Московский физико-технический институт Физтех-школа прикладной математики и информатики

МНОГОМЕРНЫЙ АНАЛИЗ, ИНТЕГРАЛЫ И РЯДЫ БИЛЕТЫ К ЭКЗАМЕНУ

II CEMECTP

Лектор: Редкозубов Вадим Витальевич

Автор: Головко Денис Проект на Github

Содержание

1. Преобразование Абеля. Леммы Абеля для последовательностей и интегралов. Несобственные интегралы Римана и их свойства. Критерий Коши. Абсолютная и условная сходимости несобственных интегралов. Интегралы от неотрицательных функций. Признак сравнения и его следствия. Интегралы от знакопеременных функций. Признаки Дирихле и Абеля. Несобственные интегралы с несколькими особенностями.

2

2. Числовые ряды и их свойства. Группировка ряда. Критерий Коши. Абсолютная и условная сходимости рядов. Связь сходимости ряда и интеграла от ступенчатой функции. Ряды с неотрицательными членами. Признак сравнения, интегральный признак. Признаки Коши, Даламбера, Гаусса (б/д). Знакопеременные ряды. Признак Лейбница. Признаки Дирихле (б/д) и Абеля (б/д). Перестановка членов абсолютно сходящегося ряда. Теорема Римана о перестановке (б/д). Произведение абсолютно сходящихся рядов.

8

3. Поточечная и равномерная сходимость функциональных последовательностей и рядов, супремум-критерий. Арифметические свойства. Критерий Коши равномерной сходимости. Непрерывность предельной функции и суммы ряда. Интегрируемость предельной функции и почленное интегрирование ряда. Дифференцируемость предельной функции и почленное дифференцирование ряда. Признаки Вейерштрасса, Дирихле, Абеля равномерной сходимости рядов. Пример ван-дер-Вардена (б/д).

14

4. Степенные ряды. Теорема Коши-Адамара. Радиус и круг сходимости, равномерная сходимость степенных рядов. Теорема Абеля. Дифференцируемость суммы степенного ряда. Теорема единственности, ряд Тейлора. Пример бесконечно дифференцируемой функции, не разлагающейся в степенной ряд. Достаточное условие разложимости функции в степенной ряд. Ряды Тейлора e^x , $\sin x$, $\cos x$, $(1+x)^{\alpha}$, $\ln(1+x)$.

20

5. Метрические и нормированные пространства, p-нормы на \mathbb{R}^n . Топология метрических пространств: открытые и замкнутые множества, их свойства. Предельные точки. Критерии замкнутости множества. Замыкание множества. Подпространства метрического пространства, описание открытых множеств подпространства. Компакты и их свойства. Теорема о секвенциальной компактности. Описание компактов в \mathbb{R}^n . Теорема Больцано-Вейерштрасса. Полные метрические пространства. Полнота пространств \mathbb{R}^n и B(E).

6. Предел функции, отображающей метрическое пространство в метрическое пространство, его свойства. Предел по подмножествам. Равносильные условия непрерывности. Непрерывность композиции. Критерий непрерывности через прообразы. Непрерывные функции на компактах. Теорема Вейерштрасса. Эквивалентность норм в конечномерных пространствах (6/д). Теорема Кантора о равномерной непрерывности. Связные множества в метрических пространствах. Теорема о промежуточном значении. Линейно связные множества. Линейные отображения из \mathbb{R}^n в \mathbb{R}^m , операторная норма.

29

7. Дифференцируемость функции из \mathbb{R}^n в \mathbb{R}^m . Производная по вектору и ее связь с дифференциалом. Дифференцируемость композиции. Связь дифференцируемости функции с дифференцируемостью ее координатных функций. Частные производные, необходимые условия дифференцируемости. Градиент. Матрица Якоби. Достаточные условия дифференцируемости. Частные производные высших порядков. Независимость смешанной производной от порядка дифференцирования. Дифференциалы высших порядков и кратная дифференцируемость. Формула Тейлора с остаточным членом в форме Лагранжа, в форме Пеано (6/д).

34

8. Брусы в \mathbb{R}^n и их объем. Представление открытого множества в виде объединения кубов. Алгебры и σ -алгебры, борелевская σ -алгебра. Внешняя мера Лебега и ее свойства. Измеримые множества, измеримость множеств внешней меры нуль и полупространств. Теорема Каратеодори: σ -алгебра измеримых множеств, мера Лебега и ее счетная аддитивность. Непрерывность меры Лебега. Измеримость брусов, борелевских имножеств. Критерии измеримости множества: приближение борелевскими, приближение брусами. Пример неизмеримого множества.

40

9. Измеримые функции. Согласованность измеримости функций с арифметическими операциями. Измеримость точных граней и предела последовательности измеримых функций. Сходимость почти всюду. Простые функции. Теорема о приближении измеримой функции простыми.

10. Интеграл от неотрицательной простой функции и его свойства. Интеграл от неотрицательной измеримой функции. Монотонность интеграла по функциям и по множествам. Теорема Леви о монотонной сходимости. Аддитивность интеграла по функциям. Счетная аддитивность интеграла по множествам. Неравенство Чебышева. Интеграл Лебега от произвольной измеримой функции. Интегрируемые функции. Одновременная интегрируемость функции и ее модуля. Конечность почти всюду интегрируемой функции. Пренебрежение при интегрировании множествами меры нуль. Монотонность и линейность интеграла. Теорема Лебега о мажорированной сходимости. Связь интеграла Лебега и определенного интеграла Римана. Формула суммирования Эйлера (б/д). Формула Стирлинга.

1. Преобразование Абеля. Леммы Абеля для последовательностей и интегралов. Несобственные интегралы Римана и их свойства. Критерий Коши. Абсолютная и условная сходимости несобственных интегралов. Интегралы от неотрицательных функций. Признак сравнения и его следствия. Интегралы от знакопеременных функций. Признаки Дирихле и Абеля. Несобственные интегралы с несколькими особенностями.

Определение 1. Пусть $\{a_n\}$, $\{b_n\}$ — (комлексные) последовательности, $m \in \mathbb{N}$, и пусть $A_n = \sum_{k=1}^n a_k$ для всех $n \in \mathbb{N}$. Тогда $a_k = A_k - A_{k-1}$ $(A_0 = 0)$, и, значит,

$$\sum_{k=m}^{n} a_k b_k = \sum_{k=m}^{n} (A_k - A_{k-1}) b_k = \sum_{k=m}^{n} A_k b_k - \sum_{k=m-1}^{n-1} A_k b_{k+1}.$$

Справедливо преобразование Абеля:

$$\sum_{k=m}^{n} a_k b_k = A_n b_n - A_{m-1} b_m - \sum_{k=m}^{n-1} A_k (b_{k+1} - b_k).$$

Лемма 1 (Абель). Пусть $\{a_n\}$ — (комплексная) последовательность, $\{b_n\}$ — монотонная последовательность, и пусть $\forall k \mid A_k \mid \leqslant M$. Тогда:

$$\left| \sum_{k=m}^{n} a_k b_k \right| \leqslant 2M(|b_m| + |b_n|).$$

Доказательство. По монотонности $\{b_n\}$ знаки $b_{k+1} - b_k$ сохраняются, поэтому:

$$\left| \sum_{k=m}^{n} a_k b_k \right| \leqslant M \left(|b_n| + |b_m| + \left| \sum_{k=m}^{n-1} (b_{k+1} - b_k) \right| \right) = M \left(|b_n| + |b_m| + |b_n - b_m| \right).$$

Лемма 2 (Абель). Пусть $f \in \mathcal{R}[a,b]$, g монотонна на [a,b], u пусть $\forall x \in [a,b] \mid \int_a^x f(t)dt \mid \leqslant M$. Тогда:

$$\left| \int_{a}^{b} f(x)g(x)dx \right| \leqslant 2M(|g(a)| + |g(b)|).$$

Доказательство. Зафиксируем $\varepsilon > 0$. Положим $I = \int_a^b f(x) dx$. Тогда $\exists \delta > 0 \ \forall (T,\xi) \ (|T| < \delta \to |\sigma_T(f,\xi) - I| < \frac{\varepsilon}{2})$.

Выберем одно такое разбиение $T = \{x_i\}_{i=0}^n$.

Пусть $T_k = \{x_i\}_{i=0}^k$ — соответствующее разбиение $[x_0, x_k], k = 1, \ldots, n$. По критерию Дарбу числа $\sigma_{T_k}(f, \xi_k)$ и $\int_{x_0}^{x_k} f(x) dx$ лежат на отрезке $[s_{T_k}(f), S_{T_k}(f)]$, и верно $S_{T_k}(f) - s_{T_k}(f) \leqslant S_T(f) - s_T(f)$.

$$I - \frac{\varepsilon}{2} < \sigma_T(f, \xi) < I + \frac{\varepsilon}{2},$$

$$I - \frac{\varepsilon}{2} \leqslant s_T(f) \leqslant S_T(f) \leqslant I + \frac{\varepsilon}{2},$$

$$\left|\sigma_{T_k}(f,\xi_k) - \int_{x_0}^{x_k} f(x)dx\right| \leqslant \varepsilon.$$

Положим $A_k = \sum_{i=1}^k f(c_i) \Delta x_i$. Тогда $A_k = \sigma_{T_k}(f, \xi_k)$ и, значит, из последнего неравенства $|A_k| \leq M + \varepsilon$. Применим лемму 1 для $a_k = f(c_k) \Delta x_k$, $b_k = g(c_k)$, получим

$$\left| \sum_{k=1}^{n} f(c_k) g(c_k) \Delta x_k \right| \leqslant 2(M+\varepsilon) (|g(c_1)| + |g(c_n)|).$$

Неравенство верно для любого набора отмеченных точек, в том числе и $c_1=a, c_n=b$. Предельным переходом по мелкости разбиения в случае $c_1=a, c_n=b$ получим искомое неравенство. \square

Определение 2. Функция f называется локально интегрируемой по Риману на промежутке I, если $\forall [a,c] \subset I \hookrightarrow f \in \mathcal{R}[a,c]$.

Определение 3. Пусть $-\infty < a < b \le +\infty$, и f локально интегрируема на [a,b). Предел

$$\int_{a}^{b} f(x)dx := \lim_{c \to b-0} \int_{a}^{c} f(x)dx$$

называется несобственным интегралом (Римана) от f на [a,b).

Если предел существует и конечен, то интеграл $\int_a^b f(x)dx$ называется cxodsumcs, иначе — pacxodsumcs.

Свойство 1 (принцип локализации). Пусть f локально интегрируема на [a,b), $a^* \in (a,b)$. Тогда интегралы $\int_{a^*}^b f(x) dx$ и $\int_a^b f(x) dx$ сходятся или расходятся одновременно, и если сходятся, то

$$\int_{a}^{b} f(x)dx = \int_{a}^{a^{*}} f(x)dx + \int_{a^{*}}^{b} f(x)dx$$

Доказательство. Если $c \in (a,b)$, то по свойству аддитивности определённого интеграла верно:

$$\int_{a}^{c} f(x)dx = \int_{a}^{a^*} f(x)dx + \int_{a^*}^{c} f(x)dx.$$

Поэтому пределы $\lim_{c\to b-0} \int_{a^*}^c f(x) dx = \int_{a^*}^b f(x) dx$ и $\lim_{c\to b-0} \int_a^c f(x) dx = \int_a^b f(x) dx$ существуют (конечны) одновременно. Равенство 1 получается из равенства для определённых интегралов переходом к пределу $c\to b-0$.

Следующие три свойства доказываются аналогично.

Свойство 2 (линейность). Пусть несобственные интегралы $\int_a^b f(x)dx$ и $\int_a^b g(x)dx$ сходятся, и $\alpha, \beta \in \mathbb{R}$. Тогда сходится интеграл $\int_a^b (\alpha f(x) + \beta g(x)) dx$ и

$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$$

Свойство 3 (формула Ньютона-Лейбница). Пусть f локально интегрируема на [a,b) и F — первообразная f на [a,b). Тогда

$$\int_{a}^{b} f(x)dx = F(b-0) - F(a) = F|_{a}^{b-0}.$$

Свойство 4 (интегрирование по частям). Пусть F, G дифференцируемы, а их производные f, g локально интегрируемы на [a, b). Тогда

$$\int_{a}^{b} F(x)g(x)dx = F(x)G(x)|_{a}^{b-0} - \int_{a}^{b} G(x)f(x)dx.$$

Существование двух из трёх конечных пределов влечёт существование третьего и выполнение равенства.

Свойство 5 (замена переменной). Пусть f непрерывна на [a,b), φ дифференцируема и строго монотонна на $[\alpha,\beta)$, причем φ' локально интегрируема на $[\alpha,\beta)$, $\varphi(\alpha)=a$, $\lim_{t\to\beta-0}\varphi(t)=b$. Тогда

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt.$$

Если существует один из интегралов, то существует и другой, и равенство выполняется.

Доказательство. Рассмотрим частичный интеграл $F(c)=\int_a^c f(x)dx$ на [a,b), $\Phi(\gamma)=\int_{\alpha}^{\gamma} f(\varphi(t))\varphi'(t)dt$. По свойству замены переменной в определенном интеграле $F(\varphi(\gamma))=\Phi(\gamma)\ \forall \gamma\in [\alpha,\beta)$. Пусть (в $\overline{\mathbb{R}}$) определен интеграл $I=\int_a^b f(x)dx$. По свойству предела композиции существует $\lim_{\gamma\to\beta-0}\Phi(\gamma)=\lim_{c\to b-0}F(c)=I$. Следовательно, определен $\int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt=I$. Из условия следует, что существует обратная функция φ^{-1} и $\gamma=\varphi^{-1}(c)\to\beta$ при $c\to b-0$.

Из условия следует, что существует обратная функция φ^{-1} и $\gamma = \varphi^{-1}(c) \to \beta$ при $c \to b-0$. Делая соответствующую замену переменной, получим, что $\lim_{r\to b-0} \Phi(\gamma)$ влечет существование равного $\lim_{c\to b-0} F(c)$, то есть интеграл в правой части влечет существование интеграла в левой и их равенство.

Теорема 1 (критерий Коши). Пусть f локально интегрируема на [a,b). Для сходимости интеграла $\int_a^b f(x)dx$ необходимо и достаточно выполнения условия Коши:

$$\forall \varepsilon > 0 \ \exists b_{\varepsilon} \in [a, b) \ \forall \xi, \eta \in (b_{\varepsilon}, b) \ \left(\left| \int_{\xi}^{\eta} f(x) dx \right| < \varepsilon \right).$$

Доказательство. Положим $F(x)=\int_a^x f(t)dt,\ x\in[a,b)$. Поскольку $\int_\xi^\eta f(x)dx=F(\eta)-F(\xi),$ то доказательство утверждения является переформулировкой критерия Коши существования предела F при $x\to b-0$.

Определение 4. Пусть f локально интегрируема на [a,b). Несобственный интеграл $\int_a^b f(x)dx$ называется абсолютно сходящимся, если сходится интеграл $\int_a^b |f(x)|dx$. Если интеграл $\int_a^b f(x)dx$ сходится, но не сходится абсолютно, то он называется условно сходящимся.

Следствие 1. Абсолютно сходящийся интеграл сходится.

 \mathcal{A} оказательство. Зафиксируем $\varepsilon > 0$. Так как $\int_a^b |f(x)| dx$ сходится, то по критерию Коши $\exists b_\varepsilon \in [a,b) \ \forall [\xi,\eta] \subset (b_\varepsilon,b) \ \left(\int_\xi^\eta |f(x)| dx < \varepsilon\right)$. Но тогда тем более $\left|\int_\xi^\eta f(x) dx\right| \leqslant \int_\xi^\eta |f(x)| dx < \varepsilon$. Следовательно, по критерию Коши, интеграл сходится.

Лемма 3. Пусть f локально интегрируема и неотрицательна на [a,b). Тогда сходимость интеграла $\int_a^b f(x)dx$ равносильна ограниченности функции $F(x) = \int_a^x f(t)dt$ на [a,b).

Доказательство. Функция F нестрого возрастает на [a,b), так как

$$x_1 < x_2 \Rightarrow F(x_2) - F(x_1) = \int_{x_1}^{x_2} f(t)dt \ge 0.$$

По теореме о пределах монотонной функции существует $\lim_{x\to b-0} F(x) = \sup_{[a,b)} F(x)$. Отсюда, учитывая неотрицательность, заключаем, что ограниченность F равносильна наличию конечного предела, то есть сходимости интеграла.

Теорема 2 (признак сравнения). Пусть функции f, g локально интегрируемы на $[a, b), u \ 0 \le$ $f \leqslant g \operatorname{Ha}[a,b).$

- 1. Ecnu $\int_a^b g(x)dx$ exodumes, mo $\int_a^b f(x)dx$ exodumes.
- 2. Ecnu $\int_a^b f(x)dx$ pacxodumcs, mo $\int_a^b g(x)dx$ pacxodumcs.

Доказательство. Для любого $x\in [a,b)$ выполнено $0\leqslant \int_a^x f(t)dt\leqslant \int_a^x g(t)dt$. Если $\int_a^b g(x)dx$ сходится, то по лемме 3 функция $\int_a^x g(t)dt$ ограничена на [a,b). Но тогда на [a,b) ограничена и функция $\int_a^x f(t)dt$ и, значит, по лемме 3 интеграл $\int_a^b f(x)dx$ сходится. Второе доказываемое утверждение является контрапозицией первого.

Следствие 2. Пусть f, g локально интегрируемы и неотрицательны на [a, b). Если f(x) = O(g(x)), то справедливо заключение теоремы 2.

Доказательство. По определению и неотрицательности функции

$$\exists C > 0 \ \exists a^* \in [a, b) \ \forall x \in [a^*, b) \ (f(x) \leqslant Cg(x)) \ .$$

Если $\int_a^b g(x)dx$ сходится, то сходится интеграл $\int_{a^*}^b Cg(x)dx$. Тогда по признаку сравнения сходится интеграл $\int_{a^*}^b f(x)dx$ и, значит, сходится интергал $\int_a^b f(x)dx$.

Следствие 3. Пусть f,g локально интегрируемы и положительны на [a,b). Если существует $\lim_{x\to b-0} \frac{f(x)}{g(x)}\in (0,+\infty)$, то интегралы $\int_a^b f(x)dx$ и $\int_a^b g(x)dx$ сходятся или расходятся одновременно.

Доказательство. По условию также существует $\lim_{x\to b-0} \frac{g(x)}{f(x)} \in (0,+\infty)$. Поскольку существование конечного предела влечёт ограниченность функции в некоторой окрестности предельной точки, то утверждение вытекает из следствия 2.

Лемма 4 (метод выделения главной части). Пусть функции f, g локально интегрируемы на

- 1. Если $\int_a^b g(x)dx$ сходится, то интегралы $\int_a^b f(x)dx$ и $\int_a^b (f(x)+g(x))dx$ сходятся или расхо-
- 2. Если $\int_a^b g(x)dx$ абсолютно сходится, то интегралы $\int_a^b f(x)dx$ и $\int_a^b (f(x)+g(x))dx$ либо одновременно расходятся, либо одновременно сходятся условно, либо одновременно сходятся абсолютно.

Доказательство. Первый пункт вытекает из линейности несобственных интегралов. Одновременная расходимость вытекает из первого пункта по неравенствам $|f+g| \leqslant |f| + |g|, |f| \leqslant |f+g| + |g|$ и признаку сравнения.

Теорема 3 (признак Дирихле). Пусть f, g локально интегрируемы на [a, b), причём

- 1. $F(x) = \int_a^x f(t) dt$ ограничена на [a,b);
- $2. \, g$ монотонна на [a,b);
- 3. $\lim_{x \to b-0} g(x) = 0$.

ФПМИ МФТИ, весна 2023

Тогда несобственный интеграл $\int_a^b f(x)g(x)\,dx$ сходится.

Доказательство. Покажем, что интеграл $\int_a^b f(x)g(x)\,dx$ удовлетворяет условию Коши. Пусть |F| < M на [a,b), тогда для любого $\xi \in [a,b)$ выполнено:

$$\left| \int_{\xi}^{x} f(t) dt \right| = |F(x) - F(\xi)| < 2M.$$

Зафиксируем $\varepsilon > 0$. Тогда, по определению предела для g(x), $\exists b' \in [a,b) \, \forall x \in (b',b) \, \left(|g(x)| < \frac{\varepsilon}{8M} \right)$. Тогда по лемме Абеля (1) для любого $[\xi,\eta] \subset (b',b)$:

$$\left| \int_{\xi}^{\eta} f(t)g(t) dt \right| \leqslant 2 \cdot 2M \left(|g(\xi)| + |g(\eta)| \right) < 4M \left(\frac{\varepsilon}{8M} + \frac{\varepsilon}{8M} \right) = \varepsilon.$$

По критерию Коши интеграл $\int_a^b f(x)g(x) dx$ сходится.

Замечание. Условия последней теоремы выполнены, если f непрерывна и имеет ограниченную первообразную на $[a,b),\ g$ дифференцируема, g' сохраняет знак на $[a,b),\ g(x)\to 0$ при $x\to b-0$.

Теорема 4 (признак Абеля). Пусть f, g локально интегрируемы на [a, b), причём

- 1. $\int_a^b f(x) dx \ cxo \partial umcs$;
- $2. \, g$ монотонна на [a,b);
- 3. g ограничена на [a,b).

Тогда несобственный интеграл $\int_a^b f(x)g(x) dx$ сходится.

Доказательство. Так как g монотонна и ограничена на [a,b), то $\exists \lim_{x\to b-0} g(x)=c\in\mathbb{R}$.

Функции f и g-c удовлетворяют условиям признака Дирихле (3), поэтому $\int_a^b f(x) \left(g(x)-c\right) \, dx$ сходится. Тогда $\int_a^b f(x)g(x) \, dx = \int_a^b f(x)(g(x)-c) \, dx + c \int_a^b f(x) \, dx$ сходится как сумма сходящихся интегралов.

Определение 5. Пусть $a, b \in \mathbb{R}$, a < b и функция f определена на (a, b), кроме, быть может, конечного множества точек.

Точка $c \in (a,b)$ называется особенностью f, если $f \notin \mathcal{R}[\alpha,\beta]$ для любого $[\alpha,\beta] \subset (a,b)$, $\alpha < c < \beta$.

Точка b называется особенностью f, если $b = +\infty$, или $b \in \mathbb{R}$ и $f \notin \mathcal{R}[\alpha, b]$, для любого $[\alpha, b]$. Аналогично вводится особенность a.

Замечание. Если на (c,d) нет особенностей функции f, то f локально интегрируема на (c,d).

Доказательство. Пусть $[u,v] \subset (c,d)$. По условию $\forall x \in (u_x,v_x)$ и $f \in \mathcal{R}[u_x,v_x]$.

Тогда $\{(u_x, v_x)\}_{x \in [u,v]}$ образуют открытое покрытие [u,v]. По лемме Гейне-Бореля из открытого покрытия можно выделить конечное подпокрытие.

Объединяя элементы этого подпокрытия и пользуясь аддитивностью интеграла, заключаем, что f интегрируема на отрезке, содержащем [u,v], и, значит, f локально интегрируема на (c,d), так как [u,v] выбирался произвольным.

Определение 6. Пусть $c_1 < c_2 < \ldots < c_{N-1}$ – все особенности функции f на $(a,b), c_0 = a,$ $c_N = b$. Пусть $\xi_k \in (c_{k-1},c_k), \ k = 1,\ldots,N$. Несобственным интегралом функции f по (a,b) называется

$$\int_{a}^{b} f(x)dx = \sum_{k=1}^{N} \left(\int_{c_{k-1}}^{\xi_k} f(x)dx + \int_{\xi_k}^{c_k} f(x)dx \right),$$

если все интегралы в правой части (понимаются как несобственные) и их сумма имеет смысл в \mathbb{R} .

При этом $\int_a^b f(x)dx$ называется cxodsumumcs, если все интегралы в правой части сходятся, иначе — pacxodsumumcs.

Замечание. Корректность (независимость от выбора ξ_k) следует из принципа локализации.

2. Числовые ряды и их свойства. Группировка ряда. Критерий Коши. Абсолютная и условная сходимости рядов. Связь сходимости ряда и интеграла от ступенчатой функции. Ряды с неотрицательными членами. Признак сравнения, интегральный признак. Признаки Коши, Даламбера, Гаусса (б/д). Знакопеременные ряды. Признак Лейбница. Признаки Дирихле (б/д) и Абеля (б/д). Перестановка членов абсолютно сходящегося ряда. Теорема Римана о перестановке (б/д). Произведение абсолютно сходящихся рядов.

Определение 7. Пусть $\{a_n\}$ – последовательность действительных (комплексных) чисел. Выражение

$$\sum_{n=1}^{+\infty} a_n = a_1 + a_2 + \dots$$

называется числовым рядом с n-ым членом a_n .

Число

$$S_N = \sum_{n=1}^{N} a_n = a_1 + \ldots + a_N$$

называется N-ой частичной суммой ряда 7.

Предел

$$\sum_{n=1}^{+\infty} a_n = \lim_{N \to +\infty} S_N$$

называется суммой pяда 7. Если предел конечен, то ряд называется сходящимся, иначе — pacxo-дящимся.

Лемма 5 (Принцип локализации). Для каждого $m \in \mathbb{N}$ ряды $\sum_{n=1}^{+\infty} a_n$ и $\sum_{n=m+1}^{+\infty} a_n$ сходятся или расходятся одновременно, и если сходятся, то

$$\sum_{n=1}^{+\infty} a_n = \sum_{n=1}^{m} a_n + \sum_{n=m+1}^{+\infty} a_n.$$

Доказательство. Если N>m, то $\sum_{n=1}^{N}a_n=\sum_{n=1}^{m}a_n+\sum_{n=m+1}^{N}a_n$. Поэтому пределы последовательностей $\sum_{n=1}^{m}a_n$ и $\sum_{n=m+1}^{N}a_n$ при $N\to +\infty$ существуют (конечны) одновременно.

Замечание. Ряд $r_N = \sum_{n=N+1}^{+\infty} a_n$ называется N-ым остатком ряда 7.

Принцип локализации можно переформулировать так: если ряд сходится, то сходится и любой его остаток. И если сходится некоторый остаток ряда, то и весь ряд сходится.

Лемма 6 (Линейность). Пусть ряды $\sum_{n=1}^{+\infty} a_n$ и $\sum_{n=1}^{+\infty} b_n$ сходятся, и $\alpha, \beta \in \mathbb{R}$ (или \mathbb{C}), то сходится и ряд $\sum_{n=1}^{+\infty} (\alpha a_n + \beta b_n)$, причем верно равенство

$$\sum_{n=1}^{+\infty} (\alpha a_n + \beta b_n) = \alpha \sum_{n=1}^{+\infty} a_n + \beta \sum_{n=1}^{+\infty} b_n.$$

Доказательство. Вытекает из линейности предела последовательности.

Лемма 7 (Необходимое условие сходимости ряда). *Если* $\sum_{n=1}^{+\infty} a_n$ *сходится, то* $a_n \to 0$.

Доказательство. Пусть $S = \sum_{n=1}^{+\infty} a_n$. Так как $a_n = S_n - S_{n-1}$ (считаем, что $S_0 = 0$), то $a_n \to (S-S) = 0$.

Определение 8. Пусть дана строго возрастающая последовательность целых чисел $0 = n_0 < n_1 < n_2 < \dots$

 $n_1 < n_2 < \dots$ Ряд $\sum_{k=1}^{+\infty} b_k$, где $b_k = a_{n_{k-1}+1} + \dots + a_{n_k}$ называется группировкой ряда $\sum_{n=1}^{+\infty} a_n$.

Пемма 8. 1. Если ряд сходится, то сходится и любая его группировка, причем к той же сумме.

2. Пусть $\exists L \ \forall k \ (n_k - n_{k-1} \leqslant L)$. Если $a_n \to 0$ и группировка $\sum_{k=1}^{+\infty} b_k$, где $b_k = \sum_{j=n_{k-1}+1}^{n_k} a_j$, сходится, то сходится и ряд $\sum_{n=1}^{+\infty} a_n$, причем к той же сумме.

Доказательство. Пусть S_N обозначает N-ую частичную сумму $7, S_N^* - N$ -ую частичную сумму группировки.

- 1. Пусть $S_N \to S$. Так как $S_N^* = S_{n_N}$, то $S_N^* \to S$ как подпоследовательность.
- 2. Пусть $\varepsilon > 0$. Выберем такие $K, M \in \mathbb{N}$, что $\forall k \geqslant K \hookrightarrow |S_k^* S| < \frac{\varepsilon}{2}$ и $\forall m \geqslant M \hookrightarrow |a_m| < \frac{\varepsilon}{2L}$. Положим $N = \max\{n_K, M + L\}$. Если $n \geqslant N$, то $n_k \leqslant n < n_{k+1}$, где $k \geqslant K$. Значит,

$$|S_n - S| = |S_{n_k} + a_{n_k+1} + \dots + a_n - S| \le |S_k^* - S| + |a_{n_k+1}| + \dots + |a_n| < \frac{\varepsilon}{2} + L \frac{\varepsilon}{2L} = \varepsilon.$$

Применяя критерий Коши для последовательности частичных сумм получаем критерий Коши сходимости числового ряда.

Теорема 5. Для сходимости ряда $\sum_{n=1}^{+\infty} a_n$ необходимо и достаточно выполнения условия Коши

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n, m \in \mathbb{N}, \ N \leqslant m \leqslant n \left(\left| \sum_{k=m}^{n} a_k \right| < \varepsilon \right).$$

Определение 9. Ряд $\sum_{n=1}^{+\infty} a_n$ называется *абсолютно сходящимся*, если сходится ряд $\sum_{n=1}^{+\infty} |a_n|$. Если ряд $\sum_{n=1}^{+\infty} a_n$ сходится, но не сходится абсолютно, то он называется *условно сходящимся*.

Следствие 4. Абсолютно сходящийся ряд сходится.

Доказательство. Для любых $m, n \in \mathbb{N}, m \leqslant n$,

$$\left| \sum_{k=m}^{n} a_k \right| \leqslant \sum_{k=m}^{n} |a_k|.$$

Поэтому, если ряд $\sum_{n=1}^{+\infty} |a_n|$ удовлетворяет условию Коши, то условию Коши удовлетворяет ряд $\sum_{n=1}^{+\infty} a_n$.

Замечание. Если ряд $\sum_{n=1}^{+\infty} a_n$ сходится абсолютно, то

$$\left| \sum_{k=1}^{+\infty} a_k \right| \leqslant \sum_{k=1}^{+\infty} |a_k|.$$

Лемма 9. 1. Если $\sum_{n=1}^{+\infty} b_n$ сходится, то $\sum_{n=1}^{+\infty} (a_n + b_n)$ и $\sum_{n=1}^{+\infty} a_n$ сходятся или расходятся одновременно.

2. Если $\sum_{n=1}^{+\infty} b_n$ абсолютно сходится, то $\sum_{n=1}^{+\infty} (a_n + b_n)$ и $\sum_{n=1}^{+\infty} a_n$ либо одновременно расходятся, либо одновременно сходятся условно, либо одновременно сходятся абсолютно.

Доказательство.

1. Следует из свойства линейности. Для всех $n \in \mathbb{N}$ верно

$$|a_n + b_n| \le |a_n| + |b_n|, |a_n| \le |a_n + b_n| + |b_n|.$$

Следовательно, по признаку сравнения ряды $\sum_{n=1}^{+\infty} (a_n + b_n)$ и $\sum_{n=1}^{+\infty} a_n$ одновременно абсолютно сходятся.

2. Вытекает из пункта 1.

Определение 10. С действительным рядом 7 свяжем функцию $f_a:[1,+\infty)\to\mathbb{R},\,f_a(x)=a_{[x]}.$

Лемма 10. Pяд $\sum_{n=1}^{+\infty} a_n \ u \int_1^{+\infty} f_a(x) dx$ cходятся или расходтся одновременно, u если cходятся, то κ одному значению.

Доказательство. Пусть $S_n = \sum_{k=1}^n a_k$. Так как $S_n = \int_1^{n+1} f_a(x) dx$, то сходимость интеграла влечет сходимость ряда. Обратное утверждение следует из оценки

$$\left| S_n - \int_1^x f_a(x) dx \right| \leqslant |a_n| \to 0, \ n = [x],$$

и необходимого условия сходимости ряда.

Лемма 11. Пусть $a_n \geqslant 0$ для всех $n \in \mathbb{N}$. Тогда сходимость ряда $\sum_{n=1}^{\infty} a_n$ равносильна ограниченности последовательности частичных сумм $\{S_n\}$.

Доказательство. Все $S_n \geqslant 0$ и нестрого возрастают, так как $S_{n+1} - S_n = a_{n+1} \geqslant 0$. Следовательно, $\exists \lim_{n \to \infty} S_n = \sup S_n$.

Теорема 6 (признак сравнения). Пусть $0 \le a_n \le b_n$ для всех $n \in \mathbb{N}$.

- 1. Если ряд $\sum_{n=1}^{\infty} b_n$ сходится, то сходится и ряд $\sum_{n=1}^{\infty} a_n$;
- 2. Если ряд $\sum_{n=1}^{\infty} a_n$ расходится, то расходится и ряд $\sum_{n=1}^{\infty} b_n$.

Доказательство. Вытекает из леммы (10) и признака сравнения несобственных интегралов.

Теорема 7 (интегральный признак сходимости). Пусть функция f нестрого убывает и неотрицательна на $[1, +\infty)$. Тогда ряд $\sum_{n=1}^{\infty} f(n)$ и интеграл $\int_{1}^{+\infty} f(x) dx$ сходятся или расходятся одновременно.

Доказательство. Положим $u,v:[1,+\infty)\to\mathbb{R},\,u|_{[n,n+1)}=f(n),\,v|_{[n,n+1)}=f(n+1).$

Так как f нестрого убывает, то $v\leqslant f\leqslant u$ на $[1,+\infty).$

Пусть $\sum_{n=1}^{\infty} f(n)$ сходится, тогда по лемме (10) сходится $\int_{1}^{+\infty} u(x) dx$. Следовательно, по признаку сравнения для интегралов $\int_{1}^{+\infty} f(x) dx$ также сходится.

Пусть $\int_{1}^{+\infty} f(x) dx$ сходится, тогда по признаку сравнения сходится $\int_{1}^{+\infty} v(x) dx$. Следовательно, по лемме (10) сходится ряд $\sum_{n=1}^{\infty} f(n+1)$.

Теорема 8 (признак Коши). Пусть $a_n \geqslant 0$ для всех $n \in \mathbb{N}$ и $q = \overline{\lim}_{n \to \infty} \sqrt[n]{a_n}$.

1. Если q < 1, то ряд $\sum_{n=1}^{\infty} a_n$ сходится;

- 2. Если q > 1, то $a_n \not\to 0$ и ряд $\sum_{n=1}^{\infty} a_n$ расходится.
- Доказательство. 1. Пусть $q_0 \in (q,1)$. Выберем N так, что $\sup_{n \geqslant N} \sqrt[n]{a_n} < q_0$ при всех $n \geqslant N$ и, значит, $a_n < q_0^n$. Следовательно, ряд сходится по признаку сравнения с геометрическим рядом.

Теорема 9 (признак Даламбера). Пусть $a_n > 0$ для всех $n \in \mathbb{N}$.

- 1. Если $\overline{r} = \overline{\lim}_{n \to \infty} \frac{a_{n+1}}{a_n} < 1$, то ряд $\sum_{n=1}^{\infty} a_n$ сходится;
- 2. Если $\underline{r} = \underline{\lim}_{n \to \infty} \frac{a_{n+1}}{a_n} > 1$, то $a_n \not\to 0$ и ряд $\sum_{n=1}^{\infty} a_n$ расходится.

Доказательство. 1. Пусть $r \in (\overline{r},1)$. Выберем N так, что $\sup_{n\geqslant N} \frac{a_{n+1}}{a_n} < r$ при всех $n\geqslant N$, и, значит,

$$\forall n > N \ a_{n+1} < ra_n < \dots < r^{n+1-N} a_N = r^{1-N} a_N r^n,$$

- и, значит, ряд сходится по признаку сравнения с геометрическим рядом $\sum_{n=1}^{\infty} r^n$.
- 2. Пусть $\underline{r}>1$. Тогда $\exists N \left(\inf_{n\geqslant N}\frac{a_{n+1}}{a_n}>1\right)$ и, значит, $a_{n+1}>a_n>\ldots>a_N>0$ для всех n>N. Следовательно, $a_n\not\to 0$ и ряд расходится.

Теорема 10 (признак Гаусса). Пусть $a_n > 0$ для всех $n \in \mathbb{N}$ и существуют такие s > 1 и ограниченная последовательность $\{\alpha_n\}$, что для всех n выполнено

$$\frac{a_{n+1}}{a_n} = 1 - \frac{A}{n} + \frac{\alpha_n}{n^s}.$$

Тогда ряд $\sum_{n=1}^{+\infty} a_n$ сходится при A>1 и расходится иначе.

Теорема 11 (признак Лейбница). Пусть последовательность $\{\alpha_n\}$ монотонна и $\alpha_n \to 0$. Тогда ряд $\sum_{n=1}^{+\infty} (-1)^{n-1} \alpha_n$ сходится, причем

$$|S - S_n| \leqslant |\alpha_{n+1}|.$$

Доказательство. Сходимость вытекает из признака Дирихле. Докажем ее прямо. Пусть для определенности $\{\alpha_n\}$ нестрого убывает, и, значит, все $\{\alpha_n\} \geqslant 0$.

 $S_{2n+2} - S_{2n} = \alpha_{2n+1} - \alpha_{2n+2} \geqslant 0 \Rightarrow \{S_{2n}\}$ нестрого возрастает.

 $S_{2n+1} - S_{2n-1} = -\alpha_{2n} + \alpha_{2n+1} \leqslant 0 \Rightarrow \{S_{2n-1}\}$ нестрого убывает.

Кроме того, $S_{2n} - S_{2n-1} = -\alpha_{2n} \leq 0$. Поэтому для любых $m, n \in \mathbb{N}$ имеем

$$S_{2n} \leqslant S_{2k} \leqslant S_{2k-1} \leqslant S_{2m-1},$$

где $k=\max\{m,n\}$. Следовательно, последовательности $\{S_{2n}\}$ и $\{S_{2n-1}\}$ сходятся, $S_{2n}\to S'$, $S_{2n-1}\to S''$, и, в частности,

$$S_{2n} \leqslant S' \leqslant S'' \leqslant S_{2n-1}.$$

Поскольку $S_{2n} - S_{2n-1} = -\alpha_{2n} \to 0$, то S' = S'' = S.

Теорема 12 (признак Дирихле). Пусть $\{a_n\}$ – комплексная последовательность, $\{b_n\}$ – действительная последовательность, причем

_

- 1. Последовательность $A_N = \sum_{n=1}^N a_n$ ограничена,
- $2. \{b_n\}$ монотонна,
- 3. $\lim_{n\to+\infty} b_n = 0$.

Тогда ряд $\sum_{n=1}^{+\infty} a_n b_n$ сходится.

Теорема 13 (признак Абеля). Пусть $\{a_n\}$ – комплексная последовательность, $\{b_n\}$ – действительная последовательность, причем

- 1. $P_{\mathcal{A}} \sum_{n=1}^{+\infty} a_n \, cxo \partial umc \mathcal{A}$
- $2. \{b_n\}$ монотонна,
- 3. $\{b_n\}$ ограничена.

Тогда ряд $\sum_{n=1}^{+\infty} a_n b_n$ сходится.

Определение 11. Пусть дан ряд $\sum_{n=1}^{+\infty} a_n$ и биекция $\varphi : \mathbb{N} \to \mathbb{N}$. Тогда $\sum_{n=1}^{+\infty} a_{\varphi(n)}$ называется перестановкой ряда $\sum_{n=1}^{+\infty} a_n$.

Теорема 14. Если ряд $\sum_{n=1}^{+\infty} a_n$ сходится абсолютно, то любая его перестановка $\sum_{n=1}^{+\infty} a_{\varphi(n)}$ сходится абсолютно, причем к той же сумме.

Доказательство. Абсолютная сходимость перестановки следует из оценки

$$\sum_{n=1}^{N} |a_{\varphi(n)}| \leqslant \sum_{n=1}^{\max\{\varphi(k)\}} |a_n| \leqslant \sum_{n=1}^{+\infty} |a_n| < +\infty.$$

Пусть $\varepsilon > 0$. Выберем номер m так, что $\sum_{n=m+1}^{+\infty} |a_n| < \varepsilon$. Выберем M так, что $\{1,\ldots,m\} \subset \{\varphi(1),\ldots,\varphi(M)\}$ (достаточно положить $M = \max_{1\leqslant j\leqslant m} \varphi^{-1}(j)$). Тогда для любого $N\geqslant M$ имеем $\{1,\ldots,m\}\subset \{\varphi(1),\ldots,\varphi(N)\}$ и $\left|\sum_{n=1}^{+\infty} a_n - \sum_{n=1}^N a_{\varphi(n)}\right|\leqslant \sum_{n=m+1}^{+\infty} |a_n| < \varepsilon$. Таким образом, частичные суммы перестановки сходятся у сумме исходного ряда.

Теорема 15 (Риман). Если ряд с действительными членами $\sum_{n=1}^{+\infty} a_n$ сходится условно, то для любого $L \in \overline{\mathbb{R}}$ существует такая перестановка $\sum_{n=1}^{+\infty} a_{\varphi(n)}$, что её сумма равна L.

Теорема 16 (Коши). Пусть ряды $\sum_{n=1}^{+\infty} a_n$ и $\sum_{n=1}^{+\infty} b_n$ сходятся абсолютно к A и B соответственно. Тогда ряд $\sum_{n=1}^{+\infty} a_{i_n} b_{j_n}$ из всевозможных попарных произведений, занумерованных в произвольном порядке (то есть, $c \varphi : \mathbb{N} \to \mathbb{N}^2$, $\varphi(n) = (i_n, j_n)$ – биекция) сходится абсолютно к AB.

Доказательство. Покажем абсолютную сходимость ряда из произведений:

$$\sum_{n=1}^{N} |a_{i_n}b_{j_n}| \leqslant \sum_{i=1}^{\max_{1\leqslant k\leqslant N}} \sum_{j=1}^{i_k} |a_{i}| \cdot |b_{j}| = \left(\sum_{i=1}^{\max_{1\leqslant k\leqslant N}} i_k |a_{i}|\right) \left(\sum_{j=1}^{\max_{1\leqslant k\leqslant N}} j_k |b_{j}|\right) \leqslant \left(\sum_{i=1}^{\infty} |a_{i}|\right) \left(\sum_{j=1}^{\infty} |b_{j}|\right).$$

По теореме (14) любая перестановка ряда из произведений сходится к той же сумме. Рассмотрим перестановку «по квадратам» и её частичную сумму $S_{N^2} = \sum_{i=1}^N \sum_{j=1}^N a_i b_j$. Так как $S_{N^2} = \left(\sum_{i=1}^N a_i\right) \left(\sum_{j=1}^N b_j\right) \to AB$ и если последовательность сходится, то и любая подпоследовательность сходится к тому же пределу, то заключаем, что перестановка «по квадратам», а значит, и $\sum_{n=1}^{+\infty} a_{i_n} b_{j_n}$, имеет сумму AB.

Определение 12. Ряд $\sum_{n=1}^{+\infty} c_n$, где $c_n = \sum_{k=1}^n a_k b_{n+1-k}$, называется *произведением по Коши* рядов $\sum_{n=1}^{+\infty} a_n$ и $\sum_{n=1}^{+\infty} b_n$.

Замечание. Если ряды $\sum_{n=1}^{+\infty} a_n$ и $\sum_{n=1}^{+\infty} b_n$ сходятся абсолютно, то их произведение по Коши сходится абсолютно к произведению сумм рядов.

3. Поточечная и равномерная сходимость функциональных последовательностей и рядов, супремум-критерий. Арифметические свойства. Критерий Коши равномерной сходимости. Непрерывность предельной функции и суммы ряда. Интегрируемость предельной функции и почленное интегрирование ряда. Дифференцируемость предельной функции и почленное дифференцирование ряда. Признаки Вейерштрасса, Дирихле, Абеля равномерной сходимости рядов. Пример ван-дер-Вардена (б/д).

Пусть $f_n, f: E \to \mathbb{R}$ (или \mathbb{C}), $n \in \mathbb{N}$.

Определение 13. Последовательность $\{f_n\}$ поточечно сходится к f на E, если $f(x) = \lim_{n \to +\infty} f_n(x)$ для всех $x \in E$.

Пишут $f_n \to f$ на E и f называют предельной функцией последовательности $\{f_n\}$.

Воспользуемся определением предела последовательности. $f_n \to f$ на E тогда и только тогда, когда $\forall x \in E \ \forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n \geqslant N \ (|f_n(x) - f(x)| < \varepsilon).$

Если N(x) удаётся выбрать одним для всех $x \in E$ (при фиксированном ε), то приходим к следующему понятию:

Определение 14. Последовательность $\{f_n\}$ равномерно сходится к f на E, если

$$\forall \varepsilon > 0 \,\exists N \in \mathbb{N} \,\forall n \geqslant N \,\forall x \in E \, \left(|f_n(x) - f(x)| < \varepsilon \right).$$

Пишут $f_n \rightrightarrows f$ на E или $f_n \rightrightarrows_E f$ при $n \to +\infty$.

Замечание. Равномерная сходимость, очевидно, влечёт поточечную, но поточечная сходимость не влечёт равномерную в общем случае.

Лемма 12 (супремум-критерий). $f_n \rightrightarrows f$ на E тогда и только тогда, когда $\lim_{n\to+\infty} \rho_n = 0$, где $\rho_n = \sup_{x\in E} |f_n(x) - f(x)|$.

Доказательство.

$$(\forall x \in E \ (|f_n(x) - f(x)| \le \varepsilon)) \Leftrightarrow \left(\sup_{x \in E} |f_n(x) - f(x)| \le \varepsilon \right).$$

Рассмотрим функциональный ряд $\sum_{n=1}^{+\infty} f_n$, где $f_n:E o\mathbb{R}$ (или \mathbb{C})

Определение 15. Функциональный ряд $\sum_{n=1}^{+\infty} f_n$ поточечно сходится на E, если числовой ряд $\sum_{n=1}^{+\infty} f_n(x)$ сходится для любого $x \in E$. В этом случае $S(x) = \sum_{n=1}^{+\infty} f_n(x)$, $x \in E$, называется суммой ряда $\sum_{n=1}^{+\infty} f_n$.

Функциональный ряд $\sum_{n=1}^{+\infty} f_n$ равномерно сходится на E, если последовательность частичных сумм $S_N = \sum_{n=1}^N f_n$ равномерно сходится на E.

Свойство 6 (линейность). 1. Пусть $f_n \rightrightarrows f$ на E, $g_n \rightrightarrows g$ на E и $\alpha, \beta \in \mathbb{R}$ (\mathbb{C}). Тогда $\alpha f_n + \beta g_n \rightrightarrows \alpha f + \beta g$ на E.

2. Пусть $\sum_{n=1}^{+\infty} f_n$ и $\sum_{n=1}^{+\infty} g_n$ равномерно сходятся на E. Тогда $\sum_{n=1}^{+\infty} \alpha f_n + \beta g_n$ также равномерно сходится на E и $\sum_{n=1}^{+\infty} \alpha f_n + \beta g_n = \alpha \sum_{n=1}^{+\infty} f_n + \beta \sum_{n=1}^{+\infty} g_n$.

Доказательство. Пусть $x \in E$. По неравенству треугольника

$$|(\alpha f_n(x) + \beta g_n(x)) - (\alpha f(x) + \beta g(x))| \leq |\alpha| \cdot |f_n(x) - f(x)| + |\beta| \cdot |g_n(x) - g(x)|.$$

Далее по лемме (12).

Второй пункт вытекает из первого применением его к последовательности частичных сумм ряда. \Box

Свойство 7. Пусть $g: E \to \mathbb{R}$ (\mathbb{C}) ограничена.

- 1. Если $f_n \Rightarrow f$ на E, то $gf_n \Rightarrow gf$ на E.
- 2. Если $\sum_{n=1}^{+\infty} f_n$ равномерно сходится на E, то $\sum_{n=1}^{+\infty} g f_n$ также равномерно сходится на E и

$$\sum_{n=1}^{+\infty} gf_n = g\sum_{n=1}^{+\infty} f_n$$

Доказательство.

1. Пусть $|g(x)| \leq M$ для всех $x \in E$. Тогда

$$\sup_{x \in E} |g(x)f_n(x) - g(x)f(x)| \leqslant M \underbrace{\sup_{x \in E} |f_n(x) - f(x)|}_{\to 0}.$$

Значит, по супремум-критерию (12) $gf_n \rightrightarrows gf$ на E.

2. Вытекает из пункта 1 применением его к последовательности частичных сумм.

Теорема 17 (критерий Коши равномерной сходимости). Для равномерной сходимости $\{f_n\}$ на E необходимо и достаточно выполнения условия Коши:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n, m \geqslant N \ \forall x \in E(|f_n(x) - f_m(x)| < \varepsilon).$$

Доказательство.

 (\Rightarrow) Пусть $\varepsilon > 0$. Из условия равномерной сходимости:

$$\exists N \in \mathbb{N} \ \forall n \geqslant N \ \forall x \in E\left(|f_n(x) - f(x)| < \frac{\varepsilon}{2}\right).$$

Тогда для всех $n, m \geqslant N$ и $x \in E$ имеем:

$$|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f_m(x) - f(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

 (\Leftarrow) Пусть $\{f_n\}$ удовлетворяет (17). Тогда для каждого $x \in E$ числовая последовательность $\{f_n(x)\}$ фундаментальна и, значит, сходится. Положим $f(x) = \lim_{n \to \infty} f_n(x), x \in E$. Пусть $\varepsilon > 0$ и номер N из условия (17). Зафиксируем $n \geqslant N$ в неравенстве и перейдем к пределу при $m \to \infty$. Получим, что $|f_n(x) - f(x)| \leqslant \varepsilon$ при всех $n \geqslant N$ и $x \in E$. Так как $\varepsilon > 0$ – любое, то $f_n \rightrightarrows f$ на E

Следствие 5. Для равномерной сходимости $\sum_{n=1}^{+\infty} f_n$ на E необходимо и достаточно выполнения условия Коши:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n, m \geqslant N \ \forall x \in E \left(\left| \sum_{k=m}^{n} f_k(x) \right| < \varepsilon \right).$$

Теорема 18 (о непрерывности предельной функции). Пусть $E \subset \mathbb{R}$ и $f_n \rightrightarrows f$ на E. Если все f_n непрерывны в точке $a \in E$ (на E), то функция f также непрерывна в точке a (на E).

Доказательство. Пусть $\varepsilon > 0$. Из условия равномерной сходимости:

$$\exists N \, \forall n \geqslant N \, \forall x \in E \, \left(|f_n(x) - f(x)| < \frac{\varepsilon}{3} \right).$$

Тогда для $x \in E$:

$$|f(x) - f(a)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(a)| + |f_N(a) - f(a)| < |f_N(x) - f_N(a)| + \frac{2}{3}\varepsilon.$$

Так как f_N непрерывна в точке a, то

$$\exists \delta > 0 \,\forall x \in B_{\delta}(a) \cap E \, \left(|f_N(x) - f_N(a)| < \frac{\varepsilon}{3} \right).$$

Следовательно, $|f(x) - f(a)| < \varepsilon$ для всех $x \in B_{\delta}(a) \cap E$.

Следствие 6 (о непрерывности суммы ряда). Пусть $\sum_{n=1}^{\infty} f_n$ равномерно сходится на $E \subset \mathbb{R}$ и все f_n непрерывны в точке $a \in E$. Тогда сумма ряда непрерывна в точке a (на E).

Теорема 19 (об интегрируемости предельной функции). Пусть $f_n \rightrightarrows f$ на [a,b] и $f_n \in \mathcal{R}[a,b] \forall n$. Тогда $f \in \mathcal{R}[a,b]$ и $\lim_{n\to\infty} \int_a^b f_n(x) dx = \int_a^b f(x) dx$.

Доказательство. Зафиксируем $\varepsilon > 0$. Из условия равномерной сходимости:

$$\exists N \ \forall n \geqslant N \ \forall x \in [a, b] \left(|f_n(x) - f(x)| < \frac{\varepsilon}{4(b-a)} \right).$$

Тогда на [a, b]:

$$f_N(x) - \frac{\varepsilon}{4(b-a)} < f(x) < f_N(x) + \frac{\varepsilon}{4(b-a)}.$$

Поскольку f_N интегрируема, то она ограничена на [a,b], значит на [a,b] ограничена f.

Пусть T – произвольное разбиение [a,b]. Тогда для верхних сумм Дарбу имеем:

$$S_T(f) = S_T(f - f_N + f_N) \leqslant S_T(f - f_N) + S_T(f_N) \leqslant \frac{\varepsilon}{4} + S_T(f_N).$$

(так как $\sup_I (g(x) + h(x)) \leqslant \sup_I g(x) + \sup_I h(x)$ при $I \subset [a,b]$)

Аналогично для нижних сумм Дарбу $s_T(f) \geqslant s_T(f_N) - \frac{\varepsilon}{4}$. Так как $f_N \in \mathcal{R}[a,b]$, то существует T – разбиение $\left(S_T(f_N) - s_T(f_N) < \frac{\varepsilon}{2}\right)$, для такого T имеем

$$S_T(f) - s_T(f) \leqslant \varepsilon$$
.

По критерию Дарбу $f \in \mathcal{R}[a,b]$. Для $n \geqslant N$ имеем

$$\left| \int_a^b f_n(x) \, dx - \int_a^b f(x) \, dx \right| \leqslant \int_a^b |f_n(x) - f(x)| \, dx \leqslant (b - a) \cdot \frac{\varepsilon}{(b - a)} < \varepsilon.$$

Следовательно, $\int_a^b f_n(x) dx \to \int_a^b f(x) dx$.

Следствие 7 (о почленном интегрировании ряда). Если ряд $\sum_{n=1}^{\infty} f_n$ равномерно сходится на [a,b], и все функции $f_n \in \mathcal{R}[a,b]$, то сумма ряда интегрируема на [a,b] и

$$\int_{a}^{b} \left(\sum_{n=1}^{\infty} f_n(x) \right) dx = \sum_{n=1}^{\infty} \left(\int_{a}^{b} f_n(x) dx \right).$$

Замечание. В условиях теоремы (19)

$$\lim_{n \to \infty} \int_a^b f_n(x) \, dx = \int_a^b \lim_{n \to \infty} f_n(x) \, dx.$$

Теорема 20 (о дифференцируемости предельной функции). Если

- 1. $f_n \to f \ \text{Ha} \ [a,b];$
- 2. $\forall n \in \mathbb{N}$ функция $f_n : [a,b] \to \mathbb{R}$ дифференцируема;
- 3. $f'_n \rightrightarrows g$ на [a,b].

Тогда f дифференцируема на [a,b], причем f'=g на [a,b].

Доказательство. Докажем дифференцируемость функции f. Зафиксируем x. Рассмотрим последовательность

$$\varphi_n(t) = \begin{cases} \frac{f_n(t) - f_n(x)}{t - x}, & t \neq x; \\ f'_n(x), & t = x. \end{cases}$$

Тогда $\varphi_n \to \varphi$ на [a,b], где

$$\varphi(t) = \begin{cases} \frac{f(t) - f(x)}{t - x}, & t \neq x; \\ g(x), & t = x. \end{cases}$$

Покажем, что сходимость равномерная. При $t \neq x$ по теореме Лагранжа:

$$\varphi_n(t) - \varphi_m(t) = \frac{(f_n(t) - f_m(t)) - (f_n(x) - f_m(x))}{t - x} = f'_n(\xi) - f'_m(\xi)$$

для некоторой точки ξ , лежащей между t и x. Поскольку $\{f'_n\}$ удовлетворяет условию Коши равномерной сходимости, то $\{\varphi_n\}$ удовлетворяет условию Коши. Следовательно, $\{\varphi_n\}$ равномерно сходится на [a,b]. Поскольку f_n дифференцируема в точке x, то φ_n непрерывна в точке x. По теореме (18) φ непрерывна в точке x. Тогда $\lim_{t\to x} \varphi(t) = \varphi(x)$, то есть $\exists f'(x) = g(x)$.

Следствие 8 (о почленном дифференцировании ряда). Пусть

- 1. $\sum_{n=1}^{\infty} f_n$ сходится поточечно на [a,b];
- 2. $f_n: [a,b] \to \mathbb{R}$ дифференцируема $\forall n;$
- 3. $\sum_{n=1}^{\infty} f'_n$ равномерно сходится на [a,b].

Тогда сумма ряда дифференцируема и для каждой точки $x \in [a, b]$ выполнено

$$\left(\sum_{n=1}^{\infty} f_n(x)\right)' = \sum_{n=1}^{\infty} f'_n(x).$$

Теорема 21 (признак Вейерштрасса). Пусть $f_n: E \to \mathbb{C}, a_n \in \mathbb{R} \ \forall n.$ Пусть

- 1. $\forall n \in \mathbb{N} \ \forall x \in E \ (|f_n(x)| \leqslant a_n);$
- 2. числовой ряд $\sum_{n=1}^{\infty} a_n$ сходится.

Тогда функциональный ряд $\sum_{n=1}^{\infty} f_n$ сходится равномерно и абсолютно на E.

Доказательство. Пусть $\varepsilon > 0$. Пользуясь критерием Коши как необходимым условием, найдем N, что $\sum_{k=m}^{n} a_k < \varepsilon$ при всех $n \geqslant m \geqslant N$. Тогда для таких n,m и всех $x \in E$ справедлива оценка:

$$\left| \sum_{k=m}^{n} f_k(x) \right| \leqslant \sum_{k=m}^{n} |f_k(x)| \leqslant \sum_{k=m}^{n} a_k < \varepsilon.$$

Пользуясь теперь критерием Коши как достаточным условием, получаем, что $\sum_{n=1}^{\infty} f_n$ и $\sum_{n=1}^{\infty} |f_n|$ равномерно сходятся на E.

Определение 16. Последовательность g_n называется равномерно ограниченной на E, если найдется такое C > 0, что $|g_n(x)| \leq C$ для всех $n \in \mathbb{N}$ и $x \in E$.

Теорема 22 (признак Дирихле). Пусть $a_n : E \to \mathbb{R}$ (или \mathbb{C}), $b_n : E \to \mathbb{R}$ $\forall n$ такие, что:

- 1. $A_N = \sum_{n=1}^N a_n$ равномерно ограничена на E;
- 2. $\{b_n(x)\}$ монотонна при каждом $x \in E$;
- 3. $b_n \rightrightarrows 0$ на E.

Тогда $\sum_{n=1}^{\infty} a_n b_n$ равномерно сходится на E.

Доказательство. Зафиксируем $\varepsilon > 0$. Отметим, что при $n \geqslant m$

$$\left| \sum_{k=m}^{n} a_k(x) \right| = |A_n(x) - A_{m-1}(x)| \le 2C$$

для всех $x \in E$.

Из равномерной сходимости $\{b_n\}$ следует, что

$$\exists N \, \forall n \geqslant N \, \forall x \in E \, \left(|b_n(x)| < \frac{\varepsilon}{8C} \right).$$

Тогда при $n\geqslant m\geqslant N$ и $x\in E$ по лемме Абеля

$$\left| \sum_{k=m}^{n} a_k(x)b_k(x) \right| \leqslant 2 \cdot 2C \left(|b_m(x)| + |b_n(x)| \right) < \varepsilon.$$

По критерию Коши $\sum_{n=1}^{\infty} a_n b_n$ сходится равномерно на E.

Теорема 23 (признак Абеля). Пусть $a_n : E \to \mathbb{R}$ (или \mathbb{C}), $b_n : E \to \mathbb{R}$, такие, что

- 1. $\sum_{n=1}^{\infty} a_n$ равномерно сходится на E;
- 2. $\{b_n(x)\}$ монотонна при любом $x \in E$;
- 3. $\{b_n\}$ равномерно ограничена на E.

Тогда $\sum_{n=1}^{\infty} a_n b_n$ равномерно сходится на E.

Доказательство. Из равномерной сходимости ряда

$$\exists N \, \forall n, m \, (n \geqslant m \geqslant N) \, \forall x \in E \, \left(\left| \sum_{k=m}^{n} a_k(x) \right| < \frac{\varepsilon}{4C} \right).$$

Тогда при всех $x \in E$ и $n \geqslant m \geqslant N$ по лемме Абеля

$$\left| \sum_{k=m}^{n} a_k(x) b_k(x) \right| \leqslant 2 \cdot \frac{\varepsilon}{4C} \left(|b_m(x)| + |b_n(x)| \right) \leqslant 2 \cdot \frac{\varepsilon}{4C} (C + C) = \varepsilon.$$

Доказательство завершается ссылкой на критерий Коши (17).

Пример (ван-дер-Варден). Существует $f : \mathbb{R} \to \mathbb{R}$, непрерывная на \mathbb{R} , но не дифференцируемая ни в одной точке.

Пусть $\varphi: \mathbb{R} \to \mathbb{R}, \varphi(x\pm 2) = \varphi(x), \varphi|_{[-1,1]}(x) = |x|$. Отметим, что если $(x,y) \cap \mathbb{Z} = \emptyset$, то φ кусочно-линейная с угловым коэффициентом ± 1 , поэтому

$$|\varphi(x) - \varphi(y)| = |x - y|.$$

Положим $f(x) = \sum_{n=1}^{\infty} f_n(x), f_n(x) = \frac{1}{4^n} \varphi(4^n x)$. Функция f непрерывна как сумма равномерно сходящегося ряда (по признаку Вейерштрасса) из непрерывных функций, но не дифференцирума ни в одной точке.

4. Степенные ряды. Теорема Коши-Адамара. Радиус и круг сходимости, равномерная сходимость степенных рядов. Теорема Абеля. Дифференцируемость суммы степенного ряда. Теорема единственности, ряд Тейлора. Пример бесконечно дифференцируемой функции, не разлагающейся в степенной ряд. Достаточное условие разложимости функции в степенной ряд. Ряды Тейлора e^x , $\sin x$, $\cos x$, $(1+x)^{\alpha}$, $\ln(1+x)$.

Определение 17. Степенным рядом называется функциональный ряд вида

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n,$$

где $a_n, x_0 \in \mathbb{R}$ и x — действительная переменная, или $a_n, x_0 \in \mathbb{C}$ и x — комплексная переменная (комплексный степенной ряд).

Теорема 24 (Коши-Адамар). Пусть $R = \frac{1}{\overline{\lim}_{n\to\infty} \sqrt[n]{|a_n|}}$.

- 1. $npu |x x_0| < R$ ряд (17) сходится, $npu + \ddot{e}_M$ абсолютно;
- 2. $npu |x x_0| > R$ ряд (17) расходится;
- 3. если $r \in (0, R)$, то ряд (17) равномерно сходится на $\overline{B_r}(x_0) = \{x : |x x_0| \le r\}$.

Доказательство. Пусть $x \neq x_0$, тогда

$$q := \overline{\lim_{n \to \infty}} \sqrt[n]{|a_n(x - x_0)^n|} = |x - x_0| \overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|} = \frac{|x - x_0|}{R}.$$

Если $|x-x_0| < R$, то q < 1 и, значит, по признаку Коши $\sum_{n=0}^{\infty} |a_n(x-x_0)^n|$ сходится, то есть, ряд (17) сходится абсолютно.

Если $|x-x_0| > R$, то q > 1 и, значит, по признаку Коши n-й член ряда не стремится к нулю, ряд (17) расходится и абсолютно расходится (то есть, расходится ряд из модулей членов).

Пусть $r \in (0, R)$. По доказанному ряд (17) абсолютно сходится в точке $x = x_0 + r$, то есть сходится ряд $\sum_{n=0}^{\infty} |a_n| r^n$. Если $|x - x_0| \le r$, то $|a_n(x - x_0)^n| \le |a_n| r^n$. Тогда по признаку Вейерштрасса ряд (17) равномерно сходится на $B_r(x_0)$.

Определение 18. Величина R из теоремы (24) называется радиусом сходимости ряда (17). $B_R(x_0) = \{x : |x - x_0| < R\}$ называется интервалом сходимости (кругом сходимости в комлексной плоскости).

Из теоремы (24) получаем:

Следствие 9. Пусть для $R \in [0, +\infty]$ выполнено следующее: при $|x - x_0| < R$ ряд абсолютно сходится и при $|x - x_0| > R$ ряд абсолютно расходится, то R — радиус сходимости.

Теорема 25 (Абель). Если степенной ряд (17) сходится в точке $x_1 \neq x_0$, то он сходится равномерно на отрезке с концами x_1, x_0 .

Доказательство. По условию ряд $\sum_{n=0}^{\infty} a_n (x_1 - x_0)^n$ сходится. Рассмотрим последовательность $\{t^n\}$: она монотонна при любом $t \in [0,1]$ и равномерно ограниченна. По признаку Абеля (23) ряд $\sum_{n=0}^{\infty} a_n (x_1 - x_0)^n t^n$ равномерно сходится на [0,1]. Сделав замену $t = \frac{x - x_0}{x_1 - x_0}$, получим, что ряд (17) равномерно сходится на $\{x : x = x_0 + t(x_1 - x_0)\}$.

Замечание. Если $x_1 \in B_R(x_0)$, то предыдущая теорема вытекает из теоремы Коши–Адамара (24), поэтому интерес представляет случай, когда x_1 лежит на границе круга сходимости.

Лемма 13. Если ряд (17) имеет радиус сходимости R, то ряд $\sum_{n=1}^{+\infty} na_n(x-x_0)^{n-1}$ также имеет радиус сходимости R.

Доказательство. Так как $\lim_{n\to +\infty} \sqrt[n]{n}=1$, то последовательности $\{\sqrt[n]{|a_n|}\}$ и $\{\sqrt[n]{|a_n|}\}$ имеют одинаковое множество частичных пределов, значит $\overline{\lim}_{n\to +\infty} \sqrt[n]{|a_n|}$ и $\overline{\lim}_{n\to +\infty} \sqrt[n]{|a_n|}$ равны. Тогда по формуле Коши–Адамара ряды $\sum_{n=0}^{+\infty} a_n (x-x_0)^n$ и $\sum_{n=1}^{+\infty} n a_n (x-x_0)^n$ имеют одинаковые радиусы сходимости.

Ряды $\sum_{n=1}^{+\infty} na_n(x-x_0)^{n-1}$ и $\sum_{n=1}^{+\infty} na_n(x-x_0)^n$ отличаются при $x \neq x_0$ ненулевым множителем (при $x = x_0$ оба сходятся). Следовательно, эти ряды сходятся одновременно. Тогда, радиусы сходимости этих рядов также совпадают.

Теорема 26. Если $f(x) = \sum_{n=0}^{+\infty} a_n (x-x_0)^n$ – сумма степенного ряда с радиусом сходимости R > 0, то функция f бесконечно дифференцируема в $B_R(x_0)$, и для всякого $m \in \mathbb{N}$ выполнено:

$$f^{(m)}(x) = \sum_{n=m}^{+\infty} n(n-1) \cdot \ldots \cdot (n-m+1) a_n (x-x_0)^{n-m}.$$

Доказательство. По лемме (13) при дифференцировании радиус сходимости ряда не меняется, поэтому нам достаточно доказать утверждение для m=1, после чего применить индукцию.

Пусть 0 < r < R. По теореме (24) исходный ряд и ряд $\sum_{n=1}^{\infty} na_n(x-x_0)^{n-1}$ равномерно сходятся на отрезке $[x_0-r,x_0+r]$. Обозначим через g сумму продифференцированного ряда. Тогда по следствию о почленном дифференцировании ряда из теоремы (20) функция f дифференцируема на $[x_0-r,x_0+r]$, причем f'=g. Так как $r\in(0,R)$ – любое, то равенство выполняется на (x_0-R,x_0+R) .

Следствие 10 (теорема о единственности). Если степенные ряды $\sum_{n=0}^{+\infty} a_n (x-x_0)^n$ и $\sum_{n=0}^{+\infty} b_n (x-x_0)^n$ сходятся в круге $B_\delta(x_0)$, и их суммы там совпадают, то $a_n = b_n, \ n = 0, 1, 2, \dots$

Следствие 11. Сумма степенного ряда с радиусом сходимости R>0 имеет первообразную $F(x)=C+\sum_{n=0}^{+\infty}\frac{a_n}{n+1}(x-x_0)^{n+1}$ при $|x-x_0|< R$.

Определение 19. Пусть функция f определена в некоторой окрестности точки x_0 и в точке x_0 имеет производные любого порядка. Тогда $\sum_{n=0}^{+\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$ называется рядом Тейлора функции f с центром в точке x_0 . Для $x_0=0$ ряд называют рядом Маклорена.

Пример. Рассмотрим $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) = \begin{cases} 0, & x \le 0; \\ e^{-\frac{1}{x}}, & x > 0. \end{cases}$$

Существование производных любого порядка в точке $x \neq 0$ следует из теоремы о дифференцировании композиции. Более того, $f^{(n)}(x) = 0$ при x < 0 и $f^{(n)}(x) = p_n(\frac{1}{x})e^{-\frac{1}{x}}$, где $p_n(t)$ – многочлен степени 2n. последнее утверждение можно установить по индукции: $p_0(t) = 1$ и дифференцирование $f^{(n)}$ дает соотношение $p_{n+1}(t) = t^2[p_n(t) - p'_n(t)]$.

Индукцией по n покажем, что $f^{(n)}(0) = 0$. Для n = 0 это верно по условию. Если предположить, что $f^{(n)}(0) = 0$, то $(f^{(n)})'_{-}(0) = 0$ и

$$(f^{(n)})'_{+}(0) = \lim_{h \to +0} \frac{f^{(n)}(h) - f^{(n)}(0)}{h} = \lim_{h \to +0} \frac{p_n(\frac{1}{h})e^{-\frac{1}{h}}}{h} = \lim_{t \to +\infty} \frac{tp_n(t)}{e^t} = 0,$$

поскольку по правилу Лопиталя $\lim_{t\to+\infty}\frac{t^m}{e^t}=0$ для всех $m\in\mathbb{N}_0$. Это доказывает, что $f^{(n+1)}(0)=0$

Таким образом, ряд Маклорена функции f нулевой, но он не сходится к f ни в какой окрестности нуля.

Лемма 14 (Достаточное условие представимости функции степенным рядом.). Если на $(x_0 (\rho, x_0 + \rho)$ функция f имеет производные всех порядков и

$$\exists C > 0 \ \forall n \in \mathbb{N}_0 \ \forall x \in (x_0 - \rho, x_0 + \rho) \left(\left| f^{(n)}(x) \right| \leqslant \frac{Cn!}{\rho^n} \right),$$

mo

$$f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

для всех $x \in (x_0 - \rho, x_0 + \rho)$.

Доказательство. Так как $\sqrt[n]{\frac{f^{(n)}(x)}{n!}} \leqslant \frac{C^{\frac{1}{n}}}{\rho} \to \frac{1}{\rho}$, то по формуле Коши-Адамара (24) для $x \in (x_0-\rho,x_0+\rho)$ найдется c между x_0 и x, что

$$\left| f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \right| = \left| \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1} \right|.$$

Поскольку $|f^{(n+1)}(c)| \leq C$, то справедлива оценка:

$$\left| \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{(n+1)} \right| \leqslant C \left| \frac{x - x_0}{\rho} \right|^{n+1} \to 0,$$

что завершает доказательство.

Следствие 12. Ряды Маклорена функций \exp , \sin , \cos сходятся на $\mathbb R$ к самим функциям, то есть $\forall x \in \mathbb{R}$:

$$e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!},$$

$$\sin(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1},$$

$$\cos(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!} x^{2n}.$$

Доказательство. Все указанные функции бесконечно дифференцируемы на \mathbb{R} , причем $(e^x)^{(n)} =$ e^x , $\sin^{(n)}(x) = \sin(x + \frac{\pi n}{2})$, $\cos^{(n)}(x) = \cos(x + \frac{\pi n}{2})$. Пусть $\delta > 0$ и $|x| < \delta$. Тогда $(e^x)^{(n)} \leqslant e^{\delta}$, $|\sin^{(n)}(x)| \leqslant 1$, $|\cos^{(n)}(x)| \leqslant 1$.

Следовательно, по следствию 11 ряды Маклорена этих функций сходятся к самим функциям на $(-\delta, \delta)$. Так как $\delta > 0$ – любое, то предположение верно и на \mathbb{R} .

Пример. Так как $\frac{1}{1+x} = \sum_{n=1}^{+\infty} (-1)^{n-1} x^{n-1}$ при |x| < 1, то по (11)

$$\ln(1+x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}x^n}{n}, |x| < 1.$$

Ряд в правой части сходится при x=1, поэтому его сумма непрерывна на (-1,1] и, значит, равенство имеет место при x=1. Получаем известный нам результат, что $\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} = \ln 2$.

Теорема 27 (биномиальный ряд). *Если* $\alpha \notin \mathbb{N}_0$ *и* $C^n_{\alpha} = \frac{\alpha \cdot (\alpha - 1) \cdot ... \cdot (\alpha - n + 1)}{n!}$, $C^0_{\alpha} = 1$, *mo*

$$(1+x)^{\alpha} = \sum_{n=0}^{+\infty} C_{\alpha}^n x^n, |x| < 1.$$

Доказательство. Пусть $f(x)=(1+x)^{\alpha}$. Тогда $f^{(n)}(x)=\alpha\cdot(\alpha-1)\cdot\ldots\cdot(\alpha-n+1)\cdot(1+x)^{\alpha-1}$ и, значит, $\frac{f^{(n)}(0)}{n!}=C_{\alpha}^{n}$. При $x\neq 0$:

$$\lim_{n \to +\infty} \frac{|C_{\alpha}^{n+1}x^{n+1}|}{|C_{\alpha}^{n}x^{n}|} = \lim_{n \to +\infty} \frac{|\alpha - n||x|}{n+1} = |x|.$$

Если |x|<1, то ряд абсолютно сходится по признаку Даламбера. Если |x|>1, то ряд абсолютно расходится по признаку Даламбера. Следовательно, $R_{\rm cx}=1$.

Обозначим $g(x) = \sum_{n=0}^{+\infty} C_{\alpha}^n x^n$, и покажем, что $g \equiv f$ на (-1,1), т.е. $(1+x)^{-\alpha} g(x) = 1$ при $x \in (-1,1)$. Для этого найдем производную функции $(1+x)^{-\alpha} g(x)$. По теореме (26) имеем

$$((1+x)^{-\alpha}g(x))' = (1+x)^{-\alpha} \sum_{n=1}^{+\infty} nC_{\alpha}^n x^{n-1} - \alpha(1+x)^{-\alpha-1} \sum_{n=0}^{+\infty} C_{\alpha}^n x^n =$$

$$= (1+x)^{-\alpha-1} \left[\sum_{n=1}^{+\infty} nC_{\alpha}^n x^{n-1} + \sum_{n=0}^{+\infty} nC_{\alpha}^n x^n - \alpha \sum_{n=0}^{+\infty} C_{\alpha}^n x^n \right].$$

В первой сумме произведем замену индекса суммирования. После приведения подобных слагаемых получим

$$((1+x)^{-\alpha}g(x))' = (1+x)^{-\alpha-1} \left[\sum_{n=0}^{+\infty} (n+1)C_{\alpha}^{n+1}x^n - \sum_{n=0}^{+\infty} (\alpha-n)C_{\alpha}^nx^n \right] = 0.$$

Отсюда следует, что $(1+x)^{-\alpha}g(x)$ постоянна на (-1,1). Из условия g(0)=1 получаем, что $(1+x)^{-\alpha}g(x)=1$ для всех $x\in (-1,1)$.

5. Метрические и нормированные пространства, p-нормы на \mathbb{R}^n . Топология метрических пространств: открытые и замкнутые множества, их свойства. Предельные точки. Критерии замкнутости множества. Замыкание множества. Подпространства метрического пространства, описание открытых множеств подпространства. Компакты и их свойства. Теорема о секвенциальной компактности. Описание компактов в \mathbb{R}^n . Теорема Больцано-Вейерштрасса. Полные метрические пространства. Полнота пространств \mathbb{R}^n и B(E).

Определение 20. Пусть $X \neq \emptyset$. Функция $\rho: X \times X \to \mathbb{R}$ называется метрикой на X, если для любых $x, y, z \in X$ выполнено:

- 1. $\rho(x,y) \ge 0$, $\rho(x,y) = 0 \Leftrightarrow x = y$;
- 2. $\rho(x, y) = \rho(y, x)$;
- 3. $\rho(x,y) \leq \rho(x,z) + \rho(z,y)$ (неравенство треугольника).

Пара (X, ρ) называется метрическим пространством.

В дальнейшем часто под метрическим пространтвом будем понимать само множество X, предполагая наличие связанной с ним метрики.

Определение 21. Пусть V – линейное пространство. Функция $\|\cdot\|:V\to\mathbb{R}$ называется *нормой*, если для любых $x, y \in V$ и $\alpha \in \mathbb{R}$ выполнено:

- 1. $||x|| \ge 0$, $||x|| = 0 \Leftrightarrow x = 0$;
- 2. $\|\alpha x\| = |\alpha| \|x\|$;
- 3. $||x + y|| \le ||x|| + ||y||$ (неравенство треугольника).

Пара $(V, \|\cdot\|)$ называется нормированным пространством.

Пример. $X = \mathbb{R}^n$, $x = (x_1, \dots, x_n)^T$, $y = (y_1, \dots, y_n)^T$.

- 1. $|x| = \sqrt{\sum_{i=1}^{n} |x_i|^2}$, $\rho_2(x, y) = \sqrt{\sum_{i=1}^{n} |x_i y_i|^2}$.
- 2. $||x||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}, \, \rho_p(x,y) = (\sum_{i=1}^n |x_i y_i|^p)^{\frac{1}{p}}, \, p \geqslant 1.$
- 3. $||x||_{\infty} = \max_{1 \le i \le n} |x_i|, \, \rho_{\infty}(x, y) = \max_{1 \le i \le n} |x_i y_i|.$

Доказательство. Покажем, что $\|\cdot\|_p$ — норма на \mathbb{R}^n .

Проверим сначала, что если $\|x\|_p \leqslant 1, \|y\|_p \leqslant 1, \alpha+\beta=1, \alpha\geqslant 0, \beta\geqslant 0,$ то $\|\alpha x+\beta y\|_p\leqslant 1.$

Функция $\varphi(s) = s^p$ — выпуклая на $[0, +\infty)$, следовательно $|\alpha x_i + \beta y_i|^p \leqslant \alpha |x_i|^p + \beta |x_i|^p$.

Просуммируем по i = 1, ..., n. $\|\alpha x + \beta y\|_p^p \leqslant \alpha \|x\|_p^p + \beta \|y\|_p^p \leqslant \alpha + \beta = 1$.

Пусть x, y произвольны. Если x = 0 или y = 0, то неравенство выполняется. Будем предпола-

гать, что $x \neq 0$ и $y \neq 0$. Покажем, что $\|x + y\|_p \leqslant \|x\|_p + \|y\|_p$ (индекс p будем опускать) Введём обозначения $\alpha = \frac{\|x\|}{\|x\| + \|y\|}, \beta = \frac{\|y\|}{\|x\| + \|y\|}, \hat{x} = \frac{x}{\|x\|}, \hat{y} = \frac{y}{\|y\|}$. Тогда, учитывая, что $\|\alpha \hat{x} + \beta\|_p = \frac{y}{\|y\|}$ $\beta \hat{y} \| \leqslant 1$, имеем

$$||x + y|| = (||x|| + ||y||) \left\| \frac{x}{||x|| + ||y||} + \frac{y}{||x|| + ||y||} \right\| = (||x|| + ||y||) ||\alpha \hat{x} + \beta \hat{y}|| \le ||x|| + ||y||.$$

Проверка, что $\|\cdot\|_{\infty}$ является нормой, легко следует из свойств модуля числа.

Определение 22. Пусть (X, ρ) — метрическое пространство, $x \in X$.

Множество $B_r(x) = \{y \in X \mid \rho(y,x) < r\}, r > 0$ называется *открытым шаром* с центром в точке x и радиуса r.

Множество $\overline{B}_r(x) = \{y \in X \mid \rho(y,x) \leqslant r\}$ называется замкнутым шаром с центром в точке x и радиуса r.

Определение 23. Пусть (X, ρ) — метрическое пространство, $E \subset X$ и $x \in X$.

- 1. Точка x называется внутренней точкой множества E, если $\exists \varepsilon > 0 \ (B_{\varepsilon}(x) \subset E)$.
- 2. Точка x называется внешней точкой множества E, если $\exists \varepsilon > 0 \ (B_{\varepsilon}(x) \subset X \setminus E)$. Обозначим ext E множество внешних точек E. Очевидно, ext $E = \operatorname{int}(X \setminus E)$.
- 3. Точка x называется $\mathit{граничной}$ точкой множества E, если

$$\forall \varepsilon > 0 \ \left\{ \begin{array}{l} B_{\varepsilon}(x) \cap E \neq \varnothing \\ B_{\varepsilon}(x) \cap (X \setminus E) \neq \varnothing \end{array} \right.$$

Обозначим ∂E — множество граничных точек E.

Замечание. $X = \operatorname{int} E \cup \operatorname{ext} E \cup \partial E$, причём $\operatorname{int} E$, $\operatorname{ext} E$, ∂E попарно не пересекаются.

Определение 24. Множество $G \subset X$ называется *открытым*, если все точки G являются внутренними (то есть G = int G).

Множество $F \subset X$ называется замкнутым, если $X \setminus F$ открыто.

Аналогично случаю $X = \mathbb{R}$ доказывается следующая лемма.

Лемма 15. Объединение произвольного семейства открытых множеств и пересечение конечного семейства открытых множеств являются открытыми множествами.

Объединение конечного семейства замкнутых множеств и пересечение произвольного семейства замкнутых множеств являются замкнутыми множествами.

Определение 25. Точка x называется npedenьной точкой множества <math>E, если $\forall \varepsilon > 0$ ($\mathring{B}_{\varepsilon}(x) \cap E \neq \varnothing$). Здесь и далее $\mathring{B}_{\varepsilon}(x) = B_{\varepsilon}(x) \setminus \{x\}$.

Определение 26. Точка x называется uзолированной точкой множества E, если $x \in E$ и x не предельная.

Теорема 28. Следующие утверждения эквивалентны:

- 1. E замкнуто;
- 2. Е содержит все свои граничные точки;
- 3. Е содержит все свои предельные точки;

Доказательство.

$$(1 \Rightarrow 2) \ x \in \underbrace{X \setminus E}_{\text{otkp.}} \Rightarrow \exists B_{\varepsilon}(x) \subset X \setminus E \Rightarrow x \neq \partial E \Rightarrow \partial E \subset E.$$

 $(2\Rightarrow 3)$ Любая предельная точка является внутренней или граничной, значит E содержит все предельные точки.

 $(3 \Rightarrow 1)$ Пусть $x \in X \setminus E$. Точка x не является предельной для E, т.е. $\exists \varepsilon > 0 \ (\mathring{B}_{\varepsilon}(x) \cap E = \varnothing) \Rightarrow B_{\varepsilon}(x) \subset X \setminus E$. Значит, $X \setminus E$ открыто.

Определение 27. $\overline{E} = E \cup \partial E$ — замыкание E.

Замечание. $x \in \overline{E} \Leftrightarrow \exists \{x_n\} \subset E \ (x_n \to x).$

Доказательство. Если $x \in E \cup \partial E$, то $\forall \varepsilon > 0$ $(B_{\varepsilon}(x) \cap E \neq \varnothing)$. Выберем точку $x_n \in B_{\frac{1}{n}}(x) \cap E$. Так как $\rho(x_n, x) < \frac{1}{n}$, то $x_n \to x$.

Обратно, если $x \in X \setminus \overline{E}$, то x – внешнаяя точка E и, значит, x не может быть пределом последовательности точек из E.

Следствие 13. Множество E замкнуто $\Leftrightarrow \forall \{x_n\}, \ x_n \in E \ (x_n \to x \Rightarrow x \in E).$

Определение 28. Пусть (X, ρ) — метрическое пространство, $E \subset X, E \neq \emptyset$. Сужение $\rho|_{E \times E}$ является метрикой на E. Пара $(E, \rho|_{E \times E})$ называется $nodnpocmpancmeom <math>(X, \rho)$, а функция $\rho|_{E \times E}$ — undyuuposannoй метрикой.

Рассмотрим $B_r^E(x) = \{ y \in E \mid \rho(x, y) < r \} = B_r^X(x) \cap E$.

Лемма 16. Пусть (X, ρ) — метрическое пространство, $E \subset X$.

$$\underbrace{U}_{om\kappa p.~6~E} \Leftrightarrow \exists \underbrace{V}_{om\kappa p.~6~X} (U = V \cap E).$$

Доказательство. (\Rightarrow) Пусть U открыто в E. Тогда $\forall x \in U \ \exists B_{\varepsilon_x}^E(x) \subset U$ и, значит, $U = \bigcup_{x \in U} B_{\varepsilon_x}^E(x)$. Положим $V = \bigcup_{x \in U} B_{\varepsilon_x}^X(x)$. Тогда V открыто в X и $V \cap E = \bigcup_{x \in U} (B_{\varepsilon_x}^X(x) \cap E) = \bigcup_{x \in U} B_{\varepsilon_x}^E(x) = U$. (\Leftarrow) Пусть $x \in U$ и $U = \underbrace{V}_{\text{откр. В } X} \cap E$, тогда $x \in V \Rightarrow \exists B_{\varepsilon}^X(x) \subset V \Rightarrow B_{\varepsilon}^E(x) = B_{\varepsilon}^X(x) \cap E \subset V$. $V \cap E = U$, то есть $V \cap E = U$, то есть $V \cap E = U$.

Следствие 14.

$$Z \Leftrightarrow \exists F (Z = F \cap E).$$

Определение 29. Пусть X — множество, $Y \subset X$. Семейство $\{X_{\alpha}\}_{{\alpha}\in A}$ подмножеств X называется *покрытием* Y, если $Y \subset \bigcup_{{\alpha}\in A} X_{\alpha}$.

Если $B \subset A$ и $\{X_{\alpha}\}_{{\alpha} \in B}$ также является покрытием Y, то оно называется $nodno\kappa pытием$.

Определение 30. Пусть (X, ρ) — метрическое пространство, $K \subset X$. K называется *компактом* (в X), если из любого его открытого покрытия $\{G_{\lambda}\}_{{\lambda}\in\Lambda}$ можно выделить конечное подпокрытие, то есть $\exists \lambda_1, \ldots \lambda_m \in \Lambda \ (K \subset G_{\lambda_1} \cup \ldots \cup G_{\lambda_m})$.

Пемма 17. Пусть (X, ρ) — метрическое пространство, $K \subset X$. Если K — компакт, то K ограничено и замкнуто в X.

Доказательство. Пусть $a \in K$. Так как $\bigcup_{n=1}^{\infty} B_n(a) = X$, то $\{B_n(a)\}_{n \in \mathbb{N}}$ — открытое покрытие K. Следовательно, $K \subset B_{n_1}(a) \cup \ldots \cup B_{n_m}(a) = B_N(a)$, где $N = \max_{1 \leqslant i \leqslant m} \{n_i\}$, и, значит, K ограничено.

Пусть $a \in X \setminus K$. Так как $\bigcup_{n=1}^{\infty} \left(X \setminus \overline{B}_{\frac{1}{n}}(a) \right) = X \setminus \{a\}$, то $\{X \setminus \overline{B}_{\frac{1}{n}}(a)\}_{n \in \mathbb{N}}$ — открытое покрытие K. Следовательно, $K \subset \left(X \setminus \overline{B}_{\frac{1}{n_1}}(a) \right) \cup \ldots \cup \left(X \setminus \overline{B}_{\frac{1}{n_m}}(a) \right) = X \setminus \overline{B}_{\frac{1}{N}}(a)$, где $N = \max_{1 \le i \le m} \{n_i\}$. Тогда $\overline{B}_{\frac{1}{N}}(a) \subset X \setminus K$ и, значит, $X \setminus K$ открыто, а значит, K — замкнуто.

Лемма 18. Замкнутое подмножество компакта — компакт.

Доказательство. Пусть K — компакт в X, $\underbrace{F}_{\text{замк. в }X}$ $\subset K$. Покажем, что F — компакт. Рассмотрим

открытое покрытие $\{G_{\lambda}\}_{{\lambda}\in\Lambda}$ множества F, тогда $\{G_{\lambda}\}_{{\lambda}\in\Lambda}\cup\{X\setminus F\}$ — открытое покрытие K, так как $\left(\bigcup_{{\lambda}\in\Lambda}G_{\lambda}\right)\cup(X\setminus F)=X$. Поскольку K — компакт, то $K\subset G_{{\lambda}_1}\cup\ldots\cup G_{{\lambda}_m}\cup(X\setminus F)\stackrel{F\subseteq K}{\Rightarrow}F\subset G_{{\lambda}_1}\cup\ldots\cup G_{{\lambda}_m}$. Значит, F — компакт.

Теорема 29 (о секвенциальной компактности). Пусть (X, ρ) — метрическое пространство, $K \subset X$. K — компакт тогда и только тогда, когда из любой последовательности элементов K можно выделить сходящуюся в K подпоследовательность.

Доказательство. (\Rightarrow) Пусть $\forall n \in \mathbb{N}$ $x_n \in K$. Предположим, что из $\{x_n\}$ нельзя выделить сходяющуюся подпоследовательность в K. Тогда $\forall a \in K \ \exists \delta_a > 0 \ \exists N_a \ \forall n \geqslant N_a \ (x_n \notin B_{\delta_a}(a))$.

Рассмотрим $\{B_{\delta_a}(a)\}_{a\in K}$ — открытое покрытие K. Следовательно, $K\subset B_{\delta_{a_1}}(a_1)\cup\ldots\cup B_{\delta_{a_m}}(a_m)$. Положим $N=\max_{1\leqslant i\leqslant m}\{N_{a_i}\}$. Так как $N\geqslant N_{a_i}$, то $x_N\not\in B_{\delta_{a_i}}(a_i)$ $i=1,\ldots,m\Rightarrow x_N\not\in K$ — противоречие.

- (\Leftarrow) Пусть из любой последовательности элементов K можно выделить сходящуюся в K подпоследовательность.
 - 1. Покажем, что для любого $\varepsilon>0$ K можно покрыть конечным набором открытых шаров радиуса $\varepsilon.$

Докажем от противного – пусть нельзя покрыть. Индуктивно построим последовательность $\{x_n\}, x_1 \in K, x_n \in K \setminus \bigcup_{i=1}^{n-1} B_{\varepsilon}(x_i).$

По построению $\rho(x_i,x_j)\geqslant \varepsilon$, и, значит, из $\{x_n\}$ нельзя выделить сходящуюся подпоследовательность – противоречие.

2. Пусть $\{G_{\lambda}\}_{{\lambda}\in{\Lambda}}$ — открытое покрытие K, тогда $\exists {\varepsilon}>0 \ \forall x\in K \ \exists {\lambda}\in{\Lambda} \ (B_{\varepsilon}(x)\subset G_{\lambda})$. Предположим, что это не выполняется, тогда $\forall n\in{\mathbb N} \ \exists x_n\in K \ \forall {\lambda}\in{\Lambda} \ \Big(B_{\frac{1}{2}}(x_n)\not\subset G_{\lambda}\Big)$.

Имеем $\{x_n\} \subset K \Rightarrow \exists x_{n_k} \to x \in K$, следовательно, $\exists \lambda_0 \in \Lambda(x \in \underbrace{G_{\lambda_0}}) \Rightarrow \exists B_{\alpha}(x) \subset G_{\lambda_0}$.

Выберем k так, чтобы $x_{n_k} \in B_{\frac{\alpha}{2}}(x)$ и $\frac{1}{n_k} < \frac{\alpha}{2}$. Если $z \in B_{\frac{1}{n_k}}(x_{n_k}) \Rightarrow \rho(z,x) \leqslant \rho(z,x_{n_k}) + \rho(x_{n_k},x) < \frac{\alpha}{2} + \frac{\alpha}{2} = \alpha$.

Следовательно, $z\in B_{\alpha}(x),$ $B_{\frac{1}{n_k}}(x_{n_k})\subset B_{\alpha}(x)\subset G_{\lambda_0}$ — противоречие.

3. Пусть $\{G_{\lambda}\}_{{\lambda}\in\Lambda}$ – открытое покрытие K. Тогда по (2):

$$\exists \varepsilon > 0 \ \forall x \in K \ \exists \lambda \in \Lambda \ (B_{\varepsilon}(x) \subset G_{\lambda})$$

По (1) $\exists x_1, x_2, ..., x_m \in K$, что $K \subset B_{\varepsilon}(x_i) \cup ... \cup B_{\varepsilon}(x_m) \subset G_{\lambda_1} \cup ... \cup G_{\lambda_m}$, где λ_i удовлетворяет условию $B_{\varepsilon}(x_i) \subset G_{\lambda_i}$.

Следовательно, K – компакт.

Следствие 15. Множество K является компактом в $\mathbb{R}^n \Leftrightarrow K$ ограничено и замкнуто

 $Доказательство. \Rightarrow$ лемма (17).

 \Leftarrow Если K ограничено, то $K \subset B_r(x)$ для некоторой точки $x = (x_1, \dots, x_n)^T$ и r > 0. Рассмотрим замкнутый брус $[x_1 - r, x_1 + r] \times \dots \times [x_n - r, x_n + r]$. Этот брус содержит $B_r(x)$, а значит, и K.

Тогда K – компакт по лемме (18).

ФПМИ МФТИ, весна 2023

Следствие 16 (теорема Больцано–Вейерштрасса). Из любой ограниченной последовательности в \mathbb{R}^n можно выделить сходящуюся подпоследовательность.

Доказательство. Если последовательность ограничена, то она лежит в некотором замкнутом шаре. Этот шар – компакт по следствию (15). Осталось применить теорему (29). \Box

Пусть (X, ρ) – метрическое пространство.

Определение 31. Последовательность $\{x_n\}$ в X называется фундаментальной, если

$$\forall \varepsilon > 0 \ \exists N \ \forall n, m \geqslant N \ (\rho(x_n, x_m) < \varepsilon).$$

Лемма 19. Всякая сходящаяся последовательность фундаментальна.

Доказательство. $x_n \in X, x_n \to a$. Пусть $\varepsilon > 0$, тогда $\exists N \ \forall n \geqslant N \ (\rho(x_n, a) < \frac{\varepsilon}{2})$. Следовательно, $\forall n, m \geqslant N$:

$$\rho(x_n, x_m) \leqslant \rho(x_n, a) + \rho(x_m, a) < \varepsilon.$$

Определение 32. Метрическое пространство называется *полным*, если всякая фундаментальная последовательность в нем сходится.

Теорема 30. Евклидово пространство \mathbb{R}^n – полное.

Доказательство.

Пусть $\{x_k\}$ – фундаментальная последовательность в \mathbb{R}^n , $x_k = (x_{1,k}, \dots, x_{n,k})^T$. Так как $|x_{i,k} - x_{i,m}| \leq \rho_2(x_k, x_m)$, то из фундаментальности $\{x_k\}$ следует фундаментальность $\{x_{i,k}\}$ в \mathbb{R} для $i=1,\dots,n$. По критерию Коши для числовых последовательностей $x_{i,k} \to a_k \in \mathbb{R}$. Рассмотрим $a=(a_1,\dots,a_n)^T$. $\rho_2(x_k,a)=\sqrt{\sum_{i=1}^n (x_{k,i}-a_i)^2} \to 0$ при $k\to\infty$. Значит, $x_k\to a\Rightarrow \mathbb{R}^n$ – полное метрическое пространство.

Пример. B(E) – линейное пространство всех ограниченных функций $f: E \to \mathbb{R}$.

B(E) является нормированным пространством относительно $||f|| = \sup_{x \in E} |f(x)|$. Имеем $\sup |f(x) + g(x)| \le \sup |f(x)| + \sup |g(x)|$. Имеем $f_n \to f$ в $B(E) \Leftrightarrow ||f_n - f|| \to 0 \Leftrightarrow \sup_{x \in E} |f_n(x) - f(x)| \to 0 \Leftrightarrow f_n \rightrightarrows f$ на E.

Теорема 31. B(E) – *полное*.

Доказательство. Пусть $\{f_n\}$ фундаментальна в B(E), $\varepsilon > 0$. Тогда

$$\exists N \ \forall n, m \geqslant N \ (\sup_{x \in E} |f_n(x) - f_m(x)| \leqslant \varepsilon).$$

По критерию Коши равномерной сходимости $\exists f: f_n \Rightarrow f$ на E. Осталось доказать, что равномерный предел ограниченных функций – ограниченная функция. Для $\varepsilon = 1 \ \exists N: |f_N(x) - f(x)| \leqslant 1 \ \forall x \in E \Rightarrow |f(x)| \leqslant |f_N(x)| + 1 \Rightarrow f \in B(E) \Rightarrow B(E)$ – полное.

6. Предел функции, отображающей метрическое пространство в метрическое пространство, его свойства. Предел по подмножествам. Равносильные условия непрерывности. Непрерывность композиции. Критерий непрерывности через прообразы. Непрерывные функции на компактах. Теорема Вейерштрасса. Эквивалентность норм в конечномерных пространствах (6/д). Теорема Кантора о равномерной непрерывности. Связные множества в метрических пространствах. Теорема о промежуточном значении. Линейно связные множества. Линейные отображения из \mathbb{R}^n в \mathbb{R}^m , операторная норма.

Пусть $(X, \rho_x), (Y, \rho_y)$ — метрические пространства, a — предельная точка X, и задана функция $f: X \setminus \{a\} \to Y.$

Определение 33 (Коши). Точка $b \in Y$ называется *пределом* функции f в точке a, если

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x \in X(0 < \rho_X(x, a) < \delta \Rightarrow \rho_Y(f(x), b) < \varepsilon)$$

или, что эквивалентно,

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in X (x \in \mathring{B}_{\delta}(a) \Rightarrow f(x) \in B_{\varepsilon}(b).$$

Определение 34 (Гейне). Точка $b \in Y$ называется *пределом* функции f в точке a, если

$$\forall \{x_n\}, x_n \in X \setminus \{a\}(x_n \to a \Rightarrow f(x_n) \to b).$$

Как и в случае числовых функций, доказывается равносильность определений по Коши и по Гейне, поэтому в обоих случаях пишут $\lim_{x\to a} f(x) = b$, или $f(x) \to b$ при $x \to a$.

Свойство 8 (единственность). Если $\lim_{x\to a} f(x) = b$ и $\lim_{x\to a} f(x) = c$, то b=c.

Доказательство. Пусть $x_n \to a$ и $x_n \ne a$. По определению Гейне $f(x_n) \to b$ и $f(x_n) \to c$. Так как последовательность в метрическом пространстве имеет не более одного предела, то b = c.

Свойство 9. $f, g: X \setminus \{a\} \to \mathbb{R}$ $u \lim_{x \to a} f(x) = b$, $\lim_{x \to a} g(x) = c$. $Toe \partial a \lim_{x \to a} (f(x) + g(x)) = b + c$, $\lim_{x \to a} f(x)g(x) = bc$.

Доказательство. $x_n \in X \setminus \{a\}, x_n \to a \Rightarrow f(x_n) \to b, g(x_n) \to c \Rightarrow f(x_n) + g(x_n) \to b + c, f(x_n)g(x_n) \to bc$. Утверждение следует по определению Гейне.

В дальнейшем, говоря о «пределе по подможеству», всегда будем иметь в виду подпространство с индуцированной метрикой.

Свойство 10 (предел по подмножеству). Пусть $E \subset X$, a – предельная точка множества E. Eсли $\lim_{x\to a} f(x) = b$, то $\lim_{x\to a} (f|_E)(x) = b$.

Доказательство. Пусть $x_n \subset E, x_n \to a$ и $x_n \neq a$. Тогда $(f|_E)(x_n) = f(x_n) \to b$. По определению Гейне $\lim_{x\to a} (f|_E)(x) = b$.

Свойство 11 (локальная ограниченность). *Если существует* $\lim_{x\to a} f(x)$, то $\exists \delta > 0 : f(\mathring{B}_{\delta}(a))$ ограничено.

Доказательство. Достаточно положить в определении Коши $\varepsilon=1$.

Определение 35. Функция f непрерывна в точке $a \in X$, если

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x \in X \; (\rho_X(x, a) < \delta \Rightarrow \rho_Y(f(x), f(a)) < \varepsilon)$$

или, что эквивалентно,

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x \in X \; (x \in B_{\delta}(a) \Rightarrow f(x) \in B_{\varepsilon}(f(a))) \; .$$

Лемма 20. Пусть $f: X \to Y$, $a \in X$. Следующие условия эквивалентны:

- 1. функция f непрерывна в точке a;
- 2. $\forall \{x_n\}, x_n \in X (x_n \to a \Rightarrow f(x_n) \to f(a));$
- 3. a изолированная точка множества X или a предельная точка X и $\lim_{x\to a} f(x) = f(a)$.

Доказательство. (1) \Rightarrow (2) Выберем $\varepsilon > 0$ и соответствующее $\delta > 0$ из определения непрерывности. Если $x_n \to a$ (в X), то существует такой номер N, что $\rho_X(x_n,a) < \delta$ при всех $n \geqslant N$, но тогда $\rho_Y(f(x_n),f(a)) < \varepsilon$ при $n \geqslant N$. Это означает, что $f(x_n) \to f(a)$.

- $(2) \Rightarrow (3)$ Если a предельная точка X, то из условия $\lim_{x\to a} f(x) = f(a)$ по определению Гейне.
- $(3)\Rightarrow (1)$ Если a изолирована, то $B_{\delta_0}(a)\cap X=\{a\}$ для некоторого $\delta_0>0$. Тогда для любого $\varepsilon>0$ определение непрерывности в точке a выполняется при $\delta=\delta_0$. Пусть a предельная для X. По определению предела по Коши $\forall \varepsilon>0 \; \exists \delta>0 \; \forall x\in E \, (0<\rho_X(x,a)<\delta\Rightarrow \rho_Y(f(x),f(a))<\varepsilon)$. Но последняя импликация верна и для x=a. Значит, функция f непрерывна в точке a.

Теорема 32 (о непрерывности композиции). Пусть (X, ρ_X) , (Y, ρ_Y) и (Z, ρ_Z) – метрические пространства. Если функция $f: X \to Y$ непрерывна в точке $a \in X$, и функция $g: Y \to Z$ непрерывна в точке $f(a) \in Y$, то их композиция $g \circ f: X \to Z$ непрерывна в точке a.

Доказательство. Пусть $x_n \to a$, тогда $f(x_n) \to f(a)$ и, значит, $g(f(x_n)) \to g(f(a))$.

Теорема 33 (критерий непрерывности). Функция $f: X \to Y$ непрерывна \Leftrightarrow для любого открытого $V \subset Y$ множество $f^{-1}(V)$ открыто в X.

Доказательство. (\Rightarrow) Пусть V открыто в Y. Если $x \in f^{-1}(V)$, то $f(x) \in V$ и, значит, существует такое $\varepsilon > 0$, что $B_{\varepsilon}(f(x)) \subset V$. Функция f непрерывна в точке x, поэтому найдется такое $\delta > 0$, что $f(B_{\delta}(x)) \subset B_{\varepsilon}(f(x))$. Отсюда следует, что $B_{\delta}(x) \subset f^{-1}(V) \Rightarrow f^{-1}(V)$ открыто в X.

(\Leftarrow) Пусть $x \in X$, и $\varepsilon > 0$. Шар $B_{\varepsilon}(f(x))$ открыт в Y, поэтому множество $f^{-1}(B_{\varepsilon}(f(x)))$ открыто в X и, значит, существует $\delta > 0$, что $B_{\delta}(x) \subset f^{-1}(B_{\varepsilon}(f(x)))$, или $f(B_{\delta}(x)) \subset B_{\varepsilon}(f(x))$. Так как $\varepsilon > 0$ – любое, то f непрерывна в точке x.

Следствие 17. Функция $f: X \to Y$ непрерывна на $X \Leftrightarrow$ для каждого замкнутого множества $F \subset Y$ множество $f^{-1}(F)$ замкнуто в X.

Доказательство. Следует из теоремы в силу равенства $X \setminus f^{-1}(F) = f^{-1}(Y \setminus F)$, верного для любого $F \subset Y$.

Теорема 34. Если функция $f: K \to Y$ непрерывна, и K компакт, то f(K) – компакт в Y.

Доказательство. Пусть $\{G_{\lambda}\}_{{\lambda}\in\Lambda}$ – открытое покрытие f(K). Если $x\in K$, то существует такое $\lambda_0\in\Lambda$, что $f(x)\in G_{\lambda_0}$ и, значит, $x\in f^{-1}(G_{\lambda_0})$. Следовательно, семейство $\{f^{-1}(G_{\lambda})\}_{{\lambda}\in\Lambda}$ образует открытое покрытие K. Это покрытие открыто по критерию непрерывности. Поскольку K компакт, то $K\subset f^{-1}(G_{\lambda_1})\cup\ldots\cup f^{-1}(G_{\lambda_m})$.

Покажем, что $f(K) \subset G_{\lambda_1} \cup \ldots \cup G_{\lambda_m}$. Действительно, если $y \in f(K)$, то y = f(x) для некоторого $x \in K$. Найдем такое k, что $x \in f^{-1}(G_{\lambda_k})$, тогда, в свою очередь, $y = f(x) \in G_{\lambda_k}$. Следовательно, f(K) – компакт.

Следствие 18 (теорема Вейерштрасса). Если функция $f: K \to \mathbb{R}$ непрерывна, и K компакт, то существуют точки $x_m, x_M \in K$, такие что $f(x_M) = \sup_{x \in K} f(x)$ и $f(x_m) = \inf_{x \in K} f(x)$.

Доказательство. f(K) — компакт в \mathbb{R} , следовательно, f(K) замкнуто и ограничено.

Так как f(K) ограничено, то $M=\sup_K f(x)\in\mathbb{R}.$ M — граничная точка f(K), следовательно, $M\in f(K)$ и, значит, $\exists x_M\in K\ f(x)=M.$

Доказательство для $\inf_K f$ аналогично.

Определение 36. Пусть V — линейное пространство, $\|\cdot\|$, $\|\cdot\|^*$ нормы на V. Нормы $\|\cdot\|$ и $\|\cdot\|^*$ называются эквивалентными, если существуют такие $\alpha>0$ и $\beta>0$, что

$$\forall x \in V \ (\alpha \|x\| \leqslant \|x\|^* \leqslant \beta \|x\|).$$

Следствие 19. На конечномерном пространстве V все нормы эквивалентны.

Определение 37. Функция $f: X \to Y$ называется равномерно непрерывной (на X), если

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x, x' \in X \ (\rho_X(x, x') < \delta \Rightarrow \rho_Y(f(x), f(x')) < \varepsilon).$$

Теорема 35 (Кантор). *Если функция* $f: K \to Y$ непрерывна, $u \ K$ компакт, то f равномерно непрерывна.

Доказательство. Пусть $\varepsilon > 0$. По определению непрерывности

$$\forall a \in K \ \exists \delta_a > 0 \ \forall x \in X \ \left(\rho_X(x, a) < \delta_a \Rightarrow \rho_Y(f(x), f(a)) < \frac{\varepsilon}{2} \right),$$

Семейство $\{B_{\frac{\delta_a}{2}}\}_{a\in K}$ — открытое покрытие K. Так как K — компакт, то $K\subset B_{\frac{\delta_{a_1}}{2}}(a_1)\cup\ldots\cup B_{\frac{\delta_{a_m}}{2}}(a_m)$.

Положим $\delta = \min_{1 \leqslant i \leqslant m} \left\{ \frac{\delta_{a_i}}{2} \right\}$. Покажем, что δ будет удовлетворять определению равномерной непрерывности для ε .

Пусть $\rho_K(x,x')<\delta$. Найдётся $i,1\leqslant i\leqslant m$, что $x\in B_{\frac{\delta a_i}{2}}(a_i)$. Тогда

$$\rho_K(x', a_i) \leqslant \rho_K(x', x) + \rho_K(x, a_i) < \frac{\delta_{a_i}}{2} + \frac{\delta_{a_i}}{2} = \delta_{a_i},$$

и, значит, $x, x' \in B_{\delta_{a_i}}(a_i)$. Поэтому

$$\rho_Y(f(x), f(x')) \leqslant \rho_Y(f(x), f(a_i)) + \rho_Y(f(a_i), f(x')) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Определение 38. Метрическое пространство X называется *несвязным*, если существуют непустые открытые $U, V \subset X$, что $X = U \cup V$ и $U \cap V = \emptyset$.

Метрическое пространство X называется ceязным, если оно не является несвязным.

Множество $E \subset X$ называется *несвязным* (связным), если оно несвязно (связно) как подпространство X.

Замечание. Согласно устройству открытых множеств подпространства получаем, что $E \subset X$ несвязно, если существуют открытые $U, V \subset X$, такие что $E \subset U \cup V$ и $E \cap U \neq \emptyset$, $E \cap V \neq \emptyset$, $U \cap V \cap E = \emptyset$.

Покажем, что U и V можно всегда выбрать непересекающимися.

ФПМИ МФТИ, весна 2023

Лемма 21. Множество $E \subset X$ несвязно \Leftrightarrow существуют открытые $U, V \subset X$, такие что $E \subset U \cup V$ и $E \cap U \neq \emptyset$, $E \cap V \neq \emptyset$, $U \cap V = \emptyset$.

Доказательство. Достаточность очевидна. Для доказательства необходимости предположим, что множество E несвязно. Тогда существуют непустые открытые $U_E, V_E \subset E$, такие что $E = U_E \cup V_E, U_E \cap V_E = \varnothing$.

Для каждого $x\in U_E$ найдется такое $\delta_x>0$, что $B_{\delta_x}(x)\cap E\subset U_E$ и, значит, $B_{\delta_x}(x)\cap V_E=\varnothing$. Аналогично, для каждого $y\in V_E$ найдется такое $\delta_y>0$, что $B_{\delta_y}(y)\cap E\subset V_E$ и $B_{\delta_y}(y)\cap U_E=\varnothing$. Положим $U=\bigcup_{x\in U_E}B_{\frac{\delta_x}{2}}(x), V=\bigcup_{y\in V_E}B_{\frac{\delta_y}{2}}(y)$. Если существует $z\in U\cap V$, то $z\in B_{\frac{\delta_x}{2}}(x)$ и $z\in B_{\frac{\delta_y}{2}}(y)$ для некоторых $x\in U_E$ и $y\in V_E$, тогда

$$\rho(x,y) \leqslant \rho(x,z) + \rho(z,y) < \frac{\delta_x + \delta_y}{2} \leqslant \max\{\delta_x, \delta_y\}.$$

Если $max\{\delta_x,\delta_y\}=\delta_x$, то $y\in B_{\delta_x}(x)$; если же $max\{\delta_x,\delta_y\}=\delta_y$, то $x\in B_{\delta_y}(y)$. Обе эти ситуации невозможны. Следовательно, $U\cap V=\varnothing$.

Теорема 36. Множество $I \subset \mathbb{R}$ связно $\Leftrightarrow I$ – промежуток.

Доказательство. (\Rightarrow) Если I не является промежутком, то существуют $x,y \in I$ и $z \in \mathbb{R}$, такие что x < z < y и $z \notin I$. Рассмотрим $(-\infty,z) \cap I$ и $(z,+\infty) \cap I$. Это непустые (содержат соответственно точки x,y), непересекающиеся, открытые в I множества, объединение которых совпадает с I. Значит, множество I несвязно.

 (\Leftarrow) Предположим, что промежуток I не является связным множеством. Тогда найдутся открытые (в \mathbb{R}) множества U и V, такие что $I \subset U \cup V$, $I \cap U \neq \varnothing$, $I \cap V \neq \varnothing$ и $U \cap V \cap I = \varnothing$. Пусть $x \in I \cap U$ и $y \in I \cap V$. Без ограничения общности можно считать, что x < y (тогда $[x,y] \subset I$).

Положим $S=\{z\in [x,y]:z\in U\}$. Так как S не пусто и ограничено, то существует $c=\sup S$. В силу замкнутости отрезка $c\in [x,y]$. Отрезок $[x,y]\subset I\subset U\cup V$, поэтому $c\in U$ или $c\in V$.

Если $c \in U$, то $c \neq y$, и значит, найдется $\varepsilon > 0$, что полуинтервал $[c, c + \varepsilon)$ лежит одновременно в U и [x, y]. Но тогда $[c, c + \varepsilon) \subset S$, что противоречит $c = \sup S$.

Если $c \in V$, то $c \neq x$, и значит, найдется $\varepsilon > 0$, что полуинтервал $(c - \varepsilon, c]$ лежит одновременно в V и [x,y]. В частности, отрезок $[c-\frac{\varepsilon}{2},c]$ не пересекается с S, что противоречит $c=\sup S$. Значит, I связно.

Теорема 37. Если функция $f: S \to Y$ непрерывна, и множество S связно, то множество f(S) связно в Y.

Доказательство. Предположим, что f(S) несвязно, тогда существют открытые в Y множества U и V, такие что $f(S) \subset U \cup V$, $f(S) \cap U \neq \varnothing$, $f(S) \cap V \neq \varnothing$ и $f(S) \cap U \cap V = \varnothing$. Множества $f^{-1}(U)$ и $f^{-1}(V)$ не пусты, не пересекаются, открыты в S (по критерию непрерывности) и $S = f^{-1}(U) \cup f^{-1}(V)$ (так как U, V образуют покрытие f(S)). Это противоречит связности S.

Следствие 20 (Теорема о промежуточных значениях). Если функция $f: S \to \mathbb{R}$ непрерывна, и множество S связно, то f принимает все промежуточные значения (то есть если $u, v \in f(S)$ и u < v, то $[u, v] \subset f(S)$).

Доказательство. По теореме (37) множество f(S) связно в $\mathbb R$ и, значит, по теореме (36) является промежутком.

Определение 39. Открытое связное множество в метрическом пространстве называется *областью*.

Выделим класс множеств, для которых проверка связности осуществляется несколько проще.

Определение 40. Метрическое пространство X называется линейно связным, если для любых точек $x, y \in X$ существует такая непрерывная функция $\gamma : [0, 1] \to X$, что $\gamma(0) = x$, $\gamma(1) = y$.

Теорема 38. Всякое линейно связное метрическое пространство связно.

Доказательство. Предположим, что линейно связное пространство X несвязно. Тогда найдутся непустые открытые множества U и V, такие что $X = U \cup V$ и $U \cap V = \emptyset$. Пусть $x \in U$ и $y \in V$. Так как X линейно связно, то существует непрерывная функция $\gamma: [0,1] \to X$, такая что $\gamma(0) = x$ и $\gamma(1) = y$. Тогда $\gamma^{-1}(U)$ и $\gamma^{-1}(V)$ не пусты, не пересекаются, открыты в [0,1], и $[0,1] = \gamma^{-1}(U) \cup \gamma^{-1}(V)$, что невозможно, так как отрезок [0,1] связен.

Пемма 22. Связное открытое множество E в нормированном пространстве линейно связно.

Доказательство. Пусть $x \in E$. Рассмотрим множество U тех точек y, которые можно соединить с x кривой, то есть существует непрерывная функция $\gamma:[0,1]\to E$, что $\gamma(0)=x,\ \gamma(1)=y$. Покажем, что U открыто. Для $y\in U$ в силу открытости E найдется такое $\varepsilon>0$, что $B_{\varepsilon}(y)\subset E$. Любая пара точек в шаре может быть соединена открезком: для $z\in B_{\varepsilon}(y)$ рассмотрим $\sigma:[0,1]\to B_{\varepsilon}(y),\ \sigma(t)=(1-t)y+tz$. Тогда кривая

$$\gamma \circ \sigma(t) = \begin{cases} \gamma(2t), & 0 \leqslant t \leqslant \frac{1}{2}, \\ \sigma(2t-1), & \frac{1}{2} \leqslant t \leqslant 1, \end{cases}$$

соединяет x и z, поэтому $B_{\varepsilon}(y)\subset U$. Аналогично устанавливается, что $E\setminus U$ открыто. В силу связности $E\setminus U$ пусто, то есть E=U.

Определение 41. Отображение L называется линейным, если $\forall x_1, x_2 \in X$ и $\forall \alpha_1, \alpha_2 \in \mathbb{R}$ выполнено $L(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 L(x_1) + \alpha_2 L(x_2)$.

Определение 42. Для $L \in \mathcal{L}(X,Y)$ определим $\|L\| = \sup_{x \neq 0} \frac{|L(x)|}{|x|}$.

Замечание. $\|L\| \in \mathbb{R}$. По определению супремума $|L(x)| \leq \|L\| \|x\|$ для всех $x \in X$, и для всякого $\varepsilon > 0$ найдется такое $x_{\varepsilon} \in X$, что $|L(x)| > (\|L\| - \varepsilon)|x_{\varepsilon}|$. Это означает, что $\|L\|$ – наименьшее из чисел C > 0, таких что $|L(x)| \leq C|x|$ для всех $x \in X$.

Нетрудно проверить, что $(\mathcal{L}(X,Y),\|\cdot\|)$ является нормированным пространством, причем $\|L_2L_1\| \leq \|L_2\|\|L_1\|$.

7. Дифференцируемость функции из \mathbb{R}^n в \mathbb{R}^m . Производная по вектору и ее связь с дифференциалом. Дифференцируемость композиции. Связь дифференцируемости функции с дифференцируемостью ее координатных функций. Частные производные, необходимые условия дифференцируемости. Градиент. Матрица Якоби. Достаточные условия дифференцируемости. Частные производные высших порядков. Независимость смешанной производной от порядка дифференцирования. Дифференциалы высших порядков и кратная дифференцируемость. Формула Тейлора с остаточным членом в форме Лагранжа, в форме Пеано (6/д).

Пусть $U \subset \mathbb{R}^n$, U – открытое и задана функция $f: U \to \mathbb{R}^m$.

Определение 43. Функция f называется $\partial u \phi \phi$ еренцируемой в точке a, если существует такое непрерывное линейное отображение $L_a: X \to Y$, что

$$f(a + h) = f(a) + L_a(h) + \alpha(h) ||h||,$$

для некоторой функции α , такой что $\alpha(h) \to 0$.

Замечание. Формула (43) не определяет значение α в нуле. В дальнейшем будем считать, что $\alpha(0) = 0$ и, значит, функция α непрерывна в нуле.

Формулу (43) можно написать в виде

$$f(a+h) = f(a) + df_a(h) + o(||h||), h \to 0.$$

Линейное отображение L_a называется $\partial u \phi \phi$ еренциалом f в точке a и обозначается df_a .

Определение 44. Пусть $v \in \mathbb{R}^n$ и функция f определена на множестве $\{a+tv: |t|<\delta\}$ для некоторого $\delta>0$. Предел

$$\lim_{t \to 0} \frac{f(a+tv) - f(a)}{t},$$

если этот предел существует, называется производной f по вектору v в точке a и обозначается $\frac{\partial f}{\partial v}(a)$ (а также $f'_v(a)$ и $\partial_v f(a)$).

Теорема 39. Если $f:U\to\mathbb{R}^n$ дифференцируема в точке $a,v\in\mathbb{R}^n$, то существует $\frac{\partial f}{\partial v}(a)=df_a(v)$.

Доказательство. Для v=0 утверждение верно. Пусть $v\neq 0$. Выберем $\delta>0$ так, что $B_\delta(a)\subset U$. Тогда для всех $t\in\mathbb{R}$ с $|t|<\frac{\delta}{|v|}$, получим

$$f(a+tv) = f(a) + df_a(tv) + \alpha(tv)||tv||.$$

В силу линейности $df_a(tv)=tdf_a(v)$. Далее, по непрерывности α в 0 имеем $\alpha(tv)\to 0$ при $t\to 0$, поэтому

$$\frac{\partial f}{\partial v}(a) = \lim_{t \to 0} \frac{f(a+tv) - f(a)}{t} = \lim_{t \to 0} (df_a(v) \pm \alpha(tv) ||v||) = df_a(v).$$

Теорема 40 (дифференцирование композиции). *Пусть* $\underbrace{U}_{om\kappa p.}\subset \mathbb{R}^n, \underbrace{V}_{om\kappa p.}\subset \mathbb{R}^m.$

ФПМИ МФТИ, весна 2023

Если $f:U\to\mathbb{R}^m$ дифференцируема в точке $a,\ g:V\to\mathbb{R}^k$ дифференцируема в точке $f(a),\ f(U)\subset V,$ то композиция $g\circ f:U\to\mathbb{R}^k$ дифференцируема в точке a и

$$d(g \circ f)_a = dg_{f(a)} \circ df_a.$$

Доказательство. Положим b = f(a). По определению

$$f(a+h) = f(a) + df_a(h) + \alpha(h) ||h||, h \to 0 \Rightarrow \alpha(h) \to 0,$$

$$g(b+u) = g(b) + dg_b(u) + \beta(u) ||u||, u \to 0 \Rightarrow \beta(u) \to 0,$$

Подставим вместо u во второе равенство выражение $\varkappa(h) = df_a(h) + \alpha(h) \|h\|$.

$$g(f(a+h)) = g(b + \varkappa(h)) = g(b) + dg_b(df_a(h) + \alpha(h)||h||) + \beta(\varkappa(h))||\varkappa(h)|| =$$

$$= g(b) + dg_b(df_a(h)) + dg_b(\alpha(h)) \cdot ||h|| + \beta(\varkappa(h)) \cdot ||\varkappa(h)|| =$$

$$= g(b) + dg_b(df_a(h)) + \gamma(h)||h||, \gamma(h) = dg_b(\alpha(h)) + \beta(\varkappa(h)) \frac{||\varkappa(h)||}{||h||}.$$

По теореме о непрерывности композиции $dg_b(\alpha(h))$ и $\beta(\varkappa(h))$ непрерывны при h=0 со значением 0. Также $\exists C\geqslant 0 \ (\|df_a(h)\|\leqslant C\|h\|)$. Следовательно, $\frac{\|\varkappa(h)\|}{\|h\|}$ ограничена в некоторой проколотой окрестности h=0 и, значит, $\gamma(h)$ — бесконечно малая при $h\to 0$ (как сумма двух бесконечно малых).

Пусть $U \subset \mathbb{R}^n$ открыто, и функция $f: U \to \mathbb{R}^m$, $f = (f_1, \dots, f_m)^T$.

Пемма 23. Функция f дифференцируема в точке а тогда и только тогда, когда все координатные функции f_i дифференцируемы в точке a.

Доказательство. Пусть f дифференцируема в точке a. Распишем формулу (1) покоординатно:

$$f_i(a+h) = f_i + L_i(h) + \alpha_i(h)|h|.$$

Координатные функции L_i дифференциала L_a линейны, а условие " $\alpha(h) \to 0$ при $h \to \overline{0}$ " равносильно " $\alpha_i(h) \to 0$ при $h \to 0$ ", где $i = 1, \ldots, m$, поэтому функция f_i дифференцируема в точке a и ее дифференциал $d(f_i)_a = L_i$.

Обратно, если все функции f_i дифференцируемы, то верна и формула (1) с $L_a = (L_1, \ldots, L_m)^T$ и $\alpha = (\alpha_1, \ldots, \alpha_m)^T$.

Определение 45. Производная по вектору e_k в точке a, т.е. $\frac{\partial f}{\partial e_k}(a) = \lim_{t\to 0} \frac{f(a+te_k)-f(a)}{t}$, называется частной производной функции f по переменной x_k в точке a и обозначается $\frac{\partial f}{\partial x_k}(a)$ (а также $f'_{x_k}(a)$ и $\partial_k f(a)$).

Из теоремы 1 получим необходимое условие дифференцируемости.

Следствие 21. Если $f: U \to \mathbb{R}$ дифференцируема в точке a, то она имеет в этой точке частные производные $\frac{\partial f}{\partial x_k}(a), k = 1, \ldots, n$, и $df_a(h) = \sum_{k=1}^n \frac{\partial f}{\partial x_k}(a)h_k$ для всех $h \in \mathbb{R}^n$.

Доказательство. По теореме (39) существуют $\frac{\partial f}{\partial x_k}(a) = df_a(e_k)$, следовательно, в силу линейности

$$df_a(h) = df_a\left(\sum_{k=1}^n h_k e_k\right) = \sum_{k=1}^n h_k df_a(e_k) = \sum_{k=1}^n \frac{\partial f}{\partial x_k}(a)h_k.$$

Определение 46. Вектор $(\frac{\partial f}{\partial x_1}(a),\dots,\frac{\partial f}{\partial x_n}(a))^T$ называется $\mathit{градиентом}$ функции f в точке a и обозначается $\mathit{grad} f(a)$ или $\nabla f(a)$.

Следствие 22. Пусть f дифференцируема в точке a, и $gradf(a) \neq 0$. Тогда для любого $v \in \mathbb{R}^n$ с |v| = 1 выполнено

$$\left| \frac{\partial f}{\partial v}(a) \right| \le |gradf(a)|,$$

причем равенство достигается лишь при $v=\pm \frac{gradf(a)}{|qradf(a)|}.$

Доказательство. Так как $\frac{\partial f}{\partial v}(a) = df_a(v) = (gradf(a), v)$, то по неравенству Коши-Буняковского-Шварца $\left|\frac{\partial f}{\partial v}(a)\right| \leqslant |gradf(a)| \cdot |v| = |gradf(a)|$, причем равенство достигается лишь в случае коллинеарности gradf(a) и v, то есть $v = \pm \frac{gradf(a)}{|gradf(a)|}$.

Поскольку действие линейного отображения из \mathbb{R}^n в \mathbb{R}^m на вектор есть умножение этого вектора слева на матрицу, поэтому найдется такая матрица Df_a размера $m \times n$, что $df_a(h) = Df_a \cdot h$ для всех $h \in \mathbb{R}^n$.

Определение 47. Матрица Df_a называется матрицей Якоби функции f в точке a.

Замечание. По лемме 1 следует, что $df(h) = (df_1(h), \dots, df_m(h))^T$, поэтому ij-й элемент матрицы Якоби в точке a равен значению $d(f_i)_a(e_j)$, то есть $\frac{\partial f_i}{\partial x_j}(a)$. Таким образом, строками матрицы Якоби являются градиенты ее координатных функций в этой точке.

Теорема 41 (Достаточное условие дифференцируемости). Пусть $f: U \subset \mathbb{R}^n \to \mathbb{R}$, точка $a \in U$. Если все частные производные $\frac{\partial f}{\partial x_k}$ определены в окрестности а и непрерывны в точке a, то f дифференцируема в точке a.

Доказательство. Пусть все $\frac{\partial f}{\partial x_k}$ определены в $B_r(a) \subset U$. Рассмотрим $h = (h_1, \dots, h_n)^T$ с |h| < r, и определим точки $x_0 = a, \ x_k = a + \sum_{j=1}^k h_j e_j$. Тогда приращение

$$f(a+h) - f(a) = \sum_{k=1}^{n} (f(x_k) - f(x_{k-1})) = \sum_{k=1}^{n} (f(x_{k-1} + h_k e_k) - f(x_{k-1})).$$

Функция $g(t)=f(x_{k-1}+te_k)-f(x_{k-1})$ на отрезке с концами 0 и h_k (при $h_k\neq 0$) имеет производную $g'(t)=\frac{\partial f}{\partial x_k}(x_{k-1}+te_k)$. По теореме Лагранжа о среднем $g(h_k)-g(0)=g'(\xi_k)h_k$ для некоторого ξ_k между 0 и h_k . Положим $c_k(h)=x_{k-1}+\xi_k e_k$, тогда последнее равенство перепишется в виде $f(x_k)-f(x_{k-1})=\frac{\partial f}{\partial x_k}(c_k)h_k$, причем $c_k\to a$ при $h\to 0$. Поэтому

$$f(a+h) - f(a) - \sum_{k=1}^{n} \frac{\partial f}{\partial x_k}(a) h_k = \sum_{k=1}^{n} \left(\frac{\partial f}{\partial x_k}(c_k) - \frac{\partial f}{\partial x_k}(a) \right) h_k =$$

$$= \sum_{k=1}^{n} \left(\frac{\partial f}{\partial x_k}(c_k) - \frac{\partial f}{\partial x_k}(a) \right) \frac{h_k}{|h|} |h| =: \alpha(h)|h|.$$

В силу непрерывности $\frac{\partial f}{\partial x_k}$ в точке a и неравенства $|h_k|\leqslant |h|$ функция $\alpha(h)\to 0$ при $h\to 0$. Следовательно, f дифференцируема в точке a.

Пусть
$$\underbrace{U}_{\text{откр.}} \subset \mathbb{R}^n, f: U \to \mathbb{R}, k \in \mathbb{N}.$$

Определение 48. Частной производной нулевого порядка в точке a называют f(a).

Если частная производная $\frac{\partial^{k-1} f}{\partial x_{i_{k-1}}...\partial x_{i_1}}$ k-1-го порядка определена в некоторой окрестности точки a и меет в точке a частную производную по x_{i_k} , то

$$\left. \frac{\partial^k f}{\partial x_{i_k} \partial x_{i_{k-1}} \dots \partial x_{i_1}} \coloneqq \frac{\partial}{\partial x_{i_k}} \left(\frac{\partial^{k-1} f}{\partial x_{i_{k-1}} \dots \partial x_{i_1}} \right) \right|_{x=a}$$

называется частной производной k-го порядка функции f в точке a.

Теорема 42 (Юнг). Пусть $U \subset \mathbb{R}^2$, $f: U \to \mathbb{R}$. Если частные производные $\frac{\partial f}{\partial x}$ и $\frac{\partial f}{\partial y}$ определены

в некоторой окрестности точки (a,b) и дифференцируемы в точке (a,b), то

$$\frac{\partial^2 f}{\partial y \partial x}(a, b) = \frac{\partial^2 f}{\partial x \partial y}(a, b).$$

Доказательство. Выберем окрестность $B_{\delta}(a,b)$, в которой определены $\frac{\partial f}{\partial x}$ и $\frac{\partial f}{\partial y}$. Рассмотрим выражение

$$\Delta(t) = f(a+t, b+t) - f(a+t, b) - f(a, b+t) + f(a, b), \ 0 < |t| < \delta.$$

Функция g(s)=f(a+s,b+t)-f(a+s,b) на отрезке с концами 0 и t имеет производную $g'(s)=\frac{\partial f}{\partial x}(a+s,b+t)-\frac{\partial f}{\partial x}(a+s,b).$ По теореме Лагранжа $g(t)-g(0)=g'(\xi)t$ для некоторого ξ между 0 и t. Тогда в силу равенства $\Delta(t)=g(t)-g(0)$ и дифференцируемости $\frac{\partial f}{\partial x}$ имеем

$$\Delta(t) = g'(\xi)t = \frac{\partial f}{\partial x}(a+\xi,b+t)t - \frac{\partial f}{\partial x}(a+\xi,b)t =$$

$$= \left(\frac{\partial f}{\partial x}(a,b) + \frac{\partial^2 f}{\partial^2 x}(a,b)\xi + \frac{\partial^2 f}{\partial y \partial x}(a,b)t + \alpha(t)\sqrt{\xi^2 + t^2}\right)t - \left(\frac{\partial f}{\partial x}(a,b) + \frac{\partial^2 f}{\partial^2 x}(a,b)\xi + \beta(t)|\xi|\right)t =$$

$$= \left(\frac{\partial^2 f}{\partial y \partial x}(a,b) \pm \alpha(t)\sqrt{1 + \frac{\xi^2}{t^2}} \pm \beta(t)\frac{|\xi|}{|t|}\right)t^2,$$

где $\alpha(t) \to 0$, $\beta(t) \to 0$ при $t \to 0$. Следовательно, существует $\lim_{t \to 0} \frac{\Delta(t)}{t^2} = \frac{\partial^2 f}{\partial y \partial x}(a, b)$.

Аналогично $\lim_{t\to 0} \frac{\Delta(t)}{t^2} = \frac{\partial^2 f}{\partial x \partial u}(a,b)$, что и доказывает теорему.

Распространим теорему на случай n переменных.

Следствие 23. Пусть $k \in \mathbb{N}, k \geqslant 2$. Если все частные производные до порядка k-2 дифференцируемы в некоторой окрестности точки a, а все частные производные порядка k-1 дифференцируемы в точке a, то

$$\frac{\partial^k f}{\partial x_{ik} \dots \partial x_{i1}}(a) = \frac{\partial^k f}{\partial x_{ik} \dots \partial x_{i1}}(a)$$

при условии, что списки (i_1,\ldots,i_k) и (j_1,\ldots,j_k) отличаются лишь порядком.

Доказательство. Индукция по k. Пусть k=2. Положим $x_r=a_r, r\neq i_1, i_2$, тогда имеем функцию двух переменных x_{i_1} и x_{i_2} , и равенство вытекает по теореме Юнга (42).

Пусть k>2. Можно считать, что список (j_1,\ldots,j_k) получен из (i_1,\ldots,i_k) с помощью одной

транспозиции, то есть обменом i_r и i_{r-1} .

Рассмотрим $g = \frac{\partial^{r-2} f}{\partial x_{i_{r-2}}...\partial x_{i_1}}$. По теореме Юнга в окрестности точки a имеет место равенство $\frac{\partial^2 g}{\partial x_{i_r}\partial x_{i_{r-1}}} = \frac{\partial^2 g}{\partial x_{i_{r-1}}\partial x_{i_r}}$. При r = k имеем $\frac{\partial^2 g}{\partial x_{i_r}\partial x_{i_{r-1}}}(a) = \frac{\partial^2 g}{\partial x_{i_{r-1}}\partial x_{i_r}}(a)$, что лишь формой записи

отличается от требуемого равенства; при r < k еще надо продифференцировать по переменным $x_{i_{r+1}}, \ldots, x_{i_k}$ и подставить x = a.

Дифференциалы высших порядков определяются индуктивно.

Пусть $U \subset \mathbb{R}^n$ открыто.

Определение 49. Положим $d^1f = df$. Пусть $k \in \mathbb{N}, k \geqslant 2$. Пусть $d^{k-1}f$ определен в некоторой окрестности точки a и дифференцируем в точке a, то $d^kf_a := d(d^{k-1}f)_a$, понимаемый как k-линейное отображение, называется $\partial u \phi \phi$ еренциалом k-го порядка функции f в точке a. При этом функция f называется k раз $\partial u \phi \phi$ еренцируемой в точке a.

Пемма 24. Дифференциал $d^k f$ симметричен, то есть на наборах k векторов, отличающихся лишь порядком, принимает одинаковые значения.

Доказательство. Достаточно установить совпадение на наборах векторов стандартного базиса и воспользуемся линейностью.

Покажем по индукции, что $d^k f_a(e_{i_1},\dots,e_{i_k})=\frac{\partial^k f}{\partial x_{i_k}\dots\partial x_{i_1}}(a)$. При k=1 это следует из теоремы 1 и определения частной производной. Если равенство верно для k-1, то $\frac{\partial^{k-1} f}{\partial x_{i_{k-1}}\dots\partial x_{i_1}}=d^{k-1}f(e_{i_1},\dots,e_{i_{k-1}})$ дифференцируема в точке a. Следовательно,

$$d^k f_a(e_{i_1,\dots,e_{i_k}}) = d\left(\frac{\partial^{k-1} f}{\partial x_{i_{k-1}}\dots\partial x_{i_1}}\right)_a(e_{i_k}) = \frac{\partial}{\partial x_{i_k}}\left(\frac{\partial^{k-1} f}{\partial x_{i_{k-1}}\dots\partial x_{i_1}}\right)|_{x=a} = \frac{\partial^k f}{\partial x_{i_k}\dots\partial x_{i_1}}(a).$$

Симметричность $d^k f$ на наборах базисных векторов теперь вытекает из следствия теоремы Юнга (42). \Box

Следствие 24. Функция f дифференцируема k раз в точке a, тогда и только тогда, когда все частные производные до порядка k-2 дифференцируемы в некоторой окрестности точки a, а все частные производные порядка k-1 дифференцируемы в точке a.

Теорема 43 (формула Тейлора с остаточным членом в форме Лагранжа). Пусть $f: \underbrace{U}_{om\kappa p.} \to \mathbb{R}$ дифференцируема (p+1) раз на U. Если $a \in U, h \in \mathbb{R}^n,$ такие что $[a,a+h] \subset U,$ то $\exists \Theta \in (0,1),$ что

$$f(a+h) = f(a) + \sum_{k=1}^{p} \frac{1}{k!} d^k f_a(h) + \frac{1}{(p+1)!} d^{p+1} f_{a+\Theta h}(h).$$

Доказательство. $[a, a + h] = \{a + th \mid t \in [0, 1]\}$ — отрезок с концами a и a + h.

Рассмотрим функцию g(t)=f(a+th), определённую на интервале, содержащем [0,1]. Так как $t\mapsto\underbrace{a}_{\text{пост.}}+\underbrace{th}_{\text{линейн.}}$ \Rightarrow $\forall \tau\in\mathbb{R}$ $d(a+th)_t(\tau)=\tau h$. Тогда по теореме о дифференцировании композиции

$$dq_t(\tau) = df_{a+th}(\tau h).$$

По индукции

$$d^k g_t(\tau) = d^k f_{a+th}(\tau h) \quad k = 1, \dots, p+1.$$

Имеем $d^k g_t(\tau) = g^{(k)}(t) \tau^k \stackrel{\tau=1}{\Rightarrow} g^{(k)}(t) = d^k f_{a+th}(h), \quad k = 1, \dots, p+1.$ По формуле Тейлора с остаточным членом в форме Лагранжа

$$g(t) = g(0) + \sum_{k=1}^{p} \frac{g^{(k)}(0)}{k!} t^{k} + \frac{g^{(p+1)}(\theta_{t})}{(p+1)!} t^{p+1}.$$

При t=1 и $\theta=\theta_1$ получаем искомую формулу.

Теорема 44 (остаточный член в форме Пеано). Если функция $f: \underbrace{U}_{omkp.} \to \mathbb{R}$ дифференцируема p раз e точке a, то

$$f(a+h) = f(a) + \sum_{k=1}^{p} \frac{1}{k!} d^k f_a(h) + o(|h|^p), \ h \to 0.$$

8. Брусы в \mathbb{R}^n и их объем. Представление открытого множества в виде объединения кубов. Алгебры и σ -алгебры, борелевская σ -алгебра. Внешняя мера Лебега и ее свойства. Измеримые множества, измеримость множеств внешней меры нуль и полупространств. Теорема Каратеодори: σ -алгебра измеримых множеств, мера Лебега и ее счетная аддитивность. Непрерывность меры Лебега. Измеримость брусов, борелевских имножеств. Критерии измеримости множества: приближение борелевскими, приближение брусами. Пример неизмеримого множества.

Определение 50. *Брусом* в \mathbb{R}^n называется множество вида $B = I_1 \times \ldots \times I_n$, где I_k – ограниченный промежуток. Если $a_k \leqslant b_k$ – концы I_k , то $|B| = (b_1 - a_1) \cdot \ldots \cdot (b_n - a_n)$ называется *объемом* бруса B.

Если хотя бы один из промежутков I_k вырожденный, то брус B называется вырожденным, в частности, \varnothing — вырожденный брус. Объём вырожденного бруса равен 0.

Если все I_k – отрезки, то брус называется *замкнутым*.

Если все I_k – интервалы, то брус называется *открытым*.

Свойство 12. Если B, B_1, \dots, B_m — брусы и $B \subset \bigcup_{i=1}^m B_i$, то $|B| \leqslant \sum_{i=1}^m |B_i|$.

Доказательство. Если $I \subset \mathbb{R}$ — ограниченный промежуток, то

$$\begin{split} |I|-1 &\leqslant \#(I\cap \mathbb{Z}) \leqslant |I|+1, \\ N|I|-1 &\leqslant \#(NI\cap \mathbb{Z}) \leqslant N|I|+1, \\ |I|-\frac{1}{N} &\leqslant \frac{1}{N} \# \left(I\cap \frac{1}{N} \mathbb{Z}\right) \leqslant |I|+\frac{1}{N}, \\ |I| &= \lim_{N\to\infty} \frac{1}{N} \# \left(I\cap \frac{1}{N} \mathbb{Z}\right). \end{split}$$

Пусть $B = I_1 \times \ldots \times I_n$, тогда

$$|B| = \lim_{N \to \infty} \prod_{j=1}^{n} \frac{1}{N} \# \left(I_j \cap \frac{1}{N} \mathbb{Z} \right) = \lim_{N \to \infty} \frac{1}{N^n} \# \left(B \cap \frac{1}{N} \mathbb{Z}^n \right).$$

Если $B \subset \bigcup_{i=1}^m B_i$, то

$$\frac{1}{N^n} \# \left(B \cap \frac{1}{N} \mathbb{Z}^n \right) \leqslant \frac{1}{N^n} \sum_{i=1}^n \# \left(B_i \cap \frac{1}{N} \mathbb{Z}^n \right).$$

Предельный переход $N o \infty$ завершает доказательство.

Свойство 13. Для любого бруса B и $\varepsilon > 0$ найдутся замкнутый брус B' и открытый брус B^o , так что $B' \subset B \subset B^o$ и $|B'| > |B| - \varepsilon$, $|B^o| < |B| + \varepsilon$.

Доказательство. Пусть $B = I_1 \times ... \times I_n$, где I_k — ограниченный промежуток с концами $a_k \leqslant b_k$. Если |B| > 0, то положим

$$B'_{\delta} = [a_1 + \delta, b_1 - \delta] \times \ldots \times [a_n + \delta, b_n - \delta]$$

$$B'_{\delta} = (a_1 - \delta, b_1 + \delta) \times \ldots \times (a_n - \delta, b_n + \delta)$$

Так как $|B'_{\delta}|, |B^o_{\delta}| \to |B|$ при $\delta \to +0$, то искомые брусы существуют и определяются выбором δ . Если же B – вырожденный брус, то положим $B' = \varnothing$, B^o_{δ} как выше.

Лемма 25. Каждое непустое открытое множество U в \mathbb{R}^n представимо в виде счетного объединения непересекающихся кубов (брусов, у которых длины ребер равны).

Доказательство. Куб $\left[\frac{k_1}{2^m}; \frac{k_1+1}{2^m}\right) \times \ldots \times \left[\frac{k_n}{2^m}; \frac{k_n+1}{2^m}\right)$, где $k_i \in \mathbb{Z}$, $m \geqslant 0$, будем называть двоичным m-го ранга.

Обозначим через A_0 множество всех кубов ранга 0, содержащихся в U. Если множества A_0,\ldots,A_{m-1} уже определены, то обозначим через A_m множество всех кубов ранга m, содержащихся в U и не лежащих ни в одном кубе из A_0,\ldots,A_{m-1} . Положим $A=\bigcup_{m=0}^\infty A_m$. Тогда A — счетное множество непересекающихся кубов. Покажем, что $U=\bigcup_{Q\in A}Q$. Пусть $x\in U$. Ввиду открытости U существует шар $\overline{B_r}(x)\subset U$. Если m таково, что $\frac{\sqrt{n}}{2^m}\leqslant r$, то содержащий точку x куб $Q_m(x)$ ранга m удовлетворяет включению $Q_m(x)\subset \overline{B_r}(x)$ и, значит, множество $\{m\in\mathbb{N}_0:Q_m(x)\subset U\}$ непусто. Обозначим через m_0 его минимум. Тогда $Q_m(x)\not\subset U$ при $m< m_0$, а $Q_{m_0}(x)\subset U$. Следовательно, $Q_{m_0}(x)\in A_{m_0}$ и поэтому $x\in\bigcup_{Q\in A}Q$. Учитывая, что обратное включение очевидно, равенство установлено.

Определение 51. Семейство $\mathcal{A} \subset \mathcal{P}(\mathbb{R}^n)$ называется алгеброй, если

- 1. $\varnothing \in \mathcal{A}$;
- 2. если $E \in \mathcal{A}$, то $E^c = \mathbb{R}^n \setminus E \in \mathcal{A}$;
- 3. если $E, F \in \mathcal{A}$, то $E \cup F \in \mathcal{A}$.

Алгебра \mathcal{A} называется σ -алгеброй, если выполнено условие

3'. если $E_k \in \mathcal{A}, k \in \mathbb{N}$, то $\bigcup_{k=1}^{\infty} E_k \in \mathcal{A}$.

Пример.

- 1. σ -алгебра, содержащая все одноэлементные множества, также содержит все не более чем счетные множества и множества, дополнение к которым не более чем счетно.
- 2. $\mathcal{B}(\mathbb{R}^n)$ минимальная по включению σ -алгебра, содержащая все открытые множества (*боре- левская* σ -алгебра). Чтобы установить существование $\mathcal{B}(\mathbb{R}^n)$, необходимо рассмотреть пересечение всех σ -алгебр, содержащие открытые множества.

Определение 52. Внешней мерой Лебега множества $E \subset \mathbb{R}^n$ называется величина

$$\mu^*(E) = \inf \left\{ \sum_{i=1}^{\infty} |B_i| : E \subset \bigcup_{i=1}^{\infty} B_i \right\},$$

где инфимум берется по всем счетным наборам $\{B_i\}$, покрывающих E. Очевидно, $0 \le \mu^*(E) \le +\infty$.

Теорема 45. Внешняя мера обладает следующими свойствами

- 1. если $E \subset F$, то $\mu^*(E) \leqslant \mu^*(F)$ (монотонность);
- 2. если $E = \bigcup_{k=1}^{\infty} E_k$, то $\mu^*(E) \leqslant \sum_{k=1}^{\infty} \mu^*(E_k)$ (счетная полуаддитивность);
- 3. $\mu^*(R) = |R|$ для любого бруса R (нормировка).

Доказательство. Докажем пункт 2. Будем предполагать, что $\mu^*(E) < +\infty$, иначе утверждение очевидно. Зафиксируем $\varepsilon > 0$ и рассмотрим семейство брусов $\{B_{i,k}\}_{i=1}^{\infty}$, образующее покрытие E_k , такие что

$$\sum_{i=1}^{\infty} |B_{i,k}| < \mu^*(E_k) + \frac{\varepsilon}{2^k}.$$

Семейство $\{B_{i,k}\}_{i,k=1}^\infty$ образуют покрытие $E=\bigcup_{k=1}^\infty E_k$ и

$$\mu^*(E) \leqslant \sum_{k=1}^{+\infty} \sum_{i=1}^{+\infty} |B_{i,k}| \leqslant \sum_{k=1}^{+\infty} \left(\mu^*(E_k) + \frac{\varepsilon}{2^k} \right) = \sum_{k=1}^{+\infty} \mu^*(E_k) + \varepsilon.$$

Так как $\varepsilon > 0$ – любое, то пункт 2 установлен.

Докажем пункт 3. Так как $\{R\}$ – покрытие R брусом, то $\mu^*(R) \leq |R|$. Покажем, что $\mu^*(R) \geqslant |R|$.

Сначала для случая, когда R — замкнуто. Нам достаточно показать, что $|R| \leqslant \sum_{i=1}^{\infty} |B_i|$ для всякого покрытия R брусами B_i . Зафиксируем $\varepsilon > 0$. Тогда по свойству брусов (13) $\exists \underbrace{B_i^o}_{\text{отк. брус}} \supset B_i$

и $|B_i^o|<|B_i|+rac{arepsilon}{2^i}$. Так как $R\subset igcup_{i=1}^\infty B_k^o$ и R – компакт, то по свойству брусов (12)

$$R \subset \bigcup_{i=1}^{N} B_i^o \Rightarrow |R| \leqslant \sum_{i=1}^{N} |B_i^o| \Rightarrow |R| \leqslant \sum_{i=1}^{\infty} \left(|B_i| + \frac{\varepsilon}{2^i} \right) = \sum_{i=1}^{\infty} |B_i| + \varepsilon.$$

Так как $\varepsilon > 0$ – любое, то $|R| \leqslant \sum_{i=1}^{\infty} |B_i|$.

Пусть R – произвольный брус. Тогда для $\varepsilon > 0$ по свойству (13) \exists $\underbrace{R'}_{\text{замк. брус}} \subset R \; (|R'| > |R| - \varepsilon).$

Тогда

$$\mu^*(R) \geqslant \mu^*(R') = |R'| > |R| - \varepsilon.$$

Так как $\varepsilon > 0$ – любое, то $\mu^*(R) \geqslant |R|$.

Определение 53. Множество $E \subset \mathbb{R}^n$ называется *измеримым (по Лебегу)*, если для любого $A \subset \mathbb{R}^n : \mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$.

Пример. Если $\mu^*(E) = 0$, то *E* измеримо.

Действительно, $\mu^*(A \cap E) \leqslant \mu^*(E) = 0$, $\mu^*(A \cap E) \leqslant \mu^*(A)$ из монотонности μ^* . Тогда $\mu^*(A) \geqslant \mu^*(A \cap E) + \mu^*(A \cap E^c)$.

Пример. Для всякого $a \in \mathbb{R}$ и $k \in \{1, \dots, n\}$ полупространство $H = H_{a,k} = \{x = (x_1, \dots, x_n)^T : x_k < a\}$ измеримо.

Рассмотрим $A \subset \mathbb{R}^n$ и произвольное покрытие $\{B_i\}_{i=1}^{\infty}$. Брусами определим

$$B_i^1 = B_i \cap H, \ B_i^2 = B_i \cap H^c.$$

Тогда B_i^1, B_i^2 – брусы. $\{B_i^1\cap H\}_{i=1}^\infty$ – покрытие $A\cap H$. $\{B_i^2\cap H^c\}_{i=1}^\infty$ – покрытие $A\cap H^c$.

$$\sum_{i=1}^{\infty} |B_i| = \sum_{i=1}^{\infty} |B_i^1| + \sum_{i=1}^{\infty} |B_i^2| \geqslant \mu^*(A \cap H) + \mu^*(A \cap H^c).$$

Следовательно, переходя к inf, $\mu^*(A) \geqslant \mu^*(A \cap H) + \mu^*(A \cap H^c)$.

Аналогичное утверждение верно и для других неравенств между x_k и a.

Теорема 46 (Каратеодори). Совокупность \mathcal{M} всех измеримых множеств в \mathbb{R}^n образует σ -алгебру. Сужение $\mu^*|_{\mathcal{M}}$ счетно аддитивно.

Доказательство. $\varnothing \in \mathcal{M}, E \in \mathcal{M} \Rightarrow E^c \in \mathcal{M}.$

1. Пусть $E, F \in \mathcal{M}$. Покажем, что $E \cup F \in \mathcal{M}$.

Пусть $A \subset \mathbb{R}^n$, тогда

$$\mu^*(A \cap (E \cup F)) + \mu^*(A \cap (E \cup F)^c) = \mu^*(A \cap (E \cup F) \cap E) + \mu^*(A \cap (E \cup F) \cap E^c) + \mu^*(A \cap (E \cup F)^c) =$$

$$= \mu^*(A \cap E) + \mu^*(A \cap E^c \cap F) + \mu^*(A \cap E^c \cap F^c) = \mu^*(A \cap E) + \mu^*(A \cap E^c) = \mu^*(A).$$

2. Пусть $\{E_k\} \subset \mathcal{M}$, причем $E_i \cap E_j = \emptyset$ при $i \neq j$. Покажем, что $F = \bigcup_{k=1}^{\infty} E_k \in \mathcal{M}$. Положим $F_n = \bigcup_{k=1}^n E_k$. Если $A \subset \mathbb{R}^n$, то

$$\mu^*(A \cap F_n) = \mu^*(A \cap F_n \cap E_n) + \mu^*(A \cap F_n \cap E_n^c) = \mu^*(A \cap E_n) + \mu^*(A \cap F_{n-1}).$$

Продолжая процесс, получим $\mu^*(A \cap F_n) = \sum_{k=1}^n \mu^*(A \cap E_k)$.

Поскольку $F_n \in \mathcal{M}$, то

$$\mu^*(A) = \mu^*(A \cap F_n) + \mu^*(A \cap F_n^c) \geqslant \sum_{k=1}^n \mu^*(A \cap E_k) + \mu^*(A \cap F^c).$$

Переходя к пределу при $n \to \infty$, получим $\mu^*(A) \geqslant \sum_{k=1}^\infty \mu^*(A \cap E_k) + \mu^*(A \cap F^c)$. Откуда по свойству счетной полуаддитивности

$$\mu^*(A) \geqslant \sum_{k=1}^{\infty} \mu^*(A \cap E_k) + \mu^*(A \cap F_c) \geqslant \mu^*(A \cap F) + \mu^*(A \cap F^c) \geqslant \mu^*(A).$$

Это доказывает, что $F \in \mathcal{M}$. Если еще положить A = F, то $\mu^*(F) = \sum_{k=1}^{\infty} \mu^*(E_k)$.

3. Пусть $\{A_k\} \subset \mathcal{M}$. Покажем, что $A = \bigcup_{k=1}^{\infty} A_k \in \mathcal{M}$. Положим $E_1 = A_1$, $E_k = A_k \setminus \bigcup_{i < k} E_i$. Тогда E_k попарно не пересекаются, и $A = \bigcup_{k=1}^{\infty} E_k \in \mathcal{M}$ по предыдущему пункту.

Определение 54. $\mu = \mu^*|_{\mathcal{M}}$ – мера Лебега.

Теорема 47 (непрерывность меры). 1. $A_i \in \mathcal{M}, A_1 \subset A_2 \subset ..., A = \bigcup_{i=1}^{\infty} A_i$. Тогда $\mu(A) = \lim_{i \to \infty} \mu(A_i)$ (непрерывность снизу).

2. $A_i \in \mathcal{M}, A_1 \supset A_2 \supset \ldots, A = \bigcap_{i=1}^{\infty} A_i, \mu(A_1) < \infty$. Тогда $\mu(A) = \lim_{i \to \infty} \mu(A_i)$ (непрерывность сверху).

Доказательство. 1. Положим $B_1 = A_1$, $B_i = A_i \setminus A_{i-1}$. Тогда $B_i \in \mathcal{M}$, $B_i \cap B_j = \emptyset$ при $i \neq j$, и $\bigcup_{i=1}^m B_i = \bigcup_{i=1}^m A_i$ для всех $m \in \mathbb{N} \cup \infty$. Поэтому

$$\mu(A) = \mu\left(\bigcup_{i=1}^{\infty} B_i\right) = \sum_{i=1}^{\infty} \mu(B_i) = \lim_{m \to \infty} \sum_{i=1}^{m} \mu(B_i) = \lim_{m \to \infty} \mu(A_m).$$

2. Рассмотрим $A_1 \backslash A_i$. Применим прошлый пункт к этим множествам. Тогда $\bigcup_{i=1}^{\infty} (A \backslash A_i) = A_1 \backslash A$ и

$$\mu(A_1) - \mu(A) = \mu(A_1 \setminus A) = \lim_{m \to \infty} \mu(A_1 \setminus A_m) = \mu(A_1) - \lim_{m \to \infty} \mu(A_m).$$

Осталось из обоих частей вычесть $\mu(A_1)$ и изменить знак.

Лемма 26. $\mathcal{B}(\mathbb{R}^n) \subset \mathcal{M}$.

Доказательство. Брус измерим, так как его можно записать в виде пересечения конечного числа полупространств (измеримы по примеру). По лемме 25 тогда всякое открытое множество измеримо.

Лемма 27 (регулярность меры).
$$E$$
сли $E \in \mathcal{M}$, то $\forall \varepsilon > 0 \ \exists \underbrace{G}_{omkn} \supset E \ (\mu(G \setminus E) < \varepsilon)$.

Доказательство. Рассмотрим случай, когда E ограничено, а значит, $\mu^*(E) < \infty$. Для $\varepsilon > 0$ рассмотрим покрытие E счетным семейством брусов $\{B_k\}$ с $\sum_{i=1}^{\infty} |B_i| < \mu(E) + \frac{\varepsilon}{2}$. По свойству брусов $\exists \underbrace{B_i^o} \supset B_i \left(|B_i^o| < |B_i| + \frac{\varepsilon}{2^{i+1}} \right)$. Определим $G = \bigcup_{i=1}^{\infty} B_i^o$. Тогда G – открытое, $G \supset E$ и

$$\mu(G \setminus E) = \mu(G) - \mu(E) \leqslant \sum_{i=1}^{\infty} |B_i^0| - \mu(E) < \varepsilon.$$

Перейдем к общему случаю. Поскольку $\mathbb{R}^n = \bigcup_{k=1}^\infty A_k$, где $A_k = \{x \in \mathbb{R}^n : k-1 \leqslant |x| < k\}$, то E есть счетное объединение непересекающихся играниченных измеримых множеств $E_k = E \cap A_k$. По доказанному существует такое открытое множество $G_k\supset E_k$, что $\mu(G_k\setminus E_k)\leqslant \frac{\varepsilon}{2^k}$. Тогда множество $G = \bigcup_{k=1}^{\infty} G_k$ открыто, содержит E и

$$\mu(G \setminus E) = \mu\left(\bigcup_{k=1}^{\infty} G_k \setminus E\right) \leqslant \sum_{k=1}^{\infty} \mu(G_k - E_k) < \varepsilon.$$

Определение 55. Счетное пересечение открытых множеств называется множествами типа G_{δ} . Счетное объединение замкнутых множеств называется множествами типа F_{σ} .

Замечание. Множества типа G_{δ} и F_{σ} являются борелевскими.

Теорема 48 (критерий измеримости). Множество E измеримо \Leftrightarrow существует множество Ω muna G_{δ} , umo $E \subset \Omega$ u $\mu(\Omega \setminus E) = 0$.

Доказательство. Докажем первое утверждение.

- (\Rightarrow) Из регулярности меры следует, что для каждого $k \in \mathbb{N}$ найдется такое открытое $G_k \supset E$ с $\mu(G_k \setminus E) \leqslant \frac{1}{k}$. Положим $\Omega = \bigcap_{k=1}^{\infty} G_k$, тогда $E \subset \Omega$, и $\mu(\Omega \setminus E) \leqslant \mu(G_k \setminus E) \leqslant \frac{1}{k}$, откуда $\mu(\Omega \setminus E) = 0.$
 - (\Leftarrow) Поскольку $E = \Omega \setminus (\Omega \setminus E)$ есть разность двух измеримых множеств, то E измеримо.

Замечание. Множество E измеримо \Leftrightarrow существует множество Δ типа F_{σ} , что $\Delta \subset E$ и $\mu(E \backslash \Delta) =$

Теорема 49 (критерий измеримости). Пусть $\mu^*(E) < \infty$. Множество E измеримо \Leftrightarrow существуют брусы B_1, \ldots, B_N , такие что $\forall \varepsilon > 0 \ \mu^*(E \triangle \bigcup_{k=1}^N B_k) < \varepsilon$.

$$\mu^*(E\triangle C) \leqslant \mu^*(E\setminus C) + \mu^*(C\setminus E) \leqslant \mu^*\left(\bigcup_{k=N+1}^{+\infty} B_k\right) + \mu^*\left(\bigcup_{k=1}^{+\infty} B_k\setminus E\right) \leqslant \mu^*(E\triangle C) \leqslant \mu^*(E\setminus C) + \mu^*(C\setminus E) \leqslant \mu^*(E\setminus C) + \mu^*(E\setminus C) + \mu^*(E\setminus C) \leqslant \mu^*(E\setminus C) + \mu^*(E\setminus$$

$$\leq \sum_{k=N+1}^{+\infty} |B_k| + \sum_{k=1}^{+\infty} |B_k| - \mu^*(E) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

(\Leftarrow) Пусть $\mu^*(E\triangle C)<\varepsilon$. Тогда тем более $\mu^*(E\setminus C)<\varepsilon$ и $\mu^*(C\setminus E)<\varepsilon$. Поскольку $E\subset C\cup (E\setminus C)$ и $E^c\subset C^c\cup (C\setminus E)$, то для любого $A\subset \mathbb{R}^n$ имеем

$$\mu^*(A \cap E) + \mu^*(A \cap E^c) \leqslant \mu^*(A \cap C) + \mu^*(A \cap (E \setminus C)) + \mu^*(A \cap C^c) + \mu^*(A \cap (C \setminus E)) \leqslant \mu^*(A \cap E) + \mu^*(A \cap E) +$$

$$\leq \mu^*(A \cap C) + \mu^*(A \cap C^c) + \mu^*(E \setminus C) + \mu^*(C \setminus E) < \mu^*(A) + 2\varepsilon.$$

Следовательно, $\mu^*(A \cap E) + \mu^*(A \cap E^c) \leqslant \mu^*(A)$. Значит, *E* измеримо.

Построим пример неизмеримого множества.

Пример (множество Витали). На [0,1] введём отношение эквивалентности $x \sim y \Leftrightarrow x-y \in \mathbb{Q} \Rightarrow [0,1] = \bigsqcup_{\alpha} H_{\alpha}, \ H_{\alpha}$ – классы эквивалетности.

V – множество, содержащее ровно один элемент из каждого H_{α} и только такие элементы (такое множество существует по аксиоме выбора).

Пусть R означает множество всех рациональных чисел, принадлежащих отрезку [-1,1]. Для каждого $r \in R$ положим $V_r = V + r = \{v + r : v \in V\}$.

Во-первых, «сдвинутые копии» множества V (то есть V_n) попарно не пересекаются, так как

$$v \in V_i \cap V_j \Rightarrow v_i + r_i = v_j + r_j \Rightarrow v_j - v_i \in \mathbb{Q}.$$

Во-вторых, имеют место включения

$$[0,1] \subset \bigsqcup_{r \in R}^{\infty} V_r \subset [-1,2].$$

Значит,

$$1 \leqslant \sum_{r \in R} \mu(V_r) \leqslant 3.$$

В силу инвариативности меры относительно сдвигов, $\mu(V) = \mu(V_r)$. Тогда рассмотрим два случая:

- 1. $\mu(V) = 0$. Тогда мера отрезка [0,1] тоже равна нулю, противоречие.
- 2. $\mu(V) > 0$. Тогда мера отрезка [-1,2] будет бесконечной в силу счетной аддитивности меры, противоречие.

Значит, V – пример неизмеримого множества.

9. Измеримые функции. Согласованность измеримости функций с арифметическими операциями. Измеримость точных граней и предела последовательности измеримых функций. Сходимость почти всюду. Простые функции. Теорема о приближении измеримой функции простыми.

Пусть E измеримо и $f: E \to \overline{\mathbb{R}}$.

Определение 56. Функция f называется измеримой (по Лебегу), если $\{x \in E : f(x) < a\} = f^{-1}([-\infty, a))$ измеримо для всех $a \in \mathbb{R}$.

Лемма 28. Пусть $f: E \to \mathbb{R}$. Тогда следующие условия эквивалентны:

- 1. f измеримо;
- 2. $f^{-1}(U)$ измеримо для любого открытого U в \mathbb{R} ;
- 3. $f^{-1}(\Omega)$ измеримо для любого борелевского Ω в $\overline{\mathbb{R}}$.

 \mathcal{A} оказательство. Рассмотрим $\mathcal{A} = \{A \in B(\overline{\mathbb{R}}) : f^{-1}(A) \text{ измеримо}\}$. Так как $\emptyset \in \mathcal{A}, E \setminus f^{-1}(A) = f^{-1}(\overline{\mathbb{R}} \setminus A) \Rightarrow (A \in \mathcal{A} \Rightarrow \overline{\mathbb{R}} \setminus A \in \mathcal{A}) \text{ и } f^{-1}(\bigcup_{i=1}^{\infty} A_i) = \bigcup_{i=1}^{\infty} f^{-1}(A_i) \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathcal{A}, \text{ то } \mathcal{A} \text{ образует } \sigma$ -алгебру. \mathcal{A} содержит все лучи $[-\infty, a)$. Следовательно, $B(\overline{\mathbb{R}}) = \mathcal{A}$, то есть $(1 \Rightarrow 3)$.

Импликации $(3\Rightarrow 2\Rightarrow 1)$ очевидны.

Теорема 50. Если $f,g:E\to\mathbb{R}$ измеримые и $\lambda\in\mathbb{R}$, то $f+g,\lambda f,|f|,fg$ также измеримы.

Доказательство. 1. Докажем измеримость суммы. Поскольку $\alpha < \beta \Leftrightarrow \exists r \in \mathbb{Q} (\alpha < r < \beta),$ $\mathbb{Q} = \{r_k\}_{k=1}^{\infty}$, то

$$\{x \in E : f(x) + g(x) < a\} = \{x \in E : f(x) < a - g(x)\} = \bigcup_{k=1}^{\infty} \{x \in E : f(x) < r_k < a - g(x)\} = \bigcup_{k=1}^{\infty} \{x \in E : f(x) < r_r\} \cap \{x \in E : g(x) < a - r_k\}.$$

Следовательно, $\{x \in E : f(x) + g(x) < a\}$ измеримо.

- 2. Пусть $\lambda > 0$, тогда $\{x \in E : \lambda f(x) < a\} = \{x \in E : f(x) < \frac{a}{\lambda}\}$ измеримо. Если $\lambda = 0$, то тривиально. Если $\lambda < 0$, то аналогично.
- 3. Так как $\{x \in E: f^2(x) < a\} = \{x \in E: f(x) < \sqrt{a}\} \cap \{x \in E: f(x) > -\sqrt{a}\}$ измеримо $\forall a > 0$. Если $a \leqslant 0$, то $\{x \in E: f^2(x) < a\} = \varnothing$ измеримо.

Следовательно, f^2 – измеримая функция. Аналогично для |f|.

Так как $fg = \frac{1}{2} \left((f+g)^2 - f^2 - g^2 \right)$, то fg измерима.

Теорема 51. Если $f_k: E \to \overline{\mathbb{R}}$ – измеримы, то $\sup_k f_k$, $\inf_k f_k$, $\overline{\lim}_{k \to +\infty} f_k$, $\underline{\lim}_{k \to +\infty} f_k$ также измеримы на E.

ФПМИ МФТИ, весна 2023

 \mathcal{A} оказательство. Измеримость $g = \sup_k f_k$ следует из равенства:

$$\{x \in E : g(x) \le a\} = \bigcap_{k=1}^{+\infty} \{x \in E : f_k(x) \le a\}$$

Измеримость $h = \inf_k f_k$ следует из $\inf_k f_k = -\sup_k (-f_k)$.

Далее, поскольку $\overline{\lim}_{k\to+\infty} f_k = \inf_k \sup_{m\geqslant k} f_m$, $\underline{\lim}_{k\to+\infty} f_k = \sup_k \inf_{m\geqslant k} f_m$, то оба предела измеримы.

Следствие 25. Если $f_k: E \to \overline{\mathbb{R}}$ измеримы, и $f(x) = \lim_{k \to +\infty} f_k(x)$ для всех $x \in E$, то f измерима на E.

Доказательство. Вытекает из предыдущей теоремы, но докажем непосредственно.

Имеем $f(x) < a \Leftrightarrow \exists j \in \mathbb{N} \ \exists N \ \forall k \geqslant N \ (f_k(x) < a - \frac{1}{i}).$

 $\{x: f(x) < a\} = \bigcup_{j=1}^{+\infty} \bigcup_{N=1}^{+\infty} \bigcap_{k=N}^{+\infty} \{x: f_k(x) < a - \frac{1}{j}\}$ – измеримо как операции над измеримыми множествами

Определение 57. Пусть $E \subset \mathbb{R}^n$, Q – формула на E.

Говорят, что Q верна *почти везде на* E, если $\mu(x \in E : Q(x) \text{ ложно}) = 0$.

Лемма 29. Пусть $f, g: E \to \mathbb{R}$. Если f = g почти везде и f измерима, то g измерима.

Доказательство. По условию, $Z = \{x \in E : f(x) \neq g(x)\}$ имеет меру нуль. Тогда для любого $a \in \mathbb{R}$ имеем $\{x \in E : g(x) < a\} = (\{x \in E : f(x) < a\} \cap Z^c) \cup (\{x \in E : g(x) < a\} \cap Z) -$ измеримо.

Следствие 26. Если $f_k:E\to\overline{\mathbb{R}}$ измеримы и $f_k\to f$ почти везде на E, где $f:E\to\overline{\mathbb{R}}$, то f измерима.

Доказательство. $g = \overline{\lim}_{k \to +\infty} f_k$ измерима на E, f = g почти везде на E, значит f измерима (по лемме).

Определение 58. Функция $\varphi: \mathbb{R}^n \to \mathbb{R}$ называется npocmoй, если φ измерима и множество её значений конечно.

Пример. Пусть $A \subset \mathbb{R}^n$, Определим индикатор (характеристическую функцию) A:

$$\mathbb{I}_A: \mathbb{R}^n \to \mathbb{R}, \ \mathbb{I}_A(x) = \begin{cases} 1, \ x \in A; \\ 0, \ x \notin A. \end{cases}$$

Поскольку $\{x: \mathbb{I}_A(x) < a\}$ пусто при $a \leq 0$, совпадает с A^c при $a \in (0,1]$ и совпадает с \mathbb{R}^n при a > 1, то функция \mathbb{I}_A является измеримой $\Leftrightarrow A$ измеримо.

Замечание. Любая линейная комбинация индикаторов измеримых множеств является простой функцией.

С другой стороны, для любой простой функции φ существует разбиение \mathbb{R}^n конечным числом измеримых множеств, на которых φ постоянна (допустимое разбиение для φ). Такое разбиение можно построить следующим образом: пусть $\varphi(\mathbb{R}^n) = \{a_1, \ldots, a_m\}$, где a_i попарно различны, определим $A_i = \varphi^{-1}(a_i)$. Тогда $\varphi = \sum_{i=1}^m a_i \mathbb{I}_{A_i}$ и $\{A_i\}$ – допустимое разбиение.

Теорема 52. Если $f: E \to [0, +\infty]$ – неотрицательная измеримая функция, то существует последовательность $\{\varphi_k\}$ неотрицательных простых функций, таких что $\forall x \in E$ выполняется

ФПМИ МФТИ, весна 2023

- 1. $0 \leqslant \varphi_1(x) \leqslant \varphi_2(x) \leqslant \dots$
- 2. $\lim_{k\to+\infty} \varphi_k(x) = f(x)$

Доказательство. Для $k \in \mathbb{N}$ определим множества:

$$E_{k,j} = \left\{ x \in E : \frac{j-1}{2^k} \le f(x) < \frac{j}{2^k} \right\}, \ j = 1, \dots, k \cdot 2^k,$$
$$F_k = \{ x \in E : f(x) \ge k \}.$$

Множества $E_{k,j}$ и F_k измеримы и в объединении дают E.

Определим $\varphi_k = \sum_{j=1}^{k \cdot 2^k} \frac{j-1}{2^k} \mathbb{I}_{E_{k,j}} + k \cdot \mathbb{I}_{F_k}$. Пусть $x \in E$. Покажем, что $\{\varphi_k(x)\}$, возрастая, стремится к f(x).

Если $f(x) = +\infty$, то $\varphi_k(x) = k$ для всех k и утверждение верно.

Пусть $f(x) \in \mathbb{R}$ и $k \in \mathbb{N}$. Если $f(x) \geqslant k+1$, то $\varphi_{k+1}(x) = k+1 > k = \varphi_k(x)$. Если $k \leqslant f(x) < k+1$, то $\varphi_{k+1}(x) \geqslant k = \varphi_k(x)$.

Пусть f(x) < k, тогда $\frac{j-1}{2^k} \leqslant f(x) < \frac{j}{2^k}$ для некоторого $j, 1 \leqslant j \leqslant k \cdot 2^k$. Возможны два варианта: $\frac{2j-2}{2^{k+1}} \leqslant f(x) < \frac{2j-1}{2^{k+1}}$ или $\frac{2j-1}{2^{k+1}} \leqslant f(x) < \frac{2j}{2^{k+1}}$. В обоих случаях $\varphi_{k+1}(x) \geqslant \frac{2j-2}{2^{k+1}} = \frac{j-1}{2^k} = \varphi_k(x)$ и возрастание установлено. Кроме того, $0 \leqslant f(x) - \varphi_k(x) < 2^{-k}$ при всех $k \geqslant [f(x)] + 1$, откуда следует, что $\varphi_k(x) \to f(x)$.

10. Интеграл от неотрицательной простой функции и его свойства. Интеграл от неотрицательной измеримой функции. Монотонность интеграла по функциям и по множествам. Теорема Леви о монотонной сходимости. Аддитивность интеграла по функциям. Счетная аддитивность интеграла по множествам. Неравенство Чебышева. Интеграл Лебега от произвольной измеримой функции. Интегрируемые функции. Одновременная интегрируемость функции и ее модуля. Конечность почти всюду интегрируемой функции. Пренебрежение при интегрировании множествами меры нуль. Монотонность и линейность интеграла. Теорема Лебега о мажорированной сходимости. Связь интеграла Лебега и определенного интеграла Римана. Формула суммирования Эйлера (б/д). Формула Стирлинга.

Определение 59. Пусть φ – неотрицательная простая функция, $\varphi = \sum_{i=1}^m a_i \mathbb{I}_{A_i}$, где $\{A_i\}_{i=1}^m$ – допустимое разложение.

Интегралом от φ по измеримому множеству E называется

$$\int_{E} \varphi d\mu = \sum_{i=1}^{m} a_{i} \mu(E \cap A_{i}).$$

Лемма 30. Пусть φ, ψ – неотрицательные простые функции. Тогда:

- 1. Если $\varphi \leqslant \psi$ на E, то $\int_E \varphi d\mu \leqslant \int_E \psi d\mu$ (монотонность).
- 2. Если $\alpha \in [0,+\infty)$, то $\int_E \alpha \varphi d\mu = \alpha \int_E \varphi d\mu$ (положительная однородность).
- 3. $\int_E (\varphi + \psi) d\mu = \int_E \varphi d\mu + \int_E \psi d\mu$ (аддитивность по функциям).

Доказательство. Пусть $\{A_i\}_{i=1}^m,\,\{B_j\}_{j=1}^k$ – допустимые разбиения φ и ψ соответственно $(\varphi|_{A_i}=a_i,\,\,\varphi|_{B_j}=b_j)$. Положим $C_{ij}=A_i\cap B_j$.

Тогда $\{C_{ij}\}$ – общее допустимое разбиение для φ и ψ . Поскольку $A_i = A_i \cap \mathbb{R}^n = A_i \cap (\bigcup_{j=1}^k B_j) = \bigcup_{j=1}^k C_{ij}$, то по свойству аддитивности меры $\int_E \varphi d\mu = \sum_{i=1}^m a_i \mu(E \cap A_i) = \sum_{i=1}^m a_i \mu(\bigcup_{j=1}^k (E \cap C_{ij})) = \sum_{i=1}^m \sum_{j=1}^k a_i \mu(E \cap C_{ij})$.

Аналогично, $\int_E \psi d\mu = \sum_{j=1}^k \sum_{i=1}^m b_j \mu(E \cap C_{ij})$. Если $E \cap C_{ij} \neq \emptyset$, то для любого $x \in E \cap C_{ij}$ имеем $a_i = \varphi(x) \leqslant \psi(x) = b_j$, что завершает доказательство.

Доказательство пункта 2 очевидно.

Доказательство пункта 3 аналогично пункту 1.

Определение 60. Пусть $f: E \to [0, +\infty]$ – неотрицательная измеримая функция. Тогда:

$$\int_E f d\mu = \sup \left\{ \int_E \varphi d\mu, \ 0 \leqslant \varphi \leqslant f, \ \varphi - \text{простая} \right\}.$$

Замечание. Покажем, что определение согласуется с интегралом от простой функции. Чтобы их различить, перед знаком введенного ранее интеграла поставим (s).

Пусть f – простая неотрицательная функция. Если $0 \leqslant \varphi \leqslant f$ и φ – простая, то по свойству монотонности $(s) \int_E \varphi d\mu \leqslant (s) \int_E f d\mu$. Переходя к супремуму по φ , получим $\int_E f d\mu \leqslant (s) \int_E f d\mu$. Противоположное неравенство очевидно, так как f сама является простой функцией.

Пусть $f,g:E \to [0,+\infty]$ — неотрицательные измеримые функции.

Свойство 14 (монотонность). Если $f \leqslant g$ на E, то $\int_E f \, d\mu \leqslant \int_E g \, d\mu$.

Свойство 15 (однородность). *Если* $\lambda \in [0, +\infty)$, то $\int_E \lambda f \, d\mu = \lambda \int_E f \, d\mu$.

Свойство 16. Если $E_0 \subset E$ измеримо, то $\int_{E_0} f \, d\mu = \int_E f \cdot \mathbb{I}_{E_0} \, d\mu$.

 \mathcal{A} оказательство. Пусть $0 \leqslant \underbrace{\varphi}_{\text{прост}} \leqslant f$ на E_0 , тогда

$$\int_{E_0} \varphi \, d\mu = \int_E \varphi \cdot \mathbb{I}_{E_0} \, d\mu \leqslant \int_E f \cdot \mathbb{I}_{E_0} \, d\mu,$$
$$\int_{E_0} f \, d\mu \leqslant \int_E f \cdot \mathbb{I}_{E_0} \, d\mu.$$

Обратно, пусть $0\leqslant \underbrace{\psi}_{\text{прост.}}\leqslant f\cdot \mathbb{I}_{E_0}$ на E. Тогда $\psi=0$ на $E\setminus E_0$ и, значит, $\psi=\psi\cdot \mathbb{I}_{E_0}$ на E.

Следовательно,

$$\int_{E} \psi \, d\mu = \int_{E} \psi \cdot \mathbb{I}_{E_0} \, d\mu = \int_{E_0} \psi \, d\mu \leqslant \int_{E_0} f \, d\mu.$$

и, переходя к супремуму по всем таким ψ , $\int_E f \cdot \mathbb{I}_{E_0} d\mu \leqslant \int_{E_0} f d\mu$.

Свойство 17. Если $E_0 \subset E$ измеримо, то $\int_{E_0} f \, d\mu \leqslant \int_E f \, d\mu$.

Доказательство. По свойствам (14) и (16) имеем

$$\int_{E_0} f \, d\mu = \int_E f \cdot \mathbb{I}_{E_0} \, d\mu \leqslant \int_E f \, d\mu.$$

Теорема 53 (Беппо Леви). Пусть $f_k : E \to [0, +\infty]$ измеримы, $u \ f_k \to f$ на E. Если $0 \leqslant f_k(x) \leqslant f_{k+1}(x)$ для всех $x \in E$ $u \ k \in \mathbb{N}$, то

$$\lim_{k \to \infty} \int_E f_k \, d\mu = \int_E f \, d\mu.$$

Доказательство. Интегрируя $f_k \leqslant f_{k+1} \leqslant f$ на E, получим

$$\int_{E} f_k d\mu \leqslant \int_{E} f_{k+1} d\mu \leqslant \int_{E} f d\mu.$$

Следовательно, $\left\{ \int_E f \, d\mu \right\}$ нестрого возрастает (в $\overline{\mathbb{R}}$) и, значит, существует

$$\lim_{k\to\infty}\int_E f_k\,d\mu\leqslant \int_E f\,d\mu.$$

Докажем противоположное неравенство. Для этого достаточно доказать, что $\lim_{k\to\infty}\int_E f_k\,d\mu \geqslant \int_E \varphi\,d\mu$ для всех простых φ , $0\leqslant \varphi\leqslant f$ на E.

Рассмотрим такую функцию φ . Зафиксируем $t \in (0,1)$. Положим $E_k = \{x \in E : f_k(x) \geqslant t \varphi(x)\}$. Ввиду монотонности $\forall k \ E_k \subset E_{k+1}$. Докажем, что $\bigcup_{k=1}^{\infty} E_k = E$. Включение «С» очевидно. Пусть $x \in E$. Если $\varphi(x) = 0$, то $\forall k \ x \in E_k$.

Если $\varphi(x) > 0$, то $f(x) \geqslant \varphi(x) > t\varphi(x)$. Тогда $\exists m \in \mathbb{N} \ (f_m(x) \geqslant t\varphi(x))$, то есть $x \in E_m$.

ФПМИ МФТИ, весна 2023

По монотонности

$$\int_E f_k \, d\mu \geqslant \int_{E_k} f_k \, d\mu \geqslant t \int_{E_k} \varphi \, d\mu.$$

Пусть $\varphi = \sum_{i=1}^N a_i \cdot \mathbb{I}_{A_i}$, где $\{A_i\}_1^N$ — допустимое разбиение. Тогда по свойству монотонности меры:

$$\int_{E_k} \varphi \, d\mu = \sum_{i=1}^N a_i \mu(A_i \cap E_k) \underset{k \to \infty}{\to} \sum_{i=1}^N a_i \mu(A_i \cap E) = \int_E \varphi \, d\mu.$$

Переходя к пределу в неравенстве (53)

$$\lim_{k \to \infty} \int_E f_k \, d\mu \geqslant t \int_E \varphi \, d\mu, \ t \to 1 - 0.$$

Свойство 18 (аддитивность). *Если* $f,g\geqslant 0$ *измеримы на* $E,\ mo\ \int_E (f+g)\ d\mu = \int_E f\ d\mu + \int_E g\ d\mu.$

Доказательство. Пусть $\varphi_k \uparrow$ (возрастает и стремится к) $f, \psi_k \uparrow g$ на E. Тогда $\varphi_k + \psi_k \uparrow f + g$ на E и, значит, по теореме Леви

$$\begin{split} &\int_E (f+g)\,d\mu = \lim_{k\to\infty} \int_E (\varphi_k + \psi_k)\,d\mu = \\ &= \lim_{k\to\infty} \int_E \varphi_k\,d\mu + \lim_{k\to\infty} \int_E \psi_k\,d\mu = \int_E f\,d\mu + \int_E g\,d\mu. \end{split}$$

Следствие 27 (теорема Леви для рядов). Если $f_k \geqslant 0$ измерима на E, то

$$\int_E \sum_{k=1}^{\infty} f_k d\mu = \sum_{k=1}^{\infty} \int_E f_k d\mu.$$

Доказательство. По предыдущему свойству

$$\int_{E} \sum_{k=1}^{m} f_{k} d\mu = \sum_{k=1}^{m} \int_{E} f_{k} d\mu.$$

Поскольку $f_k \geqslant 0$, то последовательность частичных сумм ряда нестрого возрастает (по m). Поэтому по теореме Леви $\lim_{m \to \infty} \int_E \sum_{k=1}^m f_k \, d\mu = \int_E \sum_{k=1}^\infty f_k \, d\mu$.

Теорема 54 (счётная аддитивность интеграла). Пусть E_k измеримы и попарно не пересекаются, $E = \bigsqcup_{k=1}^{\infty} E_k$. Если $f \geqslant 0$ на E, то

$$\int_{E} f \, d\mu = \sum_{k=1}^{\infty} \int_{E_k} f \, d\mu.$$

Доказательство. Поскольку $\{E_k\}$ образуют разбиение E, то $\mathbb{I}_E = \sum_{k=1}^{\infty} \mathbb{I}_{E_k}$, $f = f \cdot \mathbb{I}_E = \sum_{k=1}^{\infty} f \cdot \mathbb{I}_{E_k}$ на E. Следовательно, по теореме Леви для рядов и

$$\int_E f \, d\mu = \sum_{k=1}^\infty \int_E f \cdot \mathbb{I}_{E_k} \, d\mu = \sum_{k=1}^\infty \int_{E_k} f \, d\mu.$$

Теорема 55 (неравенство Чебышёва). Если $f \geqslant 0$ измерима на $E, mo \ \forall t \in (0, +\infty)$

$$\mu\{x \in E : f(x) \geqslant t\} \leqslant \frac{1}{t} \int_{E} f \, d\mu.$$

Доказательство. Рассмотрим $E_t = \{x : f(x) \ge t\}$, тогда

$$\int_{E} f \, d\mu \geqslant \int_{E_{t}} f \, d\mu \geqslant t \int_{E_{t}} d\mu = t \cdot \mu(E_{t}).$$

Определение 61. Функции $f^+ = \max\{f,0\}$ и $f^- = \max\{-f,0\}$ называются положительной и отрицательной частями f соответственно.

Замечание. Из определения следует, что $f = f^+ - f^-, \, |f| = f^+ + f^-$ и $0 \leqslant f^\pm \leqslant |f|.$

Определение 62. Пусть $f: E \to \overline{\mathbb{R}}$ измерима, тогда

$$\int_{E} f \, d\mu \coloneqq \int_{E} f^{+} \, d\mu - \int_{E} f^{-} \, d\mu,$$

при условии, что хотя бы один из $\int_E f^{\pm} d\mu$ конечен.

Функция f называется uнmегpиpуeмoй (по Лебегу), если оба интеграла $\int_E f^\pm d\mu$ конечны.

Замечание. Если f измерима на E, то условия интегрируемости f и |f| равносильны. В случае интегрируемости $|\int_E f \, d\mu| \leqslant \int_E |f| \, d\mu$.

Доказательство. Если f интегрируема на E, то $\int_E f^\pm d\mu < +\infty$. Тогда в силу оценки $|f| = f^+ + f^-$ интеграл $\int_E |f| d\mu < +\infty$. Если |f| интегрируема на E, то в силу оценки $0 \le f^\pm \le |f|$ получаем, что $\int_E f^\pm d\mu < +\infty$, то есть f интегрируема на E.

Имеем

$$\left| \int_E f d\mu \right| = \left| \int_E f^+ d\mu - \int_E f^- d\mu \right| \leqslant \int_E f^+ d\mu + \int_E f^- d\mu = \int_E |f| d\mu.$$

Замечание. Если f интегрируема на E, то f конечна почти всюду на E.

Доказательство. Определим $A = \{x \in E : |f(x)| = +\infty\}$. Тогда по неравенству Чебышева для любого $t \in (0; +\infty) : \mu(A) \leqslant \mu\{x : |f(x)| \geqslant t\} \leqslant \frac{1}{t} \int_E |f| d\mu$. Устремляя $t \to +\infty$, получаем, что $\mu(A) = 0$.

Лемма 31. Если $\underbrace{E_0}_{u_{3M.}} \subset E$ и $\mu(E \setminus E_0) = 0$, то интегралы $\int_E f d\mu$ и $\int_{E_0} f d\mu$ существуют одновременно и в случае существования совпадают.

Доказательство. Отметим, что f на E и f на E_0 измеримы одновременно. По свойству аддитивности по множествам:

$$\int_{E} f^{\pm} d\mu = \int_{E_{0}} f^{\pm} d\mu + \int_{E \setminus E_{0}} f^{\pm} d\mu = \int_{E_{0}} f^{\pm} d\mu.$$

Учтем, что интеграл по множеству меры 0 от произведения измеримых функций равен 0. Это вытекает из определения интеграла, для простых функций также следует учесть, что она ограничена.

Следствие 28. Пусть $f,g:\underbrace{E}_{\text{изм.}}\to\mathbb{R}$. Если f интегрируема на E и f=g почти всюду на E, то g интегрируема на E и $\int_E g d\mu = \int_E f d\mu$.

Теорема 56. Пусть $f, g: E \to \mathbb{R}$ интегрируема и $\alpha \in \mathbb{R}$. Тогда:

- 1. Если $f \leqslant g$ на E, то $\int_E f d\mu \leqslant \int_E g d\mu$;
- 2. $\int_E \alpha f d\mu = \alpha \int_E f d\mu$;
- 3. $\int_{E} (f+g) d\mu = \int_{E} f d\mu + \int_{E} g d\mu$.

Доказательство.

- 1. Пусть $f\leqslant g$ на E. Тогда $f^+\leqslant g^+,\,f^-\geqslant g^-$ и, значит, $\int_E f^+d\mu\leqslant \int_E g^+d\mu$ и $\int_E f^-d\mu\geqslant \int_E g^-d\mu$. Вычтем одно неравенство из другого, получаем $\int_E fd\mu\leqslant \int_E gd\mu$.
- 2. Пусть $\alpha \geqslant 0$. Тогда $(\alpha f)^+ = \alpha f^+, (\alpha f)^- = \alpha f^-$ и, значит, $\int_E \alpha f d\mu = \int_E (\alpha f)^+ d\mu \int_E (\alpha f)^- d\mu = \alpha \int_E f^+ d\mu \alpha \int_E f^- d\mu = \alpha \int_E f d\mu$. Так как $(-f)^+ = \max\{-f, 0\} = f^-, (-f)^- = \max\{f, 0\} = f^+$, то:

$$\int_{E} (-f) d\mu = \int_{E} (-f)^{+} d\mu - \int_{E} (-f)^{-} d\mu = \int_{E} f^{-} d\mu - \int_{E} f^{+} d\mu = -\int_{E} f d\mu.$$

Случай $\alpha < 0$ сводится к рассмотренному, так как $\alpha = (-1)|\alpha|$.

3. Так как f и g конечны почти всюду на E (из интегрируемости), то $\exists E_0 \subset E$ и $\mu(E \setminus E_0) = 0$, на котором определена функция h = f + g. Функция h = f + g интегрируема на E_0 (так как $|h| \leq |f| + |g|$) и $h^+ - h^- = h = f + g = (f^+ - f^-) + (g^+ - g^-)$ или $h^+ + f^- + g^- = h^- + f^+ + g^+$ на E_0 . Следовательно, $\int_{E_0} h^+ d\mu + \int_{E_0} f^- d\mu + \int_{E_0} g^- d\mu = \int_{E_0} h^- d\mu + \int_{E_0} f^+ d\mu + \int_{E_0} g^+ d\mu$.

Все интегралы в предыдущем равенстве конечны, их перегруппировка дает $\int_{E_0} h d\mu = \int_{E_0} f d\mu + \int_{E} g d\mu$.

Так как $\mu(E \setminus E_0)$, то доопределим на $E_0 \cup (E \setminus E_0)$ произвольным образом. Получаем равенство для интегралов из 3 пункта.

Теорема 57 (Лебег). Пусть $f_k: E \to \overline{\mathbb{R}}$ измеримы и $f_k \to f$ почти всюду на E. Если существует интегрируемая на E функция g, такая что $|f_k| \leqslant g \ \forall k$, то $\lim_{k \to +\infty} \int_E f_k d\mu = \int_E f d\mu$

Доказательство. Посколько при интегрируемости можно пренебрегать множествами меры 0, будем считать, что $f_k \to f$ всюду на E и g конечна на E. Так как $|f_k| \leqslant g$ на E, то все f_k интегрируемы на E. Переходя к пределу при $k \to +\infty$, получаем $|f| \leqslant g$ на E. Следовательно, f интегрируема.

Определим $h_k = \sup_{m \geqslant k} |f_m - f|$ на E, тогда имеем $0 \leqslant h_{k+1}(x) \leqslant h_k(x)$ на E и $\lim_{k \to +\infty} h_k(x) = \inf_k \sup_{m \geqslant k} |f_m(x) - f(x)| = \overline{\lim}_{k \to +\infty} |f_k(x) - f(x)| = 0$. Функция h_k интегрируема на E и $|h_k| \leqslant 2g$ ($|f_k| \leqslant g$, $|f| \leqslant g$). Применим теорему Леви к последовательности $\{2g - h_k\}$:

$$\lim_{k \to +\infty} \int_E (2g - h_k) d\mu = \int_E 2g d\mu,$$

откуда $\lim_{k\to+\infty}\int_E h_k d\mu=0$. Для завершения доказательства $\int_E |f_k-f| d\mu\leqslant \int_E h_k d\mu\to 0$ при $k\to+\infty$ и, значит, $\left|\int_E f_k d\mu-\int_E f d\mu\right|\leqslant \int_E |f_k-f| d\mu\to 0$.

Теорема 58. Пусть f ограничена на [a,b]. f интегрируема по Риману на $[a,b] \Leftrightarrow f$ непрерывна почти всюду на [a,b]. B этом случае функция интегрируема по Лебегу и оба интеграла совпадают.

Доказательство. 1. Пусть $f \in \mathcal{R}[a,b]$, $J = \int_a^b f(x) dx$. Покажем, что f непрерывна почти всюду на [a,b] и $\int_{[a,b]} f d\mu = J$.

Для разбиения $T = \{x_k\}_{k=0}^m$ открытого на [a,b] положим $M_i = \sup_{[x_{i-1},x_i]} f$, $m_i = \inf_{[x_{i-1},x_i]} f$ и определим простые функции

$$\varphi_T = \sum_{i=1}^m m_i \cdot \mathbb{I}_{[x_{i-1}, x_i)}, \ \psi_T = \sum_{i=1}^m \mathbb{I}_{[x_{i-1}, x_i)} \cdot M_i.$$

В последний промежуток включим точку $b=x_n$. Очевидно, что $\int_{[a,b]} \varphi_T d\mu = s_T, \int_{[a,b]} \psi_T d\mu = S_T$ (сумма Дарбу).

Рассмотрим последовательность разбиений $\{T_k\}$, $T_k \subset T_{k+1}$ и $|T| \to 0$. Положим $\varphi_k = \varphi_{T_k}$, $\psi_k = \psi_{T_k}$. Имеем $\varphi_k(x) \leqslant \varphi_{k+1}(x) \leqslant f(x) \leqslant \psi_{k+1}(x) \leqslant \psi_k(x)$ для всех $x \in [a,b]$. Следовательно, существуют $\varphi(x) = \lim_{k \to +\infty} \varphi_k(x)$, $\psi(x) = \lim_{k \to +\infty} \psi_k(x)$.

Функции φ, ψ измеримы (как предел измеримых функций) и если $|f| \leqslant M$, то $|\varphi|, |\psi| \leqslant M$ и, значит, по теореме Лебега о мажорированной сходимости

$$\int_{[a,b]} (\psi - \varphi) d\mu = \lim_{k \to +\infty} \int_{[a,b]} (\psi_k - \varphi_k) d\mu = \lim_{k \to +\infty} (S_{T_k} - s_{T_k}) = 0,$$

откуда следует, что $\psi - \varphi = 0$ почти всюду на [a,b].

Пусть $Z=\{x:\varphi(x)\neq\psi(x)\}$. Рассмотрим $x\not\in Z\cup(\bigcup_{k=1}^{+\infty}T_k)$ и $\varepsilon>0$. Выберем k, так что $\psi_k(x)-\varphi_k(x)<\varepsilon$ и рассмотрим соотвествующее T_k . Выберем $(x-\delta,x+\delta)$, лежащий в одном отрезке разбиения T_k . Тогда $|f(t)-f(x)|<\psi_k(x)-\varphi_k(x)<\varepsilon$ $\forall t\in(x-\delta,x+\delta)$. Это означает, что f непрерывна в точке x. Следовательно, f непрерывна почти всюду на [a,b]. По теореме Лебега

$$J = \lim_{k \to +\infty} S_{T_k} = \lim_{k \to +\infty} \int_{[a,b]} \varphi_k d\mu = \int_{[a,b]} f d\mu.$$

2. Пусть f непрерывна почти всюду на [a,b] и $\varepsilon > 0$. Рассмотрим $\{T_k\}$ – разбиение [a,b] на 2^k равных отрезка, тогда $T_{k+1} \subset T_k$. Пусть x не является точкой разрыва f и $x \notin \bigcup_{i=1}^{\infty} T_k$. Тогда, как и первом пункте , имеем $\varphi_k(x) \uparrow f(x)$ и $\psi_k \downarrow f(x)$ (учли непрерывность в точке x). По теорме Лебега $S_{T_k} = \int_{[a,b]} \psi_k d\mu \to \int_{[a,b]} f d\mu$, $s_{T_k} = \int_{[a,b]} \varphi_k d\mu = \int_{[a,b]} f d\mu$. Тогда, по критерию Дарбу $f \in \mathcal{R}[a,b]$.

Теорема 59 (Эйлер). Пусть $f:[1,+\infty)\to\mathbb{R}$ дифференцируема и f' локально интегрируема на $[1,+\infty)$. Тогда для любого $n\in\mathbb{N}$ справедливо равенство

$$\sum_{k=1}^{n} f(k) = \int_{1}^{n} f(t)dt + \frac{f(1) + f(n)}{2} + \int_{1}^{n} \left(\{t\} - \frac{1}{2} \right) f'(t)dt.$$

Следствие 29. Пусть $f:[1,+\infty)\to\mathbb{R}$ дифференцируема, f' монотонна и $f'(t)\to 0$ при $t\to +\infty$. Тогда для любого $n\in\mathbb{N}$ справедливо

$$\sum_{k=1}^{n} f(k) = \int_{1}^{n} f(t)dt + C_f + \frac{f(n)}{2} + \varepsilon_n,$$

где
$$C_f = \frac{f(1)}{2} + \int_1^{+\infty} \left(\{t\} - \frac{1}{2} \right) f'(t) dt$$
, $\varepsilon_n = -\int_n^{+\infty} \left(\{t\} - \frac{1}{2} \right) f'(t) dt$.

Пример (формула Стирлинга). При $n \to +\infty$ справедлива оценка

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$
.

Доказательство. Применим следствие к функции $f(t) = \ln t$. Тогда

$$\sum_{k=1}^{n} \ln k = n \ln n - n + 1 + C + \frac{\ln n}{2} + \varepsilon_n,$$

$$\ln n! = \ln(n^n e^{-n} \sqrt{n} e^{C+1} e^{\varepsilon_n}),$$

$$n! = c\sqrt{n} \left(\frac{n}{e}\right)^n (1 + o(1)), \ n \to +\infty.$$

Для нахождения константы c воспользуемся формулой Валлиса:

$$\pi = \lim_{n \to +\infty} \frac{1}{n} \left(\frac{(2n)!!}{(2n-1)!!} \right)^2$$

Имеем

$$\frac{(2n)!!}{(2n-1)!!} = \frac{2^{2n}(n!)^2}{(2n)!} = \frac{2^{2n}c^2n\left(\frac{n}{e}\right)^{2n}(1+o(1))^2}{c\sqrt{2n}\left(\frac{2n}{e}\right)^{2n}(1+o(1))} = \frac{c\sqrt{n}}{\sqrt{2}}(1+o(1)),$$

значит,

$$\pi = \lim_{n \to +\infty} \frac{1}{n} \frac{c^2 n}{2} (1 + o(1))^2 = \frac{c^2}{2} \Rightarrow c = \sqrt{2\pi}.$$