Rechenregeln Matrizen

Addition:

$$A+B=B+A \ (A+B)+C=(A+B)+C \ (\mu\cdot\lambda)A=\mu(\lambda\cdot A) \ 0+A=A=A=A=0 \ E_nA=A \ \forall A\exists B:A+B=0 \ B=-A \ \lambda(A+B)=\lambda A+\lambda B \ |$$
 Kommutativität Assoziativität Neutrales Element Inverses Element

Transposition:

$$\begin{array}{c|c} (A+B)^T = A^T + B^T \\ (\lambda A)^T = \lambda A^T \\ (A^T)^T = A \\ (AB)^T = B^T A^T \\ (A^{-1})^T = (A^T)^{-1} \end{array} \mid \begin{array}{c} \text{Summe} \\ \text{Skalarmultiplikation} \\ \text{Zweifache Transposition} \\ \text{Produkt} \\ \text{Inverses} \end{array}$$

Multiplikation:

$$\begin{array}{c|c} \exists A,B:AB\neq BA\\ (AB)C=A(BC)\\ \exists E\in E_n:EA=A\\ A(B+C)=AB+AC\\ (B+C)A=BA+CA\\ (A\cdot B)^{-1}=B^{-1}\cdot A^{-1} \end{array} | \begin{array}{c} \text{nicht kommutativ!}\\ \text{Assoziativit\"at}\\ \text{Neutrales Element}\\ \text{Distributivit\"at} \end{array}$$

Gruppen

Gnichtleere Menge mit innerer Verknüpfung \cdot

$$\cdot:G\times G\to G$$

 (G, \cdot) heißt Gruppe, wenn:

$$\begin{array}{l} \forall a,b,c \in G: (a \cdot b) \cdot c = a \cdot (b \cdot c) \\ \exists e \in G: e \cdot a = a = a \cdot e \quad \forall a \in G \\ \forall a \in G \exists b \in G: a \cdot b = e = b \cdot a \end{array} \right| \begin{array}{l} \text{Assoziativgesetz} \\ \text{neutrales Element} \\ \text{inverses Element} \end{array}$$

G nennt man <u>abelsch</u> (=kommutativ) falls:

•
$$ab = ba \quad \forall a, b \in G$$

Untergruppen

 (G,\cdot) sei eine Gruppe mit neutralem Element e

 $U \subseteq G$ mit:

$$\left. \begin{array}{c} e \in U \\ u,v \in U \Rightarrow u \cdot v \in U \\ u \in U \Rightarrow u^{-1} \in U \end{array} \right| \begin{array}{c} \text{neutrales Element} \\ \text{abgeschlossen} \\ \text{inverses Element} \end{array} \right\} \Rightarrow \left\{ \begin{array}{c} U \text{ ist Untergruppe} \\ U \leq G \end{array} \right.$$

Von Elementen erzeugten Untergruppen

$$\langle a \rangle = \{ a^k \mid a \in G, \, k \in \mathbb{Z} \}$$

- $e \in \langle a \rangle$
- $a^k, a^l \in \langle a \rangle \Rightarrow a^k \cdot a^l = a^{k+l} \in \langle a \rangle$
- $\bullet \quad a^k a^{-k} = a^0 = e$

Ordnung eines Elements

$$(G,\cdot)$$
 Gruppe $\to a \in G$

$$\to O(a) = |\langle a \rangle| = \left\{ \begin{array}{ll} n \in \mathbb{N}, & \# \left\{ a^k \, | \, k \in \mathbb{Z} \right\} \\ \infty, & sonst. \end{array} \right.$$

$$O(a) =$$
 kleinste Zahl n mit $a^n = e$

$$\langle a \rangle = \{e, a, \dots, a^{n-1}\}$$

$$O(a) = n$$

Satz über die Ordnung von Gruppenelementen:

Es sei G eine Gruppe mit neutralem Element e, und es sei $a \in G$:

- (a) Falls $O(a)=\infty,$ dann: $a^i\neq a^j$, $i\neq j.$
- (b) Falls $O(a) \in \mathbb{N}$, so gilt: O(a) = u = kleinste natürliche Zahl, für die $a^n = e$ gilt.

$$a^s = e \Leftrightarrow O(a) | s$$