Structural Wing Model Reduction in Fluid-Structure Interactions

[Amsallem, International Journal for Numerical Methods in Engineering, 2014]

STUDENT:

Oriol CHANDRE VILA

TUTORS:

Joseph MORLIER and Sylvain DUBREUIL (ONERA)

Project of Innovation and Research (PIR)
Spring 2018

Table of Contents

- 1. Introduction
- 2. Aim and Objectives
- 3. State of the Art: ROM
- 4. Results
- 5. Integration of ROM to Aeroelasticity
- 6. Future work

Introduction

Aeroelasticity

Coupling between aerodynamic forces, inertial forces and elastic forces.

Current issues due to models dimension. Why the ROM?

The calculations have a high cost in time and computational power.

Aim & Objectives

Aim

To study the use of Reduced Order Models (hereafter ROM) in order to lighten the computational requirement in fluid-structure problems simulations

Objectives

- To study different ROM methodologies.
- To apply ROM techniques to a simple problem.
- To define a strategy for fluid-structure interactions problems.

Principal Component Analysis (PCA) [Kutz, Chpt 15, Oxford University Press, 2013]

Possible correlated variables (Observations)

Orthogonal Transformation

Values of linearly uncorrelated variables (Principal Components)

- Widely used in the actuality.
- Limitations:
 - The results depend on the scaling variables.
 - The applicability is limited by certain assumptions.
 - No differentiation between classes.
- Used in different disciplines:
 - SVD in Algebra
 - POD in Mechanical Engineering.

SVD approach: $A \approx U\Sigma V^*$

[U,S,V] = svd(A)[Ar] = U(:,1:k)*S(1:k,1:k)*V(:,1:k)*

Dynamic Mode Decomposition (DMD)

[Kutz, SIAM, 2016] [Kutz, Chpt 20, Oxford University Press, 2013]

AIM:

To take advantage of the low dimensionality in the experimental data.

WHAT DOES DMD PROVIDE?

A decomposition of experimental data into a set of dynamic modes.

HOW DOES IT WORK?

DMD computes the eigenvalues and eigenvectors of the linear model.

ADVANTAGES:

- No equations are needed.
- The future state is known for all time.

WHEN DOES IT FAIL?

- Data matrix is full rank
- No suitable low dimensional structure.

DMD is not a ROM itself, it is more a strategy. However, it uses ROM (usually SVD) to perform a low-rank truncation of the data.

Proper Generalized Decomposition (PGD) [Chinesta et al., Springer, 2014]

Its **biggest advantage** is the ability to work in a **Parameterized** approach.

PGD is a numerical method for solving **boundary value** problems.

The vectors R(x), S(y), T(z),..., Z(n) are robustly computed **offline**.

Fast ONLINE solution of a recurring problem.

PGD is not a ROM itself, it is more a strategy. However, it can use ROM to economize the vectors solutions **R**, **S**, **T**,···, **Z**.

Analysis of Performance of ROM

- Galerkin Reduced Basis (G-RB) + POD or Greedy Algorithm.
- The parametric dependence of the PDE solution is exploited.
- > **PROBLEM**: Steady heat conduction-convection problem.

Error bounds:

- 1) To compute the norm: $||u_h(\mu) u_N(\mu)||_V$
- 2) To compute the stability factor (β_h) with Interpolatory Radial Basis function.
 - 3) To compute the error estimator:

$$\Delta_N = \frac{\|u_h(\mu) - u_N(\mu)\|_V}{\beta_h}$$

[Quarteroni et al., Springer, 2016]

Table 2. Computational details for HF and RB models. [Quarteroni et al., Chpt 3, Springer, 2016]

High-fidelity model		Reduced-Order model	
# FE dofs (N_h)	44171	# RB dofs	29
Affine operator components (Q_a)	2	Dofs reduction	1520:1
Affine RHs components (Q_f)	6	Offline CPU time	≈ 5 min
FE solution time	≈ 3,5 s	Online CPU time	1 ms

Figure 1. Comparison of the average error and bound error estimator computed on a set of 350 random values. [Quarteroni et al., Chpt 3, Springer, 2016]

POD approach using:

- \square Error estimator $\Delta_N(\mu)$
- Latin Hypercube Sampling (LHS)

Greedy algorithm critical aspects:

- \Box Use of $||u_h(\mu) u_N(\mu)||_V$
- It is not necessarily faster than POD

Greedy algorithm + POD:

- \square Error estimator $\Delta_N(\mu)$
- Latin Hypercube Sampling (LHS)
 - Potentially faster

Figure 2. First 55 singular values of the correlation matrix obtained by LHS. [Quarteroni et al., Chpt 6, Springer, 2016]

Figure 3. Convergence history of the greedy algorithm. [Quarteroni et al., Chpt 7, Springer, 2016]

Results

Advection-Diffusion problem definition

[Amsallem, International Journal for Numerical Methods in Engineering, 2014]

Results

Advection-Diffusion problem: POD

Algorithm *Greedy* POD

[Amsallem, International Journal for Numerical Methods in Engineering, 2014]

- 1. Select randomly a first sample: $\mu^{(1)}$
- 2. Solve the HDM: $f(\mathbf{w}(\boldsymbol{\mu}^{(1)}; \boldsymbol{\mu}^{(1)}) = 0$
- 3. Build a corresponding ROB: V
- 4. For $i = 2, \dots, s$
 - a) Solve:

$$\mu^{(1)} = argmax_{\boldsymbol{\mu} \in \{\mu_1, \cdots, \mu_c\}} \| \boldsymbol{r}(\boldsymbol{\mu}) \|$$

- b) Solve the HDM: $f(\mathbf{w}(\boldsymbol{\mu}^{(i)}; \boldsymbol{\mu}^{(i)}) = 0$
- c) Build a ROB V based on the samples $\{w(\mu^{(1)}), \dots, w(\mu^{(i)})\}$

V size:

3487 x 10 = 34870 terms

$$u_1 = 0.11 \frac{m}{s}$$

 $u_2 = 0 \frac{m}{s}$
 $\kappa = 0.025 \frac{m^2}{s}$

Time computing **performance**: -85%

Solution accuracy:

$$E_{max} = 7\%$$

$$E_{avg} = 1\%$$

Results

Advection-Diffusion problem: PGD

5 coordinates: x, y, u_1 , u_2 , κ

$$\int_{\Omega} \mathcal{T}^{*}(u \nabla \mathcal{T} - \kappa \Delta \mathcal{T}) dx dy du_{1} du_{2} d\kappa = 0$$

$$\mathcal{T}^{n}(x, y, u_{1}, u_{2}, \kappa)$$

$$= \sum_{i=1}^{n-1} X_{i}(x)Y_{i}(y)U_{i}(u_{1})V_{i}(u_{2})K_{i}(\kappa)$$

$$+ R(x)S(y)T(u_{1})W(u_{2})Z(\kappa)$$

- The search of a less intrusive method
- 2. A non-symmetry induced by the convection terms.

Residual Minimization Technique for PGD $\min ||A \cdot X - F||^2$

[Chinesta et al., Springer, 2014]

OFFLINE

Results

Advection-Diffusion problem: PGD

Loop	Stopping Criterion	Tolerance
Fixed point	$\frac{\ FF_n - FF_{n-1}\ }{\ FF_{n-1}\ }$	10 ⁻⁸
PGD enrichment	$\frac{\ FF_n\ }{\ FF_1\ }$	10^{-6}

Computing time: 43min 25s

FF size: 292500 terms

```
alph = ones(size(FF{1},2),1);
alpha = FF{3}(5,:) .* FF{4}(1,:) .* FF{5}(15,:)
.* alph';
T = FF{2} * diag(alpha) * FF{1}';
Computing time:
0,1 - 0,5 s
```


Conclusions

□ PGD → a **lot of cases** of the same (normally expensive) problem are expected.

□ DMD → simulations in **time domain**. We need a film of snapshots to create the reduced model.

<u>PGD</u>

- ☐ The most interesting PGD's approach is the Parametric PGD.
- □ PGD allows to introduce **Boundary Conditions** as extra-coordinates of the problem.
- ☐ The **Stopping Criterion** and **Tolerance** effectiveness should be evaluated for each problem.

Future work

Modification of the Stopping Criterion.

SUMMER INTERSHIP IN ONERA

Application of the strategy into *OpenAeroStruct*.

SUMMER INTERSHIP IN ONERA

Link to the GitHub Project

References

- [1] Kutz, J.N., Brunton, S.L., Brunton, B.W. and Proctor, J.L., "Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems", 1st ed., SIAM, Philadelphia, 2016.
- [2] Kutz, J. N., "Data-Driven Modeling & Scientific Computation: Methods for Complex Systems & Big Data", 1st ed., Oxford University Press, Oxford, 2013.
- [3] Chinesta, F., Keunings, R. and Leygue, A., "The Proper Generalized Decomposition for Advanced Numerical Simulations: A primer", 1st ed., Springer, 2014.
- [4] Quarteroni, A., Manzoni, A. and Negri, F., "Reduced Basis Methods for Partial Differential Equations. An Introduction", Unitext, vol. 92. Springer, 2016.
- [5] Amsallem, D., "An Adaptive and Efficient Greedy Procedure for the Optimal Training of Parametric Reduced-Order Models", International Journal for Numerical Methods in Engineering, 2014.
- [6] http://www.dlr.de/ae/en/desktopdefault.aspx/tabid-1596/