MATH4302, Algebra II, Spring 2022

Jiang-Hua Lu

The University of Hong Kong

Week 3, Thursday February 10, 2022

Topics for today:

$$\frac{E_{3}}{2} \cdot R = 2$$

$$2) R = C[x]$$

What is Gauss' Lemma about:

Gauss' Lemma is about irreducible elements in R[x], where R is a UFD.

Recall some facts about irreducible elements.:

- If R is any integral domain, a non-zero non-unit $r \in R$ is said to be irreducible if whenever $\underline{r = ab}$ for some $a, b \in R$, then either a is a unit or b is a unit.
- An element in R is said to be <u>reducible</u> if it is <u>not irreducible</u>, i.e., r = ab for $a, b \in R$ both non-units.
- If R is a UFD, irreducible elements are the same as prime elements.

Some simple facts on units in R[x]:

• If R is an integral domain, units in R[x] are precisely the units of R as constant polynomials.

Examples:

- There are exactly two units in $\mathbb{Z}[x]$: the constant polynomials ± 1 ;
- For a field F, units are exactly the non-zero constant polynomials.

Consequently,

- $2x + 4 = 2(x + 2) \in \mathbb{Z}[x]$ is reducible;
- $2x + 4 = 2(x + 2) \in \mathbb{Q}[x]$ is irreducible.

Why do we care about irreducible elements?

Recall an important way of constructing new fields from old ones:

Lemma. If F is a field and $f(x) \in F[x]$ is irreducible, then

$$K = F(x)/ \ll f \Rightarrow$$

is a field containing F as a sub-field via

$$F \longrightarrow K$$
, $\lambda \longmapsto \lambda + \langle f \rangle$.

Const. polynomial in $F(X)$

Defintiion:

A field K containing F as a sub-field is called a field extension of F.

Why do we care about irreducible elements?

- It is very useful to find irreducible elements in F[x] for a field F.
- Irreducible elements in R[x] are called irreducible polynomials over R[x]

Examples:

- Irreducible polynomials in $\mathbb{C}[x]$ are exactly f(x) = ax + b, $a \cdot b \in \mathbb{C}$
- Irreducible polynomials in $\mathbb{R}[x]$ are
- f(x)=ax+b or ax+bx+c $b^{-}4ac < 0$.

 Irreducible polynomials in $\mathbb{Q}[x]$? They give extensions of \mathbb{Q} .
- Note that $\mathbb Q$ is the fraction field of $\mathbb Z$.

b +0 d + 0 d - o ad = bc.

What is Gauss' Lemma about, cont'd:

Let R be a UFD, and let F = Frac(R) be the fraction field of R.

- We have said
 - Gauss' Lemma is about irreducible elements in R[x].
- More precisely,
 - Gauss' Lemma relates irreducible elements in R[x] and in F[x].

Two applications of Gauss' Lemma:

- **1** Testing irreducibility for $f(x) \in F[x]$ by testing in R[x];
- 2 Theorem: If R is a UFD, so is R[x] and thus also $R[x_1, x_2, ..., x_n]$. $R[x_1][x_2] = R[x_1, x_2]$

Strategies in the case of $R = \mathbb{Z}$:

- ullet \mathbb{Q} is the fraction field of \mathbb{Z} .
- We can clear the denominators for every non-zero $f(x) \in \mathbb{Q}[x]$.

Example: For

$$f(x) = \frac{1}{8}x^{5} + 4x^{3} - \frac{1}{6}x^{2} - 1 \in \mathbb{Q}[x],$$

$$= \frac{1}{24} \left(3x^{5} + 96x^{3} - 4x^{2} - 24 \right)$$
Example: Factor out the gcd:
$$f(x) = 2x + 4 = 2(x + 2) \in \mathbb{Z}[x]$$

Primitive elements in R[x].

Definition. Let \underline{R} be a UFD. For a non-zero $f \in R[x]$, define

$$cont(f) = agcd$$
 of all the non-zero coefficients of f ,

and call it a content of f. Say f is primitive if it has 1 as a content.

Lemma. For every non-zero $f(x) \in R[x]$,

- **1** $f(x) = \gamma g(x)$, where $\gamma = \text{cont}(f)$, and $g(x) \in R[x]$ is primitive.
- 2 any other such product is of the form

$$f(x) = (\gamma u^{-1})ug(x)$$

where $u \in R$ is a unit. Note that ug(x) is primitive.

Proof. Exercise.
$$f(x) = 2x+4 = 2(x+2) = -2(-x-2)$$

Let R be a UFD.
$$f(x) = 5x^3 + 7x - 2$$

$$f(x) = 6x^3 - 18x^6 - 15x^5 + \cdots + 2$$
Gauss' Lemma, version 0. If $f, g \in R[x]$ are primitive, so is $f(g)$

Proof. Suppose not. Then $\exists p \in R$ irreducible such that p|(fg).

- Since p is irreducible and R is a UFD, p is prime.
- Let $R_1 = R/pR$. Then R_1 is an integral domain.
- Consider the ring homomorphism

$$\pi(r_n) = r_n + p_R \in R_1$$

$$\pi: \underline{R[x]} \longrightarrow \underline{R_1[x]}, \underline{\sum_n r_n} x^n \longmapsto \underline{\sum_n \pi(r_n)} x^n.$$

- p(fg) implies that $\pi(fg) = 0$, i.e., $\pi(f)\pi(g) = 0$.
- Since $R_1[x]$ is an integral domain, $\pi(f) = 0$ or $\pi(g) = 0$.
- In other words, p|f or p|g, Contradiction.

Q.E.D.

$$R = C[x]$$

Clearing denominators: Let again R be a UFD and F = Frac(R). $\Rightarrow \frac{A}{b}$

Lemma. For every non-zero $f(x) \in F[x]$,

- $f(x) \neq og(x)$, where $\alpha \in F$, and $g(x) \in R[x]$ is primitive.
- 2 any other such product is of the form $\frac{deg}{dx} f(x) = \frac{deg}{dx} f(x)$

$$f(x) = (\gamma u^{-1}) ug(x)$$

where $u \in R$ is a unit. Note that ug(x) is primitive.

Proof. Exercise.

Remarks:

- ① Write $g = pp(f) \in R[x]$ and call it the primitive part of f.
- $2 \operatorname{pp}(f)$ is well-defined up to multiplication by units of R.

Let again be a UFD and F = Frac(R).

Gauss' Lemma, version 1: For any non-zero non-unit $f \in F[x]$.

$$f \in F[x]$$
 is reducible iff $pp(f) \in R[x]$ is reducible.

Equivalently,

$$f \in F[x]$$
 is irreducible iff $pp(f) \in R[x]$ is irreducible.

Remarks:

- A non-primitive $g(x) \in (R[x])$ is reducible: for example, $g(x) = 2x + 4 = (2(x + 4) \in \mathbb{Z}[x])$ is reducible.
- If $g \in R[x]$ is primitive, then g is reducible iff g(x) can be written as

$$g(x) = k(x)h(x),$$

where $k(x), h(x) \in \mathbb{Z}[x]$ with positive degrees.

Proof of Gauss' Lemma:

The easy direction:

- Assume that $pp(f) \in \mathbb{Z}[x]$ is reducible.
- Since pp(f) is primitive, we have

$$pp(f) = k(x)h(x)$$

for some $k, h \in R[x]$ with positive degrees.

• Thus $f(x) = (x)h(x) \in F[x]$ is reducible.

Proof of Gauss' Lemma, cont'd:

Assume that $f(x) \in F[x]$ is reducible.

- Then f(x) = a(x)b(x) for $a(x), b(x) \in F[x]$ with positive degrees.
- Write $a(x) = \alpha a_1(x)$ and $\underline{b}(x) = \beta b_1(x)$, where $\alpha, \beta \in F$ and both $a_1(x), b_2(x) \in (R[x]]$ are primitive.
- Then $f(x) = \alpha \beta a_1(x) b_1(x)$
- By Gauss' Lemma, version 0, $a_1(x)a_2(x) \in R[x]$ is primitive.
- Thus $pp(f) = a_1(x)b_1(x) \in R[x]$, hence reducible.

Q.E.D.