Project Justification

- If cash flows are uniform, can use simple formulas; otherwise, need to use spreadsheet to discount each period's cash flows
- In practice, the payback period is used to evaluate most small projects:

where

 $IV_0 = IV_{\text{new}} - SV_{\text{current}}$, net intital investment expenditure at time 0 for project

 IV_{new} = initial investment cost at time 0 for (new) project

 SV_{current} = salvage value of current project (if any) at time 0

$$OP = \begin{cases} OR - OC, & \text{uniform operating profit per period from project} \\ OC_{\text{current}} - OC_{\text{new}}, & \text{net uniform operating cost } savings \text{ per period} \end{cases}$$

OR = uniform operating revenue per period from project

OC = uniform operating cost per period of project

Discounting

- NPV and NAV equivalent methods for evaluating projects
- Project accepted if NPV ≥ 0 or NAV ≥ 0

Weighted Average Cost of Capital:
$$i = (\% \text{ debt}) i_{\text{debt}} + (\% \text{ equity}) i_{\text{equity}}$$

= $(0.5) 0.06 + (0.5) 0.30 = 0.18$

$$NPV = PV \text{ of } OP - IV^{\text{eff}}$$

$$Net \ Present \ Value:$$

$$= OP \left[\frac{1 - \left(1 + i\right)^{-N}}{i} \right] - IV^{\text{eff}}, \quad i \neq 0$$

 $Net\ Annual\ (Periodic)\ Value:\ NAV = OP - K$

Project with Uniform Cash Flows

Cost Reduction Example

Common				
Cost of Capital	(<i>i</i>)	8%	8%	
Economic Life	(N, yr)	15	15	
Annual Demand	(<i>q</i> /yr)	500,000	500,000	
Sale Price	(\$/q)			
Project		Current	New	Net
Investment Cost	(/V, \$)	2,000,000	5,000,000	3,000,000
Salvage Percentage		25%	25%	
Salvage Value	(SV, \$)	500,000	1,250,000	750,000
Eff. Investment Cost	(IV ^{eff} , \$)	1,842,379	4,605,948	2,763,569
Cost Cap Recovery	(K, \$/yr)	215,244	538,111	322,866
Oper Cost per Unit	(\$/q)	1.25	0.50	(0.75)
Operating Cost	(OC, \$/yr)	625,000	250,000	(375,000)
Operating Revenue	(<i>OR</i> , \$/yr)	0	0	0
Operating Profit (OR - OC)	(<i>OP</i> , \$/yr)	(625,000)	(250,000)	375,000
Analysis				
Payback Period (<i>IV/OP</i>)	(yr)			8.00
PV of OP	(\$)	(5,349,674)	(2,139,870)	3,209,805
NPV (PV of OP - IV ^{eff})	(\$)	(7,192,053)	(6,745,818)	446,236
NAV (OP - K)	(\$/yr)	(840,244)	(788,111)	52,134
Average Cost $((K + OC)/q)$	(\$/q)	1.68	1.58	

(Linear) Break-Even and Cost Indifference Pts.

Break-Even Point:
$$q_B = \frac{F}{P - V}$$

Cost Indifference Point:
$$q_{I1\&2} = \frac{F_1 - F_2}{V_2 - V_1}$$

If output q is in units produced, then F = K and $V = \frac{OC}{q}$.