

OpenGL ES 3.0 – Challenges and Opportunities

Marc Hehmeyer, CTO

August, 2013

"It's unquestionable that within a very short time, we're going to have portable cell phones that are more powerful than the current-gen consoles"

John Carmack 07/2011

Why do we care?

NFS Underground 2, EA Black Box

GTA 3 San Andreas, Rockstar North

Half Life 2, Valve Corparation

DOOM 3, Id Software

We've come a long way!

OpenGL ES

- Open Graphics Library for Embedded Systems
- Low-Level software Interface to graphics hardware
- Subset of OpenGL
- Various use of OpenGL ES powered GPUs
 - Smartphones / tablets
 - TVs
 - Automotive
 - Many more

History of OpenGL ES

2003: OpenGL ES 1.0

Galaxy on Fire 2 SD, Fishlabs

History of OpenGL ES

2007: OpenGL ES 2.0

Galaxy on Fire 2 HD, Fishlabs

History of OpenGL ES

Galaxy on Fire, Fishlabs

OpenGL ES 3.0

- 2012: Specification released
- Feature set based on OpenGL 3.3 / 4.x
- Reduces need for extensions
- Full backward compatible with OpenGL ES 2.0

OpenGL ES 3.0

Transform Feedback Mode

Vertex Array Objects

Pixel Buffer Objects

GLSL ES 3.00

ETC2 Texture Compression

Boolean Occlusion Queries

Instanced Rendering

Multiple Render Targets Uniform Buffer Object

Sampler Objects

Sync Objects

And many more ...

Shading Language GLSL ES 3.00

Shading Language GLSL ES 3.00

```
// Vertex shader
 #version 100
 uniform mat4 u matViewProjection;
 attribute vec4 a position;
 attribute vec2 a texCoord0;
 varying vec2 v texCoord;
 void main(void) {
      gl Position = u matViewProjection * a position;
      v texCoord = a texCoord0;
// Fragment shader
 #version 100
 varying vec2 v texCoord;
 uniform sampler2D s baseTexture;
 void main() {
      gl FragColor = texture2D(s baseTexture, v texCoord);
```

```
// Vertex shader
 #version 300 es
 uniform mat4 u matViewProjection;
 in vec4 a position;
 in vec2 a texCoord0;
 out vec2 v texCoord;
 void main(void) {
      gl Position = u matViewProjection * a position;
      v texCoord = a texCoord0;
// Fragment shader
 #version 300 es
 in vec2 v texCoord;
 uniform sampler2D s baseTexture;
 layout(location = 0) out lowp vec4 outColor;
 void main() {
      outColor = texture2D(s baseTexture, v texCoord);
```

Shading Language GLSL ES 3.00

ETC2 Texture Compression

- Standard texture compression
- Support of Alpha, one and two channels
- Eleminate the limitations of ETC1
 - No Alpha support
 - Poor texture quality
- Theoretically no more need for proprietary texture formats
 - Smaller filesize
 - No different asset packages

No graphical intense game without texture compression

ETC2 Texture Compression

Software interface for hardware based visibilty test

glGenQueries

glDeleteQueries

glBeginQuery

glEndQuery

glGetQueryObjectuiv

```
int gid[NUM OBJECTS];
unsigned int result = 0;
glGenQueries(NUM OBJECTS, &gid[0]);
for (int i = 0; i < NUM OBJECTS; ++i) {
  glBeginQuery(GL_ANY_SAMPLES_PASSED, qid[i]);
  // render objects with low details
  glEndQuery(GL ANY SAMPLES PASSED);
   while (result == GL_FALSE) {
              glGetObjectuiv(qid[i], GL QUERY RESULT AVAILABLE, &result);
  glGetObjectuiv(qid[i], GL_QUERY_RESULT, &result);
  if (result == GL TRUE) {
               // render Objekt with full details
```

← Bad Idea

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter06.html

90% of hidden geometry

40% of hidden geometry

Minecraft by Mojang

- Minimize draw calls
- Powerful for scenes with a lot of identical geometries
- Lean interface

```
glDrawArraysInstanced(GLenum mode, Glint first, GLsizei count, GLsizei primcount)
glDrawElementsInstanced(GLenum mode, GLsizei count, GLenum type, const void* indices, GLsizei primcount)
glVertexAttribDivisor(GLuint index, GLuint divisor)
gl_InstanceID
```

Might be hard to implement into existing rendering pipeline

OpenGL ES 2.0

```
for ( int i = 0; i < numInstances; i++ ) {
    // set for each instance the model-view-projection matrix
    glDrawElements(GL_TRIANGLES,mesh->indx_count,GL_UNSIGNED_SHORT,mesh->indx);
}
```

OpenGL ES 3.0

glDrawElementsInstanced(GL_TRIANGLES,mesh->indx_count,GL_UNSIGNED_SHORT,mesh->indx, numInstances);

```
// Vertex shader
                                                                              // Vertex shader
                                                                               #version 100
 #version 100
 uniform mat4 u matViewProjection;
                                                                               attribute mat4 u matViewProjection;
 attribute vec4 a position;
                                                                               attribute vec4 a position;
 attribute vec2 a texCoord0;
                                                                               attribute vec2 a texCoord0;
 varying vec2 v texCoord;
                                                                               varying vec2 v texCoord;
MVP = glGetUniformLocation( programObj, "u_matViewProjection" );
                                                                              MVP = glGetAttribLocation (programObj, "u matViewProjection");
glUniformMatrix4fv(MVP, 1, GL FALSE, &mvpMatrix);
                                                                              for (int i = 0: i < 4: i++) {
                                                                                 glEnableVertexAttribArray(MVP + i);
                                                                                 gIVertexAttribPointer(MVP + i,
                                                                                   4, GL FLOAT, GL FALSE,
                                                                                                                              // vec4
                                                                                    16*sizeof(GLfloat),
                                                                                                                              // stride
                                                                                    &(matArray + 4*i*sizeof(GLfloat));
                                                                                                                              // offset
                                                                                 gIVertexAttribDivisor(MVP + i, 1);
```



```
#define LTP_ARRAY 0
#define VERTEX_ARRAY 4

layout(location = LTP_ARRAY) in highp mat4 inLocalToProjection;
layout(location = VERTEX_ARRAY) in highp vec3 inVertex;

void main() {
    gl_Position = inLocalToProjection * inVertex;
}
```


Multiple Render Targets (MRT)

- Render to multiple buffers in a single draw call
- Offers the possibility to perform next-gen visual effects in real-time
 - Deferred Lighting
 - Cel Shading
 - Deferred Decals
 - Real-time Local Reflections
 - Many more

Multiple Render Targets (MRT)

Multiple Render Targets (MRT)

```
unsigned int fb;
unsigned int initializedTexture2D 1;
unsigned int initializedTexture2D 2;
GLenum buffs[] = {GL COLOR ATTACHMENTO,
GL COLOR ATTACHMENT1);
glGenFrameBuffer(1, &fb);
glBindFramebuffer(GL FRAMEBUFFER, fb);
glFramebufferTexture2D(GL FRAMEBUFFER,
GL_COLOR_ATTACHMENTO, GL_TEXTURE2D, initializedTexture2D_1, 0);
glFramebufferTexture2D(GL FRAMEBUFFER,
GL COLOR ATTACHMENTO, GL TEXTURE2D, initializedTexture2D 2, 0);
glDrawBuffers(2, buffs);
// render calls
```

```
#version 300 es

layout(location = 0) out lowp vec4 color;
layout(location = 1) out highp vec4 normal;
in lowp vec4 v_color;
in highp vec4 v_normal;

main() {
    color = v_color;
    normal = v_normal;
}
```

Cost-Benefit ratio

Challenges

- Implementation in existing engines is not trivial
- Changes to the production pipeline are needed
- In some situations OpenGL ES 3.0 features don't result in better performance
- MRTs needs to be understood by the graphical department as well
- OpenGL ES 3.0 devices are currently sparse → Support for both ES2/ES3

Opportunities

- Better performance
- Smaller energy footprint
- OEMs love to see the latest innovations used by the developers
- Gap between current consoles and mobile devices getting smaller
- Through extensions some 3.0 features are available on current generation hardware
 - GL_EXT_occlusion_query_boolean
 - GL_NV_draw_instanced / GL_NV_instanced_arrays

Cutting edge next-gen graphics

Useful links

http://www.khronos.org/opengles/3_X/

http://www.imgtec.com/powervr/insider/sdkdownloads/index.asp

http://malideveloper.arm.com/develop-for-mali/features/opengl-es-3-0-developer-

resorces/

https://developer.qualcomm.com/mobile-development/mobile-technologies/gaming-

graphics-optimization-adreno/tools-and-resources

https://developer.nvidia.com/tegra-resources

http://developer.android.com/tools/sdk/ndk/index.html

Thank you for listening!

m.hehmeyer@fishlabs.net

FOLLOW US ON:

http://www.twitter.com/fishlabs

http://www.facebook.com/fishlabs

JOBS:

jobs@fishlabs.net

