Merge or Split?

Related Activities

Panels at SC, VLDB

Organized by NITRD High-End Computing and Big Data Groups

At SC 2015

- Supercomputing and Big Data: From Collision to Convergence
- Panelists: David Bader (GaTech), Ian Foster (Chicago), Bruce Hendrickson (Sandia), Randy Bryant (OSTP), George Biros (U.Texas), Andrew W. Moore (CMU)

At VLDB 2015

- Exascale and Big Data
- Panelists: Peter Baumann (Jacobs University), Paul Brown (SciDB), Michael Carey (UC Irvine), Guy Lohman, (IBM Almaden), Arie Shoshani (LBL)

Merge from Big Data to HPC

 Adapting Big Data software stacks for HPC is probably more fruitful than other way around – viz., adapting HPC software to handle Big Data needs

Because

- HPC: well-established software ecosystem, highly sensitive to performance, established codebases
- Big Data: Rapidly evolving and emerging software ecosystem, evolving applications needs, price/ performance is more relevant

Merge vs Split

- HPCBD: Focus on performance of the HPCBD software stack (+ implicitly the hardware)
- But there could be multiple stacks
 - Not 100's, or 10's, but perhaps >5, <10 ?
 - E.g. stream processing; genomic processing; geospatial data processing; deep learning with image data; ...
- Can we enumerate a <u>few</u> stacks, based on functionality?
 - Do we need reference datasets for each stack?
- Could we run a workshop to identify stacks and how stack-based benchmarking would work
 - Can we develop "reference stacks"...how should that be done?
 - Streaming data processing will be big...

