Lecture 5 - Dielectrics

Lecture Summary

- Origin of ionic polarisation
- Capacitor operation and definitions
- Impedance spectroscopy
 - definitions
 - ideal responses
- piezoelectricity
- ferroelectricity

Introduction

- Ionic conduction is a long-range effect
 - Important in batteries, fuel cells etc.
- In some situations, a highly insulating material is preferred
- Remember, ions are not static with time (e.g. phonons)
 - Short-range atomic motion is important for electrical properties

Polarisation

Ionic solids are made up of cations and anions

- locally, this creates dipoles (μ)
- across a whole crystal at equilibrium, these dipoles normally cancel

Under an applied electric field, ions displace from equilibrium

Is this useful?

If the dipoles do not cancel under an applied field, the crystal will develop an overall dipole moment

can occur if e.g. number of cations ≠ number of anions

Can use this to screen electric fields

• Useful in e.g. wireless communication filters, sensor devices, transformers, and **capacitors**

Capacitors

- Vital component of most electronic devices
 - Used to store charge, smooth signals, filter, etc...
 - \$20bn per year industry

Essentially, a capacitor is an arrangement of two electrodes of area *A*, separated by a distance *d*.

The maximum charge stored, Q = CV where C is the capacitance (in Farads).

Capacitance

Two electrodes separated by vacuum have a capacitance C;

$$C=rac{\epsilon_0 A}{d}$$

where ϵ_0 is the permittivity of free space = 8.854 × 10⁻¹² C² J⁻¹ m⁻¹

Capacitance

Two electrodes separated by vacuum have a capacitance C;

$$C=rac{\epsilon_0 A}{d}$$

where ϵ_0 is the permittivity of free space = 8.854 × 10⁻¹² C² J⁻¹ m⁻¹

To increase C (and therefore Q):

- decrease d or increase A, but
- electrons will tunnel from one plate to the other if d gets too small.

Improving charge stored

Alternatively, we can use a dielectric

• opposing electric field stabilises charge on capacitor plates

$$C_{ ext{dielec}} = rac{\epsilon_r \epsilon_0 A}{d}$$

where ε_r is the relative permittivity of the dielectric ($\varepsilon_r = \varepsilon / \varepsilon_0$) and $\varepsilon_r > \varepsilon_0$

Example permittivities

Material	Relative Permittivity, ϵ_{r}
Vacuum	1
Paper	2.0 - 6.0
Polymers	2.0 - 6.0
Silicon oil	2.7 - 2.8
Quartz	3.8 - 4.4
Glass	4 - 15
Al_2O_3	10
Ta ₂ O ₅	26
TiO ₂	100
CaTiO ₃	130
SrTiO ₃	285
BaTiO ₃	1000 - 10000

Characterising dielectrics

- Because dielectrics are insulating, conductivity measurements are not very useful
- Alternatively, oscillate between +ve and -ve potentials to change polarisation direction

Characterising dielectrics

- Because dielectrics are insulating, conductivity measurements are not very useful
- Alternatively, oscillate between +ve and -ve potentials to change polarisation direction

Impedance spectroscopy applies an alternating (sinusoidal) field at different frequencies f, and measures the resulting current

- ullet Applied field, $E_t=E_0\sin(\omega t)$, where $\omega=2\pi f$
- Response current, $I_t = I_0 \sin(\omega t + \phi)$

Impedance

Similar to Ohm's law $(R = \frac{V}{I})$ for constant voltages, we can define impedance as the 'resistance' to an alternating voltage

$$Z(\omega) = rac{E_t}{I_t}$$

Impedance

Similar to Ohm's law $(R = \frac{V}{I})$ for constant voltages, we can define impedance as the 'resistance' to an alternating voltage

$$Z(\omega) = rac{E_t}{I_t}$$

The total impedance can be represented as a complex number:

$$Z(\omega)=Z_0e^{i\phi}=Z_0(\cos\phi+i\sin\phi)$$

• ϕ is the 'phase-shift' between voltage and current.

Impedance analysis

 ϕ , Z and ω (or f) are all important features of impedance. Two 'standard' ways to display data:

Bode plot: |Z| and ϕ plotted vs frequency

often log axes

Nyquist plot: Z plotted in a 2D plane (like an <u>Argand diagram</u>)

• N.B. usually inverted y-axis

Ideal resistor response

In an ideal resistor electrons should flow instantly under an applied potential

- E and I should match (i.e. $\phi = 0$)
- ullet $\phi=0$ so $Z(\omega)=Z_0(\cos 0+i\sin 0)=Z_0$
- Ideally, Z is also independent of ω
 - Electrons can change direction 'infinitely' fast

'Ideal' capacitor response

_____C

- No electrons can flow between the plates
 - \circ For small ω , very large impedance
- Current is largest when potential is first applied (near 0), decreasing as potential gets larger
 - \circ Overall, $\phi=90$
- At high ω , I is always near maximum
 - $\circ \ |Z| o 0$ as ω increases

'Real' Impedance

- Many materials behave like a parallel RC circuit:
 - lons flowing in solution, forming a layer on the electrode
 - Ionic conduction in a ceramic forming a charge gradient

More complex behaviour is often observed, and can be modelled using *equivalent* circuits

Real dielectric response

Dielectrics are not ideal-they leak!

- lons have mass, so cannot move instantly
- At high ω , some resistance remains
 - energy lost as heat
- peak in ϕ vs ω , corresponding to the maximum energy loss.
 - \circ often reported as $an \delta$ (where $\delta = 90^{\circ} \phi$)

 R_1

 $Z^{'}(\Omega)$

0

 R_2

 $R_1 + R_2$

Real dielectric response

Dielectrics are not ideal-they leak!

- lons have mass, so cannot move instantly
- At high ω , some resistance remains
 - energy lost as heat
- peak in ϕ vs ω , corresponding to the maximum energy loss.
 - \circ often reported as $an \delta$ (where $\delta = 90^{\circ} \phi$)

Real materials usually consist of closely-packed ceramic grains.

Question

Mentimeter

What impedance response might you expect from the picture?

Results

Go to www.menti.com and use the code 2810 5919

What impedance response might you expect from the picture?

Press ${\bf S}$ to show image

2

Piezoelectricity

In some dielectric materials, applying E can result in a mechanical stress (or *vice versa*)

• Stress = change in lattice parameters

Direct effect

Applications:

- pressure sensors
- ultrasonic imaging

Converse effect

Applications:

- Actuators/motors
- crystal oscillator (watches)

Structural Aspects

Stresses arise due to unbalanced dipoles

• Can only occur if the structure is **non-centrosymmetric**

Example: Quartz (SiO₂)

Spontaneous polarisation

Some materials exhibit a net dipole *without* an applied electric field (**pyroelectric**) If the polarisation can be switched with an electric field - **Ferroelectric**

Structural origin

Precise origin of ferroelectricity is unknown!

Often, displacement of small ion in a large 'cavity' is partly reponsible

- Driven by anharmonicity or pseudo-Jahn-Teller effects
- sometimes this results in long-range order of dipoles...
- Many perovskites are ferroelectric (e.g. $\mathrm{BaTiO_3}$)

Applications

- Ferroelectrics often have the largest ϵ_r
 - \circ important for high-C capacitors
- Could be coupled with e.g. ferromagnetism
 - Multiferroics are currently popular for electrical control of magnetic fields (e.g. in hard drives)

Hierarchy of dielectrics

Dielectric

Insulators that may change polarisation under an applied electric field Polar or non-polar

Piezoelectric

Change in polarisation is proportional to mechanical stress Non-centrosymmetric, polar or non-polar

Pyroelectric

Show spontaneous polarisation

Polar material

Ferroelectric

Exhibit polarisation switchable by electric field

Lecture recap

- Polarisation arises from cation-anion dipoles
 - Can be modified by external electric field
- Important in capacitors
 - \circ charge stored increased by high ϵ_r dielectric
- Impedance spectroscopy can characterise ionic motion
 - Oscillating potential generates oscillating current
 - \circ Impedance $Z(\omega)$ has both phase (ϕ) and magnitude (|Z|)
 - Many materials behave like parallel RC circuits
- Piezoelectricity is the linear relationship between polarisation and mechanical stress
 - requires non-centrosymmetric structures
- Pyro- and ferro-electrics exhibit spontaneous polarisation without applied electric fields
 - used where high permittivity is needed (e.g. capacitors)

current interest in multiferroics

Return to course contents 25

Feedback

What did you like or dislike about this lecture?

Short answers are recommended. You have 250 characters left.

250

You can submit multiple answers

Submit

Powered by Mentimeter Terms