

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO Centro Tecnológico Departamento de Engenharia Elétrica

Princípios de Comunicações I

Modulação Analógica Semestre Letivo 2020/1

Prof.: Jair A. Lima Silva

DEL-UFES

Índice

I. Tipos de Modulação de Amplitude

- a. Modulador de Produto
- b. AM-DSB/TC
- c. AM-DSB/SC
- d. AM-SSB/SC
- e. AM-SSB/TC

II. Potência de Sinais Modulados em Amplitude

a. Modulador de Produto

O modulador de produto é o circuito físico que recebendo como entradas a portadora e o sinal de informação, produz o sinal elétrico de saída:

$$\left| y(t) = k_{\scriptscriptstyle M} x(t) \cos(2\pi f_{\scriptscriptstyle 0} t) \right|$$

Onde k_M é uma constante adimensional característica desse circuito chamada de Constante de Modulação.

a. Modulador de Produto

O bloco modulador de amplitude é formado pelo conjunto filtro passa-faixa (BB) + modulador de produto + filtro passa-faixa (DSB, SSB ou VSB) + circuito somador.

Circuito somador

a. Modulador de Produto

Faixa de passagem dos filtros

 $BB (banda base) : f_a a f_b$

DSB (Double Side Band = dupla faixa lateral): $(f_0 - f_b)$ a $(f_0 + f_b)$

SSB (Single Side Band = faixa lateral única): $(f_0 - f_b) a f_0 ou f_0 a (f_0 + f_b)$

VSB (Vestigial Side Band = faixa lateral vestigial: $(f_0 - f_m) a (f_0 + f_b) ou$

 $(f_0 - f_b) a (f_0 + f_m) com f_a < f_m < f_b$

b. Modulação AM-DSB/TC

AM-DSB/TC é a sigla em inglês para Modulação de Amplitude – Dupla faixa lateral/Portadora Transmitida.

A amplitude da portadora é alterada pelo sinal modulador x(t), obtendo-se o sinal modulado y(t) na forma:

$$y(t) = E_0 \cos(2\pi f_0 t) + k_M x(t) \cos(2\pi f_0 t)$$

portadora

Sinal na saída do filtro DSB

$$y(t) = \left[E_0 + k_M x(t) \right] \cos(2\pi f_0 t)$$

Sinal modulado em AM-DSB/TC

b. Modulação AM-DSB/TC

Modulação de amplitude AM-DSB/TC no domínio do tempo

$$y(t) = E_0 \cos(2\pi f_0 t) + k_M x(t) \cos(2\pi f_0 t) = \left[E_0 + k_M x(t) \right] \cos(2\pi f_0 t)$$

b. Modulação AM-DSB/TC

É definido como **Índice de Modulação de Amplitude** a variação relativa de amplitude do sinal modulado em relação à amplitude da portadora não modulada E_0 .

$$m_{+} = \frac{k_{M} |x_{\text{max}}|}{E_{0}}$$
 Índice de modulação positiva (acima de E_{0}).

$$m_{-} = \frac{k_{M} |x_{\min}|}{E_{0}}$$
 Índice de modulação negativa (abaixo de E_{0}).

 K_m , é chamada de Constante de Modulação

b. Modulação AM-DSB/TC

Se
$$m_{-}$$
 é $\leq 1 \longrightarrow k_{M}|x_{\min}| \leq E_{0}$ então $E_{0} + k_{M}x_{\min} \geq 0$

Isto significa que a envoltória superior do sinal modulado é a réplica do sinal modulador x(t), e a envoltória inferior do sinal modulado é a réplica invertida de x(t).

Se
$$/x_{min}/ = /x_{max}/ = P$$
:

$$m_{+} = m_{-} = m = \frac{k_{M}P}{E_{0}} = \frac{E_{\text{max}} - E_{\text{min}}}{E_{\text{max}} + E_{\text{min}}}$$

b. Modulação AM-DSB/TC

• Se
$$m_{\scriptscriptstyle -} > 1 \longrightarrow k_{\scriptscriptstyle M} |x_{\scriptscriptstyle \min}| > E_{\scriptscriptstyle 0}$$
 então $E_{\scriptscriptstyle 0} + k_{\scriptscriptstyle M} x_{\scriptscriptstyle \min} < 0$

Phase reversals

Ocorre **Sobremodulação** (distorção da envoltória), e as envoltórias superior e inferior deixam de ser réplicas do sinal modulador.

b. Modulação AM-DSB/TC

Quando a **Sobremodulação** ocorre é necessário fazer o ajuste do índice de modulação (ajustar $\mathbf{k}_{\mathbf{M}}$).

b. Modulação AM-DSB/TC

Espectro AM-DSB/TC

O espectro do sinal modulado AM-DSB/TC, y(t) corresponde a soma de uma componente espectral discreta — a portadora — e ao espectro contínuo composto pelas duas faixas laterais.

b. Modulação AM-DSB/TC

Espectro AM-DSB/TC

Considerações do sinal de banda base x(t):

- Sinal de potência;
- sem componente CC ($\overline{x(t)} = 0$);
- espectro limitado ao intervalo $(f_a \sim f_b)$

$$\left| P_0(f) = \frac{k_M^2}{2} P_X(f - f_0) + \frac{E_0^2}{2} \delta(f - f_0) \right|$$

O espectro do sinal modulado AM-DSB/TC ocupa o intervalo de frequências de $(f_0 - f_b)$ até $(f_0 + f_b)$, com largura de faixa $\mathbf{B} = 2f_b$.

b. Modulação AM-DSB/TC

Considere o sinal modulador: $x(t) = A\cos(2\pi f_m t)$

$$|x_{\text{max}}| = |x_{\text{min}}| = A \longrightarrow m = \frac{k_m A}{E_0}$$
 (índice de modulação)

O sinal modulado é expresso em função do índice de modulação por:

$$y(t) = E_0 \left[1 + m \cos \left(2\pi f_m t \right) \right] \cos \left(2\pi f_0 t \right)$$

A amplitude de y(t) varia entre os valores máximos $E_{max} = E_0(1+m)$ e mínimo $E_{min} = E_0(1-m)$, lembrando que $m \le 1$ para que não ocorra dispersão. Multiplicando os termos de y(t) e aplicando a identidade trigonométrica obtém-se $\cos(a)\cos(b) = \frac{1}{2} \left[\cos(a-b) + \cos(a+b)\right]$

$$y(t) = E_0 \cos(2\pi f_0 t) + \frac{mE_0}{2} \cos[2\pi (f_0 - f_m)t] + \frac{mE_0}{2} \cos[2\pi (f_0 + f_m)t]$$

b. Modulação AM-DSB/TC

Até agora analisamos a situação mais simples da modulação AM-DSB/TC, onde o sinal modulante x(t) é uma harmônica simples. Esta situação leva ao sinal modulado y(t) representado abaixo.

$$y(t) = E_0 \cos(2\pi f_0 t) + \frac{mE_0}{2} \cos[2\pi (f_0 - f_m)t] + \frac{mE_0}{2} \cos[2\pi (f_0 + f_m)t]$$

Se o sinal modulante $\mathbf{x}(\mathbf{t})$ for composto - uma somatória de componentes senoidais com amplitudes e frequências distintas,

$$x(t) = A_1 \cos(2\pi f_1 t) + A_2 \cos(2\pi f_2 t) + \dots + A_n \cos(2\pi f_n t)$$

a saída y(t) resultante da modulação de x(t) sobre a portadora $E_0\cos(2\pi f_0t)$ será a soma dos produtos de modulação de cada uma das componentes individuais (cada componente produzirá duas raias laterais). Isto mostra que a *modulação de amplitude é um sistema linear* o que permite trabalhar com componentes espectrais individuas e seus respectivos produtos de modulação.

O fato da modulação de amplitude ser linear faz com que a análise destes sistemas com sinais $\mathbf{x}(t)$ compostos se torne bastante simples.

b. Modulação AM-DSB/TC

Vantagens:

• Simplicidade de implementação do modulador e do demodulador.

Desvantagens:

- Desperdício de potência, devido ao fato de que a portadora é completamente independente do sinal modulador, assim, gasta-se potência para transmitir a portadora.
- •Desperdício em largura de faixa devido ao fato de que não há a necessidade de transmitir ambas as bandas a fim de obtermos o sinal.

b. Modulação AM-DSB/TC

Desde que $m_{\leq} 1$ o sinal de banda base $\mathbf{x(t)}$ pode ser recuperado com um detector de envoltória

b. Modulação AM-DSB/TC – Aplicações

Devido à facilidade e a simplicidade dos moduladores e demoduladores AM-DSB/TC o Serviço de Radiodifusão Sonora AM em ondas médias adotou este modelo de modulação.

Modulação **AM-DSB/TC**, com m ≤ 100%

Sinal de **áudio** com componentes espectrais até 5 kHz

As emissoras de rádio em AM utilizam um espaço no espectro de freqüência que vai desde 530 KHz até 1.600 KHz.

Frequência de portadora: $f_n = 540 \text{ kHz} + Nx10 \text{ kHz}$, com N = 0 a 106 (107).

Espectro de um sinal modulado AM-DSB/TC com m = 2%

Analisador de espectro

b. Modulação AM-DSB/TC - Exercícios

- **5.1)** O transmissor de uma emissora de radiodifusão sonora (AM-DSB/TC) irradia uma potência média normalizada de 10KW com portadora não modulada e 11,25KW quando modulado por um sinal senoidal.
- a) Determine o índice de modulação de amplitude produzido pelo sinal senoidal.
- b) Se um segundo sinal senoidal de mesma frequência com amplitude correspondente a um índice de modulação de 40% é adicionado ao primeiro, qual será a potência total irradiada com os dois sinais moduladores senoidais somados?
- **5.7**) Uma onda quadrada bipolar de 2,5kHz com 200mV de amplitude, modula em AM-DSB/TC uma portadora de 500kHz e amplitude de 5V com índice de modulação de 80%.
- a) Qual a constante de modulação do modulador AM-DSB/TC?
- b) Represente graficamente o sinal modulado obtido no domínio do tempo, indicando valores de tensão e tempo.
- c) Represente o espectro de amplitude do sinal modulado no intervalo de 490 a 510kHz.
- d) Qual é a potência do sinal modulado contida no intervalo de frequência acima dissipada em uma resistência de 50Ω ?

AM-DSB/SC é a sigla em inglês para Modulação de Amplitude – Dupla Faixa lateral/ Portadora Suprimida.

O sinal **y(t)** na saída do bloco modulador é: $y(t) = k_M x(t) \cos(2\pi f_o t)$ Se $x(t) = A\cos(2\pi f_m t) \longrightarrow y(t) = E_0\cos(2\pi f_0 t) m\cos(2\pi f_m t)$

$$y(t) = \frac{mE_0}{2}\cos[2\pi(f_0 - f_m)t] + \frac{mE_0}{2}\cos[2\pi(f_0 + f_m)t]$$

Inversões das envoltórias

Observe que quando o sinal banda base x(t) inverte a polaridade, as envoltórias superior e inferior se invertem.

c. Modulação AM-DSB/SC

Espectro AM-DSB/SC

Assim como a modulação AM-DSB/TC, o espectro do sinal modulado na AM-DSB/SC é $B = 2f_b$. Porém, a vantagem que esta última modulação apresenta em relação a primeira é que não precisa desperdiçar potência transmitindo a portadora.

c. Modulação AM-DSB/SC

Demodulador AM-DSB/SC

Na modulação **AM-DSB/SC** a envoltória não é uma réplica do sinal modulador, logo não é possível demodular esse sinal usando um detector de envoltória. Neste caso é utilizado no bloco demodulador um processo de **detecção síncrona**, também chamada de **detecção coerente**.

$$r(t) = kx(t)\cos(2\pi f_0 t)$$
 com $k = \frac{k_M}{a}$

a representa as perdas sofridas na propagação

OLR = Oscilador Local de Recepção: gera uma portadora

MIX RX = Misturador de Recepção: multiplica o sinal recebido com a portadora do OLR

Se a portadora da ORL for síncrona com a portadora da transmissão (mesma frequência e mesma fase), o sinal c(t) na saída do MIX RX é:

$$c(t) = k_R kx(t) \cos^2(2\pi f_0 t)$$

Demodulador AM-DSB/SC

$$c(t) = k_R kx(t) \cos^2(2\pi f_0 t)$$

Onde k_R é a constante do MIX RX. Aplicando a identidade trigonométrica

$$\cos^2(a) = \frac{1}{2} + \frac{1}{2}\cos(2a),$$

$$c(t) = k_d x(t) + k_d x(t) \cos(2\pi 2f_0 t)$$
 onde $k_d = \frac{k_R k}{2}$

Passando o sinal $\mathbf{c(t)}$ por um filtro passa-baixa com freq. de corte $\mathbf{f_b}$ (maior frequência do sinal modulador $\mathbf{x(t)}$), temos na saída:

$$s(t) = k_d x(t)$$

Se houver sincronismo entre as portadoras de transmissão e de recepção o formato do sinal na saída do demodulador é idêntico ao formato do sinal modulador x(t).

c. Modulação AM-DSB/SC

Demodulador AM-DSB/SC

Se a portadora gerada pelo OLR possuir uma diferença de frequência Δf e/ou uma defasagem ϕ em relação à portadora transmitida, o sinal na saída do filtro será distorcido.

Seja a portadora da OLR
$$E\cos\left[2\pi\left(f_0+\Delta f\right)t\right]$$

O sinal **c(t)** na saída do **MIX RX** é dado por:

$$c(t) = k_d x(t) \cos(2\pi \Delta f t) + k_d x(t) \cos[2\pi (2f_0 + \Delta f)t]$$

Sinal x(t) centrado nas frequências $\pm \Delta f$

Ocorre superposição dos espectros deslocados de $\pm \Delta f$ dentro da banda de passagem do filtro.

c. Modulação AM-DSB/SC

Demodulador AM-DSB/SC

Seja agora a portadora da OLR com uma defasagem em relação à portadora transmitida

$$E\cos(2\pi f_0 t + \phi)$$

Sinal na saída do MIX RX é dado por: $c(t) = k_d x(t) \cos(\phi) + k_d x(t) \cos(2\pi 2f_0 t + \phi)$

O sinal na saída do filtro passa-baixa é: $s(t) = k_d x(t) \cos(\phi)$

Se ϕ é constante o sinal é atenuado, podendo até se anulado, pois $|\cos(\phi)| \le 1$

Se $\phi = \phi(t)$, o sinal na saída é distorcido .

A solução é garantir o sincronismo entre as portadoras de transmissão e de recepção. Para isto existem métodos de sincronização.

c. Modulação AM-DSB/SC

Método de Sincronização Loop de Costas

O método de sincronização da portadora mais utilizado é o Loop de Costas.

Esse receptor consiste em dois detectores coerentes alimentados com o mesmo sinal $\mathbf{r(t)}$, mas com sinais individuais do oscilador local que estão em quadratura de fase entre si. A frequência do oscilador local é ajustada para ter a mesma frequência da portadora transmitida $\mathbf{f_0}$. Esses dois detetores são acoplados para formar um sistema de realimentação negativa projetado de forma a manter o oscilador local síncrono com a portadora.

Para entender o funcionamento vamos chamar o detector superior de I e o inferior de Q, e definir as funções na saída de cada bloco.

c. Modulação AM-DSB/SC

Método de Sincronização Loop de Costas

$$r(t) = kx(t)\cos(2\pi f_0 t)$$
 Sinal recebido

$$E\cos(2\pi f_0 t + \phi)$$
 Portadora do OLR

 ϕ é a defasagem entre as portadoras do modulador e do demodulador

$$p(t)\!=\!k_{_{\!d}}x(t)\!\cos(\phi)\!+\!k_{_{\!d}}x(t)\!\cos(2\pi 2f_{_{\!0}}t\!+\!\phi)$$
 Sinal na saída do MIX RX do detector I

$$q(t) = k_d x(t) sen(\phi) + k_d x(t) sen(2\pi 2 f_0 t + \phi)$$
 Sinal na saída do MIX RX do detector Q

Os sinais nas saídas dos filtros I e Q são, respectivamente,

$$k_d x(t) \cos(\phi)$$
 e $k_d x(t) sen(\phi)$

c. Modulação AM-DSB/SC

Método de Sincronização Loop de Costas

Se $\phi = 0$, a saída do detector I é $k_d x(t)$ (sinal desejado), e a saída de do detector Q é nula.

Se ϕ é ligeiramente maior que zero, os sinais nas saídas dos detectores I e Q serão multiplicados e passados por um filtro, resultando em uma tensão de controle $\mathbf{v(t)}$ que irá controlar o oscilador controlado por tensão (\mathbf{VCO}). A fase da portadora gerado no \mathbf{VCO} é uma função da tensão de alimentação $\mathbf{v(t)}$.

AM-SSB/SC é a sigla em inglês para Modulação de Amplitude – **Faixa lateral única/ Portadora Suprimida**. Neste método somente a banda lateral superior ou inferior é transmitida.

Para o sinal modulador $x(t) = A\cos(2\pi f_m t)$, o sinal modulado y(t) na saída do modulador é:

$$y(t) = \frac{k_M A}{2} \cos \left[2\pi \left(f_0 + f_m \right) t \right]$$

Faixa lateral superior selecionada

$$y(t) = \frac{k_M A}{2} \cos \left[2\pi \left(f_0 - f_m \right) t \right]$$

Faixa lateral inferior selecionada

Note que ao contrário das modulações anteriores, o sinal modulado em AM-SSB/SC considerando x(t) cossenoidal é uma cossenoide com amplitude constante.

A envoltória do sinal modulado AM-SSB/SC **não** guarda **semelhança** com o sinal modulador **x(t)**

Sinal modulador

Sinal modulado AM-SSB/SC com faixa lateral superior transmitida

O espectro do sinal modulado em AM-SSB/SC equivale a somente uma das bandas resultantes do processo de modulação (inferior ou superior). A banda do sinal modulado é igual a banda do sinal modulador.

$$B = f_b - f_a$$

Faixa lateral inferior transmitida

Faixa lateral superior transmitida

modulador de produto x(t) sinal modulador $f_0 + f_a$ $f_0 - f_b$ $f_0 - f_a$ $f_0 - f_b$ $f_0 - f_b$ $f_0 - f_b$ $f_0 - f_b$

(oscilador)

Modulador AM-SSB/SC por filtragem

É a forma mais simples de implementação de um modulador.

A energia do sinal na saída do modulador é a energia contida em uma das bandas laterais.

O desafio neste modulador é implementar o filtro SSB. O **fator de qualidade** nestes filtros \mathbf{Q} , é a relação entre a frequência central da região de transição – frequência da portadora, e a largura da faixa de transição – $\mathbf{2f_a}$, onde $\mathbf{f_a}$ é a menor frequência do sinal $\mathbf{x(t)}$

$$Q = \frac{f_p}{2f_a} \int_{0}^{Y(f)} \int_{0}^{\frac{1}{\text{faixa lateral inferior}}} \int_{0}^{\frac{1}{\text{região de transição}}} \int_{0}^{\frac{1}{\text{faixa lateral superior}}} \int_{0}^{\frac{1}{\text{fai$$

Como f_a é geralmente muito menor do que f_p (portadora), o limite de viabilidade econômica do filtro \mathbf{Q}_{\max} fica difícil de ser atendido.

$$Q_{\max} \ge \frac{f_p}{2f_a} \longrightarrow f_p \ge f_b$$
 (evitar superposição) $\longrightarrow f_b \le f_p \le 2f_a Q_{\max}$

d. Modulação AM-SSB/SC

Modulador AM-SSB/SC por filtragem

Quando a condição de Q_{max} do filtro não pode ser atendida a solução é utilizar um processo de **dupla conversão**, composto de dois estágios.

Exemplo: Deseja-se transmitir o sinal $\mathbf{x(t)}$ com espectro de $\mathbf{f_a} = 0.3$ kHz a $\mathbf{f_b} = 3.4$ kHz, modulado em **AM-SSB/SC** com portadora com frequência $\mathbf{f_0} = 2$ MHz. A viabilidade técnica/econômica do filtro é $\mathbf{Q_{max}} = 50$.

 $2 \times 0, 3kHz \times 50 = 30kHz$ A condição de $\mathbf{f_p} \leq 2\mathbf{f_a}\mathbf{Q_{max}}$ não é atendida, mas a condição de $\mathbf{f_b} \leq \mathbf{f_p}$ é atendida.

No Primeiro estágio é construído um produto modulador com portadora que atenda a condição de $f_b \le f_p \le 2f_a Q_{\max}$ em série com um filtro SSB

$$3,4kHz \le f_p \le 30kHz$$

$$Q_1 = \frac{30kHz}{0,6kHz} = 50$$

d. Modulação AM-SSB/SC

Modulador AM-SSB/SC por filtragem Continuação do exemplo

No segundo estágio é montado um outro modulador de produto com a portadora desejada, em série com outro filtro SSB. O fator de qualidade do filtro neste estágio deve atender a condição:

$$Q \leq Q_{\text{max}}$$

$$Q_2 = \frac{2000kHz}{60.6kHz} = 33 < Q_{\text{max}}$$

A condição de Qmax é atendida.

Modulador AM-SSB/SC por desvio de fase

É possível se evitar as dificuldades da filtragem na produção do sinal AM-SSB/SC. Para tanto foi idealizado o processo de **deslocamento de fase**. Funciona da seguinte forma:

Suponha o sinal $x(t) = A\cos(2\pi f_m t)$

Se a condição de $\phi 1 - \phi 2 = 90^{\circ}$ for

atendida, temos:

$$x_1(t) = A\cos(2\pi f_m t)$$

$$x_2(t) = Asen(2\pi f_m t)$$

Na saída dos multiplicadores são gerac dois sinais **AM-DSB/SC**

$$g_1(t) = k_m A \cos(2\pi f_m t) \cos(2\pi f_0 t)$$
$$g_2(t) = \pm k_m A \sin(2\pi f_m t) \sin(2\pi f_0 t)$$

d. Modulação AM-SSB/SC

Modulador AM-SSB/SC por desvio de fase

$$g_1(t) = k_m A \cos(2\pi f_m t) \cos(2\pi f_0 t)$$

$$g_2(t) = \pm k_m Asen(2\pi f_m t) sen(2\pi f_0 t)$$

•Se a portadora sofrer uma defasagem de +90º ela selecionada será $-E_0 sen(2\pi f_0 t)$ e $\mathbf{g_2(t)}$ será negativo. O sinal na saída do somador será:

$$y(t) = g_1(t) - g_2(t) =$$

$$k_{m}A\cos\left(2\pi f_{m}t\right)\cos\left(2\pi f_{0}t\right)-k_{m}Asen\left(2\pi f_{m}t\right)sen\left(2\pi f_{0}t\right)=k_{m}A\cos\left(2\pi \left(f_{0}+f_{m}\right)t\right)$$

Somente a faixa lateral superior irá passar

 Se a portadora sofrer uma defasagem de -90º ela será $\dot{E}_0 sen(2\pi f_0 t)$ e $\mathbf{g_2(t)}$ será positivo. O sinal na saída do somador será:

$$y(t) = k_m A \cos(2\pi (f_0 - f_m)t)$$

Somente a faixa lateral inferior irá passar

d. Modulação AM-SSB/SC

Demodulador AM-SSB/SC

A demodulação AM-SSB/SC, da mesma forma que na demodulação AM-DSB/SC, só pode ser feita por detecção síncrona. Isto significa que deve haver sincronismo (mesma frequência e mesma fase) entre as portadoras da transmissão e da recepção. Porém, as técnicas empregadas na detecção síncrona do sinal AM-DSB/SC (por exemplo o Loop de Costas) não podem ser aplicadas na demodulação do sinal AM-SSB/SC.

Para detecção síncrona de sinal com modulação AM-SSB/SC são utilizadas as técnicas de Portadora Piloto e Oscilador de Alta Estabilidade:

d. Modulação AM-SSB/SC

Demodulador AM-SSB/SC com Portadora Piloto

Neste método insere-se, junto com a faixa lateral desejada, uma amostra atenuada da portadora. No receptor essa portadora piloto é separada por filtragem e utilizada para sincronizar o oscilador local de recepção

A modulação que utiliza esta técnica é chamada de **AM-SSB/RC** – onde o **RC** significa portadora reduzida.

d. Modulação AM-SSB/SC

Demodulador AM-SSB/SC com Oscilador de Alta Estabilidade

O uso de uma portadora piloto para cada sinal se torna inviável quando se tem multiplexação FDM (Multiplexação por divisão de frequência), pois aumentaria a potência total transmitida além de propiciar a interferência com outros sinais do sistema. Nestes sistemas a solução é utilizar um **oscilador mestre** (oscilador a cristal de quartzo com alta estabilidade em frequência) no circuito modulador. Todas as portadoras de transmissão são geradas pelo **oscilador mestre**, que também gera uma única **portadora piloto de sincronismo** que será transmitida junto com o sinal FDM.

Na recepção a portadora piloto é utilizada para sincronizar o **oscilador mestre de recepção**, para garantir que este reproduza portadoras em sincronismo com as portadoras geradas no **oscilador mestre de transmissão**.

e. Modulação AM-SSB/TC

AM-SSB/TC é a sigla em inglês para Modulação de Amplitude-Faixa Lateral Única/Portadora transmitida.

Esta modulação une as vantagens de se ter banda de transmissão reduzida e detecção/demodulação simplificada utilizando um detector de envoltória.

O sinal modulado na saída do modulador AM-SSB/TC é dado por:

$$y(t) = \frac{mE_0}{2}\cos(2\pi(f_0 + f_m)t) + E_0\cos(2\pi f_0 t)$$
 Sinal

Sinal AM-SSB/TC na saída de um MOD por filtragem.

$$y(t) = k_m A \cos(2\pi (f_0 \pm f_m)t) + E_0 \cos(2\pi f_m t)$$

Sinal AM-SSB/TC na saída de um modulador por desvio de fase

e. Modulação AM-SSB/TC

Comparando o sinal na saída do modulador **AM-SSB/TC**, com o sinal na saída do modulador **AM-DSB/TC**, observamos que a envoltória do sinal **AM-SSB/TC** corresponde à de um sinal **AM-DSB/TC** com metade do índice de modulação. Isto permite a demodulação do sinal **AM-SSB/TC** com um detector de envoltória.

Sinal modulador

Sinal AM-SSB/TC

Na modulação AM-SSB/TC a condição de índice de modulação m_. ≤ 1 também precisa ser atendida para que não ocorra sobremodulação.

II. Potência de Sinais Modulados em Amplitude

A potência média de um sinal modulado $\mathbf{y(t)}$ é dada por: $P_T = \frac{\mathbf{y}^2(t)}{R}$

É chamada de **potência média normalizada** a potência média dissipada em um resistor $R=1\Omega$.

A potência média da portadora senoidal é: $P_0 = \frac{E_0^2}{2R}$

- O valor quadrático médio do sinal modulador **x(t)** é: $\sigma^2 = x^2(t)$
- O índice de modulação de amplitude é: $m = \frac{k_M P}{E_0}$ onde $P = |x(t)|_{max}$

Denomina-se **fator de pico** a relação : $k = \frac{P}{\sigma}$

II. Potência de Sinais Modulados em Amplitude

Para sinais moduladores com valor médio nulo (sinais periódicos e simétricos em relação ao eixo do tempo), as potências dissipadas nas diferentes modulações AM são:

AM-DSB/TC

A potência média do sinal modulado AM-DSB/TC sobre a resistência R é:

$$P_{T} = P_{0} \left[1 + \frac{k_{M}^{2}}{E_{0}^{2}} \overline{x^{2}(t)} \right] = P_{0} \left[1 + \left(\frac{k_{M}\sigma}{E_{0}} \right)^{2} \right] = P_{0} \left[1 + \left(\frac{m}{k} \right)^{2} \right]$$

AM-DSB/SC

A potência média do sinal modulado **AM-DSB/SC** sobre a resistência R é:

$$P_{T} = \frac{k_{M}^{2}}{2R} \overline{x^{2}(t)} = \frac{\left(k_{M}\sigma\right)^{2}}{2R}$$

Essa potência se divide igualmente entre as faixas laterais inferior e superior

II. Potência de Sinais Modulados em Amplitude

AM-SSB/SC

Na modulação **AM-SSB/SC** uma das faixas laterais é suprimida, logo, a potência do sinal modulado **AM-SSB/SC** sobre R é a metade do sinal **AM-DSB/SC**.

$$P_{T} = \frac{k_{M}^{2}}{4R} \overline{x^{2}(t)} = \frac{\left(k_{M}\sigma\right)^{2}}{4R}$$

AM-SSB/TC

A potência média do sinal modulado AM-SSB/TC sobre a resistência R é:

$$P_{T} = P_{0} \left[1 + \frac{k_{M}^{2}}{2E_{0}^{2}} \overline{x^{2}(t)} \right] = P_{0} \left[1 + \frac{1}{2} \left(\frac{k_{M}\sigma}{E_{0}} \right)^{2} \right]$$

Atividades Síncronas – Atividade 4 e 5 do Classroom

