Assignment 3	Course : CIND110
Student : Samaraweera Wijesooriya	Date : August 8, 2022

Section A

 [4 Pts.] Write an XPath expression to find all authors along with their corresponding books. db:open("Section_A_XML_Data", "Section_A_XML_Data.xml") //(author|title)

 [4 Pts.] Write an XPath expression to find the prices of all books and their genre. db:open("Section_A_XML_Data","Section_A_XML_Data.xml") //(price|genre)/text()

3. [4 Pts.] Write an XPath expression to find the title, price and the description in text of the last book in the catalog.

db:open("Section_A_XML_Data","Section_A_XML_Data.xml")
//book[12]/(title|price|description)/text()

4. [4 Pts.] Write an XPath expression to find the authors and titles of the books which cost more than 40 dollars, along with the respective prices.

db:open("Section_A_XML_Data","Section_A_XML_Data.xml")

//book[price>40]//(author|title)/text()

5. [4 Pts.] Write an XPath expression to find the authors and prices of the books belonging to Computer genre.

db:open("Section_A_XML_Data","Section_A_XML_Data.xml")

6. [6 Pts.] Write an XQuery (FLWOR) script to find the titles of the books arranged in ascending order of price, of which the price are more than 30 dollars.

for \$bk in db:open('Section_A_XML_Data')//book

let \$title:=\$bk/title let \$price:=\$bk/price where \$price>30 order by \$price return \$title/text()

7. [6 Pts.] Write an XQuery (FLWOR) script to provide only the descriptions of the books, which

cost less than 5 dollars.

for \$bk in db:open('Section_A_XML_Data')//book

let \$description:=\$bk/description

let \$price:=\$bk/price

where \$price<5

return \$description

8. 8. [6 Pts.] Write an XQuery (FLWOR) script which gives the various genre along with the text of

the title of the books in them.

for \$bk in db:open('Section_A_XML_Data')//book

let \$title:=\$bk/title

let \$genre:=\$bk/genre

order by \$genre

return \$genre | \$title/text()

9. [6 Pts.] Write an XQuery (FLWOR) script which gives the description text showing that the book belongs to Fantasy genre.

for \$bk in db:open('Section_A_XML_Data')//book let \$description:=\$bk/description let \$genre:=\$bk/genre where \$genre="Fantasy" order by \$genre return \$description/text()

10. [6 Pts.] Write an XQuery (FLWOR) script which gives the list of authors whose books cost less

that 30 dollars and provides the titles of the books otherwise.

for \$bk in db:open('Section_A_XML_Data')//book

let \$print:=if(\$bk/price<30) then \$bk/author

else \$bk/title

return \$print/text()

Section B

1. [35 Pts.] Use the K-means algorithm to cluster this dataset. You can initiatiate the claculation by assuming K=2 and assume that the records with RIDs 103, and 104 are used as the initial cluster centroids.

Euclidean distance $d=((x2-x1)^2 + (y2-y1)^2)^5$

1st iteration

K=2, c1 = RID 103, c2 = RID 104

RID	x_i	<i>c</i> ₁		C 2		Distance 1 (xi-c1	Distance 2 (xi-c2	Nearest Cluster	New Centroid			
	age	yrs	age	yrs	age	yrs					age	yrs
101	30	5	50	15	25	5	22.4	5.0	c2	c1	51.7	21.7
102	50	25	50	15	25	5	10.0	32.0	c1	c2	28.3	6.7
103	50	15	50	15	25	5	0.0	26.9	c1			
104	25	5	50	15	25	5	26.9	0.0	c2			
105	30	10	50	15	25	5	20.6	7.1	c2			
106	55	25	50	15	25	5	11.2	36.1	c1			
							lowest distance					

c1 = mean of RID 102,103,106

(50+50+55)/3 = 51.7

New centroids c1 = (51.7, 21.7), c2 = (28.3, 6.7)

2nd iteration

c1 = (51.7,21.7), c2 = (28.3,6.7)

RID	x_i c		c_{I}	c_I			Distance 1 (xi-c1	Distance 2 (xi-c2	Nearest Cluster	New Centroid		
	age	yrs	age	yrs	age	yrs					age	yrs
101	30		51.7	21.7	28.3	6.7	27.3	1.7	c2	c1	51.7	21.7
102	50	25	51.7	21.7	28.3	6.7	3.7	29.5	c1	c2	28.3	6.7
103	50	15	51.7	21.7	28.3	6.7	6.9	23.9	c1			
104	25	5	51.7	21.7	28.3	6.7	31.4	3.3	c2			
105	30	10	51.7	21.7	28.3	6.7	24.6	5.3	c2			
106	55	25	51.7	21.7	28.3	6.7	4.7	33.3	c1			

New centroids c1 = (51.7,21.7), c2 = (28.3,6.7)

2. [15 Pts.] Provide a brief description on the difference between describing discovered knowledge using clustering and describing it using classification?

There is no difference in distance using iteration 1 and 2. We identified 2 groups using clustering. So the 2 groups will be RID 102,103,106 and RID 101,104,105.

In Classification method, we classify sample in to known groups. We may use our knowledge about data in to groups . In this example we can classify using age range. Age between 25 and 49, age between 50 and 55.

In classification we use our knowledge to put sample in to classes. In clustering we do it randomly without knowledge.