MTH207M (2023-24, ODD SEMESTER) PROBLEM SET 3

- 1. If *S* and *T* are two subspaces of \mathbb{R}^n having a common complement *W*, does it follow that S = T? Justify your answer.
- 2. If *S* is a subspace of \mathbb{R}^n and *x* and *y* are fixed vectors such that $x \in S$ and $y \neq s$, show that there exists a complement *T* of *S* such that *x* is the projection of *y* into *S* along *T*.
- 3. If *S* and *Y* are subspaces such that $S \subseteq Y$ and *Z* is a complement of *S*, show that $Z \cap Y$ is a complement of *S* relative to *Y* (i.e., $S \bigoplus (Z \cap Y) = Y$).
- 4. If $\rho(A) = \rho(A^2)$ and AB = BA = 0, prove that $\rho(A + B) = \rho(A) + \rho(B)$. Show that none of 'AB = 0' and 'BA = 0' can be dropped here.
- 5. Let *A* be an idempotent matrix. Then show that
 - (a) $C(B) \subseteq C(A)$ iff AB = B and
 - (b) $\mathcal{R}(B) \subseteq \mathcal{R}(A)$ iff BA = B.
- 6. Let *A* and *B* be projectors of the same order. Then show that A + B is a projector iff $C(A) \subseteq \mathcal{N}(B)$ and $C(B) \subseteq \mathcal{N}(A)$.
- 7. Let *A* and *B* be projectors of the same order. Show that the following statements are equivalent:
 - (a) A B is a projector
 - (b) AB = BA = B
 - (c) $\rho(A B) = \rho(A) \rho(B)$

- (d) $C(B) \subseteq C(A)$ and $R(B) \subseteq R(A)$.
- 8. Let *A* and *B* be projectors of the same order.
 - (a) If A + B is a projector, show that it is the projector into $C(A) \oplus C(B)$ along $\mathcal{N}(A) \cap \mathcal{N}(B)$.
 - (b) If A B is a projector, show that it is the projector into $C(A) \cap \mathcal{N}(B)$ along $\mathcal{N}(A) \oplus C(B)$.
 - (c) Let $C(AB) \subseteq C(B)$. Then show that AB is a projector and that BA need not be a projector.