Intro to LLMs for software engineering and a paper on code representations

The EarlyBIRD Catches the Bug:
On Exploiting Early Layers of Encoder Models for More Efficient Code Classification

Anastasiia Grishina (Angie, she/her)

Ph.D. candidate, Simula Research Laboratory, Oslo, Norway Enrichment Student Oct'23-Mar'24, The Alan Turing Institute, London, UK

Agenda

- About me
- Background: language models for code
 - Model types
 - Downstream tasks
 - Performance
 - Benchmarks
 - Open challenges
- Motivation for using early encoder layers
- Methodology of combining layers
- Empirical evaluation
- Conclusion and future work

About me

PhD student in computer science, finishing in Aug-Sep 2024

I'm Siberian but lived in 6 countries in the past 6 years

Simula Research Laboratory and the University of Oslo

The Alan Turing Institute

London, UK October 2023 – March 2024

About Simula

main activities

150 employees;

founded in 2001;

offices in Oslo and Bergen, Norway

Overview of language models for code I. Transformer model types

Architecture	Purpose	Example use cases	Example models
Encoder-only	Create a (low-dimensional) representation of input	Classification	NLP: BERT (Google), RoBERTa (Meta), DeBERTa (Microsoft) SE: CodeBERT, ContraBERT, StarEncoder
Encoder- decoder	Represent input sequence and generate output sequence token-by-token	Text and code representation and generation	NLP: T5 (Google) and BART (Meta) SE: CodeT5+, AlphaCode, PLBART, PYMT5
Decoder-only	Generate output sequence token-by- token based on input context and previoussly generated tokens	Text and code generation	NLP: GPT models (OpenAI), Llama (Meta) SE: Codex (Copilot), CodeLlama, StarCoder, Incoder

Overview of language models for code I. Transformer model types

Architecture Purpose

Encoder-only Create a (low-dimensional)

representation of input

Encoder- Represent input sequence and

decoder generate output sequence

token-by-token

Decoder-only Generate output sequence

token-by-token

Overview of language models for code

Source:
Hou, et al. 2023,
Large Language
Models for Software
Engineering:
A Systematic
Literature Review
https://arxiv.org/pdf
/2308.10620.pdf

Overview of language models for code II. Downstream Tasks

Benchmarks

CodeXGlue¹ (program repair, bug detection, and more)

HumanEval² (code generation)

Category	Task	Dataset Name	Language	Train/Dev/Test Size	Baselines	Task definition
	Clone Detection	BigCloneBench	Java	900K/416K/416K		Predict semantic equivalence for a pair of codes.
	Cione Detection	POJ-104	C/C++	32K/8K/12K		Retrieve semantically similar codes.
	Defect Detection	Devign	С	21k/2.7k/2.7k		Identify whether a function is vulnerable.
	Cloze Test	CT-all	Python, Java, PHP, JavaScript, Ruby, Go	-/-/176k	CodeBERT	Tokens to be predicted come from the entire vocab.
Code-Code	5.525 .551	CT-max/min	Python, Java, PHP, JavaScript, Ruby, Go	-/-/2.6k		Tokens to be predicted come from (max, min).
		PY150	Python	100k/5k/50k		
C	Code Completion	GitHub Java Corpus	Java	13k/7k/8k	CodeGPT	Predict following tokens given contexts of codes.
	Code Repair	Bugs2Fix	Java	98K/12K/12K	Encoder-	Automatically refine codes by fixing bugs.
	Code Translation	CodeTrans	Java-C#	10K/0.5K/1K	Decoder	Translate the codes from one programming language to another programming language.
	NL Code Search	CodeSearchNet, AdvTest	Python	251K/9.6K/19K	CI-DEDT	Given a natural language query as input, find semantically similar codes.
Text-Code	NL Code Search	CodeSearchNet, WebQueryTest	Python	251K/9.6K/1k	CodeBERT	Given a pair of natural language and code, predict whether they are relevant or not.
	Text-to-Code Generation	CONCODE	Java	100K/2K/2K	CodeGPT	Given a natural language docstring/comment as input, generate a code.
Code-Text	Code Summarization	CodeSearchNet	Python, Java, PHP, JavaScript, Ruby, Go	908K/45K/53K	Encoder-	Given a code, generate its natural language docstring/comment.
Text-Text	Documentation Translation	Microsoft Docs	English- Latvian/Danish/Norw egian/Chinese	156K/4K/4K	Decoder	Translate code documentation between human languages (e.g. En-Zh), intended to test low-resource multi-lingual translation.

¹ S. Lu *et al.*, "CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding and Generation," in *NeurIPS*, Dec. 2021, pp. 1–16. Available: [paper] [dashboard]

² M. Chen et al., "Evaluating Large Language Models Trained on Code." arXiv, Jul. 14, 2021. doi: 10.48550/arXiv.2107.03374.

Overview of language models for code III. Model performance

Benchmarks

CodeXGlue¹ (program repair, bug detection, and more)

HumanEval² (code generation)

[Figure 4 in https://aps.arxiv.org/abs/2310.03533]

¹ S. Lu *et al.*, "CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding and Generation," in *NeurIPS*, Dec. 2021, pp. 1–16. Available: [paper] [dashboard]

² M. Chen et al., "Evaluating Large Language Models Trained on Code." arXiv, Jul. 14, 2021. doi: 10.48550/arXiv.2107.03374.

Overview of language models for code IV. Benchmarks

Benchmarks

CodeXGlue [paper] [dashboard] – program repair, bug detection, and more

HumanEval [HF card] – code generation

HumanEval-X [HF card] — multi-lingual code generation

Mostly Basic Python Problems (MBPP) [HF card]

Automated program repair: Defects4J, QuixBugs, ManyBugs

Overview of language models for code V. Challenges

Tokenization: out of vocabulary words

Encoding: context and method calls from different locations

Evaluation of generated code: semantic equivalence and logic of code

Prompt engineering

Test correctness and coverage in test generation

Hallucination

¹ A.Fan *et al.*, "Large Language Models for Software Engineering: Survey and Open Problems," https://aps.arxiv.org/abs/2310.03533

Overview of language models for code I. Transformer model types

Architecture Purpose		Example use cases	Example models
Encoder-only	Create a (low-dimensional) representation of input	Classification	NLP: BERT (Google), RoBERTa (Meta), DeBERTa (Microsoft) SE: CodeBERT, ContraBERT, StarEncoder
Encoder- decoder	Represent input sequence and generate output sequence token-by-token	Text and code representation and generation	NLP: T5 (Google) and BART (Meta) SE: CodeT5+, AlphaCode, PLBART, PYMT5
Decoder-only	Generate output sequence token-by- token based on input context and previously generated tokens	Text and code generation	NLP: GPT models (OpenAI), Llama (Meta) SE: Codex (Copilot), CodeLlama, StarCoder, Incoder

Motivation for using early encoder layers

Input sequences are usually represented by the CLS (first) token of the last encoder layer

Methodology of combining encoder layers

Combination operations

max pooling weighted sum slicing pruning

Performed over

layers tokens

Methodology of combining layers

Combination operations

- (2) max pooling
- (2) weighted sum
- (1) slicing CLS tokens pruning

Performed over

(2) layers

tokens (in one layer)

Methodology of combining layers

Combination operations

- (2) max pooling
- (2) weighted sum
- (1) slicing one layer pruning

Performed over

layers

(2) tokens (in one layer)

Methodology of combining layers: pruning

Combination operations

max pooling weighted sum

- (2) slicing CLS token
- (1) pruning

Performed over

layers

(2) tokens (in one layer)

Empirical evaluation

1. Build the model

2. Fine-tune the model x10 runs with different seeds

3. Evaluate classification performance x10 runs

Research objectives

RQ1. Study the performance of combined representations vs. baseline on code classification (same model size)

RQ2. Study the performance of code representations from pruned models (smaller models)

Empirical evaluation setup

Model: CodeBERT

125M parameters

pre-trained on NL-PL multi-lingual data:

2.1M bimodal datapoints and 6.4M unimodal codes across six languages (Python, Java, JavaScript, PHP, Ruby, and Go)

datasat	languaga	# alassas		#	# code examples			
dataset	language	# classes	avg # tokens	train	valid	test		
Devign	C/C++	2	614	22k	3k	2k		
ReVeal	C/C++	2	512	18k	2k	2k		
BIFI	Python	3	119	20k	2k	15k		
Exception Type	Python	20	404	18k	2k	10k		

F1 weighted, difference with baseline (bsln)

* - differences that are statistically significant according to the Wilcoxon test

F1 weighted, difference with baseline (bsln)

RQ1. Performance of combined representations vs. baseline on code classification (same model size)

^{* -} differences that are statistically significant according to the Wilcoxon test

Accuracy, difference with baseline (bsln)

* - differences that are statistically significant according to the Wilcoxon test

RQ2. Performance of code representations from pruned models

(smaller models)

same or better performance with the pruned model vs. the full-size model for bug detection (2 classes) datasets

performance vs. speed up (model size) trade-off for datasets with more classes

The EarlyBIRD Catches the Bug: On Exploiting Early Layers of Encoder Models for More Efficient Code Classification

F1 weighted, difference with baseline (bsln)

* - differences that are statistically significant according to the Wilcoxon test

large, medium, and small - effect sizes

Time – for 1 epoch of fine-tuning

Speed-up – gained by pruning layers and fine-tuning a smaller model

	Devign			ReVeal			BIFI			Exception Type						
l	Time	Speed-up	Acc	F1(w)	Time	Speed-up	Acc	F1(w)	Time	Speed-up	Acc	F1(w)	Time	Speed-up	Acc	F1(w)
12	8:50	1.0x	61.7	60.4	6:57	1.0x	89.2	88.5	8:41	1.0x	96.7	96.7	7:22	1.0x	75.4	75.3
11.0	8:03	1.1x	+0.3	-0.1*	6:56	1.0x	+0.6	+0.3	7:07	1.2x	-0.1*	-0.1*	6:33	1.1x	-1.0	-1.0
10.0	7:13	1.2x	+0.1	+0.3	6:20	1.1x	+0.2	-0.0*	6:22	1.4x	-0.3	-0.3	6:01	1.2x	-1.8	-1.8
9.0	6:40	1.3x	+0.3	+0.5	5:53	1.2x	+0.3	-0.1*	5:46	1.5x	-0.5	-0.5	5:29	1.3x	-2.2	-2.3
8.0	5:52	1.5x	+0.9	+1.1	5:15	1.3x	+0.2	-0.1*	5:13	1.7x	-0.6	-0.6	4:55	1.5x	-3.0	-3.0
7.0	5:23	1.6x	+1.4	+2.2	4:44	1.5x	+0.3	+0.2	4:43	1.8x	-1.1	-1.1	4:20	1.7x	-4.1	-4.4
6.0	4:54	1.8x	+1.4	+2.0	4:25	1.6x	+0.3	+0.1	4:10	2.1x	-1.7	-1.7	3:50	1.9x	-6.1	-6.6
5.0	4:03	2.2x	+1.0	+1.5	3:45	1.9x	+0.1	+0.2	3:31	2.5x	-3.0	-3.0	3:15	2.3x	-7.3	-7.7
4.0	3:22	2.6x	+1.2	+1.6	3:06	2.2x	-0.2*	+0.2	2:53	3.0x	-6.8	-6.8	2:41	2.7x	-8.3	-9.2
3.0	2:41	3.3x	+2.0	<u>+2.4</u>	2:28	2.8x	+0.1	+0.3	2:15	3.8x	-11.3	-11.3	2:10	3.4x	-10.7	-12.0
2.0	2:00	4.4x	+1.0	+1.9	1:52	3.7x	+0.4	<u>+0.6</u>	1:34	5.5x	-14.7	-14.8	1:34	4.7x	-15.4	-17.1
1.0	1:18	6.8x	-3.2	-2.3	1:13	5.7x	+0.8	-1.2	0:58	9.0x	-27.2	-27.3	0:59	7.4x	-27.3	-30.7

simula Thank you!

Conclusion and future work

EarlyBIRD is an approach to combine early layers of encoder models for code representation that are further used for downstream tasks

The approach is tested on 4 datasets for code classification

Max pooling and usage of CLS tokens from the last layer (baseline) and earlier layers yield better performance for defect detection

Pruned models performed better on defect detection datasets. They reduce resource usage for multi-class settings.

Future work involves testing on two more models, StarEncoder and ContraBERT, and possibly compare pruned models with parameter-efficient fine-tuning methods

Goal

Automate source code analysis and repair

Objectives

- Bug detection: reduce the number of layers without performance loss
- explore code repair abilities of code-to-code translation models
- build pipelines for fully autonomous programming

Wilcoxon test

The Wilcoxon test is a non-parametric test suitable for the setting in which different model variants are tested on the same test set, because it is a paired test

The Wilcoxon test checks the null hypothesis whether two related paired samples come from the same distribution.

We reject the null hypothesis if p-value is less than $\alpha = 0.05$.

Frank Wilcoxon. 1992. Individual Comparisons by Ranking Methods. In Breakthroughs in Statistics: Methodology and Distribution, Samuel Kotz and Norman L. Johnson (Eds.). Springer, New York, NY, 196–202. https://doi.org/10.1007/978-1-4612-4380-9 16

A12 statistics

The A12 statistics measures the probability that running algorithm X yields higher performance than running another algorithm Y.

```
A12 = \#(X > Y)/mn + 0.5*\#(X=Y)/mn
```

```
m - number of runs of algorithm X;
```

n - number of runs of algorithm Y.

For the pruned models, we compute Vargha and Delaney's A12 non-parametric effect size measure of the performance change for accuracy and F1(w) with thresholds of 0.71, 0.64 and 0.56 for large, medium and small effect sizes

András Vargha and Harold D. Delaney. 2000. A Critique and Improvement of the CL Common Language Effect Size Statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics 25, 2 (June 2000), 101–132.

https://doi.org/10.3102/10769986025002101

Pseudo-code: [github-gist]

Dataset details

Devign

Balanced (54% non-vulnerable functions), C/C++, vulnerability detection, 2 classes

ReVeal

Not balanced (90% non-vulnerable functions), C/C++, vulnerability detection, 2 classes

BIFI

Python, syntax error classification, 3 classes: Unbalanced Parentheses (43%), Indentation Error (31%), Invalid Syntax (26%)

Exception Type
Python, exception type prediction, 20 classes

	train	valid	test
ValueError	3417	415	2016
KeyError	3384	362	1926
AttributeError	2444	274	1372
TypeError	1564	156	809
OSError	1396	131	779
IOError	1318	136	721
ImportError	1180	170	690
IndexError	1035	139	586
KeyboardInterrupt	509	58	232
StopIteration	432	61	270
AssertionError	323	29	155
RuntimeError	247	34	107
NotImplementedError	206	24	119
SystemExit	200	16	105
ObjectDoesNotExist	197	16	95
UnicodeDecodeError	196	21	134
NameError	166	19	78
ValidationError	159	16	92
HTTPError	104	9	55
DoesNotExist	3	2	7
Total	18480	2088	10348

State-of-the-art results on selected benchmarks

CodeXGLUE Defect Detection (Code-Code) Rank Model Organization Date \$ Accuracy \$ UniXcoder-nine-MLP Academy of Milit... 2023-05-22 69.29 CoTexT Case Western R... 2021-04-23 66.62 C-BERT AI4VA (IBM Res... 2021-03-19 65.45

(c) Scenario-B: Using	Retrained N	Models with	Real-world Data.

Dataset	Input	Approach	Acc	Prec	Recall	F1
	Token	Russell et al.	90.98 (0.75)	24.63 (5.35)	10.91 (2.47)	15.24 (2.74)
REVEAL dataset	Slice +	VulDeePecker	89.05 (0.80)	17.68 (7.51)	13.87 (8.53)	15.7 (6.41)
	Token	SySeVR	84.22 (2.48)	24.46 (4.85)	40.11 (4.71)	30.25 (2.35)
	Graph	Devign	88.41 (0.66)	34.61 (3.24)	26.67 (6.01)	29.87 (4.34)

Learning and Evaluating Contextual Embedding of Source Code

	Setting	5	Misuse	Operator	Operand	Docstring	Exception
	From scrat	ch	76.29%	83.65%	88.07%	76.01%	52.79%
BiLSTM	CBOW	ns	80.33%	$\pmb{86.82\%}$	89.80%	89.08%	$\mathbf{67.01\%}$
·-	CBOM	hs	78.00%	85.85%	$\boldsymbol{90.14\%}$	87.69%	60.31%
(100 epochs)	Skipgram	ns	77.06%	85.14%	89.31%	83.81%	60.07%
		hs	80.53%	86.34%	89.75%	88.80%	65.06%
	2 epochs		94.04%	89.90%	92.20%	97.21%	61.04%
CuBERT	10 epochs		95.14%	92.15%	93.62%	98.08%	77.97%
	20 epochs		95.21%	92.46%	93.36%	98.09%	79.12%
Transformer	100 epochs		78.28 %	76.55%	87.83%	91.02%	49.56%

BIFI: repair accuracy (not classification) ~90