PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

A1

(11) International Publication Number:

WO 95/17420

C07K 7/00, 7/06, 7/08, 14/00, A61K 38/08, 38/10, 38/16

(43) International Publication Date:

29 June 1995 (29.06.95)

(21) International Application Number:

PCT/US94/13885

(22) International Filing Date:

2 December 1994 (02.12.94)

(30) Priority Data:

•

172,002

22 December 1993 (22.12.93) US

(60) Parent Application or Grant

(63) Related by Continuation

US

08/172,002 (CON)

Filed on

22 December 1993 (22.12.93)

(71) Applicants (for all designated States except US): TEMPLE UNIVERSITY - OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION [US/US]; Broad Street and Montgomery Avenue, Philadelphia, PA 19122 (US). THOMAS JEFFERSON UNIVERSITY [US/US]; 1020 Locust Street, Philadelphia, PA 19107 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): WALSH, Peter, N. [US/US]; 544 West Hortter Street, Philadelphia, PA 19119 (US). BAGLIA, Frank, A. [US/US]; 306 Marplewoods Drive, Springfield, PA 19140 (US). JAMESON, Bradford,

A. [US/US]; 810 West Sedgewick Street, Philadelphia, PA 19119 (US).

(74) Agent: MONACO, Daniel, A.; Seidel, Gonda, Lavorgna & Monaco, P.C., Suite 1800, 2 Penn Center Plaza, Philadelphia, PA 19102 (US).

(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, JP, KP, KR, KZ, LK, LR, LT, LU, MD, MG, MN, MW, NL, NO, NZ, PL, PT, RO, RU, SD, SE, SI, SK, TT, UA, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ).

Published

With international search report.

(54) Title: PEPTIDE ANALOGS OF THE ACTIVATED PLATELET BINDING SITE ON FACTOR XI

(57) Abstract

Sunther's mention analysis of human factor VI are provided which are conformationally restricted by means of intramolecular bonding

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LÜ	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
न	Finland	ML	Mali	UZ	Uzbekistan

20

25

PEPTIDE ANALOGS OF THE ACTIVATED PLATELET BINDING SITE ON FACTOR XI

Field of the Invention

The invention relates to synthetic peptide analogs of factor XI heavy chain.

Background of the Invention

Factor XI.

Human factor XI is a plasma glycoprotein that participates in the contact phase of blood coagulation. Fujikawa et al., Biochemistry 25, 2417-2424 (1986) (incorporated herein by reference) disclose the amino acid sequence of factor XI, deduced from the sequence of a cDNA insert coding for factor XI.

Factor XI circulates in plasma as a complex with its nonenzymatic cofactor, high molecular weight kininogen. The complex of factor XI and kininogen can become bound to an anionic surface, where factor XI can be activated by factor XIIa. An example of an anionic surface to which the complex can become bound is an activated platelet surface. When zinc ions are present, the complex binds specifically to high affinity, saturable receptors on activated platelets.

If factor XI of the complex becomes bound to an activated platelet, rates of factor XI activation by XIIa can

The heavy chain contains four tandem repeat sequences (designated A1, A2, A3 and A4), comprising four separate domains. Factor XIa of the complex remains bound to the activated platelet site and recognizes factor IX as its normal macromolecular substrate. Factor XIa catalyzes the activation of factor IX, which can lead to intrinsic coagulation.

5

10

15

20

25

30

35

Analysis of rates of factor IX activation by platelet-bound and unbound factor XIa indicates that these reaction rates are nearly identical. However, platelet-bound factor XIa is protected from inhibition by both plasma and platelet derived inhibitors.

Two inhibitors of factor XIa enzymatic activity in human plasma are the serpins, α -1-proteinase inhibitor and antithrombin III. Two other inhibitors are protease nexin II, which is a truncated form of the transmembrane Alzheimer's amyloid £-protein precursor, and platelet inhibitor of factor XI (PIXI), which is a low molecular weight 8,500 Da protein from platelets. None of these four inhibitors significantly inhibit platelet-bound factor XI.

Activated factor IX (factor IXa) can be produced by factor XIa enzymatic activity and can bind to a factor IX/IXa binding site on the platelet surface. Importantly, the binding of factors IX/IXa and VIIIa to their respective sites on the platelet membrane results in a twenty millionfold acceleration in the catalytic efficiency of factor X activation. Thus, platelet surface-localized factor IX activation results in enhanced intrinsic coagulation results.

The activation of factor XI and sustained expression of its enzymatic activity at the platelet surface are key biological events in hemostasis. Moreover, the binding of factor XI to the platelet surface protects it from inactivation by both plasma and platelet derived inhibitors. Bound, activated factor XI will continue its protected enzymatic activity at the platelet surface irrespective of the presence of factor XIa inhibitors. Since high molecular weight kininogen is necessary for factor XI to be efficiently bound to platelets (Sinha, et al. J. Clin. Invest. 73 1550-1556, at page 1551, col. 2, ¶3, and page 1552, col. 2, ¶2 (1984)), it has been postulated that factor XI binds indi-

WO 95/17420

5

10

15

20

rectly to platelets through kininogen. See, Greengard et al. Biochem., 25, 3884-3890 (1986). The high molecular weight kininogen binding site on domain Al of the factor XI heavy chain has been characterized by Baglia et al., J. Biolog. Chem. 267, 4247-4252 (1992); and Baglia et al., J. Biolog. Chem. 265, 4149-4154 (1990) (each incorporated herein by reference). A computer structural model useful for producing constrained peptides capable of inhibiting the binding of factor XI to high molecular weight kininogen, was also characterized. Artificially constrained peptides according to the computer model were synthesized, which correspond to amino acids 44 (Thr) to 86 (Ser) in the A1 domain of the intact factor XI heavy chain. See, Baglia et al. J. Biolog. Chem. 267, 4247-4252 (1992). The peptides are capable of inhibiting the binding of factor XI to high molecular weight kininogen. Examples of such peptides are SEQ ID NOS: 13, and 17-22.

Since high molecular weight kininogen is required for platelets to efficiently bind factor XI, it was not known prior to the present invention that a direct binding site for activated platelets exists in the heavy chain of factor XI. Also, the location of the site of interaction between the heavy chain of factor XI and the platelet surface has not been defined until the present invention.

25

30

35

Antithrombotic Therapy.

Existing methods of preventing or treating arterial and venous thrombosis involve inhibiting the blood coagulation cascade with oral anticoagulants, heparin or other anticoagulants, or alternatively by pharmacologically inhibiting platelets. For example, oral anticoagulants such as coumarin-like drugs are used to inhibit the synthesis of vitamin K-dependent proteins. They block many coagulation reactions, involving proteins such as prothrombin, factor VII, factor IX and factor X. Heparin, by potentiating the action of antithrombin III, accelerates inactivation of thrombin, factor Xa and a variety of other plasma serine proteases.

5

10

15

20

25

30

35

- 4 -

These therapeutic approaches are nonselective and inhibit coagulation reactions involved in the development of venous and arterial thrombosis while at the same time inhibiting reactions which are essential for the maintenance of normal hemostasis. Similarly, most platelet inhibitor drugs block a wide variety of platelet responses. Thus, while some drugs may be effective in preventing thrombotic processes, they can enhance the risk of bleeding. What is needed is a therapeutic agent which specifically interferes with intrinsic coagulation reactions leading to the activation of factors XI or IX, while leaving extrinsic coagulation reactions intact. This will permit normal hemostatic plug formation at sites of vascular injury, thereby minimizing the risk of bleeding during the antithrombotic therapy.

Prevention of factor XI binding to activated platelets would limit the biologically important platelet contribution to coagulation reactions. Accordingly, there is a need for antithrombotic agents which inhibit the binding of factor XI and/or factor XIa to surfaces of activated platelets.

Summary of the Invention

A synthetic peptide is provided comprising an amino acid sequence corresponding to a portion of the sequence of the binding site for activated platelets on the heavy chain of XI. The peptide has an artificially restricted conformation and the ability to inhibit the binding of factor XI to activated platelet surfaces.

In another embodiment, the invention is directed to a method of designing a peptide analog to the binding site for activated platelets on the factor XI heavy chain. The distance between two parts of a molecular model of the substrate binding site is determined at conformational equilibrium. The primary structure of the binding site is then modified to restrict that distance to the determined distance. A peptide comprising the modified primary structure is then synthesized.

- 5 -

In yet another embodiment of the invention, a method of producing a peptide having a restricted conformation is provided. Accordingly, a peptide having an amino acid sequence corresponding to a portion of the sequence of the binding site for activated platelets on the factor XI heavy chain is provided. The conformational equilibrium of that portion of the factor XI heavy chain is determined. A covalent modification is introduced into the peptide to restrict a distance between two parts of it to a distance between corresponding parts of the peptide in the equilibrium confirmation determined.

5

10

15

20

25

30

35

The invention further provides pharmaceutical compositions comprising one or more of the peptides according to the invention corresponding to a portion of the sequence of the binding site for activated platelets on the factor XI heavy chain, or a pharmaceutically acceptable salt thereof, in combination with a pharmaceutically acceptable carrier. Preferred pharmaceutical compositions further comprise a second synthetic peptide having an amino acid sequence corresponding to a portion of the sequence of the binding site for high molecular weight kininogen on the heavy chain of XI, or a pharmaceutically acceptable salt of the second peptide; wherein the second peptide has an artificially restricted conformation and the ability to inhibit the binding of factor XI to high molecular weight kininogen.

The invention also provides a method of inhibiting the binding of factor XI to activated platelets and factor XIa-induced activation of factor IX on a platelet surface. The activated platelets are contacted with one or more peptides of the invention, corresponding to a portion of the sequence of the binding site for activated platelets on the factor XI heavy chain, which peptide competes with factor XI in the binding of the activated platelets. Activation of factor IX on the platelet surface is thus indirectly inhibited by the peptides of the invention. Inhibition of factor IX activation on the platelet surface in turn inhibits factor IX's coagulant activity. Thus, the peptides of the invention are potent anticoagulants, having antithrombotic utility.

10

15

20

25

35

A preferred method for inhibiting the binding of factor XI to activated platelets and preventing the factor XIa-induced activation of factor IX on a platelet surface also comprises contacting activated platelets with a second synthetic peptide corresponding to a portion of the sequence of the binding site for high molecular weight kininogen on the heavy chain of XI, or a pharmaceutically acceptable salt of said peptide; wherein the second peptide has an artificially restricted conformation and the ability to inhibit the binding of factor XI to high molecular weight kininogen.

By "platelet binding site" or "activated platelet binding site" on factor XI heavy chain is meant the region of the intact factor XI polypeptide chain comprising from about amino acid 193 (Ala) to about amino acid 266 (Arg) of the mature polypeptide, corresponding to amino acid 13 (Ala) to amino acid 86 (Arg) of SEQ ID NO:1.

By "high molecular weight kininogen binding site" on factor XI heavy chain is meant the region of the intact factor XI polypeptide chain comprising from about amino acid 44 (Thr) to about amino acid 86 (Ser) of the mature polypeptide, corresponding to SEQ ID NO:22.

By "sequence corresponds to a portion of an identified binding site" on the factor XI heavy chain is meant a sequence which comprises a sequence segment identical to a portion of the identified binding site sequence or a sequence segment derived from a three-dimensional model of a portion of the identified binding site sequence.

Description of the Figures

30 <u>A3 Domain-Derived Peptides</u>

Figure 1 is a graph showing the effect of synthetic factor XI domain A3-derived peptides according to the invention on the binding of radio labelled factor XI to activated platelets in the presence of $\rm ZnCl_2$ (25 $\mu \rm M$), $\rm CaCl_2$ (2 mM), and high molecular weight kininogen (42 nM). The binding of $^{125}\rm I$ -factor XI was compared to control binding in the absence of competing peptides. The percentage of factor XI binding was then plotted against the concentration of the

- 7 -

synthetic peptide. The experimental protocol is set forth in detail in Example 13(d) below.

Figure 2 is a graph showing the effect of factor XI and synthetic factor XI heavy chain domain A1-, A2-, A3-, and A4-derived peptides on the binding of radiolabelled factor XI to activated platelets in the presence of ZnCl₂ (25 μ M), CaCl₂ (2 mM), and high molecular weight kininogen (42 nM). The binding of 125 I-factor XI was compared to control binding in the absence of competing XI or competing peptides. The percentage of factor XI binding was then plotted against the concentration of XI or the synthetic peptide. The experimental protocol is set forth in detail in Example 13 (d) below.

Detailed Description of the Invention

15

20

25

30

10

5

Four tandem repeat sequences (designated A1, A2, A3 and A4) comprising four separate domains, are present in the factor XI heavy chain. We have found that the platelet binding site on factor XI is located in the carboxy-terminal seventy-five residues of domain A3. The binding site consists of the sequence of amino acids Ala 193 to Arg 266 in the A3 domain. The sequence consists of anti-parallel β strands connected by ß-turns, forming three stem-loop structures. We have found that these three stem-loop structures together form a continuous surface which is utilized for the binding of platelets. The deduction of the platelet binding site structure was accomplished by computer modeling to calculate a testable three-dimensional structure utilizing the primary amino acid sequence and disulfide linkages within the A3 domain. The calculated structure shows that the three stem-loop structure are defined by amino acid residues pro 229 - Gln 233, Thr 241 - Leu 246 and Ser 248 - Ser 261, which correspond to SEQ ID NO:1, amino acids 49-53, 61-66, and 68-81, respectively.

35 The modeled A3 domain structure is used as a design template for synthesizing peptides according to the present invention that are expected to adopt a conformational repertoire overlapping that of the native protein. The sequences identified herein from the factor XI heavy chain

- 8 -

sequences identified herein from the factor XI heavy chain have not been previously identified as inhibitory of XI binding to platelets, and thus inhibitory of factor IX activation on the platelet surface. The peptides of the invention, which mimic the platelet binding site on factor XI and factor XIa, are potent inhibitors on the platelet surface of the enzymatic activity of factor XIa against its macromolecular substrate, factor IX. The peptides are potent anticoagulants, which are believed useful as antithrombotic agents.

5

10

15

20

25

30

35

Ideally, an antithrombotic agent should interfere with intrinsic coagulation reactions leading to the activation of factors XI and IX, while leaving extrinsic coagulation reactions intact, so that normal hemostatic plug formation can occur at sites of vascular injury. The peptides of the invention, by virtue of their specificity for the platelet binding site on factor XI/XIa, are believed to inhibit factor XIa-catalyzed factor IX activation on the surface of platelets, without affecting the extrinsic pathway of blood coagulation involving factors VII, X and V, and prothrombin. The inventive peptides' inhibition of platelet binding to factor XI and subsequent effect on activated partial thromboplastin time, without effect on prothrombin time, evidences their specificity for the intrinsic coagulation pathway. Thus, it is believed that the peptides inhibit or minimize intravascular thrombus formation without sacrificing normal hemostatic plug formation.

Traditional syntheses of the linear amino acid sequence of biologically interesting proteins may result in peptides that are either biologically inactive or, at best, marginally active. We have created a molecular model of the three-dimensional structure of factor XI heavy chain domain A3. The structure created in this manner is used as a template for designing conformationally-restricted synthetic analogs having the ability to inhibit the binding of factor XI and/or XIa to platelet surfaces and thus inhibit the factor XIa-induced activation of factor IX on the surface of platelets. Using both distance and geometric constraints imparted through measurements of the subdomains within the

- 9 -

calculated structure, constraints are artificially introduced, e.g., disulfide bonds, to limit the conformational freedom of a synthetic peptide that incorporates the relevant amino acids. Certain conformationally-restricted synthetic peptide analogs having the ability to inhibit the binding of factor XI or factor XIa to platelets correspond to factor XI heavy chain residues 225-236, 229-233, 241-246 and 248-261, according to the numbering of the amino acids of the mature polypeptide. The model disclosed herein may be utilized to prepare additional conformationally-restricted synthetic peptides having similar activity.

5

10

15

Appendix 1 included herein contains the set of Brookhaven coordinates and connect statements specifying our equilibrium conformation model of the major portion of factor XI heavy chain domain A3 comprising the 85 amino acids spanning positions Ala 181 to Cys 265, inclusive (SEQ ID NO:1, amino acids 1-85). The remaining amino acids of the A3 segment, Arg 266 and His 267 - Phe 272 (SEQ ID NO:16), of the factor XI heavy chain were truncated. The corresponding

25

30

35

two γ carbons of VAL 11 are designated "CG 1" and "CG 2" respectively.

The data file further comprises a connect statement which begins immediately after the coordinates for atom 771. The connect statement identifies the covalent bonding 5 pattern of each of the 771 atoms. Thus, for example, the 68th entry of the connect statement (CONNECT 68) indicates that atom 68, which is the α carbon atom PRO 8 (corresponding to amino acid 188 of the mature factor XI heavy chain sequence), is bonded to atom 67 (the nitrogen of the same 10 residue), atom 69 (the carbonyl carbon of the same amino acid residue), and atom 71 (the β carbon of the same amino acid residue). The complete data file of 771 coordinates, together with the connect statement for these entries, specifies the equilibrium conformation of factor XI heavy chain 15 domain A3.

The peptides of the invention generally have an amino acid sequence similar to the native domain A3 sequence in the vicinity of the platelet binding site. However, a covalent modification is artificially introduced to restrict the analog to the conformation (or one close to it) displayed by the above model. Preferably, the synthetic peptides consist essentially of peptide having from at least five to about 80 amino acid residues, which peptide has a restricted conformation. Generally, the covalent modification is accomplished by determining a distance between two non-contiguous parts of the amino acid chain according to the model. Then a chemical moiety is introduced to fix that determined distance in the analog. For example, a 5-6A distance can be fixed using a disulfide bond. Cysteine residues can be introduced at the appropriate positions in the model and then the new cysteine-containing model is tested for its ability to mimic the structure observed in the model. Alternatively, the disulfide bond can be artificially introduced by generating a disulfide bond between native cysteine residues when this will produce a polypeptide with a restricted conformation corresponding to the above model.

In constraining the peptides it is sometimes necessary to compensate for the orientation of amino acid

- 11 -

side chains such that torsional stress does not misalign the peptide structure. Thus, in some instances, it is desirable to employ D-Cys analogs or appropriate combinations of D-L cysteines to mimic the correct stereochemistry. In general, these peptides are then synthesized according to the standard chemistry described below.

5

10

15

20

25

30

35

The use of native or artificially introduced cysteine residues to create the artificially introduced disulfide bridge is one way to conformationally restrict the peptides. Disulfide bonds, however, can be intrinsically unstable and it is sometimes difficult to obtain a homogeneous solution of intradisulfide-bonded species without concomitant mixed disulfides. If a biologically active conformationally restricted peptide having a cysteine-cysteine disulfide bond tends to unfold, it may be more effective to constrain the peptide in a folded conformation via a covalent bond which is more stable than a disulfide bridge. There are several strategies which can be utilized in the covalent closure of the peptides. Two of these strategies are described below.

The peptide can be internally cross-linked via the side chains of a lysine ϵ -amino group and the carboxylic acid function of a glutamic or aspartic acid side chain, thus creating an amide bond. The peptide is synthesized according to standard procedures on a low substitution (0.2 mmol/gm or less) paramethylbenzhydrylamine resin. The first residue added to the resin is an N-lpha-tBOC, ϵ -fMOC lysine. The rest of the peptide synthesis is continued normally using tBOC chemistry until the final residue is added. The last residue to be added is a Z-protected glutamic acid, where the carboxylic acid moiety is protected with a tert-butyl group. Treatment of the peptide resin with piperidine/DMF removes the fMOC group from the ϵ -amino group of the initial lysine without affecting any other protection groups. Subsequent treatment with trifluoroacetic acid removes the protection of the carboxylic acid group of the glutamic acid. Following neutralization, the peptide is covalently closed using a standard diimide-mediated coupling reaction. It should be

- 12 -

emphasized that this is only one of the ways in which the synthetic peptide can be covalently closed.

Other fMOC/tBOC strategies include covalent closure of the peptide between two free amino groups utilizing toluene-2,4-diisocyanate (TDI), a heterobifunctional crosslinker. The methyl group of the aromatic ring of TDI prevents the isocyanate group in the 2 position from reacting at a pH 7.5 or below, whereas the isocyanate group in the para position is highly reactive. A shift in pH to greater than 9.0 will initiate a reaction with the isocyanate group in the 2 position, thus enabling highly specific and controlled conditions for covalent closure of the peptide.

5

10

15

20

25

30

35

By utilizing a variety of different strategies for restricting the conformation of peptides, distance geometries and orientation of the folded peptide can be controlled. Any such strategies employing chemical reactions known in the art may be used.

Using these techniques, synthetic peptide analogs can be made and tested for their ability to inhibit factor XI binding to platelets and factor XIa-induced activation of factor IX on the platelet surface. Particularly useful peptide analogs which were derived using the techniques described herein comprise amino acids 181-265, 191-266, 193-199, 226-235, 229-233, 235-266, 241-246, 248-253 and 248-261 of the factor XI heavy chain.

The 181-265, 191-266 and 235-266 peptides have an amino acid sequence identical to segments of the native factor XI sequence, i.e., SEQ ID NO:1 amino acids 1-85 and 8-86, and SEQ ID NO:2, respectively. Each of the three peptides has at least one artificially introduced disulfide bond, i.e., between their cysteine residues corresponding to positions 242 and 265 in the factor XI mature polypeptide chain. The disulfide bond is artificially introduced in the peptide chain by a chemical reaction step after the synthetic peptide is made and purified.

The 193-199, 226-235, 229-233, 241-246 and 248-261 are identical in sequence to the corresponding sequence of native factor XI, except for two modifications in each molecule. In the 193-199 peptide, Ala 193 and Ser 199 were

15

20

25

30

35

replaced by cysteine residues to generate SEQ ID NO:12. This modified 193-199 peptide is designated "Ala 193(C) - Ser 199(C)" to distinguish it from the native 193-199 peptide. In each of the 226-235, 229-233, 241-246 and 248-261 peptides, the first-numbered and last-numbered amino acids were replaced by cysteine residues to generate SEQ ID NOS:11, 9, and 8, and D-Cys-(SEQ ID NO:7)-Cys, respectively. As in the designation of the modified 193-199 peptide, the modified peptides corresponding to each of the 226-235, 229-233, 241-246 and 248-261 peptides, are listed with their native firstnumbered and last-numbered amino acids followed by a "(C)" to indicate that the native amino acids have been replaced by cysteine residues. The "(C)" after the amino acid number distinguishes the modified peptides from the native sequence peptides to which they correspond.

In the 248-253 peptide, Ser 248 was replaced by a cysteine residue, a glycine residue was inserted between amino acid Lys 252 and Lys 253, and Lys 253 was replaced by a cysteine residue to generate SEQ ID NO:10. This modified 248-253 peptide is designated "Ser 248(C) -Lys 253(G - C)" to distinguish it from the native 248-253 peptide.

All eight peptides were restricted conformationally using cysteine-cysteine disulfide bonds, but other restricting means may be advantageously used. Each peptide inhibits the activation of factor IX by factor XIa, and, as a consequence, may be used to inhibit the procoagulant function of factor XIa. Methods of assaying factor XI binding to platelets are known in the art. One such method is described hereinafter in Example 10(d).

The present peptides are relatively short in length and therefore they are easily synthesized by chemical means. Such synthetic peptides have many advantages over the use of the entire A3 domain, or the entire factor XI heavy chain. Large portions of the heavy chain cannot conveniently be made by synthetic techniques and must be made by recombinant DNA techniques, which are expensive and time consuming. Additionally, larger proteins may be insoluble, or may be immunogenic when introduced into a patient. Shorter synthet-

- 14 -

ic peptides may be more soluble and less immunogenic than larger proteins.

As used herein, "peptide" refers to a linear series of no more than about eighty (80) amino acid residues connected to one another by peptide bonds between the alphamino groups and carboxy groups of adjacent amino acid residues. Additional covalent bonds between portions of the peptide are also present to restrain the conformation of the molecule, such as amide and disulfide bonds. The term "synthetic peptide" means a chemically derived chain of amino acid residues linked together by peptide bonds that is free of naturally occurring proteins and fragments thereof.

5

10

15

20

35

The term "homology" as describing the relationship between two amino acid sequences means the extent to which the sequences, viewed from the N-terminal to the C-terminal direction, have segments of their sequences which are identical and which occur in the same N-terminal to C-terminal order in the overall sequence. The synthetic peptides according to the invention have an amino acid sequence which is the same as that of the native amino acid sequence, but for inserted, deleted, or interchanged (one or more amino acids is substituted for the same number of other amino acids) portions.

The degree of amino acid sequence homology between
the amino acid sequence of a synthetic peptide according to
the invention and that of the native peptide is expressed as
a percentage. This percentage is obtained by determining the
number of amino acids in the sequence of the synthetic peptide which occur in segments that are identical to segments
of the native amino acid sequence and which occur in the same
N-terminal to C-terminal order as the native segments, divided by the total number of amino acids in the native sequence.

A "substantial amino acid sequence homology" is any amino acid sequence homology greater that 30 percent. Preferably the homology is greater than 80 percent, most preferably greater than 90 percent.

Peptides of the present invention include any analog, fragment or chemical derivative of the peptides capable of inhibiting the binding of factor XI and/or XIa binding to

5

10

15

20

25

30

35

- 15 -

The term "analog" includes any peptide having substantial amino acid sequence homology to the peptides of the invention in which one or more amino acids have been substituted with other amino acids, and the substituted amino acids allow or require the peptide to assume the equilibrium conformation of the domain of the parent protein. cysteine, lysine and glutamic acid will be used for their side chains which can form covalent linkages to restrict the conformation of a peptide. In addition, conservative amino acid changes may be made which do not alter the biological function of the peptide. For instance, one polar amino acid, such as glycine, may be substituted for another polar amino acid; or one acidic amino acid, such as aspartic acid may be substituted for another acidic amino acid, such as glutamic acid; or a basic amino acid, such as lysine, arginine or histidine may be substituted for another basic amino acid; or a non-polar amino acid, such as alanine, leucine or isoleucine may be substituted for another non-polar amino acid.

The term "analog" shall also include any peptide which has one or more amino acids deleted from or added to an amino acid sequence identical to that of native fragment of the amino acid sequence of factor XI heavy chain domain A3, but which still retains a substantial amino acid sequence homology to the platelet binding site on factor XI or factor XIa, as well as the ability to inhibit the binding of platelets to factor XI or factor XIa.

The term "fragment" shall refer to any shorter version of the peptides identified herein having at least five amino acid residues, wherein the fragment is a synthetic peptide which is capable of inhibiting the binding of platelets to factor XI or factor XIa.

The three-letter symbols used to represent the amino acid residues in the peptides of the present invention are those symbols commonly used in the art. The amino acid residues are preferred to be in the "L" isomeric form. However, residues in the "D" isomeric form may be substituted for any L-amino acid, as long as the desired functional property of inhibition of factor XIa-induced factor IX activation is retained by the peptide. The three-letter symbols used

herein refer to the following amino acids: Ser is serine; Ile is isoleucine; Gln is glutamine; Phe is phenylalanine; His is histidine; Trp is tryptophan; Lys is lysine; Asn is asparagine; Leu is leucine; Gly is glycine; Thr is threonine; Asp is aspartic acid; Arg is arginine; and Ala is alanine.

5

10

15

20

25

30

35

The peptides of the present invention may be prepared by any of the following known techniques. Conveniently, the peptides may be prepared using the solid-phase synthetic technique initially described by Merrifield, in J. Am. Chem. Soc. 15, 2149-2154 (1963). Other peptide synthesis techniques may be found, for example, in M. Bodanszky et al., Peptide Synthesis, John Wiley & Sons, 2d Ed. (1976); Kent and Clark-Lewis in Synthetic Peptides in Biology and Medicine, eds. Alitalo, K., Partanen, P. and Vakeri, A., (Elsevier Science Publishers, Amsterdam, 1985) p. 295-58; as well as other reference works known to those skilled in the art. A summary of peptide synthesis techniques may be found in J. Stuart and J.D. Young, Solid Phase Peptide Synthelia, Pierce Chemical Company, Rockford, IL (1984). The synthesis of peptides by solution methods may also be used, as described in The Proteins, vol II, 3d Ed., Neurath, H. et al., Eds., p. 105-237, Academic Press, New York, NY (1976). Appropriate protective groups for use in such syntheses will be found in the above texts as well as in J. F. W. McOmie, Protective Groups in Organic Chemistry, Plenum Press, New York, NY (1973). Of course, the present peptides may also be prepared by recombinant DNA techniques. But, such methods are not preferred because of the need for purification and subsequent chemical modifications to conformationally restrain the peptides.

In general, these synthetic methods involve the sequential addition of one or more amino acid residues or suitably protected amino acid residues to a growing peptide chain. Normally, either the amino or carboxyl group of the first amino acid residue is protected by a suitable, selectively-removable protecting group. A different, selectively-removable protecting group is utilized for amino acids containing a reactive side group, such as lysine.

5

10

15

20

25

30

35

- 17 -

Using a solid phase synthesis as an example, the protected or derivatized amino acid is attached to an inert solid support through its unprotected carboxyl or amino group. The protecting group of the amino or carboxyl group is then selectively removed and the next amino acid in the sequence having the complementary (amino or carboxyl) group suitably protected is admixed and reacted under conditions suitable for forming the amide linkage with the residue already attached to the solid support. The protecting group of the amino or carboxyl group is then removed from this newly added amino acid residue, and the next amino acid (suitably protected) is then added, and so forth. After all the desired amino acids have been linked in the proper sequence, any remaining terminal and side group protecting groups (and solid support) are removed sequentially or concurrently, to provide the final peptide. The peptides of the invention are devoid of benzylate or methylbenzylated amino Such protecting group moieties may be used in the course of synthesis, but they are removed before the peptides Additional reactions may be necessary, as are used. described elsewhere, to form intramolecular linkages to restrain conformation.

The A3 domain-derived peptides of the present invention generally contain at least five (5) amino acid residues and up to eighty (80) amino acid residues, preferably from about five (5) to about forty-five (45) amino acid residues, and as small as about five (5) to about twenty (20) amino acids. These peptides may be linked to an additional sequence of amino acids either or both at the N-terminus and at the C-terminus, wherein the additional sequences are from 1-100 amino acids in length. Such additional amino acid sequences, or linker sequences, can be conveniently affixed to a detectable label or solid matrix, or carrier. Typical amino acid residues used for linking are tyrosine, cysteine, lysine, glutamic acid and aspartic acid, or the like.

As described above, the A3 domain-derived peptides according to the invention directly inhibit the binding of platelets to factor XI or factor XIa by competing with factor XI for binding sites on the platelet surface. Furthermore,

10

15

high molecular weight binding to factor XI has been observed to insure the efficiency of factor XI binding to platelets, Sinha, et al. J. Clin. Invest. 73 1550-1556, at 1552, col. 2, \$\frac{1}{2}\$ (1984). Factor XI heavy chain Al domain-derived peptides, are known to inhibit the binding of factor XI or factor XIa to high molecular weight kininogen, thereby indirectly inhibiting the binding of factor XI/XIa to the platelet surface. A3 domain-derived peptides of the invention may be combined with A1 domain-derived peptides to provide a dual effect.

The dual effect is attained when platelets are treated with A3 domain-derived peptides and high molecular weight kininogen is treated with A1 domain-derived peptides prior to adding factor XI/XIa to the platelets and kininogen. The A3 domain peptides directly inhibit factor XI/XIa binding to platelets by competing with intact factor XI/XIa. The A1 domain-derived peptides indirectly inhibit factor XI/XIa binding to platelets by inhibiting high molecular weight kininogen binding to factor XI/XIa.

20 <u>Al Domain-Derived Peptides</u>

Baglia et al., J. Biolog. Chem. 267, 4247-4252 (1992); and Baglia et al., J. Biolog. Chem. 265, 4149-4154 (1990) have characterized the high molecular weight kininogen binding site on the domain Al of the factor XI heavy chain. A computer structural model useful for producing constrained 25 peptides capable of inhibiting the binding of factor XI and high molecular weight kiningeen and examples of peptides which compete with factor XI for binding to kiningen were Artificially constrained synthetic peptides corresponding to amino acids 44 (Thr) to 86 (Ser) of the 30 intact factor XI heavy chain and constrained active analogs, which are capable of inhibiting the binding of factor XI and high molecular weight kininogen by competing with factor XI for binding to kininogen, were also characterized. Examples of such peptides which inhibit the binding of factor XI and 35 high molecular weight kininogen have amino acid sequences as set forth in SEQ ID NOS: 13, and 17-22.

The modeled Al-domain structure is used as a design template for synthesizing peptides that are expected

- 19 -

to adopt a conformational repertoire overlapping that of the native protein in the same manner as described for the modeled A3-domain structure. The model for the A1-domain structure disclosed herein may be utilized to prepare additional conformationally-restricted synthetic peptides having similar activity to the A1-domain derived synthetic peptides described above. Such synthetic A1-domain derived conformationally restricted peptides may be prepared, modified and constrained in essentially the same manner as described above for the A3 domain-derived peptides according to the invention.

5

10

15

20

25

30

35

Appendix 2 included herein contains the set of Brookhaven coordinates and connect statements specifying the equilibrium conformation model of Baglia et al., J. Biolog. <u>Chem.</u> 267, 4247-4252 (1992) (incorporated herein by reference) which characterizes the structure of the high molecular weight kininogen binding site corresponding to amino acids 44 (Thr) to 85 (Ser) of the intact factor XI heavy chain. The major portion of factor XI heavy chain domain A1 comprising the 85 amino acids spanning positions Glu 1 to Cys 85, inclusive (SEQ ID NO:23) is utilized. corresponding graphic molecular model satisfying these coordinates may be generated by inputting the coordinates and connect statement into any of the many commercially available molecular modeling programs which are capable of reading files in the Brookhaven format.

The Al domain-derived peptide is preferably a synthetic peptide comprising an amino acid sequence from at least five to about fifty amino acids in length, which corresponds to a portion of the sequence of the binding site for high molecular weight kininogen on the heavy chain of XI. The Al domain-derived peptide has an artificially restricted conformation and the ability to inhibit the binding of factor XI to high molecular weight kininogen. Particularly preferred Al domain-derived peptides comprise at least one amino acid sequence selected from the group consisting of SEQ ID NO:13 and SEQ ID NOS: 17-22.

Preferably the restricted conformation of the A1 domain-derived peptide is determined from the equilibrium

- 20 -

conformation model comprising the set of coordinates and connect statements of Appendix 2. The restricted conformation may be provided in the same manner as for the A3 domain-derived peptides.

5

10

15

20

25

30

Pharmaceutical Salts of Peptides

The A3 domain-derived peptide of the present invention and the A1 domain-derived peptide may be used in the form of a pharmaceutically acceptable salt. Suitable acids which are capable of forming salts with the peptides include inorganic acids such as hydrochloric acid, hydrobromic acid, perchloric acid, nitric acid, thiocyanic acid, sulfuric acid, phosphoric acid and the like; and organic acids such as formic acid, acetic acid, propionic acid, glycolic acid, lactic acid, pyruvic acid, oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid, anthranilic acid, cinnamic acid, naphthalene sulfonic acid, sulfanilic acid or the like.

Suitable bases capable of forming salts with the peptides include inorganic bases such as sodium hydroxide, ammonium hydroxide, potassium hydroxide and the like; and organic bases such a mono-, di- and tri-alkyl and aryl amines (e.g., triethylamine, diisopropyl amine, methyl amine, dimethyl amine and the like) and optionally substituted ethanol-amines (e.g., ethanolamine, diethanolamine and the like).

Pharmaceutical Compositions

For use in a method of treatment, such as treatment for inhibiting the binding of platelets to factor XI or XIa and/or inhibiting the coagulant activity of factor XIa on the platelet surface, one or more of the synthetic A3 domain derived peptides of the present invention may be present in a pharmaceutical composition in admixture with a pharmaceutically acceptable carrier.

35

Preferred pharmaceutical compositions for inhibiting the binding of platelets to factor XI or factor XIa in a mammal also include a second peptide which inhibits the binding of factor XI or factor XIa to high-molecular weight kininogen to inhibit the binding of factor XI or factor XIa

5

10

15

20

25

30

35

- 21 -

to the platelet surface. The second peptide is an artificially constrained Al domain-derived synthetic peptide as described above.

The pharmaceutical composition may be compounded according to conventional pharmaceutical formulation techniques. The carrier may take a wide variety of forms depending on the form of preparation desired for administration, e.g., sublingual, rectal, nasal, oral or parenteral. Compositions for oral dosage form may include any of the usual pharmaceutical media, such as, for example, water, oils, alcohols, flavoring agents, preservatives, coloring agents and the like in the case of oral liquid preparations (e.g., suspensions, elixirs and solutions) or carriers such as starches, sugars, diluents, granulating agents, lubricants, binders, disintegrating agents and the like in the case of oral solid preparations (e.g., powders, capsules and tablets). Controlled release forms may also be used. Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage unit form, in which case solid pharmaceutical carriers are obviously employed. If desired, tablets may be sugar coated or enteric coated by standard techniques.

For compositions to be administered parenterally, the carrier will usually comprise sterile water, although other ingredients to aid solubility or for preservation purposes may be included. Injectable suspensions may also be prepared, in which case appropriate liquid carriers, suspending agents and the like may be employed. The parenteral routes of administration may be intravenous injection, intramuscular injection or subcutaneous injection.

For intravenous administration, the peptides may be dissolved in an appropriate intravenous delivery vehicle containing physiologically compatible substances such as sodium chloride, glycine and the like, having a buffered pH compatible with physiologic conditions. Such intravenous delivery vehicles are known to those skilled in the art.

It is contemplated that the A3 domain-derived peptides of the present invention, both alone or in combination with the A1 domain-derived peptides, have utility as

5

10

15

20

25

30

35

- 22 -

anticoagulant and/or antithrombotic agents. It is contemplated that the A3 domain-derived peptides, both alone or in combination with the Al domain-derived peptides, may be administered to patients either at risk for developing arterial or venous thrombosis, or to patients with established thromboembolism to prevent extension of the thrombi. example, it is contemplated that the A3 domain-derived peptides and optionally the Al domain-derived peptides may find utility in the prevention and treatment of deep venous thrombosis and pulmonary embolism, treatment and prevention of cerebral vascular thromboembolism, the treatment and prevention of systemic arterial thrombosis and embolism, and the treatment and possibly the prophylaxis of established disseminated intravascular coagulation. Patients suffering from transient ischemic attacks are, in particular, at increased risk of brain damage through thrombus formation.

In particular, it is contemplated that the synthetic peptides will find utility in the prevention of rethrombosis following lytic therapy. While lytic agents such as tissue plasminogen activator, urokinase and streptokinase have been utilized to dissolve vascular thrombi, their use is associated with a significant rate of rethrombosis, about 20-30%. This is because lytic therapy results in the exposure of a thrombogenic site, at the location of the prior While lytic agents are effective in dissolving thrombus. vascular thrombi, they offer no protection from clot reformation. The A3 domain-derived peptides of the present invention, alone or in combination with the A1 domain-derived peptides are expected to possess substantial rethrombosis inhibiting activity, by virtue of their inhibition of the binding of platelets to factor XI or factor XIa and thus inhibition of factor XIa-induced activation of factor IX on the platelet surface, are expected to possess substantial rethrombosis inhibiting activity. The peptides may thus be administered as an adjuvant to lytic therapy to prevent reformation of dissolved vascular thrombi.

The A3 domain-derived type and A1 domain-derived peptides, which respectively directly and indirectly inhibit the binding of factor XI/XIa to a platelet surface, may be

5

10

15

20

25

30

35

administered by any convenient means which will result in the delivery of each peptide type to the bloodstream in an amount effective to inhibit the binding of factor XI and/or factor XIa to platelets. Intravenous administration is presently contemplated as the preferred administration route. amount administered will depend on the activity of the particular compound administered, which may be readily determined by those of ordinary skill in the art. The amount may also vary depending on the nature and extent of the lesion which is to be protected from rethrombosis; the size and weight of the patient; the route of administration, the age, sex and health of the patient; and other factors. Generally, the A3 domain-derived and A1 domain-derived peptides may each be administered in an amount sufficient to individually or collectively provide a plasma concentration in the range of from about 10.9 to about 10.5 M, more preferably in the range of from about 1 x 10^{-8} to about 5 x 10^{-6} M. Plasma concentrations higher or lower than these may be utilized, depending upon the activity of the particular compound being administered, and the nature of the treatment.

It may be appreciated that a single bolus injection of 1 mg of each of the two types of peptides per kilogram of treated subject body weight would achieve a maximum in vivo plasma concentration of 100 nM for each peptide type, assuming 100% recovery of drug. It is therefore contemplated that bolus administration will comprise a dosage of from about 0.1 mg to about 1 gram of each peptide type, per kilogram subject body weight. The bolus administration is most advantageously followed by a continuous infusion of each type of peptide, or a mixture of the two types of peptides, as needed. The amount of each peptide type continuously infused depends on the approximate half-life of that peptide in the circulation. Those skilled in the art would, for any factor XI- or factor XIa- platelet-binding-inhibiting peptide and for any peptide inhibiting heavyweight kininogen binding to factor XI or factor XIa, be able readily to determine the half-life from routine experimentation.

- 24 -

Therefore, a preferred method for inhibiting thrombosis comprises administering to a mammal in need of such treatment an effective amount of

i) an A3 domain-derived synthetic peptide according to the invention corresponding to a portion of the sequence of the binding site for activated platelets on the factor XI heavy chain, which has an artificially restricted conformation and the ability to compete with factor XI in the binding of the activated platelets, or a pharmaceutically acceptable salt of said A3 domain-derived peptide; and

5

10

15

25

30

35

ii) an Al domain-derived synthetic peptide corresponding to a portion of the sequence of the binding site for high molecular weight kininogen on the heavy chain of XI, which A1 domain-derived peptide has an artificially restricted conformation and the ability to inhibit the binding of factor XI to high molecular weight kininogen, pharmaceutically acceptable salt of said Al domain-derived peptide.

The A3 domain-derived peptides of the invention, either alone, or in combination with an Al domain-derived 20 peptide, inhibit the activated partial thromboplastin time without affecting the prothrombin time. According to one exemplary treatment protocol, an amount of each of the A3 domain-derived peptide and Al domain-derived peptide, shown effective by the in vitro assay described elsewhere herein, is administered to a patient by bolus administration and/or continuous infusion. The potency of each peptide, or the combination, and its clearance from the circulation is then monitored by drawing blood samples at timed intervals and assaying the patient's partial thromboplastin time. At the end of the evaluation period, the dosage of each peptide is adjusted to provide the desired in vivo effect.

The following non-limiting examples serve to illustrate the practice of the invention.

Example 1

Computer Model

A structural model of the A3 domain (residues Ala 181-Arg 266) was constructed using the computational chemis-

try package supplied by Molecular Simulations, Inc., Pasadena CA and a Silicon Graphics 4D 280 Parallel Processing Supercomputer. A description of the modeling package and methods has been previously published (Jameson, Nature 349, 465-466 (1989)). The A3 domain was prematurely truncated at Cys 265 because residues Arg 266 and His 267 - Phe 272 (SEQ ID NO:16) comprise a short connecting peptide not expected to contribute to either the conformation or the function of Information concerning cysteine disulfide the A3 domain. constraints was used to initiate model building, after which extended energy minimization calculations were carried out. Ten picosecond high energy (900°K) dynamic runs (energydependent simulations of molecular motion) were used to dislodge inappropriate amino acid contacts. The structure was allowed to cool to 300°K over a 100 picosecond dynamics calculation, followed by minimization of the resulting structure. A trajectory file, recorded over the entire dynamics run, indicated that after ~55 picoseconds of dynamics, the calculated backbone structure had stabilized, i.e., reached a low energy well. Since a disulfide-bonded cysteine has an ideal bond length from α -carbon to α -carbon of ~5-6Å, we searched the region between the β -stranded pairs (the stem portion of the stem-loop) for ideal disulfide distances as well as for locations where a disulfide bond would not be expected to induce torsional stress. The calculated structure shows 3 stem-loop structures defined by amino acid residues Pro 229 - Gln 233, Thr 241 - Leu 246, and Ser 248 - Ser 261.

30

35

25

5

10

15

20

Examples 2-3

Ala 181-Arg 266 and Asn 235-Arg 266 Peptides

The model structure of Appendix 1 was used as a design template in the construction of conformationally restricted peptides corresponding to factor XI heavy chain residues 181-266 (SEQ ID NO:1) and 235-266 (SEQ ID NO:2). An intrachain disulfide bond between the cysteine residues at positions 242 and 265 was allowed to form in the computerassisted model. The predicted folding pattern of the putative structure was tested for its ability to mimic the structure

10

15

20

25

30

35

observed in our model of domain of A3. Finding satisfactory agreement, the peptides were synthesized according to conventional solid phase procedures on an Applied Biosystems 430A peptide synthesizer by a modification of the procedure described by Kent and Clark-Lewis in Synthetic Peptides in Biology and Medicine, eds. Alitalo, K., Partanen P., and Vakeri, A. (Elsevier Science Publishers, Amsterdam (pp. 29-58 (1985)), in which dimethyl formamide replaced methylene chloride in the routine wash cycles. The synthesis was carried out using a paramethylbenzhydrylamine resin (United States Biochemical Corp., Cleveland, OH). The solvents and protected amino acids were synthesis grade biotechnology products purchased from Fischer Scientific Co., Pittsburgh, The resulting peptide was refolded by dissolving it in deionized water as a 0.1 mg/ml solution in a flask containing a stir bar. The pH was adjusted to 8.5 with NH4OH and the solution was allowed to stir at 5°C for at least three days. The resulting solution was lyophilized.

The folded peptides were examined by both reverse phase and gel filtration high performance liquid chromatography (HPLC). The HPLC system was the Waters 600 Gradient Module, Model 740 Data Module, Model 46K Universal Injector and Lambda-Max Model 481 Detector. Reverse phase chromatography was performed using a Waters C8 μBondapak Column equilibrated with 0.1% (V/V) trifluoroacetic acid. The column was eluted with a linear gradient of aqueous acetonitrile containing 0.1% trifluoroacetic acid with a detector set at a wavelength of 220 nm. Gel filtration of the peptides was also carried out using a Waters Protein-Pak 60 column which was run isocratically with 0.1% (V/V) trifluoroacetic in 20% acetonitrile. Each of the two folded peptides demonstrated a single homogenous peak with a retention time identical to the corresponding unfolded peptide. This indicates the presence of a single homogeneous mixture for each refolded peptide, and not a mixed population of diverse polymers.

Example 4

Ser 248(C)-Ser 261(C) Peptide.

Following the procedures of Example 1-3, a synthetic peptide corresponding to factor XI heavy chain residues 248-261 was modeled and prepared, except that the amino acid residues Ser 248 and Ser 261 of the native peptide were replaced with cysteine residues. The resulting modified peptide, Ser 248(C)-Ser 261(C), had the amino acid sequence of D-Cys-(SEQ ID NO:7)-Cys. The peptide was "refolded" to assume its correct conformation, as described in Examples 2-3.

10 Alternatively, the peptide was reduced with dithiothreitol and alkylated with iodoacetamide as previously described by Sinha et al., J. Biol. Chem. 260, 10714-10719 The chromatography results were the same after reduction and alkylation of the peptide, that is, a single peak with retention times identical to the original peptide was observed upon both reverse phase and gel filtration HPLC. The reduced/alkylated and corresponding refolded peptides were examined for free SH groups using the Ellman reagent, 5, 5'-dithiobis[2-nitro-benzoic acid]. It was determined that there was less than 0.02 mole of free SH per mole of peptide, which further verifies that the refolded peptide was a homogenous preparation consisting of the intramolecular disulfide-bonded peptide.

25

30

35

15

20

Example 5

Thr 241(C)-Leu 246(C) Peptide

Following the procedure of Examples 1-3, a synthetic peptide corresponding to factor XI heavy chain residues 241-246 was modeled and prepared, except that Thr 241 and Leu 246 were both replaced by Cys residues. The modified peptide, Thr 241(C)-Leu 246(C), thus had the amino acid sequence of SEQ ID NO:8.

The refolded peptide and the corresponding reduced/alkylated preparation were again found to have identical retention times by gel filtration and reverse phase Moreover, the refolded peptide, as well as the reduced/alkylated peptide, were devoid of free thiols, thus confirming that all free SH groups were either oxidized to

- 28 -

disulfides during the refolding procedure, or were reduced and alkylated during alkylation treatment.

5

10

15

20

30

35

Example 6

Pro 229(C)-Gln 233(C) Peptide

Following the procedure of Examples 1-3, a synthetic peptide corresponding to factor XI heavy chain residues 229-233 was modeled and prepared, except that Pro 229 and Gln 233 were both replaced by Cys residues. The modified peptide, Pro 229(C)-Gln 233(C), thus had the amino acid sequence of SEQ ID NO:9.

The refolded peptide and the corresponding reduced/alkylated preparation were again found to have identical retention times by gel filtration and reverse phase HPLC. Moreover, the refolded peptide, as well as the reduced/alkylated peptide, were devoid of free thiols, thus confirming that all free SH groups were either oxidized to disulfides during the refolding procedure, or were reduced and alkylated during alkylation treatment.

Example 7

Gln 226(C)-Asn 235(C) Peptide

Following the procedure of Examples 1-3, a synthetic peptide corresponding to factor XI heavy chain residues 226-235 was modeled and prepared, except that Gln 226 and Asn 235 were both replaced by Cys residues. The modified peptide, Gln 226(C)-Asn 235(C), thus had the amino acid sequence of SEQ ID NO:11.

The refolded peptide and the corresponding reduced/alkylated preparation were again found to have identical retention times by gel filtration and reverse phase HPLC. Moreover, the refolded peptide, as well as the reduced/alkylated peptide, were devoid of free thiols, thus confirming that all free SH groups were either oxidized to disulfides during the refolding procedure, or were reduced and alkylated during alkylation treatment.

- 29 -

Example 8

Ala 193(C)-Ser 199(C) Peptide

Following the procedure of Examples 1-3, a synthetic peptide corresponding to factor XI heavy chain residues 193-199 was modeled and prepared, except that Ala 193 and Ser 199 were both replaced by Cys residues. The modified peptide, Ala 193(C)-Ser 199(C), thus had the amino acid sequence of SEQ ID NO:12.

The refolded peptide and the corresponding reduced/alkylated preparation were again found to have identical retention times by gel filtration and reverse phase HPLC. Moreover, the refolded peptide, as well as the reduced/alkylated peptide, were devoid of free thiols, thus confirming that all free SH groups were either oxidized to disulfides during the refolding procedure, or were reduced and alkylated during alkylation treatment.

10

15

30

35

Example 9

Ser 248(C)-Lys 253(G-C) Peptide

Following the procedure of Examples 1-3, a synthetic peptide corresponding to factor XI heavy chain residues 248-253 was modeled and prepared, except that Ser 248 was replaced with a Cys residue, a glycine residue was inserted between Lys 252 and Lys 253, and Lys 253 was replaced by a Cys residue. The modified peptide, Ser 249(C)-Lys 253(G-C), thus had the amino acid sequence of SEQ ID NO:10.

The refolded peptide and the corresponding reduced/alkylated preparation were again found to have identical retention times by gel filtration and reverse phase HPLC. Moreover, the refolded peptide, as well as the reduced/alkylated peptide, were devoid of free thiols, thus confirming that all free SH groups were either oxidized to disulfides during the refolding procedure, or were reduced and alkylated during alkylation treatment.

10

15

35

Example 10

Val 191 - Arg 266 Peptide

Following the procedure of Examples 1-3, a synthetic peptide corresponding to factor XI heavy chain residues 191-266 was modeled and prepared. The peptide, Val 191 - Arg 266, thus had the amino acid sequence of SEQ ID NO:1, amino acids 11-86.

The refolded peptide and the corresponding reduced/alkylated preparation were again found to have identical retention times by gel filtration and reverse phase HPLC. Moreover, the refolded peptide, as well as the reduced/alkylated peptide, were devoid of free thiols, thus confirming that all free SH groups were either oxidized to disulfides during the refolding procedure, or were reduced and alkylated during alkylation treatment.

Example 11

Synthesis of Heavy-Chain Al-domain Derived Peptides

Peptides corresponding to the Al-domain high molecular weight kininogen binding site in the factor XI heavy chain were synthesized and conformationally constrained in the same general manner as set forth in Examples 1-3. However, the model structure as provided by Baglia et al., J. Biolog. Chem. 267, 4247-4252 (1992), corresponding to the Al domain was used as a design template instead of the Al domain. The Al-domain derived peptides were conformationally restricted peptides corresponding to factor XI heavy chain high molecular weight kininogen binding site. The peptides produced have an amino acid sequence according to SEQ ID NOS:13 and 17-22.

Example 12

Heavy-Chain A2-domain and A4-domain Derived Peptides

Comparative peptides corresponding to the A2-domain segment (SEQ ID NO:14) and to the A4-domain segment (SEQ ID NO:15) in the factor XI heavy chain were synthesized in the same general manner as set forth in Examples 2-3, except that no three-dimensional modeling was attempted. The peptides were conformationally constrained by introducing

cysteine-cysteine disulfide bonds between the native cysteines.

Example 13

5

35

Effect of Heavy-Chain Derived Peptides on the Binding of Factor XI to Platelets

A. Purification of Human Coagulation Proteins.

Factor XI (specific activity 250 U/mg of protein) was purified from human plasma by immunoaffinity chromatog-10 raphy using a monoclonal antibody to factor XI (Sinha et al., <u>J. Biol. Chem.</u> 260, 10714-10719 (1985)). High molecular weight kininogen (specific activity 15 U/mg) was purified by the method of Kerbiriou et al. (J. Biol. Chem. 254, 12020-12027 (1979)). Factor XI and high molecular 15 weight kininogen were assayed by minor modifications (Scott et al., Blood 63, 42-50 (1984)) of the kaolin-activated partial thromboplastin time (Proctor et al., Am. J. Clin. Pathol. 36, 212-219 (1961)). All purified proteins appeared homogeneous by sodium dodecyl sulfate-polyacrylamide gel 20 electrophoresis.

B. Radiolabeling

Purified XI was labeled with 125 I by a minor modification (Sinha et al., J. Biol. Chem. 260, 10714-10719 (1985)) of the iodogen method to a specific activity of 5 x 106 cpm/mg. The radiolabeled protein retained >90% of its biological activity compared with unlabeled factor XI.

30 C. <u>Assay of Factor XI Binding to Platelets</u>

All incubations were performed at 37°C without stirring the reaction mixture. Platelets were prewarmed and incubated at a concentration of (2-3) x $10^8/\text{mL}$ in calcium-free HEPES-Tyrodes buffer, pH 7.3, in a 1.5 mL Eppendorf plastic centrifuge tube with a mixture of radiolabeled and unlabeled factor XI, CaCl₂ (2 mM), ZnCl₂ (25 μ M), thrombin (0.1 U/ml) and high molecular weight kininogen (42 nM) or other proteins. At various times after the addition of the platelet stimulus, aliquots were removed and centrifuged through a

WO 95/17420

mixture of silicone oils as described (Greengard et al., Biochem., 25, 3884-3890 (1986)). Total binding was not corrected for any nonsaturable component. More than 86% of the platelets were sedimented under these conditions.

5

10

25

D. Effect of Peptides on Factor XI-Platelet Binding.

Platelets were incubated with ZnCl₂ (25 μ M), CaCl₂ (2 mM), thrombin (0.1 U/ml) and high molecular weight kininogen (42 nM), and ¹²⁵I-factor XI (0.025 μ g/mL) and then mixed with various concentrations of Al-, A2-, A3- or A4- derived synthetic peptides, factor XI or buffer. After 20 minutes, samples were centrifuged. Binding of ¹²⁵I-factor XI was compared to control binding in the absence of competing proteins.

The I₅₀ method of Cha, <u>Biochem. Pharmacol.</u> 24, 2177-2185 (1975) was used to determine the inhibitor constants as previously described (Sinha <u>et al.</u>, <u>Biochem.</u> 26, 3768-3775 (1987)). In the case of classical competitive inhibition, IC₅₀ (total inhibitor concentration at which the enzyme reaction velocity is 50% of the uninhibited reaction) is related to the substrate concentration as follows,

 $I_{50} = 1/2 Et + K_i + K_i S/K_m$

where Et equals the total enzyme concentration and S equals the substrate concentration. K_i was thus determined from the plot of I_{50} vs S. The results are set forth in Table 1:

30

 1.0×10^{-3}

 3.0×10^{-3}

	TABLE 1	GE 1		
Не	ractor AI or In	of Peptide hibition of Factor XI Binding to Platelets		
1.	Factor XI	5.0 x 10 ⁻⁸		
2.	Asn 235-Arg 266 (A3 Domain) (SEQ ID NO:2)	7.0 x 10 ⁻⁸		
3.	Phe 56-Ser 86 (Al Domain) (SEQ ID NO:13)	6.0 x 10 ⁻⁶		
4.	Ala 134-Ala 176 (A2 domain) (SEQ ID NO:14)	NE*		
5.	Ala 317-Gly 350	NE*		
	(A4 domain) (SEQ ID NO:15)			
6.	Ser 248(C)-Ser 261(C) (A3 Domain) (D-Cys-(SEQ ID NO:7)	3.0 x 10 ⁻⁴		
7.	Pro 229(C)-Gln 233(C)	1.0 x 10 ⁻³		

NE = No effect at concentrations up to 10^{-2} M

The K_i of XI is included in Table 1 for comparison. The factor XI A3 peptide Asn 235 - Arg 266 of SEQ ID NO:2 is

(A3 Domain) (SEQ ID NO:9) Thr 241(C)-Leu 246(C)

(A3 Domain) (SEQ ID NO:8)

a potent inhibitor of factor XI binding to platelets in the presence of high molecular weight kininogen, CaCl2, and ZnCl2.

The Ki is about 10 nM which is almost identical to the Ki for 35 factor XI binding to platelets (See Table 1). In addition, the three peptides designed from the computer model of the A3 domain all have inhibitory activity in the binding assay.

By comparison peptides from the A2 domain, e.g., Ala 134-Ala 176 (SEQ ID NO:14) and from the A4 domain, e.g., 40 Ala 317-Gly 350 (SEQ ID NO:15), have no effect upon the binding of factor XI to platelets. A peptide from the A1 domain, i.e., Phe 56-Ser 86 (SEQ ID NO:13), is an indirect but potent inhibitor of factor XI binding to platelets. The Al domain peptide inhibits the binding of factor XI to high 45 molecular weight kininogen, which is essential to promote

- 34 -

factor XI binding to a platelet receptor. Thus, the inhibition of factor XI binding to platelets by the Al peptides is an indirect inhibition since the Al peptides do not directly compete with factor XI for a binding site on the platelet surface. Conversely, the A3 peptides directly compete with factor XI for the binding site on the platelet surface.

Thus, the major binding site for platelets is located on factor XI A3 domain within residues Asn 235-Arg 266.

10

15

5

E. Synergism Between Ser 248(C)-Ser 261(C) Peptide and Folded Peptides from First and Second Stem Loops

The above factor XI binding of platelets assay was repeated with a mixture comprising equimolar amounts of the three peptides: Ser 248(C)-Ser 261(C), (D-Cys-(SEQ ID NO:7)-Cys); Pro 229(C)-Gln 233(C), (SEQ ID NO:9); and Thr 241(C)-Leu 246(C), (SEQ ID NO:8). These peptides added together showed mild synergism.

20

25

30

35

Example 14

Effect of A3-Derived Peptides on Coagulant Activity

Factor XI heavy chain peptides were assayed for inhibitory effects on blood coagulation. The activated partial thromboplastin time was measured in the presence of activated platelets or phospholipids. Since phospholipids can substitute for platelets in most coagulation reactions, parallel assays were run with the peptides to determine whether their inhibitory effects were specific for their interaction of platelets.

Factor XI activity was assayed the method of Scott et al., Blood 63, 42-50 (1984), with minor modifications. The assay determines the kaolin-activated partial thromboplastin time (Proctor et al., Am. J. Clin. Pathol. 36, 212-219 (1961)) using factor XI congenitally deficient substrate plasma. Coagulation mixtures containing kaolin, phospholipids or thrombin-activated platelets and factor XI deficient plasma were incubated at 37°C for five minutes in the presence of factor and various concentrations of the synthet-

- 35 -

ic peptides. The assay results were quantitated on double logarithmic plots of clotting times vs. concentrations of pooled normal plasma.

The A1 domain contains a binding site for high molecular weight kininogen, the A2 domain contains a substrate binding site for factor IX, and the A4 domain contains a binding site for factor XIIa. The peptides representing these respective binding sites showed inhibitory effects on intrinsic coagulation in the presence of both phospholipids and platelets, as manifested by the activated partial thromboplastin times.

5

10

15

25

30

35

By contrast, an A3 domain derived peptide according to the invention, e.g., Asn 235-Arg 266 (SEQ ID NO:2), was shown to be significantly inhibitory (Ki of about 2×10^{-6} M) only in the presence of activated platelets. A 100-fold higher concentration of Asn 235-Arg 266 (SEQ ID NO:2) was required to demonstrate a similar inhibitory effect in the presence of phospholipids.

The parallel results indicate the specificity of the A3-derived peptides according to the invention for binding to platelets, and not to phospholipids.

Example 15

Effect of Mixtures of Al- and A3-Derived Peptides on Coaqulant Activity

The factor XI heavy chain A1- and A3- derived artificially constrained peptides Phe 56 - Ser 86 (SEQ ID NO:13) and Asn 235 - Arg 266 (SEQ ID NO:2) are assayed for cumulative and synergistic effects by repeating the factor XI binding of platelets assay according to Example 13(d) with a mixture comprising equimolar amounts of the two peptides. Thus, the mixture is assayed for possible inhibitory effects on blood coagulation. The activated partial thromboplastin time is assessed in the presence of activated platelets or phospholipids. The inhibitory effect on intrinsic coagulation is greater in the presence of platelets than in the presence of phospholipids. This assay indicates the cumulative and synergistic anticoagulant effects of mixtures of

- 36 -

constrained A1-domain and A3-domain peptides, which peptides respectively correspond to the high molecular weight kiningen and platelet binding sites on factor XI.

All references with respect to synthetic, preparative and analytic procedures are incorporated herein by reference.

5

10

The present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof and, accordingly, reference should be made to the appended claims, rather than to the foregoing specification, as indicating the scope of the invention.

-37-

APPENDIX 1

Factor XI Heavy Chain Domain A3

5			
10	MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	1 N ALA 181 2 CA ALA 181 3 C ALA 181 4 O ALA 181 5 CB ALA 181 6 H ALA 181 7 N CYS 182 8 CA CYS 182 9 C CYS 182 10 O CYS 182 11 CB CYS 182	1.681 6.178 -12.945 1.00 0.00 1.610 4.951 -12.171 1.00 0.00 1.733 5.177 -10.659 1.00 0.00 1.441 4.262 -9.891 1.00 0.00 0.324 4.205 -12.524 1.00 0.00 1.161 6.237 -13.808 1.00 0.00 2.160 6.380 -10.239 1.00 0.00 2.284 6.814 -8.849 1.00 0.00 1.128 6.376 -7.948 1.00 0.00 1.357 5.728 -6.929 1.00 0.00
15	MOTA MOTA MOTA MOTA MOTA	12 SG CYS 182 13 LPG1 CYS 182 14 LPG2 CYS 182 15 H CYS 182	3.649 6.433 -8.269 1.00 0.00 4.253 7.558 -6.976 1.00 0.00 4.465 6.054 -7.396 1.00 0.00 3.924 7.273 -6.461 1.00 0.00 2.386 7.073 -10.938 1.00 0.00
20	MOTA MOTA MOTA MOTA	17 CA ILE 183 18 C ILE 183 19 O ILE 183 20 CB ILE 163	-0.120 6.711 -8.296 1.00 0.00 -0.499 7.503 -9.456 1.00 0.00 -0.466 9.031 -9.260 1.00 0.00 -0.291 9.742 -10.248 1.00 0.00
20	MOTA MOTA MOTA MOTA	21 CG1 ILE 183 22 CG2 ILE 183 23 CD1 ILE 183 24 H ILE 183	-1.889 5.506 -10.109 1.00 0.00 -2.116 7.635 -11.371 1.00 0.00 -3.259 5.046 -10.603 1.00 0.00
25	MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	25 N ARG 184 26 CA ARG 184 27 C ARG 184 28 O ARG 184 29 CB ARG 164 30 CG ARG 184 31 CD ARG 184	-0.644 9.585 -8.050 1.00 0.00 -0.723 8.870 -6.792 1.00 0.00 -2.132 8.417 -6.434 1.00 0.00 -3.117 9.048 -6.817 1.00 0.00 -0.051 9.651 -5.669 1.00 0.00 0.175 8.685 -4.512 1.00 0.00
30	MOTA ATOM ATOM ATOM MOTA MOTA ATOM ATOM	32 NE ARG 184 33 CZ ARG 1E4 34 NH1 ARG 1E4 35 NH2 ARG 164 36 H ARG 184 37 N ASP 185 38 CA ASP 185	0.808 8.554 -2.152 1.00 0.00 1.865 8.157 -1.421 1.00 0.00 3.114 8.438 -1.824 1.00 0.00 1.662 7.503 -0.276 1.00 0.00 -0.663 10.593 -7.991 1.00 0.00 -2.180 7.311 -5.683 1.00 0.00
35	MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	39 C ASP 185 40 O ASP 185 41 CB ASP 185 42 CG ASP 185 43 OD1 ASP 185 44 OD2 ASP 185 45 H ASP 185 46 N ILE 186	-3.593 7.193 -3.716 1.00 0.00 -3.568 8.394 -3.470 1.00 0.00 -4.532 6.737 -6.171 1.00 0.00 -5.894 7.245 -5.702 1.00 0.00 -6.609 7.828 -6.544 1.00 0.00 -6.216 7.010 -4.528 1.00 0.00 -1.305 6.927 -5.358 1.00 0.00
40	ATOM ATOM ATOM ATOM ATOM ATOM ATOM	47 CA ILE 186 48 C ILE 186 49 O ILE 186 50 CB ILE 186 51 CG1 ILE 186 52 CG2 ILE 186 53 CD1 ILE 186	-3.750 6.259 -2.774 1.00 0.00 -3.961 6.543 -1.357 1.00 0.00 -5.403 6.966 -1.019 1.00 0.00 -5.606 7.652 -0.020 1.00 0.00 -3.497 5.359 -0.500 1.00 0.00 -3.000 5.850 0.858 1.00 0.00 -2.352 4.587 -1.157 1.00 0.00 -4.042 5.560 1.931 1.00 0.00
45	MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	54 H ILE 186 55 N PHE 187 56 CA PHE 187 57 C PHE 187 58 O PHE 187 59 CB PHE 187 60 CG PHE 167	-3.628 5.291 -3.036 1.00 0.00 -6.386 6.570 -1.846 1.00 0.00 -7.802 6.935 -1.730 1.00 0.00 -8.686 6.355 -2.852 1.00 0.00 -8.790 6.910 -3.942 1.00 0.00 -8.011 8.442 -1.534 1.00 0.00 -7.459 9.354 -2.607 1.00 0.00

	MOTA MOTA MOTA MOTA	61 CD1 PHE 62 CD2 PHE 63 CE1 PHE 64 CE2 PHE	187 187	-8.323 9.989 -3.515 1.00 0.00 -6.085 9.653 -2.636 1.00 0.00 -7.797 10.800 -4.537 1.00 0.00
5	MOTA	65 CZ PHE		-5.560 10.456 -3.659 1.00 0.00 -6.409 10.986 -4.645 1.00 0.00
5	MOTA MOTA	66 H PHE 67 N PRO		-6.121 6.029 -2.655 1.00 0.00
	MOTA	68 CA PRO		-9.356 5.235 -2.578 1.00 0.00 -10.149 4.464 -3.517 1.00 0.00
	MOTA MOTA	69 C PRO		-9.227 3.483 -4.218 1.00 0.00
	MOTA	70 O PRO 71 CB PRO		-8.158 3.177 -3.705 1.00 0.00 -11.019 3.577 -2.632 1.00 0.00
10	MOTA	72 CG PRO	188	-10.088 3.265 -1.464 1.00 0.00
10	MOTA MOTA	73 CD PRO 74 N ASN	188 189	-9.285 4.559 -1.318 1.00 0.00 -9.685 2.914 -5.332 1.00 0.00
	MOTA	75 CA ASN	189	-9.685 2.914 -5.332 1.00 0.00 -9.375 1.533 -5.665 1.00 0.00
	MOTA	76 C ASN 77 O ASN	189 189	-10.269 0.445 -5.032 1.00 0.00
	MY	78 CB ASN	189	-11.276 0.087 -5.638 1.00 0.00 -7.901 1.246 -6.021 1.00 0.00
15	ATOM ATOM	79 CG ASN 80 OD1 ASN	189	-7.009 0.627 -4.939 1.00 0.00
13	MOTA	81 ND2 ASN	189 189	-7.006 -0.585 -4.750 1.00 0.00 -6.181 1.439 -4.278 1.00 0.00
	MOTA MOTA	82 H ASN 83 N THR	189	-10.371 3.399 -5.893 1.00 0.00
	MOTA	83 N THR 84 CA THR	190 190	-9.867 -0.095 -3.866 1.00 0.00 -10.287 -1.371 -3.261 1.00 0.00
	ATOM	85 C THR	190	-11.449 -2.119 -3.915 1.00 0.00
20	MOTA MOTA	86 O THR 87 CE THR	190 190	-12.603 -1.783 -3.655 1.00 0.00 -10.481 -1.228 -1.747 1.00 0.00
20	MOTA	88 OG1 THR	190	-11.148 -0.023 -1.436 1.00 0.00
	MOTA MOTA	89 CG2 THR 90 HG1 THR	190 190	-9.126 -1.273 -1.047 1.00 0.00 -10.871 0.265 -0.564 1.00 0.00
	MOTA	91 H THR	190	-10.871 0.265 -0.564 1.00 0.00 -9.112 0.371 -3.386 1.00 0.00
	MOTA MOTA	92 N VAL 93 CA VAL	191 191	-11.204 -3.148 -4.746 1.00 0.00
25	MOTA	94 C VAL	191	-9.928 -3.696 -5.196 1.00 0.00 -9.490 -4.942 -4.442 1.00 0.00
25	MOTA MOTA	95 O VAL 96 CB VAL	191	-9.412 -6.016 -5.032 1.00 0.00
	ATO:	97 CG1 VAL	191 191	-8.813 -2.676 -5.416 1.00 0.00 -7.533 -3.395 -5.831 1.00 0.00
	MOTA MOTA	98 CG2 VAL	191	-9.190 -1.778 -6.585 1.00 0.00
	ATOM	99 H VAL 100 N PHE	191 192	-12.015 -3.621 -5.114 1.00 0.00 -9.171 -4.604 -3.155 1.00 0.00
20	ATOM	101 CA PHE	192	-8.740 -5.946 -2.376 1.00 0.00
30	MOTA MOTA	102 C PHE 103 O PHE	192 192	-9.781 -6.336 -1.338 1.00 0.00 -10.434 -5.484 -0.739 1.00 0.00
	MOTA	104 CB PHE	192	-10.434 -5.484 -0.739 1.00 0.00 -7.353 -5.716 -1.783 1.00 0.00
	MOTA MOTA	105 CG PHE 106 CD1 PHE	192 192	-6.274 -5.522 -2.823 1.00 0.00
	ATO::	107 CD2 PHE	192	-5.711 -4.248 -3.010 1.00 0.00 -5.936 -6.574 -3.693 1.00 0.00
2 5	MOTA	108 CE1 PHE 109 CE2 PHE	192 192	-4.787 -4.032 -4.048 1.00 0.00
35	MOTA	110 CZ PHE	192	-5.015 -6.358 -4.734 1.00 0.00 -4.443 -5.086 -4.912 1.00 0.00
	MOTA MOTA	111 H PHE 112 N ALA	192 193	-9.214 -3.900 -2.709 1.00 0.00
	MOTA	113 CA ALA	193	-9.947 -7.644 -1.144 1.00 0.00 -9.199 -8.618 -1.910 1.00 0.00
	MOTA MOTA	114 C ALA 115 O ALA	193	-10.134 -9.300 -2.896 1.00 0.00
40	MOTA	116 CB ALA	193 193	-10.801 -10.254 -2.500 1.00 0.00 -8.568 -9.633 -0.959 1.00 0.00
40	MOTA NOTA	117 H ALA 118 N ASP	193	-10.636 -7.979 -0.485 1.00 0.00
	ATOM	118 N ASP 119 CA ASP	194 194	-10.163 -8.811 -4.150 1.00 0.00 -10.859 -9.410 -5.293 1.00 0.00
	ATOM	120 C ASP	194	-11.956 -8.497 -5.846 1.00 0.00
	MOTA MOTA	121 O ASP 122 CB ASP	194 194	-13.108 -8.915 -5.926 1.00 0.00 -11.338 -10.635 -4.959 1.00 0.00
ΛE	MOTA	123 CG ASP	194	-12.128 -11.621 -6.002 1.00 0.00
45	MOTA MOTA	124 OD1 ASP 125 OD2 ASP	194 194	-12.127 -11.216 -7.186 1.00 0.00
	ATOM	126 H ASP	194	-9.616 -7.981 -4.343 1.00 0.00
	ATOM ATOM	127 N SER 128 CA SER	195 195	-11.603 -7.272 -6.265 1.00 0.00
	ATOM	129 C SER	195	-12.504 -6.379 -6.978 1.00 0.00 -13.561 -5.770 -6.056 1.00 0.00
5 0	ATOM ATOM	130 O SER	195	-13.527 -4.575 -5.771 1.00 0.00
50	ATO:	131 CB SER 132 OG SER	195 195	-13.122 -7.119 -6.170 1.00 0.00 -13.982 -6.283 -8.908 1.00 0.00
	ATOM	133 H SER	195	-10.652 -6.952 -6.138 1.00 0.00

	ATO	1. VOIA 130	-14.522 -6.59	0 -5.628 1.00 0.00
	ATA AOTA	136 C ASN 196	-15.708 -6.13 -15.618 -6.38	3 -4.941 1.00 0.00
	ATOM MOTA	137 O ASN 196	-15.437 (-7.52	3 -3.011 1.00 0.00
5	MOTA MOTA	139 CG ASN 196	-16.934 -6.81 -17.418 -6.08	9 -6.793 1.00 0.00
	MOTA	141 ND2 ASN 196	-18.419 -5.37 -16.718 -6.27	7 -6.746 1.00 0.00
	MOTA MOTA		-14.470 -7.576 -15.761 -5.32	-5.869 1.00 0.00
	MOTA MOTA	144 CA ILE 197	-15.845 -3.95	2 -3.110 1.00 0.00
10	MOTA	146 O ILE 197	-15.862 -3.007 -16.788 -3.026	7 -1.920 1.00 0.00
	MOTA MOTA	147 CB ILE 197 148 CG1 ILE 197	-17.038 -3.724	-4.045 1.00 0.00
	ATOM ATOM	149 CG2 ILE 197	-18.352 -4.166	
	MOTA	150 CD1 ILE 197 151 H ILE 197	-15.829 -1.795 -15.755 -5.476	-5.104 1.00 0.00
	MOTA MOTA	152 N ASP 198 153 CA ASP 198	-14.814 -2.194	-1.800 1.00 0.00
15	MOTA MOTA	154 C ASP 198	-14.632 -1.337 -14.762 0.108	-0.645 1.00 0.00 -1.115 1.00 0.00
	MOTA	155 O ASP 196 156 CB ASP 196	-14.383 0.423 -13.264 -1.570	-2.242 1.00 0.00
	MOTA MOTA	157 CG ASP 198 158 OD1 ASP 198	-12.774 -3.021	0.138 1.00 0.00
	MOTA	159 OD2 ASP 198	-13.450 -3.939 -11.696 -3.183	-0.370 1.00 0.00 0.743 1.00 0.00
20	MOTA	160 H ASP 198 161 N SER 199	-14.064 -2.241 -15.309 1.006	-2.475 1.00 0.00
	ATOM ATOM	162 CA SER 199 163 C SER 199	-15.771 0.784	1.071 1.00 0.00
	ATOM ATOM	164 O SER 199	-17.331 -0.630	1.155 1.00 0.00 2.211 1.00 0.00
	ATO:	166 OG SER 199	-15.988 2.177 -16.662 2.154	1.674 1.00 0.00
25	MOTA	167 H SER 199 168 N VAL 200	-15.400 1.949	-0.639 1.00 0.00
	MOTA	169 CA VAL 200	-19.237 -0.477	0.064 1.00 0.00 0.055 1.00 0.00
	ATOM	171 O VAL 200	-19.695 -1.741 -20.743 -1.696	0.790 1.00 0.00 1.431 1.00 0.00
	MOTA MOTA	172 CB VAL 200 173 CG1 VAL 200	-19.837 -0.297 -19.734 -1.571	-1.339 1.00 0.00
•	ATOM ATOM	174 CG2 VAL 200	-21.291 0.151	-2.174 1.00 0.00 -1.227 1.00 0.00
30	ATOM:	176 N MET 201	-17.481 0.309 -18.958 -2.856	-0.779 1.00 0.00 0.706 1.00 0.00
	ATOM ATOM	177 CA MET 201 178 C MET 201	-19.349 -4.080 -19.136 -3.944	1.369 1.00 0.00
	ATOM ATOM	179 O MET 201	-18.011 -4.057	2.894 1.00 0.00 3.380 1.00 0.00
	ATOM ATOM	181 CG MET 201	-18.648 -5.297 -19.445 -6.556	0.788 1.00 0.00 1.125 1.00 0.00
35	ATCM:	182 SD MET 201 183 CE MET 201	-18.595 -7.703 -19.884 -8.961	2.238 1.00 0.00
	MOTA MOTA	184 LPD1 MET 201 185 LPD2 MET 201	-18.235 -8.024	2.420 1.00 0.00 1.760 1.00 0.00
	ATOM ATOM	186 H MET 201	-18.727 -7.367 -18.108 -2.863	2.813 1.00 0.00 0.159 1.00 0.00
	ATOM	187 N ALA 202 188 CA ALA 202	-20.238 -3.653 -20.261 -3.210	3.600 1.00 0.00
40	MOTA MOTA	189 C ALA 202 190 O ALA 202	-19.309 -2.033	5.178 1.00 0.00
	ATOM ATOM	191 CB ALA 202	-18.212 -2.219 -19.991 -4.373	5.698 1.00 000 5.940 1.00 0.00
	MOTA	193 N PRO 203	-21.111 -3.597 -19.729 -0.847	3.096 1.00 0.00 4.708 1.00 0.00
	MOTA MOTA	194 CA PRO 203 195 C PRO 203	-18.926 0.342	4.483 1.00 0.00
4-5	ATOM ATOM	196 O PRO 203	-18.061 1.141	5.497 1.00 0.00 6.573 1.00 0.00
45	ATO::	198 CG PRO 203	-19.896 1.509 -21.239 0.864	4.335 1.00 0.00
	ATOM ATOM	199 CD PRO 203 200 N ASP 204	-21.084 -0.635	5.245 1.00 0.00
	ATOM ATOM	201 CA ASP 204	-15.427 0.422	5.124 1.00 0.00 5.951 1.00 0.00
	ATOM	203 O ASP 204	-14.546 1.506 -13.969 1.323	5.349 1.00 0.00 4.277 1.00 0.00
50	ATOM ATOM	204 CS ASP 204 205 CG ASP 204	-14.653 -0.887 -15.284 -1.841	6.118 1.66 0.00
	ATOM	206 OD1 ASP 204		7.132 1.00 0.00 7.700 1.00 0.00

5	OTA OTA OTA OTA OTA OTA	208 H ASP 204 209 N ALA 205 210 CA ALA 205 211 C ALA 205 212 O ALA 205 213 CB ALA 205	-14.690 -2.922 7.321 1.00 0.00 -16.464 -0.214 4.218 1.00 0.00 -14.419 2.620 6.076 1,00 0.00 -13.401 3.615 5.807 1.00 0.00 -12.030 3.011 6.068 1.00 0.00 -11.858 2.242 7.011 1.00 0.00 -13.637 4.865 6.650 1.00 0.00
10	MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	215 N PHE 206 216 CA PHE 206 217 C PHE 206 218 O PHE 206 219 CB PHE 206 220 CG PHE 206 221 CD1 PHE 206	-14.941 2.711 6.934 1.00 0.00 -11.050 3.316 5.220 1.00 0.00 -11.085 4.394 4.245 1.00 0.00 -9.741 4.428 3.540 1.00 0.00 -8.905 3.560 3.789 1.00 0.00 -12.229 4.239 3.241 1.00 0.00 -13.158 5.434 3.197 1.00 0.00 -12.674 6.698 2.813 1.00 0.00
15	ATOM ATOM ATOM MOTA ATOM ATOM ATOM ATOM ATOM	223 CE1 PHE 206 224 CE2 PHE 206 225 CZ PHE 206 226 H PHE 206 227 N VAL 207 228 CA VAL 207 229 C VAL 207	-14.491 5.297 3.622 1.00 0.00 -13.523 7.818 2.850 1.00 0.00 -15.322 6.425 3.715 1.00 0.00 -14.842 7.685 3.312 1.00 0.00 -10.166 2.839 5.332 1.00 0.00 -9.550 5.401 2.638 1.00 0.00 -8.374 5.477 1.781 1.00 0.00 -8.103 4.109 1.155 1.00 0.00
20	MOTA MOTA MOTA MOTA MOTA MOTA MOTA	230 O VAL 207 231 CB VAL 207 232 CG1 VAL 207 233 CG2 VAL 207 234 H VAL 207 235 K CYS 208 236 CA CYS 208 237 C CYS 208	-9.021 3.301 1.023 1.00 0.00 -7.158 6.088 2.489 1.00 0.00 -7.405 7.513 2.979 1.00 0.00 -6.665 5.225 3.639 1.00 0.00 -10.322 6.012 2.413 1.00 0.00 -6.864 3.814 0.770 1.00 0.00 -6.649 2.584 0.026 1.00 0.00
25	MOTA MOTA MOTOM ATOM ATOM ATOM ATOM ATOM	238 O CYS 208 239 CB CYS 208 240 SG CYS 208 241 LPG1 CYS 208 242 LPG2 CYS 208 243 H CYS 208 244 N GLY 209 245 CA GLY 209	-6.523
30	MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	245 CA GLY 209 246 C GLY 209 247 O GLY 209 248 H GLY 209 249 N ARG 210 250 CA ARG 210 251 C ARG 210 252 O ARG 210	-6.384 0.555 3.258 1.00 0.00 -5.937 1.246 4.541 1.00 0.00 -4.826 1.007 5.001 1.00 0.00 -6.623 2.521 2.582 1.00 0.00 -6.815 2.102 5.085 1.00 0.00 -6.668 2.886 6.312 1.00 0.00 -6.094 2.114 7.492 1.00 0.00
35	MOTA MOTA MOTA MOTA MOTA MOTA MOTA	253 CB ARG 210 254 CG ARG 210 255 CD ARG 210 256 NE ARG 210 257 CZ ARG 210 258 NH1 ARG 210 259 NH2 ARG 210	-5.956 4.221 6.092 1.00 0.00 -6.442 5.261 7.107 1.00 0.00 -6.055 6.676 6.667 1.00 0.00 -6.500 7.693 7.629 1.00 0.00 -5.956 8.919 7.755 1.00 0.00 -5.029 9.347 6.891 1.00 0.00
40	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM		-7.695 2.209 4.599 1.00 0.00 -6.966 1.624 8.376 1.00 0.00 -8.405 1.782 8.256 1.00 0.00 -8.976 0.651 7.404 1.00 0.00 -9.263 0.858 6.226 1.00 0.00 -9.017 1.850 9.658 1.00 0.00 -10.542 1.855 9.601 1.00 0.00
45	ATOM ATOM ATOM ATOM ATOM ATOM	269 H ILE 211 270 N CYS 212 271 CA CYS 212 272 C CYS 212 273 O CYS 212	-8.529 3.115 10.362 1.00 0.00 -11.120 1.893 11.013 1.00 0.00 -6.612 1.115 9.172 1.00 0.00 -9.086 -0.548 7.996 1.00 0.00 -9.376 -1.812 7.326 1.00 0.00 -10.604 -1.939 6.782 1.00 0.00 -11.363 -0.976 6.262 1.00 0.00
50	ATOM ATOM ATOM ATOM ATOM ATOM		-8.287 -2.251 6.336 1.00 0.00 -6.673 -1.417 6.355 1.00 0.00 -6.913 -0.775 6.391 1.00 0.00 -6.913 -0.775 6.391 1.00 0.00 -8.844 -0.607 8.974 1.00 0.00 11.431 -3.119 6.899 1.00 0.00

	MOTA MOTA MOTA	281 C TH 282 O TH	R 213 R 213	-10.891 -4.347 7.466 1.00 0.00 -12.044 -5.339 7.666 1.00 0.00 -12.626 -5.392 8.747 1.00 0.00
	MOTA MOTA	283 CB TH 284 OG1 TH		-10.107 -4.066 8.760 1.00 0.00
5	MOTA	285 CG2 TH	R 213	-9.544 -5.238 9.308 1.00 0.00 -10.924 -3.322 9.816 1.00 0.00
•	MOTA MOTA	286 HG1 TH		-9.132 -5.011 10.146 1.00 0.00
	MOTA	287 H THI 288 N HIS		-12.376 -3.175 6.548 1.00 0.00 -12.411 -6.130 6.645 1.00 0.00
	MOTA MOTA	289 CA HIS	214	-11.783 -6.232 5.332 1.00 0.00
	MOTA	290 C HIS 291 O HIS		-10.343 -6.746 5.358 1.00 0.00
10	MOTA	292 CB HIS	214	-9.759 -6.923 6.427 1.00 0.00 -12.031 -5.004 4.457 1.00 0.00
10	MOTA MOTA	293 CG HIS 294 NDI HIS		-12.807 -5.327 3.202 1.00 0.00
	MOTA	295 CD2 HIS		-12.298 -5.983 2.106 1.00 0.00 -14.160 -5.183 3.051 1.00 0.00
	MOTA MOTA	296 CE1 HIS 297 NE2 HIS		-13.341 -6.228 1.285 1.00 0.00
	MOTA	298 H HIS	214 214	-14.476 -5.746 1.809 1.00 0.00 -13.191 -6.751 6.805 1.00 0.00
15	MOTA MOTA	299 N HIS 300 CA HIS	215	-9.779 -7.034 4.179 1.00 0.00
13	MOTA	300 CA HIS	215 215	-8.493 -7.705 4.102 1.00 0.00
	MOTA MOTA	302 O HIS	215	-7.318 -5.639 4.397 1.00 0.00
	ATOM	303 CB HIS 304 CG HIS	215 215	-6.281 -8.38E 2.754 1.00 0.00
	ATOM	305 ND1 HIS	215	-7.927 -10.813 1.986 1.00 0.00
20	MOTA MOTA	306 CD2 HIS 307 CE1 HIS	215 215	-9.008 -10.551 3.911 1.00 0.00
20	P:OLY	308 NE2 HIS	215	-8.191 -12.034 2.484 1.00 0.00 -8.847 -11.916 3.650 1.00 0.00
	MOTA MOTA	309 HD1 HIS	215	-7.427 -10.617 1.132 1.00 0.00
	MCTA	311 N PRO	215 216	-10.267 -6.869 3.322 1.00 0.00 -6.370 -7.505 5.266 1.00 0.00
	MOTA MOTA	312 CA PRO	216	-5.386 -6.857 6.114 1.00 0.00
25	MOTA	313 C PRO 314 O PRO	216 216	-4.201 -6.246 5.364 1.00 0.00
25	MOTA ATOM:	315 CB PRO	216	-4.934 -7.895 7.142 1.00 0.00
	MOTA	316 CG PRO 317 CD PRO	216 216	-5.591 -9.218 6.747 1.00 0.00
	MOTA MOTA	318 N GLY	217	-6.440 -8.931 5.512 1.00 0.00 -4.478 -5.253 4.515 1.00 0.00
	ATOM	319 CA GLY 320 C GLY	217 217	-3.469 -4.342 4.013 1.00 0.00
30	ATOM:	321 O GLY	217	-3.693 -2.993 4.682 1.00 0.00 -4.251 -2.062 4.072 1.00 0.00
30	ATOM ATOM	322 H GLY 323 N CYS	217 218	-5.444 -5.019 4.336 1.00 0.00
	ATO:	324 CA CYS	218	-3.297 -2.887 5.954 1.00 0.00 -3.632 -1.738 6.770 1.00 0.00
	ATOM ATOM	325 C CYS 326 O CYS	218	-2.423 -0.837 6.986 1.00 0.00
	ATO:	327 CB CYS	218 218	-1.573 -1.116 7.830 1.00 0.00 -4.306 -2.206 8.058 1.00 0.00
35	MOTA MOTA	328 SG CYS	218	-5.957 -1.493 8.271 1.00 0.00
33	HOTA	329 LPG1 CYS 330 LPG2 CYS	218 218	-5.764 -0.855 8.315 1.00 0.00
	MOTA MOTA	331 H CYS	218	-2.835 -3.667 6.401 1.00 0.00
	ATOM	332 N LEU 333 CA LEU	219 219	-2.341 0.235 6.191 1.00 0.00
	ATOM ATOM	334 C LEU	219	-1.561 2.570 6.260 1.00 0.00
40	ATOM	335 O LEU	219 219	-1.534 3.316 5.282 1.00 0.00
40	MOTA	337 CG LEU	219	-0.280 0.795 4.959 1.00 0.00 -1.073 0.663 3.661 1.00 0.00
	ATOM ATOM	338 CD1 LEU 339 CD2 LEU	219 219	-0.315 1.376 2.546 1.00 0.00
	ATOM	340 H LEU	219	-1.201 -0.817 3.311 1.00 0.00 -3.099 0.434 5.552 1.00 0.00
	MOTA MOTA	341 N PHE 342 CA PHE	220 220	-1.910 2.970 7.480 1.00 0.00
45	ATOM	343 C PHE	220	-2.361 4.301 7.790 1.00 0.00 -1.193 5.293 7.873 1.00 0.00
43	ATOM MOTA	344 O PHE 345 CB PHE	220	-0.508 5.363 8.893 1.00 0.00
	ATOM	345 CB PHE 346 CG PHE	220 220	-3.141 4.184 9.094 1.00 0.00 -4.114 5.295 9.331 1.00 0.00
		347 CD1 PHE	220	-5.252 5.059 10.129 1.00 0.00
		348 CD2 PHE 349 CE1 PHE	220 220	-3.661 6.612 9.141 1.00 0.00
ΕO	ATOM:	350 CE2 PHE	220	-6.191 7.650 9.901 1.00 0.00
50			220 220	-5.335 7.418 10.703 1.00 0.00
				-1.949 2.287 8.223 1.00 0.00

	MOTA MOTA MOTA MOTA MOTA MOTA	353 N PHE 354 CA PHE 355 C PHE 356 O PHE 357 CB PHE 358 CG PHE	221 221 221 221 221	-0.984 6.084 6.811 1.00 0.00 -0.011 7.166 6.841 1.00 0.00 -0.485 8.407 6.093 1.00 0.00 -0.776 9.419 6.728 1.00 0.00 1.377 6.703 6.405 1.00 0.00
5	MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	359 CD1 PHE 360 CD2 PHE 361 CE1 PHE 362 CE2 PHE 363 CZ PHE 364 H PHE	221 221 221 221 221 221 221	2.494 7.480 7.066 1.00 0.00 2.567 7.536 8.469 1.00 0.00 3.407 8.213 6.286 1.00 0.00 3.563 8.307 9.093 1.00 0.00 4.408 8.979 6.911 1.00 0.00 4.486 9.026 8.314 1.00 0.00 -1.563 5.985 5.989 1.00 0.00
10	ATO::	366 CA THR	222 222	-0.554 8.339 4.757 1.00 0.00 -0.994 9.463 3.945 1.00 0.00
	MOTA MOTA MOTA MOTA MOTA	367 C THR 368 O THR 369 CB THR 370 OG1 THR 371 CG2 THR 371 HG1 THR	222 222 222 222 222 222 222	-0.700 9.333 2.457 1.00 0.00 -1.540 9.019 1.615 1.00 0.00 -2.375 9.984 4.304 1.00 0.00 -3.297 8.934 4.164 1.00 0.00 -2.740 11.154 3.389 1.00 0.00
15	MOTA	373 H THR 374 N PHE	222 223	-0.240 7.504 4.283 1.00 0.00
	MOTA	375 CA PHE 376 C PHE	223	0.556 9.672 2.228 1.00 0.00 1.299 9.979 1.030 1.00 0.00
	ATOM ATOM	377 O PHE	223 223	0.791 10.929 -0.059 1.00 0.00 -0.352 11.385 -0.078 1.00 0.00
	MOTA	379 CG PHE	223 223	2.587 10.531 1.570 1.00 0.00 3.748 9.665 1.232 1.00 0.00
20	MOTA MOTA	380 CD1 PHE 381 CD2 PHE	223 223	4.800 10.422 0.720 1.00 0.00 4.060 8.678 2.189 1.00 0.00
	MOTA	382 CE1 PHE 383 CE2 PHE	223 223	5.803 10.798 1.626 1.00 0.00 5.222 8.850 2.960 1.00 0.00
	MOTA MOTA	384 CZ PHE 385 H PHE	223 223	5.983 10.021 2.787 1.00 0.00 1.131 9.627 3.057 1.00 0.00
	ATOM ATOM	386 N PHE 387 CA PHE	224 224	1.736 11.194 -0.977 1.00 0.00 1.677 12.196 -2.022 1.00 0.00
25	MOTA	388 C PHE 389 O PHE	224 224	2.947 12.157 -2.694 1.00 0.00 3.920 11.472 -2.577 1.00 0.00
	ATOM ATOM	390 CE PHE 391 CG PHE	224 224	1.520 13.545 -1.328 1.00 0.00 0.980 14.652 -2.194 1.00 0.00
	MOTA MOTA	393 CD2 PHE	224 224	-0.406 14.859 -2.296 1.00 0.00 1.871 15.489 -2.885 1.00 0.00
30	ATOM ATOM	395 CE2 PHE	224 224	-0.898 15.878 -3.130 1.00 0.00 1.378 16.445 -3.787 1.00 0.00
•	MOTA MOTA		224 224	-0.008 16.646 -3.903 1.00 0.00 2.618 10.709 -0.886 1.00 0.00
	ATOM ATOM	398 N SES	225 225	2.929 12.908 -4.00 1.00 0.00
	MOTA MOTA	400 C SER	225 225	3.890 12.022 -6.069 1.00 0.00
35	MOTA MOTA	402 CB SER	225 225	4.036 14.496 -5.449 1.00 0.00
	MOTA MOTA	404 H SER	225 226	2.102 13.450 -4.204 1.00 0.00
	ATOM ATOM	406 CA GLN	226 226	4.304 11.559 -8.461 1.00 0.00
	MOTA MOTA	408 O GLN 2	226 226	5.664 10.983 -8.858 1.00 0.00 6.674 11.245 -8.206 1.00 0.00
40	MOTA	410 CG GLN 2	26 26	3.732 12.428 -9.583 1.00 0.00 4.579 13.689 -9.762 1.00 0.00
	ATOM ATOM	412 OE1 GLN 2	26	3.722 14.880 -10.166 1.00 0.00 3.298 15.660 -9.315 1.00 0.00
	ATOM ATOM	414 H GLN 2	26	3.471 15.019 -11.469 1.00 0.00 4.835 13.270 -7.347 1.00 0.00
A E	MOTA	416 CA GLU 2	27 27	5.671 10.210 -9.953 1.00 0.00 6.859 9.634 -10.569 1.00 0.00
45	MOTA MOTA	418 O GLU 2	27 27	7.312 8.327 -9.906 1.00 0.00 7.740 8.351 -8.754 1.00 0.00
	MOTA	420 CG GLU 2	27 27	7.982 10.672 -10.687 1.00 0.00 8.413 10.865 -12.142 1.00 0.00
	MOTA	422 OE1 GLU 2:	27 27	9.525 11.904 -12.302 1.00 0.00 9.931 12.486 -11.272 1.00 0.00
50	ATOM ATOM	42; H GLU 2:	27 27	9.949 12.095 -13.461 1.00 0.00 4.793 10.061 -10.425 1.00 0.00
	ATO!:	425 N TRP 2	28	7.228 7.216 -10.673 1.00 0.00

			-43-	
	MOTA MOTA MOTA	427 C TRP 2: 428 O TRP 2:	28 7.373 4.655 -10.953 1.00 0 28 6.137 4.643 -11.001 1.00 0	.00
	MOTA MOTA	430 CG TRP 2: 431 CD1 TRP 2:	28 9.072 6.774 -12.965 1.00 0 28 8.103 7.661 -13.305 1.00 0	.00
5	MOTA MOTA MOTA MOTA	432 CD2 TRP 22 433 NE1 TRP 22 434 CE2 TRP 22 435 CE3 TRP 22	28	.00
	MOTA MOTA MOTA	435 CE3 TRP 22 436 CZ2 TRP 22 437 CZ3 TRP 22 438 CH2 TRP 22	28 9.741 7.269 -16.542 1.00 0 28 11.434 5.679 -15.832 1.00 0	.00
	MOTA MOTA MOTA	439 N PRO 22 440 CA PRO 22 441 C PRO 22	89 8.111 3.502 -11.044 1.00 0 7.678 2.225 -10.448 1.00 0	.00 .00 .00
10	MOTA MOTA MOTA	442 O PRO 22 443 CB PRO 22 444 CG PRO 22	7.536 -0.157 -10.413 1.00 0.99 8.625 2.128 -9.275 1.00 0.99 9.964 2.649 -9.813 1.00 0.	.00
	MOTA MOTA MOTA MOTA	445 CD PRO 22 446 N LYS 23 447 CA LYS 23 448 C LYS 23	0 9.050 0.657 -11.843 1.00 0. 0 10.279 -0.025 -11.393 1.00 0.	00
15	ATOM ATOM ATOM	448 C LYS 23 449 O LYS 23 450 CB LYS 23 451 CG LYS 23	0 11.469 1.845 -12.310 1.00 0. 0 10.510 -1.323 -12.161 1.00 0.	00
	ATOM ATOM ATOM	452 CD LYS 230 453 CE LYS 230 454 NZ LYS 230	C 5.711 -3.653 -12.442 1.00 0. 0 9.307 -3.566 -13.909 1.00 0. 0 9.563 -4.831 -14.605 1.00 0.	00
20	ATOM ATOM ATOM ATOM	455 H LYS 236 456 N GLU 233 457 CA GLU 233 458 C GLU 233	1 12.592 0.637 -10.807 1.00 0. 1 12.722 -0.424 -9.848 1.00 0.	00 00 00
	MOTA MOTA MOTA	459 O GLU 231 460 CB GLU 231 461 CG GLU 231	1 11.349 -0.545 -7.906 1.00 0. 1 14.203 -0.764 -9.792 1.00 0. 1 14.336 -2.243 -9.506 1.00 0.	00 00
25	ATOM ATOM ATOM ATOM	462 CD GLU 231 463 OE1 GLU 231 464 OE2 GLU 231 465 H GLU 231	1 14.048 -1.611 -7.215 1.00 0.1 1 14.192 -3.765 -7.766 1.00 0.1	00 00
	MOTA MOTA MOTA	466 N SER 232 467 CA SER 232 468 C SER 232	2 12.957 1.064 -7.942 1.00 0.0 2 12.908 1.459 -6.541 1.00 0.0 2 11.648 2.237 -6.206 1.00 0.0	00 00 00
30	MOTA MOTA MOTA MOTA	469 O SER 232 470 CB SER 232 471 OG SER 232 472 N GLN 233	14.167 2.218 -6.095 1.00 0.0 15.017 2.584 -7.161 1.00 0.0	00 00
	ATOM ATOM ATOM	473 CA GLN 233 474 C GLN 233 475 O GLN 233	9.174 2.030 -5.955 1.00 0.0 8.279 0.824 -5.701 1.00 0.0	00 00
35	ATOM ATOM ATOM ATOM	476 CE GLN 233 477 CG GLN 233 478 CD GLN 233 479 OE1 GLN 233	8.559 3.081 -6.882 1.00 0.0 9.741 3.929 -7.344 1.00 0.0 9.442 5.152 -8.153 1.00 0.0	00 00 00
	ATOM ATOM ATOM	480 NE2 GLN 233 481 II GLN 233 482 N ARG 234	10.307 5.642 -8.874 1.00 0.0 8.221 5.637 -8.019 1.00 0.0 10.549 0.640 -6.746 1.00 0.0 8.088 -0.057 -6.695 1.00 0.0	00 00
40	ATON ATON ATON	483 CA ARG 234 484 C ARG 234 485 O ARG 234	7.367 -1.307 -6.485 1.00 0.0 5.845 -1.090 -6.342 1.00 0.0 5.330 -0.049 -6.748 1.00 0.0)0)0)0
	ATOM ATOM ATOM ATOM	486 CB ARG 234 487 CG ARG 234 488 CD ARG 234 489 NE ARG 234	7.730 -2.318 -7.576 1.00 0.0 9.048 -3.037 -7.283 1.00 0.0 9.002 -4.416 -7.944 1.00 0.0 9.937 -4.505 -9.070 1.00 0.0	0
45	ATOM ATOM ATOM	490 CZ ARG 234 491 NH1 ARG 234 492 NH2 ARG 234	11.263 -4.566 -8.900 1.00 0.0 11.751 -4.685 -7.661 1.00 0.0 12.089 -4.487 -9.954 1.00 0.0	0
4 0	MOTA MOTA MOTA MOTA	493 HE ARG 234 494 HH21ARG 234 495 HH22ARG 234 496 HH11ARG 234	9.565 -4.416 -10.004 1.00 0.0 11.710 -4.427 -10.888 1.00 0.0 13.091 -4.466 -9.818 1.00 0.0 11.129 -4.814 -6.879 1.00 0.0	0 (i
	MOTA MOTA	497 HH12ARG 234 498 H ARG 234	12.739 -4.556 -7.494 1.00 0.00 8.479 0.112 -7.613 1.00 0.0	Ç

5	MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	499 N ASS 500 CA ASS 501 C ASS 502 O ASS 503 CB ASS 504 CG ASS 505 OD1 ASS 506 ND2 ASS 507 H ASS 508 N LET	N 235 N 235 N 235 N 235 N 235 N 235 N 235 N 235 N 235	5.153 -2.065 -5.727 1.00 0.00 3.753 -2.045 -5.267 1.00 0.00 2.712 -1.332 -6.154 1.00 0.00 2.665 -1.690 -7.322 1.00 0.00 3.661 -1.706 -3.803 1.00 0.00 4.364 -2.678 -2.871 1.00 0.00 4.952 -3.669 -3.296 1.00 0.00 4.312 -2.367 -1.577 1.00 0.00 5.693 -2.873 -5.446 1.00 0.00 1.834 -0.377 -5.772 1.00 0.00
10	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	509 CA LEU 510 C LEU 511 O LEU 512 CB LEU 513 CG LEU 514 CD1 LEU 515 CD2 LEU 516 H LEU 517 F. CYS	236 236 236 236 236 236 236 236	1.578
15	NOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	518 CA CYS 519 C CYS 520 O CYS 521 CB CYS 522 SG CYS 523 LPG1 CYS 524 LPG2 CYS	237 237 237 237 237 237 237	-0.298
20	MOTA MOTA MOTA MOTA MOTA MOTA	525 H CYS 526 N LEU 527 CA LEU 528 C LEU 529 O LEU 530 CB LEU 531 CG LEU	237 238 238 238 238 238 238 238	-0.351 1.183 -2.124 1.00 0.00 -0.242 -2.918 -1.897 1.00 0.00 0.655 -3.954 -1.427 1.00 0.00 1.163 -4.755 -2.625 1.00 0.00 0.506 -4.831 -3.664 1.00 0.00 -0.036 -4.897 -0.433 1.00 0.00
25	MOTA MOTA MOTA MOTA MOTA MOTA MOTA	532 CD1 LEU 533 CD2 LEU 534 H LEU 535 N LEU 536 CA LEU 537 C LEU 538 O LEU	238 238 238 239 239 239 239	-0.868 -5.287 1.891 1.00 0.00 1.199 -3.946 1.550 1.00 0.00 -0.618 -3.035 -2.824 1.00 0.00 2.327 -5.384 -2.440 1.00 0.00 2.617 -6.483 -3.258 1.00 0.00 3.628 -6.080 -4.461 1.00 0.00
30	ATOM 5 ATOM 5 ATOM 5 ATOM 5 ATOM 5 ATOM 5	339 CB LEU 340 CG LEU 341 CD1 LEU 342 CD2 LEU 343 H LEU 344 N LYS	239 239 239 239 239 240	1.740 -7.528 -3.528 1.00 0.00 1.909 -8.639 -2.496 1.00 0.00 C.601 -8.663 -1.742 1.00 0.00 2.335 -9.524 -3.198 1.00 0.00 2.24 -5.196 -1.582 1.00 0.00 1.651 -6.614 -4.534 1.00 0.00
35	ATOM 5	46 C LYS 47 O LYS 48 CB LYS 49 CG LYS 50 CD LYS 51 CE LYS 52 NZ LYS	240 240 240 240 240 240 240 240	5.799 -6.378 -5.605 1.00 0.00 6.949 -5.529 -5.069 1.00 0.00 6.976 -4.318 -5.266 1.00 0.00 6.263 -7.734 -6.123 1.00 0.00 7.251 -7.571 -7.291 1.00 0.00 6.006 -8.882 -7.496 1.00 0.00 9.512 -8.635 -7.487 1.00 0.00 9.587 -6.297 -6.138 1.00 0.00
40	ATOM 55	55 HZ1 LYS 56 H LYS 57 N THR 58 CA THR	240 240 240 240 241 241 241	\$.271 -8.512 -5.459 1.00 0.00 10.186 -7.306 -6.096 1.00 0.00 10.528 -8.611 -5.921 1.00 0.00 5.139 -7.224 -3.782 1.00 0.00 7.681 -6.176 -4.366 1.00 0.00 £.935 -5.530 -3.608 1.00 0.00
45	ATOM 56	CB THR COG1 THR CG2 THR CG3 CG2 THR CG4 H THR CG5 N SER CG6 CA SER	241 241 241 241 241 242 242	10.511 -5.705 -5.403 1.00 0.00 9.467 -6.512 -2.564 1.00 0.00 9.808 -7.739 -3.172 1.00 0.00 8.408 -6.763 -1.494 1.00 0.00 7.511 -7.179 -4.275 1.00 0.00 10.543 -3.815 -4.189 1.00 0.00 11.686 -3.203 -4.845 1.00 0.00
50	ATOM 56 ATOM 576 ATOM 576 ATOM 577	8 O SER 9 CB SER 0 OG SER	242 242 242 242 242	13.018 -3.825 -4.400 1.00 0.00 13.061 -4.651 -3.491 1.00 0.00 11.633 -1.679 -4.677 1.00 0.00 10.927 -1.214 -3.500 1.00 0.00 10.536 -0.451 -3.629 1.00 0.00

5	MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	572 H SER 573 N GLU 574 CA GLU 575 C GLU 576 O GLU 577 CB GLU 578 CG GLU 579 CD GLU 580 OE1 GLU 581 OE2 GLU 582 H GLU	242 10.11 243 14.09 243 15.46 243 16.17 243 16.30 243 16.66 243 17.42 243 17.70 243 17.70 243 17.70 243 17.70	96 -3.421 -5.07 53 -3.924 -4.93 73 -3.201 -3.81 25 -3.805 -3.16 66 -3.729 -6.19 67 -2.254 -6.43 69 -2.016 -7.73 65 -2.999 -8.43 60 -3.421 -5.07 60 -3.822 -7.998 60 -3.421 -5.07 60 -3.822 -7.998	4 1.00 0.00 0 1.00 0.00 9 1.00 0.00 7 1.00 0.00 2 1.00 0.00 5 1.00 0.00 6 1.00 0.00
10	MOTA MOTA MOTA MOTA MOTA MOTA	583 N SER 584 CA SER 585 C SER 586 O SER 587 CB SER 588 OG SER	244 15.80 244 16.14 244 16.13 244 15.31 244 17.48 244 17.23	1 -1.922 -3.628 8 -1.114 -2.482 6 -1.999 -1.243 8 -2.927 -1.188 6 -0.419 -2.691	1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
15	MOTA MOTA MOTA MOTA MOTA MOTA MOTA	589 H SER 590 N GLY 591 CA GLY 592 C GLY 593 O GLY 594 H GLY 595 N LEU 596 CA LEU	244 15.093 245 17.063 245 17.203 245 15.843 245 15.486 245 17.625 246 15.062 246 14.257	3 -1.533 -4.228 9 -1.682 -0.312 9 -1.988 1.058 1 -1.550 1.463 3 -0.435 1.794 9 -0.865 -0.435 1 -2.443 1.395	
20	MOTA MOTA MOTA MOTA MOTA MOTA MOTA	599 CB LEU 600 CG LEU 601 CD1 LEU 602 CD2 LEU	246 14.830 246 14.218 246 13.130 246 11.823 246 11.202 246 12.335	-3.938 3.399 -4.569 4.406 -2.568 1.278 -1.707 1.266 -1.722 -0.173	1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
25	MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	604 CA PRO 605 C PRO 606 O PRO 607 CB PRO 608 CG PRO 609 CD PRO 610 N SER 611 CA SER	247 14.743 247 13.223 247 12.824 247 12.824 247 13.957 247 15.449 246 11.026 248 11.026	-4.728 2.392 -4.611 2.461 -3.626 3.441 -2.914 4.273 -2.569 2.914 -2.497 2.631 -3.910 2.357 -3.341 3.436 -2.880 4.671	1.00 0.00 1.06 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
30	ATOM ATOM ATOM ATOM ATOM ATOM ATOM	613 O SER 2 614 CB SER 2 615 OG SER 2 616 H SER 2 617 N THR 2	246 9.981 245 10.806 448 10.815 448 10.762 448 10.629 45 8.696 49 8.012	-1.419 4.798 -0.559 5.081 -3.586 5.956 -5.004 5.836 -3.796 2.628 -1.185 4.570	1.05 0.00 1.06 0.00 1.05 0.00 1.05 0.00 1.06 0.00 1.06 0.00 1.06 0.00
35	MOTA MOTA MOTA MOTA MOTA MOTA MOTA	619 C THR 2 620 O THR 2 621 CB THR 2 622 OG1 THR 2 623 CG2 THR 2 624 N ARG 2	49 8.031 49 8.026 49 6.567 49 6.491 49 6.305 50 8.054	0.271 6.375 -0.677 7.165 -0.150 4.372 -1.540 4.064 0.543 3.033 1.544 6.762	1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
40	ATOM ATOM ATOM ATOM ATOM ATOM	626 C ARG 25 627 O ARG 25 628 CB ARG 25 629 CG ARG 25	50 7.984 50 6.561 50 5.629 50 8.467 50 8.586 60 8.666 60 8.423	1.755 8.672 2.364 8.147 3.362 8.303 3.702 9.783 5.217 9.900	1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
45	MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	632 CZ ARG 25 633 NH1 ARG 25 634 NH2 ARG 25 635 HE ARG 25 636 HH21ARG 25 637 HH22ARG 25 638 HH11ARG 25	8.737 60 9.277 60 8.512 60 7.996 60 8.10; 60 8.753 60 9.436	6.903 11.688 7.782 10.830 7.257 12.961 15.016 11.914 16.595 13.605 16.185 13.278 17.510 9.871 1	1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00
50	ATOM ATOM ATOM ATOM	639 HH12ARG 25 640 H ARG 25 641 H ILE 25 642 CA ILE 25 643 C ILE 25 644 O ILE 25	0	8.713 11.136 1 2.267 0.059 1 0.928 9.708 1 0.701 10.311 1 0.642 11.836 1	.00 0.00 .07 0.00 .09 0.00 .00 0.00 .00 0.00

5	MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	645 CB ILE 646 CG1 ILE 647 CG2 ILE 648 CD1 ILE 649 H ILE 650 N LYS 651 CA LYS 652 C LYS 653 O LYS 654 CB LYS 655 CG LYS	251 251 251 251 251 252 252 252 252 252	4.382 -0.492 5.248 -1.752 3.948 -0.154 4.532 -2.938 7.202 0.448 5.683 -0.463 5.685 -0.680 6.616 -1.829 7.587 -1.622 4.248 -0.953 4.137 -0.776	9.656 9.706 E.228 9.057 10.094 12.392 13.627 14.190 14.311 15.826	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
10 ·	MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	656 CD LYS 657 CE LYS 658 NZ LYS 659 H LYS 660 N LYS 661 CA LYS 662 C LYS	252 252 252 252 253 253 253	5.522 -0.659 5.410 -0.482 6.747 -0.371 6.036 -1.202 6.313 -3.031 7.107 -4.220 8.538 -4.066	16.468 17.983 18.589 11.802 13.686 13.938 13.435	1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00
15	MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	663 O LYS 664 CB LYS 665 CG LYS 666 CD LYS 667 CE LYS 668 HZ LYS 669 H LYS 670 N SER	253 253 253 253 253 253 253 253 254	8.793 -3.355 6.424 -5.451 5.153 -5.821 4.555 -7.128 4.137 -8.042 3.415 -9.219 5.491 -3.129 9.467 -4.730	12.463 13.314 14.082 13.556 14.709 14.197 13.107 14.130	1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00
20	MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	671 CA SER 672 C SER 673 O SER 674 CB SER 675 OG SER 676 H SER 677 I: LYS	254 254 254 254 254 254 254	10.893 -4.649 11.248 -5.052 10.779 -6.071 11.663 -5.458 12.165 -4.629 9.172 -5.289 12.115 -4.250	13.865 12.437 11.932 14.925 15.969 14.918 11.812	1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00
25	MOTA MOTA MOTA MOTA MOTA MOTA MOTA	678 CA LYS 679 C LYS 680 O LYS 681 CB LYS 682 CG LYS 683 CD LYS 684 CE LYS	255 255 255 255 255 255 255	12.760 -4.621 13.918 -5.557 14.866 -5.167 13.250 -3.358 13.936 -3.721 14.422 -2.466 15.109 -2.829	10.569 10.892 11.572 9.836 8.518 7.789 6.471	1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00
30	ATOM ATOM ATOM ATOM ATOM ATOM ATOM	685 NZ LYS 686 H LYS 687 N ALA 688 CA ALA 689 C ALA 690 O ALA 691 CB ALA	255 255 256 256 256 256 256	15.572 -1.615 12.446 -3.420 13.817 -6.806 14.802 -7.828 15.023 -8.716 14.057 -9.139 14.345 -8.652	5.760 12.264 10.431 10.729 9.514 8.875 11.929	1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00
35	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	692 H ALA 693 N LEU 694 CA LEU 695 C LEU 696 O LEU 697 CB LEU 699 CG LEU 699 CD1 LEU	256 257 257 257 257 257 257 257	13.017 -7.06(16.299 -8.961 16.736 -9.736 16.594 -8.912 17.580 -8.601 16.061 -11.118 16.351 -12.076 15.160 -12.15(9.870 9.199 8.029 6.759 6.093 7.947 9.105	1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00
40	MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	700 CD2 LEU 701 H LEU 702 N SER 703 CA SER 704 C SER 705 O SER 706 CE SER	257 257 258 258 258 258 258 258	16.761 -13.455 17.024 -8.606 15.363 -8.505 15.095 -7.393 15.858 -6.159 15.989 -5.994 13.554 -7.327	6.585 9.794 6.460 5.595 6.163 7.392 5.494	1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00
45	MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	707 OG SER 708 HG SER 709 H SER 710 H GLY 711 CA GLY 711 C GLY 713 O GLY 714 H GLY	258 258 258 259 259 259 259 259	12.953 -8.569 12.045 -8.389 14.581 -8.797 16.428 -5.338 16.803 -3.904 15.796 -2.862 14.832 -3.186 15.961 -5.509	5.075 4.799 7.031 5.234 5.425 5.997 6.682 4.368	1.00 1.00 1.00 1.00 1.00 1.00 1.00	0.00 0.00 0.00 0.00 0.00 0.00
50	ATOM ATOM ATOM ATOM	71: H GLY 715 H PHE 716 CA PHE 717 C PHE	260 260 260	16.125 -1.593 15.508 -0.436 16.089 0.638	5.737 6.360 5.752	1.00 1.00 1.00	0 00 0 00 0 00

```
MOTA
                     71€
                           0
                                PHE
                                       260
                                                17.202
                                                          1.238
                                                                    6.092
                                                                            1.00
                                                                                   0.00
            MOTA
                     719
                           CB
                               PHE
                                       260
                                                15.745
15.177
                                                          -0.484
                                                                    7.881
                                                                            1.00
                                                                                   0.00
            MOTA
                     720
                           CG
                               PHE
                                       260
                                                           0.700
                                                                    8.651
                                                                            1.00
                                                                                   0.00
            ATOM:
                     721
                           CD1
                               PHE
                                      260
                                                13.792
                                                           0.984
                                                                    8.606
                                                                            1.00
                                                                                   0.00
            ATOM
                     722
                           CD2
                               PHE
                                      260
                                                16.035
                                                           1.529
                                                                    9.410
                                                                            1.00
                                                                                   0.00
            ATOM
                     723
                           CE1
                               PHE
                                      260
                                                13.270
                                                          2.085
                                                                    9.318
                                                                            1.00
                                                                                   0.00
            MOTA
                     724
                                                15.512
                           CE2
                               PHE
                                      260
                                                           2.630
   5
                                                                  10.121
                                                                            1.00
                                                                                  0.00
            NOTA:
                     725
                           CZ
                               PHE
                                      260
                                                14.130
                                                          2.908
                                                                  10.075
                                                                           1.00
                                                                                  0.00
            MOTA
                     726
                           H
                               PHE
                                      260
                                                16.923
                                                         -1.427
                                                                   5.137
                                                                           1.00
                                                                                  0.00
            MOTA
                     727
                          N
                               SER
                                      261
                                                15.320
                                                          1.476
                                                                   4.864
                                                                           1.00
                                                                                  0.00
            ATOM
                     728
                          CA
C
                               SER
                                      261
                                                15.673
                                                                   4.327
                                                                           1.00
                                                                                  0.00
            ATO!4
                     729
                               SER
                                      261
                                                14.470
                                                          3.530
                                                                   3.751
                                                                           1.00
                                                                                  0.00
            MOTA
                     730
                          0
                               SER
                                      261
                                                13.329
                                                          3.093
                                                                   3.896
                                                                           1.00
                                                                                  0.00
            NTON
                     731
                          CЭ
                               SER
                                      261
                                                16.871
                                                          2.703
                                                                   3.376
                                                                           1.00
 10
                                                                                  0.00
            MOTA
                     732
                          CG
                               SER
                                      261
                                                16.596
                                                          1.901
                                                                   2.252
                                                                           1.00
                                                                                  0.00
            ATOM
                     733
                          HG
                               SER
                                      261
                                                16.853
                                                          0.997
                                                                   2.454
                                                                           1.00
                                                                                  0.00
            MOTA
                     734
                          H
                               SER
                                      261
                                                14.420
                                                          1.088
                                                                   4.620
                                                                           1.00
                                                                                  0.00
           ATOM
                     735
                          к
                               LEU
                                     262
                                                14.733
                                                          4.683
                                                                   3.125
                                                                           1.00
                                                                                  0.00
           ATOM:
                     736
                          CÀ
                              LEU
                                     262
                                                13.699
                                                          5.609
                                                                   2.692
                                                                           1.00
                                                                                  0.00
           ATOM
                     737
                          C
                               LEU
                                     262
                                                13.023
                                                          5.163
                                                                   1.402
                                                                           1.00
                                                                                  0.00
           ATO:
                    738
                         О
                              LEU
                                     262
                                                13.624
                                                          5.222
                                                                   0.331
                                                                           1.00
                                                                                 0.00
           NOTA
                    739
 15
                         CB
                              LEU
                                     262
                                                14.302
                                                         7.014
                                                                  2.505
                                                                           1.00
                                                                                 0.00
           ATOM
                    740
                         CG
                              LEU
                                     262
                                                14.632
                                                                  3.788
                                                                           1.00
                                                                                 0.00
           ATOM:
                    741
                         CD1
                              LEU
                                     262
                                               13.483
                                                         8.708
                                                                  4.183
                                                                           1.00
                                                                                 0.00
           NOTA
                    742
                         CD2 LEU
                                     262
                                               15.007
                                                         6.818
                                                                  4.918
                                                                          1.00
                                                                                 0.00
           ATOM
                    743
                              LEU
                                     262
                                               15.693
                                                         4.980
                                                                  3.028
                                                                          1.00
                                                                                 0.00
           ATOM
                    744
                              GLN
                                     263
                                                         4.782
                                                                  1.502
                                                                          1.00
                                                                                 0.00
           ATOM
                    745
                                               10.901
                         CA
                              CLN
                                     263
                                                         4.646
                                                                  0.330
                                                                          1.00
                                                                                 0.00
           ATOM
                    746
                         \boldsymbol{c}
                              GLN
                                     263
                                               10.115
                                                         5.935
 20
                                                                  0.106
                                                                          1.00
                                                                                 0.00
           ATOM
                    747
                         0
                              GLN
                                     263
                                                9.526
                                                         6.480
                                                                  1.039
                                                                          1.00
                                                                                 0.00
           MOTA
                    748
                         CB
                              GLN
                                     263
                                                9.996
                                                         3.405
                                                                  0.441
                                                                          1.00
                                                                                 0.00
           MOTA
                    749
                         CG
                              GLN
                                     263
                                                9.007
                                                         3.550
                                                                  1.600
                                                                          1.00
                                                                                 0.00
          ATOM
                    750
                         CD
                             GLN
                                     263
                                                8.396
                                                         2.197
                                                                  1.972
                                                                          1.00
                                                                                 0.00
          ATOM
                    751
                         OE1
                             GLN
                                     263
                                                7.313
                                                         2.107
                                                                  2.526
                                                                          1.00
                                                                                 0.00
          ATOM:
                    752
                         NE2 GLN
                                    263
                                                9.149
                                                         1.153
                                                                  1.637
                                                                          1.00
                                                                                 0.00
          ATOM
                   753
                         Ε.
                              GLN
                                    263
                                                         4.731
                                               11.308
25
                                                                  2.410
                                                                          1.00
                                                                                 0.00
          MOTA
                   754
                         1
                              SER
                                    264
                                               10.122
                                                         6.431
                                                                 -1.134
                                                                          1.00
                                                                                 0.00
          MOTA
                   755
                         CA
                             SEP
                                    264
                                                9.404
                                                         7.652
                                                                 -1.482
                                                                          1.00
                                                                                 0.00
          MOTA
                   756
                        č
                             SER
                                    264
                                                8.655
                                                         7.486
                                                                -2.800
                                                                          1.00
                                                                                0.00
          MOTA
                   757
                        0
                             SER
                                    264
264
                                                9.186
                                                         6.936
                                                                -3.764
                                                                          1.00
                                                                                 0.00
          MOTA
                   758
                         Č3
                             SER
                                              10.364
                                                         8.8:6
                                                                          1.00
                                                                                0.00
          MOTA
                   759
                         CG
                             SER
                                    264
                                              10.310
                                                         9.605
                                                                -0.310
                                                                          1.00
                                                                                0.00
          ATOM:
                   760
                        H
                             SER
                                    264
                                              10.627
                                                         5.948
                                                                 -1.864
                                                                         1.00
                                                                                0.00
          ATOM
30
                   761
                             CYS
                                    265
                                               7.423
                                                         8.013
                                                                -2.829
                                                                         1.00
                                                                                0.00
          HOTA
                   762
                        CA
                             CYS
                                    265
                                               6.602
                                                        8.177
                                                                -4.025
                                                                         1.00
                                                                                0.00
          ATO:4
                   763
                        Œ
                             CYS
                                    265
                                               7.151
                                                        9.269
                                                                -4.953
                                                                         1.00
                                                                                0.00
          MOTA
                   764
                        С
                             CYS
                                    265
                                               8.333
                                                        9.598
                                                                -4.877
                                                                         1.00
                                                                                0.00
          ATOM
                   765
                        C3
                             CYS
                                    265
                                               6.290
                                                        6.835
                                                                -4.702
                                                                         1.00
                                                                                0.00
          MOTA
                   766
                        SG
                             CYS
                                    265
                                               6.101
                                                        6.850
                                                                -6.507
                                                                         1.00
                                                                                0.00
         MOTA
                   767
                       LPG1 CYS
                                    265
                                               6.442
                                                        7.417
                                                                -6.623
                                                                         1.00
                                                                                0.00
         MOTA
                   768
                       LPG2
                            CYS
                                    265
35
                                               5.951
                                                        6.184
                                                                -6.576
                                                                         1.00
                                                                                0.00
         MOTA
                   769
                        OXT CYS
                                    265
                                               6.241
                                                        9.935
                                                                -5.716
                                                                         1.00
                                                                                0.00
         MOTA
                   770
                            CYS
                                    265
                                               7.069
                                                        8.432
                                                                -1.981
                                                                         1.00
                                                                                0.00
         TER
                  771
                             CYS
                                    265
         CONECT
                   12
                         11
                              13
                                    14
                                         766
         CONECT
                    68
                         67
                               69
                                    71
         CONECT
                   71
                         68
         CONECT
                  194
                        193
                             195
                                   197
40
         CONECT
                  197
                        194
                              198
         CONECT
                  240
                        239
                              241
                                   242
                                         522
         CONECT
                  275
                        274
                             276
                                   277
                                         328
         CONECT
                  312
                        311
                             313
                                   315
         CONECT
                  315
                             316
         CONECT
                  328
                             327
                                   329
                                        330
         CONECT
                  440
                        439
                             441
                                   443
45
         CONECT
                  443
                        440
                             444
        CONECT
                  522
                       240
                             521
                                   523
                                        524
        CONECT
                  604
                       603
                             605
                                   607
        CONECT
                  607
                       604
                             608
        CONECT
                  766
                        12
                             765
                                  767
                                        765
        MASTER
                              0
                                    0
                                         0
                                               0
                                                     0
                                                           O
                                                                   770
                                                                           1
                                                                                16
                                                                                       7
        END
```

-48-

APPENDIX 2 Factor XI Heavy Chain Domain Al

5						
	Kiota Mota	1 N GU	1	155.592	3.46.6	
	MOTA	3 HN GTN 5 HN GTN	1	156.178 155.722	4.244 3.31£	
	ATOM	4 HN GLU	1	154.618	3.716	
10	ATO'A	5 CA GLU	1	155.885	2.210	
	MOTA	e C GII	1	156.562	2.369	-10.453
	N-COTA	70 GU	1	157.713	1.882	-10.385
	MOTA	6 CB GLU	1	154.648	1,284	-11.743
	VOLV.	9 CG GLU	1	154.949		11.441
	MOTA NOTA	10 CD GLU 11 OE1 GLU	۱ 1	153.782 153.604		11.086 -D.898
15	ATOTA	12 OE2 GLU	i	152.955		11.974
	ATOM:	13 N OS	2	155.118	2.949	-9.339
	MOTA.	14 HN CIS	2	156.695	2.937	-3.596
	ATOM.	15 CA CYS	2	154.684	3.576	-3.172
	ATOM	16 C C/S	2	153.79€	2.787	-3.544
	MOTA MOTA	17 O C:S 18 C3 CYS	5	153.948	2.209	-7.446
20	ATO::1	19 SG CYS	2	155.075 155.135	4.997 5.111	-8.614 -5.849
20	ATOM:	20 N VAL	2 3 3	152.578	2.596	-9.016
	MOTA	21 HN VAL	3	152.002	2.129	-8.439
	ATO:A	22 CA VAL	3	152.016	2.970	-10.23;
	ATO:4	23 C V/L	3	152.297	4.239	-1 (1.846
	MOTA NOTA	24 O VAL 25 CB VAL	3 3 3 3	152.731	4.208	-12.015
25	ATO:A	25 CG1 VAL	3	150.650 149.381	2.274 3.139	-10.451 -10.483
25	ATO.	27 CG2 VAL	3	150.658	1.399	-11.710
	ATOM:	23 N DER	4	152,193	5.538	-10.410
	ATOM:	29 HN THH	4	152.282	6.174	-11.095
	ATOM	30 CA THR	4	151.998	6.118	~9 .146
	ATOM ATOM	31 C THE 32 O THE	4	151.164	5.552	-8.090
30	ATOM	32 O THR 33 CB THR	4	149.913 151.882	5.459 7.651	·8.245
30	ATO:	34 OG: THR	4	152.452	6.394	-≘.355 -8.291
	ATOM:	35 HOG1 THR	<	151.971	8.213	-7.456
	ATOM	35 CG2 THR	4	150.512	8.250	-9.703
	ATOM	37 N G.N	\$. \$.	151.783	5.013	-7.005
	MOTA MOTA	33 HN GJN 39 CA GJN		152.719	5.098	-6.254
25	ATO:	40 C Gt1	.	151.136 151.342	4.400 4.870	-5 <u>-</u> 925 -4.534
35	ATO: 1	41 O GU!	į,	152.411	5.374	₹.53° ₹.099
	LIOTA .	42 CB GLN	5.	151.002	2.855	-6.084
	ATOM	43 CG GLN	ţ.	149.616	2.421	€ .502
	ATO:A	# CD GLN	٤.	148.423	3.029	-5.991
	MOTA	45 OE1 GLN	٤.	146.212	3.038	·4 .756
•	NOTA NOTA	45 NE2 GLN	<u>.</u>	147.525	3.602	€.750
4 0	MOTA	47 HNE1 GLN 48 HNE2 GLN	5. 5.	147.580	3.544	-7.656
	ATOM	49 N: LEU	(·	145.827 150.251	4.079 4.705	-6.342
	ATOM	50 HN LEU	í.	149.592	4.193	-3.762 -4.143
	ATOM:	51 CA LEU	(,	149.677	5.145	2.479
	LOTA	52 C LEU	(-	148.624	5.750	2.402
	ATO!!	53 O LEU	€.	148.551	6.765	-1.665
45	LOTA	54 CB LEU	(.	150.081	3.538	1.525
	ATOTA ATOTA	SS CG LEU 55 CD1 LEU	€. €.	151,095	4.158	·(·.401
	ATO:	57 CD2 LEU	(150.408 152.198	4,034 3 105	0.960
	ATOM	58 N LEU	: :	147.556	5.261	0,490 3 - 057
	· ·				· · · · ·	24007

	MOTA	59 HN LEU	7	147,772	4.532	-3.620
	MOTA	60 CA LEU	7	146.195	5.609	
	NOTA	61 C LEU	7	145,476	4.882	
_	ATOM:	62 O LEU	7	145.529	5.277	-5.385
5	ATOM	63 CB LEU	7	145.787	7,101	-2.951
	ATOM	64 CG LEU	7	146.325	0.072	-4.018
	ATOM	65 CD1 LEU	7	145.169	0.619	-4.959
		66 CD2 LEU	7	147.021		
	ATOM			144.765	9.261	-3.351
	ATOM	67 N LYS	8		3.799	-3.366
	ATOM	68 HN LYS	8	144.763	3.509	-2.374
10	ATOM	69 CA LYS	8	143.933	3.023	4.739
10	ATOM	70 C LYS	8	144.410	1.608	-4.382
	PROLE	71 0 LYS	8	144.485	0.852	-3.374
	NOTA	72 CB LYS	8	142.513	3.214	-4.344
	ATOM:	73 CG LYS	8	141.485	2.712	-5.371
	ATOM!	74 CD LYS	8	140.991	1.325	-4.34€.
	L'OTA	75 CE LYS	8	140.023	9.708	-5.960
	ATOM	76 NZ LYS	8	140.186		5.676
15	ATOM:	77 HNZ1 LYS	ខ	139,435		6.371
	ATO:	78 HNZ2 LYS	8	140.189		63.
	ATOM	79 HNZ3 LYS	8	141.094		-6.285
	MOTA	80 N ASP	9	144.672	1.200	-6 124
			S	144.709	1.200	
	ATOM					-5.772
	ATO:	82 CA ASP	S	144.891		·0.603
20	MOTA	83 C ASP	6	143.845		5.787
20	ATO:	84 O ASP	5	142.831		·7.C3;
	ATO:	85 CB ASP	9	146.376		·5.713
	ATC:	85 CG ASP	9	147,134		5.485
	L'OTA	87 OD1 ASP	9	146.805		·4.(·£3
	ATOM:	88 ODZ ASP	\$	148.133		5.245
	ATO:	AHT N 68	10	143.988	-1.917 -	5.243
	MOTA	90 HN THR	10	144.876	-1.939 -	4.942
25	LIOTA	SI CA THR	10	143.033	-2.694	4.554
	ATOM:	92 C THFi	1 C	142.222	-3.760	5.165
	ATOM:	93 O THR	1 C	140.988	-3.693	4.955
	ATOM	94 CB THR	10	143.281	-2.906 -	3.643
	ATOM	95 OG1 THR	1 (143.021		2.023
	ATOM	95 HOG1 THR	10	142.094		2.509
	MOTA	97 CG2 THR	1 (144.589		2.603
30	ATOM	98 N CYS	1.1	142.534		5.971
	ATOM:	99 HN CYS	11	141.780		6.35.5
	ATOM	100 CA CYS	1 1	143.754		5.327
	ATOM	101 C CYS	11	144.168		5.532
	ATOM	102 O CYS	11	144.496		6.331
	ATO:	103 CB CYS	11	144.945		€.751
	ATO:	104 SG CYS	11	145.271		E.511
35	ATOM:	105 HSG CYS	11	145.380		
33						8.563
	ATOM:	106 N PHE	12	144.192		4.262
	ATOM	107 HN PHE	12	143.821		3.218
	ATOM	108 CA PHE	12	144.726		3.453
	ATOM	109 C PHE	17	143.768		2.45.4
	ATOM	110 O PHE	1.7	143.307		1.501
4.0	ATOM	III CB PHE	12	145.072		2.045
40	ATOM	112 CG PHE	17	147.138		3.702
	ATOM	113 CD1 PHE	12	147.545		3.708
	ATOM	114 CD2 PHE	12	147.754		4.6! 9
	ATOM	115 CE1 PHE	12			4.51-6
	ATOM:	116 CE2 PHE	1 ;			5.514
	ATOM	117 CZ PHE	12			5 : : 9
	MOTA	118 N GLU	1:	143.315	9.401	2.352
45						

E	ATOM MOTA MOTA MOTA ATOM	119 HN GU 120 CA GLU 121 C GU 122 O GU 123 CB GLU	13 13 13 13	142.620 -9.571 -1.772 143.776 -10.489 -3.121 142.862 -10.880 -4.288 141.863 -11.490 -4.144 144.145 -11.635 -2.161
5	MOTA MOTA MOTA MOTA MOTA MOTA MOTA	124 CG GLU 125 CD GLU 126 OE1 GLU 127 OE2 GLU 128 N GLY 129 HN GLY 130 CA GLY	13 13 13 14 14	145.433 -12.354 -2.592 146.631 -11.528 -2.433 147.331 -11.595 -1.401 146.980 -10.728 -3.324 143.486 -10.540 -5.461 144.265 -10.016 -5.433
10	MOTA NOTA NOTA NOTA NOTA NOTA NOTA NOTA	131 C QY 132 O GLY 133 N GLY 134 HN GLY 135 CA GLY 136 C GLY	14 14 14 15 15 15	143.018 -10.858 -6.738 141.920 -10.013 -7.226 140.812 -10.594 -7.395 142.145 -8.716 -7.458 142.963 -8.373 -7.148 141.294 -7.807 -8.093 140.238 -7.233 -7.247
15	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	137 O GLY 138 N ASP 139 HN ASP 140 CA ASP 141 C ASP 142 O ASP 143 CB ASP 144 CG ASP	15 16 16 16 16	140.177 -5.981 -7.166 139.418 -8.069 -6.628 139.671 -8.567 -6.720 138.286 -7.734 -5.857 138.375 -7.886 -4.426 138.640 -9.581 -3.859 137.033 -8.551 -6.540
20	ATOM MOTA MOTA MOTA MOTA MOTA MOTA	145 OD1 ASP 146 OD2 ASP 147 N ILE 148 HN ILE 149 CA ILE 150 C ILE 151 O ILE	16 16 16 17 17 17 17	136.512 -7.501 -7.612 135.536 -6.754 -7.389 137.031 -7.514 -8.752 138.180 -9.896 -3.569 138.170 -7.190 -2.677 137.890 -5.526 -3.826 138.187 -4.673 -2.636 137.389 -4.773 -1.666
25	MOTA MOTA MOTA MOTA MOTA MOTA MOTA	152 CB ILE 153 CG1 ILE 154 CG2 ILE 155 CD1 ILE 156 N THR 157 HN THR 158 CA THR	17 17 17 17 17 18 18	136.758 -5.173 -4.715 136.766 -3.743 -5.280 135.364 -5.486 -4.140 137.529 -3.639 -6.606 139.202 -3.814 -2.630 139.785 -3.808 -3.368
30	ATOM ATOM ATOM ATOM ATOM ATOM ATOM	159 C THR 160 O THR 161 CB THR 162 OG1 THR 163 HOG1 THR 164 CG2 THR 165 N THR	1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 &	139.489
35	MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	166 HN THE 167 CA THR 168 C THR 169 O THR 170 CB THR 171 OG1 THR 172 HOG1 THR	19 19 19 19 19	138.733 0.297 -1.987 137.943 -0.551 -0.364 136.796 -1.486 -0.274 136.739 -2.160 0.783 137.722 0.911 0.100 137.773 1.050 1.510
40	ATOM ATOM ATOM ATOM ATOM ATOM	173 CG2 THR 174 N VAL 175 HN VAL 176 CA VAL 177 C VAL 178 O VAL	15 20 20 20 20 20 20	138.467 0.460 1.898 135.504 1.684 0.436 135.808 -1.577 -1.263 130.213 -1.292 -2.166 134.578 -2.011 1.220 134.128 3.255 -0.547 133.012 -3.129 0.026

	MOTA	179 CB VAL	20	133.843	-1.507 -	2.488
	MOTA	180 CG1 VAL	20	133.315	·2.553 ·	3.482
	ATOM	181 CG2 VAL	20	132.723	·0.523 ·	2.126
	MOTA	182 N PHE	21	134.805	-4.408 -	· 0 .526
	ATOM	183 HN PHE	21	135.640	-4.462 ·	0.95b
5	ATOM:	184 CA PHE	21	134.384	-5.587	0.103
5	ATOM	185 C PHE	21	134.597	-5.542	1.564
	ATOM	186 O PHE	21	135.725	-5.770	2.091
	ATOM	187 CB PHE	21	134.873	-6.843 -	0.64%
	MOTA	188 CG PHE	21	134.191		0.223
	ATOM	189 CD1 PHE	2 1	134.845	-8.955	0.677
	ATOM	190 CD2 PHE	21	132.892	-8.372 -	0.711
10	ATOM	191 CE1 PHE	21	134.194	10.138	1.101
10	ATOM	192 CE2 PHE	21	132.237		0.269
	MOTA	193 CZ PHE	21	132.893	-10.425	0.618
	MOTA	194 N THR	22	133.509	-5.233	2.266
	MOTA	195 HN THR	22	132.701	-5.247	1.787
	MOTA	196 CA THR	22	133.421	-4.877	3.625
	ATOM	197 C TH-R	22	134.192	-3.629	3.890
15	MOTA	198 O THA	22	135.295	-3.771	4.487
13	MOTA	199 CB THR	22	133.503	-6.007	4.687
	ATOM	200 OG1 THR	22	134.546	-5.947	4.452
	ATOM:	201 HOG1 THR	22	135.012	·6.623	3.653
	R:OTA	202 CG2 THR	22	132.165	-6.722	4.907
	MOTA	203 N PRO	23	133.765	2.399	3.514
	WOTA	204 CA PRO	23	134.593	-1.332	3.113
20	ATOM	205 C PRO	25	135.732	-0.944	3.972
20	MOTA	206 O PPO	23	135.585	-0.247	5.015
	MOTA	207 CB PRO	23	153.760	-0.181	2.627 2.548
	MOTA	208 CG PRO	23	132.313	·0.811 2.037	3.455
	MOTA	209 CD PRO	23	132.421 136.902	1.401	3.551
	ATCM	210 N SER	2 ÷ 2 ÷	136.902	-1.705	2.662
	ATOM	211 HN SER	24	135.873	1.473	4.295
25	ATOM	212 CA SER 213 C SER	24	139.055	0.462	3.856
	MOTA		24	139.760	-0.548	2.819
	ATOM	214 O SER 215 CB SER	24	138.546	2.341	4.338
	ATOM ATOM	215 CB 32F	24	139.344	3.226	5.480
	ATOM	217 HOG SER	24	140.275	2.389	5.287
	ATOM	218 N ALA	25	139.136	0.634	
	ATOM	219 HN ALA	25	138.565	0.671	
30	ATOM	220 CA ALA	25	139.980	1.735	
	ATOM	221 C ALA	25	141,412	1.429	
	ATOM	222 O ALA	2.5	141.761	0.838	5.690
	MOTA	223 CB ALA	25	139,451	2.961	5.156
	ATO:	224 N LYS	2 6	142.447	1.588	
	ATOM	225 HN LYS	2 €	143.189	1.166	4.085
	ATOM:	226 CA LYS	2.6	142.617	2.564	2.755
35	MOTA	227 C LYS	2 Ę	143.994	2.592	2.175
	MOTA	228 O LYS	2 ŧ	144.755	1.583	
	ATOM:	229 CB LYS	2 €	141,479	2.526	
	ATOM	230 CG LYS	2 ξ	141.699	1.80	
	ATOM	231 CD LYS	2 5	141.57?	0.275	
	ATOM	232 CE LYS	2 5	142.849	0.423	0.901
4.0	ATOM	233 NZ LYS	2 €	142.572	1.187	2.116
40	ATOM	234 HNZ1 LYS	2 (143.161	0.689	2.094
	ATCM	235 HNZ2 LYS	2(142.811	2.144	1.860
	MOTA	236 HNZ3 LYS	2 (-	141.589	-1.079	2.364
	ATOM	237 N TYF	27	144.383	3.723	
	MOTA	238 HN TYR	2,	143,887	4.489	1.806

-52-

	450.4					
	ATOM	239 CA TYR	27	145,424	3.914	0.651
	MOTA	= •		145.539	2.843	·0.377
	MOTA MOTA	241 O TYR	27	144.584	2.778	-1.194
		242 CB TYR	27	146.716	4.468	1.294
	MOTA	243 CG TYR	27	146.658	5.870	1.720
5	ATOM	244 CD1 TYR	27	146.711	6.147	3.109
•	MOTA	245 CD2 TYR	27	146.556	6.912	0.763
	MOTA MOTA	246 CE1 TYR	27	146.676	7.487	3.551
	ATOM	247 CE2 TYR	27	146.521	B.254	1.201
	ATOM	248 CZ TYR	27	146.586	8.523	2.589
	LOTA	249 OH TYR	27	146.583	9.805	3.007
	ATOM	250 HOH TYR	27	146.502	10.533	2.353
10	ATOM	251 N C/S	28	146.569	1.997	-0.436
	ATOM	252 HN CYS	28	147.335	2.232	0.057
	MOTA	253 CA CYS	28	146.621	0.785	-1.141
	MOTA	254 C CYS	28	146.545	-0.467 -0	.328
	ATOM:	255 O CYS	28		·:.589 -0	.893
	MOTA	256 CB CYS	28	147.780	0.882	-2.157
	MOTA	257 SG CYS	28	149.356	0.252	-1.533
15	MOTA	258 N . GLN 259 HN GLN	29		-0.446	0.994
	STOTA	259 HN GLN 260 CA GLN	29	145.935	0.253	1.364
	ATOM		29	147.012	-1.321	1.930
	MOTA		29		0.543	3.057
	LOTA	262 O GN 263 CB GLN	25	148.735	-0.869	3.471
	ATO:	264 CG GLN	29		2.422	2.361
	ATO:	265 CD GLN	25		3.704	1.514
20	ATOM	266 CE1 GLN	29		4.326	1.285
	LIOTA	267 NE2 GLN	29	143.661	3.659	0.968
	ATO:	268 HNE1 GLN	29 29	144.454 -	5.612	1.388
	ATOM:	269 HNE2 GLN	59		6.231	1.638
	MOTA	270 N VAL	30	143.588 -	5.927	1.200
	ATO::	271 HN VAL	30	146.950	0.481	3.623
25	L-COTA	272 CA VAL	30	146.194 147.169	0.77ป	3.152
25	ATO::	273 C VAL	30	147.568	1.211	4.788
	ATO:	274 O VAL	30	148.774	0.493	6.019
	P/CLV	275 CB VAL	30	147.331	0.358	6.335
	ATO:	276 CG1 VAL	30	145.544	2.73: 3.551	4.581
	ATO:	277 CG2 VAL	30	148.761	3.258	5.610
	ATO:	278 N VAL	31).07£	4.437
30	ATO:A	279 HN VAL	31).549	6.835 7.570
30	ATO:	280 CA VAL	3:		.039	6.703
	ATO:	281 C V/L	31	4 4 4	.991	5.709
	ATOM	282 O VAL	3 1		.507	4.641
	ATO:	283 CB VAL	31	144.656	0.185	8.098
	ATOM	284 CG1 VAL 285 CG2 VAL	31		.962	8.797
	ATO:		31	143.806	1.457	8.135
35	ATO:		32		.300	5.964
	ATO:	287 HN CYS 288 CA CYS	31		.555	6.773
	ATO:	289 C CYS	32		.335	5.170
	ATO:	290 O CYS	32		475	5.329
	ATO::	291 CB CYS	37		.558	4.878
	ATC:	292 SG CYS	3 <i>2</i> 32		601	5.274
	ATO.:	293 N THA	33	146.944 -4.	465	5.153
40	NOTA	294 HN THR	33	4 4 4 4	40£	5.866
	ATC:	295 CA THR	33		151	5.856
	ATC::	296 C THR	3:			6.401
	ATO:4	297 O THR	33	448		6.263
	ATO:	298 CB THR	3.			7.157
				143.242 -5.6	704	7.652

-53-

		MOTA	299 OG1 THR	33	144.004	-6.865	7.680
		MOTA	300 HOG1 THR	33	144.062		
		MOTA	301 CG2 THR	33	142.611		
=		ATO:	302 N TYR	34	141.107		
5		MOTA	303 HN TYR	34	140.427		
		MOTA	304 CA TYR	34	141.788	-7.562	
		MOTA	305 C TYR	34	143.201		
		MOTA	306 O TYR	34	144.022		
		MOTA	307 CB TYR	34	141.419		
		MOTA	308 CG TYR	34	140.533	-6.887	
10		MOTA	309 CD1 TYR	34	141.091	-7.241	
10		ATOM	310 CD2 TYR	34	139.135		
		ATOM	311 CE1 TYR	34	140.249		-0.315
		ATO:4	312 CE2 TYR	34	138.293		
		ATOM	313 CZ TYR	34	138.858	·7.802	-0.072
		ATOM	314 OH TYR	34	138.023	-8.248	-1.035
		ATOM	315 HOH TYR	34	138.315	-8.497	-1.93G
15		MOTA	316 N HIS	35	143.532	-8.793	2.935
		ATOM	317 HN HIS	35	142.866	-8.880	2.276
		ATOM	318 CA HIS	35	144.721	-9.486	2.677
		ATO:	319 C HIS	35	146.027	-8.793	2.862
		MOTA	320 O HIS	35	146.259	∙7 .775	2.137
		MOTA	321 CB HIS	35	144.592		
		ATOM	322 CG HIS	35	144.947		1.596
20		MOTA MOTA	323 ND1 HIS	35	145.837	-	
		ATOM	324 HND1 HIS	35	146.347		0.200
		MOTA	325 CD2 HIS	35	144.415	-12.618	2.533
		ATOM	326 CE1 HIS 327 NE2 HIS	35	145.915	-13.633	1.388
		ATOM	328 N 170	35		-13.756	2.366
		ATOM	329 CA PRO	36 36	145.932	-9.215	3.771
		ATOM	330 C PAO	36	147.939	-8.415	4.323
25		ATO:	331 O PRO	36	149.034	·7.931	3.464
		ATOM	332 C3 FRO	36	149.762 148.434	-8.716	2.794
		LICTA	333 CG PAO	36		-9.108 -10.345	5.602
		ATO:	334 CD PRO	36		-13.501	5.725
	•	LECTA	335 N /AG	37	149.166	-6.613	4.311
		ATO::	336 HN ARG	37	148.440	-6.137	3.479
30		MOTA	337 CA ARG	37	150.237	5.809	3.837 3.064
30		ATOM:	338 C /AG	37	149.997	-4.450	3.508
		ATOM:	339 O 17G	37	149.432	-3.571	2.880
		MOTA	340 CB ARG	37	150.786	-5.948	1.621
		ATO:	341 CG ARG	37	149.966	- 5 .351	0.459
		ATOM	342 CD ARG	37	148.708	-6.152	0.112
		ATO.	343 NE ARG	37	149.045	-7.173	-0.769
35		ATOM	344 HNE ARG	37	149.725		-1.385
J J		ATOM	345 CZ ARG	37	148.543	-8.395	-0.870
		ATOM:	346 NHI ARG	37	147.608	-8.995	-0.163
		ATOM	347 HN11 ARG	37	147.396	-9.868	-0.440
		ATOM ATOM	348 HN12 ARG	37	147.177	-8.584	0.565
		ATOM	349 NH2 ARG	37	149.035	-9 147	-1.813
		ATOM	350 HN21 ARG	37	149.778		-2.326
40		ATOM	351 HN22 ARG 352 N CYS	37	148.599		1.953
		ATO:		S &	150.393	-4.224	4.835
		MOTA	353 HN CYS 354 CA CYS	38	150.923	-4.833	5.247
		ATOM	355 C CYS	38 38	150.079	-3.037	5.590
		ATOM	356 O CYS	38	151.246 152.178	-2.207	5.686
		ATOM	357 CB CYS	3.8	149.393	-2.400 -3.552	6.527
		ATOM:	358 SG CYS	3.6	147.617	-3.552 -3.578	6.891
45			_			· J.J. 6	6.826

	ATO: 1	359 N LEU	39	151.255	- 1.204	4.818
	ATOM	360 HN LEU	39	150.464	-1.083	4.325
	MOTA	361 CA LEU	35	152.319	-0.330	4.580
	MOTA	362 C LEU	36	151.956	1.092	
	NOTA	363 O LEU	39	151.501	1.759	
_	ATOM	364 CB LEU	39	153.273	·0.752	3.436
5	MOTA	365 CG LEU	35	152.680	-0.861	2.024
	MOTA	366 CD1 LEU	35	153.605	·0.150	1.034
	MOTA	367 CD2 LEU	3 9	152.597	-2.339	1.629
	MOTA	368 N LEU	40	152.046	1.600	5.919
	NOTA	369 HN LEU	40	152.331	1.012	
	MOTA	370 CA LEU	40	151.767	2.911	6.306
	ATOM	371 C LEU	40	152.931	3.806	
10	NOTA.	372 O LEU	40	153.774	4.020	6.131
10	MOTA	373 CB LEU	40	151.086	2.911	7.054
	HOTA	374 CG LEU	40	149.858	3.830	7.691
	ATO'.	375 CD1 LEU	40	148.826		7.756
	MOTA	376 CD2 LEU	40	150.225	3.227	8.712
	ATOM:	377 N PHE	41	153.022	5.232	8.254
	ATO:	378 HN PHE	41	152.346	4.354	4.924
16	ATO:	379 CA PHE	41	154.016	4.122	4.314
15	NOTA	350 C PHE	41		5.221	4.479
	ATOM	381 O PHE	41	153.574	5.447	3.791
	ATOM	382 CB PHE	41	154.021	7.504	4.314
	MOTA	383 CG PHE	41	155.177	4.479	3.782
	ATOTA	384 CD1 PHE	41	156.455	5.131	4.084
	ATOM	365 CD2 PHE	4:	157.107	4.876	5.321
	ATO:	386 CE1 PHE	41	157.028	6.01(1	3.134
20	ATOM	367 CE2 PHE		158.306	5.56?	5.633
	ATOA	358 CZ PHE	41	158.235	5.692	3.441
	ATOM		41	158.859	6.469	4.693
	ATOM.	389 N THR 390 HN THR	42	152.765	6.443	2.712
	MOTA	391 CA THR	42	152,440	5.615	2.430
	ATOM LOTA		42	152.439	7.574	1.961
	ATO:		42	152.564	7.395	0.489
25	ATO:		42	151.550	7.266	-0.25?
	ATOM	394 CE THR	42	151.232	8.331	2.575
	ATOTA	395 OG1 THR	4.2	150.000	7.925	1.999
	ATO:4	396 HOGH THR	43	150.310	7.654	1.112
		397 CG2 THR	42	151.397	9.847	2.407
	HOTA HOTA	398 N PHE	4.3	153.796	7.333	-0.012
	ATOM ATOM	399 HN PHE	43	154.504	7.468	0.601
30	ATOM	400 CA PHE	43	154,140		-1.364
30	ATOM	401 C PHE 402 O PHE	43	153.727	8.395	-2.212
	ATOM	402 O PHE 403 CB PHE	43	153.945	9.592	-1.854
	MOTA	403 CS PHE	43	155.634		-1.546
	ATO!	405 CD1 PHE	43	155.030		-1.27t
	LOTA	405 CD1 PHE 406 CD2 PHE	43	157.152	5.310	0 437
	ATOM	405 CG2 PHE 407 CE1 PHE	43	155,334		-1.837
25	ATO:		43	157.592		0 161
35	ATO:	406 CE2 PHE 409 CZ PHE	43	155.759		1.548
	ATOM		45	156.691		0 719
	MOTA		46	153.128		3 357
	MOTA	411 HN THE 412 CA THE	44	152.802		3 517
	ATOM	413 C THE	46	152.844		4.382
	ATOM	_	4 (153.966		5 34:
	ATO'A	414 O THIR 415 CO THIR	46	154,299		5.984
40	ATOM	416 OG1 THR	44	151.384	8.915	4 882
	*,17.041	בתו וטט טוי	46	151.103	7 905	5.840

	ATO:	418 N ALA	45	154.587	10.204	-5.467
	ATOM	420 HN ALA	45	154.164		-5.027
	ATOM	421 CA ALA	4 5	155.771	10.470	€.165
	MOTA	422 C ALA	45	155.820	10.094	-7.593
5	MOTA	423 O ALA	45	154.937	10.524	·E.393
•	MOTA	424 CB ALA	45	156.248		-5.863
	ATOM	425 N GLU	4 6	156.834	S.291	-7.831
	MOTA	426 HN GLU	4 6	157.453	9.146	-7.239
	ATOM	427 CA GLU	4 6	157.146	E.613	-5.127
	MOTA	428 C GLU	4.6	158.577	8.235	-9.131
	MOTA	429 O GU	46	159.456	9.051	·£.f.49
10	ATOM	430 CB GLU	46	156.623	9.178	-10.476
	ATOM ATOM	431 CG GLU	46	156.895	E.337	-11.742
	ATOM	432 CD GLU	46	156.368	£.969	-11.737
	ATOM	433 OE1 GLU	4 6 4 6	155.140 157.164	6.733	-11.681
	MOTA NOTA	434 OE2 GLU 435 N SER	47		5.998	-11.798
	ATOM	436 HN SER	47	158.890 158.209	7.021 6.512	-8.677
- E	ATOM	437 CA SER	47	160.165	6.449	·8.: 76 ·8.737
15	ATOM	438 C SER	47	160.330	5.249	-9.59
	MOTA	439 O SSR	47	159.936	4.135	-9.132
	ATOM	440 CB SER	47	160.898	6.392	-7.584
	ATOM	441 OG SER	47	161.224	7.685	-6.885
	ATO'.1	442 HOG SER	47	160.413	8.085	-6.509
	ATC: !	443 N PPO	48	160.886		-10.330
20	ATOM	444 CA PRO	48	161.565		-11.464
20	ATO:4	445 C PRO	48	160.799		-12.022
	MOTA	446 O PPO	48	160.005		-12.990
	NOTA	447 CB PRO	48	162.535		-12.455
	ATC:	448 CG PRO	4 E	162.016	6.352	-12.640
	MOTA	449 CD PRO	4 €	160.873	6.479	-11.829
	MOTA	450 N SER	4 9	161.043		-11.417
25	MOTA	451 HN SER	45	161.528		-10.316
	ATOM:	452 CA SER	49	160.736		-11.71€
	ATOM	453 C SER	49	151.964	-0.158 -11	
	MOTA MOTA	454 O SER	<u> 4 9</u>	162.263	-0.471 -10	-
	ATOM	455 CB SER 456 OG SER	4 9 4 9	159.740 158.504		-12.835
	ATOM	457 HOG SER	49	158.215	-0.129 -12 0.555	205 -11.629
30	ATOM	458 N GU	50	162.706	- 0.530 -12	
30	ATOTA	459 HN GU	50	162.420		1.489
	ATOM	460 CA GLU	50	163.871		.593
	ATOM:	461 C GLU	50	165.162		1.744
	ATOM:	462 O GLU	50	155.327	0.267	
	ATOM	463 CB GLU	50	163.732	-2.548 -13	.430
	ATOM	464 CG GLU	50	164.418		.805
35	MOTA	465 CD GLU	50	163.753		.931
	ATOM	466 OE1 GLU	50	162.591		:.535
	ATOM.	467 OE2 GLU	50	164.366	-5.996 -13	
	atom Atom	468 N ASP	51	166.226		.962
	ATOM	469 HN ASP	51	166.986		1.151
	ATOM	470 CA ASP 471 C ASP	5 1 5 1	166.310		.885
4.0	MOTA	471 C ASP	5 1	165.928 164.815		.571 .238
40	MOTA	473 CB ASP	5 1	167.607		.847
	ATOM	474 CG ASP	51	167.487		.239
	ATOM:	475 ODI ASP	51	166.830		163
	ATOM	476 OD2 ASP	51	168.062		.705
	ATOM	477 N PRO	- 52	166.614		794
	MOTA	478 CA PRO	5.2	165.508		392
4 =						

	ATOM	479 C PRO	52	165 252
	MOTA	480 O PRO	52	165.352 0.618 -6.752 165.448 1.512 -5.665
	HOTA	481 CB PRO	52	167.040
_	MOTA	482 CG PRO	52	0.543
5	MOTA	483 CD PRO	52	167 550
	ATOM	484 N THA	53	167.553 0.702 -9.596 164.176 0.216 -7.187
	ATOM	485 HN THR	53	164.269 -0.303 -7.905
	MOTA	486 CA THR	53	162.873 0.505 -6.777
	ATO!!	487 C THR	53	162.120 -0.765 -6.685
	ATOM	488 O THR	53	161.903 -1.183 -5.513
10	MOTA MOTA	489 CB THR	53	162.141 1.685 -7.481
10	KOTA	490 OG1 THR	53	162.479 1.944 -6.645
	MOTA	491 HOG1 THR	53	162.400 1.124 -9.275
	MOTA	492 CG2 THR 493 N ##G	53	162.307 2.981 -6.685
	ATOM	493 N ##G 494 HN ##G	54	161.717 -1.415 -7.780
	MOTA	495 CA ARG	54	161.919 -1.024 -B.610
	MOTA	496 C ARG	5 4 5 4	161.021 -2.628 -7.88S
15	ATO.4	497 O #7G	54	159.542 -2.502 -7.912
	ATOM:	498 CB ARG	54.	158.964 -1.455 -8.306
	MOTA	499 CG ARG	54.	161.509 -3.413 -9.132 162.917 -4.016 -9.027
	ATO::	500 CD ARG	54	4.6.6
	ATO::	501 NE ARG	54	100 0 1 5
	NOTA.	502 HNE ARG	54	163.561 -5.793 -10.663
	ATOM:	503 CZ ARG	54	165.028 -6.572 -9.858
20	ATOM	504 NHI ARG	54	165.641 -7.004 -8.771
	ATOM:	505 HN11 ARG	54	166.526 -7.314 -8.833
	ATOM:	506 HN12 ARG	54	165.202 -7.011 -7.940
	MOTA NOTA	507 NH2 ARG	54	165.680 6.780 -10 974
	ATOM	508 HN21 ARG	5 4	155.528 -7.187 -10 653
	ATO:	509 HN22 ARG 510 N TRP	5 4	165.281 -6.519 -11.784
25	ATO:		5.5	158.851 ·3.555 ·7.494
25	ATO:	511 HN TRP 512 CA TRP	55	159.382 -4.310 -7.317
	ATO:	513 C TRP	55 55	157.478 -3.743 -7.261
	ATOM	514 O TRP	55	156.468 -3.115 -3.155
	MOTA	515 CB TRP	55	156.280 -3.712 -3.241 157.074 -4.016 5.766
	ATOM	516 CG TRP	55	450 404
	ATO!!	517 CD1 TR2	55	450 000
30	LOTA .	518 CD2 TRP	55	450.004
	ATOM:	519 NE1 TRP	55	150.004
	ATOM	520 HNE1 TRP	55	160.582 -4 376 -3.041
	ATOM	521 CE2 TRP	55	159.395 -2.768 -3.238
	MOTA MOTA	522 CE3 TRP	55	157.484 -1.368 -3 8F6
	ATOM	523 CZ2 TRP	5.5	159.922 -1.783 -2.413
35	ATO.	524 CZ3 TRP 525 CH2 TRP	55	157.981 -0.3(1 -3.022
33	ATOM	526 N PHE	55	159.196 -0.546 .2.312
	ATOJ	527 HN PHE	5.5	155.735 -2.016 -7.972
	ATOM:	528 CA PHE	56	155.092 -1.810 .g.625
	ATOM:	529 C PHE	56 56	155.830 -1.129 -6.890
	ATOM	530 O PHE	56	154.634 -1.1EE -6.014
	ATOM:	531 CB PHE	56	154.605 2 128 -5.210
40	ATOM	532 CG PHE	56	156.355 0.216 -7.402 157.068 1.044 -6.423
	ATOM:	533 CD1 PHE	56	
	ATOM.	534 CD2 PHE	56	150 405
	ATO'A	535 CE1 PHE	5.6	157 646
	ATOM	536 CE2 PHE	56	159.186
	ATOM MOTA	537 CZ PHE	5 E	158.463 2.658 -4.578
4.5	AIQA	538 N THR	5.7	153.645 (0.269 (6.033
45				

-57**-**

	ATOM	539 HN THR	57	153.776 0.499 -£.558
	ATOM	540 CA THR	57	153.776
	ATOM	541 C THR	57	152.501 0.032 -3.912
_	ATOM	542 O THR	57	152.636 1.241 -3.603
5	ATOM	543 CB THR	57	151.360 -1.364 -5.823
	ATOM	544 OG1 THR	57	151.850 -2.704 -5.814
	ATOM	545 HOG1 THR	57	152.803 -2.618 -5.611
	ATOM	546 CG2 THR	57	150.763 -1.072 -7.208
	ATOM	547 N CVS	56	152.469 -0.756 -2.844
	ATOM	548 HN CYS	58	152.713 -0.355 -2.030
• •	ATOM	549 CA CYS	56	152.106 -2.105 -2.762
10	ATOM	550 C CYS	58	153.191 -3.080 -2.532
	ATOM:	551 O CAS	58	153.990 -2.880 -1.581
	ATOM	652 CB CYS	5 8	150.955 -2.295 -1.773
•	ATOM	553 SG CYS	58	149.409 -1.635 -2.332
	ATOM	554 N VAL	59	153.272 -4.153 -3.325
	ATOM	555 HN VAL	59	152.772 -4.095 -4.117
3.5	ATOM	556 CA VAL	59	154.021 -5.333 -3.079
15	ATOM	557 C VAL	59	154.544 -6.131 -4.215
	ATOM	558 O VAL	59	153.894 -6.255 -5.290
	ATOM	559 CB VAL	59	153.408 -6.343 -2.064
	ATOM	560 CG1 VAL	5 9	153.619 -6.012 -0.562
	ATO::	561 CG2 VAL	59	151.999 -6.891 -2.343
	ATOM	562 N LEU	60	155.728 -6.725 4.031
2.2	ATOM	563 HN LEU	5 C	156.246 - 6.374 - 3.329
20	MOTA ATOM	564 CA LEU	5 C	156.301 -7.611 -4.717
	ATOM	565 C LEU	5 C	157.046 -7.597 -5.972
	ATOM	565 O LEU	50	156,476 -7,150 -5,998
	ATOM	567 CB LEU	5 C	155.451 -9.099 -4.715
	ATOM	568 CG LEU 569 CD1 LEU	60	155.883 -1C.058 -J.600
	ATO'.	570 CD2 LEU	5 C	154.768 -10.176 -2.556
25	ATO:	571 N LYS	5 G	156.161 -11.436 -4.204
23	ATC#4	572 HN LYS	5 1 - 1	158.336 -7.919 -5.920
	ATOM	573 CA LYS	51 51	158.657 -8.259 -5.125
	ATOM:	574 C LYS	61	159.271 -7.807 -5.976
	ATOM:	575 O LYS	61	160.421 -5.995 -5.518
	ATOM:	576 CB LYS	151	160.480 -5.608 -5.991
	ATO:	577 CG LYS	61	159.536 -3.261 -7.594 160.803 -9.360 -3.452
30	ATOM	576 CD LYS	51	454 761 46 446
	MOTA	579 CE LYS	51	100 044 404
	ATOM	580 NZ LYS	61	101 000
	ATO:	581 HNZ1 LYS	61	154 140
	ATOM	582 HNZ2 LYS	61	107 000
	ATOM:	583 HNZ3 LYS	6:	100 070
	ATO:	584 N ASP	62	161.329 -7 463 -5.660
35	ATO:	SB5 HN ASP	6.2	161.324 -3 368 -5.491
	ATOM	586 CA ASP	6.2	162.276 -5 7(11 -4.962
	ATOM:	587 C ASP	62	163.557 -3 402 -5.655
	ATOM	588 O ASP	62	164.261 -7.305 -6.188
	ATOM	589 CB ASP	62	162.385 -7.242 -3.549
	ATOM:	590 CG ASP	6.2	162.823 -5.169 -2.665
	ATOM ATOM	591 OD1 ASP	62	162.041 -5.317 -2.202
40	ATOM	592 OD2 ASP	62	164.021 -6.083 -2.356
	ATOM	593 N SEA	63	163.901 -5.122 -5.650
	ATOM	594 HN SER	63	163.288 -4.535 -5.246
	ATOM	595 CA SER 596 C SER	63	165.063 -4.524 -6.162
	ATOM		63	166.383 -4.976 -5.661
	ATOM	597 O SER 598 CB SER	63	166.510 5,420 -4,492
. –		000 00 3EN	53	164.929 -2 965 -6.200
45				

	ATOM	599 OG SER	63			
	ATOM:	600 HOG SER	63	164.54		
	ATOM	601 N VAL	-	163.65		
	MOTA	602 HN VAL	64	167.41		U.DU.
	MOTA	603 CA VAL	64	167.20		-7.378
5	ATOM		64	169.77		-6.251
_	ATOM		6.4	169.33		-5.032
	MOTA		64	169.98		-4.262
	MOTA	606 CB VAL	64	169.609	-5.042	-7.558
		607 CG1 VAL	6 4	170.281	-3.711	7.938
	ATOM	608 CG2 VAL	64	170.642	-6.172	·7.628
	MOTA	609 N THR	65	169.116		-4.789
10	ATCM	610 HN THR	65	168.818		5.510
10	ATOM	611 CA THR	65	169.270		.3.56₺
	MOTA	612 C THR	6.5	168.229		-2.604
	VIOTA	613 O THR	65	167.001		
	MOTA	614 CE THR	65	169.555		-2.808:
	ATCM	615 OG1 THR	6.5	168.442		-3.765
	ATOM	616 HOG1 THR	6.5	168.267		-3.654
	MOTA	617 CG2 THR	6.5			
15	ATOM:	618 N GU	66	170.691	-05-3	-2.847
	MOTA	619 HN GU	5€	168.711	-3.549	-1.5(१६:
	ATO: I	620 CA GLU	ñ 6	169.516	-3.365	-1.358
	ATC::	621 C GU		168.111	7.445	- 0.54€
	MOTA	625 O GTI	6.6	166.698	-4.417	-0.197
	ATOM:	623 CB GLU	66	166.049	•3 .352	-D.041
	ATOM	624 CG GLU	66	169.140	-4.600	0.442
20	ATOM	625 CD GLU	56	169.894	- & .095	0.079
	ATC#	626 OE1 GLU	56	169.133	-7.345	0.212
	ATO:4	627 OE2 GLU	56	168.176	-7.652	-0.507
	ATO:		5.6	169.445	-8.151	1.106
	MOTA		57	166.165	-5.618	0.020
	ATOM	629 HN THR 630 CA THR	57	165.612	-€.302	0.12€
	ATOL:		57	154.922	-6.077	0.411
25	ATOM:		57	163.890	-5 .259	1.094
	ATOM:	632 O THR	57	154.174	-4.601	7,119
	ATOM	633 CB THR	57	165.150	-7.522	0.902
	ATOM	634 OG1 THR	57	165.274	-7.723	301
	ATOM	635 HOG1 THR	57	165.609	-6.934	7.776
	MOTA	636 CG2 THR	67	164.13;	-3.517	0.333
	MOTA	637 N LEU	5.6	162.655	-5.252	0.594
30	ATOM	638 HN LEU	6.6	162.58		0.312
30		639 CA LEU	Ģ ₿	161.410	-5.005	1.205
	ATOM:	640 C LEU	68	160.682	-3.750	0.862
	ATOM	641 O LEU	6.8	161.322	-2.678	1.055
•	ATOM ATOM	642 CB LEU	6.6	161.160	-5 4 30	2.650
	ATOM	643 CG LEU	úβ	159.783	-6.132	2.806
	ATOM	644 CD1 LEU	i B	159.902	-7.624	3.124
25	MOTA	645 CD2 LEU	6.8	158.977	-5.419	3.895
35	ATOM	646 N FRO	0.9	159.407	-3.723	0.402
		647 CA PRO	69	158.548	-2.6:35	0.371
	ATOM	648 C PRO	ń 9	158.589	-1.652	1.458
	LOTA	649 O FRO	69	158.385	-2.0:50	2.682
	ATOM	650 CB PRO	65	4	-3.031	
	ATO:	651 CG PRO	69	4 - **	7	0.037) 654
	ATO:	652 CD PRO	6.9			1624
40	ATOM	653 N ARG	? 0		-0.396	
	ATOM	654 HN ARG	7.0		·0.183	1.161
	ATC:	655 CA ARG	?0	159.173		0.246
	ATOM	656 C ARG	7.0	158.077	0.638	2.040
	ATOM	657 O APG	2.0	157.055	1.109	2.908
	ATOM:	658 CB ARG	. 0	160.015	1 697	2.467
			-	- 00.010	1.730	1.355

-59**-**

	MOTA	659 CG ARG				
	ATOM	SEO CO ARG	70	161.10		2.296
	MOTA	660 CD ARG	70	160.64	0 3.576	2.956
	MOTA	661 NE ARG	70	160.85	1 3.570	4.336
	MOTA	662 HNE ARG	70	160.41	5 2.916	
	MOTA	663 CZ ARG	70	161.592		
5		664 NH1 ARG	70	162.327	5.415	
•	ATOM	665 HN11 ARG	70	162.349		
	ATOM:	656 HN12 ARG	70	162.822	5.869	
	ATOM	667 NH2 ARG	70	161.559		_
	ATOM	668 HN21 ARG	70	162.059		G.360
	MOTA	669 HN22 ARG	70	160.958		7.004
	ATOM:	670 N VAL	71	158.291		6.581
10	NOTA	671 HN VAL	7 1	159.058		4.182
10	ATOM.	672 CA VAL	71	157.611		4.367
	ATOM:	673 C VAL	71	158.619	1.183	5.358
	MOTA	674 O VAL	71		1.114	6.464
	ATOM:	675 CB VAL		159.636 156.227	1.867	6.373
	MOTA	676 CG1 VAL	71		0.475	5.473
	ATOM	677 CG2 VAL	71	156.186	-1.059	5.621
	ATOM	678 N ASN		155.351	1.052	6.566
15	ATOM	679 HN ASN	72	158.501	C.255	7.518
	ATOM	680 CA ASN	72	157.682	-0.150	7.617
	ATO:	681 C ASN	72	159.484	0.043	8.478
	ATO:		72	159.682	-1.388	8.790
	ATOM	652 O AS; 683 CB ASN	72	159.056	-1.549	9.729
	ATOM	684 CC 45M	72	159.405	1.024	9.567
	ATOM	684 CG ASN	/2	160.726	1.334	10.220
20	ATOM	685 ODI ASN	72	161.568	1.981	9.556
	ATOM	666 ND2 ASN	72	161.041	0.935	11.427
	ATOM	687 HND1 ASN	72	160.422	0.454	11.944
	ATO:	688 HND2 ASN	72	151.890	1.133	11.775
	ATOM	689 N APG	72	150.557	-2.032	6.024
	MOTA.	690 HN ARG	/3	150.85;	-1.579	7.255
	ATOM	691 CA ARG 692 C ARG	7.3	151.068	-3.315	6.256
25	ATOM		73	162.498	-3.376	8.628
	ATOM	693 O ARG 694 CB ARG	73	163.383	-2.802	7.936
	ATOM:	695 CG ARG	/3	160.696	- 4.255	7.103
	ATOM	696 CD ARG	3.3	160.547	-5:.729	7.573
	MOTA	697 NE ARG	73	151.211	-0.693	6.527
	ATO:4	698 HNE ARG	73	152.600	- 6. 8 33	0.609
	ATOM	699 CZ ARG	73	163.006	- G.6\$1	7.441
30	MOTA		7.3	163.489	-7.154	5.675
	ATOM	700 NHI ARG	73		-7.156	6.204
	ATOM	701 HN11 ARG	73	165.477	7.412	5.763
	ATOM	702 HN12 ARG	73	164.700 .	-G.935	7.116
	ATO:	703 NH2 ARG	73	163.286	7.411	4.401
	ATOM	704 HN21 ARG	73	162.403	7.43C	030.>
	ATO:	705 HN22 ARG 706 N THR	73		-7.554	3.798
35	ATO:		74	162.767 .	4.032	1.721
	ATOM	707 HN THR 708 CA THR	7.4	162.021 -	≺. 3 35	10.206
	ATOM	7	7.4		4,439	10.235
	ATOM		7.4	164.820 -	5.345	9.378
	ATO:		7.4	164.320 -	6.433	F.963
	ATO:	711 CB THR 712 OG1 THR	7.4	163.911 -	4.814	11.735
	ATOM	712 UGI THE	7.4		4.547	7.422
40	ATOM	713 HOG1 THR	7.4		4 6 4 5	1.803
70	ATOM	714 CG2 THR 715 N AIA	7.4	163.395 -		17.119
	ATOM	3.0	? 5	166.055	4.971	9.677
	ATOM:	716 HN ALA 717 CA ALA	7.5	166.341 -	1.146	9.427
	ATOM	744 0	7.5		3.668	8.298
		ALA C ALA	7.5		715	9.019
						- · ·

45

-60-

	MOTA	719 O ALA	75	168.335	· 0 .447	10.116
	ATOM	720 CB ALA	75	167.877	-4.666	7.534
	MOTA	721 N ALA	76	167.807	-7.937	8.475
	MOTA	722 HN ALA	7€	167.513	.7.996	7.585
5	ATOM:	723 CA ALA	76	168.256	-9.131	9.077
3	ATOM	724 C ALA	76	168.486	-10.202	8.084
	ATOM:	725 O ALA	76	167.504	-10.777	7.511
	MOTA	726 CB ALA	76	167.438	-9.589	10.307
	MOTA	727 N ILE	77	169.763	-10.509	7.820
	MOTA	728 HN ILE	77	170.407	-10.142	8.398
	ATOM	729 CA ILE	77	170.255	-11.316	8.761
10	ATQ!:	730 C ILE	77	170.114	-10.636	5.440
10	NOTA	731 O ILE	77	171.137	-1-0.486	4.727
	ATOM	732 CB ILE	77	169.867	-12.830	6.818
	ATOM:	733 CG1 ILE	77	170.265	-13.550	8.121
	ATOM	734 CG2 ILE	77	170.474	-13.693	5 .695
	ATOM	735 CD1 ILE	77	169.052	-13.862	8.010
	ATO:	735 N SER	76	168.911	-10.211	5.085
15	ATOM	737 HN SE	78	168.269	-1-),448	5.726
	ATOM	738 CA SER	78	168.484	-9.477	3.984
	ATCM.	739 C SER	78	168.101	- 8 .097	4.379
	ATOM ATOM	740 O SER	7.6	167.386	-7.864	5,412
	MOTA	741 CB SER 742 OG SER	78	167.487	-10.298	3 .139
	LIOTA	742 HOG SER	7 E	166.119	-10.193	3.520
	ATOM	744 N Q.Y	76 79	165.782	-9.358	2.133
20	ATOM	745 HN GLY	79	168.557 168.905	-7.129	3.595
	ATOM:	746 CA GLY	79	168.583	-7.425 -5.750	2.775
	ATO::	747 C Q.Y	75	167.334	4.969	3.834
	ATC::	748 O GY	79	166.209	-5.533	3.80:
	ATC:	749 N TOF	ВÖ	167.477	·3.649	3.902 3.683
	LICTA	750 HN T:3	80	168.359	.3.333	3.607
25	LICOTA	751 CA TYR	BC	166.460	-2.685	3.660
25	ATOM:	752 C T\R	9 0	166.848	1.382	3.068
	ATO:	753 O 1YR	90	167.383	· D.472	3.774
	ATOM:	75± CB TYR	30	165.767	-2.532	5.050
	ATO!	755 CG TYR	30	164.430	2.046	4.999
	ATOM:	755 CD1 TYR	3 C	163.379	2853	4.500
	ATO:1	757 CD2 TYR	30	164.198	.0.726	5.461
30	ATO:	755 CE1 TYR	30	162.067	-2.346	4.473
30	ATO:	759 CE2 TYR	30	162.881	·G.217	5.460
	ATOM	760 CZ TYR	30	161.842	-1.050	4.9€4
	ATOM ATOM	76: OH TYR	30	160.576	-0.618	5.019
	ATOM	762 HOH TYR 763 N SER	8.0	160.330	0.238	5.427
	ATOM	764 HN SER	81 61	166.609	-1.196	1.772
	ATOLI	765 CA SER	6 I	166.356	-1.942	1.258
35	ATOM	766 C SER	61	166.698 165.520	0.005	7.057
	ATO:	767 O SEA	81	164.334	0.900 0.455	1.120
	ATOM	765 CB SER	8.1	167.093		1.007) 384
	ATOM	769 OG SER	8.1	167.889	0.666	-0.985
	ATOM:	770 HOG SER	ti 1	168.094	0.397	-1.504
	ATO:	771 N PHE	82	165.761	2.198	1.295
4.0	ATO::	772 HN PHE	82	166.686	2.443	1.347
40	ATOM	773 CA PHE	62	164.828	3.230	7.408
	NOTA ATOM	774 C FHE	62	164.275	3.726	0.113
	ATOM ATOM	775 O PHE	62	164.377	4.925	-0.289
	MOTA MOTA	776 CB PHE 777 CG PHE	62	165.226	4.288	2.469
	ATOM MOTA	777 CG PHE 778 CD1 PHE	62	165.729	3.777	0.753
	AIG.	יים טוויחב	8.8	164.672	3.097	4.660

	MOTA	779 CD2 PHE 780 CE1 PHE	8 2 8 2	167.099 165.394	3.973 2.595	4.065 5.877
	ATOM	781 CE2 PHE	82	167.623	3.474	5.282
5	ATOM	782 CZ PHE	82	166.766	2.78.6	6.176
3	MOTA	783 N LYS 784 HN LYS	83 83	163.650 163.668	2.801 1.955	-C.(17 -0.212
	MOTA MOTA	784 HN LYS 785 CA LYS	83	163.018	2.949	-1.860
	ATOM	786 C LYS	83	161.679	3.560	1.861
	ATOM	787 O LYS	83	160.609	2.941	·2.059
	MOTA	788 CB LYS	83	163.302	1.793	-2.646
10	MOTA	789 CG LYS	83	162.671	0.440	-2.489
10	ATOM	790 CD LYS 791 CE LYS 83	83 163.143	163.767 -1.841	-0.584 -1.578	2.185
	MOTA MOTA	791 CE LYS 83 792 NZ LYS 83	163.903	-3.000	2.017	
	MOTA	793 HNZ1 LYS 83	164.682	-3.141	-1.375	
	ATOM	794 HNZ2 LYS & 3	164.231	-2.810	-2.964	
	ATOM	795 HNZ3 LYS 83	163.312	-3.828	-2.033	
16	MOTA	796 N GLN 84	161.710	4.883	-1.630	
15	ATOM	797 HN GLN 64	162.552	5.165 5.836	-1.326 -1.763	
	ATOM	798 CA GLN 84 799 C GLN 84	160.692 160.352	6.247	-3.144	
	ATOM ATOM	800 O GLN 84	161.261	6.483	3.993	
	ATO:	801 CB GLN 84	161.053	7.069	-0.904	
	ATOM	802 CG GLN 84	160.515	6.948		0.532
	MOTA	803 CD GLN 84	161.551	7.155		1.545
20	MOTA	804 OE1 GLN 64	162.288	6.224		1.920
	ATOM	805 NE2 GLN 84	161.713 161.160	8.352 9.065		2.083 1.817
	ATOM ATOM	806 HNE1 GLN 84 807 HNE2 GLN 64	162.375	8.489		2.731
	ATOM	808 N CYS 85	159.052	6.352	-3.419	
	ATOM	809 HN CYS 85	158.455	6.116	-2 .732	
	ATOM:	810 CA CYS 85	159.478	6.770	-4.619	
25	ATOM	811 C OS 85	158.290	8.235	-4.749	
	MOTA	812 O C\S 85	158.785	8.803 6.016	-5.750 -4.878	
	MOTA	813 CB CYS 85 814 SG CYS 85	157.168 157.073	5.549	-6.531	
	ATOM	815 OXT CYS 85	157.660	8.941	-3.919	
	CONECT	1 5 4	2 3			
2.0	CONECT	2 1				
30	CONECT	3 1				
	CONECT	4 1	6			
	CONECT	5 1 E 6 7 5	13			
	CONSCT	7 6	. •			
	CONECT	8 5 9				
2.5	COVECT	9 6 10				
35	CONECT	10 9 11	1 2			
	CONECT	11 10				
	CONECT	12 10 13 6 15	1.4			
	CONECT	14 13	• •			
	CONECT	15 18 13	16			
	CONECT	16 17 15	20			
40	COVECT	17 16				
	CONECT	18 15 19 19 18 814				
	CONECT	20 16 22	2.1			
	∞\esti	21 20				
	CONBCT	22 25 20	2.3			
	∞vec ⊤	23 24 22	7.8			
45						

5		24 25 26 27 28 29 30 31	23 22 25 25 23 28 33 32 31	26 30 28 30	27 29 31 37
10	CONECT CONECT CONECT CONECT CONECT	33 34 35 36 37	30 33 34 33 31	34 35 39	3 6 3 8
	CONECT CONECT CONECT	38 39 40 41	37 42 41 40	37 39	4 0 4 9
15	CONECT CONECT CONECT CONECT	42 43 44 45	39 42 43 44	43 44 45	4 6
20	CONECT CONECT CONECT CONECT	46 47 48 49	4 4 4 6 4 0	4 E 5 1	47 50
	CONECT CONECT CONECT CONECT CONECT	50 51 52 53 54	49 54 53 52 51	4 9 5 1	52 58
25	CONECT CONECT CONECT CONECT	55 56 57 58	54 55 55 52	55 56 60	57 59
	CONECT CONECT CONECT CONECT	59 60 61 62	58 63 62 61	5 8 6 0	61 67
30	80/EST 80/EST 80/EST	63 64 65 66	60 63 64 64	6 4 6 5	66
25	CONECT CONECT CONECT CONECT	67 68 69 70	61 67 72 71	69 69	68 70 60
35	CONECT CONECT CONECT CONECT CONECT	71 72 73 74 75	70 69 72 73 74	73 74 75 76	
40	CONECT CONECT CONECT CONECT CONECT	76 77 78 79 80	75 76 76 76 70	79	78 77
	COVECT COVECT	8 1 8 2 8 3	80 80 64	82 83 82	6 1 8 5 8 9

45

	CONECT 84 83	
	CONECT 85 86 82	
		8 8
5	CONECT 87 86 CONECT 88 86	
		0
	CONECT 90 89	
	CONECT 91 94 89 9	2
		8
	CONECT 93 92	
10		7
10	CONECT 95 94 96 CONECT 96 95	
	ONECT 97 94	
		ç
	ONECT 99 98	-
	CONECT 100 103 98 101	
3.5	CONECT 101 102 100 106	
15	CONECT 102 101	
	CONECT 103 100 104	
	CONECT 104 103 105 CONECT 105 104	
	CONECT 105 104 - CONECT 106 101 105 107	
	CONECT 107 106 107	
	CONECT 108 111 106 109	
20	CONECT 109 110 103 118	
	CONECT 110 109	
	CONECT 111 105 112	
	CONECT 112 111 113 114	
	CONECT 113 112 115	
	CONECT 114 112 116 CONECT 115 113 117	
25	CONECT 116 114 117	
	CONECT 117 115 116	
	CONECT 118 109 120 119	
	CONECT 119 115	
	CONECT 120 123 11E 121	
	CONECT 121 122 126 126 CONECT 122 121	
30	CONECT 122 121 CONECT 123 120 124	
	CONECT 124 123 125	
	CONECT 125 124 126 127	
	CONECT 126 125	
	CONECT 127 125	
	CONECT 128 121 130 129	
35	CONECT 129 128 CONECT 130 125 13!	
33	CONECT 131 132 139 133	
	CONECT 132 131	
	CONECT 133 131 135 134	
	CONECT 134 133	
	CONECT 135 133 136	
40	CONECT 136 137 135 138 CONECT 137 136	
70	CONECT 137 136 CONECT 138 135 140 139	
	CONECT 139 138	
	CONECT 140 143 138 141	
•	CONECT 141 142 140 147	
	CONECT 142 141	
4.5	CONECT 143 140 144	
45		

-64-

	CONECT 144 143 145 146
	CONECT 145 144
	CONECT 146 144
	CONECT 147 141 149 148
5	CONECT 148 147
5	CONECT 149 152 147 150
	CONECT 150 151 149 156
	CONECT 151 150
	CONECT 152 149 153 154
	CONECT 153 152 155
	CONECT 154 152
10	CONECT 155 153
10	CONECT 156 150 158 157
	CONECT 157 156
	CONECT 158 161 156 159
	CONECT 159 160 158 165
	CONECT 160 159
	CONECT 161 158 162 164
15	CONECT 162 161 163
13	CONECT 163 162
	CONECT 164 161
	CONECT 165 159 167 166
•	CONECT 166 165
	CONECT 167 170 165 165 CONECT 168 169 167 174
	0011201 100 100
20	CONECT 169 165 CONECT 170 167 171 173
	CONECT 170 167 171 173 CONECT 171 170 172
	CONECT 171 170 172
	CONECT 173 170
	CONECT 174 168 176 175
	CONECT 175 174
	CONECT 176 179 174 177
25	CONECT 177 178 176 182
	CONECT 176 177
	CONECT 179 176 180 181
	CONECT 180 179
	CONECT 181 179
	CONECT 182 177 184 183
2.0	CONECT 183 182
30	CONECT 184 187 182 165
	CONECT 185 186 184 194
	CONECT 186 185
	CONECT 187 164 188
	CONECT 186 167 189 190
	CONECT 169 165 191
35	CONECT 190 166 192
33	CONECT 191 189 193 CONECT 192 190 193
	CONECT 193 191 192 CONECT 194 185 196 195
	CONECT 194 183 196 193
	CONECT 195 194 194 197
	CONECT 197 196 196 203
40	CONECT 198 197
 ,	CONECT 199 196 200 202
	CONECT 200 199 201
	CONECT 201 200
	CONECT 202 199
	CONECT 203 209 204 197
	•

45

-65**-**

	CONECT 204 207 203 205 CONECT 205 206 204 210 CONECT 206 205
	CONECT 207 204 208
5	CONECT 208 207 209
3	CONECT 209 208 203
	CONECT 210 205 212 211
	CONECT 211 210
	CONECT 212 215 210 213
	CONECT 213 214 212 218
	CONECT 214 213 CONECT 215 212 216
10	CONECT 218 212 218 CONECT 218 215 217
	CONECT 217 216
	CONECT 218 213 220 219
	CONECT 218 218
	CONECT 220 223 218 221
	CONECT 221 222 220 224
15	CONECT 222 221
15	CONECT 223 220
	CONECT 224 221 226 225
	CONECT 225 224
	CONECT 226 229 224 227
	CONECT 227 228 226 237
	CONECT 228 227 CONECT 229 226 230
20	CONECT 229 226 230 CONECT 230 229 231
	CONECT 231 230 232
	CONECT 232 231 233
	CONECT 233 232 236 235 234
	CONECT 234 233
	CONECT 235 233
25	CONECT 236 233
23	CONECT 237 227 239 238
	CONECT 238 237 CONECT 239 242 237 240
	CONECT 240 241 239 251
	CONECT 241 240
	CONECT 242 239 243
	CONECT 243 242 244 245
30	CONECT 244 243 246
	CONECT 245 243 247
	CONECT 246 244 248
	CONECT 247 245 248
	CONECT 248 246 247 249
	CONECT 249 248 250 CONECT 250 249
35	CONECT 250 249 CONECT 251 240 253 252
	CONECT 252 251
	CONECT 253 256 251 254
	CONECT 254 255 253 258
	CONECT 255 254
	CONECT 256 253 257
40	CONECT 257 256 553
40	CONECT 258 254 260 259 CONECT 259 258
	CONECT 259 258 CONECT 260 263 258 261
	CONECT 261 262 260 270
	CONECT 262 261
	CONECT 263 260 264

-66-

	CONECT 264 263 265 CONECT 265 264 266 267
	CONECT 266 265 CONECT 267 265 269 268 CONECT 268 267
5	CONECT 269 267
	CONECT 270 261 272 271
	CONECT 271 270
	CONECT 272 275 270 273 CONECT 273 274 272 276
	CONECT 273 274 272 270 CONECT 274 273
	CONECT 275 272 276 277
10	CONECT 276 275
	CONECT 277 275
	CONECT 278 273 280 279
	CONECT 279 278 CONECT 280 283 276 281
	CONECT 281 282 280 286
	CONECT 282 281
15	CONECT 283 280 264 285
	CONECT 284 283
	CONECT 285 283 CONECT 286 281 268 287
	CONECT 287 286
	CONECT 288 291 285 289
20	CONECT 289 290 288 293
20	CONECT 290 289 CONECT 291 288 292
	CONECT 291 288 292 CONECT 292 291 358
	CONECT 293 289 295 294
	CONECT 294 293
	CONECT 295 298 293 295
25	CONECT 296 297 295 302 CONECT 297 296
25	CONECT 297 296 CONECT 298 295 299 301
	CONECT 299 298 300
	CONECT 300 299
	CONECT 301 298 CONECT 302 296 304 303
	CONECT 303 302
30	CONECT 304 307 302 305
	CONECT 305 306 304 316
	CONECT 306 305
	CONECT 307 304 308 CONECT 308 307 309 310
	CONECT 309 308 311
_	CONECT 310 308 312
35 · · · · · · · · · · · · · · · · · · ·	CONECT 311 309 313
	CONECT 312 310 313
	CONECT 313 311 312 314 CONECT 314 313 315
	CONECT 312 313 313 CONECT 315 314
	CONECT 316 305 318 317
_	CONECT 317 316
0	CONECT 318 321 316 319
	CONECT 319 320 318 328 CONECT 320 319
	CONECT 321 318 322
	CONECT 322 321 323 325
	CONECT 323 322 326 324

-67-

	CONECT 324 323
	CONECT 325 322 327
	CONECT 326 323 327
_	CONECT 327 325 326
5	CONECT 328 334 329 319
	CONECT 329 332 328 330
	CONECT 330 331 329 335
-	CONECT 331 330
	CONECT 332 329 333
	CONECT 333 332 334
	CONECT 334 333 328
10	CONECT 335 330 337 336
	CONECT 336 335
	CONECT 337 340 335 338
	CONECT 338 339 337 352
	CONECT 339 338
*	CONECT 340 337 341
	CONECT 341 340 342
15	CONECT 342 341 343
	CONECT 343 342 345 344
•	CONECT 344 343
	CONECT 345 343 346 349
	CONECT 346 345 348 347
	CONECT 347 346
	CONECT 348 346
20	CONECT 349 345 351 350
	CONECT 350 349
	CONECT 351 349
	CONECT 352 338 354 353
	CONECT 353 352
	CONECT 354 357 352 355 CONECT 355 356 354 359
25	CONECT 356 355 354 359
25	
	CONECT 357 354 358 CONECT 358 357 292
	CONECT 359 355 361 360
	CONECT 360 359
	CONECT 351 364 359 362
	CONECT 362 363 361 368
30	CONECT 363 362
	CONECT 364 361 365
	CONECT 365 364 366 367
	CONECT 366 365
	CONECT 367 365
	CONECT 368 362 370 369
	CONECT 369 368
35	CONECT 370 373 368 371
	CONECT 371 372 370 377
	CONECT 372 371
	CONECT 373 370 374
	CONECT 374 373 375 376 CONECT 375 374
	CONECT 375 374 CONECT 376 374
• •	CONECT 376 372 CONECT 377 371 379 376
40	CONECT 377 371 379 376 CONECT 378 377
	CONECT 379 382 377 380 CONECT 380 381 379 369
	CONECT 381 360
	CONECT 382 379 383
	CONECT 383 382 384 385
45	200 001 000 000
45	

	CONECT 384 383 386
	CONECT 385 383 387
	CONECT 386 384 388
	CONECT 387 385 388
_	CONECT 388 386 387
5	CONECT 389 380 391 390
	CONECT 390 389 CONECT 391 394 389 392
	CONECT 392 393 391 398 CONECT 393 392
	CONECT 394 391 395 397
	CONECT 395 394 395
10	CONECT 396 395
••	CONECT 397 394
	CONECT 398 392 400 399
	CONECT 399 398
	CONECT 400 403 398 401
	CONECT 401 402 400 410 CONECT 402 401
• •	CONECT 403 400 404
15	CONECT 404 403 405 406
	CONECT 405 404 407
	CONECT 406 404 408
	CONECT 407 405 409
	CONECT 408 406 409
	CONECT 409 407 408
20	CONECT 410 401 412 411
	CONECT 411 410
	CONECT 412 415 410 413 CONECT 413 414 412 419
	CONECT 414 412 419
	CONECT 415 412 416 416
	CONECT 416 415 417
25	CONECT 417 416
	CONECT 418 415
	CONECT 419 413 421 420
	CONECT 420 419 CONECT 421 424 419 422
	CONECT 421 424 415 422 CONECT 422 423 421 425
	CONECT 423 422
30	CONECT 424 421
	CONECT 425 422 427 426
	CONECT 426 425
	CONECT 427 430 425 428
	CONECT 428 429 427 435 CONECT 429 428
	CONECT 430 427 431
35	CONECT 431 430 432
33	CONECT 432 431 433 434
	CONECT 433 432
	CONECT 434 432
	CONECT 435 428 437 436
	CONECT 436 435
	CONECT 437 440 435 438 CONECT 438 439 437 443
40	CONECT 439 439 437 443
	CONECT 440 437 441
	CONECT 441 440 442
	CONECT 442 441
	CONECT 443 449 444 438

WO 95/17420

	CONECT 444 447 443 445
	CONECT 445 446 444 450
	CONECT 446 445
	CONECT 447 444 448
5	CONECT 448 447 449
	CONECT 449 448 443 CONECT 450 445 452 451
	CONECT 450 445 452 451 CONECT 451 450
	CONECT 451 450 CONECT 452 455 450 453
	CONECT 453 454 452 458
	CONECT 454 453
10	CONECT 455 452 456
10	CONECT 456 455 457
	CONECT 457 456
	CONECT 458 453 460 459
	CONECT 459 458
	CONECT 460 463 458 461
	CONECT 461 462 460 468
15	CONECT 462 461 CONECT 463 460 464
	CONECT 464 463 465
	CONECT 465 464 466 467
	CONECT 466 465
	CONECT 467 465
	CONECT 468 461 470 469
20	CONECT 469 468
20	CONECT 470 473 468 471
	CONECT 471 472 470 477
	CONECT 472 471
	CONECT 473 470 474
	CONECT 474 473 475 476 CONECT 475 474
0.5	CONECT 475 474
25	CONECT 477 463 478 471
	CONECT 476 481 177 479
	CONECT 479 480 478 484
	CONECT 480 479
	CONECT 481 478 482
	CONECT 482 481 483
30	CONECT 483 482 477
	CONECT 484 479 486 485 CONECT 485 484
	CONECT 486 489 484 487
	CONECT 487 488 466 493
	CONECT 488 487
	CONECT 489 486 490 492
35	CONECT 490 489 491
33	CONECT 491 490
	CONECT 492 489
	CONECT 493 487 495 494 CONECT 494 493
	CONECT 494 493 CONECT 495 496 493 496
	CONECT 495 496 493 496 CONECT 496 497 495 510
	CONECT 497 496
40	CONECT 498 495 499
	CONECT 499 498 500
	CONECT 500 499 501
	CONECT 501 500 503 502
	CONECT 502 501
	CONECT 503 501 504 507
. =	

45

	CONECT 504 503 506 505
	CONECT 505 504
	CONECT 506 504
	CONECT 507 503 509 508
5	CONECT 508 507
	CONECT 509 507 CONECT 510 496 512 511
	CONECT 510 496 512 511 CONECT 511 510
	CONECT 517 510 513
	CONECT 513 514 512 526
	CONECT 514 513
10	CONECT 515 512 516
10	CONECT 516 515 517 516
	CONECT 517 516 519
	CONECT 518 516 521 522
	CONECT 519 517 521 520
	CONECT 520 519
	CONECT 521 518 519 523 CONECT 522 518 524
15	CONECT 522 518 524 CONECT 523 521 525
	CONECT 524 522 525
	CONECT 525 523 524
	CONECT 526 513 528 527
	CONECT 527 526
	CONECT 528 531 526 529
20	CONECT 529 530 528 538
20	CONECT 530 529
	CONECT 531 528 532
	CONECT 532 531 533 534 CONECT 533 532 535
	CONECT 533 532 535 CONECT 534 532 536
	CONECT 535 533 537
25	CONECT 535 534 537
25	CONECT 537 535 536
	CONECT 538 529 540 539
	CONECT 539 538
	CONECT 540 543 538 541
	CONECT 541 542 540 547
	CONECT 542 541
30	CONECT 543 540 544 545 CONECT 544 543 545
	CONECT 545 544
	CONECT 546 543
	CONECT 547 541 549 548
	CONECT 546 547
	CONECT 549 552 547 550
35	CONECT 550 551 549 554
	CONECT 551 550 CONECT 552 549 553
	CONECT 552 549 553 CONECT 553 552 257
	CONECT 554 550 556 555
	CONECT 555 554
	CONECT 556 559 554 557
	CONECT 557 558 556 562
40	CONECT 558 557
	CONECT 559 556 560 551
	CONECT 560 559
	CONECT 561 559
	CONECT 562 557 554 563 CONECT 563 552
	CONECT 303 352
AE	

-71-

	CONECT 564 567 562 565 CONECT 565 566 564 571 CONECT 566 565
5	CONECT 567 564 568 CONECT 568 567 569 570 CONECT 569 568
	CONECT 570 568 CONECT 571 565 573 572 CONECT 572 571
	CONECT 573 576 571 574
	CONECT 574 575 573 584
10	CONECT 575 574 CONECT 576 573 677
10	CONECT 577 576 578
	CONECT 678 577 579
	CONECT 579 578 580 CONECT 580 579 583 582 581
	CONECT 581 560
	CONECT 582 580
15	CONECT 583 580 CONECT 584 574 586 585
	CONECT 585 584
	CONECT 586 589 584 587
	CONECT 587 588 586 593 CONECT 588 587
	CONECT 589 585 590
20	CONECT 590 589 591 592
	CONECT 591 590 CONECT 592 590
	CONECT 593 587 595 594
	CONECT 594 593
	CONECT 595 598 593 596 CONECT 596 597 595 601
25	CONECT 597 596
25	CONECT 598 595 599
	CONECT 599 598 600 CONECT 600 599
	CONECT 601 595 603 602
	CONECT 602 601
	CONECT 603 606 601 604 CONECT 604 605 603 609
30	CONECT 605 604
	CONECT 606 603 607 608
	CONECT 607 606 CONECT 608 600
	CONECT 609 604 611 610
	CONECT 610 609
35	CONECT 611 614 609 612 CONECT 612 613 611 618
	CONECT 613 612
	CONECT 614 611 615 617
	CONECT 615 614 616 CONECT 616 615
	CONECT 517 614
40	CONECT 618 612 620 519 CONECT 619 618
	CONECT 619 618 CONECT 620 623 618 621
	CONECT 621 622 620 628
	CONECT 622 621 CONECT 623 620 624
	00.1001 023 020 0.4

45

-72-

	CONECT 624 623 625 CONECT 625 624 626 627 CONECT 626 625
	CONECT 627 625 CONECT 628 621 630 629
r	CONECT 629 628
5	CONECT 630 633 628 631
	CONECT 631 632 630 637 CONECT 632 631
	CONECT 633 630 634 636
	CONECT 634 633 635
	CONECT 635 634 CONECT 636 633
10	CONECT 637 631 639 638
	CONECT 63B 637
	CONECT 639 642 607 640 CONECT 640 641 639 646
	CONECT 641 640
	CONECT 642 639 643
15	CONECT 643 642 644 645 CONECT 644 643
	CONECT 644 643
	CONECT 646 652 647 640
	CONECT 647 650 645 649
	CONECT 648 649 647 653 CONECT 649 648
2.0	CONECT 650 647 651
20	CONECT 651 650 652
	CONECT 652 651 646 CONECT 653 648 655 654
	CONECT 654 653
	CONECT 655 658 653 655
	CONECT 656 657 655 670 CONECT 657 656
25	CONECT 658 655 659
	CONECT 659 658 660
	CONECT 660 659 661 CONECT 661 660 663 662
	CONECT 662 661
	CONECT 663 661 664 667
30	CONECT 664 663 666 665 CONECT 665 664
	CONECT 666 664
	CONECT 667 663 669 668 CONECT 668 667
	CONECT 669 667
	CONECT 670 656 672 67:
35	CONECT 671 670
33	CONECT 672 675 670 673 CONECT 673 674 672 678
	CONECT 674 673
	CONECT 675 672 676 677 CONECT 676 675
	CONECT 677 675
	CONECT 678 673 680 679
40	CONECT 679 678
	CONECT 680 683 678 681 CONECT 681 682 680 689
	CONECT 682 681
	CONECT 683 680 684

	CONECT 684 683 685 686
	CONECT 685 684 CONECT 686 684 688 687
	CONECT 687 686
5	CONECT 688 686 CONECT 689 681 691 690
3	CONECT 690 689
	CONECT 691 694 689 692
	CONECT 692 693 691 706 CONECT 693 692
	CONECT 694 691 695
	CONECT 695 694 695
10	CONECT 695 695 697
	CONECT 697 695 699 698 CONECT 698 697
	CONECT 699 697 700 703
	CONECT 700 699 702 701
	CONECT 701 700 CONECT 702 700
15	CONECT 703 699 705 704
	CONECT 704 703
	CONECT 705 703 CONECT 706 692 706 707
	CONECT 707 706
	CONECT 708 711 705 709
20	CONECT 709 710 706 715 CONECT 710 709
20	CONECT 711 708 712 714
	CONECT 712 711 713
	CONECT 713 712 CONECT 714 711
	CONECT 715 709 717 716
	CONECT 716 715
25	CONECT 717 720 715 716
	CONECT 718 719 717 721 CONECT 719 718
	CONECT 720 717
	CONECT 721 718 723 722
	CONECT 722 721 CONECT 723 726 721 724
30	CONECT 724 725 723 727
	CONECT 725 724
	CONECT 726 723 CONECT 727 724 729 728
	CONECT 728 727
	CONECT 729 732 727 730
35	CONECT 730 731 775 736 CONECT 731 730
35	CONECT 732 729 733 734
	CONECT 733 732 735
	CONECT 734 732 CONECT 735 733
	CONECT 736 730 733 737
	CONECT 737 736
40	CONECT 738 741 736 739 CONECT 739 740 738 744
	CONECT 740 739
	CONECT 741 738 742
	CONECT 742 741 743 CONECT 743 742
	CONECT 744 739 746 745
45	CONECT 745 744
	CONECT 746 744 747 CONECT 747 748 746 749
	CONECT 748 747

	CONECT 749 747 751 750 CONECT 750 749
	CONECT 751 754 749 752
	CONECT 752 753 751 763
	CONECT 752 753 751 765
5	CONECT 754 751 755
J	CONECT 754 751 755
	CONECT 755 754 756 757
	CONECT 756 755 758
	CONECT 757 755 769
i	CONECT 758 756 760
	CONECT 759 757 760
* •	CONECT 760 758 759 761
10	CONECT 761 760 762
	CONECT 762 761
	CONECT 763 752 765 764
	CONECT 764 763
	CONECT 765 768 763 766
	CONECT 768 767 765 771
,	CONECT 767 766
15	CONECT 768 765 769
	CONECT 769 768 770
	CONECT 770 769
	CONECT 771 766 773 772
	CONECT 772 771
	CONECT 773 776 771 774
	CONECT 774 775 773 763
20	CONECT 775 775 775 775
20	CONECT 776 773 777
	CONECT 777 775 778 779
	CONECT 778 778 778
	CONECT 779 777 781
	CONECT 760 778 762
05	CONECT 781 779 762
25	CONECT 782 780 781
	CONECT 783 774 785 784
	CONECT 784 783
	CONECT 785 786 783 786
	CONECT 785 787 785 795
	CONECT 787 780
	CONECT 788 785 789
30	CONECT 789 788 790
	CONECT 750 789 791
	CONECT 791 790 792
	CONECT 792 791 795 794 793
	CONECT 793 792
	CONECT 794 792
	CONECT 755 792
35	CONECT 795 786 796 797
	CONECT 797 796
	CONECT 758 801 795 799
	CONECT 799 600 798 808
	CONECT 800 799
	CONECT 501 795 802
	CONECT 802 801 603
40	CONECT 893 802 804 605
40	- Language Annual Company State Company Comp
	CONECT 504 803
· •	CONECT 635 803 807 806
	CONECT 805 805
	CONECT 807 805
the state of the s	CONECT 608 799 810 809
	CONECT 809 808

	SEQUENCE LISTING
	(1) GENERAL INFORMATION:
	(i) APPLICANT: Temple University - Of The Common-
	wealth System of Higher Education
5	(ii) INVENTORS: Walsh, Peter N., Baglia, Frank
	A., Jameson, Bradford A.
	(iii) TITLE OF INVENTION: PEPTIDE ANALOGS OF THE
	ACTIVATED PLATELET BINDING SITE ON FACTOR XI
	(iv) NUMBER OF SEQUENCES: 23
10	(v) CORRESPONDENCE ADDRESS:
	(A) ADDRESSEE: Seidel, Gonda, Lavorgna
	& Monaco, P.C.
	(B) STREET: Two Penn Center Plaza,
	Suite 1800
15	(C) CITY: Philadelphia
	(D) STATE: Pennsylvania
	(E) COUNTRY: U.S.A.
	(F) ZIP: 19102
	(vi) COMPUTER READABLE FORM:
20	(A) MEDIUM TYPE: Diskette, 3.50 inch,
	720 Kb
	(B) COMPUTER: IBM PS/2
	(C) OPERATING SYSTEM: MS-DOS
	(D) SOFTWARE: WordPerfect 5.1
25	(vii) CURRENT APPLICATION DATA:
	(A) APPLICATION NUMBER:
	(B) FILING DATE:
	(C) CLASSIFICATION:
	(viii) PRIOR APPLICATION DATA:
30	(A) APPLICATION NUMBER: 08/172,002
	(B) FILING DATE: 22 December 1993
	(ix) ATTORNEY/AGENT INFORMATION:
	(A) NAME: Monaco, Daniel A.
2.5	(B) REGISTRATION NUMBER: 30,480
35	(C) REFERENCE/DOCKET NUMBER: 6056-194PC

(x) TELECOMMUNICATION INFORMATION:

TELEPHONE: (215) 568-8383

(A)

/D)

WO 95/17420

- 76 -

(2) INFORMATION FOR SEQ ID NO:1:		
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 86 amino acids	
	(B) TYPE: amino acid	
5	(C) STRANDEDNESS: single stranded	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
10	Ala Cys Ile Arg Asp Ile Phe Pro Asn Thr Val Phe Ala Asp Ser 5 10 15	
	Asn Ile Asp Ser Val Met Ala Pro Asp Ala Phe Val Cys Gly Arg 20 25 30	
15	Ile Cys Thr His His Pro Gly Cys Leu Phe Phe Thr Phe Phe Ser 35 40 45	
	Gln Glu Trp Pro Lys Glu Ser Gln Arg Asn Leu Cys Leu Lys 50 55 60	
20	Thr Ser Glu Ser Gly Leu Pro Ser Thr Arg Ile Lys Lys Ser Lys 65 70 75	
25	Ala Leu Ser Gly Phe Ser Leu Gln Ser Cys Arg 80 85	
	(2)	
	(3) INFORMATION FOR SEQ ID NO:2:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 32 amino acids	
30	(B) TYPE: amino acid	
	(C) STRANDEDNESS: single stranded	
	(D) TOPOLOGY: linear (Xi) SEQUENCE DESCRIPTION: SEC ID NO.2.	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2: Asn Leu Cys Leu Leu Lys Thr Ser Glu Ser Gly Leu Pro Ser Thr	
35	5 10 15	
	Arg Ile Lys Lys Ser Lys Ala Leu Ser Gly Phe Ser Leu Gln Ser 20 25 30	
40	Cys Arg	
	(4) INFORMATION FOR SEQ ID NO:3:	
	(i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 5 amino acids	
	(B) TYPE: amino acid	
	(C) STRANDEDNESS: single stranded	
	(D) TOPOLOGY: linear	

- 77 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3: Pro Lys Glu Ser Gln 5 (5) INFORMATION FOR SEQ ID NO:4: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6 amino acids (B) TYPE: amino acid STRANDEDNESS: single stranded (C) 10 (D) TOPOLOGY: linear SEQUENCE DESCRIPTION: SEQ ID NO:4: (xi) Thr Ser Glu Ser Gly Leu 5 15 (6) INFORMATION FOR SEQ ID NO:5: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 14 amino acids (B) TYPE: amino acid STRANDEDNESS: single stranded (C) 20 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5: Ser Thr Arg Ile Lys Lys Ser Lys Ala Leu Ser Gly Phe Ser 10 25 (7) INFORMATION FOR SEQ ID NO:6: SEQUENCE CHARACTERISTICS: (i) (A) LENGTH: 6 amino acids (B) TYPE: amino acid STRANDEDNESS: single stranded (C) 30 (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6: Thr Ser Glu Ser Gly Leu 5 (8) INFORMATION FOR SEQ ID NO:7: 35

(i)

(A)

(B)

SEQUENCE CHARACTERISTICS:

12 amino acids

amino acid

LENGTH:

TYPE:

- 78 -

```
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:
      Thr Arg Ile Lys Lys Ser Lys Ala Leu Ser Gly Phe
  5
       (9)
           INFORMATION FOR SEQ ID NO:8:
                            SEQUENCE CHARACTERISTICS:
                       (i)
                                 LENGTH: 6 amino acids
                            (B)
                                 TYPE:
                                         amino acid
                                 STRANDEDNESS: single stranded
                            (C)
 10
                            (D)
                                 TOPOLOGY: linear
                      (xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:
      Cys Ser Glu Ser Gly Cys
 15
      (10) INFORMATION FOR SEQ ID NO:9:
                           SEQUENCE CHARACTERISTICS:
                      (i)
                            (A) LENGTH: 5 amino acids
                           (B)
                                TYPE: amino acid
                                STRANDEDNESS: single stranded
                           (C)
20
                           (D)
                                TOPOLOGY: linear
                      (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:
      Cys Lys Glu Ser Cys
25
      (11) INFORMATION FOR SEQ ID NO:10:
                           SEQUENCE CHARACTERISTICS:
                      (i)
                           (A) LENGTH: 7 amino acids
                           (B) TYPE: amino acid
                           (C) STRANDEDNESS: single stranded
30
                           (D) TOPOLOGY: linear
                      (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
     Cys Thr Arg Ile Lys Gly Cys
     (12) INFORMATION FOR SEQ ID NO:11:
35
                     (i)
                          SEQUENCE CHARACTERISTICS:
                           (A) LENGTH: 12 amino acids
                           (B) TYPE: amino acid
                          (C) STRANDEDNESS: single stranded
40
                          (D) TOPOLOGY: linear
```

WO 95/17420

- 79 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11: Cys Pro Glu Trp Pro Lys Glu Ser Gln Arg Pro Cys 5 (13)INFORMATION FOR SEQ ID NO:12: SEQUENCE CHARACTERISTICS: (i) (A) LENGTH: 8 amino acids (B) amino acid TYPE: 10 (C) STRANDEDNESS: single stranded TOPOLOGY: linear (D) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12: Cys Gly Asp Ser Asp Ile Asp Cys 15 (14) INFORMATION FOR SEQ ID NO:13: (i) SEQUENCE CHARACTERISTICS: LENGTH: 31 amino acids (A) 20 (B) TYPE: amino acid (C) STRANDEDNESS: single stranded TOPOLOGY: linear (D) (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13: Phe Thr Cys Val Leu Lys Asp Ser Val Thr Glu Thr Leu Pro Arg 25 15 Val Asn Arg Thr Ala Ala Ile Ser Gly Tyr Ser Phe Lys Gln Cys 30 Ser (15) INFORMATION FOR SEQ ID NO:14: (i) SEQUENCE CHARACTERISTICS: 35 (A) LENGTH: 43 amino acids (B) TYPE: amino acid STRANDEDNESS: single stranded (C) (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO:14: 40 Ala Thr Arg Gln Phe Pro Ser Leu Glu His Arg Asn Ile Cys Leu Leu Lys His Thr Gln Thr Gly Thr Pro Thr Arg Ile Thr Lys Leu 45 Asp Lys Val Val Ser Gly Phe Ser Leu Lys Ser Cys Ala

- 80 -

	(16) INFORMATION FOR SEQ ID NO:15:
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 34 amino acids
	(B) TYPE: amino acid
5	(C) STRANDEDNESS: single stranded
	(D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:
	Ala Gln Ala Ser Cys Asn Glu Gly Lys Gly Lys Cys Tyr Leu Lys
10	5 10 1
10	Leu Ser Ser Asn Gly Ser pro Thr Lys Ile Leu His Gly Arg Gly
	20 25 30
	Gly Ile Ser Gly
15	
	(17) INFORMATION FOR SEQ ID NO:16:
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 6 amino acids
20	(B) TYPE: amino acid
	(C) STRANDEDNESS: single stranded
	(D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:
	His Ser Ile Pro Val Phe
25	5
	(18) INFORMATION FOR SEQ ID NO:17:
	(i) SEQUENCE CHARACTERISTICS:
30	(A) LENGTH: 12 amino acids
	(B) TYPE: amino acid
	(C) STRANDEDNESS: single stranded
	(D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:
35	Val Leu Lys Cys Ser Val Thr Glu Cys Leu Phe Arg 5 10
	(19) INFORMATION FOR SEQ ID NO:18:
40	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 16 amino acids
	(B) TYPE: amino acid
	(C) STRANDEDNESS: single stranded
	(D) TOPOLOGY: linear

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:
	Phe Thr Cys Val Leu Lys Asp Ser Val Thr Glu Thr Leu Pro Arg 5 10 15
5	Val
	(20) INFORMATION FOR SEQ ID NO:19:
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 15 amino acids
10	(B) TYPE: amino acid
	(C) STRANDEDNESS: single stranded
	(D) TOPOLOGY: linear
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:
15	Asn Arg Thr Ala Ala Ile Ser Gly Tyr Ser Phe Lys Gln Cys Ser 5 10 15
	(21) INFORMATION FOR SEQ ID NO:20:
20	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 14 amino acids
	(B) TYPE: amino acid
	(C) STRANDEDNESS: single stranded
	(D) TOPOLOGY: linear
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:
	Cys Arg Thr Ala Ala Ile Ser Gly Tyr Ser Phe Lys Gln Cys 5 10
	(22) INFORMATION FOR SEQ ID NO:21:
30	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 12 amino acids
	(B) TYPE: amino acid
	(C) STRANDEDNESS: single stranded
	(D) TOPOLOGY: linear
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:
	Asn Arg Thr Cys Ala Ile Ser Cys Tyr Ser Phe Lys 5 10

40 (23) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:

A T ENGMY

- 82 -

(C) STRANDEDNESS: single stranded

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Thr Ala Glu Ser Pro Ser Glu Asp Pro Thr Arg Trp Phe Thr Cys
5 10 15

Val Leu Lys Asp Ser Val Thr Glu Thr Leu Pro Arg Val Asn Arg 20 25 30

Thr Ala Ala Ile Ser Gly Tyr Ser Phe Lys Gln Cys Ser 35 40

(24) INFORMATION FOR SEQ ID NO:23:

15 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 85 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single stranded

(D) TOPOLOGY: linear

(xi) SPOTENCE DESCRIPTION. SPO TO NO 22

Claims

5

10

of an amino acid sequence from at least 5 to about 80 amino acids in length, which sequence corresponds to a portion of the sequence of the platelet binding site on the heavy chain of factor XI or factor XIa, said peptide having an artificially introduced restricted conformation and the ability to inhibit the binding of platelets to factor XI or factor XIa, or a pharmaceutically acceptable salt of said peptide, and wherein said artificially introduced restricted conformation is provided in part by at least one covalent bond other than a cysteine-cysteine disulfide bond when said peptide consists of an amino acid sequence according to SEQ ID NO:2.

20

15

2. A composition comprising a peptide attached to a linker sequence from about 1 to 100 amino acids in length, which may be further linked to a detectable label, solid matrix, or carrier, wherein said peptide is a peptide according to claim 1.

25

- 3. A peptide according to claim 1 wherein the peptide is from 5 to about 45 amino acids in length.
- 4. A peptide according to claim 3 wherein the peptide is from about 5 to about 20 amino acids in length.
 - 5. A peptide according to claim 1 selected from the group of peptides having the following amino acid sequences corresponding to the amino acid sequence of the factor XI heavy chain:

PCT/US94/13885

b

- 84 -

amino acids 248-253.

6. A peptide according to claim 1 wherein the conformation is restricted by means of at least one cysteine-cysteine disulfide bond.

7. A peptide according to claim 1 which comprises a sequence according to SEQ ID No:7 and at least one cysteine-cysteine disulfide bond.

10

5

8. A peptide according to claim 1 wherein the restricted conformation is determined from the equilibrium conformation model comprising the set of coordinates and connect statement of Appendix 1.

15

20

9. A synthetic peptide consisting essentially of an amino acid sequence from at least 5 to about 80 amino acids in length, which sequence corresponds to a portion of the sequence of the platelet binding site on the heavy chain of factor XI or factor XIa, said peptide having an artificially introduced restricted conformation and the ability to inhibit the binding of platelets by factor XI or factor XIa, or a pharmaceutically acceptable salt of said peptide,

combinations thereof.

11. A peptide according to claim 10 having an amino acid sequence of D-Cys-(SEQ ID NO:7)-Cys.

5

12. A peptide according to claim 9 wherein the restricted conformation is determined from the equilibrium conformation model comprising the set of coordinates and connect statement of Appendix 1.

10

15

30

35

of an amino acid sequence from at least 5 to about 80 amino acids in length, which sequence corresponds to a portion of the sequence of the platelet binding site on the heavy chain of factor XI or factor XIa, said peptide having an artificially introduced restricted conformation and the ability to inhibit the binding of platelets by factor XI or factor XIa, or a pharmaceutically acceptable salt of said peptide,

wherein said restricted conformation is provided 20 at least in part by at least one artificially introduced covalent bond other than a disulfide bond.

- 14. A peptide according to claim 13 wherein the conformation is restricted at least in part by at least one amide bond.
 - 15. A peptide according to claim 13 wherein the conformation is restricted at least in part by at least one toluene-2,4-diisocyanate cross-link between two free amino groups of the peptide.
 - 16. A peptide according to claim 14 wherein the conformation is restricted at least in part by at least one amide bond formed between side chains of a lysine residue and a glutamic or aspartic acid residue of the peptide.
 - 17. A peptide according to claim 13 wherein the

- 86 -

```
amino acids 225-266;
amino acids 193-199;
amino acids 226-235;
amino acids 229-233;
amino acids 241-246;
amino acids 248-261; and
amino acids 248-253.
```

18. A peptide according to claim 13, wherein a segment of the sequence of said/peptide consists of an amino acid sequence according to SEQ ID NO:7.

- 19. A peptide according to claim 13 wherein the restricted conformation is determined from the equilibrium conformation model comprising the set of coordinates and connect statement of Appendix 1.
- 20. A method of designing a peptide analog to the platelet binding site on the factor XI or factor XIa heavy chain comprising:

determining the distance between two parts of a molecular model including the platelet binding site at conformational equilibrium;

modifying the primary structure of the platelet binding site to restrict the distance between said two parts to the predetermined distance; and

synthesizing a peptide comprising said modified primary structure.

21. The method of claim 20 wherein the step of modifying the primary structure comprises introducing one or more cysteine residues to form an intramolecular disulfide bond.

5

- 87 -

23. A method according to claim 20 wherein the the distance between said two parts is restricted to the predetermined distance by forming an amide bond linking two parts of the primary structure of the platelet binding site.

5

10

35

- 24. The method according to claim 22 wherein the step of modifying the primary structure comprises introducing an amino acid selected from the group consisting of lysine, glutamic acid and aspartic acid and reacting side chains of a lysine with a glutamic or aspartic acid residue to form an amide bond to restrict said two parts to the predetermined distance by internally cross-linking said primary structure.
- 25. The method according to claim 20 wherein the step of modifying the primary structure comprises introducing a toluene-2,4-diisocyanate structure to internally cross-link two free amino groups of the peptide.
- 26. The method according to claim 20 wherein the molecular model comprises the set of coordinates and connect statement of Appendix 1.
 - 27. A method of producing a peptide having a restricted conformation comprising:
- providing a peptide having an amino acid sequence corresponding to a portion of the sequence of the platelet binding site on the factor XI or factor XIa heavy chain;
- determining the conformational equilibrium of that portion of the factor XI or factor XIa heavy chain; and

introducing a covalent modification into the peptide to restrict a distance between two parts of the peptide to a distance between two corresponding parts of the peptide in the equilibrium conformation determined.

28. The method of claim 27 wherein the modification comprises one or more cysteine residues capable

of forming an intramolecular cysteine-cysteine disulfide bond.

- 29. The method according to claim 27 wherein the modification comprises an amide bond cross-linking two parts of the peptide.
- 30. The method according to claim 29 wherein the modification comprises an amide bond cross-linking a lysine residue and a glutamic or aspartic acid residue.
- 31. The method according to claim 27 wherein the modification comprises a molecule of toluene-2,4-diisocyanate linking two amino groups.
 - 32. The method according to claim 27 wherein the equilibrium conformation is determined according to the set of coordinates and connect statement of Appendix 1.

33. A pharmaceutical composition comprising one or more peptides of claim 1 and a pharmaceutically acceptable carrier.

20

25

- 34. A pharmaceutical composition comprising a peptide of claim 4 and a pharmaceutically acceptable carrier.
- 35. A pharmaceutical composition comprising one or more peptides of claim 8 and a pharmaceutically acceptable carrier.
 - 36. A pharmaceutical composition according to claim 33 further comprising a second synthetic peptide having an amino acid sequence from at least 5 to about 50 amino acids in length wherein the amino acid sequence of said peptide corresponds to a portion of the sequence of the binding site for high molecular weight kininogen on the heavy chain of XI, which peptide has an artificially restricted conformation and the ability to inhibit the binding of factor

XI to high molecular weight kininogen, or a pharmaceutically acceptable salt of said peptide.

- 37. A pharmaceutical composition according to claim 36 wherein the restricted conformation of said second peptide is determined from the equilibrium conformation model comprising the set of coordinates and connect statements of Appendix 2.
- 10 38. A pharmaceutical composition according to claim 36 wherein the restricted conformation of said second peptide is provided at least in part by at least one cysteine-cysteine disulfide bond, wherein at least one of the cysteine residues which form the disulfide bond is not present in the native amino acid sequence of the heavy weight kininogen binding site on the heavy chain of factor XI or factor XIa.
- 39. A pharmaceutical composition according to claim 36 wherein the restricted conformation of said second peptide is provided at least in part by at least by at least one artificially introduced covalent bond other than a disulfide bond.
- 25 40. A pharmaceutical composition according to claim 39 wherein the conformation of said second peptide is restricted at least in part by at least one amide bond.
- 41. A pharmaceutical composition according to claim 39 wherein the conformation of said second peptide is restricted at least in part by at least one toluene-2,4-disocyanate cross-link between two free amino groups of said second peptide.
- 42. A pharmaceutical composition according to claim 40 wherein the conformation of said second peptide is restricted at least in part by at least one amide bond formed between side chains of a lysine residue and a glutamic or aspartic acid residue of the peptide.

- 90 -

43. A pharmaceutical composition according to claim 36 wherein said second peptide comprises an amino acid sequence selected from the group consisting of:

SEQ ID NO:13;

SEQ ID NO:17;

SEQ ID NO:18;

SEQ ID NO:19;

SEQ ID NO:20;

SEQ ID NO:21; and

SEQ ID NO:22.

44. A method of inhibiting factor XIa-induced activation of factor IX on the surface of platelets comprising contacting platelets with one or more synthetic peptides comprising an amino acid sequence corresponding to a portion of the sequence of the platelet binding site on the heavy chain of factor XI, said peptide having a restricted conformation and the ability to inhibit the binding of platelets by factor XI or by factor XIa.

20

25

- 45. A method according to claim 44 wherein the conformation of said peptide is restricted at least in part by at least one a cysteine-cysteine disulfide bond, wherein at least one of the cysteine residues which form the disulfide bond is not present in the native amino acid sequence of the platelet binding site on the heavy chain of factor XI or factor XIa.
- 46. A method according to claim 44 wherein the restricted conformation of said peptide is provided at least in part by at least one artificially introduced covalent bond other than a cysteine-cysteine disulfide bond.
- 47. A method according to claim 44 wherein the restricted conformation of said the peptide is provided at least in part by at least one artificially introduced amide

15

20

48. A method according to claim 44 wherein the peptide is selected from the group of peptides having amino acid sequences selected from the group of sequences consisting of:

```
D-Cys-(SEQ ID NO:7)-Cys;

SEQ ID NO:8;

SEQ ID NO:9;

SEQ ID NO:10;

SEQ ID NO:11;

SEQ ID NO:12; and
```

combinations thereof.

- 49. A method according to claim 44 further comprising contacting platelets with a second synthetic peptide comprising an amino acid sequence from at least 5 to about 50 amino acids in length wherein the amino acid sequence of said second peptide corresponds to a portion of the sequence of the binding site for high molecular weight kininogen on the heavy chain of XI, which second peptide has an artificially restricted conformation and the ability to inhibit the binding of factor XI to high molecular weight kininogen, or a pharmaceutically acceptable salt of said second peptide.
- 50. A method according to claim 49 wherein the restricted conformation of said second peptide is determined from the equilibrium conformation model comprising the set of coordinates and connect statements of Appendix 2.
- 51. A method according to claim 49 wherein the restricted conformation of said second peptide is provided at lease in part by at least one artificially introduced covalent bond other than a disulfide bond.
- 52. A method according to claim 49 wherein the conformation of said second peptide is restricted at least in part by at least one amide bond.
 - 53. A method according to claim 49 wherein the conformation of said second peptide is restricted at least

in part by at least one toluene-2,4-diisocyanate cross-link between two free amino groups of said second peptide.

- 54. A method according to claim 49 wherein the conformation of said second peptide is restricted at least in part by at least one amide bond formed between side chains of a lysine residue and a glutamic or aspartic acid residue of the peptide.
- 55. A method according to claim 49 wherein said second peptide comprises an amino acid sequence selected from the group consisting of:

SEQ ID NO:13;
SEQ ID NO:17;
15
SEQ ID NO:18;
SEQ ID NO:19;
SEQ ID NO:20;
SEQ ID NO:21; and
SEQ ID NO:22.

20

25

- 56. A method of inhibiting the binding of platelets to factor XI or factor XIa comprising contacting platelets with one or more synthetic peptides comprising an amino acid sequence corresponding to a portion of the sequence of the platelet binding site on the heavy chain of factor XI, said peptide having a restricted conformation and the ability to inhibit the binding of platelets to factor XI or to factor XIa.
- 57. A method according to claim 56 wherein the peptide is selected from the group of peptides having amino acid sequences selected from the group of sequences consisting of:

```
D-Cys-(SEQ ID NO:7)-Cys;
```

35

SEQ ID NO:8;

SEQ ID NO:9;

5

10

combinations thereof.

- 58. A method according to claim 56 further comprising contacting platelets with a second synthetic peptide comprising an amino acid sequence from at least 5 to about 50 amino acids in length wherein the amino acid sequence of said second peptide corresponds to a portion of the sequence of the binding site for high molecular weight kininogen on the heavy chain of XI, which second peptide has an artificially restricted conformation and the ability to inhibit the binding of factor XI to high molecular weight kininogen, or a pharmaceutically acceptable salt of said second peptide.
- administering to a mammal in need of such treatment an effective amount of one or more synthetic peptides comprising an amino acid sequence corresponding to a portion of the sequence of the platelet binding site on the heavy chain of factor XI, said peptide having a restricted conformation and the ability to inhibit the binding of platelets to factor XI or to factor XIa.
- 60. A method according to claim 59 wherein said synthetic peptide is a peptide according to claim 1.
- of 1. A method according to claim 59 further comprising administering to a mammal in need of such treatment an effective amount of a second synthetic peptide comprising an amino acid sequence from at least 5 to about 50 amino acids in length wherein the amino acid sequence of said second peptide corresponds to a portion of the sequence of the binding site for high molecular weight kininogen on the heavy chain of XI, which second peptide has an artificially restricted conformation and the ability to inhibit the bind-

INTERNATIONAL SEARCH REPORT

Û, * •

Ir ational application No. PCT/US94/13885

	ASSIFICATION OF SUBJECT MATTER		
IPC(6) US CL	:C07K 7/00, 7/06, 7/08, 14/00; A61K 38/08, 38/10:530/330, 329, 328, 327, 326, 325, 324; 514/12, 1		
According	to International Patent Classification (IPC) or to bot	national classification and IPC	
B. FIE	LDS SEARCHED		
Minimum d	documentation searched (classification system followers)	ed by classification symbols)	
U.S. :	530/330, 329, 328, 327, 326, 325, 324; 514/12, 13	. 14, 15, 16, 17	
Documenta	tion searched other than minimum documentation to the	ne extent that such documents are included	d in the fields searched
	data base consulted during the international search (rAS ONLINE, MEDLINE	ame of data base and, where practicable	, search terms used)
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.
A	Blood, Volume 79, No. 2, issue Rawala-Sheikh, "Role of y-Carbox the Binding of Factor IXa to Activation", pages 398-405, see	yglutamic Acid Residues in Platelets and in Factor-X	1-61
A	Biochemistry, Volume 25, issued Amidino Esters as Irreversible Inh Xa and Thrombin", pages 4929-4	nibitors of Factors IXa and	1-61
	X Further documents are listed in the continuation of Box C. See patent family annex.		
A Special estegories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention			
	to be of particular relevance "E" earlier document published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be		
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other			
special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art			
P doc	ument published prior to the international filing date but later than priority date claimed	"&" document member of the same patent	
Date of the actual completion of the international search Date of mailing of the international search report			
20 MARC	20 MARCH 1995 30 MAR 1995		
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT CARDINA SALATIA			
Washington	, D.C. 20231	CAROL A. SALATA)
Facsimile No	o. (703) 305-3230	Telephone No. (703) 308-0196	

Form PCT/ISA/210 (second sheet)(July 1992)*

INTERNATIONAL SEARCH REPORT

rnational application No. PCT/US94/13885

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim N
	The second secon	
4	The Journal of Biological Chemistry, Volume 267, No. 5, issued 15 February 1992, J. Astermark, "Effects of γ -Carboxyglutamic Acid and Epidermal Growth Factor-like Modules of Factor IX on Factor X Activation", pages 3249-3256, see entire document.	1-61
\	The Journal of Biological Chemistry, Volume 267, No. 12, issued 25 April 1992, S. S. Ahmad, "The Role of the First Growth Factor Domain of Human Factor IXa in Binding to Platelets and in Factor X Activation", pages 8571-8576, see entire document.	1-61
\	The Journal of Biological Chemistry, Volume 266, No. 35, issued 15 December 1991, F. A. Baglia, "Identification and Chemical Synthesis of a Substrate-binding Site for Factor IX on Coagulation Factor XIa", pages 24190-24197, see entire document.	1-61
	·	