

Block 4 – Imaging Part 3: Photoluminescence Imaging

34553: Applied Photovoltaics

Photoluminescence (PL) Imaging

Photoluminescence (PL)

Outdoors PL

Using the Sun as light source

Electroluminescence a)

Photolumiescencce

29th Eur. Photovolt. Sol. Energy Conf. Exhib., pp. 2553-2554, 2014.

Daylight PL+EL

IEEE J. Photovoltaics, vol. 7, no. 5, pp. 1184-1189, 2017.

Daylight PL

Using the Sun as light source

Modulation through a light source over a

R. Bhoopathy, O. Kunz, M. Juhl, T. Trupke, and Z. Hameiri, *Prog. Photovoltaics Res. Appl.*, no. July, pp. 14–16, 2017.

EL and PL Comparison

Laser Induced Luminescence (LIL)

Solar Energy Materials and Solar Cells 192 (2019) 81–87

Image Processing - ImageJ

- Simple method to construct the PL image
 - Import the image sequence into ImageJ
 - Build the standard deviation image of the image sequence (stack)
 - Only of the frames of interest to avoid saturation when the laser was not moving
 - Crop, convert to 8bits and enhance the contrast if needed

Drag and drop image sequence folder

Take a Standard deviation image of the image sequence (stack)

Take a Standard deviation image of the image sequence (stack)

Crop, convert to 8bits and enhance the contrast if needed

Your Working Module EL

 Evaluate the most interesting region of your PV module to PL:

After the EL lab exercise, insert an 100% Isc EL image from the group working module here