

planetmath.org

Math for the people, by the people.

proof that all cyclic groups of the same order are isomorphic to each other

 ${\bf Canonical\ name} \quad {\bf ProofThatAllCyclicGroupsOfTheSameOrderAreIsomorphicToEachOther}$

Date of creation 2013-03-22 13:30:41 Last modified on 2013-03-22 13:30:41 Owner Wkbj79 (1863) Last modified by Wkbj79 (1863)

Numerical id 9

Author Wkbj79 (1863)

Entry type Proof

Classification msc 20A05

The following is a proof that all cyclic groups of the same order are isomorphic to each other.

Proof. Let G be a cyclic group and g be a generator of G. Define $\varphi \colon \mathbb{Z} \to G$ by $\varphi(c) = g^c$. Since $\varphi(a+b) = g^{a+b} = g^a g^b = \varphi(a) \varphi(b)$, φ is a group homomorphism. If $h \in G$, then there exists $x \in \mathbb{Z}$ such that $h = g^x$. Since $\varphi(x) = g^x = h$, φ is surjective.

Note that $\ker \varphi = \{c \in \mathbb{Z} : \varphi(c) = e_G\} = \{c \in \mathbb{Z} : g^c = e_G\}.$

If G is infinite, then $\ker \varphi = \{0\}$, and φ is injective. Hence, φ is a group isomorphism, and $G \cong \mathbb{Z}$.

If G is finite, then let |G| = n. Thus, $|g| = |\langle g \rangle| = |G| = n$. If $g^c = e_G$, then n divides c. Therefore, $\ker \varphi = n\mathbb{Z}$. By the first isomorphism theorem, $G \cong \mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_n$.

Let H and K be cyclic groups of the same order. If H and K are infinite, then, by the above, $H \cong \mathbb{Z}$ and $K \cong \mathbb{Z}$. If H and K are finite of order n, then, by the above, $H \cong \mathbb{Z}_n$ and $K \cong \mathbb{Z}_n$. In any case, it follows that $H \cong K$.