Subjectul D. OPTICĂ

Nr. item	Soluție/Rezolvare
II.a.	
	$f = \frac{1}{f}$
	$f = \frac{1}{\left(n-1\right)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)}$
	$n = 1 + \frac{1}{\sqrt{2}}$
	$n = 1 + \frac{1}{f\left(\frac{1}{R_1} - \frac{1}{R_2}\right)}$
	Rezultat final: $n = 1,5$
b.	
	$\frac{1}{x_2} = \frac{1}{f} + \frac{1}{x_1}$ $\beta = \frac{x_2}{x_1}$
	$\beta = \frac{x_2}{x_1}$
	Rezultat final: $x_1 = -20cm$
C.	
	Reprezentarea corectă a mersului razelor de lumină
d.	
	$C_s = \frac{1}{f} + \frac{1}{f'}$
	$C_s = \frac{1}{f} + \frac{1}{f'}$ $f' = \frac{R}{(n'-1)}$
	Rezultat final: $C_s = 3,5 dioptrii$