ESCALAS DE MEDIDA

 π

PROF^a ANA CRISTINA BRAGA

π ESCALAS

- Nominal
- >Ordinal
- >Intervalar
- >Proporcional

PROF^a ANA CRISTINA BRAGA

NOMINAL

- Dados em categorias não ordenadas
- › Variáveis classificadas por uma qualidade que possuem, um atributo
- >Podem ser representadas por números sem significado

>Exemplos:

 Fenótipos genéticos; cor dos olhos; sexo; categorias taxonómicas

PROF^a ANA CRISTINA BRAGA

π

ORDINAL

- Ordem das categorias é importante
- Diferenças relativas e não quantitativas
- >Podem ser representadas por números sem significado a não ser pela ordem

>Exemplos:

 Classificação de ferimentos: 1-fatal, 2-grave, 3moderado, 4-ligeiro; queimaduras, graus 1,2 e 3; alturas ou pesos ordenados em classes

PROF^a ANA CRISTINA BRAGA

INTERVALAR

- >Escalas que possuem um intervalo constante mas não têm um zero absoluto
- ›Não é possível calcular razões porque o zero é arbitrário

>Exemplos:

■Temperaturas em graus Celsius ou Fahrenheit – 20°C(68°F), 25°C(77°F), 5°C(41°F),10°C(50°F); dados circulares, tempo ou orientação

PROF^a ANA CRISTINA BRAGA

π

PROPORCIONAL

- Existe um intervalo de tamanho constante entre unidades adjacentes
- >Existe um zero com significado físico

>Exemplos:

■Comprimentos – 30 cm (11.8 in), 60 cm (23.6 in); pesos; contagens, volumes, capacidades, velocidades, tempos de duração

PROF⁸ ANA CRISTINA BRAGA

π

DADOS

- Contínuos existe um valor possível entre dois valores possíveis
 - um comprimento pode tomar uma qualquer valor entre dois limites
- Discretos a variável só pode tomar certos valores
 - número de folhas de uma planta, o número de glóbulos brancos

PROF® ANA CRISTINA BRAGA

π

DISTRIBUIÇÕES DE FREQUÊNCIA

- Tabelas de Frequência
 - listagem de todos os valores observados e determinação do número de vezes que um valor é observado

PROF^a ANA CRISTINA BRAGA

EXEMPLO

Classe	Pigmentação	N°
0	Sem	13
1	Ligeira	68
2	Moderada	44
3	Forte	21
4	Cheia	8

Número de peixes tabulados de acordo com a pigmentação preta

PROF^a ANA CRISTINA BRAGA

 π

FREQUÊNCIAS

Pigme ntação

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	Sem	13	8.4	8.4	8.4
	Ligeira	68	44.2	44.2	52.6
	Moderada	44	28.6	28.6	81.2
	Forte	21	13.6	13.6	94.8
	Cheia	8	5.2	5.2	100.0
l	Total	154	100.0	100.0	

- > tabela=data.frame(Pigmentação,N°,fre.relativas,acum.abs)
- > tabela

Pigmentação Nº fre.relativas acum.abs Sem 13 Ligeira 68 0.08441558 2 0.44155844 81 0.28571429 Moderada 44 125 3 Forte 21 0.13636364 146 4 Cheia 8 0.05194805 154

π

GRÁFICOS DE BARRAS (SPSS)

PROF^a ANA CRISTINA BRAGA

π

GRÁFICOS DE BARRAS (R)

PROF[®] ANA CRISTINA BRAGA

EXEMPLO

4	18	8	25	5.5	7
7	26	8	16	2	1
12	3	2	9	16	4
21	7	13	27	8	8
27	4	34.5	19	7	5
18	9	12	16	2	6
12	10	7	21	3	1
0.5	11	10	13	4	5
20	1.5	5	7	12	2
8.5	12	5	10	18	0.5

A tabela apresenta os tempos de espera numa fila de supermercado de sujeitos selecionados aleatoriamente

PROF^a ANA CRISTINA BRAGA

π

CONSTRUÇÃO

- Número de observações, n
- >Amplitude, R
- Número de classes, k
- -Regra de Sturges

$$k = 1 + 3.3\log(n)$$

- >Intervalo de classe, R/k
- >Extremos de classe

n	k
25	5-6
50	6-7
100	7-8
500	9-10
1000	10-11

CONSTRUÇÃO

- > Número de observações, n=60
- > Amplitude, R=34.5-0.5 = 34.0
- > Número de classes, k=7
- > Intervalo de classe, R/k=34/7≈4.8≈5.0
- > Extremos de classe, min=0.5

Classe	fi
[0,5[15
[5,10[19
[10,15[11
[15,20[7
[20,25[3
[25,30[4
[30,35[1

PROF^a ANA CRISTINA BRAGA

π

ESTATÍSTICAS

Statistics

N	Valid	60
1	Missing	0
Mean		10.267
Median		8.000
Std. Deviation		7.7462
Variance		60.0040
Range		34.0
Minimum		.5
Maximum		34.5
Percentiles	10	2.000
:	20	4.000
	25	4.250
	30	5.000
	40	7.000
	50	8.000
	60	10.000
	70	12.000
:	75	15.250
	80	17.600
	90	21.000

> mean(filas_espera\$tempos)
[1] 10.26667

> var(filas_espera\$tempos)
[1] 60.00395
> sd(filas_espera\$tempos)
[1] 7.746222

> median(filas_espera\$tempos)
[1] 8

> fivenum(filas_espera\$tempos)
[1] 0.5 4.5 8.0 14.5 34.5

> summary(filas_espera\$tempos) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.50 4.75 8.00 10.27 13.75 34.50

> IQR(filas_espera\$tempos)
[1] 9

> quantile(filas_espera\$tempos, probs=c(10,20,25,30,40,50,60,70,75,80,90)/100)
10% 20% 25% 30% 40% 50% 60% 70% 75% 80% 90%
2.00 4.00 4.75 5.00 7.00 8.00 10.00 12.00 13.75 16.40 21.00

PROF^a ANA CRISTINA BRAGA

calcula as estatístic

π

HISTOGRAMA

PROF^a ANA CRISTINA BRAGA

 π

CAIXA DE BIGODES

MEDIDAS DE LOCALIZAÇÃO

$$\rightarrow$$
 Média aritmética $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$ $\bar{X} = \frac{\sum_{i=1}^{k} f_i X_i}{n}$

$$Md = X_{(n+1)/2}$$

Quartis
$$Q_1 = X_{(n+1)/4}$$
 $Q_2 = Md$ $Q_3 = X_{(n+1-\text{subscrito de }Q_1)}$

PROF^a ANA CRISTINA BRAGA

 π

Média, Mediana e Moda

MEDIDAS DE DISPERSÃO

> Amplitude

- $R = X_{(n)} X_{(1)}$
- > Distância interquartílica
- $IQR = Q_3 Q_1$

→ Variância

 $s^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{n-1}$

Desvio padrão

- $s = \sqrt{s^2} = \sqrt{\frac{\sum_{i=1}^{n} (x_i \overline{x})^2}{n-1}}$
- > Coeficiente de variação
- $V = \frac{s}{\overline{X}}$

PROF® ANA CRISTINA BRAGA

π

Densidade e box-plot

