MATH 216A HOMEWORK 7

ARPON RAKSIT

original: November 10, 2016 updated: November 11, 2016

§1 Group actions on schemes

Part (i)

Let *G* be a (discrete) group.

- 1.1 Let BG denote the category with one object whose automorphism group is G (and with no other objects or morphisms). Let $\mathscr C$ be a category, and suppose given a left-action of G on an object $C \in \mathscr C$, i.e. a group homomorphism $G \longrightarrow \operatorname{Aut}(C)$. (All of the following goes through for right-actions as well, by replacing G with G^{op} .) Observe that this data is equivalent to a functor $\alpha \colon BG \longrightarrow \mathscr C$ taking the unique object of BG to C. We let $\alpha_g \colon C \longrightarrow C$ denote the action of $g \in G$ on C.
- I.I.I DEFINITION In this generality, the *object of invariants* of this action, denoted C^G , is defined to be the limit of this functor α (if it exists), and the *quotient object* of this action, denoted C_G , is defined to be the colimit of this functor α (if it exists).

Unwrapping the definitions of limit and colimit, C^G is the universal object of $\mathscr E$ equipped with a map $\iota\colon C^G \longrightarrow C$ satisfying $\alpha_g \iota = \iota$ for all $g \in G$, and C_G is the universal object of $\mathscr E$ equipped with a map $\pi\colon C \longrightarrow C_G$ satisfying $\pi\alpha_g = \pi$ for all $g \in G$.

1.2 Let (Z, \mathcal{O}_Z) be a ringed space with a right-action of G (in the category of ringed spaces). That is, we have for each $g \in G$ an automorphism $\alpha_g \colon Z \xrightarrow{\sim} Z$ and an isomorphism $\phi_g \colon \mathcal{O}_Z \xrightarrow{\sim} (\alpha_g)_* \mathcal{O}_Z$, and for pairs $g, h \in G$ we have $\alpha_{gh} = \alpha_h \alpha_g$ and a commutative diagram

I.2.I
$$\begin{array}{ccc}
\mathscr{O}_{Z} & \xrightarrow{\phi_{h}} & (\alpha_{h})_{*}\mathscr{O}_{Z} \\
& & \downarrow^{(\alpha_{h})_{*}(\phi_{g})} \\
& (\alpha_{gh})_{*}\mathscr{O}_{Z} & \xrightarrow{\sim} & (\alpha_{h})_{*}(\alpha_{g})_{*}\mathscr{O}_{Z}.
\end{array}$$

1.2.2 Construction — Now let Z/G be a the quotient space, $\pi\colon Z\to Z/G$ the quotient map. By definition we have that $\pi\alpha_g=\pi$ for each $g\in G$, and hence pushing forward the maps ϕ_g in π gives us automorphisms

$$\psi_g := \pi_*(\phi_g) : \pi_*(\mathcal{O}_Z) \xrightarrow{\sim} \pi_*(\alpha_g)_* \mathcal{O}_Z \simeq \pi_* \mathcal{O}_Z;$$

and (1.2.1) implies that $\psi_{gh} = \psi_g \psi_h$ for $g,h \in G$, so these automorphisms determine a left-action of G on $\pi_*(\mathcal{O}_Z)$ in the category of sheaves of rings on Z/G.

Define $\mathcal{O}_{Z/G} := (\pi_* \mathcal{O}_Z)^G$ to be the invariants of this action (in the category of sheaves of rings on Z/G (which admits all limits), as defined in (I.I.I)). There is by definition a

canonical map $\iota \colon \mathcal{O}_{Z/G} \longrightarrow \pi_* \mathcal{O}_Z$. Together with the quotient map this gives us a map of ringed spaces $(\pi, \iota) \colon (Z, \mathcal{O}_Z) \longrightarrow (Z/G, \mathcal{O}_{Z/G})$.

I.2.3 Lemma — The map $\iota \colon \mathcal{O}_{Z/G} \longrightarrow \pi_* \mathcal{O}_Z$ can be identified with the inclusion of the presheaf of G-invariant sections of $\pi_* \mathcal{O}_Z$.

PROOF — This follows from the facts that the forgetful functors from

- ► the category of sheaves of sets on a space to the category of presheaves of sets on that space,
- ▶ and the category of rings to the category of sets

both preserve limits.

1.2.4 Proposition — The map (π, ι) : $(Z, \mathcal{O}_Z) \to (Z/G, \mathcal{O}_{Z/G})$ exhibits $(Z/G, \mathcal{O}_{Z/G})$ as the quotient object $(Z, \mathcal{O}_Z)_G$ in the category of ringed spaces.

PROOF — Let $(Z', \mathcal{O}_{Z'})$ be any ringed space. A map of ringed spaces $(Z/G, \mathcal{O}_{Z/G}) \to (Z', \mathcal{O}_{Z'})$ is given by a map of spaces $\rho \colon Z/G \to Z'$ and a map of sheaves of rings $\theta \colon \mathcal{O}_{Z'} \to \rho_* \mathcal{O}_{Z/G}$.

The quotient space Z/G is a quotient object in the category of topological spaces, so giving ρ is equivalent to giving the map $\widetilde{\rho} := \rho \pi \colon Z \longrightarrow Z'$ satisfying $\widetilde{\rho} \alpha_g = \widetilde{\rho}$ for $g \in G$.

Since ρ_* preserves limits (it is a right adjoint) and $\mathcal{O}_{Z/G}$ is defined to be the invariants $(\pi_*\mathcal{O}_Z)^G$, we have that $\rho_*(\mathcal{O}_{Z/G})$ is the invariants $(\rho_*\pi_*\mathcal{O}_Z)^G$ of the action given by the automorphisms $\rho_*(\gamma_g)$. Thus giving the map θ is equivalent to giving the map $\widetilde{\theta} := \rho_*(\iota)\theta$ satisfying $\rho_*(\gamma_g)\widetilde{\theta} = \widetilde{\theta}$. But now γ_g was defined to be $\pi_*(\phi_g)$, so we can rewrite this condition as follows:

$$\widetilde{\theta} = \rho_* \pi_* (\phi_g) = \widetilde{\rho}_* (\phi_g) = \widetilde{\rho}_* (\alpha_g)_* (\phi_g).$$

The above demonstrates that giving the map of ringed spaces (ρ,θ) : $(Z/G,\mathcal{O}_{Z/G}) \to (Z',\mathcal{O}_{Z'})$ is equivalent to giving the map of ringed spaces $(\widetilde{\rho},\widetilde{\theta})$: $(Z,\mathcal{O}_Z) \to (Z',\mathcal{O}_{Z'})$ satisfying $(\widetilde{\rho},\widetilde{\theta})(\alpha_g,\phi_g)=(\widetilde{\rho},\widetilde{\theta})$ for all $g\in G$. This proves the claim.

I.2.5 Lemma — Let $U \subseteq Z$ be a G-stable open subset, i.e. an open subset with $\alpha_g(U) = U$ for all $g \in G$, and let $\mathcal{O}_U := \mathcal{O}_Z|_U$. Then the action of G on (Z,\mathcal{O}_Z) restricts to one on (U,\mathcal{O}_U) . And by definition of the quotient topology, $U/G = \pi(U) \subseteq Z/G$ is open. In fact, $(U/G,\mathcal{O}_{Z/G}|_U)$ is the quotient of (U,\mathcal{O}_U) by G.

PROOF — It follows easily from (1.2.3) that our construction above behaves well with restricting to open subsets. \Box

Part (ii)

For the remainder we (crucially) assume *G* is finite.

1.3 Suppose given a ring A with a left-action of G. This is equivalent to a right-action of G on the affine scheme $X := \operatorname{Spec}(A)$. Let A^G denote the ring of invariants and $Y := \operatorname{Spec}(A^G)$. Let $\pi \colon X \longrightarrow Y$ be the map of schemes induced by the inclusion $A^G \hookrightarrow A$.

1.3.1 Lemma — The inclusion $A^G \hookrightarrow A$ is an integral extension of rings.

PROOF — Any $a \in A$ is a root of the monic polynomial $\prod_{g \in G} (t - ga) \in A^G[t]$.

1.3.2 Lemma — On underlying topological spaces, the map $\pi: X \longrightarrow Y$ is G-invariant, hence factors through the quotient map $X \longrightarrow X/G$. Moreover, the resulting map $X/G \longrightarrow Y$ is a homeomorphism.

PROOF — It follows from (I.3.I) that π is surjective and closed, so it suffices to show that π is G-invariant and that G acts transitively on the fibers of π .

We first show π is G-invariant. This amounts to showing that for any $\mathfrak{p} \in \operatorname{Spec}(A)$ and $g \in G$ we have $\mathfrak{p} \cap A^G = (g\mathfrak{p}) \cap A^G$. This follows from the fact that $ga \in A^G \iff a \in A^G$ for any $a \in A$ and $g \in G$, which is straightforward to check.

We now show that G acts transitively on the fibers of π . This amounts to showing that if $\mathfrak{p}, \mathfrak{q} \in \operatorname{Spec} A$ satisfy $\mathfrak{p} \cap A^G = \mathfrak{q} \cap A^G$, then $\mathfrak{p} = g\mathfrak{q}$ for some $g \in G$. We first claim that in this situation we must have $\mathfrak{p} \subseteq g\mathfrak{q}$ for some $g \in G$. For any $a \in \mathfrak{p}$,

$$\prod_{g \in G} (ga) \in \mathfrak{p} \cap A^G = \mathfrak{q} \cap A^G,$$

so since \mathfrak{q} is prime we must have $ga \in \mathfrak{q}$ for some $g \in G$. Thus $\mathfrak{p} \subseteq \bigcup_{g \in G} g\mathfrak{q}$, and now by prime avoidance we get $\mathfrak{p} \subseteq g\mathfrak{q}$ for some $g \in G$, as claimed.

Symmetrically, we may find $h \in G$ such that $\mathfrak{q} \subseteq h\mathfrak{p}$. We then have $\mathfrak{p} \subseteq g\mathfrak{q} \subseteq gh\mathfrak{p}$. Iterating this statement, we get

$$\mathfrak{p} \subseteq gh\mathfrak{p} \subseteq (gh)^2\mathfrak{p} \subseteq \cdots \subseteq (gh)^n\mathfrak{p} = \mathfrak{p}$$

where n is the order of gh in G. We see that all these containments must be equalities, and then deduce the containment $\mathfrak{p} \subseteq g\mathfrak{q}$ must be an equality, finishing the proof. \square

I.3.3 LEMMA — Let $A^G \to B$ be a flat ring map. Let $B' := A \otimes_{A^G} B$. Then with G acting on B' via its action on A, the map $B \to B'$ identifies B with the G-invariants $(B')^G$.

PROOF — Forming invariants $(-)^G$ is a finite limit and flat base change commutes with finite limits.

1.3.4 Proposition — The map $\pi: X \to Y$ exhibits Y as the quotient ringed space X/G.

PROOF — We showed in (1.3.2) that the underlying space of Y can be identified with the quotient space X/G. From our construction (1.2) it now suffices to show that the map $\mathcal{O}_Y \longrightarrow \pi_* \mathcal{O}_X$ identifies \mathcal{O}_Y with the sheaf of invariants $(\pi_* \mathcal{O}_X)^G$. We just need to check this on sections over the base of distinguished affines Y_f for $f \in A^G$. Specifically, we need to check that the map

$$(A^G)_f \simeq \Gamma(Y_f,\mathcal{O}_Y) \longrightarrow \Gamma(X_f,\mathcal{O}_X) \simeq A_f$$

is the inclusion of the *G*-invariants. This is an application of (1.3.3), taking *B* to be $(A^G)_f$.

Part (iii)

Now let *X* be any scheme.

- 1.4 Lemma Suppose *X* has the property that any finite subset has an open affine neighborhood. Then any open subscheme of *X* has this property.
 - PROOF Let $U \subseteq X$ be an open subscheme, and $E \subseteq U$ a finite subset. Replacing X with an open affine neighborhood of E in X (and U with its intersection of this neighborhood), we may assume X is an affine scheme $\operatorname{Spec}(A)$. Then $X \setminus U = V(I)$ for some ideal I of A and $E = \{\mathfrak{p}_1, \ldots, \mathfrak{p}_n\}$. It suffices to find a distinguished affine D(f) contained in U and containing E, i.e. to find $f \in A$ such that $f \in I$ and $f \notin \mathfrak{p}_1, \ldots, \mathfrak{p}_n$. This can be arranged by prime avoidance, since we know $I \not\subseteq \mathfrak{p}_1, \ldots, \mathfrak{p}_n$, as $E \cap V(I) = \emptyset$. \square
- 1.5 Suppose given a right G-action on our scheme X. Let X/G denote the quotient ringed space.
- I.5.I LEMMA Let $x \in X$. Suppose the G-orbit E of X has an open affine neighborhood. Then x (and hence E) has a G-stable open affine neighborhood $U \subseteq X$.
- 1.5.2 Proposition The following are equivalent:
 - (a) The ringed space X/G is a scheme and the quotient map $\pi: X \longrightarrow X/G$ is affine.
 - (b) The orbit of any point $x \in X$ has an open affine neighborhood in X.

Part (iv)

We now shift to the relative situation.

- 1.6 Let *S* be a scheme and *X* be an *S*-scheme. Suppose given a right *G*-action on *X* (in the category of *S*-schemes).
- 1.6.1 Assumption Assume all finite subsets of X lie in an open affine of X. Then by (1.5.2), X/G is a scheme an $\pi\colon X\longrightarrow X/G$ is affine. Note that since the G-action on X is via morphisms over S, the structure map $X\longrightarrow S$ is G-invariant, and hence factors through the quotient π to give a map $X/G\longrightarrow S$. Thus we may canonically view X/G as an S-scheme and π as a map over S.
- 1.6.2 Lemma Suppose X is finite type over S. Then the quotient $\pi: X \longrightarrow X/G$ is a finite map.

PROOF — By (1.6.1) we know π is affine, so it's quasicompact. Thus X being finite type over S implies that π is finite type (Hartshorne exercise II.3.13(f)). Since finite is equivalent to finite type and integral, it now suffices to show π is integral.

Moreover π is integral by (1.3.1).	Г	\neg
violeover it is integral by (1.3.1).	L	

Part (v)

We continue in the setup of (1.6).

- 1.7 Let *S'* be another *S*-scheme, and define $X' := X \times_S S'$.
- I.7.I Construction By functoriality of the fiber product, the action of G on X via S-morphisms determines an action of G on X' via S'-morphisms. Namely, the automorphism $g: X \longrightarrow X$ over S gives us an automorphism $(g, \mathrm{id}_{S'}): X \times_S S' \longrightarrow X \times_S S'$ over S'.

Observe that since any G-orbit of X lies in an open affine of X and lies over a single point of S, the same holds for X' over S', and hence X'/G is a scheme over S' with affine quotient map $\pi': X' \longrightarrow X'/G$.

Composing the projection $X' \to X$ with the quotient $X \to X/G$, we get a G-invariant map of S-schemes $X' \to X/G$, which factors uniquely as a map of S'-schemes $X'/G \to X/G$. By the universal property of base change, this determines a canonical map $\rho: X'/G \to X/G \times_S S'$.

1.7.2 Proposition — Suppose S' is flat over S. Then the map $\rho: X'/G \to X/G \times_S S'$ is an isomorphism.

PROOF — Being an isomorphism is local on the target, so we can reduce to the case where X, S, S' (and hence X') are affine, as follows.

Let $p \in X/G \times_S S'$. Let $x \in X$ be a representative of the projection of p to X/G; let s' be the projection of p to S'; let $s \in S$ be the image of p in the base. Let $V \subseteq S$ be an open affine neighborhood of s. Since $\sigma \colon X \longrightarrow S$ is G-invariant, $\sigma^{-1}(V)$ is a G-stable open neighborhood of s; applying our assumption (1.6.1) and (1.5.1, 1.4), we may find a G-stable open affine neighborhood G of G be any open affine neighborhood of G mapping to G in G. Set G in G is a G-stable open affine neighborhood of G mapping to G in G

By definition of ρ we have $\rho^{-1}(U/G \times_V V') = \pi'(U')$. And by definition of the G-action on $X' = X \times_S S'$, the open subscheme U' is G-stable, so by (1.2.5) we have $\rho^{-1}(U/G \times_V V') \simeq U'/G$. Thus the restriction of the map ρ to the open $U/G \times_V V'$ of the target is given by analagous map $U'/G \longrightarrow U/G \times_V V'$ with X, X', S, S' replaced by U, U', V, V' all affine, giving the desired reduction.

Finally, the case where everything is affine was proved in (1.3.3).

1.7.3 PROPOSITION — Suppose $S = \operatorname{Spec}(k)$ for k a field, and X is finite type over k (and satisfying (1.6.1), so e.g. X is quasi-projective over k). Let K/k be an algebraically closed extension. Then there is a natural bijection $X(K)/G \simeq (X/G)(K)$.

PROOF — The quotient map $\pi: X \to X/G$ induces a map $X(K) \to (X/G)(K)$, and since π is G-invariant this factors through a map $X(K)/G \to (X/G)(K)$. We claim this is bijective. By (1.7.2) we may base-change from k to K and hence assume k = K is algebraically closed. Note also that by hypothesis X is finite type, and by part (iv) this implies X/G is finite type.

In particular, now K-points of X and X/G are equivalently closed points of the schemes. Since $\pi\colon X\to X/G$ is a surjective map of finite type schemes over a field, it will also be surjective on closed points, so $X(K)/G\to (X/G)(K)$ is surjective. And to show injectivity we just need that G acts transitively on the fibers of $X(K)\to (X/G)(K)$, but now this follows immediately from the fact that G acts transitively on the fibers of $\pi\colon X\to X/G$.