Circuitos Digitales II

introducción al codiseño SW/HW

Ferney Alberto Beltrán Molina

Febrero 2015

Contacto

Nombre: Ferney Alberto Beltrán Molina, Ing, MSc, ...

Email: fabeltranm@unal.edu.co

: ferney.beltran@urjc.es

Índice

- El Rendimiento
- 2 ejemplo el procesador J1
- 3 ejemplo Arquitectura perifericos J1
- 4 Plan del Producto/ Proyecto

Clase anterior Resumen

el Rendimiento depende de.

- Ciclo de reloj: (Frecuencia), Tecnología HW.
- Ciclo de reloj por instrucción: Arquitectura.
- Número de instrucciones: compiladores algoritmos.

$$CPUTime = \frac{Instructions}{Program} \times \frac{Clock\ cycles}{Instruction} \times \frac{Seconds}{Clock\ cycle}$$

 $Power = Capacitive load * Voltage^2 * Frequency$

Recordando

Hardware Software Interface

Ejemplos: MIPS, Intel IA32 (x86), Sun SPARC, PowerPC, IBM 390, Intel IA64

Hardware Software Interface

Ciclo de instrucción

- Buscar la instrucción en la memoria principal
- Decodificar la instrucción
- Ejecutar la instrucción
- Almacenar o guardar resultados

Ciclo de instrucción

- t1: Memory address Register (MAR) ← PC
- t2: Memory Buffer Register (MBR) ← Memoria
 t2: Program Counter (PC) ← PC+1
- t3: Instruction Register (IR) ← MBR

Índice

- El Rendimiento
- 2 ejemplo el procesador J1
- 3 ejemplo Arquitectura perifericos J1
- Plan del Producto/ Proyecto

J1 CPU

J1 CPU escritura

Escribir los datos 0x0005 en la dirección 0x6700, 0x0003 en la 0x6702 y 0x0001 en la 0x6704

J1 CPU leer

Leer los datos de las direcciones 0x6706, 0x6708 y la 0x670A

J1 CPU leer

Almacenamiento por bytes

0x6700 0005		0x6701 00	0x6700 05
0x6702 00003		0x6703 00	0x6702 03
0x6704 0001		0x6705 00	0x6704 01
0x6706 0001		0x6707 00	0x6706 01
0x6708 0000		0x6709 00	0x6708 00
0x670A 000F		0x670B 00	0x670A 0F

¿Cómo se almacena si el bus es de 32 bits? ¿Cuántos bytes se reservan?

Índice

- El Rendimiento
- 2 ejemplo el procesador J1
- 3 ejemplo Arquitectura perifericos J1
- 4 Plan del Producto/ Proyecto

Mapa de memoria Multiplicador

Diagrama de bloques Multiplicador

Lectura

Escritura

Diagrama de Bloques Divisor

Interfaz basada en memoria

Índice

- El Rendimiento
- 2 ejemplo el procesador J1
- 3 ejemplo Arquitectura perifericos J1
- 4 Plan del Producto/ Proyecto

Oportunidad

- Concepto de la innovación
- ¿Qué problema pretende solucionar?
- ¿De dónde viene la idea?
- ¿Existen productos similares?
- ¿Cuál es el valor del producto?
- Etapas de desarrollo.
- ¿Qué alianzas son necesarias?

PREGUNTAS