Рабочий протокол и отчет по лабораторной работе $N_{\rm P} 5.04$

Определение постоянной Ридберга для атомного водорода

Фадеев Артём

Апрель 2022

1 Цель работы

- Получение численного значения постоянной Ридберга для атомного водорода из экспериментальных данных
- Сравнение с рассчитанной теоретически

2 Объект исследования

• Атом водорода

3 Рабочие формулы и исходные данные

• Длина волны:

$$\lambda = B \frac{n^2}{n^2 - 4}$$

• Волновое число:

$$\tilde{v_0} = \frac{1}{\lambda}$$

• Формула Бора:

$$E_{n} = -\frac{2\pi^{2}me^{4}}{h} \cdot \frac{1}{n^{2}} = -hcR\frac{1}{n^{2}}$$

$$R = \frac{2\pi^{2}me^{4}}{ch^{3}}(C\Gamma C), R = \frac{me^{4}}{8ch^{3}\epsilon_{0}^{2}}(CH)$$

• Серия Бальмера

$$\tilde{v_0} = R \cdot (\frac{1}{2^2} - \frac{1}{n^2})$$

4 Измерительные приборы

- Водородная трубка, ртутная лампа
- Монохроматор
- Источник питания ртутной лампы и водородной лампы
- Источник питания подсветки монохроматора

5 Схема установки

6 Результаты прямых и косвенных измерений и их обработки

Цвет линий в спектре ртути

	λ, um	α, del
Красный	690.7	2537
Красный	671.1	2515
Оранжевый	623.4	2181
Желтый	579	2065
Желтый	576.9	2056
Зеленый	546	1866
Голубой	491.6	1450
Сине-фиолетовый	435.8	790
Фиолетовый	407.8	530
Фиолетовый	404.7	456

Цвет линий в спектре водорода

	λ, nm	α, del
Красный	643.592	2378
Голубой	485.461	1398
Фиолетовый	426.198	756

Цвет	\tilde{v},nm	$1/n^2$
Красный	1553779,413	0.108
Голубой	2059897,705	0.062
Фиолетовый	2346327,294	0.036

Значение	R, m^{-1}	E, eV
Из угла наклона пряиой	11000000	-13.63
Из ординаты точки пересечения	10960000	-13,571
Теоретически	10973731	-13,592
Погрешность, %	0,0571	0,0574

7 Графики

1/n2 относительно параметра " \tilde{v} "

8 Выводы и анализ работы

• В ходе выполнения работы была снята градуировочная кривая монохроматора, определены длины волн спектра водорода, рассчитаны соответствующие волновые числа и вычислено экспериментальное значение постоянной Ридберга, погрешность измерения которого составила 0,0571