MA

TD mouvement relatif

Ex 1

Le vecteur position d'un point M est décrit par $O\vec{M} = ti + t \ 2 \ j + (2t + 3)\vec{k}$ dans le repère fixe $R(O, i, j, \vec{k})$ et par $O\vec{M}'' = ti'' + t \ 2 \ j'' + (4t + 3)\vec{k}''$ dans le repér fixe $R'(O', i'', j'', \vec{k}')$, on considère que R et R' sont parallè

- 1. Déterminer la vitesse absolue et la vitesse relative de M. en déduire la vitesse d'entraînement et la nature du mouvement de R' par rapport à R.
- 2. Déterminer l'accélération absolue, l'accélération relative, conclure

Ex 2

Dans un repère R' (O,i^r,j^r,k^r) , les coordonnées cartésiennes d'un objet matériel M sont données en fonction du temps ; $x=t^2+3t$; y=t; $z=-t^3$.

Le repère R est en mouvement de translation rectiligne uniforme de vecteur vitesse u = (-3, 0, +5) par rapport à un repère R (absolu).

- 1. Trouver l'expression du vecteur vitesse de M par rapport au repère R
- 2. En déduire les coordonnées de M dans le repère R, sachant qu'à l'instant t =0, dans le repère R, M est au point(0, 1, 0).
- 3. Calculer l'accélération relative et absolue de M.

Ex 3

Dans le plan xOy , une droite Ox' tourne autour de Oz avec une vitesse angulaire constante O .

Un mobile M se déplace sur la droite Ox' suivant la loi : $r = a \sin \theta$ avec $\theta = \omega t$ et a est une constante.

- 1. Déterminer à l'instant t en fonction de a et w, la vitesse relative et la vitesse d'entraînement de M par leurs projections dans le repère mobile x'Oy'. En déduire la vitesse absolue exprimée dans cette même base de projection, et montrer que le module de celle-ci est constant.
- 2. Déterminer à l'instant t en fonction de a et ω , l'accélération relative, l'accélération d'entraînement et l'accélération complémentaire de M par leurs projections dans le repère mobile x'Oy'.

En déduire l'accélération absolue exprimée dans cette même base de projection, et montrer que le module de celle-ci est constant.

Ex 4

Un repère R'(OX'Y') en rotation par rapport à un repère R(OXY) fixe, suivant l'axe (OZ), avec une vitesse angulaire Ω constante.

On considère l'angle θ entre l'axe (OX) et (OX') tel que θ = ω t.

Soit un mobile M suivant l'axe (OX') et obéissant à la relation suivante $OM = ae^{-t} i^{r}$ ou a est une constante

- 1. Déterminer les vitesses relative, d'entraînement et absolue.
- 2. Déterminer les accélérations relative, d'entraînement, de Coriolis et absolue.

