ADVANCED DATA STRUCTURES

OBJECTIVES:

- Describe and implement a variety of advanced data structures (hash tables, priority queues, balanced search trees, graphs).
- Analyze the space and time complexity of the algorithms studied in the course.
- Identify different solutions for a given problem; analyze advantages and disadvantages to different solutions.
- Demonstrate an understanding of external memory and external search and sorting algorithms.
- Demonstrate an understanding of simple Entity-Relationship models for databases.

UNIT-I: SORTING

External Sorting, Introduction, K-way Merging - Buffer Handling for parallel Operation- Run Generation- Optimal Merging of Runs.

UNIT-II: HASHING

Introduction-Static Hashing- Hash Table- Hash Functions- Secure Hash Function- Overflow Handling- Theoretical Evaluation of Overflow Techniques, Dynamic Hashing- Motivation for Dynamic Hashing -Dynamic Hashing Using Directories- Directory less Dynamic, Hashing,

UNIT-III:PRIORITY QUEUES (HEAPS)

Model, Simple Implementation, Binary Heap-Structure Property-Heap-Order Property-Basic Heap Operations- Other Heap Operation, Applications of Priority Queues- The Selection Problem Event Simulation Problem, Binomial Queues- Binomial Queue Structure – Binomial Queue Operation- Implementation of Binomial Queues

UNIT-IV: EFFICIENT BINARY SEARCH TREES

Optimal Binary Search Trees, AVL Trees, Red-Black Trees, Definition- Representation of a Red-Black Tree- Searching a Red-Black Tree- Inserting into a Red Black Tree- Deletion from a Red-Black Tree- Joining Red-Black Trees, Splitting a Red-Black tree.

UNIT-V: MULTIWAY SEARCH TREES

M-Way Search Trees, Definition and Properties- Searching an M-Way Search Tree, B-Trees, Definition and Properties- Number of Elements in a B-tree- Insertion into B-Tree- Deletion from a B-Tree- B+-Tree Definition- Searching a B+-Tree- Insertion into B+-tree- Deletion from a B+-Tree.

UNIT-VI: DIGITAL SEARCH STRUCTURES

Digital Search Trees, Definition- Search, Insert and Delete- Binary tries and Patricia, Binary Tries, Compressed Binary Tries- Patricia, Multiway Tries- Definitions- Searching a Trie-Sampling Strategies- Insertion into a Trie- Deletion from a Trie- Keys with Different Length-Height of a Trie- Space Required and Alternative Node Structure- Prefix Search and Applications- Compressed Tries- Compressed Tries With Skip Fields- Compressed Tries With Labeled Edges- Space Required by a Compressed Tries, Tries and Internet Packet Forwarding, IP Routing- 1-Bit Tries- Fixed-Stride Tries-Variable-Stride Tries.

OUTCOMES:

- Be able to understand and apply amortised analysis on data structures, including binary search trees, mergable heaps, and disjoint sets.
- Understand the implementation and complexity analysis of fundamental algorithms such as RSA, primality testing, max flow, discrete Fourier transform.
- Have an idea of applications of algorithms in a variety of areas, including linear programming and duality, string matching, game-theory

TEXT BOOKS:

- 1. Data Structures, a Pseudocode Approach, Richard F Gilberg, Behrouz A Forouzan, Cengage.
- 2. Fundamentals of DATA STRUCTURES in C: 2nd ed, , Horowitz , Sahani, Andersonfreed, Universities Press
- 3. Data structures and Algorithm Analysis in C, 2nd edition, Mark Allen Weiss, Pearson

REFERENCE BOOKS:

- 1. Web: http://lcm.csa.iisc.ernet.in/dsa/dsa.html
- 2. http://utubersity.com/?page_id=878
- 3. http://freevideolectures.com/Course/2519/C-Programming-and-Data-Structures
- 4. http://freevideolectures.com/Course/2279/Data-Structures-And-Algorithms
- 5. File Structures :An Object oriented approach with C++, 3rd ed, Michel J Folk, Greg Riccardi, Bill Zoellick
- 6. C and Data Structures: A Snap Shot oriented Treatise with Live examples from Science and Engineering, NB Venkateswarlu & EV Prasad, S Chand, 2010.