Dense representation for categorical variables

One drawback that we flagged with One Hot Encoding of a categorical variable

- Tokens that seem to be related in the input domain ("dog", "dogs")
- Become unrelated when One Hot Encoded

Because each value is a long vector

- With a single non-zero element
- That is different across the two values
- The OHE vectors are orthogonal

This means that there is no useful measure of the distance between two tokens

To illustrate the "lack of distance" issue, let ${\bf rep}$ be a mapping from tokens to their One Hot Encodings.

Using dot product (cosine similarity) as a measure of similarity to the token "dog"

word	rep(word)	Similarity to "dog"
dog	[1,0,0,0]	$rep(word) \cdot rep(dog) = 1$
dogs	[0,1,0,0]	$rep(word) \cdot rep(dog) = 0$
cat	[0,0,1,0]	$rep(word) \cdot rep(dog) = 0$
apple	[0,0,0,1]	$rep(word) \cdot rep(dog) = 0$

All words other than "dog" are equidistant from "dog".

Intuitively, we observe similarity between "dog" and other words

- $\bullet \ \ ("dog", "dogs"): Same \, root, \, different \, Singular/Plural \, form$
- ("dog", "cat"); Same concept: pet

and complete lack of similarity between "dog" and "apple".

Yet all have the same distance measure from "dog": 0.

We can consider an alternate encoding to OHE.

Suppose each dimension of the encoded vector

- Measured the intensity of the token against some concept
 - Singular/Plural
 - Domestic Animal
 - Edible

This type of representation is called *continuous*

- As the strength is a continuous value
- Compared to the discrete encoding of OHE as binary 0/1

It is also called a dense representation

- Multiple non-zero elements in the vector
- Compared to the single non-zero element in the OHE vector

In a continuous, dense representation two values expressing similar concepts will be "closer" than two values that do not share concepts

- "Cats", "Dogs", "Apples"
 - Share the concept "Plural"
- "Cat", "Dog"
 - Share the concept "Domestic animal"
- "good", "bad"
 - Share the concept "Opposite"

Doing math with words

Let's explore the implication and power of dense vector representation of words.

If each element of the vector

- Expresses a concept
- ullet And the number of concepts is small compared to $||\mathbf{V}||$
- And the concepts are fairly independent
- ullet Then we have found an alternate basis (compared to the $||{f V}||$ basis vectors of OHE) of smaller dimension
- For representing words

This concept is sometimes called word embeddings

Let \mathbf{v}_w denote the dense representation of token w:

\boldsymbol{w}	\mathbf{v}_w		
cat	[.7, .5, .01]		
cats	[.7, .5, .95]		
dog	[.7, .2, .01]		
dogs	[.7, .2, .95]		
apple	[.1, .4, .01]		
apples	[.1, .4, .95]		

Notice that "dogs" and "apples"

- Are similar along one dimension (the last, perhaps encoding "Is Plural")
- Are dissimilar along one dimension (the first, perhaps encoding "Is Pet")

Also notice that "dog" and "cat"

• Are similar along the first dimension (reinforcing the notion that this dimension may be "Is Pet")

Taking this a step further: we can perform element-wise math on dense vector representations:

$$\mathbf{v}_{\mathrm{cats}} - \mathbf{v}_{\mathrm{cat}} pprox \mathbf{v}_{\mathrm{dogs}} - \mathbf{v}_{\mathrm{dog}} pprox \mathbf{v}_{\mathrm{apples}} - \mathbf{v}_{\mathrm{apple}}$$

because

- "cats" and "cat" are similar in all concepts except "Plural".
- As are "dogs" and "dog"
- As are "apples" and "apple"

If that's the case, we can approximate the vector that expresses the "pure" concept "Is Plural"

• Without expressing any other concept

as
$$(\mathbf{v}_{\mathrm{cats}} - \mathbf{v}_{\mathrm{cat}})$$

Then we can construct the Plural form of "apple"

• By adding the pure vector for Plural to the vector for "apple"

$$\mathbf{v}_{ ext{apples}} pprox \mathbf{v}_{ ext{apple}} + (\mathbf{v}_{ ext{cats}} - \mathbf{v}_{ ext{cat}})$$

we can create the Plural form of "apple"

Word analogies

The implications of doing math on words is even more powerful.

Consider solving the analogy problem

king:man :: ?:woman

That is: what is the female analog of "king"?

Suppose the concepts ("dimensions") of the dense representation were

- Gender (man or woman)
- Regal (Royal or commoner)

Then

$$\mathbf{v}_{ ext{king}} - \mathbf{v}_{ ext{man}} + \mathbf{v}_{ ext{woman}} pprox \mathbf{v}_{ ext{queen}}$$

because

$$\mathbf{v}_{\mathrm{king}} = (\mathrm{Man}, \mathrm{Royal})$$
 vector representation $\mathbf{v}_{\mathrm{king}} - (\mathrm{Man}, 0)$ = $(0, \mathrm{Royal})$ subtract vector for "I

 $\mathbf{v}_{\mathrm{king}} - (\mathrm{Man}, 0) + (\mathrm{Woman}, 0) = (\mathrm{Woman}, \mathrm{Royal})$ add vector for "pure"

= Queen the word having conc

We can use math on dense vectors to compute analogies!

Let's formalize the "math" of word vectors

For tokens w,w' with dense vectors $\mathbf{v}_w,\mathbf{v}_{w'}$

- ullet Define a metric $d(\mathbf{v}_w,\mathbf{v}_{w'})$ of the distance between the words
- For example:

$$d(\mathbf{v}_w, \mathbf{v}_{w'}) = 1 - ext{cosine similarity}(\mathbf{v}_w, \mathbf{v}_{w'})$$

Define the set of tokens $N_{n',d}(w)$ in vocabulary ${f V}$

- ullet That are among the n^\prime "closest" to a token w
- ullet According to distance metric d

$$egin{array}{lll} \operatorname{wv}_{n',d}(w) &=& \{ \ \mathbf{v}_{w'} \ | \ \operatorname{rank}_V(d(\mathbf{v}_w,\mathbf{v}_{w'})) \leq n' \ \} & ext{the dense vectors of the } n' \ \operatorname{to} \ N_{n',d}(w) &=& \{ \ w' \ | \ \mathbf{v}_{w'} \in \operatorname{wv}_{n',d}(w) \ \} \end{array}$$

This is the "neighborhood" of token \boldsymbol{w} as defined by the distance metric.

Token w^\prime is defined to be approximately equal to token w

- $\label{eq:weights} \ \, \bullet \ \, \text{Denoted as} \, w \approx_{n',d} w' \\ \ \, \bullet \ \, \text{If} \, w' \, \text{is in the neighborhood of} \, w$

$$wpprox_{n',d}w' \ ext{ if } \mathbf{w}'\in N_{n',d}(w)$$

Thus, the analogy

a:b :: c:d

implies

$$\mathbf{v}_a - \mathbf{v}_b pprox_{n',d} \mathbf{v}_c - \mathbf{v}_d$$

So to solve the word analogy for c:

$$\mathbf{v}_c pprox_{n',d} \mathbf{v}_a - \mathbf{v}_b + \mathbf{v}_d$$

GloVe: Pretrained embeddings

 $For tunately, you don't \ have \ to \ create \ your \ own \ word-embeddings \ from \ scratch.$

There are a number of precomputed embeddings freely available.

GloVe is a family of word embeddings that have been trained on large corpora

- GloVe6b
 - Trained on 6 Billion tokens
 - 400K words
 - Corpus: Wikipedia (2014) + GigaWord5 (version 5, news wires 1994-2010)
 - Many different dense vector lengths to choose from
 - o 50, 100, 200, 300

We will illustrate the power of word embeddings using GloVe6b vectors of length 100.

 $\begin{array}{lll} \text{king- man} + \text{woman} & \approx_{n',d} & \text{queen} \\ \text{man - boy} + \text{girl} & \approx_{n',d} & \text{woman} \\ \text{Paris - France} + \text{Germany} & \approx_{n',d} & \text{Berlin} \\ \text{Einstein - science} + \text{art} & \approx_{n',d} & \text{Picasso} \end{array}$

You can see that the dense vectors seem to encode "concepts", that we can manipulate mathematically.

You may discover some unintended bias

 $\operatorname{doctor-man} + \operatorname{woman} \qquad \approx_{n',d} \quad \operatorname{nurse}$

 $\text{mechanic - man} + \text{woman} \quad \approx_{n',d} \quad \text{teacher}$

Domain specific embeddings

Do we speak Wikipedia English in this room?

Here are the neighborhoods of some financial terms, according to GloVe:

```
N(\text{bull}) = [\text{cow, elephant, dog, wolf, pit, bear, rider, lion, horse}]
N(\text{short}) = [\text{rather, instead, making, time, though, well, longer, shorter, longer}]
N(\text{strike}) = [\text{workers, struck, action, blow, striking, protest, stoppage, wal}]
N(\text{FX}) = [\text{showtime, cnbc, ff, nickelodeon, hbo, wb, cw, vh1}]
```

It may be desirable to create word embeddings on a narrow (domain specific) corpus.

This is not difficult provided you have enough data.

Obtaining Dense Vectors: Transfer Learning

How do we obtain Dense Vector representations that seem to have these wonderful properties?

- Through Machine Learning!
- As a by-product of solving a specific Source task
- Once we have the embeddings, we can re-use them in many other Target tasks.

This is exactly what we called Transfer Learning

- We train a Source Task
- The layers and associated weights learned in training the Source Task
- Are re-used for a different Target Task

The layer and associated weights that implement the dense vector encoding are re-used

• Called an Embedding Layer

We will show code that trains an Embedding Layer shortly.

Word prediction problems: high-level

The Source Task we will use to create word embeddings is from a class of *Word Prediction* tasks

- Given a set of tokens (the "context")
- Predict a related token

For example

- Given prefix $\mathbf{w}_{(1)} \dots \mathbf{w}_{(t-1)}$ of a sequence of tokens \mathbf{w}
- Predict the next token $\mathbf{w}_{(t)}$.

"Machine Learning is $\langle ???? \rangle$ "

Or a similar problem

- Predict token $\mathbf{w}_{(t)}$
- From surrounding tokens

$$\mathbf{w}_{(t-o)}, \dots, \mathbf{w}_{(t-1)}, \langle ????
angle, \mathbf{w}_{(t+1)} \dots, \mathbf{w}_{(t+o)}$$

"Machine $\langle ??? \rangle$ is easy"

The inspiration behind using a Word Prediction task to learn embeddings

- Is that meaning of a word can be inferred by context
- "You are known by the company that you keep"

For example

- "I ate an apple"
- "I ate a blueberry"
- "I ate a pie"

"apple", "blueberry", "pie" concept: things that you eat

The Word Prediction task is thus a form of Classification.

We need a large number of training examples as this is a Supervised Learning problem.

One reason that Word Prediction is used is that it is fairly easy to obtain training examples

- From any source of raw text
- Just reformat
- That is: the target/label for an example is just an adjacent token

Since targets can be derived from examples, this is sometimes called *Semi-Supervised Learning*

Let ${f w}$ be the sequence of $n_{f w}$ words

A word prediction is a mapping

- from input \mathbf{w}
- to a probability distribution $\hat{\boldsymbol{y}}$ over all words in vocabulary \boldsymbol{V}
 - $ullet \hat{f y}_j = p(V_j)$
 - That is: it assigns a probability to each word in the vocabulary

Here are some simple word prediction problems:

predict next word from context	$p(\mathbf{w}_{(t)} $	$\mathbf{w}_{(t-o)}\dots,\mathbf{w}_{(t-1)})$
predict a surrounding word	$p(\mathbf{w}_{(t')} $	$\mathbf{w}_{(t)})$
		$t'=\{t-o,\dots,t+o\}-\{t\}$
predict center word from context	$p(\mathbf{w}_{(t)} $	$[\mathbf{w}_{(t-o)} \dots \mathbf{w}_{(t-1)} \mathbf{w}_{(t+1)} \dots \mathbf{w}_{(t+o)}]$

Here is the Neural Network we construct for the Source Task that will learn embeddings

• Ignoring for the moment the issue of converting variable length sequences to a fixed length

Embedding Layer

Layers:

- One Hot Encoded token
- Embedding: converts sparse encoding to dense encoding
- Classifier: operating on dense encodings

The only "new" layer type is the Embedding layer

- This is nothing more than Matrix Multiplication
- ullet The mapping can be implemented an $(|\mathbf{V}| imes n_e)$ matrix \mathbf{E}
- ullet Where n_e is the length chosen for the dense vector

That is because

- ullet The OHE vector for the j^{th} word ${f V}_j$ in vocabulary ${f V}$
- ullet Is the $(|\mathbf{V}| imes 1)$ vector of all 0's except at index j $V^{(j)}=1$

$$V^{(j)}=1$$

- $\mathbf{E}^T * \mathrm{OHE}(\mathbf{V}_j)$
- ullet Selects row j of ullet, which is the is the $(n_e imes 1)$ dense vector encoding of ${f V}_j$

Matrix ${f E}$ are weights to be learned by training

• Along with the weights of the Classifier layer

In other words

- We train the Neural Network
- To create an embedding
- That makes it easy for a Classifier
- To solve the Source Task

Conclusion

Categorical variables (such as tokens/words) are easily represented as One Hot Encoded values.

This is perfectly adequate when there is no relationship between tokens.

Word embeddings/Dense representations create a representation

- Not just of a token is isolation
- But a token with multiple dimensions of meaning
- Which enable inter-token relationships

We showed how to create dense representation of words as a by-product of solving a Source Task.

The Source Task we used was Word Prediction, but other tasks may work as well.

The embeddings learned for the Source Task may be useful in other tasks

• This is Transfer Learning in the real world

```
In [2]: print("Done")
```

Done