

CONVOLUTIONAL NEURAL NETWORKS - I

Sumohana S. Channappayya

OUTLINE

- Motivation
- Building blocks
 - Convolutional layer/non-linearity layer
 - Pooling layer
 - Fully connected layer
- Training
 - Loss function
 - Gradient descent and learning rate
 - Data handling and stopping condition
- Generalisation

MOTIVATION

- Human Visual System (HVS)
- Dealing with 2D data
- Parameter reduction

- Linear component of the network
- Parameter sharing
- Local connectivity

BUILDING BLOCK: NON-LINEARITY LAYER

- Fundamental to NN
 - Allows for modelling complex input/output relations
 - Inspired by the neuron
 - Examples: sigmoid, tanh, ReLU etc.
 - Also called Activation Layer

BUILDING BLOCK: POOLING LAYER

- Pooling of output
 - Dimensionality reduction
 - Control overfitting
 - Invariant to small translation
 - Examples: max, 12 norm, average etc.

BUILDING BLOCK: FULLY CONNECTED LAYER Fully connected layers

- Essentially, a regular multilayer perceptron
- · Input is a vector formed by flattening pooling layer output
- · Output is vector whose size equals number of classes

TRAINING: LOSS FUNCTION

- Standard loss functions such as softmax or cross entropy
- Loss functions are non-convex leading to locally optimal solutions

TRAINING: GRADIENT DESCENT BASED METHODS

- Several optimisation methods can be applied:
 - Gradient descent, Stochastic gradient descent
 - Momentum, Nesterov momentum
 - AdaGrad, RMSProp, Adam
- Stopping condition based on training/validation error
- Choice of initialisation important
- · Backpropagation of forward loss used for gradient computation

TRAINING: PARAMETERS AND DATA

- Similar rules as in neural network training:
 - Weights typically initialised randomly
 - · Pre-trained weights also used commonly
 - Feed data in small batches (mini batches)
 - Epoch is one forward and backward pass of all training data points

GENERALISATION

- Any model's performance is measured on previously unseen inputs
- · This is also known as generalisation
- Typically, the dataset is divided into training, validation and test set
- · Generalisation performance is reported on the test set

SUMMARY

- CNNs form the fundamental building blocks of modern machine learning models
- Allow for feature learning
- Extremely successful in solving several machine learning problems: image recognition, video analysis, natural language processing, drug discovery, visual system modelling etc.
- Reason for the deep learning revolution

REFERENCES

- https://www.deeplearningbook.org
- https://cs23 In.github.io/convolutional-networks/