Machine Learning

Introducción a la Inteligencia Artificial - LCC - 2024

Jupyter

Jupyter Lab + Jupyter Notebooks

jupyter.org/

- Gratuito y Open Standard
- Desarrollo y Visualización Web

- Data Science
- Scientific Computing
- Computational Journalism
- Machine Learning

Instalación

Jupyter Labs

pip3 install jupyterlab &&\
jupyter lab

Jupyter Notebook

pip3 install notebook &&\
jupyter notebook

jupyterlab.readthedocs.io

jupyter-notebook.readthedocs.io

Google Colab

colab.google/notebooks/

Fashion-MNIST - Training Time (seconds) Comparison

Sum of Seconds for each Machine.

Python3 + Librerías

Necesitamos...

mismos

1. trabajar con números, vectores y matrices en formas complejas y prácticas

2. crear y manipular conjuntos de datos de forma intuitiva, y poder operar con los

3. utilizar elementos básicos y avanzados de machine learning de forma de evitarnos programar tanto

4. graficar elementos, imágenes o métricas

numpy.org

pandas.pydata.org

scikit-learn.org

matplotlib.org

Generando Datos:

queremos generar datos, o puntos en un espacio n-dimensional, con distribuciones específicas que nos permitan testear nuestros métodos de Machine Learning.

Diagonales

Programe una función que genere **n** puntos de **d** inputs (es decir D-dimensionales) de valores **reales**, cuyo output sea un valor **binario** que corresponde a la clase a la que pertenece el elemento.

Se pide que la **Clase 1** sean puntos generados al azar con distribución normal¹, centrada en (1,1,...,1) y matriz de covarianza diagonal, con desviación estándar C * sqrt(d) (donde **C** está dado por el usuario). La **Clase 0** debe ser igual pero centrada en (-1, -1, ..., -1).

Ambas clases deben contener n/2 elementos.

Paralelos

Programe una función que genere **n** puntos de **d** inputs (es decir D-dimensionales) de valores **reales**, cuyo output sea un valor **binario** que corresponde a la clase a la que pertenece el elemento.

Se pide que la **Clase 1** sean puntos generados al azar con distribución normal¹, centrada en (1,0,...,0) y matriz de covarianza diagonal, con desviación estándar C (donde **C** está dado por el usuario). La **Clase 0** debe ser igual pero centrada en (-1,0,...,0).

Ambas clases deben contener n/2 elementos.

Espirales Anidadas

Programe una función que genere **n** puntos de **2** inputs (valores *x* e *y*) de valores **reales**, cuyo output sea un valor **binario** que corresponde a la clase a la que pertenece el elemento.

Se pide que sean puntos generados al azar con distribución uniforme (en el sistema de referencia x/y) dentro de un círculo de radio 1.

La Clase 0 son aquellos puntos que se encuentran entre las curvas:

$$\rho = \theta / (4*\pi)$$
 y $\rho = (\theta + \pi) / (4*\pi)$ (en coord. polares)

La Clase 1 son los puntos restantes.

Ambas clases deben contener n/2 elementos.

Probemos y Grafiquemos

Para verificar la generación de "Diagonales" y "Paralelas" genere y grafique conjuntos con:

- d=2, n=200 y C=0.75
- d=4, n=5000 y C=2.00

y verifique en el código que las medias y desviaciones estándar sean correctas.

Para verificar la generación de "Espirales" genere y grafique un conjunto con

n=2000

compárelo con el que se muestra a continuación.

