Group No. 18

Nikhil Vaghasiya(i.d.: 202003042)

Hardikkumar jani (i.d. :- 202003041)

Lab No.:- 6(08-10-2021)

Dairy product management system

➤ FD Closure and Normal form for all relations:-

1. Customer:-

> Attributes :-

■ C_Mobile_no, C_First_Name, C_Last_Name, C_Locality, C_Pincode, C_City, Worker id

> FDs :-

- $C_{Mobile_no} \rightarrow C_{First_Name}$
- $C_{Mobile_{no}} \rightarrow C_{Last_{Name}}$
- $C_Mobile_no \rightarrow C_Locality$
- \blacksquare C Mobile no \rightarrow C Pincode
- $C_Mobile_no \rightarrow C_City$
- \blacksquare C Mobile no \rightarrow Worker id

➤ Closure :-

- [C_Mobile_no]⁺ = {C_Mobile_no, C_First_Name, C_Last_Name, C_Locality, C_Pincode, C_City, Worker_id}
- \blacksquare [C First Name]⁺ = {C First Name}
- \blacksquare [C Locality]⁺ = {C Locality}
- $[C_Pincode]^+ = \{C_Pincode\}$

➤ Candidate key:-

■ Here we can see that the closure set of C_Mobile_no contains all attributes.

■ So C_Mobile_no can be the primary key of Customer relation.

> Normal form :-

- Here the determinant of all FDs is C_Mobile_no and here C_Mobile_no is the primary key.
- So we can say that this relation is in BCNF.

2. Sellers:-

- > Attributes :- Seller_id, S_first_name, S_Last_name, S_company_name, S_Mobile_no
- **> FDS** :-
 - Seller_id \rightarrow S_first_name
 - \blacksquare Seller id \rightarrow S Last name
 - Seller $id \rightarrow S$ company name
 - Seller $id \rightarrow S$ Mobile no

➤ Closure :-

- [Seller_id]⁺ = {Seller_id, S_first_name,
 S Last name, S company name, S Mobile no}
- \blacksquare [S first name]⁺ = {S first name}
- \blacksquare [S Last name]⁺ = {S Last name}
- $[S \text{ company name}]^+ = \{S \text{ company name}\}$
- $[S_Mobile_no]^+ = \{S_Mobile_no\}$

➤ Candidate key:-

- Here we can see that the closure set of Seller_id contains all attributes.
- So Seller_id can be the primary key of this relation.

> Normal form :-

- Here the determinant of all FDs is Seller_id and here Seller_id is the primary key.
- So we can say that this relation is in BCNF.

3. Workers:-

➤ Attributes: - Worker_id, W_First_name, W_Last_name, W_Address, W_birthdate, W_joining_date, W_salary

> FDs :-

- Worker_id → W_First_name
- \blacksquare worker id \rightarrow W Last name
- \blacksquare worker id \rightarrow W Address
- \blacksquare worker id \rightarrow W birthdate
- worker_id → W_joining_date
- worker_id → W salary

➤ Closure :-

- [Worker_id]⁺ = {Worker_id, W_First_name, W_Last_name, W_Address, W_birthdate, W_joining_date, W_salary}
- $[W_First_name]^+ = \{W_First_name\}$

- $[W_birthdate]^+ = \{W_birthdate\}$
- [W_joining_date]⁺ = {W_joining_date}

➤ Candidate key:-

- Here we can see that the closure set of Worker_id contains all attributes.
- So Worker id can be the primary key of this relation.

➤ Normal form :-

- Here the determinant of all FDs is Worker_id and here Worker_id is the primary key.
- So we can say that this relation is in BCNF.

4. Working

➤ Attributes :-

■ W_worker_id, W_outlet_code

> FDs :-

■ Here we get only trivial FDs because a combination of both attributes can only determine one another.

➤ Closure :-

■ [W_worker_id, W_outlet_code]+ = {W_worker_id, W_outlet_code}

- $[W \text{ worker id}] + = \{W \text{ worker id}\}$
- [W_outlet_code]+ = {W_outlet_code}

- Here we can see that the closure set of {W_worker_id, W_outlet_code} contains all attributes.
- So {W_worker_id, W_outlet_code} can be the primary key of this relation.

> Normal form :-

- Normal Form theorem :- All attributes are key attributes in a relation then relation is always in BCNF.
- So we can say that this relation is in BCNF.

5. WORKER MOBILE NUMBER

- > Attributes :-
 - WMN WORKER KEY, WMN MOBILE NO

> FDs :-

■ Here we get only trivial FDs because a combination of both attributes can only determine one another.

➤ Closure :-

- [WMN_WORKER_KEY,WMN_MOBILE_NO]+ = {WMN WORKER KEY, WMN MOBILE NO}
- [WMN_WORKER_KEY]+ = {WMN WORKER KEY}
- [WMN_MOBILE_NO]+ = {WMN_MOBILE_NO}

➤ Candidate key:-

- Here we can see that the closure set of {WMN_WORKER_KEY,WMN_MOBILE_NO} contains all attributes.
- So {WMN_WORKER_KEY,WMN_MOBILE_NO} can be the primary key of this relation.

> Normal form :-

- Normal Form theorem :- All attributes are key attributes in a relation then relation is always in BCNF.
- So we can say that this relation is in BCNF.

6. Manager:-

> Attributes :-

■ M worker id, M user name, M password

> FDs :-

- \blacksquare M worker id \rightarrow M user name
- \blacksquare M worker id \rightarrow M password
- M_user_name → M_worker_id
- $M_user_name \rightarrow M_password$

➤ Closure :-

- [M_worker_id]+ = {M_worker_id, M_user_name, M_password}
- [M_user_name]+ = {M_worker_id, M_user_name, M_password}
- $[M password] + = \{M password\}$

➤ Candidate key:-

- Here we can see that the closure set of M_worker_id and M_user_name contains all attributes.
- So M_worker_id and M_user_name are candidate keys.
- So M_worker_id can be the primary key of this relation.

➤ Normal form :-

- Here the determinant of all FDs is M_worker_id or M_user_name and here M_worker_id and M_user_name are candidate keys.
- So we can say that this relation is in BCNF.

7. Product :-

- ➤ Attributes: Product_id, P_name, P_Company_name, P_Tax, P_Unit_price, P_Quantity, P_Profit, seller_id
- **>** FDs :-
 - Product_id \rightarrow P_name
 - Product_id → P_Company_name
 - Product id \rightarrow P Tax
 - Product_id → P_Unit_price
 - Product $id \rightarrow P$ Quantity
 - Product $id \rightarrow P$ Profit
 - Product_id → seller_id

➤ Closure :-

- [Product_id]⁺ = {Product_id, P_name,
 P_Company_name, P_Tax, P_Unit_price,
 P Quantity, P Profit, seller id}
- $[P Company name]^+ = \{P Company name\}$

➤ Super key:-

- Here we can see that the closure set of Product_id contains all attributes.
- So Product_id can be the super key of this relation.

➤ Normal form :-

- Here the determinant of all FDs is Product_id and here Product_id super keys.
- So we can say that this relation is in BCNF.

8. Include Product

- > Attributes :- I bill id, I Product id, I QUANTITY
- > FDs :-

■ Here we get only trivial FDs because a combination of both attributes can only determine one another.

➤ Closure :-

- [I_bill_id, I_Product_id]+ = {I_bill_id, I_Product_id,I_QUANTITY}
- \blacksquare [I bill id]+= {I bill id}
- $[I \text{ Product id}] + = \{I \text{ Product id}\}$
- [I_QUANTITY]+={I_QUANTITY}

➤ Candidate key:-

- Here we can see that the closure set of {I_bill_id, I_Product_id} contains all attributes.
- So {I_bill_id, I_Product_id} can be the primary key of this relation.

> Normal form :-

- Normal Form theorem :- All attributes are key attributes in a relation then relation is always in BCNF.
- So we can say that this relation is in BCNF.

9. Milk:-

- ➤ Attributes :- M_Product_id, M_fat, M_type, M_total_quantity
- > FDs:-
 - {M_Product_id} → {M_fat, M_type,M total quantity}

➤ Closure :-

- [M_Product_id]+ = {M_Product_id, M_type, M_fat, M total quantity}
- $\blacksquare [M_fat]^+ = \{M_fat\}$
- $\blacksquare [M_type] += \{M_type\}$
- $[M_total_quantity]^+ = \{M_total_quantity\}$

➤ Candidate key:-

■ Here we can see that the closure set of M_Product_id contains all attributes.

■ So M_Product_id can be the primary key of this relation.

> Normal form :-

- Here the determinant of all FDs is M_Product_id and here M_Product_id is a primary key.
- So we can say that this relation is in BCNF.

10. **Bill:**-

- ➤ Attributes: bill_id, B_Payment_type, B_Total amount, B Total tax, B Date, C Mo. no, O code
- ➤ FDs :-
 - bill_id → B_Payment_type
 - bill $id \rightarrow B$ Total amount
 - bill $id \rightarrow B$ Total tax
 - bill $id \rightarrow B$ Date
 - \blacksquare bill id \rightarrow C Mo. no
 - bill $id \rightarrow O$ code

➤ Closure :-

- [bill_id]+ = {bill_id, B_Payment_type, B_Total amount, B Total tax, B Date, C Mo. no, O code}
- [B Payment type]+ = {B Payment type}
- [B_Total amount]+ = {B_Total amount}
- $[B \text{ Total tax}] + = \{B \text{ Total tax}\}$
- $\blacksquare [B_Date] + = \{B_Date\}$
- \blacksquare [C Mo. no]+ = {C Mo. no}

➤ Candidate key:-

- Here we can see that the closure set of bill_id contains all attributes.
- So bill_id can be the primary key of this relation.

> Normal form :-

- Here the determinant of all FDs is bill_id and here bill_id is a primary key.
- So we can say that this relation is in BCNF.

11. Feedback:-

➤ Attributes :- F_Title, Customer_Mo_no., F_Rating, F_comment

> FDs :-

- $\{\text{Customer_Mo_no.}\} \rightarrow \text{F_Rating}$
- $\{Customer_Mo_no.\} \rightarrow F_comment$
- $\{\text{Customer Mo no.}\} \rightarrow \text{F Title}$

➤ Closure :-

- [Customer_Mo_no.]+ = {F_Title, Customer_Mo_no., F Rating, F comment}
- $[F_Title] += \{F_Title\}$
- $[F_Rating] + = \{F_Rating\}$
- \blacksquare [F_comment]+ = {F_comment}

➤ Candidate key:-

- Here we can see that the closure set of Customer_Mo_no contains all attributes.
- So Customer_Mo_no can be the primary key of this relation.

> Normal form :-

- Here the determinant of all FDs is Customer_Mo_no and here Customer Mo no is the primary key.
- So we can say that this relation is in BCNF.

12. Purchase report:-

- > Attributes :- PR_Date, Seller_id, Outlet_code, payment_type, PR_total_amount
- > FDs :-
 - {PR_Date, Seller_id, Outlet_code} → payment_type
 - {PR_Date, Seller_id, Outlet_code} → PR total amount

➤ Closure :-

- [PR_Date, Seller_id, Outlet_code]⁺ = {PR_Date, Seller_id, Outlet_code, payment_type, PR total amount}

- \blacksquare [PR_total_amount]⁺ = {PR_total_amount}

- Here we can see that the closure set of {PR_Date, Seller id, Outlet code} contains all attributes.
- So {PR_Date, Seller_id, Outlet_code} can be the primary key of this relation.

> Normal form :-

- Here the determinant of all FDs is {PR_Date, Seller_id, Outlet_code} and here {PR_Date, Seller_id, Outlet_code} is the primary key.
- So we can say that this relation is in BCNF.

13. Selling report:-

➤ Attributes :-

■ SR_Date,SR_PRODUCT_CODE, Outlet_code, SR_total_quantity, SR_total_amount, SR_total_profit

> FDs:-

- {SR_Date,SR_PRODUCT_CODE, Outlet_code} → SR_total_quantity
- {SR_Date,SR_PRODUCT_CODE, Outlet_code} → SR total amount
- {SR_Date,SR_PRODUCT_CODE, Outlet_code} → SR total profit

➤ Closure :-

■ [SR_Date,SR_PRODUCT_CODE, Outlet_code]⁺ = {SR_Date,SR_PRODUCT_CODE, Outlet_code,

- SR_total_quantity, SR_total_amount, SR_total_profit}
- [SR_PRODUCT_CODE]⁺ = {SR_PRODUCT_CODE}
- [SR_total_quantity]⁺ = {SR_total_quantity}
- \blacksquare [SR_total_amount]⁺ = {SR_total_amount}
- [SR_total_profit]⁺ = {SR_total_profit}

- Here we can see that the closure set of {SR_Date,SR_PRODUCT_CODE, Outlet_code} contains all attributes.
- So {SR_Date,SR_PRODUCT_CODE, Outlet_code} can be the primary key of this relation.

> Normal form :-

- Here the determinant of all FDs is {SR_Date,SR_PRODUCT_CODE, Outlet_code} and here {SR_Date,SR_PRODUCT_CODE, Outlet_code} is the primary key.
- So we can say that this relation is in BCNF.

14. **Outlet:**-

> Attributes :-

■ Outlet code, O starting date, O Address

> FDs :-

- Outlet code \rightarrow O starting date
- Outlet_code \rightarrow O_Address

➤ Closure :-

- [Outlet_code]⁺ = {Outlet_code, O_starting_date, O_Address}
- [Outlet starting date]⁺ = {Outlet starting date}

➤ Candidate key:-

- Here we can see that the closure set of Outlet_code contains all attributes.
- So Outlet_code can be the primary key of this relation.

➤ Normal form :-

- Here the determinant of all FDs is Outlet_code and here Outlet_code is the primary key.
- So we can say that this relation is in BCNF.

15. Outlet mobile number

> Attributes :-

■ OMN outlet code,OMN Mobile no

\gg Fds :-

■ Here we get only trivial FDs because a combination of both attributes can only determine one another.

➤ Closure :-

- [OMN_outlet_code,OMN_Mobile no]+ = {OMN_outlet_code,OMN_Mobile no}
- [OMN_outlet_code]+ = {OMN_outlet_code}
- [OMN Mobile no]+ = {OMN Mobile no }

➤ Candidate key :-

- Here we can see that the closure set of {OMN_outlet_code,OMN_Mobile no} contains all attributes.
- So {OMN_outlet_code,OMN_Mobile no} can be the primary key of this relation.

> Normal form :-

- Normal Form theorem :- All attributes are key attributes in a relation then relation is always in BCNF.
- So we can say that this relation is in BCNF.

16. Transport:-

> Attributes :-

■ Transport_id, Driver_First_name,
 Driver_Last_name, T_Date, Address,
 T_Total_amount, merchant_first_name,
 merchant_last_name, merchant_mobile_no,
 T bill id, T worker id

> Fds:-

- Transport $id \rightarrow Driver$ First name
- Transport $id \rightarrow Driver$ Last name
- Transport_id \rightarrow T_Date
- Transport_id \rightarrow Address
- Transport_id → T_Total_amount
- Transport $id \rightarrow merchant$ first name
- Transport id \rightarrow merchant last name
- Transport_id → merchant_mobile_no
- Transport_id \rightarrow T bill id
- Transport $id \rightarrow T$ worker id
- T bill $id \rightarrow Driver$ First name
- $T_bill_id \rightarrow Driver_Last_name$
- \blacksquare T bill id \rightarrow T Date
- T bill $id \rightarrow Address$
- $T_bill_id \rightarrow T_Total_amount$
- T_bill_id → merchant_first_name
- $T_bill_id \rightarrow merchant_last_name$
- \blacksquare T bill id \rightarrow merchant mobile no
- T_bill_id → Transport_id
- T bill $id \rightarrow T$ worker id

➤ Closure :-

- [Transport_id]⁺ = {Transport_id, Driver_First_name,
 Driver_Last_name, T_Date, Address,
 T_Total_amount, merchant_first_name,
 merchant_last_name, merchant_mobile_no,
 T bill id, T worker id}
- [Driver First name] $^+$ = {Driver First name}

- [Driver Last name] $^+$ = {Driver Last name}

- \blacksquare $[T_Total_amount]^+ = {T_Total_amount}$
- [merchant_first_name]⁺ = {merchant_first_name}
- [merchant last name]⁺ = {merchant last name}
- [merchant_mobile_no]⁺ = {merchant_mobile_no}
- [T_bill_id]⁺ = {Transport_id, Driver_First_name, Driver_Last_name, T_Date, Address, T_Total_amount, merchant_first_name, merchant_last_name, merchant_mobile_no, T_bill_id, T_worker_id}

- Here we can see that the closure set of Transport_id and T bill id contains all attributes.
- So Transport id and T bill id are candidate keys.
- So here we choose Transport_id for the primary key of this relation.

> Normal form :-

- Here the determinant of all FDs is Transport_id or T_bill_id and here Transport_id and T_bill_id are candidate keys.
- So we can say that this relation is in BCNF.

➤ List update, delete, and insert anomalies in original database design :-

- ➤ Here our schema is in BCNF because all relations are in BCNF.
- ➤ So we can say that if we update, delete and insert anomalies in the original database we can't find any redundancy.