Exams

- Why do exams exist?
 - Proctored, solo, and timed evaluation of your knowledge
 - Everyone takes the exam on their own, and limits resources for themselves
 - Doesn't work well
 - Everyone takes the exam during the normal class time
 - What happens if you have internet connectivity issues?
 - What will be the format of the exam so that you can take it, and have a readable digital version to submit?
 - Can I make the exam take longer than 75 minutes?
- What does the sudden move to online do to a class/students/professors/etc?
 - It stresses everybody out
 - Best I could hope for with the online format is that ya'll learn stuff
 - Exams are super stressful and they are "forcing factor" for learning rather than an exercise in learning
- What I'm going to do:
 - I'm going to assume that you want to learn the stuff
 - Trust that exercises and quizzes are sufficient opportunity for you to learn the stuff
 - Exam 2 and the final exam will be optional for all students

CS3102 Theory of Computation

www.cs.virginia.edu/~njb2b/cstheory/s2020

Warm up:

What did "Universality" mean in the context of Circuits?

What might "Universality" mean in the context of Turing Machines?

Turing Universality

- Your thoughts:
 - It solves all infininite functions
 - Fewer implementations than infinite functions
 - Countable number of implementations, but uncountably many infinite functions
 - Not possible
 - It can compute anything that's computable
 - Some infinite functions are computable
 - We used Turing machines to define computability
 - A thing is computable if an always-halting Turing machine can implement it

Last Time

- Church-Turing Thesis
 - Why are Turing Machines the "goto" model of computing?

What can a Turing Machine compute?

- For sure:
 - Any Java/Python program
- If the Church-Turing Thesis is Correct:
 - Anything that a human can compute
- Some evidence that it might be correct:
 - Simulating a nematode

Today

What can't Turing Machines do?

Circuit Universality

- A set of gates is universal if they can be used to compute any finite function
- Conquence: A circuit to evaluate other
 Circuits: Defining EVAL

$$EVAL_{s,n,m}: \{0,1\}^{S(s)+n} \to \{0,1\}^m$$

Input: bit string representing a program (first S(s) bits) plus input values (remaining n bits)

Output: the result of running the represented program on the provided input, or m 0's if there's a "compile error"

Turing Universality

- Turing Machines are "Universal" in the sense that you can have a Turing Machine which can "simulate" any other Turing Machine
- Universal Turing Machine:
 - Input: The "description" of a machine and an input for that machine
 - Output: The same as the output the described machine would give for its input

Universal Turing Machine

What does it need?

- What does a Universal Turing Machine need to have?
 - Memory in order to maintain the configuration of the machine you're simulating
 - Tape contents
 - Finite state "controller"
 - Current state
 - Current position on the tape
 - A way to take a transition
 - A way to keep going

Turing Machine

Basic idea: a Turing Machine is a finite state automaton that can optionally read from/write to an infinite tape.

- Finite set of states: $Q = \{q_0, q_1, q_2, \dots, q_k\}$ $\begin{pmatrix} q_1 \end{pmatrix}$
- Input alphabet: Σ
- Tape alphabet (includes \emptyset , ∇): Γ
- Transition function: $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S, H\}$
- Initial state: $q_0 \in Q > q_0$
- Final states: $F \in Q$

read, write, move

Some Turing Machines never return

∇ØØØ ...

- In this case they run forever
- 3 behaviors
 - Return 1
 - Return 0
 - Run forever
- This is necessary for computation

while(true){

```
while(x != 1){
   if(x%2 == 0){
      x = x / 2;
   }
  else{
      x = 3x+1;
   }
}
```

What is **Computable**?

Definition:

- A function/language is computable provided there is some alwayshalting Turing machine for it
 - Function: computable provided there is an always-halting Turing machine which, when run on a tape containing only the input, always halts with only the corresponding output on the tape
 - Langauge: computable provided there is an always-halting Turing machine which, when run on a tape containing only the input, always halts and returns 1 if that string was in the langauge, and 0 otherwise

Assertion:

- This definition is the most powerful definition of computability that is physically possible
- Why...?

What can't be computed?

- Turing machines are really powerful
 - They can do complicated functions
- Turing machines are so powerful, you can use them to describe "nonsense"
 - Nonsense- paradox
- "colorful green ideas sleep furiously"
- "this statement is false" <- build a TM that says exactly this

The ACCEPTS function

- "Reject" = Returns 0
- "Accept" = Returns 1
- M(x) = the TM described by "source code" string x
- $ACCEPTS(x, w) = \begin{cases} 1 \text{ if } x \text{ running on } w \text{ returns } 1 \\ 0 \text{ otherwise} \end{cases}$
 - Situations in which we return 0:
 - When x doesn't halt
 - When x returns 0
 - What we have to do:
 - Recognize when a machine is in an infinite loop

Self-Rejecting Function

- SelfReject(x) ={1 when x is a TM source code which rejects its own input 0 otherise
- $SelfReject = \{w \in \{0,1\}^* | w \text{ represents a TM, and } w \notin L(M(w))\}$
 - The set of all Turing machine source codes such that the described machine rejects is own description.
- X is the source code of a machine, SelfReject will accept x provided that x running on x rejects

Implementing Self Reject With ACCEPTS

- Idea: run ACCEPTS and flip the output
- Pseudocode for Self Reject(w):
 - 1) Let a = ACCEPTS(w, w)
 - 2) If a = 1:

Return 0

3) Else:

Return 1

What's the problem?

- SelfReject says "reject anything that accepts itself", "accept anything that rejects itself"
- Let w_{SR} be the description of SelfReject
 - What is $SelfReject(w_{SR})$?
- Option1: $SelfReject(w_{SR}) = 1$
 - In words, w_{SR} accepted itself, and so by definition of SR, it should have been that SR(w_sr) = 0
- Option 2: $SelfReject(w_{SR}) = 0$
 - In other words w_{SR} is rejected by itself, and so by definition of SR, we conclude that it should be that $SelfReject(w_{SR})=1$
- Conclusion is, that any implementation of SelfReject can't produce an output that makes sense, therefore any implementation of $Self\ Reject$ must not be able to provide an output for w_{SR}

$w_{SR} \in SelfReject?$

Option 1: $w_{SR} \in SelfReject$ Option 2: $w_{SR} \notin SelfReject$