L20-MINLP

Learning to Optimize for

Mixed-Integer Non-Linear Programming

Presented by Bo Tang Toronto, Mar 14, 2025

Authors

Bo Tang

PhD Candidate
Department of Mechanical &
Industrial Engineering
University of Toronto

Elias B. Khalil

Assistant Professor
Department of Mechanical &
Industrial Engineering
University of Toronto

SCALE AI Research Chair
Data-Driven Algorithms for Modern
Supply Chains

Ján Drgoňa

Associate Professor
Department of Civil and Systems
Engineering and the Ralph S.
O'Connor Sustainable Energy
Institute
Johns Hopkins University

ICS 2025 | Machine Learning Meets Discrete Optimization

Motivation

Why does MINLP matter?

MINLP is general but very hard:

Combinatorial Complexity + Non-Convexity.

ICS 2025 | Machine Learning Meets Discrete Optimization

Motivation

Why does MINLP matter?

Traditional solvers struggle with large-scale MINLP problems.

MINLP is general but very hard:

Combinatorial Complexity + Non-Convexity.

ICS 2025 | Machine Learning Meets Discrete Optimization

Motivation

Why does MINLP matter?

Traditional solvers struggle with large-scale MINLP problems.

MINLP is general but very hard:

Combinatorial Complexity + Non-Convexity.

Solution time is tight:

Real-world applications often require solutions within a short time window.

ntroduction to L2O

L2O is a data-driven approach that leverages machine learning to improve optimization processes.

Introduction to L2O

L2O is a data-driven approach that leverages machine learning to improve optimization processes. L2O enables high-quality solutions with significantly reduced computational cost.

Introduction to L2O

L2O is a data-driven approach that leverages machine learning to improve optimization processes.

L2O enables high-quality solutions with significantly reduced computational cost.

L2O learns from optimal or nearoptimal solutions to either generate solutions directly or guide solvers in How does L2O work? narrowing the search space.

What we did here!

Traditional Methods vs. L20 Approaches

Traditional Methods

- Require costly iterative procedures (e.g., branch-and-bound, matrix inversion) that scale poorly with problem size.
- Solve from scratch for every instance, even if similar problems have been solved before.
- Require manual tuning of heuristics and parameters for good performance.
- Optimality is theoretical guaranteed through exact methods.

L20 Approaches

- Bypass expensive iterations by learning direct mappings or guiding solvers for faster convergence.
- <u>Leverage past patterns</u> to generalize and quickly generate solutions for new instances.
- Automate tuning by learning optimization strategies from data.
- No guarantee of optimality or even feasibility.

Traditional Methods vs. L20 Approaches

Traditional Methods

- Require costly iterative procedures (e.g., branch-and-bound, matrix inversion) that scale poorly with problem size.
- Solve from scratch for every instance, even if similar problems have been solved before.
- Require manual tuning of heuristics and parameters for good performance.
- Optimality is theoretical guaranteed through exact methods.

L2O Approaches

- Bypass expensive iterations by learning direct mappings or guiding solvers for faster convergence.
- Leverage past patterns to generalize and quickly generate solutions for new instances.
- Automate tuning by learning optimization strategies from data.
- No guarantee of optimality or even feasibility.

Traditional Methods vs. L2O Approaches

Traditional Methods

- Require costly iterative procedures (e.g., branch-and-bound, matrix inversion) that scale poorly with problem size.
- Solve from scratch for every instance, even if similar problems have been solved before.
- Require manual tuning of heuristics and parameters for good performance.
- Optimality is theoretical guaranteed through exact methods.

L20 Approaches

- Bypass expensive iterations by learning direct mappings or guiding solvers for faster convergence.
- Leverage past patterns to generalize and quickly generate solutions for new instances.
- Automate tuning by learning optimization strategies from data.
- No guarantee of optimality or even feasibility.

Traditional Methods vs. L20 Approaches

Traditional Methods

- Require costly iterative procedures (e.g., branch-and-bound, matrix inversion) that scale poorly with problem size.
- **Solve from scratch for every instance**, even if similar problems have been solved before.
- Require manual tuning of heuristics and parameters for good performance.
- **Optimality is theoretical guaranteed** through exact methods.

L20 Approaches

- **Bypass expensive iterations** by learning direct mappings or guiding solvers for faster convergence.
- Leverage past patterns to generalize and quickly generate solutions for new instances.
- **Automate tuning** by learning optimization strategies from data.
- **No guarantee** of optimality or even feasibility.

MINLP Formulation:

$$\min_{x} f(x)$$
s.t. $g(x) \leq 0$

$$x \in \mathbb{R}^{n_r} \times \mathbb{Z}^{n_z}$$

Parametric MINLP Formulation:

$$\min_{m{x}} f(m{x}, m{\xi})$$
s.t. $m{g}(m{x}, m{\xi}) \leq 0$
 $m{x} \in \mathbb{R}^{n_r} \times \mathbb{Z}^{n_z}$
 $m{\xi} \in \mathbf{\Xi}$

Parameters ξ influence the objective and constraints of optimization problems.

Multiple Instances
$$\begin{cases} \boldsymbol{\xi}_1 \rightarrow \boldsymbol{x}_1^* \\ \boldsymbol{\xi}_2 \rightarrow \boldsymbol{x}_2^* \\ \vdots \\ \boldsymbol{\xi}_m \rightarrow \boldsymbol{x}_m^* \end{cases}$$

Prediction for Parametric MINLP Formulation:

Solution prediction $\widehat{x}=\psi_{\Theta}(\xi)$ Machine learning model ψ_{Θ} with inputs ξ and weights Θ

Prediction for Parametric MINLP Formulation:

Solution prediction

Machine learning $\,$ model ψ_{Θ} with input ξ and weights ${m heta}$

Limitations of Existing L2O

01 Collecting Solutions as Training Label is Very Expensive

02 Neural Networks Cannot Directly Output Integer Values

03 It is Difficult to Ensure Feasibility, Especially in Integers

imitations of Existing L2O

- Ollecting Solutions as Training Label is Very Expensive
 Our Solution: We propose a Self-Supervised Approach without requiring solutions for training.
- 02 Neural Networks Cannot Directly Output Integer Values

03 It is Difficult to Ensure Feasibility, Especially in Integers

Limitations of Existing L2O

- 01 Collecting Solutions as Training Label is Very Expensive
 - Our Solution: We propose a <u>Self-Supervised Approach</u> without requiring solutions for training.
- 02 Neural Networks Cannot Directly Output Integer Values
 - Our Solution: We introduce Integer Correction Layers to ensure integer feasibility.

03 It is Difficult to Ensure Feasibility, Especially in Integers

Limitations of Existing L2O

- Collecting Solutions as Training Label is Very Expensive

 Our Solution: We propose a Self-Supervised Approach without requiring solutions for training.
- 02 Neural Networks Cannot Directly Output Integer Values

Our Solution: We introduce Integer Correction Layers to ensure integer feasibility.

- It is Difficult to Ensure Feasibility, Especially in Integers

 Our Solution: We introduce a gradient-based Feasibility Projection to adjust integer solutions.

Methodology

Self-Supervised Learning:

The objective function naturally serves as a loss function, while constraint violations can be incorporated as penalty terms to enforce feasibility.

$$\mathcal{L}(\Theta) = \sum_{i=1}^{m} [f(\widehat{x}_i, \xi_i) + \lambda \cdot ||g(\widehat{x}_i, \xi_i)_+||_1]$$

$$\mathcal{L}(\Theta) = \sum_{i=1}^{m} [f(\widehat{x}_i, \xi_i) + \lambda \cdot || g(\widehat{x}_i, \xi_i)_+ ||_1]$$
Objective
Function

$$\mathcal{L}(\Theta) = \sum_{i=1}^{m} [f(\widehat{x}_i, \xi_i) + \lambda \cdot \| g(\widehat{x}_i, \xi_i)_+ \|_1]$$
Objective
Function
Violation

$$\mathcal{L}(\Theta) = \sum_{i=1}^{m} [f(\widehat{x}_i, \xi_i) + \lambda \cdot \|g(\widehat{x}_i, \xi_i)_+\|_1]$$
Objective Constraints
Function Violation

nteger Correction Layers

Integer Correction Layers

Integer Correction Layers

Feasibility projection is a computationally efficient <u>post-processing heuristic</u> that refines neural network outputs while preserving integer constraints.

- Computational Efficiency: Avoids the need for repeated projections and second-order gradient computation during training.
- Stable Training: Keeps projection separate from training, preventing interference with the output of model.


```
    Input: parameters ξ<sup>i</sup>, layers π<sub>Θ1</sub>(·) and φ<sub>Θ2</sub>(·), step size η
    Predict a continuously relaxed solution x̄<sup>i</sup> ← π<sub>Θ1</sub>(ξ<sup>i</sup>)
    while True do
    Obtain a mixed-integer solution x̂<sup>i</sup> ← φ<sub>Θ2</sub>(x̄<sup>i</sup>, ξ̄<sup>i</sup>)
    Compute feasibility violation V(x̂<sup>i</sup>, ξ̄<sup>i</sup>) ← ||g(x̂<sup>i</sup>, ξ̄<sup>i</sup>)<sub>+</sub>||<sub>1</sub>
    if V(x̂<sup>i</sup>, ξ̄<sup>i</sup>) = 0 then
    Break
    else
    Update relaxed solution x̄<sup>i</sup> ← x̄<sup>i</sup> − η∇<sub>x̄</sub>V(x̂<sup>i</sup>, ξ̄<sup>i</sup>)
    end if
    end while
    Output: a mixed-integer solution x̄<sup>i</sup>
```



```
    Input: parameters ξ<sup>i</sup>, layers π<sub>Θ1</sub>(·) and φ<sub>Θ2</sub>(·), step size η
    Predict a continuously relaxed solution x̄<sup>i</sup> ← π<sub>Θ1</sub>(ξ<sup>i</sup>)
    while True do
    Obtain a mixed-integer solution x̂<sup>i</sup> ← φ<sub>Θ2</sub>(x̄<sup>i</sup>, ξ<sup>i</sup>)
    Compute feasibility violation V(x̂<sup>i</sup>, ξ<sup>i</sup>) ← ||g(x̂<sup>i</sup>, ξ<sup>i</sup>)<sub>+</sub>||<sub>1</sub>
    if V(x̂<sup>i</sup>, ξ<sup>i</sup>) = 0 then
    Break
    else
    Update relaxed solution x̄<sup>i</sup> ← x̄<sup>i</sup> − η∇<sub>x̄</sub>V(x̂<sup>i</sup>, ξ̄<sup>i</sup>)
    end if (1) Update relaxed solution to reduce violation
    end while
    Output: a mixed-integer solution x̄<sup>i</sup>
```



```
    Input: parameters ξ<sup>i</sup>, layers π<sub>Θ1</sub>(·) and φ<sub>Θ2</sub>(·), step size η
    Predict a continuously relaxed solution x̄<sup>i</sup> ← π<sub>Θ1</sub>(ξ<sup>i</sup>)
    while True do (2) Differentiable integer correction
    Obtain a mixed-integer solution x̂<sup>i</sup> ← φ<sub>Θ2</sub>(x̄<sup>i</sup>, ξ̄<sup>i</sup>)
    Compute feasibility violation V(x̂<sup>i</sup>, ξ̄<sup>i</sup>) ← ||g(x̂<sup>i</sup>, ξ̄<sup>i</sup>)<sub>+</sub>||<sub>1</sub>
    if V(x̂<sup>i</sup>, ξ̄<sup>i</sup>) = 0 then
    Break
    else
    Update relaxed solution x̄<sup>i</sup> ← x̄<sup>i</sup> − η∇<sub>x̄</sub>V(x̂<sup>i</sup>, ξ̄<sup>i</sup>)
    end if
    end while
    Output: a mixed-integer solution x̄<sup>i</sup>
```



```
1: Input: parameters \boldsymbol{\xi}^i, layers \pi_{\Theta_1}(\cdot) and \varphi_{\Theta_2}(\cdot), step size \eta
2: Predict a continuously relaxed solution \bar{\mathbf{x}}^i \leftarrow \pi_{\Theta_1}(\boldsymbol{\xi}^i)
3: while True do
4: Obtain a mixed-integer solution \hat{\mathbf{x}}^i \leftarrow \varphi_{\Theta_2}(\bar{\mathbf{x}}^i, \boldsymbol{\xi}^i)
5: Compute feasibility violation \mathcal{V}(\hat{\mathbf{x}}^i, \boldsymbol{\xi}^i) \leftarrow \|\mathbf{g}(\hat{\mathbf{x}}^i, \boldsymbol{\xi}^i)_+\|_1
6: if \mathcal{V}(\hat{\mathbf{x}}^i, \boldsymbol{\xi}^i) = 0 then (3) Compute constraint violation
7: Break based on mixed-integer solution
8: else
9: Update relaxed solution \bar{\mathbf{x}}^i \leftarrow \bar{\mathbf{x}}^i - \eta \nabla_{\bar{\mathbf{x}}} \mathcal{V}(\hat{\mathbf{x}}^i, \boldsymbol{\xi}^i)
10: end if
11: end while
12: Output: a mixed-integer solution \hat{\mathbf{x}}^i
```


Key Methods in Comparison

Method	Description						
EX (Exact Solver)	Solves problems exactly using traditional solver with 1000-sec time-limit as a benchmark.						
N1 (Root Node Solution)	Finds the first feasible solution from the root node of the solver, combining various heuristics.						
RC (Rounding Classification)	A neural network-based correction layer that learns a classification to determine how to round each integer variable.						
LT (Learnable Thresholding)	A neural network-based correction layer that learns a threshold value to decide to round up or down for each integer variable.						
RC-P (RC + Feasibility Projection)	RC combined with feasibility projection, which corrects infeasibilities while preserving integer constraints.						
LT-P (LT + Feasibility Projection)	LT combined with feasibility projection, which corrects infeasibilities while preserving integer constraints.						

Subsecond Solution

Exact solvers such as Gurobi and SCIP find better solutions over time but can be somewhat slow. In contrast, our methods (RC-P & LT-P) achieve high-quality feasible solutions within milliseconds.

More Experiments

Result for IQPs. Each problem size is evaluated on a test set of 100 instance

Method		F	RC			R	C-P		LT			
	Obj	Obj	%	Time	Obj	Obj	%	Time	Obj	Obj	%	Гime
Metric	Mean	Median	Feasible	(Sec)	Mean	Median	Feasible	e (Sec)	Mean	Median	Feasible (Sec)
100×100	-13.54	1 -13.6	96%	0.0022	-13.54	-13.57	7 100°	% 0.005	-13.65	-13.77	93%	0.0023
200×200	-31.62	2 -31.71	L 97%	0.0021	-31.62	-31.73	l 100°	% 0.005	-31.34	-31.61	. 95%	0.0022
500×500	-73.31	L -73.38	86%	0.0025	-73.31	-73.38	3 100°	% 0.0065	-72.36	-72.48	94%	0.0026
1000×1000	-142.7	7 -142.7	7 82%	0.0042	-142.7	-142.7	7 100°	% 0.009	-142.6	-142.6	100%	0.0047
Method		Lī	Г-Р			I	EX		N1			
	Obj % Time			Obj	oj Obj % Time			Obj Obj % Time			Гіте	
Metric	Mean	Median	Feasible	(Sec)	Mean	Median	Feasible	e (Sec)	Mean	Median	Feasible ((Sec)
100×100	-13.65	5 -13.77	7 100%	0.01	-20.79	-20.78	3 100°	% 1237	1.5E+18	1.4E+18	100%	104.2
200×200	-31.34	4 -31.61	l 100%	0.0064	-	-	-	-	-	-	-	-
500×500	-72.36	6 -72.48	3 100%	0.0063	-	-	-	-	-	-	-	-
1000×1000	-142.6	6 -142.6	5 100%	0.0086	-	-	-	-	-	-	-	-

More Experiments

Result for INPs. Each problem size is evaluated on a test set of 100 instance

Method		R	C			R	C-P		LT			
	Obj	Obj	%	Time	Obj	Obj	%	Time	Obj	Obj	%	Time
Metric	Mean	Median	Feasible	(Sec)	Mean	Median	Feasible	e (Sec)	Mean	Median	Feasible	(Sec)
100×100	1.664	1.594	100%	0.0022	1.664	1.594	1000	% 0.0060	0.669	0.649	96%	0.0021
200×200	1.472	2 1.436	99%	0.0022	1.471	1.436	5 100°	% 0.0054	-0.356	-0.373	100%	0.0023
500×500	0.526	0.526	96%	0.0029	0.524	0.526	5 100°	% 0.0061	-1.374	-1.594	98%	0.0029
1000×1000	1.423	0.809	97%	0.0040	1.423	0.809	1000	% 0.0115	-3.744	-3.716	99%	0.0050
Method	LT-P					E	X		N1			
	Obj	Obj	%	Time	Obj	Obj	%	Time	Obj	Obj	%	Time
Metric	Mean	Median	Feasible	(Sec)	Mean	Median	Feasible	e (Sec)	Mean	Median	Feasible	(Sec)
100×100	0.669	0.649	100%	0.0058	256.93	134.62	2 140	% 1001	4411	155.2	14%	940.4
200×200	-0.356	6 -0.373	100%	0.0056	-	-	-	-	-	-	-	-
500×500	-1.374	-1.594	100%	0.0072	-	-	-	-	-	-	-	-
1000×1000	-3.744	-3.716	100%	0.0117	-	-	-	-	-	-	-	-

More Experiments

Result for MIRBs. Each problem size is evaluated on a test set of 100 instance

Method		R	C			R	C-P		LT			
	Obj	Obj	%	Time	Obj	Obj	%	Time	Obj	Obj	%	Time
Metric	Mean	Median	Feasible	(Sec)	Mean	Median	Feasible	(Sec)	Mean	Median	Feasible	(Sec)
20×4	59.39	48.86	100%	0.0019	59.39	48.86	5 100%	6 0.0048	62.51	63.40	100%	0.0020
200×4	503.5	461.7	99%	0.0021	504.2	461.7	7 100%	6 0.0052	622.8	626.0	100%	0.0026
2000×4	5938	3 5792	99%	0.0033	5942	5792	2 100%	6 0.0070	5612	5558	97%	0.0030
20000×4	6.7E+4	1 6.7E+4	76%	0.0121	9.8E+4	7.3E+4	100%	6 0.0824	4.8E+4	3.5E+4	66%	0.0127
Method		LT	Γ- P			I	EX		N1			
	Obj	Obj	%	Time	Obj	Obj	%	Time	Obj	Obj	%	Time
Metric	Mean	Median	Feasible	(Sec)	Mean	Median	Feasible	(Sec)	Mean	Median	Feasible	(Sec)
20×4	62.51	L 63.40	100%	0.0055	64.67	59.16	5 100%	6 1005	87.83	77.34	100%	0.0813
200×4	622.8	8 626.0	100%	0.0062	8.4E+5	908.8	3 100%	6 1002	3.7E+8	957.4	100%	0.2608
2000×4	5615	5 5558	3 100%	0.0071	4.7E+10	9262	96%	6 1002	8.3E+12	9379	95%	71.91
20000×4	8.0E+4	4.5E+4	100%	0.0639	1.1E+15	1.0E	5 78%	6 1040	1.2E+15	1.0E5	78%	787

Effect of Penalty Weight

There is an inherent tradeoff between achieving more feasible solutions and lower objective values prior to the integer feasibility projection (RC and LT).

After applying the integer feasibility projection (RC-P and LT-P), the high infeasibility rates observed even with smaller penalty weights.

Thank You

