Согласно формуле (47.20),

$$\operatorname{mes} \Gamma^* = \varepsilon \int_{\gamma^*} x dy, \tag{47.25}$$

где $\varepsilon=+1$, если ориентация контура γ^* положительна, и $\varepsilon=-1$ в противоположном случае. Иначе говоря, $\varepsilon=+1$ (соответственно $\varepsilon=-1$), если положительному обходу данного контура γ соответствует при отображении (47.23) положительный же (соответственно отрицательный) обход контура $\gamma^*=F(\gamma)$.

Вычисляя интеграл (47.25) по формуле (47.8), используя представление (47.24) контура γ^* , получим

$$\operatorname{mes} \Gamma^* = \varepsilon \int_a^b x y_t' dt = \varepsilon \int_a^b x \left(\frac{\partial y}{\partial u} \frac{du}{dt} + \frac{\partial y}{\partial v} \frac{dv}{dt} \right) dt =$$
$$= \varepsilon \int_{\gamma} x \frac{\partial y}{\partial u} du + x \frac{\partial y}{\partial v} dv.$$

К получившемуся интегралу применим формулу Грина (47.12) (здесь нами и используется потребованная выше непрерывность вторых производных $\frac{\partial^2 y}{\partial u \, \partial v}$ и $\frac{\partial^2 y}{\partial v \, \partial u}$). Полагая $P = x \frac{\partial y}{\partial u}$ и $Q = x \frac{\partial y}{\partial v}$ и замечая, что в этом случае

$$\frac{\partial Q}{\partial u} - \frac{\partial P}{\partial v} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u} = \frac{\partial (x, y)}{\partial (u, v)},$$

получим

$$\begin{split} \operatorname{mes} & \Gamma^* = \varepsilon \int\limits_{\gamma^+} P du + Q dv = \varepsilon \iint\limits_{\Gamma} \left(\frac{\partial Q}{\partial u} - \frac{\partial P}{\partial v} \right) du \, dv = \\ & = \varepsilon \iint\limits_{\Gamma} \frac{\partial \left(x, \, y \right)}{\partial \left(u, \, v \right)} du \, dv. \end{split}$$

Левая часть получившегося равенства больше нуля, значит, правая часть также положительна, и так как якобиан отображения (47.22) не меняет знака, то это возможно лишь в том случае, когда число ε имеет тот же знак, что и якобиан $\frac{\partial(x,y)}{\partial(u,v)}$, а в этом случае $\varepsilon \frac{\partial(x,y)}{\partial(u,v)} = \left|\frac{\partial(x,y)}{\partial(u,v)}\right|$. Тем самым знак ε не зависит от выбора контура γ , а определяется знаком якобиан, который один и тот же во всех точках области G.

Таким образом, доказана следующая теорема.

Теорема 2. Если выполнены сделанные выше предположения, то справедлива формула

$$\operatorname{mes} \Gamma^* = \iint_{\Gamma} \left| \frac{\partial (x, y)}{\partial (u, v)} \right| du \, dv. \tag{47.26}$$

Кроме того, если якобиан $\frac{\partial(x,y)}{\partial(u,v)} > 0$ на Γ , то $\varepsilon = +1$, иначе говоря, если якобиан отображения F положителен, то положительному обходу всякого контура $\gamma \subset G$, являющегося границей ограниченной области $\Gamma \subset G$, при отображении F соответствует положительный обход контура $\gamma^* = F(\gamma)$, являющегося границей ограниченной области $\Gamma^* = F(\Gamma)$. Если же якобиан $\frac{\partial(x,y)}{\partial(u,v)} < 0$ на Γ , то $\varepsilon = -1$, m. е. положительному обходу всякого контура γ , указанного типа, соответствует при отображении F отрицательный обход контура $\gamma^* = F(\gamma)$.

Таким образом, геометрический смысл знака якобиана состоит в том, что при положительном якобиане ориентация контуров сохраняется, а при отрицательном — меняется.

С помощью формулы (47.19) формула (47.26) легко обобщается на случай, когда граница области Γ состоит из конечного числа кусочно-гладких замкнутых контуров.

Отметим еще, что с помощью формулы (47.26) можно без труда получить более простое доказательство теоремы 1 из п. 46.1 о геометрическом смысле модуля якобиана. Действительно, пусть $M_0 \in \Gamma$, d (Γ) — диаметр области Γ , и область Γ каким-либо образом стягивается к точке M_0 и, следовательно, $d(\Gamma) \to 0$.

По теореме о среднем (см. п. 44.5)

$$\operatorname{mes} \Gamma^* = \iint\limits_{\Gamma} \left| \frac{\partial \left(x, \, y \right)}{\partial \left(u, \, v \right)} \right| du \, dv = \left| \frac{\partial \left(x, \, y \right)}{\partial \left(u, \, v \right)} \right|_{M} \operatorname{mes} \Gamma, \ M \! \in \! \Gamma,$$

поэтому

$$\frac{\operatorname{mes} \Gamma^*}{\operatorname{mes} \Gamma} = \left| \frac{\partial (x, y)}{\partial (u, v)} \right|_{M}.$$

В силу непрерывности якобиана

$$\lim_{d\left(\Gamma\right)\rightarrow0}\left|\frac{\partial\left(x,\,y\right)}{\partial\left(u,\,v\right)}\right|_{M}=\left|\frac{\partial\left(x,\,y\right)}{\partial\left(u,\,v\right)}\right|_{M_{0}},$$

поэтому

$$\lim_{d(\Gamma)\to 0} \frac{\operatorname{mes} \Gamma^*}{\operatorname{mes} \Gamma} = \left| \frac{\partial(x, y)}{\partial(u, v)} \right|_{M_0}, \tag{47.27}$$

т. е. мы доказали формулу (46.6) и в некотором смысле даже в более общем виде; так, здесь Γ — не обязательно квадрат (правда, на