Convolutional Neural Networks and Image Classification

주재걸교수 KAIST 김재철AI대학원

Various Neural Network Architectures

Fully Connected Neural Network

ConvNets or CNN (Convolutional Neural Network)

RNN (Recurrent Neural Network)

Classification

Retrieval

[Krizhevsky, Sutskever, Hinton, 2012]

[Toshev, Szegedy 2014], [Guo et al. 2014]

75岁的大台012501

Challenges in Computer Vision Tasks

Illumination

Intra-class variation

Occlusion

Deformation

Background Clutter

Basic Idea of ConvNets

Power of CNN

Langlotz et al., (2019). A Roadmap for Foundational Research on Artificial Intelligence in Medical Imaging: From the 2018 NIH/RSNA/ACR/The Academy Workshop. Radiology. 291. 190613. 10.1148/radiol.2019190613.

How ConvNet Works

A Toy ConvNet: X's and O's

Classifies whether a picture is of an X or an O

For Example

Trickier Cases

What Computers See

What Computers See

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	X	-1	-1	-1	-1	X	Х	-1
-1	X	Х	-1	-1	Χ	X	-1	-1
-1	-1	X	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	X	-1	-1
-1	-1	Х	Χ	-1	-1	X	Х	-1
-1	X	Χ	-1	-1	-1	-1	Х	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

ConvNets Match Pieces of the Image

-1 -1 1-1 -11 -1

ConvNets Match Pieces of the Image

-1 -1 1 -1 1 -1 1 -1 -1

ConvNets Match Pieces of the Image

1	1	1
1	1	

1	1	1
1	1	1

1	1	-1		

1 -1 -1 -1 1 -1 -1 -1 1

$$\frac{1+1-1+1+1+1-1+1+1}{9} = .5$$

 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 -1
 <td

Convolution: Trying Every Possible Match

1 -1 -1 -1 1 -1 -1 -1 1

> -1 | -1 | -1 -1 | -1 | -1 | -1 | -1 |

matching 25 42442 212 G Activation map (21/52)

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

Convolution: Trying Every Possible Match

-1	-1	-1	-1	-1	-1	-1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	-1	-1	1	-1	-1	-1	-1
-1	-1	-1	1	-1	1	-1	-1	-1
-1	-1	1	-1	-1	-1	1	-1	-1
-1	1	-1	-1	-1	-1	-1	1	-1
-1	-1	-1	-1	-1	-1	-1	-1	-1

1	-1	-1	
-1	1	-1	
-1	-1	1	

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

- Overlap the convolution filter and the image patch.
- 2. Multiply each image pixel by the corresponding filter coefficient.
- 3. Add them up.
- 4. Divide by the total number of pixels in the feature. (optional) \leftarrow 생转 많이 항.

One image becomes a stack of filtered images

A stack of images becomes a single image by the same number of filters

- Convolution Layer
 - $32 \times 32 \times 3$ image

- Convolution Layer
 - $32 \times 32 \times 3$ image
 - $5 \times 5 \times 3$ filter ω

- Convolution Layer
 - $32 \times 32 \times 3$ image
 - $5 \times 5 \times 3$ filter

Consider a second, green filter

Convolve (slide) over all spatial locations

Activation map

A stack of images becomes filtered images by a bunch of stacked filters

- For example, if we had 6.5×5 filters, we'll get 6 separate activation maps:
 - We stack these up to get a "new image" of size $28 \times 28 \times 6!$

Convolution Layer

Nested convolution operation

Convolution Layer

Nested convolution operation

Pooling: Shrinking the Image Stack

- I. Pick a window size (usually 2).
- 2. Pick a stride (usually 2).
- 3. Walk your window across your filtered images.
- 4. From each window, take the maximum value.

Pooling

Pooling

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

max pooling

1.00	0.33	0.55	0.33
0.33	1.00	0.33	0.55
0.55	0.33	1.00	0.11
0.33	0.55	0.11	0.77

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77
0.33	-0.55	0.11	-0.11	0.11	-0.55	0.33
-0.55	0.55	-0.55	0.33	-0.55	0.55	-0.55
0.11	-0.55	0.55	-0.77	0.55	-0.55	0.11
-0.11	0.33	-0.77	1.00	-0.77	0.33	-0.11
0.11	-0.55	0.55	-0.77	0.55	-0.55	0.11
-0.55	0.55	-0.55	0.33	-0.55	0.55	-0.55
0.33	-0.55	0.11	-0.11	0.11	-0.55	0.33
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.77	-0.11	0.11	0.33	0.55	-0.11	0.33

1.00	0.33	0.55	0.33
0.33	1.00	0.33	0.55
0.55	0.33	1.00	0.11
0.33	0.55	0.11	0.77
0.55	0.33	0.55	0.33
0.33	1.00	0.55	0.11
0.55	0.55	0.55	0.11
0.33	0.11	0.11	0.33
0.33	0.55	1.00	0.77
0.55	0.55	1.00	0.33
1.00	1.00	0.11	0.55

Pooling Layer

• A stack of images becomes a stack of smaller images.

1.00	0.33	0.55	0.33
0.33	1.00	0.33	0.55
0.55	0.33	1.00	0.11
0.33	0.55	0.11	0.77
0.55	0.33	0.55	0.33

0.55	0.33	0.55	0.33
0.33	1.00	0.55	0.11
0.55	0.55	0.55	0.11
0.33	0.11	0.11	0.33

0.33	0.55	1.00	0.77
0.55	0.55	1.00	0.33
1.00	1.00	0.11	0.55
0.77	0.33	0.55	0.33

Relu: activation function

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

	0.77			
•				
•				
•				

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

0.77	0	0.11	0.33	0.55	0	0.33

0.77	-0.11	0.11	0.33	0.55	-0.11	0.33
-0.11	1.00	-0.11	0.33	-0.11	0.11	-0.11
0.11	-0.11	1.00	-0.33	0.11	-0.11	0.55
0.33	0.33	-0.33	0.55	-0.33	0.33	0.33
0.55	-0.11	0.11	-0.33	1.00	-0.11	0.11
-0.11	0.11	-0.11	0.33	-0.11	1.00	-0.11
0.33	-0.11	0.55	0.33	0.11	-0.11	0.77

ReLU Layer

• A stack of images becomes a stack of images with no negative values.

새털수유지

0.77		0.11	0.33	0.55		0.33
	1.00		0.33		0.11	
0.11	0	1.00		0.11		0.55
0.33	0.33		0.55		0.33	0.33
0.55		0.11		1.00		0.11
	0.11		0.33		1.00	
0.33		0.55	0.33	0.11		0.77
0.33	0	0.11	0	0.11	0	0.33
0	0.55	0	0.33	0	0.55	0
0.11		0.55	0	0.55		0.11
	0.33	0	1.00	0	0.33	
0.11		0.55		0.55		0.11
	0.55		0.33		0.55	
0.33	0	0.11	0	0.11	0	0.33
0.33	0	0.55	0.33	0.11	0	0.77
0	0.11		0.33	0	1.00	
0.55		0.11		1.00		0.11
0.33	0.33	0	0.55		0.33	0.33
0.11	0	1.00		0.11		0.55
	1.00		0.33		0.11	
0.77	0	0.11	0.33	0.55	0	0.33

Layers Get Stacked

• The output of one becomes the input of the next.

Deep Stacking

Layers can be repeated several (or many) times.

Feature Extraction via Stacking Convolution Layers

Deep neural networks learn hierarchical feature representations

Every value gets a vote

Vote depends on how strongly a value predicts X or O

Vote depends on how strongly a value predicts X or O

• A list of feature values becomes a list of votes.

These can also be stacked.

Backpropagation

• Error = right answer – actual answer

.51

Hyperparameters

- Convolution
 - Number of filters
 - Size of filters
- Pooling
 - Window size
 - Window stride
- Fully Connected
 - Number of layers
 - Number of neurons

Architecture Design Considerations

- How many of each type of layer?
- In what order?

Advanced CNN Architectures

Various CNN Architectures

- AlexNet
- VGGNet
- GoogLeNet
- ResNet

VGGNet

• Small conv filters, e.g., 3x3 conv filters, but deeper layers

 Only 3x3 CONV stride I, pad I and 2x2 MAX POOL stride 2

11.7% top 5 error in ILSVRC'13 (ZFNet)
-> 7.3% top 5 error in ILSVRC'14

	3x3 conv, 512	3x3 conv, 512
	3x3 conv, 512	Pool
	Pool	3x3 conv, 512
Softmax	3x3 conv, 512	3x3 conv, 512
FC 1000	3x3 conv, 512	3x3 conv, 512
FC 4096	3x3 conv, 512	3x3 conv, 512
Fully Connected 4096	Pool	Pool
Pool	3x3 conv, 256	3x3 conv, 256
3x3 conv, 256	3x3 conv, 256	3x3 conv, 256
3x3 conv, 384	Pool	Pool
Pool	3x3 conv, 128	3x3 conv, 128
3x3 conv, 384	3x3 conv, 128	3x3 conv, 128
Max Pooling	Pool	Pool
5x5 conv, 256	3x3 conv, 64	3x3 conv, 64
11x11 convolutional layer, 96	3x3 conv, 64	3x3 conv, 64
Input	Input	Input
AlexNet	VGG16	VGG19

FC 1000

FC 4096

FC 4096

Pool

Softmax FC 1000

FC 4096

Pool

3x3 conv, 513

3x3 conv, 512

3x3 conv, 512

[Simonyan and Zisserman, 2014]

Residual Network (ResNet)

 Main Idea: Use network layers to fit a residual mapping instead of directly trying to fit a desired underlying mapping

[He et al., 2015]

93

Residual Network (ResNet)

- Very deep networks using residual connections
 - 152-layer model for ImageNet
 - ILSVRC'15 classification winner (3.57% top 5 error)
 - Swept all classification and detection competitions in ILSVRC'15 and COCO'15!

Residual block

[He et al., 2015]

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Summary: CNN Architectures

VGG, GoogLeNet, and ResNet are all in wide use

ResNet is currently the best default

Recent trends are going towards extremely deep networks