



11 Publication number:

0 337 354 B1

(P)

## **EUROPEAN PATENT SPECIFICATION**

- (5) Date of publication of patent specification: 02.02.94 (5) Int. Cl.<sup>5</sup>: C11D 1/66, C11D 3/37, A61K 7/06
- (1) Application number: 89106323.2
- 2 Date of filing: 10.04.89

The file contains technical information submitted after the application was filed and not included in this specification

- Low-irritation detergent composition.
- Priority: 12.04.88 JP 88291/88
- Date of publication of application: 18.10.89 Bulletin 89/42
- Publication of the grant of the patent:02.02.94 Bulletin 94/05
- Designated Contracting States:
   AT CH DE ES FR GB LI NL
- (5) References cited: GB-A- 2 050 166 GB-A- 2 128 627 US-A- 4 048 301 US-A- 4 493 773 US-A- 4 678 595

- 73 Proprietor: Kao Corporation 1-14-10, Nihonbashi Kayaba-cho Chuo-ku Tokyo(JP)
- Inventor: Kamegai, Jun 2-3-28, Baraki Ichikawa-shi Chiba-ken(JP) Inventor: Hanazawa, Hideyuki 3-20-1, Innai Funabashi-shi Chiba-ken(JP) Inventor: Hirota, Hajime 5-31-9, Megurohoncho Meguro-ku Tokyo(JP)
- Representative: Wächtershäuser, Günter, Dr. Tal 29 D-80331 München (DE)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

#### Description

## BACKGROUND OF THE INVENTION

#### 5 Field of the Invention:

This invention relates to a low-irritation detergent composition, and, more particularly, to a low-irritation detergent composition comprising an alkyl saccharide-type surface active agent and a cationic polymer. The composition is a low irritant to the skin and hair, produces excellent creamy foam, possesses a superior hair conditioning effect, and imparts an outstanding moisture feeling to the skin.

### Description of the Background

Nonionic surface active agents are widely used in compositions for use in washing the skin and hair. Although nonionic surface active agents possess the advantage of being only slightly irritating, their foaming capability is not sufficient. Because of this, not much of them are formulated into detergent compositions requiring good foaming capability, such as hair shampoos, body shampoos, and the like. Besides the inferior foaming capability and relatively poor detergent capability, which are experienced when a nonionic surface active agent is used alone in a detergent composition, nonionic surface active agents have a problem of imparting a creaky, crinkle feeling to the hair and the skin.

Document GB-A-2 050 166 discloses a composition for a hair treatment comprising a cationic polymer and plant extracts containing a saponing, the use of saponin together with a cationic polymer reduces the defects in the cationic polymer, i.e. the reappearance of greasyness in the hair following the treatment.

Development of a stable detergent composition comprising a nonionic surface active agent, which is a low irritant to the skin and hair, possesses sufficient foaming and detergent capabilities, and is able to impart a superior feeling the skin, has been desired.

In view of this situation the present inventors have undertaken extensive studies to resolve the abovementioned problem existing in nonionic surface active agents. As a result, the inventors have found that the combined use of an alkyl saccharide, which is one type of nonionic surface active agent, and a cationic polymer could greatly reduce irritation to the skin and hair, and produce abundant, high quality foam which impart a comfortable slippery feeling to the skin. Such a combined use of an alkyl saccharide and a cationic polymer also provided a detergent composition having an excellent hair conditioning effect and skin moisturizing effect.

# 35 SUMMARY OF THE INVENTION

Accordingly, an object of this invention is to provide a low-irritation detergent composition comprising the following components (A) and (B):

(A) at least one alkyl saccharide-type surface active agent represented by formula (I):

$$R_1 - O - (R_2 O)_m - (G)_n$$
 (I)

40

45

wherein  $R_1$  represents a linear or branched alkyl group of a  $C_{8-18}$  carbon atom content, a linear or branched alkenyl group of a  $C_{8-18}$  carbon atom content, or an alkylphenyl group of a  $C_{8-18}$  carbon atom content, with the alkyl group being either linear or branched,  $R_2$  represents an alkylene group of a  $C_{2-4}$  carbon atom content, G represents a reduced sugar of a  $C_{5-6}$  carbon atom content, m denotes a value of 0 to 10 and n denotes a value of 1 to 10, and

(B) at least one cationic polymer, with the exception of compositions comprising plant extracts containing a saponin.

Other objects, features and advantages of the invention will hereinafter become more readily apparent from the following description.

## DETAILED DESCRIPTION OF THE INVENTION AND PREFERRED EMBODIMENTS

As an alkyl saccharide-type surface active agent of formula (I), which is the (A) component of this invention, those having an alkyl group for R<sub>1</sub> with 8 to 18, particularly 10 to 14 (decyl group, lauryl group, myristyl group, etc.), carbon atoms are preferable. The value of m in formula (I) is preferably from 0 to 3, with 0 being particularly preferable. The basic unit for the saccharide portion [G in formula (I)], which is the

hydrophilic group of the alkyl saccharide-type surface active agent, is a reducing sugar having a  $C_{5-6}$  carbon atom content. Glucose, galactose, and fructose are named as examples of desirable reducing sugars. The degree of the polymerization (S) of saccharide, i.e., the value of n in formula (I), is 1 to 10. In particular, use of reducing sugars containing 80% or more of those having the degree of the polymerization (S) of 1 to 4 is desirable. The compounds of formula (I) having a lower degree of the polymerization (S), e.g. 1 to 1.4, are desirable. When the property of the compounds of formula (I) due to the group  $R_1$  is taken into account, the value for the polymerization (S) of 1 to 1.4 is desirable for the  $R_1$  group with  $C_{8-11}$ , and (S) of 1.5 to 4.0 is desirable for the  $R_1$  group with  $C_{12-14}$ . The mean values for (S) were determined by proton-NMR method.

Given as specific examples of these alkyl saccharidetype surface active agents are β-alkyl saccharide synthesized by the Koenigs-Knorr method such as octylglucoside, nonylglucoside, decylmaltoside, dodecylmaltoside, tridecylmaltoside and polyoxyethylene (2 E.O.)dodecylglucoside; alkyl saccharide produced from a reduced sugar such as glucose, galactose or maltose, and a higher alcohol, polyoxyethylene or alkylether glycol (US-A-3,219,656, US-A-3,839,318, and US-A-4,223,129).

The (A) component is formulated into the detergent composition of this invention in an amount of 1 to 60% by weight. When the composition is a shampoo, an amount of 5 to 20% by weight is desirable. When it is a composition for use with the skin, an amount of 5 to 50% by weight is desirable.

Enumerated as examples of cationic polymers which can be used in this invention are: cationic cellulose derivatives, cationic starches, copolymers of a diallyl quaternary ammonium salt and an acryl amide, quaternarized polyvinylpyrrolidone derivatives, quaternarized vinylpyrrolidone vinylimidazol polymers (e.g. Luvicuat, manufactured by BASF), polyglycol amine condensates, quaternarized collagen polypeptide, polyethylene imine, cationized silicon polymer [e.g. Amodimethicone, described in CTFA; cationic silicon polymers provided in a mixture with other components under the tradename of Dow Corning 929 (cationized emulsion), manufactured by Dow Chemical Co.], copolymers of adipic acid and dimethylaminohydroxypropyl diethylenetriamine (e.g. Cartaretine, manufactured by Sandoz Inc.), polyaminopolyamide (e.g. polymers described in FR-A-2,252,840 and their crosslinked water-soluble polymers), cationic chitin derivatives, cationized guar gum (e.g. Jaguar C-B-S, Jaguar C-17, Jaguar C-16, etc. manufactured by Celanese Plastics and Specialties Company), quaternary ammonium salt polymers (e.g. Mirapol A-15, Mirapol AD-1, Mirapol AZ-1, etc., manufactured by Miranol Chemical Company Inc., U.S.A.; and polymers described in US-A-2,261,002, US-A-2,271,378, US-A-2,273,780, US-A-2,388,614, US-A-2,454,547, US-A-3,206,462.), as well as cationic polymers selected from groups (a), (b), and (c) below.

(a) A polymer produced by reacting a polyaminopolyamide with epichlorohydrin at an epichlorohydrin mole ratio to the secondary amine group of the polyaminopolyamide of 0.5:1 to 1.8:1. This polyaminopolyamide is produced by the reaction of a polyalkylene-polyamine and a dicarboxylic acid selected from the members consisting of saturated fatty acid dicarboxylic acids having a C<sub>3-8</sub> carbon atom content, and consisting of diglycol acid at a mole ratio of the polyalkylene-polyamine to the dicarboxylic acid of 0.8:1 to 1.4:1. Such a polymer is described in US-A-3,227,615 and US-A-2,961,347.

Specifically, this type of polymer is available from Hercules Corp. under the tradename of Hercoset 57. A 10% aqueous solution of this product has a viscosity of 30 cps. In particular, adipic acid epoxypropyl-diethylenetriamine copolymer is provided by Hercules Corp. under the tradename of PD170 or Delsette 101.

(b) A homopolymer or copolymer derived from an acrylic acid or a methacrylic acid having either of the following unit:

45

40

50

wherein  $R'_3$  represents a hydrogen atom or an methyl group,  $A_1$  represents a linear or branched alkyl group having a  $C_{1-6}$  carbon atom content or a hydroxylalkyl group having a  $C_{1-4}$  carbon atom content,  $R'_4$ ,  $R'_5$ , and  $R'_6$ , and which may be the same or different, represent an alkyl group having a  $C_{1-18}$  carbon atom content or a benzyl group,  $R'_1$  and  $R'_2$  individually represent a hydrogen atom or an alkyl group having a  $C_{1-6}$  carbon atom content, and  $X_1$  represents a methosulfate anion or a halogen compound such as chloride or bromide.

Copolymers or mixtures of copolymers which can be used are those belonging to the group consisting of acrylamide, methacrylamide, diacetone-acrylamide, acrylamide or methacrylamide with a substituted lower alkyl group for the nirogen atom, alkyl esters of acrylic or methacrylic acid, vinylpyrrolidon, and vinyl esters.

The following copolymers are given as specific examples. Products described in Cosmetic Ingredient Dictionary under the designation of QUATERNIUM 38, 37, 49, or 42; acrylamide/\$\textit{\textit{\textit{B}}}\$-methacryloyloxyethyl-trimethylammonium methosulfate copolymer provided by Hercules Corp. under the tradename of Reten 205, 210, 220, or 240; aminoethylacrylate phosphate/acrylate copolymer available from National Starch Co. under the tradename of Catrex, of which an 18% aqueous solution has a viscosity of 700 kPa.s (700 cps) at 25°C; and crosslinked cationic graft copolymers having a molecular weight of 10,000 to 1,000,000, preferably 15,000 to 500,000, and obtained copolymerizing (i) at least one type of monomer used for cosmetics, (ii) dimethylaminoethyl methacrylate, (iii) polyethylene glycol, and (iv) poly-unsaturated crosslinking agent. All of the above-mentioned copolymers are described in FR-A-2,189,434.

Crosslinking agents which can be used are selected from the group consisting of ethylene glycol dimethacrylate, diallyl phthalate, divinylbenzene, tetraallyl oxyethane, and polyallyl sucrose having 2 to 5 allyl groups per mole of sucrose.

The above-mentioned monomers used for cosmetics encompass a wide variety of monomers. Examples include vinyl esters of an acid having 2 to 18 carbon atoms, allyl- or methallyl esters of an acid having 2 to 18 carbon atoms, acrylate or methacrylate of a saturated alcohol having 1 to 18 carbon atoms, alkyl vinylether with the alkyl group having 2 to 18 carbon atoms, olefins having 4 to 18 carbon atoms, vinyl-type heterocyclic derivatives, dialkyl- or N,N-dialkylaminoalkyl maleate with the alkyl groups having 1 to 3 carbon atoms, and unsaturated acid anhydrides.

(c) Polymers comprising the units represented by the following formulae (I)' or (II)':

20

25

30

35

40

45

50

55

wherein A<sub>2</sub> is a group containing 2 amine groups, preferably pyperadinyl groups, and Z represents the symbol B or B', wherein B and B' may be the same or different and represent a linear or branched alkylene group which may be substituted with a hydroxyl group and may contain one or more oxygen atom, nitrogen atom, sulfur atom, 1 to 3 aromatic groups, and/or heterocyclic ring.

wherein  $A_2$  has the same meaning as defined above, and  $Z_1$  represents a symbol  $B_1$  or  $B_1'$ , at least one  $Z_1$  being the  $B_1'$ , wherein  $B_1$  represents a linear or branched alkylene or hydroxy alkylene group and  $B_1'$ 

represents a linear or branched alkylene group which has at least one nitrogen atom bonded in the chain and may have one or more hydroxyl group substituents. The nitrogen group has a substituent alkyl group which may have an oxygen atom(s) in the chain and a hydroxyl group substituent(s).

Included also in this group of polymers are cationic polymers selected from quaternary ammonium salts or oxidized products of the above polymers (I)' or (II)'.

Various cationic polymers can be enumerated as mentioned above. Preferable cationic polymers, which can be used as the (B) component of this invention, however, are cationic cellulose derivatives, cationic starches, copolymers of a diallyl quaternary ammonium salt and an acryl amide, quaternarized polyvinylpyrrolidone derivatives, and polyglycol amine condensates.

As a cationic cellulose derivative, a compound which satisfies the following formula (II) is desirable:

$$\begin{bmatrix}
R_3 & R_3 & R_3 \\
O & O & O
\end{bmatrix}$$
1

10

45

50

wherein A indicates a residual group of anhydroglucose units, 1 is an integer of 50 to 20,000, and each R₃ indicates a substitution group shown in the following formula (III):

$$-(R'O)_{O}-(CH_{2}CHO)_{O},-(R"O)_{p}-H$$
 $R'$ 
 $R'$ 
 $R_{6}-N_{-R_{4}}$ 
 $R_{5}$ 

(III)

wherein R' and R" represent alkylene groups having 2 or 3 carbon atoms, o is an integer of 0 to 10, o' is an integer from 0 to 3, p is an integer of 0 to 10, R" represents an alkylene group or hydroxyalkylene group having 1 to 3 carbon atoms, R<sub>1</sub>, R<sub>5</sub>, and R<sub>6</sub> may be the same or different, and represent an alkyl, aryl, or aralkyl group having not more than 10 carbon atoms, or may form a heterocyclic ring with a nitrogen atom in the formula, and X designates an anion (chlorine, bromine, iodine, sulfuric acid, sulfonic acid, methyl-sulfuric acid, phosphoric acid, nitric acid, and the like).

The degree of cation substitution of the cationic cellulose, that is, the average value of o' for each anhydroglucose unit is preferably between 0.01 to 1, with the range of 0.02 to 0.5 being more preferable. Also, the total of o + p averages between 1 and 3. A substitution value of smaller than 0.01 is unsatisfactory, while if this value is greater than 1 there is no particular problem, but, from the aspect of reaction yield, a value 1 or smaller is more desirable. The molecular weight of the cationic cellulose used here is in the range of about 100,000 to 3,000,000.

A desirable cationic starch for use in the present invention should satisfy the following formula (IV):

wherein A' represents a starch residual group,  $R_7$  represents an alkylene group or hydroxyalkylene group,  $R_8$ ,  $R_9$ , and  $R_{10}$  may be the same or different, and represent an alkyl, aryl, or aralkyl group having less than 10 carbon atoms, or may form a heterocyclic ring together with a nitrogen atom in the formula, X represents an anion (chlorine, bromine, iodine, sulfuric acid, sulfonic acid, methyl-sulfuric acid, phosphoric

acid, nitric acid, and the like.), and I' is a positive integer.

The degree of cation substitution of the cationic starch, i.e., the number of cation groups for each anhydrous glucose group, is desirably 0.01 to 1, with the more desirable range being 0.02 to 0.5. A substitution value of less than 0.01 is unsatisfactory, while if this value is greater than 1 there is no particular problem. However, from the aspect of reaction yield, a value 1 or smaller is more desirable.

A desirable copolymer of a cationic diallyl quaternary ammonium salt and acryl amide for use in the present invention is that which satisfies the following formulae (V) or (VI):

wherein R<sub>11</sub> and R<sub>12</sub>, which may be the same or different, represent a hydrogen, an alkyl group having 1 to 18 carbon atoms, a phenyl group, an aryl group, a hydroxyalkyl group, an amidoalkyl group, a cyanoalkyl group, an alkoxyalkyl group, or a carboalkoxyalkyl group, R<sub>13</sub>, R<sub>14</sub>, R<sub>15</sub>, and R<sub>16</sub>, which may be the same or different, represent a hydrogen, a lower alkyl group having 1 to 3 carbon atoms, or a phenyl group, X" represents an anion (chlorine, bromine, iodine, sulfuric acid, sulfonic acid, methyl-sulfuric acid, phosphoric acid, nitric acid, or the like.), I<sub>1</sub> is an integer of 1 to 50, m<sub>1</sub> is an integer of 1 to 50, and n<sub>1</sub> is an integer of 150 to 8,000.

The molecular weights of copolymers of diallyl quaternary ammonium salt and acryl amide may be in the range from about 30,000 to 2,000,000, but the range from 100,000 to 1,000,000 is particularly preferable.

A desirable quaternary polyvinylpyrrolidone derivative which can be used in the present invention is represented by the following formula (VII):

wherein  $R_{17}$  represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms,  $R_{18}$ ,  $R_{19}$ , and  $R_{20}$ , which may be the same or different, represents a hydrogen atom, an alkyl group, a hydroxyalkyl group, an amidoalkyl group, a cyanoalkyl group, an alkoxyalkyl group, or a carboalkoxyalkyl group, with the alkyl groups having 1 to 4 carbon atoms, Y represents an oxygen atom or an NH group in an amide group, X''' designates an anion (chlorine, bromine, iodine, sulfuric acid, sulfonic acid, alkylsulfuric acid having 1 to 4 carbon atoms, phosphoric acid, nitric acid, and the like.), q is an integer from 1 to 10, and m2 and n2 represent integers satisfying the equation m2 + n2 = 20 to 8000.

The molecular weights of the quaternary polyvinyl pyrrolidone derivative may be in the range from about 10,000 to 2,000,000, but the range from 50,000 to 1,500,000 is particularly desirable.

The content of the cationic nitrogen derived from the cationic polymer contained in the above-mentioned vinyl polymer is in the range from 0.004% to 0.2% by weight, with the most desirable range being from 0.01% to 0.15% by weight. Below 0.004% the effect is inadequate; above 0.2% the performance is good, but the vinyl polymer becomes colored and the high cost is disadvantageous.

Given as a desirable polyglycol-polyamine condensate a compound represented by the following 15 formula (VIII):

$$\begin{array}{c}
R_{21} \\
| \\
-[N-R_{22}-(R_{23}O)_{x}-O-R_{24}-[NH-(CH_{2})_{n3}]_{m3}-R_{25}-(R_{26}O)_{y}-O-R_{27}]_{r}-
\end{array} (VIII)$$

wherein  $R_{22}$ ,  $R_{24}$ ,  $R_{25}$ , and  $R_{27}$  represent hydroxyalkylene groups having 2 to 4 carbon atoms,  $R_{23}$  and  $R_{26}$  represent alkylene groups having 2 or 3 carbon atoms, x and y represent integers of 10 to 20, m3 represents an integer of 2 to 4, n3 represents an integer of 2 to 6, r represents an integer of 1 to 50, and  $R_{21}$  represents a linear or branched alkyl group having 6 to 20 carbon atoms.

One or more of the above-mentioned cationic polymers are used as the (B) component and are formulated into the detergent composition of this invention in an amount of 0.01 to 5% by weight. When the composition is a shampoo the amount of 0.1 to 1.5% by weight is desirable. When it is a composition for use with the skin the amount of 0.01 to 1% by weight is desirable.

It is desirable to adjust the pH of the composition of this invention to 2-10, preferably to 4-8, using an acidic or alkaline pH adjusting agent which is conventionally used in a detergent composition.

Besides the above-mentioned essential components, other components which are generally used in detergent compositions may be optionally formulated into the detergent composition of the present invention inasmuch as the effect of the present invention is not affected. Such components include, for example, humectants such as propylene glycol, glycerin and sorbitol; viscosity adjusting agents such as carboxyvinyl polymer, methyl cellulose, hydroxyethyl cellulose, polyoxyethyleneglycol distearate and ethanol; pearling agents; perfumes; pigments; ultraviolet ray absorbers; antioxidants; biocidal agents (Trichlosan, Trichlorocarban); antiphlogistic agents (potassium glycyl phosphate, tocopherol acetate); anti-dandruff agents (zinc pyrithione, Octopirox) and antiseptics (methyl paraben, butyl paraben).

The detergent composition of this invention can take any conventionally employed preparation forms. The desirable proportion of the components (A) plus (B) in the total amount of the surface active agents in the composition is 30% by weight or greater, when the composition is a solid form, and 10% by weight or greater, when the composition is a liquid form.

Other features of the invention will become apparent in the course of the following description of the exemplary embodiments which are given for illustration of the invention and are not intended to be limiting thereof.

# **EXAMPLES**

# Example 1

Shampoos having formulations listed in Table 1 were prepared. Foaming capability and feeling upon touch were evaluated for each shampoo. The results are presented in Table 1.

55

## (Evaluation Method)

One gram of a shampoo was applied to tresses of hair taken from healthy Japanese women, 15 cm long, weighing 20 g. The shampoo was lathered for 1 minute, and the foaming conditions were evaluated by 5 expert panelists. Then, the tress was rinsed with tap water for 30 seconds at 30 °C, and dried first with a towel, and then with a dryer. The feeling upon touch of the dried hair was evaluated by the same panelists.

(Evaluation standard)

10 Foaming capability:

AAA: Lather was abundant BBB: Lather was normal CCC: Lather was insufficient

Quality of Lather:

AAA: Lather was creamy BBB: Lather was rough

Feeling to touch:

AAA: Hair felt soft and not creaky

BBB: Hair was not slippery and felt creaky

30

15

20

25

35

40

45

50

TABLE 1

(components: I by weight) Comparative Product Inventive Product 5 1 2 1 2 4  $C_{10}-0-(G)_{1.5} * 1$ 20 20 20 20 20  $C_{12}-0-(G)_{2.0} * 2$ 20 10 Polymer JR-400 \* 3 0.5 0.5 Cationized starch 0.5 Merquat 550 \* 4 0.5 Gafquat 755 \* 5 79.5 79.5 79.5 79.5 Purified water 80 80 20 Evaluation of lather AAA AAA Foaming capability BBB BBB AAA AAA Quality of lather AAA CCC AAA AAA AAA 25 Feeling upon touch CCC CCC AAA AAA AAA AAA

- \* 1 C<sub>10</sub>: decyl group; G: glucose
- 30 \* 2 C<sub>12</sub>: dodecyl group; G: glucose
  - \* 3 A cationized cellulose, manufactured by Union Carbide Corp.
  - \* 4 A copolymer of N,N-dimethy1-3,5-methylenepyperidinium chloride and acrylamide; manufactured by Merck Co.
  - \* 5 A triethanolamine salt of ethyl sulfate quarternirized product of vinylpyrrolidone/dimethylaminoethyl acrylate manufactured by Guf Chemical Co.

## 45 Example 2

Five percent (5%) aqueous solutions of the detergent compositions of this invention prepared as in Example 1 were subjected to a closed patch test for 24 hours by 5 volunteered panelists. None of the solutions were felt to irritate the skin. Thus, the composition of the invention was proven to be a low irritant.

55

50

35

## Example 3

Paste face cleansing foam:

## 5 (Formulation)

|    | Components                                                                     | % by weight |
|----|--------------------------------------------------------------------------------|-------------|
| 10 | (1) Alkyl saccharide [C <sub>12</sub> -O-(G) <sub>2.0</sub> ] *                | 45          |
|    | (2) Cationized cellulose (Polymer JR-400, manufactured by Union Carbide Corp.) | 1           |
|    | (3) Ethylene glycol distearate                                                 | 3           |
|    | (4) Polyethylene glycol 400                                                    | 0.5         |
|    | (5) Methyl paraben                                                             | 0.2         |
| 15 | (6) Perfume                                                                    | 0.2         |
|    | (7) Purified water                                                             | Balance     |

<sup>\*</sup> C<sub>12</sub>: dodecyl group; G: glucose

วก

## (Preparation)

To water heated to 70 °C were added components (1) to (5) under stirring to obtain a transparent solution. After cooling this solution to 40 °C, component (6) was added and the mixture was cooled to the room temperature.

The pasty face cleansing foam containing an alkyl saccharide-type surface active agent and a cationized cellulose thus prepared produced abundant lather, was able to be readily rinsed away, and provided a comfortable moistening feeling after cleansing. In addition, the face cleansing foam had a superior low-temperature stability.

## Example 4

Shampoo composition:

## 35 (Formulation)

| Components                                                        | % by weight  |
|-------------------------------------------------------------------|--------------|
| (1) Alkyl saccharide [C <sub>10</sub> -O-(G) <sub>1.5</sub> ] * 1 | 20           |
| (2) Merquat 550 * 2                                               | 0.3          |
| (3) Polyethylene glycol distearate * 3                            | 1            |
| (4) Methyl paraben                                                | 0.2          |
| (5) Blue #1                                                       | Small amount |
| (6) Perfume                                                       | 0.2          |
| (7) Purified water                                                | Balance      |

\*1 C<sub>10</sub>: decyl group; G: glucose

50

40

45

## (Preparation)

55

To purified water heated to 60°C were added components (1) to (5) under stirring to obtain a transparent solution. After cooling this solution to 40°C, component (6) was added and the mixture was cooled to room temperature.

<sup>\*2</sup> A copolymer of N,N-dimethyl-3,5-methylenepyperidinium chloride and acrylamide; manufactured by Merck Co.

<sup>\*3</sup> Emanone 3299 manufactured by Kao Corp.

The shampoo composition containing an alkyl saccharide-type surface active agent and a cationized polymer thus prepared produced abundant lather, was able to be readily rinsed away, and provided a comfortable moistening feeling to the hair after shampooing. In addition, the shampoo composition had a superior low-temperature stability.

Example 5

Shampoo composition

10 (Formulation)

15

20

| Components                                                        | % by weight |
|-------------------------------------------------------------------|-------------|
| (1) Alkyl saccharide [C <sub>10</sub> -O-(G) <sub>1.4</sub> ] * 1 | 10          |
| (2) Gafquat 755 * 2                                               | 0.4         |
| (3) Sodium polyoxyethylene(2)lauryl su                            | Ifate 5     |
| (4) Coconut oil diethanolamide                                    | 1           |
| (5) Sodium chloride                                               | 1           |
| (6) Perfume                                                       | 0.2         |
| (7) Purified water                                                | Balance     |

\* 1 C<sub>10</sub>: decyl group; G: glucose

\*2 A ethyl sulfate quarternirized triethanolamine of vinylpyrrolidone/dimethylaminoethyl acrylate manufactured by Gaf Chemical Co.

25

To purified water heated to 60 °C were added components (1) to (5) under stirring to obtain a transparent solution. After cooling this solution to 40 °C, component (6) was added and the mixture was cooled to room temperature.

The shampoo composition containing alkyl saccharide-type surface active agent and a cationized polymer thus prepared produced abundant lather, was readily rinsed away, and provided a comfortable moistening feeling to the hair after shampooing. In addition, the shampoo composition had a superior low-temperature stability.

Example 6

Anti-dandruff shampoo

40 (Formulation)

45

50

35

| Components                                                                       | % by weight |
|----------------------------------------------------------------------------------|-------------|
| (1) Alkyl saccharide [C <sub>12</sub> -O-(G) <sub>1,7</sub> ] *                  | 15          |
| (2) Cationized cellulose (Polymer JR-400, manufactured by Union Carbide Corp.)   | 0.2         |
| (3) Tomicide Z-50 (Zinc pyrithion, manufactured by Yoshitomi Pharmaceutical Ind. | 1           |
| (4) Methyl paraben                                                               | 0.1         |
| (5) Perfume                                                                      | 0.2         |
| (6) Purified water                                                               | Balance     |

\* C<sub>12</sub>: lauryl group; G: glucose

To purified water heated to 60 °C were added components (1) to (4) under stirring to obtain a transparent solution. After cooling this solution to 40 °C, component (5) was added and the mixture was cooled to room temperature.

The anti-dandruff shampoo containing alkyl saccharide-type surface active agent and a cationized polymer thus prepared produced abundant lather, was readily rinsed away, and provided a comfortable

moistening feeling to the hair after shampooing. In addition, the shampoo composition had a superior low-temperature stability.

Example 7

Liquid face cleansing form

(Formulation)

10

|    | Components                                                                     | % by weight |
|----|--------------------------------------------------------------------------------|-------------|
|    | (1) Alkyl saccharide [C <sub>12</sub> -O-(G) <sub>1,7</sub> ] *                | 35          |
|    | (2) Cationized cellulose (Polymer JR-400, manufactured by Union Carbide Corp.) | 1           |
| 15 | (3) Ethylene glycol distearate                                                 | 3           |
|    | (4) Triethanolamine laurate                                                    | 5           |
|    | (5) Methyl paraben                                                             | 0.2         |
|    | (6) Ethanol                                                                    | 4           |
|    | (7) Perfume                                                                    | 0.2         |
| 20 | (8) Purified water                                                             | Balance     |

<sup>\*</sup> C<sub>12</sub>: lauryl group; G: glucose

To purified water heated to 70 °C were added components (1) to (5) under stirring to obtain a transparent solution. After cooling this solution to 50 °C, component (6) was added and the mixture was cooled to room temperature. Component (7) was then added to the mixture.

The liquid face creansing form containing alkyl saccharide-type surface active agent and a cationized polymer thus prepared produced abundant lather, was readily rinsed away, and provided a comfortable moistening feeling to the skin after creansing. In addition, the liquid face creansing form had a superior low-temperature stability.

Example 8

Body shampoo

(Formulation)

| as | ٦ |  |
|----|---|--|
| 71 | , |  |

| Components                                                        | % by weight |
|-------------------------------------------------------------------|-------------|
| (1) Alkyl saccharide [C <sub>12</sub> -O-(G) <sub>1,7</sub> ] * 1 | 30          |
| (2) Merquat 550 * 2                                               | 0.1         |
| (3) Ethylene glycol distearate                                    | 3           |
| (4) Hydroxyethyl cellulose                                        | 0.2         |
| (5) Irgasan DP-300 (Triclosan, manufactured by Ciba Geigy)        | 0.5         |
| (6) Ethanol                                                       | 5           |
| (7) Methyl paraben                                                | 0.2         |
| (8) Perfume                                                       | 0.2         |
| (9) Purified water                                                | Balance     |

<sup>\* 1</sup> C<sub>12</sub>: lauryl group; G: glucose

<sup>\*2</sup> A copolymer of N,N-dimethyl-3,5-methylenepyperidinium chloride and acrylamide; manufactured by Merck Co.

To purified water heated to 70 °C were added components (1) to (7) under stirring to obtain a transparent solution. After cooling this solution to 40 °C, component (8) was added and the mixture was cooled to room temperature.

The body shampoo containing alkyl saccharide-type surface active agent and a cationized polymer thus prepared produced abundant lather, was readily rinsed away, and provided a comfortable moistening feeling to the skin after shampooing. In addition, the body shampoo had a superior low-temperature stability.

#### 5 Example 9

Shampoo composition

(Formulation)

10

15

20

| Components                                                       | % by wei |
|------------------------------------------------------------------|----------|
| (1) Alkyl saccharide [C <sub>8</sub> -O-(G) <sub>1,3</sub> ] * 1 | 20       |
| (2) Jaguar C-13-S * 2                                            | 0.5      |
| (3) Octopirox                                                    | 0.5      |
| (4) Disodium ethylenediamine tetraacetate                        | 0.4      |
| (5) Perfume                                                      | 0.6      |
| (6) Ethanol                                                      | 5        |

(7) Purified water

\* 1 C<sub>8</sub>: octyl group; G: glucose

weight 0

Balance

To purified water heated to 60 °C were added components (1) to (4) under stirring. Component (6) was added to the solution which was cooled to 55 °C. After cooling this solution to 40 °C, component (5) was added and the mixture was cooled to room temperature.

The shampoo composition containing alkyl saccharide-type surface active agent and a cationized polymer thus prepared produced abundant lather, was readily rinsed away, and provided a comfortable moistening feeling to the hair after shampooing.

Example 10

Shampoo composition

(Formulation)

40

45

50

35

| Components                                                                                        | % by weight |
|---------------------------------------------------------------------------------------------------|-------------|
| (1) Alkyl saccharide [C <sub>12</sub> -O-(CH <sub>2</sub> CH <sub>2</sub> O) <sub>2</sub> -G] * 1 | 18          |
| (2) Jaguar C-13 * 2                                                                               | 0.5         |
| (3) Laurylamineoxide                                                                              | 2.0         |
| (4) Perfume                                                                                       | 0.5         |
| (5) Purified water                                                                                | Balance     |

\* 1 C<sub>12</sub>: lauryl group; G: glucose

To purified water heated to 70 °C were added components (1) to (3) under stirring. Component (4) was added to the solution which was cooled to 50 °C. This solution was cooled to room temperature to obtain the target shampoo composition.

The shampoo composition containing alkyl saccharide-type surface active agent and a cationized polymer thus prepared produced abundant lather, was readily rinsed away, and provided a comfortable moistening feeling to the hair after shampooing.

<sup>\*2</sup> Quaternarized guar gum, manufactured by Celanese Co.

<sup>\* 2</sup> Cationized guar gum manufactured by Celanese Co.

#### Claims

5

10

15

20

25

30

35

55

Claims for the following Contracting States: AT, CH, DE, FR, GB, LI, NL

- 1. A low-irritation detergent composition comprising the following components (A) and (B):
  - (A) at least one alkyl saccharide-type surface active agent represented by formula (I):

$$R_1-O-(R_2O)_m-(G)_n$$
 (I)

wherein  $R_1$  represents a linear or branched alkyl group of a  $C_{8-18}$  carbon atom content, a linear or branched alkenyl group of a  $C_{8-18}$  carbon atom content, or an alkylphenyl group of a  $C_{8-18}$  carbon atom content, with the alkyl group being either linear or branched,  $R_2$  represents an alkylene group of a  $C_{2-4}$  carbon atom content, G represents a reduced sugar of a  $C_{5-6}$  carbon atom content, m denotes a value of 0 to 10 and n denotes a value of 1 to 10, and

- (B) at least one cationic polymer,
- with the exception of compositions comprising plant extracts containing a saponin.
- 2. A low-irritation detergent composition according to Claim 1, wherein said cationic polymer is at least one member selected from the group consisting of cationic cellulose derivatives, cationic starches, copolymers of a diallyl quaternary ammonium salt and an acryl amide, quaternarized polyvinylpyrrolidone derivatives, and polyglycol amine condensates.

## Claims for the following Contracting State: ES

A low-irritation detergent composition comprising the following components (A) and (B):
 (A) at least one alkyl saccharide-type surface active agent represented by formula (I):

$$R_1-O-(R_2O)_m-(G)_n$$
 (I)

wherein  $R_1$  represents a linear or branched alkyl group of a  $C_{8-18}$  carbon atom content, a linear or branched alkenyl group of a  $C_{8-18}$  carbon atom content, or an alkylphenyl group of a  $C_{8-18}$  carbon atom content, with the alkyl group being either linear or branched,  $R_2$  represents an alkylene group of a  $C_{2-4}$  carbon atom content,  $R_3$  represents a reduced sugar of a  $R_3$  carbon atom content,  $R_3$  denotes a value of 0 to 10 and  $R_3$  denotes a value of 1 to 10, and

- (B) at least one cationic polymer,
- with the exception of compositions comprising plant extracts containing a saponin, the proportion of component (A) in the composition being from 1 to 60% by weight and the proportion of compound (B) from 0.01 to 5% by weight and the pH of said composition being between 2 and 10.
- 2. A low-irritation detergent composition according to Claim 1, wherein said cationic polymer is at least one member selected from the group consisting of cationic cellulose derivatives, cationic starches, copolymers of a diallyl quaternary ammonium salt and an acryl amide, quaternarized polyvinylpyrrolidone derivatives, and polyglycol amine condensates.

### Patentansprüche

- 45 Patentansprüche für folgende Vertragsstaaten: AT, CH, DE, FR, GB, LI, NL
  - Waschmittel mit geringer Reizung, umfassend die nachstehenden Bestandteile (A) und (B):
     (A) mindestens ein Tensid vom Alkylsaccharidtyp der Formel (I):

50 
$$R_1-O-(R_2O)_m-(G)_n$$
 (I)

worin  $R_1$  eine lineare oder verzweigte Alkylgruppe mit einem  $C_{8-18}$  Kohlenstoffatom-Anteil, eine lineare oder verzweigte Alkenylgruppe mit einem  $C_{8-18}$  Kohlenstoffatom-Anteil, oder eine Alkylphenylgruppe mit einem  $C_{8-18}$  Kohlenstoffatom-Anteil bedeutet, wobei die Alkylgruppe linear oder verzweigt vorliegt,  $R_2$  eine Alkylengruppe mit einem  $C_{2-4}$  Kohlenstoffatom-Anteil bedeutet, G einen reduzierten Zucker mit einem  $G_{5-6}$  Kohlenstoffatom-Anteil bedeutet, G einen verzweigt vorliegt, G einen einen

- (B) mindestens ein kationisches Polymer, ausgenommen Mittel, umfassend Pflanzenextrakte, die ein Saponin enthalten.
- Waschmittel mit geringer Reizung nach Anspruch 1, wobei das kationische Polymer mindestens ein Mitglied ausgewählt aus der Gruppe, bestehend aus kationischen Cellulosederivaten, kationischen Stärken, Copolymeren eines quartären Diallylammoniumsalzes und eines Acrylamids, quaternisierten Polyvinylpyrrolidonderivaten und Polyglycolaminkondensaten ist.

## Patentansprüche für folgenden Vertragsstaat : ES

Waschmittel mit geringer Reizung, umfassend die nachstehenden Bestandteile (A) und (B):
 (A) mindestens ein Tensid vom Alkylsaccharidtyp der Formel (I):

$$R_1-O-(R_2O)_m-(G)_n$$
 (1)

15

20

25

30

worin  $R_1$  eine lineare oder verzweigte Alkylgruppe mit einem  $C_{8-18}$  Kohlenstoffatom-Anteil, eine lineare oder verzweigte Alkenylgruppe mit einem  $C_{8-18}$  Kohlenstoffatom-Anteil, oder eine Alkylphenylgruppe mit einem  $C_{8-18}$  Kohlenstoffatom-Anteil bedeutet, wobei die Alkylgruppe linear oder verzweigt vorliegt,  $R_2$  eine Alkylengruppe mit einem  $C_{2-4}$  Kohlenstoffatom-Anteil bedeutet, G einen reduzierten Zucker mit einem  $C_{5-6}$  Kohlenstoffatom-Anteil bedeutet, G einen Vert von 0 bis 10 bedeutet und G einen Wert von 1 bis 10 bedeutet, und

(B) mindestens ein kationisches Polymer,

ausgenommen Mittel, umfassend Pflanzenextrakte, die ein Saponin enthalten, wobei der Anteil von Bestandteil (A) in dem Mittel 1 bis 60 Gew.-% und der Anteil der Verbindung (B) 0,01 bis 5 Gew.-% ausmacht und der pH-Wert des Mittels zwischen 2 und 10 liegt.

 Waschmittel mit geringer Reizung nach Anspruch 1, wobei das kationische Polymer mindestens ein Mitglied ausgewählt aus der Gruppe, bestehend aus kationischen Cellulosederivaten, kationischen Stärken, Copolymeren eines quartären Diallylammoniumsalzes und eines Acrylamids, quaternisierten Polyvinylpyrrolidonderivaten und Polyglycolaminkondensaten ist.

### Revendications

Revendications pour les Etats contractants suivants : AT, CH, DE, FR, GB, LI, NL

Composition détergente faiblement irritante comprenant les composants (A) et (a) ci-après :
 (A) au moins un agent tensioactif du type alkylsaccharide représenté par la formule (I) :

$$R_1-O-(R_2O)_m-(G)_n$$
 (I

dans laquelle R<sub>1</sub> reprun groupe alcényle

dans laquelle  $R_1$  représente un groupe alkyle linéaire ou ramifié ayant de 8 à 18 atomes de carbone, un groupe alcényle linéaire ou ramifié ayant de 8 à 18 atomes de carbone ou un groupe alkylphényle ayant de 8 à 18 atomes de carbone, avec le groupe alkyle qui est soit linéaire soit ramifié,  $R_2$  représentant un groupe alkylène ayant de 2 à 4 atomes de carbone, G représentant un sucre réduit ayant de 5 à 6 atomes de carbone, G représentant un chiffre de 0 à 10 et G représentant un chiffre de 1 à 10, et

(B) au moins un polymère cationique,

à l'exception des compositions comprenant des extraits de plantes contenant une saponine.

2. Composition détergente faiblement irritante selon la revendication 1, dans laquelle ledit polymère cationique est au moins un composé choisi dans le groupe constitué des dérivés cationiques de la cellulose, des amidons cationiques, des copolymères d'un sel de diallyl ammonium quaternaire et d'un acrylamide, les dérivés quaternisés de la polyvinylpyrrolidone et les produits de condensation de polyglycol amine.

55

## Revendications pour l'Etat contractant suivant : ES

Composition détergente faiblement irritante comprenant les composants (A) et (B) ci-après :
 (A) au moins un agent tensioactif du type alkylsaccharide représenté par la formule (I) :

 $R_1-O-(R_2O)_m-(G)_n$  (I)

dans laquelle  $R_1$  représente un groupe alkyle linéaire ou ramifié ayant de 8 à 18 atomes de carbone , un groupe alcényle linéaire ou ramifié ayant de 8 à 18 atomes de carbone ou un groupe alkylphényle ayant de 8 à 18 atomes de carbone, avec le groupe alkyle qui est soit linéaire soit ramifié,  $R_2$  représentant un groupe alkylène ayant de 2 à 4 atomes de carbone, G représentant un sucre réduit ayant de 5 à 6 atomes de carbone, m représentant un chiffre de 0 à 10 et n représentant un chiffre de 1 à 10, et

(B) au moins un polymère cationique,

- à l'exception des compositions comprenant des extraits végétaux contenant une saponine, la proportion de composant (A) dans la composition étant de 1 à 60% en poids et la proportion de composant (B) étant de 0,01 à 5% en poids, avec le pH de ladite composition compris entre 2 et 10.
- 2. Composition détergente faiblement irritante selon la revendication 1, dans laquelle ledit polymère cationique est au moins un composé choisi dans le groupe constitué des dérivés cationiques de la cellulose, des amidons cationiques, des copolymères d'un sel de diallyl ammonium quaternaire et d'un acrylamide, les dérivés quaternisés de la polyvinylpyrrolidone et les produits de condensation de polyglycol amine.

25

5

10

15

35

30

40

45

50