深度学习计算机视觉

3个月掌握机器人和自动化领域的计算机视觉技术。成为高薪人才!

更新日期 / 2019-08-28

课程简介

在本课程中,您将学习图像分类任务以及对象跟踪系统的基础数学和编程概念。 本课程将介绍"神经网络"的基础知识,包括如何理解反向传播,并将向您介绍业届前沿的计算机视觉架构,您将结合当前的计算机视觉和深度学习技术,为各种计算机视觉应用提供支持。 凭借您在本课程中获得的实践技能,您将能够编写自己的应用程序。您将会掌握从任何类型的图像和空间数据中提取有用信息,并解决实际问题。

先修知识

为了顺利开展此纳米学位,我们建议您具有 Python 的编程经验,并且拥有概率论、统计学以及深度学习架构的入门级经验。 具体来说,我们希望您会使用 Python 编写一个类,并为您的代码添加注释以供其他人阅读。 此外,您应该熟悉机器学习的基础知识。

学习时间

该纳米学位由 1 个学期组成,持续 3 个月。 我们希望学生平均每周学习 10-15 小时,以确保在计划上留出充足的时间完成项目。

第一部分: 计算机视觉入门

掌握计算机视觉和图像处理基础知识。学会从图像数据中提取重要特征,并将深度学习技术应用在人脸关键点检测任务中。

课程标题	学习内容
欢迎学习计算机视觉纳米 学位 (6 周)	 → 欢迎学习计算机视觉课程 → 图像表示法和分类 → 卷积过滤器和边缘检测 → 特征类型和图像分割 → 特征向量 → CNN 层级和特征可视化

实战项目: 脸部关键点检测

在此项目中,您会将计算机视觉技术和深度学习架构知识相结合,构建一个脸部关键点检测系统。脸部关键点包括眼睛、鼻子和嘴部周围的点。脸部关键点用在了很多应用中,包括:脸部跟踪、脸部姿势识别、脸部过滤器和情感识别。您完成的代码应该能够查看任何图像后检测脸部,并预测每个脸部的脸部关键点位置。

第二部分: 高阶计算机视觉与深度学习

学习将深度学习的架构应用于计算机视觉相关工作中。了解如何结合 CNN 和 RNN 网络构建自动图像标注的应用。

课程标题	学	习 内容
高级计算机视觉与深度学习(4周)	→ → → → →	高级 CNN 架构 YOLO RNN 长短期记忆网络(LSTM) 超参数 深度学习注意力机制 图像说明
	\rightarrow	项目:图像说明 选修:云计算

实战项目:图像描述

在此项目中,您将创建一个神经网络架构来自动生成图像说明。使用 Microsoft 上下文常见对象 (MS COCO) 数据集训练网络后,您将用新的图像测试网络!

第三部分:目标检测与定位

了解如何定位对象并随着时间的推移进行追踪。这类技术已被用于各种移动系统,如无人驾驶车导航和无人机飞行中。

目标检测与定位	→ 7	协作简介
(4 周)	→ [†]	氘器人定位
	→ i	≚你项目: 二维直方图滤波器
	→ -	卡尔曼滤波器简介
	→ ∤	犬态与移动
	→ 9	巨阵和状态变换
	→ [即时定位与地图构建
	→ ;	#.修 ·车辆运动和微和分

实战项目: 地标检测和机器人跟踪 (SLAM)

在此项目中,您将为二维世界实施一个即时定位与地图构建 (SLAM) 系统!您将运用所学的机器人传感器测量和运动知识创建一个地图,并且仅利用机器人随时间推移收集的传感器和运动数据。SLAM 使您能够实时跟踪机器人在某个环境中的位置,并识别建筑物、树木、石头和其他特征等地标的位置。这是一个机器人学和自动系统的比较活跃的研究领域。

第四部分:云计算(选修)

学习如何利用 Google Cloud 与 AWS 上的 GPU 进行机器学习和科学计算。

课程标题	学习内容
云计算	→ 用 Google Cloud 进行云计算→ 用 AWS 进行云计算

第五部分: 计算机视觉与深度学习的应用(选修)

使用其他人在 Github 上贡献的预训练模型,尝试几个非常酷的计算机视觉和深度学习应用,例如风格迁移。

课程标题	学习内容
计算机视觉与深度学习的应用	→ 风格迁移 → DeepTraffic → Flappy Bird → 课外图书

第六部分:[回顾]训练神经网络(选修)

复习训练神经网络的基础知识,了解神经网络是如何训练的。

课程标题	学习内容
神经网络是如何训练的	→ 前向反馈与反向传播 → 训练神经网络 → 通过 PyTorch 进行深度学习

第七部分:[实战]皮肤癌检测(选修)

Sebastian Thrun 向我们讲述了他用卷积神经网络探测皮肤癌的开创性工作。

课程标题	学习内容
利用深度学习进行皮肤癌检测	 → 项目简介 → 皮肤癌与医学分类 → 数据挑战 → 训练神经网络 → 敏感性与特异性 → 癌症诊断 → ROC 曲线回顾 → 可视化 → 神经网络关注的是什么 → 混淆矩阵 → 迷你项目:皮肤科医生的人工智能

第八部分:[实战]文本情感分析(选修)

在这节课中,《Grokking Deep Learning》一书的作者 Andrew Trask,将指导你一步步来运用神经网络进行情感分析。具体而言,你将构建一个神经网络,完全根据评论文本内容将影评归类为正面影评或负面影评!

课程标题	学习内容	
文本情感分析	 → 认识 Andrew Trask → 分析问题 → 迷你项目 1 → 迷你项目 2 → 迷你项目 3 → 理解神经网络中的噪音 	

- → 迷你项目 4
- → 迷你项目5
- → 进一步减少噪音
- → 迷你项目 6
- → 分析与总结

第九部分: 更多深度学习模型(选修)

在这节课中,《Grokking Deep Learning》一书的作者 Andrew Trask,将指导你一步步来运用神经网络进行情感分析。具体而言,你将构建一个神经网络,完全根据评论文本内容将影评归类为正面影评或负面影评!

课程标题	学习内容
场景理解	→ 全卷积神经网络→ 语义分割
3D CNN 架构	→ 简介→ 手势识别→ 端到端学习→ 实现手势识别 3D CNN

第十部分: C++ 编程(选修)

课程标题	学习内容
C++ 基础	 → C++ 入门 → C++ 向量 → C++ 实战 → C++ 面向对象编程 → Python 和 C++ 的速度
C++ 的性能编程	→ C++ 优化实战 → 实战项目:高性能粒子滤波器

立即咨询

如果你还没有决定学习方向,不妨和优达专业的学习规划师聊一聊,获得一对一学习路径规划,了解更多课程详情。

立即扫码添加↓

(Hi) 我是你的学习规划师

立即扫码添加学习规划师:

- → 领取免费试听课程
- ▶ 技术能力水平测试
- 预定好学长直播分享
- 获得最新课程优惠福利

搜索服务号: 优达学习助手