Processor Documentation

Ruben Saunders

August 2024

1 Principals

- This processor will operate a RISC instruction set.
- This processor has a word size of 64 bits, and supports both floats (4 bytes) and doubles (8 bytes).
- The instruction set will provide methods to load values into and out of registers. Then, most operations will be on registers.
- Load/store instructions operate on 32-bit immediates.
- Arithmetic and logic instructions operate on full registers, so 64-bit.

2 Registers

See below for a list of registers. All registers are 64-bit. Register names are preceded by a dollar '\$' sign.

Symbol	Name	Bit	Description			
	Special Registers					
\$ip	Instruction Pointer		Point to next address to execute as an instruction.			
\$sp	Stack Pointer		Top address of the stack.			
\$fp	Frame Pointer		Point to the next byte beyond the last stack frame.			
\$flag	Flag Register	8-64				
		5-7	Error flag. • 000: no error. • 001: invalid opcode, opcode in \$ret. • 010: segfault, address in \$ret. • 011: register segfault, register offset in \$ret. • 100: invalid syscall, opcode in \$ret. Execution status: 1=executing, 0=halted.			
		4	Can be used to halt the processor.			
		3	Zero flag. Indicates if register is zero. Updated on most instructions' dest register.			
		0-2	Comparison bits. • 000: not equal. • 001: equal. • 010: less than. • 011: less than or equal to. • 110: greater than. • 111: greater than or equal to.			
\$ret	Return Value Register		Contains value returned from function, syscall, etc. Contains process exit code on halt.			
\$zero	Zero		Hardwired to zero.			

General Purpose Registers					
\$r1 - \$r16	\$r1 - \$r16 GPRs Register for general use.				
\$s1 - \$s8	Preserved GPRs	Register for general use. Values are preserved in stack frame.			

3 Addressing Modes

An argument can have the following type.

Indicator	Name	Syntax	Operation	Size
00	Immediate	imm	imm	32
01	Memory	(mem)	Mem[mem]	32
10	Register	\$reg	Reg[\$reg]	8
11	Register Indirect	n(\$reg)	Mem[Reg[\$reg] + n]	\$reg=8, \$n=24

The following values are used on the ISA specification:

Argument	Size	Comment	
<reg> 8 Regis</reg>		Register offset.	
<value></value>	2 + 32	Any listed addressing mode.	
\vaiue>	2 + 32	2 indicator bits, 32 for data.	
<addr></addr>	2 + 32	Any listed addressing mode except immediate.	
\addr>	$\begin{vmatrix} 2+32 \end{vmatrix}$	2 indicator bits, 32 for data.	

4 Instruction Set

Note the \square symbol means that this instruction does not take a conditional test suffix.

Note that mnemonics support overloading. That is, the same mnemonic can have many argument signatures. Optional arguments are listed using square brackets [optional] versus mandatory arguments <mandatory>.

Note for all arithmetic and logical instructions with signature <reg> <reg> <value>, the first register is optional. If omitted, the supplied register is duplicated. That is, \$r, \$v becomes \$r, \$r, \$v.

Note all arithmetic operations and the compare operation take a datatype.

Instruction	Syntax	Operation/Comments			
	Data Transfer				
Load	14 (Load a half-word (32-bit) into a register.			
Load	load <reg> <value></value></reg>	Reg[\$reg] = \$value			
Load Unnor	loody (man) (walua)	Load a half-word (32-bit) into the upper half of a register.			
Load Upper	loadu <reg> <value></value></reg>	Reg[\$reg][32:] = \$value			
		Pseudo-instruction.			
Load Word	looder (mom) (molue)	Loads a word (64-bit) into a register.			
Load Word	loadw <reg> <value></value></reg>	load \$reg \$value[:32]			
		loadu \$reg \$value[32:]			
		Pseudo-instruction.			
Zero	zero <reg></reg>	Zeroes/clears a register.			
		xor \$reg, \$reg			
Store	store <reg> <addr></addr></reg>	Copy from register to memory.			
5.016	Store (reg/ \addr/	Mem[\$addr] = Reg[\$reg]			
		Arithmetic			
	All arithmetic ope	erations, bar mod, expect a datatype.			
Add		Add value to a register.			
Add	add <reg> <reg> <value></value></reg></reg>	Reg[\$reg1] = Reg[\$reg2] + \$value			
Subtract	gub (rog) (rog) (waluo)	Subtract value from a register.			
Subtract	sub <reg> <reg> <value></value></reg></reg>	Reg[\$reg1] = Reg[\$reg2] - \$value			

Multiply	mul <reg> <reg> <value></value></reg></reg>	Multiply register by a value.
		Reg[\$reg1] = Reg[\$reg2] × \$value
Division	div <reg> <reg> <value></value></reg></reg>	Divide a register by a value, store as double. Reg[\$reg1] = Reg[\$reg2] ÷ \$value
		Calculate the remainder when dividing a register by a value.
Modulo	mod <reg> <reg> <value></value></reg></reg>	The register is treated as a signed word,
		the value as a signed half-word.
		Reg[\$reg1] = Reg[\$reg2] mod \$value
		Branching
		Compare \$1 with \$2, setting comparison bits in flag register.
Compare	cmp <reg> <value></value></reg>	E.g., set lt iff \$1 < \$2.
		Note Z flag is set depending on value, not register.
		Pseudo-instruction
Branch	b <cnd> <value></value></cnd>	Branch to the given address if comparison matches conditional.
		load <cnd> \$ip, \$value</cnd>
		Pseudo-instruction.
$\mathrm{Jump}\ \Box$	jmp <value></value>	load \$ip \$value
	1	Logical
		Bitwise NOT a register.
Not	not <reg> <reg></reg></reg>	Reg[\$reg1] = \sim Reg[\$reg2]
		Bitwise AND between register and value.
And	and <reg> <reg> <value></value></reg></reg>	Reg[\$reg1] = Reg[\$reg2] & \$value
Or	or <reg> <reg> <value></value></reg></reg>	Bitwise OR between register and value.
	0 0	Reg[\$reg1] = Reg[\$reg2] \$value
Exclusive Or	xor <reg> <reg> <value></value></reg></reg>	Bitwise exclusive-OR between register and value.
		Reg[\$reg1] = Reg[\$reg2] \oplus \$value
Right Shift	shr <reg> <reg> <value></value></reg></reg>	Logically shift the register right an amount.
		Reg[\$reg1] = Reg[\$reg2] >> \$value
Left Shift	shl <reg> <reg> <value></value></reg></reg>	Logically shift the register left an amount.
		Reg[\$reg1] = Reg[\$reg2] \ll \$value
		Stack
		Pseudo-instruction
		Push a 32-bit value onto the stack.
		sub \$sp, 8
Push	push <value></value>	loadu \$r1, <value></value>
		store \$r1, (\$sp)
		add \$sp, 4
		Note for efficiency, this is implemented as an instruction.
		Pseudo-instruction
		Push a 64-bit word onto the stack.
Push Word	pushw <value></value>	sub \$sp, 8
1 4511 (1014	Pasin value	loadw \$r1, <value></value>
		store \$r1, (\$sp)
	The pop operation is not imp	plemented due to its simplistic nature.
	I.e., to pop a word from the	·
Pop	sub \$sp, 8	ouwa.
1 op	And to store it in a register:	
	load \$r1, (\$sp)	
	10αα ψ11, (ψ5μ)	T
		Functions
Function Call	call <value></value>	Call procedure at location value.
		More complex than load ip, \$value as pushes stack frame.
Return	ret	Return from function call.
		Restores key registers (undoes call).

System Call	syscall <value></value>	Invoke the system call mapped to the given value. See the respective section for mappings.	
Miscellaneous			
		Useless operation; do nothing.	
No-Operation \square	nop	Equivalent to or r1, 0.	
		Note For efficiency, implemented as instruction.	
		Pseudo-instruction	
Exit	exit [value]	Exit the program, optionally with an exit code in \$ret.	
EXIU		If code provided: load \$ret, <value></value>	
		syscall <opcode: exit=""></opcode:>	

4.1 Pseudo-Instructions

These are instructions which are not necessary for full functionality, but are provided for usefulness. They may be implemented using other instructions. It is up to the implementer whether to implement these as actual instructions or expand them to their equivalent form.

4.2 Instruction Layout

All instructions are encoded in a single 64-bit word. The layouts of various types is listed below. The size field stated the size in bits of this field. From top-to-bottom, the table starts at the least-significant bit.

Note, the opcode of each instruction is not decided upon; it may be any value as long as the instruction set is implemented. The only exception is nop, which maps to a fully-zeroed word.

Generic Layout This outlines the generic structure of an instruction. The first section of the table refers to the 'header'.

Bit	Purpose	Comments
0-5	Opcode	
6-9	Conditional test	 These bits are tested against \$flag to determine if instruction is executed or skipped. 1111: skip test. 1001: test if zero flag is set. 1000: test if zero flag is unset. Otherwise: match lower 3 bits to \$flag. Note these bits are omitted if □ is shown.
10-64	Instruction depen	dant.

Data-Type Indicator Some instructions have a field to specify the data-type of the data being operated on. These bits are after the ordinary header, and are as follows:

Bit 0	Bit 1	Bit 0	Suffix	Comments
Decimal?	Signed?	Full or half word?	Sumx	Comments
0	0	0	hu	32-bit unsigned integer.
0	0	1	[u]	64-bit unsigned integer.
0	1	0	hi	32-bit signed integer.
0	1	1	i	64-bit signed integer.
1	0	0	f	32-bit float.
1	0	1	d	64-bit double.

Datatypes may be interpreted slightly differently, depending on the instruction.

• Arithmetic operations: the datatype refers to the type of the first data to be operated on. The last argument is always considered a 32-bit signed integer or float. That is, in add.u \$r1, -75, \$r1 is assumed to hold an unsigned 64-bit integer, but -75 is a 32-bit signed integer, while the result also be an unsigned 64-bit integer.

5 Calling Convention

Despite being a RISC processor, this processor will support explicit call and ret functions which will aid in pushing and popping a stack frame. For ease of programming, multiple actions are taken in each to maintain structure, so they are not pseudo-instructions.

5.1 Function Invocation

To call a function [at] func with n arguments:

```
push <arg1>
...
push <argn>
push n
call <func>
```

Note when zero arguments are needed, still push 0 to indicate this.

Stack							
Before	After						
	preserved GP registers	$\leftarrow \$\mathrm{sp}$					
	old ip						
	old fp	$\leftarrow \$ \mathrm{fp}$					
	\parallel n						
	args						
$xxx \leftarrow \$sp$	XXX						

5.2 Function Returning

To return from the function invoked in the previous sub-section, we need only a call to ret. This will restore and pop the stack frame, as well as handle any arguments the user pushed. The following operations take place:

```
Reg[$ip] = old ip
Reg[$fp] = old fp
Reg[$sp] = loc(xxx)
```

5.3 Argument Retrieval

The frame pointer points to the top of the previous frame. Using the diagram above, it is possible to retrieve an argument from the stack. It is important to note that the size of the additional information pushed via the processor may theoretically vary, and so referencing and relying on knowledge of this size is unadvised.

```
i: argument index, 0-indexed; n: number of arguments.

Arg i = \text{Reg}[\$fp] - 4 * (1 + n - i)
```

6 System Call

System calls are core functionality abstracted inside the processor. Actions are assigned operation codes and invoked via syscall <opcode>. Optionally, each read arguments from general-purpose registers r1 onward.

Service	Opcode	Arguments	Operation	Result			
	Output						
$\operatorname{print_int}$	1	r1 = integer	Print 64-bit integer.	None			
print_float	2	r1 = float	Print 32-bit float.	None			
print_double	3	r1 = double	Print 64-bit double.	None			
print_char	4	r1 = byte	Print byte as ASCII character.	None			
print_string	5	r1 = string address	Print null-terminated string at the address.	None			

Input				
read_int	6	None	Read a signed 64-bit integer.	\$ret = integer
read_float	7	None	Read a 32-bit float.	ret = float
read_double	8	None	Read a 64-bit double.	ret = double
read_char	9	None	Read an ASCII character.	ret = character
read_string	10	r1 = string address	Read a null-terminated string into given address.	SS. None
read_string	10	$r2 = \max length$	String is truncated to maximum length.	
			Program Flow	
exit	11	None	Exit program.	None
exit	11	11 None	Note process exit code is located in \$ret.	None
			Debug	
print_regs	100	None	Print hexadecimal value of each register.	None
print_mem	101	r1 = start address	Print hexadecimal bytes of memory segment.	None
printinem	101	r2 = segment length	i thit hexadecimal bytes of memory segment.	110116
print_stack	102	None	Print bytes of the stack.	None