Designing a Data Model with Power BI Desktop

Agenda

- Creating Table Relationships
- Creating Calculated Columns and Measure
- Creating Tables using DAX Expressions
- Configuring Fields for Geographic Mapping

Data Modeling with Power BI Desktop

- Steps to create a data model with Power Pivot
 - Create relationships between tables
 - Modify native columns (e.g. set formatting and data category)
 - Create calculated columns
 - Create measures
 - Create dimensional hierarchies
 - Add Calendar table(s)

Table Relationships

- Tables in data model associated with relationships
 - Relationships based on single columns
 - Tabular model supports [1-to-1] and [1-to-many] relationships

Relationship Properties

Cardinality

Cross filter direction

How Do You Create a Relationship Here?

- Two tables don't have fields to create relationship
 - The solution is to create two new calculated columns

Creating Composite Key Fields

Create composite key column in Budgets

Create composite key column in Expenses

Create Relationship Using Composite Keys

Agenda

- Creating Table Relationships
- Creating Calculated Columns and Measure
- Creating Tables using DAX Expressions
- Configuring Fields for Geographic Mapping

Formatting Columns

- Each column has its own formatting properties
 - Formatting propagates to reports and visuals
 - Visuals automatically display values using format properties

Working with DAX

- DAX is the language used to create data models
 - DAX stands for "Data Analysis Expression Language"
- DAX expressions are similar to Excel formulas
 - They always start with an equal sign (=)
 - DAX provides many built-in functions similar to Excel
- DAX Expressions are unlike Excel formulas...
 - DAX expressions cannot reference cells (e.g. A1 or C4)
 - Instead DAX expressions reference columns and tables

```
=SUM('Sales'[SalesAmount])
```


Writing DAX Expressions

Some DAX expressions are simple

```
Sales Revenue = Sum(Sales[SalesAmount])
```

Some DAX expressions are far more complex

```
Sales Growth PM = IF(
  ( ISFILTERED(Calendar[Month]) && ISFILTERED(Calendar[Date]) = FALSE() ),
  DIVIDE(
   SUM(Sales[SalesAmount]) -
   CALCULATE(
      SUM(Sales[SalesAmount]),
      PREVIOUSMONTH(Calendar[Date])
    ),
   CALCULATE(
      SUM(Sales[SalesAmount]),
      PREVIOUSMONTH(Calendar[Date])
  BLANK()
```


Creating Variables in DAX Expressions

- Variables can be added at start of expression
 - Use VAR keyword once for each variable
 - Use RETURN keyword to return expression value

```
Budget Key =
  VAR BudgetYear = YEAR([Date])
  VAR BudgetMonth = "Q" & FORMAT([Date], "q")
RETURN
  BudgetYear & "-" & BudgetMonth & "-" & [Category]
```


Calculated Columns vs Measures

- Calculated Columns (aka Columns)
 - Evaluated based on context of a single row
 - Evaluated when data is loaded into memory

```
Column1 = <DAX expression>
```

- Measures
 - Evaluated at query time based on current filter context
 - Commonly used for aggregations (e.g. SUM, AVG, etc.)
 - Used more frequently than calculated columns

```
Measure1 = <DAX expression>
```


When to Create Calculated Columns

- Measures often better choice than calculate columns
 - Don't create calculated column when you need a measure
 - Prefer to create calculated columns only in specific scenarios
- When should you create calculated columns?
 - To create headers for row labels or column labels.
 - To place calculated results in a slicer for filtering
 - Define an expression strictly bound to current row
 - Categories text or numbers (e.g. customer age groups)

Creating Calculated Columns

- Edited in formula bar of Power Pivot data view
 - Start with name and then equals (=) sign
 - Enter a valid DAX expression
 - Clicking on column adds it into expression

000	X / 1 Age = Floor((TODAY()-Customers[BirthDate])/365, 1)									
	CustomerId 🔻	City -	State -	Zipcode 🔻	Gender ▼	BirthDate ▼	Customer -	Customer Type 🔻	Age	~
田	760	San Jose	CA	95133	Female	3/16/1968	Lucile Blake	One-time Customer		51
铝	881	San Jose	CA	95133	Female	7/19/1942	Rochelle Owen	One-time Customer		77
	940	San Jose	CA	95133	Female	3/7/1943	Corinne Finch	One-time Customer		76
	1119	San Jose	CA	95133	Female	9/3/1990	Twila Massey	One-time Customer		29

Calculated Column for Customer Age Group

1. Calculate customer age from birthdate

2. Calculate age groups using calculated column

Calculated Column used in a Slicer

Calculated column can populate slicer values

Creating Measures

- Measures have advantage over calculated columns
 - They are evaluated based on the current evaluation context
- Creating a measure with Power BI Desktop
 - Click New Measure button
 - 2. Give measure a name and write DAX expressions
 - 3. Configure formatting

Formatting Measures

Format as whole number

Format as currency

Agenda

- Creating Table Relationships
- Creating Calculated Columns and Measure
- Creating Tables using DAX Expressions
- Configuring Fields for Geographic Mapping

Creating Tables Dynamically using DAX

Integrating the Lookup Table into the Data Model

- Lookup table must be integrated into data model
 - Accomplished by creating relationship to one or more tables

The RELATED Function

- RELATED function performs cross-table lookup
 - Effectively replaces older VLOOKUP function
 - Used in many-side table to look up value from one-side
 - Used to pull data from lookup table into primary table

X V 1 Sales Region = RELATED(SalesRegions[Sales Region])										
CustomerId 💌	City ▼	State -	Zipcode 💌	Gender 🔻	BirthDate 🔻	Customer	Customer Type ▼ Age	-	Age Group 🔻	Sales Region 💌
760	San Jose	CA	95133	Female	3/16/1968	Lucile Blake	One-time Customer	51	50 to 64	Western Region
881	San Jose	CA	95133	Female	7/19/1942	Rochelle Owen	One-time Customer	77	65 and over	Western Region
040	Can loca	CA	05122	Famala	2/7/1042	Carinna Finah	One time Customer	76	SE and over	Mactora Bagion

<pre> X</pre>											
-	Zipcode 🔻	Gender -	BirthDate ▼	Customer -	Customer Type 🔻 /	Age 🔻	Age Group	Sales Region 💌	State Name		
	95133	Female	3/16/1968	Lucile Blake	One-time Customer	51	50 to 64	Western Region	California		
	95133	Female	7/19/1942	Rochelle Owen	One-time Customer	77	65 and over	Western Region	California		
	95133	Female	3/7/1943	Corinne Finch	One-time Customer	76	65 and over	Western Region	California		

Agenda

- ✓ Creating Table Relationships
- Creating Calculated Columns and Measure
- Creating Tables using DAX Expressions
- Configuring Fields for Geographic Mapping

Geographic Field Metadata

- Fields in data model have metadata properties
 - Metadata used by visuals and reporting tools
 - Used as hints to Bing Mapping service

Eliminate Geographic Ambiguity

- City name alone is ambiguous
 - "Athens" defaults to Greece not Georgia
 - Concatenate city name with state to disambiguate

Using Map Visual with a Geographic Field

- Map Visual shows distribution over geographic area
 - Visual automatically updates when filtered

Summary

- Creating Table Relationships
- Creating Calculated Columns and Measure
- Creating Tables using DAX Expressions
- Configuring Fields for Geographic Mapping

