Answer Ex-I

SINGLE CORRECT (OBJECTIVE QUESTIONS)

- **1.** B
- **2.** D
- **3.** D
- **4.** B
- **5.** C
- **6.** A
- **7.** D
- **8.** B

- **9.** C
- **10.** B
- **11.** B
- **12.** C
- **13.** A
- **14.** B
- **15.** C
- **16.** C

- **17.** D
- **18.** A
- **19.** A
- **20.** D
- **21.** A
- **22.** C
- **23.** D
- **24.** B

- **25.** D
- **26.** D
- **27.** D
- **28.** B
- **29.** B

MULTIPLE CORRECT (OBJECTIVE QUESTIONS)

- 1. ABCD
- 2. AD
- **3.** BD
- **4.** ABC
- **5.** AC
- **6.** BD
- 7. ABCD
- 8. ABCD

- 9. AC
- **10.** CD
- **11.** BC

Answer Ex-III

Answer Ex-II

SUBJECTIVE QUESTIONS

- (a) $n\pi + (-1)^n \frac{\pi}{4}$, $n \in I$ (b) $n\pi + \frac{\pi}{3}$, $n \in I$ 1.
- (c) $n\pi \frac{\pi}{4}$, $n \in I$
- (d) $n\pi + (-1)^n \frac{\pi}{3}$, $n \in I$ (e) $n\pi \pm \frac{\pi}{4}$, $n \in I$
- 2. $\frac{m\pi}{4}$, $m \in I$ or $\frac{(2m+1)\pi}{10}$, $m \in I$

3. $2n\pi \pm \frac{\pi}{3}, n \in I$

4. $\left(2n + \frac{1}{2}\right) \frac{\pi}{5}$, $n \in I$ or $2n\pi - \frac{\pi}{2}$, $n \in I$

5. $\left(n+\frac{1}{2}\right)\frac{\pi}{9}, n \in I$

 $n\pi + \frac{\pi}{3}$, $n \in I$ or $n\pi + \frac{\pi}{4}$, $n \in I$ 6.

- **7.** 45° and 60°
- $n\pi + (-1)^n \frac{\pi}{10}$, $n \in I$ or $n\pi (-1)^n \frac{3\pi}{10}$, $n \in I$ 8.
- 9. $\left(n+\frac{1}{4}\right)\frac{\pi}{2}$, $n \in I$

 $\frac{n\pi}{2}$, $n \in I$ or $\left(n \pm \frac{1}{3}\right)_{\pi}$, $n \in I$

11. $2n\pi \in I \text{ or } \frac{2n\pi}{2} + \frac{\pi}{6}, n \in I$

- 30°, 45°, 90°, 135°, 150° 12.
- $x = (2n + 1) \frac{\pi}{4}$, $n \in I$ or $x (2n + 1) \frac{\pi}{2}$, $n \in I$ or $x = n\pi \pm \frac{\pi}{6}$, $n \in I$
- $m\pi, m \in I \text{ or } \frac{m\pi}{n-1}, m \in I \text{ or } \left(m+\frac{1}{2}\right)\frac{\pi}{n}, m \in I$ **5.** $n\pi + \frac{\pi}{6} + (-1)^n \frac{\pi}{4}, n \in I$ 14.

 $2n\pi + \frac{2\pi}{3}, n \in I$ 16.

17. $2n\pi + \frac{\pi}{2}$, $n \in I$ or $2n\pi + 2\alpha$ where $\alpha = \tan^{-1} \frac{3}{7}$, $n \in I$

 $n\pi \pm \frac{\pi}{6}$, $n \in I$

- **19.** $\left(n + \frac{1}{3}\right) \frac{\pi}{3}, n \in I$
- **20.** $x = \frac{n\pi}{3} \frac{\pi}{9}, n \in I$

21.
$$\theta = n\pi + \frac{\pi}{4}, \ \phi = n\pi + (-1)^n \frac{\pi}{6}, \ n \in I$$

24.
$$\theta = \frac{7\pi}{12}, \frac{19\pi}{12}$$

28.
$$x = 2n\pi + \frac{\pi}{6}$$
, $n \in I$

30.
$$x = \frac{n\pi}{7} - \frac{\pi}{84} \text{ or } x = \frac{n\pi}{4} - \frac{5\pi}{48}, n \in I$$

32.
$$x = 2n\pi \pm \frac{2\pi}{3}$$
, $n \in I$

34.
$$x = \pi/6$$
 only

25.
$$x = 2n \pi - \frac{\pi}{2}, n \in I$$

29. 0,
$$\frac{\pi}{6}$$
, $\frac{\pi}{3}$, $\frac{2\pi}{3}$, $\frac{5\pi}{6}$ & π

31.
$$\frac{\pi}{8}, \frac{\pi}{3}, \frac{3\pi}{8}, \frac{5\pi}{8}, \frac{2\pi}{3}, \frac{7\pi}{8}$$

33.
$$\alpha - 2\pi$$
; $\alpha - \pi$, α , $\alpha + \pi$, where $\tan \alpha = \frac{2}{3}$

2. $x = -\frac{5\pi}{3}$

4. $x = n - \frac{1}{4}$, $n \in I$; sum = 5025

6. $-\sqrt{2} \le y \le \sqrt{2}$; $\frac{\pi}{2}$, π

8. $x = -1, y = n\pi \pm \frac{\pi}{4} + 1$

35.
$$x = \pi/16$$

Answer Ex-IV

ADVANCED SUBJECTIVE QUESTIONS

1.
$$\frac{90^{\circ}}{7}$$
,30°, $\frac{450^{\circ}}{7}$, $\frac{810^{\circ}}{7}$,150°, $\frac{1170^{\circ}}{7}$

3.
$$\theta = 2n\pi \text{ or } 2n\pi + \frac{\pi}{2}$$
; $n \in I$

5.
$$\frac{\pm \pi}{3}, \frac{-\pi}{2}, \pm \pi$$

7.
$$n\pi + \frac{\pi}{4}$$
 or $(2n + 1)\pi - tan^{-1} 2$, $n \in I$

10.
$$\theta = \frac{2n\pi}{5} \pm \frac{\pi}{10} \text{ or } 2n\pi \pm \frac{\pi}{2} \text{ } n \in I$$

11. (a)
$$-\frac{3}{2}$$

11. (a)
$$-\frac{3}{2}$$
 (b) $k \in \left[-1, -\frac{1}{2}\right]$ (c) $x = \frac{n\pi}{2} \pm \frac{\pi}{6}$

(c)
$$x = \frac{n\pi}{2} \pm \frac{n\pi}{2}$$

12.
$$x = 2 n\pi \pm \pi \text{ or } 2n\pi + \frac{\pi}{3} n \in I$$

14.
$$n\pi$$
; $n\pi + (-1)^n \frac{\pi}{10}$ or $n\pi + (-1)^n \left(-\frac{3\pi}{10}\right)$

13. $\frac{n\pi}{2} \pm \frac{\pi}{4}$

16.
$$x = 2n\pi \text{ or } x = n \pi + (-1)^n \left(-\frac{\pi}{2}\right) \text{ or } x = n \pi + (-1)^n \frac{\pi}{6}$$

17.
$$n\pi + \frac{\pi}{8} < x < n\pi + \frac{\pi}{4}$$

18.
$$\frac{\pi}{7}, \frac{5\pi}{7}, \pi, \frac{9\pi}{7}, \frac{13\pi}{7}$$

19.
$$n\pi \pm \frac{\pi}{3}$$

20.
$$n\pi + \frac{\pi}{4}, n \in I$$

21.
$$\frac{1}{2} [n\pi + (-1)^n \sin^{-1} (1 - \sqrt{2a+3})]$$
 where $n \in I$ and $a \in \left[-\frac{3}{2}, \frac{1}{2}\right]$

22.
$$x = \frac{n\pi}{4} + (-1)^n \frac{\pi}{8} \text{ or } \frac{n\pi}{4} + (-1)^{n+1} \frac{\pi}{24}$$

23.
$$n\pi \pm \frac{1}{2} \cos^{-1} (2 - \sqrt{5})$$

24.
$$\frac{(2n+1)\pi}{4}$$
, k π , where n, k \in I

25.
$$x = \frac{n\pi}{4} + \frac{\pi}{8}, n \in I$$

26.
$$x = 2n\pi + \frac{3\pi}{4}, n \in I$$

27.
$$\frac{765\pi^2}{4}, \frac{55\pi}{2}$$
. All the roots of the cos $\sqrt{\chi} = 0$ are not the same as those of sin $\sqrt{\chi} = -1$

28.
$$x = \left(4n\pi + \frac{\pi}{2}\right)^2$$
 or $x = \left(\frac{4n\pi}{3} + \frac{\pi}{2}\right)^2$ where m, $n \in W$

29.
$$x = \frac{2}{6n\pi + 3\pi - 4}$$
 or $\frac{2}{3n\pi + 3(-1)^n \sin^{-1} \frac{3}{4} - 2}$ where $n \in I$

30.
$$x = n\pi \text{ or } x = n\pi \pm \frac{\pi}{6}$$

31.
$$x \pm 5\sqrt{5}$$
 & $y = n \pi + tan^{-1} \frac{1}{2}$

32.
$$x = \frac{\pi}{8} + \frac{K\pi}{2} \text{ or } x = \frac{3\pi}{4} + K \pi K \in I$$

Answer Ex-V

JEE PROBLEMS

1. Min. value = 3^{-5} for $x = (4n - 1)\frac{\pi}{4} - \frac{1}{2} \tan^{-1} \frac{3}{4}$, $n \in I$;

max. value =
$$3^5$$
 for x = $(4n + 1)\frac{\pi}{4} - \frac{1}{2} \tan^{-1} \frac{3}{4}$, n \in I

- **2.** $x = n\pi + (-1)^n \frac{\pi}{6}$ and $y = m\pi \pm \frac{\pi}{6}$ where m & n are integers.
- **3.** B
- **4.** D
- **5.** A
- **6.** C
- **7.** C,D
- **8.** 3
- **9.** 3
- **10.** D