

Deadline: 23:00pm of next Friday (2022/04/29)

Please send your homework into TA's mailbox:

12132430@mail.sustech.edu.cn.

MECHANICS OF MATERIALS

YAHUI XUE (薛亚辉)

SPRING, 2022

7.17 and 7.18 The grain of a wooden member forms an angle of 15° with the vertical. For the state of stress shown, determine (a) the in-plane shearing stress parallel to the grain, (b) the normal stress perpendicular to the grain.

7.20 Two members of uniform cross section 50×80 mm are glued together along plane a-a that forms an angle of 25° with the horizontal. Knowing that the allowable stresses for the glued joint are $\sigma = 800$ kPa and $\tau = 600$ kPa, determine the largest centric load **P** that can be applied.

Fig. *P7*.20

and 7.55 Determine the principal planes and the principal stresses for the state of plane stress resulting from the superposition of the two states of stress shown.

- **7.68** For the state of stress shown, determine the maximum shearing stress when (a) $\sigma_y = 40$ MPa, (b) $\sigma_y = 120$ MPa. (*Hint:* Consider both in-plane and out-of-plane shearing stresses.)
- **7.69** For the state of stress shown, determine the maximum shearing stress when (a) $\sigma_y = 20$ MPa, (b) $\sigma_y = 140$ MPa. (Hint: Consider both in-plane and out-of-plane shearing stresses.)

7.112 The pressure tank shown has a 8-mm wall thickness and butt-welded seams forming an angle $\beta = 20^{\circ}$ with a transverse plane. For a gage pressure of 600 kPa, determine, (a) the normal stress perpendicular to the weld, (b) the shearing stress parallel to the weld.

7.152 A single strain gage forming an angle $\beta = 18^{\circ}$ with a horizontal plane is used to determine the gage pressure in the cylindrical steel tank shown. The cylindrical wall of the tank is 6-mm thick, has a 600-mm inside diameter, and is made of a steel with E = 200 GPa and $\nu = 0.30$. Determine the pressure in the tank indicated by a strain gage reading of 280μ .

Fig. P7.152