

Activity 6.4.5: Challenge Route Summarization

Topology Diagram

Addressing Table

Subnet	Network Address
S-WEST LAN1	192.168.7.0/27
S-WEST LAN2	192.168.7.32/27
Link from WEST to N-WEST	192.168.7.64/30
Link from WEST to S-WEST	192.168.7.68/30
Link from HQ to WEST	192.168.7.72/30
NW-BR1 LAN1	192.168.7.128/27
NW-BR1 LAN2	192.168.7.160/27
NW-BR2 LAN1	192.168.7.192/28
NW-BR2 LAN2	192.168.7.208/28
Link from N-WEST to NW-BR1	192.168.7.224/30
Link from N-WEST to NW-BR2	192.168.7.228/30
CENTRAL LAN1	192.168.6.0/25
CENTRAL LAN2	192.168.6.128/26
Link from HQ to CENTRAL	192.168.6.192/30
N-EAST LAN1	192.168.5.0/27
N-EAST LAN2	192.168.5.32/27
Link from EAST to N-EAST	192.168.5.192/30
Link from EAST to S-EAST	192.168.5.196/30
Link from HQ to EAST	192.168.5.200/30
SE-BR1 LAN1	192.168.4.0/26
SE-BR1 LAN2	192.168.4.64/26
SE-BR2 LAN1	192.168.4.128/27
SE-BR2 LAN2	192.168.4.160/27
SE-ST1 LAN1	192.168.4.192/29
SE-ST1 LAN2	192.168.4.200/29
SE-ST2 LAN1	192.168.4.208/29
SE-ST2 LAN2	192.168.4.216/29
Link from SE-BR2 to SE-ST1	192.168.4.224/30
Link from SE-BR2 to SE-ST2	192.168.4.228/30
Link from S-EAST to SE-BR2	192.168.4.232/30
Link from S-EAST to SE-BR1	192.168.4.236/30

Learning Objectives:

Determine summarized routes that can be used to reduce the size of routing tables.

Task 1: Determine the Summary Route for the S-WEST LANs.

Scenario

In this activity, you have been given the network shown in the Topology Diagram. The subnetting and address assignments have already been completed for the network segments. Determine summarized routes that can be used to reduce the number of entries in routing tables.

LAN2	
Step 2	: Count the number of left-most matching bits to determine the mask for the summary route.
1.	How many left-most matching bits are present in the two networks?
2.	What is the subnet mask for the summary route in decimal format?
Step 3	: Copy the matching bits and then add all zeros to determine the summarized network address
1.	What is the summary route in binary form?
2.	What is the network address for the summary route in decimal format?
uon L.	Determine the Summary Route for the NW-BR1 LANs.
Step 1 LAN1	: List the NW-BR1 LAN1 and LAN2 in binary format.
Step 1 LAN1 LAN2	: List the NW-BR1 LAN1 and LAN2 in binary format.
Step 1 LAN1 LAN2 Step 2	: List the NW-BR1 LAN1 and LAN2 in binary format.
Step 1 LAN1 LAN2 Step 2	: List the NW-BR1 LAN1 and LAN2 in binary format.
Step 1 LAN1 LAN2 Step 2 1. 2.	: List the NW-BR1 LAN1 and LAN2 in binary format. : Count the number of left-most matching bits to determine the mask for the summary route. How many left-most matching bits are present in the networks? What is the subnet mask for the summary route in decimal format?
Step 1 LAN1 LAN2 Step 2 1. 2. Step 3	: List the NW-BR1 LAN1 and LAN2 in binary format. : Count the number of left-most matching bits to determine the mask for the summary route. How many left-most matching bits are present in the networks?
Step 1 LAN1 LAN2 Step 2 1. 2. Step 3 1.	: List the NW-BR1 LAN1 and LAN2 in binary format.

Task 3: Determine the Summary Route for the NW-BR2 LANs.

LAN1	
LAN2	
Step 2	: Count the number of left-most matching bits to determine the mask for the summary route.
1.	How many left-most matching bits are present in the networks?
2.	What is the subnet mask for the summary route in decimal format?
Step 3	: Copy the matching bits and then add all zeros to determine the summarized network address
1.	What is the summary route in binary form?
2.	What is the network address for the summary route in decimal format?
	NW-BR1 SummaryNW-BR2 Summary
Link f	rom N-WEST to NW-BR1
Link f	rom N-WEST to NW-BR2
Step 2	: Count the number of left-most matching bits to determine the mask for the summary route.
1.	How many left-most matching bits are present in the networks?
2.	What is the subnet mask for the summary route in decimal format?
Step 3	: Copy the matching bits and then add all zeros to determine the summarized network address
1.	What is the summary route in binary form?
2.	What is the network address for the summary route in decimal format?

Task 5: Determine the Summary Route for the West Portion of the Network.

Use the networks listed below to determine a summary route for the West portion of the network.

Step 1:	: List the West network segments in binary format.
	S-WEST Summary
	N-WEST Summary
Lin	k from WEST to N-WEST
Lin	k from WEST to S-WEST
	Link from HQ to WEST
Step 2:	Count the number of left-most matching bits to determine the mask for the summary route.
1.	How many left-most matching bits are present in the networks?
2.	What is the subnet mask for the summary route in decimal format?
Step 3:	: Copy the matching bits and then add all zeros to determine the summarized network address.
1.	What is the summary route in binary form?
2.	What is the network address for the summary route in decimal format?
	Determine the Summary Route for the Central Portion of the Network. e networks listed below to determine a summary route for the Central portion of the network.
Step 1:	: List the Central network segments in binary format.
	CENTRAL LAN1 CENTRAL LAN2
Li	ink from HQ to CENTRAL
Step 2:	: Count the number of left-most matching bits to determine the mask for the summary route.
1.	How many left-most matching bits are present in the networks?
2.	What is the subnet mask for the summary route in decimal format?
Step 3:	: Copy the matching bits and then add all zeros to determine the summarized network address.
1.	What is the summary route in binary form?
2.	What is the network address for the summary route in decimal format?
	

Task 7:	Determine the Summary Route for the N-EAST LANs.
Step 1:	List the N-EAST LAN1 and LAN2 in binary format.
LAN1	
LAN2	
Step 2:	Count the number of left-most matching bits to determine the mask for the summary route.
1.	How many left-most matching bits are present in the networks?
2.	What is the subnet mask for the summary route in decimal format?
Step 3:	Copy the matching bits and then add all zeros to determine the summarized network address
1.	What is the summary route in binary form?
2.	What is the network address for the summary route in decimal format?
Task 8:	Determine the Summary Route for the SE-BR1 LANs.
Step 1:	List the SE-BR1 LAN1 and LAN2 in binary format.
LAN1	
LAN2	
Step 2:	Count the number of left-most matching bits to determine the mask for the summary route.
1.	How many left-most matching bits are present in the networks?
2.	What is the subnet mask for the summary route in decimal format?
Step 3:	Copy the matching bits and then add all zeros to determine the summarized network address
1.	What is the summary route in binary form?
2.	What is the network address for the summary route in decimal format?
Task 9:	Determine the Summary Route for the SE-BR2 LANs.
Step 1:	List the SE-BR2 LAN1 and LAN2 in binary format.
LAN1	
LAN2	
Step 2:	Count the number of left-most matching bits to determine the mask for the summary route.
1.	How many left-most matching bits are present in the networks?
2.	What is the subnet mask for the summary route in decimal format?

Step 3:	Copy the matching bits and then add all zeros to determine the summarized network address.		
1.	What is the summary route in binary form?		
2.	What is the network address for the summary route in decimal format?		
Task 10	: Determine the Summary Route for the SE-ST1 LANs.		
Step 1:	List the SE-ST1 LAN1 and LAN2 in binary format.		
Step 2:	Count the number of left-most matching bits to determine the mask for the summary route.		
1.	How many left-most matching bits are present in the networks?		
2.	What is the subnet mask for the summary route in decimal format?		
Step 3:	Copy the matching bits and then add all zeros to determine the summarized network address.		
1.	What is the summary route in binary form?		
2.	What is the network address for the summary route in decimal format?		
Task 11	: Determine the Summary Route for the SE-ST2 LANs.		
Step 1:	List the SE-ST2 LAN1 and LAN2 in binary format.		
LAN1			
LAN2			
Step 2:	Count the number of left-most matching bits to determine the mask for the summary route.		
1.	How many left-most matching bits are present in the networks?		
2.	What is the subnet mask for the summary route in decimal format?		
Step 3:	Copy the matching bits and then add all zeros to determine the summarized network address.		
1.	What is the summary route in binary form?		
2.	What is the network address for the summary route in decimal format?		

Task 12: Determine the Summary Route for the Southeast Portion of the Network.

Use the networks listed below to determine a summary route for the Southeast portion of the network.

Step 1:	: List the Southeast network	segments in binary format.
	SE-BR1 Summary _	
	SE-BR2 Summary _	
	SE-ST1 Summary _	
	SE-ST2 Summary _	
Link	from SE-BR2 to SE-ST1 _	
Link	from SE-BR2 to SE-ST2	
Link	from S-EAST to SE-BR1 _	
Link	from S-EAST to SE-BR2	
Step 2:	: Count the number of left-me	ost matching bits to determine the mask for the summary route.
1.	How many left-most matching	bits are present in the networks?
2.	What is the subnet mask for t format?	ne summary route in decimal
Step 3:	: Copy the matching bits and	then add all zeros to determine the summarized network address.
1.	What is the summary route in	binary form?
2.		or the summary route in decimal
Task 13	: Determine the Summary	Route for the East Portion of the Network.
Use the	e networks listed below to dete	mine a summary route for the East portion of the network.
Step 1:	: List the East network segme	ents in binary format.
	S-EAST Summary _	
	N-EAST Summary _	
Li	nk from EAST to N-EAST _	
Li	nk from EAST to S-EAST _	
	Link from HQ to EAST _	
Step 2:	: Count the number of left-mo	est matching bits to determine the mask for the summary route.
1.	How many left-most matching	bits are present in the networks?
2.	What is the subnet mask for t format?	ne summary route in decimal

Step 3	: Copy the matching bits and then add all zeros to determine the summarized network address
1.	What is the summary route in binary form?
2.	What is the network address for the summary route in decimal format?
Task 14	: Determine the Summary Route for the Entire Network.
Use the	e networks listed below to determine a summary route for the entire network.
Step 1	: List the East, West, and Central summary routes in binary format.
	EAST Summary
	WEST Summary
	CENTRAL Summary
Step 2	: Count the number of left-most matching bits to determine the mask for the summary route.
1.	How many left-most matching bits are present in the networks?
2.	What is the subnet mask for the summary route in decimal format?
Step 3	: Copy the matching bits and then add all zeros to determine the summarized network address
1.	What is the summary route in binary form?
2.	What is the network address for the summary route in decimal format?