Programming Task

Code 1.1 referenced page 13 was used to compute the approximation Y_n using the Euler and Runge-Kutta method.¹ To test that the program was running properly, Code 1.2 referenced page 14 produced Figure 1, a plot of both solutions Y_n with the exact solution y(x) superimposed. Y_n was calculated over the interval [0,1] with h=0.1.

Figure 1: Plot of Y_n using Euler and RK4 methods with exact solution

Question 1

Code 1.1 was used to produce Tables 1-7 with the appropriate changes to h.

x_n	Y_n	$y(x_n)$	E_n	E_n/E_{n-1}
0	0	0	0	0
2.0	8.0	0.03596	7.964	∞
4.0	-55.853	0.0006707	-55.854	-7.0133
6.0	390.98	0.000012288	390.98	-7.0
8.0	-2736.8	2.2507e-7	-2736.8	-7.0
10.0	19158.0	4.1223e-9	19158.0	-7.0
12.0	-134110.0	7.5503e-11	-134110.0	-7.0

Table 1: Euler method for equation (5a) with h = 2

Observe in Table 1 that $|E_n| \to \infty$, suggesting this approximation is unstable. The last column of Table 1 suggests the error grows 7 times larger with every step. Therefore, for large n, $|E_n/E_{n-1}| = e^{\gamma h}$, and since h = 2, we calculate $\gamma = \ln(7)/2$.

Below are the same approximations for Y_n with different values of h. Parts of the data has been omitted.

¹Note that the functions Euler and RK4 defined in Code 1.1 will be used throughout the project, and so their definitions will not be included in any further code's referencing.

x = n	Y_n	E_n	E_n/E_{n-1}
1.0	4.0	3.766	∞
2.0	-11.459	-11.495	-3.0522
3.0	34.449	34.444	-2.9966
4.0	-103.34	-103.34	-3.0002
:	:	<u> </u>	:
11.0	226000.0	226000.0	-3.0
12.0	-678000.0	-678000.0	-3.0

x = 0.6n	Y_n	E_n	E_n/E_{n-1}
0.6	2.4	1.979	∞
1.2	-2.6371	-2.8021	-1.4159
1.8	3.9097	3.8566	-1.3763
2.4	-5.408	-5.4243	-1.4065
:	:	:	:
11.4	843.12	843.12	-1.4
12.0	-1180.4	-1180.4	-1.4

Table 3: h = 0.6

x = 0.5n	Y_n	E_n	E_n/E_{n-1}
0.5	2.0	1.5349	∞
1.0	-1.2642	-1.4983	-0.97613
1.5	1.5349	1.4403	-0.9613
2.0	-1.4353	-1.4713	-1.0215
:	:	:	:
11.5	1.4621	1.4621	-1.0
12.0	-1.4621	-1.4621	-1.0

Table 4: h = 0.5

x = 0.4n	Y_n	E_n	E_n/E_{n-1}
0.4	1.6	1.1051	∞
0.8	-0.24107	-0.56334	-0.50975
1.2	0.46768	0.3027	-0.53733
1.6	-0.13546	-0.21366	-0.70584
:	:	:	:
11.6	5.6194e-7	5.6178e-7	-0.5999
12.0	-3.3703e-7	-3.3711e-7	-0.60007

Table 5: h = 0.4

x = 0.3n	Y_n	E_n	E_n/E_{n-1}
0.3	1.2	0.70477	∞
0.6	0.41857	-0.0023786	-0.003375
0.9	0.27772	0.0017679	-0.74328
1.2	0.14282	-0.022161	-12.535
:	•	•	:
11.7	1.1023e-10	-2.734e-11	0.54881
12.0	6.0498e-11	-1.5005e-11	0.54881

Table 6: h = 0.3

x = 0.2n	Y_n	E_n	E_n/E_{n-1}
0.2	0.8	0.35802	∞
0.4	0.69626	0.20139	0.56252
0.6	0.49871	0.077762	0.38612
0.8	0.3407	0.01843	0.237
:	:	:	:
11.8	9.5796e-11	-1.6841e-11	0.67032
12.0	6.4214e-11	-1.1289e-11	0.67032

Table 7: h = 0.2

 E_n is still unstable in Tables 2 and 3 however it diverges slower than when h=2, meaning $0 < \gamma < \ln(7)/2$. The global error has fixed magnitude in Table 4, suggesting that γ is close to 0. In Tables 5-7 the solution is stable, i.e. E_n tends to 0, so $\gamma < 0$. We conclude that as h decreases, the growth rate decreases, and that Y_n is stable when the growth rate is negative, i.e. when h is less than a certain value which is approximately 0.5. Observe that in the last column of Table 7 the error ratio is larger than that in Table 6. This is due to the code dividing by a small number that cannot be stored to a high enough precision.

Question 2

We can rewrite the difference equation as

$$Y_n = (1 - 4h) Y_{n-1} + 4h \left(e^{-2h}\right)^n \tag{1}$$

Expanding this, and using the fact that $Y_0 = 0$ gives

$$Y_n = 4h \left(e^{-2h}\right)^{n-1} \sum_{r=0}^{n-1} \left(e^{2h} \left(1 - 4h\right)\right)^r$$

$$= 4h \left(e^{-2h}\right)^{n-1} \left(\frac{1 - (1 - 4h)^n \left(e^{2h}\right)^n}{1 - (1 - 4h) e^{2h}}\right)$$
(2)

Instability occurs if the infinite sum diverges faster than the coefficient on the front converges to 0. The leading term in equation (2) is $4h(1-4h)^{n-1}$, so instability occurs when $h \ge 1/2$ since then |1-4h| > 1 and $Y_n \to \infty$. For large n the error ratio is $\exp(\ln(|1-4h|))$, and so we conclude that the growth rate is $\ln(|1-4h|)/h$. These conclusions are consistent with the values in Question 1.

If $x_n = nh$ remains fixed, we may write $h = x_n/n$. So $(1-4h)^n \to e^{-4x_n}$ and

$$Y_{\infty} = \lim_{h \to 0} 4h \left(e^{-2x_n} \right) e^{2h} \left(\frac{1 - e^{-2x_n}}{1 - (1 - 4h) e^{2h}} \right)$$

$$= \left(4e^{-2x_n} - 4e^{-4x_n} \right) \lim_{h \to 0} \frac{h}{1 - (1 - 4h) e^{2h}}$$

$$= \left(4e^{-2x_n} - 4e^{-4x_n} \right) \lim_{h \to 0} \frac{1}{-2e^{2h} + 4e^{2h} + 8he^{2h}}$$
(3)

using l'hôpital's rule. The result follows.

Question 3

Code 1.1 was used to produce Tables 8-9 with the changes that h = 0.4 and the interval being integrated over as [0, 6].

	V	2.(22.)	\overline{L}	E^{-}/E^{-}
x_n	Y_n	$y(x_n)$	E_n	E_n/E_{n-1}
0	0	0	0	0
0.4	1.6	0.49486	1.1051	∞
0.8	-0.24107	0.32227	-0.56334	-0.50975
1.2	0.46768	0.16498	0.3027	-0.53733
1.6	-0.13546	0.078201	-0.21366	-0.70584
2.0	0.14649	0.03596	0.11053	-0.51734
2.4	-0.058592	0.016324	-0.074916	-0.67776
2.8	0.048323	0.0073684	0.040954	-0.54667
3.2	-0.023077	0.0033176	-0.026395	-0.64449
3.6	0.016505	0.0014921	0.015013	-0.56878
4.0	-0.0087083	0.0006707	-0.009379	-0.62474
4.4	0.0057617	0.00030142	0.0054603	-0.58218
4.8	-0.0032159	0.00013545	-0.0033513	-0.61376
5.2	0.0020379	0.000060863	0.001977	-0.58992
5.6	-0.001174	0.000027348	-0.0012014	-0.60768
6.0	0.0007263	0.000012288	0.00071401	-0.59432

Table 8: Euler method to solve equation (5a) with h = 0.4

x_n	Y_n	$y(x_n)$	E_n	E_n/E_{n-1}
0	0	0	0	0
0.4	0.39989	0.49486	-0.094973	$-\infty$
0.8	0.28781	0.32227	-0.034455	0.36279
1.2	0.15856	0.16498	-0.0064148	0.18618
1.6	0.079152	0.078201	0.00095115	-0.14827
2.0	0.037703	0.03596	0.0017429	1.8325
2.4	0.017519	0.016324	0.0011952	0.68574
2.8	0.0080282	0.0073684	0.00065983	0.55207
3.2	0.0036496	0.0033176	0.00033198	0.50313
3.6	0.0016513	0.0014921	0.00015923	0.47964
4.0	0.00074506	0.0006707	0.000074362	0.467
4.4	0.00033561	0.00030142	0.000034193	0.45982
4.8	0.00015103	0.00013545	0.000015579	0.45561
5.2	0.000067922	0.000060863	7.0587e-6	0.45311
5.6	0.000030536	0.000027348	3.1877e-6	0.4516
6.0	0.000013725	0.000012288	1.4367e-6	0.4507

Table 9: Runge-Kutta method to solve equation (5a) with h=0.4

It can be seen that the error in the Runge-Kutta decreases at a faster rate than the Euler method, and this is better presented in Figure 2 below, produced by Code 1.2. Both numerical solutions have the same long time behaviour as the exact solution; both methods are stable.

Figure 2: Plot of Y_n using Euler and RK4 methods with exact solution where h=0.4

Question 4

Code 4.1 referenced page 15 produced Table 10 and Figures 3-4 below.

h	E_n using Euler	E_n using RK4
1.6	6.3218	-51.339
0.8	-6.4721	-4.2435
0.4	-0.21366	0.00095115
0.2	-0.0088704	0.00010423
0.1	-0.004174	5.5117e-6
0.05	-0.00195	3.1351e-7
0.025	-0.00093479	1.8658e-8
0.0125	-0.00045677	1.1374e-9
0.00625	-0.00022566	7.02e-11
0.003125	-0.00011215	4.3599e-12
0.0015625	-0.0000559	2.7156e-13
0.00078125	-0.000027907	1.6889e-14
0.00039062	-0.000013943	1.138e-15
0.00019531	-6.9686e-6	3.1919e-16
0.000097656	-3.4836e-6	-6.9389e-17
0.000048828	-1.7416e-6	2.7756e-16

Table 10: E_n at $x_n=1.6$ using Euler and RK4 methods for various h

Figure 3: $\log(|E_n|)$ against $\log(h)$ using the Euler method

Figure 4: $\log(|E_n|)$ against $\log(h)$ using the RK4 method

Both methods bear out their theoretical orders of accuracy. If a general method is n-th order accurate, then we may write $E(h) = Ch^n$ where C is some constant and E(h) is the error in approximating a given point with step size h. Therefore $\log(E(h)) = n\log(h) + \log(C)$, so plotting $\log(E(h))$ against $\log(h)$ would give a straight line with gradient n. Code 4.1 superimposes the straight lines x + a and 4x + b for some constants a and b to illustrate this point for the Euler and Runge Kutta methods respectively. Note that the data points in Figure 4 tend upwards as $\log(h)$ gets small. This is due to the program not being able to store h^4 to a high enough order of accuracy and so when dividing by them there is a large possible error.

Question 5

Code 1.1 was used to produce the data in Table 11 with the appropriate changes to the interval integrated over, h, f(x, y), and the exact solution y(x).

x = 0.2n	Y_n	y(x)	E_n	E_n/E_{n-1}
0	1.0	1.0	0	0
0.001	0.999	0.999	-4.9983e-7	$-\infty$
0.002	0.998	0.998	-1.0012e-6	2.003
0.003	0.997	0.997	-1.504e-6	1.5023
0.004	0.99601	0.99601	-2.0084e-6	1.3353
:	:	:	:	:
9.998	-2.1556e+13	4.5491e-05	-2.1556e+13	1.004
9.999	-2.1642e+13	4.5445 e - 05	-2.1642e+13	1.004
10	-2.1728e+13	4.54e-05	-2.1728e+13	1.004

Table 11: Euler Method used to solve Question 5

It can be seen that the error ratio is just greater than 1, suggesting that this approximation does

grow exponentially. Following a similar method to Question 2, expanding the Euler difference equation and summing the geometric series gives

$$Y_n = (1+4h)^n - 5h(1+4h)^{n-1} \frac{1-e^{-hn}(1+4h)^{-n}}{1-e^{-h}(1+4h)^{-1}}$$
(4)

The dominant term in this equation is $(1+4h)^n$, so for large $n, E_n \approx (1+4h)^n$. Therefore for any h > 0 the error cannot be suppressed using the Euler method. Expanding the Runge-Kutta difference equation gives

$$Y_{n+1} = (1+4h)Y_n - 5he^{-x_n} + O(h^2)Y_n + O(h^2)e^{-x_n}$$

= $Y_n + hf(x_n, Y_n) + O(h^2)Y_n + O(h^2)e^{-x_n}$ (5)

As $h \to 0$, the difference equation above tends to the Euler difference equation, so both methods would give the same solution. Therefore the error wouldn't be suppressed with a small h using the Runge-Kutta method.

Question 6

When p = 0 the original differential equation becomes y''(x) = 0 so y = ax + b. Imposing initial conditions gives the trivial solution y = 0. Differentiating the general solution gives

$$\frac{dy}{dx} = A\sin(p(1+x)^{-1} - \phi) - Ap(1+x)^{-1}\cos(p(1+x)^{-1} - \phi)$$
(6)

so imposing conditions (15) in the booklet gives

$$A\sin(p - \phi) = 0$$

$$-Ap\cos(p - \phi) = 1$$
(7)

This implies that $p - \phi = \pi k$ where $k \in \mathbb{Z}$, and $A = (-1)^{k-1}/p$ (It is assumed $p \neq 0$ otherwise the formula given would not hold). So the particular solution is

$$y = \frac{(-1)^{k-1}}{p} (1+x) \sin\left(\frac{p}{1+x} - p + k\pi\right)$$
$$= \frac{1}{p} (1+x) \sin\left(\frac{px}{1+x}\right)$$
 (8)

Imposing the condition y(1) = 0 means that $\sin(p/2) = 0$. Hence the smallest (positive) eigenvalue is $p = 2\pi$ and all eigenvalues are of the form $p_n = 2\pi n$ where $n \in \mathbb{Z}$. The corresponding eigenfunctions are

$$y_n = A(1+x)\sin\left(\frac{2\pi nx}{1+x}\right) \tag{9}$$

where A is an arbitrary constant.

Programming Task

Code 7.1 referenced page 16 was used to calculate the analytic solution with $x_0 = 0, y_0 = 0, z_0 = 1, x_n = \pi/2, h = \pi/100, p = 1, \alpha = 0$. The exact solution to this problem is $\sin(x)$, so the expected outcome is $Y_n = 1$.

x_n	Y_n	Y'_n
0	0	1.0
0.031416	0.031411	0.99951
0.062832	0.062791	0.99803
:	:	:
1.5394	0.99951	0.031411
1.5708	1.0	1.2746e-8

Table 12: Test data for Programming Task

This is correct, so the programme works.²

Question 7

Code 7.2 referenced page 17 is a modification of Code 7.1 and was used to produce the data in Tables 13-14.

h	$Y_n(1)$	$Y'_n(1)$	y(1)	E_n	E_n/h^4
0.1	0.047118	-0.47125	0.04704	0.000078172	0.78172
0.05	0.047047	-0.47146	0.04704	6.8166e-6	1.0906
0.025	0.04704	-0.47148	0.04704	4.6574e-7	1.1923
0.0125	0.04704	-0.47148	0.04704	2.9972e-8	1.2277
0.00625	0.04704	-0.47148	0.04704	1.8941e-9	1.2413
0.003125	0.04704	-0.47148	0.04704	1.1893e-10	1.2471
0.0015625	0.04704	-0.47148	0.04704	7.449e-12	1.2497
0.00078125	0.04704	-0.47148	0.04704	4.6559e-13	1.2498
0.00039062	0.04704	-0.47148	0.04704	2.8963e-14	1.2439
0.00019531	0.04704	-0.47148	0.04704	1.5335e-15	1.0538
0.000097656	0.04704	-0.47148	0.04704	-3.2613e-16	-3.5858
0.000048828	0.04704	-0.47148	0.04704	2.8449e-16	50.049
0.000024414	0.04704	-0.47148	0.04704	-7.6328e-17	-214.84

Table 13: RK4 approximation of 2nd order ODE with p=6

h	$Y_n(1)$	$Y'_n(1)$	y(1)	E_n	E_n/h^4
0.1	-0.09995	-0.51797	-0.10022	0.00027401	2.7401
0.05	-0.10021	-0.51833	-0.10022	0.000018526	2.9641
0.025	-0.10022	-0.51834	-0.10022	1.1413e-6	2.9218
0.0125	-0.10022	-0.51834	-0.10022	6.9846e-8	2.8609
0.00625	-0.10022	-0.51834	-0.10022	4.3039e-9	2.8206
0.003125	-0.10022	-0.51834	-0.10022	2.6684e-10	2.798
0.0015625	-0.10022	-0.51834	-0.10022	1.6606e-11	2.7861
0.00078125	-0.10022	-0.51834	-0.10022	1.0353e-12	2.7791
0.00039062	-0.10022	-0.51834	-0.10022	6.4893e-14	2.7871
0.00019531	-0.10022	-0.51834	-0.10022	3.9413e-15	2.7084
0.000097656	-0.10022	-0.51834	-0.10022	4.8572e-16	5.3406
0.000048828	-0.10022	-0.51834	-0.10022	1.471e-15	258.79
0.000024414	-0.10022	-0.51834	-0.10022	1.9429e-15	5468.8

Table 14: RK4 approximation of 2nd order ODE with p=7

The error in this program behaves as expected, since plotting E_n against h^4 gives a constant, implying that this method is indeed 4th order convergent. In both cases this column grows out of control as h grows small. This can be explained by the fact that h^4 is very small and MATLAB cannot store it to a high enough precision. Therefore dividing by it gives a large possibility for error.

Programming Task

Code 8.1 referenced page 18 was used to produce the test data in Table 15. The function $g(p) = x^2 - 3$ with starting interval [0,3], and so the root being searched for is $\sqrt{3}$. Clearly the code works.

 $^{^{2}}$ The functions RK4Vector and F defined in Code 7.1 will be used throughout the rest of this project. They will not be defined in further code.

Iteration n	P_n	$g(P_n)$
0	0	-3.0
1.0	1.0	-2.0
2.0	1.5	-0.75
3.0	1.6666667	-0.2222222
:	:	:
12.0	1.7320503	-0.0000016436546
13.0	1.7320507	-0.00000044041601

Table 15: Test data for bisection method

Question 8

Code 8.1 referenced page 18 produced the iterates in Table 16 with the values $h = 7.3 \times 10^{-7}$ and $\epsilon = 0.001$. It has the alteration that LowerP = 6, UpperP = 7 at the start, and that the function g is instead defined as

```
function answer=g(x)
    answer=RK4Vector(0,1,0,1,0.001,x,4);
    answer=answer(end,2);
end
```

Iteration n	P_n	$g(P_n)$
1	6.319426827431968	-0.005734624021197
2	6.284717102857235	-2.437334079506857e-04
3	6.283249472007579	-1.021204360527814e-05
4	6.283187993946834	-4.276104517038359e-07

Table 16: Approximation of smallest eigenvalue with $\alpha = 4$

In order to justify the choice of ϵ , we must first approximate the gradient $g'(p_*)$ where p_* is the eigenvalue. Assuming that g''(p) is small in the interval [6,7], $g'(p_*) \approx g(7) - g(6) = -0.14726$, and so in order for the error in the approximation to be less than $\pm 5 \times 10^{-6}$, it is sufficient to choose $\epsilon \leq 5 \times 10^{-6} \times 0.14726 = 7.3 \times 10^{-7}$. This works on the assumption that g(p) is evaluated perfectly at each value of p.

Suppose we iterated one step of the false-position method over the interval [a, b], however the value g(a) was perturbed as $g(a) + \delta_1$, and g(b) as $g(b) + \delta_2$. As long as $(g(a) + \delta_1)(g(b) + \delta_2) < 0$, the iteration will move closer towards the root. Therefore the error approximating g(p) shouldn't change the signs of any values. Assuming that $g(p) > 7.3 \times 10^{-7}$, otherwise the code would terminate, we require the error in approximating g(p) to be less than 7.3×10^{-7} .

To find a suitable h, we must first show $|y(x)| \le x$ for all $x \ge 0$. We argue that $|y'(x_*)| \le 1$ for any root $y(x_*) = 0$ using equation 13a in the booklet. We may visualise this equation as modelling a particle with a restoring force causing it to oscillate. Since this restoring force decreases with time x, it doesn't make sense for this particle to return to 0 faster than it left. By setting y'(0) = 1, we ensure that $|y'(x_*)| \le 1$, and so $|y(x)| \le x$ for all $x \ge 0$. Note this is true for all $\alpha \ge 0$.

Finding a h_0 such that -1 < g(p) < 1 means the error is at most 2. Since the error in approximating g(p) behaves as $O(h^4)$, we find a k such that $2 \times k^4 \le 7.3 \times 10^{-7}$ or that $k \le 0.0245$. Therefore we pick our final h as h_0k . Using the data in Tables 13-14, we choose $h_0 = 0.1$ and k = 0.01, and so h = 0.001 is sufficient. (The absolute error in Table 16 is 2.686×10^{-6} .)

Question 9

Code 9.1 referenced page 19 was used to produce Table 17 and Figures 5-9.

Eigenvalues
10.35892178053953
21.2639307728608
32.10538539075143
42.91933654669045
53.71911187891973

Table 17: Smallest eigenvalues with $\alpha=8$

These eigenvalues are the smallest possible. Code 9.1 searches upwards to find an interval of length one that straddles the root g(p)=0. Once it has found these intervals, it clarifies that -1 < g(p) < 1 to ensure the initial error is less than 2. To find a suitable ϵ it approximates the smallest value of $|g'(p_*)|$ using the method in Question 8. This ϵ is calculated as 1.08×10^{-7} , so we choose a k such that $2 \times k^4 \le 1.08 \times 10^{-7}$, or k = 0.01. Therefore h = 0.001 is sufficient for the eigenvalues to have an error less than $\pm 5 \times 10^{-6}$.

Figure 5: Normalised y(x) using smallest eigenvalue p = 10.4

Figure 6: Normalised y(x) using 2nd smallest eigenvalue p=21.3

Figure 7: Normalised y(x) using 3rd smallest eigenvalue p=32.1

Figure 8: Normalised y(x) using 4th smallest eigenvalue p=42.9

Figure 9: Normalised y(x) using 5th smallest eigenvalue p=53.7

In all figures there appears to be greater oscillation as x increases, which makes sense since the mass distribution $\mu(x)$ decreases. It can also be seen that $|y'(x_*)|$ decreases as the roots x_* increase, hypothesised is Question 8. The normalisation condition $\int_0^1 (y'(x))^2 dx = 1$ means the figures are easier to compare since the gradients are in proportion.

Code

Code 1.1

```
%Formats the output
format short g
digits(5)
data=Euler(0,1,0,0.1)
%Creates Latex code for the table
latex(sym(vpa(data)))
data=RK4(0,1,0,0.1)
latex(sym(vpa(data)))
function data = Euler(x_0,x_n,y_0,h)
%Creates a table to be filled
    data=zeros(ceil((x_n-x_0)/h)+1,5);
    data(1,:)=[x_0,y_0,y(x_0),y_0-y(x_0),0];
    counter=2;
%Iterates through the rows filling them
    while counter<=ceil((x_n-x_0)/h)+1
        data(counter,:)=[(counter-1)*h+x_0,...
            data(counter-1,2)+h*f((counter-2)*h+x_0,data(counter-1,2)),...
            y((counter-1)*h+x_0),...
            data(counter-1,2)+h*f((counter-2)*h+x_0,data(counter-1,2))-...
            y((counter-1)*h+x_0),...
            (data(counter-1,2)+h*f((counter-2)*h+x_0,data(counter-1,2))-...
            y((counter-1)*h+x_0))/data(counter-1,4)];
        counter=counter+1;
    end
function data = RK4(x_0,x_n,y_0,h)
%Follows a similar idea to the Euler function
    data=zeros(ceil((x_n-x_0)/h)+1,5);
    data(1,:)=[x_0,y_0,y(x_0),y_0-y(x_0),0];
    counter=2;
    while counter<=ceil((x_n-x_0)/h)+1
        k1=h*f((counter-2)*h+x_0,data(counter-1,2));
        k2=h*f((counter-2+1/2)*h+x_0,data(counter-1,2)+1/2*k1);
        k3=h*f((counter-2+1/2)*h+x_0,data(counter-1,2)+1/2*k2);
        k4=h*f((counter-2+1)*h+x_0,data(counter-1,2)+k3);
        data(counter,:)=[(counter-1)*h+x_0,...
            data(counter-1,2)+1/6*(k1+2*k2+2*k3+k4),...
            y((counter-1)*h+x_0),...
            data(counter-1,2)+1/6*(k1+2*k2+2*k3+k4)-y((counter-1)*h+x_0),...
            (data(counter-1,2)+1/6*(k1+2*k2+2*k3+k4)-y((counter-1)*h+x_0))/...
            data(counter-1,4)];
        counter=counter+1;
    end
%These two functions were created to stop repeatedly defining them
function z = f(x,y)
    z = -4*y+4*exp(-2*x);
function z = y(x)
    z= -2*exp(-4*x)+2*exp(-2*x);
```

Code 1.2

Code 4.1

```
k=0;
Error=zeros(16,3);
while k <= 15
             h=1.6/(2^k);
             data=Euler(0,1.6,0,h);
             Error(k+1,:)=[h,data(end,4),0];
             data=RK4(0,1.6,0,h);
             Error(k+1,3)=data(end,4);
             k=k+1;
end
digits(5)
disp(Error)
latex(sym(vpa(Error)))
logError=log(abs(Error));
meanError=mean(logError);
scatter(logError(:,1),logError(:,2))
hold on
x=xlim;
plot(linspace(x(1),x(2)), linspace(x(1),x(2))+meanError(2)-...
             meanError(1))
\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremath}\ensuremat
legend({'Data','y=x+a'},'location',...
              'northwest')
title('Euler Error as h decreases')
xlabel('log(h)')
{\tt ylabel('log(|E_{n}|)')}
print('Image_4_1','-depsc')
figure
scatter(logError(:,1),logError(:,3))
hold on
x=xlim;
plot(linspace(x(1),x(2)),4*linspace(x(1),x(2))+meanError(3)-...
             4*meanError(1))
%Adds labels and saves the image
legend({'Data','y=4x+b'},'location',...
              'northwest')
title('Runge-Kutta Error as h decreases')
xlabel('log(h)')
ylabel('log(|E_{n}|)')
print('Image_4_2','-depsc')
```

Code 7.1

```
data=RK4Vector(0,pi/2,0,1,pi/100,1,0)
latex(sym(vpa(data)))
function Solution = RK4Vector(x_0,x_n,y_0,z_0,h,p,a)
%Creates the table of iterates
X=zeros(ceil(x_n/h)+1,1);
Y=zeros(ceil(x_n/h)+1,2);
Y(1,:)=[y_0,z_0];
X(1)=x_0;
counter=2;
%This fills the table using the Runge-Kutta method
while counter<=ceil((x_n-x_0)/h)+1
    X(counter)=(counter-1)*h;
    K1=h*F(X(counter-1),Y(counter-1,:),p,a);
    K2=h*F(X(counter-1)+h*1/2,Y(counter-1,:)+K1/2,p,a);
    K3=h*F(X(counter-1)+h*1/2,Y(counter-1,:)+K2/2,p,a);
    K4=h*F(X(counter-1)+h,Y(counter-1,:)+K3,p,a);
    Y(counter,:)=Y(counter-1,:)+(K1+2*K2+2*K3+K4)/6;
    counter=counter+1;
Solution=[X,Y];
end
%This is f(X,Y)
function out = F(x,Y,p,a)
    out=zeros(1,2);
    %f_1
    out(1)=Y(2);
    %f_2
    out(2)=-p^2*(1+x)^(-a)*Y(1);
end
```

```
format long
p=6;
a=4;
k=0;
data=zeros(13,6);
while k \le 12
   h=0.1/(2^k);
   data(k+1,1)=h;
   Matrix=RK4Vector(0,1,0,1,h,p,a);
    data(k+1,2)=Matrix(end,2);
    data(k+1,3)=Matrix(end,3);
    data(k+1,4)=y(1,p);
    data(k+1,5)=Matrix(end,2)-y(1,p);
    data(k+1,6)=data(k+1,5)/h^4;
    k=k+1;
end
data
digits(5)
latex(sym(vpa(data)))
function output = y(x,p)
output= (1/p)*(1+x)*\sin(p-p/(1+x));
end
```

Code 8.1

```
format long
LowerP=0;
UpperP=3;
epsilon=7.3*10^(-7);
%This records all the iterates
iterates=[0 LowerP g(LowerP)];
if g(LowerP)==g(UpperP)
    error('The g value must differ at these bounds')
end
if g(LowerP) < g(UpperP)</pre>
    gradient=+1;
else
    gradient=-1;
end
while true
    P=(g(UpperP)*LowerP-g(LowerP)*UpperP)/(g(UpperP)-g(LowerP));
    iterates=[iterates;iterates(end,1)+1 P g(P)];
    if abs(g(P))<epsilon
        break
    else
        %This checks what the gradient is at the root
        if g(LowerP) < g(UpperP)</pre>
             gradient=+1;
        else
             gradient=-1;
        %This determines which bound should be replaced
        if g(P)*gradient<0
             LowerP=P;
        else
             UpperP=P;
        \quad \text{end} \quad
    end
end
disp(iterates)
digits(8)
latex(sym(vpa(iterates)))
function answer=g(x)
    answer=x^2-3;
end
```

Code 9.1

```
format long
%This searches for the first intervals where the eigenvalues lie
InitialStep=1;
Eigenvalues=zeros(5,1);
NoVals=1;
Counter=1;
InitialSign=sign(g(InitialStep));
while NoVals<6
    x=Counter*InitialStep;
    if sign(g(x))~=InitialSign
        Eigenvalues(NoVals,1)=x;
        NoVals=NoVals+1;
        InitialSign=sign(g(x));
    end
    Counter=Counter+1;
end
disp('First guess of eigenvalues')
disp(Eigenvalues)
%This clarifies that we can use the particular epsilon and h specified in
%the report
NoVals=1;
iterates=zeros(5,1);
gradient=zeros(5,1);
while NoVals<6
    iterates(NoVals)=gError(Eigenvalues(NoVals));
    gradient(NoVals)=g(Eigenvalues(NoVals))-...
        g(Eigenvalues(NoVals)-1);
    NoVals=NoVals+1;
end
disp('This clarifies that -1 < g(p) < 1 when h=0.1 is used')
disp(iterates)
disp("This calculates when |g'(p)| is smallest")
disp(abs(gradient))
epsilon=abs(g(Eigenvalues(5,1))-g(Eigenvalues(5,1)-1))*5*10^(-6)
%This calculates the accurate eigenvalues using the particular epsilon and
%h
NoVals=1;
while NoVals<6
    LowerP=Eigenvalues(NoVals,1)-1;
    UpperP=Eigenvalues(NoVals,1);
    if g(LowerP)==g(UpperP)
        error('The g value must differ at these bounds')
    if g(LowerP) < g(UpperP)</pre>
        gradient=+1;
    else
        gradient=-1;
    end
    while true
        P=(g(UpperP)*LowerP-g(LowerP)*UpperP)/(g(UpperP)-g(LowerP));
        if abs(g(P))<epsilon
            break
```

```
else
            %This checks what the gradient is at the root
            if g(LowerP) < g(UpperP)</pre>
                 gradient=+1;
            else
                 gradient=-1;
            end
            %This determines which bound should be replaced
            if g(P)*gradient<0
                 LowerP=P;
            else
                 UpperP=P;
            end
        \quad \text{end} \quad
    end
    Eigenvalues(NoVals,1)=P;
    NoVals=NoVals+1;
end
disp('Eigenvalues:')
disp(Eigenvalues)
digits(16)
latex(sym(vpa(Eigenvalues)))
%This plots the normalised eigenfunctions
NoVals=1;
while NoVals<6
    m=RK4Vector(0,1,0,1,0.001,Eigenvalues(NoVals),8);
    A=trapz(m(:,2).^2./((1+m(:,1)).^(8)))*Eigenvalues(NoVals)^2;
    m(:,2)=(1/sqrt(A)).*m(:,2);
    figure
    plot(m(:,1),m(:,2))
    xlabel('x')
    ylabel('y')
    print(strcat('Image_9_',num2str(NoVals)),'-depsc')
    NoVals=NoVals+1;
end
function answer=gError(x)
    answer=RK4Vector(0,1,0,1,0.1,x,8);
    answer=answer(end,2);
end
function answer=g(x)
    answer=RK4Vector(0,1,0,1,0.001,x,8);
    answer=answer(end,2);
end
```