CSCE-642 Reinforcement Learning Transfer Learning

Instructor: Guni Sharon

Based on slides by Sergey Levine

Transferring knowledge between models

- "Forward" transfer: train on one task, transfer to a new task
 - Just try it and hope for the best
 - Finetune on the new task
 - Architectures for transfer: progressive networks
 - Randomize source task domain
- Multi-task transfer: train on many tasks, transfer to a new task
 - Model-based reinforcement learning
 - Model distillation
 - Modular policy networks
- Multi-task meta-learning: learn to learn from many tasks
 - RNN-based meta-learning
 - Gradient-based meta-learning

Finetuning

- Task: train a conv-net to detect dogs using 10,000 images
- **Solution**: train the network from scratch
- Conv-nets have a huge number of parameters (millions)
 - Training on a small dataset (<< #parameters) often result in overfitting
- Fine-tune an existing network that is trained on a large dataset like the ImageNet (1.2M labeled images)
 - Continue training it (i.e., back-propagation) on the smaller dataset
- The pre-trained model will already have learned features that are relevant* to our own classification problem

Challenges with finetuning in RL

- RL tasks are domain specific
 - Features are less general
 - Policies & value functions become overly specialized
- Learned policies tend to be of low entropy
 - Loss of exploration at convergence
 - Low-entropy policies adapt very slowly to new settings

Remedy 1: encourge high entropy

- Act as randomly as possible
- High entropy policies -> More exploration -> increased adaptability to new tasks
- $\pi^* = \operatorname{argmax}_{\pi} \sum_{t} \mathbb{E}_{(s_t, a_t) \sim \rho_{\pi}} \left[r(s_t, a_t) + \alpha \mathcal{H}(\pi(\cdot | s_t)) \right]$ Policy entropy
- Find the optimal high entropy policy using a MaxEnt algorithms e.g., SAC (slide deck 16)

Example: pre-training for robustness

 Learning to solve a task in all possible ways provides for more robust transfer!

Soft Q-learning

Fine-tuning a pretrained policy in a new environment

Haarnoja et al. "Reinforcement Learning with Deep Energy-Based Policies"

• Performance in the downstream task with fine-tuning over (MaxEnt) or (DDPG). The x-axis shows the training iterations. The y-axis shows the average discounted return. Solid lines are average values over 10 random seeds. Shaded regions correspond to one standard deviation.

Architectures for transfer: progressive networks

- An issue with finetuning
 - Deep networks work best when they are big
 - When we finetune, we typically want to use a little bit of experience
 - Little bit of experience + big network = overfitting
 - Can we somehow finetune a small network, but still pretrain a big network?
- Idea 1: finetune just a few layers
 - Limited expressiveness
 - Avoid wiping out initialization

Architectures for transfer: progressive networks

- An issue with finetuning
 - Deep networks work best when they are big
 - When we finetune, we typically want to use a little bit of experience
 - Little bit of experience + big network = overfitting
 - Can we somehow finetune a *small* network, but still pretrain a *big* network?
- Idea 1: finetune just a few layers
 - Limited expressiveness
 - Avoid wiping out initialization
- Idea 2: add *new* layers for the new task
 - Freeze the old layers, so no forgetting

Architectures for transfer: progressive networks

	Pong Soup		Atari		Labyrinth	
	Mean (%)	Median (%)	Mean (%)	Median (%)	Mean (%)	Median (%)
Baseline 1	100	100	100	100	100	100
Baseline 2	35	7	41	21	88	85
Baseline 3	181	160	133	110	235	112
Baseline 4	134	131	96	95	185	108
Progressive 2 col	209	169	132	112	491	115
Progressive 3 col	222	183	140	111		_
Progressive 4 col	_	_	141	116	_	_

Table 1: Transfer percentages in three domains. Baselines are defined in Fig. 3.

[Rusu et al. "Progressive Neural Networks"]

Finetuning summary

- Try and hope for the best
 - Sometimes there is enough variability during training to generalize
- Finetuning
 - Task overfitting issues with finetuning in RL
 - Maximum entropy training can help
- Architectures for finetuning: progressive networks
 - Addresses some overfitting and expressivity problems by construction

What if we can manipulate the source domain?

- **So far**: source domain (e.g., empty room) and target domain (e.g., corridor) are fixed
- What if we can **design** the source domain?
 - Often the case for simulation to real world transfer
- Same idea: the more diversity we see at training time, the better we will transfer!

EPOpt: randomizing physical parameters

Preparing for the unknown: explicit system ID

Yu et al., "Preparing for the Unknown: Learning a Universal Policy with Online System Identification"

Learn the model's physics and

Sim-to-Real Transfer of Robotic Control with Dynamics Randomization

Xue Bin Peng^{1,2}, Marcin Andrychowicz², Wojciech Zaremba², Pieter Abbeel^{1,2}

¹Electrical Engineering and Computer Sciences, UC Berkeley, USA

²OpenAI, USA

(CAD)²RL:

Real Single-Image Flight without a Single Real Image

Fereshteh Sadeghi

Sergey Levine

University of Washington

University of California, Berkeley

What if we can peek at the target domain?

- So far: pure 0-shot transfer: learn in source domain so that we can succeed in unknown target domain
- If we know nothing about the target domain, the best we can do is be as robust as possible
- What if we saw a few images of the target domain?

Domain adaptation at the pixel level

Use a GAN to train synthetic images to resemble *realistic* ones

Bousmalis et al., "Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping"

Forward transfer summary

- Pretraining and finetuning
 - Standard finetuning with RL is inefficient
 - Maximum entropy formulation can help
 - Progressive nets can help
- How can we modify the source domain for transfer?
 - Randomization can help a lot: the more diverse the better!
- How can we use modest amounts of target domain data?
 - Domain adaptation: make the network unable to distinguish observations from the two domains
 - Modify the source domain observations to look like target domain

Forward transfer suggested readings

- Haarnoja*, Tang*, et al. (2017). Reinforcement Learning with Deep Energy-Based Policies.
- Rusuet al. (2016). Progress Neural Networks.
- Rajeswaran, et al. (2017). EPOpt: Learning Robust Neural Network Policies Using Model Ensembles.
- Sadeghi & Levine. (2017). CAD2RL: Real Single Image Flight without a Single Real Image.
- Tobin et al. (2017). Domain Randomization for Transferring Deep Neural Networks from Simulation to the Real World.
- Tzeng*, Devin*, et al. (2016). Adapting Deep Visuomotor Representations with Weak Pairwise Constraints.
- Bousmaliset al. (2017). Using Simulation and Domain Adaptation to Improve Efficiency of Deep Robotic Grasping.

Transferring knowledge between models

- "Forward" transfer: train on one task, transfer to a new task
 - Just try it and hope for the best
 - Finetune on the new task
 - Architectures for transfer: progressive networks
 - Randomize source task domain
- Multi-task transfer: train on many tasks, transfer to a new task
 - Model-based reinforcement learning
 - Model distillation
 - Modular policy networks
- Multi-task meta-learning: learn to learn from many tasks
 - RNN-based meta-learning
 - Gradient-based meta-learning

Multiple source domains

- So far: more diversity -> better transfer
- Need to design this diversity
 - E.g., simulation to real world transfer: randomize the simulation
- What if we transfer from multiple different tasks?
 - In a sense, closer to what people do: build on a lifetime of experience
 - Substantially harder: past tasks don't directly tell us how to solve the task in the target domain!

Model-based reinforcement learning

- If the past tasks are all different, what do they have in common?
- Idea 1: the laws of physics
 - Same robot doing different chores
 - Same car driving to different destinations
 - Trying to accomplish different things in the same open-ended video game
- Simple version: train model on past tasks, and then use it to solve new tasks
- More complex version: adapt or finetune the model to new task
 - Easier than finetuning the policy if task is very different but physics are mostly the same
 - Fu et al. "One-Shot Learning of Manipulation Skills with Online Dynamics Adaptation and Neural Network Priors"

Another approach: Solve multiple tasks with the same policy

- Sometimes learning a model is very hard
- Can we learn a multi-task policy that can *simultaneously* perform many tasks?
- Idea 1: construct a joint MDP

• Idea 2: train on each MDP separately, and then combine the policies

Background: Ensembles & Distillation

- Ensemble models: single models are often not robust, instead train many models and average their predictions
 - This is how most ML competitions (e.g., Kaggle) are won
 - This is very expensive at test time
- Can we make a single model that is as good as an ensemble?
- Distillation: train on the ensemble's predictions as "soft" targets

$$p_i = rac{\exp(z_i/T)}{\sum_j \exp(z_j/T)}$$
 Logit Temperature

• Intuition: more knowledge in soft targets than hard labels!

Distillation for Multi-Task Transfer

Given a state from a source task s_i , we define the policy objective over the multitask network as the cross-entropy between the expert network's policy and the current multitask policy, Actor-Mimic Network (AMN) policy:

$$\mathcal{L}_{policy}^{i}(\theta) = \sum_{a \in \mathcal{A}_{E_i}} \pi_{E_i}(a|s) \log \pi_{\text{AMN}}(a|s;\theta)$$

In contrast to the Q-learning objective which recursively relies on itself as a target value, we now have a stable supervised training signal (the expert network output) to guide the multitask network.

Distillation Transfer Results

31

Architectures for multi-task transfer

- So far: single neural network for all tasks (in the end)
- What if tasks have some shared parts and some distinct parts?
 - Example: two cars, one with camera and one with LIDAR, driving in two different cities
 - Example: ten different robots trying to do ten different tasks
- Can we design architectures with reusable components?
- Modular Policies:

Learning Modular Neural Network Policies for Multi-Task and Multi-Robot Transfer

Coline Devin*, Abhishek Gupta*, Trevor Darrell, Pieter Abbeel, Sergey Levine

*These authors contributed equally

Berkeley Artificial Intelligence Research, Department of Electrical Engineering and Computer Science,

University of California, Berkeley

Multi-task learning summary

- More tasks -> more diversity -> better transfer
- Model-based RL: transfer the physics, not the behavior
- Distillation: combine multiple policies into one, for concurrent multitask learning (accelerate all tasks through sharing)
- Architectures for multi-task learning: modular networks

Suggested readings

- Fu etal. (2016). One-Shot Learning of Manipulation Skills with Online Dynamics Adaptation and Neural Network Priors.
- Rusuet al. (2016). Policy Distillation.
- Parisottoet al. (2016). Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning.
- Devin, et al. (2017). Learning Modular Neural Network Policies for Multi-Task and Multi-Robot Transfer.

What next?

- Lecture: Imitation Learning
- Assignments:
 - DDPG, by No. 25, EoD
 - A2C, by Nov. 18, EoD
 - REINFORCE, by Nov. 11, EOD
- Quiz (on Canvas):
 - Soft Actor-Critic, by Nov. 13, EoD
- Project:
 - Final Project, by Dec. 2, EoD

Sergey Levin's lecture

 https://www.youtube.com/watch?v=brLZ2ny40n4&list=PLkFD6_40KJI xJMR-j5A1mkxK26gh_qg37&index=8&t=0s