

جامعة هواري بومدين للغلوم و التكنولوجيا University of Science and Technology Houari Boumediene

Computer Science Faculty

Année 2023/2024 Master Informatique Visuelle Visualisation de données

Série de travaux pratiques n°5

Exercice 1.

Le but de cet algorithme est de construire un diagramme en arcs à partir d'un graphe G à N nœuds.

Un diagramme en arcs consiste à placer les nœuds $(v_0, v_1, v_2, ..., v_{N-1})$ de G sur un axe et remplacer chaque arête par un arc les joignant comme indiqué par la figure 1 ci-dessous.

Figure 1. Exemple d'un diagramme en arcs

Plus la distance séparant deux nœuds connectés sur l'axe augmente, plus les arcs seront éloignés de l'axe, ce qui fait augmenter l'espace de visualisation. L'objectif est donc de trouver le placement des nœuds sur l'axe qui réduit les longueurs des arcs à dessiner.

Pour ce faire, il faudra **rapprocher** chaque nœud de ses voisins ce qui revient à minimiser la distance de chaque nœud du barycentre de ses voisins.

Une mesure $d(v_k)$ est associée à v_k indiquant sa distance au barycentre de ses voisins (càd des nœuds auxquels il est connecté dans G). En supposant que les nœuds sont rangés dans un tableau T_i , $d(v_k)$ est calculé comme suit où v_k est le nœud considéré, nb est le nombre de voisins \mathbf{y} compris \mathbf{v}_k et i_j est l'indice du voisin numéro j dans T_i .

$$d(v_k) = \frac{1}{nb} \sum_{j=1}^{j=nb} i_j$$

Soit T_0 le tableau contenant initialement les nœuds $(v_0, v_1, v_2, ..., v_{N-1})$ disposés dans cet ordre sur l'axe. T_0 sera transformée en T_1 , puis T_1 en T_2 et ainsi de suite. La position d'un nœud v_k dans le tableau T_i (i>1) dépend de la position de ses voisins dans T_{i-1} .

Figure 2. Un graphe de 6 nœuds

1. Soit G un graphe à 6 nœuds comme indiqué par la figure 2. Evaluez pour chaque v_k la distance $d(v_k)$ sachant que T_0 =

$\begin{bmatrix} v_0 & v_2 & v_4 & v_5 & v_3 & v_1 \end{bmatrix}$

V ₄	V ₂	V 5	\mathbf{v}_{0}	V ₁	V 3	puis T ₂ est transformé en T ₃ tel que T ₃	
$=$ v_4	V 5	V ₂	v ₀	V ₁	V ₃	, que peut-on déduire sur les	
distances $d(v_{\textbf{k}})$ dans les $\mbox{ tableaux } T_i$. Que peut-on dire de cette							
transformation?							

- 3. Une transformation de T_3 est-elle nécessaire ? justifiez votre réponse. Quelle est la condition d'arrêt de ce processus ?
- 4. Donnez l'algorithme qui construit le diagramme en arcs d'un graphe G donné de N nœuds et évaluer sa complexité.
- 5. Implémentez l'algorithme avec Python