姓名:劉世棠

系級:EDA 碩一

學號:R07943095

- 1. 這題如果是直接去使用的話,我覺得並不會使 error detection capabilities 有變化,因為第一個 bit 是讓整個 n+1 個 bits 呈現某種 parity,所以前 n+1 個 bits 的 parity 確定了,則最後一個 bit 就變成完全 多餘了,因為每組資料都一樣,不過這卻是有變通辦法,如果說兩個 parity bit 各管 n/2 個 bits,則可以 detect 兩組 n/2 bits 各一個錯誤,整體看來就是變成兩個 word,而這種作法還有其他優缺點便不再此處多做 說明。
- 2. 因為N個bits中一定要有M個bits為1(或是0),以老師上課講義「Module 5 Information Redundancy.pdf」第88頁的圖片為例,如果要變成另外一個code word,則至少要有一個1變成0且一個0變成1,所以Hamming distance為2。

Digit	Codeword
0	00011
1	00101
2	00110
3	01001
4	01010
5	01100
6	10001
7	10010
8	10100
9	11000

(左圖取自上課講義)

3. 第三題:

(1) Hamming Code:

Hamming Code 相較於簡單的 parity check 可以做到 error correction,原因是 hamming code 有的做到重疊這件事情,而這邊的 hamming code 其實不需要用到 8 bits 即可做到 single error correction (因為 $2^c \ge d + c + 1$, d+c 種 single error 外加正常狀態),不過 detection 的這部分就無法像偵測到每個 byte 有一個 bit 發生錯誤的情況。

(2)Parity Check:

這邊因為是做 parity check per byte, 所以我們無法做 error correction, 不過我們可以 detect 每個 byte 有一個 bit 發生錯誤。

4. 第四題

(a) 這邊假設當每個 packet 有錯誤就要重新傳,故完全沒錯的機率 為: $C_0^{272} \times (1-10^{-3})^{272} \cong 0.76175$

Data rate
$$\Delta : \frac{240}{272} \cong 0.88235$$

Throughput = $0.76175 \times 0.88235 \times 12000 \cong 8065.56135$ (bit/sec)

(b) 這邊假設當每個 packet 有錯誤就要重新傳,故完全沒錯與錯一個的機率 為: $C_0^{280} \times (1-10^{-3})^{280} + C_1^{280} \times (1-10^{-3})^{279} \times 10^{-3} \cong 0.96748$

Data rate 為:
$$\frac{240}{280} \cong 0.85714$$

Throughput = $0.96748 \times 0.85714 \times 12000 \cong 9951.1896864$ (bit/sec)

(c) 這邊假設當每個 packet 有錯誤就要重新傳,故完全沒錯與錯一個的機率為: $C_0^{288} \times (1-10^{-3})^{288} + C_1^{288} \times (1-10^{-3})^{287} \times 10^{-3} + C_2^{288} \times (1-10^{-3})^{286} \times (10^{-3})^2 \cong 0.99681$

Data rate 為:
$$\frac{240}{288} \cong 0.83334$$

Throughput = $0.99681 \times 0.83334 \times 12000 \cong 9968.1797448$ (bit/sec) =>我會建議增加,因為 throughput 增加了

5. 一個 5-bit code 且 G(x)=X+1,則有以下 code word,:

Data	Separable	Non-separable
0000	00000	00000
0001	00011	00011
0010	00101	00110
0011	00110	00101
0100	01001	01100
0101	01010	01111
0110	01100	01010
0111	01111	01001
1000	10001	11000
1001	10010	11011
1010	10100	11110
1011	10111	11101
1100	11000	10100
1101	11011	10111
1110	11101	10010
1111	11110	10001

這些 separable cyclic code 與 nonseparable cyclic code 基本上只差在 每個 codeword 對應的 data,以 codeword 00101 為例,在 separable code 中對應 0010,而在 nonseparable code 中對應 0011。

6. 第六題

- (a) 先將(X+1)乘上 G1(X), 再除 X^7-1 , 故我們可得 X^3+X^2+1
- (b)首先我們先去分析第一小題的三個分式,我們可以發現那三個分式沒有自己跟 1 以外的因式,有(X+1)、G1(X)、G2(X)、(X+1)G1(X)、(X+1)G2(X)、G1(X)G2(X)等六種組合,而總數也可以用 G(X)種類來計算,如 $C_2^3+C_1^3=6$ 種。
- (c) (7,4) code 且 $G(X) = X^3 + X + 1(1011)$ 故:

Data words	Non-separable	Separable
0000	0000000	0000000
0001	0001011	0001011
0010	0010110	0010110
0011	0011101	0011101
0100	0101100	0100111
0101	0100111	0101100
0110	0111010	0110001
0111	0110001	0111010
1000	1011000	1000101
1001	1010011	1001110
1010	1001110	1010011
1011	1000101	1011000
1100	1110100	1100010
1101	1111111	1101001
1110	1100010	1110100
1111	1101001	1111111

7. 因為 X=01101 且 $C(X) = |X|_3 = X \mod 3$,故我們可以得到以下關係式

$$C'(X) = \begin{cases} C(X) = 0 & & shiftout \ 0: \ 0 \\ C(X) = 1 & & shiftout \ 0: \ 2 \\ C(X) = 2 & & shiftout \ 0: \ 1 \\ C(X) = 0 & & shiftout \ 1: \ 1 \\ C(X) = 1 & & shiftout \ 1: \ 0 \\ C(X) = 2 & & shiftout \ 1: \ 2 \end{cases}$$

$$(\mathring{\underline{\mathbf{G}}} \mathring{\underline{\mathbf{g}}} \mathring{\mathbf{g}} \mathring$$

step1.
$$X' = 11010$$
 and $C'(X) = 2$

step2.
$$X' = 10100$$
 and $C'(X) = 2$

step3.
$$X' = 01000$$
 and $C'(X) = 2$

step4.
$$X' = 10000$$
 and $C'(X) = 1$

step5.
$$X' = 00000$$
 and $C'(X) = 0$