SEMINARUL 2 DE PROGRAMARE LOGICA

Claudia Mureşan

Ignorati diferenta dintre literele drepte si literele italice din acest document!

Sa consideram urmatorul modul CafeObj:

```
\begin{split} & \bmod! \  \, \text{NATF} \big\{ \\ & [\text{Nat}] \\ & \text{op } 0: - > \text{Nat} \\ & \text{ops s } f: \text{Nat} - > \text{Nat} \\ & \text{op } \_<\_: \text{Nat Nat} - > \text{Bool} \\ & \text{vars } X \ Y: \text{Nat} \\ & \text{eq } 0 < \text{s}(X) = \text{true} \ . \\ & \text{eq } \text{s}(X) < 0 = \text{false} \ . \\ & \text{eq } \text{s}(X) < \text{s}(Y) = X < Y \ . \\ & \text{eq } X < X = \text{false} \ . \\ & \text{eq } f(0) = \text{s}(0) \ . \\ & \text{ceq } f(X) = \text{s}(\text{s}(X)) \text{ if } 0 < X \ . \\ & \big\} \end{split}
```

Desigur, ultima ecuatie din specificatia de mai sus putea fi scrisa ca ecuatie neconditionata sub forma:

```
eq f(s(X)) = s(s(s(X))).
```

Dar, pentru a ilustra tratarea ecuatiilor conditionate in demonstratii de tipul celei de mai jos, am ales sa scriem acea ecuatie conditionata.

Specificatia descrisa este:

```
signatura (Σ):– sorturile: N, B;
```

```
- operatiile:
```

```
 \begin{array}{l} * \ 0: \rightarrow N; \\ * \ true, \ false: \rightarrow B; \\ * \ s, \ f: \ N \rightarrow N; \\ * \ <: \ N \ N \rightarrow B; \end{array}
```

• ecuatiile (Γ) :

-
$$(\forall X : N)0 < s(X) = true;$$

- $(\forall X : N)s(X) < 0 = false;$
- $(\forall X, Y : N)s(X) < s(Y) = X < Y;$
- $(\forall X : N)X < X = false;$
- $f(0) = s(0);$
- $(\forall X : N)f(X) = s(s(X))$ if $0 < X$.

Vom demonstra ca $\mathcal{N}=(\mathbb{N},\{true,false\},0,true,false,s,f,<)$, unde 0 este primul numar natural, < este relatia de ordine stricta pe \mathbb{N} , definita, ca orice relatie, sub forma unei operatii <: $\mathbb{N} \times \mathbb{N} \to \{true,false\}$, care ia valoarea true exact pe perechile de numere naturale aflate in aceasta relatie, iar operatiile unare $s,f:\mathbb{N}\to\mathbb{N}$ sunt definite prin: pentru orice $n\in\mathbb{N}$, s(n)=n+1 (s este operatia succesor pe \mathbb{N}) si $f(n)=\begin{cases} 1, & \text{daca } n=0, \\ n+2, & \text{daca } n>0, \end{cases}$ este model initial pentru specificatia de mai sus, adica este Γ -algebra initiala.

Evident, \mathcal{N} satisface specificatia.

Fie $\mathcal{A}=(A_N,A_B,0_A,true_A,false_A,s_A,f_A,<_A)$ un alt model pentru aceasta specificatie, adica o alta Γ -algebra.

Ramane de demonstrat ca exista un unic Γ -morfism $h: \mathcal{N} \to \mathcal{A}$. Un astfel de morfism este de forma: $h = (h_N, h_B)$, cu $h_N: \mathbb{N} \to A_N$ si $h_B: \{true, false\} \to A_B$.

Unicitatea:

Fie $h, g: \mathcal{N} \to \mathcal{A}$ doua Γ -morfisme. Rezulta, din comutarea acestor morfisme cu operatiile zeroare: $h_N(0) = 0_A = g_N(0)$, $h_B(true) = true_A = g_B(true)$ si $h_B(false) = false_A = g_B(false)$. Pentru a arata egalitatea lui h cu g, ramane de demonstrat ca, pentru orice $n \in \mathbb{N}^*$, $h_N(n) = g_N(n)$.

Demonstram prin inductie matematica dupa n ca, pentru orice $n \in \mathbb{N}$, $h_N(n) = g_N(n)$.

Pasul de verificare: Conform celor de mai sus, $h_N(0) = g_N(0) = 0_A$.

Pasul de inductie: Presupunem ca $h_N(n) = g_N(n)$ pentru un anumit n natural, arbitrar, fixat.

Folosind definitia lui s, comutarea cu s si ipoteza de inductie, rezulta: $h_N(n+1) = h_N(s(n)) = s_A(h_N(n)) = s_A(g_N(n)) = g_N(s(n)) = g_N(n+1).$ Asadar, pentru orice $n \in \mathbb{N}$, $h_N(n) = g_N(n)$, deci $h_N = g_N$.

Conform egalitatilor pe operatiile zeroare de sort B, avem $h_B = g_B$.

Prin urmare, h = g.

Existenta:

Fie $h: \mathcal{N} \to \mathcal{A}$, definita prin:

File
$$n: \mathcal{N} \to \mathcal{A}$$
, definite prin:
$$\begin{cases} h_B(true) = true_A; \\ h_B(false) = false_A; \\ h_N(0) = 0_A; \\ (\forall n \in \mathbb{N}^*)h_N(n) = \underbrace{s_A \circ \ldots \circ s_A}_{\text{de n ori } s_A}(0_A). \end{cases}$$

De ce definim pe $h_N(n)$ astfel? Pentru ca trebuie sa avem comutarea lui h cu 0 si cu s, prin urmare trebuie sa avem: pentru orice n natural nenul, $h_N(n) = h_N(\underbrace{s \circ \ldots \circ s}_{\text{de } n \text{ ori } s}(0)) = \underbrace{s_A \circ \ldots \circ s_A}_{\text{de } n \text{ ori } s_A}(h_N(0)) = \underbrace{s_A \circ \ldots \circ s_A}_{\text{de } n \text{ ori } s_A}(0_A).$

Demonstram ca h astfel definit este Γ -morfism, adica Σ -morfism, adica demonstram ca h comuta cu operatiile din signatura Σ .

Conform definitiei sale, h comuta cu operatiile zeroare din Σ .

Demonstram ca h comuta cu s.

Pentru orice
$$n \in \mathbb{N}$$
, $h_N(s(n)) = h_N(n+1) = \underbrace{s_A \circ \ldots \circ s_A}_{\text{de } n+1 \text{ ori } s_A}(0_A) = s_A(\underbrace{s_A \circ \ldots \circ s_A}_{\text{de } n \text{ ori } s_A}(0_A)) = s_A(h_N(n))$. Asadar, $h_N \circ s = s_A \circ h_N$, deci h comuta cu s .

Demonstram ca h comuta cu <. Avem de aratat ca, pentru orice $n, k \in$ \mathbb{N} , $h_B(n < k) = h_N(n) <_A h_N(k)$. Fie, asadar, $n, k \in \mathbb{N}$, arbitrare, fixate. Avem de analizat cazurile: n < k, k < n si n = k.

Cazul 1: n < k. In acest caz, $k-n-1 \in \mathbb{N}$. Din faptul ca \mathcal{A} verifica ecuatiile din specificatia Γ si din definitia lui h rezulta ca: $h_B(n < k) = h_B(0 < k)$ $(k-n) = h_B(0 < s(k-n-1)) = h_B(true) = true_A = 0_A <_A s_A(h_N(k-1))$ $(n-1) = 0_A <_A s_A (\underbrace{s_A \circ \ldots \circ s_A}_{de \ k-n-1 \text{ ori } s_A} (0_A)) = 0_A <_A \underbrace{s_A \circ \ldots \circ s_A}_{de \ k-n \text{ ori } s_A} (0_A) = s_A (0_A) <_A \underbrace{s_A \circ \ldots \circ s_A}_{de \ k-n \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k-n \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}_{de \ k \text{ ori } s_A} (0_A) = \underbrace{s_A \circ \ldots \circ s_A}$ $h_N(n) <_A h_N(k)$.

Cazul 2: k < n. Analog cazului 1.

Cazul 3: n = k. Atunci: $h_B(n < k) = h_B(n < n) = h_B(false) = false_A = h_N(n) <_A h_N(n) = h_N(n) <_A h_N(k)$. Am folosit faptul ca \mathcal{A} verifica ecuatiile din specificatia Γ .

Asadar, h comuta si cu <.

Ramane de demonstrat ca h comuta cu f. Adica avem de demonstrat ca $h_N \circ f = f_A \circ h_N$, i. e., pentru orice $n \in \mathbb{N}$, $h_N(f(n)) = f_A(h_N(n))$.

 $h_N(f(0)) = h_N(s(0)) = s_A(h_N(0)) = s_A(0_A) = f_A(0_A) = f_A(h_N(0)),$ conform comutarii lui h cu s, definitiei lui h in 0 si faptului ca \mathcal{A} verifica ecuatiile din specificatia Γ .

Fie $n \in \mathbb{N}^*$.

Sa ne amintim din curs faptul ca \mathcal{A} satisface ecuatia $(\forall X:N)f(X) = s(s(X))$ if 0 < X daca si numai daca, pentru orice $x \in A_N$, daca $0_A <_A x = true_A$, atunci $f_A(x) = s_A(s_A(x))$ (observati ca acest fapt este echivalent cu definitia cu morfismul de la Σ -algebra libera generata de X la \mathcal{A} , pentru ca un astfel de morfism duce pe 0 din Σ -algebra libera generata de X in 0_A si comuta cu <; mai precis, conform definitiei, \mathcal{A} satisface ecuatia $(\forall X:N)f(X)=s(s(X))$ if 0< X daca si numai daca, oricare ar fi Σ -morfismul $\alpha:T_\Sigma(X)\to \mathcal{A}$, daca $\alpha_B(0< X)=true_A$, atunci $\alpha_N(f(X))=\alpha_N(s(s(X)))$, adica, oricare ar fi Σ -morfismul $\alpha:T_\Sigma(X)\to \mathcal{A}$, daca $0_A<_A\alpha_N(X)=true_A$, atunci $f_A(\alpha_N(X))=s_A(s_A(\alpha_N(X)))$, si acum notam $x=\alpha_N(X)\in A_N$).

Avem ca 0 < n, prin urmare: $h_N(f(n)) = h_N(s(s(n))) = s_A(s_A(h_N(n))) = f_A(h_N(n))$, pentru ca h comuta cu s, \mathcal{A} satisface Γ si $0_A <_A h_N(n) = h_N(0) <_A h_N(n) = h_B(0 < n) = h_B(true) = true_A$, datorita definitiei lui h in 0 si true si comutarii lui h cu <, care a fost deja demonstrata.

Deci h comuta si cu f.

Rezulta ca h este Γ -morfism.

Rezulta ca exista un unic Γ -morfism $h: \mathcal{N} \to \mathcal{A}$, prin urmare \mathcal{N} este Γ -algebra initiala, adica obiect initial in categoria Γ -algebralor, adica model initial pentru specificatia Γ .