The Code Thus Far...

In this lesson, we will take a look at the code we have created so far.

Let's take a breath and pause to check what the code for the neural network class we're building up looks like. It should look something like the following.

```
# neural network class definition
class neuralNetwork:
   # initialise the neural network
   def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate):
       # set number of nodes in each input, hidden, output layer
        self.inodes = inputnodes
        self.hnodes = hiddennodes
        self.onodes = outputnodes
        # link weight matrices, wih and who
        # weights inside the arrays are w_i_j, where link is from node i to node j in the nex
        # w11 w21
        # w12 w22 etc
        self.wih = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.hnodes, self.inodes
        self.who = numpy.random.normal(0.0, pow(self.onodes, -0.5), (self.onodes, self.hnodes
        # learning rate
        self.lr = learningrate
        # activation function is the sigmoid function
        self.activation_function = lambda x: scipy.special.expit(x)
        pass
   # train the neural network
   def train():
       pass
   # query the neural network
   def query(self, inputs_list):
        # convert inputs list to 2d array
        inputs = numpy.array(inputs_list, ndmin=2).T
        # calculate signals into hidden layer
        hidden_inputs = numpy.dot(self.wih, inputs)
        # calculate the signals emerging from hidden layer
        hidden_outputs = self.activation_function(hidden_inputs)
        # calculate signals into final output layon
```

```
final_inputs = numpy.dot(self.who, hidden_outputs)
# calculate the signals emerging from final output layer
final_outputs = self.activation_function(final_inputs)

return final_outputs
```

That is just the class, aside from that we should be importing the numpy and scipy.special modules right at the top of the code in the cell below:

```
import numpy
# scipy.special for the sigmoid function expit()
import scipy.special
```

It is worth briefly noting the query() function only needs the input_list. It
doesn't need any other input.

That's good progress, and now we look at the missing piece, the train()
function. Remember there are two phases to training, the first is calculating the output just as query() does it, and the second part is backpropagating the errors to inform how the link weights are refined.