Friedrich-Alexander-Universität Erlangen-Nürnberg

Decision Theory

Lecture 11

Sebastian Denzler

Friedrich-Alexander Universität Erlangen-Nürnberg, Department Data Science July 1, 2024

Today

Game theory

What is it about?

- So far:
 - Decision under certainty = no opponent
 - Decision under uncertainty = "against nature"
- Game theory: consciously acting opponent
- Examples:
 - Wage negotiations
 - Auctions
 - Competitive situations, e.g., in an oligopoly
 - Cold War

Example: Prisoner's Dilemma (see Lecture 1)

- You and your accomplice stole apples and got arrested
- You are in different cells
- Confess or not?
 - You confess
 - ► Accomplice confesses: 4 years in prison for both
 - ► Accomplice does not confess: 1 year in prison for you, 6 years for him
 - You do not confess
 - ► Accomplice confesses: 6 years in prison for you, 1 year for him
 - ► Accomplice does not confess: 2 years in prison for both

Example: Prisoner's Dilemma (see Lecture 1)

Decision matrix:

	He confesses	He does not confess
I confess	(4,4)	(1,6)
I do not confess	(6,1)	(2,2)

- First value: my outcome
- Second value: accomplice's outcome
- Minimize prison years
- What should I do? Decision via survey.

Example, continued

	He confesses	He does not confess
I confess	(4,4)	(1,6)
I do not confess	(6,1)	(2,2)

- From the perspective of game theory: choose the best strategy assuming that everyone follows that strategy
- So, I do not confess?
- "Optimality" for game theory usually: "Nash Equilibria," more on that later

Distinctions

- Number of players:
 - Two-person games
 - \circ N-person games (N > 2) with or without the possibility of coalition formation
- Rules of the game:
 - Finite games (number of repetitions is fixed)
 - Infinite games (number of repetitions is not fixed)
- Strategy space:
 - Discrete strategy space
 - Continuous strategy space

Distinctions, continued

- Strategy choice:
 - Pure strategy: Consistent behavior
 - Mixed strategy: Choosing a strategy using a random mechanism
- Timing of strategy choice:
 - Simultaneous, i.e., players have no knowledge (only assumptions) about the opponent's strategy choice
 - Sequential, i.e., players know the previous move or moves of the opponent

Distinctions, continued

- Coordination between players:
 - Cooperative games (agreements between players)
 - Non-cooperative games (no agreements between players)
- Outcomes:
 - Games with variable gains
 - Constant-sum games
 - Zero-sum games

Terms and Representations

- Strategy:
 - Plan that contains, for each information available to player i at the time of executing a move, a
 (conditional) instruction on how to execute the move.
- Representation of games in normal form (payoff matrix):

	Player 2		
	Strategy b ₁		Strategy <i>b_n</i>
	(u_{11}^1, u_{11}^2)		(u_{1n}^1, u_{1n}^2)
	:		:
Strategy a_m	(u_{m1}^1, u_{m1}^2)		(u_{mn}^1, u_{mn}^2)

Representation as a game tree is also possible

Examples

					Pl	ayer	2
				Strate	egy b ₁	• • •	Strategy b_n
_	Strate	gy	a_1	$(u_{11}^1,$	(u_{11}^2)		(u_{1n}^1, u_{1n}^2)
ave	, :						i
<u>E</u>	Strate	gy (a_m	$(u_{m1}^{1},$	(u_{m1}^{2})	•••	(u_{mn}^{1}, u_{mn}^{2})
			<i>b</i> ₁		b_2	b	3
		a ₁			(4, 4)		
		a_2	(8	, 7)	(8, -6)	s) (7	['] , 8)

Examples

Strategy
$$b_1$$
 ... Strategy b_n

Strategy a_1 (u_{11}^1, u_{11}^2) ... (u_{1n}^1, u_{1n}^2)

Strategy a_m (u_{m1}^1, u_{m1}^2) ... (u_{mn}^1, u_{mn}^2)

$$\frac{b_1}{a_1} \frac{b_2}{(10, 10)} \frac{b_3}{(4, 4)} \frac{b_3}{(0, 18)}$$

$$a_2$$
 (8, 7) (8, -6) (7, 8)

Task!

Write a payoff matrix for Rock-Paper-Scissors

Strong and Weak Dominance

- Strong Dominance:
 - Always better outcomes regardless of the opponent's strategy.
- Weak Dominance:
 - At least as good and better in one aspect of the outcome.

Strong and Weak Dominance

- Strong dominance: b₃ dominates b₁ and b₂
- Assumption: No one chooses strongly dominated strategies
- Then, player 1 will choose strategy a₂
- "Iterated Dominance": Repeatedly applying dominance checking

Example of Iterated Dominance

	b_1	b_2	b_3
a_1	(3, 6)	(19, 27)	(15, 15)
a_2	(18, 16)	(13, 28)	(4, 8)
	(30, 5)		

Nash Equilibrium: Strategy Profile

- Assuming there are N players
- Player *i* chooses strategy $s_i \in S_i$
- Obtain strategy profile $s = (s_1, \dots, s_N)$
- Corresponds to a cell in our payoff matrix

Nash Equilibrium

- When no one wants to change their strategy in response
- A strategy profile where, for each player, there is no better strategy if others do not change theirs
- Formal: $\hat{s} = (\hat{s}_1, \dots, \hat{s}_N)$ is a nash equilibrium if, for every player i and $s_i \in S_i$, it holds that;

$$u_i(\hat{s}) \geq u_i(\hat{s}_1, \ldots, \hat{s}_{i-1}, s_i, \hat{s}_{i+1}, \ldots, \hat{s}_N)$$

Examples

Games with a unique nash equilibrium:

Example 1

Examples

Games with a unique nash equilibrium:

• Example 1

Examples

Games with a unique nash equilibrium:

• Example 1

• Example 2

$$\begin{array}{c|cccc} & b_1 & b_2 & b_3 \\ \hline a_1 & (7, -2) & (0, 2) & (9, 1) \\ a_2 & (4, 4) & (3, 2) & (-2, 4) \\ a_3 & (-2, 7) & (8, 8) & (7, 8) \\ \hline \end{array}$$

Examples

Games with a unique nash equilibrium:

• Example 1

• Example 2

Examples

Games with multiple nash equilibria:

Game without nash equilibrium:

$$\begin{array}{c|ccccc} & b_1 & b_2 & b_3 \\ \hline a_1 & (7,7) & (4,4) & (18,0) \\ a_2 & (8,8) & (8,5) & (7,10) \\ a_3 & (0,14) & (7,9) & (-2,18) \\ \end{array}$$

• Is there an equilibrium in the Prisoner's Dilemma?

How to Find nash equilibria?

- Approach 1: check cell by cell
- Approach 2:
 - Mark highest values on the left per column
 - Mark highest values on the right per row
 - Check for overlap

Braess's Paradox

Introducing a new alternative can make everyone worse off

- 4000 drivers want to travel from s to t
- A: drivers going above. Travel time A: A/100 + 45
- B: drivers going below. Travel time B: B/100 + 45
- A + B = 4000
- Nash equilibrium: A = B = 2000, each 2000/100 + 45 = 65 minutes

Braess's Paradox

- Build new road $a \rightarrow b$ with travel time 0
- For someone currently in A or B: travel time s a b t is now 2000/100 + 2001/100 = 40.01 minutes
- Players switch, switch, switch, ...
- s a b t remains the best alternative but gets worse over time
- In the end: everyone uses s a b t
- Duration: 4000/100 + 4000/100 = 80 minutes

Games of the Prisoner's Dilemma Type

$$\begin{array}{c|cccc} & b_1 & b_2 \\ \hline a_1 & (4, 4) & (0, 6) \\ a_2 & (6, 0) & (2, 2) \\ \end{array}$$

- In matrix: payoff instead of damage
- Wide application: two companies want to set prices
- a_1/b_1 : keep the price
- a_2/b_2 : reduce the price
- Nash equilibrium at the "bad" point (a_2, b_2)

Games of the "Battle of the Sexes" Type

- A and B want to go out
- Theater or boxing match
- Independently choose either theater ticket (a_1/b_1) or ticket for boxing match (a_2/b_2)
- A prefers a joint theater evening
- B prefers a joint boxing match
- Separated worse than being together

$$\begin{array}{c|cccc} & b_1 & b_2 \\ \hline a_1 & (2, 1) & (-1, -1) \\ a_2 & (-1, -1) & (1, 2) \\ \end{array}$$

Nash equilibria are at (2, 1) and (1, 2)

Cooperation

- Simultaneous, independent decision-making is difficult to lead to the desired outcome
- Assume both flip a coin (mixed strategy)
- A: π_A for a_1 , $(1 \pi_A)$ for a_2
- B: π_B for b_1 , $(1 \pi_B)$ for b_2
- Expected outcomes:
 - For *A*:

$$u_1(\pi_A, \pi_B) = 2\pi_A \pi_B - \pi_A (1 - \pi_B) - (1 - \pi_A)\pi_B + (1 - \pi_A)(1 - \pi_B)$$

• For *B*:

$$u_2(\pi_A, \pi_B) = 1\pi_A \pi_B - \pi_A (1 - \pi_B) - (1 - \pi_A)\pi_B + 2(1 - \pi_A)(1 - \pi_B)$$

Cooperation

$$u_1\left(\frac{1}{2},\frac{1}{2}\right) = u_2\left(\frac{1}{2},\frac{1}{2}\right) = \frac{1}{4}$$

Cooperation

- Suppose we allow agreements instead
- Coin toss would lead to utility expectation of (1.5, 1.5)
- Alternating agreement on Boxing/Theater also averages utility value of (1.5, 1.5)
- Point (1.5, 1.5) is outside the previously possible range!
- We call all cooperatively attainable outcomes K

Nash Solutions

- What are the "optimal solutions" in a cooperative game?
- Let $(\overline{u}_1, \overline{u}_2)$ be a "special value"
- The value one would get without an agreement, e.g.,
 - No trade: $(\overline{u}_1, \overline{u}_2) = (0, 0)$
 - No cooperation: guaranteed payout in the non-cooperative game
- Goal: find point (\hat{u}_1, \hat{u}_2) in data $(K; \overline{u}_1, \overline{u}_2)$

$$F:(K;\overline{u}_1,\overline{u}_2)\mapsto (\hat{u}_1,\hat{u}_2)\in K$$

Requirements for Nash Solution

- Requirement 1: Independence from linear transformations
 - \circ If utility zero points and utility units are changed, the solution (\hat{u}_1, \hat{u}_2) changes in the same proportion
- Requirement 2: Individual Rationality
 - \circ Solution (\hat{u}_1,\hat{u}_2) must satisfy inequalities $\hat{u}_1 \geq \overline{u}_1$, $\hat{u}_2 \geq \overline{u}_2$
 - No rational decision-maker would accept an agreement that puts them in a worse position than a failure of negotiations

Cooperative Games

- Requirement 3: Pareto-Optimality
 - \circ Solution (\hat{u}_1 , \hat{u}_2) is undominated
- Requirement 4: Symmetry
 - \circ If the roles of both players are completely symmetrical, the solution is also symmetrical, i.e., $\hat{u}_1 = \hat{u}_2$.
- Requirement 5: Independence of irrelevant alternatives
 - If \tilde{K} is a subset of K that includes both the point $(\overline{u}_2, \overline{u}_2)$ and the solution (\hat{u}_1, \hat{u}_2) of $(K; \overline{u}_1, \overline{u}_2)$, then $F_0(\tilde{K}; \overline{u}_1, \overline{u}_2) = (\hat{u}_1, \hat{u}_2)$ also holds.

Summary of Requirements

 $F_0(K; \overline{u}_1, \overline{u}_2) = (\hat{u}_1, \hat{u}_2)$ is the maximum of the following optimization problem:

$$\max (u_1 - \overline{u}_1) \cdot (u_2 - \overline{u}_2)$$
s.t. $(u_1, u_2) \in K$

$$u_1 \ge \overline{u}_1$$

$$u_2 > \overline{u}_2$$

Theorem

There is exactly one arbitration mechanism defined on the set of all bargaining games $(K; \overline{u}_1, \overline{u}_2)$ that simultaneously satisfies all five requirements; this is given by the F_0 described above.

Example: Resolution of a Wage Dispute

- Unions and employers negotiate a wage increase α in the range from 0 to 10 percent (0 $\leq \alpha \leq$ 10)
- Unions: $u_1(\alpha) = \sqrt{\frac{\alpha}{20}}$, $\overline{u}_1 = \frac{1}{5}$
- Employers: $u_2(\alpha) = 1 \frac{\alpha}{20}$, $\overline{u}_2 = \frac{3}{5}$
- Maximize:

$$(u_1 - \overline{u}_2) \cdot (u_2 - \overline{u}_2) = \left(\sqrt{\frac{\alpha}{20}} - \frac{1}{5}\right) \cdot \left(1 - \frac{\alpha}{20} - \frac{3}{5}\right)$$
$$= \frac{2}{5} \cdot \sqrt{\frac{\alpha}{20}} - \frac{2}{25} - \left(\frac{\alpha}{20}\right)^{\frac{3}{2}} + \frac{\alpha}{100}$$

Example: Resolution of a Wage Dispute

Optimal Solution: $\alpha = 3.8$; $u_1 = 0.44$; $u_2 = 0.81$

Issues and Applications

- Corresponding data is usually not available
- In reality, negotiation games are often divided into a threat game and a demand game (two-stage game): Threats (e.g., strike and lockout) are only implemented if the negotiation solution fails
- Player behavior often does not meet the rationality postulate (problem applies to the entire analytical game theory)
- However, game theory is very suitable for analyzing conflict and decision situations

Quiz

Question 1

Is there a nash equilibrium? (non-coop, pure strategies)

$$\begin{array}{c|cccc} & b_1 & b_2 \\ \hline a_1 & (0,1) & (1,0) \\ a_2 & (1,0) & (0,1) \end{array}$$

Question 3

What is the best cooperative solution?

$$\begin{array}{c|cccc} & b_1 & b_2 \\ \hline a_1 & (0,1) & (1,0) \\ a_2 & (1,0) & (0,1) \\ \end{array}$$

Question 3

Is there a nash equilibrium? (non-coop, pure strategies)

	b_1	b_2
a_1	(3,2)	(1,4)
a_2	(2,2)	(4,3)

Quiz

Question 1

Is there a nash equilibrium? (non-coop, pure strategies)

	<i>b</i> ₁	b_2
a_1	(0,1)	(1,0)
a_2	(1,0)	(0,1)

Question 3

What is the best cooperative solution?

$$\begin{array}{c|cccc} & b_1 & b_2 \\ \hline a_1 & (0,1) & (1,0) \\ a_2 & (1,0) & (0,1) \end{array}$$

Question 3

Is there a nash equilibrium? (non-coop, pure strategies)

$$\begin{array}{c|cccc} & b_1 & b_2 \\ \hline a_1 & (3,2) & (1,4) \\ a_2 & (2,2) & (4,3) \\ \end{array}$$

Solution

No.

Quiz

Question 1

Is there a nash equilibrium? (non-coop, pure strategies)

$$\begin{array}{c|cccc} & b_1 & b_2 \\ \hline a_1 & (0,1) & (1,0) \\ a_2 & (1,0) & (0,1) \\ \end{array}$$

Solution

No.

Question 3

What is the best cooperative solution?

$$\begin{array}{c|cccc} & b_1 & b_2 \\ \hline a_1 & (0,1) & (1,0) \\ a_2 & (1,0) & (0,1) \\ \end{array}$$

Solution

Everyone plays 1/2 with utility (1/2, 1/2).

Question 3

Is there a nash equilibrium? (non-coop, pure strategies)

	•	b_2
a_1	(3,2)	(1,4)
a_2	(2,2)	(4,3)

Quiz

Question 1

Is there a nash equilibrium? (non-coop, pure strategies)

$$\begin{array}{c|cccc} & b_1 & b_2 \\ \hline a_1 & (0,1) & (1,0) \\ a_2 & (1,0) & (0,1) \\ \end{array}$$

Solution

No.

Question 3

What is the best cooperative solution?

$$\begin{array}{c|cccc} & b_1 & b_2 \\ \hline a_1 & (0,1) & (1,0) \\ a_2 & (1,0) & (0,1) \end{array}$$

Solution

Everyone plays 1/2 with utility (1/2, 1/2).

Question 3

Is there a nash equilibrium? (non-coop, pure strategies)

$$\begin{array}{c|cccc} & b_1 & b_2 \\ \hline a_1 & (3,2) & (1,4) \\ a_2 & (2,2) & (4,3) \\ \end{array}$$

Solution

Yes: (a_2, b_2) .