Make A Sequence Walkthrough

hgjjefe

January 2023

0 Introduction

Make The Sequence is a maths puzzle game I created using Pygame. The goal of this game is to make the sequence given in each level by inputting an appropriate formula with a limited number of characters. It is preferred that the solution uses as few characters as possible.

1 Levels

Sequence 1. $1, 2, 3, 4, 5, \dots$

Solution 1. $a(n) = \boxed{n}$

Sequence 2. 2, 4, 6, 8, 10, ...

Solution 2. $a(n) = \boxed{2n}$

Sequence 3. 4, 5, 6, 7, 8, ...

Solution 3. $a(n) = \boxed{n+3}$

Sequence 4. 1, 1, 1, 1, 1, ...

Solution 4. $a(n) = \boxed{1}$

Sequence 5. 1, 3, 5, 7, 9, ...

Solution 5. a(n) = 2n-1

Sequence 6. 5, 9, 13, 17, 21, ...

Solution 6. a(n) = 4n + 1

Sequence 7. 13, 23, 33, 43, 53, ...

Solution 7. a(n) = 10n + 3

Sequence 8. 38, 31, 24, 17, 10, ...

Solution 8. Note that this is an arithmetic sequence with common difference -7. So $a(n) = 38 - 7(n-1) = \boxed{45 - 7n}$.

Sequence 9. 1, 4, 9, 16, 25, ...

Solution 9. a(n) = n * *2 = [nn].

Sequence 10. 1, 3, 6, 10, 15, ...

Solution 10. Note that this is the sequence of triangular numbers.

So a(n) = n(n+1)/2.

Sequence 11. 1, 8, 27, 64, 125, ...

Solution 11. $a(n) = n * *3 = \lceil nnn \rceil$.

Sequence 12. 1, 2, 4, 8, 16, ...

Solution 12. $a(n) = \boxed{2 * *(n-1)}$.

Sequence 13. 1, 2, 4, 7, 11, ...

Solution 13. Note that the first difference of the sequence is $1, 2, 3, 4, \ldots$ and the second difference is $1, 1, 1, \ldots$ Let $\Delta a(n)$ denote the first difference sequence and $\Delta^2 a(n)$ denote the second difference sequence.

We have $\Delta a(n+1) - \Delta a(n) = \Delta^2 a(n)$.

Suppose we want to find $\Delta a(n)$ given $\Delta^2 a(n)=1$. Putting $\Delta^2 a(n)=1$ into the above equation:

$$\Delta a(n+1) - \Delta a(n) = 1$$

Since $\Delta^2 a(n)$ is a constant sequence, we guess that $\Delta a(n)$ is a linear sequence, so $\Delta a(n) = cn + d$ for some c and d. Putting $\Delta a(n) = cn + d$:

$$c(n+1) + d - (cn+d) = 1$$
$$c = 1$$

From our observations above, we know that $\Delta a(1)=c(1)+d=1$, so d=0 , and $\Delta a(n)=n$.

Now we want to find a(n) given $\Delta a(n)=n$. We have $a(n+1)-a(n)=\Delta a(n)=n$. Since $\Delta a(n)$ is a linear sequence, we guess that a(n) is a quadratic sequence, so we let $a(n)=An^2+Bn+C$. Putting $a(n)=An^2+Bn+C$:

$$A(n+1)^{2} + B(n+1) + C - (An^{2} + Bn + C) = n$$

$$A((n+1)^{2} - n^{2}) + B((n+1) - n) + C - C = n$$

$$A(2n+1) + B = n \qquad \dots (*)$$

Since the difference equation holds true for all positive integer n, putting any positive integer value of n will work. Putting n = 1 and n = 2 into (*):

$$\begin{cases} A(2(1)+1) + B = 1\\ A(2(2)+1) + B = 2 \end{cases}$$

Solving, $A = \frac{1}{2}$ and $B = -\frac{1}{2}$.

So $a(n) = \frac{1}{2}n^2 - \frac{1}{2}n + C$. From the sequence given at the beginning, we know that a(1) = 1. Putting a(1) = 1:

$$a(1) = \frac{1}{2}(1)^2 - \frac{1}{2}(1) + C = 1$$

$$C = 1$$

Thus, $a(n) = \frac{1}{2}n^2 - \frac{1}{2}n + 1 = \boxed{n(n-1)/2 + 1}$.

Sequence 14. 3, 9, 27, 81, 243, ...

Solution 14. Note that this is a geometric sequence with first term = 3 and common ratio = 3. More succinctly, this is a sequence of powers of 3. $a(n) = \boxed{3**n}$.

Sequence 15. 48, 72, 108, 162, 243, ...

Solution 15. Note that this is a geometric sequence with first term = 48 and common ratio = 3/2.

$$a(n) = 48(3/2) * *(n-1) = 32(3/2) * *n$$
.

Sequence 16. 1, 11, 111, 1111, 11111, ...

Solution 16. Note that

- a(1) = 1,
- $a(2) = 10^2 + 1$
- $a(3) = 10^3 + 10^2 + 1 ,$
- $a(4) = 10^4 + 10^3 + 10^2 + 10 + 1$,
- $a(5) = 10^5 + 10^4 + 10^3 + 10^2 + 10 + 1$.

Each term is the sum of geometric sequence with first term = 1 and common ration = 10 . Using the sum of geometric sequence formula $S(n) = \frac{A(r^n-1)}{r-1}$ where first term = A, common ratio = r and number of terms = n,

We get
$$a(n) = \frac{10^n - 1}{10 - 1} = \boxed{(10 * *n - 1)/9}$$
.

Sequence 17. 3, -6, 9, -12, 15, ...

Solution 17. Note that the absolute sequence 3, 6, 9, 12, 15, ... is given by b(n) = 3n. The corresponding alternating sequence can be obtained by adding $(-1)^n$ to the formula of the absolute sequence. However, in this alternating sequence, the odd-n th term is positive but the even-n th term is negative, so we add one more negative sign to the formula.

$$a(n) = \boxed{-3n(-1) * *n}.$$

Sequence 18. 5, 13, 25, 41, 61, ...

Solution 18. Note that the sequence of $\Delta a(n)$ is 8, 12, 16, 20, ... and $\Delta^2 a(n) = 4$. By inspection, we see that $\Delta a(n) = 4n + 4$. Let $a(n) = An^2 + Bn + C$. Then

$$A(2n+1) + B = 4n+4$$
 ...(*)

Putting n = 1 and n = 2 into (*):

$$\begin{cases} A(2(1)+1) + B = 4(1) + 4 \\ A(2(2)+1) + B = 4(2) + 4 \end{cases}$$

Solving, A=2 and B=2 . Thus $a(n)=2n^2+2n+C$. Since $a(1)=2(1)^2+2(1)^2+C=5$, we have C=1 .

$$a(n) = \boxed{2nn + 2n + 1}.$$

Discussion 18. Note that $a(n) = n^2 + (n+1)^2$.

Sequence 19. 1, 5, 12, 22, 35, ...

Solution 19. Note that the sequence of $\Delta a(n)$ is 4, 7, 10, 13, ... and $\Delta^2 a(n) = 3$. By inspection, we see that $\Delta a(n) = 3n + 1$. Let $a(n) = An^2 + Bn + C$. Then

$$A(2n+1) + B = 3n+1$$
 ...(*)

Putting n = 1 and n = 2 into (*):

$$\begin{cases} A(2(1)+1) + B = 3(1) + 1 \\ A(2(2)+1) + B = 3(2) + 1 \end{cases}$$

Solving,
$$A = \frac{3}{2}$$
 and $B = -\frac{1}{2}$. Thus $a(n) = \frac{3}{2}n^2 - \frac{1}{2}n + C$. Since $a(1) = \frac{3}{2}(1)^2 - \frac{1}{2}(1) + C = 1$, we have $C = 0$.
$$a(n) = \boxed{n(3n-1)/2}$$
.

Discussion 19. This sequence is the sequence of pentagonal numbers.

Sequence 20. 1, 5, 14, 30, 55, ...

Solution 20. Note that the sequence of $\Delta a(n)$ is 4, 9, 16, 25, ..., so $\Delta a(n) = (n+1)^2$, which is quadratic. So we guess that a(n) is a cubic sequence. Let $a(n) = An^3 + Bn^2 + Cn + D$. Then

$$a(n+1) - a(n) = \Delta a(n)$$

$$A(n+1)^3 + B(n+1)^2 + C(n+1) + D - (An^3 + Bn^2 + Cn + D) = (n+1)^2$$

$$A(3n^2 + 3n + 1) + B(2n+1) + C = (n+1)^2 \qquad \dots (*)$$

Putting n = 1, n = 2 and n = 3 into (*):

$$\begin{cases} 7A + 3B + C = 4\\ 19A + 5B + C = 9\\ 37A + 7B + C = 16 \end{cases}$$

Solving,
$$A=\frac{1}{3}$$
, $B=\frac{1}{2}$ and $C=\frac{1}{6}$. Thus $a(n)=\frac{1}{3}n^3+\frac{1}{2}n^2+\frac{1}{6}n+D$. Since $a(1)=\frac{1}{3}(1)^3+\frac{1}{2}(1)^2+\frac{1}{6}(1)+D=1$, we have $D=0$.
$$a(n)=\frac{1}{3}n^3-\frac{1}{2}n^2+\frac{1}{6}n=\left\lceil n(n+1)(2n+1)/6\right\rceil.$$

Discussion 20. This formula is the sum of the first n square number, i.e. $n(n+1)(2n+1)/6 = \sum_{k=1}^{n} k^2$

Sequence 21. 1, 0, 1, 0, 1, ...

Solution 21. Start with the powers of (-1). The formula is $b(n) = (-1)^n$ and the sequence is: -1, 1, -1, 1, -1, Let c(n) = 1 - b(n). The sequence is 2, 0, 2, 0, 2, Now divide by 2 to get a(n).

$$a(n) = \boxed{(1 - (-1) * *n)/2}$$

Sequence 22. 23, 45, 89, 177, 353, ...

Solution 22. Note that the sequence satisfies the recurrence relation a(n+1) = 2 * a(n) - 1 with initial condition a(1) = 23.

Let b_n be a sequence that also satisfies the recurrence relation of a(n) (but with different initial conditions), so that $b_{n+1}=2b_n-1$. As the recurrence relation is in the form a(n+1)=ka(n)+f(n) where f is a constant function, we guess that the general formula of b_n is also a constant function, say $b_n=d$. Putting $b_n=d$ and $b_{n+1}=d$ into the recurrence relation:

$$d = 2d - 1$$

$$d = 1$$

So $b_n=1$ for all positive integers n . We want to somehow transform b_n into a(n) , so let's find some help.

Let h_n be a sequence with homogeneous recurrence relation $h_{n+1} = 2h_n$. This is a geometric sequence with common ration = 2. Let A be the first term (initial condition). Then the general formula is $h_n = A(2^{n-1})$.

Let's sum these two sequences to make a new sequence a_n and see what happens. Define $a_n = h_n + b_n$ for all positive integers n. We start with the recurrence relations:

$$h_{n+1} = 2h_n \tag{1}$$

$$b_{n+1} = 2b_n - 1 (2)$$

(1) + (2):

$$h_{n+1} + b_{n+1} = 2h_n + 2b_n - 1$$
$$a_{n+1} = 2a_n - 1$$

We get the recurrence relation of a(n) , so we are in the right direction.

Let $a(n) = a_n$ and $a(n) = h_n + b_n = A(2^{n-1}) + 1$. We can find the constant A by considering a(1):

$$a(1) = A(2^{1-1}) + 1 = 23$$

$$A = 22$$

$$a(n) = 22(2^{n-1}) + 1 = \boxed{2**n*11 + 1}$$

Sequence 23. 1, 4, 9, 18, 35, ...

Solution 23. Note that the sequence of $\Delta a(n)$ is 3, 5, 9, 17, ..., and the sequence of $\Delta^2 a(n)$ is 2, 4, 8, This suggests that the general formula of $\Delta a(n)$ has the component of 2^n . By inspection, we find that $\Delta a(n) = 2^n + 1$. This suggests that a(n) is in a similar form. Let $a(n) = A(2^n) + Bn + C$. Then

$$a(n+1) - a(n) = \Delta a(n)$$

$$A(2^{n+1}) + B(n+1) + C - (A(2^n) + Bn + C) = 2^n + 1$$

$$A(2^n)(2-1) + B = 2^n + 1$$

Comparing both sides, we get A=1 and B=1 . So $a(n)=(2^n)+n+C$. Since $a(1)=(2^1)+1+C=1$, we have C=-2 .

 $\mathbf{a}(\mathbf{n}) = \boxed{2 * *n + n - 2}$

Sequence 24. 1, 9, 36, 100, 225, ...

Solution 24. Note that the sequence is $1^2, 3^2, 6^2, 10^2, 15^2$, ..., which is the square of triangular numbers. The formula of triangular number is $\frac{n(n+1)}{2}$, so

$$a(n) = (n(n+1)/2) **2$$

Discussion 24. $\left(\frac{n(n+1)}{2}\right)^2 = \sum_{k=1}^{n} k^3$

Sequence 25. 17, 69, 17, 69, 17, ...

Solution 25. Note that the sequence of $1 + (-1)^n$ is 0, 2, 0, 2, 0, Multiply by 26 to get 0, 52, 0, 52, 0, ..., then add 17 to get 17, 69, 17, 69, 17,

$$a(n) = 26(1 + (-1)^n) + 17 = 26(-1) * *n + 43$$

Sequence 26. 4, 16, 64, 256, 1024, ...

Solution 26. Note that the sequence is $2^2, 2^4, 2^6, 2^8, 2^{10}, \dots$ $a(n) = \boxed{2**(2n)}$

Sequence 27. 2, 16, 512, 65536, 33554432, ...

Solution 27. Note that the sequence is $2^1, 2^4, 2^9, 2^{16}, 2^{25}, \dots$ $a(n) = \boxed{2 * n * 2}$

Sequence 28. 1, 4, 27, 256, 3125, ...

Solution 28. Note that the sequence is $1^1, 2^2, 3^3, 4^4, 5^5, \dots$ a(n) = $\boxed{n * * n}$

Sequence 29. 2, 4, 16, 256, 65536, ...

Solution 29. Note that the sequence is $2^1, 2^2, 2^4, 2^8, 2^{16}, \dots$

$$a(n) = \boxed{2 * *2 * *(n-1)}$$

Sequence 30. 1, 12, 108, 864, 6480, ...

Solution 30. Let $\delta a(n) = a(n+1)/a(n)$ denote the first ratio of a(n) (the ratio between two successive terms). Note that the first ratio is:

$$\delta a(1) = a(2)/a(1) = 12$$

$$\delta a(2) = a(3)/a(2) = 9$$

$$\delta a(3) = a(4)/a(3) = 8$$

$$\delta a(4) = a(5)/a(4) = 7.5$$

Let $\delta^2 a(n) = \delta a(n+1)/\delta a(n)$ denote the second ratio of a(n) (the ratio between two successive first ratios). The second ratio is:

$$\delta^{2} a(1) = \frac{\delta a(2)}{\delta a(1)} = \frac{3}{4}$$

$$\delta^{2} a(2) = \frac{\delta a(3)}{\delta a(2)} = \frac{8}{9}$$

$$\delta^{2} a(3) = \frac{\delta a(4)}{\delta a(3)} = \frac{15}{16}$$

$$\delta^{2} a(n) = \frac{\delta a(n+1)}{\delta a(n)} = 1 - \frac{1}{(n+1)^{2}}$$

Multiply both sides by $\delta a(n)$:

$$\delta a(n+1) = \delta a(n) \left(1 - \frac{1}{(n+1)^2} \right)$$

We know that $\delta a(1) = 12$. Writing out the following terms:

$$\delta a(2) = 12 \left(1 - \frac{1}{2^2}\right)$$

$$\delta a(3) = \delta a(2) \left(1 - \frac{1}{3^2}\right) = 12 \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right)$$

$$\delta a(4) = \delta a(3) (1 - \frac{1}{4^2}) = 12(1 - \frac{1}{2^2})(1 - \frac{1}{3^2})(1 - \frac{1}{4^2})$$

:

We are interested in finding the general formula of this product for $n \geq 2$: (LHS is a just shorthand for the product, not a general formula.)

$$\prod_{k=2}^{n} (1 - \frac{1}{k^2}) = (1 - \frac{1}{2^2})(1 - \frac{1}{3^2}) \cdots (1 - \frac{1}{n^2})$$

We can write: [1]

$$\begin{split} \prod_{k=2}^{n} (1 - \frac{1}{k^2}) &= \prod_{k=2}^{n} (\frac{k^2 - 1}{k^2}) = \prod_{k=2}^{n} (\frac{(k+1)(k-1)}{k^2}) \\ &= \left(\prod_{k=2}^{n} (k+1)\right) \left(\prod_{k=2}^{n} (k-1)\right) \left(\prod_{k=2}^{n} \frac{1}{k^2}\right) \\ &= \left(\prod_{k=3}^{n+1} k\right) \left(\prod_{k=1}^{n-1} k\right) \left(\prod_{k=2}^{n} \frac{1}{k}\right)^2 \\ &= (\frac{(n+1)!}{2!})(n-1)! (\frac{1}{n!})^2 \\ &= \frac{n+1}{2n} \end{split}$$

Thus, $\delta\,a(n)=12(\frac{n+1}{2n})=6\,(\frac{n+1}{n})$. Now we find the formula for a(n) . Recall that

$$\delta a(n) = \frac{a(n+1)}{a(n)} = 6\left(\frac{n+1}{n}\right)$$

$$a(n+1) = 6 a(n) \left(\frac{n+1}{n}\right)$$

We know that a(1) = 1. Writing out the following terms:

$$\begin{split} a(2) &= 6(1)(\frac{1+1}{1}) \\ a(3) &= 6 \, a(2) \cdot (\frac{2+1}{2}) = 6 \left(6(\frac{1+1}{1}) \right) \cdot (\frac{2+1}{2}) \\ a(4) &= 6 \, a(3) \cdot (\frac{3+1}{3}) = 6 \left(6\left(6(\frac{1+1}{1}) \right) \cdot (\frac{2+1}{2}) \right) \cdot (\frac{3+1}{3}) \end{split}$$

$$a(n) = 6^{n-1} \frac{n!}{(n-1)!}$$
$$a(n) = n(6^{n-1})$$

$$\mathbf{a}(\mathbf{n}) = \boxed{n6 * *(n-1)}$$

Sequence 31. 1, 1, 2, 2, 3, ...

Solution 31. By inspection, we see that the formula of the sequence is $\left\lfloor \frac{n+1}{2} \right\rfloor$. Note that the definition of the floor division operator // is:

$$a//b = \left| \frac{a}{b} \right|$$

$$a(n) = (n+1)/(2)$$

Sequence 32. 1, 3, 4, 6, 7, ...

Solution 32. We start with the sequence 1, 2, 3, 4, 5, ..., and add another sequence 0, 1, 1, 2, 2, ..., which can be created by the formula n//2.

$$a(n) = \boxed{n + n//2}$$

Sequence 33. $1, 2, 3, 4, 4, \dots$

Solution 33. Consider the sequence $0,\,0,\,0,\,0,\,-1$. This can be created by the formula -n//5. Now add this to the sequence $1,\,2,\,3,\,4,\,5$ to get the desired sequence.

$$a(n) = \boxed{n - n//5}$$

Sequence 34. 1, 2, 0, 1, 2, ...

Solution 34. We start with the sequence 1, 2, 3, 4, 5, We need to add another sequence 0, 0, -3, -3, ..., which can be created by the formula -n//3*3. Adding the sequences to together, we get

$$a(n) = n - n//3 * 3$$

Sequence 35. 1, 2, 3, 2, 1, ...

Solution 35. We start with the sequence 1, 2, 3, 4, 5, We need to add another sequence that has 0 for the first 3 terms and -2 for the 4th term, which can be created by the formula -n//4*2. So the sequence becomes 1, 2, 3, 2, 3, We need to add another sequence that has 0 for the first 4 terms and -2 for the 5th term, which can be created by the formula -n//5*2.

Adding the three sequences to together, we get

$$a(n) = \boxed{n - n//4 * 2 - n//5 * 2}$$

Sequence 36. 1, 0, 0, 0, 0, ...

Solution 36. a(n) = 1/n

Sequence 37. 1, 2, 3, 5, 9, ...

Solution 37. We start with the sequence of powers of 2 with shifted index: $1/2, 1, 2, 4, 8, \ldots$, which is 2^{n-2} . Taking the floor of each term, the sequence becomes 0, 1, 2, 4, 8 and the formula becomes $2^{n-2}//1$. Adding 1 to each term, we get the desired sequence $1, 2, 3, 5, 9, \ldots$

$$a(n) = 2 * *(n-2)//1 + 1$$

Sequence 38. 4, 7, 15, 29, 59, ...

Solution 38. We start with the sequence of powers of 2 with shifted index: $1/2, 1, 2, 4, 8, \ldots$, which is 2^{n-2} . Taking the floor of each term, the sequence becomes 0, 1, 2, 4, 8 and the formula becomes $2^{n-2}//1$. Adding 1 to each term, we get the desired sequence $1, 2, 3, 5, 9, \ldots$

$$a(n) = 2 * *(n-2)//1 + 1$$

Sequence 39. 7, 5, 8, 4, 9, ...

Solution 39. Note that the sequence of $\Delta a(n)$ is -2, 3, -4, 5, . . . , so $\Delta a(n)=(n+1)(-1)^n$. Let $a(n)=An^2+Bn+C$. Then

$$A(2n+1) + B = (n+1)(-1)^n$$
 ...(*)

Putting n = 1 and n = 2 into (*):

$$\begin{cases} A(2(1)+1) + B = (2)(-1)^{1} \\ A(2(2)+1) + B = (3)(-1)^{2} \end{cases}$$

Solving,
$$A=\frac{5}{2}$$
 and $B=-\frac{19}{2}$. Thus $a(n)=\frac{5}{2}n^2-\frac{19}{2}n+C$. Since $a(1)=\frac{5}{2}(1)^2-\frac{19}{2}(1)+C=7$, we have $C=14$.
$$a(n)=\frac{5}{2}n^2-\frac{19}{2}n+14=\boxed{(1-(-1)**n)/2}$$

References

 \fbox{E} [1]S. Robot, "Establish a formula for $(1-1/4)(1-1/9)\dots(1-1/n^2),$ " 2015. [Online]. Available: https://www.stumblingrobot.com/2015/07/02/establish-a-formula-for-1-141-19-1-1n2/