17: Game Proofs & Separations

Logical Foundations of Cyber-Physical Systems

André Platzer

- Learning Objectives
- **Hybrid Game Proofs**
 - Soundness
 - Separations
 - Soundness & Completeness
 - Expressiveness
 - Repetitive Diamonds Convergence Versus Iteration
 - Example Proofs
- Differential Hybrid Games
 - Syntax
 - Example: Zeppelin
 - Differential Game Invariants
 - Example: Zeppelin Proof
- Summary

- Learning Objectives
- 2 Hybrid Game Proofs
 - Soundness
 - Separations
 - Soundness & Completeness
 - Expressiveness
 - Repetitive Diamonds Convergence Versus Iteration
 - Example Proofs
- Oifferential Hybrid Games
 - Syntax
 - Example: Zeppelir
 - Differential Game Invariants
 - Example: Zeppelin Proof
- 4 Summary

Learning Objectives Game Proofs & Separations

rigorous reasoning for adversarial dynamics miracle of soundness separations axiomatization of dGL multi-dynamical systems differential game invariants

differential games systems vs. games CPS semantics multi-scale feedback

Definition (Hybrid game α)

$$\alpha, \beta ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^* \mid \alpha^d$$

$$P, Q ::= e \geq \tilde{e} \mid \neg P \mid P \wedge Q \mid \forall x P \mid \exists x P \mid \langle \alpha \rangle P \mid [\alpha] P$$

P Differential Game Logic: Syntax

Discrete Assign Game Equation Choice Game Game Game

Definition (Hybrid game
$$\alpha$$
)

$$\alpha, \beta ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^* \mid \alpha^d$$

$$P, Q ::= e \geq \tilde{e} \mid \neg P \mid P \wedge Q \mid \forall x P \mid \exists x P \mid \langle \alpha \rangle P \mid [\alpha] P$$

Discrete Assign Game Equation Choice Seq. Repeat Game Game Game Game
$$\alpha, \beta ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^* \mid \alpha^d$$

$$P, Q ::= e \geq \tilde{e} \mid \neg P \mid P \wedge Q \mid \forall x P \mid \exists x P \mid \langle \alpha \rangle P \mid [\alpha] P$$

P Differential Game Logic: Syntax

$$P,Q ::= e \geq \tilde{e} \mid \neg P \mid P \wedge Q \mid \forall x P \mid \exists x P \mid \langle \alpha \rangle P \mid [\alpha] P$$

Discrete Assign Game Equation Choice Game Game Game Game Game Game
$$\alpha$$
, $\beta::=x:=e\mid ?Q\mid x'=f(x)\&Q\mid \alpha\cup\beta\mid \alpha;\beta\mid \alpha^*\mid \alpha^d$

$$P,Q ::= e \geq \tilde{e} \mid \neg P \mid P \wedge Q \mid \forall x P \mid \exists x P \mid \langle \alpha \rangle P \mid [\alpha] P$$

Differential Game Logic: Syntax

Discrete Assign Game Equation Choice Game Game Game Game

Definition (Nybrid game
$$\alpha$$
)

$$\alpha, \beta ::= x := e \mid ?Q \mid x' = f(x) \& Q \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^* \mid \alpha^d$$

Definition (dGL Formula P)

$$P,Q ::= e \geq \tilde{e} \mid \neg P \mid P \wedge Q \mid \forall x P \mid \exists x P \mid \langle \alpha \rangle P \mid [\alpha]P$$

"Angel has Wings $\langle \alpha \rangle$ "

Differential Game Logic: Denotational Semantics

```
\llbracket \cdot 
rbracket: HG 
ightarrow (\wp(\mathscr{S}) 
ightarrow \wp(\mathscr{S}))
Definition (Hybrid game \alpha)

\zeta_{X:=e}(X) = \{\omega \in \mathscr{S} : \omega_x^{\omega[e]} \in X\}

\zeta_{x'=f(x)}(X) = \{\varphi(0) \in \mathscr{S} : \varphi(r) \in X \text{ for some } \varphi: [0,r] \to \mathscr{S}, \ \varphi \models x'=f(x)\}

        \varsigma_{7O}(X) = [Q] \cap X

\zeta_{\alpha\cup\beta}(X) = \zeta_{\alpha}(X) \cup \zeta_{\beta}(X)

\zeta_{\alpha:\beta}(X) = \zeta_{\alpha}(\zeta_{\beta}(X))

\varsigma_{\alpha^*}(X) = \bigcap \{Z \subseteq \mathscr{S} : X \cup \varsigma_{\alpha}(Z) \subseteq Z\}

\zeta_{\alpha^{d}}(X) = (\zeta_{\alpha}(X^{\complement}))^{\complement}

                                                                                                                                \llbracket \cdot \rrbracket : \mathsf{Fml} \to \mathscr{D}(\mathscr{S})
Definition (dGL Formula P)
```


Differential Game Logic: Axiomatization

$$[\cdot] [\alpha]P \leftrightarrow \neg \langle \alpha \rangle \neg P$$

$$\langle := \rangle \ \langle x := e \rangle p(x) \leftrightarrow p(e)$$

$$\langle ' \rangle \ \langle x' = f(x) \rangle P \leftrightarrow \exists t \geq 0 \ \langle x := y(t) \rangle P$$

$$\langle ? \rangle \langle ?Q \rangle P \leftrightarrow (Q \land P)$$

$$\langle \cup \rangle \ \langle \alpha \cup \beta \rangle P \leftrightarrow \langle \alpha \rangle P \vee \langle \beta \rangle P$$

$$\langle ; \rangle \langle \alpha; \beta \rangle P \leftrightarrow \langle \alpha \rangle \langle \beta \rangle P$$

$$\langle ^* \rangle \ \langle \alpha ^* \rangle P \leftrightarrow P \lor \langle \alpha \rangle \langle \alpha ^* \rangle P$$

$$\langle d \rangle \langle \alpha^{d} \rangle P \leftrightarrow \neg \langle \alpha \rangle \neg P$$

$$\mathsf{M} \ \frac{P \to Q}{\langle \alpha \rangle P \to \langle \alpha \rangle Q}$$

$$\mathsf{FP}\ \frac{P \vee \langle \alpha \rangle Q \to Q}{\langle \alpha^* \rangle P \to Q}$$

$$\mathsf{MP}\ \frac{P\quad P\to Q}{Q}$$

$$\forall \frac{p \to Q}{p \to \forall x \, Q} \qquad (x \notin \mathsf{FV}(p))$$

US
$$\frac{arphi}{arphi_{p(\cdot)}^{\psi(\cdot)}}$$

- **Hybrid Game Proofs**
 - Soundness
 - Separations
 - Soundness & Completeness
 - Expressiveness
 - Repetitive Diamonds Convergence Versus Iteration
 - Example Proofs
- - Syntax

Differential Game Logic: Axiomatization

$$[\cdot] [\alpha]P \leftrightarrow \neg \langle \alpha \rangle \neg P$$

$$\langle := \rangle \ \langle x := e \rangle p(x) \leftrightarrow p(e)$$

$$\langle ' \rangle \ \langle x' = f(x) \rangle P \leftrightarrow \exists t \geq 0 \ \langle x := y(t) \rangle P$$

$$\langle ? \rangle \langle ?Q \rangle P \leftrightarrow (Q \land P)$$

$$\langle \cup \rangle \ \langle \alpha \cup \beta \rangle P \leftrightarrow \langle \alpha \rangle P \vee \langle \beta \rangle P$$

$$\langle ; \rangle \langle \alpha; \beta \rangle P \leftrightarrow \langle \alpha \rangle \langle \beta \rangle P$$

$$\langle ^* \rangle \ \langle \alpha ^* \rangle P \leftrightarrow P \lor \langle \alpha \rangle \langle \alpha ^* \rangle P$$

$$\langle d \rangle \langle \alpha^{d} \rangle P \leftrightarrow \neg \langle \alpha \rangle \neg P$$

$$\mathsf{M} \ \frac{P \to Q}{\langle \alpha \rangle P \to \langle \alpha \rangle Q}$$

$$\mathsf{FP}\ \frac{P \vee \langle \alpha \rangle Q \to Q}{\langle \alpha^* \rangle P \to Q}$$

$$\mathsf{MP}\ \frac{P\quad P\to Q}{Q}$$

$$\forall \frac{p \to Q}{p \to \forall x \, Q} \qquad (x \notin \mathsf{FV}(p))$$

US
$$\frac{arphi}{arphi_{p(\cdot)}^{\psi(\cdot)}}$$

Theorem (Soundness

dGL proof calculus is sound

Theorem (Soundness

dGL proof calculus is sound

Do we have to prove anything at all?

More Axioms

$$\begin{array}{llll} \mathbb{K} & [\alpha](P \to Q) \to ([\alpha]P \to [\alpha]Q) & \mathbb{M}_{[\cdot]} \frac{P \to Q}{[\alpha]P \to [\alpha]Q} \\ & \stackrel{\longleftarrow}{\mathbb{M}} \langle \alpha \rangle (P \lor Q) \to \langle \alpha \rangle P \lor \langle \alpha \rangle Q & \mathbb{M} & \langle \alpha \rangle P \lor \langle \alpha \rangle Q \to \langle \alpha \rangle (P \lor Q) \\ \mathbb{I} & [\alpha^*]P \leftrightarrow P \land [\alpha^*](P \to [\alpha]P) & \mathrm{ind} & \frac{P \to [\alpha]P}{P \to [\alpha^*]P} \\ \mathbb{B} & \langle \alpha \rangle \exists x P \to \exists x \langle \alpha \rangle P & (x \not\in \alpha) & \stackrel{\longleftarrow}{\mathbb{B}} & \exists x \langle \alpha \rangle P \to \langle \alpha \rangle \exists x P \\ \mathbb{G} & \frac{P}{[\alpha]P} & \mathbb{M}_{[\cdot]} \frac{P \to Q}{[\alpha]P \to [\alpha]Q} \\ \mathbb{R} & \frac{P_1 \land P_2 \to Q}{[\alpha]P_1 \land [\alpha]P_2 \to [\alpha]Q} & \mathbb{M}_{[\cdot]} \frac{P_1 \land P_2 \to Q}{[\alpha](P_1 \land P_2) \to [\alpha]Q} \\ \mathbb{E} \wedge \langle \alpha^* \rangle P \to P \lor \langle \alpha^* \rangle (\neg P \land \langle \alpha \rangle P) & \stackrel{\longleftarrow}{[\ast]} & [\alpha^*]P \leftrightarrow P \land [\alpha^*][\alpha]P \end{array}$$

Theorem (Axiomatic separation: hybrid systems vs. hybrid games)

Axiomatic separation is K, I, C, B, V, G. So, dGL is a subregular, sub-Barcan, monotonic modal logic without loop induction axioms.

$$\begin{array}{llll} \mathbb{K} & [\alpha](P \to Q) \to ([\alpha]P \to [\alpha]Q) & \mathbb{M}_{[\cdot]} \frac{P \to Q}{[\alpha]P \to [\alpha]Q} \\ & \mathbb{M} & \langle \alpha \rangle (P \lor Q) \to \langle \alpha \rangle P \lor \langle \alpha \rangle Q & \mathbb{M} & \langle \alpha \rangle P \lor \langle \alpha \rangle Q \to \langle \alpha \rangle (P \lor Q) \\ & \mathbb{K} & [\alpha^*]P \leftrightarrow P \land [\alpha^*](P \to [\alpha]P) & \mathrm{ind} & \frac{P \to [\alpha]P}{P \to [\alpha^*]P} \\ & \mathbb{K} & \langle \alpha \rangle \exists x P \to \exists x \langle \alpha \rangle P & (x \not\in \alpha) & \mathbb{B} & \exists x \langle \alpha \rangle P \to \langle \alpha \rangle \exists x P \\ & \mathbb{K} & \frac{P}{[\alpha]P} & \mathbb{M}_{[\cdot]} \frac{P \to Q}{[\alpha]P \to [\alpha]Q} \\ & \mathbb{K} & \frac{P_1 \land P_2 \to Q}{[\alpha]P_1 \land [\alpha]P_2 \to [\alpha]Q} & \mathbb{M}_{[\cdot]} \frac{P_1 \land P_2 \to Q}{[\alpha](P_1 \land P_2) \to [\alpha]Q} \\ & \mathbb{K} & \langle \alpha^* \rangle P \to P \lor \langle \alpha^* \rangle (\neg P \land \langle \alpha \rangle P) & \mathbb{K} & [\alpha^*]P \leftrightarrow P \land [\alpha^*][\alpha]P \end{array}$$

Theorem (Axiomatic separation: hybrid systems vs. hybrid games)

Axiomatic separation is K, I, C, B, V, G. So, dGL is a subregular, sub-Barcan, monotonic modal logic without loop induction axioms.

$$\begin{array}{c} \mathbb{K} \quad [\alpha](P \to Q) \to ([\alpha]P \to [\alpha]Q) \qquad & \mathbb{M}_{[\cdot]} \frac{P \to Q}{[\alpha]P \to [\alpha]Q} \\ \\ \mathbb{M} \quad \langle \alpha \rangle (P \lor Q) \to \langle \alpha \rangle P \lor \langle \alpha \rangle Q \qquad & \mathbb{M} \quad \langle \alpha \rangle P \lor \langle \alpha \rangle Q \to \langle \alpha \rangle (P \lor Q) \\ \\ \mathbb{K} \quad [\alpha^*]P \leftrightarrow P \land [\alpha^*](P \to [\alpha]P) \qquad & \mathrm{ind} \quad \frac{P \to [\alpha]P}{P \to [\alpha^*]P} \\ \\ \mathbb{E} \quad \langle \alpha \rangle \exists x P \to \exists x \langle \alpha \rangle P \qquad & (x \not\in \alpha) \stackrel{\overset{\cdot}{\boxtimes}}{\boxtimes} \exists x \langle \alpha \rangle P \to \langle \alpha \rangle \exists x P \\ \\ \mathbb{E} \quad \frac{P}{[\alpha]P} \qquad & \mathbb{M}_{[\cdot]} \frac{P \to Q}{[\alpha]P \to [\alpha]Q} \\ \\ \mathbb{E} \quad \frac{P_1 \land P_2 \to Q}{[\alpha]P_1 \land [\alpha]P_2 \to [\alpha]Q} \qquad & \mathbb{M}_{[\cdot]} \frac{P_1 \land P_2 \to Q}{[\alpha](P_1 \land P_2) \to [\alpha]Q} \\ \\ \mathbb{E} \quad \mathcal{E} \langle \alpha^* \rangle P \to P \lor \langle \alpha^* \rangle (\neg P \land \langle \alpha \rangle P) \qquad & \stackrel{\overset{\cdot}{\bowtie}}{[\alpha^*]P \leftrightarrow P \land [\alpha^*][\alpha]P} \end{aligned}$$

 $[\alpha^{\mathsf{d}}]P \leftrightarrow \langle \alpha \rangle P$

Theorem (Axiomatic separation: hybrid systems vs. hybrid games)

Axiomatic separation is K, I, C, B, V, G. So, dGL is a subregular, sub-Barcan, monotonic modal logic without loop induction axioms.

One game's boxes are another game's diamonds. Don't use axioms that do not belong to you!

Theorem (Soundness

dGL proof calculus is sound

Do we have to prove anything at all?

Theorem (Soundness

dGL proof calculus is sound i.e., all provable formulas are valid

Theorem (Soundness)

dGL proof calculus is sound i.e., all provable formulas are valid

Proof.

$$\langle \cup \rangle \ \langle \alpha \cup \beta \rangle P \leftrightarrow \langle \alpha \rangle P \vee \langle \beta \rangle P$$

$$\langle ; \rangle \ \langle \alpha; \beta \rangle P \leftrightarrow \langle \alpha \rangle \langle \beta \rangle P$$

$$[\cdot] [\alpha]P \leftrightarrow \neg \langle \alpha \rangle \neg P$$

$$\mathsf{M} \ \frac{P \to Q}{\langle \alpha \rangle P \to \langle \alpha \rangle Q}$$

Theorem (Soundness)

dGL proof calculus is sound i.e., all provable formulas are valid

Proof.

$$\langle \cup \rangle \quad \llbracket \langle \alpha \cup \beta \rangle P \rrbracket = \varsigma_{\alpha \cup \beta}(\llbracket P \rrbracket) = \varsigma_{\alpha}(\llbracket P \rrbracket) \cup \varsigma_{\beta}(\llbracket P \rrbracket) = \llbracket \langle \alpha \rangle P \rrbracket \cup \llbracket \langle \beta \rangle P \rrbracket = \llbracket \langle \alpha \rangle P \vee \langle \beta \rangle P \rrbracket$$

$$\langle \cup \rangle \quad \langle \alpha \cup \beta \rangle P \leftrightarrow \langle \alpha \rangle P \vee \langle \beta \rangle P$$

[·] is sound by determinacy

$$[\cdot] [\alpha]P \leftrightarrow \neg \langle \alpha \rangle \neg P$$

M Assume the premise $P \to Q$ is valid, i.e., $[\![P]\!] \subseteq [\![Q]\!]$. Then the conclusion $\langle \alpha \rangle P \to \langle \alpha \rangle Q$ is valid, i.e., $[\![\langle \alpha \rangle P]\!] = \varsigma_{\alpha}([\![P]\!]) \subseteq \varsigma_{\alpha}([\![Q]\!]) = [\![\langle \alpha \rangle Q]\!]$ by monotonicity.

$$M \frac{P \to Q}{\langle \alpha \rangle P \to \langle \alpha \rangle Q}$$

Soundness links semantics and axiomatics in perfect unison!

Compositional Soundness

Soundness: If P provable then P valid

 $\vdash P \text{ implies} \models P$

- Conditio sine qua non for logic
- Every formula that it proves with any proof has to be valid.
- Fortunately, proofs are composed from axioms by proof rules.

Sufficient:

- All axioms are sound: valid formulas.
- All proof rules are sound: take valid premises to valid conclusions.

Then

- Proof is a long combination of many simple arguments.
- Each individual step is a sound axiom or sound proof rule, so sound.

Soundness+Completeness links semantics and axiomatics in perfect unison!

Compositional Soundness

Soundness: If P provable then P valid

 $\vdash P \text{ implies} \models P$

- Conditio sine qua non for logic
- Every formula that it proves with any proof has to be valid.
- Fortunately, proofs are composed from axioms by proof rules.

Sufficient:

- All axioms are sound: valid formulas.
- ② All proof rules are sound: take valid premises to valid conclusions.

Then

- Proof is a long combination of many simple arguments.
- Each individual step is a sound axiom or sound proof rule, so sound.

Theorem (Completeness)

dGL calculus is a sound & complete axiomatization of hybrid games relative to any (differentially) expressive¹ logic L. $\models \varphi$ iff $L \vdash \varphi$

$$^{1}\forall \varphi \in \mathsf{dGL} \ \exists \varphi^{\flat} \in L \ \models \varphi \leftrightarrow \varphi^{\flat} \\
\langle x' = f(x) \rangle G \leftrightarrow (\langle x' = f(x) \rangle G)^{\flat} \text{ provable for } G \in L$$

Corollary (Constructive)

Constructive and Moschovakis-coding-free. (Minimal: x' = f(x), \exists , $[\alpha^*]$)

Corollary (Characterization of hybrid game challenges)

- $[\alpha^*]G$: Succinct invariants discrete Π_2^0
- [x' = f(x)]G and $\langle x' = f(x) \rangle G$: Succinct differential (in)variants Δ_1^4
- $\exists x \ G$: Complexity depends on Herbrand disjunctions: discrete Π_1^1 \checkmark uninterpreted \checkmark reals $\times \exists x [\alpha^*] G \Pi_1^1$ -complete for discrete α

Corollary (Constructive)

Constructive and Moschovakis-coding-free. (Minimal: x' = f(x), \exists , $[\alpha^*]$)

Corollary (Characterization of hybrid game challenges)

```
• [\alpha^*]G: Succinct invariants discrete \Pi_2^0
• [x' = f(x)]G and \langle x' = f(x)\rangle G: Succinct differential (in)variants \Delta_1^1
```

- $\exists x \ G$: Complexity depends on Herbrand disjunctions: discrete Π_1^1 \checkmark uninterpreted \checkmark reals $\times \exists x [\alpha^*] G \Pi_1^1$ -complete for discrete α
- set is Π_n^0 iff it's $\{x: \forall y_1 \exists y_2 \forall y_3 \dots y_n \varphi(x, y_1, \dots, y_n)\}$ for a decidable φ set is Σ_n^0 iff it's $\{x: \exists y_1 \forall y_2 \exists y_3 \dots y_n \varphi(x, y_1, \dots, y_n)\}$ for a decidable φ
- set is Π_1^1 iff it's $\{x: \forall f \exists y \varphi(x,y,f)\}$ for a decidable φ and functions f set is Σ_1^1 iff it's $\{x: \exists f \forall y \varphi(x,y,f)\}$ for a decidable φ and functions f
- $\Delta_n^i = \Sigma_n^i \cap \Pi_n^i$

Theorem (Expressive Power: hybrid systems < hybrid games)

dGL for hybrid games strictly more expressive than dL for hybrid systems:

" \leq " For every dL formula φ there is a dGL formula $\tilde{\varphi}$ that is equivalent.

"≥" Not the other way around.

Theorem (Expressive Power: hybrid systems < hybrid games)

dGL for hybrid games strictly more expressive than dL for hybrid systems:

- "<" For every dL formula φ there is a dGL formula $\tilde{\varphi}$ that is equivalent. Easy: same formula where Angel plays for nondeterminism.
- Not the other way around. Hard: see proof.

TOCL'15

Theorem (Expressive Power: hybrid systems < hybrid games)

dGL for hybrid games strictly more expressive than dL for hybrid systems:

- "<" For every dL formula φ there is a dGL formula $\tilde{\varphi}$ that is equivalent. Easy: same formula where Angel plays for nondeterminism.
- "≯" Not the other way around. Hard: see proof.

TOCL'15

Corollary

Hybrid games are strictly more than hybrid systems.

con
$$\Gamma dash \langle lpha^*
angle Q, \Delta$$

$$\vdash x \geq 0 \rightarrow \langle (x := x - 1)^* \rangle x < 1$$

Repetitive Diamonds by Convergence

$$\operatorname{con} \ \frac{\Gamma \vdash \exists v \, \rho(v), \Delta \quad \vdash \forall v > 0 \, (\rho(v) \to \langle \alpha \rangle \rho(v-1)) \quad \exists v \leq 0 \, \rho(v) \vdash Q}{\Gamma \vdash \langle \alpha^* \rangle Q, \Delta}$$

$$\vdash x \geq 0 \rightarrow \langle (x := x - 1)^* \rangle x < 1$$

Proving Repetitive Diamonds by Convergence

$$\operatorname{con} \ \frac{\Gamma \vdash \exists v \, p(v), \Delta \quad \vdash \forall v > 0 \, (p(v) \to \langle \alpha \rangle p(v-1)) \quad \exists v \leq 0 \, p(v) \vdash Q}{\Gamma \vdash \langle \alpha^* \rangle Q, \Delta} (v \notin \alpha)$$

$$\vdash x \ge 0 \to \langle (x := x - 1)^* \rangle x < 1$$

$$\text{con } \frac{\Gamma \vdash \exists v \, p(v), \Delta \quad \vdash \forall v > 0 \, (p(v) \to \langle \alpha \rangle p(v-1)) \quad \exists v \leq 0 \, p(v) \vdash Q}{\Gamma \vdash \langle \alpha^* \rangle Q, \Delta} (v \not\in \alpha)$$

$$x \ge 0 \vdash \langle (x := x - 1)^* \rangle x < 1$$
$$\vdash x \ge 0 \to \langle (x := x - 1)^* \rangle x < 1$$

$$\text{con } \frac{\Gamma \vdash \exists v \, p(v), \Delta \quad \vdash \forall v > 0 \, (p(v) \to \langle \alpha \rangle p(v-1)) \quad \exists v \leq 0 \, p(v) \vdash Q}{\Gamma \vdash \langle \alpha^* \rangle Q, \Delta} (v \not\in \alpha)$$

$$x \ge 0 \vdash \exists nx < n+1 \quad x < n+1 \land n > 0 \vdash \langle x := x-1 \rangle x < n-1+1 \quad \exists n \le 0 \ x < n+1 \vdash x < 1$$

$$x \ge 0 \vdash \langle (x := x-1)^* \rangle x < 1$$

$$\vdash x \ge 0 \rightarrow \langle (x := x-1)^* \rangle x < 1$$

$$p(n) \equiv x < n+1$$

$$\text{con } \frac{\Gamma \vdash \exists v \, p(v), \Delta \quad \vdash \forall v > 0 \, (p(v) \to \langle \alpha \rangle p(v-1)) \quad \exists v \leq 0 \, p(v) \vdash Q}{\Gamma \vdash \langle \alpha^* \rangle Q, \Delta} (v \not\in \alpha)$$

$$\frac{\mathbb{R}}{x \ge 0 \vdash \exists n \, x < n+1} \quad \overline{x < n+1 \land n > 0 \vdash \langle x := x-1 \rangle x < n-1+1} \quad \overline{\exists n \le 0 \, x < n+1 \vdash x < 1}$$

$$x \ge 0 \vdash \langle (x := x-1)^* \rangle x < 1$$

$$\vdash x \ge 0 \to \langle (x := x-1)^* \rangle x < 1$$

$$p(n) \equiv x < n+1$$

$$\text{con } \frac{\Gamma \vdash \exists v \, p(v), \Delta \quad \vdash \forall v > 0 \, (p(v) \to \langle \alpha \rangle p(v-1)) \quad \exists v \leq 0 \, p(v) \vdash Q}{\Gamma \vdash \langle \alpha^* \rangle Q, \Delta} (v \not\in \alpha)$$

$$\mathbb{R} \frac{x}{x \ge 0 \vdash \exists n \ x < n+1} \xrightarrow{x < n+1 \land n > 0 \vdash x-1 < n-1+1} \frac{x}{\exists n \le 0 \ x < n+1 \vdash x < 1}$$

$$x \ge 0 \vdash \langle (x := x-1)^x \rangle x < 1$$

$$\vdash x \ge 0 \to \langle (x := x-1)^x \rangle x < 1$$

$$\vdash x \ge 0 \to \langle (x := x-1)^x \rangle x < 1$$

$$p(n) \equiv x < n+1$$

$$\operatorname{con} \ \frac{\Gamma \vdash \exists v \, p(v), \Delta \quad \vdash \forall v > 0 \, (p(v) \to \langle \alpha \rangle p(v-1)) \quad \exists v \leq 0 \, p(v) \vdash Q}{\Gamma \vdash \langle \alpha^* \rangle Q, \Delta} (v \not\in \alpha)$$

$$\mathbb{R} \frac{x}{x \ge 0 \vdash \exists n \ x < n+1} = \frac{\mathbb{R} \frac{x}{x < n+1 \land n > 0 \vdash x - 1 < n - 1 + 1}}{x < n+1 \land n > 0 \vdash \langle x := x - 1 \rangle x < n - 1 + 1} \frac{\exists n \le 0 \ x < n + 1 \vdash x < 1}{\exists n \le 0 \ x < n + 1 \vdash x < 1}}{x \ge 0 \vdash \langle (x := x - 1)^* \rangle x < 1} + x \ge 0 \to \langle (x := x - 1)^* \rangle x < 1}$$

$$p(n) \equiv x < n+1$$

$$\operatorname{con} \ \frac{\Gamma \vdash \exists v \, p(v), \Delta \quad \vdash \forall v > 0 \, (p(v) \to \langle \alpha \rangle p(v-1)) \quad \exists v \leq 0 \, p(v) \vdash Q}{\Gamma \vdash \langle \alpha^* \rangle Q, \Delta} (v \not\in \alpha)$$

$$\mathbb{R} \frac{ }{ x \ge 0 \vdash \exists n \ x < n+1} \stackrel{\mathbb{R}}{ } \frac{ }{ x < n+1 \land n > 0 \vdash x-1 < n-1+1} \\ \times \frac{ }{ x \ge 0 \vdash \exists n \ x < n+1} \stackrel{\mathbb{R}}{ } \frac{ }{ \exists n \le 0 \ x < n+1 \vdash x < 1} \\ \times \frac{ }{ x \ge 0 \vdash \langle (x := x-1)^* \rangle x < 1} \\ \to \mathbb{R} \frac{ }{ } \frac$$

$$p(n) \equiv x < n+1$$

$$x \ge 0 \to \langle (\underbrace{x := x - 1}_{\beta} \cap \underbrace{x := x - 2}_{\gamma})^* \rangle 0 \le x < 2$$

$$x \ge 0 \rightarrow \langle \alpha^* \rangle 0 \le x < 2$$

$$x \ge 0 \to \langle (\underbrace{x := x - 1}_{\beta} \cap \underbrace{x := x - 2}_{\gamma})^* \rangle 0 \le x < 2$$

US
$$\frac{\forall x \left(0 \le x < 2 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \le x < 2 \to \langle \alpha^* \rangle 0 \le x < 2\right) \to \left(x \ge 0 \to \langle \alpha^* \rangle 0 \le x < 2\right)}{x \ge 0 \to \langle \alpha^* \rangle 0 \le x < 2}$$

$$x \ge 0 \to \langle (\underbrace{x := x - 1}_{\beta} \cap \underbrace{x := x - 2}_{\gamma})^* \rangle 0 \le x < 2$$

$$\begin{array}{c} \text{US} \\ \text{US} \\ \text{($^{\diamond}$),\forall,MP$} \end{array} \\ \begin{array}{c} \forall x \left(0 \leq x < 2 \lor \langle \alpha \rangle p(x) \to p(x)\right) \to \left(x \geq 0 \to p(x)\right) \\ \hline \forall x \left(0 \leq x < 2 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \leq x < 2 \to \langle \alpha^* \rangle 0 \leq x < 2\right) \to \left(x \geq 0 \to \langle \alpha^* \rangle 0 \leq x < 2\right) \\ x > 0 \to \langle \alpha^* \rangle 0 < x < 2 \end{array}$$

$$x \ge 0 \to \langle (\underbrace{x := x - 1}_{\beta} \cap \underbrace{x := x - 2}_{\gamma})^* \rangle 0 \le x < 2$$

$$\forall x (0 \le x < 2 \lor \langle \beta \rangle p(x) \land \langle \gamma \rangle p(x) \rightarrow p(x)) \rightarrow (x \ge 0 \rightarrow p(x))$$

$$\forall x (0 \le x < 2 \lor \langle \alpha \rangle p(x) \rightarrow p(x)) \rightarrow (x \ge 0 \rightarrow p(x))$$

$$\forall x (0 \le x < 2 \lor \langle \alpha \rangle p(x) \rightarrow p(x)) \rightarrow (x \ge 0 \rightarrow p(x))$$

$$\forall x (0 \le x < 2 \lor \langle \alpha \rangle \langle \alpha \rangle o \le x < 2) \rightarrow (x \ge 0 \rightarrow \langle \alpha^* \rangle o \le x < 2)$$

$$(^*), \forall, \mathsf{MP}$$

$$x > 0 \rightarrow \langle \alpha^* \rangle o \le x < 2$$

$$x \ge 0 \to \langle (\underbrace{x := x - 1}_{\beta} \cap \underbrace{x := x - 2}_{\gamma})^* \rangle 0 \le x < 2$$

$$x \ge 0 \to \langle (\underbrace{x := x - 1}_{\beta} \cap \underbrace{x := x - 2}_{\gamma})^* \rangle 0 \le x < 2$$

	*
\mathbb{R}	$\forall x (0 \le x < 2 \lor p(x-1) \land p(x-2) \rightarrow p(x)) \rightarrow (x \ge 0 \rightarrow p(x))$
$\langle := \rangle$	${} \forall x (0 \le x < 2 \lor \langle \beta \rangle p(x) \land \langle \gamma \rangle p(x) \rightarrow p(x)) \rightarrow (x \ge 0 \rightarrow p(x))}$
$\langle \cup \rangle, \langle d \rangle$	${\forall x (0 \le x < 2 \lor \langle \alpha \rangle p(x) \to p(x)) \to (x \ge 0 \to p(x))}$
US	$\forall x (0 \le x < 2 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \le x < 2 \to \langle \alpha^* \rangle 0 \le x < 2) \to (x \ge 0 \to \langle \alpha^* \rangle 0 \le x < 2)$
$\langle^*\rangle$, \forall ,MF	$x > 0 \rightarrow \langle \alpha^* \rangle 0 < x < 2$

$$\langle \underbrace{(x := 1; x' = 1^{d} \cup \underbrace{x := x - 1}_{\gamma})^{*}}_{\alpha} \rangle 0 \leq x < 1$$

► Fixpoint style proof technique

/*\

true $\rightarrow \langle \alpha^* \rangle$ 0 \leq x<1

$$\langle (\underbrace{x := 1; x' = 1^{d}}_{\beta} \cup \underbrace{x := x - 1}_{\gamma})^{*} \rangle 0 \leq x < 1$$

US
$$\frac{\forall x (0 \le x < 1 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \le x < 1 \to \langle \alpha^* \rangle 0 \le x < 1) \to (true \to \langle \alpha^* \rangle 0 \le x < 1)}{true \to \langle \alpha^* \rangle 0 < x < 1}$$

$$\langle (\underbrace{x := 1; x' = 1^{d}}_{\beta} \cup \underbrace{x := x - 1}_{\gamma})^{*} \rangle 0 \leq x < 1$$

$$\langle \underbrace{(x := 1; x' = 1^{d} \cup \underbrace{x := x - 1}_{\gamma})^{*}}_{\alpha} \rangle 0 \leq x < 1$$

$$\forall x (0 \le x < 1 \lor \langle \beta \rangle p(x) \lor \langle \gamma \rangle p(x) \to p(x)) \to (true \to p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \beta \cup \gamma \rangle p(x) \to p(x)) \to (true \to p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \beta \cup \gamma \rangle p(x) \to p(x)) \to (true \to p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \le x < 1 \to \langle \alpha^* \rangle 0 \le x < 1) \to (true \to \langle \alpha^* \rangle 0 \le x < 1)$$

$$\forall x (0 \le x < 1 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \le x < 1 \to \langle \alpha^* \rangle 0 \le x < 1)$$

$$\forall x (0 \le x < 1 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \le x < 1 \to \langle \alpha^* \rangle 0 \le x < 1)$$

$$\forall x (0 \le x < 1 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \le x < 1 \to \langle \alpha^* \rangle 0 \le x < 1)$$

$$\langle \underbrace{(x := 1; x' = 1^{d} \cup \underbrace{x := x - 1}_{\gamma})^{*}}_{\alpha} \rangle 0 \leq x < 1$$

$$\forall x (0 \le x < 1 \lor \langle x := 1 \rangle \neg \langle x' = 1 \rangle \neg p(x) \lor p(x-1) \rightarrow p(x)) \rightarrow (true \rightarrow p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \beta \rangle p(x) \lor \langle \gamma \rangle p(x) \rightarrow p(x)) \rightarrow (true \rightarrow p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \beta \cup \gamma \rangle p(x) \rightarrow p(x)) \rightarrow (true \rightarrow p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \beta \cup \gamma \rangle p(x) \rightarrow p(x)) \rightarrow (true \rightarrow p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup \gamma \rangle p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \alpha \cup \gamma \rangle p(x)) \rightarrow (true \rightarrow \langle \alpha \cup$$

$$\langle \underbrace{(x := 1; x' = 1^{d} \cup \underbrace{x := x - 1}_{\gamma})^{*}}_{\alpha} \rangle 0 \leq x < 1$$

$$\forall x (0 \le x < 1 \lor \langle x := 1 \rangle \neg \exists t \ge 0 \langle x := x + t \rangle \neg p(x) \lor p(x - 1) \rightarrow p(x)) \rightarrow (true \rightarrow p(x))$$

$$\forall x (0 \le x < 1 \lor \langle x := 1 \rangle \neg \langle x' = 1 \rangle \neg p(x) \lor p(x - 1) \rightarrow p(x)) \rightarrow (true \rightarrow p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \beta \rangle p(x) \lor \langle \gamma \rangle p(x) \rightarrow p(x)) \rightarrow (true \rightarrow p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \beta \rangle p(x) \lor \langle \gamma \rangle p(x) \rightarrow p(x)) \rightarrow (true \rightarrow p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \beta \cup \gamma \rangle p(x) \rightarrow p(x)) \rightarrow (true \rightarrow p(x))$$

$$\forall x (0 \le x < 1 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \le x < 1 \rightarrow \langle \alpha^* \rangle 0 \le x < 1) \rightarrow (true \rightarrow \langle \alpha^* \rangle 0 \le x < 1)$$

$$\forall true \rightarrow \langle \alpha^* \rangle 0 \le x < 1$$

$$\langle \underbrace{(x := 1; x' = 1^{d} \cup \underbrace{x := x - 1}_{\gamma})^{*}}_{\alpha} \rangle 0 \leq x < 1$$

$$\begin{array}{|c|c|c|} \hline \mathbb{R} & \forall x \left(0 \leq x < 1 \lor \forall t \geq 0 \ p(1+t) \lor p(x-1) \rightarrow p(x)\right) \rightarrow (true \rightarrow p(x)) \\ \hline \langle := \rangle & \forall x \left(0 \leq x < 1 \lor \langle x := 1 \rangle \neg \exists t \geq 0 \ \langle x := x+t \rangle \neg p(x) \lor p(x-1) \rightarrow p(x)\right) \rightarrow (true \rightarrow p(x)) \\ \hline \langle ' \rangle & \forall x \left(0 \leq x < 1 \lor \langle x := 1 \rangle \neg \langle x' = 1 \rangle \neg p(x) \lor p(x-1) \rightarrow p(x)\right) \rightarrow (true \rightarrow p(x)) \\ \hline \langle : \rangle, \langle ' \rangle & \forall x \left(0 \leq x < 1 \lor \langle \beta \rangle p(x) \lor \langle \gamma \rangle p(x) \rightarrow p(x)\right) \rightarrow (true \rightarrow p(x)) \\ \hline \langle \cup \rangle & \forall x \left(0 \leq x < 1 \lor \langle \beta \rangle p(x) \lor \langle \gamma \rangle p(x) \rightarrow p(x)\right) \rightarrow (true \rightarrow p(x)) \\ \hline \cup S & \forall x \left(0 \leq x < 1 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \leq x < 1 \rightarrow \langle \alpha^* \rangle 0 \leq x < 1\right) \rightarrow (true \rightarrow \langle \alpha^* \rangle 0 \leq x < 1) \\ \hline \langle ^* \rangle & true \rightarrow \langle \alpha^* \rangle 0 \leq x < 1 \\ \hline \end{array}$$

$$\langle \underbrace{(x := 1; x' = 1^{d} \cup \underbrace{x := x - 1}_{\gamma})^{*}}_{\alpha} \rangle 0 \leq x < 1$$

Fixpoint style proof technique

 $\begin{array}{c} \mathbb{R} \\ & \forall x \left(0 \leq x < 1 \lor \forall t \geq 0 \ p(1+t) \lor p(x-1) \rightarrow p(x)\right) \rightarrow (true \rightarrow p(x)) \\ & \forall x \left(0 \leq x < 1 \lor \langle x := 1 \rangle \neg \exists t \geq 0 \ \langle x := x+t \rangle \neg p(x) \lor p(x-1) \rightarrow p(x)\right) \rightarrow (true \rightarrow p(x)) \\ & \forall x \left(0 \leq x < 1 \lor \langle x := 1 \rangle \neg \langle x' = 1 \rangle \neg p(x) \lor p(x-1) \rightarrow p(x)\right) \rightarrow (true \rightarrow p(x)) \\ & \forall x \left(0 \leq x < 1 \lor \langle x := 1 \rangle \neg \langle x' = 1 \rangle \neg p(x) \lor p(x) \rightarrow p(x)\right) \rightarrow (true \rightarrow p(x)) \\ & \forall x \left(0 \leq x < 1 \lor \langle \beta \rangle p(x) \lor \langle \gamma \rangle p(x) \rightarrow p(x)\right) \rightarrow (true \rightarrow p(x)) \\ & \forall x \left(0 \leq x < 1 \lor \langle \beta \rangle \gamma \rangle p(x) \rightarrow p(x)\right) \rightarrow (true \rightarrow p(x)) \\ & \forall x \left(0 \leq x < 1 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \leq x < 1 \rightarrow \langle \alpha^* \rangle 0 \leq x < 1\right) \\ & \forall x \left(0 \leq x < 1 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \leq x < 1 \rightarrow \langle \alpha^* \rangle 0 \leq x < 1) \\ & \forall x \left(0 \leq x < 1 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \leq x < 1 \rightarrow \langle \alpha^* \rangle 0 \leq x < 1\right) \\ & \forall x \left(0 \leq x < 1 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \leq x < 1 \rightarrow \langle \alpha^* \rangle 0 \leq x < 1\right) \\ & \forall x \left(0 \leq x < 1 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \leq x < 1 \rightarrow \langle \alpha^* \rangle 0 \leq x < 1\right) \\ & \forall x \left(0 \leq x < 1 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \leq x < 1 \rightarrow \langle \alpha^* \rangle 0 \leq x < 1\right) \\ & \forall x \left(0 \leq x < 1 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \leq x < 1 \rightarrow \langle \alpha^* \rangle 0 \leq x < 1\right) \\ & \forall x \left(0 \leq x < 1 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \leq x < 1 \rightarrow \langle \alpha^* \rangle 0 \leq x < 1\right) \\ & \forall x \left(0 \leq x < 1 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \leq x < 1 \rightarrow \langle \alpha^* \rangle 0 \leq x < 1\right) \\ & \forall x \left(0 \leq x < 1 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \leq x < 1 \rightarrow \langle \alpha^* \rangle 0 \leq x < 1\right) \\ & \forall x \left(0 \leq x < 1 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \leq x < 1 \rightarrow \langle \alpha^* \rangle 0 \leq x < 1\right) \\ & \forall x \left(0 \leq x < 1 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \leq x < 1 \rightarrow \langle \alpha^* \rangle 0 \leq x < 1\right) \\ & \forall x \left(0 \leq x < 1 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \leq x < 1 \rightarrow \langle \alpha^* \rangle 0 \leq x < 1\right) \\ & \forall x \left(0 \leq x < 1 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \leq x < 1 \rightarrow \langle \alpha^* \rangle 0 \leq x < 1\right) \\ & \forall x \left(0 \leq x < 1 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \leq x < 1 \rightarrow \langle \alpha^* \rangle 0 \leq x < 1\right) \\ & \forall x \left(0 \leq x < 1 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \leq x < 1 \rightarrow \langle \alpha^* \rangle 0 \leq x < 1\right) \\ & \forall x \left(0 \leq x < 1 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \leq x < 1 \rightarrow \langle \alpha^* \rangle 0 \leq x < 1\right) \\ & \forall x \left(0 \leq x < 1 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \leq x < 1 \rightarrow \langle \alpha^* \rangle 0 \leq x < 1\right) \\ & \forall x \left(0 \leq x < 1 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \leq x < 1 \rightarrow \langle \alpha^* \rangle 0 \leq x < 1\right) \\ & \forall x \left(0 \leq x < 1 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \leq x < 1 \rightarrow \langle \alpha^* \rangle 0 \leq x < 1\right) \\ & \forall x \left(0 \leq x < 1 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \leq x < 1 \rightarrow \langle \alpha^* \rangle 0 \leq x < 1\right) \\ & \forall x \left(0 \leq x < 1 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \leq x < 1 \rightarrow \langle \alpha^* \rangle 0 \leq x < 1\right) \\ & \forall x \left(0 \leq x < 1 \lor \langle \alpha \rangle \langle \alpha^* \rangle 0 \leq x < 1 \rightarrow \langle \alpha^* \rangle 0 \leq x$

Outline

- Learning Objectives
- 2 Hybrid Game Proofs
 - Soundness
 - Separations
 - Soundness & Completeness
 - Expressiveness
 - Repetitive Diamonds Convergence Versus Iteration
 - Example Proofs
- Differential Hybrid Games
 - Syntax
 - Example: Zeppelin
 - Differential Game Invariants
 - Example: Zeppelin Proof
- 4 Summary

CPSs are Multi-Dynamical Systems

CPS Dynamics

CPS are characterized by multiple facets of dynamical systems.

CPS Compositions

CPS combines multiple simple dynamical effects.

Descriptive simplification

Tame Parts

Exploiting compositionality tames CPS complexity.

Analytic simplification

CPSs are Multi-Dynamical Systems

hybrid systems

HS = discrete + ODE

stochastic hybrid sys.

SHS = HS + stochastics

distributed hybrid sys.

DHS = HS + distributed

hybrid games

HG = HS + adversary

$$e \geq \tilde{e} \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x P \mid \langle \alpha \rangle P \mid [\alpha] P$$

$$e \geq \tilde{e} \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x P \mid \langle \alpha \rangle P \mid [\alpha] P$$

(TOCL'17)

Definition (Differential hybrid game α)

$$x := e \mid ?Q \mid x' = f(x, y, z) \&^d y \in Y \& z \in Z \mid \alpha \cup \beta \mid \alpha; \beta \mid \alpha^* \mid \alpha^d$$

Definition (dGL Formula P

$$e \geq \tilde{e} \mid \neg P \mid P \land Q \mid \forall x P \mid \exists x P \mid \langle \alpha \rangle P \mid [\alpha] P$$

Demon controls $y \in Y$ Angel controls $z \in Z$ Demon chooses "first" Angel controls duration

Angel

avoid obstacles changing wind local turbulence

avoid obstacles changing wind local turbulence

$$c > 0 \land ||x - o||^2 \ge c^2 \rightarrow$$

$$[(v := *; o := *; c := *; ?C;$$

$$\{x' = v + py + rz\&^d y \in B\&z \in B\}$$

$$)^*] ||x - o||^2 \ge c^2$$

- \checkmark airship at $x \in \mathbb{R}^2$
- √ propeller p controlled in any direction y ∈ B, i.e., $y_1^2 + y_2^2 ≤ 1$
- imes sporadically changing homogeneous wind field $v \in \mathbb{R}^2$
- imes sporadically changing obstacle $o \in \mathbb{R}^2$ of size c subject to C
- imes continuously local turbulence of magnitude r in any direction $z \in B$

$$c > 0 \land ||x - o||^2 \ge c^2 \rightarrow$$

$$[(v := *; o := *; c := *; ?C; \{x' = v + py + rz \& y \in B \& z \in B\})^*] ||x - o||^2 \ge c^2$$

- If r > p
- If p > ||v|| + r
- If ||v|| + r > p > r

- ✓ airship at $x \in \mathbb{R}^2$
- √ propeller p controlled in any direction y ∈ B, i.e., $y_1^2 + y_2^2 ≤ 1$
- imes sporadically changing homogeneous wind field $u \in \mathbb{R}^2$
- imes sporadically changing obstacle $o \in \mathbb{R}^2$ of size c subject to C
- imes continuously local turbulence of magnitude r in any direction $z \in B$

$$c > 0 \land ||x - o||^2 \ge c^2 \rightarrow$$

$$[(v := *; o := *; c := *; ?C;$$

$$\{x' = v + py + rz\&^d y \in B\&z \in B\}$$

$$)^*] ||x - o||^2 \ge c^2$$

- \times If r > p hopeless turbulence
- If p > ||v|| + r
- If ||v|| + r > p > r

- \checkmark airship at $x \in \mathbb{R}^2$
- √ propeller *p* controlled in any direction y ∈ B, i.e., $y_1^2 + y_2^2 ≤ 1$
- imes sporadically changing homogeneous wind field $u \in \mathbb{R}^2$
- imes sporadically changing obstacle $o \in \mathbb{R}^2$ of size c subject to C
- \times continuously local turbulence of magnitude r in any direction $z \in B$

Zeppelin Obstacle Parcours

$$c > 0 \land ||x - o||^{2} \ge c^{2} \to [(v := *; o := *; c := *; ?C; \{x' = v + py + rz&^{d}y \in B\&z \in B\})^{*}] ||x - o||^{2} \ge c^{2}$$

✓ If
$$p > ||v|| + r$$
 super-powered prop

• If
$$||v|| + r > p > r$$

- \checkmark airship at $x \in \mathbb{R}^2$
- ✓ propeller *p* controlled in any direction $y \in B$, i.e., $y_1^2 + y_2^2 \le 1$
- imes sporadically changing homogeneous wind field $u \in \mathbb{R}^2$
- imes sporadically changing obstacle $o \in \mathbb{R}^2$ of size c subject to C
- imes continuously local turbulence of magnitude r in any direction $z \in B$

$$|c > 0 \land ||x - o||^{2} \ge c^{2} \to [(v := *; o := *; c := *; ?C; \{x' = v + py + rz&^{d}y \in B\&z \in B\})^{*}] ||x - o||^{2} \ge c^{2}$$

✓ If
$$p > ||v|| + r$$
 super-powered prop

? If
$$||v|| + r > p > r$$
 our challenge

- \checkmark airship at $x \in \mathbb{R}^2$
- $\sqrt{\ }$ propeller *p* controlled in any direction *y* ∈ *B*, i.e., $y_1^2 + y_2^2 \le 1$
- imes sporadically changing homogeneous wind field $v \in \mathbb{R}^2$
- imes sporadically changing obstacle $o \in \mathbb{R}^2$ of size c subject to C
- \times continuously local turbulence of magnitude r in any direction $z \in B$

Theorem (Differential Game Invariants)

DGI
$$\overline{F \rightarrow [x' = f(x, y, z)\&^{d}y \in Y\&z \in Z]F}$$

Theorem (Differential Game Refinement)

$$\overline{[x' = g(x, u, v)\&^g u \in U\&v \in V]F \to [x' = f(x, y, z)\&^g y \in Y\&z \in Z]F}$$

Theorem (Differential Game Invariants)

DGI
$$\overline{F \rightarrow [x' = f(x, y, z)\&^d y \in Y\&z \in Z]F}$$

Theorem (Differential Game Refinement)

$$\overline{[x'=g(x,u,v)\&^du\in U\&v\in V]F} \to [x'=f(x,y,z)\&^dy\in Y\&z\in Z]F$$

Theorem (Differential Game Invariants)

DGI
$$\overline{F \rightarrow [x' = f(x, y, z)\&^d y \in Y\&z \in Z]F}$$

Theorem (Differential Game Refinement)

$$\overline{[x'=g(x,u,v)\&^gu\in U\&v\in V]F} \to [x'=f(x,y,z)\&^gy\in Y\&z\in Z]F$$

DGI
$$\frac{\exists y \in Y \forall z \in Z [x' := f(x, y, z)](F)'}{F \rightarrow [x' = f(x, y, z) \& y \in Y \& z \in Z]F}$$

$$\overline{[x'=g(x,u,v)\&^gu\in U\&v\in V]F} \to [x'=f(x,y,z)\&^gy\in Y\&z\in Z]F$$

DGI
$$\frac{\exists y \in Y \forall z \in Z [x' := f(x, y, z)](F)'}{F \rightarrow [x' = f(x, y, z) \&^d y \in Y \& z \in Z]F}$$

$$\forall u \in U \exists y \in Y \forall z \in Z \exists v \in V \forall x (f(x, y, z) = g(x, u, v))$$

$$\overline{[x' = g(x, u, v)\&^d u \in U\&v \in V]F \to [x' = f(x, y, z)\&^d y \in Y\&z \in Z]F}$$

DGI
$$\frac{\exists y \in Y \forall z \in Z[x' := f(x, y, z)](F)'}{F \rightarrow [x' = f(x, y, z) \& y \in Y \& z \in Z]F}$$

$$\forall u \in U \exists y \in Y \forall z \in Z \exists v \in V \forall x (f(x, y, z) = g(x, u, v))$$

$$\overline{[x' = g(x, u, v)\&^{d}u \in U\&v \in V]F \to [x' = f(x, y, z)\&^{d}y \in Y\&z \in Z]F}$$

$$| DG|_{1 \le x^3} \vdash [x' = -1 + 2y + z \&^{d} y \in I \& z \in I]_{1 \le x^3}$$
where $y \in I \equiv -1 \le y \le 1$

DGI
$$\frac{\exists y \in Y \forall z \in Z [x' := f(x, y, z)](F)'}{F \rightarrow [x' = f(x, y, z) \& y \in Y \& z \in Z]F}$$

$$\forall u \in U \exists y \in Y \forall z \in Z \exists v \in V \forall x (f(x, y, z) = g(x, u, v))$$

$$[x' = g(x, u, v) \& du \in U \& v \in V]F \rightarrow [x' = f(x, y, z) \& dy \in Y \& z \in Z]F$$

$$\int_{\text{DGI}} \frac{\exists y \in I \forall z \in I[x':=-1+2y+z] 0 \leq 3x^2x'}{1 \leq x^3 \vdash [x'=-1+2y+z\&^d y \in I\&z \in I] 1 \leq x^3}$$
 where $y \in I \equiv -1 \leq y \leq 1$

where
$$y \in I \equiv -1 \le y \le 1$$

DGI
$$\frac{\exists y \in Y \forall z \in Z[x' := f(x, y, z)](F)'}{F \rightarrow [x' = f(x, y, z) \& y \in Y \& z \in Z]F}$$

$$\forall u \in U \exists y \in Y \forall z \in Z \exists v \in V \forall x (f(x,y,z) = g(x,u,v))$$

$$[x' = g(x, u, v) \& u \in U \& v \in V] F \rightarrow [x' = f(x, y, z) \& y \in Y \& z \in Z] F$$

DGI
$$\frac{\exists y \in Y \forall z \in Z[x' := f(x, y, z)](F)'}{F \rightarrow [x' = f(x, y, z)\&^{g}y \in Y\&z \in Z]F}$$

$$\forall u \in U \exists y \in Y \forall z \in Z \exists v \in V \forall x (f(x, y, z) = g(x, u, v))$$

$$\overline{[x' = g(x, u, v)\&^d u \in U\&v \in V]F \to [x' = f(x, y, z)\&^d y \in Y\&z \in Z]F}$$

$$\mathbb{R} \frac{ }{ \vdash \exists y \in I \forall z \in I 0 \leq 3x^{2}(-1+2y+z) }$$

$$\vdash \exists y \in I \forall z \in I [x' := -1+2y+z] 0 \leq 3x^{2}x'$$

$$\vdash \exists x^{3} \vdash [x' = -1+2y+z \& y \in I \& z \in I] 1 \leq x^{3}$$

DGI
$$\frac{\exists y \in Y \forall z \in Z [x' := f(x, y, z)](F)'}{F \rightarrow [x' = f(x, y, z) \& y \in Y \& z \in Z]F}$$

$$\forall u \in U \exists y \in Y \forall z \in Z \exists v \in V \forall x (f(x,y,z) = g(x,u,v))$$

$$[x' = g(x, u, v) \& u \in U \& v \in V] F \rightarrow [x' = f(x, y, z) \& y \in Y \& z \in Z] F$$

$$||I-m||^2 > 0 \vdash |m' = My, I' = Lz \&^d y \in B \& z \in B| ||I-m||^2 > 0$$

if
$$L < M$$

DGI
$$\frac{\exists y \in Y \forall z \in Z [x' := f(x, y, z)](F)'}{F \rightarrow [x' = f(x, y, z) \& y \in Y \& z \in Z]F}$$

$$\forall u \in U \exists y \in Y \forall z \in Z \exists v \in V \forall x (f(x, y, z) = g(x, u, v))$$

$$[x' = g(x, u, v)\&^d u \in U\&v \in V]F \to [x' = f(x, y, z)\&^d y \in Y\&z \in Z]F$$

$$\exists y \in B \, \forall z \in B \, [m' := My] [l' := Lz] (2(l-m) \cdot (l'-m') \ge 0)$$

$$||I-m||^2 > 0 \vdash [m' = My, l' = Lz \&^d y \in B \& z \in B] \, ||I-m||^2 > 0$$

DGI
$$\frac{\exists y \in Y \forall z \in Z [x' := f(x, y, z)](F)'}{F \rightarrow [x' = f(x, y, z) \&^d y \in Y \& z \in Z]F}$$

Theorem (Differential Game Refinement)

$$\frac{\forall u \in U \exists y \in Y \forall z \in Z \exists v \in V \forall x (f(x, y, z) = g(x, u, v))}{[x' = g(x, u, v) \& u \in U \& v \in V]F \rightarrow [x' = f(x, y, z) \& y \in Y \& z \in Z]F}$$

$$[x' = g(x, u, v)\&^{d}u \in U\&v \in V]F \to [x' = f(x, y, z)\&^{d}y \in Y\&z \in Z]F$$

$$\begin{array}{c|c}
\mathbb{R} & \vdash \exists y \in B \, \forall z \in B \, (2(I-m) \cdot (Lz - My) \geq 0) \\
[:=] & \vdash \exists y \in B \, \forall z \in B \, [m' := My][I' := Lz](2(I-m) \cdot (I' - m') \geq 0) \\
\mathbb{P}_{GI} & ||I-m||^2 > 0 \vdash [m' = My, I' = Lz\&^d y \in B\&z \in B] \, ||I-m||^2 > 0
\end{array}$$

if L < M

DGI
$$\frac{\exists y \in Y \forall z \in Z [x' := f(x, y, z)](F)'}{F \rightarrow [x' = f(x, y, z) \&^d y \in Y \& z \in Z]F}$$

$$\frac{\forall u \in U \exists y \in Y \forall z \in Z \exists v \in V \forall x (f(x, y, z) = g(x, u, v))}{[x' = g(x, u, v) \& u \in U \& v \in V]F \rightarrow [x' = f(x, y, z) \& y \in Y \& z \in Z]F}$$

$$[x' = g(x, u, v)\& u \in U\& v \in V]F \to [x' = f(x, y, z)\& y \in Y\& z \in Z]F$$

$$\mathbb{R} \frac{}{ \vdash \exists y \in B \forall z \in B(2(I-m) \cdot (Lz - My) \ge 0)} \\
\vdash \exists y \in B \forall z \in B[m' := My][l' := Lz](2(I-m) \cdot (l' - m') \ge 0) \\
\vdash \exists y \in B \forall z \in B[m' := My][l' := Lz](2(I-m) \cdot (l' - m') \ge 0)$$

if
$$L < M$$

DGV
$$\frac{\langle x'=f(x,y,z)\&^gy\in Y\&z\in Z\rangle g\geq 0}{\langle x'=f(x,y,z)\&^gy\in Y\&z\in Z\rangle g\geq 0}$$

$$\forall u \in U \exists y \in Y \forall z \in Z \exists v \in V \forall x (f(x, y, z) = g(x, u, v))$$

$$\overline{[x' = g(x, u, v)\&^d u \in U\&v \in V]P \to [x' = f(x, y, z)\&^d y \in Y\&z \in Z]P}$$

$$\forall u \in U \exists y \in Y \forall z \in Z \exists v \in V \forall x (f(x, y, z) = g(x, u, v))$$

$$\overline{[x' = g(x, u, v) \& l \ u \in U \& v \in V]P \to [x' = f(x, y, z) \& l \ y \in Y \& z \in Z]P}$$

DGV
$$\frac{\langle x'=f(x,y,z)\&^gy\in Y\&z\in Z\rangle g\geq 0}{\langle x'=f(x,y,z)\&^gy\in Y\&z\in Z\rangle g\geq 0}$$

$$\forall u \in U \exists y \in Y \forall z \in Z \exists v \in V \forall x (f(x, y, z) = g(x, u, v))$$

$$[x' = g(x, u, v)\&^d u \in U\&v \in V]P \to [x' = f(x, y, z)\&^d y \in Y\&z \in Z]P$$

DGV
$$\frac{\exists \varepsilon > 0 \,\forall x \,\exists z \in Z \,\forall y \in Y (g \leq 0 \to [x' := f(x, y, z)](g)' \geq \varepsilon)}{\langle x' = f(x, y, z) \& y \in Y \& z \in Z \rangle g \geq 0}$$

$$\forall u \in U \exists y \in Y \forall z \in Z \exists v \in V \forall x (f(x, y, z) = g(x, u, v))$$

$$\overline{[x' = g(x, u, v)\&^{d}u \in U\&v \in V]P \to [x' = f(x, y, z)\&^{d}y \in Y\&z \in Z]P}$$

$$\text{DGV } \frac{\exists \varepsilon > 0 \, \forall x \, \exists z \in Z \, \forall y \in Y (g \leq 0 \rightarrow [x' := f(x,y,z)](g)' \geq \varepsilon)}{\langle x' = f(x,y,z) \& y \in Y \& z \in Z \rangle g \geq 0}$$

$$\forall u \in U \exists y \in Y \forall z \in Z \exists v \in V \forall x (f(x, y, z) = g(x, u, v))$$

$$[x' = g(x, u, v) \& du \in U \& v \in V]P \rightarrow [x' = f(x, y, z) \& dy \in Y \& z \in Z]P$$

$$+ \langle x' = zx - yu, u' = zu + yx \&^d - 2 < y < 2 \& -1 < z < 1 \rangle 1 - x^2 - u^2 > 0$$

$$\text{DGV } \frac{\exists \varepsilon > 0 \, \forall x \, \exists z \in Z \, \forall y \in Y (g \leq 0 \rightarrow [x' := f(x,y,z)](g)' \geq \varepsilon)}{\langle x' = f(x,y,z) \& y \in Y \& z \in Z \rangle g \geq 0}$$

$$\forall u \in U \exists y \in Y \forall z \in Z \exists v \in V \forall x (f(x,y,z) = g(x,u,v))$$

$$[x' = g(x, u, v)\&^d u \in U\&v \in V]P \to [x' = f(x, y, z)\&^d y \in Y\&z \in Z]P$$

$$\begin{array}{l} \vdash \exists \varepsilon > 0 \, \forall x \, \forall u \, \exists -1 \leq z \leq 1 \, \forall -2 \leq y \leq 2 \, \left(1 - x^2 - u^2 \leq 0 \, \rightarrow \, [\underline{x'} :=][\underline{u'} :=] - 2x\underline{x'} - 2u\underline{u'} \geq \varepsilon\right) \\ \vdash \langle x' = zx - yu, u' = zu + yx\&^d - 2 \leq y \leq 2\& -1 \leq z \leq 1 \rangle \, 1 - x^2 - u^2 \geq 0 \end{array}$$

$$\text{DGV } \frac{\exists \varepsilon > 0 \, \forall x \, \exists z \in Z \, \forall y \in Y (g \leq 0 \rightarrow [x' := f(x,y,z)](g)' \geq \varepsilon)}{\langle x' = f(x,y,z) \& y \in Y \& z \in Z \rangle g \geq 0}$$

$$\forall u \in U \exists y \in Y \forall z \in Z \exists v \in V \forall x (f(x, y, z) = g(x, u, v))$$

$$\overline{[x' = g(x, u, v)\&^d u \in U\&v \in V]P \to [x' = f(x, y, z)\&^d y \in Y\&z \in Z]P}$$

$$\text{DGV } \frac{\exists \varepsilon > 0 \, \forall x \, \exists z \in Z \, \forall y \in Y (g \leq 0 \rightarrow [x' := f(x,y,z)](g)' \geq \varepsilon)}{\langle x' = f(x,y,z) \& y \in Y \& z \in Z \rangle g \geq 0}$$

$$\forall u \in U \exists y \in Y \forall z \in Z \exists v \in V \forall x (f(x, y, z) = g(x, u, v))$$

$$\overline{[x' = g(x, u, v)\&^d u \in U\&v \in V]P \to [x' = f(x, y, z)\&^d y \in Y\&z \in Z]P}$$

$$\overline{ \vdash \exists \varepsilon > 0 \, \forall x \, \forall u \, \exists -1 \leq z \leq 1 \, \forall -2 \leq y \leq 2 \, \big(x^2 + u^2 \geq 1 \, \rightarrow \, -2x(zx - yu) - 2u(zu + yx) \geq \varepsilon \big) }$$

$$\vdash \exists \varepsilon > 0 \,\forall x \,\forall u \,\exists -1 \leq z \leq 1 \,\forall -2 \leq y \leq 2 \, \left(1 - x^2 - u^2 \leq 0 \rightarrow [x' :=][u' :=] - 2xx' - 2uu' \geq \varepsilon\right)$$

$$\vdash \langle x' = zx - yu, u' = zu + yx \&^d - 2 \le y \le 2 \& -1 \le z \le 1 \rangle 1 - x^2 - u^2 \ge 0$$

avoid obstacles changing wind local turbulence

Zeppelin Obstacle Parcours

avoid obstacles changing wind local turbulence

Outline

- Learning Objectives
- 2 Hybrid Game Proofs
 - Soundness
 - Separations
 - Soundness & Completeness
 - Expressiveness
 - Repetitive Diamonds Convergence Versus Iteration
 - Example Proofs
- 3 Differential Hybrid Games
 - Syntax
 - Example: Zeppelin
 - Differential Game Invariants
 - Example: Zeppelin Proof
- Summary

differential game logic

$$dGL = GL + HG = dL + d$$

- Compositional PL + logic
- Discrete + continuous + adversarial
- Winning regions iterate $\geq \omega^{\omega}$
- Sound & rel. complete axiomatization
- Hybrid games > hybrid systems
- d radical challenge yet smooth extension
- Don't use systems thinking for games


```
André Platzer.
```

Logical Foundations of Cyber-Physical Systems.

Springer, Switzerland, 2018.

URL: http://www.springer.com/978-3-319-63587-3, doi:10.1007/978-3-319-63588-0.

Differential game logic.

ACM Trans. Comput. Log., 17(1):1:1-1:51, 2015. doi:10.1145/2817824.

Differential hybrid games.

ACM Trans. Comput. Log., 18(3):19:1–19:44, 2017. doi:10.1145/3091123.

André Platzer.

Logics of dynamical systems.

In *LICS*, pages 13–24, Los Alamitos, 2012. IEEE. doi:10.1109/LICS.2012.13.

André Platzer.

Logic & proofs for cyber-physical systems.

In Nicola Olivetti and Ashish Tiwari, editors, *IJCAR*, volume 9706 of *LNCS*, pages 15–21, Berlin, 2016. Springer. doi:10.1007/978-3-319-40229-1 3.

André Platzer.

Differential dynamic logic for hybrid systems.

J. Autom. Reas., 41(2):143-189, 2008. doi:10.1007/s10817-008-9103-8.

André Platzer.

A complete uniform substitution calculus for differential dynamic logic.

J. Autom. Reas., 59(2):219-265, 2017. doi:10.1007/s10817-016-9385-1.