Modelos para o Planejamento da Operação de Curto Prazo do Sistema Elétrico Brasileiro

Prof. Fernanda da Serra Costa Depto. Estatística - IME

27 de março de 2025, 18h00 – 19h00 Sala RAV62, 6° andar, Bloco F

Projeto de Extensão

Transição energética: vantagens e desafios técnicos das energias renováveis para o equilíbrio entre custos, segurança e mudanças climáticas

Departamento de Estatística

ELE Depto. de Eng. Elétrica

Matriz Elétrica - Capacidade Instalada 2014

Renováveis 2014: pprox 90 GW (pprox 80%)

Fonte: www.ons.org.br

(MW)

	MW	%	
Hidro Nacional	81.435,0	66,69%	72,43%
Hidro Itaipu	7.000,0	5,73%	
Térmica convencional	20.484,0	16,78%	
Termonuclear	1.990,0	1,63%	
Biomassa	6.428.0	5,26%	
Eólica	4.759,0	3,90%	
Solar	8,0	0,01%	
Total	122.104,0	100,00%	

Dados referentes a 31/12/2014.

ENERGY SOURCES

		2014
Hidráulica	Reservatório	43.054
	Fio	32.902
	TOTAL	75.956
Térmica com CVU	Nuclear	1.990
	GN	10.921
	GNL	704
	Carvão	3.210
	Óleo	3.745
	Diesel	883
	Outros	1.021
	TOTAL	22.474

PCHs	5.479
Biomassa	6.428
Eólicas	4.759
Solar	8
Itaipu 60 Hz (Brasil)	7.000
Capacidade Instalada	122.104
Compras Itaipu	5.940
TOTAL	128.044

Renováveis: 2024 – \approx 204 GW (\approx 91%)

Renováveis: 2024 – \approx 204 GW (\approx 91%) 2028 – \approx 232 GW (\approx 93%)

Fonte: www.ons.org.br

Diagrama Esquemático das Usinas Hidroelétricas do SIN

Usinas Hidroelétricas Despachadas pelo ONS na Otimização da Operação Eletroenergética do Sistema Interligado Nacional

Comentários sobre o SIN

- Nossa matriz elétrica é fortemente renovável e deve continuar assim
- Nosso sistema (o SIN) é muito grande e bastante complexo
- A operação do SIN é bastante complexa, devido a sua dimensão, composição de fontes e diferentes atores
- No contexto da transição energética, além da utilização de fontes renováveis é muito importante o uso racional de energia (energia não gerada implica em menos emissões de GEE e impactos ambientais)
- Operação Interligada
- Modelos matemáticos para o Planejamento da Expansão e Operação do SIN
- Problema Grande -> solução -> Decomposição do Planejamento em Etapas
- Utilização de modelos que considerem as características do SIN (representação das diversas fontes, das incertezas, dos demais usos da água, etc)

Cadeia de modelos

Horizontes e Intervalos de Tempo:

20 a 30 anos, intervalos anuais a 1 semana, intervalos horários

Homologados pela ANEEL

Usuários:

ONS, CCEE, EPE, ANEEL, Sistema Eletrobras e Agentes

O desenvolvimento conta com parcerias entre Centros de Pesquisas e Universidades

DECOMP Planejamento da Operação de Curto Prazo

DECOMP

O Problema da operação do SIN

- Sistemas formados apenas por Usinas Térmicas o custo de operação dependem apenas do combustível e manutenção, i é, o custo de cada unidade independe das demais, o que torna o planejamento da operação mais simples, pois basta iniciar a geração pelas usinas mais baratas
- Sistemas que contam com **fontes renováveis (Hidro, Solar, Eólica)**, como a água, o sol e o vento são "grátis" (e não emitem GEE), o **custo de operação** está relacionado ao combustível não utilizado. Além disso,
 - As afluências futuras (que dependem da precipitação), a velocidade do vento e a irradiação solar têm componentes sazonais e aleatórios

DECOMP

O Problema da operação do SIN

- O volume dos reservatórios das hidrelétricas atenua a questão da aleatoriedade
- Porém, como os reservatórios são limitados:
 - O problema de operação torna-se **acoplado no tempo**, pois a operação em um determinado instante de tempo afeta a operação nos instantes seguintes
 - A água liberada em uma hidrelétrica afeta a operação das hidrelétricas à jusante => acoplamento espacial
- Além disso, a operação deve ter como objetivo minimizar custo e garantir a confiabilidade de atendimento (preservando o meio ambiente e a sustentabilidade)

DECOMP

Etapa do Planejamento da Operação	Médio Prazo	Curto Prazo	Programação Diária
Modelo de Otimização Energética	NEWAVE	DECOMP	DESSEM
Nível de Detalhamento do SIN	Reservatórios Equivalentes (UI até 6 meses), Intercâmbios	Usinas individualizadas (UI), Intercâmbios	Unidades geradoras, Rede (Fluxo DC)
Horizonte de planejamento	Até 10 anos	Até 1 ano	Até 14 dias
Discretização temporal	Mensal	Semanal/ Mensal	½ hora / horária
Consideração das incertezas hidrológicas	Estocástico	Estocástico / "determinístico"	"Determinístico"
Estratégia de Solução	PDDE	PDD	MILP

DECOMP: Objetivo

Determinar as metas de **geração de cada usina** de um sistema hidrotérmico **sujeito a afluências estocásticas, de forma a minimizar o valor esperado do custo de operação** ao longo do período de planejamento, **considerando**:

- As restrições físicas e operativas associadas ao problema:
 - conservação da água, limites de turbinamento, defluência mínima, armazenamento, atendimento à demanda, limites de intercâmbio, etc.
- O Custo, composto pelo custo variável de combustível das usinas termoelétricas e pelo custo atribuído às interrupções de fornecimento de energia, representado por uma função de penalização dos déficits de energia (custo do déficit)
- A **incerteza** acerca das vazões afluentes aos diversos aproveitamentos do sistema, representada através de **cenários hidrológicos**

DECOMP Representação Gráfica do Problema e das afluências

Cenários de vazões mensais afluentes a cada UH do SIN

DECOMP Representação Matemática do Problema

$$\alpha_{t}(X_{t}) = E_{A_{t}|X_{t}} \left\{ \min_{U_{t}} \left[C_{t}(U_{t}) + \frac{1}{1+\beta} \alpha_{t+1}(X_{t+1}) \right] \right\}$$

s.a.

$$X_{t+1} = f_t (X_t, A_t, U_t)$$

$$g_{t+1}(X_{t+1}) \ge 0$$

$$h_t(U_t) \ge 0$$

para t = T, T-1, ..., 1; para todo X_t

T: horizonte do estudo

t : estágios do estudo, que podem ser diferentes

β: a taxa de desconto

X_t: variáveis de estado do problema, afetam a decisão:

V_t volume armazenado nos reservatórios no início do estágio t

A_t vazões incrementais aos reservatórios nos estágios anteriores à t

U_t: variáveis de decisão do problema, tais como:

Q_t: volumes turbinados

S_t: volumes vertidos

C_t(U_t): custo imediato associado a decisão U_t

α_t(X_t): valor esperado do custo de operação do estágio t até o final do período sob a hipótese de operação ótima

DECOMP Representação Matemática do Problema

Custo Imediato

Obtido em cada estágio t PPL

$$\begin{split} C_t(U_t) &= \min \sum_{j=1}^{NT} C_j \left(G_t^j \right) \\ &\text{sujeito a} \\ &\sum_{i=1}^{NH_k} \rho_i \mathcal{Q}_t^i + \sum_{j=1}^{NT_k} G_t^j + \sum_{r \in \Omega_k} \left(f_t(r,i) - f_t(i,r) \right) = D_t^k \\ &\underbrace{G_t^j \leq G_t^j \leq \overline{G}_t^j} \\ &f_t(i,r) \leq \overline{f_t}(i,r) \end{split}$$
 Custo Total = CF +

Derivada do C Imediato

= Custo Uts ou Déficit

para k = 1, ..., NS;

Custo Futuro - FCF

Valor esperado do custo de operação da etapa t+1 até o horizonte T, a partir do estado X_{t+1} .

 $\alpha_{T+1}(X_{T+1})$: FCF para o último estágio do horizonte é proveniente da etapa de médio prazo - NEWAVE

Acoplamento com FCF do médio prazo

O acoplamento se dá transformando os volumes finais dos reservatórios do último estágio do horizonte de curto prazo (DECOMP) em energia armazenadas nos subsistemas do modelo de médio prazo (NEWAVE), e as vazões afluentes passadas em energias afluentes.

Derivada do C Futuro em relação ao VArm = Valor da Água

Comentários finais

A matriz de energia elétrica brasileira tem como vantagem:

- ser composta majoritariamente de fontes renováveis
- ser diversificada, inclusive em sua parcela renovável

Permitindo considerar as vantagens de cada fonte

Por outro lado, a operação do SIN, não só por sua dimensão mas também pela diversidade de fontes, é um problema complexo que exige um planejamento cuidadoso

Para se buscar a operação mais eficiente do SIN é necessário muita matemática, estatística e engenharia, somadas a outras disciplinas quando incluímos a questão socioambiental (que não tratamos nesta apresentação).

Mãos à obra !!!!

Algumas Referências

- Cepel, Manual de Referência do Modelo Decomp v31, dez/2021
- Cepel, Manual do Usuário do Modelo Decomp v31, dez/2021
- Diniz, A.L., Costa, F.S., Maceira, M.E.P, Santos, T. N., Santos, L.C.B, Cabral, R.N., Short/Mid-Term Hydrothermal
 Dispatch and Spot Pricing for Large-Scale Systems the Case of Brazil, PSCC Power Systems Computation
 Conference, 2018
- Santos, T. N., Santos, Costa, F.S., Diniz, A.L., Cabral, R.N., ALTERNATIVAS PARA O TRATAMENTO DE RESTRIÇÕES

 ACOPLADAS NO TEMPO NA PROGRAMAÇÃO DINÂMICA DUAL APLICADA AO PROBLEMA DE COORDENAÇÃO HIDROTÉRMICA,

 XXII SNPTEE, 2013
- Diniz, A.L., Santos, T. N., Saboia, A.L., Pinto, R.J., Maceira, M.E.P, Costa, F.S., MODELAGEM LINEAR POR PARTES DINÂMICA DA FUNÇÃO DE PRODUÇÃO HIDROELÉTRICA – EXTENSÃO PARA FUNÇÕES MULTIVARIADAS E APLICAÇÃO DE PROGRAMAÇÃO DINÂMICA DUAL, XXI SNPTEE, 2011
- M.E.P. Maceira, L.A. Terry, F.S. Costa, J.M. Damazio, A.C.G. Melo, "Chain of Optimization Models for Setting the Energy Dispatch and Spot Price in the Brazilian System", 14th PSCC – Power Systems Computation conference, Sevilla, Spain, 200

Comentários finais

Obrigado! fcosta@ime.uerj.br

Projeto de Extensão

Transição energética: vantagens e desafios técnicos das energias renováveis para o equilíbrio entre custos, segurança e mudanças climáticas