Matemática Discreta

Dirk Hofmann

Departamento de Matemática, Universidade de Aveiro dirk@ua.pt, http://sweet.ua.pt/dirk/

Gabinete: 11.3.10

OT: Quinta, 14:00 – 15:00, Sala 11.2.24 **Atendimento de dúvidas**: Segunda, 13:30 – 14:30

Apresentação

Nota

Tuda a informação está disponível em

http://elearning.ua.pt.

Avaliação

- O modelo de avaliação adotado é o modelo discreto, com exame final como alternativa. A avaliação discreta é constituída por dois testes, a realizar nas seguintes datas:
 - 1. 26 de Abril de 2019 (sexta-feira);
 - 2. No dia e hora do exame final.

Por defeito todos os alunos estão inscritos em avaliação discreta.

Avaliação

- O modelo de avaliação adotado é o modelo discreto, com exame final como alternativa. A avaliação discreta é constituída por dois testes, a realizar nas seguintes datas:
 - 1. 26 de Abril de 2019 (sexta-feira);
 - 2. No dia e hora do exame final.

Por defeito todos os alunos estão inscritos em avaliação discreta.

 A matéria a abordar no primeiro teste será lecionada até ao dia 19 de abril de 2019 e a abordar no segundo teste será a lecionada depois do 19 de abril.

Avaliação

- O modelo de avaliação adotado é o modelo discreto, com exame final como alternativa. A avaliação discreta é constituída por dois testes, a realizar nas seguintes datas:
 - 1. 26 de Abril de 2019 (sexta-feira);
 - 2. No dia e hora do exame final.

Por defeito todos os alunos estão inscritos em avaliação discreta.

- A matéria a abordar no primeiro teste será lecionada até ao dia 19 de abril de 2019 e a abordar no segundo teste será a lecionada depois do 19 de abril.
- Há registo de faltas e os alunos que não sejam estudantes trabalhadores e que faltem injustificadamente a mais de 30% das aulas teórico-práticas reprovam automaticamente à UC, ficando impedidos de se apresentar a qualquer das épocas de exame.

O programa

- 1. Linguagem Matemática e Lógica Informal
- 2. Contextos e Estratégias de Demonstração
- 3. Princípios de Enumeração Combinatória
- 4. Permutações
- 5. Agrupamentos e Identidades Combinatórias
- 6. Recorrência e Funções geradoras
- 7. Introdução aos Números Combinatórios
- 8. Elementos de Teoria dos Grafos

Conteúdo

- 1. Linguagem Matemática e Lógica Informal
 - Lógica proposicional
 - Teoria de Conjuntos
 - Lógica de primeira ordem
- 2. Contextos e Estratégias de Demonstração
 - Estratégias de demonstração da implicação
 - Princípios de indução e de indução completa
 - Princípio da gaiola dos pombos

Conteúdo

- 1. Linguagem Matemática e Lógica Informal
 - Lógica proposicional
 - Teoria de Conjuntos
 - Lógica de primeira ordem
- 2. Contextos e Estratégias de Demonstração
 - Estratégias de demonstração da implicação
 - Princípios de indução e de indução completa
 - Princípio da gaiola dos pombos

Questões

• O que significa "a afirmação A é valida (verdadeira)"?

Conteúdo

- 1. Linguagem Matemática e Lógica Informal
 - Lógica proposicional
 - Teoria de Conjuntos
 - Lógica de primeira ordem
- 2. Contextos e Estratégias de Demonstração
 - Estratégias de demonstração da implicação
 - Princípios de indução e de indução completa
 - Princípio da gaiola dos pombos

- O que significa "a afirmação A é valida (verdadeira)"?
- Como justificamos? O que é uma prova?

Conteúdo

- 1. Linguagem Matemática e Lógica Informal
 - Lógica proposicional
 - Teoria de Conjuntos
 - Lógica de primeira ordem
- 2. Contextos e Estratégias de Demonstração
 - Estratégias de demonstração da implicação
 - Princípios de indução e de indução completa
 - Princípio da gaiola dos pombos

- O que significa "a afirmação A é valida (verdadeira)"?
- Como justificamos? O que é uma prova?
- Podemos provar todo o que é valido?

Conteúdo

- 1. Linguagem Matemática e Lógica Informal
 - Lógica proposicional
 - Teoria de Conjuntos
 - Lógica de primeira ordem
- 2. Contextos e Estratégias de Demonstração
 - Estratégias de demonstração da implicação
 - Princípios de indução e de indução completa
 - Princípio da gaiola dos pombos

- O que significa "a afirmação A é valida (verdadeira)"?
- Como justificamos? O que é uma prova?
- Podemos provar todo o que é valido?
- O que é um conjunto? (Não há resposta!!) Há tantos números reais como números naturais? Ou racionais?

Conteúdo

- 3. Princípios de Enumeração Combinatória
 - Princípio da bijecção
 - Princípios da adição e da multiplicação
 - Princípio de inclusão-exclusão

Conteúdo

- 3. Princípios de Enumeração Combinatória
 - Princípio da bijecção
 - Princípios da adição e da multiplicação
 - Princípio de inclusão-exclusão

Questões

• Quantos sequências binárias de comprimento *n* existem?

Conteúdo

- 3. Princípios de Enumeração Combinatória
 - Princípio da bijecção
 - Princípios da adição e da multiplicação
 - Princípio de inclusão-exclusão

- Quantos sequências binárias de comprimento n existem?
- Quantos números de 4 algarismos (divisíveis por 5) se podem escrever com os dígitos 1,...,9?

Conteúdo

- 3. Princípios de Enumeração Combinatória
 - Princípio da bijecção
 - Princípios da adição e da multiplicação
 - Princípio de inclusão-exclusão

- Quantos sequências binárias de comprimento n existem?
- Quantos números de 4 algarismos (divisíveis por 5) se podem escrever com os dígitos 1,...,9?
- Quantas maneiras existem de colocar k bolas em n caixas?

Conteúdo

- 3. Princípios de Enumeração Combinatória
 - Princípio da bijecção
 - Princípios da adição e da multiplicação
 - Princípio de inclusão-exclusão

- Quantos sequências binárias de comprimento n existem?
- Quantos números de 4 algarismos (divisíveis por 5) se podem escrever com os dígitos 1,...,9?
- Quantas maneiras existem de colocar k bolas em n caixas?
- Quantas sequências binárias com k uns e n-1 zeros existem?
- . . .

Conteúdo

- 4. Permutações
 - Composição de permutações e permutações inversas
 - Partição cíclica de uma permutação e tipos de permutações
 - Transposições, inversões e sinal de uma permutação

Conteúdo

- 4. Permutações
 - Composição de permutações e permutações inversas
 - Partição cíclica de uma permutação e tipos de permutações
 - Transposições, inversões e sinal de uma permutação

Questões

O "jogo do 15"

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

 \rightsquigarrow

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

é possível?

Conteúdo

- 5. Agrupamentos e Identidades Combinatórias
 - Arranjos com repetição e arranjos e combinações simples
 - Combinações e permutações (com e sem repetição)
 - Identidades combinatórias

Conteúdo

- 5. Agrupamentos e Identidades Combinatórias
 - Arranjos com repetição e arranjos e combinações simples
 - Combinações e permutações (com e sem repetição)
 - Identidades combinatórias

Questões

Quantas maneiras existem de escolher k elementos numa coleção de n elementos?

Conteúdo

- 5. Agrupamentos e Identidades Combinatórias
 - Arranjos com repetição e arranjos e combinações simples
 - Combinações e permutações (com e sem repetição)
 - Identidades combinatórias

Questões

Quantas maneiras existem de escolher k elementos numa coleção de n elementos?

Resposta:

Conteúdo

- 5. Agrupamentos e Identidades Combinatórias
 - Arranjos com repetição e arranjos e combinações simples
 - Combinações e permutações (com e sem repetição)
 - Identidades combinatórias

Questões

Quantas maneiras existem de escolher k elementos numa coleção de n elementos?

Resposta: Depende ... (do que consideramos diferente) ...

Conteúdo

- 5. Agrupamentos e Identidades Combinatórias
 - Arranjos com repetição e arranjos e combinações simples
 - Combinações e permutações (com e sem repetição)
 - Identidades combinatórias

Questões

Quantas maneiras existem de escolher k elementos numa coleção de n elementos?

Resposta: Depende ... (do que consideramos diferente) ...

Podemos repetir elementos?

Conteúdo

- 5. Agrupamentos e Identidades Combinatórias
 - Arranjos com repetição e arranjos e combinações simples
 - Combinações e permutações (com e sem repetição)
 - Identidades combinatórias

Questões

Quantas maneiras existem de escolher k elementos numa coleção de n elementos?

Resposta: Depende ... (do que consideramos diferente) ...

- Podemos repetir elementos?
- A ordem das escolhas interessa?

Conteúdo

- 6. Recorrência e Funções/Séries geradoras
 - Relações de recorrência
 - Funções geradoras

Conteúdo

- 6. Recorrência e Funções/Séries geradoras
 - Relações de recorrência
 - Funções geradoras

Questões

Acrescentamos um quadrado no lado mais comprido.

$$a_0 = 1, \quad a_1 = 1,$$

Conteúdo

- 6. Recorrência e Funções/Séries geradoras
 - Relações de recorrência
 - Funções geradoras

Questões

Acrescentamos um quadrado no lado mais comprido.

$$a_0 = 1, \quad a_1 = 1,$$

 $a_2 = 2,$

Conteúdo

- 6. Recorrência e Funções/Séries geradoras
 - Relações de recorrência
 - Funções geradoras

Questões

Acrescentamos um quadrado no lado mais comprido.

$$a_0 = 1,$$
 $a_1 = 1,$
 $a_2 = 2,$
 $a_3 = 3,$

Conteúdo

- 6. Recorrência e Funções/Séries geradoras
 - Relações de recorrência
 - Funções geradoras

Questões

Acrescentamos um quadrado no lado mais comprido.

$$a_0 = 1,$$
 $a_1 = 1,$
 $a_2 = 2,$
 $a_3 = 3,$
 $a_4 = 5,$

Conteúdo

- 6. Recorrência e Funções/Séries geradoras
 - Relações de recorrência
 - Funções geradoras

Questões

Acrescentamos um quadrado no lado mais comprido.

$$a_0 = 1, \quad a_1 = 1,$$
 $a_2 = 2,$
 $a_3 = 3,$
 $a_4 = 5,$
 \vdots
 $a_{n+2} = a_{n+1} + a_n$

Conteúdo

- 7. Introdução aos Números Combinatórios
 - Factoriais e número binomiais
 - Números de Fibonacci e número de ouro
 - Outros números combinatórios

Conteúdo

- 7. Introdução aos Números Combinatórios
 - Factoriais e número binomiais
 - Números de Fibonacci e número de ouro
 - Outros números combinatórios

Questões

Dividimos uma reta

a

b

em duas partes (com comprimentos $a \ge b > 0$) tal que

$$\frac{a}{b} = \frac{a+b}{a}.$$

A razão $\frac{a}{b}$ é igual a . . .

Conteúdo

- 8. Elementos de Teoria dos Grafos
 - Conceitos e resultados fundamentais
 - Conexidade, caminhos e árvores

Conteúdo

- 8. Elementos de Teoria dos Grafos
 - Conceitos e resultados fundamentais
 - Conexidade, caminhos e árvores

Questões

Será possível cruzar as sete pontes numa caminhada contínua sem passar duas vezes por uma delas?

Bibliografia

Domingos Cardoso, J. Szymanski e Mohammad Rostami. *Matemática discreta: Combinatória, Teoria dos Grafos e Algoritmos*. Escolar Editora, 2009.

Bibliografia

- DOMINGOS CARDOSO, J. SZYMANSKI e
 MOHAMMAD ROSTAMI. Matemática discreta: Combinatória,
 Teoria dos Grafos e Algoritmos. Escolar Editora, 2009.
- DOMINGOS CARDOSO e PAULA CARVALHO. «Noções de Lógica Matemática». 2007. Universidade de Aveiro.
- JOSÉ SOUSA PINTO. «Tópicos de Matemática Discreta». 1999. Universidade de Aveiro.
- RONALD L. GRAHAM, DONALD E. KNUTH e
 OREN PATASHNIK. Concrete mathematics: a foundation for
 computer science. 2^a ed. Addison-Wesley, 1994.
- J. M. S. SIMÕES PEREIRA. *Matemática Discreta: Tópicos de combinatória*. Editora Luz da Vida, 2006.
- J. M. S. SIMÕES PEREIRA. *Matemática Discreta: Grafos, Redes, Aplicações.* Editora Luz da Vida, 2009.

Capítulo 1: Linguagem Matemática e Lógica Informal 1050

in the model on the null relation $\Omega \in \text{Rel}(A, B)$, consisting only of the pair (0, 0), and the universal relation ∂_t consisting of all pairs (a, b) for $a \in A, b \in B$. For these we assumed the following elementary axioms:

(III-2)
$$\Omega \overline{v} = \Omega \overline{v}$$
, $\Omega \Omega = \Omega$, $\partial \overline{v} = \overline{v}$,

(III-3)
$$\Omega \Omega \Omega = \Omega$$
, $\Omega \Omega \Omega = \Omega$.

Here the first equation of (III-2) reads in full: For four objects A, B, C, D, $\Omega_B \nabla_{G^A} = \Omega_B \nabla_{D^A}$. (It actually suffices to assume the axiom only in the case B = A = D, deducing the more general case.) The other axioms are to be read similarly.

Clearly $\Omega^{f} = \Omega$, $\nabla^{f} = \Im$. We also define

$$0 = 0_B^A = \Omega_B^B \nabla_B^A, \quad 0^f = \partial \Omega;$$
 (5.1)

in the model 0 is the graph of the zero homomorphism. By (III-3), the various composites are given by

$$0\Omega = \Omega = 00^{\circ}$$
, $0\overline{o} = 0 = 00 = \Omega_0$, $0^{\circ}0 = \overline{o} = 0^{\circ}\overline{o} = \overline{o}0$. (5.2)

For any f, (III-1) and the other axioms give

$$\Omega f \Omega = \Omega$$
, $\Im f \Im = \Im$, $0 f 0 = 0$, $0 f 0^i = \Omega$. (5.3)

Lemma 5.1. For $g \in Rel(A, B)$, $\Omega_B{}^B g = g \cap \Omega_B{}^A$.

<u>Proof:</u> Since $\Omega g \subset 1g = g$ and $\Omega g \subset \Omega U = 0$, we have $\Omega g \subset g \cap 0$. For the converse inclusion, set $h = g \cap 0$. Then $h \subset g$, $h \subset 0$ give $h = hh^{g}h \subset hh^{g}g \subset 0$ of $g = \Omega R U Q = \Omega$, q.e.d.

As a consequence of this lemma and its dual, note that

$$0 \cap 1 = \Omega, \quad 0^{i} \cup 1 = \overline{0}.$$
 (5.4)

LEMMA 5.2. For each $s \subset I_A$, and $\overline{v} = \overline{v}_A^A$,

$$1 \cap s = s$$
, $0 \cup s = s$, $(1 \cup s) = s$, (5.5)

Proof: By (II-e), 1 \cap 80 \cap 8 s = 8. Conversely, 1 \cap 8 and 80 \cap 8 s = 8, 80 \cap 1 \cap 80 \cap 8. Since 0 \cap 20 \cap 80, the second equation follows. Next note that $D(60^{\circ}) = (60^{\circ})^{\circ} 60^{\circ} \cap 1 = 080^{\circ} \cap 1 = 000^{\circ} \cap 1 = 0 \cap 1 = 0 \text{ by } (5.3)$. This allows us to apply the distributive law (II-b) to get (1 \cup 80 \cap 90 \cap 0 \cup 80 \cap 80 \cap 80 \cap 90 \cap 90

With these preparations we can formulate

THEOREM 5.3. For each object A there is a lattice isomorphism ϕ between the lattice of all $s \in I_A$ and that of all $q \supset I_A$, given $(\phi^{-1} = \psi)$ by

Sistemas matemáticos

Numa disciplina matemática estamos tipicamente interessados em certas afirmações (depende do contexto) que ou são verdadeiras ou falsas. Uma tal afirmação diz-se proposição.

Sistemas matemáticos

Numa disciplina matemática estamos tipicamente interessados em certas afirmações (depende do contexto) que ou são verdadeiras ou falsas. Uma tal afirmação diz-se proposição.

Exemplos:

- Cada espa
 ço vetorial tem uma base.
- A função cos: $\mathbb{R} \to \mathbb{R}$ é contínua.
- A função $f: \mathbb{R} \to \mathbb{R}, x \mapsto |x|$ é diferenciável.

Sistemas matemáticos

Numa disciplina matemática estamos tipicamente interessados em certas afirmações (depende do contexto) que ou são verdadeiras ou falsas. Uma tal afirmação diz-se proposição.

Além disso, temos:

Axioma: Proposição que se aceita como verdadeira.

Sistemas matemáticos

Numa disciplina matemática estamos tipicamente interessados em certas afirmações (depende do contexto) que ou são verdadeiras ou falsas. Uma tal afirmação diz-se proposição.

- Axioma: Proposição que se aceita como verdadeira.
- Teorema: Proposição que se obtém a partir dos axiomas aplicando as regras de inferência.

Sistemas matemáticos

Numa disciplina matemática estamos tipicamente interessados em certas afirmações (depende do contexto) que ou são verdadeiras ou falsas. Uma tal afirmação diz-se proposição.

- Axioma: Proposição que se aceita como verdadeira.
- Teorema: Proposição que se obtém a partir dos axiomas aplicando as regras de inferência.
- Lema: Proposição que se obtém a partir dos axiomas aplicando as regras de inferência.

Sistemas matemáticos

Numa disciplina matemática estamos tipicamente interessados em certas afirmações (depende do contexto) que ou são verdadeiras ou falsas. Uma tal afirmação diz-se proposição.

- Axioma: Proposição que se aceita como verdadeira.
- Teorema: Proposição que se obtém a partir dos axiomas aplicando as regras de inferência.
- Lema: Proposição que se obtém a partir dos axiomas aplicando as regras de inferência. Tipicamente um resultado auxiliar (mas ver a próxima pagina).

Sistemas matemáticos

Numa disciplina matemática estamos tipicamente interessados em certas afirmações (depende do contexto) que ou são verdadeiras ou falsas. Uma tal afirmação diz-se proposição.

- Axioma: Proposição que se aceita como verdadeira.
- Teorema: Proposição que se obtém a partir dos axiomas aplicando as regras de inferência.
- Lema: Proposição que se obtém a partir dos axiomas aplicando as regras de inferência. Tipicamente um resultado auxiliar (mas ver a próxima pagina).
- Corolário: Consequência dos resultados já estabelecidos.

Sistemas matemáticos

Numa disciplina matemática estamos tipicamente interessados em certas afirmações (depende do contexto) que ou são verdadeiras ou falsas. Uma tal afirmação diz-se proposição.

- Axioma: Proposição que se aceita como verdadeira.
- Teorema: Proposição que se obtém a partir dos axiomas aplicando as regras de inferência.
- Lema: Proposição que se obtém a partir dos axiomas aplicando as regras de inferência. Tipicamente um resultado auxiliar (mas ver a próxima pagina).
- Corolário: Consequência dos resultados já estabelecidos.
- Teoria ou sistema matemático: Coleção de axiomas, regras de inferência e resultados (teoremas, lemas e corolários).

Ainda sobre a nomenclatura

Nota

"Lemmas do the work in mathematics: Theorems, like management, just take the credit. A good lemma also survives a philosophical or technological revolution."

а

^aPaul Taylor. *Practical foundations of mathematics*. Vol. 59. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1999. xi + 572.

Ainda sobre a nomenclatura

Nota

"Lemmas do the work in mathematics: Theorems, like management, just take the credit. A good lemma also survives a philosophical or technological revolution."

"... The importance of the result is undisputed, as is shown by the fact that it will shortly turn into a Lemma named after someone else, ..."

^aPaul Taylor. *Practical foundations of mathematics*. Vol. 59. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1999. xi + 572.

Ainda sobre a nomenclatura

Nota

"Lemmas do the work in mathematics: Theorems, like management, just take the credit. A good lemma also survives a philosophical or technological revolution."

"... The importance of the result is undisputed, as is shown by the fact that it will shortly turn into a Lemma named after someone else, ..." a

 a Paul Taylor. *Practical foundations of mathematics*. Vol. 59. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1999. xi + 572.

Nota

"The nice thing about standards is that you have so many to choose from."

^aAndrew Tanenbaum, cientista da computação norte-americano.

Exemplo

Exemplo

As proposições deste sistema matemático são palavras do alfabeto $\{x,y,z\}.$

• Axioma: xyz.

Exemplo

- Axioma: xyz.
- Regras de inferência:

Exemplo

- Axioma: xyz.
- Regras de inferência:
 - 1. Proposições (neste caso: palavras) obtidas a partir de uma proposição verdadeira, substituindo *x* por *xyz*, são proposições verdadeiras.

Exemplo

- Axioma: xyz.
- Regras de inferência:
 - 1. Proposições (neste caso: palavras) obtidas a partir de uma proposição verdadeira, substituindo *x* por *xyz*, são proposições verdadeiras.
 - 2. Proposições obtidas a partir de uma proposição verdadeira, substituindo *xyz* por *yxz* são proposições verdadeiras.

Exemplo

As proposições deste sistema matemático são palavras do alfabeto $\{x,y,z\}$.

- Axioma: xyz.
- Regras de inferência:
 - 1. Proposições (neste caso: palavras) obtidas a partir de uma proposição verdadeira, substituindo *x* por *xyz*, são proposições verdadeiras.
 - 2. Proposições obtidas a partir de uma proposição verdadeira, substituindo *xyz* por *yxz* são proposições verdadeiras.

Exercício

Mostrar que *yyxzz* é um teorema do sistema matemático considerado no exemplo anterior.

Propriedades dos sistemas de axiomas

Um sistema de axiomas deve ser consistente

 consistente significa que não é possível deduzir uma contradição (ou seja, deduzir uma proposição e deduzir a sua negação)

Propriedades dos sistemas de axiomas

Um sistema de axiomas deve ser consistente e (menos importante) independente.

- consistente significa que não é possível deduzir uma contradição (ou seja, deduzir uma proposição e deduzir a sua negação)
- independente significa que nenhum axioma é consequência dos restantes.

Propriedades dos sistemas de axiomas

Um sistema de axiomas deve ser consistente e (menos importante) independente.

- consistente significa que não é possível deduzir uma contradição (ou seja, deduzir uma proposição e deduzir a sua negação)
- independente significa que nenhum axioma é consequência dos restantes.

Alem disso, um sistemas de axiomas diz se completo quando para toda a proposição p da teoria se pode deduzir p ou a sua negação $\neg p$.

Propriedades dos sistemas de axiomas

Um sistema de axiomas deve ser consistente e (menos importante) independente.

- consistente significa que não é possível deduzir uma contradição (ou seja, deduzir uma proposição e deduzir a sua negação)
- independente significa que nenhum axioma é consequência dos restantes.

Alem disso, um sistemas de axiomas diz se completo quando para toda a proposição p da teoria se pode deduzir p ou a sua negação $\neg p$.

Por outras palavras, o sistema e saturado no sentido que a adição de um qualquer axioma que não é consequência dos axiomas do sistema, torna o sistema não consistente.

Axiomas da geometria euclidiana (Euclid 300AC)

- 1. Dados dois pontos existe uma recta que os contém.
- 2. Todo o segmento de recta está contido numa recta.
- 3. Dado um ponto C e um real r > 0, existe uma única circunferência de centro C e raio r.
- 4. Todos os ângulos rectos são iguais.
- Axioma das paralelas: dada uma recta e um ponto não pertencente a essa recta, existe uma única recta que contém o ponto e é paralela à recta dada.

Axiomas da geometria euclidiana (Euclid 300AC)

6. Duas quantidades iguais a uma terceira são iguais.

7. Se a quantidades iguais adicionarmos a mesma quantidade, as somas obtidas são iguais.

- 8. Se a quantidades iguais subtrairmos a mesma quantidade, as diferenças obtidas são iguais.
- 9. Objetos coincidentes são iguais.

Axiomas da geometria euclidiana (Euclid 300AC)

6. Duas quantidades iguais a uma terceira são iguais.

Ou seja, se
$$x = y$$
 e $y = z$, então $x = z$.

7. Se a quantidades iguais adicionarmos a mesma quantidade, as somas obtidas são iguais.

- 8. Se a quantidades iguais subtrairmos a mesma quantidade, as diferenças obtidas são iguais.
- 9. Objetos coincidentes são iguais.

Axiomas da geometria euclidiana (Euclid 300AC)

6. Duas quantidades iguais a uma terceira são iguais.

Ou seja, se
$$x = y$$
 e $y = z$, então $x = z$.

7. Se a quantidades iguais adicionarmos a mesma quantidade, as somas obtidas são iguais.

Ou seja, se
$$x = y$$
, então $x + z = y + z$.

8. Se a quantidades iguais subtrairmos a mesma quantidade, as diferenças obtidas são iguais.

9. Objetos coincidentes são iguais.

Axiomas da geometria euclidiana (Euclid 300AC)

6. Duas quantidades iguais a uma terceira são iguais.

Ou seja, se
$$x = y$$
 e $y = z$, então $x = z$.

7. Se a quantidades iguais adicionarmos a mesma quantidade, as somas obtidas são iguais.

Ou seja, se
$$x = y$$
, então $x + z = y + z$.

8. Se a quantidades iguais subtrairmos a mesma quantidade, as diferenças obtidas são iguais.

Ou seja, se
$$x = y$$
, então $x - z = y - z$.

9. Objetos coincidentes são iguais.

Axiomas da geometria euclidiana (Euclid 300AC)

6. Duas quantidades iguais a uma terceira são iguais.

Ou seja, se
$$x = y$$
 e $y = z$, então $x = z$.

7. Se a quantidades iguais adicionarmos a mesma quantidade, as somas obtidas são iguais.

Ou seja, se
$$x = y$$
, então $x + z = y + z$.

8. Se a quantidades iguais subtrairmos a mesma quantidade, as diferenças obtidas são iguais.

Ou seja, se
$$x = y$$
, então $x - z = y - z$.

9. Objetos coincidentes são iguais.

Ou seja, se
$$x = x$$
.

Formulações mais modernas

Em

David Hilbert. Grundlagen der Geometrie. Teubner, 1899,

o matemático alemão David Hilbert formulou um fundamento rigoroso da geometria.

A teoria do David Hilbert tem

Formulações mais modernas

Em

David Hilbert. Grundlagen der Geometrie. Teubner, 1899,

o matemático alemão David Hilbert formulou um fundamento rigoroso da geometria.

A teoria do David Hilbert tem

• três tipos de objetos: pontos, retas e planos.

Formulações mais modernas

Em

David Hilbert. Grundlagen der Geometrie. Teubner, 1899,

o matemático alemão David Hilbert formulou um fundamento rigoroso da geometria.

A teoria do David Hilbert tem

- três tipos de objetos: pontos, retas e planos.
- Seis relações: ...

Formulações mais modernas

Em

David Hilbert. Grundlagen der Geometrie. Teubner, 1899,

o matemático alemão David Hilbert formulou um fundamento rigoroso da geometria.

A teoria do David Hilbert tem

- três tipos de objetos: pontos, retas e planos.
- Seis relações: . . .
- Vários axiomas . . .

Formulações mais modernas

Em

David Hilbert. Grundlagen der Geometrie. Teubner, 1899,

o matemático alemão David Hilbert formulou um fundamento rigoroso da geometria.

A teoria do David Hilbert tem

- três tipos de objetos: pontos, retas e planos.
- Seis relações: ...
- Vários axiomas . . .

Nota

"Man muß jederzeit an Stelle von "Punkte, Geraden, Ebenen" "Tische, Stühle, Bierseidel" sagen können." ^a

^aatribuído ao David Hilbert

Ainda uma curiosidade

O que é

Uma conjetura é uma afirmação ainda não provada nem "reprovada". Tipicamente existe a expectativa (as vezes errada) de se vir a encontrar uma prova.

O que é

Uma conjetura é uma afirmação ainda não provada nem "reprovada". Tipicamente existe a expectativa (as vezes errada) de se vir a encontrar uma prova.

Exemplos

 Conjectura de Goldbach: Todo o inteiro par superior a 2 é a soma de dois primos.

$$4 = 2 + 2$$
, $6 = 3 + 3$, $8 = 3 + 5$, $10 = 3 + 7$, ...!?

O que é

Uma conjetura é uma afirmação ainda não provada nem "reprovada". Tipicamente existe a expectativa (as vezes errada) de se vir a encontrar uma prova.

Exemplos

 Conjectura de Goldbach: Todo o inteiro par superior a 2 é a soma de dois primos.

$$4 = 2 + 2$$
, $6 = 3 + 3$, $8 = 3 + 5$, $10 = 3 + 7$, ...!?

• Existe uma infinidade de números primos gémeos.

$$(3,5)$$
, $(5,7)$, $(11,13)$, $(17,19)$, $(29,31)$, $(41,43)$,...!?

O que é

Uma conjetura é uma afirmação ainda não provada nem "reprovada". Tipicamente existe a expectativa (as vezes errada) de se vir a encontrar uma prova.

Exemplos

 Conjectura de Goldbach: Todo o inteiro par superior a 2 é a soma de dois primos.

$$4 = 2 + 2$$
, $6 = 3 + 3$, $8 = 3 + 5$, $10 = 3 + 7$, ...!?

• Existe uma infinidade de números primos gémeos.

$$(3,5)$$
, $(5,7)$, $(11,13)$, $(17,19)$, $(29,31)$, $(41,43)$,...!?

 A hipótese do continuum. Foi uma conjetura por volta de 1900, entretanto sabemos que

O que é

Uma conjetura é uma afirmação ainda não provada nem "reprovada". Tipicamente existe a expectativa (as vezes errada) de se vir a encontrar uma prova.

Exemplos

 Conjectura de Goldbach: Todo o inteiro par superior a 2 é a soma de dois primos.

$$4 = 2 + 2$$
, $6 = 3 + 3$, $8 = 3 + 5$, $10 = 3 + 7$, ...!?

• Existe uma infinidade de números primos gémeos.

$$(3,5)$$
, $(5,7)$, $(11,13)$, $(17,19)$, $(29,31)$, $(41,43)$,...!?

• A hipótese do continuum. Foi uma conjetura por volta de 1900, entretanto sabemos que ... nunca vamos saber.

Bibliografia adicional

PETER J. CAMERON. *Sets, logic and categories.* Springer, 2005.

Paul R. Halmos. *Naive set theory*. The University Series in Undergraduate Mathematics. Princeton, N. J.–Toronto-New York-London: van Nostrand Reinhold Company, 1960. vii $+\ 104$.

Bibliografia adicional

- PETER J. CAMERON. Sets, logic and categories. Springer, 2005.
- PAUL R. HALMOS. *Naive set theory*. The University Series in Undergraduate Mathematics. Princeton, N. J.-Toronto-New York-London: van Nostrand Reinhold Company, 1960. vii + 104.
- SAUNDERS MACLANE. *Mathematics Form and Function*. Springer, 1986.
- ANDREJ BAUER. «Five stages of accepting constructive mathematics». Em: Bulletin of the American Mathematical Society **54**.(3) (2016), pp. 481–498.
- SAUNDERS MACLANE. «Despite physicists, proof is essential in mathematics». Em: Synthese 111.(2) (1997), pp. 147–154.

Lógica proposicional

Índice

Introdução

2 O sintaxe

3 A semântica

4 Tautologias

Proposições

Estudamos afirmações que são verdadeiras ou falsas mas não ambos os casos^a — as chamadas proposições.

^aO princípio da não contradição e princípio do terceiro excluído

Proposições

Estudamos afirmações que são verdadeiras ou falsas mas não ambos os casos^a – as chamadas proposições.

^aO princípio da não contradição e princípio do terceiro excluído

Exemplos

• "O Porto é campeão" é uma proposição.

Proposições

Estudamos afirmações que são verdadeiras ou falsas mas não ambos os casos a — as chamadas proposições.

^aO princípio da não contradição e princípio do terceiro excluído

- "O Porto é campeão" é uma proposição.
- "3 < (2+7)" é uma proposição.

Proposições

Estudamos afirmações que são verdadeiras ou falsas mas não ambos os casos a — as chamadas proposições.

^aO princípio da não contradição e princípio do terceiro excluído

- "O Porto é campeão" é uma proposição.
- "3 < (2+7)" é uma proposição.
- "x = 6" não é uma proposição.

Proposições

Estudamos afirmações que são verdadeiras ou falsas mas não ambos os casos a — as chamadas proposições.

^aO princípio da não contradição e princípio do terceiro excluído

- "O Porto é campeão" é uma proposição.
- "3 < (2+7)" é uma proposição.
- "x = 6" não é uma proposição.
- "O Porto é campeão ou não" é uma proposição.

Proposições

Estudamos afirmações que são verdadeiras ou falsas mas não ambos os casos a — as chamadas proposições.

^aO princípio da não contradição e princípio do terceiro excluído

- "O Porto é campeão" é uma proposição.
- "3 < (2+7)" é uma proposição.
- "x = 6" não é uma proposição.
- "O Porto é campeão ou não" é uma proposição.
- "Se está chover, então está chover" é uma proposição.

ota

Nota

```
• "...e ...",
```

Nota

- "...e ...",
- "...ou ...",

Nota

- "...e ...",
- "...ou ...",
- "não . . . " (infelizmente),

Nota

- "...e ...",
- "...ou ...",
- "não . . . " (infelizmente),
- "Se ... então ... ".

Nota

Observamos que certas construções ocorrem frequentemente:

- "...e ...",
- "...ou ...",
- "não . . . " (infelizmente),
- "Se ... então ... ".

Notamos ainda que a frase "Se o Porto ganha todos os jogos, então é campeão" é verdadeira, mas precisa justificação;

Nota

Observamos que certas construções ocorrem frequentemente:

- "...e ...",
- "...ou ...",
- "não . . . " (infelizmente),
- "Se ... então ... ".

Notamos ainda que a frase "Se o Porto ganha todos os jogos, então é campeão" é verdadeira, mas precisa justificação; no entanto, a frase "Se está chover, então está chover" é verdadeira e nem temos de olhar fora

Nota

Observamos que certas construções ocorrem frequentemente:

```
"...e...","...ou...","não..." (infelizmente),
```

• "Se ... então ... ".

Notamos ainda que a frase "Se o Porto ganha todos os jogos, então é campeão" é verdadeira, mas precisa justificação; no entanto, a frase "Se está chover, então está chover" é verdadeira e nem temos de olhar fora Procuramos *formas* de frases tal que, qualquer que seja o conteúdo, a frase é verdadeira.

Nota

Observamos que certas construções ocorrem frequentemente:

```
• "...e ...",
```

- "...ou ...",
- "não ..." (infelizmente),
- "Se ... então ...".

Notamos ainda que a frase "Se o Porto ganha todos os jogos, então é campeão" é verdadeira, mas precisa justificação; no entanto, a frase "Se está chover, então está chover" é verdadeira e nem temos de olhar fora Procuramos formas de frases tal que, qualquer que seja o conteúdo, a frase é verdadeira.

Decomposição de proposições

Uma proposição pode ser atómica ou composta por proposições e conetivos (operadores lógicos).

Fórmulas

Fórmulas (bem formadas – "fbf")

Consideramos

- uma coleção de variáveis (que representam as proposições), e
- 0 e 1 e os conetivos

```
Negação: \neg (não ...),

Conjunção: \land (... e ...),

Disjunção: \lor (... ou ...),

Implicação: \Rightarrow (se ... então ...),

Equivalência: \Leftrightarrow (... se e somente se...).
```

Fórmulas

Fórmulas (bem formadas – "fbf")

Consideramos

- uma coleção de variáveis (que representam as proposições), e
- 0 e 1 e os conetivos

• Cada variável é uma fórmula, e **0** and **1** são fórmulas.

Fórmulas

Fórmulas (bem formadas – "fbf")

Consideramos

- uma coleção de variáveis (que representam as proposições), e
- 0 e 1 e os conetivos

- ullet Cada variável é uma fórmula, e $oldsymbol{0}$ and $oldsymbol{1}$ são fórmulas.
- ullet Se p e q são fórmulas, então as expressões

$$\neg q$$
, $(p \land q)$, $(p \lor q)$, $(p \Rightarrow q)$, $(p \Leftrightarrow q)$

são fórmulas.

Exemplos (de fórmulas)

● 1, 0, p, q, r, ...

- 1, 0, p, q, r, ...
- $(p \lor q)$ (escrevemos apenas $p \lor q$),

- 1, 0, p, q, r, ...
- $(p \lor q)$ (escrevemos apenas $p \lor q$), $p \Rightarrow 0$, $\neg 1$, ...

- 1, 0, p, q, r, ...
- $(p \lor q)$ (escrevemos apenas $p \lor q$), $p \Rightarrow 0$, $\neg 1$, ...
- $(p \land q) \Rightarrow q$, $(p \Rightarrow q) \land (p \lor q)$, ...

- 1, 0, p, q, r, ...
- $(p \lor q)$ (escrevemos apenas $p \lor q$), $p \Rightarrow 0$, $\neg 1$, ...
- $(p \land q) \Rightarrow q$, $(p \Rightarrow q) \land (p \lor q)$, ...
- $(p \land q) \Rightarrow ((p \lor q) \Rightarrow q), \ldots$

Exemplos (de fórmulas)

- 1, 0, p, q, r, ...
- $(p \lor q)$ (escrevemos apenas $p \lor q$), $p \Rightarrow 0$, $\neg 1$, ...
- $(p \land q) \Rightarrow q$, $(p \Rightarrow q) \land (p \lor q)$, ...
- $(p \land q) \Rightarrow ((p \lor q) \Rightarrow q), \ldots$

Exemplos (não são fórmulas)

$$(10)$$
, (pqr) , $(1\Rightarrow)$, $(p\Rightarrow \land)$, ...

A semântica

Interpretar formulas

Interpretar formulas

Após associar a cada variável de uma fórmula um valor de verdade, podemos obter o valor de verdade da fórmula:

• 0 interpreta-se por 0 (falso), 1 por 1 (verdadeiro), e

Interpretar formulas

- 0 interpreta-se por 0 (falso), 1 por 1 (verdadeiro), e
- os conetivos por certas operações com os valores de verdade definidas pelas seguintes tabelas (as "tabelas de verdade"):

Interpretar formulas

- 0 interpreta-se por 0 (falso), 1 por 1 (verdadeiro), e
- os conetivos por certas operações com os valores de verdade definidas pelas seguintes tabelas (as "tabelas de verdade"):

р	$\neg p$
0	1
1	0

Interpretar formulas

- 0 interpreta-se por 0 (falso), 1 por 1 (verdadeiro), e
- os conetivos por certas operações com os valores de verdade definidas pelas seguintes tabelas (as "tabelas de verdade"):

p	$\neg p$
0	1
1	0

р	q	$p \lor q$
0	0	0
0	1	1
1	0	1
1	1	1

Interpretar formulas

- 0 interpreta-se por 0 (falso), 1 por 1 (verdadeiro), e
- os conetivos por certas operações com os valores de verdade definidas pelas seguintes tabelas (as "tabelas de verdade"):

р	$\neg p$
0	1
1	0

р	q	$p \lor q$
0	0	0
0	1	1
1	0	1
1	1	1

р	q	$p \wedge q$
0	0	0
0	1	0
1	0	0
1	1	1

Interpretar formulas

- 0 interpreta-se por 0 (falso), 1 por 1 (verdadeiro), e
- os conetivos por certas operações com os valores de verdade definidas pelas seguintes tabelas (as "tabelas de verdade"):

p	$\neg p$
0	1
1	0

р	q	$p \lor q$
0	0	0
0	1	1
1	0	1
1	1	1

р	q	$p \wedge q$
0	0	0
0	1	0
1	0	0
1	1	1

р	q	$p \Rightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1

Interpretar formulas

- 0 interpreta-se por 0 (falso), 1 por 1 (verdadeiro), e
- os conetivos por certas operações com os valores de verdade definidas pelas seguintes tabelas (as "tabelas de verdade"):

р	$\neg p$
0	1
1	0

р	q	$p \lor q$
0	0	0
0	1	1
1	0	1
1	1	1

р	q	$p \wedge q$
0	0	0
0	1	0
1	0	0
1	1	1

p	q	$p \Rightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1

р	q	$p \Leftrightarrow q$
0	0	1
0	1	0
1	0	0
1	1	1

Quais das seguintes afirmações são verdadeiras?

• Se 2+2=4, então a neve é branca.

Quais das seguintes afirmações são verdadeiras?

• Se 2+2=4, então a neve é branca. (Sim)

- Se 2 + 2 = 4, então a neve é branca. (Sim)
- Se 2+2=5, então a neve é branca.

- Se 2 + 2 = 4, então a neve é branca. (Sim)
- Se 2 + 2 = 5, então a neve é branca. (Sim)

- Se 2 + 2 = 4, então a neve é branca. (Sim)
- Se 2 + 2 = 5, então a neve é branca. (Sim)
- Se 2 + 2 = 5, então a neve é preta.

- Se 2 + 2 = 4, então a neve é branca. (Sim)
- Se 2 + 2 = 5, então a neve é branca. (Sim)
- Se 2 + 2 = 5, então a neve é preta. (Sim)

- Se 2 + 2 = 4, então a neve é branca. (Sim)
- Se 2 + 2 = 5, então a neve é branca. (Sim)
- Se 2 + 2 = 5, então a neve é preta. (Sim)
- Se 2+2=4, então a neve é preta.

- Se 2 + 2 = 4, então a neve é branca. (Sim)
- Se 2 + 2 = 5, então a neve é branca. (Sim)
- Se 2+2=5, então a neve é preta. (Sim)
- Se 2 + 2 = 4, então a neve é preta. (Não)

Quais das seguintes afirmações são verdadeiras?

- Se 2 + 2 = 4, então a neve é branca. (Sim)
- Se 2 + 2 = 5, então a neve é branca. (Sim)
- Se 2 + 2 = 5, então a neve é preta. (Sim)
- Se 2 + 2 = 4, então a neve é preta. (Não)

Um dito francês...

Com a ajuda da palavra "se" podes por Paris numa garrafa.

Quais das seguintes afirmações são verdadeiras?

- Se 2 + 2 = 4, então a neve é branca. (Sim)
- Se 2 + 2 = 5, então a neve é branca. (Sim)
- Se 2 + 2 = 5, então a neve é preta. (Sim)
- Se 2 + 2 = 4, então a neve é preta. (Não)

Um dito francês...

Com a ajuda da palavra "se" podes por Paris numa garrafa.

Quais das seguintes afirmações são verdadeiras?

• Se a neve é branca, então 2 + 2 = 4.

Quais das seguintes afirmações são verdadeiras?

- Se 2 + 2 = 4, então a neve é branca. (Sim)
- Se 2 + 2 = 5, então a neve é branca. (Sim)
- Se 2 + 2 = 5, então a neve é preta. (Sim)
- Se 2 + 2 = 4, então a neve é preta. (Não)

Um dito francês...

Com a ajuda da palavra "se" podes por Paris numa garrafa.

Quais das seguintes afirmações são verdadeiras?

• Se a neve é branca, então 2 + 2 = 4. (Sim)

Quais das seguintes afirmações são verdadeiras?

- Se 2 + 2 = 4, então a neve é branca. (Sim)
- Se 2 + 2 = 5, então a neve é branca. (Sim)
- Se 2 + 2 = 5, então a neve é preta. (Sim)
- Se 2 + 2 = 4, então a neve é preta. (Não)

Um dito francês...

Com a ajuda da palavra "se" podes por Paris numa garrafa.

- Se a neve é branca, então 2 + 2 = 4. (Sim)
- Se a neve é branca, então 2 + 2 = 5.

Quais das seguintes afirmações são verdadeiras?

- Se 2 + 2 = 4, então a neve é branca. (Sim)
- Se 2 + 2 = 5, então a neve é branca. (Sim)
- Se 2 + 2 = 5, então a neve é preta. (Sim)
- Se 2 + 2 = 4, então a neve é preta. (Não)

Um dito francês...

Com a ajuda da palavra "se" podes por Paris numa garrafa.

- Se a neve é branca, então 2 + 2 = 4. (Sim)
- Se a neve é branca, então 2 + 2 = 5. (Não)

Quais das seguintes afirmações são verdadeiras?

- Se 2 + 2 = 4, então a neve é branca. (Sim)
- Se 2 + 2 = 5, então a neve é branca. (Sim)
- Se 2 + 2 = 5, então a neve é preta. (Sim)
- Se 2 + 2 = 4, então a neve é preta. (Não)

Um dito francês...

Com a ajuda da palavra "se" podes por Paris numa garrafa.

- Se a neve é branca, então 2 + 2 = 4. (Sim)
- Se a neve é branca, então 2 + 2 = 5. (Não)
- Se a neve é preta, então 2 + 2 = 5.

Quais das seguintes afirmações são verdadeiras?

- Se 2 + 2 = 4, então a neve é branca. (Sim)
- Se 2 + 2 = 5, então a neve é branca. (Sim)
- Se 2 + 2 = 5, então a neve é preta. (Sim)
- Se 2 + 2 = 4, então a neve é preta. (Não)

Um dito francês...

Com a ajuda da palavra "se" podes por Paris numa garrafa.

- Se a neve é branca, então 2 + 2 = 4. (Sim)
- Se a neve é branca, então 2 + 2 = 5. (Não)
- Se a neve é preta, então 2 + 2 = 5. (Sim)

Quais das seguintes afirmações são verdadeiras?

- Se 2 + 2 = 4, então a neve é branca. (Sim)
- Se 2 + 2 = 5, então a neve é branca. (Sim)
- Se 2+2=5, então a neve é preta. (Sim)
- Se 2 + 2 = 4, então a neve é preta. (Não)

Um dito francês...

Com a ajuda da palavra "se" podes por Paris numa garrafa.

- Se a neve é branca, então 2 + 2 = 4. (Sim)
- Se a neve é branca, então 2 + 2 = 5. (Não)
- Se a neve é preta, então 2 + 2 = 5. (Sim)
- Se a neve é preta, então 2 + 2 = 4.

Quais das seguintes afirmações são verdadeiras?

- Se 2 + 2 = 4, então a neve é branca. (Sim)
- Se 2 + 2 = 5, então a neve é branca. (Sim)
- Se 2 + 2 = 5, então a neve é preta. (Sim)
- Se 2 + 2 = 4, então a neve é preta. (Não)

Um dito francês...

Com a ajuda da palavra "se" podes por Paris numa garrafa.

- Se a neve é branca, então 2 + 2 = 4. (Sim)
- Se a neve é branca, então 2 + 2 = 5. (Não)
- Se a neve é preta, então 2 + 2 = 5. (Sim)
- Se a neve é preta, então 2 + 2 = 4. (Sim)

Um exemplo

Exemplo

A interpretação da fórmula $(p \lor q) \Rightarrow q$

• para a interpretação das variáveis $p \mapsto 0$ e $q \mapsto 0$:

p	1	q	$p \lor q$	$(p \lor q) \Rightarrow q$
0		0	0	1

Um exemplo

Exemplo

A interpretação da fórmula $(p \lor q) \Rightarrow q$

• para a interpretação das variáveis $p \mapsto 0$ e $q \mapsto 0$:

p	q	$p \lor q$	$(p \lor q) \Rightarrow q$
0	0	0	1

ullet para a interpretação das variáveis $p\mapsto 1$ e $q\mapsto 0$:

р	q	$p \lor q$	$(p \lor q) \Rightarrow q$
1	0	1	0

Definição

Uma fórmula diz-se

• tautologia (ou fórmula válida) quando tem valor lógico 1 para cada a interpretação.

Definição

Uma fórmula diz-se

- tautologia (ou fórmula válida) quando tem valor lógico 1 para cada a interpretação.
- Uma fórmula diz-se consistente quando tem valor lógico 1 para alguma interpretação.

Definição '

Uma fórmula diz-se

- tautologia (ou fórmula válida) quando tem valor lógico 1 para cada a interpretação.
- Uma fórmula diz-se consistente quando tem valor lógico 1 para alguma interpretação.

Exemplo

A fórmula $(p \land q) \Rightarrow q$ é uma tautologia.

Definição '

Uma fórmula diz-se

- tautologia (ou fórmula válida) quando tem valor lógico 1 para cada a interpretação.
- Uma fórmula diz-se consistente quando tem valor lógico 1 para alguma interpretação.

Exemplo

A fórmula $(p \land q) \Rightarrow q$ é uma tautologia.

р	q	$p \wedge q$	$(p \land q) \Rightarrow q$
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	1

Definição

Uma fórmula diz-se

- tautologia (ou fórmula válida) quando tem valor lógico 1 para cada a interpretação.
- Uma fórmula diz-se consistente quando tem valor lógico 1 para alguma interpretação.

Exemplo

A fórmula $(p \land q) \Rightarrow q$ é uma tautologia.

Nota

Uma fórmula é inconsistente (ou uma contradição) quando não é consistente; isto é, se

Definição

Uma fórmula diz-se

- tautologia (ou fórmula válida) quando tem valor lógico 1 para cada a interpretação.
- Uma fórmula diz-se consistente quando tem valor lógico 1 para alguma interpretação.

Exemplo

A fórmula $(p \land q) \Rightarrow q$ é uma tautologia.

Nota

Uma fórmula é inconsistente (ou uma contradição) quando não é consistente; isto é, se tem valor lógico 0 para cada a interpretação.

Definição

Uma fórmula diz-se

- tautologia (ou fórmula válida) quando tem valor lógico 1 para cada a interpretação.
- Uma fórmula diz-se consistente quando tem valor lógico 1 para alguma interpretação.

Exemplo

A fórmula $(p \land q) \Rightarrow q$ é uma tautologia.

Nota

Uma fórmula é inconsistente (ou uma contradição) quando não é consistente; isto é, se tem valor lógico 0 para cada a interpretação. Portanto,

uma fórmula φ é uma contradição se e só se $\neg \varphi$ é válida.

Fórmulas equivalentes

Definição

As fórmulas φ e ψ dizem-se equivalentes (em símbolos: $\varphi \equiv \psi$) quando $\varphi \Leftrightarrow \psi$ é uma tautologia.

Definição

As fórmulas φ e ψ dizem-se equivalentes (em símbolos: $\varphi \equiv \psi$) quando $\varphi \Leftrightarrow \psi$ é uma tautologia.

Exemplo

$$(p \Rightarrow q) \equiv (\neg p \lor q).$$

Definição

As fórmulas φ e ψ dizem-se equivalentes (em símbolos: $\varphi \equiv \psi$) quando $\varphi \Leftrightarrow \psi$ é uma tautologia.

Exemplo

$$(p \Rightarrow q) \equiv (\neg p \lor q).$$

р	q	$p \Rightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1

р	q	$\neg p$	$\neg p \lor q$
0	0	1	1
0	1	1	1
1	0	0	0
1	1	0	1

Definição

As fórmulas φ e ψ dizem-se equivalentes (em símbolos: $\varphi \equiv \psi$) quando $\varphi \Leftrightarrow \psi$ é uma tautologia.

Exemplo

$$(p \Rightarrow q) \equiv (\neg p \lor q).$$

Teorema

Definição

As fórmulas φ e ψ dizem-se equivalentes (em símbolos: $\varphi \equiv \psi$) quando $\varphi \Leftrightarrow \psi$ é uma tautologia.

Exemplo

$$(p \Rightarrow q) \equiv (\neg p \lor q).$$

Teorema

1.
$$\varphi \equiv \varphi$$
.

Definição

As fórmulas φ e ψ dizem-se equivalentes (em símbolos: $\varphi \equiv \psi$) quando $\varphi \Leftrightarrow \psi$ é uma tautologia.

Exemplo

$$(p \Rightarrow q) \equiv (\neg p \lor q).$$

Teorema

- 1. $\varphi \equiv \varphi$.
- 2. Se $\varphi \equiv \psi$, então $\psi \equiv \varphi$.

Definição

As fórmulas φ e ψ dizem-se equivalentes (em símbolos: $\varphi \equiv \psi$) quando $\varphi \Leftrightarrow \psi$ é uma tautologia.

Exemplo

$$(p \Rightarrow q) \equiv (\neg p \lor q).$$

Teorema

- 1. $\varphi \equiv \varphi$.
- 2. Se $\varphi \equiv \psi$, então $\psi \equiv \varphi$.
- 3. Se $\varphi \equiv \psi$ e $\psi \equiv \theta$, então $\varphi \equiv \theta$.

Definição

As fórmulas φ e ψ dizem-se equivalentes (em símbolos: $\varphi \equiv \psi$) quando $\varphi \Leftrightarrow \psi$ é uma tautologia.

Exemplo

$$(p \Rightarrow q) \equiv (\neg p \lor q).$$

Teorema

Sejam φ, ψ, θ fórmulas. Então:

- 1. $\varphi \equiv \varphi$.
- 2. Se $\varphi \equiv \psi$, então $\psi \equiv \varphi$.
- 3. Se $\varphi \equiv \psi$ e $\psi \equiv \theta$, então $\varphi \equiv \theta$.

Nota

Se $\varphi \equiv \psi$, então também $\theta \lor \varphi \equiv \theta \lor \psi$, $\varphi \Rightarrow \theta \equiv \psi \Rightarrow \theta$, . . .

Comutatividade:

$$(p \wedge q) \equiv (q \wedge p)$$
 e $(p \vee q) \equiv (q \vee p)$.

Comutatividade:

$$(p \wedge q) \equiv (q \wedge p)$$
 e $(p \vee q) \equiv (q \vee p)$.

р	q	$p \wedge q$	$q \wedge p$	$(p \land q) \Leftrightarrow (q \land p)$
0	0	0	0	1
0	1	1	1	1
1	0	1	1	1
1	1	1	1	1

Comutatividade:

$$(p \wedge q) \equiv (q \wedge p)$$
 e $(p \vee q) \equiv (q \vee p)$.

Associatividade:

$$((p \lor q) \lor r) \equiv (p \lor (q \lor r)),$$

$$((p \land q) \land r) \equiv (p \land (q \land r)).$$

Comutatividade:

$$(p \wedge q) \equiv (q \wedge p)$$
 e $(p \vee q) \equiv (q \vee p)$.

Associatividade:

$$((p \lor q) \lor r) \equiv (p \lor (q \lor r)),$$

$$((p \land q) \land r) \equiv (p \land (q \land r)).$$

Idempotência:

$$(p \lor p) \equiv p$$
 e $(p \land p) \equiv p$.

Comutatividade:

$$(p \wedge q) \equiv (q \wedge p)$$
 e $(p \vee q) \equiv (q \vee p)$.

Associatividade:

$$((p \lor q) \lor r) \equiv (p \lor (q \lor r)),$$

$$((p \land q) \land r) \equiv (p \land (q \land r)).$$

• Idempotência:

$$(p \lor p) \equiv p$$
 e $(p \land p) \equiv p$.

Distributividade:

$$(p \land (q \lor r)) \equiv (p \land q) \lor (p \land r),$$

 $(p \lor (q \land r)) \equiv (p \lor q) \land (p \lor r).$

Comutatividade:

$$(p \wedge q) \equiv (q \wedge p)$$
 e $(p \vee q) \equiv (q \vee p)$.

Associatividade:

$$((p \lor q) \lor r) \equiv (p \lor (q \lor r)),$$

$$((p \land q) \land r) \equiv (p \land (q \land r)).$$

Idempotência:

$$(p \lor p) \equiv p$$
 e $(p \land p) \equiv p$.

Distributividade:

$$(p \land (q \lor r)) \equiv (p \land q) \lor (p \land r),$$

 $(p \lor (q \land r)) \equiv (p \lor q) \land (p \lor r).$

Leis de De Morgan:

$$\neg(p \lor q) \equiv (\neg p \land \neg q)$$
 e $\neg(p \land q) \equiv (\neg p \lor \neg q)$.

• Lei da contraposição e da dupla negação:

$$(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p)$$
 e $\neg \neg p \equiv p$.

• Lei da contraposição e da dupla negação:

$$(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p)$$
 e $\neg \neg p \equiv p$.

• Modus ponens:

$$(p \land (p \Rightarrow q)) \Rightarrow q$$

é uma tautologia.

• Lei da contraposição e da dupla negação:

$$(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p)$$
 e $\neg \neg p \equiv p$.

• Modus ponens:

$$(p \land (p \Rightarrow q)) \Rightarrow q$$

é uma tautologia.

Modus tollens:

$$((p \Rightarrow q) \land \neg q) \Rightarrow \neg p$$

é uma tautologia.

Lei da contraposição e da dupla negação:

$$(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p)$$
 e $\neg \neg p \equiv p$.

• Modus ponens:

$$(p \land (p \Rightarrow q)) \Rightarrow q$$

é uma tautologia.

• Modus tollens:

$$((p \Rightarrow q) \land \neg q) \Rightarrow \neg p$$

é uma tautologia.

Corte:

$$((p \Rightarrow q) \land (q \Rightarrow r)) \Rightarrow (p \Rightarrow r)$$

é uma tautologia.

•
$$\neg 0 \equiv 1$$
 e $\neg 1 \equiv 0$.

- $(\neg p \land p) \equiv \mathbf{0}$ e $(\neg p \lor p) \equiv \mathbf{1}$.

- $\bullet \ \neg 0 \equiv 1 \quad \text{e} \quad \neg 1 \equiv 0.$
- $\bullet \ (\neg p \wedge p) \equiv \mathbf{0} \quad \text{e} \ (\neg p \vee p) \equiv \mathbf{1}.$
- $\bullet \ (p \lor \mathbf{1}) \equiv \mathbf{1} \quad \mathsf{e} \quad (p \land \mathbf{1}) \equiv p.$
- $\bullet \ (p \lor \mathbf{0}) \equiv p \quad \mathsf{e} \quad (p \land \mathbf{0}) \equiv \mathbf{0}.$

- ullet $\neg 0 \equiv 1$ e $\neg 1 \equiv 0$.
- $(\neg p \land p) \equiv \mathbf{0}$ e $(\neg p \lor p) \equiv \mathbf{1}$.
- $(p \lor 1) \equiv 1$ e $(p \land 1) \equiv p$.
- $(p \lor \mathbf{0}) \equiv p$ e $(p \land \mathbf{0}) \equiv \mathbf{0}$.
- As fórmulas

$$p \Rightarrow (p \lor q)$$
 e $q \Rightarrow (p \lor q)$

são tautologias.

- \bullet $\neg 0 \equiv 1$ e $\neg 1 \equiv 0$.
- $(\neg p \land p) \equiv \mathbf{0}$ e $(\neg p \lor p) \equiv \mathbf{1}$.
- $(p \lor 1) \equiv 1$ e $(p \land 1) \equiv p$.
- $\bullet \ (p \lor \mathbf{0}) \equiv p \quad \mathsf{e} \quad (p \land \mathbf{0}) \equiv \mathbf{0}.$
- As fórmulas

$$p \Rightarrow (p \lor q)$$
 e $q \Rightarrow (p \lor q)$

são tautologias.

As fórmulas

$$(p \wedge q) \Rightarrow p$$
 e $(p \wedge q) \Rightarrow q$

são tautologias.

Ou exclusivo

Nota

As vezes utiliza-se a expressão "ou" no sentido exclusivo; ou seja "p ou q mas não ambos". Neste caso escrevemos

$$p \lor q$$

como abreviação de

$$(p \lor q) \land \neg (p \land q).$$