AE6114 - Fundamentals of Solid Mechanics

Fall 2020

Homework 1: Mathematical Preliminaries

Due at the indicated time on Canvas, on Thursday, August 27^{th} 2020

Problem 1

Expand the following indicial expressions (all indices range from 1 to 3). Indicate the **rank** and the **number of resulting expressions**.

- 1. $a_i b_i$
- $a_i b_i$
- 3. $a_ib_ic_i$
- 4. $\sigma_{ik}n_k$
- 5. $A_{ij}x_ix_j$; **A** is symmetric, i.e. $A_{ij} = A_{ji}$.

Problem 2

Simplify the following indicial expressions as much as possible (all indices range from 1 to 3)

- 1. $\delta_{mm}\delta_{nn}$
- 2. $x_i \delta_{ik} \delta_{jk}$
- 3. $B_{ij}\delta_{ij}$; **B** is antisymmetric, i.e. $B_{ij} = -B_{ji}$.
- 4. $(A_{ij}B_{jk} 2A_{im}B_{mk})\delta_{ik}$
- 5. Substitute $A_{ij}=B_{ik}C_{kj}$ into $\phi=A_{mk}C_{mk}$

Problem 3

Write out the following expressions in indicial notation, if possible:

- 1. $A_{11} + A_{22} + A_{33}$
- 2. $\mathbf{A}^T \mathbf{A}$, where \mathbf{A} is a 3×3 matrix.
- 3. $A_{11}^2 + A_{22}^2 + A_{33}^2$
- 4. $(u_1^2 + u_2^2 + u_3^2)(v_1^2 + v_2^2 + v_3^2)$
- 5. $A_{11} = B_{11}C_{11} + B_{12}C_{21}$; $A_{12} = B_{11}C_{12} + B_{12}C_{22}$ $A_{21} = B_{21}C_{11} + B_{22}C_{21}$; $A_{22} = B_{21}C_{12} + B_{22}C_{22}$

Problem 4

Given the right-handed orthonormal basis $\{e_i\}$, $i = \{1, 2, 3\}$:

- 1. Show that $\mathbf{e}_i \cdot \mathbf{e}_j = \delta_{ij}$.
- 2. Using the previous result and indicial notation, show that given $\mathbf{a} = a_i \mathbf{e}_i$ and $\mathbf{b} = b_i \mathbf{e}_i$, their dot product can be expressed as $\mathbf{a} \cdot \mathbf{b} = a_i b_i$.
- 3. Show that $\mathbf{e}_i \times \mathbf{e}_j = \epsilon_{ijk} \mathbf{e}_k$.
- 4. Using the previous result and indicial notation, show that given $\mathbf{a} = a_i \mathbf{e}_i$ and $\mathbf{b} = b_i \mathbf{e}_i$, their cross product can be expressed as $\mathbf{a} \times \mathbf{b} = \epsilon_{ijk} a_i b_j \mathbf{e}_k$.
- 5. Using previous results and indicial notation, show that given $\mathbf{a} = a_i \mathbf{e}_i$, $\mathbf{b} = b_i \mathbf{e}_i$, and $\mathbf{c} = c_i \mathbf{e}_i$ their triple product can be expressed as $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = \epsilon_{ijk} a_i b_j c_k$.
- 6. Show that the permutation symbol and the Kronecker delta are related through the expression $e_{ijk}e_{imn} = \delta_{jm}\delta_{kn} \delta_{jn}\delta_{km}$.

Problem 5

In solid mechanics, measures of deformation (e.g. strains) and measures of stress are related through constitutive laws. The simplest possible constitutive law, called linear elasticity, corresponds to a linear relationship between stresses and strains. In addition, every time a body is deformed by external forces, work is done on the body. Under linear elasticity assumptions, this recoverable work is stored as *strain energy density* and is expressed as:

$$w = \frac{1}{2}\sigma_{ij}\varepsilon_{ij} \tag{1}$$

where ε_{ij} and σ_{ij} are the components of the strain and stress tensor respectively. According to linear elasticity theory, the stress can be expressed as

$$\sigma_{ij} = C_{ijkl}\varepsilon_{kl} \tag{2}$$

where C_{ijkl} is the elasticity tensor that depends on the (known) material constants λ and μ for the isotropic case as follows:

$$C_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{il} + \delta_{il} \delta_{ik})$$
(3)

With this information,

- 1. Find a simplified expression for the stress tensor σ_{ij} assuming that the strain tensor is symmetric, i.e., $\varepsilon_{ij} = \varepsilon_{ji}$. This expression is known as *Hooke's Law*.
- 2. Find a simplified expression for the strain energy density w such that it is only written in terms of the strains $\underline{\varepsilon}$ (or ε_{ij}).
- 3. What are the ranks of σ_{ij} , ϵ_{kl} , C_{ijkl} and w?

Problem 6

Considering that for a second order tensor $\mathbf{A}=A_{ij}\mathbf{e}_i\mathbf{e}_j$ the partial derivatives with respect to its components are given by $\frac{\partial A_{ij}}{\partial A_{kl}}=\delta_{ik}\delta_{jl}$

- 1. Show that $\frac{\partial \operatorname{Tr}(\mathbf{A})}{\partial A_{ij}} = \delta_{ij}$
- 2. Show that $\dfrac{\partial \, Tr({f A}\cdot{f A})}{\partial A_{ij}}=2(A^T)_{ij}$
- 3. Prove that $\dfrac{\partial (A^{-1})_{kl}}{\partial A_{ij}} = -(A^{-1})_{ki}(A^{-1})_{jl}$