

Background: multi-class classification problem with imbalanced dataset

Housing situation in Costa Rica

Household Poverty Level Distribution by Target

- Target 1 Extreme poverty (\$0 \$2.5)
 - Using food poverty line index (FPLI), the amount a household requires per member to meet a minimum caloric intake
- Target 2 Overall poverty (\$2.5 \$4.0)
 - Considers other basic resources beyond food
- Target 3 Vulnerable Households (\$4.0 \$10.00)
 - Households that were able to fulfill basic needs, but remain at risk of falling back into poverty due to unexpected circumstances.
- Target 4 Non-Vulnerable Households (Above \$10.0)
 - Non-poor & Non-vulnerable households.

Note: Income thresholds are harmonized per capita income for individuals

Data Processing

Dataset: Inter-American Development Bank Data on Costa Rican Households

Collection of observable Costa Rican household characteristics and associated poverty level for

9,557 individuals belonging to 2,973 households

143 variables that are a mix of __ and _

observations

Aggregate individual observations

observations

Key Discrepancies:

- Large numbers of Null values in the following variables:
 - monthly rent
 - tablets owned
 - years behind in school

Main Cause & Solutions:

- Aggregation errors:
 - Build contingency table Replace each missing value with appropriate value
 - Monthly rent: Impute based on median regional rent (for households in precarity and assigned housing)

Feature Engineering Overview: 25 new features were generated based on 4 dimensions

Housing Housing

- Living conditions
 - physical conditions and materials of wall, floor, and roof
 - Overcrowding
- Housing stability
- Ownership status

Technology

 Technology usage, such as ownership of mobile phones, computers, and tablets in household

- Educational attainment
- Years of education lost

Access to Basic Amenities

- Toilet System
- Water Provision
- Electricity Access
- Cooking Energy
- Rubbish Disposal

Feature Engineering and Selection

Technique we used:

- Encoding Categorical Variables
- Domain-Specific Feature Engineering: "monthly rent"
- One-hot encoding

Feature selection:

removed variables with

- Low correlation with target labels
- No observable difference in characteristics among target labels

Models Tried & Performance

Model	Parameters	Accuracy Score	F1 Score
Logistic Regression	C = 0.01, penalty = '12'	0.66	0.65
Weighted KNN	K = 5	0.63	0.65
Naive Bayes	$\alpha = 10, \sigma = 0.01$	0.60	0.54
Decision Tree 1	max depth=none, use all variables	0.74	0.82
Decision Tree 2	max depth=26, use corre- lated variables	0.74	0.74
Decision Tree 3	max depth=29, use house- hold level variables	0.74	0.8

Decision trees result in best F1 score for each target variable and overall.

Prone to overfitting, so random forest models created to address issue.

Random Forest - Hypertuning

Decision Trees:

- → Full dataframe with cleaned and engineered features
- → Label encoding for categorical variables
- → Avoiding overfitting:
 - Limiting depth of tree
 - train/valid/test data
 - ◆ SMOTE
 - Random Forest
 - ◆ Accuracy, Precision, Recall, F1
- → Final model + test on testing data
 - select_smote_rf

v2a1

asset_owned
mean_per_capita_income
tablet_per_capita
computer_per_capita
yrs_edu_lost
wall_material

lmp	Varname
0.393229	* v2a1
0.120004	* mean_per_capita_income
0.049391	SQBescolari
0.048275	* asset_owned
0.047837	cielorazo
0.045338	escolari
0.038075	SQBedjefe
0.036185	meaneduc
0.027671	qmobilephone
0.027423	SQBmeaned
0.020179	instlevel8
0.019539	SQBhogar_nin
0.019345	overcrowding
0.018991	SQBovercrowding
0.016949	* wall_material
0.016651	v18q1
0.012289	rooms
0.011516	r4t1
0.009684	* yrs_edu_lost
0.008063	hogar_nin

Final Model Selection

- → Final model + test on testing data
 - select smote rf (red)

*note: select_smote (green)

Recap & Reflections

What worked:

- → Appropriately filling v2a1(rent) and engineered variables (ex: mean_per_capita_income, asset_owned) worked as they are high predicting features
- → Achieving high recall scores with Random Forest models

What didn't:

- → Logistic Regression & Bayesian Classifier conditional independence assumption violated
- → KNN suffers from curse of dimensionality
- → How to best handle overfitting; Random forest tree can be ambiguous to understand

A comment about target features:

- → Targets 1 and 2 have concrete meaning it is based on the Cost of Basic Needs approach.
- → Targets 3 and 4 are loosely defined:
 - What does it mean for a household to be vulnerable?
- → Target features had a direct mapping to an income-based classification of poverty.
 - features which had a closer relationship with monetary deprivation had better explanatory power.
- → Dataset contained mostly indicator variables, while target measure was income based.