Exploration of Abalone game-playing agents

Ture Claussen

2021-06-14

Rules

(a) Starting position

(b) "In-line" moves

(c) "Side-step" moves

Agent design: PEAS

Performance measure Win/loss, number of moves, time to deliberate

Environment Digital playing board

Actuators Move marbles, display text to CLI

Sensors Position of marbles

Agent design: Environment

- ▶ fully observable
- two-agent
- competitive
- sequential
- static and discrete

State space complexity

$$\sum_{k=8}^{14} \sum_{m=9}^{14} \frac{61!}{k!(61-k)!} \times \frac{(61-k)!}{m!((61-k)-m)!}$$

Game tree complexity

- Average branching factor b of 60
- Average length of game *d* of 87 [?] $b^d = 60^{87}$

Figure: Counts of moves available for random for random player in 5 games

Complexity Comparision

Game	state-space complexity (log)	game-tree complexity (log)
Tic-tac-toe	3	5
Reversi	28	58
Chess	46	123
Abalone	24	154
Go	172	360