$ext{CS 341 Automata Theory}$ Geoffrey Parker - grp352

Homework 9

Due: Thursday, March 22

This assignment covers Chapter 13.

1)		or each of the following languages L , state whether L is regular, context-free but not regular, on text-free and prove your answer.	r not
	a)	$\{(ab)^n a^n b^n: n > 0\}.$	
		Answer. Not context-free.	
		Proof.	
	b)	$\{xwx^R: x, w \in \{0,1\}^+\}.$	
		Answer. Context-free but not regular.	
		Proof.	
	c)	${a^ib^n: i, n > 0 \text{ and } i = n \text{ or } i = 2n}.$	
		Answer. Context-free but not regular.	
		Proof.	
	d)	$\{0^i 1^j : i, j \ge 0 \text{ and } j = i^2\}.$	
		Answer. Not context-free.	
		Proof.	
	e)	$\{a^nb^mc^k:\ m\leq \min(n,k)\}.$	
		Answer.	
		Proof.	
	f)	$\{x\#y: x,y\in\{0,1\}^* \text{ and when } x \text{ and } y \text{ are viewed as binary numbers, } y=x^2\}$. For example string $100\#10000\in L$.	e, the
		Answer. Not context-free.	
		Proof.	
2)		ive an example of a context-free language $L(\neq \Sigma^*)$ that contains a subset L_1 that is not context rove that L is context free. Describe L_1 and prove that it is not context-free.	-free.
	$D\epsilon$	$escribe\ L.$	
	Pr	roof.	
	$D\epsilon$	$escribe \ L_1.$	

	Proof.	
3)	* Give an example of a context-free language L , other than one of the ones in the book, where $\neg L$ is context-free.	not
	Answer.	
4)	Are the context-free languages closed under each of the following operations? Prove your answer.	
	a) $chop(L) = \{w: \exists x \in L \ (x = x_1 c x_2 \land x_1 \in \Sigma_L^* \land x_2 \in \Sigma_L^* \land c \in \Sigma_L \land x_1 = x_2 \land w = x_1 x_2)\}.$	
	Answer.	
	Proof.	
	b) Letter substitution.	
	Answer.	
	Proof.	
5)	Let $alt(L) = \{x : \exists y, n \ (y \in L, y = n, n > 0, y = a_1 \dots a_n, \forall i \le n (a_i \in \Sigma), \text{ and } x = a_1 a_3 a_5 \dots a_k, \text{ where } k = (\text{if } n \text{ is even then } n - 1 \text{ else } n))\}.$	here
	a) Consider $L = a^n b^n$. Clearly describe $L_1 = alt(L)$.	
	Answer.	
	b) Are the context free languages closed under the function alt? Prove your answer.	
	Answer.	
	Proof.	
6)	Suppose that L is context-free and R is regular. Is $R-L$ necessarily context-free? Prove your answer	er.
	Answer.	
	Proof.	