Polychromify

 $\bullet \bullet \bullet$

Deep Convolutional Autoencoder for Landscape Image Colorization

Image Colorization

- Hallucinating colors from black & white photos
- Useful to revive historical photos & films with colors
- Difficult task even for humans (ill-posed problem)
- Very challenging & fascinating problem

Learning-based colorization approach

ECCV16

- <u>Zhang et al. 2016</u>
- Convolutional Neural Network
- Classification setup + class rebalancing
- Rich colorization results

SIGGRAPH17

- Zhang et al. 2017
- CNN + user colors hints
- Merge automatic + user input approach
- Several plausible colorization + more realistic results

Landscapes Dataset - Sample Overview

Features:

- 4.3k total images
- Diverse landscapes categories
- Different sizes with high resolution
- Dataset split
 - 2752 images (64%)
 - 688 images (16%)
 - 860 images (20%)

Pre-processing

- 1. Resize to fixed size of 128x128 pixels
- 2. RBG to CIELAB color space conversion (closer to human perception + easier to separate)
- 3. Normalization of AB channels to range [-1, 1] for better training (avoiding saturation activation function)

Model selection

- 1. Vanilla Autoencoder (v0)
- 2. Convolutional Autoencoder (v1)
- 3. Convolutional Dense Autoencoder (v2)
- 4. Deep Convolutional Autoencoder (v3)
- 5. CNN

Convolution is key!

Best Architecture:

Convolutional Dense (v2)

Hyper-parameter tuning

Hyper-parameters							
Models	Neurons*	Filters**	Strides/Upsampling	BN	Accuracy	Time	
v1	Low	Low	No	No	0.6814	35 min	
v2	Medium	Low	No	No	0.6792	52 min	
v3	High	Low	No	No	0.6851	1h 5 min	
v4	High	High	Yes	No	0.6727	1h 45 min	
v5	High	High	Yes	Yes	0.6527	1h 52 min	

^{*} Neurons : Low (64 - 32 - 16 - 32 - 64) | Medium \rightarrow (128 - 64 - 32 - 64 - 128) | High \rightarrow (256 - 128 - 64 - 128 - 256)

^{**} Filters: Low (16 - 32 - 64 - 64 - 32 - 16) | High \(\to (32 - 64 - 128 - 128 - 64 - 32) \)

Polychromify Architecture

Deep Convolutional Dense Autoencoder

Quantitive results: accuracy

CNN

- Baseline model
- Tradeoff complexity vs accuracy

ECCV16 (trained from scratch)

- Powerful but high number of parameters
- Slow to train
- Data hungry model

Polychromify

- Best overall
- Fast training
- Tuned on this specific dataset

Final results on test set						
Model	Parameters	Training Time	Accuracy			
CNN	98 x 10 ³	2h 10 min	0.6535			
ECCV16	32 x 10 ⁶	6h 40 min	0.6400			
Polychromify	293 x 10 ³	1h 40 min	0.6845			

Qualitative results: colorization

- ECCV16 (pre-trained)
 - Vibrant colors
 - Over-saturated predictions
- SIGGRAPH17 (pre-trained)
 - Less saturated predictions
 - More realistic colorization
- Polychromify
 - "Shy" color predictions,(most from yellow to blue range)
 - Difficult to generalize from bluish pictures

Final Remarks

Contributions

- 1. Simple Convolutional Autoencoder architecture
- 2. Fast training + low number of parameters

Future Improvements

- Improve dataset by rebalancing landscape categories
- Train on larger dataset (e.g. ImageNet) for better generalization
- Pre-trained models for object recognition

The End

...

Github Repository https://github.com/davide97g/polychromify