«Разделяй и властвуй»: быстрая сортировка

Александр Куликов

Онлайн-курс «Алгоритмы: теория и практика. Методы» http://stepic.org/217

Функция QUICKSORT (A, ℓ, r)

```
если \ell \geq r: вернуть m \leftarrow \texttt{Partition}(A,\ell,r) QUICKSORT(A,\ell,m-1) QUICKSORT(A,m+1,r)
```

Функция QUICKSORT (A, ℓ, r) если $\ell \geq r$: вернуть $m \leftarrow \texttt{Partition}(A, \ell, r)$ QUICKSORT $(A, \ell, m-1)$ QUICKSORT(A, m+1, r)

PARTITION визуально

Разбиение: основные идеи

ℓ	j	i	r
X	$\leq x$	> x	

- $x = A[\ell]$ опорный элемент
- lacktriangle двигаем i от $\ell+1$ до r, поддерживая следующий инвариант:
 - $A[k] \le x$ для всех $\ell + 1 \le k \le j$
 - A[k] > x для всех $j + 1 \le k \le i$
- lacktriangle пусть i только что увеличился; если A[i]>x, не делаем ничего; в противном случае меняем A[i] с A[j+1] и увеличиваем j

Функция PARTITION (A,ℓ,r)

```
x \leftarrow A[\ell] j \leftarrow \ell для i от \ell+1 до r: если A[i] \leq x: j \leftarrow j+1 обменять A[j] и A[i] обменять A[\ell] и A[j] вернуть j
```

Функция PARTITION (A,ℓ,r)

```
x \leftarrow A[\ell] j \leftarrow \ell для i от \ell+1 до r: если A[i] \leq x: j \leftarrow j+1 обменять A[j] и A[i] обменять A[\ell] и A[j] вернуть j
```

Время работы: O(n).

■
$$T(n) = T(n-1) + n$$
:

$$T(n) = n + (n-1) + (n-2) + \ldots = \Theta(n^2)$$

■
$$T(n) = T(n-1) + n$$
:
 $T(n) = n + (n-1) + (n-2) + ... = \Theta(n^2)$

■
$$T(n) = T(n-5) + T(4) + n$$
:
 $T(n) \ge n + (n-5) + (n-10) + \ldots = \Theta(n^2)$

■
$$T(n) = T(n-1) + n$$
:
 $T(n) = n + (n-1) + (n-2) + ... = \Theta(n^2)$

■
$$T(n) = T(n-5) + T(4) + n$$
:
 $T(n) \ge n + (n-5) + (n-10) + \ldots = \Theta(n^2)$

$$T(n) = 2T(n/2) + n$$
: $T(n) = O(n \log n)$

■
$$T(n) = T(n-1) + n$$
:
 $T(n) = n + (n-1) + (n-2) + ... = \Theta(n^2)$

■
$$T(n) = T(n-5) + T(4) + n$$
:
 $T(n) \ge n + (n-5) + (n-10) + \ldots = \Theta(n^2)$

- T(n) = 2T(n/2) + n: $T(n) = O(n \log n)$
- T(n) = T(n/10) + T(9n/10) + n:

$$T(n) = O(n \log n)$$

Сбалансированные разбиения

$$T(n) = T(n/10) + T(9n/10) + O(n)$$

Случайный разделитель

• чтобы разбить A относительно случайного разделителя, обменяем $A[\ell]$ со случайным элементом и вызовем Partition (A,ℓ,r)

Случайный разделитель

- чтобы разбить A относительно случайного разделителя, обменяем $A[\ell]$ со случайным элементом и вызовем Partition (A,ℓ,r)
- важное наблюдение: половина элементов *A* дают сбалансированное разбиение:

Время работы

Теорема

Допустим, что все элементы массива $A[1 \dots n]$ различны и что разделитель всегда выбирается равномерно случайным образом. Тогда среднее время работы алгоритма QUICKSORT(A) есть $O(n \log n)$, в то время как время работы в худшем случае есть $O(n^2)$.

Время работы

Теорема

Допустим, что все элементы массива $A[1 \dots n]$ различны и что разделитель всегда выбирается равномерно случайным образом. Тогда среднее время работы алгоритма QUICKSORT(A) есть $O(n \log n)$, в то время как время работы в худшем случае есть $O(n^2)$.

Замечание

Усреднение берётся по случайным числам алгоритма, а не по входам.

Идея доказательства: сравнения

- время работы пропорционально количеству сравнений
- сбалансированные разбиения лучше, потому что они лучше уменьшают количество необходимых сравнений:

Идеи доказательства: вероятность

Prob (1 и 9 сравнятся)
$$=\frac{2}{9}$$

$$\mathsf{Prob}\left(3$$
 и 4 сравнятся $\right)=1$

Доказательство

■ для *i* < *j* положим

- **п** для всех i < j элементы A'[i] и A'[j] либо сравниваются ровно один раз, либо не сравниваются вообще (мы всегда сравниваем с разделителем)
- \blacksquare это, в частности, означает, что время работы в худшем случае не больше $O(n^2)$

Доказательство

- важное замечание: $\chi_{ij}=1$, если и только если первый разделитель, выбранный из $A'[i\ldots j]$, это A'[i] или A'[j]
- $lacksymbol{\blacksquare}$ тогда $\mathsf{Prob}(\chi_{ij}) = rac{2}{j-i+1}$ и $\mathsf{E}(\chi_{ij}) = rac{2}{j-i+1}$
- тогда среднее время работы есть

$$E \sum_{i=1}^{n} \sum_{j=i+1}^{n} \chi_{ij} = \sum_{i=1}^{n} \sum_{j=i+1}^{n} E(\chi_{ij})$$

$$= \sum_{i < j} \frac{2}{j-i+1}$$

$$\leq 2n \cdot \left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right)$$

$$= \Theta(n \log n) \square$$

Равные элементы

■ визуализация:
www.sorting-algorithms.com/quick-sort

Равные элементы

- визуализация: www.sorting-algorithms.com/quick-sort
- если все элементы массива равны между собой, то рассмотренная реализация алгоритма быстрой сортировки будет работать квадратичное время

Равные элементы

- визуализация: www.sorting-algorithms.com/quick-sort
- если все элементы массива равны между собой, то рассмотренная реализация алгоритма быстрой сортировки будет работать квадратичное время
- чтобы обойти это препятствие, массив можно разбивать на три части вместо двух: < x, = x и > x (3-разбиение)

Элиминация хвостовой рекурсии

```
Процедура QUICKSORT(A,\ell,r)
пока \ell < r:
m \leftarrow \texttt{Partition}(A,\ell,r)
QUICKSORT(A,\ell,m-1)
\ell \leftarrow m+1
```

Элиминируя рекурсивный вызов для более длинного массива, мы гарантируем, что глубина рекурсии (а значит, и дополнительная память) будет в худшем случае не более $O(\log n)$.

Интроспективная сортировка: $O(n \log n)$ в худшем случае

- запускает быструю сортировку с простой эвристикой выбора разделителя (например, медиана из первого, среднего и последнего элементов)
- если глубина рекурсии превышает порог $c \log n$, быстрая сортировка прерывается и запускается алгоритм с гарантированным временем $O(n \log n)$ в худшем случае (например, сортировка кучей)

Заключение

- Быстрая сортировка работает за время $O(n \log n)$ в среднем случае и за $O(n^2)$ в худшем случае.
- Усреднение берётся по случайным числам алгоритма, но не по входам.
- Очень эффективен на практике.
- Если в массиве могут быть равные числа, стоит использовать 3-разбиение вместо 2-разбиения.
- Элиминация хвостовой рекурсии позволяет сделать так, чтобы алгоритм быстрой сортировки использовал не более $O(\log n)$ дополнительной памяти.