Deeper Exploration of Momentum-type Methods

Ruoyu Sun

Learning Goals of Today

Deeper exploration of momentum.

After today's lecture, you should be able to:

- tune momentum coefficients better
- write down the matrix recursion form of HB
- analyze empirical behavior of HB based on eigenvalues of the update matrix
- explain which methods are optimal first order methods (optional)

Outline

Heavy Ball Method: Practical Performance and Choice of Parameters

Matrix Recursion and Eigenvalues

Optimal First Order Method

GD with Momentum

We solve a linear regression problem by GD with momentum

$$w^{r+1} = w^r - \alpha \nabla f(w^r) + \beta (w^r - w^{r-1}).$$

Algorithm parameters

- $ightharpoonup \alpha = 1/L$, where $L = \lambda_{\max}(X'X)$
- $ightharpoonup eta \in (0,1)$ and close to 1

Small data setting: N=10, d=5

Plots for Different β : Observations

Observations:

- ► There are oscillations (NOT descent algorithm!)
- $ightharpoonup \beta = 0.9$ is approx. the best choice of β (for high accuracy)
- For low accuracy (e.g. 10^{-1}), $\beta = 0.5$ is about the best choice

Optimal β

What is the optimal β ?

According to theory, for $\alpha = 1/L$, "best" β is $(1 - 1/\sqrt{\kappa})^2$

▶ About 0.88 for this problem instance

How to Tune β Based on Plots?

- What we have observed:
 - \triangleright Optimal β (and larger): straight line, more fluctuation
 - Small β: multi-stage behavior, similar to GD
- **Empirical guidance**: (when solving quadratic problems) in HB, assume $\alpha = 1/L$, then tune β till (for log of gradient norm):
 - whole plot has fluctuation
 - plot becomes straight

Gradient Norm v.s. β

Sensitivity of parameter?

- ► The range 0.8-0.9 is good (in terms of achieving 10^{-3} grad-norm in 200 iterations)
- ightharpoonup Conservative is better than aggresive β

How to Tune β (without checking plots)?

Most blogs suggest $\beta = 0.9$ or 0.99. Why?

- ▶ condition number is often between 10^2 to 10^4 , corresponding to an optimal $\beta \approx (1 \frac{1}{\sqrt{\kappa}})^2 \in [0.8, 0.98]$
- **Low accuracy**: Even for some problems with $\kappa>10^6$, we may only need low accuracy like 10^{-3} of 10^{-5} , thus the effective condition number is below 10^4 (recall the lecture on "effects of eigenvalues")
- ▶ **High accuracy** $< 10^{-6}$: may still try larger β , e.g. 0.9999

Tune β :

- ▶ **Method 1** (naive): try $\beta = 0.5, 0.7, 0.8, 0.9, 0.99$ and pick the best
- **Method 2** (suggest): try β s.t.

$$\frac{1}{1-\beta} \in \{10, 100, 300, 600, 1000, 2000\}$$

and pick the best.

What Else are Mysterious?

From the plots, we have obtained a few insights on tuning.

One more mystery:

Q1: why is there fluctuation at all?

Shouldn't we design methods that are "descent" algorithms?

Q2: Why do we allow non-descent algorithm here?

Next section.

Outline

Heavy Ball Method: Practical Performance and Choice of Parameters

Matrix Recursion and Eigenvalues

Optimal First Order Method

Matrix Recursion

The objective $f(\mathbf{x}) = .5\mathbf{x}^T Q \mathbf{x}$. (ignore linear term)

HB method:
$$\mathbf{x}^{r+1} = \mathbf{x}^r - \alpha \nabla f(\mathbf{x}^r) + \beta(\mathbf{x}^r - \mathbf{x}^{r-1})$$

Together with $\mathbf{x}^r = \mathbf{x}^r$, we write a matrix form

$$\begin{pmatrix} \mathbf{x}^{r+1} \\ \mathbf{x}^r \end{pmatrix} = \begin{pmatrix} I - \alpha Q + \beta I & -\beta I \\ I & 0 \end{pmatrix} \begin{pmatrix} \mathbf{x}^r \\ \mathbf{x}^{r-1} \end{pmatrix} \tag{1}$$

Write
$$\mathbf{y}^r \triangleq \begin{pmatrix} \mathbf{x}^r \\ \mathbf{x}^{r-1} \end{pmatrix}$$
, $M = \begin{pmatrix} I - \alpha Q + \beta I & -\beta I \\ I & 0 \end{pmatrix}$ then we have

$$\mathbf{y}^{r+1} = M\mathbf{y}^r.$$

The behavior of HB is determined by eigenvalues of matrix M

Compare HB v.s. GD

GD update equation for $f(\mathbf{x}) = .5\mathbf{x}^T Q \mathbf{x}$:

$$\mathbf{x}^{r+1} = \mathbf{x}^r - \alpha \nabla f(\mathbf{x}^r) = (I - \alpha Q)\mathbf{x}^r$$

$$\mathbf{x}^{r+1} = M_{\text{GD}}\mathbf{x}^r \text{ where } M_{\text{GD}} = I - \alpha Q.$$
(2)

HB update equation $\mathbf{x}^{r+1} = \mathbf{x}^r - \alpha \nabla f(\mathbf{x}^r) + \beta(\mathbf{x}^r - \mathbf{x}^{r-1})$. Write as

$$\mathbf{y}^{r+1} = M_{\mathrm{HB}}\mathbf{y}^r \text{ where } M_{\mathrm{HB}} = \begin{pmatrix} I - \alpha Q + \beta I & -\beta I \\ I & 0 \end{pmatrix}$$
 (3)

Major difference:

 M_{GD} is a symmetric matrix; M_{HB} is a non-symmetric matrix.

Consider the case $\beta = 0.879$ (optimal β).

Eigenvalues of M are

 $(0.44 \pm 0.82i, \ 0.82 \pm 0.44i, \ 0.88 \pm 0.33i, \ ,0.92 \pm 0.19i, 0.9376, 0.9376)$

Magnitude of eigenvalues of ${\cal M}$ are

(0.9376, 0.9376, ..., 0.9376, 0.9376, 0.9376, 0.9376)

How to explain the figure using the eigenvalues?

- ▶ 1 stage(s): $|\lambda_i| = 0.9376, \forall i$
- ► Fluctuation: due to the phase of eigenvalues (like cosine curve)

14/30

$$\beta = 0.8$$
.

Eigenvalues of M are

$$(0.4 \pm 0.8i, 0.79 \pm 0.43i, 0.84 \pm 0.31i, 0.88 \pm 0.17i, 0.82, 0.98)$$

Absolute eigenvalues of M are (0.89, 0.89, ..., 0.89, 0.89, 0.82, 0.98)

How to explain the figure using the eigenvalues?

- 3 stages: due to 3 clusters of eigenvalues (only considering magnitude)
- ► Fluctuation: only in the 2nd stage (since 0.89 corresponds to complex eigenvalues; while 0.82, 0.89 correspond to real

$$\beta = 0.5$$
.

Eigenvalues of M are

$$(0.25 \pm 0.66i,\ 0.64 \pm 0.31i,\ 069 \pm 0.16i, 0.50,\ 0.55\ , 0.91, 0.99)$$

Absolute eigenvalues of M are

$$(0.71, ..., 0.71, 0.71, 0.50, 0.55, 0.91, 0.99)$$

$$(\pm 69^{\circ}, \pm 26^{\circ}, \pm 13^{\circ}, 0, 0, 0, 0)$$

Why little fluctuation?

16/30

$$\beta = 0.5$$
.

Eigenvalues of M are

$$(0.25 \pm 0.66i,\ 0.64 \pm 0.31i,\ 069 \pm 0.16i, 0.50,\ 0.55\ , 0.91, 0.99)$$

Absolute eigenvalues of M are

$$(0.71, ..., 0.71, 0.71, 0.50, 0.55, 0.91, 0.99)$$

$$(\pm 69^{\circ}, \pm 26^{\circ}, \pm 13^{\circ}, 0, 0, 0, 0)$$

Why little fluctuation?

► That stage is too short

Nesterov's Accelerated Method

We solve the linear regression problem by Nesterov's accelerated method.

$$\begin{cases} y^r = x^r + \beta_r (x^r - x^{r-1}), \\ x^{r+1} = y^r - \alpha_r \nabla f(y^r). \end{cases}$$
 (4)

Stepsize $\alpha = 1/L$.

Try different β . (at home)

Comparison: Nesterov momentum and momentum

Using Optimal parameters for Nesterov ($\beta=0.8825$), and HB ($\beta=0.879$)

Figure: Left: 50 iterations (early stage); Right: 500 iterations (global picture)

Observations:

- Nesterov's method is faster than GD in early stage, and similar to HB in later stages
- Nesterov's method has less fluctuation than HB.

Answers To Earlier Questions

Q1: why is there fluctuation at all?

Because the update matrix has complex eigenvalues.

Q2: Why do we allow non-descent algorithm here?

Intuition: Assume $z=\rho e^{i\theta}$, where $\rho<1$. Then $\mathrm{Re}(z^r)=\mathrm{Re}(\rho^r(\cos(r\theta)+i\sin(r\theta)))=\rho^r\cos(r\theta)$ converges to zero at least at rate ρ , but fluctuation occurs due to \cos part.

▶ A more formal analysis is not easy; skip in the course

Outline

Heavy Ball Method: Practical Performance and Choice of Parameters

Matrix Recursion and Eigenvalues

Optimal First Order Method

Further Improvement of Momentum?

- Question: can we do better than HB and NAG?
 - "Better" can mean many things...
 - e.g. better per-iteration cost; better iteration complexity; ...
- ▶ **Question**: Can we improve the iteration complexity $\tilde{O}(\sqrt{\kappa})$, even just for quadratic case?
- ▶ E.g. (more history info): can we use three or four terms in history, to get $\tilde{O}(\kappa^{1/3})$ or even better bound?

Optimal Methods

- Surprisingly, the answer is NO, in a certain sense.
- We will see:
 - Nesterov's method is (order) optimal for convex/strongly convex problems, in a certain sense. (not just quadratic!)
 - For strongly convex quadratic problems, both HB and Nesterov's method are (order) optimal in that sense.
- In what sense? We will discuss later.
- Why should you care?

Why Should You Care About Optimal Methods

- **Engineers** should care since:
 - If your boss pushes you to find faster algorithms, you tell him/her: no way! My algorithm is "optimal".
 - Save your time. In an ideal world, for any problem, just find the "optimal" algorithm, then no need to worry.
- "Why momentum really matters" says: this result should be taken "spiritually", not literally.
- Theoreticians should care since:
 - Don't waste your time to look for a faster algorithm (in theory) unless...
 - unless you really understand the lower bound, and go beyond the conditions for lower bound (more discussion later)

Oracle Model

- **Oracle model** Ω for the first order algorithms:
 - given any x, the oracle returns $\nabla f(x)$.
 - at iteration r, the algorithm generates x^{r+1} in $\text{span}(x^0, x^1, \dots, x^r, \nabla f(x^0), \dots, \nabla f(x^r))$.

In short, the only allowable information is $\,x^r$ and $\nabla f(x^r), r=0,1,\dots$

▶ **Definition**: The (iteration) complexity of algorithm $A \in \Omega$, for a function f, is the minimal number of iterations to achieve error ϵ , i.e.,

$$C_{\epsilon}(\mathcal{A}; f) = \min\{r \mid f(x^r) - f(x^*) \le \epsilon\}.$$

▶ **Definition**: The complexity of algorithm $A \in \Omega$, for a function class F, is thelargest minimal number of iterations to achieve error ϵ , i.e.,

$$C_{\epsilon}(\mathcal{A}; F) = \sup_{f \in F} \min\{r \mid f(x^r) - f(x^*) \le \epsilon\}.$$

What Algorithm is Covered?

What is covered by the oracle model Ω ?

- GD with constant stepsize;
- ► GD with diminishing stepsize, or any line search rule.
- ► HB method;
- Nesterov's method

What is NOT covered by Ω ?

- Newton method
- ▶ Using $-D\nabla f(x^r)$ as direction, where D is positive definite
- Many others, e.g., AdaGrad, BFGS, etc.

Lower Bound

Let $P_n(D,L)$ be the class of smooth unconstrained convex optimization problems $\min_{\mathbf{x} \in \mathbb{R}^n} f(\mathbf{x})$ with

$$||x^0 - x^*|| \le D,$$

$$||\nabla f(x) - \nabla f(y)|| \le L||x - y||, \quad \forall x, y \in \mathbb{R}^n.$$

Let $S_n(D,L,\mu)$ be the class of smooth unconstrained strongly convex optimization problems, which satisfies the conditions of P(D,L) and additionally

$$\nabla^2 f(\mathbf{x}) \succeq \mu I, \quad \forall \mathbf{x}.$$

Result: For convex class $P_n(D, L)$,

$$\inf_{\mathcal{A} \in \Omega} C_{\epsilon}(\mathcal{A}) \ge O(1) \min\{n, \frac{D\sqrt{L}}{\sqrt{\epsilon}}\}\$$

For strongly convex class $S_n(D, L, \mu)$,

$$\inf_{\mathcal{A} \in \Omega} C_{\epsilon}(\mathcal{A}) \ge O(1) \min\{n, \sqrt{\kappa} \log(1/2\epsilon)\}$$

► For any first-order method in Ω , there exists a strongly convex problem s.t. to get error $<\epsilon$, the required iteration is at least $\min\{n,\sqrt{\kappa}\log(1/2\epsilon)\}$

Limitation of Lower Bound

Is that the end?

Two big limitations:

- Only about # of iterations; per-iteration time ignored
- ▶ Bound of *n* on number of iterations

Lower bounds are "negative", but not just negative.

They provide directions for new research: shall design algorithms that

- save per-iteration time! (SGD, CD, etc.)
- go beyond "pure" first-order methods (BFGS, BB, etc.)

Summary

Summary of this lecture (exercise).

Summary

How to tune β ?

- ► Start from $\beta = 0.9, 0.95$ or 0.99
- ► Try $\frac{1}{1-\beta}$ ∈ {10, 100, 300, 600, 1000, 2000} and pick the best β
- ▶ Reminder: in practice, may need to tune α (till knife's edge) together

Write HB and NAG as matrix recursion, and check their eigenvalues

- Update matrix is non-symmetric; has complex eigenvalues, thus fluctuation
- This is done for quadratic problem

Even for quadratic problems, NAG is better than HB

- in early stage, as good as GD
- in late stage, as good as or slightly better than HB

NAG is the optimal method among (certain class of) first-order methods

 Reminder: HB is NOT! (for non-quadratic problem, its benefit may not exist)