

RAPPORT DE STAGE

Fracturation de floes de glace par percussion dans un modèle granulaire

Superviseur Stéphane Labbé

ÉtudiantRoussel Desmond Nzoyem

Enseignant référent Christophe Prud'homme

Stage effectué au Laboratoire Jacques-Louis Lions; du 03 février 2021, au 31 juillet 2021; pour l'obtention du master 2 CSMI.

Année académique 2020 - 2021

Remerciements

Avant tout développement sur cette expérience professionnelle, il apparaît opportun de commencer ce rapport de stage par des remerciements, à ceux qui mont appris des choses, et à ceux qui ont eu la gentillesse de faire de ce stage un moment agréable et profitable.

Ainsi, je remercie le Pr. Stéphane Labbé, mon maître de stage qui ma formé et accompagné tout au long de cette expérience avec beaucoup de patience et de pédagogie. Étant donné la situation sanitaire de COVID-19, il a su me transmettre tous les enseignements et les ressources (livres, reférences, etc.) nécessaires pour effectuer mes différentes missions (et bien plus encore), à distance comme en présentiel. Je vous en suis profondément reconnaissant.

J'éttends mes remerciements à mes illustre prédécesseurs Matthias Rabatel et Dimitri Balasoiui sans qui mon travail n'aurait pas eu lieu. Dimitri a su me guider dans les moments les plus difficile du stage. Les mots ne sauraient exprimer ma reconnaissance envers les visio-conférence organisées afin de me permettre de prendre en main de son travail.

Je remercie aussi l'ensemble du personnel du Laboratoire Jacques-Louis Lions qui ma permis deffectuer un stage scientifique très enrichissant dans les meilleures conditions possibles. J'addresses mes salutations aux doctorants et aux étudiants en séjour de recherche pour leur unique regard sur les difficultés auquelles fait face. En particulier, je remercie Madame Catherine Drouet de l'administration pour son assistance et ses conseils inestimables.

Enfin, je remercie mes proches, ma famille et mes amis pour leurs encouragements. Si un lecteur estime que son nom aurait du figurer ici de facon explicite, faite ceci : imprimer cette page, montrer la moi, et cela sera votre coupon pour une bièrre gratuite (ou un caffé, ou autre chose). Les trucs gratuits sont mieux qu'une mention, n'est-ce pas?

Table des matières

Remerciements		
1	Problème 1D et étude de la fracture	1
	11 Résumé des résultats obtenus	1

Chapitre 1

Problème 1D et étude de la fracture

Notre code est stocké dans un dépot GitHub privé dont une explication du contenu est donnée dans le fichier README dont la capture est présentée à la figure 1.1. Nous avons effectué plusieurs simulations avec ce code. En particulier, nous avons observé que que les ressorts des floes se fractures quand il sont soumis soit à une compression ouà une élongation intense. Nous pouvons oberver celà sur cette simulation LIEN SEAFILE, fournie à titre d'exemple.

1.1 Résumé des résultats obtenus

Pour le problème 1D, nous avons non seulemetn étudié le déplacement des noeuds d'un floe, mais aussi ce qui se passe après une collision de ces noeuds. En considérant le floe comme un réseau de ressorts, nous avons pu étudier la nucléation (et la propagation) d'une fracture suivant le modèle de Griffith sans recourir à la méthode du champ de phase.

Nous avons éffectué plusieurs simulation qui ont montrer que les ressorts se brisent lorsqu'ils sont fortement compréssés. Le modèle 1D adopté (voir ??) a également montré que le système perds de son énergie (cinétique) au cours du temps, ce qui

Quand à la validation des résultats, nous n'avons pas réussi à effectuer des tests en laboratoire. Cette tache représente la prochaine étape avant l'adoption de ce modèle 1D. Ceci dit, les floes de glace sont généralement considérés comme des objets 2D du fait de leur taille négligeable face au rayon de la terre. Une étude en dimension supérieure est donc indispendable pour un déployment de notre modèle de fracture à l'échelle des floes de glace.

Figure 1.1 - Appercu du dépot principal ice -floes utilisé durant le stag.