ตัวแปรสุมต่อเนื่อง 2

ดร.ฐนียา สัตยพานิช

ตัวแปรสุ่มเกาส์ (Gaussian random variable)

ตัวแปรสุ่มเกาส์มีลักษณะกราฟแบบระฆังคว่ำ สามารถเรียกได้อีกอย่างว่า ตัวแปรสุ่มแบบปกติ

X เป็นตัวแปรสุ่มเกาส์เมื่อ PDF ของ X อยู่ในรูป

$$f_X(x)=rac{1}{\sqrt{2\pi\sigma^2}}e^{-(x-\mu)^2/2\sigma^2}$$

โดยที่ $\,\mu$ คือจำนวนจริงใดๆ และ $\sigma>0$

ถ้า σ มีค่ามาก ระฆังคว่ำจะแบนและกว้าง

ถ้า σ มีค่าน้อย ระฆังคว่ำจะแคบและสูง

ทฤษฎีอื่นๆของตัวแปรสุมเกาส์

ถ้า X เป็นตัวแปรสุ่มเกาส์ (μ,σ) แล้ว

ค่าคาดหมายของ X คือ

$$E[X] = \mu$$

ความแปรปรวนของ X คือ

$$Var[X] = \sigma^2$$

ถ้า Z เป็นตัวแปรสุ่มเกาส์ (0,1) ตัวแปรสุ่มมีค่าคาดหมาย = 0 และความแปรปรวน = 1 จะเรียกว่า ตัว แปรสุ่มปกติมาตรฐาน (standard normal random variable)

ตัวแปรสุ่มเกาส์

• CDF ของ Z คือ

$$\Phi(z)=rac{1}{\sqrt{2\pi}}\int_{-\infty}^z e^{-u^2/2}du$$

• เป็นการยากที่จะอินทิเกรดเพื่อหาค่าความน่าจะเป็นของ ตัวแปรสุ่มเกาส์ เราจะใช้ตารางค่าของ ซึ่งเป็นค่าที่ถูกคำนวณไว้แล้ว เราสามารถหาค่า CDF ของ X ซึ่งเป็นตัวแปรสุ่มเกาส์ (μ,σ) ได้จาก $\Phi(z)$

$$F_X(x) = \Phi(\frac{x-\mu}{\sigma})$$

ความน่าจะเป็นสะสม X ในช่วง (a,b] คือ

$$P[a < X \leq b] = \Phi(rac{b-\mu}{\sigma}) - \Phi(rac{a-\mu}{\sigma})$$

ตารางค่า $\Phi(z)$

• ในตารางค่า z อยู่ในช่วง

$$0 \le z \le 2.99$$

ถ้าค่า z เป็นลบ เราหาค่า

$$\Phi(-z)$$
ได้จาก

$$\Phi(-z) = 1 - \Phi(z)$$

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9924	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9958	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986

ถ้า X เป็นตัวแปรสุ่มเกาส์ (61,10) ถามว่า $P[X \leq 46] = ?$

ถ้า X เป็นตัวแปรสุ่มเกาส์ (61,10) ถามว่า $P[51 < X \le 71] = ?$

ตัวแปรสุ่มเกาส์

จากตารางค่า $\Phi(z)$ จะเห็นว่ามีค่าให้เฉพาะ z อยู่ใกล้กับค่าคาดหมาย

เมื่อ |z|>3, $\Phi(z)$ จะมีค่าเข้าใกล้ 1 ($\Phi(3)=0.9987$) จะหาค่า $\Phi(z)$ ได้จากตารางอื่น

เมื่อค่า z มีค่ามาก ค่า CDF จะเรียก standard normal complementary CDF (Q(z))

$$Q(z)=rac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{-\infty}e^{-u^2/2}du=1-\Phi(z)$$

Quiz : ตัวแปรสุ่มเกาส์

Unit Impulse (Delta) Function

Unit Impulse หรือเรียกว่า Delta function เป็นฟังก์ชันที่สามารถประยุกต์ใช้ได้ทั้ง ตัวแปรสุ่ม ต่อเนื่อง และตัวแปรสุ่มไม่ต่อเนื่อง

บางตัวแปรเป็นทั้งตัวแปรสุ่มแบบต่อเนื่อง และไม่ต่อเนื่อง เรียกว่า ตัวแปรสุ่มผสม

Delta function มีค่ามากกว่า 0 เพียงตำแหน่งเดียว ที่เหลือมีค่าเท่ากับ 0 มีลักษณะดังฟังก์ชัน

โดยที่
$$\delta(x)=\lim_{\epsilon o 0}d_\epsilon(x)$$
 $d_\epsilon(x)=egin{cases} 1/\epsilon & -\epsilon/2\leq x\leq -\epsilon/2,\ 0 & ext{otherwise}. \end{cases}$

จะเห็นว่า d_ϵ มีค่ามากขึ้นเมื่อ ϵ มีค่าน้อยลง

Delta function

ถึงแม้ว่าค่า d_{ϵ} เพิ่มขึ้นมากๆเมื่อ ϵ เข้าใกล้ 0 อย่างไรก็ตาม ผลรวมความน่าจะเป็น = 1 ดังนั้น

หรือเขียนอีกอย่างหนึ่งว่า

$$\int\limits_{-\infty}^{\infty}d_{\epsilon}(x)dx=\int\limits_{-\epsilon/2}^{\epsilon/2}rac{1}{\epsilon}dx=1$$

$$\int\limits_{-\infty}^{\infty}\delta(x)dx=1$$

ทฤษฎีอื่นของ Delta function

กรณีที่ตัวแปรสุ่มไม่ต่อเนื่อง g(x) เราสามารถเขียนในรูปฟังก์ชันเดลต้าได้ดังนี้

$$\int\limits_{\infty}^{\infty}g(x)\delta(x-x_0)dx=g(x_0)$$

Unit Step Function

Unit Step function อยู่ในรูป

$$u(x) = \left\{ egin{array}{ll} 0 & & x < 0, \ 1 & & x \geq 0. \end{array}
ight.$$

ความสัมพันธ์ระหว่าง Unit step function และ Delta function คือ

$$\delta(x) = rac{du(x)}{dx}$$

การเปลี่ยนแปลง ณ จุด x ที่ความน่าจะเป็นเปลี่ยนค่าจาก 0 เป็น 1

Delta function

เราสามารถเขียน CDF ให้อยู่ในรูปของ unit step function ได้คือ

$$F_X(x) = \sum_{x_i \in S_X} P_X(x_i) u(x-x_i)$$

จาก CDF หา PDF ได้คือ

$$f_X(x) = \sum_{x_i \in S_X} P_X(x_i) \delta(x-x_i)$$

สมมติให้ Y มีค่า 1,2,3 ด้วยความน่าจะเป็นเท่ากัน มี PDF และ CDF ดังฟังก์ชัน

$$P_Y(y) = \left\{ egin{array}{ll} 1/3 & y = 1,2,3, \ 0 & ext{otherwise.} \end{array}
ight. \qquad F_Y(y) = \left\{ egin{array}{ll} 0 & y < 1, \ 1/3 & 1 \leq y < 2, \ 2/3 & 2 \leq y < 3, \ 1 & y \geq 3.0 \end{array}
ight. \qquad ext{otherwise.}
ight.$$

เราเขียน PDF และ CDF ในรูป delta และ unit step ฟังก์ชันได้ดังนี้

$$F_Y(y) = rac{1}{3}u(y-1) + rac{1}{3}u(y-2) + rac{1}{3}u(y-3)$$

$$f_Y(y)=rac{dF_Y(y)}{dy}=rac{1}{3}\delta(y-1)+rac{1}{3}\delta(y-2)+rac{1}{3}\delta(y-3)$$

$$E[Y]=\int\limits_{-\infty}^{\infty}rac{y}{3}\delta(y-1)dy+\int\limits_{-\infty}^{\infty}rac{y}{3}\delta(y-2)dy+\int\limits_{-\infty}^{\infty}rac{y}{3}\delta(y-3)dy=1/3+2/3+1=2$$

ตัวแปรสุ่ม

- ตัวแปรสุม X ใดๆ มี CDF F_X(x)=P[X ≤ x]
- ถ้า F_x(x) เป็นค่าเดียวกันตลอดและมีการกระโดดที่ไม่ต่อเนื่อง X จะเป็นตัวแปรส่*ุ*มไม่ต่อเนื่อง
- ถ้า F_x(x) เป็นฟังก์ชันต่อเนื่อง X จะเป็นตัวแปรสุ่มต่อเนื่อง
- ถ้า F_x(x) เป็นฟังก์ชันต่อเนื่องเป็นช่วงๆ X เป็นตัวแปรสุ่มผสม
- ถ้า X เป็นตัวแปรสุ่มไม่ต่อเนื่องหรือตัวแปรสุ่มผสม f_X(x) จะประกอบด้วยฟังก์ชันเดลต้า มากกว่า
 1 ฟังก์ชัน

บันทึกการใช้งานโทรศัพท์ของคนๆหนึ่ง พบว่า 1/3 ของการโทรคือโทรไม่ติด ซึ่งจะนับว่าเป็นการโทรที่ ใช้เวลา 0 นาที และด้วยความน่าจะเป็น 2/3 การโทรจะใช้เวลา 0-3 นาที ด้วยความน่าจะเป็นเท่ากัน กำหนดให้ Y คือเวลาที่ใช้โทร จงหา f_Y(y) และ F_Y(y)

Quiz: Delta function

ความน่าจะเป็นของตัวแปรสุ่มอนุพัทธ์

ตัวแปรสุ่มอนุพัทธ์คือ ตัวแปรสุ่มที่อยู่ในรูปฟังก์ชันของตัวแปรสุ่มอื่น (Y=g(x))

สำหรับตัวแปรสมแบบต่อเนื่องมีวิธีการหา PDF ประกอบด้วย 2 ขั้นตอน คือ

- 1. หา CDF $F_Y(y) = P[Y \leq y]$
- 2. คำนวณ PDF ได้จากหาอนุพันธ์ $f_Y(y) = dF_Y(y)/dy$

จากตย.ที่ 1 กำหนดให้ Y คือตัวแปรสุ่มที่ระบุความยาวตามเส้นรอบวงเป็นเซ็นติเมตร ถามว่า PDF ของ Y เป็นอย่างไร

ทฤษฎีบทอื่นของตัวแปรสุ่มอนุพัทธ์

ถ้า
$$Y=aX$$
 โดยที่ $a>0$ แล้ว $F_Y(y)=F_X(y/a)$

$$f_Y(y) = rac{1}{a} f_X(y/a)$$

- ถ้า X เป็นตัวแปรสุ่มเอกรูป (b,c) แล้ว Y เป็นตัวแปรสุ่มเอกรูป (ab,ac)
- ถ้า X เป็นตัวแปรสุ่มชี้กำลัง (λ) แล้ว Y เป็นตัวแปรสุ่มชี้กำลัง (λ/a)
- ถ้า X เป็นตัวแปรสุ่มเออร์แลง (n,λ) แล้ว Y เป็นตัวแปรสุ่มเออร์แลง (n,λ/a)
- ถ้า X เป็นตัวแปรสุ่มเกาส์ (μ,σ) แล้ว Y เป็นตัวแปรสุ่มชี้กำลัง (aμ,aσ)

ทฤษฎีบทอื่นของตัวแปรสุ่มอนุพัทธ์

ถ้า
$$Y=X+b$$
 แล้ว $F_Y(y)=F_X(y-b)$

• $f_Y(y) = f_X(y-b)$

กำหนดให้ X มีค่า PDF ดังฟังก์ชัน
$$f_X(x) = egin{cases} 2x & 0 \leq x \leq 1, \ 0 & ext{otherwise}. \end{cases}$$

ถามว่า PDF ของ Y = aX เป็นอย่างไร

ถ้า X เป็นตัวแปรสุม มี CDF
$$\mathsf{F}_\mathsf{X}(\mathsf{x})$$
 ตัวแปรสุม $\mathsf{Y} = \mathsf{g}(\mathsf{X})$ โดยที่ $g(x) = \left\{egin{array}{ll} 1 & x \leq 0, \\ 3 & x > 0. \end{array}
ight.$

จงหา $F_Y(y)$ และ $f_Y(y)$ ในรูป $F_X(x)$ และ $f_X(x)$

$$W=g(V)= egin{cases} -10 & V<-10, \ V & -10 \leq V \leq 10, \ 10 & V>10. \end{cases}$$

ความต่างศักย์ที่ไมโครโฟนตัวหนึ่ง (V) มีลักษณะเป็นตัวแปรสุ่มเกาส์ ด้วยค่าคาดหมายเท่ากับ 0 และส่วน เบี่ยงเบน มาตรฐานเท่ากับ 5 โวลต์ สัญญาณจากไมโครโฟนถูกส่งต่อให้อีก หนึ่งวงจรซึ่งจำกัดกระแสไฟ ฟ้าแค่ ±10 โวลต์ สัญญาณที่ออกจากวงจรนี้ (W) มีลักษณะดังฟังก์ชัน ถามว่า CDF และ PDF ของ W คืออะไร

กำหนดให้ X เป็นตัวแปรสุ่มเอกรูปในช่วง [-1, 3] และ $Y=X^2$ จงหา CDF และ PDF ของ Y

Quiz : ตัวแปรสุ่มอนุพัทธ์

ตัวแปรสุ่มต่อเนื่องแบบมีเงื่อนใข

ตัวแปรสุ่มต่อเนื่อง X มีการแจกแจงความน่าจะเป็น PDF $f_X(x)$ และเหตุการณ์ B โดย P[B] > 0 เราสามารถหา PDF แบบมีเงื่อนไขของ X เมื่อมีเหตุการณ์ B คือ

$$f_{X|B}(x) = \left\{ egin{array}{ll} rac{f_X(x)}{P[B]} & x \in B, \ 0 & ext{otherwise}. \end{array}
ight.$$

ถ้าเรามีความน่าจะเป็นแบบมีเงื่อนไขของเหตุการณ์ B ใดๆ ($f_{X|B_i}(x)$) เราสามารหา PDF ของ X ได้จาก

$$f_X(x) = \sum_i f_{X|B_i}(x) P[B_i]$$

ตัวแปรสุ่มต่อเนื่องแบบมีเงื่อนใข

ค่าคาดหมายของ X คือ

$$E[X|B] = \int_{-\infty}^{\infty} x f_{X|B}(x) dx$$

ค่าคาดหมายแบบมีเงื่อนไขของ g(X) คือ

$$E[g(X)|B] = \int_{-\infty}^{\infty} g(x) f_{X|B}(x) dx$$

ความแปรปรวนแบบมีเงื่อนไขของ X คือ

$$Var[X|B] = E[(X - \mu_{X|B})^2|B] = E[X^2|B] - \mu_{X|B}^2$$

จากตย.การหมุนเข็มไปตามวงล้อ ถามว่าความน่าจะเป็นแบบมีเงื่อนไขที่เข็มจะหยุดที่ ครึ่งซ้ายของวง ล้อ (L) เป็นเท่าใด

จากตย.ที่ 8 จงหาค่าคาดหมาย และความแปรปรวน แบบมีเงื่อนไข

กำหนดให้ เหตุการณ์ B_0 คือ การส่งสัญญาณ "0" , X มีลักษณะเป็นตัวแปรสุ่มเกาส์ (-5,2) เหตุการณ์ B_1 คือ การส่งสัญญาณ "1" , X มีลักษณะเป็นตัวแปรสุ่มเกาส์ (5,2) โดยการส่ง สัญญาณ 0 และ 1 มีโอกาสเกิดขึ้นเท่าๆกัน ถามว่า PDF ของ X เป็นอย่างไร

ช่วงเวลาการโทรศัพท์ (T) มีลักษณะเป็นตัวแปรสุ่มชี้กำลัง (1/3) ดังฟังก์ชัน

$$f_T(t) = egin{cases} (1/3)e^{-t/3} & t \geq 0, \ 0 & ext{otherwise} \end{cases}$$

จงหา PDF แบบมีเงื่อนไขสำหรับการโทรศัพท์ที่ใช้เวลาอย่างน้อย 2 นาที

Quiz : ตัวแปรสุ่มแบบมีเงื่อนใข

การบ้าน 1

สถิติพบว่าชายไทย 23,000 คนจาก 1 ล้านคนมีความสูงอย่างน้อย 175 ซม. และความสูงชายไทยมี ลักษณะเป็นตัวแปรสุ่มเกาส์ มีค่าเฉลี่ยเท่ากับ 165 ซม.

ก. ส่วนเบี่ยงเบนมาตรฐานของความสูงชายไทยเป็นเท่าไร

ข. ใช้ตารางค่า Z หาความน่าจะเป็นที่สุ่มเลือกชายไทยมา 1 คนแล้วชายคนนั้นจะสูงอย่างน้อย 190 ซม.

กำหนดให้ N คือจำนวนชายไทยที่สูงเกิน 180 ซม. ถามว่า

ค. ความน่าจะเป็นที่ไม่มีชายไทยสูงเกิน 180 ซม.

ง. ค่าคาดหมายของ N = ?

การบ้าน 2

ให้ X เป็นตัวแปรสุ่มเอกรูป (0,1) จงหา g(x) ที่ PDF ของ Y=g(x) เป็นดังฟังก์ชัน

$$f_Y(y) = \left\{ egin{array}{ll} 3y^2 & 0 \leq y \leq 1, \ 0 & ext{otherwise}. \end{array}
ight.$$

การบ้าน 3

การทดสอบโรคเบาหวาน เป็นการทดสอบปริมาณน้ำตาลในกระแสเลือด (X) หลังจากอดอาหารในคืนก่อนตรวจ สำหรับคนสุขภาพดีจะพบปริมาณน้ำตาล (X) อยู่ในช่วง 70-110 mg/dl ผลการตรวจเลือดแบ่งได้ 3 กรณีคือ ผล ตรวจเลือดเป็นบวก (T^+) เมื่อ X \geq 140 mg/dl, ผลเป็นลบ(T^-) เมื่อ X \leq 110 และผลสรุปไม่ได้ (T^0) เมื่อ 110 < X < 140

โดยสถิติคนมีสุขภาพดี (H) วัดปริมาณน้ำตาล (X) พบว่าเป็นตัวแปรสุ่มแบบเกาส์ (90,20) และคนเป็นเบาหวาน (D) วัดปริมาณน้ำตาล (X) พบว่าเป็นตัวแปรสุ่มแบบเกาส์ (160,40) นอกจากนี้พบว่าประชากรมีสุขภาพดี ร้อย ละ 90 เป็นเบาหวาน ร้อยละ 10 จงหา

- ก. PDF แบบมีเงื่อนใช $f_{XIH}(x)$
- ข. ใช้ตารางค่า Z หาความน่าจะเป็นแบบมีเงื่อนไข $P[T^{+}|H]$ และ $P[T^{-}|H]$
- ค. ความน่าจะเป็นแบบมีเงื่อนไขที่คนคนนั้นจะมีสุขภาพดีเมื่อผลตรวจเป็นลบ $P[H|T^{-}]$
- ง. ในการตรวจเมื่อผลตรวจสรุปไม่ได้ จะทำการตรวจซ้ำ จนกว่าผลที่ได้จะเป็น บวก หรือ ลบ กำหนดให้ N คือ จำนวนครั้งที่ตรวจจนกว่าจะได้ผลที่สรุปได้ การตรวจของคนๆหนึ่งผลการตรวจแต่ละครั้งไม่เกี่ยว ข้องกัน PMF ของ N เมื่อ H คนสุขภาพดีเป็นเท่าไร (N=1 คือตรวจครั้งแรกผลได้บวกหรือลบ)