Задача 9-3

Препарат «Охопе», представляющий собой смесь трёх бесцветных солей элемента, при этом X_1 и X_2 имеют одинаковый качественный состав. Кристаллики каждой из трёх солей окрашивают пламя в фиолетовый цвет. Некоторые другие свойства солей представлены в таблице ниже.

Соль	\mathbf{X}_1	X ₂	X ₃
Температура плавления, °С	разлагается до плавления		
Среда водного раствора	нейтральная, меняется на кислую при хранении	кислая	нейтральная

Для количественного анализа смеси приготовили 225.0 мл водного раствора, содержащего 0.901 г «Охопе» (далее раствор 1).

Для определения содержания соли X_1 в смеси использовали следующий метод. К аликвоте 20.0 мл раствора 1 добавили 10.0 мл серной кислоты и 5.0 мл 20%-го (по массе) раствора иодида калия. После этого полученный раствор бурого цвета титровали 0.0500 М раствором $Na_2S_2O_3$. На титрование ушло 10.4 мл раствора тиосульфата натрия.

Для определения содержания соли X_2 аликвоту **раствора 1** объёмом 20.0 мл быстро титровали 0.0100 M раствором гидроксида натрия. На титрование уходит 13.0 мл раствора NaOH.

Длительное нагревание третьей порции **раствора 1** объёмом 50.0 мл привело к выделению небольшого количества газа, в котором вспыхивает тлеющая лучина. По окончании выделения газа к полученному раствору добавили избыток раствора нитрата бария, что привело к выпадению осадка, который отфильтровали, промыли раствором соляной кислоты и высушили. Масса осадка после прокаливания составила 0.304 г.

Дополнительно измерили pH 1%-го (по массе) раствора препарата Oxone» в воде, он оказался равен 2.3.

Установите состав солей $X_1 - X_3$ и их массовое содержание (в %) в препарате реакций, которые были использованы при количественном анализе.

Изобразите структурные формулы кислот, которые образуют соли $X_1 - X_3$ и качественно укажите их силу по каждой ступени (сильная, средней силы или слабая).

Определите объём газа (при н.у.), который выделился при длительном нагревании 50 мл раствора 1.

<u>Примечание</u>: в расчётах используйте молярные массы с точностью до сотых долей г/моль.

Решение задачи 9-3

1. Судя по описанию последней части анализа, анионы, образующие соли $X_1 - X_3$, можно превратить в осаждаемый с помощью катионов Ba^{2+} анион. К таким относятся: SO_3^{2-} , SO_4^{2-} , CO_3^{2-} , SiO_3^{2-} и PO_4^{3-} . Обратим внимание, что раствор смеси «Охопе» в воде имеет кислую среду — таким образом, в состав смеси **точно** не могут входить карбонаты, сульфиты и силикаты: в первых двух случаях неминуемо происходит выделение газов из раствора, а в третьем — выпадение осадка. Таким образом, скорее всего, речь в задаче идёт о солях фосфорсодержащих или серосодержащих кислот.

По методу определения содержания соли X_1 в смеси можно догадаться, что она представляет собой окислитель, так как способна окислять иодидионы, содержание которых затем определяется иодометрическим титрованием.

Так как средние соли серной и фосфорной кислот не могут давать раствор с pH = 2.3, можно понять, что солью X_2 , которую анализируют, используя кислотно-основное титрование, является либо гидросульфат, либо один из гидрофосфатов.

Наконец, в фиолетовый цвет пламя окрашивают соли калия. Таким образом, смесь образуют элементы K, H, O и (S или P). Осталось определиться с последним элементом. Можно воспользоваться тем фактом, что фосфорная кислота является слабой по 2-й и 3-й ступеням и даже чистый 1%-й (по массе) раствор дигидрофосфата калия не способен дать такой низкий рН ($K_{a2} = 1 \cdot 10^{-7}$). Данный аргумент является довольно специфическим, но далее будет показано, что вариант с фосфором действительно не соответствует многим условиям задачи.

Тогда однозначно речь идёт о соединениях, состоящих из элементов \mathbf{K} , \mathbf{H} , \mathbf{O} и \mathbf{S} – гидросульфат-ион является кислотой средней силы ($\mathbf{K}_{a2}=10^{-2}$) и способен создать такую кислотность в растворе. Тогда \mathbf{X}_2 – гидросульфат калия \mathbf{KHSO}_4 .

По высокой устойчивости соли X_3 и нейтральной среде её водного раствора можно заключить, что X_3 – сульфат калия K_2SO_4 .

Рассчитаем общее количество серы в навеске «Охопе». В порции раствора 50мл через массу осаждённого сульфата бария:

$$v(S) = \frac{m(BaSO_4)}{M(BaSO_4)} = \frac{0.304 \ \Gamma}{233.39 \ \Gamma/\text{моль}} = 1.303 \cdot 10^{-3} \ \text{моль}.$$

А в исходной навеске содержится

$$v(S) = \frac{225}{50} \cdot 1.303 \cdot 10^{-3} \text{ моль} = 5.863 \cdot 10^{-3} \text{ моль}$$

Теперь можно рассчитать количество отдельных компонентов.

Массовое содержание KHSO₄ рассчитать проще всего по закону эквивалентов, при этом необходимо помнить о том, что объём титранта дан на одну аликвоту, а не на весь объём:

$$c(\mathit{KHSO}_4) = \frac{c(\mathit{NaOH}) \cdot V(\mathit{NaOH})}{V_{\mathrm{аликвоты}}} = \frac{0.0100 \ \mathrm{M} \cdot 13.0 \ \mathrm{мл}}{20.0 \ \mathrm{мл}} = 6.50 \cdot 10^{-3} \ \mathrm{M}$$

В навеске $0.901\,\Gamma$ «Охопе» содержится $6.50\cdot 10^{-3}\cdot 0.225=1.463\cdot 10^{-3}$ моль KHSO₄.

$$m(KHSO_4) = 1.463 \cdot 10^{-3} \cdot 136.17 = 0.199 \Gamma$$

$$\omega(KHSO_4) = \frac{m(KHSO_4)}{m_{\text{образца}}} = \frac{0.199}{0.901 \Gamma} \cdot 100\% = \mathbf{22.1}\%.$$

Соединения серы(VI) не обладают ярко выраженными окислительными свойствами (за исключением концентрированной серной кислоты); с учётом этого, можно предположить, что соль X_1 обладает окислительными свойствами за счёт наличия пероксидной группы в структуре аниона. Такая гипотеза поддерживается тем, что при нагревании происходит выделение газа без цвета и запаха, что можно объяснить диспропорционированием кислорода в степени окисления -1. Таких солей можно подобрать несколько: KHSO₅, $K_2S_2O_8$, KHS_2O_8 . Однако сразу же можно отмести последний вариант — водный раствор соли KHS_2O_8 должен иметь кислую среду, а не нейтральную. Из оставшихся двух солей по условию об одинаковом с X_2 качественном составе подходит только $KHSO_5$, отсюда можно заключить, что X_1 — монопероксосульфат калия $KHSO_5$. Среда в его водном растворе практически нейтральная (см. п. 2).

Теперь можно установить содержание KHSO₅ в смеси. Сначала KHSO₅ окисляет иодид-ионы в трииодид-ионы, количество которых затем определяется иодометрическим титрованием:

KHSO₅ + 3KI + H₂SO₄
$$\rightarrow$$
 KHSO₄ + K₂SO₄ + KI₃+ H₂O;
KI₃ + 2Na₂S₂O₃ \rightarrow Na₂S₄O₆ + 2NaI + KI.

Тогда можно рассчитать количество KHSO₅ как половину количества тиосульфата, затраченного на титрование:

$$c(KHSO_5) = \frac{c(Na_2S_2O_3) \cdot V(Na_2S_2O_3)}{2 \cdot V_{\text{аликвоты}}} = \frac{0.0500 \text{ M} \cdot 10.4 \text{ мл}}{2 \cdot 20.0 \text{ мл}} = 0.013 \text{ M}$$

В навеске 0.901 г «Охопе» содержится $0.013 \cdot 0.225 = 2.925 \cdot 10^{-3}$ моль KHSO₅.

$$m(KHSO_5) = 2.925 \cdot 10^{-3} \cdot 152.17 = 0.445 \text{ r.}$$

 $\omega(KHSO_5) = \frac{m(KHSO_5)}{m_{\text{ofpasua}}} = \frac{0.445 \text{ r}}{0.901 \text{ r}} \cdot 100\% = 49.4\%.$

Тогда массовая доля сульфата калия равна: 100% - 49.4% - 22.1% = 28.5%. В навеске 0.901 г «Охопе» содержится $\frac{0.285 \cdot 0.901}{174.26} = 1.474 \cdot 10^{-3}$ моль K_2SO_4 .

Таким образом, в навеске 0.901 г «Охопе» содержится

$$v(S) = 1.474 \cdot 10^{-3} + 2.925 \cdot 10^{-3} + 1.463 \cdot 10^{-3} = 5.862 \cdot 10^{-3}$$
моль серы.

Что согласуется с вычисленным ранее значением на основании массы сульфата бария.

Состав чистой смеси «Охопе» также выражают как тройную соль: 2KHSO₅·KHSO₄·K₂SO₄.

<u>Примечание</u>: данный расчёт является одним из вариантов решения; альтернативные расчёты, приводящие к верным результатам, оцениваются полным баллом.

Стоит отметить, что аналогичные результаты расчёта дадут соли KH_2PO_5 (X_1) (соль реально существующей пероксофосфорной кислоты), KH_2PO_4 (X_2) и K_2HPO_4 (X_3), в предположении, что весовой формой фосфора является гидрофосфат бария $BaHPO_4$ (который не столь термически устойчив, как сульфат, вследствие отщепления воды при нагревании уже при $400\,^{\circ}C$). Однако при этом раствор KH_2PO_5 будет изначально иметь слабокислую среду, а раствор K_2HPO_4 — щелочную среду, что не соответствует условиям. Также K_2HPO_4 при нагревании отщепляет воду и превращается в пирофосфат, в то время как X_3 по условию плавится без разложения при достаточно высокой температуре. Следует также отметить, что осадок соли бария промывали соляной кислотой, что должно было бы привести к растворению фосфатов. Четыре указанных пункта не позволяют рассматривать соли фосфорных кислот как альтернативное решение задачи.

Уравнения реакций, использованных при анализе:

1) KHSO₅ + 3KI + H₂SO₄
$$\rightarrow$$
 KHSO₄ + K₂SO₄ + KI₃ + H₂O
или KHSO₅ + 2KI + H₂SO₄ \rightarrow KHSO₄ + K₂SO₄ + I₂ + H₂O;
2) KI₃ + 2Na₂S₂O₃ \rightarrow Na₂S₄O₆ + 2NaI + KI
или I₂ + 2Na₂S₂O₃ \rightarrow Na₂S₄O₆ + 2NaI;

3) 2KHSO₄ + 2NaOH \rightarrow K₂SO₄ + Na₂SO₄ + 2H₂O или KHSO₄ + NaOH \rightarrow NaKSO₄ + H₂O;

4) 2KHSO₅
$$\xrightarrow{t^{\circ}}$$
 2KHSO₄ + O₂↑;

- 5) Ва $^{2+}$ + SO $_4^{2-}$ → ВаSO $_4$ ↓ (засчитываются уравнения реакций, соответствующих данной сокращённой ионной форме).
- **2.** Структурные формулы кислот и их сила по каждой ступени приведены ниже.

Кислота	Серная кислота (соли X ₂ и X ₃)	Кислота Каро (соль Х1)
Структурная формула	HOOH	HOOOO
Сила кислот	по 1-й ступени <u>сильная</u> по 2-й ступени <u>средней силы</u>	по 1-й ступени сильная (примерно как H_2SO_4 по 1-й ступени) по 2-й ступени слабая (примерно как H_2O_2 по 1-й ступени)

3. При нагревании **раствора 1** разлагается только KHSO₅, причём согласно уравнению 4 при разложении 2 моль вещества выделяется 1 моль кислорода.

$$v(O_2) = \frac{v(\text{KHSO}_5)}{2} = \frac{c(\text{KHSO}_5) \cdot V(\text{KHSO}_5)}{2} = \frac{0.013 \text{ M} \cdot 0.05 \text{ л}}{2} = 3.25 \cdot 10^{-4} \text{ моль}$$

$$V(O_2) = v(O_2) \cdot 22.4 \text{ л} = 7.28 \text{ мл}$$

<u>Источник информации</u>: DuPont[™] Oxone[®] Monopersulfate Compound, General Technical Attributes (URL-ссылка: http://www.waterguardinc.com/files/90708730.pdf).

Система оценивания:

1.	Вывод о каждом из элементов – по 1 балл Достаточно наличия элементов в составе предлагаемых соединений для оценивания полным баллом за каждый из	4 балла
	элементов Определение состава солей $X_1 - X_3 - \text{по 1 баллу}$ Установление массовых долей компонентов — по 1 баллу Если сделан расчёт для неверно установленных	3 балла 3 балла
	соединений — 0 баллов; Ответы без расчёта — 0 баллов Уравнения пяти реакций — по 1 баллу Реакции с верными сокращёнными ионными формами, но неверными полными — по 1 баллу; реакции с неверно установленными соединениями — 0 баллов	5 баллов
2.		2 балла 2 балла
3.	Объём кислорода	1 балл
	итого:	20 баллов