Introduction to graphs

Graph terminology

Node 5 is a **neighbor** or a **child** of node 2 because there's an edge from 2 to 5.

Order of Computation?

	Α	В	С
1	10	20	= A1+B1
2	50	30	= A2+B2
3	= (A1+A2)/C3	= (B1+B2)/C3	= C1+C2

- a) C1 C2 A3 B3 C3
- b) A3 B3 C2 C1 C3
- c) C2 C1 C3 B3 A3
- d) Don't know

Graphs

Undirected graphs

Directed graphs

G = (V, E) graph with vertices V og edges E

E: {u, v} edge between u and v in a undirected graph and(u, v) directed edge from u to v.

n = |V| =number of vertices

m = |E| = number of edges (connections between vertices)

Weighted graphs

In some contexts we may want to assign a weight to the edges of a graph

The adjacency matrix

There is a connection from node 2 to node 5

There is no connection from node 5 to node 3

Adjacency matrix for directed graph

How do you think the adjacency matrix for this graph would look?

Adjacency list

An array of linked lists. Each list contains all the neighbors of a vertex.

This shows that 0 is connected to 1 and 2

Representing Graphs

Efficiency of adjacency matrix vs adjacency list

Consider the directed graph representing who-follows-who on twitter.

For each of the tasks below, do you think the matrix or list representation is best?

- 1) How many followers does Ann have?
- 2) Does Sponge Bob follow Beth?

Example 1

How many vertices/nodes do you need to properly represent a four-way intersection?

- a) 1
- b) 2
- c) 4
- d) 5
- e) 8
- f) 9
- g) 12
- h) Don't know

Example 2: Itenary (Horsens to Ry)

Algorithm
Find earliest vertex for Ry that can be reached from a start vertex in Horsens

Train	Arr	Dep	Station
		10:43	Horsens
IC125	10:57	10:58	Skanderborg St
	11:12		Aarhus H
Re3329		11:00	Horsens
	11:31		Aarhus H
ICL27		11:11	Horsens
	11:25	11:26	Skanderborg St
	11:40		Aarhus H
		10:49	Aarhus H
RX5335	11:08	11:09	Skanderborg St
	11:18		Ry St

Travel schedule

Example 3: Neural Networks

Searching a graph Breadth First vs. Depth First

BFS: 1, 2, 3, 5, 6, 7

Like level-order

DFS: 1, 2, 4, 5, 3, 6, 7

Like pre-order

"Depth First" vs "Breadth First" in binary search trees

Breadth First

D G Н

Depth First

Depth first search: Is there a path from A to G?

Recursive:

A asks each of its neighbors whether they have a path to G. Each of these asks each of their own neighbors, and so on.

It could for example go like this:

hasPath(A, G)? Yes!

hasPath(D, G)? Yes!

hasPath(E,G)? Yes!

hasPath(G,G)? Yes!

Breadth first search: Is there a path from A to G?

A asks each of its neighbors whether they are directly connected to G. Each return an answer to A imediately. If no path was found, A ask all of its neighbors neighbors whether they are directly connected to G, and so on.

It could for example go like this:

Level 0:

hasPath(A, G)? No!

Level 1:

hasPath(D, G)? No!

hasPath(C, G)? Yes!

Depth first search animation

Please subscribe @youtube.com/gjenkinslbcc or with icon in lower right >>>

Breadth first search animation

Implementation of Breadth First Seach (BFS)

BFS (Breadth first search) algorithm

```
Mark all vertices white, except the start node s, which is grey.
Add s to an empty queue Q.
while Q is nonempty:
   node = Dequeue(Q)
   for each neighbor in Adj[node]:
        if neighbor.color is white:
            neighbor.color = gray
            Enqueue(Q, neighbor)
   node.color = black
```

```
BFS(G,s)
                                       Breadth-First Search from CLRS
    for each vertex u \in G.V - \{s\}
         u.color = WHITE
                                        Color all nodes except s white ( = "unexplored") and set
        u.d = \infty
                                        all node's parents to NIL and set the distance to s to \infty
        u.\pi = NIL
                                Color s gray ("discovered"), set the distance
    s.color = GRAY
                                from s to s to 0, and set s's parents to NIL.
    s.d = 0
    s.\pi = NIL
                                    Create an empty queue and add s to the queue.
                                        Visit the front node (u) in the queue
    ENQUEUE(Q, s)
    while Q \neq \emptyset
10
                                                  Visit all unexplored child-nodes of u
        u = \text{DEQUEUE}(Q)
11
        for each v \in G.Adj[u]
12
13
             if v.color == WHITE
                                             Color each of the child-nodes grey, record their
14
                 v.color = GRAY
                                              distance to s and list u as their parent
15
                 v.d = u.d + 1
16
                 \nu.\pi = u
                                               Add all of the child-nodes to the queue
17
                 ENQUEUE(Q, \nu)
18
         u.color = BLACK
                                        Color u black ( = "done")
```

BFSexample

This means that node v is found at a distance of 2 edges from s.

v are 2 edges from s, u is 3 edges from s.

BFS search tree

The "Breadth First Search" from the previous slide can be represented in a tree-structure:

The search can be described by noting in which order the edges are passed (note not literal order in below list). A legal BFS could be

BFS

Q ______

Result:

Implementation of Depth First Seach (DFS)

Keeping track...

We need to keep track of which nodes are *unexplored*, which nodes are *discovered* (but haven't returned an answer yet) and which nodes are *done*.

A is discovered hasPath(A, G)?

D is discovered hasPath(D, G)?

E is discovered hasPath(E,G)?

G is discovered hasPath(G,G)?

Keeping track...

We need to keep track of which nodes are *unexplored*, which nodes are *discovered* (but haven't returned an answer yet) and which nodes are *done*.

A is discovered hasPath(A, G)? Yes!

D is discontented hasPath(D, G)? Yes!

E is discovered hasPath(E,G)? Yes!

G is disixodened hasPath(G,G)? Yes!

Depth-first search from CLRS

```
DFS(G)
                                                   Color all nodes white ( = "unexplored") and
   for each vertex u \in G.V
       u.color = WHITE
                                                   set all nodes' parents to NIL
       u.\pi = NIL
                                  Keep track of time for each path (assume each visit takes
   time = 0
                                  1 time unit)
   for each vertex u \in G.V
       if u.color == WHITE
                                                   Visit all unexplored nodes
           DFS-VISIT(G, u)
DFS-VISIT(G, u)
                                           Visiting node u \rightarrow increment time and save start-time
   time = time + 1
                                                                color node grey ( = "discovered")
   u.d = time
    u.color = GRAY
                                                   Visit all unexplored child-nodes of u, and
    for each v \in G.Adj[u]
                                                   set their parent to be u.
        if v.color == WHITE
6
            \nu.\pi = u
            DFS-VISIT(G, v)
                                                 For each child, recursively visit all their children
    u.color = BLACK
    time = time + 1
                                        Color u black ( = "done") and record finish-time
    u.f = time
```

DFSexample

u v w x y z (a)

This means that node x was discovered in step 4 and "done" in step 5

B: Back edge

F: Forward edge

C: Cross edge

Grey: Tree edge

Ordering in directed graphs

Ordering in directed graphs

The arrows in a directed graph represent an *ordering* of the nodes. This can for example be used to keep track of

- course dependencies
- program dependencies
- task dependencies

Topological Sort

- Directed graph G.
- Rule: if there is an edge u
 v, then u must come before v.

Sorting a directed graph

From the graph below, it is not immediately clear what should be done first. We need a sorting algorithm for graphs!

Not all graphs can be topologically sorted

If the graph has a cycle, it is impossible to do a topological sorting.

But all other directed graphs can be topologically sorted!

A directed graph with no cycles is called a "Directed Acyclic Graph" (DAG)

In how many ways can you topologically sort the graph?

- a) 1
- b) 2
- c) 3
- d) 4
- e) 5
- f) 6
- g) 7
- h) 8
- i) 9
- j) Don't know

Topological Sort NOT based in DFS

 Delete a Vertex with in degree 0 and add to the end of topological order

Topological Sort based in DFS

TOPOLOGICAL-SORT (G)

- 1 call DFS (G) to compute finishing times v.f for each vertex v
- 2 as each vertex is finished, insert it onto the front of a linked list
- 3 return the linked list of vertices

