Devoir surveillé n° 1

Durée : 4 heures, calculatrices et documents interdits

I. Approximation d'une intégrale polynomiale par une suite d'applications linéaires

A. Étude de deux applications

La notation $\mathbb{R}_2[X]$ désigne le \mathbb{R} -espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à 2. On identifiera dans la suite de ce problème les éléments de $\mathbb{R}_2[X]$ et leurs fonctions polynomiales associées. On note $\mathscr{B} = (1, X, X^2)$ la base canonique de $\mathbb{R}_2[X]$. On définit les deux applications suivantes :

$$f: \mathbb{R}_2[X] \longrightarrow \mathbb{R}_2[X]$$

$$P \longmapsto \frac{1}{2} \left[P\left(\frac{X}{2}\right) + P\left(\frac{X+1}{2}\right) \right]$$

et

$$\varphi: \mathbb{R}_2[X] \longrightarrow \mathbb{R}$$

$$P \longmapsto P(1)$$

On rappelle aussi que l'on note $f^0 = \mathrm{Id}_{\mathbb{R}_2[X]}$, et pour tout $n \in \mathbb{N}^*$, $f^n = f \circ f^{n-1}$.

- 1) Vérifier que f est bien à valeurs dans $\mathbb{R}_2[X]$ et montrer que f est linéaire.
- 2) Montrer que φ est linéaire.
- 3) Ecrire la matrice de f dans la base \mathcal{B} de $\mathbb{R}_2[X]$, en indiquant les calculs intermédiaires.
- 4) L'application f est-elle injective? surjective?
- 5) Déterminer une base de Ker φ . Quelle est la dimension de Ker φ ?
- 6) L'application φ est-elle injective? surjective?

B. Calcul des puissances successives d'une matrice

On note I_3 la matrice identité de $\mathcal{M}_3(\mathbb{R})$ et A la matrice

$$A = \begin{pmatrix} 1 & \frac{1}{4} & \frac{1}{8} \\ 0 & \frac{1}{2} & \frac{1}{4} \\ 0 & 0 & \frac{1}{4} \end{pmatrix}.$$

Enfin, on note \mathscr{B}' la famille de $\mathbb{R}_2[X]$ définie par

$$\mathscr{B}' = (1, -2X + 1, 6X^2 - 6X + 1).$$

- 7) Justifier que la famille \mathscr{B}' est une base de $\mathbb{R}_2[X]$.
- 8) Écrire la matrice de passage Q de \mathscr{B} à \mathscr{B}' .
- 9) Justifier que Q est inversible et calculer son inverse.
- 10) Écrire la matrice M de f dans la base \mathscr{B}' en donnant les calculs intermédiaires.
- 11) Calculer A^n pour tout $n \in \mathbb{N}$. On explicitera les neufs coefficients de A^n .
- **12)** Pour $n \in \mathbb{N}$ et $P = a + bX + cX^2$ avec $(a, b, c) \in \mathbb{R}^3$, déterminer $f^n(P)$ en fonction de a, b, c.
- 13) En déduire que

$$\forall P \in \mathbb{R}_2[X], \lim_{n \to +\infty} \varphi(f^n(P)) = \int_0^1 P(t) dt$$

C. Une autre preuve du résultat précédent

14) À l'aide d'un raisonnement par récurrence, démontrer que

$$\forall P \in \mathbb{R}_2[X], \ \forall n \in \mathbb{N}^*, \ f^n(P) = \frac{1}{2^n} \sum_{k=0}^{2^n - 1} P\left(\frac{X + k}{2^n}\right).$$

15) En déduire, en utilisant un résultat du cours d'analyse que l'on énoncera avec précision, que

$$\forall P \in \mathbb{R}_2[X], \lim_{n \to +\infty} \varphi(f^n(P)) = \int_0^1 P(t) dt.$$

II. Suite récurrente définie par une équation

Pour chaque $p \in \mathbb{N}^*$, on considère l'équation

$$x^{p} + x^{p-1} + \ldots + x^{2} + x = 1$$
 (\mathcal{E}_{p})

- 1) a) Montrer que, pour tout $p \in \mathbb{N}^*$, l'équation (\mathscr{E}_p) possède une unique solution positive x_p .
 - **b)** Justifier que, pour tout $p \in \mathbb{N}^*$, $x_p \in]0,1]$ et que l'on a la relation $x_p(1-x_p^p) = 1-x_p$.
 - c) Établir que la suite (x_p) est décroissante puis convergente.
 - d) Établir que $x_p^p \xrightarrow[p \to +\infty]{} 0$ et en déduire la limite de (x_p) .
- 2) On écrit $x_p = \frac{1}{2}(1 + \varepsilon_p)$ avec $\varepsilon_p \xrightarrow[p \to +\infty]{} 0$ (c'est-à-dire que l'on pose $\varepsilon_p = 2x_p 1$).
 - a) Montrer que $(1 + \varepsilon_p)^{p+1} = 2^{p+1}\varepsilon_p$.
 - **b)** Établir la relation $(p+1)\varepsilon_p \ln(1+\varepsilon_p) = (p+1)\varepsilon_p \ln 2 + \varepsilon_p \ln \varepsilon_p$.
 - c) Déterminer alors la limite de $(p+1)\varepsilon_p$ puis celle de $(1+\varepsilon_p)^{p+1}$
 - d) En déduire un équivalent simple de (ε_p) .

- 3) Dans cette question on suppose p=2, et par commodité on pose $\alpha=x_2$.

 On considère la fonction $f: \begin{cases} \mathbb{R}^+ \to \mathbb{R} \\ x \mapsto \frac{1}{x+1} \end{cases}$ et la suite récurrente réelle (u_n) définie par $u_0=1$ et pour tout $n \in \mathbb{N}$, $u_{n+1}=f(u_n)$.
 - a) Simplifier $f(\alpha)$.
 - **b)** Montrer que $\left[\frac{1}{2},1\right]$ est stable par f. Quelles conséquences cela a-t-il sur la suite (u_n) ?
 - c) Justifier que pour tout $n \in \mathbb{N}$, $|u_{n+1} \alpha| \leq \frac{2}{3} |u_n \alpha|$.
 - **d)** En déduire que pour tout $n \in \mathbb{N}$, $|u_n \alpha| \leq \left(\frac{2}{3}\right)^n$ et déterminer la limite de la suite (u_n) .
- 4) Dans cette question on pose $\beta=x_3$.

 On introduit la fonction $g: \begin{cases} \mathbb{R}^+ \to \mathbb{R} \\ x \mapsto \frac{1}{x^2+x+1} \end{cases}$ et on considère la suite récurrente réelle (v_n) définie par $v_0=1$ et pour tout $n\in \mathbb{N}, \ v_{n+1}=g(v_n)$.
 - a) Montrer que pour tout $n \in \mathbb{N}$, $v_n \in [0, 1]$.
 - b) **Démontrer** que (v_{2n}) est décroissante et que (v_{2n+1}) est croissante, puis montrer que ces deux suites convergent.
 - c) On pose $\ell = \lim_{n \to +\infty} v_{2n}$ et $\ell' = \lim_{n \to +\infty} v_{2n+1}$. Montrer que $g(\ell) = \ell'$ et $g(\ell') = \ell$.
 - d) En déduire que ℓ est solution de l'équation $(\ell^2+1)(\ell^3+\ell^2+\ell-1)=0$.
 - e) Conclure que $\ell = \beta = \ell'$ puis déterminer la nature de (v_n) .

— FIN —