1 **FONCTIONS DÉFINIES EXPLICITEMENT**

$$g(n) = \begin{cases} \frac{n}{2} & \text{si } n \text{ est pair} \\ \frac{n-1}{2} & \text{si } n \text{ est impair.} \end{cases}$$

Étudier l'injectivité et la surjectivité de f et g. Que vaut $g \circ f$? Que faut-il en retenir?

- sur N. Que faut-il en retenir?
- 3 1) Montrer que la fonction tangente hyperbolique est bijective de \mathbb{R} sur]-1,1[et déterminer une expression explicite de sa réciproque.
 - 2) Même question avec la fonction sinus hyperbolique de \mathbb{R} sur \mathbb{R} .
 - 3) Même question avec la fonction cosinus hyperbolique de \mathbb{R}_+ sur $[1, +\infty[$.
- 00 4 1) Déterminer l'image de la fonction $x \mapsto xe^x$ et l'image réciproque de \mathbb{R}_{-} par cette fonction.
 - **2)** Déterminer l'image de la fonction $x \mapsto x^n \ln x$ sur \mathbb{R}_+^* pour tout $n \in \mathbb{N}^*$.
 - 3) On note f la fonction $x \mapsto \sin \frac{\pi}{x} \operatorname{sur} \mathbb{R}_+^*$. Déterminer f(]0,1]) et $f^{-1}(\{0\})$.

 - 4) Déterminer l'image de] 2,4] et l'image réciproque de [-1,2] par x → √x²+x+1.
 5) Déterminer l'image de x → x-1/x²+x+1 et l'image réciproque de [-2,0] par cette fonction.
 - **6)** Montrer que la fonction $x \mapsto \sqrt{x^3 + 1}$ est bijective de $[-1, +\infty[$ sur son image (que l'on précisera) et déterminer sa réciproque.
 - 7) Montrer que la fonction $x \mapsto \sqrt{x^2 4x + 8}$ est bijective de [2, +∞[sur son image (que l'on précisera) et déterminer sa réciproque
 - 8) Montrer que la fonction $x \mapsto \sqrt{\ln \frac{x+1}{x-1}}$ est bijective de]1, $+\infty$ [sur son image (que l'on précisera) et déterminer sa réciproque.
 - 9) On note f la fonction $x \mapsto x^2 + 4x + 1$ sur \mathbb{R} . a) Sur quels intervalles (les plus grands possible) f est-elle injective? Déterminer, sur chacun de ces domaines I, la réciproque de $f_{|_{I}}$.
 - **b)** Déterminer $f([-3,0]), f^{-1}([0,1]), f^{-1}(\{-1\})$ et $f^{-1}(\{-4\})$.

- **10)** On note f la fonction $x \mapsto \frac{x}{1+x^2}$. **a)** Déterminer l'image de f.

 - **b)** Montrer que f est injective sur [-1, 1] et déterminer $\left(f_{\mid [-1,1]}\right)^{-1}$.
 - c) Déterminer $f^{-1}\left(\left\lceil \frac{1}{4}, 1 \right\rceil\right)$
- 11) On note f la fonction $x \mapsto x \ln x + \frac{1}{x} \operatorname{sur} \mathbb{R}_+^*$. a) Sur quels intervalles (les plus grands possible)
 - f est-elle injective?
 - **b)** Déterminer $f\left(\left[\frac{1}{2}, +\infty\right]\right)$.
- D D Soit $\omega \in \mathbb{C} \setminus \mathbb{U}$. Montrer que $z \longmapsto \frac{z+\omega}{\overline{\omega}z+1}$ est bijective de \mathbb{U} sur \mathbb{U} et déterminer sa réciproque.
- G On note I l'application $z \longmapsto \frac{1}{z} \operatorname{sur} \mathbb{C}^*$.

 1) Montrer que I est bijective de \mathbb{C}^* sur \mathbb{C}^* et dé-6
 - terminer sa réciproque.
 - 2) a) Montrer que l'image par I d'un cercle de centre 0 est un cercle. Quelle est l'image de U en particulier?
 - b) Plus généralement, montrer que l'image par *I* d'un cercle ne passant pas par 0 est un cercle.
 - 3) Montrer que l'image par I d'un cercle passant par 0 (mais privé de 0) est une droite.
- Les applications suivantes sont-elles injectives? surjectives? bijectives?

 - 1) $(x,y) \mapsto 2y \text{ de } \mathbb{R}^2 \text{ dans } \mathbb{R}.$ 2) $(x,y) \mapsto (1,x-y,y) \text{ de } \mathbb{R}^2 \text{ dans } \mathbb{R}^3.$ 3) $(x,y) \mapsto (2x+y,3x-2y) \text{ de } \mathbb{R}^2 \text{ dans } \mathbb{R}^2.$ 4) $(x,y,z) \mapsto (x+y+z,x-y-z,x) \text{ de } \mathbb{R}^3$ dans \mathbb{R}^3 .
- 8 1) On note f l'application $(x, y) \mapsto \left(\frac{x+y}{2}, \frac{2xy}{x+y}\right)$ de $\left(\mathbb{R}_+^*\right)^2$ dans lui-même.
 - **a)** *f* est-elle injective?
 - b) Déterminer son image.
 - 2) On note f l'application $(x, y) \longmapsto \frac{2x + 3y}{x + y}$ de $(\mathbb{R}_+^*)^2$ dans \mathbb{R}_+^* .
 - **a)** *f* est-elle injective?
 - b) Déterminer son image.
 - 3) On note f l'application $(x, y) \mapsto (x + y, xy)$ de \mathbb{R}^2 dans \mathbb{R}^2 .
 - a) Soit $(s, p) \in \mathbb{R}^2$. À quelle condition nécessaire et suffisante (s, p) est-il dans l'image de f?
 - b) Déterminer l'image réciproque par f de l'ensemble $\{(s, p) \in \mathbb{R}^2 / s^2 - 4p = 1\}.$

2 FONCTIONS DE \mathbb{R} DANS \mathbb{R} DÉFINIES ABSTRAITEMENT

- 9 © © Déterminer toutes les fonctions $f: \mathbb{R} \longrightarrow \mathbb{R}$, croissantes, pour lesquelles : $f \circ f = \mathrm{Id}_{\mathbb{R}}$.
- \bigcirc \bigcirc \bigcirc Déterminer toutes les injections $f: \mathbb{N} \longrightarrow \mathbb{N}$ telles que pour tout $n \in \mathbb{N}: f(n) \leq n$.
- \square \square \square \square \square \square \square Déterminer toutes les fonctions $f: \mathbb{N} \longrightarrow \mathbb{N}$ telles que pour tout $n \in \mathbb{N}: f(n) + f \circ f(n) = 2n$.

3 APPLICATIONS ENTRE ENSEMBLES QUELCONQUES

- O Soient E et F deux ensembles et $f: E \longrightarrow F$ et $g: F \longrightarrow E$ deux applications. On suppose $f \circ g \circ f$ bijective. Montrer que f et g le sont alors elles aussi.
- On Soient E un ensemble et $f: E \longrightarrow E$ une application. On suppose que : $f \circ f = f$ et que f est injective ou surjective. Montrer que : $f = \mathrm{Id}_E$.
- Observation Soient E un ensemble et $f: E \longrightarrow E$ une application. On suppose que : $f \circ f \circ f = f$. Montrer que f est injective si et seulement si elle est surjective.
- Soient E, F et G trois ensembles non vides et $f: E \longrightarrow F$ une application. Montrer que l'application $\varphi \longmapsto f \circ \varphi$ de E^G dans F^G est injective si et seulement si f l'est.
- \bigcirc \bigcirc \bigcirc Soient E, F et I trois ensembles, $f: E \longrightarrow F$ une application, A et A' deux parties de E et B et B' deux parties de F.
 - 1) Montrer que : $f(A \cap f^{-1}(B)) = f(A) \cap B$.
 - 2) Montrer que : $f^{-1}(B \cup B') = f^{-1}(B) \cup f^{-1}(B')$ et : $f^{-1}(B \cap B') = f^{-1}(B) \cap f^{-1}(B')$.
 - 3) a) Montrer l'égalité : $f(A \cup A') = f(A) \cup f(A')$ et l'inclusion : $f(A \cap A') \subset f(A) \cap f(A')$.
 - **b)** Trouver un contre-exemple à l'inclusion :

$$f(A) \cap f(A') \subset f(A \cap A'),$$

puis montrer l'égalité dans le cas où f est injective.

- 1) ③ Si une application est injective sur deux parties de son ensemble de définition, l'est-elle sur leur réunion?
- 2) \bigcirc \bigcirc Soient E et F des ensembles, $f: E \longrightarrow F$ une application et $(A_n)_{n \in \mathbb{N}}$ une suite de parties de E. On suppose que : $E = \bigcup_{n \in \mathbb{N}} A_n$ et que la suite $(A_n)_{n \in \mathbb{N}}$ est croissante, i.e. que pour tout $n \in \mathbb{N}$: $A_n \subset A_{n+1}$. Montrer que si f_{A_n} est injective pour tout $n \in \mathbb{N}$, alors f elle-même l'est sur E tout entier.
- Soient E et F deux ensembles et $f: E \longrightarrow F$ une application.
 - 1) a) \bigcirc Comparer $f^{-1}(f(A))$ et A pour toute partie A de E. Commencer par un dessin.
 - **b)** $\bigcirc \bigcirc \bigcirc$ Montrer que si f est injective, alors pour tout $A \in \mathscr{P}(E)$: $f^{-1}(f(A)) = A$.
 - **c)** 🖰 🖰 🖰 Montrer que la réciproque est vraie.
 - 2) a) \bigcirc Comparer $f(f^{-1}(B))$ et B pour toute partie B de F. Commencer par un dessin.
 - **b)** P Montrer que si f est surjective, alors pour tout $B \in \mathscr{P}(F)$: $f(f^{-1}(B)) = B$.
 - c) 🖰 🖰 🖰 Montrer que la réciproque est vraie.
 - 3) P P D Montrer que f est bijective si et seulement si pour tout $A \in \mathscr{P}(E)$: $f(\overline{A}) = \overline{f(A)}$.
- - 1) Montrer que f est injective si et seulement si : $A \cup B = E$.
 - **2)** Montrer que f est surjective si et seulement si : $A \cap B = \emptyset$.
- 20 © © Soient E et F deux ensembles et $f: E \longrightarrow F$ une application. On note δ l'application $A \longmapsto f(A)$ de $\mathscr{P}(E)$ dans $\mathscr{P}(F)$ et ρ l'application $B \longmapsto f^{-1}(B)$ de $\mathscr{P}(F)$ dans $\mathscr{P}(E)$. Montrer les équivalences suivantes :
 - 1) f injective $\iff \delta$ injective $\iff \rho$ surjective.
 - 2) f surjective $\iff \delta$ surjective $\iff \rho$ injective.
- Soient E un ensemble et $\varphi: \left\{ \begin{array}{ccc} E & \longrightarrow & \left\{0,1\right\}^E \\ x & \longmapsto & \varphi_x \end{array} \right.$ une application. Montrer que l'application $x \longmapsto 1 \varphi_x(x)$ n'appartient pas à Im φ . Ceci montre en particulier que φ n'est pas surjective de E sur $\left\{0,1\right\}^E$.