Homework 7

Arjun Koshal

March 4, 2022

Problem 1

Theorem. If two sets A and B have the same cardinality, then for any set C, the sets $A \times C$ and $B \times C$ have the same cardinality as well.

Proof. Suppose |A| and |B|. This implies that there exists a bijection $f:A\to B$, as well as $g:B\to A$ that maps the elements from each set in a one-to-one relation. We can then map the set C to itself, through mapping each element in C to itself, and define the bijection to be $h:C\to C$. The Cartesian Product defines $A\times C=\{(a,c)\mid a\in A\text{ and }c\in C\}$, and $B\times C=\{(b,c)\mid b\in B\text{ and }c\in C\}$. We can then define an injection $i:A\times C\mapsto B\times C$ by $(a,c)\mapsto (f(a),h(c))$. Since we have an injection defined, it follows that $|A\times C|=|B\times C|$.

Problem 2

Theorem. A set A is countable if and only if there exists a surjection $f: \mathbb{N} \to A$.

Proof. Proof of Implication: If A is countable then there exists a surjection $f: \mathbb{N} \to A$.

Case 1: A is finite.

If A is finite, there exists a bijection f of some set \mathbb{N}_n onto A and we can define F on \mathbb{N} by

$$F(x) = \begin{cases} f(x) & \text{for } x = 1, \dots, n \\ f(n) & \text{for } x > n \end{cases}$$

Thus F is a surjection of \mathbb{N} onto A.

Case 2: A is countably infinite.

If A is countably infinite, then there exists a bijection of F of N onto A, which is also a surjection of N onto A.

Proof of Converse: If there exists a surjection $f: \mathbb{N} \to A$, then A is countable.

Suppose that $g: \mathbb{N} \to A$ is a surjection. Let us define $h: A \to \mathbb{N}$ by h(a) = the smallest $n \in \mathbb{N}$

such that g(n) = a, which the Well-Ordering Principle guarantees the existence of such n. Then h is injective because if $h(a_1) = h(a_2)$, then $g(h(a_1)) = a_1$ and $g(h(a_2)) = a_2$, which implies that $a_1 = a_2$. Since \mathbb{N} is countably infinite and $h(A) \subseteq \mathbb{N}$, it follows that h(A) is countable. Since h is a bijection from A to h(A), A is countable.

Problem 3

Theorem. The infinite strip $S = \{(x,y) \in \mathbb{R}^2 \mid x \in \mathbb{R} \text{ and } 0 \leq y \leq 1\}$ and the cartesian plane \mathbb{R}^2 have the same cardinality.

Proof. The infinite strip S can be considered the Cartesian product of \mathbb{R} and Y = [0, 1], and the Cartesian plane is the Cartesian product $\mathbb{R} \times \mathbb{R}$. In Problem 1, we proved that if two sets A and B have the same cardinality, then for any set C, the sets $A \times C$ and $B \times C$ have the same cardinality as well. Thus, we can prove this statement by showing Y = [0, 1] has the same cardinality as \mathbb{R} (consider set C in this case is \mathbb{R} , and that $\mathbb{R} \times Y$ is equivalent to $Y \times \mathbb{R}$ in cardinality).

Proof: Y = [0, 1] has the same cardinality as \mathbb{R} : Given the Schröder-Bernstein theorem, we can prove this by showing an injection in both directions. The injection $f : [0, 1] \to \mathbb{R}$ is trivial, simply let f map each real number in [0, 1] to itself in \mathbb{R} . Then, to show the injection $g : \mathbb{R} \to [0, 1]$, define, for $x \in \mathbb{R}$,

$$g(x) = \frac{1}{\pi} \cdot \arctan(x) + \frac{1}{2}.$$

This maps an injection from \mathbb{R} to [0,1]. Thus, Y=[0,1] has the same cardinality as \mathbb{R} , and the statement holds.