Nasheed Jafri

Bloomington, IN | (260) 508-9096 | njafri@iu.edu | Webpage: nashjafri.github.io | LinkedIn: in/nasheedjafri

E	$\overline{}$	 \sim	Λ-	ГΙ	О	N
-			Δ			1

Ph.D. Mathematics (Ph.D. Minor in Data Science) Indiana University, Bloomington, IN	GPA: 3.98	Aug 2020 - May 2026
M.S. Applied Statistics Indiana University, Bloomington, IN	GPA: 4.00	Jan 2024 - May 2026
M.S. Mathematics Indian Institute of Technology, Delhi, India	GPA: 3.80	Aug 2018 - May 2020
B.S. Mathematics (Honors) University of Delhi, India	GPA: 3.82	Aug 2014 - May 2017
PROFESSIONAL EXPERIENCE		
INMAS - Internship Network in Mathematical Sciences, Urbana - Champaign, IL		
Data Science Trainee		Sep 2024 - Feb 2025
 Analyzed Redfin housing data using multilinear regression in Python to model price va different U.S. cities and presented analytical findings to a technical audience. 	riations across	
 Performed EDA, hypothesis testing, and employed forward, backward, and stepwise moderate predict wine quality based on physicochemical attributes from the Vinho Verde wine dataset 		
Indiana University, Bloomington, IN		
Associate Instructor in Linear Algebra for Data Science		Aug 2024 - May 2025
 Mentored students in foundational linear algebra concepts relevant to data science, ir operations, least squares, gradient descent, singular value decomposition, clustering and P. Designed interactive group learning sessions to reinforce practical applications in data analysis 	CA.	
	ysis and ivic.	Ion 2024 May 2024
Assistant Instructor in Probability and Statistics for Data Science Developed curriculum to apply data analysis to real-world problems in social and natural sc	ioncoc	Jan 2024 - May 2024
 Taught key concepts including statistical inference, hypothesis testing, maximum likeliho 		
central limit theorem, bootstrap resampling, chi-square tests, and their applications in data		
REU Mentor	anarysis.	Aug 2022 - Dec 2022
 Supervised a group of undergrad students in a graduate-level research project on Fourier To 	ransform	Aug 2022 DCC 2022
PhD Research - Linear Algebra and Matrix Theory		Jan 2021 - May 2026
 Developed a novel algorithm to construct invariant subspaces of nilpotent matrices using to 	ahlaauv	Jan 2021 - Ividy 2020
 Applied combinatorial methods to Linear Algebra and Matrix Theory, proving unique 		
algorithm- constructed invariant subspaces using discrete structures called puzzles and hole		
G	,	

PROJECTS	
Loan Default Prediction for Home Credit	Aug 2024 - Dec 2024
 Collaborated with a team of data scientists to predict loan defaults for Home Credit using Machine Learning in Python on large datasets containing 300k to 27 million samples, achieving 92% test accuracy. Led the EDA and feature engineering phase, handled missing values and performed correlation analysis. Built and optimized models (Logistic Regression, Decision Trees, Random Forests, Gradient Boosting, XGBoost, SVC and MLP neural networks) using PCA and ensemble methods like voting and stacking. 	<u>Link</u> <u>GitHub Repository</u>
Approximate Bayesian Computation for Disease Outbreak	Aug 2024 - Dec 2024
 Implemented Approximate Bayesian Computation in R to fit an epidemic model for influenza outbreaks. Built custom functions for parameter sampling, data simulation, and ABC rejection sampler algorithm. Performed model comparisons by estimating posterior probabilities to analyze variations in infection transmission rates across outbreaks of the same strain and different strains of the virus. 	<u>Link</u> GitHub Repository

SKILLS

- Programming: Python, R, SQL, C
- Database Technologies: MySQL, PostgreSQL, pgAdmin, MySQLWrokbench
- Web Technologies: HTML, CSS, MAMP
- Tools/Platforms: Jupyter, Google Colab, GitHub (Version Control), R Studio, Conda, Docker
- Python Libraries: Pandas, NumPy, Scikit-learn, TensorFlow, PyTorch, Statsmodels, Matplotlib, Seaborn, SciPy, LightGBM, XGBoost
- Data Analysis: EDA, Data Cleaning/Preprocessing, Feature Engineering, Feature Selection, Dimensionality Reduction, Data Aggregation
- Machine Learning: Regression (Linear, Logistic, Ridge, LASSO), Classification (SVM, Decision Trees, Naive Bayes, k-NN), MLP, Neural Networks, Random Forest, Clustering, Principal Component Analysis, Hyperparameter Tuning, Cross-Validation, ML Pipelines
- Statistics: Generalized Linear Models, Hypothesis Testing, Bayesian Inference, ANOVA, Model Selection, Monte Carlo Simulations
- Mathematics: Linear Algebra, PDEs, Numerical Analysis, Graph Theory, Dynamical Systems, Linear Programming, Optimization

COURSEWORK