PROBLEMS ON SYMPLECTIC REFLECTION ALGEBRAS

3. McKay correspondence upgraded (from last time)

Exercise 3.3. A map $\mathbb{C}^2 \otimes \mathbb{C}\Gamma \to \mathbb{C}\Gamma$ extends to a representation from $\operatorname{Rep}_{\Gamma}(\mathbb{C}\langle x, y \rangle \#\Gamma, \mathbb{C}\Gamma)$ if and only if it is Γ -equivariant.

Exercise 3.4. Show that

$$\operatorname{Hom}_{\Gamma}(\mathbb{C}^{2} \otimes \mathbb{C}\Gamma, \mathbb{C}\Gamma) = \bigoplus_{i,j=0}^{r} M_{ij} \otimes \operatorname{Hom}_{\mathbb{C}}(N_{i}^{*}, N_{j}^{*})$$
$$= \bigoplus_{i,j=0}^{r} \operatorname{Hom}_{\mathbb{C}}(N_{i}^{*}, N_{j}^{*})^{\oplus m_{ij}} = \bigoplus_{i,j=0}^{r} \operatorname{Hom}_{\mathbb{C}}(\mathbb{C}^{\delta_{i}}, \mathbb{C}^{\delta_{j}})^{m_{ij}}.$$

Note that the first equality is canonical, the second depends on the choice of a basis in M_{ij} , while the third depends on the choice of bases in N_i^* .

4. Deformed preprojective algebras

Exercise 4.1. Show that $\mathbb{C}Q$ is associative and $\sum_{i \in Q_0} \epsilon_i$ is a unit in $\mathbb{C}Q$. Further, show that, as a unital associative algebra, $\mathbb{C}Q$ is generated by $\epsilon_i, i \in Q_0$, and $a \in Q_1$ subject to the relations $\epsilon_i \epsilon_j = \delta_{ij} \epsilon_i, \sum_{i \in Q_0} \epsilon_i = 1, \epsilon_i a = \delta_{ih(a)} a, a \epsilon_i = \delta_{it(a)} a$.

Exercise 4.2. Use the universal properties of all algebras involved to show that $\mathbb{C}\langle x,y\rangle\#\Gamma\cong T_{\mathbb{C}\Gamma}(\mathbb{C}^2\otimes\mathbb{C}\Gamma)$ and $\mathbb{C}Q\cong T_{(\mathbb{C}Q)^0}(\mathbb{C}Q)^1$.

Exercise 4.3. Let A be an associative algebra, and $e \in A$ be an idempotent. We define functors $\pi: A\operatorname{-Mod} \to eAe\operatorname{-Mod}$ by $\pi(M) = eM$, and $\pi^!: eAe\operatorname{-Mod} \to A\operatorname{-Mod}$ by $\pi^!(N) = Ae \otimes_{eAe} N$.

- Show that π is an exact functor, that π can be written as $M \mapsto eA \otimes_A M$, and that π ! is left adjoint to π .
- Suppose that AeA = A. Check the that if $\pi(M) = 0$, then M = 0. Further check that the natural homomorphism $Ae \otimes_{eAe} eM \to M$ is surjective. Finally, show that $Ae \otimes_{eAe} eM \to M$ is injective by applying π .
- Deduce that $Ae \otimes_{eAe} eA = A$ as a bimodule.

Exercise 4.4. Suppose e is an idempotent in A such that AeA = A. Show that the functor $M \mapsto eMe$ is an equivalence between the categories of A and eAe-bimodules intertwining the tensor products (meaning that $e(M \otimes_A N)e = eMe \otimes_{eAe} eNe$). Deduce that $eT_A(M)e$ is naturally identified with $T_{eAe}(eMe)$.

Exercise 4.5. Check that the maps $\operatorname{Hom}(M, \mathbb{C}^2 \otimes M') \to \operatorname{Hom}(\mathbb{C}^2 \otimes M, M'), \psi \mapsto (\omega \otimes 1_M) \circ (1_{\mathbb{C}^2} \otimes \psi)$ and $\operatorname{Hom}(\mathbb{C}^2 \otimes M, M') \to \operatorname{Hom}(M, \mathbb{C}^2 \otimes M'), \varphi \mapsto (1_{\mathbb{C}^2} \otimes \varphi) \circ (\zeta \otimes 1_M)$ are inverse to each other.

Problem 4.1. Prove the CBH lemma in the cyclic case, assuming that the orientation on Q is also cyclic. Hint: for x, y we can take Γ -eigenvectors.