Detection & Estimation 304-621

1. Introduction

-> Extraction of information from noisy signals.

Detection: deciding which of a finite set of possibilities is occuring

(ex: does a noisy signal correspond to 0 or 1?)

Estimation: Forming an opinion about the numerical value of a quantity which cannot be observed directly (ex: target estim distance by radar. bounce FMsigual l'measure time to estimaistance)

2. Review & Notation

Random variables: capital letters, Realizations: lowercase letters Fx(x) denotes "distribution function": a.k.a. comulative distribit $f_{x}(x)$ denotes "probability density function" for continuous RV-with $F_{x}(x) = \int_{-\infty}^{\infty} f_{x}(\omega) d\omega$

{Pr(x=xi)} aenote probability massing associated with a discrete RV. with Fx(x) = & Pr(*x=U)

Unified Notation Fx(x) = Sd Fx(y) = {continuous : Sx Fx(y) dy} discrete: Epr(x=y)

Random vectors denoted by X (always now vectors)

x= |x1 | each entry is a RV. x; all continuous - x is called continuous etc...

Joint (multivariate) distribution function of x is:

Fx (x)=Pr {x, < x, , xo < xo ...}

fx(xo ... xn) "spof" o.t. Fx(xo =) = fx(xo ... xo)dx. dx,

* Statistical independence of components +>

Fz(x)=Prfx, &x, y. Prfxa & xay.

(1) Marginal DF of X; △ Fx (∞, ∞, ~, x;, ~ ∞, ∞)

- Ø Fx {x1, x3, ... 30, ... xn3 = 0
- (3) F_x (∞, ∞, ..., ∞ 3 = 1
- (O (Fx(x)))

Summary

Continuous x

Fx(x) = 5x Px(Y1) Yuldy,

= J's fr (x1) - ywdy,dyo

Fx(x) = Pr(x, ex, x) exo 3

Discrete x

Fx(x)=\frac{x}{x} \Pr(x,=y_1,...xn=y_n).

(nxn corresponds

Unified Notation

 $F_{x}(x) = \int_{-\infty}^{x} dF_{x}(y) = \begin{cases} \int_{-\infty}^{x} f_{x}(y_{1},...,y_{n}) dy, & co-hinoous \\ \frac{x}{x_{0}} Pr(x_{1}=y_{1},...,x_{n}=y_{n}), & discrete. \end{cases}$

Let Z be a subset of IR" for which a probability measure can be defined; z is then a Borel subset. Then,

Conditional probability

Y, y independent iff fx1x(x1x) = fx(x)

Means, moments & characteristic functions

given Random vector x

Random variable g(x)

number
$$E(g(x)) = \int g(x) df_x(x) = \begin{cases} g(x) f_x(x) dx \\ \frac{x}{x} g(x) \Phi(x=x) \end{cases}$$

nth order moment of a RV y is:

mean of a vector -> mean of its components.

3 DETECTION THEORY (HYPOTHESIS TESTING)

3.1 Preliminaries

Model: Decision rule and several thypothesis,
based on one realization
(several realizations are treated as a rectorical observation)

EX

Observe R, decide on s=1 v.s s=-1

Let n be a discrete RV with pmf: fn (n)= { 13, n=1 } recorded to n=-1

Ho: R=1+n > D correspond to different prob.

Hi: R=-1+n laws for R.

#

observations pace: {-2,-1,0,1,2}==

a Deasion rule: ref-2,-1,03 +> Ho is chosen

Lo a "partition" of the observation space.

with properties: = 0 uz, = 2

2012,= \$

P(noise = -1 &

Notation a partition corresponding to a decision rule can be described as a set of sets:

f={ Zo, Z, , ... Zn}

when several partitions are used:

fo= { zo, z, , ... z, }

Randomized decision rule for testing M hypothesis is a set of (simple) decision rules $f_R = \{f_{\alpha\beta}f', f^{H-1}\}$ and the associated discrete probability law $f_R = \{f_{\alpha\beta}f', f^{H-1}\}$ and the associated consists of two steps: i) according to f_R , choose f' is use f' to make the decision.

that one non-zero element. > fi always selected.

Randomized de vision role con se representea as

where I is a dixrete RV with probability law pr{I=i]=Pi ; i=0,1, ... k-1

Performance criterion for decision rules]
LA based on probability of error

Def probability of error associated with Hm is

PecHhniz = prob (chose Hni | Hm is true)

For a given randomized docision rule of = { zo, zi, ... }, the prob of error when I=i is

the probability of error associated with Hm. For the randomic decision rule of is:

Define the characteristic Ruchion of region Zni as

Then:

Pairwise probability of error -

· Probability that when I=i the decision is Hin when Hm is true:

· Probability that the decision is the when Him is true;

(i.e. all is are still possible)

3, 2 tiletihood Ratio (LR)

Consider two Hypotheses:

Welchood Ratio defined as follows:

Lemma 3.1

let g(c) be a function of an observation c in a 2. Hypotheses testing problem (Ho vs. H.) with L.R. $\Lambda_{i,c}(C)$. Then we have:

aiscrete cax:

replace integral by & A by P

L.R. decision rile

-> a raundomised decision rule.

Decision regions associated with the lest

Z_{vo} = {[S.b. A_{vo}(E) =]} + some times probability of this is zero + ignore zuo.

when A is continuousin

=> if r EZ, -> decide H, IEZO - o decide Ho IEZ, a decide H, with prob. "q", otherwise Ho.

Probability of error interms of L.R. i.e. do not choose to, when Hoistone.

3.3 Neyman-Pearson Franciscork

Consider a 2 hypothese teshing problem (Ho,Hi).

Define two types of errors, and their error probs;

Pe (Ho) = P(H, 1Ho), Pe(Hi) = P(Ho1Hi)

Pe(Ho) = PF - o "prob. of false alarm"

"prob. of type I error"

"size of the test" or "testlevel"

Pe(Hi) = Po "prob. of detection"

Pe(Hi) - o "prob of type 2 error"

[I-Pe(Hi)] - b "power of the test"

Main Problem

Find a decision role that minimizes $Pe(H_i)$ given a constraint $Pe(H_0) \le \infty$ i.e. find the most powerful test given a bound on the test level.

Theorem 3.1

Consider a two hypotheses testing problem (Ho vs. H.) and a likelihood ratio decision rule specified by the following:

A 1,0 (b)
$$\gtrsim \lambda$$
 , $\lambda > 0$, z_0, z_1 decision régions

& rezus & choose H, with prob.q.

Let the prob. of errors be Pechid=dip, Pechi)= Bir consider another decision role employing regions Z': Zo': with Pospis...pks) and prob of error Pe(Hb)= a', PeCHi)=B' & IF B'(Bir then a'>xir

not fure was when the many

Lemma (to be used in proof of theorem 3.1) Diffine the following sets:

$$Z_{1} = \begin{cases} Z_{1} \cup Z_{1} \cup Z_{2} \\ Z_{1} & \text{if } z_{2} \end{cases}$$

Then for j=0,1 and I=0, k-1 we have:

Proof

If [Ez, : 12;([)-12;([) = 1-(1000) > 6 10- >>0 (by def of z,)

If $\Gamma \in Z_0$: $1_{Z_i,S_i}(\Gamma) - 1_{Z_i,S_i}(\Gamma) = G - (100) \le 0$ $\Lambda_{i,0} - \lambda < 0$

JFCEZO: A 100-X =0

- product [12,5(0)-12,6(0)] · [A30(0)->] is always non-negative.

Note: $1_{z_i}(\underline{c}) = \begin{cases} 1, \underline{c} \in z_i, & \text{crealled} \end{cases}$

Proof of Theorem 3,1

From the lemma we know: (linear comb. of non-neg values)

$$\sum_{j=0}^{L} \sum_{i=0}^{k-1} q_{i} \operatorname{Pi} E \left[\left[1_{z,i}(\underline{R}) - 1_{z,i}(\underline{R}) \right] \left[\Lambda_{i,0}(\underline{R}) - \lambda \right] \right] H_{0} \geq 0$$

Using Lemma 3,1 on first 2 terms:

other two terms written directly as:

Substituting yields:

$$(1-\beta_{LR}) - (1-\beta') - \lambda \alpha_{LR} + \lambda \alpha' > 0$$

$$-\beta_{LR} + \beta' + \lambda(\alpha' - \alpha_{LR}) > 0$$

$$\lambda(\alpha' - \alpha_{LR}) > \beta_{LR} - \beta'$$

$$- D if \beta_{LR} > \beta' + wen \alpha' > \alpha_{LR}$$

Going back to Neyman-Pearson objective:

"Find a decision rule that minimizes PelHI) under the constraint PelHol (x."

e Theorem 3.1 implies that a likelihood ration decision rise with Pe(Ho) = of is a solution (Since any other decision rule with Pe(Ho) ed would lead to an increase in Pe(H,)

Solving Pe (Ho) = & gives:

PECHO) = Pe[Niso(B)>>|Ho]+91 Pe[NisCB)=>|Ho]

-> can adjust PeCHb) through two parameters: \times^{8} 9.
-> 9. not relevant in case of continuous Λ_{U} (Second term is zero).

left with:

PecHO) = Pe[1,0CR)>X HO] =X

Note: for 1 discrete, may need randomized pecision rule for cortain values of a

How do we compare decision roles under Neyman-Pearson criterion?

- * Performance given by PecHo) and PecHi)
- = But, traditionally we consider Pe(Ho) and Pc(Hi) = 1-Pe(Hi)
 - · PCCHI) and PeCHO) are related through the threshold.
 - · A graph of Pc LHI) v.s. Pe(Ho) is called the Receiver Operating Characteristic CROC)

-> provides an indication of how much a decrease in false alarm decreases the detection probability & vice-versa.

Ex 3.3.1

Consider a 2-HT problem:

Mi are ind caussian realization with NCO,00) 5>0 is aknown constant

Define
$$\Gamma = [\Gamma, \Gamma_s, \Gamma_s]$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{2\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\pi\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma, H) = \frac{\pi}{1 + \sqrt{2\sigma^3}} e^{-\frac{\tau^2 - s^3}{3\sigma^2}}$$

$$f(\Gamma$$

LR decision rule:

The sample mean is a sofficient statistics!

since it contains all the information from the received signal needed to make a decision.

To N(S, +0) under H, I FUN(O, 50) under Ho

3, 2 tiletihood Ratio (LR)

Consider two Hypotheses:

Welchood Ratio defined as follows:

Lemma 3.1

let g(c) be a function of an observation c in a 2. Hypotheses testing problem (Ho vs. H.) with L.R. $\Lambda_{i,c}(C)$. Then we have:

aiscrete cax:

replace integral by & A by P

Prob. of error obtained:

What is the probability of delection?

$$P_{c}(H_{1}) = P_{r}\left[\times > \frac{\sigma^{2} \ln \lambda}{NS} + \frac{1}{2} \right] H_{1}$$

$$= P_{r}\left[\frac{\ln(x-s)}{NS} > \frac{\sigma \ln \lambda}{NS} + \frac{s \ln |H_{1}|}{2s \ln |H_{2}|} \right]$$

$$= O\left(\frac{\sigma \ln \lambda}{NS} + \frac{s \ln |H_{2}|}{2s \ln |H_{2}|} \right)$$

What is the distribution of x under Ho and H.?

Plot Po v.s. Pr : see hand out "3.19"

olorged - better tradeoff

$$p(r|H) = \begin{cases} 1-peo \ r=0 \end{cases}$$

$$p(r|H) = \begin{cases} peo \ r=0 \end{cases}$$

$$p(r) \xrightarrow{1-peo \ r=0} \qquad p(r) \qquad peo \qquad r=1$$

$$p(r) \xrightarrow{1-peo \ r=0} \qquad p(r) \qquad peo \qquad pe$$

Find threshold

$$P_{\Lambda_{30}}(a|H_0) = P(r=0|H_0) = 1-Peo$$

$$P_{\Lambda_{30}}(b|H_0) = Peo$$

$$P_{e}(H_0) = Pr\{\Lambda_{30}(R) > \lambda|H_0 = \begin{cases} Peo, a \leq \lambda \leq b \\ O, b \leq \lambda \end{cases}$$

$$P_{e}(H_0)$$

$$P_{e}(H_0)$$

-D can only use this approach to find Neymour Pearson decision we for x=0,1 or peo.

- Dotharwise, must use randomized decision rule.

ite. instead of: Nyoth>> - DHa 112(1) 6x - 110

Using this randomized test PecHo) = Pr { 1,0 CR> > 1 Hog + 9. Pr { 1,0 CR> = > 1 Hog

For Pechose 1: 0= 1: 0= 1= 0; can be attained.

for Pechos = 1: 0= 1= 0; carbitrary

since Pr [Avoca) = 1 Ho] = 0

for : Peo (Pecho) = 1: 1= a, get q, from Peholog, (1-peo) + Peo

For: peo (PelHa)21: h=a, get q, from PelHa)q, (1-peo) + Peo
->q = Pe(Ha)-Peo
1-peo

For: Pelto) = Peo: acxeb , 9, =0

for: OLPECHO) cpco:
$$\lambda = b$$
, $q_1 \cdot Pco = Fecho)$

$$-bq_1 = \frac{Fecho}{Feo}$$

for: Pelha=0 : >> b, q,=0

Calculation of
$$P_0 = P_C(H_1)$$
 $P_{\Lambda_{10}}(CalH_1) = P_{RIH}(OlH_1) = Pel$
 $P_{\Lambda_{10}}(blH_1) = 1 - Pel$
 $P_C(H_1) = Pr(\Lambda_{10} \ge \lambda | H_1) \cdot q_1 + Pr(\Lambda_{10} > \lambda | H_0) (1 - q_1)$
 $= Pr(\Lambda_{10} > \lambda | H_1) + Pr(\Lambda_{10} = \lambda | H_1) \cdot q_1$
 $= Pr(\Lambda_{10} > \lambda | H_1) + Pr(\Lambda_{10} = \lambda | H_1) \cdot q_1$
 $= Pr(\Lambda_{10} > \lambda | H_1) + Pr(\Lambda_{10} = \lambda | H_1) \cdot q_1$
 $= 1 - Pe_1 + Pe_1 \frac{Pe(H_0) - Pe_0}{1 - Pe_0}$
 $= 1 - Pe_1 + Pe_1 \frac{Pe(H_0) - Pe_0}{1 - Pe_0}$
 $= 1 - Pe_1 + Pe_1 \frac{Pe(H_0) - Pe_0}{1 - Pe_0}$
 $= 1 - Pe_1 + Pe_1 \frac{Pe(H_0) - Pe_0}{1 - Pe_0}$
 $= 1 - Pe_1 + Pe_1 \frac{Pe(H_0) - Pe_0}{1 - Pe_0}$
 $= 1 - Pe_1 + Pe_1 \frac{Pe(H_0) - Pe_0}{1 - Pe_0}$
 $= 1 - Pe_1 + Pe_1 \frac{Pe(H_0) - Pe_0}{1 - Pe_0}$
 $= 1 - Pe_1 + Pe_1 \frac{Pe(H_0) - Pe_0}{1 - Pe_0}$
 $= 1 - Pe_1 + Pe_1 \frac{Pe(H_0) - Pe_0}{1 - Pe_0}$
 $= 1 - Pe_1 + Pe_1 \frac{Pe(H_0) - Pe_0}{1 - Pe_0}$
 $= 1 - Pe_1 + Pe_1 \frac{Pe(H_0) - Pe_0}{1 - Pe_0}$
 $= 1 - Pe_1 + Pe_1 \frac{Pe(H_0) - Pe_0}{1 - Pe_0}$
 $= 1 - Pe_1 + Pe_1 \frac{Pe(H_0) - Pe_0}{1 - Pe_0}$
 $= 1 - Pe_1 + Pe_1 \frac{Pe_1 - Pe_1}{1 - Pe_0}$
 $= 1 - Pe_1 + Pe_1 \frac{Pe_1 - Pe_1}{1 - Pe_0}$
 $= 1 - Pe_1 + Pe_1 \frac{Pe_1 - Pe_1}{1 - Pe_0}$
 $= 1 - Pe_1 + Pe_1 \frac{Pe_1 - Pe_1}{1 - Pe_0}$
 $= 1 - Pe_1 + Pe_1 \frac{Pe_1 - Pe_1}{1 - Pe_0}$
 $= 1 - Pe_1 + Pe_1 \frac{Pe_1 - Pe_1}{1 - Pe_0}$
 $= 1 - Pe_1 + Pe_1 \frac{Pe_1 - Pe_1}{1 - Pe_0}$
 $= 1 - Pe_1 + Pe_1 \frac{Pe_1 - Pe_1}{1 - Pe_1}$
 $= 1 - Pe_1 + Pe_1 \frac{Pe_1 - Pe_1}{1 - Pe_1}$
 $= 1 - Pe_1 + Pe_1 \frac{Pe_1 - Pe_1}{1 - Pe_1}$
 $= 1 - Pe_1 + Pe_1 \frac{Pe_1 - Pe_1}{1 - Pe_1}$

ROC is ,

Notes on ROC:

- is at any point, slope = threshold needed to achieve the point
- a) concar

= will be proven to be general properties of Rocs

Properties of ROC curves associated with LR lest

Theorem 3.2

The ROC curve of a likelihood ratio is convex down's

Take two points ("fests")

[Pc,(H)), Pe,(Ho)], [Pca(H), Pea(Ho)]

- PecHo) let a = PC, CH,) + PCO (H,)

check in

Construct test 3 where test 1 and test 2 are used with equal probability: [a, b] = [Pc3(Hi), Pc3(Hb)]

From theorem 3.1, know that the Atest with RCHO) = b most have Po(H1) > a (i.e. > any test).

- convex down.

theorem 3.3

The slope of the Roc curre at any differentiable point is equal to the threshold required to achieve this point.

Proof

DASSUME LR is continuous. (-> simple decision rule), thus can be characterized by a PDF under H., Ho; fr (A) Hm), m=0, we have:

Let $z_1: \{r = s.b. \land_{i,o}(r) > \lambda\}$ use change of mansure then $P_c(H_i) = E\{1_{z_i}(R)|H_i\} \subseteq E[1_{z_i}(R), \Lambda_{i,o}(R)|H_o]$

DOSTIFY MORE

2) Assume LR is discrete.

PCCHI)
PECHO

Let the threshold for actueining point 1 be λ , the points of abrupt slope change can be achieved a suitable threshold and $q_1=0$ \rightarrow a simple decision role.

other points (on linear segments) we need $q_1 > 0 \Rightarrow$ randomic At point 1, $q_1 = 0$ and $P_{c}(H_1) = P_{c}(\Lambda_{1,0}(R) > \lambda, |H_1)$ $P_{c}(H_0) = P_{c}(\Lambda_{1,0}(R) > \lambda, |H_0|)$

At point x, q=qx>omd PcCHi)=Pr(Avo(R)>>, 1Hi) +qx Pr(Ayo(R)=>, 1Hi)

> PecHo)= Pr(A,ocr)>>,(Ho) +qx &Pr(A,ocr)=>,(Ho)

Slope at point x will be given by

change of measure formula

= E(12,0CR)(H,] E(12,0CR)(H0]

1210(r) [M10(r)-1,]=c
if r&z10, 1210(r) =6

IFrezio, Aio(E) = A

4> E (12,0(r) [4,0(r)->,])=

 $= \lambda'$

3,4 BAYESIAN FRAMEWORK

Given M Hypotheses Ho, H., ... Hm

generated by a random experiment, occurring with probability

Pm (the a priori probabilities) i.e. Pr (Hm) = Pm definace

For all m (and known).

Suppose we have a decision rule for the about problem. We assign a non-negative weight (cost, occ < 1) to the events

Cin = "Hn is true and the decision is Hi" which has probability

P(Hntre Hidecided) = P(HiltIn) . Pn The average costis:

T = E E Cin PCHilHn) Pn

→ The Bayes criterion minimizes 74.

Note: randomized decision rule never used (no improvement gained over simple decision rule)
Using 2, to 2m-1

Place I in region Zi iff CiCr) = min { Cocci) ... Ch.(I) }

or CiCr) = min { Cocci) ... Ch.(I) }

- this is the optimal Boyes decision rule

Interpretation using Bayes Rule

a postenori probabilitio.

apostericosts in terms of a posteriori probs.

-D Bayes cla crisican note:

For the a-Hypotheses case : Hold.

Continuous case:

Bayes accision rule (through minimization):

Co (CC) } (c, (CC)

Equivalent Form:

$$\frac{f_{RH}(CIH_i)}{f_{RH}(CIH_o)} \approx \frac{(C_{10}-C_{00})}{(C_{01}-C_{11})} \frac{P_0}{P_0}$$
While the production $A_{1,0}(C)$

In terms of a posteriori probabilities:

notation

likelihodration of a posteriori probs

Minimization of average probability of error

Choose:
$$C_{in} = \begin{cases} 1 & i \neq n \\ 0 & i = n \end{cases}$$

leads to:
$$\overline{C} = \underbrace{Z}_{i=0}^{M-1} \underbrace{PCHilt_m}_{i=0}^{M-1} \underbrace{Pm}_{i=0}^{M-1} \underbrace{PeCHm}_{m=0}^{M-1} \underbrace{Pm}_{m=0}^{M-1}$$

// Insert lecture 9 here.

Consider the set of all cost vectors 1/2 s.t. for a given P and b>0, 1/2 satisfies P.Ve=b

- D re is a plane for hyperplane of dim. M-1, normal P 11811 - ball decision rules associated with those re are equivalent since c=6

Def A hyperplane is said to support the convex set Si at the boundary point Ve , if Ve is a boundary point for Sv, and the following holds:

support hyperplane

1- Hyperplane passes through Ic 2- Su is on one side of the hyperplane.

Property of convex seds

Any convex set has a supporting hyperplane at any boundary point.

Note supporting plane of tangential plane ?

many supporting planes
but no tangential plane.

- · Ophimal Boyrs decision rules correspond to points on the boundary of Sx
- · Given a point on the boundary corresponding to an optimal Bayes rule, we can find its supporting hyperplane, which has normall = ressociated vector of a-prior probabilities.

The Minimax strategy

What if the a prior probabilities Po are unknown?

-> Find the decision rule which minimizes the maximum of the a posterior cost.

Min max [Cos.... Cm.]

-> Can be extended to higher dimensions.

The minmax decision Verminmar is characterized by

Ye minmar = Co [1 1... 1] †

+ called equalization of conditional costs.

other a prior prob. vector P associated with V_c minmax is called the most in favorable α -prior, and must satisfy $P_0 > 0$, ... $P_{M-1} > 0$.

Note & sometimes applying min may gives some P: <0, in which case we say that the problem does not have a minimax decision rule.

More on most-infavorable a prior

let Emin (P) denote the minimum average cost for a-prior vector P.

Then

Emin (P) - P - Ve (P)

*(V_LP) also depends on P since to achieve

Emin it must correspond to an optimal

Bayes test for a prior P)

Theorem 3.5.2

Comma (P) is convex down function of P.

Proof:

Consider two a prior probability rectors P's e and the corresponding minimum average costs

Corollary

Chin(P) has only one maximum (follows from convexity down)

Assume now that Comm CP) achieves its maximum at Po with non-zero components.

Consider the support hyperplane of Concu (P) at Po H(P)=P⁺V_e(P^o)

Since it is taugential to Comin (P) at its maximum, then H(P) cannot vary with P

Claim: VCCP) has equal components.

Outline of proof:

-Choose OKEK

- Define the approximation set $P^{1}=[1-C,M-1)\in$ $\mathcal{E}_{1}\in$... \mathcal{E}_{2} $P^{2}=[\mathcal{E}_{1},V-(M-1)\in$ $P^{M}=[\mathcal{E}_{1},\mathcal{E}_{2},\cdots,\mathcal{E}_{N-1},\mathcal{E}_{N-1}]$

+ Then, HCP') = HCPd)= ... = HCPM) = H const.

In matrix form

$$\begin{bmatrix} P^{17} \\ P^{27} \\ \vdots \\ P^{m^{+}} \end{bmatrix} \cdot v_{c} (P^{\circ}) = H_{const} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

+ Ve (P°) has equal components.

ې مه

Minimax example.

Ex 3, 5.1

Let fcu) be a pdf defined by:

And consider the three-hypothesis testing problem:

12362 is known constant

Find the minimax decision recembranizing the average prob. or (so set (ij = 1, i + j; cij = 0, i = j')

Tofind minimax decision relo:

Set average conditional costs equal

for m=01,2
$$\overline{C}_m = \frac{3}{2} P(H_i|H_m)$$

 $i=0$

+ find a partition z: satisfying Co=C1=Ca

describe the received H.

-> choose & to satisfy Co= C, = C =

it is easily gressed that s-1<011 which leads us to:

$$\frac{C_0}{C_0} = P(H_1|H_0) + P(H_0|H_0)$$

$$= \int_0^1 x + 1 - 3 dx + \int_0^1 x + 1 dx$$

$$= \left[\frac{1}{2} x^2 + (1-3)x \right]_0^1 + \left[\frac{1}{2} x^2 + x \right]_0^{-6}$$

$$= \left[\frac{1}{2} x^2 + 1 - 3 - \frac{1}{2} a a^2 + (3-1)a \right] + \left[\frac{1}{2} a a^2 - a - \frac{1}{2} + 1 \right]$$

$$= (s-2)a + 2-3$$

$$C_{1} = P(H_{0}|H_{1}) + P(H_{2}|H_{1})$$

$$= \int_{-x+1}^{-x+1} dx + 0$$

$$= [-1/2 x^{2} + x]_{S-1}^{S-1}$$

$$= -1/2 G^{2} + G + 1/2 (S-1)^{2} + 1-S$$

$$C_{2} = P(H_{0}|H_{2}) + P(H_{1}|H_{2})$$

$$= \int_{-g}^{1-s} x + 1 dx + 0$$

$$= [1/2 x^{2} + x]_{m}^{1-s}$$
Same a

= 112(1-5)2+1-5-11282+0

His final answer

PCH, 1Hb) = PCHalHb) = "aCFE

D(HolHb) = P(HolHa) = "a(1+0-s)

Co = (1-0) 2

Ci = Co = "a(1+0-s) 2

Cost equalization

a(1-0) 2 = (1+0-s) 2

Two solutions

Va(1-0) = ± (1+0-s)

O1 = \(\frac{10}{10+1}\) + \(\frac{10}{10+1}\)

is the valid answer.

We have $\bar{c}_1 = \bar{c}_2$ always, So solve $\bar{c}_0 = \bar{c}_1$ for Θ .

(s-2) $\Theta + 2 - s = -1/2 \Theta^2 + \Theta + 1/2 (s-1)^2 + 1 - s$ $1/2 \Theta^2 + (s-3)\Theta + [1+1/2 (s-1)^2] = 0$ $-(s-3) \pm \sqrt{(s-3)^2 - 2[1+1/2 (s-1)^2]}$ (***)

Now, find the most unfavorable a prioriprobabilities.

- Dit is the apriori that generales the minimus decision rule. Band on Bayes.

definer Bayes thresholds) correspond to the minimax

threshold &? (8 assume symmetry)

intersection of lines!

$$\pi_0 - \pi_0 \Theta = (\pi_0 - 1)/2(S-1) + (J-\pi_0) \Theta$$
 $3-S = 0 = \frac{V_0 - 1}{V_0 + 1} + \frac{S}{V_0 + 1}$

The second se

 $\pi_o = \frac{1}{\sqrt{2}}$ $\pi_o = \frac{1}{\sqrt{2}}$ $\pi_o = \frac{1}{\sqrt{2}}$

Composite Hypothesis testing

Each Hypothesis induces a family of probability laws.

Hi: Felhis (ElHmib)

where B is a Q aimensional parameter vector.

Bayesian Case

we consider b to be a realization of a random vector B, which under hypothesistic hased f FBIH (b|Hi)

Define PECin (b) & 1, cost of event "Hm is true educision istli given B = 6"

PCHilHm, b) "prob. decide Hi given Hm is thre and B = b.

Note:

Derivation of average cost. (averaged also over B)

Conditional average cost, given Him is true:

A verage cost, $\bar{C} = \sum_{m=0}^{M-1} \bar{C}_m P_m$

= E E [Cim (B) PCHi [Hm, B) [Hm] Pm

Need & to find the decision who which minimizes C

Continuous case;

where the costs when we decide His given the

observation = are given by

$$C_i^{e}C_{i}^{e}C_{i}^{e}=\sum_{m=0}^{m} \mathbb{E}\left[C_{im}(B)f_{RH,B}C[H_{m}B]\right]H_{m}]P_{m}$$

which is a non-negative. Bunchion of I.

Discrete case

Since non-negative, we have the optimal decision role;

- b like Bayesian.

Interpretation using Bayes rule

Continuous case

FRING (CIHM, b) . PM = FRIB (CID) PHIR CHMIC, b)

So write:

Discrete cuse:

Lo (because of dependence of Cim on B) cannot have as before completely a posterior probabilities.

Special Case: choose the weights com (B) not to depend

+ becomes simple hypothesis testing problem.

Because:

iseo can take cim out of expectation.

-Dsimple hypothesis testing with

averaged using post induced by this hypothesis

F(E)Hm, b), resulting in a simple hypotheses testing

To Summarize

In the Bayesian Framework, when the weights cin do not depend on B, we can transform the composite hypothesis testing problem into a simple hypothesis problem.

simple:

Neyman-Pearson composite hypothesis testing (2 hypothesis)

-> B is an unknown parameter.

HI: FRIMBCETHO, b), b, & B, & RQ
HO! FRIMBCETHO, bo), DO & BO & IRQ

+ i.e. known what the possible values of biare, but no idea of its probability distribution function.

Defl Auniformly Most powerful CUMB) test is a fist such that for all possible values of b, and bo, it maximizes the probability of detection under the constraint that the probability of Palse alarm PF SX.

Theorem 3.6.1

A ump of level x exists iff a Neyman-Pearson optimal test of level x can be constructed such that it does not depend on b_0 , b, for all $b_0 \in \beta_0$, b, $\in \beta_1$

Cases where UMP may exist (note: ordering of H, Ho is important)

(1) H: FRIH, B (C/H), b, b GB, GR@ omposite)

Ho: FRIH (CC/Ho) (simple)

In that case:

-D The decision regions & therefore the test do not depend on by so we have ump test

Example 3.6.1

With parameter 8>0 conknown).

Formulate the hypothesis testing problem;

And 0,00 is given.

Neyman-Pearson test:

$$\Lambda_{1,0}(\underline{\Gamma},\Theta) = \frac{f(\underline{\Gamma},\Theta)}{f(\underline{\Gamma},\Theta)}$$

$$= \frac{\Theta e^{-\underline{\Gamma}\Theta}}{\Theta e^{-\underline{\Gamma}\Theta}}$$

$$= \frac{\Theta e^{-\underline{\Gamma}\Theta}}{\Theta e^{-\underline{\Gamma}$$

$$d = \int f(r)H_0 dr$$

$$= \int \theta_0 e^{-r\theta_0} dr$$

$$= 1 - e^{-\theta_0 \lambda'}$$

$$+ \left[\lambda' - \frac{1}{\theta} \ln(1-\alpha)\right] + \text{does not depend on } \theta_0$$

$$+ DUMP \text{ test exists.}$$

Example 3.6.7

Same as 3.6.1, except:

H: f([|H,6)=f(r,0) 0>0 (do not know 0>0) Ho: f(r,0) = f(r,0)

$$\Lambda_{00}(E, \Theta) = \left(r \stackrel{H_0}{\geq} \frac{1}{\Theta \cdot \Theta_0} \ln \left(\frac{\Theta}{\lambda \Theta_0} \right), if \Theta > \Theta_0 \right)$$

$$\left(r \stackrel{H_0}{\geq} \frac{1}{\Theta \cdot \Theta_0} \ln \left(\frac{\Theta}{\lambda \Theta_0} \right), if \Theta < \Theta_0 \right)$$

$$\alpha = \int_{0}^{\lambda'} \theta_0 e^{-r\theta_0} dr \rightarrow \lambda' = \frac{1}{\theta_0} \ln(1-\alpha)$$

$$\frac{\cos(\theta < \theta_0)}{d = \int_0^{\infty} \theta_0 e^{-r\theta_0} dr \rightarrow \lambda' = -\frac{1}{\theta_0} \ln(\alpha)$$

-D threshold depends on O. (actually, on sign of \(\Theta - \Theta_0\)

In cases where UMP test closs not exist:

Locally most powerful test

Consider the hypothesis testing problem;

consider a decision rule with a certain probability of detection Po. In general, Po will depend on b,.

Osing Taylor's expansion around Poloo)

Q-00)

$$P_{b}(o_{0}) = \int_{z_{i}}^{z_{i}} f_{RiH_{ij}B}(c_{1}H_{ij}B_{0}) dc$$

$$= \int_{z_{i}}^{z_{i}} f(c_{1}, o_{0}) dc$$

$$= \int_{z_{i}}^{z_{i}} f_{RiH_{ij}B}(c_{1}H_{0}, b_{0})$$

$$= P_{EA}$$

Maximize Po subject to PFA Sol

Structure of LMP test

Find the partition to, z, that maximizes

$$\frac{2P_0}{ab}\Big|_{b=0} = \int \frac{aRCE_b}{ab}\Big|_{b=0} dE$$

Under the constraint

D'This can be solved using similar methods as in Neyman-Pearson theorem. (3,1):

with & set such that:

Equivalent form:

$$\frac{2 \ln f(c;b)}{2b} \Big|_{b=G_0} \stackrel{H_1}{\geq} \lambda$$

A STATE OF THE STA

(could be solved in Bayesian, with some assumptions)

EX 3.6.3

Consider
$$R = [R, R_{\bullet}]^{T}$$
 $P_{\alpha}(\alpha) = \frac{1}{2 + V_{\alpha} + c_{\alpha}} e^{x} p(-V_{\delta} r^{\dagger} c_{\alpha}^{-1} r)$
 $P_{\alpha}(\alpha) = \frac{1}{2 + V_{\alpha} + c_{\alpha}} e^{x} p(-V_{\delta} r^{\dagger} c_{\alpha}^{-1} r)$
 $P_{\alpha}(\alpha) = \frac{1}{2 + V_{\alpha} + c_{\alpha}} e^{x} p(-V_{\delta} r^{\dagger} c_{\alpha}^{-1} r)$

Where
$$c_i = \begin{bmatrix} 1 & p \\ p & i \end{bmatrix}$$
, $c_0 = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$, o

i.e. are R. & Ra correlated?

OTry UMP,

$$|u \vee v'(c)| = -\sqrt{\frac{q_1 + c_2}{q_1 + c_2}} \cdot exb(-\sqrt{\frac{q_1 + c_2}{q_1 + c_2}}) \left[b_{1,2} + b_{2,3} - 3c_1 + c_2\right]$$

$$|u \vee v'(c)| = -\sqrt{\frac{q_1 + c_2}{q_1 + c_2}} \cdot exb(-\sqrt{\frac{q_1 + c_2}{q_1 + c_2}}) \left[b_{1,2} + b_{2,3} - 3c_1 + c_2\right]$$

$$\frac{b u_3 + b u_3 - 9 u u_3}{-\frac{9(1-b_3)}{-\frac{1}{b}}} \left(b u_3 + b u_3 - 9 u u_3 \right) + \frac{10}{b} \left(b u_3 + b u_3 - 9 u u_3 \right) + \frac{10}{b} \left(b u_3 + b u_3 - 9 u u_3 \right) + \frac{10}{b} \left(b u_3 + b u_3 - 3 u u_3 \right) + \frac{10}{b} \left(b u_3 + b u_3 \right) + \frac{10}{b} \left(b u_3 + b u_3 \right) + \frac{10}{b} \left(b u_3 + b u_3 \right) + \frac{10}{b} \left(b u_3 + b u_3 \right) + \frac{10}{b} \left(b u_3 + b u_3 \right) + \frac{10}{b} \left(b u_3 + b u_3 \right) + \frac{10}{b} \left(b u_3 + b u_3 \right) + \frac{10}{b} \left(b u_3 + b$$

-> depends on p. -DUMP does not exist.

@ Resort to LMP (sub-optimal)

$$= -1.9 \frac{(1-b_3)_{2}}{1-b_3-5\nu_1 L^3+9\nu_2 D+9\nu_3 D-4b\nu_1 L^3}$$

$$= -1.9 \frac{3b}{1-b_3-5\nu_1 L^3+9\nu_2 D+9\nu_3 D-4b\nu_1 L^3}$$

$$\frac{2\ln(r|H,JP)}{\partial P} = -\frac{1}{2} + r_1 r_2$$

LMP test is:

Set threshold according to probability of falseadarm

Lo will need to numerically evaluate a Assel Function.

A Remember that LMP test is sub-optimal in Neyman-Pearson scuse: Po is not exactly maximized. Another sub-optimal approach:

Generalized Likelihood approach

Consider the M-any hypotheses problem:

M=01,..., M-1 Hm= f (C !Hm, bm), bm ∈ Bm ∈ R°

let:

Continuous case.

Let $\hat{b}_m \in \beta_m$ be such that $f_{E}(H,B(E,Hm,\hat{b}_m) = \max_{b \in \beta_m} f_{E,H,B}(E,Hm,b)$

Discrete case:

PRIHACCIHM, BM) = MAX PRIHAB (CIHM, D)

for m=0,1,... M-1

-D bm is a maximum likelihood (ML) estimate of b under hypothesis Hm.

Key point

- problem by a sample hypothesis lesting problem;

Hm: FRIHJB(HmJbm)

(4) PISCRETE TIME SIGNAL DETECTION

4. 1 Relection of deferministic signals in gaussian noise

Consider M discrete Line, le noun signals: Sm = [sm(0), sm(1), ..., sm(1-n)] T, m = 0,1, ... M-1

Assume that the observed vector is

[= [r(0), r(1), ..., r(1-n)]T

where, under Hypothesis Hm is given by the following:

Hm; D = Sm + D one of the M known vectors.

of a baussian random vector N with mean zero and known covariance E[NN+]=cn, cn>0.

Hence:

mean = Signal care to Hm

Likelihood ratio:

likelihood test

Log Lilalihood test:

$$\frac{h}{\Gamma^{T}C_{N}^{-1}(\underline{s},-\underline{s}_{0})} \gtrsim \log \lambda + 1/2 \underline{s}_{1}^{T}C_{N}^{-1}\underline{s}_{1} - 1/2 \underline{s}_{0}^{T}C_{N}^{-1}\underline{s}_{0} = \lambda'$$
Thisear receiver

Notes: orth is a linear filtering of the observation by the filter b

- · h compoted from CNh = (s,-so)
- oh is a matched Filter to (21-20)
- · White noise CN=I h = (s,-so) is inter

Implementation

(output valid when all values are loaded)

Performance for binary hypothesis

PCH, | H_O) = Pr [
$$R^{\dagger}C_{n}^{-1}(\underline{s}_{1}-\underline{s}_{0}) > \lambda$$
 | H_O]

Gaussian, mean $\underline{s}_{0}^{\dagger}+C_{n}^{-1}(\underline{s}_{1}-\underline{s}_{0})$

var: $(\underline{s}_{1}-\underline{s}_{0})^{\dagger}+C_{n}^{-1}(\underline{s}_{1}-\underline{s}_{0})$

= Q [$\lambda - \underline{s}_{0}^{\dagger}+C_{n}^{-1}(\underline{s}_{1}-\underline{s}_{0})$]

= Q [$(\underline{s}_{1}-\underline{s}_{0}) + (\underline{s}_{1}-\underline{s}_{0}) + (\underline{s}_{1}-\underline{s}_{0})$]

= Q [$(\underline{s}_{1}-\underline{s}_{0}) + (\underline{s}_{1}-\underline{s}_{0}) + (\underline{s}_{1}-\underline{s}_{0})$]

And:

$$P(H_{r}|H_{l}) = Pr\left[\frac{R^{T}Cn'(s_{1}-s_{0})}{N(s_{1}-s_{0})} > N'|H_{l}\right]$$

$$= Q\left[\frac{\lambda'-s_{1}^{T}Cn'(s_{1}-s_{0})}{N(s_{1}-s_{0})}\right]$$

$$= Q\left[\frac{\log \lambda - \log (s_{1}-s_{0})^{T}Cn'(s_{1}-s_{0})}{N(s_{1}-s_{0})^{T}Cn'(s_{1}-s_{0})}\right]$$

etc...

Note: The features of the signals & noise which determine the performance are encapsulated by the quadratic form (31-50) CN' (31-50) generalized evolution noise.

4.2 Partial Coherent Detection in White Gaussian Noise

Bandpass signals

many he austre i'u transcreiptus

SmcW = am (KTs) cos (217 fo Tsk+ &m (KTs))

- o am (kTs) is the signal envelope (slowly varying compared
- Am (KT) is the signal phase (slowly varying same)
- · To is the sampling rate such that FCTs is sufficient! oversampling.
- F the carrier frequency

Hypotheses

16:0 to 6-1

composite hypothy

we saye

Hm: rck) = am (lets) cos(2+PcTsk+ 4m(kTs)+0) + n(k)

where:

FBIH(OlHm) = exp(sem cos(0-00)) ,-11404

To(x) is Bessel function first lained, oreler zero

Iulas = in sexcosu du

smil) ((4.00) pair and;

The noise is a sample of zero mean Gaussian vector N with E[NN] = I I = [n(o)]. n(1-1)]

we have:

I = [rco) ... r(1.1)]+

5m (0) = (sm (0,0) ... sm (1-10)]+

where;

Sm (k, 0) = am (kTs) cos[attfc Ts kt + Am (kTs)+0]

Hm: frimB = (2Hm,0) = (2H) (1-5m(0)) (1-5m(0))

Under Bayesian framework:

with: Posp, are a prior probs, given Cij costs given, do not depend on 8

- > We can consider the Hypotheses:

Calculating FRIH, B(DHM):

$$\Rightarrow \underbrace{\sum_{m}^{T}(\Theta)}_{s_{m}(\Theta)} = \underbrace{\prod_{k \geq 0}^{L} \sum_{k \geq 0} a_{m}^{2}(k \mid s)}_{s \geq 0}$$

$$\Rightarrow \underbrace{\sum_{k \geq 0}^{T}(\Theta)}_{s_{m}(\Theta)} = \underbrace{\prod_{k \geq 0}^{L} \sum_{k \geq 0} a_{m}^{2}(k \mid s)}_{s \geq 0}$$

$$\Rightarrow \underbrace{\sum_{k \geq 0}^{T}(\Theta)}_{s_{m}(\Theta)} = \underbrace{\prod_{k \geq 0}^{L} \sum_{k \geq 0} a_{m}^{2}(k \mid s)}_{s_{m}(\Theta)}$$

- does not depend on O

Substituting;

-s can now average over 0.

$$f_{R|H}(C|Hm) = \frac{1}{(\partial H)^{4/2}} \exp[-\frac{1}{2} \prod_{n} C] \exp[-\frac{1}{2} \prod_{n} C] \exp[-\frac{1}{2} \prod_{n} C]$$

$$Z_{m}(C) = \frac{1}{I_{0}(-2m)} \frac{1}{2^{4} \prod_{n} C} \exp[-\frac{1}{2} \prod_{n} C] \exp[-\frac{1}{2} \prod_{n} C]$$

$$Z_{m}(C) = \frac{1}{I_{0}(-2m)} \frac{1}{2^{4} \prod_{n} C} \exp[-\frac{1}{2} \prod_{n} C] \exp[-\frac{1}{2} \prod_{n} C]$$

where
$$\Theta_{B} = \frac{B_{S} L \Gamma}{B_{C} L \Gamma}$$

$$\frac{I_{o}(\sqrt{B_{c}^{3}(c)} + B_{s}^{3}(c))}{I_{o}(\sqrt{B_{c}^{3}(c)} + B_{s}^{3}(c))}$$

=
$$I_0(V[A_c(\Sigma) + \Omega_m \cos \Theta_0]^2 + [A_s(\Sigma) - \Omega_m \sin(\Theta_0)]^2)$$

 $I_0(-\Omega_m)$

Look of 3 special cases!

For _n=0: non-coherent case (no knowledge of phase)

Zm (I) = Io(VAc2(I) + As2(I))

Delivery of phase)

For 12m + DOO 1 coherent case (known phase)

Use Jocx 2 ex x x 1

Zm (r) = exp[Acr)cos00 - Ascr)sin 00]

Notice: ACC) coso - ASCI) Sing = IT [Sm(0) coso - Sm (17) sin (20)]
= rTSm(0)

-> Zm(r) = exp[rrsm(Oc)]

conclation of received signal with noisels signal sm(Q

-> detection of known signal in noise.

In general CK-Rm coo

-> a combination of the coherent & non-coherent cases

Zm(r)= 10(TAcocr)+Asocr)+22mctsm(BO)+22m2)

Notice weighing is by am.

dishingrish between Gaussians of General mean, correlation

The General Gaussian detection problem

$$Q = \frac{1}{2}(c_{0}^{-1} - c_{1}^{-1})$$

How to analyze error performance in a general way?

-> Use characteristic functions. (of x + 1,0(c) | Hm

Use moment generating Function

Let
$$M_{\times |Hm}(z) = \mathbb{E}\left[e^{2\times |Hm]}_{0} z \in \mathbb{C}\right]$$

Proposition

 $M_{\times |Hm}(j\omega) = \Phi_{\times |Hm}(\omega)$
 $M_{\times |Hm}(z) = \Phi_{\times |Hm}(-jz)$

Exis a small was introduced in order to move the path of integration away from the singularity ==0

Another Method, due to "Inhof"

-o subtety: where to truncate the numerical infinite intiga

or, find a bound which perhaps converges

4.4: Chernoff bounds to detection performance.

theorem 4.1 CMarkov inequality)

let x be a non-negative R.V. $Pr\{x>0\}=1$ Then for any aro we have: $Pr\{x>0\} < \frac{E(x)}{a}$

Proof:

 $Pr\{x>a\} = E[\phi(x)]$ where $\phi_{a,\infty} = \{0, x \in [a, \infty]\}$

and
$$\frac{x}{a} = \left[\begin{array}{c} > 1 \\ > 0 \end{array}\right] \times \left[\begin{array}{c} (a_1, \infty) \\ > 0 \end{array}\right]$$

Consider the general test:

could be likelihood test, log-likelihood test, et e ...

P(H, |HO) = Pr(x>0 |Ho) = Pr(esx > es0 | Ho) s>0 s)

esx>0 - apply Markov's inequality:

P(H, |Ho) { e = 6 [esx | Ho]

= es6 M HIHo(s) Forcel s>0.

Define MxIHo(s) = In MxIHo(s)

the CGF, "comulant Benerating Function"

≽:**3** ⊝: u

Similarly, Prob. of missing:

leads to:

Chernoff Bound

theorem 4.2

Let x be a R.V. with Moment Generaling function M(s)=E[esx] and Complant Generating Function Mx(s)=In Mx(s).

Then, Mxcs) and mxcs) are convex functions.

-> take second derivative Scheck sign.

$$\frac{d^{M}x(s)}{ds} = \frac{d E[e^{sx}]}{ds} = E\left(\frac{de^{sx}}{ds}\right) = E\left(xe^{sx}\right)$$

$$\frac{d^{9}}{ds}M_{x}(s) = \frac{d E[xe^{sx}]}{ds} = E\left(xe^{sx}\right) = E\left(xe^{sx}\right) > 0 \quad \text{everywhere}$$

- Mx(s) is convex U

$$\frac{d}{ds} M_{x}(s) = \frac{1}{M_{x}(s)} = \frac{d M_{x}(s)}{ds}$$

$$\frac{d^{2}}{ds} M_{x}(s) = \frac{M_{x}(s)}{ds} \frac{a^{2}M_{x}(s)}{M_{x}^{2}(s)} - \left(\frac{aM_{x}(s)}{ds}\right)^{2}$$

$$\frac{dM_{x}(s)}{ds} = F^{2}\left[xe^{sx}\right] = F^{2}\left[xe^{sx}\right] + F\left[e^{sx}\right]$$

$$= \frac{a^{2}M_{x}(s)}{ds^{2}} = M_{x}(s)$$

$$\frac{dM_{x}(s)}{ds} = M_{x}(s)$$

$$\frac{dM_{x}(s)}{ds} = M_{x}(s)$$

$$\frac{dM_{x}(s)}{ds} = M_{x}(s)$$

$$\frac{dM_{x}(s)}{ds} = M_{x}(s)$$

Osa P Mx(s) is convex -D-OS+M;(s) is convex. -> On any interval [a,b], -05+Mx(s) has a minimum at 'so=a so=b or \$6:506a -

So the bounds on P(HolHI), P(HIHO) can be made maximum tight in the following way:

P(H,| Ho) < exp[min (-50 + Mx|Ho(5))] P(Ho|H,) < exp[nin (-50 + Mx|H, (5))]

d My Hm (5) = Mx Hm (5)

Two possibilities:

- MxIHm (sm)=0, such that so >0 or s, co

 Then, the maximal tight bounds are;

 P(H,|Ho) < exp[-so MxIHo (so) + MxIHo (so)]

 P(Ho |H,) < exp[-s, MxIH, (si) + MxIH, (si)]
- No such so , S, exist

 then, -30+MxHm(s) achieves a minimum at s=0,

 and the bounds are useless

 (PCH, 1Ho) & exp(0)=1 ...)

? ->

An estimation rule (estimator) is a function Definition 6.1 â(r): Z-2 form Zba

Example 6.1

where we are realizations of field Gaussian RV N(b, 1)
So:

FRIE (ria) = The e-cri-b-aila

Possible estimates of a:

(iii)
$$\hat{a}_i = \underbrace{\frac{\sum_{i \in I} r_i}{\sum_{i \in I} a}}_{(r_i - b)} (r_i - b)$$

(not real-time)

- will have different properties and performances.

Performance Measures

1) Bias: b = E[a(B)-a]

-a First order performance measure.

2) From covaniance methods: c(a(R)]= F/[a(R)-E(a(R))][a(R)-E(a(R))] $\left[C(\hat{a}(R)) \right] = E \left[C(\hat{a}(R) - E(\hat{a}(R))) \right]$ -Da Second order performance measure.

Two general models

O a is considered an unknown non-random parameter vector of a is considered a realization of a random vector; and we know its statistics ("Bayesian Estimation")

6.2 estimation of unknown paratheter

Performance Bounds

let acr) be an unbiased estimator of a, based on the observation c, which is a realization of a random vector c with feig (12), the likelihood function.

The score vectored function is defined as follows:

class test up to heve

Theorem 6.1

softed com such behaved vectored function of 5 and a ofappropriete with 1.

 $E\left[S(E|\underline{a})g^{\dagger}(E,\underline{a})\right] = \frac{\partial}{\partial a} F\left[g^{\dagger}(E,\underline{a}) - E\left(\frac{\partial}{\partial a}g^{\dagger}(E,\underline{a})\right)\right]$

Proof:

$$E[g^{\dagger}(R, \alpha)] = \int_{a}^{b} \left[g^{\dagger}(r, \alpha) f_{R, \alpha}(r, \alpha) dr\right] dr$$

$$= \int_{a}^{b} g^{\dagger}(r, \alpha) f_{A, \alpha}(r, \alpha) dr + \int_{a}^{b} f_{R, \alpha}(r, \alpha) dr$$

$$= \left[\frac{1}{2} g^{\dagger}(R, \alpha)\right] + \int_{\frac{1}{2} I_{\alpha}(r, \alpha)}^{\frac{1}{2} I_{\alpha}(r, \alpha)} \frac{1}{2} f_{R, \alpha}(r, \alpha) dr$$

$$= E\left[\frac{1}{2} g^{\dagger}(R, \alpha)\right] + \left[\frac{1}{2} (R, \alpha) g^{\dagger}(R, \alpha)\right] + \left[\frac{1}{2} (R, \alpha) g^{\dagger}(R, \alpha)\right]$$

$$= E\left[\frac{1}{2} g^{\dagger}(R, \alpha)\right] + E\left[\frac{1}{2} (R, \alpha) g^{\dagger}(R, \alpha)\right]$$

Consequences of theorem 6.1:

@ Let a(R) he an unbiased estimator of a.

Definition.

The covariance matrix of the score function is called the Fisher information matrix ("FIM") denoted by "J."

Definition (Notation)

Let A,B be symmetrical matries of same dimensions.

Then A > B means [A-B] > O xTAx > xTBx

And: A>B means [A-B]>0 × +A×>×+B×

Theorem 6,2: Cramer-Rao

let $\underline{a}(\underline{r})$ be an unbiased estimator for the unknown parameter vector \underline{a} . Let $\underline{c}(\underline{a}(\underline{r}))$ be the covariance of this estimate. Then $\underline{c}(\underline{a}(\underline{R})) \geqslant \underline{J}^{-1}$, \underline{J}^{-1} is assumed to exist. Equality is satisfied if $\underline{a}(\underline{r}) - \underline{a} = \underline{J}^{-1} \underline{s}(\underline{r})\underline{a}$

Prof

[Scrial [a](R)-a] | [E[S(R)a]a[CR)] - E[S(R)a] [a]

= [J's(R)a) [a](R)-a] | = J'

x + E[J's(R)a) [a](R) - a] | x = x + J' x

E[x + J's(R)a) [a](R) - a] | x = x + J' x

[Cauchy - > E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - a] | x = x + J' x

E[x + J's(R)a) - [a](R) - [a](R) - [a](R) - [a](R) - [a](R)

C(Q(E)) > 3-1

equality: when condition holds.

Definition

An unbiased estimator â CE) such that $C[a(E)] = J^{-1}$ is called an efficient estimator. It may or may not exist.

Generalization of the Cramer-Rao Bound: Bhattacharyya class

Refinition

Let g(x) be a scalar function of a vector variable $x = [x_1 ... x_n]$ Then, for any integer k > 0, the k^{th} order gradient $\frac{\partial^k g(x)}{\partial x^k} \triangle \left[\frac{\partial^k g(x)}{\partial x^k}\right] \partial^k g(x)$

$$\frac{3 \times 9(X)}{3 \times 8(X)} \triangleq \left[\frac{3 \times 9(X)}{3 \times 8(X)} \frac{3 \times 9(X)}{3 \times 8(X)} \frac{3 \times 9(X)}{3 \times 8(X)} \right]$$

Provided that the derivatives exist.

Consider the estimation of the M dimensional vector a , based on the n-dimensional observation r, with likelihood function $f_{BIA}(r)$.

Refine the following

Form the MCK+1) dineusional vector:

Consider the covariance matrix of zT:

It can be written in terms of M×M matrices

$$k \geqslant 2 \left[B^{kq} = B^{0k} \right] = E \left[(\hat{a}_{i}(R) - a_{i}) \frac{2^{k} \ln f_{R, la}(R, la)}{\partial a_{i}} \right]$$

$$= \frac{2^{k-1}}{2a^{k-1}} E \left[\hat{a}_{i}(R) \cdot S_{i}(R, la) \right] - a_{i} \cdot \frac{2^{k-1}}{\partial a_{i}} \cdot E \left[S_{i}(R, la) \right]$$

From theorem 6.1:

$$B'' = E\left[\underline{z}'\underline{z}^{\dagger\dagger}\right]$$

$$= E\left[\frac{3 \ln f_{B|A}(R|a)}{3 a}\left(\frac{a \ln f_{B|A}(R|a)}{3 a}\right)^{\dagger}\right]$$

check =
$$J$$
 $C_2 = \begin{bmatrix} Cov(a) & U^T \end{bmatrix} \qquad U^T = \begin{bmatrix} I & [O] & [O] \end{bmatrix} \qquad [O] \end{bmatrix}$
 $k-1 \text{ matrices}$

Define the Schur complement of B in Cz:

B= = covcas - UTB-1U

Denote B'=B' and write it through submatrices of size MxM

BUS ONS = 10 . K GAREK OMY?

Then, B3 = cov(a) - B 11

Note: (2>0 -083>0 -> cov(a) > 8 11

Now, try to relate B" to J.

write: $B = \begin{bmatrix} J & B^{T} \end{bmatrix}$ $B^{T} = \begin{bmatrix} B^{J} \end{bmatrix} J = 3$ to K. $M \times (K-1) M$. $B^{M} = \begin{bmatrix} B^{M} \end{bmatrix} C_{M} = 3$ to K. $(K-1) M \times (K-1) M$. $B^{M} = J^{-1} + J^{-1} B^{T} \begin{bmatrix} B^{M} - B^{T} \end{bmatrix} B^{T} = J^{-1} + J^{-1} B^{T} \begin{bmatrix} B^{M} - B^{T} \end{bmatrix} B^{T} = J^{-1} + J^{-1} B^{T} \begin{bmatrix} B^{M} - B^{T} \end{bmatrix} B^{T} = J^{-1} + J^{-1} B^{T} \begin{bmatrix} B^{M} - B^{T} \end{bmatrix} B^{T} = J^{-1} + J^{-1} B^{T} \begin{bmatrix} B^{M} - B^{T} \end{bmatrix} B^{T} = J^{-1} + J^{-1} B^{T} \begin{bmatrix} B^{M} - B^{T} \end{bmatrix} B^{T} = J^{-1} B^{T} B^{T} B^{T} B^{T} = J^{-1} B^{T} B^{T} B^{T} B^{T} B^{T} = J^{-1} B^{T} B$

0 -2 +7 & 64 -8 -7 &

And the bound as

JS = B1 - B1 J - B1 T -> Schor complement B>0 -> JS>0

Show J'B' (33) B' J' is pos. definite, i.e. bound is tighter:

NOT BILLS X T Y TUSS Y TUSS Y X S O Non may are harde (know)

Notes

- · K=1 generates the framer Ras bound (B" = J-1)
- * K>1, tighter bound
- . If Cramer-Rao is shown tight, J-1817 (J3) 1815-1 = 0. i.e. J1817(J3) 1815-1 = 0 is necessary concention for efficient estimater.

r=a,+azw , estimate a, and az . what are rounds?

Final
$$\frac{1}{2} \ln f_{RIA}(ria) = -1/2 \ln (a)$$

$$\frac{2 \ln f_{RIA}(ria)}{2 a_i} = \frac{1}{a_j a_j} (r-a_i)$$

$$\frac{\partial^{2} \ln f_{RIA}(1)}{\partial a_{i}^{2}} = -\frac{1}{a_{0}^{2}} \frac{\partial^{2} \ln f_{RIA}(1)}{\partial a_{0}^{2}} = \frac{1}{a_{0}^{2}} + \frac{3}{a_{0}^{2}} (r-a_{i})^{2} \frac{\partial^{2} \ln f_{RIA}(1)}{\partial a_{i} \partial a_{0}} = \frac{-3}{a_{0}^{2}} (r-a_{i})^{2} \frac{\partial^{2} \ln f_{RIA}(1)}{\partial a_{i} \partial a_{0}} = \frac{-3}{a_{0}^{2}} (r-a_{i})^{2} \frac{\partial^{2} \ln f_{RIA}(1)}{\partial a_{i} \partial a_{0}} = \frac{-3}{a_{0}^{2}} (r-a_{i})^{2} \frac{\partial^{2} \ln f_{RIA}(1)}{\partial a_{i} \partial a_{0}} = \frac{-3}{a_{0}^{2}} (r-a_{i})^{2} \frac{\partial^{2} \ln f_{RIA}(1)}{\partial a_{i} \partial a_{0}} = \frac{-3}{a_{0}^{2}} (r-a_{i})^{2} \frac{\partial^{2} \ln f_{RIA}(1)}{\partial a_{i} \partial a_{0}} = \frac{-3}{a_{0}^{2}} (r-a_{0})^{2} \frac{\partial^{2} \ln f_{RIA}(1)}{\partial a_{0}^{2} \partial a_{0}} = \frac{-3}{a_{0}^{2}} (r-a_{0})^{2} \frac{\partial^{2} \ln f_{RIA}(1)}{\partial a_{0}^{2} \partial a_{0}^{2}} = \frac{-3}{a_{0}^{2}} (r-a_{0})^{2} \frac{\partial^{2} \ln f_{RIA}(1)}{\partial a_{0}^{2} \partial a_{0}^{2}} = \frac{-3}{a_{0}^{2}} (r-a_{0})^{2} \frac{\partial^{2} \ln f_{RIA}(1)}{\partial a_{0}^{2} \partial a_{0}^{2}} = \frac{-3}{a_{0}^{2}} (r-a_{0})^{2} \frac{\partial^{2} \ln f_{RIA}(1)}{\partial a_{0}^{2} \partial a_{0}^{2}} = \frac{-3}{a_{0}^{2}} (r-a_{0})^{2} \frac{\partial^{2} \ln f_{RIA}(1)}{\partial a_{0}^{2} \partial a_{0}^{2}} = \frac{-3}{a_{0}^{2}} (r-a_{0})^{2} \frac{\partial^{2} \ln f_{RIA}(1)}{\partial a_{0}^{2} \partial a_{0}^{2}} = \frac{-3}{a_{0}^{2}} (r-a_{0})^{2} \frac{\partial^{2} \ln f_{RIA}(1)}{\partial a_{0}^{2} \partial a_{0}^{2}} = \frac{-3}{a_{0}^{2}} (r-a_{0})^{2} \frac{\partial^{2} \ln f_{RIA}(1)}{\partial a_{0}^{2} \partial a_{0}^{2}} = \frac{-3}{a_{0}^{2}} (r-a_{0})^{2} \frac{\partial^{2} \ln f_{RIA}(1)}{\partial a_{0}^{2} \partial a_{0}^{2}} = \frac{-3}{a_{0}^{2}} (r-a_{0})^{2} \frac{\partial^{2} \ln f_{RIA}(1)}{\partial a_{0}^{2} \partial a_{0}^{2}} = \frac{-3}{a_{0}^{2}} (r-a_{0})^{2} \frac{\partial^{2} \ln f_{RIA}(1)}{\partial a_{0}^{2} \partial a_{0}^{2}} = \frac{-3}{a_{0}^{2}} (r-a_{0})^{2} \frac{\partial^{2} \ln f_{RIA}(1)}{\partial a_{0}^{2} \partial a_{0}^{2}} = \frac{-3}{a_{0}^{2}} (r-a_{0})^{2} \frac{\partial^{2} \ln f_{RIA}(1)}{\partial a_{0}^{2} \partial a_{0}^{2}} = \frac{-3}{a_{0}^{2}} (r-a_{0})^{2} \frac{\partial^{2} \ln f_{RIA}(1)}{\partial a_{0}^{2} \partial a_{0}^{2}} = \frac{-3}{a_{0}^{2}} (r-a_{0})^{2} \frac{\partial^{2} \ln f_{RIA}(1)}{\partial a_{0}^{2} \partial a_{0}^{2}} = \frac{-3}{a_{0}^{2}} (r-a_{0})^{2} \frac{\partial^{2} \ln f_{RIA}(1)}{\partial a_{0}^{2} \partial a_{0}^{2}} = \frac{-3}{a_{0}^{2}} (r-a_{0})^{2} \frac{\partial^{2} \ln f_{RIA}(1)}{\partial a_{0}^{2} \partial a_{0}^{2}} = \frac{-3}{a_{0}^{2}} (r-a_{0})^{2} \frac{\partial^{2} \ln f_{RIA}(1)}{\partial a_{0}^{2} \partial a$$

anda,

$$J = -E \left[\frac{2}{2\alpha} \left(\frac{2 \ln f_{RIA}}{2\alpha} \left(1 \right) \right)^{1} \right]$$

$$= \mathbb{E} \left[\begin{array}{c|c} \frac{1}{a_3^2} & \frac{2}{a_3^3} (r-a_1) \\ \frac{2}{a_3^3} (r-a_1) & \frac{-1}{a_2^3} + \frac{3}{a_3^4} (r-a_1) 0 \end{array} \right]$$

$$= \begin{bmatrix} \frac{1}{q_3^2} & 0 \\ 0 & \frac{\Delta}{q_3^2} \end{bmatrix}$$

Maximum Likelihood (ML) Estimation

When considered as a function of a, then fair ([12] is called the Likelihood function (i.e. fixed c=observed val

The likelihood estimate is:

âmico = argmax feix (rle)

Equivalently:

loglikelihood function

If for (512) is continuous in a, then a necessary condition on an (1) is:

(assuming interior point)

(b also checkboundaries

b sometimes no boundary

ice. scrland-0

Note : similar expressions for discrete case.

· Note that when r is fixed, the Libeliance function can be continuous in a.

Theorem 6.3

If an efficient estimator exists, then it must be the maximum likelihood estimator.

Proof

For an ML estimator, we have $3(E|\hat{a}_{ML})=0$.

Assume that we have an efficient estimator à:

Asymptotic Behavior of the ML estimator

let B's i=0,1,... l-1 be i.i.d observations, each with RDF fcc12).

We want to form a maximum likelihood estimator of a based on realizations C^i of B^i , i=0,...

Form the likelihood function:

Log likelihood function:

The score function:

$$\Rightarrow \underbrace{SCC_{3}...r_{e-1}|a\rangle} = -\frac{2}{2a}\underbrace{SCC_{3}...r_{e-1}|a\rangle}(\widehat{a}_{m}-\underline{a})$$

$$= -\underbrace{\Sigma}_{i=0}\underbrace{2a}\underbrace{SCC_{3}...r_{e-1}|a\rangle}(\widehat{a}_{m}-\underline{a})$$

Law of Large numbers:

To summarize,

Proven result: Properties of ame as L-700

- (i) âme ~ N(a, 15-1)
- (ii) âm is asymptotically unbiased (E(am) 72)
- (iii) and is asymptotically efficient (covance) >0)
- (iv) âme is asymptotically consistent (i.e. tends to adeterministic value: âme > a which is the value of the parameter).

Ex/6.3 : Additive noise model.

w is a sample of an N. dimensional random rector with pdf fucu)

Then.

R= E(wwr)

Ex.6.4

Let Ro. .. R. be independent Bernovilli RV's with Unknown parameter a, i.e. Pr[R:=1]=a, Pr[R:=0]=1-a, orax1

Find ML estimator and cramer-Rao bound. (8 compare)
[Miesh mator]

[PR:14(T:1a)=a"(1-a)", i=0, ... N-1

$$SCM(\hat{a}) = 0$$
 -D $(1-\hat{a}_{ML}) = \hat{a}_{ML} = \hat{a}_$

$$- E(\frac{\partial}{\partial a}S(\Gamma(\alpha)) = \frac{N}{\alpha} + \frac{N}{\Gamma \alpha} = \frac{N}{\alpha(\Gamma \alpha)}$$

Compare Mi estimate and cramer- Rao Bound

$$E[(a^{1}-a)^{3}] = \frac{1}{N^{2}} E[(\frac{N}{2}(R_{1}-a))^{3}]$$

$$= \frac{1}{N} E[(R_{1}-a)^{3}]$$

$$= \frac{1}{N} [a(1-a)^{2} + (1-a)a^{2}]$$

6.3 Estimation of random variables - Bayes framework

- · Assume that A is a K-dimensional random vector with joint PDF fa(a),
- elet's be the N-dimensional observation which is a realization of the random vector R with conditional PDF feld ([12]).
- · let acc) be an estimator of a based on c.
- · The error vector is & = alcr) -a
- Perine a cost function c(E) which is a scalar, non-negative function of E
- ER[C(E)|A=a] = SC(E) frig(ria)dr

Average cost:

= S{(c(E) fRIA (Clasde) faces de

= SSC(E) fgAcc,addrda

= S{ scres fair cares das fe de

= SE (cce)|R=r]fR(c)ar fa(c)

a posterior cost given an observation c

= [c(gru-a) file(alt) q

```
theorem 6.4
```

Let cce) be the Bayes estimation cost function.

If:

(i)
$$C(\xi) = C(-\xi)$$

(1) C(be+(1-b) &) & bc(E) + (1-b) C(A) (convex)

(11) PAIR [a+E(A|I)] = PAIR (E(AID)-a) (content at condition)

Then, the estimator minimizing à is the conditional mean A=E[A[].

Proof

non-negative so

C= E[C(Q(E)-A)] = SE[C(Q(E)-A)][] frcsar min Z = min E[C(Q(E)-A)[] ([Fred!")

let z = a - F[AIC]:

-> E[C(&(B)-A) [] = [C(&-E[A[C]-Z) faig(Z+E[A[C])

With 2 =- 2:

-> F[c(a(R)-A) | r]- Sc(a-F[A|r]+z") FAIR (E(AIr)-z') dz"

Using (iii):

-> [[((((() - A) | r) = [((() - F [(A | r)) + Z") f_A | R (Z" + E (() | r)) a Z")

Using Li):

-> E [C(@(E)-4) |[]- J. C(-@+ E[A|[]-2)) falk (2"+ E[A|[]) az" = SC(-@+F[A|r]+z) falk(2+ E[A|[]) dz

Deciti) = SCEQ+E(AIM+2) PAIR(Z+F[AIM]) dz @

Averaging 080

(which are equal) -> E[C(a(R)-A)|[]= = [C(a-F(A)C]+2)+(-a+E(A)C)+2)] file(2+E(A)C)

(Dec(ti) > [C(2)fA|R(2+E(A)C)) d2

with equality if a = E[AID]

```
Theorem 6.5
```

The estimator that minimizes the mean-square error is the conditional mean E[AIP] (no concutions)

Proof

 $\overline{C} = E[(a(R)-A)^{\dagger}(a(R)-A)] = \int \{E[(a(C)-A)^{\dagger}(a(R)-A)|_{C}\} f_{E}(R) dZ$ minimize $\overline{C} = \min_{C} E[(a(C)-A)^{\dagger}(a(R)-A)|_{C}]$ $= E[(a(C)-A)^{\dagger}(a(C)-A)|_{C}] = \int (a(C)-a)^{\dagger}(a(C)-a)^{\dagger}(a(C)-a) f_{A|_{C}}(a(C)-a)$

-Das E[(d(1)-A)+(d(1)-A)] =-2 (d(1)-a) fair (a11) da =0

-> à Stair(air)da= sa fair(air)da

F(4101

+a = E(AID)

(A)

Tr[M(RA°R3 +0°R)MT -ARMT-MRA]

= tr[M(RA°R] + 0° tr(MRMT)-2tr[ARMT] - Tr[MRA]

= tr[(A°R)(MR)] + 0° tr(MRMT)-2tr[ARMT] - MRMT

= tr[AR R*MT + 0° MRMT - 2ARMT]

= tr[(AR° +0° MR - 2AR)MT] = tr[(AR° 2AR)MT + 0° MRMT]

= tr[(AR° +0° MR - 2AR)MT] = tr[(AR° 2AR)MT + 0° MRMT]

[] [a e = [= tr [(AR+0°M-2A) RMT] = = tr[cmT + MBMT]

[c] [ab][t] [a+d] = tr[(R-DI)A+ODM]RMT] [c] [c] [m] [m] mil

Te f] [ab] [8] = [] ++ [(c+02M) RMT] trace of first:

[] a =+r[(strong)de = 2 (c1, m1, + ... + c1, m1, m) + (c0, m2, +...+

BMT Cx(t, w) which suitisfy

(MB) M 7.2 Mercer with the same notation as in theorem 7.1, we have the BIMIM FORD CX(t, U) = & \lambda; \phi_c(t) \phi_c(u) \lambda;

Similar to eigenvalue decomposition of matrices A + A