5. 应用题

【题 3.31】

- 解: (1) 每条指令的执行时间为: $\Delta t + \Delta t + 2\Delta t = 4\Delta t$ 连续执行 N 条指令所需的时间为: $4N\Delta t$
- (2) 连续执行 N 条指令所需的时间为: $4\Delta t + 3(N-1)\Delta t = (3N+1)\Delta t$

解: 指令/时钟 1 2 3 4 5 6 7 8 9 K IF ID EX EX K+1 IF ID stall EX EX EX K+2 IF stall ID EX EX stall EX

计算执行完三条指令共使用了9个时钟周期。

解: (1)

$$T_{\text{pipeline}} = \sum_{i=1}^{m} \Delta t_i + (n-1)\Delta t_{\text{max}} = (50 + 50 + 100 + 200) + 9 \times 200 = 2200 \text{(ns)}$$

$$TP = \frac{n}{T_{\text{pipeline}}} = \frac{1}{220} \, (\text{ns}^{-1})^{-1} \, \text{min} = \frac{1}{220} \, \text{ms}^{-1}$$

$$E = \text{TP} \cdot \frac{\sum_{i=1}^{m} \Delta t_i}{m} = \text{TP} \cdot \frac{400}{4} = \frac{5}{11} \approx 45.45\%$$

- (2) 3、4 段是瓶颈。
- ① 变成8级流水线(细分),如图3.7所示。

图 3.7 8级流水线

$$T_{\text{pipeline}} = \sum_{i=1}^{m} \Delta t_i + (n-1)\Delta t_{\text{max}} = 50 \times 8 + 9 \times 50 = 850 \text{ (ns)}$$

$$TP = \frac{n}{T_{\text{pipeline}}} = \frac{1}{85} \text{ (ns}^{-1})$$

$$E = TP \cdot \frac{\sum_{i=1}^{m} \Delta t_i}{m} = TP \cdot \frac{400}{8} = \frac{10}{17} \approx 58.82\%$$

② 重复设置部件(如图 3.8 所示)

$$TP = \frac{n}{T_{\text{pipeline}}} = \frac{1}{85} \text{ (ns}^{-1})$$

图 3.8 重复设置部件

图 3.9 时空图

$$E = \frac{400 \times 10}{850 \times 8} = \frac{10}{17} \approx 58.82\%$$

解:(1)会发生流水线阻塞情况,如表 3.7 所示。

表 3.7 流水线阳窜惨点

				20.1	加小线	阻塞情况	七				
第1个任务	S_1	S ₂	S ₃	S_3	S ₄	144-0				1	124
第2个任务	Sid Service	0			1	DO B IS	Almi r	1 44 148	2 4 1 1		
		S_1	S_2	stall	S_3	S_3	Sı	1	1 1 1 1	A 1700 2463	175
第3个任务	N. N.	FUET	Sı		7721	10000000	54			1 1	
			S ₁	stall	S_2	stall	S ₃	S	C	54.38	
第4个任务			4 17 17	Was a state of	urie a	3800	The same	53	S_4	7 7 8	
Sel and					S_1	stall	S_2	stall	S		
				TEN BOUNT	aloren .		-	can	S ₃	S.	9

(2) 不阻塞情况。

图 3.10 时空图

$$TP_{\text{max}} = \frac{1}{2\Delta t}$$

$$T_{\text{pipeline}} = 23\Delta t$$

$$TP = \frac{n}{T_{\text{pipeline}}} = \frac{10}{23\Delta t}$$

$$E = TP \cdot \frac{5\Delta t}{4} = \frac{50}{92} \approx 54.35\%$$

(3) 重复设置部件。

图 3.11 重复设置部件

图 3.12 重复设置部件后的时空图

$$\mathrm{TP} = rac{n}{T_{\mathrm{pipeline}}} = rac{10}{14 \cdot \Delta t} = rac{5}{7 \cdot \Delta t}$$
 吞吐率提高倍数 $= rac{rac{5}{7 \Delta t}}{rac{10}{23 \Delta t}} = 1.64$

【题 3.35】

解: 首先,应选择适合于流水线工作的算法。对于本题,应先计算 $A_1 + B_1$ 、 $A_2 + B_2$ 、 $A_3 + B_3$ 和 $A_4 + B_4$; 再计算 $(A_1 + B_1) \times (A_2 + B_2)$ 和 $(A_3 + B_3) \times (A_4 + B_4)$;然后求总的结果。

其次,画出完成该计算的时空图,如图 3.13 所示,图中阴影部分表示该段在工作。 由图 3.13 可见,它在 18 个 Δt 时间中,给出了 7 个结果。所以吞吐率为:

$$TP = \frac{7}{18\Delta t}$$

如果不用流水线,由于一次求积需 $3\Delta t$,一次求和需 $5\Delta t$,则产生上述 7 个结果共需 $(4 \times 5 + 3 \times 3)$ $\Delta t = 29 \Delta t$ 。所以加速比为:

$$S = \frac{29\Delta t}{18\Delta t} = 1.61$$

该流水线的效率可由阴影区的面积和 5 个段总时空区的面积的比值求得:

该流水线的效率可由阴影区的面积和
$$3$$
 $E = \frac{4 \times 5 + 3 \times 3}{5 \times 18} = 0.322$

(£ 3.36) 3.8

解: 首先,应选择适合于流水线工作的算法。对于本题,应先计算 $A_1 \times B_1$ 、 $A_2 \times B_2$

其次,画出完成该计算的时空图,如图 3.14 所示,图中阴影部分表示该段在工作

图 3.14 时空图

由图 3.14 可见,它在 18 个 Δt 时间中,给出了7个结果。所以吞吐率为:

$$TP = \frac{7}{18\Delta t}$$

如果不用流水线,由于一次求积需 $4\Delta t$,一次求和需 $4\Delta t$,则产生上述 7 个结果共影 $4+3\times4$) $\Delta t=28\Delta t$ 。所以加速比为:

$$S = \frac{28\Delta t}{18\Delta t} \approx 1.56$$

该流水线的效率可由阴影区和5个段总时空区的比值求得:

【题 3.37】

解: 机器一共要做 10 次乘法,4

【题 3.38】

解:流水线的预约表如表

功能段	1
S_1	
S ₂	
S ₃	and the second second
S4	-

题 3.39 3.9

解: (1) 由预约表得出 为避免争用S₁段,禁 S₃ 段,禁用启动距离: 3,4 启动距离:1。

由禁止表得到初始冲 $C_0 = (10001101)$ 有 4 $C_1 = SHR^{(2)}(C_0) V($

$$E = \frac{4 \times 4 + 3 \times 4}{5 \times 18} \approx 0.31$$

【题 3.37】

解: 机器一共要做 10 次乘法,4 次加法。时空图如图 3.15 所示。

$$TP = \frac{14}{22\Delta t}$$
加速比= $\frac{14 \times 4}{22\Delta t} = 2.55$

效率= $\frac{14 \times 4}{22 \times 6} = 42.42\%$

图 3.15 时空图

【题 3.38】

解:流水线的预约表如表 3.8 所示。 电极电路 中 1.4

表 3.8 流水线的预约表

	169				13-7	
功能段	1 120.	2	3		(7,75	6
	a versa dam.		STATE OF THE PARTY	William Walls and	a contract of the contract of	AT MALE AND ADDRESS OF
S_1		The age of the same	The way day of 12	1 60 1 57 cd		7 - 1 - 1 - 1 - 1 - 1
S ₂		1	140	an exist of the		
S ₃	- V KEPY		1	1000	1000	A CONTRACTOR OF THE PROPERTY O
S ₄		-			Contract of the contract of th	

题 3.39 3.9

解:(1)由预约表得出禁止表: $F = \{8,4,3,1\}$

为避免争用 S₁ 段,禁用启动距离: 8;为避免争用 S₂ 段,禁用启动距离: 1;为避免争用 S_a 段,禁用启动距离: 3,4,1;为避免争用 S_a 段,禁用启动距离: 1;为避免争用 S_a 段,禁用 启动距离:1。

由禁止表得到初始冲突向量: $C_0 = (10001101)$

C₀=(10001101)有 4 个后继状态:

 $C_1 = SHR^{(2)}(C_0) \lor C_0 = (00100011) \lor (10001101) = (10101111)$

计算机系统结果
$$(10001101) = C_0$$

$$C_{2} = SHR^{(5)}(C_{0}) \lor C_{0} = (00000100) \lor (10001101) = (10001111)$$

$$C_{3} = SHR^{(6)}(C_{0}) \lor C_{0} = (00000001) \lor (10001101) = (10001101) = C_{0}$$

$$C_{4} = SHR^{(7)}(C_{0}) \lor C_{0} = (00000001) \lor (10001101) = (10001101) = C_{0}$$

 $C_1 = (101011111)$ 有两个后继状态:

 $C_5 = SHR^{(5)}(C_1) \lor C_0 = (10001101) = C_0$

 $C_6 = SHR^{(7)}(C_1) \lor C_0 = (10001101) = C_0$

 $C_3 = (101011111)$ 有三个后继状态:

 $C_7 = SHR^{(5)}(C_3) \lor C_0 = (10001101) = C_0$

 $C_8 = SHR^{(6)}(C_3) \lor C_0 = (10001111) = C_3$

 $C_9 = SHR^{(7)}(C_3) \lor C_0 = (10001101) = C_0$

得出状态转移图如图 3.16 所示。

图 3.16 状态转移图

各种调度策略及平均延迟时间如表 3.9 所示。

表 3.9 调度策略及平均延迟时间

	调度策略	st 1/4 (50 1 1 1 1 2	平均延迟时间
	(2,5)		3. 5∆ <i>t</i>
0.00	(2,7)	A PART	$4.5\Delta t$
,	(5)		$5\Delta t$
	(6,5)		$5.5\Delta t$
	(6)		$6\Delta t$
	(6,7)		6. 5∆ <i>t</i>
	(7)		$7\Delta t$

- (2) 在表 3.9 中,平均延迟时间最小的调度策略是最优调度策略:(2,5);流水线的最 大吞吐率就是最优调度策略的最大吞吐率: $1/(3.5\Delta t)$ 。
 - (3) 按最优调度策略连续输入6个任务,流水线的实际吞吐率为:

$$TP = \frac{6}{(2+5+2+5+2+9)\Delta t} = \frac{6}{25\Delta t}$$

题 3.40 2 10

解:(1)由预约表得出禁止表:F={6,3,1}

为避免争用 S_1 段,禁用启动距离: 6;为避免争用 S_2 段,禁用启动距离: 3;为避免争用

S。段,禁用启动距离: 1;为避免争用 S。段,禁用启动距离: 3;为避免争用 S。段,禁用启动 距离: 1。

由禁止表得到初始冲突向量: $C_0 = (100101)$,由初始冲突向量和后继冲突向量的计算 公式 $C_i = SHR^{(k)}(C_i) \lor C_o$,可得流水线任务调度的状态转移图如图 3.17 所示。

图 3.17 流水线任务调度的状态转移图

(2) 由状态转移图可得不发生段争用冲突的调度策略以及平均延迟时间,如表 3.10

表 3.10 调度策	医略和平均延迟时间 33/48
III M KI 调度策略 exim exim II	平均延迟时间
(2,2,5) 關發傾的與美文	國國國家 红金属 3公4
(2,5)	3, 5∆ <i>t</i>
(4)	Ago Agua Maria da traca da
(4,5)	而变积为(加图面 4.5∆(向电景) (c)
(5)	$5\Delta t$

由表 3.10 可知,允许不等时间间隔调度的最优调度策略是(2,2,5),流水线最大吞吐率 为: $1/(3\Delta t)$ 。等时间间隔调度的最优调度策略是(4),流水线最大吞吐率为: $1/(4\Delta t)$ 。

(3) 按调度策略(2,2,5),连续输入10个任务的流水线实际吞吐率与加速比分别为:

$$TP_1 = \frac{10}{(2+2+5+2+2+5+2+2+5+7)\Delta t} = \frac{10}{34\Delta t}$$

$$S_1 = \frac{10 \times 7\Delta t}{34\Delta t} = 2.06$$

按调度策略(4),连续输入10个任务的流水线实际吞吐率与加速比分别为:

$$TP_2 = \frac{10}{(4 \times 9 + 7)\Delta t} = \frac{10}{43\Delta t}$$

$$S_2 = \frac{10 \times 7\Delta t}{43\Delta t} = 1.63$$

(1) 寄存器读写可以定向,无其他旁路硬件支持。排空流水线时空图如图 3.18 所示。

指令	1	2	3	4	5	6	7	8	9	10	11	12	13	14	+	-	17	18	19	2(2
LW	IF	ID	EX	M	WB					11	19				1083		_				
DADDIU		IF	S	S	ID	EX	M	WB	19	1111	MI	134	1	I	112	10	140	I B			T
SW					IF	S	S	ID	EX	M	WB			1		111	14:	10			T
DADDIU						A STREET	P	IF	ID	EX	M	WB									
DSUB									IF	S	S	ID	EX	M	WB						T
BNEZ									100	-		IF	S	S	ID	EX	M	WB			T
LW									gil.	THE					IF	S	S	IF	ID	EX	М

图 3.18 排空流水线时空图

第 i 次迭代(i=0…98)开始周期: $1+(i\times17)$

(2) 有正常定向路径,预测分支失败,如图 3.19 所示。

指令	1	2	3	4	5	6	7	8	9	10	1.1	10	T		
LW	IF	ID	EX	M	WB	0	1	0	9	10	11	12	13	14	15
DADDIU		IF	ID	S	1	101		31 37.		-					
SW				-	EX	M	WB			- 131					
The leaves to the last	Hit	No.	IF	S	ID	EX	M	WB	dans.						
DADDIU					IF	ID	EX	М	WB		(In P	23.4	13:4	dith s	1
DSUB				10000		IF	In	-		-					
BNEZ			-	18 11	11.753		ID	EX	M	WB					
LW	18			-	V SEE	40	lF	ID	EX	M	WB				
The second second second	1	10.013	化行					IF	miss	miss	IF	ID	EX	M	WB

图 3.19 采用预测分支失败的时空图

第 i 次迭代(i=0…98)开始周期: $1+(i\times10)$ 总的时钟周期数:(98×10)+11=991

(3) 有正常定向路径。单周期延迟分支的时空图如图 3.20 所示。

LOOP: LW R1,0(R2)
DADDIU R2,R2,#4
DADDIU R1,R1,#1
DSUB R4,R3,R2

BNEZ R4, LOOP SW R1, -4(R2)

第 i 次迭代(i = 0…98)开始周期: $1+(i\times 6)$ 总的时钟周期数: $(98\times 6)+10=598$

指令	1	2	3	4	5	1,	_	-			
LW	IF	ID	EX	M	The state of the state of	6	7	8	9	10	
DADDIU		IF	-	-	WB					.0	-
DADDIU	-	IF	ID	EX	M	WB		1177			
			IF	ID	EX	M	WB				
DSUB				IF	ID						
BNEZ		1	-	12	-	EX	M	WB			
SW		-	-		IF	ID	EX	M	WB		
LW	-	+	-			IF	ID	EX	M	WB	
		1					IF	ID	EX	M	WB

图 3.20 采用单周期延迟分支的时空图

(#3.42) 3.12

解:没有控制相关时流水线的平均 CPI=1。

存在控制相关时,由于无条件分支在第二个时钟周期结束时就被解析出来,而条件分支 要到第3个时钟周期结束时才能被解析出来。所以:

(1) 若使用排空流水线的策略,则对于条件分支,有两个额外的停顿,对无条件分支,有 一个额外的停顿:

$$CPI = 1 + 20\% \times 2 + 5\% \times 1 = 1.45$$

加速比 $S = CPI/1 = 1.45$

(2) 若使用预测分支成功策略,则对于不成功的条件分支,有两个额外的停顿,对无条件分支和成功的条件分支,有一个额外的停顿:

$$CPI = 1 + 20\% \times (60\% \times 1 + 40\% \times 2) + 5\% \times 1 = 1.33$$

加速比 $S = CPI/1 = 1.33$

(3) 若使用预测分支失败策略,则对于成功的条件分支,有两个额外的停顿;对无条件分支,有一个额外的停顿;对不成功的条件分支,其目标地址已经由 PC 值给出,不必等待,所以无延迟:

 $CPI = 1 + 20\% \times (60\% \times 2 + 40\% \times 0) + 5\% \times 1 = 1.29$ 加速比 S = CPI/1 = 1.29

(5)等弱同意处理机的性能增振的使义及其计算方法。

(6) 了頭 Cray Y MP, C-90 甸 VECSX-X44 向量处则机的冒向

) 技术行时,但包计算。 (2) 向是处理机的性性指标的定义及其行库力法。

4.2.2 (最近東京) (2.00) (2.00) (2.00) (2.00) (3.00)

の個分型は、但電子的重要を影響は、2、2、2015年中央東京 2015年中日 の個分型は、日電子的重要を表現を特別量指令的國大學知識的。 2、2、1年間の面似に再株面向社会探索式等別議議令的数別構造分別。 2、2、1年間の面似に再株面向社会探索式等別議議令的数別構造分別人が公司と

3.2.1 问量的处理方式

2. 他的处理方式。但是中国水质的企业(AF)。特殊处理 21. 他的处理方式

是自身之间,在2000年度通信的过去式和存储设施。 这些处理方式是经合于一般和较差别。不适合管和最强要的