Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di TE1

A.A. 2009-2010 - Docente: Prof. F. Pappalardi Tutori: Annamaria Iezzi e Dario Spirito

Tutorato 10 20 maggio 2010

1. Determinare un elemento primitivo per i seguenti ampliamenti di Q:

a) $\mathbb{Q}(\sqrt{2},\sqrt{3})$

d) $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$

g) $\mathbb{Q}(\sqrt{5}, \sqrt{8}, \sqrt[3]{3})$

b) $\mathbb{Q}(\sqrt[4]{2}, \sqrt[5]{6})$

h) $\mathbb{Q}(\xi_2, \xi_3, \xi_6, i\sqrt{3}, \sqrt{2}, i, \sqrt[5]{81})$

- c) $\mathbb{Q}(\xi_3,\xi_7)$
- e) $\mathbb{Q}(\xi_8, \sqrt{7})$ f) $\mathbb{Q}(\sqrt[3]{2}, \xi_3 \sqrt[3]{2})$
- 2. Sia F un campo di caratteristica 0 e siano $K = F(\alpha)$ ed $L = F(\beta)$ due suoi ampliamenti algebrici, contenuti in una sua chiusura algebrica \overline{F} , tali che l'intersezione tra le loro chiusure normali è F. Dimostrare che $\alpha + \beta$ è un elemento primitivo per il loro composto.
- 3. Determinare il gruppo di Galois dei seguenti polinomi di $\mathbb{Q}[X]$:

a) $(X^2+1)(X^5-1)$

d) $(X^2 - 13)(X^{13} - 1)$

b) $(X^2+1)^6(X^3-1)$

e) $(X^4 + 30X^2 + 45)(X^4 + 10X^2 + 21)$

c) $(X^2 + 5)(X^{27} - 1)$

f) $(X^3 - 3X + 1)(X^3 + X^2 - 2X - 1)$

- a) Determinare il gruppo di Galois K di $X^6 2$ su \mathbb{Q} in S_6 .
 - b) Trovare un sottocampo F di K normale su \mathbb{Q} che abbia su di esso grado 6, e descrivere il suo gruppo di Galois.
 - c) Verificare che $\sqrt{2} \in K \setminus F$.
 - d) Dedurne che $D_6 \simeq S_3 \times \mathbb{Z}_2$.
- 5. Sia $K \subseteq L$ un ampliamento finito separabile di grado d. Mostrare che il numero di campi intermedi tra $K \in L$ è al più $2^{d!}$.
- 6. Siano X e Y indeterminate indipendenti su \mathbb{F}_p , e sia K il campo di spezzamento su $\mathbb{F}_p(X,Y)$ del polinomio $(T^p-X)(T^p-Y)$. Dimostrare che l'ampliamento $\mathbb{F}_p(X,Y) \subseteq K$ non ammette un elemento primitivo.