

مقرر تعلم الآلة كلية الهندسة المعلوماتية المحاضرة الثالثة كلية الهندسة المعلوماتية المحاضرة الثالثة الشجار القرار 2 الشجار القرار 2 Decision Tree 2

د. رياض سنبل

Learning Algorithm for Decision Trees

$$S = \left\{ \left(\mathbf{x}_1, y_1 \right), \dots, \left(\mathbf{x}_N, y_N \right) \right\}$$

$$\mathbf{x} = (x_1, \dots, x_d)$$

$$\mathbf{x}_j, y \in \{0, 1\}$$

$$\mathbf{if} \ (y = 0 \text{ for all } \langle \mathbf{x}, y \rangle \in S) \text{ return new leaf}(0)$$

$$\mathbf{else} \ \mathbf{if} \ (y = 1 \text{ for all } \langle \mathbf{x}, y \rangle \in S) \text{ return new leaf}(1)$$

$$\mathbf{else}$$

choose best attribute x_j

$$S_0 = \text{all } \langle \mathbf{x}, y \rangle \in S \text{ with } x_j = 0;$$

 $S_1 = \text{all } \langle \mathbf{x}, y \rangle \in S \text{ with } x_j = 1;$

return new node(x_j , GROWTREE(S_0), GROWTREE(S_1))

Which feature is "best"?

Which feature is "best"?

Using Absolute error

```
ChooseBestfeature(S)
choose \mathbf{j} to minimize \mathbf{J}_{\mathbf{i}}, computed as follows:
      S_0 = all \langle x, y \rangle \in S \text{ with } x_i = 0
      S_1 = all \langle x, y \rangle \in S \text{ with } x_i = 1
      y_0 = the most common value of y in S_0
       y_1 = the most common value of y in S_1
      J_0 = number of examples \langle x, y \rangle \in S_0 with y \neq y_0
      J_1 = number of examples \langle x, y \rangle \in S_1 with y \neq y_1
      J_i = J_0 + J_1 // total classification errors if we split on feature j
return j
```

Using Absolute error - Example

Using Absolute error - Example

BUT...

Classification error is **not as** sensitive to changes in data distribution, so it might not provide enough signal for deciding where to split next.

Better Criteria? Entropy!

Entropy

- S is a sample of training examples
- p₊ is the proportion of positive examples
- p_{_} is the proportion of negative examples
- Entropy measures the impurity of S Entropy(S) = $-p_+ \log_2 p_+ - p_- \log_2 p_-$

Information Gain = Reduction in Entropy

Information Gain = Reduction in Entropy

Information Gain = Reduction in Entropy

Example

Day	Outlook	Temp.	Humidity	Wind	Play Tennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Weak	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Strong	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Example: Selecting the Best Feature (ID3 Algorithm)

Example: (ID3 Algorithm)

- •Gain(S,Outlook) =0.247 (**)
- Gain(S, Humidity) = 0.151
- Gain(S,Wind) =0.048
- Gain(S,Temperature) =0.029

When should we stop

- All samples for a given node belong to the same class.
 - If all instances are "Yes", there's no need to ask more questions.
- There are no remaining features for further partitioning.
 - You ran out of features, but still have both "Yes" and "No" samples → choose the majority class (say, "Yes").
- There are no samples left
 - If a split condition results in an empty group, fill it with the majority class of the parent node.

RIAD SONBOL - ML COURSE

15

Converting a Tree to Rules

R₁: If (Outlook=Sunny) ∧ (Humidity=High) Then PlayTennis=No

R₂: If (Outlook=Sunny) ∧ (Humidity=Normal) Then PlayTennis=Yes

R₃: If (Outlook=Overcast) Then PlayTennis=Yes

R₄: If (Outlook=Rain) ∧ (Wind=Strong) Then PlayTennis=No

R₅: If (Outlook=Rain) ∧ (Wind=Weak) Then PlayTennis=Yes

Challenges: (1) Continous features

Convert continous features to disrete intervalls

- Temperature=24°C, Temperature =27°C
- (Temperature > 20.0°C) = {true, false}

How to recognise a good threshold?

Temperature	15°C	18°C	19°C	22°C	24°C	27°C
Tennis	No	No	Yes	Yes	Yes	No

Challenges: (2) Overfitting

- The idea: Stop growing the tree if the improvement is minor
- Pruning Decision Trees involves a set of techniques that can be used to simplify a Decision Tree, and enable it to generalize better (to avoid overtraining).
- Overfitting occurs when the model trains too well and starts learning noise other than the required characteristics

Challenges: (2) Overfitting

Challenges: (2) Overfitting

- Some Possible methods to apply pruning:
 - Max depth: controls the maximum depth of the tree.
 - Min samples split: controls the minimum number of samples that are required to split an internal node (prevent the tree from creating overfitting by creating branches with very few samples)
 - Threshold for Class-Related Samples: Consider setting a threshold for the percentage of samples related to a specific class.
 - Experimentation and evaluation are key to determining the most effective threshold for your particular scenario.