Learning Phone Embeddings for Word Segmentation of Child-Directed Speech

Jianqiang Ma Çağrı Çöltekin Erhard Hinrichs

Department of Linguistics and SFB 833

ACL CogACLL Workshop, Aug 11 2016

Outline

- Introduction
- 2 Learning Phone Embeddings for Segmentation
 - Model
 - Learning
 - Experiments
- Visualization and Interpretation
 - Embeddings encode segmentation roles
 - Embeddings capture phonology
 - Comparison with general-purpose embeddings

kitty thats right kitty

 Segmenting continuous utterances is one of the first tasks for a child acquiring language

kittythatsrightkitty

- Segmenting continuous utterances is one of the first tasks for a child acquiring language
- Spoken speech does not contain reliable cues for word boundaries

ljuuzuibutsjhiuljuuz

- Segmenting continuous utterances is one of the first tasks for a child acquiring language
- Spoken speech does not contain reliable cues for word boundaries
- Unlike you (adults), children do not have a complete lexicon either

ljuuzuibutsjhiuljuuz

- Segmenting continuous utterances is one of the first tasks for a child acquiring language
- Spoken speech does not contain reliable cues for word boundaries
- Unlike you (adults), children do not have a complete lexicon either
- There are some cues in the input that help children segment the utterances: statistical regularities, stress, utterance boundaries, . . .

ljuuzuibutsjhiuljuuz

- Segmenting continuous utterances is one of the first tasks for a child acquiring language
- Spoken speech does not contain reliable cues for word boundaries
- Unlike you (adults), children do not have a complete lexicon either
- There are some cues in the input that help children segment the utterances: statistical regularities, stress, utterance boundaries, . . .
- Computational models are particularly useful for investigating usefulness of these cues, and types of input representations

Introduction: motivation for using phone embeddings

• The way input is represented affects learning

Introduction: motivation for using phone embeddings

- The way input is represented affects learning
- Most segmentation models in the literature represent input as a sequence of symbols
 - ightarrow all phones are equally different from (or similar to) each other

[a]: 0, 1, 0

[d]: 1, 0, 0

[t]: 0, 0, 1

Introduction: motivation for using phone embeddings

- The way input is represented affects learning
- Most segmentation models in the literature represent input as a sequence of symbols
 - \rightarrow all phones are equally different from (or similar to) each other
- (Continuous) vector representations allow representing and exploiting the similarities between phones

Outline

- Introduction
- 2 Learning Phone Embeddings for Segmentation
 - Model
 - Learning
 - Experiments
- Visualization and Interpretation
 - Embeddings encode segmentation roles
 - Embeddings capture phonology
 - Comparison with general-purpose embeddings

Model Architecture

The position between t and I in "WAtIzIt" is being predicted.

- Look-up table maps phone ngrams to their embeddings.
- Phone embeddings are concatenated into a single input embedding
- The boundary probability: the sigmoid function of the dot product of the input embedd'n & the weight vector.

Our model jointly learns the embeddings and the weight vector.

Learning

- Learning with utterance boundaries and random sampling
 - Use utterance boundaries as positive instances of word boundaries
 - Randomly sample one position within the utterance as negative instance
- On-line learning
 - cross entropy loss function
 - L2 regularization
 - stochastic gradient descent

Experiments'

- why? compare embeddings and symbolic representations (sparse binary vector)
- how? use the same learning framework that accommodates both representations
 - symbolic counterpart of the model: a logistic regression
- what? For both models, run on the same dataset with the same hyper parameters; report the average results of 10 runs

Experiments: dataset and evaluation metrics

- dataset: BR corpus: the de facto standard corpus for segmentation
 - collected and converted to transcription by Bernstein Ratner (1987) and Brent & Cartwright (1996), respectively
 - part of the CHILDES database
- evaluation metrics
 - Precision, recall and F-scores
 - boundary F-score
 - word F-score
 - lexicon F-score
 - ullet over-segmentation (EO) and under-segmentation (EU) error rate

Experiments: results

Model	EO	EU	BF	WF	LF
embedding/all symbolic/all	6.4 ± 0.1 8.1±0.1	17.3 ± 0.2 25.8±0.2		68.7 60.2	42.6 31.6
embedding/unigram symbolic/unigram	15.8 ± 0.1 13.2 ± 0.1	10.6±0.3 21.7±0.2		59.1 54.4	40.7 29.4

Numbers in percentage. BF, WF, LF are F-scores (higher is better), EO and EU are error rates (lower is better).

- using embeddings boosts performance
- using all (uni- & bi-gram) features works better than only unigrams
- results are on-par with previous methods with similar cues/settings

Experiments: learning curve

The mean of the error rates during the 1st iteration for the *emb*edding and *sym*bolic models.

Outline

- Introduction
- 2 Learning Phone Embeddings for Segmentation
 - Model
 - Learning
 - Experiments
- Visualization and Interpretation
 - Embeddings encode segmentation roles
 - Embeddings capture phonology
 - Comparison with general-purpose embeddings

Segmentation roles

- hypothesis: the learned embeddings correspond to metrics that are indicative for segmentation decisions
- project phone embeddings to data points in 2-D space
- color-code phone points w.r.t. segmentation roles

segmentation role: whether a phone ngram is more likely (>50%) to occur at a specific type of locations

word-initial: at the beginning of a word word-final: at the end of a word

word-medial: in the middle of a word (non-initial, non-final)

balanced distribution of above positions cross word-boundary (only for bigrams)

Segmentation roles: unigrams

Segmentation roles: bigrams

Embeddings capture phonology

What structures emerge from the embeddings of phone unigrams?

- similarity matrix stores pair-wise cosine similarities between embeddings
- hierarchical agglomerative clustering builds clusters of phone unigrams in a bottom-up manner.
- visualize them using aligned heatmap and dendrogram

Hierarchical clustering & similarity matrix of embeddings

Embeddings capture phonology

- right 2/3 are mostly consonants while the rest are mostly vowels
- similar vowels form sub-clusters under the big vowel cluster

Example

- unrounded vowels E, &, I, A as in bet, that, bit and but
- long-short vowel pair a and O as in hot and law
- compound vowels, o, 3, e, Q as in boat, bird, bay and bout

Comparison with word2vec embeddings

dimension-wise heatmaps

Comparison with word2vec embeddings

segmentation roles

Comparison with word2vec embeddings

Phonology

embedding learned by word2vec

embeddings learned by our model

Summary

- We propose a model that jointly learns the phone embeddings and word segmentation.
- Our model relies on utterance boundaries, thus does not use any information that is unavailable to the children acquiring language.
- Using embeddings significantly improves the performance.
- The learned embeddings are informative for both word segmentation and certain phonological structures.

Summary

- We propose a model that jointly learns the phone embeddings and word segmentation.
- Our model relies on utterance boundaries, thus does not use any information that is unavailable to the children acquiring language.
- Using embeddings significantly improves the performance.
- The learned embeddings are informative for both word segmentation and certain phonological structures.

Thank you!