Syllabus

- 1. Introduction
 - Survival data
 - Censoring mechanism
 - Application in medical field
- 2. Concepts and definitions
 - Survival function
 - Hazard function
- 3. Non-parametric approach
 - Life table
 - Kaplan-Meier survival estimate
 - Hazard function
 - Median and percentile survival time
- 4. Hypothesis testing
 - Overview hypothesis, test statistics, p-values
 - Log-rank
 - Wilcoxon
 - Gehan test
- 5. Study design and sample size estimation
 - Overview
 - Survival sample size estimation
 - Accrual time and Study duration

- 6. Semiparametric model proportional hazard model
 - Partial likelihood
 - Inference
 - Time varying covariates
 - Stratification
- 7. Model checking in the PH model
 - Model checking
 - Residuals
- 8. Parametric model
 - Parametric proportional hazard model
 - Accelerate failure model
- 9. Other topics
 - Competing risk
 - Recurrent events
 - Non-proportional hazard ratio
 - Interval censoring

Multivariate Survival Data

- Different types of events occur in one subject
 - Time to vision loss in each eye
 - Time to stroke and MI
- Recurrent events
 - Opportunistic infections in patients with HIV
 - Repeated exacerbations in COPD patients
- Recurrent events with a terminating event
 - Death can be a terminating event
 - May have a heavier weight than a recurrent event in evaluating treatment effect
 - May informatively censor the future recurrent event

Topics

- Marginal Approach Wei-Lin-Weissfeld (WLW) method
- Conditional approach Prentice, Williams and Peterson (PWP) method
- Intensity Approach— Andersen-Gill (AG) method
- The rate or mean approaches
 - Andersen-Gill approach
 - Poisson regression
 - Negative binormal
- Frailty model
- Recurrent events with a terminating event

Robust Sandwich Estimator for Variance

- Model a set of data Y_i for i = 1, ..., n with $f_i(Y_i | \theta)$
- For statistical inference of θ , use the log likelihood function

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} \log f_i(Y_i|\theta)$$

• Take the first partial derivatives of $\mathcal{L}(\theta)$

$$\mathcal{L}'(\theta) = \frac{\partial}{\partial \theta} \sum_{i=1}^{n} \log f_i(Y_i | \theta)$$

- $U = \mathcal{L}'(\theta)$ is the score function
- Let θ_0 be the truth, can be estimated by $\mathcal{L}'(\theta) = 0$
- Take the second partial derivatives of $\mathcal{L}(\theta)$

$$\mathcal{L}''(\theta) = \frac{\partial^2}{\partial \theta^2} \sum_{i=1}^n \log f_i(Y_i | \theta)$$

• $I = \mathcal{L}''(\theta_0)$ is the information matrix

Robust Sandwich Estimator for Variance

• Taking Taylor expansion $\mathcal{L}(\theta)$ at $\theta = \theta_0$ $\mathcal{L}(\theta) \approx \mathcal{L}(\theta_0) + \mathcal{L}'(\theta_0)(\theta - \theta_0)$ $+\frac{1}{2}(\theta-\theta_0)'\mathcal{L}''(\theta_0)(\theta-\theta_0)$

• Finding the maximum by solving $\mathcal{L}'(\hat{ heta}) = 0$

• Expanding $\mathcal{L}'(\hat{\theta})$ at $\hat{\theta}=\theta_0$, we obtain $\mathcal{L}'(\hat{\theta})\approx\mathcal{L}'(\hat{\theta})+\mathcal{L}'(\hat{\theta})=0$ when maximum $\mathcal{L}'(\theta_0) + (\hat{\theta} - \theta_0)' \mathcal{L}''(\theta_0) \approx 0$ $(\hat{\theta} - \theta_0) \approx (-\mathcal{L}''(\theta_0))^{-1} (\mathcal{L}'(\theta_0))'$

Then

$$cov\hat{\theta} = \left(-\mathcal{L}''(\theta_0)\right)^{-1} \left(cov\mathcal{L}'(\theta_0)\right) \left(-\mathcal{L}''(\theta_0)\right)^{-1}$$
$$= I^{-1}cov(U)I^{-1}$$

- Why use robust sandwich estimator?
 - Model is mis-specified, such as data is correlated, clustered, etc.

Wei-Lin-Weissfeld (WLW) Method

- Events are ordered or classified into different types
- The order/type is used as a stratification factor
 - Correlation among strata due to cluster effect different types of events occurred in the same subjects
- Apply stratified Cox proportional hazard regression model
 - Time scale Time from the study entry or randomization to the different types of events
 - Risk set a marginal approach
 - Each stratum has its own risk set
 - All subjects are eligible in the risk set for the analysis of all stratum at the begining
 - Regression
 - Covariates can be stratum-specific
 - Effect parameter can be
 - Strata-specific
 - · Common effect

References

Wei, L. J., Lin, D. Y. and Weissfeld, L. 'Regression analysis of multivariate incomplete failure time data by modeling marginal distributions', ASA, 84, 1065—1073 (1989).

Lin, D. Y. (1994). "Cox Regression Analysis of Multivariate Failure Time Data: The Marginal Approach." Statistics in Medicine 13:2233–2247.

WLW Approach

• The recurrent event time is analyzed from start

WLW Method

- Let X_{ki} be the survival time for the k^{th} type of event of the i^{th} subject,
 - k = 1, ..., K
 - i = 1, ..., n
 - Time from randomization or study entry to the k^{th} type of event
- The observed survival time $(T_{ki}, \Delta_{ki}, Z_{ki})$,
 - $T_{ki} = \min(X_{ki}, C_{ki})$
 - Δ_{ki} = 0 represents independent censoring
 - Z_{ki} is a vector of p dimensional

WLW Method

• For the k^{th} type of event

$$h_k(t, Z_k) = h_{k0}(t)e^{\beta_k' Z_k}$$

• The partial likelihood for the k^{th} type of event

$$L_k(\beta_k) = \prod_{i=1}^n \left\{ \frac{e^{\beta_k' z_{ki}}}{\sum_{l \in R_{ki}(t_{ki})} e^{\beta_k' z_{kl}}} \right\}^{\Delta_{ki}}$$

$$L(\beta) = \prod_{k=1}^{K} L_k(\beta_k)$$

ullet Possible to fit a set of common parameters across the K strata

it you have common parameters, you must "glue" the event-specific Libelihood together

Inference

• Taking the first derivative of $\log L(\beta)$, we obtain MLEs $\hat{\beta}$ $\widehat{\beta}' = (\hat{\beta}_1{}', \dots, \hat{\beta}_K{}')$

•
$$\hat{\beta}_k$$
, $k=1,\ldots,K$ are correlated
$$\sqrt{n} \big(\hat{\beta}_1{}',\ldots,\hat{\beta}_K{}' \big)_{1\times pK} \sim N \big(({\beta_1}',\ldots,{\beta_K}'),\Sigma \big)$$

 Σ is $pK \times pK$ covariance matrix,

• Σ can be estimated with the robust sandwich estimator

Inference

- The covariates of interest
 - Let Z_1 be 0, 1 a treatment indicator in the vector of p covariates

$$(\hat{\beta}_{11}, \dots, \hat{\beta}_{1K})_{1 \times K} \sim N((\beta_{11}, \dots, \beta_{1K}), \Sigma_{K \times K})$$

- To test H_0 : $\beta_{11}=\cdots=\beta_{1K}=0$
- Form the test statistics to jointly test

$$(\hat{\beta}_{11}, \dots, \hat{\beta}_{1K})\hat{\Sigma}_{K\times K}(\hat{\beta}_{11}, \dots, \hat{\beta}_{1K})'\sim \chi_K^2$$

Inference

- Assume β_{11} , $= \cdots = \beta_{1K} = \beta_0$
- β_0 can be estimated by

$$\hat{\beta}_0 = \sum_{k=1}^{K} c_k \hat{\beta}_{1k}$$
 and $\sum_{k=1}^{K} c_k = 1$

• $c = (c_1, ..., c_K)'$ can be estimated by

$$[e'(\Sigma_{K\times K})^{-1}e]^{-1}(\Sigma_{K\times K})^{-1}e$$

where $e=(1,...,1)'$

ullet WLW shows that the estimated c results in the optimal weights — leads to the smallest asymptotic variance

WLW Method Data Structure

- Structure data set for K types of events
 - Form K strata
- Observations are in counting process style (start, stop)
 - Start always study entry or randomization
 - Stop the k^{th} event time or censored
 - Id cluster indicator
 - Strata indicator for the *K* types of events
 - Censoring indicator
- Each subject has K observations is matter the subjects has how many wells

Bladder Data

- Variables
 - obs Subject ID
 - Trt Treatment 1=placebo 2=thiotepa
 - Time follow-up time
 - Number Initial number of tumor
 - Size size (cm) of largest initial tumour
 - T1 1st event time
 - T2 2nd event time
 - T3 3rd event time
 - T4 4th event time
- Convert data set for the WLW method
 - ID Subject ID
 - Visit stratification indicator (with value k for the kth potential tumor recurrence)
 - Tstart time of the (k 1) recurrence for Visit=k, or the entry time 0 if VISIT=1, or the follow-up time if the (k 1) recurrence does not occur
 - TStop, time of the kth recurrence if Visit=k or follow-up time if the kth recurrence does not occur
 - Status, censoring indicator of TStop (1=recurrence and 0=censored)
 - Other covariates

Obs	Trt	Time	Number	Size	T1	T2	T3	T4
1	1	0	1	1	-			
2	1	1	1	3				1
3	1	4	2	1				
4	1	7	1	1				
5	1	10	5	1				
6	1	10	4	1	6		v	
7	1	14	1	1				
8	1	18	1	1				
9	1	18	1	3	5			
10	1	18	1	1	12	16		
11	1	23	3	3			·	
12	1	23	1	3	10	15		-
13	1	23	1	1	3	16	23	
14	1	23	3	1	3	9	21	
15	1	24	2	3	7	10	16	24
16	1	25	1	1	3	15	25	
17	1	26	1	2	•			
18	1	26	8	1	1			
19	1	26	1	4	2	26		,
20	1	28	1	2	25		¥	
21	1	29	1	4				ę
22	1	29	1	2				

Bladder Data – Formatted for WLW Method

Obs	ID	TStart	Trt	Number	Size	Visit	TStop	Status
 1	1	U	1	i	1	1	0	Û
2	1	0	1	1	1	2	0	0
3	1	0	1	1	1	3	0	0
4	1	0	1	1	1	4	0	0
5	2	0	1	1	3	1	1	0
6	2	1	1	1	3	2	1	0
7	2	1	1	1	3	3	1	0
8	2	1	1	1	3	4	1	0
9	3	0	1	2	1	1	4	0
10	3	4	1	2	1	2	4	0
11	3	4	1	2	1	3	4	0
12	3	4	1	2	1	4	4	0
13	4	0	1	1	1	1	7	0
14	4	7	1	1	1	2	7	0
15	4	7	1	1	1	3	7	0
16	4	7	1	1	1	4	7	0
17	5	0	1	5	1	1	10	0

45	12	0	1	1	3	1	10	1		
46	12	10	1	1	3	2	15	1		
47	12	15	1	1	3	3	23	0		
48	12	23	1	1	3	4	23	0		
49	13	0	1	1	1	1	3	1		
50	13	3	1	1	1	2	16	1		
51	13	16	1	1	1	3	23	1		
52	13	23	1	1	1	4	23	0		
53	14	0	1	3	1	1	3	1		
54	14	3	1	3	1	2	9	1		
55	14	9	1	3	1	3	21	1	L	
56	14	21	1	3	1	4	23	0	P:14 doesn't have event Ty.	-
57	15	0	1	2	3	1	7	1	even T4.	
58	15	7	1	2	3	2	10	1)	
59	15	10	1	2	3	3	16	1		
60	15	16	1	2	3	4	24	1		
61	16	0	1	1	1	1	3	1		
62	16	3	1	1	1	2	15	1		
63	16	15	1	1	1	3	25	1		
64	16	25	1	1	1	4	25	0		

```
for robust sandwich as astimate.
title 'Wei-Lin-Weissfeld Model';
proc phreg data=Bladder covs(aggregate);
   model TStop*Status(0) = Trt1 - Trt4 Number1 - Number4 Size1 - Size4;
  Trt1= Trt * (Visit=1);
   Trt2= Trt * (Visit=2);
   Trt3= Trt * (Visit=3);
   Trt4= Trt * (Visit=4);
   Number1= Number * (Visit=1);
   Number2= Number * (Visit=2);
   Number3= Number * (Visit=3);
   Number4= Number * (Visit=4);
   Size1= Size * (Visit=1);
   Size2= Size * (Visit=2);
   Size3= Size * (Visit=3);
   Size4= Size * (Visit=4);
   strata Visit;
id ID;
   TREATMENT: test trt1, trt2, trt3, trt4/average e;
run;
```

The PHREG Procedure

Sun	Summary of the Number of Event and Censored Values												
Stratum	Visit	Total	Event	Censored	Percent Censored								
1	1	86	47	39	45.35								
2	2	86	29	57	66.28								
3	3	86	22	64	74.42								
4	4	86	14	72	83.72								
Total		344	112	232	67.44								

	Linear	Coefficients	for lest IN	REAIMENI	
Parameter	Row 1	Row 2	Row 3	Row 4	Average Effect
Trt1	1	0	0	0	0.67684
Trt2	0	1	0	0	0.25723
Trt3	0	0	1	0	-0.07547
Trt4	0	0	0	1	0.14140
Number1	0	0	0	0	0.00000
Number2	0	0	0	0	0.00000
Number3	0	0	0	0	0.00000

Test TREATMENT Results									
Wald Chi-Square	DF	Pr > ChiSq							
3.9668	4	0.4105							

Average Effect for Test TREATMENT									
Estimate	Standard Error	z-Score	Pr > z						
-0.5489	0.2853	-1.9240	0.0543						

```
title 'Wei-Lin-Weissfeld Model for
Common Effect';

proc phreg data=Bladder
covs(aggregate);
   model TStop*Status(0)=Trt Number
Size;
   strata Visit;
   id ID;
run;
```

Test	Chi-Square	DE	Dr > ChiCa
Test	CIII-3quare	DF	PI > CIII3q
Likelihood Ratio	24.7124	3	<.0001
Score (Model-Based)	27.8873	3	<.0001
Score (Sandwich)	11.7522	3	0.0083
Wald (Model-Based)	26.9033	3	<.0001
Wald (Sandwich)	15.5639	3	0.0014

Analysis of Maximum Likelihood Estimates												
Parameter	DF	Parameter Estimate	Standard Error	StdErr Ratio	Chi-Square	Pr > ChiSq	Hazard Ratio					
Trt	1	-0.57984	0.30344	1.508	3.6516	0.0560	0.560					
Number	1	0.20852	0.06568	1.400	10.0811	0.0015	1.232					
Size	1	-0.05093	0.09304	1.335	0.2997	0.5841	0.950					

Andersen & Gill (AG) Model

- AG (1982) model assumes independence between all observed event times
 - Within subjects
 - Between subjects
- The risk of the next event at t from the previous event or since randomization or study entry is the same, no matter what happened before t
 - Assume Poisson process
 - Proportional intensity model
- Lin and Wei (1989) proposed a robust variance estimator to account subject heterogeneity

Reference

Andersen PK, Gill RD. Cox's regression model for counting processes: A large sample study. Ann Stat. 1982;10(4):1100–20

Lin DY, Wei LJ. The robust inference for the cox proportional hazards model. J Am Stat Assoc. 1989;84(408):1074–8.

- Let N(t) be a counting process that has N(t) events occurred in the time interval [0,t]
 - N(0) = 0
 - $N(t) \in \{0,1,2,...\}, for all t \in [0,\infty)$
 - For $0 \le s < t, N(t) N(s)$ is the number of events occurred in the time interval (s, t]
- Let
 - T_i be the time from randomization or study entry to the i^{th} event
 - I_i be the gap time from the $(i-1)^{th}$ event to the i^{th} event
 - i = 1, 2, ...

- AG method assumes recurrent events follow Poisson process
- Definition
 - If N(t) is a Poisson process with rate λ , then the interval times I_i are independent and $I_i \sim \exp(\lambda)$
 - The rate λ is the intensity
 - N(0) = 0
 - N(t) consists independent increments with $\exp(\lambda)$
 - The number of events k, k = 0,1,2,... in any interval of length t has Poisson (λt) distribution

•
$$P(k=m) = \frac{e^{-\lambda t} \lambda t^m}{m!}$$

$$0 T_1 T_2 T_3 T_4 T_4$$

- The observed survival time in the i^{th} subject, (T_{ri}, Δ_i, Z_i) ,
 - $r = 1, ..., R_i$ represents the r^{th} recurrent event in the i^{th} subject

$$\underbrace{\lambda(t,Z_i(t))}_{\text{if not the varying,}} = \lambda_0(t)e^{\beta'Z_i(t)}$$

The partial likelihood for all events

$$L(\beta) = \prod_{i=1}^{n} \prod_{r=1}^{R_i} \left\{ \frac{e^{\beta' z_i(t_{ri})}}{\sum_{l \in R_{ri}(t_{ri})} e^{\beta' z_l(t_{ri})}} \right\}^{\Delta_{ri}}$$

- Notice $R_{ri}(t_{ri})$ includes all subjects, unless
 - death

censored

• Inference

$$\mathcal{L}(\beta) = \log L(\beta)$$

$$\frac{\partial}{\partial \beta} \mathcal{L}(\hat{\beta}) = 0$$

• The robust variance estimator Σ Lin and Wei (1989)

$$\sqrt{n}(\hat{\beta} - \beta_0) \sim N(0, \Sigma)$$

AG Method – Data Structure

- If a subject has k events
 - The subject has k+1 observations if follow-up is beyond the last event
 - The first *k* observations are for events
 - The last observation is censored
 - The subject has k observations if follow-up is stopped all observations are for events see In (3
- Survival time is in counting process style (start, stop)
 - Start
 - The previous event time
 - The entry of study for the first event
 - Stop
 - The event time
 - The censoring time if the last observation.

data bladder_AG;
 set bladder;
 if tstart<tstop
 run;</pre>

Obs	ID	TStart	Trt	Number	Size	Visit	TStop	Status
1	2	0	1	1	3	1	1	0
2	3	0	1	2	1	1	4	0
3	4	0	1	1	1	1	7	0
4	5	0	1	5	1	1	10	0
5	6	0	1	4	1	1	6	1
6	6	6	1	4	1	2	10	0
7	7	0	1	1	1	1	14	0
8	8	0	1	1	1	1	18	0
9	9	0	1	1	3	1	5	1
10	9	5	1	1	3	2	18	0
11	10	0	1	1	1	1	12	1
12	10	12	1	1	1	2	16	1
13	10	16	1	1	1	3	18	0
14	11	0	1	3	3	1	23	0
15	12	0	1	1	3	1	10	1
16	12	10	1	1	3	2	15	1
17	12	15	1	1	3	3	23	0
18	13	0	1	1	1	1	3	1
19	13	3	1	1	1	2	16	1
20	13	16	1	1	1	3	23	1
21	14	0	1	3	1	1	3	1

```
title 'Intensity Model and
Proportional Means Model';

proc phreg data=Bladder covm
covs(aggregate);
    model (TStart, TStop) * Status(0)
= Trt Number Size;
    id id;
run;
```

	I	Analysis of M	aximum Li	kelihood Esti	mates						
with Model-Based Variance Estimate											
Parameter	DF	Parameter Estimate	Standard Error	Chi-Square	Pr > ChiSq	Hazard Ratio					
Trt	1	-0.45979	0.19996	5.2873	0.0215	0.631					
Number	1	0.17165	0.04733	13.1541	0.0003	1.187					
Size	1	-0.04256	0.06903	0.3801	0.5375	0.958					

		Analysis o	of Maximur	n Likelil	nood Estimate	es						
with Sandwich Variance Estimate												
Parameter	DF	Parameter Estimate	Standard Error	StdErr Ratio	Chi-Square	Pr > ChiSq	Hazard Ratio					
Trt	1	-0.45979	0.25801	1.290	3.1757	0.0747	0.631					
Number	1	0.17165	0.06131	1.296	7.8373	0.0051	1.187					
Size	1	-0.04256	0.07555	1.094	0.3174	0.5732	0.958					

Prentice, Williams and Peterson (PWP) Method conditional approach.

- Events are ordered
- The order is used as a stratification factor
- Apply Cox proportional hazard regression model
 - Time scale
 - Gap time Time from the previous event to the next event
 - Total time Time from randomization or the study entry to events
 - Risk set a conditional approach
 - Only subjects who had the previous event are eligible for the analysis of the next event
 - Regression
 - Covariates can be stratum-specific
 - Effect parameter can be
 - Strata-specific
 - Common effect
- Reference

Prentice RL, Williams BJ, Peterson AV. On the regression analysis of multivariate failure time data. Biometrika. 1981;68(2):373–9.

- Let X_{ki} be the survival time for the k^{th} type of event of the i^{th} subject,
 - k = 1, ..., K
 - i = 1, ..., n
 - X_{ki} can be gap time or time from the study entry
- The observed survival time $(T_{ki}, \Delta_{ki}, Z_{ki})$,
 - $T_{ki} = \min(X_{ki}, C_{ki})$
 - Δ_{ki} = 0 represents independent censoring
 - Z_{ki} is a vector of p dimensional

- The recurrent event time can be analyzed
 - From start to event time (stop)
 - From study entry to event time
- If a subject experienced only one event, the subject will be in the risk set for the rest of the events

• For the k^{th} event

$$h_k(t, Z_k) = h_{k0}(t)e^{\beta_k' Z_k}$$

• The partial likelihood for the
$$k^{th}$$
 type of event
$$L_k(\beta_k) = \prod_{i=1}^n \left\{ \frac{e^{\beta_k' z_{ki}}}{\sum_{l \in R_{ki}^{PWP}(t_{ki})} e^{\beta_k' z_{kl}}} \right\}^{\Delta_{ki}}$$

- The risk set includes only those who had the $(k-1)^{th}$ event
- Take the first derivative of $\log L_k(\beta_k)$, we obtain MLEs $\hat{\beta}_k$
- Use robust sandwich variance estimator for inference

- Structure data set for K events
 - For K ordered strata
- If a subject has k events
 - The subject has k+1 observations if follow-up is beyond the last event
 - The first k observations are for events
 - The last observation is censored at the end of follow-up
 - The subject has k observations if follow-up is stopped at the last event
- All subjects should be in the first strata for the first event

lobs if no event

data Bladder2(drop=LastStatus);
retain LastStatus;
set Bladder;
by ID;
if first.id then LastStatus=1;
if (Status=0 and LastStatus=0)
 then delete;
LastStatus=Status;
Gaptime=Tstop-Tstart;
run;

- If a subject has k events
 - The subject has k + 1 observations if follow-up is beyond the last event
 - $\bullet \ \ \, \text{The first } k \text{ observations are for events} \\$
 - The last observation is censored
 - The subject has k observations if followup is stopped – all observations are for events see ID-12
- Survival time is in counting process style (start, stop)
 - Start
 - · The previous event time
 - The entry of study for the first event
 - Stop
 - The event time
 - · The censoring time if the last observation

Gaptime	Status	TStop	Visit	Size	Number	Trt	TStart	ID	Obs
(0	0	1	1	1	1	0	1	1
1	0	1	1	3	1	1	0	2	2
4	0	4	1	1	2	1	0	3	3
7	0	7	1	1	1	1	0	4	4
10	0	10	1	1	5	1	0	5	5
6	1	6	1	1	4	1	0	6	6
4	0	10	2	1	4	1	6	6	7
14	0	14	1	1	1	1	0	7	8
18	0	18	1	1	1	1	0	8	9
5	1	5	1	3	1	1	0	9	10
13	0	18	2	3	1	1	5	9	11
12	1	12	1	1	1	1	0	10	12
4	1	16	2	1	1	1	12	10	13
2	0	18	3	1	1	1	16	10	14
23	0	23	1	3	3	1	0	11	15
10	1	10	1	3	1	1	0	12	16
	1	15	2	3	1	1	10	12	17
8	0	23	3	3	1	1	15	12	18
3	1	3	1	1	1	1	0	13	19
13	1	16	2	1	1	1	3	13	20
7	1	23	3	1	1	1	16	13	21
۷	0	23	4	$\overline{}$	_ 1	1	23	13	22

```
title 'PWP Total Time Model with Noncommon Effects';
proc phreg data=Bladder2 covs(aggregate);
   model Tstop * Status(0) = Trt1-Trt4 Number1-Number4
                                       Size1-Size4;
   Trt1= Trt * (Visit=1);
   Trt2= Trt * (Visit=2);
   Trt3= Trt * (Visit=3);
   Trt4= Trt * (Visit=4);
   Number1= Number * (Visit=1);
   Number2= Number * (Visit=2);
   Number3= Number * (Visit=3);
   Number4= Number * (Visit=4);
   Size1= Size * (Visit=1);
   Size2= Size * (Visit=2);
   Size3= Size * (Visit=3);
   Size4= Size * (Visit=4);
   strata Visit;
run;
```

Testing Global Null Hypothesis: BETA=0						
Test	Chi-Square	DF	Pr > ChiSq			
Likelihood Ratio	17.4211	12	0.1344			
Score (Model-Based)	18.5546	12	0.0999			
Score (Sandwich)	20.2426	12	0.0626			
Wald (Model-Based)	17.7388	12	0.1239			
Wald (Sandwich)	20.8363	12	0.0528			

Analysis of Maximum Likelihood Estimates								
Parameter	DF	Parameter Estimate	Standard Error	StdErr Ratio	Chi-Square	Pr > ChiSq	Hazard Ratio	
Trt1	1	-0.51757	0.30750	0.974	2.8330	0.0923	0.596	
Trt2	1	-0.42584	0.37389	0.929	1.2972	0.2547	0.653	
Trt3	1	-0.89894	0.51378	0.952	3.0613	0.0802	0.407	
Trt4	1	-0.23739	0.52974	0.776	0.2008	0.6541	0.789	
Number1	1	0.23605	0.07208	0.948	10.7243	0.0011	1.266	
Number2	1	0.00117	0.08249	0.880	0.0002	0.9886	1.001	
Number3	1	0.01468	0.10423	0.786	0.0198	0.8880	1.015	
Number4	1	0.29306	0.16433	0.745	3.1805	0.0745	1.341	
Size1	1	0.06790	0.08529	0.842	0.6338	0.4260	1.070	
Size2	1	-0.12515	0.10367	0.885	1.4574	0.2273	0.882	
Size3	1	-0.21520	0.17895	1.005	1.4462	0.2291	0.806	
Size4	1	0.25135	0.33916	1.166	0.5492	0.4586	1.286	

```
title 'PWP Gap Time Model with Noncommon Effects';
proc phreg data=Bladder2 covs(aggregate);
   model gaptime * Status(0) = Trt1-Trt4 Number1-Number4
                                       Size1-Size4:
   Trt1= Trt * (Visit=1);
   Trt2= Trt * (Visit=2);
   Trt3= Trt * (Visit=3);
   Trt4= Trt * (Visit=4);
   Number1= Number * (Visit=1);
   Number2= Number * (Visit=2);
   Number3= Number * (Visit=3);
   Number4= Number * (Visit=4);
   Size1= Size * (Visit=1);
   Size2= Size * (Visit=2);
   Size3= Size * (Visit=3);
   Size4= Size * (Visit=4);
   strata Visit;
run;
```

Testing Global Null Hypothesis: BETA=0						
Test	Chi-Square	DF	Pr > ChiSq			
Likelihood Ratio	17.8089	12	0.1216			
Score (Model-Based)	19.6097	12	0.0748			
Score (Sandwich)	20.4570	12	0.0589			
Wald (Model-Based)	18.4759	12	0.1020			
Wald (Sandwich)	24.9959	12	0.0148			

Analysis of Maximum Likelihood Estimates								
Parameter	DF	Parameter Estimate	Standard Error	StdErr Ratio	Chi-Square	Pr > ChiSq	Hazard Ratio	
Trt1	1	-0.51757	0.30750	0.974	2.8330	0.0923	0.596	
Trt2	1	-0.25911	0.40206	0.992	0.4153	0.5193	0.772	
Trt3	1	0.22105	0.61953	1.128	0.1273	0.7212	1.247	
Trt4	1	-0.19498	0.62892	0.980	0.0961	0.7565	0.823	
Number1	1	0.23605	0.07208	0.948	10.7243	0.0011	1.266	
Number2	1	-0.00571	0.10040	1.039	0.0032	0.9547	0.994	
Number3	1	0.12935	0.16189	1.014	0.6384	0.4243	1.138	
Number4	1	0.42079	0.17125	0.864	6.0373	0.0140	1.523	
Size1	1	0.06790	0.08529	0.842	0.6338	0.4260	1.070	
Size2	1	-0.11636	0.11748	0.985	0.9810	0.3219	0.890	
Size3	1	0.24995	0.16876	0.730	2.1935	0.1386	1.284	
Size4	1	0.03557	0.28427	0.979	0.0157	0.9004	1.036	

```
title 'PWP Total Time Model with Common
Effects';

proc phreg data=Bladder2 covs(aggregate);
   model tstop * Status(0) = Trt Number Size;
strata Visit;
run;
```

Test	Chi-Square	DF	Pr > ChiSq
Likelihood Ratio	8.7512	3	0.0328
Score (Model-Based)	8.8795	3	0.0309
Score (Sandwich)	10.2693	3	0.0164
Wald (Model-Based)	8.7957	3	0.0321
Wald (Sandwich)	9.3663	3	0.0248

Analysis of Maximum Likelihood Estimates								
Parameter	DF	Parameter Estimate	Standard Error		Chi-Square	Pr > ChiSq	Hazard Ratio	
Trt	1	-0.48972	0.19738	0.943	6.1559	0.0131	0.613	
Number	1	0.11027	0.05000	0.979	4.8645	0.0274	1.117	
Size	1	-0.03773	0.06512	0.964	0.3357	0.5623	0.963	

```
title 'PWP Gap Time Model with Common
Effects';

proc phreg data=Bladder2 covs(aggregate);
    model gaptime * Status(0) = Trt Number
Size;
strata Visit;
run;
```

Testing Global Null Hypothesis: BETA=0							
Test	Chi-Square	DF	Pr > ChiSq				
Likelihood Ratio	8.7559	3	0.0327				
Score (Model-Based)	9.5977	3	0.0223				
Score (Sandwich)	9.4752	3	0.0236				
Wald (Model-Based)	9.4570	3	0.0238				
Wald (Sandwich)	8.2253	3	0.0416				

Parameter	DF	Parameter Estimate	Standard Error	StdErr Ratio	Chi-Square	Pr > ChiSa	Hazard Ratio
Trt	1	-0.26952	0.21023	1.012	1.6436	0.1998	0.764
Number	1	0.15353	0.05414	1.039	8.0414	0.0046	1.166
Size	1	0.00684	0.06708	0.958	0.0104	0.9188	1.007

Comparisons of the Three Models

• AG

- Make strongest assumptions
 - · Assuming constant intensity
 - Independency between events
- Interest in the overall effect on the intensity of all events
- Same as Poisson regression if no time-varying covariates

• PWP

- Risk sets for events other than the first no longer preserve the randomization principle
- Need extra care in interpretation

WLW

- Easy to interpret the results for different types of events
- Estimating marginal hazard ratios

Count Data

- Treating recurrent events as count data Y
 - Evaluate the rate of recurrent events λ , intensity
 - The counts over a follow-up period t
- Assume the count data follow
 - Poisson distribution
 - $Y \sim Poi(\mu)$
 - $E(Y) = \mu$ and $var(Y) = \mu$
 - Quasi-Poisson distribution
 - $Y \sim qPoi(\mu, \theta)$
 - $E(Y) = \mu$ and $var(Y) = \theta \mu$, $\theta > 1$
 - Negative binomial distribution
 - $Y \sim NB(\mu, \kappa)$
 - $E(Y) = \mu$ and $var(Y) = \mu + \kappa \mu^2$, $\kappa > 0$

Mean and Rate Functions of the Recurrent Events

- Using the counting process framework
- $E\{dN(t)\} = \lambda_0(t)dt$
- $E\{dN(t)|Z(s)\} = \exp(\beta'Z(s))\lambda_0(t)dt$
- Let $d\mu_Z(t)=E\{dN(t)|Z(s)\}$, and $\mu_Z(t)=E\{N(t)|Z(s)\}$ $d\mu_Z(t)=\exp\bigl(\beta'Z(s)\bigr)\,d\mu_0(t)$ $\mu_Z(t)=\exp\bigl(\beta'Z(s)\bigr)\,\mu_0(t)$
- Note, $\mu_{z}(t)$ and $\mu_{0}(t)$ pertain to the mean functions of the recurrent events,
- When AG model has no time-varying covariates, AG model is the same as the mean and rate model
- Reference
 - Lin DY, Wei LJ, Yang I, Ying Z. Semiparametric regression for the mean and rate functions of recurrent events. J R Stat Soc B 2000;62:711–30.

Count Data Regression Model

• Let λ be the intensity, the mean count is

$$E(Y|t) = \mu = \lambda t$$

$$\log\{E(Y_i|t_i)\} = \log t_i + \log \lambda$$

- Let Z be a covariate vector and $\lambda_i(Z_i) = \lambda_0 e^{\beta' Z_i} \log\{E(Y_i|Z_i)\} = \log t_i + \log \lambda_i(Z_i) = \log t_i + \beta' Z_i + \log \lambda_0$
- Log follow-up time $\log t_i$ as an offset for subject i
- For over-dispersed count data
 - E(Y) > var(Y)
 - Negative binomial distribution often used to account over-dispersion
 - A more flexible model than Poisson distribution

Count Data

```
proc genmod data = bladder_nb;
  class Trt;
  model count = Trt number size / dist = Poisson offset = ltime link=log;
  *estimate 'trt=1' Intercept 1 Trt 0 1 / exp;
  *estimate 'trt=2' Intercept 1 Trt 1 0 / exp;

run;

Algorithm converged.

Standard

Standard
```

	Analysis Of Maximum Likelihood Parameter Estimates												
Parameter		DF	Estimate	Standard Error	Wald 95% Con	fidence Limits	Wald Chi-Square	Pr > ChiSq					
Intercept		1	-3.7582	0.2708	-4.2890	-3.2274	192.58	<.0001					
Trt	1	1	0.4333	0.2001	0.0411	0.8255	4.69	0.0304					
Trt	2	0	0.0000	0.0000	0.0000	0.0000							
Number		1	0.1726	0.0490	0.0766	0.2685	12.42	0.0004					
Size		1	-0.0462	0.0705	-0.1844	0.0920	0.43	0.5120					
Scale		0	1.0000	0.0000	1.0000	1.0000							

Parameter

Intercept

Trt

Trt Number

Size

Scale

DF Estimate

-3.7582

0.4333

0.0000

0.1726

-0.0462

1.2991

0.3518

0.2600

0.0000

0.0636

0.0916

0.0000

-4.4478

-0.0763

0.0000

0.0479

-0.2258

1.2991

1

2 0

Error Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq

114.10

2.78

7.36

0.25

<.0001

0.0956

0.0067

0.6138

-3.0686

0.9429

0.0000

0.2972

0.1333

1.2991

Note: The scale parameter was estimated by the square root of DEVIANCE/DOF.

Count Data

```
proc genmod data = bladder_nb;
  class Trt;
  model count = Trt number size / dist = NB offset = ltime link=log;
  *estimate 'trt=1' Intercept 1 Trt 0 1 / exp;
  *estimate 'trt=2' Intercept 1 Trt 1 0 / exp;

run;
Algorithm converged.
```

			Analy	sis Of Maxi	mum Likelihood F	Parameter Es	timates	
Parameter		DF	Estimate	Standard Error	Wald 95% Confid	ence Limits	Wald Chi-Square	Pr > ChiSq
Intercept		1	-3.8047	0.3589	-4.5082	-3.1013	112.37	<.0001
Trt	1	1	0.4560	0.2719	-0.0769	0.9889	2.81	0.0935
Trt	2	0	0.0000	0.0000	0.0000	0.0000		
Number		1	0.1874	0.0738	0.0426	0.3321	6.44	0.0112
Size		1	-0.0324	0.0924	-0.2136	0.1488	0.12	0.7261
Dispersion		1	0.5085	0.2555	0.1899	1.3612		

Frailty Models

- Model random effect from
 - Clustered survival data
 - Patients are clustered by hospitals or villages
 - Patients may share similar effect if from the same hospital
 - Hospitals and villages can be modeled as random effect when the number of hospitals or villages is large
 - Recurrent events from the same subjects
 - Events from the same subjects may share similar risk
 - Subjects are considered as random effect
- Let R represent the random factor
 - *R contains levels*: $r_1, r_2, ..., r_n$ for *n* groups
 - n subjects, hospitals, ...
 - Values $r_1, r_2, ..., r_n$ represent the frailty of developing events
 - Incorporate the values in the PH models
 - Obtain the shared frailty model

Same duster, same frailty.

Frailty Models

- Let r_j represent the j^{th} level of frailty, j=1,2,...,n
- The shared frailty models for the i^{th} events in the j^{th} group

$$h_{ij}(t, Z_{ij}) = h_0(t)e^{\beta' Z_{ij} + r_j}$$

• Let $\xi_j = e^{r_j}$

$$h_{ij}(t, Z_{ij}) = \xi_j h_0(t) e^{\beta' Z_{ij}}$$

- The distribution of ξ_i can be
 - Lognormal
 - r_i is normally distributed with mean=0
 - Gamma distribution

Example – Bladder Data for Frailty Models

```
title 'Frailty Model for Common Effect';
proc phreg data=Bladder;
  class id;
  model TStop*Status(0)=Trt Number Size;
  random ID;
  hazardratio 'Frailty Model Analysis'
trt;
run;
*** WLW data set format
Default frailty lognormal distribution;
*** Fit total time;
```

					Ту	pe 3	Tests				
	Effect		Chi-	Wald Square	DF	Pr >	ChiSq	Adjust	ed DF	Adjuste Pr > Chis	
	Trt			3.4591	1		0.0629	0.37	77	0.01	73
	Numb	er		7.0505	1		0.0079	0.31	61	0.00	14
	Size			0.0423	1		0.8370	0.35	04	0.45	16
1	ID		1	33.7122				46.36	47	<.00	01
				ysis of N	T			od Esti	ma	tes	
Param	neter	DF		rameter stimate		ndar Erro	100000000000000000000000000000000000000	Square	Pı	> ChiSq	Hazard Ratio
rt		1	,	-0.70722	0.	3802	5	3.4591		0.0629	0.493
lumb	er	1		0.27083	0.	1020	0	7.0505		0.0079	1.311
Size		1		-0.02622	0.	1274	1	0.0423		0.8370	0.974
			Frai	ilty Mod	el An	alysi Tr		rd Ratio	s fo	or	
	Des	crip	tion	Point E	stima	ate 9	95% Wa	ld Conf	ide	nce Limits	5
	Trt Unit		=1		0.493			0.234		1.039)

Example – Bladder Data for Frailty Models

```
title 'Frailty Model for Common Effect';
proc phreg data=Bladder_ag;
  class id;
  model (Tstart, Tstop) *Status(0)=Trt
Number Size;
  random ID;
  hazardratio 'Frailty Model Analysis'
trt;
run;
*** AG data set format
Default frailty lognormal distribution;
```


Example – Bladder Data for Frailty Models

```
title 'Frailty Model for Common Effect';
proc phreg data=Bladder2;
  class id;
  model (Tstart, Tstop) *Status(0)=Trt
Number Size;
  random ID;
  hazardratio 'Frailty Model Analysis'
trt;
run;
*** PWP data set format,
Default frailty lognormal distribution;
```

				Ту	pe 3 Te	ests				
	Effect		Wald Chi-Square	DF	Pr > C	hiSq	Adjust		Adjusto Pr > Chi	
	Trt		3.2594	1	0.	0710	0.51	67	0.02	93
	Numb	er	7.2978	1	0.	0069	0.4530		0.00	20
	Size		0.0454	1	0.	8313	0.50	07	0.57	43
	ID		72.6970				35.31	80	0.00	02
Parameter		DF	Parameter Estimate	Sta	ndard Error	Chi-	Square	Pr	> ChiSq	Hazard Ratio
Trt			-0.54591	0	30238	Cili	3.2594	•	0.0710	0.579
Numl	ber	1	0.21574		07986		7.2978		0.0069	1.241
Size			-0.02164	0.	10157		0.0454		0.8313	0.979
			Frailty Mod	el An	alysis: Trt	Haza	rd Ratio	s fo	r	
	Des	cript	ion Point E	stima	ate 95	95% Wald Confidence Limits				
		Jnit=		0.579			0.320		1.048	

Recurrent Events with a Terminating Event

- Death may not have the same weight as the recurrent events
- Death may informatively censor the recurrent events
- Analyzing the observed events only may bias the interpretation of treatment effect
- Methods
 - Re-configure the events use WLW methods
 - Joint modeling recurrent and terminating events

Re-configure the Events

															1	& from
Observations	<i>l</i> . 1	Scen $k = 2$	ario I	1. 4	<i>l.</i> 1		ario II	1. 4	<i>l.</i> 1		rio III $k = 3$	1. 4	<i>l</i> - 1	Scena $k = 2$	rio IV	$k = 4 $ $\frac{1}{2}$
	$\kappa = 1$	$\kappa = 2$	$\kappa = 3$	$\kappa = 4$	$\kappa = 1$	$\kappa = 2$	$\kappa = 3$	k = 4	$\kappa = 1$	$\kappa = 2$	$\kappa = 3$	$\kappa = 4$	$\kappa = 1$	$\kappa = 2$	$\kappa = 3$	r = 4 1 6
$P_1P_2P_3D$	P_{1}	P_2	P_3	D	P_{1}	P_2	P_3	D	P_{1}	P_2	P_3	D	P_{1}	P_2	P_3	D
P_1P_2D	P_{1}	P_2	D^+	D	P_{1}	P_2	D	D	P_1	P_2	D	D^+	P_{1}	P_2	0+	D
P_1D	P_1	D^+	D^+	D	P_{1}	D	D	D	P_{1}	D_{\parallel}	D^+	D^+	P_{1}	0+	0+	D
D	D^+	D^+	D^+	D	D	D	D	D_{\perp}	D	D^+	D^+	D^+	0+	0+	0+	$D_{\pi^{\pm}}$
$P_1P_2P_3C$	P_1	P_2	P_3	C^+	P_1	P_2	P_3	C^+	P_1	P_2	P_3	C^+	P_1	P_2	P_3	C^+
P_1P_2C	P_1	P_2	C^+	C^+	P_1	P_2	C^+	C^+	P_1	P_2	C^+	C^+	P_1	P_2	C^+	C^+
P_1C	P_1	C^+	C^+	C^+	P_1	C	C^+	C^+	P_1	C^+	C^+	C^+	P_1	C^+	C^+	C^+
C	C^{+}	$C^{\scriptscriptstyle op}$	C^+	C^+	C^{+}	C^+	C^+	C^+	$C^{\scriptscriptstyle op}$	C^+	C^{+}	C^+	C^+	C^+	C^+	C^+

removed

Joint Modeling

Model recurrent events

$$h_{ik}^{R}(t|Z_{ik},\mu_{i},\omega_{ik}) = h_{0ik}^{R}(t) \exp(\beta'_{R}Z_{ik} + \mu_{i} + \omega_{ik})$$

 ω_{ik} - frailty for the recurrent events

 μ_i - frailty for between events correlation, recurrent events vs. terminating events

Model terminating events

$$h_i^D(t|Z_i,\mu_i) = h_0^D(t) \exp(\beta'_i Z_{ik} + \phi \mu_i)$$

Homework 11

- 1. Use the Diabetic dataset from R survival package to perform analyses
 - Identify two methods for multi-variate survival analyses and lay out the rationale
 - Perform the analyses and interpreting the results