COMP318 Ontologies and Semantic Web

OWL - Part 3

Dr Valentina Tamma

V.Tamma@liverpool.ac.uk

Where were we

- OWL, a KR language for the web
 - OWL extends RDFS

Compatibility between OWL and RDF(S)

- OWL uses to a great extent RDF(S)
 - One of the possible syntax formats for OWL is in RDF/XML
 - instances are declared in RDF
 - using rdf:Description and rdf:type
 - The OWL constructs owl:Class, owl:DatatypeProperty and owl:ObjectProperty are specialisations of the corresponding RDFS

constructs

OWL and DL

- Description logics (DLs) are a family of knowledge representation languages
 - with expressivity typically between propositional logic an first order logic
 - the core reasoning problems for most DLs are usually decidable and the decision procedures implementing them are typically efficient and decidable
- DLs provides a logical formalism for ontologies and the Semantic Web
 - the Web Ontology Language (OWL) and its profiles are based on DLs.
- The most popular application of OWL is in biomedical informatics where DLs are used to encode biomedical knowledge

T-boxes and A-boxes

- DL logical axioms and assertions are stated in T-boxes and A-boxes
 - The T-Box: contain terminological knowledge expressing the vocabulary
 - it is independent from the instances
 - It generally consists of subsumption (□) and equivalence (≡) axioms
 - LuxuryKitchenApartment $\sqsubseteq \forall$ hasKitchen.LuxuryKitchen
 - LuxuryApartment \equiv Apartment $\sqcap \forall$ hasKitchen.LuxuryKitchen
 - The A-Box: contain assertional knowledge, i.e. facts about the instances structured according to the T-box
 - Facts about individuals a, b, c
 - a set of concept membership assertions C(a)
 - and role assertions
 - LuxuryApartment(BaronWayApartment)
 - locatedIn(BaronWayApartment, Amsterdam)

OVL ontology header OWL namespace

Assertion for housekeeping purposes

Namespaces vs import

OWL namespace

Import of an ontology

What do we describe with OWL

- OWL (we assume DL) ontologies describe a world in terms of:
 - individuals (constants): homer, lisa, ...
 - classes (unary predicates): man(x), woman(x), lazy(x), clever(x), ...
 - properties/roles (binary predicates):
 sister_of(x,y), works_for(x,y)...

Assertional knowledge (instances)

- Instances assert information about named individuals
- It is restricted to what can be stated in RDF
 - class membership: female(marge)
 - property membership: married(marge, homer)
 - use rdf:ID and rdf:about almost interchangeably

<rdf:Description rdf:ID="marge">
 <rdf:type rdf:resource="#woman"/ >
 </rdf:Description>

<woman rdf:about="#marge"/>

It references the individual, it can be used as many times as needed

It declares the individual, it can be used only once in the document

<rdf:Description rdf:about="marge">
 <married rdf:resource="homer"/ >
 </rdf:Description>

Unique Name Assumption

- In logics with the unique name assumption, different names always refer to different entities in the world.
- Despite being based on description logic, for which UNA holds, OWL does not make this assumption
 - explicit constructs are used to express whether two names refer to the same or different entities
 - owl:sameAs URIs refer to the same entity or individual
 - owl:differentFrom URIs refer to different entities or individual


```
<rdf:Description rdf:about="#marge"/>
    <owl:sameAs rdf:resource="#margeSimpson">
    </rdf:Description>
<rdf:Description rdf:about="#homer">
    <owl:differentFrom rdf:resource="#marge"/>
    <rdf:Description>
```


owl: Thing and owl: Nothing

- OWL has two predefined classes
 - owl:Thing
 - ⊤ (in DL formalism)
 - class containing all individuals
 - owl:Nothing

 - "empty" class containing no individuals
- For every class C
 - owl:Nothing is a subclass of C
 - C is a subclass of owl: Thing

Terminological knowledge: classes and subclasses

- Classes are defined using owl:class
 - subclass of rdfs:class

```
<owl:Class rdf:ID="parents">
    <rdfs:subClassOf rdf:resource="#people"/>
    </owl:Class>

<owl:Class rdf:about="#children">
        <owl:disjointWith rdf:resource="#parents"/>
        <owl:Class>
        <owl:Class rdf:ID="offspring">
              <owl:Class rdf:ID="offspring">
              <owl:class rdf:resource="#children"/>
        <owl:Class></owl:Class></owl:Class></owl:Class>
```


COMP318

Recap

- OWL preliminaries
- OWL class constructors

• https://www.w3.org/TR/owl2-primer/

COMP318 Ontologies and Semantic Web

End of OVVL - Part 3

Dr Valentina Tamma

V.Tamma@liverpool.ac.uk