V/F	Es. 1	Es. 2	Voto	
/12	/10	/10	/32	

Sapienza Università di Roma, Corso di Laurea in Informatica - canale telematico (a.a. 2022/2023)

Prova scritta di Calcolo Differenziale - 5 Aprile 2023

Nome e Cognome (in stampatello):

Numero matricola:

NOTA BENE: devono essere riconsegnati <u>soltanto</u> i fogli contenenti i testi degli esercizi. È vietato usare testi, appunti e strumenti elettronici di ogni tipo. Ogni affermazione negli esercizi a risposta aperta deve essere motivata dettagliatamente! È possibile utilizzare anche il retro dei fogli per inserire i calcoli. Il tempo a disposizione per la prova è di 2h.

Domande V/F

NOTA BENE: +1 risposta esatta, -0.5 risposta sbagliata, 0 risposta assente

1. Sia data la successione numerica reale

$$a_n = (-1)^n \frac{n}{1 - n^2}$$

1A	a_n è infinitesima	V	F
1B	la successione $b_n = (-1)^n a_n$ non ammette limite finito per $n \longrightarrow \infty$	V	F
1C	la successione $c_n = (a_n)^2$ è limitata	V	F
1D	a_n è indeterminata	V	F

2. Sia data la funzione

$$f(x) = \sin x + \cos 2x$$

2A	f ammette asintoti orizzontali	V	F	
2B	f non ammette punti né di massimo né di minimo relativi	V	F	
2 C	f è decrescente su $\mathbb R$	V	F	
2D	l'insieme immagine di f è tutto \mathbb{R}	V	F	

3. Sia

$$f(x) = x^3 + 3x^2 - 1.$$

3A	L'insieme immagine di f è l'insieme \mathbb{R} .	V	F
3B	La funzione f è invertibile	V	F
3 C	La funzione f ha esattamente tre zeri reali.	V	F
3D	f è convessa in tutto il suo dominio	V	F

Esercizio 1

(1) Per quali valori di α la funzione

$$f(x) = \begin{cases} \alpha x + 2 & \text{se } x \ge 2\\ 2x - 1 & \text{se } x < 2 \end{cases}$$

è derivabile su tutto l'asse reale?

Per la continuità deve essere $\alpha = \frac{1}{2}$. La funzione però non è derivabile (dovrebbe anche essere $\alpha = 2$).

(2) Calcolare l'insieme immagine di $f(x) = \sqrt{1+|x|}$ definita nell'intervallo [-1,2].

La funzione è pari. Considerando solo le $x \ge 0$, abbiamo che f è crescente. Simmetricamente sarà decrescente per x < 0. Allora, essendo continua e definita su un compatto, la funzione ammette tutti i valori compresi tra f(0) = 1 e il massimo tra $f(-1) = \sqrt{2}$ e $f(2) = \sqrt{3}$. Pertanto $Imf = [1, \sqrt{3}]$.

(3) Studiare continuità e derivabilità della funzione

$$f(x) = \begin{cases} |x| \cdot \log x & \text{per } x > 0\\ 0 & \text{per } x = 0 \end{cases}$$

Classificare poi i suoi punti di non derivabilità.

Il valore assoluto è superfluo, data la definizione di f. Facilmente si trova che f è continua in 0 ma non è ivi derivabile. Nell'origine si ha un punto a tangente verticale.

(4) Calcolare il polinomio di MacLaurin di $f(x) = xe^x$ di grado 2.

Si trova $p(x) = x + x^2$.

Esercizio 2

Studiare la seguente funzione

$$f(x) = 3x^4 - 4x^3$$

In particolare: determinarne il dominio, eventuali simmetrie, studiarne il segno, studiare i limiti agli estremi del dominio, determinare eventuali asintoti, studiarne la continuità, derivabilità, la monotonia, la convessità, determinarne eventuali punti di massimo, di minimo (locali e/o assoluti) e di flesso. Tracciare un grafico qualitativo di f.

La funzione è definita su tutto \mathbb{R} , non è né pari né dispari, non ha asintoti di alcun tipo e tende $a + \infty$ agli estremi dell'asse reale. La funzione cambia segno in x = 0 e $x = \frac{4}{3}$, ha un minimo assoluto in x = 1 ed un flesso in x = 0.