1. Constructing entanglement witness from the partial transpose (10 Points: 1+2+2+2+2+1

In the lecture, we saw that every separable bi-partite quantum state has a positive partial transpose, which means that the positivity is an entanglement criterion. First, we show that this criterion is valid.

a) Show that for an arbitrary separable bi-partite quantum state $\rho = \sum_i p_i(\rho_{Ai} \otimes \rho_{Bi})$, all eigenvalues of ρ^{T_A} are greater than or equal to 0, i.e., $\rho^{T_A} \geq 0$.

$$P = \sum_{i} p_{i} \left(P_{Ai} \otimes P_{Bi} \right)$$

$$P_{A_{i}} \Rightarrow P_{A_{i}} \Rightarrow P_{A_{i}}$$

$$P_{A_{\lambda}} = 0 \Rightarrow P_{A_{\lambda}} = 0$$

$$P_{A_{\lambda}} = 0$$

The eigenvalues of PAT and PBT are the paraducts

In general, the opposite direction is not true. However, if we restrict a quantum state to a pure state, the opposite is also true as the following.

b) Show that a bi-partite pure state $|\psi\rangle \in \mathbb{C}^d \otimes \mathbb{C}^d$ is separable if it has a positive partial transpose.

Hint: Prove the contraposition: if $|\psi\rangle$ is entangled, $(|\psi\rangle\langle\psi|)^{T_A}$ has at least one negative eigenvalue. To this end, use Schmidt decomposition.

Recall that an entanglement witness is an observable W with the following conditions: (i) $\text{Tr}(W\boldsymbol{\sigma}) \geq 0$ for all separable states σ and (ii) there exists an entangled state $\widetilde{\rho}$ satisfying $\text{Tr}(W\widetilde{\rho}) < 0$.

c) Consider an entangled state ρ . Let $|\mu\rangle$ be an eigenvector of ρ^{T_A} whose eigenvalue is negative. Then show that $W = (|\mu\rangle \langle \mu|)^{T_A}$ is an entanglement witness and $|\mu\rangle$ is an entangled state.

$$P = \sum_{i} |\langle u_{i} \rangle \langle v_{i} | \rangle = \sum_{i} \sum_{i} |\langle v_{i} \rangle \langle v_{i} | \rangle^{T_{A}}$$

$$|| u_{i} \rangle || v_{i} \rangle || v_$$

As an application of this witness, we consider the following setting. In our (fictitious) lab, we are trying to prepare a two-qubit state $|\psi\rangle \in \mathcal{H} = \mathbb{C}^2 \otimes \mathbb{C}^2$. We use a simple model for what is actually happening in the lab, namely that we prepare a state with some noise

$$\rho(p) := p |\psi\rangle\langle\psi| + (1-p)\frac{1}{4}.$$

Our goal is to have an observable witness that decides whether $\rho(p)$ is entangled or not. To this end, we will use the fact that for two-qubits system there exist no entangled. positive partial transpose (PPT) states. Therefore, the partial transpose T^A will always detect entanglement of $\rho(p)$.

d) Assume $|\psi\rangle = a\,|01\rangle_{AB} + b\,|10\rangle_{AB}$. Calculate eigenvalues of $\rho(p)^{T_B}$, and determine the values of p depending on a, b such that $\rho(p)$ is entangled.

Hint: Use the fact that $\rho(p)$ is entangled if and only if $\rho(p)^{T_B} \ngeq 0$.

•
$$|V| < tH = |o|^2 |o| + |c| + |c|$$

e) Use the eigenvector corresponding to a negative eigenvalue of $(\rho(p))^{T_B}$ in order to derive an entanglement witness \mathcal{W} for $\rho(p)$.

$$P > \frac{1}{(1+4)al(bt)} = \frac{1}{\sqrt{2}} \left(\frac{147}{4} \right)^{TB}$$
 with
$$[ij] := \frac{1}{\sqrt{2}} \left(\frac{100}{4} \right)^{-\frac{1}{2}} \left(\frac{1}{100} \right)^$$

f) Show that, in fact, the witness W detects all entangled states of the form $\rho(p)$.

Freie Universität Berlin

Tutorials on Quantum Information Theory

Winter term 2022/23

Problem Sheet 8 Entanglement Witnesses and Cryptography

J. Eisert, A. Townsend-Teague, A. Mele, A. Burchards, J. Denzler

1. Constructing entanglement witness from the partial transpose (10 Points: 1+2+2+2+1)

In the lecture, we saw that every separable bi-partite quantum state has a positive partial transpose, which means that the positivity is an entanglement criterion. First, we show that this criterion is valid.

a) Show that for an arbitrary separable bi-partite quantum state $\rho = \sum_i p_j(\rho_{Ai} \otimes \rho_{Bi})$, all eigenvalues of ρ^{T_A} are greater than or equal to 0, i.e., $\rho^{T_A} \geq 0$.

In general, the opposite direction is not true. However, if we restrict a quantum state to a pure state, the opposite is also true as the following.

b) Show that a bi-partite pure state $|\psi\rangle \in \mathbb{C}^d \otimes \mathbb{C}^d$ is separable if it has a positive partial transpose.

Hint: Prove the contraposition: if $|\psi\rangle$ is entangled, $(|\psi\rangle\langle\psi|)^{T_A}$ has at least one negative eigenvalue. To this end, use Schmidt decomposition.

Recall that an entanglement witness is an observable W with the following conditions: (i) $\text{Tr}(W\rho) \geq 0$ for all separable states σ and (ii) there exists an entangled state ρ satisfying $\text{Tr}(W\rho) < 0$.

c) Consider an entangled state ρ . Let $|\mu\rangle$ be an eigenvector of ρ^{T_A} whose eigenvalue is negative. Then show that $W = (|\mu\rangle\langle\mu|)^{T_A}$ is an entanglement witness and $|\mu\rangle$ is an entangled state.

As an application of this witness, we consider the following setting. In our (fictitious) lab, we are trying to prepare a two-qubit state $|\psi\rangle \in \mathcal{H} = \mathbb{C}^2 \otimes \mathbb{C}^2$. We use a simple mode for what is actually happening in the lab, namely that we prepare a state with some noise

$$\rho(p) := p |\psi\rangle\langle\psi| + (1-p)\frac{1}{4}.$$

Our goal is to have an observable witness that decides whether $\rho(p)$ is entangled or not. To this end, we will use the fact that for two-qubits system there exist no entangled positive partial transpose (PPT) states. Therefore, the partial transpose T^A will always detect entanglement of $\rho(p)$.

d) Assume $|\psi\rangle = a\,|01\rangle_{AB} + b\,|10\rangle_{AB}$. Calculate eigenvalues of $\rho(p)^{T_B}$, and determine the values of p depending on a,b such that $\rho(p)$ is entangled.

Hint: Use the fact that $\rho(p)$ is entangled if and only if $\rho(p)^{T_B} \ngeq 0$.

- e) Use the eigenvector corresponding to a negative eigenvalue of $(\rho(p))^{T_B}$ in order to derive an entanglement witness W for $\rho(p)$.
- f) Show that, in fact, the witness W detects all entangled states of the form $\rho(p)$.

¹What is the corresponding noise channel for this model?