HOMOPLASIA VS. CONSISTENCIA

Taxa		Co	nsist	ent			Homoplastic G C G A G T T C			
A	A	G	Т	G	G	G	С	G	A	т
В	A	G	т	G	G	G	Т	т	С	G
С	A	G	т	G	С	A	Т	G	G	A
D	A	G	Т	Т	Т	A	С	т	С	т
E	A	A	С	Т	A	G	С	A	A	С
F	A	G	С	С	A	G	T	A	G	G
States	1	2	2	3	4	2	2	3	3	4
Changes	0	1	1	2	3	2	3	3	4	4
CI		1.0	1.0	1.0	1.0	0.5	0.33	0.66	0.5	0.75

Índice de consistencia (ci)

$$ci = L_{min}/L_{obs}$$

$$L_{min}$$
 = # de estados – 1

Otros índices

Indice de Homoplasia (hi) =
$$1 - CI$$

Indice de Retención (ri) = $(L_{max} - L_{obs})/(L_{max} - L_{min})$

• Índices a través del árbol

$$\mathbf{CI} = \Sigma L_{min} / \Sigma L_{obs}$$

$$\mathbf{RI} = (\Sigma L_{max} - \Sigma L_{obs}) / (\Sigma L_{max} - \Sigma L_{min})$$

El problema de encontrar
árboles óptimos

$$= (2n - 5)! / ((n-3)!2n-3)$$

Taxones	Árboles resueltos
1	-
2	1
3	3
4	15
5	105
6	945
7	10395
8	135135
9	2027025
10	34459425
11	654729075
12	13749310575
13	316234143225
14	7905853580625
15	213458046676875
16	6190283353629370
17	191898783962510000
18	6332659870762850000
19	221643095476699000000
20	6,66409461 x 10 E 98
62	> 10 E 100

Métodos exactos:

1. Búsqueda exhaustiva

Métodos exactos:

2. Branch & Bound

Métodos heurísticos:

- 1. Buscar árbol inicial:
- Adición paso a paso (Stepwise addition)
- Aleatorio

Métodos heurísticos:

- 2. Perturbar árbol inicial:
- Nearest Neighbor Interchange (NNI)

Métodos heurísticos:

- 2. Perturbar árbol inicial:
- Subtree Pruning & Regrafting (SPR)

2. Try to insert the red subtree at each node of the blue subtree

0. Starting tree

Métodos heurísticos:

- 2. Perturbar árbol inicial:
- Tree Bisection & Reconnection (TBR)

Try to insert all possible rooted red subtrees at each node of the blue subtree

Métodos heurísticos:

- 3. Visitar óptimos locales para tener óptimo global:
- Réplicas
- Stepwise-randomaddition

¿Qué pasa si hay más de un árbol más parsimonioso?

Dientes mandibulares en *Gastrotheca guentheri*

Parsimonia de Dollo

 Una vez un carácter complejo se puede perder muchas veces pero no podrá evolucionar de nuevo

Parsimonia de Dollo (ejemplos)

Concha helicoidal en Calyptraeidae

Alas en Phasmatodea

Variaciones de optimización de caracteres en árboles

Caracteres no ordenados o no aditivos (pesos iguales) =
 Parsimonia de Fitch

Variaciones de optimización de caracteres en árboles

Caracteres ordenados o aditivos = Parsimonia de Wagner

Variaciones de optimización de caracteres en árboles

- PESAJE DE CARACTERES
 - Pesaje a priori (Parsimonia generalizada)
 - Asignación de peso a criterio del investigador
 - Ej.: transversiones vs. transiciones, codones, caracteres diagnósticos

- Pesos a posteriori
 - Pesaje a posteriori después de un análisis de pesos iguales (homólogos pesan más)

	1	2	3	4	5	6	7	8		
О	0	0	1	0	1	1	0	0		
A	0	1	1	0	1	0	1	0		
В	1	1	1	1	0	0	1	1		
С	0	0	0	1	1	1	0	0		
Peso	1	1	1	5	1	1	1	1	Longi- tud	Costo total
Costo árbol 1	1	2	1	5	1	2	2	1	11	15
Costo árbol 2	1	2	1	10	1	2	2	1	12	20
Costo árbol 3	1	1	1	10	1	1	1	1	9	17

Problemas

- Se relaja la búsqueda de homologías primarias
- Longitud de ramas no se toma en cuenta (se ignora la tasa de evolución de los caracteres en cada rama)
- Atracción de ramas largas (¡¡entre más caracteres, peor!!)

- Pesaje de caracteres es necesario (aún si son pesos iguales)
 - No hay métodos formales para decidir pesos