ОВАиТК 2

Ковалев Алексей

1. Предположим обратное: пусть группа S_{p-1} транзитивно действует на множестве X из p элементов. Действие является транзитивным, значит все элементы множества образуют ровно одну орбиту, то есть $\forall x \in X$ Orb x = X, $|\operatorname{Orb} x| = p$. Но $|S_{p-1}| = |\operatorname{Stab} x| \cdot |\operatorname{Orb} x|$, причем $|S_{p-1}| = (p-1)!$. Отсюда

$$(p-1)! = |\operatorname{Stab} x| \cdot p$$

что приводит к $|\operatorname{Stab} x| \notin \mathbb{N}$ — противоречие. Значит группа S_{p-1} не может транзитивно действовать на множестве из p элементов.

2. Рассмотрим следующее множество X:

$$X = \{(g_1, g_2, \dots, g_p) : g_1, g_2, \dots, g_p \in G; g_1 g_2 \dots g_p = e\}$$

Каждый из наборов (g_1,g_2,\ldots,g_p) однозначно задается первыми p-1 его элементанми, а последний элемент является обратным к их произведению. Значит всего в множестве X содержится $|G|^{p-1}$ элементов. Рассмотрим действие группы C_p на множестве X, циклически сдвигающее элементы наборы (g_1,g_2,\ldots,g_p) . В силу того что $|C_p| = |\operatorname{Stab} x| \cdot |\operatorname{Orb} x| = p$, это действие образует только орбиты размера 1 или p. Множество X представляет собой объединение всех орбит рассмотренного действия, значит

$$|X| = |G|^{p-1} = 1 + 1 + \dots + 1 + p + p + \dots + p$$

причем $p \mid |X| = |G|^{p-1}$, а значит в рассмотренной сумме число единиц делится на p. При этом размер орбиты равен одному, если и только если все числа набора (g_1, g_2, \ldots, g_p) одинаковы и равны некоторому g, то есть g является решением уравнения $g^p = e$. В данной сумме есть хотя бы одна единица, так как решением этого уравнения является g = e. Но тогда в этой сумме есть еще хотя бы p-1 единица, то есть в группе существует неединичный элемент, являющийся решением уравнения $g^p = e$, а значит имеющий порядок p, в силу простоты числа p.

- **3.** Если существует факторгруппа G/H, значит $H \triangleleft G$. По определению нормальной подгруппы $\forall g \in G$ выполняется gH = Hg. Тогда $gHg^{-1} = H$. Значит $G/H \cong G/(gHg^{-1})$.
- **4.** Построим искомую группу K. Пусть X множество левых смешных классов G по подгруппе H. Мощность этого множества равна (G:H)=n. Рассмотрим действие φ группы G на множестве X, такое что g(aH)=(ga)H. Это действие является гомоморфизмом, так как (gh)(aH)=(gha)H=g(h(aH)). Ядро этого гомоморфизма $\operatorname{Ker} \varphi$ является нормальной подгруппой в G. По теореме об изоморфизме групп

$$G/\operatorname{Ker} \varphi \cong \operatorname{Im} \varphi < S(X)$$

значит $(G: \operatorname{Ker} \varphi) \mid n!$. Также $(G: \operatorname{Ker} \varphi) = \frac{|G|}{|\operatorname{Ker} \varphi|} \mid |G|$. Из этих фактов вытекакет $(G: \operatorname{Ker} \varphi) \mid \gcd(|G|, n!)$. Докажем теперь, что $\operatorname{Ker} \varphi$ является подгруппой в H. Пусть $g \in \operatorname{Ker} \varphi$, тогда

$$g(aH) = aH \Rightarrow (a^{-1}ga)H = H \Rightarrow a^{-1}ga \in H \Rightarrow g \in aHa^{-1}$$

В частности, при a=e это означает, что $g\in H$. Значит $\operatorname{Ker} \varphi\subset H$. Докажем замкнутость $\operatorname{Ker} \varphi$ относительно операций. Для любых $g,h\in \operatorname{Ker} \varphi$

$$(gh)(aH) = g(h(aH)) = g(aH) = aH \Rightarrow gh \in \operatorname{Ker} \varphi$$

$$aH = e(aH) = (g^{-1}g)(aH) = g^{-1}(g(aH)) = g^{-1}(aH) \Rightarrow g^{-1} \in \operatorname{Ker} \varphi$$

Получается, что $\operatorname{Ker} \varphi$ – подгруппа H, нормальная подгруппа G и $(G:\operatorname{Ker} \varphi)\mid \gcd(|G|,n!)$, то есть $K=\operatorname{Ker} \varphi$ – искомая подгруппа K.

5. Группа внутренних автоморфизмов группы G:

$$\operatorname{Inn}(G) = \{ \phi_g \colon x \mapsto gxg^{-1} \}$$

Рассмотрим отображение

$$\varphi \colon G \to \operatorname{Inn}(G)$$

 $\varphi \colon g \mapsto \phi_q$

Докажем, что φ – гомоморфизм

$$(\varphi(g)\varphi(h))(x) = (\phi_g\phi_h)(x) = \phi_g(hxh^{-1}) = ghxh^{-1}g^{-1} = (gh)x(gh)^{-1}$$
$$\varphi(gh)(x) = \phi_{gh}(x) = (gh)x(gh)^{-1}$$

To есть $\varphi(gh) = \varphi(g)\varphi(h)$, значит φ – гомоморфизм.

Найдем ядро этого гомоморфизма:

$$Ker(\varphi) = \{g \in G : \varphi(g) = id\}$$

где id – единичный элемент Inn(G).

$$g \in \text{Ker}(\varphi) \iff \forall x \in G \ \varphi(g)(x) = x$$

$$\varphi(g)(x) = \phi_g(x) = gxg^{-1} = x$$

Отсюда $\forall x \in G \ gx = xg \Rightarrow g \in Z(G)$. Значит ядром этого гомоморфизма является Z(G) – центр группы G.