Dynamic Programming Encoding for Subword Segmentation in Neural Machine Translation

(He et al., ACL 2020)

出口 祥之

■ deguchi@ai.cs.ehime-u.ac.jp

2020/09/11 第 2 回 NLG/MT Reading Group

ಲ Links

Paper

https://www.aclweb.org/anthology/2020.
acl-main.275/

Source Code

https://github.com/xlhex/dpe

Introduction

動的計画法を用いた新たなサブワード分割法を提案

- 目的言語文の分割を潜在変数と見做し,周辺化
- "Mixed character-subword Transformer": 原言語文が与えられたときの目的言語文の分割を獲得

NMT におけるサブワード分割

貪欲法: バイトペア符号化 (BPE)¹, WordPiece²

確率的アルゴリズム: ユニグラム LM³, BPE-dropout⁴

動的計画法: 本論文の提案手法

^{1.} Neural Machine Translation of Rare Words with Subword Units", Sennrich et al., 2016.

^{2.} Japanese and Korean voice search", Schuster et al., 2012.

^{3.} Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates", Kudo, 2018.

^{4.} BPE-Dropout: Simple and Effective Subword Regularization", Provilkov et al., 2020.

Related Work (Greedy Segmentation)

BPE (Sennrich et al. 2016), WordPiece (Schuster and Nakajima 2012)

- 隣接する頻出サブワードから順に、予め指定した 語彙数に到達するまで再帰的に結合 (BPE)
- 語彙数とデコード速度はトレードオフ
 - (語彙数を小さくするだけであれば文字単位でよい)
 - テキスト圧縮の技術を利用
 - 語彙数の上限を制約とし,文長が短くなるような 分割を得るアルゴリズム

例: unconscious \rightarrow un + conscious

Related Work (Stochastic Segmentation)

ユニグラム LM (Kudo 2018), BPE-dropout (Provilkov et al. 2020)

- 複数分割候補を得られる
 - ユニグラム LM: 尤度ベースでサンプリング
 - BPE-dropout: BPE 結合時に確率的に棄却
 - NMT 訓練時に分割を確率的に得ることでデータ拡張 (Data Augumentation) の効果
 - ▶ モデルの頑健性向上

例: unconscious \rightarrow {un + concious, uncon + scious}

Related Work (Dynamic Programming Algorithms)

音声認識 (Wang et al. 2017)

■ 取り得る全ての分割や入出力間のアライメントの確率を 動的計画法により計算

非自己回帰 NMT モデル (Chan et al. 2020; Saharia et al. 2020)

- **Imputer** (Chan et al. 2020):
 Connectionist Temporal Classification (CTC) を用い,定数回のデコードで出力とその順序を予測
- 非自己回帰 NMT モデルに Imputer を適用 (Saharia et al. 2020)

Proposed Method

Latent Subword Segmentation - Definitions

目的言語文の分割を潜在変数とみなす

- lacksquare M 個のサブワード: $\{m{y}_{z_i,z_{i+1}}\}_{i=1}^M$
 - $y = (y_1, \ldots, y_T)$: 目的言語文の文字列
 - $z = (z_1, \ldots, z_{M+1})$: 境界位置系列

▶
$$0 = z_1 < z_2 < \ldots < z_M < z_{M+1} = T$$
 (昇順)

•
$$y_{ab}$$
: $(a+1)$ th から b th まで結合したサブワード

例:

- 辞書 $\mathcal{V} = \{c, a, t, ca, at\}$
- 目的言語文 y = cat

uncon	
un	scious
• u n c o	
	conscious

z	サブワード列
(0, 1, 3)	(c, at)
(0, 2, 3)	(ca, t)
(0, 1, 2, 3)	(c, a, t)

Latent Subword Segmentation - Likelihood

連鎖律を用いてサブワード列の対数尤度を表現

■ 各サブワード位置において語彙の確率分布を生成

$$\log p(\boldsymbol{y}, \boldsymbol{z} | \boldsymbol{x}) = \sum_{i=1}^{|\boldsymbol{z}|} \log p(\boldsymbol{y}_{z_i, z_{i+1}} | \boldsymbol{y}_{z_1, z_2}, \dots, \boldsymbol{y}_{z_{i-1}, z_i}, \boldsymbol{x})$$

※ x:原言語文

■ 殆どの NMT では z を暗黙的に $\log p(y, z) \approx \log p(y)$ と仮定

Latent Subword Segmentation - Latent Variable

$z\in\mathcal{Z}_y(y$ の分割集合) を潜在表現とみなす

 $lacksymbol{\blacksquare} p(oldsymbol{y}|oldsymbol{x}) = \sum_{oldsymbol{z}} p(oldsymbol{y},oldsymbol{z}|oldsymbol{x})$ とする

$$\log p(\boldsymbol{y}|\boldsymbol{x}) = \log \sum_{\boldsymbol{z} \in \mathcal{Z}_y} \exp \sum_{i=1}^{|\boldsymbol{z}|} \log p(\boldsymbol{y}_{z_i, z_{i+1}} | \boldsymbol{y}_{z_1, z_2}, \dots, \boldsymbol{y}_{z_{i-1}, z_i}, \boldsymbol{x})$$

- ※対数周辺尤度の下限: $\log p(y|x) \ge \log p(y,z|x)$
- 各サブワードの確率が条件部のコンテキストの分割 に依存するため,巨大な空間 \mathcal{Z}_y 上での厳密な周辺化 は組み合わせ爆発を起こす
 - コンテキストが次に来るサブワードの確率に 影響しないモデルが必要

A Mixed Character-Subword Transformer

文字に基づいてサブワードを生成する Transformer

■ 条件部のコンテキストを文字のみに

$$\log p(\boldsymbol{y}, \boldsymbol{z} | \boldsymbol{x}) = \sum_{i=1}^{|\boldsymbol{z}|} \log p(\boldsymbol{y}_{z_i, z_{i+1}} | y_{z_1}, \dots, y_{z_i}, \boldsymbol{x})$$

y の各文字位置 t において,次に来るサブワード $w \in \mathcal{V}$ の分布を以下に基づいて生成

$$p(w|y_1, \dots, y_t, \boldsymbol{x}) = \frac{\exp(f(y_1, \dots, y_t)^{\top} e(w))}{\sum_{w' \in \mathcal{V}} \exp(f(y_1, \dots, y_t)^{\top} e(w'))}$$

- $f(\cdot)$: Transformer により条件部の計算
- *e*(⋅): ソフトマックス層の重み

A Mixed Character-Subword Transformer

t ステップ目のモデル出力

- **(1)** t ステップ目でサブワード w を 生成
- **(2)** サブワード w の文字をデコーダ に入力 (t+1 から t+|w| まで)
- **(3)** t + |w| ステップ目で次のサブワードを生成

Optimization

目的関数 $\mathcal{L}(\theta)$ を最大化

$$\mathcal{L}(\theta) = \sum_{(\boldsymbol{x}, \boldsymbol{y}) \in \mathcal{D}} \log P_{\theta}(\boldsymbol{y}|\boldsymbol{x})$$

必要な計算

- 周辺尤度の計算
- 対数周辺尤度の勾配計算

Exact Marginalization

動的計画法を用いて周辺尤度を計算

■ サブワードの出力確率が文字のみによって得られる ため動的計画法によって対数周辺尤度が計算可能

Algorithm 1 Dynamic Programming (DP) for Exact Marginalization

Input: y is a sequence of T characters, V is a subword vocabulary, m is the maximum subword length **Output:** $\log p(y)$ marginalizing out different subword segmentations.

```
1: \alpha_0 \leftarrow 0

2: for k = 1 to T do

3: \alpha_k \leftarrow \log \sum_{j=k-m}^{k-1} \mathbb{1}[\boldsymbol{y}_{j,k} \in V] \exp\left(\alpha_j + \log P_{\theta}(\boldsymbol{y}_{j,k}|y_1,..,y_j)\right)

4: end for
```

ho the marginal probability $\log p(m{y}) = \log \sum_{m{z} \in \mathcal{Z}_y} p(m{y}, m{z})$

■ 計算量: O(mT)

5: return α_T

m: 語彙に含まれる最長の単語の文字数

Gradient Computation

計算量に関する問題点

- 通常の Transformer デコーダより 8 倍遅く,メモリ 使用量も増加 ⁵
 - DP アルゴリズムと文字レベルでの演算による系列長の増加が原因

対処法

- Transformer のレイヤ数を 6 から 4 に削減
- 16 ステップ分勾配蓄積 (Gradient Accumulation) して からパラメタ更新

⁵PyTorch での著者実装で比較

Segmenting Target Sentences

Dynamic Programming Encoding (DPE): 最大事後確率を持つ目的言語文の分割を探索

Algorithm 2 Dynamic Programming Encoding (DPE) for Subword Segmentation

Input: y is a sequence of T characters, V is a subword vocabulary, m is the maximum subword length **Output:** Segmentation z with highest posterior probability.

$$\begin{aligned} & \text{for } k = 1 \text{ to } T \text{ do} \\ & \beta_k \leftarrow \max_{\left\{j \in [k-m,k-1] \mid \boldsymbol{y}_{j,k} \in V\right\}} \beta_j + \log P_{\theta}(\boldsymbol{y}_{j,k} | y_1,..,y_j) \\ & b_k \leftarrow \arg\max_{\left\{j \in [k-m,k-1] \mid \boldsymbol{y}_{j,k} \in V\right\}} \beta_j + \log P_{\theta}(\boldsymbol{y}_{j,k} | y_1,..,y_j) \\ & \text{end for} \end{aligned}$$

 $oldsymbol{z} \leftarrow \mathsf{backtrace}(b_1,..,b_T)$ $ightharpoonup \mathsf{backtrace}$ the best segmentation using $oldsymbol{b}$

Segmenting Target Sentences

- Mixed character-subword Transformer は 訓練データの目的言語文の分割のためのみに使用
- 分割した文で通常のサブワード Transformer を訓練

Experiments

データセット WMT09 En-Hu, WMT14 En-De, WMT15 En-Fi, WMT16 En-Ro, WMT18 En-Et

モデル

NMT アーキテクチャ Transformer base 分割 (原言語側) BPE-dropout (p=0.05) (目的言語側) DPE (提案手法)

Main Results

Method	BPE	BPE dropout		This paper	
Source segmentation Target segmentation	BPE BPE	BPE dropout BPE dropout	Δ_1	BPE dropout DPE	Δ_2
En→De	27.11	27.27	+0.16	27.61	+0.34
En→Ro	27.90	28.07	+0.17	28.66	+0.59
En→Et	17.64	18.20	+0.56	18.80	+0.60
En→Fi	15.88	16.18	+0.30	16.89	+0.71
En→Hu	12.80	12.94	+0.14	13.36	+0.42
De→En	30.82	30.85	+0.03	31.21	+0.36
Ro→En	31.67	32.56	+0.89	32.99	+0.43
Et→En	23.13	23.65	+0.52	24.62	+0.97
Fi→En	19.10	19.34	+0.24	19.87	+0.53
Hu→En	16.14	16.61	+0.47	17.05	+0.44
Average	22.22	22.57	+0.35	23.12	+0.55

Segmentation Examples

BPE source:

Die G@@ le@@ is@@ anlage war so ausgestattet , dass dort elektr@@ isch betrie@@ bene Wagen eingesetzt werden konnten .

DPE target:

The railway system was equipped in such a way that electrical@@ ly powered cart@@ s could be used on it . BPE target:

The railway system was equipped in such a way that elect@@ r@@ ically powered car@@ ts could be used on it .

BPE source:

Normalerweise wird Kok@@ ain in kleineren Mengen und nicht durch Tunnel geschm@@ ug@@ gelt .

DPE target:

Normal@@ ly c@@ oca@@ ine is sm@@ ugg@@ led in smaller quantities and not through tunnel@@ s . BPE target:

Norm@@ ally co@@ c@@ aine is sm@@ ugg@@ led in smaller quantities and not through tun@@ nels.

■ 他の例は論文参照

Conditional Subword Segmentation

原言語文を条件部に入れず,LM で分割

Source	BPE drop	BPE drop	BPE drop
Target	BPE drop	LM DPE	DPE
En→Ro	28.07	28.07	28.66
En→Hu	12.94	12.87	13.36
Ro→En	32.56	32.57	32.99
Hu→En	16.61	16.41	17.05

同一の目的言語文で原言語側を変えて違いを比較

Conditional Subword Segmentation

原言語文が BPE-dropout によって変化することの有効性

Source	BPE drop	BPE drop
Target	DPE Fixed	DPE On The Fly
En→Ro	28.58	28.66
En→Hu	13.14	13.36
En→Et	18.51	18.80
$\begin{array}{c} Ro \rightarrow En \\ Hu \rightarrow En \\ Et \rightarrow En \end{array}$	32.73 16.82 24.37	32.99 17.05 24.62

DPE vs BPE

目的言語側の分割アルゴリズムを変えて比較

Source	BPE drop	BPE drop	BPE drop
Target	BPE	BPE drop	DPE
En→Ro	28.04	28.07	28.66
En→Et	18.09	18.20	18.80
Ro→En	32.40	32.56	32.99
Et→En	23.52	23.65	24.62

Conclusion

新たなサブワード分割法 Dynamic Programming Encoding を提案

- Mixed character-subword Transformer により 目的言語文を分割
 - 目的言語文の分割を潜在変数と見做して周辺化
 - 条件部のコンテキストを文字にすることで 動的計画法が適用可能に
 - 分割時は事後確率が最大となる分割を出力
- BPE だけでなく BPE-dropout と比較しても 翻訳性能が向上