

RADIOPROPAGACIÓN Y ANTENAS EL72-EL88

PRIMERA PRACTICA CALIFICADA (PC1-P3) CICLO 2024-02

SECCIÓN : EL88

PROFESOR: Ing. Alfredo Rodríguez

DURACIÓN: 30 Minutos.

NOTA : Utilizar las separatas y las herramientas que considere necesarias

Alumno (Apellidos y nombre): Arenas Romero, Carlos Sebastian

Indicaciones:

Publicar el archivo agregando su apellido y nombre

- Tiene 30 minutos para resolver el problema y 05 minutos para publicar la solución en el AV, las respuestas deben ser justificadas y enmarcadas adecuadamente para su calificación.
- Pasada el tiempo del examen se descontará un punto por cada minuto de retraso.
- Publicar a tiempo para evitar los descuentos de los puntos.

Pregunta 03 (4 Puntos):

Un sistema de radio-propagación de tierra plana con una distancia entre el transmisor y el receptor de 11Km en tipo de suelo moderadamente húmedo (B), trabaja con una portadora con frecuencia f=20Mhz, con polarización vertical e incidencia casi rasante. La altura de la antena de transmisión es de 15 metros y la altura de la antena de recepción es de 35 metros, la potencia radiada por la fuente (PRA) es de 15W.

Para tener en cuenta la onda de superficie existe un método alternativo para incluir la atenuación A. Determine:

3.1 La impedancia característica del suelo en Modulo y en ángulo (1.5).

Velocidad de la luz=	300000000			
f=	20000000			
Er=	30			
0=	0.01			
Ψ=	77.5925	1.3542446	(radianes)	
Lambda=	15			
e0=	30-9j			
cos(Ψ)=	0.214863171			
cos(Ψ)2=	0.046166182			
e0-cos(Ψ)2=	29.9538338175	634-9j		
Raíz(e0-cos(Ψ)2 =	5.53310658556	968-0.813286	339311804j	
Z=	0.17666949502	26398+0.02589	13038641927j	

3.2 El coeficiente de reflexión en modulo y en ángulo (1)

Velocidad de la luz=	300000000		
f=	20000000		
Er=	30		
0=	0.01		
Ψ=	77.5925	1.3542446	(radianes)
Lambda=	15		
e0=	30-9j		

sen(Ψ)=	0.976644161			
e0*sen(Ψ)=	29.2993248353	3443-8.789797	4506033j	
arriba=	23.7662182497	7746-7.976511	1112915j	
abajo=	34.8324314209	914-9.6030837	899151j	
				Módulo
Rv=	0.69277836105	50399-0.03800	2011581933j	Rv= 0.693
Beta=	-0.054799581			
Beta en sexag=	-3.13978472	Beta=3°	Ángulo	

3.3 Las perdidas básicas de propagación (1.5)

	1.2. Pérdidas básicas	de propagación	
	ht=	15	
	hr=	35	6597.34457
	distancia=	11	165
	lambda=	15	
	Δ=	39.9839065	
	Beta=	3.141592654	
	R=	0.693	
	4pid/lambda=	9.215338451	
	(4pid/lambda)^2=	84.92246276	
	R^2=	0.480249	
	(trianguo+beta)=	43.12549915	
	cos(trianguo+beta)=	0.654860734	
2*R	R*cos(trianguo+beta)=	0.907636977	
	todo denominador=	2.387885977	
ra	iz todo denominador=	1.545278608	
	lb=	54.95608514	