

APRENDIZAGEM E DECISÃO INTELIGENTES

LEI/MiEI @ 2022/2023, 2º sem [ADI^3]

Classificação

- "Classification in machine learning is a supervised learning approach in which we learn from the data given to it and make new observations or classifications."
- Para uma coleção de dados (registos/conjunto de treino)
- Cada registo é caracterizado por uma tuplo (x,y), onde x é o conjunto de atributos e y é a classe ou categoria atribuída:
 - o x : atributo, preditor, variável independente, entrada
 - o y : classe, resposta, variável dependente, saída
- Tarefa:
 - Aprender um modelo que mapeia cada conjunto de atributos x em um das classes predefinidas de y

- "Regression is used to determine how well certain independent variables predict a dependent variable."
- A regressão é uma técnica que calcula a equação de reta que melhor se adapta a um conjunto específico de dados.
- Tarefa:
 - Aprender uma equação de reta que analisa variáveis independentes (preço do gás, preço do dólar, custos de transporte), para prever o comportamento de uma variável dependente (preço do petróleo).

Regressão

Árvores de Decisão Classificação

- Uma Árvore de Decisão é um grafo hierarquizado (árvore!) em que:
 - o Cada nodo interno testa um atributo do dataset;
 - Cada ramo identifica um valor (ou conjunto de valores) do nodo testado;
 - Cada folha representa uma decisão;

HORAS	ONDE	ALMOÇAR
12h30	Cantina	NÃO
13h15	Cantina	NÃO
13h10	Restaurante	SIM
11h00	Restaurante	NÃO
13:30	Cantina	NÃO

Árvores de Decisão Classificação

■ Uma Árvore de Decisão pode ser utilizada para fazer classificação:

Árvores de Decisão Regressão

- Uma Árvore de Decisão é um grafo hierarquizado (árvore!) em que:
 - o Cada nodo interno testa um atributo do dataset,
 - o Cada ramo identifica um valor (ou conjunto de valores) do nodo testado;
 - Cada folha representa uma decisão;

HORAS	ONDE	CUST0
12h30	Cantina	<5€
13h15	Cantina	>5€,<9€
13h10	Restaurante	> 10€
11h00	Restaurante	<5€
13:30	Cantina	>5€,<9€

Árvores de Decisão Regressão

- Uma Árvore de Decisão pode ser utilizada para fazer regressão:
 - o Regressão linear, polinomial, múltipla, entre outras;
 - o Prever o preço do petróleo/gás/combustíveis: escala contínua ou real, em € ou \$
 - o Estimar a temperatura para o dia de amanhã: escala continua, em °C ou °F

Avaliação de Modelos

- Após a criação (treino) de um modelo usando uma técnica de aprendizagem (machine learning), é necessário avaliar o seu desempenho;
- A medição do desempenho de um modelo é feita com dados não apresentados durante o treino;

Avaliação de Modelos

- Dados de treino:
 - o Conjunto de dados usado para ajustar o modelo;
- Dados de validação:
 - Conjunto de dados usado para fornecer uma avaliação imparcial de um ajuste do modelo, no conjunto de dados de treino;
- Dados de teste:
 - Conjunto de dados usado para fornecer uma avaliação imparcial de um modelo final ajustado ao conjunto de dados de treino.

Hold-out Validation

- Método de particionamento de dados;
- Divide o conjunto de dados em dados de treino e dados de teste;

■ Separa-se uma parte (hold-out) do conjunto de dados para treino/teste (80/20; 75/25; ...)

Cross Validation

- Método de validação por cruzamento de dados;
- Consiste em dividir o conjunto de dados em k partes (k folds);
 - o A cada iteração, o método utiliza k-1 partes (folds) para treino e 1 parte (fold) para teste;
 - o 0 processo repete-se durante k vezes;

O erro final é dado pela média dos valores parciais dos erros.

Leave-one-out Cross Validation (k=N)

- Método de validação por cruzamento de dados;
- Caso particular em que o número de casos N é igual ao número de folds k;

Cross Validation

- Qual o número ideal para k (folds)?
- Se o *dataset* for grande, um valor pequeno para k pode ser suficiente, uma vez que teremos uma quantidade grande de dados para treino;
- Se o dataset for pequeno, um valor grande de k ≈ N pode revelar-se mais adequado para maximizar a quantidade de dados para treino;
- Quanto maior a quantidade de folds, melhor a estimativa do erro, mais baixo será o viés(*) (bias) e menor será o sobreajuste (overfitting);
- De facto, o valor de k depende do valor de N!

Métricas de Qualidade

Métricas de Qualidade

- Porquê métricas de qualidade?
 - Para avaliar o desempenho do modelo.
- As métricas são usadas para monitorizar e medir o desempenho de um modelo:
 - Erro Médio Absoluto (Mean Absolute Error MAE)
 - Erro Médio Quadrado (*Mean Squared Error* MSE)
 - Precisão (*Precision*)
 - o F1-Score,
 - o entre outras...
- No entanto, depende do problema em mãos:
 - o É um problema de classificação?
 - o De regressão?
 - o Séries temporais?

Métricas de Qualidade Modelos de Classificação

- Matrizes de Confusão
 - o Tabela utilizada para descrever o desempenho de um modelo de classificação.
- Accuracy
 - Quantidade de previsões corretas dividido pela quantidade total de observações:

$$\circ Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Matrizes de Confusão

- o Tabela utilizada para descrever o desempenho de um modelo de classificação.
- Precisão (Precision aka Sensitivity)
 - É uma medida da exatidão;
 - Determina a proporção de itens relevantes entre todos os itens:

•
$$Precision = \frac{TP}{TP+FP}$$

Recall (aka Specificity)

- É uma medida de completude;
- Determina a proporção de itens relevantes obtidos:

•
$$Precision = \frac{TP}{TP+FN}$$

Métricas de Qualidade Modelos de Classificação

Métricas de Qualidade Modelos de Classificação

Matrizes de Confusão

o Tabela utilizada para descrever o desempenho de um modelo de classificação.

ROC curve:

- A curva Receiver Operating Characteristics (ROC) encontra o desempenho de um modelo de classificação em diferentes limites de classificação;
- Reduzindo o patamar (threshold) de classificação, são classificados mais itens como positivos, aumentando os falsos positivos e os verdadeiros positivos.

Métricas de Qualidade Modelos de Classificação

Matrizes de Confusão

o Tabela utilizada para descrever o desempenho de um modelo de classificação.

AUC curve:

- A Area Under the Curve (AUC) mede a área abaixo da curva ROC;
- Mede quão bem as previsões são classificadas, em vez de avaliar os seus valores absolutos (varia de 0 a 1);
- Um modelo cujas previsões estão 100% erradas tem uma AUC de 0; aquele cujas previsões estão 100% corretas tem uma AUC de 1.

- Erro Médio Quadrado (Mean Squared Error MSE)
 - Consiste no cálculo da média das diferenças, ao quadrado, entre os erros num conjunto de previsões (não considera a direção):

$$OMSE = \frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2$$

em que n é a quantidade de observações, y_i e \hat{y}_i são, respetivamente, a observação atual e o valor previsto.

$$MSE = \frac{1}{n} \sum_{\substack{\text{Sum} \\ \text{of}}} \underbrace{\left(y - y \right)^2}_{\substack{\text{The absolute value of the residual}}}$$

- Raiz Quadrada do Erro Médio Quadrado (Root Mean Squared Error RMSE)
 - Consiste no cálculo da média das diferenças, ao quadrado, entre os erros num conjunto de previsões (não considera a direção):

$$\circ RMSE = \frac{1}{n} \sqrt{\sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

em que n é a quantidade de observações, y_i e \hat{y}_i são, respetivamente, a observação atual e o valor previsto.

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

$$MAE = \frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j| \qquad MSE = \frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2 \qquad RMSE = \frac{1}{n} \sqrt{\sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

- Três das métricas mais comuns usadas para medir a precisão de variáveis contínuas;
- Todas expressam o erro médio de previsão do modelo (valores mais baixos são melhores);
- Todos variam de 0 a ∞ e são indiferentes à direção dos erros;
- MAE e RMSE expressam o erro de previsão na mesma unidade da variável de interesse;
- MSE e RMSE, ao elevar o erro ao quadrado, dão um peso relativamente alto para erros grandes;
- MSE e RMSE são mais úteis quando grandes erros são especialmente indesejáveis.

$$MAE = \frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$

$$MSE = \frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2$$

$$RMSE = \frac{1}{n} \sqrt{\sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

#	Error	Error	Error ²
1	1	1	1
2	-1	1	1
3	3	3	9
4	3	3	9

	#	Error	Error	Error ²
	1	0	0	0
	2	0	0	0
	3	0	0	0
	4	10	10	100

MAE	MSE	RMS E
2	5	2.24

MAE	MSE	_
		E
2.5	25	5