Quick Linear Algebra Quick Review:

- The adjoint $T^*: W \to V$ of $T: V \to W$ satisfies $\langle Tv, w \rangle = \langle v, T^*w \rangle$
- An operator $T:V\to V$ is self-adjoint / Hermitian if $T=T^*$ and normal if $T^*T=TT^*$
- · Implications of normality:
 - $\forall v : ||Tv|| = ||T^*v|| : T^*T = TT^* \iff \langle T^*Tv, v \rangle = \langle TT^*v, v \rangle$
 - $(v, \lambda) \in \text{Eigen}(T) \iff (v, \overline{\lambda}) \in \text{Eigen}(T^*): 0 = \|(T \lambda I)v\| = \|(T \lambda I)^*v\|$
 - $\{(v,\alpha),(w,\beta)\}\subset \operatorname{Eigen}(T) \implies ((\alpha\neq\beta) \iff \langle v,w\rangle=0)$
 - $\alpha \langle v, w \rangle = \langle Tv, w \rangle = \langle v, T^*w \rangle = \langle v, \bar{\beta}w \rangle = \beta \langle v, w \rangle$
 - Spectral theorem: Normality $T^*T = TT^* \iff$ orthonormal eigenbasis
- An operator T is **positive** if self-adjoint and $\langle Tv, v \rangle \geq 0$; characterizations:
 - All nonnegative eigenvalues; has positive square root such that $R^2 = R^*R = T$
- An operator S is an **isometry / unitary** if $\forall v : ||Sv|| = ||v||$; characterizations
 - $\forall u, v \in V : \langle Su, Sv \rangle = \langle u, v \rangle$ $S^*S = SS^* = I$ $S^{-1} = S^*$
- Simultaneous Diagonalization Theorem: Given Hermitian operators A, B,

$$[A, B] = 0 \iff \exists \{ |i\rangle \} : A = \sum \alpha_i |i\rangle; B = \sum \beta_i |i\rangle$$

- Consider for all eigenspaces (V_i, λ_i) of A and any $|i\rangle \in V_i$, now $A\left(B \mid i\rangle\right) = BA \mid i\rangle = \lambda_i B \mid i\rangle \implies B \mid i\rangle \in V_i \implies B_{\mid V_i} \in \mathscr{L}(V_i). \text{ Now } B_{\mid V_i} \text{ is Hermitian}$ and has spectral decomposition on V_i , then $A_{\mid V_i}, B_{\mid V_i}$ are simultaneously diagonalizable.
- Polar Decomposition: $\forall A \in \mathcal{L}(V), \exists U: U^\dagger U = I, A = U\sqrt{A^\dagger A} = \sqrt{AA^\dagger}U$
 - Assume for convenience A invertible: let $\sqrt{A^\dagger A} = \sum \lambda_i |i\rangle\langle i|$ and $|\psi_i\rangle = \frac{A|i\rangle}{\lambda_i}$. Now

$$\{ \, | \, \psi_i \rangle \}$$
 is an orthonormal basis since $\langle \psi_i \, | \, \psi_j \rangle = \frac{\langle j \, | \, A^\dagger A \, | \, i \, \rangle}{\lambda_i \lambda_j} = \delta_{ij}$. Let $U = \sum | \, \psi_i \rangle \langle i \, | \, M_i \rangle$

then
$$U\sqrt{A^{\dagger}A} | i \rangle = \lambda_i^2 U | i \rangle = \lambda_i^2 \frac{A | i \rangle}{\lambda_i^2} \implies U\sqrt{A^{\dagger}A} = A.$$

- Now assume A=KU, $A=U\sqrt{A^{\dagger}A}=U\sqrt{A^{\dagger}A}U^{\dagger}U\implies K=U\sqrt{A^{\dagger}A}U^{\dagger}$ is positive.
- At the same time $A=KU \implies AA^\dagger=K^2 \implies K=\sqrt{AA^\dagger}$
- Singular Value Decomposition: $\forall A \in \mathcal{L}(V), \exists U, V: U^\dagger U = V^\dagger V = I, A = UDV$
 - Let $\sqrt{A^\dagger A}=TDT^\dagger$, then $A=S\sqrt{A^\dagger A}=(ST)DT^\dagger$; T and S unitary and D diagonal

- Given $T=\sum \lambda_i |i\rangle\langle i|\in \mathcal{L}(V)$ and $f:\mathbb{F}\to\mathbb{F}$, Sylvester formula extends f to a function on diagonalizable operators over V defined by $f(T)=\sum f(\lambda_i)\,|i\rangle\langle i|$
- Outer products: the outer-product $|v\rangle\langle w|$ is the operator such that $(|w\rangle\langle v|)|v'\rangle = \langle v|v\rangle|w\rangle$
 - Completeness relation: let $|i\rangle$ be an orthonormal basis and consider the operator $\sum |i\rangle\langle i|$. Note that $\left(\sum |i\rangle\langle i|\right)|v\rangle = |v\rangle \implies \sum |i\rangle\langle i| = I$
 - Consider operator $A:V\to W$ with orthonormal bases $|v_j\rangle, |w_i\rangle$ respectively, then $A=I_WAI_V=\sum |w_i\rangle\langle w_i|A\,|v_j\rangle\langle v_j|=\sum \Big(\langle w_i|A\,|v_j\rangle\Big)\,|w_i\rangle\langle v_j|\,.$
 - $\bullet \ \ \text{Now} \ \mathscr{M}(A)_{ij} = \left< w_i \, | \, A \, | \, v_j \right> : A \, | \, v_j \right> \ \text{singles} \ j\text{-th column, while} \ \left< w_i \, | \, \left(A \, | \, v_j \right> \right) \ \text{singles} \ i\text{-th entry}$
 - By corollary, outer product representation $A = \sum \mathcal{M}(A)_{ij} |w_i\rangle\langle v_j|$
- Given bases $|i\rangle$ and $|j\rangle$ for spaces V,W, the **tensor product** space $V\otimes W$ is spanned by $|i\rangle\otimes|j\rangle\equiv|i\rangle|j\rangle$
 - Tensor product of operators: $(A \otimes B) |i\rangle |j\rangle \equiv (A |i\rangle) \otimes (B |j\rangle)$

$$\text{Kronecker Product } A \otimes B = \begin{bmatrix} A_{11}B & \dots & A_{1n}B \\ \vdots & \ddots & \vdots \\ A_{m1}B & \dots & A_{mn}B \end{bmatrix} \text{ e.g. } \sigma_X \otimes \sigma_Y = \begin{bmatrix} & & -i \\ & i & \\ & -i & \end{bmatrix}$$

- Extending inner product: $(|w_1\rangle |v_1\rangle)^{\dagger} (|w_2\rangle |v_2\rangle) = \langle v_1 |v_2\rangle \langle w_1 |w_2\rangle$
- Given a Hilbert space V over field $\mathbb C$, The **Hilbert-Schmidt** inner product (or **trace inner product**) on operators $\langle \,\cdot\,,\,\cdot\,\rangle: \mathscr L(V)\times\mathscr L(V)\to\mathbb C$ is defined via $\langle A,B\rangle\equiv \mathrm{tr}(A^\dagger B)$

Postulates of Quantum Mechanics

- Postulate 1: Systems described by unit vectors in Hilbert space (complex, with inner products)
- Postulate 2: Evolution of *closed* system described by **Schrödinger Equation**

$$i\hbar \frac{d|\Psi\rangle}{dt} = H|\Psi\rangle$$
, H being a hermitian operator denoting the **Hamiltonian** of the system

- Mechanically for 1D particle, H is associated the operator $H \equiv -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V$
- Assuming time-constant $H, H = \sum E |E\rangle\langle E|$ where $|E\rangle$ denote stationary states with unchanging, definite energy values, and E is the corresponding total energy of the system.
- $\bullet \ \, \text{Solution:} \, |\Psi\rangle = e^{-iHt/\hbar} \, |\Psi_0\rangle = \Big(\sum e^{-iEt/\hbar} \, |E\rangle \langle E\,|\, \Big) \, |\Psi_0\rangle = \sum \langle E\,|\Psi_0\rangle e^{-iEt/\hbar} \, |E\rangle$
- Postulate 3: Measurements with outcomes $\{m\}$ described via collection of operators $\{M_m\}$ satisfying completeness relation $\sum M_m^\dagger M_m = I$. For system in state $|\Psi\rangle$,

$$p(m) = \langle \Psi \, | \, M_m^\dagger M_m \, | \, \Psi \rangle, \, \text{and} \, \, | \, \Psi \rangle \mapsto \frac{M_m \, | \, \psi \rangle}{\sqrt{p(m)}}$$

- Postulate 4: composite system with subsystems in states $|\Psi_1\rangle, |\Psi_2\rangle$ has state $|\Psi_1\rangle \otimes |\Psi_2\rangle$
 - Equivalent with **superposition principle**: imagine two qubits, if each cubit is allowed $\alpha \, | \, 0 \rangle + \beta \, | \, 1 \rangle$, then the composite system should be allowed $\sum \alpha_{ij} \, | \, i \rangle \, | \, j \rangle$

Examples and Equivalent Characterizations

- Measurement in computational basis: Suppose $|\Psi\rangle=\sum c_i|i\rangle$, then $\{|i\rangle\langle i|\}$ are measurement operators satisfying completeness relation and $P(i)=c_i^2$. After outcome i we have $|\Psi\rangle\mapsto \frac{\langle\Psi|i\rangle\langle i|i\rangle\langle i|\Psi\rangle}{c_i}=|i\rangle$
- Projective Measurements: Described a Hermitian operator $M=\sum m\,|m\rangle\langle m\,|$. Then $p(m)=\|\langle\psi\,|m\rangle\|^2$ and $|\Psi\rangle\mapsto|m\rangle$
 - Then $\mathbb{E}[M]=\langle\psi\,|\,M\,|\,\psi\rangle$, and $\sigma_M^2=\langle(M-\langle M\,\rangle)^2\rangle=\langle M^2\rangle-\langle M\,\rangle^2$
 - · Corollary: commuting projective observables are simultaneously measurable
- Heisenberg Uncertainty Principle: Given Hermitian observable operators A, B and $|\Psi\rangle$.
 - Let $\langle \Psi \, | \, A \, B \, | \, \Psi \rangle = x + i y$, then $\langle \Psi \, | \, [A,B] \, | \, \Psi \rangle = 2 i y$, $\langle \Psi \, | \, \{A,B\} \, | \, \Psi \rangle = 2 x$
 - $|\langle \Psi | [A, B] | \Psi \rangle|^2 + |\langle \Psi | \{A, B\} | \Psi \rangle|^2 = 4 |\langle \Psi | AB | \Psi \rangle|^2$

- Now, plug $A \mid \Psi \rangle$ and $B \mid \Psi \rangle$ into Cauchy-Schwarz inequality and $A = A^{\dagger}, B = B^{\dagger}$ yields $|\langle \Psi \mid AB \mid \Psi \rangle|^2 \leq \langle \Psi \mid A^2 \mid \Psi \rangle \langle \Psi \mid B^2 \mid \Psi \rangle \implies \langle \Psi \mid [A,B] \mid \Psi \rangle|^2 \leq 4 \langle \Psi \mid A^2 \mid \Psi \rangle \langle \Psi \mid B^2 \mid \Psi \rangle$ Substitute $A \mapsto C \langle C \rangle, B \mapsto D \langle D \rangle$ yields $\Delta(C)\Delta(D) \geq \frac{|\langle \Psi \mid [C,D] \mid \Psi \rangle|}{2}$
- Positive Operator-Valued Measure (POVM) Measurements:
 - Consider general measurement operators $\{M_m\}$ and let $E_m \equiv M_m^\dagger M_m$
 - Then completeness relation requires $\sum E_m = I$ and $p(m) = \langle \Psi \, | \, E_m \, | \, \Psi \rangle$
 - · When post-measurement state is of little interest
- $e^{i\theta}|\Psi\rangle$ is equivalent with $|\Psi\rangle$ up to global phase factor $e^{i\theta}$
 - · Global phase factors do not affect measurement outcomes
- Two amplitudes $\alpha, \beta \in \mathbb{C}$ differ by a **relative phase** in some basis if $\alpha = \exp(i\theta)b$. Two states differ by relative phase if *each* of the amplitudes in the basis differ by phase factor.
- The composite system of $A \times B$ is in an **entangled** state if $|\Psi_{A \times B}\rangle \neq |\Psi_{A}\rangle \otimes |\Psi_{B}\rangle$
 - Cannot be decomposed into tensor product of subsystems, analogous to having full rank
 - Specifying *n*-bit classical system takes *n* bits, while requires $O(2^n)$ for entangled *n*-qubits
- Projective Measurement + Unitary Evolution ← General Measurements
 - Equivalent procedure to performing $\{M_m\}$ on Q (with same probability and resulting state)
 - Introduce ancilla system with state space M and orthonormal basis $\mid m \rangle \leftrightarrow M_m$
 - Define unitary $U:U|\psi\rangle|0\rangle=\sum M_m|\psi\rangle|m\rangle$. Now using completeness relation we have $\langle\phi\,|\,\langle 0\,|\,U^\dagger U\,|\psi\rangle\,|\,0\rangle=\sum \langle\phi\,|\,M_m^\dagger M_{m'}|\psi\rangle\langle m\,|\,m'\rangle=\langle\phi\,|\,\sum M_m^\dagger M_{m'}|\psi\rangle=\langle\phi\,|\psi\rangle$
 - Extend *U* from $Q \times \{ |0 \rangle \}$ to $Q \times M$
 - $\begin{array}{l} \bullet \ \ \text{Now perform projective measurement} \ P_m = I_Q \otimes |m\rangle \langle m| \ \ \text{on} \ QM \ \ \text{with} \ U \ |\psi\rangle \ |0\rangle, \ \text{then} \\ P_m U \ |\psi\rangle \ |0\rangle = I_Q \otimes \big(\ |m\rangle \langle m| \big) \ \sum M_{m'} |\psi\rangle \ |m'\rangle = \sum \big(M_{m'} |\psi\rangle \big) \otimes \big(\langle m|m'\rangle \ |m\rangle \big) = \big(M_m |\psi\rangle \big) \otimes |m\rangle \\ \text{and} \ p(m) = \langle \psi \ |M_m^\dagger M_m \ | \ \rangle \langle m|m\rangle \ \ \text{and} \ U \ |\psi\rangle \ |0\rangle \\ \mapsto \frac{\big(M_m \ |\psi\rangle \big) \otimes |m\rangle}{\sqrt{\langle \psi \ |M_m^\dagger M_m \ |\psi\rangle}} \\ \end{array}$

Density Operators and Ensembles

- A quantum system in an **ensemble of pure states** $\{p_i, |\psi_i\rangle\}$ (in $|\psi_i\rangle$ with probability p_i) is described by the **density operator** $\rho = \sum p_i |\psi_i\rangle\langle\psi_i|$
 - Note that while $\rho=|\psi\rangle\langle\psi|$ for $|\psi\rangle=\sum\sqrt{p_i}\,|\psi_i\rangle$, it is not a unit vector
 - Constraints: $\operatorname{tr}(\rho)=1\iff \operatorname{law} \text{ of total probability and } \lambda_{\rho}\geq 0 \iff \operatorname{nonnegative}$ probability. Then the Eigen-stuff of ρ gives one of ρ 's possible ensembles (see below)
- Postulate 2: Density operator evolves unitarily by $\rho \stackrel{U}{ o} \sum p_i U^\dagger \, | \, \Psi_i \rangle \langle \Psi_i \, | \, U = U^\dagger \rho U$
- Postulate 3: Measurement denoted by collection $\{M_m\}$ obeying $\sum M_m^\dagger M_m = R$
 - $p(m \mid |\psi\rangle = |\psi_i\rangle) = \operatorname{tr}(M_m^{\dagger} M_m \mid \psi_i\rangle\langle\psi_i\mid) \implies p(m) = \sum p(m \mid i)p_i = \operatorname{tr}(M_m \rho M_m^{\dagger})$
 - $\text{Similarly, } \rho \mapsto \rho_m = \frac{M_m \rho M_m^\dagger}{\operatorname{tr}(M_m^\dagger M_m \rho)}$
- ρ denotes a **pure state** if $\rho = |\Psi\rangle\langle\Psi|$ for some unit $|\Psi\rangle$, else it is in a **mixed state**
 - ρ pure \iff $\operatorname{tr}(\rho^2)=1$: Let $\lambda_i\in\mathbb{R}$ be eigenvalues of ρ , $\sum \lambda_i=1$, then $\sum \lambda_i^2=1 \implies \exists j: \lambda_i=\delta_{ij}$
- Example of using mixed states: If result of a measurement is lost then our best guess is

$$\rho \mapsto \sum p(m)\rho_m = \sum \operatorname{tr}(M_m^{\dagger} M_m \rho) \frac{M_m \rho M_m^{\dagger}}{\operatorname{tr}(M_m^{\dagger} M_m \rho)} = \sum M_m \rho M_m^{\dagger}$$

- · Unitary freedom in ensemble of density matrices
 - Different ensembles of quantum states may give rise to the same density matrix!
 - For convenience, say that (not-necessarily unit) $|\tilde{\psi}_i\rangle$ generates ho if $ho=\sum |\tilde{\psi}_i\rangle\langle\tilde{\psi}_i|$
 - In the ensemble picture where $\rho=\sum p_i|\psi_i\rangle\langle\psi_i|$, $|\tilde{\psi}_i\rangle=\sqrt{p_i}|\psi_i\rangle$
 - Theorem: $|\tilde{\psi}_i\rangle, |\tilde{\phi}_j\rangle$ generate the same density matrix $\iff \Psi = \Phi U$ for unitary U
 - Now $\Psi=\left[\,|\, ilde{\psi}_1
 angle,\ldots,|\, ilde{\psi}_n
 angle
 ight]$ generates density matrix $\Psi\Psi^\dagger=(\Phi U)(\Phi U)^\dagger=\Phi\Phi^\dagger$
- . Bloch sphere representation of mixed states: $\rho = \frac{I + v \cdot \sigma}{2}$
 - Consider the mapping ϕ from rank-1 density matrix to generalized Bloch vector $|\psi\rangle\langle\psi|=\frac{\phi(|\psi\rangle\langle\psi|)\cdot\sigma}{2} \text{ with } \sigma\equiv[I\ X\ Y\ Z]$
 - Remark: ϕ is linear since the relation $n\mapsto n\cdot \sigma$ is linear

. Then
$$\rho = \sum p_i |\psi_i\rangle\langle\psi_i| = \frac{I+v\cdot\sigma}{2}$$
 for $v=p_i\vec{n}_i$

• ρ pure $\iff \|v\| = 1$: 2ρ has characteristic eq $(1 + v_3 - \lambda)(1 - v_3 - \lambda) - v_1^2 - v_2^2 = 0$ $\iff \lambda^2 - 2\lambda + 1 - \|v\| = 0$ implies eigenvalues for ρ are $\frac{1}{2} \left(1 \pm \|v\| \right)$, then $4 \mathrm{tr}(\rho^2) = (1 + \|v\|)^2 + (1 - \|v\|)^2 = 2 + \|v\|^2 \implies \mathrm{tr}(\rho^2) = \frac{1}{2} (1 + \|v\|)$

Reduced density operator

- Let $\mathcal{H}(V) \subsetneq \mathcal{L}(V)$ be the subset of Hermitian operators. The **partial trace** over B is the *linear map* $\operatorname{tr}_B : \mathcal{H}(A \otimes B) \to \mathcal{H}(A)$ satisfying $\operatorname{tr}_B(|a_1\rangle\langle a_2| \otimes |b_1\rangle\langle b_2|) = \operatorname{tr}(|b_1\rangle\langle b_2|)|a_1\rangle\langle a_2|$
- Given $\rho^{AB} \in \mathcal{H}(A \otimes B)$, the **reduced density operator** for system A is $\operatorname{tr}_B(\rho^{AB})$.
 - $\bullet \quad \text{In particular, } \rho^{AB} = \sum \alpha_{ij} \left(\, | \, a_i \rangle \langle a_i | \otimes | \, b_j \rangle \langle b_j | \, \right) \implies \operatorname{tr}_B(\rho^{AB}) = \sum \alpha_{ij} \, | \, a_i \rangle \langle a_i | = \sum_j \langle b_j | \, \rho \, | \, b_j \rangle \langle a_i | = \sum_j \langle b_j | \, \rho \, | \, b_j \rangle \langle a_i | = \sum_j \langle b_j | \, \rho \, | \, b_j \rangle \langle a_i | = \sum_j \langle b_j | \, \rho \, | \, b_j \rangle \langle a_i | = \sum_j \langle b_j | \, \rho \, | \, b_j \rangle \langle a_i | = \sum_j \langle b_j | \, \rho \, | \, b_j \rangle \langle a_i | = \sum_j \langle b_j | \, \rho \, | \, b_j \rangle \langle a_i | = \sum_j \langle b_j | \, \rho \, | \, b_j \rangle \langle a_i | = \sum_j \langle a_i | \, a_i \rangle \langle a_i | = \sum_j \langle a_i$
- Theorem: partial trace is the *unique* linear map satisfying ${\rm tr}((M\otimes I)\rho^{AB})={\rm tr}(M{\rm tr}_B(\rho^{AB}))$
 - Corollary: measuring ρ^{AB} against $M \otimes I$ equivalent to measuring $\rho^A = \operatorname{tr}_B(\rho^{AB})$ against M
 - $\text{Proof of property: given eigenvalue decomposition } \rho^{AB} = \sum \alpha_{ij} \, | \, a_i \rangle \langle a_i | \, \otimes \, | \, b_j \rangle \langle b_j | \, , \\ \operatorname{tr} \left((M \otimes I) \rho^{AB} \right) = \operatorname{tr} \left(\, \sum \alpha_{ij} \, \left(M \, | \, a_i \rangle \langle a_i | \, \right) \otimes | \, b_j \rangle \langle b_j | \, \right) = \operatorname{tr} \left(M \sum \alpha_{ij} \, | \, a_i \rangle \langle a_i | \, \right) = \operatorname{tr} \left(M \operatorname{tr}_B(\rho^{AB}) \right)$
 - Proof of uniqueness: Assume f satisfies $\operatorname{tr}\left((M\otimes I)\rho\right)=\operatorname{tr}(Mf(\rho))$. Consider the orthonormal basis $\{M_i=|a_i\rangle\langle a_i|\}$ over $\mathscr{H}(A)$ with trace inner product, Fourier expansion: $f(\rho)=\sum \langle f(\rho),M_i\rangle M_i=\sum \operatorname{tr}\left(f(\rho)^\dagger M_i\right)M_i=\sum \operatorname{tr}\left(M_if(\rho)\right)M_i=\sum \operatorname{tr}\left((M_i\otimes I)\rho\right)M_i$ Given spectral decomposition $\rho=\sum \alpha_{ij}\Big(|a_i\rangle\langle a_i|\otimes |b_j\rangle\langle b_j|\Big)$, we have $f(\rho)=\sum |a_i\rangle\langle a_i|\operatorname{tr}\Big(\big(|a_i\rangle\langle a_i|\otimes I\big)\rho\Big)=\sum \alpha_{ij}|a_i\rangle\langle a_i|=\operatorname{tr}_B(\rho)$
- Schmidt Decomposition: Given *pure* state $|\psi\rangle$ for composite system AB, there exists orthonormal basis $\{|i_A\rangle\}$, $\{|i_B\rangle\}$ for systems A,B such that $|\psi\rangle = \sum \lambda_i |i_a\rangle |i_b\rangle$ and $\sum \lambda_i^2 = 1$. $\{\lambda_i\}$ are Schmidt coefficients, $\{|i_A\rangle, |i_B\rangle\}$ are the Schmidt bases, and Schmidt number is number of nonzero Schmidt coefficients
 - Corollary: given pure state $|\psi\rangle$, $\operatorname{tr}_{A}(|\psi\rangle\langle\psi|)$ and $\operatorname{tr}_{B}(|\psi\rangle\langle\psi|)$ have same eigenvalues λ_{i}^{2}
 - $\text{Proof:} \ |\psi\rangle = \sum\nolimits_{jk} A_{jk} \ |j\rangle \ |k\rangle. \ \text{By SVD} \ A = UDV \implies A_{jk} = \sum\nolimits_i U_{ji} D_{ii} V_{ik} \ \text{and}$ $|\psi\rangle = \sum\nolimits_{iik} U_{ji} D_{ii} V_{ik} \ |j\rangle \ |k\rangle = \sum\nolimits_i D_{ii} \left(\sum\nolimits_i U_{ji} \ |j\rangle \right) \left(\sum\nolimits_k V_{ik} \ |k\rangle \right) = \sum\nolimits_i \lambda_i \ |i_A\rangle \ |i_B\rangle$
 - Corollary: Schmidt number invariant under unitary transformations $U=U_{\!A}\otimes U_{\!B}$
 - Replace $|i_A\rangle\mapsto U_A\,|i_A\rangle, |i_B\rangle\mapsto U_B\,|i_B\rangle$
 - $\bullet \quad |\,\psi\rangle, |\,\phi\rangle \text{ over } AB \text{ have same Schmidt coefficients } \iff \exists\, U_{\!A}, V_{\!B}: |\,\psi\rangle = (U_{\!A} \otimes V_{\!B}) \,|\,\phi\rangle$
 - $|\psi
 angle$ is product state \Longleftrightarrow it has Schmidt number 1
 - $\bullet \ |\psi\rangle = \sum \lambda_i |i_A\rangle |i_B\rangle \ \text{then} \ \mathrm{tr}_A(|\psi\rangle \langle \psi|) = \sum \lambda_i^2 |i_A\rangle \langle i_A| \ \ \mathrm{pure} \Longleftrightarrow \ \sum \lambda_i^4 = \sum \lambda_i^2 = 1$

- **Purification**: For every density operator ρ^A of system A there exists system R and product state $|AR\rangle$ such that $\rho^A=\operatorname{tr}_R(|AR\rangle\langle AR|)$. R is the *reference system*
 - For $\rho^A=\sum p_i\,|i_A\rangle\langle i_A\,|$, let R have the same state space as A with basis $|i_R\rangle$ and define $|AR\rangle=\sum \sqrt{p_i}\,|i_A\rangle\,|i_R\rangle$. Now $\mathrm{tr}_R(\,|AR\rangle\langle AR\,|\,)=\rho^A$ and $|AR\rangle$ is pure state since $|i_A\rangle\,|i_R\rangle$ are orthonormal and $\sum p_i=1$
 - Remark: Schmidt basis of A for $|A\,R\rangle$ diagonalizes ρ^A
 - $\bullet \ \ \text{Unitary freedom: } \mathrm{tr}_R(\,|A\,R_1\rangle\langle A\,R_1\,|\,) = \mathrm{tr}_R(\,|A\,R_2\rangle\langle A\,R_2\,|\,) = \rho^A \implies \exists\, U_R:\, |A\,R_1\rangle = (I_A\otimes U_R)\,|A\,R_2\rangle$