

Why Uncertainty Estimation Methods Fall Short in RAG: An Axiomatic Analysis

Heydar Soudani¹, Evangelos Kanoulas², and Faegheh Hasibi¹

¹Radboud University ²University of Amsterdam

Trustworthiness

- Motivation: LLMs have a tendency to produce inaccurate or misleading outputs
 - Reasons: Hallucination, Temporal Knowledge Shift, Noisy Information in RAG, ...

- **Solution**: Uncertainty Estimation
 - Assigns uncertainty to each (input, output) pair, representing its correctness (or truthfulness)

Background

White-box

Assumption: Access to token probability

Main Concept: Entropy

$$PE(x,\theta) = -\frac{1}{B} \sum_{b=1}^{B} \ln P(r_b \mid x, \theta)$$

$$P(r \mid x, \theta) = \prod_{n=1}^{N} P(r^n \mid r^{< n}, x; \theta)$$

Probability of each generation

Black-box

Assumption: Rely solely on final outputs

Main Concept: Semantic Similarity

Some Methods:

- Sum of Eigenvalues
- Degree Matrix
- Eccentricity

Challenge

While existing UE methods mainly focus on scenarios where the input is just a query, it is unclear how current UE methods account for non-parametric knowledge

- (RQ1) How do UE methods perform when the input prompt includes non-parametric knowledge, such as in RAG?
- (RQ2) What properties can guarantee optimal performance of UE considering LLMs' both parametric and non-parametric knowledge?
- (RQ3) Can the axiomatic framework guide us in deriving an optimal UE method?

- (RQ1) How do UE methods perform when the input prompt includes non-parametric knowledge, such as in RAG?
- (RQ2) What properties can guarantee optimal performance of UE considering LLMs' both parametric and non-parametric knowledge?
- (RQ3) Can the axiomatic framework guide us in deriving an optimal UE method?

Experimental Setup

Retrievers

- Doc⁻: A weak synthetic retriever that returns irrelevant documents
- o **Doc**⁺: An idealized retriever that consistently ranks the gold document at the top
- Several widely used retrievers: BM25, Contriever, Rerank

UE Methods

- White-box: PE, SE, MARS
- Black-box: Dig, EigV, ECC

Evaluation Metrics

- Correctness: Exact Match
- Corr./Unc. Correlation: AUROC

UE for RAG

LLM	Unc.	PopQA							
		No Doc	Doc-	BM25	Cont.	ReRa.	Doc+		
Llama2-chat	PE	1.29	1.11 *	0.54 *	0.46 *	0.35 *	0.34 *		
	SE	4.86	4.37 *	3.45 *	3.30 *	3.13 *	3.19 *		
	PE+M	1.59	1.34 *	0.65 *	0.55 *	0.44 *	0.45 *		
	SE+M	5.38	4.71 *	3.62 *	3.43 *	3.23 *	3.27 *		
lam,	Deg	0.52	0.32 *	0.12 *	0.09 *	0.06 *	0.05 *		
-1	ECC	0.71	0.54 *	0.22 *	0.17 *	0.12 *	0.10 *		
	EigV	4.25	2.28 *	1.42 *	1.31 *	1.18 *	1.17 *		
	PE	1.51	0.94 *	0.84 *	0.69 *	0.62 *	0.51 *		
	SE	5.66	3.73 *	3.68 *	3.53 *	3.41 *	3.26 *		
Mistral-v0.3	PE+M	2.35	1.42 *	1.26 *	1.05 *	0.92 *	0.80 *		
	SE+M	6.47	4.05 *	3.98 *	3.77 *	3.60 *	3.45 *		
	Deg	0.48	0.05 *	0.07 *	0.06 *	0.05 *	0.03 *		
	ECC	0.68	0.03 *	0.08 *	0.08 *	0.05 *	0.04 *		
	EigV	4.18	1.08 *	1.16 *	1.17 *	1.11 *	1.08 *		

Improvements on the proposed UE methods in the literature do not add up when considering RAG setup

- (RQ1) How do UE methods perform when the input prompt includes non-parametric knowledge, such as in RAG?
- (RQ2) What properties can guarantee optimal performance of UE considering LLMs' both parametric and non-parametric knowledge?
- (RQ3) Can the axiomatic framework guide us in deriving an optimal UE method?

Axiomatic Thinking

Definition

 A set of formal constraints is defined based on desired properties, which are then used as a guide to search for an optimal solution

Applications

- Information Retrieval
- Interpretability
- Preference Modeling

^[1] An exploration of axiomatic approaches to information retrieval, SIGIR, 2005

^[2] Axiomatic causal interventions for reverse engineering relevance computation in neural retrieval models, SIGIR, 2024

Axiom 1: Positively Consistent

$$\forall q, c ext{ if } \mathcal{M}_{\theta}(q) = r_1, \ \mathcal{M}_{\theta}(q, c) = r_2, \ r_1 \equiv r_2, \ c \models (q, r_2),$$
then $\mathcal{U}(\mathcal{M}_{\theta}(q), r_1) > \mathcal{U}(\mathcal{M}_{\theta}(q, c), r_2).$

Description

If an LLM generates the *same output* both before and after incorporating a context, and *the context logically supports* that output, the uncertainty in the RAG setup should decrease.

RQ2: Axiomatic Evaluation

UE	PopQA			_				
	BM25	Contriever	Doc^+	_				
Axiom 1: Positively Consistent ↓				Axiom 3: Positively Changed ↓				
PE	$0.735 \rightarrow 0.419$ *	$0.735 \rightarrow 0.408$ *	1.242 \rightarrow 0.340 *	PE	1.375 \rightarrow 0.347 *	1.416 \rightarrow 0.298 *	1.342 \rightarrow 0.268 *	
SE	3.781 \rightarrow 3.205 *	3.791 \rightarrow 3.158 *	4.682 \rightarrow 3.113 *	SE	$4.889 \rightarrow 3.015$ *	$5.091 \rightarrow 3.013$ *	$4.884 \rightarrow 3.051$ *	
PE+M	$0.896 \rightarrow 0.483$ *	$0.881 \rightarrow 0.458$ *	1.530 \rightarrow 0.406 *	PE+M	1.708 \rightarrow 0.398 *	1.735 \rightarrow 0.374 *	1.604 \rightarrow 0.340 *	
SE+M	$4.102 \rightarrow 3.286$ *	4.091 \rightarrow 3.248 *	5.146 \rightarrow 3.173 *	SE+M	$5.514 \rightarrow 3.072$ *	$5.681 \rightarrow 3.082$ *	$5.379 \rightarrow 3.099$ *	
EigV	$1.951 \rightarrow 1.166$ *	2.025 \rightarrow 1.143 *	4.074 \rightarrow 1.078 *	EigV	4.131 \rightarrow 1.139 *	4.733 \rightarrow 1.114 *	4.449 \rightarrow 1.102 *	
ECC	0.417 \rightarrow 0.110 *	$0.426 \rightarrow 0.094$ *	$0.710 \rightarrow 0.055$ *	ECC	$0.790 \rightarrow 0.085$ *	$0.823 \rightarrow 0.081$ *	$0.780 \rightarrow 0.072$ *	
Deg	$0.220 \rightarrow 0.048$ *	$0.230 \rightarrow 0.043$ *	$0.496 \rightarrow 0.022$ *	Deg	$0.547 \rightarrow 0.044$ *	$0.588 \rightarrow 0.035$ *	$0.544 \rightarrow 0.032$ *	
Axiom	Axiom 2: Negatively Consistent ↑				Axiom 4: Negatively Changed ↑			
PE	$1.068 \rightarrow 0.746$	$0.820 \rightarrow 0.593$	$1.083 \to 0.597$	PE	$0.933 \rightarrow 0.636$	$1.006 \to 0.558$	$1.252 \to 0.463$	
SE	4.163 \rightarrow 3.548 *	4.104 \rightarrow 3.381 *	$4.388 \rightarrow 4.107$	SE	$4.152 \rightarrow 3.552$ *	4.192 \rightarrow 3.409 *	4.830 \rightarrow 3.690 *	
PE+M	$1.309 \rightarrow 0.844$	$1.016 \rightarrow 0.782$	$1.328 \to 0.684$	PE+M	1.164 \rightarrow 0.714 *	1.298 \rightarrow 0.748 *	$1.689 \rightarrow 0.747$	
SE+M	4.599 \rightarrow 3.700 *	4.481 \rightarrow 3.610 *	$4.764 \rightarrow 4.221$	SE+M	4.553 → 3.690 *	$4.653 \rightarrow 3.608$ *	5.381 → 4.007 *	
EigV	2.453 \rightarrow 1.338 *	2.088 \rightarrow 1.274 *	$2.758 \rightarrow 1.910$	EigV	$2.593 \rightarrow 1.449$ *	2.557 \rightarrow 1.412 *	3.567 \rightarrow 1.449 *	
ECC	$0.541 \rightarrow 0.197$ *	$0.477 \rightarrow 0.152$ *	$0.503 \to 0.443$	ECC	$0.540 \rightarrow 0.262$ *	$0.548 \rightarrow 0.220$ *	$0.707 \rightarrow 0.237$ *	
Deg	$0.286 \rightarrow 0.101$ *	$0.228 \rightarrow 0.073$ *	$0.343 \to 0.254$	Deg	$0.320 \rightarrow 0.128$ *	$0.320 \rightarrow 0.115$ *	$0.463 \rightarrow 0.140$ *	

Axiom 5

Unc.	NQ-open	TriviaQA	PopQA
PE	2.072 \rightarrow 2.248 *	$0.872 \rightarrow 1.155$ *	$0.897 \rightarrow 0.909$ *
SE	5.253 → 5.471 *	3.863 \rightarrow 4.158 *	3.897 → 4.319 *
PE+M	$4.791 \rightarrow 4.805$	1.415 \rightarrow 1.699 *	1.031 \rightarrow 1.130 *
SE+M	$7.993 \rightarrow 7.933$	4.540 → 4.817 *	$4.297 \rightarrow 4.591$
EigV	2.211 \rightarrow 2.446 *	1.757 \rightarrow 1.870 *	$2.270 \rightarrow 2.218$
ECC	$0.512 \rightarrow 0.625$ *	$0.382 \rightarrow 0.448$ *	$0.490 \rightarrow 0.507$
Deg	$0.265 \rightarrow 0.333$ *	$0.171 \rightarrow 0.211$ *	$0.256 \rightarrow 0.309$

- (RQ1) How do UE methods perform when the input prompt includes non-parametric knowledge, such as in RAG?
- (RQ2) What properties can guarantee optimal performance of UE considering LLMs' both parametric and non-parametric knowledge?
- (RQ3) Can the axiomatic framework guide us in deriving an optimal UE method?

Axiomatic Calibration

Calibration Coefficient

$$\alpha_{ax} = k_1 \cdot \mathcal{E}(r_1, r_2) + k_2 \cdot \mathcal{R}(c, q, r_1) + k_3 \cdot \mathcal{R}(c, q, r_2)$$

Equivalence of LLM & RAG -generated responses

Context / LLM-generated response Relationship

Context / RAG-generated response Relationship

$$\mathcal{U}(\mathcal{M}_{\theta}(c,q),r_2)^{\text{cal}} = (k_4 - \alpha_{\text{ax}}) \cdot \mathcal{U}(\mathcal{M}_{\theta}(c,q),r_2).$$

Axiomatic Calibration: Results

Takeaways

- Existing UE methods generated low uncertainty values in the RAG setup without considering the relevance of the given context to the query
- None of the existing UE methods pass all the proposed axioms
- The result of the proposed *calibration function* shows
 - Satisfying the axioms leads to performance improvements