

非线性问题数值解

内容: 期末复习

姓名: 甄继伟

学院: 麻省理工大学

专业: 计算数学

学号: 2001312001

2024年6月14日

目录

1	范数	1
	1.1 范数公理	1
	1.2 范数公理简化	1
2	仿射集合	1
	2.1 仿射集合定义	1
	2.1.1 二点仿射集合定义	1
	2.1.2 多点仿射集合定义	2
	2.1.3 子空间	2
	2.2 线性方程组的解集	3
3	凸包与凸锥	3
4	G可微与F可微	3
	4.1 Gateaux 可导 (弱可导)	3
	4.2 Freschet 可导 (强可导)	4
	4.3 F-可微与连续	4
	4.4 复合映射的求导法则(链锁规则)	5
5	中值定理	5
	5.1 中值定理不等式	5
	5.2 积分中值定理	6
6	Holder 连续	6
7	凸泛函	7
8	同胚映射——向量值扰动定理	8
9	迭代格式的构造	9
10	Ostrowski 定理	10
11	Kantorovich 定理	11
12	非精确 Newton 法	12

1 范数

1.1 范数公理

映射 $\|\cdot\|:\mathbb{R}^{m\times n}\to\mathbb{R}$ 被称为 **范数**, 若其满足如下公理:

- 1) 正定性: $\|\boldsymbol{x}\| \ge 0, \forall \boldsymbol{x} \in \mathbb{R}^n$ $\|\boldsymbol{x}\| = 0$ 当且仅当 $\boldsymbol{x} = 0$
- 2) 正齐性: $\|\alpha x\| = |\alpha| \|x\|, \forall x \in \mathbb{R}^n, \alpha \in \mathbb{R};$
- 3) 三角不等式: $||x + y|| \le ||x|| + ||y||, \forall x, y \in \mathbb{R}^n$.

1.2 范数公理简化

范数公理可以简化为

$$||x|| = 0 \Rightarrow x = 0, \forall x \in \mathbb{R}^n.$$

推导

1) 由正齐性,

 $\|0\cdot x\|=|0|\|x\|\Rightarrow\|0\|=0,$ 即 $\|x\|=0$ 当且仅当 x=0. 进一步,我们有 $\|-x\|=|-1|\|x\|=\|x\|.$

2) 由三角不等式,

$$0 = ||-x + x|| \le ||x|| + ||-x|| = 2||x|| \Rightarrow ||x|| \ge 0.$$

2 仿射集合

2.1 仿射集合定义

2.1.1 二点仿射集合定义

如果通过集合 $\mathbb{D} \subseteq \mathbb{R}^n$ 中任意两个不同点的直线仍然在集合 \mathbb{D} 中那么称集合 \mathbb{D} 是**仿射**的. 也就是说, $\mathbb{D} \subseteq \mathbb{R}^n$ 是仿射的等价于:

对于任意 $x_1, x_2 \in \mathbb{D}$ 及 $\lambda \in \mathbb{R}$ 有 $\lambda x_1 + (1 - \lambda)x_2 \in \mathbb{D}$.

换而言之, □包含了 □中任意两点的系数之和为 1 的线性组合

2.1.2 多点仿射集合定义

如果 $\lambda_1 + \cdots + \lambda_k = 1$, 我们称具有 $\lambda_1 x_1 + \cdots + \lambda_k x_k$ 形式的点为 x_1, \cdots, x_k 的 **仿射组合**.

一个仿射集合包含其中任意点的仿射组合,即如果 \mathbb{D} 是一个仿射集合, $x_1,\ldots,x_k \in \mathbb{D}$, 并且 $\lambda_1 + \cdots + \lambda_k = 1$, 那么 $\lambda_1 x_1 + \cdots + \lambda_k x_k$ 仍然在 \mathbb{D} 中

2.1.3 子空间

如果 \mathbb{D} 是一个仿射集合并且 $x_0 \in \mathbb{D}$, 则集合

$$\mathbb{V} = \mathbb{D} - x_0 = \{x - x_0 \mid x \in \mathbb{D}\}\$$

是一个子空间,即关于加法和数乘是封闭的.

推导

设 $\nu_1, \nu_2 \in \mathbb{V}, \boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbb{R}$, 则有 $\boldsymbol{\nu}_1 + \boldsymbol{x}_0 \in \mathbb{D}, \boldsymbol{\nu}_2 + \boldsymbol{x}_0 \in \mathbb{D}$.

因为 \mathbb{D} 是仿射的,且 $\alpha + \beta + (1 - \alpha - \beta) = 1$, 所以

$$\alpha \mathbf{v}_1 + \beta \mathbf{v}_2 + \mathbf{x}_0 = \alpha (\mathbf{v}_1 + \mathbf{x}_0) + \beta (\mathbf{v}_2 + \mathbf{x}_0) + (1 - \alpha - \beta) \mathbf{x}_0 \in \mathbb{D},$$

由 $\alpha v_1 + \beta v_2 + x_0 \in \mathbb{D}$, 我们可知 $\alpha v_1 + \beta v_2 \in \mathbb{V}$.

因此, 仿射集合 □ 可以表示为

$$\mathbb{D} = \mathbb{V} + x_0 = \{v + x_0 \mid v \in \mathbb{V}\},\$$

即仿射集合 =一个子空间加上一个偏移.

与仿射集合 \mathbb{D} 相关联的子空间 \mathbb{V} 与 \boldsymbol{x}_0 的选取无关,所以 \boldsymbol{x}_0 可以是 \mathbb{D} 中的任意一点.

我们定义仿射集合 \mathbb{D} 的维数为子空间 $\mathbb{V}=\mathbb{D}-x_0$ 的维数,其中 x_0 是 \mathbb{D} 中的任意元素.

2.2 线性方程组的解集

线性方程组的解集 $\mathbb{D} = \{x \mid Ax = b\}$, 其中 $\mathbf{A} \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$ 是一个仿射集合,

推导

设 $x_1, x_2 \in \mathbb{D}$, 即 $Ax_1 = b, Ax_2 = b$ 。则对于任意 λ , 我们有

$$\mathbf{A}(\lambda \mathbf{x}_1 + (1 - \lambda)\mathbf{x}_2) = \lambda \mathbf{A}\mathbf{x}_1 + (1 - \lambda)\mathbf{A}\mathbf{x}_2 = \mathbf{b}.$$

这表明任意的仿射组合 $\lambda x_1 + (1 - \lambda)x_2$ 也在 \mathbb{D} 中,并且与仿射集合 \mathbb{D} 相关联的子空间就是 A 的 零空间.

反之任意仿射集合可以表示为一个线性方程组的解集。

这也解释了为什么线性方程组的解可以表示为 通解 + 特解 的形式.

3 凸包与凸锥

- 1) **凸包**: 对 $\forall \mathbb{D} \subset \mathbb{R}^n$, \mathbb{D} 中元素一切凸组合所构成的集合, 记为 $Co(\mathbb{D})$
- 2) **锥**: 对于任意 $x \in \mathbb{D}$ 和 $\lambda \ge 0$ 都有 $\lambda x \subseteq \mathbb{D}$, 我们称集合 $\mathbb{D} \subset \mathbb{R}^n$ 是 **锥**.
- 3) **凸锥**:如果集合 \mathbb{D} 是锥,并且是凸的,则称 \mathbb{D} 为**凸锥**,即对于任意 $x^{(1)}, x^{(2)} \in \mathbb{D}$ 和 $\lambda_1, \lambda_2 \ge 0$,都有

$$\lambda_1 x^{(1)} + \lambda_2 x^{(2)} \in \mathbb{D}.$$

4 G可微与F可微

4.1 Gateaux 可导 (弱可导)

设映射 $F: \mathbb{D} \subset \mathbb{R}^n \to \mathbb{R}^m, \boldsymbol{x} \in int(\mathbb{D})$. 如果存在线性映射 $\boldsymbol{A} \in L(\mathbb{R}^n, \mathbb{R}^m)$, 使对任何 $\boldsymbol{h} \in \mathbb{R}^n, \boldsymbol{x} + t\boldsymbol{h} \in \mathbb{D}$, 有

$$\lim_{t \to 0} \frac{1}{t} ||F(x + th) - F(x) - tAh|| = 0$$
(4.1)

则称 F 在 x 处 G-**可导** (Gateaux-可导), 并称 A 为 F 在点 x 处的G-**导数**, 记为 F'(x) = A.

我们称 F'(x)h 为 F 在 x 点沿 h 的 G-微分. 不难发现,由式 (4.1) 有

$$F'(x)\mathbf{h} = \lim_{t \to 0} \frac{1}{t} [F(x + t\mathbf{h}) - F(x)].$$

4.2 Freschet 可导 (强可导)

设映射 $F: \mathbb{D} \subset \mathbb{R}^n \to \mathbb{R}^m, \boldsymbol{x} \in int(\mathbb{D})$. 如果存在映射 $\boldsymbol{A} \in L(\mathbb{R}^n, \mathbb{R}^m)$, 使对任何 $\boldsymbol{h} \in \mathbb{R}^n, \boldsymbol{x} + \boldsymbol{h} \in \mathbb{D}$, 有

$$\lim_{\|\mathbf{h}\| \to 0} \frac{\|F(\mathbf{x} + \mathbf{h}) - F(\mathbf{x}) - \mathbf{A}\mathbf{h}\|}{\|\mathbf{h}\|} = 0,$$
(4.2)

则称 F 在 x 处 F-可导 (Fréchet-可导), 并称 A 为 F 在点 x 处的F-导数, 仍记为 F'(x) = A. 与上类似,称 F'(x)h 为 F 在 x 点沿 h 的F-微分。

4.3 F-可微与连续

若映射 $F: \mathbb{D} \subset \mathbb{R}^n \to \mathbb{R}^m$ 在点 x 处 F-可导,则 F 在 x 处连续 . 确切地, $\exists x$ 的闭球 $\overline{\mathbb{S}}(x, \delta) \subset \mathbb{D}$ 及常数 C > 0,使当 $||h|| \leq \delta$ 时,有

$$||F(x+h) - F(x)|| \le C||h||.$$
 (4.3)

推导

我们只是在 \mathbb{D} 的内点定义了可导性,故 $x \in \operatorname{int}(\mathbb{D})$,从而存在 $\delta_1 > 0$,使得当 $\|\boldsymbol{h}\| \leq \delta_1$ 时,有 $x + \boldsymbol{h} \in \mathbb{D}$.

于是对于任意给定的 $\varepsilon > 0$, 由式 (4.2), 存在正数 $\delta \leq \delta_1$, 使得当 $\|\mathbf{h}\| \leq \delta$ 时,有

$$||F(x+h) - F(x) - F'(x)h|| \leqslant \varepsilon ||h||.$$

盐

$$||F(x+h) - F(x)|| \le ||F'(x)|| ||h|| + \varepsilon ||h|| = (||F'(x)|| + \varepsilon) ||h||.$$

取 $C = ||F'(x)|| + \varepsilon$, 立即得到式 (4.3).

连续性是F-可导的必要条件。

4.4 复合映射的求导法则(链锁规则)

设映射 $F: \mathbb{D}_F \subset \mathbb{R}^n \to \mathbb{R}^m$ 在 x 处存在 G-导数,而映射 $G: \mathbb{D}_G \subset \mathbb{R}^m \to \mathbb{R}^q$ 在 F(x) 处存在 F-导数,则复合映射 $H = G \circ F$ 在 x 处一定存在 G-导数,且

$$H'(x) = G'(F(x))F'(x).$$

如果 F'(x) 是 F-导数,则 H'(x) 也是 F-导数

推导

取定 h. 由定义, $x \in \text{int}(\mathbb{D}_F)$ 且 $F(x) \in \text{int}(\mathbb{D}_G)$.

而由 F 在 x 处有 G-导数可知, F 在 x 处半连续.

因 $x \in \text{int}(\mathbb{D}_F)$, 故存在 $\delta > 0$, 使得当 $|t| < \delta$ 时, $x + th \in \mathbb{D}_F$, 同时 $F(x + th) \in \mathbb{D}_G$. 因此,对于 $0 < |t| < \delta$, 有

$$\frac{1}{t} \| H(\boldsymbol{x} + t\boldsymbol{h}) - H(\boldsymbol{x}) - tG'(F(\boldsymbol{x}))F'(\boldsymbol{x})\boldsymbol{h} \|
\leq \frac{1}{t} \| G(F(\boldsymbol{x} + t\boldsymbol{h})) - G(F(\boldsymbol{x})) - G'(F(\boldsymbol{x}))[F(\boldsymbol{x} + t\boldsymbol{h}) - F(\boldsymbol{x})] \| +
\frac{1}{t} \| G'(F(\boldsymbol{x})) [F(\boldsymbol{x} + t\boldsymbol{h}) - F(\boldsymbol{x}) - tF'(\boldsymbol{x})\boldsymbol{h}] \|
= \boldsymbol{I}_1 + \boldsymbol{I}_2.$$

当 $t \rightarrow 0$ 时,显然 $I_2 \rightarrow 0$.

由于 F 是 G-可导的,故 $\frac{1}{t} || F(\boldsymbol{x} + t\boldsymbol{h}) - F(\boldsymbol{x})|$ 有界. 从而对于 $0 < |t| < \delta$ 中使得 $F(\boldsymbol{x} + t\boldsymbol{h}) \neq F(\boldsymbol{x})$ 的任一 t 值,我们有

$$\begin{split} \boldsymbol{I}_1 = & \frac{\|F(\boldsymbol{x} + t\boldsymbol{h}) - F(\boldsymbol{x})\|}{t} \times \\ & \frac{\|G(F(\boldsymbol{x} + t\boldsymbol{h})) - G(F(\boldsymbol{x})) - G'(F(\boldsymbol{x}))[F(\boldsymbol{x} + t\boldsymbol{h}) - F(\boldsymbol{x})]\|}{\|F(\boldsymbol{x} + t\boldsymbol{h}) - F(\boldsymbol{x})\|} \\ & \rightarrow \|F'(\boldsymbol{x})\boldsymbol{h}\| \times 0 = 0. \end{split}$$

5 中值定理

5.1 中值定理不等式

- 1) $||F(y) F(x)|| \le \sup_{0 \le t \le 1} ||F'(x + t(y x))|| ||y x||;$
- 2) $||F(y) F(z) F'(x)(y z)|| \le \sup_{0 \le t \le 1} ||F'(z + t(y z)) F'(x)|| ||y z||.$

5.2 积分中值定理

若 $F: \mathbb{D} \subset \mathbb{R}^n \to \mathbb{R}^m$ 在凸集 $\mathbb{D}_0 \subset \mathbb{D}$ 上 G-可导,且 F' 在 \mathbb{D}_0 上半连续,则对任何 $x, y \in \mathbb{D}_0$,有

$$F(y) - F(x) = \int_0^1 F'(x + t(y - x))(y - x) dt.$$
 (5.1)

6 Holder 连续

设 $F: \mathbb{D} \subset \mathbb{R}^n \to \mathbb{R}^m$ 在凸集 $\mathbb{D}_0 \subset \mathbb{D}$ 上连续可导,且 F' 满足

$$\|F'(\boldsymbol{x}) - F'(\boldsymbol{y})\| \leqslant \alpha \|\boldsymbol{x} - \boldsymbol{y}\|^p, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{D}_0,$$
 (6.1)

其中 $\alpha \ge 0, p \ge 0$ 为常数,则对任何 $x, y \in \mathbb{D}_0$,有

$$||F(y) - F(x) - F'(x)(y - x)|| \le \frac{\alpha}{1+p} ||y - x||^{1+p}$$

推导

证: 由式 (5.1) 和式 (6.1), 有

$$||F(\mathbf{y}) - F(\mathbf{x}) - F'(\mathbf{x})(\mathbf{y} - \mathbf{x})|| = \left\| \int_0^1 \left[F'(\boldsymbol{x} + t(\boldsymbol{y} - \boldsymbol{x})) - F'(\boldsymbol{x}) \right] (\boldsymbol{y} - \boldsymbol{x}) dt \right\|$$

$$\leq \int_0^1 ||F'(\boldsymbol{x} + t(\boldsymbol{y} - \boldsymbol{x})) - F'(\boldsymbol{x})|| ||\boldsymbol{y} - \boldsymbol{x}|| dt$$

$$\leq \alpha ||\mathbf{y} - \boldsymbol{x}||^{1+p} \int_0^1 t^p dt$$

$$= \frac{\alpha}{1+p} ||\mathbf{y} - \boldsymbol{x}||^{1+p}.$$

当映射 $F: \mathbb{D} \subset \mathbb{R}^n \to \mathbb{R}^m$ 在开集 $\mathbb{D}_0 \subset \mathbb{D}$ 上 G-可导时其 G-导数显然属于 $L(\mathbb{R}^n, \mathbb{R}^m)$ 。

这样就得到一个映射 $F': \mathbb{D}_0 \subset \mathbb{R}^n \to \mathbb{L}(\mathbb{R}^n, \mathbb{R}^m)$, 称为 F 的 **导映射**. 因此可以研究导映射 F' 的可微性.

7 凸泛函

泛函 f(x) 强凸的 充要条件 是存在 c > 0 使得

$$f(x) - c||x||_2^2$$

为凸泛函

推导

凸泛函定义

若对 $\forall x \neq y \in \mathbb{D}_0$ 和 $\forall \lambda \in (0,1)$, 有

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y), \tag{7.1}$$

则称 f 为 \mathbb{D}_0 上的凸泛函;

充分性: 设 x, y, λ 如凸函数定义中所定义. 设存在 c > 0 使得 $f(x) - c||x||_2^2$ 为凸泛函,则由 (7.1) 有

$$f(\lambda x + (1 - \lambda)y)$$

$$\leq \lambda f(x) + (1 - \lambda)f(y) + c||\lambda x + (1 - \lambda)y||_{2}^{2} - \lambda c||x||_{2}^{2} - (1 - \lambda)c||y||_{2}^{2}$$

$$= \lambda f(x) + (1 - \lambda)f(y) + c(2\lambda(1 - \lambda)x^{T}y - \lambda(1 - \lambda)(||x||_{2}^{2} + ||y||_{2}^{2}))$$

$$= \lambda f(x) + (1 - \lambda)f(y) - c\lambda(1 - \lambda)||x - y||_{2}^{2},$$

即 f(x) 强凸.

强凸定义

若存在常数 c > 0, 使对上述 x, y, λ 有

$$f(\lambda x + (1 - \lambda)y) + c\lambda(1 - \lambda)\|x - y\|^2 \leqslant \lambda f(x) + (1 - \lambda)f(y), \tag{7.2}$$

则称 f 在 \mathbb{D}_0 上是强凸的

必要性: 设 f(x) 强凸,则由 (7.2)可知存在 c > 0 使得

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y) - c\lambda (1 - \lambda) \|x - y\|_2^2$$

成立. 由于充分性证明中不等式右端皆为等式, 因此得证.

8 同胚映射——向量值扰动定理

设 $A \in \mathbb{L}(\mathbb{R}^n)$ 非奇异 $G: \mathbb{R}^n \to \mathbb{R}^n$ 在闭球 $\overline{\mathbb{S}}_0 = \overline{\mathbb{S}}(\boldsymbol{x}^{(0)}, \boldsymbol{\delta}) \subset \mathbb{D}$ 上满足

$$\|G(x)-G(y)\|\leqslant \alpha\|x-y\|,\quad \forall x,y\in\overline{\mathbb{S}}_0,$$

其中 $0 < \alpha < \beta^{-1}, \beta = \|\mathbf{A}^{-1}\|,$

则由 $F(x) = \mathbf{A}x - G(x)$ 定义的映射 $F: \overline{\mathbb{S}}_0 \to \mathbb{R}^n$ 是 $\overline{\mathbb{S}}_0$ 与 $F(\overline{\mathbb{S}}_0)$ 之间的一个同胚映射.

此外,对 $\forall \boldsymbol{y} \in \overline{\mathbb{S}}_1 = \mathbb{S}\left(F\left(\boldsymbol{x}^{(0)}\right), \sigma\right)$,其中 $\sigma = (\beta^{-1} - \alpha)\delta$,方程 $F(\boldsymbol{x}) = \boldsymbol{y}$ 在 $\overline{\mathbb{S}}_0$ 中有唯一解。

因此,特别有 $\overline{\mathbb{S}}_1 \subset F(\overline{\mathbb{S}}_0)$

推导

1) 对固定的 $\mathbf{y} \in \overline{\mathbb{S}}_1$, 作映射 $H : \overline{\mathbb{S}}_0 \to \mathbb{R}^n$:

$$F(x) = Ax - G(x)$$
, 则有 $G(x) = Ax - F(x)$ 和 $x = A^{-1}F(x)^{-1}A^{-1}G(x)$

$$H(x) = A^{-1}(G(x) + y) = x - A^{-1}(F(x) - y).$$

显然, F(x) = y 在 $\overline{\mathbb{S}}_0$ 中有唯一解的充分必要条件是:

H 在 $\overline{\mathbb{S}}_0$ 中有 **唯**一的不动点.

注意,对 $\forall x, z \in \overline{\mathbb{S}}_0$,有

$$||H(x) - H(z)|| = ||A^{-1}[G(x) - G(z)]|| \le \beta \alpha ||x - z||.$$

因 $\beta \alpha < 1$, 故 H 在 $\overline{\mathbb{S}}_0$ 上是压缩映射. 又对 $\forall x \in \overline{\mathbb{S}}_0$, 有

$$\begin{aligned} \left\| H(\boldsymbol{x}) - \boldsymbol{x}^{(0)} \right\| &\leq \left\| H(\boldsymbol{x}) - H\left(\boldsymbol{x}^{(0)}\right) \right\| + \left\| H\left(\boldsymbol{x}^{(0)}\right) - \boldsymbol{x}^{(0)} \right\| \\ &\leq \beta \alpha \left\| \boldsymbol{x} - \boldsymbol{x}^{(0)} \right\| + \beta \left\| F\left(\boldsymbol{x}^{(0)}\right) - \boldsymbol{y} \right\| \\ &\leq \beta \alpha \cdot \delta + \beta \cdot \sigma = \delta, \end{aligned}$$

因此 $_{,}H$ 将 $\overline{\mathbb{S}}_{0}$ 映入自身,即 $_{H}$ $(\overline{\mathbb{S}}_{0})\subset\overline{\mathbb{S}}_{0}$,由压缩映射原理 $_{,}H$ 在 $\overline{\mathbb{S}}_{0}$ 中有唯一不动点.

故方程 F(x) = y 在 $\overline{\mathbb{S}}_0$ 中有唯一解,从而 F 在 $\overline{\mathbb{S}}_0$ 上为双射

2) 现证 F^{-1} 在 $F(\overline{\mathbb{S}}_0)$ 上是连续的.

事实上,由于对 $\forall x, y \in \overline{\mathbb{S}}_0$ 有

由于 $x = A^{-1}F(x)^{-1}A^{-1}G(x)$, 故

$$\|\boldsymbol{x} - \boldsymbol{y}\| = \|\boldsymbol{A}^{-1}[F(\boldsymbol{x}) - F(\boldsymbol{y})] + \boldsymbol{A}^{-1}[G(\boldsymbol{x}) - G(\boldsymbol{y})]\|.$$

$$\leq \boldsymbol{\beta}\|F(\boldsymbol{x}) - F(\boldsymbol{y})\| + \boldsymbol{\beta}\boldsymbol{\alpha}\|\boldsymbol{x} - \boldsymbol{y}\|,$$

即

$$||x - y|| \leqslant \frac{\beta}{1 - \beta\alpha} ||F(x) - F(y)||,$$

故 F^{-1} 连续. 显然,F 本身也是连续的,因此,F 是同胚映射

9 迭代格式的构造

对迭代格式 $x^{(k)} = G(x^{(k-1)}), \quad k = 1, 2, \cdots$

- 1) 如果 G不依赖于迭代步数 k, 且 $x^{(k)}$ 只依赖于 $x^{(k-1)}$, 此时称式为 **单步定常 迭代**.
- 2) 如果 G依赖于迭代步数 k, 但 $\mathbf{x}^{(k)}$ 只依赖于 $\mathbf{x}^{(k-1)}$, 此时迭代形式可表示为

$$x^{(k)} = G_k(x^{(k-1)}), \quad k = 1, 2, \cdots.$$
 (9.1)

称式 (9.1) 为 单步非定常迭代.

3) 如果 G 不依赖于迭代步数 k, 但 $x^{(k)}$ 依赖于相邻的 m 个迭代值

$$x^{(k-1)}, x^{(k-2)}, \cdots, x^{(k-m)},$$

此时迭代格式可表述为

$$x^{(k)} = G(x^{(k-1)}, x^{(k-2)}, \dots, x^{(k-m)}), \quad k = m, m+1, \dots$$
 (9.2)

称式 (9.2) 为 m 步定常迭代.

4) 如果 G依赖于迭代步数 k, 且 $x^{(k)}$ 依赖于相邻的 m 个迭代值

$$x^{(k-1)}, x^{(k-2)}, \cdots, x^{(k-m)},$$

此时迭代格式可表述为

$$x^{(k)} = G_k(x^{(k-1)}, x^{(k-2)}, \dots, x^{(k-m)}), \quad k = m, m+1, \dots$$
 (9.3)

称式 (9.3) 为 步非定常迭代

10 Ostrowski 定理

Ostrowski 定理

矩阵范数为谱半径的"上确界"

即对任意 $\varepsilon > 0$,存在 A 的一种矩阵范数 $\|\cdot\|_{\varepsilon}$,使得

$$||A||_{\varepsilon} \leq \rho(A) + \varepsilon.$$

设映射 $G: \mathbb{D} \subset \mathbb{R}^n \to \mathbb{R}^n$ 有一个不动点 $x^* \in int(\mathbb{D})$, 且在 x^* 处为 F-可导, $G'(x^*)$ 的谱半径

$$\rho\left(G'\left(\boldsymbol{x}^{*}\right)\right)=\sigma<1.$$

则存在开球 $\mathbb{S} = \mathbb{S}(\boldsymbol{x}^*, \boldsymbol{\delta}) \subset \mathbb{D}$,对任意初值 $\boldsymbol{x}^{(0)} \in \mathbb{S}, \boldsymbol{x}^*$ 是式 $x^{(k)} = G(x^{(k-1)})$ 的吸引点.

推导

只需验证式 $||G(x) - G(x^*)|| \le \alpha ||x - x^*||$ 成立即可.

因 σ < 1, 故可取 ε > 0, 使 σ + 3 ε < 1

对 $\varepsilon > 0$, 存在一种范数 $\|\cdot\| \varepsilon$, 使

$$||G'(\boldsymbol{x}^*)||_{\varepsilon} \leqslant \sigma + \varepsilon.$$

另一方面,由 G 在 x^* 处 F-可导和 F-导数的定义可知,对上述 $\varepsilon > 0$,存在 $\delta > 0$,使得对 $\forall x \in \mathbb{S} = \mathbb{S}(x^*, \delta) \subset \mathbb{D}$ 有

$$\|G(x) - G(x^*) - G'(x^*)(x - x^*)\|_{\varepsilon} \le \varepsilon \|x - x^*\|_{\varepsilon}.$$

于是

$$\begin{aligned} \|G(\boldsymbol{x}) - G\left(\boldsymbol{x}^*\right)\|_{\varepsilon} & \leq \left\|G(\boldsymbol{x}) - G\left(\boldsymbol{x}^*\right) - G'\left(\boldsymbol{x}^*\right)\left(\boldsymbol{x} - \boldsymbol{x}^*\right)\right\|_{\varepsilon} + \\ & \left\|G'\left(\boldsymbol{x}^*\right)\left(\boldsymbol{x} - \boldsymbol{x}^*\right)\right\|_{\varepsilon} \\ & \leq \left(\boldsymbol{\sigma} + 2\varepsilon\right) \|\boldsymbol{x} - \boldsymbol{x}^*\|_{\varepsilon} \end{aligned}$$

由 $\sigma + 2\varepsilon < 1$, 我们有 $||G(x) - G(x^*)|| \le \alpha ||x - x^*||$ 成立.

根据吸引点定理,本定理得证.

吸引点定理

设 x^* 是式 x=G(x) 的解 $,G:\mathbb{D}\subset\mathbb{R}^n\to\mathbb{R}^n.$ 若存在一个开球 $\mathbb{S}=\mathbb{S}\left(\boldsymbol{x}^*,\delta\right)=\{\boldsymbol{x}\mid\|\boldsymbol{x}-\boldsymbol{x}^*\|<\delta,\delta>0\}\subset\mathbb{D}$ 和常数 $\alpha\in(0,1)$,使得对一切 $x\in\mathbb{D}$,有

$$||G(x) - G(x^*)|| \le \alpha ||x - x^*||.$$

则对任意 $x^{(0)} \in \mathbb{S}, \boldsymbol{x}^*$ 是式 $x^{(k)} = G(x^{(k-1)})$ 的吸引点

11 Kantorovich 定理

设 $F: \mathbb{D} \subset \mathbb{R}^n \to \mathbb{R}^n$, 初始点 $x^{(0)}$ 满足:

1) $[F'(x^{(0)})]^{-1}$ 存在,且

$$\left\| \left[F'\left(x^{(0)}\right) \right]^{-1} \right\| \leqslant \beta,$$

$$\left\| \left[F'\left(x^{(0)}\right) \right]^{-1} F\left(x^{(0)}\right) \right\| \leqslant \eta;$$

2) 在 $x^{(0)}$ 的邻域 $\mathbb{S}(\boldsymbol{x}^{(0)},\delta)$ 内 $F'(\boldsymbol{x}^{(k)})$ 存在并满足 Lipschitz 条件

$$||F'(x) - F'(y)|| \leqslant \gamma ||x - y||, \quad \forall x, y \in \mathbb{S}\left(x^{(0)}, \delta\right),$$

并且

$$\rho = \beta \eta \gamma \leqslant \frac{1}{2},$$

$$\delta \geqslant \frac{1 - \sqrt{1 - 2\rho}}{\rho} \eta,$$

则式 F(x) = 0 至少有一个解 $x^* \in \mathbb{S}(x^{(0)}, \delta)$, 且由式 $x^{(k+1)} = x^{(k)} - [F'(x^{(k)})]^{-1}F(x^{(k)})$ 产生的序列 $\{x^{(k)}\}$ 收敛于 x^* , 并有估计式

$$||x^{(k)} - x^*|| \le \frac{\theta^{2^k - 1}}{\sum_{i=0}^{2^k - 1} \theta^{2i}} \eta,$$

其中

$$\theta = \frac{1 - \sqrt{1 - 2\rho}}{1 + \sqrt{1 - 2\rho}}.$$

12 非精确 Newton 法

非精确 Newton 法是为弥补 Newton 法计算量大的不足而提出来的.

顾名思义, 非精确 Newton 法在 Newton 法的每步迭代中只对 Newton 方程进行非精确求解. 非精确 Newton 法实质上是一类内外迭代算法, 其外迭代为经典 Newton 法, 而其内迭代可采用任何线性迭代方法.

这种内外迭代技术由于能够充分利用 Jacobi 矩阵的结构和稀疏性, 因此可以大大降低 Newton 法的计算代价.

Algorithm 1 Solving Nonlinear Equations with Inexact Newton Method

- 1: for $k = 0, 1, 2, \ldots$ until convergence(直到收敛) do
- 2: Choose $\bar{\eta}_k \in [0, 1)$;
- 3: Solve the inexact Newton equation

$$F'\left(x^{(k)}\right)s = -F\left(x^{(k)}\right) \tag{12.1}$$

to obtain $s^{(k)}$ such that

$$||r^{(k)}|| = ||F(x^{(k)}) + F'(x^{(k)}) s^{(k)}|| \le \eta_k ||F(x^{(k)})||$$
(12.2)

- 4: Set $x^{(k+1)} := x^{(k)} + s^{(k)}$:
- 5: end for

算法描述了非精确 Newton 法的一般框架,

其中 $\bar{\eta}_k$ 为第 k 步迭代的 **控制阈值**, $\bar{s}^{(k)}$ 为 **非精确** Newton **步** ,而式 (12.2) 则称作 **非精确** Newton **条件**