```
In [2]: import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         from sklearn.cluster import KMeans
         import warnings
         warnings.filterwarnings('ignore')
In [3]: df = pd.read_csv("/Users/souvikchakraborty/Downloads/Mall_Customers.csv")
In [4]:
         df.head()
           CustomerID Gender Age Annual Income (k$) Spending Score (1-100)
Out[4]:
         0
                         Male
                                19
                                                  15
                                                                       39
         1
                         Male
                                21
                                                  15
                                                                       81
         2
                                20
                    3 Female
                                                  16
                                                                        6
         3
                    4 Female
                                23
                                                  16
                                                                       77
         4
                    5 Female
                                31
                                                  17
                                                                       40
```

Univariate Analysis

In [5]:	<pre>df.describe()</pre>						
Out[5]:	CustomerID		Age	Annual Income (k\$)	Spending Score (1-100)		
	count	200.000000	200.000000	200.000000	200.000000		
	mean	100.500000	38.850000	60.560000	50.200000		
	std	57.879185	13.969007	26.264721	25.823522		
	min	1.000000	18.000000	15.000000	1.000000		
	25%	50.750000	28.750000	41.500000	34.750000		
	50%	100.500000	36.000000	61.500000	50.000000		
	75%	150.250000	49.000000	78.000000	73.000000		
	max	200.000000	70.000000	137.000000	99.000000		

In [6]: sns.displot(df['Annual Income (k\$)'])

Out[6]: <seaborn.axisgrid.FacetGrid at 0x7fe1503b6ac0>

<Figure size 432x288 with 0 Axes>

In [9]: sns.kdeplot(df['Annual Income (k\$)'], shade=True, hue=df['Gender'])

Out[9]: <AxesSubplot:xlabel='Annual Income (k\$)', ylabel='Density'>


```
In [12]: df['Gender'].value_counts(normalize=True)
         Female
                    0.56
Out[12]:
          Male
                    0.44
```

Name: Gender, dtype: float64

Bivariate Analysis

```
In [13]:
           sns.scatterplot(data=df, x = 'Annual Income (k$)', y='Spending Score (1-1)
           <AxesSubplot:xlabel='Annual Income (k$)', ylabel='Spending Score (1-100)'</pre>
Out[13]:
             100
              80
          Spending Score (1-100)
              60
              40
              20
               0
                    20
                            40
                                   60
                                                 100
                                                         120
                                                                140
                                          80
                                   Annual Income (k$)
In [14]:
           df = df.drop('CustomerID', axis=1)
           sns.pairplot(data=df, hue='Gender')
           <seaborn.axisgrid.PairGrid at 0x7fe1314c1eb0>
```

Out[14]:

Out [15]: Age Annual Income (k\$) Spending Score (1-100)

Gender

Female	38.098214	59.250000	51.526786
Male	39.806818	62.227273	48.511364

In [16]: df.corr()

Out [16]: Age Annual Income (k\$) Spending Score (1-100)

Age	1.000000	-0.012398	-0.327227
Annual Income (k\$)	-0.012398	1.000000	0.009903
Spending Score (1-100)	-0.327227	0.009903	1.000000

Clustering - Univariate, Bivariate, Multivariate

```
In [37]:
  clustering1 = KMeans(n_clusters=3)
In [38]:
  clustering1.fit(df[['Annual Income (k$)']])
  KMeans(n_clusters=3)
Out[38]:
In [39]:
  clustering1.labels
  Out[39]:
    0, 0], dtype=int32)
  df['Income Cluster'] = clustering1.labels_
In [40]:
  df.head()
```

```
Out[40]:
                    Age Annual Income (k$) Spending Score (1-100) Income Cluster
             Gender
          0
               Male
                      19
                                       15
                                                            39
                                                                            2
          1
               Male
                      21
                                       15
                                                             81
                                                                            2
                                                                            2
          2
             Female
                     20
                                       16
                                                             6
          3
             Female
                     23
                                       16
                                                             77
                                                                            2
            Female
                      31
                                        17
                                                            40
                                                                            2
In [41]:
          df['Income Cluster'].value_counts()
               92
Out[41]:
               72
               36
          Name: Income Cluster, dtype: int64
In [42]:
          clustering1.inertia_
          23528.152173913044
Out[42]:
In [43]:
          inertia_scores = []
          for i in range(1,11):
              kmeans = KMeans(n_clusters=i)
              kmeans.fit(df[['Annual Income (k$)']])
              inertia_scores.append(kmeans.inertia_)
In [44]:
         inertia_scores
         [137277.28000000003,
Out[44]:
           48660.88888888889,
           23517.330930930933,
           13278.112713472485,
           8667.679614837509,
           5050.9047619047615,
           3941.4163614163613,
           2857.441697191697,
           2168.4787157287155,
           1844.9249999999997]
In [45]:
         plt.plot(range(1,11), inertia_scores)
          [<matplotlib.lines.Line2D at 0x7fe145d6c460>]
Out[45]:
```


Out [47]: Age Annual Income (k\$) Spending Score (1-100)

Income Cluster

0	37.833333	99.888889	50.638889
1	39.184783	66.717391	50.054348
2	38.930556	33.027778	50.166667

Bivarite Clustering

Out[48]:		Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Income Cluster	Spending and Income Cluster
	0	Male	19	15	39	2	3
	1	Male	21	15	81	2	1
	2	Female	20	16	6	2	3
	3	Female	23	16	77	2	1
	4	Female	31	17	40	2	3

Out[50]: [<matplotlib.lines.Line2D at 0x7fe13191f850>]


```
In [61]: centers = pd.DataFrame(clustering2.cluster_centers_)
    centers.columns = ['x','y']
```

```
In [64]: plt.figure(figsize=(10,8))
   plt.scatter(x=centers['x'], y=centers['y'], s=100, c='black', marker='*')
   sns.scatterplot(data=df, x='Annual Income (k$)',y='Spending Score (1-100)
```

Out[64]: <AxesSubplot:xlabel='Annual Income (k\$)', ylabel='Spending Score (1-100)'
>

In [65]: pd.crosstab(df['Spending and Income Cluster'], df['Gender'], normalize='in Out[65]: Gender **Female** Male **Spending and Income Cluster** 0.700000 0.300000 0.571429 0.428571 **2** 0.590909 0.409091 **3** 0.636364 0.363636 0.600000 0.400000 0.517241 0.482759 0.318182 0.681818 0.595238 0.404762

Out[66]:

Age Annual Income (k\$) Spending Score (1-100)

Spending and Income Cluster

0	41.000000	109.700000	22.000000
1	25.333333	25.095238	80.047619
2	43.477273	47.659091	51.613636
3	45.090909	25.727273	20.227273
4	32.200000	109.700000	82.000000
5	32.862069	78.551724	82.172414
6	41.000000	80.181818	12.681818
7	41.571429	63.952381	46.214286

In [68]: #Multivariate Clustering

from sklearn.preprocessing import StandardScaler

In [69]: scale = StandardScaler

In [70]: df.head()

Out[70]:

	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Income Cluster	Spending and Income Cluster
0	Male	19	15	39	2	3
1	Male	21	15	81	2	1
2	Female	20	16	6	2	3
3	Female	23	16	77	2	1
4	Female	31	17	40	2	3

In [72]: dff = pd.get_dummies(df, drop_first=True)
 dff.head()

Out[72]:

	Age	Annual Income (k\$)	Spending Score (1-100)	Income Cluster	Spending and Income Cluster	Gender_Male
0	19	15	39	2	3	1
1	21	15	81	2	1	1
2	20	16	6	2	3	0
3	23	16	77	2	1	0
4	31	17	40	2	3	0

In [73]: dff.columns