Reaction Simulator: A BIOEN 437 project

By: Matthew Van Ginneken & Olivia Walsh

Background

- Create a web based app to visualize reaction kinetics
 - Easy to use for beginners
 - Accessible
 - Simple
- Similar Packages
 - COPASI
 - JigCell

Figure 1: A clip of COPASI graph creator

Use Cases

- The user can iteratively submit reactions and constants and then view the steady state graph
- 2) The user can submit an antimony txt file and then view the steady state graph and steady state values
- 3) The user can submit an SBML file and then view the steady state graph and steady state values

Demo

Welcome to the Tellurium Model Builder. Here you can input reactions one at a time in order to build a Computational Biology Mass Action Model.

Add a reaction to your model

If none of the Reactant or Produ			
Starting Concentrations should			
		_	ction is reversible in which case
enter the reaction constants as 2			or 0.23,0.12
If your reaction is reversible ch	eck the Reve	rsible box	
Reactant Names:			
Starting Reactant Concentration	ns:		
Fixed Reactant Names:			
Product Names:			
Starting Product Concentration	s:		
Fixed Product Names:			
Reaction Constant:			
Reversible			
D	1 6 1	1: .: 1. 6.	
Press "Add Reaction" when you	u have finishe	ed inputing your data for t	ne reaction
Add Reaction			
Press "Run Simulation" when y	ou have adde	ed all your reactions to the	model
Run Simulation			NT 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
If you need to reset the model p	ress "Reset M	Model" which will delete a	all reactions currently stored in the model
Reset Model			
Upload an Antimony Text File	Choose File	Bars.txt	Finish Model Upload This field is required.
SBML File Link		Submit SBML File	

Reactant and Product names should be entered as a comma separated list of strings. i.e : A,B,C

Design - Running the Simulations Through Python

Design - Python Functions

- Save2dict
- Antimony Builder
 - 2 separate functions, iteratively add to two separate txt files

```
2 $A+B+C->E; k0*A*B*C
3 E->$A+B+C; k1*E
```

- runSim
 - JPG file of the graph

```
2 A=10;B=0;C=0
3 E=3
4 k0=10;k1=2
```

Project Structure

AMCowmvg.egg-info	Working Pip Installable Version
AMCowmvg	Working Pip Installable Version
pycache	Testing2
dist	Working Pip Installable Version
docs	Final Final Version
examples	Working Pip Installable Version
LICENSE	Testing2
MANIFEST.in	Working Pip Installable Version
☐ README.md	Final Final Version
pyproject.toml	Working Pip Installable Version
setup.cfg	Working Pip Installable Version
test_unit.py	Testing2

```
LICENSE
   MANIFEST.in
   pyproject.toml
   README.md
   setup.cfg
   test_unit.py
+---AMCowmvg
       antimonyTools.py
       forms.py
       routes.py
       testing.py
       __init__.py
   +---static
           antimony1.txt
           antimony2.txt
           output.jpg
           test.txt
   +---templates
           buildSystem.html
           home.html
           results.html
           testing.html
+---docs
       Component Specifications.pdf
       Final Presentation.pdf
       Functional Specs_updated.pdf
+---examples
       Antimony Text Upload.mp4
       Base_Case.mp4
       reset.mp4
       SBML_Upload.mp4
```

Lessons Learned

- Working on different parts of the code then combining
- Creating tests using Python's unittest
- Documentation and process of creating working code and submitting as a python package

Future Directions

- Adding in other functions from tellurium
 - Showing different features of the simulation such as steady state values and system fluxes
- User can export their antimony txt file and then resume working with it on our webpage
- Being able to remove a reaction after it has been submitted

Future Directions

Listing the reactions that are submitted

- Help the user with organization
- User can check if the reaction was inputted correctly

Add Reaction

Current Reactions:

Current Initial Conditions:

Run Simulation

Future Directions

Allowing the user to simulate more than one type of reaction kinetics

Implemented with options given in a home page

