4.1 What is Combustion?

- Combustion: A chemical process in which a substance reacts with oxygen to release heat (and often light).
- Combustible substances: Substances that burn in air (example: wood, coal, kerosene).
- Non-combustible substances: Substances that do not burn (example: iron nails, glass).

Activity 4.1 — Combustible or Not?

X Materials Needed:

• Straw, matchstick, kerosene oil, paper, iron nail, stone piece, glass.

Steps:

- 1. Try burning each material carefully.
- 2. Observe which material burns.

Q Conclusion:

- If it burns → Combustible
- If not → Non-combustible (Table 4.1 in book)

* Activity 4.2 – Air is Necessary for Burning

% Steps:

- 1. Light a candle and cover it with a chimney.
- 2. Change air flow conditions:
 - Keep chimney raised (air enters)
 - Rest chimney on table (less air)
 - Cover with a plate (no air)

Fig. Showing that air is essential for burning

Q Observation:

- More air → Flame burns well.
- Less air → Flame flickers and smokes.
- No air → Flame goes out.

- ☑ Air (oxygen) is necessary for combustion.
- 🌟 Activity 4.3 Charcoal Burning in Closed Jar

X Steps:

- 1. Place burning charcoal on iron plate.
- 2. Cover it with a glass jar.

Q Observation:

• Charcoal stops burning after some time. 🗸 Because oxygen finishes inside the jar.

4.2 What is Ignition Temperature?

- Ignition Temperature: The lowest temperature at which a substance catches fire.
- A substance must reach its ignition temperature to start burning.
- * Activity 4.4 Heating Paper Cups

X Steps:

- 1. Make two paper cups fill one with water.
- 2. Heat both over a candle.

Q Observation:

- Empty cup burns.
- Cup with water does not burn water absorbs heat.
- **☑** Water prevents the paper from reaching ignition temperature.

*** Important Terms:**

• Inflammable substances: Substances that catch fire easily at low temperatures (example: petrol, LPG, alcohol).

4.3 How Do We Control Fire?

- Fire needs three things:
 - Fuel
 - Air (oxygen)
 - Heat
- To extinguish fire, remove any one:
 - Use water: Removes heat and blocks air.
 - O Use CO₂: Blocks air and cools fire.
- ✓ Water is not used for electrical fires or oil fires (dangerous).
- **☑** CO₂ extinguisher is best for:
 - Electrical fires
 - Oil fires

4.4 Types of Combustion

Туре	Description	Example
Rapid Combustion	Burns quickly with heat and light	Gas stove
Spontaneous Combustion	Bursts into flames without external cause	Phosphorus
Explosion	Sudden reaction with sound, heat, light	Firecrackers

4.5 Flame

• Flame is produced by substances that vaporize during burning (example: kerosene, wax).

Activity 4.5 — Observing Candle Flame

Colours of a candle flame and the flame of a kitchen stove

% Steps:

- 1. Light a candle.
- 2. Place a glass tube into the flame.
- 3. Bring a matchstick near tube's end.

Q Observation:

• A flame appears → shows wax vapours burning.

* Structure of Candle Flame

Zone	Colour	Temperature
Outermost	Blue	Hottest
Middle	Yellow	Moderately hot
Innermost	Black	Least hot (unburnt wax vapours)

☑ Goldsmiths use the outermost zone for melting gold/silver because it is the hottest part.

₹ 4.6 What is a Fuel?

- Fuel: A substance that gives heat and energy on burning.
- Examples: Wood, coal, petrol, kerosene, LPG.

✓ Good Fuel:

- Easily available
- Cheap
- Burns easily
- High heat output
- Leaves no harmful residue
- ✓ No fuel is perfectly ideal!

Types of Fuels

Solid Fuels	Liquid Fuels	Gaseous Fuels
Coal	Kerosene oil	LPG, CNG

4.7 Fuel Efficiency

• Calorific Value: Amount of heat energy produced by burning 1 kg of fuel.

Fuel	Calorific Value (kJ/kg)
Cow dung cake	6000-8000
Wood	17000-22000
Coal	25000-33000
LPG	55000
Hydrogen	150000

☑ Higher calorific value = More efficient fuel.

The Proof of Burning Fuels

- Unburnt carbon particles: Cause breathing problems (asthma).
- Incomplete combustion: Produces carbon monoxide (poisonous gas).
- Burning fuels release CO₂ → Leads to global warming.
- Coal and diesel release sulphur dioxide → Causes acid rain.
- CNG is a cleaner alternative fuel.