

Computer Vision

Carnegie Mellon University (Kris Kitani)

- Compute filter responses (filter bank of Gabor filters)
- 2. Divide image patch into 4 x 4 cells
- 3. Compute filter response averages for each cell
- 4. Size of descriptor is 4 x 4 x N, where N is the size of the filter bank

Originally designed to describe entire images but ideas also apply to feature descriptors

Filter bank

4 x 4 cell

Gabor Filters

(1D examples)

2D Gabor Filters

$$e^{-\frac{x^2+y^2}{2\sigma^2}}\cos(2\pi(k_xx+k_yy))$$

Odd Gabor filter

... looks a lot like...

Gaussian Derivative

Laplacian

If scale small compared to inverse frequency, the Gabor filters become derivative operators

Directional edge detectors

- 1. Compute filter responses (filter bank of Gabor filters)
- 2. Divide image patch into 4 x 4 cells
- 3. Compute filter response averages for each cell
- 4. Size of descriptor is 4 x 4 x N, where N is the size of the filter bank

What is the GIST descriptor encoding?

Filter bank

4 x 4 cell

- 1. Compute filter responses (filter bank of Gabor filters)
- 2. Divide image patch into 4 x 4 cells
- 3. Compute filter response averages for each cell
- 4. Size of descriptor is 4 x 4 x N, where N is the size of the filter bank

What is the GIST descriptor encoding?

Rough spatial distribution of image gradients

When will this feature descriptor fail?

Filter bank

4 x 4 cell

