Lec14 Note of Abstract Algebra

Xuxuayame

日期: 2023年4月28日

我们回忆,对集合 S,考虑 S 上所有文字构成的集合 $W(S) = \{x_1x_2 \cdots x_n \mid n \ge 0, x_i \in S\}$,它是含幺半群,称为自由含幺半群,并诱导了群 $W(S \cup S^{-1})$ 。且有引理:

引理 4.2: $w \in W(S \cup S^{-1})$ 具有唯一的既约形式。

于是我们顺理成章地可以在 $W(S \cup S^{-1})$ 上定义等价关系 ~:

 $w \sim w' : \Leftrightarrow w, w'$ 具有相同的既约形式,

并记 $F(S) = W(S \cup S^{-1}) / \sim$ 为等价类的集合,那么全体既约形式为其完全代表元系。在 F(S) 上可以定义乘法:

$$[w_1] \cdot [w_2] = [w_1 \cdot w_2].$$

当然,我们需要先验证它是良定义的。

引理 4.3. $w_1 \sim w_2, u_1 \sim u_2 \Rightarrow w_1 u_1 \sim w_2 u_2$,换言之, $[w_1] = [w_2], [u_1] = [u_2] \Rightarrow [w_1 u_1] = [w_2 u_2]$ 。

证明. 设 w 为 w_1, w_2 的既约形式,u 为 u_1, u_2 的既约形式,那么 $w_1u_1 \leadsto wu_1 \leadsto wu^1$,且 $w_2u_2 \leadsto wu_2 \leadsto wu$ 。于是 $w_1u_1 \sim w_2u_2$ 。

于是考虑既约形式组成的集合,对于 u,v 既约,我们定义 $u\cdot v=\widetilde{u\cdot v}$, $\widetilde{u\cdot v}$ 是 $u\cdot v$ 的既约形式。那么自然有

$$\widetilde{u\cdot v\cdot w}=\widetilde{u\cdot v\cdot w}=\widetilde{u\cdot v\cdot w}.$$

定义 4.3. F(S) 在上述乘法下形成一个群,称为由集合 S 生成的自由群 (Free group),若 $|S|<\infty$,则称为有限生成自由群。

评论. 含幺半群 M 为群 \Leftrightarrow 存在 M 一组生成元 g_1, \dots, g_n, \dots 使得 g_i 可逆。

例 4.2. 设 $S = \{a\}$,那么

$$F(S) = \{ \cdots, a^{-2}, a^{-1}, 1, a, a^2, \cdots \}$$

 $\simeq \mathbb{Z}.$

当 $|S| \ge 2$ 时,F(S) 不是 Abel 群。例如 $S = \{a, b\}$,那么 $ab \ne ba$ 。

 $^{^{1}}$ 方便起见,我们用 $w_{1} \leadsto w$ 表示 w_{1} 约化得到 w。

定理 4.4. 自由群的泛性质: G 为群, S 为集合, $f: S \to G$ 为集合映射, 则 f 可以唯一扩充为群同态 $\tilde{f}: F(S) \to G$ 。

证明. 定义

$$\tilde{f}(a_{i1}\cdots a_{in}) := \tilde{f}(a_{i1})\cdots \tilde{f}(a_{in}), \ a_{ij} \in S \cup S^{-1}.$$

这里

$$\tilde{f}(a_i) = \begin{cases} f(a_i), \ a_i \in S, \\ f^{-1}(a_i^{-1}), \ a_i \in S^{-1}. \end{cases}$$

$$S \xrightarrow{f} G$$

$$G \xrightarrow{F(S)} F(S)$$

推论. 任一(有限生成) 群均为(有限生成) 自由群的商群。

证明. $S \to G$ 的一组生成元,那么

$$S \xrightarrow{\operatorname{inc}} G$$

$$\downarrow \qquad \qquad \exists ! f$$

$$F(S)$$

这里的满同态在于 $S \subset \text{Im} f \leq G \Rightarrow \text{Im} f = G$,于是 $G \simeq F(S)/\text{Ker} f$ 。

例 4.3. 考虑 Z/6Z, 那么有

$$\{\overline{1}\}$$
 \subset $\mathbb{Z}/6\mathbb{Z}$ \downarrow f $n\mapsto \overline{n}$ $F(\{\overline{1}\}) \simeq \mathbb{Z}$

 $\mathbb{E} \operatorname{Ker} f = 6\mathbb{Z}$.

Burnside Problem 设 $G = \langle g_1, \dots, g_n \rangle$, ord $g < \infty$, $\forall g \in G$, 那么 G 是否一定是有限 群?

很遗憾不是,我们可以利用几何的方法构造反例。

Restricted Burnside Problem 给定 n, G 有限生成,且 ordg < n, $\forall g \in G$, 那么 G 是 否一定是有限群?

这个问题的答案是肯定的。

我们知道任一群均为其生成元生成的自由群的商群,于是我们希望完整但更简洁地描述之。

定义 4.4. 设 G = F(S)/N,可将 G 记成 $G = \langle S \mid r = 1, r \in N \rangle$ 。若 $R \subset F(S)$ 在 F(S) 中生成的正规子群²为 N,则将 G 记作 $G = \langle S \mid r = 1, r \in R \rangle = F(S)/\langle R \rangle_N$,称为 G 的一个表现。S 称为 G 的一组生成元集 (Generators),R 称为生成关系 (Generating relations)。

例 4.4. 考虑正五边形的二面体群 D_5 ,顶点按顺时针记为 1, 2, 3, 4, 5,记 $\sigma = (12345)$, $\tau = (25)(34)$,那么 $\sigma \tau = (12)(35)$,于是 $\sigma^5 = 1$, $\tau^2 = 1$, $(\sigma \tau)^2 = 1$, $\sigma \tau = \tau \sigma^{-1}$, $D_5 = \langle \sigma, \tau | \sigma^5 = 1$, $\tau^2 = 1 = (\sigma \tau)^2 \rangle$ 。并设 $F(x,y)/\langle x^5, y^2, (xy)^2 \rangle_N$,记 $K = \langle x^5, y^2, (xy)^2 \rangle_N$ 。构造群同态

$$f: F(x,y) \to D_5,$$

 $x \mapsto \sigma,$
 $y \mapsto \tau.$

那么 $\sigma^5=1\Rightarrow x^5\in \mathrm{Ker}f,\ \tau^2=1\Rightarrow y^2\in \mathrm{Ker}f,\ (\sigma\tau)^2=1\Rightarrow (xy)^2\in \mathrm{Ker}f$ 。 从而 $K\leq \mathrm{Ker}f$,那么有

$$F(x,y)/K \rightarrow F(x,y)/\mathrm{Ker} f \equiv D_5$$
.

现在我们要说明这是同构,即证明单射。

由 $xy = yx^{-1}$, F(x,y)/K 具有表达形式 y^ix^j , $i = 0,1,\ j = 0,1,2,3,4$,于是存在 $\{y^ix^j \mid i = 0,1,\ j = 0,1,2,3,4\} \twoheadrightarrow \frac{F(x,y)}{K} \twoheadrightarrow D_5.$

而最左边与最右边均只有 10 个元素,故必然为双射。从而 K = Ker f。

²即包含 R 的最小的正规子群,记为 $\langle R \rangle_N$