Claims

[c1]

1. An optical detector for receiving an optical signal transmitted via an optical fibre cable, the detector comprising:

an array of photo-sensors for location in the path of the optical signal; and a controller for detecting which of the photo-sensors receives the optical signal, and deriving a received signal from any output of any said photo-

sensor that detects the optical signal.

- [c2] 2. An optical detector as claimed in claim 1, wherein the controller comprises: DC extraction circuitry for extracting a DC component from the output of each photo-sensor in the array; AC extraction circuitry for extracting an AC component from the output of each photo-sensor in the array; and, multiplier circuitry coupled to the DC extraction circuitry and to the AC extraction circuitry for generating a separate multiplier output based on the AC component and the DC component of the output of each photo-sensor in the array.
- [c3] 3. An optical detector as claimed in claim 2, wherein each multiplier output is based on the product of the AC component and the DC component of the output of the corresponding photo-sensor.
- [c4] 4. An optical detector as claimed in claim 2, wherein the controller comprises summation circuitry coupled to the multiplier circuitry for combining the multiplier outputs to generate the received signal.
- [c5] 5. An optical detector as claimed in claim 4, wherein the DC extraction circuitry comprises a plurality of DC extraction circuits each corresponding to a different one of the photo-sensors and the AC extraction circuitry comprises a plurality of AC extraction circuits each corresponding to a different one of the photo-sensors.
- [c6] 6. An optical detector as claimed in claim 5, wherein each DC extraction circuit comprising a DC current sensor coupled to the corresponding photosensor.

[c7] 7. An optical detector as claimed in claim 5, wherein each AC extraction circuit comprises a transimpedance amplifier coupled to the corresponding photo-sensor.
 [c8] 8. An optical detector as claimed claim 2, wherein the multiplier circuitry

comprising a plurality of multiplier circuits each corresponding to a different

[c9] 9. An optical detector as claimed in claim 2, wherein the DC extraction circuitry comprises circuitry for extracting the DC component based on the AC signal strength of the output of each photo-sensor in the array.

one of the photo-sensors.

- [c10] 10. An optical detector as claimed in claim 2, wherein the multiplier circuitry comprises a switch.
- [c11] 11. An optical detector as claimed in claim 10, wherein the switch has a hysteresis.
- [c12] 12. An optical detector as claimed in claim 2, wherein each photo-sensor in the array comprises a photo-diode.
- [c13] 13. An optical detector as claimed in claim 2, wherein the array of photosensors comprises a two dimensional array of photosensors.
- [c14] 14. An optical communication system having at least one optical fibre and an optical detector facing an end of the optical fibre, wherein said optical detector comprising:

 an array of photo-sensors for location in the path of the optical signal; and a controller for detecting which of the photo-sensors receives the optical signal, and deriving a received signal from any output of any said photo-sensor that detects the optical signal.
- [C15] 15. A method for receiving an optical signal transmitting via an optical fibre cable, comprising the steps of:
 locating an array of photo-sensors in the path of the optical signal; detecting which of the photo-sensors receives the optical signal; and, deriving a

received signal from an output of any said photo-sensor that detects a signal.

[c16] 16. A method as claimed in claim 15, wherein the step of detecting further comprising the steps of: extracting a DC component from the output of each photo-sensor in the array; extracting an AC component from the output of each photo-sensor in the array; and, generating a separate multiplier output based on the AC component and the DC component of the output of each photo-sensor in the array.

[c17] 17. A method as claimed in claim 16, further comprising the step of basing each multiplier output on the product of the AC component and the DC component of the output of the corresponding photo-sensor.

[c18] 18. A method as claimed in claim 16, further comprising the step of combining the multiplier outputs to generate the received signal.