Aufgabe: Trägheitstensor

Der Trägheitstensor (um den Ursprung) der Massenverteilung μ ist die lineare Abbildung $\Theta \colon \mathbb{R}^3 \to \mathbb{R}^3$,

$$\Theta v := \int_{\mathbb{R}^3} \left(|x|^2 v - \langle x, v \rangle x \right) d\mu(x), \qquad v \in \mathbb{R}^3,$$

wobei das Integral wieder komponentenweise definiert ist. Man zeige:

- (a) Für |v|=1 ist $\langle v,\Theta v\rangle$ das Trägheitsmoment um die Gerade durch den Ursprung in Richtung v.
- (b) Die lineare Abbildung Θ ist symmetrisch und positiv semidefinit; sie ist positiv definit außer im Fall, dass die gesamte Masse entlang einer Geraden durch den Ursprung konzentriert ist.
- (c) Sind $0 \le \lambda_1 \le \lambda_2 \le \lambda_3$ die der Größe nach geordneten Eigenwerte von Θ , so gilt $\lambda_3 \le \lambda_1 + \lambda_2$.

Lösung

(a) Wir zeigen, dass für |v|=1 der Ausdruck $\langle v,\Theta v\rangle$ das Trägheitsmoment um die Gerade durch den Ursprung in Richtung v ist.

Das Trägheitsmoment einer Massenverteilung μ um eine Achse ist definiert als

$$I = \int_{\mathbb{R}^3} d(x)^2 \, d\mu(x),$$

wobei d(x) der senkrechte Abstand des Punktes x zur Achse ist.

Für eine Achse durch den Ursprung in Richtung des Einheitsvektors v ist der senkrechte Abstand eines Punktes x gegeben durch

$$d(x) = |x - \langle x, v \rangle v|.$$

Wir berechnen:

$$d(x)^2 = |x - \langle x, v \rangle v|^2 \tag{1}$$

$$= \langle x - \langle x, v \rangle v, x - \langle x, v \rangle v \rangle \tag{2}$$

$$=|x|^2 - 2\langle x, v\rangle^2 + \langle x, v\rangle^2 |v|^2 \tag{3}$$

$$=|x|^2 - \langle x, v \rangle^2,\tag{4}$$

wobei wir im letzten Schritt |v| = 1 verwendet haben.

Nun berechnen wir $\langle v, \Theta v \rangle$:

$$\langle v, \Theta v \rangle = \left\langle v, \int_{\mathbb{R}^3} \left(|x|^2 v - \langle x, v \rangle x \right) d\mu(x) \right\rangle$$
 (5)

$$= \int_{\mathbb{R}^3} \langle v, |x|^2 v - \langle x, v \rangle x \rangle \, d\mu(x) \tag{6}$$

$$= \int_{\mathbb{R}^3} (|x|^2 \langle v, v \rangle - \langle x, v \rangle \langle v, x \rangle) d\mu(x)$$
 (7)

$$= \int_{\mathbb{R}^3} \left(|x|^2 - \langle x, v \rangle^2 \right) d\mu(x) \tag{8}$$

$$= \int_{\mathbb{R}^3} d(x)^2 \, d\mu(x) = I. \tag{9}$$

Damit ist gezeigt, dass $\langle v, \Theta v \rangle$ das Trägheitsmoment um die Achse in Richtung v ist.

(b) Wir zeigen zunächst, dass Θ symmetrisch ist, und dann, dass Θ positiv semidefinit ist.

Symmetrie: Für beliebige $u, v \in \mathbb{R}^3$ gilt:

$$\langle u, \Theta v \rangle = \left\langle u, \int_{\mathbb{R}^3} \left(|x|^2 v - \langle x, v \rangle x \right) d\mu(x) \right\rangle$$
 (10)

$$= \int_{\mathbb{R}^3} \langle u, |x|^2 v - \langle x, v \rangle x \rangle \, d\mu(x) \tag{11}$$

$$= \int_{\mathbb{R}^3} \left(|x|^2 \langle u, v \rangle - \langle x, v \rangle \langle u, x \rangle \right) d\mu(x). \tag{12}$$

Analog erhalten wir:

$$\langle \Theta u, v \rangle = \int_{\mathbb{R}^3} \left(|x|^2 \langle u, v \rangle - \langle x, u \rangle \langle x, v \rangle \right) d\mu(x). \tag{13}$$

Da $\langle x, v \rangle \langle u, x \rangle = \langle x, u \rangle \langle x, v \rangle$, folgt $\langle u, \Theta v \rangle = \langle \Theta u, v \rangle$, also ist Θ symmetrisch. **Positive Semidefinitheit:** Für beliebiges $v \in \mathbb{R}^3$ mit $v \neq 0$ sei $\hat{v} = v/|v|$ der zugehörige Einheitsvektor. Dann gilt:

$$\langle v, \Theta v \rangle = |v|^2 \langle \hat{v}, \Theta \hat{v} \rangle$$
 (14)

$$= |v|^2 \int_{\mathbb{R}^3} (|x|^2 - \langle x, \hat{v} \rangle^2) d\mu(x).$$
 (15)

Nach der Cauchy-Schwarz-Ungleichung gilt $\langle x, \hat{v} \rangle^2 \leq |x|^2 |\hat{v}|^2 = |x|^2$, also ist der Integrand nicht-negativ. Daher ist $\langle v, \Theta v \rangle \geq 0$ für alle $v \in \mathbb{R}^3$.

Positive Definitheit: Es gilt $\langle v, \Theta v \rangle = 0$ genau dann, wenn

$$\int_{\mathbb{R}^3} (|x|^2 - \langle x, \hat{v} \rangle^2) d\mu(x) = 0.$$

Da der Integrand nicht-negativ ist, bedeutet dies, dass $|x|^2 - \langle x, \hat{v} \rangle^2 = 0$ μ -fast überall. Dies ist äquivalent zu $|x|^2 = \langle x, \hat{v} \rangle^2$ μ -fast überall.

Nach Cauchy-Schwarz gilt Gleichheit genau dann, wenn x und \hat{v} linear abhängig sind. Also ist $\langle v, \Theta v \rangle = 0$ genau dann, wenn die gesamte Masse auf einer Geraden durch den Ursprung in Richtung v konzentriert ist.

Daher ist Θ positiv definit, außer wenn die gesamte Masse entlang einer Geraden durch den Ursprung konzentriert ist.

(c) Wir zeigen $\lambda_3 \leq \lambda_1 + \lambda_2$ für die Eigenwerte $0 \leq \lambda_1 \leq \lambda_2 \leq \lambda_3$ von Θ . Die Matrixdarstellung von Θ bezüglich der Standardbasis ist:

$$\Theta_{ij} = \int_{\mathbb{R}^3} (|x|^2 \delta_{ij} - x_i x_j) d\mu(x),$$

wobei $x=(x_1,x_2,x_3)$ und δ_{ij} das Kronecker-Delta ist.

Die Spur von Θ ist:

$$\operatorname{tr}(\Theta) = \sum_{i=1}^{3} \Theta_{ii} = \sum_{i=1}^{3} \int_{\mathbb{R}^{3}} (|x|^{2} - x_{i}^{2}) d\mu(x)$$
 (16)

$$= \int_{\mathbb{R}^3} \left(3|x|^2 - \sum_{i=1}^3 x_i^2 \right) d\mu(x) \tag{17}$$

$$= \int_{\mathbb{R}^3} 2|x|^2 d\mu(x). \tag{18}$$

Da die Spur die Summe der Eigenwerte ist, gilt:

$$\lambda_1 + \lambda_2 + \lambda_3 = 2 \int_{\mathbb{R}^3} |x|^2 d\mu(x).$$

Für jeden Eigenwert λ_i mit zugehörigem normierten Eigenvektor v_i gilt nach Teil (a):

$$\lambda_i = \langle v_i, \Theta v_i \rangle = \int_{\mathbb{R}^3} (|x|^2 - \langle x, v_i \rangle^2) d\mu(x) \le \int_{\mathbb{R}^3} |x|^2 d\mu(x),$$

da $\langle x, v_i \rangle^2 \ge 0$.

Insbesondere gilt für den größten Eigenwert:

$$\lambda_3 \le \int_{\mathbb{R}^3} |x|^2 d\mu(x) = \frac{\lambda_1 + \lambda_2 + \lambda_3}{2}.$$

Durch Umstellen erhalten wir:

$$2\lambda_3 \leq \lambda_1 + \lambda_2 + \lambda_3$$

was äquivalent ist zu $\lambda_3 \leq \lambda_1 + \lambda_2$.