1

ASSIGNMENT-9

Ojaswa Pandey

Download all python codes from

https://github.com/behappy0604/Summer— Internship—IITH/tree/main/Assignment—9

and latex-tikz codes from

https://github.com/behappy0604/Summer— Internship—IITH/tree/main/Assignment—9

1 Ouestion No. 8.1

Let U and V be two independent zero mean Gaussian random variables of variances $\frac{1}{4}$ and $\frac{1}{9}$ respectively. The probability $P(3V \ge 2U)$ is

1)
$$\frac{4}{9}$$
 2) $\frac{1}{2}$ 3) $\frac{2}{3}$ 4) $\frac{5}{9}$

2 Solution

Lemma 2.1. The Characteristic function of random variable X is defined as

$$C_X(t) = \mathbb{E}[e^{itX}] \tag{2.0.1}$$

which can also be written as

$$C_X(t) = \int e^{itx} d\mathbb{P}_X \qquad (2.0.2)$$

If X is a continuous random variable with density function $f_X(x)$, then

$$C_X(t) = \int e^{itx} f_X(x) dx \qquad (2.0.3)$$

Since U and V are given to be normal random variables, therefore their difference will also be a normal random variable.

Here, let

$$X = 3V - 2U (2.0.4)$$

where *X* is also a normal random variable with mean given as

$$X_M == 0$$
 (2.0.5)

and variance

$$X_{Vr} = \frac{1}{n} \sum_{n=1}^{N} (X_M - x_n)^2 = 2$$
 (2.0.6)

Lemma 2.2. The area under the Gaussian PDF curve below and above the mean value is $\frac{1}{2}$

$$\implies P(X >= X_M) = \frac{1}{2} \tag{2.0.7}$$

The area under the curve and the x-axis is unity.

So it will be symmetric about mean that is 0.

$$\therefore P(X >= 0) = \boxed{\frac{1}{2}} \text{(by symmetry property)}$$
(2.0.8)

Cumulative density function of the curve

$$CDF = \int_{-\infty}^{x} f(t) dt = \frac{1}{2}$$
 (2.0.9)

Q-function

$$Q(X) = 1 - CDF = 1 - \frac{1}{2} = \frac{1}{2}$$
 (2.0.10)

Hence option (b) is correct.