Listas de Prioridades – Heap

Prof. Carlos Vinicius G. C. Lima (vinicius.lima@ufca.edu.br)

Algoritmos e Estruturas de Dados II

Universidade Federal do Cariri – UFCA (2023/01)

Sumário

- Conceitos Iniciais
 - Prioridades
 - Lista Ordenada e Não ordenada
- 2 Heap
 - Definição
 - Aumento de Prioridade
 - Diminuição de Prioridade
 - Inserção e Remoção
 - Construção

 Em muitos problemas se exige a determinação de uma ordem de prioridades aos seus dados.

- Em muitos problemas se exige a determinação de uma ordem de prioridades aos seus dados.
- A **prioridade** é uma informação que revela a importância do dado.

- Em muitos problemas se exige a determinação de uma ordem de prioridades aos seus dados.
- A **prioridade** é uma informação que revela a importância do dado.
 - Ex: Priorizar as disciplinas do curso.

- Em muitos problemas se exige a determinação de uma ordem de prioridades aos seus dados.
- A prioridade é uma informação que revela a importância do dado.
 - Ex: Priorizar as disciplinas do curso.
 - As prioridades podem ser alteradas.

- Em muitos problemas se exige a determinação de uma ordem de prioridades aos seus dados.
- A **prioridade** é uma informação que revela a importância do dado.
 - Ex: Priorizar as disciplinas do curso.
 - As prioridades podem ser alteradas.
 - Novas disciplinas podem ser adicionadas aos dados, assim como suas prioridades.

- Em muitos problemas se exige a determinação de uma ordem de prioridades aos seus dados.
- A prioridade é uma informação que revela a importância do dado.
 - Ex: Priorizar as disciplinas do curso.
 - As prioridades podem ser alteradas.
 - Novas disciplinas podem ser adicionadas aos dados, assim como suas prioridades.
- Objetivo: Organizar os dados de modo a determinar de forma **rápida** o dado de maior prioridade.

- Em muitos problemas se exige a determinação de uma ordem de prioridades aos seus dados.
- A prioridade é uma informação que revela a importância do dado.
 - Ex: Priorizar as disciplinas do curso.
 - As prioridades podem ser alteradas.
 - Novas disciplinas podem ser adicionadas aos dados, assim como suas prioridades.
- Objetivo: Organizar os dados de modo a determinar de forma rápida o dado de maior prioridade.
- Operações desejadas:

- Em muitos problemas se exige a determinação de uma ordem de prioridades aos seus dados.
- A prioridade é uma informação que revela a importância do dado.
 - Ex: Priorizar as disciplinas do curso.
 - As prioridades podem ser alteradas.
 - Novas disciplinas podem ser adicionadas aos dados, assim como suas prioridades.
- Objetivo: Organizar os dados de modo a determinar de forma rápida o dado de maior prioridade.
- Operações desejadas:
 - Buscar (sempre) o dado de maior prioridade.

- Em muitos problemas se exige a determinação de uma ordem de prioridades aos seus dados.
- A prioridade é uma informação que revela a importância do dado.
 - Ex: Priorizar as disciplinas do curso.
 - As prioridades podem ser alteradas.
 - Novas disciplinas podem ser adicionadas aos dados, assim como suas prioridades.
- Objetivo: Organizar os dados de modo a determinar de forma rápida o dado de maior prioridade.
- Operações desejadas:
 - Buscar (sempre) o dado de maior prioridade.
 - Remover (sempre) o dado de maior prioridade.

- Em muitos problemas se exige a determinação de uma ordem de prioridades aos seus dados.
- A prioridade é uma informação que revela a importância do dado.
 - Ex: Priorizar as disciplinas do curso.
 - As prioridades podem ser alteradas.
 - Novas disciplinas podem ser adicionadas aos dados, assim como suas prioridades.
- Objetivo: Organizar os dados de modo a determinar de forma rápida o dado de maior prioridade.
- Operações desejadas:
 - Buscar (sempre) o dado de maior prioridade.
 - Remover (sempre) o dado de maior prioridade.
 - Adicionar um novo dado.

- Em muitos problemas se exige a determinação de uma ordem de prioridades aos seus dados.
- A prioridade é uma informação que revela a importância do dado.
 - Ex: Priorizar as disciplinas do curso.
 - As prioridades podem ser alteradas.
 - Novas disciplinas podem ser adicionadas aos dados, assim como suas prioridades.
- Objetivo: Organizar os dados de modo a determinar de forma rápida o dado de maior prioridade.
- Operações desejadas:
 - Buscar (sempre) o dado de maior prioridade.
 - Remover (sempre) o dado de maior prioridade.
 - Adicionar um novo dado.
 - Alteração da prioridade de um dado (tanto aumentando quanto diminuindo).

• Pode-se usar diferentes métodos para alcançar o objetivo.

- Pode-se usar diferentes métodos para alcançar o objetivo.
 - Lista não ordenada.

- Pode-se usar diferentes métodos para alcançar o objetivo.
 - Lista não ordenada.
 - Lista ordenada.

- Pode-se usar diferentes métodos para alcançar o objetivo.
 - Lista não ordenada.
 - Lista ordenada.
 - Heap.

- Pode-se usar diferentes métodos para alcançar o objetivo.
 - Lista não ordenada.
 - Lista ordenada.
 - Heap.
- Comparamos a complexidade das operações desejadas para escolher o melhor método.

Listas Não Ordenadas: Listamos os dados em uma lista de tamanho n.

Listas Não Ordenadas: Listamos os dados em uma lista de tamanho n.

Listas Ordenadas: Ordenamos em uma lista de tamanho n os dados de acordo com suas prioridades em ordem decrescente.

Listas Não Ordenadas: Listamos os dados em uma lista de tamanho n.

Listas Ordenadas: Ordenamos em uma lista de tamanho n os dados de acordo com suas prioridades em ordem decrescente.

	Lista Não Ordenadas	Lista	Ordenada
Seleção			
Inserção			
Remoção			
Alteração			
Construção			

Listas Não Ordenadas: Listamos os dados em uma lista de tamanho n.

Listas Ordenadas: Ordenamos em uma lista de tamanho n os dados de acordo com suas prioridades em ordem decrescente.

	Lista Não Ordenadas	Lista Ordenada
Seleção	O(n)	
Inserção		
Remoção		
Alteração		
Construção		

Listas Não Ordenadas: Listamos os dados em uma lista de tamanho n.

Listas Ordenadas: Ordenamos em uma lista de tamanho n os dados de acordo com suas prioridades em ordem decrescente.

	Lista Não Ordenadas	Lista Ordenada
Seleção	O(n)	O(1)
Inserção		
Remoção		
Alteração		
Construção		

Listas Não Ordenadas: Listamos os dados em uma lista de tamanho n.

Listas Ordenadas: Ordenamos em uma lista de tamanho n os dados de acordo com suas prioridades em ordem decrescente.

	Lista Não Ordenadas	Lista Ordenada
Seleção	O(n)	O(1)
Inserção	O(1)	
Remoção		
Alteração		
Construção		

Listas Não Ordenadas: Listamos os dados em uma lista de tamanho n.

Listas Ordenadas: Ordenamos em uma lista de tamanho n os dados de acordo com suas prioridades em ordem decrescente.

	Lista Não Ordenadas	Lista Ordenada
Seleção	O(n)	O(1)
Inserção	O(1)	O(n)
Remoção		
Alteração		
Construção		

Listas Não Ordenadas: Listamos os dados em uma lista de tamanho n.

Listas Ordenadas: Ordenamos em uma lista de tamanho n os dados de acordo com suas prioridades em ordem decrescente.

	Lista Não Ordenadas	Lista Ordenada
Seleção	O(n)	O(1)
Inserção	O(1)	O(n)
Remoção	O(n)	
Alteração		
Construção		

Listas Não Ordenadas: Listamos os dados em uma lista de tamanho n.

Listas Ordenadas: Ordenamos em uma lista de tamanho n os dados de acordo com suas prioridades em ordem decrescente.

	Lista Não Ordenadas	Lista Ordenada
Seleção	O(n)	O(1)
Inserção	O(1)	O(n)
Remoção	O(n)	O(1)
Alteração		
Construção		

Listas Não Ordenadas: Listamos os dados em uma lista de tamanho n.

Listas Ordenadas: Ordenamos em uma lista de tamanho n os dados de acordo com suas prioridades em ordem decrescente.

	Lista Não Ordenadas	Lista Ordenada
Seleção	O(n)	O(1)
Inserção	O(1)	O(n)
Remoção	O(n)	O(1)
Alteração	O(n)	
Construção		

Listas Não Ordenadas: Listamos os dados em uma lista de tamanho n.

Listas Ordenadas: Ordenamos em uma lista de tamanho n os dados de acordo com suas prioridades em ordem decrescente.

	Lista Não Ordenadas	Lista Ordenada
Seleção	O(n)	O(1)
Inserção	O(1)	O(n)
Remoção	O(n)	O(1)
Alteração	O(n)	O(n)
Construção		

Listas Não Ordenadas: Listamos os dados em uma lista de tamanho n.

Listas Ordenadas: Ordenamos em uma lista de tamanho n os dados de acordo com suas prioridades em ordem decrescente.

	Lista Não Ordenadas	Lista Ordenada
Seleção	O(n)	O(1)
Inserção	O(1)	O(n)
Remoção	O(n)	O(1)
Alteração	O(n)	O(n)
Construção	O(n)	

Listas Não Ordenadas: Listamos os dados em uma lista de tamanho n.

Listas Ordenadas: Ordenamos em uma lista de tamanho n os dados de acordo com suas prioridades em ordem decrescente.

	Lista Não Ordenadas	Lista Ordenada
Seleção	O(n)	O(1)
Inserção	O(1)	O(n)
Remoção	O(n)	O(1)
Alteração	O(n)	O(n)
Construção	O(n)	$O(n \log n)$

Sumário

- Conceitos Iniciais
 - Prioridades
 - Lista Ordenada e Não ordenada
- 2 Heap
 - Definição
 - Aumento de Prioridade
 - Diminuição de Prioridade
 - Inserção e Remoção
 - Construção

Heaps

 \bullet **Definição:** É uma lista linear H de tamanho n que satisfaz a seguinte propriedade:

$$\forall \ i>1, H[i].chave \ \leq \ H[\lfloor i/2\rfloor].chave.$$

Heaps

 \bullet **Definição:** É uma lista linear H de tamanho n que satisfaz a seguinte propriedade:

$$\forall \ i>1, H[i].chave \ \leq \ H[\lfloor i/2\rfloor].chave.$$

ullet O campo H[i].chave representa a prioridade do dado i.

Heaps

• **Definição:** É uma lista linear H de tamanho n que satisfaz a seguinte propriedade:

$$\forall \ i>1, H[i].chave \ \leq \ H[\lfloor i/2\rfloor].chave.$$

ullet O campo H[i].chave representa a prioridade do dado i.

ou de forma equivalente:

 \bullet **Definição:** É uma lista linear H de tamanho n que satisfaz a seguinte propriedade:

$$\forall i > 1, H[i].chave \leq H[\lfloor i/2 \rfloor].chave.$$

ullet O campo H[i].chave representa a prioridade do dado i.

- $H[i].chave \ge H[2i].chave$, para todo i tal que $2i \le n$ e
- $\bullet \ H[i].chave \ \geq \ H[2i+1].chave \ , \ \mathsf{para} \ \mathsf{todo} \ i \ \mathsf{tal} \ \mathsf{que} \ 2i+1 \leq n.$

 \bullet **Definição:** É uma lista linear H de tamanho n que satisfaz a seguinte propriedade:

$$\forall \ i>1, H[i].chave \ \leq \ H[\lfloor i/2\rfloor].chave.$$

ullet O campo H[i].chave representa a prioridade do dado i.

- $H[i].chave \ge H[2i].chave$, para todo i tal que $2i \le n$ e
- $\bullet \ H[i].chave \ \geq \ H[2i+1].chave \ , \ \mathsf{para} \ \mathsf{todo} \ i \ \mathsf{tal} \ \mathsf{que} \ 2i+1 \leq n.$

 \bullet **Definição:** É uma lista linear H de tamanho n que satisfaz a seguinte propriedade:

$$\forall \ i>1, H[i].chave \ \leq \ H[\lfloor i/2\rfloor].chave.$$

ullet O campo H[i].chave representa a prioridade do dado i.

- $H[i].chave \ge H[2i].chave$, para todo i tal que $2i \le n$ e
- $\bullet \ H[i].chave \ \geq \ H[2i+1].chave \ \text{para todo} \ i \ \text{tal que} \ 2i+1 \leq n.$

 \bullet **Definição:** É uma lista linear H de tamanho n que satisfaz a seguinte propriedade:

$$\forall \ i>1, H[i].chave \ \leq \ H[\lfloor i/2\rfloor].chave.$$

ullet O campo H[i].chave representa a prioridade do dado i.

- $H[i].chave~\geq~H[2i].chave$, para todo i tal que $2i \leq n$ e
- $\bullet \ H[i].chave \ \geq \ H[2i+1].chave \ , \ \mathsf{para} \ \mathsf{todo} \ i \ \mathsf{tal} \ \mathsf{que} \ 2i+1 \leq n.$

 \bullet **Definição:** É uma lista linear H de tamanho n que satisfaz a seguinte propriedade:

$$\forall \ i>1, H[i].chave \ \leq \ H[\lfloor i/2\rfloor].chave.$$

ullet O campo H[i].chave representa a prioridade do dado i.

- $H[i].chave \ge H[2i].chave$, para todo i tal que $2i \le n$ e
- $\bullet \ H[i].chave \ \geq \ H[2i+1].chave \ \text{para todo} \ i \ \text{tal que} \ 2i+1 \leq n.$

 \bullet **Definição:** É uma lista linear H de tamanho n que satisfaz a seguinte propriedade:

$$\forall \ i>1, H[i].chave \ \leq \ H[\lfloor i/2\rfloor].chave.$$

ullet O campo H[i].chave representa a prioridade do dado i.

- $H[i].chave~\geq~H[2i].chave$, para todo i tal que $2i \leq n$ e
- $\bullet \ H[i].chave \ \geq \ H[2i+1].chave \ , \ \mathsf{para} \ \mathsf{todo} \ i \ \mathsf{tal} \ \mathsf{que} \ 2i+1 \leq n.$

 \bullet **Definição:** É uma lista linear H de tamanho n que satisfaz a seguinte propriedade:

$$\forall \ i>1, H[i].chave \ \leq \ H[\lfloor i/2\rfloor].chave.$$

ullet O campo H[i].chave representa a prioridade do dado i.

- $H[i].chave \ge H[2i].chave$, para todo i tal que $2i \le n$ e
- $\bullet \ H[i].chave \ \geq \ H[2i+1].chave \ \text{para todo} \ i \ \text{tal que} \ 2i+1 \leq n.$

• Estudaremos agora a complexidade de cada operação sobre heaps.

• Estudaremos agora a complexidade de cada operação sobre heaps.

	Lista Não Ordenadas	Lista Ordenada	Неар
Seleção	O(n)	O(1)	O(1)
Inserção	O(1)	O(n)	$O(\log n)$
Remoção	O(n)	O(1)	$O(\log n)$
Alteração	O(n)	O(n)	$O(\log n)$
Construção	O(n)	$O(n \log n)$	O(n)

• Estudaremos agora a complexidade de cada operação sobre heaps.

	Lista Não Ordenadas	Lista Ordenada	Неар
Seleção	O(n)	O(1)	O(1)
Inserção	O(1)	O(n)	$O(\log n)$
Remoção	O(n)	O(1)	$O(\log n)$
Alteração	O(n)	O(n)	$O(\log n)$
Construção	O(n)	$O(n \log n)$	O(n)

• A condição $\forall \ i>1, H[i] \le H[\lfloor i/2 \rfloor]$ implica que o elemento de maior prioridade seja sempre o primeiro no heap (raiz na árvore).

• Estudaremos agora a complexidade de cada operação sobre heaps.

	Lista Não Ordenadas	Lista Ordenada	Неар
Seleção	O(n)	O(1)	O(1)
Inserção	O(1)	O(n)	$O(\log n)$
Remoção	O(n)	O(1)	$O(\log n)$
Alteração	O(n)	O(n)	$O(\log n)$
Construção	O(n)	$O(n \log n)$	O(n)

- A condição $\forall \ i>1, H[i] \le H[\lfloor i/2 \rfloor]$ implica que o elemento de maior prioridade seja sempre o primeiro no heap (raiz na árvore).
- ullet Logo a complexidade de seleção (busca) em heaps é sempre O(1).

• Podemos aumentar ou diminuir a prioridade de um elemento.

- Podemos aumentar ou diminuir a prioridade de um elemento.
- Ao modificar uma prioridade de um elemento, queremos manter a propriedade de heap para a nova lista.

- Podemos aumentar ou diminuir a prioridade de um elemento.
- Ao modificar uma prioridade de um elemento, queremos manter a propriedade de heap para a nova lista.
- O aumento está associado à "subida" do nó na árvore.

- Podemos aumentar ou diminuir a prioridade de um elemento.
- Ao modificar uma prioridade de um elemento, queremos manter a propriedade de heap para a nova lista.
- O aumento está associado à "subida" do nó na árvore.
- A diminuição está associado à "descida" do nó na árvore.

- Podemos aumentar ou diminuir a prioridade de um elemento.
- Ao modificar uma prioridade de um elemento, queremos manter a propriedade de heap para a nova lista.
- O aumento está associado à "subida" do nó na árvore.
- A diminuição está associado à "descida" do nó na árvore.
- A subida e descida serão realizados sempre através de caminhos.

Vamos aumentar a prioridade no nó 6 de 66 para 98.

Algoritmo 1: Subir(i)

```
Entrada: Posição i a ser alterada.
```

 A complexidade é dada pelo número de trocas entre um nó com seu pai na árvore.

 A complexidade é dada pelo número de trocas entre um nó com seu pai na árvore.

Exercício 1: Uma árvore binária completa é aquela em que, para todo nó v, se v possui alguma subárvore vazia, então v está ou no último (maior) ou penúltimo nível. Mostre que a altura h de qualquer árvore completa com n>0 nós é $h\leq 1+\lfloor \log n \rfloor$.

 A complexidade é dada pelo número de trocas entre um nó com seu pai na árvore.

Exercício 1: Uma árvore binária completa é aquela em que, para todo nó v, se v possui alguma subárvore vazia, então v está ou no último (maior) ou penúltimo nível. Mostre que a altura h de qualquer árvore completa com n>0 nós é $h\leq 1+\lfloor \log n\rfloor$.

Dica: Usar indução matemática no número de nós.

 A complexidade é dada pelo número de trocas entre um nó com seu pai na árvore.

Exercício 1: Uma árvore binária completa é aquela em que, para todo nó v, se v possui alguma subárvore vazia, então v está ou no último (maior) ou penúltimo nível. Mostre que a altura h de qualquer árvore completa com n>0 nós é $h\leq 1+\lfloor \log n\rfloor$.

Dica: Usar indução matemática no número de nós.

 Portanto, o número de trocas é no máximo a altura da árvore que representa o heap.

 A complexidade é dada pelo número de trocas entre um nó com seu pai na árvore.

Exercício 1: Uma árvore binária completa é aquela em que, para todo nó v, se v possui alguma subárvore vazia, então v está ou no último (maior) ou penúltimo nível. Mostre que a altura h de qualquer árvore completa com n>0 nós é $h\leq 1+\lfloor \log n\rfloor$.

Dica: Usar indução matemática no número de nós.

- Portanto, o número de trocas é no máximo a altura da árvore que representa o heap.
- Logo a complexidade de Subir é $O(\log n)$.

ullet A diminuição pode levar um nó i da árvore a possuir um filho com prioridade maior que a de i.

- ullet A diminuição pode levar um nó i da árvore a possuir um filho com prioridade maior que a de i.
- Vamos diminuir a prioridade do nó 1 de 95 para 37.

- ullet A diminuição pode levar um nó i da árvore a possuir um filho com prioridade maior que a de i.
- Vamos diminuir a prioridade do nó 1 de 95 para 37.

- ullet A diminuição pode levar um nó i da árvore a possuir um filho com prioridade maior que a de i.
- Vamos diminuir a prioridade do nó 1 de 95 para 37.

- ullet A diminuição pode levar um nó i da árvore a possuir um filho com prioridade maior que a de i.
- Vamos diminuir a prioridade do nó 1 de 95 para 37.

- ullet A diminuição pode levar um nó i da árvore a possuir um filho com prioridade maior que a de i.
- Vamos diminuir a prioridade do nó 1 de 95 para 37.

Procedimento de Descida

Algoritmo 2: Descer(i, n)

```
Entrada: Posição i a ser alterada e número n de elementos do heap.
1 j \leftarrow 2i % j representa o índice do filho esquerdo de i, se existir.;
2 se j \le n então
      se i < n então
          se H[j+1].chave > H[j].chave então
          j \leftarrow j + 1;
      se H[i].chave < H[j].chave então
          H[i] \Leftrightarrow H[j];
Descer(j, n);
```

13 / 19

Inserção e Remoção em Heaps

• Inserção:

Inserção e Remoção em Heaps

• Inserção:

ullet adicionamos a nova prioridade ao heap de tamanho n na posição n+1.

Inserção:

- ullet adicionamos a nova prioridade ao heap de tamanho n na posição n+1.
- ullet A posição n+1 é necessariamente uma folha na representação em árvore do heap.

Inserção:

- \bullet adicionamos a nova prioridade ao heap de tamanho n na posição n+1.
- \bullet A posição n+1 é necessariamente uma folha na representação em árvore do heap.
- Aplicamos o procedimento Subir(n+1).

Inserção:

- \bullet adicionamos a nova prioridade ao heap de tamanho n na posição n+1.
- \bullet A posição n+1 é necessariamente uma folha na representação em árvore do heap.
- Aplicamos o procedimento Subir(n+1).
 - Complexidade: $O(\log n)$.

Inserção:

- ullet adicionamos a nova prioridade ao heap de tamanho n na posição n+1.
- \bullet A posição n+1 é necessariamente uma folha na representação em árvore do heap.
- Aplicamos o procedimento Subir(n+1).
 - Complexidade: $O(\log n)$.

Inserção:

- ullet adicionamos a nova prioridade ao heap de tamanho n na posição n+1.
- \bullet A posição n+1 é necessariamente uma folha na representação em árvore do heap.
- Aplicamos o procedimento Subir(n+1).
 - Complexidade: $O(\log n)$.

Remoção:

 Lembre-se que a remoção e busca se dão sempre pelo elemento de maior prioridade, ou seja, o primeiro elemento do heap.

Inserção:

- ullet adicionamos a nova prioridade ao heap de tamanho n na posição n+1.
- \bullet A posição n+1 é necessariamente uma folha na representação em árvore do heap.
- Aplicamos o procedimento Subir(n+1).
 - Complexidade: $O(\log n)$.

- Lembre-se que a remoção e busca se dão sempre pelo elemento de maior prioridade, ou seja, o primeiro elemento do heap.
- ullet Remove-se o elemento da posição n para a primeira posição.

Inserção:

- ullet adicionamos a nova prioridade ao heap de tamanho n na posição n+1.
- \bullet A posição n+1 é necessariamente uma folha na representação em árvore do heap.
- Aplicamos o procedimento Subir(n+1).
 - Complexidade: $O(\log n)$.

- Lembre-se que a remoção e busca se dão sempre pelo elemento de maior prioridade, ou seja, o primeiro elemento do heap.
- ullet Remove-se o elemento da posição n para a primeira posição.
- Decrementamos o número de elementos do heap para n-1.

Inserção:

- ullet adicionamos a nova prioridade ao heap de tamanho n na posição n+1.
- \bullet A posição n+1 é necessariamente uma folha na representação em árvore do heap.
- Aplicamos o procedimento Subir(n+1).
 - Complexidade: $O(\log n)$.

- Lembre-se que a remoção e busca se dão sempre pelo elemento de maior prioridade, ou seja, o primeiro elemento do heap.
- ullet Remove-se o elemento da posição n para a primeira posição.
- Decrementamos o número de elementos do heap para n-1.
- Aplica-se o procedimento $\mathsf{Descer}(1,n)$.

Inserção:

- ullet adicionamos a nova prioridade ao heap de tamanho n na posição n+1.
- \bullet A posição n+1 é necessariamente uma folha na representação em árvore do heap.
- Aplicamos o procedimento Subir(n+1).
 - Complexidade: $O(\log n)$.

• Remoção:

- Lembre-se que a remoção e busca se dão sempre pelo elemento de maior prioridade, ou seja, o primeiro elemento do heap.
- ullet Remove-se o elemento da posição n para a primeira posição.
- Decrementamos o número de elementos do heap para n-1.
- Aplica-se o procedimento $\mathsf{Descer}(1,n)$.
 - Complexidade: $O(\log n)$.

 $\begin{picture}(60,0)\put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}$

Objetivo: obter um heap cujos elementos são os mesmos de um dado vetor V de tamanho n.

Solução 1: Ordenar o heap em ordem não crescente de prioridades.

Objetivo: obter um heap cujos elementos são os mesmos de um dado vetor V de tamanho n.

Solução 1: Ordenar o heap em ordem não crescente de prioridades.

• Complexidade: $O(n \log n)$.

 $\begin{tabular}{ll} \textbf{Objetivo:} & \textbf{obter um heap cujos elementos s\~ao os mesmos de um dado vetor V de tamanho n. \end{tabular}$

Solução 1: Ordenar o heap em ordem não crescente de prioridades.

• Complexidade: $O(n \log n)$.

Solução 2: Considera-se a construção do heap com as primeiras i prioridades de V e, a cada passo, insere-se o elemento V[i] no heap atual.

Objetivo: obter um heap cujos elementos são os mesmos de um dado vetor V de tamanho n.

- Solução 1: Ordenar o heap em ordem não crescente de prioridades.
 - Complexidade: $O(n \log n)$.
- Solução 2: Considera-se a construção do heap com as primeiras i prioridades de V e, a cada passo, insere-se o elemento V[i] no heap atual.
 - Complexidade: $O(n \log n)$.

ullet A propriedade de heap é sempre satisfeita para as **folhas** de qualquer vetor de entrada V.

- A propriedade de heap é sempre satisfeita para as folhas de qualquer vetor de entrada V.
- Um nó folha não possui filhos, logo a propriedade de heaps é trivialmente satisfeita para elas.

- A propriedade de heap é sempre satisfeita para as folhas de qualquer vetor de entrada V.
- Um nó folha não possui filhos, logo a propriedade de heaps é trivialmente satisfeita para elas.
- Exercício 2: Mostre que toda árvore binária completa possui ao menos metade de seus nós como nós folhas.

- A propriedade de heap é sempre satisfeita para as folhas de qualquer vetor de entrada V.
- Um nó folha não possui filhos, logo a propriedade de heaps é trivialmente satisfeita para elas.
- Exercício 2: Mostre que toda árvore binária completa possui ao menos metade de seus nós como nós folhas.
- Logo as posições de $\lfloor n/2 \rfloor + 1$ até n constituem heaps independentes.

- A propriedade de heap é sempre satisfeita para as folhas de qualquer vetor de entrada V.
- Um nó folha não possui filhos, logo a propriedade de heaps é trivialmente satisfeita para elas.
- Exercício 2: Mostre que toda árvore binária completa possui ao menos metade de seus nós como nós folhas.
- Logo as posições de $\lfloor n/2 \rfloor + 1$ até n constituem heaps independentes.
- A ideia do algoritmo é considerar um vetor H de n posições cujas primeiras $\lfloor n/2 \rfloor$ posições são todas iguais ao maior elemento de V, enquanto as demais posições são idênticas às correspondentes em V.

- ullet A propriedade de heap é sempre satisfeita para as **folhas** de qualquer vetor de entrada V.
- Um nó folha não possui filhos, logo a propriedade de heaps é trivialmente satisfeita para elas.
- Exercício 2: Mostre que toda árvore binária completa possui ao menos metade de seus nós como nós folhas.
- Logo as posições de $\lfloor n/2 \rfloor + 1$ até n constituem heaps independentes.
- A ideia do algoritmo é considerar um vetor H de n posições cujas primeiras $\lfloor n/2 \rfloor$ posições são todas iguais ao maior elemento de V, enquanto as demais posições são idênticas às correspondentes em V.
- Para cada posição i de $\lfloor n/2 \rfloor$ até a primeira (nós internos), alteramos (diminuição) a prioridade de H[i] para V[i].

Algoritmo: ConstroiHeap(H, n)

Entrada: Vetor de entrada V = H de tamanho n.

1 para $i \leftarrow \lfloor n/2 \rfloor, \dots, 1$ faça

Algoritmo: ConstroiHeap(H, n)

Entrada: Vetor de entrada V = H de tamanho n.

1 para $i \leftarrow \lfloor n/2 \rfloor, \dots, 1$ faça

Algoritmo: ConstroiHeap(H, n)

Entrada: Vetor de entrada V = H de tamanho n.

1 para $i \leftarrow \lfloor n/2 \rfloor, \dots, 1$ faça

Algoritmo: ConstroiHeap(H, n)

Entrada: Vetor de entrada V = H de tamanho n.

1 para $i \leftarrow \lfloor n/2 \rfloor, \dots, 1$ faça

Algoritmo: ConstroiHeap(H, n)

Entrada: Vetor de entrada V = H de tamanho n.

1 para $i \leftarrow \lfloor n/2 \rfloor, \dots, 1$ faça

20 35 43 64 7 12 18 25 50 1 2 3 4 5 6 7 8 9

Algoritmo: ConstroiHeap(H, n)

Entrada: Vetor de entrada V = H de tamanho n.

1 para $i \leftarrow \lfloor n/2 \rfloor, \dots, 1$ faça

Algoritmo: ConstroiHeap(H, n)

Entrada: Vetor de entrada V = H de tamanho n.

1 para $i \leftarrow \lfloor n/2 \rfloor, \dots, 1$ faça

20 64 43 50 7 12 18 25 35 1 2 3 4 5 6 7 8 9

Algoritmo: ConstroiHeap(H, n)

Entrada: Vetor de entrada V = H de tamanho n.

1 para $i \leftarrow \lfloor n/2 \rfloor, \dots, 1$ faça

Algoritmo: ConstroiHeap(H, n)

Entrada: Vetor de entrada V = H de tamanho n.

1 para $i \leftarrow \lfloor n/2 \rfloor, \dots, 1$ faça

64 50 43 35 7 12 18 25 20 1 2 3 4 5 6 7 8 9

Algoritmo: ConstroiHeap(H, n)

Entrada: Vetor de entrada V = H de tamanho n.

1 para $i \leftarrow \lfloor n/2 \rfloor, \dots, 1$ faça

ullet Exercício 3: Mostre que a complexidade do Algoritmo ConstroiHeap é O(n).

 \bullet Seja V um vetor de tamanho n ao qual se quer ordenar em ordem não decrescente.

- \bullet Seja V um vetor de tamanho n ao qual se quer ordenar em ordem não decrescente.
- Construímos um heap H a partir de V (O(n)).

- \bullet Seja V um vetor de tamanho n ao qual se quer ordenar em ordem não decrescente.
- Construímos um heap H a partir de V (O(n)).
- Iterativamente removemos o elemento de maior prioridade.

- \bullet Seja V um vetor de tamanho n ao qual se quer ordenar em ordem não decrescente.
- Construímos um heap H a partir de V (O(n)).
- Iterativamente removemos o elemento de maior prioridade.
- Como vimos, a remoção do elemento de maior prioridade é feita através do Procedimento Descer através da substituição do elemento de maior prioridade pelo último elemento do Heap.

- \bullet Seja V um vetor de tamanho n ao qual se quer ordenar em ordem não decrescente.
- Construímos um heap H a partir de V (O(n)).
- Iterativamente removemos o elemento de maior prioridade.
- Como vimos, a remoção do elemento de maior prioridade é feita através do Procedimento Descer através da substituição do elemento de maior prioridade pelo último elemento do Heap.
- Além disso, a última posição do heap deixa de pertencer ao heap, uma vez que removemos um de seus elementos.

- \bullet Seja V um vetor de tamanho n ao qual se quer ordenar em ordem não decrescente.
- Construímos um heap H a partir de V (O(n)).
- Iterativamente removemos o elemento de maior prioridade.
- Como vimos, a remoção do elemento de maior prioridade é feita através do Procedimento Descer através da substituição do elemento de maior prioridade pelo último elemento do Heap.
- Além disso, a última posição do heap deixa de pertencer ao heap, uma vez que removemos um de seus elementos.
- O algoritmo Heapsort faz uso desta posição liberada pelo heap para armazenar o elemento removido.

Algoritmo: Heapsort(H, n)

Entrada: Vetor de entrada H de tamanho n.

 $\begin{array}{lll} & \mathsf{ConstroiHeap}(H,n); \\ & m \leftarrow n; \\ & \mathsf{3} & \mathsf{enquanto} \ m > 1 \ \mathsf{faça} \\ & \mathsf{4} & x \leftarrow \mathsf{Remover}(H,m); \\ & & H[m] \leftarrow x; \\ & & m \leftarrow m-1; \end{array}$

Algoritmo: Heapsort(H, n)

Entrada: Vetor de entrada H de tamanho n.

```
1 ConstroiHeap(H,n);

2 m \leftarrow n;

3 enquanto m > 1 faça

4 x \leftarrow \text{Remover}(H,m);

5 H[m] \leftarrow x;

6 m \leftarrow m-1;
```

• Complexidade: $O(n \log n)$.

Algoritmo: Heapsort(H, n)

Entrada: Vetor de entrada H de tamanho n.

```
\begin{array}{c|c} \mathbf{2} & m \leftarrow n; \\ \mathbf{3} & \mathbf{enquanto} & m > 1 \ \mathbf{faça} \\ \mathbf{4} & x \leftarrow \mathsf{Remover}(H,m); \\ \mathbf{5} & H[m] \leftarrow x; \\ \mathbf{6} & m \leftarrow m-1; \end{array}
```

1 ConstroiHeap(H, n);

- Complexidade: $O(n \log n)$.
- Observação: Podemos definir um heap cujo objetivo seja descobrir a menor prioridade de um vetor.

Algoritmo: Heapsort(H, n)

Entrada: Vetor de entrada H de tamanho n.

```
1 ConstroiHeap(H,n);

2 m \leftarrow n;

3 enquanto m > 1 faça

4 x \leftarrow \text{Remover}(H,m);

5 H[m] \leftarrow x;

6 m \leftarrow m-1;
```

- Complexidade: $O(n \log n)$.
- Observação: Podemos definir um heap cujo objetivo seja descobrir a menor prioridade de um vetor.
- Tais heaps são chamados de heaps de mínimo, enquanto os que vimos são conhecidos como heaps de máximo.