

La réduction de dimensions

- Qu'est-ce que c'est?
- Sélection d'attributs

FACULTÉ DE GESTION, ÉCONOMIE & SCIENCES

La réduction de dimensions

des patients

Observations

- Dimension = autre nom des attributs
- Réduction de dimensions
 - Simplifier le jeu de données
 - Simplifier les modèles
 / les prédictions
 - Diminuer le nombre d'informations à collecter
 - Big Data : Arriver à traiter un jeu de données trop volumineux

Dimensions

(ici, des gènes codants)

ID	G1	G2	 G20000	Maladie
l1	0	0	N	O
12	0	N	N	N
13	0	N	N	O
•••				•••
In	N	N	0	N

Quelques applications de la réduction de dimensions

- Agriculture et élevage : tests génétiques bons marché
 - Vise max. 10 gènes ciblés (au lieu du génome entier)
 - Permet d'identifier :
 - si un animal va produire + de viande, + de lait, + de bébés,...
 - si une plante va pousser vite, produire beaucoup, résister aux nuisibles,...

Quelques applications de la réduction de dimensions

Médecine

- Quelles informations minimum pour visualiser l'évolution d'une maladie donnée ?
- Quels symptômes/mesures biologiques caractérisent le mieux une maladie ?
- Permet :
 - De limiter les tests à faire passer au patient
 - De limiter le nombre de questions à poser (consultation ou essai clinique)

Deux techniques

Sélection d'attributs

Ici, on a gardé seulement les 3 attributs les plus significatifs

ID	G1	G2	•••	G20000	Maladie
l1	0	0		N	O
12	0	N		N	N
13	0	N		N	O
					•••
In	N	N		0	N

Génération d'attributs (technique ACP : Analyse en Composantes Principales)

Ici, on a généré les attributs A1 et A2

ID	G3	G26	G13520	Maladie
I1	0	N	0	0
12	0	0	0	N
13	N	N	N	0
•••				
In	N	0	0	N

ID	A1	A2	Maladie
11	0,25	1,68	0
12	3,5	2,9	N
13	1,2	3,1	0
			•••
In	0,9	1,5	N

Vulgarisation de l'ACP

Système solaire en 3D

Système solaire en 2D

Système solaire en 1D

Illustrations : Data Science : fondamentaux et études de cas

Aller plus loin sur l'ACP...

Pour aller plus loin (pour les amoureux des stats), chapitre 15 de :

Data Science : fondamentaux et études de cas

Machine Learning avec Python et R

Auteur(s): Lutz, Michel

Biernat, Eric

Editeur: **Eyrolles**

Année de Publication: 2015

pages: 311

ISBN: 978-2-212-14243-3

La sélection d'attributs

- Plus facile à interpréter ©
- Fonctionnement
 - Calculer un score par attribut
 - Conserver les attributs avec le meilleur score
 - Supprimer les autres

Penser à vérifier que les scores (confiance, sensibilité, CA) ne se sont pas dégradés après le filtrage

Scores pour la sélection d'attributs

Plusieurs manières de mesurer « l'efficacité » d'un attribut :

- χ^2 : indique le degré de dépendance statistique entre l'attribut et la classe
- Gain : mesure la réduction d'entropie apportée par cet attribut
- **Gini**: mesure du niveau d'inégalité pour une variable et sur une population donnée. Il varie entre 0 (égalité parfaite) et 1 (inégalité extrême).

•

TP d'application sur l'insuffisance cardiaque

- 299 patients
- 12 informations par patient (age, fumeur?,diabète?, créatinine,...)
- Classe : décès
- Quels informations surveiller en priorité ?

