Machine Learning-Assisted Raman Spectroscopy

Presented by Maryam Ghaffari

Outline

- Problem statement
- Mission
- Methodology
 - O Obtain Data
 - O Scrub Data
 - O Explore Data
 - O Model Data
 - O Interpret Model
- Conclusion
- Recommendation & future works

Problem Statement

- Make Raman spectroscopy more accessible to non-expert users
 & facilitate faster and more precise data analysis.
- Automated spectra analysis methods based on machine learning

Methodology: Obtain & Scrub data

 Raman spectra of biological samples from five types of cell lines were stored in a CSV file (rows=9467, columns=1132).

Methodology: Scrub Data

Preprocessing : Baseline Correction & Normalization

Methodology: ML Models

Recall =	True Positives		
	True Positives + False Negatives	1	

Recall => 0.9

Elapsed Time =< 60 Seconds

ML Models	Accuracy	Precision	Recall	F1 Score	Elapsed time (Seconds)	Misclassifications
Logistic Regression	0.985	0.99	0.98	0.99	3.54	27
Decision Tree	0.961	0.96	0.96	0.96	17.72	73
Decision Tree (200 top features)	0.919	0.92	0.92	0.92	4.65	152
Convolutional Neural Network (CNN)- without preprocessing	0.231	0.05	0.20	0.08	216.31	1449
Convolutional Neural Network (CNN)-with preprocessing	0.985	0.99	0.98	0.99	271.61	27
Fully connected neural network (FCNN)- without preprocessing	0.231	0.05	0.20	0.08	57.46	1450
Fully connected neural network (FCNN)- with preprocessing	0.988	0.99	0.99	0.99	57.04	22
Residual Network (ResNet)-with preprocessing	0.149	0.03	0.20	0.05	754.91	1604
Residual Network (ResNet)- with preprocessing regularization	0.149	0.03	0.20	0.05	754.91	1604

Methodology: Model Interpretation

Logistic Regression

	precision	recall	f1-score
Ht1080	0.98	1.00	0.99
Hec	0.98	1.00	0.99
Mef	0.98	0.97	0.98
Hela	0.99	0.99	0.99
Thp1	1.00	0.96	0.98

Feature Importance

Recommendation & Future works

- Deploy the model
- Increase dataset size
- Fine-tune the models
- Develop user-friendly interface
- Develop ensemble models
- Investigate feature extraction methods
- Further validation

Conclusion

FCNN Model

- ✓ Low false-negative in high -risk cell types
 - ✓ Elapsed Time =< 60 Seconds

Thank You!

Email: mar.ghaffari@gmail.com

GitHub: https://github.com/MarGhaf/Machine

Assisted - Raman - Spectroscopy

-Learning -