

DSBDA Viva

Here is a well-structured Q&A bank from Question 1 to 41 with proper format (Definition, Example, Code snippet). I've also started adding basic Machine Learning (ML) concepts and algorithms from Q42 onward.

• Q1) What is Pandas library in Python?

Definition:

Pandas is an open-source Python library used for data manipulation and analysis, particularly for structured data.

Example:

Useful for reading, processing, and analyzing CSV or Excel files.

Code:

```
import pandas as pd
df = pd.read_csv("data.csv")
print(df.head())
```

Q2) List some key features of Pandas.

Definition:

- Fast and efficient DataFrame object
- Tools for reading/writing data
- Handling of missing data
- Data alignment and integrated handling of time series

Q3) What is NumPy Library in Python?

Definition:

NumPy (Numerical Python) provides support for arrays, matrices, and many mathematical functions.

Example:

Used for numerical calculations and matrix operations.


```
import numpy as np
arr = np.array([1, 2, 3])
print(arr.mean())
```

Q4) What is Matplotlib library?

Definition:

Matplotlib is a 2D plotting library for creating static, animated, and interactive visualizations in Python.

Example:

Creating line graphs, bar charts, and histograms.

Code:

```
import matplotlib.pyplot as plt
plt.plot([1, 2, 3], [4, 5, 6])
plt.show()
```

Q5) Difference between Seaborn and Matplotlib?

Definition:

- **Seaborn**: Built on top of Matplotlib; provides high-level interface for statistical graphics.
- Matplotlib: More control, but more code needed for customization.

Example:

```
import seaborn as sns
sns.histplot([1,2,3,4,5])
```

• Q6) Are Sklearn and Scikit-learn the same?

Definition:

Yes, `sklearn` is the import name for Scikit-learn library in Python.

Use in DS:

Used for ML tasks like classification, regression, and clustering.


```
python
from sklearn.linear_model import LinearRegression
```

Q7) Functions in Pandas and NumPy?

Pandas:

• `read_csv()`, `head()`, `describe()`, `dropna()`, `groupby()`

NumPy:

• `array()`, `mean()`, `median()`, `std()`, `reshape()`

Q8) What is DataFrame in Python?

Definition:

A 2D labeled data structure in Pandas (like a table with rows and columns).

Code:

```
python

df = pd.DataFrame({'a':[1,2], 'b':[3,4]})
```

• Q9) How to find duplicates in Python?

Code:

```
python

df.duplicated()
df[df.duplicated()]
```

• Q10) Use of `describe()` command?

Definition:

Provides statistical summary of numeric columns.

```
python

df.describe()
```

• Q11) Naive Bayes classification algorithms in Python?

Types:

- GaussianNB
- MultinomialNB
- BernoulliNB

Code:

```
python

from sklearn.naive_bayes import GaussianNB
model = GaussianNB()
```

• Q12) Significance of Confusion Matrix?

Definition:

Used to evaluate classification model performance.

• Q13) TP, TN, FP, FN in Confusion Matrix?

• TP: True Positives

• TN: True Negatives

• **FP**: False Positives

• **FN**: False Negatives

• Q14) What is Recall?

Definition:

Recall = TP / (TP + FN)

Q15) What is Precision?

Definition:

Precision = TP / (TP + FP)

• Q16) What is F1 Score?

Definition:

F1 = 2 * (Precision * Recall) / (Precision + Recall)

• Q17) Why is Data Visualization important?

Definition:

It simplifies complex data and highlights trends/patterns for better decisions.

• Q18) What is an Outlier?

Definition:

An observation far from other values in a dataset.

• Q19) Histogram vs Pie Chart?

- **Histogram**: Frequency distribution (use for continuous data)
- **Pie Chart**: Proportions of a whole (use for categorical data)

Q20) Challenges in Big Data Visualization?

- · High volume
- High velocity
- Data variety
- Processing power
- Real-time rendering

Q21) What is Joint Plot, Dist Plot?

Definition:

- **jointplot**: Combines scatter plot and histogram.
- **distplot**: Shows distribution of a variable.

Code:

```
python

sns.jointplot(x='age', y='salary', data=df)
sns.histplot(df['age'])
```

Q22) Tools for Data Visualization?

• Matplotlib

- Seaborn
- Plotly
- Power BI
- Tableau

• Q23) What is Data Wrangling?

Definition:

Cleaning and transforming raw data into usable format.

• Q24) What is Data Transformation?

Definition:

Process of converting data into suitable format for analysis.

• Q25) Use of `StandardScaler` in Python?

Definition:

Standardizes features by removing mean and scaling to unit variance.

Code:

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaled_data = scaler.fit_transform(df)
```

Q26) What is Hadoop?

Definition:

A framework for distributed storage and processing of large data sets.

• Q27) What is HDFS and MapReduce?

- **HDFS**: Hadoop Distributed File System (stores data)
- MapReduce: Processes data in parallel.

• Q28) Components of Hadoop Ecosystem?

HDFS

- MapReduce
- YARN
- Hive
- Piq
- HBase
- Sqoop
- Flume

Q29) What is Scala?

Definition:

A general-purpose programming language combining functional and OOP.

Q30) Features of Scala?

- Type inference
- Immutability
- Interoperable with Java
- Functional constructs

Q31) How is Scala different from Java?

- Scala supports functional programming.
- Concise syntax.
- Better for concurrent applications.

Q32) Applications of Scala?

- Apache Spark
- Data science
- Web apps
- DSLs (Domain-Specific Languages)

• Q33) What is Data Science?

Definition:

Field of extracting insights from data using tools like Python, ML, and statistics.

Q34) What is Big Data?

Definition:

Data that is too large or complex for traditional tools to process.

Q35) Characteristics of Big Data?

- Volume
- Velocity
- Variety
- Veracity
- Value

Q36) Phases in Data Science Life Cycle?

- Data collection
- Data wrangling
- Data analysis
- Model building
- Evaluation
- Deployment

Q37) What is Central Tendency?

Definition:

A central value (Mean, Median, Mode) representing a dataset.

• Q38) What is Dispersion?

Definition:

Measure of spread of data (Range, Variance, SD).

Q39) Mean, Mode, Mid-range, Median?

Data: [10,22,13,10,21,43,77,21,10]

Mean: (10+22+13+10+21+43+77+21+10)/9 = 25.22

• Median: 21

• **Mode**: 10

• Mid-Range: (min+max)/2 = (10+77)/2 = 43.5

Q40) What is Variance?

Definition:

Average of squared deviations from the mean.

Q41) What is Standard Deviation?

Definition:

Square root of variance.

Would you like me to continue with ML Concepts from Q42 onward?

Great! Let's continue from **Q42 onward**, covering **basic ML concepts**, starting with **Confusion Matrix** and **Feature Scaling** along with examples and code.

Q42) What is a Confusion Matrix? Explain with example.

Definition:

A confusion matrix is a table used to evaluate the performance of a classification model. It compares actual vs. predicted values.

Structure:

	Predicted Positive	Predicted Negative
Actual Pos	True Positive (TP)	False Negative (FN)
Actual Neg	False Positive (FP)	True Negative (TN)

Example: Suppose we have a binary classifier that predicts whether a patient has a disease:

- TP = 50 (Correctly predicted diseased)
- FP = 10 (Incorrectly predicted diseased)
- TN = 30 (Correctly predicted healthy)
- FN = 5 (Incorrectly predicted healthy)


```
from sklearn.metrics import confusion_matrix
y_true = [1, 0, 1, 1, 0, 1, 0]
y_pred = [1, 0, 1, 0, 0, 1, 1]
cm = confusion_matrix(y_true, y_pred)
print(cm)
```

• Q43) What is Feature Scaling? Why is it needed?

Definition:

Feature Scaling is a technique to normalize the range of independent variables or features of data.

Why needed?

- Algorithms like SVM, KNN, and gradient descent converge faster when data is scaled.
- Prevents features with large values from dominating.

• Q44) Methods of Feature Scaling with example?

1. Standardization (Z-score Normalization)

Transforms data to have **mean = 0** and **std dev = 1**.

Code:

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaled_data = scaler.fit_transform([[1, 2], [2, 4], [3, 6]])
print(scaled_data)
```

2. Min-Max Scaling (Normalization)

Scales data to a range [0, 1].

```
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaled_data = scaler.fit_transform([[1, 2], [2, 4], [3, 6]])
print(scaled_data)
```

• Q45) What is Train Test Split?

Definition:

Used to split data into training and testing sets to evaluate model performance.

Code:

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

Q46) What is Underfitting and Overfitting?

Concept	Definition	Behavior	
Underfitting	Model is too simple	Poor performance on both training and test data	
Overfitting	Model is too complex	Excellent training performance, poor test performance	

• Q47) What is Cross-Validation?

Definition:

Technique to evaluate models by splitting the data into multiple training and testing sets (folds).

Code:

```
from sklearn.model_selection import cross_val_score
scores = cross_val_score(model, X, y, cv=5)
print(scores)
```

Would you like me to continue with specific **ML algorithms** like Linear Regression, KNN, SVM next?

Great! Let's continue with **basic machine learning algorithms**. For each, I'll give:

- Definition
- Example use-case
- Code snippet (with `scikit-learn`)

Q48) Linear Regression

Definition:

Linear Regression is a supervised ML algorithm used for predicting a continuous target variable based on independent variables using a straight line (y = mx + c).

Example: Predicting house prices based on size.

Code:

```
python

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split

# Sample Data
X = [[100], [200], [300], [400]]
y = [10, 20, 30, 40]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

model = LinearRegression()
model.fit(X_train, y_train)

print("Prediction:", model.predict([[250]]))
```

Q49) Logistic Regression

Definition:

Logistic Regression is a classification algorithm used to predict binary outcomes (0 or 1) using the logistic function (sigmoid).

Example: Predicting whether an email is spam or not.

Code:

```
python

from sklearn.linear_model import LogisticRegression

X = [[1], [2], [3], [4]]
y = [0, 0, 1, 1]

model = LogisticRegression()
model.fit(X, y)

print(model.predict([[2.5]])) # Output: 0 or 1
```

Q50) K-Nearest Neighbors (KNN)

Definition:

KNN is a classification algorithm that classifies data points based on the labels of their nearest neighbors.

Example: Handwritten digit recognition.

Code:

```
from sklearn.neighbors import KNeighborsClassifier

X = [[1], [2], [3], [6], [7], [8]]
y = [0, 0, 0, 1, 1, 1]

model = KNeighborsClassifier(n_neighbors=3)
model.fit(X, y)

print(model.predict([[4]])) # Expected: 0 or 1 based on neighbors
```

Q51) Support Vector Machine (SVM)

Definition:

SVM finds the best hyperplane that separates data points of different classes with the maximum margin.

Example: Classifying images as cats or dogs.

Code:

```
python

from sklearn.svm import SVC

X = [[1, 2], [2, 3], [3, 3], [6, 7], [7, 8]]
y = [0, 0, 0, 1, 1]

model = SVC(kernel='linear')
model.fit(X, y)

print(model.predict([[4, 4]]))
```

Q52) Naive Bayes Classifier

Definition:

Naive Bayes is a probabilistic classifier based on Bayes' Theorem assuming feature independence.

Example: Text classification like spam detection.

```
python

from sklearn.naive_bayes import GaussianNB

X = [[1, 20], [2, 21], [3, 22], [10, 100], [11, 101]]
y = [0, 0, 0, 1, 1]
```



```
model = GaussianNB()
model.fit(X, y)

print(model.predict([[5, 50]]))
```

Would you like me to include Decision Trees, Random Forest, and Clustering (like K-Means) next?

Perfect! Let's continue with **more machine learning algorithms** like **Decision Trees, Random Forest, and Clustering (K-Means)**.

Q53) Decision Tree

Definition:

A Decision Tree is a flowchart-like tree structure where each internal node represents a decision on a feature, each leaf node represents an outcome.

Example: Predicting whether a person buys a product based on age and income.

Code:

```
python

from sklearn.tree import DecisionTreeClassifier

X = [[25, 50000], [35, 60000], [45, 80000], [20, 20000]]
y = [0, 1, 1, 0] # 0 = No, 1 = Yes

model = DecisionTreeClassifier()
model.fit(X, y)

print(model.predict([[30, 55000]]))
```

Q54) Random Forest

Definition:

Random Forest is an ensemble learning method that uses multiple decision trees to improve accuracy and avoid overfitting.

Example: Credit scoring system.

```
python

from sklearn.ensemble import RandomForestClassifier

X = [[1, 2], [3, 4], [5, 6], [7, 8]]
y = [0, 0, 1, 1]

model = RandomForestClassifier(n_estimators=100)
model.fit(X, y)
```



```
print(model.predict([[4, 5]]))
```

Q55) K-Means Clustering

Definition:

K-Means is an unsupervised learning algorithm used to group data into **K clusters** based on similarity.

Example: Customer segmentation.

Code:

```
python

from sklearn.cluster import KMeans

X = [[1], [2], [3], [10], [11], [12]]
model = KMeans(n_clusters=2)
model.fit(X)

print(model.labels_) # Shows which cluster each point belongs to
print(model.predict([[5]])) # Predicts the cluster of a new point
```

• Q56) What is Clustering in Machine Learning?

Definition:

Clustering is the task of grouping a set of objects so that objects in the same group (called a cluster) are more similar to each other than to those in other groups.

- Types: K-Means, Hierarchical, DBSCAN
- **Used in**: Market segmentation, Social network analysis, etc.

Q57) Supervised vs Unsupervised Learning

Туре	Input Data	Output	Example Algorithms
Supervised	Labeled	Predict label	Linear Regression, SVM, KNN
Unsupervised	Unlabeled	Grouping	K-Means, PCA, DBSCAN

Would you like me to also include **evaluation metrics**, **PCA**, or continue with **deep learning basics**?

ML Graphs and Plots, Concepts

In Machine Learning (ML), graphs, plots, and maps are essential tools for visualizing data, understanding patterns, and interpreting model performance. Below is a breakdown of the common types of graphs and plots used in ML, along with basic terminology and algorithms.

1. Graphs and Plots in ML

a) Line Plot

- **Definition**: A line plot is used to visualize continuous data points, typically showing trends over time or sequential observations.
- **Example**: Plotting the loss vs. epoch during training to visualize the convergence of a model.

b) Scatter Plot

- **Definition**: A scatter plot is used to display the relationship between two variables by plotting points on a 2D plane.
- **Example**: Visualizing the relationship between height and weight of a population.

c) Histogram

- **Definition**: A histogram is used to show the distribution of a dataset. It divides the data into bins and counts the number of occurrences in each bin.
- **Example**: Displaying the distribution of age in a dataset.

d) Box Plot

- **Definition**: A box plot (or box-and-whisker plot) is used to visualize the spread and skewness of data by showing the median, quartiles, and outliers.
- **Example**: Showing the distribution of salary data across different job titles.

e) Heatmap

- **Definition**: A heatmap visualizes data using color gradients to represent values, often used to represent correlation matrices or the performance of a model.
- **Example**: A heatmap showing the correlation between various features in a dataset.

f) Bar Plot

- **Definition**: A bar plot is used to represent categorical data with rectangular bars with lengths proportional to the values they represent.
- **Example**: Comparing the performance of different machine learning models.

g) Pair Plot

- **Definition**: A pair plot (also called a scatterplot matrix) is used to show pairwise relationships between variables in a dataset.
- **Example**: Pair plots to visualize relationships between features in a multi-dimensional dataset like Iris.

h) ROC Curve (Receiver Operating Characteristic Curve)

- Definition: A graphical plot used to evaluate the performance of binary classification models.
- **Example**: Analyzing the trade-off between true positive rate and false positive rate for a classification model.

i) Precision-Recall Curve

- **Definition**: This curve is used to evaluate classification models when classes are imbalanced, focusing on precision vs. recall.
- **Example**: A classification problem with rare disease detection.

j) Confusion Matrix

- **Definition**: A confusion matrix is used to assess the performance of a classification model by displaying the actual vs. predicted classifications.
- **Example**: Showing the results of a spam email classifier.

2. Basic Terminologies in ML

a) Feature

• **Definition**: An individual measurable property or characteristic of a phenomenon being observed (e.g., age, height, color).

b) Label

• **Definition**: The target or output variable that a model is trying to predict or classify.

c) Model

• **Definition**: A mathematical representation of a real-world process used to make predictions based on input data.

d) Training Data

• **Definition**: A set of data used to train a model.

e) Test Data

• **Definition**: A set of data used to evaluate the performance of a trained model.

f) Overfitting

• **Definition**: When a model performs well on training data but poorly on unseen test data due to learning the noise in the data.

g) Underfitting

• **Definition**: When a model is too simple and fails to capture the underlying patterns in the data.