1 Линейные отображения.

1.1 Основные определения. Теорема о ранге и дефекте.

<u>def</u> Линейное отображение A — функция A: $U \to V$, где U, V - линейные пространства над K. Со свойствами:

1.
$$\forall \lambda \in K \ \forall v, u \in U$$

 $A(u + \lambda v) = A(u) + \lambda A(v)$

Замечания:

- 1. A(u) = Au синтаксис.
- 2. поточечно выполняются все свойства арифметических операций.

Примеры:

- 1. θ нулевое линейное отображение $\forall u \in V \ \theta u = 0v$
- 2. ε тождественное отображение
- 3. $U=V=P_n$ многочлен степени $\leq n.$ $A:U\to V.$ Ap=p'(t) дифференциальный оператор $A(p_1+\lambda p_2)=(p_1+\lambda p_2)'=p_1'+\lambda p_2'$

4.
$$U = \mathbb{R}^n, \ V = \mathbb{R}^m, \ A = (a_{ij}) \ m \times n.$$

 $A : x \in \mathbb{R}^n \to y = Ax \in \mathbb{R}^m$
 $x_1 + \lambda x_m \in \mathbb{R}^n, \ A(x_1 + \lambda x_2) = A(x_1) + \lambda A(x_2)$

5. Изоморфизм (взаимно однозначное соответствие)

def Умножение линейного отображения на скаляр.

$$B = \lambda A$$

$$\forall u \in V \ B(u) = \lambda A(u)$$

def Сумма линейных отображений

$$C = A + B$$

$$\forall u \in V \ C(u) = A(u) + B(u)$$

-A — отображение противоположное A

 $\operatorname{def} A \in L(U,V)$

- 1. $Ker\ A = \{v \in V \mid Au = \theta\}$ ядро линейного отображения
- 2. $Im\ A = \{v = Au \mid \forall u \in U\}$ образ линейного отображения

Замечание:

1. Ker A и Im A - это линейные подпространства

def Если:

- $Ker\ A$ конечномерное, то $dim(Ker\ A) = def\ A$ — дефект A
- ImA конечномерное, то $dim(Im\ A) = rq\ A$ — ранг A

Утв: A изоморфизм $U, V \Leftrightarrow$

- 1. $A \in L(U, V)$
- 2. Im A = V
- 3. $Ker\ A = \{0_v\}$ тривиально

Док-во: A изоморфизм \Leftrightarrow взаимно однозначное и линейное

- 1) из определения
- \Rightarrow 2) взаимнооднозначно
- \Rightarrow 2) взаимнооднозначно 3) взаимнооднозначный ноль 1) $Ker\ A = \{0\}$, значит инъективно, так как $v_1 = v_2 \Leftrightarrow u_1 = u_2$ $\Leftrightarrow v_1 = Au_1, v_2 = Au_2$ $\Leftrightarrow v_2 v_2 = Au_1 Au_2 = A(u_1 u_2)$ $\Leftrightarrow v_1 = Au_2 + Au_2 = A(u_1 u_2)$ 2) $Im\ A = V \Leftrightarrow \forall v \in V: \exists u \in U\ Av = U$ сюръекция

$$\Leftarrow$$
 $\underbrace{v_2 - v_2}_{0} = Au_1 - Au_2$ $\underbrace{A(u_1 - u_2)}_{0}$

 $\mathbf{def}: A \in L(U, V)$

- инъективно, если $Ker\ A=0$
- сюръективно, если $Im\ A=U$
- биективно, изоморфизм, если инъективно и сюръективно
- эндоморфизм, линейный оператор, если U = VEnd(V) = L(V, V)
- автоморфизм (Aut(V)), если эндоморфизм + изоморфизм

<u>def</u>: Произведение линейных отоюражений

$$U \underset{B}{\rightarrow} W \underset{A}{\rightarrow} V$$

 $A \in L(W, V)$

 $B \in L(U, W)$

 $C = (A + B) \in L(V, U)$ — композиция функций A и B.

 $A \cdot B = A \circ B$

 $\forall u \in U \ (A \cdot B)(u) = A(B(u))$

Зам:

1. A, B изоморфизм, то $A \cdot B$ изоморфизм

2.
$$(A_1 + A_2)B = BA_1 + BA_2$$

 $B(A_1 + A_2) = BA_1 + BA_2$

3.
$$A(BC) = (AB)C$$

Значит End(U,V) — алгебра с единицей и ассоциативностью.

 $\mathbf{def}: A \in L(U,V)$ изоморфизм

 $\forall u \in V \; \exists ! \; u \in U : v = Au$

 $A^{-1}:V\to U\ A^{-1}u=v$

 A^{-1} линейное $A^{-1}A = \varepsilon u$, $AA^{-1} = \varepsilon v$.

 A^{-1} изоморфизм.

Если A — оператор, то A^{-1} — обратный оператор.

 $\underline{\mathbf{def}}: U_0 \in V \ A \in L(U,V)$

Сужение A на линейное подпространство $A|_{u_0}:U_0\to V$

 $\forall u \in U_0: A|_u v = A$

Утв: A изоморфизм $\in L(U_1, V) \Rightarrow A|_{u_0}$ изоморфизм $\in L(U_0, Im \ A|_{u_0})$ Примеры:

- 1. $0: V \to U$
 - не сюръекция
 - не инъекция
 - эндоморфизм
 - не автоморфизм
- 2. $\varepsilon: V \to V$ автоморфизм
- $3. \ A = \frac{d}{dt} \ A : P_n \to P_n$
 - не сюръекция

- не инъекция
- эндоморфизм
- не автоморфизм

4.
$$x \underset{\in \mathbb{R}^n}{\to} y = Ax \in \mathbb{R}^n$$

- Если $rgA = n \Leftrightarrow$ инъекция и сюръекция
- автоморфизм $\Leftrightarrow rgA = n$

Теорема. (о ранге и дефекте отображений)

$$A \in L(U, U)$$
$$rgA + defA = dimU$$

Док-во $\forall v \in U \ u = u_0 + v_1$ единственным образом

$$Au = A\underbrace{u_0}_{KerA} + Au_1 = Au_1$$
. Значит $Ima = AV_1$

 $A_1 = A|_{u_1}: u_1 \to ImA, A_1$ - изоморфизм.

 $U_1 \cong ImA \Leftrightarrow dim(U_1) = dim(Im\ a) \Leftrightarrow dim(KerA) \neq dim(Im\ a) = dim(U)$

Следствия:

- 1. $A \in L(U, V)$ эквивалентно:
 - (a) A изоморфизм
 - (b) dimV = dimU = rgA
 - (c) dimU = dimV, $KerA = \{0\}$
- 2. $A \in End(V)$ эквивалентно
 - (a) A изоморфизм
 - (b) dimV = rgA
 - (c) $KerA = \{0\}$

1.2 Матрица линейного отображения. Изоморфизм алгебр. Преобразование матрицы линейного отображения при замене базиса.

$$A \in L(U,V)$$
 ξ_1, \dots, ξ_n — базис U η_1, \dots, η_m — базис V $\forall u \in U$ $u = \sum_{i=1}^n u_i \xi_i$ $v = Au = A(\sum_{i=1}^n u_i \xi_i) = \sum_{i=1}^n u_i$ Достаточно определить это $ImA = span(A\xi_1, \dots, A\xi_n)$ $A\xi_i \in V, \ A\xi_i = \sum_{i=1}^m a_{ij}\eta_i$ $A = \begin{pmatrix} a_{1i} \\ a_{2i} \\ \vdots \\ a_{mi} \end{pmatrix}, \ A = (A_1, \dots, A_n)$ — матрица линейного отображения.

• Частный случай:

$$A \in End(V): \underset{e_1, \dots, e_n}{V} \to \underset{e_1, \dots, e_n}{V}$$

матрица линейного оператора

Пример:

1.
$$\varepsilon: V \to V \\ e_1, \dots, e_n \to V \\ \vdots \\ 1 \\ \vdots \\ 0 \to i \Rightarrow \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix}$$

2.
$$e: V \to V \\ e'_1, \dots, e'_n \to V \\ \xi e'_1 = e'_i = \sum_{j=1}^n t_{ji} e_j \Rightarrow T_i = \begin{pmatrix} t_{1i} \\ \vdots \\ t_{ni} \end{pmatrix}$$
 T — матрица перехода T

3. Матрица поворота :(

4.
$$A:P_2\to P_2$$
, базис - $1,t,t^2$ $A=\frac{d^2}{dt},\,End(V)\cong M_{n imes n}$

Изоморфизм ассоциативных, унитарных алгебр

$$U \ \xi_1, \dots, \xi_n \ \forall u \in U \leftrightarrow u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$$

$$V \ \eta_1, \dots, \eta_n \ \forall v \in V \leftrightarrow v = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

$$A \in L(U, V) \underset{(z,\eta)}{\longleftrightarrow} A$$

$$v = Au = \sum_{i=1}^n u_i A \mathcal{E}_i = \sum_{i=1}^n u_i \sum_{i=1}^m a_{ii} n_i = \sum_{i=1}^m \sum_{i=1}^n a_{ii} n_i = \sum_{i=1}^n \sum_{i=1}^n a_{ii} n_i =$$

$$v \underset{\sum\limits_{j=1}^{m} v_{j}\eta_{j}, \ v_{j} \text{ - координаты} }{= Au = \sum\limits_{i=1}^{n} u_{i}A\xi_{i} = \sum\limits_{i=1}^{n} u_{i}\sum\limits_{j=1}^{m} a_{ji}\eta_{i} = \sum\limits_{j=1}^{m} (\underbrace{\sum\limits_{i=1}^{n} u_{i}a_{ji}})\eta_{i} }_{\text{координаты}}$$

Значит
$$v_j = \sum_{i=1}^n a_{ji} u_i \leftrightarrow V = Au, \mathcal{V} = \mathcal{A}\mathcal{U}$$

Примеры:

1.
$$A$$
 поворот на угол α
$$(i,j) \leftrightarrow A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

Теорема. (о преобразовании матрицы линейного отображения при замене базиса)

$$A \in L(U, V)$$

$$U \xi = (\xi_1, \dots, \xi_n), \ \xi' = (\xi'_1, \dots, \xi'_n) \ A \underset{(\xi, \eta)}{\longleftrightarrow} A$$

$$V \eta = (\eta_1, \dots, \eta_n), \ \eta' = (\eta'_1, \dots, \eta'_n) \ A \underset{(\xi', \eta')}{\longleftrightarrow} A'$$

$$A' = T_{n \to n'}^{-1} A T_{\xi \to \xi'}$$

Док-во:

$$\begin{array}{cccc} U & \stackrel{A}{\leadsto} & V \\ \xi_1, \dots, \xi_n & A & \eta_1, \dots, \eta_m \\ e_v \uparrow \uparrow_{T_{\xi \to \xi'}} & & T_{\eta \to \eta'}^{-1} \downarrow \uparrow e_v \\ U & \stackrel{A'}{\xi_1', \dots, \xi_n'} & \stackrel{A'}{\to} & V \\ \xi_1', \dots, \xi_n' & \stackrel{A'}{\to} & \eta_n', \dots, \eta_m' \end{array}$$

$$V = Au \underset{(\xi',\eta')}{\leftrightarrow} V' = A'u'$$

$$v = T_{\eta \to \eta'}v', \ u = T_{\xi \to \xi'}u'$$

$$T_{\eta \to \eta'}V = AT_{\xi \to \xi'}u'$$

$$v' = \underbrace{T_{\eta \to \eta'}^{-1}AT_{\xi \to \xi'}}_{A'}u'$$

1.3 Инварианты линейного отображения

def: Инвариант — свойство, которое сохраняется при определённых преобразованиях.

Форма записи $\mathcal{V} = \mathcal{A}u \leftrightarrow V = Au$ инвариант относительно замены бази-

 $\underline{\mathbf{def}}:A_{m\times n}$

$$ImA = span(A_1, \dots, A_n) = \{\sum_{i=1}^n \alpha_i A_i | \alpha_i \in K\} = \{Y_i \in \mathbb{R}^m | x \in \mathbb{R}^n\}$$
 'newline

rgA = dim(ImA)

 $KerA = \{x \in \mathbb{R}^n | Ax = 0\} = \{$ множество решений СЛОУ $\}$

dim(KerA) = n - rgA = defA

rqA + defA = n — аналог теоремы о ранге и дефекте

Теорема. $\forall A \in L(U, V)$

rqA = rqA

def A = def A

rg, deg инварианты относительно выбора базиса

 $\underline{\underline{\mathcal{H}}}$ ок-во: $\mathcal{A} \underset{(\xi,\eta)}{\longleftrightarrow} A$ $\xi = (\xi_1,\ldots,\xi_n)$ — базис U

 $\eta = (\eta_1, \dots, \eta_n)$ — базис V

 $In\mathcal{A} = span(A_{\mathcal{E}_1}, \dots, A_{\mathcal{E}_n})$

 $\mathcal{A}_{\xi_i} \leftrightarrow A_i$ — координатный изоморфизм

 $]rgA=k,\ k$ столбцов линейно независимы. По свойствам изоморфизма среди \mathcal{A}_{ξ_i} тоже k линейно независимых, а остальные — линейные комбинации $\Leftrightarrow dim(ImA) = k$

$$dim U = rg \mathcal{A} + def \mathcal{A}$$

$$def \mathcal{A} = n - k = def A$$

Следствия: A изоморфизм $\Leftrightarrow A$ невырождена ($\exists A^{-1}$), где A — матрица в некотором базисе.

Док-во: изоморфизм $\Leftrightarrow def A = 0 \Leftrightarrow rgA = n \Leftrightarrow A$ - невырожденная.

Определитель V e_1, \ldots, e_n D-n-форма, $D(e_1, \ldots, e_n)=1$ $\xi_1, \ldots, \xi_n \in V$ $D(\xi_1, \ldots, \xi_n)=det(\xi_1, \ldots, \xi_n)$ $A \in End(V)$ — линейный оператор $\underline{\mathbf{def}}: det A = det(\mathcal{A}e'_1, \ldots, \mathcal{A}e'_n)$

Теорема. det A не зависит от базиса e, det A = det A'.

Док-во:
$$V$$
 e_1, \dots, e_n $det \mathcal{A} = det(\mathcal{A}e_1, \dots, \mathcal{A}e_n)$ $\mathcal{A}e_k = \sum_{i_k=1}^n i_k k e_{i_k}$ $A_k = \begin{pmatrix} A_{1k} \\ \vdots \\ A_{nk} \end{pmatrix}$ $det \mathcal{A} = \sum_{i_1=1}^n \sum_{i_2=1}^n \dots \sum_{i_n=1}^n a_{i_11} a_{i_22} \cdot \dots \cdot a_{i_nn} \cdot \underbrace{det(e_{i_1}, \dots, e_{i_n})}_{n \cdot \text{форма}} = \sum_{\sigma=(i_1, \dots, i_n)}^n a_{i_11} \cdot \dots \cdot a_{i_nn} \cdot \det(e_{i_1}, \dots, e_{i_n}) = \sum_{\sigma=(i_1, \dots, i_n)}^n a_{i_11} \cdot \dots \cdot a_{i_nn} \cdot \det(e_{i_1}, \dots, e_{i_n}) \cdot (-1)^{\sigma} = \sum_{\sigma=(i_1, \dots, i_n)}^n a_{i_11} \cdot \dots \cdot a_{i_nn} = \det \mathcal{A}$ Cmehum Gasuc, $e'_1, \dots, e'_n - \text{базиc } V$ $\det \mathcal{A} = \det T^{-1} \mathcal{A}T = \det \mathcal{A}'$ (т.к. $T^{-1}T = E$). \det Smath in \mathcal{A} В называются подобными, если существует невырожденная \mathcal{C} : $\mathcal{B} = \mathcal{C}^{-1} \mathcal{A}\mathcal{C}$. Cherthias: $\forall f - n$ -формы на V $\forall \xi_i, \dots, \xi_n \forall \mathcal{A} \in End(V)$ $f(\mathcal{A}\xi_1, \dots, \mathcal{A}\xi_n) = \det \mathcal{A} \cdot f(\xi_1, \dots, \xi_n)$ $f(\mathcal{A}\xi_1, \dots, \mathcal{A}\xi_n) = \det \mathcal{A} \cdot f(\xi_1, \dots, \xi_n)$ $f(\mathcal{A}e_1, \dots, \mathcal{A}e_n) = det(\xi_1, \dots, \xi_n) \cdot a(e_1, \dots, e_n) = \det(\xi_1, \dots, \xi_n) \cdot f(\mathcal{A}e_1, \dots, \mathcal{A}e_n) = \left[\mathcal{A}e_k = \sum_{i_k=1}^n a_{i_kk}e_{i_k}\right] = \det(\xi_1, \dots, \xi_n) \cdot f(e_1, \dots, e_n)$ $f(\mathcal{A}e_1, \dots, \mathcal{A}e_n) = det(\xi_1, \dots, \xi_n) \cdot f(e_1, \dots, e_n)$ $f(\mathcal{A}e_1, \dots, \mathcal{A}e_n) = det(\xi_1, \dots, \xi_n) \cdot f(e_1, \dots, e_n)$ $f(\mathcal{A}e_1, \dots, \mathcal{A}e_n) = det(\xi_1, \dots, \xi_n) \cdot f(e_1, \dots, e_n)$ $f(\mathcal{A}e_1, \dots, \mathcal{A}e_n) = det(\xi_1, \dots, \xi_n) \cdot f(e_1, \dots, e_n)$ $f(\mathcal{A}e_1, \dots, \mathcal{A}e_n) = det(\xi_1, \dots, \xi_n) \cdot f(e_1, \dots, e_n)$ $f(\mathcal{A}e_1, \dots, \mathcal{A}e_n) = det(\xi_1, \dots, \xi_n) \cdot f(e_1, \dots, e_n)$ $f(\mathcal{A}e_1, \dots, \mathcal{A}e_n) = det(\xi_1, \dots, \xi_n) \cdot f(e_1, \dots, e_n)$ $f(\mathcal{A}e_1, \dots, \mathcal{A}e_n) = det(\xi_1, \dots, \xi_n) \cdot f(e_1, \dots, e_n)$ $f(\mathcal{A}e_1, \dots, \mathcal{A}e_n) = det(\xi_1, \dots, \xi_n) \cdot f(e_1, \dots, e_n)$ $f(\mathcal{A}e_1, \dots, \mathcal{A}e_n) = det(\xi_1, \dots, \xi_n) \cdot f(e_1, \dots, e_n)$ $f(\mathcal{A}e_1, \dots, \mathcal{A}e_n) = det(\xi_1, \dots, \xi_n) \cdot f(e_1, \dots, e_n)$ $f(\mathcal{A}e_1, \dots, \mathcal{A}e_n) = det(\xi_1, \dots, \xi_n) \cdot f(e_1, \dots, e_n)$ $f(\mathcal{A}e_1, \dots, \mathcal{A}e_n) = det(\xi_1, \dots, \xi_n) \cdot f(e_1, \dots, e_n)$ $f(\mathcal{A}e_1, \dots, \mathcal{A}e_n) = det(\xi_1, \dots, \xi_n) \cdot f(e_1, \dots, e_n)$ $f(\mathcal{A}e_1, \dots, \mathcal{A}e_n) = det(\xi_1, \dots, \xi_n) \cdot f(e_1, \dots, e_n)$ $f(\mathcal{A}e_1, \dots, \mathcal{A}e_n) = det(\xi_1, \dots, \xi_n) \cdot f(e_1, \dots, e_n)$ $f(\mathcal{A}e_1, \dots, \mathcal{A}e_n) = det$

Утверждение: A, B подобные $\Rightarrow trA = trB$.

Док-во: $\overline{A}, \overline{B}$ подобные \Rightarrow

$$\exists C: C^{-1}AC = B$$
 $trB = \sum_{i=1}^{n} b_{ii} = \sum_{i=1}^{n} \sum_{j=1}^{n} C_{ij}^{-1} (AC)_{ji} =$

$$=\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{k=1}^{n}C_{ij}^{-1}a_{jk}C_{ki} =\sum_{j=1}^{n}\sum_{k=1}^{n}a_{jk}\sum_{i=1}^{n}C_{ki}C_{ij}^{-1} =$$

$$= \left[\delta_{kj} = \begin{bmatrix} 1, k = j \\ 0, k \neq j \end{bmatrix} \right] = \sum_{k=1}^{n} a_{kk} = trA$$

trA не зависит от выбора базиса

 $\underline{\mathbf{def}}: L \subset V \ L$ инвариантно относительно End(V), если $\forall u \in L \ \mathcal{A}u \subset L$.

Теорема. $L \subset U \ \mathcal{A} \subset End(U) \Rightarrow \exists \ \textit{базис} \ U \ \textit{такой, что матрица} \ \textit{A} \ \textit{в}$ этом базисе будет иметь вид

$$A = \begin{pmatrix} A_1 & A_2 \\ 0 & A_3 \end{pmatrix}$$

 $A_{k\times k}$, $\epsilon\partial e\ k=dim L$

Док-во: $L = span(e_1, \dots, e_n)$ дополним до $V: e_1, \dots, e_k, e_{k+1}, \dots, e_n$

$$\mathcal{A}e_i \in L, \ \mathcal{A}e_i = \sum_{m=1}^k a_{mi}e_m + \sum_{m=k+1}^n 0e_m$$

$$A_{i} = \begin{pmatrix} a_{1i} \\ \vdots \\ a_{ki} \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Следствия:

1. $V = \bigoplus_{i=1}^{m} L_i$, L_i инвариантно по $\mathcal{A} \Rightarrow$

 \exists базис пространства V, в котором матрица оператора имеет блочнодиагональный вид.

Док-во: $L_i = span(e'_i, \ldots, e'^{i_k}_i)$

 $\overline{\text{т.к.}} \oplus, \overline{\text{то}}$ базис V — объединение базисов L_i

Следствие 2:

$$V = \bigoplus L_i, L_i - \text{ инвариантно}$$

$$\mathcal{A} \in End(V) \Rightarrow Ima = \bigoplus_{i=1}^m ImA|L_i$$

$$\frac{\square \text{Ок-во}:}{V = \bigoplus_{i=1}^{m} L_{i}} \Rightarrow \exists !$$
 представление $\forall \nu \in U \ \nu = \sum_{i=1}^{m} \nu_{i} \in L_{i}$
 $\nu = Au = \sum_{i=1}^{m} Au_{i} \Rightarrow ImA \subset \sum_{i=1}^{m} ImA|L_{i} \Rightarrow ImA \subset \sum_{i=1}^{m} ImA|L_{i}$
 $|\nu_{i} \in ImA|L_{i} \ \nu_{i} = Au_{i}, \ u_{i} \in L_{i}$
 $\sum_{i=1}^{m} v_{i} = \sum_{i=1}^{m} Au_{i} = A\left(\sum_{i=1}^{m} u_{i}\right) \in ImA$
 $ImA = \sum_{i=1}^{m} ImA|L_{i}$
 $\nu_{i} \in ImA|L_{i} \sum_{i=1}^{m} \nu_{i} = 0$
 $\nu_{i} = Au_{i} \Rightarrow Au_{i} \in L_{i} \ (L_{i} \text{ инв.}) \Rightarrow \nu_{i} \in L_{i} \text{ и } \nu_{i} \text{ дизъюнктны, значит все}$
 $\nu_{i} = 0, \text{ значит } A = \bigoplus_{i=1}^{m} ImA|L_{i}$

1.4 Собственные числа и вектора

 $\mathcal{A} \in End(V)$

 $\underline{\mathbf{def}}: \lambda \in K$ собственное число линейного оператора \mathcal{A} , если $\exists v \in V \neq 0$, который называется собственным вектором, что $Av = \lambda v$.

$$\exists v : \mathcal{A}v = \lambda v \Leftrightarrow (\mathcal{A} - \lambda \varepsilon)v = 0 \Leftrightarrow v \in Ker(\mathcal{A} - \lambda \varepsilon).$$

 $\underline{\operatorname{def}}: V_{\lambda} = Ker(A - \lambda \varepsilon) = \{$ собственные вектора $V\}$ называется собственным подпространством.

 $\gamma(\lambda) = dim U_{\lambda}$ геометрической кратностью собственного числа

 $\gamma(\lambda)$ инвариантны относительно базиса (Ker- инвариант).

 λ собственное число, v собственный вектор $\Leftrightarrow Ker(A - \lambda \varepsilon) \Leftrightarrow det(A - \lambda \varepsilon)$ $\lambda \varepsilon = 0$

 $\underline{\mathbf{def}}: \chi_A(t) = \det(\mathcal{A} - t\varepsilon)$ — характеристический многочлен

 $V e_1, \ldots, e_n$ базис $\mathcal{A} \leftrightarrow A$

$$\chi_{\mathcal{A}}(t) = \det(\mathcal{A} - t\varepsilon) = \det(A - t\varepsilon)$$

$$\chi_{\mathcal{A}}(t) = \det(\mathcal{A} - t\varepsilon) = \det(A - t\varepsilon)$$

$$\chi_{A}(t) = \det(A - t\varepsilon) = \begin{pmatrix} (a_{11} - t) & a_{12} & \dots & a_{1n} \\ a_{21} & (a_{22} - t) & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & \dots & \dots & (a_{nn} - t) \end{pmatrix} = (-1)^{n} t^{n} + (-1)^{n-1} \underbrace{(a_{11} + \dots + a_{nn})}_{trA = trA} t^{n-1} + \dots + \det A$$

$$\det \mathcal{A} = \lambda_{1} \dots \lambda_{n}, \lambda_{i} - \text{корни } \gamma_{A}(t)$$

$$= (-1)^n t^n + (-1)^n \underbrace{(a_{11} + \ldots + a_{nn})}_{} t^{n-1} + \ldots + det A$$

$$det \mathcal{A} = \lambda_1 \dots \lambda_n, \ \lambda_i$$
 — корни $\chi_A(t)$

$$\lambda \in K \text{ c.q} \Leftrightarrow \chi_A(\lambda) = 0$$

$$K = \mathbb{C} \Rightarrow \pi.c.$$
ч

 $K=\mathbb{R}\Rightarrow$ только вещественные корни будут собственными числами.

 $\underline{\mathbf{def}}$: множество всех чисел с учётом алгебраической кратности называется спектром линейного оператора. Спектр простой, если все собственные числа попарно различны.

$$det \mathcal{A} = \lambda_1 \dots \lambda_n = 0 \Leftrightarrow \exists \lambda = 0 \text{ с.ч.}$$

Теорема.
$$\lambda$$
 с.ч. $\mathcal{A} \Rightarrow 1 \leq \gamma(\lambda) \leq \alpha(\lambda)$

Док-во:
$$\gamma(\lambda) = k = dim V_{\lambda}$$

 V_{λ} инвариантно относительно $\mathcal{A}\Rightarrow \exists$ базис: матрица будет иметь вид

$$A = \begin{pmatrix} A_1 & | & A_2 \\ - & + & - \\ 0 & | & A_3 \end{pmatrix}$$
 базис $= \underbrace{v_1, \dots, v_k}_{\text{собств. вектора}}, v_{k+1}, \dots, v_n$

$$\mathcal{A}_{v_i} \subset V_{\lambda} = \lambda v_i \leftrightarrow A_i = \begin{pmatrix} 0 \\ \vdots \\ \lambda \\ \vdots \\ 0 \end{pmatrix}$$

$$\chi_{\mathcal{A}}(t) = \det \begin{pmatrix} \lambda - t & \dots & 0 & | & & & \\ \vdots & \ddots & \vdots & | & & & \\ 0 & \dots & \lambda - t & | & A_2 & & \\ - & - & - & + & - & - & - \\ & & 0 & | & A_3 - tE \end{pmatrix} =$$

$$= \begin{vmatrix} \lambda - t & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda - t \end{vmatrix} |A_3 - tE| = (\lambda - t)^k \chi_{A_3}(t)$$

 λ — корень $\chi_A(\varepsilon)$ ратности не меняется $\Rightarrow \alpha(\lambda) \geq k \cdot \gamma(\lambda)$

Теорема. $\lambda_1, \ldots, \lambda_m$ попарно различные с.ч. $\mathcal A$

 v_i, \ldots, v_m соответствующие им с.в. $\Rightarrow v_1, \ldots, v_m$ линейно независимы.

Док-во: индукция

- 1. база $m=1,\,(\lambda_1,v_1)$ лин. нез $V_1\leq 0$
- 2.] верно для m-1
- 3.] $\lambda_1,\ldots,\lambda_m$ попарно различные.

От противного,
$$\exists v_m = \sum_{i=1}^{m-1} \alpha_i v_i$$

$$\sum_{i=1}^{m-1} \alpha_i \lambda_m v_i = \lambda_m v_m = \overleftarrow{\mathcal{A}} \overrightarrow{v_m} = \sum_{i=1}^{m-1} \alpha_i \mathcal{A} v_i = \sum_{i=1}^{m-1} \alpha_i \lambda_i v_i$$

$$\sum_{i=1}^{m-1} \alpha_i (\lambda_i - \lambda_m) v_i = 0$$
, значит $\alpha_i = 0 \Rightarrow v_m = 0$, противоречие Следствие: $\lambda_1, \dots, \lambda_m$ попарно парличные с.ч. $\mathcal{A} \Rightarrow V_{\lambda_1}, \dots, V_{\lambda_m}$ дизъ-

ЮНКТНЫ

Док-во:
$$v_1 + \ldots + v_m = 0, v_i \in V_{\lambda_i}$$

 $\overline{\text{Если бы}}$ хотя бы одно из слагаемых $\neq 0$, то это слагаемое с.в. \Rightarrow противоречие с лин. незав. с.в. отвевечающих различным с.и. $\Rightarrow u_i : v_i = 0 \Rightarrow$ дизъюнктны.

Теорема.
$$V = \bigoplus_{i=1}^m L_i, L_i$$
 инвариантно относительно \mathcal{A}

$$\mathcal{A}_i = \mathcal{A}|_{L_i} \cdot L_i \to \Rightarrow \chi_A(t) = \prod_{i=1}^m \chi_{\mathcal{A}_i}(t)$$

$$A = \begin{pmatrix} \Box & & \\ \Box & & \\ & \Box & \end{pmatrix}$$
 — очевидно.