Perceptons

Yingming Li yingming@zju.edu.cn

Data Science & Engineering Research Center, ZJU

16th April 2018

Adapted from slides provided by Prof. Michael Mandel.

Outline

Definition

Decision boundary Linear separability

Learning rule

Convergence theorem

Perceptrons

- Architecture: one-layer feedforward net
 - Without loss of generality, consider a single-neuron perceptron

Definition

$$y=arphi(
u)$$

$$u=\sum_{i=1}^m w_i x_i + b$$

$$\varphi(
u)=\left\{ egin{array}{ll} 1 & ext{if }
u\geq 0 \\ -1 & ext{otherwise} \end{array}
ight.$$

Hence a McCulloch-Pitts neuron, but with real-valued inputs

Pattern recognition

- With a bipolar output, the perceptron performs a 2-class classification problem, *i.e.*, apples vs. oranges.
- How do we learn to perform classification?
- The perceptron is given pairs of input x_p and desired output d_p
- How can we find $y_p = \varphi(x_p^T w) = d_p, \forall p$

But first: decision boundary

- Can we visualize the decision the perceptron would make in classifying every potential point?
- Yes, it is called the discriminant function

$$g(x) = x^T w = \sum_{i=0}^m w_i x_i$$

- What is the boundary between the two classes like?
- This is a linear function of x

Decision boundary example

Decision boundary

- For an m-dimensional input space, the decision boundary is an (m-1)-dimensional hyperplane perpendicular to w. The hyperplane separate the input space into two halves, with one half having y=1, and the other half having y=-1
 - When b=0, the hyperplane goes through the origin.

Linear separability

- For a set of input patterns x_p , if there exists at least one w that separates d=1 patterns from d=-1 patterns, then the classification problem is linearly separable.
 - In other words, there exists a linear discriminant function that produces no classification error.
 - Examples: AND, OR, XOR

Linear separability

Figure: illustration: left: Linear separable, right: Not linear separable

Outline

Definition

Decision boundary Linear separability

Learning rule

Convergence theorem

Perceptron definition (recap.)

$$y = \varphi(\nu)$$

$$\nu = \sum_{i=1}^m w_i x_i + b$$

$$\varphi(\nu) = \left\{ \begin{array}{ll} 1 & \text{if } \nu \geq 0 \\ -1 & \text{otherwise} \end{array} \right.$$

Hence a McCulloch-Pitts neuron, but with real-valued inputs

Perceptron learning rule

- Learn parameters w from examples (x_p, d_p)
- In an online fashion, i.e., one point at a time
- Adjust weights as necessary, i.e., when incorrect
- Adjust weights to be more like d=1 points and more like negative d=-1 points.

Biological analogy

- Strengthen an active synapse if the postsynaptic neuron fails to fire when it should have fired
- Weaken an active synapse if the neuron fires when it should not have fired
- Formulated by Rosenblatt based on biological intuition

Quantitatively

$$w(n+1) = w(n) + \Delta w(n) = w(n) + \eta [d(n) - y(n)] x(n)$$
(1)

- n: iteration number, iterating over points in turn
- η : step size or learning rate
- Only updates w when y(n) is incorrect

- Each weight update moves w closer to d=1 patterns, or away from d=-1 patterns.
- Final weight vector in example solves the classification problem
- Is that true in all cases?

Summary of perceptron learning algorithm

- Definition:
 - w(n): (m+1)-by-1 weight vector (including bias) at step n
- Inputs:
 - x(n): n^{th} (m+1)-by-1 input vector with first element = 1
 - d(n): n^{th} desired response
- Initialization: set w(0) = 0
- Repeat until no points are mis-classified
 - Compute response: $y(n) = \operatorname{sgn} \left[w(n)^T x(n) \right]$
 - Update: w(n+1) = w(n) + [d(n) y(n)] x(n)

Outline

Definition

Decision boundary Linear separability

Learning rule

Convergence theorem

Perceptron convergence theorem

- Assume that there exists some unit vector w_0 and some α such that $d(n)w_0^Tx(n) \geq \alpha$, *i.e.* the data are linearly separable.
- Assume also that there exists some R such that $||x(n)|| = \sqrt{x(n)^T x(n)} \le R \quad \forall n$
- Then the perceptron algorithm makes at most R^2/α^2 errors

Perceptron convergence proof outline

- Define w_k as the parameter vector when the algorithm makes its k^{th} error (note $w_1=0$)
- First show $k\alpha \leq ||w_{k+1}||$ by induction
- Second show $||w_{k+1}||^2 \le kR^2$ by induction
- Then it follows that $k \le R^2/\alpha^2$, *i.e.* the perceptron makes a finite number of errors.

- Assume that the kth error is made on example n.
- Because of the perceptron update rule,

$$w_{k+1}^{T} w_{0} = (w_{k} + d(n)x(n)^{T})w_{0}$$

$$= w_{k}^{T} w_{0} + d(n)x(n)^{T} w_{0}$$

$$\geq w_{k}^{T} w_{0} + \alpha$$
(2)

- Because, by assumption, $d(n)x(n)^Tw_0 \ge \alpha$
- Then, by induction on k, $w_{k+1}^T w_0 \ge k\alpha$
- In addition, $\|w_{k+1}\|\|w_0\| \geq w_{k+1}^T w_0$ by Cauchy-Schwartz, with $\|w_0\| = 1$
- Thus, $||w_{k+1}|| \ge w_{k+1}^T w_0 \ge k\alpha$

Second show $||w_{k+1}||^2 \le kR^2$ by induction

Because of the perceptron update rule

$$||w_{k+1}||^2 = ||w_k + d(n)x(n)||^2$$

= $||w_k||^2 + d^2(n)||x(n)||^2 + 2d(n)x(n)^T w_k$ (3)

- By definition, $d^2(n) = 1$
- By assumption, $||x(n)||^2 \le R^2$
- Because the n-th points was misclassified $2d(n)x(n)^Tw_k \leq 0$
- Thus, $||w_{k+1}||^2 \le ||w_k||^2 + R^2$
- And , by induction on k, $||w_{k+1}||^2 \leq kR^2$

Then it follows that $k \leq R^2/\alpha^2$

- We have shown $k\alpha \leq ||w_{k+1}||$ and $||w_{k+1}||^2 \leq kR^2$
- So, $k^2 \alpha^2 \le ||w_{k+1}||^2 \le kR^2$
- Then it follows that $k \leq R^2/\alpha^2$
- Thus the perceptron learning algorithm makes a bounded number of mistakes, i.e., converges.

Perceptron learning remarks

- If data are not linearly separable
 - Algorithm will iterate forever
- Scaling w does not affect the preceptron's decision
 - = So the learning rate η does not affect the perceptron's decision either, and can be set to 1
- The solution weight vector w is not unique.

Generalization

- Performance of a learning machine on test patterns not used during training
- Perceptrons generalize by deriving a decision boundary in the input space. Selection of training pattens is thus important for generalization.

Thank you!