Comentarios de las Actividades

Bloque 2 Actividad 4

- 1. Se considera movimiento circular uniforme cuando una partícula se mueve describiendo una trayectoria en una circunferencia, con velocidad v.
- 2. La velocidad lineal es descrita por un cuerpo en línea recta y velocidad angular además de recorrer un espacio, también recorre un ángulo (θ).
- 3. Una revolución es cuando cuerpo recorre una vuelta completa a una circunferencia.
- 4. La aceleración centrípeta es importante en la construcción de carreteras y pistas de carreras, ya que ayuda a medir el ángulo que debe tener el peralte de la curva y evitar que la gravedad "jale" los autos hacia la orilla.

5.

a)

Datos	Fórmula y despejes	Sustitución
d = 6 cm = 0.06 m r = 0.03 m F = 9 rev/s $a_c = \cdot ?$	$V = \frac{\pi r}{T}$ $T = \frac{1}{f}$ $a_c = \frac{v^2}{r}$	$F = \left(9 \frac{\text{rev}}{\text{s}}\right) \left(\frac{2\pi \text{rad}}{1 \text{ rev}}\right) = 56.54 \text{ s}^{-1}$ $T = \frac{1}{56.54 \text{ s}^{-1}} = 0.017 \text{ s}$ $v = \frac{2\pi (0.06 \text{ m})}{0.017 \text{ s}} = 22.17 \text{ m/s}$

Resultado: v = 22.17 m/s $a_c = 8191.8 \text{ m/s}^2$

b)

Datos	Fórmula y despejes	Sustitución
r = 90 cm = 0.9 m F = 80 rpm v = 2.7 $a_c = 2.7$	$v = \frac{\pi r}{T}$ $T = \frac{1}{f}$ $a_C = \frac{v^2}{r}$	$F = \left(80 \frac{\text{rev}}{\text{min}}\right) \left(\frac{2\pi \text{rad}}{1 \text{ rev}}\right) \left(\frac{1 \text{ min}}{60 \text{ s}}\right) = 8.37 \text{ s}^{-1}$ $T = \frac{1}{8.37 \text{ s}^{-1}} = 0.12 \text{ s}$ $v = \frac{2\pi (0.9 \text{ m})}{0.12 \text{ s}} = 47.12 \text{ m/s}$
		$a_c = \frac{(47.12 \frac{\text{m}}{\text{s}})^2}{0.9 \text{ m}} = 2466.99 \text{ m/s}^2$

Resultado: v = 47.12 m/s $a_c = 2466.99 \text{ m/s}^2$

Comentarios de las Actividades

c)

Datos	Fórmula y despejes	Sustitución
r = 150 m 2 vueltas x min	$T = \frac{\text{tiempo}}{\text{# de vueltas}}$ $P = 2\pi R$ $V = \frac{2\pi R}{T}$ $a_c = \frac{v^2}{R}$	$T = \frac{60 \text{ s}}{2 \text{ vueltas}} = 30 \text{ s}$ $P = \pi (150 \text{ m}) = 942.48 \text{ m}$ $v = \frac{942.48 \text{ m}}{30 \text{ s}} = 31.42 \text{ m/s}$ $a_c = \frac{(31.42 \frac{\text{m}}{\text{s}})^2}{150 \text{ m}} = 6.58 \text{ m/s}^2$ $\omega = \frac{2\pi}{30 \text{ s}} = 0.21 \text{ rad/s}$

Resultado: T = 30 s P = 942.48 m v = 31.42 m/s $a_c = 6.58 \text{ m/s}^2$ $\omega = 0.21 \text{ rad/s}$