

UNIVERSIDAD ESTATAL A DISTANCIA ESCUELA DE CIENCIAS EXACTAS Y NATURALES CARRERA INGENIERÍA INFORMÁTICA CATEDRA DESARROLLO DE SISTEMAS 00823 - Organización de Computadores Primer Cuatrimestre 2025

Proyecto No. 2

Tipo

Individual

Valor del trabajo en la nota

Este trabajo en todas sus partes constituye un 2.5% de la nota final

OBJETIVO

Poner en práctica los conceptos que se abarcan en los capítulos 7, 8 y 9 del libro de texto, cuyo énfasis son los contadores de tipo asincrónico y sincrónico.

DESARROLLO

Diseñe un contador <u>síncrono</u> que realice la siguiente secuencia binaria irregular como se muestra en la siguiente figura:

Figura 1. Diagrama de Estados

Como parte de la solución del circuito, además del diseño del contador síncrono, se debe diseñar un contador asíncrono de 3 bits que se incremente en 1 cada vez que se alcance cualquiera de los estados 1111 y 1010 del contador síncrono. Esto quiere decir que cuando se alcance <u>cualquiera</u> de los dos estados anteriores del contador síncrono, se

UNIVERSIDAD ESTATAL A DISTANCIA ESCUELA DE CIENCIAS EXACTAS Y NATURALES CARRERA INGENIERÍA INFORMÁTICA CATEDRA DESARROLLO DE SISTEMAS 00823 - Organización de Computadores

00823 - Organización de Computadores Primer Cuatrimestre 2025

deberá incrementar en 1 al contador asíncrono. El contador asíncrono deberá volver a 0 cuando contabilice hasta 5, o sea el contador asíncrono iniciará en 0 y llegará hasta 5, luego de esto, deberá volver a 0 nuevamente para seguir contabilizando.

El contador síncrono debe contener:

- a. Tabla de estado siguiente, desarrollada a partir la lista de números de la secuencia.
- b. Mapas de Karnaugh, la indicación de las agrupaciones establecidas para la simplificación y la explicación del término resultante de cada agrupación.
- c. Ecuaciones resultantes para cada entrada de cada Flip-Flop JK.
- d. Circuito generado en Digital Works del contador, el cual debe cumplir con lo siguiente:
 - Las salidas Q de los Flip-Flops del contador síncrono deben de ir conectadas a un Numeric Output para poder visualizar que el contador síncrono está generando correctamente los valores esperados de la secuencia. Los valores del Numeric Output deben ser mostrador en formato decimal.
 - ii. De necesitarse la negación de una entrada, se utilizará la salida Q' (Q negado) de los FF's del contador síncrono y no la compuerta NOT.
 - iii. Para la decodificación de los estados 1111 y 1010, estos se deben tomar de las salidas Q de los Flip-Flops y cuando suceda cualquiera de estos estados, se debe encender un led por separado. Por consiguiente, se necesitarán 2 leds para determinar cada uno de los estados que se decodifican del contador síncrono cuando sucedan.

El contador asíncrono deberá contar con:

- a. Tres (3) Flip-Flops J-K conectados de forma asíncrona.
- b. Se incrementará en 1 cada vez que se decodifique cualquiera de los estados del contador síncrono citados anteriormente.
- c. Las salidas del contador asíncrono deben ir conectadas a un Numeric Output para mostrar el conteo en formato decimal.
- d. El contador asíncrono debe de reiniciar en cero cuando alcance el valor decimal de 5, o sea debe permitir visualizar el conteo desde el 0 hasta el 5.

UNIVERSIDAD ESTATAL A DISTANCIA ESCUELA DE CIENCIAS EXACTAS Y NATURALES CARRERA INGENIERÍA INFORMÁTICA CATEDRA DESARROLLO DE SISTEMAS 00823 - Organización de Computadores Primer Cuatrimestre 2025

ENTREGABLES

La solución del ejercicio debe incluir dos archivos:

- a. El documento con la solución del proyecto. El cual debe incluir la explicación de los pasos realizados para obtener las ecuaciones simplificadas por medio de los mapas de Karnaugh y el resultado de cada agrupación de términos.
- b. El archivo en formato .DWM generado en Digital Works, que corresponda a los requerimientos de la construcción del circuito.

Si la plataforma solo permite un archivo, se generará un archivo comprimido (.ZIP) con los archivos.

MATRIZ DE EVALUACIÓN

Rubo por calificar	Detalle	Porcentaje
Documento con la solución del proyecto		55%
Portada	1%	
Índice	1%	
Introducción (No menos de ½ página)	5%	
Marco Teórico	10%	
Desarrollo		
Tabla de estado siguiente	10%	
Mapas de Karnaugh	10%	
Ecuaciones de las entradas de los Flip-Flops	5%	
Explicación del funcionamiento del contador asíncrono	6%	
Conclusión (No menos de ½ página)	5%	
Bibliografía en formato APA	2%	
Circuito en Digital Works del contador		45%
Inclusión del Numeric Output en el contador síncrono	5%	
Inclusión del Display de 7 segmentos en el contador asíncrono	5%	
El contador síncrono corresponde a la solución correcta	20%	
Se determinan correctamente los estados y se identifican por medio	5%	
de los leds		
El contador asíncrono se incrementa conforme a lo solicitado	10%	
TOTAL:	100%	100%