

# Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC144834

Page: 1 of 84

# FCC Radio Test Report FCC ID: 2AFIH-BND501

# **Original Grant**

Report No. : TB-FCC144834

**Applicant**: Brand New Days Limited

**Equipment Under Test (EUT)** 

**EUT Name** : Bluetooth Wireless Speaker

Model No. : BND501 BOBBY

Series No. : N/A

**Receipt Date** : 2015-07-15

**Test Date** : 2015-07-15 to 2015-07-29

**Issue Date** : 2015-07-30

Standards : FCC Part 15: 2014, Subpart C(15.247)

**Test Method** : ANSI C63.10:2013

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

Test/Witness Engineer :

Approved& Authorized :

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0



# Contents

| COI | NTENTS                                                       | 2  |
|-----|--------------------------------------------------------------|----|
| 1.  | GENERAL INFORMATION ABOUT EUT                                | 4  |
|     | 1.1 Client Information                                       | 4  |
|     | 1.2 General Description of EUT (Equipment Under Test)        |    |
|     | 1.3 Block Diagram Showing the Configuration of System Tested |    |
|     | 1.4 Description of Support Units                             | 6  |
|     | 1.5 Description of Test Mode                                 | 6  |
|     | 1.6 Description of Test Software Setting                     | 7  |
|     | 1.7 Measurement Uncertainty                                  | 7  |
|     | 1.8 Test Facility                                            |    |
| 2.  | TEST SUMMARY                                                 | 9  |
| 3.  | TEST EQUIPMENT                                               | 10 |
| 4.  | CONDUCTED EMISSION TEST                                      | 11 |
|     | 4.1 Test Standard and Limit                                  | 11 |
|     | 4.2 Test Setup                                               |    |
|     | 4.3 Test Procedure                                           |    |
|     | 4.4 EUT Operating Mode                                       | 12 |
|     | 4.5 Test Data                                                |    |
| 5.  | RADIATED EMISSION TEST                                       | 21 |
|     | 5.1 Test Standard and Limit                                  | 21 |
|     | 5.2 Test Setup                                               |    |
|     | 5.3 Test Procedure                                           | 23 |
|     | 5.4 EUT Operating Condition                                  | 24 |
|     | 5.5 Test Data                                                | 24 |
| 6.  | RESTRICTED BANDS REQUIREMENT                                 | 41 |
|     | 6.1 Test Standard and Limit                                  | 41 |
|     | 6.2 Test Setup                                               | 41 |
|     | 6.3 Test Procedure                                           | 41 |
|     | 6.4 EUT Operating Condition                                  | 42 |
|     | 6.5 Test Data                                                | 42 |
| 7.  | NUMBER OF HOPPING CHANNEL                                    | 55 |
|     | 7.1 Test Standard and Limit                                  | 55 |
|     | 7.2 Test Setup                                               | 55 |
|     | 7.3 Test Procedure                                           | 55 |
|     | 7.4 EUT Operating Condition                                  | 55 |
|     | 7.5 Test Data                                                | 55 |
| 8.  | AVERAGE TIME OF OCCUPANCY                                    | 57 |
|     | 8.1 Test Standard and Limit                                  | 57 |
|     | 8.2 Test Setup                                               | 57 |
|     |                                                              |    |



Page: 3 of 84

| 11  | 8.3 Test Procedure                    | 57 |
|-----|---------------------------------------|----|
|     | 8.4 EUT Operating Condition           |    |
|     | 8.5 Test Data                         |    |
| 9.  | CHANNEL SEPARATION AND BANDWIDTH TEST | 70 |
|     | 9.1 Test Standard and Limit           | 70 |
|     | 9.2 Test Setup                        |    |
|     | 9.3 Test Procedure                    | 70 |
|     | 9.4 EUT Operating Condition           | 70 |
|     | 9.5 Test Data                         | 71 |
| 10. | PEAK OUTPUT POWER TEST                | 79 |
|     | 10.1 Test Standard and Limit          | 79 |
|     | 10.2 Test Setup                       | 79 |
|     | 10.3 Test Procedure                   | 79 |
|     | 10.4 EUT Operating Condition          | 79 |
|     | 10.5 Test Data                        | 80 |
| 11. | ANTENNA REQUIREMENT                   | 84 |
|     | 11.1 Standard Requirement             | 84 |
|     | 11.2 Antenna Connected Construction   | 84 |



Page: 4 of 84

# 1. General Information about EUT

## 1.1 Client Information

Applicant : Brand New Days Limited

Address : Flat B, 6/F, Tong Yuen Factory Building, 505 Castle Peak Road, Lai

Chi Kok, Kowloon, Hongkong

Manufacturer : Shenzhen Casun Electronic Co, Ltd.

Address : 4/F, B Building, No.8 Eastern Zone, Shangxue Technology Park,

Bantian, ShenZhen, China

# 1.2 General Description of EUT (Equipment Under Test)

| EUT Name               | :                       | Bluetooth Wireless Speake                                                    | er CONSTRUCTION                       |
|------------------------|-------------------------|------------------------------------------------------------------------------|---------------------------------------|
| Models No.             | lels No. : BND501 BOBBY |                                                                              |                                       |
| Model<br>Difference    |                         | N/A                                                                          |                                       |
| A LOND                 |                         | Operation Frequency:<br>Bluetooth:2402~2480MHz                               | LON LON                               |
| Product                | W                       | Number of Channel:                                                           | Bluetooth:79 Channels see note (2)    |
| Description            | :                       | Max Peak Output Power:                                                       | GFSK: -0.56dBm                        |
|                        |                         | Antenna Gain:                                                                | -0.68 dBi PCB Antenna                 |
|                        |                         | Modulation Type:                                                             | GFSK 1Mbps(1 Mbps) π /4-DQPSK(2 Mbps) |
| Power Supply           | :                       | DC Voltage supplied from Host System by USB cable DC power by Li-ion Battery |                                       |
| Power Rating           | -                       | DC 5V by USB Cable from PC system. DC 3.7V by Li-ion Battery.                |                                       |
| Connecting I/O Port(S) | :                       | Please refer to the User's                                                   | Manual                                |

#### Note:

- (1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (2) This Test Report is FCC Part 15.247 for Bluetooth, and test procedure in accordance with Public Notice: DA 00-705.

#### (3) Channel List

| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|---------|--------------------|
| 00      | 2402               | 27      | 2429               | 54      | 2456               |
| 01      | 2403               | 28      | 2430               | 55      | 2457               |
| 02      | 2404               | 29      | 2431               | 56      | 2458               |



Page: 5 of 84

|    | ACIN T | ETITIES. | - 41 |    |      |
|----|--------|----------|------|----|------|
| 03 | 2405   | 30       | 2432 | 57 | 2459 |
| 04 | 2406   | 31       | 2433 | 58 | 2460 |
| 05 | 2407   | 32       | 2434 | 59 | 2461 |
| 06 | 2408   | 33       | 2435 | 60 | 2462 |
| 07 | 2409   | 34       | 2436 | 61 | 2463 |
| 08 | 2410   | 35       | 2437 | 62 | 2464 |
| 09 | 2411   | 36       | 2438 | 63 | 2465 |
| 10 | 2412   | 37       | 2439 | 64 | 2466 |
| 11 | 2413   | 38       | 2440 | 65 | 2467 |
| 12 | 2414   | 39       | 2441 | 66 | 2468 |
| 13 | 2415   | 40       | 2442 | 67 | 2469 |
| 14 | 2416   | 41       | 2443 | 68 | 2470 |
| 15 | 2417   | 42       | 2444 | 69 | 2471 |
| 16 | 2418   | 43       | 2445 | 70 | 2472 |
| 17 | 2419   | 44       | 2446 | 71 | 2473 |
| 18 | 2420   | 45       | 2447 | 72 | 2474 |
| 19 | 2421   | 46       | 2448 | 73 | 2475 |
| 20 | 2422   | 47       | 2449 | 74 | 2476 |
| 21 | 2423   | 48       | 2450 | 75 | 2477 |
| 22 | 2424   | 49       | 2451 | 76 | 2478 |
| 23 | 2425   | 50       | 2452 | 77 | 2479 |
| 24 | 2426   | 51       | 2453 | 78 | 2480 |
| 25 | 2427   | 52       | 2454 |    |      |
| 26 | 2428   | 53       | 2455 |    |      |

(4) The Antenna information about the equipment is provided by the applicant.

# 1.3 Block Diagram Showing the Configuration of System Tested

| TX Mode |     |
|---------|-----|
|         |     |
|         | EUT |
|         |     |
|         |     |



Page: 6 of 84

## 1.4 Description of Support Units

|                                             | Ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | uipment Informatio | on     |     |  |  |  |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|-----|--|--|--|
| Name Model FCC ID/DOC Manufacturer Used "√" |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |        |     |  |  |  |
| 339                                         | THE PARTY OF THE P |                    | 9 - 61 | 100 |  |  |  |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cable Information  |        |     |  |  |  |
| Number                                      | Number Shielded Type Ferrite Core Length Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |        |     |  |  |  |
|                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 2 000  |     |  |  |  |

## 1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

| For Conducted Test |                                |  |
|--------------------|--------------------------------|--|
| Final Test Mode    | Description                    |  |
| Mode 1             | USB Charging with TX GFSK Mode |  |

| For Radiated Test |                                       |  |
|-------------------|---------------------------------------|--|
| Final Test Mode   | Description                           |  |
| Mode 1            | USB Charging with TX GFSK Mode        |  |
| Mode 2            | TX Mode(GFSK) Channel 00/39/78        |  |
| Mode 3            | TX Mode( π /4-DQPSK) Channel 00/39/78 |  |
| Mode 4            | Hopping Mode(GFSK)                    |  |
| Mode 5            | Hopping Mode( π /4-DQPSK)             |  |

#### Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate. We have pretested all these test mode above.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: GFSK (1 Mbps)
TX Mode: π /4-DQPSK (2 Mbps)

(2) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on X-plane as the normal use. Therefore only the test data of this X-plane was used for radiated emission measurement test.



Page: 7 of 84

# 1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of Bluetooth mode.

| Test Software Version | FCCAssist_1.4 |         |          |
|-----------------------|---------------|---------|----------|
| Frequency             | 2402 MHz      | 2441MHz | 2480 MHz |
| GFSK                  | DEF           | DEF     | DEF      |
| π /4-DQPSK            | DEF           | DEF     | DEF      |

# 1.7 Measurement Uncertainty

The reported uncertainty of measurement y  $\pm$  U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

| Test Item          | Parameters        | Expanded Uncertainty (U <sub>Lab</sub> ) |  |
|--------------------|-------------------|------------------------------------------|--|
|                    | Level Accuracy:   |                                          |  |
| Conducted Emission | 9kHz~150kHz       | ±3.42 dB                                 |  |
| THU:               | 150kHz to 30MHz   | ±3.42 dB                                 |  |
| Dedicted Engineer  | Level Accuracy:   | 14 CO 4D                                 |  |
| Radiated Emission  | 9kHz to 30 MHz    | ±4.60 dB                                 |  |
| Dadiated Emission  | Level Accuracy:   | ±4.40 dB                                 |  |
| Radiated Emission  | 30MHz to 1000 MHz |                                          |  |
| Dadiated Emission  | Level Accuracy:   | 14 20 dB                                 |  |
| Radiated Emission  | Above 1000MHz     | ±4.20 dB                                 |  |



Page: 8 of 84

# 1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

#### **CNAS (L5813)**

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

#### FCC List No.: (811562)

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number is 811562.

## IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

May 22, 2014 certificated by TUV Rheinland(China) Co., Ltd. with TUV certificate No.: UA 50282953 0001 and report No.: 17026822 002. The certificate is valid until the next scheduled audit or up to 18 months, at the discretion of TUV Rhineland.



Report No.: TB-FCC144834
Page: 9 of 84

Page:

# 2. Test Summary

|                  | FCC Part 15 Subpart C(15.247)/ RSS 247 Issue 1 |                                            |          |                                                      |  |  |
|------------------|------------------------------------------------|--------------------------------------------|----------|------------------------------------------------------|--|--|
| Standard Section |                                                |                                            |          |                                                      |  |  |
| FCC              | IC                                             | Test Item                                  | Judgment | Remark                                               |  |  |
| 15.203           |                                                | Antenna Requirement                        | PASS     | N/A                                                  |  |  |
| 15.207           | RSS-GEN<br>7.2.2                               | Conducted Emission                         | PASS     | N/A                                                  |  |  |
| 15.205           | RSS-Gen<br>7.2.3                               | Restricted Bands                           | PASS     | N/A                                                  |  |  |
| 15.247(a)(1)     | RSS 247<br>5.1 (2)                             | Hopping Channel Separation                 | PASS     | N/A                                                  |  |  |
| 15.247(a)(1)     | RSS 247<br>5.1 (4)                             | Dwell Time                                 | PASS     | N/A                                                  |  |  |
| 15.247(b)(1)     | RSS 247<br>5.4 (2)                             | Peak Output Power                          | PASS     | N/A                                                  |  |  |
| 15.247(b)(1)     | RSS 247<br>5.1 (4)                             | Number of Hopping<br>Frequency             | PASS     | N/A                                                  |  |  |
| 15.247(c)        | RSS 247<br>5.5                                 | Radiated Spurious Emission                 | PASS     | N/A                                                  |  |  |
| 15.247(a)        | RSS 247<br>5.1 (1)                             | 99% Occupied Bandwidth & 20dB<br>Bandwidth | PASS     | 99%OBW<br>GFSK:942.00kHz<br>π/4-DQPSK:<br>1230.00kHz |  |  |



Page: 10 of 84

# 3. Test Equipment

| AC Main C                 | onducted Emis                | ssion       |            |               |                  |
|---------------------------|------------------------------|-------------|------------|---------------|------------------|
| Description               | Manufacturer                 | Model No.   | Serial No. | Cal. Date     | Cal. Due<br>Date |
| EMI Test<br>Receiver      | ROHDE&<br>SCHWARZ            | ESCI        | 100321     | Aug. 08, 2014 | Aug. 07, 2015    |
| 50ΩCoaxial<br>Switch      | Anritsu                      | MP59B       | X10321     | Aug. 08, 2014 | Aug. 07, 2015    |
| L.I.S.N                   | Rohde & Schwarz              | ENV216      | 101131     | Aug. 08, 2014 | Aug. 07, 2015    |
| L.I.S.N                   | SCHWARZBECK                  | NNBL 8226-2 | 8226-2/164 | Aug. 08, 2014 | Aug. 07, 2015    |
| Radiation  Description    | Spurious Emiss  Manufacturer | Model No.   | Serial No. | Cal. Date     | Cal. Due         |
| Spectrum<br>Analyzer      | Agilent                      | E4407B      | MY45106456 | Sep. 01, 2014 | Aug. 31, 2015    |
| EMI Test<br>Receiver      | Rohde & Schwarz              | ESCI        | 100010/007 | Aug. 08, 2014 | Aug.07, 2015     |
| Bilog Antenna             | ETS-LINDGREN                 | 3142E       | 00117537   | Aug. 08, 2014 | Aug.07, 2015     |
| Horn Antenna              | ETS-LINDGREN                 | 3117        | 00143207   | Mar. 06, 2015 | Mar.05, 2016     |
| Pre-amplifier             | Sonoma                       | 310N        | 185903     | Mar. 06, 2015 | Mar.05, 2016     |
| Pre-amplifier             | HP                           | 8447B       | 3008A00849 | Mar. 06, 2015 | Mar.05, 2016     |
| Cable                     | HUBER+SUHNER                 | 100         | SUCOFLEX   | Mar. 06, 2015 | Mar.05, 2016     |
| Positioning<br>Controller | ETS-LINDGREN                 | 2090        | N/A        | N/A           | N/A              |
| Antenna C                 | onducted Emis                | ssion       |            |               |                  |
| Description               | Manufacturer                 | Model No.   | Serial No. | Cal. Date     | Cal. Due<br>Date |
| Spectrum<br>Analyzer      | Agilent                      | E4407B      | MY45106456 | Sep. 01, 2014 | Aug. 31, 2015    |
| EMI Test<br>Receiver      | Rohde & Schwarz              | ESCI        | 100010/007 | Aug. 08, 2014 | Aug. 07, 2015    |



Page: 11 of 84

# 4. Conducted Emission Test

#### 4.1 Test Standard and Limit

4.1.1Test Standard FCC 15.207

#### 4.1.2 Test Limit

#### **Conducted Emission Test Limit**

| Eroguanov     | Maximum RF Line Voltage (dBμV) |               |  |  |  |
|---------------|--------------------------------|---------------|--|--|--|
| Frequency     | Quasi-peak Level               | Average Level |  |  |  |
| 150kHz~500kHz | 66 ~ 56 *                      | 56 ~ 46 *     |  |  |  |
| 500kHz~5MHz   | 56                             | 46            |  |  |  |
| 5MHz~30MHz    | 60                             | 50            |  |  |  |

#### Notes:

- (1) \*Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

# 4.2 Test Setup



#### 4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.



Report No.: TB-FCC144834 Page: 12 of 84

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

# 4.4 EUT Operating Mode

Please refer to the description of test mode.

## 4.5 Test Data

Please see the next page.





| EUT:          | Bluetooth Wireless Speaker | Model Name :                           | BND501 BOBBY |  |  |  |  |
|---------------|----------------------------|----------------------------------------|--------------|--|--|--|--|
| Temperature   | : 25 °C                    | Relative Humidity:                     | 55%          |  |  |  |  |
| Test Voltage: | : AC 120V/50 Hz            |                                        | 733          |  |  |  |  |
| Terminal:     | Line                       | Line                                   |              |  |  |  |  |
| Test Mode:    | AC Charging with TX GFS    | AC Charging with TX GFSK Mode 2402 MHz |              |  |  |  |  |
| Remark:       | Only worse case is report  | ed                                     |              |  |  |  |  |
| 90.0 dp.M     |                            |                                        |              |  |  |  |  |



| No. N | /lk. | Freq. | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-------|------|-------|------------------|-------------------|------------------|-------|--------|----------|
|       |      | MHz   | dBu∨             | dB                | dBuV             | dBu∀  | dB     | Detector |
| 1     | 0.   | 1620  | 46.63            | 10.12             | 56.75            | 65.36 | -8.61  | QP       |
| 2     | 0.   | 1620  | 38.76            | 10.12             | 48.88            | 55.36 | -6.48  | AVG      |
| 3     | 0.   | 2340  | 43.58            | 10.11             | 53.69            | 62.30 | -8.61  | QP       |
| 4     | 0.   | 2340  | 34.61            | 10.11             | 44.72            | 52.30 | -7.58  | AVG      |
| 5 *   | · 0. | 5819  | 42.46            | 10.02             | 52.48            | 56.00 | -3.52  | QP       |
| 6     | 0.   | 5819  | 26.94            | 10.02             | 36.96            | 46.00 | -9.04  | AVG      |
| 7     | 1.   | 5100  | 38.65            | 10.11             | 48.76            | 56.00 | -7.24  | QP       |
| 8     | 1.   | 5100  | 24.96            | 10.11             | 35.07            | 46.00 | -10.93 | AVG      |
| 9     | 3.   | 5739  | 35.86            | 10.06             | 45.92            | 56.00 | -10.08 | QP       |
| 10    | 3.   | 5739  | 23.59            | 10.06             | 33.65            | 46.00 | -12.35 | AVG      |
| 11    | 4.   | 9939  | 34.31            | 10.06             | 44.37            | 56.00 | -11.63 | QP       |
| 12    | 4.   | 9939  | 24.75            | 10.06             | 34.81            | 46.00 | -11.19 | AVG      |





EUT: **BND501 BOBBY** Bluetooth Wireless Speaker **Model Name:** Temperature: 25 ℃ **Relative Humidity:** 55% AC 120V/50 Hz **Test Voltage:** Terminal: Neutral **Test Mode:** AC Charging with TX GFSK Mode 2402 MHz Remark: Only worse case is reported



| No. | Mk. | Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|-----|--------|------------------|-------------------|------------------|-------|--------|----------|
|     |     | MHz    | dBu∀             | dB                | dBu∀             | dBu∀  | dB     | Detector |
| 1   |     | 0.1620 | 48.21            | 10.12             | 58.33            | 65.36 | -7.03  | QP       |
| 2   | *   | 0.1620 | 40.75            | 10.12             | 50.87            | 55.36 | -4.49  | AVG      |
| 3   |     | 0.2540 | 40.09            | 10.10             | 50.19            | 61.62 | -11.43 | QP       |
| 4   |     | 0.2540 | 29.90            | 10.10             | 40.00            | 51.62 | -11.62 | AVG      |
| 5   |     | 0.5620 | 41.16            | 10.02             | 51.18            | 56.00 | -4.82  | QP       |
| 6   |     | 0.5620 | 25.00            | 10.02             | 35.02            | 46.00 | -10.98 | AVG      |
| 7   |     | 0.7980 | 38.00            | 10.07             | 48.07            | 56.00 | -7.93  | QP       |
| 8   |     | 0.7980 | 22.67            | 10.07             | 32.74            | 46.00 | -13.26 | AVG      |
| 9   |     | 3.0579 | 35.36            | 10.06             | 45.42            | 56.00 | -10.58 | QP       |
| 10  |     | 3.0579 | 24.96            | 10.06             | 35.02            | 46.00 | -10.98 | AVG      |
| 11  |     | 4.9298 | 33.39            | 10.06             | 43.45            | 56.00 | -12.55 | QP       |
| 12  |     | 4.9298 | 23.68            | 10.06             | 33.74            | 46.00 | -12.26 | AVG      |





EUT: **BND501 BOBBY** Bluetooth Wireless Speaker **Model Name:** Temperature: 25 ℃ **Relative Humidity:** 55% AC 120V/60 Hz **Test Voltage:** Terminal: Line **Test Mode:** AC Charging with TX GFSK Mode 2402 MHz Remark: Only worse case is reported



| No. Mk. | Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|---------|--------|------------------|-------------------|------------------|-------|--------|----------|
|         | MHz    | dBu∀             | dB                | dBuV             | dBuV  | dB     | Detector |
| 1       | 0.1500 | 38.13            | 10.12             | 48.25            | 65.99 | -17.74 | QP       |
| 2 *     | 0.1500 | 30.75            | 10.12             | 40.87            | 55.99 | -15.12 | AVG      |
| 3       | 0.2100 | 30.61            | 10.12             | 40.73            | 63.20 | -22.47 | QP       |
| 4       | 0.2100 | 24.92            | 10.12             | 35.04            | 53.20 | -18.16 | AVG      |
| 5       | 0.4260 | 31.67            | 10.04             | 41.71            | 57.33 | -15.62 | QP       |
| 6       | 0.4260 | 21.03            | 10.04             | 31.07            | 47.33 | -16.26 | AVG      |
| 7       | 0.7019 | 27.81            | 10.02             | 37.83            | 56.00 | -18.17 | QP       |
| 8       | 0.7019 | 19.59            | 10.02             | 29.61            | 46.00 | -16.39 | AVG      |
| 9       | 0.9740 | 24.40            | 10.15             | 34.55            | 56.00 | -21.45 | QP       |
| 10      | 0.9740 | 18.31            | 10.15             | 28.46            | 46.00 | -17.54 | AVG      |
| 11      | 3.2580 | 24.00            | 10.06             | 34.06            | 56.00 | -21.94 | QP       |
| 12      | 3.2580 | 18.72            | 10.06             | 28.78            | 46.00 | -17.22 | AVG      |
|         |        |                  |                   |                  |       |        | -        |





Page: 16 of 84

| UT:                    | Blueto                                                                                 | oth Wireless S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Speaker                                                                   | Model Name                                                                       | :                                                                            | BND501                                                                                                 | BOBBY                                     |
|------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------|
| emperature:            | 25 ℃                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           | Relative Hum                                                                     | nidity:                                                                      | 55%                                                                                                    | HALL                                      |
| est Voltage:           | AC 1                                                                                   | 20V/60 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                           |                                                                                  | a                                                                            | CAST.                                                                                                  |                                           |
| erminal:               | Neutr                                                                                  | al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (UII)                                                                     |                                                                                  | 1 1/1                                                                        |                                                                                                        | 1                                         |
| est Mode:              | AC C                                                                                   | harging with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TX GFSK                                                                   | Mode 2402 N                                                                      | ЛHz                                                                          | - 1                                                                                                    | Milion                                    |
| Remark:                | Only                                                                                   | worse case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | is reported                                                               | The second                                                                       | - TOTO                                                                       | 27                                                                                                     |                                           |
| 90.0 dBuV              |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                                                  |                                                                              |                                                                                                        |                                           |
|                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                                                  |                                                                              | QP:<br>AVG:                                                                                            |                                           |
|                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                                                  |                                                                              |                                                                                                        |                                           |
|                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                                                  |                                                                              |                                                                                                        |                                           |
|                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                                                  |                                                                              |                                                                                                        |                                           |
| ×                      | X                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                                                  |                                                                              |                                                                                                        | +                                         |
| 40                     | Not Market                                                                             | May to make the state of the st | الساد السامة                                                              | ware the ware                                                                    | X                                                                            |                                                                                                        |                                           |
| $\Lambda$              |                                                                                        | ANT CAST THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n mare this highway                                                       |                                                                                  | water and production                                                         | many                                                                                                   | What I                                    |
|                        | N (VV.                                                                                 | , M. M. V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | and and freely solved filter for any office of the                        | ~ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                           | None                                                                         | ANT WAR                                                                                                | pe per                                    |
|                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                                                  |                                                                              |                                                                                                        |                                           |
|                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                                                  |                                                                              |                                                                                                        | AV                                        |
|                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |                                                                                  |                                                                              |                                                                                                        |                                           |
| 0.150                  | 0.5                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (MHz)                                                                     | 5                                                                                |                                                                              |                                                                                                        | 30.000                                    |
|                        |                                                                                        | D 1"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           |                                                                                  |                                                                              |                                                                                                        |                                           |
|                        |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           | R A                                                                              |                                                                              |                                                                                                        |                                           |
| No Mk                  | Frea                                                                                   | Reading<br>Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Correct                                                                   | Measure-<br>ment                                                                 | Limit                                                                        | O∨er                                                                                                   |                                           |
| No. Mk.                | Freq.                                                                                  | Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Factor                                                                    | ment                                                                             |                                                                              |                                                                                                        | Detector                                  |
|                        | MHz                                                                                    | <b>Level</b> dBuV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Factor<br>dB                                                              | <b>ment</b><br>dBuV                                                              | dBuV                                                                         | dB                                                                                                     |                                           |
| 1                      | MHz<br>0.1500                                                                          | dBuV 37.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Factor<br>dB<br>10.12                                                     | ment<br>dBuV<br>47.79                                                            | dBu∨<br><b>65</b> .99                                                        | dB<br>-18.20                                                                                           | QP                                        |
| 1 2 *                  | MHz<br>0.1500<br>0.1500                                                                | dBuV<br>37.67<br>30.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ## Factor dB 10.12 10.12                                                  | ment<br>dBu∀<br>47.79<br>40.37                                                   | dBu∨<br>65.99<br>55.99                                                       | dB<br>-18.20<br>-15.62                                                                                 | QP<br>AVG                                 |
| 1                      | 0.1500<br>0.1500<br>0.2340                                                             | dBuV<br>37.67<br>30.25<br>27.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Factor  dB  10.12  10.12  10.11                                           | ment<br>dBuV<br>47.79                                                            | dBuV<br>65.99<br>55.99<br>62.30                                              | dB<br>-18.20<br>-15.62<br>-24.22                                                                       | QP<br>AVG<br>QP                           |
| 1 2 *                  | MHz<br>0.1500<br>0.1500                                                                | dBuV<br>37.67<br>30.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ## Factor dB 10.12 10.12                                                  | ment<br>dBu∀<br>47.79<br>40.37                                                   | dBuV<br>65.99<br>55.99<br>62.30                                              | dB<br>-18.20<br>-15.62                                                                                 | AVG                                       |
| 1 2 * 3                | 0.1500<br>0.1500<br>0.2340                                                             | dBuV<br>37.67<br>30.25<br>27.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Factor  dB  10.12  10.12  10.11                                           | ment<br>dBu∀<br>47.79<br>40.37<br>38.08                                          | dBuV<br>65.99<br>55.99<br>62.30<br>52.30                                     | dB<br>-18.20<br>-15.62<br>-24.22                                                                       | QP<br>AVG<br>QP                           |
| 1<br>2 *<br>3<br>4     | 0.1500<br>0.1500<br>0.2340<br>0.2340                                                   | dBuV<br>37.67<br>30.25<br>27.97<br>13.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Factor  dB  10.12  10.12  10.11  10.11                                    | ment  dBuV  47.79  40.37  38.08  24.09                                           | dBuV<br>65.99<br>55.99<br>62.30<br>52.30<br>57.33                            | dB<br>-18.20<br>-15.62<br>-24.22<br>-28.21                                                             | QP<br>AVG<br>QP<br>AVG                    |
| 1 2 * 3 4 5            | 0.1500<br>0.1500<br>0.2340<br>0.2340<br>0.4260                                         | dBuV<br>37.67<br>30.25<br>27.97<br>13.98<br>31.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Factor  dB  10.12  10.12  10.11  10.11  10.04                             | ment  dBuV  47.79  40.37  38.08  24.09  41.24                                    | dBuV<br>65.99<br>55.99<br>62.30<br>52.30<br>57.33<br>47.33                   | dB<br>-18.20<br>-15.62<br>-24.22<br>-28.21<br>-16.09                                                   | QP<br>AVG<br>QP<br>AVG                    |
| 1 2 * 3 4 5 6 7        | 0.1500<br>0.1500<br>0.2340<br>0.2340<br>0.4260<br>0.4260<br>0.9620                     | Level  dBu√  37.67  30.25  27.97  13.98  31.20  20.24  25.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Factor  dB  10.12  10.12  10.11  10.11  10.04  10.04  10.14               | ment  dBuV  47.79  40.37  38.08  24.09  41.24  30.28  35.81                      | dBuV<br>65.99<br>55.99<br>62.30<br>52.30<br>57.33<br>47.33                   | -18.20<br>-15.62<br>-24.22<br>-28.21<br>-16.09<br>-17.05<br>-20.19                                     | QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG       |
| 1 2 * 3 4 5 6 7 8      | 0.1500<br>0.1500<br>0.2340<br>0.2340<br>0.4260<br>0.4260<br>0.9620<br>0.9620           | Level  dBu∀  37.67  30.25  27.97  13.98  31.20  20.24  25.67  18.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Factor  dB  10.12  10.12  10.11  10.11  10.04  10.04  10.14               | ment  dBuV  47.79  40.37  38.08  24.09  41.24  30.28  35.81  28.38               | dBuV<br>65.99<br>55.99<br>62.30<br>52.30<br>57.33<br>47.33<br>56.00<br>46.00 | -18.20<br>-15.62<br>-24.22<br>-28.21<br>-16.09<br>-17.05<br>-20.19<br>-17.62                           | QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG       |
| 1 2 * 3 4 5 6 7 8 9    | 0.1500<br>0.1500<br>0.2340<br>0.2340<br>0.4260<br>0.4260<br>0.9620<br>0.9620<br>3.5220 | Level  dBuV  37.67  30.25  27.97  13.98  31.20  20.24  25.67  18.24  22.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Factor  dB  10.12  10.12  10.11  10.11  10.04  10.04  10.14  10.14  10.06 | ment  dBuV  47.79  40.37  38.08  24.09  41.24  30.28  35.81  28.38  32.68        | dBuV<br>65.99<br>55.99<br>62.30<br>57.33<br>47.33<br>56.00<br>46.00          | -18.20<br>-15.62<br>-24.22<br>-28.21<br>-16.09<br>-17.05<br>-20.19<br>-17.62<br>-23.32                 | QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG       |
| 1 2 * 3 4 5 6 7 8 9 10 | MHz 0.1500 0.1500 0.2340 0.2340 0.4260 0.4260 0.9620 0.9620 3.5220 3.5220              | Level  dBuV  37.67  30.25  27.97  13.98  31.20  20.24  25.67  18.24  22.62  17.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Factor  dB  10.12  10.12  10.11  10.11  10.04  10.04  10.14  10.06  10.06 | ment  dBuV  47.79  40.37  38.08  24.09  41.24  30.28  35.81  28.38  32.68  27.48 | dBuV<br>65.99<br>55.99<br>62.30<br>57.33<br>47.33<br>56.00<br>46.00<br>46.00 | dB<br>-18.20<br>-15.62<br>-24.22<br>-28.21<br>-16.09<br>-17.05<br>-20.19<br>-17.62<br>-23.32<br>-18.52 | QP AVG QP AVG QP AVG                      |
| 1 2 * 3 4 5 6 7 8 9    | 0.1500<br>0.1500<br>0.2340<br>0.2340<br>0.4260<br>0.4260<br>0.9620<br>0.9620<br>3.5220 | Level  dBuV  37.67  30.25  27.97  13.98  31.20  20.24  25.67  18.24  22.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Factor  dB  10.12  10.12  10.11  10.11  10.04  10.04  10.14  10.14  10.06 | ment  dBuV  47.79  40.37  38.08  24.09  41.24  30.28  35.81  28.38  32.68        | dBuV<br>65.99<br>55.99<br>62.30<br>57.33<br>47.33<br>56.00<br>46.00<br>46.00 | -18.20<br>-15.62<br>-24.22<br>-28.21<br>-16.09<br>-17.05<br>-20.19<br>-17.62<br>-23.32                 | QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG<br>QP |





EUT: Bluetooth Wireless Speaker Model Name: BND501 BOBBY

Temperature: 25 ℃ Relative Humidity: 55%

Test Voltage: AC 240V/50 Hz

Terminal: Line

Test Mode: AC Charging with TX GFSK Mode 2402 MHz

Remark: Only worse case is reported



| No. | Mk. | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | O∨er   |          |
|-----|-----|---------|------------------|-------------------|------------------|-------|--------|----------|
|     |     | MHz     | dBu∨             | dB                | dBu∀             | dBu∀  | dB     | Detector |
| 1   |     | 0.2058  | 39.12            | 10.02             | 49.14            | 63.37 | -14.23 | QP       |
| 2   |     | 0.2058  | 33.92            | 10.02             | 43.94            | 53.37 | -9.43  | AVG      |
| 3   |     | 0.2740  | 36.39            | 10.02             | 46.41            | 60.99 | -14.58 | QP       |
| 4   |     | 0.2740  | 30.39            | 10.02             | 40.41            | 50.99 | -10.58 | AVG      |
| 5   |     | 0.5818  | 35.21            | 10.06             | 45.27            | 56.00 | -10.73 | QP       |
| 6   | *   | 0.5818  | 28.53            | 10.06             | 38.59            | 46.00 | -7.41  | AVG      |
| 7   |     | 1.5859  | 33.09            | 10.06             | 43.15            | 56.00 | -12.85 | QP       |
| 8   |     | 1.5859  | 25.48            | 10.06             | 35.54            | 46.00 | -10.46 | AVG      |
| 9   |     | 2.1339  | 33.99            | 10.06             | 44.05            | 56.00 | -11.95 | QP       |
| 10  |     | 2.1339  | 25.89            | 10.06             | 35.95            | 46.00 | -10.05 | AVG      |
| 11  |     | 16.0059 | 39.84            | 10.24             | 50.08            | 60.00 | -9.92  | QP       |
| 12  |     | 16.0059 | 30.97            | 10.24             | 41.21            | 50.00 | -8.79  | AVG      |





EUT: **BND501 BOBBY** Bluetooth Wireless Speaker **Model Name:** Temperature: 25 ℃ **Relative Humidity:** 55% AC 240V/50 Hz **Test Voltage:** Terminal: Neutral **Test Mode:** AC Charging with TX GFSK Mode 2402 MHz Remark: Only worse case is reported



| No. Mk. | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|---------|---------|------------------|-------------------|------------------|-------|--------|----------|
|         | MHz     | dBu∨             | dB                | dBu∀             | dBu∨  | dB     | Detector |
| 1       | 0.2059  | 39.27            | 10.12             | 49.39            | 63.37 | -13.98 | QP       |
| 2       | 0.2059  | 35.51            | 10.12             | 45.63            | 53.37 | -7.74  | AVG      |
| 3       | 0.5779  | 34.58            | 10.02             | 44.60            | 56.00 | -11.40 | QP       |
| 4       | 0.5779  | 26.77            | 10.02             | 36.79            | 46.00 | -9.21  | AVG      |
| 5       | 1.5859  | 31.86            | 10.10             | 41.96            | 56.00 | -14.04 | QP       |
| 6       | 1.5859  | 24.19            | 10.10             | 34.29            | 46.00 | -11.71 | AVG      |
| 7       | 2.8260  | 33.06            | 10.06             | 43.12            | 56.00 | -12.88 | QP       |
| 8       | 2.8260  | 25.79            | 10.06             | 35.85            | 46.00 | -10.15 | AVG      |
| 9       | 10.7499 | 38.38            | 10.15             | 48.53            | 60.00 | -11.47 | QP       |
| 10      | 10.7499 | 28.96            | 10.15             | 39.11            | 50.00 | -10.89 | AVG      |
| 11      | 16.0059 | 41.61            | 10.06             | 51.67            | 60.00 | -8.33  | QP       |
| 12 *    | 16.0059 | 33.13            | 10.06             | 43.19            | 50.00 | -6.81  | AVG      |





EUT: **BND501 BOBBY** Bluetooth Wireless Speaker **Model Name:** Temperature: 25 ℃ **Relative Humidity:** 55% AC 240V/60 Hz **Test Voltage:** Terminal: Line **Test Mode:** AC Charging with TX GFSK Mode 2402 MHz Remark: Only worse case is reported



| No. | Mk. | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Over   |          |
|-----|-----|---------|------------------|-------------------|------------------|-------|--------|----------|
|     |     | MHz     | dBu∀             | dB                | dBuV             | dBu∨  | dB     | Detector |
| 1   |     | 0.1700  | 40.26            | 10.12             | 50.38            | 64.96 | -14.58 | QP       |
| 2   |     | 0.1700  | 37.08            | 10.12             | 47.20            | 54.96 | -7.76  | AVG      |
| 3   |     | 0.2058  | 40.26            | 10.12             | 50.38            | 63.37 | -12.99 | QP       |
| 4   |     | 0.2058  | 35.19            | 10.12             | 45.31            | 53.37 | -8.06  | AVG      |
| 5   |     | 0.5778  | 35.31            | 10.02             | 45.33            | 56.00 | -10.67 | QP       |
| 6   | *   | 0.5778  | 28.44            | 10.02             | 38.46            | 46.00 | -7.54  | AVG      |
| 7   |     | 1.6019  | 33.11            | 10.10             | 43.21            | 56.00 | -12.79 | QP       |
| 8   |     | 1.6019  | 26.02            | 10.10             | 36.12            | 46.00 | -9.88  | AVG      |
| 9   |     | 4.1417  | 31.94            | 10.06             | 42.00            | 56.00 | -14.00 | QP       |
| 10  |     | 4.1417  | 24.13            | 10.06             | 34.19            | 46.00 | -11.81 | AVG      |
| 11  |     | 16.0537 | 39.55            | 10.06             | 49.61            | 60.00 | -10.39 | QP       |
| 12  |     | 16.0537 | 30.83            | 10.06             | 40.89            | 50.00 | -9.11  | AVG      |





EUT: **BND501 BOBBY** Bluetooth Wireless Speaker **Model Name:** Temperature: 25 ℃ **Relative Humidity:** 55% AC 240V/60 Hz **Test Voltage:** Terminal: Neutral **Test Mode:** AC Charging with TX GFSK Mode 2402 MHz Remark: Only worse case is reported



| No. | Mk. | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | O∨er   |          |
|-----|-----|---------|------------------|-------------------|------------------|-------|--------|----------|
|     |     | MHz     | dBu∨             | dB                | dBuV             | dBu∀  | dB     | Detector |
| 1   |     | 0.2058  | 36.27            | 10.12             | 46.39            | 63.37 | -16.98 | QP       |
| 2   |     | 0.2058  | 32.51            | 10.12             | 42.63            | 53.37 | -10.74 | AVG      |
| 3   |     | 0.5777  | 34.58            | 10.02             | 44.60            | 56.00 | -11.40 | QP       |
| 4   |     | 0.5777  | 26.55            | 10.02             | 36.57            | 46.00 | -9.43  | AVG      |
| 5   |     | 0.9657  | 33.18            | 10.14             | 43.32            | 56.00 | -12.68 | QP       |
| 6   |     | 0.9657  | 25.69            | 10.14             | 35.83            | 46.00 | -10.17 | AVG      |
| 7   |     | 1.5859  | 32.36            | 10.10             | 42.46            | 56.00 | -13.54 | QP       |
| 8   |     | 1.5859  | 24.69            | 10.10             | 34.79            | 46.00 | -11.21 | AVG      |
| 9   |     | 10.7499 | 37.38            | 10.15             | 47.53            | 60.00 | -12.47 | QP       |
| 10  |     | 10.7499 | 27.96            | 10.15             | 38.11            | 50.00 | -11.89 | AVG      |
| 11  |     | 16.0059 | 39.61            | 10.06             | 49.67            | 60.00 | -10.33 | QP       |
| 12  | *   | 16.0059 | 31.13            | 10.06             | 41.19            | 50.00 | -8.81  | AVG      |



Page: 21 of 84

# 5. Radiated Emission Test

# 5.1 Test Standard and Limit

5.1.1 Test Standard FCC 15.209

5.1.2 Test Limit

#### Radiated Emission Limit (9 kHz~1000MHz)

| Frequency<br>(MHz | Field Strength (microvolt/meter) | Measurement Distance (meters) |
|-------------------|----------------------------------|-------------------------------|
| 0.009~0.490       | 2400/F(KHz)                      | 300                           |
| 0.490~1.705       | 24000/F(KHz)                     | 30                            |
| 1.705~30.0        | 30                               | 30                            |
| 30~88             | 100                              | 3                             |
| 88~216            | 150                              | 3                             |
| 216~960           | 200                              | 3                             |
| Above 960         | 500                              | 3                             |

# Radiated Emission Limit (Above 1000MHz)

| Frequency  | (dBuV/m)(at 3m) |         |  |  |
|------------|-----------------|---------|--|--|
| (MHz)      | Peak            | Average |  |  |
| Above 1000 | 74              | 54      |  |  |

#### Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level (dBuV/m)=20log Emission Level (uV/m)



Page: 22 of 84

# 5.2 Test Setup



Bellow 30MHz Test Setup



Bellow 1000MHz Test Setup



Page: 23 of 84



Above 1GHz Test Setup

#### 5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.



Report No.: TB-FCC144834 Page: 24 of 84

Page: 24 of

# 5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power in TX mode.

# 5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=1 KHz with Peak Detector for Average Values.

Test data please refer the following pages.



Page: 25 of 84

| EUT:          | Bluetooth Wireless Speaker  | Model Name :         | BND501 BOBBY |  |  |  |  |  |
|---------------|-----------------------------|----------------------|--------------|--|--|--|--|--|
| Temperature:  | 25 ℃                        | Relative Humidity:   | 55%          |  |  |  |  |  |
| Test Voltage: | DC 5V                       |                      | 187          |  |  |  |  |  |
| Ant. Pol.     | Horizontal                  | N Comments           |              |  |  |  |  |  |
| Test Mode:    | TX GFSK Mode 2402MH         | TX GFSK Mode 2402MHz |              |  |  |  |  |  |
| Remark:       | Only worse case is reported |                      |              |  |  |  |  |  |



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBu∀             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 41.1320  | 39.94            | -20.64            | 19.30            | 40.00  | -20.70 | peak     |
| 2   |     | 79.8003  | 41.37            | -23.28            | 18.09            | 40.00  | -21.91 | peak     |
| 3   |     | 180.0165 | 44.82            | -20.57            | 24.25            | 43.50  | -19.25 | peak     |
| 4   | *   | 299.3158 | 56.87            | -17.10            | 39.77            | 46.00  | -6.23  | peak     |
| 5   |     | 420.5803 | 48.98            | -12.90            | 36.08            | 46.00  | -9.92  | peak     |
| 6   |     | 599.3212 | 44.81            | -9.48             | 35.33            | 46.00  | -10.67 | peak     |

<sup>\*:</sup>Maximum data x:Over limit !:over margin



Page: 26 of 84

| EUT:                                   | Bluetooth Wireless Speaker Model Name : |                                                     |                                          | BND501 BOBBY                               |                                    |                                               |                                 |  |
|----------------------------------------|-----------------------------------------|-----------------------------------------------------|------------------------------------------|--------------------------------------------|------------------------------------|-----------------------------------------------|---------------------------------|--|
| Temperature:                           | 25 °C Relative Humidity:                |                                                     |                                          |                                            |                                    | 55%                                           |                                 |  |
| Гest Voltage:                          | DC 5\                                   | V                                                   |                                          | TEND                                       |                                    |                                               |                                 |  |
| Ant. Pol.                              | Vertic                                  | al                                                  | a W                                      |                                            | 1                                  |                                               |                                 |  |
| Test Mode:                             | TX GI                                   | FSK Mode                                            | 2402MH                                   | Z                                          | 33                                 | - W                                           | Miles.                          |  |
| Remark:                                | Only                                    | worse case                                          | e is repor                               | ted                                        |                                    | 3.1                                           |                                 |  |
| 80.0 dBuV/m                            |                                         |                                                     |                                          |                                            |                                    |                                               |                                 |  |
| 30 1 2                                 |                                         |                                                     |                                          |                                            |                                    | C 15C 3M Radiatio                             |                                 |  |
|                                        | may problem house                       | 3<br>************************************           | t Action with                            |                                            | MANAMAN X                          | Warthand Wild War                             | ry and the                      |  |
| 20 30.000 40 50                        | 60 70                                   | 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4             | (мнг                                     |                                            | 00 400                             | 500 600 700                                   |                                 |  |
| 30.000 40 50                           | 60 70<br>eq.                            | w/hw/\                                              | (MHz<br>Correc                           | ct Measure                                 | 00 400                             |                                               |                                 |  |
| 30.000 40 50                           | eq.                                     | 80 Reading                                          | Corre                                    | ct Measure                                 | 00 400                             | 500 600 700<br>Over                           |                                 |  |
| 30.000 40 50<br>No. Mk. Fr             | <b>eq</b> .                             | Reading<br>Level                                    | Corre<br>Facto                           | ct Measure<br>or ment<br>dBuV/m            | 00 400<br>Limit                    | 500 600 700  Over                             | 1000.00                         |  |
| No. Mk. Fr                             | eq.<br>⊬z<br>541                        | Reading<br>Level                                    | Corre<br>Facto                           | ot Measure<br>or ment<br>dBuV/m<br>3 26.38 | 00 400<br>Limit                    | Over dB 0 -13.62                              | Detecto                         |  |
| No. Mk. Fr                             | eq.<br>Hz<br>541<br>347                 | Reading<br>Level<br>dBuV<br>44.21                   | Correct Factor dB/m                      | dBuV/m 3 26.38 2 24.72                     | 00 400<br>Limit<br>dBuV/r<br>40.00 | Over m dB 0 -13.62 0 -15.28                   | Detector peak                   |  |
| No. Mk. Fr  M  1 * 36.2 2 40.1         | eq. Hz 541 347 870                      | Reading<br>Level<br>dBuV<br>44.21<br>44.94          | Correct Factor dB/m -17.83               | dBuV/m 3 26.38 2 24.72 5 21.71             | Limit  40.00 40.00                 | Over m dB 0 -13.62 0 -21.79                   | Detector peak peak              |  |
| No. Mk. Fr  Mi  1 * 36.2 2 40.1 3 92.7 | eq. Hz 541 347 870 3875                 | Reading<br>Level<br>dBuV<br>44.21<br>44.94<br>44.16 | Correct Factor dB/m -17.83 -20.22 -22.45 | dBuV/m 3 26.38 2 24.72 5 21.71 6 19.40     | Limit  dBuV/r  40.00  43.50        | Over m dB 0 -13.62 0 -15.28 0 -21.79 0 -24.10 | Detecto<br>peak<br>peak<br>peak |  |



Page: 27 of 84

| EUT:          | Bluetooth Wireless Speaker  | Model Name :       | BND501 BOBBY |  |  |  |  |
|---------------|-----------------------------|--------------------|--------------|--|--|--|--|
| Temperature:  | 25 ℃                        | Relative Humidity: | 55%          |  |  |  |  |
| Test Voltage: | DC 5V                       |                    | 133          |  |  |  |  |
| Ant. Pol.     | Horizontal                  | N Control          |              |  |  |  |  |
| Test Mode:    | TX π /4-DQPSK Mode 2402MHz  |                    |              |  |  |  |  |
| Remark:       | Only worse case is reported |                    |              |  |  |  |  |



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | O∨er   |          |
|-----|-----|----------|------------------|-------------------|------------------|--------|--------|----------|
|     |     | MHz      | dBu∀             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1   |     | 41.1319  | 40.94            | -20.64            | 20.30            | 40.00  | -19.70 | peak     |
| 2   |     | 180.0165 | 44.32            | -20.57            | 23.75            | 43.50  | -19.75 | peak     |
| 3   | *   | 299.3158 | 56.37            | -17.10            | 39.27            | 46.00  | -6.73  | peak     |
| 4   |     | 309.9977 | 48.62            | -16.70            | 31.92            | 46.00  | -14.08 | peak     |
| 5   |     | 420.5803 | 48.49            | -12.91            | 35.58            | 46.00  | -10.42 | peak     |
| 6   |     | 599.3211 | 44.31            | -9.48             | 34.83            | 46.00  | -11.17 | peak     |

<sup>\*:</sup>Maximum data x:Over limit !:over margin



Page: 28 of 84

| UT:                                                  | Bluetoot                          | h Wireless Speake                                                                              | Model Name                                                      | :                                        | BND501 BO                                | BBY                      |
|------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------|------------------------------------------|--------------------------|
| emperature:                                          | erature: 25 °C Relative Humidity: |                                                                                                |                                                                 |                                          |                                          | 4                        |
| est Voltage:                                         |                                   | - N                                                                                            | 19.77                                                           |                                          |                                          |                          |
| nt. Pol.                                             | 0.00                              | 6.83                                                                                           |                                                                 |                                          |                                          |                          |
| est Mode:                                            | TX π /4                           | -DQPSK Mode                                                                                    | 2402MHz                                                         | 3 6                                      |                                          | 1777                     |
| emark:                                               | Only wo                           | orse case is rep                                                                               | orted                                                           |                                          | O BA                                     |                          |
| 80.0 dBuV/m                                          |                                   |                                                                                                |                                                                 |                                          |                                          |                          |
| 30 1 2 3                                             |                                   | 4<br>*                                                                                         | 5                                                               | 6                                        | 15C 3M Radiation<br>Margin -6            |                          |
| 20 20 40 50                                          | 50 70 8                           |                                                                                                |                                                                 |                                          | 500 S00 Z00                              |                          |
| 30.000 40 50                                         |                                   |                                                                                                | 4Hz) 300                                                        |                                          | 600 600 700                              | 1000.0                   |
| 30.000 40 50                                         |                                   | Reading Cor                                                                                    | 4Hz) 300                                                        |                                          |                                          |                          |
| 30.000 40 50<br>No. Mk. Fr                           | F                                 | Reading Cor                                                                                    | rect Measure-<br>ctor ment                                      | 400 5                                    | 000 600 700<br>Over                      |                          |
| 30.000 40 50<br>No. Mk. Fr                           | Feq.                              | Reading Cor<br>Level Fac                                                                       | rect Measure-<br>ctor ment                                      | 400 5<br>Limit                           | 000 600 700<br>Over                      | 1000.0                   |
| No. Mk. Fr                                           | Feq.<br>Hz                        | Reading Cor<br>Level Fac                                                                       | rect Measure-<br>ctor ment dBuV/m .83 26.88                     | 400 5  Limit  dBuWm                      | 000 600 700  Over                        | 1000.0                   |
| No. Mk. Fr                                           | Feq.<br>Hz<br>2541<br>347         | Reading Cor<br>Level Fac<br>dBuV dB/<br>44.71 -17.                                             | rect Measure-<br>ctor ment dBuV/m 83 26.88 .22 25.22            | 400 5  Limit  dBuV/m  40.00              | Over  dB  -13.12                         | 1000.0                   |
| No. Mk. Fr  M  1 * 36.2 2 40.1                       | Feq.<br>Hz<br>2541<br>347<br>(496 | Reading Corn<br>Level Face<br>dBuV dB/<br>44.71 -17.<br>45.44 -20.                             | rect Measure-<br>ctor ment dBuV/m .83 26.88 .22 25.22 .32 23.98 | 400 5 Limit dBuV/m 40.00 40.00           | Over  dB  -13.12  -14.78                 | Detection peal peal      |
| No. Mk. Fr  M  1 * 36.2 2 40.1 3 42.7 4 92.7         | Feq. Hz 2541 347 496              | Reading Corn<br>Level Face<br>dBuV dB/<br>44.71 -17.<br>45.44 -20.<br>45.30 -21.<br>45.16 -22. | rect Measurement Max 26.88 22 25.22 32 23.98 45 22.71           | 400 5 Limit  dBuV/m  40.00  40.00  43.50 | Over  dB  -13.12  -14.78  -16.02  -20.79 | Detection peal peal peal |
| No. Mk. Fr  M  1 * 36.2 2 40.1 3 42.7 4 92.7 5 176.8 | Feq.<br>Hz<br>2541<br>347<br>(496 | Reading Corn<br>Level Face<br>dBuV dB/<br>44.71 -17.<br>45.44 -20.<br>45.30 -21.               | rect Measurement Max 26.88 22 25.22 32 23.98 45 22.71 76 20.40  | 400 5 Limit dBuV/m 40.00 40.00           | Over  dB  -13.12  -14.78  -16.02         | Detection peal peal      |



Page: 29 of 84

| EUT:          | Bluetooth Wireless Speaker | Model Name :       | BND501 BOBBY |  |  |  |  |
|---------------|----------------------------|--------------------|--------------|--|--|--|--|
| Temperature:  | 25 ℃                       | Relative Humidity: | 55%          |  |  |  |  |
| Test Voltage: | DC 3.7V                    |                    | AB19 -       |  |  |  |  |
| Ant. Pol.     | Horizontal                 | A PARTIES          |              |  |  |  |  |
| Test Mode:    | TX GFSK Mode 2402MH        | z                  | - TULL       |  |  |  |  |
| Remark:       |                            |                    |              |  |  |  |  |



| No | . Mk | . Freq.  | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|----|------|----------|------------------|-------|------------------|--------|--------|----------|
|    |      | MHz      | dBu∨             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |      | 4804.150 | 47.13            | 13.44 | 60.57            | 74.00  | -13.43 | peak     |
| 2  | *    | 4804.530 | 36.20            | 13.44 | 49.64            | 54.00  | -4.36  | AVG      |



Page: 30 of 84

| EUT:                                                                                  | Bluetooth Wireless Speaker | Model Name :       | BND501 BOBBY        |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------|----------------------------|--------------------|---------------------|--|--|--|--|--|--|
| Temperature:                                                                          | 25 ℃                       | Relative Humidity: | 55%                 |  |  |  |  |  |  |
| Test Voltage:                                                                         | DC 3.7V                    | DC 3.7V            |                     |  |  |  |  |  |  |
| Ant. Pol.                                                                             | Vertical                   | W Co               |                     |  |  |  |  |  |  |
| Test Mode:                                                                            | TX GFSK Mode 2402MHz       |                    | THE PERSON NAMED IN |  |  |  |  |  |  |
| Remark:  No report for the emission which more than 10 dB below the prescribed limit. |                            |                    |                     |  |  |  |  |  |  |



| No | . Mk | . Freq.  | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|----|------|----------|------------------|-------|------------------|--------|--------|----------|
|    |      | MHz      | dBu∨             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *    | 4804.350 | 36.11            | 13.44 | 49.55            | 54.00  | -4.45  | AVG      |
| 2  |      | 4804.655 | 47.27            | 13.44 | 60.71            | 74.00  | -13.29 | peak     |



Page: 31 of 84

| Bluetooth Wireless Speaker                   | Model Name :                                                            | BND501 BOBBY                                                                                                          |  |  |  |  |  |
|----------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 25 ℃                                         | Relative Humidity:                                                      | 55%                                                                                                                   |  |  |  |  |  |
| DC 3.7V                                      |                                                                         |                                                                                                                       |  |  |  |  |  |
| Horizontal                                   |                                                                         |                                                                                                                       |  |  |  |  |  |
| TX GFSK Mode 2441MHz                         |                                                                         | CHILL STREET                                                                                                          |  |  |  |  |  |
| No report for the emission prescribed limit. | which more than 10 dB                                                   | below the                                                                                                             |  |  |  |  |  |
|                                              | 25 ℃ DC 3.7V Horizontal TX GFSK Mode 2441MHz No report for the emission | 25 °C Relative Humidity:  DC 3.7V  Horizontal  TX GFSK Mode 2441MHz  No report for the emission which more than 10 dB |  |  |  |  |  |



| N | o. Mk | . Freq.  | Reading<br>Level |       | Measure-<br>ment | Limit  | O∨er   |          |
|---|-------|----------|------------------|-------|------------------|--------|--------|----------|
|   |       | MHz      | dBu∀             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1 |       | 4882.338 | 46.61            | 13.90 | 60.51            | 74.00  | -13.49 | peak     |
| 2 | *     | 4882.545 | 35.57            | 13.90 | 49.47            | 54.00  | -4.53  | AVG      |



Page: 32 of 84

| EUT:          | Bluetooth Wireless Speaker                   | Model Name :          | BND501 BOBBY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|---------------|----------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Temperature:  | 25 ℃                                         | Relative Humidity:    | 55%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| Test Voltage: | DC 3.7V                                      | DC 3.7V               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Ant. Pol.     | Vertical                                     | W Co                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| Test Mode:    | TX GFSK Mode 2441MHz                         | CU1372                | LINE TO SERVICE STATE OF THE PERSON AND PERS |  |  |  |  |  |
| Remark:       | No report for the emission prescribed limit. | which more than 10 dB | below the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |



| N | lo. | Mk. | Freq.    | _     | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|---|-----|-----|----------|-------|-------------------|------------------|--------|--------|----------|
|   |     |     | MHz      | dBu∀  | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1 |     | *   | 4882.355 | 35.61 | 13.90             | 49.51            | 54.00  | -4.49  | AVG      |
| 2 |     |     | 4882.625 | 46.59 | 13.90             | 60.49            | 74.00  | -13.51 | peak     |



Page: 33 of 84

| EUT:          | Bluetooth Wireless Speaker                   | Model Name :            | BND501 BOBBY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------|----------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Temperature:  | 25 ℃                                         | Relative Humidity:      | 55%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Test Voltage: | DC 3.7V                                      |                         | TO SERVICE STATE OF THE SERVIC |
| Ant. Pol.     | Horizontal                                   | The same of the         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Test Mode:    | TX GFSK Mode 2480MH                          | z                       | - Chillian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Remark:       | No report for the emission prescribed limit. | n which more than 10 dE | 3 below the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



| No | o. Mk | . Freq.  | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|----|-------|----------|------------------|-------|------------------|--------|--------|----------|
|    |       | MHz      | dBu∀             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *     | 4960.478 | 35.02            | 14.36 | 49.38            | 54.00  | -4.62  | AVG      |
| 2  |       | 4960.514 | 46.22            | 14.36 | 60.58            | 74.00  | -13.42 | peak     |



Page: 34 of 84

| EUT:          | Bluetooth Wireless Speaker                  | Model Name :           | BND501 BOBBY |
|---------------|---------------------------------------------|------------------------|--------------|
| Temperature:  | 25 ℃                                        | Relative Humidity:     | 55%          |
| Test Voltage: | DC 3.7V                                     |                        |              |
| Ant. Pol.     | Vertical                                    | The same of the        |              |
| Test Mode:    | TX GFSK Mode 2480MH                         | z                      | THU          |
| Remark:       | No report for the emissio prescribed limit. | n which more than 10 o | dB below the |



| No | o. Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|-------|----------|------------------|-------------------|------------------|--------|--------|----------|
|    |       | MHz      | dBu∨             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |       | 4960.460 | 46.42            | 14.36             | 60.78            | 74.00  | -13.22 | peak     |
| 2  | *     | 4960.780 | 35.49            | 14.36             | 49.85            | 54.00  | -4.15  | AVG      |



Page: 35 of 84

| Bluetooth Wireless Speaker                                 | Model Name :                                                             | BND501 BOBBY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 25 ℃                                                       | Relative Humidity:                                                       | 55%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| DC 3.7V                                                    |                                                                          | 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Horizontal                                                 | A VI                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| TX π/4-DQPSK Mode 24                                       | 402MHz                                                                   | THE PARTY OF THE P |  |  |  |  |
| No report for the emission which more than 10 dB below the |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| prescribed limit.                                          |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 1                                                          | 25 °C DC 3.7V Horizontal ΓX π/4-DQPSK Mode 2- No report for the emission | Relative Humidity:  DC 3.7V  Horizontal  ΓΧ π /4-DQPSK Mode 2402MHz  No report for the emission which more than 10 dE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |



| No. Mk. |   | κ. Freq. | Reading<br>Level |       | Measure-<br>ment | Limit  | O∨er   |          |
|---------|---|----------|------------------|-------|------------------|--------|--------|----------|
|         |   | MHz      | dBu∀             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1       | * | 4804.365 | 36.14            | 13.44 | 49.58            | 54.00  | -4.42  | AVG      |
| 2       |   | 4804.625 | 47.25            | 13.44 | 60.69            | 74.00  | -13.31 | peak     |



Page: 36 of 84

| EUT:          | Bluetooth Wireless Speaker                   | Model Name :          | BND501 BOBBY    |
|---------------|----------------------------------------------|-----------------------|-----------------|
| Temperature:  | 25 ℃                                         | Relative Humidity:    | 55%             |
| Test Voltage: | DC 3.7V                                      | TV TO                 | (34)            |
| Ant. Pol.     | Vertical                                     |                       |                 |
| Test Mode:    | TX π/4-DQPSK Mode 24                         | 02MHz                 | LINE TO SERVICE |
| Remark:       | No report for the emission prescribed limit. | which more than 10 dB | below the       |



| No | . Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz      | dBu∨             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *    | 4804.335 | 36.23            | 13.44             | 49.67            | 54.00  | -4.33  | AVG      |
| 2  |      | 4804.485 | 47.44            | 13.44             | 60.88            | 74.00  | -13.12 | peak     |



Page: 37 of 84

| EUT:          | Bluetooth Wireless Speaker                                                   | Model Name :       | BND501 BOBBY |  |  |  |  |  |
|---------------|------------------------------------------------------------------------------|--------------------|--------------|--|--|--|--|--|
| Temperature:  | 25 ℃                                                                         | Relative Humidity: | 55%          |  |  |  |  |  |
| Test Voltage: | DC 3.7V                                                                      | DC 3.7V            |              |  |  |  |  |  |
| Ant. Pol.     | Horizontal                                                                   |                    |              |  |  |  |  |  |
| Test Mode:    | TX π/4-DQPSK Mode 24                                                         | 41MHz              | - THURS      |  |  |  |  |  |
| Remark:       | No report for the emission which more than 10 dB below the prescribed limit. |                    |              |  |  |  |  |  |



| No | . Mk | . Freq.  | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|----|------|----------|------------------|-------|------------------|--------|--------|----------|
|    |      | MHz      | dBu∨             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *    | 4882.358 | 35.88            | 13.90 | 49.78            | 54.00  | -4.22  | AVG      |
| 2  |      | 4882.685 | 46.94            | 13.90 | 60.84            | 74.00  | -13.16 | peak     |



Page: 38 of 84

| EUT:          | Bluetooth Wireless Speaker                                                   | Model Name : | BND501 BOBBY |  |  |  |  |
|---------------|------------------------------------------------------------------------------|--------------|--------------|--|--|--|--|
| Temperature:  | 25 ℃ Relative Humidity: 55%                                                  |              |              |  |  |  |  |
| Test Voltage: | DC 3.7V                                                                      |              |              |  |  |  |  |
| Ant. Pol.     | Vertical                                                                     |              |              |  |  |  |  |
| Test Mode:    | TX π/4-DQPSK Mode 2441                                                       | MHz          | LINE .       |  |  |  |  |
| Remark:       | No report for the emission which more than 10 dB below the prescribed limit. |              |              |  |  |  |  |



| No | . Mk | . Freq.  | _     |       | Measure-<br>ment | Limit  | Over   |          |
|----|------|----------|-------|-------|------------------|--------|--------|----------|
|    |      | MHz      | dBu∨  | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |      | 4882.575 | 46.68 | 13.90 | 60.58            | 74.00  | -13.42 | peak     |
| 2  | *    | 4882.785 | 35.87 | 13.90 | 49.77            | 54.00  | -4.23  | AVG      |



Page: 39 of 84

| EUT:          | Bluetooth Wireless Speaker                       | Model Name :                                               | BND501 BOBBY |  |  |  |  |
|---------------|--------------------------------------------------|------------------------------------------------------------|--------------|--|--|--|--|
| Temperature:  | 25 ℃                                             | Relative Humidity:                                         | 55%          |  |  |  |  |
| Test Voltage: | DC 3.7V                                          | DC 3.7V                                                    |              |  |  |  |  |
| Ant. Pol.     | Horizontal                                       |                                                            |              |  |  |  |  |
| Test Mode:    | TX π/4-DQPSK Mode 2480                           | MHz                                                        | CHILL STREET |  |  |  |  |
| Remark:       | No report for the emission who prescribed limit. | No report for the emission which more than 10 dB below the |              |  |  |  |  |



| No | . Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|----------|------------------|-------------------|------------------|--------|--------|----------|
|    |      | MHz      | dBu∨             | dB/m              | dBuV/m           | dBuV/m | dB     | Detector |
| 1  | *    | 4960.330 | 35.15            | 14.36             | 49.51            | 54.00  | -4.49  | AVG      |
| 2  |      | 4960.480 | 46.02            | 14.36             | 60.38            | 74.00  | -13.62 | peak     |



Page: 40 of 84

| EUT:          | Bluetooth Wireless Speaker                      | Model Name :           | BND501 BOBBY |  |  |  |  |
|---------------|-------------------------------------------------|------------------------|--------------|--|--|--|--|
| Temperature:  | 25 ℃                                            | Relative Humidity:     | 55%          |  |  |  |  |
| Test Voltage: | DC 3.7V                                         |                        |              |  |  |  |  |
| Ant. Pol.     | Vertical                                        |                        |              |  |  |  |  |
| Test Mode:    | TX π/4-DQPSK Mode 2480I                         | MHz                    | LITTLE OF    |  |  |  |  |
| Remark:       | No report for the emission wh prescribed limit. | ich more than 10 dB be | elow the     |  |  |  |  |



| No | . Mk | Freq.    | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|----|------|----------|------------------|-------|------------------|--------|--------|----------|
|    |      | MHz      | dBu∀             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |      | 4960.250 | 46.41            | 14.36 | 60.77            | 74.00  | -13.23 | peak     |
| 2  | *    | 4960.650 | 35.30            | 14.36 | 49.66            | 54.00  | -4.34  | AVG      |



Page: 41 of 84

# 6. Restricted Bands Requirement

#### 6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.209 FCC Part 15.205

6.1.2 Test Limit

| Restricted Frequency | Class B (dE | BuV/m)(at 3m) |
|----------------------|-------------|---------------|
| Band<br>(MHz)        | Peak        | Average       |
| 2310 ~2390           | 74          | 54            |
| 2483.5 ~2500         | 74          | 54            |

Note: All restriction bands have been tested, only the worst case is reported.

### 6.2 Test Setup



#### 6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.



Report No.: TB-FCC144834
Page: 42 of 84

(4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

### 6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

### 6.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=1 KHz with Peak Detector for Average Values.

All restriction bands have been tested, only the worst case is reported.



Page: 43 of 84

# (1) Radiation Test

| EUT:          | Bluetooth Wireless Speaker | Model Name :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BND501 BOBBY |
|---------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Temperature:  | <b>25</b> ℃                | Relative Humidity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55%          |
| Test Voltage: | DC 3.7V                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |
| Ant. Pol.     | Horizontal                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | THU LE       |
| Test Mode:    | TX GFSK Mode 2402MHz       | The same of the sa |              |
| Remark:       | N/A                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |



| No | o. Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit      | Over       |          |
|----|-------|----------|------------------|-------------------|------------------|------------|------------|----------|
|    |       | MHz      | dBu∀             | dB/m              | dBuV/m           | dBuV/m     | dB         | Detector |
| 1  |       | 2390.000 | 48.80            | 0.77              | 49.57            | 74.00      | -24.43     | peak     |
| 2  |       | 2390.000 | 36.99            | 0.77              | 37.76            | 54.00      | -16.24     | AVG      |
| 3  | Х     | 2401.900 | 88.82            | 0.82              | 89.64            | Fundamenta | I Frequeny | peak     |
| 4  | *     | 2402.100 | 86.85            | 0.82              | 87.67            | Fundamenta | I Frequeny | AVG      |



Page: 44 of 84

| EUT:          | Bluetooth Wireless Speaker | Model Name :       | BND501 BOBBY |
|---------------|----------------------------|--------------------|--------------|
| Temperature:  | 25 ℃                       | Relative Humidity: | 55%          |
| Test Voltage: | DC 3.7V                    | The same           | 18.0         |
| Ant. Pol.     | Vertical                   |                    |              |
| Test Mode:    | TX GFSK Mode 2402MHz       |                    | LITTLE OF    |
| Remark:       | N/A                        |                    |              |



| No. | Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit       | Over     |          |
|-----|----|----------|------------------|-------------------|------------------|-------------|----------|----------|
|     |    | MHz      | dBu∀             | dB/m              | dBuV/m           | dBuV/m      | dB       | Detector |
| 1   |    | 2390.000 | 45.23            | 0.77              | 46.00            | 74.00       | -28.00   | peak     |
| 2   |    | 2390.000 | 33.95            | 0.77              | 34.72            | 54.00       | -19.28   | AVG      |
| 3   | *  | 2402.100 | 83.95            | 0.82              | 84.77            | Fundamental | Frequeny | AVG      |
| 4   | Χ  | 2402.200 | 84.86            | 0.82              | 85.68            | Fundamental | Frequeny | peak     |



Page: 45 of 84

| EUT:          | Bluetooth Wireless Speaker | Model Name :       | BND501 BOBBY |
|---------------|----------------------------|--------------------|--------------|
| Temperature:  | 25 ℃                       | Relative Humidity: | 55%          |
| Test Voltage: | DC 3.7V                    |                    | 33           |
| Ant. Pol.     | Horizontal                 |                    |              |
| Test Mode:    | TX GFSK Mode 2480 MHz      |                    | LITTLE OF    |
| Remark:       | N/A                        | The same           |              |



| N | o. Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit       | Over     |          |
|---|-------|----------|------------------|-------------------|------------------|-------------|----------|----------|
|   |       | MHz      | dBu∀             | dB/m              | dBuV/m           | dBuV/m      | dB       | Detector |
| 1 | Х     | 2479.900 | 89.09            | 1.15              | 90.24            | Fundamental | Frequeny | peak     |
| 2 | *     | 2480.000 | 88.02            | 1.15              | 89.17            | Fundamental | Frequeny | AVG      |
| 3 |       | 2483.500 | 53.90            | 1.17              | 55.07            | 74.00       | -18.93   | peak     |
| 4 |       | 2483.500 | 47.30            | 1.17              | 48.47            | 54.00       | -5.53    | AVG      |



Page: 46 of 84

| EUT:          | Bluetooth Wireless Speaker | Model Name :       | BND501 BOBBY |
|---------------|----------------------------|--------------------|--------------|
| Temperature:  | 25 ℃                       | Relative Humidity: | 55%          |
| Test Voltage: | DC 3.7V                    |                    | 13.0         |
| Ant. Pol.     | Vertical                   |                    |              |
| Test Mode:    | TX GFSK Mode 2480 MHz      | CO 133             | LITTLE OF    |
| Remark:       | N/A                        |                    |              |



| No | . Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit       | O∨er     |          |
|----|------|----------|------------------|-------------------|------------------|-------------|----------|----------|
|    |      | MHz      | dBu∀             | dB/m              | dBuV/m           | dBuV/m      | dB       | Detector |
| 1  | Χ    | 2479.800 | 85.39            | 1.15              | 86.54            | Fundamental | Frequeny | peak     |
| 2  | *    | 2480.000 | 85.94            | 1.15              | 87.09            | Fundamental | Frequeny | AVG      |
| 3  |      | 2483.500 | 53.46            | 1.17              | 54.63            | 74.00       | -19.37   | peak     |
| 4  |      | 2483.500 | 45.27            | 1.17              | 46.44            | 54.00       | -7.56    | AVG      |



Page: 47 of 84

| EUT:          | Bluetooth Wireless Speaker | Model Name :       | BND501 BOBBY |
|---------------|----------------------------|--------------------|--------------|
| Temperature:  | 25 ℃                       | Relative Humidity: | 55%          |
| Test Voltage: | DC 3.7V                    | The same           | 33           |
| Ant. Pol.     | Horizontal                 |                    |              |
| Test Mode:    | TX π /4-DQPSK Mode 2402N   | 1Hz                | LINE TO      |
| Remark:       | N/A                        | The same           |              |



| No. | Mk. | Freq.    | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit       | O∨er     |          |
|-----|-----|----------|------------------|-------------------|------------------|-------------|----------|----------|
|     |     | MHz      | dBu∨             | dB/m              | dBuV/m           | dBuV/m      | dB       | Detector |
| 1   |     | 2390.000 | 54.48            | 0.77              | 55.25            | 74.00       | -18.75   | peak     |
| 2   |     | 2390.000 | 41.30            | 0.77              | 42.07            | 54.00       | -11.93   | AVG      |
| 3   | Х   | 2401.900 | 87.31            | 0.82              | 88.13            | Fundamental | Frequeny | peak     |
| 4   | *   | 2402.100 | 83.75            | 0.82              | 84.57            | Fundamental | Frequeny | AVG      |



Page: 48 of 84

| EUT:          | Bluetooth Wireless Speaker | Model Name :       | BND501 BOBBY |
|---------------|----------------------------|--------------------|--------------|
| Temperature:  | 25 ℃                       | Relative Humidity: | 55%          |
| Test Voltage: | DC 3.7V                    |                    |              |
| Ant. Pol.     | Vertical                   |                    |              |
| Test Mode:    | TX π /4-DQPSK Mode 2402N   | lHz                |              |
| Remark:       | N/A                        |                    |              |



| No. | Mk. | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit       | Over       |          |
|-----|-----|----------|------------------|-------------------|------------------|-------------|------------|----------|
|     |     | MHz      | dBu∨             | dB/m              | dBuV/m           | dBuV/m      | dB         | Detector |
| 1   |     | 2390.000 | 48.54            | 0.77              | 49.31            | 74.00       | -24.69     | peak     |
| 2   |     | 2390.000 | 35.45            | 0.77              | 36.22            | 54.00       | -17.78     | AVG      |
| 3   | *   | 2402.100 | 85.34            | 0.82              | 86.16            | Fundamental | I Frequeny | AVG      |
| 4   | Х   | 2402.200 | 86.87            | 0.82              | 87.69            | Fundamental | I Frequeny | peak     |



Page: 49 of 84

| EUT:          | Bluetooth Wireless Speaker | Model Name :       | BND501 BOBBY |
|---------------|----------------------------|--------------------|--------------|
| Temperature:  | 25 ℃                       | Relative Humidity: | 55%          |
| Test Voltage: | DC 3.7V                    |                    | 180          |
| Ant. Pol.     | Horizontal                 |                    |              |
| Test Mode:    | TX π /4-DQPSK Mode 2480M   | Hz                 | LITTLE OF    |
| Remark:       | N/A                        |                    |              |



| No | . Mk | . Freq.  | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit      | Over       |          |
|----|------|----------|------------------|-------------------|------------------|------------|------------|----------|
|    |      | MHz      | dBu∨             | dB/m              | dBuV/m           | dBuV/m     | dB         | Detector |
| 1  | Х    | 2479.900 | 86.23            | 1.15              | 87.38            | Fundamenta | I Frequeny | peak     |
| 2  | *    | 2480.100 | 83.11            | 1.15              | 84.26            | Fundamenta | I Frequeny | AVG      |
| 3  |      | 2483.500 | 63.14            | 1.17              | 64.31            | 74.00      | -9.69      | peak     |
| 4  |      | 2483.500 | 48.11            | 1.17              | 49.28            | 54.00      | -4.72      | AVG      |



Page: 50 of 84

| EUT:    |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Blu         | etoot         | h Wire        | less S   | Speak | er           |     | Мо    | del 1                | Nan      | ne :            |        |        | BND           | 01 BO    | BBY       |
|---------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|---------------|----------|-------|--------------|-----|-------|----------------------|----------|-----------------|--------|--------|---------------|----------|-----------|
| Tempe   | ratur                          | e:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25          | $^{\circ}$ C  |               |          |       |              |     | Re    | lativ                | е Н      | umi             | dity   | :      | 55%           | MA       | ٤         |
| Test Vo | oltage                         | <b>)</b> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DC          | 3.7           | V             | والإيا   |       |              | S.  |       |                      |          |                 | A      | 1      | N             |          |           |
| Ant. Po | ol.                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ve          | rtical        |               |          | (6)   |              | y   | ð     |                      | A        |                 |        | Į.     |               |          |           |
| Test M  | ode:                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TX          | π/4           | 4-DQI         | PSK      | Mod   | e 248        | 30N | Hz    | M'                   | 'n.      |                 |        | _      | - 6           | MIL      |           |
| Remar   | k:                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A         | A             |               |          |       | A.           | L   | N     | 34                   |          |                 | 1      |        |               |          | K         |
| 100.0   | dBuV/m                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |               |               |          |       |              |     |       |                      |          |                 |        |        |               |          |           |
|         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |               |               |          |       |              |     |       |                      |          |                 |        |        |               |          |           |
|         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2<br>X<br>X |               |               |          |       |              |     |       |                      |          |                 |        |        |               |          | 1         |
|         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ă           |               | -             |          |       |              |     |       |                      |          | (B              | F) FCC | PAR    | r 15C (P      | EAK)     | +         |
|         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |               |               |          |       |              |     |       |                      |          |                 |        |        | -             |          |           |
|         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3           |               |               |          |       |              |     |       |                      |          |                 |        |        |               |          |           |
|         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4           |               |               |          |       |              |     |       |                      |          | (               | RF) FC | C PAI  | RT 15C (      | AVG)     | 4         |
| 50      |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X           |               |               |          |       |              |     |       |                      |          |                 |        |        |               |          |           |
| ~~      | A STATE OF THE PERSON NAMED IN | anno de la companya della companya d |             | Marine Marine | بريسيهمي      | ******** | -     | **********   |     |       |                      |          |                 |        |        |               |          | -         |
|         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |               |               |          |       |              |     |       |                      |          |                 | *****  |        | Market Market | hymm-ne. | _         |
|         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |               |               |          |       |              |     |       |                      |          |                 |        |        |               |          |           |
|         |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |               |               |          |       |              |     |       |                      |          |                 |        |        |               |          |           |
| 0.0     |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |               |               |          |       |              |     |       |                      |          |                 |        |        |               |          |           |
|         | 000 247                        | 2.00 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2482.0      | 0 2           | 492.00        | 2502     | 2.00  | 2512.0       | 0   | 2522  | 2.00                 | 2532     | .00             | 254    | 2.00   |               | 2562.0   | <br>0 MH: |
| No.     | Mk.                            | Fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | eq.         | F             | Readi<br>Leve | _        |       | rect<br>ctor | Λ   |       | sure<br>ent          | <u>-</u> | Lin             | nit    | (      | O∨er          |          |           |
| M       |                                | Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | dBu∀          |               | dE       | ∛m    |              | dBı | uV/m  |                      | dΒι      | ıV/m            | l      | dB     | Det           | ector    |           |
| 1       | *                              | 2480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .000        | )             | 80.9          | 1        | 1.    | 15           |     | 82.06 |                      | F        | Fundamental Fre |        | equeny | A             | VG       |           |
| 2       |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200         |               |               | 1        | 15    | 85.17        |     |       | Fundamental Frequeny |          |                 | peak   |        |               |          |           |

1.17

1.17

74.00

54.00

62.33

47.96

-11.67

-6.04

peak

AVG

**Emission Level= Read Level+ Correct Factor** 

61.16

46.79

2483.500

2483.500

4





(2) Conducted Test





EUT: Bluetooth Wireless Speaker **Model Name: BND501 BOBBY** Temperature: 25 ℃ **Relative Humidity:** 55% DC 3.7V **Test Voltage: Test Mode: GFSK Hopping Mode** Remark: N/A \*RBW 100 kHz \*VBW 300 kHz Center 2.362 GHz Span 100 MHz Date: 21.JUL.2015 14:23:20 **%** \*RBW 100 kHz Marker 1 [T1 ]

\*VBW 300 kHz -2.00 dBm
SWT 10 ms 2.476000000 GHz Ref 10 dBm \* Att 25 dB Date: 21.JUL.2015 14:30:58



EUT: **BND501 BOBBY** Bluetooth Wireless Speaker **Model Name:** Temperature: 25 ℃ **Relative Humidity:** 55% **Test Voltage:** DC 3.7V **Test Mode:** TX  $\pi$  /4-DQPSK Mode 2402MHz / 2480 MHz Remark: N/A \*RBW 100 kHz Marker 1 [T1 ] \*VBW 300 kHz -9.: \*Att 25 dB Span 100 MHz Center 2.363 GHz 10 MHz/ Date: 21.JUL.2015 16:13:35 **%** \*RBW 100 kHz Marker 1 [T1 ]

\*VBW 300 kHz -10.01 dBm
SWT 10 ms 2.480000000 GHz 10 dBm \*Att 25 dB Ref 10 Offset 3 [T1 -53 1 PK MAXH 00000000 GHz 4 [T1 -51 Center 2.52 GHz Date: 21.JUL.2015 16:07:50



Page: 54 of 84





Page: 55 of 84

# 7. Number of Hopping Channel

### 7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247 (a)(1)

7.1.2 Test Limit

| Section | Test Item                    | Limit |
|---------|------------------------------|-------|
| 15.247  | Number of Hopping<br>Channel | >15   |

## 7.2 Test Setup



### 7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=100 KHz, VBW=100 KHz, Sweep time= Auto.

## 7.4 EUT Operating Condition

The EUT was set to the Hopping Mode by the Customer.

### 7.5 Test Data



Page: 56 of 84

| EUT:          | Bluetooth Wireless Speaker | Model Name :       | BND501 BOBBY |
|---------------|----------------------------|--------------------|--------------|
| Temperature:  | 25 ℃                       | Relative Humidity: | 55%          |
| Test Voltage: | DC 3.7V                    |                    | 18.0         |
| Test Mode:    | Hopping Mode (GFSK/ π/4-I  | DQPSK)             |              |

| Frequency Range | Quantity of Hopping<br>Channel | Limit |
|-----------------|--------------------------------|-------|
| 2402MHz~2480MHz | 79                             | >15   |
| 2402WH2~2460WH2 | 79                             | >15   |

#### **GFSK Mode**



Date: 21.JUL.2015 14:34:15

### 8-DPSK Mode





Page: 57 of 84

# 8. Average Time of Occupancy

#### 8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (a)(1)

8.1.2 Test Limit

| Section               | Test Item       | Limit   |
|-----------------------|-----------------|---------|
| 15.247(a)(1)/ RSS-210 | Average Time of | 0.4.202 |
| Annex 8(A8.1d)        | Occupancy       | 0.4 sec |

## 8.2 Test Setup



#### 8.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting: RBW=1MHz, VBW=1MHz.
- (3) Use video trigger with the trigger level set to enable triggering only on full pulses.
- (4) Sweep Time is more than once pulse time.
- (5) Set the center frequency on any frequency would be measure and set the frequency span to zero.
- (6) Measure the maximum time duration of one single pulse.
- (7) Set the EUT for packet transmitting.
- (8) Measure the maximum time duration of one single pulse.

# 8.4 EUT Operating Condition

The EUT was set to the Hopping Mode by the Customer.



Page: 58 of 84

# 8.5 Test Data

| EUT:         |        |       | Bluetooth | n Wirele    | ss Spea     | ker                      | Mod  | del Nan    | ne :        |              | BND501 BOBBY |
|--------------|--------|-------|-----------|-------------|-------------|--------------------------|------|------------|-------------|--------------|--------------|
| Temper       | ature: |       | 25 ℃      | 10          | A SECOND    |                          | Rela | ative H    | umidi       | ty:          | 55%          |
| Test Vo      | Itage: |       | DC 3.7\   | /           | a 1         | 11/10                    |      | 1          |             |              |              |
| Test Mo      | de:    |       | Hopping   | g Mode      | (GFS        | K DH1                    | )    | 11115      | 1           |              | A British    |
| Chan         |        |       | se Time   | То          | tal of [    |                          | Peri | iod Tin    |             | .imit        | Result       |
| (MH          | -      |       | (ms)      |             | (ms)        |                          |      | (s)        | (           | ms)          |              |
| 240          | 2      | (     | 0.428     |             | 136.9       | 6                        |      |            |             |              |              |
| 244          | 1      | (     | 0.428     |             | 136.9       | 6                        |      | 31.60      | 4           | 400          | PASS         |
| 248          | 0      | (     | 0.428     |             | 136.9       | 6                        |      |            |             |              |              |
|              |        |       |           | GF          | SK Ho       | pping                    | Mode | DH1        |             |              |              |
|              |        |       |           |             | 2           | 402 M                    | Hz   |            |             |              |              |
|              |        |       |           |             |             |                          |      |            |             |              |              |
| <b>\$</b> \$ |        | dBm   |           | *Att 2      | 5 dB        | RBW 1<br>*VBW 1<br>SWT 4 | MHz  |            | 428.000     | .20 dB       | 7            |
|              | 10 Off | set : | 1 dB      |             |             |                          |      | Marker     |             | ]<br>.08 dBm |              |
| 1 200        | -0     |       |           |             |             |                          |      |            | 2.468       | 000 ms       | B<br>SGL     |
| 1 PK<br>MAXH | 10     |       |           |             |             |                          |      | 7          |             |              |              |
|              | 20     |       |           |             |             |                          |      |            |             |              | LVL          |
|              | -20    |       |           |             |             |                          |      |            |             |              |              |
|              | 30     |       |           |             |             |                          |      |            |             |              | PS           |
|              | 40     |       |           |             |             |                          |      |            |             |              |              |
|              | 50     |       |           |             |             |                          |      |            |             |              | 3DB          |
|              | 50     |       |           |             |             |                          |      |            |             |              |              |
|              | 1-60-W |       |           | Mill M.M.Ju | 100/161/4V4 | الماران الراب المراا     |      | idruh Mari | ullw M Nuw  | m Mily       |              |
|              | 70-    |       | 4 24 1    |             |             |                          |      |            | # - V W - W |              |              |
|              | 80     |       |           |             |             |                          |      |            |             |              |              |
|              |        | 1     |           |             |             |                          |      |            |             |              |              |
|              | -90    |       |           |             |             |                          |      |            |             |              |              |







Page: 60 of 84

| EUT:          |    | Bluetooth V | Vireless Speaker    | Model Name   | :      | BND501 BOBBY |
|---------------|----|-------------|---------------------|--------------|--------|--------------|
| Temperature   | :  | 25 ℃        |                     | Relative Hum | idity: | 55%          |
| Test Voltage: |    | DC 3.7V     |                     |              | -      | 3.9          |
| Test Mode:    |    | Hopping N   | Mode (GFSK DH3      | )            | H. W.  |              |
| Channel       | Pu | lse Time    | Total of Dwell      | Period Time  | Limit  | Dec. 14      |
| (MHz)         |    | (ms)        | (ms)                | (s)          | (ms)   | Result       |
| 2402          |    | 1.708       | 273.28              |              |        |              |
| 2441          |    | 1.692       | 270.72              | 31.60        | 400    | PASS         |
| 2480          |    | 1.692       | 270.72              |              |        |              |
|               | 1  |             | <b>GFSK Hopping</b> | Mode DH3     |        | ı            |
|               |    |             | 2402 MI             | Hz           |        |              |









mulyllund

Center 2.402 GHz

Report No.: TB-FCC144834

Page: 62 of 84

| EUT:         |         |      | Blueto | ooth \ | Virele | ess Sp | eaker   | Mode                    | el Name  | :      |        | BND501 BOBBY |
|--------------|---------|------|--------|--------|--------|--------|---------|-------------------------|----------|--------|--------|--------------|
| Temper       | rature: |      | 25 °C  | C      |        |        |         | Relat                   | tive Hun | nidity | :      | 55%          |
| Test Vo      | Itage:  |      | DC 3   | .7V    | 13     | الخال  |         |                         |          |        | -      | 19.9         |
| Test Mo      | ode:    |      | Hopp   | oing l | Mode   | e (GF  | SK DH   | 5)                      |          | 1      |        |              |
| Chan         | nel     | Pu   | lse Ti | me     | Tot    | tal of | Dwell   | Perio                   | d Time   | Lii    | mit    | Result       |
| (MH          | z)      |      | (ms)   |        |        | (ms    | s)      |                         | (s)      | (m     | ıs)    | Result       |
| 240          | 2       |      | 2.980  |        |        | 317.   | 87      |                         |          |        |        |              |
| 244          | 1       |      | 2.980  |        |        | 317.   | 87      | 3                       | 1.60     | 40     | 00     | PASS         |
| 248          | 0       |      | 2.980  |        |        | 317.   | 87      |                         |          |        |        |              |
|              |         |      |        |        | GF     | SK F   | lopping | g Mode                  | e DH5    |        |        |              |
|              | Ref 10  | dBm  |        | * A    | tt 2   | 5 dB   | * VBW   | 1 MHz<br>1 MHz<br>12 ms | Delta 1  | -2     | .05 dE |              |
|              | 10 Offs | et 1 | L dB   |        |        |        |         |                         | Marker   | 1 [T1  | ]      |              |
| •            | -0      | ſ    |        |        |        | 1      |         |                         |          |        | .44 dE | В            |
| 1 PK<br>MAXH | 10      |      |        |        |        |        |         |                         |          |        |        | SGL          |
|              | 10      |      |        |        |        |        |         |                         |          |        |        | LVL          |
|              | 20      |      |        |        |        |        |         |                         |          |        |        |              |
|              |         |      |        |        |        |        |         |                         |          |        |        | PS           |
|              | 30      |      |        |        |        |        |         |                         |          |        |        | 750          |
| •            | 40      |      |        |        |        |        |         |                         |          |        |        |              |

Jan mary Maria Mar

1.2 ms/







Page: 64 of 84

| EUT:          | Bluetooth V | Vireless Speaker | <b>Model Name</b> | :      | BND501 BOBBY |
|---------------|-------------|------------------|-------------------|--------|--------------|
| Temperature   | : 25 ℃      |                  | Relative Hum      | idity: | 55%          |
| Test Voltage: | DC 3.7V     | A A LIVE         | A DE              | -0     | 19.9         |
| Test Mode:    | Hopping I   | Mode (π/4-DQPS   | SK DH1)           | Alle   |              |
| Channel       | Pulse Time  | Total of Dwell   | Period Time       | Limit  | Decell       |
| (MHz)         | (ms)        | (ms)             | (s)               | (ms)   | Result       |
| 2402          | 0.440       | 140.80           |                   |        |              |
| 2441          | 0.440       | 140.80           | 31.60             | 400    | PASS         |
| 2480          | 0.440       | 140.80           |                   |        |              |
|               | π           | /4-DQPSK Hopp    | oing Mode DH1     |        |              |
|               |             | 2402 N           | 1Hz               |        |              |
|               |             |                  |                   |        |              |
| R             |             | PRW              | 1 MHz Delta 1 [   | r1 l   |              |
|               |             | KDW              | rinz Derca I [.   |        |              |







Page: 66 of 84

| - W W 1       |    |             |                  | 4 1 M III    |        |              |
|---------------|----|-------------|------------------|--------------|--------|--------------|
| EUT:          |    | Bluetooth V | Vireless Speaker | Model Name   |        | BND501 BOBBY |
| Temperature:  |    | 25 ℃        |                  | Relative Hum | idity: | 55%          |
| Test Voltage: |    | DC 3.7V     | N. C.            |              | -00    | 33           |
| Test Mode:    |    | Hopping N   | Mode (π/4-DQPSI  | CDH3)        | Hilli  |              |
| Channel       | Pu | lse Time    | Total of Dwell   | Period Time  | Limit  | Result       |
| (MHz)         |    | (ms)        | (ms)             | (s)          | (ms)   | Result       |
| 2402          |    | 1.716       | 274.56           |              |        |              |
| 2441          |    | 1.716       | 274.56           | 31.60        | 400    | PASS         |
| 2480          |    | 1.716       | 274.56           |              |        |              |
|               |    | π           | /4-DQPSK Hoppi   | ng Mode DH3  |        |              |
|               |    |             | 2402 MI          | -lz          |        |              |









Page: 68 of 84

| EUT:          |    | Bluetooth V | Vireless Speaker | Model Name   | -      | BND501 BOBBY |
|---------------|----|-------------|------------------|--------------|--------|--------------|
| Temperature:  |    | <b>25</b> ℃ |                  | Relative Hum | idity: | 55%          |
| Test Voltage: |    | DC 3.7V     | N. S. C.         | W North      | -0     | 18.0         |
| Test Mode:    |    | Hopping N   | Mode (π/4-DQPS   | K DH5)       | H.a.   |              |
| Channel       | Pu | lse Time    | Total of Dwell   | Period Time  | Limit  | Result       |
| (MHz)         |    | (ms)        | (ms)             | (s)          | (ms)   | Result       |
| 2402          |    | 2.976       | 317.44           |              |        |              |
| 2441          |    | 2.980       | 317.87           | 31.60        | 400    | PASS         |
| 2480          |    | 2.956       | 317.31           |              |        |              |

### $\pi$ /4-DQPSK Hopping Mode DH5

### 2402 MHz





69 of 84 Page:





Report No.: TB-FCC144834 Page: 70 of 84

# 9. Channel Separation and Bandwidth Test

#### 9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247

9.1.2 Test Limit

| Test Item          | Limit                                                               | Frequency Range(MHz) |
|--------------------|---------------------------------------------------------------------|----------------------|
| Bandwidth          | <=1 MHz<br>(20dB bandwidth)                                         | 2400~2483.5          |
| Channel Separation | >25KHz or >two-thirds of<br>the 20 dB bandwidth<br>Which is greater | 2400~2483.5          |

## 9.2 Test Setup



### 9.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Channel Separation: RBW=30 kHz, VBW=100 kHz.

Bandwidth: RBW=30 kHz, VBW=100 kHz.

- (3) The bandwidth is measured at an amplitude level reduced 20dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
  - (4) Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:30 kHz, and Video Bandwidth:100 kHz. Sweep Time set auto.

# 9.4 EUT Operating Condition

The EUT was set to the Hopping Mode for Channel Separation Test and continuously transmitting for the Bandwidth Test.



Page: 71 of 84

# 9.5 Test Data

| EUT:           | Blu              | uetooth Wireless Speake   | er Model Nai                                                          | me:                                                                                                                      | BND501 BOBBY  |
|----------------|------------------|---------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------|
| Temperature:   | 25               | 5 °C                      | Relative H                                                            | lumidity:                                                                                                                | 55%           |
| Test Voltage:  | DO               | C 3.7V                    | With                                                                  | A W                                                                                                                      |               |
| Test Mode:     | TX               | ( Mode (GFSK)             | CHIP?                                                                 |                                                                                                                          | A MARINE      |
| Channel freque | ency             | 99% OBW                   | 20dB Band                                                             | lwidth                                                                                                                   | 20dB Bandwidt |
| (MHz)          |                  | (kHz)                     | (kHz)                                                                 |                                                                                                                          | *2/3 (kHz)    |
| 2402           |                  | 942.00                    | 1044.0                                                                | 00                                                                                                                       | 696.00        |
| 2441           |                  | 942.00                    | 1008.0                                                                | 00                                                                                                                       | 672.00        |
| 2480           |                  | 942.00                    | 1008.0                                                                | 00                                                                                                                       | 672.00        |
|                |                  | GFSK                      | TX Mode                                                               | ·                                                                                                                        |               |
|                |                  | 24                        | 02 MHz                                                                |                                                                                                                          |               |
|                | 10 dBm<br>Offset | *Att 25 dB                | VBW 100 kHz SWT 5 ms 1.044  OBW942.000 Marker 1 [                     |                                                                                                                          | ı             |
|                |                  | *Att 25 dB                | SWT 5 ms 1.044  OBW942.000 Marker 1 [ Temp 1 [T1]                     | 0000000 MHz  0000000 kHz  T1    =23 15 dBm  472000 GHz  OBW   544000 GHz LVI  OBW                                        |               |
| 10 -0          | Offset           | *Att 25 dB  1 dB  3.6 dBm | SWT 5 ms 1.044  OBW942.000 Marker 1 [ 2.401 Temp 1 [T1  T2 Temp 2 [T1 | 000000 MHz  000000 kHz T1                                                                                                |               |
| 10 PK MAXH10-  | 0ff bet          | *Att 25 dB  1 dB  3.6 dBm | SWT 5 ms 1.044  OBW942.000 Marker 1 [ 2.401 Temp 1 [T1  T2 Temp 2 [T1 | 000000 MHz  000000 kHz  T1                                                                                               |               |
| 10 -0          | 0ff bet          | *Att 25 dB  1 dB  3.6 dBm | SWT 5 ms 1.044  OBW942.000 Marker 1 [ 2.401 Temp 1 [T1  T2 Temp 2 [T1 | 0000000 MHz  0000 000 kHz  T1   B  122 15 dBm  172 100 GHz  0BN1  -21 12 dBm  544 000 GHz  0BN1  -19 77 dBm  486 000 GHz |               |
| 10 -0          | 0ff bet          | *Att 25 dB  1 dB  3.6 dBm | SWT 5 ms 1.044  OBW942.000 Marker 1 [ 2.401 Temp 1 [T1  T2 Temp 2 [T1 | 0000000 MHz  0000 000 kHz  T1   B  122 15 dBm  172 100 GHz  0BN1  -21 12 dBm  544 000 GHz  0BN1  -19 77 dBm  486 000 GHz |               |
|                | 0ff bet          | *Att 25 dB  1 dB  3.6 dBm | SWT 5 ms 1.044  OBW942.000 Marker 1 [                                 | 0000000 MHz  0000 000 kHz  T1   B  122 15 dBm  172 100 GHz  0BN1  -21 12 dBm  544 000 GHz  0BN1  -19 77 dBm  486 000 GHz |               |

Date: 21.JUL.2015 13:52:39







Page: 73 of 84

| EUT:          | Bluetooth Wireless Speaker | Model Name :       | BND501 BOBBY |
|---------------|----------------------------|--------------------|--------------|
| Temperature:  | <b>25</b> ℃                | Relative Humidity: | 55%          |
| Test Voltage: | DC 3.7V                    | M CO               | 199          |
| Test Mode:    | TX Mode ( π /4-DQPSK)      |                    |              |

| Channel frequency | 99% OBW | 20dB Bandwidth | 20dB       |
|-------------------|---------|----------------|------------|
| (MHz)             | (kHz)   | (kHz)          | Bandwidth  |
|                   |         |                | *2/3 (kHz) |
| 2402              | 1230.00 | 1380.00        | 920.00     |
| 2441              | 1218.00 | 1380.00        | 920.00     |
| 2480              | 1230.00 | 1380.00        | 920.00     |

#### π/4-DQPSK TX Mode

#### 2402 MHz



Date: 21.JUL.2015 15:55:57







Page: 75 of 84

| EUT:          | Bluetooth Wireless Speaker | Model Name :       | BND501 BOBBY |
|---------------|----------------------------|--------------------|--------------|
| Temperature:  | 25 ℃                       | Relative Humidity: | 55%          |
| Test Voltage: | DC 3.7V                    |                    | 33           |

Test Mode: Hopping Mode (GFSK)

| того по | (                     |                  |
|---------------------------------------------|-----------------------|------------------|
| Channel frequency                           | Separation Read Value | Separation Limit |
| (MHz)                                       | (kHz)                 | (kHz)            |
| 2402                                        | 1.092                 | 696.00           |
| 2441                                        | 1.074                 | 672.00           |
| 2480                                        | 1.086                 | 672.00           |

### **GFSK Hopping Mode**

#### 2402 MHz



Date: 21.JUL.2015 14:19:35



TOBY Report No.: TB-FCC144834 76 of 84 Page:





Page: 77 of 84

| EUT:          | Bluetooth Wireless Speaker | Model Name :       | BND501 BOBBY |
|---------------|----------------------------|--------------------|--------------|
| Temperature:  | 25 ℃                       | Relative Humidity: | 55%          |
| Test Voltage: | DC 3.7V                    |                    | 33           |

Test Mode: Hopping Mode ( π /4-DQPSK)

| Channel frequency | Separation Read Value | Separation Limit |  |
|-------------------|-----------------------|------------------|--|
| (MHz)             | (kHz)                 | (kHz)            |  |
| 2402              | 1.014                 | 920.00           |  |
| 2441              | 0.990                 | 920.00           |  |
| 2480              | 0.996                 | 920.00           |  |

### $\pi$ /4-DQPSK Hopping Mode

#### 2402 MHz



Date: 21.JUL.2015 16:23:21







Page: 79 of 84

# 10. Peak Output Power Test

### 10.1 Test Standard and Limit

10.1.1 Test Standard FCC Part 15.247 (b) (1)

10.1.2 Test Limit

| Test Item         | Limit                                                    | Frequency Range(MHz) |
|-------------------|----------------------------------------------------------|----------------------|
| Peak Output Power | Hopping Channels>75 Power<1W(30dBm) Other <125 mW(21dBm) | 2400~2483.5          |

## 10.2 Test Setup



### 10.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Spectrum Setting:

Peak Detector: RBW=1 MHz, VBW=3 MHz for bandwidth less than 1MHz. RBW=3 MHz, VBW=3 MHz for bandwidth more than 1MHz.

## 10.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.



Report No.: TB-FCC144834
Page: 80 of 84



| -0.13<br>-0.44<br>-0.58<br><b>K TX Mode</b>  | ) Li                        | imit (dBm) |
|----------------------------------------------|-----------------------------|------------|
| -0.13<br>-0.44<br>-0.58<br><b>K TX Mode</b>  | WEST COLUMN                 | imit (dBm) |
| -0.13<br>-0.44<br>-0.58<br><b>SK TX Mode</b> | ) Li                        |            |
| -0.13<br>-0.44<br>-0.58<br><b>SK TX Mode</b> | ) Li                        |            |
| -0.44<br>-0.58<br><b>SK TX Mode</b>          |                             | 21         |
| -0.58                                        |                             | 21         |
| K TX Mode                                    |                             |            |
|                                              | <u> </u>                    |            |
|                                              |                             | -          |
| 402 MHz                                      |                             |            |
|                                              |                             |            |
|                                              |                             |            |
| *RBW 3 MHz M                                 | Marker 1 [T1 ]<br>-0.13 dBm |            |
| SWT 2.5 ms                                   | 2.402140000 GHz             |            |
| 1                                            |                             | A          |
|                                              |                             | _          |
|                                              |                             | LVL        |
|                                              |                             |            |
|                                              | 1                           | PS         |
|                                              |                             |            |
|                                              | i i                         | 3DB        |
|                                              |                             |            |
|                                              |                             |            |
|                                              |                             |            |
|                                              |                             |            |
|                                              |                             |            |
|                                              |                             |            |
|                                              | *VBW 3 MHz                  | *VBW 3 MHz |





Page: 81 of 84





2480

Report No.: TB-FCC144834

Page: 82 of 84

| EUT:                    | Bluetooth V           | Vireless Speaker Model Name : |            | BND501 BOBBY |           |
|-------------------------|-----------------------|-------------------------------|------------|--------------|-----------|
| Temperature:            | 25 ℃                  |                               | Relative H | lumidity:    | 55%       |
| Test Voltage:           | DC 3.7V               | W. Comment                    |            |              |           |
| Test Mode:              | TX Mode ( π /4-DQPSK) |                               |            |              |           |
| Channel frequency (MHz) |                       | Test Result (                 | dBm)       | Lin          | nit (dBm) |
| 2402                    |                       | -5.07                         |            |              |           |
| 2441                    |                       | -5.49                         |            |              | 21        |

## -5.89 π /**4-DQPSK TX Mode**

#### 2402 MHz



Date: 21.JUL.2015 15:56:58



83 of 84 Page:





Page: 84 of 84

# 11. Antenna Requirement

## 11.1 Standard Requirement

11.1.1 Standard FCC Part 15.203

#### 11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

#### 11.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is -0.68 dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

#### Result

The EUT antenna is a PCB Antenna. It complies with the standard requirement.

|     | Antenna Type                        |
|-----|-------------------------------------|
| 000 | ▼ Permanent attached antenna        |
| 33  | □ Unique connector antenna          |
| 400 | □ Professional installation antenna |