4 Anregungssignale und Fourieranalyse

4.1 Anregung durch Impuls

4.1.1 Sprungfunktion und Dirac-Impuls

Die Sprung- und die Impulsfunktion gehören zur Funktionenklasse der Distributionen. Sie zeichnen sich dadurch aus, dass sie mengenwertige Eigenschaften besitzen – beispielsweise die elementweise Definition.

Mathematik 4.1: Sprungfunktion

Die Sprungfunktion $\sigma(t)$ ist definiert als

$$\sigma(t) = \begin{cases} 0 & t < 0 \\ 1 & 0 \le t \end{cases}$$

Formal betrachtet ist der Dicac-Impuls die Ableitung der Sprungfunktion. Wegen der unendlich großen Steigung bei t=0 wird die Definition über einen Grenzwert eingeführt:

Mathematik 4.2: Dirac-Impuls

Der Dirac-Impuls $\delta(t)$ ist definiert als

$$\delta(t) = \frac{\mathrm{d}\sigma(t)}{\mathrm{d}t} = \left\{ \begin{array}{ll} \infty & t = 0 \\ 0 & \mathrm{sonst} \end{array} \right\} = \lim_{\varepsilon \to 0} \left\{ \begin{array}{ll} 0 & t \le -\varepsilon \\ \frac{1}{2\varepsilon} & -\varepsilon \le t \le \varepsilon \\ 0 & \varepsilon \le t \end{array} \right.$$

Es gilt der integrale Zusammenhang zwischen Sprungfunktion und Dirac-Impuls

$$\int_{-\infty}^{\infty} \delta(t) dt = \lim_{\varepsilon \to 0} \int_{-\varepsilon}^{\varepsilon} \frac{1}{2\varepsilon} dt = \lim_{\varepsilon \to 0} \frac{1}{2\varepsilon} t \bigg|_{\varepsilon}^{\varepsilon} = \lim_{\varepsilon \to 0} \frac{\varepsilon - (-\varepsilon)}{2\varepsilon} = 1$$
(4.1)

Die zu erwähnenden Eigenschaften des Dirac-Impulses sind

- Die Impulsdauer 2ε ist wegen $\varepsilon \to 0$ unendlich kurz
- Die Impulshöhe $\frac{1}{2\varepsilon}$ ist unendlich groß
- Für jede Funktion f(t), die bei $t = t_0$ stetig ist, gilt die Ausblendeigenschaft

$$\int_{-\infty}^{\infty} f(t)\delta(t - t_0)dt = f(t_0)$$
(4.2)

4.1.2 Impulsantwort

Die Anregung durch Impuls ist ein spezielles Testsignal, mit dem die wichtigsten Eigenschaften eines Schwingungssystems ermittelt werden können. Im Falle des Einmassenschwingers lautet die DGL

$$m\ddot{x} + d\dot{x} + cx = \delta(t) \tag{4.3}$$

wobei für den Dirac-Impuls $\delta(t)$ die abschnittsweise Definition in Abhängigkeit von ε verwendet wird. Dementsprechend ist die Lösung abschnittsweise definiert:

Vor Impuls ($t \le -\varepsilon$) Die Masse ist in Ruhe. Also sind Lage und Geschwindigkeit

$$x(-\varepsilon) = 0 \dot{x}(-\varepsilon) = 0 (4.4)$$

Während des Impuls ($-\varepsilon \le t \le \varepsilon$) Die Bewegungsgleichung lautet

$$m\ddot{x} + d\dot{x} + cx = \frac{1}{2\varepsilon} \tag{4.5}$$

Die Integration über die Impulsdauer ergibt in mehreren Schritten

$$\int_{-\varepsilon}^{\varepsilon} (m\ddot{x} + d\dot{x} + cx) \, dt = \int_{-\varepsilon}^{\varepsilon} \frac{1}{2\varepsilon} dt$$
 (4.6)

$$m \int_{-\varepsilon}^{\varepsilon} \ddot{x} dt + d \int_{-\varepsilon}^{\varepsilon} \dot{x} dt + c \int_{-\varepsilon}^{\varepsilon} x dt = 1$$
(4.7)

$$m(\dot{x}(\varepsilon) - \dot{x}(-\varepsilon)) + d(x(\varepsilon) - x(-\varepsilon)) + c \int_{-\varepsilon}^{\varepsilon} x dt = 1$$
(4.8)

Unter der Annahme, dass die Lage x(t) während der Impulsdauer stetig bleibt, folgt $x(-\varepsilon) = x(\varepsilon) = x_0$ und damit

$$\int_{-\varepsilon}^{\varepsilon} x dt = c \int_{-\varepsilon}^{\varepsilon} x_0 dt = 2\varepsilon x_0 \underset{\varepsilon \to 0}{\to} 0$$
(4.9)

Somit verbleibt

$$m\left(\dot{x}(\varepsilon) - \underbrace{\dot{x}(-\varepsilon)}_{0}\right) = 1 \tag{4.10}$$

Zur Zeit $t = \varepsilon$ gilt also:

$$x(\varepsilon) = x(-\varepsilon) = 0$$
 $\dot{x}(\varepsilon) = \frac{1}{m}$ (4.11)

Wegen $\varepsilon \to 0$ gelten auch die Bezeichnungen

$$t = -\varepsilon = 0^{-} t = \varepsilon = 0^{+} (4.12)$$

Nach dem Impuls ($\varepsilon \le t$) Die Bewegungsgleichung lautet mit Anfangsbedingungen

$$m\ddot{x} + d\dot{x} + cx = 0$$
 $x(0^+) = 0$ $\dot{x}(0^+) = \frac{1}{m}$ (4.13)

Die Lösung ist gegeben durch

$$x(t) = \frac{1}{m\omega_d} e^{-\delta t} \sin(\omega_d t) \tag{4.14}$$

Der Impuls lässt sich im Experiment als Hammerschlag realisieren. Aus der Impulsantwort (Gl. (4.14)) lassen sich die Systemparameter m, d, D bestimmen.

4.2 Periodische Anregung

4.2.1 Darstellung von Singalen im Zeit- und im Frequenzbereich

Eine harmonische Schwingung lässt sich im Frequenzbereich vollständig durch Amplitude \hat{x} , Kreisfrequenz Ω und Nullphasenwinkel φ beschreiben. Diese Eigenschaft motiviert die Darstellung im Zeit- und im Frequenzbereich:

Abbildung 4.1: Reines Cosinussignal $x(t) = \hat{x}\cos(\Omega t) = Re(\hat{x}e^{i\Omega t})$

Abbildung 4.2: Reines Sinussignal $x(t) = \hat{x}\sin(\Omega t) = Re(\hat{x}e^{i(\Omega t - \pi/2)})$

Abbildung 4.3: Allgemeines Signal $x(t) = \hat{x}\cos(\Omega t + \varphi) = Re(\hat{x}e^{i(\Omega t + \varphi)})$

Die Überführung einer harmonischen Funktion vom Zeit- in den Frequenzbereich ist eine Äquivalenztransformation. Wird eine allgemeine periodische Funktion als Überlagerung vieler harmonischer Schwingungsanteile mit jeweiliger Kreisfrequenz, Amplitude und Nullphasenwinkel betrachtet, dann kommen in der Darstellung im Frequenzbereich entsprechende Komponenten hinzu. Dies motiviert den nächsten Abschnitt:

4.3 Darstellung periodischer Funktionen durch Fourierreihen

Es sei eine T-periodische Funktion mit der Wiederholdauer $T=\frac{2\pi}{\Omega}$ bzw. Grundchwingungsfrequenz $\Omega=\frac{2\pi}{T}$ gegeben. Unter den Voraussetzungen

- endlich viele Sprungstellen endlicher Höhe
- 2-Fache Integrierbarkeit von x(t)

lässt sich die Funktion x(t) als Fourierreihe darstellen:

Mathematik 4.3: Fourierreihe

Die Entwicklung von x(t) als Fourierreihe lautet

$$x(t) = C_0 + \sum_{k=1}^{\infty} C_k \cos(k\Omega t) + S_k \sin(k\Omega t)$$

wobei die Koeffizienten des Polynoms nach

$$C_0 = \frac{1}{T} \int_{-T/2}^{T/2} x(t) dt$$

$$C_k = \frac{2}{T} \int_{-T/2}^{T/2} x(t) \cos(k\Omega t) dt \qquad k \in \mathbb{N}$$

$$S_k = \frac{2}{T} \int_{-T/2}^{T/2} x(t) \sin(k\Omega t) dt \qquad k \in \mathbb{N}$$

berechnet werden.

Alternativ gelten auch die folgenden Darstellungen:

Mathematik 4.4: Darstellung der Fourierreihe durch Amplitude und Phase

$$x(t) = C_0 + \sum_{k=1}^{\infty} \hat{x}_k \cos(k\Omega t + \varphi_k)$$

Die Folge \hat{x}_1 , \hat{x}_2 ,... heißt *Amplitudenspektrum*, die Folge φ_1 , φ_2 , ... heißt *Phasenspektrum*. Man spricht auch von der Spektraldarstellung der Funktion x(t).

Mathematik 4.5: Darstellung der Fourierreihe als komplexes Polynom

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{ik\Omega t}$$

wobei die Koeffizienten des Polynoms nach

$$a_k = \frac{1}{T} \int_0^T x(t)e^{-ik\Omega t} dt \qquad k \in \{-n, n\}, n \in \mathbb{N}$$

berechnet werden.

Anmerkungen:

- ullet Die Darstellung der Funktion x(t) als Fourierreihe bietet den Vorteil der Zerlegung in einzelne Frequenzanteile
- Der Anteil $\hat{x}_1 \cos{(\Omega t + \varphi_1)}$ heißt *Grundschwingung* oder 1. *Harmonische*
- Der Anteil $\hat{x}_2 \cos{(2\Omega t + \varphi_2)}$ heißt 1. Oberschwingung oder 2. Harmonische
- Der Anteil $\hat{x}_k \cos(k\Omega t + \varphi_k)$ heißt (k-1)-te Oberschwingung oder k-te Harmonische
- Bei der Berechnung der Fourierkoeffizienten muss nicht zwingend auf $t \in [-T/2, T/2]$ integriert werden. Wichtig ist, dass eine Periode vollständig abgedeckt ist: Es muss gelten $t \in [t_0, t_0 + T]$ für beliebige t_0 .
- Periodische Funktionen können durch eine endliche Zahl von Elementen ihrer Fourierreihe approximiert werden. Der Fehler konvergiert im quadratischen Mittel.

Es gelten insbesondere die zwei Spezialfälle:

Gerade Funktionen. Für gerade Funktionen x(t) gilt x(t) = x(-t). Dann folgt:

$$S_k = 0$$
 $C_k = \frac{4}{T} \int_0^{T/2} x(t) \cos(k\Omega t) dt$ (4.15)

Ungerade Funktionen. Für ungerade Funktionen x(t) gilt x(t) = -x(-t). Dann folgt:

$$S_k = \frac{4}{T} \int_0^{T/2} x(t) \sin(k\Omega t) dt$$
 $C_k = 0$ (4.16)

Beispiel 4.1: Rechteckschwingung

Das Rechtecksignal ist definiert als

$$x(t) = \begin{cases} -1 & \frac{-T}{2} \le t \le 0\\ 1 & 0 \le t \le \frac{T}{2} \end{cases}$$
 (4.17)

Die Grundfrequenz ist $\Omega = 2\pi/T$. Diese Funktion ist punktsymmetrisch zum Ursprung, also ungerade. Daher ist

$$C_k = 0, k \in \mathbb{N}_0, \tag{4.18}$$

$$S_k = \frac{4}{T} \int_0^{T/2} x(t) \sin(k\Omega t) dt$$
(4.19)

$$= -\frac{4}{Tk\Omega} \left(\cos\left(k\Omega \frac{T}{2}\right) - 1 \right) \tag{4.20}$$

$$= \frac{2}{k\pi} \left(1 - (-1)^k \right) \tag{4.21}$$

$$= \begin{cases} 0 & k \text{ gerade} \\ \frac{4}{k\pi} & k \text{ ungerade} \end{cases}$$
 (4.22)

Die Reihenentwicklung der Rechteckfunktion $x(t) = \sum_k S_k \sin(k\Omega t)$ hat wegen $x(t) = \sum_k S_k \cos(k\Omega t - \pi/2)$ die Amplituden $\hat{x}_k = S_k$ und die Phasen $\varphi_k = -\pi/2$. Die Darstellung im Zeit- und im Frequenzbereich ist wie folgt:

Die Amplituden der k-ten Harmonischen fallen mit $\frac{1}{k}$ ab. Aufgrund der steilen Flanken der Rechteckfunktion spielen höhere Harmonische eine wichtige Rolle bei der Konvergenz der Reihe. Wegen der Unstetigkeit im Zeitverlauf tritt das *Gibbs'sche Phänomen* auf, das zum Überschwingen der Fourierentwicklung gegenüber der Rechteckfunktion führt.

Beispiel 4.2: Rechteckimpulsfolge

Eine Rechteckimpulsfolge ist definiert als die periodische Abfolge von Rechteckimpulsen. Die Periode sei gegeben durch T, die Impulslänge durch τ . Analog zum Dirac-Stoß hat die Fläche des Stoßes per Definition den Wert 1.

Es liegt eine gerade Funktion vor. Die Berechnung der Fourierkoeffizienten liefert

$$S_k = 0, k \in \mathbb{N}_0, \tag{4.23}$$

$$C_0 = \frac{1}{T} \int_0^{T/2} x(t) dt = \frac{1}{T}$$
 (4.24)

$$C_k = \frac{2}{T} \int_0^T x(t) \cos(k\Omega t) dt = \frac{2}{T} \left(\int_{-\tau/2}^{\tau/2} \frac{1}{\tau} \cos(k\Omega t) dt + \int_{\tau/2}^{T-\tau/2} 0 dt \right)$$
(4.25)

$$= 2 \cdot \frac{2}{Tk\Omega} \frac{1}{\tau} \left(\sin\left(k\Omega\frac{\tau}{2}\right) \right) \tag{4.26}$$

$$= \frac{2}{k\pi\tau} \sin\left(k\pi\frac{\tau}{T}\right) \tag{4.27}$$

Somit lautet die Fourierreihe der Rechteckimpulsfolge

$$x(t) = \frac{1}{T} + \sum_{k=1}^{\infty} \frac{2}{k\pi\tau} \sin\left(k\pi\frac{\tau}{T}\right) \cos(k\Omega t)$$
 (4.28)

Der Stoßcharakter wird unterschieden nach Verhältnis von τ und T: Bei einem kleinen Wert von τ (kurzer Stoßdauer) ist die Amplitude $\frac{2}{k\pi\tau}$ groß. Die erste Nullstelle der C_k liegt bei $\frac{\tau}{T}=\frac{1}{k}$. Es liegt viel Energie bei hohen Frequenzen vor. Man spricht vom harten Stoß. Im Gegensatz dazu kommt die erste Nullstelle der C_k umso früher, je größer das Verhältnis τ/T . Es liegt viel Energie bei den kleinen Frequenzen. Die Verteilung der Amplituden in Abhängigkeit der Frequenz ist in der folgenden Abbildung zu sehen.

Abbildung 4.4: Harter und weicher Stoß.

Beispiel 4.3: Dreieckschwingung

Die Dreieckschwingung ist definiert als

$$x(t) = \begin{cases} t \cdot \frac{4}{T} & -\frac{T}{4} \le t \le \frac{T}{4} \\ 2 - t \cdot \frac{4}{T} & \frac{T}{4} \le t \le \frac{3T}{4} \end{cases}$$
 (4.29)

Auch diese Funktion ist ungerade, weshalb die Koeffizienten C_k allesamt verschwinden. Ferner ist

$$S_k = \frac{4}{T} \int_0^{T/2} x(t) \sin(k\Omega t) dt$$
(4.30)

$$= \begin{cases} 0 & k \text{ gerade} \\ \frac{8}{k^2\pi^2} \cdot (-1)^{(k-1)/2} & k \text{ ungerade} \end{cases}$$
 (4.31)

Die Darstellung von Zeitsignal, Amplituden- und Phasenspektrum ist wie folgt:

(a) Zeitbereich

(b) Frequenzbereich

(c) Frequenzbereich

4.4 Erzwungene Schwingungen mit periodischer Anregung

Es wird der gedämpfte Einmassenschwinger (Parameter m, d, c) mit periodischer Krafterregung F(t) betrachtet. Die Krafterregung sei jetzt polyharmonisch, d.h. sie setzt sich aus vielen Frequenzanteilen zusammen. Dies ist beispielsweise bei Rechtecks- oder Dreiecksanregung der Fall. Die allgemeine Darstellung sei als Fourierreihe gegeben:

$$F(t) = \frac{F_0}{2} + \sum_{k=1}^{\infty} F_{C,k} \cos(k\Omega t) + F_{S,k} \sin(k\Omega t)$$
 (4.32)

Somit lautet die DGL

$$m\ddot{x} + d\dot{x} + cx = \frac{F_0}{2} + \sum_{k=1}^{\infty} F_{C,k} \cos(k\Omega t) + F_{S,k} \sin(k\Omega t)$$
 (4.33)

Die Antwort x(t) kann für drei isolierte Fälle separat betrachtet werden:

Fall 1: k = 0. Die Anregung $F_1(t) = F_0/2$ ist konstant; die Antwort darauf (partikuläre Lösung) kann durch einen Ansatz vom Typ der rechten Seite bestimmt werden:

$$x_1(t) = K \text{ (konstant)} \qquad \dot{x}_1(t) = 0 \qquad \ddot{x}_1(t) = 0$$
 (4.34)

Nach kurzer Umformung folgt

$$x_1(t) = K = \frac{F_0}{2c} \tag{4.35}$$

Fall 2: $k \ge 1$, $F_{S,k} = 0$. Die Anregung durch eine Drehzahlvielfache lautet $F_2(t) = F_{C,k} \cos(k\Omega t)$. Die Antwort darauf (partikuläre Lösung) lautet

$$x_2(t) = V\left(\frac{k\Omega}{\omega_0}\right) \frac{F_{C,k}}{c} \cos\left(k\Omega t + \varphi_k\right)$$
(4.36)

$$V\left(\frac{k\Omega}{\omega_0}\right) = \frac{1}{\sqrt{\left(1 - \left(\frac{k\Omega}{\omega_0}\right)^2\right)^2 + \left(2D\frac{k\Omega}{\omega_0}\right)^2}}$$
(4.37)

$$= \frac{1}{\sqrt{(1 - (k\eta)^2)^2 + (2Dk\eta)^2}} = V(k\eta)$$
 (4.38)

$$\tan(\varphi_k) = -\frac{2D\frac{k\Omega}{\omega_0}}{1 - \left(\frac{k\Omega}{\omega_0}\right)^2} = -\frac{2Dk\eta}{1 - (k\eta)^2}$$
(4.39)

Fall 3: $k \ge 0$, $F_{C,k} = 0$. Die Anregung durch eine Drehzahlvielfache lautet $F_3(t) = F_{C,k} \sin(k\Omega t)$. Die Antwort darauf (partikuläre Lösung) lautet in Analogie zu Fall 2

$$x_3(t) = V(k\eta) \frac{F_{C,k}}{c} \sin(k\Omega t + \varphi_k)$$
(4.40)

Gemäß dem Superpositionsprinzip ist die Schwingungsantwort auf die Einzelanregungen $F(t) = F_1(t) + F_2(t) + F_3(t)$ die Summe der Einzelantworten $x(t) = x_1(t) + x_2(t) + x_3(t)$, also

$$x(t) = \frac{F_0}{2c} + \sum_{k=1}^{\infty} V(k\eta) \left(\frac{F_{C,k}}{c} \cos(k\Omega t + \varphi_k) + \frac{F_{S,k}}{c} \sin(k\Omega t + \varphi_k) \right)$$
(4.41)

Diese Lösung hat Eigenschaften wie die Schwingungsantwort auf eine Einzelanregung. Die Resonanz des ungedämpften Einmassenschwingers wird jetzt nicht mehr nur bei $\Omega = \omega_0$, sondern bei $k\Omega = \omega_0$ mit allen $k \in \mathbb{N}$ angeregt.

Beispiel 4.4: Motorblockanregung

Die Vertikalbewegung eines Motorblocks kann durch die bekannte DGL des 1-Massen-Schwingers beschrieben werden. Die Schwingungsanregung durch Zündung der 4 Zylinder hat ihre Hauptkomponenten bei doppelter und -facher Motordrehzahl. Die vereinfachte Bewegungsgleichung lautet

$$m\ddot{x} + d\dot{x} + cx = F_{C,2}\cos(2\Omega t) + F_{C,4}\cos(4\Omega t)$$
 (4.42)

Gemäß Gleichung (4.41) lautet die partikuläre Lösung

$$x(t) = V_{Kraftan regung} \left(\frac{2\Omega}{\omega_0}\right) \frac{F_{C,2}}{c} \cos\left(2\Omega t + \varphi_2\right)$$
(4.43)

$$+V_{Kraftanregung} \left(\frac{4\Omega}{\omega_0}\right) \frac{F_{C,4}}{c} \cos\left(4\Omega t + \varphi_4\right) \tag{4.44}$$

In Octave lautet eine mögliche Implementierung

```
Fc2 = 1; Fc4 = 0.5;

Omega = t*500*2*pi/60; % Drehzahlhochlauf (500 rpm % pro Sekunde)

Phi = 1/2*Omega*t;

dy = zeros(size(y));
dy(1) = y(2);
dy(2) = (-c*y(1)-d*y(2) + Fc2*cos(2*Phi) + Fc4*cos(4*Phi))/m;
```

```
% main function
close all; clear variables; clc;
tspan = linspace(0,10,10000);
y0 = [0,0];
[tout,yout] = ode45(@Motorblock,tspan,y0);
figure, plot(tout,yout(:,1));

Fs=length(tout)/(tout(end)-tout(1));
step=ceil(50*Fs/1000); window=ceil(500*Fs/1000);
[s,f,t] = specgram(yout(:,1), 2^10, Fs,window, window-step);
[t,f] = meshgrid(t,f);
figure, surf(t,f,abs(s),'edgecolor','none');
caxis([0.0 1e-3]); axis([0 10 10 200 0 1e-2]);
```


Abbildung 4.5: Spektrogramm der Auslenkung y(t) bei Hochlaufsimulation und Anregung mit 2. und 4. Ordnung. Charakteristisch sind im Spektrogramm die Anregungsordnungen, mit denen die Resonanz jeweils getroffen wird.

4.5 Nichtperiodische Vorgänge

Für periodische Funktionen gilt: $\Omega = \frac{2\pi}{T}$. Die Grundfrequenz ist also durch die endliche Periodenlänge begrenzt. Für nichtperiodische Funktionen (z.B. einmalige Vorgänge) geht die Schwingungsdauer T gegen unendlich. Damit ist auch die Grundfrequenz $\Omega \to d\omega$ (sie wird differenziell klein) bzw. $k\Omega \to \omega$. Mit Darstellung von (Mathematik 4.5) lauten die komplexen Schwingungskomponenten im Grenzübergang

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{ik\Omega t} = \sum_{k=-\infty}^{\infty} \frac{1}{T} \underbrace{\int_0^T x(t)e^{-ik\Omega t} dt}_{=:X_k = X(k\Omega)} e^{ik\Omega t}$$
(4.45)

$$\rightarrow \frac{1}{2\pi} \int_{-\infty}^{\infty} \underbrace{\int_{0}^{\infty} x(t)e^{-i\omega t} dt}_{X(\omega)} e^{i\omega t} d\omega$$
(4.46)

Dies motiviert die folgende Definition:

Mathematik 4.6: Fouriertransformation

Die Fouriertransformation $\mathcal{F}(x)$ beschreibt die Transformation einer Funktion x(t) in den Frequenzbereich. Sie ist definiert durch

$$X(\omega) = \mathcal{F}\{x(t)\} = \int_0^\infty x(t)e^{-i\omega t}dt$$

Die Rücktransformierte $x(t) = \mathcal{F}^{-1}\{X(\omega)\}$ wird berechnet als

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{i\omega t} d\omega$$

Der Betrag $|X(\omega)|$ beschreibt das Amplitudenspektrum der nichtperiodischen Funktion x(t). Es gilt der Zusamenhang zwischen Amplitude und Phase

$$X(\omega) = |X(\omega)|e^{i\varphi(\omega)} = Re\{X(\omega)\} + i \cdot Re\{X(\omega)\}$$
(4.47)

$$\tan(\varphi(\omega)) = \frac{Im\{X(\omega)\}}{Re\{X(\omega)\}}$$
(4.48)

In der Definition der Fouriertransformierten in (Mathematik 4.6) wurde angenommen, dass die aperiodischen Signale für t<0 den Wert 0 haben. Um den Fall $x(t<0)\neq 0$ abzudecken, lautet die verallgemeinerte Fouriertransformierte

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-i\omega t} dt$$
 (4.49)

Die Rücktransformierte bleibt unverändert. Für die Fouriertransformation gelten die folgenden Rechenregeln:

• Linearität

$$\mathcal{F}\{c_1x_1(t) + c_2x_2(t)\} = c_1X_1(\omega) + c_2X_2(\omega) \tag{4.50}$$

• Differentiation im Urbildraum

$$\mathcal{F}\left\{\frac{d^n x(t)}{dt}\right\} = (i\omega)^n X(\omega) - x(0^+)$$
(4.51)

mit der Anfangsbedingung $x(0^+)$, welche bei homogenen Anfangsbedingungen verschwindet.

Beispiel 4.5: Dirac-Impuls

Die Fouriertransformierte des Dirac-Impuls berechnet sich unter Berücksichtigung der Ausblendeigenschaft zu

$$\mathcal{F}(\delta(t)) = \int_{-\infty}^{\infty} \delta(t)e^{-i\omega t} dt = e^{-i\omega \cdot 0} = 1$$
(4.52)

Ein Dirac-Impuls ist ein unendlich harter Stoß. Folglich befinden sich in dessen Amplitudenspektrum alle Frequenzen mit der Spektraldichte 1. Man spricht von weißem Rauschen.

Beispiel 4.6: Sprungfunktion

Die Fouriertransformierte der Sprungfunktion berechnet sich wegen $\delta(t)=\mathrm{d}\sigma(t)/\mathrm{d}t$ und

$$\mathcal{F}(\delta(t)) = i\omega \mathcal{F}(\sigma(t)) - \delta(0^{+}) = i\omega \mathcal{F}(\sigma(t))$$
(4.53)

zu

$$\mathcal{F}(\sigma(t)) = \frac{1}{i\omega} \tag{4.54}$$

Beispiel 4.7: Harmonische Funktion

$$\mathcal{F}(\sin(\Omega t)) = i\pi \left(\delta(\omega + \Omega) - \delta(\omega - \Omega)\right) \tag{4.55}$$

$$\mathcal{F}(\cos(\Omega t)) = \pi \left(\delta(\omega - \Omega) + \delta(\omega + \Omega)\right) \tag{4.56}$$

Beispiel 4.8: Rechteckimpuls ohne Wiederholung

In Analogie zur Rechteckimpulsfolge wird der einmalige Rechteckimpuls ohne Wiederholung, d.h. mit $T \to \infty$, im Frequenzbereich betrachtet. Dafür eignet sich die Fouriertransformation:

$$X(\omega) = \int_{-\tau/2}^{\tau/2} \frac{1}{\tau} e^{-i\omega t} dt = \frac{e^{i\omega\tau/2} - e^{-i\omega\tau/2}}{i\tau\omega} = \frac{2}{\tau\omega} \sin(\omega\tau/2)$$
 (4.57)

Bemerkenswert an diesem Ergebnis sind zwei Beobachtungen: Das bisherige diskrete Frequenzspektrum (Grundfrequenz Ω) geht nun über in ein verteiltes Spektrum, für das alle reellen Werte von ω zugelassen sind; die weiteren Eigenschaften des bisherigen Ergebnisses sind beibehalten. Ferner folgt für den Grenzübergang $\tau \to 0$ das Ergebnis von Beispiel 4.5.

Beispiel 4.9: Impulsantwort des Einmassenschwingers

Die Fouriertransformation angewandt auf die Gleichung (4.3) lautet gemäß der Rechenregeln:

$$-\omega^2 X(\omega) + 2Di\omega X(\omega) + \omega_0^2 X(\omega) = \frac{1}{m} \mathcal{F}\{\delta(t)\} = \frac{1}{m}$$
 bzw. (4.58)

$$X(\omega) = \frac{1}{m} \frac{1}{(\omega_0^2 - \omega^2 + 2Di\omega)}$$
 (4.59)

Diese Darstellung der Fouriertransformierten erinnert stark an die komplexe Darstellung der Übertragungsfunktion und motiviert den nächsten Abschnitt:

4.6 Berechnung der Schwingungsantwort mithilfe des komplexen Frequenzgangs

Als Ausgangspunkt wird ein lineares System mit zeitunabhängigen Parametern und einer allgemeinen Eingangsgröße y(t) gewählt. Die Anwendung der Fouriertransformation auf die Differentialgleichung

$$\sum_{k=0}^{n} a_k \frac{\mathrm{d}^k x}{\mathrm{d}t^k} = b_0 y \qquad n \in \mathbb{N}$$
 (4.60)

lautet

$$\left(\sum_{k=0}^{n} a_k \cdot (i\omega)^k\right) X(\omega) = b_0 Y(\omega) \tag{4.61}$$

Ferner wird die Übertragungsfunktion

$$G(\omega) = \frac{X(\omega)}{Y(\omega)} = \frac{b_0}{\sum_{k=0}^{n} a_k \cdot (i\omega)^k}$$
(4.62)

eingeführt, welche im Frequenzbereich den Zusammenhang zwischen Einheitsanregung und Antwort herstellt.

Wie im (Beispiel 4.9) ersichtlich, folgt aus der *Einheitsanregung* $y(t) = \delta(t)$ im Frequenzbereich die Übertragungsfunktion. Außerdem ist die Übertragungsfunktion $G(\omega)$ auch aus der Fouriertransformation der Impulsantwort g(t) berechenbar:

 $\mathcal{F}\left\{\frac{1}{m\omega_d}e^{-D\omega_0t}\sin(\omega_dt)\right\}=\frac{1}{m}\frac{1}{\left(\omega_0^2-\omega^2+2Di\omega
ight)}$. Diese Beobachtung ist allgemein gültig: Es ist stets

$$\mathcal{F}\left\{g(t)\right\} = G(\omega) \tag{4.63}$$

Die Übertragungsfunktion $G(\omega)$ beschreibt ein lineares zeitinvariantes System vollständig. Ist sie bekannt, dann kann die Antwort auf eine beliebige Anregung im Frequenzbereich berechnet werden. Die Rücktransformation liefert die Schwingungsantwort im Zeitbereich: mit $X(\omega) = G(\omega)Y(\omega)$ ist

$$\mathcal{F}\left\{x(t)\right\} = X(\omega) = G(\omega)Y(\omega) = \int_{-\infty}^{\infty} g(z)e^{-i\omega t}dt \cdot \int_{-\infty}^{\infty} y(t)e^{-i\omega t}dt$$
(4.64)

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(t-\tau)y(\tau)d\tau \cdot e^{-i\omega t}dt$$
(4.65)

$$= \mathcal{F}\left\{g(t) * y(t)\right\} \tag{4.66}$$

mit

$$g(t) * y(t) := \int_{-\infty}^{\infty} g(t - \tau)y(\tau)d\tau$$
(4.67)

der Faltung zwischen der Gewichtsfunktion und einer beliebigen Anregungsfunktion.

Aufgaben zu Kapitel 4

4.1 Bestimmen Sie die Koeffizienten C_0 , C_k und S_k der folgenden Funktionen:

a.
$$f(t) = a\sin(\Omega t) + b\cos(2\Omega t), \qquad t \in [0, 2\pi/\Omega]$$
 (4.68)

b.
$$f(t) = a \sin^2(\Omega t) - \cos(\Omega t),$$
 $t \in [0, 2\pi/\Omega]$ (4.69)

c.
$$f(t) = c + a\sin(\Omega t) + b\sin(\Omega t)\cos(\Omega t), \qquad t \in [0, 2\pi/\Omega]$$
 (4.70)

d.
$$f(t) = \sigma(t) - \sigma(t-1),$$
 $t \in [0, 2]$ (4.71)

d.
$$f(t) = t \cdot \sigma(t) + (1 - t) \cdot \sigma(t - 1),$$
 $t \in [0, 2]$ (4.72)

4.2 Bestimmen Sie die Koeffizienten a_k der folgenden Funktionen:

a.
$$f(t) = a\sin(\Omega t) + b\cos(2\Omega t), \qquad t \in [0, 2\pi/\Omega]$$
 (4.73)

b.
$$f(t) = a \sin^2(\Omega t) - \cos(\Omega t),$$
 $t \in [0, 2\pi/\Omega]$ (4.74)

c.
$$f(t) = c + a\sin(\Omega t) + b\sin(\Omega t)\cos(\Omega t), \qquad t \in [0, 2\pi/\Omega]$$
 (4.75)

Vergleichen Sie das Ergebnis mit dem der Aufgabe 4.1.

4.3 Berechnen Sie jeweils die partikuläre Lösung $x_p(t)$ der DGL

a.
$$\ddot{x} + 2D\omega_0 \dot{x} + \omega_0^2 x = c_1 + c_2 \sin^2(\Omega t)$$
 (4.76)

b.
$$\ddot{x} + 2D\omega_0\dot{x} + \omega_0^2 x = c_1 |\sin(\Omega t)|$$
 (4.77)

Verfolgen Sie dabei die folgenden Schritte: Überführung der rechten Seite in eine Fourierreihe, Berechnung der partikulären Lösung zu jeder Anregungskomponente, Summation der Lösungsanteile.

4.4 Berechnen Sie die Fouriertransformierte der Ausdrücke

a.
$$f(t) = \sigma(t) \tag{4.78}$$

b.
$$f(t) = \sigma(t - t_0)$$
 (4.79)

c.
$$\ddot{x} + 2D\omega_0\dot{x} + \omega_0^2 x = F\cos(\Omega t)$$
 (4.80)

Berechnen Sie insbesondere für den Ausdruck von Aufgabe c. die Funktion $X(\omega)$.

4.5 Führen Sie zum Aufgabenteil c. von 4.4 die Rücktransformation von $X(\omega)$ in den Zeitbereich durch, sodass Sie die x(t) erhalten.

5 Schwingungen mit 2 Freiheitsgraden

5.1 Beispiele

Um die Dynamik einer realen Anwendung zu beschreiben, muss die Frage geklärt werden, wie viele Freiheitsgrade nötig sind. In vielen Fällen reicht ein einziger Freiheitsgrad aus – so im Beispiel der Schwingerkette (Abb. 1.5) bei niedrigen Schwingungsfrequenzen, wo nur die erste Schwingform angeregt wird. Bei höheren Anregungsfrequenzen treten Schwingformen auf, wo sich Kettenglieder teilweise in Gegenphase bewegen. Hier muss die Modellbeschreibung mehrere Freiheitsgrade enthalten.

Beispiele für Schwingungssysteme, wo zwei Freiheitsgrade sinnvoll erscheinen, sind ein Biegebalken mit zwei konzentrierten Massen, ein 2-Drehscheiben-system mit Torsionsfedern, die Bewegung eines Körpers in der Ebene oder ein System zur Beschreibung der Hub- und Nickbewegung eines Fahrzeugs (Abb. 5.1).

Abbildung 5.1: 2-Freiheitsgrad-Systeme

Im folgenden Abschnitt wird das Ersatzmodell für die Vertikalschwingung einer Ma-

schine auf einem Fundament behandelt. Hierbei ist die Maschine durch eine viskoelastische Verbindung auf einem Schwingfundament befestigt.

5.2 Bewegungsgleichung

Die weiteren Untersuchungen von Zwei-Freiheitsgrad-Systemen werden im Folgenden anhand der Maschine auf Fundament durchgeführt. Zunächst wird der Aufbau und der Freischnitt nach d'Alembert dargestellt:

Abbildung 5.2: Schwingungssystem und Freischnitt im Sinne d'Alemberts

Die Bewegungsgleichung des dargestellten Systems lautet

$$m_1\ddot{x}_1 + d_1(\dot{x}_1 - \dot{x}_2) + c_1(x_1 - x_2) = F_1(t)$$
 (5.1)

$$m_2\ddot{x}_2 + d_2\dot{x}_2 + d_1(\dot{x}_2 - \dot{x}_1) + c_2x_2 + c_1(x_2 - x_1) = F_2(t)$$
 (5.2)

Diese Gleichungen lauten in Matrix-Vektor-Schreibweise

$$\underbrace{\begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix}}_{M} \underbrace{\begin{bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{bmatrix}}_{\ddot{x}} + \underbrace{\begin{bmatrix} d_1 & -d_1 \\ -d_1 & d_1 + d_2 \end{bmatrix}}_{D} \underbrace{\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix}}_{\ddot{x}} + \underbrace{\begin{bmatrix} c_1 & -c_1 \\ -c_1 & c_1 + c_2 \end{bmatrix}}_{K} \underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{\ddot{x}} + \underbrace{\begin{bmatrix} c_1 & -c_1 \\ -c_1 & c_1 + c_2 \end{bmatrix}}_{\ddot{x}} \underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{\ddot{x}}$$

$$= \underbrace{\begin{bmatrix} F_1 \\ F_2 \end{bmatrix}}_{\ddot{F}}$$
(5.3)

Hier bei bezeichnet M die Massenmatrix, D die Dämpfungsmatrix, K die Steifigkeitsmatrix, \vec{x} den Vektor der Positionen und \vec{F} den Vektor der Kraftanregung. Man spricht bei

$$M\ddot{\vec{x}} + D\dot{\vec{x}} + K\vec{x} = \vec{F} \tag{5.4}$$

von einem linearen, gekoppelten, inhomogenen System von Differentialgleichungen von zwei Freiheitsgraden mit konstanten Koeffizienten.

5.3 Ungedämpfte Schwingungen

Bereits im Kapitel 3 dieser Vorlesung wurden freie und erzwungene Schwingungen von Einfreiheitsgradschwingern behandelt. Die Vorgehensweise ist bei Mehrfreiheitsgradsystemen grundsätzlich identisch – es ergeben sich allerdings ein paar Besonderheiten, auf die hier eingegangen werden soll. Es wird zunächst das ungedämpfte System

$$M\ddot{\vec{x}} + K\vec{x} = \vec{F} = \begin{bmatrix} F_1 \\ F_2 \end{bmatrix} \cos(\Omega t)$$
 (5.5)

betrachtet, welches die nun vektorwertige Gesamtlösung $\vec{x}(t) = \vec{x}_h(t) + \vec{x}_p(t)$ (homogene und partikuläre Lösung) besitzt. Zur Berechnung der homogenen Lösung $\vec{x}_h(t)$ wird zunächst das System

$$M\ddot{\vec{x}} + K\vec{x} = \vec{0} \tag{5.6}$$

betrachtet und mithilfe eines Exponentialansatz

$$\vec{x}_h = \vec{r}e^{\lambda t} = \begin{bmatrix} r_1 \\ r_2 \end{bmatrix} e^{\lambda t} \tag{5.7}$$

gelöst. Hierbei ist \vec{r} der Eigenvektor und λ der zu bestimmende Eigenwert. Ableiten und Einsetzen in die Bewegungsdifferentialgleichung liefert

$$\dot{\vec{x}}_h = \lambda \vec{r} e^{\lambda t} \tag{5.8}$$

$$\ddot{\vec{x}}_h = \lambda^2 \vec{r} e^{\lambda t} \tag{5.9}$$

$$(M\lambda^2 + K)\vec{r}e^{\lambda t} = \vec{0} \tag{5.10}$$

Die algebraische Gleichung

$$(M\lambda^2 + K)\vec{r} = \vec{0} \tag{5.11}$$

heißt *Eigenwertproblem*. Die Bilanz der Anzahl Gleichungen und Unbekannter zeigt: Es gibt zwei Gleichungen zur Bestimmung der zwei Komponenten von \vec{r} sowie den Eigenwert λ – das Gleichungssystem ist also unterbestimmt. Diese Situation kennen wir schon vom 1-Freiheitsgrad-System, wo die Amplitude der Koeffizienten des Exponentialansatzes erst durch Zusatzbedingungen (Anpassung an die Anfangsbedingungen) gefunden werden kann.

Zur Lösung wird die folgende Betrachtung herangezogen: Wenn die Matrix $(M\lambda^2 + K)$ invertierbar ist, dann folgt direkt die triviale Lösung $\vec{r} = \vec{0}$, also $\vec{x}_h = \vec{0}$. Um allgemeine nicht-triviale Lösungen zuzulassen, darf $(M\lambda^2 + K)$ also nicht invertierbar sein. Daher muss die Determinante dieser Matrix verschwinden:

$$\det(M\lambda^2 + K) = 0 \tag{5.12}$$

Diese Gleichung ist im Fall von 2-Freiheitsgrad-Systemen mit $M \in \mathbb{R}^{2\times 2}$, $K \in \mathbb{R}^{2\times 2}$ ein Polynom 4. Grades in λ . Die Eigenwerte λ_i , $i \in \{1, 2, 3, 4\}$ treten in konjugiert komplexen Paaren auf:

$$\lambda_{1/4} = \pm i\omega_1 \qquad \qquad \lambda_{2/3} = \pm i\omega_2 \tag{5.13}$$

Zur Bestimmung der Eigenvektoren werden die Eigenwerte in das Eigenwertproblem (5.11) eingesetzt:

$$\lambda_i: \qquad (M\lambda_i^2 + K)\vec{r_i} = 0 \qquad i \in \{1, 2, 3, 4\}$$
 (5.14)

Wegen der Singularität der Matrix $(M\lambda_i^2 + K)$ sind die Zeilen des Gleichungssystems (5.14) linear abhängig. Der Lösungsvektor $\vec{r_i}$ kann bis auf eine freie Konstante u berechnet werden. Es verbleiben also insgesamt 4 Konstanten zur Bestimmung der freien Schwingung $\vec{x_h}(t)$, die durch die Anfangsbedingungen gewählt werden.

Die Quadrate der Eigenwerte sind $\lambda_{1/4}^2 = -\omega_1^2$, $\lambda_{2/3}^2 = -\omega_2^2$. Daher sind die Bestimmungsgleichungen für \vec{r}_1 und \vec{r}_4 identisch, ebenso für \vec{r}_2 und \vec{r}_3 ; es folgt $\vec{r}_1 = \vec{r}_4$ und $\vec{r}_2 = \vec{r}_3$. Die homogene Lösung lautet schlussendlich

$$\vec{x}_h(t) = \tilde{C}_1 \vec{r}_1 e^{i\omega_1 t} + \tilde{C}_2 \vec{r}_2 e^{i\omega_2 t} + \tilde{C}_3 \vec{r}_2 e^{-i\omega_2 t} + \tilde{C}_4 \vec{r}_1 e^{-i\omega_1 t}$$
(5.15)

oder in reeller Darstellung

$$\vec{x}_h(t) = C_1 \vec{r}_1 \cos(\omega_1 t) + C_2 \vec{r}_1 \sin(\omega_1 t) + C_3 \vec{r}_2 \cos(\omega_2 t) + C_4 \vec{r}_2 \sin(\omega_2 t)$$
(5.16)

In einem ungedämpften System (M-K-System) sind die Eigenkreisfrequenzen ω stets imaginär und die Eigenvektoren \vec{r} reellwertig. Dies ändert sich, sobald Dämpfung vorliegt.

Für die partikuläre Lösung $x_p(t)$ des zwangserregten Systems wird der vektorwertige Ansatz vom Typ der rechten Seite eingesetzt:

$$\ddot{x}_p = \vec{p}\cos(\Omega t) + \vec{q}\sin(\Omega t) \qquad \ddot{\ddot{x}}_p = -\Omega^2 \vec{p}\cos(\Omega t) - \Omega^2 \vec{q}\sin(\Omega t)$$
 (5.17)

Hierbei sind \vec{p} und \vec{q} die noch zu bestimmenden Amplituden. Einsetzen liefert

$$-\Omega^{2} M \vec{p} \cos(\Omega t) - \Omega^{2} M \vec{q} \sin(\Omega t) + K \vec{p} \cos(\Omega t) + K \vec{q} \sin(\Omega t) = \vec{F} \cos(\Omega t)$$
 (5.18)

Der Koeffizientenvergleich ergibt zwei Gleichungen

$$\cos(\Omega t): \qquad -\Omega^2 M \vec{p} + K \vec{p} = \vec{F} \tag{5.19}$$

$$\sin(\Omega t): \qquad -\Omega^2 M \vec{q} + K \vec{q} = \vec{0} \tag{5.20}$$

Es folgen die Lösungen

$$\vec{p} = (K - \Omega^2 M)^{-1} \vec{F}$$
 $\vec{q} = \vec{0}$ (5.21)

Als Gesamtlösung ergibt sich durch Superposition

$$\vec{x}(t) = \vec{x}_h(t) + \vec{x}_p(t)$$

$$= C_1 \vec{r}_1 \cos(\omega_1 t) + C_2 \vec{r}_1 \sin(\omega_1 t) + C_3 \vec{r}_2 \cos(\omega_2 t) + C_4 \vec{r}_2 \sin(\omega_2 t)$$

$$+ (K - \Omega^2 M)^{-1} \vec{F} \cos(\Omega t)$$
(5.22)

Die freien Konstanten können jetzt mithilfe der Anfangsbedingungen bestimmt werden. Hierzu lauten die vier Gleichungen

$$\vec{x}_0 = \vec{x}(t=0) = C_1 \vec{r}_1 + C_3 \vec{r}_2 + (K - \Omega^2 M)^{-1} \vec{F}$$
(5.23)

$$\vec{v}_0 = \dot{\vec{x}}(t=0) = \omega_1 C_2 \vec{r}_1 + \omega_2 C_4 \vec{r}_2 \tag{5.24}$$

welche die Gleichungssysteme

$$\vec{x}_0 - (K - \Omega^2 M)^{-1} \vec{F} = [\vec{r}_1, \vec{r}_2] \begin{bmatrix} C_1 \\ C_3 \end{bmatrix}$$
 (5.25)

$$\vec{v}_0 = [\omega_1 \vec{r}_1, \omega_2 \vec{r}_2] \begin{bmatrix} C_2 \\ C_4 \end{bmatrix}$$
 (5.26)

ergeben.

Mathematik 5.1: Auszüge aus der linearen Algebra

Transposition eines Vektors:

$$x^T = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right]^T = \left[\begin{array}{c} x_1 & x_2 \end{array} \right]$$

Transposition einer Matrix:

$$A^{T} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}^{T} = \begin{bmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{bmatrix}$$

Skalarprodukt:

$$\vec{x} \cdot \vec{y} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = x_1 y_1 + x_2 y_2$$

oder in alternativer Schreibweise

$$\vec{x} \cdot \vec{y} = \vec{x}^T \vec{y} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = x_1 y_1 + x_2 y_2$$

Matrix-Vektor-Produkt:

$$A\vec{x} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} A_{11}x_1 + A_{12}x_2 \\ A_{21}x_1 + A_{22}x_2 \end{bmatrix}$$

Skalarprodukt mit Matrix-Vektor-Produkt:

$$\vec{x} \cdot (A\vec{y}) = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \cdot \begin{pmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \cdot \begin{bmatrix} A_{11}y_1 + A_{12}y_2 \\ A_{21}y_1 + A_{22}y_2 \end{bmatrix}$$
$$= x_1 y_1 A_{11} + x_1 y_2 A_{12} + x_2 y_1 A_{21} + x_2 y_2 A_{22}$$
$$\vec{y} \cdot (A\vec{x}) = x_1 y_1 A_{11} + x_1 y_2 A_{21} + x_2 y_1 A_{12} + x_2 y_2 A_{22}$$

Gemäß der letzten Formel gilt die Vertauschungsrelation

$$\vec{x} \cdot (A\vec{y}) = \vec{y} \cdot (A^T \vec{x})$$

Matrix-Matrix-Produkt:

$$AB = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$$
$$= \begin{bmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{bmatrix}$$

Aus Vektoren zusammengesetzte Matrix:

$$R = [\vec{x}, \vec{y}] = \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix}$$

Beispiel 5.1: Ungedämpfter 2-Massen-Schwinger

Im betrachteten System zur Berechnung von Eigenwerten und Eigenvektoren sei $m_1 = m$, $m_2 = 8m$, $c_1 = c$, $c_2 = 5c$, $d_1 = d_2 = 0$. Die Bewegungsgleichung lautet

$$\underbrace{\begin{bmatrix} m & 0 \\ 0 & 8m \end{bmatrix}}_{M} \underbrace{\begin{bmatrix} \ddot{x}_{1} \\ \ddot{x}_{2} \end{bmatrix}}_{\ddot{x}} + \underbrace{\begin{bmatrix} c & -c \\ -c & 6c \end{bmatrix}}_{K} \underbrace{\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}}_{\vec{x}} = \begin{bmatrix} F_{1} \\ 0 \end{bmatrix} \cos(\Omega t) \tag{5.27}$$

Mit dem Expontialansatz für die homogene Lösung $\vec{x}_h=\vec{r}e^{\lambda t}$ folgt $\ddot{\vec{x}}_h=\lambda^2\vec{r}e^{\lambda t}$ und

$$(M\lambda^2 + K)\vec{r}e^{\lambda t} = \vec{0} \tag{5.28}$$

Aus der Forderung nach der Existenz der nicht-trivialen Lösung $\vec{r} \neq \vec{0}$ folgt das charakteristische Polynom

$$0 = \det(M\lambda^2 + K) = \begin{bmatrix} m\lambda^2 + c & -c \\ -c & 8m\lambda^2 + 6c \end{bmatrix}$$
 (5.29)

$$=8m^2\lambda^4 + 14cm\lambda^2 + 5c^2 (5.30)$$

Die Eigenwerte sind

$$\lambda_{1/4} = \pm i\sqrt{\frac{c}{2m}} \qquad \qquad \lambda_{2/3} = \pm i\sqrt{\frac{5c}{4m}}$$
 (5.31)

Wird $\lambda_{1/4}^2 = -\omega_1$ in Gl. (5.19) eingesetzt, dann ist

$$0 = (-\omega_1^2 M + K)\vec{r_1} = \begin{bmatrix} -\omega_1^2 m + c & -c \\ -c & -8\omega_1^2 m + 6c \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \end{bmatrix}_1$$
 (5.32)

$$= \begin{bmatrix} \frac{1}{2}c & -c \\ -c & 2c \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \end{bmatrix}_1 \tag{5.33}$$

Mit \vec{r}_1 dem zur Eigenkreisfrequenz ω_1 gehörigen Eigenvektor. Die zwei Zeilen von Gl.(5.26) sind linear abhängig. Das Gleichungssystem hat unendlich viele Lösungen – die Lösung kann also nur bis auf eine Konstante bestimmt werden. Setze $r_1 = s_1$, dann folgt

$$\vec{r}_1 = \begin{bmatrix} s_1 \\ \frac{s_1}{2} \end{bmatrix} \tag{5.34}$$

Beim Eigenwertpaar $\lambda_{2/3}=\pm i\omega_2$ ergibt sich

$$0 = (-\omega_2^2 M + K)\vec{r_2} = \begin{bmatrix} -\frac{1}{4}c & -c \\ -c & -4c \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \end{bmatrix}_2$$

$$(5.35)$$

und der zugehörige Eigenvektor ist

$$\vec{r}_2 = \begin{bmatrix} s_2 \\ -\frac{s_2}{4} \end{bmatrix} \tag{5.36}$$

Die homogene Lösung ist in reeller Darstellung

$$\vec{x}_{h}(t) = C_{1}^{*} \vec{r}_{1} \cos(\omega_{1}t) + C_{2}^{*} \vec{r}_{1} \sin(\omega_{1}t) + C_{3}^{*} \vec{r}_{2} \cos(\omega_{2}t) + C_{4}^{*} \vec{r}_{2} \sin(\omega_{2}t)$$

$$= (C_{1} \cos(\omega_{1}t) + C_{2} \sin(\omega_{1}t)) \begin{bmatrix} 1 \\ \frac{1}{2} \end{bmatrix}$$

$$+ (C_{3} \cos(\omega_{2}t) + C_{4} \sin(\omega_{2}t)) \begin{bmatrix} 1 \\ -\frac{1}{4} \end{bmatrix}$$

$$(5.38)$$

wobei hier Integrationskonstante und Skalierungskonstante zusammengefasst wurden: $C_1^*s_1=C_1$, $C_2^*s_1=C_2$, $C_3^*s_2=C_2$, $C_4^*s_2=C_4$. Die Eigenvektoren \vec{r}_1 und \vec{r}_2 kennzeichnen die Eigenschwingungsformen:

- 1. Eigenschwingungsform bei $\omega_1=\sqrt{\frac{c}{2m}}$. Die Bewegung beider Massen ist gleichphasig, da die Vorzeichen der Komponenten von \vec{r}_1 gleich sind
- 2. Eigenschwingungsform bei $\omega_2 = \sqrt{\frac{5c}{4m}}$. Die Bewegung beider Massen ist gegenphasig, da die Vorzeichen der Komponenten von \vec{r}_2 verschieden sind

Die partikuläre Lösung folgt direkt nach Gl. (5.22)

$$\vec{x}_{p}(t) = (K - \Omega^{2}M)^{-1}\vec{F} = \begin{bmatrix} c - m\Omega^{2} + & -c \\ -c & 6c - 8m\Omega^{2} \end{bmatrix}^{-1} \begin{bmatrix} F_{1} \\ 0 \end{bmatrix} \cos(\Omega t)$$
(5.39)
$$= \frac{F_{1}}{8m^{2}\Omega^{4} - 14cm\Omega^{2} + 5c^{2}} \begin{bmatrix} 6c - 8m\Omega^{2} \\ c \end{bmatrix} \cos(\Omega t)$$
(5.40)

Die Konstanten C_i , $i \in \{1,...,4\}$ werden durch Anpassung an die Anfangsbedingungen zu

$$\begin{bmatrix} C_1 \\ C_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{4}{3} \\ \frac{2}{3} & -\frac{4}{3} \end{bmatrix} [\vec{x}_0 - \vec{p}]$$

$$= \begin{bmatrix} \frac{1}{3}(x_{01} + 4x_{02}) \\ \frac{1}{3}(2x_{01} - 4x_{02}) \end{bmatrix}$$

$$- \frac{F_1}{8m^2\Omega^4 - 14cm\Omega^2 + 5c^2} \begin{bmatrix} \frac{1}{3}(6c - 8m\Omega^2) + \frac{4}{3}c \\ \frac{2}{3}(6c - 8m\Omega^2) - \frac{4}{3}c \end{bmatrix}$$

$$(5.41)$$

$$\begin{bmatrix} C_2 \\ C_4 \end{bmatrix} = \begin{bmatrix} \frac{1}{3\omega_1} & \frac{4}{3\omega_1} \\ \frac{2}{3\omega_2} & -\frac{4}{3\omega_2} \end{bmatrix} \begin{bmatrix} \vec{v}_0 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{3\omega_1} (v_{01} + 4v_{02}) \\ \frac{1}{3\omega_2} (2v_{01} - 4v_{02}) \end{bmatrix}$$
(5.43)

5.4 Modale Entkopplung

Die beiden Eigenwertpaare $(\omega_i, \vec{r_i})$ und $(\omega_j, \vec{r_j})$ erfüllen jeweils das Eigenwertproblem $(-\omega_i^2 M + K)\vec{r_i} = \vec{0}$ bzw. $(-\omega_j^2 M + K)\vec{r_j} = \vec{0}$. Die Multiplikation dieser Gleichungen mit dem jeweils anderen Eigenvektor liefert zwei skalare Gleichungen

$$-\omega_i^2 \vec{r}_i \cdot (M\vec{r}_i) + \vec{r}_i \cdot (K\vec{r}_i) = \vec{r}_i \cdot \vec{0} = 0$$
(5.44)

$$-\omega_i^2 \vec{r}_i \cdot (M\vec{r}_i) + \vec{r}_i \cdot (K\vec{r}_i) = \vec{r}_i \cdot \vec{0} = 0$$
(5.45)

Ferner ist, gemeinsam mit der Vertauschungsrelation aus (Mathematik 5.1),

$$-\omega_i^2 \vec{r}_j \cdot (M\vec{r}_i) + \vec{r}_j \cdot (K\vec{r}_i) = -\omega_i^2 \vec{r}_i \cdot (M^T \vec{r}_j) + \vec{r}_i \cdot (K^T \vec{r}_j)$$
(5.46)

Sowohl Massen- als auch Steifigkeitsmatrix sind symmetrisch, weshalb $M^T = M$ und $K^T = K$. Einsetzen in Gl. (5.44) und Subtraktion mit Gl. (5.45) führt auf

$$-\left(\omega_j^2 - \omega_i^2\right)\vec{r}_i \cdot (M\vec{r}_j) = 0 \tag{5.47}$$

Für einfache Eigenwerte gilt $\omega_i \neq \omega_j$ $(i \neq j)$; dann sind die Eigenvektoren bezüglich der Massenmatrix orthogonal:

$$\vec{r_i} \cdot (M\vec{r_j}) = 0 \tag{5.48}$$

Aus Gl. (5.45) folgt dann direkt die Orthogonalität bezüglich der Steifigkeitsmatrix

$$\vec{r}_i \cdot (K\vec{r}_j) = 0 \tag{5.49}$$

Für i = j ist

$$-\omega_i^2 \vec{r_i} \cdot (M\vec{r_i}) + \vec{r_i} \cdot (K\vec{r_i}) = 0$$
 (5.50)

und damit der Rayleigh-Quotient

$$\omega_i^2 = \frac{\vec{r}_i \cdot (K\vec{r}_i)}{\vec{r}_i \cdot (M\vec{r}_i)} \tag{5.51}$$

definiert. Wenn die Eigenwerte massenbezogen normiert werden, d.h. $\vec{r_i} \cdot (M\vec{r_i}) = 1$, dann vereinfacht sich der Rayleigh-Quotient zu $\omega_i^2 = \vec{r_i} \cdot (K\vec{r_i})$. Ferner wird die *Modal-matrix* definiert durch die Matrix der linear unabhängigen Eigenvektoren

$$R = [\vec{r}_1, \vec{r}_2] \tag{5.52}$$

Da die Eigenvektoren den Zustandsraum vollständig aufspannen, kann der Zustandsvektor auch wie folgt dargestellt werden:

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = z_1 \vec{r}_1 + z_2 \vec{r}_2 = [\vec{r}_1, \vec{r}_2] \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = R\vec{z}$$
 (5.53)

und folglich ist das zwangserregte System

$$\vec{F} = M\ddot{\vec{x}} + K\vec{x} = M\left([\vec{r}_1, \vec{r}_2] \begin{bmatrix} \ddot{z}_1 \\ \ddot{z}_2 \end{bmatrix} \right) + K\left([\vec{r}_1, \vec{r}_2] \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \right)$$
(5.54)

$$=MR\ddot{z}+KR\bar{z}\tag{5.55}$$

Linksmultiplikation mit R^T führt zu

$$R^T \vec{F} = R^T M R \ddot{\vec{z}} + R^T K R \vec{z} \tag{5.56}$$

$$= \begin{bmatrix} \vec{r}_1^T \\ \vec{r}_2^T \end{bmatrix} M[\vec{r}_1, \vec{r}_2] \begin{bmatrix} \ddot{z}_1 \\ \ddot{z}_2 \end{bmatrix} + \begin{bmatrix} \vec{r}_1^T \\ \vec{r}_2^T \end{bmatrix} K[\vec{r}_1, \vec{r}_2] \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$
(5.57)

$$= \begin{bmatrix} \vec{r}_{1}^{T} M \vec{r}_{1} & \vec{r}_{1}^{T} M \vec{r}_{2} \\ \vec{r}_{2}^{T} M \vec{r}_{1} & \vec{r}_{2}^{T} M \vec{r}_{2} \end{bmatrix} \begin{bmatrix} \ddot{z}_{1} \\ \ddot{z}_{2} \end{bmatrix} + \begin{bmatrix} \vec{r}_{1}^{T} K \vec{r}_{1} & \vec{r}_{1}^{T} K \vec{r}_{2} \\ \vec{r}_{2}^{T} K \vec{r}_{1} & \vec{r}_{2}^{T} K \vec{r}_{2} \end{bmatrix} \begin{bmatrix} z_{1} \\ z_{2} \end{bmatrix} 0$$
 (5.58)

Bzw.

$$\begin{bmatrix} \vec{r}_1 \cdot \vec{F} \\ \vec{r}_2 \cdot \vec{F} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \ddot{z}_1 \\ \ddot{z}_2 \end{bmatrix} + \begin{bmatrix} \omega_1^2 & 0 \\ 0 & \omega_2^2 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$
 (5.59)

Es liegen also zwei entkoppelte Einzeldifferentialgleichungen vor:

$$\ddot{z}_1 + \omega_1^2 z_1 = \vec{r}_1 \cdot \vec{F} \qquad \qquad \ddot{z}_2 + \omega_2^2 z_2 = \vec{r}_2 \cdot \vec{F}$$
 (5.60)

Modale Entkopplung des Differentialgleichungssystems setzt die Kenntnis der Eigenvektoren voraus. Der Vorteil der modalen Entkopplung ist, dass die Gleichungen unabhängig voneinander gelöst werden können. Dies ist insbesondere bei erzwungenen

Schwingungen vorteilhaft, weil nun auf die vektorwertige DGL zugänglich ist für die Methoden der skalaren DGLn.

Beispiel 5.2: Modale Entopplung

Es wird das ungedämpfte System

$$\begin{bmatrix} 8m & 0 \\ 0 & m \end{bmatrix} \begin{bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{bmatrix} + \begin{bmatrix} 6c & -c \\ -c & c \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} F_0 \cos(\Omega t) \\ 0 \end{bmatrix}$$
 (5.61)

betrachtet. Die Eigenwertpaare sind vor Normierung

$$\omega_1 = \sqrt{\frac{c}{2m}} \qquad \qquad \vec{r}_1 = s_1 \begin{bmatrix} 1\\2 \end{bmatrix} \tag{5.62}$$

$$\omega_2 = \sqrt{\frac{5c}{4m}} \qquad \qquad \vec{r}_2 = s_2 \begin{bmatrix} 1 \\ -4 \end{bmatrix} \tag{5.63}$$

Die Normierung bzgl. der Massenmatrix liefert die freien Konstanten

$$\vec{r}_1 \cdot (M\vec{r}_1) = 12s_1^2 m \stackrel{!}{=} 1 \qquad \rightarrow \qquad s_1 = \frac{1}{2\sqrt{3m}}$$

$$\vec{r}_2 \cdot (M\vec{r}_2) = 24s_2^2 m \stackrel{!}{=} 1 \qquad \rightarrow \qquad s_2 = \frac{1}{2\sqrt{6m}}$$
(5.64)

$$\vec{r}_2 \cdot (M\vec{r}_2) = 24s_2^2 m \stackrel{!}{=} 1 \qquad \rightarrow \qquad s_2 = \frac{1}{2\sqrt{6m}}$$
 (5.65)

Die Modalmatrix ist

$$R = [\vec{r}_1, \vec{r}_2] = \begin{bmatrix} \frac{1}{2\sqrt{3m}} & \frac{1}{2\sqrt{6m}} \\ \frac{1}{\sqrt{3m}} & -\frac{2}{\sqrt{6m}} \end{bmatrix}$$
 (5.66)

Die modal entkoppelte Massen- und Steifigkeitsmatrix lauten

$$R^{T}MR = \begin{bmatrix} \frac{1}{2\sqrt{3m}} & \frac{1}{\sqrt{3m}} \\ \frac{1}{2\sqrt{6m}} & -\frac{2}{\sqrt{6m}} \end{bmatrix} \begin{bmatrix} 8m & 0 \\ 0 & m \end{bmatrix} \begin{bmatrix} \frac{1}{2\sqrt{3m}} & \frac{1}{2\sqrt{6m}} \\ \frac{1}{\sqrt{3m}} & -\frac{2}{\sqrt{6m}} \end{bmatrix}$$
(5.67)

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \tag{5.68}$$

ferner

$$R^{T}KR = \begin{bmatrix} \frac{1}{2\sqrt{3m}} & \frac{1}{\sqrt{3m}} \\ \frac{1}{2\sqrt{6m}} & -\frac{2}{\sqrt{6m}} \end{bmatrix} \begin{bmatrix} 6c & -c \\ -c & c \end{bmatrix} \begin{bmatrix} \frac{1}{2\sqrt{3m}} & \frac{1}{2\sqrt{6m}} \\ \frac{1}{\sqrt{3m}} & -\frac{2}{\sqrt{6m}} \end{bmatrix}$$
(5.69)

$$= \begin{bmatrix} \frac{c}{2m} & 0\\ 0 & \frac{5c}{4m} \end{bmatrix} \tag{5.70}$$

und

$$R^{T}F = \begin{bmatrix} \frac{1}{2\sqrt{3m}} & \frac{1}{\sqrt{3m}} \\ \frac{1}{2\sqrt{6m}} & -\frac{2}{\sqrt{6m}} \end{bmatrix} \begin{bmatrix} F_0 \cos(\Omega t) \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{F_0 \cos(\Omega t)}{2\sqrt{3m}} \\ \frac{F_0 \cos(\Omega t)}{2\sqrt{6m}} \end{bmatrix}$$
(5.71)

Das gekoppelte Differentialgleichungssystem $M\ddot{\vec{x}}+K\vec{x}=\vec{F}$ wurde also transformiert in zwei voneinander entkoppelte Differentialgleichungen $\ddot{z}_1+\omega_1^2z_1=F_0\cos(\Omega t)/(2\sqrt{3m})$ und $\ddot{z}_2+\omega_2^2z_2=F_0\cos(\Omega t)/(2\sqrt{6m})$, die unabhängig voneinander gelöst werden können.

5.5 Systeme mit modaler Dämpfung

Im Fall von Dämpfung und ohne äußere Anregung lautet die Systembeschreibung

$$M\ddot{\vec{x}} + D\dot{\vec{x}} + K\vec{x} = \vec{0} \tag{5.72}$$

Unter *modaler Dämpfung* versteht man eine spezielle Zusammensetzung der Dämpfungsmatrix der Form

$$D = \alpha M + \beta K \tag{5.73}$$

also massen- und steifigkeitsproportionale Anteile der Dämpfung mit Parametern α und β . Die homogene Lösung des gedämpften Systems wird mithilfe des Exponentialansatzes $\vec{x} = \vec{r}e^{\lambda t}$ nach

$$(\lambda^2 M + (\alpha M + \beta K)\lambda + K)\vec{r}e^{\lambda t} = \vec{0}$$
(5.74)

$$\left[\left(\lambda^2 + \lambda \alpha \right) M + \left(\lambda \beta + 1 \right) K \right] \vec{r} e^{\lambda t} = \vec{0}$$
(5.75)

$$\left[\underbrace{\frac{\lambda^2 + \lambda \alpha}{\lambda \beta + 1}}_{\mu_a} M + K\right] \vec{r} e^{\lambda t} = \vec{0}$$
(5.76)

(5.77)

berechnet. Wie im ungedämpften Fall wird hier $\vec{r} \neq \vec{0}$ gefordert, weshalb die Bestimmung der Eigenwerte aus

$$\det(\mu_q M + K) = 0 \tag{5.78}$$

folgt. Man stelle fest, dass es sich hier um dieselbe Struktur wie im zugehörigen ungedämpften Schwingungssystem $M\ddot{\vec{x}}+K\vec{x}=\vec{0}$ handelt, welche mit dem ungedämpften Eigenwertproblem $(\lambda_u^2 M+K)\vec{r}_u=\vec{0}$ verbunden ist. Damit ist $\lambda_u^2=\mu_g$ und $\vec{r}=\vec{r}_u$, sprich:

Mechanik 5.1: Eigenwerte und -vektoren bei modaler Dämpfung

Die Eigenvektoren im ungedämpften System

$$M\ddot{\vec{x}} + K\vec{x} = \vec{0} \tag{5.79}$$

und im modal gedämpften System

$$M\ddot{\vec{x}} + (\alpha M + \beta K)\dot{\vec{x}} + K\vec{x} = \vec{0} \tag{5.80}$$

sind bei beliebigen α , β und ansonsten gleichen Parametern identisch. Die gedämpften und ungedämpften Eigenwerte unterscheiden sich.

Die Schlussfolgerung ist, dass ungedämpften Eigenvektoren zur modalen Entkopplung verwendet werden können:

$$R^T M R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \tag{5.81}$$

$$R^T K R = \begin{bmatrix} \omega_1^2 & 0\\ 0 & \omega_2^2 \end{bmatrix} \tag{5.82}$$

$$R^{T}DR = \alpha R^{T}MR + \beta R^{T}KR = \alpha \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \beta \begin{bmatrix} \omega_{1}^{2} & 0 \\ 0 & \omega_{2}^{2} \end{bmatrix}$$
 (5.83)

Mit der rechten Seite $R^T \vec{F}$ kann nun folglich das entkoppelte System gelöst werden, um freie und erzwungene Schwingungen zu berechnen.

5.6 Erzwungene Koppelschwingungen und Tilgung

In diesem Abschnitt wird der ungedämpfte Zwei-Massen-Schwinger mit $F_2(t)=0$ und $F_1(t)=F_0\cos(\Omega t)$ betrachtet.

Abbildung 5.3: Zwei-Massen-Schwinger mit äußerer Anregung

Die Bewegungsgleichungen sind in Matrix-Vektor-Schreibweise

$$\underbrace{\begin{bmatrix} m_1 & 0 \\ 0 & m_2 \end{bmatrix}}_{M} \underbrace{\begin{bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{bmatrix}}_{\ddot{x}} + \underbrace{\begin{bmatrix} c_1 + c_2 & -c_2 \\ -c_2 & c_2 \end{bmatrix}}_{K} \underbrace{\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}}_{\vec{x}} = \underbrace{\begin{bmatrix} F_0 \\ 0 \end{bmatrix}}_{\vec{F}_0 \cos(\Omega t)} \tag{5.84}$$

An dieser Stelle sind lediglich die erzwungenen Schwingungen interessant, also die partikuläre Lösung. Der Lösungsansatz wird vom Typ der rechten Seite gewählt:

$$\vec{x} = \vec{p}\cos(\Omega t) + \vec{q}\sin(\Omega t) \tag{5.85}$$

Gemäß der Gleichung (5.21) folgen die Lösungen durch Einsetzen in die DGL

$$\vec{p} = \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = (K - \Omega^2 M)^{-1} \vec{F}_0$$

$$= \frac{1}{m_1 m_2 (\Omega^2 - \omega_1^2) (\Omega^2 - \omega_3^2)} \begin{bmatrix} (c_2 - m_2 \Omega^2) F_0 \\ c_2 F_0 \end{bmatrix}$$

$$\vec{q} = \vec{0}$$
(5.86)

wobei die Eigenkreisfrequenzen

$$\omega_1^2 = \frac{1}{2} \left(\frac{c_2}{m_2} + \frac{c_1 + c_2}{m_1} \right) + \sqrt{\frac{1}{4} \left(\frac{c_2}{m_2} + \frac{c_1 + c_2}{m_1} \right)^2 - \frac{c_1 c_2}{m_1 m_2}}$$
 (5.88)

$$\omega_3^2 = \frac{1}{2} \left(\frac{c_2}{m_2} + \frac{c_1 + c_2}{m_1} \right) - \sqrt{\frac{1}{4} \left(\frac{c_2}{m_2} + \frac{c_1 + c_2}{m_1} \right)^2 - \frac{c_1 c_2}{m_1 m_2}}$$
 (5.89)

In der Gleichung (5.86) ist zu erkennen, dass die Amplitudenkomponente p_1 bei einer Tilgungsfrequenz $\Omega_T = \sqrt{c_2/m_2}$ verschwindet. Das Phänomen der Tilgung besteht darin, dass die durch Anregung zugeführte Energie ausschließlich auf den Schwingungstilger (hier: Körper mit Masse m_2) übertragen wird. Dadurch ändert sich die kinetische Energie des Körpers mit Masse m_1 nicht; Er befindet sich trotz der äußeren Anregung vollständig in Ruhe.

Neben der Tilgungsfrequenz gibt es außerdem Resonanzen mit unendlich großer Amplitude bei ω_1 und ω_3 . Der Verlauf der Amplitude in Abhängigkeit von Ω ist für $m_1=8$, $m_2=1$, $c_1=5$, $c_2=1$ in der Abbildung 5.4 dargestellt.

Ω

Abbildung 5.4: Verlauf der Amplituden beim Zwei-Freiheitsgrad-Schwinger für Parameterwerte $m_1 = 8$, $m_2 = 1$, $c_1 = 5$, $c_2 = 1$.

Zur Plausibilisierung kann folgendes Gedankenexperiment durchgeführt werden: setzt man in der Bewegungsgleichung (5.84) den Freiheitsgrad $x_1 = 0$, dann folgt aus der ersten Zeile

$$-c_2 x_2 = F_0 \cos(\Omega t) \tag{5.90}$$

D.h. die Federkraft der Feder c_2 steht im Gleichgewicht mit der Anregung. Sie kompensiert also gerade die Anregungskraft, sodass die resultierende Kraft auf die Masse m_1 identisch 0 ist. Daher ruht die Masse m_1 .

Aufgaben zu Kapitel 5

- **5.1** Wie viele unterschiedliche Eigenwerte hat ein mechanisches System mit einem Freiheitsgrad?
- **5.2** Wie viele unterschiedliche Eigenwerte hat ein mechanisches System mit zwei Freiheitsgraden?
- **5.3** Wie viele unterschiedliche Eigenwerte hat ein mechanisches System mit drei Freiheitsgraden?
- 5.4 Bestimmen Sie die Eigenfrequenzen und Eigenvektoren des dynamischen Systems

$$\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} \ddot{x}_1 \\ \ddot{x}_2 \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} F_0 \\ 0 \end{bmatrix} \cos(\Omega t)$$
 (5.91)

- **5.5** Berechnen Sie für das System in Aufgabe 5.4 die partikuläre Lösung mithilfe eines Ansatzes vom Typ der rechten Seite.
- **5.6** Bestimmen Sie für das System in Aufgabe 5.4 die Modalmatrix und führen Sie die modale Entkopplung durch, sodass Sie zwei entkoppelte DGLn für z_1 und z_2 erhalten.
- 5.7 Bestimmen Sie für das Ergebnis aus Aufgabe 5.6 die partikuläre Lösung der Gleichungen in z_1 und z_2 . Führen Sie die Rücktransformation der Lösung zu x_1 und x_2 durch. Vergleichen Sie das Ergebnis mit dem von Aufgabe 5.5.

Literaturverzeichnis

- [1] Bronstein, I.N.; Hromkovic, J.; Luderer, B.; Schwarz, H.-R.; Blath, J.; Schied, A.; Dempe, S.; Wanka, G.; Gottwald, S.; Zeidler, E.: *Taschenbuch der Mathematik*. Bd. 1. Springer-Verlag, 2012
- [2] Dresig, H.; Fidlin, A.: Schwingungen mechanischer Antriebssysteme: Modellbildung, Berechnung, Analyse, Synthese. Springer-Verlag, 2014
- [3] DUBBEL, H.; BEITZ, W.; KÜTTNER, K.-H.: *DUBBEL: Taschenbuch für den Maschinen-bau*. Springer-Verlag, 2013
- [4] GASCH, R.; NORDMANN, R.; PFÜTZNER, H.: Rotordynamik. Springer-Verlag, 2006
- [5] HAUGER, Werner; SCHNELL, Walter; GROSS, Dietmar: *Technische Mechanik: Band 3: Kinetik.* Bd. 217. Springer-Verlag, 2013
- [6] HIBBELER, R.C.; WAUER, J.; SEEMANN, W.: *Technische Mechanik 3 Dynamik*. Pearson, 2012
- [7] WITTENBURG, J.: Schwingungslehre: lineare Schwingungen, Theorie und Anwendungen. Springer-Verlag, 2013