Olimpiada de Matemáticas en Hidalgo Problemas resueltos

Comité olímpico de Matemáticas en Hidalgo $24\ {\rm de\ abril\ de\ }2012$

Índice general

Introducción

En este libro se incluyen los exámentes aplicados en las olimpiadas estatales de matemáticas del estado de Hidalgo, desde 2007 a la fecha.

2007

Problema 1

Calcular el valor de

$$\sqrt{1+3+5+7+\cdots+2003+2005+2007}$$
, (1.1)

donde la suma de
ntro de la raíz cuadrada es la suma de todos los números impares de
l1al $2007. \,$

Solución: La suma $1+3+\cdots+(2n-1)$ de los primeros n números impares es igual a n^2 . Si 2n-1=2007 entonces n=1004, por lo que la suma ?? vale 1004^2 .

Problema 2

Encuentre el volumen de un cono truncado de altura 2, que tiene base inferior de radio 4 y base superior de radio 3 (ver la figura).

Solución: La fórmula de volumen del cono es

Problema 3

Considere un triángulo de lados $a,\,b$ y c. Tome un punto P cualquiera en el interior del triángulo y desde este punto trace segmentos perpendiculares a cada

uno de sus lados. Suponga que $x,\ y$ y z son las longitudes de estos segmentos perpendiculares a los lados $a,\ b$ y c, respectivamente. Demuestre que el área A del triángulo es igual a

$$A = \frac{1}{2}(ax + by + cz). {(1.2)}$$

Solución:

Problema 4

2

Del siguiente diagrama calcule de cuantas maneras distintas se puede llegar del punto A al punto B, respetando las direcciones de las flechas.

Solución:

Problema 5

Considere la ecuación de segundo grado

$$x^2 - 15ax + a^2 = 0. (1.3)$$

Encuentre todos los valores de a de modo que las soluciones x_1 y x_2 de esta ecuación satisfacen

$$x_1^2 + x_2^2 = 2007. (1.4)$$

Solución:

Problema 6

 $\+ i$ De cuántas maneras se pueden sacar 10 canicas de una bolsa que contiene 7 canicas rojas, 8 azules y 7 verdes, si una vez que se sacaron no importa en que orden quedaron?

Solución: