Retirement Savings Calculation

Part (a): Calculate the amount at age 65

Given:

- Current age = 33 years
- Annual savings = \$8,000
- Interest rate = 10%
- Number of years saving = 32 years (65 33)

Future Value of an Annuity Formula:

```
FV = P \times [(1 + r)^n - 1] / r
```

Step 1: Calculate the future value

 $FV = 8000 \times [(1 + 0.10)^32 - 1] / 0.10$

 $(1 + 0.10)^32 \approx 17.4494$

 $FV = 8000 \times (17.4494 - 1) / 0.10$

 $FV = 8000 \times 164.494$

FV ≈ \$1,315,952.00

Explanation: Using the Future Value of an Annuity formula, the future value of the savings is calculated by substituting the given values of annual payment, interest rate, and number of periods.

Supporting Statement: The calculation shows that by saving \$8,000 annually at an interest rate of 10%, the client will have approximately \$1,315,952.00 at age 65.

Part (b): Calculate the amount at age 70

Given:

- Age to retire = 70
- Number of years saving = 37 years (70 33)
- Annual savings = \$8,000
- Interest rate = 10% annually

Step 2: Calculate the future value

 $FV = 8000 \times [(1 + 0.10)^37 - 1] / 0.10$

(1 + 0.10)^37 ≈ 28.1024

 $FV = 8000 \times (28.1024 - 1) / 0.10$

FV = 8000 × 271.024

FV ≈ \$2,168,192.00

Explanation: Using the same formula with updated values for the number of periods (37 years), the future value at age 70 is calculated.

Supporting Statement: The calculation shows that by saving \$8,000 annually at an interest rate of 10%, the client will have approximately \$2,168,192.00 at age 70.

Part (c): Calculate the annual withdrawals at each retirement age

Given:

- Expected life after retirement at 65 = 20 years
- Expected life after retirement at 70 = 15 years
- Interest rate = 10%

Withdrawal Amount Calculation Using the Present Value of Annuities Formula:

Retirement at 65:

Step 3: Calculate the annual withdrawal amount

Given PV = 1,315,952.00:

 $1,315,952.00 = PMT \times [1 - (1 + 0.10)^{-20}] / 0.10$

 $PMT = 1,315,952.00 \times 0.10 / [1 - 0.1486]$

PMT ≈ \$154,554.06

Explanation: Using the Present Value of Annuities formula, the annual withdrawal amount if the client retires at 65 and withdraws evenly over 20 years is calculated.

Supporting Statement: The client will be able to withdraw approximately \$154,554.06 annually for 20 years if retiring at 65.

Retirement at 70:

Step 4: Calculate the annual withdrawal amount

Given PV = 2,168,192.00:

 $2,168,192.00 = PMT \times [1 - (1 + 0.10)^{-15}] / 0.10$

 $PMT = 2,168,192.00 \times 0.10 / [1 - 0.2394]$

PMT ~ \$284,918.92

Explanation: Using the Present Value of Annuities formula, the annual withdrawal amount if the client retires at 70 and withdraws evenly over 15 years is calculated.

Supporting Statement: The client will be able to withdraw approximately \$284,918.92 annually for 15 years if retiring at 70.

Final Solution:

- At age 65, the future value of savings is approximately \$1,315,952.00.
- At age 70, the future value of savings is approximately \$2,168,192.00.
- Annual withdrawals:
 - \$154,554.06 if retiring at 65.
 - \$284,918.92 if retiring at 70.