23 December 2020 13:36

2. Describe the level curves and the contour lines for the following functions corresponding to the values c = -3, -2, -1, 0, 1, 2, 3, 4:

(i)
$$f(x,y) = x - y$$
 (ii) $f(x,y) = x^2 + y^2$ (iii) $f(x,y) = xy$

One way is to study the level sets of the functions. These are the sets of the form $\{(x,y) \in \mathbb{R}^2 \mid f(x,y) = c\}$, where c is a constant. The level set "lives" in the xy-plane.

When one plots the f(x,y) = c for some constant c one gets a curve. Such a curve is usually called a contour line (the contour "lives" in the z = c plane).

$$(ii)$$
 $c = -3, -2, -1$

level set = \$\phi\$ (ontown line)

(=0. Level set = {(0,0)}
Contour line \ \{ (0,0,0)}

C=1: Level Set: unit circle in \mathbb{R}^2 L= $\{(\omega_0, \omega_0): 0 \in [0, 2\pi]\}$

Contour set = LX { 13

= { (wo, sino, 1): 0+ [0,27]

c=2,3 sivilar

 (\tilde{l}) c = 0.

Level set: $L=\{(n,0): x \in \mathbb{R}^{\frac{1}{2}} \cup \{(0,y): y \in \mathbb{R}^{\frac{1}{2}}\}$

23 December 2020 13:36

4. Suppose $f,g:\mathbb{R} \to \mathbb{R}$ are continuous functions. Show that each of the following functions for $(x,y) \in \mathbb{R}^2$ are continuous:

- (i) $f(x) \pm g(x)$,
- (ii) f(x)g(y),
- (iii) $\max\{f(x), g(y)\},\$
- (iv) $\min\{f(x), g(y)\}.$

Theorem 3: Sequential criterion

Let $h: \mathbb{R}^2 \to \mathbb{R}$ be a function. Let $(x_0, y_0) \in \mathbb{R}^2$. Then, h is continuous at (x_0,y_0) if and only if for every sequence $((x_n,y_n))$ converging to (x_0,y_0) , we have that

$$\lim_{n \to \infty} f(x_n, y_n) = f(x_0, y_0).$$

Idea: Use above and algebraic famul de of sequences.

Let $(x_0, y_0) \in \mathbb{R}^2$. Let ((2n, 4n)) be a sequence in R2 which converges

Now, f l g are cont. at no l y, resp.

Thu, $\lim_{n\to\infty} f(x_n) = f(x_0) \& \lim_{n\to\infty} g(y_n) = g(y_0).$

.; individual limits exist

Thus, $\lim_{n\to\infty} \left[f(x_n) + g(y_n) \right] = \lim_{n\to\infty} f(x_n) + \lim_{n\to\infty} g(y_n)$

Thuy, $(n,y) \mapsto f(n) + g(y)$ is continuous at $(n,y) \mapsto (2n,y)$ was arbitrary)

Since (no, yo) was arbit, the for is continuous

Similarly, product is continuous. Using min $a_1 b_2 = a_1 b_1 - a_2 b_1 d_2$ $\lim_{\alpha \to \infty} |x_{\alpha}| = \lim_{\alpha \to \infty} |x_{\alpha}| = \lim_{$ ue see the same holds for max &f(x), g(y)}
l min ff(x), g(y)? $\min_{x \in \{x\}} \{x\} = \frac{f(x) + g(y) - |f(x) - g(y)|}{2}$ Now if (M. yn) -> (No, yo), then $f(x) \rightarrow f(x_0)$, $g(y_0) \rightarrow g(y_0)$ (I) $f(x) + g(y_0) \rightarrow f(x_0) + g(y_0)$ $f(x_0) - g(y_0) \rightarrow f(x_0) - g(y_0)$ (seq. in R) 1 f(xn) -q(yn) -> |f(x)-q(y)) $\frac{f(x_n) + g(y_n) - f(x_n) - g(y_n)}{2} \longrightarrow \frac{f(x_0) + g(y_0) - f(x_0) - g(y_0)}{2}$ $\min \{f(x_n), g(y_n)\} \qquad \min \{f(x_n), g(y_n)\}$

Sheet 5 6. (ii)

23 December 2020

6. Examine the following function for the existence of partial derivatives at (0,0).

(ii)
$$f(x,y) := \begin{cases} \frac{\sin^2(x+y)}{|x|+|y|} & (x,y) \neq (0,0), \\ 0 & (x,y) = (0,0). \end{cases}$$

By deft,
$$\frac{\partial f}{\partial x_1}(0,0) = \lim_{z_1 \to 0} f(x_1,0) - f(0,0)$$
 (if it exists)

we show I PNE

let 2, \$0. Then, note that

$$\frac{f(x_1, 0) - f(0,0)}{\chi_1} = \frac{\sin^2 (x_1 + 0)}{|x_1| + |x_2|}$$

$$= \frac{s_1^2(\alpha_1)}{\alpha_1(\alpha_1)}$$

The limit of the above expression as
$$\pi_1 \rightarrow 0$$
 does not exist since $RHL = \lim_{\chi_1 \rightarrow 0^+} \frac{\sin^2 \pi_1}{\pi_{1}^2} = 1$

$$k \quad HHL = \lim_{\chi_1 \rightarrow 0^+} \frac{\sin^2 \chi_1}{\chi^2} = -1$$

Thus,
$$\frac{\partial f}{\partial x_1}$$
 (0,0) DNE. Smilarly, neither does $\frac{\partial f}{\partial x_2}$ (0,0).

23 December 2020

13:36

8. Let f(0,0) = 0 and

$$f(x,y) = \begin{cases} x \sin(1/x) + y \sin(1/y) & \text{if } x \neq 0, \ y \neq 0, \\ x \sin(1/x) & \text{if } x \neq 0, \ y = 0, \\ y \sin(1/y) & \text{if } x = 0, \ y \neq 0. \end{cases}$$

Show that none of the partial derivatives of f exist at (0,0) although f is continuous at (0,0).

CONTINUITY: For (2,9) ER2, note that

|f(x,y) - f(0,0)| = |f(x,y)| take 4 cases $\leq |x| + |y|$

Care 1. (X, y) = (0,0), Obrious.

Car 2. 2 +0 2 y +0.

 $|f(xy)| = |x \sin(xx) + y \sin(xy)|$ $\leq |x \sin(xx)| + |y \sin(xy)|$ $\leq |x| + |y|$

(cue 3. n = 0, $y \neq 0$ $|f(x,y)| = |gsin(yy)| \leq |y| = |x| + |y|$

Care 4. x + 0, y=0. Similar I

Thus,

(f(x,y) - f(0,0)) ≤ |x|+|y| ≤ √2√x2+y2

=> \f(x,y) - f(0,0)\ \(\perp \)\[\(\frac{1}{2} \)\[\(\chi_1\y) - (0,0)\\ \(\perp)\\ \(\perp}\)

Thun, given
$$\in 70$$
, choose $\delta = \underbrace{\epsilon}$.

Then,

$$||(x,y) - (0,0)|| \leq \sqrt{2} \delta \quad \langle \epsilon \rangle$$

Thun, $\int i \cdot i \cdot (x,y) \cdot$

23 December 2020 13:36

10. Let
$$f(x,y) = 0$$
 if $y = 0$ and

$$f(x,y) = \frac{y}{|y|}\sqrt{x^2 + y^2}$$

otherwise. Show that f is continuous at $(0,0),\ D_{\underline{u}}f(0,0)$ exists for every unit vector \underline{u} , yet f is not differentiable at (0,0).

Again, for
$$(n,y) \in \mathbb{R}^2$$
, note that
$$|f(x,y) - f(o,0)| = |f(x,y)| = \begin{cases} 0 & \text{if } y = 0 \\ |f(x,y)| & \text{if } y = 0 \end{cases}$$

$$\Rightarrow |f(x,y)| \leq \sqrt{\chi^2 + y^2} = ||f(x,y) - (0,0)||$$

Let
$$u = (u_1, u_2) \in \mathbb{R}^2$$
 where $u_1, u_2 \in \mathbb{R}$ and $u_1^2 + u_2^2 = 1$.

If
$$u_2 = 0$$
, then, for $t \neq 0$, we note
$$f(L_1, L_2, R_2, R_3) = f(L_1, R_3, R_3)$$

 $f(tu_1, tu_2) - f(o, o) = f(tu_1, o) - o = o = o.$ Thus, $\lim_{t \to o} f(tu_1, tu_2) - f(o, o) = \text{suists} \text{ and } is 0.$ Jf $u_2 \neq 0$, then, for $t \neq 0$, re note $f(tu_1, tu_2) - f(0,0) = \frac{tu_2}{1tu_2} \int t^2(u_1^2 + u_2^2) - 0$ $= \frac{tu_2}{|tu_2|} \sqrt{\frac{t^2}{t}}$ $= \frac{t u_2 |t|}{|t| |u_2| t} = \frac{|u_2|}{|u_2|}$ Thus, $\lim_{t\to 0} f(t u_1, tu_2) - f(0, 0)$ emists and is $\frac{U_2}{1U_2}$. Thus, Duf (0,0) exists for all u ER2 with ||u||=1. NOT DIFF If f were diff at (0,0), then

 $Df(0,0) = \left[\frac{\partial f}{\partial x}(0,0) \frac{\partial f}{\partial x}(0,0)\right]$

$$= \begin{bmatrix} D_{(1,0)} f(0,0) & D_{(0,0)} f(0,0) \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 1 \end{bmatrix} = A \quad (say)$$

and

$$\lim_{(h,k)\to(0,0)} \frac{\left|f(h,k)-f(0,0)-A\begin{bmatrix}h\\k\end{bmatrix}\right|}{\left||(h,k)||} = 0.$$

We now show that the above limit is not equal to O. (In fact, it doesn't exist.)

For (h, k) + (0,0) & k +0,

$$\frac{|f(h, k) - f(o, o) - A[k]|}{||(h, k)||} = \frac{||\frac{k}{|k|} \int_{h^2 + k^2}^{h^2 + k^2} - O - [o i][k]|}{\sqrt{h^2 + k^2}}$$

$$= \left| \frac{K}{|K|} - \frac{K}{\sqrt{h^2 + k^2}} \right|$$

Along the line h = K, the above expression becomes

$$\left|\frac{K}{|K|} - \frac{K}{\sqrt{2}k^2}\right| = \left|\frac{K}{|K|}\left(1 - \frac{1}{\sqrt{2}}\right)\right| = 1 - \frac{1}{\sqrt{2}}$$

Along h = 2k, the expression becomes $1 - \frac{1}{\sqrt{5}}$

Thus,	the	limit	does	nd	exist.		
·							

- 12. Let (x_0, y_0) be an interior point of a subset D of \mathbb{R}^2 , and let $f: D \to \mathbb{R}$. Suppose the following conditions hold:
 - (a) Both partial derivatives $f_x(x_0, y_0)$ and $f_y(x_0, y_0)$ exist.
 - (b) The directional derivative $(\mathbf{D}_{\mathbf{u}}f)(x_0, y_0)$ exists for every unit vector $\mathbf{u} \in \mathbb{R}^2$.
 - (c) $(\mathbf{D}_{\mathbf{u}}f)(x_0, y_0) = (\nabla f)(x_0, y_0) \cdot \mathbf{u}$ for every unit vector $\mathbf{u} \in \mathbb{R}^2$.
 - (d) f is continuous at (x_0, y_0) .

It is not necessary that f is different iable at (x_0, y_0) .

Example: Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined as

$$f(x,y) := \begin{cases} \frac{x^3y}{x^4 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

5 points (a) - (d) & "f ix diff at (a0, y0)"