Problem Specifications and Constraints of Designing a lead screw for a lathe machine

Team Members:

- Ayman Khan (200108149)
- Hasin Anjum Junayed (200108138)
- Tarek Ahmed (200108144)
- Nazmul Ahsan Nahid (200108135)
- Ishtiyak Karim Ratul (200108136)

Introduction:

A lead screw is a mechanical component used to convert rotary motion into linear motion which enables precise control over the cutting process. steps involved in designing a lead screw, including thread type selection, lead screw diameter determination, pitch selection, and the importance of material selection for optimal performance.

Courtesy: IQSdirectory

Lead Screw Design Pitch Thread Angle Pitch Dia. Major Dia HelixRoot Crest

Courtesy: IQSdirectory

PROBLEM SPECIFICATIONS:

- 1. Material selection
- 2. Length and Diameter
- 3. Pitch and lead
- 4. Thread profile
- 5. Calculate critical dimensions
- 6. Backlash
- 7. Nut Design

CONSTRAINTS:

- 1. Manufacturing Feasibility
- 2. Material availability
- 3. Load Capacity
- 4. Environmental factors
- 5. Lubrication methods
- 6. Space limitations
- 7. Cost

Courtesy:https://fractory.com/lead-screws/

CONCLUSION:

Designing a lathe machine's lead screw requires considering load capacity, speed, accuracy, space limitations, material selection, backlash reduction, lubrication methods, manufacturability, cost, and maintenance. This enhances the lathe machine's performance and efficiency.

Thank You