

Faculty of Power and Aeronautical Engineering Department of Automatic Control & Robotics Advance mechanical design – Project

Prepared by: Abenezer Bedilu

Beidemaryam Awoke Bishaw

Natnael Aman Desalegn

 $Submitted \ to-Prof. \ Krzysztof \ Mianowski$

Table of Contents

Lis	t of Figure	. iii
Lis	t of Table	. iv
1.	Introduction	1
2.	Assumptions	1
3.	Material Selection	1
4.	Motor Selection	2
4	-1. General Motor Selection	3
4	-2. Specific Motor Selection	4
5.	Design of Base	5
6.	Design of Arm	6
7.	Design of Gripper	7
8.	Bearing Selection	7
9.	Design of Pulleys	. 11
10.	Selection of Belt	. 11
Coı	nclusion	. 12
Apj	pendix 1	13
Λn	condiv 2	1 /

List of Figure

Figure 1 2 Dimensional drawing of the selected motor	5
Figure 2 Base	
Figure 3 Lower Arm	
Figure 4 Upper Arm	
Figure 5 Gripper	7
Figure 6 Forces acted on bearings	8

List of Table

Table 1 Assumptions to be considered	1
Table 2 Materials Property	
Table 3 A decision matrix to select the best material	
Table 4 General motor selection	
Table 5 Volume and mass of each part	
Table 6 Recommended bearing life for some of the applications	

1. Introduction

A robot arm is a mechanical structure that uses electric motors, pneumatic, or hydraulic actuators to alter its form and reproduce movement similar to a human arm. The term DOF (degrees of freedom) is often used when designing a robot arm, and it refers to the roll, yaw, and pitch of the arm. However, due to their complex mechanisms and circuits, robot arms can be expensive. To overcome this challenge, a robotic arm can be designed with a competitive price, light weight and high power-to-weight ratio for use to move around the apartment in order to carry small objects, e.g. give an elderly and disabled person a glass of water or a plate of soup (and the like).

2. Assumptions

Table 1 Assumptions to be considered

No	Parameter	Value
1	The length of the manipulator from the axis of 1st DOF and 2nd	800mm
	to the center of wrist.	
2	Number of degrees of freedom.	6
3	Maximum end element (gripper) speed.	0.3m/sec
4	Wrist angular velocity.	0.2rad/sec
5	Supply voltage.	12V
6	Tip position resolution.	0.01mm
7	Capacity.	10*6=60N

3. Material Selection

The selection of material for a design is based on the goals of the project, which include strength, minimum weight, and cost. Various properties of the materials, such as stiffness, yield strength, and fatigue strength, are considered and given a weight or "multiplying factor" based on their importance to the design. A decision matrix is created by considering all of these factors and is used to determine the best material for the design.

Most commonly used materials are-

- Aluminium 7075 T6
- Stainless steel 1020
- Titanium alloy
- Grey cast iron

These materials are commonly used in the construction of robot hands with 6 degrees of freedom (DOF) due to their strength, durability, and resistance to wear and tear. Aluminium 7075 T6 is a strong and lightweight material that is often used in various applications. Stainless steel 1020 is

also strong and durable, and offers good resistance to corrosion. Titanium alloy is known for its high strength-to-weight ratio and excellent corrosion resistance. Grey cast iron is a relatively inexpensive material that is known for its high compressive strength and good machinability.

Table 2 Materials Property

No	Properties	Al 7075 T6	SS 1020	Titanium	Grey cast iron
				alloy	
1	Yield strength (Mpa)	480	430	940	120
2	Elastic modulus (GPa)	70	190	110	180
3	Fatigue strength (MPa)	160	69	48	510
4	Strength to weight ratio	160	57	16	213
5	Density (kg/m ³)	2700 kg/m3	7860 kg/m3	4540 kg/m3	6640 kg/m3

Table 3 A decision matrix to select the best material

No	Properties	Weightage	Al 7075 T6	SS 1020	Titanium alloy	Grey cast iron
		(w)				
			Score	Score	Score	Score
1	Strength to	3	4	1	5	1
	weight ratio					
2	Fatigue Strength	3	2	1	5	1
3	Stiffness	4	2	5	3	5
4	Availability	2	3	4	-2	3
5	Cost	2	2	3	-3	3
		Sum	42	40	32	38

In this matrix, each material is evaluated based on its elastic modulus, yield strength, fatigue strength, density, and cost. Each property is given a multiplying factor according to its importance in the design. The final score for each material is calculated by multiplying the value of each property by its corresponding multiplying factor and summing the results. The material with the highest score is considered the best choice for the design.

4. Motor Selection

Determining the load capacity and required speed of the arm, as well as the power source available. Other factors to consider include the size and weight of the arm, the environment in which it will be used, and any specific application requirements. Once these factors have been considered, the appropriate type of motor can be selected, such as:

- DC motor
- Stepper motor
- Servo motor

The motor control system, such as a controller or driver, also needs to be selected and configured to ensure proper operation of the motor.

4.1. General Motor Selection

Table 4 General motor selection

Type of Motor	Advantages
DC motor	 Inexpensive and easy to control. They can provide high torque at low speeds, but their speed and torque can vary depending on the load.
Stepper motor	 They can provide precise control of the arm's position. They are driven by a series of electrical pulses, which cause the motor to rotate in small increments, or "steps."
Servo motor	 Rotate to a specific position, and can provide precise control of the arm's movement. They are more expensive than DC and stepper motors but more precise and efficient.

In general DC motors are commonly used in a wide range of applications due to their simple design, high efficiency, and ability to be controlled easily. They can be found in everything from small household appliances to large industrial machines. Some of the reasons we choose a DC motor include:

- They can be easily controlled using simple control methods, such as varying the voltage or current to the motor.
- They are highly efficient, with efficiencies of up to 90% or more.
- They have a wide range of torque and speed capabilities.

- They are relatively low cost and easy to maintain.
- They are widely available and come in a variety of sizes and configurations to suit different applications.

4.2. Specific Motor Selection

Peak torque and maximum continuous torque are important factors in determining the suitable servo motors for a jointed-arm robot. The peak torque is the highest torque that a motor can produce for a short period of time, while the maximum continuous torque is the highest torque that a motor can produce for an extended period of time without overheating or causing damage. These values help to ensure that the motors chosen for the robot are capable of producing the necessary torque to move the joints and perform the desired tasks.

Table 5 Volume and mass of each part

No	Component	Volume	Mass (kg)
1	Forearm	2203174mm3= 2.20 x 10^-6 m^3	$2700 \text{ kg/m}3*2.20 \text{ x } 10^{-6} \text{ m}^{3} = 5.940 \text{ kg}$
2	Arm	1550382 mm3=1.55 x 10^-6 m^3	$2700 \text{ kg/m}3*1.55 \text{ x } 10^{-6} \text{ m}^{3} = 4.185 \text{ kg}$
3 Wrist links 240122mm3=2.40 x 10^-6 m^3 2700 kg/m3*		$2700 \text{ kg/m}3*2.4 \text{ x } 10^{-6} \text{ m}^{3} = 6.480 \text{ kg}$	
	and gripper		
4	shoulder	3491650mm3= 3.49x 10^-5 m^3	2700kg/m3*3.49 x 10^-5 m^3 = 9.4830 kg

$$T = Fxr$$

$$W = mg$$

$$T1 = 110N * 0.8m = 88Nm$$

$$T2 = (6.480 \text{ kg} * 9.81)N * (0.8 - 0.046)m) = 47.93Nm$$

$$T3 = (4.185 \text{ kg} * 9.81)N * (0.8 - (0.046 * 2 + 0.15)m) = 22.908Nm$$

$$T4 = (5.940 \text{ kg} * 9.81)N * (0.8 - (0.046 * 2 + 0.15 * 2 + 0.143)m) = 14.272Nm$$

$$T5 = (9.483 * 9.81)N * (0.8 - (0.046 * 2 + 0.15 * 2 + 0.143 * 2)m) = 11.349Nm$$

$$T_total = T1 + T2 + T3 + T4 + T5 = 48Nm + 47.93Nm + 22.908Nm + 14.272Nm + 11.349Nm = 184.449 \text{ Nm}$$

$$P = T * w * \frac{1}{\eta}$$

$$P = 184.449Nm * \frac{0.3rad}{sec} * \frac{1}{0.5} = 110.6694 Watt$$

The Maxon RE 40 Ø40 mm, Graphite Brushes, 150 Watt motor is chosen based on our power need. This motor is a high-performance brush DC motor that is well-suited for a wide range of applications. Some of the key advantages of this motor include its compact size, high power density, and high efficiency. Additionally, the use of graphite brushes allows for low wear and maintenance, and the 150 Watt power rating makes it suitable for many high-performance applications. Overall, the Maxon RE 40 motor is an excellent choice for a wide range of applications that require a high-performance, compact, and efficient brush DC motor.

RE 40 Ø40 mm, Graphite Brushes, 150 Watt

Figure 1 2 Dimensional drawing of the selected motor

Detailed information about the motor is stated in appendix 1

5. Design of Base

The design of the base of the robot described in the text appears to consist of three panels: a rotating base panel, a lower base panel, and an upper base panel. The rotating base panel is

connected to a base motor and is able to rotate +/- 90 degrees from its mid position, providing a total of 180 degrees of rotation.

Figure 2 Base

6. Design of Arm

The design of the forearm and upper arm is focused on creating a lightweight and compact structure with a space-saving arrangement of motors. This design also has the advantage of having a low moment of inertia along the longitudinal axis of the forearm.

Figure 3 Lower Arm

Figure 4 Upper Arm

7. Design of Gripper

The gripper consists of driven finger members. The wrist consists of 2 wrist links and a gripper motor plate. The design allows a space-saving and cheap construction.

Figure 5 Gripper

8. Bearing Selection

We used a 'Design of Machine Elements by V.B Bhandari" to select the appropriate type of bearing. The maximum axial and radial forces acting on the joint should be determined using free body diagrams. From these forces, an appropriate type of bearing can be selected, in this

case, deep groove ball bearings. An equivalent dynamic load can then be calculated from the axial and radial loads to help determine the appropriate size of the bearing.

When we select bearing we used the following Procedures:

1. We calculate the maximum radial and axial forces acting on the bearing and determine the diameter of the shaft where the bearing is to be fitted. The amount of axial force on each joint is zero. The total amount of radial force can be calculated by taking the sum of all loads which are acting in the vertical direction.

$$F_r = 60N + (6.480 \text{ kg} * 9.81)N + (4.185 \text{ kg} * 9.81)N + (5.940 \text{ kg} * 9.81)N + (9.483 * 9.81)N$$

 $F_r = 365.92328N$

Figure 6 Forces acted on bearings

2. Determine the values of X and Y, the radial and thrust factors, from the catalogue. The values of X and Y factors for single-row deep groove ball bearings are given in Appendix 2.

$$P_e = S[XVF_r + YF_a]$$

where S = Service factor/shock factor;

V = Race rotation factor:

X = Radial load factor;

Y = Axial load factor;

Fr = Radial load;

Fa = Axial load

Since $F_a = 0$, $P_e = F_r = 315.92328N$

3. We made a decision about the expected bearing life and express the life L_{10} in million revolutions.

The information regarding the life expectancy is generally vague and values based on past experience are used. For all kinds of vehicles, the speed of rotation is not constant and the desired

life is expressed in terms of millions of revolutions. The recommended bearing life for some of the applications is given in Table below.

Table 6 Recommended bearing life for some of the applications

Application	Bearing Life
(i) Machines used intermittently such as lifting tackle,	4000–8000 h
hand tools and household appliances	
(ii) Machines used for eight hours of service per day, such	12 000–20 000 h
as electric motors and gear drives	
(iii) Machines used for continuous operation (24 h per	40 000–60 000 h
day) such as pumps, compressors and conveyors	

Based on our application we chose a 20000h of bearing life.

The relationship between life in revolution and life in hour are related by:-

$$L_{10} = \frac{60nL_{10h}}{10^6}$$

Where n = speed of rotation in rpm

 $L_{10h} = \text{rated bearing life (hours)}$

From our motor selection n=12000 rpm

$$L_{10} = \frac{60*12000rpm*20000h}{10^6} = 14400 \ million \ rev$$

$$C = P(L_{10})^{\frac{1}{3}}$$

Where C is loading factor

$$C = 315.92328N * (14400)^{\frac{1}{3}} = 7686.036N$$

Bearing for Motors

Based on the above loading factor C and diameter of motor we chose single-row deep groove ball bearings No. 6300 from appendix 2.

- No. 601800 (C = 1480)
- No. 6000 (C = 4620N)
- No. 6200 (C = 5070N)
- No. 6300 (C = 8060N)

Bearing Between Link 1 and Link 2

Based on the above loading factor C and diameter of shaft between first link and second link we chose single-row deep groove ball bearings No. 6005 from appendix 2.

- No. 6005 (C = 11200N)
- No. 6205 (C = 14000N)
- No. 6305 (C = 22500N)
- No. 6405 (C = 35800N)

Bearing Between Link 2 and Link 3

Based on the above loading factor C and diameter of shaft between second link and third link we chose single-row deep groove ball bearings No. 6005 from appendix 2.

- No. 6005 (C = 11200N)
- No. 6205 (C = 14000N)
- No. 6305 (C = 22500N)
- No. 6405 (C = 35800N)

Bearing Between Link 4 and Link 5

Based on the above loading factor C and diameter of shaft between fourth link and fifth link we chose single-row deep groove ball bearings No. 6300 from appendix 2.

- No. 6005 (C = 11200N)
- No. 6205 (C = 14000N)
- No. 6305 (C = 22500N)
- No. 6405 (C = 35800N)

Bearing between Bases

Based on the above loading factor C and inner diameter of base between we chose single-row deep groove ball bearings No. 61815 from appendix 2.

- No. 61815 (C = 12500 N)
- No. 10615 (C = 28600 N)
- No. 6015 (C = 39700N)
- No. 6215 (C = 66300N)

9. Design of Pulleys

We will use aluminum pulleys because they are lightweight, durable, and have low friction. Additionally, they have a high strength-to-weight ratio, which makes them well-suited for use in our applications where weight is a critical factor, such as in robots that need to move quickly or are required to be portable. They also have good thermal conductivity and can be easily machined to precise dimensions, which makes them ideal for use in precision mechanisms.

Let's assume our belt is operate at 1m/sec approximately.

Let's determine the diameters of pulley.

Diameter of smaller pulley

$$d = \frac{60*1000*V}{\pi*n}$$

$$d = \frac{60*1000*1m/sec}{\pi*1200rpm} = 15mm$$

Diameter of bigger pulley

$$D = 2 * d = 30mm$$

10. Selection of Belt

We select the Dunlop Rubber as a belt because these belts are known for their durability, strength, and resistance to wear and tear, which makes them well-suited for use in demanding environments. Additionally, Dunlop Rubber's belts are designed to be resistant to heat, oil, and chemicals, which makes them ideal for use in a variety of industrial settings. They also come in different sizes, teeth and materials that can fit different application. Furthermore, Dunlop Rubber offers a wide range of custom-made belts to meet specific customer requirements.

Conclusion

In conclusion, the robot hand project aimed to provide a solution for elderly individuals living in apartments to easily retrieve items without the need for them to physically move. Through the use of advanced robotics technology, the robot hand is able to navigate the apartment and retrieve requested items for the individual. This project has the potential to greatly improve the quality of life for elderly individuals and reduce the need for assistance from family or caregivers. Future work includes testing and refining the technology for optimal performance and usability.

Appendix 1

Appendix 2

Principal dimensions (mm)			Basic load ratings (N)		Designation
d	D	В	C	C_0	Designation
10	19	5	1480	630	61800
	26	8	4620	1960	6000
	30	9	5070	2240	6200
	35	11	8060	3750	6300

(Contd)

Table 15.5 (Contd)

Principal dimensions (mm)			Basic rating	NCCCCTICGL	Designation
d	D	В	C	C_0	
12	21	5	1430	695	61801
	28	8	5070	2240	6001
	32	10	6890	3100	6201
	37	12	9750	4650	6301
15	24	5	1560	815	61802
	32	9	5590	2500	6002
	35	1.1	7800	3550	6202
	42	13	11400	5400	6302
17	26	5	1680	930	61803
	35	10	6050	2800	6003
	40	12	9560	4500	6202
	47	1-4	13500	6550	6303
	62	17	22900	11800	6403
20	32	7	2700	1500	61804
	42	8	7020	3400	16404
	42	12	9360	4500	6004
	47	14	12700	6200	6204
	52	15	15900	7800	6304
	72	19	30700	16600	6404
25	37	7	3120	1960	61805
	47	8	7610	4000	16005
	47	12	11200	5600	6005
	52	15	14000	6950	6205
	62	17	22500	11400	6305
	80	21	35800	19600	6405
30	42	7	3120	2080	61806
	55	9	11200	5850	16006
	55	13	13300	6800	6006
	62	16	19500	10000	6206
	72	19	28100	14600	6306
	90	2.3	43600	24000	6406
35	47	7	4030	3000	61807
	62	9	12400	6950	16007
	62	14	15900	8500	6007
	72	17	25500	13700	6207
	80	21	33200	18000	6307
	100	25	55300	31000	6407

Table 15.5 (Contd)

Designation	1000000	Basic rating:		rincipai usions (i	
	C_{θ}	C	B	D	d
61808	3350	4160	7	52	40
16008	7800	13300	9	68	
6008	9300	16800	1.5	68	
6208	16600	30700	18	80	
6308	22400	41000	23	90	
6408	36500	63700	27	110	
61809	3800	6050	7	58	45
16009	9300	15600	10	75	
6009	12200	21200	16	75	
6209	18600	33200	19	8.5	
6309	30000	52700	25	100	
6409	45500	76100	29	120	
61810	4250	6240	7	65	50
16010	10000	16300	10	80	
6010	13200	21600	16	80	
6210	19600	35100	20	90	
6310	36000	61800	27	110	
6410	52000	87100	31	130	
61811	5600	8320	9	72	55
16011	12200	19500	11	90	
6011	17000	28100	18	90	
6211	25000	43600	21	100	
6311	41500	71500	29	120	
6411	63000	99500	33	140	
61812	6100	8710	10	78	60
16012	13200	19900	1.1	95	
6012	18300	29600	18	95	
6212	28000	47500	22	110	
6312	48000	81900	31	130	
6412	69500	108000	3.5	150	
61813	8300	11700	10	85	65
16013	14600	21200	11	100	
6013	19600	30700	18	100	
6213	34000	55900	23	120	
6313	56000	92300	33	140	
6413	78000	119000	37	160	

(Contd)

Table 15.5 (Contd)

Principal dimensions (mm)			Basic load ratings (N)		Designation
d	D	В	С	C_o	
70	90	10	12100	9150	61814
	110	13	28100	19000	16014
	110	20	37700	24500	6014
	125	24	61800	37500	6214
	150	35	104000	63000	6314
	180	42	143000	104000	6414
75	95	10	12500	9800	61815
	115	13	28600	20000	10615
	115	20	39700	26000	6015
	130	25	66300	40500	6215
	160	37	112000	72000	6315
	190	45	153000	114000	6415