摘 要

本系统以 STM32L431CBT6 低功耗单片机为核心,结合双闭环 PID 算法,设计制作了一套高效率的三端口 DC-DC 变换器。系统包括 Boost 升压电路、双向 DC-DC 变换电路、辅助电源电路、电压电流采样电路以及 16 位 ADC 电路。首先通过一路 PID 控制双向 DC-DC 变换电路,使输出电压 Uo 稳定在 30V,再通过另一路 PID 控制 Boost 升压电路,使输入电压 UI 稳定在 1/2Us 处,通过此双闭环 PID 算法,即可在 Us 全范围实现最大功率点跟踪,且当电源电压 Us 以及负载发生变化时,此变换器能够自动转换工作模式,电池能够自动充放电。运用同步整流技术,结合双闭环 PID 算法稳定输入输出电压,最终测得电压调整率和负载调整率均小于 0.1%,变换器工作在模式 I 和模式 II 时效率均超过 99.1%。此外,还通过按键和 OLED 实现了良好的人机交互。

关键词: 双闭环 PID 算法; 最大功率点跟踪; 电池充放电; 同步整流; PWM

1. 系统方案论证

1.1. 双向 DC-DC 变换电路方案论证

方案一: 拓扑结构如图 1 所示,以单向 Buck-Boost 变换拓扑为基础,在原开关管处反并联二极管,在原二极管处反并联开关管,控制开关管的导通状态来实现双向能量流动。缺点为输入输出电流为断续,其纹波非常大,且其两端的电压 U_1 和 U_2 是反极性的。

图 1 双向 Buck-Boost 变换电路

图 2 双向 Buck/Boost 变换电路

方案二: 拓扑结构如图 2 所示,以单向 Buck 变换拓扑为基础,在原开关管处反并联二极管,在原二极管处反并联开关管,控制开关管的导通状态来实现双向能量流动。

由于本题变换器两端给定电压极性相同,对效率要求高,方案二电路结构简单,输出电压极性相同,并能够结合应用同步整流技术以提高变换器的整体效率, 因此本系统选择方案二。

1.2 变换器工作模式切换方案论证

本系统的三端口 DC-DC 变换电路如图 3 所示。

图 3 三端口 DC-DC 变换电路

方案一:通过 Boost 升压电路控制输出电压 U_0 稳定在 30V,再检测 I_{01} 的电流,通过双向 DC-DC 变换电路来控制电池充放电。

当检测到 I_{O1} 大于 I_{O} 时,电池恒流充电,其充电电流 I_{B} 的大小由 I_{O1} 与 I_{O} 的差值以及 U_{O} 、 U_{B} 来决定; I_{O1} 小于 I_{O} 时,电池恒压放电,控制输出电压 U_{O} 稳定在 30V,放电电流 I_{B} 的大小由 I_{O1} 的大小自动调节。

方案二: 通过双向 DC-DC 变换电路控制输出电压 Uo 稳定在 30V, 再通过

Boost 升压电路控制输入电压 U_I 来实现最大功率点跟踪(MPPT),只需要检测 U_O 即可实现电池自动充放电。

由于方案一通过 Boost 电路来控制 Uo,需要采样大量的数据来进行变换器工作模式切换,控制复杂,且难以实现 MPPT,方案二通过双向 DC-DC 变换电路控制 Uo,只需要采样 Uo即可实现工作模式自动切换,且可通过 Boost 升压电路控制输入电压 U_I来实现 MPPT,故采用方案二。

1.3 最大功率点跟踪(MPPT)方案论证

方案一: 恒定电压法

直接通过 PID 算法控制 Boost 升压电路的输入电压 U_I,使其稳定在 1/2Us 处,即可实现 MPPT。优点是控制简单、易实现,系统不会出现因 U_S 发生变化而引起剧烈振荡,具有良好的稳定性;缺点为控制精度相对差。

方案二: 扰动观察法

主动步进调节 Boost 升压电路的占空比使输入电压 U_I 发生变化,通过检测不同占空比对应的 U_I 、 I_I 的值计算出 P_I ,找出 P_I 最大时对应的占空比即可实现 MPPT。优点为控制精度相对高,缺点为控制相对复杂,步长难以精准调节。

由于本题要求 U_I 与 $1/2U_S$ 偏差在 0.1V 以内,故采用控制简单的恒定电压法实现 MPPT 即可,故采用方案一。

1.4 整体设计方案

本系统由 Boost 升压电路、双向 DC-DC 变换电路、控制电路、辅助电源电路、电压电流采样电路以及负载、电池组 7 个部分组成,其整体设计框图如图 4

所示。首先通过采样输出电压 Uo 的值,使用一路 PID 算法控制双向 DC-DC 变换电路,使其稳定在 30V,再采样 Us 和 UI 的值,使用另一路 PID 算法控制 Boost 升压电路,使输入电压 UI 稳定在 1/2Us 处,通过此双闭环 PID 算法,即可在 Us 全范围实现 MPPT,且当 Us 以及负载发生变化时,此变换器能够自动转换工作模式,电池能够自动充放电。此外,通过按键能够控制输出电压 Uo 的数值,且对双向 DC-DC 变换器进行了过流保护处理,具有过流保护功能。

2 电路与程序设计

2.1 三端口 DC-DC 变换电路设计

本系统的三端口 DC-DC 变换电路主要由两部分组成: Boost 升压电路以及 双向 DC-DC 变换电路, 其电路图如图 5 所示:

图 5 三端口 DC-DC 变换电路图

2.2 控制电路设计

PWM 驱动电路如图 6 所示,采用 PNP 三极管可加快 MOSFET 的 GS 结电容放电时间,采用 RCD 钳位吸收可有效抑制振铃现象,保护好 MOSFET。

图 6 PWM 驱动电路图

为了提高效率,开关管驱动芯片选择 EG2104,其静态电流小于 1uA,自带 100ns 左右死区时间,MOSFET 选择动态电阻 $R_{DS(on)}$ =3.2m Ω 的 IPA032N06。

2.3 采样电路设计

电压电流采样电路如图 7 所示。 U_S 和 U_I 直接使用电阻分压进行采样; U_O 使用同相加减运算电路进行采样; I_B 使用 $1m\Omega$ 的锰铜合金采样电阻进行差分放

大 500 倍采样。之后再将采样电压值输入至高精度 AD 转换器 ADS8332, 采样精 度达 16 位, 且功耗低至 14.2mW。

图 7 电压电流采样电路图

2.4 控制程序

控制程序如图 8 所示:

图 8 控制程序

系统控制程序可划分为数据采样与处理、UI电压环与 Uo电压环双闭环 PID 控制、人机交互,过流保护四部分。首先,对 U_I, U_S, U_O, I_B 在主循环中进行 采样,用取均值的方法进行平滑滤波,对于 Uo 电压环部分,将采样数据 Uo 与 目标值 30V 进行比较,对双向 DC-DC 变换电路进行 PID 调节,调整 PWM 控制 系数使 U_0 稳定在 30V; 对于 U_1 电压环部分,将采样数据 U_1 与 1/2 U_8 进行比较, 对 Boost 升压电路进行 PID 调节,调整 PWM 控制系数使 U₁稳定在 1/2 U_s处; 最后通过采样数据 IB 判断变换器工作模式,并且在检测到 IB 值超过阈值时立即 进行过流保护。人机交互部分采用 OLED 显示屏与按键模块, OLED 能够显示当 前变换器工作模式、输入输出电压以及电池电流,按键模块通过改变输出电压 Uo 的目标值,步进调节 Uo,实现输出电压 Uo 幅值调整功能。

2.5 保护电路设计

单片机持续接收电流采样发送的数据,并与内置的电流阈值进行比较,检测 到当前值高于电流阈值时,单片机使驱动芯片 EG2104 的 SD 脚电平置低,驱动 模块停止工作,三端口 DC-DC 变换器停止工作。

3 理论分析与计算

3.1 储能电感的选择

设计电感的依据是流过电感的最大电流平均值。在满载的情况下, Boost 升 压电路的电感电流为: $I_L = \frac{I_o}{1-D}$, 其中, I_o 是输出电流, D 是开关管最大占空比。 电感电流纹波率为: $\mathbf{r} = \frac{\Delta I}{I_0}$; 设开关的导通时间为 T_{on} , f 为开关频率,则 $T_{on} = \frac{D}{f}$; 导通时电感电流的上升斜率为 $K_i = \frac{u_1}{L}$; 由电感的伏秒平衡原理得: $\Delta I =$ $K_i \times T_{on} = r \times I_{L1}$;从而可以得到 Boost 升压电路电感 L_1 的电感值: $L_1 = \frac{U_1 T_{on}}{r I_1} = \frac{U_1 D}{r f I_{L1}} = \frac{U_1 D (1-D)}{r f I_o}$

$$L_1 = \frac{U_1 T_{on}}{r I_1} = \frac{U_1 D}{r f I_{L1}} = \frac{U_1 D (1 - D)}{r f I_o}$$

对于 Boost 升压电路,输入电压 U_1 为 12.5V-25V,输出电压 U_0 为 30V,输 出电流 I_0 随 U_s 发生改变。取 $U_I = 12.5V$, f = 20KHz, D = 5/12, r = 0.4, $I_O = 0.5A$, 因此, 计算可得电感 L_1 =760uH, 考虑余量后实际选用 876uH 电感。

同理,双向 DC-DC 变换电路,将电池组看作输入,故为升压拓扑,电池电 压 U_B 为13V-16V, U_O 为30V,取 U_R =13V,f=20KHz,D=17/30,r=0.4, I_O =0.7A, 因此, 计算可得电感 $L_2=570 \mathrm{uH}$, 考虑余量后实际选用 $693 \mathrm{uH}$ 电感。

3.2 输出电容的选择

为了保证电容在安全电压下工作,使用耐压值为 100V 的电解电容。容值的 选择主要是满足期望的输出纹波电压,输出电容值按下式选择: $C \ge \frac{I_{max} \times D}{f \times \Delta V}$ 。

其中 Imax 为 Boost 升压拓扑输出端的最大电流, D 是最大占空比, 由于本题对输 出电压要求高精度,故取纹波电压为 100 mV。因此根据公式算得 C = 2000 uF: 为了留有足够得富裕,降低纹波,选用 2200uF 的电容。

3.3 稳压控制的方法

双向 DC-DC 变换电路,单片机通过内部定时器产生 PWM 波来控制电路, 通过电压采样电路获得实际电压值,并经过 PID 计算,获得 PWM 应调整占空比, 使输出电压稳定在 30V 可调范围内。同理, Boost 升压电路, 输出电压已通过 DC-DC 变换电路稳定在 30V,运用 PID 算法,将输入电压 U_I 稳定在 1/2U_s 处,

实现 MPPT, U_s 在 25V-55V 范围内变化时, U_I 在 12.5V-27.5V 之间随之变化。由此,当输入电压 U_s 以及负载发生变化时,此变换器能够自动转换工作模式,电池能够自动充放电。

3.4 提高效率的方法

- (1)减小输出滤波电感的损耗。电感损耗的大小直接影响到装置的效率和性能,主要由铜损和铁损组成。铜损主要由漆包线等效电阻产生,铁损主要由涡流和磁滞效应产生,其大小随工作效率的升高而增加。这里采用利兹线多股绕制的方法降低铜损,并且选用合适的铁硅铝磁芯以降低铁损。
- (2)选择导通电阻小的开关管,减小开关管的损耗,选用导通电阻低至 3.2mΩ 的 IPA032N06N 型功率 MOSFET。
- (3)选择合适的载波频率。开关管的导通损耗会随着系统的工作频率增大而增大,而过低的频率会带来较大的输出纹波,为了降低开关损耗,选用 20KHz 的开关频率。

4 测试方案与测试结果

4.1 测试方案

测试方案框图如图 9 所示:

图 9 测试框图

测试仪器:直流稳压电源 RIGOL-DP832A,万用表 FLUKE15B+

4.2 测试条件及结果记录分析

4.2.1 基本部分:

(1) 电源电压 U_S =50V,输出电流 I_O =1.2A 时,测量输出电压 U_O 和电池电流 I_B ,结果记录于表 1。

次数	电源电压 <i>U</i> s/V	输出电流 Io/A	输出电压 Uo/V	电池电流 IB/A
1	50.1	1.183	30.00	1.28
2	50.0	1.183	30.00	1.267
3	49.8	1.183	30.00	1.242

结果分析: U_0 在 30V±0.1V 范围内, $I_B>0.1A$, 达到要求。

(2) I_{O} =1.2A 时, U_{S} 由 45V 增加至 55V,分别测量 U_{S} =45V 时的输出电压 U_{O45} 和 U_{S} =55V 时的输出电压 U_{O55} 。结果记录于表 2。利用公式 S_{U} =|(U_{O55} - U_{O45})/ U_{O45} |×100% 计算电压调整率 S_{U} 。

表 2

次数	输出电流 Io/A	输出电压 U045/V	输出电压 <i>U</i> O55/V	电压调整率 Su/%
1	1.182	29.99	30.00	0.033
2	1.183	30.00	30.00	0
3	1.183	29.99	29.99	0

结果分析: 电压调整率远小于 0.5%, 达到要求。

(3) $U_{\rm S}$ =50V 时, $I_{\rm O}$ 由 1.2A 减小至 0.6A,分别测量 $I_{\rm O}$ =1.2A 时的输出电压 $U_{\rm O1.2}$ 和 $I_{\rm O}$ =0.6A 时的输出电压 $U_{\rm O0.6}$ 。结果记录于表 3。利用公式 $S_{_U}=|(U_{_{O0.6}}-U_{_{O1.2}})/U_{_{1.2}}|\times 100\%$ 计算负载调整率 $S_{\rm I}$ 。

表 3

	次数	电源电	输出电流	输出电压	输出电流	输出电压	负载调整
		压 Us/V	$I_{\rm O1.2}/{\rm A}$	$U_{ m O1.2}/ m V$	$I_{\rm O0.6}/{ m A}$	$U_{ m O0.6}/ m V$	率 S _I /%
	1	50.0	1.182	30.00	0.591	30.01	0.033
	2	50.3	1.182	30.00	0.591	30.01	0.033
	3	49.6	1.182	30.00	0.591	30.01	0.033

结果分析:负载调整率远小于0.5%,达到要求。

(4) U_S =50V, I_O =1.2A 时,测量三端变换器各端口的电压、电流,结果记录于表 4。利用公式 $\eta_I = (P_O + P_B)/P_I \times 100\%$ 计算变换器效率 η_I (其中 $P_I = U_I \cdot I_I$ 、 $P_O = U_O \cdot I_O$ 、 $P_B = U_B \cdot I_B$)。

表 4

次数	电源电	输入电	输入电	电池电	电池电	输出电	输出电	变换器效
八致	压 Us/V	压 <i>U</i> _I /V	流 I _I /A	压 UB/V	流 I _B /A	压 Uo/V	流 Io/A	率η _I /%
1	49.8	24.96	2.297	16.63	1.283	30.00	1.182	99.145
2	50.2	25.11	2.313	16.67	1.325	30.00	1.183	99.136
3	50.0	25.03	2.295	16.70	1.286	30.00	1.183	99.168

结果分析:变换器效率 η_1 远大于90%,达到要求。

4.2.2 发挥部分:

(1) I_{O} = 1.2A, U_{S} 由 55V 减小至 25V, 分别测量 U_{S} =55V 时的输入电压 U_{I} 、电池电流 I_{B55} 、输出电压 U_{O55} 和 U_{S} =25V 时的端口电压 U_{I} 、电池电流 I_{B25} 、输出

电压 U_{025} ,结果记录于表 5。利用公式 $\delta_{U_I} = |U_I - U_S/2|$ 计算偏差值 δ_{U_I} ,公式 $S_{\text{U}} = |(U_{055} - U_{025})/U_{025}| \times 100\%$ 计算电压调整率 S_{U} 。

表 5

	$U_{\rm S}\!\!=\!\!55{ m V}$					$U_{\rm S}\!\!=\!\!25{ m V}$					电压
次	电源	输入	输出电	电池	偏差	电源	输入	输出电	电池	偏差	调整
数	电压	电压	压	电流	值 $\delta_{\!\scriptscriptstyle U_{\scriptscriptstyle I}}$	电压	电压	压	电流	值 $\delta_{\!\scriptscriptstyle U_{\scriptscriptstyle I}}$	率
	$U_{\rm S}/{ m V}$	$U_{ m I}/{ m V}$	$U_{ m O55}/ m V$	$I_{\rm B55}/{\rm A}$	$oxed{\mathbb{E}}_{U_I}$	$U_{ m S}$ /V	$U_{ m I}/{ m V}$	$U_{ m O25}/ m V$	$I_{\rm B25}/{\rm A}$	且 O_{U_I}	S_{U} /%
1	55.0	27.55	30.00	1.956	0.05	24.99	12.46	29.99	-1.410	0.03	0.033
2	55.5	27.71	30.00	2.206	0.04	25.05	12.49	29.99	-1.414	0.03	0.033
3	54.7	27.39	30.00	1.912	0.04	24.96	12.43	29.99	-1.427	0.05	0.033

结果分析: 根据电池电流 $I_{B55}>0$, $I_{B25}<0$ 可知变换器从模式 $I_{B55}>0$, $I_{B25}<0$ 可知变换器从模式 $I_{B55}>0$, 偏差值 δ_{U_I} 均小于 0.1 V,电压调整率均小于 0.1 %,达到要求。

(2) $U_{\rm S} = 35$ V, $I_{\rm O} = 1.2$ A 时,测量 $I_{\rm B}$ 、 $U_{\rm O}$ 和各个端口的电流、电压,结果记录于表 6。利用公式 $\eta_{\rm II} = P_{\rm O}/(P_{\rm I} + P_{\rm B}) \times 100\%$ 计算效率 $\eta_{\rm II}$ 。

表 6

次	电源电	输入电	输入电	电池电	电池电	输出电	输出电	效率
数	压 US/V	压 <i>U</i> _I /V	流 I _I /A	压 UB/V	流 I _B /A	压 Uo/V	流 I _O /A	$\eta_{{\scriptscriptstyle II}}\!/\!\%$
1	35.01	17.52	1.604	15.87	-0.485	29.99	1.183	99.104
2	35.06	17.52	1.610	15.85	-0.479	29.99	1.183	99.103
3	34.97	17.52	1.601	15.83	-0.490	29.98	1.183	99.051

结果分析: U_0 在 $30V\pm0.1V$ 范围内,变效率 η_{II} 远大于 95%,达到要求。

(3) $U_S = 35$ V, I_O 由 1.2A 减小至 0.6A 时,测量 I_B ,测量 $I_O = 1.2$ A 时的输出电压 $U_{O1.2}$ 、 $I_{B1.2}$ 和 $I_O = 0.6$ A 时的输出电压 $U_{O0.6}$ 、 $I_{B0.6}$,结果记录于表 7,再根据公式 $S_I = |(U_{O0.6} - U_{O1.2})/U_{O1.2}| \times 100\%$ 计算负载调整率 S_I 。

表 7

次数		电源电压	输出电压	电池电	输出电压	电池电	负载调整
		$U_{ m S}/{ m V}$	$U_{ m O1.2}/ m V$	流 I _{B1.2} /A	$U_{ m O0.6}/ m V$	流 I _{B0.6} /A	率 S _I /%
1		34.97	29.99	-0.489	30.00	0.603	0.033
2		35.04	29.99	-0.478	29.99	0.608	0.033
3		35.00	29.98	-0.485	29.99	0.598	0.033

结果分析:根据电池电流 $I_{\text{B1.2}}<0$, $I_{\text{B25}}>0$ 可知变换器从模式 II 自动变成模式 I ,负载调整率均小于 0.1%,达到要求。

(4) 其他功能测试:

- ①**输出电压 Uo 幅值调整功能**:通过按键能够步进调节输出电压 Uo,使其精确在 29V、29.5V、30V、30.5V、31V 之间变换。
- ②**过流保护功能**: 当检测到 I_B 大于阈值时,控制驱动模块的使能端,使拓扑停止工作,起到过流保护的作用。