MATH 135: Introduction to the Theory of Sets

Jad Damaj

Fall 2022

Contents

1			3
	1.1	August 25	
		1.1.2 Basics	J
2	Axi	oms and Operations	5
	2.1	August 30	
		2.1.1 Zermelo Fraenkel Axioms of Set Theory	5
3	Rela	tions and Functions	7
	3.1	September 1	7
		3.1.1 Relations and Functions	
	3.2	September 6	
		3.2.1 Functions and Relations	
		3.2.2 Infinite Cartesion Products	
	3.3	September 8	
		3.3.1 Natural Numbers	
	3.4	September 13	
		3.4.1 Operations on the Natural Numbers	
		3.4.2 Integers	
		3.4.3 Rationals	
	3.5	September 15	
		3.5.1 Reals (Dedekind Cuts)	
		3.5.2 Cardinality	
	3.6	September 20	
	0.0	3.6.1 Cardinality	
	3.7	September 22	
	0.1	3.7.1 Cardinals	

Chapter 1

Introduction

1.1 August 25

1.1.1 Introduction

Foundations of Mathematics: language, axioms, formal proofs

- We focus on the axioms in set theory
- We use ZFC (Zermelo-Fraenkel + Choice)
- \bullet There is only one primitive notion : \in
- Within the ZFC universe, everything is a set

Course Outline:

- Basic axioms
- Operations, relations, functions
- $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$
- \bullet carindals
- AC
- ordinals

1.1.2 Basics

Principle of Extensionality: Two sets A, B are the same \leftrightarrow they have the same elements $\forall x (x \in A \leftrightarrow x \in B)$ **Example 1.1.1.** $2, 3, 5 = \{5, 2, 4\} = \{2, 5, 2, 3, 3, 2\}$

Definition 1.1.2. There is a set with no elements, denoted \varnothing

- $\emptyset \neq \{\emptyset\}$
- $A \subseteq B$: A is a subset of $B \leftrightarrow$ each element of A is in B (use \subseteq to denote proper subset)

1.1. AUGUST 25

- $\{2\} \subseteq \{2,3,5\}$ but $\{2\} \notin \{2,3,5\}$
- Power set opertaion: $\mathcal{P}(A) = \{B \mid B \subseteq A\}$

We can define a hierarchy:

$$\begin{array}{l} V_0 = \varnothing, \ V_1 = \mathcal{P}(\varnothing) = \{\varnothing\}, \ V_2 = \mathcal{PP}(\varnothing) = \{\varnothing, \{\varnothing\}\} \\ V_3 = \mathcal{P}(V_2) = \{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}\}, \ V_4, \dots \\ V_\omega = \bigcup_{n \in \mathbb{N}} V_n, \ \mathcal{P}(V_\omega), \ \mathcal{PP}(V_\omega), \dots, V_{\omega + \omega}, \dots, V_{\omega + \omega + \cdots}, \dots, V_{\omega \times \omega}, \dots, V_{\omega^\omega} \end{array}$$

Chapter 2

Axioms and Operations

2.1August 30

Zermelo Fraenkel Axioms of Set Theory 2.1.1

Setting: in ZFC all objects are sets

Language: contains vocabulary (ϵ), logical symbols (=, \land , $\lor \exists$, \forall , \neg), variables (x, y, A, B, etc.)

Axiom 2.1.1 (Extensionality Axiom). Two sets are the same if they have the same elements $\forall A, B(\forall x (x \in A \leftrightarrow x \in B) \rightarrow A = B)$

Axiom 2.1.2 (Empty Set Axiom). There is a set with no members, denoted \varnothing $\exists A \forall x (x \notin A)$

Axiom 2.1.3 (Pairing Axiom). For any sets u, v there is a est whose elements are u and v, denoted $\{u, v\}$ $\forall u, v \exists A \forall x (x \in A \leftrightarrow x = u \lor x = v)$

Axiom 2.1.4 (Union Axiom (Preliminary Form)). For any sets a, b there is a set whose elements are elements of a and elements of b, denoted $a \cup b$ $\forall a, b \exists A \forall x (x \in Ax \in u \lor x \in v)$

Axiom 2.1.5 (Powerset Axiom). Each set A, has a power set $\mathcal{P}(A)$. $\forall A \exists B \forall x (x \in B \iff x \subseteq A)$ where $x \subseteq A$ stands for $\forall y (y \in x \rightarrow y \in A)$

Axiom 2.1.6 (Union Axiom). For any set A, there is a set [JA] whose members are members of the members of A.

 $\forall A \exists B \forall x (x \in B \leftrightarrow \exists y \in A (x \in y))$

Idea for the subset axiom: For any set A, there is a set B whose members are members of A satisfying some property.

2.1. AUGUST 30 135: Set Theory

eg. $B = \{x \in A \mid x \text{ satisfies property } P\} \subseteq A$

Example 2.1.7. $B = \{n \in \mathbb{N} \mid n \text{ cannot be described in less that 20 words}\}$

• let b be the smallest element in B, then b is the smallest element that cannot be described in 20 words.

• Paradox : need to use formal language to express property P.

Example 2.1.8. Let $B = \{x \mid x \notin x\}$

Question: $B \in B$? $B \in B \leftrightarrow B \notin B$: need to have property be contained in some larger set.

We can now restate the axiom more formally:

Axiom 2.1.9 (Subset Axiom (Scheme)). For each formula $\phi(x)$, there is an axiom: $\forall A \exists B \forall x (x \in B \leftrightarrow x \in A \land \phi(x))$

Example 2.1.10. Suppose there is a set of all sets A. Consider $B = \{x \in A \mid x \notin x\}$. Then $B \in B \leftrightarrow B \notin B$, contradiction. So there can be no such set A.

The language of 1rst order logic for ZFC:

The following are formulas:

- $x = y, x \in y$ atomic formulas
- $(\varphi \wedge \psi), (\varphi \vee \psi), \neg \varphi$ where φ, ψ are formulas
- $\exists v\varphi, \forall x\varphi$

Example 2.1.11. $\varphi(v, w) := (\exists v (v \in x \land \neg v = w)) \to (\forall y (\neg y \in y))$ is a formula

Chapter 3

Relations and Functions

3.1 September 1

3.1.1 Relations and Functions

Ordered Pair: $\langle a, b \rangle = \langle c, d \rangle \leftrightarrow a = c, b = d$

```
Definition 3.1.1. \langle a, b \rangle = \{ \{a\}, \{a, b\} \}
```

Cartesian product of A and B, denoted $A \times B = \{\langle x, y \rangle x \in A, y \in B\}$ Using the subset axiom $A \times B = \{z \in \mathcal{PP}(A \cup B) \mid \exists x \in A \exists y \in Bz = \langle x, y \rangle\}$ Observation: $\langle x, y \rangle \in \mathcal{PP}(C)$ for $x, y \in C$ $\{x\}, \{x, y\} \in \mathcal{P}(C)$ so $\{\{x\}, \{x, y\}\} \subseteq \mathcal{P}(C)$ so $\{\{x\}, \{x, y\}\} \in \mathcal{PP}(C)$

Definition 3.1.2. A binary relation is a set R whose elements are ordered pairs.

If $R \subset A \times B$ then R is a relation from $A \to B$.

Definition 3.1.3. Given a relation R, dom $R = \{x \in \bigcup \bigcup R \mid \exists y \langle x, y \rangle \in R\}$, range $R = \{y \in \bigcup \bigcup R \mid \exists x \langle x, y \rangle \in R\}$, field $(R) = \text{dom}(R) \cup \text{range}(R)$

```
Example 3.1.4. R = \{\langle a,b \rangle, \langle c,d \rangle, \langle e,f \rangle\} = \{\{\{a\}, \{a,b\}\}, \{\{c\}, \{c,d\}\}, \{\{e\}, \{e,f\}\}\}\} \cup R = \{\{a\}, \{a,b\}, \{c\}, \{c,d\}, \{e\}, \{e,f\}\} \cup R = \{a,b,c,d,e,f\}
```

n-ary relations: define *n*-tuple by $\langle a, b, c \rangle = \langle \langle a, b, \rangle, c \rangle$ etc.

Definition 3.1.5. A function is a relation F such that $\forall x, y, z \ \langle x, y \rangle \in F$ and $\langle x, z \rangle \in F \rightarrow y = z$

 $\forall x \in \text{dom } (F) \text{ there is } y \text{ such that } \langle x,y \rangle \in F. \text{ If } A = \text{dom}(F), B \supseteq \text{range}(F) \text{ then } F \text{ is said to a funtion from } A \text{ to } B, f:A \to B$

We say that $f: A \to B$ is onto if B = range(F)

Definition 3.1.6. F is injective if $\forall x, y, z \ \langle x, z \rangle \in F \land \langle y, z \rangle inF \rightarrow x = y$.

3.2. SEPTEMBER 6 135: Set Theory

Definition 3.1.7. For a set A, relations F, G

- (a) inverse $F^{-1} = \{ \langle y, x \rangle | \langle x, y \rangle \in F \}$
- (b) composition: $G \circ F = \{\langle x, z \rangle \mid \exists y \langle x, y \rangle \in F, \langle y, z \rangle \in G\}$
- (c) restriction: $F \upharpoonright_A \{\langle x, y \rangle \in F \mid x \in A\}$
- (d) image of A under F, $F[A] = \{y \mid \exists x \in A \langle x, y \rangle \in F\} = \operatorname{range}(F \upharpoonright_A)$

Example 3.1.8. If F is a function, F^{-1} may not be a function. F^{-1} is a function $\leftrightarrow F$ is one to one.

Example 3.1.9. $F^{-1} \circ F = \{\langle x, x \rangle \mid x \in \text{dom}(F)\}\$ if F is one to one More generally, $F^{-1} \circ F = \{\langle x, z \rangle \mid \exists y \in \text{range } F \langle x, y \rangle, \langle z, y \rangle \in F\}.$

3.2 September 6

3.2.1 Functions and Relations

Theorem 3.2.1. Let $F: A \to B$ with $A \neq \emptyset$

- (a) There is a function $G: B \to A$ such that $G \circ F = \mathrm{id}_A \leftrightarrow F$ is one to one.
- (b) There is a function $G: B \to A$ such that $F \circ F = \mathrm{id}_B \leftrightarrow F$ is onto.

Proof. (a) Suppose there is such a G. Take a_1, a_2 such that $F(a_1) = F(a_2)$, then $a_1 = G \circ F(a_1) = G \circ F(a_2) = a_2$

Conversely, suppose F is one to one. We want to define $G: B \to A$ given $b \in B$, let G(b)=the unique $a \in A$ such that F(a) = b if $b \in \operatorname{range}(F)$. If $b \notin \operatorname{range}(F)$, let $G(b) = a_0$ with $a_0 \in A$ arbitrary (exists since A nonempty)

(b) Suppose that $G: B \to A$, with $F \circ G = \mathrm{id}_B$ Want to show $\forall b \in B \exists a \, F(a) = b$ Take $a = G(b) \to F(a) = F(G(b)) = b$

Conversely, suppose F is onto. We want to define G, given $b \in B$ want to define G(b) such that F(G(b)) = b, equivalently, want $G(b) \in F^{-1}(\{b\})$. Since F is onto $F^{-1}(\{b\})$ is nonempty. Let G(b) be any element of $F^{-1}(b)$, equivalently $G \subseteq F^{-1}$ and $dom(G) = B = dom(F^{-1})$.

Example 3.2.2. Suppose $A = \mathbb{N}$, let $G = \{(b, a) \in B \times \mathbb{N} : a \text{ is least satisfying } f(a) = b\}$

• Don't have a method to specify such elements in gneral.

Axiom 3.2.3 (Axiom of Choice - Form I). For every relation R, there is a function $G \subseteq R$ with dom(G) = dom(R)

3.2.2 Infinite Cartesion Products

 $A \times B = \{ \langle x, y \rangle \in \mathcal{PP}(A \cup B) \mid x \in A \land y \in B \}$

3.3. SEPTEMBER 8 135: Set Theory

Definition 3.2.4. Let M be a function with domain I such that for every $i \in I$, H(i) is a set. Let

$$\underset{i \in I}{\times} H(i) - \{f : I \to \bigcup H(i) \mid f(i) \in H9 = (i)\}$$

Example 3.2.5. Let ω_g be $\{G \subseteq \mathbb{R} \mid 0 \neq G, G \cup \{0\} \text{ is closed under addition } \}$

 $\times_{G \in \omega_q} = \times_{G \in \omega_q} H(G)$ is a function such that for each $G \in \omega_g$, you get an element of G.

Observation: If one of the H(i) is \varnothing , then $\times_{i \in I} H(i) = \varnothing$

Axiom 3.2.6 (Axiom of Choice - Form II). If H is a function with domain I such that $H(i) \neq \emptyset \ \forall i \in I$, then $\times_{i \in I} H(i) \neq \emptyset$

(ACI) \rightarrow (ACII): We are given H with $H(i) \neq \emptyset$ for all i. Want $f: I \rightarrow H(i)$ with $f(i) \in H(i) \ \forall i \in I$. Let $R = \{\langle i, h \rangle \in I \times \bigcup_{i \in I} H(i) \mid h \in H(i) \}$. dom(R) = I, since $H(i) \neq \emptyset$ there is $h \in H(i)$ so $\langle i, h \rangle \in R$. BY ACI, there is $F \subseteq R$ with dom(F)=dom(R) = I. $\forall i, \langle i, f(i) \rangle \in R$ so $f(i) \in H(i)$

3.3 September 8

3.3.1 Natural Numbers

Idea: each natural number is the set of all the previous numbers. $0 = \emptyset, 1 = \{\emptyset\}, 2 = \{\emptyset, \{\emptyset\}\}, \dots, n = \{0, 1, \dots, n-1\}, \dots$

Definition 3.3.1. The successor of a set a is defined as $a^+ = a \cup \{a\}$

Definition 3.3.2. A set I is inductive if $\emptyset \in I$ and $\forall a \in I, a^+ \in I$

Definition 3.3.3. a is a natural number if it belongs to all inductive sets, $\forall I(I \text{ inductive} \rightarrow a \in I)$

If I is any inductive set, let $\omega = \{a \in I \mid a \text{ belongs to all inductive sets}\}$ =the minimal inductive set. Observation: ω is inductive because \varnothing is in all inductive sets and if n belongs to all inductive sets then so does n^+

Axiom 3.3.4 (Ifinity Axiom). There is an inductive set.

Inductivion Principle: If $A \subseteq \omega$ is inductive set $A = \omega$

Example 3.3.5. Every natural number is 0 or the succesor of some natural number.

Let $A = \{n \in \omega \mid n = 0 \vee \exists m \in \omega \mid n = m^+\}$. A is inductive so $A = \omega$

Definition 3.3.6. A set A is transitive if one of the following equivalent conditions holds:

- if $x \in a \in A$, then $x \in A$
- $\bigcup A \subseteq A$

3.4. SEPTEMBER 13 135: Set Theory

- if $a \in A$, then $a \subseteq A$
- $A \in \mathcal{P}(A)$

Example 3.3.7. Transitive sets includ \varnothing , each natural number, ω, V_{ω}

Claim: $A = \{n \in \omega \mid n \text{ is transitive }\}$ is inductive (implies all nautrual numbers are transitiev)

- Base: $0 \in A$ since \emptyset is transitive
- Inductive Step: Suppose $n \in A$ transitive, want to show n^+ is transitive. Consider $x \in a \in n^+ = n \cup \{n\}$. If a = n, $x \in n \subseteq n^+$. If $a \in n$, $x \in a \in \text{so by transitivity } x \in n^+$ so $x \in n^+$

Theorem 3.3.8. If a is tansitive, then $\bigcup a^+ = a$

Proof. (\supseteq) $a = \bigcup \{a\} \subseteq \bigcup (a \cup \{a\} = \bigcup a^+) \ (a \in a^+ \text{ so } a \subseteq \bigcup a^+)$ (\subseteq) Take $x \in \bigcup a^+$, then let $b \in a^+$ with $x \in b$. If b = a, $x \in a$. If $b \in a$, $x \in b \in a$ so $x \in a$.

• If a, b transitive and $a^+ = b^+$ then $a = \bigcup a^+ = \bigcup b^+ = b$ so successor function is one to one on transitive sets, more specifically ω .

Fix a number $k \in \omega$. Consdier the following functions:

- $A_k : \omega \to \omega$ by $A_k(0) = 0$, $A_k(n^+) = A_k(n)^+$
- $M_k : \omega \to \omega$ by $M_k(0) = 0$, $M_k(n^+) = A_k(M_k(n))$

3.4 September 13

3.4.1 Operations on the Natural Numbers

Theorem 3.4.1. Let A be a set, $a \in A$ and $F : A \to A$. Then there is a unique function $h : \omega \to A$ such that:

- 1. h(0) = a
- 2. $h(n^+) = F(h(n))$ for all $n \in \omega$

Proof. Let $h = \{\langle n, b \rangle \in \omega \times A \mid \text{there is } g : n^+ \to A \text{ such that } g(0) = a, g(i^+) = F(g(i)) \land g(n) = b\}$ Claim 1: For all n there is a $g : \{0, \ldots, n\} \to A \text{ such that } g(0) = a, g(i^+) = F(g(i))$ Claim 2: Such a g is unique.

Proof of Claim 1. Let $I = \{n \in \omega \mid \text{ such a } g \text{ exists}\}$. Want to show that I is inductive.

- 1. $0 \in I$: let $g: \{0\} \to A$ be such that g(0) = a eg. $g = \{\langle 0, a \rangle\}$
- 2. Suppose $n \in I$, we know such a g exists for $n, g : \{0, ..., n\} \to A$. We want $\tilde{g} : \{0, ..., n, n^+\} \to A$. Let $\tilde{g} = g \cup \{\langle n^+, F(g(n)) \rangle\}$

3.5. SEPTEMBER 15 135: Set Theory

```
Proof of Claim 2. Suppose g, \tilde{g}: \{0, \dots, n\} \to A such that g(0) = a = \tilde{g}(0), g(i^+) = F(g(i)), \tilde{g}(i^+) = F(\tilde{g}(i^+)), i < n. We want to show g(i) = \tilde{g}(i) \ \forall i \leqslant n. g(0) = \tilde{g}(0), g(i^+) = F(g(i)) = F(\tilde{g}(i)) = \tilde{g}(i^+) Can formally show this by induction using I = \{i \in \omega \mid i \in n^+ \land g(i) = \tilde{g}(i) \lor i \notin n^+\}
```

Definition 3.4.2. Given $k \in \omega$, define $A_k : \omega \to \omega$ by $A_k(0) = k$, $A_k(n^+) = (A_k(n))^+$. Define $n+k = A_k(n)$ Define $M_k : \omega \to \omega$ by $M_k(0) = 0$, $M_k(n^+) = A_k(M_k(n))$, let $n \times k = M_k(n)$. Let m < n if $m \in n$

Theorem 3.4.3. We can show the associativity of addition: $\forall a, b, v \in \omega((a+b)+c=a+(b+c))$, commutativity of addition: $\forall a, b \in \omega a + b = b + a$, etc.

3.4.2 Integers

Claim 3: $\forall n \in \omega, h(n^+) = F(H(n))$

```
Let \sim be the following equivalence relation on \omega \times \omega by \langle a,b \rangle \sim \langle c,d \rangle \leftrightarrow a+d=b+c
 Define \mathbb{Z} = \omega \times \omega / \sim. 0_{\mathbb{Z}} = [\langle 0,0 \rangle], \ 1_{\mathbb{Z}} = [\langle 1,0 \rangle]
 Let [\langle a,b \rangle] +_{\mathbb{Z}} [\langle c,d \rangle] = [\langle a+c,b+d \rangle]. One needs to show this is well defined eg. if \langle a,b \rangle \sim \langle a',b' \rangle, \langle c,d \rangle \sim \langle c',d' \rangle
 then \langle a+c,b+d \rangle \sim \langle a'+c',b'+d' \rangle /
 Let [\langle a,b \rangle] \times_{\mathbb{Z}} [\langle c,d \rangle] = [\langle ac+bd,ad+bc \rangle]
 Let E:\omega \to \mathbb{Z} by E(n) = [\langle n,0 \rangle]
```

3.4.3 Rationals

```
Let \sim be the following equivalence relation on \mathbb{Z} \times \mathbb{Z} \setminus \{0\}. \langle a,b \rangle \sim \langle c,d \rangle \iff a \times_{\mathbb{Z}} d = b \times_{\mathbb{Z}} c
Define \mathbb{Q} = \mathbb{Z} \times \mathbb{Z} \setminus \{0\} / \sim. 0_{\mathbb{Q}} = [\langle 0,1 \rangle], 1_{\mathbb{Q}} = [\langle 1,1,\rangle]
Let [\langle a,b \rangle] \times_{\mathbb{Q}} [\langle c,d \rangle] = [\langle a \times c,b \times d \rangle]
Let [\langle a,b \rangle] +_{\mathbb{Q}} [\langle c,d \rangle] = [\langle ad+bc,bd \rangle]
E: \mathbb{Z} \to \mathbb{Q} by E(z) = [\langle z,1 \rangle]
```

3.5 September 15

3.5.1 Reals (Dedekind Cuts)

Definition 3.5.1. A dedekind cut is a subset $D \subseteq \mathbb{Q}$ such that

- $\bullet \ \varnothing \neq D \neq \mathbb{Q}$
- D is closed downwards, if $d \in D$, $c < d \rightarrow c \in D$
- D has no greatest element.

```
Let \mathbb{R} = \{D \in \mathcal{P}(\mathbb{Q}) \mid D \text{ is a dedekind cut } \}

\sqrt{2} = \{q \in \mathbb{Q} \mid q \times_{\mathbb{Q}} q < 2\}, \ e = \{q \in \mathbb{Q} \mid exn \in \omega \ q <_{\mathbb{Q}} (1 + \frac{1}{N})^N \} \text{ For } r \in \mathbb{R}, \ -r = \{q \in \mathbb{Q} \mid -q \in r\} \setminus \{-\sup(r)\} \}

For r_1, r_2 \in \mathbb{R}, \ r_1 \leq_{\mathbb{R}} r_2 \iff r_1 \subseteq r_2

r_1 \times r_2 = \{q \in \mathbb{Q} \mid \exists q \leq 0 \in r \exists b \leq 0 \in r_2 \ q, \ a \times_{\mathbb{Q}} b \text{ if } r_1, r_2 > 0, \dots
```

3.6. SEPTEMBER 20 135: Set Theory

Theorem 3.5.2. $(\mathbb{R}, 0, 1, +, \times, \leq)$ is an ordered field.

 $E: \mathbb{Q} \to \mathbb{R}$ is a field embedding.

3.5.2 Cardinality

Definition 3.5.3. A is equinumerous to B (written $A \approx B$) if there is a bijection $f: A \to B$

Theorem 3.5.4. For every A, B, C

- $A \approx A$
- If $A \approx B$, $B \approx B$
- If $A \approx B$, $B \approx C$ then $A \approx C$

Lemma 3.5.5. $\mathbb{Z} \approx \omega$

Proof. For
$$z \in Z$$
, $f(z) = \begin{cases} -2z & z \le 0 \\ 2z + 1 & z > 0 \end{cases}$

Lemma 3.5.6. $\mathbb{Q} \approx \omega$

Proof.
$$f: \omega \to \mathbb{Z} \times \mathbb{Z}^+, \mathbb{Q} = \mathbb{Z} \times \mathbb{Z}^+/\sim f': \omega \to \mathbb{Q}, f'(n) = \text{least } i \in \omega \ g(i) \notin \{f(1), \ldots, f(n-1)\}$$

Lemma 3.5.7. $\mathbb{R} \approx (0,1)_{\mathbb{R}}$

3.6 September 20

3.6.1 Cardinality

Lemma 3.6.1. 1. $\mathbb{N} \not\approx \mathbb{R}$

2. For any set $A, A \not\approx \mathcal{P}(A)$

Proof. 1. Let $f: \omega \to \mathbb{R}$, claim f is not onto. Want $r \notin \operatorname{ran}(f)$, $\forall n \in \omega r \neq f(n)$. Choose A_0 such that $f(0) \notin A_0$. Given A_n such that $f(0), \ldots, f(n) \notin A_n$. Divide A_n by 2, take half that does not contain f(n+1) to be A_{n+1} , then $A_0 \supset A_1 \supset A_2 \supset \cdots$, $\bigcap_{n \in \omega} A_n \neq \emptyset$ and for each $n, f(n) \notin A_n$ so $f(n) \notin \bigcap A_n$

3.6. SEPTEMBER 20 135: Set Theory

2. let $f:A\to A$. Claim f is not onto. Let $B=\{b\in A\mid b\notin f(b)\}$. Claim $B\notin \mathrm{range}(f)$. Suppose for contradiction that B=f(b) for $b\in A,\ b\in B\leftrightarrow b\notin f(b)\iff b\notin B$, contradiction.

Definition 3.6.2. A set A is finite if $\exists n \in omega(A \approx n)$ eg. $\exists n \, exf : n \rightarrow A$ bijection. $A = \{f(0), f(1), \dots, f(n-1)\}$

Lemma 3.6.3 (Pigeonhole Principle). No finite set is equinumerous to a finite subset of itself.

Lemma 3.6.4. If B is a proper subset of $n \in \omega$ ther is m < n such that $B \approx m$

Proof. Use induction on n. Let $A = \{n \in \omega \mid \forall B \in n \exists m \in n \ B \approx n\}$. Claim A is inductive. $0 \in A$ trivial, $1 \in A$. $B \subsetneq \{\varnothing\} \to B = \varnothing \to B \approx 0$. Suppose $n \in A$, want to show $n^+ \in A$. Take $B \subsetneq n^+ = n \cup \{n\}$. If $n \in B$, $B \cap n \subseteq n$ so $\exists m < n \ B \cap n \approx m$ so $B \approx m^+ < n^+$. If $n \notin B$, either $B \cap n = n$ so $B \approx n < n^+$ of $B \cap n \subsetneq n$ so $\exists m < n \ B = B \cap n \approx m$.

Proof (Pigeonhole Principle). Take $n, B \subseteq n, B \approx n$. Then $B \approx m$ for some m < n so $m \approx n$. Let $A = \{n \mid Am < n \ m \not\approx n\}$. Claim A is inductive. $0 \in A$, suppose $n \in A$, want to show $n^+ \in A$. Idea: turn a bijection for $n^+ \approx m^+$ so a bijection $n \approx m/$

Corollary 3.6.5. • No finite set is equinumerous to a proper subset

- ω is not finite ($\omega \approx \omega \setminus \{0\}$ by $n \mapsto n+1$)
- Every finite set is equinumerous to a unique natural number. We call that number the cardinality of A, card(A)
- A subset of a finite subset is finite

Definition 3.6.6. A set κ is said to be a cardinal if

- κ is transitive (if $x \in a, a \in \kappa \to x \in \kappa$)
- \in is a linear order on κ ($\forall x, y \ x \in y \text{ or } y \in x \text{ or } x = y$)
- $\forall x \in \kappa \ x \not\approx \kappa$

Theorem 3.6.7. For every set A, there is a unique cardinal κ such that $A \approx \kappa$. We call this κ card(A)

Example 3.6.8. • $n = \{0 \in 1 \in 2 \in \cdots \in n-1\}$ is a cardinal

- $\omega = \{0 \in 1 \in 2 \in \cdot\}$ is a cardinal
- $\omega^+ = \{0, 1, 2, \ldots\} \cup \{\omega\} \approx \omega$ is not a carinal

Notation: $\omega - \aleph_0$, card(\mathbb{R}) = 2^{\aleph_0} , smallest cardinal greater than $\aleph_0 = \aleph_1$

3.7. SEPTEMBER 22 135: Set Theory

3.7 September 22

3.7.1 Cardinals

Definition 3.7.1. Given carindals κ and λ let

- $\kappa + \lambda = \operatorname{card}(K \cup L)$ where K and L are disjoint sets of carindality κ and λ
- $\kappa \cdot \lambda = \operatorname{card}(K \times L)$ where K and L are sets of carindality κ and λ
- $\kappa^{\lambda} = \{f \text{ function } L \to K\} = \operatorname{card}(^L K) \text{ were } K \text{ and } L \text{ are sets of carindality } \kappa \text{ and } \lambda$

Notation: ${}^{A}B = \{f : f \text{ is a function } A \to B\}$

Theorem 3.7.2. Let κ, λ, μ be carindals

• $\kappa + (\lambda + \mu) = (\kappa + \lambda) + \mu$

Proof. Let K, L, M be disjoint sets of size κ, λ, μ . $K \cup (L \cup M) = (K \cup L) \cup M$

- $\kappa + \lambda = \lambda + \kappa$
- $\kappa \cdot (\lambda \cdot \mu) = (\kappa \cdot \lambda) \cdot \mu$

Proof. $(K \times L) \times M \to K \times (L \times M)$ by $\langle \langle k, l \rangle, m \rangle \to \langle k, \langle l, m \rangle \rangle$

- κ $\lambda = \lambda$ κ
- $\kappa \cdot (\lambda + \mu) = \kappa \cdot \lambda + \kappa \cdot \mu$

Proof. $K \times (L \cup M) \approx (K \times L) \cup (K \times M)$

- $\kappa^{\lambda+\mu} = \kappa^{\lambda} \cdot \kappa^{\mu}$
- $\kappa^{\lambda \cdot \mu} = (\kappa^{\lambda})^{\mu}$

Proof. $F: {}^{L\times M}K \to {}^{M}LK$, $f: {}^{L\times M}K$, F(g) = the function that maps m to $g_m: L \to K$ where $g_m(l) = g(l,m)$ $F^{-1}(h)$ with $h: M \to ({}^LK)$ is g such that g(l,m) = h(m)(l)

Definition 3.7.3. A is dominated by B (written $A \leq B$) if there is a one to one function from $A \to B$

 $A \le B \iff \operatorname{card}(A) \leqslant \operatorname{card}(B)$

Example 3.7.4. • $A \subseteq B \iff A \leq B$

• $\mathbb{N} \approx \mathbb{N} \approx \mathbb{Q} \leq \mathbb{R} \leq \mathbb{C}$

Example 3.7.5. $\mathbb{R} \approx (0,1)_{\mathbb{R}} \leq {}^{\omega}2 \leq \mathbb{R}$

• $(0,1)_{\mathbb{R}} \leq {}^{\omega}2$. Given r, let $f_r: \omega \to \{0,1\}$ be $f_r(n) = n$ th digit of binary representation of r avoiding

3.7. SEPTEMBER 22 135: Set Theory

representations that end in all 1s.

•
$$^{\omega}2 \leq \mathbb{R}, f: \omega \to 2 \mapsto \sum_{i \in \omega} f(i) \cdot 10^{-1}$$

Observation: $^2\omega \approx \mathcal{P}(\omega) \operatorname{card}(^2\omega) = 2^{\aleph_0}$