"JUST THE MATHS"

UNIT NUMBER

16.8

Z-TRANSFORMS 1 (Definition and rules)

by

A.J.Hobson

- 16.8.1 Introduction
- 16.8.2 Standard Z-Transform definition and results
- 16.8.3 Properties of Z-Transforms
- 16.8.4 Exercises
- 16.8.5 Answers to exercises

UNIT 16.8 - Z TRANSFORMS 1 - DEFINITION AND RULES

16.8.1 INTRODUCTION - Linear Difference Equations

Closely linked with the concept of a linear <u>differential</u> equation with constant coefficients is that of a "linear <u>difference</u> equation with constant coefficients".

Two particular types of difference equation to be discussed in the present section may be defined as follows:

DEFINITION 1

A first-order linear difference equation with constant coefficients has the general form,

$$a_1 u_{n+1} + a_0 u_n = f(n),$$

where a_0 , a_1 are constants, n is a positive integer, f(n) is a given function of n (possibly zero) and u_n is the general term of an infinite sequence of numbers, $\{u_n\} \equiv u_0, u_1, u_2, u_3, \ldots$

DEFINITION 2

A second-order linear difference equation with constant coefficients has the general form,

$$a_2 u_{n+2} + a_1 u_{n+1} + a_0 u_n = f(n),$$

where a_0 , a_1 , a_2 are constants, n is an integer, f(n) is a given function of n (possibly zero) and u_n is the general term of an infinite sequence of numbers, $\{u_n\} \equiv u_0, u_1, u_2, u_3, \ldots$

Notes:

- (i) We shall assume that the sequences under discussion are such that $u_n = 0$ whenever n < 0.
- (ii) Difference equations are usually associated with given "boundary conditions", such as the value of u_0 for a first-order equation or the values of u_0 and u_1 for a second-order equation.

ILLUSTRATION

Certain **simple** difference equations may be solved by very elementary methods.

For example, suppose that we wish to solve the difference equation,

$$u_{n+1} - (n+1)u_n = 0,$$

subject to the boundary condition that $u_0 = 1$.

We may rewrite the difference equation as

$$u_{n+1} = (n+1)u_n$$

and, by using this formula repeatedly, we obtain

$$u_1 = u_0 = 1$$
, $u_2 = 2u_1 = 2$, $u_3 = 3u_2 = 3 \times 2$, $u_4 = 4u_3 = 4 \times 3 \times 2$,

In general, for this illustration, $u_n = n!$.

However, not all difference equations can be solved as easily as this and we shall now discuss the Z-Transform method of solving more advanced types.

16.8.2 STANDARD DEFINITION AND RESULTS

THE DEFINITION OF A Z-TRANSFORM (WITH EXAMPLES)

The Z-Transform of the sequence of numbers, $\{u_n\} \equiv u_0, u_1, u_2, u_3, \ldots$, is defined by the formula,

$$Z\{u_n\} = \sum_{r=0}^{\infty} u_r z^{-r},$$

provided that the series converges (allowing for z to be a complex number if necessary).

EXAMPLES

1. Determine the Z-Transform of the sequence,

$$\{u_n\} \equiv \{a^n\},\$$

where a is a non-zero constant.

Solution

$$Z\{a^n\} = \sum_{r=0}^{\infty} a^r z^{-r}.$$

That is,

$$Z\{a^n\} = 1 + \frac{a}{z} + \frac{a^2}{z^2} + \frac{a^3}{z^3} + \dots = \frac{1}{1 - \frac{a}{z}} = \frac{z}{z - a},$$

by properties of infinite geometric series.

Thus,

$$Z\{a^n\} = \frac{z}{z-a}.$$

2. Determine the Z-Transform of the sequence,

$$\{u_n\} = \{n\}.$$

Solution

$$Z\{n\} = \sum_{r=0}^{\infty} rz^{-r}.$$

That is,

$$Z{n} = \frac{1}{z} + \frac{2}{z^2} + \frac{3}{z^3} + \frac{4}{z^4} + \dots,$$

which may be rearranged as

$$Z\{n\} = \left(\frac{1}{z} + \frac{1}{z^2} + \frac{1}{z^3} + \dots\right) + \left(\frac{1}{z^2} + \frac{1}{z^3} + \frac{1}{z^4} + \dots\right) + \left(\frac{1}{z^3} + \frac{1}{z^4} + \dots\right),$$

giving

$$Z\{n\} = \frac{\frac{1}{z}}{1 - \frac{1}{z}} + \frac{\frac{1}{z^2}}{1 - \frac{1}{z}} + \frac{\frac{1}{z^3}}{1 - \frac{1}{z}} + \dots = \frac{1}{1 - \frac{1}{z}} \left[\frac{\frac{1}{z}}{1 - \frac{1}{z}} \right],$$

by properties of infinite geometric series.

Thus,

$$Z{n} = \frac{z}{(1-z)^2} = \frac{z}{(z-1)^2}.$$

Note:

Other Z-Transforms may be obtained, in the same way as in the above examples, from the definition.

We list, here, for reference, a short table of standard Z-Transforms, including those already proven:

A SHORT TABLE OF Z-TRANSFORMS

u_n	$Z\{u_n\}$	Region of Existence
{1}	$\frac{z}{z-1}$	z > 1
$\{a^n\}$ (a constant)	$\frac{z}{z-a}$	z > a
$\{n\}$	$\frac{z}{(z-1)^2}$	z > 1
$\left\{e^{-nT}\right\} (T \text{ constant})$	$\frac{z}{z-e^{-T}}$	$ z > e^{-T}$
$\sin nT \ (T \ { m constant})$	$\frac{z\sin T}{z^2 - 2z\cos T + 1}$	z > 1
$\cos nT \ (T \ { m constant})$	$\frac{z(z-\cos T)}{z^2-2z\cos T+1}$	z > 1
$ \begin{array}{c} 1 \text{ for } n = 0 \\ 0 \text{ for } n > 0 \\ \text{(Unit pulse sequence)} \end{array} $	1	All z
$\begin{cases} 0 \text{ for } n = 0\\ \{a^{n-1}\} \text{ for } n > 0 \end{cases}$	$\frac{1}{z-a}$	z > a

16.8.3 PROPERTIES OF Z-TRANSFORMS

(a) Linearity

If $\{u_n\}$ and $\{v_n\}$ are sequences of numbers, while A and B are constants, then

$$Z\{Au_n + Bv_n\} \equiv A.Z\{u_n\} + B.Z\{v_n\}.$$

Proof:

The left-hand side of the above identity is equivalent to

$$\sum_{r=0}^{\infty} (Au_r + Bv_r)z^{-r} \equiv A \sum_{r=0}^{\infty} u_r z^{-r} + B \sum_{r=0}^{\infty} v_r z^{-r},$$

which, in turn, is equivalent to the right-hand side.

EXAMPLE

$$Z\{5.2^n - 3n\} = \frac{5z}{z - 2} - \frac{3z}{(z - 1)^2}.$$

(b) The First Shifting Theorem

$$Z\{u_{n-1}\} \equiv \frac{1}{z}.Z\{u_n\},\,$$

where $\{u_{n-1}\}$ denotes the sequence whose first term, corresponding to n=0, is taken as zero and whose subsequent terms, corresponding to $n=1, 2, 3, 4, \ldots$, are the terms $u_0, u_1, u_3, u_4, \ldots$ of the original sequence.

Proof:

The left-hand side of the above identity is equivalent to

$$\sum_{r=0}^{\infty} u_{r-1} z^{-r} \equiv \frac{u_0}{z} + \frac{u_1}{z^2} + \frac{u_2}{z^3} + \frac{u_3}{z^4} + \dots,$$

since it is assumed that $u_n = 0$ whenever n < 0.

Thus,

$$Z\{u_{n-1}\} \equiv \frac{1}{z} \cdot \left[u_0 + \frac{u_1}{z} + \frac{u_2}{z^2} + \frac{u_3}{z^3} + \dots \right],$$

which is equivalent to the right-hand side.

Note:

A more general form of the first shifting theorem states that

$$Z\{u_{n-k}\} \equiv \frac{1}{z^k}.Z\{u_n\},\,$$

where $\{u_{n-k}\}$ denotes the sequence whose first k terms, corresponding to $n=0,\ 1,\ 2,\ \ldots, k-1$, are taken as zero and whose subsequent terms, corresponding to $n=k,\ k+1,\ k+2,\ \ldots$ are the terms $u_0,\ u_1,\ u_2,\ \ldots$ of the original sequence.

ILLUSTRATION

Given that $\{u_n\} \equiv \{4^n\}$, we may say that

$$Z\{u_{n-2}\} \equiv \frac{1}{z^2}.Z\{u_n\} \equiv \frac{1}{z^2}.\frac{z}{z-4} \equiv \frac{1}{z(z-4)}.$$

Note:

In this illustration, the sequence, $\{u_{n-2}\}$ has terms 0, 0, 1, 4, 4^2 , 4^3 , . . . and, by applying the definition of a Z-Transform directly, we would obtain

$$Z\{u_{n-2}\} = \frac{1}{z^2} + \frac{4}{z^3} + \frac{4^2}{z^4} + \frac{4^3}{z^5} \dots,$$

which gives

$$Z\{u_n\} \equiv \frac{1}{z^2} \cdot \frac{1}{1 - \frac{4}{z}} \equiv \frac{1}{z(z-4)},$$

by properties of infinite geometric series.

(c) The Second Shifting Theorem

$$Z\{u_{n+1}\} \equiv z.Z\{u_n\} - z.u_0$$

Proof:

The left-hand side of the above identity is equivalent to

$$\sum_{r=0}^{\infty} u_{r+1} z^{-r} \equiv u_1 + \frac{u_2}{z} + \frac{u_3}{z^2} + \frac{u_4}{z^4} + \dots$$

This may be rearranged as

$$z.\left[u_0+\frac{u_1}{z}+\frac{u_2}{z^2}+\frac{u_3}{z^3}+\frac{u_4}{z^4}+\ldots\right]-z.u_0$$

which, in turn, is equivalent to the right-hand side.

Note:

This "recursive relationship" may be applied repeatedly. For example, we may deduce that

$$Z\{u_{n+2}\} \equiv z.Z\{u_{n+1}\} - z.u_1 \equiv z^2.Z\{u_n\} - z^2.u_0 - z.u_1$$

16.8.4 EXERCISES

- 1. Determine, from first principles, the Z-Transforms of the following sequences, $\{u_n\}$:
 - (a)

$$\{u_n\} \equiv \{e^{-n}\};$$

(b)

$$\{u_n\} \equiv \{\cos \pi n\}.$$

2. Determine the Z-Transform of the following sequences:

$$\{u_n\} \equiv \{7.(3)^n - 4.(-1)^n\};$$

$$\{u_n\} \equiv \left\{6n + 2e^{-5n}\right\};$$

$$\{u_n\} \equiv \{13 + \sin 2n - \cos 2n\}.$$

- 3. Determine the Z-Transform of $\{u_{n-1}\}$ and $\{u_{n-2}\}$ for the sequences in question 1.
- 4. Determine the Z-Transform of $\{u_{n+1}\}$ and $\{u_{n+2}\}$ for the sequences in question 1.

16.8.5 ANSWERS TO EXERCISES

1. (a)

$$\frac{ez}{ez-1}$$
;

(b)

$$\frac{z}{z+1}$$
.

2. (a)

$$\frac{7z}{z-3} - \frac{4z}{z+1};$$

(b)

$$\frac{6z}{(z-1)^2} + \frac{2z}{z - e^{-5}};$$

(c)

$$\frac{13z}{z-1} + \frac{z(\sin 2 + \cos 2 - z)}{z^2 - 2z\cos 2 + 1}.$$

3. (a)

$$Z\{u_{n-1}\} \equiv \frac{e}{ez-1} \ (n>0), \quad Z\{u_{n-2}\} \equiv \frac{e}{z(ez-1)} \ (n>1);$$

(b)

$$Z\{u_{n-1}\} \equiv \frac{1}{z+1} \ (n>0), \quad Z\{u_{n-2}\} \equiv \frac{1}{z(z+1)} \ (n>1).$$

Note:

$$u_{-2} = 0$$
 and $u_{-1} = 0$.

4. (a)

$$Z\{u_{n+1}\} \equiv \frac{z}{ez-1}, \quad Z\{u_{n+2}\} \equiv \frac{z}{e(ez-1)};$$

(b)

$$Z\{u_{n+1}\} \equiv -\frac{z}{z+1}, \quad Z\{u_{n+2}\} \equiv \frac{z}{z+1}.$$