

Universität Heidelberg

Numerik Zusammenfassung

by Charles Barbret

Inhaltsverzeichnis

1	Fehleranalyse															2																						
	1.1																																					2

1 Fehleranalyse

1.1

Zahlendarstellung und Rundungsfehler Schema für Gleitkomma Zahl:

$$x = \pm m * b^{\pm e} \tag{1}$$

Basis $b \in \mathbb{N} \ \ \mathbf{b} \geq 2^{1}$

Mantisse $m = \overline{m_1}b^{-1} + m_2b^{-2} + \dots \in \mathbb{R}^2$

Exponent $e = e_1b^1 + e_2b^2 + \dots \in \mathbb{N}_0$

 $\forall m_i \in m \text{ und } \forall e_i \in e \text{ gilt } e_i, m_i \in \{0, ..., b-1\}$

Sollte b = 10 sein befinden wir uns im Dezimalsystem

 \Rightarrow Es gibt keine Ziffer \not $= 10 - 1 \Leftrightarrow b - 1$ q.e.d

Jede Ziffer (m_i, e_i, b, \pm, \pm) braucht man eine Speicherzelle, wobei b im Computer bereits eingespeichert ist

⇒ muss nicht explizit angegeben werden

X wird gespeichert als: $(\pm)[m_1,...,m_r](\pm)[e_{s-1},...,e_0]$

 $^{^{1}\}mathrm{Beispiel}\colon 2^{e}$ oder 10^{e}

 $^{^2}$ Beispiel: $m_1=3, m_2=1, m_3=4 \Rightarrow m=314$ normal kommt nach m_1 ein Komma, also m=3,14