Table 1. Lecture Plan of Algorithms Course

Course Title	Algorithms
Course Code	Algorithm_003
003 Pre-Requisite	Basic Knowledge of Programming Language (C, C+ or Python)
Credit Hours	3
Theory	
Credit Hours Lab	1
(If applicable)	
1: Course Objective	A detailed study of basic algorithms used in computing,
	implementation (in Python or C) and applications, a comparative study
	of different algorithms.
2: Learning	After the successful completion of course, the student will be able to:
Outcomes	1) Good understanding of the basic algorithms in computing
	2) The knowledge of designing and implementing algorithms
	3) The ability to use an appropriate algorithm for the problem
	solving (mostly in Data Structures)
3: Contents	This course provides the students with an enjoyable introduction to the
(Catalog	field of algorithms and attempted to make algorithms accessible and
Description)	interesting. It describes each one in a step-by-step manner. This also
	provides careful explanations of the insights needed to understand the
	analysis of the algorithms.
4. Recommended	(Optional) Introduction to Algorithms, Third Edition; Authors: Thomas
Textbooks	H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein
5. Homework	One or Two Assignments
General Instruction for Students	Attendance is mandatory. Every class is important. All deadlines are hard. Under normal circumstances late work will not be accepted.
	Students are required to participate all the tests. No make-up tests will
	be given under normal circumstances. There is 0 tolerance for
	plagiarism. Any form of cheating on exams/assignments/quizzes is
	subject to serious penalty.
	Attendance: 75% attendance is mandatory. Latecomers will be marked
	as absent.
	Evaluation Criteria:
	1) Attendance: 20%
	2) Midterm Exam: 20%
	3) Assignment/Report: 20%
	4) Final Exam: 40%

 Table 2. Lectures and Covered Topics

	Lectures	Topics Covered
	1st Week	Introductory Class
		Discussion on Course Syllabus, Teaching Methodology,
		and Grade Evaluation Process
	2 nd Week	Introduction to Algorithms
		Algorithms in Computing, Flowchart Diagram,
		Pseudocode, and Time Complexity
	3 rd Week	Tree Data Structure (1)
	3r ^d Week	Representation of Trees and Operations
	4 th Week	Tree Data Structure (2) and Lab Practice
	4 th Week	Tree Traversal, Deletion in Binary Tree, and
		Implementation
lar	5 th Week	Graph Algorithms (1)
n P	5 th Week	Representation of Graphs and Operations
[OS	6 th Week	Graph Algorithms (2) and Lab Practice
Les	6 th Week	Graph Traversal and Implementation
[¥]	7 th Week	Minimum Spanning Tree
Vee	7 th Week	Growing Minimum Cost Spanning Tree
n V	8th Week	Midterm Week
Fifteen Week Lesson Plan	8th Week	Midterm
Fif	9 th Week	Sorting Algorithms and Lab Practice
	9 th Week	Types of Sorting Algorithms and Implementation
	10 th Week	Searching Algorithms and Lab Practice
	10 th Week	Types of Searching Algorithms and Implementation
	11 th Week	Hashing Algorithms
	11 th Week	Types of Hashing Algorithms and Implementation
	12 th Week	Dynamic Programing (1)
	12 th Week	Types of Dynamic Programing and Operations
	13 th Week	Dynamic Programing (2) and Lab Practice
	13 th Week	Types of Dynamic Programing and Implementation
	14 th Week	Review Lectures
	14 th Week	Lecture Discussion, Question and Answer Session
	15 th Week	Final Exam Week
	15 th Week	Final Exam