CLAIMS

What is claimed is:

5

1. A multi-channel integrator comprising:

an integrator input;

an integrator output;

an adder comprising:

a first adder input connected to the integrator input;

a second adder input; and

an adder output;

a delay section comprising:

a delay section input;

a delay section output; and

a plurality of delay elements connected in series between the delay section input and the delay section output; and

a feedback line connecting the delay section output to the second adder input;

wherein the adder output is connected to the delay section input; and

further wherein the delay section output is connected to the integrator output.

- 2. A multi-channel numerically controlled oscillator comprising the integrator of Claim 1.
- 3. The multi-channel numerically controlled oscillator of Claim 2 further5 comprising:
 - a phase incrementer input multiplexer connected to the integrator input; and a sine/cosine generation unit connected to the integrator output.
- 4. The multi-channel numerically controlled oscillator of Claim 2 wherein the numerically controlled oscillator is an M channel numerically controlled oscillator and further wherein the delay section of the integrator comprises at least M delay elements in series.
 - 5. An M channel decimator, wherein M>1, the decimator comprising:
- the integrator of Claim 1 wherein the plurality of delay elements comprises at least M delay elements.
 - 6. The M channel decimator of Claim 5 further comprising:
- a down-sampler having a down-sampler input connected to the integrator output and a down-sampler output; and
 - a differentiator connected to the down-sampler output.

25

7. An N stage multi-channel decimator wherein the decimator comprises an integrator section comprising at least N instances of the integrator of Claim 1 in series.

8. The N stage multi-channel decimator of Claim 7 wherein the decimator is an M channel decimator and further wherein the plurality of delay elements in each integrator comprises at least M delay elements.

5

- 9. An M channel interpolator, wherein M>1, the interpolator comprising: the integrator of Claim 1 wherein the plurality of delay elements comprises at least M delay elements.
- 10 10. The M channel interpolator of Claim 9 further comprising:

an up-sampler having an up-sampler output connected to the integrator input and an up-sampler input; and

a differentiator connected to the up-sampler input.

- 15 11. An N stage multi-channel interpolator wherein the interpolator comprises an integrator section comprising at least N instances of the integrator of Claim 1 in series.
- 12. The N stage multi-channel interpolator of Claim 11 wherein the interpolator is
 20 an M channel interpolator and further wherein each integrator in the integrator section comprises the integrator of Claim 1 and further wherein the plurality of delay elements comprises at least M delay elements.
- 13. The integrator of Claim 1 wherein the integrator is implemented in a programmable device.

5 15. A multi-channel differentiator comprising: a differentiator input; a differentiator output: a subtractor comprising: a first subtractor input; 10 a second subtractor input; and a subtractor output; a delay section comprising: a delay section input connected to the differentiator input; a delay section output; and 15 a plurality of delay elements connected in series between the delay section input and the delay section output; and a feedforward line connecting the differentiator input to the first subtractor input; wherein the delay section output is connected to the second subtractor input; 20 and wherein the subtractor output is connected to the differentiator output.

The integrator of Claim 1 wherein the delay section is implemented in one or

more embedded memory blocks in a programmable device.

14.

16.

An M channel decimator, wherein M>1, the decimator comprising:

the differentiator of Claim 15 wherein the plurality of delay elements comprises at least M delay elements.

- 17. The M channel decimator of Claim 16 further comprising:
- a down-sampler having a down-sampler output connected to the differentiator input and a down-sampler input; and

an integrator connected to the down-sampler input.

- 18. An N stage multi-channel decimator wherein the decimator comprises a
 differentiator section comprising at least N instances of the differentiator of Claim 15 in series.
- 19. The N stage multi-channel decimator of Claim 18 wherein the decimator is an M channel decimator and further wherein the plurality of delay elements in each
 15 differentiator comprises at least M delay elements.
 - 20. An M channel interpolator, wherein M>1, the interpolator comprising: the differentiator of Claim 15 wherein the plurality of delay elements comprises at least M delay elements.

20

21. The M channel interpolator of Claim 20 further comprising:

an up-sampler having an up-sampler input connected to the differentiator output and an up-sampler output; and

an integrator connected to the up-sampler output.

22. An N stage multi-channel interpolator wherein the interpolator comprises a differentiator section comprising at least N instances of the differentiator of Claim 15 in series.

5

- 23. The N stage multi-channel interpolator of Claim 22 wherein the interpolator is an M channel interpolator and further wherein the plurality of delay elements in each differentiator comprises at least M delay elements.
- 10 24. The differentiator of Claim 15 wherein the integrator is implemented in a programmable device.
 - 25. The differentiator of Claim 15 wherein the delay section is implemented in one or more embedded memory blocks in a programmable device.

15

- 26. An N stage, M channel decimator, where M>1, the decimator comprising: an integrator section comprising:
 - an integrator section input comprising a multiplexer comprising M multiplexer inputs and a multiplexer output;

20 an integrator section output; and

N integrators connected in series between the integrator section input and the integrator output, wherein each integrator comprises:

an integrator input;

an integrator output;

	an adder comprising:
	a first adder input connected to the integrator input;
	a second adder input; and
	an adder output;
. 5	a delay section comprising:
	a delay section input;
	a delay section output; and
	M delay elements connected in series between the delay section input and the delay section output; and
10	a feedback line connecting the delay section output to the second adder input;
	wherein the adder output is connected to the delay section input; and
15	further wherein the delay section output is connected to the integrator output;
	a differentiator section comprising:
•	a differentiator section input;
	a differentiator output; and
	N differentiators connected in series between the differentiator input
. 20	and the differentiator output, wherein each differentiator
	comprises:
	a differentiator input;
	a differentiator output:

a subtractor comprising:

		a first subtractor input,
		a second subtractor input; and
		a subtractor output;
		a delay section comprising:
5		a delay section input connected to the differentiator input;
		a delay section output; and
		M delay elements connected in series between the delay section input and the delay section output; and
10		a feedforward line connecting the differentiator input to the first subtractor input;
		wherein the delay section output is connected to the second subtractor input; and
15		wherein the subtractor output is connected to the differentiator output; and
		a down-sampler comprising a down-sampler input connected to the integrator section output and a down-sampler output connected to the differentiator section input.
20	27.	An N stage, M channel interpolator, where M>1, the interpolator comprising:
		a differentiator section comprising:
		a differentiator section input comprising a multiplexer comprising M multiplexer inputs and a multiplexer output;
		a differentiator output; and

a first subtractor input;

	and the differentiator output, wherein each differentiator
	comprises:
	a differentiator input;
5	a differentiator output:
	a subtractor comprising:
•	a first subtractor input;
	a second subtractor input; and
	a subtractor output;
10	a delay section comprising:
	a delay section input connected to the differentiator input;
	a delay section output; and
15	M delay elements connected in series between the delay section input and the delay section output; and
	a feedforward line connecting the differentiator input to the first subtractor input;
	wherein the delay section output is connected to the second subtractor input; and
20	wherein the subtractor output is connected to the differentiator output;
	an integrator section comprising:
	an integrator section input;
	an integrator section output; and

N differentiators connected in series between the differentiator input

and the integrator output, wherein each integrator comprises: an integrator input; an integrator output; 5 an adder comprising: a first adder input connected to the integrator input; a second adder input; and an adder output; a delay section comprising: 10 a delay section input; a delay section output; and M delay elements connected in series between the delay section input and the delay section output; and a feedback line connecting the delay section output to the 15 second adder input; wherein the adder output is connected to the delay section input; and further wherein the delay section output is connected to the integrator output; and 20 an up-sampler comprising an up-sampler input connected to the differentiator section output and an up-sampler output connected to the integrator section input.

N integrators connected in series between the integrator section input

an oscillator input comprising a multiplexer comprising M multiplexer inputs and a multiplexer output; 5 a sine/cosine generator having a generator input; and an integrator comprising: an integrator input connected to the multiplexer output; an integrator output connected to the generator input; an adder comprising: 10 a first adder input connected to the integrator input; a second adder input; and an adder output; a delay section comprising: a delay section input; - 15 a delay section output; and M delay elements connected in series between the delay section input and the delay section output; and a feedback line connecting the delay section output to the second adder input; 20 wherein the adder output is connected to the delay section input; and further wherein the delay section output is connected to the integrator output.

An M channel numerically controlled oscillator, where M>1, the numerically

28.

controlled oscillator comprising:

computer program product comprising: a computer usable medium having computer readable code embodied therein, the computer readable code comprising: 5 computer code for programming a device to create a programmed device, wherein the programmed device comprises: a multi-channel integrator comprising: an integrator input; an integrator output; 10 an adder comprising: a first adder input connected to the integrator input; a second adder input; and an adder output; a delay section comprising: 15 a delay section input; a delay section output; and a plurality of delay elements connected in series between the delay section input and the delay section output; and 20 a feedback line connecting the delay section output to the second adder input; wherein the adder output is connected to the delay section input; and

A computer program product for performing multi-channel integration, the

29.

further wherein the delay section output is connected to the integrator output.

	30.	A computer program product for performing multi-channel differe	ntiation, the
5	compu	ter program product comprising:	•

a computer usable medium having computer readable code embodied therein, the computer readable code comprising:

computer code for programming a device to create a programmed device, wherein the programmed device comprises:

10 a multi-channel differentiator comprising multi-channel differentiator comprising:

a differentiator input;

a differentiator output:

a subtractor comprising:

15

20

a first subtractor input;

a second subtractor input; and

a subtractor output;

a delay section comprising:

a delay section input connected to the differentiator input;

a delay section output; and

a plurality of delay elements connected in series between the delay section input and the delay section output; and

a feedforward line connecting the differentiator input to the first subtractor input;

wherein the delay section output is connected to the second subtractor input; and

5

wherein the subtractor output is connected to the differentiator output.