

Reconhecimento de padrões e aprendizagem computacional

Métodos Ensemble

Ensemble pode ser definido como Grupo

- Envolvem agrupar modelos preditivos de modo a melhorar a precisão e a estabilidade do modelo.
- São conhecidos por impulsionar e aprimorar os modelos baseados em árvore.

Viés x Variância

 Como qualquer outro modelo, um modelo baseado em árvore também sofre com viés e variância.

Viés: 'o quanto em média os valores previstos são diferentes dos valores reais'.

Variância: 'o quão diferentes serão as previsões do modelo num mesmo ponto se diferentes amostras forem tomadas da mesma população'.

Viés x Variância

- Suponha que você montou uma árvore pequena, obtendo um modelo com baixa variância e viés elevado.

Como então equilibrar o trade-off entre viés e variância?

 Normalmente, à medida que você aumenta a complexidade de seu modelo, você verá uma redução no erro de previsão devido ao viés mais baixo no modelo.

À medida que você continuar tornando o modelo mais complexo ele começará a sofrer com a variância.

Viés x Variância

 Suponha que você montou uma árvore pequena, obtendo um modelo com baixa variância e viés elevado.

Como então equilibrar o trade-off entre viés e variância?

 Um modelo ótimo deve manter o equilíbrio entre estes dois tipos de erros. Isto é conhecido como a gestão de 'trade-off' entre erros de variância e viés.

Aprendizagem por 'ensemble' é uma maneira de analisar esse 'trade-off'.

Viés x Variância

Bagging

- Alguns dos métodos de 'ensemble' comumente utilizados incluem: 'Bagging', 'Boosting' e 'Stacking'.
- 'Bootstrap Aggregating' é uma técnica usada para reduzir a variância das previsões.
- Ela combina o resultado de vários classificadores, modelados em diferentes sub-amostras do mesmo conjunto de dados.

Bagging

•••

Bootstrap sample ⇒

Bootstrap sample \Rightarrow $f_2(x)$

Bootstrap sample \Rightarrow $f_M(x)$

MODEL AVERAGING

Bootstrap sample \Rightarrow $f_3(x) \vdash Combine f_1(x),..., f_M(x) <math>\Rightarrow$ f(x)

f_i(x)'s are "base learners"

Etapas do Bagging

- 1º Criar vários conjuntos de dados:
- A amostragem é feita com a substituição dos dados originais e a formação de novos conjuntos de dados
- Os novos conjuntos de dados podem ter uma fração das colunas e das linhas, que geralmente são hiper-parâmetros em um modelo de 'bagging'
- Tomando frações de linha e coluna menores que 1 ajuda na montagem de modelos robustos, menos propensos a sobreajuste.
- 2º Criar múltiplos classificadores
- Classificadores são construídos em cada conjunto de dados
- Em geral, o mesmo classificador é modelado em cada conjunto de dados, e a partir disso as previsões são feitas

Etapas do Bagging

- 3º Combinar classificadores
- As previsões de todos os classificadores são combinadas usando a média, a mediana ou a moda, dependendo do problema
- Os valores combinados são geralmente mais robustos do que um único modelo
- Note-se que o número de modelos construídos não são hiperparâmetros.
- Um maior número de modelos são <u>geralmente</u> *melhores*, **ou** podem dar um *desempenho semelhante* ao de números mais baixos.
- Existem várias implementações de modelos 'bagging'. A floresta aleatória ('random forest') é uma delas!

Dados e curva de regressão ajustada.

Média de 25 árvores de decisão

Combinação de 25 árvores de decisão

Exemplo 3 – A sabedoria das multidões

- Vamos gerar números aleatórios entre 0 100.
- Se o número que eu gerar for maior ou igual a 40, você vence (então você tem 60% de chance de vitória) e eu pago a você algum dinheiro. Se for abaixo de 40, eu ganho e você me paga o mesmo valor.

Agora, eu ofereço a você as seguintes opções:

- Jogo 1 jogue 100 vezes, apostando R\$ 1 cada vez.
- Jogo 2 jogue 10 vezes, apostando R\$ 10 cada vez.
- Jogo 3 jogue uma vez, apostando R\$ 100.

Qual você escolheria?

Exemplo 3 – A sabedoria das multidões

- Note que, o valor esperado de cada jogo é o mesmo:
 - Valor esperado do jogo 1 = (0.60*1 + 0.40*-1)*100 = 20
 - Valor esperado do jogo 2 = (0.60*10 + 0.40*-10)*10 = 20
 - Valor esperado do jogo 3 = (0.60*100 + 0.40*-100)*1 = 20

E aí, qual você escolheria?

Exemplo 3 – A sabedoria das multidões

- E quanto às distribuições?

· Vamos visualizar os resultados com uma simulação de Monte Carlo (executaremos

10.000 simulações de cada tipo de jogo):

Exemplo 3 – A sabedoria das multidões

- Média do Jogo 1: 20,11
- Probabilidade de ganho no Jogo 1: 0,97 das 10.000 simulações que fizemos, você ganha dinheiro em 97% delas!
- Média do Jogo 2: 19,61
- Probabilidade de ganho no Jogo 2: 0,63
- Média do Jogo 3: 20.12
- Probabilidade de ganho no Jogo 3: 0,6

Exemplo 3 – A sabedoria das multidões

- Portanto, embora os jogos compartilhem o mesmo valor esperado, suas distribuições de resultados são completamente diferentes.
- Quanto mais dividirmos nossa aposta de R\$ 100 em jogadas diferentes, mais confiantes podemos ter de que ganharemos dinheiro.
- Por quê isso funciona?

Porque cada peça é independente das outras.

Reconhecimento de padrões e aprendizagem computacional

Random Forest

Leo Breiman, 1928 – 2005

- ✓ 1954: PhD Berkeley (mathematics)
- √ 1960 -1967: UCLA (mathematics)
- √ 1969 -1982: Consultant
- ✓ 1982 1993: Berkeley (statistics)
- √ 1984: "Classification & Regression Trees" (with Friedman, Olshen, Stone)
- √ 1996: "Bagging"
- ✓ 2001: "Random Forests"

Adele Cutler

- √ 1988: PhD Berkeley (mathematics)
- ✓ Orientador: Leo BreimanOptimization Methods in Statistics (1988)
- ✓ Professora titular da Utah State University

Definição

Quais palavras devemos colocar aqui?

_

Forme sua definição agora:

"A floresta aleatória é um algoritmo de aprendizado de máquina comumente usado, registrado por *Leo Breiman* e *Adele Cutler*, que combina a saída de várias árvores de decisão para chegar a um único resultado. Sua facilidade de uso e flexibilidade impulsionaram sua adoção, uma vez que lida com problemas de classificação e regressão."

Funcionamento

Definição

- Floresta Aleatória é considerada a panacéia de todos os problemas de Data Science. Em outras palavras, quando você não consegue pensar num algoritmo (seja qual for a situação), use 'random forest'!
- Ele também aplica métodos de <u>redução dimensional</u>, <u>trata valores</u> <u>faltantes</u>, <u>valores anómalos</u> ('*outliers*') e outras etapas essenciais da **exploração de dados**.
- No geral, faz um trabalho muito bom. É um tipo de método de aprendizado de 'ensemble', onde um grupo de modelos fracos são combinados para formar um modelo mais forte.

Funcionamento

- 1. Assuma que o número de casos no conjunto de treinamento é N. Então, a amostra desses N casos é escolhida aleatoriamente, mas com substituição. Esta amostra será o conjunto de treinamento para o cultivo da árvore.
- 2. Se houver M variáveis de entrada, um número m << M é especificado de modo que, em cada nó, m variáveis de M sejam selecionadas aleatoriamente. A melhor divisão nestes m é usada para dividir o nó. O valor de m é mantido constante enquanto crescemos a floresta.
- 3. Cada árvore é cultivada na maior extensão possível e não há poda.
- 4. Preveja novos dados agregando as previsões das árvores ntree (ou seja, votos majoritários para classificação, média para regressão).

Exemplo

Dados	CÉU	TEMP.	UMID.	VENTO	Ir ao campo?
1	Sol	Alta	Alta	Não	Não ir
2	Sol	Alta	Alta	Sim	Não ir
3	Nublado	Alta	Alta	Não	Ir ao campo
4	Chuva	Alta	Alta	Não	Ir ao campo
5	Chuva	Baixa	Normal	Não	Ir ao campo
6	Chuva	Baixa	Normal	Sim	Não ir
7	Nublado	Baixa	Normal	Sim	Ir ao campo
8	Sol	Suave	Alta	Não	Não ir
9	Sol	Baixa	Normal	Não	Ir ao campo
10	Chuva	Suave	Normal	Não	Ir ao campo
11	Sol	Suave	Normal	Sim	Ir ao campo
12	Nublado	Suave	Alta	Sim	Ir ao campo
13	Nublado	Alta	Normal	Não	Ir ao campo
14	Chuva	Suave	Alta	Sim	Não ir

Bootstrap dataset

Dados	CÉU	TEMP.	UMID.	VENTO	Ir ao campo?
4	Chuva	Alta	Alta	Não	Ir ao campo
11	Sol	Suave	Normal	Sim	Ir ao campo
2	Sol	Alta	Alta	Sim	Não ir
12	Nublado	Suave	Alta	Sim	Ir ao campo

Exemplo

Bootstrap dataset

Dados	CÉU	TEMP.	UMID.	VENTO	Ir ao campo?
4	Chuva	Al a	Ala	Na o	Ir ao campo
11	Sol	Suave	Norma	Sim	Ir ao campo
2	Sol	Alta	Alta	S _{11,2}	Não ir
12	Nublado	Suave	Alta	Sim	Ir au compe

N features - aleatória

Exemplo

E agora?

Dadc <mark>s</mark>	CÉU	TEMP.	UMID.	VENTO	Ir ao campo?
14	Chuva	Suave	Alta	Sim	Não ir ao campo

Ir ao campo?

Sim	Não
2	5

Vantagens

- Este algoritmo pode resolver os problemas de classificação e de regressão, fazendo uma estimativa decente em ambos.

- Um dos benefícios da floresta aleatória que me agrada mais é o poder de lidar com dados em grandes volumes e com muitas dimensões.
 - Ele pode lidar com milhares de variáveis de entrada e identificar as variáveis mais significativas, sendo por isso considerado um dos métodos de redução de dimensões.
 - Além disso, o modelo produz o grau de importância das variáveis, o que pode ser um dado muito útil (em algum conjunto de dados aleatórios).

Vantagens

- Possui um método eficaz para estimar os dados faltantes e mantém a precisão quando uma grande parte dos dados estão faltando.
- Possui métodos para equilibrar erros em conjuntos de dados onde as classes são desequilibradas.
- As capacidades do método anterior podem ser estendidas para dados sem rótulo, levando a clusters não supervisionados, visualizações de dados e detecção de 'outliers'.

Vantagens

- A floresta aleatória envolve a amostragem dos dados de entrada com substituição chamada como amostragem de 'bootstrap'.
 - Aqui um terço dos dados não é usado para treinamento e pode ser usado para testes. Estes são chamados de amostras de fora da cesta.
 - O erro estimado nas amostras de fora da cesta é conhecido como erro de fora da cesta.
 - O estudo de estimativas do erro de fora da cesta fornece evidências para mostrar que a estimativa de fora da cesta é tão precisa quanto usar um conjunto de teste do mesmo tamanho que o conjunto de treinamento.
 - Portanto, usar a estimativa de erro de fora da cesta remove a necessidade de ter um conjunto de teste extra.

Desvantagens

- Enquanto faz um bom trabalho na classificação, já não é tão bom para o problema de regressão, uma vez que não fornece previsões precisas para variáveis contínuas.
 - No caso da regressão, não prevê além do intervalo dos dados de treinamento, e que eles podem sobre-ajustar os conjuntos de dados que tenham muita discrepância ('noisy').
- A floresta aleatória pode ser considerada como uma caixa preta para quem faz modelagem estatística você tem muito pouco controle sobre o que o modelo faz.
 - Você pode, na melhor das hipóteses, experimentar diferentes parâmetros.

