REAL TIME ROAD MONITORING SYSTEM

PROBLEM STATEMENT

- Increasing congestion
- Need for improved data collection systems
- Lack of real time insights
- Absence of real-time data on traffic flow and road condition

OBJECTIVES

- Read real time data from car's CANbus
- Use sensors to sense pothole on road
- Use CANbus data to determine road conditions
- Send pothole and CANbus data to internet for data analysis

DESIGN SPECIFICATIONS

- Data can be sent over 4G to a backend server using HTTPS
- detect pothole based on suspension of the vehicle
- Read a vehicle's speed and ABS data over the On board diagnostics port in real time
- Get GPS data of the vehicle
- Determine icy road conditions
- Use wireless communication protocol to get data from IMUs mounted on a car's suspension
- Get FreeRTOS working on pi pico
- Power peripherals using batteries
- Display Data on website with a heatmap
- Design and print PCB for project

OUR APPROACH

- Pothole Detection
- Bluetooth
- Slipping Detection
- **4**G
- FreeRTOS
- Backend

POTHOLE DETECTION

- IMU (Inertial Measurement Unit)
- Contains on-board Accelerometer
- Budget friendly and commonly used
- Mounted on vehicle suspension

BLUETOOTH

- BLE (Bluetooth Low Energy)
- Raspberry Pi Pico W
- Limited Documentation
- Alternatives

SLIPPING DETECTION

- On Board Diagnostics Port (OBD-II)
- CAN bus protocol
- Vehicle speed
- Traction Control

```
09:48:54.538 Slipping: 31,
09:48:54.538 Speed: 22,
09:48:55.447
09:48:55.447 Slipping: 31,
09:48:55.447 Speed: 27,
09:48:56.359
09:48:56.359 Slipping: 31,
09:48:56.359 Speed: 31,
09:48:57.554
09:48:57.554 Slipping: 31,
09:48:57.554 Speed: 32,
09:48:58.464
09:48:58.464 Slipping: 31,
09:48:58.464 Speed: 33,
09:48:59.360
09:48:59.360 Slipping: 31,
09:48:59.360 Speed: 33,
```

4 G

- Sim7600 4G LTE module
- Connect to cellular network
- Send HTTP request to backend

FREERTOS

- Real Time Operating System
- Bundle data together
- Schedule running of different components
- Handle multiprocessing

BACKEND

- Google Firebase Realtime Database
- Firebase Hosting
- Google Maps API

RESULTS

- Pothole detection accuracy
- Slipping detection detection
- Backend

Pothole Zone	Accuracy	Attempts 30		
Yellow	77%			
Amber	68%	16		
Red	72%	18		

BUDGET

Central	Qty.	Cos	t
Pico W	2	\$	17.10
Pico	1	\$	9.95
GPS Module	1	\$	58.17
OBD-II Module	1	\$	77.12
4G Module	1	\$	78.55
РСВ	5	\$	49.30
Enclosure	1	\$	2.65
Total:		\$	292.84

Peripheral	Qty.	Cost	;
Pico W	2	\$	17.10
IMU	2	\$	10.34
Zener Diode	2	\$	0.40
PCB	10	\$	20.76
Batteries	36	\$	26.98
Enclosure	1	\$	3.03
Gasket	5	\$	24.54
Total		\$	103.15

CONCLUSIONS

- Core objectives met
 - Pothole detection
 - Road conditions
- Future improvements
 - Design changes
 - Further testing
 - More data

THANK YOU