Convex Optimization 10-725, Lecture 19: Introduction to non-convex optimization: Simulated Annealing, Evolutionary algorithms

Yuanzhi Li

Assistant Professor, Carnegie Mellon University Consulting Researcher, Microsoft Research

Today

Last lecture

• We learnt the Bayesian optimization.

Yuanzhi Li (CMU) Today 2/

Last lecture

ullet "band of possible functions" + "optimistic exploration".

less certain, query this region variance mean

Yuanzhi Li (CMU) Today 3/24

This lecture

- We are going to see some other completely different non-convex optimization algorithms.
- They are in spirit fundamentally different from gradient based optimization or bayesian optimization.

Yuanzhi Li (CMU) Today 4/24

Simulated Annealing

- We introduce the algorithm simulated annealing for non-convex optimization.
- This is a type of evolutionary optimization algorithm.
- The spirit of evolutionary algorithms is very very important in the optimization literature.
- We are going to see how they work.

Yuanzhi Li (CMU) Today 5/24

• For a function $f: \mathbb{R}^d \to \mathbb{R}$ over a constraint set \mathcal{D} , we can view it as a distribution over \mathcal{D} , the density function is given as: (for some $\lambda \geq 0$)

$$p(x) \propto e^{-\lambda f(x)}$$

- Key observation: When λ is close to = 0, p(x) is close to a uniform distribution over set \mathcal{D} .
- When λ is close to = $+\infty$, then p(x) is close to a distribution uniformly over the global minimizers of f

- When λ is close to $+\infty$, p(x) is close to a uniform distribution over the global minimizers of f.
- If we can sample a point x' from distribution

$$p(x) \propto e^{-\lambda f(x)}$$

for sufficiently large λ , then with high probability f(x') would be close the global minimal value of f.

• Question: How do we sample from $p(x) \propto e^{-\lambda f(x)}$?

◆ロト ◆個ト ◆差ト ◆差ト を めへぐ

Yuanzhi Li (CMU) CMU Today 7/24

- For a good constraint set $\mathcal D$ (for example, the ℓ_2 ball), sampling from a uniform distribution over set $\mathcal D$ is easy.
- Sampling from $p(x) \propto e^{-0 \times f(x)}$ is easy.
- Simulated Annealing: Starting from distribution $p(x) \propto e^{-0 \times f(x)}$, we gradually increase the value of λ to $+\infty$ and sample from $p_{\lambda}(x) \propto e^{-\lambda f(x)}$ at every iteration.
- Here, λ is called the temperature.

- Simulated Annealing: Starting from distribution $p(x) \propto e^{-0 \times f(x)}$, we gradually increase the value of λ to $+\infty$ and sample from $p_{\lambda}(x) \propto e^{-\lambda f(x)}$ at every iteration.
- Intuition: When λ_1 is close to λ_2 , sampling from $p_{\lambda_2}(x)$ using uniform samples from $p_{\lambda_1}(x)$ as a warm start is easier.

- Now we answer the main question: How do we sample from a distribution $P(x) \propto e^{-\lambda_2 f(x)}$ given samples from distribution $Q(x) \propto e^{-\lambda_1 f(x)}$ as a warm start?
- We introduce the Metropolis-Hastings algorithm.

Yuanzhi Li (CMU) Today 10 / 24

- The Metropolis–Hastings algorithm to sample from a distribution P(x) given samples from distribution Q(x) as a warm start:
- Initially, sample a point x_0 from distribution Q(x).
- At every iteration t, sample $y_{t+1} \sim \mathcal{N}(x_t, \sigma^2 I)$ for some $\sigma > 0$ (to be tuned based on your specific application).
- Define $\alpha = \min \left\{ \frac{P(y_{t+1})}{P(x_t)}, 1 \right\}$
- Define

$$x_{t+1} = \begin{cases} y_{t+1} & \text{w.p. } \alpha \\ x_t & \text{w.p. } 1 - \alpha. \end{cases}$$

Yuanzhi Li (CMU) CMU Today 11/24

- Main theorem: When $t \to \infty$, $x_t \to a$ sample according to distribution P(x).
- In other words, the stationary distribution of the Metropolis–Hastings process is P(x).
- Proof: Let $\pi(x)$ be a distribution, let $p(x \mid x')$ be the condition probability (density) of arriving at x by doing one step of the Metropolis–Hastings process starting from x',
- We just need to verify that when $\pi(x) = P(x)$,

$$\pi(x) = \int_{x'} p(x \mid x') \pi(x') dx'$$

• Consider two cases: x' = x, $x' \neq x$.

Yuanzhi Li (CMU) CMU Today 12 / 24

- Let $n(x \mid x')$ be the probability density of point x associated with distribution $\mathcal{N}(x', \sigma^2 I)$.
- Define $\alpha_{x,x'} = \min \left\{ \frac{P(x)}{P(x')}, 1 \right\}$.
- When x = x', we know that

$$\Pr[x' = x \mid x] = \int_{z} (1 - \alpha_{z,x}) n(z \mid x) dz$$

Yuanzhi Li (CMU) CMU Today 13 / 24

- Define $\alpha_{x,x'} = \min \left\{ \frac{P(x)}{P(x')}, 1 \right\}$.
- When $x \neq x'$, we know that $p(x \mid x') = \alpha_{x,x'} n(x \mid x')$.

•

• This implies that when $x' \neq x$:

$$\int_{x'} p(x \mid x') \pi(x') dx' = \int_{x'} \alpha_{x,x'} n(x \mid x') \pi(x') dx'$$

• Together, we have:

$$\int_{x'} p(x \mid x') \pi(x') dx' = \int_{x'} \alpha_{x,x'} n(x \mid x') \pi(x') dx'$$
$$+ \pi(x) \int_{z} (1 - \alpha_{z,x}) n(z \mid x) dz$$

Together we have:

$$\int_{x'} p(x \mid x') \pi(x') dx' = \int_{x'} n(x \mid x') \alpha_{x,x'} \pi(x') dx'$$
$$+ \pi(x) \int_{z} (1 - \alpha_{z,x}) n(z \mid x) dz$$

• Key observation:

$$P(x')\alpha_{x,x'} = \min\{P(x), P(x')\} = P(x)\alpha_{x',x}$$

• Which implies that when $\pi(x) = P(x)$,

$$\int_{x'} p(x \mid x') \pi(x') dx' = \int_{x'} n(x \mid x') \alpha_{x',x} \pi(x) dx'$$
$$+ \pi(x) \int_{z} (1 - \alpha_{z,x}) n(z \mid x) dz$$

• Now we have: when $\pi(x) = P(x)$

$$\int_{x'} p(x \mid x') \pi(x') dx' = \int_{x'} n(x \mid x') \alpha_{x',x} \pi(x) dx'$$
$$+ \pi(x) \int_{z} (1 - \alpha_{z,x}) n(z \mid x) dz$$

- Key observation: $n(x \mid x') = n(x' \mid x)$.
- Therefore, when $\pi(x) = P(x)$:

$$\int_{x'} p(x \mid x') \pi(x') dx' = \int_{x'} n(x' \mid x) \alpha_{x',x} \pi(x) dx'$$

$$+ \pi(x) \int_{z} (1 - \alpha_{z,x}) n(z \mid x) dz$$

$$= \pi(x) \int_{z} n(z \mid x) dz = \pi(x)$$

• We show that P(x) is a stationary distribution.

- Key idea: using a warm start Q that is close to P,
 Metropolis-Hastings algorithm converges to the distribution P faster.
- This is also heuristics (but there is a very non-trivial convergence proof when P,Q are log-concave distributions).

The Simulate Annealing algorithm

- Simulated annealing algorithm to minimize a function f in a constraint set \mathcal{D} in general:
- First, sample a point x_0 uniformly at random from \mathcal{D} , set $\lambda_0 > 0$ to be sufficiently small.
- At every iteration t, let $\lambda_{t+1} = (1 + \eta)\lambda_t$.
- Run the Metropolis–Hastings algorithm (for multiple steps) to sample x_{t+1} from distribution

$$p_{\lambda_{t+1}}(x) \propto e^{-\lambda_{t+1}f(x)}$$

starting from x_t as a "warm start".

Yuanzhi Li (CMU) CMU Today 18 / 24

The Simulate Annealing algorithm

- The spirit of simulated annealing algorithm to minimize a function f:
- Evolve the distribution p from uniform at random to supports only on the minimizers of f.

- When we run Metropolis–Hastings algorithm for sufficiently many steps at every iteration (steps $\rightarrow +\infty$), simulated annealing converges to the global minimizer of f.
- However, the number of steps might be very large, there is no efficient rate guarantee unless f is convex.

Other evolutionary algorithm

 There is an extremely simple, and powerful alternative evolutionary algorithm used in reinforcement learning, called evolution strategies (ES).

Example: MuJoCo controls

20 / 24

Other evolutionary algorithm

- Evolutionary strategies to maximize a function $f: \mathbb{R}^d \to \mathbb{R}$
- At every iteration t, randomly sample N i.i.d. vectors $\epsilon_1, \dots, \epsilon_N \sim \mathcal{N}(0, I_{d \times d})$.
- Compute function value using a standard deviation σ_t : $f_i = f(x_t + \sigma_t \epsilon_i)$ for every $i \in [N]$.
- Update using learning rate η :

$$x_{t+1} = x_t + \eta \frac{1}{N\sigma_t} \sum_{i=1}^{N} f_i \epsilon_i$$

• The "lucky ones" ϵ_i with higher function values f_i gets weighted higher.

21 / 24

ES algorithm

 Actually, the ES algorithm is trying to do stochastic gradient ascent on the new objective

$$F_t = f * g_t$$

• Where g_t is the density function of $\mathcal{N}(0, \sigma_t^2 I)$, * is the convolution operation:

$$[f * g](x) = \int_{\mathcal{Y}} f(y)g(y - x)dy$$

• By Stoke's formula,

$$\nabla F_t = f * \nabla g_t$$

Yuanzhi Li (CMU) Today 22 / 24

ES algorithm

 Actually, the ES algorithm is trying to do stochastic gradient ascent on the new objective

$$F_t = f * g_t$$

- Where g_t is the density function of $\mathcal{N}(0, \sigma_t^2 I)$
- ES can even escape local minima when σ_t is large.

Yuanzhi Li (CMU) CMU Today 23 / 24

Evolutionary algorithms

- There are a lot of other evolutionary algorithms.
- The spirit: Initially, starting from a prior distribution over the set of parameters.
- At every iteration, evolve this distribution a little bit towards higher quality solutions

