Algebra Abstracta II

Nicholas Mc-Donnell

 $1 er \ semestre \ 2018$

Programa

Profesor: Ricardo Menares Email: slmenares@mat.uc.cl

- 1. Teoría de Cuerpos
- 2. Teoría de Galois

Evaluaciones

I1: 19 de AbrilI2: 16 de Mayo

I3: 18 de Junio

Examen: 3 de Julio (Módulos 1 y 2)

T1: T2:

Exposiciones:

$$NP = 0.8 \cdot \left(\frac{I1 + I2 + I3}{3}\right) + 0.2 \cdot T$$

$$NF = 0.75 \cdot NP + 0.25 \cdot E$$

Eximición: $NP \geq 5,0$

Bibliografía

Algebra, Artin

Índice general

Ι	Cuerpos
1.	Anillos
2.	Cuerpos 2.1. Morfismos
3.	Anillos Euclideanos

Parte I

Cuerpos

Capítulo 1

Anillos

Definición 1.0.1 (Anillo). $(A, +, \cdot)$ es un <u>anillo</u> si:

- 1. (A, +) es un grupo abeliano
- 2. · es conmutativa, asociativa y 1 es identidad
- 3. Propiedad distributiva: $\forall a, b, c \in A : (a+b) \cdot c = a \cdot c + b \cdot c$

Ejemplo: 1.0.1.

$$\mathbb{Z}, \mathbb{Q}, \mathbb{R}$$

$$\mathbb{Z}/m\mathbb{Z}, m \in \mathbb{Z}$$

 $(\mathbb{N}, +, \cdot)$ no es anillo

Observación 1.0.1. $A = \{0\}$ es anillo trivial $(0 \equiv 1)$

Definición 1.0.2 (Divisor de cero). $a \in A$ es <u>divisor de cero</u> si

- 1. $a \neq 0$
- $2. \ \exists b \in A : b \neq 0 \land a \cdot b = 0$

Ejemplo: 1.0.2. En $\mathbb{Z}/4\mathbb{Z}$, $\bar{2} \neq \bar{0}$ y $\bar{2} \cdot \bar{2} = \bar{4} = \bar{0}$

Definición 1.0.3 (Unidad). $u \in A$ <u>unidad</u> si $\exists v \in A : u \cdot v = 1$

$$A^* = \{ \text{unidades de } A \}$$

 (A^*, \cdot) es grupo abeliano

Ejemplo: 1.0.3.

- $\blacksquare \mathbb{R}^* = \mathbb{R} \setminus \{0\}$

$$\quad \blacksquare \ \mathbb{Z}[i]^\star = \{-1,1,-i,i\}$$

Ejercicio: 1.0.4. $m \in \mathbb{Z}, m \neq 0$

$$(\mathbb{Z}/m\mathbb{Z})^* = \{\bar{b} : (b, m) = 1\}$$

Capítulo 2

Cuerpos

Definición 2.0.1 (Cuerpo). Un <u>cuerpo</u> es un anillo tal que $A^* = A \setminus \{0\}$.

Ejemplo: 2.0.1. \mathbb{R}, \mathbb{Q} son cuerpos

 $\mathbb{Z}, \mathbb{Z}[i]$ no son cuerpos

 $\mathbb{Q}[i]$ es cuerpo

Definición 2.0.2. Sea A anillo, $p(x) = a_0 + a_1x + ... + a_nx^n \in A[x]$ es un polinomio con coeficientes en A

Proposición 2.0.2. $A[x] = \{polinomios \ con \ coeficientes \ en \ A\}$ es un anillo con las operaciones usuales.

Observación 2.0.1. Si $A \neq \{0\}$, entonces A[x] no es cuerpo.

En efecto, $x \neq 0$ y no tiene inverso pues si tuviera $p(x) = \sum_{i=0}^{n} a_i x^i$ tal que

$$x \cdot (p(x)) = 1$$

$$x(a_0 + a_1x + \dots + a_nx^n) = 1$$

$$0 + a_0 x + a_1 x^2 + \dots + a_n x^{n+1} = 1$$

Al ser igualdad de polinomios $0=1, \forall i: a_i=0 \rightarrow \leftarrow$

Ejercicio: 2.0.3. 1. Si A no tiene divisores de cero $(A[x])^* = A^*$

2. Encontrar un anillo A tal que $(A[x])^* \neq A^*$

2.1. Morfismos

A, B anillos $f: A \to B$ se dice morfismo de anillos si:

1.
$$f(0_A) = 0_B, f(1_A) = f(1_B)$$

$$2. \ \forall a, b \in A$$

Capítulo 3

Anillos Euclideanos

Sea A un anillo. Una funcion Euclideana $f: A \setminus \{0\} \to \mathbb{Z}$ es tal que $\forall a, b \in A \setminus \{0\}$, se cumple $f(ab) \geq f(a)$.

A se dice Euclideano si la funcion f ademas satisface:

$$\forall a, b \in A : b \neq 0$$

$$\exists q, r \in A : q = bq + r$$

Donde, o bien r = 0, o bien f(r) < f(b) (Algoritmo de la division)

Ejemplo: 3.0.1.

- 1. $A = \mathbb{Z}; f(x) = |x|$
- 2. A = F[x], F cuerpo f(p(x)) = grado de p(x)(Asumiendo $p(x) \neq 0$)

Observación 3.0.1. Todo anillo Euclideano es un DIP

Demostraci'on. Dada $I\subset A,$ con A Euclideano, elegimos $a\in I$ tal que f(a) cumple $f(a)=\min \mathrm{Im}(f)$

Dado $b \in I$, escribimos $b = a \cdot q + r$

Notar que $r = b - a \cdot q \in I$ y si $r \neq 0$, se tiene f(b) < f(a)