

ZigBee 网络解析及实现

ZigBee 无线传感网络模块

Date:2009/05/31

工程技术笔记

类别	内容
关键词	ZigBee 技术,ZigBee 网络,ZigBee 解决方案
摘要	本文简要的介绍了 ZigBee 技术的特点、历史、功能及网
	络结构,对于标准 ZigBee 网络协议栈做了初步的介绍,在此
	基础上了解到 ZigBee 市场化进程上遇到的问题,并介绍一种
	简便易用的 ZigBee 无线应用解决方案。

ZigBee 技术学习笔记

ZigBee 无线传感网络模块

修订历史

版本	日期	原因
V1.00	2009/05/31	创建文档

周立功单片机

销售与服务网络(一)

广州周立功单片机发展有限公司

地址:广州市天河北路 689 号光大银行大厦 12 楼 F4

邮编: 510630

电话: (020)38730916 38730917 38730972 38730976 38730977

传真: (020)38730925 网址: www.zlgmcu.com

广州专卖店

地址: 广州市天河区新赛格电子城 203-204 室

电话: (020)87578634 87569917

传真: (020)87578842

北京周立功

1207-1208 室 (中发电子市场斜对面)

电话: (010)62536178 62536179 82628073

传真: (010)82614433

杭州周立功

地址: 杭州市天目山路 217 号江南电子大厦 502 室

电话: (0571) 28139611 28139612 28139613

28139615 28139616 28139618

传真: (0571) 28139621

深圳周立功

楼D室

电话: (0755)83781788 (5线)

传真: (0755)83793285

上海周立功

地址: 上海市北京东路 668 号科技京城东座 7E 室

电话: (021)53083452 53083453 53083496

传真: (021)53083491

南京周立功

地址: 南京市珠江路 280 号珠江大厦 2006 室

电话: (025)83613221 83613271 83603500

传真: (025)83613271

重庆周立功

地址: 北京市海淀区知春路 113 号银网中心 A 座 地址: 重庆市石桥铺科园一路二号大西洋国际大厦

(赛格电子市场) 1611 室

电话: (023)68796438 68796439

传真: (023)68796439

成都周立功

地址: 成都市一环路南二段 1号数码同人港 401室

(磨子桥立交西北角)

电话: (028)85439836 85437446

传真: (028)85437896

武汉周立功

地址:深圳市深南中路 2070 号电子科技大厦 C座 4 地址:武汉市洪山区广埠屯珞瑜路 158 号 12128 室

(华中电脑数码市场)

电话: (027)87168497 87168297 87168397

传真: (027)87163755

西安办事处

地址: 西安市长安北路 54 号太平洋大厦 1201 室

电话: (029)87881296 83063000 87881295

传真: (029)87880865

销售与服务网络(二)

广州致远电子有限公司

地址:广州市天河区车陂路黄洲工业区3栋2楼

邮编: 510660

传真: (020)38601859

网址: www.embedtools.com (嵌入式系统事业部)

www.embedcontrol.com (工控网络事业部)
www.ecardsys.com (楼宇自动化事业部)

技术支持:

CAN-bus: iCAN 及数据采集:

电话: (020)22644381 22644382 22644253 电话: (020)28872344 22644373 邮箱: can.support@embedcontrol.com 邮箱: ican@embedcontrol.com

MiniARM: 以太网:

电话: (020)28872684 28267813 电话: (020)22644380 22644385

邮箱: <u>miniarm.support@embedtools.com</u> 邮箱: <u>ethernet.support@embedcontrol.com</u>

无线通讯: 串行通讯:

电话: (020) 22644386 电话: (020)28267800 22644385 邮箱: <u>wireless@embedcontrol.com</u> 邮箱: <u>serial@embedcontrol.com</u>

编程器: 分析仪器:

电话: (020)22644371 电话: (020)22644375 28872624 28872345

邮箱: <u>programmer@embedtools.com</u> 邮箱: <u>tools@embedtools.com</u>

ARM 嵌入式系统: 楼宇自动化:

电话: (020)28872347 28872377 22644383 22644384 电话: (020)22644376 22644389 28267806

邮箱: arm.support@zlgmcu.com 邮箱: mjs.support@ecardsys.com mifare.support@zlgmcu.com

销售:

电话: (020)22644249 22644399 22644372 22644261 28872524

28872342 28872349 28872569 28872573 38601786

维修:

电话: (020)22644245

ZigBee 无线传感网络模块

目录

1. ZigBo	ee 网络.		2		
1.1	什么	么是 ZigBee 技术?	2		
1.2					
1.3	-				
1.4					
	1.4.1	协议栈结构	3		
	1.4.2	特性	3		
2. ZigBo	ee 组网.		5		
2.1		色介绍			
	2.1.1	协作员(coordinator)	5		
	2.1.2	路由(router)	5		
	2.1.3	端节点(end device)	5		
2.2	2.2 网络拓扑				
2.3	美口	中不足	5		
3. ZigBo	ee 协议栈实用技术		7		
3.1	什么	么是 SNAP	7		
3.2	SNAP 网络原理		7		
	3.2.1	对等网络	7		
	3.2.2	网络容量	8		
	3.2.3	节能	8		
	3.2.4	开发简易	8		
	3.2.5	Updata OTA	8		
3.3	应月	Ħ	8		

1. ZigBee 网络

1.1 什么是 ZigBee 技术?

ZigBee 名字来源于蜂群使用的赖以生存和发展的通信方式,蜜蜂通过跳 ZigZag 形状的舞蹈来通知发现的新食物源的位置、距离和方向等信息,ZigBee 技术模仿蜜蜂通过跳舞来传递信息的方式,通过相邻网络节点之间信息的接力传递,将一个信息从一个节点传输到远处的另外一个节点。

ZigBee 技术是一种在 900MHz 及 2.4GHz 频段的无线通讯协议,底层基于 IEEE 802.15.4 标准。它的特点是低成本、低功耗(五号电池半年到一年)、低数据率(250Kbps),网络结构优良。

1.2 ZigBee 版本

ZigBee V1.0: 这是第一个 ZigBee 标准公开版,于 2005 年 6 月开放下载。

ZigBee V1.1: 第二个 ZigBee 标准公开版,于 2007 年 1 月开放下载,又称为 ZigBee 2006。

ZigBee V1.2: 第三个 ZigBee 标准公开版,于 2008 年 1 月开放下载,又称为 ZigBee Pro、ZigBee 2007。

1.3 ZigBee 技术特点

■ 低成本:

电源: 在低耗电待机模式下,两节普通 5 号干电池可使用 6 个月到 2 年,飞思卡尔最新平台更宣称可以做到待机 20 年。免去了充电或者频繁更换电池的麻烦。这也是 ZigBee 的支持者所一直引以为豪的独特优势;

硬件成本:因为 ZigBee 数据传输速率低,协议简单,所以大大降低了成本。且 ZigBee 协议免收专利费;此外还包括技术发展使得 ZigBee 朝一体化发展,自带 CPU,成本在有望控制在 3 美金左右。

■ 经济传输速度:

本着够用就好的原则,速度在 250Kbps,可以满足它设计用于的家电安防等控制领域,

工程技术笔记

过高的速率设计带来硬件成本和电源成本的浪费;

■ 网络拓扑:

ZigBee 具有星、树和 mesh 网络结构的能力。ZigBee 设备实际上具有无线网路自愈能力,能简单地覆盖广阔围;每个 ZigBee 网络最多可支持 65535 个设备,也就是说,每个 ZigBee 设备可以与另外 65534 台设备相连接;

■ 行业规范:

ZigBee 联盟组织花费了大量的精力用于指定 profile 文档,方便 ZigBee 进驻各种应用领域,如灯光控制,只要使用标准的灯光控制的 profile 文件配置即可可不同厂商的产品实现交互,当然前提是这些灯光设备的 ZigBee 模块也是使用标准的 profile,这样智能家居安防监控就可以 DIY 自由组合了。

1.4 网络的特点及优势

1.4.1 协议栈结构

ZigBee 协议栈位于 IEEE802.15.4 物理层及数据链路层规范之上, 类似于 TCP/IP 协议栈位于 IEEE 802.3 标准之上一样。

ZigBee 协议栈有"1.75 层",即"1+0.5+0.25",1 为完整的网络层(NWL),0.5 为应用层的下半部分应用支持子层(APSL),0.25 为该层之上的 ZigBee 设备对象(ZDO),应用支持子层对它上一层的协议代码,使用一个字节的端口号(EP, End Point)来区分,类似于 TCP/IP 协议栈的 TCP 端口和 UDP 端口,用来区分不同的服务,而 ZDO 使用端点 0,可用的端口为 1~240,240 之后的端口为协议栈保留端口。

1.4.2 特性

■ 接力传送

ZigBee 网络与有线以太网的结构,在单点传输上,是类似的,在标准介质下,每个网络节点之间的标准距离都不长于 100 米 (更长的距离需要增加中继),但是有线以太网的标准介质更为固定,网线的长度就是有效传播范围的尺度,而 ZigBee 无线技术要面临的介质,则包括墙体,人,车辆和建筑物等复杂情况,以至于同样物体不同材料,摆放位置,都会影

工程技术笔记

©2008 Guangzhou ZHIYUAN Electronics CO., LTD.

ZigBee 无线传感网络模块

响实际的点和点之间有效传播距离,对于有线网络,人们更容易按照电线、电话线等的模式去理解,而无线网络,人们倾向于用手机网络,无线电的模型,因此得出 ZigBee 接力传输的印象,实际上有线网络也是接力传输的。

ZigBee 网络的接力传输,可以解释为,ZigBee 路由节点帮助端节点进行数据转发,从而延伸扩展成为大覆盖面积的无线网络。

■ 自组网自恢复

ZigBee 系驿站位于 IEEE802.15.4 之上,由 ZigBee 联盟指定规范,各大 IT 厂商自己研发 ZigBee 协议栈,ZigBee 规范规定了一系列 ZigBee 网络的组网流程、各种组网行为及帧格式等。

每一个 ZigBee 节点,一旦上电,就会被覆盖范围之内的网络识别,处理其入网申请,成为网络中的一员(如果安全中心允许加入),或者遭到拒绝。

在节点离开网络时(掉电或者更换网络、频段等),网络会检测到并执行删除节点的一系列动作,对于路由节点,该操作非常重要,因为路由节点的退出会改变网络的路由结构,为保障通讯正常或网络损失最小,需要重新组织路由。

■ 休眠

ZigBee 网络中,期望端节点是电池供电的,这样才能更好的体现 ZigBee 技术低功耗的特点,为此,电池供电的节点经常处于休眠状态(多数监控节点只有在出现故障的时候才苏醒报警,故障和意外通常不会每月发生),因此 ZigBee 网络中,除路由节点和协调器节点之外的端节点,通常会被置于休眠状态,可有传感器唤醒,或者路由节点唤醒。

因此 ZigBee 网络还存在"端节点"处于休眠态该如何处理数据包的规则。

2. ZigBee 组网

ZigBee 标准网络定义了三种类型(ZigBee device type),对这三种角色的行为的说明,是了解整个协议栈运作的很好切入点。

2.1 角色介绍

2.1.1 协作员(coordinator)

协调器负责启动整个网络。它也是网络的第一个设备。协调器选择一个信道和一个网络 ID(也称之为 PAN ID,即 Personal Area Network ID),随后启动整个网络。

协调器也可以用来协助建立网络中安全层和应用层的绑定(bindings)。注意,协调器的角色主要涉及网络的启动和配置。

2.1.2 路由 (router)

路由器的功能主要是:允许其他设备加入网络,多跳路由和协助它自己的由电池供电的儿子终端设备的通讯。

2.1.3 端节点 (end device)

终端设备没有特定的维持网络结构的责任,它可以睡眠或者唤醒,因此它可以是一个电池供电设备。

2.2 网络拓扑

ZigBee 网络有以下三种组网方式,星型网、簇型网和网状网。其中红色和蓝色的节点(路由节点和协调员节点)才具有转发功能,由他们构建网络框架。

2.3 美中不足

ZigBee 技术先进,在嵌入式技术发达的国家,应用发展的势头如星火燎原,但是在走 工程技术笔记 ©2008 Guangzhou ZHIYUAN Electronics CO., LTD.

ZigBee 技术学习笔记

ZigBee 无线传感网络模块

入技术相对弱一些的区域,先进有时意味着复杂和不可把握,自组网自恢复是 ZigBee 网络的一大特色,为网络的健壮性和便捷性提供了保障,但是完善的机制往往会变得过于复杂,分析起来非常困难,需要对整个协议栈非常了解才能判断情况。

关于源代码,TI 虽然公布了自己 ZigBee pro 协议栈的代码,但是本身协议栈的流程和状态图就很复杂,理解及开发的难度很大。

另外,其睡眠机制也存在一定的可优化之处,路由节点在标准协议中通常要求长期供电,不能使用电池,这给网络部署带来一定的障碍。

以上的问题都是用户在使用 ZigBee 技术不容回避的问题,如果没有找到合适的方案,轻易不要挑战这些技术难点,开销是巨大的。

3. ZigBee 协议栈实用技术

技术的市场化,一个重要的特点,在于降低技术本身的使用难度,各自做自己擅长的事情,大家才能方便的用起新技术,走完技术发展的最后一站,因此,IT 公司的技术人员总是不断的努力推出满足应用需求的产品和服务,针对 ZigBee 标准协议栈的开发难度和功耗问题,目前已经取得不少的进步。

技术的更新和发展,不光是实验室里的研究,也包括来自更大技术厂商应用经验的积累, 国际标准的制定也是搜集借鉴了市场上不同技术公司的优点,集思广益,不断更新。

以下介绍一个商用的 ZigBee 协议栈方案。

3.1 什么是 SNAP

SNAP 网络协议是一款由 Synapse 公司开发的无线 mesh 网络协议,Synapse 公司是国际上专业的无线网状网软硬件解决方案提供商,SNAP 为复杂的 ZigBee

网络提供一个简单、可靠、智能的完整组网方案,同时,因为使用"对等网络"概念,功耗优化明显,冗余性能优异。

3.2 SNAP 网络原理

SNAP 网络是具有以下特点的网络:

3.2.1 对等网络

在 IT 领域,过去是服务器和终端的概念,终端只负责输入输出,计算全部在服务器端完成,之后的 CS (客户机服务器模式),终端具备简单的处理能力,以客户机模式和服务器进行交互,随着客户机计算能力的增强,更多的计算任务可以由客户机来完成,PC 机的配置越来越强,服务器的负担逐渐转向个人电脑,"云计算"的思路正一步步的实现。

从下载的角度来讲,过去往往是个人从网站上下载文件(文档,音乐及视频等)或

ZigBee 无线传感网络模块

应用程序,而之后出现的 P2P 对等网络,以及 BT 软件,开启了对等网络的时代,逐渐的模糊了服务器的概念。

SNAP 同样使用的是对等网络, 所有的节点都是路由节点, 组网时, 无"加入网络"过程, 无中心节点, 无需预先构架网络拓扑。

3.2.2 网络容量

由于 SNAP 使用了 24 位(3 字节)网络地址,因此理论上单个网络可以拥有 16M 个节点,网络使用 16 位 (2 字节)地址,因此支持 64K 个网络。

3.2.3 节能

SNAP 网络支持一种"集体协议睡眠"方式,由附近的节点选举产生一个领导节点(或者 Python 脚本指定),根据领导节点知道的信息,向周围节点发出类似"睡眠 100ms"的命令,然后所有节点(包括他自己),都进入睡眠模式,醒来之后"有事禀报,无事退朝",继续进入睡眠,因此,SNAP 网络是一个"贪睡虫网络"。

3.2.4 开发简易

由于使用了 Python 虚拟机,因此底层能用的硬件和功能都封装成函数,通常只需要十几行代码完成复杂应用。

3.2.5 Updata OTA

OTA 是 On The Air 的缩写,在介绍空中升级之前,我们先来了解一下实现该技术的一些知识。

OTA 使用的是先进的 Python 语言,Python 是一种面向对象的解释性的计算机程序设计语言, 也是一种功能强大而完善的通用型语言,类似于 java 但是更简单,它在虚拟机上运行,应用程序是有 Python 脚本来完成。

使用该技术的一个特点是,可以在应用程序开发的同时,部署 ZigBee 硬件节点,部署完成,程序也同时完成,只需要使用连接电脑的网关节点进行空中升级即可,程序的更改非常方便。

应用 Python 的工程师比较喜欢"注入代码"这个词汇,因为一个端节点的功能及行为,都是可以通过在连接网关的 PC 上编写,然后无线下载到目标设备里,之所以使用"注入"而不使用"下载",因为 Python 脚本是设备全部代码的一部分(下层的虚拟机和底层驱动是不会被擦除的),类似无线的 IAP。

在城市照明的路灯项目中,利用 Python 技术实现的 Update OTA 可以先安装 ZigBee 模块,然后在路灯下面上载(注入)控制程序,软硬同时开工。以后如果升级,也可以同样站在路上操作即可,并不需要取下来(这样做的成本是很高的)。

3.3 应用

SNAP 网络已经在国外有很多成熟的应用,路灯网络(几千个节点一个网络),农田环境监测,机场雷电监测,公园场景音响,煤矿个人安全保障系统等等。