Predicting Sucess on yelp:

Ramin Ostad and Will Sundstrom

Objective

Our aim is to develop a success prediction for new restaurants

Success is defined as 4+ stars

The predictor can help new restaurants evaluate whether they are 'on track' to becoming successful restaurants

Data overview

The dataset comes from Yelp and was honed down in Cloud SQL

Data Overview:

- Data provided through <u>Yelp 2019</u>
 <u>Challenge</u>
- Used Google Cloud SQL to store data and run initial cuts
- Types of data:
 - Business information
 - Reviews and tips
 - User information
- Data ultimately used in model:
 - Business information
 - Aggregate characteristics of reviews for each restaurant

Approach

Logistic Regression, SVM and Random Forest

Success Metrics

- Accuracy
 - False positive and false negatives are equally bad outcomes
- Time Taken
- Model Interpretability

Model Selection

Comparing Average Time Taken and Accuracy

Classifier	Accuracy	Time Taken	Interpretability
Random Forest	71.7585%	6.97 seconds	Feature Importance
SVM Nystroem	71.3564%	54.92 seconds	
SVM Monte Carlo	70.4559%	33.68 seconds	
Logistic Regression	70.9743%	4.60 seconds	Odds Ratios

Model Performance

Conclusion

Takeaways

- Random Forest is effective and efficient
- Review length and engagement is predictive
- Location, location, location

Next Steps

- NLP on review text
- Review time series
- Look at check-in data
- Weight reviews based on user influence metrics

Thank You!

