

택시 수요 분석을 통해 탄생한 '에코 택시 스마트 휴식처'로 편안한 택시 서비스 제공

TEAM - TAXIO

contents

- 연구 배경
- 연구 목적

- 분석 과정
- 분석 결과

- 활용 방안
- 기대효과
- 시사점/한계점

• 활용 데이터

연구 배경

66 수요와 공급이 일치하지 않는 곳에 택시 승강장이 있는 것이 현실

"택시기사 휴식처 사라져... 배회영업에 교통체증"

택시 기사들은 점차 사라지는 택시 승차대에 아쉬움을 표했다. 승차대는 승객을 기다리는 장소이자 동시에 잠시 차를 세우고 휴식을 취할 수 있는 장소였기 때문이다. 택시 기사 김모(62)씨는 "요즘엔 쉴 곳이 없어 한적한 길가에 세우고 쉬곤 한다 "면서 "그러다가 한 달에 한 번꼴로 주정차 단

실제로 승차대가 사라지는 동안 서울시 택시 불법 주정차 단속 건수는 ...(중략) 두배 가까이 증가했다. "무용지물 된 택시 승차대"

30년간 택시 운전을 했다는 임모씨는
"강남뿐 아니라 서울에 있는 일부 승차대는
"강남뿐 아니라 서울에 있어 의아할 때가
엉뚱한 곳에 설치돼 있어 의아할 때가
망다"고 말했다. 사람들이 많이 다니지도
많다"고 말했다. 사람들이 많이 다니지도 않는 곳에 승 차대가 있다는 설명이다.

택시 기사들이 승차대가 잘 활용되고 택시 기사들이 승차대가 잘 활용되고 있다고 말하는 곳은 "강남 고속버스터미널, 있다고 말하는 곳은 일부 지역에 한정돼 있다. 서울역 앞" 같은 일부 지역에 한정돼 있다.

Source | 중앙일보

연구 배경

- 택시 승차대별 승차건수는 하루 평균 56.5건
- 택시 승차대 중 69%에서 하루 평균 40회 미만의 승차가 이루어지고,
 100회 이상의 승차가 이루어지는 곳은 11% 수준

Source | 서울시

서울시 택시승차대 설치현황

쉘터형(지붕형) 승차대 223개소

폴형(막대형) 승차대 22개소

연구 배경

승차대가 <u>수요와 공급이 맞지 않는 곳</u>에 위치하여 이용률이 저조하며, 잘 이용되지 않는 택시 승차대가 철거되며 택시 운수 종업자의 <u>휴식처가 부족</u>해지고 <u>불법 주정차가 증가</u>했으며, 무분별한 배회운행이 <u>교통 체증을 심화</u>

연구 목적

택시 수요 분석을 통한 택시 승차대 위치 개선

택시 운수 종사자

그 외

제대로 이용되고 있지 못한 <u>택시 승차대의</u> <u>위치와 시설의 개선</u>으로 이용 승객들에게 편리하고 쾌적한 환경을 제공

휴식 공간 제공

배회시간의 감소

시민들의 민원 해소, 배회운행으로 늘어난 탄소 배출량과 교통체증 문제 해결에 이바지

분석 과정

분석 과정-이용 데이터

서울시 150M 도로망 데이터

• T_LINK_ID가 150M의 거리로 잘려있는 위치를 포함한 데이터

0 T_146396 127.029931 37.608843 127.029098 37.607772 [(37.6088426, 127.0299312), (37.6087194, 127.0
2 T_146398 127.031212 37.607221 127.030910 37.606225 [(37.6072213, 127.03091), (37.6062248, 127.031 3 T_146399 127.042422 37.597773 127.041197 37.597707 [(37.5977734, 127.0411967), (37.5977384, 127.0
3 T_146399 127.042422 37.597773 127.041197 37.597707 [(37.5977734, 127.0411967), (37.5977384, 127.0
4 T_146400 127.042428 37.597893 127.041203 37.597827 [(37.5978266, 127.0424283), (37.5978583, 127.0)

분석 과정-이용 데이터

택시 운행 분석 데이터 데이터

• 택시운행데이터와 표준노드링크를 맵핑하여 도로별 월/요일/시간30분 단위, 날씨, 목적지, 승/하/공차 건수를 포함한 정보를 가지고 있는 택시 운행 분석 데이터

	T_Link_ID	Day	Time	Weather	Dest	Cnt On	Cnt Of f	CntEmp
0	T_146396	1	15	1			106	951
1	T_146396	1	15	1	1123	1		
2	T_146396	1	15	1	1129	5		
3	T_146396	1	15	2			7	69
4	T_146396	1	15	2	1135	1		

T_LINK_ID별 승/하/공차 건수 추출

분석 과정-이용 데이터

서울시 택시 승차대 데이터

• 서울시 택시 승차대의 위치,조건 관련 정보를 담은 데이터

서울시 택시 승차대 위치 추출

쉍	ļΕ	남형(지붕형	형) 승차	대 데이터										
		순 번	번호	가로시 설물	설치일	공사구 분	공사날짜	공사내용	이력변 경	좌표 ₩n(Poi_X)	좌표 ₩n(Poi_Y)	전원투 입	행정 구	지번 주 소	도로명 주소
	0	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	1	1.0	A- 02	표준형TS	2010-10-02 00:00:00	이설	2017-03-25 00:00:00	신분당선 공사로 이설	3월 이 설	127.022290	37.508280	OK	강남 구	논현동 164	강남대로 518
	2	2.0	A- 03	표준형TS	2010-10-14 00:00:00	NaN	NaN	NaN	NaN	127.021270	37.516680	NaN	강남 구	논현동 2- 15	도산대로 114
ᅶ	. O	1/∐F	비열기	스치대	()										

폴형((막대형)	승차대	데이터											
	Unnamed: 0	번호	가로시 설물	설치일	이력변 경	공사날 짜	공사내 용	좌표 ₩n(Poi_X)	좌표 ₩n(Poi_Y)	행정 구	지번 주소	위치명	Unnamed: 12	Unnamed: 13
0	NaN	NaN	NaN	NaT	NaN	NaT	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1	1.0	Pole- 01	폴형TS	2016-09- 01	NaN	NaT	NaN	127.026070	37.501586	강남 구	역삼동 814-6	CGV강남점 앞	NaN	NaN
2	2.0	Pole- 02	폴형TS	2016-09- 01	NaN	NaT	NaN	127.018274	37.625289	강북 구	삼양동 777	롯데마트삼양 점 앞	NaN	NaN

분석 과정-이용 데이터

서울시 택시 승차대 데이터

• 추출된 택시 승차대 위치를 시각화

택시 승차대의 위치를 보면 <u>중구와 종로구,</u> <u>송파구와 강남구,영등포구 쪽에 승차대가</u> <u>밀집</u>되어 있으며 외곽과 산지 근처에는 승차대가 적음

분석을 통해, 승차대 위치와 개수의 ⁹⁹ 적절성 파악이 필요

분석 과정-이용 데이터

서울시 행정구역 데이터

• 서울시 행정구역의 경계면정보와 행정구역 코드를 담은 데이터

	ADM_SECT_C	SGG_NM	SGG_OID	COL_ADM_SE	GID	geometry
0	11740	강동구	337	11740	127	POLYGON ((969713.132 1948846.288, 969692.451 1
1	11710	송파구	1969	11710	128	POLYGON ((968640.372 1944982.492, 968640.957 1
2	11680	강남구	33	11680	129	POLYGON ((958696.114 1948605.678, 959195.920 1
3	11650	서초구	33	11650	130	POLYGON ((958117.753 1940073.855, 958118.398 1
4	11620	관악구	33	11620	131	POLYGON ((949321.250 1944035.054, 949323.256 1
5	11590	동작구	689	11590	132	POLYGON ((947237.833 1943029.684, 947245.149 1
6	11560	영등포구	481	11560	133	POLYGON ((945060.841 1950575.575, 945060.701 1
7	11545	금천구	33	11545	134	POLYGON ((944458.844 1943077.341, 944482.865 1
8	11530	구로구	33	11530	135	POLYGON ((939273.809 1944348.583, 939285.784 1
9	11500	강서구	65	11500	136	MULTIPOLYGON (((935035.249 1950923.294, 935041

각 행정구역의 경계 위경도 추출

택시 승차대 위치 추천을 위한 K-means Clustering

• K-means clustering: 주어진 데이터를 k개의 클러스터로 묶는 알고리즘으로, 각 클러스터와 거리 차이의 분산을 최소화하는 방식으로 동작

• K-means Clustering의 사용 이유:

택시 승차대의 특성상 너무 가까이 있는 것보다도, 너무 멀리 떨어져 있는 것보다도 <u>적당한 거리에 위치</u>하는 것이 택시 운수종사자와 이용 승객 모두에게 효율 있게 이용할 수 있는 방법이 되기 때문입니다.

• 먼저, 최적의 K-means clustering 개수를 찾기 위해 <u>'elbow 기법'</u> 이용

<elbow 기법>

분석 과정

택시 승차대 위치 추천을 위한 K-means Clustering

• <u>엘보우기법</u>으로 알아낸 최적의 클러스터 수인 7를 이용해, 수요를 기준으로 클러스터링 진행

수요(CntOn)을 기준으로 클러스터링

엘보우기법으로 알아낸 최적의 클러스터 개수: 7

kmeans = KMeans(n_clusters=7, random_state=np.random.RandomState(seed=1)).fit(tax|i[['CntOn']]) labels=kmeans.labels_

centers=kmeans.cluster_centers_

클러스터링 확인

	T_LINK_ID	Cnt On	Cnt Of f	CntEmp	lat	Ion	clustering
0	T_146396	54699	125181	959623	37.608843	127.029931	1
1	T_146397	24852	18847	846682	37.607722	127.029194	5
2	T_146398	16551	14783	737329	37.607221	127.030910	6
3	T_146399	594	4966	18185	37.597773	127.041197	0
4	T_146400	588	2812	21468	37.597827	127.042428	0

[클러스터링 시각화]

분석 과정

택시 승차대 위치 추천을 위한 K-means Clustering

- 1. 수요가 많은 군집을 파악하기 위하여 각 클러스터의 최대 개수 파악
- 2. 수요가 많은 2,3,4 군집만 합쳐서 데이터 프레임 만들기

각 군집의 수요량	각 군집의 개수
clustering: 0 6149	clustering: 0 24503
clustering: 1 63786	clustering: 1 1112
clustering: 2 121556	clustering: 2 402
clustering: 3 743863	clustering: 3 5
clustering: 4 284215	clustering: 4 83
clustering: 5 34900	clustering: 5 3133
clustering: 6 17399	clustering: 6 7235

	T_LINK_ID	Cnt On	Cnt Of f	CntEmp	lat	Ion	clustering
12819	T_164822	659116	574078	2675694	37.555179	126.972579	3
13372	T_165675	743863	492842	2166920	37.553101	126.969059	3
14043	T_166551	452482	180324	1148819	37.529456	126.966283	3
19707	T_174351	485044	199236	1672879	37.506220	127.005731	3
20177	T_175057	494283	193027	2004037	37.500745	127.026424	3
2166	T_151904	191429	54519	1321116	37.638071	127.025550	4
2175	T_151913	162340	131968	1050754	37.637084	127.024704	4
4579	T_154651	166579	148694	1282578	37.612373	127.030323	4
4810	T_154921	131292	97871	1065627	37.647607	127.034212	4
4811	T_154922	129345	26472	889244	37.648717	127.034872 자세한 고	4 바정은 코드를

자세한 과정은 코드를 참조하여 주시기 바랍니다

분석 과정

택시 승차대 위치 추천을 위한 K-means Clustering

• 택시 승차대 전처리 데이터와 수요가 많은 2,3,4 군집 비교 시각화

분석 결과

행정구역과 택시 승차대 및 수요의 시각화

 서울시 행정구역 위에 택시의 수요와 승차대의 위치를 표시한 후 비교 실시 승차대 위치와 개수의 적절성과 보강해야 할 위치 확인

- 파란 원: 현재 택시 승차대의 위치
- 초록 원: 택시 수요가 많은 추천 위치 후보

승차대 간의 거리는 너무 가깝게 위치하지 않아야 어느 정도의 구역을 커버해 제 기능을 발휘하기 때문에 파란 원의 크기를 키워 그 승차대가

<u>주요의 수요를 잘 포함하고 있는지</u>를

확인하는 방식으로 비교·분석

분석 결과-예시1

예시 1. 금천구

기존의 택시 승차대(파란 원)가 수요(초록 원)를 어느정도 커버하고 있지만 위 쪽 가리봉동 옆에 수요가 밀집되어 있는 쪽에는 승차대가 없으므로 벚꽃로에 승차대를 설치할 것을 추천

분석 결과-예시2

예시 2. 양천구

수요에 비해 불필요하게 밀집되어 있는 승차대를 확인해 볼 수 있으므로 목동로 쪽의 승차대 개수를 조정하고

신정동 주변과 중앙호수 위 큰 사거리의 수요를 고려해 중앙로에 승차대를 설치할 것을 추천

분석 결과-예시3

예시 3. 동대문구

회기동, 이문동 아래쪽에 수요가 밀집된 반면 그 지역을 커버할 수 있는 승차대의 부재 그러므로 수요와 공급이 일정 수준에서 일치할 수 있도록 <u>경희대로와 휘경로에 승차대를 설치할 것을 추천</u>

활용 방안

활용 방안

- 위 분석 결과에서 택시 승차대와 수요는 현재 <u>적절하지 않은 곳에 배치</u>되어 이용률을 떨어뜨리고 있음.
- 따라서 분석 결과에서 택시 승차대의 위치 조정을 통해 택시 운수종사자와 이용 승객의 편의를 높이기 위한 수요에 맞는 위치를 추천

에코 스마트 택시 승차대

_

탄소 중립과 안전 등을 위해 기능 아이디어들을 넣은 개선된 택시 승차대

추천 위치에 '에코 스마트 택시 승차대 ' 설치 제안

출처: 강남역 스마트 승차대 예시

활용 방안

활용 방안-에코 스마트 택시 승차대의 기능

환경

 <u>태양 열 패널을 설치</u>하여 보조 전원 공급 장치로 이용

안전

- 소독 기계 배치, 열화상 카메라를 이용한 출입 제어, 공기 살균으로 출입 시 **방역 철저**
- <u>CCTV 설치</u>로 택시정류장으로 접근하는 택시의 모습을 실시간 확인, 주변 이상행동을 인공지능으로 감지해 경찰서·소방서와의 상황 공유로 안전 확보
- <u>위험 상황에 대처</u>할 수 있게 비명소리 등 이상 음원을 감지하는 음원 감지 시스템 설치로 안전 확보
- 벽면을 유리로 대체하여 <u>개방감과 안전 동시 확보</u>

스마트

- 무선 충전기 설치
- 택시 호출 시스템을 설치하여 간단하고 빠르게 택시를 이용할 수 있는 환경 제공
- 시민이 이용하지 않을 시,
 전원을 절약할 수 있는
 센서 설치

활용 방안

선례

성동구 스마트 택시 승차대 출처 : ECONOMIC REVIEW

성동구의 스마트 쉼터

열화상 카메라 출입문 연계, UV 플라스마 공기살균, 지능형 CCTV, 쉼터 내부에 원격 관제가 가능한 전동 블라인드, 윈드 바이저 등의 기능을 가진 스마트 쉼터를 만들어 많은 시민이 이용 중

'에코 스마트 택시 승차대' 또한 이러한 기능들을 이용하여 편의성을 높일 수 있을 것으로 예상

기대 효과

기대 효과

이용 승객

- 택시 대기 시 <u>쾌적한 시설</u> 이용 가능
- 심야 시간에도 <u>안전하게 택시 이용</u> 가능
- 택시 <u>대기 시간 감소</u>

택시 운수종사자

- 배회 시간의 감소
- 휴식 공간의 마련

환경

• 배회 시간 감소와 태양열 이용으로 <u>탄소 중립 실현 도움</u>

'에코 스마트 택시 승차대'의 설치로 위와 같은 효과를 기대할 수 있습니다.

시사점 및 한계점

시사점/한계점

택시 승차대 설치는 유동 인구가 많고 이용 수요가 높은 곳을 중심으로, 도로 교통법 제32조와 33조에 의거해 횡단보도, 소화 시설, 가로등, 보도의 배전반, 버스정류소 등과의 일정한 거리를 유지해야 하고 기존 시설물 존치 및 진입/진출로 여부와 설치 시 교통흐름 방해요소, 안전 문제, 불법 주정차 문제, 도로의 이용 효율성을 저하시키지 않는지 등 종합적으로 고려해 관련 기관 간 협의 후 설치할 수 있어 현실적으로 적합 장소가 적음

4

택시 승차대 설치 과정→

설치장소 조사 시장, 구청장

설치가능여부 교통협의 구청장→지방경찰청장 교통협의 결과 통보 지방경찰청장→구청장

설치 승인 및 지시

·구청장 요청→시장(설치승인) 시장, 구청장→운영사업자 설치보고 운영사업자→시장, 구청장 사후 관리
·시장, 구청장 - 관리점검
·운영사업자 – 보수, 교체

• 택시는 버스와 달리 승차대가 아니더라도 어디서나 승하차가 가능하고, 스마트폰 앱을 이용한 택시 예약 방식이 대중화 됨에 따라 더욱더 택시 승차대 이용 수요가 줄어들고 있는 추세

하지만 <u>택시 운수종사자의 휴식 공간 및 대기 장소가 필요</u>하고, <u>무분별한 배회 운행을 줄이기 위해</u>서는 승차대의 위치 조정 및 확대는 필수적

활용 데이터

활용 데이터

활용 데이터

데이터	형식	출처
150M 링크정보	txt	서울시 빅데이터 캠퍼스
택시운행분석 데이터	txt	서울시 빅데이터 캠퍼스
서울시 행정구역 데이터	shp	국가공간정보포털
20210810_택시승차대(233기) & POLE(22기) 수량 현황	xlsx	공공데이터포털

감사합니다.