程度対象件表 $f: |R^{mxn} \rightarrow R f(X)$ $\chi_{11} \chi_{12} \dots \chi_{2n}$ $\chi_{m1} \chi_{m2} \dots \chi_{mn}$ $\chi_{m1} \chi_{m2} \dots \chi_{mn}$ $\chi_{m1} \chi_{m2} \dots \chi_{mn}$

Condition	Expression	Numerator layout, i.e. by y and x ^T	Denominator layout, i.e. by y ^T and x
a is not a function of x	$\frac{\partial \mathbf{a}}{\partial \mathbf{x}} =$	0	
	$\frac{\partial \mathbf{x}}{\partial \mathbf{x}} =$		
A is not a function of x	$\frac{\partial \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} =$	A	$\mathbf{A}^{ op}$
A is not a function of x	$\frac{\partial \mathbf{x}^{\top} \mathbf{A}}{\partial \mathbf{x}} =$	$\mathbf{A}^{ op}$	A
a is not a function of \mathbf{x}_r $\mathbf{u} = \mathbf{u}(\mathbf{x})$	$rac{\partial a {f u}}{\partial {f x}} =$	$a\frac{\partial \mathbf{u}}{\partial \mathbf{x}}$	
$\partial = \partial(\mathbf{x}), \mathbf{u} = \mathbf{u}(\mathbf{x})$	$\frac{\partial a\mathbf{u}}{\partial \mathbf{x}} =$	$a rac{\partial \mathbf{u}}{\partial \mathbf{x}} + \mathbf{u} rac{\partial a}{\partial \mathbf{x}}$	$a\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial a}{\partial \mathbf{x}} \mathbf{u}^\top$
A is not a function of \mathbf{x}_r $\mathbf{u} = \mathbf{u}(\mathbf{x})$	$\frac{\partial \mathbf{A}\mathbf{u}}{\partial \mathbf{x}} =$	$\mathbf{A} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \mathbf{A}^{\top}$
u = u(x), v = v(x)	$rac{\partial (\mathbf{u} + \mathbf{v})}{\partial \mathbf{x}} =$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial \mathbf{v}}{\partial \mathbf{x}}$	
u = u(x)	$\frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{x}} =$	$\frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}}$
u = u(x)	$\frac{\partial f(g(u))}{\partial x} =$	$\frac{\partial \mathbf{f}(\mathbf{g})}{\partial \mathbf{g}} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$	$\frac{\partial \mathbf{u}}{\partial \mathbf{x}} \frac{\partial \mathbf{g}(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathbf{f}(\mathbf{g})}{\partial \mathbf{g}}$

Condition	Expression	Numerator layout, i.e. by x ^T ; result is row vector	Denominator layout, i.e. by x; result is column vector
a is not a function of x	$rac{\partial a}{\partial \mathbf{x}} =$	0 [⊤] [4]	0 [4]
a is not a function of x,	$rac{\partial au}{\partial \mathbf{x}} =$	a.	∂u
$u = u(\mathbf{x})$	$\partial \mathbf{x}$ –	$a\frac{\partial u}{\partial \mathbf{x}}$	
$u = u(\mathbf{x}), \ v = v(\mathbf{x})$	$\frac{\partial (u+v)}{\partial \mathbf{x}} =$	$\frac{\partial u}{\partial \mathbf{x}} + \frac{\partial v}{\partial \mathbf{x}}$	
$u = u(\mathbf{x}), \ v = v(\mathbf{x})$	$rac{\partial uv}{\partial \mathbf{x}} =$	$urac{\partial v}{\partial \mathbf{x}}+vrac{\partial u}{\partial \mathbf{x}}$	
$u = u(\mathbf{x})$	$rac{\partial g(u)}{\partial \mathbf{x}} =$	$rac{\partial g(u)}{\partial u} rac{\partial u}{\partial {f x}}$	
$u = u(\mathbf{x})$	$rac{\partial f(g(u))}{\partial \mathbf{x}} =$	$\frac{\partial f(g)}{\partial g} \frac{\partial g(u)}{\partial u} \frac{\partial u}{\partial \mathbf{x}}$	
u = u(x), v = v(x)	$\frac{\partial (\mathbf{u} \cdot \mathbf{v})}{\partial \mathbf{x}} = \frac{\partial \mathbf{u}^{\top} \mathbf{v}}{\partial \mathbf{x}} =$	$\begin{aligned} \mathbf{u}^\top \frac{\partial \mathbf{v}}{\partial \mathbf{x}} + \mathbf{v}^\top \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \\ \bullet \text{ assumes numerator layout of } \frac{\partial \mathbf{u}}{\partial \mathbf{x}}, \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \end{aligned}$	$\begin{split} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \mathbf{v} + \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \mathbf{u} \\ \bullet \text{ assumes denominator layout of } \frac{\partial \mathbf{u}}{\partial \mathbf{x}}, \frac{\partial}{\partial} \end{split}$
$\mathbf{u} = \mathbf{u}(\mathbf{x}), \mathbf{v} = \mathbf{v}(\mathbf{x}),$ A is not a function of x	$\frac{\partial (\mathbf{u} \cdot \mathbf{A} \mathbf{v})}{\partial \mathbf{x}} = \frac{\partial \mathbf{u}^{\top} \mathbf{A} \mathbf{v}}{\partial \mathbf{x}} =$	$\begin{split} \mathbf{u}^{\top} \mathbf{A} \frac{\partial \mathbf{v}}{\partial \mathbf{x}} + \mathbf{v}^{\top} \mathbf{A}^{\top} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \\ \bullet \text{ assumes numerator layout of } \frac{\partial \mathbf{u}}{\partial \mathbf{x}}, \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \end{split}$	$\begin{split} \frac{\partial \mathbf{u}}{\partial \mathbf{x}} \mathbf{A} \mathbf{v} + \frac{\partial \mathbf{v}}{\partial \mathbf{x}} \mathbf{A}^\top \mathbf{u} \\ \bullet \text{ assumes denominator layout of } \frac{\partial \mathbf{u}}{\partial \mathbf{x}}, \frac{\partial}{\partial} \end{split}$
	$rac{\partial^2 f}{\partial \mathbf{x} \partial \mathbf{x}^T} =$	http	s://blogH, the Hessian matrix[5]
a is not a function of x	$\frac{\partial (\mathbf{a} \cdot \mathbf{x})}{\partial \mathbf{x}} = \frac{\partial (\mathbf{x} \cdot \mathbf{a})}{\partial \mathbf{x}} =$ $\frac{\partial \mathbf{a}^{\top} \mathbf{x}}{\partial \mathbf{x}} = \frac{\partial \mathbf{x}^{\top} \mathbf{a}}{\partial \mathbf{x}} =$	\mathbf{a}^{\top}	a
A is not a function of x b is not a function of x	$\frac{\partial \mathbf{b}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} =$	$\mathbf{b}^{ op}\mathbf{A}$	$\mathbf{A}^{\top}\mathbf{b}$
A is not a function of x	$\frac{\partial \mathbf{x}}{\partial \mathbf{x}} = $	$\mathbf{x}^{\top}(\mathbf{A} + \mathbf{A}^{\top})$	$(\mathbf{A} + \mathbf{A}^{\top})\mathbf{x}$
A is not a function of x		-	
A is symmetric	$\frac{\partial \mathbf{x}^{\top} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}} =$	$2\mathbf{x}^{ op}\mathbf{A}$	2Ax
A is not a function of x	$\frac{\partial^2 \mathbf{x}^\top \mathbf{A} \mathbf{x}}{\partial \mathbf{x}^2} =$	$\mathbf{A} + \mathbf{A}^{\top}$	
A is not a function of x	$\partial^2 \mathbf{x}^{ op} \mathbf{A} \mathbf{x}$	2 A	
A is symmetric	$rac{\partial^2 \mathbf{x}^{ op} \mathbf{A} \mathbf{x}}{\partial \mathbf{x}^2} =$	2	A
	$\frac{\partial (\mathbf{x} \cdot \mathbf{x})}{\partial \mathbf{x}} = \frac{\partial \mathbf{x}^{\top} \mathbf{x}}{\partial \mathbf{x}} =$	$2\mathbf{x}^{\top}$	2 x
\mathbf{a} is not a function of \mathbf{x} , $\mathbf{u} = \mathbf{u}(\mathbf{x})$	$\frac{\partial (\mathbf{a} \cdot \mathbf{u})}{\partial \mathbf{x}} = \frac{\partial \mathbf{a}^{\top} \mathbf{u}}{\partial \mathbf{x}} =$	$\mathbf{a}^{\top} \frac{\partial \mathbf{u}}{\partial \mathbf{x}}$ • assumes numerator layout of $\frac{\partial \mathbf{u}}{\partial \mathbf{x}}$	$\frac{\partial u}{\partial x}a$ • assumes denominator layout of $\frac{\partial u}{\partial x}$
, b are not functions of x	$rac{\partial \mathbf{a}^{ op}\mathbf{x}\mathbf{x}^{ op}\mathbf{b}}{\partial \mathbf{x}} =$	$\mathbf{x}^{\top}(\mathbf{a}\mathbf{b}^{\top}+\mathbf{b}\mathbf{a}^{\top})$	$(\mathbf{a}\mathbf{b}^\top + \mathbf{b}\mathbf{a}^\top)\mathbf{x}$
A, b, C, D, e are not functions of x	$\frac{\partial (\mathbf{A}\mathbf{x} + \mathbf{b})^{\top} \mathbf{C} (\mathbf{D}\mathbf{x} + \mathbf{e})}{\partial \mathbf{x}} =$	$(\mathbf{D}\mathbf{x} + \mathbf{e})^{\top}\mathbf{C}^{\top}\mathbf{A} + (\mathbf{A}\mathbf{x} + \mathbf{b})^{\top}\mathbf{C}\mathbf{D}$	$\mathbf{D}^{\top}\mathbf{C}^{\top}(\mathbf{A}\mathbf{x}+\mathbf{b})+\mathbf{A}^{\top}\mathbf{C}(\mathbf{D}\mathbf{x}+\mathbf{e})$
a is not a function of x	$\frac{\partial \ \mathbf{x} - \mathbf{a}\ }{\partial \mathbf{x}} =$	$\frac{(\mathbf{x} - \mathbf{a})^{T}}{\ \mathbf{x} - \mathbf{a}\ }$ http	x-a s://blog.csdn x∈a aaikuaichu

trca)=g
trcab) =trcBA)
tr (ABC) =tr(CAB)=tr CBCA)
Otrcab = BT
$tr(A) = tr(A^T)$
Otrcabatc) = CAB+CTAI

$$\frac{\partial \beta^{T} \overline{\chi}^{3}}{\partial \overline{\chi}^{3}} = \beta \qquad \frac{\partial \chi^{T} \chi}{\partial \chi} = 2\chi$$

$$\frac{\partial \chi^{T} A \chi}{\partial \chi} = (A + A^{T}) \chi$$