ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

PROF. ME. MARCO IKURO HISATOMI

Livro didático

Fonte: Tangon, Leonardo Guimarães, 2016

Unidade 1 Fundamentos de Sistemas Computacionais	. 7
Seção 1.1 - Conceitos básicos de arquitetura	. 9
e organização de computadores	
Seção 1.2 - Desenvolvimento histórico	21
Seção 1.3 - A estrutura básica de um computador	33
Seção 1.4 - A hierarquia de níveis de computador	45
Unidade 2 Componetes básicos de um computador	61
Seção 2.1 - Unidade central de processamento (CPU)	63
Seção 2.2 - Memória principal	75
Seção 2.3 - Memória secundária	. 89
Seção 2.4 - Dispositivos de entrada e saída	103
Unidade 3 Sistemas numéricos: conceitos, simbologia e representação de base numérica	121
de base numérica	
de base numérica	123
de base numérica	123
de base numérica	123 135 147
de base numérica	123 135 147
de base numérica	123 135 147 161
de base numérica	123 135 147 161
de base numérica	123 135 147 161 175
de base numérica	123 135 147 161 175 177 193 203
de base numérica	123 135 147 161 175 177 193 203

Conteúdo Programático

Unidade 4 | Álgebra Booleana e Lógica Digital

- ► Seção 4.1 Introdução à álgebra booleana
- ► Seção 4.2 Expressões lógicas
- ► Seção 4.3 Portas lógicas: conceitos, símbolos e tipos
- ► Seção 4.4 Introdução a circuitos

Situação problema

RELEMBRANDO...

Expressões e as leis

Fonte: Shutterstock

- As leis comutativas da adição e multiplicação, as leis associativas da adição e multiplicação e a lei distributiva são as mesmas leis aplicadas à álgebra comum, que com certeza você já aprendeu no primeiro grau.
- ► Lei Comutativa da Adição → A + B = B + A
- ▶ Lei Comutativa da Multiplicação Symbol → A.B = B.A
- ► Lei Associativa da Adição Symbol → A + (B + C) = (A + B) + C
- ► Lei Associativa da Multiplicação → A(B.C) = (A.B).C
- ► Lei Distributiva \rightarrow A.(B + C) = A.B + A.C

Situação problema SENSOR DE PRESENÇA DE UM PORTÃO ELETRÔNICO

Contextualizando

Fonte: Shutterstock

- Sua Missão:
- Agora, você, como parte da equipe de desenvolvimento da AbreLogic, teve uma nova atribuição, montar um circuito para o sensor de presença de um portão eletrônico.
- ► Foco na simplificação de expressões lógicas, a partir de regras e de teoremas, iremos dedicar-nos a aprender e desenvolver as formas de simplificação para chegarmos ao menor número possível de portas lógicas, fazendo com que usemos o menor número possível de portas lógicas com o mesmo resultado.

Situação problema

PORTA LÓGICA

Portas lógicas

Fonte: Shutterstock

Os conceitos aqui apresentados são os utilizados para portas lógicas, bem como a sua simbologia, que são amplamente conhecidos no meio da eletrônica digital, como a criação de circuitos digitais ou, ainda, circuitos integrados complexos.

Está preparado para iniciarmos nosso conteúdo?

Portas lógicas

Fonte: Shutterstock

- **Dado** é um elemento quantificado ou quantificável. Exemplo: altura de uma pessoa. Pode ser representado por sinais analógicos ou digitais.
- **Sinal analógico** é a representação de uma grandeza, podendo assumir, através do tempo, um valor entre dois limites determinados.

Portas lógicas

Fonte: Shutterstock

- Sinal digital é representado por uma grandeza física. Essas grandezas são representadas por meio de dois valores: 0 e 1. São chamados também de grandezas binárias.
- Tabela-verdade representamos todas as possíveis combinações lógicas de entrada e seus respectivos valores lógicos de saída, conforme a operação da porta lógica.

Portas lógicas (TORRES, 2005)

As portas lógicas são consideradas os elementos e/ou componentes básicos da eletrônica digital

Circuitos integrados complexos ou circuito digital completo prontinho para ser usado. Ex: microcontroladores ou, ainda, os processadores

Na eletrônica digital utilizamos somente dois dígitos: 0 e 1 (um bit). Esses dígitos sempre representam dois níveis de tensão: "0" como 0 volts e "1" como 5 volts.

SÍMBOLOS E PORTAS

4 |

S

4 |

S

Α	В	S
0	0	0

A B

S

A	В	S

A	В	S
0	0	0
0	1	0
1	0	0
1	1	1

22

A	В	S

A	В	S
0	0	0

A	В	S
0	0	0
1	0	1

A	В	S
0	0	0
1	0	1
0	1	1

A	В	S
0	0	0
1	0	1
0	1	1
1	1	1

PORTÃO AUTOMÁTICO

Expressões

Fonte: Shutterstock

- ► Você deverá desenvolver o diagrama de um circuito impresso, utilizando as portas lógicas que forem necessárias para abertura de uma portão automático do seu prédio.
- ► Se o resultado da saída for igual a 1, o portão se abre.
- Este portão tem três sensores: da presença de uma pessoa, de uma chave que aciona a abertura e uma chave que aciona o fechamento. Os seja, são as seguintes entradas no circuito:
 - p = 1 --> pessoa detectada
 - q = 1 --> chave para forçar a abertura
 - z = 1 --> chave para forçar o fechamento

Fonte: Shutterstocl

Expressões

- Entradas no circuito:
 - p = 1 --> pessoa detectada
 - q = 1 --> chave para forçar a abertura
 - z = 1 --> chave para forçar o fechamento
- Dessa forma, segundo (GONÇALVES, 2008) o portão será aberto quando:
 - (q = 1 e z = 0)
 - ightharpoonup (q = 0 e p = 1 e z = 0)

Expressões

Fonte: Shutterstock

Dessa forma, segundo (GONÇALVES, 2008) o portão será aberto quando:

(q = 1 e z = 0)

ightharpoonup (q = 0 e p = 1 e z = 0)

A expressão lógica será:

Expressões e circuito

- A expressão lógica será:
 - $\triangleright s = (q.\neg z) + (\neg q.p.\neg z)$
- O circuito lógico será:

Fonte: Shutterstock

A expressão lógica será:

$$\triangleright s = (q.\neg z) + (\neg q.\neg z.p)$$

q	=	1	->	chave	para	forçar	a	abertura
Z	=	1	->	chave	para	forçar	0	fechamento
р	=	1	->	pessoa	a dete	ectada		

q	Z	р	q.¬z	$\neg q. \neg z. p$	S
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	1	0	1
1	1	0	0	0	0
1	1	1	0	0	0

A expressão lógica será:

$$\triangleright s = (q.\neg z) + (\neg q.\neg z.p)$$

q	=	1	->	chave	para	forçar	а	abertura
Z	=	1	->	chave	para	forçar	0	fechamento
р	=	1	->	pessoa	a dete	ectada		

A expressão lógica será:

$$\triangleright s = (q.\neg z) + (\neg q.\neg z.p)$$

q	=	1	->	chave	para	forçar	а	abertura
Z	=	1	->	chave	para	forçar	0	fechamento
р	=	1	->	pessoa	a dete	ectada		

q	Z	р	q.¬z	$\neg q. \neg z. p$	S
0	0	0			
0	0	1	2^{3}	3	
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

A expressão lógica será:

$$\triangleright s = (q.\neg z) + (\neg q.\neg z.p)$$

q	=	1	->	chave	para	forçar	а	abertura
Z	=	1	->	chave	para	forçar	0	fechamento
р	=	1	->	pessoa	a dete	ectada		

q	Z	р	q.¬z	$\neg q. \neg z. p$	S
10	0	0	0		
0	0	1	0		
0	1	0	0		
0	1	1	0		
1	0	0	1		
1	0	1	1		
1	1	0	0		
	1,	1	0		

A expressão lógica será:

$$\triangleright s = (q.\neg z) + (\neg q.\neg z.p)$$

q	=	1	->	chave	para	forçar	а	abertura
Z	=	1	->	chave	para	forçar	0	fechamento
р	=	1	->	pessoa	a dete	ectada		

q	Z	р	q.¬z	$\neg q. \neg z. p$	S
10	0	0	0	0	
0	0	1	0	1	
0	1	0	0	0	
0	1	1	0	0	
1	0	0	1	0	
1	0	1	1	0	
1	1	0	0	0	
1	1	1,	0	0	

A expressão lógica será:

$$\triangleright s = (q.\neg z) + (\neg q.\neg z.p)$$

q	=	1	->	chave	para	forçar	а	abertura
Z	=	1	->	chave	para	forçar	0	fechamento
р	=	1	->	pessoa	a dete	ectada		

q	Z	р	q.¬z	$\neg q. \neg z. p$	S
0	0	0	10	0	0
0	0	1	0	1	
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	1	0	
1	0	1	1	0	
1	1	0	0	0	0
1	1	1	0	0	0

A expressão lógica será:

$$\triangleright s = (q.\neg z) + (\neg q.\neg z.p)$$

q	=	1	->	chave	para	forçar	а	abertura
Z	=	1	->	chave	para	forçar	0	fechamento
р	=	1	->	pessoa	a dete	ectada		

q	Z	р	q.¬z	$\neg q. \neg z. p$	S
0	0	0	10	0	0
0	0	1	0	1	1
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	1	0	1
1	1	0	0	0	0
1	1	1	0	0	0

A expressão lógica será:

$$\triangleright s = (q.\neg z) + (\neg q.\neg z.p)$$

q	=	1	->	chave	para	forçar	a	abertura
Z	=	1	->	chave	para	forçar	0	fechamento
р	=	1	->	pessoa	a dete	ectada		

q	Z	р	q.¬z	$\neg q. \neg z. p$	S
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	1	0	1
1	1	0	0	0	0
1	1	1	0	0	0

RECAPITULANDO CONVERSÃO DE BASE

Tabela Decimal Binário Hexadecimal

Decimal	Binário	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

Tabela com Octal

```
\mathbf{0}_{\text{hex}} = 0_{\text{dec}} = 0_{\text{oct}} \quad 0 \quad 0 \quad 0
\mathbf{1}_{\text{hex}} = \mathbf{1}_{\text{dec}} = \mathbf{1}_{\text{oct}} \quad 0 \quad 0 \quad 0 \quad 1
2_{\text{hex}} = 2_{\text{dec}} = 2_{\text{oct}} \quad 0 \quad 0 \quad 1 \quad 0
 3_{\text{hex}} = 3_{\text{dec}} = 3_{\text{oct}} \quad 0 \quad 0 \quad 1 \quad 1
\mathbf{4}_{\text{hex}} = \mathbf{4}_{\text{dec}} = \mathbf{4}_{\text{oct}} \quad 0 \quad 1 \quad 0 \quad 0
\mathbf{5}_{\text{hex}} = \mathbf{5}_{\text{dec}} = \mathbf{5}_{\text{oct}} \quad \mathbf{0} \quad \mathbf{1} \quad \mathbf{0} \quad \mathbf{1}
\mathbf{6}_{\text{hex}} = \mathbf{6}_{\text{dec}} = \mathbf{6}_{\text{oct}} \quad 0 \quad 1 \quad 1 \quad 0
 7_{\text{hex}} = 7_{\text{dec}} = 7_{\text{oct}} \quad 0 \quad 1 \quad 1 \quad 1
8_{\text{hex}} = 8_{\text{dec}} = 10_{\text{oct}} \quad 1 \quad 0 \quad 0
9_{\text{hex}} = 9_{\text{dec}} = 11_{\text{oct}} \quad 1 \quad 0 \quad 0 \quad 1
A_{\text{hex}} = 10_{\text{dec}} = 12_{\text{oct}} \quad 1 \quad 0 \quad 1 \quad 0
\mathbf{B}_{\text{hex}} = 11_{\text{dec}} = 13_{\text{oct}} \quad 1 \quad 0 \quad 1 \quad 1
C_{\text{hex}} = 12_{\text{dec}} = 14_{\text{oct}} \quad 1 \quad 1 \quad 0 \quad 0
\mathbf{D}_{\text{hex}} = 13_{\text{dec}} = 15_{\text{oct}} \quad 1 \quad 1 \quad 0 \quad 1
\mathbf{E}_{\text{hex}} = 14_{\text{dec}} = 16_{\text{oct}} \quad 1 \quad 1 \quad 0
\mathbf{F}_{\text{hex}} = 15_{\text{dec}} = 17_{\text{oct}} \quad 1 \quad 1 \quad 1
```

$$1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} =$$

 $8 + 0 + 2 + 1 + 0,5 = 11,5$

> Separar cada dígito do número hexadécimal e substituí-lo pelo seu valor correspondente de binário

- A = 1010
- F = 1111
- ► 4 = <u>100</u>

> Da direita para a esquerda do ponto decimal, agrupam-se os dígitos binários de 3 em 3, substituindo-se cada trio de dígitos binários pelo equivalente dígito octal

- ▶ 001 011 111 110
- **1** 3 7 6

- > Converte-se o número octal em binário e depois converte-se o binário para o sistema hexadecimal, agrupando-se os dígitos de 4 em 4 e fazendo cada grupo corresponder a um dígito hexadecimal.
- ▶ 1 2 5 1 7
- **>** 001 010 101 001 111
- 0001 0101 0100 1111
- ▶ 1 5 4 F

► Bons estudos!