

Überblick

- Definitionen von Wahrscheinlichkeiten
 - Frequentistisch
 - Bayesisch
- Kombination von Wahrscheinlichkeiten
- Eindimensionale Verteilungen
 - Verteilungsfunktion und Wahrscheinlichkeitsdichte
 - Momente

Prof. Dr. Dr. W. Rhode

- Regeln über Mittelwerte und Varianzen
- Gängige eindimensionale Verteilungen

Vorlesung

Statistische Methoden der Datenanalyse

Prof. Dr. Dr. Wolfgang Rhode

Wahrscheinlichkeitsverteilungen

Experimentelle Physik Vb

Frequentistische Definition

- Wahrscheinlichkeit kann abhängig davon, ob a priori Wissen über den betrachteten Vorgang zur Definition benutzt werden kann, auf zwei Weisen eingeführt werden:
 - 1. Falls ein Ereignis auf n verschiedene und gleich wahrscheinliche Arten eintreten kann und k davon die Eigenschaft A haben, so ist die Wahrscheinlichkeit für das Auftreten von A

$$P(A) = \frac{k}{n} = \frac{\text{günstige}}{\text{m\"{o}gliche}} \text{F\"{a}lle}$$

Wahrscheinlichkeitsverteilungen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Frequentistische Definition

- Wahrscheinlichkeit kann abhängig davon, ob a priori Wissen über den betrachteten Vorgang zur Definition benutzt werden kann, auf zwei Weisen eingeführt werden:
 - 2. Ohne a priori Wissen: Die Eigenschaften A und nicht-A eines Experimentes werden n-fach unabhängig beobachtet. Dabei trete k mal die Eigenschaft A auf. Dann ist die Wahrscheinlichkeit P(A) gegeben durch

$$P(A) = \lim_{n \to \infty} \frac{k}{n}$$

Problem: Identische Wiederholungen von Experimenten sind schwer zu gewährleisten

Bayesische Definition

- Die Wahrscheinlichkeit p(A|B) ist ein quantitatives Maß der Plausibilität der Annahme A unter der Bedingung der bekannten Information gegeben durch die Annahme B
- A kann dabei eine beliebige logische Annahme sein
- p(A|B) lässt sich mit dem Satz von Bayes berechnen:

$$p(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

- Problem: Der vage Begriff "Plausibilität" muss genau definiert werden
- Nutzung auch zur Parameterschätzung → Kapitel Schätzen

Prof. Dr. Dr. W. Rhode

Wahrscheinlichkeitsverteilungen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Kombination von Wahrscheinlichkeiten

Gegeben seien die Ereignistypen A und B mit den Wahrscheinlichkeiten P(A) und P(B), dann ist die Wahrscheinlichkeit für A oder B

$$P(A \vee B) = P(A) + P(B) - P(A \wedge B)$$

Wenn sich A und B ausschließen:

$$P(A \wedge B) = 0$$
 und $P(A \vee B) = P(A) + P(B)$

Als Spezialfall sei: B = Ā (nicht A), dann ist:

$$P(A \vee \overline{A}) = P(A) + P(\overline{A}) = 1$$

Rechenregeln für bedingte Wahrscheinlichkeiten

- $p(A|B) + p(\bar{A}|B) = 1$ Summenregel:
 - Ā ist das Komplement von A
- p(A, B|C) = p(A|C)p(B|A, C)Produktregel: = p(B|C)p(A|B,C)
- A, B beschreibt dabei die Annahme A und B seien wahr

Prof. Dr. Dr. W. Rhode

Wahrscheinlichkeitsverteilungen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Kombination von Wahrscheinlichkeiten

Gegeben seien die Ereignistypen A und B mit den Wahrscheinlichkeiten P(A) und P(B), dann ist die Wahrscheinlichkeit für A und B

$$P(A \wedge B) = P(A) \cdot P(B|A)$$

Sind A und B unabhängig

$$P(B|A) = P(B)$$

folgt

$$P(A \wedge B) = P(A) \cdot P(B)$$

Verteilungsfunktion und Wahrscheinlichkeitsdichte

- Ziel ist die Klassifizierung von möglichen Endzuständen eines statistischen Vorganges
 - Beispiel zur Klassifizierung: Bei einem Münzwurf werden z.B. die Zuordnungen Kopf → 0 und Zahl → 1 vorgenommen.
- Allgemein:
 - Wird dem Ereignis A_i die ganze Zahl i zugewiesen, liegt eine diskrete Zufallsvariable vor.
 - Kontinuierliche Zufallsvariablen werden genutzt, wenn es nicht möglich ist, die Ereignisse ganzen Zahlen zuzuordnen.

Prof. Dr. Dr. W. Rhode

Wahrscheinlichkeitsverteilungen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Astroteilchenphysik

Verteilungsfunktion und Wahrscheinlichkeitsdichte

Für einen Würfel mit sechs Seiten, ergibt sich für die Verteilungsfunktion
 F(x) eine sechsstufige Treppenfunktion, die monoton von 0 auf 1 ansteigt.

Verteilungsfunktion und Wahrscheinlichkeitsdichte

Die Zufallsvariable r möge den möglichen Ausgang des Experimentes angeben. Sie wird mit der reellen Zahl x verglichen. Gesucht ist die Wahrscheinlichkeit dafür, dass ein Ereignis eintritt, bei dem die Zufallsvariable r kleiner ist als ein vorher gewähltes x (r < x). Dazu wird die Verteilungsfunktion gebildet:

$$F(x) = P(r \le x)$$

 Die Verteilungsfunktion gibt die Summe aller Ereignisse unterhalb von x normiert auf die Gesamtzahl der Versuche an.

Prof. Dr. Dr. W. Rhode

Wahrscheinlichkeitsverteilungen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Verteilungsfunktion und Wahrscheinlichkeitsdichte

Im Grenzfall einer kontinuierlichen Verteilung ist:

$$\lim_{x \to \infty} F(x) = \lim_{x \to \infty} P(r \le x) = 1$$

Da die Summe aus $P(A) + P(\bar{A}) = 1$ ist, gilt:

$$P(r > x) = 1 - F(x) = 1 - P(r \le x)$$

Somit ist

$$\lim_{x \to -\infty} F(x) = \lim_{x \to -\infty} P(r \le x) = 1 - \lim_{x \to -\infty} P(r > x) = 0$$

technische universität

Verteilungsfunktion und Wahrscheinlichkeitsdichte

Wenn die Verteilungsfunktion stetig differenzierbar ist, gilt:

$$\frac{dF(x)}{dx} = F'(x) = f(x)$$

f(x) heißt dann Wahrscheinlichkeitsdichte von r und gibt ein Maß für die Wahrscheinlichkeit in dem Intervall $x \le r \le x + dx$ an

Experimentelle Physik Vb

Allgemeine Eigenschaften einer Zufallsverteilung: Momente

Der Mittelwert oder Erwartungswert E(x) bei einer diskreten Verteilung:

$$\bar{x} = E(x) = \sum_{i=1}^{n} (x_i \cdot P(x = x_i))$$

Der Erwartungswert einer Funktion von diskreten *r* ist:

$$E[H(x)] = \sum_{i=1}^{n} (H(x_i) \cdot P(x = x_i))$$

Verteilungsfunktion und Wahrscheinlichkeitsdichte

Die Wahrscheinlichkeit, dass r kleiner ist als ein vorgewählter Wert a, ist gegeben durch:

$$P(r < a) = \int_{-\infty}^{a} f(x) dx = F(a),$$

die Wahrscheinlichkeit, dass r in einem Intervall zwischen a und b liegt, ist:

$$P(a \le r \le b) = \int_{a}^{b} f(x) dx = F(b) - F(a).$$

Insbesondere gilt bei Integration über den gesamten Bereich in x:

$$\int_{-\infty}^{\infty} f(x) \, \mathrm{d}x = 1.$$

Prof. Dr. Dr. W. Rhode

Wahrscheinlichkeitsverteilungen

der Datenanalyse

Experimentelle Physik Vb

Momente

Prof. Dr. Dr. W. Rhode

Erwartungswert für kontinuierlich verteilte x

$$E(x) = \bar{x} = \int_{-\infty}^{\infty} x \cdot f(x) \, \mathrm{d}x$$

und für eine Funktion davon

$$E[H(x)] = \int_{-\infty}^{\infty} H(x) \cdot f(x) dx$$

Momente

Wichtige Charakteristika einer Verteilung sind ihre Breite und Symmetrie. Dazu betrachten wir als Spezialfall die Funktion:

$$H(x) = (x - c)^l$$

Der Erwartungswert ergibt sich zu:

$$a_l = E[(x-c)^l]$$

Prof. Dr. Dr. W. Rhode

Wahrscheinlichkeitsverteilungen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Momente

Für das zweite Moment gilt:

$$E[(r - \bar{x})^2] = \hat{\sigma}^2(x) = Var(x) = \int_{-\infty}^{\infty} (x - \bar{x})^2 f(x) dx$$

- Die so definierte (empirische) Varianz ist ein Maß für die Breite der Verteilung.
- Die Wurzel aus der Varianz heißt Streuung oder Standardabweichung

$$\sigma = \sqrt{\sigma^2(x)}$$

Momente

Berechnung von Momenten μ_l um den Mittelwert, heißen zentrale Momente:

$$\mu_l = E[(x - \bar{x})^l]$$

Die Momente $\mu_0 = 1$ und $\mu_1 = 0$ sind trivial zu bestimmen.

Prof. Dr. Dr. W. Rhode

Wahrscheinlichkeitsverteilungen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Momente

Das dritte Momente um den Mittelwert normiert auf die Standardabweichung heißt Schiefe (skewness). Es beschreibt die Symmetrie der Verteilung.

$$\gamma = \frac{\mu_3}{\sigma^3}$$

- γ < 0 linksschief
- γ > 0 rechtsschief

technische universität dortmund

Momente

Der Quotient des vierten zentralen Moments und dem Quadrat der Varianz wird als Wölbung (kurtosis) bezeichnet:

$$C = \mu_4/\sigma^4$$

- C ist groß, wenn die Verteilung über größere Ausläufer verfügt als die Gauß-Verteilung.
- Die Gauß-Verteilung selbst liefert C=3

Prof. Dr. Dr. W. Rhode

Wahrscheinlichkeitsverteilungen

Statistische Methoder der Datenanalyse

Experimentelle Physik Vb

Regeln über Mittelwerte und Varianzen

Die standardisierte Variable

$$\overline{u} = \frac{r - \bar{x}}{\sigma(r)}$$

hat den Erwartungswert

$$E(u) = \frac{1}{\sigma(r)}E(r-\bar{x}) = \frac{1}{\sigma(x)}(\bar{x}-\bar{x}) = 0$$

und die Varianz

$$\sigma^{2}(u) = \frac{1}{\sigma^{2}(x)} E[(r - \bar{x})^{2}] = \frac{\sigma^{2}(x)}{\sigma^{2}(x)} = 1$$

Regeln über Mittelwerte und Varianzen

Multiplikation jeder Zahl einer Verteilung mit (derselben) Konstanten:

$$H(x) = cx, c = const$$

Es folgt, dass

$$E(c \cdot r) = c \cdot E(r)$$
, und $\sigma^2(c \cdot r) = c^2 \cdot \sigma^2(r)$

Daher ist

$$\sigma^{2}(r) = E[(r - \bar{x})^{2}] = E[r^{2} - 2r\bar{x} + \bar{x}^{2}] = E(r^{2}) - \bar{x}^{2}$$

Prof. Dr. Dr. W. Rhode

Prof. Dr. Dr. W. Rhode

Wahrscheinlichkeitsverteilungen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Regeln über Mittelwerte und Varianzen

Der wahrscheinlichste Wert

$$P(x = x_m) = \text{maximal}$$

Besitzt die Verteilung ein Maximum, heißt sie unimodal, sonst heißt sie multimodal

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x) = 0 \qquad \qquad \frac{\mathrm{d}^2}{\mathrm{d}x^2}f(x) < 0$$

Regeln über Mittelwerte und Varianzen

 Der <u>Median</u> ist derjenige Wert einer Verteilung, für den die Verteilungsfunktion F = 0.5 ist

$$F(x_{0.5}) = P(r \le x_{0.5}) = 0.5$$

Ist f(x) stetig, gilt

$$\int_{-\infty}^{x_{0.5}} f(x) \, \mathrm{d}x = 0.5$$

 Ist die Verteilung unimodal, stetig und symmetrisch, dann ist Erwartungswert gleich dem wahrscheinlichsten Wert oder Median

Prof. Dr. Dr. W. Rhode

Wahrscheinlichkeitsverteilungen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Regeln über Mittelwerte und Varianzen

Der <u>quadratische Mittelwert</u> (root mean square = RMS) ist definiert als

$$x_{\rm rms} = \sqrt{E(x^2)} = \sqrt{\sigma^2(x) + \bar{x}^2}$$

Ist der Erwartungswert gleich null gilt:

$$x_{\rm rms} = \sigma(x)$$

Regeln über Mittelwerte und Varianzen

Das Quartil einer Verteilung ist analog zu x_{0.5} definiert als:

$$F(x_{1/4}) = 0.25, F(x_{3/4}) = 0.75$$

unteres Quartil

oberes Quartil

 Entsprechend sind Dezile (*q*=10%) und Quantile (*q*=beliebige Prozentsatze) definiert als

$$F(X_q) = \int_{-\infty}^{X_q} f(x) \, \mathrm{d}x = q$$

Prof. Dr. Dr. W. Rhode

Wahrscheinlichkeitsverteilungen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Momente vs. Lagemaße & Streuungsmaße

- Gerade wurden Momente betrachtet. Momente beschreiben eine Wahrscheinlichkeitsverteilung nicht die daraus gezogene Stichprobe.
- Lage- & Streuungsmaße werden zur Charakterisierung einer gezogenen Verteilung genutzt.
- Vorsicht: Als Mittelwert wird oft umgangssprachlich sowohl das 1. Moment (Erwartungswert) einer Wahrscheinlichkeitsverteilung, als auch der arithmetische Mittelwert einer Stichprobe bezeichnet. Letzterer ist jedoch ein Lagemaß.

Lagemaße

Mittelwerte:

$$\bar{x}_n = \frac{1}{n} \sum_{i=1}^n x_i$$

$$\bar{x}_G = \left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}}$$
geometrisch

$$\bar{x}_H = \left(\frac{1}{n} \sum_{i=1}^n \frac{1}{x_i}\right)^{-1}$$

Median: auf geordneten, metrischen Zufallsvariablen

$$\tilde{x}_{0.5} = \begin{cases} x_{\frac{n+1}{2}} & \text{falls } n \text{ ungerade,} \\ \frac{1}{2} \left(x_{\frac{n}{2}} + x_{\frac{n}{2}+1} \right) & \text{falls } n \text{ gerade.} \end{cases}$$

Für p-Quantil 0.5 durch p ersetzen

Statistische Methoden Prof. Dr. Dr. W. Rhode der Datenanalyse

Experimentelle Physik Vb

Beispiel aus Blobel - Lohrmann

Maxwellsche Geschwindigkeitsverteilung eines idealen Gases als Funktion der Geschwindigkeit ν in Relation zum wahrscheinlichsten Wert der Geschwindigkeit $\nu_{\rm m}$ $f(\nu/\nu_{\rm m})$

technische universität dortmund

Streuungsmaße

Empirische Varianz:

$$s_n^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$$

Empirische Stichprobenvarianz:

$$\hat{s}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Entropie (mittlere Information in x_i):

$$I = \sum_{i=1}^{n} f(x_i) \ln \frac{1}{f(x_i)}$$
Information

Keine Streuung: $f(x_i) = 1 \rightarrow I = 0$ Maximale Streuung (alle rel. Häufigkeiten sind gleich):

$$f(x_i) = \frac{1}{n} \to I = \ln n$$

Prof. Dr. Dr. W. Rhode

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

(diskrete) Gleichverteilung

Einzelwahrscheinlichkeiten

$$P(X = a_m) = \frac{1}{n}$$

Parameterbereich

$$a, b \in \mathbb{R}, a < b$$

Momente

$$m_k = \sum_{m=1}^n a_m^k \cdot P(X = a_m) = \sum_{m=1}^n a_m^k \cdot \frac{1}{n}$$
 F(x)

Erwartungswert

$$\frac{1}{n} \sum_{m=1}^{n} a_m$$

(diskrete) Gleichverteilung

- Anwendungen:
 - Zufällige Versuche mit n gleichwahrscheinlichen Ausgängen:
 - Würfeln
 - Münzwurf
 - Thermodynamik: Räumliche Verteilung von Teilchen

Prof. Dr. Dr. W. Rhode

Wahrscheinlichkeitsverteilungen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb Astroteilchenphysik

(stetige) Gleichverteilung

- Anwendungen:
 - Geometrische Wahrscheinlichkeit
 - Erzeugung von Zufallszahlen

f(x)

1 b– a

0

F(x)

а

а

(stetige) Gleichverteilung

Dichtefunktion

$$\frac{1}{b-a}, \ a \le x \le b$$

Parameterbereich

$$a, b \in \mathbb{R}, a < b$$

Momente

$$\mu_{2k} = \frac{1}{2k+1} \left(\frac{b-a}{2}\right)^{2k}$$

$$\mu_{2k-1} = 0$$

Erwartungswert

$$\frac{a+b}{2}$$

Prof. Dr. Dr. W. Rhode

Wahrscheinlichkeitsverteilungen

Statistische Methoden der Datenanalyse

b

b

Х

X

technische universität

Experimentelle Physik Vb Astroteilchenphysik

Dreiecksverteilung

Dichtefunktion

$$\frac{2}{b-a}\left(1-\frac{2}{b-a}\left|x-\frac{a+b}{2}\right|\right)$$

Parameterbereich

$$a, b \in \mathbb{R}, a < b$$

Momente

$$\mu_{2k} = \frac{(a-b)^{(2k)}}{2^{(2k-1)}(2k+1)(2k+2)}, \, \mu_{2k-1} = 0$$

Erwartungswert a+b

$$\frac{a+b}{2}$$

Dreiecksverteilung

- Anwendungen:
 - Verteilung der Summe zweier unabh. identisch (stetig) gleichmäßig verteilter Zufallszahlen
 - Zeitliche Planung der Durchführung eines Experiments:
 - a = optimistischster Wert, b = pessimistischster Wert, c = wahrscheinlichster Wert

Prof. Dr. Dr. W. Rhode

Wahrscheinlichkeitsverteilungen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Binominalverteilung

- Anwendungen:
 - Bernoulli-Schema
 - Statistische Qualitätskontrolle
 - Fehlerrechnung
 - Berechnung magnetischer Momente

Experimentelle Physik Vb

• • p = 0.5, n = 20

• • p = 0.5, n = 40

• • p = 0.7, n = 20

Binominalverteilung

Dichtefunktion $\binom{n}{k} p^k (1-p)^{n-k}, k = 0, 1, \dots, n$

Parameterbereich

$$0$$

Momente $m_{(k)} = n(n-1)...(n-k+1)p^k$

 $m_{(k)} = n(n-1)...(n-k+1)$

P(k) 0.6 0.4 0.2 0.0 0.5 10 15 20 25 30 35 4 k+1 p^k

Erwartungswert np

Prof. Dr. Dr. W. Rhode

Wahrscheinlichkeitsverteilungen

 $p(k)^{0.15}$

0.10

0.05

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Poissonverteilung

- Dichtefunktion $e^{-\mu} \frac{\mu^k}{k!}, k = 0, 1, \dots$
- Parameterbereich

$$\mu > 0$$

Momente

Prof. Dr. Dr. W. Rhode

$$m_{(k)} = \mu^k$$

Erwartungswert

Wahrscheinlichkeitsverteilungen

Poissonverteilung

- Anwendungen:
 - Zählraten:
 - Ereignisse in Teilchendetektoren
 - Radioaktive Zerfälle

Prof. Dr. Dr. W. Rhode

Wahrscheinlichkeitsverteilungen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Normalverteilung

- Das unbestimmte Integral über die Normalverteilung kann nicht analytisch berechnet werden
 - → Nachschauen in Tabellen, Berechnung mit dem Computer

$$\int_{\mu-n\sigma}^{\mu+n\sigma} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) dx$$

- 68,27% der Fläche liegt innerhalb des 1σ-Bereichs um den Mittelwert,
- 95,45% liegen innerhalb des 2σ-Bereichs,
- 99,73% liegen innerhalb des 3σ-Bereichs

Experimentelle Physik Vb

Normalverteilung

Parameterbereich

$$\mu$$
 reell, $\sigma > 0$

Momente $\mu_{2k-1} = 0$ $\mu_{2k} = (2k - 1)!!\sigma^{2k}$

Erwartungswert

Prof. Dr. Dr. W. Rhode

Wahrscheinlichkeitsverteilungen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Normalverteilung

- Anwendungen:
 - Grundlegende Verteilung in der Wahrscheinlichkeitsrechnung und zur statistischen Auswertung von Versuchs-, Beobachtungsund Messergebnissen:
 - Fehlerrechnung
 - Intensitätsverteilung ausgedehnter kosmischer Quellen

 $\sigma = 1.50$

 $\sigma = 0.12$

der Datenanalyse

 $\lambda = 0.50$

 $\lambda = 0.\,25$

 $\lambda = 2.00$

Experimentelle Physik Vb

Logarithmische Normalverteilung

$$\frac{1}{\sqrt{2\pi}\sigma x}e^{-\frac{(\ln(x)-\mu)^2}{2\sigma^2}}, x>0 \qquad p(x)^3$$

0.4

p(x) 0.3

Momente $m_k = e^{\left(k_m u + \frac{k^2 \sigma^2}{2}\right)}$

0.8 $P(x)^{0.6}$ 0.2 1.5 1.0 2.0 2.5 3.0 Wahrscheinlichkeitsverteilungen Statistische Methoden

Prof. Dr. Dr. W. Rhode

Experimentelle Physik Vb

Exponentialverteilung

Dichtefunktion

$$\lambda e^{-\lambda x}$$

Parameterbereich

$$\lambda > 0$$

Momente

$$m_k = \frac{\lambda}{\lambda - k}$$

Erwartungswert

Logarithmische Normalverteilung

- Anwendungen:
 - Lebensdauer- sowie Festigkeitsprobleme
 - Konzentrationsuntersuchungen
 - Bestimmung natürlicher Größen:
 - Partikelgröße in Wolken
 - Verteilung der Materie im Universum (Elementarteilchen, Galaxien)

Prof. Dr. Dr. W. Rhode

Wahrscheinlichkeitsverteilungen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Exponentialverteilung

- Anwendungen:
 - Zeit zwischen zwei Anrufen
 - Lebensdauern bei radioaktiven Zerfällen

Experimentelle Physik Vb

Gamma-Verteilung

Einzelwahrscheinlichkeiten $\lambda^{\alpha} x^{\alpha-1} e^{-\lambda x}$ $\Gamma(\alpha)$

Parameterbereich

$$\lambda > 0$$

Momente

Erwartungswert

 $\overline{\lambda}$

Prof. Dr. Dr. W. Rhode

Wahrscheinlichkeitsverteilungen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

t-Test - Einstichproben Test (Vorgriff)

Fragestellung:

Teste, ob die gegebenen Daten zu einer Normalverteilung mit vorgegeben Erwartungswert μ=μ₀ passen

Test-Statistik t, mit arithmetischem Mittel x ...

$$t = \sqrt{n} \ \frac{x - \mu_0}{\sqrt{S^2}}$$

Die Test-Statistik ist unter der Nullhypothese t-verteilt mit n-1 Freiheitsgraden.

Experimentelle Physik Vb

Gamma-Verteilung

- Anwendungen:
 - Verallgemeinerung der Exponentialverteilung
 - Wahscheinlichkeitstheorie
 - Versicherungsmathematik

Prof. Dr. Dr. W. Rhode

Wahrscheinlichkeitsverteilungen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

t-Verteilung

Dichtefunktion

$$\frac{\Gamma(\frac{\nu+1}{2})(1+\frac{x^2}{\nu})^{-\frac{n\nu+1}{2}}}{\Gamma(\frac{\nu}{2})\sqrt{\pi\nu}}$$

Parameterbereich

$$\nu \in \mathbb{N}$$

Momente

Prof. Dr. Dr. W. Rhode

$$m_{2k-1} = 0, 2k \le \nu$$

 $m_{2k} = \nu^k \frac{(2k-1)!!(\nu - 2k - 2)!!)}{(\nu - 2)!!}$
 $2k \le \nu - 1$

Erwartungswert $0, \nu \ge 2$

t-Verteilung

- Anwendungen:
 - Prüfen von Erwartungswerten
 - · Regressions- und Korrelationsanalysen
 - T-Test

Prof. Dr. Dr. W. Rhode

Wahrscheinlichkeitsverteilungen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

F-Verteilung

Dichtefunktion

$$\frac{\frac{m}{n}^{m/2}x^{m/2-1}(1-\frac{mx}{n})^{-\frac{m+n}{2}}}{B(m/2,n/2)}$$

Parameterbereich

$$m, n \in \mathbb{N}$$

Momente

$$m_k = \frac{\Gamma(\frac{m}{2} + k)\Gamma(\frac{n}{2} - k)n^k}{\Gamma(m/2)\Gamma(n/2)m^k}$$

Erwartungswert

$$n/(n-2), n \geq 3$$

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb
Astroteilchenphysik

F-Test (Vorgriff)

Fragestellung:

Test, ob die Varianzen zweier Stichproben X, Y mit Umfang n_X , n_Y aus unterschiedlichen, normalverteilten Grundgesamtheiten gleich sind

$$H_0: \sigma_x^2 = \sigma_y^2$$

 $H_1: \sigma_x^2 < \sigma_y^2$

Test-Statistik ist der Quotient der geschätzten Varianzen

$$F = \frac{S_Y^2}{S_X^2} = \frac{\frac{1}{n_Y - 1} \sum_{i=1}^{n_Y} (y_i - y)^2}{\frac{1}{n_X - 1} \sum_{i=1}^{n_X} (x_i - x)^2}$$

Unter H_0 ist die Test-Statistik F-verteilt mit n_{Y} -1 Freiheitsgraden im Zähler und n_{X} -1 Freiheitsgraden im Nenner.

Prof. Dr. Dr. W. Rhode

Wahrscheinlichkeitsverteilungen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Astroteilchenphysik

F-Verteilung

- Anwendungen:
 - Vergleich von Streuungen
 - Varianz- und Kovarianzanalyse
 - F-Test

Experimentelle Physik Vb

Fragestellung:

Teste, ob n gemessene Daten yi einem angenommenen Modell f(xi) folgen

Dichtefunktion

$$\frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}x^{\left(\frac{n}{2}-1\right)}e^{-\frac{x}{2}}$$

- Parameterbereich: $n \in \mathbb{N}$
- Momente

$$m_k = 2^k \frac{\Gamma\left(k + \frac{n}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}$$

Erwartungswert: n

Prof. Dr. Dr. W. Rhode

Wahrscheinlichkeitsverteilungen

der Datenanalyse

Experimentelle Physik Vb

Beta-Verteilung

Dichtefunktion

$$\frac{1}{B(p,q)}x^{p-1}(1-x)^{q-1}, \ 0 < x < 1$$

technische universität

Parameterbereich

$$p>0\,,\,q>0$$

Momente

$$m_k = \frac{B(k+p,q)}{B(p,q)}$$

Erwartungswert

p+q

Wahrscheinlichkeitsverteilungen

Statistische Methoden der Datenanalyse

- Anwendungen:
 - Prüfen von Streuungen
 - χ^2 -Test

Wahrscheinlichkeitsverteilungen

Statistische Methoden der Datenanalyse

Experimentelle Physik Vb

Beta-Verteilung

- Anwendungen:
 - Korrelationsanalyse