Factor Graph and Constraint Satisfaction Problems (CSPs) 2

Hwanjo Yu POSTECH

http://di.postech.ac.kr/hwanjoyu

Roadmap

Modeling

Definitions

Examples

Backtracking (exact) search

Dynamic ordering

Arc consistency

Approximate search

Beam search

Local search

Review: factor graph and CSPs

Definition: factor graph

• Variables:

$$X = (X_1, ..., X_n)$$
, where $X_i \in Domain_i$

• Factors:

$$f_1, \dots, f_m$$
, with each $f_i(X) \ge 0$

Definition: assignment weight

• Each assignment $x = (x_1, ..., x_n)$ has a weight:

Weight(
$$x$$
) = $\prod_{j=1}^{m} f_j(x)$

Objective: find the maximum weight assignment

$$\underset{x}{arg} \max_{x} Weight(x)$$

Hwanjo Yu, POSTECH

Partial assignment weights

• Compute weight of partial assignments as we go. (Weight of partial assignment is product of all factors whose scope includes <u>only</u> assigned variables.)

Dependent factors

• Partial assignment (e.g., $x = \{WA: R, NT: G\}$)

Definition: dependent factors

- Let $D(x, X_i)$ be set of factors depending on X_i but not on unassigned variables.
- $D(\{WA: \mathbb{R}, NT: \mathbb{G}\}, SA) = \{[WA \neq SA], [NT \neq SA]\}$

Backtracking search

Algorithm: backtracking search

- Backtrack(*x*, *w*, Domains):
 - If x is complete assignment: update best and return
 - Choose unassigned VARIABLE X_i
 - Order VALUES Domain_i of chosen X_i
 - For each value *v* in that order:
 - $\delta \leftarrow \prod_{f_j \in D(x, X_i)} f_j(x \cup \{X_i : v\})$
 - If $\delta = 0$: continue
 - Domains' ← Domains via LOOKAHEAD
 - If any Domains' is empty: continue
 - Backtrack($x \cup \{X_i : v\}, w\delta$, Domains')

Backtracking search: Lookahead (forward checking)

Key idea: forward checking (one-step lookahead)

- After assigning a variable X_i , eliminate inconsistent values from the domains of X_i 's neighbors.
- If any domain becomes empty, return.

Choosing an unassigned variable

Which variable to assign next?

Key idea: most constrained variable

• Choose variable that has the smallest domain.

This example: SA (has only one value)

Order values of a selected variable

What values to try for Q?

2+2+2=6 consistent values 1+1+2=4 consistent values

Key idea: least constrained value

• Order values of selected X_i by decreasing number of consistent values of neighboring variables.

When to fail?

Most constrained variable (MCV):

- Must assign **every** variable
- If going to fail, fail early => more pruning

Least constrained **value** (LCV):

- Need to choose **some** value
- Choosing value most likely to lead to solution

When do these heuristics help?

- Most constrained variable: useful when some factors are constraints (can prune assignments with weight 0)
- Least constrained value: useful when **all** factors are constraints (all assignment weights are 1 or 0)
- Forward checking: needed to prune domains to make heuristics useful!

Review: backtracking search with heuristics

Algorithm: backtracking search

- Backtrack(*x*, *w*, Domains):
 - If x is complete assignment: update best and return
 - Choose unassigned **VARIABLE** X_i (MCV)
 - Order **VALUES** Domain_i of chosen X_i (LCV)
 - For each value v in that order:
 - $\delta \leftarrow \prod_{f_j \in D(x, X_i)} f_j(x \cup \{X_i : v\})$
 - If $\delta = 0$: continue
 - Domains' ← Domains via LOOKAHEAD (forward checking)
 - If any Domains' is empty: continue
 - Backtrack($x \cup \{X_i : v\}, w\delta$, Domains')

Roadmap

Modeling

Definitions

Examples

Backtracking (exact) search

Dynamic ordering

Arc consistency

Approximate search

Beam search

Local search

Review: backtracking search with heuristics

Algorithm: backtracking search

- Backtrack(*x*, *w*, Domains):
 - If x is complete assignment: update best and return
 - Choose unassigned **VARIABLE** X_i (MCV)
 - Order **VALUES** Domain_i of chosen X_i (LCV)
 - For each value v in that order:
 - $\delta \leftarrow \prod_{f_j \in D(x, X_i)} f_j(x \cup \{X_i : v\})$
 - If $\delta = 0$: continue
 - Domains' ← Domains via LOOKAHEAD (AC-3)
 - If any Domains' is empty: continue
 - Backtrack($x \cup \{X_i : v\}, w\delta$, Domains')

Arc consistency

Idea: eliminate values from domains => reduce branching

Example: numbers

- Before enforcing arc consistency on X_i :
 - $X_i \in Domain_i = \{1,2,3,4,5\}$
 - $X_j \in Domain_j = \{1,2\}$
 - Factor: $[X_i + X_j = 4]$
- After enforcing arc consistency on X_i :
 - $X_i \in Domain_i = \{2,3\}$

Arc consistency

Definition: arc consistency

• A variable X_i is **arc consistent** with respect to X_j if for each $x_i \in Domain_i$, there exists $x_j \in Domain_j$ such that $f(\{X_i: x_i, X_j: x_j\}) \neq 0$ for all factors f whose scope contains X_i and X_j .

Algorithm: enforce arc consistency

• EnforceArcConsistency(X_i , X_j): Remove values from Domain_i to make X_i arc consistent with respect to X_j .

AC-3 (example)

AC-3

Forward checking: when assign X_j : x_j , set $Domain_j = \{x_j\}$ and enforce arc consistency on all neighbors X_i with respect to X_j

AC-3: repeatedly enforce arc consistency on all variables

Algorithm: AC-3

- $S \leftarrow \{X_i\}$.
- While *S* is non-empty:
 - Remove any X_i from S.
 - For all neighbors X_i of X_j :
 - Enforce arc consistency on X_i w.r.t. X_i .
 - If Domain_i changed, add X_i to S.

Limitations of AC-3

• AC-3 isn't always effective:

- No consistent assignments, but AC-3 doesn't detect a problem!
- Intuition: if we look locally at the graph, nothing blatantly wrong...

Summary

- Enforcing arc consistency: make domains consistent with factors
- Forward checking: enforces arc consistency on neighbors
- AC-3: enforces arc consistency on neighbors and their neighbors, etc.
- Lookahead can speed up backtracking search!

Roadmap

Modeling

Definitions

Examples

Backtracking (exact) search

Dynamic ordering

Arc consistency

Approximate search

Beam search

Local search

Review: factor graph and CSPs

Definition: factor graph

• Variables:

$$X = (X_1, ..., X_n)$$
, where $X_i \in Domain_i$

• Factors:

$$f_1, \dots, f_m$$
, with each $f_j(X) \ge 0$

Definition: assignment weight

• Each assignment $x = (x_1, ..., x_n)$ has a weight:

Weight(
$$x$$
) = $\prod_{j=1}^{m} f_j(x)$

Objective: find the maximum weight assignment

$$\underset{x}{arg} \max_{x} Weight(x)$$

Example: object tracking

$$\begin{bmatrix} x_1 & o_1(x_1) \\ 0 & 2 \\ 1 & 1 \\ 2 & 0 \end{bmatrix}$$

$$\begin{bmatrix} x_2 & o_2(x_2) \\ 0 & 0 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$$

$$x_3 \ o_3(x_3)$$
0 0
1 1
2 2

$$|x_i - x_{i+1}| \ t_i(x_i, x_{i+1})$$
0 2
1 1
2 0

Review: backtracking search

Vanilla version:

$$O(|Domain|^n)$$
 time

Lookahead: forward checking, AC-3

 $O(|Domain|^n)$ time

Dynamic ordering: most constrained variable, least constrained value $O(|Domain|^n)$ time

Note: these pruning techniques useful only for constraints. What if all the factors return strictly positive values?

Backtracking search

Greedy search

Greedy search

Algorithm: greedy search

- Partial assignment $x \leftarrow \{\}$
- For each i = 1, ..., n:
 - Extend:
 - Compute weight of each $x_v = x \cup \{X_i : v\}$
 - Prune:
 - $x \leftarrow x_v$ with highest weight

Not guaranteed to find optimal assignment!

Beam search

Beam size K = 4

Beam search

Idea: keep $\leq K$ candidate list C of partial assignments

Algorithm: beam search

- Initialize $C \leftarrow [\{\}]$
- For each i = 1, ..., n:
 - Extend:
 - $C' \leftarrow \{x \cup \{X_i : v\} : x \in C, v \in Domain_i\}$
 - Prune:
 - $C \leftarrow K$ elements of C' with highest weights

Not guaranteed to find optimal assignment!

Beam search

Time complexity:

- K = 1 is greedy (O(nb)) time) with branching factor b = |Domain|.
- $K = \infty$ is BFS tree search $(O(b^n)$ time)
- $O(n \cdot (Kb) \cdot \log(Kb))$ with beam size K (since need to sort Kb candidates)
- Beam size *K* controls tradeoff between efficiency and accuracy
- Backtracking search : DFS :: beam search : pruned BFS

Roadmap

Modeling

Definitions

Examples

Backtracking (exact) search

Dynamic ordering

Arc consistency

Approximate search

Beam search

Local search

Review: factor graph and CSPs

Definition: factor graph

• Variables:

$$X = (X_1, ..., X_n)$$
, where $X_i \in Domain_i$

• Factors:

$$f_1, \dots, f_m$$
, with each $f_i(X) \ge 0$

Definition: assignment weight

• Each assignment $x = (x_1, ..., x_n)$ has a weight:

Weight(
$$x$$
) = $\prod_{j=1}^{m} f_j(x)$

Objective: find the maximum weight assignment

$$\underset{x}{arg} \max_{x} Weight(x)$$

Local search

• Backtracking/beam search: extend partial assignments

• Local search: modify complete assignments

Example: object tracking

$$\begin{bmatrix} x_1 & o_1(x_1) \\ 0 & 2 \\ 1 & 1 \\ 2 & 0 \end{bmatrix}$$

$$\begin{bmatrix} x_2 & o_2(x_2) \\ 0 & 0 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$$

$$egin{array}{cccc} x_3 & o_3(x_3) & & & & & \\ 0 & & 0 & & & & \\ 1 & & 1 & & & \\ 2 & & 2 & & & & \\ \end{array}$$

$$|x_i - x_{i+1}| \ t_i(x_i, x_{i+1})$$
0 2
1 1
2 0

One small step

Current assignment: (0, 0, 1); how to improve?

$$(x_1, \mathbf{v}, x_3)$$
 weight

$$(0,0,1) \qquad 2 \cdot 2 \cdot 0 \cdot 1 \cdot 1 = 0$$

$$(0,1,1)$$
 $2 \cdot 1 \cdot 1 \cdot 2 \cdot 1 = 4$

$$(0,2,1) \qquad 2 \cdot 0 \cdot 1 \cdot 1 \cdot 1 = 0$$

New assignment: (0, 1, 1)

Exploiting locality

Weight of new assignment (x_1, v, x_3)

$$o_1(x_1)t_1(x_1,v)o_2(v)t_2(v,x_3)o_3(x_3)$$

Key idea: locality

• When evaluating possible re-assignments to X_i , only need to consider the factors that depend on X_i .

Iterated conditional modes (ICM)

Algorithm: iterated conditional modes (ICM)

- Initialize x to a random complete assignment
- Loop through i = 1, ..., n until convergence:
 - Compute weight of $x_v = x \cup \{X_i : v\}$ for each v
 - $x \leftarrow x_v$ with highest weight

Convergence properties

- Weight(x) increases or stays the same each iteration
- Converges in a finite number of iterations
- Can get stuck in local optima
- Not guaranteed to find optimal assignment!

Summary

Algorithms for max-weight assignments in factor graphs:

- (1) Extend partial assignments:
 - Backtracking search: exact, exponential time
 - Beam search: approximate, linear time
- (2) Modify complete assignments:
 - Iterated conditional modes: approximate, linear time, deterministic
 - (Markov networks) Gibbs sampling: approximate, linear time, randomized