

Оглавление

1	Двойственность задач линейного программирования		
	1.1	Конусы	2
	1.2	Двойственная задача линейного программирования	4
	1.3	Двойственный симплекс-метод	15

Глава 1

Двойственность задач линейного программирования

1.1 Конусы

Конусом в линейном пространстве называется множество векторов, которое замкнуто относительно умножения на неотрицательные числа.

Определение 1.1. Пусть V — линейное пространство. Непустое множество $K\subseteq V$ называется конусом, если для любого вектора $x\in K$ и любого неотрицательного числа $\lambda\in\mathbb{R}$ вектор λx принадлежит множеству K.

На рисунке ниже приведены примеры конусов на плоскости. Заметим, что второй конус не является выпуклым множеством. Конусы не обязательно выпуклые множества.

Полиэдральные конусы — это конусы, которые задаются системой линейных неравенств без свободных членов.

Определение 1.2. Конус $K\subseteq\mathbb{R}^n$ называется полиэдральным, если найдется матрица A размера $m\times n$ такая, что

$$K = \{ x \in \mathbb{R}^n : Ax \ge 0 \}.$$

Определение 1.3. Конус $K \subseteq \mathbb{R}^n$ называется конечно-порожденным, если существуют точки x_1, x_2, \dots, x_k из K такие, что

$$K = cone(\{x_1, x_2, \dots, x_k\}).$$

Полиэдральные и конечно-порожденные конусы — это одно и то же.

Теорема 1.1 (Фаркаша-Минковского-Вейля). Конус является полиэдральным в том и только в том случае, когда он является конечно-порожденным.

Лемма 1.1 (Фаркаша). Пусть A — матрица размера $m \times n$, $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$. Система

$$\begin{cases} Ax = b, \\ x \ge 0 \end{cases} \tag{1.1}$$

несовместна тогда и только тогда, когда система

$$\begin{cases} A^{\mathsf{T}}y \ge 0, \\ b^{\mathsf{T}}y < 0 \end{cases} \tag{1.2}$$

совместна.

Доказательство. — Пусть система (1.2) совместна, т.е. система имеет решение y. Рассмотрим систему (1.1). Имеем

$$Ax = b \quad \to \quad (Ax)^{\mathsf{T}} = b^{\mathsf{T}} \quad \to \quad (Ax)^{\mathsf{T}}y = b^{\mathsf{T}}y \quad \to \quad (x^{\mathsf{T}}A^{\mathsf{T}})y = b^{\mathsf{T}}y \quad \to \quad x^{\mathsf{T}}(A^{\mathsf{T}}y) = b^{\mathsf{T}}y.$$

В последнем равенстве левая часть не меньше 0 (т.к. $x \ge 0$ и $A^{\mathsf{T}}y \ge 0$), а правая часть меньше 0 (т.к. $b^{\mathsf{T}}y < 0$). Следовательно, система (1.1) несовместна.

→. Пусть система (1.2) не имеет решений. Рассмотрим конус

$$K = \{Ax : x \ge 0\},\$$

где A — матрица размера $m \times n, \ x \in \mathbb{R}^n$. Этот конус конечно-порожденный, так как он представляет собой коническую оболочку столбцов матрицы A. В самом деле, Ax — это линейная комбинация столбцов матрицы A с коэффициентами из вектора x. Поскольку $x \geq 0$, то эта линейная комбинация является конической комбинацией столбцов матрицы A. Стало быть, конус K — это коническая оболочка столбцов матрицы A, т.е.

$$K = cone(\{A_1, A_2, \dots, A_n\}),$$

где A_1, A_2, \ldots, A_n — это столбцы матрицы A. По теореме Фаркаша—Минковского—Вейля этот конус является полиэдральным, т.е. он может быть задан как множество решений однородной системы линейных неравенств

$$K = \{ z \in \mathbb{R}^m : Bz \ge 0 \},$$

где B — матрица размера $n \times m$.

Заметим, что совместность задачи (1.1) равносильна принадлежности вектора b конусу K. Так как система (1.1) несовместна, то $b \notin K$. Утверждается, что вектор b и конус K отделимы друг от друга. Так как $b \notin K$, то хотя бы одно из неравенств системы $Bb \geq 0$ не выполняется. Пусть не выполняется i-ое неравенство, т.е.

$$y^{\mathsf{T}}b < 0, \tag{1.3}$$

где $y^{\mathsf{T}}-i$ -я строка матрицы B.

Остается показать, что для любого вектора $z \in K$ верно

$$y^{\mathsf{T}}z \ge 0. \tag{1.4}$$

Но это очевидно. Действительно, вектор z принадлежит конусу K. Поэтому $Bz \geq 0$ и i-ое неравенство этой системы — неравенство (1.4) — верно. Из неравенства (1.3) следует $b^{\mathsf{T}}y < 0$. Для i-й строки матрицы B — строки y^{T} — выполняется вторая часть системы (1.2). Покажем справедливость первой части, т.е., что $A^{\mathsf{T}}y \geq 0$. Каждый столбец матрицы A принадлежит конусу K. Убедимся в этом. Для i-го столбца A_i матрицы A

$$A_i = Ae_i \in K$$
.

Так как для любого $z \in K$ выполняется (1.4), то $y^{\mathsf{T}} A_i \geq 0$ и, как следствие, $A_i^{\mathsf{T}} y \geq 0$. Следовательно, $A^{\mathsf{T}} y \geq 0$.

1.2 Двойственная задача линейного программирования

Рассмотрим задачу линейного программирования в канонической форме

$$c^{\mathsf{T}}x \to \max$$

$$Ax = b \tag{\Pi}$$
 $x \ge 0$

где A — матрица, в которой m строк и n столбцов. Будем называть ее прямой задачей. Зафиксируем некоторый допустимый план x задачи. Пусть $y \in \mathbb{R}^m$. Тогда

$$Ax = b$$
$$(Ax)^{\mathsf{T}} = b^{\mathsf{T}}$$

Умножим скалярно последнее равенство на вектор y. Получим $(Ax)^{\intercal}y=b^{\intercal}y$ и

$$x^{\mathsf{T}}A^{\mathsf{T}}y = b^{\mathsf{T}}y. \tag{1.5}$$

Пусть $y \in \mathbb{R}^m$ — это вектор такой, что

$$A^{\mathsf{T}}y \ge c. \tag{1.6}$$

Так как $x \ge 0$, то

$$\underbrace{x^{\mathsf{T}}(A^{\mathsf{T}}y)}_{b^{\mathsf{T}}y} \ge x^{\mathsf{T}}c.$$

Получаем

$$b^{\mathsf{T}}y \ge c^{\mathsf{T}}x$$
.

Каждый вектор y, удовлетворяющий условиям (1.6), определяет верхнюю границу на значение целевой функции задачи (П) на любом допустимом плане x. Хотим получить лучшую верхнюю границу, т.е. минимальную

$$b^{\mathsf{T}}y \to \min$$

$$A^{\mathsf{T}}y > c$$

$$\mathfrak{D}$$

Эта задача линейного программирования называется задачей, двойственной к прямой задаче (Π). Таким образом, мы доказали следующую теорему.

Теорема 1.2 (о слабой двойственности). Если x — допустимый план прямой задачи (Π) и y — допустимый план двойственной задачи (\mathfrak{D}), то $c^{\mathsf{T}}x \leq b^{\mathsf{T}}y$.

Теорема 1.3 (о сильной двойственности). Если двойственная задача (\mathfrak{D}) совместна и $\beta \in \mathbb{R}$ — это оптимальное значение целевой функции этой задачи, то прямая задача (Π) совместна и существует допустимый план x такой, что

$$c^{\mathsf{T}}x \ge \beta. \tag{1.7}$$

Если прямая задача (Π) совместна и $\alpha \in \mathbb{R}$ — это оптимальное значение целевой функции этой задачи, то двойственная задача (\mathfrak{D}) совместна и найдется допустимый план у этой задачи такой, что

$$b^{\mathsf{T}}y \le \alpha. \tag{1.8}$$

Доказательство. Докажем только первую часть теоремы.

Пусть двойственная задача (\mathfrak{D}) совместна и β — это оптимальное значение целевой функции. Достаточно показать, что существует вектор x, удовлетворяющий ограничениям прямой задачи и неравенству (1.12)

$$Ax = b$$
$$x \ge 0$$
$$c^{\mathsf{T}}x > \beta.$$

От противного. Допустим, что эта система несовместна. Приведем эту систему к канонической форме. Введем переменную нежесткости s

$$Ax = b$$

$$c^{\mathsf{T}}x - s = \beta$$

$$x \ge 0, s \ge 0$$
(1.9)

Какой вид имеет матрица коэффициентов системы и столбец свободных членов? Матрица состоит из четырех блоков

$$\overline{A} = \begin{pmatrix} A & 0 \\ c^{\mathsf{T}} & -1 \end{pmatrix}, \quad \overline{b} = \begin{pmatrix} b \\ \beta \end{pmatrix}, \quad \overline{x} = \begin{pmatrix} x \\ s \end{pmatrix}.$$

Систему (1.9) можно переписать следующим образом:

$$\overline{A} \cdot \overline{x} = \overline{b}$$

$$\overline{x} > 0$$

Эта система несовместна. По лемме Фаркаша найдется вектор \overline{y} такой, что

$$\overline{A}^{\mathsf{T}} \cdot \overline{y} \ge 0$$

$$\overline{b}^{\mathsf{T}} \cdot \overline{y} < 0 \tag{1.10}$$

Матрица $\overline{A}^{\,\mathsf{T}}$ умножается на вектор \overline{y}

$$\overline{A}^{\mathsf{T}} \cdot \overline{y} = \begin{pmatrix} A^{\mathsf{T}} & c \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} y \\ \lambda \end{pmatrix}.$$

Мы предполагаем, что вектор \overline{y} состоит из двух частей (y,λ) . Первая часть соответствует столбцам, проходящим через блок A^{T} , а вторая часть — последнему столбцу матрицы $\overline{A}^{\mathsf{T}}$

$$\overline{y}^{\intercal} = \begin{pmatrix} y & \lambda \end{pmatrix}.$$

Тогда условия (1.10) запишутся следующим образом:

$$\begin{pmatrix} A^{\mathsf{T}}y + c\lambda \\ 0 \cdot y - \lambda \end{pmatrix} \ge 0$$
$$b^{\mathsf{T}}y + \beta\lambda < 0$$

Заметим, что $\lambda \leq 0$. Утверждается, что наличие таких y и λ невозможно. Рассмотрим два случая $\lambda = 0$ и $\lambda < 0$.

 $extit{Cлучай}$ 1. Пусть $\lambda=0$. Тогда

$$A^{\mathsf{T}}y \ge 0$$
$$b^{\mathsf{T}}y < 0.$$

Пусть y^* — это оптимальный план двойственной задачи (\mathfrak{D}). Убедимся, что $y^* + y$ — это допустимый план задачи (\mathfrak{D}):

$$A^{\intercal}(y^* + y) = A^{\intercal}y^* + A^{\intercal}y \ge A^{\intercal}y^* \ge c.$$

Более того, в двойственном задаче (\mathfrak{D}) значение целевой функции на плане y^*+y меньше, чем на плане y^*

$$b^{\mathsf{T}}(y^* + y) = b^{\mathsf{T}}y^* + b^{\mathsf{T}}y < b^{\mathsf{T}}y^* = \beta.$$

Mы нашли допустимый план, на котором значение целевой функции «луч-ше», чем на y^* , что противоречит тому, что y^* — это оптимальный план.

 $extit{C}$ лучай 2. Пусть $\lambda < 0$. Тогда

$$A^{\mathsf{T}}y + c\lambda \ge 0$$
$$b^{\mathsf{T}}y + \beta\lambda < 0.$$

Разделим оба неравенства на $-\lambda>0$

$$-\frac{1}{\lambda}A^{\mathsf{T}}y \ge c$$
$$-\frac{1}{\lambda}b^{\mathsf{T}}y < \beta.$$

Рассмотрим вектор $y' = -\frac{1}{\lambda}y$. Тогда

$$A^{\mathsf{T}}y' \ge c$$
$$b^{\mathsf{T}}y' < \beta,$$

т.е. y' — это допустимый план двойственной задачи (\mathfrak{D}), на котором значение целевой функции меньше β . Это противоречит тому, что оптимальное значение целевой функции в двойственной задаче равно β .

Какими бывают задачи линейного программирования? Задачи бывают совместными и несовместными. Совместные задачи делятся на два типа: задачи на максимум и задачи на минимум. Задачи линейного программирования на максимум классифицируются на два класса: задачи с оптимальными планами и задачи, в которых целевые функции не ограничены сверху на множестве допустимых планов. Задачи линейного программирования на минимум также разбивается на два семейства: задачи, имеющие оптимальные планы, и задачи, целевые функции которых не ограничены снизу на множестве допустимых планов.

Следствие 1.1. Для задач (Π) и (\mathfrak{D}) справедлива следующая альтернатива:

- а) обе задачи (Π) и (\mathfrak{D}) совместны и их целевые функции ограничены на множестве допустимых планов сверху и снизу, соответственно; более того, оптимальные значения целевых функций этих задач равны;
- б) обе задачи несовместны;
- в) задача (Π) несовместна и целевая функция задачи (\mathfrak{D}) не ограничена снизу на множестве допустимых планов;
- r) целевая функция задачи (Π) не ограничена сверху на множестве допустимых планов и задача (\mathfrak{D}) несовместна.

Доказательство. a Пусть (Π) и (\mathfrak{D}) — совместные задачи с ограниченными на множестве допустимых планов, соответственно, сверху и снизу целевыми функциями. Покажем, что оптимальные значения целевых функций задач равны.

Пусть α — оптимальное значение целевой функции задачи (П), β — оптимальное значение целевой функции задачи (\mathfrak{D}). По теореме о слабой двойственности

$$\alpha \le \beta. \tag{1.11}$$

По теореме о сильной двойственности существует допустимый план x^* прямой задачи (П) такой, что

$$c^{\mathsf{T}}x^* \ge \beta \tag{1.12}$$

и существует допустимый план y^* задачи (\mathfrak{D}) такой, что

$$b^{\mathsf{T}}y^* \le \alpha. \tag{1.13}$$

Из (1.11), (1.12) и (1.13) следует

$$b^{\mathsf{T}}y^* \le \alpha \le \beta \le c^{\mathsf{T}}x^*$$
.

Получаем, что $b^{\mathsf{T}}y^* \leq c^{\mathsf{T}}x^*$. По теореме о слабой двойственности $c^{\mathsf{T}}x^* \leq b^{\mathsf{T}}y^*$. Следовательно, $c^{\mathsf{T}}x^* = b^{\mathsf{T}}y^*$ и $\alpha = \beta$.

 $\boxed{6}$ Приведем пример прямо-двойственной пары несовместных задач

$$x_1 \to \max$$

$$0x_1 = -1$$

$$x_1 > 0$$

$$(\Pi')$$

$$0y_1 \ge 1$$

$$(\mathfrak{D}')$$

- в) Пусть прямая задача (П) несовместна, а двойственная задача (\mathfrak{D}) совместна. Наша цель доказать, что целевая функция двойственной задачи (\mathfrak{D}) не ограничена снизу на множестве допустимых планов. От противного. Допустим, что целевая функция задачи (\mathfrak{D}), наоборот, ограничена снизу на множестве допустимых планов. Тогда по теореме о сильной двойственности прямая задача (П) совместна, что противоречит изначальному предположению о несовместности задачи (П).
- $egin{align*} {\it \emph{O}} \end{array}$ Пусть целевая функция прямой задачи (Π) не ограничена сверху на множестве допустимых планов, т.е. для любого $\theta \in \mathbb{R}$ найдется допустимый план $x(\theta)$ такой, что $c^{\mathsf{T}}x(\theta) > \theta$. Необходимо доказать, что двойственная задача (\mathfrak{D}) несовместна. От противного. Допустим, что задача (\mathfrak{D}) совместна, т.е. найдется допустимый план y этой задачи. Положим $\theta = b^{\mathsf{T}}y$. Тогда для допустимого плана $x(\theta)$ прямой задачи (Π) выполняется $c^{\mathsf{T}}x(\theta) > \theta = b^{\mathsf{T}}y$, что противоречит теореме о слабой двойственности.

Если оптимальные значения целевых функций прямой и двойственной задач существуют, то они равны. Часто удобно изучать прямую и двойственную задачи вместе. Однако прямая задача задача может и не быть в канонической форме. Необходимо уметь строить двойственные задачи для задач общего вида, причем без перевода их в каноническую форму. Существуют правила, которые позволяют по задаче линейного программирования построить ее двойственную задачу, для которой справедливы теоремы о слабой и сильной двойственности.

Рассмотрим прямую задачу линейного программирования в общем виде

$$c^{\mathsf{T}}x \to \max / \min$$
 $a_i^{\mathsf{T}}x \le b_i, i \in I_{\le}$
 $a_i^{\mathsf{T}}x \ge b_i, i \in I_{\ge}$
 $a_i^{\mathsf{T}}x = b_i, i \in I_{=}$
 $x_i \ge 0, i \in I_{+}$
 $x_i \le 0, i \in I_{-}$
 $x_i \in \mathbb{R}, i \in I_{\pm},$
 (Π)

где $x^{\mathsf{T}}=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$ — вектор переменных, $a_i\in\mathbb{R}^n$ для любого индекса $i\in I_{\leq}\cup I_{\geq}\cup I_{=}$. Для такой прямой задачи можно построить ее двойственную задачу. Переменные, на знак которых есть ограничения, классифицируем на два типа — хорошие и плохие: переменная x_i хорошая, если $i\in I_+$, и плохая, если $i\in I_-$. Все оновные ограничения типа неравенства также разобъем на хорошие и плохие в зависимости от направления оптимизации целевой функции

	min	max
\leq	плохое ограничение	хорошее ограничение
\geq	хорошее ограничение	плохое ограничение

В двойственной задаче переменные называются двойственными переменными. Двойственных переменных столько сколько основных ограничений в прямой задаче. Пусть $y^{\mathsf{T}}=(y_1,y_2,\ldots,y_m)$ — двойственные переменные, где m — число основных ограничений в прямой задаче $m=|I_<\cup I_>\cup I_=|$.

Переменным прямой задачи взаимно однозначно соответствуют основные ограничения двойственной задачи. Переменным двойственной задачи взаимно однозначно соответствуют основные ограничения прямой задачи. При этом хорошим переменным соответствуют хорошие основные ограничения, плохим переменным — плохие основные ограничения, а переменным, на знак которых нет ограничений, отвечают основные ограничения типа равенства.

Правила построения двойственной задачи.

1. Если x_i — хорошая (плохая) переменная в прямой задаче (П), то i-е основное ограничение в двойственной задаче (\mathfrak{D}) хорошее (соответственно, плохое) и имеет вид

$$A_i^{\mathsf{T}} y \leqslant c_i,$$

где A_i — столбец коэффициентов при переменной x_i в основных ограничениях прямой задачи, c_i — коэффициент при переменной x_i в целевой функции прямой задачи, знак \leq или \geq зависит от направления оптимизации целевой функции в двойственной задачи (\mathfrak{D}) и выбирается таким образом, чтобы ограничение было хорошим (соответственно, плохим).

2. Если $x_i \in \mathbb{R}$ — ни хорошая, ни плохая переменная, то i-е основное ограничение в двойственной задаче (\mathfrak{D}) ни хорошее, ни плохое и имеет вид

$$A_i^{\mathsf{T}} y = c_i$$
.

- 3. Если *i*-е основное ограничение прямой задачи (П) хорошее (плохое), то переменная y_i в двойственной задаче (\mathfrak{D}) хорошая, т.е. $y_i \ge 0$ (соответственно, плохая, т.е. $y_i \le 0$).
- 4. Если i-е основное ограничение прямой задачи (П) ни хорошее, ни плохое, т.е. ограничение типа равенства, то переменная $y_i \in \mathbb{R}$ в двойственной задаче (\mathfrak{D}) ни хорошая, ни плохая, т.е. в задаче (\mathfrak{D}) на знак переменной y_i нет ограничений.
- 5. Целевая функция в задаче (\mathfrak{D}) имеет вид $b^{\mathsf{T}}y$, где b это вектор, состоящий из правых частей основных ограничений прямой задачи.
- 6. Направление оптимизации целевой функции в двойственной задаче (\mathfrak{D}) противоположно направлению оптимизации целевой функции в прямой задаче (Π) .

Соответствие между компонентами прямой задачи на максимум и двойственной задачи представлено в таблице.

Прямая задача	Двойственная задача
$c^{\intercal}x \to \max$	$b^{\intercal}y \to \min$
$a_i^{T} x \le b_i, i \in I_{\le}$	$y_i \ge 0, i \in I_{\le}$
$a_i^{T} x \ge b_i, i \in I_{\ge}$	$y_i \le 0, i \in I_{\ge}$
$a_i^{T} x = b_i, i \in I_=$	$y_i \in \mathbb{R}, i \in I_=$
$x_i \ge 0, i \in I_+$	$A_i^{T} y \ge c_i, i \in I_+$
$x_i \leq 0, i \in I$	$A_i^{T} y \le c_i, i \in I$
$x_i \in \mathbb{R}, i \in I_{\pm}$	$A_i^{T} y = c_i, i \in I_{\pm}$

Пример 1.1. Для следующей задачи ЛП

$$-1x_1 + 1x_2 - 2x_3 \to \min,$$

$$x_1 + x_3 \le 1,$$

$$x_1 - x_3 \ge 2,$$

$$x_1 + x_2 = 10,$$

$$x_1 \ge 0,$$

$$x_2 \le 0.$$

двойственная к ней задача ЛП имеет вид

$$1y_1 + 2y_2 + 10y_3 \to \max y_1 \le 0, y_2 \ge 0, y_1 + y_2 + y_3 \le -1, y_3 \ge 1, y_1 - y_2 = -2$$

Обозначим через A матрицу матрицу, составленную из строк a_i^\intercal , $i\in I_\le \cup I_\ge \cup I_=$. Столбцы матрицы A обозначим через A_1,A_2,\ldots,A_n .

Теорема 1.4 (о дополняющей нежесткости). В прямой задаче (Π) допустимый план x, в двойственной задаче (\mathfrak{D}) допустимый план y являются оптимальными в том и только в том случае, когда

a)
$$\forall i \in I_{\leq} \cup I_{\geq} \cup I_{=} \underbrace{y_i(b_i - a_i^{\mathsf{T}}x)}_{u_i} = 0;$$

$$\textit{6)} \ \forall j \in \{1, 2, \dots, n\} \ \underbrace{(A_j^{\mathsf{T}} y - c_j) x_j}_{v_j} = 0.$$

Доказательство. Будем предполагать, что в прямой задаче (П) целевая функция максимизируется (для минимизационного варианта задачи рассуждения аналогичны).

Утверждается, что $u_i \geq 0$ для любого $i \in I_{\leq} \cup I_{\geq} \cup I_{=}$. Действительно,

a) если $a_i^{\mathsf{T}} x \leq b_i$, то это ограничение прямой задачи хорошее и, поэтому в двойственной задаче переменная y_i тоже хорошая, т.е. $y_i \geq 0$, и

$$y_i(b_i - a_i^{\mathsf{T}} x) \ge 0;$$

б) если $a_i^{\mathsf{T}} x \geq b_i$, то это ограничение прямой задачи плохое и, поэтому в двойственной задаче переменная y_i тоже плохая, т.е. $y_i \leq 0$, и

$$y_i(b_i - a_i^{\mathsf{T}} x) \geq 0;$$

в) если $a_i^{\mathsf{T}} x = b_i$, то $y_i(b_i - a_i^{\mathsf{T}} x) \geq 0$.

Утверждается, что $v_j \ge 0$ для любого $j \in \{1, 2, \dots, n\}$. В самом деле,

а) если в прямой задаче имеется ограничение $x_j \ge 0$, то j-я переменная хорошая и, поэтому в двойственной задаче j-е основное ограничение хорошее, т.е. $A_j^\mathsf{T} y \ge c_j$, и

$$(A_i^{\mathsf{T}}y - c_j)x_j \ge 0;$$

б) если в прямой задаче имеется ограничение $x_j \le 0$, то j-я переменная плохая и, поэтому в двойственной задаче j-е основное ограничение плохое, т.е. $A_j^\mathsf{T} y \le c_j$, и

$$(A_j^{\mathsf{T}}y - c_j)x_j \geq 0;$$

в) если в прямой задаче нет ограничений по знаку на переменную x_j , т.е. $x_j \in \mathbb{R}$, то в двойственной задаче j-е ограничение имеет вид $A_j^\intercal y = c_j$ и, как следствие, $(A_j^\intercal y - c_j) x_j \geq 0$.

Так как $u_i \geq 0$ для любого $i \in I_{\leq} \cup I_{\geq} \cup I_{=}$, то

$$\sum_{i \in I_{\leq} \cup I_{\geq} \cup I_{=}} u_{i} = 0$$

в том и только в том случае, когда

$$\forall i \in I_{\leq} \cup I_{\geq} \cup I_{=} \ u_i = 0.$$

Так как $v_j \ge 0$ для любого $j \in \{1, 2, \dots, n\}$, то

$$\sum_{j=1}^{n} v_j = 0$$

в том и только в том случае, когда

$$\forall j \in \{1, 2, \dots, n\} \ v_j = 0.$$

Докажем, что

$$\sum_{i \in I_{<} \cup I_{>} \cup I_{=}} u_{i} + \sum_{j=1}^{n} v_{j} = b^{\mathsf{T}} y - c^{\mathsf{T}} x. \tag{1.14}$$

Имеем

$$\begin{split} \sum_{i \in I_{\leq} \cup I_{\geq} \cup I_{=}} u_{i} + \sum_{j=1}^{n} v_{j} &= \sum_{i \in I_{\leq} \cup I_{\geq} \cup I_{=}} y_{i}(b_{i} - a_{i}^{\mathsf{T}}x) + \sum_{j=1}^{n} x_{j}(A_{j}^{\mathsf{T}}y - c_{j}) = \\ &= \sum_{i \in I_{\leq} \cup I_{\geq} \cup I_{=}} (y_{i}b_{i} - y_{i}a_{i}^{\mathsf{T}}x) + \sum_{j=1}^{n} (x_{j}A_{j}^{\mathsf{T}}y - c_{j}x_{j}) = \\ &= \sum_{i \in I_{\leq} \cup I_{\geq} \cup I_{=}} y_{i}b_{i} - \sum_{i \in I_{\leq} \cup I_{\geq} \cup I_{=}} y_{i}a_{i}^{\mathsf{T}}x + \sum_{j=1}^{n} x_{j}A_{j}^{\mathsf{T}}y - \\ &- \sum_{j=1}^{n} c_{j}x_{j} = b^{\mathsf{T}}y - c^{\mathsf{T}}x - \left(\sum_{i \in I_{\leq} \cup I_{\geq} \cup I_{=}} y_{i}a_{i}^{\mathsf{T}}\right)x + \\ &+ \left(\sum_{j=1}^{n} x_{j}A_{j}^{\mathsf{T}}\right)y = b^{\mathsf{T}}y - c^{\mathsf{T}}x - (y^{\mathsf{T}}A)x + (x^{\mathsf{T}}A^{\mathsf{T}})y = \\ &= b^{\mathsf{T}}y - c^{\mathsf{T}}x - (x^{\mathsf{T}}A^{\mathsf{T}}y)^{\mathsf{T}} + (x^{\mathsf{T}}A^{\mathsf{T}}y) = b^{\mathsf{T}}y - c^{\mathsf{T}}x. \end{split}$$

Имеет место следующая цепочка равносильных переходов:

$$\begin{cases} x - \text{ оптимальный план задачи (П)} \\ y - \text{ оптимальный план задачи (\mathfrak{D})} \end{cases} \leftrightarrow c^{\mathsf{T}}x = b^{\mathsf{T}}y \leftrightarrow b^{\mathsf{T}}y - c^{\mathsf{T}}x = 0 \overset{(1.14)}{\longleftrightarrow} \end{cases}$$

$$\overset{(1.14)}{\longleftrightarrow} \sum_{i \in I_{\leq} \cup I_{\geq} \cup I_{=}} u_{i} + \sum_{j=1}^{n} v_{j} = 0 \leftrightarrow \end{cases}$$

$$\leftrightarrow \begin{cases} \sum_{i \in I_{\leq} \cup I_{\geq} \cup I_{=}} u_{i} = 0 \\ \sum_{j=1}^{n} v_{j} = 0 \end{cases} \leftrightarrow$$

$$\longleftrightarrow \begin{cases} u_{i} = 0, & \forall i \in I_{\leq} \cup I_{\geq} \cup I_{=} \\ v_{j} = 0, & \forall j \in \{1, 2, \dots, n\}. \end{cases}$$

1.3 Двойственный симплекс-метод

Помимо симплекс-метода существуют и другие вычислительные схемы решения задач линейного программирования. Мы рассмотрим одну из них, которая носит название двойственный симплекс-метод.

Двойственный симплекс-метод состоит, фактически, в применении симплекс-метода к двойственной задаче. Этот метод удобен тем, что его можно применять в том случае, когда решается не одна, а несколько задач линейного программирования, каждая из которых получается из предыдущей добавлением одного нового ограничения.

Рассмотрим каноническую задачу линейного программирования (П)

$$c^{\mathsf{T}}x \to \max$$

$$Ax = b \tag{A}$$

$$x \ge 0,\tag{B}$$

где $x^\intercal=(x_1,x_2,\ldots,x_n)$ — переменные, A — матрица размера $m\times n$. Предполагаем, что rank(A)=m.

В двойственном симплекс-методе строится последовательность векторов $\kappa \in \mathbb{R}^n$, которые удовлетворяют условию (A), но при этом необязательно удовлетворяют условию (B), — последовательность так называемых псевдопланов.

Определение 1.4. Пусть y — допустимый план двойственной задачи (\mathfrak{D}) и $B\subseteq\{1,2,\ldots,n\}$. Пара (y,B) называется базисным двойственным планом, если

- a) |B| = m;
- б) $|A_B| \neq 0$;
- $g(y) y^{\mathsf{T}} = c_B^{\mathsf{T}} A_B^{-1}.$

Вектор $\kappa \in \mathbb{R}^n$, который строится по правилам $\kappa_B = A_B^{-1}b$ и $\kappa_N = 0$, называется псевдопланом, соответствующим базисному двойственному плану (y,B).

Лемма 1.2. Псевдоплан κ удовлетворяет условию (A).

Доказательство. Имеет место следующая цепочка переходов: $\kappa_B=A_B^{-1}b \to A_B\kappa_B=b \to A_B\kappa_B+A_N\kappa_N=b \to A\kappa=b$.

Лемма 1.3. Если псевдоплан $\kappa \geq 0$, то κ — оптимальный план задачи (П).

Доказательство. Пусть $\kappa \geq 0$ — псевдоплан, ассоциированный с базисным двойственным планом (y,B). Для того, чтобы доказать, что κ — оптимальный план прямой задачи (П) достаточно показать, что $c^{\mathsf{T}}x = b^{\mathsf{T}}y$. Имеем

$$c_B^{\mathsf{T}} \underbrace{A_B^{-1} b}_{\kappa_B} = \underbrace{c_B^{\mathsf{T}} A_B^{-1}}_{y^{\mathsf{T}}} b$$

$$c_B^{\mathsf{T}} \kappa_B = y^{\mathsf{T}} b$$

$$c_B^{\mathsf{T}} \kappa_B + c_N^{\mathsf{T}} \kappa_N = y^{\mathsf{T}} b$$

$$c^{\mathsf{T}} x = b^{\mathsf{T}} y.$$

Если $\kappa \geq 0$, то κ — оптимальный план задачи (П). Рассмотрим ситуацию, когда в псевдоплане κ есть отрицательные компоненты.

Лемма 1.4. Пусть $(\kappa_B)_s < 0$ (s-я по счету базисная компонента псевдоплана κ меньше 0) u

$$(s$$
-я строка $A_B^{-1})A_N \ge 0.$ (1.15)

Тогда целевая функция двойственной задачи (\mathfrak{D}) не ограничена снизу на множестве допустимых планов, а прямая задача (Π) несовместна.

Доказательство. Пусть (y,B) — базисный двойственный план и κ — соответствующий псевдоплан такой, что $(\kappa_B)_s < 0$. Предположим (1.15).

Рассмотрим произвольное число $\theta \in \mathbb{R}$. Покажем, что существует допустимый план $y(\theta)$ двойственной задачи (\mathfrak{D}) , на котором значение целевой функции меньше θ , т.е. $b^{\mathsf{T}}y(\theta)<\theta$. Положим $y(\theta)=y+\Delta y$, где $\Delta y^{\mathsf{T}}=\sigma(s$ -я строка $A_B^{-1}),\ \sigma>0$ — положительное число. Убедимся, что $y(\theta)$ — допустимый план задачи (\mathfrak{D}) . Достаточно доказать, что $A_B^{\mathsf{T}}y(\theta)\geq c_B$ и $A_N^{\mathsf{T}}y(\theta)\geq c_N$.

Легко доказать первое неравенство

$$A_B^{\mathsf{T}} y(\theta) = A_B^{\mathsf{T}} (y + \Delta y) = A_B^{\mathsf{T}} y + A_B^{\mathsf{T}} \Delta y = c_B + (\Delta y^{\mathsf{T}} A_B)^{\mathsf{T}} = c_B + \sigma(0, \dots, 0, \underbrace{1}_{s}, 0, \dots, 0)^{\mathsf{T}} \ge c_B.$$

Аналогично, для второго неравенства

$$A_N^\intercal y(\theta) = A_N^\intercal (y + \Delta y) = A_N^\intercal y + A_N^\intercal \Delta y \ge c_N + (\Delta y^\intercal A_N^\intercal)^\intercal = c_N + \sigma((s$$
-я строка $A_R^{-1})A_N)^\intercal \ge c_N.$

Оценим $b^{\mathsf{T}}\Delta y$:

$$b^\intercal \Delta y = \Delta y^\intercal b = \Delta y^\intercal A_B \kappa_B = \sigma(s$$
-я строка $A_B^{-1}) A_B \kappa_B = \sigma(0,\dots,0,\frac{1}{s},0,\dots,0) \kappa_B = \sigma(\kappa_B)_s.$

Так как $\sigma > 0$ и $(\kappa_B)_s < 0$, то

$$b^{\mathsf{T}} \Delta y = \sigma(\kappa_B)_s < 0. \tag{1.16}$$

Получаем, что

$$b^{\mathsf{T}}y(\theta) = b^{\mathsf{T}}(y + \Delta y) = b^{\mathsf{T}}y + b^{\mathsf{T}}\Delta y = b^{\mathsf{T}}y + \sigma(\kappa_B)_s.$$

Выберем $\sigma>0$ так, чтобы $b^{\intercal}y(\theta)<\theta$, т.е. $b^{\intercal}y+\sigma(\kappa_B)_s<\theta$. Выразим σ

$$\sigma > \frac{\theta - b^{\mathsf{T}} y}{(\kappa_B)_s}.$$

Осталось рассмотреть случай, когда (a) в псевдоплане κ есть отрицательные компоненты, т.е. $(\kappa_B)_s < 0$ и (δ) условие (1.15) не выполняется, т.е. найдется небазисный индекс $j \in N$ такой, что

$$(s$$
-я строка $A_B^{-1})A_j < 0$.

Мы хотим по базисному двойственному плану (y, B) построить новый базисный двойственный план (y', B') такой, что значение целевой функции двойственной задачи на y' меньше, чем на y.

Положим

$$y' = y + \Delta y,$$

где $\Delta y^{\mathsf{T}} = \sigma(s$ -я строка $A_B^{-1})$. Согласно (1.16)

$$b^{\mathsf{T}} \Delta y = \sigma(\kappa_B)_s < 0.$$

Тогда

$$b^{\mathsf{T}}y' = b^{\mathsf{T}}(y + \Delta y) = b^{\mathsf{T}}y + b^{\mathsf{T}}\Delta y < b^{\mathsf{T}}y.$$

Значение целевой функции двойственной задачи (\mathfrak{D}) на y' меньше, чем на y. Выберем положительное число σ таким образом, чтобы y' был допустимым планом задачи (\mathfrak{D}) .

Так как y — допустимый план задачи (\mathfrak{D}) , то $A^{\mathsf{T}}y \geq c$, т.е. $(A^{\mathsf{T}}y)_B \geq c_B$ и $(A^{\mathsf{T}}y)_N \geq c_N$. Нас интересует значение $\sigma > 0$, при котором $A^{\mathsf{T}}y' \geq c$:

$$A^{\mathsf{T}}y' = A^{\mathsf{T}}(y + \Delta y) = A^{\mathsf{T}}y + A^{\mathsf{T}}\Delta y = A^{\mathsf{T}}y + (\Delta y^{\mathsf{T}}A)^{\mathsf{T}}.$$

При этом

$$\Delta y^{\mathsf{T}} A = \sigma(s\text{-}\mathsf{Я} \ \mathsf{строка} \ A_B^{-1})(A_B \mid A_N) = (\underbrace{0,\ldots,0,\overset{s}{\sigma},0,\ldots,0}_{(\Delta y^{\mathsf{T}}A)_B} \mid \underbrace{\sigma(s\text{-}\mathsf{Я} \ \mathsf{строка} \ A_B^{-1})A_N}_{(\Delta y^{\mathsf{T}}A)_N}).$$

Тогда

$$(A^{\mathsf{T}}y')_B = (A^{\mathsf{T}}y)_B + (\Delta y^{\mathsf{T}}A)_B \ge (A^{\mathsf{T}}y)_B \ge c_B;$$
 $(A^{\mathsf{T}}y')_N = (A^{\mathsf{T}}y)_N + (\Delta y^{\mathsf{T}}A)_N = (A^{\mathsf{T}}y)_N + \sigma((s\text{-\mathfrak{S} строка }A_B^{-1})A_N)^{\mathsf{T}}.$

Рассмотрим произвольный небазисный индекс ј. Мы хотим, чтобы

$$(A^{\mathsf{T}}y)_j + \sigma \underbrace{((s-\mathsf{Я} \ \mathsf{строка} \ A_B^{-1})A_j)}_{\mu_j} \ge c_j.$$
 (1.17)

Если $\mu_j \ge 0$, то неравенство (1.17) выполняется при любом σ . Пусть $\mu_j < 0$. Выразим в (1.17) величину σ

$$\sigma \le \frac{c_j - (A^{\mathsf{T}}y)_j}{\mu_i}.$$

Каждый небазисный индекс j, для которого $\mu_j < 0$, определяет верхнюю грань на значение величины σ . Выберем в качестве σ минимальную грань

$$\sigma = \min_{j \in N: \mu_j < 0} \frac{c_j - (A^{\mathsf{T}}y)_j}{\mu_j}.$$

Остается подкорректировать множество базисных индексов

$$B' = (B \setminus \{s$$
-й базисный индекс в $B\}) \cup \{j\}$,

где j — это индекс, на котором достигается минимум при вычислении σ . Двойственный симплекс-метод

Вход: c,A,b — параметры задачи (П), (y,B) — базисный двойственный план.

Выход: сообщение о том, что задача (Π) несовместна или оптимальный план задачи (Π).

Шаг 1. Находим псевдоплан $\kappa = (\kappa_B = A_B^{-1}b, \kappa_N = 0)$, соответствующий базисному двойственному плану (y, B).

Шаг 2. Если $\kappa \geq 0$, то STOP: κ — оптимальный план задачи (П).

Шаг 3. Находим отрицательную компоненту в псевдоплане κ , $(\kappa_B)_s < 0$.

Шаг 4. Если (s-я строка $A_B^{-1})A_N \geq 0$, то STOP: задача (Π) несовместна.

Шаг 5. Находим

$$\sigma = \min rac{c_j - (A^\intercal y)_j}{(s$$
-я строка $A_B^{-1})A_j},$

где минимум берется по всем небазисным индексам $j \in N$ таким, что

$$(s$$
-я строка $A_B^{-1})A_j < 0.$

Шаг 6. Находим $\Delta y^{\mathsf{T}} = \sigma(s$ -я строка $A_B^{-1}).$

Шаг 7. $y \leftarrow y + \Delta y, \ B \leftarrow (B \setminus \{s$ -й базисный индекс в $B\}) \cup \{j\}$, где j

— индекс, на котором достигается минимум на шаге 5.

Шаг 8. Переходим на шаг 1.