

Local volatility: calibration and hedging

Almira Shabakaeva, Alexandra Tokaeva, Vladimir Shin

Student Research Group «Stochastic Volatility Models, Group 3» Supervisors: Mikhail V. Zhitlukhin, Charles-Henri Roubinet

Введение

Современная теория ценообразования опционов берет свое начало со статьи Ф. Блэка и М. Шоулза 1973 года. В их модели волатильность σ предполагалась постоянной. Если, имея рыночную цену опциона, обратить формулу Блэка-Шоулза, то будет найдена так называемая предполагаемая волатильность (iv). Эта implied volatility оказывается разной для разных страйков и разных времен экспирации опционов, что говорит о том, что реальный рынок не соответствует модели Блэка-Шоулза (БШ). Б. Дюпир [Dup94] модернизировал эту модель, введя т.н. функцию локальной волатильности (ЛВ) $\sigma(t, S_t)$:

$$dS_t = S_t(rdt + \sigma(t, S_t)dW_t)$$
 (1)

В предположении, что имеется полная безарбитражная поверхность цен опционов, Дюпир вывел формулу для функции ЛВ, показав единственность процесса цены базового актива (1), генерирующего данную поверхность цен опционов.

Цель работы

Сравнить эффективности модели БШ и модели ЛВ, а именно, сравнить качества дельтахеджирований в этих моделях.

Описание работы

Согласно теории дельта-хеджирования, в каждый момент времени наш портфель должен иметь $\frac{\partial V}{\partial S}$ акций базового актива. Для поддержания такого уровня проводится ребалансировка портфеля: докупается или продается соответствующее количество акций. Соответственно, требуется знать текущую цену опциона в некоторой окрестности текущей цены спота S_t . Кроме того, необходимо уметь вычислять саму дельту – производную текущей цены опциона по споту

$$\Delta := \frac{\partial V}{\partial S}$$

ЛВ-хеджинг

В модели БШ для дельты есть явная формула

$$\Delta_{BS} = \Phi(d_1),$$

в то время как в модели ЛВ для дельты не существует аналитического представления, она вычисляется численно, зная численно цену опциона. Цена опциона аналитически тоже не находится - поэтому для нахождения цены опциона приходится решать СДУ.

В модели ЛВ цена Европейского опциона колл V(t,X), $X=\log S$, на актив S_t удовлетворяет УРЧП

$$\frac{\partial V}{\partial t} + (r - \frac{1}{2}\sigma^2)\frac{\partial V}{\partial X} + \frac{1}{2}\sigma^2\frac{\partial^2 V}{\partial X^2} = rV,$$
 (2)

Итак, данное УРЧП будем решать численно полностью неявной схемой 1 порядка, на каждом шаге применяя метод прогонки.

Техническое описание хеджинга

Рассматривается рынок, подчиненный модели Хестона с заданными параметрами.

Сэмплируется траектория базового актива по схеме Эйлера. Отдельно численно решается УРЧП на сетке, находится цена опциона V, а значит, и дельта V' в каждой точке сетки. Теперь, зная дельту, для каждой фиксированной траектории цены, мы выполняем хеджирование: капитал портфеля на каждом шаге t_{i+1} имеет вид:

$$\Pi_{t_{i+1}} = \Pi_{t_i} e^{r\Delta t_i} + (\Delta_{t_i} - \Delta_{t_{i+1}}) S_{t_{i+1}}, \quad i = 0, ..n - 2.$$

В последний момент времени мы продаем все акции, так что портфель имеет капитал:

$$\Pi_{t_n} = \Pi_{t_{n-1}} e^{r\Delta t_{n-1}} + \Delta_{t_{n-1}} S_{t_n}.$$

Ошибкой хеджирования называется разность между капиталом портфеля в последний момент времени Π_{t_n} и выплатой опциона $(S_{t_n}-K)^+$.

Функция ЛВ

Из [Gat06] функция ЛВ вычисляется по формуле Дюпира, переписанной в терминах полной предполагаемой дисперсии (total variance) $w=\mathrm{i} \mathrm{v}^2 t$ и логденежности (logmoneyness) $y=\log(S/K)$

$$\sigma^2 = \frac{\frac{\partial w}{\partial t}}{1 - \frac{y}{w}\frac{\partial w}{\partial y} + \frac{1}{4}(-\frac{1}{4} - \frac{1}{w} + (\frac{y}{w})^2)(\frac{\partial w}{\partial y})^2 + \frac{1}{2}\frac{\partial^2 w}{\partial y^2}}.$$

На входе имеем конечное множество рыночных цен опционов (с данными страйками и экспирациями), а на выходе нужно получить локальную волатильность при любых (t,s). Для этого нужно интерполировать и экстраполировать w_t', w_y', w_{yy}'' , исходя из условий безабритражности (см. [LeeO4]).

Результаты Характеристика ошибок хеджирования в моделях БШ и ЛВ: Меап 15 10 0.5

Заключение

- Поняли, что интерполировать надо не цены опционов, а поверхность локальной волатильности.
- Научились интерполировать поверхность іv в координатах (y,T)
- Научились находить цены опционов в модели локальной волатильности, численно решая СДУ (полностью неявная схема)
- Осознали, что для лучшего хеджирования надо на каждом шаге строить заново поверхность локальной волатильности (из наблюдаемых на этом шаге цен опционов)
- Сравнили качество хеджирования в модели Блэка-Шоулза и в модели локальной волатильности

Ссылки

- [Dup94] Bruno Dupire. "Pricing with a Smile". In: 1994.
- [DFW96] B. Dumas, J. Fleming, and R.E. Whaley. "Implied volatility functions: empirical tests". In: 1996, pp. 199–233.
- [Lee04] Roger Lee. "The Moment Formula for Implied Volatility at Extreme Strikes". In: (2004), pp. 469–480.
- [Gat06] Jim Gatheral. "The Volatility Surface: A Practitioner's Guide". In: 2006.
- [LS14] Timothy Ling and Pavel Shevchenko. "Historical Backtesting of Local Volatility Model using AUD/USD Vanilla Options". In: (2014).