7. 조합논리회로

논리회로

부경대 컴퓨터 인공지능공학부 최필주

조합논리회로 개요

- 기본 논리 회로: AND, OR, NOT, NAND, NOR, XOR, NOR
- 조합논리회로
 - 논리곱(AND), 논리합(OR), 논리 부정(NOT)의 세 가지 기본 논리 회로 를 조합하여 구성한 논리 회로
 - 구성: 입력변수, 논리 게이트, 출력변수

목차

- 가산기
- 비교기
- 디코더와 인코더
- 멀티플렉서와 디멀티플렉서
- 코드 변환기
- 패리티 발생기/검출기

- 반가산기(HA, half-adder)
 - 두 비트의 덧셈 수행 → 출력: Sum, Carry

■ 진리표, 논리식, 논리회로

입	력	출력			
A	В	S	C		
0	0	0	0		
0	1	1	0 0 0		
1	0	1	0		
1	1	0	1		

$$S = \bar{A}B + A\bar{B} = A \oplus B$$

$$C = A \cdot B$$

- 전가산기(FA, full-adder)
 - 세 비트의 덧셈 수행 → 출력: Sum, Carry

■ 진리표, 논리식

	입력		·동 ·	력
A	В	C_{in}	S	C_{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S = A \oplus B \oplus C_{in}$$

BC A	00	01	11	10
0	0	0	1	0
1	0	1	1	1

$$C_{out} = AB + BC_{in} + C_{in}A$$

- 전가산기(FA, full-adder)
 - 논리식
 - $S = A \oplus B \oplus C_{in}$
 - $C_{out} = AB + BC_{in} + C_{in}A$
 - 논리회로 구현1: 3-input XOR, 2-input AND × 3, 3-input OR

- 전가산기(FA, full-adder)
 - 논리식
 - $S = A \oplus B \oplus C_{in}$
 - $C_{out} = AB + BC_{in} + C_{in}A = AB + C_{in}(A + B) = AB + C_{in}(A \oplus B)$
 - 논리회로 구현 2: HA × 2, 2-input OR
 - 1st HA

$$-S'=A \oplus B$$

- -C'=AB
- 2nd HA

$$-S = S' \oplus C_{in} = (A \oplus B) \oplus C_{in}$$

- $-C'' = S' \cdot C_{in} = (A \oplus B) \cdot C_{in}$
- OR
 - $-C' + C'' = AB + C_{in}(A \oplus B)$

HA vs. FA

$$\begin{array}{cccc}
 & 1 & & 1 \\
 + & 0 & & + & 1 \\
\hline
 & 0 & 1 & & 1 & 0
\end{array}$$

<한 자리 2진수를 더할 때>

<두 자리 이상의 2진수를 더할 때>

- 병렬가감산기(Parallel-adder/subtractor)
 - 병렬가산기: FA를 여러 개 병렬로 연결
 - 2비트 이상의 수를 더할 때 사용
 - 예) 4비트 덧셈 $\{C_4S_3S_2S_1S_0\} = \{A_3A_2A_1A_0\} + \{B_3B_2B_1B_0\}$

- 병렬가감산기(Parallel-adder/subtractor)
 - 병렬가감산기: XOR를 추가하여 감산(뺄셈) 기능 추가

•
$$S = 0$$
일 때: $\{C_4S_3S_2S_1S_0\} = \{A_3A_2A_1A_0\} + \{B_3B_2B_1B_0\} + 0$

•
$$S = 1$$
일 때: $\{C_4S_3S_2S_1S_0\} = \{A_3A_2A_1A_0\} + \{\overline{B_3}\ \overline{B_2}\ \overline{B_1}\ \overline{B_0}\} + 1$
= $\{A_3A_2A_1A_0\} + (-\{B_3B_2B_1B_0\})$

- 고속가산기(high-speed-adder)
 - 병렬가산기는 carry 이동 때문에 속도가 매우 느림

- 대안
 - Carry-Lookahead Adder (CLA)
 - Carry-select Adder, ...

CLA - 논리식

- $C_{i+1} = A_i B_i + C_i (A_i \oplus B_i) = G_i + P_i C_i$ where $G_i = A_i B_i$, $P_i = A_i \oplus B_i$
- 4비트 가산기에 적용
 - $C_1 = G_0 + P_0 C_0$
 - $C_2 = G_1 + P_1C_1 = G_1 + P_1G_0 + P_1P_0C_0$
 - $C_3 = G_2 + P_2C_2 = G_2 + P_2(G_1 + P_1G_0 + P_1P_0C_0) = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$
 - $C_4 = G_3 + P_3C_3 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0C_0 = G_G + P_GC_0$
 - $P_G = P_3 P_2 P_1 P_0$
 - $G_G = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0$

- CLA 구성
 - Partial full adder (PFA): P_i , G_i , S_i 계산
 - Carry Lookahead Logic: C_i 계산
 - 4-bit CLA

AB

- CLA 구성
 - 16-bit CLA

$$\begin{split} &C_4 = G_4 + P_4 C_0 \\ &C_8 = G_8 + P_8 G_4 + P_8 P_4 C_0 \\ &C_{12} = G_{12} + P_{12} G_8 + P_{12} P_8 G_4 + P_{12} P_8 P_4 C_0 \\ &C_{16} = G_{16} + P_{16} G_{12} + P_{16} P_{12} G_8 + P_{16} P_8 P_4 G_4 + P_{16} P_{12} P_8 P_4 C_0 \end{split}$$

$$C_1 = G_0 + P_0 C_0$$

$$C_2 = G_1 + P_1 G_0 + P_1 P_0 C_0$$

$$C_3 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0$$

$$C_4 = G_3 + P_3 G_2 + P_3 P_2 G_1 + P_3 P_2 P_1 G_0 + P_3 P_2 P_1 P_0 C_0$$

- BCD 가산기
 - BCD 코드: 10진수 1자리가 BCD 코드 4 bits와 대응
 - 가산기 설계 시 고려사항: 덧셈 결과가 10~15인 경우 이를 보정(+6)
 - **9**: 6 + 7 = 13

- BCD 가산기
 - 논리식

•
$$C = K + Z_3 Z_2 + Z_3 Z_1$$

•
$${S_3S_2S_1S_0} = {Z_3Z_2Z_1Z_0} + {C \ C \ 0}$$

- BCD 가산기
 - BCD합이 {*KZ*₃*Z*₂*Z*₁*Z*₀}일 때
 - $C = K + Z_3 Z_2 + Z_3 Z_1$
 - ${S_3S_2S_1S_0} = {Z_3Z_2Z_1Z_0} + {C \ C \ 0}$

'비교기(Comparator)

- 2진 비교기
 - 두 개의 2진수의 크기를 비교하는 회로
- 1비트 비교기

입	력		출	력	
A	В	$A=B$ F_1	$A \neq B$ F_2	$A>B$ F_3	$A < B$ F_4
0	0	1	0	0	0
0	1	0	1	0	1
1	0	0	1	1	0
1	1	1	0	0	0

$$F_1 = \overline{A \oplus B}, \quad F_2 = A \oplus B,$$

 $F_3 = A\overline{B}, \quad F_4 = \overline{A}B$

비교기(Comparator)

• 2비트 비교기

입	력		출i	력	
A	В	A=B	$A \neq B$	A>B	A < B
A_1A_0	B_1B_0	F_1	F_2	F_3	F_4
	0 0	1	0	0	0
0 0	0 1	0	1	0	1
0 0	1 0	0	1	0	1
	1 1	0	1	0	1
	0 0	0	1	1	0
0 1	0 1	1	0	0	0
0 1	1 0	0	1	0	1
	1 1	0	1	0	1
	0 0	0	1	1	0
1 0	0 1	0	1	1	0
1 0	1 0	1	0	0	0
	1 1	0	1	0	1
	0 0	0	1	1	0
1 1	0 1	0	1	1	0
1 1	1 0	0	1	1	0
	1 1	1	0	0	0

$$F_{1} = (\overline{A_{1} \oplus B_{1}}) \cdot (\overline{A_{0} \oplus B_{0}})$$

$$F_{2} = \overline{F_{1}} = (A_{1} \oplus B_{1}) + (A_{0} \oplus B_{0})$$

$$F_{3} = A_{1} \overline{B_{1}} + A_{1} A_{0} \overline{B_{0}} + A_{0} \overline{B_{1}} \overline{B_{0}}$$

$$\{B_{1} B_{0}\} \quad 00 \quad 01 \quad 11 \quad 10$$

$$00 \quad 0 \quad 1 \quad 1 \quad 1$$

$$11 \quad 1 \quad 1 \quad 1$$

$$10 \quad 1 \quad 1 \quad 1$$

$$F_4 = B_1 \overline{A_1} + B_1 B_0 \overline{A_0} + B_0 \overline{A_1} \overline{A_0} = \overline{F_3} \cdot \overline{F_1}$$

인코더(Encoder)와 디코더(Decoder)

- n비트 2진 코드 $\leftrightarrow 2^n$ 개의 정보
- Encoder vs. Decoder

- Encoder: $D_0 \sim D_7$ 중 on된 bit의 위치를 2진수로 출력
- Decoder: $D_0 \sim D_7$ 중 2진수 입력이 가리키는 곳을 on

- 1×2 디코더
 - 논리식: $Y_0 = \bar{A}, Y_1 = A$
 - 진리표와 논리회로

입력	출력				
A	Y_1	Y_0			
0	0	1			
1	1	0			

- 1×2 디코더 Enable 신호가 있는 경우
 - 논리식: $Y_0 = E\bar{A}, Y_1 = EA$
 - 진리표와 논리회로

입력	출	력
E A	Y_1	Y_0
0 0	0	0
0 1	0	0
1 0	0	1
1 1	1	0

- 2×4 디코더
 - 논리식: $Y_0 = \bar{B}\bar{A}, Y_1 = \bar{B}A, Y_2 = B\bar{A}, Y_3 = BA$
 - 진리표와 논리회로

입	꺕	출력						
В	B A		Y_2	Y_1	Y_0			
0	0	O	0	0	1			
0	1	0	0	1	0			
1	0	0	1	0	0			
1	1	1	0	0	0			

- 2×4 디코더 Enable 신호가 있는 경우
 - 논리식: $Y_0 = E\bar{B}\bar{A}$, $Y_1 = E\bar{B}A$, $Y_2 = EB\bar{A}$, $Y_3 = EBA$
 - 진리표와 논리회로

입	력	출력					
E B	B A	Y_3	Y_2	Y_1	Y_0		
0 >	× ×	0	0	0	0		
1 (0 0	0	0	0	1		
1 () 1	0	0	1	0		
1 1	0	0	1	0	0		
1 1	1 1	1	0	0	0		

● 3×8 디코더

• 논리식:
$$Y_0 = \bar{C}\bar{B}\bar{A}, Y_1 = \bar{C}\bar{B}A, Y_2 = \bar{C}B\bar{A}, Y_3 = \bar{C}BA$$

 $Y_4 = C\bar{B}\bar{A}, Y_5 = C\bar{B}A, Y_6 = CB\bar{A}, Y_7 = CBA$

■ 진리표와 논리회로

입력		출력						
C B A	Y_7	Y_6	Y_5	Y_4	Y_3	Y_2	Y_1	Y_0
0 0 0	0	0	0	0	0	0	0	1
0 0 1	0	0	0	0	0	0	1	0
0 1 0	0	0	0	0	0	1	0	0
0 1 1	0	0	0	0	1	0	0	0
1 0 0	0	0	0	1	0	0	0	0
1 0 1	0	0	1	0	0	0	0	0
1 1 0	0	1	0	0	0	0	0	0
1 1 1	1	0	0	0	0	0	0	0

- 4×16 디코더
 - 2개의 3×8 디코더, 5개의 2×4 디코더로 구성 가능

- 디코더를 이용한 조합논리회로
 - 디코더의 출력은 minterm을 의미

• 7-Segment 디코더

<7-세그먼트와 디코더의 연결>

- 7-Segment 디코더
 - 진리표

	입	력					출력			
D	C	В	А	ā	$\overline{m{b}}$	<u></u>	\overline{d}	ē	$ar{f}$	\overline{g}
0	0	0	0	0	0	0	0	0	0	1
0	0	0	1	1	0	0	1	1	1	1
0	0	1	0	0	0	1	0	0	1	0
0	0	1	1	0	0	0	0	1	1	0
0	1	0	0	1	0	0	1	1	0	0
0	1	0	1	0	1	0	0	1	0	0
0	1	1	0	1	1	0	0	0	0	0
0	1	1	1	0	0	0	1	1	1	1
1	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	1	1	0	0
1	0	1	0	×	×	×	×	×	×	×
1	0	1	1	×	×	×	×	×	×	×
1	1	0	0	×	×	×	×	×	×	×
1	1	0	1	×	×	×	×	×	×	×
1	1	1	0	×	×	×	×	×	×	×
1	1	1	1	×	×	×	×	×	×	×

• 7-Segment 디코더

■ 진리표

	입	력					출력			
D	C	В	А	ā	\overline{b}	<u></u>	\overline{d}	ē	\bar{f}	$\overline{m{g}}$
0	0	0	0	0	0	0	0	0	0	1
0 0	0	0	1	1	0	0	1	1	1	1
0	0	1	0	0	0	1	0	0	1	0
0 0 0 0	0	1	1	0	0	0	0	1	1	0
0	1	0	0	1	0	0	1	1	0	0
0	1	0	1	0	1	0	0	1	0	0
0	1	1	0	1	1	0	0	0	0	0
0	1	1	1	0	0	0	1	1	1	1
1	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	1	1	0	0
1	0	1	0	×	×	×	×	×	×	×
1	0	1	1	×	×	×	×	×	×	×
1	1	0	0	×	×	×	×	×	×	×
1	1	0	1	×	×	×	×	×	×	×
1	1	1	0	×	×	×	×	×	×	×
1	1	1	1	×	×	×	×	×	×	×

$$\overline{b} = C\overline{B}A + CB\overline{A} = C(B \oplus A)$$

• 7-Segment 디코더

■ 진리표

입력				출력						
D	C	В	А	ā	$\overline{m{b}}$	\overline{c}	\overline{d}	ē	\bar{f}	$\overline{m{g}}$
0	0	0	0	0	0	0	0	0	0	1
0	0	0	1	1	0	0	1	1	1	1
0	0	1	0	0	0	1	0	0	1	0
0	0	1	1	0	0	0	0	1	1	0
0	1	0	0	1	0	0	1	1	0	0
0	1	0	1	0	1	0	0	1	0	0
0	1	1	0	1	1	0	0	0	0	0
0	1	1	1	0	0	0	1	1	1	1
1	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	1	1	0	0
1	0	1	0	×	×	×	×	×	×	×
1	0	1	1	×	×	×	×	×	×	×
1	1	0	0	×	×	×	×	×	×	×
1	1	0	1	×	×	×	×	×	×	×
1	1	1	0	×	×	×	×	×	×	×
1	1	1	1	×	×	×	×	×	×	×

$$\overline{f} = BA + \overline{C}B + \overline{D}\overline{C}A$$

- 7-Segment 디코더
 - IC 7447: 7-segment 디코더로 많이 사용되는 IC 칩, active-low로 동작
 - 7-Segment 공통 회로와 IC 7447과의 연결

<전류 제한 저항을 사용한 7-세그먼트 회로의 예>

인코더(Encoder)

• 2^n 개의 신호를 받아 n비트 2진 코드로 변경

- 4×2 인코더
 - 논리식: $B_1 = D_3 + D_2$, $B_0 = D_3 + D_1$
 - 진리표 및 논리회로

	입	출력				
D_3	D_2	D_1	D_0	B_1	B_0	
0	0	0	1	0	0	
0	0	1	0	0	1	
0	1	0	0	1	0	
1	0	0	0	1	1	

인코더(Encoder)

- 8×3 우선 순위 인코더
 - 논리식: $B_2 = D_7 + D_6 + D_5 + D_4$, $B_1 = D_7 + D_6 + D_3 + D_2$, $B_0 = D_7 + D_5 + D_3 + D_1$
 - 진리표 및 논리회로

입력									출력		
D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	B_2	B_1	B_0	
0	0	0	0	0	0	0	1	0	0	0	
0	0	0	0	0	0	1	0	0	0	1	
0	0	0	0	0	1	0	0	0	1	0	
0	0	0	0	1	0	0	0	0	1	1	
0	0	0	1	0	0	0	0	1	0	0	
0	0	1	0	0	0	0	0	1	0	1	
0	1	0	0	0	0	0	0	1	1	0	
1	0	0	0	0	0	0	0	1	1	1	

인코더(Encoder)

● 8×3 우선 순위 인코더

• 논리식:
$$B_2 = D_7 + \underline{D_6} + D_5 + \underline{D_4}, B_1 = \underline{D_7} + \underline{D_6} + \overline{D_5} \, \overline{D_4} (D_3 + D_2)$$

 $B_0 = D_7 + \overline{D_6} D_5 + \overline{D_6} \, \overline{D_4} D_3 + \overline{D_6} \, \overline{D_4} \, \overline{D_2} D_1$

■ 진리표 및 논리회로

입력									출력		
D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	B_2	B_1	B_0	
0	0	0	0	0	0	0	1	0	0	0	
0	0	0	0	0	0	1	×	0	0	1	
0	0	0	0	0	1	×	×	0	1	0	
0	0	0	0	1	×	×	×	0	1	1	
0	0	0	1	×	×	×	×	1	0	0	
0	0	1	×	×	×	×	×	1	0	1	
0	1	×	×	×	×	×	×	1	1	0	
1	×	×	×	×	×	×	×	1	1	1	

멀티플렉서와 디멀티플렉서

Multiplexer vs. Demultiplexer

- Multiplexer: $D_0 \sim D_7$ 중 $\{S_2 S_1 S_0\}$ 이 가리키는 것을 출력
- Demultiplexer: $D_0 \sim D_7$ 중 $\{S_2 S_1 S_0\}$ 이 가리키는 곳에 출력

- 2×1 MUX
 - 논리식: $F = \bar{S}D_0 + SD_1$
 - 진리표 및 논리회로

선택선	출력
S	F
0 1	$D_0 \\ D_1$

- 4×1 MUX
 - 논리식: $F = \overline{S_1}\overline{S_0}D_0 + \overline{S_1}S_0D_1 + S_1\overline{S_0}D_2 + S_1S_0D_3$
 - 진리표 및 논리회로

선택	택선	출력
S_1	S_0	F
0	0	D_0
0	1	D_1
1	0	$egin{array}{c} D_0 \ D_1 \ D_2 \ D_3 \end{array}$
1	1	D_3

• 16×1 MUX

- 4×1 MUX를 5개 활용하여 구성 가능
- MUX #1: ${S_3S_2S_1S_0} = 0000 \sim 0011$
- MUX #2: $\{S_3S_2S_1S_0\} = 0100 \sim 0111$
- MUX #3: ${S_3S_2S_1S_0} = 1000 \sim 1011$
- MUX #4: ${S_3S_2S_1S_0} = 1100 \sim 1111$
- MUX #5: $\{S_3S_2S_1S_0\} = 00XX \sim 11XX$

- 멀티플렉서를 이용한 조합회로 구현
 - $\mathfrak{P}(A,B,C) = \Sigma m(0,1,5,7)$
 - 진리표

A	В	С	F
0	0	0	$1 (D_0)$
0	0	1	$1(D_1)$
0	1	0	$0(D_2)$
0	1	1	$0(D_3)$
1	0	0	$0(D_4)$
1	0	1	$1(D_5)$
1	1	0	$0(D_6)$
1	1	1	$1(D_7)$

- 8×1 MUX 사용
 - A, B, C를 선택 신호에 연결
 - minterm에 대응하는 $D_0 \sim D_7$ 중 F = 0,1을 각각 GND와 VDD로 연결

- 멀티플렉서를 이용한 조합회로 구현
 - $\mathfrak{P}(A,B,C) = \Sigma m(0,1,5,7)$
 - 진리표

A	В	C	F
0	0	0	$1(D_0)$
0	0	1	$1(D_1)$
0	1	0	$0(D_2)$
0	1	1	$0(D_3)$
1	0	0	$0(D_4)$
1	0	1	$1(D_5)$
1	1	0	$0(D_6)$
1	1	1	$1(D_7)$

- 4×1 MUX 사용
 - A, B를 선택 신호에 연결
 - $D_0 \sim D_3$ 중 $F = 0, 1, \bar{C}, C$ 을 각각 GND, VDD, \bar{C}, C 와 연결

디멀티플렉서(Demultiplexer, DEMUX)

● 한 개의 입력을 *n*개의 출력 중 선택된 한 곳에 전달

Decoder vs. DEMUX

Ć	일 랻	‡	출력				
E	В	\boldsymbol{A}	Y_3	Y_2	Y_1	Y_0	
0	×	×	0	0	0	0	
1	0	0	0	0	0	1	
1	0	1	0	0	1	0	
1	1	0	0	1	0	0	
1	1	1	1	0	0	0	

• enable 신호를 가진 $n \times 2^n$ decoder = 1×2^n DEMUX

● 2진코드-그레이코드

2진 코드					L레O	l 코	
B_3	B_2	B_1	B_0	G_3	G_2	G_1	G_0
0	0	0	0	0	0	0	U
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

• 2진코드-그레이코드

		코드	_		.레이	_	드
B_3	B_2	B_1	B_0	G_3	G_2	G_1	G_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

<그레이코드 → 2진코드>

● BCD코드-3초과 코드

2진	코	트(일	【력)	3초	과 코	[드(출력)
B_3	B_2	B_1	B_0	E_3	E_2	E_1	E_0
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0
1	0	1	0	Χ	X	X	Χ
1	0	1	1	Χ	X	X	Χ
1	1	0	0	Χ	Χ	X	Χ
1	1	0	1	Χ	Χ	X	Χ
1	1	1	0	Χ	X	X	Χ
1	1	1	1	Χ	Χ	Χ	Χ

● BCD코드-3초과 코드

2진 코드(입력)				3초.	과 코		출력)
B_3	B_2	B_1	B_0	E_3	E_2	E_1	E_0
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0
1	0	1	0	Χ	X	X	Χ
1	0	1	1	Χ	X	X	Χ
1	1	0	0	Χ	X	X	Χ
1	1	0	1	Χ	Χ	X	Χ
1	1	1	0	Χ	X	X	Χ
1	1	1	1	Χ	Χ	Χ	Χ

패리티 발생기/검출기

- 패리티 비트의 생성
 - 짝수 패리티: 1의 개수^a가 짝수 → 데이터 비트 XOR
 - 홀수 패리티: 1의 개수a가 홀수 → 데이터 비트 XNOR

^a데이터 비트와 패리티 비트를 모두 포함하였을 때

'패리티 발생기/검출기

- 패리티 비트의 생성
 - 짝수 패리티: 1의 개수^a가 짝수 → 데이터 비트 XOR
 - 홀수 패리티: 1의 개수^a가 홀수 → 데이터 비트 XNOR

- 오류 검출
 - 짝수 패리티: 오류^b 발생 시 1의 개수^a가 홀수 → XOR한 값 = 1
 - 홀수 패리티: 오류^b 발생 시 1의 개수^a가 짝수 → XOR한 값 = 0

^a데이터 비트와 패리티 비트를 모두 포함하였을 때
^b한 비트에서 오류가 발생하였을 때를 의미, 홀수 개의 비트에서 오류가 발생하는 경우도 포함

- 가산기
 - HA: 두 비트 A, B 덧셈 \rightarrow 출력 S, C
 - FA: 세 비트 A, B, C_{in} 덧셈 \rightarrow 출력 S, C_{out}
 - 2개의 HA와 OR 게이트로 구성 가능
 - 병렬가감산기: FA를 여러 개 병렬로 연결
 - XOR 게이트를 추가하여 뺄셈까지 수행 가능
 - CLA: carry 별도 계산 → 빠른 덧셈

<4-bit 가감산기>

- 비교기
 - $A \neq B$: A와 B의 같은 위치의 비트끼리 XOR \rightarrow 결과 OR
 - A = B: A와 B의 같은 위치의 비트끼리 XOR \rightarrow 결과 NOR
 - *A* > *B*: 예) 2비트 비교

$$A > B = A_1 \overline{B_1} + A_1 A_0 \overline{B_0} + A_0 \overline{B_1} \overline{B_0}$$

 $A < B = \overline{(A > B)} \cdot (A \neq B)$

• Encoder vs. Decoder: $2^n \rightarrow n$ vs. $n \rightarrow 2^n$

• MUX vs. DEMUX: $2^n \rightarrow 1$ vs. $1 \rightarrow 2^n$

- 코드 변환기
 - 2진코드-그레이코드:

<2진코드 → 그레이코드>

- <그레이코드 → 2진코드>
- 패리티 발생기/검출기 (짝수 패리티 기준)
 - 패리티 비트의 생성: 데이터 비트 부분을 XOR
 - 오류 검출: 모든 비트 XOR한 결과가 1이면 오류 발생
- Etc.: 7-Segment decoder, BCD-3초과 코드