Physics 415 - Lecture 21: Grand Canonical Ensemble, Maximum Entropy

March 10, 2025

Summary

- Canonical Ensemble (CE): System at fixed T, V, N. Probability of microstate r: $P_r = \frac{e^{-E_r/T}/Z}{E} = \frac{e^{-\beta E_r}/Z}{E}$. Partition function: $Z = \sum_r e^{-\beta E_r}$. Helmholtz Free Energy: $F = \overline{E} TS = -T \ln Z$.
- Systems in "diffusive contact" (can exchange particles):

Total system isolated: $E + E' = E^{(0)}$, $N + N' = N^{(0)}$ constant. Equilibrium condition: Maximize $S_{tot} = S + S'$. $dS_{tot} = 0$.

- $\implies T = T'$. (Thermal Equilibrium, $1/T = (\partial S/\partial E)_{N,V}$).
- $\implies \mu = \mu'$. (Diffusive Equilibrium). Define Chemical Potential μ :

$$\frac{\mu}{T} \equiv -\left(\frac{\partial S}{\partial N}\right)_{E,V}$$

(Note: μ has energy units).

Another Interpretation of μ

From S = S(E, V, N), the total differential is:

$$\begin{split} dS &= \left(\frac{\partial S}{\partial E}\right)_{N,V} dE + \left(\frac{\partial S}{\partial V}\right)_{N,E} dV + \left(\frac{\partial S}{\partial N}\right)_{V,E} dN \\ dS &= \frac{1}{T} dE + \frac{p}{T} dV - \frac{\mu}{T} dN \end{split}$$

Rearranging for dE (Thermodynamic Identity including particle number):

$$dE = TdS - pdV + \mu dN$$

From this, we see that μ can also be expressed as:

$$\mu = \left(\frac{\partial E}{\partial N}\right)_{S,V}$$

Interpretation: μ is the energy cost to add one particle to the system while keeping entropy S and volume V fixed. If we add $\Delta N = 1$ particle: $\Delta E \approx (\partial E/\partial N)_{S,V} \times (1) = \mu$.

Similarly, consider the Helmholtz free energy F=E-TS, so F=F(T,V,N). dF=dE-TdS-SdT. Substitute dE:

$$dF = (TdS - pdV + \mu dN) - TdS - SdT$$
$$dF = -SdT - pdV + \mu dN$$

From this, we see:

$$\mu = \left(\frac{\partial F}{\partial N}\right)_{T,V}$$

Interpretation: μ is the change in Helmholtz free energy when adding one particle at constant T and V.

Grand Canonical Ensemble (GCE)

Now consider the situation where system A is much smaller than reservoir A' $(|A| \ll |A'|)$. A' acts as both a heat bath and a "particle reservoir" for A. The reservoir keeps the temperature T and chemical potential μ of system A constant. System A can exchange both energy E and particles N with A'.

Question: What is the probability distribution of microstates of A, where both E and N can fluctuate? (Analogous to CE where E fluctuates).

Let microstate r of system A have energy E_r and particle number N_r . What is the probability P_r ? Proceed as for CE. P_r is proportional to the number of states available to the reservoir A' when A is in state r. The reservoir then has energy $E' = E^{(0)} - E_r$ and particle number $N' = N^{(0)} - N_r$.

$$P_r \propto \Omega'(E', N') = e^{S'(E', N')}$$

Since $|A| \ll |A'|$, we have $E_r \ll E^{(0)}$ and $N_r \ll N^{(0)}$. Expand S' around $(E^{(0)}, N^{(0)})$:

$$S'(E^{(0)} - E_r, N^{(0)} - N_r) \approx S'(E^{(0)}, N^{(0)}) - \frac{\partial S'}{\partial E'} \Big|_{0} E_r - \frac{\partial S'}{\partial N'} \Big|_{0} N_r + \dots$$

The derivatives are evaluated for the reservoir at $(E^{(0)}, N^{(0)})$, which correspond to temperature T and chemical potential μ . $(\partial S'/\partial E')_0 = 1/T$. $(\partial S'/\partial N')_0 = -\mu/T$.

$$S'(E', N') \approx S'(E^{(0)}, N^{(0)}) - \frac{E_r}{T} - \left(-\frac{\mu}{T}\right) N_r = S'(E^{(0)}, N^{(0)}) - \frac{E_r - \mu N_r}{T}$$

Substitute back into Ω' :

$$\Omega'(E', N') \approx e^{S'(E^{(0)}, N^{(0)})} e^{-(E_r - \mu N_r)/T} = \Omega'(E^{(0)}, N^{(0)}) e^{-(E_r - \mu N_r)/T}$$

Since $P_r \propto \Omega'(E', N')$ and $\Omega'(E^{(0)}, N^{(0)})$ is a constant:

$$P_r \propto e^{-(E_r - \mu N_r)/T}$$

Normalize the distribution: $\sum_r P_r = 1$. Define the **Grand Partition Function** \mathcal{Z} :

$$\mathcal{Z} \equiv \sum_{r} e^{-(E_r - \mu N_r)/T} = \sum_{r} e^{-\beta(E_r - \mu N_r)}$$

(Sum r is over all possible states, including states with different N_r). The probability distribution is:

$$P_r = \frac{e^{-(E_r - \mu N_r)/T}}{\mathcal{Z}} = \frac{e^{-\beta(E_r - \mu N_r)}}{\mathcal{Z}}$$

This is the **Grand Canonical Distribution**. An ensemble of systems at fixed (T, V, μ) , described by this probability distribution, is the **Grand Canonical Ensemble (GCE)**.

In the GCE, both energy E and particle number N fluctuate. The average particle number is:

$$\overline{N} = \sum_{r} P_r N_r = \frac{1}{\mathcal{Z}} \sum_{r} N_r e^{-\beta(E_r - \mu N_r)}$$

However, just as energy fluctuations are negligible in the CE for macroscopic systems, the fluctuations in particle number are also negligible in the GCE:

$$\frac{\sqrt{\overline{\Delta N^2}}}{\overline{N}} \sim \frac{1}{\sqrt{\overline{N}}} \to 0 \quad \text{for macroscopic } \overline{N}$$

Therefore, the GCE can be used to study systems with a given (fixed) average particle number \overline{N} , just as the CE can be used for systems with fixed average energy \overline{E} .

Relation between \mathcal{Z} and Z(N)

It is useful to reorganize the sum over all states r by first summing over states with a fixed number of particles N, and then summing over N. Let $r \to (N, r_N)$, where r_N is a state of a system with exactly N particles. $E_r \to E_{N,r_N}$ (energy of state r_N with N particles). $N_r \to N$. The grand partition function becomes:

$$\mathcal{Z} = \sum_{N} \sum_{r_N} e^{-\beta(E_{N,r_N} - \mu N)}$$

$$\mathcal{Z} = \sum_{N=0}^{\infty} e^{\beta \mu N} \left(\sum_{r_N} e^{-\beta E_{N,r_N}} \right)$$

The inner sum is precisely the canonical partition function Z(T, V, N) for a system with a fixed number of N particles:

$$Z(T, V, N) = \sum_{r_N} e^{-\beta E_{N, r_N}}$$

Therefore, we have the relation:

$$\mathcal{Z}(T,V,\mu) = \sum_{N=0}^{\infty} e^{\beta \mu N} Z(T,V,N)$$

Summary of Ensembles

Microcanonical (MCE): System A isolated.

• Fixed: E, N, V.

• Prob: $P_r = 1/\Omega(E)$ (for accessible states r).

• Stat Fn: $\Omega(E) = \#$ states. $S = \ln \Omega$.

Canonical (CE): System A in contact with heat bath.

• Fixed: T, N, V. Energy E fluctuates.

• Prob: $P_r = e^{-\beta E_r}/Z$.

• Stat Fn: $Z = \sum_r e^{-\beta E_r}$. $F = -T \ln Z$.

Grand Canonical (GCE): System A in contact with heat & particle reservoir.

• Fixed: T, V, μ . Energy E and particle number N fluctuate.

• Prob: $P_r = e^{-\beta(E_r - \mu N_r)}/\mathcal{Z}$.

• Stat Fn: $\mathcal{Z} = \sum_r e^{-\beta(E_r - \mu N_r)}$. Grand Potential $\Phi = -T \ln \mathcal{Z}$.

For macroscopic systems $(N \gg 1)$, all ensembles are essentially equivalent for calculating average thermodynamic properties. We choose the ensemble that is most convenient for a particular problem (usually CE or GCE, as the sums are unrestricted). $\overline{O}_{MCE} \approx \overline{O}_{CE} \approx \overline{O}_{GCE}$.

Bonus Topic: Statistical Ensembles from Maximum Entropy

(Ref: E.T. Jaynes, Phys. Rev. 106, 620 (1957) & 108, 171 (1957)). There is a unified way to think about the different statistical ensembles, based on a variational principle involving the Gibbs/Shannon entropy functional:

$$S[\{P_r\}] = -\sum_r P_r \ln P_r$$

This entropy measures the "uncertainty" or "ignorance" represented by the probability distribution $\{P_r\}$.

Maximum Entropy Principle: The probability distribution P_r describing our knowledge of a system is the one that maximizes $S[\{P_r\}]$ subject to the constraints imposed by the known information about the system. This yields the "least biased" distribution consistent with the given information.

Example 1: No information other than normalization. Maximize $S = -\sum P_r \ln P_r$ subject to $\sum_r P_r = 1$. Use Lagrange multiplier λ . Maximize $\tilde{S} = S - \lambda(\sum P_r - 1)$. $\partial \tilde{S}/\partial P_r = -(\ln P_r + 1) - \lambda = 0 \implies P_r = e^{-(1+\lambda)} = \text{constant}$. Normalization $\sum_r P_r = P \times \Omega = 1 \implies P_r = 1/\Omega$. This recovers the Microcanonical distribution (uniform probability over accessible states Ω).

Example 2: Known average energy \overline{E} . Maximize S subject to $\sum P_r = 1$ and $\sum P_r E_r = \overline{E}$. Use two Lagrange multipliers λ_1, λ_2 . Maximize $\tilde{S} = S - \lambda_1(\sum P_r - 1) - \lambda_2(\sum P_r E_r - \overline{E})$. $\partial \tilde{S}/\partial P_r = -(\ln P_r + 1) - \lambda_1 - \lambda_2 E_r = 0$. $P_r = e^{-(1+\lambda_1)}e^{-\lambda_2 E_r} = Ce^{-\lambda_2 E_r}$. Constraint $\sum P_r = 1 \implies C = 1/(\sum_r e^{-\lambda_2 E_r})$.

$$P_r = \frac{e^{-\lambda_2 E_r}}{\sum_r e^{-\lambda_2 E_r}}$$

This is the Canonical distribution form. The multiplier λ_2 is determined implicitly by the constraint $\sum P_r E_r = \overline{E}$. Comparing with the physical derivation of CE, we identify $\lambda_2 = \beta =$

1/T. Temperature T (or β) acts as the Lagrange multiplier associated with fixing the average energy \overline{E} .

Similarly, one can obtain the GCE from maximizing entropy subject to known average energy \overline{E} and known average particle number \overline{N} . The Lagrange multiplier associated with \overline{N} turns out to be related to $-\beta\mu$.