2023.01.19.

Rocker-Bogie mechanism 기반 야외 배달용 로봇 개발팀 보고서

demo cenario

1. A팀 로봇 구동

SLAM과 CCTV의 information layer를 결합한 위치인식 경로탐색을 시연.

2. B팀 로봇 구동

모의 배달물을 탑재한 채 가감속 운전하며 스태빌라이저 구동을 시연.

2022년 Capston Design 데모 - 구조분석

사용된 모터

- AGV모터 (IG42GM)

그래프 / Graph

DC GEARED ENCODER MOTOR IG42GM W/EC OITYPE

감 속 비: 1/4 ~ 1/3600 (감속비율 총 21종) 정격 토크: 2.2kg.cm ~ 30kg.cm 정격회진수: 1400 rpm ~ 1.9 rpm 장착된모터: DC 12V / 7000 rpm / 41.3 W motor 엔코더사양: 38Pulses (19Pulses x 2CH)

모터사양 / Installed Mot	or Specification
----------------------	------------------

01 TYPE MOTOR (DO	12V)
항격 로크 Retail forque	700(gt-cm)
정전 회접수 Rated speed	5,700(RPM)
정국 전류 Rated current	5,500(mA)
무루함 회전수 No lood speed	(7,000(RPM)
부부하 전류 No load current	800(mA)
SR GR Rates output	41.3(W)

Po EF I N O1 TYPE 12V 13V 140 - 50 - 13 - 3500

감속비: 1 / 17

- stabilizer모터 (IG30GM)

감속모터사양 / Geared Motor Specification

247	(10) (mm) Gear Head L	23,6		30,0			36,4			42,8						
	\$8(g)	188		201			2	16			2	31				
감속	El Reduction ratio	1/5	1/14	1/19	1/27	1/51	1/71	1/100	1/139	1/189	1/264	1/516	1/721			
03	SPEERING -cm/ Rated torque	0.45	1,1	1,5	2,1	3,4	4,7	6,6	8	10	10	10	10			
Type	정건 회원(RPM) Rated speed	1140	430	310	221	117	83	60	45	32	25	13,2	9,6			
12v	무보하 회전수(RPM) No Load spred	1460	521	384	270	143	102	73	52	38	27	14	10			

모터사양 / Installed Motor Specification 그래프 / Graph

정격 토크 Rated torque	110	(gf-cm)		
정격 회전수 Rated speed	5,960	(RPM)		
정격 전류 Rated current	900	(mA)		
무부하 회전수 No load speed	7,300	(RPM)		
무부하 전류 No load current	150	(mA)		
정격 출력 Rated output	7.0	(W)		

감속비: 1 / 139

AGV

모터 서스펜션

- -배터리팩과 모터 고정부 사이를 알루미늄 링크로 연결
- -모터 고정부와 본체 샤시 사이를 스프링(서스펜션)으로 연결, 각 구동륜이 받는 충격을 감쇠
- 스프링 선정은 최적화 시뮬레이션을 통해 결정

캐스터 서스펜션

- -전후방 캐스터 휠에도 스프링 존재, 그러나 짧고 스프링 이 강해 감쇠효과는 크지 않음
- -가감속 방향 충격에 취약, stabilizer 서스펜션과 제어를 통해 감쇠하는 구조

Stabilizer

작동구조

- -모터와 회전시킬 샤프트를 모터 커플러를 통해 연결
- -분해할 필요가 있는 조인트에 사용되는 플렌지 커플링 사용
- -링크와 브라켓등은 3D프린터를 이용하여 출력
- -링크에 관절 역할을 해주는 로드엔드베어링을 리니어 샤프트와 힌지핀으로 연결
- -유니버셜조인트를 이용하여 샤프트 연결 후 서빙로봇 컵 홀더오 연결

서스펜션

- -밑 플레이트에 스프링(서스펜션)을 이용하여 충격을 흡수 할 수 있게 구조 됨
- -밑판과 연결부분은 서스펜션 브라켓에 리니어 부시와 샤프트를 이용하여 직선운동을 더 쉽게 해줄 수 있게 함
- -AGV와 연결부분은 윗 서스펜션 링크에 진동완화 댐퍼 사이에 스 프링을 두고 아래 서스펜션 링크와 연결

이후 계획

설계 쪽으로는 매트랩, 3D툴등을 이용하여 stabilizer 구조의 최적화, 서스펜션의 수학적 모델링 및 최적화, 링크 응력 분포구조등을 분석 한 후 작년팀이 실험 해 본 것처럼 서스펜션의 유무 및 최적화된 조건으로 어떠한 차이가 있나 실험 해 볼 예정

제어쪽으로는 로봇이 구동 할 수 있을 정도로 아두이노 코드 분석 정도만 확인해보고 A팀이 캡스톤디자인에 활용한 LIDAR를 이용하여 slam을 통해 mapping을 작성하고 구동할 때 이용 할 수 있게 공부 해 볼 예정

팀원 담당 역할

김강현-stabilizer의 영역 최적화 및 매트랩을 이용하여 stabilizer에 발생하는 z축 가속도 파악

송종헌-AGV 파트 분석, IMU센서 공부 김민재-서스펜션 최적화 분석 및 모터링크 응력, 변형률 파악, slam 사용 공부 석영선-ROS 및 slam 사용 공부, 아두이노 시리얼 통신 및 코드 분석