Al Assignment - Short Answer Questions

Part 1: Short Answer Questions
1. Problem Definition (6 points)
Hypothetical AI problem: "Predicting patient hospital readmission within 30 days."
3 Objectives:
Accurately identify patients at high risk of readmission.
2. Reduce hospital costs associated with frequent readmissions.
3. Improve patient outcomes through early interventions.
2 Stakeholders:
- Hospital administrators
- Healthcare providers (e.g., doctors, nurses)
1 Key Performance Indicator (KPI):
- Readmission rate reduction percentage
2. Data Collection & Preprocessing (8 points)
2 Data Sources:
Electronic Health Records (EHR) from hospital databases.
2. Insurance claim data for patient histories.
1 Potential Bias:

Al Assignment - Short Answer Questions

- Demographic bias: If certain groups (e.g., low-income or minority patients) are underrepresented or misrepresented, the model might perform poorly for them.
- 3 Preprocessing Steps:
- 1. Handle missing values in patient records.
- 2. Normalize continuous variables like age, length of stay, or lab results.
- 3. Encode categorical variables such as diagnosis codes or treatment types.
- 3. Model Development (8 points)

Chosen Model & Justification:

- Random Forest: It works well for tabular healthcare data, handles non-linear relationships, is interpretable (feature importance), and reduces overfitting.

Data Splitting:

- 70% for training, 15% for validation, 15% for testing.
- 2 Hyperparameters to Tune:
- 1. Number of trees: Balances model performance and computational cost.
- 2. Maximum tree depth: Prevents overfitting by limiting how deep each tree can grow.
- 4. Evaluation & Deployment (8 points)
- 2 Evaluation Metrics & Relevance:
- 1. AUC-ROC score: Good for measuring how well the model distinguishes between readmission vs. non-readmission cases.

AI Assignment - Short Answer Questions

2. F1-score: Balances precision and recall - important if there is an imbalance.

Concept Drift:

- Concept drift occurs when the statistical properties of input data change over time.
- Monitoring: Regularly compare recent predictions with actual outcomes; retrain the model if drift is detected.
- 1 Technical Challenge during Deployment:
- Scalability: Ensuring the model can handle real-time predictions for thousands of patients.