1) Faça um desenho mostrando do plano 3x+2z=12.

Interseções com os eixos: Eixo x: [4,0,0) Eixo y: Dão Ná Eixo t: (0,0,6)

2) Sendo A = (-1, 3, 0) e B = (3, 1, 4) determine a equação do plano mediador do segmento AB.

A+B= (1, 2,2)

AB = (4,-2,4) > (2,-1,2). (Normal as plans)

Plano: 2x-y+1z=d 2.1-2+2.2=d=4

3) Determine a equação do plano que contém os pontos (1, 0, 1), (-1, -2, 3) e (2, 3, 1).

$$\vec{v} = (-2, -2, 2) \Rightarrow (-1, -1, 1)$$

 $\vec{v} = (1, 3, 0)$

$$(3 \times (3 - 3) - (-3 + -2)$$
 $(-3 + -2)$
 $(-3 + -2)$
 $(-3 + -2)$

plane

4) Determine a equação do plano que contém os pontos (1, -2, 1), (2, 0, 3) e (3, 2, 6).

$$\vec{z} = (1, 2, 2)$$
 $\vec{z} \times \vec{z} = (2, -1, 0)$
 $\vec{z} = (2, 4, 5)$ $\vec{z} \times \vec{z} = (2, -1, 0)$
vetor normal as plans

$$2x-y=d$$
 $2+2=d$ $2x-y=4$

5) São dados,
$$\alpha = \{(x, y, z) ; x-2y+4z=-1\} \text{ e } r = \{(-1+2t, 3t, 2-t); t \in \mathbb{R}\}$$
. Determine $r \cap \alpha$.

$$d \cap r = 1 \qquad (-1+2+) - 2\cdot 3+ +4(2-+) = -1$$

$$-1+2+-6++8-4+=-1$$

6) Determine k para que a reta $r = \{(-8 + 2t, 5 + t, -2 + kt); t \in \mathbb{R}\}$ seja paralela ao plano 3x + 2y - z = 0.

São perpendiculares:

7) O plano 3x + 4y + 6z = 24 e os planos XY, YZ e ZX delimitam um tetraedro. Determine seu volume.

[8] São dados os pontos A = (1, 2, 0) e B = (3, 1, 3). Determine o ponto onde a reta AB intersecta o plano 2x + 4y - z = 1.

Substituindo no prono:

$$2(1+2+) + 4(2-+) - 3+ = 1$$

 $2+4++8-4+-3+=1$
 $9=3+=)+=3$, ronto= $(7,-1,9)$

9) Determine a equação do plano que contém o ponto P = (4, -2, 3) e a reta r definida pelas

equações
$$\begin{cases} x = 2t - 1 \\ y = 4t - 1 \\ z = t - 2 \end{cases}$$

Vetor direter da reta: (2,4,1) Porte da reta: (1,3,-1)=Q Fazendo QP=(3,-5,4).

Agora fazendo (3,-5/1) x (2/4,1)

10) Determine os pontos onde a reta $r = \{(3-2t, -1+t, 2+t); t \in \mathbb{R}\}$ intersecta a esfera de centro (1, 3, 0) e raio $2\sqrt{6}$.

Esfera:
$$(x-1)^2 + (y-3)^2 + z^2 = 24$$

Substituíndo: (2-2+)2+(+-4)2+(++2)2=24

$$4 - 8t + 4t^{2} + t^{2} - 8t + 16t + t^{2} + 4t + 4t = 244$$

$$(6t^{2} - 12t = 0)$$

$$+(t-2) = 0$$

$$+ = 2 = 3(-1, 1, 4)$$

11) Determine o raio da esfera $x^2 + y^2 + z^2 - 4x - 6y + 10z - 11 = 0$.

$$(x^{2}-4x+4)+(y^{2}-6y+4)+(z^{2}+10z+25)=4+9+25+11$$

 $(x-2)^{2}+(y-3)^{2}+(z+5)^{2}=(7)^{2}$

12) O ponto P = (3, 4, k) pertence à esfera $x^2 + y^2 + z^2 - 2x - 2y - 4z - 8 = 0$. Determine k.

Substituted:
$$(2)^2 + (3)^2 + (k-2)^2 = 14$$

$$\frac{(k-2)^2 = 1}{(k-3)^2} = 1$$

13) Para o menor valor de k encontrado no exercício anterior, determine a equação do plano tangente à esfera no ponto P.

 $\vec{v} = (213, -1)$ (veter rerval as plans) Plans: 2x + 3y - 2 = 0Substituíndo P. 2x + 3y - 2 = 17

14) Determine dois pontos distintos que estejam na interseção dos planos x+y+z=3 e 2x-y-6z=0.

Faça 2=+ (perânetro)

$$|2x-y=6+ =) x = 3+5+ ; y = 6-8+; z=+$$
 $|x+y=3-+ = 3$

15) Encontre dois planos diferentes que passem pelos pontos (-2, 1, 5) e (4, 3, 1).

$$T$$
) Portes $(-2,1,5)$, $(4,3,1)$ e $(0,0,0)$. T) Portes $(-2,1,5)$, $(4,3,1)$ e $(1,1,1)$.

I)
$$\vec{0} = (4,3,1)$$
 = $\vec{0} \times \vec{3} = 4$ 3 | 43 | $3 = 1-2,1,5$). = $(7,-22,10)$ | Plano: $7x-21y+10z=0$ | 4 .

$$(8,-12,6)=(4,-6,3)$$

16) Verifique se os vetores u = (5, 7, 1), v = (4, 2, -3) e w = (-1, 1, 2) são coplanares ou não.

$$= 20 + 21 + 4 + 2 + 15 - 56$$

$$= 47 + 15 - 56 = 6$$

17) Determine o cosseno do ângulo entre os planos x + y - z = 2 e 2x + y + z = 0.

$$\cos \theta = \frac{(1,1,-1)(2,1,1)}{\sqrt{3}\cdot\sqrt{6}} = \frac{2+1/1}{3\sqrt{2}} = \frac{\sqrt{2}}{3}$$

18) Determine o ponto da esfera $x^2 + y^2 + z^2 - 2x + 4y - 6z - 2 = 0$ cujo valor de z é máximo.

19) Determine a equação da esfera de centro C = (1, 1, 1), tangente ao plano x - 2y + 2z + 8 = 0.

Veter nermal ao plano: 11,-2,2).

PE plane.

$$\widehat{CP} = d(1,-2,2)$$

 $P = (1,1,1) + d(1,-2,2) = (1+d, 1-2d, 1+2d)$

=)
$$(1+d)-2(1-2d)+2(1+2d)+8=0$$

 $1+d-2(+4d+2)+4d+8=0$
 $9d=-9$
 $\sqrt{d=-1}$

20) A reta r é a interseção dos planos 2x - y = 1 e 3x - z = 2. A reta s é definida por x = y = z. Essas retas possuem algum ponto comum?

$$x=1$$
. $z=3+-2$ = $z=3+-2$ = $z=-3+-2$

retas: ((K,K,K))

21) Determine o simétrico do ponto P = (-2, -3, 1) em relação ao plano x + y + 2z = 3.

Vetor normal ao plano: (1,42).

0 = P + d(1,1,2) = (-2+d, -3+d, 1+2d).Substituíndo: (-2+d) + (-3+d) + 2(1+2d) = 3d=1

22) Seja $r = \{(2t+1, -2t+1, t+1); t \in \mathbb{R}\}$. Determine a distância do ponto P = (2, -1, 1) à reta r.

QET =) Q=(2+1,1-2+,++1).
Veter diretor do reto.
$$(2,-2,1)$$
.
PQ = $(2+-1,2-2+,+)$
 $(2+-1,2-2+,+)$ $(2,-2,1)$

- a) o comprimento de DH.
- b) a área do quadrilátero EFGH.
- c) o cosseno do ângulo entre os planos ABCD e EFGH.

a) Vonnes fazer un sistema ordenado conveniente:

Equação de plano: FG = (0,-2,3) FB = (-2,0,1)

FGx FE = $\sqrt{\frac{2}{3}}$ $\sqrt{\frac{2}{3}}$ = (-2, -6, -4)

D) EFBIA, pela configuração de problema e pelas madidas des lades é un paralelegramo

Area = 1FG×FE1=2((1,3,2)) = 2/14

Lembre-se FGXFE = (-2,-6,-41, a trensfermages para (1,3,2) foi una facilitação para nichor a eguação do plana.

c) Plano ABCD: veter vermal: (0,0,1) Plano EfGH: veter vermal: (1,3,2)

$$cos\theta = 10,0,0) \cdot (1,3,2) = \frac{2}{\sqrt{1} \cdot \sqrt{1+4+4}} = \frac{2}{\sqrt{14}} = \frac{\sqrt{14}}{2}$$