C24 Dynamical Systems – notes

Tuan Anh Le

December 19, 2014

0.1 Linear algebra

Definition 0.1.1. *Let* **A** *be an* $n \times n$ *matrix. Then for* $t \in \mathbb{R}$,

$$e^{\mathbf{A}t} = \sum_{k=0}^{\infty} \frac{\mathbf{A}^k t^k}{k!} \tag{1}$$

Proposition 0.1.1. If \mathbf{P}, \mathbf{T} are linear transformations on \mathbb{R}^n (i.e. $\mathbf{P}, \mathbf{T} \in \mathbb{R}^{n \times n}$) and $\mathbf{S} = \mathbf{P}\mathbf{T}\mathbf{P}^{-1}$ then $e^{\mathbf{S}} = \mathbf{P}e^{\mathbf{T}}\mathbf{P}^{-1}$.

Proof.

$$e^{\mathbf{S}} = \lim_{n \to \infty} \sum_{k=0}^{n} \frac{(\mathbf{P} \mathbf{T} \mathbf{P}^{-1})^{k}}{k!}$$

$$= \lim_{n \to \infty} \sum_{k=0}^{n} \frac{\mathbf{P} \mathbf{T}^{k} \mathbf{P}^{-1}}{k!}$$

$$= \mathbf{P} \left(\lim_{n \to \infty} \sum_{k=0}^{n} \frac{T^{k}}{k!} \right) \mathbf{P}^{-1}$$

$$= \mathbf{P} e^{\mathbf{T}} \mathbf{P}^{-1}$$

Proposition 0.1.2. For any $\mathbf{A} \in \mathbb{R}^{2 \times 2}$, there exists an invertible matrix $\mathbf{W} \in \mathbb{R}^{2 \times 2}$ (whose columns consist of generalised eigenvectors of \mathbf{A}) such that the matrix

$$\mathbf{\Lambda} = \mathbf{W}^{-1} \mathbf{A} \mathbf{W}$$

has one of the following forms

$$\Lambda = \begin{bmatrix} \lambda & 0 \\ 0 & \mu \end{bmatrix}, \Lambda = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}, or \Lambda = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

It then follows from above that

$$e^{(\Lambda t)} = \begin{bmatrix} e^{\lambda t} & 0 \\ 0 & e^{\mu t} \end{bmatrix}, e^{(\Lambda t)} = e^{\lambda t} \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}, or \ e^{(\Lambda t)} = e^{at} \begin{bmatrix} \cos bt & -\sin bt \\ \sin bt & \cos bt \end{bmatrix}$$

respectively. And by Proposition 0.1.1, the matrix $e^{\mathbf{A}t}$ is then given by

$$e^{\mathbf{A}t} = \mathbf{W}e^{\mathbf{\Lambda}t}\mathbf{W}^{-1}$$

We have: state $\mathbf{x}(t) \in \mathbb{R}^n$, function $\mathbf{f}: D \to \mathbb{R}^n, D \subseteq \mathbb{R}^n$. Then a dynamical system can be written as

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) \tag{2}$$