Albert Ludwigs Universität Freiburg

TECHNISCHE FAKULTÄT

PicoC-Compiler

Übersetzung einer Untermenge von C in den Befehlssatz der RETI-CPU

BACHELORARBEIT

 $Abgabedatum: 28^{th}$ April 2022

Author: Jürgen Mattheis

Gutachter:
Prof. Dr. Scholl

Betreung: M.Sc. Seufert

Eine Bachelorarbeit am Lehrstuhl für Betriebssysteme

ERKLÄRUNG
ERRLARONS
Hiermit erkläre ich, dass ich diese Abschlussarbeit selbständig verfasst habe, keine anderen
als die angegebenen Quellen/Hilfsmittel verwendet habe und alle Stellen, die wörtlich oder
sinngemäß aus veröffentlichten Schriften entnommen wurden, als solche kenntlich gemacht
habe. Darüber hinaus erkläre ich, dass diese Abschlussarbeit nicht, auch nicht
auszugsweise, bereits für eine andere Prüfung angefertigt wurde.

Inhaltsverzeichnis

1	Mot	otivation		7
	1.1	PicoC und RETI		 7
	1.2	Problemstellung		 7
	1.3			7
	1.4	· ·		7
${f 2}$	Fint	nführung		8
4	2.1			8
	2.1			8
	0.0			8
	2.2			
	2.3			8
		2.3.1 Mehrdeutige Grammatiken		9
	0.4	2.3.2 Präzidenz und Assoziativität		9
	2.4			9
	2.5			11
	2.6			12
	2.7	Fehlermeldungen		 13
3	Imp	plementierung		14
	3.1	Lexikalische Analyse		 14
		3.1.1 Verwendung von Lark		 14
		3.1.2 Basic Parser		14
	3.2			14
		3.2.1 Verwendung von Lark		14
		3.2.2 Umsetzung von Präzidenz		14
		3.2.3 Derivation Tree Generierung		15
		3.2.4 Early Parser		15
		3.2.5 Derivation Tree Vereinfachung		15
		3.2.6 Abstrakt Syntax Tree Generierung		15
	3.3			$15 \\ 15$
	0.0	3.3.1 Passes		$15 \\ 15$
				$15 \\ 15$
		•		
		3.3.3 Umsetzung von Structs		15
		3.3.4 Umsetzung von Funktionen		15
	0.4	3.3.5 Umsetzung kleinerer Details		15
	3.4			15
		3.4.1 Error Handler		 15
4	Erg	gebnisse und Ausblick		16
	4.1	Funktionsumfang		 16
	4.2	Qualitätskontrolle		 16
	4.3	Kommentierter Kompiliervorgang	. .	 16
	4.4	Erweiterungsideen		 16
Δ	Apr	ppendix		17
4 S		1 Konkrette und Abstrakte Syntax		17
		2 Bedienungsanleitungen		17
	4 2 . 4			 1

Inhaltsverzeichnis Inhaltsverzeichnis

A.2.1	PicoC-Compiler
A.2.2	Showmode
A.2.3	Entwicklertools

Abbildungsverzeichnis	

Tabellenverzeichnis			
3.1	Präzidenzregeln von PicoC		

Definitionen

2.1	Compiler	. 8
2.2	Interpreter	. 8
2.3	Г-Diagram	. 8
2.4	Sprache	. 8
2.5	Chromsky Hierarchie	. 8
2.6	Grammatik	. 8
2.7	Reguläre Sprachen	. 8
2.8	Kontextfreie Sprachen	. 9
2.9	Ableitungsbaum	. 9
2.10	Mehrdeutige Grammatik	. 9
	Assoziativität	
2.12	Präzidenz	. 9
2.13	Pattern	. 9
	Lexeme	-
	Lexer (bzw. Scanner)	
	Literal	
	Konkrette Syntax	
	Parser	
	Recognizer	
	Derivation Tree (bzw. Parse Tree)	
	Abstrakte Syntax	
	Abstrakte Syntax Tree	
	Transformer	
	Visitor	
	Pass	
2.26	Fehlermeldung	
3.1	Symboltabelle	. 15

1 Motivation

- 1.1 PicoC und RETI
- 1.2 Problemstellung
- 1.3 Eigenheiten der Sprache C
- 1.4 Richtlinien

2 Einführung

Compiler und Interpreter 2.1Definition 2.1: Compiler Definition 2.2: Interpreter **T-Diagramme** 2.1.1Definition 2.3: T-Diagram 2.2Grammatiken 2.3Grundlagen Definition 2.4: Sprache Definition 2.5: Chromsky Hierarchie Definition 2.6: Grammatik Definition 2.7: Reguläre Sprachen

Definition 2.8: Kontextfreie Sprachen

2.3.1 Mehrdeutige Grammatiken

Definition 2.9: Ableitungsbaum

Definition 2.10: Mehrdeutige Grammatik

2.3.2 Präzidenz und Assoziativität

Definition 2.11: Assoziativität

Definition 2.12: Präzidenz

2.4 Lexikalische Analyse

Die Lexikalische Analyse bildet üblicherweise die erste Ebene innerhalb der Pipe Architektur bei der Implementierung von Compilern. Die Aufgabe der lexikalischen Analyse ist vereinfacht gesagt, in einem Inputstring, z.B. dem Inhalt einer Datei, welche in UTF-8 codiert ist, Folgen endlicher Symbole (auch Wörter genannt) zu finden, die bestimmte Pattern (Definition 2.13) matchen, die durch eine reguläre Grammatik spezifiziert sind.

Definition 2.13: Pattern

Beschreibung aller möglichen Lexeme einer Menge \mathbb{P}_T , die einem bestimmten Token T zugeordnet werden. Die Menge \mathbb{P}_T ist eine möglicherweise unendliche Menge von Wörtern, die sich mit den Regeln einer regulären Grammatik G_{Lex} einer regulären Sprache L_{Lex} beschreiben lassen a , die für die Beschreibung eines Tokens T zuständig sind. b

Diese Folgen endlicher Symoble werden auch Lexeme (Definition 2.14) genannt.

Definition 2.14: Lexeme

Ein Lexeme ist ein Wort aus dem Inputstring, welches das Pattern für eines der Token T einer Sprache L_{Lex} matched.^a

 $[^]a\mathrm{Als}$ Beschreibungswerkzeug können aber auch z.B. reguläre Ausdrücke hergenommen werden.

^bWhat is the difference between a token and a lexeme?

^aWhat is the difference between a token and a lexeme?

Diese Lexeme werden vom Lexer im Inputstring identifziert und Tokens T zugeordnet (Definition 2.15). Die Tokens sind es, die letztendlich an die Syntaktische Analyse weitergegeben werden.

Definition 2.15: Lexer (bzw. Scanner)

Ein Lexer ist eine partielle Funktion $lex : \Sigma^* \to (N \times W)^*$, welche ein Wort aus Σ^* auf ein Token T mit einem Tokennamen N und einem Tokenwert W abbildet, falls diese Folge von Symbolen sich unter der regulären Grammatik G_{Lex} , der regulären Sprache L_{Lex} abbleiten lässt.

 a lecture-notes-2021.

Ein Lexer ist im Allgemeinen eine partielle Funktion, da es Zeichenfolgen geben kann, die kein Pattern eines Tokens der Sprache L_{Lex} matchen. In Bezug auf eine Implementierung, wird, wenn der Lexer Teil der Implementierung eines Compilers ist, in diesem Fall eine Fehlermeldung ausgegeben.

Falls der Inputstring, den der Lexer erhält noch Leerzeichen $_{-}$ oder andere für die Syntaktische Analyse unwichtige Zeichen enthält ist das auch im Sinne der Definition. Dann wird diesen das leere Wort ϵ zugeordnet, denn $\epsilon \in \Sigma^*$.

In den G_{Lex} Grammatiken einiger Programmiersprachen sind allerdinds alle möglichen Zeichenfolgen allein dadurch schon möglich, weil diese Programmiesprachen das Konzept eines Identifiers o.ä. umsetzen, der alle möglichen Zeichenfolgen abfängt¹. Wodurch der Lexer wiederum doch eine linkstotale partielle Funktion ist, die man im Allgemeinen einfach als Funktion bezeichnet: $lex : \Sigma^* \to (N \times W)^*$.

Der Grund warum nicht einfach nur die Lexeme an die Syntaktische Analyse weitergegeben werden und der Grund für die Aufteilung des Tokens in Tokenname und Tokenwert ist, weil z.B. die Bezeichner von Variablen, Konstanten und Funktionen beliebige Zeichenfolgen sein können, wie my_tun, my_var oder my_const und es auch viele verschiedenen Zahlen gibt, wie 42, 314 oder 12. Die Überbegriffe bzw. Tokennamen für beliebige Bezeichner von Variablen, Konstanten und Funktionen und beliebige Zahlen sind aber trotz allem z.B. Zahl und Bezeichner.

Ein Lexeme ist damit aber nicht das gleiche, wie der Tokenwert, denn z.B. im Falle von PicoC kann z.B. der Wert 99 durch zwei verschiedene Literale darstellt werden, einmal als ASCII-Zeichen 'c' und des Weiteren auch in Dezimalschreibweise als 99². Der Tokenwert ist jedoch der letztendliche Wert an sich, unabhängig von der Darstellungsform.

Die Grammatik G_{Lex} , die zur Beschreibung der Token T einer regulären Sprache L_{Lex} verwendet wird, ist üblicherweise regulär, da ein typischer Lexer immer nur ein Symbol vorausschaut³, unabhängig davon, was für Symbole davor aufgetaucht sind. Die übliche Implementierung eines Lexers merkt sich nicht, was für Symbole davor aufgetaucht sind.

¹Bei der Grammatik von C und auch PicoC ist das allerdings nicht der Fall, weil Identifier dort nicht mit einer Zahl anfangen dürfen.

 $^{^2}$ Die Programmiersprache Python erlaubt es z.B. diesern Wert auch mit den Literalen 0b1100011 und 0x63 darzustellen.

 $^{^3}$ Man nennt das auch einem Lookahead von 1

Um Verwirrung verzubäugen ist es wichtig folgende Unterscheidung hervorzuheben: Wenn von Symbolen die Rede ist, so werden in der Lexikalischen Analyse, der Syntaktische Analyse und der Code Generierung, auf diesen verschiedenen Ebenen unterschiedliche Konzepte als Symbole bezeichnet.

In der Lexikalischen Analyse sind einzelne Zeichen eines Zeichensatzes die Symbole.

In der Syntaktischen Analyse sind die Tokennamen die Symbole.

In der Code Generierung sind die Bezeichner von Variablen, Konstanten und Funktionnen die Symbole^a.

^aDas ist der Grund, warum die Tabelle, in der Informationen zu Identifiern gespeichert werden aus Kapitel 3 Symboltabelle genannt wird.

Definition 2.16: Literal

Eine von möglicherweise vielen weiteren Darstellungsformen für ein und denselben Wert.

Eine weitere Aufgabe der Lekikalischen Analyse ist es jegliche für die Weiterverarbeitung unwichtigen Symbole, wie Leerzeichen _, Newline \n^4 und Tabs \t aus dem Inputstring herauszufiltern, entweder vom Lexer oder schon bevor der Inputstring an den Lexer übergeben wird. Nur das, was für die Syntaktische Analyse wichtig ist, soll weiterverarbeitet werden, alles andere wird herausgefiltert.

2.5 Syntaktische Analyse

In der Syntaktischen Analyse ist für einige Sprachen eine Kontextfreie Grammatik G_{Parse} notwendig, um die diese Sprache zu beschreiben, da viele Programmiersprachen z.B. für Funktionsaufrufe fun(arg) und Codeblöcke if(1){} syntaktische Mittel verwenden, die es notwendig machen sich zu merken wieviele öffnende Klammern '(' bzw. öffnende geschweifte Klammern '{' es momentan gibt, die noch nicht durch eine enstsprechende schließende Klammer ')' bzw. schließende geschweifte Klammer '}' geschlossen wurden.

Definition 2.17: Konkrette Syntax

Syntax, die verwendet wird. Ein **Programm** in seiner **Textrepräsentation**, wie man es in einer **Textdatei** auschreibt, ist in konkretter Syntax aufgeschrieben.

Die vom Lexer im Inputstring identifizierten Token werden in der Syntaktischen Analyse vom Parser (Definition 2.18) als Wegweiser verwendet, da je nachdem, in welcher Reihenfolge die Token auftauchen, dies einer anderen Ableitung nach der Grammatik G_{Parse} entspricht. Dabei wird in der Grammatik nach dem Tokennamen unterschieden und nicht nach dem Tokenwert, da es nur von Interesse ist, ob an einer bestimmten Stelle z.B. eine Zahl steht und nicht, welchen konkretten Wert dieser Zahl hat.

Definition 2.18: Parser

Ein Programm, dass eine Eingabe in ein für die Weiterverbeitung taugliche Form bringt.

⁴In Unix Systemen wird für Newline das ASCII Symbol line feed, in Windows hingegen die ASCII Symbole carriage return und line feed nacheinander verwendet. Das wird aber meist durch die verwendete Porgrammiersprache, die man zur Inplementierung des Lexers nutzt wegabstrahiert.

Kapitel 2. Einführung 2.6. Code Generierung

In Bezug auf einen Compilerbau hat ein Parser meist die Aufgabe aus einem Inputstring einen Derivation Tree (Definition 2.20) zu generieren.

An dieser Stelle könnte möglicherweise eine Begriffsverwirrung enstehen, ob ein Lexer nach der obigen Definition nicht auch ein Parser ist.

In Bezug auf Compilerbau ist ein Lexer ein Teil eines Parsers und der Parser vereinigt sowohl die Lexikalische Analyse, als auch einen Teil der Syntaktischen Analyse in sich, aber für sich isoliert betrachtet ist ein Lexer nach Definition 2.18 ebenfalls ein Parser. Aber im Compilerbau überwiegt seine Funktionalität, dass er den Inputstring lexikalisch weiterverarbeitet, um ihn als Lexer zu bezeichnen, der Teil eines Parsers ist.

Ein Parser ist aber auch ein erweiterter Recognizer, denn einmal hat der Parser die Aufgabe eines Recognizers (Definition 2.19), nämlich zu überprüfen, ob ein Inputstring sich den Regeln der Grammatik G_{P} arse

ableiten lässt und ein Wort der Sprache L_{Parse} ist. Definition 2.19: Recognizer Definition 2.20: Derivation Tree (bzw. Parse Tree) Definition 2.21: Abstrakte Syntax Definition 2.22: Abstrakte Syntax Tree Definition 2.23: Transformer Definition 2.24: Visitor 2.6Code Generierung Definition 2.25: Pass

Kapitel 2. Einführung 2.7. Fehlermeldungen

2.7	Fehlermeldungen
Dei	finition 2.26: Fehlermeldung

3 Implementierung

3.1 Lexikalische Analyse

3.1.1 Verwendung von Lark

3.1.2 Basic Parser

3.2 Syntaktische Analyse

3.2.1 Verwendung von Lark

3.2.2 Umsetzung von Präzidenz

Die PicoC Sprache hat dieselben Präzidenzregeln implementiert, wie die Sprache C¹. Die Präzidenzregeln von PicoC sind in Tabelle 3.2.2 aufgelistet.

Präzidenz	Operator	Beschreibung	Assoziativität
1	a() a[] a.b	Funktionsaufruf Indexzugriff Attributzugriff	Links, dann rechts \rightarrow
2	-a !a ~a *a &a	Unäres Minus Logisches NOT und Bitweise NOT Dereferenz und Referenz, auch Adresse-von	Rechts, dann links \leftarrow
3	a*b a/b a%b	Multiplikation, Division und Modulo	Links, dann rechts \rightarrow
4	a+b a-b	Addition und Subtraktion	
5	a <b a<="b</td"><td>Kleiner, Kleiner Gleich, Größer, Größer gleich</td><td></td>	Kleiner, Kleiner Gleich, Größer, Größer gleich	
	a>b a>=b		
6	a==b a!=b	Gleichheit und Ungleichheit	
7	a&b	Bitweise UND	
8	a^b	Bitweise XOR (exclusive or)	
9	a b	Bitweise ODER (inclusive or)	
10	a&&b	Logiches UND	
11	a b	Logisches ODER	
12	a=b	Zuweisung	Rechts, dann links \leftarrow
13	a,b	Komma	Links, dann rechts \rightarrow

Tabelle 3.1: Präzidenzregeln von PicoC

 $^{^{1}}C\ Operator\ Precedence\ -\ cppreference.com.$

- 3.2.3 Derivation Tree Generierung
- 3.2.4 Early Parser
- 3.2.5 Derivation Tree Vereinfachung
- 3.2.6 Abstrakt Syntax Tree Generierung

ASTNode

PicoC Nodes

RETI Nodes

- 3.3 Code Generierung
- 3.3.1 Passes

PicoC-Shrink Pass

PicoC-Blocks Pass

PicoC-Mon Pass

Definition 3.1: Symboltabelle

RETI-Blocks Pass

RETI-Patch Pass

RETI Pass

- 3.3.2 Umsetzung von Pointern und Arrays
- 3.3.3 Umsetzung von Structs
- 3.3.4 Umsetzung von Funktionen
- 3.3.5 Umsetzung kleinerer Details
- 3.4 Fehlermeldungen
- 3.4.1 Error Handler

4 Ergebnisse und Ausblick

- 4.1 Funktionsumfang
- 4.2 Qualitätskontrolle
- 4.3 Kommentierter Kompiliervorgang
- 4.4 Erweiterungsideen

- A.1 Konkrette und Abstrakte Syntax
- A.2 Bedienungsanleitungen
- A.2.1 PicoC-Compiler
- A.2.2 Showmode
- A.2.3 Entwicklertools

Literatur

Online

- C Operator Precedence cppreference.com. URL: https://en.cppreference.com/w/c/language/operator_precedence (besucht am 27.04.2022).
- lecture-notes-2021. 20. Jan. 2022. URL: https://github.com/Compiler-Construction-Uni-Freiburg/lecture-notes-2021/blob/56300e6649e32f0594bbbd046a2e19351c57dd0c/material/lexical-analysis.pdf (besucht am 28.04.2022).
- What is the difference between a token and a lexeme? NewbeDEV. URL: http://newbedev.com/what-is-the-difference-between-a-token-and-a-lexeme (besucht am 17.06.2022).

18