Monotonic Target Assignment For Robotic Networks

Stephen L. Smith

Center for Control, Dynamical Systems and Computation University of California at Santa Barbara

2008 ICRA Workshop May 20, 2008

Advisor: Francesco Bullo

The Target Assignment Problem

- *n* mobile robots, *m* target locations, in \mathbb{R}^2
- Each robot with unique identifier
 - moves $\dot{p}^{[i]} = u^{[i]}, |u^{[i]}| \le v_{\text{max}}$
 - knows, or can sense, the target locations
- Discrete-time communication model
 - communication range r_{comm}
 - max message length $O(\log n)$

Problem: distributed algorithm to

- allow group of agents to divide m targets among themselves;
- lead each agent to its unique target in minimum time.

Related Combinatorics and Robotics Literature

Centralized assignment problems:

- Max. matching in bipartite graphs (Hopcroft and Karp, '73)
- Sum assignment problem (Kuhn, '55)
- Bottleneck assignment problem (Derigs and Zimmermann '78)

Parallel/Decentralized assignment problems

- The auction algorithm (Bertsekas, '88)
- Others include Zavlanos and Pappas, Castañón and Wu, Moore and Passino, Arslan, Marden and Shamma.

Distributed Target Assignment

Our Goals:

- Develop efficient algorithms for target assignment problem.
- Evaluate scalability/asymptotic performance.

Key Challenge: Optimize completion time while satisfying

- range constraint: compute distributed assignment, possibly without connectivity.
- 2 bandwidth constraint: share assignment data sparingly.

Size of Environment $\mathcal{E}(n)$ as $n \to +\infty$

Sparse: $|\mathcal{E}(n)|/n \to +\infty$

Dense: $|\mathcal{E}(n)|/n \to 0$

Critical: $|\mathcal{E}(n)|/n \to C \in \mathbb{R}_{>0}$

Size of Environment $\mathcal{E}(n)$ as $n \to +\infty$

Sparse: $|\mathcal{E}(n)|/n \to +\infty$

Dense: $|\mathcal{E}(n)|/n \to 0$

Critical: $|\mathcal{E}(n)|/n \to C \in \mathbb{R}_{>0}$

Monotonic Algorithms for Target Assignment

Definition (Monotonic algorithms)

- deterministic algorithm
- target j occupied at time $t_1 \Rightarrow$ target j occupied for all $t > t_1$.

Theorem (Worst-case lower bound on Monotonic Algs)

n agents and n targets in square $\mathcal{E}(n)$:

$\mathcal{E}(n)$ size	Worst-case completion time	
Sparse $\left(\frac{ \mathcal{E}(n) }{n} \to +\infty\right)$	$\Omega(\sqrt{n \mathcal{E}(n) })$	
Critical $\left(\frac{ \mathcal{E}(n) }{n} \to C\right)$	$\Omega(n)$	
Dense $\left(\frac{ \mathcal{E}(n) }{n} \to 0\right)$	$\Omega(\mathcal{E}(n))$	

ETSP Assgmt for Sparse Environments

- Target locations known a priori
- Maintain "available/taken" bit for each target.

The Basic Ideas:

- 1 all agents turn the cloud of targets into ordered ring
- 2 move toward the closest target on the ring
- 3 if agent loses conflict, move to next available target on ring
- 4 agents exchange segments of tour that are "taken."

Idea 1: create ordered ring

- constant factor ETSP
- same tour for all agents, same order

Idea 2: move toward the closest target on ring

Agent keeps "current" pointer and moves accordingly

Idea 3: lose conflict, move to next available target on ring

- closest agent wins conflict,
- loser selects next target on ring which may be available.

Idea 4: transmit a segment of the tour

- message transmission $O(\log n)$ bits.
- merge "taken" segments.

Time Complexity for ETSP ASSGMT

Theorem (Worst-case upper bound)

- Assume n agents, n targets in $\mathcal{E}(n)$,
- then worst-case completion time in $O(\sqrt{|\mathcal{E}(n)|n})$.

Sparse/critical $\mathcal{E}(n) \Rightarrow \mathrm{ETSP}$ Assignt is an asymptotically optimal monotonic algorithm

Simulations for ETSP Assgmt

GRID ASSGMT Algorithm for Dense Environments

The Basic Ideas:

- 1 All agents partition environment into small cells.
- 2 In each cell, agents find maximum matching and elect leader.
- 3 Leaders communicate to determine location of free targets.
- 4 Unassigned agents are directed to free targets by leaders.

Assumes either

- Each agent knows target locations a priori, or
- no a priori knowledge but $r_{\text{sense}} \ge \sqrt{2/5}r_{\text{comm}}$ to sense.

Idea 1: partition the environment

Choose grid size, based on $\mathcal{E}(n)$ and r_{comm} so that:

- Communication graph in a cell is complete.
- Communication between adjacent cells is possible.

- Match agents to targets
- Elect leader

Example cell

- Match agents to targets
- Elect leader

Example cell

- Match agents to targets
- Elect leader

Example cell

- Match agents to targets
- Elect leader

Example cell

Example column

Leaders estimate number of available targets.

Example column

Electing leader in each cell

 $\Delta^{[i]} = (\bullet - \Box)$ in cell i $\Delta_{\text{blw}}^{[i]} = \text{est. of } (\bullet - \Box)$ in cells below i

Only let unassigned agents "down" if estimates are positive

Idea 4: unassigned agent motion

Nominal search order

Search order with leader comm.

GRID ASSGMT Simulations

Worst-case upper bound for GRID ASSGMT

Theorem (Worst-case upper bound)

- Assume n agents, n targets in $\mathcal{E}(n)$.
- then worst-case completion time in $O(|\mathcal{E}(n)|)$.

Worst-case performance comparison:

	Sparse	Critical	Dense
Monotonic	$\Omega(\sqrt{ \mathcal{E}(n) n})$	$\Omega(n)$	$\Omega(\mathcal{E}(n))$
ETSP Assgmt	$O(\sqrt{ \mathcal{E}(n) n})$	O(n)	$O(\sqrt{ \mathcal{E}(n) n})$
Grid Assgmt	$O(\mathcal{E}(n))$	O(n)	$O(\mathcal{E}(n))$

Stochastic Bounds on GRID ASSGMT

- Recall, dense $\mathcal{E}(n) \Rightarrow \frac{|\mathcal{E}(n)|}{n} \to 0$ as $n \to +\infty$.
- Connectivity regime: $\frac{|\mathcal{E}(n)|}{n} \in O\left(\frac{1}{\log n}\right)$.

Theorem (Stochastic performance)

- n agents, m targets uniformly randomly distributed in $\mathcal{E}(n)$.
- Assume $\mathcal{E}(n)$ is in connectivity regime.
- If m = n, then w.h.p. completion time in $O(\sqrt{|\mathcal{E}(n)|})$.
- If $m = n/\log n$ then w.h.p., completion time in O(1).

Conjectured properties

Stochastic properties of ETSP ASSGMT

- In sparse E(n):
 If m = n, then stochastic performance is same as worst case
- In critical or sparse \$\mathcal{E}(n)\$:
 If \$m = n/\log n\$, then completion time is \$O(\log n)\$.

Stochastic properties of GRID ASSGMT in connectivity regime

• If m=cn for some $c\in(0,c_{\mathrm{crit}})$, then compltn time is O(1). i.e., constant factor additional agents \implies for O(1)

Conclusions and Related Problems

In this talk, introduced:

- a broad class of algorithms for static target assignment;
- asymp. opt. algorithms for dense and sparse environments;
- a sensor based target assignment problem.

Variations and other problems:

- Nonholonomic vehicles (w/ EF and KS)
- Consistent knowledge assumption
- Related problems
 - 1 Targets arriving sequentially/dynamically over time (w/ EF)
 - 2 Search and assignment problems
 - Moving targets

References

- S. L. Smith and F. Bullo. Target assignment for robotic networks: Asymptotic performance under limited communication. In *American Control Conference*, pages 1155–1160, New York, July 2007
- S. L. Smith and F. Bullo. Target assignment for robotic networks: Worst-case and stochastic performance in dense environments. In *IEEE Conf. on Decision and Control*, pages 3585–3590, New Orleans, LA, December 2007
- S. L. Smith and F. Bullo. Monotonic target assignment for robotic networks. *IEEE Transactions on Automatic Control*, June 2007. To appear