Problem Set 10

D. Zack Garza

December 1, 2019

Contents

1	Problem 1	1
2	Problem 2	1
3	Problem 3	2
4	Problem 4	2
	Problem 5	2
	5.1 Part 1	2 3

1 Problem 1

Let ϕ be an *n*-form. If suffices to show these statements for n=2.

 \implies : Suppose ϕ is alternating, then $\phi(b,b)=0$ for all $b\in B$.

Letting $a, b \in B$ be arbitrary, we then have

$$\begin{split} \phi(a+b,a+b) &= \phi(a,a+b) + \phi(b,a+b) \\ &= \phi(a,a) + \phi(a,b) + \phi(b,a) + \phi(b,b) \\ &= \phi(a,b) + \phi(b,a) \\ &\implies \phi(a,b) = -\phi(b,a), \end{split}$$

which shows that ϕ is skew-symmetric.

 \Leftarrow Suppose ϕ is skew-symmetric, so $\phi(a,b) = -\phi(b,a)$ for all $a,b \in B$. Then $\phi(b,b) = -\phi(b,b)$ by transposing the terms, which says that $\phi(b,b) = 0$ for all $b \in B$ and thus ϕ is alternating.

2 Problem 2

Let $f(x) = \det(P + xQ) \in R[x]$, then f is a polynomial in x which is not identically zero.

To see that $f \not\equiv 0$, we can use that fact that P is invertible to evaluate $f(0) = \det(P) \neq 0$.

We can now note that f has finite degree, and thus finitely many zeroes in R.

3 Problem 3

Letting $k[x] \curvearrowright_{\phi} E$ to yield a k[x]-module structure on E and take an invariant factor decomposition,

$$E = E_1 \oplus E_2 \oplus \cdots \oplus E_t, \quad E_i = \frac{k[x]}{(q_i)}, \quad q_1 \mid q_2 \mid \cdots \mid q_t$$

where $E_i = k[x]/(q_i)$. Then $q_t = q$, the minimal polynomial of E.

In particular, E_t is a ϕ -invariant subspace of E, and if deg $q_t = m$, then E_t is in fact an m-dimensional cyclic module with basis $\{\mathbf{v}, \phi(\mathbf{v}), \phi^2(\mathbf{v}), \cdots, \phi^{m-1}(\mathbf{v})\}$ for some $\mathbf{v} \in E_t$.

But since $E_t \leq E$ is a subspace, we have

$$m = \deg q(x) = \deg q_t(x) = \dim E_t \le \dim E.$$

4 Problem 4

 \implies : Suppose $A \sim D$ where D is diagonal. Then JCF(A) = JCF(D) = D, which means that every Jordan block of A has size exactly 1.

Since the elementary divisors of A are precisely the minimal polynomials of the Jordan blocks of A, and the minimal polynomial of any 1×1 matrix $[a_{ij}]$ is given by the linear polynomial $x - a_{ij}$, every elementary divisor of A must be linear.

 \Leftarrow : Suppose all of the elementary divisors of A are linear. Every elementary divisor is the minimal polynomial of a Jordan block of A, and so if we write $JCF(A) = \bigoplus M_i$, then the minimal polynomial of each M_i is linear.

Supposing that M_i has minimal polynomial $p_i(x) = x - c$ for some scalar c, we have

$$p_i(M_i) = 0 \implies M_i - cI_n = 0 \implies M_i = cI_n$$

which shows that M_i is a diagonal matrix with only c on its diagonal.

But if every Jordan block of A is diagonal, then JCF(A) = D is diagonal and $A \sim D$.

5 Problem 5

5.1 Part 1

We'll use the fact that the minimal polynomial q is the invariant factor of highest degree, and so every other invariant factor must divide q.

Moreover, $RCF(A) = C_1 \oplus C_2 \oplus \cdots \oplus C_k$ where each C_i is the companion matrix of the *i*th invariant factor if we write $V \cong \bigoplus_{i=1}^k k[x]/(a_i)$. So it suffices to determine all of the possible distinct combinations of invariant factors.

We can restrict this list by noting that the characteristic polynomial satisfies $\chi_A(x) = \prod a_i$, and in particular, deg $\chi_A(x) = 6$. Noting that deg q(x) = 3, the degrees of the remaining invariant factors must sum to 3.

These are:

$$R_1: a_1 = (x-2),$$
 $a_2 = (x-2)^2,$ $a_3 = q(x),$ $a_2 = (x-2)(x-3),$ $a_3 = q(x),$ $a_3 = q(x),$ $a_4 = (x-2)(x-3),$ $a_5 = q(x),$ $a_7 = q(x),$ $a_8 = q(x),$

Noting that

$$(x-2)^2 = x^2 - 4x + 4$$
$$(x-2)(x-3) = x^2 - 5x + 6$$
$$q(x) = x^3 - 7x^2 + 16x - 12,$$

these choices correspond to the matrices

$$R_{1} = \begin{bmatrix} \frac{2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -4 & 0 & 0 & 0 \\ 0 & 1 & 4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 12 \\ 0 & 0 & 0 & 1 & 0 & -16 \\ 0 & 0 & 0 & 0 & 1 & 7 \end{bmatrix}, R_{2} = \begin{bmatrix} \frac{2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -6 & 0 & 0 & 0 & 0 \\ 0 & 1 & 5 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & -16 \\ 0 & 0 & 0 & 1 & 0 & -16 \\ 0 & 0 & 0 & 0 & 1 & 7 \end{bmatrix}, R_{3} = \begin{bmatrix} \frac{3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -6 & 0 & 0 & 0 & 0 \\ 0 & 1 & 5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 12 \\ 0 & 0 & 0 & 1 & 0 & -16 \\ 0 & 0 & 0 & 0 & 1 & 7 \end{bmatrix}.$$

Note: these are perhaps transposed from Hungerford's notation.

Since none of the associated polynomials were irreducible over \mathbb{Q} , RCF(A) takes these forms over \mathbb{C} as well.

5.2 Part 2