

SÍLABO GEOMETRÍA ANALÍTICA

ÁREA CURRICULAR: MATEMÁTICAS Y CIENCIAS BÁSICAS

CICLO I SEMESTRE ACADÉMICO: 2018-I

I. CÓDIGO DEL CURSO : 09066301040

II. CRÉDITOS : 04

III. REQUISITO : Ninguno

IV. CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso es un curso teórico práctico, tiene carácter instrumental y su desarrollo se basa en procedimientos .El curso se dicta con el fin de ayudar a la formación del alumno y darle la personalidad matemática que necesitan los futuros ingenieros.

El curso se desarrolla mediante las unidades de aprendizaje siguientes: I. Números reales. II. Sistema de coordenadas rectangulares. III. Línea recta. IV. Funciones. V. Secciones cónicas-coordenadas polares

VI. FUENTES DE CONSULTA

Bibliográficas

- Figueroa, R.(2004). Matemática Básica I. 8º ed. Perú: Ed. América
- · Ziwet A.(2008) Analytic Geometry BiblioBazaar, LLC,
- · Figueroa, R. (2006). Geometría Analítica. 7º ed.Perú: Ed.América.
- Gonzáles, S.(2008). Solucionario geometria analítica de Charles H. Lehmann. 1o ed. Lima: editorial San Marcos
- Espinoza, E. (2007). Geometria Analítica plana. 3o ed. Lima: Servicios Gráficos J.J.

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: NÚMEROS REALES

OBJETIVOS DE APRENDIZAJE:

- Conocer las propiedades y teoremas sobre las desigualdades
- Aplicar los teoremas de desigualdades en la solución de problemas.
- Aplicar los teoremas de desigualdades con valor absoluto en la solución de problemas.

PRIMERA SEMANA

Primera sesión:

Números reales .El sistema de los números reales.Operaciones. Intervalos finitos e infinitos.

Segunda sesión:

Inecuaciones lineales, cuadráticas, polinómicas.

SEGUNDA SEMANA

Primera sesión:

Inecuaciones Racionales

Segunda sesión:

Valor absoluto: Teoremas. Ecuaciones, inecuaciones

UNIDAD II: SISTEMA DE COORDENADAS RECTANGULARES

OBJETIVOS DE APRENDIZAJE:

- Calcular la distancia entre dos puntos.
- Aplicar la teoría para resolver problemas de rectas paralelas y perpendiculares, así como de área de un triangulo

- Deducir la ecuación de un lugar geométrico.
- Aplicar la teoría sobre recta para la solución de diversos problemas

TERCERA SEMANA

Primera sesión:

Plano cartesiano; segmento dirigido, distancia dirigida, no dirigida. Distancia entre dos puntos.

Segunda sesión:

Pendiente de una Recta. Rectas paralelas y perpendiculares.

CUARTA SEMANA

Primera sesión:

División de un segmento en una razón, baricentro de un triángulo. Ángulo entre 2 rectas.

Segunda sesión:

Área de un triangulo. Ejercicio de Aplicación

QUINTA SEMANA

Primera sesión:

Lugares Geométricos. Deducción de la ecuación de un lugar geométrico.

Segunda sesión:

Problemas sobre Lugares Geométricos

SEXTA SEMANA

Primera sesión:

Línea recta. Ecuaciones de una recta. Forma general de la ecuación de una recta.

Segunda sesión:

Relaciones entre rectas coplanares. Problemas sobre línea recta.

UNIDAD III: LÍNEA RECTA

OBJETIVOS DE APRENDIZAJE:

- Reconocer el concepto de función.
- Calcular el dominio y rango de toda función estudiada.
- Resolver problemas sobre las diferentes funciones estudiadas.

SÉPTIMA SEMANA

Primera sesión:

Definición de función, dominio, rango. Función real de variable real. Trazado de las gráficas de las funciones a partir de y = f(x): propiedades.

Segunda sesión:

Función polinómica, descripción y trazado de una función polinomial. Función raíz cuadrada.

OCTAVA SEMANA

Examen parcial

NOVENA SEMANA

Primera sesión:

Funciones racionales. Graficas de funciones racionales.

Segunda sesión:

Función inyectiva. Ejercicios.

DÉCIMA SEMANA

Primera sesión:

Inversa de una función .Álgebra de funciones.

Segunda sesión:

Composición de funciones.

UNIDAD IV: SECIONES CÓNICAS - COORDENADAS POLARES

OBJETIVOS DE APRENDIZAJE:

- Reconocer las diferentes ecuaciones de las cónicas.
- Interpretar el cambio de sistemas de referencia mediante una traslación de ejes.
- Comparar el sistema polar con el rectangular.

UNDÉCIMA SEMANA

Primera sesión:

La circunferencia. Ecuaciones de la circunferencia. Ecuaciones particulares de la circunferencia.

Segunda sesión:

Ecuación general de la circunferencia. Aplicaciones.

DUODÉCIMA SEMANA

Primera sesión:

Traslación de ejes. Problemas.

Segunda sesión:

Parábola .Elementos. Ecuaciones canónicas de la parábola.

DECIMOTERCERA SEMANA

Primera sesión:

Ecuaciones ordinarias de la parábola. Ecuación general. Aplicaciones.

Segunda sesión:

Eplise. Ecuaciones canónicas de la elipse.

DECIMOCUARTA SEMANA

Primera sesión:

Ecuaciones ordinarias de la elipse. Ecuación general. Aplicaciones.

Segunda sesión:

Hipérbola .Asíntotas de la hipérbola. Ecuaciones canónicas de la hipérbola.

DECIMOQUINTA SEMANA

Primera sesión:

Ecuaciones ordinarias de la hipérbola. Ecuación general. Aplicaciones.

Segunda sesión:

Coordenadas polares. Definición Relación entre el sistema polar y el cartesiano.

DECIMOSEXTA SEMANA

Examen final

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX. PROCEDIMIENTOS DIDÁCTICOS

Las clases se realizarán estimulando la participación activa de los estudiantes mediante las preguntas que puedan hacer sobre el desarrollo de ejercicios y problemas desarrollados en clase. Las exposiciones del docente irán orientadas a hacer razonar al alumno.

X. EQUIPOS Y MATERIALES

Materiales: Texto base recomendado y las separatas de ejercicios dados.

XI. EVALUACIÓN

El promedio final se obtiene del siguiente modo:

$$PE = (P1 + P2 + P3 + P4 + P4 - MN)/4$$

Donde:

PF : Promedio Final

PE : Promedio de Practicas Calificadas

EF : Examen final (escrito)

P1,..., P4 : Prácticas Calificadas (escrito)

MN : Menor nota entre las Prácticas Calificadas

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para las Escuelas Profesionales de: Ingeniería Electrónica, Ingeniería Industrial, Ingeniería Civil, Ingeniería de Industrias Alimentarias, se establece en la tabla siguiente:

K = clave R = relacionado Recuadro vacío = no aplica

(a)	Habilidad para aplicar conocimientos de matemática, ciencias, computación e Ingeniería	
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos	
(c)	Habilidad para analizar problemas y definir los requerimientos apropiados para la Solución	
(d)	Habilidad para diseñar, implementar y evaluar sistemas de información, componentes o procesos que satisfagan las necesidades requeridas	
(e)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario	
(f)	Comprensión de lo que es la responsabilidad profesional y temas éticos, legales, seguridad y sociales	
(g)	Habilidad para comunicarse con efectividad	
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de sistemas de información dentro de un contexto social y global	
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida	
(j)	Conocimiento de los principales temas contemporáneos	
(k)	Habilidad para usar técnicas y herramientas modernas necesarias en el desarrollo de sistemas de información	
(I)	Comprensión de los procesos que soportan la entrega y la administración de los sistemas de información dentro de un entorno específico	

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería de Computación y Sistemas, se establece en la tabla siguiente:

Siendo K=clave R=relacionado Recuadro vacío= no aplica

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería de Computación y Sistemas, se establece en la tabla siguiente:

K = Clave R = Relacionado Recuadro Vacío = No aplica

a.	Habilidad para aplicar conocimientos de computación y matemáticas apropiadas para los		
	resultados del estudiante y las disciplinas enseñadas.	K	
b.	Habilidad para analizar un problema e identificar y definir los requerimientos apropiados		
	para su solución.		
C.	Habilidad para diseñar, implementar y evaluar un sistema basado en computadoras,		
	procesos, componentes o programa que satisfagan las necesidades requeridas.		

d.	Habilidad para trabajar con efectividad en equipos para lograr una meta común.			
e.	Comprensión de los aspectos y las responsabilidades profesional, ética, legal, de seguridad y social.			
f.	Habilidad para comunicarse con efectividad con un rango de audiencias.	R		
g.	Habilidad para analizar el impacto local y global de la computación en los individuos, organizaciones y la sociedad.			
h.	Reconocer la necesidad y tener la habilidad para comprometerse a un continuo desarrollo profesional.			
i.	Habilidad para usar técnicas, destrezas, y herramientas modernas necesarias para la práctica de la computación.			
j	Comprensión de los procesos que soportan la entrega y la administración de los sistemas de información dentro de un entorno específico de aplicación.			

XIII. HORAS, SESIONES, DURACIÓN

a)	Horas de clase:	Teoría	Práctica	Laboratorio
		3	2	0

- b) Número de sesiones por semana: Dos sesiones por semana
 c) Duración: 5 horas académicas de 45 minutos

XIV. JEFE DE CURSO

Ing. Raúl Gamarra Villacorta.

XV. FECHA

La Molina, marzo de 2018.