Virtual Memory

Pertemuan 11

Definisi

- Sebuah teknik memori manajemen yang menyediakan ilusi kepada pengguna seakan punya memori komputer besar
- Namun faktanya adalah penyimpanan sekunder digunakan untuk menyimpan proses-proses lain

 Virtual Memori adalah skema alokasi penyimpanan yang terletak di memori sekunder yang dapat dialamatkan/ditunjuk seolah bagian dari memori utama

Ilustrasi

- Virtual Memori adalah bagian dari komputer modern sehingga memerlukan dukungan perangkat khusus di dalam CPU
- Diperkenalkan pertama kali oleh mode terlindungi dari Intel 80286

 Ukuran dari penyimpanan Memori Virtual dibatasi oleh skema pengalamatan sistem dan jumlah memory yang ada

Page dan Frame

- Page/Virtual Page/Memory Page adalah sebuah blok berkesinambungan dengan ukuran yang tetap dari Virtual Memory
- Page Frame adalah sebuah blok dengan ukuran terkecil yang berkesinambungan dari Physical Memory

Ukuran Page per Arsitektur

Architecture \$	Smallest page size +	Larger page sizes
32-bit x86 ^[18]	4 KiB	4 MiB in PSE mode, 2 MiB in PAE mode ^[19]
x86-64 ^[18]	4 KiB	2 MiB, 1 GiB (only when the CPU has PDPE1GB flag)
IA-64 (Itanium) ^[20]	4 KiB	8 KiB, 64 KiB, 256 KiB, 1 MiB, 4 MiB, 16 MiB, 256 MiB ^[19]
Power ISA ^[21]	4 KiB	64 KiB, 16 MiB, 16 GiB
SPARC v8 with SPARC Reference MMU ^[22]	4 KiB	256 KiB, 16 MiB
UltraSPARC Architecture 2007 ^[23]	8 KiB	64 KiB, 512 KiB (optional), 4 MiB, 32 MiB (optional), 256 MiB (optional)
ARMv7 ^[24]	4 KiB	64 KiB, 1 MiB ("section"), 16 MiB ("supersection") (defined by a pa

Teknik Virtual Memory

- Semua memori yang dialamatkan dari sebuah proses adalah alamat logikal yang secara dinamis diubah ke alamat fisik dalam satu waktu
- Sebuah proses bisa jadi dipecah menjadi beberapa potongan, dan sebagia menuju memori kedua

Implementasi VM

- Virtual Memori diimplementasikan dengan dua cara
 - Demand Paging
 - Demand Segmentation

Demand Paging

 Proses dari memuat page ke memori secara diperintah (on demand) ketika page fault error terjadi

Ilustrasi

Page Table

- Jika CPU coba menunjuk page yang tidak ada di memory maka dia akan membuat interupsi akan memory access fault
- Proses yang terinterupsi akan masuk ke state Blocking. Jika ingin berlanjut maka proses harus membawa page yang hilang

- SO akan mencari page yang dibutuhkan di logical address space
- Page yang dibutuhkan akan dibawa dari logical address space ke physical address space
- Tabel Page akan diperbarui
- Sinyal akan dikimkan ke CPU untuk melanjutkan eksekusi program, dan melanjutkannya ke state Ready

Keuntungan

- Banyak proses yang dapat dikelola di main memory
- Sebuah proses boleh lebih besar dari main memory, dengan syarat pembatasan program harus dibuang

Swapping

- Sebuah tindakan memindahkan sebuah proses keluar dari memori utama secara keseluruhan.
- Proses harus ditunda (suspend) untuk memastikan tidak berjalan ketika dipindahkan
- Ketika proses sibuk swap in/out maka kondisi ini disebut trashing

Ilustrasi

Penyebab Trashing

- Jumlah proses meningkat di memory melebihi frame yang sudah dialokasikan di tiap proses akan berkurang.
- Contoh
 - Frame bebas 400:
 - Jumlah proses 50
 - Frame per Proses: 8

Algoritma Swapping

- FIFO
- LRU
- LFU
- MFU
- DLL

First In First Out

- Page tertua di memori utama yang akan digantikan
- Mudah diimplementasikan, mengganti page dari ekor dan menambah dari kepala

Ilustrasi

Reference String: 0, 2, 1, 6, 4, 0, 1, 0, 3, 1, 2, 1

Misses :xxxxxx xxx

Fault Rate = 9 / 12 = 0.75

Least Recently Used

- Page yang paling lama tidak digunakan di memori utama yang akan diganti
- Penggantian page berdasarkan waktu paling lama

Ilustrasi

Reference String: 0, 2, 1, 6, 4, 0, 1, 0, 3, 1, 2, 1

Misses :xxxxxx x x

Fault Rate = 8 / 12 = 0.67

Least Frequently Used

- Page dengan jumlah paling kecil yang akan digantikan
- Algoritma ini menderita dari situasi yang dimana sebuah halaman digunakan secara penuh selama inisialisasi proses, tetapi tidak pernah digunakan lagi

Isu dari Implementasi

Instruction backup

Instruksi yang menyebabkan referensi ke page yang belum ada di memori (menyebabkan page fault) harus diulang ketika page tersebut telah tersedia.

Locking pages in memory

Pada saat satu proses menjalani tahap I/O, proses lain bisa dijalankan.

Shared pages

Dua atau lebih proses bisa memakai bersama page-page yang berasal dari editor yang mereka pakai.

Backing Store

Pada disk, disediakan area untuk menampung page yang dikeluarkan dari memori (paged out) yang disebut swap area.

Paging Daemon

Untuk meyakinkan tersedianya frame bebas yang cukup banyak, banyak sistem paging yang menggunakan proses background yang disebut paging daemon.