This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

(19) World Intellectual Property Organization International Bureau

1 (1881) | BOLOGO DE BODO BELLO 1881 | 10 10 BOLOGO 1883 | 1883 | 1884 | 1884 | 1884 | 1884 | 1884 | 1884 | 18

(43) International Publication Date 17 October 2002 (17.10.2002)

PCT

(10) International Publication Number WO 02/081646 A2

(51) International Patent Classification7:

(21) International Application Number: PCT/US02/11101

(22) International Filing Date: 4 April 2002 (04.04.2002)

(25) Filing Language:

English

C12N

(26) Publication Language:

English

(30) Priority Data:

}

60/282,211 6 April 2001 (06.04.2001) US 60/337,017 7 November 2001 (07.11.2001) US 60/363,210 7 March 2002 (07.03.2002)

(71) Applicant: CTL IMMUNOTHERAPIES CORP. [US/US]; 9340 DeSoto Avenue, Chatsworth, CA 91311 (US).

(72) Inventors: SIMARD, John, J.L.; 11918 Laughton Way, Northridge, CA 91326 (US). DIAMOND, David, C.; 23135 Schoenborn Street, West Hills, CA 91304 (US).

LIU, Liping; 22228 Victory Blvd., H-111, Woodland Hills, CA 91367 (US). XIE, Zhidong; 22228 Victory Blvd., H-111, Woodland Hills, CA 91367 (US).

- (74) Agent: REISMAN, Joseph, M.; Knobbe, Martens, Olson & Bear, LLP, 16th Floor, 620 Newport Center Drive, Newport Beach, CA 92660 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT (utility model), AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ (utility model), CZ, DE (utility model), DE, DK, DM, DZ, EC, EE (utility model), EE, ES, FI (utility model), FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK (utility model), SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent

[Continued on next page]

(54) Title: EPITOPE SEQUENCES

Pool sequencing of PSMA_281-310 digested for 60 min by Proteasome

(57) Abstract: Disclosed herein are polypeptides, including epitopes, clusters, and antigens. Also disclosed are compositions that include said polypeptides and methods for their use.

WO 02/081646 A2

(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

EPITOPE SEQUENCES

Background of the Invention

Field of the Invention

The present invention generally relates to peptides, and nucleic acids encoding peptides, that are useful epitopes of target-associated antigens. More specifically, the invention relates to epitopes that have a high affinity for MHC class I and that are produced by target-specific proteasomes.

Description of the Related Art

Neoplasia and the Immune System

10

5

The neoplastic disease state commonly known as cancer is thought to result generally from a single cell growing out of control. The uncontrolled growth state typically results from a multistep process in which a series of cellular systems fail, resulting in the genesis of a neoplastic cell. The resulting neoplastic cell rapidly reproduces itself, forms one or more tumors, and eventually may cause the death of the host.

15

Because the progenitor of the neoplastic cell shares the host's genetic material, neoplastic cells are largely unassailed by the host's immune system. During immune surveillance, the process in which the host's immune system surveys and localizes foreign materials, a neoplastic cell will appear to the host's immune surveillance machinery as a "self" cell.

Viruses and the Immune System

20

25

In contrast to cancer cells, virus infection involves the expression of clearly non-self antigens. As a result, many virus infections are successfully dealt with by the immune system with minimal clinical sequela. Moréover, it has been possible to develop effective vaccines for many of those infections that do cause serious disease. A variety of vaccine approaches have been used successfully to combat various diseases. These approaches include subunit vaccines consisting of individual proteins produced through recombinant DNA technology. Notwithstanding these advances, the selection and effective administration of minimal epitopes for use as viral vaccines has remained problematic.

30

In addition to the difficulties involved in epitope selection stands the problem of viruses that have evolved the capability of evading a host's immune system. Many viruses, especially viruses that establish persistent infections, such as members of the herpes and pox virus families, produce immunomodulatory molecules that permit the virus to evade the host's immune system. The effects of these immunomodulatory molecules on antigen presentation may be overcome by the targeting of select epitopes for administration as immunogenic compositions. To better understand the interaction of neoplastic cells and virally infected cells with the host's immune system, a discussion of the system's components follows below.

35

The immune system functions to discriminate molecules endogenous to an organism ("self" molecules) from material exogenous or foreign to the organism ("non-self" molecules). The immune system has two types of adaptive responses to foreign bodies based on the components that mediate the response: a humoral response and a cell-mediated response. The humoral response is mediated by antibodies, while the cell-mediated response involves cells classified as lymphocytes. Recent anticancer and antiviral strategies have focused on mobilizing the host immune system as a means of anticancer or antiviral treatment or therapy.

5

10

15

20

25

30

35

The immune system functions in three phases to protect the host from foreign bodies: the cognitive phase, the activation phase, and the effector phase. In the cognitive phase, the immune system recognizes and signals the presence of a foreign antigen or invader in the body. The foreign antigen can be, for example, a cell surface marker from a neoplastic cell or a viral protein. Once the system is aware of an invading body, antigen specific cells of the immune system proliferate and differentiate in response to the invader-triggered signals. The last stage is the effector stage in which the effector cells of the immune system respond to and neutralize the detected invader.

An array of effector cells implements an immune response to an invader. One type of effector cell, the B cell, generates antibodies targeted against foreign antigens encountered by the host. In combination with the complement system, antibodies direct the destruction of cells or organisms bearing the targeted antigen. Another type of effector cell is the natural killer cell (NK cell), a type of lymphocyte having the capacity to spontaneously recognize and destroy a variety of virus infected cells as well as malignant cell types. The method used by NK cells to recognize target cells is poorly understood.

Another type of effector cell, the T cell, has members classified into three subcategories, each playing a different role in the immune response. Helper T cells secrete cytokines which stimulate the proliferation of other cells necessary for mounting an effective immune response, while suppressor T cells down-regulate the immune response. A third category of T cell, the cytotoxic T cell (CTL), is capable of directly lysing a targeted cell presenting a foreign antigen on its surface.

The Major Histocompatibility Complex and T Cell Target Recognition

T cells are antigen-specific immune cells that function in response to specific antigen signals. B lymphocytes and the antibodies they produce are also antigen-specific entities. However, unlike B lymphocytes, T cells do not respond to antigens in a free or soluble form. For a T cell to respond to an antigen, it requires the antigen to be processed to peptides which are then bound to a presenting structure encoded in the major histocompatibility complex (MHC). This requirement is called "MHC restriction" and it is the mechanism by which T cells differentiate "self" from "non-self" cells. If an antigen is not displayed by a recognizable MHC molecule, the T cell will not recognize and act on the antigen signal. T cells specific for a peptide bound to a recognizable MHC

molecule bind to these MHC-peptide complexes and proceed to the next stages of the immune response.

There are two types of MHC, class I MHC and class II MHC. T Helper cells (CD4⁺) predominately interact with class II MHC proteins while cytolytic T cells (CD8⁺) predominately interact with class I MHC proteins. Both classes of MHC protein are transmembrane proteins with a majority of their structure on the external surface of the cell. Additionally, both classes of MHC proteins have a peptide binding cleft on their external portions. It is in this cleft that small fragments of proteins, endogenous or foreign, are bound and presented to the extracellular environment.

Cells called "professional antigen presenting cells" (pAPCs) display antigens to T cells using the MHC proteins but additionally express various co-stimulatory molecules depending on the particular state of differentiation/activation of the pAPC. When T cells, specific for the peptide bound to a recognizable MHC protein, bind to these MHC-peptide complexes on pAPCs, the specific co-stimulatory molecules that act upon the T cell direct the path of differentiation/activation taken by the T cell. That is, the co-stimulation molecules affect how the T cell will act on antigenic signals in future encounters as it proceeds to the next stages of the immune response.

As discussed above, neoplastic cells are largely ignored by the immune system. A great deal of effort is now being expended in an attempt to harness a host's immune system to aid in combating the presence of neoplastic cells in a host. One such area of research involves the formulation of anticancer vaccines.

Anticancer Vaccines

5

10

15

20

25

30

35

Among the various weapons available to an oncologist in the battle against cancer is the immune system of the patient. Work has been done in various attempts to cause the immune system to combat cancer or neoplastic diseases. Unfortunately, the results to date have been largely disappointing. One area of particular interest involves the generation and use of anticancer vaccines.

To generate a vaccine or other immunogenic composition, it is necessary to introduce to a subject an antigen or epitope against which an immune response may be mounted. Although neoplastic cells are derived from and therefore are substantially identical to normal cells on a genetic level, many neoplastic cells are known to present tumor-associated antigens (TuAAs). In theory, these antigens could be used by a subject's immune system to recognize these antigens and attack the neoplastic cells. In reality, however, neoplastic cells generally appear to be ignored by the host's immune system.

A number of different strategies have been developed in an attempt to generate vaccines with activity against neoplastic cells. These strategies include the use of tumor-associated antigens as immunogens. For example, U.S. Patent No. 5,993,828, describes a method for producing an

immune response against a particular subunit of the Urinary Tumor Associated Antigen by administering to a subject an effective dose of a composition comprising inactivated tumor cells having the Urinary Tumor Associated Antigen on the cell surface and at least one tumor associated antigen selected from the group consisting of GM-2, GD-2, Fetal Antigen and Melanoma Associated Antigen. Accordingly, this patent describes using whole, inactivated tumor cells as the immunogen in an anticancer vaccine.

Another strategy used with anticancer vaccines involves administering a composition containing isolated tumor antigens. In one approach, MAGE-A1 antigenic peptides were used as an immunogen. (See Chaux, P., et al., "Identification of Five MAGE-A1 Epitopes Recognized by Cytolytic T Lymphocytes Obtained by *In Vitro* Stimulation with Dendritic Cells Transduced with MAGE-A1," J. Immunol., 163(5):2928-2936 (1999)). There have been several therapeutic trials using MAGE-A1 peptides for vaccination, although the effectiveness of the vaccination regimes was limited. The results of some of these trials are discussed in Vose, J.M., "Tumor Antigens Recognized by T Lymphocytes," 10th European Cancer Conference, Day 2, Sept. 14, 1999.

15

10

5

In another example of tumor associated antigens used as vaccines, Scheinberg, et al. treated 12 chronic myelogenous leukemia (CML) patients already receiving interferon (IFN) or hydroxyurea with 5 injections of class I-associated bcr-abl peptides with a helper peptide plus the adjuvant QS-21. Scheinberg, D.A., et al., "BCR-ABL Breakpoint Derived Oncogene Fusion Peptide Vaccines Generate Specific Immune Responses in Patients with Chronic Myelogenous Leukemia (CML) [Abstract 1665], American Society of Clinical Oncology 35th Annual Meeting, Atlanta (1999). Proliferative and delayed type hypersensitivity (DTH) T cell responses indicative of T-helper activity were elicited, but no cytolytic killer T cell activity was observed within the fresh blood samples.

25

20

Additional examples of attempts to identify TuAAs for use as vaccines are seen in the recent work of Cebon, et al. and Scheibenbogen, et al. Cebon, et al. immunized patients with metastatic melanoma using intradermallly administered MART-1₂₆₋₃₅ peptide with IL-12 in increasing doses given either subcutaneously or intravenously. Of the first 15 patients, 1 complete remission, 1 partial remission, and 1 mixed response were noted. Immune assays for T cell generation included DTH, which was seen in patients with or without IL-12. Positive CTL assays were seen in patients with evidence of clinical benefit, but not in patients without tumor regression. Cebon, et al., "Phase I Studies of Immunization with Melan-A and IL-12 in HLA A2+ Positive Patients with Stage III and IV Malignant Melanoma," [Abstract 1671], American Society of Clinical Oncology 35th Annual Meeting, Atlanta (1999).

30

Scheibenbogen, et al. immunized 18 patients with 4 HLA class I restricted tyrosinase peptides, 16 with metastatic melanoma and 2 adjuvant patients. Scheibenbogen, et al.,

35

"Vaccination with Tyrosinase peptides and GM-CSF in Metastatic Melanoma: a Phase II Trial," [Abstract 1680], American Society of Clinical Oncology 35th Annual Meeting, Atlanta (1999). Increased CTL activity was observed in 4/15 patients, 2 adjuvant patients, and 2 patients with evidence of tumor regression. As in the trial by Cebon, et al., patients with progressive disease did not show boosted immunity. In spite of the various efforts expended to date to generate efficacious anticancer vaccines, no such composition has yet been developed.

Antiviral Vaccines

5

10

15

20

25

30

35

Vaccine strategies to protect against viral diseases have had many successes. Perhaps the most notable of these is the progress that has been made against the disease small pox, which has been driven to extinction. The success of the polio vaccine is of a similar magnitude.

Viral vaccines can be grouped into three classifications: live attenuated virus vaccines, such as vaccinia for small pox, the Sabin poliovirus vaccine, and measles mumps and rubella; whole killed or inactivated virus vaccines, such as the Salk poliovirus vaccine, hepatitis A virus vaccine and the typical influenza virus vaccines; and subunit vaccines, such as hepatitis B. Due to their lack of a complete viral genome, subunit vaccines offer a greater degree of safety than those based on whole viruses.

The paradigm of a successful subunit vaccine is the recombinant hepatitis B vaccine based on the viruses envelope protein. Despite much academic interest in pushing the reductionist subunit concept beyond single proteins to individual epitopes, the efforts have yet to bear much fruit. Viral vaccine research has also concentrated on the induction of an antibody response although cellular responses also occur. However, many of the subunit formulations are particularly poor at generating a CTL response.

Summary of the Invention

Previous methods of priming professional antigen presenting cells (pAPCs) to display target cell epitopes have relied simply on causing the pAPCs to express target-associated antigens (TAAs), or epitopes of those antigens which are thought to have a high affinity for MHC I molecules. However, the proteasomal processing of such antigens results in presentation of epitopes on the pAPC that do not correspond to the epitopes present on the target cells.

Using the knowledge that an effective cellular immune response requires that pAPCs present the same epitope that is presented by the target cells, the present invention provides epitopes that have a high affinity for MHC I, and that correspond to the processing specificity of the housekeeping proteasome, which is active in peripheral cells. These epitopes thus correspond to those presented on target cells. The use of such epitopes in vaccines can activate the cellular immune response to recognize the correctly processed TAA and can result in removal of target cells that present such epitopes. In some embodiments, the housekeeping epitopes provided herein

can be used in combination with immune epitopes, generating a cellular immune response that is competent to attack target cells both before and after interferon induction. In other embodiments the epitopes are useful in the diagnosis and monitoring of the target-associated disease and in the generation of immunological reagents for such purposes.

5

Embodiments of the invention relate to isolated epitopes, and antigens or polypeptides that comprise the epitopes. Preferred embodiments include an epitope or antigen having the sequence as disclosed in Table 1. Other embodiments can include an epitope cluster comprising a polypeptide from Table 1. Further, embodiments include a polypeptide having substantial similarity to the already mentioned epitopes, polypeptides, antigens, or clusters. Other preferred embodiments include a polypeptide having functional similarity to any of the above. Still further embodiments relate to a nucleic acid encoding the polypeptide of any of the epitopes, clusters, antigens, and polypeptides from Table 1 and mentioned herein. For purposes of the following summary, discussions of other embodiments of the invention, when making reference to "the epitope," or "the epitopes" may refer without limitation to all of the foregoing forms of the epitope.

15

10

The epitope can be immunologically active. The polypeptide comprising the epitope can be less than about 30 amino acids in length, more preferably, the polypeptide is 8 to 10 amino acids in length, for example. Substantial or functional similarity can include addition of at least one amino acid, for example, and the at least one additional amino acid can be at an N-terminus of the polypeptide. The substantial or functional similarity can include a substitution of at least one amino acid.

20

The epitope, cluster, or polypeptide comprising the same can have affinity to an HLA-A2 molecule. The affinity can be determined by an assay of binding, by an assay of restriction of epitope recognition, by a prediction algorithm, and the like. The epitope, cluster, or polypeptide comprising the same can have affinity to an HLA-B7, HLA-B51 molecule, and the like.

25

In preferred embodiments the polypeptide can be a housekeeping epitope. The epitope or polypeptide can correspond to an epitope displayed on a tumor cell, to an epitope displayed on a neovasculature cell, and the like. The epitope or polypeptide can be an immune epitope. The epitope, cluster and/or polypeptide can be a nucleic acid.

30

Other embodiments relate to pharmaceutical compositions comprising the polypeptides, including an epitope from Table 1, a cluster, or a polypeptide comprising the same, and a pharmaceutically acceptable adjuvant, carrier, diluent, excipient, and the like. The adjuvant can be a polynucleotide. The polynucleotide can include a dinucleotide, which can be CpG, for example. The adjuvant can be encoded by a polynucleotide. The adjuvant can be a cytokine and the cytokine can be, for example, GM-CSF.

The pharmaceutical compositions can further include a professional antigen-presenting cell (pAPC). The pAPC can be a dendritic cell, for example. The pharmaceutical composition can further include a second epitope. The second epitope can be a polypeptide, a nucleic acid, a housekeeping epitope, an immune epitope, and the like.

5

Still further embodiments relate to pharmaceutical compositions that include any of the nucleic acids discussed herein, including those that encode polypeptides that comprise epitopes or antigens from Table 1. Such compositions can include a pharmaceutically acceptable adjuvant, carrier, diluent, excipient, and the like.

10

Other embodiments relate to recombinant constructs that include such a nucleic acid as described herein, including those that encode polypeptides that comprise epitopes or antigens from Table 1. The constructs can further include a plasmid, a viral vector, an artificial chromosome, and the like. The construct can further include a sequence encoding at least one feature, such as for example, a second epitope, an IRES, an ISS, an NIS, a ubiquitin, and the like.

15

Further embodiments relate to purified antibodies that specifically bind to at least one of the epitopes in Table 1. Other embodiments relate to purified antibodies that specifically bind to a peptide-MHC protein complex comprising an epitope disclosed in Table 1 or any other suitable epitope. The antibody from any embodiment can be a monoclonal antibody or a polyclonal antibody.

20

Still other embodiments relate to multimeric MHC-peptide complexes that include an epitope, such as, for example, an epitope disclosed in Table 1. Also, contemplated are antibodies specific for the complexes.

25

Embodiments relate to isolated T cells expressing a T cell receptor specific for an MHC-peptide complex. The complex can include an epitope, such as, for example, an epitope disclosed in Table 1. The T cell can be produced by an *in vitro* immunization and can be isolated from an immunized animal. Embodiments relate to T cell clones, including cloned T cells, such as those discussed above. Embodiments also relate to polyclonal population of T cells. Such populations can include a T cell, as described above, for example.

20

Still further embodiments relate to pharmaceutical compositions that include a T cell, such as those described above, for example, and a pharmaceutically acceptable adjuvant, carrier, diluent, excipient, and the like.

30

Embodiments of the invention relate to isolated protein molecules comprising the binding domain of a T cell receptor specific for an MHC-peptide complex. The complex can include an epitope as disclosed in Table 1. The protein can be multivalent. Other embodiments relate to isolated nucleic acids encoding such proteins. Still further embodiments relate to recombinant constructs that include such nucleic acids.

35

5

10

15

20

25

30

35

Other embodiments of the invention relate to host cells expressing a recombinant construct as described herein, including constructs encoding an epitope, cluster or polypeptide comprising the same, disclosed in Table 1, for example. The host cell can be a dendritic cell, macrophage, tumor cell, tumor-derived cell, a bacterium, fungus, protozoan, and the like. Embodiments also relate to pharmaceutical compositions that include a host cell, such as those discussed herein, and a pharmaceutically acceptable adjuvant, carrier, diluent, excipient, and the like.

Still other embodiments relate to vaccines or immunotherapeutic compositions that include at least one component, such as, for example, an epitope disclosed in Table 1 or otherwise described herein; a cluster that includes such an epitope, an antigen or polypeptide that includes such an epitope; a composition as described above and herein; a construct as described above and herein, a T cell, or a host cell as described above and herein.

Further embodiments relate to methods of treating an animal. The methods can include administering to an animal a pharmaceutical composition, such as, a vaccine or immunotherapeutic composition, including those disclosed above and herein. The administering step can include a mode of delivery, such as, for example, transdermal, intranodal, perinodal, oral, intravenous, intradermal, intramuscular, intraperitoneal, mucosal, aerosol inhalation, instillation, and the like. The method can further include a step of assaying to determine a characteristic indicative of a state of a target cell or target cells. The method can include a first assaying step and a second assaying step, wherein the first assaying step precedes the administering step, and wherein the second assaying step follows the administering step. The method can further include a step of comparing the characteristic determined in the first assaying step with the characteristic determined in the second assaying step to obtain a result. The result can be for example, evidence of an immune response, a diminution in number of target cells, a loss of mass or size of a tumor comprising target cells, a decrease in number or concentration of an intracellular parasite infecting target cells, and the like.

Embodiments relate to methods of evaluating immunogenicity of a vaccine or immunotherapeutic composition. The methods can include administering to an animal a vaccine or immunotherapeutic, such as those described above and elsewhere herein, and evaluating immunogenicity based on a characteristic of the animal. The animal can be HLA-transgenic.

Other embodiments relate to methods of evaluating immunogenicity that include in vitro stimulation of a T cell with the vaccine or immunotherapeutic composition, such as those described above and elsewhere herein, and evaluating immunogenicity based on a characteristic of the T cell. The stimulation can be a primary stimulation.

Still further embodiments relate to methods of making a passive/adoptive immunotherapeutic. The methods can include combining a T cell or a host cell, such as those

described above and elsewhere herein, with a pharmaceutically acceptable adjuvant, carrier, diluent, excipient, and the like.

Other embodiments relate to methods of determining specific T cell frequency, and can include the step of contacting T cells with a MHC-peptide complex comprising an epitope disclosed in Table 1, or a complex comprising a cluster or antigen comprising such an epitope. The contacting step can include at least one feature, such as, for example, immunization, restimulation, detection, enumeration, and the like. The method can further include ELISPOT analysis, limiting dilution analysis, flow cytometry, in situ hybridization, the polymerase chain reaction, any combination thereof, and the like.

10

15

5

Embodiments relate to methods of evaluating immunologic response. The methods can include the above-described methods of determining specific T cell frequency carried out prior to and subsequent to an immunization step.

Other embodiments relate to methods of evaluating immunologic response. The methods can include determining frequency, cytokine production, or cytolytic activity of T cells, prior to and subsequent to a step of stimulation with MHC-peptide complexes comprising an epitope, such as, for example an epitope from Table 1, a cluster or a polypeptide comprising such an epitope.

Further embodiments relate to methods of diagnosing a disease. The methods can include contacting a subject tissue with at least one component, including, for example, a T cell, a host cell, an antibody, a protein, including those described above and elsewhere herein; and diagnosing the disease based on a characteristic of the tissue or of the component. The contacting step can take place *in vivo* or *in vitro*, for example.

20

Still other embodiments relate to methods of making a vaccine. The methods can include combining at least one component, an epitope, a composition, a construct, a T cell, a host cell; including any of those described above and elsewhere herein, with a pharmaceutically acceptable adjuvant, carrier, diluent, excipient, and the like.

25

Embodiments relate to computer readable media having recorded thereon the sequence of any one of SEQ ID NOS: 1 -602, in a machine having a hardware or software that calculates the physical, biochemical, immunologic, molecular genetic properties of a molecule embodying said sequence, and the like.

30

Still other embodiments relate to methods of treating an animal. The methods can include combining the method of treating an animal that includes administering to the animal a vaccine or immunotherapeutic composition, such as described above and elsewhere herein, combined with at least one mode of treatment, including, for example, radiation therapy, chemotherapy, biochemotherapy, surgery, and the like.

Further embodiments relate to isolated polypeptides that include an epitope cluster. In preferred embodiments the cluster can be from a target-associated antigen having the sequence as disclosed in any one of Tables 25-44, wherein the amino acid sequence includes not more than about 80% of the amino acid sequence of the antigen.

5

Other embodiments relate to vaccines or immunotherapeutic products that include an isolated peptide as described above and elsewhere herein. Still other embodiments relate to isolated polynucleotides encoding a polypeptide as described above and elsewhere herein. Other embodiments relate vaccines or immunotherapeutic products that include these polynucleotides. The polynucleotide can be DNA, RNA, and the like.

10

Still further embodiments relate to kits comprising a delivery device and any of the embodiments mentioned above and elsewhere herein. The delivery device can be a catheter, a syringe, an internal or external pump, a reservoir, an inhaler, microinjector, a patch, and any other like device suitable for any route of delivery. As mentioned, the kit, in addition to the delivery device also includes any of the embodiments disclosed herein. For example, without limitations, the kit can include an isolated epitope, a polypeptide, a cluster, a nucleic acid, an antigen, a pharmaceutical composition that includes any of the foregoing, an antibody, a T cell, a T cell receptor, an epitope-MHC complex, a vaccine, an immunotherapeutic, and the like. The kit can also include items such as detailed instructions for use and any other like item.

Brief Description of the Drawings

20

15

Figure 1 is a sequence alignment of NY-ESO-1 and several similar protein sequences.

Figure 2 graphically represents a plasmid vaccine backbone useful for delivering nucleic acid-encoded epitopes.

Figures 3A and 3B are FACS profiles showing results of HLA-A2 binding assays for tyrosinase $_{207-215}$ and tyrosinase $_{208-216}$.

25 Figur

Figure 3C shows cytolytic activity against a tyrosinase epitope by human CTL induced by *in vitro* immunization.

Figure 4 is a T=120 min. time point mass spectrum of the fragments produced by proteasomal cleavage of SSX-2₃₁₋₆₈.

Figure 5 shows a binding curve for HLA-A2:SSX-241-49 with controls.

30

Figure 6 shows specific lysis of SSX-2₄₁₋₄₉-pulsed targets by CTL from SSX-2₄₁₋₄₉-immunized HLA-A2 transgenic mice.

Figure 7A, B, and C show results of N-terminal pool sequencing of a T=60 min. time point aliquot of the PSMA₁₆₃₋₁₉₂ proteasomal digest.

Figure 8 shows binding curves for HLA-A2:PSMA₁₆₈₋₁₇₇ and HLA-A2:PSMA₂₈₈₋₂₉₇ with controls.

35

Figure 9 shows results of N-terminal pool sequencing of a T=60 min. time point aliquot of the PSMA₂₈₁₋₃₁₀ proteasomal digest.

Figure 10 shows binding curves for HLA-A2:PSMA₄₆₁₋₄₆₉, HLA-A2:PSMA₄₆₀₋₄₆₉, and HLA-A2:PSMA₆₆₃₋₆₇₁, with controls.

5

Figure 11 shows the results of a γ -IFN-based ELISPOT assay detecting PSMA₄₆₃₋₄₇₁-reactive HLA-A1⁺ CD8⁺ T cells.

Figure 12 shows blocking of reactivity of the T cells used in figure 10 by anti-HLA-A1 mAb, demonstrating HLA-A1-restricted recognition.

Figure 13 shows a binding curve for HLA-A2:PSMA₆₆₃₋₆₇₁, with controls.

10

Figure 14 shows a binding curve for HLA-A2:PSMA₆₆₂₋₆₇₁, with controls.

Figure 15. Comparison of anti-peptide CTL responses following immunization with various doses of DNA by different routes of injection.

Figure 16. Growth of transplanted gp33 expressing tumor in mice immunized by i.ln. injection of gp33 epitope-expressing, or control, plasmid.

15

20

Figure 17. Amount of plasmid DNA detected by real-time PCR in injected or draining lymph nodes at various times after i.ln. of i.m. injection, respectively.

Detailed Description of the Preferred Embodiment

Definitions

Unless otherwise clear from the context of the use of a term herein, the following listed terms shall generally have the indicated meanings for purposes of this description.

PROFESSIONAL ANTIGEN-PRESENTING CELL (pAPC) — a cell that possesses T cell costimulatory molecules and is able to induce a T cell response. Well characterized pAPCs include dendritic cells, B cells, and macrophages.

PERIPHERAL CELL - a cell that is not a pAPC.

25

HOUSEKEEPING PROTEASOME – a proteasome normally active in peripheral cells, and generally not present or not strongly active in pAPCs.

IMMUNE PROTEASOME – a proteasome normally active in pAPCs; the immune proteasome is also active in some peripheral cells in infected tissues.

30

EPITOPE – a molecule or substance capable of stimulating an immune response. In preferred embodiments, epitopes according to this definition include but are not necessarily limited to a polypeptide and a nucleic acid encoding a polypeptide, wherein the polypeptide is capable of stimulating an immune response. In other preferred embodiments, epitopes according to this definition include but are not necessarily limited to peptides presented on the surface of cells, the peptides being non-covalently bound to the binding cleft of class I MHC, such that they can interact with T cell receptors.

35

MHC EPITOPE – a polypeptide having a known or predicted binding affinity for a mammalian class I or class II major histocompatibility complex (MHC) molecule.

HOUSEKEEPING EPITOPE — In a preferred embodiment, a housekeeping epitope is defined as a polypeptide fragment that is an MHC epitope, and that is displayed on a cell in which housekeeping proteasomes are predominantly active. In another preferred embodiment, a housekeeping epitope is defined as a polypeptide containing a housekeeping epitope according to the foregoing definition, that is flanked by one to several additional amino acids. In another preferred embodiment, a housekeeping epitope is defined as a nucleic acid that encodes a housekeeping epitope according to the foregoing definitions.

10

5

IMMUNE EPITOPE – In a preferred embodiment, an immune epitope is defined as a polypeptide fragment that is an MHC epitope, and that is displayed on a cell in which immune proteasomes are predominantly active. In another preferred embodiment, an immune epitope is defined as a polypeptide containing an immune epitope according to the foregoing definition, that is flanked by one to several additional amino acids. In another preferred embodiment, an immune epitope is defined as a polypeptide including an epitope cluster sequence, having at least two polypeptide sequences having a known or predicted affinity for a class I MHC. In yet another preferred embodiment, an immune epitope is defined as a nucleic acid that encodes an immune epitope according to any of the foregoing definitions.

20

15

TARGET CELL – a cell to be targeted by the vaccines and methods of the invention. Examples of target cells according to this definition include but are not necessarily limited to: a neoplastic cell and a cell harboring an intracellular parasite, such as, for example, a virus, a bacterium, or a protozoan.

TARGET-ASSOCIATED ANTIGEN (TAA) – a protein or polypeptide present in a target cell.

25

TUMOR-ASSOCIATED ANTIGENS (TuAA) - a TAA, wherein the target cell is a neoplastic cell.

HLA EPITOPE – a polypeptide having a known or predicted binding affinity for a human class I or class II HLA complex molecule.

30

ANTIBODY – a natural immunoglobulin (Ig), poly- or monoclonal, or any molecule composed in whole or in part of an Ig binding domain, whether derived biochemically or by use of recombinant DNA. Examples include *inter alia*, F(ab), single chain Fv, and Ig variable region-phage coat protein fusions.

ENCODE – an open-ended term such that a nucleic acid encoding a particular amino acid sequence can consist of codons specifying that (poly)peptide, but can also comprise additional

5

10

15

20

25

sequences either translatable, or for the control of transcription, translation, or replication, or to facilitate manipulation of some host nucleic acid construct.

SUBSTANTIAL SIMILARITY – this term is used to refer to sequences that differ from a reference sequence in an inconsequential way as judged by examination of the sequence. Nucleic acid sequences encoding the same amino acid sequence are substantially similar despite differences in degenerate positions or modest differences in length or composition of any non-coding regions. Amino acid sequences differing only by conservative substitution or minor length variations are substantially similar. Additionally, amino acid sequences comprising housekeeping epitopes that differ in the number of N-terminal flanking residues, or immune epitopes and epitope clusters that differ in the number of flanking residues at either terminus, are substantially similar. Nucleic acids that encode substantially similar amino acid sequences are themselves also substantially similar.

FUNCTIONAL SIMILARITY – this term is used to refer to sequences that differ from a reference sequence in an inconsequential way as judged by examination of a biological or biochemical property, although the sequences may not be substantially similar. For example, two nucleic acids can be useful as hybridization probes for the same sequence but encode differing amino acid sequences. Two peptides that induce cross-reactive CTL responses are functionally similar even if they differ by non-conservative amino acid substitutions (and thus do not meet the substantial similarity definition). Pairs of antibodies, or TCRs, that recognize the same epitope can be functionally similar to each other despite whatever structural differences exist. In testing for functional similarity of immunogenicity one would generally immunize with the "altered" antigen and test the ability of the elicited response (Ab, CTL, cytokine production, etc.) to recognize the target antigen. Accordingly, two sequences may be designed to differ in certain respects while retaining the same function. Such designed sequence variants are among the embodiments of the present invention.

Table 1A. SEQ ID NOS.* including epitopes in Examples 1-7, 13.

SEQ ID NO	IDENTITY	SEQUENCE
1	Tyr 207-216	FLPWHRLFLL
2	Tyrosinase protein	Accession number**: P14679
3	SSX-2 protein	Accession number: NP_003138
4	PSMA protein	Accession number: NP_004467
5	Tyrosinase cDNA	Accession number: NM_000372
6	SSX-2 cDNA	Accession number: NM_003147
7	PSMA cDNA	Accession number: NM_004476
8	Tyr 207-215	FLPWHRLFL
9	Tyr 208-216	LPWHRLFLL

10	SSX-2 31-68	YFSKEEWEKMKASEKIFYVYMKRKYEAMTKLGFK ATLP
11	SSX-2 32-40	FSKEEWEKM
12	SSX-2 39-47	KMKASEKIF
13	SSX-2 40-48	MKASEKIFY
14	SSX-2 39-48	KMKASEKIFY
15	SSX-2 41-49	KASEKIFYV
16	SSX-2 40-49	MKASEKIFYV
17	SSX-2 41-50	KASEKIFYVY
18	SSX-2 42-49	ASEKIFYVY
19	SSX-2 53-61	RKYEAMTKL
20	SSX-2 52-61	KRKYEAMTKL
21	SSX-2 54-63	KYEAMTKLGF
22	SSX-2 55-63	YEAMTKLGF
23	SSX-2 56-63	EAMTKLGF
24	HBV18-27	FLPSDYFPSV
25	HLA-B44 binder	AEMGKYSFY
26	SSX-1 41-49	KYSEKISYV
27	SSX-3 41-49	KVSEKIVYV
28	SSX-4 41-49	KSSEKIVYV
29	SSX-5 41-49	KASEKIIYV
30	PSMA163-192	AFSPQGMPEGDLVYVNYARTEDFFKLERDM
31	PSMA 168-190	GMPEGDLVYVNYARTEDFFKLER
32	PSMA 169-177	MPEGDLVYV
33	PSMA 168-177	GMPEGDLVYV
34	PSMA 168-176	GMPEGDLVY
35	PSMA 167-176	QGMPEGDLVY
36	PSMA 169-176	MPEGDLVY
37	PSMA 171-179	EGDLVYVNY
38	PSMA 170-179	PEGDLVYVNY
39	PSMA 174-183	LVYVNYARTE
40	PSMA 177-185	VNYARTEDF
41	PSMA 176-185	YVNYARTEDF
42	PSMA 178-186	NYARTEDFF
43	PSMA 179-186	YARTEDFF
44	PSMA 181-189	RTEDFFKLE
45	PSMA 281-310	RGIAEAVGLPSIPVHPIGYYDAQKLLEKMG
46	PSMA 283-307	IAEAVGLPSIPVHPIGYYDAQKLLE
47	PSMA 289-297	LPSIPVHPI
48	PSMA 288-297	GLPSIPVHPI
49	PSMA 297-305	IGYYDAQKL
50	PSMA 296-305	PIGYYDAQKL

_		
51	PSMA 291-299	SIPVHPIGY
52	PSMA 290-299	PSIPVHPIGY
53	PSMA 292-299	IPVHPIGY
54	PSMA 299-307	YYDAQKLLE
55	PSMA454-481	SSIEGNYTLRVDCTPLMYSLVHLTKEL
56	PSMA 456-464	IEGNYTLRV
57	PSMA 455-464	SIEGNYTLRV
58	PSMA 457-464	EGNYTLRV
59	PSMA 461-469	TLRVDCTPL
60	PSMA 460-469	YTLRVDCTPL
61	PSMA 462-470	LRVDCTPLM
62	PSMA 463-471	RVDCTPLMY
63	PSMA 462-471	LRVDCTPLMY
64	PSMA653-687	FDKSNPIVLRMMNDQLMFLERAFIDPLGLPDRPFY
65	PSMA 660-681	VLRMMNDQLMFLERAFIDPLGL
66	PSMA 663-671	MMNDQLMFL
67	PSMA 662-671	RMMNDQLMFL
68	PSMA 662-670	RMMNDQLMF
69	Tyr 1-17	MLLAVLYCLLWSFQTSA
69	Tyr 1-17	MLLAVLYCLLWSFQTSA

Table 1B. SEQ ID NOS.* including epitopes in Examples 14 and 15.

SEQ ID NO	IDENTITY	SEQUENCE
70	GP100 protein ²	**Accession number: P40967
71	MAGE-1 protein	Accession number: P43355
72	MAGE-2 protein	Accession number: P43356
73	MAGE-3 protein	Accession number: P43357
74	NY-ESO-1 protein	Accession number: P78358
75	LAGE-1a protein	Accession number: CAA11116
76	LAGE-1b protein	Accession number: CAA11117
77	PRAME protein	Accession number: NP 006106
78	PSA protein	Accession number: P07288
79	PSCA protein	Accession number: O43653
80	GP100 cds	Accession number: U20093
81	MAGE-1 cds	Accession number: M77481
82	MAGE-2 cds	Accession number: L18920
83	MAGE-3 cds	Accession number: U03735
84	NY-ESO-1 cDNA	Accession number: U87459
85	PRAME cDNA	Accession number: NM_006115
86	PSA cDNA	Accession number: NM_001648
87	PSCA cDNA	Accession number: AF043498
88	GP100 630-638	LPHSSSHWL
89	GP100 629-638	QLPHSSSHWL

90	GP100 614-622	LIYRRLMK
91	GP100 613-622	SLIYRRRLMK
92	GP100 615-622	IYRRLMK
93	GP100 630-638	LPHSSSHWL
94	GP100 629-638	QLPHSSSHWL
95	MAGE-1 95-102	ESLFRAVI
96	MAGE-1 93-102	ILESLFRAVI
97	MAGE-1 93-101	ILESLFRAV
98	MAGE-1 92-101	CILESLFRAV
99	MAGE-1 92-100	CILESLFRA
100	MAGE-1 263-271	EFLWGPRAL
101	MAGE-1 264-271	FLWGPRAL
102	MAGE-1 264-273	FLWGPRALAE
103	MAGE-1 265-274	LWGPRALAET
104	MAGE-1 268-276	PRALAETSY
105	MAGE-1 267-276	GPRALAETSY
106	MAGE-1 269-277	RALAETSYV
107	MAGE-1 271-279	LAETSYVKV
108	MAGE-1 270-279	ALAETSYVKV
109	MAGE-1 272-280	AETSYVKVL
110	MAGE-1 271-280	LAETSYVKVL
111	MAGE-1 274-282	TSYVKVLEY
112	MAGE-1 273-282	ETSYVKVLEY
113	MAGE-1 278-286	KVLEYVIKV
114	MAGE-1 168-177	SYVLVTCLGL
115	MAGE-1 169-177	YVLVTCLGL
116	MAGE-1 170-177	VLVTCLGL
117	MAGE-1 240-248	TQDLVQEKY
118	MAGE-1 239-248	LTQDLVQEKY
119	MAGE-1 232-240	YGEPRKLLT
120	MAGE-1 243-251	LVQEKYLEY
121	MAGE-1 242-251	DLVQEKYLEY
122	MAGE-1 230-238	SAYGEPRKL
123	MAGE-1 278-286	KVLEYVIKV
124	MAGE-1 277-286	VKVLEYVIKV
125	MAGE-1 276-284	YVKVLEYVI
126	MAGE-1 274-282	TSYVKVLEY
127	MAGE-1 273-282	ETSYVKVLEY
128	MAGE-1 283-291	VIKVSARVR
129	MAGE-1 282-291	YVIKVSARVR
130	MAGE-2 115-122	ELVHFLLL
131	MAGE-2 113-122	MVELVHFLLL

132	MAGE-2 109-116	ISRKMVEL
133	MAGE-2 108-116	AISRKMVEL
134	MAGE-2 107-116	AAISRKMVEL
135	MAGE-2 112-120	KMVELVHFL
136	MAGE-2 109-117	ISRKMVELV
137	MAGE-2 108-117	AISRKMVELV
138	MAGE-2 116-124	LVHFLLLKY
139	MAGE-2 115-124	ELVHFLLLKY
140	MAGE-2 111-119	RKMVELVHF
141	MAGE-2 158-166	LQLVFGIEV
142	MAGE-2 157-166	YLQLVFGIEV
143	MAGE-2 159-167	QLVFGIEVV
144	MAGE-2 158-167	LQLVFGIEVV
145	MAGE-2 164-172	IEVVEVVPI
146	MAGE-2 163-172	GIEVVEVVPI
147	MAGE-2 162-170	FGIEVVEVV
148	MAGE-2 154-162	ASEYLQLVF
149	MAGE-2 153-162	KASEYLQLVF
150	MAGE-2 218-225	EEKIWEEL
151	MAGE-2 216-225	APEEKIWEEL
152	MAGE-2 216-223	APEEKIWE
153	MAGE-2 220-228	KIWEELSML
154	MAGE-2 219-228	EKIWEELSML
· 155	MAGE-2 271-278	FLWGPRAL
156	MAGE-2 271-279	FLWGPRALI
157	MAGE-2 278-286	LIETSYVKV
158	MAGE-2 277-286	ALIETSYVKV
159	MAGE-2 276-284	RALIETSYV
160	MAGE-2 279-287	IETSYVKVL
161	MAGE-2 278-287	LIETSYVKVL
162	MAGE-3 271-278	FLWGPRAL
163	MAGE-3 270-278	EFLWGPRAL
164	MAGE-3 271-279	FLWGPRALV
165	MAGE-3 276-284	RALVETSYV
166	MAGE-3 272-280	LWGPRALVE
167	MAGE-3 271-280	FLWGPRALVE
168	MAGE-3 27 2-281	LWGPRALVET
169	NY-ESO-1 82-90	GPESRLLEF
170	NY-ESO-1 83-91	PESRLLEFY
171	NY-ESO-1 82-91	GPESRLLEFY
172	NY-ESO-1 84-92	ESRLLEFYL
173	NY-ESO-1 86-94	RLLEFYLAM

174	NY-ESO-1 88-96	LEFYLAMPF
175	NY-ESO-1 87-96	LLEFYLAMPF
176	NY-ESO-1 93-102	AMPFATPMEA
177	NY-ESO-1 94-102	MPFATPMEA
178	NY-ESO-1 115-123	PLPVPGVLL
179	NY-ESO-1 114-123	PPLPVPGVLL
180	NY-ESO-1 116-123	LPVPGVLL
181	NY-ESO-1 103-112	ELARRSLAQD
182	NY-ESO-1 118-126	VPGVLLKEF
183	NY-ESO-1 117-126	PVPGVLLKEF
184	NY-ESO-1 116-123	LPVPGVLL
185	NY-ESO-1 127-135	TVSGNILTI
186	NY-ESO-1 126-135	FTVSGNILTI
187	NY-ESO-1 120-128	GVLLKEFTV
188	NY-ESO-1 121-130	VLLKEFTVSG
189	NY-ESO-1 122-130	LLKEFTVSG
190	NY-ESO-1 118-126	VPGVLLKEF
191	NY-ESO-1 117-126	PVPGVLLKEF
192	NY-ESO-1 139-147	AADHRQLQL
193	NY-ESO-1 148-156	SISSCLQQL
194	NY-ESO-1 147-156	LSISSCLQQL
195	NY-ESO-1 138-147	TAADHRQLQL
196	NY-ESO-1 161-169	WITQCFLPV
197	NY-ESO-1 157-165	SLLMWITQC
198	NY-ESO-1 150-158	SSCLQQLSL
199	NY-ESO-1 154-162	QQLSLLMWI
200	NY-ESO-1 151-159	SCLQQLSLL
201	NY-ESO-1 150-159	SSCLQQLSLL
202	NY-ESO-1 163-171	TQCFLPVFL
203	NY-ESO-1 162-171	ITQCFLPVFL
204	PRAME 219-227	PMQDIKMIL
205	PRAME 218-227	MPMQDIKMIL
206	PRAME 428-436	QHLIGLSNL
207	PRAME 427-436	LQHLIGLSNL
208	PRAME 429-436	HLIGLSNL
209	PRAME 431-439	IGLSNLTHV
210	PRAME 430-439	LIGLSNLTHV
211	PSA 53-61	VLVHPQWVL
212	PSA 52-61	GVLVHPQWVL
213	PSA 52-60	GVLVHPQWV
214	PSA 59-67	WVLTAAHCI
215	PSA 54-63	LVHPQWVLTA

216	PSA 53-62	VLVHPQWVLT
217	1	LVHPQWVLT
218		CIRNKSVI
219	PSA 65-73	HCIRNKSVI
220	·	HPQWVLTAA
221	PSA 63-72	AAHCIRNKSV
222	PSCA 116-123	LLWGPGQL
223		LLLWGPGQL
224	PSCA 114-123	GLLLWGPGQL
225	PSCA 99-107	ALQPAAAIL
226	PSCA 98-107	HALQPAAAIL
227	Tyr 128-137	APEKDKFFAY
228	Tyr 129-137	PEKDKFFAY
229	Tyr 130-138	EKDKFFAYL
230	Tyr 131-138	KDKFFAYL
231	Tyr 205-213	PAFLPWHRL
232	Tyr 204-213	APAFLPWHRL
233	Tyr 214-223	FLLRWEQEIQ
234	Tyr 212-220	RLFLLRWEQ
235	Tyr 191-200	GSEIWRDIDF
236	Tyr 192-200	SEIWRDIDF
237	Tyr 473-481	RIWSWLLGA
238	Tyr 476-484	SWLLGAAMV
239	Tyr 477-486	WLLGAAMVGA
240	Tyr 478-486	LLGAAMVGA
241	PSMA 4-12	LLHETDSAV
242	PSMA 13-21	ATARRPRWL
243	PSMA 53-61	TPKHNMKAF
244	PSMA 64-73	ELKAENIKKF
245	PSMA 69-77	NIKKFLH'NF
246	PSMA 68-77	ENIKKFLH'NF
247	PSMA 220-228	AGAKGVILY
248	PSMA 468-477	PLMYSLVHNL
249	PSMA 469-477	LMYSLVHNL
250	PSMA 463-471	RVDCTPLMY
251	PSMA 465-473	DCTPLMYSL
252	PSMA 507-515	SGMPRISKL
253	PSMA 506-515	FSGMPRISKL
254	NY-ESO-1 136-163	RLTAADHRQLQLSISSCLQQLSLLMWIT
255	NY-ESO-1 150-177	SSCLQQLSLLMWITQCFLPVFLAQPPSG
100 : 77		CORP OM 1 / 1

This H was reported as Y in the SWISSPROT database.

⁷The amino acid at position 274 may be Pro or Leu depending upon the database. The particular analysis presented herein used the Pro.

Table 1C. SEQ ID NOS.* including epitopes in Example14.

5

SEQ ID NO.		SEQUENCE
256	Mage-1 125-132	KAEMLESV
257	Mage-1 124-132	TKAEMLESV
258	Mage-1 123-132	VTKAEMLESV
259	Mage-1 128-136	MLESVIKNY
260	Mage-1 127-136	EMLESVIKNY
261	Mage-1 125-133	KAEMLESVI
262	Mage-1 146-153	KASESLQL
263	Mage-1 145-153	GKASESLQL
264	Mage-1 147-155	ASESLQLVF
265	Mage-1 153-161	LVFGIDVKE
266	Mage-1 114-121	LLKYRARE
267	Mage-1 106-113	VADLVGFL
268	Mage-1 105-113	KVADLVGFL
269	Mage-1 107-115	ADLVGFLLL
270	Mage-1 106-115	VADLVGFLLL
271	Mage-1 114-123	LLKYRAREPV
272	Mage-3 278-286	LVETSYVKV
273	Mage-3 277-286	ALVETSYVKV
274	Mage-3 285-293	KVLHHMVKI
275	Mage-3 283-291	YVKVLHHMV
276	Mage-3 275-283	PRALVETSY
277	Mage-3 274-283	GPRALVETSY
278	Mage-3 278-287	LVETSYVKVL
279	ED-B 4'-5	TIIPEVPQL
280	ED-B 5'-5	DTIPEVPQL
281	ED-B 1-10	EVPQLTDLSF
282	ED-B 23-30	TPLNSSTI
283	ED-B 18-25	IGLRWTPL
284	ED-B 17-25	SIGLRWIPL
285	ED-B 25-33	LNSSTIIGY
286	ED-B 24-33	PLNSSTIIGY
287	ED-B 23-31	TPLNSSTII
288	ED-B 31-38	IGYRITVV
289	ED-B 30-38	IIGYRITVV
290	ED-B 29-38	TIIGYRITVV
291	ED-B 31-39	IGYRITVVA
292	ED-B 30-39	IIGYRITVVA
293	CEA 184-191	SLPVSPRL
294	CEA 183-191	QSLPVSPRL
295	CEA 186-193	PVSPRLQL
296	CEA 185-193	LPVSPRLQL
297	CEA 184-193	SLPVSPRLQL
298	CEA 185-192	LPVSPRLQ
	CEA 192-200	QLSNGNRTL

20

300	CEA 191-200	LQLSNGNRTL
301	CEA 179-187	WVNNQSLPV
302	CEA 186-194	PVSPRLQLS
303	CEA 362-369	SLPVSPRL
304	CEA 361-369	OSLPVSPRL
305	CEA 364-371	PVSPRLQL
306	CEA 363-371	LPVSPRLQL
307	CEA 362-371	SLPVSPRLQL
308	CEA 363-370	LPVSPRLQ
309	CEA 370-378	QLSNDNRTL
310	CEA 369-378	LQLSNDNRTL
311	CEA 357-365	WVNNQSLPV
312	CEA 360-368	NQSLPVSPR
313	CEA 540-547	SLPVSPRL
314	CEA 539-547	OSLPVSPRL
315	CEA 542-549	PVSPRLQL
316	CEA 541-549	LPVSPRLQL
317	CEA 540-549	SLPVSPRLQL
318	CEA 541-548	LPVSPRLQ
319	CEA 548-556	QLSNGNRTL
320	CEA 547-556	LQLSNGNRTL
321	CEA 535-543	WVNGQSLPV
322	CEA 533-541	LWWVNGQSL
323	CEA 532-541	YLWWVNGQSL
324	CEA 538-546	GQSLPVSPR
325	Her-2 30-37	DMKLRLPA
326	Her-2 28-37	GTDMKLRLPA
327	Her-2 42-49	HLDMLRHL
328	Her-2 41-49	THLDMLRHL
329	Her-2 40-49	ETHLDMLRHL
330	Her-2 36-43	PASPETHL
331	Her-2 35-43	LPASPETHL
332	Her-2 34-43	RLPASPETHL
333	Her-2 38-46	SPETHLDML
334	Her-2 37-46	ASPETHLDML
335	Her-2 42-50	HLDMLRHLY
336	Her-2 41-50	THLDMLRHLY
337	Her-2 719-726	ELRKVKVL
338	Her-2 718-726	TELRKVKVL
339	Her-2 717-726	ETELRKVKVL
340	Her-2 715-723	LKETELRKV
341	Her-2 714-723	ILKETELRKV
342	Her-2 712-720	MRILKETEL
343	Her-2 711-720	QMRILKETEL
344	Her-2 717-725	ETELRKVKV
345	Her-2 716-725	KETELRKVKV
346	Her-2 706-714	MPNQAQMRI
347	Her-2 705-714	AMPNQAQMRI
348	Her-2 706-715	MPNQAQMRIL
349	HER-2 966-973	RPRFRELV
L		_ 1

350 HER-2 965-973 CRPRFRELV 351 HER-2 968-976 RFRELVSEF 352 HER-2 967-976 PRFRELVSEF 353 HER-2 964-972 ECRPRFREL 354 NY-ESO-1 67-75 GAASGLNGC 355 NY-ESO-1 52-60 RASGPGGGA 356 NY-ESO-1 64-72 PHGGAASGL 357 NY-ESO-1 63-72 GPHGGAASGL 358 NY-ESO-1 60-69 APRGPHGGAA 359 PRAME 112-119 VRPRRWKL 360 PRAME 111-119 EVRPRRWKL 361 PRAME 113-121 RPRRWKLQV
352 HER-2 967-976 PRFRELVSEF 353 HER-2 964-972 ECRPRFREL 354 NY-ESO-1 67-75 GAASGLNGC 355 NY-ESO-1 52-60 RASGPGGGA 356 NY-ESO-1 64-72 PHGGAASGL 357 NY-ESO-1 63-72 GPHGGAASGL 358 NY-ESO-1 60-69 APRGPHGGAA 359 PRAME 112-119 VRPRRWKL 360 PRAME 111-119 EVRPRRWKL
353 HER-2 964-972 ECRPRFREL 354 NY-ESO-1 67-75 GAASGLNGC 355 NY-ESO-1 52-60 RASGPGGGA 356 NY-ESO-1 64-72 PHGGAASGL 357 NY-ESO-1 63-72 GPHGGAASGL 358 NY-ESO-1 60-69 APRGPHGGAA 359 PRAME 112-119 VRPRRWKL 360 PRAME 111-119 EVRPRRWKL
354 NY-ESO-1 67-75 GAASGLNGC 355 NY-ESO-1 52-60 RASGPGGA 356 NY-ESO-1 64-72 PHGGAASGL 357 NY-ESO-1 63-72 GPHGGAASGL 358 NY-ESO-1 60-69 APRGPHGGAA 359 PRAME 112-119 VRPRRWKL 360 PRAME 111-119 EVRPRRWKL
355 NY-ESO-1 52-60 RASGPGGGA 356 NY-ESO-1 64-72 PHGGAASGL 357 NY-ESO-1 63-72 GPHGGAASGL 358 NY-ESO-1 60-69 APRGPHGGAA 359 PRAME 112-119 VRPRRWKL 360 PRAME 111-119 EVRPRRWKL
356 NY-ESO-1 64-72 PHGGAASGL 357 NY-ESO-1 63-72 GPHGGAASGL 358 NY-ESO-1 60-69 APRGPHGGAA 359 PRAME 112-119 VRPRRWKL 360 PRAME 111-119 EVRPRRWKL
357 NY-ESO-1 63-72 GPHGGAASGL 358 NY-ESO-1 60-69 APRGPHGGAA 359 PRAME 112-119 VRPRRWKL 360 PRAME 111-119 EVRPRRWKL
358 NY-ESO-1 60-69 APRGPHGGAA 359 PRAME 112-119 VRPRRWKL 360 PRAME 111-119 EVRPRRWKL
359 PRAME 112-119 VRPRRWKL 360 PRAME 111-119 EVRPRRWKL
360 PRAME 111-119 EVRPRRWKL

1 361 PRAME 113-121 RPRRWKLQV
362 PRAME 114-122 PRRWKLQVL
363 PRAME 113-122 RPRRWKLQVL
364 PRAME 116-124 RWKLQVLDL
365 PRAME 115-124 RRWKLQVLDL
366 PRAME 174-182 PVEVLVDLF
367 PRAME 199-206 VKRKKNVL
368 PRAME 198-206 KVKRKKNVL
369 PRAME 197-206 EKVKRKKNVL
370 PRAME 198-205 KVKRKKNV
371 PRAME 201-208 RKKNVLRL
372 PRAME 200-208 KRKKNVLRL
373 PRAME 199-208 VKRKKNVLRL
374 PRAME 189-196 DELFSYLI
375 PRAME 205-213 VLRLCCKKL
376 PRAME 204-213 NVLRLCCKKL
377 PRAME 194-202 YLIEKVKRK
378 PRAME 74-81 QAWPFTCL
379 PRAME 73-81 VQAWPFTCL
380 PRAME 72-81 MVQAWPFTCL
381 PRAME 81-88 LPLGVLMK
382 PRAME 80-88 CLPLGVLMK
383 PRAME 79-88 TCLPLGVLMK
384 PRAME 84-92 GVLMKGQHL
385 PRAME 81-89 LPLGVLMKG
386 PRAME 80-89 CLPLGVLMKG
387 PRAME 76-85 WPFTCLPLGV
388 PRAME 51-59 ELFPPLFMA
389 PRAME 49-57 PRELFPPLF
390 PRAME 48-57 LPRELFPPLF
391 PRAME 50-58 RELFPPLFM
392 PRAME 49-58 PRELFPPLFM
393 PSA 239-246 RPSLYTKV
394 PSA 238-246 ERPSLYTKV
395 PSA 236-243 LPERPSLY
396 PSA 235-243 ALPERPSLY
397 PSA 241-249 SLYTKVVHY
398 PSA 240-249 PSLYTKVVHY
399 PSA 239-247 RPSLYTKVV

400	PSMA 211-218	GNKVKNAQ
401	PSMA 202-209	IARYGKVF
402	PSMA 217-225	AQLAGAKGV
403	PSMA 207-215	KVFRGNKVK
404	PSMA 211-219	GNKVKNAQL
405	PSMA 269-277	TPGYPANEY
406	PSMA 268-277	LTPGYPANEY
407	PSMA 271-279	GYPANEYAY
408	PSMA 270-279	PGYPANEYAY
409	PSMA 266-274	DPLTPGYPA
410	PSMA 492-500	SLYESWTKK
411	PSMA 491-500	KSLYESWTKK
412	PSMA 486-494	EGFEGKSLY
413	PSMA 485-494	DEGFEGKSLY
414	PSMA 498-506	TKKSPSPEF
415	PSMA 497-506	WTKKSPSPEF
416	PSMA 492-501	SLYESWTKKS
417	PSMA 725-732	WGEVKRQI
418	PSMA 724-732	AWGEVKRQI
419	PSMA 723-732	KAWGEVKRQI
420	PSMA 723-730	KAWGEVKR
421	PSMA 722-730	SKAWGEVKR
422	PSMA 731-739	QIYVAAFTV
423	PSMA 733-741	YVAAFTVQA
424	PSMA 725-733	WGEVKRQIY
425	PSMA 727-735	EVKRQIYVA
426	PSMA 738-746	TVQAAAETL
427	PSMA 737-746	FTVQAAAETL
428	PSMA 729-737	KRQIYVAAF
429	PSMA 721-729	PSKAWGEVK
430	PSMA 723-731	KAWGEVKRQ
431	PSMA 100-108	WKEFGLDSV
432	PSMA 99-108	QWKEFGLDSV
433	PSMA 102-111	EFGLDSVELA
434	SCP-1 126-134	ELRQKESKL
435	SCP-1 125-134	AELRQKESKL
436	SCP-1 133-141	KLQENRKII
437	SCP-1 298-305	QLEEKTKL
438	SCP-1 297-305	NQLEEKTKL
439	SCP-1 288-296	LLEESRDKV
440	SCP-1 287-296	FLLEESRDKV
441	SCP-1 291-299	ESRDKVNQL
442	SCP-1 290-299	EESRDKVNQL
443	SCP-1 475-483	EKEVHDLEY
444	SCP-1 474-483	REKEVHDLEY
445	SCP-1 480-488	DLEYSYCHY
446	SCP-1 477-485	EVHDLEYSY
447	SCP-1 477-486	EVHDLEYSYC
448	SCP-1 502-509	KLSSKREL
449	SCP-1 508-515	ELKNTEYF

		PCT/US02/11101
450	SCP-1 507-515	RELKNTEYF
451	SCP-1 496-503	KRGQRPKL
452	SCP-1 494-503	LPKRGQRPKL
453	SCP-1 509-517	LKNTEYFTL
454	SCP-1 508-517	ELKNTEYFTL
455	SCP-1 506-514	KRELKNTEY
456	SCP-1 502-510	KLSSKRELK
457	SCP-1 498-506	GQRPKLSSK
458	SCP-1 497-506	RGQRPKLSSK
459	SCP-1 500-508	RPKLSSKRE
460	SCP-1 573-580	LEYVREEL
461	SCP-1 572-580	ELEYVREEL
462	SCP-1 571-580	NELEYVREEL
463	SCP-1 579-587	ELKQKREDEV
464	SCP-1 575-583	YVREELKOK
465	SCP-1 632-640	QLNVYEIKV
466	SCP-1 630-638	SKQLNVYEI
467	SCP-1 628-636	AESKOLNVY
468	SCP-1 627-636	TAESKQLNVY
469	SCP-1 638-645	IKVNKLEL
470	SCP-1 637-645	EIKVNKLEL
471	SCP-1 636-645	YEIKVNKLEL
472	SCP-1 642-650	KLELELESA
473	SCP-1 635-643	VYEIKVNKL
474	SCP-1 634-643	NVYEIKVNKL
475	SCP-1 646-654	ELESAKOKF
476	SCP-1 642-650	KLELELESA
, 477	SCP-1 646-654	ELESAKQKF
478	SCP-1 771-778	KEKLKREA
479	SCP-1 777-785	EAKENTATL
480	SCP-1 776-785	REAKENTATL
481	SCP-1 773-782	KLKREAKENT
482	SCP-1 112-119	EAEKIKKW
483	SCP-1 101-109	GLSRVYSKL
484	SCP-1 100-109	EGLSRVYSKL
485	SCP-1 108-116	KLYKEAEKI
486	SCP-1 98-106	NSEGLSRVY
487	SCP-1 97-106	ENSEGLSRVY
488	SCP-1 102-110	LSRVYSKLY
489	SCP-1 101-110	GLSRVYSKLY
490	SCP-1 96-105	LENSEGLSRV
491	SCP-1 108-117	KLYKEAEKIK
492	SCP-1 949-956	REDRWAVI
493	SCP-1 948-956	MREDRWAVI
494	SCP-1 947-956	KMREDRWAVI
495	SCP-1 947-955	KMREDRWAV
496	SCP-1 934-942	TTPGSTLKF
497	SCP-1 933-942	LTIPGSTLKF
498	SCP-1 937-945	GSTLKGAI
499	SCP-1 945-953	
	1 > > > > > > >	IRKMREDRW

500	SCP-1 236-243	RLEMHFKL
501	SCP-1 235-243	SRLEMHFKL
502	SCP-1 242-250	KLKEDYEKI
503	SCP-1 249-257	KIQHLEQEY
504	SCP-1 248-257	EKIQHLEQEY
505	SCP-1 233-242	ENSRLEMHF
506	SCP-1 236-245	RLEMHFKLKE
507	SCP-1 324-331	LEDIKVSL
508	SCP-1 323-331	ELEDIKVSL
509	SCP-1 322-331	KELEDIKVSL
510	SCP-1 320-327	LTKELEDI
511	SCP-1 319-327	HLTKELEDI
512	SCP-1 330-338	SLQRSVSTQ
513	SCP-1 321-329	TKELEDIKV
514	SCP-1 320-329	LTKELEDIKV
515	SCP-1 326-335	DIKVSLQRSV
516	SCP-1 281-288	KMKDLTFL
517	SCP-1 280-288	NKMKDLTFL
518	SCP-1 279-288	ENKMKDLTFL
519	SCP-1 288-296	LLEESRDKV
520	SCP-1 287-296	FLLEESRDKV
521	SCP-1 291-299	ESRDKVNQL
522	SCP-1 290-299	EESRDKVNQL
523	SCP-1 277-285	EKENKMKDL
524	SCP-1 276-285	TEKENKMKDL
525	SCP-1 279-287	ENKMKDLTF
526	SCP-1 218-225	IEKMITAF
527	SCP-1 217-225	NIEKMITAF
528	SCP-1 216-225	SNIEKMITAF
529	SCP-1 223-230	TAFEELRV
530	SCP-1 222-230	ITAFEELRV
531	SCP-1 221-230	MITAFEELRV
532	SCP-1 220-228	KMITAFEEL
533	SCP-1 219-228	EKMITAFEEL
534	SCP-1 227-235	ELRVQAENS
535	SCP-1 213-222	DLNSNIEKMI
536	SCP-1 837-844	WTSAKNTL
537	SCP-1 846-854	TPLPKAYTV
538	SCP-1 845-854	STPLPKAYTV
539	SCP-1 844-852	LSTPLPKAY
540	SCP-1 843-852	TLSTPLPKAY
541	SCP-1 842-850	NTLSTPLPK
542	SCP-1 841-850	KNTLSTPLPK
543	SCP-1 828-835	ISKDKRDY
544	SCP-1 826-835	HGISKDKRDY
545	SCP-1 832-840	KRDYLWTSA
546	SCP-1 829-838	SKDKRDYLWT
547	SCP-1 279-286	ENKMKDLT
548	SCP-1 260-268	EINDKEKQV
549	SCP-1 274-282	QITEKENKM

	LOOP 1 260 277	SLLLIQITE
550	SCP-1 269-277	FEKIAEEL
551	SCP-1 453-460	
552	SCP-1 452-460	QFEKIAEEL
553	SCP-1 451-460	KQFEKIAEEL
554	SCP-1 449-456	DNKQFEKI
555	SCP-1 448-456	YDNKQFEKI
556	SCP-1 447-456	LYDNKQFEKI
557	SCP-1 440-447	LGEKETLL
558	SCP-1 439-447	VLGEKETLL
559	SCP-1 438-447	KVLGEKETLL
560	SCP-1 390-398	LLRTEQQRL
561	SCP-1 389-398	ELLRTEQQRL
562	SCP-1 393-401	TEQQRLENY
563	SCP-1 392-401	RTEQQRLENY
564	SCP-1 402-410	EDQLIILTM
565	SCP-1 397-406	RLENYEDQLI
566	SCP-1 368-375	KARAAHSF
567	SCP-1 376-384	VVTEFETTV
568	SCP-1 375-384	FVVTEFETTV
569	SCP-1 377-385	VTEFETTVC
570	SCP-1 376-385	VVTEFETTVC
	SCP-1 344-352	DLQIATNTI
571	SCP-1 347-355	IATNTICQL
572	SCP-1 347-333 SCP-1 346-355	QIATNTICQL
573	SSX4 57-65	VMTKLGFKY
574		LNYEVMTKL
575	SSX4 53-61	KLNYEVMTKL
576	SSX4 52-61	TLPPFMRSK
577	SSX4 66-74	KIMPKKPAE
578	SSX4 110-118	SLQRIFPKIM
579	SSX4 103-112	YIKSYLEQA
580	Tyr 463-471	
581	Tyr 459-467	SFQDYIKSY
582	Tyr 458-467	DSFQDYIKSY
583	Tyr 507-514	LPEEKQPL
584	Tyr 506-514	QLPEEKQPL
585	Tyr 505-514	KQLPEEKQPL
586	Tyr 507-515	LPEEKQPLL
587	Tyr 506-515	QLPEEKQPLL
588	Tyr 497-505	SLLCRHKRK
589	ED-B domain of	EVPQLTDLSFVDITDSSIGLRWTPLNSSTIIGYRI
Ì	Fibronectin	TVVAAGEGIPIFEDFVDSSVGYYTVTGLEPGID
		YDISVITLINGGESAPTTLTQQT
590	ED-B domain of	CTFDNLSPGLEYNVSVYTVKDDKESVPISDTIIP
	Fibronectin with	EVPQLTDLSFVDITDSSIGLRWTPLNSSTIIGYRI
	flanking sequence	TVVAAGEGIPIFEDFVDSSVGYYTVTGLEPGID
İ	from Fribronectin	YDISVITLINGGESAPTTLTQQT
	_	AVPPPTDLRFTNIGPDTMRVTW
591	ED-B domain of	Accession number: X07717
	Fibronectin cds	
592	CEA protein	Accession number: P06731
593	CEA cDNA	Accession number: NM_004363
		- L

594	Her2/Neu protein	Accession number: P04626
595	Her2/Neu cDNA	Accession number: M11730
596	SCP-1 protein	Accession number: Q15431
597	SCP-1 cDNA	Accession number: X95654
598	SSX-4 protein	Accession number: O60224
599	SSX-4 cDNA	Accession number: NM_005636

^{*}Any of SEQ ID NOS. 1, 8, 9, 11-23, 26-29, 32-44, 47-54, 56-63, 66-68 88-253, and 256-588 can be useful as epitopes in any of the various embodiments of the invention. Any of SEQ ID NOS. 10, 30, 31, 45, 46, 55, 64, 65, 69, 254, and 255 can be useful as sequences containing epitopes or epitope clusters, as described in various embodiments of the invention.

**All accession numbers used here and throughout can be accessed through the NCBI databases, for example, through the Entrez seek and retrieval system on the world wide web.

5

10

15

20

25

30

Note that the following discussion sets forth the inventors' understanding of the operation of the invention. However, it is not intended that this discussion limit the patent to any particular theory of operation not set forth in the claims.

In pursuing the development of epitope vaccines others have generated lists of predicted epitopes based on MHC binding motifs. Such peptides can be immunogenic, but may not correspond to any naturally produced antigenic fragment. Therefore, whole antigen will not elicit a similar response or sensitize a target cell to cytolysis by CTL. Therefore such lists do not differentiate between those sequences that can be useful as vaccines and those that cannot. Efforts to determine which of these predicted epitopes are in fact naturally produced have often relied on screening their reactivity with tumor infiltrating lymphocytes (TIL). However, TIL are strongly biased to recognize immune epitopes whereas tumors (and chronically infected cells) will generally present housekeeping epitopes. Thus, unless the epitope is produced by both the housekeeping and immuno- proteasomes, the target cell will generally not be recognized by CTL induced with TIL-identified epitopes. The epitopes of the present invention, in contrast, are generated by the action of a specified proteasome, indicating that they can be naturally produced, and enabling their appropriate use. The importance of the distinction between housekeeping and immune epitopes to vaccine design is more fully set forth in PCT publication WO 01/82963A2.

The epitopes of the invention include or encode polypeptide fragments of TAAs that are precursors or products of proteasomal cleavage by a housekeeping or immune proteasome, and that contain or consist of a sequence having a known or predicted affinity for at least one allele of MHC I. In some embodiments, the epitopes include or encode a polypeptide of about 6 to 25 amino acids in length, preferably about 7 to 20 amino acids in length, more preferably about 8 to 15 amino acids in length, and still more preferably 9 or 10 amino acids in length. However, it is understood that the polypeptides can be larger as long as N-terminal trimming can produce the MHC epitope or that they do not contain sequences that cause the polypeptides to be directed away from the proteasome or to be destroyed by the proteasome. For immune epitopes, if the larger

peptides do not contain such sequences, they can be processed in the pAPC by the immune proteasome. Housekeeping epitopes may also be embedded in longer sequences provided that the sequence is adapted to facilitate liberation of the epitope's C-terminus by action of the immunoproteasome. The foregoing discussion has assumed that processing of longer epitopes proceeds through action of the immunoproteasome of the pAPC. However, processing can also be accomplished through the contrivance of some other mechanism, such as providing an exogenous protease activity and a sequence adapted so that action of the protease liberates the MHC epitope. The sequences of these epitopes can be subjected to computer analysis in order to calculate physical, biochemical, immunologic, or molecular genetic properties such as mass, isoelectric point, predicted mobility in electrophoresis, predicted binding to other MHC molecules, melting temperature of nucleic acid probes, reverse translations, similarity or homology to other sequences, and the like.

In constructing the polynucleotides encoding the polypeptide epitopes of the invention, the gene sequence of the associated TAA can be used, or the polynucleotide can be assembled from any of the corresponding codons. For a 10 amino acid epitope this can constitute on the order of 10^6 different sequences, depending on the particular amino acid composition. While large, this is a distinct and readily definable set representing a miniscule fraction of the >10¹⁸ possible polynucleotides of this length, and thus in some embodiments, equivalents of a particular sequence disclosed herein encompass such distinct and readily definable variations on the listed sequence. In choosing a particular one of these sequences to use in a vaccine, considerations such as codon usage, self-complementarity, restriction sites, chemical stability, etc. can be used as will be apparent to one skilled in the art.

The invention contemplates producing peptide epitopes. Specifically these epitopes are derived from the sequence of a TAA, and have known or predicted affinity for at least one allele of MHC I. Such epitopes are typically identical to those produced on target cells or pAPCs.

Compositions Containing Active Epitopes

Embodiments of the present invention provide polypeptide compositions, including vaccines, therapeutics, diagnostics, pharmacological and pharmaceutical compositions. The various compositions include newly identified epitopes of TAAs, as well as variants of these epitopes. Other embodiments of the invention provide polynucleotides encoding the polypeptide epitopes of the invention. The invention further provides vectors for expression of the polypeptide epitopes for purification. In addition, the invention provides vectors for the expression of the polypeptide epitopes in an APC for use as an anti-tumor vaccine. Any of the epitopes or antigens, or nucleic acids encoding the same, from Table 1 can be used. Other embodiments relate to methods of making and using the various compositions.

5

10

15

20

25

30

A general architecture for a class I MHC-binding epitope can be described, and has been reviewed more extensively in Madden, D.R. Annu. Rev. Immunol. 13:587-622, 1995. Much of the binding energy arises from main chain contacts between conserved residues in the MHC molecule and the N- and C-termini of the peptide. Additional main chain contacts are made but vary among MHC alleles. Sequence specificity is conferred by side chain contacts of so-called anchor residues with pockets that, again, vary among MHC alleles. Anchor residues can be divided into primary and secondary. Primary anchor positions exhibit strong preferences for relatively well-defined sets of amino acid residues. Secondary positions show weaker and/or less well-defined preferences that can often be better described in terms of less favored, rather than more favored, residues. Additionally, residues in some secondary anchor positions are not always positioned to contact the pocket on the MHC molecule at all. Thus, a subset of peptides exists that bind to a particular MHC molecule and have a side chain-pocket contact at the position in question and another subset exists that show binding to the same MHC molecule that does not depend on the conformation the peptide assumes in the peptide-binding groove of the MHC molecule. The C-terminal residue (P ; omega) is preferably a primary anchor residue. For many of the better studied HLA molecules (e.g. A2, A68, B27, B7, B35, and B53) the second position (P2) is also an anchor residue. However, central anchor residues have also been observed including P3 and P5 in HLA-B8, as well as P5 and P (omega)-3 in the murine MHC molecules H-2Db and H-2Kb, respectively. Since more stable binding will generally improve immunogenicity, anchor residues are preferably conserved or optimized in the design of variants, regardless of their position.

Because the anchor residues are generally located near the ends of the epitope, the peptide can buckle upward out of the peptide-binding groove allowing some variation in length. Epitopes ranging from 8-11 amino acids have been found for HLA-A68, and up to 13 amino acids for HLA-A2. In addition to length variation between the anchor positions, single residue truncations and extensions have been reported and the N- and C-termini, respectively. Of the non-anchor residues, some point up out of the groove, making no contact with the MHC molecule but being available to contact the TCR, very often P1, P4, and P (omega)-1 for HLA-A2. Others of the non-anchor residues can become interposed between the upper edges of the peptide-binding groove and the TCR, contacting both. The exact positioning of these side chain residues, and thus their effects on binding, MHC fine conformation, and ultimately immunogenicity, are highly sequence dependent. For an epitope to be highly immunogenic it must not only promote stable enough TCR binding for activation to occur, but the TCR must also have a high enough off-rate that multiple TCR molecules can interact sequentially with the same peptide-MHC complex (Kalergis, A.M. et al., Nature Immunol. 2:229-234, 2001. Thus, without further information about the ternary complex,

5

10

15

20

25

30

35

both conservative and non-conservative substitutions at these positions merit consideration when designing variants.

The polypeptide epitope variants can be made, for example, using any of the techniques and guidelines for conservative and non-conservative mutations. Variants can be derived from substitution, deletion or insertion of one or more amino acids as compared with the native sequence. Amino acid substitutions can be the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, such as the replacement of a threonine with a serine, for example. Such replacements are referred to as conservative amino acid replacements, and all appropriate conservative amino acid replacements are considered to be embodiments of one invention. Insertions or deletions can optionally be in the range of about 1 to 4, preferably 1 to 2, amino acids. It is generally preferable to maintain the "anchor positions" of the peptide which are responsible for binding to the MHC molecule in question. Indeed, immunogenicity of peptides can be improved in many cases by substituting more preferred residues at the anchor positions (Franco, et al., Nature Immunology, 1(2):145-150, 2000. Immunogenicity of a peptide can also often be improved by substituting bulkier amino acids for small amino acids found in non-anchor positions while maintaining sufficient cross-reactivity with the original epitope to constitute a useful vaccine. The variation allowed can be determined by routine insertions, deletions or substitutions of amino acids in the sequence and testing the resulting variants for activity exhibited by the polypeptide epitope. Because the polypeptide epitope is often 9 amino acids, the substitutions preferably are made to the shortest active epitope, for example, an epitope of 9 amino acids.

Variants can also be made by adding any sequence onto the N-terminus of the polypeptide epitope variant. Such N-terminal additions can be from 1 amino acid up to at least 25 amino acids. Because peptide epitopes are often trimmed by N-terminal exopeptidases active in the pAPC, it is understood that variations in the added sequence can have no effect on the activity of the epitope. In preferred embodiments, the amino acid residues between the last upstream proteasomal cleavage site and the N-terminus of the MHC epitope do not include a proline residue. Serwold, T. at al., Nature Immunol. 2:644-651, 2001. Accordingly, effective epitopes can be generated from precursors larger than the preferred 9-mer class I motif.

Generally, peptides are useful to the extent that they correspond to epitopes actually displayed by MHC I on the surface of a target cell or a pACP. A single peptide can have varying affinities for different MHC molecules, binding some well, others adequately, and still others not appreciably (Table 2). MHC alleles have traditionally been grouped according to serologic reactivity which does not reflect the structure of the peptide-binding groove, which can differ among different alleles of the same type. Similarly, binding properties can be shared across types;

groups based on shared binding properties have been termed supertypes. There are numerous alleles of MHC I in the human population; epitopes specific to certain alleles can be selected based on the genotype of the patient.

Table 2.

Predicted Binding of Tyrosinase₂₀₇₋₂₁₆ (SEQ ID NO. 1) to Various MHC types

5

10

15

20

MHC I type	*Half time of dissociation (min)
A1	0.05
A*0201	1311.
A*0205	50.4
A3	2.7
A*1101 (part of the A3 supertype)	0.012
A24	6.0
В7	4.0
B8	8.0
B14 (part of the B27 supertype)	60.0
B*2702	0.9
B*2705	30.0
B*3501 (part of the B7 supertype)	2.0
B*4403	.0.1
B*5101 (part of the B7 supertype)	26.0
B*5102	55.0
. B*5801	0.20
B60	0.40
B62	2.0

*HLA Peptide Binding Predictions (world wide web hypertext transfer protocol "access at bimas.dcrt.nih.gov/molbio/hla bin").

In further embodiments of the invention, the epitope, as peptide or encoding polynucleotide, can be administered as a pharmaceutical composition, such as, for example, a vaccine or an immunogenic composition, alone or in combination with various adjuvants, carriers, or excipients. It should be noted that although the term vaccine may be used throughout the discussion herein, the concepts can be applied and used with any other pharmaceutical composition, including those mentioned herein. Particularly advantageous adjuvants include various cytokines and oligonucleotides containing immunostimulatory sequences (as set forth in greater detail in the co-pending applications referenced herein). Additionally the polynucleotide encoded epitope can be contained in a virus (e.g. vaccinia or adenovirus) or in a microbial host cell (e.g. Salmonella or Listeria monocytogenes) which is then used as a vector for the polynucleotide (Dietrich, G. et al. Nat. Biotech. 16:181-185, 1998). Alternatively a pAPC can be transformed, ex vivo, to express the epitope, or pulsed with peptide epitope, to be itself administered as a vaccine. To increase efficiency of these processes, the encoded epitope can be carried by a viral or bacterial vector, or complexed with a ligand of a receptor found on pAPC. Similarly the peptide epitope can

be complexed with or conjugated to a pAPC ligand. A vaccine can be composed of more than a single epitope.

Particularly advantageous strategies for incorporating epitopes and/or epitope clusters, into a vaccine or pharmaceutical composition are disclosed in U.S. Patent Application No. 09/560,465 entitled "EPITOPE SYNCHRONIZATION IN ANTIGEN PRESENTING CELLS," filed on April 28, 2000. Epitope clusters for use in connection with this invention are disclosed in U.S. Patent Application No. 09/561,571 entitled "EPITOPE CLUSTERS," filed on April 28, 2000.

5

10

15

20

25

30

35

Preferred embodiments of the present invention are directed to vaccines and methods for causing a pAPC or population of pAPCs to present housekeeping epitopes that correspond to the epitopes displayed on a particular target cell. Any of the epitopes or antigens in Table 1, can be used for example. In one embodiment, the housekeeping epitope is a TuAA epitope processed by the housekeeping proteasome of a particular tumor type. In another embodiment, the housekeeping epitope is a virus-associated epitope processed by the housekeeping proteasome of a cell infected with a virus. This facilitates a specific T cell response to the target cells. Concurrent expression by the pAPCs of multiple epitopes, corresponding to different induction states (pre- and post-attack), can drive a CTL response effective against target cells as they display either housekeeping epitopes or immune epitopes.

By having both housekeeping and immune epitopes present on the pAPC, this embodiment can optimize the cytotoxic T cell response to a target cell. With dual epitope expression, the pAPCs can continue to sustain a CTL response to the immune-type epitope when the tumor cell switches from the housekeeping proteasome to the immune proteasome with induction by IFN, which, for example, may be produced by tumor-infiltrating CTLs.

In a preferred embodiment, immunization of a patient is with a vaccine that includes a housekeeping epitope. Many preferred TAAs are associated exclusively with a target cell, particularly in the case of infected cells. In another embodiment, many preferred TAAs are the result of deregulated gene expression in transformed cells, but are found also in tissues of the testis, ovaries and fetus. In another embodiment, useful TAAs are expressed at higher levels in the target cell than in other cells. In still other embodiments, TAAs are not differentially expressed in the target cell compare to other cells, but are still useful since they are involved in a particular function of the cell and differentiate the target cell from most other peripheral cells; in such embodiments, healthy cells also displaying the TAA may be collaterally attacked by the induced T cell response, but such collateral damage is considered to be far preferable to the condition caused by the target cell.

The vaccine contains a housekeeping epitope in a concentration effective to cause a pAPC or populations of pAPCs to display housekeeping epitopes. Advantageously, the vaccine can

include a plurality of housekeeping epitopes or one or more housekeeping epitopes optionally in combination with one or more immune epitopes. Formulations of the vaccine contain peptides and/or nucleic acids in a concentration sufficient to cause pAPCs to present the epitopes. The formulations preferably contain epitopes in a total concentration of about 1µg-1mg/100µl of vaccine preparation. Conventional dosages and dosing for peptide vaccines and/or nucleic acid vaccines can be used with the present invention, and such dosing regimens are well understood in the art. In one embodiment, a single dosage for an adult human may advantageously be from about 1 to about 5000 µl of such a composition, administered one time or multiple times, e.g., in 2, 3, 4 or more dosages separated by 1 week, 2 weeks, 1 month, or more. insulin pump delivers 1 ul per hour (lowest frequency) ref intranodal method patent.

The compositions and methods of the invention disclosed herein further contemplate incorporating adjuvants into the formulations in order to enhance the performance of the vaccines. Specifically, the addition of adjuvants to the formulations is designed to enhance the delivery or uptake of the epitopes by the pAPCs. The adjuvants contemplated by the present invention are known by those of skill in the art and include, for example, GMCSF, GCSF, IL-2, IL-12, BCG, tetanus toxoid, osteopontin, and ETA-1.

In some embodiments of the invention, the vaccines can include a recombinant organism, such as a virus, bacterium or parasite, genetically engineered to express an epitope in a host. For example, *Listeria monocytogenes*, a gram-positive, facultative intracellular bacterium, is a potent vector for targeting TuAAs to the immune system. In a preferred embodiment, this vector can be engineered to express a housekeeping epitope to induce therapeutic responses. The normal route of infection of this organism is through the gut and can be delivered orally. In another embodiment, an adenovirus (Ad) vector encoding a housekeeping epitope for a TuAA can be used to induce anti-virus or anti-tumor responses. Bone marrow-derived dendritic cells can be transduced with the virus construct and then injected, or the virus can be delivered directly via subcutaneous injection into an animal to induce potent T-cell responses. Another embodiment employs a recombinant vaccinia virus engineered to encode amino acid sequences corresponding to a housekeeping epitope for a TAA. Vaccinia viruses carrying constructs with the appropriate nucleotide substitutions in the form of a minigene construct can direct the expression of a housekeeping epitope, leading to a therapeutic T cell response against the epitope.

The immunization with DNA requires that APCs take up the DNA and express the encoded proteins or peptides. It is possible to encode a discrete class I peptide on the DNA. By immunizing with this construct, APCs can be caused to express a housekeeping epitope, which is then displayed on class I MHC on the surface of the cell for stimulating an appropriate CTL response. Constructs generally relying on termination of translation or non-proteasomal proteases

for generation of proper termini of housekeeping epitopes have been described in U.S. Patent application No. 09/561,572 entitled EXPRESSION VECTORS ENCODING EPITOPES OF TARGET-ASSOCIATED ANTIGENS, filed on April 28, 2000.

As mentioned, it can be desirable to express housekeeping peptides in the context of a larger protein. Processing can be detected even when a small number of amino acids are present beyond the terminus of an epitope. Small peptide hormones are usually proteolytically processed from longer translation products, often in the size range of approximately 60-120 amino acids. This fact has led some to assume that this is the minimum size that can be efficiently translated. In some embodiments, the housekeeping peptide can be embedded in a translation product of at least about 60 amino acids. In other embodiments the housekeeping peptide can be embedded in a translation product of at least about 50, 30, or 15 amino acids.

Due to differential proteasomal processing, the immune proteasome of the pAPC produces peptides that are different from those produced by the housekeeping proteasome in peripheral body cells. Thus, in expressing a housekeeping peptide in the context of a larger protein, it is preferably expressed in the APC in a context other than its full length native sequence, because, as a housekeeping epitope, it is generally only efficiently processed from the native protein by the housekeeping proteasome, which is not active in the APC. In order to encode the housekeeping epitope in a DNA sequence encoding a larger protein, it is useful to find flanking areas on either side of the sequence encoding the epitope that permit appropriate cleavage by the immune proteasome in order to liberate that housekeeping epitope. Altering flanking amino acid residues at the N-terminus and C-terminus of the desired housekeeping epitope can facilitate appropriate cleavage and generation of the housekeeping epitope in the APC. Sequences embedding housekeeping epitopes can be designed *de novo* and screened to determine which can be successfully processed by immune proteasomes to liberate housekeeping epitopes.

Alternatively, another strategy is very effective for identifying sequences allowing production of housekeeping epitopes in APC. A contiguous sequence of amino acids can be generated from head to tail arrangement of one or more housekeeping epitopes. A construct expressing this sequence is used to immunize an animal, and the resulting T cell response is evaluated to determine its specificity to one or more of the epitopes in the array. By definition, these immune responses indicate housekeeping epitopes that are processed in the pAPC effectively. The necessary flanking areas around this epitope are thereby defined. The use of flanking regions of about 4-6 amino acids on either side of the desired peptide can provide the necessary information to facilitate proteasome processing of the housekeeping epitope by the immune proteasome. Therefore, a sequence ensuring epitope synchronization of approximately 16-22 amino acids can be inserted into, or fused to, any protein sequence effectively to result in

that housekeeping epitope being produced in an APC. In alternate embodiments the whole head-to-tail array of epitopes, or just the epitopes immediately adjacent to the correctly processed housekeeping epitope can be similarly transferred from a test construct to a vaccine vector.

In a preferred embodiment, the housekeeping epitopes can be embedded between known immune epitopes, or segments of such, thereby providing an appropriate context for processing. The abutment of housekeeping and immune epitopes can generate the necessary context to enable the immune proteasome to liberate the housekeeping epitope, or a larger fragment, preferably including a correct C-terminus. It can be useful to screen constructs to verify that the desired epitope is produced. The abutment of housekeeping epitopes can generate a site cleavable by the immune proteasome. Some embodiments of the invention employ known epitopes to flank housekeeping epitopes in test substrates; in others, screening as described below are used whether the flanking regions are arbitrary sequences or mutants of the natural flanking sequence, and whether or not knowledge of proteasomal cleavage preferences are used in designing the substrates.

15

10

5

Cleavage at the mature N-terminus of the epitope, while advantageous, is not required, since a variety of N-terminal trimming activities exist in the cell that can generate the mature N-terminus of the epitope subsequent to proteasomal processing. It is preferred that such N-terminal extension be less than about 25 amino acids in length and it is further preferred that the extension have few or no proline residues. Preferably, in screening, consideration is given not only to cleavage at the ends of the epitope (or at least at its C-terminus), but consideration also can be given to ensure limited cleavage within the epitope.

20

25

Shotgun approaches can be used in designing test substrates and can increase the efficiency of screening. In one embodiment multiple epitopes can be assembled one after the other, with individual epitopes possibly appearing more than once. The substrate can be screened to determine which epitopes can be produced. In the case where a particular epitope is of concern a substrate can be designed in which it appears in multiple different contexts. When a single epitope appearing in more than one context is liberated from the substrate additional secondary test substrates, in which individual instances of the epitope are removed, disabled, or are unique, can be used to determine which are being liberated and truly constitute sequences ensuring epitope synchronization.

30

35

Several readily practicable screens exist. A preferred *in vitro* screen utilizes proteasomal digestion analysis, using purified immune proteasomes, to determine if the desired housekeeping epitope can be liberated from a synthetic peptide embodying the sequence in question. The position of the cleavages obtained can be determined by techniques such as mass spectrometry, HPLC, and N-terminal pool sequencing; as described in greater detail in U. S. Patent Applications entitled METHOD OF EPITOPE DISCOVERY, EPITOPE SYNCHRONIZATION IN ANTIGEN

PRESENTING CELLS, two Provisional U. S. Patent Applications entitled EPITOPE SEQUENCES.

Alternatively, in vivo screens such as immunization or target sensitization can be employed. For immunization a nucleic acid construct capable of expressing the sequence in question is used. Harvested CTL can be tested for their ability to recognize target cells presenting the housekeeping epitope in question. Such targets cells are most readily obtained by pulsing cells expressing the appropriate MHC molecule with synthetic peptide embodying the mature housekeeping epitope. Alternatively, cells known to express housekeeping proteasome and the antigen from which the housekeeping epitope is derived, either endogenously or through genetic engineering, can be used. To use target sensitization as a screen, CTL, or preferably a CTL clone, that recognizes the housekeeping epitope can be used. In this case it is the target cell that expresses the embedded housekeeping epitope (instead of the pAPC during immunization) and it must express immune proteasome. Generally, the target cell can be transformed with an appropriate nucleic acid construct to confer expression of the embedded housekeeping epitope. Loading with a synthetic peptide embodying the embedded epitope using peptide loaded liposomes or a protein transfer reagent such as BIOPORTER™ (Gene Therapy Systems, San Diego, CA) represents an alternative.

Additional guidance on nucleic acid constructs useful as vaccines in accordance with the present invention are disclosed in U.S. Patent Application No. 09/561,572 entitled "EXPRESSION VECTORS ENCODING EPITOPES OF TARGET-ASSOCIATED ANTIGENS," filed on April 28, 2000. Further, expression vectors and methods for their design, which are useful in accordance with the present invention are disclosed in U.S. Patent Application No. 60/336,968 (attorney docket number CTLIMM.022PR) entitled "EXPRESSION VECTORS ENCODING EPITOPES OF TARGET-ASSOCIATED ANTIGENS AND METHODS FOR THEIR DESIGN," filed on 11/7/2001.

A preferred embodiment of the present invention includes a method of administering a vaccine including an epitope (or epitopes) to induce a therapeutic immune response. The vaccine is administered to a patient in a manner consistent with the standard vaccine delivery protocols that are known in the art. Methods of administering epitopes of TAAs including, without limitation, transdermal, intranodal, perinodal, oral, intravenous, intradermal, intramuscular, intraperitoneal, and mucosal administration, including delivery by injection, instillation or inhalation. A particularly useful method of vaccine delivery to elicit a CTL response is disclosed in Australian Patent No. 739189 issued January 17, 2002; U.S. Patent Application No. 09/380,534, filed on September 1, 1999; and a Continuation-in-Part thereof U.S. Patent Application No. 09/776,232 both entitled "A METHOD OF INDUCING A CTL RESPONSE," filed on February 2, 2001.

Reagents Recognizing Epitopes

5

10

15

20

25

30

In another aspect of the invention, proteins with binding specificity for the epitope and/or the epitope-MHC molecule complex are contemplated, as well as the isolated cells by which they can be expressed. In one set of embodiments these reagents take the form of immunoglobulins: polyclonal sera or monoclonal antibodies (mAb), methods for the generation of which are well know in the art. Generation of mAb with specificity for peptide-MHC molecule complexes is known in the art. See, for example, Aharoni et al. Nature 351:147-150, 1991; Andersen et al. Proc. Natl. Acad. Sci. USA 93:1820-1824, 1996; Dadaglio et al. Immunity 6:727-738, 1997; Duc et al. Int. Immunol. 5:427-431,1993; Eastman et al. Eur. J. Immunol. 26:385-393, 1996; Engberg et al. Immunotechnology 4:273-278, 1999; Porgdor et al. Immunity 6:715-726, 1997; Puri et al. J. Immunol. 158:2471-2476, 1997; and Polakova, K., et al. J. Immunol. 165 342-348, 2000.

In other embodiments the compositions can be used to induce and generate, in vivo and in vitro, T-cells specific for the any of the epitopes and/or epitope-MHC complexes. In preferred embodiments the epitope can be any one or more of those listed in TABLE 1, for example. Thus, embodiments also relate to and include isolated T cells, T cell clones, T cell hybridomas, or a protein containing the T cell receptor (TCR) binding domain derived from the cloned gene, as well as a recombinant cell expressing such a protein. Such TCR derived proteins can be simply the extra-cellular domains of the TCR, or a fusion with portions of another protein to confer a desired property or function. One example of such a fusion is the attachment of TCR binding domains to the constant regions of an antibody molecule so as to create a divalent molecule. The construction and activity of molecules following this general pattern have been reported, for example, Plaksin, D. et al. J. Immunol. 158:2218-2227, 1997 and Lebowitz, M.S. et al. Cell Immunol. 192:175-184, 1999. The more general construction and use of such molecules is also treated in U.S. patent 5,830,755 entitled T CELL RECEPTORS AND THEIR USE IN THERAPEUTIC AND DIAGNOSTIC METHODS.

The generation of such T cells can be readily accomplished by standard immunization of laboratory animals, and reactivity to human target cells can be obtained by immunizing with human target cells or by immunizing HLA-transgenic animals with the antigen/epitope. For some therapeutic approaches T cells derived from the same species are desirable. While such a cell can be created by cloning, for example, a murine TCR into a human T cell as contemplated above, in vitro immunization of human cells offers a potentially faster option. Techniques for in vitro immunization, even using naive donors, are know in the field, for example, Stauss et al., Proc. Natl. Acad. Sci. USA 89:7871-7875, 1992; Salgaller et al. Cancer Res. 55:4972-4979, 1995; Tsai et al., J. Immunol. 158:1796-1802, 1997; and Chung et al., J. Immunother. 22:279-287, 1999.

Any of these molecules can be conjugated to enzymes, radiochemicals, fluorescent tags, and toxins, so as to be used in the diagnosis (imaging or other detection), monitoring, and treatment of the pathogenic condition associated with the epitope. Thus a toxin conjugate can be administered to kill tumor cells, radiolabeling can facilitate imaging of epitope positive tumor, an enzyme conjugate can be used in an ELISA-like assay to diagnose cancer and confirm epitope expression in biopsied tissue. In a further embodiment, such T cells as set forth above, following expansion accomplished through stimulation with the epitope and/or cytokines, can be administered to a patient as an adoptive immunotherapy.

Reagents Comprising Epitopes

10

5

A further aspect of the invention provides isolated epitope-MHC complexes. In a particularly advantageous embodiment of this aspect of the invention, the complexes can be soluble, multimeric proteins such as those described in U. S. Patent No. 5,635,363 (tetramers) or U. S. Patent No. 6,015,884 (Ig-dimers). Such reagents are useful in detecting and monitoring specific T cell responses, and in purifying such T cells.

15

Isolated MHC molecules complexed with epitopic peptides can also be incorporated into planar lipid bilayers or liposomes. Such compositions can be used to stimulate T cells *in vitro* or, in the case of liposomes, *in vivo*. Co-stimulatory molecules (e.g. B7, CD40, LFA-3) can be incorporated into the same compositions or, especially for *in vitro* work, co-stimulation can be provided by anti-co-receptor antibodies (e.g. anti-CD28, anti-CD154, anti-CD2) or cytokines (e.g. IL-2, IL-12). Such stimulation of T cells can constitute vaccination, drive expansion of T cells *in vitro* for subsequent infusion in an immuotherapy, or constitute a step in an assay of T cell function.

20

25

30

The epitope, or more directly its complex with an MHC molecule, can be an important constituent of functional assays of antigen-specific T cells at either an activation or readout step or both. Of the many assays of T cell function current in the art (detailed procedures can be found in standard immunological references such as *Current Protocols in Immunology* 1999 John Wiley & Sons Inc., N.Y. two broad classes can be defined, those that measure the response of a pool of cells and those that measure the response of individual cells. Whereas the former conveys a global measure of the strength of a response, the latter allows determination of the relative frequency of responding cells. Examples of assays measuring global response are cytotoxicity assays, ELISA, and proliferation assays detecting cytokine secretion. Assays measuring the responses of individual cells (or small clones derived from them) include limiting dilution analysis (LDA), ELISPOT, flow cytometric detection of unsecreted cytokine (described in U.S. Patent No. 5,445,939, entitled "METHOD FOR ASSESSMENT OF THE MONONUCLEAR LEUKOCYTE IMMUNE SYSTEM" and U.S. Patent Nos 5,656,446; and 5,843,689, both entitled "METHOD

35

FOR THE ASSESSMENT OF THE MONONUCLEAR LEUKOCYTE IMMUNE SYSTEM," reagents for which are sold by Becton, Dickinson & Company under the tradename 'FASTIMMUNE' and detection of specific TCR with tetramers or Ig-dimers as stated and referenced above. The comparative virtues of these techniques have been reviewed in Yee, C. et al. Current Opinion in Immunology, 13:141–146, 2001. Additionally detection of a specific TCR rearrangement or expression can be accomplished through a variety of established nucleic acid based techniques, particularly in situ and single-cell PCR techniques, as will be apparent to one of skill in the art.

5

10

15

20

25

30

These functional assays are used to assess endogenous levels of immunity, response to an immunologic stimulus (e.g. a vaccine), and to monitor immune status through the course of a disease and treatment. Except when measuring endogenous levels of immunity, any of these assays presume a preliminary step of immunization, whether in vivo or in vitro depending on the nature of the issue being addressed. Such immunization can be carried out with the various embodiments of the invention described above or with other forms of immunogen (e.g., pAPCtumor cell fusions) that can provoke similar immunity. With the exception of PCR and tetramer/Ig-dimer type analyses which can detect expression of the cognate TCR, these assays generally benefit from a step of in vitro antigenic stimulation which can advantageously use various embodiments of the invention as described above in order to detect the particular functional activity (highly cytolytic responses can sometimes be detected directly). Finally, detection of cytolytic activity requires epitope-displaying target cells, which can be generated using various embodiments of the invention. The particular embodiment chosen for any particular step depends on the question to be addressed, ease of use, cost, and the like, but the advantages of one embodiment over another for any particular set of circumstances will be apparent to one of skill in the art.

The peptide MHC complexes described in this section have traditionally been understood to be non-covalent associations. However it is possible, and can be advantageous, to create a covalent linkages, for example by encoding the epitope and MHC heavy chain or the epitope, ß2-microglobulin, and MHC heavy chain as a single protein (Yu, Y.L.Y., et al., J. Immunol. 168:3145-3149, 2002; Mottez, E., et at., J. Exp. Med. 181:493,1995; Dela Cruz, C. S., et al., Int. Immunol. 12:1293, 2000; Mage, M. G., et al., Proc. Natl. Acad. Sci. USA 89:10658,1992; Toshitani, K., et al., Proc. Natl. Acad. Sci. USA 93:236,1996; Lee, L., et al., Eur. J. Immunol. 24:2633,1994; Chung, D. H., et al., J. Immunol. 163:3699,1999; Uger, R. A. and B. H. Barber, J. Immunol. 160:1598, 1998; Uger, R. A., et al., J. Immunol. 162:6024,1999; and White, J., et al., J. Immunol. 162:2671, 1999. Such constructs can have superior stability and overcome roadblocks in

the processing- presentation pathway. They can be used in the already described vaccines, reagents, and assays in similar fashion.

Tumor Associated Antigens

5

10

15

20.

25

30

35

Epitopes of the present invention are derived from the TuAAs tyrosinase (SEQ ID NO. 2), SSX-2, (SEQ ID NO. 3), PSMA (prostate-specific membrane antigen) (SEQ ID NO. 4), GP100, (SEQ ID NO. 70), MAGE-1, (SEQ ID NO. 71), MAGE-2, (SEQ ID NO. 72), MAGE-3, (SEQ ID NO. 73), NY-ESO-1, (SEQ ID NO. 74), PRAME, (SEQ ID NO. 77), PSA, (SEQ ID NO. 78), PSCA, (SEQ ID NO. 79), the ED-B domain of fibronectin (SEQ ID NOS 589 and 590), CEA (carcinoembryonic antigen) (SEQ ID NO. 592), Her2/Neu (SEQ ID NO. 594), SCP-1 (SEQ ID NO. 596) and SSX-4 (SEQ ID NO. 598). The natural coding sequences for these eleven proteins, or any segments within them, can be determined from their cDNA or complete coding (cds) sequences, SEQ ID NOS. 5-7, 80-87, 591, 593, 595, 597, and 599, respectively.

Tyrosinase is a melanin biosynthetic enzyme that is considered one of the most specific markers of melanocytic differentiation. Tyrosinase is expressed in few cell types, primarily in melanocytes, and high levels are often found in melanomas. The usefulness of tyrosinase as a TuAA is taught in U.S. Patent 5,747,271 entitled "METHOD FOR IDENTIFYING INDIVIDUALS SUFFERING FROM A CELLULAR ABNORMALITY SOME OF WHOSE ABNORMAL CELLS PRESENT COMPLEXES OF HLA-A2/TYROSINASE DERIVED PEPTIDES, AND METHODS FOR TREATING SAID INDIVIDUALS".

GP100, also known as PMel17, also is a melanin biosynthetic protein expressed at high levels in melanomas. GP100 as a TuAA is disclosed in U.S. Patent 5,844,075 entitled "MELANOMA ANTIGENS AND THEIR USE IN DIAGNOSTIC AND THERAPEUTIC METHODS,".

SSX-2, also know as Hom-Mel-40, is a member of a family of highly conserved cancertestis antigens (Gure, A.O. et al. *Int. J. Cancer* 72:965-971, 1997. Its identification as a TuAA is taught in U.S. Patent 6,025,191 entitled "ISOLATED NUCLEIC ACID MOLECULES WHICH ENCODE A MELANOMA SPECIFIC ANTIGEN AND USES THEREOF,". Cancer-testis antigens are found in a variety of tumors, but are generally absent from normal adult tissues except testis. Expression of different members of the SSX family have been found variously in tumor cell lines. Due to the high degree of sequence identity among SSX family members, similar epitopes from more than one member of the family will be generated and able to bind to an MHC molecule, so that some vaccines directed against one member of this family can cross-react and be effective against other members of this family (see example 3 below).

MAGE-1, MAGE-2, and MAGE-3 are members of another family of cancer-testis antigens originally discovered in melanoma (MAGE is a contraction of melanoma-associated antigen) but

found in a variety of tumors. The identification of MAGE proteins as TuAAs is taught in U.S. Patent 5,342,774 entitled NUCLEOTIDE SEQUENCE ENCODING THE TUMOR REJECTION ANTIGEN PRECURSOR, MAGE-1, and in numerous subsequent patents. Currently there are 17 entries for (human) MAGE in the SWISS Protein database. There is extensive similarity among these proteins so in many cases, an epitope from one can induce a cross-reactive response to other members of the family. A few of these have not been observed in tumors, most notably MAGE-H1 and MAGE-D1, which are expressed in testes and brain, and bone marrow stromal cells, respectively. The possibility of cross-reactivity on normal tissue is ameliorated by the fact that they are among the least similar to the other MAGE proteins.

10

15

20

25

5

NY-ESO-1, is a cancer-testis antigen found in a wide variety of tumors, also known as CTAG-1 (Cancer-Testis Antigen-1) and CAG-3 (Cancer Antigen-3). NY-ESO-1 as a TuAA is disclosed in U.S. Patent 5,804,381 entitled ISOLATED NUCLEIC ACID MOLECULE ENCODING AN ESOPHAGEAL CANCER ASSOCIATED ANTIGEN, THE ANTIGEN ITSELF, AND USES THEREOF. A paralogous locus encoding antigens with extensive sequence identity, LAGE-1a/s (SEQ ID NO. 75) and LAGE-1b/L (SEQ ID NO. 76), have been disclosed in publicly available assemblies of the human genome, and have been concluded to arise through alternate splicing. Additionally, CT-2 (or CTAG-2, Cancer-Testis Antigen-2) appears to be either an allele, a mutant, or a sequencing discrepancy of LAGE-1b/L. Due to the extensive sequence identity, many epitopes from NY-ESO-1 can also induce immunity to tumors expressing these other antigens. See figure 1. The proteins are virtually identical through amino acid 70. From 71-134 the longest run of identities between NY-ESO-1 and LAGE is 6 residues, but potentially crossreactive sequences are present. And from 135-180 NY-ESO and LAGE-1a/s are identical except for a single residue, but LAGE-1b/L is unrelated due to the alternate splice. The CAMEL and LAGE-2 antigens appear to derive from the LAGE-1 mRNA, but from alternate reading frames, thus giving rise to unrelated protein sequences. More recently, GenBank Accession AF277315.5, Homo sapiens chromosome X clone RP5-865E18, RP5-1087L19, complete sequence, reports three independent loci in this region which are labeled as LAGE1 (corresponding to CTAG-2 in the genome assemblies), plus LAGE2-A and LAGE2-B (both corresponding to CTAG-1 in the genome assemblies).

30

35

PSMA (prostate-specific membranes antigen), a TuAA described in U.S. Patent 5,538,866 entitled "PROSTATE-SPECIFIC MEMBRANES ANTIGEN", is expressed by normal prostate epithelium and, at a higher level, in prostatic cancer. It has also been found in the neovasculature of non-prostatic tumors. PSMA can thus form the basis for vaccines directed to both prostate cancer and to the neovasculature of other tumors. This later concept is more fully described in a provisional U.S. Patent application No. 60/274,063 entitled ANTI-NEOVASCULAR VACCINES

FOR CANCER, filed March 7, 2001, and U.S. Application No. 10/094,699, attorney docket number CTLIMM.015A, filed on March 7, 2002, entitled "ANTI-NEOVASCULAR PREPARATIONS FOR CANCER,". Briefly, as tumors grow they recruit ingrowth of new blood vessels. This is understood to be necessary to sustain growth as the centers of unvascularized tumors are generally necrotic and angiogenesis inhibitors have been reported to cause tumor regression. Such new blood vessels, or neovasculature, express antigens not found in established vessels, and thus can be specifically targeted. By inducing CTL against neovascular antigens the vessels can be disrupted, interrupting the flow of nutrients to (and removal of wastes from) tumors, leading to regression.

10

5

Alternate splicing of the PSMA mRNA also leads to a protein with an apparent start at Met₅₈, thereby deleting the putative membrane anchor region of PSMA as described in U.S. Patent 5,935,818 entitled "ISOLATED NUCLEIC ACID MOLECULE ENCODING ALTERNATIVELY SPLICED PROSTATE-SPECIFIC MEMBRANES ANTIGEN AND USES THEREOF". A protein termed PSMA-like protein, Genbank accession number AF261715, is nearly identical to amino acids 309-750 of PSMA and has a different expression profile. Thus the most preferred epitopes are those with an N-terminus located from amino acid 58 to 308.

15

20

PRAME, also know as MAPE, DAGE, and OIP4, was originally observed as a melanoma antigen. Subsequently, it has been recognized as a CT antigen, but unlike many CT antigens (e.g., MAGE, GAGE, and BAGE) it is expressed in acute myeloid leukemias. PRAME is a member of the MAPE family which consists largely of hypothetical proteins with which it shares limited sequence similarity. The usefulness of PRAME as a TuAA is taught in U.S. Patent 5,830,753 entitled "ISOLATED NUCLEIC ACID MOLECULES CODING FOR TUMOR REJECTION ANTIGEN PRECURSOR DAGE AND USES THEREOF".

25

PSA, prostate specific antigen, is a peptidase of the kallikrein family and a differentiation antigen of the prostate. Expression in breast tissue has also been reported. Alternate names include gamma-seminoprotein, kallikrein 3, seminogelase, seminin, and P-30 antigen. PSA has a high degree of sequence identity with the various alternate splicing products prostatic/glandular kallikrein-1 and -2, as well as kalikrein 4, which is also expressed in prostate and breast tissue. Other kallikreins generally share less sequence identity and have different expression profiles. Nonetheless, cross-reactivity that might be provoked by any particular epitope, along with the likelihood that that epitope would be liberated by processing in non-target tissues (most generally by the housekeeping proteasome), should be considered in designing a vaccine.

30

PSCA, prostate stem cell antigen, and also known as SCAH-2, is a differentiation antigen preferentially expressed in prostate epithelial cells, and overexpressed in prostate cancers. Lower level expression is seen in some normal tissues including neuroendocrine cells of the digestive

35

tract and collecting ducts of the kidney. PSCA is described in U.S. Patent 5,856,136 entitled "HUMAN STEM CELL ANTIGENS".

Synaptonemal complex protein 1 (SCP-1), also known as HOM-TES-14, is a meiosis-associated protein and also a cancer-testis antigen (Tureci, O., et al. Proc. Natl. Acad. Sci. USA 95:5211-5216, 1998). As a cancer antigen its expression is not cell-cycle regulated and it is found frequently in gliomas, breast, renal cell, and ovarian carcinomas. It has some similarity to myosins, but with few enough identities that cross-reactive epitopes are not an immediate prospect.

5

10

15

20

25

30

The ED-B domain of fibronectin is also a potential target. Fibronectin is subject to developmentally regulated alternative splicing, with the ED-B domain being encoded by a single exon that is used primarily in oncofetal tissues (Matsuura, H. and S. Hakomori *Proc. Natl. Acad. Sci. USA* 82:6517-6521, 1985; Carnemolla, B. et al. *J. Cell Biol.* 108:1139-1148, 1989; Loridon-Rosa, B. et al. *Cancer Res.*50:1608-1612, 1990; Nicolo, G. et al. *Cell Differ. Dev.* 32:401-408, 1990; Borsi, L. et al. *Exp. Cell Res.* 199:98-105, 1992; Oyama, F. et al. *Cancer Res.* 53:2005-2011, 1993; Mandel, U. et al. *APMIS* 102:695-702, 1994; Farnoud, M.R. et al. *Int. J. Cancer* 61:27-34, 1995; Pujuguet, P. et al. Am. J. Pathol. 148:579-592, 1996; Gabler, U. et al. *Heart* 75:358-362, 1996; Chevalier, X. *Br. J. Rheumatol.* 35:407-415, 1996; Midulla, M. *Cancer Res.* 60:164-169, 2000).

The ED-B domain is also expressed in fibronectin of the neovasculature (Kaczmarek, J. et al. Int. J. Cancer 59:11-16, 1994; Castellani, P. et al. Int. J. Cancer 59:612-618, 1994; Neri, D. et al. Nat. Biotech. 15:1271-1275, 1997; Karelina, T.V. and A.Z. Eisen Cancer Detect. Prev. 22:438-444, 1998; Tarli, L. et al. Blood 94:192-198; 1999; Castellani, P. et al. Acta Neurochir. (Wien) 142:277-282, 2000). As an oncofetal domain, the ED-B domain is commonly found in the fibronectin expressed by neoplastic cells in addition to being expressed by the neovasculature. Thus, CTL-inducing vaccines targeting the ED-B domain can exhibit two mechanisms of action: direct lysis of tumor cells, and disruption of the tumor's blood supply through destruction of the tumor-associated neovasculature. As CTL activity can decay rapidly after withdrawal of vaccine, interference with normal angiogenesis can be minimal. The design and testing of vaccines targeted to neovasculature is described in Provisional U.S. Patent Application No. 60/274,063 entitled "ANTI-NEOVASCULATURE VACCINES FOR CANCER" and in U.S. Patent Application No. 10/094,699, attorney docket number CTLIMM.015A, entitled "ANTI-NEOVASCULATURE PREPARATIONS FOR CANCER, filed on date even with this application (March 7, 2002). A tumor cell line is disclosed in Provisional U.S. Application No. 60/363,131, filed on March 7, 2002, attorney docket number CTLIMM.028PR, entitled "HLA-TRANSGENIC MURINE TUMOR CELL LINE,".

Carcinoembryonic antigen (CEA) is a paradigmatic oncofetal protein first described in 1965 (Gold and Freedman, J. Exp. Med. 121: 439-462, 1965. Fuller references can be found in the Online Medelian Inheritance in Man; record *114890). It has officially been renamed carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5). Its expression is most strongly associated with adenocarcinomas of the epithelial lining of the digestive tract and in fetal colon. CEA is a member of the immunoglobulin supergene family and the defining member of the CEA subfamily.

HER2/NEU is an oncogene related to the epidermal growth factor receptor (van de Vijver, et al., New Eng. J. Med. 319:1239-1245, 1988), and apparently identical to the c-ERBB2 oncogene (Di Fiore, et al., Science 237: 178-182, 1987). The over-expression of ERBB2 has been implicated in the neoplastic transformation of prostate cancer. As HER2 it is amplified and over-expressed in 25-30% of breast cancers among other tumors where expression level is correlated with the aggressiveness of the tumor (Slamon, et al., New Eng. J. Med. 344:783-792, 2001). A more detailed description is available in the Online Medelian Inheritance in Man; record *164870.

Additional disclosure related to embodiments of the present invention is found in U.S. Patent Application No. 10/005,905 (attorney docket number CTLIMM.021CP1) entitled "EPITOPE SYNCHRONIZATION IN ANTIGEN PRESENTING CELLS," filed on November 7, 2001 and a continuation thereof, U.S. Application No. _/____, filed on December 7, 2000, attorney docket number CTLIMM.21CP1C, also entitled "EPITOPE SYNCHRONIZATION IN ANTIGEN PRESENTING CELLS."

Useful epitopes were identified and tested as described in the following examples. However, these examples are intended for illustration purposes only, and should not be construed as limiting the scope of the invention in any way.

EXAMPLES

Sequences of Specific Preferred Epitopes

Example 1

5

10

15

20

25

30

35

Manufacture of epitopes.

A. Synthetic production of epitopes

Peptides having an amino acid sequence of any of SEQ ID NO: 1, 8, 9, 11-23, 26-29, 32-44, 47-54, 56-63, 66-68 88-253, or 256-588 are synthesized using either FMOC or tBOC solid phase synthesis methodologies. After synthesis, the peptides are cleaved from their supports with either trifluoroacetic acid or hydrogen fluoride, respectively, in the presence of appropriate protective scavengers. After removing the acid by evaporation, the peptides are extracted with ether to remove the scavengers and the crude, precipitated peptide is then lyophilized. Purity of

the crude peptides is determined by HPLC, sequence analysis, amino acid analysis, counterion content analysis and other suitable means. If the crude peptides are pure enough (greater than or equal to about 90% pure), they can be used as is. If purification is required to meet drug substance specifications, the peptides are purified using one or a combination of the following: reprecipitation; reverse-phase, ion exchange, size exclusion or hydrophobic interaction chromatography; or counter-current distribution.

Drug product formulation

5

10

15

20

25

GMP-grade peptides are formulated in a parenterally acceptable aqueous, organic, or aqueous-organic buffer or solvent system in which they remain both physically and chemically stable and biologically potent. Generally, buffers or combinations of buffers or combinations of buffers and organic solvents are appropriate. The pH range is typically between 6 and 9. Organic modifiers or other excipients can be added to help solubilize and stabilize the peptides. These include detergents, lipids, co-solvents, antioxidants, chelators and reducing agents. In the case of a lyophilized product, sucrose or mannitol or other lyophilization aids can be added. Peptide solutions are sterilized by membrane filtration into their final container-closure system and either lyophilized for dissolution in the clinic, or stored until use.

B. Construction of expression vectors for use as nucleic acid vaccines

The construction of three generic epitope expression vectors is presented below. The particular advantages of these designs are set forth in U.S. Patent Application No. 09/561,572 entitled "EXPRESSION VECTORS ENCODING EPITOPES OF TARGET-ASSOCIATED ANTIGENS,".

A suitable *E. coli* strain was then transfected with the plasmid and plated out onto a selective medium. Several colonies were grown up in suspension culture and positive clones were identified by restriction mapping. The positive clone was then grown up and aliquotted into storage vials and stored at -70°C.

A mini-prep (QIAprep Spin Mini-prep: Qiagen, Valencia, CA) of the plasmid was then made from a sample of these cells and automated fluorescent dideoxy sequence analysis was used to confirm that the construct had the desired sequence.

B.1 Construction of pVAX-EP1-IRES-EP2

30 Overview:

The starting plasmid for this construct is pVAX1 purchased from Invitrogen (Carlsbad, CA). Epitopes EP1 and EP2 were synthesized by GIBCO BRL (Rockville, MD). The IRES was excised from pIRES purchased from Clontech (Palo Alto, CA).

Procedure:

pIRES was digested with EcoRI and NotI. The digested fragments were separated by agarose gel electrophoresis, and the IRES fragment was purified from the excised band.

- pVAX1 was digested with EcoRI and NotI, and the pVAX1 fragment was gel-purified.
- The purified pVAX1 and IRES fragments were then ligated together.
- 4 Competent E. coli of strain DH5α were transformed with the ligation mixture.
- 5 Minipreps were made from 4 of the resultant colonies.
- Restriction enzyme digestion analysis was performed on the miniprep DNA. One recombinant colony having the IRES insert was used for further insertion of EP1 and EP2. This intermediate construct was called pVAX-IRES.
- 10 7 Oligonucleotides encoding EP1 and EP2 were synthesized.
 - 8 EP1 was subcloned into pVAX-IRES between AfIII and EcoRI sites, to make pVAX-EP1-IRES;
 - 9 EP2 was subcloned into pVAX-EP1-IRES between SalI and NotI sites, to make the final construct pVAX-EP1-IRES-EP2.
 - The sequence of the EP1-IRES-EP2 insert was confirmed by DNA sequencing.

B 2. Construction of pVAX-EP1-IRES-EP2-ISS-NIS

Overview:

5

15

20

The starting plasmid for this construct was pVAX-EP1-IRES-EP2 (Example 1). The ISS (immunostimulatory sequence) introduced into this construct is AACGTT, and the NIS (standing for nuclear import sequence) used is the SV40 72bp repeat sequence. ISS-NIS was synthesized by GIBCO BRL. See Figure 2.

Procedure:

- 1 pVAX-EP1-IRES-EP2 was digested with NruI; the linearized plasmid was gelpurified.
- 25 2 ISS-NIS oligonucleotide was synthesized.
 - 3 The purified linearized pVAX-EP1-IRES-EP2 and synthesized ISS-NIS were ligated together.
 - 4 Competent E. coli of strain DH5α were transformed with the ligation product.
 - 5 Minipreps were made from resultant colonies.
- 30 6 Restriction enzyme digestions of the minipreps were carried out.
 - 7 The plasmid with the insert was sequenced.

B3. Construction of pVAX-EP2-UB-EP1

Overview:

The starting plasmid for this construct was pVAX1 (Invitrogen). EP2 and EP1 were synthesized by GIBCO BRL. Wild type Ubiquitin cDNA encoding the 76 amino acids in the construct was cloned from yeast.

Procedure:

5

10

15

25

30

35

- 1 RT-PCR was performed using yeast mRNA. Primers were designed to amplify the complete coding sequence of yeast Ubiquitin.
- 2 The RT-PCR products were analyzed using agarose gel electrophoresis. A band with the predicted size was gel-purified.
- The purified DNA band was subcloned into pZERO1 at EcoRV site. The resulting clone was named pZERO-UB.
- 4 Several clones of pZERO-UB were sequenced to confirm the Ubiquitin sequence before further manipulations.
- 5 EP1 and EP2 were synthesized.
- 6 EP2, Ubiquitin and EP1 were ligated and the insert cloned into pVAX1 between BamHI and EcoRI, putting it under control of the CMV promoter.
- 7 The sequence of the insert EP2-UB-EP1 was confirmed by DNA sequencing.

Example 2

20 Identification of useful epitope variants.

The 10-mer FLPWHRLFLL (SEQ ID NO. 1) is identified as a useful epitope. Based on this sequence, numerous variants are made. Variants exhibiting activity in HLA binding assays (see Example 3, section 6) are identified as useful, and are subsequently incorporated into vaccines.

The HLA-A2 binding of length variants of FLPWHRLFLL have been evaluated. Proteasomal digestion analysis indicates that the C-terminus of the 9-mer FLPWHRLFL (SEQ ID NO. 8) is also produced. Additionally the 9-mer LPWHRLFLL (SEQ ID NO. 9) can result from N-terminal trimming of the 10-mer. Both are predicted to bind to the HLA-A*0201 molecule, however of these two 9-mers, FLPWHRLFL displayed more significant binding and is preferred (see Figs. 3A and B).

In vitro proteasome digestion and N-terminal pool sequencing indicates that tyrosinase₂₀₇. ₂₁₆ (SEQ ID NO. 1) is produced more commonly than tyrosinase₂₀₇₋₂₁₅ (SEQ ID NO. 8), however the latter peptide displays superior immunogenicity, a potential concern in arriving at an optimal vaccine design. FLPWHRLFL, tyrosinase₂₀₇₋₂₁₅ (SEQ ID NO. 8) was used in an in vitro immunization of HLA-A2⁺ blood to generate CTL (see CTL Induction Cultures below). Using

peptide pulsed T2 cells as targets in a standard chromium release assay it was found that the CTL induced by tyrosinase₂₀₇₋₂₁₅ (SEQ ID NO. 8) recognize tyrosinase₂₀₇₋₂₁₆ (SEQ ID NO. 1) targets equally well (see fig. 3C). These CTL also recognize the HLA-A2⁺, tyrosinase⁺ tumor cell lines 624.38 and HTB64, but not 624.28 an HLA-A2⁻ derivative of 624.38 (fig. 3C). Thus the relative amounts of these two epitopes produced in vivo, does not become a concern in vaccine design.

CTL induction cultures

5

10

15

20

25

30

35

PBMCs from normal donors were purified by centrifugation in Ficoll-Hypaque from buffy coats. All cultures were carried out using the autologous plasma (AP) to avoid exposure to potential xenogeneic pathogens and recognition of FBS peptides. To favor the in vitro generation of peptide-specific CTL, we employed autologous dendritic cells (DC) as APCs. DC were generated and CTL were induced with DC and peptide from PBMCs as described (Keogh et al., 2001). Briefly, monocyte-enriched cell fractions were cultured for 5 days with GM-CSF and IL-4 and were cultured for 2 additional days in culture media with 2 μg/ml CD40 ligand to induce maturation. 2 x10⁶ CD8+-enriched T lymphocytes/well and 2 x10⁵ peptide-pulsed DC/well were co-cultured in 24-well plates in 2 ml RPMI supplemented with 10% AP, 10 ng/ml IL-7 and 20 IU/ml IL-2. Cultures were restimulated on days 7 and 14 with autologous irradiated peptide-pulsed DC.

Sequence variants of FLPWHRLFL are constructed as follow. Consistent with the binding coefficient table (see Table 3) from the NIH/BIMAS MHC binding prediction program (see reference in example 3 below), binding can be improved by changing the L at position 9, an anchor position, to V. Binding can also be altered, though generally to a lesser extent, by changes at non-anchor positions. Referring generally to Table 3, binding can be increased by employing residues with relatively larger coefficients. Changes in sequence can also alter immunogenicity independently of their effect on binding to MHC. Thus binding and/or immunogenicity can be improved as follows:

By substituting F,L,M,W, or Y for P at position 3; these are all bulkier residues that can also improve immunogenicity independent of the effect on binding. The amine and hydroxylbearing residues, Q and N; and S and T; respectively, can also provoke a stronger, cross-reactive response.

By substituting D or E for W at position 4 to improve binding; this addition of a negative charge can also make the epitope more immunogenic, while in some cases reducing cross-reactivity with the natural epitope. Alternatively the conservative substitutions of F or Y can provoke a cross-reactive response.

By substituting F for H at position 5 to improve binding. H can be viewed as partially charged, thus in some cases the loss of charge can hinder cross-reactivity. Substitution of the fully

charged residues R or K at this position can enhance immunogenicity without disrupting chargedependent cross-reactivity.

By substituting I, L, M, V, F, W, or Y for R at position 6. The same caveats and alternatives apply here as at position 5.

By substituting W or F for L at position 7 to improve binding. Substitution of V, I, S, T, Q, or N at this position are not generally predicted to reduce binding affinity by this model (the NIH algorithm), yet can be advantageous as discussed above.

5

10

Y and W, which are equally preferred as the Fs at positions 1 and 8, can provoke a useful cross-reactivity. Finally, while substitutions in the direction of bulkiness are generally favored to improve immunogenicity, the substitution of smaller residues such as A, S, and C, at positions 3-7 can be useful according to the theory that contrast in size, rather than bulkiness per se, is an important factor in immunogenicity. The reactivity of the thiol group in C can introduce other properties as discussed in Chen, J.-L., et al. J. Immunol. 165:948-955, 2000.

Table 3. 9-mer Coefficient Table for HLA-A*0201*

				HLA Coef	ficient tab	le for file "	A_0201_s	tandard"	
Amino Acid	T								
Туре	1 st	2 nd	3rd	4th	5th	6th	746		
A	1.000	1.000	1.000	1.000	1.000	1.000	7th	8th	9th
С	1.000	0.470	1.000	1.000	1.000	1.000	1.000	1.000	1.0
D	0.075	0.100	0.400	4.100	1.000	1.000	1.000	1.000	1.0
E	0.075	1.400	0.064	4.100	1.000		0.490	1.000	0.0
F	4.600	0.050	3.700	1.000	3.800	1.000	0.490	1.000	0.0
G	1.000	0.470	1.000	1.000	1.000	1.900	5.800	5.500	0.0
Н	0.034	0.050	1.000	1.000		1.000	0.130	1.000	0.0
1	1.700	9.900	1.000	1.000	1.000	1.000	1.000	1.000	0.01
K	3.500	0.100	0.035	1.000	1.000	2.300	1.000	0.410	2.10
L	1.700	72.000	3.700	1.000	1.000	1.000	1.000	1.000	0.00
M	1.700	52.000	3.700	1.000	1.000	2.300	1.000	1.000	4.30
N	1.000	0.470	1.000	1.000	1.000	2.300	1.000	1.000	1.00
P	0.022	0.470	1.000		1.000	1.000	1.000	1.000	0.01
Q	1.000	7.300	1.000	1.000	1.000	1.000	1.000	1.000	0.00
R	1.000	0.010	0.076	1.000	1.000	1.000	1.000	1.000	0.00
S	1.000	0.470		1.000	1.000	1.000	0.200	1.000	0.00
T	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.01
V	1.700	6.300	1.000	1.000	1.000	1.000	1.000	1.000	1.50
W	4.600	0.010	1.000	1.000	1.000	2.300	1.000	0.410	14.00
Y	4.600		8.300	1.000	1.000	1.700	7.500	5.500	0.01
	7.000	0.010	3.200	1.000	1.000	1.500	1.000	5.500	0.01

*This table and other comparable data that are publicly available are useful in designing epitope variants and in determining whether a particular variant is substantially similar, or is functionally similar.

Example 3

5

10

15

Cluster Analysis (SSX-231-68).

Epitope cluster region prediction:

The computer algorithms: SYFPEITHI (internet http:// access at syfpeithi.bmi-heidelberg.com/Scripts/MHCServer.dll/EpPredict.htm), based on the book "MHC Ligands and Peptide Motifs" by H.G.Rammensee, J.Bachmann and S.Stevanovic; and HLA Peptide Binding Predictions (NIH) (internet http:// access at bimas.dcrt.nih.gov/molbio/hla_bin), described in Parker, K. C., et al., J. Immunol. 152:163, 1994; were used to analyze the protein sequence of SSX-2 (GI:10337583). Epitope clusters (regions with higher than average density of peptide fragments with high predicted MHC affinity) were defined as described fully in U.S. Patent Application No. 09/561,571 entitled "EPITOPE CLUSTERS," filed on April 28, 2000. Using a epitope density ratio cutoff of 2, five and two clusters were defined using the SYFPETHI and NIH algorithms, respectively, and peptides score cutoffs of 16 (SYFPETHI) and 5 (NIH). The highest

scoring peptide with the NIH algorithm, SSX-2₄₁₋₄₉, with an estimated halftime of dissociation of >1000 min., does not overlap any other predicted epitope but does cluster with SSX-2₅₇₋₆₅ in the NIH analysis.

2. Peptide synthesis and characterization:

SSX-2₃₁₋₆₈. YFSKEEWEKMKASEKIFYVYMKRKYEAMTKLGFKATLP (SEQ ID NO. 10) was synthesized by MPS (Multiple Peptide Systems, San Diego, CA 92121) using standard solid phase chemistry. According to the provided 'Certificate of Analysis', the purity of this peptide was 95%.

3. Proteasome digestion:

5

10

15

20

25

30

Proteasome was isolated from human red blood cells using the proteasome isolation protocol described in U.S. Patent Application No. 09/561,074 entitled "METHOD OF EPITOPE DISCOVERY," filed on April 28, 2000. SDS-PAGE, western-blotting, and ELISA were used as quality control assays. The final concentration of proteasome was 4 mg/ml, which was determined by non-interfering protein assay (Geno Technologies Inc.). Proteasomes were stored at -70°C in 25 µl aliquots.

SSX- 2_{31-68} was dissolved in Milli-Q water, and a 2 mM stock solution prepared and $20\mu L$ aliquots stored at -20°C.

1 tube of proteasome (25 μL) was removed from storage at-70°C and thawed on ice. It was then mixed thoroughly with 12.5μL of 2mM peptide by repipetting (samples were kept on ice). A 5μL sample was immediately removed after mixing and transferred to a tube containing 1.25μL 10%TFA (final concentration of TFA was 2%); the T=0 min sample. The proteasome digestion reaction was then started and carried out at 37°C in a programmable thermal controller. Additional 5μL samples were taken out at 15, 30, 60, 120, 180 and 240 min respectively, the reaction was stopped by adding the sample to 1.25μL 10% TFA as before. Samples were kept on ice or frozen until being analyzed by MALDI-MS. All samples were saved and stored at –20°C for HPLC analysis and N-terminal sequencing. Peptide alone (without proteasome) was used as a blank control: 2 μL peptide + 4μL Tris buffer (20 mM, pH 7.6) + 1.5μL TFA.

4. MALDI-TOF MS measurements:

For each time point 0.3 μL of matrix solution (10mg/ml α-cyano-4-hydroxycinnamic acid in AcCN/H₂O (70:30)) was first applied on a sample slide, and then an equal volume of digested sample was mixed gently with matrix solution on the slide. The slide was allowed to dry at ambient air for 3-5 min. before acquiring the mass spectra. MS was performed on a Lasermat 2000 MALDI-TOF mass spectrometer that was calibrated with peptide/protein standards. To improve the accuracy of measurement, the molecular ion weight (MH⁺) of the peptide substrate was used as

an internal calibration standard. The mass spectrum of the T=120 min. digested sample is shown in figure 4.

5. MS data analysis and epitope identification:

To assign the measured mass peaks, the computer program MS-Product, a tool from the UCSF Mass Spectrometry Facility (http:// accessible at prospector.ucsf.edu/ucsfhtml3.4/msprod.htm), was used to generate all possible fragments (N- and C-terminal ions, and internal fragments) and their corresponding molecular weights. Due to the sensitivity of the mass spectrometer, average molecular weight was used. The mass peaks observed over the course of the digestion were identified as summarized in Table 4.

10

15

5

Fragments co-C-terminal with 8-10 amino acid long sequences predicted to bind HLA by the SYFPEITHI or NIH algorithms were chosen for further study. The digestion and prediction steps of the procedure can be usefully practiced in any order. Although the substrate peptide used in proteasomal digest described here was specifically designed to include predicted HLA-A2.1 binding sequences, the actual products of digestion can be checked after the fact for actual or predicted binding to other MHC molecules. Selected results are shown in Table 5.

Table 4. SSX-2₃₁₋₆₈ Mass Peak Identification.

MS PEAK	PEPTIDE	SEQUENCE	CALCULATED
(measured)			MASS (MH ⁺)
988.23	31-37	YFSKEEW	989.08
1377.68±2.3			
8	31-40	YFSKEEWEKM	1377.68
1662.45±1.3			
0	31-43	YFSKEEWEKMKAS	1663.90
2181.72±0.8			
5	31-47	YFSKEEWEKMKASEKIF	2181.52
2346.6	31-48	YFSKEEWEKMKASEKIFY	2344.71
1472.16±1.5			
4	38-49	EKMKASEKIFYV	1473.77
2445.78±1.1			
8	31-49*	YFSKEEWEKMKASEKIFYV	2443.84
2607.	31-50	YFSKEEWEKMKASEKIFYVY	2607.02
1563.3	50-61	YMKRKYEAMTKL	1562.93
3989.9	31-61	YFSKEEWEKMKASEKIFYVYMKRKYEAMTKL	3987.77
1603.74±1.5	51-63		1603.98

3		MKRKYEAMTKLGF	
1766.45±1.5	50-63	YMKRKYRAMTKLGF	1767.16
1866.32±1.2			
2	49-63	VYMKRKYEAMTKLGF	1866.29
	 	YFSKEEWEKMKASEKIFYVYMKRKYEAMTKLG	
4192.6	31-63	F	4192.00
	 	YFSKEEWEKMKASEKIFYVYMKRKYEAMTKLG	
4392.1	31-65**	FKA	4391.25

Boldface sequence correspond to peptides predicted to bind to MHC.

Table 5. Predicted HLA binding by proteasomally generated fragments

SEQ ID NO.	PEPTIDE	HLA	SYFPEITHI	NIH
11	FSKEEWEKM	B*3501	NP†	90 ·
12	KMKASEKIF	B*08	17	<5
13 & (14)	(K) MKASEKIFY	A1	19 (19)	<5
15 &(16)	(M) KASEKIFYV	A*0201	22 (16)	1017
		B*08	17	<5
		B*5101	22 (13)	60
		B*5102	NP ·	133
		B*5103	NP	121
17 & (18)	(K) ASEKIFYVY	A1	34 (19)	14
19 & (20)	(K) RKYEAMTKL	A*0201	15	<5
		A26	15	NP
		B14	NP	45 (60)
		B*2705	21	15
		B*2709	16	NP
		B*5101	15	<5
21	KYEAMTKLGF	A1	16	<5
		A24	NP	300
22	YEAMTKLGF	B*4403	NP	80
23	EAMTKLGF	B*08	22	<5

†No prediction

5

^{*} On the basis of mass alone this peak could also have been assigned to the peptide 32-50, however proteasomal removal of just the N-terminal amino acid is unlikely. N-terminal sequencing (below) verifies the assignment to 31-49.

^{**} On the basis of mass this fragment might also represent 33-68. N-terminal sequencing below is consistent with the assignment to 31-65.

As seen in Table 5, N-terminal addition of authentic sequence to epitopes can generate epitopes for the same or different MHC restriction elements. Note in particular the pairing of (K)RKYEAMTKL (SEQ ID NOS 19 and (20)) with HLA-B14, where the 10-mer has a longer predicted halftime of dissociation than the co-C-terminal 9-mer. Also note the case of the 10-mer KYEAMTKLGF (SEQ ID NO. 21) which can be used as a vaccine useful with several MHC types by relying on N-terminal trimming to create the epitopes for HLA-B*4403 and -B*08.

HLA-A0201 binding assay:

5

10

15

20

25

30

35

Binding of the candidate epitope KASEKIFYV, SSX-241-49, (SEQ ID NO. 15) to HLA-A2.1 was assayed using a modification of the method of Stauss et al., (Proc Natl Acad Sci USA 89(17):7871-5 (1992)). Specifically, T2 cells, which express empty or unstable MHC molecules on their surface, were washed twice with Iscove's modified Dulbecco's medium (IMDM) and cultured overnight in serum-free AIM-V medium (Life Technologies, Inc., Rockville, MD) supplemented with human 62-microglobulin at 3µg/ml (Sigma, St. Louis, MO) and added peptide, at 800, 400, 200, 100, 50, 25, 12.5, and 6.25 µg/ml.in a 96-well flat-bottom plate at 3x10⁵ cells/200 µl/well. Peptide was mixed with the cells by repipeting before distributing to the plate (alternatively peptide can be added to individual wells), and the plate was rocked gently for 2 minutes. Incubation was in a 5% CO₂ incubator at 37°C. The next day the unbound peptide was removed by washing twice with serum free RPMI medium and a saturating amount of anti-class I HLA monoclonal antibody, fluorescein isothiocyanate (FITC)-conjugated anti-HLA A2, A28 (One Lambda, Canoga Park, CA) was added. After incubation for 30 minutes at 4°C, cells were washed 3 times with PBS supplemented with 0.5% BSA, 0.05%(w/v) sodium azide, pH 7.4-7.6 (staining buffer). (Alternatively W6/32 (Sigma) can be used as the anti-class I HLA monoclonal antibody the cells washed with staining buffer and then incubated with fluorescein isothiocyanate (FITC)conjugated goat F(ab') antimouse-IgG (Sigma) for 30 min at 4°C and washed 3 times as before.) The cells were resuspended in 0.5 ml staining buffer. The analysis of surface HLA-A2.1 molecules stabilized by peptide binding was performed by flow cytometry using a FACScan (Becton Dickinson, San Jose, CA). If flow cytometry is not to be performed immediately the cells can be fixed by adding a quarter volume of 2% paraformaldehyde and storing in the dark at 4 C.

The results of the experiment are shown in Figure 5. SSX-2₄₁₋₄₉ (SEQ ID NO. 15) was found to bind HLA-A2.1 to a similar extent as the known A2.1 binder FLPSDYFPSV (HBV₁₈₋₂₇; SEQ ID NO: 24) used as a positive control. An HLA-B44 binding peptide, AEMGKYSFY (SEQ ID NO: 25), was used as a negative control. The fluoresence obtained from the negative control was similar to the signal obtained when no peptide was used in the assay. Positive and negative

control peptides were chosen from Table 18.3.1 in Current Protocols in Immunology p. 18.3.2, John Wiley and Sons, New York, 1998.

7. <u>Immunogenicity</u>:

5

10

15

20

25

30

35

A. In vivo immunization of mice.

HHD1 transgenic A*0201 mice (Pascolo, S., et al. *J. Exp. Med.* 185:2043-2051, 1997) were anesthetized and injected subcutaneously at the base of the tail, avoiding lateral tail veins, using 100 μl containing 100 nmol of SSX-2₄₁₋₄₉ (SEQ ID NO. 15) and 20 μg of HTL epitope peptide in PBS emulsified with 50 μl of IFA (incomplete Freund's adjuvant).

B. <u>Preparation of stimulating cells (LPS blasts)</u>.

Using spleens from 2 naive mice for each group of immunized mice, un-immunized mice were sacrificed and the carcasses were placed in alcohol. Using sterile instruments, the top dermal layer of skin on the mouse's left side (lower mid-section) was cut through, exposing the peritoneum. The peritoneum was saturated with alcohol, and the spleen was aseptically extracted. The spleen was placed in a petri dish with serum-free media. Splenocytes were isolated by using sterile plungers from 3 ml syringes to mash the spleens. Cells were collected in a 50 ml conical tubes in serum-free media, rinsing dish well. Cells were centrifuged (12000 rpm, 7 min) and washed one time with RPMI. Fresh spleen cells were resuspended to a concentration of 1x106 cells per ml in RPMI-10%FCS (fetal calf serum). 25g/ml lipopolysaccharide and 7 μg/ml Dextran Sulfate were added. Cell were incubated for 3 days in T-75 flasks at 37°C, with 5% CO₂. Splenic blasts were collected in 50 ml tubes pelleted (12000 rpm, 7 min) and resuspended to 3X10^{7/}ml in RPMI. The blasts were pulsed with the priming peptide at 50 μg/ml, RT 4hr. mitomycin C-treated at 25μg/ml, 37⁰C, 20 min and washed three times with DMEM.

C. In vitro stimulation.

3 days after LPS stimulation of the blast cells and the same day as peptide loading, the primed mice were sacrificed (at 14 days post immunization) to remove spleens as above. $3x10^6$ splenocytes were co-cultured with $1x10^6$ LPS blasts/well in 24-well plates at 37° C, with 5% CO₂ in DMEM media supplemented with 10% FCS, $5x10^{-5}$ M β -mercaptoethanol, $100\mu g/ml$ streptomycin and 100 IU/ml penicillin. Cultures were fed 5% (vol/vol) ConA supernatant on day 3 and assayed for cytolytic activity on day 7 in a 5^{1} Cr-release assay.

D. <u>Chromium-release assay measuring CTL activity</u>.

To assess peptide specific lysis, $2x10^6$ T2 cells were incubated with 100 μ Ci sodium chromate together with 50 μ g/ml peptide at 37 C for 1 hour. During incubation they were gently shaken every 15 minutes. After labeling and loading, cells were washed three times with 10 ml of DMEM-10% FCS, wiping each tube with a fresh Kimwipe after pouring off the supernatant. Target cells were resuspended in DMEM-10% FBS $1x10^5$ /ml. Effector cells were adjusted to

1x10⁷/ml in DMEM-10% FCS and 100 μl serial 3-fold dilutions of effectors were prepared in U-bottom 96-well plates. 100 μl of target cells were added per well. In order to determine spontaneous release and maximum release, six additional wells containing 100 μl of target cells were prepared for each target. Spontaneous release was revealed by incubating the target cells with 100 μl medium; maximum release was revealed by incubating the target cells with 100μl of 2% SDS. Plates were then centrifuged for 5 min at 600 rpm and incubated for 4 hours at 37⁰C in 5% CO₂ and 80% humidity. After the incubation, plates were then centrifuged for 5 min at 1200 rpm. Supernatants were harvested and counted using a gamma counter. Specific lysis was determined as follows: % specific release = [(experimental release - spontaneous release)/(maximum release - spontaneous release)] x 100.

Results of the chromium release assay demonstrating specific lysis of peptide pulsed target cells are shown in figure 6.

8. <u>Cross-reactivity with other SSX proteins:</u>

SSX- 2_{41-49} (SEQ ID NO. 15) shares a high degree of sequence identity with the same region of the other SSX proteins. The surrounding regions have also been generally well conserved. Thus the housekeeping proteasome can cleave following V_{49} in all five sequences. Moreover, SSX₄₁₋₄₉ is predicted to bind HLA-A*0201 (see Table 6). CTL generated by immunization with SSX- 2_{41-49} cross-react with tumor cells expressing other SSX proteins.

Table 6. SSX₄₁₋₄₉ - A*0201 Predicted Binding

SEQ ID NO.	Family Member	Sequence	SYFPEITHI Score	NIH Score
15	SSX-2	KASEKIFYV	22	1017
26	SSX-1	KYSEKISYV	18	1.7
27	SSX-3	KVSEKIVYV	24	1105
28	SSX-4	KSSEKIVYV	20	82
29	SSX-5	KASEKITYV	22	175

20

25

5

10

15

Example 4

Cluster Analysis (PSMA₁₆₃₋₁₉₂).

A peptide, AFSPQGMPEGDLVYVNYARTEDFFKLERDM, PSMA₁₆₃₋₁₉₂, (SEQ ID NO. 30), containing an A1 epitope cluster from prostate specific membrane antigen, PSMA₁₆₃₋₁₉₀ (SEQ ID NO. 31) was synthesized using standard solid-phase F-moc chemistry on a 433A ABI Peptide synthesizer. After side chain deprotection and cleavage from the resin, peptide first dissolved in formic acid and then diluted into 30% Acetic acid, was run on a reverse-phase preparative HPLC C4 column at following conditions: linear AB gradient (5% B/min) at a flow rate of 4 ml/min,

where eluent A is 0.1% aqueous TFA and eluent B is 0.1% TFA in acetonitrile. A fraction at time 16.642 min containing the expected peptide, as judged by mass spectrometry, was pooled and lyophilized. The peptide was then subjected to proteasome digestion and mass spectrum analysis essentially as described above. Prominent peaks from the mass spectra are summarized in Table 7.

Table 7. PSMA₁₆₃₋₁₉₂ Mass Peak Identification.

PEPTIDE	SEQUENCE	CALCULATE
	<u></u>	D MASS (MH ⁺)
163-177	AFSPQGMPEGDLVYV	1610.0
178-189	NYARTEDFFKLE	1533.68
170-189	PEGDLVYVNYARTEDFFKLE	2406.66
178-191	NYARTEDFFKLERD	1804.95
170-191	PEGDLVYVNYARTEDFFKLERD	2677.93
178-192	NYARTEDFFKLERDM	1936.17
163-176	AFSPQGMPEGDLVY	1511.70
177-192	VNYARTEDFFKLERDM	2035.30
163-179	AFSPQGMPEGDLVYVNY	1888.12
180-192	ARTEDFFKLERDM	1658.89
163-183	AFSPQGMPEGDLVYVNYARTE	2345.61
184-192	DFFKLERDM	1201.40
176-192	YVNYARTEDFFKLERDM	2198.48
167-185	QGMPEGDLVYVNYARTEDF	2205.41
178-186	NYARTEDFF	1163.22

Boldface sequences correspond to peptides predicted to bind to MHC, see Table 8.

N-terminal Pool Sequence Analysis

5

One aliquot at one hour of the proteasomal digestion (see Example 3 part 3 above) was subjected to N-terminal amino acid sequence analysis by an ABI 473A Protein Sequencer (Applied Biosystems, Foster City, CA). Determination of the sites and efficiencies of cleavage was based on consideration of the sequence cycle, the repetitive yield of the protein sequencer, and the relative yields of amino acids unique in the analyzed sequence. That is if the unique (in the analyzed sequence) residue X appears only in the nth cycle a cleavage site exists n-1 residues before it in the N-terminal direction. In addition to helping resolve any ambiguity in the assignment of mass to sequences, these data also provide a more reliable indication of the relative yield of the various fragments than does mass spectrometry.

15

10

For PSMA₁₆₃₋₁₉₂ (SEQ ID NO. 30) this pool sequencing supports a single major cleavage site after V_{177} and several minor cleavage sites, particularly one after Y_{179} . Reviewing the results presented in figures 7A-C reveals the following:

S at the 3rd cycle indicating presence of the N-terminus of the substrate.

Q at the 5th cycle indicating presence of the N-terminus of the substrate.

N at the 1st cycle indicating cleavage after V₁₇₇.

N at the 3rd cycle indicating cleavage after V₁₇₅. Note the fragment 176-192 in Table 7.

T at the 5th cycle indicating cleavage after V₁₇₇.

5

10

15

20

25

. 30

35

T at the 1st -3rd cycles, indicating increasingly common cleavages after R₁₈₁, A₁₈₀ and Y₁₇₉. Only the last of these correspond to peaks detected by mass spectrometry; 163-179 and 180-192, see Table 7. The absence of the others can indicate that they are on fragments smaller than were examined in the mass spectrum.

K at the 4^{th} , 8^{th} , and 10^{th} cycles indicating cleavages after E_{183} , Y_{179} , and V_{177} , respectively, all of which correspond to fragments observed by mass spectroscopy. See Table 7.

A at the 1st and 3rd cycles indicating presence of the N-terminus of the substrate and cleavage after V₁₇₇, respectively.

P at the 4th and 8th cycles indicating presence of the N-terminus of the substrate.

G at the 6th and 10th cycles indicating presence of the N-terminus of the substrate.

M at the 7^{th} cycle indicating presence of the N-terminus of the substrate and/or cleavage after F_{185} .

M at the 15th cycle indicating cleavage after V₁₇₇.

The 1st cycle can indicate cleavage after D₁₉₁, see Table 7.

R at the 4th and 13th cycle indicating cleavage after V₁₇₇.

R at the 2nd and 11th cycle indicating cleavage after Y₁₇₉.

V at the 2nd, 6th, and 13th cycle indicating cleavage after V₁₇₅, M₁₆₉ and presence of the N-terminus of the substrate, respectively. Note fragments beginning at 176 and 170 in Table 7.

Y at the 1st, 2^{nd} , and 14^{th} cycles indicating cleavage after V_{175} , V_{177} , and presence of the N-terminus of the substrate, respectively.

L at the 11th and 12th cycles indicating cleavage after V₁₇₇, and presence of the N-terminus of the substrate, respectively, is the interpretation most consistent with the other data. Comparing to the mass spectrometry results we see that L at the 2nd, 5th, and 9th cycles is consistent with cleavage after F₁₈₆, E₁₈₃ or M₁₆₉, and Y₁₇₉, respectively. See Table 7.

Epitope Identification

Fragments co-C-terminal with 8-10 amino acid long sequences predicted to bind HLA by the SYFPEITHI or NIH algorithms were chosen for further analysis. The digestion and prediction steps of the procedure can be usefully practiced in any order. Although the substrate peptide used in proteasomal digest described here was specifically designed to include a predicted HLA-Al binding sequence, the actual products of digestion can be checked after the fact for actual or predicted binding to other MHC molecules. Selected results are shown in Table 8.

Table 8. Predicted HLA binding by proteasomally generated fragments

SEQ ID NO	PEPTIDE	HLA	SYFPEITHI	NIH
32 & (33)	(G) MPEGDLVY V	A*0201	17 (27)	(2605)
		B*0702	20	<5
		B*5101	22	314
34 & (35)	(Q) GMPEGDLV Y	A1	24 (26)	<5
		A3	16 (18)	36
		B*2705	17	25
36	MPEGDLVY	B*5101	15	NP†
37 & (38)	(P) EGDLVYVN Y	. A1	27 (15)	12
_		A26	23 (17)	NP
39	LVYVNYARTE	A3	21	<5
40 & (41)	(Y) VNYARTED F	A26	(20)	NP
		B*08	15	<5
		B*2705	12	50
42	NYARTEDFF	A24	NP†	100
		Cw*0401	NP	120
43	YARTEDFF	B*08	16	<5
44	RTEDFFKLE	A1	21	<5
		A26	15	NP

†No prediction

5 HLA-A*0201 binding assay:

HLA-A*0201 binding studies were preformed with PSMA₁₆₈₋₁₇₇, GMPEGDLVYV, (SEQ ID NO. 33) essentially as described in Example 3 above. As seen in figure 8, this epitope exhibits significant binding at even lower concentrations than the positive control peptides. The Melan-A peptide used as a control in this assay (and throughout this disclosure), ELAGIGILTV, is actually a variant of the natural sequence (EAAGIGILTV) and exhibits a high affinity in this assay.

Example 5

10

15

Cluster Analysis (PSMA₂₈₁₋₃₁₀).

Another peptide, RGIAEAVGLPSIPVHPIGYYDAQKLLEKMG, PSMA $_{281-310}$, (SEQ ID NO. 45), containing an A1 epitope cluster from prostate specific membrane antigen, PSMA₂₈₃₋₃₀₇ (SEQ ID NO. 46), was synthesized using standard solid-phase F-moc chemistry on a 433A ABI Peptide synthesizer. After side chain deprotection and cleavage from the resin, peptide in ddH2O

was run on a reverse-phase preparative HPLC C18 column at following conditions: linear AB gradient (5% B/min) at a flow rate of 4 ml/min, where eluent A is 0.1% aqueous TFA and eluent B is 0.1% TFA in acetonitrile. A fraction at time 17.061 min containing the expected peptide as judged by mass spectrometry, was pooled and lyophilized. The peptide was then subjected to proteasome digestion and mass spectrum analysis essentially as described above. Prominent peaks from the mass spectra are summarized in Table 9.

Table 9. PSMA₂₈₁₋₃₁₀ Mass Peak Identification.

5

15

PEPTIDE	SEQUENCE	CALCULATE
1		D MASS (MH ⁺)
281-297	RGIAEAVGLPSIPVHPI*	1727.07
286-297	AVGLPSIPVHPI**	1200.46
287-297	VGLPSIPVHPI	1129.38
288-297	GLPSIPVHPI [†]	1030.25
298-310	GYYDAQKLLEKMG‡	1516.5
298-305	GYYDAQKL§	958.05
281-305	RGIAEAVGLPSIPVHPIGYYDAQKL	2666.12
281-307	RGIAEAVGLPSIPVHPIGYYDAQKLLE	2908.39
286-307	AVGLPSIPVHPIGYYDAQKLLE¶	2381.78
287-307	VGLPSIPVHPIGYYDAQKLLE	2310.70
288-307	GLPSIPVHPIGYYDAQKLLE#	2211.57
281-299	RGIAEAVGLPSIPVHPIGY	1947
286-299	AVGLPSIPVHPIGY	1420.69
287-299	VGLPSIPVHPIGY	1349.61
288-299	GLPSIPVHPIGY	1250.48
287-310	VGLPSIPVHPIGYYDAQKLLEKMG	2627.14
288-310	GLPSIPVHPIGYYDAQKLLEKMG	2528.01

Boldface sequences correspond to peptides predicted to bind to MHC, see Table 10.

^{*}By mass alone this peak could also have been 296-310 or 288-303.

^{10 **}By mass alone this peak could also have been 298-307. Combination of HPLC and mass spectrometry show that at some later time points this peak is a mixture of both species.

[†] By mass alone this peak could also have been 289-298.

By mass alone this peak could also have been 281-295 or 294-306.

[§] By mass alone this peak could also have been 297-303.

[¶] By mass alone this peak could also have been 285-306.

[#] By mass alone this peak could also have been 288-303.

None of these alternate assignments are supported N-terminal pool sequence analysis.

N-terminal Pool Sequence Analysis

5

10

15

20

25

30

One aliquot at one hour of the proteasomal digestion (see Example 3 part 3 above) was subjected to N-terminal amino acid sequence analysis by an ABI 473A Protein Sequencer (Applied Biosystems, Foster City, CA). Determination of the sites and efficiencies of cleavage was based on consideration of the sequence cycle, the repetitive yield of the protein sequencer, and the relative yields of amino acids unique in the analyzed sequence. That is if the unique (in the analyzed sequence) residue X appears only in the nth cycle a cleavage site exists n-1 residues before it in the N-terminal direction. In addition to helping resolve any ambiguity in the assignment of mass to sequences, these data also provide a more reliable indication of the relative yield of the various fragments than does mass spectrometry.

For PSMA₂₈₁₋₃₁₀ (SEQ ID NO. 45) this pool sequencing supports two major cleavage sites after V_{287} and I_{297} among other minor cleavage sites. Reviewing the results presented in Fig. 9 reveals the following:

S at the 4^{th} and 11^{th} cycles indicating cleavage after V_{287} and presence of the N-terminus of the substrate, respectively.

H at the 8^{th} cycle indicating cleavage after V_{287} . The lack of decay in peak height at positions 9 and 10 versus the drop in height present going from 10 to 11 can suggest cleavage after A_{286} and E_{285} as well, rather than the peaks representing latency in the sequencing reaction.

D at the 2^{nd} , 4^{th} , and 7^{th} cycles indicating cleavages after Y_{299} , I_{297} , and V_{294} , respectively. This last cleavage is not observed in any of the fragments in Table 10 or in the alternate assignments in the notes below.

Q at the 6th cycle indicating cleavage after I297.

M at the 10^{th} and 12^{th} cycle indicating cleavages after Y_{299} and I_{297} , respectively.

Epitope Identification

Fragments co-C-terminal with 8-10 amino acid long sequences predicted to bind HLA by the SYFPEITHI or NIH algorithms were chosen for further study. The digestion and prediction steps of the procedure can be usefully practiced in any order. Although the substrate peptide used in proteasomal digest described here was specifically designed to include a predicted HLA-A1 binding sequence, the actual products of digestion can be checked after the fact for actual or predicted binding to other MHC molecules. Selected results are shown in Table 10.

Table 10.

Predicted HLA binding by proteasomally generated fragments: PSMA₂₈₁₋₃₁₀

SEQ ID NO.	PEPTIDE	HLA	SYFPEITHI	NIH
47 & (48)	(G) LPSIPVH	A*0201	16 (24)	(24)

was run on a reverse-phase preparative HPLC C18 column at following conditions: linear AB gradient (5% B/min) at a flow rate of 4 ml/min, where eluent A is 0.1% aqueous TFA and eluent B is 0.1% TFA in acetonitrile. A fraction at time 17.061 min containing the expected peptide as judged by mass spectrometry, was pooled and lyophilized. The peptide was then subjected to proteasome digestion and mass spectrum analysis essentially as described above. Prominent peaks from the mass spectra are summarized in Table 9.

Table 9. PSMA₂₈₁₋₃₁₀ Mass Peak Identification.

5

15

PEPTIDE	SEQUENCE	CALCULATE
		D MASS (MH ⁺)
281-297	RGIAEAVGLPSIPVHPI*	1727.07
286-297	AVGLPSIPVHPI**	1200.46
287-297	VGLPSIPVHPI	1129.38
288-297	GLPSIPVHPI'	1030.25
298-310	GYYDAQKLLEKMG‡	1516.5
298-305	GYYDAQKL§	958.05
281-305	RGIAEAVGLPSIPVHPIGYYDAQKL	2666.12
281-307	RGIAEAVGLPSIPVHPIGYYDAQKLLE	2908.39
286-307	AVGLPSIPVHPIGYYDAQKLLE¶	2381.78
287-307	VGLPSIPVHPIGYYDAQKLLE	2310.70
288-307	GLPSIPVHPIGYYDAQKLLE#	2211.57
281-299	RGIAEAVGLPSIPVHPIGY	1947
286-299	AVGLPSIPVHPIGY	1420.69
287-299	VGLPSIPVHPIGY	1349.61
288-299	GLPSIPVHPIGY	1250.48
287-310	VGLPSIPVHPIGYYDAQKLLEKMG	2627.14
288-310	GLPSIPVHPIGYYDAQKLLEKMG	2528.01

Boldface sequences correspond to peptides predicted to bind to MHC, see Table 10.

None of these alternate assignments are supported N-terminal pool sequence analysis.

^{*}By mass alone this peak could also have been 296-310 or 288-303.

^{**}By mass alone this peak could also have been 298-307. Combination of HPLC and mass spectrometry show that at some later time points this peak is a mixture of both species.

[†] By mass alone this peak could also have been 289-298.

By mass alone this peak could also have been 281-295 or 294-306.

[§] By mass alone this peak could also have been 297-303.

[¶] By mass alone this peak could also have been 285-306.

[#] By mass alone this peak could also have been 288-303.

N-terminal Pool Sequence Analysis

One aliquot at one hour of the proteasomal digestion (see Example 3 part 3 above) was subjected to N-terminal amino acid sequence analysis by an ABI 473A Protein Sequencer (Applied Biosystems, Foster City, CA). Determination of the sites and efficiencies of cleavage was based on consideration of the sequence cycle, the repetitive yield of the protein sequencer, and the relative yields of amino acids unique in the analyzed sequence. That is if the unique (in the analyzed sequence) residue X appears only in the nth cycle a cleavage site exists n-1 residues before it in the N-terminal direction. In addition to helping resolve any ambiguity in the assignment of mass to sequences, these data also provide a more reliable indication of the relative yield of the various fragments than does mass spectrometry.

For PSMA₂₈₁₋₃₁₀ (SEQ ID NO. 45) this pool sequencing supports two major cleavage sites after V_{287} and I_{297} among other minor cleavage sites. Reviewing the results presented in Fig. 9 reveals the following:

S at the 4th and 11^{th} cycles indicating cleavage after V_{287} and presence of the N-terminus of the substrate, respectively.

H at the 8^{th} cycle indicating cleavage after V_{287} . The lack of decay in peak height at positions 9 and 10 versus the drop in height present going from 10 to 11 can suggest cleavage after A_{286} and E_{285} as well, rather than the peaks representing latency in the sequencing reaction.

D at the 2nd, 4th, and 7th cycles indicating cleavages after Y₂₉₉, I₂₉₇, and V₂₉₄, respectively. This last cleavage is not observed in any of the fragments in Table 10 or in the alternate assignments in the notes below.

Q at the 6^{th} cycle indicating cleavage after I_{297} .

M at the 10^{th} and 12^{th} cycle indicating cleavages after Y_{299} and I_{297} , respectively.

25 Epitope Identification

5

10

15

20

30

Fragments co-C-terminal with 8-10 amino acid long sequences predicted to bind HLA by the SYFPEITHI or NIH algorithms were chosen for further study. The digestion and prediction steps of the procedure can be usefully practiced in any order. Although the substrate peptide used in proteasomal digest described here was specifically designed to include a predicted HLA-A1 binding sequence, the actual products of digestion can be checked after the fact for actual or predicted binding to other MHC molecules. Selected results are shown in Table 10.

Table 10.

Predicted HLA binding by proteasomally generated fragments: PSMA₂₈₁₋₃₁₀

SEQ ID NO.	PEPTIDE	HLA	SYFPEITHI	NIH
47 & (48)	(G) LPSIPVH	A*0201	16 (24)	(24)

	PI			
	ļ	B*0702/B7	23	12
		B*5101	24	572
		Cw*0401	NP†	20
49 & (50)	(P) IGYYDAQ KL	A*0201	(16)	<5
		A26	(20)	NP
		B*2705	16	25
	}	B*2709	15	NP
		B*5101	21	57
		Cw*0301	NP	24
51 & (52)	(P)SIPVHPI GY	A1	21 (27)	<5
		A26	22	NP
		A3	16	<5
53	IPVHPIGY	B*5101	16	NP
54	YYDAQKLLE	A1	22	<5

†No prediction

As seen in Table 10, N-terminal addition of authentic sequence to epitopes can often generate still useful, even better epitopes, for the same or different MHC restriction elements. Note for example the pairing of (G)LPSIPVHPI with HLA-A*0201, where the 10-mer can be used as a vaccine useful with several MHC types by relying on N-terminal trimming to create the epitopes for HLA-B7, -B*5101, and Cw*0401.

HLA-A*0201 binding assay:

HLA-A*0201 binding studies were preformed with PSMA₂₈₈₋₂₉₇, GLPSIPVHPI, (SEQ ID NO. 48) essentially as described in Examples 3 and 4 above. As seen in figure 8, this epitope exhibits significant binding at even lower concentrations than the positive control peptides.

Example 6

Cluster Analysis (PSMA₄₅₄₋₄₈₁).

Another peptide, SSIEGNYTLRVDCTPLMYSLVHLTKEL, PSMA₄₅₄₋₄₈₁, (SEQ ID NO. 55) containing an epitope cluster from prostate specific membrane antigen, was synthesized by MPS (purity >95%) and subjected to proteasome digestion and mass spectrum analysis as described above. Prominent peaks from the mass spectra are summarized in Table 11.

Table 11. PSMA₄₅₄₋₄₈₁ Mass Peak Identification.

15

5

10

MS PEAK	PEPTIDE	SEQUENCE	CALCULATED
(measured)			MASS (MH ⁺)
1238.5	454-464	SSIEGNYTLRV	1239.78
1768.38±0.60	454-469	SSIEGNYTLRVDCTPL	1768.99
1899.8	454-470	SSIEGNYTLRVDCTPLM	1900.19
1097.63±0.91	463-471	RVDCTPLMY	1098.32
2062.87±0.68	454-471*	SSIEGNYTLRVDCTPLMY	2063.36
1153	472-481**	SLVHNLTKEL	1154.36
1449.93±1.79	470-481	MYSLVHNLTKEL	1448.73

Boldface sequence correspond to peptides predicted to bind to MHC, see Table 12.

Epitope Identification

Fragments co-C-terminal with 8-10 amino acid long sequences predicted to bind HLA by the SYFPEITHI or NIH algorithms were chosen for further study. The digestion and prediction steps of the procedure can be usefully practiced in any order. Although the substrate peptide used in proteasomal digest described here was specifically designed to include predicted HLA-A2.1 binding sequences, the actual products of digestion can be checked after the fact for actual or predicted binding to other MHC molecules. Selected results are shown in Table 12.

Table 12. Predicted HLA binding by proteasomally generated fragments

1	5
1	

10

5

SEQ ID NO	PEPTIDE	HLA	SYFPEITHI	NIH
56 & (57)	(S) IEGNYTLRV	A1	(19)	<5
		A*0201	16 (22)	<5
58	EGNYTLRV	B*5101	15	NP†
59 & (60)	(Y) TLRVDCTPL	A*0201	20 (18)	(5)
		A26	16 (18)	NP
		В7	14	40
		В8	23	<5
		B*2705	12	30
		Cw*0301	NP	(30)
61	LRVDCTPLM	B*2705	20	600
		B*2709	20	NP
62 & (63)	(L) RVDCTPLMY	Al	32 (22)	125 (13.5)
		A3	25	<5

^{*} On the basis of mass alone this peak could equally well be assigned to the peptide 455-472 however proteasomal removal of just the N-terminal amino acid is considered unlikely. If the issue were important it could be resolved by N-terminal sequencing.

^{**}On the basis of mass this fragment might also represent 455-464.

A26	22	NP
B*2702	NP	(200)
B*2705	13 (NP)	(1000)

†No prediction

5

10

15

20

25

30

As seen in Table 12, N-terminal addition of authentic sequence to epitopes can often generate still useful, even better epitopes, for the same or different MHC restriction elements. Note for example the pairing of (L)RVDCTPLMY (SEQ ID NOS 62 and (63)) with HLA-B*2702/5, where the 10-mer has substantial predicted halftimes of dissociation and the co-C-terminal 9-mer does not. Also note the case of SIEGNYTLRV (SEQ ID NO 57) a predicted HLA-A*0201 epitope which can be used as a vaccine useful with HLA-B*5101 by relying on N-terminal trimming to create the epitope.

HLA-A*0201 binding assay

HLA-A*0201 binding studies were preformed, essentially as described in Example 3 above, with PSMA₄₆₀₋₄₆₉, TLRVDCTPL, (SEQ ID NO. 60). As seen in figure 10, this epitope was found to bind HLA-A2.1 to a similar extent as the known A2.1 binder FLPSDYFPSV (HBV₁₈₋₂₇; SEQ ID NO: 24) used as a positive control. Additionally, PSMA₄₆₁₋₄₆₉, (SEQ ID NO. 59) binds nearly as well.

ELISPOT analysis: PSMA₄₆₃₋₄₇₁ (SEQ ID NO. 62)

The wells of a nitrocellulose-backed microtiter plate were coated with capture antibody by incubating overnight at 4°C using 50 μl/well of 4μg/ml murine anti-human γ-IFN monoclonal antibody in coating buffer (35 mM sodium bicarbonate, 15 mM sodium carbonate, pH 9.5). Unbound antibody was removed by washing 4 times 5 min. with PBS. Unbound sites on the membrane then were blocked by adding 200µl/well of RPMI medium with 10% serum and incubating 1 hr. at room temperature. Antigen stimulated CD8+ T cells, in 1:3 serial dilutions, were seeded into the wells of the microtiter plate using 100µl/well, starting at 2x10⁵ cells/well. (Prior antigen stimulation was essentially as described in Scheibenbogen, C. et al. Int. J. Cancer 71:932-936, 1997. PSMA₄₆₂₋₄₇₁ (SEQ ID NO. 62) was added to a final concentration of 10µg/ml and IL-2 to 100 U/ml and the cells cultured at 37°C in a 5% CO2, water-saturated atmosphere for 40 hrs. Following this incubation the plates were washed with 6 times 200 μl/well of PBS containing 0.05% Tween-20 (PBS-Tween). Detection antibody, 50µl/well of 2g/ml biotinylated murine anti-human γ-IFN monoclonal antibody in PBS+10% fetal calf serum, was added and the plate incubated at room temperature for 2 hrs. Unbound detection antibody was removed by washing with 4 times 200 µl of PBS-Tween. 100µl of avidin-conjugated horseradish peroxidase (Pharmingen, San Diego, CA) was added to each well and incubated at room temperature for 1 hr.

Unbound enzyme was removed by washing with 6 times 200 μ l of PBS-Tween. Substrate was prepared by dissolving a 20 mg tablet of 3-amino 9-ethylcoarbasole in 2.5 ml of N, N-dimethylformamide and adding that solution to 47,5 ml of 0.05 M phosphate-citrate buffer (pH 5.0). 25 μ l of 30% H_2O_2 was added to the substrate solution immediately before distributing substrate at100 μ l/well and incubating the plate at room temperature. After color development (generally 15-30 min.), the reaction was stopped by washing the plate with water. The plate was air dried and the spots counted using a stereomicroscope.

Figure 11 shows the detection of PSMA₄₆₃₋₄₇₁ (SEQ ID NO. 62)-reactive HLA-A1⁺ CD8⁺ T cells previously generated in cultures of HLA-A1⁺ CD8⁺ T cells with autologous dendritic cells plus the peptide. No reactivity is detected from cultures without peptide (data not shown). In this case it can be seen that the peptide reactive T cells are present in the culture at a frequency between 1 in 2.2×10^4 and 1 in 6.7×10^4 . That this is truly an HLA-A1-restricted response is demonstrated by the ability of anti-HLA-A1 monoclonal antibody to block γ -IFN production; see figure 12.

Example 7

5

10

15

20

Cluster Analysis (PSMA₆₅₃₋₆₈₇).

Another peptide, FDKSNPIVLRMMNDQLMFLERAFIDPLGLPDRPFY PSMA₆₅₃₋₆₈₇, (SEQ ID NO. 64) containing an A2 epitope cluster from prostate specific membrane antigen, PSMA₆₆₀₋₆₈₁ (SEQ ID NO 65), was synthesized by MPS (purity >95%) and subjected to proteasome digestion and mass spectrum analysis as described above. Prominent peaks from the mass spectra are summarized in Table 13.

Table 13. PSMA₆₅₃₋₆₈₇ Mass Peak Identification.

MS PEAK	PEPTIDE	SEQUENCE	CALCULATED
(measured)			MASS (MH ⁺)
906.17±0.65	681-687**	LPDRPFY	908.05
1287.73±0.76	677-687**	DPLGLPDRPFY	1290.47
1400.3±1.79	676-687	IDPLGLPDRPFY	1403.63
1548.0±1.37	675-687	FIDPLGLPDRPFY	1550.80
1619.5±1.51	674-687**	AFIDPLGLPDRPFY	1621.88
1775.48±1.32	673-687*	RAFIDPLGLPDRPFY	1778.07
2440.2±1.3	653-672	FDKSNPIVLRMMNDQLMFLE	2442.93

1904.63±1.56	672-687*	ERAFIDPLGLPDRPFY	1907.19
2310.6±2.5	653-671	FDKSNPIVLRMMNDQLMFL	2313.82
2017.4±1.94	671-687	LERAFIDPLGLPDRPFY	2020.35
2197.43±1.78	653-670	FDKSNPIVLRMMNDQLMF	2200.66

Boldface sequence correspond to peptides predicted to bind to MHC, see Table 13.

Epitope Identification

5

10

15

20

25

Fragments co-C-terminal with 8-10 amino acid long sequences predicted to bind HLA by the SYFPEITHI or NIH algorithms were chosen for further study. The digestion and prediction steps of the procedure can be usefully practiced in any order. Although the substrate peptide used in proteasomal digest described here was specifically designed to include predicted HLA-A2.1 binding sequences, the actual products of digestion can be checked after the fact for actual or predicted binding to other MHC molecules. Selected results are shown in Table 14.

Table 14. Predicted HLA binding by proteasomally generated fragments

SEQ ID NO	PEPTIDE	HLA	SYFPEITHI	NIH
66 & (67)	(R)MMNDQLMF L	A*0201	24 (23)	1360 (722)
		A*0205	NP†	71 (42)
		A26	15	NP
		B*2705	12	50
68	RMMNDQLMF	B*2705	17	75

†No prediction

As seen in Table 14, N-terminal addition of authentic sequence to epitopes can generate still useful, even better epitopes, for the same or different MHC restriction elements. Note for example the pairing of (R)MMNDQLMFL (SEQ ID NOS. 66 and (67)) with HLA-A*02, where the 10-mer retains substantial predicted binding potential.

HLA-A*0201 binding assay

HLA-A*0201 binding studies were preformed, essentially as described in Example 3 above, with PSMA₆₆₃₋₆₇₁, (SEQ ID NO. 66) and PSMA₆₆₂₋₆₇₁, RMMNDQLMFL (SEQ NO. 67). As

^{*} On the basis of mass alone this peak could equally well be assigned to a peptide beginning at 654, however proteasomal removal of just the N-terminal amino acid is considered unlikely. If the issue were important it could be resolved by N-terminal sequencing.

^{**} On the basis of mass alone these peaks could have been assigned to internal fragments, but given the overall pattern of digestion it was considered unlikely.

seen in figures 10, 13 and 14, this epitope exhibits significant binding at even lower concentrations than the positive control peptide (FLPSDYFPSV (HBV₁₈₋₂₇); SEQ ID NO: 24). Though not run in parallel, comparison to the controls suggests that PSMA₆₆₂₋₆₇₁ (which approaches the Melan A peptide in affinity) has the superior binding activity of these two PSMA peptides.

5 Example 8

10

15

20

25

30

Vaccinating with epitope vaccines.

Vaccination with peptide vaccines:

A. <u>Intranodal delivery</u>

A formulation containing peptide in aqueous buffer with an antimicrobial agent, an antioxidant, and an immunomodulating cytokine, was injected continuously over several days into the inguinal lymph node using a miniature pumping system developed for insulin delivery (MiniMed; Northridge, CA). This infusion cycle was selected in order to mimic the kinetics of antigen presentation during a natural infection.

B. Controlled release

A peptide formulation is delivered using controlled PLGA microspheres as is known in the art, which alter the pharmacokinetics of the peptide and improve immunogenicity. This formulation is injected or taken orally.

C. Gene gun delivery

A peptide formulation is prepared wherein the peptide is adhered to gold microparticles as is known in the art. The particles are delivered in a gene gun, being accelerated at high speed so as to penetrate the skin, carrying the particles into dermal tissues that contain pAPCs.

D. Aerosol delivery

A peptide formulation is inhaled as an aerosol as is known in the art, for uptake into appropriate vascular or lymphatic tissue in the lungs.

2. Vaccination with nucleic acid vaccines:

A nucleic acid vaccine is injected into a lymph node using a miniature pumping system, such as the MiniMed insulin pump. A nucleic acid construct formulated in an aqueous buffered solution containing an antimicrobial agent, an antioxidant, and an immunomodulating cytokine, is delivered over a several day infusion cycle in order to mimic the kinetics of antigen presentation during a natural infection.

Optionally, the nucleic acid construct is delivered using controlled release substances, such as PLGA microspheres or other biodegradable substances. These substances are injected or taken orally. Nucleic acid vaccines are given using oral delivery, priming the immune response through uptake into GALT tissues. Alternatively, the nucleic acid vaccines are delivered using a gene gun,

wherein the nucleic acid vaccine is adhered to minute gold particles. Nucleic acid constructs can also be inhaled as an aerosol, for uptake into appropriate vascular or lymphatic tissue in the lungs.

Example 9

5

10

15

20

25

30

35

Assays for the effectiveness of epitope vaccines.

1. <u>Tetramer analysis</u>:

Class I tetramer analysis is used to determine T cell frequency in an animal before and after administration of a housekeeping epitope. Clonal expansion of T cells in response to an epitope indicates that the epitope is presented to T cells by pAPCs. The specific T cell frequency is measured against the housekeeping epitope before and after administration of the epitope to an animal, to determine if the epitope is present on pAPCs. An increase in frequency of T cells specific to the epitope after administration indicates that the epitope was presented on pAPC.

2. Proliferation assay:

Approximately 24 hours after vaccination of an animal with housekeeping epitope, pAPCs are harvested from PBMCs, splenocytes, or lymph node cells, using monoclonal antibodies against specific markers present on pAPCs, fixed to magnetic beads for affinity purification. Crude blood or splenocyte preparation is enriched for pAPCs using this technique. The enriched pAPCs are then used in a proliferation assay against a T cell clone that has been generated and is specific for the housekeeping epitope of interest. The pAPCs are coincubated with the T cell clone and the T cells are monitored for proliferation activity by measuring the incorporation of radiolabeled thymidine by T cells. Proliferation indicates that T cells specific for the housekeeping epitope are being stimulated by that epitope on the pAPCs.

3. Chromium release assay:

A human patient, or non-human animal genetically engineered to express human class I MHC, is immunized using a housekeeping epitope. T cells from the immunized subject are used in a standard chromium release assay using human tumor targets or targets engineered to express the same class I MHC. T cell killing of the targets indicates that stimulation of T cells in a patient would be effective at killing a tumor expressing a similar TuAA.

Example 10

Induction of CTL response with naked DNA is efficient by Intra-lymph node immunization.

In order to quantitatively compare the CD8⁺ CTL responses induced by different routes of immunization a plasmid DNA vaccine (pEGFPL33A) containing a well-characterized immunodominant CTL epitope from the LCMV-glycoprotein (G) (gp33; amino acids 33-41) (Oehen, S., et al.. *Immunology* 99, 163-169 2000) was used, as this system allows a comprehensive assessment of antiviral CTL responses. Groups of 2 C57BL/6 mice were immunized once with

69

titrated doses (200-0.02µg) of pEGFPL33A DNA or of control plasmid pEGFP-N3, administered i.m. (intramuscular), i.d. (intradermal), i.spl. (intrasplenic), or i.ln. (intra-lymph node). Positive control mice received 500 pfu LCMV i.v. (intravenous). Ten days after immunization spleen cells were isolated and gp33-specific CTL activity was determined after secondary *in vitro* restimulation. As shown in Fig. 15, i.m. or i.d. immunization induced weakly detectable CTL responses when high doses of pEFGPL33A DNA (200µg) were administered. In contrast, potent gp33-specific CTL responses were elicited by immunization with only 2µg pEFGPL33A DNA i.spl. and with as little as 0.2µg pEFGPL33A DNA given i.ln. (figure 15; symbols represent individual mice and one of three similar experiments is shown). Immunization with the control pEGFP-N3 DNA did not elicit any detectable gp33-specific CTL responses (data not shown).

Example 11

5

10

15

20

25

30

Intra-lymph node DNA immunization elicits anti-tumor immunity.

To examine whether the potent CTL responses elicited following i.ln. immunization were able to confer protection against peripheral tumors, groups of 6 C57BL/6mice were immunized three times at 6-day intervals with 10µg of pEFGPL33A DNA or control pEGFP-N3 DNA. Five days after the last immunization small pieces of solid tumors expressing the gp33 epitope (EL4-33) were transplanted s.c. into both flanks and tumor growth was measured every 3-4d. Although the EL4-33 tumors grew well in mice that had been repetitively immunized with control pEGFP-N3 DNA (figure 16), mice which were immunized with pEFGPL33A DNA i.ln. rapidly eradicated the peripheral EL4-33 tumors (figure 16).

Example 12

Differences in lymph node DNA content mirrors differences in CTL response following intralymph node and intramuscular injection.

pEFGPL33A DNA was injected i.ln. or i.m. and plasmid content of the injected or draining lymph node was assessed by real time PCR after 6, 12, 24, 48 hours, and 4 and 30 days. At 6, 12, and 24 hours the plasmid DNA content of the injected lymph nodes was approximately three orders of magnitude greater than that of the draining lymph nodes following i.m. injection. No plasmid DNA was detectable in the draining lymph node at subsequent time points (Fig. 17). This is consonant with the three orders of magnitude greater dose needed using i.m. as compared to i.ln. injections to achieve a similar levels of CTL activity. CD8⁻¹⁻ knockout mice, which do not develop a CTL response to this epitope, were also injected i.ln. showing clearance of DNA from the lymph node is not due to CD8⁺ CTL killing of cells in the lymph node. This observation also supports the conclusion that i.ln. administration will not provoke immunopathological damage to the lymph node.

Example 13

5

10

15

25

30

35

Administration of a DNA plasmid formulation of a therapeutic vaccine for melanoma to humans.

SYNCHROTOPE TA2M, a melanoma vaccine, encoding the HLA-A2-restricted tyrosinase epitope SEQ ID NO. 1 and epitope cluster SEQ ID NO. 69, was formulated in 1% Benzyl alcohol, 1% ethyl alcohol, 0.5mM EDTA, citrate-phosphate, pH 7.6. Aliquots of 80, 160, and 320 μg DNA/ml were prepared for loading into MINIMED 407C infusion pumps. The catheter of a SILHOUETTE infusion set was placed into an inguinal lymph node visualized by ultrasound imaging. The assembly of pump and infusion set was originally designed for the delivery of insulin to diabetics and the usual 17mm catheter was substituted with a 31mm catheter for this application. The infusion set was kept patent for 4 days (approximately 96 hours) with an infusion rate of about 25 μl/hour resulting in a total infused volume of approximately 2.4 ml. Thus the total administered dose per infusion was approximately 200, and 400 μg; and can be 800 μg, respectively, for the three concentrations described above. Following an infusion subjects were given a 10 day rest period before starting a subsequent infusion. Given the continued residency of plasmid DNA in the lymph node after administration (as in example 12) and the usual kinetics of CTL response following disappearance of antigen, this schedule will be sufficient to maintain the immunologic CTL response.

20 Example 14

Additional Epitopes.

The methodologies described above, and in particular in examples 3-7, have been applied to additional synthetic peptide substrates, leading to the identification of further epitopes as set for the in tables 15-36 below. The substrates used here were designed to identify products of housekeeping proteasomal processing that give rise to HLA-A*0201 binding epitopes, but additional MHC-binding reactivities can be predicted, as discussed above. Many such reactivities are disclosed, however, these listings are meant to be exemplary, not exhaustive or limiting. As also discussed above, individual components of the analyses can be used in varying combinations and orders. The digests of the NY-ESO-1 substrates 136-163 and 150-177 (SEQ ID NOS. 254 and 255, respectively) yielded fragments that did not fly well in MALDI-TOF mass spectrometry. However, they were quite amenable to N-terminal peptide pool sequencing, thereby allowing identification of cleavage sites. Not all of the substrates necessarily meet the formal definition of an epitope cluster as referenced in example 3. Some clusters are so large, e.g. NY-ESO-1₈₆₋₁₇₁, that it was more convenient to use substrates spanning only a portion of this cluster. In other cases, substrates were extended beyond clusters meeting the formal definition to include neighboring

predicted epitopes. In some instances, actual binding activity may have dictated what substrate was made, as with for example the MAGE epitopes reported here, where HLA binding activity was determined for a selection of peptides with predicted affinity, before synthetic substrates were designed.

Table 15
GP100: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion
†Scores are given from the two binding prediction programs referenced above (see example 3).

	Comments	*The digestion of	609-644 and 622-	650 have generated	the same epitopes.			
HLA Binding Predictions (SYFPEITHI /NIH)†	B8	16/<5				15/<5	16/<5	
ns (SYFPE	B7	20/80					20/80	
g Predictio	A3			32/20	79/60			
Binding	A1							
HILA	A*0201		21/117		14/<5			21/117
SEQ ID	0N	88	68	06	91	92	93	94
	Sequence	LPHSSSHWL	QLPHSSSHWL	LIYRRRLMK	SLIYRRRLMK	IYRRRLMK	LPHSSSHWL	QLPHSSSHWL
	Epitope	630-638*	629-638*	614-622	613-622	615-622	630-638*	629-638*
	Substrate	609-644					622-650	

Table 16A MAGE-1: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

	Other							A26 (R 21),	A24 (NIH 30)						B4403 (NIH 7);	B3501 (NIH 120)				BAA02 ONTO 26)	(OC TITAL)		B4403 (NIH 14)	A26 (R 31), B4403	(NIH 14)
TIED)†								A26	A24 (B4403	B3501 (BAA02	COLLEG		B4403	A26 (R3	TAI)
HLA Binding Predictions (SYFPEITHI /NIH)†	R8	5>/91	5							17/<5															
lictions (SY	R7														<15/<5						18/75	7/57		_	
inding Prec	A3		20/<5								19/<5								19/<5<5				_		16/<5
HLA B	A1																					1,7,7	\$>/07	28/6	
	A*0201		21/<5	23/<5	23/55	20/138	20170				16/<5	16/<5	15/<5	100	5 <u>/c</u> 1		18/20	19/<5	30/427	15/<5	18/<5				26/743
SEQ ID NO		95	96	97	86	66	100	100		101	102	103	104	105	103		106	107	108	109	110	111	111	112	113
	Sequence	ESLFRAVI	ILESLFRAVI	ILESLFRAV	CILESLFRAV	CILESLFRA	FEI WGDD AT	LI LW OF INTL	ET WOODS AT	FLWGFKAL	FLWGPRALAE	LWGPRALAET	PRALAETSY	GDD AT A ETEN	OI TALABISI		RALAETSYV	LAETSYVKV	ALAETSYVKV	AETSYVKVL	LAETSYVKVL	TSVVKVIEV	TOTANK TOT	EISYVKVLEY	KVLEYVIKV
	Epitope	95-102	93-102	93-101	101-26	92-100	263-271		164 271	7/7-407	264-273	265-274	268-276	757-776		220 070	//7-607	271-279	270-279	272-280	271-280	274-282	277 707	707-617	278-286
	Substrate	86-109					263-292									_ 4_			J			L	<u> </u>		

 Table 16B

 MAGE-1: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

SEO ID HLA Binding Predictions (SYFPEITHI /NIH)†	A*0201 A1 A3 B7 B8	114 A24 (NIH 300)	115 20/32 15/<5 <15/20	116	117 29/<5	118 A26 (R 22)	119 24/11	120 21/<5 21/<5 A26 (R 28)	121 22/<5 19/<5 A26 (R 30)	122 21/<5 B5101 (25/121)	123 26/743 16/<5	124 17/<5	125 15/<5 15/<5 17/<5	126 26/<5	127 28/6	128 20/<5	27175
	Sequence	SYVLVTCLGL	YVLVTCLGL	VLVTCLGL	TQDLVQEKY	LTQDLVQEKY	YGEPRKLLT	LVQEKYLEY	DLVQEKYLEY	SAYGEPRKL	KVLEYVIKV	VKVLEYVIKV	YVKVLEYVI	TSYVKVLEY	ETSYVKVLEY	VIKVSARVR	TANK A DAY THE PARTY
	Epitope	168-177	169-177	170-177	240-248	239-248	232-240	243-251	242-251	230-238	278-286	277-286	276-284	274-282	273-282	283-291	,00

†Scores are given from the two binding prediction programs referenced above (see example 3). R indicates a SYFPEITHI score.

Table 17A

MAGE-2: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

			OF C III		HLA	binding Fre	dictions (SY)	HLA Binding Predictions (SYFPEITHI /NIH)†	IH)†
Substrate	Epitope	Sequence	NO	A*0201	A1	A3	B7	B8	Other
107-126	115-122	ELVHFLLL	130					18/<5	
	113-122	MVELVHFLLL	131		21/<5				A26 (R 22)
	109-116	ISRKMVEL	132					17/<5	
	108-116	AISRKMVEL	133	25/7		19/<5	16/12	26/<5	
	107-116	AAISRKMVEL	134	22/<5			14/36	n.p./16	
	112-120	KMVELVHFL	135	27/2800				2	
	109-117	ISRKMVELV	136	16/<5					
	108-117	AISRKMVELV	137	24/11					
	116-124	LVHFLLLKY	138		23/<5	19/<5			A26 (R 26)
	115-124	ELVHFLLLKY	139		24/<5	19/5			A26 (R 29)
	111-119	RKMVELVHF	140						(31,2)
145-175	158-166	LQLVFGIEV	141	17/168					
	157-166	YLQLVFGIEV	142	24/1215					
	159-167	QLVFGIEVV	143	25/32		18/<5			
	158-167	LQLVFGIEVV	144	18/20					
	164-172	EVVEVVPI	145	16/<5					
	163-172	GIEVVEVVPI	146	22/<5					
	162-170	FGIEVVEVV	147	19/<5					B5101(24/69212)
	154-162	ASEYLQLVF	148		22/68				
	153-162	KASEYLQLVF	149			15/<5			

Table 17B MAGE-2: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

HLA Binding Predictions (SYFPEITHI /NIH)†	-	Al Al	27/2	15/<5		26/804 16/<5 A26 (R.26)	A26 (R 22)	17/<5	25/398 16/7	23/<5	30/427 21/<5	18/19 B5101 (20/55)	15/<5	V 26 (D 22)
EL 150 A*0201 EL 151 15/<5 E 152	EL 150 A1 EL 151 EL 152 EL 151 EL 152 EL 152 EL 152 EL 152 EL 152 EL 152 EL 155	EL 150 15/<5 EL 151 15/<5 EL 152 15/<	EL 151 15/<5 E 152	E 152		153 26/804	154	-	156 25/398	157	158 30/427	159	160	TETSW/WVI
Substrate Epitope Sequence 213-233 218-225 EEKIWEEL 216-225 APEEKIWEEL 216-223 APEEKIWE 220-228 KIWEELSML 216-329 KIWEELSML	Lipitope 218-225 216-225 216-223 220-228	218-225 216-225 216-223 220-228			$\perp \perp$	\perp		-	271-279	+	L		-	-

†Scores are given from the two binding prediction programs referenced above (see example 3). R indicates a SYFPEITHI score.

Table 18

MAGE-3: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

			SEQ ID			nding Predic	tions (SYF.	HLA Binding Predictions (SYFPEITHI /NIH)†	<u> </u>
Substrate	Epitope	Sequence	ON	A*0201	A1	A3	B7	B8	Other
267-286	271-278	FLWGPRAL	162					17/<5	
	270-278	EFLWGPRAL	163						A26 (R. 21);
									A24 (NIH 30)
	271-279	FLWGPRALV	164	27/2655		16/<5			
	276-284	RALVETSYV	165	18/19					B5101 (20/55)
	272-280	LWGPRALVE	166			15/<5			
	271-280	FLWGPRALVE	167	15/<5		22/<5			
	272-281	LWGPRALVET	168	16/<5					

†Scores are given from the two binding prediction programs referenced above (see example 3). R indicates a SYFPEITHI score.

Table 19A NY-ESO-1: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

	Other		B4403 (NIH 18)				B4403 (NIH 60)						Comment	*Evidence of the	same epitope	obtained from two	algests.							
HLA Binding Predictions (SYFPETTHI /NIH)†	B8	22/<5	À		19/8		В				18/<5		16/<5		16/<5		16/<5						16/<5	
tions (SYFP	B7	18/<5								17/<5	16/<5	23/12			17/<5								17/<5	
nding Predic	A3					21/<5		18/<5			17/<5			20/<5		16/<5		19/<5		18/<5	18/<5	18/<5		16/<5
HLA Bi	A1	16/11	15/<5	25/11				<15/45																
	A*0201					21/430			15/<5		20/<5			15/<5				21/<5	20/<5	20/130	17/<5	20/<5		
SEO ID	ON	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
	Sequence	GPESRLLEF	PESRLLEFY	GPESRLLEFY	ESRLLEFYL	RLLEFYLAM	LEFYLAMPF	LLEFYLAMPF	AMPFATPMEA	MPFATPMEA	PLPVPGVLL	PPLPVPGVLL	LPVPGVLL	ELARRSLAQD	VPGVLLKEF	PVPGVLLKEF	LPVPGVLL	TVSGNILTI	FTVSGNILTI	GVLLKEFTV	VLLKEFTVSG	LLKEFTVSG	VPGVLLKEF	PVPGVLLKEF
	Epitope	82-90	83-91	82-91	84-92	86-94	96-88	96-28	93-102	94-102	115-123	114-123	116-123*	103-112	118-126*	117-126*	116-123*	127-135	126-135	120-128	121-130	122-130	118-126#	117-126*
	Substrate	81-113									101-133						116-145							

†Scores are given from the two binding prediction programs referenced above (see example 3).

Table 19B NY-ESO-1: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

		,	_									-	
(EI)†	Other		A26 (R 25)										A26 (R 19)
HLA Binding Predictions (SYFPEITHI /NIH)+	B8	22/<5											
ictions (S)	B7												
nding Pred	A3						17/<5						
HLA Bi	A1	17/<5											
	A*0201	17/<5	24/7	18/<5	18/<5	18/84	18/42	15/<5	15/50	18/<5	16/<5	<15/12	18/<5
SEQ ID	ON	192	193	194	195	196	197	198	199	200	201	202	203
	Sequence	AADHRQLQL	SISSCLOQL	TOOTSSIST	TAADHRQLQL	WITQCFLPV	SLLMWITQC	SSCLOQLSL	QQLSLLMWI	SCLQQLSLL	SSCLQQLSLL	TQCFLPVFL	ITOCFLPVFL
	Epitope	139-147	148-156	147-156	138-147	161-169	157-165	150-158	154-162	151-159	150-159	163-171	162-171
	Substrate	136-163	SEO ID NO	254)		150-177	(SEQ ID NO	255)					

#Scores are given from the two binding prediction programs referenced above (see example 3). R indicates a SYFPEITHI score

Table 20 PRAME: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

			SEQ ID		HLA B	inding Pre	dictions (SYI	HLA Binding Predictions (SYFPEITHI /NIH)+	Ð
Substrate	Epitope	Sequence	ON	A*0201	A1	A3	B7	B8	
211-245	219-227	PMQDIKMIL	204	16/<5				16/n.d.	A26 (R 20)
	218-227	MPMQDIKMIL	205				<15/240		
411-446	428-436	OHLIGLSNL	206	18/<5					
	427-436	LOHLIGLSNL	207	16/8					
	429-436	HLIGLSNL	208					17/<5	B15 (R 21)
	431-439	AHLTNSTEI	209	18/7					B*5101 (R 22)
	430-439	AHLTINSTDIT	210	24/37					

†Scores are given from the two binding prediction programs referenced above (see example 3). R indicates a SYFPEITHI score.

Table 21 PSA: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

			CEO TO		HLA E	linding Prec	lictions (SYF	HI.A Binding Predictions (SYFFELLEN INLE)	1)T
			700				200	000	Othor
Substrate	Fnitone	Sequence	ON	A*0201	¥1	A3	Β/	22	Office
Supplied of		TANDOMY.	211	22/112			<15/6	17/<5	
11-74	10-60	A PARTY AND A	717	WAX 1977					(01 a) 20 V
	52-61	GVLVHPOWVL	212	17/21		16/<5	<15/30		A20 (K 10)
	52-60	GVLVHPQWV	213	17/124					
	29-63	WVITAAHCI	214	15/16					
	10 13	TAMPONIATA	215	10/<5		20/<5			A26 (R 16)
	04-03	רייות לייי לייי	C17	2/2					
	53-62	VLVHPOWVLT	216	17/22					
		TAMESTER	212			17/n d			
	24-62		/17			T // Trong		00,70	
55.05	66-73	CIRNKSVI	218					07/07	
	200	TI SOUTH CITY	210					<15/16	
	62-/3	HCIKINESVI	617						
	56-64	HPOWVLTAA	220				18/<5		
-	12 27	A A LICIDAIN QUI	221	17/<5					
	\ <u>`</u>		777	?					

+Scores are given from the two binding prediction programs referenced above (see example 3). R indicates a SYFPEITHI score.

 Table 22

 PSCA: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

		_	CEO TO		HI.A B	inding Prec	lictions (SYF	HI A Binding Predictions (SYFPEITHI /NIH)†	ED†	_,
			7			0	1	96		
Substrate	Enitone	Sequence	0N	A*0201	A1	A3	B7	Б8	Ounei	
Daber are		Lan						141/5		
03_173*	L	I I WGPGOI.	222	_				707		_
77-14	_	20 20								_
	L	TITWGPGOI	223	√25/18	•					7
	117-11	באס יס וו מחת	2							_
	114 122	CI I I WGPGOI	224	<15/10						-7
	71-11	770 10 117770						3/1/2	(01 a) 3C V	
	00 107	AT OPA A II	225	56/9		22/<5	<15/12	2	A20 (R 19)	7
	/01-66	יייייייייייייייייייייייייייייייייייייי	2	215			07,117			
	00 107	HATOPAATT	226	18/<5			71/51>			7
	701-02		25.5	200						

*L123 is the C-terminus of the natural protein.

†Scores are given from the two binding prediction programs referenced above (see example 3).

Table 23 Tyrosinase: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

			SEQ ID		HLAE	linding Pre	HLA Binding Predictions (SYFPEITHI /NIH)+	PEITHI /NI	H)†
Substrate	Epitope	Sequence	ON	A*0201	A1	A3	B7	B8	Other
128-157	128-137	APEKDKFFAY	227		29/6		15/<5		B4403 (NIH 14)
	129-137	PEKDKFFAY	228		18/<5			21/<5	
	130-138	EKDKFFAYL	229				15/<5		
	131-138	KDKFFAYL	230					20/<5	
197-228	205-213	PAFLPWHRL	231					15/<5	
	204-213	APAFLPWHRL	232				23/360		
	207-216	FLPWHRLFLL	1	25/1310				<15/8	
	208-216	LPWHRLFLL	6	17/26			20/80	24/16	
	214-223	FLLRWEQEIQ	233			15/<5			
	212-220	RLFLLRWEQ	234			16/<5			
191-211	191-200	GSEIWRDIDF	235		18/68				
	192-200	SEIWRDIDF	236					16/<5	B4403 (NIH 400)
207-230	207-215	FLWHRLFL	8	22/540			<15/6	17/<5	
466-484	473-481	RIWSWLLGA	237	19/13		15/<5			
476-497	476-484	SWLLGAAMV	238	18/<5					
	477-486	WLLGAAMVGA	239	21/194		18/<5			
	478-486	LLGAAMVGA	240	19/19		16/<5			

†Scores are given from the two binding prediction programs referenced above (see example 3).

PSMA: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion Table 24

			SEO ID		HI.A.B	inding Pred	ictions (SYI	HI.A Binding Predictions (SYFPEITHI /NIH)+	1)†
1 4 4	Posterne	Comonos	2 2	A *0201	41	Α3	B7	B8	Other
Substrate	Thunhe	Schnemee	257	1000	:				
1-30	4-12	LLHETDSAV	241	25/485	-	15/<5			
,	13-21	ATARRPRWL	242	18/<5				18/<5	A26 (R 19)
53-80	53-61	TPKHNMKAF	243					24/<5	
<u>}</u>	64-73	ELKAENIKKF	244			17/<5			A26 (R 30)
	22-69	NIKKFI HINF	245						A26 (R 27)
	68-77	ENIKKFLH'NF	246						A26 (R 24)
215-244	220-228	AGAKGVILY	247		25/<5				
457-489	468-477	PLMYSLVHNL	248	22/<5					
	469-477	LMYSLVHNL	249	27/193		6/51>			
	463-471	RVDCTPLMY	250		32/125	25/<5			A26 (R 22)
-1-1	465-473	DCTPLMYSL	251						A26 (R 22)
503-533	507-515	SGMPRISKL	252	21/<5				21<5	
	506-515	FSGMPRISKL	253	17/<5					

¹This H was reported as Y in the SWISSPROT database. †Scores are given from the two binding prediction programs referenced above (see example 3).

Table 25A MAGE-1: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

TOTAL TITLE TOTAL	ar endoreder no	increase it a received appropriate and assembling a receasion digestion	ing i i oteasom	TO THE COLLINE			
	;	(;	Bin	Binding Prediction	'n	
Substrate	Epitope	Sequence	Seq. ID No.	HLA type	SYFPEITH	NIH	
	125-132	KAEMLESV	256	B5101	19	n.a.	
	124-132	TKAEMLESV	257	A0201	20	\$	
	123-132	VTKAEMLESV	258	A0201	20	Ą	
		-		A1	28	45	
M200-1 110-118	128-136	MLESVIKNY	259	A26	24	n.a.	
0				A3	. 17	5	
	921-261	ENJI BOVITANO	090	A1	15	<1.0	
	061-171	LIMITOS VIINIAI	7007	A26	23	<1.0	
	125-133	V A FWT FCV	196	B5101	23	100	_
	127-177	NALLES VI	107	A24	N.A.	4	
	251.971	V A SEST OI	ιgι	B08	16	<1.0	
	24-04-1	TATOTOW	707	B5101	17	N.A.	
	145_153	IO ISES V AE	ε3ι	B2705	17	1	
Mage-1 143-170	140-100	ONTOLOGICAL	203	B2709	16	N.A.	
	147-155	ASESLQLVF	797	A1	22	89	
_	153-161	IVEGIDVEE	596	A26	91	N.A.	
	101-001	LVI OID VIX.	507	A3	16	<1.0	

Table 25B
MAGE-1: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

	4			Binc	Binding Prediction	u
Substrate	Epitope	Sequence	Seq. ID No.	HLA type	SYFPEITHI	NIH
	114-121	LLKYRARE	266	B8	25	<1.0
			2/3	B8	16	<1.0
	106-113	VADLVGFL	/97	B5101	21	N.A.
				A0201	23	44
				A26	25	N.A.
	105-113	KVADLVGFL	268	A3	16	<5
				B0702	14	20
Mage-1 99-125				B2705	14	30
				A0201	17	\$>
	107-115	ADLVGFLLL	269	B0702	15	\$>
				B2705	16	1
			OF C	A0201	91	<\$
	106-115	VADLVGFLLL	7/0	A1	22	3
	114-123	LLKYRAREPV	271	A0201	20	2
	The same of the sa					

	tion
	e Digest
	asome
	Prote
	eeping
	Housek
	d by Hou
	Reveale
	S
	Epitope
	erred
	E-3: Pref
le 26	
Tab	MAG

		,		Bin	Binding Prediction	=
Substrate	Epitope	Sequence	Seq. ID No.	HLA type	SYFPEITHI	NIH
	271-278	FLWGPRAL	162	B08	17	<\$
				A26	21	N.A.
	270-278	EFLWGPRAL	163	A24	N.A.	30
		•		B1510	91	N.A.
	000 100	11 14 dd 711 17	164	A0201	27	2655
	617-117	FLWGFRALV	104	A3	16	2
	700 000	11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1	27.2	A0201	19	<1.0
	097-9/7	LVEISIVKV	7/7	A26	17	N.A.
		-		A0201	28	428
	277-286	ALVETSYVKV	273	A26	16	<\$
Mage-3 267-295				A3	18	\$
	200 300	17/17/11/11/17/7	777	A0201	19	27
	567-587	K.V.LHHIMIVKJ	4/7	A3	19	\$
	276-284	RALVETSYV	165	A0201	18	20
	283-291	YVKVLHHMV	275	A0201	17	<1.0
	275-283	PRALVETSY	276	A1	17	<1.0
	274-283	GPRALVETSY	277	A1	15	<1.0
	278-287	LVETSYVKVL	278	A0201	18	<1.0
	272-281	LWGPRALVET	168	A0201	16	<1.0
	271-280	FLWGPRALVE	167	A3	22	\$

Fibronectin ED-B: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion Table 27A

				Bi	Binding Prediction	_
Substrate	Epitope	Sequence	Seq. ID No.	HLA type	SYFPEITHI	NIH
-				A0201	27	7
				A26	28	N.A.
				A3	17	\$>
	4'-5**	TIIPEVPOL	279	B8	15	<>
) r	! !		B1510	15	N.A.
ED-B 14'-21*				B2705	17	10
				B2709	15	N.A.
			0	A0201	20	<5
	5'-5**	DIMPEVPQL	780	A26	32	N.A.
	1-10	EVPOLTDLSF	281	A26	29	N.A.

*This substrate contains the 14 amino acids from fibronectin flanking ED-B to the N-terminal side.
**These peptides span the junction between the N-terminus of the ED-B domain and the rest of fibronectin.
† The *italicized* lettering indicates sequence outside the ED-B domain.

Table 27B Fibronectin FD-B: Preferred Epitopes Revealed by H		Ħ
Fibronectin ED-B: Preferred Epitopes Revealed		à
Table 27B Fibronectin FD-B: Preferred Epitopes		Revealed
Fable 27B Fihronectin FD-B: Preferred		Epitopes
Fable 27B Fibronectin F.D-B:		Preferred
Fable 27B Fibronectin F		D-B:
Table 27B Fihronectiv		Ē
	Table 27B	Fibronectin

1 able 2 / B Fibronectin ED-B:	: Preferred Epit	ranie z.i.b. Fibronectin ED-B: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion	ing Proteasome L			
					Binding Prediction	
Substrate	Epitope	Sequence	Seq. ID No.	HLA type	SYFPEITH	NIH
	23-30	TPLNSSTI	282	B5101	22	N.A.
	18-25	IGLRWTPL	283	B5101	18	N.A.
				A0201	20	5
	17-25	SIGLRWTPL	284	A26	18	N.A.
	1			B08	25	\$
				A1	19	\$>
ED-B 8-35	25-33	LNSSTIIGY	782	A26	16	\$
				A1	20	
	24-33	PLNSSTIIGY	286	A26	24	N.A.
				A3	16	\$
			100	B0702	17	8
	23-31	TPLNSSTII	/87	B5101	25	440

Table 27C Fibronectin ED-B: Pref	: Preferred Epit	ferred Epitopes Revealed by Housekeeping Proteasome Digestion	ing Proteasome I			
				ia .	Binding Prediction	_
Substrate	Epitope	Sequence	Seq. ID No.	HLA type	SYFPEITHI	NIH
	31-38	IGYRITVV	288	B5101	25	N.A.
				A0201	23	15
	(o o	A3	17	<1.0
	30-38	IIGYKII VV	687	B08	15	<1.0
-				B5101	15	3
				A0201	26	6
	29-38	TIIGYRITVV	290	A26	18	N.A.
				A3	18	\$
	23-30	TPLNSSTI	282	B5101	22	N.A.
ED-B 20-49				Al	19	\$>
	25-33	LNSSIIIGA	Ç87	A26	16	N.A.
			700	A26	24	N.A.
	24-33	PLNSSILIGY	087	A3	16	\$
	31-39	IGYRITVVA	291	A3	17	\$
		A T M MET CON CO.	6	A0201	15	\$
	30-39	IIGYRII V VA	767	A3	18	\
		THE COLOR AND	200	B0702	17	∞
	23-31	IPLNSSIII	/87	B5101	25	440

ä	Ë
estic	
e Dig	
ome	ŀ
teas	
Pro	
ping	L
i by Housekeeping Pro	
)Sno	١
Ε	
led I	
tevea	
s Re	
Spitopes R	1
Epi	1
red	
A eferr	
le 28A N: Pref	
Tabl	
	۱ ا

CEA: Preferred	Epitopes Kevea	CFA: Preferred Epitopes Revealed by Housekeeping riolcasome Digestron	Jung Froteason			
					Binding Prediction	
Substrate	Epitope	Sequence	Seq. ID No.	HLA type	SYFPEITHI	NIH
	184-191	SLPVSPRL	293	B08	19	\$
				A0201	15	
	,		5	B1510	15	
	183-191	OSLPVSPRL	294	B2705	18	10
				B2709	15	
	186-193	PVSPRLQL	295	B08	18	\$
				B0702	26	180
	185-193	LPVSPRLOL	296	B08	16	\$
		,		B5101	19	130
				A0201	23	21
	184-193	SLPVSPRLOL	297	A26	18	N.A.
CEA 176-202		•		A3	18	\$
	185-192	LPVSPRLO	298	B5101	17	N.A.
				A0201	21	4
				A26	16	N.A.
	192-200	OLSNGNRTL	299	A3	19	\$
,		,		B08	17	\$
			_	B1510	15	
	191-200	LOLSNGNRTL	300	A0201	16	3
	179-187	WVNNQSLPV	301	A0201	16	28
		, redorse	COC	A26	17	N.A.
	186-194	PVSFKLQLS	202	A3	15	8

Table 28B CEA: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

				Bi	Binding Prediction	
Substrate	Epitope	Sequence	Seq. ID No.	HLA type	SYFPEITHI	NIH
	362-369	SLPVSPRL	303	B08	19	<1.0
				A0201	15	<1.0
	361-369	QSLPVSPRL	304	B2705	18	10
		,		B2709	15	
	364-371	PVSPRLQL	305	B08	18	<1.0
				B0702	26	180
	363-371	LPVSPRLQL	306	B08	16	<1.0
	·	,		B5101	19	130
				A0201	23	21
		TO I duoi sa xo	ť	A26	18	N.A.
CEA 354-380	362-371	SLFVSFKLQL	30/	A24	N.A.	9
				A3	18	\$
	363-370	LPVSPRLQ	308	B5101	17	N.A.
		,		A0201	22	4
	1		0	A26	16	N.A.
	370-378	OLSNDNKIL	309	A3	17	<1.0
				B08	17	<1.0
	369-378	LOLSNDNRTL	310	A0201	16	3
	357-365	WVNNQSLPV	311	A0201	16	28
·	360-368	NQSLPVSPR	312	B2705	14	100

	2
400	3
Š	3
	E
	[]
,	Ĕ
,	ጟ
	ğ
•	ē
	e
	SILO
	Ě
	2
	عاد
	V
	ž
	200
	ito
	Ġ
	7
٠,	3
Table 78C	CEA. Bustanced Enitones Revealed by Housekeeping Proteasome Digestion
age of	4
<u>ه</u>	į

~	Poved Dayou	Carry Brown of The Stone of David Brown Protection Digestion	p Proteasom	ie Digestion		
CEA: Freierrea	Epitopes acced	Townson or the not	4	Bi	Binding Prediction	
Substrate	Epitope	Sequence	No.	HLA type	SYFPEITHI	
	540 547	St PVSPRI.	313	B08	19	\$
	740-747	100		A0201	15	\$
				B1510	15	\$
	539-547	OSLPVSPRL	314	B2705	18	10
				B2709	15	
	012 613	DVSpp1 Of	315	B08	18	\$
	342-349	2 V 20 V 1		B0702	26	180
	043 640	TOTACPATOL	316	B08	16	<1.0
	541-549	LF V 51 INL/L	3	B5101	19	130
				A0201	23	21
	072 073	OI PVSPRI OI	317	A26	18	N.A.
CEA 532-558	740-747	277777777777777777777777777777777777777	, -	A3	18	\$
	5/1 5/8	T PVSPRI.O	318	B5101	17	N.A.
	241-240			A0201	24	4
				A26	16	N.A.
	770 660	TT SINCTING TO	319	A3	19	<1.0
	248-230	Transpirer	<u>-</u>	B08	17	<1.0
			-	B1510	15	
	755 675	I OI SNGNRTI	320	A0201	16	3
	04/-220	מיניינייניינייניינייניינייניינייניינייני		A0201	18	28
	535-543	WVNGQSLPV	321	A3	15	<1.0
	532 541	I WWVNGOSL	322	A0201	15	\$
	110-000	100				

Table 28D CEA: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

CEA: Preferred 1	spiropes never	CEA: Preierred Epitopes Revealed by Houseneching Libreasome Election	g r rocason	To Digostron		
			Cag III	ā	Binding Prediction	_
Substrate	Epitope	Sequence	No.	HLA type	HLA type SYFPEITHI	NIH
				A0201	25	816
CEA 532-558	532-541	YLWWVNGQSL	272	A26	18	N.A.
(continued)	538-546	GOSLPVSPR	324	B2705	17	100

,	roteasome I	
-	Housekeeping P	
	evealed by	
	d Enitones	
	D2/NEII Preferre	
DIC 475	D2/NET	

Substrate Epitope Sequence 30-37 DMKIRLPA 28-37 GTDMKIRLPA 42-49 HLDMIRHL 40-49 ETHLDMIRHL 36-43 PASPETHL 35-43 LPASPETHL 38-46 SPETHLDML 38-46 SPETHLDML 37-46 ASPETHLDML 42-50 HLDMIRHLY	HER2/NEU: Preferred Epitopes Revealed by Housekeeping rioleasome Digestion	ed Epitopes	Neveated by mouseure	9		Citofic Care Care	5
30-37 28-37 C 42-49 41-49 40-49 B 36-43 35-43 38-46 38-46 38-46 42-50						Binding Frediction	110
30-37 28-37 42-49 41-49 40-49 36-43 35-43 34-43 37-46 42-50	Substrate	Epitope	Sequence	Seq. ID No.	HLA type	SYFPEITHI	HIN
28-37 C 42-49 41-49 40-49 I 36-43 35-43 38-46 37-46 42-50		20-37	DMKTRIPA	325	B08	61	∞
42-49 41-49 40-49 I 36-43 35-43 38-46 37-46 42-50		78.37	GTDMKI RI PA	326	A1	23	9
41-49 40-49 I 36-43 35-43 34-43 38-46 42-50		07 67	HI DMI RHI	327	B08	17	\$
41-49 40-49 I 36-43 35-43 34-43 38-46 37-46		177-77	THE THE PARTY OF T		A0201	17	\$
40-49 B 36-43 35-43 38-46 37-46 42-50		41-49	THLDMLRHL	328	B1510	24	N.A.
36-43 36-43 34-43 38-46 37-46		40.40	ETHI DMI PHI	329	A26	29	N.A.
35-43 34-43 38-46 37-46 42-50		40-42	PASPETEI	330	B5101	17	N.A.
35-43 34-43 38-46 37-46 42-50		20-42	TUNIT TOUT		A0201	15	\$
34-43 38-46 37-46 42-50		26 42	TDACDETEN	331	B5101	20	130
34-43 38-46 37-46 42-50		33-43	LLASIEITH	1	B5102	N.A.	100
38-46 37-46 42-50	Her-2 25-52	24 42	рграсретит	332	A0201	20	21
-46 -46 -50		24-42	MAI AND LANGE		A0201	15	\$
-46 -50				1	B0702	20	24
-46 50		38-46	SPETHLDML	333	B08	18	\$
-46					B5101	18	110
-50		37.46	A SPRTHI DMI.	334	A0201	18	\$
-50		2			A1	29	25
00-		42 50	ur DMI PHI V	335	A26	20	N.A.
1		42-30	THEORY		A3	17	4
		41-50	THLDMLRHLY	336	A1	18	<1.0

Table 29B HER2/NEU: Prefer	red Epitopes	Table 29B HER2/NEU: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion	ping Proteasome Dig	estion		
	1				Binding Prediction	u
Substrate	Epitope	Sequence	Seq. ID No.	HLA type	SYFPEITHI	NIH
	719-726	ELRKVKVL	337	B08	24	16
				A0201	16	1
	718-726	TELRKVKVL	338	B08	22	<\$
				B5101	16	\$
				A1	18	2
	717-726	ETELKKVKVL	339	A26	28	9
				A0201	17	\$
	715-723	LKETELRKV	340	B5101	15	\$
	714-723	ILKETELRKV	341	A0201	29	8
				A0201	15	<5
	1			B08	22	<5
Her-2 705-732	712-720	MRILKETEL	347	B2705	27	2000
				B2709	21	N.A.
		100000000000000000000000000000000000000		A0201	20	2
	07/-11/	UMKILKEIEL	343	B0702	13	40
			0.44	A1	18	5
	717-725	ETELKKVKV	344	A26	18	N.A.
	716-725	KETELRKVKV	345	A0201	16	19
		100 100 100 1	770	B0702	16	∞
	706-714	MFNQAQMKI	340	B5101	22	629
	705-714	AMPNOAOMRI	347	A0201	18	∞
	706-715	MPNQAQMRIL	348	B0702	20	80

HERZ/NEU: Preferr	ed Epitopes	HER2/NEU; Preferred Epitopes Revealed by Housekeeping Proteasome Digestion	ping Proteasome Dige	stion	217-11	5
				**	Binding Prediction	=
Substrate	Epitope	Sequence	Seq. ID No.	HLA type	SYFPEITH	NIH
				R08	20	24
	966-973	RPRFRELV	349	B5101	18	N.A.
	000 300	CDDDEDETV	350	B2709	18	
	965-973	CKTKTKELV		A26	25	N.A.
				A24	N.A.	32
		DEDICT LIGHT	351	A3	15	\$
	9/6-896	KFKELVSEF	100	B08	16	<\$
Her-2 954-982				B2705	19	
	70000	PREPET VOCE	352	A26	18	N.A.
	96/-9/0	FRENCLASE	300	A26	21	N.A.
			-	A24	N.A.	9
	07.4	PCPDPEDET	353	B0702	15	40
	964-972	ECN NUME		B8	27	640
				B1510	16	\$

NY-ESO-1: Kreierreu Ephiopes Accounted 3) Accounted B	or Aprecia					5
				1	בוומווום בופמוכנום	
Substrate	Epitope	Sequence	Seq. ID No.	HLA type	SYFPETTHI	NIH
					1.6	\$>
	71-75	GAASGUNGC	354	A0201	13	7
	2.20			0000	16	<u>۷</u>
	09-65	RASGPGGGA	355	B0702	CI	7
	22-00	TA LOCA COCK		3.5	-	47
77 73 7 73	64.72	PHGGAASGI	356	B1510	17	14.73.
ここの こうのりしん	7/1-0	TOO: TOO!		0000	C	×
	62 73	CPHGGAASGI	357	B0702	77	200
	4/-50	OT IT COT IT TO		0010	CC	09
	09-09	APRGPHGGAA	358	B0702	67	3
	200					

	<u>اي</u>	
	roteasome Digesti	
	e Dig	
	8	
	tea	
	ng]	
	epi	
	y Housekeeping P	
	Sno	
	d by House	
	ф	
	sale	
	kev.	
	es F	
	top	
	Epitop	
	g	
	ferr	
	Pre	
4	PRAME: Pr	
2	A	
7	PR	

				Bir	Binding Prediction	on
Substrate	Epitope	Sequence	Seq. ID No.	HLA type	SYFPEITHI	NIH
	112-119	VRPRRWKL	359	B08	19	
-				A26	27	N.A.
				A24	N.A.	5
	111-119	EVRPRRWKL	360	A3	19	N.A.
	1 1			B0702	15	(B7) 300.00
				B08	26	160
•			.,,	B0702	21	(B7) 40.00
	113-121	RPRRWKLQV	361	B5101	19	110
•			6,5	B08	26	<\$
PRAME 103-135	114-122	PKKWKLQVL	705	B2705	23	200
_ 				B0702	24	(B7) 800.00
				B8	N.A.	160
	113-122	RPRRWKLOVL	363	B5101	N.A.	61
		,		B5102	N.A.	61
				A24	N.A.	10
		10 11 11 11 11 11 11	27.6	B08	22	<5
	116-124	KWKLQVLDL	364	B2705	17	3
	115-124	RRWKLQVLDL	365	A0201	16	\$
PRAMF 161-187	174-182	PVEVLVDLF	366	A26	25	N.A.

Table 31B
PRAME: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

				Bir	Binding Prediction	on
Substrate	Epitope	Sequence	Seq. ID No.	HLA type	IHLIHALIN	NIH
	199-206	VKRKKNVL	367	B08	27	8
				A0201	16	<1.0
				A26	20	N.A.
	198-206	KVKRKKNVL	368	A3	22	<1.0
				B08	30	40
				B2705	16	
	197-206	EKVKRKKNVL	369	A26	15	N.A.
	198-205	KVKRKKNV	370	B08	20	9
	201-208	RKKNVLRL	371	B08	20	\$>
				A0201	15	<1.0
				A26	15	N.A.
PRAME 185-215	800 000	ra maranan	273	B0702	15	<1.0
	907-007	NEW VENT	3/5	B08	21	<1.0
				B2705	28	
				B2709	25	
	100 200	TOWNAMED	272	A0201	16	<1.0
	007-661	V DECEMBINATION	5/5	B0702	16	4
	189-196	DELFSYLI	374	B5101	15	N.A.
				A0201		3
	205-213	VLRLCCKKL	375	A26	17	N.A.
				B08	25	8
	204 213	NAVI DI CCVVI	37.6	A0201	17	7
	C17-407	INVENTOCINAL	0/0	A26	19	N.A.

Table 31C
PRAME: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

				<u>B</u>	Binding Prediction	ou
Substrate	Epitope	Sequence	Seq. ID No.	HLA type	SYFPEITHI	NIH
				A0201	20	<1.0
				A26	18	N.A.
PRAME 185-215	194-202	YLIEKVKRK	377	A3	25	89
(continued)	•			B08	20	<1.0
				B2705	17	
	74-81	OAWPFTCL	378	B5101	17	n.a.
		,		A0201	14	7
•	73-81	VOAWPFICL	379	A24	n.a.	5
		,		B0702	16	9
				A26	22	п.а.
	72-81	MVOAWPFTCL	380	A24	n.a.	7
		,		B0702	13	30
	81-88	LPLGVLMK	381	B5101	18	n.a.
		20 2 20 20 20	000	A0201	17	<1.0
PRAME 71-98	88-08	CLPLGVLMK	382	A3	27	120
	0	AD LUXO ACTION	101	A1	12	10
	88-6/	1CLPLGVLMK	383	A3	19	3
				A0201	18	7
	84-92	GVLMKGQHL	384	A26	21	n.a.
		•		B08	21	4
	81-89	LPLGVLMKG	385	B5101	20	2
	68-08	CLPLGVLMKG	386	A0201	16	<1.0
	76-85	WPFTCLPLGV	387	B0702	18	4

PRAME: Preferred Epitopes Revealed by Housekeeping Proteasome Digest

TANAME. THE SELLEU PHINDES AND ASSESSED IN HOUSENCE PHING AT INCESSOME DISCOUNT	av cadoudar i	vealed by Houseke	ching riotea	Some Digestif	Sinding Dradiction		
Substrate	Enitone	Segmence	Sen II No		ומוווא ב ופמוכנו		
	adoud-	an hac	·ovi or ·foc	HLA type	HLA type SYFPEITHI	NIH	
	61.50	ET EDDI ENGA	300	A0201	19	18	
	C-1C	ELFFERMA	0000	A26	23	N.A.	
	40.57	ם דמסם דם מס	380	B2705	22		
	10-64	FRELFFILF	600	B2709	19		
CO-SC LIMITAL	48-57	LPRELFPPLF	390	B0702	19	4	
	60 60	DEI CODI EN	201	B2705	91		
	00-00	NELFIFT	160	B2705	15		
	49-58	PRELFPPLFM	392	A1	16	<1.0	

Table 32
PSA: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

referred -	EDITODES Ke	PSA: Preferred Editobes Revealed by Housekeeping Libreasonic Digestion	THE LIGHTSOME THE	Comon		
	3				Binding Prediction	lon
Substrate	Epitope	Sequence	Seq. ID No.	HLA type	SYFPEITHI	HIN
	239-246	RPSLYTKV	393	B5101	21	N.A.
	238-246	ERPSLYTKV	394	B2705	15	09
	236-243	LPERPSLY	395	B5101	18	N.A.
	2			A1	19	<1.0
				A26	22	N.A.
				A3	26	9
	235-243	ALPERPSLY	396	B08	16	<1.0
				B2705	. 11	15
				B2709	19	N.A.
DCA 222.258				A0201	20	<1.0
007-707 VO J				A1	61	<1.0
			t G	A26	25	N.A.
	241-249	SLYTKVVHY	39/	A3	26	09
				B08	20	<1.0
				B2705	13	75
				Ai	20	<1.0
	240-249	PSLYTKVVHY	398	A26	91	N.A.
				B0702	21	4
	239-247	RPSLYTKVV	399	'B5101	23	110

Table 33A PSMA: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

Third I can be beloned by Housekeeping Protessome Digestion	a repropes in	everieu by mousek	eeping Frotea	some Digestion	a		
Substrate	Enitone	Comonos	Soc The Ma	8	Binding Prediction	E .	Г
	adoud≃	Seducarce	oct m No.	HLA type	SYFPEITH	HIN	1
	211-218	GNKVKNAQ	400	B08	22	\\$	Т
	202-209	IARYGKVF	401	B08	18	\$	T
PSMA 202-228	217-225	AQLAGAKGV	402	A0201	16	26	T
	207-215	KVFRGNKVK	403	A3	32	15	Т
	211-219	GNKVKNAOL	404	B8	33	80	Т
	1.00		2	B2705	17	20	Т
•	117-697	TEGYPANEY	405	A1	16	\$	Т
	268-277	LTPGYPANEY	406	A1	21	1	$\overline{}$
			2	A26	24	N.A.	1
PSIMA 255-282	271-279	GYPANEYAY	407	A1	15	\$	_
<u> </u>	270-279	PGYPANEYAY	408	A1	19	\$	т-
	266-274	DPLTPGVPA	400	B0702	21	3	_
		1000	201	B5101	17	20	-
				A0201	17	\$	_
	492-200	SLYESWTKK	410	A3	27	150	_
	401 500			B2705	18	150	_
	491-500	KSLYESWTKK	411	A3	16	.<5	т—
PSMA 483-509	, ,			A1	19	\$	
	486-494	EGFEGKSLY	412	A26	21	N.A.	_
				B2705	16	\$	
	485-494	DEGFEGKSLY	413	A1	17	\$	_
	400 500	100000000000000000000000000000000000000		A26	17	N.A.	
	498-200	IKKSPSPEF	414	B08	17	\$	

Table 33B PSMA: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

	4	X	}	B	Binding Prediction	u
Substrate	Epitope	Sequence	Seq. ID No.	HLA type	SYFPEITHI	NIH
	497-506	WTKKSPSPEF	415	A26	24	N.A.
PSIMA 483-509	100 501	or versouvers	717	A0201	16	\$>
(continued)	492-301	SLIESWINDS	410	A3	16	\$>
	000 300	I O a Su sa O su	417	B08	17	\$
	761-671	WGEVING	41/	B5101	17	N.A.
	724-732	AWGEVKRQI	418	B5101	15	9
	723-732	KAWGEVKRQI	419	A0201	16	<1.0
	723-730	KAWGEVKR	420	B5101	15	N.A.
	722-730	SKAWGEVKR	421	B2705	15	<5
				A0201	21	177
	731-739	QIYVAAFTV	422	A3	21	<1.0
107				B5101	15	5
PSIMA /21-/49	100	4 C/ HEAT 4 7 K/2	122	A0201	17	9
	/33-/41	IVAAFIVÇA	472	A3	20	<1.0
	725-733	WGEVKRQIY	424	A1	26	11
	300 500	A1777D G1777A	307	A26	22	N.A.
	(5/-/7/	EVERGITVA	477	A3	18	<1.0
	747 077	THE A A CLAM	701	A26	18	N.A.
	/38-/40	IVCAAAEIL	470	A3	61	<1.0
	745 505	TOTA A A CYPTER	127	A0201	17	<1.0
	/3/-/40	FIVOAAAEIL	/74	A26	19	N.A.

Table 33C
PSMA: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

Curl of mother	1	Č		B	Binding Prediction	u.
Substrate	Epitope	Sequence	Seq. ID No.	HLA type	SYFPEITH	HIN
				A26	16	N.A.
OSMA 721749	729-737	KRQIYVAAF	428	B2705	24	3000
(Continuos)				B2709	21	N.A.
(papumina)	721-729	PSKAWGEVK	429	A3	20	<1.0
	723-731	KAWGEVKRQ	430	B5101	16	<1.0
	100-108	WKEFGLDSV	431	A0201	16	♦
PSMA 95-122	801-66	QWKEFGLDSV	432	A0201	17	♦
	102-111	EFGLDSVELA	433	A26	16	N.A.

Table 34A SCP-1: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

				B	Binding Prediction	u
Substrate	Epitope	Sequence	Seq. ID No.	HLA type	SYFPEITHI	NIH
				A0201	20	<5
				A26	26	N.A.
	126-134	ELRQKESKL	434	A3	17	\$
SCP-1 117-143				B0702	13	(B7) 40.00
				B8	34	320
	125-134	AELROKESKL	435	A0201	16	\$>
	133-141	KLQENRKII	436	A0201	20	61
	298-305	QLEEKTKL	437	B08	28	2
	200 200	Idmarda IOIX	420	A0201	16	33
	505-767	NULEENINL	430	B2705	19	200
	200 000	TIEEODDEV	730	A0201	25	51
SCP-1 281-308	067-007	LLEESKUNV	454	B5101	15	3
	287-296	FLLEESRDKV	440	A0201	27	2378
	0001	CODICION	111	A26	21	N.A.
	667-167	ESKUNVINCE	1	B08	29	240
	290-299	EESRDKVNQL	442	A26	19	N.A.
	175 403	בויבותות בע	. 7.43	A1	31	11
	4/3-463	ENEVALUET	+	A26	17	N.A.
	474-483	REKEVHDLEY	444	A1	21	<1.0
SCP-1 471-498				A1	56	45
	480-488	DLEYSYCHY	445	A26	30	N.A.
				A3	16	\$
	477-485	EVHDLEYSY	446	A1	15	

Table 34B SCP-1: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

	T. T.	, ,				
			}	æ	Binding Prediction	nc
Substrate	Epitope	Sequence	Seq. ID No.	HLA type	SYFPEITHI	NIH
007 727 7 406	104 704	ANDART LATER		A26	29	N.A.
SCF-1 4/1-498	4//-483	EVHULEYSY		A3	19	<1.0
(continued)	477-486	EVHDLEYSYC	447	A26	22	N.A.
	502-509	KLSSKREL	448	B08	26	4
	508-515	ELKNTEYF	449	B08	24	<1.0
	507 515	חיזים דיז ניז ני	750	B2705	18	45
	20/-213	KELKINIEIF	420	B4403	N.A.	120
	496-503	KRGQRPKL	451	B08	18	<1.0
				B0702	22	120
	707 703	Taddoodaart	750	B8	N.A.	16
	494-505	LFNKGQKFAL	427	B5101	N.A.	130
				B3501	N.A.	09
001	509-517	LKNTEYFTL	453	A0201	15	<5
5CF-1 483-520				A0201	18	<1.0
	508-517	ELKNTEYFTL	454	A26	27	N.A.
				A3	16	<1.0
	506 514	VDETVAITEV	155	A1	. 26	2
	+10-000	PARELMIEI	<u></u>	B2705	26	3000
	502-510	KLSSKRELK	456	A3	25	09
	700 200	700 174 aCD	157	A3	22	4
	470-200	OUNTALISSE.	/C#	B2705	18	200
	497-506	RGQRPKLSSK	458	A3	22	<1.0
	500-508	RPKLSSKRE	459	B08	18	<1.0
		The state of the s				

Table 34C SCP-1: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

				8	Binding Prediction	nc
Substrate	Epitope	Sequence	Seq. ID No.	HLA type	SYFPEITH	NIH
	573-580	LEYVREEL	460	B08	19	\$
				A0201	17	<1.0
	77.00	1333 (1) (1)	177	A26	23	N.A.
	086-7/6	ELEIVEEL	401	A24	N.A.	6
				B08	20	N.A.
SCP-1 570-596	571-580	NELEYVREEL	462	A0201	16	4
				A0201	61	<1.0
	579-587	ELKQKRDEV	463	A26	18	N.A.
				B08	29	48
	675 503	W TEEL VOV	164	A26	17	N.A.
	5/5-585	I VKEELNUN	404 404	A3	27	2
	632-640	QLNVYEIKV	465	A0201	24	0.2
	630-638	SKQLNVYEI	466	A0201	<i>L</i> 1	\$>
770	202 002	A ECV OI NIVY	291	A1	61	\$>
3CF-1 016-043	050-970	AESINGEN I) 0	A26	91	N.A.
	202 602	WHATOTOTAT	760	A1	26	45
	050-/70	IAESKYLINVI	400	A26	. 15	N.A.

Curbatante	77	č	į,	Δ.	Binding Prediction	on
Substrate	- Epitope	Sequence	seq. ID No.	HLA type	SYFPEITH	NITH
	638-645	IKVNKLEL	469	B08	21	<1.0
	-			A0201	17.	<1.0
	637-645	ETK VNIK I ET	470	A26	26	N.A.
		TOTAL A TAINT) ř	B08	28	∞
			•	B1510	15	N.A.
	636-645	YEIKVNKLEL	471	A0201	17	2
	642-650	KIFIFIFSA	CLV	A0201	20	1
	22.5		7/1	A3	16	<1.0
3CP-1 633-660				A0201	18	<1.0
	635-643	VYEIKVNKL	473	A24	N.A.	396
				B08	22	<1.0
				A0201	24	95
				A26	25	N.A.
	634-643	NVYFIKVNKI	474	A24	N.A.	9
)		•	A3	15	\$>
				B0702	11	(B7) 20
•				. B08	N.A.	9
	646-654	ELESAKOKF	475	A26	27	N.A.
	642-650	KIFIFIFSA	476	A0201	20	1
	1			A3	16	<1.0
CP-1 640-668	646-654	ELESAKQKF	477	A26	27	N.A.

Table 34E SCP-1: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

	[[l		Bindina Prediction	<u> </u>
Substrate	Epitope	Sequence	Seq. ID No.	HLA type	SYFPEITHI	NIB
	771-778	KEKLKREA	478	B08	21	\$
				A0201	18	<5
				A26	18	N.A.
	100	11.4.77.77.4.77	770	A24	N.A.	5
SCP-1 768-796	08/-///	EAKENIAIL	4/4	B0702	13	12
				B08	28	48
				B5101	20	121
	776-785	REAKENTATL	480	A0201	16	<5
	773-782	KLKREAKENT	481	A3	17	\$
	112-119	EAEKIKKW	482	B5101	17	N.A.
				A0201	23	32
				A26	22	N.A
	101-109	GLSRVYSKL	483	A24	N.A.	9
				A3	17	3
				B08	17	<1.0
	001.001	דעוסגאניתט דיטד	707	A26	21	N.A.
SCP-1 92-125	100-109	EGESKY I SKL	+04	A24	N.A.	6
				A0201	22	57
	108-116	KLYKEAEKI	485	A3	20	6
				B5101	18	5
	98-106	NSEGL.SRVY	486	A1	31	89
	97-106	ENSEGLSRVY	487	A26	18	N.A.
	102-110	LSRVYSKLY	488	A1	22	<1.0

Table 34F SCP-1: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

			-	Bir	Binding Prediction	
Substrate	Epitope	Sequence	Seq. ID No.	HLA type	SYFPEITH	HIN
				A1	18	<1.0
	101-110	GLSRVYSKLY	489	A26	18	N.A.
700 4 00				A3	19	18
(continued)	96-105	LENSEGLSRV	490	A0201	17	5
	108-117	KLYKEAEKIK	491	A3	27	150
	949-956	REDRWAVI	492	B5101	15	N.A.
				B2705	18	009
	948-956	MREDRWAVI	493	B2709	18	N.A.
				B5101	15	1
	920 270	TAMBEDBINANT	707	A0201	21	9
SCP-1 931-958	066-146	NAMEDA WAVI	+24	B08	N.A.	15
	947-955	KMREDRWAV	495	A0201	22	411
	934-942	TTPGSTLKF	496	A26	25	N.A.
	933-942	LTTPGSTLKF	497	A26	23	N.A.
-	937-945	GSTLKFGAI	498	B08	61	1
	945-953	IRKMREDRW	499	B08	19	\$>
	236-243	RLEMHFKL	200	B08	16	<>
				A0201	18	<5
SCP-1 232-259	235-243	SRLEMHFKL	501	B2705	25	2000
				B2709	22	
	242-250	KLKEDYEKI	502	A0201	22	4

Table 34G SCP-1: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

SCr-1: rreletred t	phiopes never	SCF-1: Freierreu Ephiopes nevealeu by trousenceping rroleasome Digestron	Occasome Dis	gestion		
		,		Bir	Binding Prediction	
Substrate	Epitope	Sequence	Seq. ID No.	HLA type	SYFPEITH	NIH
				A26	91	N.A.
				A3	15	3
		•		B08	24	<5
				B5101	14	2
				A1	15	\$
SCP-1 232-259	249-257	KIQHLEQEY	503	A26	23	N.A.
(continued)				A3	11	S>
•	040 053	TOTAL BORY	703	A1	15	\$>
	748-727	reviolaties x	2004	A26	21	N.A.
	233-242	ENSRLEMHF	505	A26	19	N.A.
	227.046	מע זעמנט אינו זים	702	A1	19	\$>
	730-742	KLEMBERLINE	200	A3	11	\$>
	324-331	LEDIKVSL	507	B08	20	<1.0
				A0201	21	<1.0
				A26	25	N.A.
	222 221	נונו בחרום זם	002	A24	N.A.	10
	323-331	ELEUINVAL	200	A3 .	17	<1.0
SCP-1 310-340				B08	19	<1.0
				B1510	16	N.A.
	322-331	KELEDIKVSL	509	A0201	19	22
	320-327	LTKELEDI	200	B08	18	<\$
	319-327	HLTKELEDI	511	A0201	21	<1.0
	330-338	SLQRSVSTQ	512	A0201	18	<1.0

Table 34H SCP-1: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

Epitope 321-329	Sequence	f	Ä	Binding Prediction	_
110pe 1-329	Sequence				
1-329		sed. ID No.	HLA type	SYFPEITHI	NIB
	TKELEDIKV	513	A1	16	<1.0
320-329	LTKELEDIKV	514	A0201	19	<1.0
326-335	DIKVSLQRSV	515	A26	18	N.A.
281-288	KMKDLTFL	516	B08	20	6
280-288	NKMKDLTFL	517	A0201	15	
279-288	ENKMKDLTFL	518	A26	19	N.A.
706	Vadapaaii	510	A0201	25	15
067-	LLLLLSINOIN V	212	B5101	15	3
287-296	FLLEESRDKV	520	A0201	27	2378
200	ECDDVANOI	521	A26	21	N.A.
-233	האוזא אושאנכם	321	B08	29	240
290-299	EESRDKVNQL	522	A26	19	N.A.
300	EVENTAVINI	573	A26	19	N.A.
C07-	ENEWNINDE	272	B08	23	<1.0
276-285	TEKENKMKDL	524	A26	15	N.A.
787	ENIZMZDI TE	505	A26	18	N.A.
-201	EINMINIONITI	727	B08	28	4
218-225	IEKMITAF	526	B08	17	\$
217-225	NIEKMITAF	527	A26	26	N.A.
216-225	SNIEKMITAF	528	A26	19	N.A.
223-230	TAFEELRV	529	B5101	23	N.A.
222-230	ITAFEELRV	530	A0201	18	2
221-230	MITAFEELRV	531	A0201	18	16
	280-288 279-288 288-296 287-296 291-299 277-285 276-285 276-287 218-225 217-225 217-225 216-225 223-230 2221-230		NKMKDLTFL ENKMKDLTFL LLEESRDKV FILEESRDKV ESRDKVNQL ESRDKVNQL EESRDKVNQL TEKENKMKDL TEKENKMTAF	NKMKDLTFL 517 ENKMKDLTFL 518 LLEESRDKV 520 FLLEESRDKV 521 ESRDKVNQL 521 EESRDKVNQL 522 EKENKMKDL 523 TEKENKMKDL 524 ENKMKDLTF 525 IEKMITAF 525 IEKMITAF 525 ITAFEELRV 529 ITAFEELRV 530 ITAFEELRV 531 MITAFEELRV 531	NKMKDLTFL 517 A0201 ENKMKDLTFL 518 A26 LLEESRDKV 520 A0201 FLLEESRDKV 520 A0201 FLLEESRDKVNQL 521 B08 ESRDKVNQL 522 A26 EKENKMKDL 523 B08 TEKENKMKDL 524 A26 ENKMKDLTF 525 B08 IEKMITAF 526 B08 NIEKMITAF 526 B08 TAFEELRV 529 B5101 TAFEELRV 530 A0201 MITAFEELRV 531 A0201

Table 34I SCP-1: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

				Bir	Binding Prediction	
Substrate	Epitope	Sequence	Seq. ID No.	HLA type	SYFPEITH	HIN
				A0201	23	50
	220-228	KMITAFEEL	532	A26	15	N.A.
				A24	N.A.	16
SCP-1 211-239	219-228	EKMITAFEEL	533	A26	19	N.A.
(contimued)	100 000	0147 4 0714 17	103	A3	16	<1.0
	22/-735	ELKVQAENS	534	B08	15	<1.0
	000	D CAUTH COLC YO	303	A0201	17	<1.0
	777-517	DENSNIERIMI	333	A26	16	N.A.
	837-844	WTSAKNTL	536	B08	20	4
				A0201	18	2
		7 KILLY 4 YOUR 1	103	B0702	17	4
	840-854	IFLFKAYIV	750	B08	16	2
				B5101	25	220
SCP-1 836-863	845-854	STPLPKAYTV	538	A0201	19	\$
	844-852	LSTPLPKAY	539	A1	23	8
				A1	16	<1.0
	843-852	TLSTPLPKAY	540	A26	19	N.A.
			<u>, </u>	A3	18	2
	842-850	NTLSTPLPK	541	A3	16	3
	841-850	KNTLSTPLPK	542	A3	18	<1.0

Table 34J SCP-1: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

		*	;	Bil	Binding Prediction	
Substrate	Epitope	Sequence	seq. ID No.	HLA type	SYFPEITHI	HIN
	979 925	VHOWHY	543	B08	21	3
	660-070	1 ONNOWE		A26	21	N.A.
CP-1 819-845	826-835	HGISKDKRDY	544	A1	15	\$
	832-840	KRDYLWTSA	545	B2705	16	009
	829-838	SKDKRDYLWT	546	A1	18	⋄
	279-286	ENKMKDLT	547	B08	22	∞
				A0201	17	Э
	260-268	EINDKEKQV	548	A26	19	N.A.
				B08	17	⋄
CP-1 260-288				A0201	17	3
	274-282	QITEKENKM	549	A26	22	N.A.
			·	B08	16	\$
	770 090	CT T T TOTTE	022	A0201	16	<1.0
	7 / 7-607	מוואודיזיים	000	A3	18	<1.0
	453-460	FEKIAEEL	551	B08	21	<1.0
	452-460	QFEKIAEEL	552	B2705	15	
	451-460	KQFEKIAEEL	553	A0201	. 91	99
CP-1 437-464	75V 0VV	DNIVOBEVI	755	B08	16	2
	001011	DIAIN CLEAN	+00	B5101	16	N.A.
	954-845	YDNKQFEKI	555	B5101	16	1
	447-456	LYDNKQFEKI	556	A1	15	<1.0

	Proteasome Digestion
	Housekeeping
	Revealed by
	ed Epitopes
Table 24th	SCP-1: Preferr

Substrate F	Epitope	Sequence	Sea. TD No.	Bir	Binding Prediction	
	Epitope	Sednence	Sed. ID No.			
				HLA type	SYFPEITHI	NIH
<u> </u>	440-447	LGEKETLL	557	B5101	91	N.A.
				A0201	24	149
	439-447	VLGEKETLL	558	A26	61	N.A.
<u> </u>				B08	29	12
				A0201	19	24
				A26	20	N.A.
7	438-447	KVLGEKETLL	559	A24	N.A.	12
				A3	18	<1.0
			•	B0702	14	20
				A0201	22	3
	000	Incomment	004	A26	18	N.A.
	390-398	רדעובללער	200	B08	22	1.6
				B2705	15	30
<u></u>				A0201	19	9
	389-398	ELLRTEQQRL	561	A26	24	N.A.
-		,		A3	15	<1.0
SCP-1 383-412	107	VIVI I TOO	177	A1	15	\$
	393-401	INGUENI	700	A26	16	N.A.
	107 000	VANCE TO COMME	273	A1	31	113
	392-401	KIEUKKENI	5005	A26	26	N.A.
<u> </u>	402-410	EDQLIILTM	564	A26	18	N.A.
	707 700	I IOGENICA IG	272	A0201	17	<1.0
	39/-400	KLEIN I EDŲLI	COC	A3	15	<1.0

Table 34L SCP-1: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

					Binding Prediction		
Substrate	Epitope	Sequence	Seq. ID No.	HLA type	SYFPEITH	NIH	
	368-375	KARAAHSF	995	B08	16	<1.0	
	100 320	7 74 74 74 74 74 74 74 74 74 74 74 74 74	223	A0201	19	161	
700 000	2/0-204	V V 157511V	/00	A3	16	<1.0	_
30F-1 300-394	375-384	FVVTEFETTV	568	A0201	17	106	
	377-385	VTEFETTVC	569	A1	18	2	
	376-385	VVTEFETTVC	570	A3	16	\$	
				A0201	22	\$	
	344-352	DLQIATNTI	571	A3	15	<1.0	
				B5101	17	11	_
730 700 7 000				A0201	19	1	_
/cs-1 cs 1-406	347-355	IATNTICQL	572	B08	16	<1.0	_
			<u> </u>	B5101	20	62	
	316 365	OIATRITOOI	573	A0201	24		
	240-223	ליייון און	C/C	A26	24	N.A.	_

Table 35 SSX-4: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion

DOM-T. LICILIAN	r endorrder r	Solve in the state of the second of the seco	Company of Grand			
					Binding Prediction	on
Substrate	Epitope	Sequence	Seq. ID No.	HLA type	SYFPEITHI	NIH
	57-65	VMTKLGFKV	574	A0201	21	495
-	53-61	LNYEVMTKL	575	A0201	17	7
				A0201	23	172
				A26	21	N.A.
SSX4 45-76	52-61	KLNYEVMTKL	576	A24	N.A.	18
				A3	14	4
				B7	N.A.	4
		2000 (1100 110	F 12 1	A26	16	N.A.
	66-74	ILPFFMKSK	//c	A3	25	14
				A0201	15	\$>
	110-118	KIMPKKPAE	578	A26	15	N.A.
				A3	16	<5
SSX4 98-124				A0201	15	8
	103-112	SLORIFPKIM	579	A26	16	N.A.
-				A3	15	\$

stic	
ige	
e D	
HO	Į
eas	I
rot	
4	l
ű	
eel	
sek	
nog	
y H	ŀ
ă	l
ale	ĺ
eve	l
S	
ope	I
pit	ŀ
d E	l
Te	l
efe	Ļ
ፈ	l
se:	l
sins	
yro	
Ξ	

Tyrosinase: Pr	eferred Ep	Tyrosinase: Preferred Epitopes Revealed by Housekeeping Proteasome Digestion	' Housekeeping	Proteasome	Digestion	
Cultodad	F		\$		Binding Prediction	tion
Substrate	Epitope	Sequence	Sed. ID No.	HLA type	SYFPEITH	HIN
	463.471	VIK CVI EO A	005	A0201	18	\$
		A LAND A LLL YAR	260	A26	17	N.A.
Tvr 445-474	459-467	SEODVIKEV	591	A1	18	\$
	701	יייייייייייייייייייייייייייייייייייייי	100	A26	22	N.A.
	458-467	DSEODVIKEV	683	A1.	19	♡
		1 CAN 1 CAN 1 CAN 1	200	A26	24	N.A.
	507-514	I PEEKOPI	583	80 E	28	5
	15-105	דיו דרוואלון די	707	B5101	18	N.A.
				A0201	22	88
	506-514	OI PEFKOPI	284	A26	20	N.A.
			r 9	A24	N.A.	6
				B08	18	\$
	505.514	KOI PERKOPI	585	A0201	15	28
Tvr 490-518	10.000	ייילביו דידואין די	Coc	A24	N.A.	17
2000				A0201	15	\$
	507-515	I PEEKOPI I	785	B0702	21	24
	CT C- / OC	ייי דריאליו דיי	000	B08	28	5.
				B5101	21	157
_			1	A0201	23	88
	506-515	QLPEEKQPLL	587	A26	20	N.A.
				A24	N.A.	7
	497-505	SLLCRHKRK	588	A3	25	15

Example 15

Evaluating Likelihood of Epitope Cross-reactivity on Non-target Tissues.

As noted above PSA is a member of the kallikrein family of proteases, which is itself a subset of the serine protease family. While the members of this family sharing the greatest degree of sequence identity with PSA also share similar expression profiles, it remains possible that individual epitope sequences might be shared with proteins having distinctly different expression A first step in evaluating the likelihood of undesirable cross-reactivity is the profiles. identification of shared sequences. One way to accomplish this is to conduct a BLAST search of an epitope sequence against the SWISSPROT or Entrez non-redundant peptide sequence databases using the "Search for short nearly exact matches" option; hypertext transfer protocol accessible on the world wide web (http://www) at "ncbi.nlm.nih.gov/blast/index.html". Thus searching SEQ ID NO. 214, WVLTAAHCI, against SWISSPROT (limited to entries for homo sapiens) one finds four exact matches, including PSA. The other three are from kallikrein 1 (tissue kallikrein), and elastase 2A and 2B. While these nine amino acid segments are identical, the flanking sequences are quite distinct, particularly on the C-terminal side, suggesting that processing may proceed differently and that thus the same epitope may not be liberated from these other proteins. (Please note that kallikrein naming is confused. Thus the kallikrein 1 [accession number P06870] is a different protein than the one [accession number AAD13817] mentioned in the paragraph on PSA above in the section on tumor-associated antigens).

20

25

30

15

5

10

It is possible to test this possibility in several ways. Synthetic peptides containing the epitope sequence embedded in the context of each of these proteins can be subjected to *in vitro* proteasomal digestion and analysis as described above. Alternatively, cells expressing these other proteins, whether by natural or recombinant expression, can be used as targets in a cytotoxicity (or similar) assay using CD8⁺ T cells that recognize the epitope, in order to determine if the epitope is processed and presented.

Example 16

Epitope Clusters.

Known and predicted epitopes are generally not evenly distributed across the sequences of protein antigens. As referred to above, we have defined segments of sequence containing a higher than average density of (known or predicted) epitopes as epitope clusters. Among the uses of epitope clusters is the incorporation of their sequence into substrate peptides used in proteasomal digestion analysis as described herein. Epitope clusters can also be useful as vaccine components. A fuller discussion of the definition and uses of epitope clusters is found in U.S. Patent Application No. 09/561,571 entitled EPITOPE CLUSTERS.

The following tables (37-60) present 9-mer epitopes predicted for HLA-A2 binding using both the SYFPEITHI and NIH algorithms and the epitope density of regions of overlapping epitopes, and of epitopes in the whole protein, and the ratio of these two densities. (The ratio must exceed one for there to be a cluster by the above definition; requiring higher values of this ratio reflect preferred embodiments). Individual 9-mers are ranked by score and identified by the position of their first amino in the complete protein sequence. Each potential cluster from a protein is numbered. The range of amino acid positions within the complete sequence that the cluster covers is indicated as are the rankings of the individual predicted epitopes it is made up of.

10

5

Table 37
BIMAS-NIH/Parker algorithm Results for gp100

Rank	Start	Score	Rank	Start	Score
1	619	1493	21	416	19
2	602	413	22	25	18
3	162	226	23	566	17
4	18	118	24	603	15
5	178	118	25	384	14
6	273	117	26	13	14
7	601	81	27	290	12
8	243	63	28	637	10
9	606	60	29	639	9
10	373	50	30	485	9
11	544	36	31	453	8
12	291	29	32	102	8
13	592	29	33	399	8
14	268	29	34	456	7
15	47	27	35	113	7
16	585	26	36	622	7
17	576	21	37	, 69	7
18	465	21	38	604	6
19	570	20	39	350	6
20	9	19	40	583	5

Table 38
SYFPEITHI (Rammensee algorithm) Results for gp100

Rank	Start	Score	Rank	Start	Score	Rank	Start	Score
1	606	30	37	291	20	73	60	18
2	162	29	38	269	20	74	17	18
3	456	28	39	2	20	75	613	17
4	18	28	40	610	19	76	599	17
5	602	27	41	594	19	77	572	17
6	598	27	42	591	19	78	557	17
7	601	26	43	583	19	79	556	17
8	597	26	44	570	19	80	512	17
9	13	26	45	488	19	81	406	17
10	585	25	46	446	19	· 82	324	17
11	449	25	47	322	19	83	290	17
12	4	25	48	267	19	84	101	17
13	603	24	49	250	19	85	95	17
14	576	24	50	205	19	86	635	16
15	453	24	51	180	19	87	588	16
16	178	24	52	169	19	88	584	16
17	171	24	53	88	19	89	577	16
18	11	24	54	47	19	90	559	16
19	619	23	55	10	19	91	539	16
20	280	23	56	648	18	92	494	16
21	268	23	57	605	18	93	482	· 16
22	592	22	58	604	18	94	468	16
23	544	22	59	595	18	95	442	16
24	465	22	60	571	18	96	413	16
25	399	22	61	569	18	97	408	16
26	373	22	62	450	18	98	402	16
27	273	22	63	409	18	99	286	16
28	243	22	64	400	18	100	234	16
29	566	21	65	371	18	101	217	16
30	563	21	66	343	18	102	211	16
31	485	21	67	298	18	103	176	16
32	384	21	68	209	18	104	107	16
33	350	21	69	102	18	105	96	16
34	9	21	70	97	18	106	80	16
35	463	20	71	76	18	107	16	16
36	397	20	72	69	18	108	14	16
			[109	7	16

Table 39

Prediction of clusters for gp100

Total AAs: 661

Total 9-mers: 653

SYFPEITHI 16: 109 9-mers

NIH 5: 40 9-mers

					Epitopes/AA	
	Cluster#	AAs	Epitopes (by Rank)	Cluster	Whole Pr	Ratio
SYFPEITHI	1	2 to 26	39, 12, 109, 34, 55, 11, 9, 108, 107, 74, 4	0.440	0.165	2.668
	2	69-115	72, 71, 106, 53, 85, 105, 70, 84, 69, 104	0.213	0.165	1.290
	3	95-115	85, 105, 70, 84, 69	0.238	0.165	1.444
	4	162-188	2, 52, 17, 103, 16, 51	0.222	0.165	1.348
	5	205-225	50, 68, 102, 101	. 0.190	0.165	1.155
	6	243-258	28, 49	0.125	0.165	0.758
	7	267-306	48, 21, 38, 27, 20, 99, 83, 37, 67	0.225	0.165	1.364
	8	322-332	47, 82	0.182	0.165	1.103
	9	343-358	66, 33	0.125	0.165	0.758
	10	371-381	65, 26	0.182	0.165	1.103
	11	397-421	36, 25, 64, 98, 81, 97, 63, 96	0.320	0.165	1.941
	12	442-476	95, 46, 11, 62, 15, 3, 35, 24, 94	0.257	0.165	1.559
	13	482-502	93, 31, 45, 93	0.190	0.165	1.155
	14	539-552	91, 23	0.143	0.165	0.866
	15	556-627	79, 78, 90, 30, 29, 61, 44, 60, 77, 14, 89, 43, 88, 10, 87, 42, 22, 41, 59, 8, 6, 76, 7, 5, 13, 58, 57, 1, 40, 75, 19	0.431	0.165	2.611
NIH		,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
,	1	9 to 33	20, 26, 4, 22	0.160	0.061	2.644
	2	268-281	14, 6	0.143	0.061	2.361
	3	290-299	27, 12	0.200	0.061	3.305
	4*	102-121	32, 35	0.100	0.061	1.653
	5*	373-392	10, 25	0.100	0.061	1.653
	6	453-473	31, 34, 18	0.143	0.061	2.361
	7	566-600	23, 19, 17, 40, 16, 13	0.171	0.061	2.833
	8	601-614	7, 2, 24, 38, 9	0.357	0.061	5.902
	9	619-630	1, 36	0.17	0.061	2.754
	10	637-647	28, 29	0.18	0.061	3.005

*Nearby but not overlapping epitopes

Table 40
BIMAS-NIH/Parker algorithm Results for PSMA

Rank	Start	Score
1	663	1360
2	711	1055
3	4	485
4	27	400
5	26	375
6	668	261
7	707	251
8	469	193
9	731	177
10	35	67
11	33	64
12	554	59
13	427	50
14	115	47
15	20	40
16	217	26
17	583	24
18	415	19
19	193	14
20	240	12
21	627	11
22	260	10
23	130	· 10
24	741	9
25	3	9
26	733	8
27	726	7
28	286	6
29	174	5
30	700	5

Table 41
SYFPEITHI (Rammensee algorithm) Results for PSMA

Rank	Start	Score	Rank	Start	Score	Rank	Start	Score
1	469	27	31	26	20	61	305	17
2	27	27	32	3	20	62	304	17
3	741	26	33	583	19	63	286	17
4	711	26	34	579	19	64	282	17
5	354	25	35	554	19	65	169	17
6	4	25	36	550	19	66	142	17
7	663	24	37	547	19	67	122	17
8	130	24	38	390	19	68	738	16
9	57	24	39	219	19	69	634	16
10	707	23	40	193	19	70	631	16
11	260	23	41	700	18	71	515	16
12	20	23	42	472	18	72	456	16
13	603	22	43	364	18	73	440	16
14	218	22	44	317	18	74	385	16
15	109	22	45	253	18	75	373	16
16	731	21	46	91	18	76	365	16
17	668	21	47	61	18	77	361	16
18	660	21	48	13	18	78	289	16
19	507	21	49	733	17	79	278	16
20	454	21	50	673	17	. 80	258	16
21	427	21	51	671	17	· 81	-247	16
22	358	21	52	642	17	82	217	16
23	284	21	53	571	17	83	107	16
24	115	21	54	492	17	84	100	16
25	33	21	55	442	17	85	75	16
26	606	20	56	441	17	86	37	16
27	568	20	57	397	17	87	30	16
28	473	20	58	391	17	88	21	16
29	461	20	59	357	17			
30	200	20	60	344	17			

Table 42

Prediction of clusters for prostate-specific membrane antigen (PSMA)

Total AAs: 750 Total 9-mers: 742

SYFPEITHI 16: 88 9-mers

NIH 5: 30 9-mers

				Į	Epitopes/AA	
	Cluster#	Aas	Epitopes (by rank)	Cluster	Whole Pr	Ratio
SYFPEITH	1	3 to 12	32, 6	0.200	0.117	1.705
	2	13-45	13, 12, 88, 31, 2, 87, 25, 86	0.242	0.117	2.066
	3	57-69	9, 47	0.154	0.117	1.311
	4	100-138	84, 83, 15, 24, 67, 8	0.154	0.117	1.311
	5	193-208	40, 30	0.111	0.117	0.947
	6	217-227	82, 14, 39	0.273	0.117	2.324
	7	247-268	81, 45, 80, 11	0.182	0.117	1.550
	8	278-297	79, 64, 23, 63, 78	0.250	0.117	2.131
	9	354-381	5, 59, 22, 77, 43, 76, 75	0.250	0.117	2.131
	10	385-405	74, 38, 58, 57	0.190	0.117	1.623
	11	440-450	73, 56, 55	0.273	0.117	2.324
	12	454-481	20, 72, 29, 1, 42, 28	0.214	0.117	1.826
	13	507-523	17, 71	0.118	0.117	1.003
	14	547-562	37, 36, 35	0.188	0.117	1.598
	15	568-591	27, 53, 34, 33	0.167	0.117	1.420
	16	603-614	13, 26	0.167	0.117	1.420
	17	631-650	70, 69, 52	0.150	0.117_	1.278
	18	660-681	18, 7, 17, 51 <u>,</u> 50	0.227	0.117	1.937
	19	700-719	41, 10, 4	0.150	0.117	1.278
	20	731-749	16, 49, 68, 3	0.211	0.117	1.794
NIH	1	3 to 12	25, 3	0.200	0.040	5.000
	2	20-43	15, 5, 4, 11, 10	0.208	0.040	5.208
	3*	415-435	18, 13	0.095	0.040	2.381
	4	663-676	1, 6	0.143	0.040	3.571
	5	700-715	30, 7, 3	0.188	0.040	4.688
	6	726-749	27, 9, 26, 24	0.167	0.040	4.167

^{*}Nearby but not overlapping epitopes

Table 43
BIMAS-NIH/Parker algorithm Results for PSA

Rank	Start	Score
1	7	607
2	170	243
3	52	124
4	53	112
5	195	101
6	165	23
7	72	18
8	245	18
9	2	16
10	59	16
11	122	15
12	125	15
13	191	13
14	9	8
15	14	6
16	175	5
17	130	5

Table 44
SYFPEITHI (Rammensee algorithm) Results for PSA

Rank	Start	Score
1	72	26
2	170	22
3	53	22
4	7	22
5	234	21
6	166	21
7	140	21
8	66	21
9	241	20
10	175	20
11	12	20
12	41	19
13	20	19
14	14	19
15	130	18
16	124	18
17	121	18
18	47	18
19	17	18
20	218	17
21	133	17
22	125	17
23	122	17
24	118	17
25	110	17
26	67	17
27	52	17
28	21	17
29	16	17
30	2	17
31	184	16
32	179	16
33	158	16
34	79	16
35	73	16
36	4	16

Table 45

Prediction of clusters for prostate specific antigen (PSA)

Total AAs: 261 Total 9-mers: 253

SYFPEITHI 16: 36 9-mers

NIH 5: 17 9-mers

	_			ı	Epitopes/AA	
	Cluster#	<u>AAs</u>	Epitopes (by rank)	Cluster	Whole Pr	Ratio
SYFPEITHI	1	2 to 29	30, 36, 4, 11, 14, 29, 19, 13, 28	0.321	0.138	2.330
	2	41-61	12, 18, 27, 3	0.190	0.138	1.381
	3	66-87	8, 26, 1, 35, 34	0.227	0.138	1.648
	4	110-148	25, 24, 17, 23, 16, 22, 15, 21, 7	0.184	0.138	1.332
	5	158-192	33, 6, 2, 10, 32, 31	0.171	0.138	1.243
	6	234-249	5, 9	0.125	0.138	0.906
	7*	118-133	24, 17, 23, 16, 22	0.313	0.138	2.266
	8*	118-138	24, 17, 23, 16, 22, 15	0.286	0.138	2.071
NIH	1	2-22	9, 1, 14, 15	0.190	0.065	2.924
	2	52-67	3, 4, 10	0.188	0.065	2.879
	3	122-138	11, 12, 17	0.176	0.065	2.709
	4	165-183	6, 2, 16	0.158	0.065	2.424
	5	191-203	13, 5	0.154	0.065	2.362
tTI .	6**	52-80	3, 4, 10, 7	0.138	0.065	2.118

^{*}These clusters are internal to the less preferred cluster #4.

^{**}Includes a nearby but not overlapping epitope.

Table 46
BIMAS-NIH/Parker algorithm Results for PSCA

Rank	Start	Score
1	43	153
2	5	84
3	7	79
4	109	36
5	105	1 8 5 24
6	108	24
7	14	21
8	20	18
9	115	17 155
10	42	135
11	36	15
12	99	9
13	58	88

20

25

Table 47
SYFPEITHI (Rammensee algorithm) Results for PSCA

Rank	Start	Score	Rank	Start	Score
1	108	30	17	54	19
2	14	30	18	12	19
3	105	29	19	4	19
4	5	28	20	1	19
5	115	26	21	112	18
6	99	26	22	101	18
7	7	26	23	98	18
8	109	24	24	51	18
9	53	23	25	43	18
10	107	21	26	106	17
11	20 .	21	27	104	17
12	8	21	28	83	17
13	13	20	29	63	17
14	102	19	30	50	17
15	60	19	31	3	17
16	57	19	32	9	16
			33	92	_16

Table 48

Prediction of clusters for prostate stem cell antigen (PSCA)

Total AAs: 123 Total 9-mers: 115 SYFPEITHI 16: 33; SYFPEITHI 20: 13

NIH 5: 13

				Epitopes/AA			
	Cluster #	AAs	Epitopes (by rank)	Cluster	Whole Pr.	Ratio	
SYFPEITHI >16	1	1 to 28	20, 31, 19, 4, 7, 12, 33, 18, 13, 2, 11	0.393	0.268	1.464	
	2	43-71	25, 30, 24, 9, 17, 16, 15, 29	0.276	0.268	1.028	
	3	92-123	32, 23, 6, 27, 14, 22, 3, 26, 10, 1, 8, 21, 5	0.406	0.268	1.514	
SYFPEITHI >20	1	5 to 28	4, 7, 12, 13, 2, 11	0.250	0.106	2.365	
	2	99-123	6, 3, 10, 1, 8, 5	0.240	0.106	2.271	
NIH	1	5 to 28	2, 3, 7, 8	0.167	0.106	1.577	
	2	36-51	11, 10, 1	0.188	0.106	1.774	
	3	99-123	12, 5, 6, 4, 9	0.200	0.106	1.892	
<u> </u>	4*	105-116	5, 6, 4	0.250	0.106	2.365	

[&]quot;This cluster is internal to the less preferred cluster #5.

In tables 49-60 epitope prediction and cluster analysis data for each algorithm are presented together in a single table.

5 **Table 49**

Prediction of clusters for MAGE-1 (NIH algorithm)

Total AAs: 309 Total 9-mers: 301 NIH 5:19 9-mers

Cluster#	AAs	Epitope	Start	NIH		Epitopes/AA	\
		Rank	Position	Score	Cluster	Whole Pr.	Ratio
1	18-32	16	18	9	0.133	0.063	2.112
		19	24	7			
2	101-113	14	101	11	0.154	0.063	2.442
		7	105	44			
3	146-159	9	146	32	0.143	0.063	2.263
		3_	151	169			
4	169-202	10	169	32	0.176	0.063	2.796
		13	174	16			
		18	181	8			
		17	187	8			
		6	188	74			
		5	194	110			
5	264-277	2	264	190	0.143	0.063	2.263
···		12	269	20			
6 .	278-290	1	278	743	0.154	0.063	2.437

28 282 11

Table 50

Prediction of clusters for MAGE-1 (SYFPEITHI algorithm)

Total AAs: 309 Total 9-mers: 301 SYFPEITHI 16: 46 9-mers

Cluster #	Aas	Epitope	Start	SYFPEITHI		itopes/A/	Δ
		Rank	Position	Score	Cluster	Whole	Ratio
1	7-49	22	7	19	0.233	0Pl53	1.522
		9	15	22			
		27	18	18			
		16	20	20			
		28	22	18			
		29	24	18			
•		33	31	17			
		30	35	18			
		2	38	26			
		17	41	20			
2	89-132	10	89	22	0.273	0.153	1.783
		18	92	20			,
		7	93	23			
		23	96	19			
		43	98	16			
		4	101	25	•		
		8	105	23			
		34	107	17			
		35	108	17			
		36	113	17			
		37	118	17			
		19	124	20			
3	167-203	44	167	16	0.270	0.153	1.766
		20	169	20			
		12	174	21			
		24	181	19			
		6	187	24			
		31	188	18	•		
		25	191	19			
		38	192	17			
		1	194	27			
		13	195	21			
4	230-246	14	230	21	0.118	0.153	0.769
		39	238	17			
5	264-297	15	264	21	0.235	0.153	1.538
		32	269	18			
ļ		40	270	17	•		
		26	271	19			
		46	275	16			
)		3	278	26			
ł		21	282	20			
ļ		41	289	17			

Table 51

Prediction of clusters for MAGE-2 (NIH algorithm)

Total AAs: 314 Total 9-mers: 308 NIH >= 5: 20 9-mers

Cluster#	AAs	Epitope	Start	NIH		Epitope/AA	
		Rank	Position	Score	Cluster	Whole Pr.	Ratio
1	101-120	18	101	5.373	0.150	0.065	2.310
		16	108	6.756			
		1	112	2800.697			
2	153-167	8	153	31.883	0.200	0.065	3.080
		4	158	168.552			
		7	159	32.138			
3	169-211	14	169	8.535	0.209	0.065	3.223
		19	174	5.346			
		6	176	49.993			
		11	181	15.701			
		15	188	7.536			
		12	195	12.809			
		5	200	88.783			
		10	201	16.725			
		17	203	5.609			
4	271-284	3	271	398.324	0.143	0.065	2.200
		9	276	19.658			

Table 52
Prediction of clusters for MAGE-2 (SYFPEITHI algorithm)

Total AAs: 314 Total 9-mers: 308

SYFPEITHI 16: 52 9-mers

Cluster#	AAs	Epitope Rank	Start Position	SYFPEITHI Score	Cluster	Epitopes/AA Whole Pr.	Ratio
1	15-32	13 29 43	15 18 20	21 18 16	0.278	0.169	1.645
•		30 21	22 24	18 19			
2	37-56	31	37	18	0.250	0.169	1.481
		16 44	40 44	20 16			
		14	45	21			
3	96-133	<u>22</u> 36	<u>48</u> 96	19 17	0.211	0.169	1.247
v	00 100	46 6	101	16			
		6 47	108 109	25 16			
		2 37	112	27			
		37 38	120 125	17 17			
		17	131	20	2011	0.400	0.000
4	153-216	12 39	153 158	22 17	0.344	0.169	2.036
		7	159	25			
		23 24	161 162	19 19			
		24 48	164	16			
		49 32	167 170	16 18			
		52 50	171	16			
		4	174	26 24			
		9 51	176 1 77	2 4 16			
		15	181	21			
		15 25 18 33	188 194	19 20			
		33	195	18			
		19 3	198 200	20 27			
		1	201	28			
		40	202	17			
		10 52	203 208	23 16			
5	237-254	26	237	19	0.167	0.169	0.987
		27 34	245 246	19 18			
6	271-299	8 35	271	25	0.241	0.169	1.430
		35 41	276 277	18 17			
		11	278	23			
		28 20	283 285	19 20			
		42	<u>203</u>	17		 	

Table 53

Prediction of clusters for MAGE-3 (NIH algorithm)

Total AAs: 314 Total 9-mers: 308 NIH 5: 22 9-mers

Cluster#	AAs	Epitope	Start	NIH		Epitopes/AA	
		Rank	Position	Score	Cluster	Whole Pr.	Ratio
1	101-120	15	101	11.002	0.200	0.071	2.800
1 .		21	105	6.488			
ļ		8	108	49.134			
		2	112	339.313			
2	153-167	18	153	7.776	0.200	0.071	2.800
		6	158	51.77			
L		22	159	5.599			
3	174-209	17	174	8.832	0.194	0.071	2.722
[7	176	49.993			
j		13	181	15.701			
		19	188	7.536			
		14	195	12.809			
ł		5	200	88.783			
		12	201	16.725			
4	237-251	16	237	10.868	0.200	0.071	2.800
		4	238	148.896			
		20	243	6.88			
5	271-284	1	271	2655.495	0.143	0.071	2.000
<u></u>		11	276	19.658			

Table 54
Prediction of clusters for MAGE-3 (SYFPEITHI algorithm)

Total AAs: 314 Total 9-mers: 308

SYFPEITHI 16: 47 9-mers

Cluster#	AAs	Epitope Rank	Start Position	SYFPEITHI Score	Cluster	Epitopes/AA Whole Pr.	Ratio
1	15-32	12	15	21	0.278	0.153	1.820
		26	18	18		•	
		37	20	16			
		27	22 24	18 19			
2	38-56	<u>18</u> 38	<u>24</u> 38	19 16	0.263	0.153	1.725
2	30-30	30 15	30 40	20	0.203	0.155	1,720
		39	44	16			
		13	45	21			
_		19	48	19			
3	101-142	28	101	18	0.190	0.153	1.248
		40	105	16			
		1	108	-31			
		6	112	25			
		31	120	17			
		32 16	125 131	17 20			
		41	131	20 16			
4	153-216	20	153	19	0.313	0.153	2.048
4	100-210	29	156	18		0.100	2.0
		33	158	17			
		21	159	19			
		34	161	17			
	•	42	164	16			
		43	167	16			
		10	174	22			
		8	176	23			
		14	181	21			
		22 44	188 193	19 16			
		11	193	22			
		23	195	19			
		45	197	16			
		17	198	20			
		3	200	27			
		2	201	28	•	•	
		35	202	17			
		46	208	16	0.455	0.450	
5	220-230	5 47_	220 222	26 16	0.182	0.153	1.191
6	237-246	7 9_	237 238	25 23	0.200	0.153	1.311
7	271-293	4	271	<u>23</u> 27	0.217	0.153	1.425
'	Z1 1-Z33	30	276	. 18	0.411	0.100	1.740
		24	278	19	•		
		36	283	17			
		25	285	19	_		

Table 55

Prediction of clusters for PRAME (NIH algorithm)

Total AAs: 509 Total 9-mers: 501 NIH 5: 40 9-mers

Cluster #	AAs	Epitope	Start	NIH		Epitopes/AA	
		Rank	Position	Score	Cluster	Whole Pr.	Ratio
1	33-47	20	33	18	0.133	0.080	1.670
Ĺ		17	39	21			
2	71-81	9	71	50	0.2	0.07984	2.505
		32	73				
3	99-108	23	100	15	0.2	0.07984	2.505
		24	99	13			
4	126-135	38	126	5	0.2	0.07984	2.505
		35	127	6		_	
5	224-246	5	224	124	0.130	0.080	1.634
j		8	230	63			
		39	238	5			
6	290-303	18	290	18	0.214	0.080	2.684
<u> </u>		14	292	23			
		7	295	66			
7	305-324	28	305	10	0.200	0.080	2.505
j		30	308	8			
		25	312	13			
 		36	316	6			
8	394-409	2	394	182	0.188	0.080	2.348
1		12	397	42			
		31	401	7			
9	422-443	10	422	49	0.227	0.080	2.847
1		3	425	182			
	•	34	431	7		•	
i .		29	432	9			
		4	435	160			
10	459-487	15	459	21	0.172	0.080	2.159
		11	462	45			
		22	466	15			
Ì		40	472	5			
		37	479	6		_	

Table 56

Prediction of clusters for PRAME (SYFPEITHI algorithm)

Total AAs: 509 Total 9-mers: 501

SYFPEITHI 17: 80 9-mers

Cluster#	AAs	Epitope	Start	SYFPEITHI		Epitopes/AA	
		Rank	Position	Score	Cluster	Whole Pr.	Ratio
1	18-59	65	18	17	0.238	0.160	1.491
		50	21	18			
		66	26	17			ſ
		35	33	20			ſ
		22	34	22			
		51	37	18			
		5	39	27	•		į
!		23	40	22			
		13	44	24			
		46	51	19			
2	78-115	36	78	20	0.263	0.160	1.648
		67	80	17			
		52	84	18			
		24	86	22			
		53	91	18			
		25	93	22			
		9	99	25			
		8	100	26			
i		54	103	18			
		55	107	18			
3	191-202	56	191	18	0.167	0.160	1.044
	_	38	194	20			
4	205-215	26	205	22	0.182	0.160	1.139
		27	207	22			
5	222-238	47	222	19	0.235	0.160	1.474
		14	224	24			
		69	227	17			
		57	230	18			
6	241-273	70	241	17	0.212	0.160	1.328
]		15	248	24			
ì		71	255	17			
]		30	258	21			
ł		39	259	20			
ł		58	261	18			
		40	265	20			
7.	290-342	72	290	17	0.208	0.160	1.300
		48	293	19			
		31	298	21			
I		73	301	17			
		18	305	23			
		6	308	27			
1		10	312	25			
J		19	316	23			
		28	319	22			

Prediction of clusters for PRAME (SYFPEITHI algorithm)

Total AAs: 509 Total 9-mers: 501

SYFPEITHI 17: 80 9-mers

Cluster#	AAs	Epitope	Start	SYFPEITHI		Epitopes/AA	
		Rank	Position	Score	Cluster	Whole Pr.	Ratio
		41	326	20			
		74	334	17			
8	343-363	59	343	18	0.238	0.160	1.491
		60	348	18			
		75	351	17			
		20	353	23			
		76	355	17			
9	364-447	49	364	19	0.250	0.160	1.566
		32	371	21			
		11	372	25			
		61	375	18			
		77	382	17			
		21	390	23			
		78	391	17	•		
		1	394	30			
		42	397	20			
		62	403	18			
		33	410	21			
-		43	418	20			
		34	419	21			
		7	422	27		•	
		2	425	29			
		79	426	17			
		63	428	18			
		64	431	18			
		12	432	25			
		16	435	24			
		80	439	17			
10	455-474	29	455	22	0.200	0.160	1.253
		17	459	24			
		4	462	28			
-		3	466	29			

Table 57
Predication of clusters for CEA (NIH algorithm)

Total AAs:702 Total 9-mers: 694 NIH 5: 30 9-mers

Cluster#	AA	Peptides	Start	Score		Peptides/AAs	
1		Rank	Position		Cluster	Whole Pr.	Ratio
1	17-32	5	17	79.041	0.188	0.043	4.388
		7	18	46.873			
		20	24	12.668			
2	113-129	2	113	167.991	0.118	0.043	2.753
		15	121	21.362			
3	172-187	25	172	9.165	0.125	0.043	2.925
		14	179	27.995			
4	278-291	30	278	5.818	0.143	0.043	3.343
		17	283	19.301			
5	350-365	9	350	43.075	0.125	0.043	2.925
		12	357	27.995			
6	528-543	8	528	43.075	0.125	0.043	2.925
		13	535	27.995_			
7	631-645	23	631	9.563	0.200	0.043	4.680
		19	634	13.381			
		24	637	9.245			
8	691-702	1	691	196.407	0.167	0.043	3.900
		27	694	7.769			

Table 58
Predication of clusters for CEA (SYFPEITHI algorithm)

Total AAs:702 Total 9-mers: 694

SYFPEITHI 16: 81 9-mers

Cluster#	AA	Peptides	Start	Score		Peptides/AAs	
		Rank	Position		Cluster	Whole Pr.	Ratio
1	5-36	67	5	16	0.250	0.117	2.140
		23	12	19			
		24	16	19			
		9	17	22			
		25	18	19			
		32	19	18			
		68	23	16			
		33	28	18			
2	37-62	41	37	17	0.269	0.117	2.305
		20	44	20			
		26	45	19			
		42	46	17			
		27	50	19			
		43	53	17			
L		44	54	17			
3	99-115	14	99	21	0.235	0.117	2.014
		5	100	23			
		45	104	17			
		34	107	18			
4	116-129	69	116	16	0.143	0.117	1.223
		21	121	20			
5	172-187	46	172	17	0.125	0.117	1.070
İ		70	179	16			
6	192-202	3	192	24	0.182	0.117	1.557
		47	194	. 17			
7	226-241	48	226	17	0.188	0.117	1.605
		49	229	17			
		15	233	21			
8	307-318	11	307	22	0.250	0.117	2.140
		71	308	16			
		51	310	17			
9	319-349	52	319	17	0.129	0.117	1.105
		53	327	17			
		72	335	16			
		35	341	18			
10	370-388	12	370	22	0.211	0.117	1.802
		54	372	17			
i		74	375	16			
		6	380	23			
11	403-419		403	17	0.235	0.117	2.014
		57	404	17			

1		58	407	17			i
		28	411	19			i
12	427-442	59	427	17	0.188	0.117	1.605
		75	432	16			ļ
ŀ		76	434	16			
13	450-462	77	450	16	0.154	0.117	1.317
		13	454	22			
14	488-505	36	488	18	0.167	0.117	1.427
		18	492	21			
1		60	497	17			
15	548-558	4	548	24	0.182	0.117	1.557
İ		61	_550	17			
16	565-577	62	565	17	0.154	0.117	1.317
		19	569	21		·	
17	579-597	78	579	16	0.143	0.117	1.223
		79	582	16			
1	_	7	589	23			
18	605-618	2	605	25	0.143	0.117	1.223
<u> </u>		38	610	18			
19	631-669	29	631	19	0.154	0.117	1.317
)		63	637	17			
ł		80	644	16			
1		64	652	17			
		39	660	18			
		81	661	16			
20	675-702	22 .	675	20	0.286	0.117	2.446
		30	683	19			
		31	687	19			
1		40	688	18			
1		65	690	17		•	
		1	691	31			
		66	692	17			
<u></u>		8	694	23			

Table 59
Predication of clusters for SCP-1 (NIH algorithm)

Total AAs: 976 Total 9-mers: 968 NIH 5: 37 9-mers

Cluster #	AA	Peptides	Start	Score		Peptides/AAs	
		Rank	Position		Cluster	Whole Pr.	Ratio
1	101-116	15	101	40.589	0.125	0.038	3.270
		13	108	57.255			
2*	281-305	14	281	44.944	0.12	0.038	3.139
ł		24	288	15.203			
		17	297	32.857			
3	431-447	8	431	80.217	0.073	0.038	1.914
,		26	438	11.861			
<u></u>		4	439	148.896			
4	557-579	11	557	64.335	0.174	0.038	4.550
ł		19	560	24.937			
		6	564	87.586			
[18	571	32.765			
5	635-650	10	635	69.552	0.125	0.038	3.270
		34	642	6.542			
6	755-767	36	755	5.599	0.154	0.038	4.025
<u></u>		35	759	5.928			
7	838-854	2	838	284.517	0.118	0.038	3.078
		28	846	11.426			

Table 60

Predication of clusters for SCP-1

Total AAs: 976 Total 9-mers: 968

Rammensee 16: 118 9-mers

Cluster #	AA	Peptides	Start	Score		Peptides/AAs	
·		Rank_	Position		Cluster	Whole Pr.	Ratio
1	8-28	99	8	16	0.143	0.121	1.182
		7 7	15	17			
		100	20	16			
2	63-80	78	63	17	0.222	0.121	1.838
		50	66	19			
		102	69	16			
		60	72	18			
3	94-123	79	94	17	0.133	0.121	1.103
		12	101	23		•	
		17	108	22			
		103	115	16			
4	126-158	35	126	20	0.182	0.121	1.504
		36	133	20			
		51	139	19			

				47			
		80	140	17			
		61	143	18]
		37	150	20		0.404	4 744
5	161-189	38	161	20	0.207	0.121	1.711
		52	165	19			
		81	171	17	•		
		82	177	17			
		62	178	18			1
		39	181	20			
6	213-230	40	213	20	0.167	0.121	1.379
		13	220	23			
		28	222	21			
7	235-250	63	235	18	0.125	0.121	1.034
		18	242	22			
8	260-296	83	260	17	0.243	0.121	2.012
		105	262	16			\$
		84	267	17			
		106	269	16			
}		41	270	20			
1		64	271	18			
1		85	274	17			
		19	281	22			
		3	288	25			4 005
9	312-338	108	312	16	0.148	0.121	1.225
		29	319	21			
		30	323	21		•	
		65	330	18	0.005	0.404	4.040
10	339-355	66	339	18	0.235	0.121	1.946
	•	31	340	21			
		42 53	344	20			
	070 447	53	347	19	0.404	0.404	4.609
11	376-447	54	376	19	0.194	0.121	1.608
		43 44	382 386	20 20			•
ļ		20	390	22			
		55	397	19			
Ì.		6	404	24			
}		86	407	17			
		45	411	20			
,		67	417	18			
		21	425	22			
l		46	431	20			
1		68	432	18			
j		32	438	21			
		7	439	24			
12	455-488	33	455	21	0.235	0.121	1.946
		47	459	20	-		-
ł		56	462	19			
		87	463	17			
1		88	466	17			
1		14	470	23			
		109	473	16			
•							

L		34	480	21			
13	515-530	57	515	19	0.125	0.121	1.034
		22	522	22			
14	557-590	8	557	24	0.147	0.121	1.216
İ		23	564	22			
1		9	571	24			
1		90	575	17			
		58	582	19			
15	610-625	69	610	18	0.125	0.121	1.034
<u> </u>		91	617	17			-
16	633-668	92	633	17	0.222		
		10	635	24	•		
1		70	638	18			
1		93	640	17			
		48	642	20			
j		49	645	20			
}	•	111	652	16			
		_112	660	16	_	•	
17	674-685	71	674	18	0.167	0.121	1.379
		11_	677	24			
18	687-702	1	687	26	0.125	0.121	1.034
L		94	694	17			
19	744-767	113	744	16	0.250	0.121	2.068
		95	745	17			
		4	745	25			
		24	752	22			
		2	755	26			
		72	759	18			
20	812-827	97	812	17	0.125	0.121	1.034
		115	819	16			
21	838-857	116	838	16	0.150	0.121	1.241
		25	846	22	•		
		74	849	18			
22	896-913	117	896	16	0.222	0.121	1.838
		98	899	17			
		26	902	22			
L		76	905	18			

The embodiments of the invention are applicable to and contemplate variations in the sequences of the target antigens provided herein, including those disclosed in the various databases that are accessible by the world wide web. Specifically for the specific sequences disclosed herein, variation in sequences can be found by using the provided accession numbers to access information for each antigen.

TYROSINASE PROTEIN; SEQ ID NO 2

5

	1 MLLAVLYCLL WSFQTSAGHF PRACVSSKNL MEKECCPPWS GDF	RSPCGQLS
	GRGSCQNILL	~~~~~
	61 SNAPLGPQFP FTGVDDRESW PSVFYNRTCQ CSGNFMGFNC GNO	CKFGFWGP
	NCTERRLLVR	TO POMERNIE T
5	121 RNIFDLSAPE KDKFFAYLTL AKHTISSDYV IPIGTYGQMK NGS	2.I.BWENDT
	NIYDLFVWMH	OTET ITICIDENT
	181 YYVSMDALLG GSEIWRDIDF AHEAPAFLPW HRLFLLRWEQ EI	SKTIGDEN
	FTIPYWDWRD	TCHOCI CN
	241 AEKCDICTDE YMGGQHPTNP NLLSPASFFS SWQIVCSRLE EYI	NSHQSLICIN
10	GTPEGPLRRN	TIT TO COM CO
	301 PGNHDKSRTP RLPSSADVEF CLSLTQYESG SMDKAANFSF RN	THEGRADE
	LTGIADASQS	RHRPLQEV
	301 Diministration and the second sec	KUKLUĞEA
	YPEANAPIGH 421 NRESYMVPFI PLYRNGDFFI SSKDLGYDYS YLQDSDPDSF QD	VTVQVI.PO
15		TIVOIDEO
	ASRIWSWLLG	OCUT.
	481 AAMVGAVLTA LLAGLVSLLC RHKRKQLPEE KQPLLMEKED YHSLY	QSHI
20	act a promotive different No. 2	, s
20	SSX-2 PROTEIN; SEQ ID NO 3	
	1 MNGDDAFARR PTVGAQIPEK IQKAFDDIAK YFSKEEWEKM KA	SEKTEYVY
		DERTITO
	MKRKYEAMTK 61 LGFKATLPPF MCNKRAEDFQ GNDLDNDPNR GNQVERPQMT FG	RLOGISPK
05		KIQCIDI K
25	IMPKKPAEEG 121 NDSEEVPEAS GPONDGKELC PPGKPTTSEK IHERSGPKRG EH	ZWTHRTÆ
		AW THEFT
	RKQLVIYEEI	
	181 SDPEEDDE	
30	•	
30	PSMA PROTEIN; SEQ ID NO 4	
	PSMA PROTEIN, SEQ ID NO 4	•
	1 MWNLLHETDS AVATARRPRW LCAGALVLAG GFFLLGFLFG WF	'IKSSNEAT
	NITPKHNMKA	
35	61 FLDELKAENI KKFLYNFTQI PHLAGTEQNF QLAKQIQSQW KE	FGLDSVEL
55	AHYDVLLSYP	
	121 NKTHPNYISI INEDGNEIFN TSLFEPPPPG YENVSDIVPP FS	AFSPOGMP
	EGDLVYVNYA	
	181 RTEDFFKLER DMKINCSGKI VIARYGKVFR GNKVKNAQLA GA	KGVILYSD
40	PADYFAPGVK	
	241 SYPDGWNLPG GGVQRGNILN LNGAGDPLTP GYPANEYAYR RG	SIAEAVGLP
	SIPVHPIGYY	
	301 DAQKLLEKMG GSAPPDSSWR GSLKVPYNVG PGFTGNFSTQ KV	KMHIHSTN
	EVTRIYNVIG	
45	361 TLRGAVEPDR YVILGGHRDS WVFGGIDPQS GAAVVHEIVR SE	GTLKKEGW
,,,	RPRRTILFAS	
	421 WDAEEFGLLG STEWAEENSR LLQERGVAYI NADSSIEGNY TI	RVDCTPLM
	YSLVHNLTKE	
	481 LKSPDEGFEG KSLYESWTKK SPSPEFSGMP RISKLGSGND FE	EVFFQRLGI
50	ASGRARYTKN	
	541 WETNKFSGYP LYHSVYETYE LVEKFYDPMF KYHLTVAQVR GO	MVFELANS
	IVLPFDCRDY	

	601 AVVLRKYADK IYSISMKHPQ EMKTYSVSFD SLFSAVKNFT EIASKFSERL QDFDKSNPIV 661 LRMMNDQLMF LERAFIDPLG LPDRPFYRHV IYAPSSHNKY AGESFPGIYD								
5	ALFDIESKVD 721 PSKAWGEVKR QIYVAAFTVQ AAAETLSEVA								
10	Homo sapiens tyrosinase (oculocutaneous albinism IA) (TYR), mRNA.; ACCESSION NM_000372 VERSION NM_000372.1 GI:4507752 SEQ ID NO 2								
15	/translation="MLLAVLYCLLWSFQTSAGHFPRACVSSKNLMEKECCPPWSGDRS PCGQLSGRGSCQNILLSNAPLGPQFPFTGVDDRESWPSVFYNRTCQCSGNFMGFNCGN								
	CKFGFWGPNCTERRLLVRRNIFDLSAPEKDKFFAYLTLAKHTISSDYVIPIGTYGQMK								
20	NGSTPMFNDINIYDLFVWMHYYVSMDALLGGSEIWRDIDFAHEAPAFLPWHRLFLLRW								
	EQEIQKLTGDENFTIPYWDWRDAEKCDICTDEYMGGQHPTNPNLLSPASFFSSWQIVC								
25	SRLEEYNSHQSLCNGTPEGPLRRNPGNHDKSRTPRLPSSADVEFCLSLTQYESGSMDK								
	AANFSFRNTLEGFASPLTGIADASQSSMHNALHIYMNGTMSQVQGSANDPIFLLHHAF								
	VDSIFEQWLRRHRPLQEVYPEANAPIGHNRESYMVPFIPLYRNGDFFISSKDLGYDYS								
30	YLQDSDPDSFQDYIKSYLEQASRIWSWLLGAAMVGAVLTALLAGLVSLLCRHKRKQLP EEKQPLLMEKEDYHSLYQSHL"								
	SEQ ID NO 5 ORIGIN								
35	1 atcactgtag tagtagctgg aaagagaaat ctgtgactcc aattagccag ttcctgcaga								
	61 ccttgtgagg actagaggaa gaatgctcct ggctgttttg tactgcctgc tgtggagttt								
40	121 ccagacetec getggecatt tecetagage etgtgtetec tetaagaace tgatggagaa								
	181 ggaatgetgt ceacegtgga geggggaeag gagteeetgt ggeeagettt caggeagagg								
45	241 ttcctgtcag aatatccttc tgtccaatgc accacttggg cctcaatttc ccttcacagg 301 ggtggatgac cgggagtcgt ggccttccgt cttttataat aggacctgcc agtgctctgg								
	361 caacttcatg ggattcaact gtggaaactg caagtttggc ttttggggac caaactgcac								
50	421 agagagacga ctcttggtga gaagaaacat cttcgatttg agtgccccag agaaggacaa								
	481 atttttgcc tacctcactt tagcaaagca taccatcagc tcagactatg								

tcatccccat

	541 agggacctat	ggccaaatga	aaaatggatc	aacacccatg	tttaacgaca
	tcaatattta				
	601 tgacctcttt	gtctggatgc	attattatgt	gtcaatggat	gcactgcttg
	ggggatetga				
5	661 aatctggaga	gacattgatt	ttgcccatga	agcaccagct	tttctgcctt
	ggcatagact				
	721 cttcttgttg	cggtgggaac	aagaaatcca	gaagctgaca	ggagatgaaa
	acttcactat			1 1	
	781 tccatattgg	gactggcggg	atgcagaaaa	gtgtgacatt	tgcacagatg
10	agtacatggg				L L b - a b - a b
	841 aggtcagcac	cccacaaatc	ctaacttact	cageceagea	teattettet
	cctcttggca			angaantana	tatttataa
	901 gattgtctgt	ageegattgg	aggagtacaa	cagccatcag	tetttatgea
1.5	atggaacgcc	++-aaaaa+-	ataataaaaa	aastasass	taaaaaaaa
15	961 cgagggacct	ccaeggegta	accorggada	CCacgacaaa	cccagaaccc
	caaggeteee 1021 etetteaget	gatgtagaat	tttacctaaa	tttgacccaa	tatgaatgtg
	gttccatgga	gatgtagaat	cccgcccgag	ccegacocaa	cacgaacocg
	1081 taaagctgcc	aatttcagct	ttagaaatac	actggaagga	tttqctaqtc
20	cacttactgg		· · · · · · · · · · · · · · · · ·		3 3
	1141 gatagcggat	gcctctcaaa	gcagcatgca	caatgccttg	cacatctata
	tgaatggaac	J	5 5 5		
	1201 aatgtcccag	gtacagggat	ctgccaacga	tcctatcttc	cttcttcacc
	atgcatttgt		_		
25	1261 tgacagtatt	tttgagcagt	ggctccgaag	gcaccgtcct	cttcaagaag
	tttatccaga				
_	1321 agccaatgca	cccattggac	ataaccggga	atcctacatg	gttcctttta
-	taccactgta				
	1381 cagaaatggt	gatttcttta	tttcatccaa	agatctgggc	tatgactata
30	gctatctaca				
	1441 agattcagac	ccagactett	ttcaagacta	cattaagtcc	tatttggaac
	aagcgagtcg				
	1501 gatctggtca	tggeteettg	gggcggcgat	ggtagggcc	greereactg
35	ccctgctggc		~+ ~~+ ~~~	~~~~~~~	attaataa
33	1561 agggettgtg	agettgetgt	gregreacaa	gagaaagcag	cttcctgaag
	aaaagcagcc 1621 actcctcatg		attaggagag	attatataaa	agggatttat
	aaaaggctta	, yayaaayayy	accaccacag	ccigcaccag	agccatttat
	1681 ggcaatagag	r tagggccaaa	aagcctgacc	tcactctaac	tcaaagtaat
40	gtccaggttc	,	aaguugau		oouuug ouu o
-	1741 ccagagaata	tctgctggta	tttttctqta	aagaccattt	gcaaaattgt
	aacctaatac	3 33	J	3	3
	1801 aaagtgtago	cttcttccaa	ctcaggtaga	acacacctgt	ctttgtcttg
	ctgttttcac			J	_
45	1861 tcagcccttt	taacattttc	ccctaagccc	atatgtctaa	ggaaaggatg
	ctatttggta				
	1921 atgaggaact	gttatttgta	tgtgaattaa	agtgctctta	tttt

50

Homo sapiens synovial sarcoma, X breakpoint 2 (SSX2), mRNA. ACCESSION NM_003147

VERSION NM_003147.1 GI:10337582

	SEQ ID NO 3
_	/translation="MNGDDAFARRPTVGAQIPEKIQKAFDDIAKYFSKEEWEKMKASE
5	KIFYVYMKRKYEAMTKLGFKATLPPFMCNKRAEDFQGNDLDNDPNRGNQVERPQMTFG
	RLQGISPKIMPKKPAEEGNDSEEVPEASGPQNDGKELCPPGKPTTSEKIHERSGPKRG EHAWTHRLRERKQLVIYEEISDPEEDDE"
10	DIEM LIKTICHCIÓDA LITERIDAL GRADA
	SEQ ID NO 6
	ORIGIN
	1 ctctctttcg attcttccat actcagagta cgcacggtct gattttctct
•	ttggattctt
15	61 ccaaaatcag agtcagactg ctcccggtgc catgaacgga gacgacgcct
	ttgcaaggag
	121 acccacggtt ggtgctcaaa taccagagaa gatccaaaag gccttcgatg
	atattgccaa
20	181 atacttctct aaggaagagt gggaaaagat gaaagcctcg gagaaaatct
20	tctatgtgta
	241 tatgaagaga aagtatgagg ctatgactaa actaggtttc aaggccaccc
	teceacettt
	301 catgtgtaat aaacgggccg aagacttcca ggggaatgat ttggataatg
25	accetaaceg
20	361 tgggaatcag gttgaacgtc ctcagatgac tttcggcagg ctccagggaa tctcccgaa
	421 gatcatgccc aagaagccag cagaggaagg aaatgattcg gaggaagtgc
	cagaagcatc
	481 tggcccacaa aatgatggga aagagctgtg ccccccggga aaaccaacta
30	cctctgagaa
	541 gattcacgag agatctggac ccaaaagggg ggaacatgcc tggacccaca
	gactgcgtga
	601 gagaaaacag ctggtgattt atgaagagat cagcgaccct gaggaagatg
	acgagtaact
35	661 cccctcaggg atacgacaca tgcccatgat gagaagcaga acgtggtgac
	ctttcacgaa
	721 catgggcatg gctgcggacc cctcgtcatc aggtgcatag caagtg
40	
40	Home continue falaba budualana (annul 100 100 100 100 100 100 100 100 100 10
	Homo sapiens folate hydrolase (prostate-specific membrane antigen)
	1 (FOLH1), mRNA. ACCESSION NM 004476
	VERSION NM_004476 VERSION NM_004476.1 GI:4758397
45	VERDION NI004470.1 GI:4758397
,	/translation="MWNLLHETDSAVATARRPRWLCAGALVLAGGFFLLGFLFGWFIK
	CIGHDIGOTONADDINITODAVATAKKI KADCAGADV DAGGI I DDGI DI GWI IK
	SSNEATNITPKHNMKAFLDELKAENIKKFLYNFTQIPHLAGTEQNFQLAKQIQSQWKE
50	FGLDSVELAHYDVLLSYPNKTHPNYISIINEDGNEIFNTSLFEPPPPGYENVSDIVPP
	EGA EGDOGMDEGDI VAGABAN DEED DAWN DANNA DA
	FSAFSPQGMPEGDLVYVNYARTEDFFKLERDMKINCSGKIVIARYGKVFRGNKVKNAQ

	LAGAKGVILYSDPADYFAPGVKSYPDGWNLPGGGVQRGNILNLNGAGDPLTPGYPANE									
5	YAYRRGIAEAVGLPSIPVHPIGYYDAQKLLEKMGGSAPPDSSWRGSLKVPYNVGPGFT									
3	GNFSTQKVKMHIHSTNEVTRIYNVIGTLRGAVEPDRYVILGGHRDSWVFGGIDPQSGA									
	AVVHEIVRSFGTLKKEGWRPRRTILFASWDAEEFGLLGSTEWAEENSRLLQERGVAYI									
10	NADSSIEGNYTLRVDCTPLMYSLVHNLTKELKSPDEGFEGKSLYESWTKKSPSPEFSG									
	MPRISKLGSGNDFEVFFQRLGIASGRARYTKNWETNKFSGYPLYHSVYETYELVEKFY									
15	DPMFKYHLTVAQVRGGMVFELANSIVLPFDCRDYAVVLRKYADKIYSISMKHPQEMKT									
	YSVSFDSLFSAVKNFTEIASKFSERLQDFDKSNPIVLRMMNDQLMFLERAFIDPLGLP									
20	DRPFYRHVIYAPSSHNKYAGESFPGIYDALFDIESKVDPSKAWGEVKRQIYVAAFTVQ AAAETLSEVA"									
20	SEO ID NO 7									
	SEQ ID NO 7 ORIGIN									
	1 ctcaaaaggg gccggattte cttctcctgg aggcagatgt tgcctctctc									
	totogotogg									
25	61 attggttcag tgcactctag aaacactgct gtggtggaga aactggaccc									
	caggtotgga									
	121 gcgaattcca gcctgcaggg ctgataagcg aggcattagt gagattgaga									
	gagactttac 181 cccgccgtgg tggttggagg gcgcgcagta gagcagcagc acaggcgcgg									
30	gtcccgggag									
	241 gccggctctg ctcgcgccga gatgtggaat ctccttcacg aaaccgactc									
	ggctgtggcc									
	301 accgegege geegegetg getgtgeget ggggegetgg tgetggeggg									
35	tggettettt 361 etectegget teetettegg gtggtttata aaateeteea atgaagetae									
33	taacattact									
	421 ccaaagcata atatgaaagc atttttggat gaattgaaag ctgagaacat									
	caagaagttc									
40	481 ttatataatt ttacacagat accacattta gcaggaacag aacaaaactt									
40	tcagcttgca 541 aagcaaattc aatcccagtg gaaagaattt ggcctggatt ctgttgagct									
	agcacattat									
	601 gatgtcctgt tgtcctaccc aaataagact catcccaact acatctcaat									
45	aattaatgaa									
	661 gatggaaatg agattttcaa cacatcatta tttgaaccac ctcctccagg									
	atatgaaaat									
	721 gtttcggata ttgtaccacc tttcagtgct ttctctcctc aaggaatgcc agagggcgat									
	781 ctagtgtatg ttaactatgc acgaactgaa gacttcttta aattggaacg									
50	ggacatgaaa									
	841 atcaattgct ctgggaaaat tgtaattgcc agatatggga aagttttcag									
	aggaaataag									

	901 gttaaaaatg	cccagctggc	aggggccaaa	ggagtcattc	tctactccga
	ccctgctgac				
	961 tactttgctc	ctggggtgaa	gtcctatcca	gatggttgga	atcttcctgg
_	aggtggtgtc				
5	1021 cagcgtggaa	atatcctaaa	tctgaatggt	gcaggagacc	ctctcacacc
	aggttaccca				
	1081 gcaaatgaat	atgcttatag	gcgtggaatt	gcagaggctg	ttggtcttcc
	aagtattcct				
10	1141 gttcatccaa	ttggatacta	tgatgcacag	aagctcctag	aaaaaatggg
10	tggctcagca				
	1201 ccaccagata	gcagctggag	aggaagtctc	aaagtgccct	acaatgttgg
	acctggcttt				
	1261 actggaaact	tttctacaca	aaaagtcaag	atgcacatcc	actctaccaa
	tgaagtgaca				
15	1321 agaatttaca	atgtgatagg	tactctcaga	ggagcagtgg	aaccagacag
	atatgtcatt				
	1381 ctgggaggtc	accgggactc	atgggtgttt	ggtggtattg	accctcagag
	tggagcagct				
20	1441 gttgttcatg	aaattgtgag	gagetttgga	acactgaaaa	aggaagggtg
20	gagacctaga	h 1 - 1 - 1			
	1501 agaacaattt	tgtttgcaag	ctgggatgca	gaagaatttg	grerrerrgg
	ttctactgag			~~~~	
	1561 tgggcagagg	agaattcaag	actocitoaa	gagegegeg	tggcttatat
25	taatgctgac	2266222642	anatatanan	attanttata	anaggatant
23	1621 tcatctatag	aayyaaacta	caccetgaga	gilgaligia	Caccyctgat
	gtacagettg	taagaaaaga	aataaaaaaa	aataataaaa	aatttaaaaa
	1681 gtacacaacc caaatctctt	caacaaaaga	gctgaaaagc	cccyacyaay	gccccgaagg
	1741 tatgaaagtt	ccactaaaaa	aagtggttgg	ccacacttca	atagastaca
30	caggataagc	ggactaaaaa	aageceeeee	ccagagecca	graggeargee
50	1801 aaattgggat	ctogaaatga	ttttgaggtg	ttcttccaac	gacttggaat
	tgcttcaggc	0099444094	22253255	cccccaac	gacceggaac
	1861 agagcacggt	atactaaaaa	ttgggaaaca	aacaaattca	geggetatee
	actgtatcac		999		
35	1921 agtgtctatg	aaacatatga	gttggtggaa	aagttttatg	atccaatgtt
	taaatatcac	J	333-33		
	1981 ctcactgtgg	cccaggttcg	aggaggatg	gtgtttgagc	tagccaattc
	catagtgctc	33 3	33 333 3	33 33	J
	2041 ccttttgatt	gtcgagatta	tgctgtagtt	ttaagaaagt	atqctqacaa
40	aatctacagt			• •	3 3
	2101 atttctatga	aacatccaca	ggaaatgaag	acatacagtg	tatcatttga
	ttcacttttt				•
	2161 tctgcagtaa	agaattttac	agaaattgct	tccaagttca	gtgagagact
	ccaggacttt				
45	2221 gacaaaagca	acccaatagt	attaagaatg	atgaatgatc	aactcatgtt
	tctggaaaga				
	2281 gcatttattg	atccattagg	gttaccagac	aggccttttt	ataggcatgt
	catctatgct				
	2341 ccaagcagcc	acaacaagta	tgcaggggag	tcattcccag	gaatttatga
50	tgetetgttt				
	2401 gatattgaaa	gcaaagtgga	cccttccaag	gcctggggag	aagtgaagag
	acacatttat				

2461 gttgcagcct tcacagtgca ggcagctgca gagactttga gtgaagtagcctaagaggat

2521 tetttagaga atcegtattg aatttgtgtg gtatgteact cagaaagaat

2581 atattgataa attttaaaat tggtatattt gaaataaagt tgaatattat atataaaaaa

2641 aaaaaaaaaa aaa

10

Human melanocyte-specific (pmel 17) gene, exons 2-5, and complete

ACCESSION U20093

VERSION U20093.1 GI:1142634

15 SEQ ID NO 70

5

20

25

/translation="MDLVLKRCLLHLAVIGALLAVGATKVPRNQDWLGVSRQLRTKAWNRQLYPEW TEAQRLDCWRGGQVSLKVSNDGPTLIGANASFSIALNFPGSQKVLPDGQVIWVNNTIINGSQVWGG QPVYPQETDDACIFPDGGPCPSGSWSQKRSFVYVWKTWGQYWQVLGGPVSGLSIGTGRAMLGTHTM EVTVYHRRGSRSYVPLAHSSSAFTITDQVPFSVSVSQLRALDGGNKHFLRNQPLTFALQLHDPSGY LAEADLSYTWDFGDSSGTLISRAPVVTHTYLEPGPVTAQVVLQAAIPLTSCGSSPVPGTTDGHRPT AEAPNTTAGQVPTTEVVGTTPGQAPTAEPSGTTSVQVPTTEVISTAPVQMPTAESTGMTPEKVPVS EVMGTTLAEMSTPEATGMTPAEVSIVVLSGTTAAQVTTTEWVETTARELPIPEPEGPDASSIMSTE SITGSLGPLLDGTATLRLVKRQVPLDCVLYRYGSFSVTLDIVQGIESAEILQAVPSGEGDAFELTV SCQGGLPKEACMEISSPGCQPPAQRLCQPVLPSPACQLVLHQILKGGSGTYCLNVSLADTNSLAVV STQLIMPGQEAGLGQVPLIVGILLVLMAVVLASLIYRRRLMKQDFSVPQLPHSSSHWLRLPRIFCS CPIGENSPLLSGQQV"

SEQ ID NO 80

30 ORIGIN

1 gtgctaaaaa gatgccttct tcatttggct gtgataggtg ctttgtggct gtgggggcta 61 caaaagtacc cagaaaccag gactggcttg gtgtctcaag gcaactcaga accaaagcct 35 121 ggaacaggca gctgtatcca gagtggacag aagcccagag acttgactgc tqqaqaqqtq 181 gtcaagtgtc cctcaaggtc agtaatgatg ggcctacact gattggtgca aatqcctcct 241 tetetattge ettgaactte eetggaagee aaaaggtatt geeagatggg 40 caggttatct 301 gggtcaacaa taccatcatc aatgggagcc aggtgtgggg aggacagcca gtgtatcccc 361 aggaaactga cgatgcctgc atcttccctg atggtggacc ttgcccatct ggctcttggt 45 421 ctcagaagag aagctttgtt tatgtctgga agacctgggg tgagggactc ccttctcaqc 481 ctatcatcca cacttgtgtt tacttctttc tacctgatca cctttctttt ggccgcccct 541 tecaeettaa ettetgtgat tttetetaat etteatttte etettagate 50 ttttctcttt 601 cttagcacct agececette aagetetate ataattettt etggeaacte ttggcctcaa

					rci/	0302/11101
	661 ccatatcac	ttgtagtcct a	accccatgga	atgcctcatt	aggacccctt	ccctgtcccc
	721 agtgeegtt	gccttccaaa t	caccctcaga	agtaatcata	cttcctgacc	tcccatctcc
5		cgaagcctgt	ccctcagtcc	cctttgacca	gtaatctctt	cttccttgct
		aaaatgcttc	aggccaatac	: tggcaagttc	tagggggccc	agtgtctggg
10		ggacaggcag	ggcaatgctg	ggcacacaca	ccatggaagt	gactgtctac
		gatcccggag	ctatgtgcct	cttgctcatt	ccagctcagc	cttcaccatt
	1021 tggatggac	gttcaggaag t	ggcaaggcca	gttgtagggc	aaagagaagg	cagggaggct
15	1081 aagacctag	gcaaaggaga g	aaggtgaaat	gctgtgcaaa	cttaaagtag	aagggccagg
	1141 agttggagg	cagagaaatg g	tgaggcttag	tgccagtgaa	gggccagcca	gtcagcttgg
20	1201 tggctccaa	tgtggctgtg t	aaaggagaag	ctgtggctca	ggcctggttc	tcaccttttc
	1261 atggagggaa	cccagaccag	gtgcctttct	ccgtgagcgt	gtcccagttg	cgggccttgg
25	1321 accccagtgg	3			ctttgccctc	
	grggaaccct	-			ctgggacttt	
	Leadigeee				ttacctggag	
30	cccaggead	;			ctcctgtggc	
•	aagtgcctac	;			ccctaacacc	
35	ceggaaccac	•			ggcgccaact	
33	egecaactge	•			aagcactgca	
	Jourocacaca				gccagtttca	
40	oud ciguege				tatgacacct	
	oudugetug			•	aactacagag	
45	oudoggaaag				agatgccagc	
4 3	- JJ - Juagug				tggtacagcc	
	Judggacae				atatggttcc	
50	222324626				gcaggctgtg	
	tggagatctc	accegagetg	actgtgtcct	gccaaggcgg	gctgcccaag	gaagcctgca

		atcgccaggg	tgccagcccc	ctgcccagcg	gctgtgccag	cctgtgctac
		ctgccagctg	gttctgcacc	agatactgaa	gggtggctcg	gggacatact
5		gtetetgget	gataccaaca	gcctggcagt	ggtcagcacc	cagcttatca
		gtccttggac	agagactaag	tgaggaggga .	agtggataga	ggggacagct
		agacatgagt	gaagcagtgc	ctgggattct	tctcacaggt	caagaagcag
10		ggttccgctg	atcgtgggca	tcttgctggt	gttgatggct	gtggtccttg
	catctctgat 2581	atataggcgc	agacttatga	agcaagactt	ctccgtaccc	cagttgccac
15	atagcagcag 2641	tcactggctg	cgtctacccc	gcatcttctg	ctcttgtccc	attggtgaga
	atagccccct 2701	cctcagtggg	cagcaggtct	gagtactctc	atatgatgct	gtgattttcc
	tggagttgac 2761	agaaacacct	atatttcccc	cagtettece	tgggagacta	ctattaactg
20	aaataaa //					
25	Homo sapie mRNA. ACCESSION VERSION SEQ ID NO	NM_001648 NM_00	ein 3, (pr 1648.1 GI:4		ific antige	n) (KLK3),
30	RGRAVCGGVL LRPGDDSSHD HVISNDVCAQ	VHPQWVLTAAH(LMLLRLSEPAEI VHPQKVTKFML(CIRNKSVILLGR LTDAVKVMDLPT	HSLFHPEDTGQ QEPALGTTCYA	CEKHSQPWQVLV VFQVSHSFPHPL SGWGSIEPEEFL GVLQGITSWGSE	YDMSLLKNRF TPKKLQCVDL
35	YTKVVHYRKW					
	SEQ ID NO ORIGIN	86				
	1 teceggttgt		ttaccacctg	cacccggaga	gctgtgtgtc	accatgtggg
40	61 ctcggattgt		ctgtccgtga	cgtggattgg.	tgctgcaccc	ctcatcctgt
	7.01					
	cctctcgtgg		gagtgcgaga	agcattccca	accctggcag	gtgcttgtgg
45	cctctcgtgg 181	cagggcagtc			accetggeag cccccagtgg	
45	cctctcgtgg 181 ctgcccactg 241	cagggcagtc	tgcggcggtg	ttctggtgca		gtcctcacag
45	cctctcgtgg 181 ctgcccactg 241 ctgaagacac	cagggcagtc catcaggaac aggccaggta	tgcggcggtg aaaagcgtga	ttctggtgca tcttgctggg	cccccagtgg	gtcctcacag

```
421 gtcagagcct gccgagctca cggatgctgt gaaggtcatg gacctgccca
         cccaggagcc
              481 agcactgggg accacctgct acgcctcagg ctggggcagc attgaaccag
         aggagttctt
  5
              541 gaccccaaag aaacttcagt gtgtggacct ccatgttatt tccaatgacg
         tgtgtgcgca
              601 agttcaccct cagaaggtga ccaagttcat gctgtgtgct ggacgctgga
        cagggggcaa
              661 aagcacctge tegggtgatt etgggggeee acttgtetgt aatggtgtge
 10
        ttcaaggtat
              721 cacgtcatgg ggcagtgaac catgtgccct gcccgaaagg ccttccctgt
        acaccaaggt
              781 ggtgcattac cggaagtgga tcaaggacac catcgtggcc aacccctgag
        cacccctatc
 15
              841 aaccccctat tgtagtaaac ttggaacctt ggaaatgacc aggccaagac
        tcaagcctcc
              901 ccagttctac tgacctttgt ccttaggtgt gaggtccagg gttgctagga
        aaagaaatca
              961 gcagacacag gtgtagacca gagtgtttct taaatggtgt aattttgtcc
 20
             1021 ctggggaata ctggccatgc ctggagacat atcactcaat ttctctgagg
        acacagatag
             1081 gatggggtgt ctgtgttatt tgtggggtac agagatgaaa gaggggtggg
        atccacactq
25
             1141 agagagtgga gagtgacatg tgctggacac tgtccatgaa gcactgagca
        gaagctggag
             1201 gcacaacgca ccagacactc acagcaagga tggagctgaa aacataaccc
        actctgtcct
             1261 ggaggcactg ggaagcctag agaaggctgt gagccaagga gggagggtct
30
        tcctttggca
             1321 tgggatgggg atgaagtaag gagagggact ggaccccctg gaagctgatt
        cactatgggg
            1381 ggaggtgtat tgaagtcctc cagacaaccc tcagatttga tgatttccta
        gtagaactca
35
            1441 cagaaataaa gagctgttat actgtg
        //
       Human autoimmunogenic cancer/testis antigen NY-ESO-1 mRNA,
40
       complete cds.
       ACCESSION
                   U87459
       VERSION
                       U87459.1 GI:1890098
       SEQ ID NO 74
45
                  /translation="MQAEGRGTGGSTGDADGPGGPGIPDGPGGNAGGPGEAG
                  {\tt ATGGRGPRGAGAARASGPGGGAPRGPHGGAASGLNGCCRCGARGPESRLLEF}
                  YLAMPFATPMEAELARRSLAQDAPPLPVPGVLLKEFTVSGNILTIRLTAADH
                  RQLQLSISSCLQQLSLLMWITQCFLPVFLAQPPSGQRR"
50
```

SEQ ID NO 84

ORIGIN

```
1 atcctcgtqq qccctgacct tctctctgag agccgggcag aggctccgga
      gccatgcagg
             61 ccgaaggccg gggcacaggg ggttcgacgg gcgatgctga tggcccagga
      gqccctggca
            121 ttcctgatgg cccagggggc aatgctggcg gcccaggaga ggcgggtgcc
5
       acgggcggca
            181 gaggtecceg gggegeaggg geageaaggg ceteggggee gggaggagge
       gccccgcggg
            241 qtccqcatqq cggcgcqgct tcagggctga atggatgctg cagatgcggg
10
       gccagggggc
            301 cggagagccg cctgcttgag ttctacctcg ccatgccttt cgcgacaccc
       atggaagcag
            361 agetggeeeg caggageetg geeeaggatg ceceaeeget teeegtgeea
       ggggtgcttc
             421 tgaaggagtt cactgtgtcc ggcaacatac tgactatccg actgactgct
15
       gcagaccacc
             481 gccaactgca gctctccatc agctcctgtc tccagcagct ttccctgttg
       atgtggatca
             541 cgcagtgctt tctgcccgtg tttttggctc agcctccctc agggcagagg
20
       cqctaaqccc
             601 agcctggcgc cccttcctag gtcatgcctc ctcccctagg gaatggtccc
       agcacgagtg
             661 gccagttcat tgtgggggcc tgattgtttg tcgctggagg aggacggctt
       acatgtttgt
25
             721 ttctqtaqaa aataaaactq aqctacqaaa aa
       //
       LAGE-la protein [Homo sapiens].
       ACCESSION CAA11116
30
       PID
                       g3255959
                       CAA11116.1 GI:3255959
       VERSION
       SEQ ID NO 75
       ORIGIN
35
               1 mgaegrgtgg stgdadgpgg pgipdgpggn aggpgeagat ggrgprgaga
       arasgprgga
              61 prgphggaas addgrcpcga rrpdsrllel hitmpfsspm eaelvrrils
       rdaaplprpg
             121 avlkdftvsg nllfirltaa dhrqlqlsis sclqqlsllm witqcflpvf
40
       laqapsgqrr
             181
       11
45
       LAGE-1b protein [Homo sapiens].
       ACCESSION CAA11117
       PID
                       q3255960
       VERSION
                       CAA11117.1 GI:3255960
50
       SEQ ID NO 76
       ORIGIN
```

```
1 mqaegrgtgg stgdadgpgg pgipdgpggn aggpgeagat ggrgprgaga
        arasgprgga
               61 prgphggaas aqdgrcpcga rrpdsrllel hitmpfsspm eaelvrrils
 5
              121 avlkdftvsg nllfmsvwdq dregagrmrv vgwglgsasp egqkardlrt
       pkhkvseqrp
              181 gtpgppppeg aqgdgcrgva fnvmfsaphi
        //
10
       Human antigen (MAGE-1) gene, complete cds.
       ACCESSION
                   M77481
       VERSION
                        M77481.1 GI:416114
       SEQ ID NO 71
15
                  /translation="MSLEQRSLHCKPEEALEAQQEALGLVCVQAATSSSSPL
                  VLGTLEEVPTAGSTDPPQSPQGASAFPTTINFTRQRQPSEGSSSREEEGPST
                  SCILESLFRAVITKKVADLVGFLLLKYRAREPVTKAEMLESVIKNYKHCFPE
                  {\tt IFGKASESLOLVFGIDVKEADPTGHSYVLVTCLGLSYDGLLGDNQIMPKTGF}
20
                  LIIVLVMIAMEGGHAPEEEIWEELSVMEVYDGREHSAYGEPRKLLTQDLVQE
                  KYLEYRQVPDSDPARYEFLWGPRALAETSYVKVLEYVIKVSARVRFFFPSLR
                  EAALREEEGV"
       SEQ ID NO 81
25
       ORIGIN
               1 ggatccaggc cetgecagga aaaatataag ggccctgcgt gagaacagag
       ggggtcatcc
              61 actgcatgag agtggggatg tcacagagtc cagcccaccc tcctggtagc
       actgagaagc
30
             121 cagggctgtg cttgcggtct gcaccctgag ggcccgtgga ttcctcttcc
       tggagctcca
             181 ggaaccaggc agtgaggcct tggtctgaga cagtatcctc aggtcacaga
       gcagaggatg
             241 cacagggtgt gccagcagtg aatgtttgcc ctgaatgcac accaagggcc
35
       ccacctgcca
             301 caggacacat aggactecae agagtetgge etcacetece tactgteagt
       cctgtagaat
             361 cgacctetge tggceggetg taccetgagt acceteteac tteeteette
       aggttttcag
40
             421 gggacaggcc aacccagagg acaggattcc ctggaggcca cagaggagca
       ccaaggagaa
             481 gatctgtaag taggcetttg ttagagtete caaggtteag tteteagetg
       aggcctctca
             541 cacactecet etetececag geetgtgggt etteattgee cageteetge
45
       ccacactcct
             601 gcctgctgcc ctgacgagag tcatcatgtc tcttgagcag aggagtctgc
       actgcaagcc
             661 tgaggaagee ettgaggeee aacaagagge cetgggeetg gtgtgtgtge
       aggctgccac
50
             721 etectectee tetectetgg teetgggeae cetggaggag gtgeccaetg
       ctgggtcaac
```

	781 acttcactcg	agatectece	cagagtcctc	agggagcctc	cgcctttccc	actaccatca
		acagaggcaa	cccagtgagg	gttccagcag	ccgtgaagag	gaggggccaa
5	901 tggttggttt	tatcctggag	tccttgttcc	gagcagtaat	cactaagaag	gtggctgatt
	961 tggagagtgt	tctgctcctc	aaatatcgag	ccagggagcc	agtcacaaag	gcagaaatgc
10	1021 agtccttgca		tacaagcact	gttttcctga	gatcttcggc	aaagcctctg
	1081 atgtccttgt	gctggtcttt			agaccccacc	
	tqcccaaqac				gctgggtgat	
15	ctcctgagga				tgcaatggag	
	acaqtgccta				ggtgtatgat	
20	tggagtaccg			•	tgagttcctg	
	gggccctcgc				tgtgatcaag	
25	gagttcgctt				gagagaggag	
	tctgagcatg	Ī			tgggccagtg	
		agcagcttcc	cctgcctcgt	gtgacatgag	gcccattctt	cactctgaag
30		gtgttctcag	tagtaggttt	ctgttctatt	gggtgacttg	gagatttatc
	tttgttctct 1741 gcatccaagt	tttggaattg	ttcaaatgtt	tttttttaag	ggatggttga	atgaacttca
35		ttatgaatga	cagcagtcac	acagttctgt	gtatatagtt	taagggtaag
		tttattcaga	ttgggaaatc	cattctattt	tgtgaattgg	gataataaca
40	ctaaagaaat	:			aaaatagatg	
	ttaaagatat	:			cagtctattc	
45	tctgaataaa	ı			agaatgtaag	
43	ctttttggaa	1			ctccatgcac taagccagac	
	ccatagggto	2			gaggtggcaa	
50	aaagatgtag	J				agagtggtgg
	agtgtcaatg					

```
2341 ecctgagetg gggcattttg ggctttggga aactgcagtt cettctgggg
       gagctgattg
            2401 taatgatctt gggtggatcc
       //
5
       Human MAGE-2 gene exons 1-4, complete cds.
       ACCESSION
                  L18920
       VERSION
                   L18920.1 GI:436180
       SEQ ID NO 72
10
       /translation="MPLEORSOHCKPEEGLEARGEALGLVGAOAPATEEOOTASSSSTLVEVT
       LGEVPAADSPSPPHSPOGASSFSTTINYTLWRQSDEGSSNOEEEGPRMFPDLE
       SEFQAAISRKMVELVHFLLLKYRAREPVTKAEMLESVLRNCQDFFPVIFSKASEYLQLVFGIE
       VVEVVPISHLYILVTCLGLSYDGLLGDNQVMPKTGLLIIVLAIIAIEGDCAPEEKIWEELSML
15
       EVFEGREDSVFAHPRKLLMQDLVQENYLEYRQVPGSDPACYEFLWGPRALIETSYVKVLHHTL
       KIGGEPHISYPPLHERALREGEE"
       SEQ ID NO 82
       ORIGIN
20
               1 attectteat caaacageca ggagtgagga agaggaecet cetgagtgag
       gactgaggat
            - 61 ccaccctcac cacatagtgg gaccacagaa tccagctcag cccctcttgt
       cagccctggt
             121 acacactggc aatgatetca eccegageac acceetecee ecaatgecac
25
       ttcgggccga
             181 ctcagagtca gagacttggt ctgaggggag cagacacaat cggcagagga
             241 ggctcagtct ggcatccaag tcaggacctt gagggatgac caaaggcccc
       tcccaccccc
30
             301 aacteceeg accecaceag gatetacage etcaggatee eegteecaat
       ccctacccct
             361 acaccaacac catcttcatg cttaccccca cccccccatc cagatcccca
       tccgggcaga
             421 atceggttcc accettgccg tgaacccagg gaagtcacgg gcccggatgt
35
       gacgccactg
             481 acttgcacat tggaggtcag aggacagcga gattctcqcc ctqaqcaacq
       gcctgacgtc
             541 ggcggaggga agcaggcgca ggctccgtga ggaggcaagg taagacgccg
       agggaggact
40
             601 gaggegggee teacceeaga cagagggeee ecaataatee agegetgeet
       ctgctgccgg
             661 gcctggacca ccctgcaggg gaagacttct caggctcagt cgccaccacc
       tcaccccgcc
             721 accccccgcc gctttaaccg cagggaactc tggcgtaaga gctttgtgtg
45
       accagggcag
             781 ggctggttag aagtgctcag ggcccagact cagccaggaa tcaaggtcag
       gaccccaaga
             841 ggggactgag ggcaacccac cccctaccct cactaccaat cccatcccc
50
             901 ccaccccat ccctcaaaca ccaaccccac ccccaaaccc cattcccatc
```

tcctcccca

	961 ctccgggaat	ccaccatcct	ggcagaatcc	ggctttgccc	ctgcaatcaa	cccacggaag
			cacgcggatc	ctgacgttca	catgtacggc	taagggaggg
5	1081	gtctcgtgag	tatggccttt	gggatgcaga	ggaagggccc	aggcctcctg
	gaagacagtg 1141 gtctcaaact	gagtccttag	gggacccagc	atgccaggac	agggggccca	ctgtacccct
10	1201	gagccacctt	ttcattcagc	cgagggaatc _.	ctagggatgc	agacccactt
10	cagcaggggg 1261 aggggacctt	ttggggccca	geetgegagg	agtcaagggg	aggaagaaga	gggaggactg
		ggagtccaga	tcagtggcaa	ccttgggctg	ggggatcctg	ggcacagtgg
15	1381 gagggctggg	cccgtgctca	ttgcaccttc	agggtgacag	agagttgagg	gctgtggtct
	1441 tgcccccttc	acttcaggtc	agcagaggga	ggaatcccag	gatctgccgg	acccaaggtg
20	1501	atgaggactg	gggatacccc	cggcccagaa	agaagggatg	ccacagagtc
20	tggaagtccc 1561 ctcatttgta	ttgttcttag	ctctggggga	acctgatcag	ggatggccct	aagtgacaat
		ccacaggcag	gaggttgggg	aaccctcagg	gagataaggt	gttggtgtaa
25		tctgctcatt	tcagggggtt	gggggttgag	aaagggcagt	ccctggcagg
	1741 agccctggac	agtaacccac	aggaggccat	cataacgttc	accctagaac	caaaggggtc
30		aacgcacgtg	ggggtaacag	gatgtggccc	ctcctcactt	gtctttccag
30		gttgatgacc	ttgttttcag	aaggtgactc	aggtcaacac	aggggcccca
		agatgcagtg	gttctaggat	ctgccaagca	tccaggtgga	gagcctgagg
35		ggtacccctg	ggccagaatg	cagcaagggg	gccccataga	aatctgccct
		ttacttcaga	gaccctgggc	agggctgtca	gctgaagtcc	ctccattatc
40		tgatgtcagg	gaaggggagg	ccttggtctg	aaggggctgg	agtcaggtca
		ggtctcaggc	cctgccagga	gtggacgtga	ggaccaagcg	gactcgtcac
		tggactccaa	tgaatttgga	catctctcgt	tgtccttcgc	gggaggacct
45		ggccagatgt	gggtcccctc	atatccttct	gtaccatatc	agggatgtga
		tgagagattc	tcaagccagc	aaaagggtgg	gattaggccc	tacaaggaga
50		ccctgagtga	gcacagaggg	gaccctccac	ccaagtagag	tggggacctc
	_	gccaaccctg	ctgagacttc	tgggaatccg	tggctgtgct	tgcagtctgc
		,				

	2521 cccgtg ggccttggtc	catt cctctccca	ag gaatcaggag	g ctccaggaac	: caggcagtga
		agtg teeteaggt	c acagagcaga	a ggggacgcag	acagtgccaa
5		ggaa tgcacacca			
	JJJ04666	cacc ctccctatt			
10	5 5 5 4 6 6	gece teceaette			
	5-5-000	actg gaggagcat			
15 .	333	eagt traggerent			
	- JJuc-ou	tga gcagaggag			
	J -JJJ-wJ	ggg cctggtggg			
20	-3000	tac tctagtgga			
	3181 ctcccca	cag teeteaggga			
25	3241 gacaatc	cga tgagggctco			
.•	· J · · · · ·	cga gttccaagca			
30	J -	gta tegageeage			
	· · · · · · · · · · · · · · · · · · ·	cca ggacttcttt			
25		at cgaggtggtg			
35		ct ctcctacgat			
	-	at cgtcctggcc			
40	3661 tctgggag gtcttcgcac				
	3721 atcccagg taccggcagg				
45	3781 tgcccggc ctcattgaaa 3841 ccagctat				
	3841 ccagctat cacatttcct 3901 acccaccc				
50	3901 acccaccc gcacatgttg 3961 cagccagge catccattag				
50	4021 cttccacto				

1	W O 02/081040				rc1/U	302/11101
		ttcttagcag	tgagtttctg	ttctgttgga	tgactttgag	atttatcttt
		ggaattgttc	aaatgttcct	tttaacaaat	ggttggatga	acttcagcat
5		gaatgacagt	agtcacacat	agtgctgttt	atatagttta	ggggtaagag
	tcctgttttt 4261 gcagtggaat	tattcagatt	gggaaatcca	ttccattttg	tgagttgtca	cataataaca
10		atgtatttgc	ctatattgtg	aacgaattag	cagtaaaata	catgatacaa
10	4381 tatgtgtatg	agatagttaa	ttcttgcctt	atacctcagt	ctattatgta	aaattaaaaa
	4441 ctgttcactg	tttttgcttc	tttgagaatg	caaaagaaat	taaatctgaa	taaattcttc
15	4501 agtagtggg //	gctcatttct	ttaccattca	ctcagcatct	gctctgtgga	aggccctggt
20	Human MAGE ACCESSION VERSION SEQ ID NO	U03735 U0373	(MAGE-3) gen	e, complete	cds.	
25	VPAAESPDPP FLLLKYRARE SYDGLLGDNQ	QSPQGASSLPT PVTKAEMLGSV IMPKAGLLIIV	TMNYPLWSQSYE VGNWQYFFPVIF LAIIAREGDCAF	DSSNQEEEGPS SKASSSLQLVF PEEKIWEELSVL	PATEEQEAASSS FFPDLESEFQAA GIELMEVDPIGH EVFEGREDSILG GGPHISYPPLHE	LSRKVAELVH LYIFATCLGL DPKKLLTQHF
30	SEQ ID NO					
			tgatgtcacc	cagaccacac	cccttccccc	aatgccactt
35	cagggggtac 61 ggcggtccag	tcagagtcag	agacttggtc	tgaggggagc	agaagcaatc	tgcagaggat
		gctcagccag	gcatcaactt	caggaccctg	agggatgacc	gaaggccccg
40		cccaactccc	ccgaccccac	caggatctac	agcctcagga	cccccgtccc
		ccttgcccca	tcaccatctt	catgcttacc.	tccaccccca	tccgatcccc
	301 gtgacgccac	_	cacccctgcc	cggaacccag	ggtagtaccg	ttgccaggat
45	361 cgagcgacgg		attggaggtc	agaagaccgc	gagattctcg	ccctgagcaa
	aagacgctga				gctcggtgag	
50		gggaggactg	aggcgggcct	cacctcagac	agagggcctc	aaataatcca
50	gtgctgcctd					ggctgggtcg

	601	accccgccga	cccccgccgc	tttagccacg	gggaactctg	gggacagagc
	ttaatgtggc 661		ctaattaaaa	asaat asaaa	agazagatat	ggcaggaatc
	aaggtcagga	0499904999	ceggeeagaa	gaggccaggg	cccacgccgc	ggcaggaacc
5		ccccgagagg	gaactgaggg	cagcctaacc	accaccctca	ccaccattcc
	cgtcccccaa			•		
			cacccccatc	ccccattccc	atccccaccc	ccacccctat
	cctggcagaa					
10	caggcacgtg	reegggettt	geceetggta	tcaagtcacg	gaagctccgg	gaatggcggc
10			ttcacatcta	caactaaaaa	agggaagggg	ttcggtatcg
	cgagtatggc		o coustacea	0990044999	agggaagggg	cccggcaccg
	-		cagcgaaagg	gcccaggcct	cctggaagac	agtggagtcc
	tgaggggacc					
15			ggacaggggg	cccactgtac	ccctgtctca	aaccgaggca
	ccttttcatt			- 1		
	cccagccctg		aatcctaggg	atgeagacee	acttcagcag	ggggttgggg
			tggggaggaa	gaagaggag	gactgagggg	accttggagt
20	ccagatcagt		- 55555-555	J3-333-3	3446343333	accesgage
	1201	ggcaaccttg	ggctggggga	tgctgggcac	agtggccaaa	tgtgctctgt
	gctcattgcg					
	1261	ccttcagggt	gaccagagag	ttgagggctg	tggtctgaag	agtgggactt
25	caggtcagca 1321		tecesacata	tanaaaaaaa	2200101	
	ccctatgtgg	5455545544	cccaggacc	tgcagggccc	aaggtgtacc	cccaaggggc
			cagtggtcct	aggatctgcc	aagcatccag	gtgaagagac
	tgagggagga					
20	1441	ttgagggtac	ccctgggaca	gaatgcggac	tgggggcccc	ataaaaatct
30	gccctgctcc	h	L			-
	ttatcctagg	tgetgttaec	tcagagagcc	tgggcagggc	tgtcagctga	ggtccctcca
		atcactgatg	tcagggaagg	ggaageette	gtctgagggg	aataaaataa
	gggcagtaga	3 3	55555	3344355553	3000343939	gctgcactca
35	1621	gggaggctct	cagaccctac	taggagtgga	ggtgaggacc	aagcagtctc
	ctcacccagg					
	dacctoddaa 1001	gtacatggac	ttcaataaat	ttggacatct	ctcgttgtcc	tttccgggag
	gacctgggaa 1741	tatataacca	gatgtgggtg	agat antatt	tttctgtacc	
40	tgtgagttct	0300033000	3003033300	cccccacgcc		atatcaggta
	1801	tgacatgaga	gattctcagg	ccagcagaag	ggagggatta	ggccctataa
	ggagaaaggt					
	1861	gagggccctg	agtgagcaca	gaggggatcc	tccaccccag	tagagtgggg
45	acctcacaga	atataaaaa	agat ast as			
10	tctgcacatt	gcccggccaa	ceeteetgae	agttctggga	atccgtggct	gcgtttgctg
	_	gggggcccat	ggattcctct	cccaggaatc	aggagctcca	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	agugaggact					
50	2041	tggtctgagg	cagtgtcctc	aggtcacaga	gtagaggggg	ctcagataqt
50	gecaacggrg					
	2101	aaggtttgcc	ttggattcaa	accaagggcc	ccacctgccc	cagaacacat
	ggactccaga					

	2161 (acacctaacc	tcaccctcaa	tactttcagt	cctgcagcct	cagcatgcgc
	tggccggatg	3030003300				3 3
	2221	taccctgagg	tgccctctca	cttcctcctt	caggttctga	ggggacaggc
5		gaccagaggc	ccccggagga	gcactgaagg	agaagatctg	taagtaagcc
	tttgttagag 2341	cctccaaggt	tccattcagt	actcagctga	ggtctctcac	atgctccctc
	tctccccagg					
10		ccagtgggtc	tccattgccc	agctcctgcc	cacactcccg	eetgttgeee
10		catcatgcct	cttgagcaga	ggagtcagca	ctgcaagcct	gaagaaggcc
		aggagaggcc	ctgggcctgg	tgggtgcgca	ggctcctgct	actgaggagc
15	aggaggetge 2581	ctcctcctct	tctactctag	ttgaagtcac	cctgggggag	gtgcctgctg
	ccgagtcacc			, 		
		agatectece	cagagteete	agggagcctc	eageeteeee	accaccacga
	actaccctct	ctacaccaa	tectatoago	actccagcaa	ccaagaagag	gaggggccaa
20	gcaccttccc	ccggagccaa	ccccacgagg	accoungeau		55555
	2761	tgacctggag	tccgagttcc	aagcagcact	cagtaggaag	gtggccgagt
	tggttcattt	5 55 5		-		
	2821	tctgctcctc	aagtatcgag	ccagggagcc	ggtcacaaag	gcagaaatgc
	tggggagtgt					
25		cgtcggaaat	tggcagtatt	tctttcctgt	gatetteage	aaagetteea
	gttccttgca	actaatettt	ggcatcgagc	tgatggaagt	ggaccccatc	ggccacttgt
	acatetttge	900990000	5500005050	0340354430	33	JJ J
		cacctgcctg	ggcctctcct	acgatggcct	gctgggtgac	aatcagatca
30	tgcccaaggc					
		aggcctcctg	ataatcgtcc	tggccataat.	cgcaagagag	ggcgactgtg
	cccctgagga					
		gaaaatctgg	gaggagetga	gtgtgttaga	ggtgtttgag	gggagggaag
35	acagtatctt 3181	aaaaaatccc	aagaagetge	tcacccaaca	tttcatacaa	gaaaactacc
33	tggagtaccg		aagaagoogo	coaccoaaca		g
			ggcagtgatc	ctgcatgtta	tgaattcctg	tggggtccaa
	gggccctcgt					
			tatgtgaaag	tcctgcacca	tatggtaaag	atcagtggag
40	gacctcacat					
			cccctgcatg	agtgggtttt	gagagagggg	gaagagtgag
	tctgagcacg		adddccadta	ggagggggtc	tagaccaata	caccttccgg
	ggccgcatcc		agggeeageg	99499999	cgggccagcg	cacccccgg
45			actgcctcct	gtgacgtgag	gcccattctt	cactctttga
	agcgagcagt	-	_			
			agtagtgggt	ttctgttctg	ttggatgact	ttgagattat
	tctttgtttc		h	1.1		
50			tgttcaaatg	ttccttttaa	cggatggttg	aatgagcgtc
J0	agcatccagg 3661		acadtadtca	cacatagtgg	tatttatata	gtttaggagt
	aagagtcttg		acageageca	Jacabagege,	- Sectaratia	3000033430
	5 5 5					

	3721 t	tttttactc	aaattgggaa	atccattcca	ttttgtgaat	tgtgacataa
	taatagcagt					
		ggtaaaagta	tttgcttaaa	attgtgagcg	aattagcaat	aacatacatg
5	agataactca	acaaatcaaa	agatagttga	ttettaeett	gtacctcaat	ctattctgta
3	aaattaaaca	agaaaccaaa	agacagcega	ccccgccc	J	3
		aatatgcaaa	ccaggatttc	cttgacttct	ttgagaatgc	aagcgaaatt
	aaatctgaat					
10		aaataattct	tcctcttcac	tggctcgttt	cttttccgtt	cactcagcat
10	ctgctctgtg	aaaaacccta	gattagtagt	ggggatgcta	aggtaagcca	gactcacgcc
	tacccatagg	ggaggeeeeg	3300030030	33333	33 3	
	4081	gctgtagagc	ctaggacctg	cagtcatata	attaaggtgg	tgagaagtcc
	tgtaagatgt					atananataa
15		agaggaaatg	taagagaggg	gtgagggtgt	ggcgctccgg	gcgagagcag
	tggagtgtca 4201 g	atac				
	//	,-5-				
						- .
20		ns prostate	e stem cell	antigen (P	SCA) mRNA,	complete
	cds.	AF043498				
	ACCESSION VERSION		1 GI:290984	13		
	SEQ ID NO					
25	_					
					SNEDCLQVENCT	
			VDDSQDYYVGKI	COLLCO	ASGAHALQPAAA	ILALLPA
	LGLLLWGPGQ1	ն"				
30	SEQ ID NO	87				
	ORIGIN					
		agggagaggc	agtgaccatg	aaggctgtgc	tgcttgccct	gttgatggca
	ggcttggccc	,			********	aasaatasaa
35		tgcagccagg	cactgccctg	etgtgetaet	cctgcaaagc	ccaggcgagc
33	aacgaggact 121	acctacagat.	ggagaactgc	acccagctgg	gggagcagtg	ctggaccgcg
	cgcatccgcg		55-5		333-3-33	30 3 3
			cctgaccgtc	atcagcaaag	gctgcagctt	gaactgcgtg
	gatgactcac		_			
40			cgtgggcaag	aagaacatca	cgtgctgtga	caccgacttg
	tgcaacgcca		taccetacaa	ccaactacca	ccatccttgc	actactccct
	gcactcggcc		egeceegeag	ooggeegeeg	coacceca	300 300000
			gggacccggc	cagctatagg	ctctgggggg	ccccgctgca
45	gcccacactg					
			cccaggcctt	tgtgccactc	ctcacagaac	ctggcccagt
	gggagcctgt		anaaaaa+-	atanaan-	tttaaaasta	tatatttaaa
	481 ccccttttcc		gaggcacatc	ctaacgcaag	tttgaccatg	catyttigta
50			accttcccat	gggccttttc	caggattccn	accnggcaga
	tcagttttag			555		
	_					

```
601 tganacanat ccgcntgcag atggcccctc caaccntttn tgttgntgtt
       tccatggccc
             661 agcattttcc accettaacc ctgtgttcag gcacttnttc ccccaggaag
       ccttccctgc
5
             721 ccaccccatt tatgaattga gccaggtttg gtccgtggtg tcccccgcac
       ccagcagggg
             781 acaggcaatc aggagggccc agtaaaggct gagatgaagt ggactgagta
       gaactggagg
             841 acaagagttg acgtgagttc ctgggagttt ccagagatgg ggcctggagg
10
       cctggaggaa
             901 ggggccaggc ctcacatttg tggggntccc gaatggcagc ctgagcacag
       cgtaggccct
             961 taataaacac ctgttggata agccaaaaaa
       //
15
       GLANDULAR KALLIKREIN 1 PRECURSOR (TISSUE KALLIKREIN)
                  (KIDNEY/PANCREAS/SALIVARY GLAND KALLIKREIN).
       ACCESSION
                   P06870
20
                   q125170
                 P06870 GI:125170
       VERSION
       SEQ ID NO 600
       ORIGIN
               1 mwflvlclal slggtgaapp iqsrivggwe ceqhsqpwqa alyhfstfqc
25
       ggilvhrgwv
              61 ltaahcisdn yqlwlgrhnl fddentaqfv hvsesfphpg fnmsllenht
       rgadedyshd
             121 lmllrltepa dtitdavkvv elptqepevq stclasgwgs iepenfsfpd
30
       dlgcvdlkil
             181 pndecekahv qkvtdfmlcv ghleggkdtc vgdsggplmc dgvlqgvtsw
       gyvpcgtpnk
             241 psvavrvlsy vkwiedtiae ns
       //
35
       ELASTASE 2A PRECURSOR.
       ACCESSION P08217
       PID
                   g119255
40
       VERSION
                  P08217 GI:119255
       SEQ ID NO 601
       ORIGIN
               1 mirtlllstl vagalscgdp typpyvtrvv ggeearpnsw pwqvslqyss
45
       ngkwyhtcqq
              61 slianswvlt aahcisssrt yrvglgrhnl yvaesgslav svskivvhkd
       wnsnqiskqn
             121 diallklanp vsltdkiqla clppagtilp nnypcyvtgw grlqtngavp
       dvlqqgrllv
50
             181 vdyatcssa wwgssvktsm icaggdqvis scngdsqqpl ncqasdgrwq
       vhgivsfgsr
             241 lgcnyyhkps vftrvsnyid winsviann
```

```
WO 02/081646
                                                              PCT/US02/11101
        11
        pancreatic elastase IIB (Homo sapiens).
                    NP 056933
        ACCESSION
 5
        PID
                    q7705648
        VERSION
                    NP 056933.1 GI:7705648
        SEQ ID NO 602
        ORIGIN
10
                1 mirtlllstl vagalscgvs tyapdmsrml ggeearpnsw pwqvslqyss
        ngqwyhtcgg
               61 slianswvlt aahcisssri yrvmlgqhnl yvaesgslav svskivvhkd
        wnsnqvskgn
              121 diallklanp vsltdkiqla clppagtilp nnypcyvtgw grlqtngalp
15
        ddlkggrllv
              181 vdyatcsssg wwgstvktnm icaggdgvic tcngdsggpl ncqasdgrwe
        vhgigsltsv
              241 lgcnyyykps iftrvsnynd winsviann
        //
20
        PRAME Homo sapiens preferentially expressed antigen in melanoma
        (PRAME), mRNA.
       ACCESSION
                    NM 006115
25
       VERSION
                    NM_006115.1 GI:5174640
       SEQ ID NO 77
       /translation="MERRRLWGSIQSRYISMSVWTSPRRLVELAGQSLLKDEALAIAALELLPREL
       FPPLFMAAFDGRHSQTLKAMVQAWPFTCLPLGVLMKGQHLHLETFKAVLDGLDVLLAQEVRPRRWK
30
       {\tt LQVLDLRKNSHQDFWTVWSGNRASLYSFPEPEAAQPMTKKRKVDGLSTEAEQPFIPVEVLVDLFLK}
       EGACDELFSYLIEKVKRKKNVLRLCCKKLKIFAMPMQDIKMILKMVQLDSIEDLEVTCTWKLPTLA
       KFSPYLGQMINLRRLLLSHIHASSYISPEKEEQYIAQFTSQFLSLQCLQALYVDSLFFLRGRLDQL
       LRHVMNPLETLSITNCRLSEGDVMHLSQSPSVSQLSVLSLSGVMLTDVSPEPLQALLERASATLQD
       {	t LVFDECGITDDQLLALL} {	t PSLSHCSQLTTLSFYGNSISISALQSLLQHLIGLSNLTHVLYPVPLESY}
35
       EDIHGTLHLERLAYLHARLRELLCELGRPSMVWLSANPCPHCGDRTFYDPEPILCPCFMPN"
       SEQ ID NO 85
       ORIGIN
               1 gcttcagggt acagctcccc cgcagccaga agccgggcct gcagcccctc
40
       agcaccgctc
              61 cgggacaccc cacccgcttc ccaggcgtga cctgtcaaca gcaacttcgc
       ggtgtggtga
             121 actctctgag gaaaaaccat tttgattatt actctcagac gtgcgtggca
       acaagtgact
45
             181 gagacctaga aatccaagcg ttggaggtcc tgaggccagc ctaagtcgct
```

241 acgaaggegt ttgtggggtt ccattcagag ccgatacatc agcatgagtg

301 cccacggaga cttgtggagc tggcagggca gagcctgctg aaggatgagg

361 tgccgccctg gagttgctgc ccagggagct cttcccgcca ctcttcatgg

tcaaaatqqa

tgtggacaag

ccctqqccat

cagcctttga

50

	421 cgggagacac	agccagaccc	tgaaggcaat	ggtgcaggcc	tggcccttca
	catgactaca				
	481 tctgggagtg	ctgatgaagg	gacaacatct	tcacctggag	accttcaaag
5	ctgtgcttga 541 tggacttgat	gtgctccttg	cccaggaggt	tegececagg	aggtggaaac
•	ttcaagtgct				
	601 ggatttacgg	aagaactctc	atcaggactt	ctggactgta	tggtctggaa
	acagggccag	LLL	anan-aana	tanagaanta	2022202200
10	661 tetgtaetea	tttccagage	Cagaagcagc	ccagcccarg	acaaagaagc
10	gaaaagtaga 721 tggtttgagc	acagaggcag	agcagccctt	cattccagta	gaggtgctcg
	tagacctgtt			•	
	781 cctcaaggaa	ggtgcctgtg	atgaattgtt	ctcctacctc	attgagaaag
	tgaagcgaaa				
15	841 gaaaaatgta	ctacgcctgt	gctgtaagaa	gctgaagatt	tttgcaatgc
	ccatgcagga 901 tatcaagatg	2+00+02222	taataaaaat	ggagtgtatt	gaagatttgg
	aagtgacttg	accetgaaaa	tggtgtaget	ggaccccacc	gaagacccgg
	961 tacctggaag	ctacccacct	tggcgaaatt	ttctccttac	ctgggccaga
20	tgattaatct		-		
	1021 gcgtagactc	ctcctctccc	acatccatgc	atcttcctac	atttccccgg
	agaaggaaga				
	1081 gcagtatatc	gcccagttca	cctctcagtt	cctcagtctg	cagtgcctgc
25	aggeteteta 1141 tgtggaetet	ttattttcc	ttagagggg	cctagatcag	ttactcagac
23	acgtgatgaa	CCGCCCCCC	ccagaggeeg	0009940045	2092204992
	1201 cccttggaa	accctctcaa	taactaactg	ccggctttcg	gaaggggatg
	tgatgcatct				
	1261 gtcccagagt	cccagcgtca	gtcagctaag	tgtcctgagt	ctaagtgggg
30	tcatgctgac		ttt.		
	1321 cgatgtaagt	cccgagcccc	tccaagctct	gctggagaga	geetetgeea
	ccctccagga 1381 cctggtcttt	gatgagtgtg	ggatcacgga	tgatcagete	cttaccctcc
	tgccttccct	555.5	33		
35	1441 gagccactgc	tcccagctta	caaccttaag	cttctacggg	aattccatct
	ccatatctgc				
	1501 cttgcagagt	ctcctgcagc	acctcatcgg	gctgagcaat	ctgacccacg
	tgctgtatcc	gagagetata	200202100	taataaaata	an aat aanaa
40	1561 tgtccccctg ggcttgccta	gagagetatg	aggacattta	tggtaccete	cacciggaga
70	1621 tctgcatgcc	aggeteaggg	agttgctgtg	tgagttgggg	cggcccagca
	tggtctggct	33	3 3 -3-3	-5-5- 5555	- 33
	1681 tagtgccaac	ccctgtcctc	actgtgggga	cagaaccttc	tatgacccgg
45	agcccatcct				
	1741 gtgcccctgt	ttcatgccta	actagctggg	tgcacatatc	aaatgcttca
	ttctgcatac	aaggaagat	ataastaast	attazzadzz	asseasaca
	1801 ttggacacta acagtttcag	augecayyat	gegeacycat	Cityaaydaa	cadageagee
	1861 acaaatgttc	agtgtgagtg	aggaaaacat	gttcagtgag	gaaaaaacat
50	tcagacaaat		- -		
	1921 gttcagtgag	gaaaaaaagg	ggaagttggg	gataggcaga	tgttgacttg
	aggagttaat				

1981 gtgatctttg gggagataca tcttatagag ttagaaatag aatctgaatt tctaaaggga

2041 gattctggct tgggaagtac atgtaggagt taatccctgt gtagactgtt gtaaaqaaac

2101 tgttgaaaat aaagagaagc aatgtgaagc aaaaaaaaa aaaaaaaa

ED-B domain of Fibronectin

Human fibronectin gene ED-B region.

10 ACCESSION X07717

VERSION X07717.1 GI:31406

SEQ ID NO 590

/translation="CTFDNLSPGLEYNVSVYTVKDDKESVPISDTIIPEVPQLTDLSF

15

25

5

VDITDSSIGLRWTPLNSSTIIGYRITVVAAGEGIPIFEDFVDSSVGYYTVTGLEPGID

YDISVITLINGGESAPTTLTQQTAVPPPTDLRFTNIGPDTMRVTW"

20 SEQ ID NO 591

ORIGIN

- 1 ctgcactttt gataacctga gtcccggcct ggagtacaat gtcagtgttt acactgtcaa
- 61 ggatgacaag gaaagtgtcc ctatctctga taccatcatc ccaggtaata gaaaataagc
 - 121 tgctatcctg agagtgacat tccaataaga gtggggatta gcatcttaat ccccagatgc
 - 181 ttaagggtgt caactatatt tgggatttaa ttccgatctc ccagctgcac tttccaaaac
- 241 caagaagtca aagcagcgat ttggacaaaa tgcttgctgt taacactgct ttactgtctg
 - 301 tgcttcactg ggatgctgtg tgttgcagcg agtatgtaat ggagtggcag ccatggcttt
- 361 aactetgtat tgtetgetea eatggaagta tgaetaaaac aetgteaegt 35 gtetgtaete
 - 421 agtactgata ggctcaaagt aatatggtaa atgcatccca tcagtacatt tctgcccgat

481 tttacaatcc atatcaattt ccaacagetg cctatttcat cttgcagttt caaatccttc 541 tttttgaaaa ttggatttta aaaaaaagtt aagtaaaagt cacaccttca gggttgttct 601 ttcttqtggc cttgaaagac aacattgcaa aggcctgtcc taaggatagg 5 cttqtttqtc 661 cattgggtta taacataatg aaagcattgg acagatcgtg tececetttg gactcttcag 721 tagaatgctt ttactaacgc taattacatg ttttgattat gaatgaacct 10 aaaatagtgg 781 caatggcctt aacctaggcc tgtctttcct cagcctgaat gtgcttttga atggcacatt 841 tcacaccata cattcataat gcattagcgt tatggccatg atgttgtcat gagttttgta 15 901 tgggagaaaa aaaatcaatt tatcacccat ttattatttt ttccggttgt tcatgcaagc 961 ttattttcta ctaaaacaqt tttggaatta ttaaaagcat tgctgatact tacttcagat 1021 attatgtcta ggctctaaga atggtttcga catcctaaac agccatatga 20 tttttaggaa 1081 tctgaacagt tcaaattgta ccctttaagg atgttttcaa aatgtaaaaa atatatatat 1141 atatatatat tccctaaaag aatattcctg tttattcttc tagggaagca aactgttcat 25 1201 gatgcttagg aagtcttttc agagaattta aaacagattg catattacca tcattgcttt 1261 aacattccac caattttact actagtaacc tgatatacac tgctttattt tttcctcttt 1321 ttttccctct attttccttt tgcctccccc tccctttgct ttgtaactca 30 atagaggtgc 1381 cccaactcac tqacctaaqc tttqttqata taaccqattc aaqcatcqgc ctgaggtgga 1441 ccccgctaaa ctcttccacc attattgggt accgcatcac agtagttgcg gcaggagaag

	1501 gtatccctat	ttttgaagat	tttgtggact	cctcagtagg	atactacaca
	gtcacagggc				
	1561 tggagccggg	cattgactat	gatatcagcg	ttatcactct	cattaatggc
	ggcgagagtg				
5	1621 cccctactac	actgacacaa	caaacgggtg	aattttgaaa	acttctgcgt
	ttgagacata				
	1681 gatggtgttg	catgctgcca	ccagttactc	cggttaaata	tggatgtttc
	atgggggaag				
	1741 tcagcaattg	gccaaagatt	cagataggtg	gaattggggg	gataaggaat
10	caaatgcatc				
	1801 tgctaaactg	attggagaaa	aacacatgca	atatcttcag	tacactctca
	tttaaaccac			•	
	1861 aagtagatat	aaagcctaga	gaaatacaga	tgtctgctct	gttaaatata
	aaatagcaaa				
15	1921 tgttcattca	atttgaagac	ctagaatttt	tcttcttaaa	taccaaacac
	gaataccaaa			•	
	1981 ttgcgtaagt	accaattgat	aagaatatat	caccaaaatg	taccatcatg
	ctcttccttc				
	2041 taccctttga	taaactctac	catgctcctt	ctttgtagct	aaaaacccat
20	caaaatttag				
	2101 ggtagagtgg	atgggcattg	ttttgaggta	ggagaaaagt	aaacttggga
	ccattctagg				
	2161 ttttgttgct	gtcactaggt	aaagaaacac	ctctttaacc	acagtctggg
	gacaagcatg				
25	2221 caacatttta	aaggttctct	gctgtgcatg	ggaaaagaaa	catgctgaga
	accaatttgc				
	2281 atgaacatgt	tcacttgtaa	gtagaattca	ctgaatggaa	ctgtagctct
	agatatctca				
	2341 catgggggga	agtttaggac	cctcttgtct	ttttgtctgt	gtgcatgtat
30	ttctttgtaa				
	2401 agtactgcta	tgtttctctt	tgctgtgtgg	caacttaagc	ctcttcggcc
	tgggataaaa				
	2461 taatctgcag	tggtattaat	aatgtacata	aagtcaacat	atttgaaagt
	agattaaaat				

2521 cttttttaaa tatatcaatg atggcaaaaa ggttaaaggg ggcctaacag tactgtgtgt

2581 agtgttttat ttttaacagt agtacactat aacttaaaat agacttagat tagactgttt

2641 gcatgattat gattctgttt cctttatgca tgaaatattg attttacctt tccaqctact

2701 tcgttagctt taattttaaa atacattaac tgagtcttcc ttcttgttcg aaaccagctg

2761 ttcctcctcc cactgacctg cgattcacca acattggtcc agacaccatg

2821 ggg

//

5

10

15

CEA Homo sapiens carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), mRNA.

. .

ACCESSION NM_004363

VERSION NM 004363.1 GI:11386170

SEQ ID NO 592

/translation="MESPSAPPHRWCIPWQRLLLTASLLTFWNPPTTAKLTIESTPFN
VAEGKEVLLLVHNLPQHLFGYSWYKGERVDGNRQIIGYVIGTQQATPGPAYSGREIIY
PNASLLIQNIIQNDTGFYTLHVIKSDLVNEEATGQFRVYPELPKPSISSNNSKPVEDK
DAVAFTCEPETQDATYLWWVNNQSLPVSPRLQLSNGNRTLTLFNVTRNDTASYKCETQ
NPVSARRSDSVILNVLYGPDAPTISPLNTSYRSGENLNLSCHAASNPPAQYSWFVNGT

FQQSTQELFIPNITVNNSGSYTCQAHNSDTGLNRTTVTTITVYAEPPKPFITSNNSNP
VEDEDAVALTCEPEIQNTTYLWWVNNQSLPVSPRLQLSNDNRTLTLLSVTRNDVGPYE
CGIQNELSVDHSDPVILNVLYGPDDPTISPSYTYYRPGVNLSLSCHAASNPPAQYSWL
IDGNIQQHTQELFISNITEKNSGLYTCQANNSASGHSRTTVKTITVSAELPKPSISSN
NSKPVEDKDAVAFTCEPEAQNTTYLWWVNGQSLPVSPRLQLSNGNRTLTLFNVTRNDA
RAYVCGIQNSVSANRSDPVTLDVLYGPDTPIISPPDSSYLSGANLNLSCHSASNPSPQ
YSWRINGIPQQHTQVLFIAKITPNNNGTYACFVSNLATGRNNSIVKSITVSASGTSPG

LSAGATVGIMIGVLVGVALI"

SEQ ID NO 593

35 ORIGIN

	1	ctcagggcag	agggaggaag	gacagcagac	cagacagtca	cagcagcctt
	gacaaaacgt					
	61	tcctggaact	caagctcttc	tccacagagg	aggacagagc	agacagcaga
	gaccatggag					
5	121	tctccctcgg	ccctcccca	cagatggtgc	atcccctggc	agaggeteet
	gctcacagcc	}				
	181	tcacttctaa	ccttctggaa	cccgcccacc	actgccaagc	tcactattga
	atccacgccg					
	241	ttcaatgtcg	cagaggggaa	ggaggtgctt	ctacttgtcc	acaatctgcc
10	ccagcatctt					
	301	tttggctaca	gctggtacaa	aggtgaaaga	gtggatggca	accgtcaaat
	tataggatat					
	361	gtaataggaa	ctcaacaagc	taccccaggg	cccgcataca	gtggtcgaga
	gataatatac					
15	421	cccaatgcat	ccctgctgat	ccagaacatc	atccagaatg	acacaggatt
	ctacacccta					
	481	cacgtcataa	agtcagatct	tgtgaatgaa	gaagcaactg	gccagttccg
	ggtatacccg					
20			agccctccat	ctccagcaac	aactccaaac	ccgtggagga
20	caaggatgct					
			cctgtgaacc	tgagactcag	gacgcaacct	acctgtggtg
	ggtaaacaat					
			cggtcagtcc	caggctgcag	ctgtccaatg.	gcaacaggac
25	cctcactcta				h	
25			caagaaacga	cacagcaage	tacaaatgtg	aaacccagaa
	cccagtgagt		atanttanat	**********		gaaagataa
	ccccaccati		gracicage	Calculyaat	gtcctctatg	geeeggaege
			acacatotta	asastasaaa	gaaaatctga	agatatasta
30	ccacgcagc		acacacccca	cagaccaggg	gaaaacccga	accected
50	-		ctacacaata	ctcttcctt	gtcaatggga	atttacaaca
	atccaccca		cegeacagea	cccctggccc	gccaacggga	Cccccagea
			tecceasest	cactotosst	aatagtggat	.cctatacctc
	ccaagcccal		Joecoudeac	Juccycyadi	aacagcggac	cocacacycy
	J	_				

	1021	aactcagaca	ctggcctcaa	taggaccaca	gtcacgacga	tcacagtcta
	tgcagagcca	ı				
	1081	cccaaaccct	tcatcaccag	caacaactcc	aaccccgtgg	aggatgagga
	tgctgtagcc	:				
5	1141	ttaacctgtg	aacctgagat	tcagaacaca	acctacctgt	ggtgggtaaa
	taatcagago				,	
	1201	ctcccggtca	gtcccaggct	gcagctgtcc	aatgacaaca	ggaccctcac
	tctactcagt					
	1261	gtcacaagga	atgatgtagg	accctatgag	tgtggaatcc	agaacgaatt
10	aagtgttgad					
	1321	cacagcgacc	cagtcatcct	gaatgtcctc	tatggcccag	acgaccccac
	catttcccc					
	1381	tcatacacct	attaccgtcc	aggggtgaac	ctcagcctct	cetgecatge
	agcctctaac					
15			agtattcttg	getgattgat	gggaacatcc	agcaacacac
	acaagagct					antaganaga
			acatcactga	gaagaacagc	ggactulata	cctgccaggc
	caataactc				202240200	tatataaaa
00			acagcaggac	Lacagicaag	acaaccacag	tctctgcgga
20	gctgcccaa		######################################	ahaannaaa	ataasaasa	aggatgetgt
			CCagCaaCaa	CCCCaaaccc	gtggaggaca	aggacgeege
	ggccttcac		aggataagaa	as assaat sa	ctataataaa	taaatggtca
			aggettagaa	Cacaacctac	6696996999	caaacggcca
25	gagcctccc		aactacaact	atacaataa.	aacaggaccc	tcactctatt
23	caatgtcac		9900904900	9000000	uudujjudoo	
			caagagccta	tatatataa	atccagaact	cagtgagtgc
	aaaccgcag		oaagagoosa	030003033		
			ccctggatgt	cctctatggg	ccqqacaccc	ccatcatttc
30	cccccaga		33 3	333	. 33	•
- •	_		tttcgggagc	gaacctcaac	ctctcctqcc	actcggcctc
	taacccatc		333 3	-	_	30
			cttggcgtat	caatgggata	ccgcagcaac	acacacaagt
	tctctttat		-		_	-

	2041	gccaaaatca	cgccaaataa	taacgggacc	tatgcctgtt	ttgtctctaa
	cttggctact					
	2101	ggccgcaata	attccatagt	caagagcatc	acagtctctg	catctggaac
	ttctcctggt	:				
5	2161	ctctcagctg	gggccactgt	cggcatcatg	attggagtgc	tggttggggt
	tgctctgata			•		
	2221	tagcagccct	ggtgtagttt	cttcatttca	ggaagactga	cagttgtttt
	gcttcttcct					
	2281	taaagcattt	gcaacagcta	cagtctaaaa	ttgcttcttt	accaaggata
10	tttacagaaa					
	2341	agactctgac	cagagatcga	gaccatccta	gccaacatcg	tgaaacccca
	tctctactac					
	2401	aaatacaaaa	atgagctggg	cttggtggcg	cgcacctgta	gtcccagtta
	ctcgggagg					
15	2461	tgaggcagga	gaatcgcttg	aacccgggag	gtggagattg	cagtgagccc
	agatcgcac					
	2521	actgcactcc	agtctggcaa	cagagcaaga	ctccatctca	aaaagaaaag
•	aaaagaaga					
		tctgacctgt	actcttgaat	acaagtttct	gataccactg	cactgtctga
20	gaatttcca					_
		aactttaatg	aactaactga	cagcttcatg	aaactgtcca	ccaagatcaa
	gcagagaaa		. ,		. 	L L L L L L L
		taattaattt	catgggacta	aatgaactaa	tgaggattgc	tgattettta
25	aatgtcttg	•	.			
25		ttcccagatt	tcaggaaact	EEEEEEEEE	taagetatee	actettadag
	caatttgat		****	22255929	2+++242++	tataaatata
	tggtcgctc	aaatatactt	ttytyaacaa	aaaccyayac	acceacacce	cccccacg
		agacttggga	aactattcat	caatatttat	attotatoot	aatatagtta
30	ttgcacaag		aaccacccac	gaacacccac	accycacyyc	uucucugccu
50		tcaataaaaa	tetactettt (rtataacada a	aaa	
	//		230300000			
	, ,					

Her2/Neu Human tyrosine kinase-type receptor (HER2) mRNA, complete
35 cds.

ACCESSION M11730

VERSION M11730.1 GI:183986

SEQ ID NO 594

5 /translation="MELAALCRWGLLLALLPPGAASTQVCTGTDMKLRLPASPETHLD MLRHLYQGCQVVQGNLELTYLPTNASLSFLQDIQEVQGYVLIAHNQVRQVPLQRLRIV RGTQLFEDNYALAVLDNGDPLNNTTPVTGASPGGLRELQLRSLTEILKGGVLIQRNPQ LCYQDTILWKDIFHKNNQLALTLIDTNRSRACHPCSPMCKGSRCWGESSEDCQSLTRT VCAGGCARCKGPLPTDCCHEQCAAGCTGPKHSDCLACLHFNHSGICELHCPALVTYNT DTFESMPNPEGRYTFGASCVTACPYNYLSTDVGSCTLVCPLHNQEVTAEDGTQRCEKC 10 SKPCARVCYGLGMEHLREVRAVTSANIQEFAGCKKIFGSLAFLPESFDGDPASNTAPL QPEQLQVFETLEEITGYLYISAWPDSLPDLSVFQNLQVIRGRILHNGAYSLTLQGLGI SWLGLRSLRELGSGLALIHHNTHLCFVHTVPWDQLFRNPHQALLHTANRPEDECVGEG LACHQLCARGHCWGPGPTQCVNCSQFLRGQECVEECRVLQGLPREYVNARHCLPCHPE CQPQNGSVTCFGPEADQCVACAHYKDPPFCVARCPSGVKPDLSYMPIWKFPDEEGACQ 15 PCPINCTHSCVDLDDKGCPAEQRASPLTSIVSAVVGILLVVVLGVVFGILIKRRQQKI RKYTMRRLLQETELVEPLTPSGAMPNQAQMRILKETELRKVKVLGSGAFGTVYKGIWI PDGENVKI PVAI KVLRENTS PKANKEI LDEAYVMAGVGS PYVSRLLGI CLTSTVQLVT QLMPYGCLLDHVRENRGRLGSQDLLNWCMQIAKGMSYLEDVRLVHRDLAARNVLVKSP 20 NHVKITDFGLARLLDIDETEYHADGGKVPIKWMALESILRRRFTHQSDVWSYGVTVWE LMTFGAKPYDGIPAREIPDLLEKGERLPQPPICTIDVYMIMVKCWMIDSECRPRFREL VSEFSRMARDPORFVVIONEDLGPASPLDSTFYRSLLEDDDMGDLVDAEEYLVPQQGF FCPDPAPGAGGMVHHRHRSSSTRSGGGDLTLGLEPSEEEAPRSPLAPSEGAGSDVFDG DLGMGAAKGLQSLPTHDPSPLQRYSEDPTVPLPSETDGYVAPLTCSPQPEYVNQPDVR 25 POPPSPREGPLPAARPAGATLERAKTLSPGKNGVVKDVFAFGGAVENPEYLTPQGGAA POPHPPPAFSPAFDNLYYWDQDPPERGAPPSTFKGTPTAENPEYLGLDVPV"

SEQ ID NO 595

30

ORIGIN Chromosome 17q21-q22.

- 1 aattetegag etegtegaee ggtegaegag etegagggte gaegageteg
 - 61 cccggcccc acccctcgca gcaccccgcg ccccgcgccc tcccagccgg gtccagccgg
- 121 agccatgggg ccggagccgc agtgagcacc atggagctgg cggccttgtg
 35 ccgctggggg

	181	ctcctcctcg	ccctcttgcc	ccccggagcc	gcgagcaccc	aagtgtgcac
	cggcacagac	:				
	241	atgaagctgc	ggctccctgc	cagtcccgag	acccacctgg	acatgctccg
	ccacctctac	!			•	
5	301	cagggctgcc	aggtggtgca	gggaaacctg	gaactcacct	acctgcccac
	caatgccagc	!				
	361	ctgtccttcc	tgcaggatat	ccaggaggtg	cagggctacg	tgctcatcgc
	tcacaaccaa	•				
	421	gtgaggcagg	teccaetgca	gaggctgcgg	attgtgcgag	gcacccagct
10	ctttgaggac	:				
•	481	aactatgccc	tggccgtgct	agacaatgga	gacccgctga	acaataccac
	ccctgtcaca					
		ggggcctccc	caggaggcct	gcgggagctg.	cagcttcgaa	gcctcacaga
1.5	gatcttgaaa					
15		ggaggggtct	tgatccagcg	gaacccccag	ctctgctacc	aggacacgat
	tttgtggaag					
		gacatettee	acaagaacaa	ccagetgget	ctcacactga	tagacaccaa
	ccgctctcgg		catattataa	antatatona	acat agaset	
20	gagttctgag	geetgecace	cetgetetee	gatgtgtaag	ggeteeeget	geegggaga
		gattgtcaga	acctaecaca	cactototot	accantaget	ataggaata
	caaggggcca		3000340303	caocgcocgc	3003303300	gegeeegeeg
		ctgcccactg	actgctgcca	tgagcagtgt	actaccaact	acacaaacc
	caagcactct			-5-5-5-5-5	3003003300	geaegggeee
25	901	gactgcctgg	cctgcctcca	cttcaaccac	agtggcatct	gtgagctgca
	ctgcccagcc				J J J J	J-JJJ
	961	ctggtcacct	acaacacaga	cacgtttgag	tccatgccca	atcccgaggg
	ccggtataca				,	
	1021	ttcggcgcca	gctgtgtgac	tgcctgtccc	tacaactacc	tttctacgga
30	cgtgggatcc					
	1081	tgcaccctcg	tatgacaat	gcacaaccaa	gaggtgacag	cagaggatgg
	aacacagcgg					
	1141	tgtgagaagt	gcagcaagcc	ctgtgcccga	gtgtgctatg	gtctgggcat
	ggagcacttg					

	•					
	1201	cgagaggtga	gggcagttac	cagtgccaat	atccaggagt	ttgctggctg
	caagaagato					
	1261	tttgggagcc	tggcatttct	gccggagagc.	tttgatgggg	acccagcctc
	caacactgcc	:				
5	1321	ccgctccagc	cagagcagct	ccaagtgttt	gagactctgg	aagagatcac
	aggttaccta					
	1381	tacatctcag	catggccgga	cagcctgcct	gacctcagcg	tcttccagaa
	cctgcaagta	ı				
	1441	atccggggac	gaattctgca	caatggcgcc	tactcgctga	ccctgcaagg
10	gctgggcato	;				
	1501	agctggctgg	ggctgcgctc	actgagggaa	ctgggcagtg	gactggccct
	catccaccat	;				
	1561	aacacccacc	tctgcttcgt	gcacacggtg	ccctgggacc	agctctttcg
	gaacccgca	2				
15	1621	caagctctgc	tccacactgc	caaccggcca	gaggacgagt	gtgtgggcga
	gggcctggc	C				
	1681	tgccaccagc	tgtgcgcccg	agggcactgc	tggggtccag	ggcccaccca
	gtgtgtcaa	3				
	1741	tgcagccagt	tccttcgggg	ccaggagtgc	gtggaggaat	gccgagtact
20	gcaggggct	C				
	1801	cccagggagt	atgtgaatgc	caggcactgt	ttgccgtgcc	accctgagtg
	tcagcccca	3				
	1861	aatggctcag	tgacctgttt	tggaccggag	gctgaccagt	gtgtggcctg
	tgcccacta	t				
25	1921	aaggaccctc	cettetgegt	ggcccgctgc	cccagcggtg	tgaaacctga
	cctctccta	C				
	1981	atgcccatct	ggaagtttcc	agatgaggag	ggcgcatgcc	agccttgccc
	catcaactg	С				
	2041	acccactcct	gtgtggacct	ggatgacaag	ggctgccccg	ccgagcagag
30	agccagccc	t				
	2101	ctgacgtcca	tcgtctctgc	ggtggttggc	attctgctgg	tcgtggtctt
	gggggtggt	С				
	2161	tttgggatcc	tcatcaagcg	acggcagcag	aagatccgga	agtacacgat
	gcggagact	g				

	2221	ctgcaggaaa	cggagctggt	ggagccgctg	acacctagcg	gagcgatgcc
	caaccaggcg					
	2281	cagatgcgga	tcctgaaaga	gacggagctg	aggaaggtga	aggtgcttgg
	atctggcgct					
5	2341	tttggcacag	tctacaaggg	catctggatc	cctgatgggg	agaatgtgaa
	aattccagtg					
	2401	gccatcaaag	tgttgaggga	aaacacatcc	cccaaagcca	acaaagaaat
	cttagacgaa					
	2461	gcatacgtga	tggctggtgt	gggctcccca	tatgtctccc	gccttctggg
10	catctgcctg					
-	2521	acatccacgg	tgcagctggt	gacacagctt	atgccctatg	gctgcctctt
	agaccatgtc	!				
	2581	cgggaaaacc	gcggacgcct	gggctcccag	gacctgctga	actggtgtat
	gcagattgcc			•		
15	2641	aaggggatga	gctacctgga	ggatgtgcgg	ctcgtacaca	gggacttggc
	cgctcggaac	!				
	2701	gtgctggtca	agagtcccaa	ccatgtcaaa	attacagact	tegggetgge
	tcggctgctg					
20			agacagagta	ccatgcagat	gggggcaagg	tgcccatcaa
20	gtggatggcg					
			ttctccgccg	gcggttcacc	caccagagtg	atgtgtggag
	ttatggtgtg					
			agctgatgac	ttttggggcc	aaaccttacg	atgggatccc
25	agcccgggag	-				
23			tgctggaaaa	gggggagcgg	ctgccccage	ccccatctg
	caccattgat		.	a de colo la como d		
	aagattccgg		tcatggtcaa	atgttggatg	actgactctg	aatgteggee
			atasattata	aaaaabaaaa		
30	ggtcatccag		ctyaaccctc	ccgcatggcc	agggaccccc	agegetttgt
50	_		taaacccaac	cagtcccttg	gagagaga	+a+
•	actgctggag		2333000430	cagecourg	gacageacee	cocacegeee
	_		tagaggaacet	ggtggatgct	gaggagtato	taateaaaa
	gcagggcttc	•			343349cacc	-ggcaccca

	3241	ttctgtccag	accetgeece	gggcgctggg	ggcatggtcc	accacaggca
	ccgcagctca					
	3301	tctaccagga	gtggcggtgg	ggacctgaca	ctagggctgg	agccctctga
	agaggaggcc					
5	3361	cccaggtctc	cactggcacc	ctccgaaggg	gctggctccg	atgtatttga
•	tggtgacctg					
	3421	ggaatggggg	cagccaaggg	gctgcaaagc	ctccccacac	atgaccccag
	ccctctacag					
	3481	cggtacagtg	aggaccccac	agtacccctg	ccctctgaga	ctgatggcta
10	cgttgcccc					
	3541	ctgacctgca	gccccagcc	tgaatatgtg	aaccagccag	atgttcggcc
	ccagccccct					
	3601	tcgccccgag	agggccctct	gcctgctgcc	cgacctgctg	gtgccactct
	ggaaagggco					
15	3661	aagactctct	ccccagggaa	gaatggggtc	gtcaaagacg	tttttgcctt
	tgggggtgco					
			ccgagtactt	gacaccccag	ggaggagctg	cccctcagcc
	ccaccctcct					
	3781	cctgccttca	gcccagcctt	cgacaacctc	tattactggg	accaggaccc
20	accagagcgg					
			ccagcacctt	caaagggaca	cctacggcag	agaacccaga
	gtacctgggt					
			cagtgtgaac	cagaaggcca	agtccgcaga	agccctgatg
25	tgtcctcagg		1			
25	•		ggeetgaett	etgetggeat	caagaggtgg	gagggccctc
	cgaccactto		harantaan.	eas sastata	ataaaaaaaa	ttaattaata
			Lyccatycca	ggaaccigic	ccaaggaacc	ttccttcctg
	cttgagttc		an nagast ag	aggatagtta	assasaassa	aggagtgggg
30			gaaggggccc	agcctcgttg	gaagaggaac	agcaccgggg
30	agtctttgt		ccctacacaa	taaaactcta	gggtggagtg	gatgccacag
	cccagcttgg		cccigccaa	cyayaccca	gggcccagtg	Jurgeracay
	_		ccagatcctc	ggtactgaaa	gccttaggga	agetggeetg
			coagacoccy		500000333a	~5~~55~~
	agaggggaag	ס				

4261 eggeectaag ggagtgteta agaacaaaag egaeceatte agagaetgte

- 4321 agtactgccc cccatgagga aggaacagca atggtgtcag tatccaggct ttgtacagag
- 4381 tgcttttctg tttagttttt actttttttg ttttgttttt ttaaagacga aataaagacc
 - 4441 caggggagaa tgggtgttgt atggggaggc aagtgtgggg ggtccttctc cacacccact

4501 ttgtccattt gcaaatatat tttggaaaac

10 //

5

20

25

30

35

H.sapiens mRNA for SCP1 protein.

ACCESSION X95654

15 VERSION X95654.1 GI:1212982 SEQ ID NO 596

translation="MEKQKPFALFVPPRSSSSQVSAVKPQTLGGDSTFFKSFNKCTED/ DLEFPFAKTNLSKNGENIDSDPALQKVNFLPVLEQVGNSDCHYQEGLKDSDLENSEGL SRVFSKLYKEAEKIKKWKVSTEAELRQKESKLQENRKIIEAQRKAIQELQFGNEKVSL KLEEGIQENKDLIKENNATRHLCNLLKETCARSAEKTKKYEYEREETRQVYMDLNNNI EKMITAHGELRVQAENSRLEMHFKLKEDYEKIQHLEQEYKKEINDKEKQVSLLLIQIT EKENKMKDLTFLLEESRDKVNQLEEKTKLQSENLKQSIEKQHHLTKELEDIKVSLQRS VSTQKALEEDLQIATKTICQLTEEKETQMEESNKARAAHSFVVTEFETTVCSLEELLR TEQQRLEKNEDQLKILTMELQKKSSELEEMTKLTNNKEVELEELKKVLGEKETLLYEN KQFEKIAEELKGTEQELIGLLQAREKEVHDLEIQLTAITTSEQYYSKEVKDLKTELEN EKLKNTELTSHCNKLSLENKELTQETSDMTLELKNQQEDINNNKKQEERMLKQIENLQ ETETQLRNELEYVREELKQKRDEVKCKLDKSEENCNNLRKQVENKNKYIEELQQENKA LKKKGTAESKQLNVYEIKVNKLELELESAKQKFGEITDTYQKEIEDKKISEENLLEEV EKAKVIADEAVKLQKEIDKRCQHKIAEMVALMEKHKHQYDKIIEERDSELGLYKSKEQ EQSSLRASLEIELSNLKAELLSVKKQLEIEREEKEKLKREAKENTATLKEKKDKKTQT FLLETPEIYWKLDSKAVPSQTVSRNFTSVDHGISKDKRDYLWTSAKNTLSTPLPKAYT VKTPTKPKLQQRENLNIPIEESKKKRKMAFEFDINSDSSETTDLLSMVSEEETLKTLY RNNNPPASHLCVKTPKKAPSSLTTPGPTLKFGAIRKMREDRWAVIAKMDRKKKLKEAE KLFV"

SEQ ID NO 597 ORIGIN

	1	gccctcatag	accgtttgtt	gtagttcgcg.	tgggaacagc	aacccacggt
5	ttcccgatag	Ī				
	61	ttcttcaaag	atatttacaa	ccgtaacaga	gaaaatggaa	aagcaaaagc
	cctttgcatt	;				
	121	gttcgtacca	ccgagatcaa	gcagcagtca	ggtgtctgcg	gtgaaacctc
•	agaccctggg	J				
10	181	aggcgattcc	actttcttca	agagtttcaa	caaatgtact	gaagatgatt
	tggagtttcc					
	241	atttgcaaag	actaatctct	ccaaaaatgg	ggaaaacatt	gattcagatc
	ctgctttaca					
	301	aaaagttaat	ttcttgcccg	tgcttgagca	ggttggtaat	tctgactgtc
15	actatcagga					
	361	aggactaaaa	gactctgatt	tggagaattc	agagggattg	agcagagtgt
	tttcaaaact					
	421	gtataaggag	gctgaaaaga	taaaaaaatg	gaaagtaagt	acagaagctg
	aactgagaca					
20	481	gaaagaaagt	aagttgcaag	aaaacagaaa	gataattgaa	gcacagcgaa
•	aagccattca					
	541	ggaactgcaa	tttggaaatg	aaaaagtaag	tttgaaatta	gaagaaggaa
	tacaagaaa					
~ *		taaagattta	ataaaagaga	ataatgccac	aaggcattta	tgtaatctac
25	tcaaagaaa					
		ctgtgctaga	tctgcagaaa	agacaaagaa	atatgaatat	gaacgggaag
	aaaccaggc					
		agtttatatg -	gatctaaata	ataacattga	gaaaatgata	acagereary
20	gggaacttc	-		an at ago not	~~~++++	ttaaaggaag
30		tgtgcaagct	gagaatteea	gactggaaat	gcattttaag	ccaaayyaay
	attatgaaa		akkannanna	22422222	~~~~~	~2.422.4422
		aatccaacac	crigaacaag	aatacaagaa	ggaaataaat	gacaayyaa
	agcaggtat		atoosastos	atasassas	222122221~	aaagatttaa
35	catttctgc	actactattg	accedaced	ocyayaaaya	aaacaaaacg	aaayattta
J.J	Jacobbegg	_				

	961	agaggaatcc	agagataaag	ttaatcaatt	agaggaaaag	acaaaattac
	agagtgaaaa	ı				
	1021	cttaaaacaa	tcaattgaga	aacagcatca	tttgactaaa	gaactagaag
	atattaaagt	:		•		
5	1081	gtcattacaa	agaagtgtga	gtactcaaaa	ggctttagag	gaagatttac
	agatagcaac	2				
	1141	aaaaacaatt	tgtcagctaa	ctgaagaaaa	agaaactcaa	atggaagaat
	ctaataaago	:				
	1201	tagagctgct	cattcgtttg	tggttactga	atttgaaact	actgtctgca
10	gcttggaaga	ı				
-	1261	attattgaga	acagaacagc	aaagattgga	aaaaaatgaa	gatcaattga
	aaatacttac	2				
	1321	catggagctt	caaaagaaat	caagtgagct	ggaagagatg	actaagctta
	caaataacaa	ι				•
15	1381	agaagtagaa	cttgaagaat	tgaaaaaagt	cttgggagaa	aaggaaacac
	ttttatatga	L				
	1441	aaataaacaa	tttgagaaga	ttgctgaaga	attaaaagga	acagaacaag
	aactaattgg	ī				
	1501	tcttctccaa	gccagagaga	aagaagtaca	tgatttggaa	atacagttaa
20	ctgccattac	:				
	1561	cacaagtgaa	cagtattatt	caaaagaggt.	taaagatcta	aaaactgagc
	ttgaaaacga					
	1621	gaagcttaag	aatactgaat	taacttcaca	ctgcaacaag	ctttcactag
	aaaacaaaga			•		
25	1681	gctcacacag	gaaacaagtg	atatgaccct	agaactcaag	aatcagcaag
	aagatattaa					
	1741	taataacaaa	aagcaagaag	aaaggatgtt	gaaacaaata	gaaaatcttc
	aagaaacaga					
	1801	aacccaatta	agaaatgaac	tagaatatgt	gagagaagag	ctaaaacaga
30	aaagagatga					
	1861	agttaaatgt	aaattggaca	agagtgaaga	aaattgtaac	aatttaagga
	aacaagttga					
	1921	aaataaaac	aagtatattg	aagaacttca	gcaggagaat	aaggccttga
	aaaaaaaagg					

	1981	tacagcagaa	agcaagcaac	tgaatgttta	tgagataaag	gtcaataaat
	tagagttaga					
	2041	actagaaagt	gccaaacaga	aatttggaga	aatcacagac	acctatcaga
	aagaaattga			•		
5	2101	ggacaaaaag	atatcagaag	aaaatctttt	ggaagaggtt	gagaaagcaa
	aagtaatagc					
	2161	tgatgaagca	gtaaaattac	agaaagaaat	tgataagcga	tgtcaacata
	aaatagctga					
	2221	aatggtagca	cttatggaaa	aacataagca	ccaatatgat	aagatcattg
10	aagaaagaga					
	2281	ctcagaatta	ggactttata	agagcaaaga	acaagaacag	tcatcactga
	gagcatcttt					
	2341	ggagattgaa	ctatccaatc	tcaaagctga	acttttgtct	gttaagaagc
	aacttgaaat		·			
15	2401	agaaagagaa	gagaaggaaa	aactcaaaag	agaggcaaaa	gaaaacacag
	ctactcttaa					
			gacaagaaaa	cacaaacatt	tttattggaa	acacctgaaa
	tttattggaa				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
20			aaagcagttc	cttcacaaac	tgtatetega	aattteacat
20	cagttgatca				et aga aa t at	aaaaaaata
			aaagataaaa	gagactatct	giggacator	gccaaaaata
	ctttatctac		226667	coatacea	200220222	aassaatsa
			aaggcatata	cagtgaagac	accaacaaaa	CCaaaaccac
25	agcaaagaga		atagggattg	aagaaagtaa [.]	2222220202	aaaatoocct
23	ttgaatttga	_	acacccaccy	aayaaaycaa	aaaaaaagaga	addaeggeee
			gatagttgag	aaactactga	tettttgage	atggtttcag
	aagaagaga		gacageecag	aaaccaccga	5000003430	
			ctotatagga	acaataatco	accagettet	catctttgtg
30	tcaaaacac		cogcacagga	404404450		
			cottoatoto	taacaacccc	togacctaca	ctgaagtttg
	gagctataag				- 33	5 . 5 5
		-	gaggaccgtt	gggctgtaat	tgctaaaatg	gatagaaaaa
	aaaaactaa		5 555		<u> </u>	
			•			

3001 agaagctgaa aagttatttg tttaatttca gagaatcagt gtagttaagg agcctaataa 3061 cgtgaaactt atagttaata ttttgttctt atttgccaga gccacatttt atctggaaqt 5 3121 tgagacttaa aaaatacttg catgaatgat ttgtgtttct ttatattttt agcctaaatg 3181 ttaactacat attgtctgga aacctgtcat tgtattcaga taattagatg attatatatt 3241 gttgttactt tttcttgtat tcatgaaaac tgtttttact aagttttcaa 10 atttqtaaaq 3301 ttagectttg aatgetagga atgeattatt gagggteatt etttattett tactattaaa 3361 atattttgga tgcaaaaaaa aaaaaaaaa aaa // 15 Homo sapiens synovial sarcoma, X breakpoint 4 (SSX4), mRNA. ACCESSION NM_005636 VERSION NM 005636.1 GI:5032122 20 SEQ ID NO 598 /translation="MNGDDAFARRPRDDAQISEKLRKAFDDIAKYFSKKEWEKMKSSEKIVY VYMKLNYEVMTKLGFKVTLPPFMRSKRAADFHGNDFGNDRNHRNQVERPQMTFG SLQRIFPKIMPKKPAEEENGLKEVPEASGPQNDGKQLCPPGNPSTLEKINKTSGPKRG 25 KHAWTHRLRERKQLVVYEEISDPEEDDE" SEQ ID NO 599 ORIGIN 1 atgaacggag acgacgcctt tgcaaggaga cccagggatg atgctcaaat 30 atcagagaag 61 ttacgaaagg ccttcgatga tattgccaaa tacttctcta agaaagagtg ggaaaagatg 121 aaateetegg agaaaategt etatgtgtat atgaagetaa actatgaggt catgactaaa

181 ctaggtttca aggtcacct cccacctttc atgegtagta aacgggctgc
agacttccac

241 gggaatgatt ttggtaacga tcgaaaccac aggaatcagg ttgaacgtcc
tcagatgact

5 301 ttcggcagcc tccagagaat cttcccgaag atcatgcca agaagcagc
agaggaagaa

361 aatggtttga aggaagtgcc agaggcatct ggcccacaaa atgatgggaa
acagctgtgc

421 cccccgggaa atccaagtac cttggagaag attaacaaga catctggacc

421 cccccgggaa atccaagtac cttggagaag attaacaaga catctggacc

481 aaacatgcct ggacccacag actgcgtgag agaaagcagc tggtggttta
tgaagagatc

541 agcgaccctg aggaagatga cgagtaactc ccctcg

All patents and publications mentioned in the specification are indicative of the levels of those skilled in the art to which the invention pertains.

15

20

25

The invention illustratively described herein suitably may be practiced in the absence of any element or elements, limitation or limitations which is not specifically disclosed herein. The terms and expressions which have been employed are used as terms of description and not of limitation, and there is no intention that in the use of such terms and expressions indicates the exclusion of equivalents of the features shown and described or portions thereof. It is recognized that various modifications are possible within the scope of the invention claimed. Thus, it should be understood that although the present invention has been specifically disclosed by preferred embodiments and optional features, modification and variation of the concepts herein disclosed may be resorted to by those skilled in the art, and that such modifications and variations are considered to be within the scope of this invention as defined by the appended claims.

WHAT IS CLAIMED IS:

5

10

15

20

25

30

35

1. An isolated epitope, comprising a component selected from the group consisting of:

- (i) a polypeptide having the sequence as disclosed in TABLE 1;
- (ii) an epitope cluster comprising the polypeptide of (i);
- (iii) a polypeptide having substantial similarity to (i) or (ii);
- (iv) a polypeptide having functional similarity to any of (i) through (iii); and
- (v) a nucleic acid encoding the polypeptide of any of (i) through (iv).
- 2. The epitope of claim 1, wherein the epitope is immunologically active.
- 3. The epitope of claim 1, wherein the polypeptide is less than about 30 amino acids in length.
 - 4. The epitope of claim 1, wherein the polypeptide is 8 to 10 amino acids in length.
 - 5. The epitope of claim 1, wherein the substantial or functional similarity comprises addition of at least one amino acid.
 - 6. The epitope of claim 5, wherein the at least one additional amino acid is at an N-terminus of the polypeptide.
 - 7. The epitope of claim 1, wherein the substantial or functional similarity comprises a substitution of at least one amino acid.
 - 8. The epitope of claim 1, the polypeptide having affinity to an HLA-A2 molecule.
 - 9. The epitope of claim 8, wherein the affinity is determined by an assay of binding.
 - 10. The epitope of claim 8, wherein the affinity is determined by an assay of restriction of epitope recognition.
 - 11. The epitope of claim 8, wherein the affinity is determined by a prediction algorithm.
- 12. The epitope of claim 1, the polypeptide having affinity to an HLA-B7 or HLA-B51 molecule.
 - 13. The epitope of claim 1, wherein the polypeptide is a housekeeping epitope.
- 14. The epitope of claim 1, wherein the polypeptide corresponds to an epitope displayed on a tumor cell.
- 15. The epitope of claim 1, wherein the polypeptide corresponds to an epitope displayed on a neovasculature cell.
 - 16. The epitope of claim 1, wherein the polypeptide is an immune epitope.
 - 17. The epitope of claim 1 wherein the epitope is a nucleic acid.
- 18. A pharmaceutical composition comprising the polypeptide of claim 1 and a pharmaceutically acceptable adjuvant, carrier, diluent, or excipient.

- 19. The composition of claim 18, where the adjuvant is a polynucleotide.
- 20. The composition of claim 19 wherein the polynucleotide comprises a dinucleotide.
- 21. The composition of claim 20 wherein the dinucleotide is CpG.
- 22. The composition of claim 18, wherein the adjuvant is encoded by a polynucleotide.
- 23. The composition of claim 18 wherein the adjuvant is a cytokine.
- 24. The composition of claim 23 wherein the cytokine is GM-CSF.
- 25. The composition of claim 18 further comprising a professional antigen-presenting cell (pAPC).
 - 26. The composition of claim 25, wherein the pAPC is a dendritic cell.
- The composition of claim 18, further comprising a second epitope.

5

20

25

- 28. The composition of claim 27, wherein the second epitope is a polypeptide.
- 29. The composition of claim 27, wherein the second epitope is a nucleic acid.
- 30. The composition of claim 27, wherein the second epitope is a housekeeping epitope.
- The composition of claim 27, wherein the second epitope is an immune epitope.
 - 32. A pharmaceutical composition comprising the nucleic acid of claim 1 and a pharmaceutically acceptable adjuvant, carrier, diluent, or excipient.
 - 33. A recombinant construct comprising the nucleic acid of Claim 1.
 - 34. The construct of claim 33, further comprising a plasmid, a viral vector, or an artificial chromosome.
 - 35. The construct of claim 33, further comprising a sequence encoding at least one feature selected from the group consisting of a second epitope, an IRES, an ISS, an NIS, and ubiquitin.
 - 36. A purified antibody that specifically binds to the epitope of claim 1.
 - 37. A purified antibody that specifically binds to a peptide-MHC protein complex comprising the epitope of claim 1.
 - 38. The antibody of claim 36 or claim 37, wherein the antibody is a monoclonal antibody.
 - 39. A multimeric MHC-peptide complex comprising the epitope of claim 1.
- 40. An isolated T cell expressing a T cell receptor specific for an MHC-peptide complex, the complex comprising the epitope of claim 1.
 - 41. The T cell of claim 40, produced by an *in vitro* immunization.
 - 42. The T cell of claim 40, isolated from an immunized animal.
 - 43. A T cell clone comprising the T cell of claim 40.
- 35 44. A polyclonal population of T cells comprising the T cell of claim 40.

45. A pharmaceutical composition comprising the T cell of claim 40 and a pharmaceutically acceptable adjuvant, carrier, diluent, or excipient.

- 46. An isolated protein molecule comprising the binding domain of a T cell receptor specific for an MHC-peptide complex, the complex comprising the epitope of claim 1.
 - 47. The protein of claim 46, wherein the protein is multivalent.

5

10

15

20

25

30

- 48. An isolated nucleic acid encoding the protein of claim 46.
- 49. A recombinant construct comprising the nucleic acid of claim 48.
- 50. A host cell expressing the recombinant construct, the construct comprising the nucleic acid of claim 1, or the construct encoding a protein molecule comprising the binding domain of a T cell receptor specific for an MHC-peptide complex.
- 51. The host cell of claim 50, wherein the host cell is a dendritic cell, macrophage, tumor cell, or tumor-derived cell.
- 52. The host cell of claim 50, wherein the host cell is a bacterium, fungus, or protozoan.
- 53. A pharmaceutical composition comprising the host cell of claim 50 and a pharmaceutically acceptable adjuvant, carrier, diluent, or excipient.
- 54. A vaccine or immunotherapeutic composition comprising at least one component selected from the group consisting of the epitope of claim 1; the composition of claim 18, 32, or 45, the construct of claim 33; the T cell of claim 40, a host cell expressing a recombinant construct comprising a nucleic acid encoding a T cell receptor binding domain specific for an MHC-peptide complex and a composition comprising the same, and a host cell expressing a recombinant construct comprising the nucleic acid of claim 1 and a composition comprising the same.
 - 55. A method of treating an animal, comprising: administering to an animal the vaccine or immunotherapeutic composition of claim 54.
- 56. The method of claim 55, wherein the administering step comprises a mode of delivery selected from the group consisting of transdermal, intranodal, perinodal, oral, intravenous, intradermal, intramuscular, intraperitoneal, mucosal, aerosol inhalation, and instillation.
- 57. The method of claim 55, further comprising a step of assaying to determine a characteristic indicative of a state of a target cell or target cells.
- 58. The method of claim 57, comprising a first assaying step and a second assaying step, wherein the first assaying step precedes the administering step, and wherein the second assaying step follows the administering step.

59. The method of claim 58, further comprising a step of comparing the characteristic determined in the first assaying step with the characteristic determined in the second assaying step to obtain a result.

- 60. The method of claim 59, wherein the result is selected from the group consisting of: evidence of an immune response, a diminution in number of target cells, a loss of mass or size of a tumor comprising target cells, a decrease in number or concentration of an intracellular parasite infecting target cells.
- 61. A method of evaluating immunogenicity of a vaccine or immunotherapeutic composition, comprising:

administering to an animal the vaccine or immunotherapeutic composition of claim 54; and

evaluating immunogenicity based on a characteristic of the animal.

- 62. The method of claim 61, wherein the animal is HLA-transgenic.
- 63. A method of evaluating immunogenicity, comprising:

in vitro stimulation of a T cell with the vaccine or immunotherapeutic composition of claim 54; and

evaluating immunogenicity based on a characteristic of the T cell.

- 64. The method of claim 63, wherein the stimulation is a primary stimulation.
- 65. A method of making a passive/adoptive immunotherapeutic, comprising:

combining the T cell of claim 40, or a host cell expressing a recombinant construct comprising a nucleic acid encoding a T cell receptor binding domain specific for an MHC-peptide complex, or a host cell expressing a recombinant construct comprising the nucleic acid of claim 1 with a pharmaceutically acceptable adjuvant, carrier, diluent, or excipient.

- 66. A method of determining specific T cell frequency comprising the step of contacting T cells with a MHC-peptide complex comprising the epitope of claim 1.
- 67. The method of claim 66, wherein the contacting step comprises at least one feature selected from the group consisting of immunization, restimulation, detection, and enumeration.
- 68. The method of Claim 66, further comprising ELISPOT analysis, limiting dilution analysis, flow cytometry, in situ hybridization, the polymerase chain reaction or any combination thereof.
- 69. A method of evaluating immunologic response, comprising the method of claim 66 carried out prior to and subsequent to an immunization step.
 - 70. A method of evaluating immunologic response, comprising:

10

5

15

20

25

30

determining frequency, cytokine production, or cytolytic activity of T cells, prior to and subsequent to a step of stimulation with MHC-peptide complexes comprising the epitope of claim 1.

71. A method of diagnosing a disease comprising:

5

10

contacting a subject tissue with at least one component selected from the group consisting of the T cell of claim 40, the host cell of claim 50, the antibody of claim 36, and the protein of claim 46; and

diagnosing the disease based on a characteristic of the tissue or of the component.

72. The method of claim 71, wherein the contacting step takes place in vivo.

73. The method of claim 71, wherein the contacting step takes place in vitro.

74. A method of making a vaccine, comprising:

combining at least one component selected from the group consisting of the epitope of claim 1; the composition of claim 18, 32, 45, or 53; the construct of claim 33; the T cell of claim 40, and the host cell of claim 50, with a pharmaceutically acceptable adjuvant, carrier, diluent, or excipient.

15

75. A computer readable medium having recorded thereon the sequence of any one of SEQ ID NOS: 1-602, in a machine having a hardware or software that calculates the physical, biochemical, immunologic, or molecular genetic properties of a molecule embodying said sequence.

20

76. A method of treating an animal comprising combining the method of claim 55 combined with at least one mode of treatment selected from the group of radiation therapy, chemotherapy, biochemotherapy, and surgery.

25

77. An isolated polypeptide comprising an epitope cluster from a target-associated antigen having the sequence as disclosed in Tables 25-44, wherein the amino acid sequence consists of not more than about 80% of the amino acid sequence of the antigen.

78. A vaccine or immunotherapeutic product comprising the polypeptide of claim 78.

- 79. An isolated polynucleotide encoding the polypeptide of claim 78.
- 80. A vaccine or immunotherapeutic product comprising the polynucleotide of claim

30

80.

- 81. The polynucleotide of claim 79 or 80, wherein the polynucleotide is DNA.
- 82. The polynucleotide of claim 79 or 80, wherein the polynucleotide is RNA.

ARASGPRGGAPRGPHGGAASAQDGRCPCGARRPDSRLLQLHITMPFSSPM

(51)

Consensus

Woned Checaterance coecience con a coecerace con a coecerace coece noadgosteggetegdangegggerenepgeggnaggengerenegergereergar Noargonstgestegangegggerepgeggnaggreergergergreer MQAEGRGTGGSTGDADGPGGPGTPDGPGGNAGGPGEAGATGGRGPRGAGA ARABERI GEGERRER REGEREN BEGEREGER GERER BEREFER BANDER FRANDER (51)(51)(51)(51)(51)(51)(51)NY-ESO CAA11044 -LAGE-1a CAA10194 - LAGE-1s CAA11043 - LAGE-1b AAH02883 CT-2 Consensus CTAG_HUMAN NY-ESO AAD05202 - CAG-3 CAA11044 -LAGE-1a CAA10194 - LAGE-1s CAA11043 - LAGE-1b CAA10196 - LAGE-1L CAA10196 - LAGE-1L AAH02833 CT-2 CTAG HUMAN AAD05202

									•								
101 150	13.50	(101) EXECUTABLE SERVICES OF PROPERTY SERVICES OF SERV	(101) EGENERALE SKOPAPETER BERNERANE SKOPETS SELVEN SKOPATER SKOPA	(101) Invitable Religious September 1980 Contraction of the Contractio	(101) 西海其水林原和高水南南南南南南南南水南南南南南南南南南南南南南南南南南南南南南南	(101) 医美国动物的外外的人的人,他们是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	(101) ERRINGRIDGE PROPERTY OF THE SECOND OF THE GAGRANT	(101) EAELVRRILSRDAAPLPRPGAVLKDFTVSGNLLFIRLTAADHRQLQLSIS	151 200	(151) (36年20年2月11年11年11年11年11年11年11年11年11年11年11年11年11年	(151) 医低级的结构的 化二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	(151) (3)(3)(3)(3)(3)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)(4)	(151) 医试验检验检验检验检验检验检验检验检验检验检验检验检验检验检验检验检验检验检验检	(151) VGWGLG图ASPEGQKARDLRTPKHKV图E图图PGTPGPPPFEGAQGDGCRGVA	(151) VGWGLG图ASPEGQKARDLRTPKHKV图E图图PGTPGPPPFEGAQGDGCRGVA	(151) VGWGLG图ASPEGQKARDLRTPKHKV图E图图PGTPGPPPFEGAQGDGCRGVA	(151) SCLQQLSLLMWITQCFLPVFLAQ PSGQRR
-	Z	AAD05202 - CAG-3	CAA11044 -LAGE-1a	CAA10194 - LAGE-1s	CAA11043 - LAGE-1b	CAA10196 - LAGE-1L	AAH02833 CT-2	Consensus		CTAG_HUMAN NY-ESO	AAD05202 - CAG-3	CAA11044 -LAGE-1a	CAA10194 - LAGE-1s	CAA11043 - LAGE-1b	CAA10196 - LAGE-1L	AAH02833 CT-2	Consensus

FIG. 11

FNVMFSAPHI FNVMFSAPHI FNVMFSAPHI 201 (201)(201) (201) (201) (181)(181)(181)CAA11044 -LAGE-la CAA10194 - LAGE-1s CAA11043 - LAGE-1b CAA10196 - LAGE-1L AAH02833 CT-2 Consensus NY-ESO - CAG-3 CTAG_HUMAN AAD05202 -

FIG. 1C

4/23

FACscan Analysis of Binding Assay to Determine the Binding Ability of Tyrosinase 208-216 Peptide to MHC Class 1

F1 (HLA A2 Peptide) = 3.13F1 (TYR 207-215 Peptide) = 2.00

HLA A2 restricted and tyrosinase specific lysis by CTL from Tyr207-215 IVS blood

FIG. 3C

CTL from Tyr 207-215 IVS blood

FIG. 4

⁻1G. 6

Pool sequencing of PSMA_163-192 Digested for 60 min by proteasome

Pool sequencing of PSMA_163-192 Digested for 60 min by proteasome

13/23

Pool sequencing of $PSMA_163-192$ Digested for 60 min by proteasome

FIG. 8

Pool sequencing of PSMA_281_310 Digested for 60 min by Proteasome

16/23

FIG. 10

Autologous DC Present A1 Peptide to CD8 T cell

FIG. 11

Secretion of IFNgama Was Blocked by Anti-A1 Antibody

FIG. 12

Comparison of Peptides Binding Affinity to HLA A2 by Binding Assay

Comparison of Peptides Binding Affinity to HLA A2 by Binding Assay

FIG. 14

Concentration of Peptides (ug/ml)

Graphs show lysis of unpulsed EL4 cells (open circles) and EL4 cells pulsed with gp33 peptide (solid triangles). Symbols represent individual mice and one of three similar experiments is shown.

Days after tumor challenge

Mean tumor volumes \pm 1SD are shown for mice immunized with pEFGPL33A DNA (solid circles) or control pEGFP-N3 DNA (open triangles). Numbers in brackets indicate number of mice with tumors/total number of mice in group. One of two similar experiments is shown.

PICOGRAMS DNA

SEQUENCE LISTING

<110> CTL IMMUNO THERAPIES CORP. SIMARD, John, J.L. DIAMOND, David, C. LIU, Liping XIE, Zhidong <120> EPITOPE SEQUENCES <130> CTLIMM.027QPC <150> US 60/282,211 <151> 2001-04-06 <150> US 60/337,017 <151> 2001-11-07 <150> US 60/363,210 <151> 2002-07-03 <160> 602 <170> FastSEQ for Windows Version 4.0 <210> 1 <211> 10 <212> PRT <213> Homo sapiens <400> 1 Phe Leu Pro Trp His Arg Leu Phe Leu Leu 5 <210> 2 <211> 529 <212> PRT <213> Homo sapiens <400> 2 Met Leu Leu Ala Val Leu Tyr Cys Leu Leu Trp Ser Phe Gln Thr Ser 5 10 Ala Gly His Phe Pro Arg Ala Cys Val Ser Ser Lys Asn Leu Met Glu 25 Lys Glu Cys Cys Pro Pro Trp Ser Gly Asp Arg Ser Pro Cys Gly Gln 40 · Leu Ser Gly Arg Gly Ser Cys Gln Asn Ile Leu Leu Ser Asn Ala Pro 55 Leu Gly Pro Gln Phe Pro Phe Thr Gly Val Asp Asp Arg Glu Ser Trp 70 75 Pro Ser Val Phe Tyr Asn Arg Thr Cys Gln Cys Ser Gly Asn Phe Met 85 Gly Phe Asn Cys Gly Asn Cys Lys Phe Gly Phe Trp Gly Pro Asn Cys 105

Thr	Glu	Arg 115	Arg	Leu	Leu	Val	Arg	Arg	Asn	Ile	Phe	Asp 125	Leu	Ser	Ala
Pro	Glu 130		Asp	Lys	Phe	Phe		Tyr	Leu	Thr	Leu 140		Lys	His	Thr
Ile 145		Ser	Asp	Tyr	Val 150		Pro	Ile	Gly	Thr 155		Gly	Gln	Met	Lys 160
Asn	Gly	Ser	Thr	Pro 165		Phe	Asn	Asp	Ile 170	Asn	Ile	Tyr	Asp	Leu 175	
Val	Trp	Met	His 180	Tyr	Tyr	Val	Ser	Met 185	Asp	Ala	Leu	Leu	Gly 190	Gly	Ser
		195	Arg	_		-	200					205			
	210		Arg			215		_	_		220				-
225		_	Asp		230					235	_		_	_	240
			Сув	245		•			250					255	
			Pro 260					265					270		-
		275	Cys		_		280		_			285			
	290		Thr			295					300				
305	_		Arg		310	_				315		_			320
_			Leu	325		-			330			-	_	335	
			Phe 340 Asp					345	_				350		
		355	Gly				360					365			
	370		Leu			375				_	380			_	•
385			His		390				_	395					400
			His	405					410	_				415	
		-	420 Gly		•			425					430		
Tyr	Ser	435 Tyr	Leu	Gln	Asp	Ser	440 Asp	Pro	Asp	Ser	Phe	445 Gln	Asp	Tyr	- Ile
	450					455					460				Gly
465			Val		470			-		475					480
Ser	Leu	Leu	Сув	485 Arg	His	Lys	Arg	Lys	490 Gln	Leu	Pro	Glu	Glu	495 Lys	Gln
			500 Met					505					510		
Leu		515					520					525			

<210> 3

<211> 188 <212> PRT <213> Homo sapiens <400> 3 Met Asn Gly Asp Asp Ala Phe Ala Arg Arg Pro Thr Val Gly Ala Gln 10 Ile Pro Glu Lys Ile Gln Lys Ala Phe Asp Asp Ile Ala Lys Tyr Phe 25 Ser Lys Glu Glu Trp Glu Lys Met Lys Ala Ser Glu Lys Ile Phe Tyr Val Tyr Met Lys Arg Lys Tyr Glu Ala Met Thr Lys Leu Gly Phe Lys 55 Ala Thr Leu Pro Pro Phe Met Cys Asn Lys Arg Ala Glu Asp Phe Gln Gly Asn Asp Leu Asp Asn Asp Pro Asn Arg Gly Asn Gln Val Glu Arg 90 Pro Gln Met Thr Phe Gly Arg Leu Gln Gly Ile Ser Pro Lys Ile Met 105 Pro Lys Lys Pro Ala Glu Glu Gly Asn Asp Ser Glu Glu Val Pro Glu 115 120 125 Ala Ser Gly Pro Gln Asn Asp Gly Lys Glu Leu Cys Pro Pro Gly Lys 135 Pro Thr Thr Ser Glu Lys Ile His Glu Arg Ser Gly Pro Lys Arg Gly 150 155 Glu His Ala Trp Thr His Arg Leu Arg Glu Arg Lys Gln Leu Val Ile 165 170 Tyr Glu Glu Ile Ser Asp Pro Glu Glu Asp Asp Glu <210> 4 <211> 750 <212> PRT <213> Homo sapiens <400> 4 Met Trp Asn Leu Leu His Glu Thr Asp Ser Ala Val Ala Thr Ala Arg 10 Arg Pro Arg Trp Leu Cys Ala Gly Ala Leu Val Leu Ala Gly Gly Phe Phe Leu Leu Gly Phe Leu Phe Gly Trp Phe Ile Lys Ser Ser Asn Glu 40 Ala Thr Asn Ile Thr Pro Lys His Asn Met Lys Ala Phe Leu Asp Glu 55 Leu Lys Ala Glu Asn Ile Lys Lys Phe Leu Tyr Asn Phe Thr Gln Ile 75 Pro His Leu Ala Gly Thr Glu Gln Asn Phe Gln Leu Ala Lys Gln Ile 90 Gln Ser Gln Trp Lys Glu Phe Gly Leu Asp Ser Val Glu Leu Ala His 105 Tyr Asp Val Leu Leu Ser Tyr Pro Asn Lys Thr His Pro Asn Tyr Ile 120

140 155

Ser Ile Ile Asn Glu Asp Gly Asn Glu Ile Phe Asn Thr Ser Leu Phe

Glu Pro Pro Pro Pro Gly Tyr Glu Asn Val Ser Asp Ile Val Pro Pro

135

Phe Ser Ala Phe Ser Pro Gln Gly Met Pro Glu Gly Asp Leu Val Tyr 170 175 Val Asn Tyr Ala Arg Thr Glu Asp Phe Phe Lys Leu Glu Arg Asp Met 185 Lys Ile Asn Cys Ser Gly Lys Ile Val Ile Ala Arg Tyr Gly Lys Val 200 Phe Arg Gly Asn Lys Val Lys Asn Ala Gln Leu Ala Gly Ala Lys Gly 215 Val Ile Leu Tyr Ser Asp Pro Ala Asp Tyr Phe Ala Pro Gly Val Lys 230 Ser Tyr Pro Asp Gly Trp Asn Leu Pro Gly Gly Gly Val Gln Arg Gly 245 250 Asn Ile Leu Asn Leu Asn Gly Ala Gly Asp Pro Leu Thr Pro Gly Tyr 265 Pro Ala Asn Glu Tyr Ala Tyr Arg Arg Gly Ile Ala Glu Ala Val Gly 280 Leu Pro Ser Ile Pro Val His Pro Ile Gly Tyr Tyr Asp Ala Gln Lys 295 300 Leu Leu Glu Lys Met Gly Gly Ser Ala Pro Pro Asp Ser Ser Trp Arg 310 315 Gly Ser Leu Lys Val Pro Tyr Asn Val Gly Pro Gly Phe Thr Gly Asn 330 Phe Ser Thr Gln Lys Val Lys Met His Ile His Ser Thr Asn Glu Val 345 Thr Arg Ile Tyr Asn Val Ile Gly Thr Leu Arg Gly Ala Val Glu Pro 360 Asp Arg Tyr Val Ile Leu Gly Gly His Arg Asp Ser Trp Val Phe Gly 375 380 Gly Ile Asp Pro Gln Ser Gly Ala Ala Val Val His Glu Ile Val Arg 390 395 Ser Phe Gly Thr Leu Lys Lys Glu Gly Trp Arg Pro Arg Arg Thr Ile 405 410 Leu Phe Ala Ser Trp Asp Ala Glu Glu Phe Gly Leu Leu Gly Ser Thr 420 425 Glu Trp Ala Glu Glu Asn Ser Arg Leu Leu Gln Glu Arg Gly Val Ala 435 440 445 Tyr Ile Asn Ala Asp Ser Ser Ile Glu Gly Asn Tyr Thr Leu Arg Val 455 460 Asp Cys Thr Pro Leu Met Tyr Ser Leu Val His Asn Leu Thr Lys Glu 470 Leu Lys Ser Pro Asp Glu Gly Phe Glu Gly Lys Ser Leu Tyr Glu Ser 485 490 495 Trp Thr Lys Lys Ser Pro Ser Pro Glu Phe Ser Gly Met Pro Arg Ile 505 510 Ser Lys Leu Gly Ser Gly Asn Asp Phe Glu Val Phe Phe Gln Arg Leu 520 Gly Ile Ala Ser Gly Arg Ala Arg Tyr Thr Lys Asn Trp Glu Thr Asn 535 Lys Phe Ser Gly Tyr Pro Leu Tyr His Ser Val Tyr Glu Thr Tyr Glu 550 555 Leu Val Glu Lys Phe Tyr Asp Pro Met Phe Lys Tyr His Leu Thr Val 570 Ala Gln Val Arg Gly Gly Met Val Phe Glu Leu Ala Asn Ser Ile Val 580 585 Leu Pro Phe Asp Cys Arg Asp Tyr Ala Val Val Leu Arg Lys Tyr Ala 600 Asp Lys Ile Tyr Ser Ile Ser Met Lys His Pro Gln Glu Met Lys Thr

```
610
                          615
                                              620
  Tyr Ser Val Ser Phe Asp Ser Leu Phe Ser Ala Val Lys Asn Phe Thr
                      630
                                          635
  Glu Ile Ala Ser Lys Phe Ser Glu Arg Leu Gln Asp Phe Asp Lys Ser
                                      650
 Asn Pro Ile Val Leu Arg Met Met Asn Asp Gln Leu Met Phe Leu Glu
                                                          655
              660
                                  665
 Arg Ala Phe Ile Asp Pro Leu Gly Leu Pro Asp Arg Pro Phe Tyr Arg
                              680
                                                  685
 His Val Ile Tyr Ala Pro Ser Ser His Asn Lys Tyr Ala Gly Glu Ser
                          695
                                              700
 Phe Pro Gly Ile Tyr Asp Ala Leu Phe Asp Ile Glu Ser Lys Val Asp
                      710
                                          715
 Pro Ser Lys Ala Trp Gly Glu Val Lys Arg Gln Ile Tyr Val Ala Ala
                 725
                                     730
 Phe Thr Val Gln Ala Ala Glu Thr Leu Ser Glu Val Ala
 <210> 5
 <211> 1964
 <212> DNA
 <213> Homo sapiens
 <400> 5
 atcactgtag tagtagctgg aaagagaaat ctgtgactcc aattagccag ttcctgcaga 60
 cettgtgagg actagaggaa gaatgeteet ggetgttttg tactgeetge tgtggagttt 120
 ccagacetec getggccatt tecetagage etgtgtetec tetaagaace tgatggagaa 180
ggaatgetgt ccaccgtgga gcggggacag gagtccctgt ggccagcttt caggcagagg 240
tteetgteag aatateette tgteeaatge accaettggg ceteaattte cetteacagg 300
ggtggatgac cgggagtcgt ggcettccgt cttttataat aggacetgcc agtgctctgg 360
caacttcatg ggattcaact gtggaaactg caagtttggc ttttggggac caaactgcac 420
agagagacga ctcttggtga gaagaaacat cttcgatttg agtgccccag agaaggacaa 480
attitttgcc tacctcactt tagcaaagca taccatcagc tcagactatg tcatccccat 540
agggacctat ggccaaatga aaaatggatc aacacccatg tttaacgaca tcaatattta 600
tgacctcttt gtctggatgc attattatgt gtcaatggat gcactgcttg ggggatctga 660
aatetggaga gacattgatt ttgcccatga agcaccaget tttetgcctt ggcatagact 720
cttcttgttg cggtgggaac aagaaatcca gaagctgaca ggagatgaaa acttcactat 780
tccatattgg gactggcggg atgcagaaaa gtgtgacatt tgcacagatg agtacatggg 840
aggtcagcac cccacaaatc ctaacttact cagcccagca tcattcttct cctcttggca 900
gattgtctgt agccgattgg aggagtacaa cagccatcag tctttatgca atggaacgcc 960
cgagggacct ttacggcgta atcctggaaa ccatgacaaa tccagaaccc caaggctccc 1020
ctcttcagct gatgtagaat tttgcctgag tttgacccaa tatgaatctg gttccatgga 1080
taaagctgcc aatttcagct ttagaaatac actggaagga tttgctagtc cacttactgg 1140
gatageggat geeteteaaa geageatgea caatgeettg cacatetata tgaatggaac 1200
aatgteecag gtacagggat etgecaacga teetatette ettetteace atgeatttgt 1260
tgacagtatt tttgagcagt ggctccgaag gcaccgtcct cttcaagaag tttatccaga 1320
agccaatgca cccattggac ataaccggga atcctacatg gttcctttta taccactgta 1380
cagaaatggt gatttettta ttteateeaa agatetggge tatgaetata getatetaca 1440
agattcagac ccagactett ttcaagacta cattaagtcc tatttggaac aagegagtcg 1500
gatetggtca tggctccttg gggcggcgat ggtaggggcc gtcctcactg ccctgctggc 1560
agggettgtg agettgetgt gtegteacaa gagaaageag etteetgaag aaaageagee 1620
actectcatg gagaaagagg attaccacag ettgtatcag agceatttat aaaaggetta 1680
ggcaatagag tagggccaaa aagcctgacc tcactctaac tcaaagtaat gtccaggttc 1740
ccagagaata tctgctggta tttttctgta aagaccattt gcaaaattgt aacctaatac 1800
aaagtgtagc cttcttccaa ctcaggtaga acacacctgt ctttgtcttg ctgttttcac 1860
tcagccettt taacatttte ccctaagece atatgtetaa ggaaaggatg ctatttggta 1920
```

```
atgaggaact gttatttgta tgtgaattaa agtgctctta tttt
                                                                  1964
<210> 6
<211> 766
<212> DNA
<213> Homo sapiens
<400> 6
ctctctttcg attcttccat actcagagta cgcacggtct gattttctct ttggattctt 60
ccaaaatcag agtcagactg ctcccggtgc catgaacgga gacgacgcct ttgcaaggag 120
acceaeggtt ggtgeteaaa taceagagaa gateeaaaag geettegatg atattgeeaa 180
atacttetet aaggaagagt gggaaaagat gaaageeteg gagaaaatet tetatgtgta 240
tatgaagaga aagtatgagg ctatgactaa actaggtttc aaggccaccc tcccaccttt 300
catgtgtaat aaacgggccg aagacttcca ggggaatgat ttggataatg accctaaccq 360
tgggaatcag gttgaacgtc ctcagatgac tttcggcagg ctccagggaa tctccccgaa 420
gatcatgccc aagaagccag cagaggaagg aaatgattcg gaggaagtgc cagaagcatc 480
tggcccacaa aatgatggga aagagctgtg ccccccggga aaaccaacta cctctgagaa 540
gattcacgag agatctggac ccaaaagggg ggaacatgcc tggacccaca gactgcgtga 600
gagaaaacag ctggtgattt atgaagagat cagcgaccct gaggaagatg acgagtaact 660
cccctcaggg atacgacaca tgcccatgat gagaagcaga acgtggtgac ctttcacgaa 720
catgggcatg gctgcggacc cctcgtcatc aggtgcatag caagtg
                                                                  766
<210> 7
<211> 2653
<212> DNA
<213> Homo sapiens
<400> 7
ctcaaaaggg gccggatttc cttctcctgg aggcagatgt tgcctctctc tctcgctcgg 60
attggttcag tgcactctag aaacactgct gtggtggaga aactggaccc caggtctgga 120
gcgaattcca gcctgcaggg ctgataagcg aggcattagt gagattgaga gagactttac 180
cccgccgtgg tggttggagg gcgcgcagta gagcagcagc acaggcgcgg gtcccgggag 240
gccggctctg ctcgcgccga gatgtggaat ctccttcacg aaaccgactc ggctgtggcc 300
accgcgcgcc gcccgcgctg gctgtgcgct gqqgcgctqq tqctqqcqqq tqqcttcttt 360
ctcctcggct tcctcttcgg gtggtttata aaatcctcca atgaagctac taacattact 420
ccaaagcata atatgaaagc atttttggat gaattgaaag ctgagaacat caagaagttc 480
ttatataatt ttacacagat accacattta gcaggaacag aacaaaactt tcagcttgca 540
aagcaaattc aatcccagtg gaaagaattt ggcctggatt ctgttgagct agcacattat 600
gatgtcctgt tgtcctaccc aaataagact catcccaact acatctcaat aattaatgaa 660
gatggaaatg agattttcaa cacatcatta tttqaaccac ctcctccagg atatqaaaat 720
gtttcggata ttgtaccacc tttcagtgct ttctctcctc aaggaatgcc agagggcgat 780
ctagtgtatg ttaactatgc acgaactgaa gacttcttta aattggaacg ggacatgaaa 840
atcaattgct ctgggaaaat tgtaattgcc agatatqqqa aaqttttcaq aggaaataaq 900
gttaaaaatg cccagctggc aggggccaaa qqaqtcattc tctactccga ccctqctqac 960
tactttgctc ctggggtgaa gtcctatcca gatggttgga atcttcctgg aggtggtgtc 1020
cagegtggaa atateetaaa tetgaatggt geaggagaee eteteacaee aggttaceea 1080
gcaaatgaat atgcttatag gcgtggaatt gcagaggctg ttggtcttcc aagtattcct 1140
gttcatccaa ttggatacta tgatgcacag aagctcctag aaaaaatggg tggctcagca 1200
ccaccagata gcagctggag aggaagtete aaagtgeeet acaatgttgg acetggettt 1260
actggaaact tttctacaca aaaagtcaag atgcacatcc actctaccaa tgaagtgaca 1320
agaatttaca atgtgatagg tactctcaga ggagcagtgg aaccagacag atatgtcatt 1380
ctgggaggtc accgggactc atgggtgttt ggtggtattg accctcagag tggagcagct 1440
gttgttcatg aaattgtgag gagctttgga acactgaaaa aggaagggtg gagacctaga 1500
agaacaattt tgtttgcaag ctgggatgca gaagaatttg gtcttcttgg ttctactgag 1560
tgggcagagg agaattcaag actccttcaa gagcgtggcg tggcttatat taatgctgac 1620
tcatctatag aaggaaacta cactctgaga gttgattgta caccgctgat gtacagcttg 1680
gtacacaacc taacaaaaga gctgaaaagc cctgatgaag gctttgaagg caaatctctt 1740
```

```
tatgaaagtt ggactaaaaa aagtccttcc ccagagttca gtggcatgcc caggataagc 1800
 aaattgggat ctggaaatga ttttgaggtg ttcttccaac gacttggaat tgcttcaggc 1860
 agagcacggt atactaaaaa ttgggaaaca aacaaattca gcggctatcc actgtatcac 1920
 agtgtctatg aaacatatga gttggtggaa aagttttatg atccaatgtt taaatatcac 1980
ctcactgtgg cccaggttcg aggagggatg gtgtttgagc tagccaattc catagtgctc 2040
ccttttgatt gtcgagatta tgctgtagtt ttaagaaagt atgctgacaa aatctacagt 2100
atttctatga aacatccaca ggaaatgaag acatacagtg tatcatttga ttcacttttt 2160
tctgcagtaa agaattttac agaaattgct tccaagttca gtgagagact ccaggacttt 2220
gacaaaagca acccaatagt attaagaatg atgaatgatc aactcatgtt tctggaaaga 2280
gcatttattg atccattagg gttaccagac aggccttttt ataggcatgt catctatgct 2340
ccaagcagcc acaacaagta tgcaggggag tcattcccag gaatttatga tgctctgttt 2400
gatattgaaa gcaaagtgga cccttccaag gcctggggag aagtgaagag acagatttat 2460
gttgcagcct tcacagtgca ggcagctgca gagactttga gtgaagtagc ctaagaggat 2520
tctttagaga atccgtattg aatttgtgtg gtatgtcact cagaaagaat cgtaatgggt 2580
atattgataa attttaaaat tggtatattt gaaataaagt tgaatattat atataaaaaa 2640
aaaaaaaaa aaa
<210> 8
<211> 9
<212> PRT
<213> Homo sapiens
<400> 8
Phe Leu Pro Trp His Arg Leu Phe Leu
<21.0> 9
<211> 9
<212> PRT
<213> Homo sapiens
<400> 9
Leu Pro Trp His Arg Leu Phe Leu Leu
                 5
<210> 10
<211> 38
<212> PRT
<213> Homo sapiens
<400> 10
Tyr Phe Ser Lys Glu Glu Trp Glu Lys Met Lys Ala Ser Glu Lys Ile
1
                5
                                    10
Phe Tyr Val Tyr Met Lys Arg Lys Tyr Glu Ala Met Thr Lys Leu Gly
            20
                                25
Phe Lys Ala Thr Leu Pro
        35
<210> 11
<211> 9
<212> PRT
<213> Homo sapiens
<400> 11
```

```
Phe Ser Lys Glu Glu Trp Glu Lys Met
<210> 12
<211> 9
<212> PRT
<213> Homo sapiens
<400> 12
Lys Met Lys Ala Ser Glu Lys Ile Phe
1
        5
<210> 13
<211> 9
<212> PRT
<213> Homo sapiens
Met Lys Ala Ser Glu Lys Ile Phe Tyr
               5
<210> 14
<211> 10
<212> PRT
<213> Homo sapiens
<400> 14
Lys Met Lys Ala Ser Glu Lys Ile Phe Tyr
                5
<210> 15
<211> 9
<212> PRT
<213> Homo sapiens
Lys Ala Ser Glu Lys Ile Phe Tyr Val
<210> 16
<211> 10
<212> PRT
<213> Homo sapiens
Met Lys Ala Ser Glu Lys Ile Phe Tyr Val
                5
<210> 17
<211> 10
<212> PRT
```

```
<213> Homo sapiens
<400> 17
Lys Ala Ser Glu Lys Ile Phe Tyr Val Tyr
<210> 18
<211> 9
<212> PRT
<213> Homo sapiens
<400> 18
Ala Ser Glu Lys Ile Phe Tyr Val Tyr
<210> 19
<211> 9
<212> PRT
<213> Homo sapiens
<400> 19
Arg Lys Tyr Glu Ala Met Thr Lys Leu
<210> 20
<211> 10
<212> PRT
<213> Homo sapiens
<400> 20
Lys Arg Lys Tyr Glu Ala Met Thr Lys Leu
        5
<210> 21
<211> 10
<212> PRT
<213> Homo sapiens
<400> 21
Lys Tyr Glu Ala Met Thr Lys Leu Gly Phe
<210> 22
<211> 9
<212> PRT
<213> Homo sapiens
<400> 22
Tyr Glu Ala Met Thr Lys Leu Gly Phe
```

```
<210> 23
<211> 8
<212> PRT
<213> Homo sapiens
<400> 23
Glu Ala Met Thr Lys Leu Gly Phe
                5
<210> 24
<211> 10
<212> PRT
<213> Homo sapiens
<400> 24
Phe Leu Pro Ser Asp Tyr Phe Pro Ser Val
    5
<210> 25
<211> 9
<212> PRT
<213> Homo sapiens
<400> 25
Ala Glu Met Gly Lys Tyr Ser Phe Tyr
<210> 26
<211> 9
<212> PRT
<213> Homo sapiens
<400> 26
Lys Tyr Ser Glu Lys Ile Ser Tyr Val
<210> 27
<211> 9
<212> PRT
<213> Homo sapiens
<400> 27
Lys Val Ser Glu Lys Ile Val Tyr Val
<210> 28
<211> 9
<212> PRT
<213> Homo sapiens
Lys Ser Ser Glu Lys Ile Val Tyr Val
```

```
1
                5
<210> 29
<211> 9
<212> PRT
<213> Homo sapiens
<400> 29
Lys Ala Ser Glu Lys Ile Ile Tyr Val
<210> 30
<211> 30
<212> PRT
<213> Homo sapiens
<400> 30
Ala Phe Ser Pro Gln Gly Met Pro Glu Gly Asp Leu Val Tyr Val Asn
                                 10
Tyr Ala Arg Thr Glu Asp Phe Phe Lys Leu Glu Arg Asp Met
                              25
<210> 31
<211> 23
<212> PRT
<213> Homo sapiens
<400> 31
Gly Met Pro Glu Gly Asp Leu Val Tyr Val Asn Tyr Ala Arg Thr Glu
Asp Phe Phe Lys Leu Glu Arg
  20
<210> 32
<211> 9
<212> PRT
<213> Homo sapiens
<400> 32
Met Pro Glu Gly Asp Leu Val Tyr Val
     5
<210> 33
<211> 10
<212> PRT
<213> Homo sapiens
<400> 33
Gly Met Pro Glu Gly Asp Leu Val Tyr Val
1 5
```

```
<210> 34
<211> 9
<212> PRT
<213> Homo sapiens
<400> 34
Gly Met Pro Glu Gly Asp Leu Val Tyr
<210> 35
<211> 10
<212> PRT
<213> Homo sapiens
<400> 35
Gln Gly Met Pro Glu Gly Asp Leu Val Tyr
<210> 36
<211> 8
<212> PRT
<213> Homo sapiens
<400> 36
Met Pro Glu Gly Asp Leu Val Tyr
<210> 37
<211> 9
<212> PRT
<213> Homo sapiens
<400> 37
Glu Gly Asp Leu Val Tyr Val Asn Tyr
<210> 38
<211> 10
<212> PRT
<213> Homo sapiens
<400> 38
Pro Glu Gly Asp Leu Val Tyr Val Asn Tyr
<210> 39
<211> 10
<212> PRT
<213> Homo sapiens
Leu Val Tyr Val Asn Tyr Ala Arg Thr Glu
```

```
5
                                10
<210> 40
<211> 9
<212> PRT
<213> Homo sapiens
<400> 40
Val Asn Tyr Ala Arg Thr Glu Asp Phe
<210> 41
<211> 10
<212> PRT
<213> Homo sapiens
<400> 41
Tyr Val Asn Tyr Ala Arg Thr Glu Asp Phe
      5
<210> 42
<211> 9
<212> PRT
<213> Homo sapiens
<400> 42
Asn Tyr Ala Arg Thr Glu Asp Phe Phe
<210> 43
<211> 8
<212> PRT
<213> Homo sapiens
<400> 43
Tyr Ala Arg Thr Glu Asp Phe Phe
1 5
<210> 44
<211> 9
<212> PRT
<213> Homo sapiens
<400> 44
Arg Thr Glu Asp Phe Phe Lys Leu Glu
    5
1
<210> 45
<211> 30
<212> PRT
<213> Homo sapiens
```

```
<400> 45
Arg Gly Ile Ala Glu Ala Val Gly Leu Pro Ser Ile Pro Val His Pro
1 5
                     10
Ile Gly Tyr Tyr Asp Ala Gln Lys Leu Leu Glu Lys Met Gly
          20
<210> 46
<211> 25
<212> PRT
<213> Homo sapiens
<400> 46
Ile Ala Glu Ala Val Gly Leu Pro Ser Ile Pro Val His Pro Ile Gly
1 5
                  10
Tyr Tyr Asp Ala Gln Lys Leu Leu Glu
          20
<210> 47
<211> 9
<212> PRT
<213> Homo sapiens
<400> 47
Leu Pro Ser Ile Pro Val His Pro Ile
·<210> 48
<211> 10
<212> PRT
<213> Homo sapiens
Gly Leu Pro Ser Ile Pro Val His Pro Ile
1 5
<210> 49
<211> 9
<212> PRT
<213> Homo sapiens
<400> 49
Ile Gly Tyr Tyr Asp Ala Gln Lys Leu
           5
<210> 50
<211> 10
<212> PRT
<213> Homo sapiens
<400> 50
Pro Ile Gly Tyr Tyr Asp Ala Gln Lys Leu
```

```
1
                                   10
 <210> 51
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 51
 Ser Ile Pro Val His Pro Ile Gly Tyr
            . 5
 <210> 52
 <211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 52
 Pro Ser Ile Pro Val His Pro Ile Gly Tyr
               5
<210> 53
<211> 8
<212> PRT
<213> Homo sapiens
<400> 53
Ile Pro Val His Pro Ile Gly Tyr
<210> 54
<211> 9
<212> PRT
<213> Homo sapiens
<400> 54
Tyr Tyr Asp Ala Gln Lys Leu Leu Glu
1
       5
<210> 55
<211> 27
<212> PRT
<213> Homo sapiens
<400> 55
Ser Ser Ile Glu Gly Asn Tyr Thr Leu Arg Val Asp Cys Thr Pro Leu
1 5
                     10
Met Tyr Ser Leu Val His Leu Thr Lys Glu Leu
           20
                             25
<210> 56
<211> 9
```

```
<212> PRT
<213> Homo sapiens
<400> 56
Ile Glu Gly Asn Tyr Thr Leu Arg Val
<210> 57
<211> 10
<212> PRT
<213> Homo sapiens
<400> 57
Ser Ile Glu Gly Asn Tyr Thr Leu Arg Val
               5
<210> 58
<211> 8
<212> PRT
<213> Homo sapiens
<400> 58
Glu Gly Asn Tyr Thr Leu Arg Val
               5
<210> 59
<211> 9
<212> PRT
<213> Homo sapiens
Thr Leu Arg Val Asp Cys Thr Pro Leu
<210> 60
<211> 10
<212> PRT
<213> Homo sapiens
Tyr Thr Leu Arg Val Asp Cys Thr Pro Leu
          5
<210> 61
<211> 9
<212> PRT
<213> Homo sapiens
<400> 61
Leu Arg Val Asp Cys Thr Pro Leu Met
                5
```

```
<210> 62
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 62
 Arg Val Asp Cys Thr Pro Leu Met Tyr
               5
 <210> 63
 <211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 63
Leu Arg Val Asp Cys Thr Pro Leu Met Tyr
      5
<210> 64
<211> 35
<212> PRT
<213> Homo sapiens
<400> 64
Phe Asp Lys Ser Asn Pro Ile Val Leu Arg Met Met Asn Asp Gln Leu
1 5 <sub>10</sub>
Met Phe Leu Glu Arg Ala Phe Ile Asp Pro Leu Gly Leu Pro Asp Arg
                            25
Pro Phe Tyr
  35
<210> 65
<211> 22
<212> PRT
<213> Homo sapiens
<400> 65
Val Leu Arg Met Met Asn Asp Gln Leu Met Phe Leu Glu Arg Ala Phe
1 5 10
Ile Asp Pro Leu Gly Leu
           20
<210> 66
<211> 9
<212> PRT
<213> Homo sapiens
Met Met Asn Asp Gln Leu Met Phe Leu
              5
```

```
<210> 67
<211> 10
<212> PRT
<213> Homo sapiens
<400> 67
Arg Met Met Asn Asp Gln Leu Met Phe Leu
   5
<210> 68
<211> 9
<212> PRT
<213> Homo sapiens
<400> 68
Arg Met Met Asn Asp Gln Leu Met Phe
1 5
<210> 69
<211> 17
<212> PRT
<213> Homo sapiens
Met Leu Leu Ala Val Leu Tyr Cys Leu Leu Trp Ser Phe Gln Thr Ser
1
Ala
<210> 70
<211> 661
<212> PRT
<213> Homo sapiens
Met Asp Leu Val Leu Lys Arg Cys Leu Leu His Leu Ala Val Ile Gly
                                 10
Ala Leu Leu Ala Val Gly Ala Thr Lys Val Pro Arg Asn Gln Asp Trp
                             25
Leu Gly Val Ser Arg Gln Leu Arg Thr Lys Ala Trp Asn Arg Gln Leu
Tyr Pro Glu Trp Thr Glu Ala Gln Arg Leu Asp Cys Trp Arg Gly Gly
              55
Gln Val Ser Leu Lys Val Ser Asn Asp Gly Pro Thr Leu Ile Gly Ala
                  70
                                     75
Asn Ala Ser Phe Ser Ile Ala Leu Asn Phe Pro Gly Ser Gln Lys Val
                                 90
Leu Pro Asp Gly Gln Val Ile Trp Val Asn Asn Thr Ile Ile Asn Gly
                              105
Ser Gln Val Trp Gly Gly Gln Pro Val Tyr Pro Gln Glu Thr Asp Asp
                          120
Ala Cys Ile Phe Pro Asp Gly Gly Pro Cys Pro Ser Gly Ser Trp Ser
                       135
Gln Lys Arg Ser Phe Val Tyr Val Trp Lys Thr Trp Gly Gln Tyr Trp
```

```
150
                                    155
 Gln Val Leu Gly Gly Pro Val Ser Gly Leu Ser Ile Gly Thr Gly Arg
             165
                                 170
 Ala Met Leu Gly Thr His Thr Met Glu Val Thr Val Tyr His Arg Arg
                            185
 Gly Ser Arg Ser Tyr Val Pro Leu Ala His Ser Ser Ser Ala Phe Thr
                       200
                                  205
Ile Thr Asp Gln Val Pro Phe Ser Val Ser Val Ser Gln Leu Arg Ala
            215
                                     220
Leu Asp Gly Gly Asn Lys His Phe Leu Arg Asn Gln Pro Leu Thr Phe
              230
                           235
Ala Leu Gln Leu His Asp Pro Ser Gly Tyr Leu Ala Glu Ala Asp Leu
              245
                     250
Ser Tyr Thr Trp Asp Phe Gly Asp Ser Ser Gly Thr Leu Ile Ser Arg
                            265 270
Ala Pro Val Val Thr His Thr Tyr Leu Glu Pro Gly Pro Val Thr Ala
                        280
Gln Val Val Leu Gln Ala Ala Ile Pro Leu Thr Ser Cys Gly Ser Ser
                      295
                                     300
Pro Val Pro Gly Thr Thr Asp Gly His Arg Pro Thr Ala Glu Ala Pro
                  310
                                   315
Asn Thr Thr Ala Gly Gln Val Pro Thr Thr Glu Val Val Gly Thr Thr
             325
                    330
Pro Gly Gln Ala Pro Thr Ala Glu Pro Ser Gly Thr Thr Ser Val Gln
          340
                            345
Val Pro Thr Thr Glu Val Ile Ser Thr Ala Pro Val Gln Met Pro Thr
       355 · 360
                                          365
Ala Glu Ser Thr Gly Met Thr Pro Glu Lys Val Pro Val Ser Glu Val
                    375
                                      380
Met Gly Thr Thr Leu Ala Glu Met Ser Thr Pro Glu Ala Thr Gly Met
       390
                                 395
Thr Pro Ala Glu Val Ser Ile Val Val Leu Ser Gly Thr Thr Ala Ala
            405
                                410
Gln Val Thr Thr Glu Trp Val Glu Thr Thr Ala Arg Glu Leu Pro
                          425
Ile Pro Glu Pro Glu Gly Pro Asp Ala Ser Ser Ile Met Ser Thr Glu
                        440
Ser Ile Thr Gly Ser Leu Gly Pro Leu Leu Asp Gly Thr Ala Thr Leu
                     455
                                      460
Arg Leu Val Lys Arg Gln Val Pro Leu Asp Cys Val Leu Tyr Arg Tyr
                 470
                                   475
Gly Ser Phe Ser Val Thr Leu Asp Ile Val Gln Gly Ile Glu Ser Ala
                               490
Glu Ile Leu Gln Ala Val Pro Ser Gly Glu Gly Asp Ala Phe Glu Leu
                           505
Thr Val Ser Cys Gln Gly Gly Leu Pro Lys Glu Ala Cys Met Glu Ile
                         520
                                         525
Ser Ser Pro Gly Cys Gln Pro Pro Ala Gln Arg Leu Cys Gln Pro Val
                     535
                                      540
Leu Pro Ser Pro Ala Cys Gln Leu Val Leu His Gln Ile Leu Lys Gly
    550 . 555
Gly Ser Gly Thr Tyr Cys Leu Asn Val Ser Leu Ala Asp Thr Asn Ser
                                570
Leu Ala Val Val Ser Thr Gln Leu Ile Met Pro Gly Gln Glu Ala Gly
                            585
Leu Gly Gln Val Pro Leu Ile Val Gly Ile Leu Leu Val Leu Met Ala
```

...

```
      Val
      Leu
      Ala
      Ser
      Leu
      Ile
      Tyr
      Arg
      Arg
      Leu
      Met
      Lys
      Gln
      Asp

      610
      610
      615
      620
      620
      620
      620
      620
      620
      620
      620
      620
      620
      620
      640
      640
      635
      640
      640
      640
      635
      640
      640
      640
      640
      640
      640
      645
      650
      650
      655
      655
      655
      655
      655
      655
      655
      655
      655
      655
      650
      650
      655
      655
      655
      655
      650
      650
      655
      655
      655
      655
      650
      650
      655
      655
      655
      655
      650
      650
      650
      650
      650
      650
      650
      650
      650
      650
      650
      650
      650
      650
      650
      650
      650
      650
      650
      650
      650
      650
      650
      650
      650
      650
      650
      650
      650
      650
      650
      650
      650
      6
```

<210> 71 <211> 309 <212> PRT <213> Homo sapiens

<400> 71

305

Met Ser Leu Glu Gln Arg Ser Leu His Cys Lys Pro Glu Glu Ala Leu 1 5 10 Glu Ala Gln Gln Glu Ala Leu Gly Leu Val Cys Val Gln Ala Ala Thr 20 25 Ser Ser Ser Pro Leu Val Leu Gly Thr Leu Glu Glu Val Pro Thr Ala Gly Ser Thr Asp Pro Pro Gln Ser Pro Gln Gly Ala Ser Ala Phe 55 Pro Thr Thr Ile Asn Phe Thr Arg Gln Arg Gln Pro Ser Glu Gly Ser 70 Ser Ser Arg Glu Glu Glu Fro Ser Thr Ser Cys Ile Leu Glu Ser 85 90 Leu Phe Arg Ala Val Ile Thr Lys Lys Val Ala Asp Leu Val Gly Phe 100 105 Leu Leu Lys Tyr Arg Ala Arg Glu Pro Val Thr Lys Ala Glu Met 120 125 Leu Glu Ser Val Ile Lys Asn Tyr Lys His Cys Phe Pro Glu Ile Phe 135 140 Gly Lys Ala Ser Glu Ser Leu Gln Leu Val Phe Gly Ile Asp Val Lys 150 155 Glu Ala Asp Pro Thr Gly His Ser Tyr Val Leu Val Thr Cys Leu Gly 165 170 Leu Ser Tyr Asp Gly Leu Leu Gly Asp Asn Gln Ile Met Pro Lys Thr 180 185 Gly Phe Leu Ile Ile Val Leu Val Met Ile Ala Met Glu Gly Gly His 200 Ala Pro Glu Glu Glu Ile Trp Glu Glu Leu Ser Val Met Glu Val Tyr 215 220 Asp Gly Arg Glu His Ser Ala Tyr Gly Glu Pro Arg Lys Leu Leu Thr 230 235 Gln Asp Leu Val Gln Glu Lys Tyr Leu Glu Tyr Arg Gln Val Pro Asp 245 250 Ser Asp Pro Ala Arg Tyr Glu Phe Leu Trp Gly Pro Arg Ala Leu Ala 265 Glu Thr Ser Tyr Val Lys Val Leu Glu Tyr Val Ile Lys Val Ser Ala 280 285 Arg Val Arg Phe Phe Phe Pro Ser Leu Arg Glu Ala Ala Leu Arg Glu 295 . 300 Glu Glu Glu Gly Val

<210> 72 <211> 314 <212> PRT

<213> Homo sapiens

```
<400> 72
Met Pro Leu Glu Gln Arg Ser Gln His Cys Lys Pro Glu Glu Gly Leu
                                  10
Glu Ala Arg Gly Glu Ala Leu Gly Leu Val Gly Ala Gln Ala Pro Ala
                               25
Thr Glu Glu Gln Gln Thr Ala Ser Ser Ser Ser Thr Leu Val Glu Val
                           40
Thr Leu Gly Glu Val Pro Ala Ala Asp Ser Pro Ser Pro Pro His Ser
                       55
                                          60
Pro Gln Gly Ala Ser Ser Phe Ser Thr Thr Ile Asn Tyr Thr Leu Trp
                   70
Arg Gln Ser Asp Glu Gly Ser Ser Asn Gln Glu Glu Gly Pro Arg
                                 90
Met Phe Pro Asp Leu Glu Ser Glu Phe Gln Ala Ala Ile Ser Arg Lys
                               105
Met Val Glu Leu Val His Phe Leu Leu Leu Lys Tyr Arg Ala Arg Glu
                           120
                                              125
Pro Val Thr Lys Ala Glu Met Leu Glu Ser Val Leu Arg Asn Cys Gln
                       135
Asp Phe Phe Pro Val Ile Phe Ser Lys Ala Ser Glu Tyr Leu Gln Leu
                  150
                                      155
Val Phe Gly Ile Glu Val Val Glu Val Val Pro Ile Ser His Leu Tyr
               165
                                  170
Ile Leu Val Thr Cys Leu Gly Leu Ser Tyr Asp Gly Leu Leu Gly Asp
           180
                               185
Asn Gln Val Met Pro Lys Thr Gly Leu Leu Ile Ile Val Leu Ala Ile
      195
                           200
                                              205
Ile Ala Ile Glu Gly Asp Cys Ala Pro Glu Glu Lys Ile Trp Glu Glu
                      215
                                          .220
Leu Ser Met Leu Glu Val Phe Glu Gly Arg Glu Asp Ser Val Phe Ala
                  230
                                       235
His Pro Arg Lys Leu Leu Met Gln Asp Leu Val Gln Glu Asn Tyr Leu
                                  250
Glu Tyr Arg Gln Val Pro Gly Ser Asp Pro Ala Cys Tyr Glu Phe Leu
           260
                              265
Trp Gly Pro Arg Ala Leu Ile Glu Thr Ser Tyr Val Lys Val Leu His
                280
His Thr Leu Lys Ile Gly Gly Glu Pro His Ile Ser Tyr Pro Pro Leu
                       295
His Glu Arg Ala Leu Arg Glu Gly Glu Glu
<210> 73
<211> 314
<212> PRT
<213> Homo sapiens
Met Pro Leu Glu Gln Arg Ser Gln His Cys Lys Pro Glu Glu Gly Leu
                                   10
```

```
Glu Ala Arg Gly Glu Ala Leu Gly Leu Val Gly Ala Gln Ala Pro Ala
Thr Glu Glu Glu Ala Ala Ser Ser Ser Thr Leu Val Glu Val
Thr Leu Gly Glu Val Pro Ala Ala Glu Ser Pro Asp Pro Pro Gln Ser
             55
Pro Gln Gly Ala Ser Ser Leu Pro Thr Thr Met Asn Tyr Pro Leu Trp
             70 75
Ser Gln Ser Tyr Glu Asp Ser Ser Asn Gln Glu Glu Glu Gly Pro Ser
                             90
Thr Phe Pro Asp Leu Glu Ser Glu Phe Gln Ala Ala Leu Ser Arg Lys
                  105 110
Val Ala Glu Leu Val His Phe Leu Leu Leu Lys Tyr Arg Ala Arg Glu
                        120
                                          125
Pro Val Thr Lys Ala Glu Met Leu Gly Ser Val Val Gly Asn Trp Gln
                     135
Tyr Phe Phe Pro Val Ile Phe Ser Lys Ala Ser Ser Ser Leu Gln Leu
Val Phe Gly Ile Glu Leu Met Glu Val Asp Pro Ile Gly His Leu Tyr
                             170
Ile Phe Ala Thr Cys Leu Gly Leu Ser Tyr Asp Gly Leu Leu Gly Asp
                          185
Asn Gln Ile Met Pro Lys Ala Gly Leu Leu Ile Ile Val Leu Ala Ile
                        200
Ile Ala Arg Glu Gly Asp Cys Ala Pro Glu Glu Lys Ile Trp Glu Glu
                    215
Leu Ser Val Leu Glu Val Phe Glu Gly Arg Glu Asp Ser Ile Leu Gly
                230
                                  235
Asp Pro Lys Lys Leu Leu Thr Gln His Phe Val Gln Glu Asn Tyr Leu
                     250 255
             245
Glu Tyr Arg Gln Val Pro Gly Ser Asp Pro Ala Cys Tyr Glu Phe Leu
                          265
Trp Gly Pro Arg Ala Leu Val Glu Thr Ser Tyr Val Lys Val Leu His
                        280
                                       285
His Met Val Lys Ile Ser Gly Gly Pro His Ile Ser Tyr Pro Pro Leu
                  295
                                      300
His Glu Trp Val Leu Arg Glu Gly Glu Glu
305
                 310
```

<210> 74 <211> 180 <212> PRT <213> Homo sapiens

<400> 74

 Met
 Gln
 Ala
 Glu
 Gly
 Arg
 Gly
 Thr
 Gly
 Gly
 Ser
 Thr
 Gly
 Asp
 Ala
 Asp
 Ala
 Asp
 Gly
 Pro
 Gly
 Asp
 Gly
 Pro
 Gly
 Asp
 Gly
 Pro
 Gly
 Asp
 Gly
 Pro
 Gly
 Asp
 Ala
 Gly
 Asp
 Gly
 Pro
 Gly
 Asp
 Ala
 Gly
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala
 Ala</th

90

85

```
Ala Thr Pro Met Glu Ala Glu Leu Ala Arg Arg Ser Leu Ala Gln Asp
                      105
 Ala Pro Pro Leu Pro Val Pro Gly Val Leu Leu Lys Glu Phe Thr Val
                           120
                                                125
 Ser Gly Asn Ile Leu Thr Ile Arg Leu Thr Ala Ala Asp His Arg Gln
                       135
 Leu Gln Leu Ser Ile Ser Ser Cys Leu Gln Gln Leu Ser Leu Leu Met
            150
                                      155
 Trp Ile Thr Gln Cys Phe Leu Pro Val Phe Leu Ala Gln Pro Pro Ser
              165
                                   170
 Gly Gln Arg Arg
            180
 <210> 75
 <211> 180
 <212> PRT
 <213> Homo sapiens
 <400> 75
Met Gln Ala Glu Gly Arg Gly Thr Gly Gly Ser Thr Gly Asp Ala Asp
Gly Pro Gly Gly Pro Gly Ile Pro Asp Gly Pro Gly Gly Asn Ala Gly
Gly Pro Gly Glu Ala Gly Ala Thr Gly Gly Arg Gly Pro Arg Gly Ala
                           40
Gly Ala Ala Arg Ala Ser Gly Pro Arg Gly Gly Ala Pro Arg Gly Pro
                       55
His Gly Gly Ala Ala Ser Ala Gln Asp Gly Arg Cys Pro Cys Gly Ala
                                       75
Arg Arg Pro Asp Ser Arg Leu Leu Glu Leu His Ile Thr Met Pro Phe
               85
Ser Ser Pro Met Glu Ala Glu Leu Val Arg Arg Ile Leu Ser Arg Asp
          100
                              105
Ala Ala Pro Leu Pro Arg Pro Gly Ala Val Leu Lys Asp Phe Thr Val
                          120
Ser Gly Asn Leu Leu Phe Ile Arg Leu Thr Ala Ala Asp His Arg Gln
                      135
                                          140
Leu Gln Leu Ser Ile Ser Ser Cys Leu Gln Gln Leu Ser Leu Leu Met
                   150
                                      155
Trp Ile Thr Gln Cys Phe Leu Pro Val Phe Leu Ala Gln Ala Pro Ser
                                   170
Gly Gln Arg Arg
           180
<210> 76
<211> 210
<212> PRT
<213> Homo sapiens
<400> 76
Met Gln Ala Glu Gly Arg Gly Thr Gly Gly Ser Thr Gly Asp Ala Asp
                                  10
Gly Pro Gly Gly Pro Gly Ile Pro Asp Gly Pro Gly Gly Asn Ala Gly
```

```
Gly Pro Gly Glu Ala Gly Ala Thr Gly Gly Arg Gly Pro Arg Gly Ala
Gly Ala Ala Arg Ala Ser Gly Pro Arg Gly Gly Ala Pro Arg Gly Pro
                       55
His Gly Gly Ala Ala Ser Ala Gln Asp Gly Arg Cys Pro Cys Gly Ala
Arg Arg Pro Asp Ser Arg Leu Leu Glu Leu His Ile Thr Met Pro Phe
Ser Ser Pro Met Glu Ala Glu Leu Val Arg Arg Ile Leu Ser Arg Asp
Ala Ala Pro Leu Pro Arg Pro Gly Ala Val Leu Lys Asp Phe Thr Val
                           120
Ser Gly Asn Leu Leu Phe Met Ser Val Trp Asp Gln Asp Arg Glu Gly
                       135
Ala Gly Arg Met Arg Val Val Gly Trp Gly Leu Gly Ser Ala Ser Pro
                   150
                                       155
Glu Gly Gln Lys Ala Arg Asp Leu Arg Thr Pro Lys His Lys Val Ser
                                  170
Glu Gln Arg Pro Gly Thr Pro Gly Pro Pro Pro Pro Glu Gly Ala Gln
                              185
Gly Asp Gly Cys Arg Gly Val Ala Phe Asn Val Met Phe Ser Ala Pro
His Ile
    210
```

<210> 77 <211> 509

<212> PRT

<213> Homo sapiens

<400> 77

Met Glu Arg Arg Leu Trp Gly Ser Ile Gln Ser Arg Tyr Ile Ser 10 Met Ser Val Trp Thr Ser Pro Arg Arg Leu Val Glu Leu Ala Gly Gln Ser Leu Leu Lys Asp Glu Ala Leu Ala Ile Ala Ala Leu Glu Leu Leu 40 Pro Arg Glu Leu Phe Pro Pro Leu Phe Met Ala Ala Phe Asp Gly Arg 55 His Ser Gln Thr Leu Lys Ala Met Val Gln Ala Trp Pro Phe Thr Cys 70 75 Leu Pro Leu Gly Val Leu Met Lys Gly Gln His Leu His Leu Glu Thr 90 85 Phe Lys Ala Val Leu Asp Gly Leu Asp Val Leu Leu Ala Gln Glu Val 105 Arg Pro Arg Arg Trp Lys Leu Gln Val Leu Asp Leu Arg Lys Asn Ser 120 125 His Gln Asp Phe Trp Thr Val Trp Ser Gly Asn Arg Ala Ser Leu Tyr 135 140 Ser Phe Pro Glu Pro Glu Ala Ala Gln Pro Met Thr Lys Lys Arg Lys 155 Val Asp Gly Leu Ser Thr Glu Ala Glu Gln Pro Phe Ile Pro Val Glu 170 Val Leu Val Asp Leu Phe Leu Lys Glu Gly Ala Cys Asp Glu Leu Phe 185 Ser Tyr Leu Ile Glu Lys Val Lys Arg Lys Lys Asn Val Leu Arg Leu

```
Cys Cys Lys Leu Lys Ile Phe Ala Met Pro Met Gln Asp Ile Lys
            215
                              220
 Met Ile Leu Lys Met Val Gln Leu Asp Ser Ile Glu Asp Leu Glu Val
          230
                                 235
 Thr Cys Thr Trp Lys Leu Pro Thr Leu Ala Lys Phe Ser Pro Tyr Leu
            245
                               250 255
 Gly Gln Met Ile Asn Leu Arg Arg Leu Leu Leu Ser His Ile His Ala
           260 265
 Ser Ser Tyr Ile Ser Pro Glu Lys Glu Glu Gln Tyr Ile Ala Gln Phe
        275 280
 Thr Ser Gln Phe Leu Ser Leu Gln Cys Leu Gln Ala Leu Tyr Val Asp
                    295
                                      300
Ser Leu Phe Phe Leu Arg Gly Arg Leu Asp Gln Leu Leu Arg His Val
     310
                                  315
Met Asn Pro Leu Glu Thr Leu Ser Ile Thr Asn Cys Arg Leu Ser Glu
              325
                                330
Gly Asp Val Met His Leu Ser Gln Ser Pro Ser Val Ser Gln Leu Ser
                           345
Val Leu Ser Leu Ser Gly Val Met Leu Thr Asp Val Ser Pro Glu Pro
                        360
Leu Gln Ala Leu Leu Glu Arg Ala Ser Ala Thr Leu Gln Asp Leu Val
                     375
                                      380
Phe Asp Glu Cys Gly Ile Thr Asp Asp Gln Leu Leu Ala Leu Leu Pro
                 390
                                  395
Ser Leu Ser His Cys Ser Gln Leu Thr Thr Leu Ser Phe Tyr Gly Asn
                    410 415
              405
Ser Ile Ser Ile Ser Ala Leu Gln Ser Leu Leu Gln His Leu Ile Gly
          420
                           425
Leu Ser Asn Leu Thr His Val Leu Tyr Pro Val Pro Leu Glu Ser Tyr
              440
Glu Asp Ile His Gly Thr Leu His Leu Glu Arg Leu Ala Tyr Leu His
                  455
Ala Arg Leu Arg Glu Leu Leu Cys Glu Leu Gly Arg Pro Ser Met Val
       470
                                475
Trp Leu Ser Ala Asn Pro Cys Pro His Cys Gly Asp Arg Thr Phe Tyr
              485
                               490
Asp Pro Glu Pro Ile Leu Cys Pro Cys Phe Met Pro Asn
                           505
<210> 78
<211> 261
<212> PRT
<213> Homo sapiens
<400> 78
Met Trp Val Pro Val Val Phe Leu Thr Leu Ser Val Thr Trp Ile Gly
                     10
Ala Ala Pro Leu Ile Leu Ser Arg Ile Val Gly Gly Trp Glu Cys Glu
          20
                           25
Lys His Ser Gln Pro Trp Gln Val Leu Val Ala Ser Arg Gly Arg Ala
```

200

195

Val Cys Gly Gly Val Leu Val His Pro Gln Trp Val Leu Thr Ala Ala

His Cys Ile Arg Asn Lys Ser Val Ile Leu Leu Gly Arg His Ser Leu

55

```
Phe His Pro Glu Asp Thr Gly Gln Val Phe Gln Val Ser His Ser Phe
                    90
              85
Pro His Pro Leu Tyr Asp Met Ser Leu Leu Lys Asn Arg Phe Leu Arg
                          105
Pro Gly Asp Asp Ser Ser His Asp Leu Met Leu Leu Arg Leu Ser Glu
               120
                                      125
Pro Ala Glu Leu Thr Asp Ala Val Lys Val Met Asp Leu Pro Thr Gln
                      135
                                        140
Glu Pro Ala Leu Gly Thr Thr Cys Tyr Ala Ser Gly Trp Gly Ser Ile
                  150
Glu Pro Glu Glu Phe Leu Thr Pro Lys Lys Leu Gln Cys Val Asp Leu
                                 170
His Val Ile Ser Asn Asp Val Cys Ala Gln Val His Pro Gln Lys Val
                             185
Thr Lys Phe Met Leu Cys Ala Gly Arg Trp Thr Gly Gly Lys Ser Thr
                          200
                                           -205
Cys Ser Gly Asp Ser Gly Gly Pro Leu Val Cys Asn Gly Val Leu Gln
                     215
                                        220
Gly Ile Thr Ser Trp Gly Ser Glu Pro Cys Ala Leu Pro Glu Arg Pro
               230
                           235
Ser Leu Tyr Thr Lys Val Val His Tyr Arg Lys Trp Ile Lys Asp Thr
              245
                                 250
Ile Val Ala Asn Pro
          260
```

<210> 79 <211> 123 <212> PRT

<213> Homo sapiens

Met Lys Ala Val Leu Leu Ala Leu Leu Met Ala Gly Leu Ala Leu Gln . 10 Pro Gly Thr Ala Leu Leu Cys Tyr Ser Cys Lys Ala Gln Val Ser Asn 25 Glu Asp Cys Leu Gln Val Glu Asn Cys Thr Gln Leu Gly Glu Gln Cys 40 Trp Thr Ala Arg Ile Arg Ala Val Gly Leu Leu Thr Val Ile Ser Lys 55 Gly Cys Ser Leu Asn Cys Val Asp Asp Ser Gln Asp Tyr Tyr Val Gly 70 75 Lys Lys Asn Ile Thr Cys Cys Asp Thr Asp Leu Cys Asn Ala Ser Gly 90 Ala His Ala Leu Gln Pro Ala Ala Ile Leu Ala Leu Leu Pro Ala 105 Leu Gly Leu Leu Trp Gly Pro Gly Gln Leu

<210> 80 <211> 2817 <212> DNA <213> Homo sapiens

115

<400> 80
gtgctaaaaa gatgccttct tcatttggct gtgataggtg ctttgtggct gtgggggcta 60

caaaagtacc cagaaaccag gactggcttg gtgtctcaag gcaactcaga accaaagcct 120

```
ggaacaggca gctgtatcca gagtggacag aagcccagag acttgactgc tggagaggtg 180
gtcaagtgtc cctcaaggtc agtaatgatg ggcctacact gattggtgca aatgcctcct 240
tetetattge ettgaactte eetggaagee aaaaggtatt geeagatggg eaggttatet 300
gggtcaacaa taccatcatc aatgggagcc aggtgtgggg aggacagcca gtgtatcccc 360
aggaaactga cgatgcctgc atcttccctg atggtggacc ttgcccatct ggctcttggt 420
ctcagaagag aagctttgtt tatgtctgga agacctgggg tgagggactc ccttctcagc 480
ctateateca caettgtgtt taettettte taeetgatea cetttetttt ggeegeeeet 540
tecacettaa ettetgtgat tttetetaat etteattte etettagate ttttetett 600
cttagcacct agcccccttc aagctctatc ataattcttt ctggcaactc ttggcctcaa 660
ttgtagtcct accccatgga atgcctcatt aggacccctt ccctgtcccc ccatatcaca 720
geettecaaa cacceteaga agtaateata etteetgace teccatetee agtgeegttt 780
cgaageetgt ccctcagtec cctttgacca gtaatetett cttccttgct tttcattcca 840
aaaatgette aggecaatae tggcaagtte tagggggeee agtgtetggg etgageattg 900
ggacaggcag ggcaatgctg ggcacacaca ccatggaagt gactgtctac catcgccggg 960
gatcccggag ctatgtgcct cttgctcatt ccagctcagc cttcaccatt actggtaagg 1020
gttcaggaag ggcaaggcca gttgtagggc aaagagaagg cagggaggct tggatggact 1080
gcaaaggaga aaggtgaaat gctgtgcaaa cttaaagtag aagggccagg aagacctagg 1140
cagagaaatg tgaggcttag tgccagtgaa gggccagcca gtcagcttgg agttggaggg 1200
tgtggctgtg aaaggagaag ctgtggctca ggcctggttc tcaccttttc tggctccaat 1260
cccagaccag gtgcctttct ccgtgagcgt gtcccagttg cgggccttgg atggagggaa 1320
caagcacttc ctgagaaatc agcctctgac ctttgccctc cagctccatg accccagtgg 1380
ctatctggct gaagctgacc tctcctacac ctgggacttt ggagacagta gtggaaccct 1440
gatetetegg geacetgtgg teacteatae ttacetggag cetggeecag teactgeeca 1500
ggtggtcctg caggctgcca ttcctctcac ctcctgtggc tcctccccag ttccaggcac 1560
cacagatggg cacaggccaa ctgcagaggc ccctaacacc acagctggcc aagtgcctac 1620
tacagaagtt gtgggtacta cacctggtca ggcgccaact gcagagccct ctggaaccac 1680
atctgtgcag gtgccaacca ctgaagtcat aagcactgca cctgtgcaga tgccaactgc 1740
agagagcaca ggtatgacac ctgagaaggt gccagtttca gaggtcatgg gtaccacact 1800
ggcagagatg tcaactccag aggctacagg tatgacacct gcagaggtat caattgtggt 1860
gctttctgga accacagctg cacaggtaac aactacagag tgggtggaga ccacagctag 1920
agagetacet atecetgage etgaaggtee agatgecage teaateatgt etaeggaaag 1980
tattacaggt tccctgggcc ccctgctgga tggtacagcc accttaaggc tggtgaagag 2040
acaagteece etggattgtg ttetgtateg atatggttee tttteegtea eeetggacat 2100
tgtccagggt attgaaagtg ccgagatcct gcaggctgtg ccgtccggtg agggggatgc 2160
atttgagetg actgtgteet geeaaggegg getgeecaag gaageetgea tggagatete 2220
ategecaggg tgccagecc etgeccageg getgtgccag cetgtgctae ceageccage 2280
ctgccagctg gttctgcacc agatactgaa gggtggctcg gggacatact gcctcaatgt 2340
gtctctggct gataccaaca gcctggcagt ggtcagcacc cagcttatca tgcctggtag 2400
gtccttggac agagactaag tgaggaggga agtggataga ggggacagct ggcaagcagc 2460
agacatgagt gaagcagtgc ctqqqattct tctcacaggt caagaagcag gccttgggca 2520
ggttccgctg atcgtgggca tcttgctggt gttgatggct gtggtccttg catctctgat 2580
atataggege agaettatga ageaagaett eteegtaeee eagttgeeae atageageag 2640
teactggetg egtetacece geatettetg etettgtece attggtgaga atageeceet 2700
cctcagtggg cagcaggtct gagtactctc atatgatgct gtgattttcc tggagttgac 2760
agaaacacct atatttcccc cagtcttccc tgggagacta ctattaactg aaataaa
<210> 81
<211> 2420
<212> DNA
<213> Homo sapiens
<400> 81
ggatccaggc cctgccagga aaaatataag ggccctgcgt gagaacagag ggggtcatcc 60
actgcatgag agtggggatg tcacagagtc cagcccaccc tcctggtagc actgagaagc 120
cagggetgtg cttgeggtct gcaccetgag ggeeegtgga ttcctcttcc tggageteca 180
ggaaccaggc agtgaggcct tggtctgaga cagtateete aggtcacaga gcagaggatg 240
```

```
cacagggtgt gccagcagtg aatgtttgcc ctgaatgcac accaagggcc ccacctgcca 300
caggacacat aggactecac agagtetgge etcacetece tactgteagt cetgtagaat 360
cgacctctgc tggccggctg taccctgagt accctctcac ttcctccttc aggttttcag 420
gggacaggcc aacccagagg acaggattcc ctggaggcca cagaggagca ccaaggagaa 480
gatctgtaag taggcetttg ttagagtete caaggtteag tteteagetg aggcetetea 540
cacactecet etetececag geetgtgggt etteattgee cageteetge ecacactect 600
gcctgctgcc ctgacgagag tcatcatgtc tcttgagcag aggagtctgc actgcaagcc 660
tgaggaagcc cttgaggccc aacaagaggc cctgggcctg gtgtgtgtgc aggctgccac 720
ctcctcctcc tctcctctgg tcctgggcac cctggaggag gtgcccactg ctgggtcaac 780
agatectece cagagtecte agggagecte egeettteee actaceatea actteacteg 840
acagaggcaa cccaqtgagg gttccagcag ccgtgaagag gaggggccaa gcacctcttg 900
tatectggag teettgttee gageagtaat cactaagaag gtggetgatt tggttggttt 960
tetgeteete aaatategag eeagggagee agteacaaag geagaaatge tggagagtgt 1020
catcaaaaat tacaagcact gttttcctga gatcttcggc aaagcctctg agtccttgca 1080
gctggtcttt ggcattgacg tgaaggaagc agaccccacc ggccactcct atgtccttgt 1140
cacctgccta ggtctctcct atgatggcct gctgggtgat aatcagatca tgcccaagac 1200
aggetteetg ataattgtee tggteatgat tgeaatggag ggeggeeatg eteetgagga 1260
ggaaatctgg gaggagctga gtgtgatgga ggtgtatgat gggagggagc acagtgccta 1320
tggggagccc aggaagctgc tcacccaaga tttggtgcag gaaaagtacc tggagtaccg 1380
gcaggtgccg gacagtgatc ccgcacgcta tgagttcctg tggggtccaa gggccctcgc 1440
tgaaaccagc tatgtgaaag tccttgagta tgtgatcaag gtcagtgcaa gagttcgctt 1500
tttcttccca tccctgcgtg aagcagcttt gagagaggag gaagagggag tctgagcatg 1560
agttgcagcc aaggccagtg ggagggggac tgggccagtg caccttccag ggccgcgtcc 1620:
agcagettee cetgeetegt gtgacatgag geceattett caetetgaag agageggtea 1680
gtgttctcag tagtaggttt ctgttctatt gggtgacttg gagatttatc tttgttctct 1740
tttggaattg ttcaaatgtt ttttttaag ggatggttga atgaacttca gcatccaagt 1800
ttatgaatga cagcagtcac acagttctgt gtatatagtt taagggtaag agtcttgtgt 1860
tttattcaga ttgggaaatc cattctattt tgtgaattgg gataataaca gcagtggaat 1920
aagtacttag aaatgtgaaa aatgagcagt aaaatagatg agataaagaa ctaaagaaat 1980
taagagatag tcaattcttg ccttatacct cagtctattc tgtaaaattt ttaaagatat 2040
atgcatacct ggatttcctt ggcttctttg agaatgtaag agaaattaaa tctgaataaa 2100
gaattettee tgtteactgg etettttett eteeatgeac tgageatetg etttttggaa 2160
ggccctgggt tagtagtgga gatgctaagg taagccagac tcatacccac ccatagggtc 2220
gtagagtcta ggagctgcag tcacgtaatc gaggtggcaa gatgtcctct aaagatgtag 2280
ggaaaagtga gagagggtg agggtgtggg gctccgggtg agagtggtgg agtgtcaatg 2340
ccctgagctg gggcattttg ggctttggga aactgcagtt ccttctgggg gagctgattg 2400
taatgatctt gggtggatcc
<210> 82
<211> 4559
<212> DNA
<213> Homo sapiens
<400> 82
attectteat caaacageea ggagtgagga agaggaeeet eetgagtgag gaetgaggat 60
ccaccctcac cacatagtgg gaccacagaa tccagctcag cccctcttgt cagccctggt 120
acacactgge aatgatetea ceeegageae acceeteece ecaatgeeae ttegggeega 180
ctcagagtca gagacttggt ctgaggggag cagacacaat cggcagagga tggcggtcca 240
ggctcagtct ggcatccaag tcaggacctt gagggatgac caaaggcccc tcccaccccc 300
aactcccccg accccaccag gatctacage ctcaggatcc ccgtcccaat ccctacccct 360
acaccaacac catcttcatg cttaccccca ccccccatc cagatcccca tccgggcaga 420
atcoggttcc accettgecg tgaacccagg gaagtcacgg geceggatgt gacgccactg 480
acttgcacat tggaggtcag aggacagcga gattctcgcc ctgagcaacg gcctgacgtc 540
ggcggaggga agcaggcgca ggctccgtga ggaggcaagg taagacgccg agggaggact 600
gaggegggcc tcaccccaga cagagggccc ccaataatcc agegctgcct ctgctgccgg 660
gcctggacca ccctgcaggg gaagacttct caggctcagt cgccaccacc tcaccccgcc 720
accecegee getttaaceg cagggaacte tggegtaaga getttgtgtg accagggeag 780
```

ggctggttag	aagtgctcag	ggcccagact	cagccaggaa	tcaaggtcag	gaccccaaga	840
ggggactgag	ggcaacccac	cccctaccct	cactaccaat	cccatcccc	aacaccaacc	900
ccacccccat	ccctcaaaca	ccaaccccac	ccccaaaccc	cattcccatc	tecteccea	960
ccaccatcct	ggcagaatcc	ggctttgccc	ctgcaatcaa	cccacggaag	ctccgggaat	1020
ggcggccaag	cacgcggate	ctgacgttca	catgtacggc	taaqqqaqqq	aaaaaattaa	1080
gtctcgtgag	tatggccttt	gggatgcaga	ggaagggccc	aggeeteete	gaagacagtg	1140
gagtccttag	qqqacccaqc	atoccaggac	agggggccca	ctgtacccct	gtctcaaact	1200
gagccacctt	ttcattcagc	cgagggaatc	ctagggatgc	agacccactt	Cadcadada	1260
ttggggccca	acctacaaaa	agtcaagggg	aggaagaaga	addaddacta	addddacctt	1320
ggagtccaga	tcagtggcaa	ccttagacta	ggggatcctg	gacacaataa	ccasstataa	1320
cccgtgctca	ttgcaccttc	agggtgacag	agagttgagg	actataatct	asaaactaaa	1440
acttcaggtc	agcagaggga	ggaatcccag	gatctgccgg	acccaaggtg	taccccttc	1500
atgaggactg	qqqatacccc	cggcccagaa	agaagggatg	ccacagagt	tagaagtaca	1560
ttgttcttag	ctctggggga	acctgatcag	ggatggccct	aagtgagaat	ctcatttcta	1620
ccacaggcag	gaggttgggg	aaccctcagg	gagataaggt	attaatataa	agaggaggta	1690
tctgctcatt	tcagggggtt	agaaattaaa	aaagggcagt	ccctaacaaa	aguggagetg	1740
agtaacccac	aggaggcat	cataacqttc	accctagaac	casaggggg	agcadagacg	1000
aacgcacgtg	ggggtaacag	gatgtggccc	ctcctcactt	atctttccaa	atctcaggac	1060
gttgatgacc	ttgttttcag	aaggtgactc	aggtcaacac	addddcccaa	teteatease	1000
agatgcagtg	gttctaggat	ctoccaaoca	tccaggtgga	gagggccca	taggttgac	1920
ggtacccctg	ggccagaatg	cagcaaggg	gccccataga	aatctgcct	acceptage	1300
ttacttcaga	gaccetgage	aggactatica	gctgaagtcc	ctccattatc	ctaggatatt	2100
tgatgtcagg	gaaggggagg	cettaateta	aaggggctgg	agtcaggtca	atagaggacccc	2100
ggtctcaggc	cctaccagga	atagacataa	ggaccaagcg	getaggeta	grayagggag	2220
tggactccaa	tgaatttgga	catctctcct	tgtccttcgc	gaccogccac	ccaggacace	2220
ggccagatgt	gggtcccctc	atateettet	gtaccatatc	addastatas	attettases	2240
tgagagattc	tcaagccage	aaaagggtgg	gattaggccc	tacaaccaca	aagatgaggg	2400
ccctgagtga	qcacagaggg	gaccctccac	ccaagtagag	taaaaggaga	adgregaggg	2460
gccaaccctg	ctgagacttc	toggaateco	tggctgtgct	tacaatetac	acagtaacag	2520
cccqtqcatt	cctctcccag	gaatcaggag	ctccaggaac	caddcadtda	acactgaagg	2520
tgagtcagtg	tcctcaggtc	acagaggaga	ggggacgcag	acagtaccaa	ggccccggcc	2500
ttgcctggaa	tqcacaccaa	gggcccacc	cgcccagaac	aaatgggact	caecaaaaac	2700
tggcctcacc	ctccctattc	tcagtcctgc	agcctgagca	tatactaacc	aactatacca	2760
tgaggtgccc	tcccacttcc	tccttcaggt	tctgagggg	acaggetgac	aagtaggacc	2820
cgaggcactg	gaggagcatt	gaaggagaag	atctgtaagt	aaacctttat	cagaggacc	2020
aaggttcagt	tcagttctca	cctaaggcct	cacacacgct	cettetetee	ccagacctat	2000
gggtcttcat	tgcccagctc	ctqcccqcac	tcctgcctgc	taccetaace	agagtcatca	2000
tgcctcttga	gcagaggagt	cagcactgca	agcctgaaga	aggettgag	agagecacca	3060
aggccctggg	cctgatagat	gcgcaggctc	ctgctactga	agaacaacaa	accocttctt	3120
cctcttctac	tctagtggaa	gttaccctog	gggaggtgcc	tactaccasc	tracroagto	2100
ctccccacag	tecteaggga	gcctccagct	tctcgactac	catcaactac	actettteea	3240
gacaatccga	tgagggctcc	agcaaccaag	aagaggaggg	gccaagaatg	tttcccacc	3270
tggagtccga	gttccaagca	gcaatcagta	ggaagatggt	tgagttggtt	cattttctcc	3360
tecteaagta	tcgagccagg	gagccggt.ca	caaaggcaga	aatoctooao	agtatacta	3420
qaaattgcca	qqacttcttt	cccgtgatct	tcagcaaagc	ctccgagtac	ttacaactaa	2490
tctttggcat	cgaggtggtg	gaagtggtcc	ccatcagcca	cttgtacatc	cttatcacct	3240
geetgggeet	ctcctacgat	gacctactaa	gcgacaatca	gatcataccc	aaracarrcc	3240
tcctgataat	catcctaacc	ataatcocaa	tagagggcga	ctatacccct	nannanaaaa	3660
totoggagga	gctgagtatg	ttagaggtat	ttgaggggag	adadacadt	gtcttcacec	3720
atcccaggaa	gctgctcatg	caagatctoo	tocaggaaaa	ctacctogag	taccoccaca	3700
tgcccggcag	tgatcctgca	toctacoaor	tectatagaa	tecaagggg	ctcattcaaa	3040
ccagctatgt	gaaagtcctg	caccatacac	taaagatcoo	tagagaagat	cacatttcct	2000
acccacccct	gcatgaacgg	actttaagag	adddadaada	ataaatata	acacacacac	3960
cagccagggc	cagtoggaaaa	gggtctgggg	cagtgcacct	tecaeeeee	catcoattac	4022
cttccactgc	Ctcatatast	atgaggccca	ttcctaccta	tttgaagag	accelaciay	4000
ttcttagcag	tgagtttctg	ttetattaaa	tgactttgag	atttatett	otttcctatt	4140
ggaattgttc	aaatgtteet	tttaacaaat	aattaastas	acttcaccet	ccaaatttat	4200
5			JJeeggaega	uccicaycal	ccaayiiial	4200

```
gaatgacagt agtcacacat agtgctgttt atatagttta ggggtaagag tcctgttttt 4260
tattcagatt gggaaatcca ttccattttg tgagttgtca cataataaca gcagtggaat 4320
atgtatttgc ctatattgtg aacgaattag cagtaaaata catgatacaa ggaactcaaa 4380
agatagttaa ttcttgcctt atacctcagt ctattatgta aaattaaaaa tatgtgtatg 4440
tttttgcttc tttgagaatg caaaagaaat taaatctgaa taaattcttc ctgttcactg 4500
gctcatttct ttaccattca ctcagcatct gctctgtgga aggccctggt agtagtggg 4559
<210> 83
<211> 4204
<212> DNA
<213> Homo sapiens
<400> 83
acgcaggcag tgatgtcacc cagaccacac cccttccccc aatgccactt cagggggtac 60
tcagagtcag agacttggtc tgaggggagc agaagcaatc tgcagaggat ggcggtccag 120
gctcagccag gcatcaactt caggaccctg agggatgacc gaaggccccg cccacccacc 180
cccaactecc cegaceccac caggatetac agectcagga cccccgtecc aatecttace 240
cettgeecea teaccatett catgettace tecacececa teegateece atecaggeag 300.
aatccagttc cacccctgcc cggaacccag ggtagtaccg ttgccaggat gtgacgccac 360
tgacttgcgc attggaggtc agaagaccgc gagattctcg ccctgagcaa cgagcgacgg 420
cctgacgtcg gcggagggaa gccggcccag gctcggtgag gaggcaaggt aagacgctga 480
gggaggactg aggcgggcct cacctcagac agagggcctc aaataatcca gtgctgcctc 540
tgctgccggg cctgggccac cccgcagggg aagacttcca ggctgggtcg ccactacctc 600
acceegeega ceeeegeege tttageeaeg gggaactetg gggacagage ttaatgtgge 660
cagggcaggg ctggttagaa gaggtcaggg cccacgctgt ggcaggaatc aaggtcagga 720
ccccgagagg gaactgaggg cagcctaacc accaccctca ccaccattcc cgtcccccaa 780
cacccaaccc caccccatc ccccattccc atccccaccc ccacccctat cctggcagaa 840
tccgggcttt gcccctggta tcaagtcacg gaagctccgg gaatggcggc caggcacgtg 900
agtcctgagg ttcacatcta cggctaaggg agggaagggg ttcggtatcg cgagtatggc 960
cgttgggagg cagcgaaagg gcccaggcct cctggaagac agtggagtcc tgaggggacc 1020
cagcatgcca ggacaggggg cccactgtac ccctgtctca aaccgaggca ccttttcatt 1080
cggctacggg aatcctaggg atgcagaccc acttcagcag ggggttgggg cccagccctg 1140
cgaggagtca tggggaggaa gaagagggag gactgagggg accttggagt ccagatcagt 1200
ggcaaccttg ggctggggga tgctgggcac agtggccaaa tgtgctctgt gctcattgcg 1260
cetteagggt gaccagagag ttgagggetg tggtetgaag agtgggaett caggteagca 1320
gagggaggaa teccaggate tgeagggeee aaggtgtace eecaagggge ceetatgtgg 1380
tggacagatg cagtggtcct aggatctgcc aagcatccag gtgaagagac tgagggagga 1440
ttgagggtac ccctgggaca gaatgcggac tgggggcccc ataaaaatct gccctgctcc 1500
tgctgttacc tcagagagcc tgggcagggc tgtcagctga ggtccctcca ttatcctagg 1560
atcactgatg tcagggaagg ggaagccttg gtctgagggg gctgcactca gggcagtaga 1620
gggaggetet cagaccetae taggagtgga ggtgaggace aageagtete eteacceagg 1680
gtacatggac ttcaataaat ttggacatct ctcgttgtcc tttccgggag gacctgggaa 1740
tgtatggcca gatgtgggtc ccctcatgtt tttctgtacc atatcaggta tgtgagttct 1800
tgacatgaga gatteteagg eeageagaag ggagggatta ggeeetataa ggagaaaggt 1860
gagggeeetg agtgageaea gaggggatee tecaceeeag tagagtgggg aceteaeaga 1920
gtctggccaa ccctcctgac agttctggga atccgtggct gcgtttgctg tctgcacatt 1980
gggggcccgt ggattcctct cccaggaatc aggagctcca ggaacaaggc agtgaggact 2040
tggtctgagg cagtgtcctc aggtcacaga gtagaggggg ctcagatagt gccaacggtg 2100
aaggtttgcc ttggattcaa accaagggcc ccacctgccc cagaacacat ggactccaga 2160
gegeetggee teacceteaa tacttteagt eetgeageet eageatgege tggeeggatg 2220
taccetgagg tgccctetca ettecteett caggttetga ggggacagge tgacetggag 2280
gaccagaggc ccccggagga gcactgaagg agaagatctg taagtaagcc tttgttagag 2340
cctccaaggt tccattcagt actcagctga ggtctctcac atgctccctc tctccccagg 2400
ccagtgggtc tccattgccc agetcctgcc cacactcccg cctgttgccc tgaccagagt 2460
catcatgcct cttgagcaga ggagtcagca ctgcaagcct gaagaaggcc ttgaggcccg 2520
aggagaggcc ctgggcctgg tgggtgegca ggctcctgct actgaggagc aggaggctgc 2580
ctcctcctct tctactctag ttgaagtcac cctgggggag gtgcctgctg ccgagtcacc 2640
```

```
agateeteee cagagteete agggageete cageeteeee actaecatga actaecetet 2700
 ctggagccaa tcctatgagg actccagcaa ccaagaagag gaggggccaa gcaccttccc 2760
 tgacctggag tccgagttcc aagcagcact cagtaggaag gtggccgagt tggttcattt 2820
 tetgeteete aagtategag eeagggagee ggteacaaag geagaaatge tggggagtgt 2880
 cgtcggaaat tggcagtatt tctttcctgt gatcttcagc aaagcttcca gttccttgca 2940
gctggtcttt ggcatcgagc tgatggaagt ggaccccatc ggccacttgt acatctttgc 3000
 cacctgcctg ggcctctcct acgatggcct gctgggtgac aatcagatca tgcccaaggc 3060
aggcctcctg ataatcgtcc tggccataat cgcaagagag ggcgactgtg cccctgagga 3120
gaaaatctgg gaggagctga gtgtgttaga ggtgtttgag gggagggaag acagtatctt 3180
gggggatccc aagaagetge teacceaaca tttegtgcag gaaaactace tggagtaceg 3240
gcaggtcccc ggcagtgatc ctgcatgtta tgaattcctg tggggtccaa gggccctcgt 3300
tgaaaccagc tatgtgaaag tcctgcacca tatggtaaag atcagtggag gacctcacat 3360
ttcctaccca cccctgcatg agtgggtttt gagagagggg gaagagtgag tctgagcacg 3420
agttgcagcc agggccagtg ggagggggtc tgggccagtg caccttccgg ggccgcatcc 3480
cttagtttcc actgcctcct gtgacgtgag gcccattctt cactctttga agcgagcagt 3540
cagcattett agtagtgggt ttetgttetg ttggatgact ttgagattat tetttgttte 3600
ctgttggagt tgttcaaatg ttccttttaa cggatggttg aatgagcgtc agcatccagg 3660
tttatgaatg acagtagtca cacatagtgc tgtttatata gtttaggagt aagagtcttg 3720
ttttttactc aaattgggaa atccattcca ttttgtgaat tgtgacataa taatagcagt 3780
ggtaaaagta tttgcttaaa attgtgagcg aattagcaat aacatacatg agataactca 3840
agaaatcaaa agatagttga ttcttgcctt gtacctcaat ctattctgta aaattaaaca 3900
aatatgcaaa ccaggatttc cttgacttct ttgagaatgc aagcgaaatt aaatctgaat 3960
aaataattet teetetteae tggetegttt etttteegtt cacteageat etgetetgtg 4020
ggaggccctg ggttagtagt ggggatgcta aggtaagcca gactcacgcc tacccatagg 4080
gctgtagagc ctaggacctg cagtcatata attaaggtgg tgagaagtcc tgtaagatgt 4140
agaggaaatg taagagaggg gtgagggtgt ggcgctccgg gtgagagtag tggagtgtca 4200
gtgc
                                                                   4204
<210> 84
<211> 752
<212> DNA
<213> Homo sapiens
<400> 84
atectegtgg gecetgaeet tetetetgag ageegggeag aggeteegga gecatgeagg 60
ccgaaggccg gggcacaggg ggttcgacgg gcgatgctga tggcccagga ggccctggca 120
ttcctgatgg cccagggggc aatgctggcg gcccaggaga ggcgggtgcc acgggcggca 180
gaggtccccg gggcgcaggg gcagcaaggg cctcggggcc gggaggaggc gcccgcggg 240
gtccgcatgg cggcgcgct tcagggctga atggatgctg cagatgcggg gccagggggc 300
eggagageeg cetgettgag ttetaceteg ceatgeettt egegaeacee atggaageag 360
agetggcccg caggagcctg geccaggatg ccccaccgct tcccgtgcca ggggtgcttc 420
tgaaggagtt cactgtgtcc ggcaacatac tgactatccg actgactgct gcagaccacc 480
gecaactgea getetecate agetectgte tecageaget ttecetgttg atgtggatea 540
cgcagtgctt tetgecegtg tttttggctc agectecete agggcagagg cgctaagece 600
agectggege ceettectag gteatgeete etceectagg gaatggteec ageacgagtg 660
gccagttcat tgtgggggcc tgattgtttg tcgctggagg aggacggctt acatgtttgt 720
ttctgtagaa aataaaactg agctacgaaa aa
<210> 85
<211> 2148
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(2)
<223> n = A, T, C or G
```

```
<400> 85
getteagggt acageteece egeageeaga ageegggeet geageecete ageaeegete 60
egggacacce caccegette ceaggegtga cetgteaaca geaacttege ggtgtggtga 120
actetetgag gaaaaaccat titgattatt acteteagae gigegiggea acaagigaet 180
gagacctaga aatccaagcg ttggaggtcc tgaggccagc ctaagtcgct tcaaaatgga 240
acgaaggcgt ttgtggggtt ccattcagag ccgatacatc agcatgagtg tgtggacaag 300
cccacggaga cttgtggagc tggcagggca gagcctgctg aaggatgagg ccctggccat 360
tgccgccctg gagttgctgc ccagggagct cttcccgcca ctcttcatgg cagcctttga 420
cgggagacac agccagaccc tgaaggcaat ggtgcaggcc tggcccttca cctgcctccc 480
tctgggagtg ctgatgaagg gacaacatct tcacctggag accttcaaag ctgtgcttga 540
tggacttgat gtgctccttg cccaggaggt tcgccccagg aggtggaaac ttcaagtgct 600
ggatttacgg aagaactete atcaggactt etggaetgta tggtetggaa acagggecag 660
tetgtaetea tttecagage cagaageage teageecatg acaaagaage gaaaagtaga 720
tggtttgagc acagaggcag agcagccctt cattccagta gaggtgctcg tagacctgtt 780
ceteaaggaa ggtgeetgtg atgaattgtt etectacete attgagaaag tgaagegaaa 840
gaaaaatgta ctacgcctgt gctgtaagaa gctgaagatt tttgcaatgc ccatgcagga 900
tatcaagatg atcctgaaaa tggtgcagct ggactctatt gaagatttgg aagtgacttg 960
tacctggaag ctacccacct tggcgaaatt ttctccttac ctgggccaga tgattaatct 1020
gegtagacte etectetece acatecatge atettectae attteeeegg agaaggaaga 1080
gcagtatate gcccagttca ceteteagtt ceteagtetg cagtgcetgc aggeteteta 1140
tgtggactct ttatttttcc ttagaggccg cctggatcag ttgctcaggc acgtgatgaa 1200
ccccttggaa accctctcaa taactaactg ccggctttcg gaaggggatg tgatgcatct 1260
gtcccagagt cccagcgtca gtcagctaag tgtcctgagt ctaagtgggg tcatgctgac 1320
cgatgtaagt cccgagccc tccaagetct gctggagaga gcctctgcca ccctccagga 1380
cctggtcttt gatgagtgtg ggatcacgga tgatcagctc cttgccctcc tgccttccct 1440
gagccactgc tcccagctta caaccttaag cttctacggg aattccatct ccatatctgc 1500
cttgcagagt ctcctgcagc acctcatcgg gctgagcaat ctgacccacg tgctgtatcc 1560
tgtccccctg gagagttatg aggacatcca tggtaccctc cacctggaga ggcttgccta 1620
tetgeatgee aggeteaggg agttgetgtg tgagttgggg eggeecagea tggtetgget 1680
tagtgccaac ccctgtcctc actgtgggga cagaaccttc tatgacccgg agcccatcct 1740
gtgcccctgt ttcatgccta actagctggg tgcacatatc aaatgcttca ttctgcatac 1800
ttggacacta aagccaggat gtgcatgcat cttgaagcaa caaagcagcc acagtttcag 1860
acaaatgttc agtgtgagtg aggaaaacat gttcagtgag gaaaaaacat tcagacaaat 1920
gttcagtgag gaaaaaaagg ggaagttggg gataggcaga tgttgacttg aggagttaat 1980
gtgatctttg gggagataca tcttatagag ttagaaatag aatctgaatt tctaaaggga 2040
gattetgget tgggaagtac atgtaggagt taatccetgt gtagactgtt gtaaagaaac 2100
tgttgaaaat aaagagaagc aatgtgaagc aaaaaaaaa aaaaaaaa
                                                                  2148
<210> 86
<211> 1466
<212> DNA
<213> Homo sapiens
<400> 86
agccccaagc ttaccacctg cacccggaga gctgtgtgtc accatgtggg tcccggttgt 60
cttcctcacc ctgtccgtga cgtggattgg tgctgcaccc ctcatcctgt ctcggattgt 120
gggaggctgg gagtgcgaga agcattccca accetggcag gtgcttgtgg cetetegtgg 180
cagggcagtc tgcggcggtg ttctggtgca cccccagtgg gtcctcacag ctgcccactg 240
catcaggaac aaaagcgtga tettgetggg teggcacage etgttteate etgaagacac 300
aggecaggta tttcaggtca gccacagctt cccacacccg ctctacgata tgagcctcct 360
gaagaatcga ttcctcaggc caggtgatga ctccagccac gacctcatgc tgctccgcct 420
gtcagagcct gccgagctca cggatgctgt gaaggtcatg gacctgccca cccaggagcc 480
ageactgggg accaectget acgeeteagg etggggeage attgaaceag aggagttett 540
gaccccaaag aaacttcagt gtgtggacct ccatgttatt tccaatgacg tgtgtgcgca 600
agttcaccct cagaaggtga ccaagttcat gctgtgtgct ggacgctgga cagggggcaa 660
aagcacetge tegggtgatt etgggggeee aettgtetgt aatggtgtge tteaaggtat 720
```

```
cacgtcatgg ggcagtgaac catgtgccct gcccgaaagg ccttccctgt acaccaaggt 780
ggtgcattac cggaagtgga tcaaggacac catcgtggcc aacccctgag cacccctatc 840
aaccccctat tgtagtaaac ttggaacctt ggaaatgacc aggccaagac tcaagcctcc 900
ccagttctac tgacctttgt ccttaggtgt gaggtccagg gttgctagga aaagaaatca 960
gcagacacag gtgtagacca gagtgtttct taaatggtgt aattttgtcc tctctgtgtc 1020
ctggggaata ctggccatgc ctggagacat atcactcaat ttctctgagg acacagatag 1080
gatggggtgt ctgtgttatt tgtggggtac agagatgaaa gaggggtggg atccacactg 1140
agagagtgga gagtgacatg tgctggacac tgtccatgaa gcactgagca gaagctggag 1200
gcacaacgca ccagacactc acagcaagga tggagctgaa aacataaccc actctgtcct 1260
ggaggcactg ggaagcctag agaaggctgt gagccaagga gggagggtct tcctttggca 1320
tgggatgggg atgaagtaag gagagggact ggaccccctg gaagctgatt cactatgggg 1380
ggaggtgtat tgaagtcctc cagacaaccc tcagatttga tgatttccta gtagaactca 1440
cagaaataaa gagctgttat actgtg
<210> 87
<211> 990
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(990)
<223> n = A, T, C \text{ or } G
<400> 87
agggagaggc agtgaccatg aaggctgtgc tgcttgccct gttgatggca ggcttggccc 60
tgcagccagg cactgccctg ctgtgctact cctgcaaagc ccaggtgagc aacgaggact 120
gcctgcaggt ggagaactgc acccagctgg gggagcagtg ctggaccgcg cgcatccgcg 180
cagttggcct cctgaccgtc atcagcaaag gctgcagctt gaactgcgtg gatgactcac 240
aggactacta cgtgggcaag aagaacatca cgtgctgtga caccgacttg tgcaacgcca 300
geggggecca tgeeetgeag ceggetgeeg ceateettge getgeteect geacteggee 360
tgctgctctg gggacccggc cagctatagg ctctgggggg ccccgctgca gcccacactg 420
ggtgtggtgc cccaggcctt tgtgccactc ctcacagaac ctggcccagt gggagcctgt 480
cetggtteet gaggeacate ctaacgeaag titgaccatg tatgtitgea eccettitee 540
conaaccotg accttoccat gggccttttc caggattcon accnggcaga tcagttttag 600
tganacanat ccgcntgcag atggcccctc caaccntttn tgttgntgtt tccatggccc 660
ageattttee accettaace etgtgtteag geacttntte ceccaggaag cettecetge 720
ccaccccatt tatgaattga gccaggtttg gtccgtggtg tcccccgcac ccagcagggg 780
acaggcaatc aggagggccc agtaaaggct gagatgaagt ggactgagta gaactggagg 840
acaagagttg acgtgagttc ctgggagttt ccagagatgg ggcctggagg cctggaggaa 900
ggggccaggc ctcacatttg tggggntccc gaatggcagc ctgagcacag cgtaggccct 960
taataaacac ctgttggata agccaaaaaa
                                                                   990
<210> 88
<211> 9
<212> PRT
<213> Homo sapiens
<400> 88
Leu Pro His Ser Ser Ser His Trp Leu
7
<210> 89
<211> 10
<212> PRT
<213> Homo sapiens
```

```
<4.00> 89
Gln Leu Pro His Ser Ser Ser His Trp Leu
1 5
<210> 90
<211> 9
<212> PRT
<213> Homo sapiens
<400> 90
Leu Ile Tyr Arg Arg Leu Met Lys
1 5
<210> 91
<211> 10
<212> PRT
<213> Homo sapiens
<400> 91
Ser Leu Ile Tyr Arg Arg Arg Leu Met Lys
              5
<210> 92
<211> 8
<212> PRT
<213> Homo sapiens
<400> 92
Ile Tyr Arg Arg Leu Met Lys
              5
<210> 93
<211> 9
<212> PRT
<213> Homo sapiens
Leu Pro His Ser Ser Ser His Trp Leu
<210> 94
<211> 10
<212> PRT
<213> Homo sapiens
<400> 94
Gln Leu Pro His Ser Ser Ser His Trp Leu
              5
```

<210> 95

```
<211> 8
 <212> PRT
 <213> Homo sapiens
 <400> 95
 Glu Ser Leu Phe Arg Ala Val Ile
                5
 <210> 96
 <211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 96
 Ile Leu Glu Ser Leu Phe Arg Ala Val Ile
                5
 <210> 97
· <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 97
 Ile Leu Glu Ser Leu Phe Arg Ala Val
 <210> 98
 <211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 98
 Cys Ile Leu Glu Ser Leu Phe Arg Ala Val
          5
<210> 99
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 99
 Cys Ile Leu Glu Ser Leu Phe Arg Ala
 <210> 100
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 100
 Glu Phe Leu Trp Gly Pro Arg Ala Leu
```

```
<210> 101
<211> 8
<212> PRT
<213> Homo sapiens
<400> 101
Phe Leu Trp Gly Pro Arg Ala Leu
<210> 102
<211> 10
<212> PRT
<213> Homo sapiens
<400> 102
Phe Leu Trp Gly Pro Arg Ala Leu Ala Glu
1 5
<210> 103
<211> 10
<212> PRT
<213> Homo sapiens
<400> 103
Leu Trp Gly Pro Arg Ala Leu Ala Glu Thr
<210> 104
<211> 9
<212> PRT
<213> Homo sapiens
<400> 104
Pro Arg Ala Leu Ala Glu Thr Ser Tyr
<210> 105
<211> 10
<212> PRT
<213> Homo sapiens
<400> 105
Gly Pro Arg Ala Leu Ala Glu Thr Ser Tyr
<210> 106
<211> 9
<212> PRT
<213> Homo sapiens
```

```
<400> 106
Arg Ala Leu Ala Glu Thr Ser Tyr Val
        5
<210> 107
<211> 9
<212> PRT
<213> Homo sapiens
<400> 107
Leu Ala Glu Thr Ser Tyr Val Lys Val
<210> 108
<211> 10
<212> PRT
<213> Homo sapiens
<400> 108
Ala Leu Ala Glu Thr Ser Tyr Val Lys Val
<210> 109
<211> 9
<212> PRT
<213> Homo sapiens
<400> 109
Ala Glu Thr Ser Tyr Val Lys Val Leu
     5
<210> 110
<211> 10
<212> PRT
<213> Homo sapiens
<400> 110
Leu Ala Glu Thr Ser Tyr Val Lys Val Leu
<210> 111
<211> 9
<212> PRT
<213> Homo sapiens
<400> 111
Thr Ser Tyr Val Lys Val Leu Glu Tyr
<210> 112
<211> 10
```

```
<212> PRT
<213> Homo sapiens
<400> 112
Glu Thr Ser Tyr Val Lys Val Leu Glu Tyr
    5
<210> 113
<211> 9
<212> PRT
<213> Homo sapiens
<400> 113
Lys Val Leu Glu Tyr Val Ile Lys Val
         5
<210> 114
<211> 10
<212> PRT
<213> Homo sapiens
<400> 114
Ser Tyr Val Leu Val Thr Cys Leu Gly Leu
<210> 115
<211> 9
<212> PRT
<213> Homo sapiens
<400> 115
Tyr Val Leu Val Thr Cys Leu Gly Leu
<210> 116
<211> 8
<212> PRT
<213> Homo sapiens
<400> 116
Val Leu Val Thr Cys Leu Gly Leu
1 5
<210> 117
<211> 9
<212> PRT
<213> Homo sapiens
<400> 117
Thr Gln Asp Leu Val Gln Glu Lys Tyr
1
```

```
<210> 118
 <211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 118
 Leu Thr Gln Asp Leu Val Gln Glu Lys Tyr
            , 5
 <210> 119
 <211> 9
 <212> PRT
 <213> Homo sapiens
<400> 119
Tyr Gly Glu Pro Arg Lys Leu Leu Thr
<210> 120
<211> 9
<212> PRT
<213> Homo sapiens
<400> 120
Leu Val Gln Glu Lys Tyr Leu Glu Tyr
1 5
<210> 121
<211> 10
<212> PRT
<213> Homo sapiens
<400> 121
Asp Leu Val Gln Glu Lys Tyr Leu Glu Tyr
1 5 10
<210> 122
<211> 9
<212> PRT
<213> Homo sapiens
<400> 122
Ser Ala Tyr Gly Glu Pro Arg Lys Leu
1 5
<210> 123
<211> 9
<212> PRT
<213> Homo sapiens
<400> 123
```

```
Lys Val Leu Glu Tyr Val Ile Lys Val
<210> 124
<211> 10
<212> PRT
<213> Homo sapiens
<400> 124
Val Lys Val Leu Glu Tyr Val Ile Lys Val
1 5
<210> 125
<211> 9
<212> PRT
<213> Homo sapiens
<400> 125
Tyr Val Lys Val Leu Glu Tyr Val Ile
   5
<210> 126
<211> 9
<212> PRT
<213> Homo sapiens
<400> 126
Thr Ser Tyr Val Lys Val Leu Glu Tyr
<210> 127
<211> 10
<212> PRT
<213> Homo sapiens
Glu Thr Ser Tyr Val Lys Val Leu Glu Tyr
<210> 128
<211>.9
<212> PRT
<213> Homo sapiens
<400> 128
Val Ile Lys Val Ser Ala Arg Val Arg
<210> 129
<211> 10
<212> PRT
```

```
<213> Homo sapiens
 <400> 129
 Tyr Val Ile Lys Val Ser Ala Arg Val Arg
 <210> 130
 <211> 8
 <212> PRT
 <213> Homo sapiens
 <400> 130
 Glu Leu Val His Phe Leu Leu Leu
                5
 <210> 131
 <211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 131
Met Val Glu Leu Val His Phe Leu Leu Leu
<210> 132
<211> 8
<212> PRT
<213> Homo sapiens
<400> 132
Ile Ser Arg Lys Met Val Glu Leu
    5
<210> 133
<211> 9
<212> PRT
<213> Homo sapiens
<400> 133
Ala Ile Ser Arg Lys Met Val Glu Leu
1 5
<210> 134
<211> 10
<212> PRT
<213> Homo sapiens
Ala Ala Ile Ser Arg Lys Met Val Glu Leu
    5
```

```
<210> 135
<211> 9
<212> PRT
<213> Homo sapiens
<400> 135
Lys Met Val Glu Leu Val His Phe Leu
<210> 136
<211> 9
<212> PRT
<213> Homo sapiens
<400> 136
Ile Ser Arg Lys Met Val Glu Leu Val
1 5
<210> 137
<211> 10
<212> PRT
<213> Homo sapiens
<400> 137
Ala Ile Ser Arg Lys Met Val Glu Leu Val
<210> 138
<211> 9
<212> PRT
<213> Homo sapiens
<400> 138
Leu Val His Phe Leu Leu Leu Lys Tyr
<210> 139
<211> 10
<212> PRT
<213> Homo sapiens
<400> 139
Glu Leu Val His Phe Leu Leu Leu Lys Tyr
               5
<210> 140
<211> 9
<212> PRT
<213> Homo sapiens
<400> 140
Arg Lys Met Val Glu Leu Val His Phe
```

```
1
                   5
  <210> 141
  <211> 9
  <212> PRT
  <213> Homo sapiens
 <400> 141
 Leu Gln Leu Val Phe Gly Ile Glu Val
 <210> 142
 <211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 142
 Tyr Leu Gln Leu Val Phe Gly Ile Glu Val
          5
 <210> 143
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 143
Gln Leu Val Phe Gly Ile Glu Val Val
<210> 144
<211> 10
<212> PRT
<213> Homo sapiens
<400> 144
Leu Gln Leu Val Phe Gly Ile Glu Val Val
                5
<210> 145
<211> 9
<212> PRT
<213> Homo sapiens
<400> 145
Ile Glu Val Val Glu Val Val Pro Ile
<210> 146
<211> 10
<212> PRT
<213> Homo sapiens
```

```
<400> 146
Gly Ile Glu Val Val Glu Val Val Pro Ile
1 5
<210> 147
<211> 9
<212> PRT
<213> Homo sapiens
<400> 147
Phe Gly Ile Glu Val Val Glu Val Val
1 5
<210> 148
<211> 9
<212> PRT
<213> Homo sapiens
<400> 148
Ala Ser Glu Tyr Leu Gln Leu Val Phe
1 5
<210> 149
<211> 10
<212> PRT
<213> Homo sapiens
Lys Ala Ser Glu Tyr Leu Gln Leu Val Phe
    5
<210> 150
<211> 8
<212> PRT
<213> Homo sapiens
<400> 150
Glu Glu Lys Ile Trp Glu Glu Leu
<210> 151
<211> 10
<212> PRT
<213> Homo sapiens
<400> 151
Ala Pro Glu Glu Lys Ile Trp Glu Glu Leu
           5
```

<210> 152

```
<211> 8
 <212> PRT
 <213> Homo sapiens
 <400> 152
 Ala Pro Glu Glu Lys Ile Trp Glu
 <210> 153
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 153
 Lys Ile Trp Glu Glu Leu Ser Met Leu
 <210> 154
 <211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 154
 Glu Lys Ile Trp Glu Glu Leu Ser Met Leu
 1 5
 <210> 155
 <211> 8
 <212> PRT
 <213> Homo sapiens
 <400> 155
 Phe Leu Trp Gly Pro Arg Ala Leu
                5
 <210> 156
 <211> 9
 <212> PRT
<213> Homo sapiens
 <400> 156
 Phe Leu Trp Gly Pro Arg Ala Leu Ile
 1 5
 <210> 157
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 157
 Leu Ile Glu Thr Ser Tyr Val Lys Val
                5
```

```
<210> 158
<211> 10
<212> PRT
<213> Homo sapiens
<400> 158
Ala Leu Ile Glu Thr Ser Tyr Val Lys Val
<210> 159
<211> 9
<212> PRT
<213> Homo sapiens
<400> 159
Arg Ala Leu Ile Glu Thr Ser Tyr Val
<210> 160
<211> 9
<212> PRT
<213> Homo sapiens
<400> 160
Ile Glu Thr Ser Tyr Val Lys Val Leu
     5
<210> 161
<211> 10
<212> PRT
<213> Homo sapiens
Leu Ile Glu Thr Ser Tyr Val Lys Val Leu
<210> 162
<211> 8
<212> PRT
<213> Homo sapiens
<400> 162
Phe Leu Trp Gly Pro Arg Ala Leu
<210> 163
<211> 9
<212> PRT
<213> Homo sapiens
```

```
<400> 163
 Glu Phe Leu Trp Gly Pro Arg Ala Leu
       5
 <210> 164
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 164
 Phe Leu Trp Gly Pro Arg Ala Leu Val
                5
<210> 165
<211> 9
<212> PRT
<213> Homo sapiens
<400> 165
Arg Ala Leu Val Glu Thr Ser Tyr Val
      5
<210> 166
<211> 9
<212> PRT
<213> Homo sapiens
<400> 166
Leu Trp Gly Pro Arg Ala Leu Val Glu
<210> 167
<211> 10
<212> PRT
<213> Homo sapiens
<400> 167
Phe Leu Trp Gly Pro Arg Ala Leu Val Glu
               5
<210> 168
<211> 10
<212> PRT
<213> Homo sapiens
<400> 168
Leu Trp Gly Pro Arg Ala Leu Val Glu Thr
               5
<210> 169
<211> 9
```

```
<212> PRT
<213> Homo sapiens
<400> 169
Gly Pro Glu Ser Arg Leu Leu Glu Phe
   5
<210> 170
<211> 9
<212> PRT
<213> Homo sapiens
<400> 170
Pro Glu Ser Arg Leu Leu Glu Phe Tyr
1 5
<210> 171
<211> 10
<212> PRT
<213> Homo sapiens
<400> 171
Gly Pro Glu Ser Arg Leu Leu Glu Phe Tyr
<210> 172
<211> 9
<212> PRT
<213> Homo sapiens
<400> 172
Glu Ser Arg Leu Leu Glu Phe Tyr Leu
<210> 173
<211> 9
<212> PRT
<213> Homo sapiens
<400> 173
Arg Leu Leu Glu Phe Tyr Leu Ala Met
<210> 174
<211> 9
<212> PRT
<213> Homo sapiens
<400> 174
Leu Glu Phe Tyr Leu Ala Met Pro Phe
 1
            5
```

```
<210> 175
 <211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 175
 Leu Leu Glu Phe Tyr Leu Ala Met Pro Phe
 <210> 176
 <211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 176
Ala Met Pro Phe Ala Thr Pro Met Glu Ala
       5
<210> 177
<211> 9
<212> PRT
<213> Homo sapiens
<400> 177
Met Pro Phe Ala Thr Pro Met Glu Ala
                5
<210> 178
<211> 9
<212> PRT
<213> Homo sapiens
<400> 178
Pro Leu Pro Val Pro Gly Val Leu Leu
   5
<210> 179
<211> 10
<212> PRT
<213> Homo sapiens
<400> 179
Pro Pro Leu Pro Val Pro Gly Val Leu Leu
          5
<210> 180
<211> 8
<212> PRT
<213> Homo sapiens
<400> 180
```

```
Leu Pro Val Pro Gly Val Leu Leu
1 5
<210> 181
<211> 10
<212> PRT
<213> Homo sapiens
<400> 181
Glu Leu Ala Arg Arg Ser Leu Ala Gln Asp
1 5
<210> 182
<211> 9
<212> PRT
<213> Homo sapiens
<400> 182
Val Pro Gly Val Leu Leu Lys Glu Phe
<210> 183
<211> 10
<212> PRT
<213> Homo sapiens
<400> 183
Pro Val Pro Gly Val Leu Leu Lys Glu Phe
           5
<210> 184
<211> 8
<212> PRT
<213> Homo sapiens
<400> 184
Leu Pro Val Pro Gly Val Leu Leu
       5
<210> 185
<211> 9
<212> PRT
<213> Homo sapiens
<400> 185
Thr Val Ser Gly Asn Ile Leu Thr Ile
<210> 186
<211> 10
<212> PRT
```

```
<213> Homo sapiens
<400> 186
Phe Thr Val Ser Gly Asn Ile Leu Thr Ile
           5
<210> 187
<211> 9
<212> PRT
<213> Homo sapiens
<400> 187
Gly Val Leu Leu Lys Glu Phe Thr Val
        5
<210> 188
<211> 10
<212> PRT
<213> Homo sapiens
<400> 188
Val Leu Leu Lys Glu Phe Thr Val Ser Gly
        5
<210> 189
<211> 9
<212> PRT
<213> Homo sapiens
<400> 189
Leu Leu Lys Glu Phe Thr Val Ser Gly
<210> 190
<211> 9
<212> PRT
<213> Homo sapiens
<400> 190
Val Pro Gly Val Leu Leu Lys Glu Phe
1
               5
<210> 191
<211> 10
<212> PRT
<213> Homo sapiens
<400> 191
Pro Val Pro Gly Val Leu Leu Lys Glu Phe
1 5
```

```
<210> 192
<211> 9
<212> PRT
<213> Homo sapiens
<400> 192
Ala Ala Asp His Arg Gln Leu Gln Leu
<210> 193
<211> 9
<212> PRT
<213> Homo sapiens
<400> 193
Ser Ile Ser Ser Cys Leu Gln Gln Leu
                5
<210> 194
<211> 10
<212> PRT
<213> Homo sapiens
<400> 194
Leu Ser Ile Ser Ser Cys Leu Gln Gln Leu
<210> 195
<211> 10
<212> PRT
<213> Homo sapiens
<400> 195
Thr Ala Ala Asp His Arg Gln Leu Gln Leu
<210> 196
<211> 9
<212> PRT
<213> Homo sapiens
<400> 196
Trp Ile Thr Gln Cys Phe Leu Pro Val
<210> 197
<211> 9
<212> PRT
<213> Homo sapiens
<400> 197
Ser Leu Leu Met Trp Ile Thr Gln Cys
```

```
1
               5
 <210> 198
 <211> 9
<212> PRT
<213> Homo sapiens
<400> 198
Ser Ser Cys Leu Gln Gln Leu Ser Leu
<210> 199
<211> 9
<212> PRT
<213> Homo sapiens
<400> 199
Gln Gln Leu Ser Leu Leu Met Trp Ile
<210> 200
<211> 9
<212> PRT
<213> Homo sapiens
<400> 200
Ser Cys Leu Gln Gln Leu Ser Leu Leu
<210> 201
<211> 10
<212> PRT
<213> Homo sapiens
                     . . .
<400> 201
Ser Ser Cys Leu Gln Gln Leu Ser Leu Leu
        5
<210> 202
<211> 9
<212> PRT
<213> Homo sapiens
<400> 202
Thr Gln Cys Phe Leu Pro Val Phe Leu
     5
<210> 203
<211> 10
<212> PRT
<213> Homo sapiens
```

```
<400> 203
Ile Thr Gln Cys Phe Leu Pro Val Phe Leu
<210> 204
<211> 9
<212> PRT
<213> Homo sapiens
<400> 204
Pro Met Gln Asp Ile Lys Met Ile Leu
1 5
<210> 205
<211> 10
<212> PRT
<213> Homo sapiens
<400> 205
Met Pro Met Gln Asp Ile Lys Met Ile Leu
1 5
<210> 206
<211> 9
<212> PRT
<213> Homo sapiens
<400> 206
Gln His Leu Ile Gly Leu Ser Asn Leu
<210> 207
<211> 10
<212> PRT
<213> Homo sapiens
<400> 207
Leu Gln His Leu Ile Gly Leu Ser Asn Leu
<210> 208
<211> 8
<212> PRT
<213> Homo sapiens
<400> 208
His Leu Ile Gly Leu Ser Asn Leu
               5
```

<210> 209

```
<211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 209
 Ile Gly Leu Ser Asn Leu Thr His Val
             5
 <210> 210
 <211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 210
 Leu Ile Gly Leu Ser Asn Leu Thr His Val
                 5
 <210> 211
 <211> 9
 <212> PRT
 <213> Homo sapiens
<400> 211
Val Leu Val His Pro Gln Trp Val Leu
<210> 212
<211> 10
<212> PRT
<213> Homo sapiens
<400> 212
Gly Val Leu Val His Pro Gln Trp Val Leu
1
     5
<210> 213
<211> 9
<212> PRT
<213> Homo sapiens
<400> 213
Gly Val Leu Val His Pro Gln Trp Val
<210> 214
<211> 9
<212> PRT
<213> Homo sapiens
<400> 214
Trp Val Leu Thr Ala Ala His Cys Ile
```

```
<210> 215
<211> 10
<212> PRT
<213> Homo sapiens
<400> 215
Leu Val His Pro Gln Trp Val Leu Thr Ala
1 5 .
<210> 216
<211> 10
<212> PRT
<213> Homo sapiens
<400> 216
Val Leu Val His Pro Gln Trp Val Leu Thr
<210> 217
<211> 9
<212> PRT
<213> Homo sapiens
<400> 217
Leu Val His Pro Gln Trp Val Leu Thr
<210> 218
<211> 8
<212> PRT
<213> Homo sapiens
Cys Ile Arg Asn Lys Ser Val Ile
<210> 219
<211> 9
<212> PRT
<213> Homo sapiens
<400> 219
His Cys Ile Arg Asn Lys Ser Val Ile
<210> 220
<211> 9
<212> PRT
<213> Homo sapiens
```

```
<400> 220
His Pro Gln Trp Val Leu Thr Ala Ala
<210> 221
<211> 10
<212> PRT
<213> Homo sapiens
<400> 221
Ala Ala His Cys Ile Arg Asn Lys Ser Val
       • 5
<210> 222
<211> 8
<212> PRT
<213> Homo sapiens
<400> 222
Leu Leu Trp Gly Pro Gly Gln Leu
1 5
<210> 223
<211> 9
<212> PRT
<213> Homo sapiens
<400> 223
Leu Leu Trp Gly Pro Gly Gln Leu
<210> 224
<211> 10
<212> PRT
<213> Homo sapiens
<400> 224
Gly Leu Leu Trp Gly Pro Gly Gln Leu
<210> 225
<211> 9
<212> PRT
<213> Homo sapiens
<400> 225
Ala Leu Gln Pro Ala Ala Ala Ile Leu
<210> 226
<211> 10
```

```
<212> PRT
<213> Homo sapiens
<400> 226
His Ala Leu Gln Pro Ala Ala Ala Ile Leu
<210> 227
<211> 10
<212> PRT
<213> Homo sapiens
<400> 227
Ala Pro Glu Lys Asp Lys Phe Phe Ala Tyr
1 5
<210> 228
<211> 9
<212> PRT
<213> Homo sapiens
<400> 228
Pro Glu Lys Asp Lys Phe Phe Ala Tyr
<210> 229
<211> 9
<212> PRT
<213> Homo sapiens
<400> 229
Glu Lys Asp Lys Phe Phe Ala Tyr Leu
<210> 230
<211> 8
<212> PRT
<213> Homo sapiens
<400> 230
Lys Asp Lys Phe Phe Ala Tyr Leu
<210> 231
<211> 9
<212> PRT
<213> Homo sapiens
<400> 231
Pro Ala Phe Leu Pro Trp His Arg Leu
1
           5
```

```
<210> 232
 <211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 232
 Ala Pro Ala Phe Leu Pro Trp His Arg Leu
                5
 <210> 233
 <211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 233
 Phe Leu Leu Arg Trp Glu Gln Glu Ile Gln
 <210> 234
 <211> 9
 <212> PRT
 <213> Homo sapiens
<400> 234
Arg Leu Phe Leu Leu Arg Trp Glu Gln
 1 5
<210> 235
<211> 10
<212> PRT
<213> Homo sapiens
<400> 235
Gly Ser Glu Ile Trp Arg Asp Ile Asp Phe
 1
       5
<210> 236
<211> 9
<212> PRT
<213> Homo sapiens
<400> 236
Ser Glu Ile Trp Arg Asp Ile Asp Phe
                5
<210> 237
<211> 9
<212> PRT
<213> Homo sapiens
<400> 237
```

```
Arg Ile Trp Ser Trp Leu Leu Gly Ala
1 5
<210> 238
<211> 9
<212> PRT
<213> Homo sapiens
<400> 238
Ser Trp Leu Leu Gly Ala Ala Met Val
1 5
<210> 239
<211> 10
<212> PRT
<213> Homo sapiens
<400> 239
Trp Leu Leu Gly Ala Ala Met Val Gly Ala
1 5
<210> 240
<211> 9
<212> PRT
<213> Homo sapiens
<400> 240 .
Leu Leu Gly Ala Ala Met Val Gly Ala
1 5
<210> 241
<211> 9
<212> PRT
<213> Homo sapiens
<400> 241
Leu Leu His Glu Thr Asp Ser Ala Val
              5
<210> 242
<211> 9
<212> PRT
<213> Homo sapiens
<400> 242
Ala Thr Ala Arg Arg Pro Arg Trp Leu
<210> 243
<211> 9
<212> PRT
```

```
<213> Homo sapiens
 <400> 243
 Thr Pro Lys His Asn Met Lys Ala Phe
 <210> 244
 <211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 244
 Glu Leu Lys Ala Glu Asn Ile Lys Lys Phe
<210> 245
<211> 9
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (7)...(7)
<223> Xaa= His or Tyr
<400> 245
Asn Ile Lys Lys Phe Leu Xaa Asn Phe
                 5
<210> 246
<211> 10
<212> PRT
<213> Homo sapiens
<220>
<221> VARIANT
<222> (8)...(8)
<223> Xaa = His or Tyr
<400> 246
Glu Asn Ile Lys Lys Phe Leu Xaa Asn Phe
                5
<210> 247
<211> 9
<212> PRT
<213> Homo sapiens
<400> 247
Ala Gly Ala Lys Gly Val Ile Leu Tyr
```

```
<210> 248
<211> 10
<212> PRT
<213> Homo sapiens
<400> 248
Pro Leu Met Tyr Ser Leu Val His Asn Leu
1 5
<210> 249
<211> 9
<212> PRT
<213> Homo sapiens
<400> 249
Leu Met Tyr Ser Leu Val His Asn Leu
                5
<210> 250
<211> 9
<212> PRT
<213> Homo sapiens
<400> 250
Arg Val Asp Cys Thr Pro Leu Met Tyr
<210> 251
<211> 9
<212> PRT
<213> Homo sapiens
<400> 251
Asp Cys Thr Pro Leu Met Tyr Ser Leu
<210> 252
<211> 9
<212> PRT
<213> Homo sapiens
<400> 252
Ser Gly Met Pro Arg Ile Ser Lys Leu
<210> 253
<211> 10
<212> PRT
<213> Homo sapiens
<400> 253
Phe Ser Gly Met Pro Arg Ile Ser Lys Leu
```

```
1
                5
                                   10
 <210> 254
 <211> 28
 <212> PRT
 <213> Homo sapiens
 <400> 254
 Arg Leu Thr Ala Ala Asp His Arg Gln Leu Gln Leu Ser Ile Ser Ser
 1
             5
                                  10
 Cys Leu Gln Gln Leu Ser Leu Leu Met Trp Ile Thr
            20
 <210> 255
 <211> 28
 <212> PRT
 <213> Homo sapiens
 <400> 255
 Ser Ser Cys Leu Gln Gln Leu Ser Leu Leu Met Trp Ile Thr Gln Cys
 1 5
                                10
Phe Leu Pro Val Phe Leu Ala Gln Pro Pro Ser Gly
    20
<210> 256
<211> 8
<212> PRT
<213> Homo sapiens
<400> 256
Lys Ala Glu Met Leu Glu Ser Val
 1
      5
<210> 257
<211> 9
<212> PRT
<213> Homo sapiens
<400> 257
Thr Lys Ala Glu Met Leu Glu Ser Val
<210> 258
<211> 10
<212> PRT
<213> Homo sapiens
Val Thr Lys Ala Glu Met Leu Glu Ser Val
```

```
<210> 259
<211> 9
<212> PRT
<213> Homo sapiens
<400> 259
Met Leu Glu Ser Val Ile Lys Asn Tyr
<210> 260
<211> 10
<212> PRT
<213> Homo sapiens
<400> 260
Glu Met Leu Glu Ser Val Ile Lys Asn Tyr
<210> 261
<211> 9
<212> PRT
<213> Homo sapiens
<400> 261
Lys Ala Glu Met Leu Glu Ser Val Ile
<210> 262
<211> 8
<212> PRT
<213> Homo sapiens
<400> 262
Lys Ala Ser Glu Ser Leu Gln Leu
<210> 263
<211> 9
<212> PRT
<213> Homo sapiens
<400> 263
Gly Lys Ala Ser Glu Ser Leu Gln Leu
<210> 264
<211> 9
<212> PRT
<213> Homo sapiens
<400> 264
Ala Ser Glu Ser Leu Gln Leu Val Phe
```

```
1
                 5
 <210> 265
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 265
 Leu Val Phe Gly Ile Asp Val Lys Glu
 <210> 266
 <211> 8
 <212> PRT
 <213> Homo sapiens
 <400> 266
 Leu Leu Lys Tyr Arg Ala Arg Glu
<210> 267
 <211> 8
 <212> PRT
<213> Homo sapiens
<400> 267
Val Ala Asp Leu Val Gly Phe Leu
<210> 268
<211> 9
<212> PRT
<213> Homo sapiens
<400> 268
Lys Val Ala Asp Leu Val Gly Phe Leu
 1
         5
<210> 269
<211> 9
<212> PRT
<213> Homo sapiens
<400> 269
Ala Asp Leu Val Gly Phe Leu Leu
<210> 270
<211> 10
<212> PRT
<213> Homo sapiens
```

```
<400> 270
Val Ala Asp Leu Val Gly Phe Leu Leu
1 5 10
<210> 271
<211> 10
<212> PRT
<213> Homo sapiens
<400> 271
Leu Leu Lys Tyr Arg Ala Arg Glu Pro Val
1 5
<210> 272
<211> 9
<212> PRT
<213> Homo sapiens
<400> 272
Leu Val Glu Thr Ser Tyr Val Lys Val
<210> 273
<211> 10
<212> PRT
<213> Homo sapiens
Ala Leu Val Glu Thr Ser Tyr Val Lys Val
1
<210> 274
<211> 9
<212> PRT
<213> Homo sapiens
<400> 274
Lys Val Leu His His Met Val Lys Ile
          5
<210> 275
<211> 9
<212> PRT
<213> Homo sapiens
<400> 275
Tyr Val Lys Val Leu His His Met Val
           5
```

<210> 276

```
<211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 276
 Pro Arg Ala Leu Val Glu Thr Ser Tyr
 <210> 277
 <211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 277
Gly Pro Arg Ala Leu Val Glu Thr Ser Tyr
                5
<210> 278
<211> 10
<212> PRT
<213> Homo sapiens
<400> 278
Leu Val Glu Thr Ser Tyr Val Lys Val Leu
            5
<210> 279
<211> 9
<212> PRT
<213> Homo sapiens
<400> 279
Thr Ile Ile Pro Glu Val Pro Gln Leu
      5
<210> 280
<211> 10
<212> PRT
<213> Homo sapiens
<400> 280
Asp Thr Ile Ile Pro Glu Val Pro Gln Leu
            5
<210> 281
<211> 10
<212> PRT
<213> Homo sapiens
<400> 281
Glu Val Pro Gln Leu Thr Asp Leu Ser Phe
```

```
<210> 282
<211> 8
<212> PRT
<213> Homo sapiens
<400> 282
Thr Pro Leu Asn Ser Ser Thr Ile
<210> 283
<211> 8
<212> PRT
<213> Homo sapiens
<400> 283
Ile Gly Leu Arg Trp Thr Pro Leu
1 5
<210> 284
<211> 9
<212> PRT
<213> Homo sapiens
<400> 284
Ser Ile Gly Leu Arg Trp Thr Pro Leu
1 5
<210> 285
<211> 9
<212> PRT
<213> Homo sapiens
<400> 285
Leu Asn Ser Ser Thr Ile Ile Gly Tyr
<210> 286
<211> 10
<212> PRT
<213> Homo sapiens
<400> 286
Pro Leu Asn Ser Ser Thr Ile Ile Gly Tyr
           5
<210> 287
<211> 9
<212> PRT
<213> Homo sapiens
```

```
<400> 287
   Thr Pro Leu Asn Ser Ser Thr Ile Ile
   <210> 288
   <211> 8
   <212> PRT
   <213> Homo sapiens
   <400> 288
   Ile Gly Tyr Arg Ile Thr Val Val
                   5
  <210> 289
  <211> 9
  <212> PRT
  <213> Homo sapiens
  <400> 289
  Ile Ile Gly Tyr Arg Ile Thr Val Val
  <210> 290
· <211> 10
  <212> PRT
  <213> Homo sapiens
  <400> 290
  Thr Ile Ile Gly Tyr Arg Ile Thr Val Val
  <210> 291
  <211> 9
  <212> PRT
  <213> Homo sapiens
  <400> 291
  Ile Gly Tyr Arg Ile Thr Val Val Ala
  1 5
  <210> 292
  <211> 10
  <212> PRT
  <213> Homo sapiens
  <400> 292
  Ile Ile Gly Tyr Arg Ile Thr Val Val Ala
1 5 10
 <210> 293
 <211> 8
```

```
<212> PRT
<213> Homo sapiens
<400> 293
Ser Leu Pro Val Ser Pro Arg Leu
<210> 294
<211> 9
<212> PRT
<213> Homo sapiens
<400> 294
Gln Ser Leu Pro Val Ser Pro Arg Leu
1 5
<210> 295
<211> 8
<212> PRT
<213> Homo sapiens
<400> 295
Pro Val Ser Pro Arg Leu Gln Leu
<210> 296
<211> 9
<212> PRT
<213> Homo sapiens
<400> 296
Leu Pro Val Ser Pro Arg Leu Gln Leu
               5
<210> 297
<211> 10
<212> PRT
<213> Homo sapiens
<400> 297
Ser Leu Pro Val Ser Pro Arg Leu Gln Leu
            5
<210> 298
<211> 8
<212> PRT
<213> Homo sapiens
Leu Pro Val Ser Pro Arg Leu Gln
1
                5
```

```
<210> 299
  <211> 9
  <212> PRT
  <213> Homo sapiens
 <400> 299
 Gln Leu Ser Asn Gly Asn Arg Thr Leu
 <210> 300
 <211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 300
 Leu Gln Leu Ser Asn Gly Asn Arg Thr Leu
 <210> 301
<211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 301
Trp Val Asn Asn Gln Ser Leu Pro Val
<210> 302
<211> 9
<212> PRT
<213> Homo sapiens
<400> 302
Pro Val Ser Pro Arg Leu Gln Leu Ser
<210> 303
<211> 8
<212> PRT
<213> Homo sapiens
<400> 303
Ser Leu Pro Val Ser Pro Arg Leu
<210> 304
<211> 9
<212> PRT
<213> Homo sapiens
<400> 304
```

```
Gln Ser Leu Pro Val Ser Pro Arg Leu
 1 5
<210> 305
<211> 8
<212> PRT
<213> Homo sapiens
<400> 305
Pro Val Ser Pro Arg Leu Gln Leu
1 5
<210> 306
<211> 9
<212> PRT
<213> Homo sapiens
Leu Pro Val Ser Pro Arg Leu Gln Leu
     5
<210> 307
<211> 10
<212> PRT
<213> Homo sapiens
<400> 307
Ser Leu Pro Val Ser Pro Arg Leu Gln Leu
           5
<210> 308
<211> 8
<212> PRT
<213> Homo sapiens
<400> 308
Leu Pro Val Ser Pro Arg Leu Gln
        5
<210> 309
<211> 9
<212> PRT
<213> Homo sapiens
<400> 309
Gln Leu Ser Asn Asp Asn Arg Thr Leu
<210> 310
<211> 10
<212> PRT
```

```
<213> Homo sapiens
 <400> 310
 Leu Gln Leu Ser Asn Asp Asn Arg Thr Leu
             5
 <210> 311
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 311
 Trp Val Asn Asn Gln Ser Leu Pro Val
             5
<210> 312
 <211> 9
 <212> PRT
<213> Homo sapiens
<400> 312
Asn Gln Ser Leu Pro Val Ser Pro Arg
<210> 313
<211> 8
<212> PRT
<213> Homo sapiens
<400> 313
Ser Leu Pro Val Ser Pro Arg Leu
1
      5
<210> 314
<211> 9
<212> PRT
<213> Homo sapiens
<400> 314
Gln Ser Leu Pro Val Ser Pro Arg Leu
1 5
<210> 315
<211> 8
<212> PRT
<213> Homo sapiens
Pro Val Ser Pro Arg Leu Gln Leu
           5
```

```
<210> 316
<211> 9
<212> PRT
<213> Homo sapiens
<400> 316
Leu Pro Val Ser Pro Arg Leu Gln Leu
<210> 317
<211> 10
<212> PRT
<213> Homo sapiens
<400> 317
Ser Leu Pro Val Ser Pro Arg Leu Gln Leu
                5
<210> 318
<211> 8
<212> PRT
<213> Homo sapiens
<400> 318
Leu Pro Val Ser Pro Arg Leu Gln
<210> 319
<211> 9
<212> PRT
<213> Homo sapiens
<400> 319
Gln Leu Ser Asn Gly Asn Arg Thr Leu
<210> 320
<211> 10
<212> PRT
<213> Homo sapiens
<400> 320
Leu Gln Leu Ser Asn Gly Asn Arg Thr Leu
<210> 321
<211> 9
<212> PRT
<213> Homo sapiens
<400> 321
Trp Val Asn Gly Gln Ser Leu Pro Val
```

```
1
                5
  <210> 322
  <211> 9
  <212> PRT
  <213> Homo sapiens
  <400> 322
 Leu Trp Trp Val Asn Gly Gln Ser Leu
 <210> 323
 <211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 323
 Tyr Leu Trp Trp Val Asn Gly Gln Ser Leu
 1 5
 <210> 324
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 324
 Gly Gln Ser Leu Pro Val Ser Pro Arg
<210> 325
<211> 8
<212> PRT
<213> Homo sapiens
<400> 325
Asp Met Lys Leu Arg Leu Pro Ala
<210> 326
<211> 10
<212> PRT
<213> Homo sapiens
<400> 326
Gly Thr Asp Met Lys Leu Arg Leu Pro Ala
1 5
<210> 327
<211> 8
<212> PRT
<213> Homo sapiens
```

```
<400> 327
His Leu Asp Met Leu Arg His Leu
<210> 328
<211> 9
<212> PRT
<213> Homo sapiens
<400> 328
Thr His Leu Asp Met Leu Arg His Leu
<210> 329
<211> 10
<212> PRT
<213> Homo sapiens
<400'> 329
Glu Thr His Leu Asp Met Leu Arg His Leu
<210> 330
<211> 8
<212> PRT
<213> Homo sapiens
<400> 330
Pro Ala Ser Pro Glu Thr His Leu
            5
<210> 331
<211> 9
<212> PRT
<213> Homo sapiens
<400> 331
Leu Pro Ala Ser Pro Glu Thr His Leu
            5
<210> 332
<211> 10
<212> PRT
<213> Homo sapiens
<400> 332
Arg Leu Pro Ala Ser Pro Glu Thr His Leu
1
            5
<210> 333
```

```
<211> 9
  <212> PRT
  <213> Homo sapiens
  <400> 333
  Ser Pro Glu Thr His Leu Asp Met Leu
  1
                  5
 <210> 334
 <211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 334
 Ala Ser Pro Glu Thr His Leu Asp Met Leu
                  5
 <210> 335
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 335
 His Leu Asp Met Leu Arg His Leu Tyr
 <210> 336
 <211> 10
 <212> PRT
 <213> Homo sapiens
<400> 336
Thr His Leu Asp Met Leu Arg His Leu Tyr
<210> 337
<211> 8
<212> PRT
<213> Homo sapiens
<400> 337
Glu Leu Arg Lys Val Lys Val Leu
<210> 338
<211> 9
<212> PRT
<213> Homo sapiens
<400> 338
Thr Glu Leu Arg Lys Val Lys Val Leu
1
```

```
<210> 339
<211> 10
<212> PRT
<213> Homo sapiens
<400> 339
Glu Thr Glu Leu Arg Lys Val Lys Val Leu
1 5
<210> 340
<211> 9
<212> PRT
<213> Homo sapiens
<400> 340
Leu Lys Glu Thr Glu Leu Arg Lys Val
<210> 341
<211> 10
<212> PRT
<213> Homo sapiens
Ile Leu Lys Glu Thr Glu Leu Arg Lys Val
<210> 342
<211> 9
<212> PRT
<213> Homo sapiens
<400> 342
Met Arg Ile Leu Lys Glu Thr Glu Leu
          5
<210> 343
<211> 10
<212> PRT
<213> Homo sapiens
Gln Met Arg Ile Leu Lys Glu Thr Glu Leu
               5
<210> 344
<211> 9
<212> PRT
<213> Homo sapiens
```

```
<400> 344
 Glu Thr Glu Leu Arg Lys Val Lys Val
 <210> 345
 <211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 345
 Lys Glu Thr Glu Leu Arg Lys Val Lys Val
<210> 346
<211> 9
<212> PRT
<213> Homo sapiens
<400> 346
Met Pro Asn Gln Ala Gln Met Arg Ile
<210> 347
<211> 10
<212> PRT
<213> Homo sapiens
<400> 347
Ala Met Pro Asn Gln Ala Gln Met Arg Ile
    5
<210> 348
<211> 10
<212> PRT
<213> Homo sapiens
<400> 348
Met Pro Asn Gln Ala Gln Met Arg Ile Leu
            5
<210> 349
<211> 8
<212> PRT
<213> Homo sapiens
<400> 349
Arg Pro Arg Phe Arg Glu Leu Val
<210> 350
<211> 9
```

```
<212> PRT
<213> Homo sapiens
<400> 350
Cys Arg Pro Arg Phe Arg Glu Leu Val
<210> 351
<211> 9
<212> PRT
<213> Homo sapiens
<400> 351
Arg Phe Arg Glu Leu Val Ser Glu Phe
<210> 352
<211> 10
<212> PRT
<213> Homo sapiens
<400> 352
Pro Arg Phe Arg Glu Leu Val Ser Glu Phe
1 5
<210> 353
<211> 9
<212> PRT
<213> Homo sapiens
<400> 353
Glu Cys Arg Pro Arg Phe Arg Glu Leu
<210> 354
<211> 9
<212> PRT
<213> Homo sapiens
Gly Ala Ala Ser Gly Leu Asn Gly Cys
<210> 355
<211> 9
<212> PRT
<213> Homo sapiens
<400> 355
Arg Ala Ser Gly Pro Gly Gly Gly Ala
```

```
<210> 356
  <211> 9
  <212> PRT
  <213> Homo sapiens
 <400> 356
 Pro His Gly Gly Ala Ala Ser Gly Leu
 <210> 357
 <211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 357
 Gly Pro His Gly Gly Ala Ala Ser Gly Leu
  1 5
 <210> 358
 <211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 358
 Ala Pro Arg Gly Pro His Gly Gly Ala Ala
 <210> 359
 <211> 8
 <212> PRT
<213> Homo sapiens
<400> 359
                                                                    3
Val Arg Pro Arg Arg Trp Lys Leu
             5
<210> 360
<211> 9
<212> PRT
<213> Homo sapiens
Glu Val Arg Pro Arg Arg Trp Lys Leu
<210> 361
<211> 9
<212> PRT
<213> Homo sapiens
<400> 361
```

```
Arg Pro Arg Arg Trp Lys Leu Gln Val
1 5
<210> 362
<211> 9
<212> PRT
<213> Homo sapiens
<400> 362
Pro Arg Arg Trp Lys Leu Gln Val Leu
1 5
<210> 363
<211> 10
<212> PRT
<213> Homo sapiens
<400> 363
Arg Pro Arg Arg Trp Lys Leu Gln Val Leu
<210> 364
<211> 9
<212> PRT
<213> Homo sapiens
<400> 364
Arg Trp Lys Leu Gln Val Leu Asp Leu
<210> 365
<211> 10
<212> PRT
<213> Homo sapiens
Arg Arg Trp Lys Leu Gln Val Leu Asp Leu
            5
<210> 366
<211> 9
<212> PRT
<213> Homo sapiens
<400> 366
Pro Val Glu Val Leu Val Asp Leu Phe
<210> 367
<211> 8
<212> PRT
```

```
<213> Homo sapiens
 <400> 367
 Val Lys Arg Lys Lys Asn Val Leu
<210> 368
<211> 9
<212> PRT
<213> Homo sapiens
<400> 368
Lys Val Lys Arg Lys Lys Asn Val Leu
                5
<210> 369
<211> 10
<212> PRT
<213> Homo sapiens
<400> 369
Glu Lys Val Lys Arg Lys Lys Asn Val Leu
<210> 370
<211> 8
<212> PRT
<213> Homo sapiens
<400> 370
Lys Val Lys Arg Lys Lys Asn Val
1 5
<210> 371
<211> 8
<212> PRT
<213> Homo sapiens
<400> 371
Arg Lys Lys Asn Val Leu Arg Leu
           5
<210> 372
<211> 9
<212> PRT
<213> Homo sapiens
<400> 372
Lys Arg Lys Lys Asn Val Leu Arg Leu
```

```
<210> 373
<211> 10
<212> PRT
<213> Homo sapiens
<400> 373
Val Lys Arg Lys Lys Asn Val Leu Arg Leu
        5
<210> 374
<211> 8
<212> PRT
<213> Homo sapiens
<400> 374
Asp Glu Leu Phe Ser Tyr Leu Ile
<210> 375
<211> 9
<212> PRT
<213> Homo sapiens
<400> 375
Val Leu Arg Leu Cys Cys Lys Lys Leu
<210> 376
<211> 10
<212> PRT
<213> Homo sapiens
<400> 376
Asn Val Leu Arg Leu Cys Cys Lys Lys Leu
<210> 377
<211> 9
<212> PRT
<213> Homo sapiens
Tyr Leu Ile Glu Lys Val Lys Arg Lys
1
<210> 378
<211> 8
<212> PRT
<213> Homo sapiens
<400> 378
Gln Ala Trp Pro Phe Thr Cys Leu
```

```
5
 <210> 379
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 379
 Val Gln Ala Trp Pro Phe Thr Cys Leu
               5
<210> 380
<211> 10
<212> PRT
<213> Homo sapiens
<400> 380
Met Val Gln Ala Trp Pro Phe Thr Cys Leu
<210> 381
<211> 8
<212> PRT
<213> Homo sapiens
<400> 381
Leu Pro Leu Gly Val Leu Met Lys
<210> 382
<211> 9
<212> PRT
<213> Homo sapiens
<400> 382
Cys Leu Pro Leu Gly Val Leu Met Lys
1
           5
<210> 383
<211> 10
<212> PRT
<213> Homo sapiens
<400> 383
Thr Cys Leu Pro Leu Gly Val Leu Met Lys
1 5
                                  10
<210> 384
<211> 9
<212> PRT
<213> Homo sapiens
```

```
<400> 384
 Gly Val Leu Met Lys Gly Gln His Leu
 1 5
 <210> 385
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 385
 Leu Pro Leu Gly Val Leu Met Lys Gly
 1 5
<210> 386
 <211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 386
 Cys Leu Pro Leu Gly Val Leu Met Lys Gly
 <210> 387
 <211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 387
 Trp Pro Phe Thr Cys Leu Pro Leu Gly Val
 <210> 388
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 388
 Glu Leu Phe Pro Pro Leu Phe Met Ala
               5
 <210> 389
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 389
 Pro Arg Glu Leu Phe Pro Pro Leu Phe
                5
```

<210> 390

86

```
<211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 390
 Leu Pro Arg Glu Leu Phe Pro Pro Leu Phe
                  5
<210> 391
<211> 9
 <212> PRT
 <213> Homo sapiens
<400> 391
Arg Glu Leu Phe Pro Pro Leu Phe Met
                 5
<210> 392
<211> 10
<212> PRT
<213> Homo sapiens
<400> 392
Pro Arg Glu Leu Phe Pro Pro Leu Phe Met
                 5
<210> 393
<211> 8
<212> PRT
<213> Homo sapiens
<400> 393
Arg Pro Ser Leu Tyr Thr Lys Val
 1
<210> 394
<211> 9
<212> PRT
<213> Homo sapiens
<400> 394
Glu Arg Pro Ser Leu Tyr Thr Lys Val
<210> 395
<211> 8
<212> PRT
<213> Homo sapiens
<400> 395
Leu Pro Glu Arg Pro Ser Leu Tyr
```

```
<210> 396
<211> 9
<212> PRT
<213> Homo sapiens
<400> 396
Ala Leu Pro Glu Arg Pro Ser Leu Tyr
<210> 397
<211> 9
<212> PRT
<213> Homo sapiens
<400> 397
Ser Leu Tyr Thr Lys Val Val His Tyr
     5
<210> 398
<211> 10
<212> PRT
<213> Homo sapiens
<400> 398
Pro Ser Leu Tyr Thr Lys Val Val His Tyr
<210> 399
<211> 9
<212> PRT
<213> Homo sapiens
<400> 399
Arg Pro Ser Leu Tyr Thr Lys Val Val
<210> 400
<211> 8
<212> PRT
<213> Homo sapiens
<400> 400
Gly Asn Lys Val Lys Asn Ala Gln
<210> 401
<211> 8
<212> PRT
<213> Homo sapiens
```

```
<400> 401
  Ile Ala Arg Tyr Gly Lys Val Phe
              5
  <210> 402
  <211> 9
  <212> PRT
  <213> Homo sapiens
  <400> 402
  Ala Gln Leu Ala Gly Ala Lys Gly Val
 <210> 403
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 403
 Lys Val Phe Arg Gly Asn Lys Val Lys
<210> 404
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 404
 Gly Asn Lys Val Lys Asn Ala Gln Leu
  1 5
 <210> 405
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 405
 Thr Pro Gly Tyr Pro Ala Asn Glu Tyr
 <210> 406
 <211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 406
Leu Thr Pro Gly Tyr Pro Ala Asn Glu Tyr
 <210> 407
 <211> 9
```

```
<212> PRT
<213> Homo sapiens
<400> 407
Gly Tyr Pro Ala Asn Glu Tyr Ala Tyr
1 5
<210> 408
<211> 10
<212> PRT
<213> Homo sapiens
<400> 408
Pro Gly Tyr Pro Ala Asn Glu Tyr Ala Tyr
                5
<210> 409
<211> 9
<212> PRT
<213> Homo sapiens
<400> 409
Asp Pro Leu Thr Pro Gly Tyr Pro Ala
    5
<210> 410
<211> 9
<212> PRT
<213> Homo sapiens
<400> 410
Ser Leu Tyr Glu Ser Trp Thr Lys Lys
<210> 411
<211> 10
<212> PRT
<213> Homo sapiens
Lys Ser Leu Tyr Glu Ser Trp Thr Lys Lys
<210> 412
<211> 9
<212> PRT
<213> Homo sapiens
<400> 412
Glu Gly Phe Glu Gly Lys Ser Leu Tyr
 1
```

```
<210> 413
<211> 10
 <212> PRT
 <213> Homo sapiens
<400> 413
Asp Glu Gly Phe Glu Gly Lys Ser Leu Tyr
             5
<210> 414
<211> 9
<212> PRT
<213> Homo sapiens
<400> 414
Thr Lys Lys Ser Pro Ser Pro Glu Phe-
                5
<210> 415
<211> 10
<212> PRT
<213> Homo sapiens
<400> 415
Trp Thr Lys Lys Ser Pro Ser Pro Glu Phe
          5
<210> 416
<211> 10
<212> PRT
<213> Homo sapiens
<400> 416
Ser Leu Tyr Glu Ser Trp Thr Lys Lys Ser
<210> 417
<211> 8
<212> PRT
<213> Homo sapiens
<400> 417
Trp Gly Glu Val Lys Arg Gln Ile
            5
<210> 418
<211> 9
<212> PRT
<213> Homo sapiens
<400> 418
```

```
Ala Trp Gly Glu Val Lys Arg Gln Ile
 <210> 419
 <211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 419
 Lys Ala Trp Gly Glu Val Lys Arg Gln Ile
  1 5
 <210> 420
 <211> 8
 <212> PRT
 <213> Homo sapiens
 <400> 420
 Lys Ala Trp Gly Glu Val Lys Arg
 <210> 421
 <211> 9
 <212> PRT
<213> Homo sapiens
 <400> 421
 Ser Lys Ala Trp Gly Glu Val Lys Arg
                 5
 <210> 422
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 422
 Gln Ile Tyr Val Ala Ala Phe Thr Val
              5
 <210> 423
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 423
 Tyr Val Ala Ala Phe Thr Val Gln Ala
 <210> 424
 <211> 9
 <212> PRT
```

```
<213> Homo sapiens
 <400> 424
 Trp Gly Glu Val Lys Arg Gln Ile Tyr
 <210> 425
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 425
 Glu Val Lys Arg Gln Ile Tyr Val Ala
 <210> 426
 <211> 9
 <212> PRT
 <213> Homo sapiens
<400> 426
Thr Val Gln Ala Ala Ala Glu Thr Leu
<210> 427
<211> 10
<212> PRT
<213> Homo sapiens
<400> 427
Phe Thr Val Gln Ala Ala Ala Glu Thr Leu
<210> 428
<211> 9
<212> PRT
<213> Homo sapiens
<400> 428
Lys Arg Gln Ile Tyr Val Ala Ala Phe
<210> 429
<211> 9
<212> PRT
<213> Homo sapiens
<400> 429
Pro Ser Lys Ala Trp Gly Glu Val Lys
```

```
<210> 430
<211> 9
<212> PRT
<213> Homo sapiens
<400> 430
Lys Ala Trp Gly Glu Val Lys Arg Gln
<210> 431
<211> 9
<212> PRT
<213> Homo sapiens
<400> 431
Trp Lys Glu Phe Gly Leu Asp Ser Val
1
<210> 432
<211> 10
<212> PRT
<213> Homo sapiens
<400> 432
Gln Trp Lys Glu Phe Gly Leu Asp Ser Val
<210> 433
<211> 10
<212> PRT
<213> Homo sapiens
<400> 433
Glu Phe Gly Leu Asp Ser Val Glu Leu Ala
<210> 434
<211> 9
<212> PRT
<213> Homo sapiens
<400> 434
Glu Leu Arg Gln Lys Glu Ser Lys Leu
<210> 435
<211> 10
<212> PRT
<213> Homo sapiens
<400> 435
Ala Glu Leu Arg Gln Lys Glu Ser Lys Leu
```

```
1
                  5
                                     10
<210> 436
<211> 9
<212> PRT
<213> Homo sapiens
<400> 436
Lys Leu Gln Glu Asn Arg Lys Ile Ile
                 5
<210> 437
<211> 8
<212> PRT
<213> Homo sapiens
<400> 437
Gln Leu Glu Glu Lys Thr Lys Leu
<210> 438
<211> 9
<212> PRT ·
<213> Homo sapiens
<400> 438
Asn Gln Leu Glu Glu Lys Thr Lys Leu
<210> 439
<211> 9
<212> PRT
<213> Homo sapiens
<400> 439
Leu Leu Glu Glu Ser Arg Asp Lys Val
<210> 440
<211> 10
<212> PRT
<213> Homo sapiens
<400> 440
Phe Leu Leu Glu Glu Ser Arg Asp Lys Val
<210> 441
<211> 9
<212> PRT
<213> Homo sapiens
```

```
<400> 441
Glu Ser Arg Asp Lys Val Asn Gln Leu
1 5
<210> 442
<211> 10
<212> PRT
<213> Homo sapiens
<400> 442
Glu Glu Ser Arg Asp Lys Val Asn Gln Leu
1 5
<210> 443
<211> 9
<212> PRT
<213> Homo sapiens
<400> 443
Glu Lys Glu Val His Asp Leu Glu Tyr
1 5
<210> 444
<211> 10
<212> PRT
<213> Homo sapiens
<400> 444
Arg Glu Lys Glu Val His Asp Leu Glu Tyr
<210> 445
<211> 9
<212> PRT
<213> Homo sapiens
<400> 445
Asp Leu Glu Tyr Ser Tyr Cys His Tyr
<210> 446
<211> 9
<212> PRT
<213> Homo sapiens
<400> 446
Glu Val His Asp Leu Glu Tyr Ser Tyr
```

<210> 447

```
<211> 10
<212> PRT
<213> Homo sapiens
<400> 447
Glu Val His Asp Leu Glu Tyr Ser Tyr Cys
<210> 448
<211> 8
<212> PRT
<213> Homo sapiens
<400> 448
Lys Leu Ser Ser Lys Arg Glu Leu
<210> 449
<211> 8
<212> PRT
<213> Homo sapiens
<400> 449
Glu Leu Lys Asn Thr Glu Tyr Phe
<210> 450
<211> 9
<212> PRT
<213> Homo sapiens
<400> 450
Arg Glu Leu Lys Asn Thr Glu Tyr Phe
<210> 451
<211> 8
<212> PRT
<213> Homo sapiens
<400> 451
Lys Arg Gly Gln Arg Pro Lys Leu
<210> 452
<211> 10
<212> PRT
<213> Homo sapiens
<400> 452
Leu Pro Lys Arg Gly Gln Arg Pro Lys Leu
                5
```

```
<210> 453
<211> 9
<212> PRT
<213> Homo sapiens
<400> 453
Leu Lys Asn Thr Glu Tyr Phe Thr Leu
<210> 454
<211> 10
<212> PRT
<213> Homo sapiens
<400> 454
Glu Leu Lys Asn Thr Glu Tyr Phe Thr Leu
<210> 455
<211> 9
<212> PRT
<213> Homo sapiens
<400> 455
Lys Arg Glu Leu Lys Asn Thr Glu Tyr
<210> 456
<211> 9
<212> PRT
<213> Homo sapiens
Lys Leu Ser Ser Lys Arg Glu Leu Lys
<210> 457
<211> 9
<212> PRT
<213> Homo sapiens
<400> 457
Gly Gln Arg Pro Lys Leu Ser Ser Lys
<210> 458
<211> 10
<212> PRT
<213> Homo sapiens
```

```
<400> 458
Arg Gly Gln Arg Pro Lys Leu Ser Ser Lys
        5
<210> 459
<211> 9
<212> PRT
<213> Homo sapiens
<400> 459
Arg Pro Lys Leu Ser Ser Lys Arg Glu
           5
<210> 460
<211> 8
<212> PRT
<213> Homo sapiens
<400> 460
Leu Glu Tyr Val Arg Glu Glu Leu
     5
<210> 461
<211> 9
<212> PRT
<213> Homo sapiens
<400> 461
Glu Leu Glu Tyr Val Arg Glu Glu Leu
    5
<210> 462
<211> 10
<212> PRT
<213> Homo sapiens
<400> 462
Asn Glu Leu Glu Tyr Val Arg Glu Glu Leu
1 5
<210> 463
<211> 10
<212> PRT
<213> Homo sapiens
<400> 463
Glu Leu Lys Gln Lys Arg Glu Asp Glu Val
<210> 464
<211> 9
```

```
<212> PRT
<213> Homo sapiens
<400> 464
Tyr Val Arg Glu Glu Leu Lys Gln Lys
<210> 465
<211> 9
<212> PRT
<213> Homo sapiens
<400> 465
Gln Leu Asn Val Tyr Glu Ile Lys Val
1 5
<210> 466
<211> 9
<212> PRT
<213> Homo sapiens
<400> 466
Ser Lys Gln Leu Asn Val Tyr Glu Ile
<210> 467
<211> 9
<212> PRT
<213> Homo sapiens
<400> 467
Ala Glu Ser Lys Gln Leu Asn Val Tyr
<210> 468
<211> 10
<212> PRT
<213> Homo sapiens
Thr Ala Glu Ser Lys Gln Leu Asn Val Tyr
           5
<210> 469
<211> 8
<212> PRT
<213> Homo sapiens
<400> 469
Ile Lys Val Asn Lys Leu Glu Leu
```

```
<210> 470
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 470
 Glu Ile Lys Val Asn Lys Leu Glu Leu
                5
 <210> 471
 <211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 471
 Tyr Glu Ile Lys Val Asn Lys Leu Glu Leu
 <210> 472
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 472
 Lys Leu Glu Leu Glu Ser Ala
 <210> 473
 <211> 9
 <212> PRT
<213> Homo sapiens
 <400> 473
 Val Tyr Glu Ile Lys Val Asn Lys Leu
 1 5
 <210> 474
 <211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 474
 Asn Val Tyr Glu Ile Lys Val Asn Lys Leu
 1 5
 <210> 475
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 475
```

```
Glu Leu Glu Ser Ala Lys Gln Lys Phe
<210> 476
<211> 9
<212> PRT
<213> Homo sapiens
<400> 476
Lys Leu Glu Leu Glu Ser Ala
1 5
<210> 477
<211> 9
<212> PRT
<213> Homo sapiens
<400> 477
Glu Leu Glu Ser Ala Lys Gln Lys Phe
              5
<210> 478
<211> 8
<212> PRT
<213> Homo sapiens
<400> 478
Lys Glu Lys Leu Lys Arg Glu Ala
<210> 479
<211> 9
<212> PRT
<213> Homo sapiens
<400> 479
Glu Ala Lys Glu Asn Thr Ala Thr Leu
           5
<210> 480
<211> 10
<212> PRT
<213> Homo sapiens
<400> 480
Arg Glu Ala Lys Glu Asn Thr Ala Thr Leu
           5
<210> 481
<211> 10
<212> PRT
```

```
<213> Homo sapiens
<400> 481
Lys Leu Lys Arg Glu Ala Lys Glu Asn Thr
<210> 482
<211> 8
<212> PRT
<213> Homo sapiens
<400> 482
Glu Ala Glu Lys Ile Lys Lys Trp
<210> 483
<211> 9
<212> PRT
<213> Homo sapiens
<400> 483
Gly Leu Ser Arg Val Tyr Ser Lys Leu
         5
<210> 484
<211> 10
<212> PRT
<213> Homo sapiens
<400> 484
Glu Gly Leu Ser Arg Val Tyr Ser Lys Leu
<210> 485
<211> 9
<212> PRT
<213> Homo sapiens
<400> 485
Lys Leu Tyr Lys Glu Ala Glu Lys Ile
<210> 486
<211> 9
<212> PRT
<213> Homo sapiens
<400> 486
Asn Ser Glu Gly Leu Ser Arg Val Tyr
 1
```

```
<210> 487
<211> 10
<212> PRT
<213> Homo sapiens
<400> 487
Glu Asn Ser Glu Gly Leu Ser Arg Val Tyr
1 5
<210> 488
<211> 9
<212> PRT
<213> Homo sapiens
<400> 488
Leu Ser Arg Val Tyr Ser Lys Leu Tyr
               5
<210> 489
<211> 10
<212> PRT
<213> Homo sapiens
<400> 489
Gly Leu Ser Arg Val Tyr Ser Lys Leu Tyr
               5
<210> 490
<211> 10
<212> PRT
<213> Homo sapiens
<400> 490
Leu Glu Asn Ser Glu Gly Leu Ser Arg Val
<210> 491
<211> 10
<212> PRT
<213> Homo sapiens
<400> 491
Lys Leu Tyr Lys Glu Ala Glu Lys Ile Lys
            5
<210> 492
<211> 8
<212> PRT
<213> Homo sapiens
<400> 492
Arg Glu Asp Arg Trp Ala Val Ile
```

```
1
                  5
 <210> 493
 <211> 9
 <212> PRT
<213> Homo sapiens
<400> 493
Met Arg Glu Asp Arg Trp Ala Val Ile
<210> 494
<211> 10
<212> PRT
<213> Homo sapiens
<400> 494
Lys Met Arg Glu Asp Arg Trp Ala Val Ile
                 5
<210> 495
<211> 9
<212> PRT
<213> Homo sapiens
<400> 495
Lys Met Arg Glu Asp Arg Trp Ala Val
<210> 496
<211> 9
<212> PRT
<213> Homo sapiens
<400> 496
Thr Thr Pro Gly Ser Thr Leu Lys Phe
<210> 497
<211> 10
<212> PRT
<213> Homo sapiens
<400> 497
Leu Thr Thr Pro Gly Ser Thr Leu Lys Phe
                5
<210> 498
<211> 8
<212> PRT
<213> Homo sapiens
```

```
<400> 498
Gly Ser Thr Leu Lys Gly Ala Ile
<210> 499
<211> 9
<212> PRT
<213> Homo sapiens
<400> 499
Ile Arg Lys Met Arg Glu Asp Arg Trp
<210> 500
<211> 8
<212> PRT
<213> Homo sapiens
<400> 500
Arg Leu Glu Met His Phe Lys Leu
<210> 501
<211> 9
<212> PRT
<213> Homo sapiens
<400> 501
Ser Arg Leu Glu Met His Phe Lys Leu
<210> 502
<211> 9
<212> PRT
<213> Homo sapiens
Lys Leu Lys Glu Asp Tyr Glu Lys Ile
<210> 503
<211> 9
<212> PRT
<213> Homo sapiens
<400> 503
Lys Ile Gln His Leu Glu Gln Glu Tyr
<210> 504
```

```
<211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 504
 Glu Lys Ile Gln His Leu Glu Gln Glu Tyr
                5
 <210> 505
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 505
 Glu Asn Ser Arg Leu Glu Met His Phe
                5
<210> 506
<211> 10
<212> PRT
<213> Homo sapiens
<400> 506
Arg Leu Glu Met His Phe Lys Leu Lys Glu
           5
<210> 507
<211> 8
<212> PRT
<213> Homo sapiens
<400> 507
Leu Glu Asp Ile Lys Val Ser Leu
<210> 508
<211> 9
<212> PRT
<213> Homo sapiens
<400> 508
Glu Leu Glu Asp Ile Lys Val Ser Leu
     5
<210> 509
<211> 10
<212> PRT
<213> Homo sapiens
<400> 509
Lys Glu Leu Glu Asp Ile Lys Val Ser Leu
               5
```

```
<210> 510
<211> 8
<212> PRT
<213> Homo sapiens
<400> 510
Leu Thr Lys Glu Leu Glu Asp Ile
<210> 511
<211> 9
<212> PRT
<213> Homo sapiens
<400> 511
His Leu Thr Lys Glu Leu Glu Asp Ile
<210> 512
<211> 9
<212> PRT
<213> Homo sapiens
<400> 512
Ser Leu Gln Arg Ser Val Ser Thr Gln
<210> 513
<211> 9
<212> PRT
<213> Homo sapiens
<400> 513
Thr Lys Glu Leu Glu Asp Ile Lys Val
<210> 514
<211> 10
<212> PRT
<213> Homo sapiens
<400> 514
Leu Thr Lys Glu Leu Glu Asp Ile Lys Val
            5
<210> 515
<211> 10
<212> PRT
<213> Homo sapiens
```

```
<400> 515
Asp Ile Lys Val Ser Leu Gln Arg Ser Val
         5
<210> 516
<211> 8
<212> PRT
<213> Homo sapiens
<400> 516
Lys Met Lys Asp Leu Thr Phe Leu
1
            5
<210> 517
<211> 9
<212> PRT
<213> Homo sapiens
<400> 517
Asn Lys Met Lys Asp Leu Thr Phe Leu
<210> 518
<211> 10
<212> PRT
<213> Homo sapiens
<400> 518
Glu Asn Lys Met Lys Asp Leu Thr Phe Leu
     5
<210> 519
<211> 9
<212> PRT
<213> Homo sapiens
<400> 519
Leu Leu Glu Glu Ser Arg Asp Lys Val
<210> 520
<211> 10
<212> PRT
<213> Homo sapiens
<400> 520
Phe Leu Leu Glu Glu Ser Arg Asp Lys Val
<210> 521
<211> 9
```

```
<212> PRT
<213> Homo sapiens
<400> 521
Glu Ser Arg Asp Lys Val Asn Gln Leu
<210> 522
<211> 10
<212> PRT
<213> Homo sapiens
<400> 522
Glu Glu Ser Arg Asp Lys Val Asn Gln Leu
   5
<210> 523
<211> 9
<212> PRT
<213> Homo sapiens
<400> 523
Glu Lys Glu Asn Lys Met Lys Asp Leu
1 5
<210> 524
<211> 10
<212> PRT
<213> Homo sapiens
<400> 524
Thr Glu Lys Glu Asn Lys Met Lys Asp Leu
<210> 525
<211> 9
<212> PRT
<213> Homo sapiens
Glu Asn Lys Met Lys Asp Leu Thr Phe
<210> 526
<211> 8
<212> PRT
<213> Homo sapiens
<400> 526
Ile Glu Lys Met Ile Thr Ala Phe
       5
```

```
<210> 527
<211> 9
<212> PRT
<213> Homo sapiens
<400> 527
Asn Ile Glu Lys Met Ile Thr Ala Phe
<210> 528
<211> 10
<212> PRT
<213> Homo sapiens
<400> 528
Ser Asn Ile Glu Lys Met Ile Thr Ala Phe
                5
<210> 529
<211> 8
<212> PRT
<213> Homo sapiens
<400> 529
Thr Ala Phe Glu Glu Leu Arg Val
<210> 530
<211> 9
<212> PRT
<213> Homo sapiens
<400> 530
Ile Thr Ala Phe Glu Glu Leu Arg Val
<210> 531
<211> 10
<212> PRT
<213> Homo sapiens
<400> 531
Met Ile Thr Ala Phe Glu Glu Leu Arg Val
<210> 532
<211> 9
<212> PRT
<213> Homo sapiens
<400> 532
```

```
Lys Met Ile Thr Ala Phe Glu Glu Leu
<210> 533
<211> 10
<212> PRT
<213> Homo sapiens
<400> 533
Glu Lys Met Ile Thr Ala Phe Glu Glu Leu
1 5
<210> 534
<211> 9
<212> PRT
<213> Homo sapiens
<400> 534
Glu Leu Arg Val Gln Ala Glu Asn Ser
<210> 535
<211> 10
<212> PRT
<213> Homo sapiens
<400> 535
Asp Leu Asn Ser Asn Ile Glu Lys Met Ile
     5 .
<210> 536
<211> 8
<212> PRT
<213> Homo sapiens
Trp Thr Ser Ala Lys Asn Thr Leu
<210> 537
<211> 9
<212> PRT
<213> Homo sapiens
<400> 537
Thr Pro Leu Pro Lys Ala Tyr Thr Val
<210> 538
<211> 10
<212> PRT
```

```
<213> Homo sapiens
<400> 538
Ser Thr Pro Leu Pro Lys Ala Tyr Thr Val
<210> 539
<211> 9
<212> PRT
<213> Homo sapiens
<400> 539
Leu Ser Thr Pro Leu Pro Lys Ala Tyr
                5
<210> 540
<211> 10
<212> PRT
<213> Homo sapiens
<400> 540
Thr Leu Ser Thr Pro Leu Pro Lys Ala Tyr
<210> 541
<211> 9
<212> PRT
<213> Homo sapiens
<400> 541
Asn Thr Leu Ser Thr Pro Leu Pro Lys
<210> 542
<211> 10
<212> PRT
<213> Homo sapiens
<400> 542
Lys Asn Thr Leu Ser Thr Pro Leu Pro Lys
1 5
<210> 543
<211> 8
<212> PRT
<213> Homo sapiens
<400> 543
Ile Ser Lys Asp Lys Arg Asp Tyr
```

```
<210> 544
<211> 10
<212> PRT
<213> Homo sapiens
<400> 544
His Gly Ile Ser Lys Asp Lys Arg Asp Tyr
<210> 545
<211> 9
<212> PRT
<213> Homo sapiens
<400> 545
Lys Arg Asp Tyr Leu Trp Thr Ser Ala
1 5
<210> 546
<211> 10
<212> PRT
<213> Homo sapiens
<400> 546
Ser Lys Asp Lys Arg Asp Tyr Leu Trp Thr
<210> 547
<211> 8
<212> PRT
<213> Homo sapiens
<400> 547
Glu Asn Lys Met Lys Asp Leu Thr
<210> 548
<211> 9
<212> PRT
<213> Homo sapiens
<400> 548
Glu Ile Asn Asp Lys Glu Lys Gln Val
<210> 549
<211> 9
<212> PRT
<213> Homo sapiens
<400> 549
Gln Ile Thr Glu Lys Glu Asn Lys Met
```

```
1
<210> 550
<211> 9
<212> PRT
<213> Homo sapiens
<400> 550
Ser Leu Leu Ile Gln Ile Thr Glu
           5
<210> 551
<211> 8
<212> PRT
<213> Homo sapiens
<400> 551
Phe Glu Lys Ile Ala Glu Glu Leu
              5
<210> 552
<211> 9
<212> PRT
<213> Homo sapiens
<400> 552
Gln Phe Glu Lys Ile Ala Glu Glu Leu
     5
<210> 553
<211> 10
<212> PRT
<213> Homo sapiens
<400> 553
Lys Gln Phe Glu Lys Ile Ala Glu Glu Leu
       5
<210> 554
<211> 8
<212> PRT
<213> Homo sapiens
<400> 554
Asp Asn Lys Gln Phe Glu Lys Ile
<210> 555
<211> 9
<212> PRT
<213> Homo sapiens
```

```
<400> 555
Tyr Asp Asn Lys Gln Phe Glu Lys Ile
1 5
<210> 556
<211> 10
<212> PRT
<213> Homo sapiens
<400> 556
Leu Tyr Asp Asn Lys Gln Phe Glu Lys Ile
1 5
<210> 557
<211> 8
<212> PRT
<213> Homo sapiens
<400> 557
Leu Gly Glu Lys Glu Thr Leu Leu
<210> 558
<211> 9
<212> PRT
<213> Homo sapiens
<400> 558
Val Leu Gly Glu Lys Glu Thr Leu Leu
<210> 559
<211> 10
<212> PRT
<213> Homo sapiens
Lys Val Leu Gly Glu Lys Glu Thr Leu Leu
<210> 560
<211> 9
<212> PRT
<213> Homo sapiens
<400> 560
Leu Leu Arg Thr Glu Gln Gln Arg Leu
           5
```

```
<211> 10
<212> PRT
<213> Homo sapiens
<400> 561
Glu Leu Leu Arg Thr Glu Gln Gln Arg Leu
           5
<210> 562
<211> 9
<212> PRT
<213> Homo sapiens
<400> 562
Thr Glu Gln Gln Arg Leu Glu Asn Tyr
<210> 563
<211> 10
<212> PRT
<213> Homo sapiens
<400> 563
Arg Thr Glu Gln Gln Arg Leu Glu Asn Tyr
         5
<210> 564
<211> 9
<212> PRT
<213> Homo sapiens
<400> 564
Glu Asp Gln Leu Ile Ile Leu Thr Met
      - 5
<210> 565
<211> 10
<212> PRT
<213> Homo sapiens
<400> 565
Arg Leu Glu Asn Tyr Glu Asp Gln Leu Ile
. 1 5
<210> 566
<211> 8
<212> PRT
<213> Homo sapiens
<400> 566
Lys Ala Arg Ala Ala His Ser Phe
 1
       5
```

```
<210> 567
<211> 9
<212> PRT
<213> Homo sapiens
<400> 567
Val Val Thr Glu Phe Glu Thr Thr Val
<210> 568
<211> 10
<212> PRT
<213> Homo sapiens
<400> 568
Phe Val Val Thr Glu Phe Glu Thr Thr Val
1 5
<210> 569
<211> 9
<212> PRT
<213> Homo sapiens
<400> 569
Val Thr Glu Phe Glu Thr Thr Val Cys
<210> 570
<211> 10
<212> PRT
<213> Homo sapiens
Val Val Thr Glu Phe Glu Thr Thr Val Cys
<210> 571
<211> 9
<212> PRT
<213> Homo sapiens
<400> 571
Asp Leu Gln Ile Ala Thr Asn Thr Ile
<210> 572
<211> 9
<212> PRT
<213> Homo sapiens
```

```
<400> 572
 Ile Ala Thr Asn Thr Ile Cys Gln Leu
 <210> 573
 <211> 10
 <212> PRT
 <213> Homo sapiens
 <400> 573
 Gln Ile Ala Thr Asn Thr Ile Cys Gln Leu
              5
 <210> 574
 <211> 9
 <212> PRT
 <213> Homo sapiens
 <400> 574
Val Met Thr Lys Leu Gly Phe Lys Tyr
·<210> 575
<211> 9
<212> PRT
<213> Homo sapiens
<400> 575
Leu Asn Tyr Glu Val Met Thr Lys Leu
<210> 576
<211> 10
<212> PRT
<213> Homo sapiens
<400> 576
Lys Leu Asn Tyr Glu Val Met Thr Lys Leu
<210> 577
<211> 9
<212> PRT
<213> Homo sapiens
<400> 577
Thr Leu Pro Pro Phe Met Arg Ser Lys
<210> 578
<211> 9
```

```
<212> PRT
<213> Homo sapiens
<400> 578
Lys Ile Met Pro Lys Lys Pro Ala Glu
<210> 579
<211> 10
<212> PRT
<213> Homo sapiens
<400> 579
Ser Leu Gln Arg Ile Phe Pro Lys Ile Met
<210> 580
<211> 9
<212> PRT
<213> Homo sapiens
<400> 580
Tyr Ile Lys Ser Tyr Leu Glu Gln Ala
1 5
<210> 581
<211> 9
<212> PRT
<213> Homo sapiens
<400> 581
Ser Phe Gln Asp Tyr Ile Lys Ser Tyr
<210> 582
<211> 10
<212> PRT
<213> Homo sapiens
Asp Ser Phe Gln Asp Tyr Ile Lys Ser Tyr
<210> 583
<211> 8
<212> PRT
<213> Homo sapiens
Leu Pro Glu Glu Lys Gln Pro Leu
```

```
<210> 584
<211> 9
<212> PRT
<213> Homo sapiens
<400> 584
Gln Leu Pro Glu Glu Lys Gln Pro Leu
<210> 585
<211> 10
<212> PRT
<213> Homo sapiens
<400> 585
Lys Gln Leu Pro Glu Glu Lys Gln Pro Leu
              5
<210> 586
<211> 9
<212> PRT
<213> Homo sapiens
<400> 586
Leu Pro Glu Glu Lys Gln Pro Leu Leu
<210> 587
<211> 10
<212> PRT .
<213> Homo sapiens
<400> 587
Gln Leu Pro Glu Glu Lys Gln Pro Leu Leu
1 5
<210> 588
<211> 9
<212> PRT
<213> Homo sapiens
<400> 588
Ser Leu Cys Arg His Lys Arg Lys
1 , 5
<210> 589
<211> 91
<212> PRT
<213> Homo sapiens
<400> 589
```

```
Glu Val Pro Gln Leu Thr Asp Leu Ser Phe Val Asp Ile Thr Asp Ser
                      · 10
Ser Ile Gly Leu Arg Trp Thr Pro Leu Asn Ser Ser Thr Ile Ile Gly
                                25
Tyr Arg Ile Thr Val Val Ala Ala Gly Glu Gly Ile Pro Ile Phe Glu
                            40
Asp Phe Val Asp Ser Ser Val Gly Tyr Tyr Thr Val Thr Gly Leu Glu
                        55
Pro Gly Ile Asp Tyr Asp Ile Ser Val Ile Thr Leu Ile Asn Gly Gly
                    70
                                        75
Glu Ser Ala Pro Thr Thr Leu Thr Gln Gln Thr
<210> 590
<211> 147
<212> PRT
<213> Homo sapiens
<400> 590
Cys Thr Phe Asp Asn Leu Ser Pro Gly Leu Glu Tyr Asn Val Ser Val
1
                                    10
Tyr Thr Val Lys Asp Asp Lys Glu Ser Val Pro Ile Ser Asp Thr Ile
                                25
Ile Pro Glu Val Pro Gln Leu Thr Asp Leu Ser Phe Val Asp Ile Thr
                            40
Asp Ser Ser Ile Gly Leu Arg Trp Thr Pro Leu Asn Ser Ser Thr Ile
                       55
Ile Gly Tyr Arg Ile Thr Val Val Ala Ala Gly Glu Gly Ile Pro Ile
                   70
                                        75
Phe Glu Asp Phe Val Asp Ser Ser Val Gly Tyr Tyr Thr Val Thr Gly
                85
                                    90
Leu Glu Pro Gly Ile Asp Tyr Asp Ile Ser Val Ile Thr Leu Ile Asn
            100
                                105
Gly Gly Glu Ser Ala Pro Thr Thr Leu Thr Gln Gln Thr Ala Val Pro
                           120
                                               125
Pro Pro Thr Asp Leu Arg Phe Thr Asn Ile Gly Pro Asp Thr Met Arg
  130
                       135
Val Thr Trp
145
<210> 591
<211> 2823
<212> DNA
<213> Homo sapiens
<400> 591
ctgcactttt gataacctga gtcccggcct ggagtacaat gtcagtgttt acactgtcaa 60
ggatgacaag gaaagtgtcc ctatctctga taccatcatc ccaggtaata gaaaataagc 120
tgctatcctg agagtgacat tccaataaga gtggggatta gcatcttaat ccccagatgc 180
ttaagggtgt caactatatt tgggatttaa ttccgatctc ccagctgcac tttccaaaac 240
caagaagtca aagcagcgat ttggacaaaa tgcttgctgt taacactgct ttactgtctg 300
tgcttcactg ggatgctgtg tgttgcagcg agtatgtaat ggagtggcag ccatggcttt 360
aactetgtat tgtetgetea catggaagta tgactaaaac actgteacgt gtetgtacte 420
agtactgata ggctcaaagt aatatggtaa atgcatccca tcagtacatt tctgcccgat 480
tttacaatcc atatcaattt ccaacagctg cctatttcat cttgcagttt caaatccttc 540
```

```
tttttgaaaa ttggatttta aaaaaaagtt aagtaaaagt cacaccttca gggttgttct 600
ttettgtgge ettgaaagae aacattgeaa aggeetgtee taaggatagg ettgtttgte 660
cattgggtta taacataatg aaagcattgg acagatcgtg tccccctttg gactcttcag 720
tagaatgctt ttactaacgc taattacatg ttttgattat gaatgaacct aaaatagtgg 780
caatggcctt aacctaggcc tgtctttcct cagcctgaat gtgcttttga atggcacatt 840
tcacaccata cattcataat gcattagegt tatggccatg atgttgtcat gagttttgta 900
tgggagaaaa aaaatcaatt tatcacccat ttattatttt ttccggttgt tcatgcaagc 960
ttattttcta ctaaaacagt tttggaatta ttaaaagcat tgctgatact tacttcagat 1020
attatgtcta ggctctaaga atggtttcga catcctaaac agccatatga tttttaggaa 1080
tctgaacagt tcaaattgta ccctttaagg atgttttcaa aatgtaaaaa atatatatat 1140
atatatatat tecetaaaag aatatteetg tttattette tagggaagea aactgtteat 1200
gatgettagg aagtettte agagaattta aaacagattg catattacca teattgettt 1260
aacattccac caattttact actagtaacc tgatatacac tgctttattt tttcctcttt 1320
ttttccctct attttccttt tgcctccccc tccctttgct ttgtaactca atagaggtgc 1380
cccaactcac tgacctaagc tttgttgata taaccgattc aagcatcggc ctgaggtgga 1440
ccccgctaaa ctcttccacc attattgggt accgcatcac agtagttgcg gcaggagaag 1500
gtatccctat ttttgaagat tttgtggact cctcagtagg atactacaca gtcacagggc 1560
tggagccggg cattgactat gatatcagcg ttatcactct cattaatggc ggcgagagtg 1620
cccctactac actgacacaa caaacgggtg aattttgaaa acttctgcgt ttgagacata 1680
gatggtgttg catgctgcca ccagttactc cggttaaata tggatgtttc atgggggaag 1740
tcagcaattg gccaaagatt cagataggtg gaattggggg gataaggaat caaatgcatc 1800
tgctaaactg attggagaaa aacacatgca atatcttcag tacactctca tttaaaccac 1860
aagtagatat aaagcctaga gaaatacaga tgtctgctct gttaaatata aaatagcaaa 1920
tgttcattca atttgaagac ctagaatttt tcttcttaaa taccaaacac gaataccaaa 1980
ttgcgtaagt accaattgat aagaatatat caccaaaatg taccatcatg ctcttccttc 2040
taccetttga taaactetac catgeteett etttgtaget aaaaacecat caaaatttag 2100
ggtagagtgg atgggcattg ttttgaggta ggagaaaagt aaacttggga ccattctagg 2160
ttttgttgct gtcactaggt aaagaaacac ctctttaacc acagtctggg gacaagcatg 2220
caacatttta aaggttotot gotgtgoatg ggaaaagaaa catgotgaga accaatttgc 2280
atgaacatgt tcacttgtaa gtagaattca ctgaatggaa ctgtagctct agatatctca 2340
catgggggga agtttaggac cctcttgtct ttttgtctgt gtgcatgtat ttctttgtaa 2400
agtactgcta tgtttctctt tgctgtgtgg caacttaagc ctcttcggcc tgggataaaa 2460
taatctgcag tggtattaat aatgtacata aagtcaacat atttgaaagt agattaaaat 2520
cttttttaaa tatatcaatg atggcaaaaa ggttaaaggg ggcctaacag tactgtgtgt 2580
agtgttttat ttttaacagt agtacactat aacttaaaat agacttagat tagactgttt 2640
gcatgattat gattetgttt cetttatgca tgaaatattg attttacett tecagetaet 2700
tegttagett taatittaaa atacattaac tgagtettee ttettgtteg aaaccagetg 2760
ttcctcctcc cactgacctg cgattcacca acattggtcc agacaccatg cgtgtcacct 2820
<210> 592
<211> 702
<212> PRT
<213> Homo sapiens
<400> 592
Met Glu Ser Pro Ser Ala Pro Pro His Arg Trp Cys Ile Pro Trp Gln
1
                                    10
Arg Leu Leu Thr Ala Ser Leu Leu Thr Phe Trp Asn Pro Pro Thr
            20
Thr Ala Lys Leu Thr Ile Glu Ser Thr Pro Phe Asn Val Ala Glu Gly
Lys Glu Val Leu Leu Val His Asn Leu Pro Gln His Leu Phe Gly
                        55
Tyr Ser Trp Tyr Lys Gly Glu Arg Val Asp Gly Asn Arg Gln Ile Ile
Gly Tyr Val Ile Gly Thr Gln Gln Ala Thr Pro Gly Pro Ala Tyr Ser
```

				85					90					95	
			100		_			105					110	Asn	
Ile	Gln	Asn 115	Asp	Thr	Gly	Phe	Tyr 120	Thr	Leu	His	Val	Ile 125	Lys	Ser	Asp
Leu	Val 130	Asn	Glu	Glu	Ala	Thr 135	Gly	Gln	Phe	Arg	Val 140	Tyr	Pro	Glu	Leu
Pro 145	Lys	Pro	Ser	Ile	Ser 150	Ser	Asn	Asn	Ser	Lys 155	Pro	Val	Glu	Asp	Lys 160
Asp	Ala	Val	Ala	Phe 165	Thr	Cys	Glu	Pro	Glu 170	Thr	Gln	Asp	Ala	Thr 175	Tyr
Leu	Trp	Trp	Val 180	Asn	Asn	Gln	Ser	Leu 185	Pro	Val	Ser	Pro	Arg 190	Leu	Gln
Leu	Ser	Asn 195	Gly	Asn	Arg	Thr	Leu 200	Thr	Leu	Phe	Asn	Val 205	Thr	Arg	Asn
Asp	Thr 210	Ala	Ser	Tyr	Lys	Cys 215	Glu	Thr	Gln	Asn	Pro 220	Val	Ser	Ala	Arg
225		_			230					235	_			Ala	240
				245					250					Leu 255	
		-	260					265	•			-	270	Trp	
		275					280					285		Pro	
	290					295					300			Asn	
305		_			310					315				Tyr	320
			-	325					330					Val 335	
			340					345					350	Asn	
	-	355	-	-			360					365		Pro	_
	370				_	375	_				380			Val	
385					390				-	395				Leu	400
	_			405					410			-	-	Pro 415	-
_			420					425	-	-	_		430	Val	
		435		_			440					445		Tyr	
_	450		_	_		455					460			Phe	
465					470			-		475		_		Ala	480
				485					490					Thr 495	
			500					505					510	Lys	
		515	-	_			520			_		525		Ala	
Asn	Thr 530	Thr	Tyr	Leu	Trp	Trp 535	Val	Asn	Gly	Gln	Ser 540	Leu	Pro	Val	Ser

```
Pro Arg Leu Gln Leu Ser Asn Gly Asn Arg Thr Leu Thr Leu Phe Asn
545
                    550
                                         555
Val Thr Arg Asn Asp Ala Arg Ala Tyr Val Cys Gly Ile Gln Asn Ser
                565
                                     570
Val Ser Ala Asn Arg Ser Asp Pro Val Thr Leu Asp Val Leu Tyr Gly
            580
                                 585
                                                     590
Pro Asp Thr Pro Ile Ile Ser Pro Pro Asp Ser Ser Tyr Leu Ser Gly
                            600
                                                 605
Ala Asn Leu Asn Leu Ser Cys His Ser Ala Ser Asn Pro Ser Pro Gln
                        615
                                             620
Tyr Ser Trp Arg Ile Asn Gly Ile Pro Gln Gln His Thr Gln Val Leu
625
                                         635
Phe Ile Ala Lys Ile Thr Pro Asn Asn Asn Gly Thr Tyr Ala Cys Phe
                645
                                     650
                                                         655
Val Ser Asn Leu Ala Thr Gly Arg Asn Asn Ser Ile Val Lys Ser Ile
                                665
                                                    670
Thr Val Ser Ala Ser Gly Thr Ser Pro Gly Leu Ser Ala Gly Ala Thr
                            680
Val Gly Ile Met Ile Gly Val Leu Val Gly Val Ala Leu Ile
<210> 593
<211> 2974
<212> DNA
<213> Homo sapiens
<400> 593
etcagggcag agggaggaag gacagcagac cagacagtca cagcagcett gacaaaacgt 60
tectggaact caagetette tecacagagg aggacagage agacageaga gaccatggag 120
tetecetegg eccetececa cagatggtge atcecetgge agaggetect geteacagee 180
tcacttctaa ccttctggaa cccgcccacc actgccaagc tcactattga atccacgccg 240
ttcaatgtcg cagaggggaa ggaggtgctt ctacttgtcc acaatctgcc ccagcatctt 300
tttggctaca gctggtacaa aggtgaaaga gtggatggca accgtcaaat tataggatat 360
gtaataggaa ctcaacaagc taccccaggg cccgcataca gtggtcgaga gataatatac 420
cccaatgcat ccctgctgat ccagaacatc atccagaatg acacaggatt ctacacccta 480
cacgtcataa agtcagatct tgtgaatgaa gaagcaactg gccagttccg ggtatacccg 540
gagetgeeca ageceteeat etecageaac aactecaaac eegtggagga caaggatget 600
gtggccttca cctgtgaacc tgagactcag gacgcaacct acctgtggtg ggtaaacaat 660
cagageetee eggteagtee caggetgeag etgtecaatg geaacaggae ceteacteta 720
ttcaatgtca caagaaatga cacagcaagc tacaaatgtg aaacccagaa cccagtgagt 780
gccaggcgca gtgattcagt catcctgaat gtcctctatg gcccggatgc ccccaccatt 840
tecectetaa acaeatetta cagateaggg gaaaatetga aceteteetg ecaegeagee 900
totaacccac ctgcacagta ctcttggttt gtcaatggga ctttccagca atccacccaa 960
gagetettta teeccaacat caetgtgaat aatagtggat cetatacgtg ccaageccat 1020
aactcagaca ctggcctcaa taggaccaca gtcacgacga tcacagtcta tgcagagcca 1080
cccaaaccct tcatcaccag caacaactcc aaccccgtgg aggatgagga tgctgtagcc 1140
ttaacctgtg aacctgagat tcagaacaca acctacctgt ggtgggtaaa taatcagagc 1200
eteceggica gicecagget geagetgice aatgacaaca ggaceeteac tetaeteagi 1260
gtcacaagga atgatgtagg accctatgag tgtggaatcc agaacgaatt aagtgttgac 1320
cacagegace cagteatect gaatgteete tatggeecag acgaececae cattteecee 1380
tcatacacct attaccgtcc aggggtgaac ctcagcctct cctgccatgc agcctctaac 1440
ccacctgcac agtattcttg gctgattgat gggaacatcc agcaacacac acaagagctc 1500
tttatctcca acatcactga gaagaacagc ggactctata cctgccaggc caataactca 1560
gccagtggcc acagcaggac tacagtcaag acaatcacag tctctgcgga gctgcccaag 1620
ccctccatct ccagcaacaa ctccaaaccc gtggaggaca aggatgctgt ggccttcacc 1680
tgtgaacctg aggetcagaa cacaacctac ctgtggtggg taaatggtca gagecteeca 1740
```

gtcagtccca ggctgcagct gtccaatggc aacaggaccc tcactctatt caatgtcaca 1800 agaaatgacg caaqagccta tgtatgtgga atccaqaact cagtgagtgc aaaccgcagt 1860 gacccagtca ccctggatgt cctctatggg ccggacaccc ccatcatttc ccccccagac 1920 tegtettace tttegggage gaaceteaac eteteetgee aeteggeete taacecatee 1980 ccgcagtatt cttggcgtat caatgggata ccgcagcaac acacacaagt tctctttatc 2040 gccaaaatca cgccaaataa taacgggacc tatgcctgtt ttgtctctaa cttggctact 2100 ggccgcaata attccatagt caagagcatc acagtctctg catctggaac ttctcctggt 2160 ctctcagctg gggccactgt cggcatcatg attggagtgc tggttggggt tgctctgata 2220 tagcagcoct ggtgtagttt cttcatttca ggaagactga cagttgtttt gcttcttcct 2280 taaagcattt gcaacagcta cagtctaaaa ttgcttcttt accaaggata tttacagaaa 2340 agactetgae cagagatega gaccatecta gecaacateg tgaaaceeca tetetactaa 2400 aaatacaaaa atgagctggg cttggtggcg cgcacctgta gtcccagtta ctcgggaggc 2460 tgaggcagga gaatcgcttg aacccgggag gtggagattg cagtgagccc agatcgcacc 2520 tetgacetgt actettgaat acaagtttet gataceaetg caetgtetga gaattteeaa 2640 aactttaatg aactaactga cagcttcatg aaactgtcca ccaagatcaa gcagagaaaa 2700 taattaattt catgggacta aatgaactaa tgaggattgc tgattcttta aatgtcttgt 2760 ttcccagatt tcaggaaact ttttttcttt taagctatcc actcttacag caatttgata 2820 aaatatactt ttgtgaacaa aaattgagac atttacattt tctccctatg tggtcgctcc 2880 agacttggga aactattcat gaatatttat attgtatggt aatatagtta ttgcacaagt 2940 tcaataaaaa tctgctcttt gtataacaga aaaa

<210> 594

<211> 1255

<212> PRT

<213> Homo sapiens

<400> 594

Met Glu Leu Ala Ala Leu Cys Arg Trp Gly Leu Leu Leu Ala Leu Leu 10 Pro Pro Gly Ala Ala Ser Thr Gln Val Cys Thr Gly Thr Asp Met Lys 25 20 Leu Arg Leu Pro Ala Ser Pro Glu Thr His Leu Asp Met Leu Arg His 40 Leu Tyr Gln Gly Cys Gln Val Val Gln Gly Asn Leu Glu Leu Thr Tyr 55 Leu Pro Thr Asn Ala Ser Leu Ser Phe Leu Gln Asp Ile Gln Glu Val 70 75 Gln Gly Tyr Val Leu Ile Ala His Asn Gln Val Arg Gln Val Pro Leu 90 8.5 Gln Arg Leu Arg Ile Val Arg Gly Thr Gln Leu Phe Glu Asp Asn Tyr 100 105 Ala Leu Ala Val Leu Asp Asn Gly Asp Pro Leu Asn Asn Thr Thr Pro 120 Val Thr Gly Ala Ser Pro Gly Gly Leu Arg Glu Leu Gln Leu Arg Ser 135 140 Leu Thr Glu Ile Leu Lys Gly Gly Val Leu Ile Gln Arg Asn Pro Gln 150 155 Leu Cys Tyr Gln Asp Thr Ile Leu Trp Lys Asp Ile Phe His Lys Asn 170 175 165 Asn Gln Leu Ala Leu Thr Leu Ile Asp Thr Asn Arg Ser Arg Ala Cys 185 190 180 His Pro Cys Ser Pro Met Cys Lys Gly Ser Arg Cys Trp Gly Glu Ser 205 200 Ser Glu Asp Cys Gln Ser Leu Thr Arg Thr Val Cys Ala Gly Gly Cys 215 Ala Arg Cys Lys Gly Pro Leu Pro Thr Asp Cys Cys His Glu Gln Cys

225	_				230					235					240
				245					250					255	Leu
			260					265			_		270	Leu	
		275					280					285		Gly	_
Tyr	Thr 290	Phe	Gly	Ala	Ser	Cys 295	Val	Thr	Ala	Cys	Pro 300	Tyr	Asn	Tyr	Leu
Ser 305	Thr	Asp	Val	Gly	Ser 310	Cys	Thr	Leu	Val	Cys 315	Pro	Leu	His	Asn	Gln 320
Glu	Val	Thr	Ala	Glu 325	Asp	Gly	Thr	Gln	Arg 330	Cys	Glu	Lys	Суѕ	Ser 335	ГÀЗ
Pro	Cys	Ala	Arg 340	Val	Сув	Tyr	Gly	Leu 345	Gly	Met	Glu	His	Leu 350	Arg	Glu
Val	Arg	Ala 355	Val	Thr	Ser	Ala	Asn 360	Ile	Gln	Glu	Phe	Ala 365	Gly	Cys	Lys
Lys	Ile 370	Phe	Gly	Ser	Leu	Ala 375	Phe	Leu	Pro	Glu	Ser 380	Phe	Asp	Gly	Asp
385					390					395				Val	400
				405					410					Trp 415	
			420					425					430	Ile	_
		435					440					445		Gly	
	450					455					460			Ser	_
465					470					475				Thr	480
				485					490					His 495	
			500					505					510	Cys	
		515					520					525		Gln	_
	530					535					540			Glu	-
545					550					555			-	His	560
				565					570					Thr 575	
			580					585					590	Lys	
		595					600					605		Asp	
	610					615					620	_		Cys	
625					630					635				Asp	640
				645					650					Val 655	
			660					665					670	Phe	
Ile	Leu	Ile 675	Lys	Arg	Arg	Gln	Gln 680	Lys	Ile	Arg	Lys	Tyr 685	Thr	Met	Arg

Arg Leu Leu Gln Glu Thr Glu Leu Val Glu Pro Leu Thr Pro Ser Gly 695 700 Ala Met Pro Asn Gln Ala Gln Met Arg Ile Leu Lys Glu Thr Glu Leu 710 Arg Lys Val Lys Val Leu Gly Ser Gly Ala Phe Gly Thr Val Tyr Lys 725 730 735 Gly Ile Trp Ile Pro Asp Gly Glu Asn Val Lys Ile Pro Val Ala Ile 740 745 750 Lys Val Leu Arg Glu Asn Thr Ser Pro Lys Ala Asn Lys Glu Ile Leu 760 765 Asp Glu Ala Tyr Val Met Ala Gly Val Gly Ser Pro Tyr Val Ser Arg 775 Leu Leu Gly Ile Cys Leu Thr Ser Thr Val Gln Leu Val Thr Gln Leu 790 795 Met Pro Tyr Gly Cys Leu Leu Asp His Val Arg Glu Asn Arg Gly Arg 810 Leu Gly Ser Gln Asp Leu Leu Asn Trp Cys Met Gln Ile Ala Lys Gly 820 825 Met Ser Tyr Leu Glu Asp Val Arg Leu Val His Arg Asp Leu Ala Ala 835 840 Arg Asn Val Leu Val Lys Ser Pro Asn His Val Lys Ile Thr Asp Phe 855 860 Gly Leu Ala Arg Leu Leu Asp Ile Asp Glu Thr Glu Tyr His Ala Asp 870 875 Gly Gly Lys Val Pro Ile Lys Trp Met Ala Leu Glu Ser Ile Leu Arg 890 Arg Arg Phe Thr His Gln Ser Asp Val Trp Ser Tyr Gly Val Thr Val 905 Trp Glu Leu Met Thr Phe Gly Ala Lys Pro Tyr Asp Gly Ile Pro Ala 920 925 Arg Glu Ile Pro Asp Leu Leu Glu Lys Gly Glu Arg Leu Pro Gln Pro 935 940 Pro Ile Cys Thr Ile Asp Val Tyr Met Ile Met Val Lys Cys Trp Met 950 955 Ile Asp Ser Glu Cys Arg Pro Arg Phe Arg Glu Leu Val Ser Glu Phe 970 Ser Arg Met Ala Arg Asp Pro Gln Arg Phe Val Val Ile Gln Asn Glu 980 985 Asp Leu Gly Pro Ala Ser Pro Leu Asp Ser Thr Phe Tyr Arg Ser Leu 1000 1005 Leu Glu Asp Asp Met Gly Asp Leu Val Asp Ala Glu Glu Tyr Leu 1010 1015 1020 Val Pro Gln Gln Gly Phe Phe Cys Pro Asp Pro Ala Pro Gly Ala Gly 1030 1035 Gly Met Val His His Arg His Arg Ser Ser Ser Thr Arg Ser Gly Gly 1045 1050 Gly Asp Leu Thr Leu Gly Leu Glu Pro Ser Glu Glu Glu Ala Pro Arg 1065 Ser Pro Leu Ala Pro Ser Glu Gly Ala Gly Ser Asp Val Phe Asp Gly 1080 Asp Leu Gly Met Gly Ala Ala Lys Gly Leu Gln Ser Leu Pro Thr His 1095 1100 Asp Pro Ser Pro Leu Gln Arg Tyr Ser Glu Asp Pro Thr Val Pro Leu 1110 1115 1120 Pro Ser Glu Thr Asp Gly Tyr Val Ala Pro Leu Thr Cys Ser Pro Gln 1125 1130 Pro Glu Tyr Val Asn Gln Pro Asp Val Arg Pro Gln Pro Pro Ser Pro

```
1145
                                                    1150
            1140
Arg Glu Gly Pro Leu Pro Ala Ala Arg Pro Ala Gly Ala Thr Leu Glu
        1155
                            1160
Arg Ala Lys Thr Leu Ser Pro Gly Lys Asn Gly Val Val Lys Asp Val
                        1175
                                           1180
Phe Ala Phe Gly Gly Ala Val Glu Asn Pro Glu Tyr Leu Thr Pro Gln
                    1190
                                        1195
Gly Gly Ala Ala Pro Gln Pro His Pro Pro Pro Ala Phe Ser Pro Ala
                1205
                                    1210
Phe Asp Asn Leu Tyr Tyr Trp Asp Gln Asp Pro Pro Glu Arg Gly Ala
            1220
                                1225
                                                    1230
Pro Pro Ser Thr Phe Lys Gly Thr Pro Thr Ala Glu Asn Pro Glu Tyr
                            1240
Leu Gly Leu Asp Val Pro Val
    1250
                        1255
<210> 595
<211> 4530
<212> DNA
<213> Homo sapiens
<400> 595
aattetegag etegtegace ggtegaegag etegagggte gaegageteg agggegegeg 60
coeggecoc accortegea geaccoegeg coeggece teccaqeeqq qtecaqeeqq 120
agccatgggg ccggagccgc agtgagcacc atggagctgg cggccttgtg ccqctqqqqq 180
ctcctcctcg ccctcttgcc ccccggagcc gcgagcaccc aagtgtgcac cggcacagac 240
atgaagetge ggeteeetge cagteeegag acceaectgg acatgeteeg ceaectetae 300
cagggctgcc aggtggtgca gggaaacctg gaactcacct acctgcccac caatgccagc 360
ctgtccttcc tgcaggatat ccaggaggtg cagggctacg tgctcatcgc tcacaaccaa 420
gtgaggcagg tcccactgca gaggctgcgg attgtgcgag gcacccagct ctttgaggac 480
aactatgccc tggccgtgct agacaatgga gacccgctga acaataccac ccctgtcaca 540
ggggcctccc caggaggcct gcgggagctg cagcttcgaa gcctcacaga gatcttgaaa 600
ggaggggtct tgatccagcg gaacccccag ctctgctacc aggacacgat tttgtggaag 660
gacatettee acaagaacaa ecagetgget etcacactga tagacaccaa ecqetetegg 720
gcctgccacc cctgttctcc gatgtgtaag ggctcccgct gctggggaga gagttctgag 780
gattgtcaga gcctgacgcg cactgtctgt gccggtggct gtgcccgctg caaggggcca 840
ctgcccactg actgctgcca tgagcagtgt gctgccggct gcacgggccc caagcactct 900
gactgcctgg cctgcctcca cttcaaccac agtggcatct gtgagctgca ctgcccagcc 960
ctggtcacct acaacacaga cacgtttgag tccatgccca atcccgaggg ccggtataca 1020
ttcggcgcca gctgtgtgac tgcctgtccc tacaactacc tttctacgga cgtgggatcc 1080
tgcaccctcg tctgccccct gcacaaccaa gaggtgacag cagaggatgg aacacagcgg 1140
tgtgagaagt gcagcaagcc ctgtgcccga gtgtgctatg gtctgggcat ggagcacttg 1200
cgagaggtga gggcagttac cagtqccaat atccaggaqt ttqctqqctq caaqaaqatc 1260
tttgggagcc tggcatttct gccggagagc tttgatgggg acccagcctc caacactgcc 1320
ccgctccagc cagagcagct ccaagtgttt gagactctgg aagagatcac aggttaccta 1380
tacatctcag catggccgga cagcctgcct gacctcagcg tcttccagaa cctgcaagta 1440
atccggggac gaattctgca caatggcgcc tactcgctga ccctgcaagg gctgggcatc 1500
agctggctgg ggctgcgctc actgagggaa ctgggcagtg gactggccct catccaccat 1560
aacacccacc tetgettegt geacacggtg ceetgggace agetettteg gaacccqcac 1620
caagetetge tecacactge caaceggeca gaggacgagt gtgtgggega gggcctggcc 1680
tgccaccage tgtgcgcccg agggcactgc tggggtccag ggcccaccca gtgtgtcaac 1740
tgcagccagt tccttcgggg ccaggagtgc gtggaggaat gccgagtact gcaggggctc 1800
cccagggagt atgtgaatgc caggcactgt ttgccgtgcc accctgagtg tcagcccag 1860
aatggctcag tgacctgttt tggaccggag gctgaccagt gtgtggcctg tgcccactat 1920
aaggaccctc ccttctgcgt ggcccgctgc cccagcggtg tgaaacctga cctctcctac 1980
atgcccatct ggaagtttcc agatgaggag ggcgcatgcc agccttgccc catcaactgc 2040
```

```
acceaetect gtgtggacet ggatgacaag ggetgeeeeg eegageagag ageeageeet 2100
etgaegteca tegtetetge ggtggttgge attetgetgg tegtggtett gggggtggte 2160
tttgggatcc tcatcaagcg acggcagcag aagatccgga agtacacgat gcggagactg 2220
ctgcaggaaa cggagctggt ggagccgctg acacctagcg gagcgatgcc caaccaggcg 2280
cagatgegga teetgaaaga gaeggagetg aggaaggtga aggtgettgg atetggeget 2340
tttggcacag tctacaaggg catctggatc cctgatgggg agaatgtgaa aattccagtg 2400
gccatcaaag tgttgaggga aaacacatcc cccaaagcca acaaagaaat cttagacgaa 2460
gcatacgtga tggctggtgt gggctcccca tatgtctccc gccttctggg catctgcctg 2520
acatecaegg tgeagetggt gaeaeagett atgeeetatg getgeetett agaeeatgte 2580
cgggaaaacc gcggacgcct gggctcccag gacctgctga actggtgtat gcagattgcc 2640
aaggggatga gctacctgga ggatgtgcgg ctcgtacaca gggacttggc cgctcggaac 2700
gtgctggtca agagtcccaa ccatgtcaaa attacagact tcgggctggc tcggctgctg 2760
gacattgacg agacagagta ccatgcagat gggggcaagg tgcccatcaa gtggatggcg 2820
ctggagtcca ttctccgccg gcggttcacc caccagagtg atgtgtggag ttatggtgtg 2880
actgtgtggg agetgatgac ttttggggcc aaaccttacg atgggatccc agcccgggag 2940
atccctgacc tgctggaaaa gggggagcgg ctgccccagc cccccatctg caccattgat 3000
gtctacatga tcatggtcaa atgttggatg attgactctg aatgtcggcc aagattccgg 3060
gagttggtgt ctgaattctc ccgcatggcc agggaccccc agcgctttgt ggtcatccag 3120
aatgaggact tgggcccagc cagtcccttg gacagcacct tctaccgctc actgctggag 3180
gacgatgaca tgggggacct ggtggatgct gaggagtatc tggtacccca gcagggcttc 3240
ttctgtccag accetgcccc gggcgctggg ggcatggtcc accacaggca ccgcagetca 3300
tetaceagga gtggeggtgg ggacetgaca etagggetgg agecetetga agaggaggee 3360
cccaggtctc cactggcacc ctccgaaggg gctggctccg atgtatttga tggtgacctg 3420
ggaatggggg cagccaaggg gctgcaaagc ctccccacac atgaccccag ccctctacag 3480
eggtacagtg aggaceccae agtacecetg ceetetgaga etgatggeta egttgeecce 3540
ctgacctgca gccccagcc tgaatatgtg aaccagccag atgttcggcc ccagcccct 3600
tegeceegag agggeeetet geetgetgee egacetgetg gtgeeactet ggaaagggee 3660
aagactetet eeceagggaa gaatggggte gteaaagaeg tittitgeett tgggggtgee 3720
gtggagaacc ccgagtactt gacaccccag ggaggagetg cccctcagcc ccaccctcct 3780
cctgccttca gcccagcctt cgacaacctc tattactggg accaggaccc accagagcgg 3840
ggggctccac ccagcacctt caaagggaca cctacggcag agaacccaga gtacctgggt 3900
ctggacgtgc cagtgtgaac cagaaggcca agtccgcaga agccctgatg tgtcctcagg 3960
gagcagggaa ggcctgactt ctgctggcat caagaggtgg gagggccctc cgaccacttc 4020
caggggaacc tgccatgcca ggaacctgtc ctaaggaacc ttccttcctg cttgagttcc 4080
cagatggctg gaaggggtcc agcctcgttg gaagaggaac agcactgggg agtctttgtg 4140
gattetgagg ccctgcccaa tgagacteta gggtccagtg gatgccacag cccagettgg 4200
ccctttcctt ccagatcctg ggtactgaaa gccttaggga agctggcctg agaggggaag 4260
cggccctaag ggagtgtcta agaacaaaag cgacccattc agagactgtc cctgaaacct 4320
agtactgccc cccatgagga aggaacagca atggtgtcag tatccaggct ttgtacagag 4380
tgcttttctg tttagttttt actttttttg ttttgttttt ttaaagacga aataaagacc 4440
caggggagaa tgggtgttgt atggggaggc aagtgtgggg ggtccttctc cacacccact 4500
ttgtccattt gcaaatatat tttggaaaac
                                                                  4530
<210> 596
<211> 976
<212> PRT
<213> Homo sapiens
<400> 596
Met Glu Lys Gln Lys Pro Phe Ala Leu Phe Val Pro Pro Arg Ser Ser
                                    10
Ser Ser Gln Val Ser Ala Val Lys Pro Gln Thr Leu Gly Gly Asp Ser
                               25
Thr Phe Phe Lys Ser Phe Asn Lys Cys Thr Glu Asp Asp Leu Glu Phe
                           40
Pro Phe Ala Lys Thr Asn Leu Ser Lys Asn Gly Glu Asn Ile Asp Ser
```

55

											_			_	
Asp 65	Pro	Ala	Leu	Gln	Lys 70	Val	Asn	Phe	Leu	Pro 75	Val	Leu	Glu	Gln	Val 80
Gly	Asn	Ser	Asp	Cys 85	His	Tyr	Gln	Glu	Gly 90	Leu	Lys	Asp	Ser	Asp 95	Leu
Glu	Asn	Ser	Glu 100	Gly	Leu	Ser	Arg	Val 105	Phe	Ser	Lys	Leu	Tyr 110	Lys	Glu
Ala	Glu	Lys 115	Ile	Lys	Lys	Trp	Lys 120	Val	Ser	Thr	Glu	Ala 125	Glu	Leu	Arg
Gln	Lys 130	Glu	Ser	Lys	Leu	Gln 135	Glu	Asn	Arg	Lys	Ile 140	Ile	Glu	Ala	Gln
Arg 145	Lys	Ala	Ile	Gln	Glu 150	Leu	Gln	Phe	Gly	Asn 155	Glu	Lys	Val	Ser	Leu 160
Lys	Leu	Glu	Glu	Gly 165	Ile	Gln	Glu	Asn	Lys 170	Asp	Leu	Ile	Lys	Glu 175	Asn
Asn	Ala	Thr	Arg 180	His	Leu	Cys	Asn	Leu 185		ГÀЗ	Glu	Thr	Cys 190	Ala	Arg
Ser	Ala	Glu 195	Lys	Thr	Lys	Lys	Tyr 200	Glu	Tyr	Glu	Arg	Glu 205	Glu	Thr	Arg
Gln	Val 210	Tyr	Met	qaA	Leu	Asn 215	Asn	Asn	Ile	Glu	Lys 220	Met	Ile	Thr	Ala
His 225	Gly	Glu	Leu	Arg	Val 230	Gln	Ala	Glu	Asn	Ser 235	Arg	Leu	Glu	Met	His 240
Phe	Lys	Leu	Lys	Glu 245	Asp	Tyr	Glu	Lys	Ile 250	Gln	His	Leu	Glu	Gln 255	Glu
Tyr	Lys	Lys	Glu 260	Ile	Asn	Asp	Lys	Glu 265	Lys	Gln	Val	Ser	Leu 270	Leu	Leu
Ile	Gln	Ile 275	Thr	Glu	Lys	Glu	Asn 280	Lys	Met	Lys	Asp	Leu 285	Thr	Phe	Leu
Leu	Glu 290	Glu	Ser	Arg	Asp	Lys 295	Val	Asn	Gln	Leu	Glu 300	Glu	Lys	Thr	Lys
Leu 305	Gln	Ser	Glu	Asn	Leu 310	Lys	Gln	Ser	Ile	Glu 315	Lys	Gln	His	His	Leu 320
Thr	Гуз	Glu	Leu	Glu 325	Asp	Ile	Lys	Val	Ser 330	Leu	Gln	Arg	Ser	Val 335	Ser
Thr	Gln	Lys	Ala 340	Leu	Glu	Glu	Asp	Leu 345	Gln	Ile	Ala	Thr	Lys 350	Thr	Ile
_		355	Thr			-	360					365			
	370		Ala			375					380				
385			Glu		390		_			395					400
			Gln	405					410					415	
			Glu 420					425					430		
Leu	Glu	Glu 435	Leu	Lys	Lys	Val	Leu 440	Gly	Glu	Lys	Glu	Thr 445	Leu	Leu	Tyr
	450	_	Gln			455					460	-	-		
465			Ile		470					475					480
Leu	Glu	Ile	Gln	Leu 485	Thr	Ala	Ile	Thr	Thr 490	Ser	Glu	Gln	Tyr	Tyr 495	Ser
Lys	Glu	Val	Lys 500	Asp	Leu	Lys	Thr	Glu 505	Leu	Glu	Asn	Glu	Lys 510	Leu	Lys
Asn	Thr	Glu	Leu	Thr	Ser	His	Cys	Asn	Lys	Leu	Ser	Leu	Glu	Asn	Lys

		515					520					525			
Glu	Leu 530	Thr	Gln	Glu	Thr	Ser 535	Asp	Met	Thr	Leu	Glu 540	Leu	Lys	Asn	Gln
Gln 545	Glu	Asp	Ile	Asn	Asn 550	Asn	Lys	Lys	Gln	Glu 555	Glu	Arg	Met	Leu	Lys 560
Gln	Ile	Glu	Asn	Leu 565	Gln	Glu	Thr	Glu	Thr 570	Gln	Leu	Arg	Asn	Glu 575	Leu
Glu	Tyr	Val	Arg 580	Glu	Glu	Leu	Lys	Gln 585	Lys	Arg	Asp	Glu	Val 590	Lys	Cys
Lys	Leu	Asp 595	Lys	Ser	Glu	Glu	Asn 600	Cys	Asn	Asn	Leu	Arg 605	ГÀЗ	Gln	Val
Glu	Asn 610	Lys	Asn	Lys	Tyr	Ile 615	Glu	Glu	Leu	Gln	Gln 620	Glu	Asn	Lys	Ala
625			Lys		630				_	635				_	640
			Asn	645					650				-	655	_
	_		Ile 660		_		_	665	_				670	_	_
		675	Glu				680				_	685	_		
	690		Ala			695					700				
705	гуя	тте	Ala	GIU	710	vaı	ALA	Leu	Met	715	гАв	HIS	гуз	HIS	720
Tyr	qaA	Lys	Ile	Ile 725	Glu	Glu	Arg	Asp	Ser 730	Glu	Leu	Gly	Leu	Tyr 735	Lys
			Gln 740					745	-				750		
		755	Leu	_			760				-	765			
	770		Glu -		_	775	-		-	_	780		-		
785	AIA	Thr	Leu	ьуѕ	790	гля	гув	Asp	гÀз	ьуs 795	Thr	GIn	Thr	Phe	ьеи 800
Leu	Glu	Thr	Pro	Glu 805	Ile	Tyr	Trp	Lys	Leu 810	Asp	Ser	Lys	Ala	Val 815	Pro
			Val 820		_			825			_		830		
		835	Arg				840					845			
	850	_	Pro			855			_		860		-		_
ьеи 865	GIN	GIN	Arg	GIu	870	Leu	Asn	He	Pro	875	Glu	GLu	Ser	Lys	880 Lys
			Met	885					890					895	
Thr	Thr	Asp	Leu 900	Leu	Ser	Met	Val	Ser 905	Glu	Glu	Glu	Thr	Leu 910	ГÀЗ	Thr
	_	915	Asn				920					925		-	
	930		Ala			935					940				
945			Ile		950					955					960
ГÀЗ	Met	Asp	Arg	Lys 965	Lys	Lys	Leu	Lys	Glu 970	Ala	Glu	Lys	Leu	Phe 975	Val

```
<210> 597
<211> 3393
<212> DNA
<213> Homo sapiens
<400> 597
gccctcatag accgtttgtt gtagttcgcg tgggaacagc aacccacggt ttcccgatag 60
ttcttcaaag atatttacaa ccgtaacaga gaaaatggaa aagcaaaagc cctttgcatt 120
gttcgtacca ccgagatcaa gcagcagtca ggtgtctgcg gtgaaacctc agaccctggg 180
aggogattcc actttcttca agagtttcaa caaatgtact gaagatgatt tggagtttcc 240
atttgcaaag actaatetet ecaaaaatgg ggaaaacatt gatteagate etgetttaca 300
aaaagttaat ttcttgcccg tgcttgagca ggttggtaat tctgactgtc actatcagga 360
aggactaaaa gactctgatt tggagaattc agagggattg agcagagtgt tttcaaaact 420
gtataaggag gctgaaaaga taaaaaaatg gaaagtaagt acagaagctg aactgagaca 480
gaaagaaagt aagttgcaag aaaacagaaa gataattgaa gcacagcgaa aagccattca 540
ggaactgcaa tttggaaatg aaaaagtaag tttgaaatta gaagaaggaa tacaagaaaa 600
taaagattta ataaaagaga ataatgccac aaggcattta tgtaatctac tcaaagaaac 660
ctgtgctaga tctgcagaaa agacaaagaa atatgaatat gaacgggaag aaaccaggca 720
agtttatatg gatctaaata ataacattga gaaaatgata acagctcatg gggaacttcg 780
tgtgcaagct gagaattcca gactggaaat gcattttaag ttaaaggaag attatgaaaa 840
aatccaacac cttgaacaag aatacaagaa ggaaataaat gacaaggaaa agcaggtatc 900
actactattg atccaaatca ctgagaaaga aaataaaatg aaagatttaa catttctgct 960
agaggaatcc agagataaag ttaatcaatt agaggaaaag acaaaattac agagtgaaaa 1020
cttaaaacaa tcaattgaga aacagcatca tttgactaaa gaactagaag atattaaaqt 1080
gtcattacaa agaagtgtga gtactcaaaa ggctttagag gaagatttac agatagcaac 1140
aaaaacaatt tgtcagctaa ctgaagaaaa agaaactcaa atggaagaat ctaataaagc 1200
tagagetget cattegtttg tggttactga atttgaaact actgtctgca gettggaaga 1260
attattgaga acagaacagc aaagattgga aaaaaatgaa gatcaattga aaatacttac 1320
catggagett caaaagaaat caagtgaget ggaagagatg actaagetta caaataacaa 1380
agaagtagaa cttgaagaat tgaaaaaagt cttgggagaa aaggaaacac ttttatatga 1440
aaataaacaa tttgagaaga ttgctgaaga attaaaagga acagaacaag aactaattgg 1500
tettetecaa gecagagaga aagaagtaca tgatttggaa atacagttaa etgecattae 1560
cacaagtgaa cagtattatt caaaagaggt taaagatcta aaaactgagc ttgaaaacga 1620
gaagettaag aatactgaat taacttcaca etgcaacaag etttcactag aaaacaaaga 1680
gctcacacag gaaacaagtg atatgaccct agaactcaag aatcagcaag aagatattaa 1740
taataacaaa aagcaagaag aaaggatgtt gaaacaaata gaaaatcttc aagaaacaga 1800
aacccaatta agaaatgaac tagaatatgt gagagaagag ctaaaacaga aaagagatga 1860
aqttaaatgt aaattggaca agagtgaaga aaattgtaac aatttaagga aacaagttga 1920
aaataaaaac aagtatattg aagaacttca gcaggagaat aaggccttga aaaaaaaagg 1980
tacagcagaa agcaagcaac tgaatgttta tgagataaag gtcaataaat tagagttaga 2040
actagaaagt gccaaacaga aatttggaga aatcacagac acctatcaga aagaaattga 2100
ggacaaaaag atatcagaag aaaatctttt ggaagaggtt gagaaagcaa aagtaatagc 2160
tgatgaagca gtaaaattac agaaagaaat tgataagcga tgtcaacata aaatagctga 2220
aatggtagca cttatggaaa aacataagca ccaatatgat aagatcattg aagaaagaga 2280
ctcagaatta ggactttata agagcaaaga acaagaacag tcatcactga gagcatcttt 2340
ggagattgaa ctatccaatc tcaaagctga acttttgtct gttaagaagc aacttgaaat 2400
agaaagagaa gagaaggaaa aactcaaaag agaggcaaaa gaaaacacag ctactcttaa 2460
agaaaaaaaa gacaagaaaa cacaaacatt tttattggaa acacctgaaa tttattggaa 2520
attggattct aaagcagttc cttcacaaac tgtatctcga aatttcacat cagttgatca 2580
tggcatatcc aaagataaaa gagactatct gtggacatct gccaaaaata ctttatctac 2640
accattgcca aaggcatata cagtgaagac accaacaaaa ccaaaactac agcaaagaga 2700
aaacttgaat atacccattg aagaaagtaa aaaaaagaga aaaatggcct ttgaatttga 2760
tattaattca gatagttcag aaactactga tcttttgagc atggtttcag aagaagagac 2820
attgaaaaca ctgtatagga acaataatcc accagcttct catctttgtg tcaaaacacc 2880
aaaaaaggcc ccttcatctc taacaacccc tggacctaca ctgaagtttg gagctataag 2940
```

```
aaaaatgogg gaggaccgtt gggctgtaat tgctaaaatg gatagaaaaa aaaaactaaa 3000
agaagctgaa aagttatttg tttaatttca gagaatcagt gtagttaagg agcctaataa 3060
cgtgaaactt atagttaata ttttgttctt atttgccaga gccacatttt atctggaagt 3120
tgagacttaa aaaatacttg catgaatgat ttgtgtttct ttatattttt agcctaaatg 3180
ttaactacat attgtctgga aacctgtcat tgtattcaga taattagatg attatatatt 3240
gttgttactt tttcttgtat tcatgaaaac tgtttttact aagttttcaa atttgtaaag 3300
ttagcetttg aatgetagga atgeattatt gagggteatt etttattett taetattaaa 3360
atattttgga tgcaaaaaaa aaaaaaaaaa aaa
<210> 598
<211> 188
<212> PRT
<213> Homo sapiens
<400> 598
Met Asn Gly Asp Asp Ala Phe Ala Arg Arg Pro Arg Asp Asp Ala Gln
                                    10
Ile Ser Glu Lys Leu Arg Lys Ala Phe Asp Asp Ile Ala Lys Tyr Phe
           20
                                25
Ser Lys Lys Glu Trp Glu Lys Met Lys Ser Ser Glu Lys Ile Val Tyr
                            40
                                                45
       35
Val Tyr Met Lys Leu Asn Tyr Glu Val Met Thr Lys Leu Gly Phe Lys
                                            60
                        55
Val Thr Leu Pro Pro Phe Met Arg Ser Lys Arg Ala Ala Asp Phe His
                   70
Gly Asn Asp Phe Gly Asn Asp Arg Asn His Arg Asn Gln Val Glu Arg
                                    90
Pro Gln Met Thr Phe Gly Ser Leu Gln Arg Ile Phe Pro Lys Ile Met
           100
                                105
Pro Lys Lys Pro Ala Glu Glu Glu Asn Gly Leu Lys Glu Val Pro Glu
                           120
                                                125
Ala Ser Gly Pro Gln Asn Asp Gly Lys Gln Leu Cys Pro Pro Gly Asn
                       135
                                            140
Pro Ser Thr Leu Glu Lys Ile Asn Lys Thr Ser Gly Pro Lys Arg Gly
                                        155
                   150
Lys His Ala Trp Thr His Arg Leu Arg Glu Arg Lys Gln Leu Val Val
               165
                                   170
Tyr Glu Glu Ile Ser Asp Pro Glu Glu Asp Asp Glu
           180
                                185
<210> 599
<211> 576
<212> DNA
<213> Homo sapiens
<400> 599
atgaacggag acgacgcctt tgcaaggaga cccagggatg atgctcaaat atcagagaag 60
ttacgaaagg ccttcgatga tattgccaaa tacttctcta agaaagagtg ggaaaagatg 120
aaatcctcgg agaaaatcgt ctatgtgtat atgaagctaa actatgaggt catgactaaa 180
ctaggtttca aggtcaccct cccacctttc atgcgtagta aacgggctgc agacttccac 240
gggaatgatt ttggtaacga tcgaaaccac aggaatcagg ttgaacgtcc tcagatgact 300
tteggeagee tecagagaat etteeegaag ateatgeeca agaagecage agaggaagaa 360
aatggtttga aggaagtgcc agaggcatct ggcccacaaa atgatgggaa acagctgtgc 420
ccccgggaa atccaagtac cttggagaag attaacaaga catctggacc caaaaggggg 480
aaacatgcct ggacccacag actgcgtgag agaaagcagc tggtggttta tgaagagatc 540
agcgaccctg aggaagatga cgagtaactc ccctcg
```

```
<211> 262
<212> PRT
<213> Homo sapiens
<400> 600
Met Trp Phe Leu Val Leu Cys Leu Ala Leu Ser Leu Gly Gly Thr Gly
                                10
Ala Ala Pro Pro Ile Gln Ser Arg Ile Val Gly Gly Trp Glu Cys Glu
  20
                            25
Gln His Ser Gln Pro Trp Gln Ala Ala Leu Tyr His Phe Ser Thr Phe
                        40
Gln Cys Gly Gly Ile Leu Val His Arg Gln Trp Val Leu Thr Ala Ala
                    55
His Cys Ile Ser Asp Asn Tyr Gln Leu Trp Leu Gly Arg His Asn Leu
Phe Asp Asp Glu Asn Thr Ala Gln Phe Val His Val Ser Glu Ser Phe
                               90
Pro His Pro Gly Phe Asn Met Ser Leu Leu Glu Asn His Thr Arg Gln
          100 105
Ala Asp Glu Asp Tyr Ser His Asp Leu Met Leu Arg Leu Thr Glu
                        120
                                           125
Pro Ala Asp Thr Ile Thr Asp Ala Val Lys Val Val Glu Leu Pro Thr
                     135
Gln Glu Pro Glu Val Gly Ser Thr Cys Leu Ala Ser Gly Trp Gly Ser
                 150
                                   155
Ile Glu Pro Glu Asn Phe Ser Phe Pro Asp Asp Leu Gln Cys Val Asp
             165
                                170
Leu Lys Ile Leu Pro Asn Asp Glu Cys Glu Lys Ala His Val Gln Lys
         180
                            185
Val Thr Asp Phe Met Leu Cys Val Gly His Leu Glu Gly Gly Lys Asp
   195
                         200
Thr Cys Val Gly Asp Ser Gly Gly Pro Leu Met Cys Asp Gly Val Leu
                     215
Gln Gly Val Thr Ser Trp Gly Tyr Val Pro Cys Gly Thr Pro Asn Lys
       230
                         235 - 240
Pro Ser Val Ala Val Arg Val Leu Ser Tyr Val Lys Trp Ile Glu Asp
             245
                                250
Thr Ile Ala Glu Asn Ser
          260
<210> 601
<211> 269
<212> PRT
<213> Homo sapiens
<400> 601
Met Ile Arg Thr Leu Leu Leu Ser Thr Leu Val Ala Gly Ala Leu Ser
       5
                    10
Cys Gly Asp Pro Thr Tyr Pro Pro Tyr Val Thr Arg Val Val Gly Gly
                             25
Glu Glu Ala Arg Pro Asn Ser Trp Pro Trp Gln Val Ser Leu Gln Tyr
```

\$35\$ \$40\$ \$45\$ Ser Ser Asn Gly Lys Trp Tyr His Thr Cys Gly Gly Ser Leu Ile Ala

<210> 600

```
Asn Ser Trp Val Leu Thr Ala Ala His Cys Ile Ser Ser Ser Arg Thr
Tyr Arg Val Gly Leu Gly Arg His Asn Leu Tyr Val Ala Glu Ser Gly
                              90
Ser Leu Ala Val Ser Val Ser Lys Ile Val Val His Lys Asp Trp Asn
       100 105
Ser Asn Gln Ile Ser Lys Gly Asn Asp Ile Ala Leu Leu Lys Leu Ala
            120
Asn Pro Val Ser Leu Thr Asp Lys Ile Gln Leu Ala Cys Leu Pro Pro
          135
                           140
Ala Gly Thr Ile Leu Pro Asn Asn Tyr Pro Cys Tyr Val Thr Gly Trp
      150 155
Gly Arg Leu Gln Thr Asn Gly Ala Val Pro Asp Val Leu Gln Gln Gly
                              170
Arg Leu Leu Val Val Asp Tyr Ala Thr Cys Ser Ser Ser Ala Trp Trp
                           185
Gly Ser Ser Val Lys Thr Ser Met Ile Cys Ala Gly Gly Asp Gly Val
                       200
Ile Ser Ser Cys Asn Gly Asp Ser Gly Gly Pro Leu Asn Cys Gln Ala
                    215
Ser Asp Gly Arg Trp Gln Val His Gly Ile Val Ser Phe Gly Ser Arg
                 230 235 · 240
Leu Gly Cys Asn Tyr Tyr His Lys Pro Ser Val Phe Thr Arg Val Ser
            245 250
Asn Tyr Ile Asp Trp Ile Asn Ser Val Ile Ala Asn Asn
```

<210> 602 <211> 269 <212> PRT

<213> Homo sapiens

<400> 602

Met Ile Arg Thr Leu Leu Ser Thr Leu Val Ala Gly Ala Leu Ser Cys Gly Val Ser Thr Tyr Ala Pro Asp Met Ser Arg Met Leu Gly Gly 25 Glu Glu Ala Arg Pro Asn Ser Trp Pro Trp Gln Val Ser Leu Gln Tyr 40 Ser Ser Asn Gly Gln Trp Tyr His Thr Cys Gly Gly Ser Leu Ile Ala 55 Asn Ser Trp Val Leu Thr Ala Ala His Cys Ile Ser Ser Ser Arg Ile 70 Tyr Arg Val Met Leu Gly Gln His Asn Leu Tyr Val Ala Glu Ser Gly 90 Ser Leu Ala Val Ser Val Ser Lys Ile Val Val His Lys Asp Trp Asn Ser Asn Gln Val Ser Lys Gly Asn Asp Ile Ala Leu Leu Lys Leu Ala 120 Asn Pro Val Ser Leu Thr Asp Lys Ile Gln Leu Ala Cys Leu Pro Pro 135 Ala Gly Thr Ile Leu Pro Asn Asn Tyr Pro Cys Tyr Val Thr Gly Trp 150 155 Gly Arg Leu Gln Thr Asn Gly Ala Leu Pro Asp Asp Leu Lys Gln Gly 165 170 Arg Leu Leu Val Val Asp Tyr Ala Thr Cys Ser Ser Ser Gly Trp Trp

¥

H

185 180 Gly Ser Thr Val Lys Thr Asn Met Ile Cys Ala Gly Gly Asp Gly Val 195 200 205 200 Ile Cys Thr Cys Asn Gly Asp Ser Gly Gly Pro Leu Asn Cys Gln Ala 220 215 Ser Asp Gly Arg Trp Glu Val His Gly Ile Gly Ser Leu Thr Ser Val 235 230 Leu Gly Cys Asn Tyr Tyr Tyr Lys Pro Ser Ile Phe Thr Arg Val Ser 250 . 245 Asn Tyr Asn Asp Trp Ile Asn Ser Val Ile Ala Asn Asn 265 260

1

137