NSR Search Results Page 1 of 2

Visit the **Isotope Explorer** home page!

10 reference(s) found :

Keynumber: 1983SA30

Reference: Aust.J.Phys. 36, 583 (1983)

Authors: D.G.Sargood

Title: Effect of Excited States on Thermonuclear Reaction Rates

Keyword abstract: NUCLEAR REACTIONS,ICPND 20 , 21 , 22 Ne, 23 Na, 24 , 25 , 26 Mg, 27 Al, 28 , 29 , 30 Si, 31 P, 32 , 33 , 34 , 36 S, 35 , 37 Cl, 36 , 38 , 40 Ar, 39 , 40 , 41 K, 40 , 42 , 43 , 44 , 46 , 48 Ca, 45 Sc, 46 , 47 , 48 , 49 , 50 Ti, 50 , 51 V, 50 , 52 , 53 , 54 Cr, 55 Mn, 54 , 56 , 57 , 58 Fe, 59 Co, 58 , 60 , 61 , 62 , 64 Ni, 63 , 65 Cu, 64 , 66 , 67 Zn(n,γ), (n,p), (n,α), (p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), 70 Zn(p,γ), (p,n), (p,α), (α,γ), (α,n), (α,p), E=low; compiled target thermal distribution energy state to ground state thermonuclear reaction rate of reaction σ vs temperature. Statistical model.

Keynumber: 1980PIZN

Coden: CONF Kiev(Neutron Physics) Proc,Part3,P270,Pisanko

Keyword abstract: NUCLEAR REACTIONS ²², ²³Na,Mg, ²⁴, ²⁵, ²⁶Mg, ²⁷Al,Si, ²⁸, ²⁹, ³⁰Si, ³¹P,S, ³², ³³, ³⁴S,Cl, ³⁵, ³⁶, ³⁷Cl,Ar, ³⁶, ³⁸, ⁴⁰Ar,K, ³⁹, ⁴⁰, ⁴¹K,Ca, ⁴⁰, ⁴², ⁴³, ⁴⁴, ⁴⁶, ⁴⁸Ca, ⁴⁵, ⁴⁶Sc,Ti, ⁴⁶, ⁴⁷, ⁴⁸, ⁴⁹, ⁵⁰Ti,V, ⁵⁰, ⁵¹V,Cr, ⁵⁰, ⁵², ⁵³, ⁵⁴Cr,Fe, ⁵⁴, ⁵⁶, ⁵⁷, ⁵⁸Fe, ⁵⁹Co,Ni, ⁵⁸, ⁵⁹, ⁶⁰, ⁶¹, ⁶², ⁶⁴Ni,Cu, ⁶³, ⁶⁵Cu,Zn, ⁶⁴, ⁶⁶, ⁶⁷, ⁶⁸, ⁷⁰Zn,Ga, ⁶⁹, ⁷¹Ga(n,γ), (n,n), (n,α),E=thermal; evaluated σ,radiative capture resonance integrals.

Keynumber: 1975LI01

Reference: Phys.Rev. C11, 457 (1975)

Authors: H.I.Liou, J.Rainwater, G.Hacken, U.N.Singh

Title: Neutron Resonance Spectroscopy: Argon

Keyword abstract: NUCLEAR REACTIONS 40 Ar(n,n), (n, γ),E=1-580 keV; measured total σ (E). 41 Ar

deduced resonances,n-width,J,S,L.

T 10700

Keynumber: 1972ST04

Reference: Nucl. Phys. A181, 225 (1972)

Authors: F.Stecher-Rasmussen, K.Abrahams, J.Kopecky

Title: Circular Polarization of Neutron Capture γ-Rays from Al, Ar and Ca

Keyword abstract: NUCLEAR REACTIONS ²⁷Al, ⁴⁰Ar, ⁴⁰, ⁴⁴Ca(polarized n,γ);E=thermal; measured

γ-CP. ²⁸ Al, ⁴¹ Ar, ⁴¹, ⁴⁵ Ca levels deduced J, π . ²⁸ Al transition deduced γ-mixing. Natural targets.

Keynumber: 1972OP01

Reference: Nucl.Phys. A180, 569 (1972) **Authors:** A.M.F.Op den Kamp, A.M.J.Spits

Title: Gamma Rays from Thermal-Neutron Capture in Natural and ³⁹K Enriched Potassium

Keyword abstract: NUCLEAR REACTIONS ³⁹, ⁴¹K, ¹H, ⁶Li, ¹²C, ¹⁹F, ⁴⁰Ar, ⁵⁶Fe, ²⁰⁷Pb(n,γ),E= thermal; ¹⁹F, ²⁸Si(n,n'γ),E=fast; measured Eγ,Iγ, ³⁹K(n,γ),E=thermal; measured Eγ,Iγ,γγ-coin; deduced Q. ⁴⁰, ⁴²K deduced levels,γ-branching. Ge(Li),NaI detectors.

Keynumber: 1971ARZJ

Coden: CONF Legnaro(1f₇/₂ Nuclei),P251

NSR Search Results Page 2 of 2

Keyword abstract: NUCLEAR REACTIONS 36 Ar, 40 Ar, 40 K, 40 , 42 , 44 , 46 , 48 Ca, 47 Ti, 55 Mn, 57 Fe, 59 Co(n,γ),E=thermal; surveyed Εγ,Ιγ,γγ-coin,γγ(θ),γ-polarization data. 37 Ar, 41 Ar, 41 K, 41 , 43 , 45 , 47 , 49 Ca, 48 Ti, 56 Mn, 58 Fe, 60 Co deduced levels,J,π,γ-mixing.

Keynumber: 1970HA56

Reference: Phys.Scr. 1, 85 (1970) **Authors:** R.Hardell, C.Beer

Title: Thermal Neutron Capture in Natural Argon

Keyword abstract: NUCLEAR REACTIONS ³⁶, ⁴⁰Ar(n,γ),E=thermal; measured Eγ,Iγ,Q. ³⁷, ⁴¹Ar

deduced levels,γ-branching.

Keynumber: 1969RA37

Reference: Nucl.Phys. A128, 333 (1969)

Authors: N.RanaKumar, E.Karttunen, R.W.Fink

Title: Thermal and 14.4 MeV Neutron Activation Cross Sections of Argon

Keyword abstract: NUCLEAR REACTIONS 40 Ar(n, γ),E=th; 38 , 40 Ar(n,p), 40 Ar(n,X), 40 Ar (n, α),En=14.4 MeV; measured σ by activation; Ge(Li) detector; solid quinolclathrate target; mixed

powder method.

Keynumber: 1967LY05

Reference: Nucl. Phys. A100, 33(1967)

Authors: H.Lycklama, N.P.Archer, T.J.Kennett

Title: The 40 Ar(n, γ) 41 Ar Reaction

Keyword abstract: NUCLEAR REACTIONS 40 Ar(n, γ), E=th; measured E γ , I γ , $\gamma\gamma$ -coin; deduced Q.

⁴¹Ar deduced levels. Natural target, Ge(Li) detector.

Keynumber: 1965FR16

Reference: Nucl.Phys. 65, 225 (1965) **Authors:** R.L.D.French, B.Bradley

Title: The Ar⁴⁰ Thermal Activation Cross-Section and Resonance Integral

Keyword abstract: NUCLEAR REACTIONS 40 Ar(n, γ), En=pile; measured σ ; deduced σ (thermal), σ

(nA) dE/E. Enriched target.
