Teoria di Galois 1 - Tutorato III

Estensioni, reticoli di sottocampi, gruppi di Galois

Venerdì 1 Aprile 2005

Esercizio 1. Descrivere gli elementi del gruppo di Galois, determinando anche tutti i sottocampi del campo di spezzamento, del polinomio $(x^2 - 2)(x^2 + 3)$

Esercizio 2. Descrivere gli elementi del gruppo di Galois del campo di spezzamento di $x^n - 1$.

Esercizio 3. In cisacuno dei seguenti casi si dica se si tratta di estensioni separabili, normali o di Galois (nel qual caso descrivere il gruppo di Galois):

i.
$$\mathbb{F}_{7}(T)/\mathbb{F}_{7}(T^{7});$$
 ii. $\mathbb{Q}(3^{1/5})/\mathbb{Q};$ iii. $\mathbb{F}_{11}(T)/\mathbb{F}_{11};$ iv. $\mathbb{Q}(3^{1/5},\zeta_{30})/\mathbb{Q}(\zeta_{30});$ v. $\mathbb{Q}(\sqrt{-1},5^{1/4})/\mathbb{Q};$ vi. $\mathbb{Q}(\pi,\sqrt{\pi})/\mathbb{Q}(\pi).$

Esercizio 4. Si descrivano tutti i campi intermedi tra E e $\mathbb Q$ in ciascuno dei seguenti casi:

a. $E = \mathbb{Q}(\zeta_n) \text{ con } n = 16, 24, 13$

b. $E = \mathbb{Q}_f$ il campo di spezzamento di $x^4 - 2$

c. $E = \mathbb{Q}_f$ il campo di spezzamento di $(x^2 - 2)(x^2 - 3)(x^2 - 5)$.

Suggerimento: Usare la corrispondenza di Galois.

Esercizio 5. Per ciascuno dei punti dell'esercizio precedente si descrivano gli elementi del gruppo di Galois Gal(E/F).

Esercizio 6. Sia $E = \mathbb{Q}(\zeta_{13})$. Dimostrare che se $\eta = \zeta_{13} + \zeta_{13}^3 + \zeta_{13}^9$, allora il polinomio minimo f_{η} di η su \mathbb{Q} ha grado 4. Dopo averne evidenziato le radici, mostrare (calcolando) che

$$f_{\eta}(x) = x^4 + x^3 + 2x^2 - 4x + 3.$$

Qual'è la dimensione del campo di spezzamento di f_{η} su \mathbb{Q} ?

Suggerimento: Usare il gruppo $\operatorname{Gal}(\mathbb{Q}(\zeta_{13})/\mathbb{Q})$ e la corrispondenza di Galois.

Esercizio 7. Dimostrare $\mathbb{Q}(\zeta_p)$ (dove p>2 è primo) ha sempre esattamente un sottocampo quadratico. Dedurre che ogni campo ciclotomico ammette sempre un sottocampo che è un estensione quadratica di \mathbb{Q} .

Suggerimento: Usare il gruppo $\operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$ e la corrispondenza di Galois.

Esercizio 8. Mostrare che, $\operatorname{Gal}(\mathbb{Q}(\zeta_{n^2})/\mathbb{Q}(\zeta_n)) \cong \mathbb{Z}/n\mathbb{Z}$ esibendo un isomorfismo esplicito.

Sugg: considerare $\sigma_j: \zeta_{n^2} \mapsto \zeta_{n^2}^{nj+1}$.

Esercizio 9 (per che soffre di insonnia). Mostrare la seguente identità:

$$\sum_{j=1}^{p} \left(\frac{j}{p}\right) \zeta_{p}^{j} = \pm \sqrt{(-1)^{(p-1)/2} p}$$

(N.B. $\left(\frac{j}{p}\right)$ è il classico simbolo di Legendre). Dedurre che ogni campo quadratico è sempre contenuto in un campo ciclotomico.