03-Mathjax

November 30, 2017

1 Formulas matemáticas (con MathJax)

1.1 Fórmulas en línea o en bloque

Tenemos dos formas de incluir formulas matemáticas, en medio del texto o en forma de bloque. Para las formulas incuidas dentro de un texto, llamadas en línea o *inline*, se usa **un caracter** \$ antes y después de la fórmula. Para un bloque, se usan **dos caracteres** \$.

Veámos el siguiente ejemplo:

La identidad de Euler, $e^{i\pi}+1=0$ es un caso especial de la fórmula desarrollada por Leonhard Euler, notable por relacionar cinco números muy utilizados en la historia de las matemáticas y que pertenecen a distintas ramas de la misma

La expresion $e^{i\pi} + 1 = 0$ se representa así: $e^{i\pi} + 1 = 0$. Las formulas de bloque se construyen con dos signos de dolar \$\$, como en el siguiente ejemplo

Sea x un número real, la función logaritmo le asigna el exponente o potencia n a la que un número fijo b, llamado base, se ha de elevar para obtener dicho argumento. Es la función inversa de b a la potencia n. Esta función se escribe como:

$$\log_2 x = n \quad \iff \quad x = n^2$$

Si se accede al contenido de la celda, vemos que la expresión de equivalencia se ha redactado así: \$ \log_b x = n \quad \iff \quad x = n^2 \$\$.

1.2 Letras griegas

Podemos usar letras griegas en minúsculas con \alpha, \beta, \gamma, ... \omega:

Y en mayúsculas con \Gamma, \Delta ... \Omega:

 $Gamma:\Gamma$

 $Delta: \Delta$

•••

 $Omega: \Omega$

Las letras alfa mayúscula y beta mayúscula no se incluyen porque en estos dos casos las formas gráficas son iguales que las letras mayúyculas A y B latinas. Pasa lo mismo con épsilon ϵ , micro μ , etc.

1.3 Símbolos matemáticos habituales

Algunos de los símbolos más habituales pueden verse en esta tabla:

Símbolo	Código Latex	Símbolo	Código Latex	Símbolo	Código Latex
	\neq	±	\pm	\leftarrow	\gets
\Leftarrow	\impliedby	\Longrightarrow	\implies	\rightarrow	\to
\leq	\leqslant	Ŧ	\mp	\iff	\iff
\geqslant	\leqslant	×	\times	\$	\\$
\approx	\approx	÷	\div	}	\wr
≡	\equiv	\cup	\cup	\cap	\cap
\cong	\cong	\simeq	\simeq	{	\{
\in	\in	∉	\notin	}	\}
9	\partial	∞	\infty	ℓ	\ell
\subset	\subset	\supset	\supset	Ø	\varnothing
\subseteq	\subseteq	\supseteq	\supseteq	§	\S
\vee	\vee	\wedge	\wedge		\cdot
\forall	\forall	3	\exists	*	\ast
✓	\checkmark	∇	\nabla	×	\aleph

1.4 Superíndices y subíndices

Para los superíndices se usa el caracter ^ y para subíndices _. Por ejemplo x_i ^2 se vería así:

$$x_i^2$$

y \log_2 x así:

 $\log_2 x$

1.5 Grupos

Los superíndices, los subíndices y otras operaciones que veremos sólo se aplican al siguiente *grupo*, entendiendo por grupo o bien un solo caracter o una expresión entre llaves ({ ... }). POr ejemplo, si queremos expresar la potencia vigesimo cuarta de 2, la expresión 2^24 no nos dará lo esperado:

Para conseguir lo que queremos hay que expresar el exponente como un grupo con llaves, es decir 2^{24}:

$$2^{24}$$

También se pueden añadir llaves para delimitar el grupo al que el subíndice o superíndice debe aplicarse, por ejemplo $\{x^y\}^z$:

$$x^{yz}$$

es distinto de x^{y^z}]:

$$x^{y^2}$$

Observese este otro ejemplo, la diferencia entre $x_i^2 y x_{i^2}$:

$$x_i^2$$

$$x_{i^2}$$

1.6 Paréntesis

Se pueden usar sin problemas los signos de paréntesis: (y) y corchetes: [y], pero para usar las llaves de forma literal hay que escaparlas: '{' y '}'.

El problema es que estos caracteres no escalan proporcionalmente a la expresión que haya en su interior, así que si se escribe ($\fx x}{y^3}$), los paréntesis serán demasiado pequeños:

$$\left(\frac{\sqrt{x}}{y^3}\right)$$

Para evitarlo se pueden usar las expresiones \left(y \right), que si se adaptan dinámicamente a su contenido:

$$\left(\frac{\sqrt{x}}{y^3}\right)$$

También podemos usar a los corchetes (\left[y \right]):

$$\left[\left(\frac{\sqrt{x}}{y^3} \right) \alpha^2 \right]$$

1.7 Sumatorios e integrales

Para obtener expresiones de sumatorios e integrales, se usan respectivamente \sum e \int. El subíndice será el límite inferior y el superíndice el límite superior. Por ejemplo: \sum_1^n equivale a:

$$\sum_{1}^{n}$$

Como vimos antes, hay que agrupar con llaves si los límites contienen más de un símbolo, por ejemplo $\inf_{i=0}^{i=0}$ infty i^2 sería:

$$\int_{i=0}^{\infty} i^2$$

Otras posibilidades son $\prod \prod$, $\bigcup \bigcup$, $\bigcap \cap e' \iint$.

1.8 Fracciones

Hay dos formas de representar fracciones: \frac ab se aplica a los dos grupos siguientes:

 $\frac{a}{h}$

Si las espresiones del numerador o denominador son más complejas, las podemos agrupar con las llaves, por ejemplo \frac{a+1}{b-1} resulta en:

$$\frac{a+1}{b-1}$$

La otra forma es habitual para expresiones más complicadas, usando \over se puede dividir un grupo para formar la fracción, por ejemplo, la expresión anterior con over sería {a+1\over b-1}, que se vería:

$$\frac{a+1}{b-1}$$

1.9 Tipografías (fonts)

Existen varias opciones:

• Se puede usar \mathbb o \Bbb para el estilo pizarra clásica: ABC ... WXYZ

• \mathbf para tipografia bold o negrita: ABC...WXYZ

• \mathtt para tipografía monoespaciada: ABC...WXYZ

• \mathfrak para tipografía Fraktur a Germánica: \mathfrak para tipografía Fraktur a Germánica: \mathfrak para tipografía \text{\$\text{para}\$}

• \mathrm para tipografía Roman: ABC...WXYZ

• \mathsf para tipografía sans-serif: ABC...WXYZ

• \mathcal para tipografía caligráfica: $\mathcal{ABC} \dots \mathcal{WXYZ}$

• \mathscr para tipografía manuscrita o script: ABC...WXYZ

1.10 Raíces

Usando \sqrt podemos ajustarnos al contenido, como vimos con los paréntesis antes. Con \sqrt $\{x^3\}$ obtenemos:

$$\sqrt{\chi^3}$$

Para raices distintas de la raíz cuadrada, usamos corchetes para indicar el índice de la raíz, es decir, para la raiz cúbica $\sqrt[3]{\frac{x^2}y}$ genera:

$$\sqrt[3]{\frac{x^2}{y}}$$

Para expresiones complejas, se puede usar la forma $\{\ldots\}^{1/2}$, por ejemplo:

$$(x\sin\phi + z\cos\phi)^{1/2}$$

1.11 Funciones especiales

Algunas funciones especiales como lim, sin, max, etc... se escribe normalmente con tipografia románica en vez de itálica. Para conseguirlo hay que usar $\lim, \sin, \max, etc...$ Véase la diferencia entre $\sin(x)$ y $\sin(x)$:

$$sin(x) \mid sin(x)$$

Para los límites, se usa un subíndice para incluir una anotación, como en \lim_{x\to 0}:

$$\lim_{x\to 0}$$

1.12 Acentos especiales

Hay una serie de marcas para añadir acentos especiales a caracteres normales. Algunos de los más usados son:

Codigo	resultado
\tilde{a}	ã
\hat{a}	â
\check{a}	ă
\vec{a}	\vec{a}
\bar{a}	ā
\acute{a}	á
\grave{a}	à
\breve{a}	ă
$\det\{a\}$	à
\dot{a}	ä
\dot{a}	ä
\d dddot{a}	ä
$\mathbf{mathring}\{a\}$	å
\boxed{a}	a

En la tabla se muestran con la letra a, pero se pueden aplicar a cualquier letra

1.13 Puntos suspensivos

Se puede user \ldots para obtener puntos como en

$$a_1, a_2, \ldots, a_n$$

O usar \cdots para obtener:

$$a_1 + a_2 + \cdots + a_n$$

1.14 Resaltar ecuaciones

Si queremos resaltar una ecuación podemos usar \dbox, de forma que:

```
$$ \bbox[yellow]
{
e^x=\lim_{n\to\infty} \left( 1+\frac{x}{n} \right)^n \qquad (1)
}
$$
```

Produce:

$$[yellow, 5px]e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n \tag{1}$$

1.15 Matrices

Usando \begin{matrix} ... \end{matrix} podemos incluir una matriz. Para separar las columnas se debe usar el caracter & y para separar las filas se usan dos barras invertiddas \\. Por ejemplo:

```
\begin{matrix}
1 & x & x^2 \\
1 & y^2 & y^2 \\
1 & z & z^2 \\
\end{matrix}
```

Produce:

$$\begin{array}{ccccc}
1 & x & x^2 \\
1 & y^2 & y^2 \\
1 & z & z^2
\end{array}$$

Los espacios se ajustaran de forma automática. Si queremos podemos añadir paréntesis, corchetes o llaves usando las expresiones que vimos en un apartado anterior, o usando, en vez de matrix, pmatrix para paréntesis, bmatrix para corchetes, Bmatrix para llaves, vmatrix para barras y Vmatrix para doble barra.

Puedes usar $\colon colon box colon$

$$\begin{vmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^n \\ 1 & a_2 & a_2^2 & \cdots & a_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & a_m & a_m^2 & \cdots & a_m^n \end{vmatrix}$$

1.16 Incluir Latex

Podemos usar el comando magico %%latex para incluir código Latex puro

$$\nabla \times \vec{\mathbf{B}} - \frac{1}{c} \frac{\partial \vec{\mathbf{E}}}{\partial t} = \frac{4\pi}{c} \vec{\mathbf{j}}$$
 (1)

$$\nabla \cdot \vec{\mathbf{E}} = 4\pi\rho \tag{2}$$

$$\nabla \times \vec{\mathbf{E}} + \frac{1}{c} \frac{\partial \vec{\mathbf{B}}}{\partial t} = \vec{\mathbf{0}} \tag{3}$$

$$\nabla \cdot \vec{\mathbf{B}} = 0 \tag{4}$$

1.17 Referencias y recursos

- Este resumen sacada de Stack Overflow Mathjax basic tutorial and quick reference
- Ejemplos de la documentación de Jupyter
- Detexify te permite dibujar un símbolo en una página web y te muestra los símbolos TeX que más se le parecen. No obstante, Mathjax no soporta todo el conjunto de caracteres que soporta TeX. Pero es un buen punto para empezar.
- MathJax.org mantienen una lista de ordenes LATEX soportadas.
- La página de la doctora Carol J.V. FISHER BURNS sobre ordenes tex disponibles en MathJax es muy completa.
- Latex tiene muchos más símbolos dispobibles; se puede consultar un listado abreviado aqui: http://pic.plover.com/MISC/symbols.pdf
- Y otros mucho más extenso en: http://library.caltech.edu/etd/symbols-a4.pdf