

Carlos Gustavo A. da Rocha

A camada de transporte da máquina de origem se comunica diretamente com a camada de transporte da máquina de destino, independente de todos os sistemas intermediários entre eles

Nos níveis físico, enlace e rede isto não é possível

Modelo Internet TCP/IP

- Modelo Internet TCP/IP
 - O modelo Internet TCP/IP padroniza dois protocolos de transporte
 - TCP (Transmission Control Protocol)
 - UDP (User Datagram Protocol)

TCP X UDP

- Diferenças: São antagônicos em relação a:
 - Complexidade
 - Conjunto de funcionalidades
 - Aplicações usuárias
- Semelhanças:
 - Multiplexação e demultiplexação de requisições e respostas das aplicações
 - Conceito de "porta"

- TCP X UDP: Portas
 - O "formato" de um segmento TCP ou UDP é mostrado a seguir

- TCP X UDP: Portas
 - Para que várias aplicações possam transmitir e receber dados simultaneamente elas utilizam "portas"
 - Cada aplicação (ou instâncias dela) atendida pelo TCP ou UDP de uma máquina vai ser identificada, unicamente, pela quádrupla

IP-ORIGEM, PORTA-ORIGEM; IP-DESTINO, PORTA-DESTINO

- TCP X UDP: Portas
 - Cada identificador de porta possui 16 bits de comprimento, podendo variar de 0 a 65535
 - Portas de origem e destino são selecionadas aleatoriamente para uso pelo TCP e UDP
 - Na prática, em servidores, portas utilizadas por aplicações "comuns" utilizam valores fixos

- TCP X UDP: Portas
 - Exemplo de aplicações e suas portas
 - 22: SSH
 - 25: SMTP
 - 53: DNS
 - 80: HTTP
 - 443: HTTPS

TCP X UDP: Portas

- Estas portas também são chamadas de "portas baixas"
 - Normalmente estão abaixo de 1024
 - O controle da atribuição de portas é feita por uma instituição chamada de IANA

Camada de transporte INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA RIO GRANDE DO NORTE

- UDP User Datagram Protocol
 - Definido na RFC 768
 - Oferece um serviço "best effort"
 - Faz-se o possível, mas não há nenhuma garantia
 - Não é orientado a conexão
 - Cada segmento UDP é tratado de forma totalmente independente

- UDP User Datagram Protocol
 - Formato do segmento

Tamanho, em bytes do segmento UDP, incluíndo cabeçalho

	32 bits		
	porta origem	porta destino	
_	tamanho	checksum	
	Dados da Aplicação		

- UDP User Datagram Protocol
 - Se uma aplicação usa UDP partes do fluxo de dados entre origem e destino (cliente e servidor) podem:
 - Ser perdidos
 - Chegarem fora de ordem
 - Chegarem com erros
 - Todo o tratamento desta situações deve ser feito, se desejado, pela própria aplicação

- UDP User Datagram Protocol
 - Utilizado por:
 - Aplicações onde o volume de dados trocado entre origem e destino é pequeno
 - -DNS
 - Aplicações que não exigem alta confiabilidade
 - Transmissão de vídeo e áudio

TCP – Transmission Control Protocol

- Definido nas RFC's: 793, 1122, 1323, 2018, 2581, ...
- Implementa um serviço
 - Orientado a conexão
 - Confiável
 - Com controle de erros
 - Com controle de fluxo

Nível de transporte

32 bits ______

ACK: confirmações

RST, SYN, FIN: Abertura e encerramento de conexão

checksum

	porta origem	porta destino	
	número de sequência		
/	número de reconhecimento		
	tam. não UAPRSF	janela de recep.	
	cheeksum	dados urgentes	
Opções (tamanho variável)			

dados de aplicação (tamanho variável)

Utilizados para sequenciamento e confiabilidade

número de bytes receptor está pronto para aceitar

- TCP Estabelecimento de conexão
 - Antes que cliente e servidor possam se comunicar eles devem estabelecer uma conexão
 - O cliente realiza uma série de "preparações" como a escolha de uma porta de origem
 - O processo de abertura de conexão é chamado de Tree Way Handshake

TCP – Estabelecimento de conexão

- Tree Way Handshake
 - 1. Cliente envia um segmento TCP para o servidor com o bit SYN habilitado (igual a "1")
 - 2. Servidor responde com outro segmento TCP para o cliente com os bits SYN e ACK habilitados
 - 3. Cliente responde com outro segmento TCP para o servidor com o bit ACK habilitado

EDUCAÇÃO, CIÊNCIA E TECNOLOGIA

RIO GRANDE DO NORTE

- TCP Encerramento de conexão
 - Quando deseja encerrar uma conexão o cliente ou servidor envia um segmento com os bits FIN e ACK habilitados
 - O outro deve responder com um ACK

cliente servidor dados FIN, ACK ACK Conexão encerrada

- TCP Transferência de dados
 - Números de sequência
 - Todos os segmentos TCP transmitidos possuem um número de sequência
 - Possibilitam a "remontagem" dos dados da mesma forma que transmitidos na origem
 - Apesar do nome ser "número de sequência" seu valor não é sequencial
 - São aplicados aos dados transmitidos, e não aos segmentos

- TCP Transferência de dados
 - Números de sequência
 - Suponha que um servidor irá enviar um arquivo de 4278 bytes para o cliente em pedaços de 800 bytes
 - Neste caso os números de sequência dos segmentos TCP serão: 0, 800, 1600, 2400, 3200 e 4000

- TCP Transferência de dados
 - ACK's
 - Sempre que um servidor ou cliente recebe um segmento TCP ele envia um outro segmento com o bit ACK habilitado, confirmando a sua recepção
 - O número de reconhecimento é igual ao próximo byte que se deseja receber
 - Esta técnica é chamada de reconhecimento positivo
 - Se após um tempo limite o ACK correspondente não for recebido; o segmento é retransmitido

EDUCAÇÃO, CIÊNCIA E TECNOLOGIA RIO GRANDE DO NORTE

SEQ =
$$100 \text{ (dados)}$$

SEQ = 130 (dados)
SEQ = 160 (dados)

Transmite três Segmentos com 30 bytes cada

> Este mecanismo faz com que o TCP ofereça um serviço de transmissão de dados confiável para as aplicações

Retransmite o segmento perdido

- TCP Transferência de dados
 - Controle de fluxo e congestionamento
 - Utiliza-se de vários fatores para ajustar dinamicamente o volume de transmissão de segmentos:
 - Tempo médio para o recebimento dos ACK's
 - Quantidade de retransmissões

— . . .

- TCP Transferência de dados
 - Controle de fluxo e congestionamento
 - Este ajuste é feito de forma que origem e destino de uma conexão não fiquem
 - Nem ociosos
 - » "Esperando" por segmentos
 - Nem saturados
 - » Segmentos recebidos em excesso == descarte == retransmissão

- TCP Transferência de dados
 - Controle de fluxo e congestionamento: "TCP SlowStart"
 - Se inicia a conexão com um volume baixo de transmissões de segmento
 - Aumenta-se a quantidade de segmentos transmitidos gradualmente
 - Isto é feito até que o servidor, cliente ou a própria rede esteja próxima de uma situação de congestionamento

