

Agenda

- Introduction to Hypothesis Testing
- Steps of Hypothesis Testing
- Types of Errors, Significance Levels & Power
- Examples, Tests, and Practice Problems

 ງເປັນເລີ່ອງເປລີ່ ອີງເປລີ ອີງເປ

SJSU SAN JOSÉ STATE UNIVERSITY

What is Hypothesis Testing?

- A statistical method to make or test claims decisions about population parameters.
- Uses sample data to test assumptions.
- Central to scientific reasoning, quality control, and evidence-based decision-making.
- Compares hypotheses using probabilistic reasoning.
- Hypothesis test is also known as test of significance.

JSUS SISUS S

Null and Alternative Hypothesis

The first step is to create the <u>two possibilities</u> in hypothesis testing:

- Null hypothesis (H_o): Default claim or "Status Quo"
 - A statement that the value of a population parameter is equal to some claimed value.
- Alternative hypothesis (H_A or H₁): The claim that we seek evidence
 - A statement that the parameter has a value that somehow differs from the null hypothesis.
- Types:
 - Two-tailed: H_Δ: μ ≠ μ₀
 - Left-tailed: H_A : $\mu < \mu_0$
 - Right-tailed: H_A : $\mu > \mu_0$

5

SJSU SAN JOSÉ STATE UNIVERSITY

One-Tailed vs. Two-Tailed Tests

- Two-tailed: Difference in either direction
- · One-tailed: Directional difference

Examples of Hypotheses

- Lifespan of LED bulbs:
 - H₀: μ ≥ 1000 hrs
 - H_A : μ < 1000 hrs
- Drug effectiveness:
 - H₀: μ = placebo mean
 - H_A: μ ≠ placebo mean
- Defect rate:
 - $H_0: p \le 0.05$
 - $H_A: p > 0.05$

7

Example: Defining the Null and Alternative Hypothesis

Consider the claim that a medical procedure designed to increase the likelihood of a baby girl is effective, so that the probability of a baby girl is p > 0.5.

Define the null and alternative hypotheses.

Example: Can Dogs Smell Bladder Cancer?

- A study by M. Willis et al. considered whether dogs could be trained to detect if a person has bladder cancer by smelling his/her urine.
- 6 dogs of varying breeds were trained to discriminate between urine from patients with bladder cancer and urine from control patients without it.
- The dogs were taught to indicate which among several specimens was from the bladder cancer patient by lying beside it.
- Once trained, the dogs' ability to distinguish cancer patients from controls was tested using urine samples from subjects not previously encountered by the dogs.

<u>క్రెకలస్థ ప్రెకలస్థ ప్రెకలస్థ ప్రెకలస్థ ప్రెకలస్థ ప్రెకలస్థ ప్రెకలస్థ ప్రెకలస్థ ప్రెకలస్థ ప్రెకలస్థ ప్రెకలస్థ</u> కాలంగ్రెట్లు కాలంగ్రెట్

q

Example: Can Dogs Smell Bladder Cancer?

- The researchers blinded both dog handlers and experimental observers to the identity of urine samples.
- Each of the 6 dogs was tested with 9 trials. In each trial, one urine sample from a bladder cancer patient was randomly placed among 6 control urine samples.
- Outcome: In the total of 54 trials with the 6 dogs, the dogs made the correct selection 22 times.
- The dogs were correct for $22/54 \approx 41\%$ of the time \rightarrow not fabulous
- If the dogs just guessed at random, they were only expected to be correct for $1/7 \approx 14\%$ of the time
- Is this difference (41% vs 14%) surprising?

Example: Can Dogs Smell Bladder Cancer?

Let **p** be the probability that a dog makes the correct selection on a given trial.

• Null hypothesis (H_0) : p = 1/7

"There is nothing going on." → "null" means "nothing surprising is going on".

The dogs just guessed at random → lucky to make more correct selections than expected.

Alternative hypothesis (H_A or H₁): p > 1/7

"There is something going on."

Dogs can do better than random guessing

11

Weighing Evidence Using a Test Statistic

After defining H_0 and H_A , the next step of hypothesis testing is to weigh the evidence \rightarrow How likely the observed data could have occurred if H_0 was true?

• If the observed result was very unlikely to have occurred under the H₀, then the evidence raises more than a reasonable doubt in our minds about the H₀.

The test statistic is a summary of the data that best reflects the evidence for or against the hypotheses.

For the example, the test statistics that is chosen:

X = the total number of correct selections in the 54 trials

A larger X value is a stronger evidence for ${\rm H}_{\rm A}$ and against ${\rm H}_{\rm 0}$

SJSU SAN JOSÉ STATE UNIVERSITY

Example: Can Dogs Smell Bladder Cancer?

- What's the conclusion of this example?
- Any evidence that dogs have some ability to smell bladder cancer?
- If so, how practical is it?

Steps in Hypothesis Testing

- Formulate H₀ and H_A
- Choose significance level α
- Select appropriate test statistic (e.g. z, t, etc)
- Compute the test statistic and p-value
- Decision: Reject or Fail to reject H₀

Parameter	Sampling Distribution	Requirements	Test Statistic
Proportion p	Normal (z)	$np \ge 5$ and $nq \ge 5$	$z = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}}$
Mean μ	t	σ not known and normally distributed population σ σ not known and $n>30$	$t = \frac{\overline{x} - \mu}{\frac{s}{\sqrt{n}}}$
Mean μ	Normal (z)	σ known and normally distributed population σ σ known and $n>30$	$z = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$
St. dev. σ or variance σ^2	X ²	Strict requirement: normally distributed population	$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$

15

Test Procedure & Rejection Region

A test procedure is specified by the following:

- a test statistic
- a rejection region

The null hypothesis H₀ will be rejected if & only if the test statistic falls in the rejection region.

A sensible rejection region is of the form

 $X \ge k$ for some cutoff k

and the test procedure is reject H_0 if $X \ge k$

Type I and Type II Errors

In a hypothesis test, we make a decision about which of H_0 or H_A might be true, but our decision might be incorrect.

- Type I Error (α): rejecting H_0 when it is true.
- Type II Error (β): failing to reject H_0 when it is false.

STATE OF THE STATE

17

Example: Type 1 and 2 Errors

Consider the claim that a medical procedure designed to increase the likelihood of a baby girl is effective, so that the probability of a baby girl is p > 0.5.

What are the Type I and Type II Errors?

Interpretations of Type 1 and 2 Errors

Type 1 and Type 2 errors are different sorts of mistakes and have different consequences:

- Usually H₀ is the status quo, thing we generally believe to be true
- If H_0 is not rejected \rightarrow the status quo is fine. No action needs to be taken
- Rejecting H₀ means something we used to believe is overturned. It might be a scientific breakthrough (e.g. discovery of a new drug).
- A Type 1 error introduces a false conclusion that can lead to a tremendous waste of resources before further research invalidates the original finding.
- A Type 2 error represents a missed opportunity for scientific progress
- Type 2 errors can be costly as well, but generally go unnoticed

รโรมพิริ

19

Significance Level of Hypothesis Testing

• The Significance Level α for a hypothesis test is the probability value used as the cutoff for determining when the sample evidence constitutes significant evidence against the null hypothesis H_0 .

Significance Level $\alpha = P$ (rejecting H_0 when H_0 is true) = $P(Type \ 1 \ error)$

• The probability of rejecting the null hypothesis H₀ when it is actually true (Type I error).

Significance Level of Hypothesis Testing

- Common choices of α are 0.01, **0.05**, 0.10.
- Controls how "strict" the test is in ruling out random chance (Smaller α means stricter criteria for significance)

21

Different Significance Levels

• Using a different value for α can change whether we reject H_0 or not.

Example: A cigarette company claims that the average nicotine content is 1.5 mg/cigarette.

$$H_0$$
: $\mu = 1.5$

$$H_A$$
: $\mu > 1.5$

Significance Level α	Rejection Region	Conclusion for z = 2.10	Significance level preferred by
.05	z ₁ > 1.645	Reject H_0	Anti-tobacco activists
.025	z ₂ > 1.96	Reject H_0	Anti-tobacco activists
.01	z ₃ > 2.33	Fail to reject H_0	Tobacco company
.005	z ₄ > 2.58	Fail to reject H_0	Tobacco company

SJSU SAN JOSÉ STATE UNIVERSITY

Power of Hypothesis Testing

• The Power for a hypothesis test is the probability correctly rejecting the null hypothesis H_0 when the alternative hypothesis is true H_A .

Power = 1 - P(Type II error) = 1 - β

- The probability of avoiding a Type II error (Correction rejection)
- Higher power means a greater ability to detect true effects.
- Power increases with larger sample sizes and lower variability.
- Higher $\alpha \rightarrow$ higher power

Controlling Type 1 Errors

How to Control Type I Error:

- Set a Smaller Significance Level lpha
 - Common values: 0.05, 0.01, 0.001
 - Example: Use α = 0.01 to reduce false positives in critical medical trials
- Use Two-Tailed Tests When Appropriate
 - Less aggressive than one-tailed, splits lpha between both tails
- Ensure Assumptions of the Test Are Met
 - Incorrect assumptions (e.g., non-normality) can inflate error rates
- Apply Multiple Comparison Corrections (when testing many hypotheses)

25

Controlling Type 2 Errors

How to Control Type II Error:

- Increase Sample Size n
 - − Reduces standard error \rightarrow increases test sensitivity \rightarrow lower β .
- Increase Effect Size (if feasible)
 - Sometimes through better instrumentation, experimental design, or stronger treatments.
- Choose a Higher Significance Level lpha
 - Increases power, but also increases Type I error risk → trade-off must be justified
- Use More Powerful Tests
 - Parametric tests (t-test, z-test) are more powerful than non-parametric ones when assumptions are satisfied

The P-Values and Hypothesis Testing

- The p-value of test is the probability of getting a value of the test statistic that is at least as
 extreme as the test statistic obtained from the sample data, assuming that the null
 hypothesis H₀ is true.
- It quantifies the "strength" of the evidence against H₀ (helps us decide whether to reject H₀)
 - A small p-value (usually less than the significance level, such as 0.05) indicates strong evidence
 against H₀.

0.25

0.15

- − A large p-value suggests weak evidence against H₀ (fail to reject it).
- Compare the p-value to the significance level α :
 - If p-value ≤ α : Reject H₀ (evidence supports H_A) at level α .
 - If p-value > α : Fail to reject H₀ (evidence is insufficient to support H_A).
- The p-value is the smallest level of significance at which H₀ can be rejected.

27

SJSU SAN JOSÉ STATE UNIVERSITY

Example: P-Value

Given that:

$$H_0$$
: $\mu = 10$
 H_A : $\mu < 10$

Suppose that a z test for testing results in the test statistic z = -1.49. What's the smallest α at which we can reject H₀? $_{P(z < -1.49) = 0.0681}$

31

Example

A company claims that their light bulbs last an average of 1,000 hours. You suspect the true mean lifespan is less than 1,000 hours. You take a sample of 40 bulbs and find that the sample mean and standard deviation are 980 hours and 50 hours, respectively. The significance level is 0.05. Prove or disprove your suspicion.

Relationship Between Confidence Intervals and 2-Sided Hypothesis Testing

For a two-sided test:

$$H_0$$
: $\mu = \mu_0$
 H_A : $\mu \neq \mu_0$

The following are equivalent:

- p-value > α (and hence H_0 : $\mu = \mu_0$ is not rejected at level α)
- $|{\it z}{\it -statistic}| = |({\it \overline{X}} \mu_0)/SE| < z^*, {\it where } z^* {\it is a value such that}$

$$\bar{X} - z^* \cdot SE < \mu_0 < \bar{X} + z^* \cdot SE$$

33

SJSU SAN JOSÉ STATE UNIVERSITY

Relationship Between Confidence Intervals and 2-Sided Hypothesis Testing

Suppose in a study, we have the following

- 90% CI for *μ*: (4.81, 11.39)
- 95% CI for *μ*: (4.18, 12.02)
- 99% CI for *μ*: (2.95, 13.25)

Then

- H₀: $\mu=4$ is rejected at 5% level but not at 1% level (2-sided p-value is between 1% and 5%)
- H_0 : $\mu = 4.5$ is rejected at 10% level but not at 5% level

Discussions on Hypothesis Testing

- Rejecting H₀ doesn't mean we are 100% sure that H₀ is false. We might make Type 1 errors. Setting a significance level just guarantee we won't make Type 1 error too often.
- P-value is not P(H₀ is true | data) but it is P(data | H₀ is true).
- Another mistake is to conclude from a high p-value that the H₀ is probably true.
- If our p-value is high, can we conclude that H₀ is true?
 - No, we could make a Type 2 error when failing to reject H₀
 - Moreover, unlike Type 1 error rate is controlled at a low level, Type 2 error rate is usually quite high. It is quite often that H_0 is not true but the data fail to reject it.
- When we fail to reject H₀, often it just means the data are not able to distinguish between H₀ and H₄ (because the data are to noisy, etc)

35

Summary: Hypothesis Testing Procedure

- Start with a null hypothesis (H₀) that represents the status quo or default claim.
- State an alternative hypothesis (H_A) that represents our research question, i.e. what we're testing for.
- Collect data and often summarize the data as a test statistic, which is usually a measure gauging whether H_0 or H_A are more plausible.
- Determine the sampling distribution of the test statistic assuming H_0 is true.
 - If the test statistic is too far away from what the H_0 predicts, then reject the H_0 in favor of the H_{A} .
- Choose a significance level α = maximal P (Type I error) that we can tolerate.
- Set the rejection region based on the significance level.
- Reject H_0 if the test statistic falls in the rejection region, and do not reject otherwise.

