		-	_	_	_	_	_	_		_	_		_	_	_	_	
27.7a	_		_	_	_	_			_	_	100	_	_	_			_	-	_	_	_	_	_	_	_	_	-	_	_		_	_		_	_	_	_	_	_	
28.7a	-			-	-	-	_			_	_	_		_			-	_	-	_	_	_	_	-	_	_	_	_	_	_	_	-	_	-	-	_	_	_	_	
29.6a	-		-	_		_	_		_	_			_	_	,		_	Can.		_	_	_	_	_	_	_	_	-		-		-	-		-		-		_	,

Table 90b

Coronal observations at Sacramento Peak, New Mexico (5303A), west limb

Date					Deg	ree	s s	sout	h c	of t	he	so.	lar	eoı	ato	r					1			Dei	ree	es r	nert	h c	of t	the	so]	ar	P01	ato	r			_
GCI	Γ	90	85	80	75	70	65	50	55	50	45	40	35	30	25	20	15	10	5	00	3	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
195	3																																					
Jun	3.7a	-	-	-	-	_	3	3	3	3	3	3	4	3	3	4	4	5	8	7	111	10	10	8	7	5	3	3	4	2	4	4	3	2	2		-	_
	4.7a	-	_	-	-	-	-	_	2	2	3	3	3	2	2	3	4	5	8	4	_		11	8	5	5	4	4	3	4	5	4	4	3	4	2	2	_
	5.7	-	-		_	_	_	-	2	2	3	3	3	3	2	2	3	4	5	6	8	10	16	18	10	5	4	3	4	3	2	5	4	2	2	_	_	_
	6.7a	-	-	-	-	-	-	3	3	3	3	2	2	3	3	3	3	2	3	3	3	3	3	2	2	2	4	5	4	3	3	2	2	3	3	3	3	_
	7.7a	-	-	-	-	-	-	-	-	2	2	2	3	2	4	3	3	2	2	2	2	2	2	2	2	3	4	3	2	3	3	2	2	_	_	_	_	_
	8.7a	ep.	-	-	-		_	-	2	2	3	3	2	3	2	3	3	2	2	2	-	_	_	_	_	2	3	2	2	2	_	_	_	-	-	_	-	_
	15.7a	•	-	-	-	-	-	-	3	3	3	2	2	2	2	2	2	2	3	3	3	3	2	4	3	4	3	3	3	4	4	3	4	4	3	3	2	
	18.8	-	-	-	-	-	-	2	2	3	3	3	3	3	2	3	2	2	3	4	3	3	3	3	3	4	3	2	2	2	2	3	2	3	3	2	-	
	20.8a	-	-	-	-	-	_	2	2	2	3	3	-	2	2	2	-	2	2	2	2	2	3	8	5	4	4	3	3	3	3	2	3	3	2	-	_	_
	21.7	-	-	-	-	-	-	-	-	2	2	3	3	3	4	4	4	2	2	3	3	4	4	4	3	3	3	3	4	3	4	3	2	3	3	2	_	_
	22.7a	-	-	-	-	-	2	2	3	2	2	3	3	3	2	2	2	3	3	3	3	3	2	2	2	2	_	_	3	3	4	4	3	3	3	3	2	_
	23.9a	-	em	-	-	-	_	2	2	3	3	2	3	3	3	3	3	3	3	3	2	2	3	2	3	3	2	3	3	3	3	3	3	3	4	4	-	
	25.7	-	-	_	-	2	2	2	2	2	2	3	3	3	4	3	3	3	3	3	5	13	12	10,	- 5	3	3	2	3	3	2	3	2	3	3	2	2	٠_
	29.7a	-	-	_	-	_	3	3	2	2	3	3	3	3	3	4	5	3	2	2	2	3	3	3	3	3	3	3	3	4	3	3	3	-	_	_	_	_
	30.7a	-	-	3	3	3	3	3	3	4	3	2	2	3	3	2	3	3	3	3	3	3	2	2	2	3	3	3	2	2	3	3	4	3	2	_	_	_
											-		-	_	-	~	-		_	Ĭ	ľ	•	~	~	~	-	-	J	-	~	0	9	-	0	~	_	_	_

Table 91a

Coronal observations at Sacramento Peak, New Mexico (6374A), east limb

2 2 - 3
2 2 - 3
3 4 3 2
3 3 3 3
2 - 3 2
2 2 3 2
3 3 3 -
3 2 2 -
2 2 2 2
2 2 2 3
3 2 3 2
2 2 3 3
2 2 2 3
- 3 2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Table 92a

Coronal observations at Sacramento Peak, New Mexico (6702A), east limb

Da	te				De	gree	8 1	nort	th (of '	the	60	lar	eq	at	or								De	gree	8 8	sout	ch o	of t	the	80	lar	equ	ato	or			
G	CT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	50	15	10	5	00	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
19	53																																					
Jun	3.7a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-
	4.7a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	_	-
	5.7a		-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
	6.7a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	7.7	-	-	-	_	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	8.7a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	15.7a	-	-	-	-	-	-	-	-	-	-	-	-	-	2	3	3	4	3	2	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	13.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	3	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	20.8a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	21.7a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	22.7a	i -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-
	23.9a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	25.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	3	3	3	2	-	-	-	-	-	-	-	-	-	-	-
	29.7a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	30.7a	-	-	-	_	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	_	_

Table 91b

Coronal observations at Sacramento Peak, New Mexico (6374A), west limb

Date				Dee	ree	SS	ou t	ch c	ft	he	sol	ar	eou	ato	r				-0					ree		ort	h o	f_t									
GCT	90	85	80	75	70	65	50	55	50	45	40	35	30	25	50	15	10	5	oo	3	10	15	20	25	30	35	40	45	50	55	60	55	70	75	80	85	90
1953																			,																		
ın 3.7a	3	2	2	-	2	-	-	-	-	2	2	2	3	2	2	2	2	2	2	7	6	4	3	2	2	2	3	-	-	2	2	2	2	2	4	4	3
4.79	2	2	3	4	2	2	2.	3	3	2	3	3	3	4	4	2	4	5	3	4	11	4	4	2	2	-	-	-	-	-	-	-	-	2	3	2	3
5.7	3	2	3	3	3	3	2	2	-	2	3	-	3	4	5	5	6	7	5	5	6	7	14	5	2	3	2	2	2	-	-		2.	2	3	2	3
6.7a	2	-	-	60	-	-	-	-	-	2	3	-	2	2	3	2	3	4	2	3	3	5	4	2	2	3	2	3	3	3	-	-	2	3	3	3	2
7.7a	2	2	2	2	2	2	2	2	-	3	3	2	2	2	3	2	4	4	4	5	5	4	5	3	2	2	3	3	3	2	2	2	2	2	3	3	3
8.7a	-	-	-	-	-		-	-	2	3	2	2	2	2	3	3	3	3	3	4	5	3	2	2	2	3	3	2	3	2	-	2	_	3	3	2	2
15.7a	-	2	2	2	3	2	-	2	2	-	2	3	2	3	-	2	2	3	3	3	2	2	3	-	_	-	_	_	-	-	2	2	3	2	2	2	-
18.3	2	2	_	-	2	3	2	-	2	2	2	-	-	2	5	6	3	4	5	6	5	5	5	4	4	4	3	2	2	-	2	2	2	2	2	2	3
20.8a	3	-	2	2	3	3	2	2	-	3	2	3	3	3	2	4	4	5	4	4	3	6	11	5	5	4	3	3	2	_	2	2	2	3	2	2	3
21.7	2	2	3	2	3	2	2	-	2	2	2	4	3	4	4	6	6	6	5	4	5	6	7	4	5	4	3	2	-	2	2	2	2	3	3	2	2
22.7a	3	2	2	2	2	2	2	2	2	-	-	2	4	3	4	4	4	7	7	3	3	5	4	2	3	3	2	2	2	2	3	3	2	_	2	2	2
23.9a	3	2	2	3	3	3	3	2	2	2	-	-	-	3	3	3	3	3	3	3	4	4	3	2	2	2	2	2	3	3	2	2	3	2	-	2	2
25.7	2	-	3	4	3	2	2	-	-	2	2	2	3	4	7	4	3	€	8	11	19	16	10	2	2	2	3	2	3	2	2	2	2	3	2	3	3
29.7a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	3	-	-	-	-	-	-	-	_	-	-	-	_	-	-	-	-	-	-	-	-	wD
30.7a	-	-	-	-	-	_	-	-	-	2	3	2	-	2	2	2	3	3	-	-	2	2	2	-	2	2	-	_	2	2	3	2	2	-	2	3	-

Table 92b

Coronal observations at Sacramento Peak, New Mexico (6702A), west limb

Date				Deg	ree	s s	out	h o	ft	he :	sol	ar	eou	ato	r			\neg	- 0			1)eg	rees	s n	ort	h o	ft	he	sol	lar	equ	ato	r			
GCT	90	85	80	75	70	65	50	55	50	45	40	35	30	25	20	15	10	3	00	3	10	15 :	20	25 .	30	35	40	45	50	55	60	65	70	75	80	85	90
1953																																					
Jun 3,7a	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4.7a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-
5.7	-	-	-	-	=	-	_	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	=	-	-	-	-	-
6.7a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	***	-	_	-	a
7.7a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	•
8.7a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
15.7a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	٠-	-	-	-	-	-	-	_	-	-	-	-
18.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	_	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-
20.8a	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	_	-	-	-	-	_	-	_	-	-	-	-
21.7	-	-	-	=	•	, -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	_	-	-	-	-	-	-	-	-	-	-
22.7a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-
23.9a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	_	-	(83)	-	-	-	-	_	-	-	-	
25.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	3	3	3	3	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-
29.7a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-
30.7a	-	_	-	-	-	-	-	-	-	_	-	_	-	_	-	_	_	-	-	-	_	-	-	-	-	-	-	_	-	-	-	_	-	-	-		-

Fable 93 Particulars of Observations, Climax, Colorado January - June 1953

Date Green line threshold Green line threshold Date GCT intensity at 90°135°225°270°315° Obs. Meas. GCT intensity at 90°135°225°270°315° Qbs. Meas. 450 1953 1953 Apr. 5.8 8.0 Jan. 4.7 10 10 Н B L D В ż ż 5 5 5 6 6 6 6 7.7 6 5 D В H В 9.7 5 Ĺ, 6 D/H В 10.0 В 4 D 10.7 3 3 8 5 3 6 6 B 3 3 4 3 D В 15.7 5397 7 D 5 3 5 19.6 4 1, 11.7 4 3 4 Η В 3 1, Η B 3 10 9 8 12.7 3 3 4 5 Η В 22.7 9 9 D В 13.7 6 8 3 5 3 4 Η В 24.7 8 7 10 Н В 2 2 2 554 5555 16.7 2 D 25.6 554 6 5 4 D В В 26.8 20.7 12 10 11 9 10 D В 6 6 D В 24.8 2 2 1 H/D В May 5,6 B D 48 5 5 4 L L H 25.8 Н В 6.7 В 5 8 11 В 5 27.9 5 5 4 D 7.8 13 D В 31.9 3 4 4 4 4 D В 8.7 9 10 9 10 10 8 D Б Feb. 1.7 3 2 3 3 3 3 Н 9.6 10 10 10 11 11 10 D В B 2.7 2 2 2 2 11.6 14 13 14 13 14>15 2 2 Н В В Η 2 2 4.0 2 3 2 Η В 14.8 6 Η В 3 21.7 6 6 6 6 6 4.7 3 4 4 D В 6 D B 22.8 68 10.7 8 8 8 755 4 3 3 3 R 6 6 В 4 ח Н 58 2 23.8 11.7 3 3 3 Η В 4 6 6 D В 12.9 4 6 В 24.8 7 7 6 8 8 B D D 13.7 2 2 3 3 4 Η В 25.8 7 6 7 6 5 7 В 3 n 12.9 3 4 6 D В 26.6 6 7 75 8 Н В 13.7 2 2 3 3 3 4 Η В 27.7 5 5 5 Н В 14.9 6 4 4 Ĩ4 3 Н В 28.8 5 5 6 6 6 6 В D 12 5 17.8 29.7 10 ú 10 11 11 B 4 4 H В H 18.7 6 6 7 6 6 5 30.8 4 5 5 6 6 Н B D В 21.9 31.7 11 7 8 7 6 6 7 7 75 D 6 В 12 7 5 6 В Η 5 11 В 23.6 4 4 D R 6 7 4 4 Jun. 1.9 4 7 Н 5 5 10 25.7 6 6 6 D В 2.9 10 9 9 7 5 D В 5 26.7 58 4 5 5 5 4 Н В 3.8 5 5 5 D В 555 5 6 6 ıí 10 9 27.8 6 4.7 В 5 n В Н 8 8 28.7 2 5 _ Η В 5.6 8 -10 -D Mar. 1.6 2 3 3 2 D В 8.0 4 554 5 6 D В 1 48 409 5 4 Ъ Η 8.6 5 3 Η В В 554 5 5.8 5 5 6 7 6 9.8 6 5 D D В В Į4 6.8 4 5 5 5 4 Η В 10.6 4 4 4 4 Н В 554 7.7 8.9 3 4 D В 11.6 11 11 12 11 D В 55 54 5 5 12.7 59 5 8 7 4 58 В Н В 4 H 5 8 9.8 4 4 D В 13.7 7 6 D В 10.8 3 4 2 3 3 2 Н В 15.0 >15 > 15 > 15 Н В 12.7 55 Ĺ Ĺ 1 Η 15.8 6 6 7 6 6 5555 В 5 Н В ú 15.9 555 5 9 4 D В 16.7 10 9 10 10 D В 16.8 8 4 4 Н В 17.7 9 10 9 9 9 Н В 18.7 17.7 Ĺ 4 96 4 D В 8 8 7 10 15 D R 20.8 10 10 12 13 11 19.7 3 Н B 14 Н В 24.7 1 2 2 2 2 Н В 21.8 13 11 11 10 12 Н В 25.7 4 4 4 4 5 D В 22.7 11 12 11 13 13 11 D В 27.7 6 5 23.7 5 5 6 Н 13 13 13 D. В 11 Н В 4 28.9 Apr. 1.7 4 24.8 3 7 В >15 >15 >15 >15 14 4 D 15 В 8 5 10 7 D В 25.7 11 12 11 10 11 11 H/D В 27.7 3.8 6 Н В 13 13 14>15 14 14 P Η 28.7 14 13 13 13 14 13 D В 29.6 14 14 15 15 14 14 Η В

B = Billings

D = Dolder

H = Hansen

Table 94

Particulars of Observations, Sacramento Peak, New Mexico January - June 1953

Date	Green line threshold	1		Date	Green line threshold		
GCT	intensity at	Obs.	Meas.	GCT	intensity at	Obs.	Meas.
	00 150 90013501800225027003150]			0° 45° 90°135°180°22 5°27 0°315 °		
1953 Jan. 2.8 3.7 4.7 5.9 8.7 9.7 10.7 11.7 15.8 17.8 20.7 21.7 25.7 26.7 29.7 11.9 11.9 11.9 11.9 11.9 11.9 11.9 1	656463563466449547655595555157754886635676646998404565478-656766453553555365535755585555555555555755556466998404565478-65656565635553555555555555555555555555	RRS SRRS S SRRS SRRRS S SRRRS RRS RRS R	***************************************	1953 Mar. 31.7 Apr. 1.9 2.8 6.7 7.7 8.7 9.7 10.7 12.7 13.7 11.7 15.7 16.7 17.7 20.8 21.7 26.8 May 1.7 2.7 8.7 10.6 11.7 17.7 18.7 19.6 21.7 21.6 25.7 24.6 25.7 27.9 28.8 29.7 31.6 Jun. 3.7 1.5.7 18.8 21.7 27.9 28.8 22.7 23.9 25.7 23.9 25.7 23.9	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	S R R S R S R S R S R S R R R R R R R R	**************************************

B = Bergstrom
F = Foster
R = Ramsey
S = Schnable
Y = Yu

Table 95

Zürich Provisional Relative Sunspot Numbers

June 1953

Date	Rz*	Date	R _Z *
1	15	17	33
2	28	18	20
3	23	19	25
14	53	20	26
5	35	21	22
6	32	22	20
7	36	23	10
8	30	24	11
9	28	25	10
10	24	26	17
11	18	27	21
12	7	28	7
13	0	29	8
14	12	30	7
15	24	The second secon	
16	33	Mean:	21.2

^{*}Dependent on observations at Zurich Observatory and its stations at Locarno and Arosa.

Table 96

American Relative Sunspot Numbers

May 1953

Date	RA **	Bate	R _A :*
1	39	17	5
2	39	18	3
3	32	19	13
4	15	20	12
5	וו	21	11
6	10	22	12
7	9	23	13
8	0	24	13
9	0	25	J7 [†]
10	0	26	12
11	0	27	13
12	0	28	16
13	0	29	19
1)4	0	30	22
15	1	31	6
16	0	Mean:	11.0

^{*}Combination of reports from 28 observers; see page 10.

Table 97

Solar Flares, June 1953

SID Obser- ved	
Impor-r tance	H00H1
Rela- tive Area of Maximum (Tenths)	2 - 2
Int. of Maxi- mum	22 8
Tine of Maxi- mum (GCT)	1525 1629 - 2320
tion Long- itude Diff (Deg)	西
Position Lati- Long- tude itude Diff (Deg) (Deg)	010 010 007 008 008 013
Area (Mill) (of) (Visible) (Hemisph)	106 154 48
Dura- tion (Min)	8 8 X
Time Observed gin- End- ng cg ing	1555 1720 2345
Obse Begin- ning (GCT)	1500 1555 1335F 1530F 2315
Date 1953	June 4 16 16 18 19
Observa- tory	Sac.Peak McMath Sac.Peak

Time of First Observation

压

Sac. Peak = Sacramento Peak

Table 98

Indices of Geomagnetic Activity for May 1953

Preliminary values of international character-figures, C; Geomagnetic planetary three-hour-range indices, Kp; Magnetically selected quiet and disturbed days

Gr. Day 1953	С	Values Kp three-hour interval 1 2 3 4 5 6 7 8	Sum	Final Selected Days
1 2 3 4 5	0.2 0.1 0.1 0.2 0.6	10 1- 1+ 2- 2- 2+ 0+ 10 20 1+ 0+ 2- 1+ 0+ 1- 1- 0+ 0+ 10 1- 10 2- 2- 1+ 1+ 2+ 1+ 2+ 0+ 10 1- 2- 2- 3+ 3- 30 20 2- 2+ 3-	100 8+ 80 110 19+	Five Quiet 2
6 7 8 9 10	1.4 1.2 1.2 1.1 0.6	5- 3+ 4+ 6- 5- 3+ 40 50 4+ 5- 5- 5- 3+ 2+ 2- 30 4+ 4+ 50 3+ 4- 30 5- 4- 4+ 40 40 40 3- 30 30 4- 20 1+ 2+ 3- 3+ 2+ 30 20	350 29- 320 29- 190	12 13 14
11 12 13 14 15	0.4 0.2 0.1 0.1 1.6	3- 20 2+ 30 20 1+ 10 10 1+ 20 2- 0+ 10 1- 1+ 1+ 10 10 0+ 1+ 10 0+ 10 0+ 10 1- 1- 0+ 10 10 10 20 10 30 3- 2+ 5+ 5+ 8- 7-	15+ 10- 6+ 8- 340	Five Disturbed 6 8
.16 17 18 19 20	1.8 1.2 0.9 1.2 0.8	6- 60 5- 5+ 6+ 60 7- 7+ 7- 5- 30 1+ 20 30 3- 4- 3+ 4- 4- 3+ 3- 2- 2+ 3+ 40 50 4- 4+ 4- 1+ 4- 4+ 4- 2+ 4- 30 2+ 2+ 30 3+	480 270 240 300 24-	15 16 19
21 22 23 24 25	0.6 0.9 0.4 0.3 0.2	2+ 3- 30 2- 20 4- 20 20 3- 2+ 5- 3+ 2+ 1+ 20 2+ 2- 1+ 2+ 2- 10 1- 20 10 2+ 20 2+ 2- 1- 1- 1+ 1+ 1+ 20 1- 2+	19- 23- 150 130 10+	Ten Quiet 1 2
26 27 28 29 30 31	0.3 1.1 0.4 0.2 0.2 0.4	1+ 10 1+ 1+ 1+ 1- 30 3- 3+ 5- 5+ 4+ 3- 3+ 2- 2+ 20 3- 2- 2- 20 2+ 20 10 1- 10 2- 20 2+ 1+ 1- 1+ 2+ 1+ 1- 1- 10 10 10 2- 2- 0+ 1- 20 2+ 2+ 4- 1+	13- 28- 15+ 110 10- 14+	3 4 12 13 14 25 29
Mean	0.65			30

Table 99

Sudden Ionosphere Disturbances Observed at Washington, D. C.

June 1953

No sudden ionosphere disturbances were observed during the month of June.

Note: Observers are invited to send to the CRPL information on times of beginning and end of sudden ionosphere disturbances for publication as above. Address letters to the Central Radio Propagation Laboratory, Mational Bureau of Standards, Washington 25, D. C.

ANCHORAGE, ALASKA

MAY 1953

61.2°N, 149.9°W

Fig. 7.

JOHANNESBURG, UNION OF S. AFRICA

MARCH 1953

Fig. 87.

26.2°S, 28.1°E

57.4°N, 4.2°W NOVEMBER 1952

Index of Tables and Graphs of Ionospheric Data

in CRPL-F107

	Table page	Figure page
Adak, Alaska		
May 1953	14	-6
Akita, Japan	14	56
February 1953	20	26
Anchorage, Alaska	20	76
May 1953	3.9	2010
Baguio, F. I.	13	54
April 1953	¶ g≈g	11
March 1953	17	66
Baker Lake, Canada	20	74
	3.0	60
March 1953	18	70
April 1953	17	65
January 1953	21	78
Canberra, Australia		
January 1953	21	78
Capetown, Union of South Africa		
April 1953	18	69
March 1953	20	75
Churchill, Canada		
April 1953	16	62
March 1953	19	71
Dakar, French West Africa		
January 1952	24	88
De Bilt, Holland		
April 1953	16	63
March 1953	19	72
Djibouti, French Somaliland		V
May 1952	24	87
April 1952	24	88
Fairbanks, Alaska	_	
May 1953	13	54
Falkland Is.		
Hovember 1952	23	83
October 1952	23	84
Formosa, China		04
April 1953	17	66
Fort Chimo, Canada	* /	00
March 1953	10	กา
Graz. Austria	19	71
May 1953	14	10
	74	57

Index (CRPL-F107, continued)

	Table page	Figure page
Guam I.		
May 1953	15	60
Hobart, Tasmania		
January 1953	21	79
Huancayo, Peru		
April 1953	18	68
Inversess, Scotland		
December 1952	21	79
November 1952	22	81
Johannesburg, Union of South Africa	- 4	4.0
April 1953	18	68
Merch 1953	20	74
Khartoum, Sudan	00	00
December 1952	22	80
November 1952	22	82
Kiruna, Sweden	70	61
April 1953	15	01
April 1953	17	67
Lindau/Harz, Germany	~ (07
March 1953	19	73
Maui, Hawaii	-/	80
May 1953	15	59
Nairobi, Kenya	- /	77
May 1952	24	87
Marsarssuak, Greenland		·
May 1953	13	55
April 1953	16	62
Okinawa I.		
May 1953	14	<i>5</i> 8
Oslo, Norway		
May 1953	13	55
Ottawa, Canada		
April 1953	17	65
Panama Canal Zone	3 4	(0
May 1953	15	60
April 1953	17	67
	18	69
March 1953	10	09
September 1952	23	85
August 1952	24	86
Port Lockroy	n~ *	
November 1952	23	84
October 1952	23	85
	-	-

Index (CRPL-F107, concluded)

	Table page	Figure page
Prince Rupert, Canada		
April 1953	16	63
March 1953	19	72
Puerto Rico, W. I.	·	·
May 1953	15	59
Reykjavik, Iceland		
April 1953	15	61
March 1953	18	70
San Francisco, California		
May 1953	14	57
Schwarzenburg, Switzerland		
April 1953	16	64
March 1953	19	73
Singapore, British Malaya		0.0
December 1952	22	81
November 1952	23	83
Slough, England		0.0
December 1952	22	80
November 1952	22	82
Tananarive, Madagascar	O.L.	0/
September 1952	24	86
Tokyo, Japan	20	76
February 1953	20	70
	21	77
January 1953	61	"
Nay 1953	13	53
Upsala, Sweden	1)	72
May 1953	14	56
Wakkanai, Japan	&-7)0
February 1953	20	75
Washington, D. C.		
June 1953	13	53
White Sands, New Mexico	20	
May 1953	14	58
Winnipeg, Canada		-
April 1953	16	64
Yamagawa, Japan		-
February 1953	21	77

CRPL and IRPL Reports

[A list of CRPL Section Reports is available from the Central Radio Propagation Laboratory upon request]

Daily:

Radio disturbance forecasts, every half hour from broadcast station WWV of the National Bureau of Standards. Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

Semineeklu:

- CRPL—J. North Atlantic Radio Propagation Forecast (of days most likely to be disturbed during following
- CRPL—Jp. North Pacific Radio Propagation Forecast (of days most likely to be disturbed during following month).

Semimonthly:

CRPL—Ja. Semimonthly Frequency Revision Factors For CRPL Basic Radio Propagation Prediction Reports.

Monthly:

- CRPL—D. Basic Radio Propagation Predictions—Three months in advance. (Dept. of the Army, TB 11-499-, monthly supplements to TM 11-499; Dept. of the Navy, DNC 13 () series; Dept. of the Air Force, TO 16-1B-2 series.)
- Ionospheric Data.
- *IRPL—A. Recommended Frequency Bands for Ships and Aircraft in the Atlantic and Pacific.
- *IRPL-H. Frequency Guide for Operating Personnel.

Circulars of the National Bureau of Standards:

NBS Circular 462. Ionospheric Radio Propagation.

NBS Circular 465. Instructions for the Use of Basic Radio Propagation Predictions.

Reports issued in past:

IRPL-C61. Report of the International Radio Propagation Conference, 17 April to 5 May 1944.

IRPL-G1 through G12. Correlation of D. F. Errors With Ionospheric Conditions. (G1, G3, available. Others out of print; see second footnote.)

.—R. Nonscheduled reports: R4. Methods Used by IRPL for the Prediction of Ionosphere Characteristics and Maximum Usable Frequencies.

R5.

Criteria for Ionospheric Storminess. Experimental Studies of Ionospheric Propagation as Applied to the Loran System. **R6. R7. Second Report on Experimental Studies of Ionospheric Propagation as Applied to the Loran System.

R9. An Automatic Instantaneous Indicator of Skip Distance and MUF.

R10. A Proposal for the Use of Rockets for the Study of the Ionosphere. **R11. A Nomographic Method for both Prediction and Observation Correlation of Ionosphere Characteristics.

**R12. Short Time Variations in Ionosphere Characteristics.

R14. A Graphical Method for Calculating Ground Reflection Coefficients.

**R15. Predicted Limits for F2-Layer Radio Transmission Throughout the Solar Cycle.

**R17. Japanese Ionospheric Data-1943.

- R18. Comparison of Geomagnetic Records and North Atlantic Radio Propagation Quality Figures—October 1943 Through May 1945.
- **R21. Notes on the Preparation of Skip-Distance and MUF Charts for Use by Direction-Finder Stations. (For distances out to 4000 km.)

- **R23. Solar-Cycle Data for Correlation with Radio Propagation Phenomena.
 **R24. Relations Between Band Width, Pulse Shape and Usefulness of Pulses in the Loran System.

- **R25. The Prediction of Solar Activity as a Basis for the Prediction of Radio Propagation Phenomena.

 **R26. The Ionosphere as a Measure of Solar Activity.

 R27. Relationships Between Radio Propagation Disturbance and Central Meridian Passage of Sunspots
- Grouped by Distance From Center of Disc.

 **R30. Disturbance Rating in Values of IRPL Quality-Figure Scale from A. T. & T. Co. Transmission Disturbance Reports to Replace T. D. Figures as Reported.

**R31. North Atlantic Radio Propagation Disturbances, October 1943 Through October 1945.

**R33. Ionospheric Data on File at IRPL.

**R34. The Interpretation of Recorded Values of fEs.

**R35. Comparison of Percentage of Total Time of Second-Multiple Es Reflections and That of fEs in Excess of 3 Mc.

IRPL-T. Reports on tropospheric propagation:

- T1. Radar operation and weather. (Superseded by JANP 101.) Radar coverage and weather. (Superseded by JANP 102.) T2.
- CRPL—T3. Tropospheric Propagation and Radio-Meteorology. (Reissue of Columbia Wave Propagation Group WPG-5.)

^{*}Items bearing this symbol are distributed only by U. S. Navy. They are issued under one cover as the DNC 14 () Series.
**Out of print; information concerning cost of photostat or microfilm copies is available from CRPL upon request,

