Probability and Measure

1 Boolean Algebras and Finitely Additive Measures

- Boolean algebra ${\mathcal B}$
 - $\bullet \ \varnothing \in \mathcal{B}$
 - stable under finite union
 - stable under complementation

Example.

- 1. trivial Boolean algebra
- 2. discrete Boolean algebra
- 3. family of constructable sets
- constructable sets —— finite union of locally closed sets from topological space
- locally closed sets —— $O \cap C$ where O open, C closed
- finitely additive measure, m
 - $m(\varnothing) = 0$
 - $m(E \sqcup F) = m(E) + m(F)$
- sub-additive $m(E \cup F) \le m(E) + m(F)$
- monotone $E \subset F \Rightarrow m(E) \leq m(F)$

Fact. finitely additive measure is sub-additive and monotone

- counting measure

2 Jordan Measure on \mathbb{R}^d

- $box B = I_1 \times \cdots \times I_d$
- elementary subset —— finite union of boxes
- volume of box, |B|
- $-\mathcal{E}(B)$ family of elementary subsets of box B

Proposition 2.1. Fixed B, then

- 1. $\mathcal{E}(B)$ Boolean algebra
- 2. every $E \in \mathcal{E}(B)$ finite union of disjoint boxes
- 3. volume well defined

$$-m(E) = \sum |B_i| \text{ for } E = \bigsqcup B_i$$

Fact. m finitely additively measure on $(B, \mathcal{E}(B))$

– Jordan measurable — For all $\epsilon > 0$, \exists elementary $E \subset A \subset F$ st $m(F \setminus E) < \epsilon$

Fact. Jordan measurable subsets bounded

-m(A) for Jordan measurable A ——

$$m(A) = \inf\{m(F) : A \subset F, F \text{ elementary}\} = \sup\{m(F) : A \supset E, E \text{ elementary}\}\$$

– $\mathcal{J}(B)$ — family of Jordan measurable subsets of box B

Proposition 2.2. Fixed B, then

- 1. $\mathcal{J}(B)$ Boolean algebra
- 2. m finitely additive measure on $(B, \mathcal{J}(B))$

Fact. $E \subset finite interval [a, b] \subset \mathbb{R}$, then E Jordan measurable iff $\mathbb{1}_E(x)$ Riemann integrable

3 Lebesgue measurable setds

– Lebesgue outer-measure —— $E \subset \mathbb{R}^d$,

$$m^*(E) = \inf\{\sum |B_n| : E \subset \bigcup B_n \text{ boxes}\}$$

Fact. m^* translation invariant

– Lebesgue measurable — For $\epsilon > 0, \exists C = \bigcup B_n, E \subset C$ st

$$m^*(C \backslash E) < \epsilon$$

 $-\mathcal{L}$ — family of Lebesgue measurable sets

Fact. \mathcal{L} translation invariant, scales naturally

Fact. Jordan measurable \Rightarrow Lebesgue measurable

Proposition 3.1.

- 1. m^* extends m
- 2. L Boolean algebra, stable under countable unions
- 3. m^* countably additive on $(\mathbb{R}^d, \mathcal{L})$

Lemma 3.2. m^*

1. monotone ——
$$A \subset B \Rightarrow m^*(A) \leq m^*(B)$$

2. countably sub-additive ——
$$m^*(\bigcup A_n) \leq \sum m^*(A_n)$$

Fact. Jordan measure countably additive on Jordan measurable set

– continuity property ——
$$E_n$$
 non-increasing, empty intersection $\Rightarrow \lim m(E_n) = 0$

Lemma 3.3. Jordan measure has continuity property on elementary sets

Lemma 3.4. Elementary sets E_n decreasing, $A = \bigcap E_n$, then

- 1. A Lebesque measurable
- 2. $m(E_n) \to m^*(A)$

Fact. countable intersection of elementary sets Lebesgue measurable

Corollary 3.5. open and closed subsets Lebesque measurable

$$- \text{ null set } --- m^*(E) = 0$$

Lemma 3.6. null set Lebesque measurable

Proposition 3.7. E Lebesgue measurable, then \exists closed C, open O st

1.
$$C \subset E \subset O$$

2.
$$m^*(O \backslash C) < \epsilon$$

Fact. E can be written as $(\bigcup C_n) \sqcup N$ or $(\bigcap O_n) \setminus N$

Example. Vitali's counter example —— E set of representatives $E = \{x + \mathbb{Q}\} \subset [0,1]$

- 1. m^* not additive on all subsets of \mathbb{R}^d
- 2. E not Lebesgue measurable

4 Abstract Measure Theory

- $-\sigma$ -algebra Boolean algebra, stable under countable unions
- measurable space, (X, A)
- measure μ
 - 1. $\mu(\emptyset) = 0$
 - 2. countably additive
- measure space, (X, \mathcal{A}, μ)

Example.

1.
$$(\mathbb{R}^d, \mathcal{L}, m)$$

- 2. $m_0(E) = m(A_0 \cap E)$ for fixed $A_0 \in \mathcal{L}$
- 3. $(X, 2^X, \#)$, # counting measure
- 4. $(\mathbb{N}, 2^{\mathbb{N}}, \mu)$ where $\mu(I) = \sum_{i \in I} a_i$ for fixed $(a_n)_{n \geq 1}$

Proposition 4.1. (X, \mathcal{A}, μ) measure space

- 1. μ monotone
- 2. μ countably sub-additive
- 3. upward monotone convergence E_n increasing, then $\mu(\bigcup E_n) = \lim \mu(E_n) = \sup \mu(E_n)$
- 4. downward monotone convergence $\mu(E_1) < \infty$, E_n decreasing, then $\mu(\bigcap E_n) = \lim \mu(E_n) = \inf \mu(E_n)$
- finite —— $\mu(X) < \infty$
- σ -finite $X = \bigcup E_n, \, \mu(E_n) < \infty$
- probability space
- probability measure
- σ -algebra generated by \mathcal{F} , $\sigma(\mathcal{F})$ —— \mathcal{F} family of subsets

Example.

- 1. $X = \sqcup X_i$
- 2. X countable, \mathcal{F} singletons
- Borel σ -algebra, $\mathcal{B}(X)$ —— X topological space, generated by all open subsets
- Borel sets

Fact. $\mathcal{B}(\mathbb{R}^d)\subset\mathcal{L}$

Fact. $\mathcal{B}(\mathbb{R}^d)$ strictly smaller than \mathcal{L} —— every subset of null sets is null

Fact. $\mathcal{B}(X)$ (σ -algebra) usually larger than family of constructable sets (Boolean algebra)

- Boolean algebra generated by \mathcal{F} , $\beta(\mathcal{F})$
- explicitly described —— elements of $\beta(\mathcal{F})$ are finite unions of $F_1 \cap \cdots \cap F_n$, F_i or \bar{F}_i in \mathcal{F}

Myth. Borel hierarchy

– Borel measure — measure on $\mathcal{B}(X)$

Setting 1. X set, \mathcal{B} Boolean algebra, μ finitely additive measure

- continuity property — under setting 1, non-increasing (E_n) , $\mu(E_1) < \infty$, empty intersection

$$\lim \mu(E_n) = 0$$

Theorem 4.2 (Caratheodory extension theorem). Under setting 1, \mathcal{B} continuity property, μ σ -finite, then μ uniquely extends to μ^* on $\sigma(B)$

- outer-measure μ^* $\mu^*(E) = \inf \{ \sum \mu(B_i) : E \subset \bigcup B_i, B_i \in \mathcal{B} \}$
- μ^* measurable $\exists \bigcup B_n := C \text{ st } \mu^*(C \backslash E) < \epsilon$
- completion of $\mathcal{B}, \mathcal{B}^*$ —— family of μ^* measurable subsets

Proposition 4.3. Under setting 1,

- 1. \mathcal{B}^* σ -algebra containing \mathcal{B}
- 2. μ^* countably additive on \mathcal{B}^*
- 3. μ^* extends μ

Myth. X compact metric space, μ probability measure on Borel σ -algebra \mathcal{B} , no atom, then \exists measure preserving measurable isomorphism between (X, \mathcal{B}^*, μ) and $([0, 1], \mathcal{L}, m)$

5 Uniqueness of Measures

- $-\pi$ -system family \mathcal{F}
 - 1. contains \emptyset
 - 2. stable under finite intersection

Proposition 5.1 (measure uniqueness). (X, A) measurable space, μ_1, μ_2 finite measures st

- 1. $\mu_1 = \mu_2 \text{ on } \mathcal{F} \bigcup \{X\}$
- 2. $\mathcal{F} \pi$ -system st $\sigma(\mathcal{F}) = \mathcal{A}$

then $\mu_1 = \mu_2$ on \mathcal{A}

Fact. For general measures, if $\exists F_n \subset \mathcal{F}$ st μ_1, μ_2 finite on F_n , $X = \bigcup F_n$, then uniqueness also holds

Lemma 5.2 (Dynkin's lemma).

- 1. $\mathcal{F} \pi$ -system
- 2. $\mathcal{F} \subset \mathcal{C}$
- 3. C stable under complementation, disjoint countable union

then $\sigma(\mathcal{F}) \subset \mathcal{C}$

- translation invariant ----m(A+x)=m(A) for all A,x

Proposition 5.3. Lebesgue measure unique measure on $(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d))$ st

- 1. translation invariant
- 2. $m([0,1]^d) = 1$

6 Measurable Functions

Setting 2. $(X, \mathcal{A}), (Y, \mathcal{B})$ measurable space

- $f: X \to \mathbb{R}$ measurable function
- $f:X\to Y$ measurable map

Fact. can extend to $\{\infty\}$ or $\{-\infty\}$

Fact. continuous function measurable

Fact. $E \in A$ iff $\mathbb{1}_E$ measurable

- \mathbb{R} -algebra

Proposition 6.1. $(f_n)_{n\geq 1}$ measurable functions

- 1. f, g measurable $\Rightarrow g \circ f$ measurable
- 2. Family of measurable functions form \mathbb{R} -algebra
- 3. $\limsup f_n, \liminf f_n, \sup f_n, \inf f_n$ measurable functions

Proposition 6.2. $f = (f_1, f_2, \dots, f_d)^T$, then f measurable iff f_i measurable

- Borel measurable (or simply Borel)

Fact. f measurable

- 1. $f^{-1}(L)$ need not measurable for $L \in \mathcal{L}$
- 2. f(X) need not measurable even for f continuous

Example. 1. f sends to trivial σ -algebra

7 Integration

simple function