MULTIVARIATE OPTIMIZATION FOR NON-DECOMPOSABLE PERFORMANCE MEASURES

Debojyoti Dey (15511264) Nimisha Agarwal (15511267) (Group 15)

November 16, 2016

Overview

- Proposed Work
- Existing Stochastic Algorithm
- Basic Ideas
- Formulation of Optimization Problem
- Gradient Ascent
- Opening Problems
- References

Problem Statement

Finding general optimization technique to maximize performance which are non-decomposable in nature. Our work will primarily consider some concave measures of performance.

- Examples: Min, G-mean, H-mean etc.
- Expressed as f(TPR, TNR).
- TPR = True Positive Rate, TNR = True Negative Rate

Stochastic Primal Dual Method [NarasimhanK015]

The existing online method has following shortcomings:

- Requires performance measure function to be L-Lipschitz.
- Works with non-Lipschitz functions with some restriction.
- Example: G-mean

Decomposable vs Non-decomposable

• Misclassification rate is decomposable. Loss function:

$$\Delta(\overline{y}, \overline{y}^*) = \frac{1}{n} \sum_{i=1}^n \frac{1 - y_i y_i^*}{2}$$

• F_{β} score is non-decomposable. Performance measure:

$$\phi(\overline{y}, \overline{y}^*) = \frac{(1+\beta^2)TP}{(1+\beta^2)TP + \beta^2FN + FP}$$

- Problem with misclassification rate?
 - class imbalanced setting

Multivariate Optimization Setting

• Hypothesis function \overline{h} maps $\overline{x} \in \overline{\mathcal{X}}$ and $\overline{x} = \{x_1, x_2, \cdots, x_n\}$ to $\overline{y} \in \overline{\mathcal{Y}}$ and $\overline{y} = \{y_1, y_2, \cdots, y_n\}$ where $y_i \in \{+1, -1\}$

$$\overline{h}: \overline{\mathcal{X}} \to \overline{\mathcal{Y}}$$

We define score for a particular input-output combination as follows:

$$f_w(\overline{x},\overline{y}) = w^T \psi(\overline{x},\overline{y})$$

• Hypothesis function gives \overline{y} with highest score for an input \overline{x} .

$$\overline{h}_{w}(\overline{x}) = \arg\max_{\overline{y} \in \mathcal{Y}} (w^{T} \psi(\overline{x}, \overline{y}))$$

ullet We use the following form of ψ

$$\psi(\overline{x},\overline{y}) = \sum_{i=1}^{n} y_i^* x_i$$

Structural SVM

• Struct SVM by [Joachims:2005] used for multi-class classification.

$$\min_{\substack{w,\xi \geq 0}} \frac{1}{2} ||w||^2 + C\xi$$

$$s.t \quad \forall \overline{y} \in \overline{\mathcal{Y}} \setminus \overline{y}^* : w^T [\psi(\overline{x}, \overline{y}^*) - \psi(\overline{x}, \overline{y})] \geq \Delta(\overline{y}^*, \overline{y}) - \xi$$

$$\Rightarrow \Delta(\overline{y}^*, \overline{y}) + \Sigma(y_i - y_i^*) w^T x_i \leq \xi$$

where $\Delta(\overline{y}^*, \overline{y})$ is loss function.

- ξ is the upper bound of loss function.
- ullet We substitute margin violation ξ in objective function by

$$\mathcal{L}_{w}(\overline{x}, \overline{y}^{*}) = \max_{\overline{y} \in \{1, -1\}^{n}} \{ \Delta(\overline{y}^{*}, \overline{y}) + \sum_{i=1}^{n} (y_{i} - y_{i}^{*}) w^{T} x_{i} \}$$
 (1)

Performance measure in Fenchel Dual

Performance measure G-mean is given by

$$\phi(P, N) = \sqrt{PN}$$

$$= \min_{\alpha, \beta} \{\alpha P + \beta N - \phi^*(\alpha, \beta)\}$$

as ϕ is a concave function. P,N stands for TPR and TNR respectively.

We define our loss function as

$$\Delta(\overline{y}^*, \overline{y}) = -\phi(P, N)$$

$$= \max_{\alpha, \beta} \{-\alpha P - \beta N + \phi^*(\alpha, \beta)\}$$

Optimization Problem

We can re-write equation 1 as,

$$\mathcal{L}_{w}(\overline{x}, \overline{y}^{*})$$

$$= \max_{\overline{y} \in \{1, -1\}^{n}} \{ \max_{\alpha, \beta} \{ -\alpha P - \beta N + \phi^{*}(\alpha, \beta) \} + \frac{1}{n} \sum_{i=1}^{n} (y_{i} - y_{i}^{*}) w^{T} x_{i} \}$$

$$= \max_{\alpha, \beta} \{ \max_{\overline{y}} \{ -\alpha P - \beta N + \frac{1}{n} \sum_{i=1}^{n} (y_{i} - y_{i}^{*}) w^{T} x_{i} \} + \phi^{*}(\alpha, \beta) \}$$
 (2)

Express P and N as following:

$$P = \sum_{i=1}^{n} P_i(y_i, y_i^*) = \frac{1}{n_+} \sum_{i=1}^{n} \frac{(1+y_i)(1+y_i^*)}{4}$$

Continued...

$$N = \sum_{i=1}^{n} N_i(y_i, y_i^*) = \frac{1}{n_-} \sum_{i=1}^{n} \frac{(1 - y_i)(1 - y_i^*)}{4}$$

Substituting, inner maximization becomes,

$$\sum_{i=1}^{n} \max_{y_{i} \in \{-1,+1\}} -\frac{\alpha}{n_{+}} \frac{(1+y_{i})(1+y_{i}^{*})}{4} - \frac{\beta}{n_{-}} \frac{(1-y_{i})(1-y_{i}^{*})}{4} + \frac{1}{n} (y_{i} - y_{i}^{*}) w^{T} x_{i}$$

using independence among the data points.

Now we can perform maximization for each point separately.

Continued...

Solving the above maximization, we get the following weighted hinge loss like function with some additional constants,

$$\sum_{i=1}^{n} \left(\frac{\alpha}{n_{+}} \max\{0, 1 - y_{i}^{*} \frac{2n_{+}}{\alpha n} w^{T} x_{i}\} - \frac{\alpha}{n_{+}}\right) \mathbb{I}(y_{i}^{*} = 1) + \left(\frac{\beta}{n_{-}} \max\{0, 1 - y_{i}^{*} \frac{2n_{-}}{\beta n} w^{T} x_{i}\} - \frac{\beta}{n_{-}}\right) \mathbb{I}(y_{i}^{*} = -1)$$

Now we can re-write equation 2 as following

$$\mathcal{L}_{w}(\overline{x}, \overline{y}^{*}) = \max_{\alpha, \beta} \left\{ \frac{\alpha}{n_{+}} \sum_{y_{i}^{*}=1} \max\{0, 1 - y_{i}^{*} \frac{2n_{+}}{\alpha n} w^{T} x_{i}\} \right.$$
$$\left. + \frac{\beta}{n_{-}} \sum_{y_{i}^{*}=-1} \max\{0, 1 - y_{i}^{*} \frac{2n_{-}}{\beta n} w^{T} x_{i}\} \right.$$
$$\left. - (\alpha + \beta) + \phi^{*}(\alpha, \beta) \right\}$$

Objective function

We can substitute the loss in struct SVM:

$$\begin{aligned} \min_{w} \frac{||w||^{2}}{2} + C\mathcal{L}_{w}(\overline{x}, \overline{y}^{*}) \\ &\equiv \min_{w} \frac{||w||^{2}}{2} + C \max_{\alpha, \beta} \{ \frac{\alpha}{n_{+}} \sum_{y_{i}^{*}=1} \max\{0, 1 - y_{i}^{*} \frac{2n_{+}}{\alpha n} w^{T} x_{i} \} \\ &+ \frac{\beta}{n_{-}} \sum_{y_{i}^{*}=-1} \max\{0, 1 - y_{i}^{*} \frac{2n_{-}}{\beta n} w^{T} x_{i} \} \\ &- (\alpha + \beta) + \phi^{*}(\alpha, \beta) \} \end{aligned}$$

Solution Steps

We perform the following steps in each iterative cycle:

- Fix w
- ② Gradient ascent on $\mathcal{L}_w(\overline{x}, \overline{y}^*)$ wrt α, β
- \bullet Fix α, β
- SVM wrt w
- Go to step 1

We can use Liblinear solver to perform SVM.

Conjugate function of $\phi(P, N)$

For any concave ϕ

$$\phi(P, N) = \min_{\alpha, \beta} \{\alpha P + \beta N - \phi^*(\alpha, \beta)\}$$

For G-mean as ϕ

$$\phi(P, N) = \sqrt{PN}$$
$$\phi^*(\alpha, \beta) = \min_{P, N} \{\alpha P + \beta N - \sqrt{PN}\}$$

Solving for
$$g'(P, N) = 0$$
 where $g = \alpha P + \beta N - \sqrt{PN}$, we get $\alpha = \frac{1}{2}\sqrt{\frac{N}{P}}$ and $\beta = \frac{1}{2}\sqrt{\frac{P}{N}}$ giving

$$\phi^*(\alpha,\beta) = 0 \tag{3}$$

Dual feasible region

Trivial: $\alpha > 0, \beta > 0$ as $P, N \ge 0$

$$g = \alpha P + \beta N - \sqrt{PN}$$
$$= (\sqrt{\alpha P} - \sqrt{\beta N})^2 + \sqrt{PN}(2\sqrt{\alpha\beta} - 1)$$

By ensuring $P=\frac{\beta N}{\alpha}$ we can show the first part to be zero. For large P,N, $g\to -\infty$ if $2\sqrt{\alpha\beta}<1$. Hence the feasible dual region is defined by,

$$dom(\alpha,\beta) = \{\alpha,\beta | \alpha\beta \ge \frac{1}{4}, \alpha > 0, \beta > 0\}$$

 \mathbb{Q} . P, N has to be the number of true positives/negatives, not rate?

Gradient computation

• $h(\alpha) = \frac{\alpha}{n_+} \max\{0, 1 - y_i^* \frac{2n_+}{\alpha n} w^T x_i\}$. By Danskin's theorem it can be shown that,

$$h'(\alpha) = \begin{cases} 0, & \text{if } y_i^* \frac{2n_+}{\alpha n} w^T x_i \ge 1\\ \frac{1}{n_+}, & \text{otherwise} \end{cases}$$

• Similarly for $h(\beta) = \frac{\beta}{n_-} \max\{0, 1 - y_i^* \frac{2n_-}{\alpha n} w^T x_i\}$. By Danskin's theorem it can be shown that,

$$h'(\beta) = \begin{cases} 0, & \text{if } y_i^* \frac{2n_-}{\beta n} w^T x_i \ge 1\\ \frac{1}{n_-}, & \text{otherwise} \end{cases}$$

• We have proved $\phi^*(a,b) = 0$ for G-mean, hence its derivative gives 0.

Problem with Gradient Ascent

ullet Unbounded increase in dual variables in \mathbb{R}^2_+

References

Joachims, Thorsten

A Support Vector Method for Multivariate Performance Measures.

Proceedings of the 22Nd International Conference on Machine Learning

Narasimhan, Harikrishna and Vaish, Rohit and Agarwal, Shivani On the Statistical Consistency of Plug-in Classifiers for Non-decomposable Performance Measures

Advances in Neural Information Processing Systems 27

Narasimhan, Harikrishna and Kar, Purushottam and Jain, Prateek
Optimizing Non-decomposable Performance Measures: A Tale of Two Classes.

ICML

Thank You!