

planetmath.org

Math for the people, by the people.

special reducible polynomials over a field with positive characteristic

 ${\bf Canonical\ name} \quad {\bf Special Reducible Polynomials Over A Field With Positive Characteristic}$

Date of creation 2013-03-22 18:31:05 Last modified on 2013-03-22 18:31:05

Owner joking (16130) Last modified by joking (16130)

Numerical id 10

Author joking (16130) Entry type Theorem Classification msc 13F07 Let k be an arbitrary field such that $\operatorname{char}(k) = p > 0$. We will assume that $0 \notin \mathbb{N}$.

Proposition. Let $m \in \mathbb{N}$. Then for any $a \in k$ the polynomial $W(X) = X^{p^m} - a$ is reducible if and only if there exist $c \in k$ and $n \in \mathbb{N}$ such that $c^{p^n} = a$. Moreover the factorization of W(X) is given by the formula

$$W(X) = (X^{p^{m-n}} - c)^{p^n},$$

where n is a maximal natural number such that $0 \le n \le m$ and $a = c^{p^n}$ for some $c \in k$.

Proof. " \Leftarrow " Assume that $a=c^{p^n}$ for some $c\in k$ and $n\in\mathbb{N}$. It is well known that if $\operatorname{char}(k)=p>0$ and $t\in\mathbb{N}$ then for any $x,y\in k$ we have $(x+y)^{p^t}=x^{p^t}+y^{p^t}$. Therefore

$$W(X) = X^{p^m} - a = X^{p^m} - c^{p^n} = (X^{p^{m-1}})^p - (c^{p^{n-1}})^p = (X^{p^{m-1}} - c^{p^{n-1}})^p = (V(X))^p.$$

Note that $p^m > \deg(V(X)) = p^{m-1} > 0$ and therefore W(X) is reducible. \square " \Rightarrow " Assume that W(X) is reducible. Therefore there exist $V(X), U(X) \in k[X]$ such that $W(X) = V(X) \cdot U(X)$ and both $\deg(V(X)) > 0$ and $\deg(U(X)) > 0$.

Recall that there exists an algebraically closed field \overline{k} such that k is a subfield of \overline{k} (generally it is true for any field). Therefore there exists $c_0 \in \overline{k}$ such that $c_0^{p^m} = a$ and thus we have:

$$W(X) = X^{p^m} - a = X^{p^m} - c_0^{p^m} = (X - c_0)^{p^m}$$

in $\overline{k}[X]$. Now $V(X) \cdot U(X) = W(X) = (X - c_0)^{p^m}$ and since $\overline{k}[X]$ is a unique factorization domain then for $n = \deg(V(X)) > 0$ we have:

$$V(X) = (X - c_0)^n.$$

But $V(X) \in k[X]$ (the factorization was assumed to be over k) and therefore $c_0^n \in k$. It is easy to see that since $c_0^n \in k$ and $c_0^{p^m} \in k$ then $c_0^{\gcd(n,p^m)} \in k$, but $\gcd(n,p^m)=p^s$ for some $s \in \mathbb{N}$. Thus if we put $c=c_0^{p^s}$ we gain that $c^{p^{m-s}}=a$. But m>s (since $n< p^m$ because we assumed that both $\deg(V(X))>0$ and $\deg(U(X))>0$), which completes the proof of the first part. \square

Now let $n \in \mathbb{N}$ be a maximal natural number such that $n \leq m$ and $a = c^{p^n}$ for some $c \in k$. Then we have

$$W(X) = (X^{p^{m-n}} - c)^{p^n}.$$

Note that the polynomial $X^{p^{m-n}}-c$ is irreducible. Indeed, assume that $X^{p^{m-n}}-c$ is reducible. Then (due to first part of the proposition) $c=u^{p^k}$ for some $k\in\mathbb{N}$ and $u\in k$. But then $a=(u^{p^k})^{p^n}=u^{p^{n+k}}$. Contradiction, since n+k>n and n was assumed to be maximal. \square