1 Syntax

```
:= \overline{cls} \ \overline{s}
program
                              ::= class \ C \ \{\overline{field} \ \overline{method}\}
cls
field
                              := T f;
                              ::= T \ m(T \ x) \ contract \ \{\overline{s}\}
method
contract
                              ::= requires \phi; ensures \phi;
                              ::= \mathtt{int} \ | \ C
T
                              := x.f := y; \mid x := e; \mid x := \text{new } C; \mid x := y.m(z);
s
                               | return x; | assert \phi; | release \phi; | T x;
                               ::= true \mid e=e \mid e \neq e \mid \mathtt{acc}(e.f) \mid x:T \mid \phi * \phi
φ
                               ::=v\mid x\mid e.f
                               ::= this | result | \langle other \rangle
                              ::= o \mid n \mid \mathtt{null}
v
                              \in \mathbb{Z}
n
                              \in (o \rightharpoonup (C, \overline{(f \rightharpoonup v)}))
H
                              \in (x \rightharpoonup v)
                             := \overline{(e,f)}
A_s
                              ::=\overline{(o,f)}
A_d
                              ::= (\rho, A_d, \overline{s}) \cdot S \mid nil
S
```

2 Assumptions

All the rules in the following sections are implicitly parameterized over a *programp* that is well-formed.

2.0.1 Well-formed program (program OK)

$$\frac{\overline{cls_i} \ \mathtt{OK}}{(\overline{cls_i} \ \overline{s}) \ \mathtt{OKPROGRAM}}$$

2.0.2 Well-formed class ($cls \ OK$)

$$\frac{\text{unique } field\text{-names} \quad \text{unique } method\text{-names} \quad \overline{method_i \text{ OK in } C}}{(\text{class } C \text{ } \{\overline{field_i} \text{ } \overline{method_i}\}) \text{ OK}} \text{ OKCLASS}$$

2.0.3 Well-formed method (method OK in C)

$$FV(\phi_1) \subseteq \{x, \texttt{this}\} \qquad FV(\phi_2) \subseteq \{x, \texttt{this}, \texttt{result}\} \\ \vdash \{x : T_x * \texttt{this} : C * \phi_1\} \overline{s} \{x : T_x * \texttt{this} : C * \texttt{result} : T_m * \phi_2\} \\ \frac{\emptyset \vdash_{\texttt{sfrm}} \phi_1 \qquad \emptyset \vdash_{\texttt{sfrm}} \phi_2 \qquad \neg writesTo(s_i, x)}{(T_m \ m(T_x \ x) \ \texttt{requires} \ \phi_1; \ \texttt{ensures} \ \phi_2; \ \{\overline{s}\}) \ \texttt{OK} \ \texttt{in} \ C} \\ \text{OKMETHOD}$$

3 Static semantics

3.1 Expressions $(A_s \vdash_{\mathtt{sfrm}} e)$

$$\frac{}{A \vdash_{\mathtt{sfrm}} x} \mathsf{WFVAR}$$

$$\frac{}{A \vdash_{\mathtt{sfrm}} v} \mathsf{WFValue}$$

$$\frac{(e,f) \in A \qquad A \vdash_{\mathtt{sfrm}} e}{A \vdash_{\mathtt{sfrm}} e.f} \text{ WFFIELD}$$

3.2 Formulas $(A_s \vdash_{\mathtt{sfrm}} \phi)$

$$\frac{}{A \vdash_{\mathtt{sfrm}} \mathtt{true}} \ \mathrm{WFTRUE}$$

$$\frac{A \vdash_{\mathtt{sfrm}} e_1 \quad A \vdash_{\mathtt{sfrm}} e_2}{A \vdash_{\mathtt{sfrm}} (e_1 = e_2)} \text{ WFEQUAL}$$

$$\frac{A \vdash_{\mathtt{sfrm}} e_1 \qquad A \vdash_{\mathtt{sfrm}} e_2}{A \vdash_{\mathtt{sfrm}} (e_1 \neq e_2)} \text{ WFNEQUAL}$$

$$\frac{A \vdash_{\mathtt{sfrm}} e}{A \vdash_{\mathtt{sfrm}} \mathtt{acc}(e.f)} \text{ WFAcc}$$

$$\overline{A \vdash_{\mathtt{sfrm}} x : T} \ \mathrm{WFTYPE}$$

$$\frac{A_s \vdash_{\mathtt{sfrm}} \phi_1 \qquad A_s \cup \lfloor \phi_1 \rfloor \vdash_{\mathtt{sfrm}} \phi_2}{A_s \vdash_{\mathtt{sfrm}} \phi_1 * \phi_2} \text{ WFSepOp}$$

3.2.1 Implication $(\phi_1 \Longrightarrow \phi_2)$

Conservative approx. of $\phi_1 \implies \phi_2$.

3.3 Footprint $(|\phi| = A_s)$

$$\begin{array}{ll} \lfloor \mathtt{true} \rfloor & = \emptyset \\ \lfloor e_1 = e_2 \rfloor & = \emptyset \\ \lfloor e_1 \neq e_2 \rfloor & = \emptyset \\ \lfloor \mathsf{acc}(e.f) \rfloor & = \{(e,f)\} \\ \lfloor \phi_1 * \phi_2 \rfloor & = \lfloor \phi_1 \rfloor \cup \lfloor \phi_2 \rfloor \end{array}$$

3.4 Type $(\phi \vdash e : T)$

$$\frac{}{\phi \vdash n : \mathtt{int}} \text{ STValNum}$$

$$\frac{}{\phi \vdash \mathtt{null} : T} \text{ STValNull}$$

$$\frac{\phi \implies (x:T)}{\phi \vdash x:T} \text{ STVAR}$$

$$\frac{\phi \vdash e : C \qquad \vdash C.f : T}{\phi \vdash e.f : T} \text{ STFIELD}$$

3.5 Hoare $(\vdash \{\phi\}\overline{s}\{\phi\})$

$$\frac{\vdash \{\phi_p\}s_1\{\phi_{q1}\} \qquad \phi_{q1} \implies \phi_{q2} \qquad \vdash_{\mathtt{sfrm}} \phi_{q2} \qquad \vdash \{\phi_{q2}\}s_2\{\phi_r\}}{\vdash \{\phi_p\}s_1; s_2\{\phi_r\}} \text{ HSec}$$

$$\frac{x \not\in FV(\phi') \qquad \phi \vdash x : C \qquad \text{fields}(C) = \overline{f}}{\vdash \{\phi' * \phi\}x := \text{new } C\{\overline{\texttt{acc}(x, f_i)} * x : C * (x \neq \texttt{null}) * \phi'\}} \text{ HNEWOBJ}$$

$$\frac{\phi \vdash x : C \qquad \phi \vdash y : T \qquad \vdash C.f : T}{\vdash \{\phi * \texttt{acc}(x.f)\} x.f := y \{x : C * \texttt{acc}(x.f) * (x \neq \texttt{null}) * (x.f = y) * \phi\}} \text{ HFIELDASSIGN}$$

$$\frac{x \not\in FV(\phi) \qquad x \not\in FVe(e) \qquad \phi \vdash x : T \qquad \phi \vdash e : T \qquad \lfloor \phi \rfloor \vdash_{\mathtt{sfrm}} e}{\vdash \{\phi\}x := e\{\phi * (x = e)\}} \text{ HVarAssign}$$

$$\frac{\mathtt{result} \not\in FV(\phi) \qquad \phi \vdash x : T \qquad \phi \vdash \mathtt{result} : T}{\vdash \{\phi\}\mathtt{return} \ x\{\mathtt{result} : T * (\mathtt{result} = x) * \phi\}} \ \mathrm{HRETURN}$$

$$\begin{split} \phi \vdash y : C & \text{ mmethod}(C, m) = T_r \ m(T_p \ z) \ \text{requires } \phi_{pre}; \ \text{ensures } \phi_{post}; \ \{_\} \\ \phi \vdash x : T_r & \phi \vdash z' : T_p \quad x \not\in FV(\phi_r) \quad @listDistinct(x, x \cdot y \cdot z' \cdot \emptyset) \\ & \frac{\phi_p = \phi_{pre}[y, z'/\text{this}, z] \quad \phi_q = \phi_{post}[y, z', x/\text{this}, z, \text{result}]}{\vdash \{\phi_r * (y \neq \text{null}) * \phi_p * \phi\}x := y.m(z')\{\phi_r * \phi_q\}} \end{split} \quad \text{HAPP}$$

$$\frac{\phi_1 \implies \phi_2}{\vdash \{\phi_1\} \texttt{assert} \ \phi_2 \{\phi_1\}} \ \texttt{HASSERT}$$

$$\frac{}{\vdash \{\phi_r * \phi\} \mathtt{release} \ \phi\{\phi_r\}} \ \mathtt{HRelease}$$

$$\frac{x \not\in FV(\phi)}{\vdash \{\phi\}T \ x\{x: T*(x = \mathtt{defaultValue}(T))*\phi\}} \ \mathtt{HDeclare}$$

4 Dynamic semantics

4.1 Expressions $(H, \rho \vdash e \Downarrow v)$

$$\overline{H, \rho \vdash x \Downarrow \rho(x)}$$
 EEVAR

$$\frac{}{H, \rho \vdash v \Downarrow v}$$
 EEVALUE

$$\frac{H, \rho \vdash e \Downarrow o}{H, \rho \vdash e.f \Downarrow H(o)(f)} \text{ EEAcc}$$

4.2 Formulas $(H, \rho, A \vDash \phi)$

$$\overline{H, \rho, A \models \text{true}}$$
 EATRUE

$$\frac{H, \rho \vdash e_1 \Downarrow v_1 \qquad H, \rho \vdash e_2 \Downarrow v_2 \qquad v_1 = v_2}{H, \rho, A \vDash (e_1 = e_2)} \text{ EAEQUAL}$$

$$\frac{H, \rho \vdash e_1 \Downarrow v_1 \qquad H, \rho \vdash e_2 \Downarrow v_2 \qquad v_1 \neq v_2}{H, \rho, A \vDash (e_1 \neq e_2)} \text{ EANEQUAL}$$

$$\frac{H, \rho \vdash e \Downarrow o \quad (o, f) \in A}{H, \rho, A \vDash \mathsf{acc}(e.f)} \text{ EAAcc}$$

$$\frac{\rho(x) = v \qquad H \vdash v : T}{H, \rho, A \vDash x : T} \text{ EATYPE}$$

$$\frac{A_1 = A \backslash A_2 \qquad H, \rho, A_1 \vDash \phi_1 \qquad H, \rho, A_2 \vDash \phi_2}{H, \rho, A \vDash \phi_1 * \phi_2} \text{ EASEPOP}$$

We give a denotational semantics of formulas as $\llbracket \phi \rrbracket = \{ (H, \rho, A) \mid H, \rho, A \vDash \phi \}$ Note: ϕ satisfiable $\iff \llbracket \phi \rrbracket \neq \emptyset$

4.2.1 Implication $(\phi_1 \implies \phi_2)$

$$\phi_1 \implies \phi_2 \iff \llbracket \phi_1 \rrbracket \subseteq \llbracket \phi_2 \rrbracket$$

4.3 Footprint $(\lfloor \phi \rfloor_{H,\rho} = A_d)$

$$\begin{array}{ll} \lfloor \mathtt{true} \rfloor_{H,\rho} & = \emptyset \\ \lfloor e_1 = e_2 \rfloor_{H,\rho} & = \emptyset \\ \lfloor e_1 \neq e_2 \rfloor_{H,\rho} & = \emptyset \\ \lfloor \mathsf{acc}(x.f) \rfloor_{H,\rho} & = \{(o,f)\} \text{ where } H, \rho \vdash x \Downarrow o \\ \lfloor \phi_1 * \phi_2 \rfloor_{H,\rho} & = \lfloor \phi_1 \rfloor_{H,\rho} \cup \lfloor \phi_2 \rfloor_{H,\rho} \end{array}$$

4.4 Small-step $((H,S) \rightarrow (H,S))$

$$\frac{H,\rho \vdash x \Downarrow o \quad H,\rho \vdash y \Downarrow v_y \quad (o,f) \in A \quad H' = H[o \mapsto [f \mapsto v_y]]}{(H,(\rho,A,x.f := y; \overline{s}) \cdot S) \to (H',(\rho,A,\overline{s}) \cdot S)} \text{ ESFIELDASSIGN}$$

$$\frac{H, \rho \vdash e \Downarrow v \qquad \rho' = \rho[x \mapsto v]}{(H, (\rho, A, x := e; \overline{s}) \cdot S) \to (H, (\rho', A, \overline{s}) \cdot S)} \text{ ESVARASSIGN}$$

$$\frac{H, \rho \vdash x \Downarrow v_x \qquad \rho' = \rho[\mathtt{result} \mapsto v_x]}{(H, (\rho, A, \mathtt{return} \ x; \overline{s}) \cdot S) \to (H, (\rho', A, \overline{s}) \cdot S)} \text{ ESRETURN}$$

$$H, \rho \vdash y \Downarrow o \qquad H, \rho \vdash z \Downarrow v \\ H(o) = (C, _) \qquad \text{mmethod}(C, m) = T_r \ m(T \ w) \ \text{requires} \ \phi; \ \text{ensures} \ _; \ \{\overline{r}\} \\ \frac{\rho' = [\text{result} \mapsto \text{defaultValue}(T_r), \text{this} \mapsto o, w \mapsto v] \qquad H, \rho', A \vDash \phi \qquad A' = \lfloor \phi \rfloor_{H, \rho'}}{(H, (\rho, A, x := y.m(z); \overline{s}) \cdot S) \rightarrow (H, (\rho', A', \overline{r}) \cdot (\rho, A \setminus A', x := y.m(z); \overline{s}) \cdot S)} \ \text{ESAPP}(A, A, x := y.m(z); \overline{s}) \cdot S)$$

$$\frac{H,\rho \vdash y \Downarrow o \qquad H(o) = (C,_)}{H,\rho',A' \vDash \phi \qquad A'' = \lfloor \phi \rfloor_{H,\rho'} \qquad H,\rho' \vdash \texttt{result} \Downarrow v_r} \\ \frac{\text{mpost}(C,m) = \phi \qquad H,\rho',A' \vDash \phi \qquad A'' = \lfloor \phi \rfloor_{H,\rho'} \qquad H,\rho' \vdash \texttt{result} \Downarrow v_r}{(H,(\rho',A',\emptyset) \cdot (\rho,A,x := y.m(z);\overline{s}) \cdot S) \rightarrow (H,(\rho[x \mapsto v_r],A*A'',\overline{s}) \cdot S)} \\ \text{ESAPPFINISH}$$

$$\frac{H, \rho, A \vDash \phi}{(H, (\rho, A, \mathtt{assert} \ \phi; \overline{s}) \cdot S) \to (H, (\rho, A, \overline{s}) \cdot S)} \text{ ESASSERT}$$

$$\frac{H, \rho, A \vDash \phi \qquad A' = A \setminus \lfloor \phi \rfloor_{H, \rho}}{(H, (\rho, A, \mathtt{release} \ \phi; \overline{s}) \cdot S) \to (H, (\rho, A', \overline{s}) \cdot S)} \text{ ESRelease}$$

$$\frac{\rho' = \rho[x \mapsto \mathtt{defaultValue}(T)]}{(H, (\rho, A, T \: x; \overline{s}) \cdot S) \to (H, (\rho', A, \overline{s}) \cdot S)} \; \mathtt{ESDECLARE}$$

5 Gradualization

5.1 Syntax

$$\widetilde{\phi} ::= \phi \mid \phi * ?$$

Note: allowing? at different position is hardly useful

- dynamically: order makes no difference
- statically: Imagine substituting? with acc(x.f) * [...]. The only time this makes sense to **not** put to the very right is when there are expressions containing x.f (in the non-gradual part). In other words, there are expressions that are framed only when? is substituted in a specific way. But then why not require the necessary framing in the non-gradual part as well, i.e. why not simply **write out** acc(x.f) instead of relying on a substitution? Corollary: The non-gradual part of $\widetilde{\phi}$ should be self-framed.

5.1.1 Discussion

- We want $\phi * ? \implies \phi$ for all ϕ
- Meaning of $\vdash \{\phi_1 * ?\} \overline{s} \{\phi_2\}$ compared to $\vdash \{\phi_1\} \overline{s} \{\phi_2\} ?$
 - Caller: nothing

- Callee: verification succeeds as long as there exists a (satisfiable) instantiation that makes proof about method body work.
- Meaning of $\vdash \{\phi_1\}\overline{s}\{\phi_2*?\}$ compared to $\vdash \{\phi_1\}\overline{s}\{\phi_2\}?$
 - Caller: verification succeeds as long as there exists a (satisfiable) instantiation that makes upcoming proofs work.
 - Callee: nothing

5.2 Concretization A

$$\gamma(\phi) = \{ \phi' \mid \phi' \iff \phi \}
\gamma(\phi *?) = \{ \phi' \mid \exists \phi_x : \phi * \phi_x \iff \phi' \}
= \{ \phi' \mid \phi' \implies \phi \}$$

5.3 Abstraction

$$\alpha(\overline{\phi}) = (\Box \overline{\phi}) * ?$$

5.4 Concretization B (as in better)

$$\gamma(\phi) = \{ \phi \}
\gamma(\phi *?) = \{ \phi * \phi_x \mid \exists \phi_x : \llbracket \phi * \phi_x \rrbracket \neq \emptyset \}$$

5.5 Abstraction

$$\begin{array}{ll} \alpha(\{\ \phi\ \}) & = \phi \\ \alpha(\overline{\phi}) & = (\bigcap \overline{\phi}) *? \end{array}$$

Note: $\gamma(\phi *?)$ contains $\phi *$ true which is obviously implies by all the other members of the set, so $\prod \gamma(\phi *?) = \phi *$ true *?.

It feels like the operations on ϕ -sets we will encounter will preserve this property of $\Box \overline{\phi}$ actually being a well-known member of $\overline{\phi}$.

5.6 (ϕ, \Longrightarrow) is semilattice

According to the definition of \implies via \subseteq , we define

$$\phi_a \sqcap \phi_b = \phi_c \quad : \iff \quad \llbracket \phi_a \rrbracket \cap \llbracket \phi_b \rrbracket = \llbracket \phi_c \rrbracket$$

The question is, whether such ϕ_c always exists.

- 5.7 Theorems
- 5.7.1 Soundness of α

$$\forall \overline{\phi} : \overline{\phi} \subseteq \gamma(\alpha(\overline{\phi}))$$

5.7.2 Optimality of α

$$\forall \overline{\phi}, \widetilde{\phi} : \overline{\phi} \subseteq \gamma(\widetilde{\phi}) \implies \gamma(\alpha(\overline{\phi})) \subseteq \gamma(\widetilde{\phi})$$

- 6 Theorems
- **6.1** Invariant $invariant(H, \rho, A_d, \phi)$
- 6.1.1 Phi valid

$$\vdash_{\mathtt{sfrm}} \phi$$

6.1.2 Phi holds

$$H, \rho, A_d \vDash \phi$$

6.1.3 Types preserved

$$\forall e, T : \phi \vdash e : T$$
$$\implies H, \rho \vdash e : T$$

6.1.4 Heap consistent

$$\begin{aligned} \forall o, C, \mu, f, T : H(o) &= (C, \mu) \\ &\implies \texttt{fieldType}(C, f) = T \\ &\implies H, \rho \vdash \mu(f) : T \end{aligned}$$

6.1.5 Heap not total

$$\exists o_{min}:$$
 $orall o \geq o_{min}: o
ot\in dom(H)$ $\wedge orall f, (o,f)
ot\in A$

- 6.2 Soundness
- 6.2.1 Progress

$$\forall \dots : \vdash \{\phi_1\}s'\{\phi_2\}$$

$$\implies invariant(H_1, \rho_1, A_1, \phi_1)$$

$$\implies \exists H_2, \rho_2, A_2 : (H_1, (\rho_1, A_1, s'; \overline{s}) \cdot S) \rightarrow^* (H_2, (\rho_2, A_2, \overline{s}) \cdot S)$$

6.2.2 Preservation

$$\forall \dots : \quad \vdash \{\phi_1\}s'\{\phi_2\}$$

$$\implies invariant(H_1, \rho_1, A_1, \phi_1)$$

$$\implies (H_1, (\rho_1, A_1, s'; \overline{s}) \cdot S) \rightarrow^* (H_2, (\rho_2, A_2, \overline{s}) \cdot S)$$

$$\implies invariant(H_2, \rho_2, A_2, \phi_2)$$