CLAIMS

15

20

1. A compound having the formula (I),

5 and their N-oxides, salts, stereoisomeric forms, racemic mixtures, prodrugs, esters and metabolites thereof, wherein

- A, also mentioned as "A-ring", together with the two carbons of the phenyl ring to which it is attached forms a monocyclic aryl or a monocyclic Het²;
 - R¹ is hydrogen, halogen, nitro, cyano, sultam, sultim, C₃₋₇cycloalkyl, C(=O)-R⁵, S(=O)_y-R⁶, OR⁷, NR⁸R⁹, C(=NR⁸)-R⁵, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁵, S(=O)_y-R⁶, OR⁷, and NR⁸R⁹;
 - R² is hydrogen, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁵, S(=O)_y-R⁶, OR⁷, NR⁸R⁹, C(=NR⁸)-R⁵, or optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁵, S(=O)_y-R⁶, OR⁷, and NR⁸R⁹;
- R³ is hydrogen, halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, C(=O)-R⁵, S(=O)_y-R⁶, OR⁷, NR⁸R⁹, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, C(=O)-R⁵, OR⁷, and NR⁸R⁹;

10

15

 R^4 is hydrogen, halogen, nitro, cyano, C_{3-7} cycloalkyl or C_{1-6} alkyl; y represents an integer being zero, one or two;

- R⁵ is hydrogen, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R¹⁰, OR¹², NR⁸R¹³, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, OR¹², and NR⁸R¹³;
- R⁶ is hydrogen, aryl, C₃₋₇cycloalkyl, Het¹, Het², OR¹², NR⁸R¹³, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, OR¹², and NR⁸R¹³;
- R⁷ is hydrogen, aryl, C₃₋₇cycloalkyl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, or optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro,
- cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, OR¹², and NR⁸R¹³; R⁸ is hydrogen, aryl, Het¹, Het², C₁, alloyd, C₂, alloyd, C₃, alloyd, C₄, alloyd, C₅, alloyd, C₄, alloyd, C₅, alloyd, C
- R⁸ is hydrogen, aryl, Het¹, Het², C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₇cycloalkyl or polyhaloC₁₋₆alkyl;
- R⁹ is hydrogen, aryl, C₃₋₇cycloalkyl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, C(=NR⁸)-R⁵, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano,C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, OR¹² and NR⁸R¹³;
 - R^{10} is hydrogen, C_{3-7} cycloalkyl, aryl, Het^1 , Het^2 , $C(=O)-R^8$, $C(=O)-OR^8$, $C(=O)-NR^8R^8$, OR^8 , $O-C(=O)-R^8$, $O-S(=O)_y-R^8$, $S(=O)_y-R^8$, NR^8R^8 , $NR^8-C(=O)-R^8$, $NR^8-S(=O)_y-R^8$, optionally polysubstituted C_{1-6} alkyl, optionally polysubstituted C_{2-6} alkenyl or optionally polysubstituted C_{2-6} alkynyl; whereby the optional substituents on C_{1-6} alkyl, C_{2-6} alkenyl and C_{2-6} alkynyl are each independently
- substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁸, C(=O)-NR⁸R⁸, S(=O)_y-R⁸, S(=O)_y-OR⁸, S(=O)_y-NR⁸R⁸, OR⁸, O-C(=O)-R⁸, O-S(=O)_y-R⁸, NR⁸R⁸, NR⁸-C(=O)-R⁸, and NR⁸-S(=O)_y-R⁸;
- R¹¹ is hydrogen, C₃₋₇cycloalkyl, aryl, Het¹, Het², OR⁸, O-C(=O)-R⁸, O-S(=O)_y-R⁸,

 NR⁸R⁸, NR⁸-C(=O)-R⁸, NR⁸-S(=O)_y-R⁸, optionally polysubstituted C₁₋₆alkyl,

 optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl;

 whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each

independently selected from halogen, nitro, cyano, C3-7cycloalkyl, aryl, Het1, Het2, $C(=O)-R^8$, $C(=O)-OR^8$, $C(=O)-NR^8R^8$, $S(=O)_y-R^8$, $S(=O)_y-OR^8$, $S(=O)_y-NR^8R^8$, OR8, O-C(=O)-R8, O-S(=O)_y-R8, NR8R8, NR8-C(=O)-R8, and NR8-S(=O)_y-R8; R^{12} is hydrogen, C_{3-7} cycloalkyl, aryl, Het^1 , Het^2 , $C(=O)-R^8$, $C(=O)-OR^8$, $C(=O)-NR^8R^8$, S(=O)_y-R⁸, S(=O)_y-OR⁸, S(=O)_y-NR⁸R⁸, optionally polysubstituted C₁₋₆alkyl, 5 optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C_{1-6} alkyl, C_{2-6} alkenyl and C_{2-6} alkynyl are each independently selected from halogen, nitro, cyano, C3-7cycloalkyl, aryl, Het1, Het2, $C(=O)-R^8$, $C(=O)-OR^8$, $C(=O)-NR^8R^8$, $S(=O)_y-R^8$, $S(=O)_y-OR^8$, $S(=O)_y-NR^8R^8$, OR⁸, O-C(=O)-R⁸, O-S(=O)_y-R⁸, NR⁸R⁸, NR⁸-C(=O)-R⁸, and NR⁸-S(=O)_y-R⁸; 10 R¹³ is hydrogen, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁸, C(=O)-OR⁸, C(=O)-NR⁸R⁸, S(=O)_y-R⁸, S(=O)_y-OR⁸, S(=O)_y-NR⁸R⁸, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C_{1-6} alkyl, C_{2-6} alkenyl and C_{2-6} alkynyl are each independently selected from halogen, nitro, cyano, C3-7cycloalkyl, aryl, Het1, Het2, 15 C(=O)-R⁸, C(=O)-OR⁸, C(=O)-NR⁸R⁸, S(=O)_y-R⁸, S(=O)_y-OR⁸, S(=O)_y-NR⁸R⁸, OR8, O-C(=O)-R8, O-S(=O)y-R8, NR8R8, NR8-C(=O)-R8, and NR8-S(=O)y-R8; R¹⁴ is hydrogen, phenyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₇cycloalkyl; aryl as a group or part of a group represents a monocyclic or polycyclic aromatic or a partially saturated monocyclic or polycyclic carbocycles wherein any such 20 carbocycle within the meaning of aryl may have up to 14 carbon atoms and may be optionally substituted with one or more substituents independently selected from halogen, nitro, oxo, cyano, C₃₋₇cycloalkyl, Het¹, Het², C(=O)-R⁸, S(=O)_y-R¹⁴, OR¹⁴, $NR^{14}R^{14}$, NR^{14} -O-C(=O)- R^{14} , NR^{14} -C₁₋₆alkanediyl- NR^{14} -Het¹, NR¹⁴-C₁₋₆alkanediyl-NR¹⁴-Het², optionally polysubstituted C₁₋₆alkyl, optionally 25 polysubstituted C2-6alkenyl, optionally polysubstituted C2-6alkynyl and optionally polysubstituted phenyl; whereby the optional substituents on C_{1-6} alkyl, C_{2-6} alkenyl and C2-6alkynyl are each independently selected from halogen, nitro, cyano, phenyl, C(=O)-R¹⁴, OR¹⁴, Het¹, Het², C(=O)-Het¹, C(=O)-Het², and NR¹⁴R¹⁴; and whereby the optional substituents on phenyl are each independently selected from halogen, 30 hydroxy, C_{1-6} alkyl, polyhalo C_{1-6} alkyl, O- C_{1-6} alkyl, and C_{1-6} alkanediyl-NR 14 R 14 ; Het as a group or part of a group represents a saturated or partially unsaturated monocyclic, bicyclic or tricyclic heterocycle having 3 to 14 ring members, which contains one or more heteroatom ring members selected from nitrogen, oxygen and sulfur, and which may be optionally substituted on a carbon atom or where possible 35 a nitrogen atom with one or more substituents independently selected from halogen, nitro, oxo, cyano, C_{3.7}cycloalkyl, C(=O)-R¹⁴, S(=O)_y-R¹⁴, OR¹⁴, NR¹⁴R¹⁴,

10

15

20

25

 NR^{14} -O-C(=O)- R^{14} , optionally polysubstituted C_{1-6} alkyl, optionally polysubstituted C_{2-6} alkenyl, optionally polysubstituted C_{2-6} alkenyl and optionally polysubstituted phenyl; whereby the optional substituents on C_{1-6} alkyl, C_{2-6} alkenyl and C_{2-6} alkynyl are each independently selected from halogen, nitro, cyano, phenyl, C(=O)- R^{14} , OR^{14} , and $NR^{14}R^{14}$; and whereby the optional substituents on phenyl are each independently selected from halogen, hydroxy, C_{1-6} alkyl, polyhalo C_{1-6} alkyl, $O-C_{1-6}$ alkyl, and C_{1-6} alkanediyl- $NR^{14}R^{14}$;

Het² as a group or part of a group represents an aromatic monocyclic, bicyclic or tricyclic heterocycle having 5 to 14 ring members, which contains one or more heteroatom ring members selected from nitrogen, oxygen and sulfur, and which may be optionally substituted on a carbon atom or where possible a nitrogen atom with one or more substituents independently selected from halogen, nitro, oxo, cyano, C₃₋₇cycloalkyl, C(=O)-R¹⁴, S(=O)_y-R¹⁴, OR¹⁴, NR¹⁴R¹⁴, NR¹⁴-O-C(=O)-R¹⁴, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl, optionally polysubstituted C₂₋₆alkenyl and optionally polysubstituted phenyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, phenyl, C(=O)-R¹⁴, OR¹⁴, and NR¹⁴R¹⁴; and whereby the optional substituents on phenyl are each independently selected from halogen, hydroxy, C₁₋₆alkyl, polyhaloC₁₋₆alkyl, O-C₁₋₆alkyl, and C₁₋₆alkanediyl-NR¹⁴R¹⁴;

for use as a medicine.

- 2. A compound according to claim 1 for the manufacture of a medicament for treating or combating infection or disease associated with retrovirus infection in a mammal.
- 3. A compound having the formula (I)

its N-oxide, salt, stereoisomeric form, racemic mixture, prodrug, ester or metabolite thereof, wherein

30 X is

20

25

30

A, also mentioned as "A-ring", together with the two carbons of the phenyl ring to which it is attached forms a monocyclic aryl or a monocyclic Het²;

R¹ is hydrogen, halogen, nitro, cyano, sultam, sultim, C₃₋₇cycloalkyl, C(=O)-R⁵, S(=O)_y-R⁶, OR⁷, NR⁸R⁹, C(=NR⁸)-R⁵, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁵, S(=O)_y-R⁶, OR⁷, and NR⁸R⁹;

R² is hydrogen, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁵, S(=O)_y-R⁶, OR⁷, NR⁸R⁹, C(=NR⁸)-R⁵, or optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁵, S(=O)_y-R⁶, OR⁷, and NR⁸R⁹;

R³ is hydrogen, halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, C(=O)-R⁵, S(=O)_y-R⁶, OR⁷, NR⁸R⁹, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, C(=O)-R⁵, OR⁷, and NR⁸R⁹;

R⁴ is hydrogen, halogen, nitro, cyano, C₃₋₇cycloalkyl or C₁₋₆alkyl; y represents an integer being zero, one or two;

R⁵ is hydrogen, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R¹⁰, OR¹², NR⁸R¹³, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, OR¹², and NR⁸R¹³;

R⁶ is hydrogen, aryl, C₃₋₇cycloalkyl, Het¹, Het², OR¹², NR⁸R¹³, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl,

20

- C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, OR¹², and NR⁸R¹³;
- R⁷ is hydrogen, aryl, C₃₋₇cycloalkyl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, or optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano,C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, OR¹², and NR⁸R¹³;
- R⁸ is hydrogen, aryl, Het¹, Het², C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₇cycloalkyl or polyhaloC₁₋₆alkyl;
- R⁹ is hydrogen, aryl, C₃₋₇cycloalkyl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, C(=NR⁸)-R⁵, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano,C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, OR¹² and NR⁸R¹³;
 - R^{10} is hydrogen, C_{3-7} cycloalkyl, aryl, Het^1 , Het^2 , $C(=O)-R^8$, $C(=O)-OR^8$, $C(=O)-NR^8R^8$, OR^8 , $O-C(=O)-R^8$, $O-S(=O)_y-R^8$, $S(=O)_y-R^8$, NR^8R^8 , $NR^8-C(=O)-R^8$, $NR^8-S(=O)_y-R^8$, optionally polysubstituted C_{1-6} alkyl, optionally polysubstituted C_{2-6} alkenyl or optionally polysubstituted C_{2-6} alkynyl; whereby the optional substituents on C_{1-6} alkyl, C_{2-6} alkenyl and C_{2-6} alkynyl are each independently selected from halogen, nitro, cyano, C_{3-7} cycloalkyl, aryl, Het^1 , Het^2 , $C(=O)-R^8$,

C(=O)-OR⁸, C(=O)-NR⁸R⁸, S(=O)_y-R⁸, S(=O)_y-OR⁸, S(=O)_y-NR⁸R⁸, OR⁸, O-C(=O)-R⁸, O-S(=O)_y-R⁸, NR⁸R⁸, NR⁸-C(=O)-R⁸, and NR⁸-S(=O)_y-R⁸; R¹¹ is hydrogen, C₃₋₇cycloalkyl, aryl, Het¹, Het², OR⁸, O-C(=O)-R⁸, O-S(=O)_y-R⁸,

- NR⁸R⁸, NR⁸-C(=O)-R⁸, NR⁸-S(=O)_y-R⁸, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁸, C(=O)-OR⁸, C(=O)-NR⁸R⁸, S(=O)_y-R⁸, S(=O)_y-OR⁸, S(=O)_y-NR⁸R⁸, OR⁸, O-C(=O)-R⁸, O-S(=O)_y-R⁸, NR⁸R⁸, NR⁸-C(=O)-R⁸, and NR⁸-S(=O)_y-R⁸;
- R¹² is hydrogen, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁸, C(=O)-OR⁸, C(=O)-NR⁸R⁸, S(=O)_y-R⁸, S(=O)_y-OR⁸, S(=O)_y-NR⁸R⁸, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het²,

 $C(=O)-R^8$, $C(=O)-OR^8$, $C(=O)-NR^8R^8$, $S(=O)_y-R^8$, $S(=O)_y-OR^8$, $S(=O)_y-NR^8R^8$, OR^8 , $O-C(=O)-R^8$, $O-S(=O)_y-R^8$, NR^8R^8 , $NR^8-C(=O)-R^8$, and $NR^8-S(=O)_y-R^8$;

10

25

30

R¹³ is hydrogen, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁸, C(=O)-OR⁸, C(=O)-NR⁸R⁸, S(=O)_y-R⁸, S(=O)_y-OR⁸, S(=O)_y-NR⁸R⁸, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁸, C(=O)-OR⁸, C(=O)-NR⁸R⁸, S(=O)_y-R⁸, S(=O)_y-OR⁸, S(=O)_y-NR⁸R⁸, OR⁸, O-C(=O)-R⁸, O-S(=O)_y-R⁸, NR⁸R⁸, NR⁸-C(=O)-R⁸, and NR⁸-S(=O)_y-R⁸; R¹⁴ is hydrogen, phenyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₇cycloalkyl; aryl as a group or part of a group represents a monocyclic or polycyclic aromatic or a partially saturated monocyclic or polycyclic carbocycles wherein any such carbocycle within the meaning of aryl may have up to 14 carbon atoms and may be optionally substituted with one or more substituents independently and to the

carbocycle within the meaning of aryl may have up to 14 carbon atoms and may be optionally substituted with one or more substituents independently selected from halogen, nitro, oxo, cyano, C₃₋₇cycloalkyl, Het¹, Het², C(=O)-R⁸, S(=O)_y-R¹⁴, OR¹⁴, NR¹⁴-O-C(=O)-R¹⁴, NR¹⁴-C₁₋₆alkanediyl-NR¹⁴-Het¹,

NR¹⁴-C₁₋₆alkanediyl-NR¹⁴-Het², optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl, optionally polysubstituted C₂₋₆alkynyl and optionally polysubstituted phenyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, phenyl, C(=O)-R¹⁴, OR¹⁴, Het¹, Het², C(=O)-Het¹, C(=O)-Het², and NR¹⁴R¹⁴; and whereby the optional substituents on phenyl are each independently selected from halogen, hydroxy, C₁₋₆alkyl, polyhaloC₁₋₆alkyl, O-C₁₋₆alkyl, and C₁₋₆alkanediyl-NR¹⁴R¹⁴;

Het¹ as a group or part of a group represents a saturated or partially unsaturated monocyclic, bicyclic or tricyclic heterocycle having 3 to 14 ring members, which contains one or more heteroatom ring members selected from nitrogen, oxygen and sulfur, and which may be optionally substituted on a carbon atom or where possible a nitrogen atom with one or more substituents independently selected from halogen, nitro, oxo, cyano, C₃₋₇cycloalkyl, C(=O)-R¹⁴, S(=O)_y-R¹⁴, OR¹⁴, NR¹⁴R¹⁴, NR¹⁴-O-C(=O)-R¹⁴, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl, optionally polysubstituted phenyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, phenyl C(=O)-R¹⁴

are each independently selected from halogen, nitro, cyano, phenyl, C(=O)-R¹⁴, OR¹⁴, and NR¹⁴R¹⁴; and whereby the optional substituents on phenyl are each independently selected from halogen, hydroxy, C₁₋₆alkyl, polyhaloC₁₋₆alkyl, O-C₁₋₆alkyl, and C₁₋₆alkanediyl-NR¹⁴R¹⁴;

35 Het² as a group or part of a group represents an aromatic monocyclic, bicyclic or tricyclic heterocycle having 5 to 14 ring members, which contains one or more heteroatom ring members selected from nitrogen, oxygen and sulfur, and which may

10

15

be optionally substituted on a carbon atom or where possible a nitrogen atom with one or more substituents independently selected from halogen, nitro, oxo, cyano, C_{3-7} cycloalkyl, $C(=O)-R^{14}$, $S(=O)_y-R^{14}$, OR^{14} , $NR^{14}R^{14}$, $NR^{14}-O-C(=O)-R^{14}$, optionally polysubstituted C_{1-6} alkyl, optionally polysubstituted C_{2-6} alkenyl, optionally polysubstituted phenyl; whereby the optional substituents on C_{1-6} alkyl, C_{2-6} alkenyl and C_{2-6} alkynyl are each independently selected from halogen, nitro, cyano, phenyl, $C(=O)-R^{14}$, OR^{14} , and $NR^{14}R^{14}$; and whereby the optional substituents on phenyl are each independently selected from halogen, hydroxy, C_{1-6} alkyl, polyhalo C_{1-6} alkyl, $O-C_{1-6}$ alkyl, and

with the proviso that compounds:

C₁₋₆alkanediyl-NR¹⁴R¹⁴:

- 9-(2,4-Dimethoxy-phenylimino)-9H-benzo[f]isoindole-1,3,4-trione,
- 9-(2,4-Dimethoxy-phenylimino)-2-phenyl-9H-benzo[f]isoindole-1,3,4-trione,
- 6,7-Dichloro-9-(2,4-dimethoxy-phenylimino)-2-phenyl-9H-benzo[f]isoindole-1,3,4-trione,
- 4-[6,7-Dichloro-4-(2,4-dimethoxy-phenylimino)-1,3,9-trioxo-1,3,4,9-tetrahydro-benzo[f]isoindol-2-yl]-benzonitrile,
- 6,7-Dichloro-9-(4-methoxy-2-methyl-phenylimino)-2-phenyl-9H-benzo[f]isoindole-1,3,4-trione,
- 9-(4-Dimethylamino-phenylimino)-2-phenyl-9H-benzo[f]isoindole-1,3,4-trione,
 - 4-Diethylamino-9-hydroxy-2-phenyl-benzo[f]isoindole-1,3-dione,
 - 4-(But-3-enyl-ethyl-amino)-9-hydroxy-2-phenyl-benzo[f]isoindole-1,3-dione,
 - 4-(Ethyl-pent-4-enyl-amino)-9-hydroxy-2-phenyl-benzo[f]isoindole-1,3-dione,
 - 4,9-dihydroxy-2-methyl-benzo[f]isoindole-1,3-dione,
- 4,8-dihydroxy-6-methyl-2-oxa-6-aza-s-indacene-5,7-dione,
 - 5,9-dihydroxy-7-methyl-pyrrolo[3,4-g]quinoline-6,8-dione,
 - 4,9-dihydroxy-2-methyl-pyrrolo[3,4-g]isoquinoline-1,3-dione,
 - 4,9-dihydroxy-2,6-dimethyl-benzo[f]isoindole-1,3-dione,
 - 4,9-dihydroxy-6-methoxy-2-methyl-benzo[f]isoindole-1,3-dione,
- 5-fluoro-4,9-dihydroxy-2-methyl-benzo[f]isoindole-1,3-dione,
 - 6,7-dichloro-4,9-dihydroxy-2-methyl-benzo[f]isoindole-1,3-dione,
 - 6-cyclohexyl-4,8-dihydroxy-1-thia-6-aza-s-indacene-5,7-dione,
 - 4,9-dihydroxy-6-methyl-2-phenyl-benzo[f]isoindole-1,3-dione,
 - 7-cyclohexyl-5,9-dihydroxy-pyrrolo[3,4-g]quinoline-6,8-dione,
- 2-cyclohexyl-4,9-dihydroxy-6-methoxy-benzo[f]isoindole-1,3-dione,
 - 7-(3,5-dichloro-phenyl)-5,9-dihydroxy-pyrrolo[3,4-g]quinoline-6,8-dione,
 - 6,7-dichloro-2-(3,5-dichloro-phenyl)-4,9-dihydroxy-benzo[f]isoindole-1,3-dione,

- 4-hydroxy-benzo[f]isoindole-1,3-dione,
- 4-hydroxy-2-phenyl-benzo[f]isoindole-1,3-dione,
- 4-hydroxy-2-phenyl-9-phenylamino-benzo[f]isoindole-1,3-dione,
- 4,9-dihydroxy-2-phenyl-benzo[f]isoindole-1,3-dione,
- 5 4-hydroxy-1-methyl-2-phenyl-1,2-dihydro-benzo[f]indazol-3-one,
 - 6,7-dichloro-4,9-dimethoxy-2-methyl-benzo[f]isoindole-1,3-dione, and
 - 6,7-dichloro-2-(3,5-dichloro-phenyl)-4,9-dimethoxy-benzo[f]isoindole-1,3-dione, are excluded.
- 10 4. A compound according to claim 3 having the formula (I),

and their N-oxides, salts, stereoisomeric forms, racemic mixtures, prodrugs, esters and metabolites thereof, wherein

X, A, R¹, R², R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, y, aryl, Het¹, and Het² are as defined in claim 1, provided that when the A-ring is phenyl, then R² is not hydrogen, methyl, cyclohexyl, nor phenyl;

and compounds

15

25

- 4,8-dihydroxy-6-methyl-2-oxa-6-aza-s-indacene-5,7-dione,
- 5,9-dihydroxy-7-methyl-pyrrolo[3,4-g]quinoline-6,8-dione,
- 4,9-dihydroxy-2-methyl-pyrrolo[3,4-g]isoquinoline-1,3-dione,
 - 6-cyclohexyl-4,8-dihydroxy-1-thia-6-aza-s-indacene-5,7-dione,
 - 7-cyclohexyl-5,9-dihydroxy-pyrrolo[3,4-g]quinoline-6,8-dione,
 - 7-(3,5-dichloro-phenyl)-5,9-dihydroxy-pyrrolo[3,4-g]quinoline-6,8-dione, are excluded.
 - 5. A compound according to claim 3 having the formula (I),

and their N-oxides, salts, stereoisomeric forms, racemic mixtures, prodrugs, esters and metabolites thereof, wherein

5

25

A, also mentioned as "A-ring", together with the two carbons of the phenyl ring to which it is attached forms a monocyclic Het²;

R¹ is hydrogen, halogen, nitro, cyano, sultam, sultim, C₃₋₇cycloalkyl, C(=O)-R⁵, S(=O)_y-R⁶, OR⁷, NR⁸R⁹, C(=NR⁸)-R⁵, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁵, S(=O)_y-R⁶, OR⁷, and NR⁸R⁹;

R² is hydrogen, C₃₋₅cycloalkyl, C₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁵, S(=O)_y-R⁶, OR⁷, NR⁸R⁹, C(=NR⁸)-R⁵, C₂₋₆alkyl or polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkynyl; whereby the substituents on C₁₋₆alkyl, and the optional substituents on C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁵, S(=O)_y-R⁶, OR⁷, and NR⁸R⁹;

R³ is hydrogen, halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, C(=O)-R⁵, S(=O)_y-R⁶, OR⁷, NR⁸R⁹, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, C(=O)-R⁵, OR⁷, and NR⁸R⁹;

R⁴ is hydrogen, halogen, nitro, cyano, C₃₋₇cycloalkyl or C₁₋₆alkyl; y represents an integer being zero, one or two;

10

15

35

R⁵ is hydrogen, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R¹⁰, OR¹², NR⁸R¹³, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, OR¹², and NR⁸R¹³;

R⁶ is hydrogen, aryl, C₃₋₇cycloalkyl, Het¹, Het², OR¹², NR⁸R¹³, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, OR¹², and NR⁸R¹³;

- R⁷ is hydrogen, aryl, C₃₋₇cycloalkyl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, or optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano,C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, OR¹², and NR⁸R¹³;
- R⁸ is hydrogen, aryl, Het¹, Het², C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₃₋₇cycloalkyl or polyhaloC₁₋₆alkyl;
- R⁹ is hydrogen, aryl, C₃₋₇cycloalkyl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, C(=NR⁸)-R⁵, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R¹⁰, S(=O)_y-R¹¹, OR¹² and NR⁸R¹³;
- R¹⁰ is hydrogen, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁸, C(=O)-OR⁸, C(=O)-NR⁸R⁸, OR⁸, O-C(=O)-R⁸, O-S(=O)_y-R⁸, S(=O)_y-R⁸, NR⁸R⁸, NR⁸-C(=O)-R⁸, NR⁸-S(=O)_y-R⁸, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁸, C(=O)-OR⁸, C(=O)-NR⁸R⁸, S(=O)_y-R⁸, S(=O)_y-OR⁸, S(=O)_y-NR⁸R⁸, OR⁸, O-C(=O)-R⁸, O-S(=O)_y-R⁸, NR⁸R⁸, NR⁸-C(=O)-R⁸, and NR⁸-S(=O)_y-R⁸;
 - R¹¹ is hydrogen, C₃₋₇cycloalkyl, aryl, Het¹, Het², OR⁸, O-C(=O)-R⁸, O-S(=O)_y-R⁸, NR⁸R⁸, NR⁸-C(=O)-R⁸, NR⁸-S(=O)_y-R⁸, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, C₃₋₇cycloalkyl, aryl, Het¹, Het²,

C(=O)-R⁸, C(=O)-OR⁸, C(=O)-NR⁸R⁸, S(=O)_y-R⁸, S(=O)_y-OR⁸, S(=O)_y-NR⁸R⁸, OR8, O-C(=O)-R8, O-S(=O)y-R8, NR8R8, NR8-C(=O)-R8, and NR8-S(=O)y-R8; R¹² is hydrogen, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁸, C(=O)-OR⁸, C(=O)-NR⁸R⁸, $S(=O)_y-R^8$, $S(=O)_y-OR^8$, $S(=O)_y-NR^8R^8$, optionally polysubstituted C_{1-6} alkyl, optionally polysubstituted C2-6alkenyl or optionally polysubstituted C2-6alkynyl; 5 whereby the optional substituents on $C_{1\text{--}6}$ alkyl, $C_{2\text{--}6}$ alkenyl and $C_{2\text{--}6}$ alkynyl are each independently selected from halogen, nitro, cyano, C3-7cycloalkyl, aryl, Het1, Het2, C(=O)-R⁸, C(=O)-OR⁸, C(=O)-NR⁸R⁸, S(=O)_y-R⁸, S(=O)_y-OR⁸, S(=O)_y-NR⁸R⁸, OR⁸, O-C(=O)-R⁸, O-S(=O)_y-R⁸, NR⁸R⁸, NR⁸-C(=O)-R⁸, and NR⁸-S(=O)_y-R⁸; R¹³ is hydrogen, C₃₋₇cycloalkyl, aryl, Het¹, Het², C(=O)-R⁸, C(=O)-OR⁸, C(=O)-NR⁸R⁸, 10 S(=O)_y-R⁸, S(=O)_y-OR⁸, S(=O)_y-NR⁸R⁸, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl or optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C_{1-6} alkyl, C_{2-6} alkenyl and C_{2-6} alkynyl are each independently selected from halogen, nitro, cyano, C3-7cycloalkyl, aryl, Het1, Het2, $C(=O)-R^8$, $C(=O)-OR^8$, $C(=O)-NR^8R^8$, $S(=O)_y-R^8$, $S(=O)_y-OR^8$, $S(=O)_y-NR^8R^8$, 15 OR⁸, O-C(=O)-R⁸, O-S(=O)_y-R⁸, NR⁸R⁸, NR⁸-C(=O)-R⁸, and NR⁸-S(=O)_y-R⁸; R^{14} is hydrogen, phenyl, C_{1-6} alkyl, C_{2-6} alkenyl, C_{2-6} alkynyl, C_{3-7} cycloalkyl; aryl as a group or part of a group represents a monocyclic or polycyclic aromatic or a partially saturated monocyclic or polycyclic carbocycles wherein any such carbocycle within the meaning of aryl may have up to 14 carbon atoms and may be 20 optionally substituted with one or more substituents independently selected from halogen, nitro, oxo, cyano, C₃₋₇cycloalkyl, Het¹, Het², C(=O)-R⁸, S(=O)_y-R¹⁴, OR¹⁴, $NR^{14}R^{14}$, NR^{14} -O-C(=O)- R^{14} , NR^{14} - C_{1-6} alkanediyl- NR^{14} -Het¹, NR¹⁴-C₁₋₆alkanediyl-NR¹⁴-Het², optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C2-6alkenyl, optionally polysubstituted C2-6alkynyl and optionally 25 polysubstituted phenyl; whereby the optional substituents on $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl and C2-6alkynyl are each independently selected from halogen, nitro, cyano, phenyl, C(=O)-R¹⁴, OR¹⁴, Het¹, Het², C(=O)-Het¹, C(=O)-Het², and NR¹⁴R¹⁴; and whereby the optional substituents on phenyl are each independently selected from halogen, hydroxy, C_{1-6} alkyl, polyhalo C_{1-6} alkyl, O- C_{1-6} alkyl, and C_{1-6} alkanediyl-NR 14 R 14 ; **30** Het 1 as a group or part of a group represents a saturated or partially unsaturated monocyclic, bicyclic or tricyclic heterocycle having 3 to 14 ring members, which contains one or more heteroatom ring members selected from nitrogen, oxygen and sulfur, and which may be optionally substituted on a carbon atom or where possible a nitrogen atom with one or more substituents independently selected from halogen, nitro, oxo, cyano, C₃₋₇cycloalkyl, C(=O)-R¹⁴, S(=O)_y-R¹⁴, OR¹⁴, NR¹⁴R¹⁴, NR¹⁴-O-C(=O)-R¹⁴, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted

10

15

 C_{2-6} alkenyl, optionally polysubstituted C_{2-6} alkynyl and optionally polysubstituted phenyl; whereby the optional substituents on C_{1-6} alkyl, C_{2-6} alkenyl and C_{2-6} alkynyl are each independently selected from halogen, nitro, cyano, phenyl, $C(=O)-R^{14}$, OR^{14} , and $NR^{14}R^{14}$; and whereby the optional substituents on phenyl are each independently selected from halogen, hydroxy, C_{1-6} alkyl, polyhalo C_{1-6} alkyl, $O-C_{1-6}$ alkyl, and C_{1-6} alkanediyl- $NR^{14}R^{14}$;

Het² as a group or part of a group represents an aromatic monocyclic, bicyclic or tricyclic heterocycle having 5 to 14 ring members, which contains one or more heteroatom ring members selected from nitrogen, oxygen and sulfur, and which may be optionally substituted on a carbon atom or where possible a nitrogen atom with one or more substituents independently selected from halogen, nitro, oxo, cyano, C₃₋₇cycloalkyl, C(=O)-R¹⁴, S(=O)_y-R¹⁴, OR¹⁴, NR¹⁴R¹⁴, NR¹⁴-O-C(=O)-R¹⁴, optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl, optionally polysubstituted C₂₋₆alkynyl and optionally polysubstituted phenyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, phenyl, C(=O)-R¹⁴, OR¹⁴, and NR¹⁴R¹⁴; and whereby the optional substituents on phenyl are each independently selected from halogen, hydroxy, C₁₋₆alkyl, polyhaloC₁₋₆alkyl, O-C₁₋₆alkyl, and C₁₋₆alkanediyl-NR¹⁴R¹⁴;

with the proviso that compound 7-(3,5-dichloro-phenyl)-5,9-dihydroxy-pyrrolo[3,4-g]quinoline-6,8-dione is excluded.

6. A compound according to any one of claims 1 to 5 wherein the compound has the formula (IIa)

whereby

25

30

the pyridinyl ring may optionally be substituted with halogen or optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl, optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, phenyl, C(=O)-R¹⁴, OR¹⁴, Het¹, Het², C(=O)-Het¹, C(=O)-Het², and NR¹⁴R¹⁴; and whereby

R² is not 3,5-dichlorophenyl, nor cyclohexyl, nor methyl.

7. A compound according to any one of claims 1 to 5 wherein the compound has the formula (IIb)

5

10

whereby the pyrazinyl ring may optionally be substituted with halogen or optionally polysubstituted C_{1-6} alkyl, optionally polysubstituted C_{2-6} alkenyl, optionally polysubstituted C_{2-6} alkynyl; whereby the optional substituents on C_{1-6} alkyl, C_{2-6} alkenyl and C_{2-6} alkynyl are each independently selected from halogen, nitro, cyano, phenyl, $C(=O)-R^{14}$, OR^{14} , Het^1 , Het^2 , $C(=O)-Het^1$, $C(=O)-Het^2$, and $NR^{14}R^{14}$.

8. A compound according to any one of claims 1 to 5 wherein the compound has the formula (IIc)

- whereby the phenyl ring may optionally be substituted with halogen or optionally polysubstituted C₁₋₆alkyl, optionally polysubstituted C₂₋₆alkenyl, optionally polysubstituted C₂₋₆alkynyl; whereby the optional substituents on C₁₋₆alkyl, C₂₋₆alkenyl and C₂₋₆alkynyl are each independently selected from halogen, nitro, cyano, phenyl, C(=O)-R¹⁴, OR¹⁴, Het¹, Het², C(=O)-Het¹, C(=O)-Het², and NR¹⁴R¹⁴; and whereby R² is not hydrogen, methyl, cyclohexyl, nor phenyl.
 - 9. A compound according to any one of claims 1 to 5 wherein the compound has the formula (IId)

whereby the imidazolyl ring may optionally be substituted with halogen or optionally polysubstituted C_{1-6} alkyl, optionally polysubstituted C_{2-6} alkenyl, optionally polysubstituted C_{2-6} alkynyl; whereby the optional substituents on C_{1-6} alkyl, C_{2-6} alkenyl and C_{2-6} alkynyl are each independently selected from halogen, nitro, cyano, phenyl, $C(=0)-R^{14}$, OR^{14} , Het^1 , Het^2 , $C(=0)-Het^1$, $C(=0)-Het^2$, and $NR^{14}R^{14}$.

10. A compound according to any one of claims 1 to 5 wherein the compound has the formula (III)

10

5

11. A compound according to any one of claims 1 to 10 wherein X is -C(=O)-;
R¹ is -OR⁷;

R² is hydrogen, C₃₋₇cycloalkyl, aryl, Het¹, Het², or optionally substituted C₁₋₆alkyl; whereby the optional substituent on C₁₋₆alkyl is selected from C₃₋₇cycloalkyl, aryl, Het¹, Het², and preferably is C₃₋₇cycloalkyl, aryl, Het¹.

- 12. A compound according to any one of claims 1 to 5 selected from any of the following compounds:
- 20 7-(4-Chloro-benzyl)-5,9-dihydroxy-pyrrolo[3,4-g]quinoxaline-6,8-dione
 - 7-(5-Bromo-2-fluoro-benzyl)-5,9-dihydroxy-pyrrolo[3,4-g]quinoxaline-6,8-dione
 - 7-Benzo[1,3]dioxol-5-ylmethyl-5-(benzyl-methyl-amino)-9-hydroxy-pyrrolo[3,4-g]quinoline-6,8-dione
- Dodecanoic acid 7-benzo[1,3]dioxol-5-ylmethyl-9-hydroxy-6,8-dioxo-7,8 dihydro-6H-pyrrolo[3,4-g]quinoxalin-5-yl ester
 - Acetic acid 9-acetoxy-7-(3,4-dichloro-benzyl)-6,8-dioxo-7,8-dihydro-6H-pyrrolo[3,4-g]quinoxalin-5-yl ester
 - 7-(3,5-Dichloro-benzyl)-5,9-dihydroxy-pyrrolo[3,4-g]quinoxaline-6,8-dione
 - 7-(3,4-Dichloro-benzyl)-5,9-dihydroxy-pyrrolo[3,4-g]quinoxaline-6,8-dione
- 7-(3-Chloro-benzyl)-5,9-dihydroxy-pyrrolo[3,4-g]quinoxaline-6,8-dione
 - Dicyclopropanecarboxylic acid 7-(3,4-dichloro-benzyl)-6,8-dioxo-7,8-dihydro-6Hpyrrolo[3,4-g]quinoxalin-5,9-diyl ester

- 7-(3-Bromo-4-fluoro-benzyl)-5,9-dihydroxy-pyrrolo[3,4-g]quinoxaline-6,8-dione
- 7-(3-Bromo-benzyl)-5,9-dihydroxy-2-methyl-pyrrolo[3,4-g]quinoxaline-6,8-dione
- 7-Benzo[1,3]dioxol-5-ylmethyl-5,9-dihydroxy-2-methyl-pyrrolo[3,4-g]quinoxaline-6,8-dione
- 5 7-(3,4-Dichloro-benzyl)-5,9-dihydroxy-2-methyl-pyrrolo[3,4-g]quinoxaline-6,8-dione
 - 7-(3-Bromo-benzyl)-5,9-dihydroxy-pyrrolo[3,4-g]quinoxaline-6,8-dione
- 13. A pharmaceutical composition, comprising an effective amount of at least one
 10 compound as claimed in any one of claims 1 to 12, and a pharmaceutically acceptable excipient.