

Reinforcement Learning [AICS403] Course Introduction & Basic Concepts

Prof. Jahoon Koo (sigmao@korea.ac.kr)

Korea University

AI Cyber Security

CONTENTS

- 1. Course Introduction
- **2.**Course Outlines
- 3. Grade/Failure by absence
- 4. General Notice

Course Introduction

■Course Information

- □ Reinforcement Learning (강화학습(영강))
- □ Completion division: Major Selective
- □ Lecture Room: R212, Sci & Tech Bldg. 2
- □ Lecture Time: Fri (6-8) 14:00 ~ 17:00

■Overview

- This course covers the theoretical foundations and practical algorithms of reinforcement learning for sequential decision-making. It introduces fundamental concepts such as Markov Decision Processes (MDPs), Bellman equations, and the distinction between model-based and model-free approaches.
- □ It further explores advanced methods including deep reinforcement learning, policy gradients, and actor-critic architectures, with practical algorithms such as SARSA, Q-learning, DQN, and PPO..

■Course Activity

Lecture	Presentation	Discussion	Experiment	☐ Practice
Group Activity	Individual Activity	Group Guidance	Quiz	□ Q&A

Course Outlines [1]

Week	Period	Studying Contents	Textbook	Activity
1	09.01-09.05	Course Outline	PDF	
2	09.08-09.12	Introduction to Reinforcement	PDF	
3	09.15-09.19	Multi-Armed Bandit Problem	PDF	
4	09.22-09.26	Markov Decision Processes (MDP)	PDF	Assignment
5	09.29-10.03	Bellman Equations	PDF	(2~3 times)
6	10.06-10.10	Model-based Planning	PDF	
7	10.13-10.17	Model-free Value Prediction	PDF	
8	10.20-10.24	Midterm Exam		

Course Outlines [2]

Week	Period	Studying Contents	Textbook	Activity
9	10.27-10.31	Model-free Policy Optimization	PDF	
10	11.03-11.07	Deep Learning for RL	PDF	
11	11.10-11.14	Deep Reinforcement Learning	PDF	
12	11.17-11.21	Value-based Deep RL	PDF	Assignment
13	11.24-11.28	Policy-based Deep RL		(2~3 times)
14	12.01-12.05	Reinforcement Learning and AlphaGo	PDF	
15	12.08-12.12	Meta Reinforcement Learning PDF		
16	12.15-12.19	Final Exam		

Grade/Failure by absence

■Score ratio

- □ Midterm exam (30%)
- ☐ Final exam (30%)
 - The midterm and final exam results will be kept private.
 - (However, you can check it when you inquire personally.)
- □ Quiz (30%)
 - Assignment (five times)
 - Presentation
- □ Attendance (10%)

■Rules

- \square 3 tardies = 1 absence
- \Box 6 absent = F grade

General notice

■ Attendance and Excused Absence Policy

- ☐ Attendance will be checked through <u>offline attendance</u> (via LMS).
- ☐ The number of excused absences for the same reason is limited.
- □ Principle: All requests for excused absences must be submitted in advance.
- □ Exception: In unavoidable cases, supporting documents must be submitted within 10 days after the reason has ended.
- □ Requests for excused absences must be submitted before the end of the semester.

General notice

■No Offline Class (Make-up Lecture Provided Online)

- □ The class will be canceled from November 24 to 28.
- ☐ A make-up session will be provided through pre-recorded lecture videos.

Week	Period	Studying Contents	Textbook	Activity
1	09.01-09.05	Course Outline	PDF	
2	09.08-09.12	Introduction to Reinforcement	PDF	
3	09.15-09.19	Multi-Armed Bandit Problem	PDF	
4	09.22-09.26	Markov Decision Processes (MDP)		Assignment
5	09.29-10.03	Bellman Equations	PDF	(2~3 times)
6	10.06-10.10	Model-based Planning	PDF	
7	10.13-10.17	Model-free Value Prediction	PDF	
8	10.20-10.24	Midterm Exam		
9	10.27-10.31	Model-free Policy Optimization	PDF	
10	11.03-11.07	Deep Learning for RL	PDF	
11	11.10-11.14	Deep Reinforcement Learning	PDF	
12	11.17-11.21	Value-based Deep RL	PDF	Assignment
13	11.24-11.28	Policy-based Deep RL	PDF	(2~3 times)
14	12.01-12.05	Reinforcement Learning and AlphaGo	PDF	
15	12.08-12.12	Meta Reinforcement Learning	PDF	
16	12.15-12.19	Final Exam		

Thank you

Jahoon Koo (sigmao@korea.ac.kr)

