Farnaz Baadahang

WEEK 9

Task 1: Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine:

- 1- The absolute humidity
- 2- The wet-bulb temperature
- 3- The mass of water vapor in the air in Class Room A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Weather Forecast Website example

Umidità: Relative humidity, Pressione atmosferica: Air total pressure (1 hPa: 0.1 kPa), Temperatura effettiva: temperature to be utilized.

Solving the exercise at 05:00 PM on Tuesday 03/12/2019

• The relative humidity: 79%

• Air total Pressure: 1023 hPa (102.3 Kpa)

• Temperature to be utilized: 7 C

Estimating Aula A approx. dimensions:

Length: 20 mWidth: 8 mHeight: 5 m

First, let's try to calculate the relative pressure:

$$\phi = \frac{m_v}{m_g} \longrightarrow m_g$$
 the mass of water at sat condition

From Steam tables I can find the saturation pressure of water @ 7 C =1.001 kPa

Reference website:

https://www.engineeringtoolbox.com/water-vapor-saturation-pressure-d_599.html?vA=7&units=C#

$$\phi = \frac{m_v}{m_a} = \frac{P_v}{P_a} \longrightarrow P_g = P_{sat} 7 \, ^{\circ}C = 1.001 \, kPa$$

$$\phi = \frac{P_v}{P_a} \rightarrow P_V = \phi \times P_g = 0.79 * 1.001 = 0.79079 \, kPa$$

partial pressure of dry air: $P_a = P - P_v = 102.3 \text{ kPa} - 0.79079 \text{ kPa} = 101.51 \text{ kPa}$

Second, let's try to calculate the absoloute humidity:

$$\omega = 0.622 \frac{P_v}{P_a} = 0.622 \frac{0.79079}{101.51} = 0.00779 \frac{Kg_{vapour}}{kg_{dryAir}}$$

For ideal gases : $m = \frac{PV}{R_{sp.}T}$

So for air : $m_a=\frac{P_aV_a}{R_aT}$ $R_{sp.}=\frac{R_{global}}{M_{gas}}$ $-\to$ You can also find them in Tables $R_a=0.287$, $R_v=0.4615$

$$m_a = \frac{101.51 * (20 * 8 * 5)}{0.287 * (273 + 7)} = 1010.55 \, kg \, of \, dry \, air$$
$$m_v = \frac{0.79079 * (20 * 8 * 5)}{0.4615 * (273 + 7)} = 4.895 \, kg$$

The mass of water vapor in the air in Class Room A is 4.895 Kg.

From the psychometric chart above, we find that the wet bulb temperature is around 5.7 C

Task 2:

Utilize the same methodology we went through in the class:

Determine

- The sensible and latent load corresponding to internal gains
- · The infiltration in a house
- The ventilation loads

With a

- · good construction quality
- · same geometry as that of the example which is located in Brindisi, Italy

								BRINDIS	SI, Italy						WMO#:	163200
r		40.65N	Long	17.95E	Ele	~ ~~	StdF	101.2		Time Zone	1.00 (EU	W)	Period	86-10	WBAN	99999
_		1		Humdification OP-MCDB and HR					Coldest month WSANCDB MCWS/					WPCWD	1	
н	Month .			99.6%			99%			0.4%		% to 99.6				
L	Menter	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS.	MCDB	WS	MCDB	MCWS	PCWD	9
	(0)	(4)	(0)	(d)	(0)	(1)	(9)	(6)	(1)	(1)	(4)	(1)	(41)	(4)	(0)	
	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250	
ē	innust Cr	ooling Dehi	ımidificəti	on, and Enth	alpy Desi	gn Conditions	i i									-
Γ	Hottest	Hottest		Cooling DB.MICWB			Evaporation WB/MCDB							PCWD.		
ľ	Month	Month		0.4%		1%	2%		0.4%			W		2%	to 0.4	
L	_	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD
	(4)	(4)	(c)	(4)	(0)	(1)	(0)	(0)	(1)	(1)	(k)	(1)	(01)	(n)	(0)	(0)
	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180
Г	Dehumstification DP/MCDB and HR										Enthalpy/MCDB				Hours	
L		0.4%			1%			2%			4%		1%		1	8 to 4 &
L	DP	HR	MCOB	Ch	HR	MCDB	Do	HR	MCDB	Enth	MCOB	Enth	MCDB	Enth	MCD8	12.8/20.6
	(4)	(4)	29.2	25.4	20.7	28.5	24.7	19.7	27.9	(1)	(N)	82.2	29.1	78.5	28.3	(p)
	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236
£	atrarese /	Uniqual Desig	gn Conditi	one												
Г	E-i	reme Annual WS Extreme		Extreme				1	n-Year Return Period Values of Ex				Extreme DB			
L	25 15 15 15 15 15 15 15 15 15 15 15 15 15															50 years
L	1%	2.5%	5%	WB	Min	Max	Min	Max	Min	Max	Min	Maos	Min	Max	Min	Maox
	(0)	(4)	(0)	(4)	(0)	(1)	(9)	(6)	(0)	0)	(k)	(1)	(m)	(n)	(0)	(P)
	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9

Estimating Aula A approx. dimensions:

Length: 20 mWidth: 8 mHeight: 5 m

- Conditioned floor area 16om2
- Wall area 280m2
- Occupants: 100 persons
- One bedroom space

Calculating Internal gains:

$$\dot{Q}_{ig_{sensible}} = 136 + 2.2 * A_{cf} + 22 N_{oc} = 136 + 2.2 * 160 + 22 * 100 = 136 + 352 + 2200 \\ = 2688 \, W$$

$$\dot{Q}_{ig_{latent}} = 20 + 0.22 * A_{cf} + 12 N_{oc} = 20 + 0.22 * 160 + 12 * 100 = 20 + 35.2 + 1200 = 1255.2 W$$

Infiltration

Claculating the maximum flow rate of air:

Table 3 Unit Leakage Areas

Construction	Description	A_{ul} , cm ² /m ²	
Tight	Construction supervised by air-sealing specialist	0.7	
Good	Carefully sealed construction by knowledgeable builder	1.4	
Average	Typical current production housing	2.8	
Leaky	Typical pre-1970 houses	5.6	
Very leaky	Old houses in original condition	10.4	

For a good construction quality, the average leakage area is 1.4 cm2/m2

$$A_L = A_{es}A_{ul}$$

where

 A_{es} = building exposed surface area, m²

 A_{ul} = unit leakage area, cm²/m² (from <u>Table 3</u>)

Exposed surface = Wall area +roof area

$$A_{es} = 280 + 160 = 440 \, m^2$$

$$A_L = A_{es} \times A_{ul} = 440 \times 1.4 = 616 \text{ cm}^2$$

 $Q_i = A_L \text{IDF}$

where

 A_L = building effective leakage area (including flue) at reference pressure difference = 4 Pa, assuming discharge coefficient C_D = 1, cm²

IDF = infiltration driving force, $L/(s \cdot cm^2)$

Table 5 Typical IDF Values, L/(s·cm²)

Н,			ting Do peratu		Cooling Design Temperature, °C					
m	-40	-30	-20	-10	0	10	30	35	40	
2.5	0.10	0.095	0.086	0.077	0.069	0.060	0.031	0.035	0.040	
3	0.11	0.10	0.093	0.083	0.072	0.061	0.032	0.038	0.043	
4	0.14	0.12	0.11	0.093	0.079	0.065	0.034	0.042	0.049	
5	0.16	0.14	0.12	0.10	0.086	0.069	0.036	0.046	0.055	
6	0.18	0.16	0.14	0.11	0.093	0.072	0.039	0.050	0.061	
7	0.20	0.17	0.15	0.12	0.10	0.075	0.041	0.051	0.068	
8	0.22	0.19	0.16	0.14	0.11	0.079	0.043	0.058	0.074	

On the 4th row of the above table, we have the H: 5m height.

From the weather data for the city of BRINDISI, we note that:

- Heating DB is 4.1
- Cooling DB is 31.1

$$IDF_{heating} = 0.066 \frac{L}{s. cm^2}$$
$$IDF_{cooling} = 0.032 \frac{L}{s. cm^2}$$

Calculate the volume:

$$\dot{V}_{infiltration_{heating}} = A_L \times IDF = 616 * 0.066 = 40.656 \frac{L}{s}$$
 $\dot{V}_{infiltration_{cooling}} = A_L \times IDF = 616 * 0.032 = 19.712 \frac{L}{s}$
 $Q_v = 0.05A_{cf} + 3.5(N_{br} + 1)$

where

 Q_v = required ventilation flow rate, L/s A_{cf} = building conditioned floor area, m² N_{br} = number of bedrooms (not less than 1)

$$\dot{V}_{ventilation} = 0.05\,A_{cf} + 3.5\;(N_{br} + 1) = 0.05^*$$
160+ 3.5* 100 = 8+350=358 L/S

$$\dot{V}_{inf-ventilation_{\text{heating}}} = 40.656 + 358 = 398.656 \, L/s \\ \dot{V}_{inf-ventilation_{cooling}} = 19.712 + 358 = 377.712 \, L/s$$

From the past lessons:

- Cooling Temperature T cooling= 24 C
- Heating Temperature T heating= 20 C

$$\begin{split} \Delta \text{T cooling = 31.1 °C - 24 °C = 7.1 °C} \\ \Delta \text{T heating = 20 °C - (-4.1) °C = 24.1 °C} \\ \omega_{out} &= 0.0132 \frac{kg_{water}}{kg_{dryAir}} \ (from \ cooling \ DB = 31.1 °C) \end{split}$$

$$\omega_{in} = 0.0093 \frac{kg_{water}}{kg_{dryAir}} (from$$

$$\Delta\omega_{=}0.0132 - 0.0093 = 0.0039 \frac{kg_{water}}{kg_{DryAir}}$$

$$C_{sensible} = 1.23$$
 , $C_{latent} = 3010$

$$\dot{Q}_{inf-ventilation_{cooling_{sensible}}} = C_{sensible} \dot{V} \Delta T_{cooling} = 1.23 * 48.8 * 7.9 = 474 W$$

$$\dot{Q}_{inf-ventilation_{cooling_{latent}}} \ = \ C_{latent} \dot{V} \Delta \omega_{Cooling} = 3010 \ *48.8 \ * \ 0.0039 = 572. \ 7 \ W$$

$$\dot{Q}_{inf-ventilation_{\text{heating}g_{sensible}}} = C_{sensible}\dot{V}\Delta T_{\text{heating}} = 1.23 * 87.31 * 24.8 = 2663.4 \, W$$