Week 1

程雨歌 12307110079

1 "抵消现象":考察 $\lim_{x\to 0} \frac{1-\cos(x)}{x^2}$ 的计算值 (P7)

为了考察计算值与极限值 $\frac{1}{2}$ 的差,做函数 $y=|\frac{1-\cos(x)}{x^2}|$,并用双对数坐标轴画出函数图像。代码如下:

```
1 % Week 1 Problem 1
2 % show lim(x->0) (1-cos(x))/x^2
3 % cheng yu ge
4 % 12307110079
5
6 x = linspace(0,0.01,10e4);
7 y = abs((1-cos(x)) ./ (x.^2) - 0.5);
8 loglog(x, y);
9 h = legend('y = abs((1-cos(x)) / x^2 - 0.5)', 'Location', 'North');
10 set(h,'Fontsize', 22);
11 set(gca,'Fontsize', 16);
```

得到的图像如下:

可以看出,在 x 从上接近 10^{-4} 时,函数值越来越接近极限值 $\frac{1}{2}$,误差一度达到近 10^{-10} ;而当 x 继续趋近 0 时,误差的数量级开始震荡上升,当 x 小到 10^{-7} 级别时,误差竟然已经扩大到了 10^{-3} 级别。可见在求无穷小之比的未定型数值时,过小的量反而会放大误差,这是因为用于计算的数值大小不断接近浮点数的舍入误差大小(机器精度)造成的。

2 考察三种迭代矩阵 \boldsymbol{A} 的条件数 $\operatorname{cond}(\boldsymbol{A})$ 随阶数增长的变化 (P9/图 1.3)

$$\boldsymbol{A}_{1} = \begin{pmatrix} 1 & & & & \\ & 1 & & & \\ & 2 & -3 & 1 & & \\ & \ddots & \ddots & \ddots & \\ & & 2 & -3 & 1 \end{pmatrix}_{N \times N} \boldsymbol{A}_{2} = \begin{pmatrix} 1 & & & & -1 \\ & 1 & & & \\ & 2 & -3 & 1 & & \\ & & \ddots & \ddots & \ddots & \\ & & 2 & -3 & 1 & \end{pmatrix}_{N \times N} \boldsymbol{A}_{3} = \begin{pmatrix} 1 & & & & \\ & 1 & & & \\ & 1 & -2 & 1 & & \\ & & \ddots & \ddots & \ddots & \\ & & & 1 & -2 & 1 \end{pmatrix}_{N \times N}$$

运用 Matlab 计算以上三种迭代矩阵的条件数

```
1 % Week 1 Problem 2
 _{\rm 2} % show cond(A) in Example 1.1.2 , 1.1.20 and 1.1.1
 3 % cheng yu ge
 4 % 12307110079
 6 \text{ cond1} = zeros(1,100);
 7 \operatorname{cond2} = \operatorname{zeros}(1,100);
 8 \text{ cond3} = \text{zeros}(1,100);
 9 for i = 3 : 100
        A1 = eye(i) + diag([0,-3*ones(1,i-2)],-1) + diag(2*ones(1,i-2),-2);
11
        cond1(i) = cond(A1); % 1.1.2
        A2 = A1 + diag(-1, i-1);
12
        cond2(i) = cond(A2); % 1.1.20
        A3 = eye(i) + diag([0,-2*ones(1,i-2)],-1) + diag(ones(1,i-2),-2);
14
        cond3(i) = cond(A3); % 1.1.1
15
semilogy(1:100, cond1,'*');hold on;
semilogy(1:100, cond2,'*');
semilogy(1:100, cond3,'*');
h = legend('cond(A1(n))', 'cond(A2(n))', 'cond(A3(n))', 'Location', 'East');
21 set(h, Fontsize', 22);
22 set(gca, 'Fontsize', 16);
```

其条件数随阶数增长的趋势如图:

可以看出 A_1 条件数随阶数增长速度远高于 A_3 的增长,呈指数增长趋势,到 60 阶左右时就达到 10^{16} 数量级且开始出现计算偏差。而再矩阵的右上角加上一个-1,也就是限定了迭代最后一项和第一项的关系,这时 A_2 的条件数增长速度一下就降低了。

3 证明不动点迭代的误差估计式(P17/式 1.2.8)

Proof. 如果映射 G(x) 是一个压缩映射,则存在常数 $\alpha \in [0,1)$,有

$$||G(x) - G(y)|| \leqslant \alpha ||x - y||,$$

由单步迭代,上式等价于

$$||x_{n+1} - x_n|| \le \alpha ||x_n - x_{n-1}||,$$

反复运用上式,得到

$$||x_{n+1} - x_n|| \le \alpha^2 ||x_{n-1} - x_{n-2}||$$

$$\le \alpha^3 ||x_{n-2} - x_{n-3}||$$

$$\cdots$$

$$\le \alpha^n ||x_1 - x_0||$$

所以当 m > n 时,

$$||x_{m} - x_{n}|| \leq ||x_{m} - x_{m-1}|| + ||x_{m-1} - x_{m-2}|| + \dots + ||x_{n+1} - x_{n}||$$

$$\leq (\alpha^{m-n-1} + \alpha^{m-n-2} + \dots + \alpha + 1)||x_{n+1} - x_{n}||$$

$$= \frac{1 - \alpha^{m-n}}{1 - \alpha} ||x_{n+1} - x_{n}||$$

$$\leq \frac{1 - \alpha^{m-n}}{1 - \alpha} \alpha^{n} ||x_{1} - x_{0}||$$

因为 $\alpha \in [0,1)$, 所以令 $m \to \infty$, 有 $\alpha^{m-n} \to 0$, 此时 $x_m \to x^*$, 便得到了不动点迭代的误差估计式:

$$||x^* - x_n|| \le \frac{\alpha^n}{1 - \alpha} ||x_1 - x_0||.$$

4 比较不动点迭代和 Newton-Raphson 迭代,实现数值例子并定性说明理由(P24/2)

取 $G(x)=e^{-x}$ 和 $F(x)=x-e^{-x}$,取 $x_0=1$ 为迭代初始值,则由不动点迭代和 Newton-Raphson 迭代得到的结果与其误差如下表:

n	Fixed-point Iteration			Newton-Raphson Iteration		
	x_n	$\frac{ x_n-x_{n-1} }{ x_n }$	$\frac{ x_n-x^* }{ x^* }$	x_n	$\frac{ x_n - x_{n-1} }{ x_n }$	$\frac{ x_n-x^* }{ x^* }$
0	1.000000	-	1.8e+00	1.000000	-	1.8e+00
1	0.367879	1.7e+00	3.5e-01	0.537883	8.6e-01	5.2e-02
2	0.692201	4.7e-01	2.2e-01	0.566987	5.1e-02	2.8e-04
3	0.500474	3.8e-01	1.2e-01	0.567143	2.8e-04	7.8e-09
4	0.606244	1.7e-01	6.9e-02	0.567143	7.8e-09	2.0e-16
5	0.545396	1.1e-01	3.8e-02	0.567143	2.0e-16	0.0e+00
6	0.579612	5.9e-02	2.2e-02	0.567143	2.0e-16	2.0e-16
7	0.560115	3.5e-02	1.2e-02	0.567143	2.0e-16	0.0e+00
8	0.571143	1.9e-02	7.1e-03	0.567143	2.0e-16	2.0e-16
9	0.564879	1.1e-02	4.0e-03	0.567143	2.0e-16	0.0e+00
10	0.568429	6.2e-03	2.3e-03	0.567143	2.0e-16	2.0e-16
11	0.566415	3.6e-03	1.3e-03	0.567143	2.0e-16	0.0e+00
12	0.567557	2.0e-03	7.3e-04	0.567143	2.0e-16	2.0e-16
13	0.566909	1.1e-03	4.1e-04	0.567143	2.0e-16	0.0e+00
14	0.567276	6.5e-04	2.3e-04	0.567143	2.0e-16	2.0e-16
15	0.567068	3.7e-04	1.3e-04	0.567143	2.0e-16	0.0e+00
16	0.567186	2.1e-04	7.5e-05	0.567143	2.0e-16	2.0e-16
17	0.567119	1.2e-04	4.3e-05	0.567143	2.0e-16	0.0e+00
18	0.567157	6.7e-05	2.4e-05	0.567143	2.0e-16	2.0e-16
19	0.567135	3.8e-05	1.4e-05	0.567143	2.0e-16	0.0e+00
20	0.567148	2.2e-05	7.8e-06	0.567143	2.0e-16	2.0e-16
21	0.567141	1.2e-05	4.4e-06	0.567143	2.0e-16	0.0e+00
22	0.567145	6.9e-06	2.5e-06	0.567143	2.0e-16	2.0e-16
23	0.567142	3.9e-06	1.4e-06	0.567143	2.0e-16	0.0e+00
24	0.567144	2.2e-06	8.1e-07	0.567143	2.0e-16	2.0e-16
25	0.567143	1.3e-06	4.6e-07	0.567143	2.0e-16	0.0e+00
26	0.567143	7.2e-07	2.6e-07	0.567143	2.0e-16	2.0e-16

由 Newton-Raphson 迭代在第四次迭代以后就已经达到了机器精度,故表中精确值 x^* 用牛顿迭代的 x_{29} 代替。而不动点迭代在迭代 24 次以后也没有达到这个精度,这是由于不动点迭代误差有 $|\epsilon_{n+1}| \leq \alpha |\epsilon_n|$,在本例中 $\alpha = |G'(x^*)| \approx 0.567$,而牛顿迭代误差有 $|\epsilon_{n+1}| \approx \rho |\epsilon_n|^2$,在本例中 $\rho = \frac{1}{2} |(F'(x^*))^{-1}||F''(x^*)| \approx 0.181$ 。 α 与 ρ 属同一数量级,而不动点迭代误差是一阶减少,但牛顿迭代误差是二阶的,故收敛较快。这一结果也与表中数据相吻合。

附数据生成代码:

```
1 % Week 1 Problem 4
  % Show accuracy difference between Fixed—point iteration & Newton—Raphson
4 % cheng yu ge
5 % 12307110079
7 G = @(x) \exp(-x);
8 F = @(x)x - exp(-x);
9 F1 = @(x)1 + exp(-x);
10 NRI = @(x)x - F(x)/F1(x);
11 x1 = zeros(1,30); x2 = x1;
12 x1(1) = 1; x2(1) = 1;
13 for i = 2:30
       x1(i) = G(x1(i-1));
       x2(i) = NRI(x2(i-1));
17 xe = x2(30);
18 fprintf('\n_n & FPx_n & FPrel & FPerr & NRx_n & NRrel & NRerr \\\\n');
       fprintf('%2d & %.6f & %.1e & %.1e & %.6f & %.1e & %.1e \\\\n', ...
           i-1, x1(i), abs((x1(i)-x1(i-1))/x1(i)), abs((x1(i)-xe)/xe), ...
           x2(i), abs((x2(i)-x2(i-1))/x2(i)), abs((x2(i)-xe)/xe));
22
23 end
```

5 证明范数等价关系 (P34/1)

对于 n 维向量 x, 当 $1 \le p \le q$ 时,有

$$\|\boldsymbol{x}\|_{\ell_q} \leqslant \|\boldsymbol{x}\|_{\ell_p} \leqslant n^{\frac{1}{p} - \frac{1}{q}} \|\boldsymbol{x}\|_{\ell_q}$$

Proof. 由幂平均不等式, 当 0 时, 有

$$\left(\frac{|x_1|^p + |x_2|^p + \dots + |x_n|^p}{n}\right)^{\frac{1}{p}} \leqslant \left(\frac{|x_1|^q + |x_2|^q + \dots + |x_n|^q}{n}\right)^{\frac{1}{q}},$$

整理后即得到右边的不等式

$$\|\boldsymbol{x}\|_{\ell_p} \leqslant n^{\frac{1}{p} - \frac{1}{q}} \|\boldsymbol{x}\|_{\ell_q}$$
.

另外,将 \boldsymbol{x} 按 q 范数单位化,即令 $\hat{\boldsymbol{x}} = \|\boldsymbol{x}\|_{\ell_q}^{-1} \boldsymbol{x}$,此时 $\|\hat{\boldsymbol{x}}\|_{\ell_q} = 1$,每个分量 $\hat{x}_i = \frac{x_i}{\|\boldsymbol{x}\|_{\ell_q}} \leqslant 1$,所以

$$\left(\frac{x_i}{\|\boldsymbol{x}\|_{\ell_q}}\right)^p \geqslant \left(\frac{x_i}{\|\boldsymbol{x}\|_{\ell_q}}\right)^q \quad (p < q),$$

求和后仍有

$$\sum_{i=1}^{n} \left(\frac{x_i}{\|\mathbf{x}\|_{\ell_q}} \right)^p \geqslant \sum_{i=1}^{n} \left(\frac{x_i}{\|\mathbf{x}\|_{\ell_q}} \right)^q = 1$$

所以

$$\|\hat{x}\|_{\ell_p} = \left(\sum_{i=1}^n \left(\frac{x_i}{\|x\|_{\ell_q}}\right)^p\right)^{\frac{1}{p}} \geqslant 1 = \|\hat{x}\|_{\ell_q}.$$

最后,由范数的齐次性 $\|am{x}\|=a\,\|m{x}\|$,取 $a=\|\hat{m{x}}\|_{\ell_q}^{-1}$ 便得到了左边的不等式 $\|m{x}\|_{\ell_q}\leqslant\|m{x}\|_{\ell_p}\,.$