8-bit Calculator

By Team Exemplary

Asm Nurussafa Tasawar Siddiquy Arfat Kamal Nirojan Navaratnarajah

For the module Hardware Engineering.

Agenda

- 1) Introduction.
- 2) Concept description.
- 3) Technologies.
- 4) Implementation.
- 5) Results.
- 6) PCB Design + PCB Layout.
- 7) BOM list.
- 8) Summary.

1. Introduction

2. Concept Description

Block Diagram

3. Technologies

VHDL:

- The VHSIC Hardware Description Language (VHDL) is a hardware description language (HDL) that can model the behavior and structure of digital systems at multiple levels of abstraction.
- For our project is helps mainly for developing a code, checking syntax, compiling and the main advantage is that it provides the facility to simulate the code, with a very user friendly user interface.

AutoCAD Eagle:

- EAGLE is electronic design automation (EDA) software that lets printed circuit board (PCB) designers easily connect schematic diagrams, component placement, PCB routing, and comprehensive library content.
- For this project it was a requirement to design a PCB which includes integration of FPGA module, switches for inputs, and 7 Segment displays.
- We designed a two-layer PCB using AutoDesk Eagle.

FPGA:

- FPGA (Field Programmable Gate Array) is a hardware circuit (IC's) that a user can program to carry out one or more logical operations.
- For this calculator project, the FPGA used is EP4CE22E22C8N from Intel.
 The library used is from Ultralibrarian.com.
- FPGA specifications used:
- FPGA CycloneR IV E Family.
- 22320 Cells 60 nm technology.
- 1.2 V.
- 144-Pin EQFP EP.

Xilinx ISE (Integrated Synthesis Environment):

- The Xilinx ISE is primarily used for circuit synthesis and design.
- The User constraint file (.ucf) is used for mapping the ports of the VHDL code with the physical pins of the FPGA.

4. Implementation

Components:

- A. 8-bit Adder.
- B. 8-bit Subtractor.
- C. 8-bit Multiplier.
- D. (Upto 16-bit) Divider.
- E. 4:1 MUX.
- F. BCD and 7-segment display.

A. Adder/Subtractor

C. Multiplier

56 Full Adders

D. Divider (Block Diagram)

D. Divider (Finite-State Machine)

E. Multiplexer

F. BCD and 7-segment display

ModelSim Simulation

"00" - (Division)

Assert/ report for verification

```
Severity NOTE/FAILURE

VSIM 10 > run

* ** Note: passed test for calculation

* Time: 200 ns Iteration: 0 Instance: /fin_decode_tb

* ** Note: passed test for calculation

* Time: 250 ns Iteration: 0 Instance: /fin_decode_tb
```

FPGA

Library downloaded from <u>Ultralibrarian.com</u>

EP4CE22E22C8N from Intel.

- FPGA CycloneR IV E Family
- 22320 Cells 60 nm Technology
- ❖ 1.2V
- ❖ 144-Pin EQFP EP

RTL Schematic

Technology schematic

PCB Schematic diagram

PCB layout

- Layout Size : 4610 x 3453 mil
- Auto routing + manual routing

PCB - (Printed Circuit Board) No. of layers -2

Front View (Top layer)

Rear View (bottom layer)

Track width 6 mil.

7. BOM List and estimated price of PCB

Qty Value	Device	Package	Parts	Description	Unit price	price sum
1	215876-7	215876-7	J1	AMP connector	~ 2\$	2
. 4	7SEG-CA	7SEG-13	D1, D2, D3, D4	7-segment DISPLAY	\$0.84	\$3.36
18	R-US_M1206	M1206	R1- R21	RESISTOR, American symbol	\$0.11	\$1.98
18	2P2T	2P2T	S1-S18	SLIDE SWITCH 2P2T Part No. SS-22F05-G(A)4	\$1.48	\$26.64
:1	EP4CE22E22C8N	EP4CE22E22C8N	FBGA256	_THIN_WIRE-BOND-A:1.55_	\$71.04	\$71.04
Total cost						\$105.02

Total Component Cost only = ~\$105.02

Further requirements

- Inclusion of Power supply for the PCB.
- Implementation of JTAG programmer.
- Use of Oscillator/Clock module.

Testing/refining

- Should meet the EMC Regulations
- EMI requirements/tests.
- Output/Input ports accessibility. (e.g ;power jack)
- Refine the distance between traces.

8. Summary

- How to implement combinational and sequential logics in VHDL.
- How to simulate VHDL codes using ModelSim.
- How to synthesize using Xilinx ISE.
- How to choose the right library and components for PCB.
- How to design PCB boards using AutoDesk Eagle.

Resources

- 1. https://www.facebook.com/cyhardwareengineer/
- 2. https://www.101computing.net/binary-subtraction-using-logic-gates/8-bit-subtractor-block-diag ram-using-full-adders/