MA 212: Algebra I

Naman Mishra

August 2024

Contents

1	Groups		
	1.1	Cyclic groups	7
	1.2	Orders of Elements	11
	1.3	Generation of groups	12
	1.4	Normal subgroups	21
	1.5	Products	22
	1.6	Isomorphism theorems	24

The course

Grading

This is tentative.

• Quizzes: 30%

• Midterm: 30%

• Final: 40%

Lecture 1. Friday August 2

Chapter 1

Groups

Definition 1.1 (Binary operation). A binary operation \cdot on a set A is any map from $A \times A \to A$, written $(a,b) \mapsto a \cdot b$.

We say that \cdot is associative if for all $a, b, c \in A$,

$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

and *commutative* if for all $a, b \in A$,

$$a \cdot b = b \cdot a$$
.

Examples.

- Addition and multiplication are associative and commutative binary operations on \mathbb{R} .
- Subtraction, division and exponentiation are non-associative and non-commutative binary operations.
- Composition is an associative but non-commutative binary operation on X^X .

Definition 1.2 (Group). A *group* is a set G equipped with a binary operation \cdot satisfying the following properties:

- (G1) **associativity:** \cdot is associative;
- (G2) **identity:** there exists an element $1_G = e \in G$ such that $1_G \cdot x = x \cdot 1_G = x$ for all $x \in G$;
- (G3) **inverse:** for every $x \in G$, there exists an element $y \in G$ such that $x \cdot y = y \cdot x = 1_G$. We write y as x^{-1} .

If \cdot is also commutative, we say that G is an abelian group. A subset $H \subseteq G$ is a subgroup of G if H is a group with respect to the same binary operation \cdot . We write $H \leq G$. Examples.

- $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$ and $(\mathbb{C},+)$ are abelian groups.
- $(\mathbb{R}^{\times},\cdot)$ is a group but (\mathbb{R},\cdot) is not.
- $(GL_n(\mathbb{R}), \cdot)$ is a non-abelian group, where

$$\operatorname{GL}_n(\mathbb{R}) = \{ A \in M_n(\mathbb{R}) \mid \det A \neq 0 \}.$$

• For any $n \in \mathbb{N}^+$, (S_n, \circ) is a group, where

$$S_n = \{ \sigma \colon [n] \to [n] \mid \sigma \text{ is bijective} \}.$$

$$S_1 = \{1\},$$

 $S_2 = \{1, (12)\},$
 $S_3 = \{1, (12), (13), (23), (123), (132)\}.$

 S_1 and S_2 are abelian, but S_3 is not. Let x = (12) and y = (13), then

$$(x \circ y)(1) = x(3) = 3, \quad (x \circ y)(2) = x(2) = 1, \quad (x \circ y)(3) = x(1) = 2,$$

but

$$(y \circ x)(1) = y(2) = 2$$
, $(y \circ x)(2) = y(1) = 3$, $(y \circ x)(3) = y(3) = 1$.

• Let $H = \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \mid x \in \mathbb{R} \right\}$. Then H is an abelian subgroup of the non-abelian $\mathrm{GL}_2(\mathbb{R})$.

Remarks (New groups from old).

• Let (A, \cdot) and (B, *) be groups. The cartesian product $A \times B$ is a group with respect to the operation

$$(a_1, b_1) \star (a_2, b_2) = (a_1 \cdot a_2, b_1 * b_2).$$

defined componentwise.

• Let X be a set and $S = \mathbb{R}^X$. Then S is an abelian group under addition (pointwise). In fact, if (G, \cdot) is a group, then G^X is a group under the operation

$$(f \cdot g)(x) = f(x) \cdot g(x).$$

If G is abelian, then so is G^X .

• Given any set A, we can form the group S(A) of all bijections from A to itself, under composition.

Proposition 1.3. Let (G,\cdot) be a group. Then

- (i) the identity element 1_G is unique;
- (ii) the inverse of each element $x \in G$ is unique;
- (iii) $(x^{-1})^{-1} = x$ for all $x \in G$;
- (iv) $(x \cdot y)^{-1} = y^{-1} \cdot x^{-1}$ for all $x, y \in G$;
- (v) The product $a_1 a_2 \dots a_n$ does not depend on bracketing.

Proof.

(i) Suppose e and f are both identities of G. Then

$$e = e \cdot f = f$$
.

(ii) Suppose y and y' are both inverses of x. Then

$$xy = 1_G \implies y'xy = y' \implies y' = y.$$

(iii) We have

$$x \cdot x^{-1} = 1_G = x^{-1} \cdot x.$$

reinterpreted in the context of x^{-1} .

(iv) Checking

$$(xy)(y^{-1}x^{-1}) = x(yy^{-1})x^{-1} = xx^{-1} = 1_G.$$

Alternatively, let $z = (xy)^{-1}$. Then

$$(xy)z = 1_G$$

$$(x^{-1}x)yz = x^{-1}$$

$$yz = x^{-1}$$

$$(y^{-1}y)z = y^{-1}x^{-1}$$

$$z = y^{-1}x^{-1}$$

(v) Induct on n. Look at the rightmost left bracket

$$a_1 \dots a_n = (a_1 \dots a_k) \cdot (a_{k+1} \dots a_n).$$

Corollary 1.4 (Cancellation law). Let (G, \cdot) be a group. If $x, y, z \in G$ and xy = xz, then y = z.

Proof. Multiply by x^{-1} on the left.

Definition 1.5 (Order). The order of an element $x \in G$ is the smallest $n \in \mathbb{N}$ Monday such that $x^n = 1_G$ if it exists, and ∞ otherwise.

Examples.

- $G = \mathbb{Z}/n\mathbb{Z} = \{\bar{a} \mid 0 \leq a < n\}$ where $\bar{a} = \{a + kn \mid k \in \mathbb{Z}\}$ under the operation $\bar{a} + \bar{b} = \overline{a + b}$.
- $G = \mathbb{C}^{\times}$. All roots of unity have finite order.
- $G = \mathrm{GL}_2(\mathbb{R})$. The matrix

$$\alpha_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

has order n if $\theta = \frac{2\pi}{n}$. [This is a homomorphism from $(\mathbb{R}, +)$ to (G, \cdot)]

• $G = GL_2(R)$ where R is a ring. Elements of the following set may have finite order.

$$\{g \in M_2(R) \mid \det(g) \text{ is a unit in } R\}$$

Proposition 1.6 (Crystallographic restriction). Let $x \in GL_2(\mathbb{Z})$. Then ord $x \in \{1, 2, 3, 4, 6, \infty\}$.

Definition 1.7 (Subgroup). A set $H \subseteq G$ is a *subgroup* of G if it is a group under the same operation. We write $H \leq G$.

Examples.

• $G = \mathbb{Z}$. Then $H \leq G \iff H = n\mathbb{Z}$ for some $n \in \mathbb{N}$.

Proof. Ignore the trivial case $H = \{0\}$. Let n be the smallest positive element of H. Then $n\mathbb{Z} \subseteq H$ by closure under addition. For any $m \in H$, write m = qn + r with $0 \le r < n$. Then $r = m - qn \in H$. Since n is the smallest positive element of H, r = 0. Thus $H \subseteq n\mathbb{Z}$.

• Let $|G| = 2k < \infty$. Then G has an element of order 2.

Proof. Suppose not. Then for any $x \in G \setminus \{1\}$, $x^{-1} \neq x$. Thus $G \setminus \{1\}$ is a disjoint union of pairs $\{x, x^{-1}\}$. This would imply |G| is odd.

• Let G be a group such that $x^2 = 1$ for all $x \in G$. Then G is abelian.

Proof. Let $x, y \in G$. Then

$$(xy)^{2} = 1$$

$$\implies xyxy = 1$$

$$\implies xy = y^{-1}x^{-1} = yx$$

• Let G be a finite group where each element is its own inverse. What can be said about |G|?

 (G,\cdot) can be viewed as a vector space over $(\mathbb{F}_2,+,\cdot)$ with the scalar product of $x \in G$ and $c \in \mathbb{F}_2$ given by x^c . Let $n = \dim_{\mathbb{F}_2} G$ (possibly zero). Then $(G,\cdot) \cong (\mathbb{F}_2^n,+)$ and thus $|G| = 2^n$. (ref. structure theorem for finitely generated abelian groups)

Furthermore, \mathbb{F}_2^n is a group of this form for all n. Thus the groups of this form are precisely $\{\mathbb{F}_2^n \mid n \in \mathbb{N}\}$ (up to isomorphism).

Proposition 1.8. Let $H \subseteq G$. Then $H \leq G$ iff $H \neq \emptyset$ and H is closed under the operation $(x,y) \mapsto xy^{-1}$.

Proof. The "only if" direction is trivial.

Suppose $H \neq \emptyset$ and H is closed under the operation. Let x be any element of H. Then $1 = xx^{-1} \in H$. Now for any $y \in H$, $y^{-1} = 1y^{-1} \in H$. Now for any $x, y \in H$, $xy = x(y^{-1})^{-1} \in H$.

Proposition 1.9. Let $H \subseteq G$ be finite. Then $H \subseteq G$ iff $H \neq \emptyset$ and H is closed under multiplication.

Proof. Let

1.1 Cyclic groups

Given $x \in G$, look at the set $\langle x \rangle = \{x^n \mid n \in \mathbb{Z}\}$. This is a cyclic subgroup of G.

We wish to classify all cyclic subgroups (up to isomorphism).

Example. Let $H \leq G$ with |G| = n > 2, |H| = n - 1. Is this possible? No. Let $G \setminus H = \{x\}$. Then $x^{-1} = x$. Let $h \neq 1 \in H$. Then $xh = h' \in H$, so $x \in H$ (closure).

Generalising gives the following proposition.

Proposition 1.10. No group can be the union of two proper subgroups.

Proof. Suppose $G = H_1 \cup H_2$ where $H_1, H_2 \leq G$. Pick an $x \in H_1 \setminus H_2$ and $y \in H_2 \setminus H_1$. WLOG assume $xy \in H_1$. Then $y \in H_1$. This means at least one of $H_1 \setminus H_2$ and $H_2 \setminus H_1$ is empty.

Definition 1.11 (Homomorphism). Let G and H be groups. A map $\varphi \colon G \to H$ is a *homomorphism* from G to H if it respects the group operation. That is,

$$\varphi(xy) = \varphi(x)\varphi(y)$$

for all $x, y \in G$.

- If φ is bijective, it is called an isomorphism.
- If H = G, it is an automorphism.

G and H are isomorphic $(G \cong H)$ if there exists an isomorphism from G to H.

Definition 1.12 (Kernel). The *kernel* of a homomorphism $\varphi \colon G \to H$ is the set

$$\ker \varphi = \{ x \in G \mid \varphi(x) = 1_H \}.$$

The *image* of φ is the set

$$\operatorname{Im} \varphi = \{ \varphi(x) \mid x \in G \}.$$

Examples.

- det: $GL_2(\mathbb{R}) \to \mathbb{R}^{\times}$ is a homomorphism.
- $\mu \colon \mathbb{Z}/n\mathbb{Z} \to \mu_n$ given by

$$\mu(\bar{k}) = \exp(\frac{2\pi k}{n})$$

is an isomorphism, where

$$\mu_n = \{n \text{th roots of unity}\} \subseteq \mathbb{C}.$$

- φ is injective iff $\ker \varphi = \{1_G\}$.
- exp: $(\mathbb{R}, +) \to (\mathbb{R}^+, \cdot)$ is an isomorphism.
- $\mathbb{R}^{\times} \ncong \mathbb{C}^{\times}$.
- Let A, B be nonempty sets. Then $S_A \cong S_B$ iff A and B are in bijection.

Proof. Suppose τ is a bijection from A to B. Then $\sigma \mapsto \tau \sigma \tau^{-1}$ is an isomorphism from S_A to S_B .

If two groups are isomorphic, they are essentially the same group. An isomorphism $\varphi \colon G \to H$ is only a "re-parameterization" of G in terms of H.

Lecture 3. Wednesday August 7

Lemma 1.13. $|\langle x \rangle| = \operatorname{ord} x$.

Proof. If ord $x = \infty$, then $x^n \neq x^m$ for $n \neq m$. Thus $|\langle x \rangle| = \infty$.

If ord $x = n < \infty$, then x^0, x^1, \dots, x^{n-1} are distinct. Let $x^m \in \langle x \rangle$. Write $x^m = x^{qn+r} = x^r$ with $0 \le r < n$. Thus these n elements are the only ones in $\langle x \rangle$.

Proposition 1.14. Let G be a cyclic group. Then

(i) if
$$|G| = \infty$$
, then $G \cong \mathbb{Z}$;

(ii) if
$$|G| = n < \infty$$
, then $G \cong \mathbb{Z}/n\mathbb{Z}$.

Proof. Let $G = \langle x \rangle$. We want an isomorphism $\varphi \colon G \to \mathbb{Z}/n\mathbb{Z}$, where $n \in \mathbb{N} \cup \{\infty\}$. It suffices to define $\varphi(x)$ and extend it to all of G.

If $|G| = \infty$, define $\varphi(x) = 1$. Then $\varphi(x^n) = n$ for all $n \in \mathbb{Z}$. This is a bijection and $\varphi(ab) = \varphi(a) + \varphi(b)$ holds.

If $|G| = \{1, x, \dots, x^{n-1}\}$, define $\varphi(x) = \overline{1} \in \mathbb{Z}/n\mathbb{Z}$. Then $\varphi(x^m) = \overline{m}$ for all $m \in \mathbb{Z}$. It is clearly a surjection. The kernel is $\{x^m \in G : n \mid m\} = \{1\}$, so it is injective. Finally, $\varphi(x^m x^k) = \varphi(x^{m+k}) = \overline{m} + \overline{k} = \overline{m} + \overline{k}$.

Cyclic groups are generated by a single element. What about groups generated by multiple elements?

Let $S \subseteq G$. Define two sets

$$\langle S \rangle_1 = \{ s_1^{\varepsilon_1} \dots s_k^{\varepsilon_k} \mid s_i \in S, \varepsilon_i \in \{\pm 1\} \}$$

$$= \{ s_1^{\alpha_1} \dots s_k^{\alpha_k} \mid s_i \in S, \alpha_i \in \mathbb{Z} \}$$

$$\langle S \rangle_2 = \bigcap_{S \subseteq H \le G} H.$$

Lemma 1.15. $\langle S \rangle_1 = \langle S \rangle_2 \eqqcolon \langle S \rangle$.

Proof. $\langle S \rangle_2 \leq G$ since the intersection of subgroups is a subgroup. We first check that $\langle S \rangle_1 \leq G$ under multiplication (which is essentially concatenation). Inverses are given by $s_1^{\varepsilon_1} \dots s_k^{\varepsilon_k} \mapsto s_k^{-\varepsilon_k} \dots s_1^{-\varepsilon_1}$.

Moreover, $S \subseteq \langle S \rangle_1$. Thus $\langle S \rangle_2 \subseteq \langle S \rangle_1$.

Since $\langle S \rangle_2$ is a group containing S, closure under products and inverses implies $\langle S \rangle_1 \subseteq \langle S \rangle_2$.

Examples.

• S_n is generated by transpositions.

• $GL_n(\mathbb{R})$ is generated by the elementary matrices

$$E_{ij}(\lambda) = I_n + \lambda e_{ij},$$

where $e_{pq} = (\delta_{ip}\delta_{jq})_{i,j=1}^n$, taken together with the diagonal matrices. [swapping is done by $(a,b) \mapsto (a,a+b) \mapsto (-a,a+b) \mapsto (b,a+b) \mapsto (b,a)$]

- \mathbb{Q}^{\times} is not finitely generated. Take any finite set $S \subseteq \mathbb{Q}^{\times}$ and look at the numerators. There are finitely many primes in the numerators of S, so any prime not in the numerators of S is not in $\langle S \rangle$.
- $\operatorname{SL}_n(\mathbb{R}) = \{ M \in M_n(\mathbb{R}) \mid \det M = 1 \}$ is generated by $E_{ij}(\lambda) = I_n + \lambda e_{ij}, \quad \text{with } i \neq j.$
- Let F be any infinite field. Then (F^{\times}, \cdot) is not finitely generated. If char F = p, then p is prime and

Suppose char F=0. Then F contains (an isomorphic copy of) \mathbb{Q} . For F^{\times} to be finitely generated, Q^{\times} would have to be finitely generated. We will later see that subgroups of finitely generated groups are finitely generated. We will also see that \mathbb{Q}^{\times} is not finitely generated. Thus F^{\times} is not finitely generated.

Lecture 4. Friday August 9

- $GL_n(F)$ is not finitely generated for any infinite field F.
 - There is an isomorphic copy of F^{\times} in $GL_n(F)$. If $GL_n(F)$ were finitely generated, so would F^{\times} .
 - det: $GL_n(F) \to F^{\times}$ is a surjective homomorphism. If $GL_n(F)$ were finitely generated, so would F^{\times} .

However, \mathbb{F}^{\times} is not finitely generated since it contains \mathbb{Q}^{\times} .

• In the non-abelian setting, a subgroup of a finitely generated group is not necessarily finitely generated. Let

$$G = \left\langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \right\rangle \le GL_2(\mathbb{R}).$$

Let

$$H = \left\{ g \in G \mid g = \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \right\} \le G.$$

Check that

$$H = \left\{ \begin{pmatrix} 1 & n/2^m \\ 0 & 1 \end{pmatrix} \middle| n, m \in \mathbb{Z} \right\}.$$

This is not finitely generated. H is isomorphic to the additive group of rationals with power-of-2 denominators. The span of any finite set

$$S = \{\frac{n_1}{2^{m_1}}, \dots, \frac{n_k}{2^{m_k}}\},\$$

cannot contain any rational with a denominator larger than $2^{\max m_i}$.

Exercise 1.16. Can any non-empty finite set S be given the structure of a group? What if S is countable? What if it is any set?

Solution. In the case |S| = n, there is an obvious isomorphism to $\mathbb{Z}/n\mathbb{Z}$. If $|S| = \aleph_0$, there is an obvious isomorphism to \mathbb{Z} .

If S is a set of sets, the symmetric difference $A\Delta B = (A \setminus B) \cup (B \setminus A)$ gives a group structure. Thus in pure set theory, any set can be given the structure of a group.

What if the elements of S are not sets?

1.2 Orders of Elements

Lemma 1.17. Let G be a group. If $x^m = x^n = 1$, then $x^{(m,n)} = 1$.

Proof. Bezout's identity.

Corollary 1.18. If $x^{\alpha} = 1$, then ord $x \mid \alpha$.

Proof. $(\operatorname{ord} x, \alpha) \leq \operatorname{ord} x$ by elementary number theory. But $x^{(\operatorname{ord} x, \alpha)} = 1$ (by the previous lemma) gives $(\operatorname{ord} x, \alpha) \geq \operatorname{ord} x$ by minimality of $\operatorname{ord} x$. Thus $(\operatorname{ord} x, \alpha) = \operatorname{ord} x$ so $\operatorname{ord} x \mid \alpha$.

Lemma 1.19. Let G be a group.

- (i) If ord $x = \infty$, then ord $x^k = \infty$ for every $k \in \mathbb{Z}^{\times}$.
- (ii) If ord $x = n < \infty$, then ord $x^k = n/(n, k)$.

Proof. It suffices to prove the second statement. Let $y = x^k$ and d = (n, k). Write $n = \tilde{n}d$ and $k = \tilde{k}d$. Suppose $y^m = 1$. Then by the previous corollary, $n \mid mk$ and so $\tilde{n} \mid m\tilde{k} \implies \tilde{n} \mid m$.

Thus
$$m \ge \tilde{n}$$
. But $y^{\tilde{n}} = x^{k\tilde{n}} = x^{n\tilde{k}} = 1$. Thus ord $y = \tilde{n}$.

Lemma 1.20. Let $H = \langle x \rangle$.

- (i) If ord $x = \infty$, then H is generated by x^a iff $a = \pm 1$.
- (ii) If ord x = n, then H is generated by x^a iff (a, n) = 1.

Proof. For the first case, assume $H = \mathbb{Z}$ by isomorphism. $\mathbb{Z} = a\mathbb{Z} \implies \exists n \in \mathbb{Z} \text{ s.t. } an = 1.$ Then |a| = 1. The converse is by inspection.

For the second, assume $H = \mathbb{Z}/n\mathbb{Z}$ by isomorphism. Let $\bar{a} \in \mathbb{Z}/n\mathbb{Z}$ be a generator. Then ord $\bar{a} = n$. By the previous lemma, ord $\bar{a} = n/(n, a)$ (since ord $\bar{1} = n$).

Lecture 5. Monday August 12

1.3 Generation of groups

Lemma 1.21. Let G be a group and let $a, b \in G$ commute. Let ord a = m, ord b = n, $lcm(m, n) = \ell$. Then ord $ab \mid \ell$. If (m, n) = 1, then ord $ab = \ell$.

Proof. $(ab)^{\ell} = a^{\ell}b^{\ell} = 1.$

Now suppose that (m, n) = 1. Let $d = \operatorname{ord} ab \implies d \mid \ell$. Now

$$(ab)^{d} = 1 \implies a^{d}b^{d} = 1$$
$$\implies a^{d} = b^{-d}.$$

Raising to the power m gives $a^{dm} = 1 = b^{-dm}$. Thus $n \mid md \implies n \mid d$ (coprime). Similarly $m \mid d$. Thus $nm = \ell \mid d$. Together with $d \mid \ell$, we get $d = \ell$.

Examples.

- If $(a, b) \neq 1$, we can't say anything. For example, $b = a^{-1}$ gives ord ab = 1.
- If $ab \neq ba$, things can go crazy. For example, $a = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $b = \begin{pmatrix} 0 & 1/2 \\ 2 & 0 \end{pmatrix}$. Then $a^2 = b^2 = 1$ but $ab = \begin{pmatrix} 1/2 & 0 \\ 0 & 2 \end{pmatrix}$ has infinite order.

Definition 1.22 (Presentation).

Definition 1.23 (the dihedral group). For $n \geq 3$, the dihedral group D_{2n} is the group of rigid motions of a regular n-gon R_n in \mathbb{R}^2 .

Remark. A "rigid motion" is an isoemtry: a distance preserving bijection. For example, reflections and rotations. Note how rigid motions being a bijection (when restricted to the n-gon) implies that only those isometries that preserve the n-gon are allowed.

Rigid motions in \mathbb{R}^n are given by $x \mapsto Ax + b$ where $A \in O_n$, the set of orthogonal matrices in M_n .

$$(A_1, b_1) \circ (A_2, b_2) = (A_1 A_2, A_1 b_2 + b_1).$$

 $A_1A_2 \in O_n$ so the product is closed. Associativity is inherited from function composition. The identity is (1,0) and the inverse of (A,b) is $(A^\top, -A^\top b)$.

Lemma 1.24. Every point P on R_n is determined, among all other points on R_n , by its distance from any two fixed adjacent vertices of R_n .

That is, let A and B be adjacent vertices of R_n . Then for any $d_A, d_B \in \mathbb{R}^+$, there is at most one point P on R_n such that $d(P, A) = d_A$ and $d(P, B) = d_B$.

Proof. Look at the edge \overline{AB} .

Draw a circle of radius d_A around A and a circle of radius d_B around B. They intersect in at most two points, but they are on opposite sides of \overline{AB} . R_n is convex, so every point on R_n lies on one of only one side of \overline{AB} . Thus only one of these two points can lie on R_n .

Proposition 1.25. $|D_{2n}| = 2n$.

Proof. We first show that $|D_{2n}| \leq 2n$. Start with any two vertices A and B of R_n . Let $g \in D_{2n}$.

Claim. q takes vertices to vertices.

To see this, note that the vertices are special in that they are distinguised from all other points on R_n as follows:

Let $P \in \mathbb{R}_n$ and r > 0 be small. We can find two points P'_r and P''_r on R_n such that $d(P, P'_r) = d(P, P''_r) = r$. If P is not a vertex, then $d(P'_r, P''_r) = 2r$. If P is a vertex, then $d(P'_r, P''_r) < 2r$.

Thus we can distinguish between P being a vertex or not solely by the distance function. Since g is an isometry (even Lipschitz), this property is preserved. Thus g takes vertices to vertices.

Claim. g preserves adjacency of vertices.

Fix a vertex A on R_n . Then d(P, A) for a vertex distinct from A is minimized when P is adjacent to A. Since g preserves distances, g must take adjacent vertices to adjacent vertices.

Combining these two claims, we have proven that for any $P \in R_n$, g(P) is uniquely determined by its distance from g(A) and g(B), where A and B are any two adjacent vertices. Thus g is determined by g(A) and g(B).

By the first claim, there are n possible choices for g(A). By the second claim, there are 2 possible choices for g(B). Thus there are at most 2n possible g's.

Finally, we can produce 2n distinct elements as follows.

- Consider the *n* rotations: rotate by $2\pi k/n$ for $k \in n$.
- The n reflections:
 - For odd n, reflect over the line through a vertex and the midpoint of the opposite edge.
 - For even n, reflect over the line through two opposite vertices or through two opposite midpoints.

Each reflection fixes exactly two points. Any non-trivial rotation fixes no points. Thus the 2n elements are distinct.

Notation. Let r denote the counter-clockwise rotation by $2\pi/n$ and let s denote the reflection over the line through some fixed vertex V_0 .

Then
$$r^n = s^2 = 1$$
.

Observe that $\{1, r, r^2, \dots, r^{n-1}\}$ gives all the rotations in D_{2n} .

Lemma 1.26. All reflections in D_{2n} are given by $\{s, rs, r^2s, \ldots, r^{n-1}s\}$.

Proof. All of these elements are distinct, since $r^k \neq 1$ for 0 < k < n. None of these elements are rotations, since if $r^k s = r^m$ for some $k, m \in n$, then $s = r^{m-k}$, which is a contradiction.

Theorem 1.27. $|D_{2n}| = 2n$ and $D_{2n} = \{1, r, \dots, r^{n-1}, s, rs, \dots, r^{n-1}s\}.$

Proposition 1.28. In D_{2n} , $sr = r^{-1}s$.

Proof. From lemma 1.26, we know that rs is a reflection. Thus (rs)(rs) = 1, which immediately gives $sr = r^{-1}s$.

Next lecture: $D_{2n} = \langle r, s \mid r^n = s^2 = 1, sr = r^{-1}s \rangle$.

Lecture 7. Monday August 19

Definition 1.29 (Action). We say that a group (G, *) acts on a set X if there is a map $\theta \colon G \times X \to X$, such that if we write $\theta(g,x)$ as $g \cdot x$ then for every $g_1, g_2 \in G$ and $x \in X$, (i) $g_1 \cdot (g_2 \cdot x) = (g_1 * g_2) \cdot x$; (ii) $1_G \cdot x = x$.

(i)
$$g_1 \cdot (g_2 \cdot x) = (g_1 * g_2) \cdot x;$$

(ii)
$$1_G \cdot x = x$$
.

We say that $x \in X$ is moved by $g \in G$ to $g \cdot x$.

Examples.

- The trivial action $(q, x) \mapsto x$.
- The interesting action of $GL_n(F)$ on F^n (columns) by matrix-vector multiplication.
- The left regular action of G on itself. $(g, x) \mapsto gx$
- The conjugating action of G on itself. $(g, x) \mapsto gxg^{-1}$

Remark. Given a right action of G on X, we can define a left action as

$$g \cdot x = x \cdot g^{-1}.$$

It thus suffices to study left actions.

Proposition 1.30. The set of actions of G on X is isomorphic to hom (G, S_X) . The associated map is

$$\theta \mapsto (g \mapsto (x \mapsto \theta(g, x))).$$

Proof. For an action \cdot , define for each $g \in G$ the map $\sigma_g \colon X \to X$ by $\sigma_q(x) = g \cdot x$.

Notice that σ_q is a bijection, since

$$(\sigma_{g^{-1}} \circ \sigma_g)(x) = g^{-1} \cdot (g \cdot x) = x.$$

Thus $g \mapsto \sigma_g$ is a homomorphism from G to S_X .

 $hom(G, S_X)$ is a group under composition.

For a homomorphism $\sigma: G \to S_X$, define the group action

$$g \cdot x = \sigma_g(x).$$

Lecture 7: Group actions and cosets

Remark. This is essentially a juggling between the set of functions $(A, B) \to C$ and the set of curried functions $A \to B \to C$.

Definition 1.31 (Orbits and stabilizers). Let G act on X. Then for $x \in X$, we define the *orbit* of x as

$$\mathcal{O}_x = Gx = \{gx \mid g \in G\} \subseteq X,$$

and the stabilizer of x as

$$\operatorname{Stab}_{x} = G_{x} = \{ g \in G \mid g \cdot x = x \} \le G.$$

We say that the action is faithful if

$$\bigcap_{x \in X} G_x = \{1\}.$$

Examples.

- For the trivial action, $\mathcal{O}_x = \{x\}$ and $G_x = G$.
- For the action of $GL_n(\mathbb{R})$ on \mathbb{R}^n , the orbit of x is

$$\mathcal{O}_x = \begin{cases} \{0\} & \text{if } x = 0, \\ \mathbb{R}^n \setminus \{0\} & \text{if } x \neq 0. \end{cases}$$

To see this, **challenge:** prove by induction.

The stabilizer of x is all matrices which have x as an eigenvector with eigenvalue 1.

- For the left regular action of G on itself, $\mathcal{O}_x = G$ and $G_x = \{1\}$.
- For the conjugating action of G on itself, $\mathcal{O}_x = \{gxg^{-1} \mid g \in G\}$ and $G_x = \{g \in G \mid gxg^{-1} = x\}$. There is no simple description of either.

Definition 1.32 (Centralizer and center). For $x \in G$, the *centralizer* of x is

$$C_G(x) = \{ g \in G \mid gx = xg \}.$$

The *center* of G is

$$Z_G = \bigcap_{x \in G} C_G(x) = \{ g \in G \mid \forall x \in G, gx = xg \}.$$

Example. $Z_{\mathrm{GL}_n(\mathbb{R})} = \{ \lambda I \mid \lambda \in \mathbb{R}^{\times} \}.$

Definition 1.33. Let $H \leq G$. Define the relation \sim on G by $x \sim y$ if $x^{-1}y \in H$.

Lemma 1.34. \sim is an equivalence relation.

Proof. Reflexive since $1 \in H$. Symmetric since H is closed under inverses, so

$$x^{-1}y \in H \implies (x^{-1}y)^{-1} = y^{-1}x \in H.$$

Transitive by closure under products,

$$x^{-1}y, y^{-1}z \in H \implies x^{-1}yy^{-1}z = x^{-1}z \in H.$$

Notice that the equivalence class of $x \in G$ is

$$[x] = \{ y \in G \mid yx^{-1} \in H \} = Hx.$$

Definition 1.35 (Coset). Let $H \leq G$. The *left coset* of $x \in G$ is

$$xH = \{xh \mid h \in H\}.$$

The right coset of $x \in G$ is

$$Hx = \{hx \mid h \in H\}.$$

We will only write left cosets, but the same results hold for right cosets.

Corollary 1.36. $xH \cap yH \neq \emptyset$ iff $x \sim y$.

Definition 1.37. The set of (left) cosets of H in G is denoted by G/H.

Examples.

- G acts on the power set 2^G by $g \cdot A = gA = \{ga \mid a \in A\}.$
- Restricting this is useful. Let $H \leq G$. Then G acts on the set of left cosets G/H by $g \cdot xH = (gx)H$.
- If one wishes to define a left action on the set of right cosets G/H, one can define

$$g \cdot Hx = Hxg^{-1}$$
.

 $g \cdot Hx = Hxg$ will not obey associativity. $g \cdot Hx = Hgx$ is not necessarily well-defined.

Question: When and how can one make G/H naturally a group?

We would want $(xH)(yH) = \{xh_1yh_2 \mid h_1, h_2 \in H\}$ to be equal to (xy)H. This would require for all $h_1, h_2 \in H$ that $xh_1yh_2 = xyh_3$ for some $h_3 \in H$.

If hy = yh for all $y \in G$ and $h \in H$, then $xh_1yh_2 = (xy)h_1h_2 \in (xy)H$.

Example. Let $\varphi \colon G \to H$ be a group homomorphism. Let $K = \ker \varphi = \{g \in G \mid \varphi(g) = 1\}$. Then G/K is a group under the operation

$$(xK) \cdot (yK) = (xy)K.$$

This is well-defined, since xK = x'K iff $\varphi(x) = \varphi(x')$. Thus whenever xK = x'K and yK = y'K, we have

$$\varphi(x'y') = \varphi(x')\varphi(y') = \varphi(x)\varphi(y) = \varphi(xy),$$

so that (xy)K = (x'y')K.

Obviously this defines a group operation on G/K. Associativity, identity, inverses are borrowed from G.

Note that for any $x \nsim y$, $xK \neq yK$. Thus $G = \bigsqcup_{xH \in G/H} xH$.

Theorem 1.38 (orbit-stabilizer theorem). Let G act on a set X. Then G/G_x and \mathcal{O}_x are in natural bijection (as sets) via the map $gG_x \mapsto gx$.

Lecture 8. Wednesday August 21

Proof. We first show that the map is well-defined.

$$gG_x = g'G_x \iff g^{-1}g' \in G_x$$
$$\iff g^{-1}g'x = x$$
$$\iff gx = g'x$$

This also shows that the map is injective. Surjection is simply since for any $gx \in \mathcal{O}_x$ (everything in the orbit is of this form), we have $gG_x \mapsto gx$.

Theorem 1.39 (Lagrange's theorem). If G is finite and $H \leq G$, then $|G| = |H| \cdot |G/H|$.

Proof. First note that each coset of H has the same size as H, since $xh \mapsto h$ is a bijection. No two distinct cosets overlap, since whenever xh = yh', $y^{-1}x = h'h^{-1} \in H$, so xH = yH.

Finally $G = \bigsqcup_{S \in G/H} S$ gives

$$|G| = |H| \cdot |G/H|.$$

Corollary 1.40. Let $x \in G$. Then ord $x \mid |G|$.

Proof. $\langle x \rangle$ is a subgroup of G of order ord x.

Corollary 1.41 (Cauchy's theorem). Let G be a finite group and $p \mid |G|$ be a prime. Then G has an element of order p.

We will be largely relying on group actions, so we will attempt to prove this using group actions.

Lemma 1.42. Let G be a p-group, i.e. $|G| = p^m$ for some $m \in \mathbb{Z}^+$, acting on a finite set X. Then the set of all fixed points

$$X^G = \{ x \in X \mid \forall g \in G, g \cdot x = x \}$$

satisfies $|X^G| \equiv |X| \pmod{p}$.

Proof. Notice that $x \in X^G \iff \mathcal{O}_x = \{x\}$. By the orbit-stabilizer theorem and Lagrange's theorem, we have

$$|\mathcal{O}_x| = \frac{|G|}{|G_x|}.$$

Whenever $z \notin X^G$, $|\mathcal{O}_x| > 1$ so it is a power of p. Now since orbits are disjoint,

$$|X| = |X^G| + \sum_{x \notin X^G} |\mathcal{O}_x|$$

gives the result.

Proof of Cauchy's theorem. Let $X = \{\underline{x} \in G^p \mid x_1 \cdots x_p = 1_G\}$. Clearly $|X| = |G|^{p-1}$, since we can choose x_1, \ldots, x_{p-1} freely and then x_p is determined.

Let $\mathbb{Z}/p\mathbb{Z}$ act on X by cyclic permutations.

$$\bar{i} \cdot (x_1, \dots, x_p) \coloneqq (x_{i+1}, \dots, x_p, x_1, \dots, x_i)$$

Inverses commute, so the product is still identity. We have to check that this is a group action.

•
$$\overline{0} \cdot (x_0, \dots, x_{p-1}) = (x_0, \dots, x_{p-1}).$$

 $\bar{i} \cdot (\bar{j} \cdot (x_0, \dots, x_{p-1})) = \bar{i} \cdot (x_{j \bmod p}, \dots, x_{p-1+j \bmod p})$ $= (x_{i+j \bmod p}, \dots, x_{p-1+i+j \bmod p})$ $= \bar{i+j} \cdot (x_0, \dots, x_{p-1}).$

Notice that $|X^{\mathbb{Z}/p\mathbb{Z}}| \neq 0$, since $(1,1,\ldots,1) \in X^{\mathbb{Z}/p\mathbb{Z}}$. Thus $|X^{\mathbb{Z}/p\mathbb{Z}}| \geq p$. Let $(a,a,\ldots,a) \in X^{\mathbb{Z}/p\mathbb{Z}}$ where $a \neq 1$. Then $a^p = 1$, so ord x = p.

Corollary 1.43. Every finite group is a subgroup of S_n for some n.

Proof. Look at the left regular action of G on itself $(g, x) \mapsto gx$. This is obviously faithful. Consider the homomorphism $\sigma: G \to S(G)$

$$\sigma_g = x \mapsto gx.$$

Since the kernel is just {1}, this is an embedding.

Examples.

- S_n acts on X = [n] by permuting the elements.
- S_n acts on $\mathbb{R}[T_1,\ldots,T_n]$, the polynomial ring in n variables, by permuting the variables.

$$(\sigma \cdot f)(T_1, \dots, T_n) = f(T_{\sigma(1)}, \dots, T_{\sigma(n)}).$$

The identity permutation fixes all polynomials. For associativity,

$$(\sigma \cdot (\tau \cdot f))(T_1, \dots, T_n) = (\sigma \cdot f)(T_{\tau(1)}, \dots, T_{\tau(n)})$$
$$= f(T_{\sigma(\tau(1))}, \dots, T_{\sigma(\tau(n))})$$
$$= (\sigma \tau) \cdot f(T_1, \dots, T_n).$$

Polynomials that are fixed by all permutations are called *symmetric* polynomials. See the fundamental theorem of symmetric polynomials for an interesting result.

• S_n acts on \mathbb{R}^n by permuting the coordinates.

$$\sigma \cdot (x_1, \dots, x_n) = (x_{\sigma(1)}, \dots, x_{\sigma(n)}).$$

Or does it? Consider n = 3, $\sigma = (12)$ and $\tau = (23)$. Then $\sigma \tau = (123)$, but

$$\sigma \cdot (\tau \cdot (v_1, v_2, v_3)) = \sigma \cdot (v_1, v_3, v_2) = (v_3, v_1, v_2),$$
 but $(\sigma \tau) \cdot (v_1, v_2, v_3) = (v_{\sigma \tau(1)}, v_{\sigma \tau(2)}, v_{\sigma \tau(3)}) = (v_2, v_3, v_1).$

The correct definition is to invert the permutation.

$$\sigma \cdot (x_1, \dots, x_n) = (x_{\sigma^{-1}(1)}, \dots, x_{\sigma^{-1}(n)}).$$

Let $v = (v_1, \ldots, v_n)$ and $w = \sigma \cdot v = (v_{\sigma^{-1}(1)}, \ldots, v_{\sigma^{-1}(n)})$. For each i, $w_i = v_{\sigma^{-1}(i)}$. Then

$$\tau \cdot w = (w_{\tau^{-1}(1)}, \dots, w_{\tau^{-1}(n)})$$
$$= (v_{\sigma^{-1}(\tau^{-1}(1))}, \dots, v_{\sigma^{-1}(\tau^{-1}(n))})$$

Thus $\tau(\sigma v) = (\sigma \tau)v$.

We continue with examples.

Examples.

Lecture 9. Monday August 26 • Let G act on X. Let S be a set. Consider the set $Fn(X, S) = S^X = \{$ all function from X to $S\}$ Define the group action G on S^X by

$$(g \cdot f)(x) \coloneqq f(g \cdot x).$$

1.4 Normal subgroups

Proposition 1.44. Let $N \leq G$. Consider the set of left cosets G/N with the operation $(uN) \cdot (vN) = (uv)N$.

- (i) The above operation is well-defined.
- (ii) $gng^{-1} \in N$ for all $g \in G$ and $n \in N$.
- (iii) $gNg^{-1} = N$ for all $g \in G$.

If the operation is well-defined, then G/N is a group with identity 1N and inverse $(gN)^{-1} = g^{-1}N$.

Proof. First notice that (ii) is equivalent to $gNg^{-1} \subseteq N$ for all $g \in G$. Thus (ii) immediately follows from (iii). Conversely, if (ii) holds, then $gNg^{-1} \subseteq N$ and

Recall that uN = vN if and only if $u^{-1}v \in N$.

Suppoe (i) holds. Let $g \in G$ and $n \in N$. Note that nN = 1N, so gnN = gN, which gives $gng^{-1} \in N$.

Suppose (ii) holds. Let $u_1N = u_2N$ and $v_1N = v_2N$. Let $u_2 = u_1m$ and $v_2 = v_1n$ for some $m, n \in N$. Then $u_2v_2 = u_1mv_1n = u_1v_1(v_1^{-1})mv_1n \in u_1v_1N$ since $v_1^{-1}mv_1 \in N$.

Definition 1.45 (normal subgroup). A subgroup $N \leq G$ is *normal* if $gNg^{-1} = N$ for all $g \in G$. We write $N \leq G$.

Definition 1.46 (normalizer). Let $S \subseteq G$. The *normalizer* of S in G is the set

$$N_G(S) = \{ g \in G \mid gSg^{-1} = S \}.$$

Exercise 1.47 (self). When is the normalizer

- a subgroup?
- normal?

Proof. Let S be any subset of G. Note that $1 \in N_G(S)$. Suppose $g, h \in N_G(S)$. That is, $gSg^{-1} = S$ and $hSh^{-1} = S$. Then

$$(gh)S(gh)^{-1} = g(hSh^{-1})g^{-1} = gSg^{-1} = S,$$

so $N_G(S)$ is closed under products.

However, closure under inverses is not guaranteed. Consider

Exercise 1.48. The following are equivalent.

- (i) $N \triangleleft G$.
- (ii) $N_G(N) = G$.
- (iii) qN = Nq for all $q \in G$.
- (iv) G/N is a group.

Proof.

Examples.

• Consider $SL_n(\mathbb{R}) \leq GL_n(\mathbb{R})$. Since $\det(gng^{-1}) = \det(n)$, we get $\mathrm{SL}_n(\mathbb{R}) \subseteq \mathrm{GL}_n(\mathbb{R}).$

Theorem 1.49. $N \triangleleft G$ if and only if N is the kernel of some homomorphism from G to some group.

Proof. Suppose $N = \ker \varphi$, where $\varphi \colon G \to H$ is a homomorphism. Let $g \in G$ and $n \in N$. Then $\varphi(gng^{-1}) = \varphi(g)\varphi(n)\varphi(g)^{-1} = 1$, so $gng^{-1} \in N$.

Suppose $N \subseteq G$. Consider the map $\pi: G \to G/N$ given by $\pi(g) = gN$. This is a homomorphism since $\pi(1) = 1N$ is the identity, and

$$\pi(xy) = (xy)N = xN \cdot yN = \pi(x)\pi(y).$$

Moreover, $\ker(\pi) = N$ since $\pi(x) = 1N \iff xN = 1N \iff x \in N$.

1.5 Products

We have already defined the direct product of two groups in ??.

Definition 1.50 (direct product). Given any index set I and for each $i \in I$ a group A_i , we can give a group structure to the direct product $\prod_{i \in I} A_i$ by defining the operation componentwise.

Definition 1.51 (direct sum). Given any index set I and for each $i \in I$ a group A_i , we define the direct sum of the groups A_i as

$$\bigoplus_{i \in I} A_i = \left\{ (a_i) \in \prod_{i \in I} A_i \mid \text{ all but finitely many } a_i \text{ are } 1 \right\}.$$

This is a group since the union of two finite sets (the support) is finite.

Exercise 1.52. Suppose $H, K \leq G$. When is $HK \leq G$? When is $HK \cong$ $H \times K$?

Proof.

1.5. Products 23

Claim. $HK \leq G$ if and only if HK = KH.

Subproof. Suppose $HK \leq G$. Note that $1 \in H, K$, so $H = H1, K = 1K \subseteq HK$. Thus for any $k \in K$, $h \in H$, $kh \in HK$ by closure under products.

Let H, K intersect only in $\{1\}$. Suppose hk = kh for all $h \in H$ and $k \in K$. Then the map

$$\theta \colon H \times K \to HK$$

 $(h,k) \mapsto hk$

is an isomorphism. It is a homomorphism, since $\theta(1,1)=1$ and

$$\theta(h_1, k_1)\theta(h_2, k_2) = h_1k_1h_2k_2 = h_1h_2k_1k_2 = \theta(h_1h_2, k_1k_2).$$

Surjectivity is obvious. Injectivity is since

$$\theta(h_1, k_1) = \theta(h_2, k_2) \implies h_1 k_1 = h_2 k_2$$

$$\implies h_1 h_2^{-1} = k_1 k_2^{-1}$$

$$\implies h_1 h_2^{-1}, k_1 k_2^{-1} \in H \cap K$$

$$\implies h_1 = h_2 \text{ and } k_1 = k_2.$$

Remark. Suppose $H_1, \ldots, H_m \leq G$ and H_{i+1} is orthogonal to $H_1 H_2 \ldots H_i$ for all i. Then $H_1 \times \cdots \times H_m \leq G$ and is isomorphic to $H_1 H_2 \ldots H_m$.

Lecture 10. Wednesday August 28

Lemma 1.53. Let $H \leq G$. Then the left and right cosets of H in G are in bijection.

Proof. Let $I \subseteq G$ be a set of representatives for the left cosets of H in G. Then

$$G = \bigsqcup_{x \in I} xH$$

$$\implies G = G^{-1} = \bigcup_{x \in I} H^{-1}x^{-1}$$

$$= \bigcup_{x \in I} Hx^{-1}.$$

Note that $Hx^{-1} = Hy^{-1} \iff x^{-1}y \in H \iff xH = yH$. Thus the union is still disjoint, and I^{-1} is a set of representatives for the right cosets.

Definition 1.54 (index). Let $H \leq G$, Then (G : H) = #(G/H) is the *index* of H in G if G/H is finite. Otherwise, we say $(G : H) = \infty$.

Proposition 1.55. Let $K \leq H \leq G$. and $G = \bigsqcup_{x \in I} xH$. Let $H = \bigsqcup_{y \in J} yK$. Then $G = \bigsqcup_{x \in I, y \in J} xyK$.

Proof.

$$G = \bigsqcup_{x \in I} xH = \bigsqcup_{x \in I} \left(x \bigsqcup_{y \in J} yK \right) = \bigcup_{x \in I, y \in J} xyK.$$

We need to check that the union is disjoint

$$xyK = x_1y_1K \implies y^{-1}x^{-1}x_1y_1 \in K$$

$$\implies x^{-1}x_1 \in yKy_1^{-1} \subseteq HKH^{-1}$$

$$\implies x^{-1}x_1 \in H$$

$$\implies xH = x_1H.$$

This contradicts the disjointness of $\{xH\}_{x\in I}$. Thus

$$G = \bigsqcup_{x \in I, y \in J} xyK.$$

Corollary 1.56 (multiplicity of the index). Let $K \leq H \leq G$. Then (G : K) = (G : H)(H : K), with the understanding that ∞ is absorbing.

Example. $6\mathbb{Z} \leq 2\mathbb{Z} \leq \mathbb{Z}$.

$$2\mathbb{Z} = (0 + 6\mathbb{Z}) | |(2 + 6\mathbb{Z})| |(4 + 6\mathbb{Z})$$

so $(2\mathbb{Z} : 6\mathbb{Z}) = 3$.

$$\mathbb{Z} = (0 + 2\mathbb{Z}) \left| \right| \left| (1 + 2\mathbb{Z}) \right|$$

so $(\mathbb{Z}:2\mathbb{Z})=2$. Similarly $(\mathbb{Z}:6\mathbb{Z})=6$ and sure enough, $(\mathbb{Z}:6\mathbb{Z})=(\mathbb{Z}:2\mathbb{Z})(2\mathbb{Z}:6\mathbb{Z})$.

1.6 Isomorphism theorems

Theorem 1.57 (first isomorphism theorem). Let $\varphi \colon G \to H$ be a homomorphism. Let $K = \ker(\varphi)$. Then φ induces an isomorphism $\varphi_* \colon G/K \to \operatorname{Im}(\varphi)$ given by $\varphi_*(gK) = \varphi(g)$.

Proof. This is well-defined since $gK = g'K \iff g^{-1}g' \in K \iff \varphi(g) = \varphi(g')$. This also shows injectivity.

 φ_* is clearly a homomorphism. It is surjective since for any $y = \varphi(g) \in \text{Im}(\varphi), \ y = \varphi_*(gK)$.

Theorem 1.58 (second isomorphism theorem). Let $A, B \leq G$. Suppose $A \subseteq N_G(B)$. Then $A \cap B \subseteq A$ and

$$AB/B \cong A/(A \cap B)$$
.

Proof. First note that AB is a group by exercise 1.52. Moreover, $B \subseteq AB$ since abB = aBb = Bab for each $ab \in AB$. This will also follow independently from the later half of this proof.

Moreover, $A \cap B \subseteq A$ since for each $a \in A$, $a(A \cap B)a^{-1} = aAa^{-1} \cap aBa^{-1} = A \cap B$. Define

$$\varphi \colon AB \to A/(A \cap B)$$
$$ab \mapsto a(A \cap B)$$

This is well-defined since $ab = a'b' \implies a^{-1}a' \in A \cap B$, so $a(A \cap B) = a'(A \cap B)$. It is a homomorphism since

$$a_1b_1a_2b_2 = a_1(a_2b')b_2 = a_1a_2b'b_2.$$

for some $b' \in B$, so

$$\varphi(a_1b_1a_2b_2) = a_1a_2(A \cap B) = a_1(A \cap B) \cdot a_2(A \cap B) = \varphi(a_1b_1)\varphi(a_2b_2).$$

- The kernel is $(A \cap B)B = B$. (Note that this proves $B \subseteq AB$.)
- The image is all of $A/(A \cap B)$.

By the first isomorphism theorem, $AB/B \cong A/(A \cap B)$.