Virtual Machine Monitor

Recap

- Emulator
 - Emulate hardware (e.g., Nintendo) in software

- Java virtual machine (JVM)
 - Platform neutral machine (typically s/w) that runs java bytecode

- Virtual machine monitor (VMM)
 - A kind of OS for virtual machines

Java Bytecode

Java Source

```
int f() {
   int a,b,c;
   ..
   c = a + b + 1;
   ..
}
```


Java Bytecode

```
int f();
iload a
iload b
iconst 1
iadd
iadd
istore c
```

- Java bytecode = instructions for JVM
- One byte opcode + variable length args
 - 198 instructions are in use

Recap: Java Virtual Machine

Recap: Types of VMM

- Native (or Type 1) VMM
 - VMM runs directly on top of bare hardware
 - Vmware ESX, Microsoft Hyper-V
 - VMM is a kind of a OS on its own right

- Hosted (or Type 2) VMM
 - VMM runs within an OS
 - VirtualBox, VMWare Workstation
 - VMM relies on functionalities of the host OS

Today

- Virtualization
- Container
- Docker

Virtualizing Interrupts & I/O

- VMM receives h/w interrupts
 - Determines which VM to receive
 - Emulate interrupt controller for the VM

- VMM emulate a specific h/w devices
 - Guest OS \rightarrow VMM \rightarrow devices
 - E.g., AMD Lance PCNet ethernet device

Lots of I/O → performance killers

Para-virtualization

- Idea: provides simple/fast APIs to guests
 - Instead of emulating actual hardware (e.g., PCNet32 ethernet card)

- Pros
 - can be a lot faster (more efficient I/O)
- Cons
 - need to modify the guest OS

I/O in Xen via Shared Buffer

IOMMU

- Problem: How to do DMA in a VM?
 - DMA controller needs host physical address, not guest physical address
- IOMMU
 - MMU for IO devices
 - maps guest physical → host physical for the I/O devices

https://en.wikipedia.org/wiki/Input%E2%80%93out put_memory_management_unit#/media/File:MM U and IOMMU.svg 10

LXC: OS (Linux) Container

- Same kernel, separate user-space
- Virtualize OS, not machine
- Low overhead, flexible

Docker: Application Container

- A container contain one application (process)
- Built on top of OS containers
- Even more flexible

Summary

- Virtual Machine (hardware virtualization)
 - Trap & emulate
 - Binary translation
 - Para-virtualization
 - Hardware support for virtualization
- Containers
 - OS container: same kernel, different user-space
 - App container: same kernel, per-process space

