Verificação Formal (2021/22)

Coq (1)

O objectivo desta aula é a familiarização com o sistema Coq, um sistema de gestão e desenvolvimento de prova formal.

Deverá ter instalado o CoqIde. Como alternativa, se for um utilizador do Emacs, poderá instalar o Coq e o modo Proof-General para o Emacs (e opcionalmente o Company-Coq). Poderá ainda correr o sistema Coq num browser com o jsCoq.

O website do Coq disponibiliza toda a documentação, assim como diversos livros e tutoriais que fornecem uma introdução rápida ao sistema Coq.

1 Aspectos básicos do desenvolvimento de provas em Coq

Vamos ilustrar os aspectos mais básicos do Coq como ferramenta de prova, tendo por base exemplos da lógica proposicional e da lógica de $1^{\underline{a}}$ ordem que se demonstram com base num raciocínio deductivo.

Comece por invocar o sistema Coq e carregue o ficheiro lesson1.v.

Neste ficheiro pretendemos ir apresentado a sintaxe do Coq e ilustrar o funcionamento de vários comandos e tácticas de prova através de vários exemplos comentados.

Execute, passo a passo, as instruções deste ficheiro e analize o seu efeito. Atente nos comentários lá colocados e no efeito da aplicação de cada táctica de prova na evolução do estado da prova.

Recorde algumas das tácticas básicas de prova:

	Introduction	Elimination $(H \text{ of type } P)$
		$ ext{elim } H, ext{contradiction}$
$\neg A$	intro	apply H
$A \wedge B$	split	elim H , destruct H as [H1 H2]
$A \Rightarrow B$	intro	apply H
$A \lor B$	left, right	elim H , destruct H as [H1 H2]
$\forall x : A. Q$	intro	apply H
$\exists x : A. Q$	exists witness	$ ext{elim } H, ext{destruct } H ext{ as } ext{[x H1]}$

intro, intros – regra de introdução para Π (várias vezes).

apply – regra de eliminação para Π.

assumption – regra da assunção (quando a conclusão aparece também como uma hipótese).

exact – apresenta diretamente um termo de prova (exacto) para a conclusão.

Recorde algumas tácticas automáticas de prova:

trivial – tenta as tácticas que podem resolver aprova num passo.

auto – tenta uma combinação de tácticas intro, apply e assumption usando os teoremas armazenados numa base de dados como dicas para essa táctica.

tauto, intuition – útil para provar tautologias da lógica proposicional intuicionista.

firstorder – útil para provar fatos que são tautologias da lógica de $1^{\underline{a}}$ ordem intuicionista.

Complete as provas em falta, substituindo o comando Admitted e por uma script de prova apropriada.

Crie agora um novo ficheiro Coq para desenvolver as provas das propriedades que se seguem.

2 Lógica proposicional

Prove as seguintes tautologias da lógica proposicional:

1.
$$(A \lor B) \lor C \to A \lor (B \lor C)$$

2.
$$(B \to C) \to A \lor B \to A \lor C$$

3.
$$(A \wedge B) \wedge C \rightarrow A \wedge (B \wedge C)$$

4.
$$A \lor (B \land C) \rightarrow (A \lor B) \land (A \lor C)$$

5.
$$(A \land B) \lor (A \land C) \leftrightarrow A \land (B \lor C)$$

6.
$$(A \lor B) \land (A \lor C) \leftrightarrow A \lor (B \land C)$$

3 Lógica de primeira ordem

Prove os seguintes teoremas da lógica de primeira ordem:

1.
$$(\exists x. P(x) \land Q(x)) \rightarrow (\exists x. P(x)) \land (\exists x. Q(x))$$

2.
$$(\exists x. \forall y. P(x,y)) \rightarrow \forall y. \exists x. P(x,y)$$

3.
$$(\exists x.P(x)) \to (\forall x.\forall y.P(x) \to Q(y)) \to \forall y.Q(y)$$

4.
$$(\forall x.Q(x) \to R(x)) \to (\exists x.P(x) \land Q(x)) \to \exists x.P(x) \land R(x)$$

5.
$$(\forall x. P(x) \to Q(x)) \to (\exists x. P(x)) \to \exists y. Q(y)$$

6.
$$(\exists x. P(x)) \lor (\exists x. Q(x)) \leftrightarrow (\exists x. P(x) \lor Q(x))$$

4 Lógica clássica

Assumindo o princípio do meio excluído como axioma, prove que:

- $1. \ ((A \rightarrow B) \rightarrow A) \rightarrow A \quad (lema \ de \ Pierce)$
- $2. \ \neg \neg A \to A$
- 3. $\neg \forall x. P(x) \rightarrow \exists x. \neg P(x)$