Theoretical Quantum Optics

Problem Sheet

Lecturer: Prof. Dr. Igor Lesanovsky

Semester: Winter 23/24

Sheet: 12 **Hand-out:** 11.1.24 **Hand-in:** 18.1.24

Problem 32. Maximum likelihood estimation of a Gaussian

Let $p(x|\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma}e^{-(x-\mu)^2/(2\sigma^2)}$ be a Gaussian distribution centered at $x=\mu$, with width σ .

a. Show that the maximum likelihood estimator of $\hat{\sigma}$, determined via $\frac{\partial}{\partial \sigma} p(\mathbf{x}|\mu, \sigma) = 0$ (where $\mathbf{x} = (x_1, ..., x_M)$ is a vector of M sampled values x_i and $p(\mathbf{x}|\mu, \sigma) = \prod_{i=1}^M p(x_i|\mu, \sigma)$), is given by

$$\hat{\sigma}^2 = \frac{1}{M} \sum_{i=1}^{M} (x_i - \mu)^2.$$
 (32.1)

- **b.** Show that $\hat{\sigma}^2$ is biased if μ is replaced by its maximum likelihood estimate $\bar{x} = \frac{1}{M} \sum_{i=1}^{M} x_i$, i.e. determine the expectation value $E(\hat{\sigma}^2)$ and show that it differs from σ^2 for finite M. What happens for $M \to \infty$?
- c. Based on part b, show that

$$(\sigma^2)_0 \equiv \frac{1}{M-1} \sum_{i=1}^M (x_i - \bar{x})^2, \tag{32.2}$$

with $\bar{x} \equiv \frac{1}{M} \sum_{i=1}^{M} x_i$ is an unbiased estimator of σ^2 .

This is why the variance of a Gaussian is defined in the statistics literature sometimes via eq. (32.2): It is the unbiased maximum likelihood estimate of the variance, rather than the empirical variance of the data.

Problem 33. Quantum Cramér-Rao bound

The Quantum Cramér-Rao bound (QCR bound) is a lower bound on the fluctuations of an unbiased estimator $\hat{\lambda}$ (i.e. $\langle \hat{\lambda} \rangle = \lambda$) of a parameter λ that parametrizes a quantum state ρ_{λ} . It is optimized over all possible POVMs (POVM = "positive operator-valued measure") and all data-analysis schemes of the measurement outcome. It can be saturated in the limit of infinitely many measurements.

The QCR bound is given by

$$\operatorname{var}(\hat{\lambda}) \ge \frac{1}{MF_a(\lambda)},$$
 (33.1)

where M is the number of measurements. For a density matrix $\rho = \sum_{n=1}^{s} p_n |\psi_n\rangle\langle\psi_n|$, the QFI ("quantum Fisher information") $F_q(\lambda)$ is given by

$$F_{q}(\lambda) = \sum_{n=1}^{s} \frac{(\partial_{\lambda} p_{n})^{2}}{p_{n}} + 2 \sum_{m=1}^{N} \frac{(p_{n} - p_{m})^{2}}{p_{n} + p_{m}} |\langle \psi_{m} | \partial_{\lambda} \psi_{n} \rangle|^{2},$$
(33.2)

with $|\partial_{\lambda}\psi_{n}\rangle \equiv \partial_{\lambda}|\psi_{n}\rangle$, and the sums are over all terms with non-vanishing denominators.

- **a.** What is the physical dimension of $F_q(\lambda)$?
- **b.** Show that error-propagation holds, i.e. if $\mu = \mu(\lambda) \Rightarrow \sigma(\mu) = \left|\frac{\partial \mu}{\partial \lambda}\right| \sigma(\lambda)$, where $\sigma(A)$ is the minimal possible standard deviation of the estimator \hat{A} of A.
- **c.** Show that for pure states $\rho_{\lambda} = |\psi_{\lambda}\rangle\langle\psi_{\lambda}|$ the QFI is given by

$$F_q(\lambda) = 4(\langle \partial_{\lambda} \psi_{\lambda} | \partial_{\lambda} \psi_{\lambda} \rangle - |\langle \psi_{\lambda} | \partial_{\lambda} \psi_{\lambda} \rangle|^2). \tag{33.3}$$

Hint: Set $|\psi_1\rangle \equiv |\psi_\lambda\rangle$ and use the orthogonality $\langle \psi_\lambda | \psi_j \rangle = 0$, $\forall j > 1$ to rewrite terms in the second sum. You may also want to use $\mathbb{I} = \sum_{n=1}^N |\psi_n\rangle \langle \psi_n|$ to rewrite some of the terms.

d. Use eqn. (33.3) to show that for a pure state $|\psi_{\lambda}\rangle$ that depends on λ via a so called phase shift operation, $|\psi_{\lambda}\rangle = e^{i\lambda \hat{X}}|\psi_{0}\rangle$, where $\hat{X} = \hat{X}^{\dagger}$ is a hermitian generator,

$$F_q(\lambda) = 4\operatorname{var}(\hat{X}) = 4(\langle \psi_0 | \hat{X}^2 | \psi_0 \rangle - \langle \psi_0 | \hat{X} | \psi_0 \rangle^2). \tag{33.4}$$

e. A thermal state is given by $\rho_{\beta} = \frac{e^{-\beta \hat{H}}}{Z}$, $Z = \operatorname{tr} e^{-\beta \hat{H}}$, where $\beta = \frac{1}{k_B T}$ is the inverse temperature and \hat{H} is the Hamiltonian of the system. Derive an uncertainty inequality relating the variance of \hat{H} and the one for measurements of β . Do the same for measurements of the temperature T instead of β