Teorema 1.14 (Teorema de Taylor)

Suponha que $f \in C^n[a, b]$, que $f^{(n+1)}$ exista em [a, b] e que $x_0 \in [a, b]$. Para todo $x \in [a, b]$ existe um número $\xi(x)$ entre x_0 e x com

$$f(x) = P_n(x) + R_n(x),$$

onde

$$P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

$$= \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k$$

e

$$R_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_0)^{n+1}.$$

Aqui o elemento $P_n(x)$ é chamado de **polinômio de Taylor de enésimo grau** para f centrado em x_0 , e $R_n(x)$ é chamado de **resto** (ou de **erro de truncamento**) associado a $P_n(x)$. A série infinita obtida tomando-se o limite de $P_n(x)$ para n tendendo a infinito $(n \to \infty)$ é chamada de **série de Taylor** para f centrada em x_0 . No caso em que $x_0 = 0$, o polinômio de Taylor normalmente é chamado de **polinômio de Maclaurin**, e a série de Taylor é chamada de **série de Maclaurin**.

O termo erro de truncamento (ou resto) se refere ao fato de que se incorre em um erro quando se faz o somatório dos termos de uma série finita, ou truncada, para se obter um resultado aproximado da soma dos termos de uma série infinita.

EXEMPLO 3

Determine o polinômio de Taylor (a) de 2° grau e (b) de 3° grau para a função $f(x) = \cos x$ centrado em $x_0 = 0$, e use esses polinômios para obter o resultado aproximado de $\cos(0.01)$. (c) Use o polinômio de Taylor de 3° grau e seu resto para obter o resultado aproximado de $\int_{0}^{\infty} \cos x \, dx$.

Como $f \in C^{\infty}(\mathbb{R})$, o Teorema de Taylor pode ser aplicado para qualquer $n \ge 0$. Assim sendo,

$$f'(x) = -\sin x$$
, $f''(x) = -\cos x$, $f'''(x) = \sin x$ e $f^{(4)}(x) = \cos x$,

então

$$f(0) = 1$$
, $f'(0) = 0$, $f''(0) = -1$ e $f'''(0) = 0$.

a. Para n = 2 e $x_0 = 0$, temos

$$\cos x = 1 - \frac{1}{2}x^2 + \frac{1}{6}x^3 \operatorname{sen} \xi(x),$$

onde $\xi(x)$ é um número entre 0 e x (veja a Figura 1.12).

Figura 1.12

Para x = 0.01, o polinômio de Taylor e o resto são:

$$\cos 0.01 = 1 - \frac{1}{2}(0.01)^2 + \frac{1}{6}(0.01)^3 \sec \xi(x)$$
$$= 0.99995 + 0.1\overline{6} \times 10^{-6} \sec \xi(x),$$

onde $0 < \xi(x) < 0.01$. (A barra sobre o algarismo 6 em 0,16 é utilizada para indicar que esse dígito se repete indefinidamente.) Como $|\sec \xi(x)| < 1$ para todo x, temos

$$|\cos 0.01 - 0.99995| \le 0.1\overline{6} \times 10^{-6},$$

e então a aproximação 0,99995 tem pelo menos os cinco primeiros algarismos significativos iguais aos cinco algarismos do valor real de cos 0,01. Assim sendo,

$$0.9999483 < 0.99995 - 1.\overline{6} \times 10^{-6} \le \cos 0.01 \le 0.99995 + 1.\overline{6} \times 10^{-6} < 0.9999517.$$

O limite de erro é muito maior que o erro real. Isso se deve em parte ao valor pouco adequado que escolhemos para o $|\sec \xi(x)|$. Pode-se mostrar que para todos os valores de x temos $|\sec x| \le |x|$. Como $0 \le \xi < 0.01$, poderíamos utilizar o fato de que $|\sec \xi(x)| \le 0.01$ na fórmula do resto, obtendo o limite 0.16×10^{-8} .

b. Como f'''(0) = 0, o polinômio de Taylor de 3º grau com resto centrado em $x_0 = 0$ é

$$\cos x = 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 \cos \tilde{\xi}(x),$$

onde $0 < \tilde{\xi}(x) < 0.01$. O polinômio de aproximação permanece o mesmo, e a aproximação continua sendo 0,99995, mas agora temos garantida uma precisão muito maior. Como $|\cos \tilde{\xi}(x)| \le 1$ para qualquer valor de x, temos

$$\left| \frac{1}{24} x^4 \cos \tilde{\xi}(x) \right| \le \frac{1}{24} (0.01)^4 (1) \approx 4.2 \times 10^{-10}.$$

Dessa forma

$$\left|\cos 0.01 - 0.99995\right| \le 4.2 \times 10^{-10}$$

e

$$0,9999499958 = 0,99995 - 4,2 \times 10^{-10}$$

 $\leq \cos 0,01 \leq 0,99995 + 4,2 \times 10^{-10} = 0,99995000042.$

As primeiras duas partes deste exemplo ilustram os dois objetivos da análise numérica. O primeiro é encontrar um valor aproximado, o que, em ambos os casos, é estabelecido pelo polinômio de Taylor. O segundo é determinar a precisão da aproximação. Nesse caso, o polinômio de Taylor de 3º grau dá muito mais informação que o de 2º grau, ainda que ambos os polinômios forneçam a mesma aproximação.

c. Aplicando o polinômio de Taylor de 3º grau temos

$$\int_0^{0,1} \cos x \, dx = \int_0^{0,1} \left(1 - \frac{1}{2} x^2 \right) dx + \frac{1}{24} \int_0^{0,1} x^4 \cos \tilde{\xi}(x) \, dx$$
$$= \left[x - \frac{1}{6} x^3 \right]_0^{0,1} + \frac{1}{24} \int_0^{0,1} x^4 \cos \tilde{\xi}(x) \, dx$$
$$= 0,1 - \frac{1}{6} (0,1)^3 + \frac{1}{24} \int_0^{0,1} x^4 \cos \tilde{\xi}(x) \, dx.$$

Portanto

$$\int_0^{0.1} \cos x \, dx \approx 0.1 - \frac{1}{6} (0.1)^3 = 0.0998\overline{3}.$$

Um limite para o erro nessa aproximação é determinado a partir da integração do resto do polinômio de Taylor e do fato de que $|\cos \tilde{\xi}(x)| \le 1$ para qualquer valor de x:

$$\frac{1}{24} \left| \int_0^{0.1} x^4 \cos \tilde{\xi}(x) \, dx \right| \le \frac{1}{24} \int_0^{0.1} x^4 \left| \cos \tilde{\xi}(x) \right| \, dx$$
$$\le \frac{1}{24} \int_0^{0.1} x^4 \, dx = 8.3 \times 10^{-8}.$$

Uma vez que o valor real dessa integral é

e o valor real dessa integral e
$$\int_{0}^{0.1} \cos x \, dx = \sin x \Big|_{0}^{0.1} = \sin 0.1 \approx 0.099833417,$$

o erro verdadeiro para essa aproximação é $8,332 \times 10^{-8}$, que está dentro dos limites de erros calculados.

to the dealers) no Evenne 3. Utilizando o Maple,

Repita o item (b) usando o polinômio do item (c). Encontre o polinômio de Taylor de 3° grau $P_3(x)$ para a função $f(x) = \sqrt{x+1}$ centrada em $x_0 = 0$. Aproxime $\sqrt{0.5}$, $\sqrt{0.75}$. $\sqrt{1,25}$ e $\sqrt{1,5}$ usando $P_3(x)$, e encontre os erros verdadeiros.

Encontre o polinômio de Taylor de 2° grau $P_2(x)$ centrado em $x_0 = 0$.

Encontre $R_2(0,5)$ e o erro verdadeiro utilizando $P_2(0,5)$ para aproximar f(0,5).

Seja $f(x) = x^3$.

8.

Repita o item (a) usando $x_0 = 1$.

- Encontre o polinômio de Taylor de 2° grau $P_2(x)$ para a função $f(x) = e^x \cos x$ centrada em $x_0 = 0$. 9.
 - Utilize $P_2(0,5)$ para aproximar f(0,5). Encontre um limite superior para o erro $|f(0,5) P_2(0,5)|$ utilizando a fórmula do
 - Encontre um limite para o erro $|f(x) P_2(x)|$ utilizando $P_2(x)$ para aproximar o valor f(x) no intervalo [0, 1].
- **c.** Aproxime $\int_{0}^{1} f(x) dx$ usando $\int_{0}^{1} P_{2}(x) dx$.
- Encontre um limite superior para o erro obtido em (c) usando $\int_0^1 |R_2(x)| dx$ e compare o limite com o erro verdadeiro.
 - Repita o Exercício 9 usando $x_0 = \pi/6$. Encontre o polinômio de Taylor de 3° grau $P_3(x)$ para a função $f(x) = (x-1)\ln x$ centrada em $x_0 = 1$.

- Use $P_3(0,5)$ para obter a aproximação de f(0,5). Encontre um limite superior para o erro de $|f(0,5) P_3(0,5)|$ utilizando a fórmula do erro e compare o resultado com o erro verdadeiro.
- Encontre um limite para o erro $|f(x) P_3(x)|$ utilizando $P_3(x)$ para a aproximação de f(x) no intervalo [0,5, 1,5].
- c. Aproxime $\int_{0.5}^{1.5} f(x) dx$ utilizando $\int_{0.5}^{1.5} P_3(x) dx$. d. Encontre um limite superior para o erro obtido em (c) utilizando $\int_{0.5}^{1.5} |R_3(x)| dx$, e compare esse limite com o erro verdadeiro.