MUSIC GENRE PREDICT MODEL

음원 데이터셋을 통해 장르를 예측하는 신경망 모델 만들어보기

경북대학교 전자전기공학부 이은찬 지능시스템설계 Term Project

목치

- 1. 프로젝트 소개
- 2. 데이터셋: 고르게 된 이유와 데이터셋 설명
- 3. 전처리: 음악 데이터 전처리 하는 방법과 csv 파일
- 4. 모델링: 신경망 모델 구현
- 5. 결과
- 6. ...후기?

프로젝트 소개

10개 장르 1000개의 음원 데이터를 제공하는 GTZAN Dataset를 사용하여 이를 분석 및 전처리하고 이를 통해 신경망 모델을 학습시켜보고

모델의 학습 후 검증과 함께

최종적으로 음원 데이터를 보고 장르를 예측하는 다양한 실전 음원 데이터에 대해서도 장르를 예측하는 신경망 모델을 만들어보는 프로젝트

2. 데이터셋

데이터셋: GTZAN DATASET

- GTZAN: MNIST of Audio, famous Audio Dataset! (Kaggle 제공)
- 이 주제를 고르게 된 이유
 - Phone Call, Music Player, Netflix/Youtube Video 등 매우 다양한 곳에서 엄청난 양의 음성 데이터가 각종 디바이스/플랫폼을 통해서 매일 쏟아지고 있습니다!
 - 음성 데이터를 다루는 딥러닝을 공부해보는 경험은 가치가 높을 것 같아서 프로젝트 시작

데이터셋: GTZAN DATASET

Data Explorer

1.31 GB

- ▼ Data
 - ▼ □ genres_original
 - ▶ □ blues
 - ▶ □ classical
 - ▶ □ country
 - ▶ ☐ disco
 - ▶ ☐ hiphop
 - ▶ □ jazz
 - metal
 - ▶ □ pop
 - ▶ □ reggae
 - ▶ □ rock
 - ▶ □ images_original
 - features_30_sec.csv
 - features_3_sec.csv

GTZAN Dataset 구성

- ①genres_original: 10개 장르 각각 100개의(총 1000개) 음원 (.wav)
- ②Images_original: 위 데이터의 오디오 파형 이미지 (.png)
- ③그외 2개의 csv 파일 (features_3_sec, features_30_sec)
 - 위 데이터에 대한 오디오 데이터의 다양한 특성의 값들을 가지고 있는 엑셀 파일 (1000 개의 데이터 x 60개 특성)

이번에 사용하게 된 데이터 -> ③ features_30_sec [1MB]

① ,②는 용량이 약 1.3GB로 이번 프로젝트와 부합하지 않습니다

GTZAN FEATURES_30_SEC.CSV

10개 음악 장르, 장르별 100개의 데이터(총 1000개), 각각의 데이터는 filename 포함 60가지의 특성값 가짐

특성값은 다양한 오디오 신호의 특징 값들이 존재 mean(평균), var(분산) of Chroma_stft, rms, spectral_centroid.....

	А	В	С	D	E	F	G	Н	I	J
1	filename	length	chroma_stft_mean	chroma_stft_var	rms_mean	rms_var	spectral_centroid_mean	spectral_centroid_var	spectral_bandwidth_mean	spectral_bandwidth_var
2	blues.00000.wav	661794	0.35008812	0.088756569	0.1302279	0.002827	1784.16585	129774.0645	2002.44906	85882.76132
3	blues.00001.wav	661794	0.340913594	0.094980255	0.0959478	0.002373	1530.176679	375850.0736	2039.036516	213843.7555
4	blues.00002.wav	661794	0.363637179	0.085275196	0.1755704	0.002746	1552.811865	156467.6434	1747.702312	76254.19226
5	blues.00003.wav	661794	0.404784709	0.093999036	0.141093	0.006346	1070.106615	184355.9424	1596.412872	166441.4948
6	blues.00004.wav	661794	0.308526039	0.087840982	0.0915287	0.002303	1835.004266	343399.9393	1748.172116	88445.20904
7	blues.00005.wav	661794	0.30245629	0.087532379	0.1034936	0.003981	1831.99394	1030482.37	1729.653287	201910.5086

	K	L	М	N	0	Р	Q	R	S	T	U	V	W
1 r	olloff_mean	olloff_var	zero_crossing_rate_mean	zero_crossing_rate_var	harmony_mean	harmony_var	perceptr_mean	perceptr_var	tempo	mfcc1_me	mfcc1_va	r mfcc2_me	mfcc2_va
2	3805.839606	901505.43	0.083044821	0.000766946	-4.53E-05	0.008172282	7.78E-06	0.005698182	123.0469	-113.571	2564.208	8 121.5718	295.913
3	3550.522098	2977893.4	0.056039809	0.001447521	0.000139581	0.005099332	-0.000177608	0.003063172	67.99959	-207.502	7764.55	5 123.9913	560.259
4	3042.260232	784034.46	0.076291207	0.001006829	2.11E-06	0.016341973	-1.95E-05	0.007457626	161.499	-90.7226	3319.04	5 140.4463	508.76
5	2184.745799	1493194.4	0.033308863	0.000422759	4.58E-07	0.019054487	-1.45E-05	0.002712198	63.02401	-199.544	5507.51	7 150.0909	456.5054
6	3579.757627	1572977.8	0.101460539	0.001954125	-1.76E-05	0.004814	-1.01E-05	0.003093899	135.9992	-160.338	5195.29	2 126.2196	853.784
7	3481.517592	3274440	0.094041534	0.006233196	1.96E-07	0.008082612	-2.65E-05	0.003242044	69.83742	-177.774	7307.41	7 118.2055	3195.21
8	2795.610963	1621442	0.073052237	0.001909171	-9.67E-06	0.016923327	-2.24E-05	0.005953942	71.77734	-190.052	9656.53	5 130.2891	1932.79
9	2954.83676	1629130	0.061442246	0.001848816	1.94E-05	0.013223032	-4.81E-05	0.004838658	92.28516	-179.347	6573.92	2 136.469	1479.24
10	3782.316288	1262917	0.064024888	0.000731482	2.26E-06	0.012702081	-1.97E-05	0.003465382	83.35433	-121.364	2622.19	5 122.5067	414.505

3. 데이터 전처리

음성 신호 전처리: HOW?

[오디오 전처리의 정석] 원래라면 ...

Music file→audio wave → Fourier Transform → Log-scale → Mel-Spectrogram, MFCC

사람의 청각기관 중 달팽이관이 음성 신호를 인지하는 방식과 유사한 원리의 Mel Spectrogram

음성 신호 전처리: PRE- PREPROCESSING된 CSV 파일 사용

• 그러나..

GTZAN Dataset csv 파일은 아래와 같이 이미 전처리 후의 음성 특징들을 제공하고 있으므로 할 필요는 없었습니다.

• CSV 파일:

총 60개 데이터 특성 [30개의 features x 2 (평균, 분산)] 제공

- 17개 chroma_STFT, RMS, Spectral-centroid, Spectral-Bandwidth, Rolloff, zero-crossing rate, tempo ...
- 40개 MFCC1~20 데이터
- 3개: filename, length(모두 30sec으로 동일), genre[=Label]

필요없는 columns drop, Feature, Label로 분리시키기

```
data = pd.read_csv('data/features_30_sec.csv')
x = data.drop(['filename','length','label'], axis=1)
y = data['label'] #Label
x = x.to_numpy()
```

Label [=genre] one-hot encoding하기

```
genres = list(set(y))
t = []
for i in range(len(y)):
    one_hot_vector = [0]*10 # [0 0 0 0 0 0 0 0 0 0]
    one_hot_vector[genres.index(y.loc[i])] = 1
        t.append(np.array(one_hot_vector))
t = np.array(t)
```

CSV 데이터 전처리

데이터 정규화 시키기 각각의 특징 값들을 최댓값으로 나누어 모든 값을 0~1사이로 정규화 수행

```
x_column_len = len(x[0,:]) # (1000,57)
for i in range(x_column_len):
    x[:,i] = x[:,i]/max(x[:,i])
```

데이터 Train, Test 75:25 분리

```
Test_set = np.random.choice(1000,250,replace=False)
Train_set = np.delete(np.arange(1000),Test_set)
np.random.shuffle(Train_set)

x_train = x[Train_set]
x_test = x[Test_set]
t_train = t[Train_set]
t_test = t[Test_set]
```

X = 정규화된 Features data [1000 x 57]

0	0.527492	0.820973	0.327228	0.102122	0.40227	0.0427332	0.570556	0.123611
1	0.513668	0.87854	0.241091	0.085722	0.345004	0.123763	0.580981	0.307784
2	0.547907	0.788771	0.441161	0.099204	0.350107	0.0515231	0.497971	0.109752
3	0.609905	0.869464	0.354529	0.22928	0.241273	0.0607064	0.454864	0.239558
4	0.464868	0.812504	0.229987	0.0832168	0.413732	0.113078	0.498105	0.127299
5	0.455723	0.809649	0.260052	0.143807	0.413054	0.339327	0.492828	0.290609
6	0.438955	0.8693	0.356492	0.31804	0.329039	0.144182	0.395769	0.266303
7	0.464008	0.859325	0.331234	0.199828	0.327303	0.148038	0.44941	0.242107
8	0.616075	0.800216	0.357854	0.0544503	0.387661	0.0537673	0.578902	0.151907
9	0.412772	0.853896	0.204319	0.157043	0.409707	0.098206	0.562385	0.16418

```
In [5]: x.shape
Out[5]: (1000, 57)
In [6]: y.shape
Out[6]: (1000,)
```

Y = output data [= genre] t = One-hot vector of Y [1000 x 10]

```
In [12]: t.shape
Out[12]: (1000, 10)
```

전처리 결과

4. 모델링: 신경망 모델

수행해야할 큰 그림

Audio Features → 신경망 → Genre

모델링:신경망모델

- 이 역할을 가장 잘 수행할 수 있는 모델은?
- → Multi Label Classification Simple MLP Model

Data Flow Diagram

모델링

INPUT → MLP → Layer OUTPUT → Softmax → Genre

Base Model : 교재 MLP 모델 응용
[TwoLayerNet class]

Structure: FCL → Sigmoid → FCL → Softmax

Size of Layers: i=57, h=5000, o=10

Loss Function: Cross-Entropy

Optimizer: Adam

Training: 교재 Training 코드 응용 [Trainer class]
Epochs = 300, Batch size = 32

class TwoLayerNet:

신경망 모델링 CODE

```
self.layers = [
   Affine(W1,b1),
                      Structure: FCL → Sigmoid → FCL → Softmax
   Sigmoid(),
   Affine(W2,b2)]
self.loss_layer = SoftmaxWithLoss()
```

```
Size of Layers: i=57, h=5000, o=10
                     #신경망 설계 [Neuralnet Modeling]
                     model = TwoLayerNet(input size=57, hidden size =5000, output size =10)
                     optimizer = Adam()
Loss Function: Cross-Entropy
                     #교재 제공 Trainer Class를 사용하여 Model Training 수행
                     GTZAN MLP = Trainer(model, optimizer)
```

GTZAN_MLP.fit(x,t, max_epoch=300,batch_size=32)

Optimizer: Adam

5. 테스트 및 결과

TRAINING 결과


```
대체적으로 85~100%의 높은 정확도를
뽑아주는 것으로 확인할 수 있었다.
```

```
에폭 1 |
        반복 1 / 31 | 시간 0[s] |
                              손실 2.32 |
                                       정확도 21.875
에폭 2 |
        반복 1 / 31 | 시간 0[s]
                              손실 2.67
                                       정확도 9.375
에폭 3 |
        반복 1 / 31 | 시간 0[s] |
                             손실 2.16
                                       정확도 31.250
        반복 1 / 31 | 시간 1[s]
에폭 4
                              손실 1.93
                                       정확도 25.000
        반복 1 / 31 | 시간 1[s] |
에폭 5 1
                              손실 1.81
                                       정확도 40.625
```

... 중략 ...

```
반복 1 / 31 | 시간 135[s] |
에폭 296
                                           정확도 87.500
                                 손실 0.29
에폭 297
          반복 1 / 31 | 시간 136[s]
                                 손실 0.26
                                           정확도 96.875
에폭 298
          반복 1 / 31 | 시간 136[s] |
                                 손실 0.27
                                           정확도 96.875
에폭 299
                                 손실 0.30
                                           정확도 90.625
          반복 1 / 31 | 시간 137[s] |
          반복 1 / 31 | 시간 137[s] |
에폭 300 |
                                 손실 0.29
                                           정확도 93.750
```

최종 결과 보고

- 30MB 이하의 데이터를 가지고 음원 데이터를 분석하기 위해 음원 데이터와 스펙트로그램 파형 이미지 데이터가 아 닌 음원의 특징 값들을 지니는 .csv 정형 데이터로 타겟 데이터를 잡았고 이를 멀티 레이블 분류 MLP 모델을 통해 분 석해 보았다.
- 그 결과 뚜렷한 결과는 아니더라도 전체 25%의 TEST Data에 대해서 훈련 결과 최소 85% 이상~100%까지의 Accuracy를 달성할 수 있었다.
- 그러나 위 모델로 실제 음원을 통한 장르를 예측시키고 싶을 때, CSV 파일처럼 음원의 57가지 feature를 직접 featuring 해 주어야하며 이는 오디오 전문가가 아니고서야 범용성이 0에 가깝다.
- 나중에 기회가 된다면 CNN + 음원 파형 이미지 분석과 음악 데이터 그 자체의 파형만으로 NLP based 모델로 더욱 범용성 높은 모델을 구성해볼 계획이다.

감사합니다!

이번 프로젝트의 더 자세한 내용은 제 깃허브 @Github/Purang2에서 보실 수 있습니다.