

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + Make non-commercial use of the files We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + Maintain attribution The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + Keep it legal Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

A propos de ce livre

Ceci est une copie numérique d'un ouvrage conservé depuis des générations dans les rayonnages d'une bibliothèque avant d'être numérisé avec précaution par Google dans le cadre d'un projet visant à permettre aux internautes de découvrir l'ensemble du patrimoine littéraire mondial en ligne.

Ce livre étant relativement ancien, il n'est plus protégé par la loi sur les droits d'auteur et appartient à présent au domaine public. L'expression "appartenir au domaine public" signifie que le livre en question n'a jamais été soumis aux droits d'auteur ou que ses droits légaux sont arrivés à expiration. Les conditions requises pour qu'un livre tombe dans le domaine public peuvent varier d'un pays à l'autre. Les livres libres de droit sont autant de liens avec le passé. Ils sont les témoins de la richesse de notre histoire, de notre patrimoine culturel et de la connaissance humaine et sont trop souvent difficilement accessibles au public.

Les notes de bas de page et autres annotations en marge du texte présentes dans le volume original sont reprises dans ce fichier, comme un souvenir du long chemin parcouru par l'ouvrage depuis la maison d'édition en passant par la bibliothèque pour finalement se retrouver entre vos mains.

Consignes d'utilisation

Google est fier de travailler en partenariat avec des bibliothèques à la numérisation des ouvrages appartenant au domaine public et de les rendre ainsi accessibles à tous. Ces livres sont en effet la propriété de tous et de toutes et nous sommes tout simplement les gardiens de ce patrimoine. Il s'agit toutefois d'un projet coûteux. Par conséquent et en vue de poursuivre la diffusion de ces ressources inépuisables, nous avons pris les dispositions nécessaires afin de prévenir les éventuels abus auxquels pourraient se livrer des sites marchands tiers, notamment en instaurant des contraintes techniques relatives aux requêtes automatisées.

Nous vous demandons également de:

- + Ne pas utiliser les fichiers à des fins commerciales Nous avons conçu le programme Google Recherche de Livres à l'usage des particuliers. Nous vous demandons donc d'utiliser uniquement ces fichiers à des fins personnelles. Ils ne sauraient en effet être employés dans un quelconque but commercial.
- + Ne pas procéder à des requêtes automatisées N'envoyez aucune requête automatisée quelle qu'elle soit au système Google. Si vous effectuez des recherches concernant les logiciels de traduction, la reconnaissance optique de caractères ou tout autre domaine nécessitant de disposer d'importantes quantités de texte, n'hésitez pas à nous contacter. Nous encourageons pour la réalisation de ce type de travaux l'utilisation des ouvrages et documents appartenant au domaine public et serions heureux de vous être utile.
- Ne pas supprimer l'attribution Le filigrane Google contenu dans chaque fichier est indispensable pour informer les internautes de notre projet et leur permettre d'accéder à davantage de documents par l'intermédiaire du Programme Google Recherche de Livres. Ne le supprimez en aucun cas.
- + Rester dans la légalité Quelle que soit l'utilisation que vous comptez faire des fichiers, n'oubliez pas qu'il est de votre responsabilité de veiller à respecter la loi. Si un ouvrage appartient au domaine public américain, n'en déduisez pas pour autant qu'il en va de même dans les autres pays. La durée légale des droits d'auteur d'un livre varie d'un pays à l'autre. Nous ne sommes donc pas en mesure de répertorier les ouvrages dont l'utilisation est autorisée et ceux dont elle ne l'est pas. Ne croyez pas que le simple fait d'afficher un livre sur Google Recherche de Livres signifie que celui-ci peut être utilisé de quelque façon que ce soit dans le monde entier. La condamnation à laquelle vous vous exposeriez en cas de violation des droits d'auteur peut être sévère.

À propos du service Google Recherche de Livres

En favorisant la recherche et l'accès à un nombre croissant de livres disponibles dans de nombreuses langues, dont le français, Google souhaite contribuer à promouvoir la diversité culturelle grâce à Google Recherche de Livres. En effet, le Programme Google Recherche de Livres permet aux internautes de découvrir le patrimoine littéraire mondial, tout en aidant les auteurs et les éditeurs à élargir leur public. Vous pouvez effectuer des recherches en ligne dans le texte intégral de cet ouvrage à l'adresse http://books.google.com

RECUEIL

DE

DONNÉES NUMÉRIQUES.

OPTIQUE.

4

RECUEIL

DE

DONNÉES NUMÉRIQUES

PUBLIÉ

PAR LA SOCIÉTÉ FRANÇAISE DE PHYSIQUE.

OPTIQUE

PAR

H. DUFET,

MAITRE DE CONFÉRENCES A L'ÉCOLE NORMALE SUPÉRIEURE.

TROISIÈME FASCICULE.

POUVOIRS ROTATOIRES. - COULEURS D'INTERFÉRENCE - SUPPLÉMENT.

PARIS,

GAUTHIER-VILLARS, IMPRIMEUR-LIBRAIRE

DU BUREAU DES LONGITUDES, DE L'ÉCOLE POLYTECHNIQUE, Quai des Grands-Augustins, 55.

1900

THE NEW YORK
PUBLIC LIBRARY

720893 A ASTOR, LENOX AND TILDEN FOUNDATIONS R 1934 L

ORDRE DES MATIÈRES

DU TROISIÈME FASCICULE.

TABLE XVII. – Pouvoirs rotatoires des corps cristallisés.	- 4503
I. — Quartz.	
A. — Rotation produite par 1 ^{mm} pour la raie D	787 788
C. — Rotations pour les rayons infra-rouges	790
D. — Rotations pour les raies du spectre ultra-violet	79 1
E. — Rotations pour les « siltres à radiations » de Landolt	791
F. — Variation du pouvoir rotatoire avec la température	79 ²
II. — CHLORATE DE SODIUM.	
A. — Spectre visible	793
B. — Spectre ultra-violet	794
C. — Variation par la température	794
III. — Cristaux divers possédant le pouvoir rotatoire	795
Indications bibliographiques	798
TABLE XVIII. — Pouvoirs rotatoires des corps liquides ou dissous	799
APPENDICE A LA TABLE XVIII. — Pouvoirs rotatoires des vapeurs	1166
TABLE XIX. — Couleurs d'interférence.	
I Newton	1167
II Wertheim	116g
III Quincke	1170
IV. — ROLLET	1171
SUPPLÉMENT.	
TABLES II à V. — Longueur d'onde de la raie 1),	1173
Longueurs d'onde de raies métalliques	1174
TABLE VI Indices des gaz	1175
21am hate ADR 28 1934	

	Pages
TABLE VII. — Liquides remarquables	1176
TABLE VIII. — Indices des liquides.	
A. — Liquides inorganiques B. — Liquides organiques	
TABLE X. — Indices des dissolutions et mélanges.	
A. — Dissolutions aqueuses de solides	1217
TABLE XI. — Indices de quelques solides remarquables.	
I. — CALCITE.	
A. — Spectre visible	1219
II. — QUARTZ.	
A. — Spectre visible et infra-rouge	
III. — FLUORINE	1223
TABLE XII. — Indices de verres	1224
TABLE XIII. — Propriétés optiques des solides inorganiques.	
A. — Minéraux	
TABLE XIV. — Propriétés optiques des solides organiques	1240
TABLE XV. — Influence de la température sur les propriétés optiques des solides	
TABLE XVI. — Indices des métaux et dispersion anomale	1256
TABLE XVIII. — Pouvoirs rotatoires des corps liquides ou dissous	1257
TITRES DÉVELOPPÉS DES OUVRAGES OU RECUEILS CITÉS	1 3 05

Note. — Les Tables XVII et XVIII sont closes pour fin décembre 1898 : le Supplément pour fin décembre 1899.

TABLE XVII.

POUVOIRS ROTATOIRES DES CORPS CRISTALLISÉS.

Cette Table donne les rotations spécifiques, c'est-à-dirc les rotations produites par une épaisseur de 1^{mm}, en degrés et fractions décimales de degré. Les indications bibliographiques se trouvent à la fin de la Table.

I. - QUARTZ.

A. - Rotation produite par 1^{mm} pour la raie I).

	ROTATION.	TEMPÉRATURE.	ROTATION pour 20°C.	OBSERVATEURS.
	20,98	?	<i>"</i>	Bior.
;	21,67	?	"	Brocii.
	21,67	?	"	STEFAN.
ļ	21,76	12"	21,78	Fizeau.
i i	21,64	?	"	PAPE.
•	21,73	150	21,745	Mascart.
	21,597	o°	21,657	Von Lang (2).
į	21,727	210	21,724	In. (3).
	21,658	O°	24,719	JOUBERT.
(1) $\begin{cases} D_1 \dots \\ D_2 \dots \end{cases}$	21,684 } 21,727 } 21,727		21,706	
(Na	21,727	20"	21,727	
$\binom{2}{D_2}$	21,727 21,696 } 21,724 } 21,721		21,710	JL. Sorer et Sarasin.
(Na	21,721	!	21,721	
	21 ,72	20"	21,72	LE CHATELIER.
(¹)	21,719	20°	21,719	CH. SORET et GUYE.
· I	21,7182	20"	21,718	Gumlich (1).

⁽¹⁾ Quartz gauche nº II des auteurs.

Moyenne pour 20^{oC}..... 21,718

⁽²⁾ Quartz droit n° IV des auteurs.

⁽³⁾ Nême quartz que le précédent.

B. — Rotations pour les raies du spectre visible.

HUSSEL.	9	12,73	15.82	17,41	21,75	27,53	. :		32,69		ž	:		42,58	47,48 (admis)	51,23			
LE CHATELIER.		:	. .	17,25	21,72		28,62	30,78		•	*	39,24	*	:	*	•	*		
WASASTJERNA.			15,63	17,17	21,67	27,41	28,48	*	32,60	35,68	37,97	*	40,74	42,67	47,69	*	`		
SORET et SARASIN. $l=20^{\circ}$.	0,7	30.	15,746	17,312	21,690	27,540	*		32,761	:	·	•	`	42,586	47,486	51,187	52,155	[Moyenne	des 2 séries]
SOHNCKE.	! 	:		17,24	21,66	27,55	"	"	32,69		"	:	*	42,61	"	"	"		
VON LANG (3.	:	:		17,30	21,73		\	*	32,72	*	*	*					``		
STEFAN.	*	*	15,55	17,22	21,67	27,46	*	×.	32,69	ž	Ľ	*	*	42,37	,	50,98	*		
BROCH.	*	:	15,30	17,25	21,67	27,47	- -	`	32,50		*	•	"	43,30		<u> </u>	"		
LONGUEURS d'onde.	44 5 09r	718.5	6,589	656,3	589,6	527,0	518	200	486,1	466,8	453,3	44 8	438,4	430,9	410,2	396,9	393,4		
RAIES.			A		D ₁	E	<i>b</i>	"	<u>ب</u>	d	36 в	*		 5	h	H	X		

RAIES.	F IZEAU. (=12°.	MASCART. /=15°.	VON LANG (2).
Li	16 ["] ,7 21,76	21,73	16,40
Tl	"	26,65	26,53

RAIES.	LONGUEURS d'onde.	
	μμ	0
<i>Li</i>	670,8	16,535
C	556,3	17,313
<i>Н</i> g	579,0	22,546
<i>Hg</i>	576,9	22,718
<i>Hg</i>	546,1	25,532
Cd 4	508,6	29,724
<i>Hg</i>	491,6	31,967
Cd5	480,0	33,667
<i>Hg</i>	435,8	41,548
<i>IIg</i>	404,7	48,930

GUMLIOH (2) $[t=20^{\circ}]$.

C. — Rotations pour les rayons infra-rouges.

LONGUEURS d'onde.	nyssel.	CARVALLO.	MOREAU	нсре.	DONGIER
μμ Λ) 760,5	12,67(admis)	·	,	·	, , ,
	1	,,	,,	"	12,59
761	"	· · · · · · · · · · · · · · · · · · ·	"	11,44	, ,
800	,,	,	. "	, , , ,	11,11
810		· •	,,	"	,
822	10,94	,,	10,28	"	,,
842	!	, ,,	"	,,	,,
848 868	10,17	· · · · · · · · · · · · · · · · · · ·	"	,,	9,63
	ļ '	,,	"	"	, ,
899 033	9,12 8,47	 ,,	,,	••	"
933	, 4 /	"	"	"	8,14
940	,,	,,	7,95	"	"
944	"	,,	"	7,25	"
1 000 1 005	7,23	,,	,,	"	"
1 005	"	",	"	"/	6,66
1 057	,, i	6,18	"	,,	,,,
1037	, , , , , , , , , , , , , , , , , , ,	"	5,95	"	,,
1 1 2 6	,,	',	5,53	,,	
	,,	,	4,99	",	5,18
1 170 1 200	"	,,	"	4.95	,,
	,,	"	4,21	"	. "
1 244 1 369	,,	,,	"	"	3,70
1 400		<i>"</i>	,,	3,62	"
1 405	"	3,43	"	"	,,
1 419	,,	"	3,12	"	"
1 543	,,	"	2,32	••	"
1 600	! ! "	,,	"	2,76	! "
1 704	,,	2,28	,,	"	, ,,
1715	,,	,,	1,83	"	"
1 744	"	"	"	"	2,22
1 900	,,	"	,,	ı,8 ₇	"
1 980	'• " "	,,	,,	1,53	"
2 000	,,	"	.	1,29	,,
2030	,,	1,60	"	"	"
2090	,,	,,,,,,	,,	0,58	,,
2 200	i ,,	,,	"	- 1	1,66

•

D. — Rotations pour les raies du spectre ultra-violet.

Soret et Sarasin. (Moyenne des deux séries.) $[t = 20^{\circ}.]$

RAIES.	LONGUBURS d'onde.	ROTATIONS.	RAIES.	LONGUBURS d'onde.	ROTATIONS.
	·				
	μµ	o		լւμ	U
k	393,4	52, 155	"	μμ 330,5	77,609
L	382,0	55,625	$\mathbf{Q} \cdot \dots$	328,7	78,589
"	381,4	55,954	Cd 12	325	80,459
M	372,8	58,885	R	318,o	84,982
Cd 9	361,1	63,249	Cd 17	274,8	121,057
N	358,1	64,459	Cd 18	257,3	143,248
Cd 10	346,7	69,454	Cd 23	231,3	190,426
0	344,1	70,588	Cd 24	226,6	201,797
Cd 11	340,3	72,448	Cd 25	219,5	220,711
P	336,o	74,581	Cd 26	214,4	235,972
"	335,5	74,753			

E. — Rotations du quartz pour les « filtres à radiations » de Landolt.

(Ber. d. D. ch. Ges., t. XXVII, p. 2872; 1894).

couleurs.	ROTATION.	d'onde calculées (1).
		μμ
jaune	16°,78 21 ,49	666,0 592,0
vert	26,85	533,1
bleu clair	32,39	488,6
bleu fonce;	39,05	448,3

⁽¹) D'après les nombres de Soret et Sarasin, rapportées à $\lambda_{B_1} = 589^{\mu\mu}$, 6.

Voir au verso.

	DISSOLVANT.	C GR. pour 100ec.	ÉPAISSEUR.	!
rouge	Eau	0,005	unm 20	Chlorhydrate de hexaméthyl-p-rosaniline [violet cristallin 5BO].
	Id.	10	20	Chromate de potassium.
jaune	Id.	30	20	Sulfate de nickel [SO4Ni 7H2O].
	Id.	10	15	Chromate de potassium.
	Iđ.	0,025	15	Permanganate de potassium.
vert	Id.	60	20	Chlorure de cuivre [CuCl ² + 2 H ² O].
	Id.	10	20	Chromate de potassium.
bleu clair	Id.	0,02	20	Vert double SF.
	Id.	15	20	Sulfate de cuivre [SO'Cu + 5H2O].
bleu foncé	Id.	0,005	20	Violet cristallin 5BO.
	Id.	15	20	Sulfate de cuivre.

F. — Variation du pouvoir rotatoire avec la température.

Variation apparente, non corrigée de la dilatation.

$$\rho = \rho_0(1 + \alpha t).$$

Constant pour toutes les couleurs.
$$\begin{array}{l} \alpha = 0,000119 & (\text{de 11}^{\circ},5 \text{ à 72}^{\circ}) \\ \alpha = 0,000149 & (\text{de 20}^{\circ} \text{ à 100}^{\circ}) \\ \alpha = 0,000149 & (\text{de 20}^{\circ} \text{ à 100}^{\circ}) \\ \alpha = 0,000146324 + 0,07329 \ell & (\text{entre 15}^{\circ} \text{ et 173}^{\circ}) \\ \alpha = 0,000149 & (\text{de 0}^{\circ} \text{ à 100}^{\circ}) \\ \alpha = 0,000149 & (\text{de 0}^{\circ} \text{ à 350}^{\circ}) \\ 182 & (\text{de 0}^{\circ} \text{ à 350}^{\circ}) \\ 186 & (\text{de 0}^{\circ} \text{ à 448}^{\circ}) \\ 198 & (\text{de 0}^{\circ} \text{ à 840}^{\circ}) \\ 11 & (\text{de 840}^{\circ} \text{ à 1500}^{\circ}) \end{array}$$

Raie Cd 24. $\alpha = 0,000179$ (vers 20")
(J. Soret et Sarasin).

793

TABLE XVII. — POUVOIR ROTATOIRE DES CORPS CRISTALLISÉS.

Pour toutes couleurs
$$\int_{0}^{2} \frac{\alpha = 0,000096 + 0,0^{6} 207 t \text{ (entre o'' et 570'') (1)}}{\Delta \rho = 0,043 \rho'' \text{ (variation brusque à 570'')}}$$

$$\lambda = 0^{\mu}, 279.$$
Raie D.
$$\alpha = 0,00014419 + 0,0000003496t \text{ (entre - 70'' et + 20'')}}$$
(Ch. Soret et Guye).

Pour le spectre visible...
$$\alpha = 0,000131+0,0^6195t$$
 (entre 0° et 100°)

[Gumlich (2)].

Remarque. — Ces résultats sont relatifs à la variation apparente; pour avoir la variation vraie, il faut retrancher de a le coefficient moyen de dilatation suivant l'axe donné par les formules

$$\delta = 0,00000711 + 0,08856t$$
(Benoit).

 $\Delta l = l_0(0,0068)$ (variation brusque à 570°)
 $l_t = l_0[1,0162 - 0,0000009(t - 570)]$
(LE CHATELIER).

II. — CHLORATE DE SODIUM.

A. — Spectre visible.

Jaune moyen..... ± 3°,6 (MARBACII).

RAIES.	LONGUEURS	SOHNCKE. '	GUYE.
MAIES.	d'onde.	l=21°.	t == 20".
	μμ	:	()
<i>a</i>	718,5	"	2,070
B	686,9	2 ′,38	2,273
C	656,3	2,52	2,503
$\mathbf{D_1}$	589,6	3 46	3,128
$\mathbf{D_2}$	589,0	3,16	3,132
E	527,0	3,96	3,944
F	486,1	4,61	4,670
$\mathbf{G} \dots$	430,9	5,89	6,005
h	410,2	"	6,675
H	396,9	6,86	7,174
K	393,4	"	7,306

⁽¹⁾ Le Mémoire donne 217 au lieu de 207; il paraît y avoir eu une faute d'impression : la valeur admise est mieux d'accord avec les résultats calculés et la formule (2).

⁽²⁾ Formule corrigée d'une faute d'impression évidente (0,165 au lieu de 1,165).

B. — Spectre ultra-violet.

(GUYE) 1 = 20°.

RAIES.	LONGUEURS d'onde.			RAIES.	LONGUEURS' d'onde.	
	₋ բե	U			μμ	•
L	382,0	7,772	,	P	336,o	10,019
M	372,8	8,158		$Q \dots$	328,7	10,461
Cd 9	361,1	8,686	·	Cd 12	325,o	10,674
N	358,1	8,836		R	318,0	11,155
Cd 10	346,7	9,439		Cd 17	274,8	14,075
0	344,1	9,568		Cd 18	257,3	14,727
Cd 11	340.3	9.800	ļ i		- -	

C. — Variation avec la température.

$$\frac{dp}{dt} = -0,00061 \text{ (toutes couleurs) [de 20° à 100°]}$$

$$0,000624 \text{ (Raie D)}$$

$$576 \text{ (Raie G)} [t = 0° à 30°]$$

$$572 \text{ (Raie L)}$$
(Guyk).

III. — CRISTAUX DIVERS POSSÉDANT LE POUVOIR ROTATOIRE.

RAIE ou couleur.	ROTATI	on spécifique	. OBSERVATEURS.
jaune moyen	<u>+</u>	1,8	MARBACH (1).
D	-	1,48	TRAUBE (1).
[D		25,o	DES CLOIZEAUX (2)
jaune moyen	<u>±</u>	2,8	MARBACH (1).
D		2,17	TRAUBE (1).
blanc	+	0,875	Von Seherr-Thoss
В	+	0,455	- ;
D	' !	0,65	1
jaune moyen		0,73	
G		1,818	i
Li	! -:-	1,68	HINTZE.
D j	· 	2,07	
Tl		2,47	
D		1,88	TRAUBE (3).
D		1,33	TRAUBE (3).
Li			Bodewig (1).
Tl		17,07	
	ou couleur. jaune moyen jaune moyen jaune moyen B jaune moyen G Li D Tl D	ou couleur. Jaune moyen ±	Document Cotation specifique

Chlorate de sodium. Voir même Table (II), p. 793.

Chromate de lithium et sulfate de potassium. Voir Sulfatochromate.

DONNÉES NUMÉRIQUES. — OPTIQUE.

NOM DU CORPS.	RAIE ou couleur.	ROTATION SPECIFIQUE.	OBSERVATEURS.
Cinabre.	rouge	260 [1 ^{mm} cinabre équivaut à 16 ^{mm} quartz]	DES CLOIZEAUX (1).
Diacétylphénolphtaléine. C ²⁰ H ¹² () ¹ (C ² H ³ ()) ²	Li D	17,1 19,7 23,8	Bodewig (2).
Hyposulfate de calcium. S ² O ⁶ Ca + 4H ² O	vert	2,09	Рарв.
Hyposulfate de plomb. S ² O ⁶ Pb + 4H ² O	C D E F	4,09 5,53 7,25 8,88	Раре.
	' D	± 5,21 [1 ^{mm} équivaut à 0 ^{mm} ,24 quartz]	Віснат.
	jaune λ = 556	6,338	Bödlander.
Hyposulfate de potassium. S ² O ⁶ K ²	C D E F	6,18 8,39 10,51 12,33	PAPE.
	D	== 8,7 [1 ^{mm} équivaut à 0 ^{mw} ,40 quartz]	Віснат.
Hyposulfate de strontium.	vert	1,64	Рарк.
S ² O ⁶ Br 4H ² O	D	1,74 [1"" équivaut à omm,08 quartz]	Віснат.
	jaune λ = 556	= 1,826 (moy.)	Bödlander.
Malate acide de zinc. $(C^4 H^5 O^5)^2 Zn + 2 H^2 O$	D	_ 3,02	TRAUBE (4).

NOM DU CORPS.	RAIE on coulent	ROTATION SPECIFIQUE.	OBSERVATEURS.
Periodate de sodium. 10ºNa + 3H²O	G D E F G	± 19,4 23,3 28,5 34,2 47,1	GROTH.
Quartz. Voir même Table (1), p. :	787.		
de potassium 12 Tu O^3 , $S_1 O^2$, 2 $K^2 O + 18 H^2 O$	D	14,4	WYROUBOFF (3)
Succinate (C15 H23 Az2 O2)2 C4 H4 O4 + 6 H4 O	l D	士 3° à 4°	Wувоционе (1).
Sulfate d'éthylènediamine. (Az²H¹; C²H¹)SOʻH²	D	15,48	Von Lano (1).
Sulfate de lithium et potassium. SO'K Li	D	± 2,6 2,8	WCLFF.
Sulfate de strychnine. (C21H22Az2O2)2SO4H2+6H2O	rouge	± 3,44 — 10 ½ [1*** équivaut à 0***,66 quartz] — 13,25	DES CLOIZEAUX (1).
Sulfatochromate de lithium et potassium. SO'K Li + CrO'K Li	D	± 1,93	TRAUBE (1).
Sulfoantimoniate de sodium. Na ³ SbS ⁴ + 9H ³ O	jaune moyen	± 2,67	MARBACH (2).
Tartrate d'antimonyle et cinchonine. (C''H'2'Az''O)'(SbO)'(C'H'O')' +5H'2O	B	÷ 9,79	Taxuus (4).
Tartrate (dextro-) de césium. (C'll'O')Cs2	Ъ	14,1 à 19°,0	TRAUBE (3).

NOW DU CORPS.	RAIE ou couleur.	ROTATION SPECIFIQUE.	OBSERVATEURS.
Tartrate (dextro-) de rubidium.	D	— 10°,7	Wyrouboff (2).
de l'acide droit] (C'H'O')Rb2	D	- 10,24	TRAUBE (3).
Id. (lévo-).	Ð	÷ 10,5	Wyrouboff (2).
[de l'acide gauche]	D	10,12	TRAUBE (3).

Indications bibliographiques.

```
BIGHAT (Comptes rendus, t. LXXVII, p. 1189; 1873).
Вют (Mem. Acad. des Sc., t. XX, p. 284; 1840).
Bodewig (1) (Pogg. Ann., t. CLVII, p. 121; 1876).
   In.
          (2) (Gr. Zeits, f. Kryst., t. I. p. 72; 1877).
BODLÁNDER (Inaug. Dissert., Breslau, 1882).
BROCH (Dove Repert. d. Phys., t. VII, p. 113; 1846).
CARVALLO in DONGIER (Voir DONGIER).
DES CLOIZEAUX (1) [ Ann. de Chim. et Phys. (3 s.), t. LI, p. 361; 1857].
                (2) (Comptes rendus, t. LXVIII, p. 309; 1869).
DONGIER [ Ann. de Chim. et Phys. (7° s.), t. XII, p. 889; 1898].
Fizkau [ Ann. de Chim. et Phys. (4" s.), t. II, p. 176; 1864].
GROTH (Pogg. Ann., t. CXXXVII, p. 133; 1869).
GUMLICH (1) (Zeits. f. Instr.-k., t. XVI, p. 97; 1896).
         (2) (Wied. Ann., t. LXIV, p. 333; 1898).
GUYE (C.-E.) [ Arch. de Genève (3° Pér.), t. XXII, p. 130; 1889 ].
HINTER ( Pogg. Ann., t. CLVII, p. 127; 1876).
HUPE (Progr. d. Realsch. zu Charlottenburg; 1894).
HUSSEI. ( Wied. Ann., t. XLIII, p. 498; 1891).
JOUBERT | Journ. de Phys. (1" 8.), t. VIII, p. 5; 1879].
Von LANG (1) [Sitzb. Akad. Wien., t. LXV (II), p. 30; 1872].
    lo.
           (2)
                        ld.,
                                    t. LXXI (II), p. 707; 1875].
    ln.
           (3)
                        Id.,
                                    t. LXXIV (II), p. 269; 1876].
LE CHATELIER (Bull. Soc. Minér., t. XIII, p. 119; 1890).
MARBACH (1) (Pogg. Ann., t. XCIV, p. 412; 1855).
   ID.
          (2) (
                    Id.,
                            t. XCIX, p. (51; 1856).
MASCART [ Ann. de l'Éc. Norm. sup. (2° 8.), t. I, p. 209; 1872].
Moreau [ Ann. de Chim. et Phys. (6' s.), t. XXX, p. 505; 1893].
PAPE ( Pogg. Ann., t. CXXXIX, p. 224; 1870).
Von Seherr-Thoss in Traube (Gr. Zeits. f. Kr., t. XXIII, p. 583; 1894).
SOHNCKE ( Wied. Ann., t. III, p. 516; 1878).
SORET (CH.) et GUYE (C.-E.) [ Arch. de Genève (3° Pér.), t. XXIX, p. 242; 1893).
SORRT (J.-L.) et SARASIN [Arch. de Genève (3º Pér.), t. VIII, p. 5; 1882].
STEFAN [ Sitzb. Akad. Wien, & L (11), p. 380; 1864].
TRAUBE (1) (Landolt et Börnstein, Tabellen, 2' éd.).
         (2) [N. Jahrb. f. Min.; 1894 (1) p. 178].
         (3) (Sitzb. Akad. Berlin, p. 195: 1895).
   lo.
         (4) (N. Jahrb., Beil.-B. XI, p. 623, 1898).
   lo.
WASASTJERNA (Ocfv. Finska Vet. Soc. Förhandl., t. XXXI, p. 167: 1888-89).
WULFF (Gr. Zeits. f. Kr., t. XVII, p. 595; 1890).
WYROUBOFF (1) [Ann. de Chim. et Phys. (7" 8.), t. I, p. 89; 1894)].
             (2) (Bull. Soc. Minér., t. XVII, p. 78; 1894).
   ID.
   lo.
             (3) (
                          Id.,
                                     t. XIX, p. 249; 1896).
```

TABLE XVIII.

POUVOIRS ROTATOIRES DES CORPS LIQUIDES OU DISSOUS.

Cette Table donne les pouvoirs rotatoires spécifiques des corps liquides ou dissous, définis par les relations

$$[\alpha] = \frac{\alpha}{ld}$$

pour les corps liquides, et

$$[\alpha] = \frac{100 \alpha}{lc}$$
 ou $[\alpha] = \frac{100 \alpha}{lpd}$,

pour les corps dissous.

Dans ces formules, sont désignés par

- z, l'angle de rotation exprimé en degrés sexagésimaux et fractions décimales de degré;
- l, la longueur du tube d'observation, en décimètres;
- d, la densité par rapport à l'eau à 40°C.;
- c, le nombre de grammes du corps actif contenus dans 100cc du mélange;
- p, le nombre de grammes du corps actif contenus dans 100gr du mélange.

Dans la Table, le sens de la rotation est indiqué par le signe + pour les corps dextrogyres, et par le signe - pour les corps lévogyres. La température de l'observation et la raie pour laquelle a été mesuré le pouvoir rotatoire sont données par le symbole $[\alpha]_{\lambda}^{\ell}$ ($[\alpha]_{D}^{20}$, mesure faite à 20°C pour la raie D). La lettre j désigne la couleur complémentaire de la teinte sensible.

La première colonne contient le nom et la formule du corps, la seconde le pouvoir rotatoire $[\alpha]_{\lambda}^{c}$; la troisième donne la densité des corps liquides observés sans dissolvant inactif, ou, pour les corps dissous, le nom du dissolvant, et la teneur, exprimée par c ou p, ou par q, qui est égal à 100 — p, et désigne par conséquent le nombre de grammes du dissolvant inactif pour 100 gr

de la dissolution. Enfin la quatrième colonne contient les indications bibliographiques.

Les corps sont rangés par ordre alphabétique (voir l'introduction à la Table VIII, p. 112). On devra de plus tenir compte de la remarque suivante : c'est le corps actif qui-compte quand il est séparable; ainsi Sulfate de quinine se trouvera à Quinine (sulfate de); Acétylquinine se trouvera à Acétyl.... Quelques exceptions à cette règle ont paru utiles; ainsi Diacétyltartrate de... se trouvera à -tartrate (Diacétyl-) de...; elles sont indiquées par des renvois.

Abisinthol. C19 H18 O2 Absinthol. C19 H18 O2 Acétochlorhydrose. C4 H1 (C2 H2 O) C5 C1 Acétonitrose. C5 H18 (C2 H2 O) C1 C2 C2 C3 C4 C5 C4 C5
Acétochlorhydrose. $[\alpha]_{j} \rightarrow 147^{\circ}$ $[\alpha]_{$
C*H¹(C²H³O)*O³Cl p. 402, 1870}. Acétonerhamnoside. [α]²* + 17°, 45 Eau ($p = 9$ à 8) E Fracher (Ber. d. B. Ges., t. XXVIII, p. 1895). Acétonitrose. [α]/ + 159° Colley (C. B., t. LX) C*H²(C²H²O)*O³. AzO³ [α]/ + 159° Colley (C. B., t. LX) P. 437; 1873). P. 437; 1873).
C ² H ¹⁶ O ³ Acétonitrose. C ⁶ H ¹ (C ² H ² O) ⁶ O ³ , AzO ³ [2] _f + 159° [2] _f + 159° [3] _f + 159° [4] _f + 159° [5] [6] Colley (C. B., t. LX3 p. 437; 1873).
C*H ² (C ² H ² O) ⁴ O ³ , AzO ³ [13] ⁷ [18] ³ [18]
t = 315 $t = 4 + 9 + 1$ Alcool on $t = 4 + 4 + 4 + 3 + 1$ Henry (Lich Ann. 2.0)
$C^{19}H^{21}(C^{2}H^{2}O)Az^{2}O \begin{bmatrix} z \end{bmatrix}_{0}^{15} - 6z^{0}, 8 \\87^{\circ}, 9 \end{bmatrix} \xrightarrow{\text{Alcool 97 }^{0}/_{0}} (c = 2) \xrightarrow{\text{Hisse}(Lieb. Ann., 1.0)} \\87^{\circ}, 9 \xrightarrow{\text{Eau} + 3 \text{H Cl (ad.)}} \begin{bmatrix} p. 338; 1880 \\ p. 338; 1880 \end{bmatrix}$
Acètylapocinchonine. $[\alpha]_0^{15} = 71^{\circ}, 4$ Alcool 97 $^{6}/_{0}$ (c = 2) $[^{1d}$., p. 33g. $+97^{\circ}, 9$ Eau + 3 II Cl (id.)
Acetylapoquinamine. $[\alpha]_{b}^{15} \pm o^{\alpha} Alcool 97\%, Eau+10 H Cl (c-2) Id., t. CCVII, p. 388; i31°, 2 Eau+10 H Cl (c-2) Id., t. CCVII, p. 388; i31°, 2 Eau+10 H Cl (c-2) Id., t. CCVII, p. 388; i31°, 2 Eau+10 H Cl (c-2) Id., t. CCVII, p. 388; i31°, 2 Eau+10 H Cl (c-2) Id., t. CCVII, p. 388; i31°, 2 Eau+10 H Cl (c-2) Id., t. CCVII, p. 388; i31°, 2 Eau+10 H Cl (c-2) Id., t. CCVII, p. 388; i31°, 2 Eau+10 H Cl (c-2) Id., t. CCVII, p. 388; i31°, 2 Eau+10 H Cl (c-2) Id., t. CCVII, p. 388; i31°, 2 Eau+10 H Cl (c-2) Id., t. CCVII, p. 388; i31°, 2 Eau+10 H Cl (c-2) Id., t. CCVII, p. 388; i31°, 2 Eau+10 H Cl (c-2) Id., t. CCVIII, p. 388; i31°, 2 Eau+10 H Cl (c-2) Eau+10 H Cl (c-2) Eau+10 H Cl (c-2) Ea$
Voir (Acétyl-). Voir (Acétyl-).
$C^{19}H^{22}(C^{2}H^{2}O)Az^{2}O = \begin{bmatrix} (\alpha)_{0}^{1} - 2q^{\alpha}, 5 & Alcool 97^{4}/_{6} (c = 2) \\ (2)_{0}^{13} - 50^{\alpha}, 9 & Eau + 3HCl (id.) \end{bmatrix}^{Id., t. CCXIV, p. 13 188}$
Acétylcinchonidine. [z] ₀ ¹³ - 38°,4 Alcool 97 °/, (c = 2) Id., t. CCV, p. 319, 188 S1°,3 Eau + 3HCl (id.) -66°,6 Eau + HCl (id.)
Acétyleinchonine. [2] ¹³ + 114°.1 Alcool 97°/ ₆ (c = 2) Id., p. 321. C = H ²¹ (C ² H ² O) Az ² O = 139°.5 Eau + 3H Cl (id.)
Acétyl-d-conicine. $ [z]_{b}^{16} + 34^{\circ}, 2 $ Pur. $d^{16} = 0.9616$ LADENBURG (Ber. d. D. Ges., t. XXVI, p. 1893).

DONNÉES NUMÉRIQUES. — OPTIQUE.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Acétylhomocincho- nidine. C ¹⁹ H ²¹ (C ² H ³ O)Az ² O	$[\alpha]_{\mathfrak{b}}^{12} - 34^{\circ}, 0$ $- 72^{\circ}, 5$ $- 61^{\circ}, 1$	Alcool 97% ($c = 2$) Eau \div 3HCl (id.) Eau \div HCl (id.)	HESSE (<i>Lieb. Ann.</i> , t. CCV, p. 320; 1880).
Acétylhydrochlorapo- cinchonidine. C ¹⁹ H ²² (C ² H ³ O)ClAz ² O	$[\alpha]_0^{15} - 54^{\circ}, 3$	Eau + 3HCl (c == 2)	<i>Id.</i> , p. 353.
Acétylhydrochlorapo- cinchonine. C ¹⁹ H ²² (C ² H ³ O) Cl Az ² O		Alcool 97 % (c = 2) Eau = 3HCl (id.)	<i>Id.</i> , p. 35 į.
Acétylhydro- cinchonine. C ¹⁹ H ²³ (C ² H ³ O) Az ² O		Alcool absolu (c == 3) Eau + 3HCl (id.)	
Acétylhydroquinine. C ²⁰ H ²⁵ (C ² H ³ O) Az ² O ²	$[\alpha]_{b}^{15}-73^{\circ},9$	Eau 3 H Cl (c -: 3)	ID. (Id., t. CCXLI, p. 255; 1887).
Acétyllactate Voir -la			
α. Acétylméthocodéine. C ¹⁹ H ²² (C ² H ³ O) Az O ³	[a] ¹⁷ 96°, 3	Alcool 99 % (c == 2,70)	KNORR (Ber. d. D. ch. Ges t. XXVII, p. 1146; 1894).
3. Id.	$[\alpha]_{\nu}^{17} + 413^{\circ}, 9$	Id. (c : 0,80)	
a. Acétylméthocodéine (iodométhylate de). [C ¹⁹ H ²² (C ² H ³ O) Az O ³] CH ³		Id. (c = 0,59)	Id.
β. Id.	$ [\alpha]_b^{17} + 257^{\circ}, 6$	ld. (id.)	
Acétylphénylglycolate méthylique. C ¹¹ H ¹² O ⁴ == C ⁶ H ³ . CH . CO O CH ³	[2] _D — 146°, 37	Pur. d = 1,1546	WALDEN (Zeits. f. physik. Ch., t. XVII, p. 712; 1895).
O-CO-CH ³			
Acétylphénylglycolique (acide). C ¹⁰ H ¹⁰ O ¹ == C ⁶ H ⁵ .CH.CO OH O.CO.CH ³		Acetone (c = 5,33)	Id., p. 713.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Acétylquinidine. C ²⁰ H ²³ (C ² H ³ O) Az ² O ²		Alcool 97°/ $_{0}$ ($c = 2$) Eau + 3 Cl (id.)	HESSE (Lieb. Ann., t. CCV, p. 310; 1880).
Acétylquinine. C ²⁶ H ²³ (C ² H ³ O) Az ² O ²	$[\alpha]_{\nu}^{15}$ — 54°,3 —114°,8	Alcool 97% ($c = 2$) Eau + 3 H Cl (id.)	Id., p. 317.
Achroodextrine. Voir Dex	ktrine.		
Achrooglobine. (α) Sang des Patella. (β) Sang des Chiton. (γ) Sang des Tuniciers.	[α] _n 48° 55° 63°		GRIFFITHS (C. R., t. CXV; 1892) (α) p. 259. (β) p. 474. (Υ) p. 738.
Aconine. C ²⁶ H ⁴¹ Az O ¹¹	$\left[\alpha\right]_{0}^{15}+23^{\circ}$	Eau ($p = 3,53$)	Dunstan et Passmore (J. of chem. Soc., t. LXI, p. 400; 1892).
Aconine (chlorhydrate d'). (C ²⁶ H ⁴¹ Az O ¹¹) H Cl	$[\alpha]_{D}^{15}-7^{\circ},71$	Eau ($p = 5,75$)	Id., p. 398.
Aconitine. C ^{3,1} H ⁴⁵ Az O ¹²	$\begin{array}{ } [\alpha]_{D}^{20} + 11^{\circ}, 10 \\ [\alpha]_{D}^{23} + 11^{\circ}, 01 \end{array}$	Alcool $(c = 2,75)$ id. $(c = 3,00)$	DUNSTAN et INCB (J. of chem. Soc., t. LIX, p. 280: 1891).
Aconitine (bromhydrate d').	$ \begin{vmatrix} [\alpha]_{0}^{20} - 30^{\circ}, 47 \\ - 31^{\circ}, 3 \end{vmatrix} $	id. $(c = 5, 18)$	Id.
(C ³³ H ⁴⁵ AzO ¹²)HBr+2½H ² O	$[\alpha]_{\text{b}}-29^{\circ},65$	id. $(p = 1,95)$	DUNSTAN et UMNEY (Id., t. LXI, p. 391; 1892).
Aconitine (chlorhydrate d'). (C ³² H ⁴⁵ Az O ¹²) H Cl	[a] _b — 35°,89	Eau	JÜRGENS (Pharm. Zeits. f. Rüssland, t. XXIV, p. 721; 1885).
Aconitine (Iso-). Voir Iso	aconitine.		
Albuminate de potassium. (Alb. des œufs non coagulée). (Id. coag. et redissoute). (Alb. du sérum).	1	Solution de potasse	Hoppe-Seyler (Zeits. f. anal. Ch., t. III, p. 424: 1864).
Albuminate de sodium.	[α] _b —55°	Solution de soude	HAAS (Arch. f. ges. Physiol., t. XII, p. 378; 1876) 51

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.	
Albumine.	[\alpha] ₀ 35", 5	Eau (c sans influence)	Hoppe-Seyler (Zeits. f.	
1º Albumine des œufs	37",7	Id. (traitée par HCl)	anal. Ch., t. III, p. 424:	
	[a] _b —38°, o8	Eau	HAAB (Arch. f. ges. Physiol., t. XII, p. 378; 1876).	
	$[\alpha]_{D}$ — 37", 79	Eau	STARKE (Jahr. f. Forts. d. Thierchemie, 1881; p. 17).	
Soluble dans une solution de)		Bondzyński et Zoja (<i>Zeits.</i>	
sulfate d'ammonium con- centrée.		c=3,75	f. physiol. Ch., t. XIX, p. 11; 1894).	
Id. demi-saturée.	— 34°,30	c := 8,59		
Id. étenduc.	— 25°, 13			
Id. (sans cendres)	[α] ₀ —54°,6	Eau + HCl ($c = 0.136$)	Bülow (Arch. f. ges. Phy-	
	— 46°, 2	Id. $(c = 0, 265)$	siol., t. LVIII, p. 219;	
		d Id. neutral. par Na OH	1894).	
	· - 77°,5	(c=0,136)		
	— 5a°,5	(c = 0,265)		
	97°,6	Id. + Na Cl ($c = 0,136$)		
	55", 9	Id. $(c = 0, 265)$		
2º Albumine du sérum.	[7] - 56°	! Eau	Hoppe-Sryler (loc. cit.).	
I TELDULINIO AU COLUMN		Id. saturée de Na Cl		
,	•	Acide acétique très ét.		
	; /·	L —		
	— 78 ", 7	Coagulée et redissoute par IICl		
	[2] _D — 55", 75	Eau	HAAS (loc. cit.).	
	å 62°	(
(du sang de chien).	[a] ₀ 44°	Eau	FRÉDÉRICQ (<i>C. R.,</i> t. XCIII, p. 465; 1881).	
(du sang de cheval).	$\frac{[\alpha]_{D}-57^{\circ},3}{}$	Eau $(p = 1,5 å 2,8)$		
			Starke (loc. cit.).	
[liquides séreux (homme)]	$[\alpha]_{D}$ — 62°,6 à 64°,59	Id.		
Alb. cristallisée (3° crist.) [Sérum de cheval]	{ [α] ₀ — 62°,6	Eau (p = 2,07)	SEBELIEN (Zeits. f. physiol. Ch., t. IX, p. 439; 1885).	
Id. plus pure	$ \begin{cases} [\alpha]_{0} - 62^{\circ}, 6 \\ -60^{\circ}, 1 \end{cases} $	Id. $(p = 2,34)$		
	[2] _b —61° à 64°	Eau $(p=3)$	MICHEL (Verh. d. physik med. Ges., t. XXIX, n. 3).	

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
3° Albumine du lait.	[α] ₆ — 36°, 8 moyenne	Eau (p = 2 à 4)	SEBELIEN (loc. cit.).
4º Albumine végétale, sans cendres (du blé)	[2] _D — 72°, 6 – 88°, 7 — 54°, 6 — 31°, 0	Eau + H Cl (c = 0, 102) Id. (c = 0, 287) Id. neutralisée par Na OH (c = 0, 102) Id. id. + Na Cl (id.)	Bülow (loc. cit.).
(des pois)	[2] _b - 83°, 7 - 62°, 0 - 60°, 2	Eau + H Cl (c = 0,534) Id. neutralisée par Na OH (id.) Id. id. + Na Cl (id.)	
-albumine (Para-) [des kystes de l'ovaire].	[α] _υ —59° à —64°	Liquide des kystes	Hoppe-Seyler (loc. cit.)
Albumine chlorhydrique (2* H156 S Az ²² O ³⁹) H2O + H0	B. [α] _b — 64°, 4	Eau ou sol. acide	PANORMOF (Journ. Soc phys chim. russe, t XXVII, p. 158; 1895).
Albumine chlorhydrique (C*H1*6SAz*2O**) H2O+H0 Albumose. Voir Hémialk		Eau ou sol. acide	PANORMOF (Journ. phys chim. russe) XXVII, p. 158; 1895

Amidon soluble. Voir Dextrine.

Amidosuccinate d'ammonium.

C'H''Az²O' = CH².COO AzH'

CH-COO

$$|-AzH^3|$$

Eau ($c = 5 \text{ à } 1,25$)

Eau ($c = 5 \text{ à } 1,25$)

Eau ($c = 5 \text{ à } 1,25$)

Eau ($c = 5 \text{ à } 1,25$)

Alc. méth. à 75 °/o

($c = 1,25$)

Walden et Lutz (Ber. d. D. ch. Ges., t. XXX, p. 2796; 1897).

DONNÉES NUMÉRIQUES. — OPTIQUE.

POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	observateurs.
$[\alpha]_{b}+9^{n},7$	Eau (c = 3)	Id.
[α] ₀ — 48°,51		Pesci (Gazz. chim. ital. t. XVIII, p. 219; 1888)
[a] _j — 35°, 51	Eau	BOUCHARDAT (C. R., t XXIX, p. 1174; 1849).
(ac. dr., alc. g.)	Pur. $d_4^{20} = 0,8631$	WALDEN (Zeits. f. physik. Ch., t. XV, p. 650; 1894).
[a] _b +5°,64		GUYE et GOUDET (C. R. t. CXXI, p. 827; 1895).
4°, 36 (ac. dr., alc. in.)		
+ 1°,54 (ac. in., alc. g.)		
	Pur. $d^{16,2} = 0,8688$	GUYE et GUERCHGORINE [Arch. de Genève (4° Pér.). t. IV, p. 208; 1897].
$[\alpha]_{n}^{16,2}+1^{\circ},28$	Pur. $d^{16,2} = 0,8653$	ld., p. 209.
	Pur. $d^{16,2} = 0.8656$	-
	rotatoire spécifique. [α] ₀ + 9°, 7 [α] ₀ - 48°, 51 [α] ₀ + 7°, 01 [α] ₀ + 5°, 64 (Id.)	rotatoire spécifique. [α] _b + 9°,7 Eau (c : 3) [α] _b - 48°,51 Eau [α] _b + 7°,01 Pur. $d_4^{2.0}$ = 0,8631 (ac. dr., alc. g.) [α] _b + 5°,64 (Id.) -+ 4°,36 (ac. dr., alc. in.) + 1°,54 (ac. in., alc. g.)

POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
$[\alpha]_{b}^{20} + 6^{\circ}, 56$	Pur. $d_4^{20} = 0.8765$	WALDEN (Zeits, f. physik. Ch., t. XV, p. 644; 1894).
$[\alpha]_{b}^{21} + 6^{\circ}, 66$ $[\alpha]_{b}^{22} + 5^{\circ}, 87$	$d^{21}=0,8644$	M ¹¹ • WBLT [Ann. de Ch. et de Phys. (7° 8.), t. VI, p. 134; 1895].
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pur. d ²⁵ = 0,8744	<i>ld.</i> , p. 133.
$[\alpha]_{666}^{28.5} + 5^{\circ}, 45$	Pur. d ^{28,5} = 0,8766	MELIKIAN (<i>Thèse</i> , Gonève, 1896). [<i>Voir</i> Table XVII (I, E)].
	Pur. d ^{16,2} = 0,8688	Guye et Guerchgorine (loc. cit., p. 208).
	Pur. $d^{16,2} = 0.8650$	Id.
$[\alpha]_{a}^{20} + 8^{\circ}, 53$	Pur. $d_4^{20} = 0,9146$	WALDEN (Zeits. f. physik. Ch., t. XV, p. 645; 1894).
$[\alpha]_0^{20} + 8^\circ, 44$ $[\alpha]_0^{54} + 7^\circ, 64$	Id. $d^{20} = 0,9149$	Mile WELT (loc. cit., p. 132).
	$[\alpha]_{b}^{20} + 6^{\circ}, 56$ $[\alpha]_{b}^{21} + 6^{\circ}, 66$ $[\alpha]_{b}^{22} + 5^{\circ}, 87$ $[\alpha]_{b}^{15} + 5^{\circ}, 92$ $[\alpha]_{666}^{28.5} + 5^{\circ}, 45$ $[\alpha]_{666}^{28.5} + 5^{\circ}, 45$ $[\alpha]_{666}^{28.5} + 5^{\circ}, 45$ $[\alpha]_{b}^{28.5} + 6^{\circ}, 71$ $[\alpha]_{b}^{28.5} + 5^{\circ}, 45$ $[\alpha]_{b}^{28.5} + 5^{\circ}, 45$ $[\alpha]_{b}^{28.5} + 5^{\circ}, 45$ $[\alpha]_{b}^{28.5} + 5^{\circ}, 87$ $[\alpha]_{b}^{16.2} + 1^{\circ}, 87$ $[\alpha]_{b}^{16.2} + 1^{\circ}, 87$	$\begin{bmatrix} \alpha \end{bmatrix}_{b}^{20} + 6^{\circ}, 56 & \text{Pur. } d_{4}^{20} = 0,8765 \\ \hline \begin{bmatrix} \alpha \end{bmatrix}_{b}^{21} + 6^{\circ}, 66 \\ [\alpha]_{b}^{12} + 5^{\circ}, 87 & d^{21} = 0,8644 \end{bmatrix}$ $\begin{bmatrix} \alpha \end{bmatrix}_{b}^{25} + 6^{\circ}, 71 & \text{Pur. } d^{25} = 0,8744 \\ \hline \begin{bmatrix} \alpha \end{bmatrix}_{b}^{15} + 5^{\circ}, 92 & \text{Pur. } d^{28,5} = 0,8766 \\ \hline \begin{bmatrix} \alpha \end{bmatrix}_{b}^{28,5} + 5^{\circ}, 45 & \text{Pur. } d^{28,5} = 0,8766 \\ \hline \begin{bmatrix} \alpha \end{bmatrix}_{b}^{28,5} + 5^{\circ}, 45 & \text{Pur. } d^{28,5} = 0,8766 \\ \hline \begin{bmatrix} \alpha \end{bmatrix}_{b}^{28,5} + 9^{\circ}, 05 \\ \hline \begin{bmatrix} \alpha \end{bmatrix}_{b}^{16,2} + 1^{\circ}, 87 & \text{Pur. } d^{16,2} = 0,8688 \end{bmatrix}$ $\begin{bmatrix} \alpha \end{bmatrix}_{b}^{16,2} + 1^{\circ}, 87 & \text{Pur. } d^{16,2} = 0,8688 \\ \hline \begin{bmatrix} \alpha \end{bmatrix}_{b}^{16,2} + 2^{\circ}, 104 & \text{Pur. } d^{16,2} = 0,8650 \\ \hline \end{bmatrix}$

Amylacétylacétate éthylique.	$[\alpha]_{5}^{20}+12^{\circ},14$	Pur. $d_4^{20} = 0,9455$	WALDEN (loc. cit., p. 646).
$C_2 H_{11}$ $C_1 H_{30} O_3 =$ $C_{11} H_{30} O_3 =$	$[\alpha]_{p}^{21} + 7^{\circ}, 71$ (moy.)	$d^{21} = 0.94 \text{ (moy.)}$	Mn. WELT (loc. cit., p. 131).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Amylacétyle (chlorure d'). C'H''3 O Cl = C'H''5 CH.CH'2.CH'2.CO Cl	$[\alpha]_{b}^{1^{*},3}+2^{\circ},40$	$d^{17,5} = 0,9787$	GUYE et GUERCHGURINE (loc. cit., p. 206).
Amylamine. C ⁵ H ¹³ Az =	[a] _b - 4°,55	do - 0,7725	PLIMPTON (C. R., t. XCII, p. 531; 1881).
C ² H ⁵ CH. CH ² . Az II ²	$\frac{[\alpha]_{0}^{20}-1^{\circ},58}{[\alpha]_{0}^{61,1}-1^{\circ},67}$	$d^{2\theta} = 0.766$	Do Amaral [Arch. de Ge- nève (3° Pér.), t. XXXIII. p. 434; 1895].
	$\begin{array}{ c c }\hline [\alpha]_{b}^{18}-o^{\circ},87\\ [\alpha]_{b}^{62}-o^{\circ},99\end{array}$	d ¹⁸ 0,799	
Amylamine (acétate d') (C'H''3Az)C''H''O''	·[[2]],8 — 1",98	Eau (c = 13,60)	CARRARA et GENNARI [R. C. dei Lincei (5° 8.), t. III, 2° 80m., p. 325; 1894].
Amylamine (propionate d'). (C ⁵ H ¹³ Az) C ³ H ⁶ O ²	[α] ^{21,0} — 1",86	Eau (c = 14,48)	<i>Id</i> .
Amylamine (sulfate d') (C ⁵ H ¹³ Az) ² SO ⁴ H ²	· [x] _b ^{20,6} — 2", 17	Eau (c = 12,915)	Id.
Amyl(i.)amylique (éther) $C^{10}H^{22}O = C^{2}H^{5} CH.CH^{2}.O$ $CH^{3} CH(CH^{3})^{2}$	•	Pur. d = 0,774	GUYE et CHAVANNE (C. R., t. CXX, p. 452; 1895).
Amylane (2). C ⁶ H ¹⁰ O ⁵	[a]j — 24°		O'SULLIVAN (J. of chem. Soc., t. XLI, p. 24; 1882).
Id . (β).	[α] <i>j</i> — 72°	!	
Amylbenzylique (éther) C ¹² H ¹⁸ O = C ² H ² CH ₃ CH ₂ CO.CH ² .C ⁶ H		Pur. d = 0,911	GUYE et CHAVANNE [Bull Soc. chim. (3° s.), t. XV p. 304; 1896)].

NON ET FORMULE.	POUVOIR rotatoire specifique	DISSOLVANT BT TENEUR	observateurs.
Amyl(n.)butylique (6ther). C'H''O == C'H'' CH: CH''.O.(CH'')'CH'' CH:	$[\alpha]_0^{2^2} \div 1^n,33$	Pur d ²² = 0,798	GLYB et CHAVANNE (loc cit., p. 303).
Amyl(i.)butylique (éther). C*H**O — C*H*.	[a] ₀ + 1°,3 + 1°,4		FREUNDLER [Bull. Soc chim. (3-8.), t. XI, p. 479* [1894]
CH, CH, CH, O.	$[\alpha]_{0}^{11} + 0^{\circ}, 96$	Pur. d = 0,773	GUYE et CHAVANNE (toc. ett., p. 304)
CH ² . CH (CH ²) ²	$[x]_{646} - 0^{\circ}, 78$ $0 + 0^{\circ}, 91$ $2 + 638 - 1^{\circ}, 22$ $2 + 889 - 1^{\circ}, 34$ $2 + 648 - 1^{\circ}, 90$ $(t = 16^{\circ} + 19^{\circ})$	' •	Guye et Jordan (C. R., t. CXXII, p. 88;, 1896). Poir Table XVII, I. E -
Amyloarvacrylique (éther). C'' H''() = C'' H''() C'' H''() (C'' H''()	$[x]_{n}^{16} + 4^{n},01$	Pur. d ¹⁹ = 0,955	Mile WBLT (Ann. de Ch. et Phys. (7° 6.), t. VI. p. 141; 1892].
Amyleétylique (éther). C ²¹ H ⁴⁴ O == C ³ H ¹¹ ,O.C ¹⁶ H ²²	$[\alpha]_{\mathfrak{p}}^{22} + \mathfrak{o}^{\circ}, 3\mathfrak{t}$	Pur. d = 0,805	GUYE of CHAVANNE (loc cit., p. 304).
$C^{12}H^{11}O = \underbrace{C^{1}H^{11}O}_{(11)}C^{4}H^{1}CH^{2}$	[a] ₀ ¹ + 3°, 86	Pur. d ²⁶ == 0,9839	Mile Welt [Ann. de Ch. et Phys. (7° 8.), t. VI, p. 138 ot 140, 1835].
Id. (m.). C*H**.O.C*H*.CH**	[a] ²² + 3°,93	Pur. d22 0,9422	
Id. (p.). C'H''.O.C'H',CH'	[2],19 4",26	Pur. d'1 = 0,9393	

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	OBSERVATEURS.
Amyle (bromure d'). C ² H ⁵ CH.CH ² Br	$[\alpha]_{0}^{13} + 3^{\circ}, 5$	Pur. d ¹⁵ 1,225	LE BEL [Bull. Soc. chim. (2° s.), t. XXV, p. 545; 1876].
CH	$[\alpha]_{b}^{18} = 2^{\circ}, 51$ $[\alpha]_{b}^{61,9} = 2^{\circ}, 07$	d ¹⁸ =: 1,404	Do Amaral [Arch. de Ge- nève (3° Pér.), t. XXXIII, p. 434; 1805].
	$[\alpha]_{666} \div 2^{\circ}, 0$	d = 1,209	GUYE et JORDAN (C. R. t. CXXII, p. 884; 1896). Voir Table XVII, (I. E)].
Amyle (chlorure d'). C ⁵ H ¹¹ Cl	[a] ¹⁵ 1°, 24	Pur. $d^{15} = 0,886$	LE BEL (loc. cit.).
Amyle (chlorure d') sece	ondaire. Voir L	féthylpropylcarbino	l (chlorhydrine du)
Amyle (chlorure d') secential de la secential			LE BEL (toc. cit.).
	ondaire. Voir \mathbf{A} $\frac{[\alpha]_{0}^{15} + 5^{\circ}, 4}{[\alpha]_{0}^{20} \rightarrow 2^{\circ}, 43}$		LR BEL (loc. cit.).
Amyle (iodure d').	$[a]_0^{15} + 5^{\circ}, 4$	Pur. d ¹⁵ - 1,54	LR BEL (toc. cit.). Just (Lieb. Ann., t. CCXX,
Amyle (iodure d').	$\frac{[\alpha]_{0}^{15} + 5^{\circ}, 4}{[\alpha]_{0}^{20} + 2^{\circ}, 43}$	Pur. $d^{15} = 1,54$ $d_4^{20} = 1,538$	LR BEL (loc. cit.). Just (Lieb. Ann., t. CCXX, p. 146; 1883). WALDEN (Zeits, f. physik.
Amyle (iodure d'). C'H'I	$\frac{[\alpha]_{0}^{15} + 5^{\circ}, 4}{[\alpha]_{0}^{20} + 2^{\circ}, 43}$ $[\alpha]_{0}^{20} + 4^{\circ}, 55$	Pur. $d^{15} = 1,54$ $d^{20} = 1,538$ $d = 1,48$	LR BEL (loc. cit.). JUST (Lieb. Ann., t. CCXX p. 146; 1883). WALDEN (Zeits, f. physik Ch., t. XV, p. 647; 1894) Mollo Velt [Ann. de Ch. e Phys., (7° 8.), t. VI, p 119; 1895].
Amyle (iodure d'). C'H'I	$ \frac{[\alpha]_{0}^{15} + 5^{\circ}, 4}{[\alpha]_{0}^{20} + 2^{\circ}, 43} $ $ [\alpha]_{0}^{20} + 4^{\circ}, 55 $ $ [\alpha]_{0}^{20} + 3^{\circ}, 77 $ $ [\alpha]_{0}^{22} - 3^{\circ}, 67 $ $ [\alpha]_{0}^{64,6} + 3^{\circ}, 13 $	Pur. $d^{15} = 1,54$ $d^{20} = 1,538$ $d = 1,48$	LR BEL (loc. cit.). JUST (Lieb. Ann., t. CCXX p. 146; 1883). WALDEN (Zeits, f. physik Ch., t. XV, p. 647; 1894) Mollo Velt [Ann. de Ch. e. Phys., (7° 8.), t. VI, p.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	OBSERVATEURS.
Amylglycolate amylique.	$[\alpha]_{b}^{2^{\bullet}} 3^{\circ}, 02$ (ac.act.; alc. act.)	Pur. d ²⁰ == 0,922	GUYE et GAUTIER [Bull, Soc. chim., (3° s.), t. XIII, p. 461; 1895].
$C_{15}H_{11} \cdot O \cdot CH_{5} \cdot CO \cup C_{2}H_{11}$	$[\alpha]_{b}^{18,5} + o^{o}, 78$ (ac. rac.; alc. act.)	$d^{18,5}=0,923$	
	$[\alpha]_{D}^{19} + 2^{\circ}, 48$ (ac.act.; alc. rac.)	$d^{19} = 0,917$	
Amylique (acétate). $C^{7}H^{14}O^{2}=$	[α] ²⁰ 2",5ο	Pur. $d_4^{26} = 0.8734$	WALDEN (Zeits. f. physik. Ch., t. XV, p. 643; 1894).
CH3.COO.C5H1t	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$d^{18} = 0,872$	Do Amaral (loc. cit.). [Guye et Chavanne (loc. cit.).]
	$[\alpha]_{666} + 2^{\circ}, 04$ $[\alpha]_{666} + 2^{\circ}, $	d = 0,8763	GUYE et JORDAN (C. R., t. CXXII, p. 884; 1896). [Voir Table XVII, I.E].
Amylique (aconitate tri-). CH ² .COOC ⁵ H ¹¹ C ²¹ H ³⁶ O ⁶ C - COOC ⁵ H ¹¹ CH.COOC ⁵ H ¹¹	$[\alpha]_0^{20} + 6^{\circ}, 16$	Pur. d ₄ ²⁰ == 1,0029	WALDEN (Zeits. f. physik. Ch., t. XX, p. 578; 1896).
Amylique (alcool). C ⁵ H ¹² O =	[a] _v — 1°, 8	Pur	ERLENMEYER et HELL (Lieb. Ann., t. CLX, p. 283; 1871).
CH3 CH · CH2 OH	[a] ₀ -1°,1	Pur	PIERRE et PUCHOT (C. R., t. LXXVI, p. 1332; 1873).
	$\left[\alpha\right]_{D}$ — 5°,6 à 5°,7	Pur	LE BEL [Bull. Soc. chim. (2° S.), t. XXI, p. 542; 1874].
	$[\alpha]_{b}^{22} 5^{\circ}, 2$	Pur. $d^{22} = 0.818$	ROGERS (J. of chem. Soc., t. LXIII, p. 1132; 1893).
Voir la suite au verso.	$[\alpha]_{D}^{21}-4^{\circ},29$	$d^{21}=0,8153$	GOLDSCHMIDT et FREUND (Zeits. f. physik. Ch., t. XIV, p. 395; 1894).

NON ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
	$[\alpha]_{b}^{16} - 4^{\circ}, 52$ $[\alpha]_{b}^{16} - 4^{\circ}, 12$	Pur. d. = 0,819	Do Amaral (loc. cit.).
	$\begin{array}{c} [\alpha]_{b}^{16} - 4^{\circ}, 52 \\ [\alpha]_{b}^{11} - 4^{\circ}, 12 \\ [\alpha]_{b}^{99} - 4^{\circ}, 10 \end{array}$	Pur	GUYE et Mile ASTON (C. R., t. CXXIV, p. 196; 1897).
	$[\alpha]_{b}^{19} 5^{\circ}, 1$ $- 4^{\circ}, 4$ $- 4^{\circ}, 1$ $- 4^{\circ}, 1$	Benzène $(c = 0.973)$ Id. $(c = 2.022)$	ID. (id., t. CXXV, p. 819: 1897).
	$[\alpha]_{b}^{11} - 4^{\circ}, 62$ $- 4^{\circ}, 11$ $- 4^{\circ}, 10$ $- 4^{\circ}, 02$ $- 4^{\circ}, 15$	Id. $(c = 26,62)$	FRANKLAND et PRICE (J. of chem. Soc., t. LXXI. p. 260; 1897).

Amylique (alcool) secondaire. Voir Méthylpropylcarbinol.

Amylique (amylacétate). Voir Amylacétate amylique.

C2 H3. CH Br. COO C5 H11

Amylique (amylglycolate). Voir Amylglycolate amylique.

Amylique (amylmalonate). Voir Amylmalonate amylique.

Amylique (benzoate). $C^{12}H^{16}O^2 = C^6H^5.COO.C^5H^{11}$	$ [\alpha]_{D}^{22} + 4^{\circ}, 96 $	Pur. $d = 0,998$	GUYB et CHAVANNE (C. R., t. CXX, p. 452; 1895).
G-n-o- = G-ncoo.G-n-	$[\alpha]_{666} + 4^{\circ}, 01$ $\beta_{666} + 4^{\circ}, 0$	d=0,988	Guye et Jordan (C. R. t. CXXII, p. 884; 1896). [Voir Table XVII (I. E).
	$ \begin{array}{c c} [\alpha]_{b}^{17} \div 5^{\circ}, 13 \\ [\alpha]_{b}^{99} \div 4^{\circ}, 23 \\ [\alpha]_{b}^{131} \div 3^{\circ}, 83 \\ [\alpha]_{b}^{180} \div 3^{\circ}, 56 \end{array} $	Pur	GUYE et M ¹¹ • ASTON (C. R. t. CXXIV, p. 196; 1897)
Amylique (n bromobutyrate). $C^9 H^{17} Br O^2 =$	$[\alpha]_{b}^{20} \div 2^{\circ}, 27$	Pur. $d_4^{20} = 1,1899$	WALDEN (Zeits. f. physik Ch., t. XV, p. 647; 1894)

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	. OBSERVATEURS.
Amylique (ibromobutyrate). C'H''BrO'= (CH'')':CBr.COOC'H''	$[\alpha]_{\nu}^{20}+2^{\circ},53$	Pur. $d_4^{2\theta} = 1,1851$	Id.
Amylique (bromofumarate di-). C'' H"BrO' = C'H"OOC.CBr !! CH.COOC'H"	$[\alpha]_{D}^{20} + 5^{\circ}, 99$	Pur. $d_4^{20} = 1,1683$	WALDEN (loc. cit., t. XX, p. 381; 1896).
Amylique (bromomaléate di-). C''H ²³ BrO'= CBr-COOC ⁵ H'' CH -COOC ⁵ H''		Pur. d20 - 1,1561	Id.
Amylique (nbutyrate)	$[\alpha]_{b}^{20}+2^{\circ},97$	Pur. d20 ::: 0,8685	Id., t. XV, p. 644; 1894.
$C^9H^{18}O^2 = CH^3. CH^2. COOC^5H^{11}$	$[\alpha]_{D}^{20}+2^{0},81$	$d_4^{20}=0,8690$	Id., t. XX, p. 573; 1896.
	$[\alpha]_{b}^{17}+2^{\circ},76$	$d^{11} = 0,8632$	GUYE [Bull. Soc. chim. (3°s.), t. XI, p. 1111; 1894].
	$[\alpha]_{D}^{20} + 2^{\circ}, 69$ $[\alpha]_{D}^{65,6} + 2^{\circ}, 54$	$d_1^{20} = 0,862$	GUYE et CHAVANNE (id., t. XV, p. 281; 1896).
Amylique (ibutyrate). $C^{2}H^{18}O^{2} =$	$[\alpha]_{\mathfrak{b}}^{2\mathfrak{o}}+2^{\mathfrak{o}},83$	Pur. $d_4^{20} = 0,8662$	WALDEN (loc. cit., t. XV; 1894).
(CH ³) CH.COOC HII	$[\alpha]_{\nu}^{20} + 3^{\circ}, 10$	$\frac{d_4^{20} = 0,8619}{}$	Id., t. XX; 1896.
	$\boxed{[\alpha]_{\mathfrak{b}}^{2\mathfrak{o}}+3^{\mathfrak{o}},05}$	$d^{20} = 0.8569$	GUYE (loc. cit.).
Amylique (n caproate). $C^{11}H^{22}O^2 =$ $CH^3(CH^2)^4COOC^5H^{11}$	$[\alpha]_{D}^{20} + 2^{\circ}, 40$	Pur. $d^{20} = 0,859$	GUYE et CHAVANNE (loc. c:t., p. 283; 1896).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Amylique (ncaprylate). C12 H26 O2 C113 (CH2)6 CO OC5 H11	$[\alpha]_{0}^{20}+2^{\circ},10$	Pur. d ²² == 0,860	Id., p. 283.
Amylique (chloracétate). C'H''ClO'= CH'Cl.COOC'H''	_ =	Pur. d ₄ ²⁰ 1,0438	WALDEN (Zeits. f. physik. Ch., t. XV, p. 645; 1894).
	$[\alpha]_{b}^{26,0} + 3^{\circ}, \infty$ $[\alpha]_{b}^{51,3} + 2^{\circ}, 97$	1	Do Amaral [Arch. de Ge- nève (3° Pér.), t. XXXIII, p. 434; 1895].
	$[\alpha]_{666} + 2^{\circ}, 32$ $[\alpha]_{666} + 2^{\circ}, 87$		GUYE et JORDAN (C. R., t. CXXII, p. 88;; 1896). [Voir Table XVII (I, E)].
	$[\alpha]_{b}^{20} + 3^{\circ}, 44$ $[\alpha]_{b}^{60} - 3^{\circ}, 36$	<i>d</i> ²² = 1,055	GUYE et CHAVANNE [Bull. Soc. chim. (3° 5.), t. XV. p. 289; 1896].
	$ \frac{[\alpha]_{0}^{20}-2^{0},74}{[\alpha]_{0}^{99}-2^{\circ},73} $		GUYE et MIII ASTON (C. R t. CXXIV, p. 196; 1897).
Amylique (chloro- fumarate di-).	[α] ²⁰ -÷- 5°,74	Pur. $d_4^{20} = 1,0593$	WALDEN (Zeits. f. physik. Ch., t. XV, p. 651; 1894).
C ¹⁴ H ²³ ClO ⁴ _ 2 C ³ H ¹¹ () OC.C.Cl	[a] ²⁰ -:- 5", 78	d ₄ ²⁰ 1,0560	Id., t. XX, p. 380; 1896.
Amylique (chloro-	$[a]_{u}^{20}+4^{\circ},60$	Pur. $d_4^{20} = 1,0568$	/ld., t. XV, p. 652; 1894.
maléate di-). CCl. CO OC5 H11 CH. CO OC5 H11 CH. CO OC5 H11	$[\alpha]^{20}_{\mu}+4^{\circ},03$	$d_4^{20}=1,0555$	Id., t. XX, p. 380; 1896.
Amylique (chloropro- pionate). C* II ¹⁵ Cl O ² ==: CH ³ . CH Cl. CO OC ⁵ H ¹¹	[α] ²² → 3°, ο3	Pur. $d^{22} = 1,032$	GUYE et CHAVANNE [Bull. Suc. chim. (3° s.), t. XV, p. 291; 1896].

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Amylique (chloro- succinate di-).	$[\alpha]_{u}^{20} + 3^{\circ}, 75$ (d'ac. inactif)	Pur. $d = 1,0314$	WALDEN (Zeits. f. physik. Ch., t. XVII, p. 723; 1895).
C'' H ²⁵ Cl O' == CH Cl-CO OC ⁵ H'' CH ² - CO OC ⁵ H''	$[\alpha]_{D} + 25^{\circ}, 15$ (d'ac. actif)	d = 1,0305	
Amylique (cinnamate). C ¹⁴ H ¹⁸ O ² = C ⁶ H ³ .CH;CH.COOC ³ H ¹¹	$[\alpha]_{\mathfrak{b}}^{2\mathfrak{o}}+7^{\circ},5\mathfrak{1}$	Pur. $d_4^{20} = 0,9992$	Id., t. XX, p. 579; 1896.
Amylique (citraconate di-). C.CH ³ .COOC ³ H ¹¹ CH.COOC ³ H ¹¹	$[\alpha]_{b}^{20}+4^{\circ},14$	Pur. $d_4^{20} = 0,9661$	Id., p. 382.
Amylique (o-crésylcar- bamate). $C^{13}H^{19}AzO^2 =$ $CH^3.C^6H^4.AzH.COOC^5H^{11}$ (2)	$[\alpha]_{\nu}^{23,5}+2^{\circ},66$	Chloroforme (<i>p</i> = 5,33)	GOLDSCHMIDT et FREUND (Zeits. f. physik. Ch., t. XIV, p. 396; 1894).
Id. m (1) (3)	$[\alpha]_{b}^{23}$ + 3°,85	Id. $(p = 5,31)$	
Id. p (1) (4)	$[\alpha]_{D}^{23,5}+4^{\circ},47$	Id. $(p=5,28)$	
Amylique (crotonate). C ⁹ H ¹⁶ O ² = CH ³ .CH; CH.COOC ⁵ H ¹¹	$[\alpha]_{D}^{20} + 4^{\circ}, 24$	Pur. $d_4^{20} = 0,8958$	WALDEN (loc. cit., p. 573).
Amylique (diacétylgly- cérate). C ¹² H ²⁶ O ⁶ = (C ² H ³ O)O.CH ² . CH(O.C ² H ³ O).COOC ⁵ H ¹¹	$[\alpha]_{D}^{49,1} + 1^{\circ}, 67$ (alc. g.; ac. in.) $[\alpha]_{D} - [16,65 + 0]$ Pur. $d_{A}^{14,4} = 1,6$	Pur. $d_{4}^{11} = 1,0863$ $0,0554t = 0,000090t^{2}$ $0.587(t = 11^{\circ} å 100^{\circ})$ g.; ac. g.)	FRANKLAND et PRICE (J. of chem. Soc., t. LXXI, pp. 258 et 262; 1897). (Formule calculée d'après les nombres des auteurs.)

Id. (al. inactif; ac. g.). Voir -glycérate (Diacétyl-) amylique.

NOM ET FORMULE.

POUVOIR
rotatoire spécifique.

DISSOLVANT ET TENEUR.

OBSERVATEURS.

Amylique (diamylacétate). Voir Diamylacétate amylique.

Id. (ac. inactif; ac. dr.). Voir -glycérate (Dibenzoyl-) amylique.

Amylique (dichlora- cétate). C ¹ H ¹² Cl ² O ² = CH Cl ² . CO O C ⁵ H ¹¹	$[\alpha]_{\nu}^{22} - 2^{\circ}, 77$ $[\alpha]_{\nu}^{60} - 2^{\circ}, 65$	Pur. $d^{22} = 1,149$	GUYE et CHAVANNE [Bull. Soc. chim., (3° s.), t. XV, p. 289; 1896].
Amylique (anti-diméthyl-succinate-). C ¹⁶ H ³⁰ O ⁴ == CH ³ . CH. CO O C ⁵ H ¹¹ CH ³ . CH. CO O C ⁵ H ¹¹	$[\alpha]_{\nu}^{20}+.3^{\circ},42$	Pur. $d_4^{26} = 0,9469$	WALDEN (Zeits. f. physik. Ch., t. XX, p. 384; 1896).
Amylique (para-dimé- thylsuccinate). C¹6H³O¹= C⁵H¹¹OOC.CH.CH³ CH³.CH.COOC⁵H¹¹	$[\alpha]_{0}^{20} + 3^{\circ}, 66$	Pur. $d_4^{20} = 0,9452$	Id.

Amylique (divaléryltartrate). Voir -tartrate (Divaléryl-) amylique.

Amylique (éthylxan- thate).	$[\alpha]_{0}^{20}+15^{\circ},02$	Pur. $d_4^{20} = 1,0184$	TSCHÚGARFF (Ber. d. D. ch. Ges., t. XXXI, p. 1780; 1898).
$C^8 H^{16} O S^2 =: CS \begin{cases} S \cdot C^5 H^{11} \\ O \cdot C^2 H^5 \end{cases}$			1898).
O.C2 H5			

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Amylique (formiate). C ⁶ H ¹² O ² := H CO O C ⁵ H ¹¹	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pur. $d^{20} = 0,8818$	GUYE et CHAVANNE (loc. cit., p. 280).
Amylique (fumarate di-). $C^{14}H^{24}O^{4} =$	[α] ²⁶ + 5°,69	Pur. $d_4^{20} := 0,976$	WALDEN (loc. cit., t. XV, p. 651; 1894).
C³H¹¹.O.OC.CH	$[\alpha]_{\mu}^{20} \div 5^{\circ}, 93$	d ²⁰ == 0,9696	Id., t. XX, p. 379; 1896.
Amylique (glycérate). C*H'*O' = CH'*OH.CH(OH).COOC*H''	$[a]_{b}+2^{\circ},79$	Pur. $d_4^{11} = 1,0807$	FRANKLAND et PRICE (J. of chem. Soc., t. LXXI, p. 207 et suiv.; 1897).
	$[\alpha]_{b}^{12,5}$ — 11", 54 $[\alpha]_{b}^{4,5}$ — 11°, 78 (alc. g.; ac. actif).		
Id. (alc. inactif; ac. actif).	Voir Glycérate a	mylique.	
Amylique (hydrocinna- mate). $C^{12}H^{20}O^2 =$ $C^6H^5.CH^2.CH^2.COOC^3H^{11}$	[α] ²⁰ -!- 2", 26	Pur. $d_4^{20} = 0,9721$	WALDEN (loc. cit., t. XX, p. 579).
Amylique (itaconate di-). C ¹⁵ H ²⁶ O ⁴ =	$[x]_{b}^{20}+4^{\circ},97$	Pur. $d_4^{20} = 0.9657$	/d., p. 383.
CH ² =C.COOC ⁵ H ¹¹ CH ² .COOC ⁵ H ¹¹			

Amylique (1.-lactate). Voir Lactate amylique.

Amylique (in.-lactate). $[\alpha]_0 = 2^{\circ}, 8$

 $C_{H_0}O_{\bullet} =$

CH3.(CHOH).COOC3H11

Amylique (laurate). $C^{11}H^{24}O^2 =$	$[\alpha]_{u}^{20}$ $+$ 1°,56	Pur. $d^{20} = 0.859$	GUYE et CHAVANNE (loc. cit., p. 285).
CH3 (CH2)10 CO O C5 H11			

 $[\alpha]_0 + 2^{\circ}, 64$

Pur.

Pur. d = 0,9672

L. SIMON [Bull. Soc. chim.

WALDEN (Zeits. f. phys. Ch., t. XVII, p. 721;

1894 |.

1895).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	OBSERVATEURS.
Amylique (malate di-) C14[[26O5	[α], $+$ 3°, 50 (d'ac. inactif).		WALDEN (Zeits. f. physik. Ch., t. XVII, p. 722;
CH (OH). CO O C3 H11	[a] _b — 6°, 88 (d'ac. gauche)	d = 1,0176	
Amylique (maléate di-).			
$C_{14} H_{54} O_4 = \frac{HC - CO O C_2 H_{11}}{HC - CO O C_2 H_{11}}$	$[\alpha]_{u}^{20} + 4^{\circ}, 62$	$d_4^{20} = 0,9747$	ld., t. XX, p. 579; 1896).
Amylique (mercaptan). C ⁵ H ¹¹ .SH	$[\alpha]_{D}$ + 0°,47	Benzène (c = 14,57)	GUYB [Ann. de Chim. et Phys. (6° s.), t. XXV, p. 175; 1892].
	[x] ²⁵ 2°, 20	Pur. $d_4^{25} = 0.8405$	ZELINSKY et BRJUCHO- NENKO (J. Soc. physch. Russe, t. XXVIII, p. 320; 1896).
Amylique (mésaconate di-). $C^{14}H^{26}O^{4} = C^{5}H^{11}.OOC(CH^{3})$ $C^{11}COOC^{5}H^{11}$	[a] ² °+ 5°, 93	Pur. $d_4^{20} = 0,9698$	WALDEN (loc. cit., t. XX, p. 382; 1896).
Amylique (mésotartrate di-). C ¹⁴ H ²⁶ O ⁶ = CHOH COOC ⁵ H ¹¹ CHOH COOC ⁵ H ¹¹	[a] ²⁰ -i-4",77	Pur. $d_4^{20} = 1,0658$	ld., p. 385.
Amylique (méthacrylate). C ⁹ II ¹⁶ O ² = CH ² ; C (CH ³). CO O C ⁵ II ¹¹	$[\alpha]_{D}^{20}+3^{\circ},51$	Pur. $d_4^{20} = 0,8781$	Id., p. 574.
Amylique (méthylsuccinate di-). C ¹⁵ H ²⁸ O ⁴ = CH ² . CO O C ⁵ H ¹¹ CH ³ .CH.CO O C ⁵ H ¹¹	$[\alpha]_{D}^{20} + 3^{\circ}, 67$	Pur. $d_{4}^{20} = 0,9529$	Id., p. 5 ₇₇ .

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Amylique (αnaphtoate). C ¹⁶ H ¹⁶ O ² ==α.C ¹⁰ H ² .COOC ⁵ H ¹¹	$[\alpha]_{n}^{20}+5^{\circ},28$	Pur. $d_4^{20} = 1,0605$	Id., p. 581.
Amylique (βnaphtoate). C'6H'8O2=β.C'0H'.COOC5H''		Pur. $d_1^{20} = 1,0531$	Id., p. 582.
Amylique (cenanthylate). C ¹² H ²⁴ O ² == CH ³ .(CH ²) ⁵ COOC ⁵ H ¹¹	$[\alpha]_{b}^{20} + 2^{\circ}, 21$	Pur. $d^{20} = 0.861$	GUYE et CHAVANNE [Bull. Soc. chim. (3° 8.), t. XV, p. 282; 1896].
Amylique (oxalate di-). COO C ⁵ H ¹¹ CO O C ⁵ H ¹¹	[α] ²⁰ 4 ⁰ ,93	Pur. (120 == 0,9626	WALDEN (Zeits. f. physik. Ch., t. XV, p. 650; 1894).
Amylique (oxybutyrate)	. Voir Oxybuty	rate amylique.	
Amylique (n palmitate). $C^{21}H^{42}O^{2} ==$ $CH^{3}(CH^{2})^{14}COOC^{5}H^{11}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pur. d ²⁰ == 0,854	GUYE et CHAVANNE [Bull. Soc. chim. (3° s.), t. XV, p. 285; 1896].
Amylique (pélargonate) C ¹⁴ H ²⁸ O ² == CH ³ (CH ²) ¹ COO C ⁵ H ¹¹	[α] ²⁰ 1°,95	Pur. $d^{20} = 0,861$	ld., p. 283.
Amylique (phénylacétate). C ¹³ H ¹⁸ O ² = C ⁶ H ⁵ .CH ² .COOC ⁵ H ¹¹	[α] ²² 3°,84	Pur. d ²² = 0,982	ld., p. 292.
Amylique (phénylcarbamate). C ¹² H ¹⁷ Az () ² == C ⁵ H ² .Az H.COO C ⁵ H ¹¹	$[\alpha]_{0}^{23} + 4^{\circ}, 19$	Chlorof. (p: 5,25)	Goldschmidt et Freund (Zeits. f. physik. Ch t. XIV, p. 396; 1894).

Amylique (phénylchloracétate). Voir Phénylchloracétate amylique.

Amylique (phénylglycolate). Voir Phénylglycolate amylique.

Amylique (phénylpropiolate).	$[\alpha]_{\mathbf{b}}^{20} + 5^{\circ}, 58$	Pur. $d_4^{20} = 1.0035$	WALDEN (Zeits. f. physik. Ch., t. XX. p. 580; 1896).
$C^{14}H^{16}O^2 =$			1
C6 H3. C = C. COO C5 H11	į į		
D.		•	59

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	. OBSERVATEURS.
Amylique (phénylpropionate). C ¹⁴ H ²⁰ O ² == C ⁶ H ³ CH ² .CH ² .COO C ⁵ H ¹¹	$[\alpha]_{0}^{22} + 2^{\circ}, 15$	Pur. $d^{22} = 0,976$	GUYE ot CHAVANNE (loc. cit., p. 293).
Amylique (ophtalate di-). $C^{18} H^{26} O^{4} = C^{6} H^{4} : (COO C^{5} H^{11})^{2}$ 1.2.	$[\alpha]_{b}^{20,4}+3^{\circ},88$	Pur. $d_4^{20,4} = 1,0315$	WALDEN (loc. cit., t. XV, p. 651; 1895).
Amylique (n propionate). $C^9 H^{18} O^2 =$ $CH^3.CH^2.CH^2.COO C^5 H^{11}$	$[\alpha]_{D}^{20} + 2^{\circ}, 77$ $[\alpha]_{D}^{61} + 2^{\circ}, 68$	Pur. d ²⁰ =0,8694	GUYE et CHAVANNE (loc. cit., p. 281).
Amylique (pyruvate). C*H ¹⁴ O ³ = CH ³ .CO.COO C*H ¹¹	+3°,48 à 3°,43	Pur. $d^{15} = 0.984$ Ac. acét. $(c = 8 \text{ à } 15)$ Eth. acét. $(c = 15 \text{ à } 25)$	(3° s.), t. XI, p. 765; 1894).
Amylique (racémate di-). $C^{14} II^{26} O^{6} =$	$[\alpha]_{6}^{20} + 3^{\circ}, 37$	Pur. $d_4^{26} = 1,064$	WALDEN (Zeits. f. physik. Ch., t. XVII, p. 723; 1895).
CH(OH).COO C3 H11 CH(OH).COO C3 H11	$\frac{1}{[\alpha]_b + 3^\circ, 38}$	d=1,0554	GUYE et GOUDET (C. R., t. CXXII, p. 933; 1896).
Amylique (stéarate). $C^{23} H^{46} O^{2}$ = $CH^{3} (CH^{2})^{16} COO C^{5} H^{11}$	[a] ²⁰ + 1°, 27	Pur. $d^{20} = 0.855$	GUYE et CHAVANNE (loc. cit., p. 286).
Amylique (succinate di-). $CH^{2}.COOC^{5}H^{11}$ $CH^{2}.COOC^{5}H^{11}$	$[\alpha]_{\nu}^{20} + 3^{\circ}, 76$	Pur. $d_4^{20} = 0,9592$	WALDEN (loc. cit., t. XX, p. 575; 1896).
Amylique (sulfite di-). SO(OC ⁵ H ¹¹) ²	$[\alpha]_{b}+4^{\circ},03$	Pur. $d_4^{20} = 0,9841$	TSCHÚGARFF (Ber. d. D. ch. Ges., t. XXXI, p. 1780; 1898).
Amylique (sulfo- cyanate). C ⁵ II ¹¹ .S.CAz	[α] _D + 1°, 07	Acétone (c = 11,98)	GUYE [Ann. de Ch. et Phys. (6° s.), t. XXV, p. 175; 1892].

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Amylique (tartrate). Voir	Tartrate amyl	ique.	
Amylique (otoluate). $C^{13}H^{18}O^{2} =$ $CH^{3}.C^{6}H^{4}.COOC^{5}H^{11}$ (1)	$[\alpha]_{b}^{20}+4^{\circ},55$	Pur. $d^{20} = 0,985$	GUYE of CHAVANNE (loc. cit., p. 293; 1896).
Amylique (ptoluate).	$[\alpha]_{D}^{20} + 5^{\circ}, 20$	Pur. $d^{20} = 0,982$	Id.
$C^{13}H^{16}O^{2} = CH^{3}.C^{6}H^{4}.COOC^{5}H^{11}$	1	0166 t + 0,000 028 t²] = 17° à 215°)	GUYB et M ¹¹ • ASTON (C. R., t. CXXIV, p. 196; 1897). [Calculé d'après les nombres des auteurs].
Amylique (tricarbally- late tri-). CH ² .COOC ⁵ H ¹¹ C ²¹ H ³⁴ O ⁶ = CH .COOC ⁵ H ¹¹ CH ² .COOC ⁵ H ¹¹	$[\alpha]_{D}^{20} + 4^{\circ}, 01$	Pur. $d_4^{20} = 0,9973$	WALDEN (Zeits. f. physik. Ch., t. XX, p. 578; 1896).
Amylique (trichloracé-) tate). C:H''Cl'O'= CCl'.COOC'H''	$[\alpha]_{D}^{60}+2^{\circ},58$	Pur. $d^{22} = 1,233$	GUYE of CHAVANNE (loc. cit., p. 290).
Amylique (undécylate). $C^{16}H^{32}O^2 = C^{10}H^{21}.CO \cup C^5H^{11}$	1	Pur. $d^{20} = 0.871$	<i>Id.</i> , p. 284.
Amylique (nvalérate).	$[\alpha]_{\mathfrak{p}}^{2\mathfrak{g}} \rightarrow 2^{\mathfrak{o}}, 52$	Pur. d ²⁰ :- 0,860	Id., p. 282.
$CH_3 (CH_3)_3 CO O C_2 H_{17}$ $C_{10} H_{20} O_5 =$	[a]16 2",99	$d^{16}=0,8629$	GUYE et GUERCHGORINK [Arch. de Gen. (4º pór.), t. IV, p. 116; 1897].
Amylique (ivalérate). $C^{10}H^{20}O^2 =$ $(CH^3)^2CH.CH^2.COOC^5H^{11}$	$[\alpha]^{20}_{\mathfrak{u}} + 2^{\mathfrak{o}}, 69$	Pur. $d^{16} = 0,8607$	<i>Id.</i> , p. 117.
Amylique (avalérate). C ¹⁰ H ²⁰ O ² = : C ² H ⁵ . CH. CO O C ⁵ H ¹¹	$[\alpha]_{b}^{20} + 2^{\circ}, 83$	Pur. $d^{20} = 0.862$	GUYE et GAUTIER [Bull. Soc. chim. (3° s.), t. XIII, p. 461; 1895).
CH3 (alc. g.; ac. racém.) [Voir Valérate amylique]	$[\alpha]_{b}^{16} + 3^{\circ}, o2$	Pur. $d^{16} = 0,8553$	GUYE et GUERCHGORINE (loc. cit., p. 118).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	OBSERVATEURS.
Amylmalonate diamylique.	$[\alpha]_{D} + 9^{\circ}, 68$ (ac. dr.; alc. g.)	Pur.	GUYR et GOUDET (C. R., t. CXXI, p. 827; 1895).
$C_{2} H_{11} \cdot CH < CO \circ C_{2} H_{11}$ $C_{19} H_{24} \circ O_{4} =$	$[\alpha]_{D} + 6^{\circ}$, 10 (ac. dr.; alc. rac.)		
Coocn	$[\alpha]_D + 3^\circ, 48$ (ac. rac.; alc. g.)		1
Amylmalonate diéthylique. C ¹² H ²² O ⁴ == CO O C ² H ³	$[a]_{b}^{2\theta}+10^{\circ},14$	Pur. $d_4^{20} = 0.9665$	WALDEN (Zcits. f. physik. Ch., t. XV, p. 648; 1894).
C ₂ H ₁₁ · CH (CO O C ₃ H ₂			•
Amylmalonique (acide). $C^{6}H^{14}O^{4} = C^{5}H^{11}.CH < COOH$		Acétone ($c=6,67$)	ld., p. 646.
Amylméthyléthylsulfine (iodure de) C ⁶ H ¹⁹ SI := (C ⁵ H ¹¹) (C ² H ⁵) (CH ³) SI	! !	Eau (p = 28 à 38)	BRJUCHONENKO (<i>Ber. d. D. ch. Ges.</i> , t. XXXI, p. 3177; 1898).
Amylméthylique (éther). C ⁵ H ¹¹ .O.CH ³	$[\alpha]_{b}^{18} + o^{\circ}, 39$	Pur. $d = 0.754$	GUYE et CHAVANNE (C. R., t. CXX, p. 452; 1895).
Amylméthylique (sulfure). C ⁵ H ¹¹ .S.CH ³	$[\alpha]_{D}^{19}+13^{\circ},24$	Pur. $d_4^{19} = 0,8425$	ZELINSKY et BRJUCHO- NENKO (J. Soc. physch. russe, t. XXVIII, p. 320; 1896).
Amyl-p-nitrobenzyl- malonate diéthylique. C ¹⁹ H ²¹ Az O ⁶ — C ⁵ H ¹¹ (Az O ²). C ⁶ H ⁴ . CH ²	$[\alpha]_{0}^{20} + 1^{\circ}, 25$	Acétone (c - 20)	WALDEN (<i>Zeits. f. physik.</i> Ch., t. XV, p. 648; 1891).
$= (CO O C^2 H^5)^2$			

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	OBSERVATEURS.
Amylodextrine. Voir Dex	rine.]
Amyloïde.	$[\alpha]_{\scriptscriptstyle D}$ + 93°,5	Eau.	WINTERSTEIN (Ber. d. D. ch. Ges., t. XXV, p. 1237; 1892).
Amylpipéridine. C'H'*Az (C'H'')	$[\alpha]_{b}^{20} + 7^{2},94$	Pur. $d_4^{20} = 0,8459$	WALDEN (Zeits. f. physik. Ch., t. XV, p. 643; 1894).
Amylphénylique (éther). C ⁶ H ⁵ .O.C ⁵ H ¹¹	$[\alpha]_{\nu}^{17}+4^{\circ},01$	Pur. $d^{11} = 0.9331$	MIII WELT [Ann. de Ch. et Phys. (7°8.), t. VI, p. 138; 1895].
	$[\alpha]_{666}^{24} + 3^{\circ}, 09$		GUYE et MELIKIAN (C. R., t. CXXIII, p. 1291; 1896). [Voir Table XVII (I. E.)].
Amylpropylique (éther). C*H1*O=C*H11.O.CII2.CH2.CH3	$[\alpha]_{b}^{18} + o^{\circ}, 90$	Pur. $d = 0.783$	Guye et Chavanne (C. R., t. CXX, p. 452; 1895).
Amylsulfate d'ammo- nium. SO ² O C ³ H ¹¹ SO ² O Az H ⁴	$[\alpha]_{b}^{26,5} + 1^{\circ}, 48$ $[\alpha]_{b}^{11,2} + 1^{\circ}, 26$	Eau $(c = 16, 18)$ $(c = 22, 96)$	CARRARA et GENNARI [R. C. dei Lincei (5), t. III, 2° sem., p. 325; 1894]
Amylsulfate de potassium. SO ² OK	$[\alpha]_{b}^{25,6}$ + 1°, 28 + 1°, 15	Eau (c = 18,01) (c = 25,56)	Id.
Amylsulfate de sodium. SO ² O C ⁵ H ¹¹ O Na	$[\alpha]_{D}^{26} + 1^{\circ}, 48$ $[\alpha]_{D}^{24,6} + 1^{\circ}, 30$	Eau ($c = 16,61$) ($c = 23,58$)	Id.
Amylsulfurique (acide).	$[\alpha]_{D}^{26,8} + 1^{\circ},63$ $[\alpha]_{D}^{25,7} + 1^{\circ},58$	Eau $(c = 14,69)$ (c = 20,85)	Id.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	ODSERVATEURS.
Amylthymylique (éther). $C^{13}H^{24}O = C^{3}H^{11}.O.C^{6}H^{3} (4)$ $C^{3}H^{11}.O.C^{6}H^{3} (5)$		Pur. $d^{18} = 0,924$	MIII WELT [Ann. de Ch. et de Phys. (7° 8.), t. VI, p. 140; 1895].
Amylxanthate éthylique. $C^{6}H^{16}OS^{2} = CS \begin{cases} S.C^{2}H^{5} \\ O.C^{5}H^{11} \end{cases}$	$[\alpha]_{b}^{20} + 6^{\circ}, 32$	Pur. $d_4^{20} = 1,0167$	TSCHÜGARFF (Ber. d. D. ch. Ges., t. XXXI, p. 1780; 1898).
a. Amyrilène (dextro-).	[α] _p + 109°, 48	Benzène ($c = 4$)	BACKSTRÖM (Gr. Zeits., t. XIV, p. 545; 1888).
β. Id .	$ [\alpha]_{b}+110'',42$ +112°,19	Id. $(c = 0.8)$ (c = 1.51)	
a. Amyrilène (levo-). C ³⁰ H ⁴⁸	[α] _b — 104°,9	Benzène ($c = 0.87$)	VESTERBERG (Ber. d. D. ch. Ges., t. XXIV, p. 3835; 1891).
a. Amyrine. C ³⁰ H ⁵⁰ O	[2] ^{16.7} + 91°,59	Benzène ($c=3,84$)	Svensson in Vesterberg (Ber. d. D. ch. Ges., t. XXIII, p. 3187; 1890).
3. Id.	$\frac{[\alpha]_{b}^{19,1} + 99^{\circ}, 81}{[\alpha]_{b}^{15} + 94^{\circ}, 2}$	Id. $(c = 1,91)$ $ (c = 5) $	HESSE (Lieb. Ann., t. CCLXXI, p. 218; 1892).
c. Amyrine (acétate de). $C^{30}H^{49}O(C^2H^3O)$	$ [\alpha]^{1}_{\nu}^{1,6}+77^{\circ},0$	Benzène ($c = 4,07$)	SVENSSON (loc. cit., p. 3188).
β. Id .	$ [\alpha]_{D}^{16,:}+78^{\circ},6$	Id. $(c = 4, 15)$	
β. Amyrine (palmi- tate de). C ³⁰ H ⁴⁹ O (C ¹⁶ H ³¹ O)	$[\alpha]_{0}^{15}+54^{\circ},5$	Benzène (c = 2)	HESSE (loc. cit.).
a. Amyrine bromée. C ³⁶ H ⁴⁸ Br. OH	$[\alpha]_{D}^{16,3}+72^{\circ},8$	Benzène ($c = 2,59$)	Svensson (loc. cit. p 3189).
Anagyrine (chlorhy- drate de). (C ¹⁴ H ¹⁸ Az ² O ²) H Cl + 4 H ² O	[a] _b 114°	Eau	HARDY et GALLOIS (C. R. t. CVII, p. 247; 1888).

Andromédotoxine. C ³¹ H ³⁰ O	POUVOIR rotatoire spécifique.	toire spécifique.	
	- 14°,2 - 4°,9		
Anhalonine (chlorhy- drate de). (C ¹² H ¹³ AzO ³)HCl	[α] _D — 40°,56	Alcool	LEWIN (Arch. f. cxp. Path., t. XXXIV, p. 374; 1895).
Anhydrocamphoronate méthylique (β). C'H''O'= C'H''-CO OCH'' CO OCH'' (fus. à 45°)	[α] _p 15°, 9 à 16°, 2	Alc. abs. (p = - 5)	ASCHAN (<i>Lieb. Ann.</i> , t. CCCII, p. 64; 1898).
Id. (α). (fus. à 138°)	1 1 1 1	Dibromure d'éthylène (p == 1,54)	
Anhydroecgonine (chlor- hydrate de).	[a] _D — 61°,5	Eau	EINHORN (Ber. d. D. ch. Ges., t. XXII, p. 1495; 1889).
(C ⁹ H ¹³ Az O ²) H Cl	$\boxed{[\alpha]_{\mathbf{D}}^{15}-62^{\circ},7}$	Eau (c = 3)	HESSE (Lieb. Ann., t. CCLXXI, p. 184; 1892).
Antiaronique (lactone). C ⁶ H ¹⁰ O ⁵	[a] _b — 30°	Eau	KILIANI (Arch. d. Pharm., t. CCXXXIV, p. 438; 1896).
Apiine . C ^{2;} H ³² O ¹⁶	[a]j+173°		Von Gerichten (Ber. d. D. ch. Ges., t. IX, p. 1123; 1876).
Apocinchonidine. C19 H22 Az2 O	$[\alpha]_{D}^{15}$ — 129°, 2 — 160°, 3	Alcool 97 $^{\circ}/_{\circ}$ ($c = \circ, 8$) Eau + 3 H Cl ($c = 2$)	HRSSE (<i>Lieb. Ann.</i> , t. CCV, p. 329; 1880).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Apocinchonine.	$[\alpha]_{0}^{15} + 160^{\circ}, 0$ $+ 212^{\circ}, 5$ $+ 212^{\circ}, 3$	Alcool 97 % ($c = 1$) Eau = 2 H Cl ($c = 2$) Eau = 3 H Cl ($c = 2$)	HESSE (Lieb. Ann., t. CCV, p. 331; 1880).
	[a]15-+ 197°,5	vol. alcool, vol. chlorof. (c=2)	Id., t. CCLXXVI, p. 115; 1894.
	$[\alpha]_{n}^{16} + 159^{\circ}, 7$	Alcool abs. (c = 1,56)	OUDEMANS (Rec. Trav. chim. d. P. B., t. I, p. 175; 1882).

Action des acides en solutions aque uses.

[c=1,47] $[t=16^{\circ C}]$ n molécule acide pour 1 molécule base.

ACIDES.	n = 1.	n = 2.	n=3.	n=5.	n == 10.	n=20.
A. chlorhydrique)1	+211,4	+211,0	(+208,3)	(+203,9)	+199,7
A. bromhydrique	J4	+213,o	- 211,5	(207,8)) w
A. azotique	n	+210,7	212,1	(+210,6)	+206,6	»
A. chlorique	»	+215,4	l l	1	+211,3	1
A. perchlorique	n	+213,0	1	(+216,7)	1	v
A. formique		(+204,5)(1)	(+208,7)	(-212,5)	(+216,0)	(+216,6)
A. acétique) <i>)</i>	»		1	(+195,7)	_
A. sulfurique	-+-210,7	+212,9	1	(+209,7)) »
A. oxalique	- 192,4	⊣-208 ,1		1.	(+201,7)	! . b
A. phosphorique	-+-202,9(2)	+213,5		1	+210,0))
A. citrique	-182,4	+202,7		1	(+204,0)	່, ນ
$\binom{1}{n} = 2, 5.$		••	• •	•	•••	

⁽¹⁾ n=2,5

⁽¹⁾ n=1,5.

ACIDES.	n ::: 30.	n .= 40.	n=50.	n=60.	n=160.
A. formique	(+215,9)	(+215,0)))	»	u
A. acétique	204,0	+204,7	+205 ,7	+203,0	.+199,6

OUDEMANS (Rec. Trav. chim. d. P. B., t. I, p. 178; 1882) [les nombres entre () sont tirés par interpolation des nombres de l'auteur].

Apocinchonine (bromhy-
$$[\alpha]_{0}^{16} + 126^{\circ}, 2$$
 | Eau ($c = 0,76$) | Id., p. 176.
Ap. HBr + H²O

(Cristallisée).

 $[\alpha]_0 = 217^\circ, 1$ [Alcool 97 */* (c = 0.79)] MAUTHER in LIPPMARK

(Ber. d. D. ch. Ges., t. XXVIII, p. 1972; 1895).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Arabane.	[α] _b 83°,9	Eau	ULLIK (Öst. Z. Zuck. Ind., t. XXIII, p. 268 1894).
Arabine. C10 H18 O2 (?)	[a], 98°,5	! Eau	SCHEIBLER (Ber. d. D. ch Ges., t. VI, p. 617; 1873)
β. Arabinochloral. C¹H²Cl³O³	[a] _p — 23°, 2		HANRIOT (C. R., t. CXX, p. 153; 1895).
Arabinone.	[α] _b ÷ 198", 5	Eau (c = 1)	O'SULLIVAN (J. of chem. Soc., t. LVII, p. 61; 1890).
dArabinosacétamide. C ⁹ H ¹⁶ O ⁶ Az -= CH ² OH (CH OH) ³ . CH (Az H. C ² H ³ O) ²	[α] ^{2,6} — 9°,5	Eau (p = 10,03)	Wonl (Ber. d. D. ch. Ges., t. XXVI, p. 740; 1893).
lArabinosamine.	$[\alpha]_0^{20}83^{\circ}$	Eau (c = 10)	LOBRY DE BRUYN et VAX LEENT (Rec. Trav. ch. d. PB., t. XIV, p. 137; 1895).
$C^{11}H^{20}Az^4O^3=$	$[\alpha]_{0}^{20} + 18^{\circ}, 9$ (initial) $[\alpha]_{0}^{20} + 0^{\circ}$ (final)	Alcool 95 % (c = 3,4)	Allen et Tollens (Lieb. Ann., t. CCLX, p. 300; 1890).
lArabinose. C5 H10 O5 == OH OH H	[α];° + 118°,1	Eau (c = 10)	SCHEIBLER (Ber. d. D. ch. Ges., t. XVII, p. 1729; 1884).
HO CH2 C C CHO	$\frac{[\alpha]_{b}^{20} + 105^{\circ}, 4}{[\alpha]_{j}^{20} + 118^{\circ}, 0}$	Eau (c = 10)	Von Lippmann (Ber. d. D. ch. Ges., t. XVII, p. 2239: 1884).
	$[\alpha]_0 + 105^\circ, 1$	Eau (p = 9,11)	KILIANI (1d., t. XIX, p. 3028; 1886).
	$[\alpha]_{D}^{3}+104^{\circ},4$	Eau (c = 10)	BAUER (Land. Vers Stat., t. XXXVI, p. 304; 1889).
	$[\alpha]_{D}^{20} + 156^{\circ},65$ (après 6 m. 30 s.) $[\alpha]_{D}^{20} + 104^{\circ},55$ (après 30 min.)	Eau (c = 9,73)	PARCUS et TOLLENS (Lieb. Ann., t. CCLVII, p. 160; 1890).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	
a. Arabinose.	[a] _p +175° (app.)	Eau	TANNET [Buil. Soc. chim. (3° 8.), t. XV, p. 201; 1896].
β. Arabinose.	91°,89 88°,61	$-0.332 t](t = 12^{\circ} å 43^{\circ})$ $(t = 51^{\circ})$ $(t = 55^{\circ})$ $(c = 17.6)$ [Alcool 90 $^{\circ}/_{4}$ ($c = 6.45$) [Alcool 60 $^{\circ}/_{4}$ (Id.)	
(du)	$[\alpha]_0^{28}$ — 104°, 1	Eau (p = 10,11)	Wone (Ber. d. D. ch. Ges., t. XXVI, p. 740; 1693).
L-Arabinose tétracétylé. C ⁵ H ⁶ O ⁵ (C ² H ² O) ⁴	[a] _a + 26°, 39	Alcool	STONE (Amer. Chem. I , t. XV, p. 654 , 1893).
I.—Arabinose tétranitré. C ⁵ H ⁴ (Az O ²) ⁴ O ³	[a] _b ²⁰ — 101°, 3 — 90° (après 24 heures)	Alcool (c = 4,4)	Will of LENER (Ber. d. D. ch. Ges., t. XXXI, p. 72, 1898).
IArabinose-allylphényl- hydrasone. C ⁵ H ¹⁰ O ⁴ : Az ² (C ⁵ H ⁵)(C ³ H ⁵)		Alcool méthylique Ac. acétique ($p = 0.5$)	ALS. X st.
L-Arabinose-amylphényl- hydrazone. C ⁵ H ¹⁶ O ⁴ : Az ² (C ⁵ H ⁵) (C ⁵ H ¹¹)	o ^α [α] _a ÷ a ^α ,8	Alcool méthylique Ac. acétique (p == 0,5)	ld.
f. C*H**O4: Az2(C*H*)(C*H*)	[a], — 14°, 6 12°, 8	Alcool méthylique Ac. acétique ($p = 0.5$)	ld.
(1a	ctone). Voir	(lac	ctone).
Cia Hist O2	$[\alpha]_0^{2+} \div 5^{\circ}, 4$	Eau (p = 2,41)	E. Fischer (Ber. d. D. ch. Ges., t. XXVIII, p. 1164; 1895).
l-Arabinose-éthylphényl- hydrazone. C'H'' O'; Az'(C'H') (C'H')	on [2],—24°,6	Atc. méthyl. (p = 0,5) Ac. acétique (id.)	Ach. VAN EKENSTEIN of Londy DE BRUYK (loc. cit.).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
/Arabinose-méthyl- phénylhydrazone. C ⁵ H ¹⁶ O ⁴ ; Az ² (C ⁶ H ⁵)(CH ³)	[a] ₀ + 4°,3 - 21°,8	Alc. méthyl. $(p = 0,5)$ Ac. acétique (id.)	
lArabinose-(β)-naphtyl- hydrazone. C ⁵ H ¹⁰ () ¹ : Az ² H (C ¹⁰ H ⁷)	1 - •	Alc. méthyl. ($p = 0,5$) Ac. acétique (id.)	
lArabinosesemicar- bazide. C ⁶ H ¹³ Az ³ O ⁵ == C ⁵ H ⁹ O ⁴ . AzH. AzH. CO. AzH ²	[2] ₀ —o",35 —o",15	Alcool ($c = 0,5$) Eau ($c = 0,2$)	HERZFELD (Zeits. f. RübZ. Ind., 1897; p. 604).
lArabinosoxime. (C ⁵ H ¹⁰ O ⁴); AzOH	[α] ₀ ÷ 13°, 31 (après 24 heures)	Eau (p = 8,18)	RUFF (Ber. d. D. ah. Ges., t. XXXI, p. 1576; 1898).
dId.	[α] ₀ — 13°, 23 (après 24 heures)	Eau (p = 8,23)	
Arabique (acide iso-).	$\left \left[\alpha \right]_{\nu}^{20} + 20^{\circ} \right $	Eau (p = 25,1)	BALLO (Ber. d. D. ch. Ges., t. XXII, p. 751; 1889.
Arabite.	$[\alpha]_{\mathfrak{b}}^{2\mathfrak{o}}-5^{\mathfrak{o}},3$	Eau saturée de borax (p = 9,05)	E. FISCHER of STAHEL (Ber. d. D. ch. Ges., t. XXIV. p. 538; 1891).
Arabonate de calcium. (C ³ H ⁹ O ⁵) ² Ca + 4 H ² O	$[\alpha]_{b}^{19}+2^{\circ},076$	Eau (c = 5)	Schnelle (Inaug. Dissert. Göttingen; 1891).
Arabonate de strontium (C ⁵ H ⁹ O ⁶) ² Sr	[2] _p +1°96	Eau (c = 4,35)	ALLEN et TOLLENS (Lieb. Ann., t. CCLX, p. 311) 1890).
Arabonique (acide). C ⁵ H ¹⁰ O ⁶	[α] _D — 8°, 5 après dix minutes [α] _D — 45°, 86 après deux jours		Id.
Arabonique (lactone).	$[\alpha]_{D}-67^{\circ},37$	Eau (c = 10)	BAUER [J. f. prakt. Chem. (2), t. XXXIV, p. 46; 1886]
	$[\alpha]_{b}^{20}-73^{\circ},9$	Eau (p = 9,45)	E. FISCHER et PILOTY (Berd. D. ch. Ges., t. XXIV. p. 4217; 1891).
Arginine (azotate d'). (C ⁶ H ¹⁴ Az ⁴ O ²) AzO ³ H	$[\alpha]_{b}^{19} + 28^{\circ}, 75$	Eau (c = 10)	SCHULZE et STEIGER (Zeits. f. physiol. Ch., t. XI. p. 43; 1887).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	. OBSERVATEURS.
Arginine (chlorhydrate d'). (C ⁶ H ¹⁴ Az ⁴ O ²) H Cl	$[\alpha]_{\mathfrak{b}}^{19} + 33^{\circ}, 1$	Eau (c 8)	Id.
Aricine. C ²³ H ²⁶ Az ² O ⁴	$[\alpha]_{D}^{13} - 54^{\circ}, 1$ $- 94^{\circ}, 7$ o	Alcool 97 $^{0}/_{0}$ ($c = 1$) Ether ($c = 1$ à 2,5) Eau -+ 3 H Cl	HRSSR (Lieb. Ann., t. CLXXXV, p. 313; 1877).
Id. (de Pelletier).	$\begin{array}{c c} [\alpha]_{D} - 58^{\circ}, 3 \\92^{\circ}, 5 \\14^{\circ}, 5 \end{array}$	Alcool Éther Alcool et HCl	Moissan et Landrin (C. R., t. CX, p. 469; 1890).
Artémisine.	[α] _ν 84°,3		Мвпск (Merck's Jahr. 1894; p. 3).

Asebotoxine. Voir Andromédotoxine.

l.-Asparagine
C'H'Az'O' + H'O
= CH(AzH') - COOH
CH'.CO(AzH')

DISSOLVANT.	[a] _i .	t.	p.
Ac. azotique $(d^{22}=1,11)$	35,09	0 C	: 11,08
Ac. chlorhydrique $(d^{23} = 1,071)$	+ 34,40		11,125
Ac. sulfurique étendu (20°,5 Baumé).	+ 35,42	 	
Eau et acide citrique (20,58 %)	+ 12,5		1
Eau et soude (4,84 % Na2O)	- 7,50	8,5	8,89
1d. Id	 7,84	22	17,9
Id. (12,69 % Na ² O)	7,31	id.	15,21
Ammoniaque	<u> </u>	18	12,72

PASTEUR [Ann. de Ch. et de Phys. (3° s.), t. XXXI, p. 75; 1851].

DISSOLVANT.	$[a]_{D}(p=1,66).$
Eau + 10 ^{6r} HCl pour 100 ^{cc}	- 6,23 37,45
Eau + 108r ac. acétique pour 100cc	•
Eau + 10gr ammoniaque pour 100cc	— 10,68

CHAMPION et PELLET (C. R., t. LXXXII, p. 819; 1876).

	[α] _b ^{2.6} .	P (anhydre).
Eau	- 8,24 - 5,95 - 5,42 - 5,30	0,352 0,705 1,049 1,409

	RAPPOR	[\alpha]20.		
	C4 H2 Az2 O2.	Na OH.	н² О.	(p = 10)
Lessive	1	1	63,8 61,5	- 8,64 - 6,69
de soude	1 1	2 3	61,5 59,3	— 6,69 — 6,35

Solutions acides.

[1 moléc. C+H8Az2O2 et 300 moléc. H2O].

MOLĖC. II CI.	[2] _b .	Moléc. So4 H2.	[2] _D ²⁰ .	MOLÉC. ac. acétique.	[2] _D ²⁰
1 1,5 2 3 5 10 15	+ 26,42 + 30,36 + 31,52 + 31,91 + 32,28 + 33,27 + 33,70 + 34,26	0,5 0,75 1 3 5	+ 23,05 + 27,25 + 29,54 + 32,03 + 34,31 + 35,45	1 2 5 7 10 15 20	$ \begin{array}{r} -3,49 \\ -3,10 \\ -1,45 \\ -0,59 \\ 0 \\ +1,11 \\ +2,63 \end{array} $

BECKER (Ber. d. D. ch. Ges., t. XIV, p. 1028; 1871).

Solutions acides.

 $[\alpha]_{D}^{20} = -5,18$ Eau (c = 2,4) (asparagine hydratée).

ACIDE8.		NOM	BRR	DE M	OLĖ(C. D'A	CIDE	POUP	1	Moléc	. C	⁴ H*Az	2°O	
ACIDES.	0	,5.		1.		l , 5.		2.		4.		10.		50.
Ac. hydrofluosilicique	-	9,7	+	20,6	+	25,0	+	26,8	-	29,4		"		11
Ac. iodique														"
Ac. benzènesulfonique														<i>W</i>
Ac. azotique	•					_		-		_		1		
Ac. bromhydrique	11					-								-
Ac. sulfurique $(\frac{1}{2})$	11		i e				1				i	. •		-
Ac. chlorhydrique	-+-	10,5	+	22,3	+	26,0	+	26,9	+	28,1	+	29,7	- j-	31,0
Ac. chlorique														"
Ac. trichloracétique	 	10,8	+	21,7		"		"	+	27,6		"		"
Ac. dichloracétique	 - -	9,6		"		"		"	+-	24,6		"		"
Ac. oxalique $\binom{1}{2}$	 -i-	2,9	-1-	10,2	+	15,8	-	19,1	+	24,0	-+-	27,0		"
Ac. phosphorique $\binom{1}{3}$		"	 -	3,8		"	-+-	10,0	+	16,0	+	22,5	+	28,2
Ac. chloracétique		"		8,0	,["	-;-	13,3	+	15,6		"		"
Ac. malonique (1)					•								l i	"
Ac. lactique	•								1	6,2				24,0
Ac. formique	11	1,5	-+-	0,1				-		5,4		-		- •
Ac. glycolique	, .	2,2	1				1	2,2	1		l			"
Ac. isobutyrique	l i	"	 	3, 2		"		<i>"</i>	ı					"
Ac. acétique	i .	"		3,7		"	_	2,9		•		•	+	6,0
Glycocolle	11	"		4,1	1	"		7 .	1	•	i			,
Ac. propionique	ļi	"		"		"	_	3,7		-	•	1,6		"
Ac. butyrique	11	"		"		"		"	<u> </u>	2,7	!		ŀ	"
Phénol		"		"		"		"		"	<u> </u>	5,0	l .	"

Solutions alcalines.

$$[\alpha]_0^{20} = -5,18$$
 Eau $(c = 2,4)$.

DA OPO	MOLĖC.	BASE POUR 1	ASPAR.
BASES.	0,375.	0,73.	1,25.
Potasse [KOH]		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} - 9,3 \\ - 9,2 \\ - 9,1 \\ - 8,2 \end{array} $

Solutions salines.

$$[\alpha]_{D}^{20} = -5^{\circ}, 18$$
 Eau $(c = 2,4)$.

	MOLÉCULES DE SEL POUR 1 MOLÉG. ASPARAGINE.								
BELS.	1,5.	3.	4.	5.	6.				
Chlorure de potassium	- 2,0	o 0,1	0 + 1,2	U //	0				
Bromure de potassium!	·- 2,1	. 0		- 2,1	"				
Iodure de potassium	- 1,9	0,4	"	3,0	,,				
Chlorure de sodium	— 2,1	— o,i	"	,,	÷ 2,9				
Bromure de sodium	2 , 2	0,15	 0,8	,,	"				
Iodure de sodium	-2,3	— o,2	"	,,	- 3,3				
Chlorure d'ammonium	2 ,1	o,1	"	"	+ 2,9				
Azotate de potassium	2,4	o,5	"	•,	"				
Sulfate de potassium	"	— 1,35	"	"	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Phosphate disodique	— 3,p	— 1,6	"	"	"				
Acétate de sodium	-2,5		+ 1,5	"	"				
Acétate de baryum	- ⊢ o,5	-:- 4,1	"	,,	"				

Interpolé graphiquement d'après les Tableaux numériques de l'auteur; observations ramenées à la raie D.

BLOSFELD (Inaug. Dissert., Berlin; 1894).

d.-Asparagine

Identique, au signe près.

 $C^4H^8Az^2O^3 + H^2O$.

Річтті (С. R., t. СІП, р. 134; 1886).

$$C' H' Az O' = \frac{CH^2 - CO O II}{CH (Az H^2) - CO O II}$$

DISSOLVANT.	[z] _j .	t.	p.
Acide chlorhydrique (9°,5 Baumé) Eau et soude (4,84 º/o Na² O) Eau et ammoniaque (9 º/o Az H³)	+ 27,68 - 2,22 - 11,67	oC 22 id. id.	5,094 9,99 4,02

PASTEUR [Ann. de Chim. et Phys. (3° s.), t. XXXI, p. 78; 1851].

Acide azotique étendu $[\alpha]_{\nu}^{20} = +25^{\circ}, 16 \ (p=4,711).$

RITTHAUSEN [J. f. prakt Ch. (170 s.), t. CVII, p. 227; 1869].

†	$[\alpha]_{\mathbf{h}}^{20}$.	p.
Eau	_ 3°,8 ₇	1,2
	3,93	1,6
	— 4,23	1,8
	 4,63 (?)	2,0
	 4,52	2,4
	4,71	2,8

Solutions alcalines.

Lessive de soude. RAPPORTS MOLÉCULAIRES.			<u></u> !	Sol. d'ammoniaque. RAPPORTS MOLÉCULAIRES.			1
C4 H7 Az O4.	Na OII.	H² O.	[a] ₀ ²⁰ .	C4H7 Az O4.	Az H³.	H² ().	[x] _D ²⁰ .
1	1 3 5	285 281 276,5	- 9,07 - 9,06 - 9,04	1	1 3 5 15,1 20,2	302	$ \begin{array}{c c} & & & & & & \\ & -9,17 \\ & -9,39 \\ & -9,61 \\ & -11,07 \\ & -12,05 \end{array} $

Solutions acides.

HCl très étendu.			HCl plus concentré.				
RAPPOR	rs Molécul	AIRES.		RAPPORT	'S MOLÉCUL	AIRES.	1
C4 H7 Az O4.	H CI.	H: O.	[x] ₀ .	C'H'AZO'.	H Cl.	И°О.	$[\alpha]_0^{2\theta}$.
	0,10	203 239	— o,56		1 1,5	64,4 63,4	+30,04 +32,62
1	o,13 o,15	256 300	- 0,35 1,10		2 3	62,4 60,4	+33,40 -;-33,96
	0,18 0,22	361 435	+ 2,48 3,58	1 /	5	56,3 54,3	+33,90 -34,00
\ ! !	o,55	360	14,87	:	8,3 12,5 25,0	98,8 151,8 311,0	34,35 33,53 33,93

	Acide sulfui rs molécul.	-	1	RAPPOR	Acide ac Ts Molécula	-	1
C4 H7 A2 O4.	SO4 H2.	Н° О.	[α] _ν ^{2.6} .	C4 H7 Az O4.	Cº H4 Oº.	II² O.	$[\alpha]_{\nu}^{20}$.
1	o,5 o,6 o,75 1 3 5	302	+21,80 $+24,18$ $+28,64$ $+28,83$ $+31,47$ $+32,03$ $+33,50$	1	1 2 3 4 5 7	285	3,16 1,07 0,40 0,14 0,14 +- 1,26 +- 1,72

BECKER (Ber. d. D. ch. Ges., t. XIV, p. 1036; 1881).

I Échantillon.
$$[\alpha]_b^{21,5} = +6^{\circ}, 08$$
 [Eau $(c = \circ, 39)$]
II Échantillon. $[\alpha]_b^{22,5} = -4^{\circ}, 87$ [Eau $(c = \circ, 4\circ)$]

MARSHALL (J. of chem. Soc., t. LXIX, p. 1023; 1896).

$$[\alpha]_{D}^{20} = +4^{\circ},36 \quad [Eau \ (p = 0.528)]$$

$$[\alpha]_{D}^{t} = -1.5^{\circ},61 - 0.0554t - 0.000306t^{2}] \quad [Eau \ (p = 1.872)t = 20^{\circ} \text{ à } 90^{\circ}]$$

$$(Calculé d'après les nombres de l'auteur.)$$

ELLEN COOK (Ber. d. D. ch. Ges., t. XXX, p. 296; 1897).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Aspidospermatine. C ²² H ²⁸ Az ² O ²	$[\alpha]_{b}^{15}-72^{\circ},3$	Alcool 97 % (c = 2)	HESSE (Licb. Ann., t. CCXI, p. 249; 1882).
Aspidospermine. C ²² H ³⁰ Az ² O ²	83°,6 61°,6	Alcool 97 $^{0}/_{0}$ ($c=2$) Chloroforme (id.) Eau \div 3HCl (id.) Eau \div 10HCl (id.)	
Atisine. C ²² H ³¹ Az O ²	$ [\alpha]_{0}^{19}-19^{\circ},6$	Alcool ($c = 6,73$)	JOWETT (J. of chem. Soc., t. LXIX, p. 1521; 1896).
Atisine (azotate d'). (C ²² H ³¹ Az O ²) Az O ³ H	$[\alpha]_{b}^{18} + 28^{\circ}, 3$	Eau ($c = 1,03$)	/d., p. 1524.
Atisine (bromhydrate d' (C ²² H ³¹ AzO ²)HBr	$) \left[\alpha \right]_{0}^{15} \div 24^{\circ}, 3$	Eau (c = 0,715)	[d., p. 1522.
Atisine (chlorhydrate d') (C ²² H ³¹ Az O ²) H Cl	1	l .	Id.
Atisine (iodhydrate d'). (C ²² H ³¹ Az O ²) HI	$[\alpha]_{\mu}^{19} + 26^{\circ}, 2 + 28^{\circ}, 7$	Eau ($c = 0,181$) Id. ($c = 0,174$)	ld., p. 1524.
Atropine. C ¹¹ H ²³ Az O ³	[α] ¹⁵ ο°, 4	Alcool abs. (c == 3,22)	Hesse (Lieb. Ann., t. CCLXXI, p. 101; 1892).
(Atropine naturelle)	[a] _p — 1°, 89 (appr.)	Alcool	WILL et BREDIG (Ber. d. I). ch. Ges., t. XXI, p. 2795: 1888).
Atropine (dextro-). Id. (levo-).	[α] _n + 10° non mesuré	Alcool	LADENBURG et HUNDT (Ber. d. D. ch. Ges., t. XXII, p. 2592; 1889).
Atropine (sulfate d'). (C ¹⁷ H ²³ Az O ³) ² SO ⁴ H ²	$[\alpha]_{n}^{1.5}-8^{\circ},8$	Eau (c = 2)	HESSE (<i>Lieb. Ann.,</i> t. GCLXXI, p. 102; 1892).
Aurantiamarine. $C^{22}H^{26}O^{12}(?)$	[a] _D — 60"		TANRET [Bull. Soc. chim. (2° S.), t. XLVI; p. 501; 1886].

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Aurantiamarique (acide). C¹º H¹² O⁴	[a] _D — 28°		Id.
Austracamphène. Voir Ca Australène. Voir Térében	-		
Bebirine. C ¹⁸ H ²¹ Az O ³	[a] ²⁸ — 298°	Alcool	SCHOLTZ(Ber. d. D. ch. Ges., t. XXIX, p. 2058; 1896).
Benzoylcamphoroxime.	oir -camphorox	ime (Benzoyl-).	
Benzoylcarvoxime. C ¹⁰ H ¹⁴ Az O. CO (C ⁶ H ⁵) de la carvoxime droite.	$ [\alpha]_b^{17} - 26^\circ, 47$	Chlorof. (p=5,765)	WALLACH et CONRADY (Lieb. Ann., t. CCLII, p.
Id. de la carvoxime gauche.	$ [\alpha]_{b}^{21}-26",97$	Chlorof. $(p=5,716)$	
dId.	$[\alpha]_{D}^{18,5} + 26^{\circ},64$	Chlorof. (p=9,106)	Goldschmidt et Freund (Zeits. f. physik. Ch., t. XIV, p. 402; 1894).
obromée. C ¹⁰ H ¹⁴ Az O. CO. C ⁶ H ⁴ . Br (1)	$[\alpha]_{\nu}^{22} + 25^{\circ}, 96$	Chlorof. $(p = 5,47)$	ld., p. 404.
Ia. mbromée. (1) (3)	$[[\alpha]_{D}^{23,5} - 18^{\circ}, 24]$	Chlorof. $(p=5,51)$	
Id. pbromée. (1) (1)	$[\alpha]_{b}^{23} + 14^{\circ},90$	Chlorof. $(p=5,50)$	
dBenzoylcarvoxime onitrée. C10 H14 Az O. CO. C6 H4. Az O2 (1)	$[\alpha]_{D} \pm o^{\circ}$	Chloroforme	Id., p. 406.
Id. mnitrée. (1) (3)	$[\alpha]_{D}^{23,5}$ + 20°, 68	Chlorof. $(p = 4,58)$	
Id. pnitrée.	$[\alpha]_{b}^{22,5} \div 17^{\circ},33$	Chlorof. $(p = 4,56)$	

Benzoylcarvylamine. Voir Carvylbenzoylamine.

(1) (1)

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	OBSERVATEURS.
Benzoylcinchonine. C ¹⁹ A ²¹ (C ¹ H ³ O) Az ² O	23°,95 25°,35	Alcool abs. $(p = 1)$ Id. $(p = 2)$ Id. $(p = 5)$ Alcool 30° + 1 mol. H C $(p = 1,327)$	-
	[2] _D — 16°, 72	($p = 1.327$) (Alcool 30° +- 2 mol. H C) ($p = 1.327$) (Alc. 30° + $\frac{1}{2}$ mol. SO ⁴ H	
	$\frac{(g.)}{[\alpha]_{\mathrm{D}} + 10^{\circ}, 58}$	$ \frac{(p = 1,327)}{(Alc. 30^{\circ} + 1 \text{ mol. SO}^{\circ} \text{H})} $ $ \frac{(p = 1,327)}{(p = 1,327)} $	
Benzoyl-dconicine. C*H16(C'H5O)Az	[α] ¹⁶ + 37°,7	Pur. d ¹⁶ = 1,0534	LADENBURG (Ber. d. D. ch. Ges., t. XXVI, p. 860; 1893).
Benzoyl-conicine (iso). C ⁿ H ¹⁶ (C ⁷ H ⁵ O) Az	$[\alpha]_{0}^{16} + 29^{\circ}, 1$	Pur. d ¹⁶ - 1,0623	ld.
Benzoyl-decgonine amylique (chlorhydrate de). [C ¹⁵ H ¹⁸ (C ⁵ H ¹¹)AzO ⁴]HCl	$[\alpha]_{b}+38^{\circ},6$	Eau (c = 2,2)	EINHORN et MARQUARDT (Ber. d. D. ch. Ges., t. XXIII, p. 988; 1890).
Benzoyl-decgonine ibutylique (chlorhydrate de). [C''H''(C'H'') Az ()'] H Cl	[α] ₀ + 46°, ο	Eau (c = 2,5)	: !d., p. 987.
Benzoyl-decgonine éthylique (chlorhydrate de).	$[\alpha]_{D}+41,7$	Eau ($c = 5,4$)	LIBBERMANN et GIRSEL (Ber. d. D. ch. Ges., t. XXIII, p. 511; 1890).
[C16H19(C2H3)AzO1]HCl	[a] _b + 40°, 0	Eau (c = 2)	EINHORN of MARQUARDT (loc. cit., p. 986).
Benzoylecgonine méthyli	ique. Voir Cocaï	ne.	
Benzoyl-decgonine npropylique (chlorhydrate de). [C ¹⁶ H ¹⁸ (C ³ H ¹)AzO ⁴]HCl	[α] _D + 46°, 2	Eau (c == 2,6)	ld., p. 987.

Benzylarabinoside.

C5 H9 O5, CH2, C6 H5

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	OBSERVATEURS.
Benzoylglycérate de	 Voir -glycérate	(Benzoyl-) de	i
Benzoylhydrochlorocar- voxime. (HCl.C ¹⁰ H ¹⁴ AzO).CO(C ⁶ H ²) de l'hydrochlorocarv. droite		Éther acét. (p =3,16)	MACHELBIDT (Inaug. Dis- sert., Göttingen; 1890). (In. (Lieb. Ann., t. CCLXX. p. 179; 1892).
Id. de l'hydrochlorocarvoxime gauche	$[\alpha]_{b}^{20}+9^{\circ},92$	ld. (p=11,87)	
Benzoyl-z-limonène (chlorure nitrosé de). C ¹⁶ H ¹⁵ (CO. C ⁶ H ⁵) Az O Cl du lim. droit	[α] ^{20,3} +101°, 73	Éther acét. (<i>p</i> -: 3,46)	Id.
Id. du lim. gauche.	$[\alpha]_{b}^{19,3}-101^{\circ},84$	Id. $(p = 4.83)$	· ·
Benzoyl-β-limonène (chlorure nitrosé de). Id. du lim. droit	$ [\alpha]_{b}^{2^{\bullet,2}}+101^{\circ},73$	Id. (p = 3,27)	
Id. du lim. gauche.	$[\alpha]_{D}^{20,2} -103.82$	Id. (p=4,075)) ,
Benzoyldpipécoline. C ⁶ H ¹² (C ⁷ H ⁵ O) Az	$[\alpha]_{\text{p}}$ + 35°,30		LADENBURG (Ber d. D. ch. Ges., t. XXVI, p. 861: 1893).
Benzoyl-pipécoline (iso) Id.	· [α] ₀ + 33°,35	1	<i>Id</i> .
Benzoylquinine. C ²⁰ H ²³ (C ⁷ H ⁵ O) Az ² O ²	+121°,6 +100°,8	Alcool (c == 0,5 Id. (c == 1) Eau + 2 Cl (c == 1) Eau + 4 Cl (c == 1)) Wunsch [Ann. de Chim. et Phys. (7° 5.), t. 133 1896].

E. FISCHER et BEENSCH

(Ber. d. D. ch. Ges., t.

XXVII, p. 2483; 1894).

Eau (p::1,03)

 $| [\alpha]_b^{2n} + 215^{\circ}, 2 |$

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Benzylcamphre. Voir Cam	phre benzylé.		`
Benzylcamphoroxime. C ¹⁰ H ¹⁵ (C ⁷ H ⁷) Az OH du camphre benzylé droit	[α] _D — 32°, 14	Toluène	HALLRR (Dict. de Würtz 2º suppl., t. I, p. 902).
Benzyldesmotroposantoni	ne. Voir -santor	nine (Benzyldesmot	ropo-).
Benzylidènecamphre (du camphre droit). C ¹¹ H ²⁰ O == C*H ¹⁴ CO	++ 43 5°, 4 1	Toluène $(c = 6)$ Id. $(c = 12)$ Alcool $(c = 3)$	Id., p. 903.
Id. du camphre gauche.	[2] _D — 418°, 08 — 430°, 34		
Benzylidènefenoyl- amine (de l. fenone). C ¹⁷ H ²³ Az = C ⁶ H ³ . CH : Az. C ¹⁶ H ¹⁷	$[\alpha]_{D}^{19}-62^{\circ}, 1$	p=2,63	WALLACII (Lieb. Ann., t. CCLXXII, p. 104; 1892).
Benzylmalimide (α). $C^{11}H^{11}O^{3}Az =$ $C^{4}H^{3}O^{3}.AzH.CH^{2}.C^{6}H^{3}$	[α] _D — 23°, 28	Eau	GIUSTINIANI [Gazz. chim. ital., t. XXIII (1), p. 168
Id. (3).	$[\alpha]_{\text{\tiny D}}$ — 48°,56	Eau	
Biamyle. $C^{10} H^{22} =$	$[\alpha]_{\nu}^{20} + 8^{\circ}, 69$	Pur. $d^{20} = 0.7463$	JUST (Lieb. Ann., t. CCXX p. 146; 1883).
C ² H ³ CH.CH ² .CH ² .CH CH ³ Woir la suite au verso.	$[\alpha]_{D}^{21} - 12^{\circ}, 08$ $[\alpha]_{D}^{18} - 12^{\circ}, 07$	Pur. $d^{21} = 0,7301$ $d^{78} = 0,691$	MII. WELT [Bull. Soc. Chim (3° s.), t. XI, p. 1181; 1894].
	$\boxed{\left[\alpha\right]_{D}^{19,9} + 10^{\circ},01}$	Pur. $d_4^{19,9} = 0,7283$	Do Amaral [Arch. de Ge- nève (3° Pér.), t. XXXIII p. 434; 1895].
	$\begin{bmatrix} \alpha \end{bmatrix}_{666} - 7^{\circ}, 96$	Pur. d := 0,729	GUYE et JORDAN (C. R. t. CXXII, p. 884; 1896) [Voir Table XVII (I. E.).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
	$[\alpha]_{666}^{25.2} + 9^{\circ},88$ $[\alpha]_{666}^{25.2} + 9^{\circ},88$ $[\alpha]_{666}^{25.2} + 9^{\circ},88$ $[\alpha]_{666}^{25.2} + 12^{\circ},36$ $[\alpha]_{666}^{25.2} + 12^{\circ},15$ $[$	Pur. d ^{25,2} = 0,7246	MELIKIAN (Thèse, Genève;
Biapocinchonine. C ³⁸ H ¹⁴ Az ⁴ () ²	[α] ₀ ¹⁵ 20° 23°,6	Alcool 97 $^{0}/_{0}$ ($c == 2$) Eau + 3 H Cl (id.)	HESSE (Lieb. Ann., t. CCV, p. 333; 1880).
αBicamphanediolque (anhydride). C° H'15 - C° H'15 C° O-CO	[2] ¹⁴ — 142°,0	Alcool (p == 1,1)	ODDO [Gazz. chim. ital t. XXVII (I), p. 194: 1897].
Bicamphanehexanazine. $C^{20}H^{28}Az^2 =$ CH $C^{1}H^{13}$ $C=Az-Az$ C $C^{1}H^{13}$ C C C C C C C		Benzène (p : 5)	Id., p. 173.
Bicamphanehexanedione. $C^{20} H^{20} O^2 =$ $CH - CH$ $C^1 H^{13} < CO CO C^1 H^{13}$ $C = C$	$[\alpha]_{b}^{21} + 331^{\circ}, o$ $[\alpha]_{b}^{24} + 381^{\circ}, o$	Benzène $(p = 3,5)$ Alc. abs. $(p = 2,90)$	Id., p. 170.
Bicamphanonehydrazone C ²⁰ H ³⁰ Az ² = C ⁸ H ¹⁴ C - CH C ⁶ H ¹⁴ C - Az - Az = C		Benzène (p == 5)	ld., p. 165.
Bicamphène (hydrure de) (liquide). C ²⁰ H ³⁴	$[\alpha]_0^{25} \div 21^\circ, 3$	Alc. abs. (c == 13,3)	DE MONTGOLFIER [Ann. de Ch. et Phys. (5° s.), t. XIX, p. 151; 1880].
	[α] ¹⁵ - 24°, 06	Pur. $d^{15} = 0.963$	ÉTARD et MEKER (C. R., t. CXXVI, p. 526; 1898).

Id.

NOM ET FORMULE.	POUVOIR rotatoire specifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Bicamphènehexadiène (oxyde de). C ²⁰ H ²⁴ () =			ODDO (loc. cit., p. 181).
C. H ₁₃ CH-O-CH C ₁ H ₁₃	; ;		; .
Bicamphre. C ²⁰ H ³⁰ O ² =: CH CH C' H ¹³ CO CO C' H ¹³ CH CH	$\begin{array}{c} [\alpha]_{b}^{2} - 28^{\circ}, 4 \\ [\alpha]_{b}^{2} - 4^{\circ}, 69 \end{array}$	Benzène $(p = 5)$ Alc. abs. $(p = 2,5)$	' <i>ld.</i> , p. 162.
сн сн			1
Bicinchonine. C ^{3*} H ¹⁴ Az ⁴ O ²	[α] ¹⁵ + 91°,7 :-80°,4	Alcool 97 % ($c = 1.516$) Eau + 3 H Cl ($c = 1$)	HESSE (Licb. Ann., t. CCXXVII, p. 153; 1885).
Bicinchonine (chlorhydrate de). (C ³⁷ H ⁴⁴ Az ⁴ O ²) H Cl	$[\alpha]_{\nu}^{1.3} + 58^{\circ}, 7$	Eau (c = 5)	! <i>Id</i> .
Bidécène. C ²⁰ H. ¹⁶	[a] _D a"	Pur. d := 0,9362	RENARD (C. R., t. CVI, p. 1086; 1888).
Bidihydrosantinates. Voir	-santinates (Bi	dihydro-).	
Biglucose octoacétylé. C ¹² H ¹¹ (C ² H ³ O)*O ¹¹	! [α] ¹⁶ → 54°,62'	Alcool	DEMOLE (Ber. d. D. ch. Ges., t. XII, p. 1936; 1879).
Autre.	[a] _b 22°,50	Alcool	HERZFELD (Lieb. Ann., t. CCXX, p. 206; 1881).
Voir Glucose pentacétylé	(Tanret).		1
Bilianique (acide). C ²⁴ H ³⁴ O ⁸ + 4 H ² O	[2] ₀ + 47°,4	Alcool	Kn. Ångström in Cleve . [Bull. Soc. chim. (2° 8.), t. XXXV, p. 429; 1881].
	[a] _D + 76°	Alcool	BULNIIRIM (Zeits. f. phy- siol. Ch., t. XXV, p. 296; 1898).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.	
Bitérébenthyle. C ²⁰ H ³⁰	[a] _b + 59°	Pur	RENARD (C. R., t. CV. p. 865; 1887).	
Bitérébenthylène. C ²⁶ H ²⁸	[α] _p + 4°	Pur. d == 0,9821	RENARD (C. R., t. CVI, p. 858; 1888).	
Biterpilène. C ²⁰ H ³²	[a] _b 14°, 25	Pur. d ^o == 0,9446	LAFONT [Ann. de Ch. et de Phys. (6° 8.;, t. XV, p. 191; 1888].	

Bornéol. Voir Camphol.

Bornyl.... Voir Camphyl....

Bromacétylmalate. Voir -malate (Bromacétyl-).

Brométhylbrucine (bromhydrate de). C ²³ H ²⁶ Az O ⁴ . Az - C ² H ⁴ Br Br	[α] _D 24°, 32	Eau	MBULENHOFF (Rec. Trav. chim. d. P. B., t. XIV, p. 229; 1895).
-+ 3 H ² O			
aBromobutyrate ibutylique.	$[\alpha]_{\mathbf{D}}^{15} \div 8^{\circ}, 2$	Pur. d15 = : 1,216	GUYE et JORDAN Bull. Soc. Chim. (3° s.), t. XV, p. 495; 1896].

Bromobutyrylmalate. Voir -malate (Bromobutyryl-).

Bromocamphorénique (acide). Voir -camphorénique (acide Bromo-).

Bromocamphorique (acide). C ⁶ H ¹³ Br (COOH) ²	[α] ₆ ° 40°, ο	Alcool abs. (c == 4	t. LXIX, p. 926; 1896).
C.H.Br(COOH)		l .	

Bromocamphorique [
$$\alpha$$
]_j — 21°, 1 | Chloroforme del'ac.camph. dr .

C⁸ H¹³ Br O³ : [α]_j — 21°, 6 | Id.

C⁸ H¹³ Br CO del'ac.camph. g .

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Bromocamphosulfon- amide. (C ¹⁶ H ¹⁴ BrO)SO ² .AzH ²	$[\alpha]_{b}^{11} + 112^{\circ}, 4$	Alcool (c = 4,60)	KIPPING et POPE (J. of chem. Soc., t. LXIII, p. 565; 1893).
aBromocamphosulfo- nate d'ammonium. (C ¹⁰ H ¹⁴ Br O) SO ³ Az H ⁴	[a] _b ÷ 87°	Eau (c: 4,57)	MARSH et Cousins (J. of chem. Soc., t. LIX, p. 973: 1891).
()	[a] _b 84", 78	Eau (c == 4,6)	Кірріко et Рорк (<i>loc. cit.</i> , p. 589).
β. Id.	[α] _b 82"	Eau (c: 4,67)	MARSH of Cousins (loc. cit., p. 976).
aBromocamphosulfo- nate de baryum.	$[\alpha]_{\scriptscriptstyle D}^9 \div 63^{\scriptscriptstyle (1)}, 1$	Eau [c = 5,893 (hydr.)]	Kipping et Pope (loc. cit., p. 591).
[(C ¹⁰ H ¹⁴ BrO)SO ³] ² Ba 5 ¹ / ₄ H ² O	[α] _D ··· 70°, 9 + 71°, 9	Eau [c · 0,315 (anh.)] Id. [c · 1,262 (anh.)]	WALDEN (Zeits. f. physik. Ch., t. XV, p. 202; 1894).
	$[\alpha]_{b}^{9} + 86^{\circ}, 8$	7 eau 93 acétone (c := 1,262)	
	÷ 79°,7	3,5 cau 96,5 acétone (c =- 0,631)	
aBromocamphosulfo- nate de glucinium. (C ¹⁰ H ¹⁴ Br O SO ³) ² Gl	86°, 7	1d. (c = 0,524)	ld.
aBromocamphosulfo- nate de lithium. (C''H''BrO)SO'Li	$(\alpha)^{20,5}_{0} + 85^{\circ}, 5$ + 85°, 8 - 86°, 7	Eau $(c = 0.264)$ Id. $(c = 0.528)$ Id. $(c = 1.057)$	Id., p. 200.
aBromocamphosulfo- nate de magnésium.	$[\alpha]_{b}^{14} + 27^{\circ}, 9$	Eau (c == 4,76)	MARSH et Cousins (loc. cit., p. 974).
	$[\alpha]_{b}^{20,5} - 83^{\circ}, 9 \\ + 83^{\circ}, 9$	Eau ($c = 0.268$) Id. ($c = 0.537$) Id. ($c = 1.073$)	WALDEN (loc. cit., p. 202).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
zBromocamphosulfo- nate de potassium.	$[\alpha]_{\mathfrak{u}}^{10} \div 71^{\circ},44$	Eau (c = 4,92)	Kipping et Pope (loc. cit., p. 5gr).
$(C^{16}H^{14}BrO)SO^{3}K + 1\frac{1}{2}H^{2}O$		Eau [c:=0,291 (anh.)] Id. [c=0,582 (anh.)] Id. [c=1,163 (anh.)]	

a.-Bromocamphosulfonate de quinidine. Voir Quinidine-.

2 -Bromocamphosulfo nate de sodium. (C ¹⁰ H ¹⁴ Br O) SO ³ Na -i- 5 H ² O		(anhydre)	MARSH et Cousins (loc. cit., p. 972).
	$[\alpha]_{D}^{9}+63^{\circ},1$	Eau (c == 4,13) (hydraté)	KIPPING et POPE (loc. cit., p. 590).
	$\begin{array}{c c} [\alpha]_{b}^{20,5} + 81^{\circ}, 1 \\ - 81^{\circ}, 8 \\ + 81^{\circ}, 6 \end{array}$	Eau [c=0,278 (anh. Id. [c=0,555 (anh. Id. [c=1,110 (anh.)] WALDEN (loc. cit., p. 200).)])]
β I d.	$\left \left[\alpha\right]_{b}^{14} \div 12^{o}, 2\right $	Eau ($c=3,42$) (anhydre)	MARSII et Cousins (loc. cit., p. 976).

Bromocamphosulfonate de tétrahydropapavérine. Voir Tétrahydropapavérine.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
aBromocamphosulfo- nique (bromure d'acide). (C''H''BrO)SO'Br	$[\alpha]_{\scriptscriptstyle D}^{\scriptscriptstyle 12} + 143^{\circ}$	Chlorof. (c = 11,69)	KIPPING Ct POPE (J. of chem. Soc., t. LXVII, p. 369; 1895).
2Bromocamphosulfo- nique (chlorure d'acide). (C ¹⁰ H ¹¹ Br O) SO ² Cl	• •	Chloroforme	ld., t. LXIII, p. 579; 1893).
IBromomalate diéthy- lique. C* H'''3 Br O' = CH Br. CO OC'2 H'' CH (OH). CO OC'2 H''	$[\alpha]_{\nu}^{2\nu}$ — 2° , 44	Pur. d ₄ ²⁰ - 1,4330	WALDEN (Ber. d. D. ch. Ges., t. XXVIII, p. 1293: 1895).
Bromophénylcystéine. C ⁹ H ¹⁰ Br S Az O ² = Az H ² CO OH CH ³ SC ⁶ H ⁴ Br	[a] ₀ — 4°	Lessive de soude étendue (c = 9)	BAUMANN (Ber. d. D. ch. Ges., t. XV, p. 1732; 1882).
pBromophénylmercap- turate de sodium. C ¹¹ H ¹¹ Na Br S Az O ³ == CH ³ .CO Az H CO O Na CH ³ SC ⁶ H ⁴ Br	-:- 9°, 5	Id. $(c = 21,45)$	BAUMANN et SCHMITZ (Zeits. f. physiol. Ch., t. XX, p. 586; 1895).
pBromophénylmercap- turique (acide). C ¹¹ H ¹² Br S Az O ³	[α] _ν — 6°, 7 — 7°, 4	Alcool ($c = 12$) Less. de soude étendue ($c = 25$)	BAUMANN (Ber. d. D. ch. Ges., t. XV, p. 1732; 1882).
Bromopicrotoxinine. C15 H15 Br O6	[α] ¹⁷ - 132°,5	Chloroforme (c = 1,07)	'MEYER et BRUGER (Ber. d. ; D. ch. Ges., t. XXXI, p. 2966; 1898).
Bromopicrotoxinique (acide). C ¹⁴ H ¹⁶ BrO ⁵ .COOII + H ² O	[2] ₀ —62°,6	Eau (p 0,359)	Id., p. 2967.
dBromopropionate. ibutylique. C'H'' Br O' == CH' . CH Br . COO. CH' . CH (CH')'	$[\alpha]_b^{20} \div 3^\circ, 55$	Pur. $d_1^{26} = 1,2675$	WALDEN (Ber. d. D. ch. Ges., t. XXXI, p. 1419; 1898).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
dBromopropionate éthylique. C ⁵ H ⁹ Br O ² = CH ³ . CH Br. CO OC ² H ⁵	$[\alpha]_b^{20} + 7^o, 18$	Pur. $d_4^{20} = 1,3935$	Id., t. XXVIII, p. 1294;
lBromopropionate éthylique. [de lactate éthylique dr.]	$[\alpha]_{b}^{19}-31^{\circ},45$	Pur. $d_{4}^{19} = 1,386$	WALKER (J. of chem. Soc., t. LXVII, p. 921; 1895).
dBromopropionate méthylique. C'H'Br()²= CH3.CHBr.COOCH3 [de lactate méthylique g.]	$[\alpha]_{b}^{17} + 42^{\circ}, 65$	Pur. $d_4^{11} = 1,482$	Id.
lBromopropionate propylique. C ⁶ H ¹¹ BrO ² := CH ³ .CHBr.COOC ³ H ⁷ [de lactate propylique dr.]	$[\alpha]_{b}^{14}$ 21°,98	Pur. d ₄ ¹⁴ == 1,315	Id.
Bromoshikimolactone. C ¹ H ⁹ Br O ⁵	[α] _D + 22°	Eau (c = 8)	EYKMAN (Ber. d. D. ch. Ges., t. XXIV, p. 1284; 1891).
dBromosuccinate di-i-butylique. C ¹² H ²¹ Br O ⁴ == CH Br. CO O CH ² . CH (CH ³) ² CH ² .CO O CH ² . CH (CH ³) ²		Pur. $d_4^{20} = 1,2394$	WALDEN (Zeits f. physik. Ch., t. XVII, p. 254; 1895).
dBromosuccinate diéthylique. C ⁸ H ¹³ Br O ⁴ = : CH Br. CO O C ² H ³ CH ² . CO O C ² H ⁵	[x] ²⁰ — 40°, 96	Pur. $d_4^{20} = 1,3550$	ld., p. 257.
dBromosuccinate diméthylique. C ⁶ H ⁹ Br O ¹ = CH Br. CO O CH ³ CH ² . CO O CH ³	$[\alpha]_{b}^{20}$ \div 50°,83	Pur. $d_4^{20} = 1,5050$	Id., p. 260.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
dBromosuccinate dipropylique.	$[\alpha]_{D}^{20}+38^{\circ}, o5$	Pur. $d_4^{20} = 1,3010$	// / / / / / / / / / / / / / / / / / /
$C^{10}H^{11}BrO^{4} = $ $CHBr.COOC^{3}H^{1}$; 	
CH2. CO O C3 H1			

Brucine.

$$[\alpha]_{D} - 85^{\circ}$$
 | Alcool (c=4 à 5) | Oudemans (Lieb. Ann., t. CLXVI, p. 69; 1873).

 $-[132, 1-2,67c]$ | t. CLXVI, p. 69; 1873).

 $[\alpha]_{D}^{26} - 80^{\circ}, 1$ | Alcool (c = 2,13) | Tykociner (Inaug. Diss., Freiburg; 1882).

Action des acides en solutions aqueuses.

$$[c = 0.95][t = 20^{\circ}]$$

n molécules acide pour 1 molécule base.

	ACIDES							
n.	chlor- hydrique.	brom- hydrique.	formique.	acélique.	sulfurique.	oxalique.	phos - phorique.	citrique.
0,5	0 //	o //	0	U //		33 [°] ,7	0 //	· //
0,67	"	"	"	"	"	"	"	35 ,9
1	_35,°9	35,5	—36 ,5	—35 ,6	-34,0	-34,1	—35 ,5	-35,8
2	_35,7	-35,2	—36,2	-35,8	-33,6	—34 ,0	—35 , 4	-35,4
3	35,5	34,9	36,2	-35,5	—33 ,1	"	—35 ,5	-35,1
4	35,2	-34,1	-35,9	—35,2	· "	"	—35,3	"
6	—35, o	33,6	-35,9	-35, o	-31,5	-33,7	- 35,2	-34,9
10	-34,4	—32 ,0	"	-34,4	-30,6	—31,7	-34,9	34,4
20	\parallel -33,8	"	-35,5	-33,2	"	-31,1	-34,6	-33,4
3 o	-31,0	"	-35,2	31,8	"	-29,6	-34,1	-32,4

TYKOCINER (loc. cit.).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Brucine (azotate de). Bruc. Az O ³ H	$ \begin{array}{c c} & 23^{23} - 29^{\circ}, 7 \\ & -30^{\circ}, 2 \\ & -30^{\circ}, 9 \\ & -34^{\circ}, 1 \end{array} $	Eau $(c = 1,142)$ Id. $(c = 1,523)$ Id. $(c = 2,285)$ Id. $(c = 4,57)$	HÄDRICH (Zeits. f. physik. Ch., t. XII, p. 179; 1893).
Brucine (chlorhydrate de). Bruc. H Cl	$ \begin{array}{c c} & [\alpha]_{0}^{25} - 31^{\circ}, 6 \\ & -32^{\circ}, 0 \\ & -32^{\circ}, 8 \\ & -36^{\circ}, 2 \end{array} $	Eau (c = 1,076) Id. (c = 1,435) Id. (c = 2,1525) Id. (c = 4,305)	<i>Id</i> .

- -brucine (Brométhyl-). Voir Brométhylbrucine.
- -brucine (Oxyéthyl-). Voir Oxyéthylbrucine.

Bryogénine. (C ¹⁴ H ¹⁹ O ²) ²	[α] _D +105° (app.)		MASSON [J. de Pharm. et de Ch. (5° s.), t. XXVII, p. 300; 1893).
Bryonine.	[α] _D 41°,25	Alcool (p. 5 à 6)	! <i>Id</i> .
Bulbocapnine. C ¹⁹ II ¹⁹ Az O ⁴	[a] _b -+237°, 1	Chlorof. (c : 4,48)	FREUND et JOSEPHI (Lich. Ann., t. CCLXXVII, p. 12; 1893).
iButylamyle. C ⁹ H ²⁰ = CH ³ CH.CH ² .CH ² .CH CH ³	$[\alpha]_{D}^{20}+5^{\circ},88$ $[\alpha]_{D}^{51}-5^{\circ},66$	Pur. d ²⁰ = : 0,710	MII. WELT [Ann. de Chim. et Phys. (7° s.), t. VI, p. 127; 1895].
C3H2 CH-CH3-CH3-CH3	$[\alpha]_{D}^{21} = 5^{\circ}, 31$ $[\alpha]_{D}^{63,2} = 5^{\circ}, 20$		Do Amaral [Arch. de Gen. (3° Pér.), t. XXXIII. p. 434; 1895].

i.-Butylcamphène. Voir -camphène (i.-Butyl-).

iButylcinchonine (bromhydrate de). (C ¹⁹ H ²² Az ² O)(C ⁴ H ⁹ Br)+H ² O	$\left[\alpha\right]_{b}^{1}$ \div 125°,0	Eau (c : 1)	VIAL [J. de Pharm. et de Ch. (5° 8.), t. XXX, p. 54; 1894].
---	---	-------------	---

Butyryllactate de.... Voir -lactate (Butyryl-) de....

Butyrylmalate de.... Voir -malate (Butyryl-) de....

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Cadinène. C ¹⁵ H ²⁴	[a] _D ²⁰ — 98°,56	Pur. $d_4^{20} = 0.918$	WALLACH et WALKER (Lieb. Ann., t. CCLXXI; p. 296; 1892).
	$[\alpha]_{b}^{9,5}-98^{\circ},56$	Chlorof. $(p = 13,05)$	WALLACH et CONRADY (Id., t. CCLII, p. 150; 1889).
Cadinène (dibromhydrate de). (C ¹⁵ H ²⁴) 2 H Br	$[\alpha]_{D}^{9,3}-36^{\circ},13$	Id. $(p = 7, 23)$	Id.
Cadinène (dichlorhydrate de). (C15 H24) 2 H Cl	$[\alpha]_{D}^{9,3}$ — 36°,82	Id. (p = 7,21)	Id.
Cadinène (diiodhydrate de). (C15 H24) 2 HI	[2] ^{9,5} — 48°,0	Id. (p = 5,57)	Id.
Camphanique (acide). C''H''O' = O C''H''3 - COOH CO (de l'ac. camphorique dr.)		Alcool absolu	ASCHAN (Acta Soc. scient. fenn., t. XXI, nº 5, p. 1: 1895).
(de l'ac. camphorique g.).	·	Id.	
cisπCamphanique (acide). C'' H'' O'	[2] ¹⁰ — 47°,7	Alcool (c = 4,22)	KIPPING (J. of chem. Soc., t. LXIX, p. 945; 1896).
trans\piCamphanique (acide). C'' H'' O'	[2] ²⁰ + 9",85	Alcool $(c = 4,23)$	ld., p. 931.
Camphanonecampha- noïque (acide). C**H**O' == CH - CH' C' H'' CO C' H''	[2] _b ^{12,6} + 98°, 36	Alcool abs. (p = 4,75)	ODDO [Gazz. chim. ital., t. XXVII (II), p. 184; 1897].
D.		ı	54

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	. OBSERVATEURS.
Camphène.	$[\alpha]_{j}+22^{\circ}$		Вективьот (С. R., t. LV, р. 496; 1862).
[Austracamphène] (de l'australène)			
[Térécamphène]	$[\alpha]_j - 63^{\circ}$		Id.
(du térébenthène g.)	—[53,8	Pur. d_4^{61-2} 0,8319 0 — 0,0308 q] q = 62 à 90,5)	RIBAN [Ann. de Ch. et Phys. (5° s.), t. VI, p. 361; 1875].
(du camphre).	$[a]_{b}^{22} + 44^{\circ}, 22$	Alcool (c 11,4)	DE MONTGOLFIER [Ann. de Ch. et Phys. (5° s.), t. XIV, p. 106; 1878].
	$[\alpha]_{D}^{85,3} - 64^{\circ}, 8$	Pur. d ^{115,3} - 0,848	SPITZER (Ber. d. D. ch. Ges., t. XI, p. 1816; 1878).
(du camphol).	[α] ⁸⁵ 24", 4	Pur. d = 0,817	KACHLER (Lieb. Ann., t. CXCVII, p. 97; 1879).
(d'isocamphol $[\alpha]_0 = 13^\circ, 13$).	[\alpha]_n + 100° (app.)	Alcool	SARAN (Inaug. Dissert Halle; 1897).
Camphène (acétate de). C¹º H¹6 (C² H⁴ O²)	[α] ₀ — 19°, 75	Pur. d ⁰ = 1,002	LAFONT [Ann. de Ch. et Phys. (6° s.), t. XV, p. 149; 1888].
Camphène (chlorhydrate de). [austracamphène] C ¹⁶ H ¹⁶ (H Cl)	[α] _j 5°		BERTHELOT (C. R., t. LV, p. 496; 1862).
Id. (térécamphène).	$[\alpha]_j + 32$ °		īd.
•	[a] _D + 30°, 25	Alcool $(p = 10,5)$	Id. RIBAN [Ann. de Ch. et Phys. (5° 8.), t. VI, p. 363; 1875].
Camphène (dichlorure de) C ¹⁰ II ¹⁶ Cl ²	[a] _b — 16°,0	Éther acétique (c == 22,34)	SPITZER (Ber. d. D. ch. Ges., t. XI, p. 1819; 1878).

Camphène (éthylate de). Voir Camphyléthylique (éther).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Camphène chloré. C ¹⁰ H ¹⁵ Cl	$[\alpha]_{\nu}^{22}-4^{\circ}$	Alcool ($c = 23$)	DE MONTGOLPIER (loc. cit.).
Id. (α).	[a] _D — 29°, 3	Chloroforme	MARSH et GARDNER (J. of chem. Soc., t. LXXI,
Id . (β).	[a] _D — 33°, a	Id.	p. 288; 1897).
Camphène chloré (2) (chlorhydrate de). C ¹⁰ H ¹⁶ Cl ²	[α] _D - 27°, 7	Id.	Id.
Id. (3).	$[\alpha]_{\text{\tiny D}}$ — 13°,6	Id.	
Camphène tribromé (a). C ¹⁶ H ¹³ Br ³	$[\alpha]_{\nu} \div 32^{\circ}, 5$	Id.	Id., p. 287.
Id. (β).	$[\alpha]_{b} - 31^{\circ}, 5$	Id.	
Camphène tribromé (2) (bromhydrate de). C10 H14 Br4	[α] _D ÷ 90°, 3	Id.	<i>Id</i> .
Id. (β).	$[\alpha]_0 + 7^{\circ}, 6$	j Id.	
-camphène (iButyl-).	$[\alpha]_{b}^{20}-7^{\circ},4$	Pur. d ²⁰ = 0,8614	SPITZER (Ber. d. D. ch. Ges., t. XI, p. 1819; 1878).
-camphène (Éthyl-). C ¹⁰ H ¹⁵ . C ² H ⁵	$[\alpha]_{b}^{23} + 7^{\circ}, 1$	Pur. $d^{23} = 0.8709$	
2Camphènephospho- nique (acide). C10 H15. PO3 H2	[a] _b —119°	Alcool	MARSH et GARDNER (J. 0) chem. Soc., t. LXV, p. i: 1891).
Id3.	$[\alpha]_{D}-71^{\circ}$	Éther	_
Camphénol. Voir Campho	1.		
Camphique (acide).	$ [\alpha]_{D}^{21}+15^{\circ},67$	Alcool $(c = 13, 03)$	DE MONTGOLFIER [Ann. de Ch. et Phys. (5° s.), t. XIV p. 71; 1878].
d Camphocarbonate méthylique. $C^{12}H^{14}O^{3}=C^{10}H^{15}O.COOCH$	[a] _b +61°,90	Alcool (c == 21)	MINGUIN [Ann. de Phys. (7° 8.),† 1894].

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.

- -camphocarbonates (Bromo-). Voir Bromocamphocarbonates.
- -camphocarbonates (Hydroxy-). Voir Hydroxycamphocarbonates.
- -camphocarbonates (Méthyl-). Voir Méthylcamphocarbonates.

Camphocarbonique (acide). $C^{11}H^{16}O^{3}=C^{16}H^{15}O.COOH$	[\alpha]_0 + 66°, 75 [du camphre dr.] 66°, 86 [du camphre g.]		HALLER (C. R., t. CV, p. 229; 1887). Baubigny [Ann. de Ch. ct Phys. (4° 8.), t. XIX, p. 261; 1870].
Camphoglycuronique (acide). C ¹⁶ H ²⁴ O ⁵ + H ² O	$[\alpha]_n - 32^\circ, 85$	Eau (p = 4)	Schmiedeberg et Meyer (Zeits. f. physiol. Ch., t. III, p. 422; 1879).
Camphol. C¹º H¹ª O a. Camphol naturel.	$[\alpha]_{D}^{12} + 36^{\circ}, 98$	Alcool (c == 10,3)	DE MONTGOLFIER [Ann. de Ch. et Phys. (5° 8)., t. XIV, p. 55; 1878].
Camphre de Bornéo	$\boxed{[\alpha]_{\scriptscriptstyle D}^{20}+38^{\circ},5}$	Eth. acét. $(c = 15,4)$	KACHLER (Lieb. Ann., t. CXCVII, p. 88; 1879.)
	$[\alpha]_{\scriptscriptstyle D}+37^{\circ},33$	Toluène ($c = 15,4$)	HALLER (C. R., t. CIV, p. 68; 1887).
			BECKMANN (Lieb. Ann., t. CCL, p. 353; 1889).
+ a. Camphol artificiel.	$[a]_{b}^{12}+37^{\circ},07$	Alcool $(c = 9.9)$	DE Mongolfier (loc. cit.).
(du camphre droit)	$\boxed{[\alpha]_{\mathfrak{b}}^{11} + 37^{\circ},63}$	Toluène $(c = 15,4)$	HALLER (C. R., t. CIX, p. 29; 1889).
	[2] _b + 38° + 37°	Toluène Alcool	BECKMANN [J. f. prakt. Ch. (2° 8.), t. LV, p. 34; 1897].
z. Camphol. C. de <i>Blumea</i> [N'gaĭ]	$ [\alpha]_{D}^{15} - 37^{\circ}, 77 $	Toluène (c = 15,4)	HALLER (C. R., t. CIII, p. 64; 1886).
Id. [Bang-Phien]	$ [\alpha]_{\rm b}^{13} - 38^{\rm o}, 20 $	ld.	
C. de garance.	[a] _D — 37°,8	Id.	ID. (Id., t. CIV, p. 66;

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
C. de valériane.	$\boxed{[\alpha]_{\scriptscriptstyle D}^{15}-37^{\circ},77}$	Id.	ID. (Id., t. CIII, p. 64; 1886).
	$[\alpha]_{b}^{20}$ — 37°,74	Alcool $(p = 20)$	BECKMANN (<i>Lieb. Ann.</i> , t. CCL, p. 353; 1889).
	[a] ₀ —39°,0	Benzène	TSCHÜGAEFF (Ber. d. D. ch. Ges., t. XXXI, p. 1775; 1898).
(du camphre gauche)	[\alpha] _{\bullet} — 38° — 37°	Toluène Alcool	BECKMANN [J. f. prakt. Ch. (2° 8.), t. LV, p. 34; 1897].
(du térébenthène gauche, par l'acide picrique)	[a] _D — 37°		LEXTREIT (C. R., t. CII, p. 555; 1886).
Camphol de romarin. [mélange de a et a]	[α] _b — 23°, 59		HALLER (C. R., t. CVIII, p. 1309; 1889).
Camphol de succin. [mélange de a et a]	$[\alpha]_D + 3^{\circ}, 24$ (du succin rouge) $[\alpha]_D + 4^{\circ}, 32$ (du succin jaune)		HALLER [Ann. de Ch. et Phys. (6° 8.), t. XXVII, p. 405; 1892].
β. Camphol. (du camphre gauche)	$[\alpha]_{b} + 19^{\circ} + 33^{\circ}$	Toluène Alcool	BECKMANN [J. f. prakt. Ch. (2° s.), t. LV, p. 34; 1897].
β. Camphol. (du camphre droit)	[a] _b —19° —33°	Toluène Alcool	
		00L. PÉTROLE. c = 7,7.	TOLUÈNE. C == 15,4.
- α. Camphol		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\overline{\beta}$. Camphol		33,11 — 26,62	- 20,99
$\frac{1}{\alpha\beta}$. C. (du camp $\frac{1}{\alpha\beta}$. C. (du camp	i	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ 7,01 6,49
ap. o. (du camp	me g./ —	1,50 - 5,19	0,49

HALLER (C. R., t. CIX, p. 188; 1f

α. CAMPHOL.	$\overline{\beta}$. Camphol.	DISSOLVANT.
-35,93 $-37,33$	— 33°,00 — 32°,90	Alcool méthylique. Alcool éthylique.
-37,23	— 33,33	Alcool ipropylique.
-37,23 $-37,87$	-33,54 $-22,94$	Alcool ibutylique. Acétone.
— 37,12	- 22,72	Ligroïne.
-37,55 $-37,66$	— 22,78 — 19,18	Ether acétique. Benzène.
- 37,87 - 37,66	— 18,93 — 18,95	Toluène. Xylène.
 37,66	— 18,95	pMéthylpropylbenzène.

 $[t = 13^{\circ} \text{ à } 15^{\circ}][c = 7,7]$

HALLBR (C. R., t. CXII, p. 143; 1891).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Camphol (camphénol). (du térébenthène gauche, par l'acide acétique)	[α] _D — 43°,6		BOUCHARDAT et LAFONT (C. R., t. CII, p. 435; 1886). [Voir Fenoylique (alcool-)]
Id. (isocamphénol).	$ [\alpha]_{\scriptscriptstyle D} + 13^{\scriptscriptstyle O}, 9$	1	
Camphol. (du térébenthène <i>droit</i> d'Eucalyptus)	[a] _D +18°,67	1	Bouchardat et Tardy [Bull. Soc. chim. (3° 8.), t. XIII, p. 766; 1895].
iCamphol.	$ \begin{array}{c c} & [\alpha]_b + 3^o, 90 \\ & + 2^o, 98 \\ & + 2^o, 38 \\ & + 1^o, 20 \end{array} $	Alcool (c = 15,4) Ligroïne (id.) Benzène (id.) Toluène (id.)	SARAN (Inaug. Dissert., Halle; 1897).
Camphol cyané. C'OH'O (CAz)	$ [\alpha]_{D}^{12,5}+24^{\circ},7$	Alcool (p = 1,68)	HALLBR (Thèses Fac. Paris, Nancy; 1879).

Campholate (iso-)

éthylique.

C10 H17 (C2 H5) O2

Pur. $d^0 = 0,9477$

|GUERBET [Bull. Soc. chim.

1895].

(3° s.), t. XIII, p. 773;

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Campholénamide. C¹º H¹⁵ O (Az H²)	[α] _D - 4°,06	Alcool	TIBMANN (Ber. d. D. ch. Ges., t. XXIX, p. 3010; 1896).
2Campholénique (acide). C10 H16 O2	[α] _D ·:- 9°,70	Pur. d = 0,9918	Id., p. 3013.
2Campholénonitrile. C ¹⁰ H ¹⁵ Az	$[\alpha]_{0}^{23} \rightarrow 8^{\circ}, 19$	Pur. d ²³ 0,9152	Id., p. 3007.
$\alphaCampholide.$ $C^{10}H^{16}O^{2}=C^{0}H^{14} < CO > O$	[α] ₀ 5°,61	•	HALLER [Bull. Soc. chim. (3° s.), t. XV, p. 984; 1896].
βId.	$ [\alpha]_b^{17} \div 27^\circ, 4$	Chlorof. (c = 4,00)	FORSTER (J. of chem. Soc., t. LXIX, p. 56; 1896).
-campholide (aBromo-).	$ [\alpha]_{D}^{21}+10^{\circ},9$	Chlorof. $(c = 3,82)$	' <i>Id.</i> , p. 51.
Id. (βBromo-). C ¹⁶ H ¹⁵ Br O ²	$ \begin{array}{rcl} & \begin{bmatrix} \alpha \end{bmatrix}_{0}^{13} & -3^{\circ}, 5 \\ & \begin{bmatrix} \alpha \end{bmatrix}_{0}^{15} & 0^{\circ} \\ & \begin{bmatrix} \alpha \end{bmatrix}_{0}^{16} & -21^{\circ}, 2 \\ & \begin{bmatrix} \alpha \end{bmatrix}_{0}^{25} & -21^{\circ}, 0 \end{array} $	Chlorof. $(c = 2,80)$ Id. $(c = 4,07)$ Benzène $(c = 3,52)$ Id. $(c = 5,48)$	// p. 55.
-campholide (Dibromo-). C ¹⁰ H ¹⁴ Br ² O ²	[α] ¹¹ 64°, 5 [α] ¹⁵ 69°, 8	Chlorof. $(c = 4, 108)$ Benzène (id.)	Id., p. 43.
Campholique (acide).	$[\alpha]_{\mu}^{12} + 45^{\circ}, 51$	Alcool (c = 2,91)	DE MONTGOLFIRR [Ann. de Chim. et Phys. (5° s.). t. XIV, p. 102; 1875].
	[α] ¹⁵ 49°,8	Alcool	GUERBET [Ann. de Ch. et Phys. (7° s.), t. IV, p. 293; 1895].
Campholique (acide iso-). C10 H10 O2	' [α] _D -:- 24°, 63	! Alcool (c : : 17,0)	Id. (C. R., t. CXIX, p. 279: 1894).
Campholiquecarbonique (acide). Voir Hy	droxycamphocarbo	nique (acide).
oCampholytate éthylique. C ⁹ H ¹³ (C ² H ³) O ²	' [α] ¹⁰ 5°, 04	Pur. d: 5 == 0,962	WALKER (J. of chem. Soc., t. LXIII, p. 498; 1893).

858 DON	NĚES NUMÉRI	Q 0 2 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	
NOM ET FORMULE.	POUVOIR rotatuire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
alCampholytate éthylique. C ⁹ H ¹³ (C ² H ³)O ²	[\alpha] ₀ ¹⁹ 39", 1	Pur. d ₄ ¹⁶ == 0,951	WALKER et Anderson (Id., t. LXVII, p. 340; 1895).
oCampholytique (acide). C ⁹ H ¹⁴ O ²	$[\alpha]_{\mathfrak{p}}^{10}$ — 5° , \circ	Pur. $d_4^{15} = 1,017$	WALKER (loc. cit.).
alCampholytique (acide). C9 H14 O2	$[\alpha]_{\mathfrak{p}}^{12} + 57^{\circ}, 4$	Pur. $d_4^{18} = 0,993$	WALKER et ANDERSON (loc. cit.).
comphelations (so Dibai	Income No.	- Dib-draamanaama	holptique (ecide)
Camphonitrophénol. Voir	Camphoryloxin	_	Hoogewerff et van Dorp
Camphonitrophénol. Voir (aCamphoramique (acide)	Camphoryloxin	ne.	Hoogewerff et van Dorp (Rec. Trav. chim. d. P. B.,
-	Camphoryloxing $[\alpha]_b + 45^\circ$	ne.	Hoogewerff et van Dorp (Rec. Trav. chim. d. P. B.,
Camphonitrophénol. Voir (α Camphoramique (acide) $C^{10}H^{11}AzO^3 = COAzH^2(\alpha)$ $C^8H^{14}COOH(\beta)$ β Camphoramique (acide) $C^{10}H^{11}AzO^3 = C^{10}H^{11}AzO^3 = C^{$	Camphoryloxing $[\alpha]_b + 45^\circ$ $[\alpha]_b + 60^\circ$	Alcool $(p=6)$	Hoogewerff et van Dorp (Rec. Trav. chim. d. P. B., t. XIV, p. 260; 1895).

Camphorate de lithium
$$[\alpha]_{u}^{20} + 17,750 + 0,23257p$$
 $C^{10}H^{14}O^{4}Li^{2}$ $Eau\ (p=3 à 6)$ Id. Eau $(p=13 à 25)$

 $[\alpha]_{\nu}^{20} + 10,908 + 0,12980p$

Eau (p = 18 à 36)

 $[\alpha]_{D}^{20} + 16,457 + 0,12276p$

| HARTMANN (!oc. cit.).

Id.

Camphorate de baryum

C10 H14 O4 Ba

Camphorate de calcium

TABLE XVIII. — PO	POUVOIR rotateire spécifique.	DISSOLVANT ET TENEUB	1
		,824 o,18779 <i>p</i> (p = 8 à 16)	id.
CI+H1+O+K2		14,39 + 0,06 c (c = 4 à 16)	LANDOLT (foc. cit.).
		p = 19 à 43	HARTMANN (loc. cll.).
Camphorate de sodium	1	16,62 → 0,06 c (c == 2 à 9)	LANDOLT (loc. cit.).
		778 + 0,21288p p 11 à 37)	ell.). [
Camphorate diéthylique C**H**(C*H*)*O*	[a] ₀ + 37°, 70	<u> </u>	FRIEDRI (C. R., t. CXIII. p. 839; 1891).
	$[\alpha]_{0}^{19,4} + 36^{\circ}, 30^{\circ}$	Pur. d ^{19,6} = 1,0301	BRAUNSCRWEIO (Ber. d. D. ch. Ges., t. XXV, p. 1804; 1891).
Camphorate (iso-) diéthylique C ¹⁰ H ¹¹ (C ² H ²) ² O ⁴	[2] ₀ — 48°,53	Pur. d°=1,0473	FRIEDEL (loc. elt.).
Camphorate diméthylique C"H" (CH")104	[α] ₀ +44°,40		HALLER (C. R., t. CXIV, p. 1516, 1892).
	$[\alpha]_0^{11} + 48^\circ, 32$	Pur. $d_4^{17,5} = 1,075$	WALKER (J. of chem. Soc., t. LXI, p. 1092; 1892).
Camphorate diméthylique C14H14 (CH2)1O4	[2] ¹² +48°,16	Pur. di*= 1,0747	BRAUNSCHWEIG (loc. cit., p. 1810).
Camphorate oéthyl- C'*H'*(C'H*)(CH')O'	$[\alpha]_{0}^{12\cdot 2} + 38^{\circ}, 43$	Pur. d12 = 1,0528	BRAUNSCHWEIG (loc. cit., p. 1799).
Camphorate ométhyl- aléthylique. C"H"(CH2)(C2H2)O4	$[[\alpha]_0^{23,3}+45^{\circ},49]$	Pur. d ²² == 1,0448	Id., p. 1801.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Camphorate mono- éthylique. C ¹⁶ H ¹⁵ (C ² H ⁵)O ⁴ (par éthérification directe)	[α] _B + 39°, 17	Pur. do = 1,1133	FRIEDEL (C. R., t. CXIII, p. 829; 1891).
(par saponification)	! [α] _a 23°,90	Pur. d ⁰ = 1,1004	
Camphorate (iso-) mono- éthylique. C ¹⁰ H ¹⁵ (C ² H ⁵) O ⁴ (par éthérification directe)	[α] _D — 49°, 52	Pur. d ⁰ = 1,1156	Id.
Camphorate monométhy- lique. C ¹⁰ H ¹⁵ (CH ³) O ⁴	$- \left[\left[\alpha \right]_{j}^{19.3} + 51^{\circ}, 4 \right]$	Alcool $(p = 14,3)$	Loir [Ann. de Ch. et de Phys. (3° s.), t. XXXVIII. p. 485; 1853].
(par éthérification directe)	$[\alpha]_{\scriptscriptstyle D}$ $\stackrel{\cdot}{-}$ 51",52		HALLER (C. R., t. CXIV. p. 1516; 1892).
(par saponification)	[α] _D + 43°,55	1	
Camphorate monométhy- lique (anhydride du). C ²² H ³⁴ O ¹ (éther d'éthérif. directe)	$[\alpha]_{b} + 49^{\circ}, 33$		HALLBR (C. R., t. CXV, p. 20; 1892).
(éther de saponification)	[α] _D + 81°, 27	1	
Camphorénique (acide).	$[\alpha]_{b}^{18} + 179^{\circ}, 4$	Chloroforme (c = -4,74)	FORSTER (J. of chem. Soc., t. LXIX, p. 52; 1896).
-camphorénique (acide Bromo-). C ¹⁰ H ¹⁵ Br O ²	$\begin{array}{c} [\alpha]_{D}^{14} + 144^{\circ}, 3 \\ [\alpha]_{D}^{11} + 144^{\circ}, 1 \\ [\alpha]_{D}^{15} + 161^{\circ}, 3 \end{array}$	Chloroforme ($c = 2,90$) Id. ($c = 4,02$) Benzène ($c = 3,14$)	Id., p. 47.
Camphorimide. $C^{10} H^{15} Az O^{2} =$ $C^{8} H^{14} Az H$	[x] _b — 10°,6	Chloroforme	GUARESCHI (Ann. Chim. c Farm., t. LXXXVII, p. 113; 1887).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT BT TENEUR	OBSERVATEURS.
dCamphorique (acide). C10 H16 O4 (du camphre des laurinées)	+ 47°,5 + 46°,3	Eau (c = 0,64) Alcool 98°(c = 2,5 à 19,3) Ac. acétique 50 °/6 er poids (c = 3 à 12)	1 • % • • • •
	- + [50,689	+ 0,04904 p] 1.c. acétique ($p = 6$ à 16) 1.c. + 0,00835 p] 1.c. Acétone ($p = 8$ à 15,5) 1.c. + 0,01174 p] 1.c. Alcool ($p = 17$ à 43)
Id. (du camphre des laurinées) (du camphol de Bornéo)		!	HALLER (C. R., t. CIV, p. 66; 1887).
Id. gauche. [du camphre de <i>Blumea</i> (N'gaï)].	$[\alpha]_{b}^{15} - 38,83$	Alcool (c == 20)	Id., t. CIII, pp. 64 et 151; 1886). [Marsh (Chem. News, t. LX; 1889).]
[Id. (Bang-phien)].	$ [\alpha]_{D}^{15}-46^{\circ},33$	Id.	· ;
(du camphre de matricaire)	$[\alpha]_{D}^{15}-46^{\circ},33$	Id.	1 1
(du camphre de valériane)	$[\alpha]_{D}^{15}-46^{\circ},16$	Id.	
Id. (d'isocamphol).	[a] _b — 7°, 5 (moy.)	Alcool	SARAN (Inaug. Dissert., Halle; 1897).
Camphorique (acide iso-). C10 H16 O4	[2] _b 46°	Alcool	FRIEDEL (C. R., t. CVIII, p. 978; 1889).
Camphorique (anhydride). $C^{10}H^{14}O^{3} = C^{0}H^{14} $		Benzène ($c = 2,67$)	DB MONTOOLFIER [Ann. de Ch. et Phys. (5° 8)., t. XIV, p. 86; 1878].
(de l'ac. droit)	[a] o"	Chloroforme ou benzène	HARTMANN (Ber. d. D. ch. Ges., t. XXI, p. 223: 1888).
	$\boxed{ [\alpha]_{\scriptscriptstyle D} - 3^{\scriptscriptstyle o}, 7}$	Benzène	MARSH (Chem. News, t. LX. p. 307; 1889).
(<i>Voir</i> la suite au verso.)	[\alpha]_j o° - 3°,68	Chloroforme Benzène	ABGHAN (Acta Soe. scient. fenn., t. XXI, n° 5, p. 1; 1895).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Id. (de l'acide gauche).	[2]; o° + 3°,93	Chloroforme Benzène	Id.
Camphorique (phénylhydrazide). $C^{16}H^{20}Az^{2}O^{2} = C^{8}H^{14} < CO > Az - Az H C^{6}H^{8}$	$[\alpha]_b + 16^o, 41$		HALLER (C. R., t. CXIV, p. 1516; 1892).
camphorique (Bromo- e	t Chloro-). Voir	Bromo- et Chloro	
Camphorogénol. C¹º H¹³ O	[α] _j + 29°,6 (app.)	Pur. d ²⁶ = 0,9794	Yoshida (J. of chem. Soc., t. XLVII, p. 793; 1885).
Camphoronique (acide). C ⁹ H ¹² O ³ (de l'ac. camphorique dr.)	[α] _D — 18°, 70	Eau	DE MONTGOLFIER [Ann. de Ch. et Phys. (5° s.), t. XIV, p. 85; 1878].
(de l'ac. camphorique g.)	$[\alpha]_j - 26^\circ, 9$	<u> </u>	ASCHAN (Ber. d. D. ch. Ges., t. XXVIII, p. 18; 1895).
-camphoropinaconane (Control Id. (Mathematical Control Id. (Mathematical Id. (Mathe	(éthoxy-). Voir Ν		GALLAS in BECKMANN (Lich. Ann., t. CCXCII, p. 3; 1896).
(du camphre droit) Id. (du camphre gauche)	$ [\alpha]_{0}^{20} + 26^{\circ}, 52$	Benzène ($p = 23,74$)	Id., p. 25
Camphoroxime. C ¹⁰ H ¹⁶ Az OH (du camphol droit)		Alcool ($p = 8,33$) Id. ($p = 20$)	BECKMANN (Lieb. Ann., t. CCL, p. 354; 1888).
Id. (du camphre gauche)	$[\alpha]_{b}^{20} + 41^{\circ}, 38$ + $42^{\circ}, 51$	Id. $(p = 8,33)$ Id. $(p = 20)$	<i>Id.</i> , p. 355.
Camphoroxime (bromhydrate de). (C ¹⁰ H ¹⁶ Az OH) H Br	$[\alpha]_{D}^{22,5}$ — 35°, 8	Alc. abs. $(c = 4,83)$	FORSTER (J. of chem. Soc., t. LXXI, p. 1045; 1897)

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Camphoroxime (chlorhydrate de). (C10 H16 AzOH) HCl (du camphol droit)	$[\alpha]_b^{20} - 43^{\circ},98$	Alcool ($p = 8,33$)	BECKMANN (loc. cit., p. 355).
Id. (du camphre gauche).	$[\alpha]_{D} + 42^{\circ}, 52$	<u></u>	Id., p. 356.
Camphoroxime (éther benzylique de). C ¹⁶ H ¹⁶ : Az O. CH ² . C ⁶ H ³	$[\alpha]_{D}^{19,5}-16^{\circ},4$	Alc. abs. $(c = 4,66)$	FORSTER (loe. cit., p. 1038).
Camphoroxime (éther éthylique de). C10 H16: Az O. C2 H5	$[\alpha]_{b}^{?3,5}-19^{\circ},0$	Pur. $d_4^{23,5} = 0,9446$	Id., p. 1037.
Camphoroxime (éther méthylique de). C ¹⁶ H ¹⁶ Az O. CH ³	[a] ₀ ²⁰ — 13°,05	Pur. $d_4^{20} = 0,9605$	ld., p. 103 j.
Camphoroxime [éther méthylique de (azotate de l')]. (C10 H16 Az O. CH3) Az O3 H			Id., p. 1035.
-camphoroxime (Acétyl-). C10 H16. Az O. CO. CH3	$[\alpha]_{n}^{20}$ — 45°,8	Alc. abs. $(c = 5,85)$	ld., p. 1041.
-camphoroxime (Benzoyl-). C ¹⁰ H ¹⁶ . Az O. C ⁰ . C ⁶ H ⁵	[α] ¹⁸ — 40°,7	Alc. abs. $(c = 8,33)$	Id., p. 1842.
Camphoryle (chlorure de) $C^{20} H^{11} O^{2} Cl^{2} = C^{11} CCl^{2} O$	$ [\alpha]_{D}-3$ à $-3,6$ $ [\alpha]_{D}-7,1$ à $-8,5$	Pur Benzène	MARSII (Chem. News, t. LX, p. 307; 1889).
Camphoryloxime. CIO HIS Az O3 = CO HIS CO (CAZENEUVE)	[α] _b + 10° (campho- nitrophénol)		CAZENBUVE [Bull. Soc. chim. (3° s.). t. I, p. 418; 1889].
$C = AzOH$ $C = AzOH$ $C'H'' \bigcirc O \qquad [Lowry]$ CO	$\boxed{[\alpha]_{D}^{14} + 7^{\circ}, o}$	Benzène ($c = 5$)	Lowry (J. of chem. Soc., t. LXXIII, p. 1002; 1898).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	OBSERVATEURS.
dCarvoxime. C¹º H¹⁴: Az OH (de llimonène)	[α] ¹⁷ 39°, 71	Alcool (p 9,85)	WALLACH (Lieb. Ann., t. CCXLVI; p. 227; 1888).
lId. [isonitrosolimonène] (de dlimonène)	$[\alpha]_0^{18} - 39^{\circ}, 34$	Alcool (p 4,33)	
αCarvylbenzoylamine. C ¹⁰ H ¹⁵ . Az H. CO. C ⁶ H ⁵ (de dcarvoxime)	[a] ¹⁹ 91",9	Chloroforme (p : 3,92)	GOLDSCHMIDT et A. FIS- CHER (Ber. d. D. ch. Ges., t. XXX. p. 2072; 1897).
β Id . (id.)	[α] _p ^{19,3} 176°,6	Chloroforme $(p=3.98)$	
αId. (de lcarvoxime)	[\alpha]_{\bullet}^{21} 92°,6	Chlorof. (p = 3,215)	! ! !
3 Id . (id.)	$[\alpha]_0^{21} - 175^{\circ}, 4$	Chloroforme (p 3,12)	<u>[</u>
Caryophyllène.	[a] ²⁰ — 8", 74	Pur. d ²ⁿ 0,9032	KREMBRS. SCHEINER et JAMES (Pharm. Arch., t. I, p. 209; 1898).
Caséine.	[2] _n — 80°	Solution de SO'Mg	Hoppe-Seyler (Zeits. f. Chem. u. Pharm., 1864;
	α _D 87°	HCl étendu (4°° par litre)	p. 737).
	[a] ₀ — 76°	Lessive de soude	
•	$ \alpha _0 = 01^{\circ}$	Id. potasse concentrée	
	[2] ₀ — 117", 7	Eau (c = 0,1005)	BÉCHAMP [Bull. Soc. chim. (3° 8.), t. XI, p. 157; 1894].
Caulostérine. C ²⁶ H ⁴⁴ () - H ² O	[2] ₀ — 49°,6	Chloroforme (c = 5.09) (anhydre)	Schulze et Barbieri [J. f. prakt. Ch. (2° s.¹, t. XXV, p. 165 : 1882].

Cellulodextrine. Voir Dextrine.

Cellulose. Voir Érythrocellulose.

Cellulosine.	$[\alpha]_0 + 159^{\circ},42$	VILLIERS [Bull. Soc. chim.
$C^{10}H^{20}O^{12}$		(3° s.), t. V, p. 470; 1891].

NOM ET FORMULE.	POUVOIR rotatoire spécifique	DISSOLVANT ET TENEUR.	observateurs.
Cérasinose. C ⁶ H ¹² O ⁶	[α] _υ + 89°, 09		MARTIN (Sachsse, Phytoch. Inters., Leipsig, 1880; p. 78).
Cerbérine. C ²¹ H ⁴⁰ O ⁸	[2], — 74°, 7 — 64°, 76 — 80°, 81	Alcool ou chloroforme Éther Acide acétique	PLUGOB (Arch. d. Pharm., t. CCXXXI, p. 10; 1893).
Céréalose (de O'Sullivan).	. Voir Mélitriose.		
Chairamidine.	$ [\alpha]_{\scriptscriptstyle B}^{\scriptscriptstyle 15}+7^{\circ},3$	Alcool 97 % (c = 3)	HESSE (Lieb. Ann., t. CCXXV, p. 254; 1881).
Chébulique (acide). C ²⁸ H ²⁴ O ¹⁹ + H ² O	[a] ₀ + 66°, 94		ADOLPHI (Arch. d. Pharm. t. CCXXX, p. 684; 1892).
Chitamique (acide). C ⁶ H ¹³ Az O ⁶	[α] _b + 1°,5	Eau (p = 6,6)	FISCHER of TIEMANN (Bcr. d. D. ch. Ges., t. XXVII, p. 141; 1894).
Chitonate de calcium. (C ⁶ H ¹¹ O ⁷) ² Ca	$[a]_{b}^{19} + 32^{\circ}, 8$	Eau (p = 8,96)	Id.
Chitonique (acide). C ⁶ H ¹² O ⁷	$[\alpha]_{0}^{20} + 44^{\circ}, 5$	Eau (p = 8,83)	Id.
Chitosamine. C ⁶ H ¹³ Az O ⁵	[a] ₀ + 48°, 64 (initial) + 50°, 39 (après 2 jours)	Eau (c = 1,0032)	BREUBR (Ber. d. D. ch. Ges., t. XXXI, p. 2195; 1898).
	+ 47°, 08 (initial) + 48°, 83 (après 18 heures)		
Chitosane. C ¹⁴ H ²⁶ Az ² O ¹⁶	[α] ^{3,1} — 17°,8	Acide acétique très étendu. $d^{15} = 1,006$ $(c = 1,34)$	HOPPE-SEYLER in ARAKI (Zeits. f. physiol. Ch., t. XX, p. 503; 1895).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	. OBSERVATEURS.
Chloralose (a).	$[\alpha]_{b}^{21} + 19^{\circ}, 4$ + 15°	Alcool 98 % (p = 5) Lessive de potasse à 4%	PETIT et POLONOWSKI Bull. Soc. chim. (3° 8.), t. XI, p. 126; 1894].
aChlorobutyrate ibutylique. C'H''ClO' = C'H'.CHCl. COOCH'.CH'(CH')	[a] ¹⁵ — 10°, 5	Pur. $d^{15} = 0.984$	GUYR et JORDAN [C. R., t. CXX, p. 1274; 1895 et Bull. Soc. chim. (3° s.), t. XV, p. 495; 1896).
Chlorocamphène. Voir Ca	mphène chloré.		
Chlorocamphorique (anhydride). $C^{10}H^{13}ClO^{3} =$ $C^{1}H^{13}ClCOO$ (de l'ac. camphorique dr.)	[a] _j — 16°, 3	Chloroforme	ABCHAN (Acta Soc. scient. fenn., t. XXI, p. 1; 1895).
Id. (de l'ac. gauche).	$[\alpha]_j + 15^\circ, 1$	Id.	
Chlorocamphoro- pinaconane. C ²⁰ H ²¹ Cl == C ⁹ H ¹⁶ = C Cl - C = C ⁹ H ¹³ (du camphre droit).	$[\alpha]_{0}^{18} + 44^{\circ}, 17 + 46^{\circ}, 50$	Benzène ($p = 20.3$) Id. ($p = 42.6$)	BECKMANN (<i>Lieb. Ann.,</i> t. CCXCII, p. 7; 1896).
Chlorocamphosulfon- amide. C'H''ClO.SO2. Az H2	[α] ¹¹ + 90°, 16	Alcool (c = 5,07)	Kipping et Popk (J. of chem. Soc., t. LXIII, p. 599; 1893).
Chlorocamphosulfonate de baryum. (C¹ºH¹⁴ClOSO²O)²Ba+5½H²O	l i	Eau (c = 2,08)	Id., p. 603.
Chlorocamphosulfonate de sodium. C ¹⁶ H ¹⁴ Cl O. SO ² O Na + 5 H ² O		Eau (c == 2,01)	ld., p. 60 į.
Chlorocamphosulfonique (bromure d'acide). C ¹⁰ H ¹⁴ Cl O. SO ² Br	[2]n+129°,8	Chlorof. (c = 8,41)	ld., t. LXVII, p. 370; 1895.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Chlorocamphosulfonique (chlorure d'acide). C''H''ClO.SO'Cl	$[\alpha]_{Li} + 102^{\circ}, 0$	Chloroforme (c == 4)	Id., t. LXIII, p. 595; 1893.
Chlorofenène. Voir Fenèn	ne chloré.		
Chloromalate diéthyl- ique. C'H'3ClO' =	[α] ²⁰ — 8°, ο5	Pur. $d_4^{20} = 1,2543$	WALDEN (<i>Ber d. D. ch.</i> <i>Ges.</i> , t. XXVIII, p. 1293; 1896).
$ \begin{array}{c} \text{CH CI} - \text{CO O C}^2 \text{H}^5 \\ \text{CH (OH)} - \text{CO O C}^2 \text{H}^5 \end{array} $	[2] ₀ ² • 10°, 77	Pur. $d_4^{20} = 1,2530$	ID. (J. Soc. physchim. Russe. t. XXX, p. 483; 1898).
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pur.	GUYE et MII ASTON (C. R., t. CXXIV, p. 196; 1897).
-chloromalate (Acétyl-) diéthylique. C'' H'' Cl O' == HC Cl - CO O C' H' H. C. CO O C' H' O - CO . CH'	[2] ² •+ 3°,07	Pur. d ₄ ¹⁰ = 1,2062	WALDEN (J. Soc. physchim. Russe, t. XXX p. 483; 1898).
dChloropropionate ibutylique. C'H''ClO'= CH''. CHCL.COOC'H''	$[\alpha]_{u}^{20}+5^{\circ},21$	Pur. d ₄ ²⁰ 1,0312	Id.
dChloropropionate éthylique. C'' H'' Cl O' == CH''. CH Cl. CO O C'' H''	[2] ²⁰ + 12°,86	Pur. $d_4^{20} = 1,0888$	In. (Ber. d. D. ch. Ges., t. XXVIII, p. 1294; 1896).
Id. (de l'ac. lactique dr.).	$[\alpha]_{0}^{11,5} + 19^{\circ}, 51$ $[\alpha]_{0}^{5} + 19^{\circ}, 88$	Pur. $d_4^{20} = 1.087$ Pur. $d_4^{20} = 1.096$	WALKER (J. of chem. Soc. t. LXVII, p. 919; 1895).
dChloropropionate méthylique. C'H'ClO'= CH'. CHCL.COOCH'	[α] ²⁰ 19 ² ,01	Pur. $d_4^{20} = 1.1520$	WALDEN (loc. cit., p. 1293).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
/Id. (de l'ac. lactique gauche).	$[\alpha]_{0}^{5}$ — $26^{\circ}, 83$	Pur. $d_4^5 = 1,158$	WALKER (<i>loc. cit.,</i> p. 919).
dChloropropionate propylique. C ⁶ H ¹¹ Cl O ² = CH ³ . CH Cl. CO O C ³ H ¹ (du lactate gauche).	[2]6+ 11°,0	Pur. d ⁶ = 1,065	ld., p. 920.
dChlorosuccinate diamylique CH2. CO O C5 H11	[2] ₀ + 25°, 15 (d'amyle act.)	Pur. d = 1,0305	WALDEN (Zeits. f. physik. Ch., t. XVII, p. 723; 1895).
C''- 25C O' = C C .COOC' T Voir Amylique (racchlo- rosuccinate).	$[\alpha]_{\mathfrak{b}}^{2\mathfrak{d}} + 2\mathfrak{1}^{\mathfrak{d}}, 56$ (d'amyle rac.)	Pur. $d_4^{26} = 1,0319$	/d., p. 25 į.
dChlorosuccinate di-ibutylique. C ¹² H ²¹ ClO ⁴ = CH ² .COOCH ² .CH:(CH ³) ² CHCl.COOCH ² .CH:(CH ³) ²		Pur. $d_4^{20} = 1,0524$	Id.
d Chlorosuccinate diéthylique. $CH^2 \cdot COOC^2H^3$ $C^8H^{13}CIO^4 = \begin{pmatrix} 1 \\ CHCI \cdot COOC^2H^5 \end{pmatrix}$	$[\alpha]_{0}^{20} + 27^{\circ}, 50$	Pur. $d_4^{20} = 1,1493$	ld., p. 253.
diméthylique.	$[\alpha]_{b}^{20} + 41^{\circ}, 42$		Id.
	·		WALDEN (J. Soc. phys. chim. Russe, t. XXX, p. 483; 1898).
/Id.	$\frac{[\alpha]_{b}^{28,8}-42^{\circ},32}{[\alpha]_{b}^{28,8}-42^{\circ},45}$ $[\alpha]_{b}^{6,8}-38^{\circ},52$	Pur. $d_4^{20} = 1,2501$ Pur.	GUYE et MIII ASTON (C.R., t. CXXIV, t. 196; 1897).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
dChlorosuccinate . dipropylique CH ² . COOC ³ H ³ CH Cl.COOC ³ H ³		Pur. $d_4^{20} = 1,0925$	WALDEN (Zeits. f. physik. Ch., t. XVII, p. 254; 1835).
dChlorosuccinique (acide). CH ² . COOH C'H ³ CIO'=	$[a]_{0}^{21} + 21^{\circ}, 3 + 20^{\circ}, 8 + 20^{\circ}, 6$	Id. $(c = 6,4)$	WALDEN (Ber. d. D. ch. Ges., t. XXVI, p. 215; 1893).
CH CI.CO OH	$ \begin{array}{r} [\alpha]_{b}^{21} + 20^{\circ}, 27 \\ + 52^{\circ}, 85 \\ + 52^{\circ}, 70 \end{array} $	Ether acétique (c=6,66)	
/Id.	[2]6°-19°,67	Eau ($c=9,3$)	TILDEN et MARSHALL (J. of chem. Soc., t. LXVII, p. 494; 1895).
	$\boxed{[\alpha]_{\scriptscriptstyle D}-52^{\circ},12}$	Ether acétique	WALDEN (Ber. d. D. ch. Ges., t. XXVIII, p. 2772; 1895).
dChlorosuccinique (anhydride). $C^{1}H^{3}ClO^{3} = CHCl - CO $		Ether acétique ($c=5$) Id. ($c=10$) Ether acétique ($c=20$)	In. (Zeits. f. physik. Ch., t. XVII, p. 253; 1895). In. (J. Soc. physchim,
CHCl — CO	·		Russe, t. XXX, p. 483;
dChlorosuccinique (chlorure d'acide). CH ² — CO Cl C'H ² Cl ³ O ² = CH Cl — CO Cl	[α] ²⁰ + 29°,53	Pur. $d_4^{20} = 1,5002$	ID. (Zeits. f. physik. Ch., t. XVII, p. 253; 1895).
Cholalate éthylique. C ²¹ H ²⁹ (C ² H ³) O ³	$[\alpha]_{a} + 25^{\circ}, 4$ $[\alpha]_{n} + 32^{\circ}, 4$ $[\alpha]_{a} + 40^{\circ}, 5$ $[\alpha]_{b} + 42^{\circ}, 3$		Hoppe-Seyler [J. f. prakt. Ch. (100 8.), t. LXXXIX, p. 257; 1863].
Cholalate méthylique. C ²⁴ H ²⁹ (CH ²) O ⁵	$[\alpha]_0 + 31^0,9$	Alcool ($c = 4,59$)	Id.

Cholalate de potassium C21 H39 O3. K.

Dissolutions aqueuses.

$$[\alpha]_{0} = -[30,3-0,40c+0,00025c^{3}]$$

 $(c = 6 \text{ à } 30)$

HOPPE-SEYLER [J. f. prakt. Ch. (170 s.), t. LXXXIX, p. 270; 1863]. (Calculé d'après les nombres de l'auteur.)

[2] _p	P	t
+ [29,67 + 0,113 (t-20)] + [26,89 - 0,023 (t-20)] + [27,50 - 0,022 (t-20)] + 26,51	1,04 3,49 5,46 6,68	15° et 30° 5° et 20° 11° et 40°

VAHLEN (Zeits. f. physiol. Ch., t. XXI, p. 253: 1895).

Dissolutions alcooliques.

HOPPE-SEYLER (loc. cit., p. 269).

$$[\alpha]_0^t = +[31,40+0,04125(t-20)]$$
 | $p=2,12$ | $t=17^\circ$ ct 25° Vallen (loc. cit.).

Cholalate de sodium C24 H39 O5. Na.

Dissolutions aqueuses.

HOPPE-SEYLER (loc. cit., p. 271).

VAHLEN (loc. cit.).

Dissolution alcoolique.

$$|\alpha|_{D} = +31^{\circ},4 (c=2,23)$$

HOPPE-SEYLER (loc. cit.).

Cholalique (acide) C24 H40 O5.

De la bile de bœuf......
$$[\alpha]_{\mu} = \div 50,2$$
 Alcool $(c = 3,34)$
Des excréments de chien... $\{ [\alpha]_{j} + 47,6 \}$ Id. $(c = 2,94)$

HOPPE-SEYLER (loc. cit., p. 266).

Cholalique (alcoolate d'acide) (1).

$$[a]_{b} = +[30,7+0,19c]$$

Alcool $(c = 2 \text{ à } 7)$

(Calculé d'après les nombres de l'auteur.)

HOPPE-SEYLER (loc. cit., p. 267).

[a] _B	p	t
+31,85 +32,02	0,48	°C 14,0
+31,30 +31,12	1,15	21,0 23,0
+31,30 +31,72	1,92 2,92	16,2 21,2

VAHLEN (loc. cit.).

(4) Regardé par Hoppe-Seyler comme un hydrate C²⁴ H⁴⁰ O³ + 2,5 H² O [MYLIUS, Ber. d. D. ch. Ges., t. XIX, p. 369; 1886].

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Cholanate de baryum. (C ²³ H ³⁵ O ¹) ² Ba ³ ¹ / ₂ H ² O + 12 H ² O	[α] _b + 49°, 37	Eau ($p = 3,64$)	LATCHINOFF (Ber. d. D. ch. Ges., t. XIX, p. 475; 1886).
Cholanique (acide).	[2] _p + 53°, o	Alcool	TAPPEINER (Lieb. Ann., t. CXCIV, p. 211; 1878).
	[x] _n 88°		KUTSCHEROW in LATCHI- NOFF (Ber. d. D. ch. Ges., t. XV. p. 714; 1882).

<i>110.</i> 2	INEES ACHERI	QUES. — OFTIQUE.	
NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Cholanique (acide iso-).	[a], + 73", 3	Alcool $(c = 1,93)$	LATCHINOPP (Id.).
Choléique (acide).	[a] ² + 56",67	Alcool ($p=6,06$)	LATCHINOFF (M., t. XIX, p. 1140; 1886).
Id. hydraté. C ²⁵ H ⁴² O ⁴ + 1 ½ H ² O	$\begin{array}{c} [\alpha]_{0}^{21} + 52^{\circ}, 49 \\ [\alpha]_{0}^{24} + 48^{\circ}, 60 \\ [\alpha]_{0}^{22} + 49^{\circ}, 52 \\ [\alpha]_{0}^{24} + 48^{\circ}, 87 \end{array}$	Id $(p = 0.862)$ Id. $(p = 1.786)$	VAHLEN (Zeits f. physiol. Ch., t. XXI, p. 253; 1895).
Cholestène.	[a] _b — 56°, 29	Chloroforme	MAUTHNER et SCIDA (Mo- natsh. f. (h., t. XV, p. 85; 1894).
Cholestérine. C26 J44 O	[2] ₃ — 20°, 63 » _G — 25°, 54 » _B — 31°, 59 » _K — 39°, 91 » _M — 41°, 92 » _F — 48°, 65 » _G — 62°, 37		LINDENMEYER [J. f. prakt. Ch. (1° s.), t. XC, p. 323; 1863].
		Éther $(c = 2)$ + 0,249 c] Chlorof. $(c = 2 å 8)$	HESSE (Lieb. Ann., t. CXCII, p. 178; 1878).
	$ \begin{array}{c c} \hline [2]_{0} - 30^{\circ}, 17 \\ - 29^{\circ}, 99 \\ - 29^{\circ}, 61 \end{array} $	Ether $(c = 3,978)$ Id. $(c = 4,201)$ Id. $(c = 6,029)$	BURIAN (Monatsh. f. Ch., t. XVIII, p. 55; 1897).
Cholestérine (oléate de))· [2] _n — 18°,80	Alc. 1 vol., Chlor. 1 vol. (c = 7.94)	; HÜRTHLE (Zeits. f. physiol. Ch., t. XXI, p. 337 1896).
-cholestérine (Iso-). Voir			
Cholestol.	[α] ₀ — 39°, 2	Alcool	LIEBERMANN (Ber. d. D

Cholestol. C ²² H ^{3*} O	[a] ₀ — 39°, 2	Alcool	LIEBERMANN (Ber. d. D. ch. Ges., t. XVIII, p. 1803; 1885).
Choloïdanique (acide).	[2] _n + 56°, 17 + 57°, 83	Alcool abs. (c=6,4 à 1,3) Ac. acétique (c=1.44)	LATCHINOFF (Ber. d. D. ch. Ges., t. XIII, p. 1053;

NOM BT FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENE	OBSERVATEURS.
Chondrine.	[a]/- 213°,5	Eau et trace de soi	DE BARY (Medchem. Untersuch. von Hoppe- Seylor, t. I, p. 71).
	[α] _/ 552°, o	Id. → égal volume lessive (c == 0,957	
	[2] _j — 281°,0	Id. → égal volume lessive (c = 0,957 Id + id. = 4 d'eau (c = 0,957)	
Cicutène. C ¹⁰ H ¹⁶	[x]/+14°,7	Pur.	ANRUM [J. f. prakt. Ch., (1*6.), t. CV, p. 151, 1868].
Cinchamidine. C ¹⁰ H ²⁴ Az ² O (Hydrociachonidine)	[\alpha] 15 98°,4	Alcool 97 */* (c = 2)	HR88R (Ber. d. D. ch. Ges., t. XIV, p. 1684; 1881).
hydrate de). (C ¹⁹ H ²⁴ Az ² O) H Cl + 2 H ² O	109",4	Eau $(c = a)$ Id. $(c = 5)$ Id. $(c = 8)$ Eau + 2 H C! $(c = 5)$ Alcool 97 % (id.)	1
Cinchamidine (sulfate acide de). (C ¹⁹ H ²⁴ Az ² O) SO ⁴ H ² + 4 H ² O	[x];3-92",7	Eau (¢ = 4)	Id.
Cinchamidine (sulfate neutre de) (C ¹⁹ H ²¹ Az ² O) ² SO ¹ H ² + 7H ² O	[a];5 — 75°, 2 — 93°, 8	Eau (c = 2) Alcool 97 */4 (id.)	ld.
Cinchol. C* II ³¹ O + H ² O	$\begin{array}{c c} [\alpha]_{n}^{16} - 34^{\circ}, 6 \\ - 34^{\circ}, 6 \end{array}$	Chloroforme ($c = 3$) Id. ($c = 6$)	HESSE (<i>Meb. Ann.</i> , t. CCXXVIII, p. 394; 1885).
Cinchol (acétate de). $C^{22}H^{24}O^{2}=C^{24}H^{22}O(COCH^{2})$	[a] 41*,7	Chloroforme (c = 4)	I.i.
Cincholoïpone (chlor- hydrate de). (C° H" Az O²) II Cl	[2] ²⁰ — 13°,02 (de la quinidine) [a] ²⁰ — 19°,3 (de la cinchenine)	Eau (c = 8)	SKRAUP et Wünstl. (Mo- natsh. f. Ch., t. X, p. 223, 1889).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Cincholoïponique (acide). (A' H ¹³ Az O' + H ² O (de la quiténine) (1) (de la cinchonine) (2)	$[\alpha]_{0}^{20} + 30^{\circ}, 21 (1) + 30^{\circ}, 0 (2)$		SKRAUP (Monatsh. f. Ch., t. X, p. 46; 1889).
(de la cinchonidine) (3)	$ [\alpha]_{D}^{20} + 30^{\circ}, 17(3) $	ld.	SCHNIDERSCHITSCH (id., p. 60).
(de la quinidine)(4)	$ [\alpha]_{0}^{20} + 30^{\circ}, 9 (4) $	Id.	Wünstl (id., p. 70).
Cincholoïponique (chlor- hydrate d'acide).	$[\alpha]_{b}^{23} + 34^{\circ}, 0 (1)$ $[\alpha]_{b}^{20} + 37^{\circ}, 75 (2)$		SKRAUP (loc. cit.). [Id. (ld., t. IX, p. 799:1888).]
(C* H ¹³ Az O*) H Cl	$[\alpha]_{b}^{20} + 40^{\circ}, 2 (3)$	Id.	Schniderschitsch (loc. cit.).
	$ a ^{2\theta} + 39^{\circ}, 6$ (4)	Id.	Würstl. (loc. cit.).
(de la quinicine)	$[\alpha]_{\nu}^{20} + 35^{\circ}, 6$	Id.	SKRAUP et WÜRSTL (id., p. 226).
Cinchonamine. C ¹⁹ H ²⁴ Az ² O		·	ARNAUD (C.R., t. XCIII, p. 593; 1881).
			1883. HESSE (Ber. d. D. ch. Ges., t. XVI, p. 62; 1883).
Cinchonamine (sulfate acide de). (C ¹³ H ²⁴ Az ² O)SO ⁴ H ²	$\begin{array}{c c} [\alpha]_{b}^{15} + 34^{\circ}, 9 \\ + 37^{\circ}, 4 \end{array}$	Eau $(c = 2,4)$ Id. $(c = 6)$	HRSSR (Lieb. Ann., t. CCXXV, p. 22;; 1884).
Cinchonamine (sulfate neutre de).	[2] ¹⁵ + 36°, 8 + 35°, 7	Eau $(c = 2)$ Eau $+ 2 SO^4 H^2 (c = 2)$	HESSE (Ber. d. D. ch. Ges., t. XVI, p. 62; 1883).
(C ¹³ H ²⁴ Az ² O) ² SO ⁴ H ²	$[\alpha]_{D}^{15} + 43^{\circ}, 5$ $[\alpha]_{D}^{25} + 42^{\circ}, 2$	$\left\{ \text{Eau} + \text{SO}^4 \text{H}^2 \left(p = 3 \right) \right\}$	ARNAUD (C.R., t. XCVII, p. 176; 1883).
	+ 39°, 8	Eau $(c = 2)$ Id. $(c = 6)$ Eau + 2 SO' H ² $(c = 2)$	CCXXV, p. 224; 1884).
Cinchonibine. C19 1122 Az2 ()	+ 175°, 93 + 220°, 53	Alcool 97 % $(c = 0.5)$ Id. $(c = 0.75)$ Eau \div 2 H Cl $(c = 1)$ Eau \div 4 H Cl $(c = 1)$	JUNGFLEISCH et Léger (C. R., t. CVI, p. 1410; 1888).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Cinchonicine. C ¹⁹ H ²² Az ² O	$[\alpha]_{0}^{15} + 48^{\circ}, \circ$ $+ 46^{\circ}, 5$	Alcool 95 % (c = 1) Chloroforme (c = 2)	HESSE (Lieb. Ann., t. CLXXVIII, p. 262; 1875). [Howard (J. of chem. Soc., t. XXV; 1872).]
Id. cristallisée.	Alcool a $[\alpha]_{b}^{14} + \\ \text{Eau} + \\ [\alpha]_{0}^{14} + \\ $	57°, 75 (moy.) absolu ($c = 1$) 38°, 15 (moy.) 2 H Cl ($c = 1$) 35°, 1 (moy.) 4 H Cl ($c = 1$)	Roques [Ann. de Chim. ct Phys. (7° s.), t. X, pp. 249 et 259; 1897]. [Id. (C. R., t. CXX, p. 1170; 1894).]
Cinchonicine (azotate de). (C ¹⁹ H ²² Az ² O) Az O ³ II	$[\alpha]_{b}^{19} + 29^{\circ}, 58$	Eau (c = 1)	Id., p. 270.
Cinchonicine (oxalate de). (C ¹⁹ H ²² Az ² O) ² C ² O ⁴ H ² + 3H ² O	$[\alpha]_{b}^{15} + 23^{\circ}, 5$ $+ 23^{\circ}, 1$ $+ 22^{\circ}, 6$ $+ 25^{\circ}, 75$	$Alcool 97 \% (c=2) \ Alcool 1 vol. \ (c=1 a 3) \ Chlorof. 2 vol. \ Eau (c=2) \ Eau + 2 SO^4 H^2 (c=2)$	HEBSE (Lieb. Ann., t. CLXXVIII, p. 263: 1875). Howard (J. of chem. Soc., t. XXV; 1872.]
Id. (anhydre)		$31^{\circ},4 \text{ (moy)}$ $u (c = 1)$	Roques (loc. cit., p. 265).
Cinchonicine (tartrate de). (C ¹⁹ H ²² Az ² O) C ⁴ H ⁶ O ⁶	[x] _p + 36°, 61	Eau (c = 1)	<i>Id.</i> , p. 269.
Cinchonidine. C ¹⁹ H ²² Az ² ()	Alcool 97 [α] ¹⁵ — [11 Alcool 95	0.7,48-0,297c $0.7,48-0,297c$ $0.7,6$ $0.7,$	HESSE (Lieb. Ann., t. CLXXVI, p. 219; 1875). [Id., t. CLXVI; 1873.]
(<i>Voir</i> la suite au verso.)	$[\alpha]_n^2 - 109^n, 5$ - 108", 2	Alcool 97 % (c == 2) Id. (c = 5)	Id., t. CLXXXII, p. 130: 1876.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.		OBSERVATEURS.
	[α] _B . — [112,8 — Alc. abs. (α) _B . — 109°,6 — 115°,0 — 117°,8	Alc. abs. (6 -0,19 t]* $c = 1,54$) [$t = 1,54$]	c = 1,5 à 4) = 0° à 20°] Eau. gr 0 9,5 19,8 29,2 40,0	OUDEMANS (Lieb. Ann., t. CLXXXII, pp. 44 et 47; 1876). Calculé d'après les nombres de l'auteur.
Cinch. pure.	[α] ¹⁵ — 70°,0 —174°,6	Chlorof. Eau + 3 H	(c = 4) $Cl (c = 5)$	HESSE (Lieb. Ann., t. CCV, p. 199; 1880).
	[α] _b ^{11.8} — 107°,9	1 vol. alc.; 2 (p = 1,1	vol. chlor.	LENZ (Zelts. f. anal. Ch., t. XXVII, p. 566; 1888).
•	$[\alpha]_{b}^{18,5}$ — [110,0] Alcool al $[\alpha]_{b}^{18,5}$ — 127°,20	0 - 0,897c bsolu ($c = 0$ Alc. $50 %$,225 à 3,6) c=0,225)	SCHUSTER (Monatsh. f. Ch., t. XIV, p. 589; 1893). [Calculé d'après les nombres de l'auteur.]
	[a] _b —122° —122° — 96°, 6	Alcool é Alcool mé Chloro	thylique thylique forme	WYROUBOFF [Ann. de Ch. et Phys. (7° s.), t. I, p. 82; 1894].

Action des acides en solutions aqueuses.

[c = 1,47] [t = 16° C] n moléc. acide pour 1 mol. base.

ACIDES.	n=1.	n=2.	n=3.	n=6.	n=10.	n=20.
	•	•		•	0	•
A. chlorhydrique.	 123,8	— 174,4	— 175,6	— 174, 1	(-169,9)	— 163,4
A. azotique	— 127,5	— 173,8	— 177,5	— 173,5	(170,0)	— 161,2
A. chlorique	"	<u> </u>	— 183,4	180,4	(-178,9)	<u> — 176,0 </u>
A. perchlorique	"	— 181,9	— 183,0	 180,2	(-178,7)	— 177,3
A. formique	11	— 157,0	— 163 ,7	— 174,6	<u> — 175,5 </u>	(176,9)
A. acétique	"	136,1	146,6	(-159,4)	<u> </u>	<u> </u>
A. sulfurique	(-179,8)	(-179,7)	(-179,6)	(-177,4)	- 176,4	"
A. oxalique		— 173,3	— 177,5	(-174,1)	<u> — 169,7 </u>	"
A. phosphorique.	"	— 176,4	<u> </u>	(-178,7)	M	11

ACIDES.	n=30.	n = 40.	n=60.	n=76.
	,			
A. formique A. acétique	1			// . -172,2

OUDEMANS (Rec. Trav. chim. d. P. B., t. I, p. 29; 1882).

Les nombres entre () sont tirés par interpolation des nombres de l'auteur.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
βCinchonidine. C ¹⁹ H ²² Az ² O	[α] _u —171°,5	Alcool $(c = 0,5)$	NEUMANN (Monatsh. f. Ch., t. XIII, p. 660; 1892).
γCinchonidine. C ¹⁹ H ²² Az ² O	[a] _D - 164°,6	Id.	

Cinchonidine (acétate de). Cinch. C2H4O2+H2O.

	[α] _μ 18,5 dans				
c.	Alcool absolu.	Alcool 50 %.	Eau.		
0,285	—102,13	————	——— —109,91		
0,569	-103,90	-137,43	—107,50		
1,139	-105,68	-137,02	— 104,52		
2,278	-107,64	-136,16	"		
4,555	-109,08	—134,10	"		
9,110	108,51	130,84	"		

SCHUSTER (Monatsh. f. Ch., t. XIV, p. 589; 1893).

Cinchonidine (azotate de). Cinch. Az O³H + H²O

$$\begin{bmatrix}
\alpha \end{bmatrix}_{b}^{11} - 103^{\circ}, 2 \\
-119^{\circ}, 0 \\
-127^{\circ}, 0 \\
-127^{\circ}, 0
\end{bmatrix}$$
Alc. 89^{gr}, eau 11^{gr} (id.)
Alc. 89^{gr}, cau 20^{gr} (id.)
Eau (id.)

$$\begin{bmatrix}
\alpha \end{bmatrix}_{b}^{25} - 112^{\circ}, 6 \\
-113^{\circ}, 2 \\
-113^{\circ}, 1
\end{bmatrix}$$
Eau [$c = 0,446$ (anh.)]
HÄDRICH (Zeits. f. physik. Ch., t. XII, p. 479; 1893).

$$\begin{bmatrix}
\alpha \end{bmatrix}_{b}^{25} - 112^{\circ}, 6 \\
-113^{\circ}, 2 \\
-112^{\circ}, 1
\end{bmatrix}$$
Id. [$c = 0,892$ (id.)]
$$\begin{bmatrix}
\alpha \end{bmatrix}_{b}^{11} - 103^{\circ}, 2 \\
-127^{\circ}, 0 \\
-113^{\circ}, 2 \\
-112^{\circ}, 1
\end{bmatrix}$$
Id. [$c = 0,892$ (id.)]
$$\begin{bmatrix}
\alpha \end{bmatrix}_{b}^{11} - 103^{\circ}, 2 \\
-127^{\circ}, 0 \\
-113^{\circ}, 2 \\
-113^{\circ}, 2 \\
-113^{\circ}, 1
\end{bmatrix}$$
Id. [$c = 1,190$ (id.)]
$$\begin{bmatrix}
\alpha \end{bmatrix}_{b}^{11} - 103^{\circ}, 2 \\
-127^{\circ}, 0 \\
-127^{\circ},$$

$$[\alpha]_{0}^{18.5} = -[112,422 - \sqrt{1618,53 - 25,6889q}]$$
 [alc. abs. $(q = 78 \text{ à } 98,5)$].
Schuster (loc. cit., pp. 589 et 593).

Cinchonidine (bromhydrate de). Cinch. II Br.

i	[x], dans			
c.	Alcool absolu.	Alcool 50 %.	Eau.	
0,301	- 92,65	——————————————————————————————————————	—105,72	
0,602	— 87,93	132,90	-103,54	
1,203	- 85,02	—131,20	- 99,75	
2,406	-82,39	— 128,82	 95,17	
4,812	— 79,21	—124,96	"	
9,624	— 75,16	-117,92	"	
19,249	69,61	"	"	

$$[\alpha]_{\mu}^{18.5} = -[88,521 - \sqrt{1675,21 - 16,8840q}]$$
 [alc. abs. $(q = 80 = 98,6)$].

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	· OBSERVATEURS.
Id. (hydrate de). Cinch. II Br $+\frac{2}{3}$ II 2 O	[a] ₁ — 98°, 8	Eau (c sans infl.)	WYROUBOFF [Ann. de Ch. et Phys. (7° s.), t. I, p. 44; 1894].
Id. (hydroalcoolate de) Cinch. HBr + \(\frac{1}{3}H^2O + \frac{1}{4}C^2H^6O \)	[2] ₀ —101°, 7	Alcool 90 % (c sans influence)	Id.
Id. (méthylalcoolate de) Cinch. H Br -: CH O	[2] ₀ — 101°.1	Alcool méthylique (c sans influence)	Id.

NOW ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	observateurs.
inchonidine (chlor-hydrate de). Cinch. HCl -+- H2()	$-135^{\circ}, 25$ $-24^{\circ}, 21$ $[2]_{0}^{15} - [1$ Eau $[\alpha]_{0}^{15} - 151^{\circ}, 75$	Alcool 97 % ($c = 3$) Alcool 80 % ($c = 2$) Chloroforme [$\dot{c} = 2.85 \text{ (anh.)}$] $co5,34 - 0.76c$] ($c = 1 \text{ à } 3$) $cos = 3$ $cos = 4$	
	$\begin{bmatrix} \alpha \end{bmatrix}_{D}^{15} - \begin{bmatrix} 1 \\ Eau + 2 \end{bmatrix}$	Eau + 2	1876.
	$[2]_{b}^{*}-142^{*},1$	$\left \text{Eau} + 2 \text{ II Cl } (c = 10) \right $	XIV, p. 1891; 1881).
Cinch. HCl + 2H ² O		Alc. abs. $(c = 1,9025)$ (anhydre) (Alcool 89 ^{Rr}) (Eau 11 ^{gr}) (C=1,9025) (Eau 20 ^{gr})	
	— 104°,6	*	l .
Cinch. HCl	— 121°,0 — 117°,7	Id. $(c = 0.55)$ Id. $(c = 0.83)$ Id. $(c = 1.10)$ Id. $(c = 1.65)$	HÄDRICII (Zeits. f. physik. Ch., t. XII, p. 479; 1893).

:h. HCl + H2O

	[a] 18.5 dans			
c .	Alcool absolu.	Alcoul 50 ° a.	Eau.	
	•	•		
0,267	107,91	-148,29	118,97	
0,533	— 102 ,58	—147 ,52	-116,92	
1,067	-100,30	-146,22	-112,47	
2,134	— 98,59	-144,11	107,13	
4, 267	— 96,15	-140,57	"	
8,535	— 92,28	—134,16	"	
17,070	— 86,24	"	"	

$$[\alpha]_0^{18.5} = -[110,995 - \sqrt{2767,00 - 26,88429}]$$
 [alc. abs. $(q = 80 \text{ à } 98,6)$]

SCHUSTER (loc. cit.).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Id. (méthylalcoolate de) Cinch. HCl + CH ⁴ O	[2] ₆ — 102", 8	Alcool méthylique (c sans influence)	WYROUBOFF [Ann. de Ch. et Phys. (7° 8.), t. I, p. 49; 1894].
Cinchonidine (dichlor- hydrate de).	[2]; - 126°, 7 - 137°, 3	Eau $(c = 0.23)$ Id. $(c = 0.46)$	Hädrich (loc. cit.).

Cinchonidine (iodhydrate de).

Cinch. HI + H2O

	[2], dans			
<i>c</i> .	Alcool absolu.	Alcool 83 %.	Eau.	
0,337	— 77 ,80	—118,19	— 94,3 ₂	
0,673	— 73,51	-116,91	-92,39	
1,347	— 69,27	-114,93	— 88,92	
2,694	— 64,44	-111,72	"	
5,388	– 60,36	—106,72	"	
10,776	— 55,73	— 98,74	"	

$$[\alpha]_{0}^{15,5} = -[69,574 - \sqrt{1703,4785 - 17,3262q}]$$
 [alcool absolu $(q = 87 \text{ à } 98,3)$]

Schuster (loc. cit.).

Id. anhydre. Cinch. HI	[a] _u — 73°	Alcool	WYNOUBOFF (loc. eit., p. 82).
Id. (hydrate de). Cinch. HI + 3H2O	[a] _p — 90°°	Eau (c sans influence)	<i>Id.</i> , p. 48.
Id. (méthylalcoolate de). Cinch. HI + CH¹O	$ [\alpha]_{\scriptscriptstyle D} - 91^{\circ}, 4$	Alcool méthylique (c sans influence)	Id.
Cinchonidine (oxalate de). (Cinch.)2C2H2O4-1-2H2O	[a] ¹⁵ — 98°, 7	(Alcool i vol.) (Chlorof. 2 vol.) (c=1 à 3)	HESSE (<i>Lieb. Ann.</i> , t. CLXXVI, p. 222; 1875).

TABLE XVIII. — PO	UVOIRS ROTATOIR	ES DES CORPS LIQUIDES	s or dissors. 899
NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Cinchonidine (phénol- chlorhydrate de). Cinch.(C ⁶ H ⁶ O)HCl+H ² O	[2] ¹⁵ — 124°, 12	Alcool 97 %	HESSE (Lieb. Ann., t CLXXXI, p. 53; 1876).
	•		
Cinchonidine (phényl- glycolate de). Cinch. [C ⁶ H ⁵ . CH(OH). COOH]	$ \begin{bmatrix} \alpha \end{bmatrix}_{0}^{25} - 90^{\circ}, 1 \\ - 90^{\circ}, 6 \\ - 89^{\circ}, 7 \\ - 87^{\circ}, 2 \\ - 84^{\circ}, 8 \end{bmatrix} $		HÄDRIGH (Zeits. f. physik Ch., t. XII, p. 479; 1893)
Cinchonidine (séléniate neutre de). Cinch. Se O'H ² + 5 H ² O	[2] ₀ —]104°,4	Eau (c sans influence)	WYROUBOFF (loc. cit., p 66).
Cinchonidine (sulfate acide de). Cinch.(SO'H2)2+2H2O		c^{-1} ,027 c + 0,0338 c^{2} - 0,00104 c^{3}]	HESSE (Licb. Ann., CLXXXII, p. 139; 1876
	$[\alpha]_{b}^{15}$ — 146°, 38	Eau + 20 $^{\circ}/_{\circ}$ HCl [$c = 10 \text{ (anh.)}$]	Id., t. CCV, p. 210; 1880.
Cinchonidine (sulfate	[α] _p ¹⁵ —	153° 05 (may)	Id., t. CLXVI, p. 2 (2; 1873
basique de).	'Alcoo [α] ¹³ — 153°, 8	c (c = 2, 14) $ Eau + SO^4H^2(c=2, 39)$ $ Eau + 6SO^4H^2(c=2, 36)$	
	$ \begin{array}{r} [\alpha]_{0}^{15} 106^{\circ}, 77 \\ 144^{\circ}, 54 \\ \end{array} $	Eau $(c = 1,06)$ Alcool 80 $^{0}/_{0}$ $(c = 2,14)$	Id., t. CLXXVI, p. 222 1875.
	$ \begin{array}{c c} \hline [\alpha]_{u}^{17} - 118^{\circ}, 7 \\ - 128^{\circ}, 7 \end{array} $	Alcool 8987 (Alcool 8987) $[c=2(anh.)]$ Eau 1187 $[c=2(anh.)]$ Alcool 8087 Eau 2087 $[c=2(anh.)]$	OUDEMANS (Lieb. Ann., t. CLXXXII, p. 49; 1876).
	- 117°,8 116°,6 114°,0	Eau [$c = 0.43$ (anh.)] Id. [$c = 0.57$ (anh.)] Id. [$c = 0.86$ (anh.)] Id. [$c = 1.14$ (anh.)]	
(Voir la suite au verso.) D.	— 111°,4	Id. [c == 1.715(anh.)]	5-

D.

1	[#]}*** dans			
c (hydr.).	Alcool absolu.	Alcool 50 %.	Eap.	
0,304	-116,62	—128,°90	-104,64	
0,608	-116,39	-129,72	-101,68	
1,215	-115,94	—13o,5a	97,85	
2,431	"	-131,33	7	
4.861	. "	-132,13	1 "	

Schusten (loc. clt.).

NOM BT FORMULE.	POUVOIR Polatoire spécifique,	DISSOLVANT ET TENEUR.	
Cinchonidine (sulfate neutre de). Cinch. SO ⁴ H ² 5 H ² O	[α] ₀ ¹¹ — 110°.5 — 109°,0 — 101°,0	Eau (c = 2) Alcool 80 % (c = 2) Alcool 1 vol. Chlorof. 2 vol.	
	[α] ¹⁵ — 112°	Eau (c.suns influence)	WYROUBOFF (Ann. de Ch. et Phys. (7° a.), t. I, p. 66; 1894).
Cinchonidine (dtartrate de). (Cinch.) ² C ⁴ H ⁴ O ⁴ + 2H ⁴ O	$-129^{\circ},6$	Eau + of, 5475 HCl pour 100" (c = 2) Eau + 15, 695 HCl pour 100" (c = 4) Eau + 15, 6425 HCl pour 100" (c = 6)	Опримава (<i>Lieb. Ann.</i> , t. CLXXXII, p. 6;; 18;61.
	[2], — 134°, 6 — 132°, 0	Eau of, 5475 H Cl pour 100** (c = 2) Eau 18, 095 H Cl pour 100** (c = 4)	HESSE [Pharm. J. Treas. (2° 5.), t. XVI, p. 1015; 1886].
Cinchonidinesulfonique (acide). C ¹⁹ H ²¹ Az ² O.SO ³ H	[a], 140°	Eau + 3 H Cl (c = 2)	HESSE (List. Ann., t. CCLXVII, p. 142, 1892).
Cinchonifine. C ¹³ H ²² Az ² O	$ \begin{array}{r} [\alpha]_0^{11} + 201^{\circ}, 4 \\ [\alpha]_0^{13} + 228^{\circ}, 9 \\ + 225^{\circ}, 13 \\ + 226^{\circ}, 3 \end{array} $	Alcool 97 */ ₀ (c = 0,75) Eau + 2 HCl (c = 1) Eau + 2 HCl (c = 1,5) Eau + 4 HCl (c = 1)	JUNGPLRISCH et LÉGER (C. R., L. CXVIII, p. 536; 1894).
(Hamocinchonine)	[α] ¹⁵ 1 208°, 9	Chlorof, a vol. (re = 3)	HESSE (Lieb. Ann., t. GCLXXVI, p. 10 (-1893).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Cinchonifine [Homocinchonine] (chlorhydrate de). Cinch. H Cl	[2]b + 159°,7	Alcool 97 % (c = 3)	Id.
Cinchonifine [Homocinchonine] (dichlorhydrate de) Cinch.2 H Cl	[2]6 - 198°,5	Eau (c = 2,53)	ld., p. 105.
Cinchonigine. C ¹⁹ H ²² Az ² O.	$ \begin{array}{c c} & [\alpha]_{0}^{1} - 60^{\circ}, 1 \\ & [\alpha]_{0}^{16} - 61^{\circ}, 16 \\ & -40^{\circ}, 70 \\ & -38^{\circ}, 21 \end{array} $	Alcool 97 $^{\circ}/_{\bullet}$ ($c = 1$) Id. ($c = 0.5$) Eau + 2HCl ($c = 1$) Eau + 4HCl ($c = 1$)	Jungfleisch et Léger (C. R., t. CVI, p. 357: 1888).
(βIsocinchonine.)	i	Alcool absolu $(c = 1)$	CAVENTOU et GIRARD (C. R., t. CVI, p. 71; 1888). HESSE (Lieb. Ann., t. CCLX, p. 215; 1890).
Cinchonigine (chlor- hydrate de). Cinch. H Cl → H ² O	$[\alpha]_{\rm b}^{15}-65^{\rm o},41$	Eau (c :- 1)	JUNOPLEISCH et LÉGER (C. R., t. CVI, p. 357; 1888).
β-lsocinchonine (chlor- hydrate de).	$[\alpha]_{p}-68^{n},28$		CAVENTOU et GIRARD (C. R., t. CVI, p. 72; 1888).
	- 71°, 2 - 28°, 3 - 34°, 0 - 27°, 9	Eau $(c = 1)$ Id. $(c = 2)$ Eau + 2 H Cl $(c = 2)$ Id. $(c = 5)$ Eau + 5 H Cl $(c = 2)$ Chloroforme $(c = 2)$	
Cinchoniline.	$[x]_{11}^{13} + 53^{\circ}, 22 \\ + 59^{\circ}, 15$		Junopleisch et Légen (C. R., t. CVI, p. 657; 1888).
zIsocinchonine.	$[\alpha]^{15}_{\mu}$ \pm 51°.6	Alcool absolu $(c=3)$	HESSE (Lieb. Ann., t. CCLXXVI, p. 93; 1893).
Cinchoniline (chlor- hydrate de).	[a]16-4-5°,0	Eau (c = 1)	JUNGPLEISCH et Léonn (loc. cit.).
Cinch. HCl + 3H ² O Voir la suite au verso.	inactif.	Eau (c 4)	Hrssr (loc. clt.).

	[a], dans			
c (hydr.).	Alcool absolu.	Alcool 50 %.	Eau.	
0,304	—116°,62	—128,°90	—104,64	
0,608	—116,39	-129,72	—101,68	
1,215	115,94	130,52	— 97,85	
2,431	"	—131,33	"	
4,861	"	—132 ,1 3	"	

Schuster (loc. cit.).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.	
Cinchonidine (sulfate neutre de). Cinch.SO ⁴ H ² +5H ² O	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Eau $(c = 2)$ Alcool 80 % $(c = 2)$ Alcool 1 vol. Chlorof. 2 vol.	HESSE (Licb. Ann., t. CLXXVI, p. 222; 1875).	
	[a]15 — 112°	Eau (c.sans influence)	WYROUBOFF [Ann. de Ch. et Phys. (7° 8.), t. I, p. 66; 1894].	
Cinchonidine (dtartrate de). (Cinch.) ² C ⁴ H ⁶ O ⁶ + 2H ² O	$[\alpha]_{b}^{17}$ — 131°,3 — 129°,6 — 128°,1	Eau + 0 ^{\$r} , 5475 H Cl pour 100 ^{co} ($c = 2$) Eau + 1 ^{\$r} , 095 H Cl pour 100 ^{co} ($c = 4$) Eau + 1 ^{\$r} , 6425 H Cl pour 100 ^{co} ($c = 6$)	OUDRMANS (Lieb. Ann., t. CLXXXII, p. 67; 1876).	
		Eau + 08°, 5475 H Cl pour 100° (c = 2) Eau + 18°, 095 H Cl pour 100° (c = 4)	HESSE [<i>Pharm. J. Trans.</i> (2° 8.), t. XVI, p. 1025; 1886].	
Cinchonidinesulfonique (acide). C ¹⁹ H ²¹ Az ² O . SO ³ H	[α] ¹⁵ — 140°	Eau + 3 H Cl (c = 2)	HESSE (<i>Lieb. Ann.,</i> t. CCLXVII, p. 142; 1892).	
Cinchonifine. C ¹⁹ H ²² Az ² O	$ \begin{array}{r} [\alpha]_{D}^{11} + 201^{\circ}, 4 \\ [\alpha]_{D}^{13} + 228^{\circ}, 9 \\ + 225^{\circ}, 13 \\ + 226^{\circ}, 3 \end{array} $	Alcool 97 % ($c = 0.75$) Eau + 2 HCl ($c = 1$) Eau + 2 HCl ($c = 1.5$) Eau + 4 HCl ($c = 1$)	Jungfleisch et Léger (C. R., t. CXVIII, p. 536; 1894).	
(Homocinchonine)	$[\alpha]_{n}^{15} + 208^{\circ}.9$	(Chlorof. 2 vol.)	VI, p. 204: 1893).	

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEU	R. OBSERVATEURS.
Cinchonifine [Homocinchonine] (chlorhydrate de). Cinch. H Cl	[2] ¹⁵ + 159°,7	Alcool 97 % (c = 3	id.
Cinchonifine [Homocinchonine] (dichlorhydrate de) Cinch.2 H Cl	[2]b + 198°,5	Eau (c - 2,53)	ld., p. 105.
Cinchonigine. C19 H22 Az2 O.	— 40°, 70	Alcool 97 $^{\circ}/_{\circ}$ ($c = 1$ Id. ($c = 0$, Eau + 2 H Cl ($c = 1$ Eau + 4 H Cl ($c = 1$)	
(βIsocinchonine.)			CAVENTOU et GIRARD (C. R., t. CVI, p. 71; 1888). 1 HESSE (Lieb. Ann., t. 3) CCLX, p. 215; 1890).
Cinchonigine (chlor- hydrate de). Cinch. H Cl + H ² O	$[\alpha]_{0}^{15}-65^{\circ},41$	Eau (c : 1)	Jungfleisch et Léger (C. R., t. CVI, p. 357; 1888).
β-lsocinchonine (chlor- hydrate de).	$ [\alpha]_{\scriptscriptstyle D}-68^{\scriptscriptstyle 0},28$		CAVENTOU et GIRARD (C. R., t. CVI, p. 72; 1888).
	- 28°,3 - 34°,0 - 27°,9	Eau $(c = 1)$ Id. $(c = 2)$ Eau + 2 H Cl $(c = 2)$ Id. $(c = 5)$ Eau + 5 H Cl $(c = 2)$ Chloroforme $(c = 2)$	CCLX, p. 216; 1890).
Cinchoniline. C19 H22 Az2 O	$[2]^{13}_{6} + 53^{\circ}, 22 + 59^{\circ}, 15$		5) JUNGPLEISCH et Légen (C.) R., t. CVI, p. 657; 1888).
aIsocinchonine.	$[\alpha]_{u}^{13} + 51^{\circ}, 6$	Alcool absolu (c =	3) HESSE (Lieb. Ann., t. CCLXXVI, p. 93; 1893).
Cinchoniline (chlor- hydrate de).	$[\alpha]_0^{16} + 5^\circ, o$	Eau $(c = 1)$	Jungfleisch et Léork (loc. cit.).
Cinch. H Cl + 3 H ² O (Voir la suite au verso.)	inactif.	Eau (c 4)	HERSE (loc. clt.).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUI	OBSERVATEURS.
Id. + 2 H ² O	inactif [α ¹⁵ + 40°,6	Eau $(c = 2,5)$ Eau + 3 H Cl $(c = 2,5)$	HESSE (loc. cit.).
Cinchonine. C ¹⁹ H ²² Az ² O	$[\alpha]_0^{15} + 226^\circ, 46$ + 226°, 50	Alcool 95 $^{6}/_{0}$ ($c = 1,0$) Id. ($c = 1,2$)	(Lieb. Ann., CLXVI, p. 258; 1873).
	+ 225°, 96 [α] ¹⁵ + [Alcool 1 vol., Ch	Alcool 97 % (c = 0,5) Id. (c = 1) 238,8 — 1,46c] lorof. 2 vol. (c = 1 à 5) (Chlorof. et 10 % Alcool (c = 2))
	$[\alpha]_{\mathfrak{d}}^{t} + [23]$ Alcool 97 $^{\bullet}/_{\bullet}$ (c	$\begin{bmatrix} 31,20-0,338t \end{bmatrix}$ = 0,7) ($t = 2^{\circ}$ et 15°)	Id., t. CLXXXII, p. 130 1876. (Calculé d'après les non bres de l'auteur.)
		ALCOOL. CHLOROFORME	OUDEMANS (Lieb. Ann CLXVI, p. 71; 1873).

	ALCOUL.	CHECKOTORIAL.	CDA VI, p. 71, 10,37.
	gr	gr	
$[\alpha]_0 + 212^\circ, 0$	0	100	
$+216^{\circ},3$	0,34	99,66	
+ 226", 4	1,26	98,74	
$+ 236^{\circ}, 6$	5,52	94,48	
+ 237°, o	13,05	86,95	
+ 234°, 7	17,74	82,26	
+ 229°, 5	35,∞	65,00	
$+ 226^{\circ}, 6$	55,71	44,29	
+ 227°, 6	72,46	27,54	
+ 227°, 8	82,98	17,02	
+ 228°, o	100	0	

[
$$\alpha$$
]_D + [$234.9 - 0.68t$]

Alcool absolu ($c = 0.5$) ($t = 0^{\circ}$ à 17°)

[α]_D¹¹ + 214° , 8 | Chloroforme($c = 0.455$)

+ 212° , 3 | Id. ($c = 0.535$)

+ 209° , 1 | Id. ($c = 0.560$)

$$[\alpha]_{D}$$
 + 222°, 92 | Alc. abs. $(c = 0.4715)$ | Pum (Monatsh. f. Ch., t. XIII, p. 683; 1892).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
(de la benzoylcinchonine)	$[\alpha]_{\rm b}^{17} + 233^{\circ}, 1$	Alc. abs. $(c = 0.75)$	LÉOBR (C. R., t. CXVII, p. 110; 1893).

[c = 1,47] $[t = 16^{\circ C}]$ n molécules acide pour 1 molécule base.

ACIDES.	n = 1.	n == 2.	n=3.	n=6.	n=10.	n = 20.
A. chlorhydrique	+201,0	+254,1	+258,7	+255,3	+252,1	+246,0
A. bromhydrique	"	+253,4	+256,1	+251,8	+246,9	"
A. azotique	+191,7	+253,9	+257,8	+252,1	+251,8	11
A. chlorique	"	+262,2	+262,0	(+262,4)	+261,1	"
A. perchlorique	**	+251,4	(+261,7)	+262,7	"	"
A. formique	"	+242,2	+245,6	+256,6	(+258,1)	+258,9
A. acétique	"	+217,3	+218,5	+232,6	+236,8	+-247,4
A. sulfurique	+255,7	+258,7	(+258,1)	(+256,6)	<i>"</i>	"
A. oxalique	+234,3	+252,5	(+254,0)	(+251,8)	+250,6	"
A. phosphorique	+226,6(1)	(+249)	<i>-</i> -259,0	+259,0	"	(+256,0)

(1) n = 1, 5.

ACIDES.
$$n = 40$$
. $n = 60$. $n = 92$.

A. formique... $(+258,2)$ $(+256,8)$ $+254,0$
A. acétique... $+249,7$ $+249,7$ "

OUDEMANS (Rec. Trav. chim. d. P.-B., t. I, p. 28; 1882)

{les nombres entre,() sont tirés par interpolation des nombres de l'auteur}.

3. Cinchonine.

C¹⁹H²²Az²O

[a]_n + 195°, 77 | Alc. abs.
$$(c = 0,4715)$$
 | Pum $(loc. cit.)$.

6. Cinchonine.

C¹⁹H²²Az²O

[a]_n + 125°, 2 | Alcool 97°/₀ $(p = 1)$ | Junopleisch et Léorr $(c. + 176°, 9)$ | Eau + 2 H Cl $(id.)$ | Eau + 2 H Cl $(id.)$ | 1894).

[a]_n + 139°, 33 | Alcool 98°/₀ $(p = 1)$ | Cordier von Lövenhaupt $(Monatsh. f. Ch., t. XIX, p. 472; 1898)$.

2. Cinchonine.

$$C^{19}H^{22}Az^{2}O$$

$$\begin{vmatrix} [\alpha]_{0}^{26} + 58^{\circ}, 3 \\ \dot{a} 57^{\circ}, 6 \end{vmatrix} Alcool 98^{\circ}, (p = 1) \begin{vmatrix} ld., p. i7i. \\ -78^{\circ}, 06 \end{vmatrix} Eau + 2HCl (id.) \end{vmatrix}$$

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Cinchonine (azotate de). Cinch. Az O ³ H + ½ H ² O	$[\alpha]_{b}$ + 154° + 172°	Eau (p = 2) Alcool (p = 2,2)	OUDEMANS (Lieb. Ann. t. CLXVI, p. 65; 1873).
Cinchonine (bromhydrate de) hydraté. Cinch. H Br + H ² O	[a] _p +149°,2	Eau	WYROUBOFF [Ann. de Ch. et Phys., (7° s.), t. I. p. 14; 1894].
Id. (alcoolate de). Cinch. H Br + ½ C ² H ⁵ O		Alc. éthyl. $(c = 1.25)$ Id. $(c = 6)$	//d., p. 76.
Id. (méthylalcoolate de). Cinch. H Br + CH'O	[α] _D + 160°, 4	Alcool méthylique	<i>Id.</i> , p. 63.
Cinchonine (chlor- hydrate de) hydraté. Cinch. HCl + 2H ² O	[2] ₀ + [168,4 -	- 4,0 p] Eau (p=1,6 à 3,1) Alcool 93 % (p = 5,4)	OUDEMANS (Lieb. Ann. t. CLXVI, p. 65; 1873).
	$ \begin{array}{r} [a]_{5}^{15} + 164^{\circ}, 58 \\ + 189^{\circ}, 07 \end{array} $	Alcool $(c = 3,36)$ H Cl étendu	HESSE (Lieb. Ann., t CLXVI, p. 258; 1873).
	Alcool 97 188", 86 195", 45	$-6,314c+0,8406c^{2}$ $-0,03713c^{3}$ $0^{6}, (c=1 \text{ à 10})$ $ \text{Alcool 80 } ^{6}, (c=2)$ $ \text{Alcool 60 } ^{6}, (\text{ id. })$ $ \text{Alcool 1 vol.} \\ \text{Chlorof. 2 vol.} $	·
	+ 207", 27 + 205", 50	_	
	1	— 1,72¢] Eau 2HCl (¢ = 1 à 7) Id. (¢ == 2)	Id., t. CLXXXII, p. 130:
	$[\alpha]_{6}^{16} + 167^{\circ}, 0$		(1) UDEMANS (Rec. Trav. chim. d. P. B., t. I, p. 29
Id. (alcoolate de). Cinch. HCl + \(\frac{1}{2} \) C^2 H^6 O	$[\alpha]_b + 173^\circ, 3$	Alc. éthyl. (c = 1,25)	WYROUBOFF [Ann. de Ch ct Phys. (7° s.), t. I p. 72; 189 [].
Id. (méthylalcoolate de). Cinch. II Cl. CH [†] O	[x], 175".6	Alc. méthylique	Id., p. 63.

NOM ET FORMULE.	NOM ET FORMULE. POUVOIR rotatoire spécifique. DISSOLVANT ET TENEUR		OBSERVATEURS.	
Cinchonine (dichlorhydrate de). Cinch. 2 H Cl	$[\alpha]_{b}^{15} + 206^{\circ}, 1$	Eau (c = 3)	HESSE (Lieb. Ann., t. CCLXXVI, p. 91; 1893).	
Cinchonine (iodhydrate de) hydraté. Cinch. HI + H ² O	[α] _b +132°, 2	Eau	WYROUBOFF (loc. cit., p. 78).	
Id. (alcoolate de). Cinch. $HI + \frac{1}{2}C^2H^6O$	[2] ₀ +119°,5	Alc. éthylique	<i>Id.</i> , p. 79.	
Id. (méthylalcoolate de). Cinch. HI + CH ⁴ O	[α] _b + 140°, 6	Alc. méthylique	<i>Id.</i> , p. 76.	
Cinchonine (malate de). Cinch. C'H3O' (d'ac. inactif).	$[\alpha]_0 + 141^\circ, 03$ + 145°, 22	Eau $(c = 2,24)$ Id. $(c = 3,3)$	Ріствт (Ber. d. D. ch. Ges., t. XIV, p. 2649; 1881).	
(d'ac. actif).	$[a]_{b}+145^{\circ},43$	Eau (c = 1,425)	HAMMERSCHMIDT (Inaug. Dissert., Borlin; 1889).	
Cinchonine (dmėthoxysuccinate de). Cinch. C'H'O'	[2] ¹ ; + 154°, 89	Eau (c = 4)	Purdie et Marshall (J. of chem. Soc., t. LXIII p. 218; 1893).	
Cinchonine (oxalate de). (Cinch.) ² C ² H ² O ⁴ + 2H ² O		-0,763c] slorof. 2 vol. $(c = 1 à 3)$	HESSE (Lieb. Ann., t. CLXXVI, p. 230; 1875).	
Cinchonine (phénylglycolate de). Cinch. C*H*() ²	$[\alpha]_{0}^{20} + 153^{\circ}, 91$ (de l'ac. droit) $[\alpha]_{0}^{20} + 91^{\circ}, 64$ (de l'ac. gauche)		LEWKOWITSCH (Ber. d. D. ch. Ges., t. XVI, p. 1568; 1883).	
Cinchonine (ipropylphé- nylglycolate de). Cinch. C''H''O'	[2];3 + 136°,8 (de l'ac. droit) [2];4 - 83°,4 (de l'ac. gauche)	Id. $(c = 1,33)$	FILETI Gazz. chim. ital., t. XXII (II), p. 395; 1892].	
Cinchonine (séléniate de). (Cinch.) ² SeO'H ² + 2H ² O	[2] _D + 164°,5	Eau	WYROUBOYF [Ann. de Ch. et Phys. (7° 8.), t. I, p. 73;	
Id. (alcoolate de). (Cinch.) ² ScO'II ² - C'II ⁴ O	[x], -i- 182°,5	Alcool	Id.	

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Cinchonine (sulfate acide de). Cinch. SO'II ² + 3 II ² O	[a] ¹³ + 176",6	HESSE (Lieb. Ann. t. CCV. p. 210; 1880).	
Cinchonine (sulfate neutre de). (Cinch.) ² SO'H ² + 2H ² O	+ 191"	Eau $(p = 1,4)$ Alcool $(p = 2,3)$ Id. $(p = 5,5)$	OUDEMANS (Lieb. Ann., t CLXVI, p. 65; 1873).
	+ 214",40	Alcool $(c = 5)$ Eau \div SO'H ² (id.) Eau + 6SO'H ² (id.)	!
	Eau ([α] ¹⁵ + [10 Alcool 97 [α] ¹⁵ + 202°,95 + 204°, 14	170,3 — 0,855 c] c = 1 à 1,8) 93,29 — 0,374 c] '/, (c = 3 à 10) Alcool 80 '/, (c = 2) Alcool 60 '/, (id.) (Alcool 1 vol.) (Chlorof. 2 vol.)	
	$[\alpha]_{b}^{15} + [3$ Eau + 2,5 S	1876.	
	$\boxed{ [\alpha]_{\scriptscriptstyle D} + 167^{\circ}}$	Eau	WYROUBOFF (loc. cit., p. 73).
Id. (alcoolate de). (Cinch.) ² SO ⁴ H ² -i- C ² H ⁵ O	[2] _b + 185°,0	Alcoul	ld.
Cinchonine (dtartrate de). Cinch. C' 116 O6	[2] _D + 167°,64	Eau (c = 2.61)	HAMMERSCHMIDT (Inaug. Dissert., Borlin; 1889).
Cinchonine (dtartrate d'antimonyle et). $Cl^2(\mathrm{Sb}\mathrm{O})^2(\mathrm{C}^4\mathrm{H}^4\mathrm{O}^6)^2+5\mathrm{H}^2\mathrm{O}^6$	[2] _n + 180°, 8	Eau (c ≔ 1 à 2,4)	TRAUBE (N. Jahrb. f. Min., BeilB. XI, p. 626; 1898).
Cinchoténicine. C ¹⁸ H ²⁰ Az ² O ³	$[\alpha]^{15}_{6} + o^{\circ}, 9$	Eau (c = 2,61)	Нкяяк (Ber. d. D. ch. Ges., t. Xl. p. 198;; 1878).
Cinchoténidine. C ¹⁸ H ²⁰ Az ² O ³	[α] _ν — 189" (app.)	Eau $(c = 0.21)$	SKRAUP of VORTMANN (Lieb. Ann., t. CXCVII. p. 240; 1879).
	[2][5-201°,4	Eau = $3HCl (c = 5)$	HESSE (Ber. d. D. ch. Ges., 1. XIV. p. 1893; 1881).

p. 905; 1896).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Cinchoténine. C ¹⁸ H ²⁸ Az ² O ³ + 3 H ² O	[2]; + 115°,5 + 175°,5	Alcool 1 vol. $(c = 2)$ Chlorof. 2 vol. $(c = 2)$ Eau + 2 SO ⁴ H ² $(c = 2)$	HESSE (Licb. Ann., t. CLXXVI, p. 233: 1875).
Cinnamène. C'H' (du styrax)	[2] ₆ — 3°,1 à 3°,4		BERTHELOT (C. R., t. LXXXII, p. § ; 1876).
Cinnamène (méta-). (C ⁸ H ⁸) ^x	[α] _B — 2°, 2		Id., t. LXXXV. p. 1190;1877.
Cinnamidènecamphre. C'' H'' C=CH.CH=CH.C'H' C''H'' CO	+ 185",46	1	HALLER (Dict. de Würtz, 2º suppl., t. I, p. 903).
Cinnamique (dibromure d	d'acide). <i>Voir</i> Pl	nényldibromopropio:	nique (acide).
Cinnamylcocaine. C ¹⁹ H ²³ Az O ⁴	$[\alpha]_{D}^{15}-4^{\circ},7$	Chloroforme (c = 10)	HESSR (Lieb. Ann., t. CCLXXI, p. 185; 1892.
Cinnamylcocaïne (chlor- hydrate de). (C ¹⁹ H ²³ AzO ¹)HCl	$[\alpha]_{b}^{15}-104^{\circ},1$	Eau (c = 66)	Id.
Cinnamylecgonine méthy	rlique. Voir Cinn	amylcocaïne.	
Citronnellal (citronnellone) C!*H!*O [de l'huile de citronnelle]	$[\alpha]_{0}^{26}+4^{\circ},83$	Pur. d ²⁰ = 0,856	Гован (Amer. chem. J., t. XII. p. 553; 1890).
[de l'huile d'encalyptus]	$[\alpha]_{\rm b}^{2\theta} + 8^{\rm o}, 18$	Pur. d ²⁰ 0,871	KREMERS (Amer. chem. J. t. XIV. p 201; 1892).
	[x] _b ; + 12°, 50	Pur. d; 5.5 - 0.8538	TIRMANN et SCHMIDT (Ber. d. D. ch. Ges., t. XXIX p. 995; 1896).

300	INDES NORDINI	gres. — Ortigus.	
NOM ET FORMULE.	POUVOIR rotatolre spécifique	DISSOLVANT ET TENEUR.	OBSERVATEURS.
dCitronnellique (acide). C''H''O'= C'H'', COOH (de dcitronnellol)	$[\alpha]_{\nu}^{20} + 6^{\circ}, 5$	Pur. d ²⁰ ~ 0,9308	TIEMANN of SCHMIDT (16., t. XXX, p. 37; 1897).
lId. (de rhodinol)	[2]0 - 6,7	Pur. [d=0,931(admis)]	
dCitronnellol. C!*H**O (drhodinol)	[a] 10 + 10,9	Pur. d*= 0,902	BARBIER [Bull. Soc. chim. (3* 6.), t. IX, p. 1004; 1893]. (loc. cit., t. XXIX).
(41-111041401)	$\left \left[\alpha \right]_{0}^{1} \stackrel{,5}{\rightarrow} + 4^{\circ}, \circ \right $	Pur. di 1,3 = 0,8565	cit., t. XXIX).
. Voir Rhod	linol.		
C ¹⁰ H ¹⁰ O (C ² H ² O)	$[a]_{a}^{11,3} + 2^{n}, 37$	Pur. d111,1 = 0,8928	Id.
tCocaine. C" H" Az O"		,827 + 0,00585q] me $(q = 75 à 90)$	Antrick (Ber. d. D. ch. Ges., t. XX, p. 310; 1887).
ICocaïne (chlorhydrate de). (C¹¹ H²¹ Az O¹) II Cl	-[67,98 -	-0,1588 q] $(q=75 \text{ à 95})$ -0,1583 c] $(c=5 \text{ à 25})$ 40 st ; Eau 60 st	I
	— 69°, 43	Eau (c = 2.71) Id. (c = 8)	Hénissey [J. de Pharm. et Ch. (6° s.), t. VII, p. 59; 1898].
dCocaine (chlorhydrate de). (C ¹⁷ H ²⁸ AzO ⁴)HCl	[[2] ₀ + 40°(app.)	Alcool 404" (C = 1,9) Ean 604"	WULLINER in EINHORN of MARQUARDT (Ber. d. D. ch. Ges., t. XXIII, p. 464; 1890).
Codéine. C ¹⁴ H ²¹ Az O ³ + H ² O	[α] ₀ ¹⁵ 135°, 8 137°, 75 111°, 5	Alcool 97 $^{6}/_{6}$ ($c = 1 \pm 8$) Alcool 80 $^{6}/_{6}$ ($c = 2$ Chlorof. ($c = 2$	HESSE (Lieb. Ann., t. CLXXVI, p. 191; 1875).
	$[x]_n^{26} - 143^{\circ}, 3$ - 141°, 1	Alconi [$c = 3.18 \text{ (anh.)}]$ 1d. $c = 3.93 \text{ (id.)}$	Tyrocture (Inang. Dis- sert., Freiburg , 1882)

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Cod. naturelle. Id. artificielle.	$ \begin{array}{r} $	Alcool $(c = 1, 29)$	GRIMAUX (C. R., t. XCII, p. 1228; 1881).

[c=1,70 (anh.)] $[t=20^{\circ}]$ n molécules acide pour 1 molécule base.

1	ACIDES							
n.	chlorhydrique.	azotique.	formique.	acétique.	sullurique.	oxalique.	arsénique.	citrique.
0,5	" 0	"	" 0	"	134,4	-134,0	<i>"</i>	<i>"</i> 0
1	134,4	-134,3			-134,3			
2	-134,3	-134,3	—135,3	—135,2	133,9	-134,0	-134,0	-133,3
3	- 134,3	-134,1	135,2	—135 ,1	133,5	134,0	-134,0	—133,0
4	- 134, 1	-134,0	_135,2	-135,2	"	"	—133 ,8	-132,7
5	"	"	! <i>"</i>	"	"	—133,8	"	"
6	-133,6	_133,1	i <i>"</i>	135,o	133,3	"	"	132,2
8	"	,	"	"	"	-133,8	"	"
10	-133,3	-132,2	_134,6	134,9	132,2	-132,8	-133,5	"
20	-132,5	"	-134,4	-134,6	130,3	"	"	—130,6
30	-131,3	l .	_	l	-129,1			_

TYKOCINER (loc. cit.).

Cod. II Cl -:- 2 II ² ()	— 105°, 22	Eau ($c=2$) Eau + 10 H Cl (id. Alcool 80 $^{4}/_{6}$ (id.	
(de Cod. naturelle) (de Cod. artificielle)	[2] ₁₁ — 111",6 — 109",9		DOTT [Pharm. J. Trans. (3° 8.), t. XII, p. 1009; 1882].

Codéine (iodométhylate de). Voir Méthylcodéine (iodure de).

Codéine (sulfate de). (Cod., 2SO H2 5H2O	$\begin{array}{c c} & \alpha _{1}^{1.3} 101^{\circ}, 2 \\ & \alpha _{0}^{2.5} 100^{\circ}, 9 \\ & \alpha _{1}^{2.2+5} 100^{\circ}, 7 \end{array}$	Eau (c · 3) Id. Id. (c · 2)	HESSE (Lieb. Ann., t. CLXXVI, p. 192; 1875).
Conchairamidine.	[a] ₀ — 60°	Alcool 97 % (c - 3)	HESSE (Lich. Ann., t.

DONNÉES NUMÉRIQUES. - OPTIQUE.

NOM ET FORMULE.	POUVOIR rotatoire spécifique	DISSOLVANT ET TENEUR.	OBSERVATEURS.
CnHmVz5Ot	[a] _e + 68°,4	Alcool 97 */, (c = 2)	id., p. 146.
Concusconine.	[α] _a + 40°, 8	Id. (c = 2)	[Id., p. 136. [Id. (Ber. d. D. ck. Get., t. XVI, p. 61; 1883).]
Concusconine (améthyl- sulfate de). (C ³³ H ²⁴ Az ² O ⁵)SO ⁴ (CH ³) ²	[2], + 73°	Eau (c = 3,76)	/d., p. sąt.
8,-Conicéine. C°H ¹¹ Az	[x],-8°,7	Pur. dia = 0,8976	LELLNANN (Lieb. Ann . t. CCLIX, p. 199; 1890).
eConicéine. C ¹ H ¹³ Az	[a] _b + 47°(app.)	Pur. d = 0,9 (admis)	[d., p. 203.
dConicine. C*fl''Az	[z] ¹⁵ + 17 ⁿ .9	Pur. d ¹⁵ = 0,873	SCRIFF (Lieb. Ann., t. CLXVI, p. 9; 1873).
Id. naturelle. Id. artif. (dédoublement de aPropylpipéridine).	[2]; + 13", 79 + 13", 87	Pur. d ²⁵ = 0,845	LADENBURG (C. R., t. CHI, p. 876; :886).
	[a] ¹ + 15°,7	Pur. d19 = 0,8438 .	WOLFFENSTEIN (Ber. d. D. eh. Ges., t. XXVII, p. 1612, 1894).
Id. (pure sans Isoconicine)			d. D. ch. Ges., t. XXVII, p. 3061, 1894).
	$ \begin{array}{l} [\alpha]_{b}^{2,3} + 13^{\circ}, 51 \\ [\alpha]_{b}^{2,1} + 9^{\circ}, 54 \\ [\alpha]_{a}^{2,2} - 9^{\circ}, 77 \\ [\alpha]_{a}^{2,2} + 11^{\circ}, 14 \\ [\alpha]_{b}^{2,3} + 8^{\circ}, 12 \\ [\alpha]_{b}^{2,3} + 8^{\circ}, 70 \\ [\alpha]_{b}^{2,4} + 9^{\circ}, 98 \\ [\alpha]_{b}^{2,6} + 1^{\circ}, 21(?) \end{array} $	Pur Benzène $(c = 13,09)$ Id. $(c = 20,46)$ Id. $(c = 33,29)$ Alcool $(c = 10,84)$ Id. $(c = 15,17)$ Id. $(c = 44,69)$ Eau $(c = 1,07)$	ZECCHINI [R. C. d. Linces, t. 11 (2* sem.), p. 172; 1893].
Conicine (acétate de). Con. C° II° O°	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Benzène $(c = 22,85)$ Alcool $(c = 21,90)$ Eau $(c = 31,94)$	īđ.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Conicine (bromhydrate de). Con. H Br	$[\alpha]_{D}^{23} + 4^{\circ}, 28$ $[\alpha]_{D}^{26} + 0^{\circ}, 27$	Alcool ($c = 6,05$) Eau ($c = 11,89$)	Id.
Conicine (chlorhydrate de). Con. H Cl	$[\alpha]_{0}^{25} + 4^{\circ}, 56$ $[\alpha]_{0}^{26} + 0^{\circ}, 27$	Alcool $(c = 6,72)$ Eau $(c = 11,46)$	Id.
Conicine (sulfate d'alu- minium et). (Con.)2SO'H2 + (SO')3Al2+24H2O	[a] _D + o", 68	Eau (c = 46)	TRAUBR (N. Jahrb. f. Min., BeilB. IX, p. 628; 1894).
Conicine (sulfate de fer et). (Con.)2SO4H2 +(SO4)3Fe2+24H2O	[α] _b + o°, 53	Eau (c = 66,8)	Id.
-conicine (Iso-). C*H1: Az	$[\alpha]_b + 8^o, 19$	Pur. $d^{20} = 0.8425$	LADRNBURG (Ber. d. D. ch. Ges., t. XXVI, p. 854; 1893).
Conicinephényluréthane. C ¹⁵ H ²¹ Az O ² = C ⁵ H ¹⁶ Az . CO . OC ⁶ H ⁵	[2] ₁ + 3°,66	Alcool	CAZENBUVE et MOREAU (C. R., t. CXXVI, p. 181;
Coniférine. C16 H22 O9 + 2 H2 O	[2] _b ²⁰ — 66", 90	Eau (p = 0,62) (anhydre)	WEGSCHRIDER in TIEMANN (Ber. d. D. ch. Ges., t. XVIII, p. 1600; 1885).
Conquinamine. C19 H24 Az2 G2 (Voir la suite au verso.)	Alcool absortant Alcool absortant [α] _b ¹⁵ + [177,6 - Chloroform [α] _b ¹⁵ + [185,1 - Benzène (α] _b ¹⁵ + 192°,7 + 190°,6 + 188°,5 (moy.)	- 1,92 c + 0,328 c^2] olu (c = 0,8 à 5) - 2,17 c] ne (c = 0,8 à 3) + 1,68 c - 6,93 \sqrt{c}] c = 0,89 à 3,5) Ether abs. (c = 0,77) Id. (c = 1,15) Id. (c = 1,57) Id. (c = 1,57)	OUDEMANS (Lieb. Ann., t. CCIX, p. 46; 1881). [Id. (Arch. Néerl., t. XV; 1880.] Formules calculées d'après les nombres de l'auteur.
() Ut/ Im Suite un icisu.)	1 .90.3	1 7,007	i

$$[\alpha]_0^{18.5} = -[112,422 - \sqrt{1618,53 - 25,6889q}]$$
 [alc. abs. $(q = 78 \text{ à } 98,5)$].
Schuster (loc. cit., pp. 589 et 593].

Cinchonidine (bromhydrate de). Cinch. HBr.

I	[α] ^{18,5} dans			
c.	Alcool absolu.	Alconi 50 %.	Eau.	
0,301	- 92,65	— <u>134, 29</u>	—105,72	
0,602	— 87,93	132,90	-103,54	
1,203	— 85,02	-131,20	- 99,75	
2,406	— 82,39	-128,82	— 95,17	
4,812	— 79,21	—124,96	"	
9,624	— 75,16	-117,92	"	
19,249	— 69,61	"	"	

$$[\alpha]_{b}^{18,5} = -[88,521 - \sqrt{1675,21 - 16,8840q}]$$
 [alc. abs. $(q = 80 = 98,6)$].

NOM RT FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	· OBSERVATEURS.
Id. (hydrate de). Cinch. HBr + \frac{2}{3}H^2O	[a] _u — 98°, 8	Eau (c sans infl.)	WYROUBOFF [Ann. de Ch. et Phys. (7° s.), t. I, p. 44; 1894].
Id. (hydroalcoolate de) Cinch. HBr+\frac{1}{3}H^2O+\frac{1}{4}C^2H^6O	[2] _D — 101°, 7	Alcool 90 % (c sans influence)	Id.
Id. (méthylalcoolate de) Cinch. H Br + CH ⁴ O	[x], — 101°, 1	Alcool méthylique (c sans influence)	Id.

NON ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Cinchonidine (chlor- hydrate de). Cinch. HCl + H ² ()	$-135^{\circ}, 25$ $-24^{\circ}, 21$ $[\alpha]_{0}^{15} - [1$ Eau $[\alpha]_{0}^{15} - 151^{\circ}, 75$	Alcool 97 $\frac{0}{0}$ ($c = 3$) Alcool 80 $\frac{0}{0}$ ($c = 2$) Chloroforme [$\dot{c} = 2.85 \text{ (anh.)}$] 05,34 — 0,76 c] ($c = 1 \text{ à 3}$) Eau + 4HCl ($c = 2$) Eau + 10HCl ($c = 2$)	
	$[\alpha]_0^{15} - [1$	Eau + 2 HCl ($c = 2$) 54,07 - 1,39 c] Cl ($c = 1$ à 10)	ld., t. CLXXXII, p. 130; 1876.
	$[\alpha]_{0}^{20}-142^{n},1$	Eau + 2 C (c = 10)	ID. (Ber. d. D. ch. Ges., t. XIV, p. 1891; 1881).
Cinch. HCl + 2H ² O	[2] ¹⁷ — 99°,9 — 119°,6 — 128°,7 — 104°,6	Alc. abs. $(c = 1,9025)$ (anhydre) (Alcool 89 ^{gr}) (Eau 11 ^{gr}) (C=1,9025) (Eau 20 ^{gr}) (C=1,9025) (C=1,9025)	
Cinch. HCl	- 122°, 2 - 121°, 0 - 117°, 7 - 115°, 3	Eau $(c = 0,41)$ Id. $(c = 0,55)$ Id. $(c = 0,83)$ Id. $(c = 1,10)$ Id. $(c = 1,65)$ Id. $(c = 3,30)$	Hädrich (Zeits. f. physik. Ch., t. XII, p. 479; 1893).

Cinch. $HCI + H^2O$

	[\alpha]_{\bullet}^{16.5} dans			
<i>c</i> .	Alcool absolu.	Alcoul 50 %.	Eau.	
	•	•		
0,267	-107,91	—148,29	—118,97	
0,533	—102,58	-147,52	—116,92	
1,067	—100,30	-146,22	-112,47	
2,134	— 98,59	144,11	-107,13	
4,267	-96,15	-140,57	"	
8,535	— 92,28	—134,16	"	
17,070	— 86,24	"	"	

$$[z]_0^{18.5} = -[110,995 - \sqrt{2767,00 - 26,88429}]$$
 [alc. abs. $(q = 80 \text{ à } 98,6)$]

SCHUSTER (loc. cit.).

DONNÉES NUMÉRIQUES. — OPTIQUE.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Id. (méthylalcoolate de) Cinch. HCl + CH ⁴ O	[a] _b — 102°, 8	Alcool méthylique (c sans influence)	WYROUBOFF [Ann. de Ch. et Phys. (7° s.), t. I, p. 49; 1894].
	•		
Cinchonidine (dichlor-	[a] ²³ — 126°, 7	Eau ($c=$ 0,2 3)	Нädrich (<i>loc. cü.</i>).
Cinchonidine (dichlor-hydrate de).	$ \begin{bmatrix} [a]_{0}^{23} - 126^{\circ}, 7 \\ - 137^{\circ}, 3 \end{bmatrix} $	Eau ($c = 0.23$) Id. ($c = 0.46$)	Hädricп (<i>loc. ci</i> t.).
		•	Нädricп (<i>loc. ci</i> t.).
hydrate de).	— 137°,3	Id. $(c = 0.46)$	Hädricπ (loc. cit.).

Cinchonidine (iodhydrate de).

Cinch. HI + H²O

	[x], dans			
c.	Alcool absolu.	Alcool 50 %.	Eau.	
0,337	— 77 [,] 80	—118°, 19	— 94,3 ₂	
0,673	— 73,51	-116,91	— 92,39	
1,347	— 69,27	-114,93	— 88,92	
2,694	- 64,44	111,72	"	
5,388	– 60,36	—106,72	"	
10,776	— 55,73	— 98,74	"	

$$[\alpha]_{0}^{18,8} = -[69,574 - \sqrt{1703,4785 - 17,3262}]$$
 [alcool absolu $(q = 87 \text{ à } 98,3)$]

Schuster (loc. cit.).

Id. anhydre. Cinch. HI	[2] ₀ — 73"	Alcool	Wynou вору (loc. cit., р. 82).
Id. (hydrate de). Cinch. HI + ² / ₃ H ² O	[2] _b — 90°	Eau (c sans influence)) <i>Id.</i> , p. 48.
Id. (méthylalcoolate de). Cinch. HI + CH¹O	[a] _D - 91°,4	Alcool méthylique (c sans influence)	Id.
Cinchonidine (oxalate de). (Cinch.) ² C ² H ² O ⁴ + 2H ² O	[a] ¹³ —98°,7	{Alcool 1 vol.} (Chlorof. 2 vol.) (c=1 à 3	HESSE (<i>Lieb. Ann.,</i> t. CLXXVI, p. 222; 1875).

TABLE XVIII PO	OUVOIRS ROTATOIR	ES DES CORPS LIQUIDES	s ov dissous. 89g
NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Cinchonidine (phénol- chlorhydrate de). Cinch. (C ⁶ II ⁶ O) H Cl -+- H ² O		Alcool 97 %	HESSE (Lieb. Ann., t. CLXXXI, p. 53; 1876).
Cinchonidine (phényl- glycolate de). Cinch. [C ⁶ H ⁵ . CH(OH). COOH]	• [α] ²⁵ — 90°, 1 — 90°, 6 — 89°, 7 — 87°, 2 — 84°, 8		НÄDRICH (Zeits. f. physik. Ch., t. XII, p. 479; 1893).
Cinchonidine (séléniate neutre de). Cinch. Se O'H ² + 5 H ² ()	[2] _D —[104°, 4	Eau (c sans influence)	Wyrouboff (loc. cit., p. 66).
Cinchonidine (sulfate acide de). Cinch.(SO'H2)2+-2H2O		c^{-1} ,027 c + 0,0338 c^{2} — 0,00104 c^{3}]	HESSE (Licb. Ann., t. CLXXXII, p. 139; 1876).
	$[\alpha]_{b}^{15}-146^{\circ},38$	Eau + 20 % HCl [c = 10 (anh.)]	Id., t. CCV, p. 210; 1880.
Cinchonidine (sulfate basique de). (Cinch.)2SO'H2+6H2O	Alcoo $[\alpha]_{D}^{15}$ — 153°, 8	153°, 95 (moy.) 1 ($c = 2,14$) Eau + SO'H ² ($c=2,39$) Eau + 6SO'H ² ($c=2,36$)	i .
	[α] ¹⁵ 106°, 77 144°, 54	Eau $(c = 1,06)$ Alcool 80 $^{\circ}/_{\circ}$ $(c = 2,14)$	Id., t. CLXXVI, p. 222;
•	$ \begin{array}{c c} \hline [\alpha]_{u}^{17} - 118^{\circ}, 7 \\ - 128^{\circ}, 7 \end{array} $	Alc. abs. $[c=2(anh.)]$ (Alcool 89 ^{gr}) (Eau 11 ^{gr}) $[c=2(anh.)]$	OUDEMANS (Lieb. Ann., t. CLXXXII, p. 49; 1876).

[α]₀²⁵ — 117°, 2 | Eau [c = 0.43 (anh.)] | Hädrich (loc. cit.). — 117°, 8 | Id. [c = 0.57 (anh.)] — 116°, 6 | Id. [c = 0.86 (anh.)] — 114°, 0 | Id. [c = 1.14 (anh.)] — 111°, 4 | Id. [c = 1.715 (anh.)]

(Voir la suite au verso.)

D.

BONNÉES NUMÉRIQUES. - OPTIQUE.

1	[2] ⁰ ,5 dans			
c (hydr.).	Alcool absolu	Alcool 50 %	Eau.	
0,304	-116,62	—128,go	-104,64	
0,608	-116,39	-129,72	-101,68	
1,215	-115,94	—130,5a	97,85	
2,431	, ,	-131,33	*	
4.861	"	132,13	, , , , , , , , , , , , , , , , , , ,	

Schuster (loc. cit.).

NOM BY FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.
Cinchonidine (sulfate neutre de). Cinch. SO ⁴ H ² + 5 H ² O	— 109°,0 — 101°,0	Eau $(c=a)$ Alcool 80 $^{6}/_{4}$ $(c=2)$ Alcool 1 vol. Chlorof. 2 vol. $(c=a)$
	[a] 15 — 112°	Equ (c sans influence) Wynousoff [Ann. de Ch. et Phys. (7* s.), t. l, p. 66; :894].
_	[4]6 — 151 ,5	Eau + 6", 5475 H Cl OUDEMAND (Lieb. Ann., t. CLXXXII, p. 67, 1876).
(Cinch.) ² C ⁴ H ⁴ O ⁴ + 2H ² O		Eau + 187,095 H Cl pour 100° (c = 4) Eau + 187.6425 H Cl pour 100° (c = 6)
	l	Eau + of', 5475 H Cl Huseu [Pharm. J. Trans. (2° 8.), t. XVI, p. 1025; 1886].
Cinchonidinesulfonique (acide). C ¹⁸ H ²¹ Az ² O.SO ³ H	[z] ¹⁵ — 140°	Eau + 3 H Cl (c = 2) Hesse (Lieb. Ann., t. CCLXVII, p. 142; 1692).
Cinchonifine.	$[\alpha]_{0}^{1}$ + 201°, 4 $[\alpha]_{0}^{13}$ + 225°, 9 + 225°, 13 + 226°, 3	Alcool 97 %, $(c = 0.75)$ JUNGSLEISCH et LÉGER (C . Eau + 2 HCl $(c = 1)$ Eau + 2 HCl $(c = 1.5)$ Eau + 4 HCl $(c = 1)$
(Homocinchonine)	[α] _b 15 + 208°.9	Chlorof. a vol. (c - 3)

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Cinchonifine [Homocinchonine] (chlorhydrate de). Cinch. HCl	[x] ¹⁵ + 159°,7	Alcool 97 % (c = 3)	Id.
Cinchonifine [Homocinchonine] (dichlorhydrate de) Cinch.2 H Cl	[2] ¹⁵ + 198°,5	Eau (c = 2,53)	Id., p. 105.
Cinchonigine. C ¹⁹ H ²² Az ² O.	- 40°, 70	Alcool 97 $^{\circ}/_{\circ}$ ($c = 1$) Id. ($c = \circ, 5$) Eau + 2HCl ($c = 1$) Eau + 4HCl ($c = 1$)	i
(βIsocinchonine.)			CAVENTOU et GIRARD (C. R., t. CVI, p. 71; 1888). HESSE (Lieb. Ann., t.
	$-55^{\circ},6$	i	CCLX, p. 215; 1890).
Cinchonigine (chlor- hydrate de). Cinch. H Cl + H ² O	$[\alpha]_{\rm b}^{15} - 65^{\rm o}, 41$	Eau (c - 1)	JUNOPLEISCH of LÉGER (C. R., t. CVI, p. 357; 1888).
β-lsocinchonine (chlor- hydrate de).	$[\alpha]_{0}-68^{\circ},28$		CAVENTOU et GIRARD (C. R., t. CVI, p. 72; 1888).
	- 28°,3 - 34°,0 - 27°,9	Eau $(c = 1)$ Id. $(c = 2)$ Eau + 2 H Cl $(c = 2)$ Id. $(c = 5)$ Eau + 5 H Cl $(c = 2)$ Chloroforme $(c = 2)$	HESSE (Lieb. Ann., t. CCLX. p. 216; 1890).
Cinchoniline. C19 H22 Az2 O	$[\alpha]^{15}_{0} + 53^{\circ}, 22 + 59^{\circ}, 15$	Alcool 97 % ($c = 0.5$) Id. ($c = 1$) Eau + 2 HCl ($c = 1$) Eau + 4 HCl ($c = 1$)	Jungfleisch et Légen (C. R., t. CVI, p. 657; 1888).
2Isocinchonine.	$[\alpha]_{u}^{15} + 51^{\circ}, 6$	Alcool absolu $(c=3)$	HESSE (Lieb. Ann., t. CCLXXVI, p. 93; 1893).
Cinchoniline (chlor- hydrate de).	$[\alpha]_n^{16} + 5^{\circ}, o$	Eau $(c = 1)$	JUNGFLEISCH et Léark (loc. cit.).
Cinch. HCl == 3H2O Voir la suite au verso.	inactif.	Eau (c 4)	HESSE (loc. cit.).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Id. + 2 H ² O	inactif [α ¹⁵ + 40°, 6	Eau $(c = 2,5)$ Eau + 3 H Cl $(c = 2,5)$	HESSE (loc. cit.).

Cinchonine. C19 H22 Az2 O

$$\frac{[\alpha]_{b}^{19,8} + 239^{\circ}, 4[\text{Alcool i vol.}](c=1,06)}{(\text{Chlorof. 2 vol.}](c=1,06)} \frac{\text{Lenz (Zeits. f. anal. Ch.,}}{\text{t. XXVII, p. 572; 1888).}}$$

$$\frac{[\alpha]_{b}^{20,2} + 234^{\circ}, 5[\text{Alcool i vol.}](c=2,12)}{(\text{Chlorof. 2 vol.}](c=2,12)}$$

$$[\alpha]_{D}$$
 + 222°, 92 | Alc. abs. $(c = 0.4715)$ | Pum (Monatsh. f. Ch., t. XIII, p. 683; 1892).

NOM BT FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
(de la benzoylcinchonine)	$\boxed{[\alpha]_{\mathbf{b}}^{1} + 233^{\circ}, 1}$	Alc. abs. $(c = 0.75)$	LÉGRR (C. R., t. CXVII, p. 110; 1893).

[c = 1,47] $[t = 16^{\circ C}]$ n molécules acide pour 1 molécule base.

ACIDES.	n = 1.	n == 2.	n = 3.	n=6.	n=10.	n=20.
	• • • • • • • • • • • • • • • • • • •		0	•	0	0
A. chlorhydrique	+201,0	+254,1	+258,7	+255,3	+252,1	+246,0
A. bromhydrique	"	+253,4	+256,1	+251,8	+246,9	"
A. azotique	+191,7	+253,9	+257,8	+252,1	+251,8	ıi.
A. chlorique	"	+262,2	+262,0	(+262,4)	+261,1	"
A. perchlorique	"	+251,4	(+261,7)	+262,7	"	"
A. formique	"	+242,2	+245,6	+256,6	(+258,1)	+258,9
A. acétique	"	+217,3	+218,5	+232,6	+236,8	+247,4
A. sulfurique	÷255,7	+258,7	(+258,1)	(+256,6)	"	77
A. oxalique	+234,3	+252,5	(+254,0)	(+251,8)	+250,6	"
A. phosphorique	+226,6(1)	(+249)	+259,o	+259,0	"	(+256,0)

 $\binom{1}{n} = 1, 5.$

ACIDES.
$$n = 40$$
. $n = 60$. $n = 92$.

A. formique... $(+258,2)$ $(+256,8)$ $+254,0$
A. acétique... $+249,7$ $+249,7$ "

OUDEMANS (Rec. Trav. chim. d. P.-B., t. I, p. 28; 1882)

[les nombres entre,() sont tirés par interpolation des nombres de l'auteur].

2. Cinchonine.

C¹²H²²Az²O

$$\begin{vmatrix}
[\alpha]_{0}^{20} + 58^{\circ}, 3 \\
\dot{a} 57^{\circ}, 6
\end{vmatrix} \text{ Alcool } 98^{\circ}, (p = 1) \begin{vmatrix} ld., p. i7i. \\
-78^{\circ}, 06 \end{vmatrix} \text{ Eau } + 2 \text{ H Cl (id.)}$$

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Cinchonine (azotate de). Cinch. Az O ² H + ½ H ² O	[a] _b +154° +172°	Eau (p = 2) Alcool (p = 2,2)	OUDEMANS (Lieb. Ann t. CLXVI, p. 65; 18-3)
Cinchonine (bromhydrate de) hydraté. Cinch. H Br + H ² O	[2] _b +149°,2	Eau	WYROUBOFF [Ann. de Ch et Phys., (7° 8.), t. I p. 44; 1894].
Id. (alcoolate de). Cinch. H Br + ½ C ² H ⁵ O		Alc. éthyl. $(c = 1,25)$ Id. $(c = 6)$	Id., p. 76.
Id. (méthylalcoolate de). Cinch. HBr + CH ⁴ O	[α] _b + 160°, 4	Alcool méthylique	<i>Id.</i> , p. 63.
Cinchonine (chlor- hydrate de) hydraté. Cinch. HCl + 2 H ² O	[a]u+[168,4- +175°	- 4,0 p] Eau (p=1,6 à 3,1) Alcool 93 % (p = 5,4)	OUDEMANS (<i>Lieb. Ann.</i> t. CLXVI, p. 65; 1873).
		Alcool $(c = 3,36)$	HESSE (Lieb. Ann., CLXVI, p. 258; 1873).
	Alcool 97 188", 86 195", 45 152", 0 [165,5 207", 27 205", 50	-0,03713c ³] //, (c = 1 à 10) Alcool 80 /, (c = 2) Alcool 60 /, (id.) (c = 2) Chlorof. 2 vol.) Eau (c = 0,5 à 3) Eau + 4HCl (c = 2) Eau + 10HCl (id.)	•
	$[\alpha]_{b}^{15} + [214,0]$ $[\alpha]_{b}^{2} - 210^{\circ},68$ $[\alpha]_{b}^{16} + 167^{\circ},0$	Eau 2 HCl $(c = 1 \text{ à } 7)$ Id. $(c = 2)$ Alc. abs. $(p = 2, 2)$	OUDENANS (Rec. Tras
Id. (alcoolate de). Cinch. HCl + 4 C2 H6O	+ 16 5 °, 1	Id. $(p = 3.9)$ Alc. éthyl. $(c = 1,25)$	chim. d. P. B., t. I, p. 29
Id. (méthylalcoolate de). Cinch. II Cl CH1O	· -		p. 72; 189 i l. [Id., p. 63.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVAT E URS.		
Cinchonine (dichlorhydrate de). Cinch. 2 H Cl	$[\alpha]_{b}^{15} + 206^{\circ}, 1$	Eau (c = 3)	HESSE (Lieb. Ann., t. CCLXXVI, p. 91; 1893).		
Cinchonine (iodhydrate de) hydraté. Cinch. HI + H ² O	[α] _υ + 132°, 2	Eau	WYROUBOFF (loc. cit., p. 78).		
Id. (alcoolate de). Cinch. HI $+\frac{1}{2}$ C ² H ⁶ O	[2] _u +119°,5	Alc. éthylique	/ <i>Id.</i> , p. 79.		
Id. (méthylalcoolate de). Cinch. HI + CH'O	$[\alpha]_{b}+140^{\circ},6$	Alc. méthylique	Id., p. 76.		
Cinchonine (malate de). Cinch. C'H ³ O' (d'ac. inactif).	$[\alpha]_{n} \div 141^{\circ}, 03$ $\div 145^{\circ}, 22$	Eau $(c = 2,24)$ Id. $(c = 3,3)$	PICTET (Ber. d. D. ch. Ges., t. XIV, p. 2649; 1881).		
(d'ac. actif).	$[2]_{b}+145^{\circ},43$	Eau (c = 1,425)	HAMMERSCHMIDT (Inaug. Dissert., Berlin; 1889).		
Cinchonine (dméthoxysuccinate de). Cinch. C'HO'	[α]b; + 154°,89	Eau (c = 4)	Purdie et Marshall (J. of chem. Soc., t. LXIII, p. 218; 1893).		
Cinchonine (oxalate de). (Cinch.) ² C ² H ² O ⁴ + 2H ² O	i	— 0,763c] dorof. 2 vol. (c = 1 à 3)	HESSE (<i>Lieb. Ann.</i> , t. CLXXVI, p. 230; 1875).		
Cinchonine (phénylglycolate de). Cinch. C*H*()3	$[\alpha]_{0}^{20} \div 153^{\circ}, 91$ (de l'ac. droit) $[\alpha]_{0}^{20} \div 91^{\circ}, 64$ (de l'ac. gauche)		Lвwкоwitвсн (Ber. d. D. ch. Ges., t. XVI, p. 1568; 1883).		
Cinch. C11 H14 O3	(de l'ac. droit)	Id. (c = 1,33)	FILETI [Gazz. chim. ital., t. XXII ([]), p. 395; 1892].		
Cinchonine (séléniate de). (Cinch.) ² Se O ¹ H ² + ² H ² O	[2] _D + 164°,5	Eau	WYROUBOFF [Ann. de Ch. et Phys. (7° S.), t. I, p. 73; 1891].		
Id. (alcoolate de). (Cinch.) ² ScO ⁴ H ² — C ⁴ H ⁶ O	[z] ₀ -i- 182°, 5	Alcool	Id.		

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.		
Cinchonine (sulfate acide de). Cinch. SO'II ² + 3II ² O	$[\alpha]_{b}^{15} + 176^{\circ}, 6$	Eau et 20 % HCl (c = 10)	HESSE (Lieb. Ann. t. CCV, p. 210; 1880).		
Cinchonine (sulfate neutre de). (Cinch.) ² SO ⁴ H ² + 2H ² O	+ 191"	Eau $(p = 1,4)$ Alcool $(p = 2,3)$ Id. $(p = 5,5)$	OUDEMANS (Lieb. Ann., t. CLXVI, p. 65; 1873).		
	+ 214°, 40	Alcool $(c = 5)$ Eau + SO'H ² (id.) Eau + 6SO'H ² (id.)			
	Eau ([x], + [10] Alcool 97 [x], + 202°,95 + 204", 14	$[c = 1 \ a \ 1,8)$ $[c = 3 \ a \ 10]$ $[c = 3 \ a \ 10]$ $[c = 3 \ a \ 10]$ $[c = 2]$ $[c = 2]$ $[c = 3 \ a \ 10]$ $[c = 4]$ $[c = 2]$ $[c = 4]$			
	, , , ,	0^{1} H ² ($c = 0.5 \text{ à 6}$)	1d., t. CLXXXII, p. 145;		
	$[\alpha]_{D}+167$ "	Eau	WYROUBOFF (loc. cit., p. 73).		
Id. (alcoolate de). (Cinch.) ² SO ⁴ H ² +- C ² H ⁵ O	[α] ₀ + 185°, ο	Alcool	ld.		
Cinchonine (dtartrate de). Cinch. C' H ⁶ O ⁶	[2] ₀ + 167°,64	Eau (c = 2,61)	HAMMERSCHMIDT (Inaug. Dissert., Berlin; 1889).		
Cinchonine (dtartrate d'antimonyle et). $Ci^2(SbO)^2(C^4H^4O^6)^2 + 5H^2O$	[2] _n + 180°, 8	Eau (c → 1 à 2,4)	TRAUBE (N. Jahrb. f. Min., BeilB. XI, p. 626: 1898).		
Cinchoténicine.	$[\alpha]^{15}_{6} + o^{2}, 9$	Eau (c = 2,61)	Нквак (Ber. d. D. ch. Ges., t. XI, p. 1984; 1878).		
Cinchoténidine.			SKRAUP et VORTMANN (Lieb. Ann., t. CXCVII, p. 240; 1879).		
	[2]15 201°,4	Eau \div 3HCl ($c = 5$)	IIESSE (Ber. d. D. ch. Gcs., t. XIV. p. 1893; 1881).		

NOM ET FORMULE.	POUVOIR rotatuire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Cinchoténine. C ¹⁸ H ²⁰ Az ² O ³ + 3 H ² O	$[\alpha]^{15}_{\mu} + 115^{\circ}, 5$ + 175°, 5	Alcool 1 vol. $\{c = 2\}$ (Chlorof. 2 vol. $\{c = 2\}$ $\{Eau + 2SO^{4}H^{2} \ (c = 2)\}$	HESSK (Lieb. Ann., t. CLXXVI, p. 233: 1875).
Cinnamène. C*H* (du styrax)	[2] ₀ — 3°,1 à 3°,4		BERTHELOT (C. R., t. LXXXII, p. \$\$\$\frac{1}{4}\$\tau\$; \$\tau\$876).
Cinnamène (méta-). (C ⁸ H ⁸) ^x	$[\alpha]_{D}$ — 2° , 2		Id., t. LXXXV, p. 1190;1877.
Cinnamidènecamphre. C'9 H ²² O == C=CH.CH=CH.C ⁶ H ³ CO	+ 185", 46		HALLER (Dict. de Würtz, 2º suppl., t. I, p. 903).
Cinnamique (dibromure d	d'acide). Voir P	hényldibromopropio	nique (acide).
Cinnamylcocaine. C ¹⁹ H ²³ Az O ⁴	$[\alpha]_{\mathbf{p}}^{15}-4^{\circ},7$	Chloroforme ($c = 10$)	HRSSE (Licb. Ann., t. CCLXXI, p. 185; 1892.
Cinnamylcocaïne (chlor- hydrate de). (C ¹⁹ H ²³ Az O ¹) H Cl	$[\alpha]_{D}^{15}-104^{0},1$	Eau (c = 66)	Id.
Cinnamylecgonine méthy	ylique. <i>Voir</i> Cini	namylcocaine.	
Citronnellal (citronnellone) (C!*H!*() [de l'huile de citronnella]	$[\alpha]_0^{20} + 4^0,83$	Pur. $d^{2\theta} = 0.856$	Торан (Amer. chem. J., t. XII, p. 553; 1890).
[de l'huile d'eucalyptus]	$[\alpha]_{n}^{20} + 8^{\circ}, 18$	Pur. (120 = 0,871	KREMERS (Amer. chem. J., t. XIV, p 204; 1892).
	[x] ₀ ¹⁷ ," -t- 12°, 5c	Pur. d(113 0.8538	TIEMANN et SCHMIDT (Ber. d. D. ch. Ges., t. XXIX. p. 905; 1896).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
dCitronnellique (acide). C ¹⁰ H ¹⁰ O ² = C ⁹ H ¹¹ .COOH (de dcitronnellol)	$[\alpha]_{\mathfrak{u}}^{2\bullet}+6^{\circ},5$	Pur. d ²⁰ = 0,9308	TIEMANN et SCHMIDT (Id., t. XXX, p. 37; 1897).
lId. (de rhodinol)	$[\alpha]_{\bullet}^{20}-6^{\circ},7$	Pur. [d=0,931(admis)]	·
dCitronnellol. C ¹⁰ [] ²⁰ () (drhodinol)	[a] ¹⁸ + 1°,9	Pur. d ⁰ = 0,902	BARBIER [Bull. Soc. chim. (3° s.), t. IX, p. 1004; 1893].
•	$[\alpha]_{B}^{1:.5}+4^{\circ},0$	Pur. $d_4^{17,5} = 0,8565$	TIEMANN et SCHMIDT (loc. cit., t. XXIX).
lCitronnellol. Voir Rhod	inol.		
dCitronnellol (acétate de). C ¹⁰ H ¹⁹ O (C ² H ³ O)	$[\alpha]_{b}^{17,5}+2^{n},37$	Pur. $d_4^{11,5} = 0.8928$	Id.
lCocaine.		,827 + 0,00585q] me ($q = 75 à 90$)	ANTRICK (Ber. d. D. ch. Ges., t. XX, p. 310; 1887).
lCocaine (chlorhydrate de). (C ¹³ H ²¹ Az O ⁴) II Cl	—[67,98 –	$-0,1588 q](q=75 à 95)$ $-0,1583 c](c=5 à 25)$ 40^{gr} ; Eau 60^{gr}	
	[2] _n — 71°,94 — 69°,15 — 69°,43 — 68°,60	Eau $(c = 2,71)$ Id. $(c = 8)$ (Alcool 40 ^{gr}) $(c = 2)$ (Eau 60 ^{gr}) (Alcool 80 ^{gr}) (id.)	HÉRISSEY [J. de Pharm. et Ch. (6° s.), t. VII, p. 59; 1898].
dCocaine (chlorhydrate de). (C ¹⁷ H ²¹ Az O ¹) H Cl	[α] _b + 40° (app.)	Alcool 40 ^{gr} (c = 1,9) Eau 60 ^{gr}	WÜLLNER in EINHORN ot MARQUARDT (Ber. d. D. ch. Ges., t. XXIII, p. 468; 1890).
Codéine. C ¹⁰ H ²¹ Az O ³ + H ² O	$[\alpha]_{b}^{15} - 135^{\circ}, 8$ $- 137^{\circ}, 75$ $- 111^{\circ}, 5$	Alcool 97 $^{\circ}/_{0}$ ($c = 1 \ a \ 8$) Alcool 80 $^{\circ}/_{0}$ ($c = 2$ Chlorof. ($c = 2$	HESSE (Lieb. Ann., t. CLXXVI, p. 191; 1875).
	$[\alpha]_0^{2^n} - 143^{\circ}, 3$ - 141°, 1	Alcool $[c = 2.18 \text{ (anh.)}]$ Id. $[c = 3.93 \text{ (id.)}]$	Tykociner (Inaug. Dis- sert Freiburg: 1882).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Cod. naturelle. Id. artificielle.	$[\alpha]_{b}$ — 133°, 18 — 130°, 34	Alcool (c = 1,29)	GRIMAUX (C. R., t. XCII, p. 1228; 1881).

 $[c=1,70 \text{ (anh.)}][t=20^{\circ}] n \text{ molécules acide pour 1 molécule base.}$

1	ACIDES							
п.	chlorbydrique.	azotique.	formique.	acétiqua.	sullurique.	oxalique.	arsénique.	citrique.
0,5	" 0	" 0	" 0	" 0	1 34 ,4	-134,0	" 0	<i>"</i> 0
1		-134,3	-135,4	-135,2	-134,3	-134,3	-134,1	
2	-134,3	134,3	—135,3	135,2	133,9	-134,0	—134,0	—133,3
3	-134,3	-134,1	135,2	—135,1	133,5	134,0	-134,0	—133,0
4	— 134, 1	-134,0	-135,2	135,2	"	"	—133 ,8	-132,7
5	"	"	,,	"	"	—133,8	"	"
6	-133,6	—133 , 1	"	135,o	133,3	"	"	132,2
8	"	"	"	"	"	-133,8	"	"
10	—133,3	-132,2	-134,6	134 ,9	132,2	132,8	-133,5	"
20	-132,5	1			-130,3			
3o	-131,3	"	134,4	-134,5	-129,1	"	-132,7	128,8

TYKOCINER (loc. cit.).

Codéine (chlorhydrate de). Cod. II Cl 2 II ² ()	— 105°, 22 E	Eau (c =: 2) Eau + 10 H Cl (id. Alcool 80 % (id.	i e e e e e e e e e e e e e e e e e e e
(de Cod. naturelle) (de Cod. artificielle)	[a] ₀ — 111°,6 — 109°,9		DOTT [Pharm. J. Trans. (3° 8.), t. XII, p. 1009; 1882].

Codéine (iodométhylate de). Voir Méthylcodéine (iodure de).

Id. Id. (c 2)	HESSE (Lieb. Ann., t. CLXXVI, p. 192; 1875).

Conchairamidine.
$$[\alpha]_0 = 60^{\circ}$$
 Alcool 97 % $(c = 3)$ HESSE (Lieb. Ann., t. $C^{22}H^{26} \Lambda z^2 O^{\circ}$

BONNÉES NUMÉRIQUES. -- OPTIQUE.

NOM RT PORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
C ¹² H ²⁴ Az ² O ⁴	$[\alpha]_a + 68^a, 4$	Alcool 97 */+ (c = 2)	ld., p 248.
Concusconine. C ²³ H ²⁴ Az ² O ²	[a], +40°, 8	ld. (c = 2)	[Id., p. 236. [Id. (Ber. d. D. ch. Ges., 1. XVI, p. 61; 1883).]
Concusconine (aměthyl sulfate de). (C ¹³ H ²⁶ Az ² O ¹)SO ⁴ (CH ²) ²	[a]b+73°	Eau (c = 3,76)	∤ <i>ld.</i> , p. эặτ.
6Conicéine. C°H ¹¹ Az	[2 n-8^,7	Par. d; = 0,8976	LELLHANN (<i>Lieb. Ann.</i> t. CCLIX, p. 199; 1890).
eConicéine. C'H"Az	[α]•+ 47°(app.)	Pur. d = 0,9 (admis)	ld., p. 203.
dConicine.	[2]5+170.9	Pur. d'13 = 0,873	SCHIFF (<i>Lieb. Ann.</i> , t. CLXVI, p. 9; 1873).
Id. naturelle. Id. artif. (dédoublement de aPropylpipéridine).	[x]; + 13°,79 + 13°,87	Pur. d ²⁰ = 0,845	LADENBURG (C. R., t. CIH, p. 6-6; 2886).
	[α] ¹³ + ε5°,7	Pur d''= 0,8438 .	WOLFFENSTRIN (Ber. d. D. ch. Ges., t. XXVII, p. 2612, 1894).
Id (pure sans Isoconicine)	[α] ²³ 18*, 3	Pur. d ²³ = 0,8438	d. D. ch. Ges., t. XXVII, p. 3061. 1894).
	$ \begin{array}{l} [\alpha]_{0}^{21} + 13^{\circ}, 51 \\ [\alpha]_{0}^{21} + 9^{\circ}, 54 \\ [\alpha]_{0}^{22} + 9^{\circ}, 77 \\ [\alpha]_{0}^{23} + 11^{\circ}, 14 \\ [\alpha]_{0}^{24} + 8^{\circ}, 12 \\ [\alpha]_{0}^{23} + 8^{\circ}, 70 \\ [\alpha]_{0}^{26} + 9^{\circ}, 98 \\ [\alpha]_{0}^{26} + 1^{\circ}, 21 \begin{pmatrix} ? \\ 2 \end{pmatrix}^{26} + 1^{\circ}, 21 \end{pmatrix}^{26} + 1^{\circ}, 21 \begin{pmatrix} ? \\ 2 \end{pmatrix}^{26} + 1^{\circ$	Pur Benzene (c = 13,09) Id. (c = 20,46) Id. (c = 33,29) Alcool (c = 10,84) Id. (c = 15,17) Id. (c = 44,69) Eau (c = 1,07)	ZBCCHINI R. C. d. Lincei, t. II (2° sem.), p. 172, 1893].
Conicine (acétate de). Con. C ² H ⁴ O ²	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Benzène (c = 22,85) Alcool (c = 21,90) Eau (c = 31,94)	Id.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Conicine (bromhydrate de). Con. H Br	$[\alpha]_{D}^{23} + 4^{\circ}, 28$ $[\alpha]_{D}^{26} + 0^{\circ}, 27$	Alcool ($c = 6,05$) Eau ($c = 11,89$)	Id.
Conicine (chlorhydrate de). Con. HCl	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Alcool $(c = 6,72)$ Eau $(c = 11,46)$	Id.
Conicine (sulfate d'alu- minium et). (Con.)2SO'H2 + (SO')3Al2+24H2O	[a] _D + o", 68	Eau (c = 46)	TRAUBE (N. Jahrb. f. Min., BeilB. IX, p. 628; 1894).
Conicine (sulfate de fer et). (Con.)2SO'H2 + (SO')3Fe2+24H2O	[α] _b + o°, 53	Eau (c = 66,8)	Id.
-conicine (Iso-). C ⁸ H ¹⁷ Az	[2] _D +8°,19	Pur. $d^{20} = 0.8425$	LADRNBURG (Ber. d. D. ch. Ges., t. XXVI, p. 854; 1893).
Conicinephényluréthane. C ¹⁵ H ²¹ Az O ² = C ⁵ H ¹⁶ Az . CO . OC ⁶ H ⁵	$[\alpha]_j + 3^\circ, 66$	Alcool	CAZENEUVE et MORBAU (C. R., t. CXXVI, p. 481;
Coniférine. C16 H22 O8 + 2 H2 O	[a] ²⁰ —66°,90	Eau (p = 0,62) (anhydre)	WEOSCHRIDER in TIEMANN (Ber. d. D. ch. Ges., t. XVIII, p. 1600; 1885).
Conquinamine. C19 H24 Az2 G2 (Voir la suite au verso.)	Alcool absorber [2] ₀ ¹⁵ + [177,6 - Chloroford [2] ₀ ¹⁵ + [185,1 - Benzène (2] ₀ ¹⁵ + 192°,7 + 190°,6 + 188°,5	ne $(c = 0, 8 \text{ à } 3)$ $+ 1,68c - 6,93\sqrt{c}$ c = 0,89 à 3,5) Ether abs. $(c = 0,77)$ Id. $(c = 1,15)$ Id. $(c = 1,57)$	OUDEMANS (Lieb. Ann., t. CCIX, p. 46; 1881). [Id. (Arch. Néerl., t. XV; 1880.] Formules calculées d'après les nombres de l'auteur.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
	+ 184°, 5 + 229°, 1	Chlorof. (id.)	Ниявк (Lieb. Ann., t. CCIX, p. G8; 1881). [Id. (Ber. d. D. ch. Ges., t. X. p. 2156; 1877).]

 $(c=1,56)(t=15^{\circ C})$ n moléc. acide pour 1 mol. basc.

ACIDES.	n=0,5.	n=1.	n=2.	n = 4.	n == 10.	n=20.
Ac. chlorhydrique	"	+226,3	+226,8	+227,8	(+226,6)	+225,9
Ac. bromhydrique		+228,3	+228,4	+227,8	"	"
Ac. formique	"	+226,3	+227,8	+227,2	+227,1	+226,8
Ac. acétique	"	+228,3	+228,4	+229,0	+228,8	+228,4
Ac. sulfurique	+228,5	+229,1	+229,2	+227,9	+227,2	"
Ac. oxalique	+227,5	+228,0	+228,0	+227,5	(+227,1)	"
ACID	Е.	n=1.	n=3.	n=5.	n=8.	
Ac. phospho	rique	+227,0	+228,9	+227,9	+227,9	

OUDEMANS (Rec. Trav. chim. d. P. B., t. I, p. 23; 1882).

[Les nombres entre () sont tirés par interpolation des nombres de l'auteur.]

Conquinamine (acétate de). Conq. C ² H ¹ O ² Conq. C ² H ¹ O ² Conq. C ² H ¹ O ² Alc. abs. $(c = 0,92)$ Id. $(c = 1,84)$	OUDEMANS (<i>Lieb. Ann.</i> . t. CCIX, p. 46; 1881).
Conquinamine (azotate $[\alpha]_0^{16} = 190^\circ$, o Alc. abs. $(c = 1, 27)$ de). Conq. Az (0^3H)	Id.
Conquinamine (bromby- $[\alpha]_0^{16} + 182^{\circ}, 7$ Alc. abs. $(c = 1, 16)$ drate de). $-+181^{\circ}, 0$ Id. $(c = 1, 99)$ Conq. HBr	Id.
Conquinamine (chlorate de). Conq. Cl() ³ H	Id.

		er comic biggips	or missocs. 913
NOM ET FORMULE.	POUVOIR rotateire spécifique	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Conquinamine (chlorhy-drate de). Conq. HCl	[x], + 206°,4	Alc. 97 % (c = 4) Eau (id.)	HResk (<i>Lich. Ann.</i> , t. CCIX, p. 68, :88:).
Conquinamine (for- miate de). Conq. CH ² O ²	[2];"+ 195°,8 + 193°,0	Alc. abs. (c = 0,88) Id. (c = 1,785)	OUDEMANS (for eff.).
Conquinamine (iodhydrate de). Conq. HI	[2]. + 162°,8 162°,9	Aic. abs. (c = 1,01) Id. (c = 2,21)	1å
(oxalate de). Conq. C ² H ² O ¹ + 3H ² O	[z] ₆ + 163°,0 → 162°,6	Alc. abs. (c =- 1,03) Id. (c =- 1,525)	1d
(perchlorate de). Cong. ClO ¹ H	[2];0+175°,4 +175°,0	Alc. abs. (c = 0,71) Id. (c = 1,48)	Id.

Foir Quinidine.

Convallamarine.	[2],-55*	Alcool	TANEET [Pharm. J. Trans. (3° 8.), t. XIII, p. 413; 1882].
Convolvuline.	[a] _b - 36°,9	Alcool	KROMER (Pharm. Z. f. Russland, t. XXXIII; 2894).
	{ 2 ₀ — 37°,5 (app.)	Alcool (p = 3)	TAVERNE (Rec. Trav. ch. d. P. S., t. XIII, p. 194. 1894).
d .	[2]; + 36*,93	Pur. d13 ~: 0.8375	LEVY et WOLDFRESTRIN (Ber d, D, ch Ges., 1, XXIX, p. 1959; 1896).
ℓ -Id.	1 [α] ¹⁹ ε6°, 26	d** 0,8347	(Id. (Id., L. XXVIII. p. 3271-1865),

5.4		• • • • • • • • • • • • • • • • • • • •	
NOM ET FORMULE.		DISSOLVANT ET TENEUR	. OBSERVATEURS.
	=		
-copellidine (Iso-) Volr	Isocopellidine.		
Coprostérine.	[a], 24"	Éther (c = 15,2)	Bondryński et Humnicki (Zeits. f. physiol. Ch., t. XXII, p. 396, 1896).
Coriandrol.	$[[\alpha]_{n}^{2+,1}+15^{n},02]$	Pur. d = 0,882	BARBIER (C. A., t. CXVI, p. 1460, 1893).
Corydaline. C"H" Az O'	[α] _a +300*, 1	Chlorof. (c = 6,55)	FREUND et Josephi (Lieb. Ann., t. CCLXXVII, p.6; r#q3).
	$[\alpha]_0^{20} + 311^\circ, 0$ + 309°, 5	Alcool (p = 0,95) Id. (p = 1,02)	Donate et Lauden (J. of chem. Soc., t. LXVII, p. 17; 1895).
Cotinine. C ¹⁰ H ¹² Az ² O	[2] ¹⁴ —56°	Eau (p = 10)	PINNER (Ber. d. D. ch. Ges., t. XXVII, p. 2665, 1894).
P 1			*
Cotinine dibromée. Voi	r Dibromocoținin	9.	

Cristalline. Voir Globuline.

้ว8

Action des bases.

Sol. aqueuses (n moléc. base pour 1 cupréine).

BASES.

$$n = 1$$
.
 $n = 2$.
 $n = 6$.
 $n = 12$.

$$\frac{n-48. \qquad n-132. \qquad n-186.}{\text{Ammoniaque}....} \qquad c=1,56 (t=17^{\circ})$$

OUDEMANS (Rec. Trav. chim. d. P. B., t. IX, p. 177; 1890).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Cupréine (azotate acide de). Cup. (Az O ³ H) ² + H ² O	[2], — 197°, 4 — 193°, 4 — 188°, 9 — 189°, 8 — 188°, 9	Id. $(c = 3,82)$ Id. $(c = 5,04)$	Oudenans (Rec. Trav. chim. d. P. B., t. VIII p. 162; 1889).
Cupréine (azotate neutre de). Cup. Az O ³ H + 2 H ² ()	[α] ^{1:} 138°,4	Eau (r - 1,13)	<i>ld.</i> , p. 160.
Cupréine (bromhydrate acide de). Cup. 2 H Br		Id. (c 2.99)	Id., p. 158.
Cupréine (bromhydrate neutre de). Cup. HBr H ² O	- 144".8	Id. (c · 1,18)	
Cupréine (chlorate de).	[[2] _b - 144°.9	Eau (c 1,03)	<i>Id</i> p. 163.

U.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	ODSERVATEURS.
Cupréine (chlorhydrate acide de). Cup. 2 Cl 2 ² ()	210°,6 206°,0 200°,4 191°,1 210°,8 210°,2 205°,5 199°,5	Eau $(c : 1,19)$ Id. $(c : 2,51)$ Id. $(c : 4,69)$ Id. $(c : 4,69)$ Id. $(c : 17,28)$ Eau 1m.HCl $(c : 2,1)$ Id. -2 id. (id.) Id. $+5$ id. (id.) Id. $+10$ id. (id.) Id. $+10$ id. (id.)	
Cupréine (chlorhydrate neutre de). Cup. II Cl + II ² O	$-154^{\circ}, 8$ $[\alpha]_{0}^{15} - 169^{\circ}, 7$	Id. $(c = 0.87)$	Id., p. 154.
Cupréine (formiate de). Cup. CH ² O ²	[2]" - 163°,8	Eau (c:- 0,48)	<i>Id.,</i> p. 167.
Cupréine (iodhydrate acide de). Cup. 2 H I	$ \begin{bmatrix} 2 \end{bmatrix}_{\mu}^{12} - 151^{\circ}, 2 \\ - 147^{\circ}, 6 $	Eau (c - 1,50) Id. (c -: 4,49)	/d., p. 159.
Cupréine (iodhydrate neutre de). Cup. III	$ \begin{bmatrix} 2 \end{bmatrix}_{0}^{12} - 126^{\circ}, 3 \\ - 128^{\circ}, 3 $	Eau (c = 0,80) Alc. abs. (c = 0.98)	// p. 158.
Cupréine (sulfate de). Cup. SOMP-+ MI2O	— 196°, 9 moyenne — 197°, 4 — 199°, 7 moyenne — 197°, 0	Eau $(c = 0.905)$ Id. $(c = 1.10)$ moy. Id. $(c = 1.44)$ Id. $(c = 1.58)$ moy. Id. $(c = 2.13)$ Id. $(c = 2.77)$	
	[a] ₀ — 234°, 1	HCl étendu	GRIMAUX et ARNAUD (C. R., t. CXII, p. 1364; 1891).

Cupréinequinine. Voir Homoquinine.

Cupréol.	$[\alpha]_{n}^{1b} - 37^{\circ}, 5$	Chlorof. ($c = 3, 16$)	HESSE (Lieb. Ann., t	
$C^{20}H^{33}O + H^{2}O$			CCXXVIII. p. 291; 1885)	•

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Cusconine. (C ²³ H ²⁶ Az ² O ⁴ + 2 H ² O	— 54 ", 32	Éther (c : 1) Id. (c := 2) Alcool 97 % (c := 2) Eau ÷ 3 II Cl (c := 0,5)	HESSE (Lieb. Ann., t. CLXXXV, p. 303; 1877).
Cyanocampholate de baryum. (C ¹¹ H ¹⁶ AzO ²) ² Ba + 6H ² O	[α] ₀ -:- 67°, 4	Eau (c - : 9,69)	MINGUIN [Ann. de Chim. et Phys. (6° s.), t. XXX, p. 527; 1893].
Cyanocampholate de sodium. C'' H'' Δz O'2. Na = $C^{*}H^{*} \stackrel{CH^{2}.C}{\sim} C \Delta z + \frac{1}{2}H^{2}O$	[α] ₀ + 52", 47	Alcool (r - 16,2)	Id., p. 525.
Cyanocampholate benzylique. C ¹⁸ H ²³ Az O ² = C ⁴ H ¹⁴ CH ² . C Az COOC ³ H ³	[2] _n :-43°,8	Tolucne (c == 28,5)	/d., p. 515.
Cyanocampholate naphtylique. $C^{21}H^{23}\Lambda z O^{2} = C^{4}H^{13} \stackrel{CH^{2}}{\sim} C\Lambda z$ $C^{6}H^{13} \stackrel{CH^{2}}{\sim} C\Lambda C^{10}H^{6}$	[α] ₀ 17", 7	Toluène (c 16)	/d., p. 521.
Cyanocampholate phénylique. C ¹⁷ H ²¹ Az O ² = C ¹ H ¹⁴ CH ² . C Az COOC ⁶ H ⁵	[z], ÷ 26", 66	Alcool (c 7)	/d., p. 519.
Cyanocampholique (acide). CHP.CAz CHPTAz O2= : CTHT CO OH		! Alcool (c · 9,75)	/d., p. 524.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	OBSERVATEURS.
Cyanolauronique (acide). C ¹⁰ H ¹⁵ Az O ² =	[α] _D + 67°,5	Alcool $(p = 6)$	Hoogewerff et van Dore (Rec. Trav. chim. d. P. B., t. XIV, p. 263; 1895).
C*H ¹⁴ CAz (α) COOH (β)	$\boxed{[\alpha]_b+67^o,70}$		HALLER et MINGUIN (C. R., t. CXXIII, p. 218; 1896).
Cyanolauronique (anhydride). $C^{20}H^{20}Az^{2}O^{3} = C^{4}H^{14} < CAz & Az & C \\ CO-O-OC & C^{4}H^{14} < CO-O-OC < C^{4}H^{14} $	[2] _b + 54°,66	·	Id.
Cyanolauronique (anilide). C ¹⁶ II ²⁰ Az ² O == C ⁸ II ¹⁴ CAz CO. Az H. C ⁶ II ⁵	[2] _u + 62°,6		Id.
Cyclamose. C ¹² H ²² O ¹¹	[α] _b —11°,40	Alcool	MICHAUD [Bull. Soc. chim., (2° 8.), t. XLVI, p. 305; 1886].
Id. interverti	$ [\alpha]_{b}^{13}-66^{\circ},54 $		
Cystine. $C^{6}H^{12}Az^{2}S^{2}O^{4} = [S.C(CH^{3})(AzH^{2}).COOH]^{2}$	[2] _D — 205°, 8	H Cl à 11,2 % (c = 0,84 à 2,1)	MAUTHNER (Zeits. f. physiol. Ch., t. VII, p. 225; 1883).
	[2] ₀ — 214°	H Cl étendu ($c = 2, 13$)	BAUMANN (Zeits. f. physiol. Ch., t. VIII, p. 305: 1884).
	$[\alpha]_{j} - 142^{\circ}, 02$ $\hat{a} = 141^{\circ}, 22$	Ammoniaque (c = 1)	KÜLZ (Zeits. f. Biol., t. XX, p. 9; 1884).
Cytisine. C ¹¹ H ¹⁴ Az ² O	$\begin{array}{c c} [\alpha]_{b}^{20} - 120^{\circ} \\ - 100^{\circ}, 42 \\ - 65^{\circ}, 42 \end{array}$	Eau (c = 2) Alc. 90 % (id.) Chlorof. (id.)	VAN DE MOER (Arch. d. Pharm., t. CCXXIX, p. 57; 1891).
	[x] ^{1:} — 119°,57	Eau	PARTHEIL (Arch.d. Pharm., t. CCXXX, p. 448; 1892).
Cyt. Az O ³ H + H ² O	[2] ₀ ¹¹ — 89°, 33 — 90°, 17	Eau (c = 2,5) Id. (c = 5)	VAN DE MOER (loc. cit.).
	$[\alpha]_{0}^{17}-82^{\circ},4$	Eau	PARTHEIL (loc. cit.).
	[2] ₀ — 93°. 43	Eau (sel anhydre)	PLUGGE (Arch. d. Pharm., t. CCXXXII, p. 444; 1894).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
	[a] _D — 81°,48	Eau $(p = 3,51)$	KLOSTERMANN (Inaug. Dissect., Marburg; 1898).
Cytisine (iodhydrate de).	[a] _n — 81°		Plugge (loc. cit.).

2Déhydrocamphine. C ²⁰ H ³⁴ Az ² O ²	$[\alpha]_{D}+50^{\circ}$	Eau	TARRET (C. R., t. CIV, p. 917; 1887).
Id3.	[a] ₀ 27°	Id.	
Idβ'.	[a] ₀ + 8°	Id.	
Id. (avec oxyde mercurique). (C ²⁰ H ³⁴ Az ² O ²) Hg O	[2] _b + 47°	Id.	

Déhydromorphine. Voir Pseudomorphine.

Déhydrophotosantonique (acide). Voir -santonique (acide Déhydrophoto-).

Desmotroposantonine. Voir -santonine (Desmotropo-).

Désoxycholalique (acide). C ²⁴ H ⁴⁴ O ⁴	[α] _n 49 ⁿ , 86	Alcool (p = 1.97)	VAHLEN (Zeits. f. physiol Ch., t. XXI, p. 253; 1895)
Dextrane. $(C^6H^{10}O^5)^r$	$[\alpha]_{j}+[228,5-$	-0,23 <i>t</i>] (<i>t</i> = 21° à 38 Eau	⁰) Вёснамр (<i>С. R.</i> , t. XCIII, р. 78; 1881).
	[a]n - 195"		KRAMER (Monatsh. f. Ch., t. X, p. 467; 1889).
(Paraisodextrane).	[α] _D + 240°	Lessive de soude à 5 (c = 4)	O/o WINTERSTEIN (Ber. d. D. ch. Ges., t. XXVIII, p. 774; 1895).
Dextrines (de l'amidon). I. Achroodextrine.	[2] _b 189°, 98	Eau (p = 3)	SCHIFFER (N. Zeits. f. Rüb. Z. Ind., t. XXIX, p. 1673 1892).
(C12 H20 O10)6 H2O	[2]n + 192"	Eau (p = 10)	LINTNER et DÜLL (Ber. d. D. ch. Ges., t. XXVI, p. 2/37: 1893).

NOM ET FORMULE.	POUVOIR rolatoire spécifique.	DISSOLVANT ET TENEUR	OBSERVATEURS.
II. Amylodextrine. (C"H"O";" [L. et D.] [amidon soluble]	[z]; + 211°	Eau (c sans influence de o à 10)	Веспамр [Ann. de Ch. et Phys. (3° в.), t. XLVIII, р. 458 : 1856].
	[2], 206°, 8	Eau (c = 2.53)	ZULKOWSKY · Ber. d. D. ch. Ges., t. XIII, p. 1395;
	$[z]_{j}^{1,1} - 211^{\circ}.5 + 211^{\circ}.97$	Eau (c = 2,215)	SALOMON [J. f. prakt. Ch. (2° 5.). t. XXVIII, p. 113:
•	$[a]_j + 208^n.42$	Eau (c = 6)	Brown et Morris (J. of chem. Soc., t. LV, p. 453; 1889).
	[z] _n +196"	Eau (p = 10)	LINTNER et DÜLL (loc. cit.).
	[2] _H + 202", 0	Eau (c = 2.5 à 4.5)	Brown, Morris et Millar (J. of chem. Soc., t. LXXI, p. 114; 1897).
III. Érythrodextrine. (C ¹² H ²⁸ O ¹⁶) ¹⁸ + H · O	[2], + 207", 15	Eau (c = 10)	Schulze [J. f. prakt. Ch., 12° S.). t. XXVIII, p. 328; 1883].
	$ \alpha _{11} + 191^{11}, 27$	Eau ($p = 4.7$)	Schiffer (loc. cit.).
	[a] ₀ - 196",5	Eau	HUPPERT (Zeits. f. physiol. (h., t. XVIII, p. 137; 1893).
	[2] _{ii} 196"	Eau (p == 10)	LINTNER et DÜLL (loc. cit.).
IV. Maltodextrine. (C12H-0O10)3 H2O [Mélange de dextrine et isomaltose, d'après Schiffer (loc. cit.)]	[2]; + 193".6	Eau	BROWN et Morris (J. of chem. Soc., t. XLVII, p. 560; 1885). [Herzfeld (Ber. d. D. ch. Ges., t. XII, p.2120;1879).]
Id. (du bois) Cellulodextrine.	[α] _j → 88°, 9	Eau	Вкснамр (С. R., t. XLII. р. 1210; 1856).
Id. (de synthèse). C ¹⁸ H ³⁰ () ¹⁵ [par glucose et SO ¹ H ²]	[α] _n 131°à 134"	Eau	MUSCULUS et MEYER [Bul'. Soc. chim. (2° 8.), t. XXXV, p. 368; 1881).
Id. C ¹⁸ H ³² O ¹⁶ [par glucose et HCl]	- [α], : 97°.48	Eau	GRIMAUX et LEFÉVRE (C. R., t. GIII; p. 146; 1886).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Dextrose. Voir dGlucos	J e .		
Diacétylapoquinidine. C ¹⁹ H ²⁶ (C ² H ³ O) ² Az ² O ²	$[\alpha]_{0}^{15} + 40^{\circ}, 4 + 78^{\circ}, 4$	Alcool 97 $^{6}/_{0}$ (c = 2) Eau + 3 H Cl	HESSE (Lieb. Ann., t. CCV, p. 337; 1880).
Diacétylapoquinine. C ¹⁹ H ²⁰ (C ² H ³ O) ² Az ² O ²	[a] ¹³ — 61°,8 — 107°,5	$\frac{ \text{Alcool 97 }^{\circ}/_{\circ} }{ \text{Eau} + 3 \text{ H Cl} } (c = 2)$	Id., p. 337.
Diacétylbiapocin- chonine. C ³⁸ H ⁴² (C ² H ³ O) ² Az ⁴ O ²	$[\alpha]_0^{13}$ 0° + 26°, 1	$\begin{vmatrix} Alcool 97 \% \\ Eau + 3 H Cl \end{vmatrix} (c = 2)$	<i>Id.</i> , p. 339.
Diacétylglycérates. Voir	-glycérates (Dia	cé ty l-).	
Diacétylhydrochlor- apoquinidine. C ¹⁹ H ²¹ (C ² H ³ O) ² Cl Az ² O ²	$[\alpha]_0^{1.7} + 94^{\circ}, 6$	Eau + 3 H Cl (c = 2)	/d., p. 352.
Diacétyltartrates. Voir -t	artrates (Diacéty	71 -).	
Diamylacétate amylique (d'am. act.) C ¹⁷ H ³⁴ O ² = (C ³ H ¹¹) ² CH. CO OC ⁵ H ¹¹	[α] ²⁰ + 13°, 96	Pur. $d_4^{26} = 0,8594$	WALDEN (Zeits. f. physik. Ch., t. XV, p. 653; 1894).
Diamylacétate éthylique C ¹⁴ H ²⁸ O ² == (C ⁵ H ¹¹) ² CH.COOC ² H ³		Pur. $d_4^{20,4} = 0,8701$	<i>ld.</i> , p. 650.
Diamylacétique (acide). C ¹² H ²⁴ O ² := (C ⁵ H ¹¹) ² CH.COOH	· [α] ²⁰ 18", 27	Pur. d;** 0,8894	l.l., p. 6 i9.
Diamylacétylacétate éthylique. C'H''O': (C'H'') C(C'H'O), COOCH	inactif	Pur.	<i>Id.</i> , p. 651.

.

NON ET FORMULE.	POUVOIR rotatuire spécifique	DISSOLVANT ET TENEUR	. OBSERVATEURS.
Diamylamine. (C'H'I) ² AzH	[2],+6".7	Pur. d - 0.7878	PLIMPTON (C. R., t. XCII p. 883, 1881).
	$[\pi]_{a}^{1a} + 5^{\circ}, 59$ $[\pi]_{a}^{1a} \xrightarrow{a} -85^{\circ}, 5$	Pur. d ¹⁸ - 0.7753	[30 AMARAL [Arch. de Gen (30 pér.), t. XXXIII, p 434. 1895].
	[2] ₅₄₅ -j-4°, 10 0 0 + 4°, 87 0 223-5°, 77 0 182 - 6°, 54 0 638 - 8°, 09 (6 = 16° à 15°)		GUYE et JORBAN (C. A. t CXXII, p. 384; 1896) Foir Table XVII (I.E.)
Diamylamine (chlorhy drate de). (C ⁵ H ¹¹) ² Az H ² Cl	f- [x], 12°,7	Eau (p 7.84)	PLIMPTON (loc. clt.).
drate de).	y- x ²⁴ 1" + 5",82	Eau (p 7.84) Pur. d ^{28,5} . 0,9446	1

Си НиВиз 42 2О	`[a];* ~ 95",5	Alcool (p 10)	Pixxen (Ber. d. D. ch. Ger., t. XXVII, p. 2869; (194).
Dibromomenthone.	[2] ₈ 199°,4	Chlorure de carbone CCl ⁴ (p - 3,05)	Вискилля et Езекильно (Ber. d. D. ch. Ges., t. XXIX, р. 419; 1896).
Dibromoshikimique (acide). (.·H·*Br²()·	2] ₆ 58",4	Eau (c = 14,26)	EYKMAN (Ber. d. D. ch. Ges., t. XXIV, p. 1289; 1891).
Dibromoticonine.	2] 13",6	Alcool (p 10)	PONER (Ber. d. D. ch. Ges., 1 L. XXVII. p. 2869; e894).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
· · · · · · · · · · · · · · · · · · ·			

Dibutyryltartrates. Voir -tartrates (Dibutyryl-).

Dicaproyltartrates. Voir -tartrates (Dicaproyl-).

Dicinnamyltartrique (acide). Voir -tartrique (acide Dicinnamyl-).

Dichlorosantonine. Voir -santonine (Dichloro-).

Dichlorothymolglycuro- [x] _B — 66", 18 nique (acide).	Alcool	BLUM (Zeits. f. physiol. Chem., t. VI, p. 514; 1882).
Dicodéinéthylène [α] _b ²⁰ — 97", 06 (bromure de). (C''H ²¹ AzO') ² C ² H'Br ² + 4 H ² O	Eau	Göнlicн (Arch. d. Pharm., t. CCXXXII, p. 154; 1894).
Digitaléine. $[\alpha]_{0}$ — 49°, 25	Eau	Houdas (C. R., t. CXIII, p. 648; 1891).
Digitalonique (lactone). $[\alpha]_{\nu}^{28} - 79^{\circ}, 4$	Eau (p =: 3,33)	KILIANI (Ber. d. D. ch. Ges., t. XXV, p. 2117; 1892).
Digitonine. $ \alpha _{p} - 50^{\circ}$ $C^{27}H^{44}O^{14} + 5H^{2}O$	Ac. acét. à 75 % (c == 28)	Kiliani (Ber. d. D. ch. Ges., t. XXIV, p. 340; 1891).
Dihydrocyanocampho- $[\alpha]_{ii}$ — 18°, 2 lytique (acide-). $C^{io}H^{ib}AzO^{2} = COOH(\alpha)$ $C^{k}H^{ij}$	Alcool (p = 6)	Hoogkwerff et van Dorp (Rec. Trav. chim. d. P. B., t. XIV, p. 266; 1895).

Dihydrosantinique (acide). Voir -santinique (acide Dihydro-).

Dihydrostrychnoline	$ [\alpha]_{\mathfrak{b}}^{2\mathfrak{d}}+10^{\circ},5$	Chloroforme $(c=3,04)$	TAFEL (Lieb. Ann., t. CCCI, p. 327; 1898).
Diméthylcinchonine (chlorhydrate de). [C ¹⁹ H ²⁶ (CH ³) ² Az ² O] H Cl	$\{\alpha\}_{n}^{2n} + 5^{n}, 37$	Eau -:- 2 Cl (c: - 10)	FREUND et ROSENSTEIN (Lieb.Ann., t.CCLXXVII. p. 283; 1893).

NOM ET FORMULE.	POUVOIR rolatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Diméthylèneglucohepto - nique (lactone). C'H*(CH2)2O' (x)	[a] _a — 69",5 (app.)	! 	WEBER et Tollens (Ber. d. D. ch. Ges., t. XXX, p. 2512; 1897).
Id. (β).	[a] _{ii} — 101"		
Dimethylènegluconique (acide). ("H'"()"	$[\alpha]_0 + 41^0, 1$	Eau (c = 0,82)	HENNEBERG et Tollens (Lieb. Ann., t. CCXCII, p. 34; 1896).
Diméthylènerhamnite. C°H''(CH2)2O3	[a]., ÷ 9", o	Eau (c = 2,4)	WEBER et Tollens (<i>Lieb</i> . Ann., t. CCXCIX, p. 322; 1897).
(2.6) Diméthyl (3) octa- nonate éthylique. C ¹² H ²² O ³ == (CH ³) ² CH.CO. CH ² .CH ² .CH (CH ³).CH ² . CO O C ² H ⁵	$[\alpha]_{0}^{25} + 8^{\circ}, 40^{\circ}$	Alcool (p = 12,65)	RAWITZER (Inaug. Dissert., Zurich; 1896).
(2.6) Diméthyl (3) octa-	$[\alpha]_0^{76} \div 2^0,96$	Alcool (p = 12,57)	į <i>ld</i> .
nonate méthylique. C ¹⁶ H ¹⁷ (CH ³) Ö ³	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pur. d ¹⁶ = 0,950	GUYE et MELIKIAN (C. R., t. CXXIII. p. 1291; 1896). [Voir Table XVII (I, E)].
(2.6) Diméthyl (3) octa- nonate propylique. C ¹⁰ H ¹⁷ (C ³ H ⁷)O ³	$ x ^{\frac{1}{2}^2} + 8^{\circ}, 73$ $ x ^{\frac{1}{2}^0} + 7^{\circ}, 76$	Alcool (p == 7,33) Id. (p == 11,25)	RAWITZER (loc. cit.).
(2.6) Diméthyl (3) octa-	$[\alpha]_0^{2^{1}} + 10^{\circ}, 14$	Alcool (p = 11,80)	; Id.
nonique (acide). C ¹⁰ H ¹⁸ O ³	$[\alpha]_{666}^{1:} + 5$ ". 04	Pur. $d^{17} = 1.003$	MELIKIAN (Thèse, Genéve; 1896).
(2.6) Diméthyl (3) oximidoctanate éthylique. C ¹² H ²³ Az () ³ = (CH ³) ² CH.C.CH ² .CH ² . Az OH CH(CH ³).CH ² .COOC ² H ³	$[\alpha]^{26}_{0} + 8^{\circ}, 86$	Alcool (p = 13,99)	RAWITZER (loc. cit.).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	ODSERVATEURS.
(2.6) Diméthyl (3) oximid- octanate méthylique. C ¹⁶ H ¹⁸ (CH ³) Az () ³	$[\alpha]_{}^{2^{7}} := 14^{\circ}, 08$ $+ 14^{\circ}, 21$	Alcool ($p = 3.11$) Id. ($p = 7.45$)	Id.
(2.6) Diméthyl (3) oximid- octanate propylique. C ¹⁶ H ¹⁸ (C ³ H ⁷) Az O ³	[a] ²⁸ + 11°, 31	Alcool (ρ = 14,25)	Id.
(2.6) Diméthyl (3) oximid- octanique (acide). (C ¹⁰ H ¹⁹ Az O ³	$[\alpha]^{27}_{0} + 10^{\circ}, 12$	Alcool (p . = 11,54)	Iĉ.
Diméthyltétrahydroqui- noléine (chlorhydrate de). [C ⁶ H ⁴ : C ³ H ⁴ (CH ³) ² AzH]HCl		Eau (<i>p</i> = 4.44)	Piccinini [R. C. dci Lincel (5° s.), t. VIII, 1° sem., p. 364; 1898].
Dioxystéarate diéthy- lique. C ²² H ⁽² O ⁶ _=- CHOH.(CH ²) ⁷ .COOC ² H ³ CHOH.(CH ²) ⁷ .COOC ² H ³	$\frac{[\alpha]_{n}-2^{n},1}{[\alpha]_{n}+1^{n},6}$	Alcool 90 º/, (c 4, 18) Id. (c == 4, 19)	FREUNDLER [Bull. Soc. chim. (3° s.), t. XIII, p. 1054; 1895].

Diphénylacétyltartrates. Voir -tartrates (Diphénylacétyl-).

Diphényléthylèno-	$[a]_{n}^{15} + 134^{\circ}, 8_{i}$	Éther	FEIST et ARNSTEIN (Ber. d. D. ch. Ges., t. XXVIII,
diamine. C6H3.CH.AzH2	[x] _a — 128", o	Id.	p. 3167; 1895).
C ⁵ H ⁵ , CH, Az H ²	}		

Dipropionyltartrates. Voir -tartrates (Dipropionyl-).

DitaInc. Voir Échitamine.

Ditpluyltartrates. Voir -tartrates (Ditpluyl-).

Divaléryltartrates. Voir -tartrates (Divaléryl-).

L.-Ecgonine (chlorhy- |
$$[\alpha], -57^{\circ}$$
 | Eau | Einhorn (Ber. d. D. ch. Ges., t. XXII. p. 149.11 | 1889).

NOM ET FORMULE.	POUVOIR rotatoire spécifique	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Id4.	[2]; -18.2	Eau : c : 4.4!	Kochen Einhorn et Mar- Quardt i Ber. d. D. ch. Ges t. XXIII, p. 470; 1890.
Ecgonique (acide). C ⁶ H ¹⁶ AzO ² .COOH (de lEcgonine).	[2] _a — 43'.2	Eau (c = 12.37)	LIEBERMANN (Ber. d. D. ch. Ges., L.XXIV. p. 612:
Id. de dEcgonine.	$[z]_{b}-49^{\circ}.1$	Eau (C 12.33)	
Échicérine. C#H**()2	[2]; + 63°.75 65°.75	Éther (c = 2) Chlorof. (id.)	JOBST et HESSE (Lieb. ARR., LCLXXVIII, p. \$9; 18-5).
Échirétine. C ²³ H ²⁴ ():	$[x]_{0}^{7} + 54^{7}.8$	' Éther (c = 2)	id.
Échitamine. C ²² H ²⁴ Az ² O ⁴ 4 H ² O	[2] _b -28°,8	Alcool 97 . (c = 2)	HESSE <i>Lieb. Ann.</i> , t. CCIII. p. 144; 1880).
Échitéine. C ⁴² H ^{*•} ()	[2]; 88°. o 85", 5	Éther (c = 2) Chlorof. (id.)	John et Hesse (Lieb. Annt. CLXXVIII, p. 493
Échitine.	$[\alpha]_{\mu}^{15} \div 72^{\circ}, 7$ $\div 75^{\circ}, 3$	Ether ($c = 2$) Chlorof. (id.)	<i>Id</i> .
Élastinepeptone.	[z] _D — 87", 94	Eau (p = 6)	Horbaczewsky (Zeits. f. physiol. Ch., t. VI, p. 341; 1884)
Ergostérine. C ²⁸ H ⁴⁰ O H ² O (de l'ergot de seigle)	[2] ₀ 114°	Chlorof. ($c=3,28$)	TANRET (C. R., t. CVIII p. 98; 1889).
(du Penicillium glaucum).	[x] _D - 143°, 3		GÉRARD (C. R., t. CXIV p. 1544; 1892).
(de la levure de bière).	[a] ₀ — 105°	•	Id., t. CXXI, p. 724; 1895)
Ergostérine (acétate de) C ²⁶ H ³⁹ O (C ² H ³ O)	. [a] _D — 80°	!	TANRET (C. R., t. CVIII p. 98; 1889).
Ergostérine (butyrate de) C ²⁶ H ²⁹ O (C (H (O)	· [x];. — 57°		<i>Id</i> .

NOM ET FORMULE.	POUVOIR rolatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Ergostérine (formiate de). C ²⁶ H ³⁹ O (CH O)	[a] _D 93°, 4		Id.
Ergotinine. C35 H40 Az4 ()6	$[\alpha]_{\nu}^{18} + 335^{\circ}$ -+ 100° + 137°,5	Alcool ($c = 0.5$) Sol. acide Sol. potassique	TANRET [Ann. de Chim. et Phys. (5° s.), t. XVII, p. 507; 1879].
Érythrocellulose (de la levure). (C ⁶ H ¹⁰ () ⁵)"	[α] _υ 173°, 7	Eau	SALKOWSKI (Ber. d. D. ch. Ges., t. XXVII, p. 3326: 1894).
Érythrodextrine. Voir Des	ktrine.		
Ésérine. C ¹⁵ H ²¹ Az ³ O ²	[2] ¹⁹ 82° 89° 120°	Chlorof. (c = 2,5) Alcool 98 % (id.) Benzène ou toluène (id.)	t. IX, p. 1009].
Ésérine (benzoate de). Es. C ⁶ H ³ .C()OH	[a] _u — 98°, 1	Alc. 98 % (c = 1,87)	Id., p. 1010.
Ésérine (citrate ac. de). Es. C ⁶ II ⁸ () ⁷	[a] ₀ — 74°, 5	Alcool 98 %	Id.
Ésérine (pcrésotinate de). Es. C ⁶ H ³ (COOH)(OH)(CH ³) (1) (2) (5)		Mc. 98% (c 2,323)	·Id.
Ésérine (iodométhylate de). Es. CH ³ I	[a] _b — 110"	Alc. 98 % (c = 2)	Id., p. 1015.
Éthosaligénylcamphre. C ¹⁹ H ²⁶ O ² = CH.CH ² .C ⁶ H ⁴ .OC ² H ² CO		Toluène (c - 7,15)	HALLER [Dict. de Würtz (2° supp.), t. l. p. 902].
dÉthoxypropionate d'argent C ² H ³ O ³ Ag = CH ³ .CH (OC ² H ³).CO O \g	[2] ₀ + 28°, 41	Eau (c == 1,98)	PURDIE et LANDER (J. of chem. Soc., t. LXXIII, p. 865; 1898).

NOM ET FORMULE.	rotatoire specifique.	DISSOLVANT ET TENEUR	OBSERVATEURS.
_	[2]!''' + 36",80		Id., p. 868.
de baryum.		Id. (c == 7.74)	1
(C ³ H ² O ³) ² Ba	-;- 54°, 27	Id. (c = 19,36)	
dÉthoxypropionate	$[\alpha]_{a}^{10.5} + 48.737$	Eau ($c = 5,375$)	Id.
de calcium.	$+46^{\circ}.60$	Id. $(c = 10.75)$	
(C ⁵ H ⁹ O ³) ² Ca	+ 38°, 40	Id. (c == 26,875)	·
dÉthoxypropionate	$[\alpha]_{a}^{10,5} + 49^{\circ}, 12^{\circ}$	Eau (c = : 3,59)	ld.
		Id. $(c = 7,19)$	1
C ⁵ H ⁹ O ³ . Na		Id. $(c = 17,96)$	
		Alcool ($c = 3,63$)	
•		Id. $(c = 6,05)$	
	+ 14°, 78	Id. $(c = 18, 14)$	
dÉthoxypropionique	$ z _{1,1}^{1,1} + 23^{\circ}$	Eau (c = 2,35)	Id.
(acide).	+ 54°, 13	Id. $(c = 5.875)$	
C3 II10 O1 . =	,	Id. $(c = 11.75)$	
CH ³ , CH (OC ² H ⁵), CO OH	1	Id. $(c = 29.375)$	
/ Éthorrenginata acide	1. [m] 1. 1. 20° 48 1	Eau (c == 2,56)	Purdie et Walker (J. o)
d'ammonium.		Id. (c = 4.54)	chem. Soc., t. LXIII
C ³ H ³ O ³ (AzH ³)H ² O	$[\alpha]_{0}^{16} + 29^{\circ}, 08$ $[\alpha]_{0}^{15} + 28^{\circ}, 65$	Id. (c : 7.96)	p. 233; 1893).
	- [2] ₀ + 20,05		
	$ [\alpha]_{0}^{19} - 28^{\circ}, 71 $	Eau (c : 7,88)	PURDIR of WILLIAMSON
	$[\alpha]_{0}^{11} - 28^{\circ}, 46$ $[\alpha]_{0}^{11} + 27^{\circ}, 60$	Id. $(c = 10.03)$	(J. of chem. Soc., t LXVII, p. 966; 1895).
	$[2], +27^{\circ},60$	Id. $(c = 18,75)$	init (ii, prigod) (tigo),
/ Id .	[z].1 - 29°, 49	Eau (c = 4.90)	·
		• • • •	
	$\begin{bmatrix} \alpha \end{bmatrix}_{0}^{21} = -28^{\circ}, 42$ $\begin{bmatrix} \alpha \end{bmatrix}_{0}^{21} = -28^{\circ}, 36$	Id. $(c = 10.37)$	
dÉthoxysuccinate acide de potassium. C ⁶ H ² O ⁵ K + H ² O	$[\alpha]_{0}^{10} + 26^{\circ}, 49$	Eau (p = 3,87)	PURDIR et WALKER (loc. cit., p. 235).
dÉthoxysuccinate d'ammonium.		Eau $(c = 1,48)$ Id. $(c = 5,22)$	<i>ld.</i> , p. 236.
(120 (120 12)			•
d. Éthoxysuccinate			ld p. 235.
de baryum.	· 2°,46	ld. (c 10,77) ld. (c - 25,08)	
			4

NOM ET FORMULE.	POUVOIR rotatoiro spacifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
dÉthoxysuccinate de calcium. C ⁶ H°() ⁵ Ca	[2];"+11",44 + 8",39	Eau (c = 1,79) Id. (c = 3.04)	<i>Id.</i> , p. 234.

lÉthoxysuccinate di-nbutylique. C'' H ²⁶ O ⁵ = C ² H ² O.CH = CO O.(CH ²) ³ CH ² CH ² = CO O.(CH ²) ³ CH ²		Pur. $d_1^5 = 1.005$	Pundie et Williamson (J. of chem. Soc., t LXVII, p. 973; 1895).
d. Éthoxysuccinate di-ibutylique.	$[\alpha]_a^{15} + 51^o, 50$	Pur. $d_4^{15} = 1,048$	ld., p. 974.
/Id.	$[\alpha]_0^{13} - 53^{\circ}, 10$	Pur. d; == 1,0669	
dÉthoxysuccinate diéthylique. C ³ H ⁴ () ³ ((C ² H ²) ²	[a]; + 55°,48 } (moy.)	Pur. d; == 1,0418	Id., p. 972.
dÉthoxysuccinate diméthylique. C ⁶ H ⁸ O ⁵ (CH ³) ²	' '	Pur. $d_4^{12} = 1,1055$ Id. $d_4^{19} = 1,0990$	Id.
lId.	$ [\alpha]_0^{4^2} - 61^{\circ}, 13 $ $ [\alpha]_0^{20} - 60^{\circ}, 92 $	l'ur. $d_{i}^{20} = 1,0996$	
dÉthoxysuccinate di-npropylique. C'H'O'[CH2.C2H1]2	$[\alpha]^{13}_{\alpha} \div 51^{\circ}, 31$	Pur. d;5 -= 1,0131	ld., p. 973.
/Id.	[2], 51", 20	Pur. d; == 1,0226	-
dÉthoxysuccinate di-ipropylique. C ⁶ H ⁴ O ⁵ CH : CH ³	[a] ¹⁵ + 50°,67 (app.)	Pur. $d_4^{15} = 1,0217$	Id.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
(acide).	$[\alpha]_{\nu}^{11} - 33^{\circ}, o$	Eau (p == 5,49) Id. (p = 10,8)	Purdie et Walker (loc. cit., p. 234.
C2H2O.CH, COOH CH2.COOH	$\frac{[\alpha]_{b}^{11} \stackrel{?}{a}_{b}^{12} + 34^{\circ}, 6}{[\alpha]_{b}^{11} + 39^{\circ}, 40}$ $[\alpha]_{b}^{11} + 44^{\circ}, 86$ $(moy.)$ $[\alpha]_{b}^{12} + 47^{\circ}, 75$ $[\alpha]_{b}^{11} + 60^{\circ}, 57$	Chloroforme ($c = 1,59$) Id. ($c = 4,65$) Id. ($c = 11,61$) Alcool ($c = 11,81$)	
/Id.	$ [a]_0^{14} - 66^\circ, 48$	Ether acét. $(c = 5 \text{ à 20})$ Acétone $(c = 1,53)$ Id. $(c = 3,83)$ Id. $(c = 9,57)$	
	$[\alpha]_b^{20} \leftarrow 3^n, 93$	Pur. d == 0,6895	JUST (Licb. Ann., t. CCXX. p. 146; 1883).
-	$[\alpha]_{n}^{1} - 6^{n}, 32$ $[\alpha]_{n}^{60} + 6^{n}, 09$	Pur. d ¹¹ = 0.773	MII + WRLT [Bull. Soc. chim. (3° s.), t. XI, p. 1179; 1894].

Éthylcamphène. Voir -camphène (Éthyl-).

Éthylcamphol. Voir Camphyléthylique (éther).

Éthyldesmotroposantonine. Voir -santonine (Ethyldesmotropo-).

Éthylgalactoside. C ⁶ H ¹¹ O ⁶ , C ² H ²	[a] ^{2 o} 178", 75	Eau (p 9.47)	E. FISCHER et BERNSCH (Ber. d. D. ch. Ges., t. XXVII, p. 2482; 1894).
aÉthylglucoside.	[α] ²⁰ 140°, 2	Eau ($p = 9.47$)	/d., p. 2480.
C6 H11 O6, C2 H3	[a]; ·- 150°, 45	Eau (p == 9)	E. FISCHER (Ber. d. D. ch. Ges., t. XXVIII, p. 1154; 1895).

Éthylmenthyl.... Voir Menthyléthyl....

daÉthylpipéridine. C [†] H ^{†5} Az ==	[α] ₀ -:- 6°, 95		Pur. do 0,8674	LADENBURG (Lieb. Ann., t. CCXLVII, p. 71; 1888).
CH ² — CH ² — CH ²	!	i		
СН ² - Аz - СП (С ² П ¹) - Н	1	1		

NOM ET FORMULE.	POUVOIR rotatoire specifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
l3Éthylpipéridine. C¹ H¹⁵ Az = CH²— CH²— CH (C² H⁵) CH²— Az — CH² H	$[\alpha]_{0}^{15}-4^{\circ},51$	Pur. d ¹⁵ = 0,871	GÜNTHER (Ber. d. D. ch. Ges., t. XXXI, p. 2142; 1898).
Éthylsalicylidène- camphre. C'' H'' O' = C'H'' CO CO		Toluène (c = 3,55)	HALLER (<i>Dict. de Würtz,</i> 2° suppl., t. I, p. 903).

Éthyltartrimide. Voir Tartrimide éthylique.

[d'acide (D.-d.) oxyfenénique]

NOM ET FORMULE.	POUVOIR rotatoire specifique.	DISSOLVANT ET TENEU	R. OBSERVATEURS.
Fenocamphoronesemicarbazone. C ¹⁰ H ¹¹ Az ³ = C ⁹ H ¹⁴ : Az. Az H. CO. Az H (de dfenocamphorone).		Ac. acétique (p = 5.	Id.
Id. (de lfenocamphorone)	$[\alpha]_0^{22} + 58^{\circ}, 11$	Acide acétique	
Fenocamphoroxime. C ² II ¹⁴ ; Az OH (de dfenocamphorone)	$[\alpha]_{\mu}^{19}$ — 50°, 30	Ether (p = 6,38)	Id.
Id. (de lfenocamphorone)	$[\alpha]_{0}^{19} + 49^{\circ}, 03$	Éther	
α Fenocarbonique (acide). $C^{11}H^{18}O^{3} = C^{16}H^{16} < COOH$	[a] _n + 11", 28	Éther (p = 4,5)	WALLACH (<i>Lieb. Ann.</i> , t. CCC, p. 298; 1898).
d Fenone. C ¹⁰ H ¹⁶ O [de l'essence de fenouil]	$[\alpha]_0^{18} + 71^{\circ}, 97$	Alcool (c = 6,70)	WALLACH (<i>Lieb. Ann.,</i> t. CCLXIII, p. 132; 1891).
[de l'alcool fenoylique]	$ [a]_{0}^{19} + 71^{\circ}, 70 $	Alcool $(c = 10,46)$	
	[a] ₀ + 61°, 97	Pur.	GARDNER et COCKBURN (J. of chem. Soc., t. LXXIII, p. 276; 1898).
lId. [de l'essence de thuya]	$[a]_0^{23} - 66^\circ, 94$	Alcool $(p = 14,36)$	WALLACH (Lieb. Ann., t. CCLXXII, p. 103; 1893).
	[x] _b — 64"(app.)	Pur.	BOUCHARDAT et LAFONT (C. R., t. CXXVI, p. 755; 1898).
Fenonitrile. C ¹⁰ H ¹³ Az [de dfenone]	$[\alpha]_{n}^{18} + 43^{\circ}, 31$	Alcool $(p = 6.81)$	WALLACH (<i>Lieb. Ann.</i> , t. CCLXIII, p. 132; 1891).

NOM ET FORMULE.	POLVOIR rotatulre spécifique.	DISSOLVANT ET TENEUR	OBSERVATEURS.
d -Fenoxime.	$[z]_b^{13} + 65^\circ, 94$	Alcool (p = 1,14)	II.
[de dfenone]	[2] ₀ + 48°	Alcool	[Iν (Id., t. GCLXXII, p. 103; 1893).
	$[\alpha]_{a}^{12,a} + 51^{\circ}, 62$ $[\alpha]_{b}^{14} - 52^{\circ}, 28$ $[\alpha]_{b}^{14,5} + 52^{\circ}, 61$	Ether scét. $(p = 1,60)$ Id. $(p = 2,25)$ Id. $(p = 2,72)$	(Bixz (Zeits. f. physik. Ch., t. XII, p. 723; 1893).
/ Id. [de / -fenone]	[z], — 48°		WALLACH (Lieb. Ann., t. CCLXXII, p. 103, 1\$93).
	[a] ₀ — 52°, 20	Alcool (p = 3,333)	WALLACH (Lieb. Ann., t. CCLXXII, p. 103, 1893). LAPORT (C. R., t. CXXVI, p. 755, 1898).
dFenoylacétylamine. C ¹³ H ²⁴ Az O = C ¹⁶ H ¹³ . Az II. CO. Cit ³	[\(\alpha \) \(\begin{align*}	Chlorof. (p = 4.59)	Binz (loc. ett.).
dFenoylamine.	[a], 24", 63	Alcool (p = 14,93)	WALLACH (Lieb. Ann., L CCLXIII, p. 132; 1891). Binz (loc. cit.).
[de dfenone]	[a] ₆ ^{9,5} — 24 ⁴ ,89	Pur. d=0,920	Bixz (loc. cit.).
dFenoylbenzylideni- mine. C ¹⁷ H ²³ Az = C ¹⁶ H ¹⁷ . Az : CH. C ⁶ H ⁵ [de dfenone]	[a] ⁴ + 73°, 14	Chlorof. (p = 5,74)	J.d.
l -Id [de llenone]	$[a]_a^{10}-6a^n, 1$	No. méthyl (p = 2,63)	WALLACE (Lieb Ann., t. CCLXXII, p. 106, 1892).
dFenoylbutyrylamine. C ¹⁴ H ²⁴ AzO .:: C ¹⁶ H ¹⁷ . Az H. CO. C ⁴ H ⁷	[z]; — 53°, 11	Chlorof. (p == 1,80)	Binz (loc. cit.).
dFenoylformylamine. C"H"AzO - C"H", AzH, CO.H	$\begin{bmatrix} \alpha \end{bmatrix}_{b}^{3} - 36^{\circ}, 17 \\ [\alpha]_{b}^{1} - 36^{\circ}, 95 \end{bmatrix}$	Chlorof. (p = 3,78) Id. (p = 3,99)	ld.
dPenoylique (acétate). C'' H''O' = C'' H''. O.CO.CH	[α] ² * ÷ 56°,65	Pur. d = 0,9817	BOLGRANDAY of LAFONT (C. H., t. CXXVI, p. 755, 1898).

「	water archive.	MANOLETZA EL ARRECE	OBSERVATEURS.
Françisque sicuri	z ; '-:a* E	%com p = 12.91)	WALLACE (Lieb. Ann., t. CCLXIII, p. 132; 1891).
Mr. CCalarme	z * – :u. 72		BOCCHARDAY of TARRY (C. R., t. CXX, p. 1417; 1895).
24. E	z ∑ — sz*.36	Bitteri p=9.901	WALLACH (Lieb. Ann., t. CCLXXII, p. 103; 1693).
	z _p – 33'.M	Alcont · p = so;	BOLCHARDAY of LAPONY (C. R. t. CXXVI, p. 755; 1898).
A Proposition Section 2012	z}"−æ".Σ	Pur. 4 ²⁵ = 1.129	1 14.
A Prompto and the Control of the Con		Chioreforms: $p = 5.09$: Id. $(p = 5.56)$	
the second secon	z;₩m	• Zhioeoliseme (p = 4.697) bl.	
Seminarian Seminarian		Züreröreme - p=2.49 3d. p=4.97 ·	
1 " Spinish states Spinish states	ìe	.o. après 18 h.) viction : mc .p = 1.28)	Id.
April 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	2°s ~ 20°s 94	Alcool (p = 4.5)	WALLACH (<i>Lieb. Ann.</i> , t. CCCII, p. 381, 1898).
Control of the state of the sta	31,1 - 521.60 3 x 537.10	(hloroforme (p=3,94) Id. (p=5,0)	Binz (loc. cu.).

NOM ET FORMULE.	POUVOIR rotatoire spécifique	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Fibrinogène (du sang de cheval)	- 1-	$52^{\circ}, 5 \text{ (moy.)}$ a Cl ($c = 0, 5 \text{ à } 0, 2$)	MITTELBACH (Zeits. f. physiol. Ch., t. XIX, p. 289; 1894).
(du sang de bœuf)		36°, 8 (moy.) ou 3°/ $_{\bullet}$ (c = 0, 26 à 0, 42)	CRAMER (Zeits. f. physiol. Ch., t. XXIII, p. 83; 1898).
(du sang de cheval)	sol. de Na Cl à	$ _{0} - 50^{\circ}, 5$ 1 2 ou 3 % ($c = 0.8$) 45°, 5 (moy.) 1 0, 1 % ($c = 0.2 \text{ à 0.6}$)	

Fibroine. Voir Soie.

Formobenzoylique (acide). Voir Phénylglycolique (acide).

```
Fructosanilide.
    C6 H11 O3. Az H. C6 H3
                                     181^{\circ}, 1 Alc. méthyl. (c = 1,44)
                            [a]_{j} = [115,76-0,697t](t=14°à90°)|DUBRUNFAUT (C. R., t.
       d.-Fructose.
C_{e}H_{15}O_{e} =
         H H OH
                                [\alpha]_0^{20} - [113,96 - 0,2583q]
                                                                   |Hönig et Jesser (Monatsh.
 CH<sup>2</sup>OH.C. C. C.CO.CH<sup>2</sup>OH
                                                                    f. Ch., t. IX, p. 570; 1888).
                                    Eau (q = 60 \text{ à } 95)
                                [\alpha]_{b}^{t} - [103,92-0,671t]
        OH OH H
                                Eau (p = 9,09) (t = 13° à 40°)
                                  [\alpha]_{0}^{t}-[107,65-0,692t]
                                 Eau (p = 23,50) (t = 9^{\circ} à 45^{\circ})
                            [a]_{b}—[101,38—0,56t+0,108(c-10)]|JUNGFLEISCH et GRIMBERT
                                                                     (C. R., t. CVII, p. 390;
                                Eau (c = o à 40) (t = o a 40)
                            1890).
                                         Eau (c = 9.9)
                                                                                  Grimbert
                                                                    [Jungfleisch
                                                                     (loc. cit.).]
      Id. de l'inuline.
                                [\alpha]_{b}^{2} - 95^{\circ}, 59 \text{ (après 8 min.)}
                                      — 91°, 97 ( après 6 h.)
                                        Eau (c = 10, 12)
```

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
αFructosediacétone. (C ⁶ H ¹⁰ O ⁴):(CH ² .CO.CH ³) ²	[4]20161",3	Eau (p = 7,30)	E. Fischer (Ber. d. D. ch. Ges., t. XXVIII, p. 1164;
βId.	$[\alpha]_{b}^{20}-33^{\circ},7$! Eau	l ingo i.
Fucose. (%H12()3	— 77°	7,8(après 11 min.) 7,0(après 6 h.) (c = 6,915)	GUNTHER et TOLLENS (Lieb. Ann., t. CCLXXI, p. 90; 1892).
Galactane (2). (6H10()5 [Galactine.]	[2] _u +84°.6	Eau (c = 1,84)	MÜNTZ [Ann. de Ch. et Phys. (5° s.), t. XXVI, p. 121; 1882].
Galactane (3). Voir Lupéo)\$ 0.		
Galactane (~). C ⁶ 10 () ⁵	$[\alpha]_{\mathfrak{b}}^{20}+238^{\circ}$	Eau (p = 10)	VON LIPPMANN (Ber. d. D. ch. Ges., t. XX, p. 1003; 1887).
Galactodextrine.	[a] _j + 80°		GRIMAUX et LEFÈVRE (C. R., t. CIII, p. 146; 1886).
dGalactonate de calcium. (C ⁶ H ¹¹ O ⁷) ² Ca 5H ² O	[a] ₀ + 2°, 85	Eau (c = 0,76)	Schnelle et Tollens (Lieb. Ann., t. CCLXXI) p. 85; 1892).
dGalactonique (acide).	45	o",56 (initial) o",90 (après 15 j.) o (c = 7,52)	Id.
d. Galactonique (lactone). C ⁶ H ¹⁰ () ⁶ H ² ()	— 63°,	19 (après 10 min.) 68 (après 24 h.) 1 (c = 6.85)	Id.
dGalactosaminammo- niaque. C'II''(AzII ²)O' AzII		87",3 (initial) 62",5 (final) (c 12,8)	LOBRY DE BRUYN et VAN LEENT (Rec. Trav. chim. d. P. B., t. XIV, p. 141; 1895).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
dGalactosamine.	+	$=$ $64^{\circ}, 3 \text{ (initial)}$ $58^{\circ}, 3 \text{ (final)}$ $1 (c = 10)$	Id., p. 143.
dGalactosamine (dérivé de la). C ¹² H ²³ O ¹⁰ Az = 2 galac. — Az H ³	[α] _D + 22°	Alc. méthyl. (c = 5)	Id., (t. XV, p. 83; 1896).
dGalactosanilide. C ⁶ H ¹¹ O ⁵ . Az H. C ⁶ H ⁵	— 31°, 33	Alc. 90 % ($p = 2,099$) Id. ($p = 2,289$) Alc. méth. ($p = 1,699$)	SOROKIN [J. f. prakt. Ch. (2° 8.), t. XXXVII, p. 295; 1888].
d Galactose. C ⁶ H ¹² O ⁶ = H OH OH H CH ² OH . $\dot{\mathbf{C}}$. $\dot{\mathbf{C}}$. $\dot{\mathbf{C}}$. COH	[a]	Eau (p = 2,06)	PASTEUR (C. R., t. XLII, p. 349; 1856).
он н он		$-0.0785 p + 0.209 t$ $35.35) (t = 10^{\circ} à 30^{\circ})$	MKINSL [J. f. prakt. Ch. (2° 8.), t. XXII, p. 97; 1880].
	1	37 - 0,199 p ,276 - 0,002 5 p) t] à 20) (t = 4° à 40°)	RINDELL (N. Zeits. f. Rübz- Ind., t. IV, p. 170; 1880).
	[a], + 80°, 8	Eau (c = 8,15)	MÜNTZ [Ann. de Ch. et Phys. (5° 8.), t. XXVI, p. 121; 1882].
	$\frac{[\alpha]_0^{18} + 81^\circ, 2}{[\alpha]_0^{18} + 91^\circ, 9}$	Eau (p = 10)	SCHEIBLER (Ber. d. D. ch. Ges., t. XVII, p. 1729; 1884).
•	$[\alpha]_{n} + 134^{n}, 5$ (initial) $+ 81^{\circ}, 5$ (final) $[\alpha]_{j} + 92^{\circ}, 0$	Eau (p = 10)	VON LIPPMANN (Ber. d. D. ch. Ges., t. XVII, p. 2239; 1884).
•	[a] _n + 80",55	Eau (p = 10)	Hædicke, Bauer et Tol- lens (Lieb. Ann., t. CCXXXVIII, p.302; 1887).
(de 3Galactane).	$[\alpha]_{\mathfrak{b}}^{15} + 81^{\circ}, 54$	Eau (c = 10,08)	SCHULZE et STEIGER (Land. Vers., t. XXXVI, p. 423; 1887).
(Voir la suite au verso.)	[x] ²⁰ , -+ 80°, 70	Eau (p = 10.18)	Tollens et Stone (Ber. d. D. ch. Ges., t. XXI, p. 1573; 1888).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
	[2] ²⁰ +117", 23 (après 7 min.) + 80", 39 (après 24 heures)		PARCUS et TOLLENS (Lich. Ann., t. CCLVII, p. 160; 1890).
	[2] _a + 136", 85 (après 5 min.) + 128°, 2	Eau (c = 5)	VAN LEENT (Inaug. Dis- sert., Hang, 1894).
	(après 15 min.) + 80", 7 (après 24 heures)	Id. $(c = 10)$	
Gal. (2).	[a] _b + 135° (initial)	Eau	TANKET [Bull. Soc. chim. (3° s.), t. XV, pp. 196-200; 1896].
(ial. (\$).	[2], +[94,95 -0,0	Eau $(c = 37,2)$ + 1,366 t 438 t^2 + 0,000544 t^3] 0) $(t = 13^{\circ} \text{ à } 43^{\circ})$	Formule calculée d'après les nombres de l'auteur.]
Gal. (?).	+ 53", 25	Eau	
/Galactose. C¹6H¹²O6 = ОН Н Н ОП CH²OH . Ċ . Ċ . Ċ . Ċ . С . О Й ОНОН Н	[[2], — 120° (initial) [2], — 73°, 6 (final)	Eau (p = 10)	B. Fischer of Hertz (Ber. d. D. ch. Ges., t. XXV, p. 1260; 1892).
dGalactose penta- nitré (α). C ⁶ H ¹ (Az () ²) ⁵ O ⁶	[2] _n + 124",7	Alcool (c = 4)	WILL et LENZE (Ber. d. D. ch. Ges., t. XXXI, p. 75; 1898).
Id. (3).	[a] ₀ — 57°	Alcool (c = 6,7)	
dGalactoseallylphényl hydrazone. C ⁶ H ¹² O ⁵ ; Az ² (C ⁶ H ⁵)(C ³ H ⁵)	,	Alc. méthyl. (<i>p</i> == 0,5)	LOBRY DE BRUTN (Rec. Trav. chim. d. P. B., t. XV, p. 226; 1896).
dGalactoseamylphényl hydrazone. C ⁶ H ¹² O ⁵ : Az ² (C ⁶ H ⁵) (C ⁵ H ¹¹)		Id.	Id.
dGalactosebenzyl- phénylhydrazone. C ⁶ H ¹² O': Az ² (C ⁶ H ⁵) (C ¹ H ⁷	[2] _n — 17 ⁿ , 2	Id.	Id.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
de baryum. (C ¹ H ¹² O ²) ² Ba	$[\alpha]_{b}^{2*} + 5^{\circ}, 5$	Eau (c = 12)	MAQUENNE (C. R., t. CVI, p. 287; 1888).
d C ⁶ H ¹² O ⁵ ; Az ² (C ⁶ H ⁵)(C ² H ⁵)	[2] ± o^	Alc. méthyl. ($p = 0.5$)	ALC. VAN EXENSTEIN et Loury de Bruyn (loc. cit.).
dGalactose(β)naphtyl- CtH ¹² Ot; Az ¹ H(C ⁰ H ¹)	[a], + 24°, 8 + 2°, 0	Alc. métbyl. ($p=0,5$) Ac. acétique (id.)	ld.
C*H12O3; Az3H(C*H2)	[2]; — 21°,6 pas de birotation	Eau (p = 2)	JACOBI (<i>Lieb. Ann.</i> , t. CCLXXII, p. 174; 1893).
C ⁶ H ¹¹ O ⁵ .AzH,C ⁶ H ⁴ .CH ⁵ (1) + ¹ / ₄ H ² O	[2], 34°(app.) 11°(app.)	Alc. méthyl. (p = 0,62) Alc. éthyl. à 50°/+(p=1)	Sonokin [J. f. prakt. Ch. (2*8.), t. XXXVII, p. 3eg; 2888
dGalactosoxime. C ⁵ H ¹² O ⁵ : AzOH	[2] ²⁰ + 14°,5 (après 20 heures)	Eau (p = 5,11)	JACOBI (Ber. d. D. ch. Ges., t. XXIV, p. 696; 1891).
aGalaheptanpentol- dioIque (acide). C'H'2O*	[α] ²⁰ 15°, 08	Eau (p = 6,87)	E. FISCHEN (Lieb. Ann., L. CCLXXXVIII, p. 155; 1895).
aGalaheptite. C'H ¹⁴ O ¹	[2] ²⁰ — 4°,35	Eau saturée de borax (p = 8,81)	Id., p. 147.
cGalaheptonique (lactone). C'H'O'	[a] ¹⁰ 52°, 2	Eau (p = 9,85)	/d., p. 143.
3Galaheptonique (phé- nylhydrazide). C'H'O' : Az'H.C'H	z ²⁰ 60,32	Eau (p = 7,60)	(d., p. 153.

NOM ET FORMULE.	POUVOIR DISSOLVANT ET T	OBSERVATEURS.
βGalaheptose. C¹ H¹⁴ O³	Eau ($p = 9$) $[\alpha]_{0}^{20} - 22^{\circ}, 5$ $[\alpha]_{0}^{20} - 54^{\circ}, 4$ $[\alpha]_{0}^{20} - 54^{\circ}, 4$ $[\alpha]_{0}^{20} - 54^{\circ}, 4$ $[\alpha]_{0}^{20} - 54^{\circ}, 4$,20) Id., p. 155.
Galaoctonique (lactone)	$ [\alpha]_{0}^{20} + 64^{\circ}, o $ Eau ($p = 4$,62) <i>Id.</i> , p. 149.
Gallisine. C ¹² H ²² O ¹¹ (?) (isomaltose)	[α] $_{j}^{20}$ + [83,55 - 0,1165 α] Eau (α = 8 à 75)	SCHMITT et COBENZL (Ber. d. D. ch. Ges., t. XVII, p. 1007; 1884). [Calculé d'après les nom- bres des auteurs].
	$[a]_{b} + [68,036 + 0,17148]$ Eau $(q = 54 \text{ à } 98)$	q] SCHMITT of ROSENHEK (Ber. d. D. ch. Ges., t. XVII,

Gallotannate de quinine. Voir Quinine (gallotannate de). Gallotannique (acide). Voir Tannin.

Glucochloral. Voir Chloralose.

Geissospermine.

 $C^{19}H^{21}Az^2O^2 + H^2O$

NON ET FORMULE.	POL VAIR rotatoire specifique.	DISSOLVANT ET TENEUR	.]
aGlucoheptonate de sodium. C'H'2O", Na	[2] _e + 6°,5	Eau (c = 7,2)	VAN et Reignen (Zelts. f. physik. Ch., t. XXI, p. 381; 1896).
aGlucoheptonique (lactone). C: [[12:0]	[x];*** 55°,3	Eau (p = 3,38)	KILIANI (Ber. d. D. ch. Ges., t. XIX, p. 767; 1886).
	[a], — 5a°, 6 — 5a°, 2	Eau (c = 4) Id. (c = 10)	VAN ERENSTEIN, JORISSEN et REICHER (loc. cit.).
βGlucoheptonique (lactone). C'H' ² O ¹	— 67	°,1 (après 20 m.) °,7 (après 24 h.) P = 10,049)	E. Fischun (<i>Lieb. Ann.</i> , t. CCLXX, p. 85; :892).
aGlucoheptose.	[a]; 19°,7 (multirotation)	Eau (c = 10)	<i>Id.</i> , p. 75.
zGlucoheptose hexá- nitré. C'H'(AzO ²)*O'	[2] ²⁰ 104",8	Alcool (c = 3,4)	Will et Lenze (Ber. d. D. ch. Ges., t. XXXI, p. 79; 1698).
dGluconate de calcium. (C ⁰ H ¹¹ O ¹) ² Ca + H ² O	[a]. + 5°,9	Eau (c = 1,8) (hydraté)	HEREFELD (<i>Lieb. Ann.</i> , t. CCXX, p. 345; 1883).
	[z] ₀ + 6°,66	Eau $(p = 9,34)$ (anhydre)	E. FISCHER (Ber. d. D. ch. Ges., t. XXIII, p. 26c4, 1890).
	$[x]_b^{2a} + 7^a, 1$	Eau $(c = 8,3)$ (anbydre)	[Diss.,
	$[x]_{b}^{2a} + 6^{\circ}, 66$ $[x]_{b}^{2a} + 7^{\circ}, 1$ $[x]_{b} + 8^{\circ}, 55$	Eau (c == 2,39) (anhydre)	VAN ERENSTRIN, JORISSEN et REIGHER (Zeits. f. physik. Ch., t. XXI, p. 383, 1896).
/ Id. (C ⁶ H ¹¹ O ¹) ² Ca	[z] ₀ 6°, 64	Eau (p = 9,34)	E. Fischer (foc. cit).

NON RT FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
dGluconique (acide).	[x] ₀ + 5°, 8	Eau (c = 18)	H & REFELD (Lieb. Ann., t. CCXX, p. 345; 1893).
[par le set de Ca décomposé par HCl l à 20° II à 2° III à 100°]	Eau $[\alpha]_{5}^{2a} + 9^{\circ}, 78$ Eau $[\alpha]_{5}^{2} - 1^{\circ}, 74$ $= 2^{\circ} + 11^{\circ}, 62$ Eau $[\alpha]_{5}^{2a} + 23^{\circ}, 59$ $= 2^{\circ} + 9^{\circ}, 67$	(après 19 jours) { (c ≈ 8,93) (initial) (après 41 jours) } (c = 5.85)	Schnelle (Indug. Diesert. Göttingen; 1891).
d Gluconique (lactone). $\mathbb{C}^t \Pi^{tr} \mathbb{O}^t$	$[a]_{n}^{24} + 68^{n}, a$	Eau (p = 7,68)	E. FISCHER (Ber. d. D. ch. Ges., t. XXIII, p. 1625, 1890).
	+ 20°, 76	(après 10 minutes) (après 47 minutes) ((c = 7,5)	SGHRELLE et TOLLENS (<i>Meb. Ann.</i> , t. GCLXXI, p. 77; 1891).
aGlucooctite C'li''O'	$\begin{array}{c c} \{\alpha\}_{n}^{24} + 2^{n}, o \\ + 6^{n}, o \end{array}$	Eau (p = 10,24) Eau et 10 % borax	E. FISCHER (<i>Lich. Ann.</i> , t. CGLXX, p. 99; t891).
2Glucooctonique (lactone). C'H''O'	[x];* + 45°,9	Eau (p = 10,405)	/d., p.94.
Id. (3).	$ [\alpha]_n^{20} + 23^{\circ}, 6$	Eau (p = 10,24)	[Id., p. 101.
αGlucooctose. C' H'' O" + 2 H ² O	$[\alpha]_a^{1*} = 61^a, = 43^a, Eau (p = 1)$	5 (initial) 9 (après 6 heures) : 6,50) (hydraté)	//d., p. 97.
dGlucosacétone. (C'H"O')CH'.CO.CH'	[a] ₀ ^{2*} — 11°,0	Eau (p=9,22)	E. FISCHER (Ber. d. D. ch. Ges., t. XXVIII, p. 2496, 1895).
G*H ¹¹ (Az H ³) O* (de d:-glucose)	[a]" + 19°,35	Eau (c = 10)	LOBRY DK BRUYN (Rec. Tr. chim. d. P. B., t. XIV, p. 101; 1895).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Glucosamine (bromhy- drate de). (C ⁶ H ¹³ AzO ⁵)HBr (de la chitine)	[α] _b +[55] Eau (α	LANDOLT in TIEMANN (Ber. d. D. ch. Ges., t. XIX, p. 155; 1886).	
Glucosamine (chlorhy- drate de). (C ⁶ H ¹³ AzO ⁵) HCl	[α] ₀ + 69°, 5 (moy.)	Eau (c = 10 à 16,7)	LEDDERHOSE (Zelts. f. physiol. Ch., t. IV, p. 148; 1880).
(de la chitine)	$[\alpha]_{b}^{20} + 70^{\circ}, 61 + 74^{\circ}, 64$	Eau $(p = 2,59)$ Id. $(p = 5,16)$	WEGSCHEIDER in TIEMANN (Ber. d. D. ch. Ges., t. XIX, p. 52; 1886).
(de la cellulose des cham- pignons)	[α] _b + 73°,7	Eau (p = 10)	WINTERSTEIN (Ber. d. D. ch. Ges., t. XXVII, p. 3114; 1894).
(de la chitosane)	$ \begin{array}{ } [\alpha]_{D}^{12,7} + 71^{\circ}, 81 \\ p_{D}^{14,3} + 70^{\circ}, 62 \\ p_{D}^{13,0} + 70^{\circ}, 60 \end{array} $	Eau ($c = 4,28$) Id. ($c = 7,20$) Id. ($c = 14,37$)	Hoppe-Seyler in Araki (Zeits. f. physiol. Ch., t. XX, p. 507; 1895).
modif. α	$[\alpha]_{D} + 100^{\circ}$ (initial) $[\alpha]_{D}^{20} + 72^{\circ}, 46$ $[\alpha]_{D}^{20} + 72^{\circ}, 58$ $[\alpha]_{D}^{23} + 72^{\circ}, 87$ $[\alpha]_{D}^{23} + 72^{\circ}, 87$ $[\alpha]_{D}^{20} + 72^{\circ}, 50$	Id. $(c = 4.47)$ Id. $(c = 31,58)$	TANRET [Bull. Soc. chim. (3° s.), t. XVII, p. 803; 1897].
id. (des champignons)	$n^{\frac{20}{5}} + 72^{\circ}, 0$	Eau (c = 9,86)	
dGlucosaminoguanidine (chlorhydrate de).	s [α] _D — 8°, 94	Eau (p = 10)	WOLFF (Ber. d. D. ch. Ges., t. XXVII, p. 971; 1894).
(C6 H11 O5.CH5 Az1) HCl + H2C	$[\alpha]_{D}$ — 15°,8		Id., t. XXVIII, p. 2613; 1895).
dGlucosammoniaque. (C ⁶ H ¹² O ⁶) Az H ³ (?) (= glucosamine?)	[α] _D + 22° à 22°,	7 Eau	STONE (Amer. chem. J., t. XVII, p. 191; 1895).
dGlucosanilide. $C^{12}H^{11}AzO^{5} = C^{6}H^{11}O^{5}.AzH.C^{6}H^{5}$	— 44°, 08 — 49°, 15	Alc. 90 % $(p = 3,27)$ Id. $(p = 4.70)$ Alc. méthyl. $(p = 3,33)$ Id. $(p = 5,03)$) SOROKIN [J. f. prakt. Ch. (2°5.), t. XXXVII, p. 295; 1888].

d.-Glucose.

$$H H OH H$$
 $C^{c}H^{12}O^{c}+H^{2}O=CH^{2}OH \cdot \dot{C} + H^{2}O$
 $OH OH \dot{H} \dot{OH}$

1° SOLUTIONS AQUEUSES.

RAIES.	[2]		
C D E b	+ 42,45 + 53,45 + 67,9 + 71,8 + 81,3		

[c = 36, 28 (anh.)]

HOPPE-SRYLER (Med.-chem. Unters., t. I, p. 163; 1866).

$$[\alpha]_{0}^{1} = +[47,75 + 0,01553p + 0,0003883p^{2}]$$

Gl. hydraté ($p = 0$ à 100)

$$[\alpha]_{\mu}^{1} = +[52,50+0,01880p+0,0005168p^2]$$

Gl. anhydre $(p = 0 \text{ à } 100)$

TOLLENS (Ber. d. D. ch. Ges., t. XVII, p. 2234; 1884).

$$[\alpha]_{b}^{20} = +[51,845+0,04431\,p] \quad [p=5 \text{ à 30 (anh.)}]$$
RINBACH (Zeits. f. physik. Ch., t. IX, p. 706; 1892).

$$c = 9,097 \text{ (anh.)}.$$

$$c = 5,525 \text{ (anh.)}.$$

$$[\alpha]_{\mu}^{20} + 105,16 \text{ (après 5 min. 30 sec.)}$$

$$+ 52,49 \text{ (après 6 h.)}$$

$$[\alpha]_{\mu}^{20} + 104,26 \text{ (après 7 min.)}$$

$$+ 52,30 \text{ (après 7 h.)}$$

PARCUS et Tollens (Lieb. Ann., t. CCLVII, p. 160; 1890).

Glucose
$$\alpha$$
.....
$$\begin{cases} [\alpha]_n + 106^n & \text{immédiat} \\ + 52,5 & \text{final} \end{cases}$$
Glucose β
$$\begin{cases} + 52,5 & \text{constant} \\ + 22,5 & \text{immédiat} \\ + 52,5 & \text{final} \end{cases}$$

TANRET [Bull. Soc. chim. (3° s.), t. XIII, p. 728; 1895].

2º AUTRES LIQUIDES.

A. — Acétone et eau. [eau et
$$n$$
 vol. $0/0$ acétone]

$$[\alpha]_0^{20} = -52,89 + 0,083n [c = 15,68 (anh.)] n = 0 à 50$$

PRIBRAM (Monatsh. f. Ch., t. IX, p. 395; 1888).

TREY (Zeits. f. physik. Ch., t. XXII, pp. 424-463; 1897).

B. — Alcool méthylique et eau.

TREY (loc. cit., t. XVIII, pp. 193-218; 18,5).

Alcool méthylique
$$[a]_b^{50} + 59^o$$
, 11 $(c = 9)$
Trey (loc. cit., t. XXII).

C. - Alcool éthylique et eau.

Alcool 73 vol. + Eau 27 vol.
$$[\alpha]_0^{15}$$
 + 49°, 69 $[c = 3 \text{ (hydr.)}]$
HESSE (Lieb. Ann., t. CLXXVI, p. 105; 1875).

3° ACTION DES ACIDES.

Eau + 3HCl
$$[\alpha]_{\mu}^{15}$$
 + 47, 17 $[c = 3 \text{ (hydr.)}]$

HESSE (loc. cit.).

	MOLECULES	EAU ET A	EAU ET ACIDE CHLORHYDRIQUE.			EAU ET ACIDE SULFURIQUE.		
	acide.	c=1,25.	c=\$,5.	c = 9.	c = 2,23.	c=\$,5.	c = 9.	
1 = 20	0 0,1 0,2 0,4 0,8 1,6	" +50,44 " cide oxaliq	#51,21 uc	• •	// +50,00 // // // ol. +50	+49,89 " 0,67 (+50,67 " $x = 9$	
		cide acétiq propic	ue onique ylique) 0,2 m	ol. $\begin{cases} +5 \\ +5 \end{cases}$	0,44 (6 1,83) 1,56 } (6 2,78 }	•• ,	

4º ACTION DES BASES.

Eau et 20 % ammoniaque [
$$d = 0,924$$
]..... $\begin{cases} +52,7 \\ +49,82 \end{cases}$ (initial) $+46,36$ (final)

Az H ² */ ₀ .	$\begin{array}{c} [a]_{D} \\ c = 10. \end{array}$		Az H³ º/•.	$[a]_0$ $c=10.$	
0 0,01 0,1 0,4	+52,31 $+52,34$ $-52,31$ $-52,03$	final après 20 min. 8 min. 8 min.	0,8 2,2 5,7 8,5	+51,78 +51,27 +51,15 +50,45	après 8 min. (constant)

SCHULZE (Inaug. Dissert., Göttingen; 1892).

(ramené au G. anhydre d'après les nombres de l'auteur)

Soude...... (0,4 mol.)
$$\left\{ \begin{array}{l} (a)_{b}^{25} + 52,67 \ (initial) \\ -0,44 \ (final) \end{array} \right\}$$

$$+ 52,22 \ (initial) \\ + 44,89 \ (final) \end{array}$$
TREY (loc. cit., t. XXII).

5° ACTION DES BELS.

Eau et n gr. carbonate d'ammonium pour 100°.

$$[c = 16,46 \text{ (anh.)}] t = 20^{\circ}.$$

n.	[\alpha]20	n.	[x] _u
0	÷52, ⁸ 3	6	+51°,36
2	+52,40	8	+51,11
4	- +52,22	10	+50,85

PRIBRAM (loc. cit.).

	p=5.	p=10.	p=20.	p=30.	
Eau	+52,07	+52,29	+52°,73	+53°,17	
+ $Ca Cl^2$ $\begin{cases} 10^{0}/_{0} \\ 20^{0}/_{0} \end{cases}$	+54,90 +60,44	+54,81 +60,11	+55,53 +60,50	+55,57 +60,69	$t = 20^{\circ C}$
+ $MgCl^2$ $\left\{\begin{array}{c} 11,9^{0}/0.\\ 24,3^{0}/0. \end{array}\right.$	"	+52,15 +52,38	+52,48 +52,69	+53,69 +53,34	

RIMBACH (loc. cit.).

Sol. aqueuses $(t = 25^{\circ C})$.

PAU		MOLÉC. Na Cl.			Moléc. SO ⁴ Na ² .	
[c=9].	0,1.	0,2.	0,4.	0,1.	0,2.	
+50,78	+51,11	+51°,67	+52°,22	+31,39	+51°,50	

$$[c=2,25 \text{ (anh.)}] t=25^{\circ C}.$$

SELS.	Molėc.	[a]25	SELS.	MOLÉC.	$[\alpha]_{\mathfrak{b}}^{25}$
"	"	+50,67	Az H+ Cl	0,4	+49,56
Na Cl	0,4	+51,11	AzH4. GAzS		+49,33
C2H3O.Na	0,4	+51,56	Ba Cl ²	•	+52,67
SO ⁴ Na ²	0,2	+50,44	MgCl ²	0,2	+50,44
CO ³ Na ³	0,2	+50,44	SO Mg	0,2	+50,67
CO ² Na H	0,2	+51,11	Al ² Cl ⁶		+51,11
Az O ³ K	0,4	+51,78	$(C_2H_3O)_2Pb$	0,2	+52,67
KI	0,4	+52,22	Hg Cl ²		+51,78
KCAz	0,4	+26,67	Cd I ²	0,2	+51,78

$$[c = 9 \text{ (anh.)}] t = 25^{\circ C}.$$

Moléc	CULES.		MOLÉ		
HCI.	Na Cl.	[x] _b 25	SO4 H3.	SO' Na'.	[a] ₀ 25
0	0	+50,78	0	0	+5°,78
0,2	0	+50,56	0,1	0	+50,72
0	0,2	+51,67	0	0,2	+51,50
0	0,4	+52,22	0,1	0,2	+51,94
0,2	0,2	+52,39	0,1	0,4	+52,61
0,2	0,4	+52,67	"	"	"

$$[c = 2,25 \text{ (anh.)}] t = 25^{\circ C}.$$

Na OH.	Na Cl.	804 H1.	[2] ²⁵
			•
0	0	0	+50,67
0,4	"	"	- 0,44
0,4	0,4	"	— 1,78
0,4	"	0,2	+ 1,56

TREY (loc. cit. t. XXII).

6º SUBSTANCES DIVERSES.

Eau et n gr. urée pour 100^{cc}.

$$[c = 15, 80 \text{ (anh.)}] t = 20^{\circ C}.$$

PRIBRAM (loc. cit.).

Alcool méthylique [c = 1 (anh.)].

corps dissous.	GRAMMES pour 100°c.	[a]2°
"	"	+62,14
Diphénylamine	0,27	+60,75
Naphtaline	0,96	+60,86
Phénol	0,15	+63,11
Succinimide	0,31	+60,38
Urée	0,11	+62,08

TREY (loc. cit., t. XVIII).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
lGlucose. C ⁶ H ¹² O ⁶	$[\alpha]_{b}^{20}-51^{\circ},4$	Eau (p = 4,11)	E. FISCHER (Ber. d. D. ch. Ges., t. XXIII, p. 2619: 1890).

| Coluctose pentacétylé. |
$$[\alpha]_0 + 3^\circ, 66$$
 | Chloroforme $(c = 13, 6)$ | Tanket [Bull. Soc. chim. + $2^\circ, 8$ | Benzène $(c = 7, 7)$ | $(3^\circ, 8)$, t. XIII, p. 269: 1895].

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Id. β.	$[\alpha]_0 + 59^\circ, o$ + 61°, 8 + 57°, o	Chloroforme ($c = 6,4$) Id. ($c = 9,1$) Benzène (id.)	Id.
Id. 7. (voir Biglucose octacétylé)	[a] _b +101",75 +99°	Chloroforme $(c = 9,1)$ Benzène $(c = 8,3)$	
dGlucose pentanitré. C ⁶ H ¹ (AzO ²) ⁵ O ⁶	$[\alpha]_{b}^{20} + 98^{\circ}, 7$	Alcool (c = 6)	WILL of LENZE (Ber. d. D. ch. Ges., t. XXXI, p. 74; 1898).
dGlucoseallylphényl- hydrazone. C ⁶ H ¹² O ⁵ : Az ² (C ⁶ H ⁵) (C ³ H ⁵)	[a] _b - 5°, 3	Alc. méthylique $(p = 0,5)$	ALB. VAN EKENSTRIN et LOBRY DE BRUYN (Rec. Trav. chim. d. P. B., t. XV, p. 226; 1896).
dGlucoseamylphényl- hydrazone. C ⁶ H ¹² O ⁵ : Az ² (C ⁶ H ⁵)(C ⁵ H ¹¹)	$[\alpha]_{n}-6^{\circ},4$	Alc. méthylique (id.)	Id.
dGlucosebenzylphényl- hydrazone. C ⁶ H ¹² O ⁵ : Az ² (C ⁶ H ⁵) (C ¹ H ¹)	— 20°, 2	Alc. méthylique (id.) Ac. acétique (id.)	Id.
dGlucosecarbonique (la	ctone). Voir d	-Glucoheptonique (la	actone).
dGlucosediacétone. (C6H10O1): (CH2.CO.CII3)2	$[\alpha]_{u}^{20}$ — 18°,5	Eau (p = 4,93)	B. FISCHER (Ber. d. D. ch. Ges., t. XXVIII, p. 1167; 1895).
dGlucose-(β)-naphtyl- hydrazone. C ⁶ H ¹² O ⁵ : Az ² H (C ¹⁰ H ¹)	[α] _n +40°,2	Alc. méthylique Ac. acétique	ALB. VAN EKENSTEIN et LOBRY DE BRUYN (loc. cit.).
dGlucosephényl- hydrazone. C ⁶ H ¹² O ⁵ : Az ² H (C ⁶ H ⁵)	[2] ²⁰ — 15°,3 (après 10 min.). — 46°,9 (après 15 jours).	,	JACOBI (<i>Lieb. Ann.</i> , L. CCLXXII, p. 173; 1893).
dGlucosetétrasulfurique (chlorure d'acide). C ⁶ H ⁸ O ² [SO ² .O.OH] ³ SO ² .O.Cl		Chlorhydrine sulfurique ou cau $(c = 15 \text{ à 4})$	CLAESSON [J. f. prakt. Ch. (2° s.), t. XX, p. 21; 1879].

NOM ET FORMULE.	POUVOIR'	DESSOLVANT ET TENEUR	OBSERVATEURS.
dGlucoséthylènemer- captal. $C^*H^{16}O^*S^2 = C^6H^{12}O^* \begin{cases} S.CH^2 \\ S.CH^2 \end{cases}$	1	Eau (p = 10.8)	LAWRENCE (Ber. d. D. ch. Ges., t. XXIX, p. 549 1196 L
dGlucoséthylmercaptal.	[z];*— 29°.8	Eau (p = 4,88)	E. FISCHER (Ber. d. D. ch. Ges., t. XXVII, p. 6-5; 1894).
dGlucose-ptoluidide. C ¹³ H ¹³ Az O ³ + ¹ / ₂ H ² O = C ⁴ H ¹¹ O ³ , Az H.C ⁴ H ¹ , CH ³ 1	[2]; '— 38°.80 — 38°.23 — 42°.55 — 43°.88	Alcool 90 $^{\circ}$ ($p = 6.66$) Alc. méthyl. ($p = 2.61$) Id. ($p = 4.08$) Id. ($p = 7.88$)	SOROEIX [J. f. prests. (s. (2° 5.), t. XXXVII, p. 295; 1888].
dGlucosetrisulfate de baryum. (CFH*O):Bu3(SO*)6 ÷ 2H2O	[x] ₂ 28°,31	Eau (c = 16,78)	CLARSSON [J. f. prekt. Ch. (2° S.), t. XX, p. 26; 1879].
	[z], — 2°, 2 (après 1° heures)	Eau (p = 9.37)	JACOBI (Ber. d. D. ch. Ges., t. XXIV, p. 696; 1891).
Glucovanilline.	[a]:• — 88°, 63		WEGSCHEIDER in TIEMANN (Ber. d. D. ch. Ges., t. XVIII, p. 1600; 1885).
Glutamate de calcium. C'H' Ca Az O' (d'acide dglutamique)	{ x];: - 3°, 7	Eau (c = 13)	SCHRIDLER (Ber. d. D.ch. Ges., L. XVII, p. 1725; 1884).
	$[x]_{b}^{1}-3^{\circ}.6$	•	MENOZZI et APPIANI (R. C. dei Lincei (4º s.º, t. VII
Glutamine. C: H'*Az': O': == COOH.C:H'(AzH').COAzH';	[x] _j 3o ⁿ	Eau $(c = 4)$ Eau -0.4° , SO'H: (c = 5) Eau -0.3° , ac. oxalique (c = 2.7)	SCHULZE et Bossmand(Ber. d. D. ch. Ges., t. XVIII. p. 390: 1885:.

NOM ET FORMULE.	POUVOIR cotaleire spécifique.	DISSOLVANT BT TENEUR.	observateurs.
dGlutamique (acide). CH ² . CH ² . COOH C'H ² AzO'=		AzO³H étendu (p=5,45)	RITTHAUSEN [J. f. prakt. Ch. (1° 8.), t. CVII, p. 234; 1869].
СН(АхН1).СООН	$[\alpha]_{0}^{21} + 10^{\circ}, 2$ $[\alpha]_{0}^{23} + 10^{\circ}, 6$ $[\alpha]_{0}^{22} + 29^{\circ}, 9$	Eau $(c = 2)$ Id. $(c = 4)$ Az O ³ H étendu $(c = 4)$	Schuthlur (loc. cit.).
	$[\alpha]_{b}^{32} + 12^{\circ},5$	$\operatorname{Eau}\ (c=2\ \text{à}\ 4)$	MENORES of APPEANT (loc. cit).
	$[\alpha]_{n}^{10} + 31^{\circ}, 1$	II Cl étendu	Scitutze et Bossmann (Zeits. f. physiol. Ch., t. X, p. 134; 1886).
<i>t.</i> -1d.			
			38 63. 3
			TE .

dGlutamique (chlorhy-	$[\alpha]_{n}^{21} + 20^{\circ}, 4$	Eau ($c=4$)	Schribler (loc. cit.).
drate d'acide). [C'H'AzO']HCl	[2] ²³ + 22°,0	Eau (c = 4)	MENOZZI et APPIANI [R. C. def Lincel (4° 8.). t. VII (1° 8 som.), p. 33; 189t].
tId.	$[\alpha]_0^{26} - 23^\circ, 63$	Eau (c = 6,69)	In. [R. t. II (20 80m.), p. 421, 1893].
Glutanique (acide).	[a] _p — 1°,98	Eau (p = 18,8:)	RITTHAUSEN [J. f. prakt. Ch. (a= s.), t. V, p. 354, 1873].

Glutimide. Voir

(acide).

aGlutine. (gélatine ordinaire)	$\begin{bmatrix} \alpha \end{bmatrix}_{b}^{24} \hat{a}_{b}^{25} - 130^{\circ}, o \end{bmatrix} \text{Eau } (c = 6, 12)$ $\begin{bmatrix} \alpha \end{bmatrix}_{b}^{15} \hat{a}_{b}^{40} - 123^{\circ}, o \end{bmatrix}$	DE BARY (Medchem. Un ters. von Hoppe-Seyler, t. I, p. 71).
	$ \begin{array}{ll} [\alpha]_b^{14} \dot{a}_b^{25} - 130^{\circ}, 5 & \text{Eau} \ (c = 3, 66) \\ [\alpha]_b^{15} - 125^{\circ}, 0 & \end{array} $	
	$[\alpha]_{a}^{35} = 112^{\circ}, 5$ $\{c = 1, 53\}$ $(c = 1, 53)$	
(Voir la suite au verso.)	$[x]_{0}^{35} = 114^{\circ}, o \begin{cases} 1 \text{ vol. eau} \\ + 1 \text{ vol. ac. acétique} \\ (c = 1,53) \end{cases}$	

NOM ET FORMULE.	POUVOIR rotatuire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
βId. I. 1,4 % cendres II. 1,96 % cendres	Ea [a]16 — 113°, 7 — 114°, 0 — 117°, 5	$-130^{\circ}, 6 (1)$ $-125^{\circ}, 8 (II)$ $u (c = 5)$ $Eau (c = 1)$ $Id. (c = 2)$ $Id. (c = 3)$ $Id. (c = 4)$	FRAMM (Arch. f. d. ges. Physiol., t. LXVIII, p. 144; 1897).
Glycérate d'ammonium. C ³ H ⁵ O ⁴ . Az H ⁴ =	— 120°, 7	Id. $(c = 5)$ Eau $(c = 1,8)$	FRANKLAND et Appleyand (J. of chem. Soc., t. LXIII,
Glycérate de baryum. (C ³ H ⁵ O ⁴) ² Ba + 2 H ² O			p. 305; 1893).
Glycérate de cadmium. (C ³ H ⁵ O ⁴) ² Cd + ³ / ₂ H ² O	$[\alpha]_{b}^{19}-14^{\circ},11$	Eau (c = 10)	ld., p. 309.
Glycérate de calcium. (C ³ H ⁵ O ⁴) ² Ca + 2 H ² O	[α] ¹⁷ — 11°, 66	Eau (c = 10)	Id., p. 297. [Frankland et Frew (Id., t. LIX; 1891).]
Glycérate de lithium. C ³ H ⁵ O ⁴ . Li	$[\alpha]_0^{11}$ — 20°, 66	Eau (c = 10)	<i>Id.</i> , p. 300.
Glycérate de magnésium (C ³ H ⁵ O ⁴) ² Mg + H ² O	$ [\alpha]_{b}^{19}-18^{\circ},65$	Eau ($c = 10$)	<i>Id.</i> , p. 306.
Glycérate de potassium. C ³ H ⁵ O ⁴ . K	$[\alpha]_{D}^{17}-16^{\circ},3$	Eau (c = 10)	<i>Id.</i> , p. 304.
Glycérate de sodium. C³H³O⁴.Na	$[\alpha]_{b}^{12}-16^{\circ},13$	Eau (c = 10)	<i>Id.</i> , p. 303.
Glycérate de strontium. (C ³ H ⁵ O ⁴) ² Sr + 3H ² O		<u> </u>	Id., p. 300.
$(C^3 H^5 O^4)^2 Sr + H^2 O$	[α] ¹⁹ —11°,59	Eau (c = 10)	·
Glycérate de zinc. $(C^3H^3O^4)^2Zn + H^2O$	$[\alpha]_{b}^{16}-22^{n},18$	Eau (c = 10)	ld., p. 307.

NOM ET FORMULE.	POUVOIR rotateire spécifique	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Glycérate amylique. C*H'*O' - C*H'*O'(CH', CH'; CH') (d'am. rac.)	$[\alpha]_{n}^{14,1} - 14^{\circ}, 15$ $[\alpha]_{n}^{16} - 14^{\circ}, 46$	Pur. d ⁽³ = 1,078	FRANKLAND et PRICE (J. of chem. Soc., t. LXXI, p. 265; 1897).
Id. (d'am. actif). Voir Am	ylique (glycér	ate).	
Glycérate nbutylique. C'H' O' = C'11' O' (CH', CH', C'H')	[a];, - 13°, 19	Pur. dis=1,1074	FRANKLAND et MAC GRE- con (J. of chem. Soc., t. LXIII, p. 1422; 1893).
Glycérate ibutylique. C'H''O' . C'H''O'[CH'.CH;(CH')]	[a]15-14°,23	Pur. dis = 1,1041	fd., p. 516.
Glycérate secbutylique. C'H''O' — C'H'O'[CH(CH').CH'.CH']	[a];*— 10°,58	Pur. d13 = 1,1042	Id.
Glycérate éthylique. C ² H ² O ⁴ , C ² H ²	1	$\left[\frac{d[\alpha]}{dt} = -0,033\right]$ $d_4^{14} = 1,1911$	id., p. 512 et [t. LXV, p. 769; 1894].
Glycérate heptylique. C'H'O'. C'H''	[α] ₀ ¹⁶ — 11°, 3ο	Pur. dil = 1,0380	/d., t. LXIII, p. 1411.
Glycérate méthylique. C'H'O'.CH'	[2], 15-4°, 80 Pur.	$\left[\frac{d[a]}{dt} = -0.0355\right]$ $d_4^{13} = 1.2787$	/d., p. 512 et (t. LXV, p. 769, 1894].
Glycérate octylique. C³H³O⁴, C³H¹¹	•	Pur. dis = 1,0253	ld., p. 1413.
Glycérate npropylique. C'H'' O' C'H'' O'(CH''. CH''. CH'')		Pur. d ₄ ¹¹ = 1,1437	ld., p. 514.
Glycérate ipropylique.	[[z] ₀ ⁽¹⁾ - 11°,82	Pur. dis = 1,1292	Id., p. 516.

C3H3O1[CH:(CH3)2]

954 DON	NÉES NUMERI	QUES. — OPTIQUE.	
NOM ET FORMULE.	POCYOIR Potatoire specifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
-glycérate (3Benzoyl-) éthylique. C"H"O' = C"H'O.O. CH'. CH(OH).COOC'H'	[2], —9°,80 (constant jusqu'à \$\$°°.)	Pur. d4? = 1,1547	FRANKLAND et MAC GRE- GOR (J. of chem. Soc., t. LXIX, p. 115; 1896).
-glycérato (Diacétyl-) amylique (d'am. ruc.). C''H''O' = (C'H'O)O.CH'. CH(O.C'H'O).COO.CH'. CH(CH').C'H'		$3.58 \pm 0.0595t$ $-0.0000126t^2$ $-0.595t$ $-0.0000126t^2$	FRANKLAND et PRICE (J. of chem. Soc., t. LXXI, p. 266; 1897). [Formule calculée d'après les nombres des auteurs.]
Id. (d'am. actif). Voir Am	ylique (diacét	ylglycérate).	
-glycérate (Diacétyl.) ibutylique C'H''O' = C'H'O'.CH'.CH;(CH'):		$3\left[\frac{d[x]}{dt} = -0,054\right]$ $d_1^{15} = 1,0980$	FRANKLAND et MAC GRE- GOR (J. of chem. Soc., t. LXIII, p. 1416, et [L LXV, p. 769]).
-glycérate (Diacétyl-) éthylique.	(a','-16*,31	$a\left[\frac{d[z]}{dt} = -0.067\right]$	ID. (Id., t. LXIII, p. 1423, et [t. LXV, p. 769]).

ethylique. C'H'O'.C'H'	Pur. $d_1^{13} = 1.1564$
	[2], 13.4 — 17°, 20 Benzène ($p = 5.5$) FRANKLAND et PICKARD 13.4 — 14°, 85 Id. ($p = 29.8$) (J. of chem. Soc., L. 13.1 — 28°, 74 kc. acetiq. ($p = 3.4$) LXIX, p. 135; 1896).

$$\begin{bmatrix} x \end{bmatrix}_{0}^{11.0} = 17^{\circ}, 20 \text{ Benzène} \quad (p = 5,3) | \text{Frankland et Pickard points of the problem of the$$

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
-glycérate (Diacétyl-) propylique (iso-). C'H9O6.CH:(CH3)2	$[\alpha]_{\mu}^{15}-17^{\circ},97$	Pur. $d_4^{15} = 1,1184$,Id.

-glycérate (Dibenzoyl-) amylique (d'am. actif). Voir Amylique (dibenzoylglycérate).

```
éthylique.
```

$$C^{19}H^{18}O^6 = (C^6H^5.CO)O.CH^2.CH$$
(O.CO.C⁶H⁵).COOC²H⁵

-glycérate (Dibenzoyl-)
$$t = 16^{\circ}, 5 \text{ à } 83^{\circ}$$
 $t = 16^{\circ}, 5 \text{ à } 83^{\circ}$ $t = 183^{\circ}$ $t = 183^{\circ}$ $t = 183^{\circ}$ $t = 183^{\circ}$ Pur. $d_{4}^{t} = 1,2159 - 0,0000125 t^{2}$ Frankland et Mac Greate dors (J. of chem. Soc., t. LXIX, p. 108; 1896). [Formules calculées d'après les nombres des auteurs].

GOR (J. of chem. Soc., t. LXIX, p. 108; 1896). [Formules calculées d'après les nombres des auteurs].

-glycérate (Dibenzoyl-) méthylique. C17 H13 O6. CH3

$$[\alpha]_{b} + [28,268 - 0,1037t]$$

$$t = 59^{\circ}, 5 \text{ à } 80^{\circ}, 5$$

$$[\alpha]_{b} + 8^{\circ}, 55$$

$$t = 183^{\circ}$$
Pur. $d_{4}^{65} = 1,1838$

 $[\alpha]_{0}^{14.5} + 45^{\circ}, 70$ Benzène (p = 3)FRANKLAND et PICKARD Id. (p = 4,7)(id., p. 128; 1896). $^{16,5}+44^{\circ},01$ Id. (p = 7,2)Id. (p = 19,5) $^{16,5}+43^{\circ},66$ 3 15,0 + 42°, 26 $^{14,5}+40^{\circ},72$ Id. (p=34,1)Dibromure d'éthylène (p = 3,3) $^{17,5}+19^{\circ},18$ Id. (p = 6,6) 3 17,5 + 20°,09 Id. (p = 10,9)» 17,0 + 19°,77 » 15,0 + 21°,02 ld.(p = 15,4)» 17,5 + 21°,69 Id. (p = 22,3) 3 15,0 + 19°, 83 | Nitrobenzène (p = 2,4) $^{15,9} + 20^{\circ}, 62$ Id. (p = 5,5) $^{\circ}$ 16,3 + 21°, 33 Id. (p=11,3) $^{16,6}+21^{\circ},75$ Id. (p=17,4) $^{15,5}+21^{\circ},99$ Id. (p=28,1)» $^{16,2} + 34^{\circ}, 34 \mid Ac.$ acétique (p = 1,7) $^{16,7} + 33^{\circ}, 27$ Id. (p = 4,7) 3 $^{15,6} + 32^{\circ}, 45$ Id. (p = 9,5) 9 $^{16.8} + 32^{\circ}, 61$ (p = 13,6)Id.

(p = 18,6)

Id.

 $[\ \)^{16,3} + 32^{\circ}, 38$

(Gallaco) o cur-

інко состужность

3:12 ET PORTELE.	POUVOIR retateire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
-glycérate Dibenzoyl-) propylique. C''H''O'.C'H'	<i>t</i> =	0,05871 <i>t</i> — 0,000204 <i>t</i> ²] 19°,5 à 87° 940 — 0,00088 <i>t</i>	FRANKLAND et MAC GRE- GOR (loc. clt., p. 110). [Formules calculées d'a- près les nombres des auteurs].
-glycérate : Didichlor- acétyl- éthylique. C'H'Cl'O' = (CHCl'.CO.O)CH'. CH_O.CO.CHCl').COOC'H'	Pur. 4 d! = 1.4893 - 0,	! = 16° & 100°	FRANKLAND et PATTERSON (J. of chem. Soc., t. LXXIII, p. 187; 1898). [Formules calculées d's- près les nombres des auteurs.]
glycérate (Didichlor- acétyl-) méthylique. C'H'Cl'O'.CH'	<i>t</i> =	0,0576 t — 0,000 186 t ²] 15° à 100° ,5478 — 0,001 242 t	[Id., p. 188. [Id.]
-glycérate (Dimonochlor- acétyl·) éthylique. C'H''Cl'O': (CH'Cl.CO.O) CH'.CH (O.CO.CH'Cl).COOC'H'	Pur. t $d_{4}^{t} = 1,3902 - 0,6$		[Id.]
glycérate (Dimonochlor- acetyl) méthylique. (CHCl)()*, CH)	Pur. t		
glycorate (Diphonyl- acetyl-) methylique. C*H*O* (C*H*CH*,CO)OCH*. CH(O COCH*C*H*). COOCH*	<i>t</i> = 1	o,o538 t + o,ooo 235 t²] 4°,5 à 77°,5 ,2098 — o,ooo 868 t	FRANKLAND et MAC. GRE- GOR (J. of chem. Soc., t. LXIX, p. 110; 1896). [Formules calculées d'a- près les nombres des auteurs.]
·#lychrate (Dipropionyl-) mathylique. ("*!!"()"	[α] ¹³ — 10°,97	Pur. $d_4^{15} = 1,1349$	Id.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
-glycérate (Ditrichlor- acétyl-) éthylique. C ⁹ H ⁸ Cl ⁶ O ⁶ = (C Cl ³ . CO O) CH ² . CH(O.CO. C Cl ³). CO O C ² H ⁵	$[\alpha]_{b}^{42} \hat{a}$ $d_{4}^{2} = 1,5646 - 0,6$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	FRANKLAND et PATTERSON (loc. cit., p. 184).
-glycérate (Ditrichlor- acétyl-) méthylique. C'H3Cl6O6.CH3	[a] ₀	$t^2 - 14^{\circ}, 5$ $t^* - 15^{\circ}, 29$ Pur. $t^* - 15^{\circ} + 0,00000147t^2$	Id., p. 185.
dglycérique (Phényl-) (acide). C'' H''' O' = C'' H''. CH (OH). CH (OH). CO OH	$[\alpha]_{\nu}^{22} + 31^{\circ}, 08$	Eau ($p = 4,25$)	PLÖCHL et MAYER (Ber. d. D. ch. Ges., t. XXX, p. 1610; 1897).
lId.	$ [\alpha]_b^{22} - 30^\circ, 23$	Eau $(p = 5, 25)$	
Glycocholate de sodium. C ²⁶ H ⁴² AzO ⁶ .Na	$[\alpha]_0 + 25^{\circ}, 7 + 20^{\circ}, 8$	Alcool (c sans infl.) Eau (id.)	HOPPE-SEYLER [J. f. prakt. Ch. (1 ^{re} s.), t. LXXXIX, p. 257; 1863].
Glycocholique (acide). C ²⁶ H ⁴³ Az O ⁶ (de la bile de bœuf)	$[\alpha]_{c} + 21^{\circ}, 6$	Alcool (c = 9,50)	ld., p. 261.
Glycogène. 6(C ⁶ H ¹⁰ O ⁵) + H ² O	$[\alpha]_j + 211^o$ (moy.)	Eau (c sans influence)	KÜLZ (Arch. f. ges. Phy- siol., t. XXIV, p. 87; 1880).
	$[\alpha]_{p}^{18} + 213^{\circ}, 3$	Eau	LANDWEHR (Zeits. f. phy- siol. Ch., t. VIII, p. 165; 1884).
	$\boxed{[\alpha]_{\scriptscriptstyle D} + 200^{\scriptscriptstyle 0}, 2}$		CRAMER (Zeits. f. Biol., t. XXIV, p. 100; 1888).
	$[\alpha]_{b}$ + 199°, 0 (moy.)		FRÄNKBL (Arch. f. ges. Physiol., t. LII, p. 125; 1892).
(<i>Voir</i> la suite au verso.)	$[\alpha]_{B} + 196^{\circ}, 63$	Eau et 2,5 % HCl $(p = 0,3 \text{ à } 0,45)$	HUPPERT (Zeits. f. physiol. Ch., t. XVIII, p. 137; 1893).

<i>9</i> 38 B 0	NNEES NUMERIC	TES. — OPTIQUE.	
NON ET FORMULE.	POUVOIR POUME specifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Id. (de la levure)	[2],—1987.9		CREMER (Minch. Ges.) Morphol.; 1894).
Glycuronate de po- tassium. C'H'O'.K		Fau (p = 1,925) Id. (p = 3,85)	THIERFELDER (Zeits. / physiol. Ch., t. XI, p. 388 1887).
Glycuronique (lactone) C'H'O' (de l'acide euvanthique)	Eau ($c = 8$	à 14) t = 5° à 34° Eau (c = 2)	Id. KBl: (Zeits. f. Biol., t XXII; 1886).]
Id. (de synthèse)		Eau (p = 4)	E. FISCHER et PILOTY (Bes d. D. ch. Ges., t. XXIV p. 521; 1887).
	$[\alpha]_{5}^{22} + 18^{\circ}, 2$	Eau (c = 10)	MANN et Tollens (Lief Ann., t. CCXC, p. 156 1896).
Gomme de levure.	$[\alpha]_{b}+90^{\circ},1$	Eau (p = 1,82)	SALKOWSKI (Ber. d. D. ch Ges., t. XXVII, p. 500 1894).
Gomme de pays. Voir X Gossypose. Voir Raffinos			
Graminine. $6 [C^6 H^{10} O^5] + H^2 O$	$[\alpha]_{\mu}^{12}$ — 38°, 89	Eau (p = 5)	EKSTRAND et JOHANSO: (Ber. d. D. ch. Ges., t. XXI, p. 596; 1888).
Grès de soie. Voir Soie.			
dGulonate de sodium.	[2] ₀ —12°,4	Eau ($c = 2,7$)	VAN BRENSTEIN, JORISSER et REICHER (Zeits. f physik. Ch., t. XXI, p
lId.	$ [\alpha]_{D} + 12^{\circ}, 4$	Eau $(c = 1,1)$	383; 1896).

(l. Gulonique (laotone).
$$[\alpha]_{\nu}^{19} + 56^{\circ}, 1$$
 Eau $(c = 2, 16)$ Thierfelder (Zeits. f. physiol. Ch., t. XV, p. 71; 1891).

TABLE XVIII. — POUVOIRS ROTATOIRES DES CORPS LIQUIDES OU DISSOUS. 959

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR. OBSEI	OBSERVATEURS.
(de synthèse)	$[\alpha]_{b}^{20}+55^{\circ},1$	Eau (p = 9,26)	FISCHER of PILOTY (Ber. d. D. ch. Ges., t. XXIV, p. 521; 1891).
	$[\alpha]_{D}+55^{\circ},6$	Eau (c = 4)	VAN EKENSTEIN, JORISSEN ot REIGHER (loc. cit.).
lId. (du xylose)	$[\alpha]_{\mu}^{20}-55^{\circ},3$	Eau ($p = 9,15$)	FISCHER of STAHEL (Ber. d. D. ch. Ges., t. XXIV, p. 530; 1891).
	[α] _D — 55°, 4	Eau $(c=4)$	VAN EKENSTEIN, JORISSEN et REICHER (loc. cit.).
Hamamelitannique (acide). C ¹⁴ H ¹⁴ H ⁹ + 5 H ² O	$[\alpha]_{D} + 35^{\circ}, 43$	•	GRÜTTNBR (<i>Arch. Pharm.,</i> t. CCXXXVI, p. 278; f898).
Hélianthénine. 12 [C ⁶ H ¹⁰ O ⁵] + 3H ² O	$[\alpha]_{D}$ — 23°,5	Eau ($c = 9.34$)	TANRET [Bull. Soc. chim. (3°8.), t. IX, p. 624; 1894].
Hélicine. $C^{13}H^{16}O^{7} + \frac{3}{4}H^{2}O$	$[\alpha]_{\rm b}^{20}-60^{\circ},43$	Eau (p = 1,35) (anhydre)	WEHSCHEIDER in TIE- MANN (Ber. d. D. ch. Ges., t. XVIII, p. 1600; 1885).
	$[\alpha]_{D}^{2\circ}-47^{\circ},04$	Alc. éthyl. ou méthyl. $(p = 8 \text{ à } 12)$	SOROKIN [J. f. prakt. Ch. (5°s.), t. XXXVII, p. 320; 1888].

Hémialbumose.

Protohémialbumosc.

	EAU ET 0,04 A 0,08 % HCl.		EAU BT 0,12 % CO3 Na2.		
PRÉP.	[a] _D .	c.	[a] _b .	t.	c.
<u> </u>	— 72°,6	1,59	81°,2	20°	2,20
11 111	│	2,28 1,92	— 70,6 — 80,1	23,5	1,87
IV	/ 73,2	1,37	- 79, 2 .	22,5	2,36 "
V	71,4	1,68	— 76,3 — 75,3	24,5 24,5	1,90 2,49

(Voir la suite au verso.)

Deutérohémialbumose.

EAU ET 0,04 °/₆ H Cl.

[
$$\alpha$$
]₆ — 79°,1 ($c = 1,52$) [α]₆ — 74°,4 ($c = 1,68$)

EAU ET 0,12 °/₆ CO²Na². EAU ET 0,5 °/₆ Na Cl.

[α]₇ — 74,3 — 2,54 — 77,7 — 1,29 — 75,3 — 1,76 — 72,0 — 1,92

Hétérohémialbumose.

EAU ET
$$0.07$$
 % HCl. BOLUTION ALCALINE.

[α]_B - 68°,65 ($c = 1,75$) (1) [α]_B - 60°,6 ($c = 1,58$) (1)

(1) Cendres non déduites.

KÜHNE et CHITTENDEN (Zeits. f. Biol., t. XX, pp. 25 à 48; 1884).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Hémiélastine.	[α] _p —92°, 7 (app.)	Eau $(p = 2,5)$	HORBACZEWSKI (Zeits. f. physiol. Ch., t. VI, p. 330; 1882).
Hespéridine. C ²² H ²⁶ O ¹² (?)	[a] _D — 89°		TANRET [Bull. Soc. chim. (2° 8.), t. XLVI, p. 501; 1886).
-hespéridine (Iso-). C ²² H ²⁶ O ¹²	[a] ₁₁ — 89°		ID. (<i>Id.</i> , t. XLIX, p. 23; 1888).

Hexachlorhydrine de mannite. Voir Mannite.

Hexylique actif (alcool). Voir Méthylethylpropylique (alcool).

Homocinchonidine. C ¹⁹ H ²² Az ² O	[2], — 107°, 3 — 70°, 0 — 167°, 9	Chloroforme (c - 4)	HESSE (Lieb. Ann., t. CCV, p. 205; 1880). [Id. (id., t. CLXXXI, p. 65; 1876).]
Homocinchonidine (chlorhydrate de). (C: H: Az O) H Cl + H O	$[\alpha]_{b}^{20}$ — 139°, 0	Eau + 2 H Cl (c = 10)	HESSE (Ber. d. D. ch. Ges., t. XIV, p. 1891; 1881).

POUVOIR

NOM ET FORMULE.	rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Homocinchonidine (sulfate neutre de). (C ¹⁹ H ²² Az ² O) ² SO ⁴ H ²	[α] ¹⁵ — 137°, 96	HCl étendu (c = 10)	HESSE (Lieb. Ann., t. CCV, p. 210; 1880).
Homocinchonine. Voir Cir	ichonifine.		
Homoptérocarpine. C ¹² H ¹² O ³	[a]j— 199°	Chlorof. $(c = 4,22)$	CAZENEUVE et HUGOUNENQ (C. R., t. CIV, p. 1722; 1887).
Homoquinine. (C ²⁰ H ²⁴ Az ² O ²) (C ¹⁹ H ²² Az ² O) + 4 H ² O	[α] _j — 221°		WHIFFEN (Pharm. J. Trans. (3° s.), t. XI, p. 497; 1881).
	[α] _D — 158°	Alcool 90 $^{\circ}/_{\bullet}$ ($c=5$)	Howard et Hodgkin (J. of chem. Soc., t. XLI, p. 66; 1882).
Homoquinine (sulfate de).	[α] _D — 209° — 220°	Eau+0,5°/ ₀ SO ⁴ H ² (c=5) Id. + 1 °/ ₀ SO ⁴ H ² (id.)	Id.
$B.(SO^4H^2)^2$	$[\alpha]_{D}$ — 235°,6	Eau + HCl (c = 3,57)	HESSE (Lieb. Ann., t. CCXXV, p. 95; 1884).
Hydrastine. C ²¹ H ²¹ Az O ⁶	[a] _D — 170°	Chloroforme	Power [Pharm. J. Trans. (3° s.), t. XV, p. 297; 1885].
	[a] ₀ — 57°,5	Chloroforme ($c = 3,04$)	EYKMAN (Rec. Trav. chim. d. P. B., t. V, p. 290; 1886).
	$ \begin{array}{c} [\alpha]_{0}^{11} - 67^{\circ}, 8 \\ - 127^{\circ}, 3 \end{array} $	Chloroforme ($c = 2,55$) Eau + 2 H Cl ($c = 4,05$)	FREUND et WILL (Ber. d. D. ch. Ges., t. XIX, p. 2797; 1886).
aHydrazocamphène.	[a] _b +69°		TANRET (C. R., t. CIV, p. 791; ,887).
Id. (3).	$[\alpha]_{D} + 18^{\circ}, 4$		ld.
Hydrocarotine. C ²⁰ H ²⁴ O + H ² O (?)	[a] _D — 35°		ARNAUD (C. R., t. CII, p. 1319; 1886).
	$[\alpha]_{D}^{21} - 37^{\circ}, 4$	Chloroforme $(c=4,13)$	REINITZER (Monatsh. f. Ch., t. VII, p. 597; 1886).
Hydrochlorapocin- chonidine. C ¹⁹ H ²³ Cl Az ² O	[a] ¹⁵ o ^o — 142°, 2	Alcool Eau + 3 H Cl ($c = 2$)	HESSE (<i>Lieb. Ann.</i> , t. CCV. p. 346; 1880).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Hydrochlorapocin- chonine. C" H" Cl Az? ()	$[\alpha]_{b}^{11} + 205^{\circ}, 4 + 208^{\circ}, 0$	Alcool 97 % ($c = 0.5$) Eau + 3 H Cl ($c = 2$)	Id., p. 349.
	$[\alpha]_{b}^{16} + 210^{\circ}$ $[\alpha]_{b}^{16} + 211^{\circ}$	Alcool 97 $^{\circ}/_{\circ}$ ($c = \circ, 265$) Id. ($c = \circ, 475$)	OUDEMANS (Rec. Trav. ch. d. P. B., t. I, p. 180; 1882).

Action des acides en solutions aqueuses.

[c=1,7525] $(t=16^{\circ C})$ n moléc. acide pour 1 mol. base.

ACIDES.	n = 1.	n=1,5.	n=2.	n=3.	n=4.	n=6.	n=8.
							
A. chlorhydrique.	~	"	+226,8	+223°,8	+223,0	+221,6	+219,9
A. bromhydrique.	<i>N</i>	"	+225,2	+223,0	(+222)	+220,6	(+219)
A. azotique	"	p	+225,3	+226,2	+225,2	W	(十222)
A. chlorique	"	, "	+228,5	+229,3	+230,7	(+225,5)	+223,9
A. perchlorique	<i>w</i>	"	"	+228,1	+228,5	+225,9	
A. formique	/ // o	"	+215,4	+222,0	+225,8	+228,5	+228,7
A. sulfurique	+226,3	+227,4	+227,2	+226,3	W	W	+224,8
A. oxalique	"	+219,4	+224,5	+224,4	+223,5	#	*
A. phosphorique.	"	[+229,0(1)]	+231,7	+233,9	+234,5	[+227	,7(²)]
A. citrique	"	11	+218,5	+222,3	+222,9	+222,2	#
		(1) $n=1.67.$				(°) A	:=7.

j	n=8.	n = 20.	n=30.	n = 40.	n=60.
A formique (suite)	÷228.7	÷220,2	+228.2	+227.0	"
1. formique (suite)	÷218,7	+223,3	+226,4	+226,9	(+226)

OUDEMANS (loc. cit., p. 183).

[Les nombres entre () sont tirés par interpolation des nombres de l'auteur.]

```
Hydrochlorapocin- [z]_0^{16} + 173^\circ, 5 Eau (c = 0,5) | All B.\Delta z O^3 H Eau (c = 0,5) | B. \Delta z O^3 H Eau (c = 0,5) | Eau (c
```

Hydrochlorapocin- $[\alpha]_n^{16} + 155^n, 3$ | Eau (c = 0.5) | Id. chonine (chlorate de).

B.Cl O^3 | |

NOM ET FORMULE.	POUVOIR rotetoire spécifique.	DISSOLVANT ET TEKEUR.	OBSERVATEURS.
Hydrochlorapocincho- nine (chlorhydrate de). B. H Cl +- H ² O	[z] _b ¹⁶ + 165°,9	Eau (c=0,45)	<i>ld.</i> . p. 181.
Hydrochlorapocincho- nine (dichlorhydrate de). B.2 HCl		Eau (c=1,97)	Ed.
Hydrochlorapocincho- nine (sulfate de). B.SO'H'+ 3H'O	[α] ¹⁴ +- 156°,6	Eau (c = 0,5)	id., p. 182.
chonine.	[2] ¹³ +189°,8	Alc. abs. (c = 3)	HRASE (Lieb. Ann., t. CCl.XXVI, p. 102, 1893).
Hydrochlorapoisocincho- nine (dichlorhydrate de). B.aHCi	[[x] ₀ ¹ + 172°,5	Eau (c = 3)	Id.
Hydrochlorapoquinidine.		Alcool 97 % (c=2) Eau + 3 Cl (id.)	
Hydrochlorapoquinine. C ¹⁹ H ²² ClAz ² O ²	[2] ¹⁵ — 149°, 1 — 245°, 7	Alcool 97 % (c = 2) Eau + 3HCl (id.)	ld., p. 3(a.
	. Voir Hydro	phlorocinchoniline.	
C"H"Cl AzOII (de carv. droite)	$[x]_{b}^{(9,1)} + 13^{n},01$	Chloroforme (p = 12)	MAGRELEIDT (Indug. Diss. Göttingen, p. 19; 1890).
1	[α] _a ^{23,3} — 10°, 99	1d. (id)	
niline. C ¹² H ²³ ClAz ² O .	$[\alpha]_{n}^{13} + 67^{\circ}, 6$	Alc. abs. (c = 1,87)	HRSSE Lieb. Ann., t. CCLXXVI, p. 97, 1893).
Hydrochlorocinchonine (dichlorhydrate de). (C ¹⁹ H ²³ Cl \z ² O) 2 H Cl D.	[1] ¹³ + 185°,9 187°	Eau ($c = 3$) Eau — fi Cl ($c = 2,4$)	/d . p. 110.

DONNÉES NUMÉRIQUES. - OPTIQUE.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	observateurs.
Hydrochlorolimonène. C ¹⁰ H ¹¹ Cl (de dlimonène)	[α] _p + 39°, 5	Pur. $d^{11,8} = 0,973$	WALLACH (Lieb. Ann., t. CCLXX, p. 189; 1892).
Id. (de llimonène).	[α] _D 40°, 0	Pur. $d^{16} = 0.982$	
Hydrochlorolimonène ni- trosé (méthylalcoolate de). C ¹¹ H ²⁰ Az O ² Cl = C ¹⁰ H ¹¹ Cl Az O O CH ³ (du nitrochlorure droit)		Alcool 90 % (p = 6,27)	MACHELEIDT (Inaug. Diss. Göttingen, p. 51; 1890).
Hydrochlorolimonène- nitrolbenzylamine. C ¹¹ H ²⁵ Az ² O Cl = C ¹⁰ H ¹¹ Cl Az O Az H. C ¹ H ¹ (de dlimonène)	[α] ^{18,5} + 149°,6	Chlorof. (p = 2,40)	WALLAGH (<i>Licb. Ann.</i> , t. CCLXX, p. 193; 1892).
(de llimonène)	$[\alpha]_{b}^{18,5}$ — 147°,4	Id. $(p = 2,43)$	

Hydrocinchonidine. Voir Cinchamidine.

Hydrocinchonine.

$$\begin{bmatrix}
\alpha \end{bmatrix}_{0}^{15} + 204^{\circ}, 5 & \text{Alc. abs. } (c = 0, 6) \\
+ 188^{\circ}, 2 & \text{Alc. 1 vol. } (c = 5) \\
+ 226^{\circ}, 5 & \text{Eau} + SO^{4}H^{2} (c = 3) \\
+ 224^{\circ}, 2 & \text{Id. } (c = 5)
\end{bmatrix}$$

Hydrocinchonine
(sulfate de).

(C¹⁹H²⁴Az²O)²SO⁴H²+2H²O

+ 160°,8

+ 154°,6

+ 153°,2

+ 140°,9

+ 138°,0

| Alcool abs.
$$(c = 2,5)$$
 | Id., $(c = 3)$ | Id. $(c = 5)$ | Id. $(c = 5)$ | Id. $(c = 5)$ | Chlorof. $[c = 3 \text{ (anh.)}]$ | Id. $[c = 5 \text{ (id.)}]$

Hydrocinchoninesulfo-
nique (sulfate d'acide).
$$(C^{19}H^{23}Az^{2}O.SO^{3}H)^{2}SO^{4}H^{2} + 8H^{2}O$$
 Eau $(c = 3)$ Id.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	OBSERVATEURS.
Hydronicotine. C10 H16 Az2	[a] _b — 15°, 40	Eau ($c = 13,7$)	ÉTARD (C. R., t. XCVII, p. 1218; 1883).
Hydroquinicine. C ²⁰ H ²⁶ Az ² O ²	$[\alpha]_{n}^{15}-17^{\circ}$	Eau + 3HCl (c = 3)	HESSE (Lieb. Ann., t. CCXLI, p. 255; 1887).
Hydroquinine. C20 H 26 Az2O2	$ \begin{bmatrix} \alpha \end{bmatrix}_{0}^{20} - 142^{0}, 2 \\ - 227^{0}, 1 $	Alcool 95 % (c=2,4) Eau + 40% HCl (id.)	Id.
	$[\alpha]_b^{11,8}$ —160°, 35	Alcool ivol. (p=1,90)	LENZ (Zeits. f. anal. Ch., t. XXVII, p. 564; 1888).
Hydroquinine (sulfate de). (C*H*Az2O2)2SO4H2	$ \begin{array}{c c} & [\alpha]_{a}^{15} - 193^{\circ}, 4 \\ & -189^{\circ}, 1 \end{array} $	Eau + 4 H Cl (c = 4) Eau et 40 % HCl (c = 8)	HRSSR (loc. cit., p. 262). [Hesse (Ber. d. D. ch. Ges., t. XV; 1882).]
Hydroquinine (tartrate de). (C ¹⁶ H ²⁶ Az ² O ²) ² C ⁴ H ⁶ O ⁶ + H ² O	[a] ₀ — 176°, 35	Eau + 157,095 H Cl pour 100° (c = 4)	Id.
Hydroshikimique (acide). C¹ H¹² O³	$ \begin{array}{c c} & [\alpha]_b^{23} - 18^\circ, 43 \\ & -18^\circ, 17 \end{array} $	Eau $(c = 8,70)$ Id. $(c = 17,41)$	EYKMAN (Ber. d. D. ch. Ges., t. XXIV, p. 1284; 1891).
Hydroxycamphocarba- mique (acide). C ¹¹ H ¹⁹ Az O ³ = CH ² . CO Az H ² CO OH	[α] _D + 63°, 5	Alcool ($c = 9,18$)	Minguin [Ann. de Chim. et Phys. (6° s)., t. XXX, p. 527; 1895].
Hydroxycamphocarbo- nate dibenzylique. C*H**O' = C'H'' COOC'H'	$[\alpha]_{\scriptscriptstyle D}$ + 35°,5	Alcool (c = 9,85)	Minguin [Ann. de Chim. et Phys. (7° 5.), t. II, p. 272; 1894].
Hydroxycamphocarbo- nate monobenzylique. C"H" O' = CH1.COOH COOC'H'	$[\alpha]_{D}+52^{\circ},02$	Alcool (c = 7,60)	Id., p. 275.

NOW HE FORWELS.	POCTORE.	DESCRIPTION OF TENEUR	OBSERVATEURS.
Hydroxycamphocarbo- nate diethylique. OH: COOCH.	•	HALLER et MINGUIN (C. R. t. CX, p. 411; 1890).	
Hydroxycamphocarbo acce monoschyihque.	[z] _B — Št', t	Alcool $\cdot c = 24.2$)	Id.
Andritta in 40000 1900 Angritantambynishms		-Oxycamphorique (a	cide).
Karan armina	— 21 . 26 — 21 . 76 — 21 . 68	Alc. abs. $(c = 3.2)$ Id. $(c = 6.2)$ Id. $(c = 12.4)$ Id. $(c = 17.2)$ Alc. 50 (c = 12.4)	
	•	.016 — 0.0154c] = 1 à 12	HAMMERSCHMIDT in WILL et Bredig (Ber. d. D. ch. Ges., t. XXI, p. 2784; 1888).
	. 20 . 3	Alc. abs. (c = 3.22)	HESSE (Lieb. Ann., t. CCLXXI, p. 103; 1891).
Mysosyamine systems de l'	[2], 24", 07	Eau (p = 1.6)	GADAMER (Arch. d. Pharm., t. CCXXXIV, p. 543; 1896).
Hymeryamine aulfate de'	[x]; - 28",6	Eau (c = 2)	HESSE (loc. cit.).
'' H A'OO SOOH.		6°, 8 à — 27°, 3 (p = 2.9)	GADAMER (loc. cit.).
the contraction of the contracti	(* ', — 4 ". 77	Eau (c = 2,5)	HAMMERSCHMIDT (Inaug. Dissert., Berlin; 1889).

Managementa Lore zantonine (Hypo-).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
dIdonate de cadmium et bromure de cadmium (C'H''O')2Cd + CdBr2	$[\alpha]_{\mathfrak{p}}+3^{\circ},41$	Eau (p = 11,14)	E. FISCHER et FAY (Ber. d. D. ch. Ges., t. XXVIII, p. 1977; 1895).
lI3.	$[\alpha]_{b}^{20}-3^{\circ},25$	Eau (p = 10,56)	
Impérialine. C ³⁵ H ⁶⁰ Az O ⁴	[α] _a — 35°, 40	Chloroforme (p = 5,26)	FRAGNER (Ber. d. D. ch. Ges., t. XXI, p. 3284; 1888).
dInosite. C ⁶ H ¹² O ⁶ (de la pinite)	[a] _u +65°	Eau (c = 12)	MAQUENNE [Ann. de Ch. et Phys. (6° s.), t. XXII, p. 266; 1891].
[Matézodambose]	$[a]_{D} + 64^{\circ}, 7$	Eau $(c = 3,475)$	GIRARD (C. R., t. CX, p. 85; 1890).
lId. (de la quebrachite)	[α] _υ —65°	Eau	MAQUENNE et TANRET (C. R., t. CX, p. 86; 1890).
Inosite hexacétique. C ⁶ H ⁶ (C ² H ³ O ²) ⁶ (de dinos.)	[a] _n +9",75	Alcool $(c = 6,2)$	MAQUENNE (loc. cit.).
Id. (de linos.)	[a] _b - 10°		MAQUENNE et TANRET (loc. cit.).
Inulénine. 10(C ⁶ H ¹⁰ O ³) + 2H ² O	[α] _b — 29°,58 — 29°,75	Eau (c = 6,10) Id. (c = 6,72)	TANRET [Bull. Soc. chim. (3° 8.), t. IX, p. 205; 1893].
Inuline. $6(C^6H^{10}O^5) + H^2O$	[α] _u — 36°, 95		LESCOUR et MORELLE (C. R., t. XVCII, p. 216;1879).
(de l'aunée) (du dahlia)	$ \begin{bmatrix} \alpha \end{bmatrix}_{b}^{23} - 36^{\circ}, 67 \\ [\alpha]_{b}^{20} - 37^{\circ}, 15 \\ -34^{\circ}, 1 \end{bmatrix} $	Eau $(c = 1,512)$ Id. $(c = 0,917)$ Id. $(c = 1,746)$	KILIANI (<i>Lieb. Ann.</i> , t.CCV, p. 152; 1880). [Wallach (<i>Lieb. Ann.</i> , t. CCXXXIV, 1886).]
(de l'ail)	$ [\alpha]_{\mathfrak{b}}^{15} - 39^{\circ}$	Eau $(c = 9, 18)$	CHEVASTELON (Thèse, p. 16. Paris; 1894.
Inul. purc.	$[\alpha]_{b}^{12} \dot{a}_{b}^{50} - 39^{\circ}, 5$	Eau $(c = 5 \text{ à } 14)$	TANRRT [Bull. Soc. chim. (3° 5.), t. IX, p. 232; 1893].
-inuline (Pseudo-). 16(C ⁶ H ¹⁰ O ⁵) + H ² O	[2] ₀ —32°, 2	Eau (c = 6,46)	[d., p. 203.

DONNÉES NUMÉRIQUES. — OPTIQUE.

NOM ET FORMULE.	POUVOIR relateire spécifique.	DISSOLVANT BY TEXEUR.	
Inuline trinitrée. C ⁶ H ⁻ (Az O ¹) ³ O ⁵	[a] ₀ + 13°,6	Ether ou alcool	acenc, der Sc. Congr. de Havre, p. 384; 1877).
inuloide.	[z] _/ — 3o*,5	Eau (c = a)	Popp (Lick Ann., t. CLVI, p. 190; 1870).
turate de sodium. C ¹¹ H ¹¹ Na ISAz O ³	[a], + 8°,0 + 12°,7 16°,7	Eau $(c = 5,33)$ Id. $(c = 10,65)$ Id. $(c = 21,31)$	BAUMANN et Schmitz (Zeits. f. physiol. Ch., t. XX, p. 586; 1856).
<i>p</i> C"H"1\$Az O³	[2],— 10°,67	Alcool (c = a,5)	<i>H</i> .
Irisine. 6(C*II ¹⁴ O*) + II ² O	$\begin{array}{c c} [x]_{n}^{16} - 51^{n}, 4 \\ (moy.) \\ [x]_{n}^{12} - 49^{n}, 9 \end{array}$		WALLACH (Lieb. Ann., L. CCXXXIV, p. 364; 1886.
	$\frac{[a]_{n}^{12}-49^{n},9}{[a]_{n}^{12}-5a^{n},34}$		BESTRAND of JOHANSON (Ber. d. D. ch. Ges., L XX, p. 3311; 1867).
	[a], — 54°.1 — 56°	Eau (sol. concentrée) Id. (sol. étendue)	Kullun (Insug. Diner. Münster; 1894).
Irone. G ¹³ H ²⁶ O	[x], 42", 5 (app.)	Pur. d = 0,939	Tirmann et Knüger (30. d. D. ch. Ger., t. XXVI, p. 2680 ; 1893).
Isoaconitine. C ³³ H ³⁵ Az O ¹² (Napelline)	[a], + 4", 48	Alcool (c = 7,86)	DUNSTAN et HARRISON (J. of chem. Soc., t. LIII), p. 445; 1893).
Isoaconitine (chlor- hydrate de). B.HCl + H ² O	[x]; — 28", 74	Eau (c = 1)	Id.
Isoaconitine (iodhydrate de). B. III + 1120	[2] ₀ — 26°,94	Eau (c = 1)	84.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Isoapocinchonine. C ¹⁹ H ²² Az ² O	$[\alpha]_{b}^{15} + 186^{\circ}, 2$	Alcool abs. $(c = 3)$	HESSE (Lieb. Ann., t. CCLXXVI, p. 117; 1893).
Isoatropylcocaine. C ¹⁹ H ²³ Az O ⁴ + ½ H ² O	$[\alpha]_{p}^{23}$ — 29°,3 (app.)	Alcool (c = 4)	LIEBERMANN (Ber. d. D. ch. Ges., t. XXI, p. 2344; 1888).
Isocholestérine. C ²⁶ H ⁴⁴ O	[a] _D + 60°	Ether $(c = 7,34)$	Schulze (Ber. d. D. ch. Ges., t. XII, p. 249;

- 2.-Isocinchonine. Voir Cinchoniline.
- β.-Isocinchonine. Voir Cinchonigine.

lIsocopellidine.	$ [\alpha]_{D}^{17} - 57^{\circ}, o3 Pur.$	Pur. $d^{11} = 0.8435$	LEVY et WOLFFENSTEI (Ber. d. D. ch. Ges., XXIX, p. 1959; 1896).
dId.	$[\alpha]_{b}^{18} + 4^{\circ}, 23$	Pur. $d^{11} = 0,8500$	

Isodulcite. Voir Rhamnose.

Isohyposantonine. Voir -santonine (Isohypo-).

Isomaltose. Voir -maltose (Iso-) et Gallisine.

Isomannide. Voir -mannide (Iso-).

Isopulégol. C ¹⁰ H ¹⁸ O	$\left \left[\alpha \right]_{\mathbf{b}}^{11,5} - 2^{\circ}, 9 \right $	Pur. $d^{17,3} = 0,9154$	TIBMANN et SCHMIDT (Ber. d. D. ch. Ges., t. XXIX, p. 914; 1896).
Isopulégone. C¹• H¹• O	$ [\alpha]_{b}^{17,5}+11^{\circ},12 $	Pur. $d^{11,5} = 0,9213$	ID. (<i>Id.</i> , t. XXX, p. 28; 1897).
Isoquinine. C ²⁶ II ²⁴ Az ² O ²	[α] ²¹ — 186°, 75	Alcool ($c = 0,96$)	LIPPMANN et FLEISSNER (Monatsh. f. Ch., t. XII, p. 327; 1891).

Isosaccharate diéthylique. Voir Norisosaccharate diéthylique.

Isosaccharine. Voir -saccharine (Iso-).

| Eau (
$$p = 4,27$$
) | Wegschieder in Tiemann et Harmann (Ber. d. D. COOH. CH - O-CH. COOH | COOH. CH - O-CH. COOH.

DONNÉES NUMÉRIQUES. — OPTIQUE.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Isosaccharodiamide. C*H'*O'Az' == HO.CH = CH.OH \(x H^2.CO.CH=O=CH.CO, Az H^2 \)	[2] _b + 7°, 16	Eau (c = 5)	TIEMANN et HAARMANN . (loc. cit., p. 1264).

Isosantonone. Voir -santonone (Iso-).

Isosylvique (acide). Voir -sylvique (acide Iso-).

Jalapine. Voir Scammonine.

Jalapique (acide). Voir Scammonique (acide).

Kessylique (alcool).	[a] _b — 36°,5	Alcool (c = 10)	BERTRAM et GILDEMEISTER (Arch. d. Pharm., t. CCXXVIII, p. 483; 1890).
Lactate d'ammonium ot zino. (C'H'O') 'Zn(A/H') do l'ac gauche : do l'ac droit	$[\alpha]_{0} \pm 10^{\circ}, 71$ $\pm 9^{\circ}, 33$ $\pm 7^{\circ}, 47$ $\pm 4^{\circ}, 91$	Eau $(c = 1,17)$ Id. $(c = 2,33)$ Id. $(c = 4.67)$ Id. $(c = 11,67)$	Purdie et Walker (J. of chem. Soc., t. LXVII, p. 630; 1895). [Id. (Id., t. LXI, p. 761 et t. LXIII, p. 1154; 1892 et 1893).]
Impinio d'argent. (241202 Ag (de l'ac. de.)	$ \begin{array}{c c} & [\alpha]_{0} - 6^{\circ}, 73 \\ & -7^{\circ}, 11 \\ & -7^{\circ}, 30 \\ & -7^{\circ}, 31 \end{array} $	Eau $(c = 1,97)$ Id. $(c = 3,94)$ Id. $(c = 7,88)$ Id. $(c = 9,85)$	id.

|
$$|x|_0 - 7^\circ, 94|$$
 | Eau $(c = 1,575)$ | Id. $(c = 3.15)$ | $-7^\circ, 94|$ | Id. $(c = 3.15)$ | $-6^\circ, 94|$ | Id. $(c = 6.30)$ | $-5^\circ, 46|$ | Id. $(c = 15.75)$

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Lactate de cadmium. (C ³ H ³ O ³) ² Gd (de l'acide dr.)	- 7°,72	Eau ($c = 1,45$) Id. ($c = 2,90$) Id. ($c = 5,80$) Id. ($c = 14,50$) Eau et alcool ($c = 2,32$) Id. ($c = 7,25$)	Id.
lLactate de calcium. $(C^3H^5O^3)^2Ca + 4\frac{1}{2}H^2O$	— 5°, 25	Eau [c = 7,23 (hydr.)] Id. [c = 5,35 (anh.)]	t. GLAVII, p. 332, 10/3).
(de l'acide <i>dr</i> .)	$[\alpha]_{D}$ — 5°, 48	Eau (c=5,79) (anhydre)	FRANKLAND et MAC GRE- GOR (J. of chem. Soc., t. LXIII, p. 1033; 1893).
	-5°, 73 -4°, 48 -1°, 17	Eau [$c = 1,09$ (anh.)] Id. [$c = 2,18$ (id.)] Id. [$c = 4,36$ (id.)] Id. [$c = 10,90$ (id.)] Eau et alcool ($c = 4,36$)	cit.).
	$[\alpha]_{b}^{12}$ — 5°, o6 — 3°, 85	Eau $(c = 4,14)$ Id. $(c = 6,25)$	HOPPE-SEYLER et ARAKI (Z. f. physiol. Ch., t. XX, p. 370; 1895).
dId. (de l'acide g.)	$[\alpha]_{b} + 2^{\circ}, 22 + 1^{\circ}, 49$	Eau $[c = 7.89 (hydr.)]$ Id. $[c = 11.78 (id.)]$	Schardinger (Monatsh. f. Ch., t. XI, p. 556; 1890).
lLactate de lithium. C³H³O³.Li (de l'acide dr.)	Eau (Hoppe-Seyler et Araki (loc. cit., p. 372). [Calculé d'après les nombres des auteurs].
dId. (de l'acide g.)	$[\alpha]_{D}^{21} + 12^{\circ}, 66$ $[\alpha]_{D}^{21,2} + 13^{\circ}, 04$ $[\alpha]_{D}^{12,8} + 12^{\circ}, 94$ $[\alpha]_{D}^{12,8} + 11^{\circ}, 96$	Id. $(c = 7,09)$ Id. $(c = 5,10)$	
	+ 14,58	+ 17,97 0,96 + 15,94 1,92 + 13,67 3,84 9,60	Purdie et Walker (loc. cit.).

toire spécifique.		
2] _b — 10°, 15	Eau $(c = 1,01)$	Id.
— 8°,55	Id. $(c = 4,04)$	
:	— 10°, 15	$ \begin{array}{c ccccc} - 10^{\circ}, 15 & \text{Id. } (c = 2, 02) \\ - 8^{\circ}, 55 & \text{Id. } (c = 4, 04) \end{array} $

Lactate de potassium. C³ H⁵ O⁵. K

•	DE	DE L'ACIDE		
c.	Eau.	Alcool.	Alc. éthyl. et alc. méthyl.	Eau et alcoel.
0,64	"	"	" .	+17,56
1,28	-10,9	-17,0	-17,35	+16,78
2,56	-10,73	- 15,22	-18,03	+14,35
5,12	-10,64	—13,27	"	+12,05
12,81	—10,08	-10,77	-13,69	"
13,2	"	"	"	+9,78
22,0	"	"	"	+ 8,94
30,7	"	— 9,35	"	"

PURDIE et WALKER (loc. cit.).

Lactate de sodium.

C³H³O³.Na (de l'acide g.)

<i>c</i> .	BAU	BAU ET ALC.	ALCOOL.
0,56		11	+20,5
0,84	+12,50	"	"
1,12	"	+15,4	+14,3
2,24	+11,83	"	+8,93
2,53	"	+13,8	<i>II</i>
4,48	+11,55	"	"
5,60	"	+11,88	+ 2,50
7,47	"	+10,05	+ 1,34
9,29	"	"	 0,485
11,20	+10,89	"	 0,80
19,79	"	"	- 2,22
23,21	"	"	— 2,28

PURDIE et WALKER (loc. clt.).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Lactate de strontium. (C³H³O³)³Sr (de l'acide g.)	$[\alpha]_{\mathbf{p}}-4^{\mathbf{n}},81$	Eau $(c = 1,33)$ Id. $(c = 2,66)$ Id. $(c = 5,31)$ Id. $(c = 13,28)$ Eau et alc. $(c = 4,425)$ Id. $(c = 5,31)$	Id.
Lactate de zinc. (C ³ H ³ O ³) ² Zn + 2H ² O [de l'acide sarcolactique (dr.)]	8°, 43 8°, 49 7°, 83 7°, 29	Eau $[c = 4,58 \text{ (anh.)}]$ Id. $[c = 4,75 \text{ (id.)}]$ Id. $[c = 5,36 \text{ (id.)}]$ Id. $[c = 6,51 \text{ (id.)}]$ Id. $[c = 9,60 \text{ (id.)}]$ Id. $[c = 13,98 \text{ (id.)}]$	t. CLXVII, p. 332; 1873).
(par dédoublement de l'acide inactif)	— 8°, 9 — 9°, 04 — 7°, 75	Eau $[c = 3,42 \text{ (anh.)}]$ Id. $[c = 4,71 \text{ (id.)}]$ Id. $[c = 5,58 \text{ (id.)}]$ Id. $[c = 6,83 \text{ (id.)}]$ Id. $[c = 11,76 \text{ (id.)}]$	oor (J. of chem. Soc., t. LXIII, p. 1033; 1893).
(de l'acide dr.) (de l'acide g.)	$[\alpha]_{D} - 6^{\circ}, 83 + 6^{\circ}, 81$	Eau [$c = 7,47$ (hydr.)] Id. [$c = 7,48$ (id.)]	PURDIE (J. of chem. Soc., t. LXIII, p. 1154; 1893). [Purdie et Walker (Id., t. LXI; 1892).]
(de l'acide g.)	$ \begin{bmatrix} a \end{bmatrix}_{b} + \\ Eau [c = 12] \\ \hline [\alpha]_{b} + 10^{\circ}, 29 \\ + 9^{\circ}, 16 \\ + 7^{\circ}, 77 $	Eau [$c = 5,7$ (hydr.)] - 5° , 2 à 5° , 4 ,66 à $16,08$ (hydr.)] Eau [$c = 1,215$ (anh.)] Id. [$c = 2,43$ (id.)] Id. [$c = 4,86$ (id.)] Id. [$c = 12,15$ (id.)] Eau et alc. ($c = 4,86$)	Ch., t. XI, p. 557; 1890). Purdie et Walker (J. of chem. Soc., t. LXVII, p. 630; 1895).
(de l'acide dr.)	60 58	Eau $[c = 4,2 \text{ (hydr.)}]$ Id. $[c = 6,2 \text{ (id.)}]$ Id. $[c = 8,6 \text{ (id.)}]$	Hoppe-Seyler et Araki (Zeits. f. physiol. Ch., t. XX, p. 371; 1895).
(de l'acide g.)	$[\alpha]_{\text{b}} + 7^{\circ}, 51 + 6^{\circ}, 84$ (Id.)	Eau· [$c = 3,3$ (hydr.)] Id. [$c = 6,9$ (id.)]	

NOM ET FORMULE.	POUVOIR rotatoire spécolique	DISSOLVANT SY TEMECH.	OBSERVATEURS.
Lactate amylique. C'H'O'.C'H' (ac. dr.; alc. g.)	[z] ₆ — 3".93	Pur. d = 0.9667	Walnes (Zelte. f. physik, Ch., t. XVII, p. 721; 1895).
Id. (ac. dr.; alc. inactif) Voir Amylique (lactate).	1 - 10 - 1111	Pur. d = 0.9719	
Lactate 6thylique. C'H''O' = CIP.CH(OH).COOC'II	[a], — 14°, 19	Pur.	Klimbuko (J. Soc. phys chim. Busse, t. XII, p. 30; 1880).
(de l'acide dr.)	[z], — 8", 66	Pur. d = 1,0414	
	[x] ¹ , — 13°, 46	d;4 = 1,0415	Punnit et Williamson (J. of chem. Soc., t. LXIX, p. 627; r896).
Id. (de l'acide g.).	(2),+ 5°,47 + 5°,39 + 21°,89	Pur. $d_4^{19} = 1,030$ Chloroforme ($c = 1,23$) Id. ($c = 6,17$) Benzène ($c = 1,19$) Id. ($c = 5,94$)	•
Lactate méthylique. C ⁴ H ⁴ O ³ —	[z] ₀ — 6°, 86	Pur. d=1,1017	FRANKLAND of HENDERSON (loc. cit.).
CIP.CR(OR).COOCH ^a	$[\alpha]_0^{13}-11^n,1$	Pur. $d_4^{13} = 1,100$	198
(de l'acide <i>dr</i>)	[2] ²⁸ ₆₆₄	Pur. d20 = 1,08	C. H., t. CXXIII, p. 1291; 1896]. [Foir Table XVII (I.E)]. [Melikian (Thèse, Ganere: 1896).]
Lactate propylique. C ⁴ H ¹² O ² CH ² .CH (OH).COOC ³ H ² (de l'acide dr.)	[2] ¹ — 17°,06	Pur. d' = 1,004	WALKER (loc. clt., p. 914).
-lactate (Acétyl-) éthylique. C II ¹² O ⁴ ==	[2], - 41*, 47	Pur. d = 1,0527	FRANKLAND of HENDERSON (Proc. chem. Soc. Lond., t. XI, p. 54; (895).
CH2.CH(O.G-H2O)COOC2H2 (de l'acide dr.)	[x],1 - 49°.87	Pur di*-1,0513	PURDIN et WILLIAMSON (J. of chem. Soc., t. LXIX p. 816; 1896).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
-lactate (Acétyl-) méthylique.	[a] _D — 43°, 41	Pur. d = 1,0957	FRANKLAND et HENDERSON (loc. cit.).
$C^6H^{10}O^4 =$ $CH^3.CH(O.C^2H^3O)COOCH^3$ (de l'acide dr .)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		GUYE et MELIKIAN (loc. cit.). [Melikian (Thèse, Genève; 1896).]
-lactate (Benzoyl-) éthylique. C'2H'4O' = CH3.CH(O.C'1H'5O)COOC'2H'5 (de l'acide dr.)	[α] _n + 22°, 22	Pur. d = 1,1164	FRANKLAND et HENDERSON (loc. cit.).
méthylique. $C^*H^{14}O^4 =$ $CH^3.CH(O.C^4H^3O)COOCH^3$	$\begin{bmatrix} 2 \end{bmatrix}_{666}^{26} - 30^{\circ}, 01$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$		GUYE et MELIKIAN (loc. cit.). [Melikian (Thèse, Genève; 1896).]
dlactique (acide).	$\begin{array}{c c} [\alpha]_{D} + 2^{n}, 8 \\ (moy.) \end{array}$	Eau (c=7 à 43)	Wislicknus (Lieb. Ann., t. CLXVII, p. 332; 1873).
CH³. CH (OH). CO OH [acide sarcolactique]	Eau $(c = a \frac{d[\alpha]}{dt})$	$\begin{bmatrix} 1 & 48 + 0.0596c \end{bmatrix}$ $\begin{bmatrix} 1 & 40 \end{bmatrix} \begin{bmatrix} t = 11^{\circ}.5 \end{bmatrix}$ $\begin{bmatrix} -0.057 \end{bmatrix}$ 2) $\begin{bmatrix} t = 10^{\circ}.55 & 16^{\circ} \end{bmatrix}$	HOPPE-SEYLER et ARAKI (Zeits. f. physiol. Ch., t. XX, p. 369; 1895). [Calculé d'après les résul- tats des auteurs].
lId.	[a] ₀ —4°,3	Eau ($c = 64,8$)	SCHARDINGER (Monatsh. f. Ch., t. XI, p. 545; 1890).
	$ \begin{array}{c c} \hline [\alpha]_{0}^{23,5} - 5^{\circ}, 86 \\ \hline - 4^{\circ}, 72 \end{array} $	Eau ($c = 6,56$) Id. ($c = 12,43$)	HOPPE-SEYLER et ARAKI (loc. cit.).
dlactique (anhydride) C*H**O* [84*/] et Lactide. (C*H*O*)* [16*/]	[a] _b — 85°,9	Alcool (c = 19,54)	Wislicknus (loc. cit.).
Lactosammoniaque. (C ¹² H ²² O ¹¹)Az II ³	[a] ₀ + 39°, 5	Eau (c = 10)	LOBRY DE BRUYN et VAN LEENT (Rec. Trav. chim. d. P. B., t. XIV, p. 137; 1895).

TOTAL ST PROBULE.	Antonia designations	JOHNICTANT ET TENEU	OBSERVATEURS.	
Lactoranifide. C*H*O* WH.C'H-	[2] _p — 14'.:0 Lichei es ',: p = 5,23			
Lactore. C=H=O - H=O	$\begin{bmatrix} z_{11}^{-1} - 3a' \\ -43' \\ 5 \\ -53' \\ 3 \\ -65' \\ 8 \\ -70' \\ 0 \\ -80' \\ 0 \end{bmatrix}$	Esa p = 7 à 15)	STEINHRIL (Inaug. Dissert., Munich; 1889).	
	•	4—0.557 <i>c</i> 55 <i>c</i> ² —0.001 <i>7</i> 74 <i>c</i> ²] c = 2 à 12)	HESSE (Lieb. Ann., t. CLXXVI, p. 100; 1875).	
		-0.075 (t-20)] Eau $p = 2 à 36)$	Schnöger (Ber. d. D. ch. Ges., t. XIII, p. 1922; 1880).	
	- 52.53	après 8 minutes) après 24 heures) c = 4.84)	PARCUS et TOLLENS (Lieb. Ann., t. CCLVII, p. 160; 1890).	
Lacture du lait de buille Tennième.	(z), -48'.0 -48'.7	Eau Alcool	PAPPEL et RICHMOND (J. of chem. Soc., t. LVII, p. 758; 1890).	
lact. a anhydre . ld d id. ld e id.	(2), + 92', 0 - 50' - 34', 5	Eau Id. Id.	TANRET [Bull. Soc. chim. (3° s.), t. XV, p. 354; 1896]. [Schmöger (Ber. d. D. ch. Ges., t. XIII; 1880).]	
Lactore octacetyle.	- 31' - 31'	Alcool ($c = 2.18$) Id. ($c = 9.68$)	Schützenberger [Bull. Soc. chim. (2° s.), t. XII, p. 208; 1869].	
	$[x]_*-3^*.5$	Chloroforme (p = 10)	Schmögkr (Ber. d. D. ch. Ges., t. XXV, p. 1453; 1892).	
Lacture octonitré.	[2];*-74°.2	Alc. méthyl. (c = 2,8)	WILL of LENZE (Ber. d. D. ch. Ges., t. XXXI, p. 83; 1898).	
Lactur tetracetyle.	[x], -50°.1	Eau (c = 7.46)	Schützenberger(<i>loc.cil.</i>).	

NOM ET FORMULE.	POUVOIR retatoire spécifique.	DISSOLVANT ET TENEUR.	
C ¹² H ²² O ¹⁰ : Az ² (C ⁶ H ⁵) (C ⁵ H ⁵)	[a] _b 14*,6	Alc. méthyi. (p = 0,5)	**************************************
C ¹² H ²² O ¹⁰ : Az ² (C ⁶ H ³)(C ³ H ¹¹)	[z] _n 8°,6	Id. (id.)	ld.
Lactoseben zylphényl- C ¹² H ²² O ¹⁸ : Az ² (C ⁶ H ²) (C ⁷ H ¹)	[a] ₀ — 25°,7	[Id. (id.)	Id.
Lactose (3) naphtylhy- drazone. C"H"O": Az"H(C"H")	[a], o" + 7"	Alc. méthyl. (id.) Ac. acétique (id.)	14.
Lactosine. C ³⁶ H ⁶² O ³¹	[2],6+2110,7	Eau (p = 2,91)	MEYER (Ber. d. D. ch. Ges., t. XVII, p. 685; 1884). [Planta et Schülze (id., t. XXIII, 1490).]
™ β -Id.		Chloroforme (c = 2,37) Id. (c = 4)	HESSE (<i>Lieb. Ann.,</i> t. CCXXXIV, p. 243; :886).
cLactucérol (acétate de). C"II"(C'H'O)O	[2], + 63°, 6 + 63°, 1	Chloroforme $(c = 1)$ Id. $(c = 2)$	Id.
Laudanidine. C ²⁶ H ²⁵ Az O ⁴	[a] 15 - 87°, 8	Chloroforme (c = 5)	HRSSE (Lieb. Ann., t. CCLXXXII, p. 209: 1894).
Laudanine. C"H" Az O'	[2];;5 13°,5 11°,36	Chloroforme (c = 2) Eau + 2 Na OH (c = 1)	HESSE (Lieb. Ann., t. CLXXVI, p. 201, 1875).
Laudanine (chlorhy- drate de). (C*H*AzO') HCl	ipactif		Id.

DONNÉES NUMÉRIQUES. -- OPTIQUE.

NON ET FORMULE.	POUVOIR rotateire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Inuline trinitrée. C ⁶ H ⁷ (Az O ²) ³ O ⁴	[s], + 13°, 6	Ether ou alcool	BÉCHAMP (Assoc. franç. aranc. des Sc. Congr. du Havre, p. 384; 1877).
Inuloide. C ^t H ¹⁰ O ^t +H ² O	[a], — 30°,5	Eau (c = 2)	Pope (Lieb. Ann., t. GLVI, p. 190; 1870).
turate de sodium. C"H"Na IS Az O ³	[\alpha] ₀ + 8°,0 + 12°,7 + 16°,7	Eau $(c = 5,33)$ Id. $(c = 10,65)$ Id. $(c = 21,31)$	BAUMANN et SCHMITZ {Zeits. f. physiol. Ch., t. XX, p. 586; 1895}.
p turique (acide). C"H"ISAzO"	[a]a—10°,67	Alcool (c = 2,5)	HL.

Irisine. 6(C⁶H¹⁰O¹) + H²O

Irone. C'' II ²⁰ O	[a] _p ÷ 42°,5 (app.)	Pur. d = 0,939	TIEMANK et KRUGER (Ber. d. D. ch. Ges., L. XXVI, p. 2680; 1893).
Isoaconitine. C ¹³ H ⁴⁴ Az O ¹³ (Napelitue)	[x]n+4",48	Alcool (c = 7,86)	Dunstan et Harrison (J. of chem. Soc., t. LXIII, p. 445; 1893).
Isosconitine (chlor- hydrate de). B. ii Cl + H ² O	[a]i - 28°,74	Eau (c = 1)	Hi.
soaconitine (iodhydrat de). B. iii + H ² O	[α] _a — 26°, 94	Eau (c = 1)	Id.

	NOM RT FORMULE.	POUVOIR relatoire spécifique.	DIOSOLVANT ET TENEUR.	OSSERVATEURS.
	Isoapocinchonine. C ¹⁹ H ¹² Az ¹ O	[2]i + 186°, 2	Alcool abs. (c = 3)	HESSE (Lieb. Ann., t. CCLXXVI, p. 227; 1893).
	Isoatropylcocaïne. C ¹⁹ H ²² AzO ⁴ + ¹ / ₂ H ² O	[z]; 29°, 3 (app.)	Alcool (c = 4)	Liebermans (Ber. d. D. ch. Ger., t. XXI, p. 334;; 1868).
	Isocholestérine. C*H****()	[a] _e + 60°	Éther (c = 7,34)	Schulze (Ber. d. D. ch. Ges., t. XII, p. 249; 1879).
α.	. Voir			
p	. Voir			
	l.	[α] ¹¹ — 57°, ο3	Pur. d'' = 0,8435	LEVY of WOLFFENSTEIN

Isodulcite. Voir Rhamnose.

Isohyposantonine. Voir -santonine (Isohypo-).

Isomaltose. Voir -maltose (Iso-) et Gallisine.

Voir -mannide (Iso-).

Isopulégol. C"H"O	[α] _b ^{11,6} — a°,9	Pur. d ^{11,5} = 0,9154	TIEMANN of SCHMIDT (Ber. d. D. ch. Ges., L XXIX, p. 914; 1896).
Isopulėgone. C°H' ^I O	[[2]a ^{11,b} +11°,12	Pur. d'17,6 = 0,921 3	In. (Id., t. XXX, p. 18; 1897).
Isoquinine. C ²⁰ H ²¹ Az ² O ²	[2] ³¹ — 186°, 75	Aicool (c = 0,96)	LIPPMANN et FLEIBENZE (Monatch. f. Ch., t. XII, p. 327; 1891).

diéthylique. Voir Norisosaccharate diéthylique.

. Voir -saccharine (Iso-).

| Cooh. Ch-O-Ch.Cooh| | [
$$\alpha$$
] $_{a}^{20} + 46^{\circ}$, 12 | Eau ($p = 4,27$) | Wedscheider in Tiemann of Harmann (Ber. d. D. ch. Ges., t. XIX, p. 1260, t306).

NON ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
ctate de cadmium. (C ³ H ⁵ O ³) ² Gd (de l'acide dr.)	$\frac{-7^{\circ},72}{[\alpha]_{D}-5^{\circ},28}$	Eau $(c = 1,45)$ Id. $(c = 2,90)$ Id. $(c = 5,80)$ Id. $(c = 14,50)$ Eau et alcool $(c = 2,32)$ Id. $(c = 7,25)$	
Lactate de calcium. (C3H3O3)2Ca + 4½H2O	$[\alpha]_{\text{\tiny D}}$ — 3°,87 — 5°,25	Eau [c = 7,23 (hydr.)] Id. [c = 5,35 (anh.)]	Wislicenus (Lieb. Ann., t. CLXVII, p. 332; 1873).
(de l'acide <i>dr</i> .)	[a] _b — 5°, 48	Eau (c=5,79) (anhydre)	FRANKLAND et MAC GRR- GOR (J. of chem. Soc., t. LXIII, p. 1033; 1893).
	— 5°, 73 — 4°, 48 — 1°, 17	Eau [$c = 1,09 \text{ (anh.)}$] Id. [$c = 2,18 \text{ (id.)}$] Id. [$c = 4,36 \text{ (id.)}$] Id. [$c = 10,90 \text{ (id.)}$] Eau et alcool ($c = 4,36 \text{)}$	
	$ \begin{array}{c c} [\alpha]_{D}^{12} - 5^{\circ}, 06 \\ - 3^{\circ}, 85 \end{array} $	Eau $(c = 4,14)$ Id. $(c = 6,25)$	HOIPE-SEYLER et ARAKI (Z. f. physiol. Ch., t. XX, p. 370; 1895).
dId. (de l'acide g.)	1	Eau [$c = 7.89$ (hydr.)] Id. [$c = 11.78$ (id.)]	Schardinger (Monatsh. f. Ch., t. XI, p. 556; 1890).
Lactate de lithium. C ³ H ² O ³ .Li (de l'acide dr.)	Eau ($ \begin{bmatrix} ,805 - 0,2005c \end{bmatrix} \begin{bmatrix} c = 7,5 & 24 \end{bmatrix} \end{bmatrix} \begin{bmatrix} 26^{\circ} & 22^{\circ} \end{bmatrix} \end{bmatrix} \begin{bmatrix} Eau\ (c = 5)\ \\ Id.\ (c = 9,7) \end{bmatrix} $	Hoppe-Seyler et Araki (loc. cit., p. 372). [Calculé d'après les nombres des auteurs].
dId. (de l'acide g.)	$[\alpha]_{D}^{21} + 12^{\circ}, 66$ $[\alpha]_{D}^{21,2} + 13^{\circ}, 04$ $[\alpha]_{D}^{12,8} + 12^{\circ}, 94$ $[\alpha]_{D}^{12,8} + 11^{\circ}, 90$	Id. $(c = 7,09)$ Id. $(c = 5,10)$	
	+ 14,58 + 14,06	UETALCOOL. c. + 17,97	Purdie et Walker (loc. cit.).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Lactate de magnésium. (C ³ H ⁵ O ³) ² Mg (de l'acide dr.)	[\alpha] ₀ — 10°, 15 — 10°, 15 — 8°, 55 — 5°, 50	Id. $(c = 4,04)$	Id.
	$\boxed{ [\alpha]_{u}+3^{\circ}, 16}$	Eau et alcool (c = 4,04)	

Lactate de potassium. C³ H³ O³. K

•	DE	DE L'ACIDE		
<i>c</i> .	Eau.	Alcool.	Alc. étbyl. et alc. méthyl.	Eau et alcool.
0,64	"	"	"	+17,56
1,28	—10,9	-17°,0	—17,35	+16,78
2,56	-10,73	-15,22	-18,03	+14,35
5,12	-10,64	-13,27	"	+12,05
12,81	-10,08	—10,77	-13,69	"
13,2	"	"	"	+ 9,78
22,0	"	"	"	+ 8,94
30,7		-9,35	"	"

PURDIR et WALKER (loc. cit.).

Lactate de sodium.

C³ H⁵ O³. Na (de l'acide g.)

c.	EAU	BAU ET ALC.	ALCOOL.
0,56	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	"	+20,5
0,84	+12,50	"	"
1,12	"	+15,4	+14,3
2,24	+11,83	"	+8,93
2,53	"	+13,8	"
4,48	+11,55	"	"
5,60	"	+11,88	- +- 2,50
7,47	"	+10,05	 1,34
9,29	"	"	— o,485
11,20	+10,89	"	- 0,80
19,79	"	"	- 2,22
23,21	"	"	— 2,28

Purdir et Walker (loc. cit.).

NOM ET FORMULE.	POUVOIR rotatoire specifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.	
Lactate de strontium. (C³H³O³)²Sr (de l'acide g.)	$[\alpha]_{b} + 9^{\circ}, 23$ $+ 8^{\circ}, 48$ $+ 7^{\circ}, 49$ $+ 5^{\circ}, 88$ $[\alpha]_{b} - 4^{\circ}, 81$ $- 3^{\circ}, 62$	Eau $(c = 1,33)$ Id. $(c = 2,66)$ Id. $(c = 5,31)$ Id. $(c = 13,28)$ Eau et alc. $(c = 4,425)$ Id. $(c = 5,31)$	1	
Lactate de zinc. (C ³ H ³ O ³) ² Zn + 2H ² O [de l'acide sarcolactique (dr.)]	- 8°, 43 - 8°, 49 - 7°, 83 - 7°, 29	Eau [$c = 4,58$ (anh.)] Id. [$c = 4,75$ (id.)] Id. [$c = 5,36$ (id.)] Id. [$c = 6,51$ (id.)] Id. [$c = 9,60$ (id.)] Id. [$c = 13,98$ (id.)]	t. CLXVII, p. 332; 1873).	
(par dédoublement de l'acide inactif)	— 8°, 9 — 9°, 04 — 7°, 75	Eau $[c = 3,42 \text{ (anh.)}]$ Id. $[c = 4,71 \text{ (id.)}]$ Id. $[c = 5,58 \text{ (id.)}]$ Id. $[c = 6,83 \text{ (id.)}]$ Id. $[c = 11,76 \text{ (id.)}]$	gor (J. of chem. Soc., t. LXIII, p. 1033; 1893).	
(de l'acide dr.) (de l'acide g.)	$[\alpha]_{D} - 6^{\circ}, 83 + 6^{\circ}, 81$	Eau [$c = 7,47$ (hydr.)] Id. [$c = 7,48$ (id.)]	Purdir (J. of chem. Soc., t. LXIII, p. 1154; 1893). [Purdie et Walker (Id., t. LXI; 1892).]	
(de l'acide g.)	[a] _B +	Eau [c = 5,7 (hydr.)] - 5°,2 à 5°.4 ,66 à 16,08 (hydr.)]	SCHARDINGER (Monatsh. f. Ch., t. XI, p. 557; 1890).	
	$ \begin{array}{r} [\alpha]_{b} + 10^{\circ}, 29 \\ + 9^{\circ}, 16 \\ + 7^{\circ}, 77 \\ + 6^{\circ}, 03 \end{array} $	Eau $[c = 1,215 \text{ (anh.)}]$ Id. $[c = 2,43 \text{ (id.)}]$ Id. $[c = 4,86 \text{ (id.)}]$ Id. $[c = 12,15 \text{ (id.)}]$ Eau et alc. $(c = 4,86)$	chem. Soc., t. LXVII, p. 630; 1895).	
(de l'acide dr.)	(11103.)	Eau $[c = 4,2 \text{ (hydr.)}]$ Id. $[c = 6,2 \text{ (id.)}]$ Id. $[c = 8,6 \text{ (id.)}]$		
(de l'acide g.)	$ \begin{array}{c c} & [\alpha]_{D} + 7^{\circ}, 51 \\ & + 6^{\circ}, 84 \\ & (Id.) \end{array} $	Eau· [$c = 3,3$ (hydr.)] Id. [$c = 6,9$ (id.)]		

NOW ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Lactate amylique. C ³ H ³ O ³ .C ³ H ¹¹ (ac. dr.; alc. g.) Id. (ac. dr.; alc. inactif) Foir Amylique (lactate).	$[x]_{\bullet} - 3^{\circ}, 93$ $[x]_{\bullet} - 6^{\circ}, 38$	Pur. d = 0,9667 Pur. d = 0,9719	WALDEN (Zeits. f. physik. Ch., t. XVII, p. 721; 1895).
[z] _s — 8", 66	Pur. $d = 1,0414$	FRANKLAND et HENDERSON (Proc. chem. Soc. Lond., t. XI, p. 54; 1895).	
$[x]_{b}^{14}-13^{\circ},46$	$d_4^{14} = 1,0415$	Purdie et Williamson (J. of chem. Soc., t. LXIX, p. 827; 1896).	
Id. (de l'acide g.).	$(2)_{n} + 5^{\circ}, 47$ + 5", 39 + 21", 89	Pur. $d_4^{19} = 1,030$ Chloroforme $(c = 1,23)$ Id. $(c = 6,17)$ Benzène $(c = 1,19)$ Id. $(c = 5,94)$	t. LXVII, p. 917; 1895).
(de l'acide <i>dr</i> .)	[z] ₀ — 6°, 86	Pur. $d = 1,1017$	FRANKLAND et Henderson (loc. cit.).
	$ z _{b}^{13}-11^{\circ},1$	Pur. $d_4^{13} = 1,100$	WALKER (loc. cit.).
	$[\alpha]_{666}^{26} - 6^{\circ}, 67$ $[\alpha]_{666}^{26} - 6^{\circ}, 67$ $[\alpha]_{666}^{26} - 6^{\circ}, 67$ $[\alpha]_{666}^{26} - 7^{\circ}, 94$ $[\alpha]_{666}^{26}$	Pur. d ²⁰ = 1,08	GUYE et MELIKIAN (C. R., t. CXXIII, p. 1291; 1896). [Voir Table XVII (I.E)]. [Melikian (Thèse, Genève; 1896).]
Landate propylique. (.*!!''O' (: C (O).COO C*! ? (do l'acide dr.)	[z] ¹⁷ — 17°, 06	Pur. $d_4^{19} = 1,004$	WALKER (loc. cit., p. 918).
inninte (Aodtyl) Athylique. (All'O) (All'O)COOCTE (An Incide An)	[2] ₀ — 41°,47	Pur. d = 1,0527	FRANKLAND et HENDERSON (Proc. chem. Soc. Lond., t. XI, p. 54; 1895).
	[2]; - 49°, 87	Pur. $d_4^{19} = 1,0513$	Purdie et Williamson (J. of chem. Soc., t. LXIX. p. 828; 1896).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
-lactate (Acétyl-) méthylique.	[2] _D 43°, 41	Pur. d = 1,0957	FRANKLAND et HENDERSON (loc. cit.).
$C^6H^{10}O^4 =$ $CH^3.CH(O.C^2H^3O)COOCH^3$ (de l'acide dr .)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Guye et Melikian (loc. cit.). [Melikian (Thèse, Gonève; 1896).]
-lactate (Benzoyl-) éthylique. C ¹² H ¹⁴ O ⁴ = CH ³ .CH(O.C ¹ H ³ O)COOC ² H ³ (de l'acide dr.)	[α] _μ + 22°, 22	Pur. d = 1,1164	FRANKLAND of Henderson (loc. cit.).
méthylique. $C^*H^{14}O^4 =$ $CH^3.CH(O.C^4H^2O)COOCH^3$	$\begin{bmatrix} \alpha \end{bmatrix}_{666}^{20} - 30^{\circ}, 01$		Guye et Melikian (loc. cit.). [Melikian (Thèse, Genève; 1896).]
dlactique (acide). $C^3H^6O^3=$	$\begin{array}{c c} [\alpha]_{D} + 2^{\circ}, 8 \\ (moy.) \end{array}$	Eau (c=7 à 43)	Wislicenus (Lieb. Ann., t. CLXVII, p. 332; 1873).
CH3. CH (OH). CO OH [acide sarcolactique]	Eau $(c = 1)$ $\frac{d[\alpha]}{dt}$	$\begin{bmatrix} 148 + 0.0596c \end{bmatrix}$ $\begin{bmatrix} 1 & 40 \end{bmatrix} \begin{bmatrix} t = 11^{\circ}.5 \end{bmatrix}$ $= -0.057$ $\begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} t = 10^{\circ}.55 & 16^{\circ} \end{bmatrix}$	Hoppe-Seyler et Araki (Zeits. f. physiol. Ch., t. XX, p. 369; 1895). [Calculé d'après les résul- tats des auteurs].
lId.	$[\alpha]_{D}-4^{\circ},3$	Eau ($c = 64,8$)	SCHARDINGER (Monatsh. f. Ch., t. XI, p. 545; 1890).
	$ \begin{array}{c c} \hline [\alpha]_{\mathbf{D}}^{23,5} - 5^{\circ}, 86 \\ - 4^{\circ}, 72 \end{array} $	Eau ($c = 6,56$) Id. ($c = 12,43$)	Hoppe-Seyler et Araki (loc. cit.).
dlactique (anhydride) C*H'*O' [84 %] et Lactide. (C'H'*O') [16 %]	[a] _D — 85°, 9	Alcool (c = 19,54)	Wislicknus (loc. cit.).
Lactosammoniaque. (C ¹² H ²² O ¹¹)Az ll ³	[a] _b + 39°, 5	Eau (c = 10)	LOBRY DE BRUYN et VAN LEENT (Rec. Trav. chim. d. P. B., t. XIV, p. 137; 1895).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	. OBSERVATEURS.
Lactosanilide. C ¹² H ²¹ O ¹⁸ . Az H. C ⁶ H ⁵	[α] _B — 14", 19	Alcool 90 % (p = 5,23	SOROKIN [J. f. prakt. Ch. (2°5.), t. XXXVII, p. 306; 1888].
Lactose. C ¹² H ²² O ¹¹ +H ² O	$[\alpha]_{5}^{20} + 39^{\circ}, 1$ $3 + 43^{\circ}, 5$ $3 + 53^{\circ}, 3$ $3 + 65^{\circ}, 8$ $3 + 70^{\circ}, 0$ $3 + 80^{\circ}, 0$	Eau (p = 7 å 15)	STEINHRIL (Inaug. Dissert., Munich; 1889).
	$[\alpha]_{0}^{15} + [54, 54 - 0, 557c + 0, 05475c^{2} - 0, 001774c^{3}]$ Eau (c = 2 à 12)		HESSE (Lieb. Ann., t. CLXXVI, p. 200; 2875).
	$[\alpha]_{D} + [52,53 - 0,075 (t - 20)]$ $(t = 10^{\circ} \text{ à } 35^{\circ}) \text{ Eau } (p = 2 \text{ à } 36)$		Schmöger (Ber. d. D. ch. Ges., t. XIII, p. 1922; 1880).
	$[\alpha]_{D}$ + 82,91 (après 8 minutes) + 52,53 (après 24 heures) Eau ($c = 4,84$)		PARCUS et TOLLENS (Lieb. Ann., t. CCLVII, p. 160; 1890).
Lactose du lait de bussle (Tewsikose).	$[\alpha]_{b} + 48^{\circ}, 6 + 48^{\circ}, 7$	Eau Alcool	PAPPEL et RICHMOND (J. of chem. Soc., t. LVII, p. 758; 1890).
Lact. (α) (anhydre). Id. (β) id. Id. (γ) id.	$[\alpha]_{b}$ + 92°,6 + 56° + 34°,5	Eau Id. Id.	TANRET [Bull. Soc. chim. (3° s.), t. XV, p. 354; 1896]. [Schmöger (Ber. d. D. ch. Ges., t. XIII; 1880).]
Lactose octacétylé. C ¹² H ¹⁴ (C ² H ³ O) ⁸ O ¹¹	$[\alpha]_{\scriptscriptstyle D}$ $+$ 32° $+$ 31°	Alcool ($c = 2, 18$) Id. ($c = 9,68$)	Schützenberger [Bull. Soc. chim. (2° 5.), t. XII, p. 208; 1869].
	[a] _b — 3°,5	Chloroforme (p = 10)	Schmöger (Ber. d. D. ch. Ges., t. XXV, p. 1453; 1892).
Lactose octonitré. C ¹² H ¹⁴ (Az O ²) ⁸ O ¹¹	$[a]_{0}^{20}+74^{\circ},2$	Alc. méthyl. ($c = 2,8$)	WILL of LENZE (Ber. d. D. ch. Ges., t. XXXI, p. 83; 1898).
Lactose tétracétylé. C ¹² H ¹⁸ (C ² H ³ O) ¹ O ¹¹	[a] _b + 50°, 1	Eau ($c = 7,46$)	Schützenberger(loc.cil.).

NOM ET FORMULE.	POUVOIR rotateleo spécifique.	DISSOLVANT ET TENEUR.	548440000000000000000000000000000000000
C12 II 22 O10; Az2 (C6 H2) (C2 H2)	[a],—14°,6	Alc. méthyl. (p = 0,5)	
C12 H22 O14; Az2 (C4H2) (C1H11)	[x] _b — 8°,6	Id. (id.)	id.
Lactosebenzylphényl- C ¹² H ²² O ¹⁶ ; Az ² (C ⁶ H ⁵) (C ⁷ H ⁷)	[a], — a5", 7] Id. (id.)	Id.
Lactose (3) naphtylhy- drazone. C ¹² H ²² O ¹¹ ; Az ² H(C ¹⁶ H ¹)	[2], o" +7"	Alc. méthyl. (id.) Ac. acétique (id.)	Id.
Lactosine. C ³⁴ [[⁶³ O ³⁴	[2]b+211°,7	Eau (p = 2,91)	MRYRN (Ber. d. D. ch. Ges., t. XVII, p. 685; 1884). Planta et Schülze (id., t. XXIII; 1890).]
a 3Id.	$ [z]_{0}^{15} + 76^{\circ}, 2$ $ [z]_{0}^{15} + 38^{\circ}, 2$	Chloroforme (c = 2,37)	HRSSE (<i>Lieb. Ann.</i> , t. CCXXXIV, p. 243; 1886).
cLactucérol (acétate de). C"H"(C'H'O)O			
CarHar Va Or	[α] ¹¹ → 87°, 8	Chloroforme (c = 5)	HRBBR (<i>Lieb. Ann.</i> , t. CCLXXXII, p. 209; 1894).
Laudanine. C ²⁰ H ²⁵ Az O ⁴	[2];21.5 — 13°,5 — 11°,36	Chloroforme (c = 2) Eau + 2 Na OH (c = 1)	H B B B B (<i>Lieb</i> . Ann., t. CLXXVI, p. 101; 1875).
Laudanine (chlorhy- drate de). (C* H**AzO*) H Cl	ioactif		id.

CIP.(CH2)2.CII (OH).COOH

-,			
NOM ET PORMULE.	POUVOIR rotatoire specifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
	$[x]_b^{21,5} + 105^\circ, 00$ + 56°, 00	Alcool 97 %, (c = 2,79) Id. (c = 2) Chloroforme (id.) Eau + 2 H Cl (id.)	
Laurolène. C° H ¹⁴	[a] ^{16,0} — 23°,0	Pur. d10,4 = 0,8019	ABCHAN (Lieb. Ann.,) CCXC, p. 189; 1896).
Lavandol. Voir Linalol.			
alloLemonal.	$[\alpha]_{n}^{20} - 5^{\circ}, 1$	Pur. d ²⁰ = 0,9017	Stinne (J. f. prakt. Ch (2° n.), & LVIII, p. 87 1898].
dLeucine C*H ¹³ Az O ² == CH ² .(CH ²) ³ .CH(AzH ²).COOII (de la caséine)	[a], +- 17°, 54 +- 6", 65	H Cl à 10 $^{6}/_{6}$ ($c = 6,44$) Sol. de potasse 10 $^{6}/_{6}$ ($c = 5,64$)	MAUTHNER (Zeits, f. phy siol. Ch., t. VII, p. 228 1883).
(de l'hémoglobine)	[2] ₀ + 14°,3	H Cl	GMRUN (Zeits, f. physio Ch., t. XVIII, p. 20 1893).
(de la mélasse de betteraves)	[α] _* * ÷ 8", ο5	Solution de soude à $4^{4}/_{4}$ ($c = a,37$)	LANDOLT in VON LIPPMAN (Ber. d. D. ch. Ges., (2894).
	[2] ₀ + 17", 3	H Cl 20 */4 (c = 4,73)	SCHULTE et Bossman
/Id. (par fermentation de la Jeu- cine inact.)	[a]. — 17",5	Id. (id.)	t. X, p. 140, 1886).
de l'ac. aamidousobut ylacétique)	[2],-17°,4	id. (c = 4,37)	Schulze of Likingsin (Ber d. D. ch. Ges., t. XXIV p. 671; 1891).
Leucine (chlorhydrate d'éther éthylique de). (C'H''AzO')HCl	[a] _h + 18°,4	Alc. abs. (p = 5)	RÖRMANN (Ber. d. D. ch Ges., t. XXX, р. 1981 1897).
Leucique (acide). C'	[x], — 7°, 6		ld.

NOM ET FORMULE.	POUVOIR rotatoire »pécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Leucodrine. C15 H16()8(?)	[α] _n — 15°, 45	Alcool	Мвяск (Merck's Jahr., 1895, p. 3).
Leucoglycodrine. C ²¹ H ¹² () ¹⁰ (?)	[α] _D — 40°, 25	Eau	Id.
Lévoglucosane. C ⁶ II ¹⁰ O ⁵ (de la picéine)	$-71^{\circ},5$ $[\alpha]_{0}^{22,3}-70^{\circ},5$	Eau $(c = 2,28)$ Id $(c = 10)$ Id. $(c = 50)$ Alc. abs. $(c = 3,9)$ Étheracétique $(c = 3,57)$	TANRET { Bull. Soc. chim (3°8.), t. XI, p. 952; 1894 .
Lévoglucosane (acétate de). $C^{12}H^{16}O^{4} = C^{6}H^{7}O^{2}[O.C^{2}H^{3}O]$		Alcool	<i>ld.</i> , p. 954.
Lévoglucosane trinitré. C ⁶ H ¹ (Az O ²) ³ O ⁵	[α] ²⁰ —61°,4	Alcool (c == 2,4)	WILL et LENZE (Ber. d. D ch. Ges., t. XXXI, p. 87 1898).
Lévosine. (C ⁶ H ¹⁶ O ⁵) ⁴	I .	Eau ($c = 5$) e birotation) is influence)	TANRET [Bull. Soc. chim. (3° 8.), t. V, p. 726; 1891].
Lévosine triacétylée. C ⁶ H ⁷ (C ² H ³ O) ³ O ³	[a] ₀ — 18°	Chloroforme	Id.
Lévulane. (C ⁶ H ¹⁰ O ⁵)"	[a],— 221°	Eau (c = 5 à 3o)	VON LIPPMANN (Ber. d. D. ch. Ges., t. XIV, p. 1509; 1881).
β Lévuline . (C ⁶ H ¹⁰ O ³)"	[2] ₀ — : Eau	28°,6 à 28°,9 (c = 10)	SCHULZE et FRANKFURT (Ber. d. D. ch. Ges., t. XXVII, p. 3526; 1894).
(2)Lévulosane trinitré. C ⁶ H ² (Az O ²) ³ O ⁵	$[\alpha]_{\nu}^{20}+62^{\circ}$	Alc. méthyl. ($c = 1$)	WILL of LENZR (Ber. d. D. ch. Ges., t. XXXI, p. 77; 1898).
Id . (β.). D.	[2]10 20"	Alcool (c 5)	62

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.

Lévulosanilide. Voir Fructosanilide.

Lévulose. Voir Fructose.

Lévulosediacétone. Voir Fructosediacétone.

Licarène. C'' H''	$[\alpha]_{D}^{20,2} + 7^{\circ}, 85$ Pur. $d^{\circ} = 0.8445$	BARBIER (C. R., t. CXV) p. 993; 1893).
lLicaréol. C'' H''O	$[a]_{D}$ Pur. $d^{15} = 0.868$	Morin [Ann. de Ch. e Phys. (5° 8.), t. XXV p. 427; 1882].
	$[\alpha]_{0}^{15,1}$ — 18°, 35 Pur. $d^{15,4}$ = 0,8662	BARBIER (C. R., t. CXIV p. 674; 1892).
dId. Voir Coriandrol.		
	·	
Licarhodal. Voir Leme dLicarhodol. C H H O [dérivé du licaréol g.].	Faible rotation droite.	BARBIER Bull. Soc. chim. (3° s.), t. IX, p. 802; 1893].
dLicarhodol. C ¹⁰ H ¹⁸ O [dérivé du licaréol g.].		(3° s.), t. IX, p. 802; 1893].

dLimonène.	$[\alpha]_b^n + 106^\circ, 8$ Chloroforme ((p=14,38) WALLACH et CONRADY (Lieb. Ann., t. CCLII, p. 145; 1889)
7Id. C10 H16	$[\alpha]_{\rm b}^{10.5}$ — 105° Chloroforme	(p=14,3)

d.-Limonène (du carvène commercial).

Pur.
$$d_{+}^{20} = 0.8456$$
. $[\alpha]_{0}^{20} + 120^{\circ}, 47$.

	p.	ALC. ABS.	ALC. ORDIN.	CHLOROFORME.	AC. ACÉTIQUE.
	10	+113,43	+111,97	+115,67	+115,49
	20	+113,94	+112,89	+115,63	+113,71
	30	+114,47	+113,70	+116,84	+113,65
	40	+115,57	"	+117,33	+113,75
$t=20^{\circ C}$	50	+115,69	n	+117,60	+114,97(1)
	60	+116,37	"	+118,23	+116,35
	70	+116,72	"	+118,67	+116,04
	80	+117,77	"	+118,21(?)	+116,33
	90	+118,04	"	+118,73	+116,84
(1) p =	19,88.	**			

KREMERS (Amer. chem. J., t. XVII, p. 692; 1895).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Limonène (bromure de). C ¹⁰ H ¹⁶ Br ⁴ (de dlimonène).	$[\alpha]_{b}^{9}+73^{\circ},27$	Chlorof. $(p = 14, 24)$	WALLACH et CONRADY (Lieb. Ann., t. CCLII, p. 145; 1889).
Id. (de llimonène)	[2] ⁹ - 73°,45	Id. $(p = 12,85)$	

Limonène (chlorhydrate de). Voir Hydrochlorolimonène.

Limonène (chlorure nitrosé (a) de). C ¹⁰ H ¹⁶ (AzO) Cl (de dlimonène)	$[\alpha]_{0}^{9,8} + 313^{\circ}, 4$	Chlorof.	(p = 13,30)	Id. [Wallach (Lieb. Ann., t. CCXLVI, p. 224; 1888).]
Id. (de llimonène)	$ [\alpha]_{b}^{9} - 314^{\circ}, 8 $	Id.	(p=0,99)	
Id. (β) . (de d limonène)	$[\alpha]_{D}^{10,5} + 240^{\circ}, 3$	Id.	(p=5,34)	ld., p. 146.
(de llimonėne)	$ [\alpha]_{b}^{9.5}-242^{\circ},2 $	Id.	(p=1,00)	
Limonène-(a)-nitrolani- lide. Az O Az H (C ⁶ H ⁵) du chlorure nitrosé (a) de dlimonène) (Voir la suite au verso.)		Id. Id.	(p = 5,35) (p = 8,44)	WALLACH (Lieb. Ann., t. CCLXX, p. 182; 1892).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLV	ANT ET TENE	UR. OBSERVATEURS.
(du chlorure nitrosé (β) de dlimonène)	$[\alpha]_{b}^{19,2}+102^{\circ},25$	Id.	(<i>p</i> = 7,07)
(du chlorure nitrosé (a) de llimonène)	$[\alpha]_{D}^{19,4}$ — 102°, 62	ld.	(p=7,34)
Limonène-(β)-nitrolani- lide. Az O Az H (C ⁶ H ⁵) (du chlorure nitrosé (α) de	$[\alpha]_{0}^{24}-88^{\circ},33$	Id.	(<i>p</i> = 5,09) Id., p. 185.
dlimonène)				
(du chlorure nitrosé (β) de dlimonène)			(p = 4,30) (p = 5,13)	•
(du chlorure nitrosé (a) de llimonène)			(p=6,12))
Limonène-(a)-nitrolani- lide nitrosée. C ¹⁰ H ¹⁶ Az O Az (Az O) (C ⁶ H ⁵) (du composé droit)	$[\alpha]^{19,8}_{0}+46^{\circ},20$	Id.	(p = 4,21)) Id., p. 183.
Id. (du composé gauche)	$[\alpha]_{\nu}^{19,8}-47^{\circ},82$	Id.	(p = 4,29))
Id. (β).	inactive			
Limonène-(\alpha)-nitrolben- zylamine. Az () Az II (C'H') (de dlimonène)	$[\alpha]_0^{9,5} + 163^{\circ}, 8$	Id.	(<i>p</i> = 7,03	WALLACH et CONRADY (Lieb. Ann., t. CCLII, p. 147; 1889).
Id. (de llimonène)	$[a]^{9.5}_{\nu}$ — 163°,6	Id.	(p = 6.83))
Limonène - (2) - nitrolben- zylamine (azotate de). [AzO C ¹⁰ H ¹⁶ .AzH(C ¹ H ¹)]AzO ³ H (du composé droit)	[a] ¹¹ — 81°,5	Alc. éte	endu (<i>p</i> = 1,	o3) Id.
Id. (du composé gauche)	$[\alpha]_{0}^{11,5} + 81'',0$	Id.	(p == 1,	02)

Id.

				•
NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT	ET TENEUR.	OBSERVATEURS.
Limonène-(a)-nitrolben- zylamine (chlorhydrate de). [AzO.C ¹⁰ H ¹⁶ .AzH(C ¹ H ¹)]HCl (du composé droit)		Id.	(p=3,97)	Id.
Id. (du composé gauche)	$ [a]_{D}^{10,5}+83.,06$	Id.	(p=3,27)	
Limonène - (2) - nitrolben- zylamine (dtartrate de). [AzO.C ¹⁰ H ¹⁶ .AzH (C ¹ H ¹)] ² C ⁴ H ⁶ O ⁶ (du composé droit)	[α] ^{19,7} — 49°,93	Id.	(p=1,13) I	d., p. 148.
Id. (du composé gauche)	$[\alpha]_{D}^{10} + 69^{\circ}, 6$	Id.	(p=1,38)	
Limonène-(a)-nitrolben- zylamine (ltartrate de). [AzO.C ¹⁶ H ¹⁶ .AzH(C ⁷ H ¹)] ² C ⁴ H ⁶ O ⁶ (du composé droit)	$[\alpha]_{D}^{10,5}-69'',9$	Id.	(p = 0,97)	ld.
Id. (du composé gauche)	$[\alpha]_{\nu}^{11} + 51^{\circ}, o$	Id.	(p=1,12)	
Limonène-(α)-nitrolpipé- ridine. $C^{10}H^{16} \stackrel{Az O}{\subset ^{5}H^{10}}$ (de d limonène)	$[\alpha]_{D}^{11} + 67^{\circ}, 75$	Chlorof.	$(p=3,15) \mid l$	d., p. 146.
•			•	

Limonène-(
$$\beta$$
)-nitrolpipé-
ridine.

C¹⁰ H¹⁶

C³ H¹⁰

(de d.-limonène)

[α]₀^{9,3} — 60°, 48
(du chlorure
nitrosé α)

[α]₀¹² — 60°, 37
(du chlorure
nitrosé β)

Id. ($p = 3,11$)

(du chlorure
nitrosé β)

(de l.-limonène)

[α]₀^{12,5} + 60°, 18| Id. ($p = 3.05$)

NOM ET FORMULE.	POUVOIR rotatoire specifique.	DISSOLVANT ET TENEUR.	observateurs.	
Linalol. C'OHITO (de l'essence de bergamote)	$[\alpha]_{b}^{20}-10^{\circ},14$	Pur. d ²⁰ = 0,8712	SEMMLER et TIEMANN (Ber. d. D. ch. Ges., t. XXV, p. 1183; 1892).	
(de l'essence de lavande) [Lavandol]	$[\alpha]_b^{20}$ — 10°,57	Pur. $d^{20} = 0.8672$	ld., p. 1187.	
	$[\alpha]_{p}^{15}-12^{\circ},13$	Pur. $d^{15} = 0.8725$	BERTRAM et WALBAUM [J. f. prakt. Ch. (2° s.), t. XLV, p. 597; 1892].	
(de l'essence de linaloës)	$[\alpha]_{b}^{13,4}-11^{o},93$	Pur. d ⁶ = 0,8869	BARBIER [Bull. Soc. chim. (3° 8.), t. IX, p. 1003; 1893].	
Lithofellate de baryum. (C ²⁰ H ³⁵ O ⁴) ² Ba + 10 H ² O	[a] _b + 19°,68	Eau	ROBTER (Gazz. chim. ital., t. IX, p. 364; 1879).	
Lithofellate de sodium. C ¹⁰ H ³⁵ O ⁴ . Na	[α] _b + 18", 16	Eau	Id.	
Lithofellique (acide). C ²⁶ H ³⁶ O ⁴	[a] _b + 13°, 76	Alcool	Id.	
dLupanine (sulfocya- nate de). (C ¹⁵ H ²⁴ Az ² O) HC Az S	$[\alpha]_{\nu}^{20} + 47^{\circ}, 1$	Eau	DAVIS (Inaug. Dissert., Marburg, 1896).	
/Id.	$[\alpha]_{\nu}^{20}-47^{\circ},1$	l Id.	-	
Lupéol. C ²⁶ H ⁴² O	[2] ₀ + 27°	Chlorof. (c = 9,97)	LIKIERNIK (Ber. d. D. ch. Ges., t. XXIV, p. 183; 1891).	
Lupéose. (C ¹² H ²² O ¹¹)* (desséchée a 100°)	$[\alpha]^{22}_{\nu} + 138^{\circ}$	Eau (c = 5)	SCHULZE (Ber. d. D. ch. Ges., t. XXV, p. 2218, 1892).	
Id. [desséchée à 115° (com- mencement d'altération).]	[a] ₀ + 148°, 7	Eau (c = 10)	STEIGER (Ber. d. D. ch Ges., t. XIX, p. 827 1886).	
	$ \alpha _0 + 150^\circ$		Schulze (loc. cit.).	

TABLE XVIII. - POUVOIRS ROTATOIRES DES CORPS LIQUIDES OU DISSOUS.

NOM ET FORMULE.	POUVOIR rotatuira specifique.	DISSOLVANT ET TENEUN.	OBSERVATEURS.
Lupinine. C ²¹ H ⁴⁴ Az ² O ²	[a] ₀ — 20° — 23°, 12 — 26°	Eau $(c = 0.95)$ Id. $(c = 1.58)$ Id. $(c = 3.16)$	BEREND (Arch. d. Pharm., t. CCXXXV, p. 161; 1897).
	[2],1 - 19*	1	(GERHARD (Id., p. 341).
Lupinine (chlorhydrate de). (C ²¹ H ⁴⁴ Az ² O ²)IICl	[x] _u — 14°	Eau (c = 2)	BEREND (loc. cit.).
C ²¹ H ²⁴ Az ² O ⁴ + 2 H ² O	[α] _e + 31°,5	Alcool (p = 10)	DRAGENBORFF et SPORN (Pharm. Zeit. f. Russ- iand, t. XXIII; 1881).
Lycaconitine (azotate de). Lyc AzO ³ H	[a] _n + 19°,4		Id.
Lycoctonine. C**H**Az**O* +- }H**O	[2] ₀ + 46",4		Id.
Lyxonique (lactone). C'H'O'	[2]e+82°,4	Eau (p = 9,78)	E. Fischer et Bromberg (Ber. d. D. ch. Ges., t. XXIX, p. 583, 1896).

Malamide. Voir Malodiamide.

Malanile. Voir Phénylmalimide.

Malate acide d'ammo- nium. (C'H'O') Az H'		(p = 23,025) 1 à 21° Baumé p = 26,8)	PASTEUR [Ann. de Ch. et Phys. (3* s.), t. XXXI, p. 85; 1851].
(de l'acide ordinaire)		u (c = 6,5)	LANDOLT (Breh -Verm., 170 éd., p. 201; 1879).
		1,028799] 1 94)	, t.
(de l'acide droit)	$[x]_{b}^{13} + 6^{\circ}, 3a$	Eau (p = 8,12)	BREMER (Ber. d. D. ch. Ges., t. XIII, p. 352; 1880).

Malate acide de cinchonine. Voir Cinchonine (malate de).

NOM ET FORMULE.	POUVOIR rotatoire spécifique	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Malate acide de lithium. C'H'O'. Li		[Schneider (loc.cit., p.272).
Malate acide de po- tassium. C ¹ H ³ O ³ . K	1 ' '	,63 + 0,0556 q q = 73 à 91)	/d., p. 267.
Malate acide de sodium. C'11°O°. Na		$q = 39 \ a \ 80)$	1.1., p. 269.
Malate acide de zinc. (C ⁴ H ² O ⁵) ² Zn ++ 2H ² O	• •	1,55 0,297 c] 6,16 û 19.6)	TRAUBE (N. Jahrb. f Min., BeilB. XI, p. 626; 1898).
Malate d'ammonium. C'H'()3(AzH')2	1	$q = 37 \ \text{à} \ 83)$	Schneider (loc.cit., p.273).
Malate d'ammonium et d'antimonyle. C'H'O'(SbO)(AzH')	[α] ¹ ; + 115',47	Eau (p = 6,845)	PASTEUR [Ann. de Ch. et Phys. (3° s.), t. XXXI, p. 81; 1851].
Malate de baryum. (C ⁴ H ⁴ O ⁵)Ba (de l'acide ordinaire)	$ \begin{array}{c c} & 2^{-1} - 2^{-1}, 58 \\ & + 4^{-1}, 69 \\ & + 8^{-1}, 05 \\ & + 8^{-1}, 18 \end{array} $	Id. $(p = 4.99)$ Id. $(p = 8.50)$ Id. $(p = 9.38)$	Schneider (loc.cit., p.277).
(de l'acide droit).	$\frac{[\alpha]_0^{20} + 7^{\circ}, 1}{[\alpha]_0^{20} - 7^{\circ}, 0}$	Eau (c == 20) Id. (id.)	WALDEN of LUTZ (Ber. d. D. ch. Ges., t. XXX, p. 2796; 1897).
Malate de calcium. (C ⁴ H ⁴ O ²)Ca + 5 H ² O	$\frac{ [\alpha]_{J}^{22} + 10^{\circ},88}{ [\alpha]_{J}^{17} - 4^{\circ},34}$	1	PASTEUR (loc. cit.).
Malate de lithium. (C'H'O')Li ²	, ,	0,68219+0,0028789 ²] y - 60 à 94)	Schneider (loc.cit., p.273).
Malate de potassium. (C'H'O')K ²	Eau ($q - 38 \stackrel{.}{a} = 91$ $q - 38 \stackrel{.}{a} = 91$ $p = \frac{16.29}{90} = -6.57 \stackrel{.}{ } = 23.25$ $q = 22 - 5.85 \stackrel{.}{ } = 33.86$	t

POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
$[\alpha]_{\nu}^{22}-7^{\circ},64$	Eau $(c = 15,98)$	LANDOLT (DrchVerm., 120 éd., p. 221, 1879).
		Schneider (loc.cu., p.271).
+0	0,000 076 55 p³]	(2° s.), t. XXXV, p. 153; 1887]. [Formule calculée d'après
— 4°,05	Id. $(p=19,23)$	les nombres de l'auteur.]
+ 1°,99	Id. $(p=18,71)$	
$\begin{bmatrix} \alpha \end{bmatrix}_{\mathbf{p}}^{10} \cdot \begin{bmatrix} \alpha \end{bmatrix}_{\mathbf{p}}^{20}$	$\begin{array}{c c} \hline \\ \hline $	THOMSEN (Ber. d. D. ch. Ges., t. XV, p. 443; 1882).
-5,30 $-6,3$	36 -7,41 19,51	
	$[\alpha]_{b}^{22} - 7^{\circ}, 64$ $[\alpha]_{b}^{20} + [15,20 - 6]$ Eau ($[\alpha]_{b}^{20} - [6,42 + 6]$ + 6 $[\alpha]_{b}^{20} - 6^{\circ}, 56$ $- 4^{\circ}, 05$ $+ 0^{\circ}, 37$ $[\alpha]_{b}^{20} - 5^{\circ}, 09$ $+ 1^{\circ}, 99$ $+ 10^{\circ}, 74$ $[\alpha]_{b}^{10} \cdot [\alpha]_{b}^{20}$ $-5^{\circ}, 98$ $-5^{\circ}, 30$ $-6^{\circ}, 3$	

Dissolutions aqueuses (t = 20).

couleur.	LONG. D'ONDE.	p = 5,47.	p = 14,54.	p = 29,17.	p = 36,50.	p = 46,09.
	44	•		•	•	•
Rouge	666"	-6,87	6,21	-4,14	-1,91	-0,39
Jaune (D)	589	-8,28	— 7,34	-4,95	-2,16	-0,21
Vert	533	-10,49	- 9,02	-6,00	-2,16	+0,31
Bleu clair	489	-10,75	- 9,65	-6,24	-1,71	+1,03
Bleu foncé	448	-11,81	-10,37	-6,66	—1,25	+2,27

NASINI et GENNARI [Gazz. chim. ital., t. XXV (II), p. 422; 1895].

[Voir Table XVII, I.E.]

1.-Malate diamylique.

C14 H26 O5 =

CH (OH) - CO OC5 H11

CH2 - CO OC5 H11

(ac. g., alc. rac.)

[
$$\alpha$$
]_0^2 - 9^0, 92

(ac. g., alc. rac.)

Pur. $d_4^{20} = 1,079$

Pur. $d_4^{20} = 1,079$

[α]_0 = 1,0176

[α]_0 = 1,0176

[α]_0 = -6^0, 88

(ac. g., alc. g.)

Pur. $d_4^{20} = 1,079$

[α]_0 = 1,0176

[α]_0 = 1,0176

[α]_0 = -6^0, 88

(ac. g., alc. g.)

NOM ET FORMULE	POUVOIU rotataire spécifique.	DISSOLVANT ET TENEUR.	ODSERVATEURS.
tMalate di-abutylique. C'2H22O2 == C'H'O2(CH2.CH2.CH2.CH2)2		Pur. $d_1^{29} = 1,0382$	A N B C H C T Z et R E I T T E H (Zelts. f. physik. Ch., t XVI. p. 495; 1895).
	[α], 12°, 20	Pur. di = 1,0494	of chem. Soc., t. LXIX. p. 823; 1896).
L-Malate di-L-butylique. C"H"O" = C'H"O"[CII".CII; (CH")"]		Pur. d16 = 1,0418	WALDEN (Zeitz, f. physik, Ch., t. XVII, p. 249; 1895).
1Malate dicaprylique. C** H** O* = C* H** O* (C* H**)*	[2]34-64,92	Pur. d;*=0,9761	ld.
L-Malate diéthylique. C'III ¹⁴ O' = C'II ¹ O ⁵ (C'H ¹) ²	[z]; — 10°,645	Por. d:0=1,1280	Anachütz et Reitter (loc.
	[#];* ~ 10", 18	$d_4^{16} = 1,1294$	WALDEN (loc. cit.).
	[x ;"-12",42	di1=1,1394	PURDIR of WILLIAMSON (loc. cit.).
	$[x]^{666} - 7^{\circ}, 78$ $= 5 - 9^{\circ}, 60$ $= 533 - 11^{\circ}, 51$ $= 613 - 12^{\circ}, 43$ $= 614 - 12^{\circ}, 43$ $= 616 - 16^{\circ}, 619^{\circ}$	d=1,152	GUYE et Jondan (C. R. t. CXXII, p. 88); (896). Foir Table XVII (I.B.)].
/Malate diméthylique. $C^{3}H^{10}O^{3} = C^{3}H^{3}O^{3}(CH^{3})^{3}$	$[\pi]_n^{24}-6^4,88$	Pur. d20 = 1,2334	Anschütz et Reitter (loc.
	[2] ²⁴ 6°, 85	$d_4^{29} = 1 \ 2337$ $d_4^{11} = 1,2397$	WALDEN (loc. cit.).
	[z] ¹¹ -7",34	$d_4^{11}=1,2397$	PURDIE of WILLSAMSON (loc. cit.).
/Malate di-n -propylique.	[z] ₀ 10 — 11",60	Pur. d20 = 1,0736	Anschütz et Reitter (foc.
Callada car car cara	[x],00-11°,62	di=1,0745	WALDEN (toc. cit.).
C'H'O'(CH', CH', CH')	[a], - 13°, 70	d:1= 1,0787	PURDIE of WILLIAMSON (loc. cit.).
/ -Malate di-t -propylique. C'*H'*O* = C'H'*O* [CH ; (CH*) 2]2	{ z };	Pur. $d_1^{26} = 1,076$	WALDEN (loc. cit.).

NOM ET PORMULE.	POUVOIR relajoire spécifique.	DISSOLVANT ET TENEUR	
/malate (Acétyl-) di-nbutylique. C''H24O* = CH2,CO.O .CH .COO(CH2)2CH2 CH2,COO(CH2)2CH2	[a];*—19*,925	Pur. d; = 1,0430	Ansonurs of Reitter (foc. cit.).
L-malate (Acétyl-) C'H²' C'H²O'[CH².CH:(CH²)²]²	[α] ²⁺ — 21°,88	Pur. d2* = 1,0362	WALDEN (<i>loc. cft.</i> , p. 252).
imalate (Acétyl-) diéthylique.	[a] ²⁺ — 22*,60	Pur. di*= 1,1169	Ansanutz et Reitten (loc. eit.).
C ₁₀ H ₁₀ O ₀ =	[z] ²⁺ - 22*,52	d ₁ ²⁰ = 1,1168	WALDEN (foc. eff.).
(C ₃ H ₃ O)C ₄ H ₃ O ₄ (C ₃ H ₄) ₃	[a]01 - 23°,00	$d_4^{10} = 1,1168$ $d_4^{12} = 1,1237$	Pundie et Williamson (toc. cit.).
lmalate (Acétyl-)	[α] ¹⁰ — 22°, 86	Pur. d'a=1,1983	Anschütz et Reitten (loc.
(C ₂ H ₂ O)C ₄ H ₂ O ₇ (CH ₂) ₂ C ₄ H ₁₃ O ₇ =	[α] ₀ ¹⁴ — 22°,92	d14=1,1975	WALDEN (loc. cit., p. 256).
lmalate (Acétyl-)	[a]14—22°,675	Pur. d20 = 1,0729	Anscrütz et Reitter (loc. elt.).
Imalate (Acétyl-) C'; H'' O' = (C'; H'' O) C'; H'' O' (CH'', CH'', CH'')'	[a]10-22°,85	d10=1,0724	WALDEN (loc. clt., p. 253).
Imalate (Bromacétyl-) di-nbutylique. C'' 112 Br O' z CH'Br.CO.O.CH COOC'H' CH'. COOC' 11		Pur. $d_4^{20} = 1,2022$	WALDEN (loc. cft., p. 262).
/malate (diéthylique. C ¹⁰ O ¹³ Br O ⁴ — C ² H ² Br O . C ⁴ H ² O ³ (C ² H ³)-	[a] ²⁰ aan, 48	Pur. d20 = 1,3936	ld., p. 361.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
lmalate (Bromacétyl-) diméthylique. C'H'BrO = C'H'BrO.C'H'O'(CH')	$[\alpha]^{20}_{\mu} - 23^{\circ}, 30$	Pur. $d_4^{20} = 1,3062$	<i>Id.</i> , p. 260.
lmalate (Bromacétyl-) di-npropylique. $C^{12}H^{19}BrO^6 =$ $C^2H^2BrO.C^4H^3O^5(C^3H^1)^2$		Pur. $d_4^{20} = 1,3150$	Id., p. 262.
lmalate (2Bromobu- tyryl-) diéthylique. C ¹² H ¹⁹ BrO ⁶ = C ² H ³ .CHBr.CO.O .CH.COOC ² H ³ CH ² .COOC ² H ³	$[\alpha]_{b}^{20}-24^{\circ},76$	Pur. $d_4^{29} = 1,3059$	Id.
lmalate [aBromo-ibu- tyryl-] diéthylique. $C^{12}H^{19}BrO^6 =$ $(CH^3)^2: CBr.CO.O$.CH.COOC ² H ³ $CH^2.COOC^2H^3$	$[\alpha]_{b}^{2^{\bullet}}-22^{\circ},57$	Pur. $d_4^{20} = 1,2850$	Id.
malate (Bromo-). Voir B	Bromomalate.		
Imalate (2Bromopro- pionyl-) diéthylique. C ¹¹ H ¹¹ Br O ⁶ = CH ³ .CH Br .CO .O .CH .CO O C ² H ⁵ CH ² .CO O C ² H ⁵	[2] ²⁰ —22°,48	Pur. $d_4^{20} = 1,3325$	/d., p. 261.
lmalate (nButyryl-) dibutylique. C ¹⁶ H ²⁸ O ⁶ = C ² H ⁵ . CH ² . CO. O . CH. CO O C ⁴ H ⁹ CH ² . CO O C ⁴ H ⁹	[a] ²⁰ — 21°,68	Pur. d ₄ ²⁰ = 1,0146	ld., p. 252.

NOM ET FORMULE.		DIBBOLVANT BT TENEUR.	OBSERVATEURS.
lmalate (nButyryl-)	•	Pur. $d_4^{10} = 1,0736$	Id., p. 259.
CH ₂ , CO O C ₂ H ₂ CH ₃ , CO O C ₃ H ₃		$d_1^{11} = 1,0792$	Pundik et Williamson (loc. cit., p. \$25).
### ### ##############################	[#] ²⁰ 21°,99	Pur. $d_4^{29} = 1,0688$	Walden (loc. clt., p. 259).
Imalate (nButyryl-) diméthylique. C™H™O° = C™H™OCO CH™ CH . COO CH™	[2] ₆ ²⁴ —22°,44	Pur. $d_4^{2\phi} = 1,1317$	id.
imalate (iButyryl-) diméthylique. C¹*H¹*O¹* = (CH²)²;CH.CO.O .CH.COOCH² CH².COOCH²	[α] ²⁴ — 22°,36	Pur. $d_4^{20} = 1,1255$	id., p. 260.
### ### ##############################	[x]20 220, 40	Pur. di=1,0417	ld., p. 256.
/malate (Chloracétyl-) diméthylique. C*H**ClO* -= CH**Cl.CO.O.CH . CO O CH- CH**, CO O CH-		Pur. $d_4^{tv} = 1,3062$	id., p. 260.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
/malate (Chloracétyl-) dipropylique. C'2H'2ClO.C'H2O'(C'H1)2	[x];• — 23°,52	Pur. $d_4^{20} = 1,1566$	<i>ld.,</i> p. 258.
-malate (Chloro-). Voir Ch -malate (Nitro-). Voir Nit	_		
lmalate (Propionyl-) diéthylique. C'' H'' O' = C'' H' . COOC' H' CH' . COOC' H'		Pur. $d_4^{20} = 1.0958$	ld., p. 256.
/malate (Propionyl-) diméthylique. C'H''O' = C'H'O' (CH')'	[z], • — 22°, 94	Pur. $d_4^{20} = 1,1609$	ld., p. 258.
/malate (iValéryl-) dibutylique. C ¹⁷ H ³⁰ O ⁴ = (CH ³) ² ; CH. CH ² . CO.O .CH. COOC ⁴ H ⁹	[α] ^{2•} — 19 ⁰ , 91	Pur. $d_4^{20} = 1,0045$	ld., p. 256.
$l. ext{-malate} \ (i. ext{-Valéryl-}) \ ext{diéthylique}. $ $C^{13}H^{22}O^{6} = C^{5}H^{3}O \cdot C^{4}H^{3}O^{2}(C^{2}H^{5})^{2}$	[α] ₀ ^{2•} — 22",07	Pur. $d_4^{20} = 1.0605$	Id., p. 261.
lmalate (iValéryl-) diméthylique. $C^{11}H^{18}O^{6} = C^{5}H^{9}O.C^{4}H^{3}O^{5}(CH^{3})^{2}$	$[\alpha]_{D}^{20}-22^{\circ},39$	Pur. $d_4^{20} = 1,1034$	Id., p. 260.

l.-malate (i.-Valéryl-) $|[x]_0^{20} - 21^{\circ}, 68|$ Pur. $d_4^{20} = 1,0263$ | Id., p. 259.

dipropylique.

 $C^{5}H^{5}O \cdot C^{4}H^{4}O^{5}(C^{3}H^{4})^{2}$

 $C^{15}H^{26}O^{6} =$

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.	
Malide. C*H*O* = CO.CH2.CH.COOH O O COOH.CH-CH2-CO	[α] _D — 39°,5	Acétone (p = 12,5)	ABERSON (Ber. d. D. ch. Ges., t. XXXI, p. 1438; 1898).	
Malide diéthylique. C ⁸ H ⁶ (C ⁷ H ⁵) ² O ⁸	[a] _b — 30°,9	Benzène ($p = 2,5$)	ld.	
Malique (acide). C'H'O' = CH(OH).COOH	[a];° — 5°, o	Eau	PASTEUR [Ann. de Ch. et Phys. (3° s.), t. XXXI, p. 81; 1851].	
· CH ¹ .COOH l. (du sorbier)	[a] ₀ — 3°, 3	Eau	BREMER [Bull. Soc. chim. (2° 8.), t. XXV, p. 6;	
d. (par l'ac. tartrique dr.)	$[\alpha]_{\scriptscriptstyle D}+3^{\scriptscriptstyle O},2$	Eau	1876].	
l. (du sorbier)	$[\alpha]_{\text{n}}$ -5^{n} , 34	Acétone ($c = 13,3$)	WALDEN (Ber. d. D. ch.	
l. (de l'asparagine ordin.)	$[\mathring{a}]_{D}-5^{\circ}$	Acétone ($c = 13,3$)	Ges., t. XXVIII, p. 2771; 1895).	
l. (du sorbier)	$[\alpha]_{\scriptscriptstyle D}$ — $2^{\scriptscriptstyle 0}$, 78	Alç. méthyl. ($c = 30$)	Id., t. XXIX, p. 137; 1896.	
d. (de l'ac. chlorosuccinique dr.)	$[\alpha]_{D} + 5^{\circ}, 2 + 2^{\circ}, 92$	Acétone ($c = 16$) Alc. méthyl. ($c = 30$)		
l. (ordin.)	$[\alpha]_{D}-9^{\circ},8$	Acétone ($c = 10$)	WALDEN et LUTZ (Ber. d.	
d. (de l'ac. aminosuccinique)	$[\alpha]_{D}+9^{\circ},3$	Acétone $(c=9,4)$	D. ch. Ges., t. XXX, p. 2798; 1897).	
Ac. dmalique. (des Crassulacées)	$[\alpha]_{b} + 9^{\circ}, 8 + 9^{\circ}, 8$	Eau $(p = 7,38)$ Id. $(p = 17,57)$	ABERSON (Ber. d. D. ch. Ges., t. XXXI, p. 1438; 1898).	

Acide malique (du sorbier).

1º Dissolutions aqueuses.

2. — Pouvoir rotatoire pour la raie D.

$$[\alpha]_{\nu}^{20} = +[5,89-0,0896q] (q = 30 å 92)$$
Schneider (Lieb. Ann., t. CCVII, p. 263; 1881).
$$[\alpha]_{\nu} = -[2,23-0,062c] (c = 1,3 å 8,2).$$

$$[\alpha]_{p}^{t} = -[2,66 - 0,0812p] - [0,031 + 0,00092p] (t - 20^{\circ})$$

 $(p = 21 \text{ à 54}) (t = 10^{\circ} \text{ à 30°}).$

THOMSEN (Ber. d. D. ch. Ges., t. XV, p. 443; 1882).

(Calculé d'après les nombres de l'auteur.)

β. Dispersion pour les filtres Landolt. (Voir Table XVII, I. E., p. 791).

couleurs.	LONGUEURS d'onde.	$[a]_{b}^{20}(q=49 \text{ à } 93).$
		
Rouge	666 ^{µµ}	+[4,605-0,0709q]
Jaune	592	+[6,544-0,0957q]
Vert	533	+[8,349-0,1128q]
Bleu clair	489	+[10,121-0,1298q]
Bleu foncė	448	+[14,971-0,1730q]

Woringer in Landolt (Dreh. Verm., p. 137, 20 éd.; 1898).

<i>t.</i>	p .	novue (666).	D (589).	VERT (533).	BLEU CL. (489).	BLEU F. (448).
20°	4,61 8,23 16,24	— 1,87 — 1,09 — 1,28	- 1,17 - 1,09 - 1,46	- 2,56 - 1,08 - 1,30	- 2,45 - 1,09 - 0,91	- 2,51 - 1,08 - 0,36
	16,84	— 1,07	— 1,28	— 1,o <u>5</u>	— o,62	± • .
	20,74	— o,84	— 1, 00	— 0,73	— o, <u>4</u> o	+ 0,41
	25,67	— 0,94	— 0,81	— o,69	— o,39	+ 0,14
	27,40	— o,95	— 0,80	-· o,68	- 0,40	± o
ļ	28,72	 	- 0 ,67	— 0,46	— 0,22	+ 0,29
	30,02	\parallel - 0,51	- 0,42	— 0,05	+ 0,29	+ 0,72
Ì	33,24	- 0,41	— o,31	+ 0,07	 0,46	+ 0.86
	34,27	— o,18	+ 0,07	+ 0,51	+ 1,64	+ 2,20
	41,57	+ 0,13	+ 0,48	+ 1,04	+ 1,52	+ 2,36
	42,80	+ 0,19	+ 0,55	+ 1,18	+ 2,08	+ 3,29
	59,02	+ 1,35	+2,08	+ 3,05	+ 4,21	+5,63
	72,79	+ 1,80	+ 2,86	- 3,90	+ 5,20	+ 6,39
7"···	33,24	+ 0,44	+ 0,78	+ 1,48	+ 1,97	+ 2,63
20°	Id.	- 0,41	— o,31	+ 0,07	+ 0,46	+ 0,86
41°,5	Id.	-5,96	- 6,93	— 7,57	- 6,24	- 5,84

NASINI et GENNARI [Gazz. chim. ital., t. XXV (II), p. 422; 1895].

2º Autres liquides.

$$[t=20^{\circ}].$$

LIQUIDE.	p.	ROUGE (666).	D (589).	VERT (533).	BLEU CL. (489).	BLEU F. (448).
Alc. éthyl	21,4	5°,73	– 7,09		- 9,71	— 10°,32
Alc. méthyl	15,83 25,0 52,42	- 7,17 - 5,39 - 0,85	- 8,76 - 6,98 - 0,65	- 10,88 - 8,14 - 0,30	- 11,33 - 8,88 + 0,33	- 11,72 " + 1,70
Alc. propyl	21,145	_ 3,3o	— 3,62	— 3,92	3,88	- 3,07
Acétone	22,0	— 4.93	— 6,01	7,10	— 7,53	— 8,90

3° Influence des acides.

n molécules acide pour 1 molécule C'H6O5.

EAU ET SO4 H2.

EAU ET C'H'O'.

p.	n.	$[\alpha]_b^{20}$.	p.	n.	[a]2.
6,76 6,59 6,44	0,5 1,0 1,5	- 1,33 - 0,76 - 0,20	10,04 8,20 6,00	5 10 20	- 1,35 - 0,57 + 0,13
6,29 6,15	2,0 2,5	+ 0,21 + 0,84	5,29	25	+ 0,13

Schneider (Lieb. Ann., t. CCVII, p. 280; 1881).

EAU ET ACIDE BORIQUE.

$$(p = 30,74) (t = 20^{\circ C_{\cdot}}).$$

C gr. acide borique pour 100°.

C.	nouge (666).	D (589).	VERT (533).	BLEU CLAIR (489).	BLEU FONCÉ (448).
	•	•	•	•	•
o	— 0,70	— o,69	 0,58	— 0,06	+ 0,85
0,2	— o,78	- ∘,74	— o,58	- o,26	+ 0,71
0,4	— 1,33	— 1,5 0	— 1,47	— 1,39	- 0,74
1,6	— 1,65	— 1,87	— 2,08	- 1,94	— 1,37

β. Dispersion pour les filtres Landolt. (Voir Table XVII, I. E., p. 791).

couleurs.	LONGUEURS d'onde.	$[\alpha]_{b}^{20}(q=49 \text{ à } 93).$
	μμ	
Rouge	666 ^{µµ}	+[4,605-0,0709q]
Jaune	592	+[6,544-0,0957q]
Vert	533	+[8,349-0,1128q]
Bleu clair	489	+[10,121-0,1298q]
Bleu foncė	448	+[14,971-0,1730q]

Woringer in Landolt (Drch. Verm., p. 137, 20 éd.; 1898).

						_
t.	p.	ROUGE (666).	D (589).	VERT (533).	BLEU CL. (489).	BLEU F. (448).
20°	4,61	— 1°,87	- i,17	- 2,56	- 2,45	- 2,5 ₁
	8,23	— 1,09	— 1,09	— 1,08	- 1,09	- 1,08
	16,24	— 1,28	— 1,46	— 1,30	— 0,91	— 0,36
Ì	16,84	— 1,07	-1,28	— 1,05	— o,62	± o .
	20,74	- 0,84	— 1,00	— 0,73	- 0,40	+ 0,41
	25,67	— 0,94	— o,81	 0,69	— 0,39	+ 0,14
	27,40	— o,95	— o,8o	-· o,68	— 0,40	± 0
	28,72	— o,79	— o,67	— 0,46	— 0,22	+ 0,29
	30,02	- o,51	 0,42	— 0,05	+ 0,29	+ 0,72
	33,24	- 0,41	— o,31	+ 0,07	- 0,46	+ o,86
	34,27	- o,18	+ 0,07	+ 0,51	+ 1,64	+ 2,20
	41,57	+ 0,13	+ 0,48	+ 1,04	+ 1,52	+2,36
	42,80	+ 0,19	+ 0,55	+ 1,18	+ 2,08	+3,29
	59,02	+ 1,35	+ 2,08	+ 3,05	+ 4,21	+5,63
	72,79	+ 1,80	+ 2,86	→ 3,90	+ 5,20	+ 6,39
7°···	33,24	+ 0,44	+ 0,78	+ 1,48	+ 1,97	+ 2,63
20°	Id.	- 0,41	— o,31	+ 0,07	+ 0,46	+ 0,86
41°,5	Id.	_ 5,96	- 6,93	— 7,57	— 6,24	- 5,84

NASINI et GENNARI [Gazz. chim. ital., t. XXV (II), p. 422; 1895].

2º Autres liquides.

$$[t=20^{\circ}].$$

LIQUIDE.	p.	ROUGE (666).	D (589).	VERT (533).	BLEU CL. (489).	BLEU F. (448).
Alc. éthyl	21,4	— 5°,73	– 7,09	— 9,01	- 9,71	— 10,32
	15,83	— 7,17	- 8,76	— 10,88	- 11,33	- 11,72
Alc. méthyl	25,0 52,42	- 5,39 - 0,85	— 6,98 — 0,65	- 8,14 - 0,30	$-8,88 \\ + 0,33$	+ 1,70
Alc. propyl			$\phantom{00000000000000000000000000000000000$	-3,92		- 3,07
Acétone	22,0	— 4,93	— 6,01	7,10	— 7,53	- 8,90

3° Influence des acides.

n molécules acide pour 1 molécule C5 H6 O5.

EAU ET SO4 H2.

EAU ET C'H'O'.

p.	n.	[a] ²⁰ .
6,76 6,59 6,44 6,29 6,15	0,5 1,0 1,5 2,0 2,5	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

p.	n.	[\alpha] \begin{align*} 2 \cdot \c
10,04	5	- 1,35
8,20	10	- 0,57
6,00	20	+ 0,13
5,29	25	+ 0,14

SCHNEIDER (Lieb. Ann., t. CCVII, p. 280; 1881).

EAU ET ACIDE BORIQUE.

$$(p = 30,74) (t = 20^{\circ C}).$$

C gr. acide borique pour 100°.

C.	ROUGE (666).	D (589).	VERT (533).	BLEU CLAIR (489).	BLEU FONCÉ (448).
	0	• _	•	c	0.5
· • • • • • • • • • • • • • • • • • • •	— 0,70	— o,69	— o,58	— 0,06	+ 0,85
0,2	— o,78	- 0,74	— o,58	0,26	+ 0,71
0,4	— 1,33	— 1,5o	— 1,47	— 1,39	- 0,74
1,6	— 1,65	— 1,87	— 2,08	— 1,94	— 1,37

4º Influence des sels.

Solutions aqueuses (n molécules sel pour 1 acide).

t.	c.	SEL.	n.	MAXIMUM de [α] _D .	OBSERVATEUR.
17	9,305	Molybdate acide d'ammonium Mo ⁷ O ²⁴ (Az H ⁴) ⁶	O 1 8 1 2	- 2,0 - 54,1 + 740,2	GERNEZ (C. R., t. CIX, p. 151; 1889).
17	Id.	Molybdate acide de sodium Mo ¹ O ²⁴ Na ²	1 8 1 2	- 55,4 + 795,5	Id., t. CXI, p. 792; 1890.
17	Id.	Molybdate de sodium Mo O ⁴ Na ²	1 2 1 7 4	- 92,2 + 142,5 - 15,8	Id., t. CIX, p. 769; 1889.
15	Id.	Molybdate de potassium et sodium (MoO ⁴) ³ Na ⁴ K ²	O 16 1 3 7 1 2	$ \begin{array}{rrrr} & 1,9 \\ & - 95,2 \\ & + 139,1 \\ & - 21,2 \end{array} $	Id., t. CXI; p. 792; 1890.
13	Id.	Molybdate de lithium MoO ⁴ Li ²	0 1 2 9 8 2	- 1,9 - 103,0 + 158,6 - 24,1	Id., t. CX, p. 529; 1890.
13	Id.	Molybdate de magnésium MoO'Mg	3 9 8 2	$ \begin{array}{r} - 98,3 \\ + 185,4 \\ + 11,2 \end{array} $	ld.
15	Id.	Phosphomolybdate d'am- monium Mo ⁵ P ² O ²³ (Az H ⁴) ⁶	1 8 3 4	- 67,4 + 21,2	Id., t. CXII, p. 226; 1891.
15	Id	Phosphomolybdate de sodium Mo ⁵ P ² O ²³ Na ⁶	1 8 3	- 67,6 + 64,4	Id.
15	Id.	Phosphomolybdate de po- tassium Mo ⁵ P ² O ²³ K ⁶	1.	— 69,5	Id.
17	4,6525	Tungstate de sodium Tu O ⁴ Na ²	O 1 2 1 5 4 4	$ \begin{array}{rrrr} - & 2,7 \\ - & 75,2 \\ + & 2,5 \\ - & 26,1 \\ + & 120,5 \end{array} $	Id., t. CX, p. 1365; 1890.
17	Id.	Tungstate de potassium Tu O¹ K²	1 2 I 3 2 .	-75,9 $+28,8$ $-21,5$	Id.

EAU AVEC POTASSE ET AZOTATE D'URANYLE.

	MOLÉCULES.				
C4 H 6 O5.	кон.	(Az O ³) ² UO ² .	$[\alpha]_{D} (c=0.65).$		
1	0	0	- °,8		
1	4	0	_ 3		
1	0	4	— 11		
1	1	0,8	— 139		
1	2	0,8	— 277		
1	2	4	— 241		
1	4	1,25	— 475		
1	4	4	470		
1	4	8	— 447		
1	4	13,6	 415		
1	6	4	— 45 1		

ALCOOL AVEC POTASSE ET AZOTATE D'URANYLE.

C' H6 O5.	кон.	$(AzO^3)^2UO^2.$	$[a]_{b} (c = 0,65).$
1	0	0	
1	0	4	— 70
1	2	4	— 270
1	4	4	— 463
1	4	8	- 44 7

WALDEN (Ber. d. D ch. Gcs., t. XXX, pp. 2889 et 2893; 1897).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
-malique (acide Acétyl-). $C^{6}H^{6}O^{6} = C^{4}H^{5}(C^{2}H^{3}O)O^{5}$	à — 10°, 7	} Eau	GUYE (C. R., t. CXVI. p. 1134; 1893).
	$[\alpha]_{D}$ — 21°,0 \dot{a} — 25°,8	Acétone	
-malique (anhydride Acétyl-). C ⁶ H ⁶ () ⁵	[a] _n — 26°, o	Chloroforme	Id.
-malique (anhydride Propionyl-). C'H^O'	$[a]_{D}$ — 22°, 1 a = 20°, 4	Chloroforme	d.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Malodiamide. C'H'Az'O' == CH(OH).COAzH'	[a],—47°,5	Eau	PASTEUR [Ann. de Ch. et Phys. (3°s.), t. XXXVIII, p. 466; 1853].
CH ² . CO Az H ²	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		WALDEN (Zeits. f. physik. Ch., t. XVII, p. 249; 1895).
Malodianilide. $C^{16}H^{16}Az^{2}O^{3} =$ $CH(OH) - CO.AzH(C^{6}H^{5})$ $CH^{2} - CO.AzH(C^{6}H^{5})$	60°, 66	Ac. acétique (c = 0,75) Id. (c = 1,50)	<i>Id.</i> , p. 250.
Malodi-(o)-toluide. C ¹⁸ H ²⁰ Az ² O ³ == CH(OH)—CO.AzH.C ⁶ H ⁴ .CH ³ CH ² —CO.Az H.C ³ H ⁴ .CH ³ (2) (1)	$[\alpha]_{b}^{20}$ — 66°, 5 — 65°, 0	Id. $(c = 1)$ Id. $(c = 2)$	Id.
Malodi-(p)-toluide. C1* H20 Az2 O3 = CH(OH).CO.Az H.C6 H4.CH3 (H2.CO.Az H.C6H4. CH3 (\$) (\$)	1	Id. $(c = 1)$	Id.
Malo-(3)-naphtimide. $C^{14}H^{11}AzO^{3} = CH(OH) - CO$ $Az.C^{10}H^{1}$ $CH^{2} - CO$	$[\alpha]_{\rm b}^{20}-51^{\rm o},5$	1d. (c = 1)	ld.
Maltodextrine. Voir Dextr	ine.		

Maltopeptone. $[\alpha]_{D} - 52^{\circ}, 8$ Eau (c = 0.55) Szymanski (Ber. d. D. ch. Ges., t. XIX, p. 492; 1886).

Maltosaccharine. Voir -saccharine (Iso-).

Maltosamine. $C^{12}H^{21}O^{10}(\lambda zH^2)$	$[\alpha]_0+118^\circ,0$	Eau (c == 10)	LOBRY DE BRUYN et VAN LEBRT (Rec. Trav. chim. d. P. B., t. XIV, p. 139;
			1895).

NOM ET FORMULE.	POUVOIR	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Maltose. C'2 H22 O'1	$\begin{bmatrix} 2 \end{bmatrix} / \div 149^{\circ}, 5 \\ \dot{a} + 150^{\circ}, 6 \end{bmatrix}$	Eau	O'SULLIVAN (J. of chem- Soc., t. X, p. 581; 1876). [Schulze (Ber. d. D. ch. Ges., t. VII; 1874).]
	$[\alpha]_{a}^{15} + 139^{\circ},3$	Eau	SOURCET [J. f. prakt. (A. (x* 8.) t. XXI, p. 184; 1880].
	Eau $(p-5)$ + 122°, 3 (a + 138°, 3 (a	0,01837p 0,095 t] à 35) (t = 15° à 35°) après 5 min.) après 24 h.) u (c = 18)	Munat. [J. f. prakt. Ch. (s* 6), t. XXV, p. 12{; 1882].
	[x] ₀ ²⁰ + 119°,36 (après 8 min.) + 136°,9 (après 24 h.) Eau (c = 9)		PARCUS of TOLLERS (Lieb. Ann., t. CCLVII, p. 160; 1890).
	[a]=+ 138°, 29	Eau (p = 11,29)	HERZYKLD (Ber. d. D. ck. Ges., t. XXVIII, p. 442, 1895).
	$\{\alpha\}_{0}^{20}+137^{\circ},04$	Eau (p = 2 à 21)	Ont (Chem. Zeit., t. XIX, p. 1716; 1695).
	[z] _b ,,,+ 137°,93	Euu (c = 2 à 20)	BROWN, MORRIS of MILLAR (J. of chem. Soc., t. LXXI, p. 113; 1897).
-maltose (Iso-). C ¹² H ²² O ¹¹ [= maltose ?]	[[2] ₀ +139*à 140€	Eau (p = 10)	LINTNER et Dütt. (Zeits. f. angew. Ch., 1892; p. 133).

Id. Voir Gallisine.

Maltose octacétylé. C ¹² H ¹⁴ (C ² H ³ O) ⁴ O ¹¹	[a] _b + 77°,6 + 76° - 61° - 60°	Benzène (c = 0,20) Id. (c = 2) Chlorof. (id.) Alcool (c = 1)	HEREFRED (Ber. d. D. ch. Ges., t. XXVIII, p. 440, 1895). [Id. (Lieb. Ann., t. CCXX, p. 215; 1883).]
(Voir la suite au verso.)	$[2]_{4}^{13,3} + 62^{\circ}, 07$ $+ 62^{\circ}, 37$ $+ 59^{\circ}, 14$	Chlorof. $(c = 3,61)$ Id. $(c = 5,05)$ Alc. $93^{\circ}, (c = 0,85)$	LING et BARRE (J. of chem. Soc., t. LXVII, p. 201-1895).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	. OBSERVATEURS.
	$[\alpha]_{b} + 63^{\circ}, 24$ $+ 63^{\circ}, 18$ $+ 61^{\circ}, 56$ $+ 75^{\circ}, 98$ $+ 76^{\circ}, 44$	Benzène $(c = 2,98)$	Ling et Baker (Ber. d. D. ch. Ges., t. XXVIII, p. 1021; 1895).
Maltose octonitré. C ¹² H ¹⁴ (AzO ²) ⁸ O ¹¹	$[\alpha]_{D}^{20} + 128^{\circ}, 6$	Ac. acétique ($c = 3,5$)	WILL et LENZE (Ber. d. D. ch. Ges., t. XXXI, p. 84;
Maltose-(β)-naphtyl- hydrazone. (C ¹² H ²² O ¹⁶ ; Az ² H(C ¹⁶ H ¹)	[a] _b +10°,6	Alcool méthylique	ALB. VAN EKENSTEIN et LOBRY DE BRUYN (Rec. Trav. chim. d. P. B., t. XV, p. 226; 1896).
-mannide (Iso-). C ⁶ H ¹⁰ O ⁴	$[\alpha]_{\mu}$ + 91°, 36 + 94°, 66 + 99°, 21	Alc. éthyl. $(c=3)$	FAUCONNIER [Bull. Soc. chim. (2° 8.), t. XLI, p. 119; 1884].
β Mannide . C ⁶ H ¹⁶ O ⁴	$[\alpha]_{b}^{21} + 94^{\circ}, 05$	Eau (p = 2,55)	Siwoloboff (J. Soc. phys. chim. russe, t. XVIII, p. 135; 1886).
Mannitane. C ⁶ H ¹² O ⁵ α. amorphe	$[\alpha]_j + 36^\circ, 5$		Vianon [Ann. de Ch. et Phys. (5° s.) t. II, p. 463; 1874].
β. cristallisée	$[\alpha]_j - 25$ "	1	
	$[\alpha]_{b}^{14}-23^{\circ},5$	Eau (c = 7)	G. BOUGHARDAT [Ann. de Ch. et Phys. (5° 8.), t. VI, p. 104; 1875].
Mannitane diacétique. C ⁶ H ¹⁰ (C ² H ³ O) ² O ⁵	[2] ₀ + 22",6	Eau ($c = 48,73$)	SCHÜTZENBERGER [Ann. de Ch. et Phys. (4° 8.), t. XXI, p. 258; 1870].
Mannitane monobrom- hydrique. C ⁶ H ¹¹ Br O ⁴	[a] _b + 22°	Eau (c = 11,37)	G. BOUCHARDAT [Ann. de Ch. et Phys. (5° 8.), t. Vl, p. 123; 1875].
Mannitane monochlor- hydrique. C ⁶ H ¹¹ Cl O ⁴	[2] ₀ + 18°,7	Eau (c = 24,1)	<i>Id.</i> , p. τις.

Mannitane nitrée. Voir Nitromannitane.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	observateurs.
Mannitane tétracétique. C ⁶ H ⁸ (C ² H ³ O) ⁴ O ³	$[\alpha]_{b}^{19} + 23^{\circ}, o$	Ac. acét. $(c = 16, 17)$	<i>Id.</i> , p. 111.
dMannite. C ⁶ H ¹⁴ O ⁶	[α] _υ — o", 25	Eau ($c = 10,5$)	G. BOUCHARDAT [Ann. d Ch. et Phys. (5° 8.), t. VI p. 131; 1875].
	$\boxed{[\alpha]_{\mathfrak{b}}^{11}-\mathfrak{o}^{\mathfrak{o}},25}$	Eau ($c = 3 å 6$)	GERNEZ (C. R., t. CXII p. 1362; 1891).
Id. avec borax (B'O'Na'+10H'O).	[2] ₀ + 8°,17	Eau + mol. borax (c = 10)	G. BOUCHARDAT (loc. cit.' [Vignon (Ann. de Ch. e Phys. (5° s.), t. II, p. 455
	- 21", 8	Eau $+ \frac{1}{2}$ mol. borax $(c = 10)$	1874).]
	- ⊢ 28 °,3	Eau + 1 mol. borax $(c = 10)$ Eau + $\frac{1}{4}$ mol. borax	
	-∸ 3aº	+ Na OH en excès $(c = 10)$	
Id. avec borate de calcium (B ⁴ O ¹ Ca).	$[\alpha]_{0} + 27^{\circ}, 7$ 28°, 1	Eau + $\frac{1}{2}$ mol. sel (c = 5) Id. (c=10)	
Id. avec soude (NaOII).	$ \alpha _{\mathfrak{b}}-5^{\circ},17$	Eau+3,2 NaOH (c=10)	
Id. avec molybdate ac. d'ammonium [Mo¹O²4 (AzH4)6].	$[\alpha]_{b}^{11} + 43^{\circ}, 19$ (max.)	Eau + $\frac{6.75}{24}$ mol. sel (c = 3,16)	Gernez (loc. cit.).
Id. avec molybdate ac. de sodium (Mo ¹ O ²⁴ Na ⁶).	$[\alpha]_{0}^{11} + 43^{\circ}, 19$ (max.)	Eau + $\frac{6.75}{24}$ mol. sel (c = 3,16) Eau + $\frac{6.75}{24}$ mol. sel (c = 6,32)	
	$[\alpha]_{b}^{11} + 41^{\circ}, 36$ (max.)	Eau + $\frac{6,75}{24}$ mol. sel $(c = 6,32)$	
Id. avec borax.	$[\alpha]_{n}+28^{\circ},3$	Eau+1mol.borax $(c=3)$	E. FISCHER (Ber. d. D. ch.
1Id. avec borax.	$[a]_{D} - 28^{\circ}; 3$	Eau+imol.borax(c=3)	1890).
Mannite (éther de la) (C ⁶ H ¹³ O ⁵) ² O	[a] _j — 5°, 59		Vionon [Ann. de Ch. et Phys. (5° 8.), t. II, p. 464; 1874].
(C ⁶ H ¹³ O ³) ² O Mannite dichlorhydrique. C ⁶ H ¹² Cl ² O ⁴			

NOM ET PORMULE.	POUVOIR reletoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Mannite hexacétique. C°H*(C°H*O)*O*	[a]i0 + 180,0	Ac. acétique (c = 8,33)	G. BOUGHARDAY (loc. ett., p. 108).
Mannite hexachlor- hydrique. C ^c H ^c Cl ^d	[α] ^{2*} + 18°,53	Benzène	Mourouss (C. R., t. CX1, p. 111; 1890).
Mannite hexanitrique. C ⁴ H ⁴ (AzO ²) ⁴ O ⁴	(«), + 70°, 2 + 63°, 7		Kuncke (Arch. Néeré., t. VII, p. 872; 1872).
	[a], + 40",4	Alcool (c = 7,5)	KRUSEMANN (Ber. d. D. ch. Ges., t. IX, p. 1464; 1876).
	[2] ₆ + 42°, 17	Acide acétique (c = 10)	(loc. clt.,
Mannitchexasulfate de calcium. C'H*[(SO4)*Ca3]	[x] ₀ + 17°,66	Eau (?) (c = 17,93)	CLAUSSON [J. f. prakt. Chem. (24 8.), t. XX, p. 13; 1879].
Mannitehexasulfurique (acide). C*H*(SO*H)*	$[\alpha]_0 + 24^0, 1$	Chlorbydrine sulfuriq. $(c = 11,74)$	G. Bouchardat (loc. clf.).
C ^c H ^c (OH) ^c (SO ^c) ^c Ba ^c	[2] _a + 5°, 87	Eau (c = 28,36)	CLARSSON (loc. cit., p. 25)
Cellino, (CH3, CO, CH3),	[2] ⁷⁰ +12 ⁿ ,5	Alc. abs. (p = 9,58)	E. Frecher (Ber. d. B. ch. Ges., t. XXVIII, p. 1168, 1895).
Mannitetriformal. C ⁶ H ⁸ O ⁶ (CH ²) ³	[a], 103°, 9	Chlorof. (c = 5 à 6)	SCHULZ et TOLLENS (Lieb. Ann., t. CCLXXXIX, p. 12, 1895).
d. M . Voir Pe	rséite.		
(lactone) C'H ¹² O ¹	[α] ²⁺ -74°, 23	Eau (c 10)	(E. FISCHER (Ber. d. D. ch. Ges., t. XXII, p. 2732) 1889).
/Id.	[α] ²⁴ +75°, 15	Eau (p = 5,27)	STANLEY SMITH (Lieb. Ann., t. CCLXXII, p. 184; 1893).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
dMannoheptose. C ¹ H ¹⁴ O ¹	[\alpha]_{\text{b}}^{20} + 85^{\circ}, \circ{05}{\text{oprès 10 min.}} [\alpha]_{\text{u}}^{20} + 68^{\circ}, 64 [\alpha]_{\text{oprès 24 heures}}	Eau (p = 9,75)	E. FISCHER et PASSMORK (Ber. d. D. ch. Ges., t. XXIII, p. 2226; 1890.
lMannonate de sodium. C ⁶ H ¹¹ O ¹ .Na (d'ac. gauche).	[2] _n + 9°, 1	Eau (c = 3,67)	VAN EKENSTBIN, JORISSEN et REICHER (Zeits. f. physik. Ch., t. XXI, p. 383; 1896).
lMannonique (lactone).	$[a]_{0}-54^{\circ},8$	Eau $(p = 9, 18)$	KILIANI (Ber. d. D. ch. Ges., t. XIX, p. 3034; 1886).
	$[\alpha]_{\scriptscriptstyle D}$ — 53°, 2	Eau (c = 5)	VAN EKENSTEIN, JORISSEN et REIG IER (loc. cit.).
dId.	$[\alpha]_{0}^{20} + 53^{\circ}, 81$	Eau (p = 9,99)	E. FISCHER et HIRSCH- BERGER (Ber. d. D. ch. Ges., t. XXII, p. 3222; 1889).
dMannonononique (lactone). C9 H16 O9	[2] ²⁰ —41°,0	Eau (c = 10)	E. FISCHER et PASSMORE (Ber. d. D. ch. Ges., t. XXIII, p. 2226; 1890).
dMannononose.	$[\alpha]_{0}^{20}+50^{\circ}$ (app.)	Eau	Id.
dMannooctonique (lactone). C ⁸ H ¹⁴ O ⁸	[2] ² •— 43°, 58	Eau (p = 9,85)	Id.
dMannooctose.	[α] ²⁰ — 3°,3 (app.)	Eau	Id.
dMannosaccharate de sodium. C ⁶ H ⁸ O ⁸ Na ²	[α] _p + o ^o ,8	Eau (c = 1)	VAN EKENSTEIN, JORISSEN et REICHER (Zeits. f. physik. Ch., t. XXI, p. 383; 1896).
dMannosaccharique (dilactone).	$[\alpha]^{23}_{\nu} + 201^{\circ}, 8$	Eau (p = 3,92)	E. FISCHER et WIRTHLE (Ber. d. D. ch. Ges., t. XXIV, p. 541; 1891).
	$[\alpha]_{D} + 204^{\circ}, 8$	Eau ($c = 1,4$)	VAN EKENSTEIN, JORISSEN et REICHER (loc. cit.).

NON ET FORMULE.	Potivota zotatutre spicitique.	DIBSOLVANT ET TENEUR.	OBSERVATEURS.
lId.	[a], — 201°	Eau	E. Pischen et Wintule (loc. cit.).
dMannose. C*H''2O* = H H OH OH CH'OH.C.C.C.C.C.C.COH OH OH II II (de la mannite)		Eau (p = 8,5 à 9,4)	E. FISCHER et HIRSCH- BERGER (Ber. d. D. ch. Ges., t. XXII, p. 368; 1889).
[de l'ivoire végétal (steinoüss)]	[z] _b +14",36		ld., p. 3219.
cristallisé pur.	! [a] ₀ — 13°,6 (après 3 minutes) [a] ₀ + 14°, 25 (après 6 heures)		ALB. VAN EKRNBYRIN (Rec. Trav. chim. d. P. B., t. XV, p. 222; 1895).
dMannose (dérivé ammoniacal du). C ¹² H ²³ O ¹¹ Az	[z] ₀ — 28", 3	Alc. méthyl. $(c = 6)$	LOBRY DE BRUYN et VAN LEENT { Rec. Trav. chim. d. P. B., t. XV, p. 81; 1895 }.
dMannose pentanitré. C ⁶ H ¹ (Az O ²) ⁵ O ⁶	[α] ²⁺ + 93°, 3	Alcool (c = 5)	WILL of LENZE (Ber. d. D. ch. Ges., t. XXXI, p. 76; 1898).
dMannose-allylphényl- hydrazone. C ⁵ II ¹² O ⁵ ; Az ² (C ⁵ H ⁵) (C ³ H ⁵)	[z], - 25°, 7 16°, 8	Alc. méthyl. ($p = 0.5$) Ac. acétique (id.)	ALB. VAN EKENSTEIN OL (Rec. Trav. chim. d. P. B., t. XV, p. 216, 1895).
d C ⁶ H ¹³ O ⁵ ; Az ³ (C ⁶ H ³)(C ⁵ H ¹¹)	[a] ₀ 9°, 2	Alc. méthyl (p = 0,5)	f₫.
dMannose-benzyl- C ⁶ H ¹² O ⁵ ; Az ² (C ⁶ H ²)(C ¹ H ²)	[2] ₀ + 29°, 8 10°, 6	Alc. méthyl. $(p = 0.5)$ Ac. acétique $(-id)$	Id.
d -Mannose-éthylphényl- hydrazone. C ⁶ H ¹² O ⁵ ; \z ² (C ⁶ H ³)(C ³ H ⁵)	[x] ₀ + 14",6	Ale. méthyl. $(p = 0.5)$	fd.

NOM ET FORMULE.	POUVOIR rolatuire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
d.	[α] ₀ + 8°, 6	Alc. méthyl. (p = 0,5)	Id.
C*H12O2;A22(C*H2)CH3			
dMannose-(β)-naphtyl- hydrazone. C ⁴ H ¹² O ³ ; Az ² H (C ¹⁴ H ¹)	[x] ₀ ÷ 16°,8	Alc. méthyl. $(p = 0.5)$ Ac. acétique (id.)	id.
Mannose-phényl- hydrazone. C ⁴ H ¹² O ³ :Az ² H(C ⁴ H ³)	$ \begin{array}{c} (\mathbf{z})_{b} - 72^{o} \\ (\mathbf{de} \ d\mathrm{Mannose}) \\ (\mathbf{z})_{b} + 72^{o} \\ (\mathbf{de} \ l\mathrm{Mannose}) \end{array} $	Eau acidulée par HCl (c = 1,667)	E. FISCHER (Ber. d. D. ch. Ges., t. XXIII, p. 365; 1890).
dMannoséthylènemer- captal. S — CH ² S — CH ²	[2] ^{2*} 12",88	Eau (p = 4,89)	LAWRENCE (Ber. d. D. ch. Ges., t. XXIX, p. 549; 1896).
C ⁶ H ¹² O ⁵ ; Az O . H	• [α], + 3°, 2 (après 6 heures)	Eau (p = 4,80)	JACOBE (Ber. d. D. ch. Ges., t. XXIV, p. 696; 1891).

Matézite. Vour β .-Pinite.

Voir 3.-Inosite.

C ¹⁰ H ³² O ¹⁶ + 2H ³ O (de la manne de Briançon)	[(2])"+94", t	Eau (c = 18,6) (anhydre)	BERTHELOT (Ann. de Ch. et Phys. (3° s.), t. LV, p. 284, 2819).
(de la manne de Perse).	[2] ₅ + 88°,85 [2] _j + 94°,8	Eau (anhydre)	VILLIERS [Ann. de Ch. et Phys. (5: s.), t. XII, p. 434; :877].
	[#] ₆ [83 Eau [p = 5 à 3o	,0+0,07014 <i>p</i>] (hydr.)] (<i>t</i> = 17° à 20°)	ALERHINE [Ann. de Ch. et Phys. (6° s.), t. XVIII, p. 540; 1889].
(de la manne de Perse). (de la miellee du tilleul).	[α] _o + 88", 65 - 88°, 8	Eau (c = 10) (anh.) Id. (c = 5,95)(id.)	MAQUENNE [Bull. Suc. chim (3" s.), t. IX, p. 726; 1893].
	[x] _{n ~1} 88°, 15	Eau (c = 2,45) (anh)	Bounquitor et Hérissev [f. de Pharm. et Ch. (6* s.), t. IV, p. 382, 1896].

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENRUR.	OBSERVATEURS.
Mélézitose endécacétylé. C ¹¹ H ²¹ (C ² H ² O) ²¹ O ⁴	[x];4+110°,44	Benzène (c = 6,24)	ALËKHINK (loc. ell.).
Mélibiose. C ¹² H ²² O ¹¹ (amorphe)	[α] ¹ ; + 127°, 3 (moy.)	Eau (c = 3,95)	Schribler et Mittelmeien (Ber. d. D. ch. Ges., t. XXIII, p. 1439; 1890).
(cristallisé).	[a] ^{11,2} +139°,34	Eau	BAU (Chem. Zeitg., t. XXI, p. 188; 1897).
Mélibiose octacétylé. C'2H ¹⁴ (C ² H ² O) ¹ O ¹¹	$[x]_{0}^{10} + 94^{\circ}, 2$	2 vol. alc. + : vol. chlor. (c = 1,65)	Schuiblen et Mittelmeikn (loc. cit., p. 1441).
Mélibiose-allylphényl- hydrazone. C ¹³ H ²³ O ¹⁶ ; Az ² (C ⁶ H ³) (C ³ H ⁴)	[a], + 21°, 2 + 8°	Alc. méth. (p = 0,5) Ac. seét. (id.)	ALB. VAN ERENATEIN et LOBRY DE BRUYN (Rec. Trav. chim. d. P. B., t. XV, p. 226; 1896).
Mélibiose-(β)-naphtyl- hydrazone. C ¹² H ²² O ¹⁰ ; Az ² H(C ¹⁸ H ¹)	[2]a+15°,9	Alc. méthyl. ($p = 0.5$)	fd.

Mélitose. | Voir Raffinose.

d Menthêne. C'*H'* (du menthol)	[2];*+13°,25	Pur. $d_4^{24} = 0,8073$	ATKINSON et YOSRIDA (J. of chem. Soc., t. XLI, p. 49; 1882).
(==,	[a]2+26",40	Pur. $d^{20} = 4.814$	Sieuen et Kriemers (Amer. chem. J., 1. XIV, p. 291. 1892).
	[a]=+-32°,77	Pur. d34 = 0,8134	Umban et Kremers (1d., t. XVI, p. 395, 1894).
	[α] ₀ 24°,5	Pur. do = 0,8277	Tolotschko in Wagner (Ber. d. D. ch. Ges., t. 1894).
(dérivé du 1menthène)	[α] ₀ ÷ 44°, 2	Alcool (c = 26)	MASSON of REYCHLER [Bull. Soc. chim. (3° 5.). t. XV, p. 967, 1896].
(du chlorure de menthyle)	[a] ^{ts} + 35°,45	Pur. $d^{10} = 0.813$	SLAVINSKI (J. Soc. phys chine. russe, t. XXIX. p. 118; 1897).
(de lmenthylamine)	[z] 18 + 89°, 31	Pur. d10 = 0,811	WALLACH (<i>Lieb. Ann.</i> , t. CCC, p. 282: 189\$)
(de d -mentbylamine)	[x _{n ¬} - 67°, 8	Pur. d = 0,8175	

p. 15; 1891).

NOM BY FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TRŅBUR.	
lId. (da chlorure de menthyle in.	$[\alpha]_{b}^{2^{o}}-34^{o},3$	Pur. d ₄ ²⁰ = 0,815	
	[a] ²⁰ — 48°,5	Pur. d ²⁰ = 0,811	MASSON et REVCHLER (loc. cit.).
dMenthène (chlorure nitrosé de). (C''H'') Az O.Cl	[a],+13°,76		URBAN of KREMERS (Amer. chem. J., t. XVI, p. 395; 1894).
Menthol.	[a] _j — 59°,6		Оррахивім (<i>С. В.</i> , t. LJII, pp. 3 ₇₉ ot 483; 1861).
	[a])3-59°,3	Alcool (c = 8 à 10)	3.04
	$[\alpha]_{b}^{22} - 49^{\circ}, 4$ $[\alpha]_{b}^{16} - 50^{\circ}, 1$	Alcool $(c = 5)$ Id. $(c = 10)$	OPPEXHBIM (C. R., t. LIII), pp. 379 of 483; 1861). ARTH [4nn. de Ch. et Phys. (6* 8.), t. VII, p. 433, 1886].
	[4] ² ° — 50°,59 — 49°,35	Alcool (p = 10) Id. (p = 20)	4 39.4 t
(d'Amérique)	$[\alpha]_{0}^{16} - 49^{\circ}, 86$ $[\alpha]_{0}^{20} - [48, 25 - 40,00001]$ Alcool $[\alpha]_{0}^{20} - [49, 51 - 40,00084]$ $= -0,00084$ Benzène $[\alpha]_{0}^{10} - [47, 71 - 40,00007]$	Pur. $d_4^{14,4} = 0.881$ + 0.0111 q 9 q^2] ($q = 30 \pm 92$) + 0.0256 q 0 $q^2 = 0.00001102q^3](q = 30 \pm 92)+ 0.0064q$	Soc., t. XIV, p. 1/9; 1892
dMenthone.	[a];+ 21°.16	f Pur	ATRINSON of Yoshida (J.
С 19 Н 11 О	["]] - 21 , 10	Pur Pur. d; = 0,8984	of chem. Soc., t. XLI, p. 50; 1881).
	$[\alpha]_{0}^{20} + 28^{\circ}, 14$	Pur. d; = 0,8984	
lId. (α).			
(du menthol)	[x] 124 - 27°,67	Pur. d = 0,8934	Bixz (Zeite. f. physik. Ch., t. XII, p. 723; 1893).
Id. (3). (dérisé du pulégone)		Pur. d - 0,9146	BECKMANN et PLEISSBER (Lieb. Ann., t. CCLXII. p. 25; 1891).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	OBSERVATEURS.
Menthonoxime.	$[\alpha]_{u}^{20}-4^{\circ},85$	Alcool (p = 20)	BECKMANN (<i>Lieb. Ann.</i> , t CCL, p. 338; 1888).
(de dmenthone)	[2] _b — 9", 21	Alcool (p = 20)	NEGOWOROFF in Andres e Andress (Ber. d. D. ch Ges., t. XXV, p. 621 1892).
[de lmenthone (a)]	$\begin{array}{c c} & \begin{bmatrix} \alpha \end{bmatrix}_{0}^{20} & -42^{\circ}, 51 \\ & -41^{\circ}, 97 \end{array}$	Alcool (p = 10) Id. (p = 20)	BECKMANN (loc. cit., p
[de lmenthone (β)]	$[\alpha]_0 - 35^\circ, 15$ - 34°, 53	Alcool $(p = 10)$ Id. $(p = 20)$	BECKMANN et PLEISSNER (loc. cit., p. 27.).
lmenthonoxime (Iso-). C10 H18: Az OH	$[\alpha]_{n}^{21}-52^{n},25$	Alcool (p = 24)	BINZ in WALLACH of TUTTLE (Lieb. Ann., t. CCLXXVII, p. 157; 1893)
Id. (base dérivée de) C ²⁰ H ³⁵ Cl Az ²	$[\alpha]_{\nu}^{20}-186^{\circ},35$	Alcool (p = 2,17)	WALLACH (Lieb. Ann. t. CCLXXVIII, p. 306 1893).
Menthonoxime (chlorhydrate de). [C ¹⁰ H ¹⁸ Az O H]HCl (de dmenthone)	[2] ^{2•} —24°,48	Alcool (p = 10)	BECKMANN (loc. cit. p. 340).
[de lmenthone (a)]	$ [\alpha]_{\nu}^{20} - 61^{\circ}, 16$	Alcool (p = 10)	
[de lmenthone (3)]	$ [\alpha]_{b}^{20}-83^{\circ},37$	Alcool (p = 20)	BECKMANN et PLEISSNER (loc. cit., p. 28).
lMenthylamine. C ¹⁰ H ¹⁹ . Az H ²	[a] ₀ — 33°,6	Alcool	Andres et Andreef (Berd. D. ch. Ges., t. XXV. p. 620; 1892).
	$[\alpha]_{0}^{2}$ — 38° , o7 $[\alpha]_{0}$ — 31° , 90		Binz (Zeits. f. physik. Ch. t. XII, p. 723; 1893).
	$[\alpha]_{0}^{20}-36^{\circ},14$	Pur. $d_4^{20} = 0,8561$	KIJNER (Journ. Soc. physchim. russe, t. XXVII p. 459; 1895).
(par réduction de l'oxime g. de dmenthone)	[2] _B -9", 26	Alcool $(p = 10,78)$	NEGOWOROFF in Andres et Andres (loc. cit.).
dId.	$[2]_{0}^{6}+14^{\circ},71$	Pur. $d = 0.866$ Alcool $(c = 12.70)$	Binz (loc. cit.).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
dMenthylamine (bromhydrate de). (C ¹⁰ H ¹⁹ Az H ²) H Br	$[\alpha]_{D}^{14} + 13^{\circ}, 83$ $[\alpha]_{D}^{12,5} + 5^{\circ}, 26$	· [•	Id.
lId.	$ [x]_b^{12}-29^{\circ},32$	Eau (p = 2,96)	
dMenthylamine (chlorhydrate de). (C ¹⁰ H ¹⁹ Az H ²) H Cl	$[\alpha]_{0}^{15} + 17^{\circ}, 24$ $[\alpha]_{0}^{9} + 8^{\circ}, 34$	Eau $(p = 2,77)$ Éther $(p = 1,71)$	It.
lId.	$[\alpha]_{0}^{19}-35^{\circ},66$ $[\alpha]_{0}^{20}-35^{\circ},56$	Eau $(p = 2.99)$ Id. $(p = 3.2)$	
dMenthylamine (iodhydrate de). (C ¹⁰ H ¹⁹ Az H ²) HI	[2] ^{14.5} + 11°,79	Eau (p = 2,75)	I.l.
lId.	$ [\alpha]_{0}^{12}-24^{\circ},72$	Eau ($p = 2,79$)	
dMenthylacétylamine. C ¹⁰ H ¹⁹ Az H (C ² H ³ O)	» ¹³ + 44°, 71 » ¹⁰ + 48°, 80 » ⁴ + 51°, 84		
lId.	(moy.) " 9 — 83°,64 " 10 — 85°,67 " 9 — 82°,29	Ether acét. $(p=2,12)$ Alc. méthyl. $(p=2,52)$ Id. $(p=7,38)$ Chlorof. $(p=1,48)$ Id. $(p=5,35)$	
dMenthylbutyrylamine C ¹⁰ H ¹⁹ Az H (C ⁴ H ¹ O)			
lId.	(moy.)	Ether acét. $(p = 2,20)$ Chlorof. $(p = 2,69)$ Id. $(p = 4,47)$	
7Menthyldiéthylamine. C ¹⁰ H ¹⁹ . Az (C ² H ⁵) ²	$[\alpha]_0^{20}$ — 114°,8	Pur. $d_4^{20} = 0.8472$	KIJNER (J. Soc. physchim. russe, t. XXVII, p. 521; 1895).

1010	INGS COSKI	PORO OFFICER.	
NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
C ¹⁰ H ¹³ .AzH.C ³ H ⁵	[2]2° 83°, 45	Pur. die = 0,8447	Ed.
de) (C ¹⁸ H ¹⁹ , Az H, C ³ H ²) H Cl	[a],-42°,22		Įd.
hydrazine C#H#.Az(C2H3).Azii?	[2] _e ²⁺ — 62 ⁿ	Pur. d20 = 0,8850	id.
dMenthylformylamine.	$(moy.)$ $[\alpha]_{b}^{(1)} + 63^{\circ}, 30$	Ether acét. $(p=1,82)$ Alc. méthyl $(p=7,16)$ Chloroforme $(p=5,38)$	t. att, p. 785; teg5].
l Id .	$[\alpha]_{-}^{10} - 83^{\circ}.43^{\circ}$	Ether acet. $(p=2,18)$ Alc. methyl. $(p=7,44)$ Chloroforme $(p=1,39)$ Id. $(p=5,22)$ Id. $(p=5,25)$	
IMenthylhydrazine (chlorhydrate de) (C ¹⁰ H ¹² , Az H . Az H ²) H Cl	[a] ₀ — 46°, 05	Eau	Kuner (loc. clt.),
de menthone.	[\alpha]_0 - 373°, \text{o} \\ - 366'', 5	Éther Benzène	Iđ.
Menthylique (benzoate).	[1] ²⁰ — 90°, 92	Benzène (c = 3,81)	ARTH [Ann. de Ch. et Phys. {6* s.}, t. VII, p. 481;1886].
	$[\alpha]_{a}^{2a} - 86^{\circ}, 41$	Alcool (p = 20)	BEGEMANN et PLEISSNER (Lieb. Ann., t. CCLXII; p. 31; 1891).
Menthylique (benzoate). $C^{12}H^{24}O^2=C^6H^2\cdot COO\cdot C^{16}H^{24}$	[x] _a 90",72	Alcool (p - 20)	BEGRMANN [J. f. prakt. Ch., (2° 8.), t. LV, p. 27: 1897].
Menthylique (carbonate neutre). C2(H2*O3 - CO C0 H19 O.C**H19	[x] ²¹ — 92°, 52	Benzène (c = 8,08)	Автн (<i>loc. clt.,</i> р. 470).

NOM RT FORMULE.	POUVOIR rotatoiro specifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Menthylique (chlorure). C'* H'*, Ct	[a]b" — 51°,95	Pur. d'16 = 0,941	SLAVINGRI (J. Soc. physchim. Russe, t. XXIX, p. 114; 1897).
Menthylique (oorésyl- carbamate). C ¹⁶ H ²¹ Az O ² = CH ² .C ⁶ H ⁴ .AzH.CO O C ¹⁶ H ¹⁰		Chloroforme (p = 5,62)	Goldschnidt et Freund (Zeits. f. physik. Ch., t. XIV, p. 398; 1894).
Idm. (1) (3)	$[x]_0^{21,3} - 71^0,43$	Chloroforme (p = 5,58)	
Id. -p. (1) (4)	$[a]_n^{21} = 72^n, 30$	Chloroforme $(p=5,62)$	
Menthylique (phényl- acétate). C ¹⁰ H ²⁶ O ² = C ⁶ H ² . CH ² . CO O . C ¹⁰ H ¹⁰	[a] ^{2*} —69°,57	Pur. $d_4^{26} = 0.9874$	Taghúoarpe (Ber. d. D. ch. Ges., t. XXXI, p. 1778; 1898).
(phényl-). C ¹¹ C ⁴ H ³ , 4z H , CO O , C ¹⁴ H ¹⁹	[[a] 10 — 77°, 21	Chlorof. (p = 5,61)	Goldschmidt et Frechb (loc. cit).
(phényl- propionate). C ¹⁹ H ²¹ O ² = C ⁵ H ² , CH ² , CO O , C ¹⁹ H ¹⁹	J	Pur. d ²⁺ = 0,985:	Techúgarf (loc. cil.).
Menthylique (o ·phtalate acide). C"H"·O' := C*III (CO O. C'*H'*(t) CO OH (s)		Benzène (c = 6,30)	Aнти (<i>loc cit.</i> , р. 488).
Menthylique (ophtalate neutre). C ²⁴ H ¹² O ⁴ = C ⁴ H ¹² COO, C ¹⁶ H ¹⁶ (1) COOO, C ¹⁶ H ¹⁹ (2)	[a]; -94°,72	Benzêņe (c = 8.02)	M., p. 486.
D.	•	1	64

NOM ET FORMULE.	POUVOIR relateire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Menthylique (succinate acide). CH ² . CO O. C'' H'' CH ³ . CO OH	[x] ^{2*} — 81°,5a	Benzène (c = 7,48)	/d., p. 482.
Menthylique (succinate neutre). CH ² . CO O . C ¹⁶ H ¹⁸ CH ² . CO O . C ¹⁶ H ¹⁹		Benzène (c = 5,50)	ld., p. 483.
Menthylique (otoluate). C ¹⁰ H ²⁰ O ² = CH ² . C ⁰ H ⁴ . CO O. C ¹⁰ H ¹⁰ (1)	[α] ¹⁰ — 84°, 42	Pur. d; = 0,997a	Techúgaspp (loc. cll.).
Idm. (1)(3)	[2]0 - 87°,94	Pur. die = 0,993 1	
Idp. (1)(4)	[a], - 92", 15	Benzène	
dMenthylpropionyl- amine. C ¹² H ²⁵ AzO = C ¹⁶ H ¹⁹ . Az H. C ² H ⁴ O	$[\alpha]_{n}^{12} + 40^{\circ}, 0$ $(moy.)$ $[\alpha]_{n}^{0} + 54^{\circ}, 30$ $[\alpha]_{n}^{0} + 46^{\circ}, 48$ $[\alpha]_{n}^{0} + 45^{\circ}, 14$	Ether acet. $(p=1,82)$	BINZ (Zeite. f. physik. Ch., t. XII, p. 323; 1893).
lId.	$[a]^{13}_{12} - 67^{4}_{12}$	Ether acét. $(p=2,13)$ Alc. méthyl. $(p=8,91)$ Alc. éthyl. $(p=2,6)$ Chlorof. $(p=5,09)$	
Menthyluréthane. C ¹¹ H ²¹ Az O ² = Az H ² . CO O C ¹⁰ H ¹⁰	[z] _a ²¹ 85°, 11	Chlorof. (c = 2,32)	Аңти (<i>loc. cit.</i> , р. 433).

Métasaccharine. Voir -saccharine (Méta-).

Voir -santonine (Méta-).

C19 H23 Az O3	[a]1 - 208°,6		HESSE (Lieb. Ann., t. CCXXII, p. 218; 1884).
	[a]11-2120	Alcool ($c=2,13$)	KNORR (Ber. d. D. ch. Ges., t. XXVII, p. 1146; 1894).
Id. (β).	[x] _b ^{1,2} + 437",3	Alcool ($c = 3,75$)	- t. a.x 111, p. 1140, 1094).

	NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
((a) đe). H	[a]" - 94", 56	Alcool (c = 1,4)	ld.
	\$ e	[a	$c=\iota,25)$	
	andtwilda	Vois		

acetyles. Voir

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
lId.	$[\alpha]_{\nu}^{1n}$ — 25", 85	Eau (c = 8,77)	Id., p. 228.
dMéthoxysuccinate de baryum. (C'H'O')Ba	- 2°, 21 - 7°, 36	Eau $(c = 1,15)$ Id. $(c = 5,75)$ Id. $(c = 12,42)$ Id. $(c = 26,12)$	Id., p. 227.
dMéthoxysuccinate de calcium. (C ⁵ H ⁶ O ⁵) Ca	[a]18 — 10°, 10	Eau (c = 5.31)	Id., p. 226.
lId.	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Eau $(c = 2,21)$ Id. $(c = 5,48)$	Id., p. 228.
dMéthoxysuccinate -potassique (di-). (C'H'O') K'	$\begin{bmatrix} 2 \end{bmatrix}_{0}^{15,5} + 9^{\circ}, 36 \\ [\alpha]_{0}^{14,5} + 9^{\circ}, 54 \end{bmatrix}$	Eau ($c = 5,02$) Id. ($c = 12,16$)	ld., p. 225.
-potassique (di-).	$\begin{bmatrix} \alpha \end{bmatrix}_{0}^{15,3} + 9^{\circ}, 36 \\ [\alpha]_{0}^{14,5} + 9^{\circ}, 54 \end{bmatrix}$	Eau ($c = 5,02$) Id. ($c = 12,16$)	ld., p. 225.
dMéthoxysuccinate -potassique (mono-). C ⁵ H ¹ O ⁵ . K	$[\alpha]_{0}^{18,5} + 23^{\circ}, 46$ $[\alpha]_{0}^{18} + 23^{\circ}, 26$	`	Id., p. 223.
l Id.	$[\alpha]_0^{1,1,15}$ —23°,54	Eau (c = 4,06)	Id., p. 228.
Méthoxysuccinate de st	rychnine. Voir St	rychnine (méthoxys	uccinate de).
l Méthoxysuccinate di- n butylique. $C^{13}H^{24}O^{5}=$ $CH^{3}O.CH.COO(CH^{2})^{3}CH$ $CH^{2}.COO(CH^{2})^{3}CH$	3	Pur. $d_4^{15} = 1,0149$	Purdie et Williamson (J. of chem. Soc., t. LXVII, p. 971; 1895).

7.-Méthoxysuccinate diéthylique.
$$[\alpha]_{0}^{18} - 50^{\circ}, 11$$
 Pur. $d_{4}^{18} = 1.0705$ Id. $C^{5}H^{6}O^{5}(C^{2}H^{5})^{2}$

NOM ST FORMULE.	POUVOIR Fotaloire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
dMéthoxysuccinate diméthylique. C'H ⁶ O'(CH ³) ⁷	$[\alpha]_{b}^{12} + 52^{\circ}, 51$	Pur. d ₄ ¹² = 1,1498	ld.
C's H ⁶ O's (CH ² .C ² H ²) ²	[z] ¹⁵ -45°, 21	Pur. d15 = 1,0419	ld.
d (acide).	[2],"+33°,04 +33°,30	Eau $(c = 5,59)$ Id. $(c = 11,21)$	PURDIR of MARSHALL (loc.
CH2.COOH CH2.COOH		Acétone $(c = 1,65)$ Id. $(c = 4,12)$ Id. $(c = 10,30)$ Id. $(c = 18,77)$ Id. $(c = 24,96)$ Ether acét. $(c = 8,92)$ Id. $(c = 15,87)$ Id. $(c = 20,54)$	chem. Soc., t. LXVII, p. g.jg; 1895).
	$[\alpha]_{e}^{13} - 58^{\circ}, 18$ $[\alpha]_{e}^{11} - 56^{\circ}, 25$	Eau $(c = 7,93)$ Id. $(c = 22,04)$ Acétone $(c = 15,61)$ Id. $(c = 25,58)$ Éther acét. $(c = 19,08)$ Id. $(c = 25,55)$	Pundik et Bolan (loc. clt.)
βMéthyladipamide. C'H' ⁴ O ² Az ² = CH ³ .CH .CH ³ .CO Az H ² CH ³ .CH ³ .CO Az H ³		Ac. acétique (p = 2,83)	Rawitzen (Inaug. Diesert. Zurich; 1896).
3Méthyladipanilide. C ¹⁹ H ²² O ¹ Az ² CH ² .CH .CH ² .CO.Az H (C ⁴ H ² CH ² .CH ² .CO.Az H (C ⁴ H ²)	Ac. acëtique ($p=1,76$)	ld.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
β Méthyladipate di-(i)butylique. $C^{15}H^{26}O^{4} = CH^{3}$	$[\alpha]_{b}^{20} + 0^{\circ}, 5 + 0^{\circ}, 4 + 0^{\circ}, 7$	Pur. $d^{15} = 0.947$ Benzène ($c = 4$) Dibrom. d'éthylèn e ($c = 4.32$)	FREUNDLER [Bull. Soc. chim. (3° s.) t. XIII, p. 821; 1895).
CH .CH ² .COO.CH ² .CH(CH ³) ² CH ² .CH ² .COO.CH ² .CH(CH ³) ²	1 To 1666 1 To 7//	Pur. d'8 = 0,950	GUYE et MELIKIAN (C. H., t. CXXIII. p. 1291; 1896). [Voir Table XVII (I. E.)]
	$ \begin{array}{r} $	Alcool $(p = 14,27)$ Id. $(p = 30,81)$	RAWITZER (loc. cit.).
βMéthyladipate diéthylique.	[x] ¹⁸ -o ⁰ ,9 -1°,0	Pur. $d^{18} = 0.998$ Benzène ($c = 6$)	FREUNDLER (loc. cit.).
C ¹¹ H ²⁰ O ⁴ = CH ³ .CH .CH ² .CO OC ² H ³ CH ² .CH ² .CO OC ² H ³	$[\alpha]_{666}^{18} + 1^{\circ}, 78$	Pur. $d^{18} = 0.986$	GUYE et MELIKIAN (loc. cit.).
	$\boxed{[\alpha]_u^{26}+3^\circ,85}$	Alcool (p = 19,96)	RAWITZER (loc. cit.).
	$[\alpha]_{0}^{23} + 2^{\circ}, 33$ $[\alpha]_{0}^{96,4} + 1^{\circ}, 98$	Pur.	GUYE et MII ASTON (C. R., t. CXXIV, p. 196; 1897).
	[a] _D + 3°		ETAIX et FREUNDLER [Bull. Soc. chim. (3° s.), t. XVII, p. 806; 1897].
βMéthyladipate dimé-	$[\alpha]_{u} + 0^{\circ}, 6$	Pur. $d^{18} = 1,008$	FREUNDLER (loc. cit.).
thylique. C ⁹ H ¹⁶ O ⁴ = CH ³ . CH . CH ² . CO O CH ³ CH ² . CH ² . CO O CH ³	$[\alpha]_{666}^{17} + 3^{\circ}, 18$	Pur. d ¹¹ = 1,050	GUYB et MBLIKIAN (loc. cit.).
	$[\alpha]_{b}^{2} + 5^{\circ}, 91$	Alcool $(p = 15,58)$	RAWITZER (loc. cit.).
βMéthyladipate di- (n)-propylique. C ¹³ H ²⁴ O ⁴ = CH ³ .CH.CH ² .CO OCH ² .C ² H ⁵ CH ² .CH ² .CO OCH ² .C ² H ³	1	Pur. $d^{20} = 0.964$ Alcool $(c = 5.4)$ Sulf. de carb. $(c = 5.27)$	

1.

NOM ET FORMULE.	POBVOIR rotatoire spécifique.	DISSOLVANT BI TENEUR.	OBSERVATEURS.
	$[\alpha]_{666}^{14-\lambda} + 1^{\circ}, 88$ $a_{.5} + 2^{\circ}, 19$ $a_{.5} + 2^{\circ}, 87$ $a_{.5} + 3^{\circ}, 50$ $a_{.469} + 3^{\circ}, 50$ $a_{.466} + 4^{\circ}, 28$	Pur. d'16,5= 0,978	GUYE et MELIKIAN (loc. cit.).
	6 9 .	Alcool (p = 23,60) Id. (p = 40,46)	RAWITEER (loc. cit.).
	$\frac{[\alpha]_{b}^{23}+2^{\circ},35}{[\alpha]_{b}^{24,4}+2^{\circ},22}$	Pur.	Guyr et Mus Aston (loc. cft.).
β di- C ¹³ H ²⁴ O ¹ = CH ³ , CH · CH ³ . CO O CH : (CH ³) ² CH ² . CH ³ . CO O CH : (CH ³) ²		Pur. d ¹⁶ = 1,034	GUYE of MBLIKIAN (loc. cft.).
		Alcool (p = 10,93)	RAWITEER (loc. cit.).
βMéthyladipique (acide). C'H'2O'=	[2] _b +8°,42	, , , ,	MANASOR of RUPE (Ber. d. D. ch. Ges., t. XXVII, p. 1820; 1894).
CH2.CH2.COOH	[2] ²⁰ + 7°,89	Alcool (p = 4,06)	RAWITERR (loc. cit.).
βMéthyladipo-otolui- dide. $C^{21}H^{26}Az^{2}O^{2} = C^{7}H^{10}O^{2}(AzH.C^{6}H^{4},CH^{2})^{2}$		Ac. acétique (<i>p</i> = 0,35)	RAWITZER (loc. clt.).
Id. m. (1)(3)	[a] ²⁵ + 11°,03	Id. $(p=\epsilon,52)$	
Id. p. (1) (4)	[2] ²¹ + 35°,9t	Id. $(p = 1,52)$ Id. $(p = 1,57)$	
(C ²² H ²⁴ Az ² O ⁴)CH ² O.AzO ²	$[\alpha]_0^{23} - 6^{\circ}, 4$	Eau (c = 4,71)	Häpnica (<i>Zeite, f. physik,</i> Ch _u t. XII, p. 489; 1893).
(chlorure de). (C ²² H ²⁴ Az ² O ⁴)CH ² Cl	[2] ₀ - 6°,5	Eau (c = 4,445)	id.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Méthylbrucinium (hydroxyde de). (C ²³ II ²⁶ Az ² O ⁴) CH ³ OH	$[\alpha]^{23}_{\nu}-7^{"},3$	Eau (c = 4,26)	Id.
Méthylbrucinium (sulfate de). [(C ²³ H ²⁶ Az ² O ⁴)CH ³] ² SO ⁴	$[\alpha]_{b}^{23}-6^{\circ},3$	Eau (c = 4,57)	Id.
βMéthylbutylène- diamine. C ⁵ H ¹⁴ Az ² = CH ³ .CH.CH ² .Az H ² CH ² .CH ² .Az H ²	[α] ₀ + 30°, 5	Alcool	ETAIX et FREUNDLER [Bull. Soc. chim. (3* 8.), t. XVII, p. 807; 1897].
Méthylcamphocarbonate éthylique. C ¹⁴ H ²² O ³ = CH ³ CH ³ CO O C ² H ³	, []-	Alcool (c = 11,9)	Minguin [Ann. de Ch. et l'hys. (7° 8.), t. II, p. 283; 189;].
Méthylcamphocarbonate méthylique. C ¹³ H ²⁰ O ³ = C*H ¹⁴ CO O CH ³	[α] ₀ +17°, 25	Alcool (c = 11,2)	Id., p. 281.
Méthylcamphorimine. $C^{11}H^{19}Az = C^8H^{14} < C^{11}C^{11}C^{11}$	$[\alpha]_0^{22,15}$ — 23°,6	Pur. d22,15 = 0,9226	FORSTER (J. of chem. Soc., t. LXXI, p. 194; 1897).
Méthylcamphre. Voir Can	nphre méthylé.		
Méthylcincholoïponate diéthylique (iodo- méthylate de). [C ⁸ H ¹⁰ (CH ³) \zO ⁴ (C ² H ⁵) ²] CH ⁵ I		Eau	SKRAUP (Monatsh. f. Ch., t. XVII, p. 365; 1896).
Id. (isomère).	[α] _ν —89°, ο	Eau	

Méthylcocaine (chlorhydrate de). Voir Benzoylecgonine éthylique (chlorh. de).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Méthylcodéine (iodure de). (C ¹⁹ H ²¹ Az O ³) CH ³ I	$[\alpha]_{0}^{11} - 81^{\circ}, 9$	Alcool $(c = 1, 14)$	Knorr (Ber. d. D. ch. Ges., t. XXVII, p. 1149; 1894).
Méthylcodéine (sulfate de). (C ¹⁹ H ²¹ Az O ³ CH ³) ² SO ⁴ + 4H ² O	$[\alpha]_{b}^{15}-130^{\circ},1$	Eau (c = 5)	HESSE (Lieb. Ann., t CCXXII, p. 215; 1884).
nMéthylconicine. C'' H ¹⁶ Az (CH ³)	$[\alpha]_{\nu}^{24,3} + 81^{\circ}, 23$	Pur. $d^{24,3} = 0,8318$	WOLFFENSTEIN (Ber. d. D. ch. Ges., t. XXVII, p. 2614; 1894).
Méthylcyclohexanol (bromure de). C; H; Br = CH; CH; CH; CH; CH; CH;	$[\alpha]_{D}^{19}+4^{\circ},50$	Pur. d ₄ ¹⁹ = 1,2789	ZBLINSKY (Ber. d. D. ch. Ges., t. XXX, p. 1532; 1897).
Méthylcyclohexanone. C ⁷ H ¹² O = CH ² - CH ² CH ² - CO (de pulégone)	$[\alpha]_0^{20} + 13^{\circ}, 15$	Pur. $d^{20} = 0,9071$	TIBMANN of SCHMIDT (Ber. d. D. ch. Ges., t. XXX, p. 23; 1897).
(d'isopulégone)	$ [\alpha]^{2\theta}_{\nu}+9^{\circ},05 $	Pur. $d^{20} = 0,9115$	
Méthyldesmotroposantoni	ne. <i>Voir</i> -santor	nine (Méthyldesmotr	copo-).
Méthylecgonine (chlor- hydrate de). (C ¹⁰ H ¹¹ Az O ³) H Cl	[2] _b +20°,8	Eau (c = 9,6)	LIBBERMANN of GIESKL (Ber. d. D. ch. Ges., t. XXIII, p. 511; 1890).
Méthylènerhamnonique (lactone). C ⁶ H ⁸ (CH ²)O ⁵	[a] _b — 85°,4	Eau (c = 3,91)	WEBER et Tollens (<i>Lich.</i> Ann., t. CCXCIX, p. 325; 1897).
Méthylènesaccharique (acide). C'H'O8	$[\alpha]_{D} + 118^{n}, 5$ (moy.)	Eau ($c = 2,36$)	Henneberg et Tollens (Licb. Ann., t. CCXCII, p. 42; 1896).

Méthyléthylacétique (acide). Voir Valérique (acide).

NOM BY FORMULE.	POUVOIR relatoire spécifique.	DIBSOLVANT ET TENEUR.	OBSERVATEURS.
C¹¹ = (C¹H³). CH³.CO·O(C⁴H¹³)	[x], + 12°,86	Pur. d'13 = 0,867	VAN ROMBURON (Rec. Tr. chim. d. P. B., t. V, p. 221; 1866).
ββMéthyléthylpropio- nique (acide). C*H'**O' == CH'*.CH(C'H'*).CH'*.COOH		Pur. d ¹¹ == 0,930	Id.
lique (alcool). C ⁰ H ¹⁴ O = CH ³ .CH(C ³ H ⁴)CH ² .CH ³ OH	$[\alpha]_{h}^{15} + 8^{n}, 2$	Pur. d ¹⁵ = 0,829	īd.

Voir Éthylamyle.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	. OBSERVATEURS.
Méthylhexylcarbinol. $C^8 H^{18} O = CH^3 . CH (OH).$ $CH^2 . CH^2 . CH < CH^3 $ $C^2 H^5$	$[\alpha]_{b}^{24}+4^{\circ},69$	Pur. $d^{24} = 0.818$	Mile Welt [Ann. de Chim. et Phys. (7° s.), t. VI, p. 135; 1895].
Méthylhexylcétone. C* H'*O = CH3.CO.[CH2]2CH(CH3).C2H2		Pur. $d^{19} = 0.8174$	ld.
Méthylhydroxycampho- carbonique (acide). C ¹² H ²⁰ O' = C ⁸ H ¹¹ CH(CH ³)COOH	$[\alpha]_{\scriptscriptstyle D}$ + 26°, 31		HALLER et MINGUIN (C. R. t. CXVIII. p. 690; 1896).
dMéthylmannoside. C ⁶ H ¹¹ (CH ³)O ⁶	$ \begin{array}{c c} & [\alpha]_{b} + 82^{\circ}, 5 \\ & + 79^{\circ}, 2 \\ & + 87^{\circ}, 3 \end{array} $	Eau $(p = 1)$ Id. $(p = 8)$ Alcool $(p = 1)$	ALB. VAN EKENSTEIN (Rec. Trav. chim. d. P. B., t. XV, p. 223; 1896).
lId.	$\frac{[\alpha]_{b}^{20} + 79^{\circ}, 2}{[\alpha]_{b}^{20} - 79^{\circ}, 4}$		E. FISCHER et BEENSCH (Ber. d. D. ch. Ges., t. XXIX, p. 2928; 1896).
dMéthylmannoside · tétranitré. C ⁶ H ¹ (CH ³)(Az O ²) ⁴ O ⁶	$[\alpha]_{\nu}^{2\bullet} + 77^{\circ}$	Alcool $(c = 2,5)$	WILL et LENZE (Ber. d. D. ch. Ges., t. XXXI, p. 80; 1898).
Méthylmorphiméthine. Vo	oir Méthocodéin	₿.	
Méthylmorphonium (azotate de). (C ¹⁷ H ¹⁹ AzO ² .CH ³)AzO ³	$ \begin{array}{c c} $	Eau $(c = 0,603)$ Id. $(c = 0,905)$ Id. $(c = 1,21)$ Id. $(c = 1,81)$ Id. $(c = 3,62)$	HÄDRICH (<i>Zeits. f. physik.</i> Ch., t. XII, p. 485; 1893).
Méthylmorphonium (chlorure de). (C ¹⁷ H ¹⁹ Az O ³ . CH ³) Cl	$[\alpha]_{\mu}^{25} - 83^{\circ}, 5$ $- 84^{\circ}, 4$ $- 88^{\circ}, 5$ $- 89^{\circ}, 4$ $- 95^{\circ}, 1$	Eau $(c = 0.559)$ Id. $(c = 0.839)$ Id. $(c = 1.12)$ Id. $(c = 1.68)$ Id. $(c = 3.36)$	Id.
Méthylmorphonium (hydroxyde de). (C ¹⁷ H ¹⁹ Az O ³ . CH ³)OH	[a] ²⁵ — 26°, 8	Eau (c = 0,79 à 1,585)	Id.

NOM BT FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Méthylmorphonium (iodure de). (C ¹⁷ H ¹⁹ Az O ³ . CH ³) I	— 69°, 1 — 70°, 3	Eau $(c = 0,7 \text{ à } 1,7)$ Id. $(c = 1,42)$ Id. $(c = 2,135)$ Id. $(c = 4,27)$	Id.
Méthylmorphonium (sulfate de). (C ¹¹ H ¹⁹ AzO ³ .CH ³) ² SO ⁴	— 86°, 2	Eau $(c = 0.58)$ Id. $(c = 0.87)$ Id. $(c = 1.16)$ Id. $(c = 1.74)$	Id.
Méthylpelletiérine (chlor- hydrate de). (C° H ¹¹ Az O) H Cl	[a] _v + 22°	Eau	TANRET (C. R., t. XC, p. 695; 1880).
Méthylpipéridine. Voir Pi	pécoline.		
Méthylpropylcarbinol C ³ H ¹² O = CH ³ . CH (OH). C ³ H ⁷			Guve et Mile Aston (C. R., t. CXXIV, p. 196; 1897).
Méthylpropylcarbinol (acétine du). C'H''O'= CH''.CH[O.C'H''O].C'H'	[a] ₀ —4°,06	Pur. d = 0,962	LE BEL in GUYE et CHA- VANNE (C. R., t. CXX, p. 454; 1895).
Méthylpropylcarbinol (butyrine du). C ⁹ H ¹⁸ O ² = CH ³ . CH [O.C'H'O]. C ³ H ³	[a] _D — 8°, 25	Pur. d = 0,889	Id.
Méthylpropylcarbinol (chloracétine du) C'H'^3 ClO^2 = CH^3. CH[O.C^2 H'^2 ClO]. C^3 H'^3	$\begin{array}{c} [\alpha]_{0}^{21} - 0^{\circ}, 34 \\ [\alpha]_{0}^{99} - 0^{\circ}, 24 \end{array}$	Pur.	Guyr et Mile Aston (loc. cit.).
Méthylpropylcarbinol (chlorhydrine du). C ³ H ¹¹ Cl = CH ³ . CH Cl. C ³ H ⁷	$\begin{bmatrix} \alpha \end{bmatrix}_{666}^{23} + 2^{\circ}, 89 \\ \Rightarrow _{D} + 3^{\circ}, 13 \\ \Rightarrow _{533} + 4^{\circ}, 47 \\ \Rightarrow _{489} + 5^{\circ}, 23 \\ \Rightarrow _{448} + 6^{\circ}, 21 \end{bmatrix}$		GUYE et MELIKIAN (C. R., t. CXXIII, p. 1291; 18,6). [Voir Table XVII (I. E.).]
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pur	Guye et Mile Aston (loc. cit.).

NOM ET PORMULE.	POUVOIR entatoire specifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Méthylpropylcarbinol (propionine du). C*H'*O' CH'*.CH[O.C'111*O].C'H'	[a] _a — 8°, 55	Pur. d = 0,895	LE BEL (loc. elt.).
Méthylrhamnoside. C ⁶ H ¹¹ (CH ³)O ⁵	[x] ²⁰ — 62°,4	Eau (p = 9,5)	E. Fischen (Ber. d. D. ch. Ges., t. XXVIII, p. 1159; 1895).
Méthylaalicylidène- camphre. C'' H''' O' = C'' H'' C = CH. C' H'. O CH' CO		Toluène (c = 6,75)	Haller (Dict. de Würtz, 2° Supp., t. I, p. 903).
Méthylsorboside. C ⁴ H ¹¹ (CH ²) O ⁴	[x] ^{1*} — 88°, 9 — 88°, 5	Eau $(p = 8, 19)$ Id. $(p = 9, 12)$	E. Fischer (loc. cit., p. 1160).
(azotate de). (C ²¹ H ²² Az ² O ² .CH ³)Az O ³	[a] ¹⁵ — 1°, 7	Eau (c = 4,11)	Hännten (Zeits f. physik, Ch , t. XII, p. 488; 1893).
(chlorure de). (C ²¹ H ²² Az ² O ² , CH ³) Cl	[a] ²¹ — 1°,8	Eau (c = 3,845)	Id.
(C ²¹ H ²² Az ² O ² ,CH ²)I	[x] ²⁵ — t°, 47	Eau (c = 4,76)	Id.
(sulfate de). (C ¹¹ H ²² Az ² O ² . CH ²) ² SO ⁴	[2]25-1", 75	Eau (c = 3.97)	I₫.

NOM ET FORMULE.	POUVOIR rotatuire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
α Méthylxyloside. C ⁵ H ⁹ (CH ³)O ⁵	$= \frac{1}{[\alpha]_{\nu}^{20} + 153^{\circ}, 2}$	Eau (p = 9,29)	E. FISCHER (Ber. d. D. ch. Ges., t. XXVIII, p. 1158;
β Id.	$ [\alpha]_{b}^{20}-65^{\circ},85$	Eau $(p = 9,21)$	1 8 95).
Morphine	1 [- 125 6 5 5	Fau + 2 Na OH (c - 2)	HRSSR (Lieb. Ann. t.

Morphine.

C¹⁷ H¹⁹ Az O³ + H² O

$$\begin{bmatrix}
\alpha \end{bmatrix}_{0}^{25} - 67^{\circ}, 5 \\
- 70^{\circ}, 23 \\
- 71^{\circ}, 0
\end{bmatrix}$$
Eau + 2 Na OH (c = 2) | H B S B R (Lieb. Ann., t. CLXXVI, p. 190; 1875).

[a] Eau + 10 Na OH (c = 2) | CLXXVI, p. 190; 1875).

[b] Id. (c = 5) | Tyrociner (Inaug. Dissert. Freiburg; 1882).

Action des acides en solutions aqueuses.

$$[c=1,8][t=20^{\circ}]$$

n molécules acide pour 1 molécule base.

					ACIDE				
n.	chlor- hydrique.	azotique.	for m iq u e.	acétique.	sulfurique.	oxalique.	phospho- rique.	arsénique.	citrique.
0,5	"	"	"		—128 , 2	—127°,7	"	"	"
0,67	"	"	" "	" 0	"	"	" "	<i>"</i> "	—128 [°] ,0
1	-128,2	-128,4	-128,8	-129,1	-128,3	127,6	- 128,4	-128,4	-128,0
2	-127,5	—128,3	-128,7	-129,1	-128,2	-127,6	-128,1	-128,6	-127,8
3	-127,5	-128,1	—128,8	- 129,0	-128,1	-127,5	-128,1	-128,5	—127 ,8
4	-127,4	-128,1	—128,8	-128,7	"	"	"	"	-127,7
6	—126,5	-128,1	—128,5	-128,7	—123,2	-127,4	-127,6	-128,3	-127,5
8	"	-127,7	"	"	"	"	"	"	<i>m</i>
10	-126,6	"	-128,2	-128,5	-122,7	—126,3	<u>-126,8</u>	-127,7	-127,0
15	"	"	"	"		-126,3	"	"	"
20	124,	"	-128,2	-128,5	"	"	125,8	—127,1 —126,9	-126,8
3 0	"	"	-128,1	-128,7	"	"	-125,0	-126,9	126,2
60	"	"	"	"	-114,3	"	"	"	"

TYKOCINER (loc. cit.).

Morphine (acétate de).
$$[\alpha]_{\text{D}} - 100^{\circ}, 4$$
 | Alcool absolu $(c=1,2)$ | Oudemans (Lieb. Ann., t. $Mo.C^{2}H^{1}O^{2} + 3H^{2}O$ | $-98^{\circ}, 9$ | Alc. $[d=0,865](c=0,97)$ | $[\alpha]_{\text{D}} - [69,0+3,32c]$ | Eau $(c=1,2,2)$ | Eau $(c=1,2,2)$ | Eau $(c=1,2,2)$ | $CLXVI, p. 77; 1873$).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Morphine (azotate de). Mo. Az O ³ H	1		HADRICH (Zeits. f. physik. Ch., t. XII, p. 479; 1893).
Morphine (abromocam- phosulfonate de). Mo.(C ¹⁰ H ¹⁴ Br O SO ³ H)	[α] _D — 16°,9 — 16°,7	Eau (c = 0,99) Id. (c = 1,99)	WALDEN (Zeits. f. physik. Ch., t. XV, p. 206; 1894).
Morphine (chlorhydrate de). Mo. $H Cl + 3 H^2 O$	Eau	100,67 — 1,14 c] ($c = 1 \text{ à 4}$) Eau + 10 H Cl ($c = 2$)	HESSE (Lieb. Ann., t. CLXXVI, p. 190; 1875).
	— 113°, 7 — 113°, 4	Eau $(c = 0,4 \stackrel{?}{a} 0,8)$ Id. $(c = 1,07)$ Id. $(c = 1,61)$ Id. $(c = 3,22)$ (anhydre)	HÄDRICH (loc. cit.).
Morphine (dphényl- glycolate de). Mo.C ⁶ H ³ .CH(OH)COOH	- 83°,5 - 82°,6 - 82°,4	Eau $(c = 0.55)$ Id. $(c = 0.7 \text{ à } 1.1)$ Id. $(c = 1.46)$ Id. $(c = 2.185)$ Id. $(c = 4.37)$	Id.
Morphine (sulfate de). Mo ² .SO'H ² +5H ² O	1	[00,47-0,96c] $(c=1 à 4)$	HESSE (loc. cit.).
	- 110°,2 - 109°,3 - 109°,0	Eau $(c = 0,42)$ Id. $(c = 0,84)$ Id. $(c = 1,11)$ Id. $(c = 1,67)$ Id. $(c = 3,34)$ (anhydre)	Hädrich (loc. cit.).
Morphine (trichloro- acétate de). Mo.CCl ³ .COOH	- 82°, 1 - 80°, 9 - 80°, 9	Eau $(c = 0.56)$ Id. $(c = 0.75)$ Id. $(c = 1.12)$ Id. $(c = 1.50)$ Id. $(c = 2.24)$ Id. $(c = 4.48)$	Id.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Morphine-(2)-quinoline (sulfate de). ($C^{26}H^{24}Az^2O^3$) $^2SO^4H^2+3H^2O$	[α] _D — 66", 46	Eau + 0,7 % H Cl $(c = 3,08)$	MAUTHNER in Cohn (Mo- natsh. f. Ch., t. XIX, p. 113; 1898).
Mycoctonine. (azotate de). (C ²¹ H ³⁴ Az ² O ⁶) Az O ³ H	[z] _u +29°,4		DRAGENDORFF et Sponn (Pharm. Zeit. f. Russl., t. XXIII; 1884).

Mycose. Voir Tréhalose.

Napelline. Voir Isoaconitine.

Naphtol camphré. Voir Camphré (naphtol).

Naphtylmalimide. Voir Malonaphtile.

Narcotine. C ²² H ²³ Az O ¹	$ \begin{bmatrix} \alpha \end{bmatrix}_{0}^{22,5} - 185^{\circ}, 0 & \text{Alcool } 97^{\circ}/_{0} & (c = 0,74) \\ - 191^{\circ}, 5 & \text{vol. alc.} \\ + 2 & \text{chlorof.} & (c = 2) \\ - 207^{\circ}, 35 & \text{Chloroforme} & (c = 2 & 3 & 5) \end{bmatrix} $ H ESSE (Lieb. Ann., t. CLXXVI, p. 192; 1875).
	$ \begin{bmatrix} \alpha \end{bmatrix}_{0}^{22,5} + \begin{bmatrix} 47,4-0,2c \end{bmatrix} \\ \text{Eau} + 2 \text{H Cl } (c = 2 \text{ à 5}) \\ [\alpha]_{0}^{22,5} + 50^{\circ}, 0 \text{Eau} + 10 \text{ II Cl } (c = 2) \\ + 104^{\circ}, 5 \begin{cases} \text{Alcool 80 } ^{\circ}/_{0} \\ + 2 \text{ H Cl } (c = 2) \end{cases} $ $ \begin{bmatrix} 1d., p. 193. \\ \text{Bouchardat } (Ann. de Ch. ct Phys. (3° s.), t. IX; \\ (843). \end{bmatrix} $
•	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Narcotine (tartrate de) (C ²² H ²³ AzO ¹)C ⁴ H ⁶ O ⁶	• $[\alpha]_D - 65^\circ$, 29 Alcool 97°/ $_0$ ($c = 0.54$) HAMMERSCHMIDT (Inaug. Dissert., Berlin; 1889).
Naringine. C ²¹ H ²⁶ O ¹¹ + 4 H ² O	Eau $(c = 2,046)$ WILL (Ber. d. D. ch. Ges87°,6 Alc. abs. $(c = 7,30)$ t. XX, p. 296; 1887).

Néocamphylamine. Voir -camphylamine (Néo-).

Nicotine.

C10 H14 Az2

1° Nicotine pure (Raie D).

$$\begin{array}{lll} [\alpha]_{0}^{10,2} - 160^{\circ}, 96 & (d_{4}^{10,2} = 1,0184) \\ [\alpha]_{0}^{20} & -161^{\circ}, 55 & (d_{4}^{20} = 1,0110) \\ [\alpha]_{0}^{30} & -161^{\circ}, 96 & (d_{4}^{30} = 1,0037) \end{array}$$

LANDOLT (Lieb. Ann., t. CLXXXIX, p. 311; 1877).

$$[a]_{0}^{1*}-162^{\circ},77$$

NASINI et PEZZOLATO [R. C. dei Lincei (5º s.), t. I (2º sem.), p. 332; 1892].

$$[\alpha]_{\mu}^{2\nu} - 162^{\circ}, 84 \qquad (d_4^{20} = 1,0107)$$

GENNARI [Gazz. chim. ital., t. XXV (II), p. 252; 1895].

$$[\alpha]_0^{26}$$
 — 164°,00 $(d_4^{26} = 1,0105)$

HEIN (Inaug.-Dissert., Berlin; 1896).

$$[\alpha]_{D}^{20} - 164^{\circ}, 91 \qquad (d_{4}^{20} = 1,0095)$$

PRIBRAM et GLÜCKSMANN (Monatsh. f. Ch., t. XVIII, p. 321, 1897).

2º Dissolutions aqueuses (Raie D).

$$[\alpha]_0^{20} - [115,019 - 1,70607q + \sqrt{2140,8} - 108,867q + 2,5572q^2]$$

$$q = 10 \text{ à } 91.$$
LANDOLT (loc. ci

LANDOLT (loc. cit.).

$$[\alpha]_{0}^{20} - 80^{\circ}, 18$$
 $(p = 34, 395)$
 $-94^{\circ}, 61$ $(p = 66, 902)$

GENNARI (loc. cit.).

$$p = 20,17.$$
 | IMMÉDIAT. | APRÈS 12h. | APRÈS 18h. | APRÈS 48h. | α]_b²⁰ = -87 °,81 | -93 ,13 | -96 ,55 | -96 ,56 | $p = 0.8826$. | 1,3244. | 2,0125. | 4,0289.

PRIBRAM (Ber. d. D. ch. Ges., t. XX, p. 1846; 1887).

HEIN (loc. cit.).

$$[\alpha]_{0}^{20} - [164,91 - 2,7672q + 0,000019795q^{4}] \qquad (q = 0 \text{ à } 27,5)$$

$$- \left[76,346 + \frac{0,10629p}{1 - 0,0098134p}\right] \qquad (p = 71,3 \text{ à } 10,1)$$

$$- [78,524 - 0,4189p + 0,03490p^{2}] \qquad (p = 9,1 \text{ à } 0,6)$$

PRIBRAM et GLÜCKSMANN (loc. cit.)

(Formules calculées d'après les nombres des auteurs.)

3° Autres liquides (Raie D).

Alcool éthylique.	$[\alpha]_{0}^{20} - [160,83 - 0,2224q]$
	(q = 10 à 85)
	LANDOLT (loc. cit.).
	$[\alpha]_{\mu}^{76}-140^{\circ},81 \qquad (p=10,67)$
	GENNARI (loc. cit.).
A. 1. (.) (.)	
Alcool méthylique.	$[a]_{\nu}^{20}-130^{\circ},43 \qquad (p=9,76)$
	$-131^{\circ},61 (p=18,96)$
Alcool npropylique.	$[\alpha]_{\mu}^{2^{n}}$ - $[162,2750,1265q0,000055q]$
1 10 1	(q = 11, 5 à 98, 2)
	HRIN (loc. cit.).
Éther éthyliqu e.	$[\alpha]_{0}^{20} - [164,631 - 0,02929q]$
	(q = 15,75 à 94,3)
	Id.
Acétone.	$[\alpha]_{0}^{20} - [163,68 - 0,00000000579^{4}]$
	(q = 6 à 8o)
	, ,
	-[166,81-0,0420q]
	(q = 80 a 97)
	Id.
	(Formules calculées d'après les nombres de l'auteur.)
Benzène.	$[\alpha]_{\rm b}^{20} - 162^{\circ}, 77 \qquad (c = 15,985)$
	$-161^{\circ},65 \qquad (c=43,357)$
	NASINI et PEZZOLATO (loc. cit.).
	,
	$[\alpha]_{0}^{20}-159^{\circ},40 \qquad (p=20,10)$
	GENNARI (loc. cit.).
	$[\alpha]_{\nu}^{20} - [164, 32 - 0,0030 q]$
	(q = 15 à 74,5)
	-[166,01-0,0256q]
	(q = 74,5 à 91,5)
	Hein.
	(Formules calculées d'après les nombres de l'auteur.)
Aniline.	$[\alpha]_{0}^{20} - [160,64 - 0,1056q + 0,000645q^{2}]$
	(q = 15 à 94)
	(q - 13 a 94) Id.
Toluidine.	$[\alpha]_0^{20} - [162,97 - 0,11147 + 0,000462q^2]$
	(q = 15 à 95)
	Id.

4° Dispersion.

$t=20^{\circ C}$.	ROUGE. λ=«66μμ.	D. λ = 589μμ.	VERT. λ=533μμ.	BLEU CLAIR. λ = \89μμ.	BLEU FONCÉ. λ=448μμ.
			, ————————————————————————————————————		/ — 440 [
Pur. $d_4^{20} = 1,0107$	-123°,37	-162,84	—209°, 78	-250°,71	-317,79
Eau. $(p = 34,395)$	 59,49	 80,18	103,31	-126,73	-160,25
p = 66,902	 70,52	- 94,61	-121,62	-146,42	-178,11
Alc. éthyl. $p = 10,67$	-104,47	-140,81	—178,78	-210,28	-280,47
Alc. méthyl. $\begin{cases} p = 9,76 \end{cases}$		-130,43	-167,67	205,80	-248,60
Alc. Herry?. $p = 18,96$	- 99,45	-131,61	—170,67	-206,65	-266,10
Benzène. $p = 20,10$	118,80	-159,40	—210,32	-229,39	"

GENNARI (loc. cit.).

Aniline $(p = 7 \text{ à } 85) \dots |[\alpha]_{D} \times 0,75|$ " $|[\alpha]_{D} \times 1,15|[\alpha]_{D} \times 1,57|[\alpha]_{D} \times 1,85$

HEIN (loc. cit.).

[Voir Table XVII (I.E)].

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Nicotine (acétate de-). (C ¹⁶ H ¹⁴ Az ²) C ² H ⁴ O ²	$[\alpha]_{0}^{20} + 13^{\circ}, 81 \\ + 14^{\circ}, 75 \\ \div 17^{\circ}, 10$	1	SCHWEBEL (Ber. d. D. ch. Ges., t. XV, p. 2852; 1882).
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	NASINI et PEZZOLATO [R. C. dei Lincei (2° 8.), t. I (2° 8em.), p. 332; 1892].
(Voir la suite au verso.)	— 8o°. 73	Id. $(c = 13,86)$	

	p.	$d_4^{20}.$	ROUGE λ=666μμ.	D. λ=589μμ.	VERT. λ = 533μμ.	BLEU CLAIR. λ = \$89μμ.	BLEU FONCÉ. λ=448μμ.
Nicotine (1 mol.)	ł	1 ' ''	1		_95°,22	-120,3o	-143°,54
Ac. acétiq. (1 mol).		1 ' "	-11,79	—16,00	-20,27	i	"
+(100-p)Eau	,		1		1	— 21,99	-26,68
$t = 20^{\circ}$.	78,87	1,0976	— 4,13	5,82	— 8,20	- 10,92	"
٠	77,84	1,0993	- 1,70	-2,73	- 4,39	- 6,63	- 9,93
	77,45	1,0994	[- 0,14]	[-0,64]	[- 1,74]	[-3,29]	[-5,87]
			_	-		[-0,89]	
,	76,30	1,0999	[+1,62]	[+1,17]	[+0,88]	0	$\begin{bmatrix} -1,67 \end{bmatrix}$
	76,23	1,1035	[+7,02]	[+8,85]	[+10,52]	[+ 11,74]	<i>m</i>
·	76,10	1,1295	[+15,04]	[+19,49]	[+24,13]	[+ 28,60]	[+ 32,61]
1	53,72	"	+16,44	+21,36	+25,81	+ 29,05	w
	44,30	"	+14,30	+18,85	+22,83	+ 26,57	 31,37
	26,48	- 11	+13,21	+17,35	+21,23	+ 23,98	11
	24,28	,,	+13,00	+16,96	+20,40	+ 23,50	+ 25,84

GRNNARI [Gazz. chim. ital., t. XXV (II), p. 252; 1891].

Les nombres entre [] ont été calculés à l'aide des rotations données par l'auteur.

NOM ET FORMULE.	POUVO rotatuire spé	IDISSOLV	ANT ET TENEUR.	OBSERVATEURS.
Nicotine (azotate de). (C ¹⁰ H ¹⁴ Az ²) Az () ³ H	$[a]_{D}+1$	2°, 58 Eau	(p = 8,34)	CARRARA [R. C. dei Lincei (5° s.), t. II (2° sem.), p. 153; 1893].
Nicotine (bromhydrate de). (C ¹⁰ H ¹⁴ Az ²) H Br	$[\alpha]_0+1$	2", 17 Eat	u (p = 9,0)	Id.
Nicotine (chlorhydrate de). (C ¹⁰ H ¹⁴ Az ²)HCl	+ 10	5°,77 Id. 6°,75 Id.	(p = 9.99) (p = 19.80) (p = 30.02) (p = 42.87)	SCHWRBEL (Ber. d. D. ch. Ges., t. XV, p. 2852; 1882).
		Eau(p=18,41). + 12°, 13 + 15°, 45 + 18°, 72 + 21°, 88 + 23°, 84	Eau(p=36,85). + 15", 21 + 19", 62 + 24", 29 + 27", 92	GENNARI (loc. cit.). Voir Table XVII (I, E)].

POUVOIR atoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
x] _D + 12°, 18	Eau $(p = 8,74)$	CARRARA (loc. cit.).
] ²⁰ + [19,77 -	, , 11	Schwebel (loc. cit.).
	Eau	Ì
p=31,	42. $p = 35,24.$ $p = 45,44.$	·
$+ 15^{\circ},$ $+ 15^{\circ},$ $+ 19^{\circ},$	66 + 16°,00 + 16°,54 20 + 19°,46 + 20°,51	
[\alpha] _D 4°, 7	Alcool	PINNER (Ber. d. D. ch. Ges., t. XXVII, p. 2865; 1894).
] <u>,</u> — 129°,02	Alcool $(c = 1)$	SKRAUP (Monatsh. f. Ch., t. XIV, p. 434; 1893).
[z] _u + 2 05°	Eau (c = 10)	Lowry (J. of chem. Soc., t. LXXIII, p. 996; 1898).
]	$ \begin{vmatrix} p = 31, \\ \alpha \end{bmatrix}_{666}^{23} + 12^{\circ}, \\ + 15^{\circ}, \\ + 15^{\circ}, \\ + 21^{\circ}, \\ + 24^{\circ}, \end{vmatrix} $ $ [\alpha]_{D} - 4^{\circ}, 7 $	Eau $(q = 30 \text{ à } 90)$ Eau $(q = 30 \text{ à } 90)$ Eau $(q = 30 \text{ à } 90)$ Eau $p = 31,42$. $p = 35,24$. $p = 45,44$. $ a _{666}^{23} a _$

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Nitromalate diméthy- lique. C ⁶ H ⁹ (Az O ²) O ⁵ = Az O ² . O. CH . CO O CH ³	$[\alpha]_{b}^{20}-18^{\circ},80$	Chlorof. (c = 4)	WALDEN (Zeits. f. physik. Ch., t. XVII, p. 257, 1895).
Nitromannitane. C ⁶ H ² (Az O ²) ⁵ O ⁵	$[\alpha]_j + 53^{\circ}, 26$		Vionon [Ann. de Ch. et Phys. (5° 8.), t. II, p. 264; 1874].
Nitromannite. Voir Manni	te hexanitrique).	
Nitroxybutyrate ibuty- lique. $C^6 H^{15} Az O^5 =$ $C^2 H^5 . (Az O^2, O) CH . COOC^4 H^9$		Pur. d ¹⁵ = 1,075	GUYE et JORDAN [Bull. Soc. chim., (3° 5.), t. XV, p. 496; 1896].
Norisosaccharate diéthy- lique. $C^{10}H^{18}O^{8} = C^{4}H^{8}O^{4}(COOC^{2}H^{5})^{2}$	[α] _p + 35°,5	Eau (c = 5)	TIEMANN et HAARMANN (Ber. d. D. ch. Ges., t. XIX, p. 1263; 1886).
Norisosaccharique (acide). C ⁶ H ¹⁰ O ⁸	[α] ₀ + 41°, 2 (immédiat) [α] ₀ + 51°, 7 (après échauff.)	Eau → HCl (c = 4)	TIBMANN (Ber. d. D. ch. Ges., t. XXVII, p. 137; 1804).
Octite. C ⁸ H ¹⁸ O ⁸ (des eaux mères de la sorbite)	$\begin{bmatrix} \alpha \end{bmatrix}_{0}^{20} - 3^{\circ}, 42$ $[\alpha]_{0}^{20} - 10^{\circ}, 0$	Eau (Eau avec 20st borax et 15st lessive de soude à 36° pour 5st octite	VINCENT et MEUNIER (C. R., t. CXXVII, p. 762; 1898).
Ouabaïate de baryum. (C ³⁰ H ⁴⁷ O ¹³) Ba	[α] ₁₁ — 46°, 67	Eau	ARNAUD (C. R., t. CXXVI. p. 1280; 1898).
Ouabaine. • C ³⁰ H ¹⁶ O ¹² + H ² O	$[\alpha]_{\nu}^{50}$ — 33°,8	Eau $(c = 6,5)$	ID. (id. t. CVII, p. 1162; 1888).
• ••	$\frac{1}{[\alpha]_{n}-30^{\circ},6}$	Eau $(p = 1)$	ID. (id. t. CVII, p. 1162; 1888). ID. (id. t. CXXVI, p. 346; 1898).

		DISSOLVANT ET TENEUR.	ODSERVATEURS.
		Alcoulà 85 °/, (e = 0,73)	fd., p. 16\$ (.
Oxyacanthine. C18 H18 Az O3	[α] ¹⁵ + 131*,6	Chloroforme (c = 4)	HESSE (Ber. d. D. ch. Ges t. XIX, p. 3190; 2886).
	$[x]_{n}^{2s} \leftarrow 174$ ", 1	Chloroforme (c = 4)	Роммкиния (Arch. Pharm., t. CCXXXII р. 127; 1895).
Oxyacanthine (chior hydrate de). (C ⁽⁸ H ⁽¹⁾ Az () ³) HCl + 2 H ⁽²⁾		-	
Oxy-(2)-amyrine. C*H*O.OH	[α] ^{13,3} + 108°,6	Benzène (c = 1,65)	SVKNASON in VESTERBEI (Ber. d. D. ch. Ges., XXIV, p. 3839, 1891).
3Oxybutyrate d'amm nium. C'H ()²(Az H') = CH³.CH(OH).CH².COOA:			Kitz (Zeits. f. Biol., XXIII, p. 329; 1887).
d'amm nium. C'H'O'(Az H') = C'H'.CH (OH).COO \z	0- [a], — 13", 9	Eau (c - 1,4)	Guyz et Jondan (C. R., CXX, p. 361; 1835).
β. d'arge C' H' O' Ag =	nt. [α], - 8°, 64	Eau $(p = 1, 25)$	Künz (Zeits. f. Biol., t X. p. 165; 1884).
3. d'arge C'H'O'Ag = CH'.CH (OH).CH'.COO	Ag [2], - 10°, 1		Minkowski (Arch. f. ex Pathol., t. XVIII, p. 3 1884).
3Oxybutyrate	[α] ₀ 15°, ο	1	ſ ſď.
de sodium. C¹H¹O³Na = CH³.CH (OH).CH².CO O	[2], —: 3", 93	Eau (p == 20.9)	DESCRIBELLER, SEYMANS of TOLLENS (Lieb. Ann t. CCXXVIII, p. 92; 1885

	Pouvoir	I .	I
NOM ET FORMULE.	tolaloire spécifique.	DISSOLVANT ET TENEUR.	
lα. amylique. C° H° O° =	$[\alpha]_{a}^{1a} - 7^{a}, 3$ (ac. g.; alc. g.) $[\alpha]_{a}^{1a} - 8^{a}, 5$	Pur. $d^{14} = 0.944$	YEM
C.H.CH(OH).COOC.H.	(nc. g.; alc. in.)	1	
	$[a]_{a}^{1}+i^{\circ},5$ (ac. in., alc. g.)	l .	/d., p. 487.
iaOxybutyrate nbutylique. C°H¹*O³ == C³H³.CH(OH). COO.(CH²)³.CH³	[a], 3—9°,7	Pur. d'4 = 0,982	ld., p. 463.
i2Oxybutyrate ibutylique. C*H***O*= C*H**, CH(OH)COOCH*. CH(CH*)*	[2]i*-7°,7	Pur. d13 = 0,965	id.
daOxybutyrate ibutylméthylénique. C*II*** O*=	[a]; + 10°, 1 (par ac. dr. et aldéh. valér. dr.		/d., p. 497.
C ₃ H ₂ ·CH·CH ₃ O — CH — O 1 C ₃ H ₂ ·CH — CO	[α] ₀ ¹⁵ + 6°, 5 (par ac. <i>dr.</i> et aldéh. <i>in.</i>)	Pur. d ¹⁵ = 1,032	
/aOxybutyrate éthylique. C ⁴ H ¹² O ³ = C ² H ³ CH (OH). CO O C ³ H ³	[a]i 1",9	i'ur. d''5 = 0,978	id., p. 482,
/ α Oxybutyrate n -heptylique, $C^{11}\Pi^{22}O^{3} = C^{2}\Pi^{2}.CH(OH).COOC^{3}H^{3}$	$[\alpha]_{n}^{15}-6^{\circ},1$	Pur. d15 = 0,928	id., p. 484.
### Comparison of the Comparis	[x 1,5 5", 9	Pur. d'3 = 1,109	'd., p. 496.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
laOxybutyrate noctylique. C ¹² H ²⁴ O ³ = C ² H ³ . CH (OH). CO O C ⁴ H ¹⁷	$[\alpha]_{0}^{18}-5^{\circ},3$	Pur. d ¹⁸ = 0,914	ld., p. 485.
lxoxybutyrate (Acétyl-) nbutylique. C ¹⁰ H ¹⁰ O ⁴ = C ² H ³ . CH (O . C ² H ³ O) . CO O (CH ²) ³ CH ³	[α] ¹³ — 30°, 7	Pur. d ¹⁵ = 1,006	ld., p. 188.
daoxybutyrate (Acétyl-) ibutylique. $C^{10} H^{18} O^4 =$ $C^2 H^3 . CH (O. C^2 H^3 O).$ $CO O CH^2 . CH : (CH^3)^2$	$[\alpha]_{0}^{15} + 27^{\circ}, 9$	Pur. d ¹⁵ = 1,005	Id.
Izoxybutyrate (Acétyl-) $n.$ -heptylique. $C^{13}H^{24}O^{4} = C^{2}H^{3}.CH(O.C^{2}H^{3}O).$ $COOC^{1}H^{15}$	[α] ¹⁵ — 21°,8	Pur. d ¹⁵ = 0,969	Id.
$l2oxybutyrate (Acétyl-)$ $noctylique.$ $C^{14}H^{26}O^{4} =$ $C^{2}H^{3}.CH(O.C^{2}H^{3}O).$ $COOC^{6}H^{17}$	$[\alpha]_{n}^{1.5}-18^{\circ},6$	Pur. d ¹⁵ = 0,965	/d., p. 189.
daoxybutyrate (Benzoyl-) ibutylique. $C^{15}H^{20}()^{4} =$ $C^{2}H^{5}.CH(O.C^{7}H^{5}O).$ $COOC^{4}H^{9}$	$\left[\alpha\right]^{15}_{a}-1^{\circ},2$	Pur. d ¹⁵ = 1,100	<i>Id.</i> , p. 492.
d2oxybutyrate (Butyryl-) ibutylique. C'2H2O' = C'2H3.CH(O.C'H'O). COOC'H'	$[\alpha]_{b}^{2a} + 24^{\circ}, 3$	Pur. $d^{20} = 0,972$	ld., p. 190.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSFRVATEURS.
$d\alpha.$ -oxybutyrate (Caproyl-) $i.$ -butylique. $C^{14}H^{26}()^{3}=$	$[\alpha]_0^{15} + 16^{\circ}, 3$	Pur. $d^{15} = 0.959$	Id., p. 491.
C ² H ³ . CH (O. C ⁶ H ¹¹ O).			
d2 -oxybutyrate (Pélar- gonyl-) ibutylique. C ¹⁷ H ³² O ⁴ = C ² H ³ . CH (O . C ³ H ¹⁷ O). CO () C ⁴ H ⁹	[α] _υ + 12°, 1	Alcool	/d., p. 492.
dzoxybutyrate (Propionyl-) ibutylique. $C^{11}H^{20}O^{4} = C^{2}H^{3}.CH(O.C^{3}H^{5}O).$ $COOC^{4}H^{9}$	[α] ¹³ + 27°,7	Pur. $d^{13} = 0.989$	ld., p. 490.
l2oxybutyrate (Valéryl-) amylique. C ¹⁴ H ²⁶ O ⁴ = C ² H ³ . CH (O. C ³ H ³ O) CO O C ³ H ¹¹ (ac. g.; alc. amylique g.; chl. de valéryle dr.)	[α] ^{1,5} — 15°, 1	Pur. d ¹⁵ = 0,959	/d., 493.
(ac. g.; alc. in.; valér. in.)	$[a]_{b}^{15}-15^{\circ},3$	$d^{15}=0.964$!
(ac. in.; alc. in.; valér. dr.)	$[\alpha]_n^{15} + 0^n, 1$	$d^{15}=0.962$)
(ac. in.; alc. g.; valér. in.)	$[\alpha]^{15}_{0}$ + o", 6	$d^{15}=0.961$	
$d.$ -zoxybutyrate ($n.$ -Va-léryl) $i.$ -butylique. $C^{13}H^{24}O^{4} = C^{2}H^{5}.$ $CH(O,C^{3}H^{9}O).COOC^{4}H^{9}$	[2] ¹⁵ +18",7	Pur. d ¹⁵ = 0,966	ld., p. 491.
βOxybutyrique (acide). C'H*O ³ = CH ³ . CH(OH). CH ² . CO OH	[a] ₀ — 20°,6		MINKOWSKI (Arch. f. exp. Pathol., t. XVIII, p. 35; 1884).
	[a] ₀ — 23", 4		KÜLZ (Zeits. f. Biol., t. XXIII, p. 329; 1887).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
π Oxycamphorique (acide). $C^{19}H^{16}O^{5} = HO.C^{8}H^{13} < COOH$	$[\alpha]_{b}^{20} + 28^{\circ}$ (app.)	Alcool (c = 6,37)	KIPPING (J. of chem. Soc., t. LXIX, p. 939; 1896).
Oxycinchonine (2). C ¹⁹ H ²² Az ² () ²	$[\alpha]_0^{18} + 182^{\circ}, 56$ $[\alpha]_0^{19} + 210^{\circ}, 76$	Alcool 97 % (c = 1) Eau + 2 H Cl (id.)	Jungylkisch et Légka (C. R., t. CVIII, p.952; 1889).
Oxycinchonine (3). Id.	$[\alpha]_{0}^{11} + 188^{\circ}, 8$ $[\alpha]_{0}^{15} + 228^{\circ}, o$ $+ 228^{\circ}, 33$	Alcool abs. $(c = 1)$ Eau + 2 H Cl (id.) Eau + 4 H Cl (id.)	ID. (C. R., t. CXIX, p. 1268; 1894). [Id. (C. R., t. CV; 1887).]
Oxycinchonine (2) (chlorhydrate de). (C ¹⁹ H ²² Az ² O ²) H Cl H ² O	[α] ¹³ +174",37	Eau + H Cl	ID. (C. R., t. CVIII, p.952; 1889).
Oxyde de propylène. Voir	Propylène (ox	yde de).	
Oxyéthylbrucine (chlor- hydrate de). $C^{25}H^{31}Az^{2}O^{5}Cl =$ $C^{23}H^{26}Az^{2}O^{4} \stackrel{CH^{2}.CH^{2}OH}{Cl}$		Eau	MEULENHOFF (Rec. Trav. chim. d. P. B., t. XIV, p. 229; 1895).
Oxyéthylstrychnine (chlorhydrate de). $C^{23}H^{27}Az^{2}O^{3}Cl + H^{2}O =$ $C^{21}H^{22}Az^{2}O^{2} CH^{2}.CH^{2}OH$ Cl	[a] ₀ 4",65	Eau	ld., p. 232.
Oxyfenènique (acide). (C'OH'G()2 = C'M'G(COH). COOH [de /fenène de dfenone]		Éther (p = 5,68) Id. (p == 7,19)	WALLACH (Lieb. Ann., t. CCCII, p. 378; 1898).
Id. [de dfenène de dfenone].	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ether $(p = 7, 25)$ Id. $(p = 7, 22)$	
Id. [de dfenène de lfenone].		Ether $(p=7,32)$	

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Oxygluconique (acide).	[α] _B — 14",5	Eau (c = 2)	BOUTROUX (C. R., t. CXI p. 185; 1890).
Oxyglutarique (acide). V	oir Glutanique (acide).	
aOxyméthylènecamphre (benzoate de). C ¹⁸ H ²⁰ O ³ = C ⁶ H ⁵ . CO O . CH : (C ¹⁰ H ¹¹ O)	+ 130°,68	Benzène $(c = 4.47)$ Id. $(c = 13,51)$	
		Id. $(c = 4,47)$ Id. $(c = 13,61)$	

Paraalbumine. Voir -albumine (Para-).

Paracholestérine. C ²⁶ H ¹¹ O + H ² O	$[\alpha]_{b}^{26}-28^{\circ},88$	Chloroforme $(c = 2,7)$	RE NKE et RODEWALD (<i>Lieb.</i> Ann., t. CCVII, p. 229; 1881).
---	-----------------------------------	-------------------------	--

Paraglobuline. Voir Globuline.

Paraisodextrane. Voir -dextrane (Paraiso-).

Paraphytostérine. C ²⁶ H ¹⁴ O	[α] _D — 44°, 1	Chlorof. ($c = 3,45$)	LIKIERNIK (Bcr. d. D. ch. Ges., t. XXIV, p. 187; 1891).
Parasantonine. Voir -san	itonine (Para-).		
Parasitostérine.	['a] ₀ — 20°,8	Ether ($c=2,87$)	Burián (Monatsh. f. Ch., t. XVIII, p. 567; 1897).
Parasorbique (acide).	$[\alpha]_{j}^{21} + 40^{\circ}, 8$	Pur. $d^{21} = 1,0628$	MARRCKER in DOEBNER (Ber. d. D. ch. Ges., t. XXVII, p. 348; 1894).
Patchoulène.	[2] ⁰ ₀ — 42", 17	Pur. $d = 0,946$	DE MONTGOLFIER [Bull. Soc. chim. (2° 8.), t. XXVIII, p. ar5; r877].

Paytine. [2]₀ — 49°,5 | Alc. (
$$c = 0.454$$
) (anh.) | HESSE (Lieb. Ann., t. C²¹H²¹Az²O + H²O | CLXVI, p. 273; 2873).

NOM BY FORMULE.	POUVOIR relateire spécifique.	DISSOLVANT ET TENEUR.	OBBERVATEURS.
Pelletiérine (sulfate de). (C'H''AzO)2SO'H2	[a] _n — 30°	Eau	TANERT (C. R., t. XC, p. 695; 1880).
•	(acide). Voir Ta	nnin	
(). C' H ¹⁴ O* (de l'ac. βglucoheptoníque)		Eau (p = 9,97)	E. Fischer (Lieb. Ann., t. CCLXX, p. 90; 1891).
Peptone.	[a] ₀ [14,	.479 + 0,4929 <i>q</i>] Eau	Pönt. (Ber. d. D. ch. Ges., t. XVI, p. 1165; 1883).
Foir Elastinepeptone, Hér	nialbumose.]
Perséite. C'H''C'	$[\alpha]_0^{1.5} \rightarrow 1^{\alpha}, 2$	Eau (c = 7,36)	GERNEZ (C. R., L. CKIV, p. 480; 1892).
Id. evec te acide	[α] _n + 48°,9 (max.)	Eau + $\frac{6,75}{24}$ moléc. $(c = 7,36)$	
	[α] ₀ + 48°, 8 (max.)	ld.	
P. naturelle. P. de synthèse.	[2] ₀ + 4°,8 + 4°,75	Solution concentrée de borax (c = 8)	E. FISCHER et PARRMORE (Ber. d. D. ch. Ges., t. XXIII, p. 1216; 1890).
Phaséol. C ¹⁵ H ²⁴ O	[z] _e + 30°,6	Chlorof. (c = 4)	LIKIBRNIK (Ber. d. D. ch. Ges., t. XXIV, p. 187; 1891).
$d = \frac{1}{2}$	[a]o + 17°,64	Pur. $d = 0.8558$ Chlorof ($c = 5.65$)	PERCI (Gazz. chim. ital., t. XVI, p. 225; 1886).
Id. (polymère).	$[a]_{j} + 105^{\circ}, 1$	Chlorof $(c = 5,65)$	

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	OBSERVATEURS.
C"H": AzO. CO. CH', C'H' (de dcarvoxime)	$[\alpha]_{\bullet}^{11} + 40^{\circ}, 63$	Chiorof. (p = 7,78)	GOLDSCHMIDT et FREEND (Zests. f. physik. Ch., t. XIV, p. 403; 1894).

Phénol camphré. Voir Camphré (phénol).

C ¹² H ¹³ Br O ² := C ⁴ H ³ . CH Br. CO O CH ² . CH:(CH ³) ²	[2]; +9",77	Pur. d;* 1,2892	WALDEN (Zeitz. f. physik. Ch., 2. XVII, p. 726; 1895).
éthylique. C''H''BrO':: C''H'', CHBr, COOC'!H'	[α] ²⁴ + 16°,56	Pur. di = 1,3893	łd.
С ⁹ Н ⁹ Вт О ³ = С ⁶ Н ⁵ , СН Вт. СО О СН ³	[α] ²⁺ +29°,82	Pur. di = 1,4421	id.

(acide).

$$C^{0}H^{1}BrO^{2} = C^{0}H^{2}.CHBr.COOH$$

[x]¹⁰ + 45",4 Benzène (c = 8,0)

d.

).
$$\begin{bmatrix} \alpha \end{bmatrix}_{\mu}^{2s} + 44^{n}, 53 \end{bmatrix} \text{ Pur. } d_{4}^{2s} = 1.8527$$

$$d. \\ C^{s}H^{6}Br^{2}O = \\ C^{6}H^{s}, CHBr, COBr \end{bmatrix}$$

|
$$\{z\}_{0}^{24} + 23^{\circ}, 31 \text{ (ac. } dr., \text{ alc. } in.) \}$$
 | $\{z\}_{0}^{24} + 23^{\circ}, 31 \text{ (ac. } dr., \text{ alc. } in.) \}$ | $\{d_{-}, pp. 716 \text{ et } 718, ct \}$ | $\{d_{-}, pp. 718, ct \}$ | $\{d_{-}, pp. 718, ct \}$ | $\{d_{$

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
éthylique. C''H'' Cl O' —	[z] ^{2*} + 25°, 19 + 26°, 39		fd.
C*H*. CH Cl. CO O C*H*	$[2]_0^{39} + 24^{\circ}, 07$ $[2]_0^{15} + 20^{\circ}, 70$	Pur.	GUYE et M ¹⁰ * Arτon (C. R., t. CXXIV, μ. 196, 1897)
Phénylchloracétate méthylique. C° H° Cl O¹ = C° H°. CH Cl. CO O CH²	[a] ²⁰ +107°,55	Pur. d20 = 1,2087	Walden (<i>loc. cit.</i> , p. 715).
Phénylchloracétate npropylique. C ¹¹ H ¹² Cl O ² = C ⁸ H ² . Cil Ci, CO O C ³ II	$[\alpha]_{a}^{2a} + 23^{o}, 94$	Pur. $d_4^{29} = 1,1278$	/d., p. 716.
	[α] ²⁰ + 132°, 13	Benzène (c = 3,33)	{ <i>Id.</i> , p. 714
(acide).		Id. $(c=5,33)$	2
$\mathbf{C}_4 \mathbf{H}_1 \mathbf{C} \mathbf{I} \mathbf{O}_2 =$	+ 131°,3	Sulf. de carb. $(c=4)$	
C.H. CH CI CO OII	+ 107",9	Chloroforme ($c = 5,33$)]
Phénylchloracétique (chlorure d'acide). C ⁴ H ⁴ Cl ² O — C ⁴ H ⁵ . CH Cl. CO Gl	[2] _p + 158°, 33	Sulf. de carb. (c = 6)	Įd.
dPhényl-(37)-dibromo-	[α] _e + 88°,3	1	L. Mayen jun. et Stein
butyrique (acide)	(max)	1	(Ber. d. D. ch. Ges., 1.
$C^{16}H^{16}Br^{2}O^{2} =$		1	XXVII, p. 894; 1894).
C* H*. CH Br. CH Br. CH2. CO OH		İ	
ℓId.	[x], 54°, r (max.)		ld.
dPhényl-(αβ)-dibromo- propionique (acide).	[[x] _b + 67° à 67°,5	1	LIEBERMANN et HARTMANN (Ber. d. D. ch. Ges., t.
$C^{1}H^{1}Br^{2}O^{2}=$			XXVI, p. 819; 1893). [L. Meyer jun (id., t. XXV,
C+H+, CH Br, CH Br, CO OII		1	p, 3123)]
lId. (Voir la suite au verso.)	[a] ₁₁ — 65°, 7		[Liebermann (id., t. XXVI, p. 245)]

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
dId.	$[\alpha]_0 + 64^\circ - 63^\circ, 6$		HIRSCH (Ber. d. D. ch. Ges., t. XXVII, p. 883; 1894).
dPhényl-(allo)-dibromo- propionique (acide). C* H; Br2. CO OH	[x] _p +10° (max.)		LIEBERMANN (Ber. d. D. ch. Ges., t. XXVII, p. 2014; 1891).
lId.	[a] ₀ — 83°, 2 (max.)		
dPhényl-(23)-dichloro- propionate éthylique. C'' H'' Cl' O' = C'H'' . CHCL.CHCL.COOC'H' (de l'acide droit)	$[\alpha]_{D}+64^{\circ},1$	Alcool	Finkenbeiner (Ber. d. D. ch. Ges., t. XXVII, p. 890; 1891).
dPhényl-(αβ)-dichloro- propionate méthylique. C'' H'' Cl ² O ² == C'H's. CHCl. CHCl. COO CH's (de l'acide droit)	[a] _b +61",9	Alcool	Id.
dPhényl-(αβ)-dichloro- propionique (acide). C ⁹ H ⁸ Cl ² O ² = C ⁶ H ⁵ . CH Cl. CH Cl. CO OH	$[\alpha]_{D}+66^{\circ},5$		Id., p. 889. {Licbermann et Finken-beiner (Id., t. XXVI, p. 833; 1893).}
lId.	[x] ₀ — 65°, 9		
Phénylglycérique (acide).	. Voir -glycériq	ue (acide Phényl-).	
lPhénylglycolamide. C ⁶ H ⁹ Az O = C ⁶ H ⁵ . CH (OH). CO Az H ²	$[\alpha]_{0}^{22}-66^{\circ},7$ - $66^{\circ},6$		WALDEN (<i>Zelis. f. physik.</i> Ch., t. XVII, p. 707; 1895)
amylique.	$[\alpha]_0^{20}$ — 94°,02 (ac. g.; alc. g.)	Pur. $d_4^{20} = 1,0530$	ld., p. 722.
$C^{13}H^{18}O^{3} = C^{6}H^{5}.CH(OH).COOC^{5}H^{11}$	$[\alpha]_{\nu}^{20} - 96^{\circ}, 46$ (ac. g.; alc. in.)		ld., p. 711.
	$[\alpha]_0^{20} + 2^{\circ}, 76$ (ac. in.; alc. g.)	$d_4^{20} = 1,0520$	ld., p. 722.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
l.-Phénylglycolate i.-butylique. $C^{12}H^{16}O^{3} =$ $C^{6}H^{5}.CH(OH).COOCH^{2}.$ $CH:(CH^{3})^{2}$	— 144°,0	Pur (surf.). $d = 1,087$ Sulf. de carb. $(c = 2,5)$ Id. $(c = 5,0)$	
/Phénylglycolate éthylique. C'' H''2 O'3 = C'' H''2 O'C O'C C'C H''S	- 126°,4 - 128°,4 - 87°,1 - 90°,62 - 180°,5	Pur (surf.). $d = 1,1270$ Chloroforme ($c=3,33$) Id. ($c=6,67$) Acétone ($c=1,16$) Id. ($c=5,81$) Sulf. de carb. ($c=0,88$) Id. ($c=2,5 \ge 5$)	
lPhénylglycolate méthylique. C'H'O' = C'H'.CH(OH)COOCH'	$[\alpha]_{b} - 110^{\circ}, 2$ $- 217^{\circ}, 0$ $- 214^{\circ}, 1$ $[\alpha]_{b}^{3^{2}} - 145^{\circ}, 36$ $[\alpha]_{b}^{14,4} - 132^{\circ}, 11$	Sulf. de carb. $(c = 1,67)$ Id. $(c = 3,33)$	Id. Guys et Mile Aston (C. R., t. CXXIV, p. 196; 1897).
morg quin quin stryc -phénylglycolate (Acétyl (Propio	honine. phine. idine. ine. chnine.	Cinchonine (Ph) Morphine (Ph) Quinidine (Ph) Quinine (Ph) Strychnine (Ph) Cétyl Propionyl	• •
dPhénylglycolique (acide). C'H'O' = C'H'.CH(OH).COOH	$[\alpha]_{0}^{26} + [212,52]$	— 0,57779] Eau (q = 91 à 97)	LEWKOWITSCII (Ber. d. D. ch. Ges., t. XVI, p. 1569; 1883).
lId.	$[\alpha]_{0}^{20}-[209,95]$. •	I.l., p. 1567.
(<i>Voir</i> la suite au verso.) D.	$ \begin{array}{c c} \hline [\alpha]_{b}^{22} - 153^{\circ}, 06 \\ - 148^{\circ}, 0 \end{array} $	Eau $(c = 2,45)$ Acétone $(c = 2,50)$	WALDEN (Zeits. f. physik. Ch., t. XVII, p. 708; 1890).

NOM ET FORMULE	POUR	_	DISSOLVANT	ET TENEUR.	observateurs.
	Eau avec potasse et azotate de Molécules. C'H'O'. KOH. (Az O')'' UO''.		d'uranyle $[\alpha]_{b}.$ $(c = 0,76)$	WALDEN (Ber. d. D. ch. Ges., t. XXX, p. 2892; 1897).	
	1 1 1 1 1 1	0 4 0 2 4 4 6	0 0 4 4 4 8 4	- 151,3 - 110,5 - 227 - 282 - 337 - 278 - 313	•
Phénylglyconitril- glucoside. C ¹⁴ H ¹⁷ O ⁶ Az	[2] _p ² -	26°, 9 - 26°, 8	Eau (<i>p</i> Id. (<i>p</i>		E. FISCHER (Ber. d. D. ch. Ges., t. XXVIII, p. 1510; 1895).
Phénylmalimide. C¹ºHºAzO²= C'H'O³:Az.C'H	s [a] ₀ —	34°, 12	Eau (<i>c</i> =	= 0,22)	GIUSTINIANI [Gazz. ch. ital., t. XXIII (I), p. 168; 1893].
Phénylmercapturate de sodium. C ¹¹ H ¹² Az SO ³ . Na	[a] ₀ +	- 4,5	Less. de soud	de(c=8,73)	BAUMANN (Ber. d D. ch. Ges., t. XV, p. 1732; 1882).
Phénylmercapturique (acide). C ¹¹ H ¹³ Az SO ³ = CH ³ CH ³ CH ³ .CO.Az H.C.COOH S.C ⁶ H ⁵	[a] ₀ —	9°,3	Alcool (c = 20)	Id.
Phléine. 6(C ⁶ H ¹⁰ O ⁵) + H ² O (1) de Phleum pratense. (2) de Baldingera.	[a] _D ¹² 48 48	°,12(1)} °,91(2)}	Eau (<i>p</i> =	= 3,26)	EKSTRAND et JOHANSON (Ber. d. D. ch. Ges., L. XXI, p. 594; 1888).
Phlorizine. C ²¹ H ³⁰ O ¹¹ +- 2 H ² O					OUDEMANS (<i>Lieb. Ann.</i> , t. CLXVI, p. 69; 1873). Bouchardat (C. R., t. XVIII; 1844).
	$\left[\alpha\right]_{0}^{22,5}-$	49,40 - Alc	+ 2,41 c]	$z = 1 \stackrel{\circ}{a} 5)$	HBSBB (<i>Lieb. Ann.</i> , t. CLXXVI, p. 117; 1875).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Phoronique (acide). C9 H16 O2	$[\alpha]_{0}^{22} + 23^{\circ}$	Alcool 95 $^{0}/_{0}$ ($c = 4,8$)	DE MONTGOLFIER [Ann. de Ch. et Phys. (5° s.), t. XIV, p. 84; 1878].

Photosantonine. Voir -santonine (Photo-).

Phytostérine. C ²⁶ H ⁴⁴ O [fèves de Calabar ou pois]	$[\alpha]_{0}^{15}-34^{\circ},2$	Chloroforme (c = 1,64)	HESSE (Lieb. Ann., t. XCCXII, p. 177; 1878). [Gérard (C. R., t. CXIV, 1892).]
	[a] _b — 32°,7	Chloroforme	PASCHKIS (Zeits. f. physiol. Ch., t. VIII, p. 356; 1884).
[des mélasses de betterave]	$\begin{array}{c c} [\alpha]_{0}^{21} - 33^{\circ}, 68 \\ - 35^{\circ}, 11 \end{array}$	Chloroforme $(c=1,64)$ Id. $(c=3,28)$	LANDOLT in VON LIPP- MANN (Ber. d. D. ch. Ges t. XX, p. 3202; 1887).
Phytostérine (palmitate de). C ²⁶ H ⁴³ O (C ¹⁶ H ³¹ O)	$[\alpha]_{0}^{15}-15^{\circ},8$	Chloroforme (c = 3)	HBSSB (Arch. d. Pharm., t. CCXXXIII, p.684; 1895).

-phytostérine (Para-). Voir Paraphytostérine.

Phytostigmine. Voir Ésérine.

Picrotine.
$$[\alpha]_{b}^{15} - 84^{\circ}$$
 Eau $(c = 4, 17)$ TANRET $(C. R., t. CXIX, 2]_{b}^{15} - 78^{\circ}$ Alcool 70 % $(c = 4)$ TANRET $(C. R., t. CXIX, 2]_{b}^{15} - 78^{\circ}$ Alcool 70 % $(c = 4)$ TANRET $(C. R., t. CXIX, 2]_{b}^{15} - 78^{\circ}$ Alcool 70 % $(c = 4)$ TANRET $(C. R., t. CXIX, 2]_{b}^{15} - 78^{\circ}$ Alcool $(c = 4, 17)$ Meyer of Bruger $(Ber. d. D. ch. Ges., t. XXXI, p. 2970; 1898)$.

Picrotoxine. $[\alpha]_{J} - 36^{\circ}, 6$ (obs.) $[\alpha]_{b} - 28^{\circ}, 1$ (calc.) Bouchardar of Bouder $(J. de. Pharm. et. Ch. (3^{\circ} 8.), t. XXIII, p. 288; 1853]$.

Id. naturelle (1) $[\alpha]_{b}^{16} - 29^{\circ}, 28(1)$ Alcool abs. $(c = 4, 10)$ Meyer of Bruger $(Ioc. cit., p. 2960)$.

Picrotoxinine. $[\alpha]_{D} - 5^{\circ}, 85$ Chlorof. $(c = 6, 03)$ D. 2966.

NOM ET FORMULE	POUV	_	DISSOLVANT	ET TENEUR.	OBSERVATEURS.
	1	ec potas: Molécul	se et azotate Es.		WALDEN (Ber. d. D. ch. Ges., t. XXX, p. 2892; 1897).
	C* H* O*.	KOH.	(Az O*)* UO*.	$\begin{bmatrix} \alpha \end{bmatrix}_{\mathbf{b}}.$ $(c = 0,76)$	
	1 1 1	0 4 0	0	— 151,3 — 110,5 — 227	
	1 1 1 1 1	2 4 4 6	4 4 4 8 4	- 282 - 337 - 278 - 313	•
Phénylglyconitril- glucoside. C ¹⁴ H ¹⁷ O ⁶ Az	[x] _b ^{2 0} —	26°, 9 26°, 8	Eau (<i>p</i> Id. (<i>p</i>	-	E. FISCHER (Ber. d. D. ch. Ges., t. XXVIII, p. 1510; 1895).
Phénylmalimide. $C^{10}H^{9}AzO^{2}=C^{4}H^{4}O^{3};Az.C^{6}H$	s [α] ₀ —	34°, 12	Eau (c =	= 0,22)	Giustiniani [Gazz. ch. ital., t. XXIII (I), p. 168; 1893].
Phénylmercapturate de sodium. C ¹¹ H ¹² Az SO ³ . Na	[a] _b +	4,5	Less. de soud	le(c=8,73)	BAUMANN (Ber. d D. ch. Ges., t. XV, p. 1732; 1882).
Phénylmercapturique (acide). C ¹¹ H ¹³ Az SO ³ = CH ³ CH ³ .CO. Az H.C. CO OH S. C ⁶ H ⁵	[a] _b —	9°,3	Alcool (a	c = 20)	Id.
Phléine. 6 (C ⁶ H ¹⁰ O ⁵) + H ² O (1) de Phleum pratense. (2) de Baldingera.	[a] ¹² -48° -48°	0,12(1) 0,91(2)	Eau (<i>p</i> =	= 3,26)	EKSTRAND et JOHANSON (Ber. d. D. ch. Ges., t. XXI, p. 594; 1888).
Phlorizine. C ²¹ H ³⁰ O ¹¹ - - 2 H ² O	$[\alpha]_{D}$ – 5	52°, 0	Alcool ou alo $(p = 3,9)$	c. méthyl. (OUDEMANS (Lieb. Ann., t. CLXVI, p. 69; 1873). Bouchardat (C. R., t. XVIII; 1844).] HESSE (Lieb. Ann., t. CLXXVI, p. 117; 1875).
	$[\alpha]_{\scriptscriptstyle D}^{\scriptscriptstyle 22,5}$	[49,40 - Alc	+ 2,41 c]	$r = 1 \ a \ 5)$	HESSE (<i>Lieb. Ann.</i> , t. CLXXVI, p. 117; 1875).

NOM BY FORMULE.	POUVOIR rotatoire specifique.	DISSOLVANT ET TENEUR.	observateurs.
Phoronique (acide).	$[a]_a^{21} + 23^a$	Alcool 95 4/4 (c = 4,8)	DE MONTOULFIER [Ann. de Ch. et Phys. (5° s.), t. XIV, p. 84; 1878].

. Voir -santonine (Photo-).

Phytostérine. C ²⁶ H ⁴⁴ O [feves de Calabar ou pois]) Hesse (Lieb. Ann., t. XCCXII, p. 177, 1878). [Gérard (C. N., t. CXIV, 1898).]
		Chloroforme	PASCHKIS (Zeits. f. physiol. Ch., t. VIII, p. 356; 1884).
[des mélasses de betterave]	$ \begin{array}{c c} [z]_0^{21} - 33^{\circ}, 68 \\ - 35^{\circ}, 11 \end{array} $	Chloroforme ($c = 1,64$ Id. ($c = 3,28$	LANDOLT in VON LIPP- MANN (Ber. d. D. ch. Ges., L. XX, p. 3202; 1887).
Phytostérine (palmitate de). C ²⁶ H ⁴² O(C ³⁶ H ²⁴ O)	[a] ₀ ¹⁵ — 15°,8	Chloroforme (c = 3)	Husau (Arch. 4. Pharm., t. CCXXXIII, p.684, 1895).

(Para-). Voir Paraphytostérine. Voir Ésérine.

Picéine C"H"O'+H"O	$\begin{bmatrix} \alpha \end{bmatrix}_{a}^{14}84^{\circ} & \text{Eau} & (c = 4, i7) \\ [\alpha]_{0}^{14}78^{\circ} & \text{Alcoot } 70^{-4}/_{4} \ (c = 4) & \text{P. } 8_{1}; \ _{1}8_{9} \text{J}). \end{bmatrix}$
Picrotine. C"H"O	[2], -64°, 67 Alc. abs. (c = 2,31) Mayer of Brusen (Ber. d. D. ch. Ges., t. XXXI, p. 3970, 1898).
Picrotoxine. C** H34 O13	[a] _j — 36°, 6 (obs.) [a] _n — 28°, 1 (calc.) Alcool ($p = 3,125$) BOUGHARDAT of BOUDET [J. de Pharm. et Ch. (3° s.), t. XXIII, p. 288; 1853].
Id. naturelle (1) de synthèse (2)	$\begin{bmatrix} [2]_{0}^{16} - 29^{\circ}, 28(1) & \text{Alcool abs. } (c = 4, 10) \\ -29^{\circ}, 1 & (2) & \text{Id.} & (c = 6, 03) \end{bmatrix} \xrightarrow{\text{cit., p. ag6o}} \text{Id.}$
Picrotoxinine.	[a], -5°, 85 Chlorof. (c = 3,65) Id., p. 2966.

NOM ET FORMULE.

DISSOLVANT ET TENEUR. OBSERVATEURS.

NOM ET FORMULE.	rotatoire spécifique	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Picrotoxinine bromée. V	oir Bromopicro	toxinine.	
Pilocarpène. C10 H16	$[\alpha]_{b}^{18}+1^{\circ},21$	Pur. $d^{18} = 0,852$	HARDY Bull. Soc. chim. (2° 8.), t. XXIV, p. 498; 18-5].
Pilocarpidine.	$[\alpha]_{0}^{18} + 50^{\circ}$ -3°	Eau (c = 2) Eau + Na OH (id.)	PETIT et POLONOWSKI [Bull. Soc. chim. (3° 5.), t. XVII, p. 561; 1897].
Pilocarpidine (azotate de). (C ¹⁰ H ¹⁴ Az ² O ²) Az O ³ II	$[\alpha]_{b}^{1a} + 38^{\circ}, 5$	Eau (c = 2)	Id.
Pilocarpidine (brom- hydrate de). (C ¹⁰ H ¹⁴ Az ² O ²) H Br	[a] ¹⁸ + 32°,6	Eau (c = 2)	Id.
Pilocarpidine (chlor- hydrate de).	[a] _D + 72°	Eau $(c = 5,91)$	MERCK (Merck's Jahr., 1896; p. 11)
(C ¹⁰ H ¹⁴ Az ² O ²) H Cl	$[\alpha]_{\mu}^{1n} + 37^{\circ}, 3$	Eau (c = 2)	PETIT et Polonowski (loc. cit.).
Pilocarpidine (iodo- méthylate de). (C ¹⁰ H ¹⁴ Az ² O ²) CII ³ I	$[\alpha]_{b}^{18} + 26^{\circ}, o$	Eau (c = 2)	Id.
Pilocarpidine (salicylate de). (C ¹⁶ H ¹⁴ Az ² O ²) C ⁸ H ⁶ O ³	$[\alpha]_{\nu}^{18} + 30^{\circ}, o$	Eau (c = 2)	Id.
Pilocarpine. C ¹¹ H ¹⁶ Az ² O ²	[α] ₀ + 101°,6 + 87°,77	(c = 7,24) (c = 25,89)	Роини (Thèse, Saint-Pé- tersbourg; 1879).
	$[\alpha]_{D}^{1R} + 106^{\circ} + 23^{\circ}, 8$	Eau $(c = 2)$ Eau + Na OH $(c = 3,84)$	PETIT et Polonowski (loc. cit., p. 558).
Pilocarpine (azotate de). (C ¹¹ H ¹⁶ Az ² O ²) Az O ³ H	$[\alpha]_{0}^{18} + 82^{\circ}, 2$	Eau (c = 2)	<i>Id.</i> , p. 558.
Pilocarpine (brom- hydrate de). (C ¹¹ H ¹⁶ Az ² O ²)HBr	$[\alpha]_0^{18} + 76^{\circ}, o$	Eau (c = 2)	Id., p. 559.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	OBSERVATEURS.
Pilocarpine (chlor- hydrate de). (C ¹¹ H ¹⁶ Az ² O ²) H Cl	$[\alpha]_{D} + 127^{o} + 103^{o} + 83^{o}, 5$	Chloroforme Alcool H Cl étendu	PETIT [Bull. Soc. chim. (2° s.), t. XXVII, p. 337; 1877].
	$\boxed{ [\alpha]_{\mathfrak{b}}^{18} + 91^{\circ} }$	Eau $(c=2)$	PETIT et Polonowski (loc. cit.).
Pilocarpine (salicylate de). (C ¹¹ H ¹⁶ Az ² O ²) C ⁸ H ⁸ O ³	$[\alpha]_{u}^{18} + 62^{\circ}, 5$	Eau (c = 2)	Id.
Pilocarpine (sulfate de). (C ¹¹ H ¹⁶ Az ² O ²) ² SO ⁴ H ²	$[\alpha]_{b}^{18} + 85^{\circ}, o$	Eau $(c = 2)$	ld.
dPimarique (acide).	$[\alpha]_{b}^{15} + 72^{\circ}, 5$	Alcool (c = 3,8)	VESTERBERG (Ber. d. D. ch. Ges., t. XVIII, p. 3332; 1885). Cailliot (Bull. Soc. chim. (2° 8.), t. XXI; 1874].]
	$[\alpha]_{b}^{20} + 73^{\circ}, 36$	Chlorof. $(c = 10,1)$	RIMBACH (Ber. d. D. pharm. Ges., t. VI, p. 63; 1896).
<i>l.</i> -Id.	[a] _b — 272°	Chlorof. ($c = 3, 17$)	VESTERBERG (Ber. d. D. ch. Ges., t. XX, p. 3249; 1887).
Pinène. Voir Térébenthèn	16.		
Pinènephtalimide. $C^{18} H^{19} Az O^2 =$ $C^{6} H^{4} (CO)^{2} Az (C^{10} H^{15})$	$[\alpha]_{\text{\tiny D}}$ — 35°,38	Ėther	PESCI (Gazz. ch. ital., t. XXI, p. 1; 1892).
Pinite (α). C¹ H¹⁴ O ⁶	$[\alpha]^6_{j} + 58^{\circ}, 6$	Eau ($c = 13,92$)	BERTHELOT [Ann. de Ch. et Phys. (3° 8.), t. XLVI, p. 80; 1856].
Pinite (β). C ⁷ H ¹⁴ O ⁶	[a] _b +65",51	Eau $(c = 8)$	MAQUENNE (C. R., t. ClX, p. 812; 1889).
[de Pinus Lambertiana]	$[\alpha]_{0} + 65^{\circ}, 7$	Eau $(p = 1 \ a \ 2)$ Eau $(p = 1 \ a \ 2)$	Сомвев (С. R., t. СХ, р. 46; 1890).
[Matézite] (du caoutchouc)	$ \frac{[\alpha]_{D} + 66^{\circ}, 0}{[\alpha]_{D} + 64^{\circ}, 7} + 65^{\circ}, 2 $	Eau $(c = 3,625)$ Id. $(c = 11,87)$	GIRARD (C. R., t. CX, p. 85; 1890).
[Sennite]	[a] ₀ + 65°, 22		SEIDEL (Thèse, Dorpat, 1884).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Pinnaglobine.	[2] _D — 61°	Solution ét. de SO'Mg	GRIFFITHS (C. R., t. CXIV, p. 840; 1892).
Pinolglycol (chlor-hydrine du). C¹º H¹¹ O² Cl (de ltérébenthène [2] ₀ — 37°,8)	[a] _b + 88°, 38		GINZBERG et WAGNER (J. Soc. physchim. Russe, t. XXX, p. 675; 1848).
(de d térébenthène [α] _p + 8°, 1)	[α] _ν — 87", 65		·
/Pinonique (acide).	[2] ₀ - 21°,4		TIBMANN (Ber. d. D. ch. Ges., t. XXIX, p. 3016; 1896).
$d.$ - $\alpha.$ -Pipécoline. $C^6H^{13}Az =$ $CH^2 - CH(CH^3)$	$[\alpha]_{D}$ + 21°,74		LADENBURG (Lieb. Ann., t. CCXLVII, p. 65; 1888).
$CH^{2} \leftarrow CH (CH^{3})$ $CH^{2} - CH^{2} \rightarrow Az H$	$[\alpha]_{\nu}+37^{\circ},2$	Pur. d = 0,86	LADENBURG (Ber. d. D. ch. Ges., t. XXVII, p. 3063; 1894).
$l\beta$ Pipécoline. C ⁶ H ¹³ Az = CH ² CH ² - CH ² Az H CH ² - CH ²	$[\alpha]_{b}^{25}-3^{\circ},98$	Pur. $d = 0.864$	/d., p. 76.
d α Pipécolique (acide). $C^6 H^{11} Az O^2 =$ $CH^2 - CH - CO OH$ $CH^2 - CH^2$ $CH^2 - CH^2$	+ 34°, 44	Id. $(p = 14,81)$	MENDE (Ber. d. D. ch. Ges., t. XXIX, p. 2888; 1896).
l-Id.	$[\alpha]_{0}^{25} - 34^{\circ}, 8$	Eau $(p = 9,92)$	
Podocarpate d'ammo- nium. C ¹⁷ H ²¹ (Az H ⁴) O ³	$[\alpha]_{b}^{19} + 125^{\circ}, 3$ + 126°, 5	Eau (c = i,80 Eau + 5 AzH ³ (c = 1,82	OUDEMANS (Rec. Trav. chim. d. P. B., t. IV, p. 169; 1885).
Podocarpate de potas- sium. C ¹¹ H ²¹ KO ³	$ \begin{vmatrix} [\alpha]_{0}^{19} + 117^{\circ}, 9 \\ + 118^{\circ}, 5 \end{vmatrix}$	Eau (c = 1,95 Eau + 5 KOH (id.]

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	observateurs.
Podocarpate de sodium. C ¹⁷ H ²¹ Na O ³ + 7 H ² O	+ 78°,3 + 73°,3	Eau (p = 4,6 Id. (p = 6,4 Id. (p = 13,8 Alcool 93 % (p = 9 (hydraté))
	$[\alpha]_{b}^{19} + 123^{\circ}, 4 + 124^{\circ}, 4$	Eau $(c = 1,83)$ Eau + 5NaOH $(c = 1,85)$ (anhydre)	OUDEMANS (Rec. Trav. chim. d. P. B., t. IV, p. 169; 1885).
Podocarpique (acide). C ¹¹ H ²² O ³	$[\alpha]_{0}^{11} + 136^{\circ} + 130^{\circ}$	Alcool (p = 4 à 9) Éther (p = 4 à 7)	OUDEMANS (Lieb. Ann., t. CLXVI, p. 65; 1873).
		+ 0,133 (17 - t) - 0,00361(17 - t) ² 1) [t = -1°,6 à + 24°]	ID. [J. f. prakt. Ch. (2° 8.), t. IX, p. 391; 1874].
Podophyllate de sodium. C ¹⁵ H ¹⁵ O ³ . Na	$[\alpha]_{D}$ — 83°, 13	Eau (c = 2,74)	Dunstan et Henry (J. of chem. Soc., t. LXXIII, p. 215; 1898).
Podophyllotoxine. C15 H14 O6+ 2 H2 O	[α] _b — 94°,81	Alc. abs. $(c=2,42)$	<i>ld.</i> , p. 212.
Populine. $C^{20} H^{22} O^{8} = C^{13} H^{17} (C^{7} H^{5} O) O^{7}$	[a] _j — 53°	Eau (p = 1)	BIOT et PASTEUR (C. R., t. XXXIV, p. 637; 1852).

Propeptone. Voir Hémialbumose.

Propionylmalates. Voir malates (Propionyl-).

Propionyloxybutyrates. Voir -oxybutyrates (Propionyl-).

Propionylphénylglyco- late éthylique. $C^{13}H^{16}O^{4} =$ $C^{6}H^{3}.CH(O.C^{3}H^{5}O).$ $COOC^{2}H^{5}$	— 109°,4 — 110°,8 — 126°,8	Pur (surf.). $d = 1,05$ Chloroforme ($c = 5$ Id. ($c = 10$ Sulf. de carb. ($c = 2$ Id. ($c = 5$) Ch., t. XVII, p. 712; 1895) ,5)
Propionylphénylglyco- late méthylique. C ¹² H ¹⁴ O ⁴ =	[a] _n — 135°,5	Pur. $d = 1,1261$	Id.

NOM ET PORMULE.	POUVOIR rotatoire spécifique.	DISBOLVANT BT TENEUR.	OBSERVATEURS.
Propionylquinine. C ²⁰ H ²³ (C ³ H ³ O) Az ² O ²	[a]15 — 108°,8	Eau + 3 H Cl $(c = 2)$	HRSSE (Lieb. Ann., t. CCV, p. 358; 1880).
Propionyltartrates Vo	ir -tartrates (Pre	opion y l-)	
dPropoxypropionate de calcium. $(C^6 \Pi^{11} O^2)^2 Ca$		Eau ($c = 6,00$) Id. ($c = 12,01$)	PURDIE et LANDER (J. of chem. Soc., t. LXXIII, p. 874; 1898).
dPropoxypropionate de sodium. $C^6H^{11}O^2Na = CH^3.CH(O.C^3H^3).COONa$	+ 50°,65	Id. $(c = 4,92)$ Id. $(c = 12,30)$	Id.
d Propoxypropionique (acide). $C^6H^{12}O^2 = CH^3.CH(O.C^3H^1).COOH$	+ 54°, 58	•	ld.
dPropoxysuccinate acide de potassium. C'H'O'. K	$[\alpha]_{b}^{18} + 32^{\circ}, 30$	Eau (c =3,815)	Purdim et Bolam (J. of chem. Soc., t. LXVII. p. 956; 1895).
lPropoxysuccinate de baryum. C'H ¹⁰ O':Ba	[α] _b — 10°, 45 — 10°, 00		Id.
dPropoxysuccinate de potassium. C ¹ H ¹⁰ O ³ : K ²	$[\alpha]_{u}^{1*} + 18^{\circ}, 69 + 17^{\circ}, 26$		Id.
$d. ext{-Propoxysuccinique}$ $(acide).$ $C^3H^3O.CII.COOH$ $C^7H^{12}O^3 = CH^2.COOH$ $l. ext{-Id}.$	- 64°,39	Id. $(c = 7,76)$ Acétone $(c = 2,28)$ Id. $(c = 5,68)$	<i>Id.</i> , p. 955.
Propylamyle. $C^{8}H^{18} = \frac{CH^{3}}{C^{2}H^{5}}CH.CH^{2}.C^{3}H^{2}$	$[a]_0^{16} + 6^{\circ},44$	Pur. d ¹⁶ = 0,696	Mile WELT [Ann. de Ch. et Phys. (7° 8.), t. VI, p. 126; 1895].

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	. OBSERVATEURS.
Propylène (oxyde de). C ³ H ⁶ O = OCH ² O CH ²		Pur. d ^{23,5} = 0,820	GUYE et MELIKIAN (C. R., t. CXXIII, p. 1291; 1896). [Voir Table XVII (I, E)].
lPropylènediamine. C ³ H ¹⁰ Az ² = CH ³ . CH (Az H ²). CH ² . Az H ²		Pur. $d_4^{24,3} = 0,9119$	BAUMANN (Ber. d. D. ch. Ges., t. XXVIII, p. 1180; 1895).
chlorhydrine du). $C^3H^3ClO^2 = CH^3.CH.Cll^2Cl$	$[\alpha]_{666}^{22} + o^{\circ}, 99$ $p_{b} + o^{\circ}, 56$ $p_{533} + o^{\circ}, 93$ $p_{489} + o^{\circ}, 83$ $p_{448} + 1^{\circ}, 37$	Pur. $d^{22} = 1,03$	MELIKIAN (Thèse, Genève, 1896).
	$ \frac{[\alpha]_{D}^{13} + 0^{\circ}, 62}{[\alpha]_{D}^{98} + 0^{\circ}, 54} $	Pur.	GUYE et MII. ASTON (C. R., t. CXXIV, p. 196; 1897).
Propylglycol (bromo- chlorhydrine du). C ³ H ⁶ Cl Br O	$[\alpha]_{D}^{20} - 0^{\circ}, 61$ $[\alpha]_{D}^{99} - 0^{\circ}, 47$	Pur.	Id.
Propylglycol (butyro- chlorhydrine du). C ¹ H ¹³ ClO ² = CH ³ .CH,CH ² Cl O.CO.C ³ H ¹	$[\alpha]_{D}^{99} + 0^{\circ}, 50$ $[\alpha]_{D}^{131,6} + 0^{\circ}, 43$	Pur.	Id.
Propylglycol (chloracé- tochlorhydrine du). C'H' Cl'O'= CH'.CH.CH'Cl O.CO.CH'Cl	$[\alpha]_{0}^{99} + o^{\circ}, 45$ $[\alpha]_{0}^{136,6} + o^{\circ}, 395$		Id.
iPropylphénylchloracé- tique (acide). C ¹¹ H ¹³ Cl O ² = (CH ³) ² :CH.C ⁶ H ⁴ .CHCl.COOH		Benzène ($c=3$)	WALDEN (Ber. d. D. ch. Ges., t. XXVIII, p. 2768; 1895).

i.-Propylphénylglycolate de cinchonine. Voir Cinchonine (...).

i.-Propylphénylglycolate de quinine. Voir Quinine (...).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
iPropylphénylglyco- lique (acide). C'' H'' O' = C'' H'. C' H'. CH (OH). CO OH	$[\alpha]_{b}^{17}+134^{\circ},9$	Alcool $(c = 4, 6)$	FILETI [Gazz. chim. ital., t. XXII (II), p. 395; 1892].
	'	Alcool $(c = 4,09)$	
aPropylpipéridine. Voir	Conicine.		
$d\beta$ Propylpipéridine. $C^8H^{11}Az = CH^2 CH^2 CH^2 - CH^2 AzH$	$[\alpha]_{b}^{16} + 6^{\circ}, 39$	Pur. d ¹⁹ =0,8517	DARNBLL GRANGER (Ber. d. D. ch. Ges., t. XXX, p. 1064; 1897).
lId.	$[\alpha]_{D}^{19}-6^{\circ},39$	1	
Prunose. C'H'O'	+ 112°, 3	1 (après 5 minutes) 5 [après 2 h. (constant)] (c = 0,89)	1 73 41 0 41
	$[\alpha]_0 + 93^\circ, 67$	après chaussage à 45° Eau (c = 0,89)	
	$ \frac{[\alpha]_{b}^{15} + 90^{\circ}, 51}{+88^{\circ}, 29} $	Eau $(c = 5,3)$ Id. $(c = 9,0)$	
Pseudoaconine. C ²⁵ H ³⁹ Az O ⁸	$[\alpha]_{0}^{20}+30^{\circ}, \iota$	Eau (c = 0,90)	Dunstan et Carr (J. of chem. Soc., t. LXXI, p. 358; 1897).
-pseudoaconine (Vératryl-). C ³⁴ H ⁴⁷ Az O ¹¹ + H ² O	$[\alpha]_{\nu}^{16} - 38^{\circ}, 3$	Alcool (c = 1,50)	<i>Id.</i> , p. 356.
Pseudoaconitine. C ³⁶ H ⁴⁹ Az O ¹²	$[\alpha]_{\nu}^{15}+18^{\circ},6$	Alcool (c = 1,12)	/d., p. 354.
Pseudoaconitine (brom- hydrate de). (C ³⁶ H ¹⁹ Az O ¹²) H Br	[α] ¹⁵ — 19°,5	Eau (c = 0,66)	īd.
Pseudocinchonine. C ¹⁹ H ²² Az ² ()	$[\alpha]_{b}^{15}+198^{\circ},4$	$\begin{vmatrix} 1 \text{ vol. alcool} \\ 2 \text{ vol. chlorof.} \end{vmatrix} (c = 3)$	HESSE (Lieb. Ann., t. CCLXXVI, p. 107; 1893).

	POUVOIR relatoire specifique.	DISBOLVANT ET TENEUR.	OBSERVATEURS.
	[2]05+189°,3	Eau (c = 3)	ld., p. 108.
C1º H21 Az O3 + H2O	[x] ₀ — 91°,04	Alcool (p = 1,91)	Menon (Arch. d. Pharm., t. GGXXIX, p. 161; 1891).
C°H" Az O	[x], +4°,3	Eau (p = 8)	LADRHHURO et ADAM (Ber. d. D. ch. Ges., t. XXIV, p. 1671; 1891).
Pseudohyoscyamine. C ¹¹ H ²³ Az O ³	[a], - 2t°, 15	Alcool absolu	Минск (Arch. d. Pharm., t. CCXXXI, p. 115; 1893).
Pseudomorphine (chlor- hydrate de). (C ¹¹ H ¹⁶ Az ² O ⁶) 2 H Cl + 4 H ² O	Eau + 2 H C	al (c=0,8 à 1,6) 8°,86	HESSE (Lieb. Ann., t. CLXXVI, p 195; 1875).
	[2] ₀ — 103°,13	Eau (p = 0,95) (anhydre)	DONATH [J. f. prakt. Ch. (2° 5.), L. XXXIII, p. 562; 1886].

Voir 4.-Nitrocamphrate.

C30 H3c Y 82 O3	[a] ₀ 164°,44	Alcool 98 º/4 (c = 1)	SKRAUP (Monatsh. f. Ch., t. XIV, p. 428, 1894).
Ptérocarpine. C"H"O"	[α] _j — 211°	Chloroforme (c = 4,64)	GAZENEUVE et HUGOUNENO (C. A., t. CIV, p. 2722; 1887).
Pulégone. C'*H'*O (de l'essence de Mentha	[α] ²⁰ +22°,89	Pur. $d_4^{29} = 0.9307$	BECKMANN et PLRISSNER { Lieb. Ann., t. CCLX11, p. 4; 1891}.
pulegium)	$[a]_{a}^{23} + a5^{\circ}, a5$	Pur. d22 = 0,9293	BARBIER (C. R., t. CXIV, p. 226, 1892).
(régén. de la comb. avec le bisulfite de sodium).	[a] + 22°, 94	Par.	Von Baryen et Henrich (Ber. d. D. ch. Ges., L. XXVIII, p. 653, 1895).
P. artificiel (de l'isopulégone)	$[\alpha]_{b}^{11,5}+18^{\circ},15$	Pur. d ^{11,3} = 0, 9368	TIRMANN et SCHMIDT (Ber. d. D. ch. Ges., t. XXX, p. 30; 1897).

⁻pulégone (Iso-). Vour Isopulégone.

NOM BT PORMULE.	POUVOIR rotatoire spēcifique.	DISSOLVANT ET TENEUR	OBSERVATEURS.
Pulégone (bromhy- drate de). C"H" OBr	[a] ²⁰ — 33°,88	Alcool (p = 20)	BECKMANN et PLEISSNER (loc. cit., p. 22).
Pulégonoxime. C#H#AzO*	[[a]; + 83",44	Alcool (p = 10)	Id., p. 6.
Pulégonoxime (chlorhy- drate de). (C®H®AzO³) II Cl	$\left \left[\alpha \right]_{a}^{2^{n}} - 3a^{n},43 \right $	Alcool (p = 10)	<i>ld.</i> , p. 9.
Puléone. Voir Pulégone.			
Pyraconine. C ²⁴ H ²⁷ Az O ⁴	[2] ¹⁵ —90°,99	Eau (c = 1,12)	DUNSTAN et CARR (J. of chem. Soc., t. LXV, p. t80; 1893).
Pyraconine (chlorhy- drate de). B.HCl	[a] ¹⁵ — 102°,07	Eau (c = 1,96)	ld.
Pyraconitine (bromhydrate de). (C31 [[41 Az O40]] II Br	[a] 12 46°,8	Eau (c = 2,14)	/d., p. 179.
d -Pyroglutamide. $C^{3}\Pi^{4}\Lambda z^{2}\Omega^{2}$ (d'ac. glutamique g)	[#]"+ 41°,29	Eau (c = 3,31)	MENOZZI of Apprant (R. C. dei Lincei (5° 8), t. II (2° 80m.), p. 422; 1893.
ℓ Id. (d'ac. glutamique dr .)	[a] ₀ - 40°	Eau (p = 8,56)	[D. [dd. (4* s.), t. fV (1** sem.), p. 33; 1891]
dPyroglutamique (acide). C'H'AzO' (d'ac. glutamique g.)	[2] _b ^{1b} + 7°	Eau (c = 2,67)	10. [id. (5° s.), t. II (2° sem.), pp. 4:8 et 423, 1893]. [id. [Gazz. chim. ital., t. XXII (II); 1892].]
l1d. (d'ac. glutamique dr.)	[a]:, -7°,21	Eau (c = 12,72)	
Pyrotartrique (acide). C'H'O' CH' CH.COOH	[2]22+9°.9 (moy.)	Eau (p = 19 à 29)	Ladenuuro (Ber. d. D. ch. Ges., t. XXIX, p. 1954, 1896).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Quassine. C ³² H ⁴² O ¹⁶ (?)	[a] _b + 37°, 8	Chloroforme	CHRISTENSEN [Arch. d. Pharm. (3° s.), t. XX, p. 481; 1882].
Quassol. C40 H10 O + H2O (?)	$[\alpha]_0 - 46^\circ, 0$ $-42^\circ, 6$	Chloroforme Éther et chloroforme	MERCK (Merck's Jahr. 1894; p. 19).
Québrachine. C ²¹ H ²⁶ Az ² O ³	$ [\alpha]_{D}^{15} + 62^{\circ}, 5 + 18^{\circ}, 6$	Alcool 97 $^{0}/_{0}$ ($c=2$) Chloroforme ($c=2$)	HESSE (Lieb. Ann t. CCXI, p. 265; 1882).
Québrachite. C¹ H¹⁴ O ⁶	[α] _D — 80°		TANRET (C. R., t. CIX, p. 907; 1889).
Québrachol. C ²⁰ H ³⁴ O	$[\alpha]_0^{15}$ — 29°, 3	Chloroforme ($c = 4$)	HESSE (Lieb. Ann., t. CCXI, p. 272; 1882).
Quercite. C ⁶ H ¹² O ⁵	$\begin{array}{c} \left[\alpha\right]_{0}^{16} + 24^{\circ}, 3 \\ (t \text{ sans influence}) \end{array}$	Eau (c = 2) (sans infl.)	PRUNIER [Ann. de Ch. et Phys. (5* 8.), t. XV, p. 21; 1878].
Quinamicine. C19 H24 Az2 O2	$[\alpha]_{b}^{15} + 38^{\circ}, 1$ + 47°, 0	Alcool 97 $^{\circ}/_{\circ}$ (c = 2) Eau + 3 H Cl (id.)	HESSE (Licb. Ann., t. CCVII, p. 288; 1881).
Quinamidine. C ¹⁹ H ²⁴ Az ² O ²	$ [\alpha]_{D}^{15} + 4^{\circ}, 5$	Alcool 97 $^{0}/_{0}$ ($c = 2$)	Id.
Quinamine. C19 H24 Az2 O2	$[\alpha]_{0}^{15}+106^{\circ},8$	Alcool $(c = 0.84)$	HESSE (Lieb. Ann., t. CLXVI, p. 272; 1873).
	+ 103°,9 + 102°,8 + 100°,7 + 101°,5 + 121°,4 + 119°,9 + 94°,9 + 94°,0 + 93°,3 + 93°,3 + 100°,9	Id. $(c = 1,02)$ Id. $(c = 1,49)$ Id. $(c = 1,77)$ Alc. $90^{0}/_{0}$ $(c = 1,65)$ Ether abs. $(c = 0,46)$ Id. $(c = 1,02)$ Chlorof. $(c = 0,72)$ Id. $(c = 1,51)$ Id. $(c = 2,235)$ Benzène $(c = 0,056)$ Id. $(c = 1,49)$	
	+ 93°,50 + 116°,0	Chlorof. (id.) Eau + HCl (id.)	337; 1879 L
(Voir la suite au verso.)	+ 117°, 1	Eau + 3 H Cl (id.)	

Action des acides en solutions aqueuses.

[c=1,56] $[t=16^{\circ}]$ n molécules acide pour 1 molécule base.

	ACIDE								
n.	chlor- hydrique.	azolique.	chiorique.	acétique.	formique.	sulfurique.	oxalique.	phospho- rique.	
0,5	, ,	", ",	",0	"0	"	1	+116,8	"	
1	+114,4	+116,5	+116,1	+116,2	+114,7	+116,4	+118,1	+117,3	
1,5	"	"	"	"	"	+116,8	"		
2	+117,6	-116,8	+116,0	+116,6	+117,2	+116,4	+117,5	+117,2	
3	1!	+117,7	"	+116,9	"	"	"		
3,5	"	"	"	"	"	+116,3	"	#	
-	+117,1	+117,0	+117,2	+117,5	+117,5	"	+117,2	+116,6	
4 5	"	"	"	+118,0	1	+116,5	"	<i>H</i>	
6	"	"	"	"	"	"	+117,2	-	
7	+117,3	+116,7	"	"	"	"	"	#	
7 8	"	,,	+116,3	"	"	"	"	+116,7	
10	+117,0	"	"	+118,0	+116,5	+116,6	+116,8	"	
12	"	+114,8	"	"	"	"	"	<i>W</i>	
15	"	"	+115,2	"	"	//	"	,,	
20	+115,9	+114,4	"	+117,9	+116,8	+114,9	"	+116,2	
3 0	+112,8	"	"	"	"	+111,3	<i>w</i>	,,,	
40	+108,2	"	"	+117,9	"	"	"	"	
60	"	"	"	"	+116,6	"	"	W	

POUVOIR DISSOLVANT ET TENEUR. NOM ET FORMULE. OBSERVATEURS. rotatoire specifique. Quinamine (azotate de). $[a]_{0}^{6} + 96^{\circ}, 8$ (c=1,00)OUDEMANS (Lieb. Ann., t. Eau CXCVII, p. 58; 1879). ld. Quin. Az O3 H (c = 1,93)+ 97°,0 + 109°, 2 Alc. abs. (c = 0.99)+ 109°,6 Id. (c=2,04)Quinamine $[\alpha]^{15}_{1} + 88^{\circ}, 2$ Eau (c = 4) HESSE (Licb. Ann., t. (bromhydrate de). CCVII, p. 288; 1881). Quin. H Br Quinamine $[\alpha]_{b}^{15} + 100^{\circ}, 0$ Eau (c = 2) | Id., p. 307. (chlorhydrate de). $+118^{\circ}, 1$ Alc. 97 % (id.) Quin. HCl | Alc. abs. (c = 1,07) | OUDEMANS (loc. cit., p. 60). Quinamine $[\alpha]_{\nu}^{16} + 92^{\circ}, 5$ (iodhydrate de). Id. (c = 1,64)+94°,4 +95°,8 Id. (c = 2,31)Quin. III

OUDEMANS (loc. cit.).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	observateurs.
Quinamine (perchlorate de). Quin. ClO'H	1	Alc. abs. $(c = 0,71)$ Id. $(c = 2,13)$	Id., p. 59.
Quinate d'ammonium. C ⁷ H ¹¹ O ⁶ . Az H ⁴	[a] _D — 44°,0	Eau $(c=2,6)$	OUDEMANS (Rec. Trav. chim. d. P. B., t. IV, p. 170; 1885).
	$\boxed{[\alpha]_{\scriptscriptstyle D}-14^{\scriptscriptstyle o},7}$	Alc. 98,5 % ($c = 0.91$)	CERKEZ (C. R., t. CXVII, p. 174; 1893).
Quinate de baryum. (C ¹ H ¹¹ O ⁶) ² Ba	$[\alpha]_{0}^{17} - 34^{\circ}, 6$ $-35^{\circ}, 2$ $-35^{\circ}, 8$	Eau ($c = 6, 16$) Id. ($c = 14, 86$) Id. ($c = 20, 40$)	Oudemans (loc. cit.).
Quinate de calcium. (C ¹ H ¹¹ O ⁶) ² Ca	—46°,4	Eau $(c = 1,6 \text{ à } 3,5)$ Id. $(c = 8,4)$ Id. $(c = 11,9)$	Id.
Quinate de lithium. C'H'' O ⁶ . Li	[α] _D — 15°, 2	Alc. 98,5 $^{\circ}/_{\circ}$ ($c = \circ, 89$)	CERKEZ (loc. cit.).
Quinate de magnésium. (C'H''O')2Mg	$ \begin{bmatrix} \alpha \end{bmatrix}_{0}^{17} - 45^{\circ}, 3 \\ - 47^{\circ}, 1 \\ - 48^{\circ}, 1 \end{bmatrix} $	Eau $(c = 3,3)$ Id. $(c = 6,6)$ Id. $(c = 13,7)$	Oudemans (loc. cit.).
Quinate de potassium. C'H''O'6.K	$ \begin{vmatrix} [\alpha]_{0}^{16} - 40^{\circ}, 6 \\ -41^{\circ}, 5 \\ \hline [\alpha]_{0} - 7^{\circ}, 2 \end{vmatrix} $	Eau + o à 2 KOH (c = 2,9) Id. (c = 9) Alc. 98,5 $^{\circ}$ / $_{\circ}$ (c = 0,3 $_{\circ}$)	Id. Cerkez (loc. cit.).
Quinate de sodium. C'H' O'. Na		Eau (c = 2,64) Eau +2 Na OH (c=7,13)	
	- 41°, 86 - 42°, 94 - 43°, 64	Eau ($c = 13 \text{ à } 53$) Eau + 4NaOH ($c = 6,7$) Id. ($c = 10,5$) Id. ($c = 14,6$) Alc. 98,5% ($c = 0,35$)	(2° 8.), t. XXXV, p. 156; 1887].
Quinate de strontium. (C'H'1O6)2Sr	$ \begin{array}{c c} & [\alpha]_{D}^{16} - 37^{\circ}, 9 \\ & -39^{\circ}, 8 \end{array} $		OUDEMANS (loc. cit.).

NOM RT FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Quinate de zinc. (C'H'O')2Zn	[2] ¹ ; — 42°, 9 — 44°, 7 — 45°, 6 — 46°, 9	Id. $(c = 3.84)$	īd.
Quinate d'aniline. (C ⁶ H ¹ Az)(C ⁷ H ¹² O ⁶)	— 22°,9	Eau $(c = 3,54)$ Alc. 95 % $(c = 2,03)$ Alc. 98,5% $(c = 2,64)$	CERKEZ (<i>loc. cit.</i> , p. 175)
Quinate de diéthylamine. (C ⁴ H ¹¹ Az) (C ⁷ H ¹² O ⁶)	— 12°,4	Eau $(c = 3,48)$ Alc. 95 % $(c = 1,82)$ Alc. 98,5% $(c = 1,02)$	Id.
Quinate de pyridine. (C'H'Az)(C'H'2O')	- 25°, 1	Eau $(c = 4,19)$ Alc. 95 % $(c = 1,81)$ Alc. 98,5% $(c = 1,81)$	Id.
Quinate de quinoléine. (C ⁹ H ¹ Az)(C ¹ H ¹² O ⁶)	$[2]_{0}$ — 27°, 4 — 22°, 3 — 22°, 6	Eau $(c = 2,06)$ Alc. 95 % $(c = 1,08)$ Alc. 98,5 % $(c = 1,81)$	Id.
Quinate benzylique. $C^{14}H^{18}O^{6} = (C^{2}H^{11}O^{6})CH^{2}.C^{6}H^{5}$	[2] _b — 24°, 7	Alc. 95 $^{\circ}/_{\bullet}$ ($c = 2,345$)	Id.
Quinate <i>i</i> butylique. $C^{11}H^{20}O^6 = (C^7H^{11}O^6)CH^2.CH:(CH^7)^2$	[a] ₀ — 26°, 2	Id. $(c = 3,36)$	Id.
Quinate éthylique. $C^9H^{16}O^6 = (C^7H^{11}O^6)C^2H^5$	[a] ₀ — 26°, 4	Id. $(c = 3.75)$	Id.
Quinate méthylique. C*H ¹⁴ () ⁶ == (C ⁵ H ¹¹ () ⁶)CH ³	[a] ₀ — 28°, 6	Id. (c = 4,50)	Id.
Quinate n propylique. $C^{10}H^{12}O^6 = (C^{7}H^{11}O^6)CH^2,C^{2}H^2$	[a] ₀ — 26°, 4	Id. $(c = 1.74)$	ld.
Quinate ipropylique. $C^{16}H^{14}O^{6} = (C^{7}H^{11}O^{6})CH:(CH^{2})^{2}$	[2] ₁₁ — 27°.6	ld. (c = 2,21)	ld.

NOM ET FORMULE.	- POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Quinéthonique (acide). $C^{14} H^{18} O^{8} =$ $C^{2} H^{3} . O . C^{6} H^{4} (C^{6} H^{9} O^{1})$	[α] _b — 63° (app.)		Kossel (Zeits. f. physiol. Ch., t. IV, p. 296; 1880).
Quinéthyline. C ¹⁹ H ²¹ Az ² O. OC ² H ⁵	[α] _υ — 169", 4	Alcool absolu	GRIMAUX et ARNAUD (C. R., t. CXII, p. 1364; 1891).
Quinéthyline (sulfate de) (C ²¹ H ²⁶ Az ² O ²) ² SO ⁴ H ²	$[\alpha]_{0}$ — 233°, 1	H Cl étendu	Id.
Quinicine. C ²⁰ H ²⁴ Az ² O ²	$[\alpha]_{D}^{15}+44^{\circ},1$	Chloroforme (c = 2)	HESSE (Lieb. Ann., t. CLXXVIII, p. 260; 1875).
Quinicine (oxalate de). Quin. ² C ² O ⁴ H ² +9H ² O	1 vol. alcool, 2 v $[\alpha]_{\mathbf{p}}^{15} + 9$	20,68 — 1,14c] rol. chlorof. $(c = 1 \text{ à } 3)$ 9,54 Eau $(c = 2)$ Eau + 2SO ⁴ H ² $(c = 2)$	

Quinidamine. Voir Conquinamine.

 $|[\alpha]_{j}^{13} + 250^{\circ}, 75|$ Alc. absolu (p = 1,27) Pasteur (C.R., t. XXXVI, p. 26; 1853).Quinidine. $[\alpha]_{D}^{15} + [236,77 - 3,01c]$ Alcool 97 % (c = 1 à 3) + 232%,72 | Alcool 80 % (c = 2) $+ 244\%,54 \begin{cases} 1 \text{ vol. alcool} \\ 2 \text{ vol. chlorof.} \end{cases} (c = 1)$ | D. 26; 1853). CLXXVI, p. 223; 1875). [Id. (Id., t. CLXVI; 1873). $C^{20}H^{24}Az^2O^2 + 2\frac{1}{2}H^2O$ $+241^{\circ},75$ Id. (c=2) $+230^{\circ},35$ Chlor. [c=1,76 (anh.)] $[\alpha]_{D}^{2} + 236^{\circ}, o$ | Alcool 97 $^{\circ}/_{\circ}$ (c = 2) | ID. (Id. t. CLXXXII, p. 130 18-6). ALCOOL. BAU. 100 OUDEMANS (Lieb. Ann., $[\alpha]_{b}^{5} + 255^{\circ}, 4$ 100 0 95,3 4, $+259^{\circ}, 0$ 90,5 9, $+259^{\circ}, 4$ 85 15 80 20 $+259^{\circ}, 4$ 75 25 Chlorof. $+195^{\circ}, 2$ Benzène $+206^{\circ}, 6$ Toluène t. CLXXXII, pp. 4; et 48; 1876). 9,5(c=1,62)(anh.) (id.) (id. + 206°,6 Toluène (id.) $[\alpha]_{D}^{-1,5}$ + 261°, 7 Alc. abs. [c=1,55(anh.)](Voir la suite au verso)

ł

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT BT TENEUR.	OBSERVATEURS.
	[α] ¹¹ + 274°,7 + 269°,7	(1 vol. alcool)(p=1,06) 2 vol.chlorof.) (anh.) Id. (p=2,10)	LENZ (Zeits. f. anal. Ch., t. XXVII, p. 571; 1888).

Action des acides en solutions aqueuses.

[c=1,62] $[t=16^{0C}]$ n moléc. acide pour 1 moléc. base.

ACIDES.	n=1.	n=2.	n=3.	n=5.	n=8.	n=20.
						=====
A. chlorhydrique	+233,6	+322,0	+325,2	+321,2	[+316,5]	+305,6
A. azotique	"	+322,5	+328,3	+323,5	[+320,3]	+313,5
A. chlorique	"	+326,2	[+328,5]	[+328,5]	+325,4	P
A. perchlorique	"	[+332]	+333,o	+332,0	"	Ħ
A. formique	+236,3	+286,2	+308,9	[-4318,5]	+323,7	+325,8
A. acétique	″	+248,6	+263,9	+280,3	[+294,0]	[+312,0]
A. sulfurique	-+-315,5	[+321,5]	[+321,0]	+320,5	[+318,3]	<i>w</i>
A. oxalique	+278 ,9	+315,5	+316,3	"	"	p
A. phosphorique	<i>"</i>	+321,8	+324,6	+324,0	+322,8	'n

(Suite).

ACIDES.	n=25.	n=40.	n=60.	n=70.
	<u></u>			
A. formique	0	7.5	, 30,4	O m
A. formique		+323,1	-+-324,1	
A. acétique	+313,2	+318,3	+318,4	+318,0

OUDEMANS (Rec. Trav. chim. d. P. B., t. I, p. 27; 1882) [extrait]. (les nombres entre [] sont tirés par interpolation des nombres de l'auteur).

Quinidine et acétone. Quin. + C ³ II ⁶ O	$[\alpha]_{D}$ + 173°,7	Acétone ($p = 2,5$) (p sans influence)	WYROUBOFF [Ann. de Chim. et Phys. (7° 8.). t. I, p. 80; 1894].
Id. et alcool éthylique. Quin1- C ² H ⁶ O	[α] ₀ 235°, 3	Alcool éthylique (p sans influence)	ld., p. 41.
Id. et alcool méthylique. Quin. + CII ⁴ O	$[\alpha]_{\nu}$ + 236°, 1	Alc. méthylique (id.)	Id.
Id. et benzène. Quin. + 1 C ⁶ H ⁶	$ \begin{array}{c c} & [\alpha]_{0}^{17} + 225^{\circ}, 9 \\ & + 201^{\circ}, 4 \\ & + 193^{\circ}, 9 \\ & + 185^{\circ}, 3 \end{array} $	Id. $(c = 1, 15)$ Id. $(c = 1, 25)$	Id., p. 70.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSĖRVATEURS.
Id. et éther éthylique. Quin: - 1/3 C4 H10 O	$[\alpha]_{b}^{17}+254^{\circ},5$	Éther (c = 0,86)	Id.
Quinidine (azotate de). Quin. Az O ³ H	[2] ¹ + 199°,3	Alc. abs. $(c = 2,17)$	OUDEMANS (Lieb. Ann., t. CLXXXII, p. 49; 1876).
	+ 185°,3 + 183°,5	Eau $(c = 0,24 \text{ à } 0,64)$ Id. $(c = 0,97)$ Id. $(c = 1,29)$ Id. $(c = 1,935)$	HÄDRICH (Zeits. f. physik. Ch., t. XII, p. 479; 1893).
Quinidine (abromocam- phosulfonate de). Quin. (C ¹⁰ H ¹⁴ Br O. SO ³ H)	$+ 159^{\circ}, 7$ $+ 160^{\circ}, 6$ $+ 160^{\circ}, 9$ $[\alpha]_{0}^{25} + 198^{\circ}, 5$	Id. $(c = 0, 265)$	WALDEN (Zeits. f. physik. Ch., t. XV, p. 401; 1894).
Quinidine (chlor-hydrate de). Quin. II Cl + H ² O	+ 230°, 25 + 193°, 75 + 109°, 25 + [205,83 Eau + 282°, 50 - 286°, 00		HRSSE (Lieb. Ann., t. CLXXVI, p. 225; 1875). [Id. (Id., t. CLXVI, p. 217; 1873).]
	1	H Cl (c = 1 à 5) Eau + 4H Cl (c = 2)	ID. (Id., t. CLXXXII, p. 130 1876).
	+ 199",4	Eau [c=1,98 (anh.)] Alc. abs. [id.] Alc. 90,5% [id.]	OUDEMANS (Lieb. Ann., t. CLXXXII, p. 49; 1876).
	- 198°, 9 - 197°, 5	Eau [$c = 0.22$ à 0.45 (anh.)] Id. ($c = 0.601$) Id. ($c = 0.901$) Id. ($c = 1.202$) Id. ($c = 1.802$)	Hädrich (loc. cit.).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Quinidine (dichlor- hydrate de). Quin. 2 H Cl + H ² O	$ \begin{array}{r} $	Eau ($c = 2$) Eau [$c = 0,124$ (anh.)] Id. [$c = 0,248$ (id.)] Id. [$c = 0,496$ (id.)] Id. [$c = 0,992$ (id.)] Id. [$c = 1,985$ (id.)] Id. [$c = 3,970$ (id.)]	•
Quinidine (oxalate de) Quin ² . C ² O ⁴ H ² + H ² O		•	HESSE (loc. cit, p. 227).
Quinidine (phénylgly- colate de). Quin. [C ⁶ H ⁵ .CH (OH).CO OH	+ 150°,0 + 148°,7	Eau $(c = 0,3 \text{ à } 0,6)$ Id. $(c = 0,8 \text{ à } 1,2)$ Id. $(c = 1,59)$ Id. $(c = 2,38)$	Hädrich (loc. cit.).
Quinidine (sulfate acide de). Quin. SO'H ² +5H ² O	$\frac{+183^{\circ},0}{[\alpha]_{0}^{15}+[215,49]}$	c = 2 å 8) Alcool 97 % $(c = 2)$ $-1,41c$	HRSSE (Lieb. Ann., t. CLXXVI, p. 225; 1875). In. (Id., t. CLXXXII, p. 130; 1876).
Quinidine (sulfate neutre de). Quin². SO'H²+2H²O	$ \begin{array}{r} + 280^{\circ}, 49 \\ + 281^{\circ}, 91 \\ \hline $	Alcool $(c = 2,14)$ Eau + SO'H ² $(c = 2,4)$ Id. +6SO'H ² (id.) Eau $(c = 1)$ Alcool 80 % $(c = 2)$ Id. 60 % (id.) Alcool 1 vol. Chlorof. 2 vol. $(c = 2)$ Chlorof. $(c = 3)$ Chlorof. $(c = 3)$ Chlorof. $(c = 3)$ Eau+4H Cl $(c = 2)$ Eau+5SO'H ² [id.] Alc. abs. $(c = 1,96)$	ID. (Id., t. CLXXVI, p. 226; 1875). ID. (Id., t. CLXXXII, p. 156; 1876).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT E	ET TENEUR.	OBSERVATEURS.
	+ 192°, 2 + 190°, 3	Eau [$c = c$] à 0,4 Id. [$c = c$] 7 (anh.)] 0,622 (id.)] 0,932 (id.)] 1,243 (id.)]		
Quinine (anhydre). C ²⁰ H ²⁴ Az ² O ²	169°, 25 116°, 00	Alcool 97 º/c Id. Chloroformo Id.	(c=2) $e(c=2)$	HESSE (Lieb. Ann., t. CLXXVI, p. 208; 1875). [Id. (Id., t. CLXVI; 1873).]
	— 127° — 126°	Benzène (c Toluène (c Chlorof. (c Id. (c	= 0,39) = 0,775)	OUDEMANS (Lieb. Ann., t. CLXXXII, p. 44; 1876).
	$\frac{1}{[\alpha]_{D}^{l}-[173,25]}$	— (1,80 — o	$,\infty$ 7 $t)c]$	Formule calculée d'après les nombres de l'auteur.
		ALCOOL.	BAU.	
	1	90,5 83,3 73,9	5,1 6,5 9,5 16,7 26,1 34,9	Id., p. 47.
(Voir la suite au verso)	$ \frac{[\alpha]_{D} - 164^{\circ}, 4}{(t = 16^{\circ}, 8 \text{ à } 17^{\circ}, 4)} $	Alcool 1 vol Chlorof. 2 vol	p=0,7	LENZ (Zeits. f. anal. Ch., t. XXVII, p. 561; 1888).

Action des acides en solutions aqueuses.

 $(c=1,62)(t=16^{\circ C})$ n moléc. acide pour 1 mol. base.

ACIDES.	n = 1.	n=2.	n=3.	n=5.	n=10.
Ac. chlorhydrique	+200,2	°,3		[-274,6]	-270,2
Ac. azotique	"	—284,2	-284,2	-281,2	[-277,7]
Ac. chlorique	<i>II</i>	—283 ,8	—285 ,7	—283,3	[-281,2]
Ac. perchlorique	<i>"</i>	-286,2	—288,3	[-287,2]	"
Ac. formique	"	—172 ,6	-208,8	252,5	-274,4
Ac. acétique	"	-191,1	—206,9	-227,4	[-248,5]
Ac. sulfurique	—27 8,2	-277,5	[-277,3]	—276, 0	-272,9
Ac. oxalique	"	-286,5	-271,7	270,9	—266 ,1
Ac. phosphorique	"	269,7	278,9	-277,9	"

(Suite).

ACIDE	c=20.	n=3o.	c=40.	c = 64.	c=104.
	•	5 0 0 6 2	0		
Ac. formique Ac. acétique			" +276,4		

OUDEMANS (Rec. Trav. chim. d. P. B., t. I. p. 26; 1882) [extrait].

(Les nombres entre [] sont tirés par interpolation des nombres de l'auteur).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Quinine (hydratée). C ²⁰ H ²⁴ Az ² O ² + 3 H ² O	$[\alpha]_{D}^{15} - [165, 81 - 1, 06]$ $+ 1, 06$ Alcool 80 $[\alpha]_{D}^{15} - [158, 7]$ Ether $[\alpha]_{D}^{15} - 141^{\circ}, 0$ $- 140^{\circ}, 5$	$0/_{0} (c = 1 \text{ à 10})$ $-8,203c$ $0.54c^{2} - 0,04644c^{3}$ $0.0/_{0} (c = 1 \text{ à 6})$	•
	Eau + 3 Sc	Id. $(c=2)$ [3-3,08c] $[3^{1}H^{2} (c=1) = 5)$ [3]Eau + 3HCl $(c=1)(c=3)$	ID. (Id., t. CLXXXII, p. 130; 1876).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Quinine (azotate de). Quin. Az O ³ H	147°, 3 143°, 9	Eau $(c = 0,32 \text{ à } 0,65)$ Id. $(c = 0,967)$ Id. $(c = 1,290)$ Id. $(c = 1,935)$	HÄDRICH (<i>Zeits. f. physik.</i> Ch., t. XII, p. 479; 1893).
Quinine (chlor-hydrate de). Quin. H Cl + 2 H ² O	Alc. 97 % [$[\alpha]_{b}^{15}$ — [170,88] $+$ 0,8 Alc. 92 % [$[\alpha]_{b}^{15}$ — [81,81] $+$ 3,9 Chloroforme $[\alpha]_{b}^{15}$ — 126%,25 — 160%,75 — 168%,25 — 174%,75 — 187%,75 — 187%,50 — 186%,59 [α]_{b}^{15}— 138%,75 — 223%,6 — 223%,6 — 209%,5	[c = 1 à 10 (hydr.)] $[c = 1 à 10 (hydr.)]$ $[c = 3,496c]$ $[c = 1 à 10 (hydr.)]$ $[c = 1 à 10 (hydr.)]$ $[c = 1 à 10 (hydr.)]$ $[c = 0,9 à 9 (anh.)]$ $[d = 0,9 a 9 (anh.)]$ $[d =$	
	$[\alpha]_{D}^{15} - [229,46]$ Eau + 2 $[\alpha]_{D}^{2} - 138^{\circ}, 25$ $[\alpha]_{D}^{2} - 229^{\circ}, 32$	$(c = 1 \ a \ 3)$ $(c = 1 \ a \ 3)$ $(c = 1 \ a \ 7)$	
	— 158". 1	Eau [$c=0,3$ à $0,6$ (anh.)] Id. [$c=0,901$ (id.)] Id. [$c=1,202$ (id.)] Id. [$c=1,802$ (id.)]	Ch., t. XII, p. 479; 1893/.

NOM ET FORMULE.	POUVOIR rotatoire spécifique	DISSOLVANT BY TENEUR.	OBSERVATEURS.
Quinine (diiodomé- (') De la cupréine. (2) De la quinine natur.	$ \begin{array}{c c} $)) Eau et 20°/, SO'H' (c=2)	GRIMAUX et ARNAUD (Buil. Sec. chim. (3° s.), t. VII, p. 307; :892).
Quinine de) Quin.C ¹⁴ H ¹⁴ O ⁹	-! [α] _a ^{1a} 40°, 1	Alc. methyl. ($c = 0.5$)	ROSENHEIN et SCHIDRO- WITE (J. of chem. Soc., t. LXXIII, p. 884; :898).
Quinine (nitrocam- phrate de). Q.[C ¹⁺ H ¹⁴ (AzO ²)O] ² H ² C	[a], + 45°,9	Alcool (c = 2,72)	CARENEUVE [Bull. Soc. chim. (2° 8.), t. XLIX. p. 92; 1888].
Quinine (oxalate de). Quin ² . C ² O ¹ H ² + 6H ² O	* * *		Hunn (Lieb. Ann., t. CLXXVI, p. 228; 1875).
Quin². C²O4H² 3H²O	$[\alpha]_{h}^{1}$ - $i3i^{\circ},4$	Aic. (c = 1,98) (achydre)	OUDEMANS (Lieb. Ann., t, CLXXXII, p. 49; 1876).
Quinine (phénolchlor- hydrate de). Quin ² .(HCl) ² C ⁴ H ⁴ O + 2 H ² O		Alcool 97 */4 (c = 2)	JOBST et Hussn (Lieb. Ann t. CLXXX, p. 251, 1876).
Quinine (phénol- sulfate de). Quin ² . SO ³ . C ⁴ H ⁴ O + 2H ² O	$[\alpha]_0^{15}$ — 158°,83	(c = 2)	ld., p. 140.
Quinine (phényl-). Quin.[C ⁴ H ³ .CH(OH).COOI	[\alpha]_n^25 123" 119",8 116°,6	Eau $(c = 0, 4 \text{ à } 0, 8)$ Id. $(c = 1, 190)$ Id. $(c = 1, 587)$	Hadrica (Zeits. f. physik. Ch., t. XII, p. 479; 1893)
Quinine). QCOOH de l'ac.	[a]13 - 118°, 4	Alcoo' (c -0,38)	FILETI [Gazz. chim, Ital., t. XXII (II), p. 395; 1892).
Id. de l'ac. droit	[a]24 — 79°,4	Id. (c=0,92)	,
Quinine (séléniate de). Quin.Se O ⁴ 11 ² + 7 H ² O	' [∞]₀ 155°,8	Eau (c sans influence)	WYROUBOPF [Ann. de Ch. et Phys. (7*8.), t. I, p. 61, 1894].

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Quinine (sulfate acide de). Quin. (SO4H2)2+7H2O	Eau ($[\alpha]_{D}^{15}$ — 154°, 54 $[\alpha]_{D}^{13}$ — 153°, 34	$ \begin{array}{c c} \hline -0,94c] \\ (c = 2 \text{ à 10}) \\ \text{Alc. 80 } ^{0/0} (c = 1) \\ \text{Id. } (c = 3) \\ \text{Eau} + 12 \text{SO}^{4} \text{H}^{2} (c = 2) \end{array} $	HESSE (Lieb. Ann., t. CLXXVI, p. 218; 1875). [Id. (Id., t. CLXVI; 1873).]
Quin.(SO ⁴ H ²) ² + 4H ² O	— [1 53 ,87	[c = 1, 136c] $[c = 2 å 10]$ $[c = 0, 917c]$ $[c = 2 å 6]$	ID. (Id., t. CLXXXII, p. 135; 1876).
Quinine (sulfate basique de). Quin ² . SO ⁴ H ² + 8 H ² O	$-166^{\circ}, 36$ $-[157, 5]$ 1 vol. alc., 2 vo $[\alpha]_{0}^{15} - 239^{\circ}, 2$	Alc. 60 % (id.)	ID. (Id., t. CLXXXII, p. 154;
	[α] ¹¹ — 157°, 5	Alc. abs. [c:=2,2 (anh.)]	<u> </u>
Quinine (sulfate neutre de). Quin.SO'H ² + 7H ² O	142°, 75 155°, 91 138°, 75 [164, 85 Eau 166°, 36 175°, 67	Alcool 97 $^{0}/_{0}$ $(c = 2)$ Alcool 80 $^{0}/_{0}$ $(c = 1)$ Id. $(c = 2)$ Alcool 60 $^{0}/_{0}$ $(c = 2)$ 1 vol. alcool 2 vol. chlorof. $(c = 1)$	
(Voir la suite au verso)	Eau	$(c = 2 \ a \ 5)$ $-0.78c$ $0^4H^2 (c = 1 \ a \ 10)$ $0^4H^2 (c = 2)$	Oudemans (Lieb. Ann., t. CLXXXII, p. 49; 1876).

Action des acides en solutions aqueuses.

 $(c=1,62)(t=16^{\circ C})$ n moléc. acide pour 1 mol. base.

ACIDES.	n = 1.	n=2.	n=3.	n=5.	n=10.
Ac. chlorhydrique	+200,2		——————————————————————————————————————	[-274,6]	-270,2
Ac. azotique	"	—284,2	—284,2	-281,2	[-277,7]
Ac. chlorique	"	283,8	—285 ,7	—283,3	[-281,2]
Ac. perchlorique	"	—286,2	—288,3	[-287,2]	"
Ac. formique	"	-172,6	-208,8	252,5	-274,4
Ac. acétique	"	-191,1	-206,9	-227,4	[-248,5]
Ac. sulfurique	-278,2	-277,5	[-277,3]	—276, 0	-272,9
Ac. oxalique	"	286,5	-271,7	270,9	—266 ,1
Ac. phosphorique	"	269,7	-278,9	—277,9	"
		(Suite).			

ACIDE	c=20.	n=30.	c = 40.	c=64.	c = 104.
					
Ac. formique	—279,2	[-280,6]	"	"	"
Ac. acétique	[-265,8]	—275 ,5	+276,4	—278°,9	— 273 ,8

OUDEMANS (Rec. Trav. chim. d. P. B., t. I. p. 26; 1882) [extrait].

(Les nombres entre [] sont tirés par interpolation des nombres de l'auteur).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Quinine (hydratée). C ²⁰ H ²⁴ Az ² O ² + 3 H ² O	$[\alpha]_{D}^{15} - [165, 81 - 1, 06]$ $+ 1, 06$ Alcool 86 $[\alpha]_{D}^{15} - [158, 7]$ Ether $[\alpha]_{D}^{15} - 141^{\circ}, 0$ $- 140^{\circ}, 5$	$0/_{0} (c = 1 \text{ à 10})$ $-8,203c$ $0.54c^{2} - 0,04644c^{3}$ $0.0/_{0} (c = 1 \text{ à 6})$	
	$[\alpha]_0^{15}$ —[246,63 Eau + 3S		ID. (Id., t. CLXXXII, p. 130; 1876).

Eau avec potasse et azo	otate d'uranyte.
-------------------------	------------------

MOLÉCULES.			!
C7 H12 O4.	KOH.	(Az O²)² UO².	[2] _D . (C==0,96).
1	0	0	41,0
1	4	•	- 41,0
1	0	4	— 59,9
1	2	4	66,2
1	4	4 i	80,9
1	4	8	74,0
1	6	4	-88,2
1	8	4	-102,0

Alcool avec potasse et azotate d'uranyle.

WALDEN (Ber. d. D. ch. Ges., t. XXX, pp. 2891 et 2891; 1897).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Quinopropyline (sulfate de). (C ¹⁹ H ²¹ Az ² O.O C ³ H ²) ² SO ⁴ H ²	$[\alpha]_{D}^{22}$ — 229°,5		GRIMAUX et ARNAUD [Bull. Soc. chim. (3° s.), t. VII, p. 307; 1892].
Quino-ipropyline (sulfate de). Id.	$[\alpha]_{b}^{22}$ — 229°, 2		•
Quinovine (a).	[α] _b + 59°, 2 à 58°, 9	! Alcool	OUDEMANS (Rec. Trav. chim. d. P. B., t. II, p. 162; 1883).
	$[\alpha]_{\text{\tiny D}}+56^{\circ},6$	Alcool	LIEBERMANN et GIESEL
Id. (β).	$[\alpha]_{\text{D}} + 27^{\circ}, 9$	Alcool abs. $(c = 2,7)$	(Ber. d. D. ch. Ges., L. XVI, p. 926: 1883).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT BT TENEUR.	OBSERVATEURS.
Quinine (diiodomé- thylate de). Quin.(CH ³ I) ² (1) De la cupréine. (2) De la quinine natur.	$[\alpha]_{D}^{18} - 150^{\circ}, 8(^{1})$ $- 151^{\circ}, 6(^{2})$	Eau et 20º/ ₀ SO ⁴ H ² (c=2)	GRIMAUX et ARNAUD [Bull. Soc. chim. (3° 8.), t. VII, p. 307; 1892].
Quinine (gallotannate de) Quin . C ¹⁴ H ¹⁰ O ⁹	. [α] ¹⁵ — 40°, 1	Alc. méthyl. ($c = 0,5$)	ROSENHEIM et SCHIDRO- WITZ (J. of chem. Soc., t. LXXIII, p. 884; 1898).
Quinine (nitrocamphrate de). $Q.[C^{10}H^{14}(AzO^2)O]^2 + H^2O$	[α] _j + 45°,9	Alcool (c = 2,72)	CAZENEUVE [Bull. Soc. chim. (2° 8.), t. XLIX. p. 92; 1888].
Quinine (oxalate de). Quin ² . C ² O ⁴ H ² + 6H ² O		41,58 - 0,58c 1. chlorof. ($c = 1 = 3$)	HESSE (<i>Lieb. Ann.</i> , t. CLXXVI, p. 218; 1875).
Quin ² . C ² O ⁴ H ² + 3H ² O	$[\alpha]_{n}^{1}-131^{\circ},4$	Alc. $(c = 1,98)$ (anhydre)	OUDEMANS (Lieb. Ann., t. CLXXXII, p. 49; 1876).
Quinine (phénolchlor- hydrate de). Quin ² .(HCl) ² C ⁶ H ⁶ O + 2H ² O		Alcool 97 % (c = 2)	Jobst et Hesse (Lieb. Ann t. CLXXX, p. 251; 1876).
Quinine (phénol- sulfate de). Quin ² . SO ³ . C ⁶ H ⁶ O + 2 H ² O	$[\alpha]_{D}^{15}$ — 158°, 83	1 vol. alc., 2 vol.chlorof. (c = 2)	Id., p. 249.
Quinine (phényl- glycolate de). Quin.[C ⁶ H ⁵ .CH(OH).COOH		Eau $(c=0,4 å 0,8)$ Id. $(c=1,190)$ Id. $(c=1,587)$	HÄDRICH (Zeits. f. physik. Ch., t. XII, p. 479; 1893).
Quinine (ipropylphényl- glycolate de). Q[C3H1.C6H4.CH(OH).COOH] de l'ac. gauche		Alcoo! (c = 0,38)	FILETI [Gazz. chim. ital., t. XXII (II), p. 395; 1892].
Id. de l'ac. droit	$[\alpha]_{B}^{24}-79^{\circ},4$	Id. $(c=0,92)$	
Quinine (séléniate de). Quin.Se O ⁴ H ² +7H ² O	[a] _D 155°,8	Eau (c sans influence)	WYROUBOFF [Ann. de Ch. et Phys. (7°8.), t. I, p. 61; 1894].

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
	$[\alpha]_{b}^{13,5}+103^{\circ},77$	Eau ($c = 11,94$)	STOHMANN et LANGBEIN [J. f. prakt. Ch. (2° s.). t. XLV, p. 319; 1892].
(de la radicule du blé).	[α] _D + 105°,5	Eau (c == 10)	SCHULZE et FRANKFURT (Ber. d. D. ch. Ges., t. XXVII, p. 64; 1894).
Raffinose undécacétylé. C ¹⁸ H ²¹ O ¹⁶ (C ² H ³ O) ¹¹	$[\alpha]_{b}^{17} + 92^{\circ}, 2$	Alcool ($c=8,20$)	SCHEIBLER et MITTEL- MEIER (Ber. d. D. ch. Ges., t. XXIII, p. 1438; 1890).
Id. ou C ¹⁸ H ²⁰ O ¹⁶ (C ² H ³ O) ¹²	$[\alpha]_{D}$ + 100°, 3		TANRET [Bull. Soc. chim. (3° s.), t. XIII, p. 265; 1895].
Raffinose undécanitré. C ¹⁸ H ²¹ O ¹⁶ (Az O ²) ¹¹	$[\alpha]_{\scriptscriptstyle D}^{\scriptscriptstyle 20}+94^{\circ},9$	Alcool ($c=3,6$)	WILL of LENZE (Ber. d. D. ch. Ges., t. XXXI, p. 85; 1898).
Résorcine camphrée. Vois	r Camphrée (rés	orcine).	
Rétamine. C ¹⁵ H ²⁶ Az ² O	$[\alpha]_{0}^{21} + 43^{\circ}, 18 + 43^{\circ}, 25$	Alc. abs. $(c = 1)$ Id. $(c = 2)$	BATTANDIER et MALOSSE (C. R., t. CXXVI, p. 360; 1897).
Réuniol. Voir Rhodinol.			
Rhamnite. C ⁶ H ¹⁴ O ⁵ == CH ³ (CH.OH) ⁴ . CH ² . OH	$\left \left[\alpha\right]_{\mathbf{p}}^{20} + 10^{\circ}, 7\right $	Eau (p = 8,65)	E. FISCHER et PILOTY (Ber. d. D. ch. Ges., t. XXIII, p. 3104; 1890).
Rhamnoheptonique (lactone). $C^{R}H^{14}O^{7}=C^{7}H^{11}(CH^{3})O^{7}$	$[\alpha]_{b}^{20}+55^{\circ},6$	Eau (c = 10,04)	<i>ld.</i> , p. 3107.
Rhamnoheptose. C* H16 O7== CH3 (CH.OH)6 COH		Eau (c = 9,4)	<i>Id.</i> , p. 3108.
Rhamnohexite. $C^{1}H^{16}O^{6} = CH^{3}(CH.OH)^{5}.CH^{2}OH$	$[\alpha]_{D}^{20}+14^{\circ},0$	Eau (p = 9,42)	Id., p. 3827.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
	[α] _D — 171°,5	Eau (c sans influence)	WYROUBOFF [Ann. de Ch. et Phys. (7° S.), t. I, p. 61; 1894).
Quinine (sulfo- cyanate de). Quin. HCAzS + H ² O	$[\alpha]_{n}^{15}-139^{\circ},31$	1 vol. alc., 2 vol. chlorof. (c = 2)	HESSE (<i>Lieb. Ann.</i> , t. CLXXXI, p. 49; 1876).
Quinine (dtartrate de). Quin². C4 H6 O6 + H2 O	$[\alpha]_{b}^{11}-215^{\circ},8$ $-211^{\circ},5$ $-207^{\circ},8$	A { Eau + 05 ⁷ , 5475 H Cl pour 100 ⁶⁰ ($c = 2$) B { Eau + 15 ⁷ , 095 H Cl pour 100 ⁷⁶ ($c = 4$) C { Eau + 15 ⁷ , 6425 H Cl pour 100 ⁶⁶ ($c = 6$)	OUDEMANS (<i>Lieb. Ann.,</i> t. CLXXXII, p. 67; 1876).
	$[\alpha]_{D}$ — 216°, 6 — 212°, 5	Teneur A	HESSE [Pharm. J. Trans (2° 8.), t. XVI, p. 1025 1886].
	[a] _b — 216°, 3 — 212°, 0	Teneur A Teneur B	KERNER et WELLER (Arch d. Pharm., t. CCXXV, p 118; 1887).
uininecupréine. Voir H	Comoquinine.		
Quininesulfonique (acide). C ²⁰ H ²³ Az ² O ² . SO ³ H	$[\alpha]_{D}^{15}$ — 182°, 2	Eau + 3 H Cl (c = 2)	HESSE (<i>Lieb. Ann.,</i> 1 CCLXVII, p. 141; 1892)
Quinique (acide). C¹H¹²O6	1	Eau ($c = 2$ à 10) Eau + Na OH ($c = 2$) Alcool 80 $^{\circ}/_{\circ}$ ($c = 5$)	HESSE (Lieb. Ann., CLXXVI, p. 124; 1875
		Eau $(c = 1,57)$ Id. $(c = 3,4 å 12,7)$	OUDEMANS (Rec. Trace chim. d. P. B., t. IV p. 169; 1885).
	, - -	Eau $(c = 10,29)$ Id. $(c = 21,28)$ Id. $(c = 33,09)$	THOMSEN [J. f. prakt. C) (2° 8.), t. XXXV, p. 156
		Eau $(c = 8,9 \text{ à 21,5})$ Id. $(c = 53,03)$	EYKMAN (Ber. d. D. c.) Ges., t. XXIV, p. 1297

[α]_D — 43°,5 | Eau (c = 1,865) | CERKEZ (C. R., — 32°,5 | Alcool 95°/₀ (c = 1,74) | P. 175; 1893).

|CEREEZ (C. R., t. CXVII,

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Rhamnosamine (alcoolate de). [C ⁶ H ¹¹ O ⁴ (AzH ²)] ² +C ² H ⁵ OH	[α] _D +- 28°	Eau (c = 3,6)	LOBRY DE BRUYN et VAN LEENT (Rec. Trav. chim d. P. B., t. XIV, p. 146 1895).
Id. (méthylalcoolate de). [C¶H ¹¹ O ⁴ (AzH ²)] ² + CH ³ OH	[a] _D + 38°, o	Eau (c = 5)	ld.
Rhamnose. C ⁶ H ¹² O ⁵ + H ² O = CH ³ (CH.OH) ⁴ .COH + H ² O (de la xanthorhamnine)	d=1,4	$t_1 = 0.03642 t$ $+ 0.0000123 t^2$ $t_2 = 0.00075 t$ $t_3 = 0.00075 t$	GERNEZ (C. R., t. CXXI, p. 1150; 1895).
	$\overline{[\alpha]_{D}^{11}+8^{\circ},07}$	Eau (c = 26,04)	LIEBERMANN et HÖRMANN (Ber. d. D. ch. Ges., t. XI, p. 956; 1878).
(de la quercitrine)	$[\alpha]_{D}^{11} + 8^{\circ}, 04$	Eau (c = 18,08)	BEREND (Ber. d. D. ch. Ges., t. XI, p. 1354; 1878).
	$\boxed{[\alpha]_{\scriptscriptstyle D}+8^{\scriptscriptstyle o},45}$	Eau	KRUIS (Sitz. d. Böhm. Ges.; 1878).
		Eau (c = 30,2 à 40,3)	RAÝMAN [Bull. Soc. chim. (2° s.), t. XLVII, p. 670; 1887].
(de la naringine)	$[\alpha]_{b}^{17} + 8^{\circ}, 2$	Eau (c = 9,4 à 25,2)	WILL (Ber. d. D. ch. Ges., t. XX, pp. 297 et 1188; 1887).
(de la xanthorhamnine)	$[\alpha]_{D}^{18} + 8^{\circ}, 83$		STOHMANN et LANGBEIN [J. f. prakt. Ch. (2° 8.), t. XLV, p. 308; 1892].
(de l'ouabaïne)	$[\alpha]_{D}^{11} + 8^{\circ}, 75$	Eau $(c=6)$	ARNAUD (C. R., t. CXXVI, p. 1220; 1898).
	$(t = [\alpha]_{\mathfrak{p}}^{20} - 4^{\mathfrak{o}},$	-0,035t](final) 6° à 20°,5) 5(après 4 min.) 1 (c = 10)	Schnelle et Tollens (Lieb. Ann., t. CCLXXI, p. 65; 1892).
(<i>Voir</i> la suite au verso)	[α] _D ¹⁸ — 6°, 05 (après 90 sec.) [α] _D ¹⁸ + 9°, 75 (final)	Eau (c = 6,28)	Gernez (C. R., t. CXIX, p. 64; 1894).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Quinovite.	$[\alpha]_b + 60^o, 5$		OUDEMANS (loc. cit.).
C6 H12 O4	$\frac{[\alpha]_{b} + 60^{\circ}, 5}{[\alpha]_{b} + 78^{\circ}, 1}$		LIEBERMANN et GIESEL (loc. cit.).
Quinovique (acide).	[α] ₀ + 87°,8 à 86°,8		Oudemans (loc. cit.).
Quiténine. C ¹⁹ H ²² Az ² O ⁴ + 4 H ² O	[α] _D — 142°, 7	Alcool (p = 0,11)	SKRAUP (<i>Lieb. Ann.</i> , t. CXCIX, p. 348; 1879).
Raffinose. C ¹⁸ H ³² O ¹⁶ + 5 H ² O (des mélasses de betterave)	$[\alpha]_{D} + 105^{\circ}, 5$ (calculé) ([\alpha] saccharose $\times 1,59)$		LOISEAU (C. R., t. LXXXII, p. 1058; 1876).
(des graines de coton) [Gossypose]	[a],+116°,8	Eau	BOBHM (Ges. d. ges. Nat. zu Marburg, p. 24; 1883).
	$[\alpha]_{j}^{15,5}+117^{\circ},4$	Eau (p = 8,87)	RITTHAUSEN [J. f. prakt. Ch. (2° 8.), t. XXIX, p. 351; 1884].
(des mélasses). (des graines de coton).	$ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		Scheibler (Ber. d. D. ch. Ges., t. XVIII, p. 1781; 1885). [Rischbiet et Tollens (Lieb. Ann., t. CCLXII; 1886).]
(acc grandes ac couch).	+ 103°,95	Id. $(c = 10)$	
(de la manne d'eucalyptus) [Mélitose]	$ [\alpha]_{D}^{20} + 104^{\circ}, 3 $ (moy.)	Eau (c = 10)	Tollens (Ber. d. D. ch. Ges., t. XVIII, p. 2616; 1885).
(du jus de betterave).	$[\alpha]_{D}^{18}+104^{\circ},96$	Eau (c = 2,76)	Von Lippmann (Ber. d. D. ch. Ges., t. XVIII. p. 3089; 1885).
(de l'vrge). [Céréalose]	$[\alpha]_j + 135^\circ, 3$ $[\alpha]_b + 103^\circ, 4$ (calculé).	Eau (c=4,45) (anh.) Id. (hydr.)	O'SULLIVAN (J. of chem. Soc., t. XLIX, p. 70; 1886).
(I. de la mélasse). (II. des graines de coton).	$[\alpha]_{D}$ + 104°,2(I) + 104°,5(II)		CREYDT (Inaug. Dissert., Erlangen; 1888).

NOM ET FORMULE.	Pouvoir rotatoire spécifique.	DISBOLVANT ET TENEÇR.	OBSERVATEURS.
Rh. avec molybdate ac. d'ammonium. [Mo ³ O ²⁴ (Az H ⁴) ⁴]	[a], + 19°,91 (maximum)	Eau $+\frac{6.75}{24}$ mol. sel $(c=6.32)$	GERNEZ (C. B., t. CXIX, p. 64; 1894).
Rh. avec molybdate ac. de sodium. (Mo¹ O²⁴ Na⁴)	[α];* + 22°, 95 (maximum)	Eau + $\frac{6.75}{24}$ mol. scl (c = 6,32)	
Rhamnose tétranitré. C ⁴ H ³ (AzO ²) ⁴ O ³	[x] ²⁰ -68°,4	Alc. méthyl. ($c = 2,3$)	Will. of LEBZE (Bee. d. D. ch. Ges., t. XXXI, p. 72; 1898).
Rhamnoseallylphényl- hydrazone. C ⁴ H ¹² O ⁴ : Az ² (C ⁶ H ³) (C ¹ H ³)	[2] ₀ ±0	Alc. méthyl. (p = 0,5)	ALD. VAN KEENBYEIN et LOBRY DE BRUYN (Rec. Trav. chim. d. P. B., t. XV, p. 226; 1896).
hydrazone. C*H' ² O ⁴ ; Az ² (C*H ³) (C*H' ¹)	[2] ₀ -6',4	Alc. méthyl. $(p=0,5)$	Įd.
C'H''2O': Az2(C'III3)(C'H')	$[\alpha]_{a} - 6^{\circ}, 4$ $- 2^{\circ}, 1$	Alc. méthyl. (p = 0,5) Ac. acétique (id.)	Id.
Rhamnoseéthylphényl- hydrazone. C*H*2O*: Az*(C*H*)(C*H*)	[a] _a — 11°,6	Alc. méthyl. (p=0,5)	éd.
C*H'12O*; Az2(C*H2)(CH2)	[z] _u ~ o", 3	Alc. méthyl. (p = 0,5)	id.
Rhamnose-(3)-naphtyl- C*H' ¹² O';Az*H(C'*H')	[2] _b +8°,4 -11°,8	Alc. méthyl. ($p = 0.5$) Ac acétique ($-id.$)	Id.
Coffeen; Az H (Coff)	[4] ²⁴ -* 54", 2 (pas de birotation)	Eau (p = 1,01)	JACOBI (<i>Lieb. Ann.</i> , t. CCLXXII, p. 178; 1893).
D.	•		68

10/2		QUEST	
NOM ET FORMULE.	POUVOIR rolatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
aRhamnohexonate de sodium. C ¹ H ¹³ O ¹ .Na	$[\alpha]_{\mathfrak{p}}+5^{\circ},4$	Eau (c = 4,7)	VAN EKENSTEIN, JORISSEN et REIGHER (Zeits. f. physik. Ch., t. XXI, p. 383; 1896).
α Rhamnohexonique (lactone). $C^1 H^{12} O^6$	$[\alpha]_{n}^{20} + 83^{\circ}, 8$	Eau (c = 10,03)	E. FISCHER et PILOTY (loc. cit., p. 3104).
βId.	$[\alpha]_{b}^{20} + 43^{\circ}, 34$	Eau (p = 9,92)	E. FISCHER et MORELL (Ber. d. D. ch. Ges., t. XXVII, p. 389; 1894).
Rhamnohexose. $C^{1}H^{14}O^{6} = CH^{3}(CH.OH)^{5}.COH$	[α] ₀ ²⁰ — 82°, 9 (après ½ heure) — 64°, 4 (après 12 heures)	Eau (p = 9,68)	E. Fischer et Piloty (loc. cit., pp. 3105 et 3827).
Rhamnonate de stron- tium. (C ⁶ H ¹¹ O ⁶) ² Sr	$[\alpha]_{D}^{20} + 11^{\circ}, 25$	Eau (c = 3)	Schnelle (Inaug. Dissert., Göttingen; 1891).
Rhamnonique (acide). C ⁶ H ¹² O ⁶	$[\alpha]_{b}^{20,3} - 7^{\circ}, 67$ (commencement) $[\alpha]_{b}^{16} - 29^{\circ}, 3$ (après 3 jours)		Schnelle et Tollens (Lieb. Ann., t. CCLXXI p. 73; 1892).
Rhamnonique (lactone). C ⁶ H ¹⁰ O ⁵	$[\alpha]_{D}$ — 38°,07 (commencement) $[\alpha]_{D}$ — 37°,46 (fin) $(t = 19^{\circ} \text{ à 20°})$		/d., p. 72.
	$[\alpha]_{D}^{20}$ — 39°, 04 $[\alpha]_{D}^{15}$ — 39°, 08		RAÝMAN (Ber. d. D. ch Ges., t. XXI, p. 2018 1888).
Rhamnonique (lactone iso-). C ⁶ H ¹⁰ O ⁵	$[\alpha]_{n}^{20}$ — 62°, 02 (après 1 minute) $[\alpha]_{n}^{20}$ — 5°, 21 (après 24 heures)		E. FISCHER et HERBORI (Ber. d. D. ch. Ges., t XXIX, p. 1964; 1896).
Rhamnooctonique (lactone). C ⁹ H ¹⁶ O ⁸	$[\alpha]_{B}^{20}$ — 50°, 8	Eau (p = 4,76)	E. Fischer et Piloty (Berd. D. ch. Ges., t. XXIII pp. 3109 et 3827; 1890).

NOM BT FORMULE.	POUVOIR retatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Ricinolique (acide).		Pur. 6°, 25 à 7°, 5 (c = 4,8 à 21)	ld.
Ricinolique (phényl-). C ²⁴ H**Az ² O ²	[a] _b + 6°, 6	Alcool absolu (c = 5)	Id.
Ricinstéarolique (acide) C"H"O" = C"H"OH, COOH	[α] ₀ + 13°,67	Acétone (c = 6,4)	Id.
dSaccharate acide d'ammonium. C'H'O'.Az H'	{α} _n + 5°, 84	Eau (c = 2,03)	Soner of Tollens (Lieb. Ann., t. CCXLV, p. 15; 1888).
dSaccharate de potas- sium. (C°H°O°)K²	[2] _a + 8*,7	Eau (c = 8,7)	VAN ERRNSTEIN, JORISSEN et REIGERR (Zeits. f. physik. Ch., t. XXI, p. 383; 1896).
-saccharate (Noriso-)	Voir	dist	hylique.
de calcium. (C ⁴ H ¹¹ O ⁴) ² Ca	[a] _a — 5°, 7	Eau	SCHRIBLER (Ber. d. D. ch. Ges., t. XIII, p. 2212; 1880).
Saccharinate de sodium. C'H''O'.Na	[x] ₀ -17°, 2	Eau (c = 7,3)	VAN ERENSTEIN, JORISSEN et REICHER (loc. cit.).
-saccharinate (Iso-) de potassium. C*H***O*, K	[2] ₆ —5°,4	Eau (c = 6.7)	Id.

Id.-β (anhydre)

Id.-γ (anhydre)

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.		FENEUR.	OBSERVATEURS.
	$[\alpha]_{\nu}^{20} + 9^{\circ}, 4$	1	= 15 à 30		RAYMAN et Kruis [Bull. Soc. chim. (2° s.), t. XLVIII, p. 635; 1887).
	+ 8°,96 8°,18 + 4°,14 3°,28	70,2 56,4	29,8 43.6	18,6	
	+ 2°,35 + 0°,84 - 9°,23 - 10°,04 - 10°,69	33,9 6,0 3,9	66,1 94,0	9,0	
	- 10°,59	(Alc. me (Id. (p = 1 Alc. i)	anhydre th. $(p = anhydre + 15 \%)$	eau hydre) = 6,54)	
	$[\alpha]_{D}^{20} + 8^{\circ}, 4$ $[\alpha]_{D}^{20} - 11^{\circ}, 4$ (initial) $[\alpha]_{D}^{20} - 9^{\circ}, 0$ (final)	Ea Alco	u (p = ol (p = Id.		JACOBI (<i>Lieh. Ann.</i> , t. CCLXXII, p. 176; 1893).
	$[\alpha]_{D}+8^{\circ},67$	Alc.	ipropy	lique	PARIZEK et Sule (Ber. d. D. ch. Ges., t. XXVI. p. 1411; 1893).
Rhamnose a. (hydratée).	(initial) [α] ¹⁵ — 16°, 5 (après 10 min.)			8,47)	TANRET [Bull. Soc. chim. (3° 8.), t. XV, p. 352; 1896]. [E. Fischer (Ber. d. D. ch. Ges., t. XXIX, p. 321; 1896).]
	$[\alpha]_{0}^{15}$ — 11°,42 (après 24 heures)	1	Id.		

 $[\alpha]_{D}+10^{\circ},1$

 $| [\alpha]_{D} + 22^{\circ}, 8 |$

Eau

Eau

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Saccharique (acide).	[x] _D + 9°, 7	Eau ($c = 1,85$)	HEREFELD (Lieb. Ann., t. CCXX, p. 355; 1883).

-saccharique (acide Iso-). Voir Isosaccharique (acide).

Saccharolactonique (acide). C ⁶ H ⁸ O ¹	$[\alpha]_{D} + 37^{O}, 94$ Eau $(c = 10, 21)$ $[\alpha]_{D} + 22^{O}, 49$ (après 3 mois)		SONST OF TOLLENS (Lieb. Ann., t. CCXLV, p. 9; 1888).	
	$[\alpha]_{D}+41^{\circ},6$	Eau (c = 2)	VAN EKENSTEIN, JORISSEN et REICHBR (Zeits. f. physik. Ch., t. XVII, p. 383; 1896).	
Saccharone. C ⁶ H ⁸ O ⁶ + H ² O	$[\alpha]_{D}^{18}-6^{\circ},1$	Eau (c = 12,41)	KILIANI (Ber. d. D. ch. Ges., t. XV, p. 2959;	

Saccharose.

1. — DISPERSION DANS LES DISSOLUTIONS AQUEUSES.

	[2]			
RAIES.	ARNDTSEN.	STEFAN.		
A	"	+38,47 +43,32		
B	″ // 53°,41	+47,56 $+52,70$		
D E	+ 67,07 + 85,41	+66,41 $+84,56$		
<i>b</i> ₂ F	+ 88,56 +101,38	+87,88 $+101,18$		
e G	+126,32 ₅ " "	#131,96 +157,06		
**********		(p = 10 à 30)		

ARNDTSEN [Ann. dc Ch. ct Phys. (3° s.), t. LIV, p. 403; 1858]. STEFAN [Slizb. Akad. Wien, t. LII (II), p. 486; 1865].

(Voir la suite au verso)

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
rhamnoside (Acétone-).	/oir Acétonerha	imnoside.	
Rhamnosoxime. C ⁶ H ¹² O ⁴ : Az OH	[α] _b ²⁰ + 13°, 7 (après 20 h.)	Eau (c = 9,86)	JACOBI (Ber. d. D. ch. Ges., t. XXIV, p. 696; 1891).
lRhodinol.	$[\alpha]_{b}^{16}-3^{\circ},07$	Pur. d ¹⁸ = 0,879	ECKART (Arch. d. Pharm., t. CCXXIX, p. 355; 1891).
(de l'essence de roses)	$[\alpha]_{b}^{25,3}-2^{\circ},62$	Pur. $d^{25,3} = 0.8788$	BARBIER [Bull. Soc. chim. (3° s.), t. IX, p. 1002; 1893].
(de l'ess. de pélargonium)	$ [\alpha]_{b}^{11,2}-2^{\circ},57$	Pur. $d^{11,2} = 0.864$	MONNET et BARBIER (C. R., t. CXVII, p. 1093; 1893).
[Roséol] (de l'ess. de roses bulgare)	$[\alpha]_{\rm p}^{25}-4^{\rm o},34$	Pur. $d^{27,5} = 0,864$	MARKOWNIKOFF et REFOR- MATSKY [J. f. prakt. Ch. (2° s.) t. XLVIII, p. 293; 1893].
(de l'ess. de pélargonium)	[a] ₀ — 4°	Pur. d = 0,8825	BARBIER et BOUVEAULT (C. R., t. CXIX, p. 335; 1894).
[Réuniol] (de l'ess. de géranium)	$[\alpha]_{\nu}^{20}-2^{\circ},02$	Pur. d20 = 0,865	A. HESSE [J. f. prakt. Ch. (2° S.), t. L, p. 475; 1894].
[lCitronnellol] (de l'essence de roses)	$[\alpha]_{\nu}^{20}-5^{\circ},03$	Pur. $d_4^{20} = 0,8612$	TIEMANN et SCHMIDT (Ber. d. D. ch. Ges., t. XXIX, p. 923; 1896).
dId. Voir Citronnellol.			
Ribonate de cadmium. (C ⁵ H ⁹ O ⁶) ² Cd	$[\alpha]^{20}_{\nu} + o^{\circ}, 6$	Eau	E. FISCHER et PILOTY (Ber. d. D. ch. Ges., t. XXIV. p. 4217; 1891).
Ribonique (lactone). C ⁵ H ⁸ O ⁵	$[a]_{b}^{20}-18^{\circ},0$	Eau ($c = 9,34$)	Id.
Ricinélaïdique (acide). C'' II34 ()3	Acéton	+ 4°, 8 à 5°, 4 e ($c = 5$ à 15) Alc. abs. ($c = 12$)	WALDEN (Ber. d. D. ch. Ges., t. XXVII, p. 3472; 1894).
Ricinélaïdique (phényl- hydrazide d'acide). C ²⁴ H ⁴⁰ Az ² O ²	$[x]_{b}^{20} + 6^{\circ}, 5 + 7^{\circ}, 0$	Acide acétique ($c = 10$) Alcool absolu ($c = 2$)) Id.

1081

B.
$$[\alpha]_{\nu}^{2} = +66,510 + 0,004508p - 0,00028052p^2$$

$$p = 5 à 65$$

(Densité à 20° par rapport à l'eau à 4°).

$$[\alpha]_0^{20} = +66,639 - 0,02082c + 0,000346c^2$$

$$c = 3 å 28$$

$$+66,541 - 0,008415c$$

$$c=3$$
 à 28

$$[\alpha]_{b}^{20} = +66,453 - 0,00124c - 0,0001170c^{2}$$

$$c = 10 å 86$$

Schmitz (Ber. d. D. ch. Ges., t. X, p. 1414; 1877).

C.
$$[\alpha]_{b}^{20} = +66,577 + 0,00747p - 0,0003134p^{2}$$

$$p = 18 å 69$$

[Calculé d'après les mesures de Tollens (A)].

THOMSEN (Ber. d. D. ch. Ges., t. XIV, p. 1652; 1881).

D.
$$[\alpha]_{b}^{20} = +66,67 - 0,0095c$$

$$c = 4.5 \text{ à } 27.7$$

[Calculé d'après les mesures de Tollens (A) et de Schmitz (B)].

LANDOLT (Ber. d. D. ch. Ges., t. XXI, p. 196; 1888).

E.
$$[\alpha]_{b}^{20} = +64,262 - 0,6063p + 2,346\sqrt{p}$$

$$p = 0,2 å 4$$

[Calculé par Schütt (Tabellen, 2° éd., p. 455)].

PRIBRAM (Ber. d. D. ch. Ges., t. XX, p. 1849; 1887).

F.
$$[\alpha]_{\nu}^{15} = +66,749 + 0,006475p - 0,0002952p^2$$

$$p = 40 \text{ à } 70$$

$$+66,94 -0.01p$$

$$p = 15 \text{ à 40}$$

$$+67,5575 - \frac{0.87539P}{1.8967+P}$$

n -

Seyps.

, p. 113; 1890).

(Voir la suite au verso)

DONNÉES NUMÉRIQUES. — OPTIQUE.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	OBSERVATEURS.
-saccharinate (Iso-) de sodium. C ⁶ H ¹¹ O ⁵ .Na	[α] _b —5°,5	Eau (c = 6,7)	VAN EKENSTEIN, JORISSEN et REICHER (loc. cit.).
Saccharine.	$[\alpha]_n + 93^\circ, 5$		PELIGOT (C. R., t. XC, p. 1141; 1880).
	$[\alpha]_b^{11,5} + 93^\circ, 8$	Eau (c = 12,08)	SCHEIBLER (Ber. d. D. ch. Ges., t. XIII, p. 2212; 1880).
	$[\alpha]_{b}^{20} + 94^{\circ}, 2$ (après 8 min.) $[\alpha]_{b}^{20} + 88^{\circ}, 7$ (après 11 jours)	Eau (c = 10,4)	SCHNELLE et TOLLENS (Lieb. Ann., t. CCLXXI, p. 66; 1892). [Hermann et Tollens (Ber. d. D. ch. Ges., t. XVIII, p. 1333; 1885).]
	$\boxed{ [\alpha]_{b} + 94^{\circ}, 2}$	Eau (c = 10)	VAN EKENSTEIN, JORISSEN et REICHER (loc. cit.).
-saccharine (Iso-). C ⁶ H ¹⁰ O ⁵	[α] _D + 63°, ο	Eau (p = 10)	CUISINIER [Monit. scient. (3° s.), t. XII, p. 520; 1882].
	[a] _D +	61°,5 à 61°,9 Eau	WEHMER et Tollens (Lieb. Ann., t. CCXLIII, p. 323; 1888).
	$[\alpha]^{20}_{\mu} + 62^{\circ}, 97$	Eau (c = 10)	SCHNELLE et TOLLENS (Lieb. Ann., t. CCLXXI, p. 66; 1892).
	$\boxed{[\alpha]_0 + 62^\circ, 8}$	Eau $(c=9,9)$	VAN EKENSTEIN, JORISSEN et REICHER (loc. cit.).
-saccharine (Méta-). C ⁶ H ¹⁰ O ⁵	$[\alpha]_{D}^{14}-48^{\circ},4$	Eau (p = 2,85)	KILIANI (Ber. d. D. ch. Gcs., t. XVI, p. 2626; 1883).
	[a] _b — 46°, 96 — 46°, 7	Eau $(c = 7)$ Id. $(c = 10)$	SCHNELLE et TOLLENS (Lieb. Ann., t. CCLXXI, p. 87; 1892).
-saccharinique (lactone Méta-). C ⁶ H ¹⁰ O ⁵	[α] ₀ — 27°, 7		Kiliani et Sanda (Ber. d. D. ch. Ges., t. XXVI, p. 1649; 1893).
-saccharinique (lactone Para-). Id.	[α] _D — 26", 1	·	Id.

C. — Chlorures alcalins.

Na Cl pour 100ec.		[2] _D .	
	c=5.	c=10.	c=20.
2,5	"	+66,7	+66°,7
5	+66,1	- +66,2	+66,3
10	+65,3	+-65,3	+65,6
20	+63,8	+63,7	-+64,0
25	"	+62,8	"

MÜNTZ (loc. cit.).

	RAPPORT DES MASSES.			[2] ^{17,5} .
	Sel.	Eau.	Sucre.	[-]
Na Cl	o o,6185 1,575 3,087	8,643	1	+66,74 $+65,65$ $+64,35$ $+62,29$
	1,0036	3,086 5,206 9,730	1	+62,51 $+63,86$ $+65,26$
K Cl	0,5794 1,084 1,654 2,714	8,643	1	+65,90 +65,43 +64,83 +63,89
K Cl	1,083	3,004 4,565 7,432 12,272))	+63,56 $+64,39$ $+65,42$ $+65,81$
Li Cl	1,008	2,768 6,299 8,282 13,606	1	+61,52 +64,03 +64,70 +65,24
Az H+Cl	0,9932	2,949 4,943	} 1	+64,05 +64,96

FARNe.

*raug. Dissert. Iéna; 1890).

DONNÉES NUMÉRIQUES. - OPTIQUE.

RAIES.	LONGUEURS d'onde.	$\alpha=\alpha_{D} imes$
	1414	
C	656,3	0,79 4 7
D	589,3	1
Tl	535,0	1,2310
F	486,1	1,5161
<i>Sr</i>	460,7	1,7072
H_{\bullet}	434,1	1,9468
$R\dot{b}$	420,2	2,0987

Rapports indépendants de la concentration et de la température.

SEYFFART (Wied. Ann., t. XLI, p. 113; 1890).

couleurs.	LONGUEURS d'onde.	[a] (p = 20)
Rouge	666 ^{µµ}	+ 51,55
Jaune	592	+65,82
Vert	533	+82,71
Bleu clair	489	+ 99,90
Bleu foncė	448	+120, 6

LANDOLT (Ber. d. D. ch. Ges., t. XXVII, p. 2872; 1894).
[Voir Table XVII (I, E), p. 791].

2. — INFLUENCE DE LA CONCENTRATION DANS LES DISSOLUTIONS AQUEUSES.

A.
$$[\alpha]_{b}^{2^{0}} = +66,810 - 0,01555p - 0,0000525p^{2}$$

$$p = 4 \text{ à } 18$$

$$[\alpha]_{b}^{2^{0}} = +66,386 + 0,015035p - 0,0003986p^{2}$$

$$p = 18 \text{ à } 69$$

(Densité à 17°,5 par rapport à l'eau à 4°).

Tollens (Ber. d. D. ch. Ges., t. X, p. 1403; 1877).

Rem. — D'après Tollens (Id., t. XXI, p. 196; 1888), la seconde formule est valable de p = 1 à p = 69.

i	RAPPORT DES MASSES.			
	Sel.	Eau.	Sucre.	[α] _n ,,,.
	1,400 2,250 3,794	8,643	1	+65,40 +64,68 +63,74
	4,229 5,866 7,136 8,034	, 16,000	1	+64,55 +63,93 +63,59 +63,53
Sr Cl ²	1,096	3,132 3,949 6,365 11,195 17,456	1	+64,16 $+64,56$ $+65,38$ $+65,90$ $+66,52$
	2,856	5,621 7,158 13,127 22,726	1	+63,78 +63,92 +65,08 +65,80
	1,670 3,267 3,967	8,643	1	+64,31 $+62,24$ $+61,47$
	1,230	3,182 4,019 5,195 6,754 13,505 29,434	1	+62,31 $+63,11$ $+63,81$ $+64,54$ $+65,65$ $+66,12$
MgCl ²	2,990	6,414 8,891 14,954	1	+61,54 +62,60 +64,13
	0,0882	0,9118	0,0535 0,1134 0,2599 1,0132	65,30 65,44 65,49 64,89
	0,3179	0,6821	0,0340 0,1009 0,2889 0,5432 0,6596 1,0695	61.27 61.49 61.55 61.56 61.57 61.56

FARNSTHINER (India, Dissert, Inna: 1890).

1082

G.

DONNÉES NUMÉRIQUES. — OPTIQUE.

$$[\alpha]_{0}^{20} = +66,438 + 0,01031p - 0,0003545p^{2}$$

$$p = 3 å 65$$

$$+69,962-4,8696p+1,86145p^2$$

$$p = 0.5 \ a \ 1.2$$

NASINI eb VILLAVECCHIA [R. C. del Lincei (4° s.), t. VII (2° sem.), p. 285; 1892].

3. — Influence de la température (sol. aqueuses).

$$[\alpha]_0^t = [\alpha]_0^{20} - 0,0114(t-20)$$

$$(p = 15 \text{ à } 29) (t = 18^{\circ} \text{ à } 41^{\circ})$$

Andrews [Mon. Scient. (4° s.), t. III, p. 1366; 1889].

$$[\alpha]_0^t = [\alpha]_a^{20} - 0,0144(t-20)$$

$$(t = 12^{\circ} à 25^{\circ})$$

SCHÖNROCK (Zeits. f. Instr.-K., t. XVIII, p. 186; 1897).

4. - INFLUENCE DES ALCALIS ET DES SELS.

A. - Soude caustique.

$$\begin{bmatrix} 1 \text{ moléc. sucre} \\ 2 \text{ moléc. Na OH} \end{bmatrix} \quad c = 10 \quad [\alpha]_0^{15} = +60^\circ, \infty$$

HESSE (Lieb. Ann., t. CLXXVI, p. 197; 1875).

$$\begin{bmatrix} 1 & \text{moléc. sucre} \\ 1 & \text{moléc. Na OII} \end{bmatrix} \quad c = 2,13 \quad [\alpha]_{D}^{20} = +63^{\circ},49$$

$$c = 4,26 \text{ à } 53,77$$
 $[\alpha]_{0}^{26} = +64,21 + 0,0372c - 1,0304\sqrt{c}$

(Calculé d'après les nombres de l'auteur.)

SUCRE.	Na OH.	$[\alpha]_{b}^{20}$.	c.
1 mol.	1 mol.	+61,50	8,51
	2	+59,33	8,51
	4	+57,10	8,78
	6	+56,76	8,96
	8	+56,84	9,14

THOMSEN (Ber. d. D. ch. Ges., t. XIV, p. 1649; 1881).

$$B. - Chaux.$$

SUCRE.	Ca O.	[a] _D .	
1 mol.	o,25 mol. o,50	+64,4 +61,3 +56,9 +54,8	c = 10

MÜNTZ (C. R., t. LXXXII, p. 1334: 1876).

5. — DISSOLVANTS DIVERS.

Eau + 1 mol. SO⁴ H²
$$[\alpha]_0^{15}$$
 + 66°, 67 ($c = 6$)
Eau et alcool 50 °/0 en vol...................... $[\alpha]_0^{15}$ + 66°, 70 ($c = 5$)

HESSE (Lieb. Ann., t. CLXXVI, p. 197; 1875).

		$[\alpha]^{20}_{\nu}$.	
Eau 25 º/o en poids et .	Alcool éthylique Alcool méthylique Acétone	+66,83 +68,63 +67,40	p = 10
Eau pure		+66,67	

TOLLENS (Ber. d. D. ch. Ges., t. XIII, p. 2303; 1880).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Saccharose octacétylé. C ¹² H ¹⁴ O ¹¹ (C ² H ³ O)*	$[\alpha]_{b}^{16} + 38^{\circ}, 36$	Alcool	DEMOLE (Ber. d. D. ch. Ges., t. XII, p. 1936; 1879).
Autre.	[α] ₀ + 60° + 60°	Pur. $d = 1,50$ Ether acétique $(c = 7,5)$	TANRET [Bull. Soc. chim. (3° s.), t. XIII, p. 264; 1895].
Saccharose octonitré. C ¹² H ¹⁴ O ¹¹ (Az O ²) ⁸	$[\alpha]_{b}^{20} + 52^{\circ}, 2$	Alcool ($c = 3,4$)	WILL et LENZE (Ber. d. D. ch. Ges., t. XXXI, p. 81; 1898).
Salicine.	[a] _j — 73",4	Eau (p = 2,78)	BIOT et PASTEUR (C. R., t. XXXIV, p. 607; 1852). Bouchardat (id., t. XVIII; 1844).]
	$[\alpha]_{D}^{15}-[65,17-$	-0.63c Eau $(c = 1 à 3)$	HESSE (Lieb. Ann., t. CLXXVI, p. 116; 1875).
	$[\alpha]_{\nu}^{20}-62^{\circ},56$	Eau [p=4,94 (anh.)]	WEGSCHEIDER in TIEMANN (Ber. d. D. ch. Ges., t. XVIII, p. 1600; 1885).
	$[\alpha]_{b}^{24}$ — [50,30 – Alco	+ 0,050 26 q] pol 50 $^{\circ}/_{J}$ ($q = 90 å 95$)	SOROKIN [J. f. prakt. Ch. (2° 8.), t. XXXVII, p. 320; 1888].
	$[\alpha]_{0}^{25} - 62^{\circ}, 2$ $-62^{\circ}, 05$ $-61^{\circ}, 5$ $-61^{\circ}, 6$	Eau $(c = 1,25)$ Id. $(c = 2,5)$ Id. $(c = 3,75)$ Id. $(c = 5)$	Noyes et Hall (Zeits. f. physik. Ch., t. XVIII, p. 241; 1895).

E. - Sels divers.

Carbonate de sodium.

CO ³ Na ²	[2] _b .		
pour 100°c.	c = 10.	c=20.	
2,5	+65,2	"	
5	+63,8	+63,8	
10	+62,4	+62,6	
15	+60,4	+59,8	
20	+58,5	+58,1	

Borax.

B ⁴ O ⁷ Na ² pour 100 ^{ee} .	[2] ₀ .			
	c=5.	c=10.	c = 20.	
o,5	"	+65,9	n	
1	+64,7	+65,o	. 11	
2	62,7	4-63,5	"	
3	- -62,1	+62,5	+64,2	
4	"	+61,6	"	
5	+60,8	+61,1	+63,o	
7	"	"	+62,2	
7,5	"	+60,5	"	

MUNIZ (C. R., t. LXXXII, p. 1335 1876).

	RAPI			
	Sel.	Eau.	Sucre.	$[a]_0^{i_1,i_2}$.
Az O³ K	1,008	4,002 6,331 8,910	1	+65,86 +66,13 +66,27
SO K2 SO Na2 K Br Na Br	0,999 0,999 0,995 0,995	10,464 10,464 3,174 3,174	1	+65,58 $+65,23$ $+63,91$ $+63,08$

FARNSTEINER (Inaug. Dissert., Iéna; 1890).

1	RAPPORT DES MASSES.				
	Sel.	Eau.	Sucre.	[α] _n 11,5.	
	1,400 2,250 3,794	8,643	1	+65°,40 +64,68 +63,74	
	4,229 5,866 7,136 8,034	16,000	1	+64,55 $+63,93$ $+63,59$ $+63,53$	
Sr Cl ²	1,096	3,132 3,949 6,365 11,195 17,456	1	+64,16 $+64,56$ $+65,38$ $+65,90$ $+66,52$	
	2,856	5,621 7,158 13,127 22,726	1	+63,78 $+63,92$ $+65,08$ $+65,80$	
	1,670 3,267 3,967	8,643	1	+64,31 +62,24 +61,47	
MgCl ²	1,230	3,182 4,019 5,195 6,754 13,505 29,434	1	+62,31 $+63,11$ $+63,81$ $+64,54$ $+65,65$ $+66,12$	
	2,990	6,414 8,891 14,954	· 1	+61,54 +62,60 +64,13	
	0,0882	0,9118	0,0535 0,1134 0,2599 1,0132	65,30 65,44 65,49 64,89	
	0,3179	0,6821	0,0340 0,1009 0,2889 0,5432 0,6596 1,0695	+61,27 +61,49 +61,55 +61,56 +61,57 +61,56	

FARNSTLINER (Inaug. Dissert., Iéna; 1890).

E. - Sels divers.

Carbonate de sodium.

CO ³ Na ³	[a] _b .		
pour 100°c.	c = 10.	c=20.	
2,5	+65,2	"	
5	+63,8	+63 ⁸ ,	
10	+62,4	+62,6	
15	+60,4	+59,8	
20	+58,5	+58,1	

Borax.

B ⁴ O ⁷ Na ²	[a] _{p} .				
pour 100°°.	c=5.	c=10.	c=20.		
o,5	"	+65,9	"		
1	+64,7	+65,o	. "		
2	÷62,7	- -63,5	"		
3	+62,1	+62,5	+64°,2		
4	"	+61,6	"		
4 5	+60,8	+61,1	+63, 0		
7	"	"	-+62,2		
7,5	"	+60,5	"		

MUNTZ (C. R., t. LXXXII, p. 1335 1876).

	RAPI			
	Scl.	Eau.	Sucre.	[a] _b ^{1.,5} .
Az O³ K	1,008	(4,002 (6,331 8,910	1	+65,86 +66,13 +66,27
SO4 K2 SO4 Na2 K Br Na Br	0,999 0,999 0,995 0,995	10,464 10,464 3,174 3,174	1	+65,58 +65,23 +63,91 +63,08

FARNSTEINER (Inaug. Dissert., Iona: 1890).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Santonate éthylique (oxime du). C ¹¹ H ²⁵ O ⁴ Az = CH ² C ¹² H ¹¹ O . CO O C ² H ⁵ C Az OH	[α] _b — 36°, 5	Alcool	<i>Id.</i> , p. 188.
Santonate méthylique. $C^{16}H^{22}O^4 = (C^{15}H^{19}O^4)CH^3$	$[[\alpha]_b^{26,5}-52^n,33]$	Chloroforme $(c=4,74)$	CARNBLUTTI et NASINI (Gazz. chim. ital., t. X, p. 538; 1880).
Santonate n propylique. $C^{11}H^{26}O^{4}=$	$[\alpha]_{b}^{20}$ — 39°, 37 — 39°, 34	Pur. $d_4^{24} = 1,125$ Chloroforme $(c = 7,62)$	ID. [Atti dei Lincei (3° s.), t. V, p. 286; 1881].
(C15 H19 O1) CH2. C2 H5	$[\alpha]_{a} - 31^{\circ}, 8$	Chlorof. (c sans infl.)	NABINI (Gazz. chim. ital., t. XIII, p. 165; 1883).
-santonate (Déhydro- photo-) diéthylique. C ¹⁹ H ²⁸ O ⁴ = C ¹³ H ¹⁸ : (COOC ² H ⁵) ²	$[\alpha]_{0}^{20} + 20^{\circ}, 4$	Alcool (c = 2,92)	VILLAVECCHIA (Ber. d. D. ch. Ges., t. XVIII, p. 2863; 1885).
-santonate (Iso-) méthy- lique. C ¹⁶ H ²² O ⁴	$[\alpha]_{\nu}^{2^{1}}-50^{\circ},2$	Chloroforme (c=2,29)	FRANCESCONI [Gazz. chim. ital., t. XXV (II), p. 472; 1895].
-santonate (Méta-) méthy- lique (oxime du). $C^{16}H^{23}O^{4}Az =$ $C^{15}H^{19}(CH^{3})O^{3};AzOH$	[a] ²⁵ —175°	Alcool (c = 2,99)	Id., p. 469.
-santonate (Para-) allylique. C ¹⁸ H ²⁴ O ⁴ = (C ¹³ H ¹⁹ O ⁴) CH ² . CH; CH ² (Foir la suite au verso)	[x] ₀ ²⁰ — 91°, 80	Chloroforme (c = 7,57)	CARNELUTTI et NASINI (Gazz. chim. ital., t. X, p. 538; 1880).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DIBSOLVANT ET TENEUR	OBSERVATEURS.
Salicylique camphré (aci	de). <i>Voir</i> Campl	ré (acide salicyliqu	B).
-santinate (Bidihydro-) méthylique. C ³² H ^{.18} O ⁴	$[\alpha]_{D}^{24} + 95^{\circ}, 95$ (de la santonone) $[\alpha]_{D}^{24} + 98^{\circ}, 31$ (de l'isosantonone)	Denzeue (c = 2,03)	GRASSI-CRISTALDI [A. C. dei Lincei (5° s.), t. I (2° sem.), p. 190; 1892].
Santinique (acide).	[α] _b + 61°,88 + 64°,37	Alcool ($c = 1,99$) Id. ($c = 3,28$)	Gucci et Grassi-Cristaldi [Gazz. chim. ital., t. XXII (I), p. 27; 1892].
-santinique (acide Bidihydro-). C ³⁰ H ³⁴ O ⁴	$[\alpha]_{0}^{24} + 34^{\circ}, 46$ (de la santonone) $[\alpha]_{0}^{24} + 35^{\circ}, 35$ (de l'isosantonone)	Ac. acétique (c = 1,65) Id. (c = 1,93)	p. 58; 1893].
-santinique (acide Dihydro-). C ¹⁵ H ¹⁶ O ²	$[\alpha]_{b} + 62^{\circ}, 07$ + 60°, 69	Alcool ($c = 2,62$) Id. ($c = 2,85$)	Gucci et Grassi-Cristaldi (loc. cit., p. 38).
Santonate allylique. $C^{18}H^{24}O^4 = (C^{15}H^{19}O^4)CH^2.CH$; CH ²	$[\alpha]_{D}^{26,25}$ — 39°,54	Chloroforme (c = 5,19)	CARNELUTTI et NASINI (Gazz. chim. ital., t. X, p. 538; 1880).
Santonate <i>i.</i> -butylique. $C^{19}H^{20}O^4 = (C^{15}H^{19}O^4)CH^2.CH(CH^3)^2$		Chloroforme (c = 5,48)	Id.
Santonate éthylique. $C^{17}H^{24}O^4 = (C^{15}H^{19}O^4)C^2H^5$	22°,77	Chlorof. $(c = 7,63)$ Alcool $(c = 3,64)$ Ac. acét. $(c = 1,825)$	ID. [Atti dei Lincei (3° 8.), t. V, p. 286; 1881].
Santonate éthylique (amine du). C'' H ² ' O' Az = CH ² C'' H'' O. CO O C' H'' CH Az H ²	[α] _D + 131°, 34	Alcool	FRANCESCONI [<i>Gazz. chim. ital.</i> , t. XXII (I), p. 189; 1892].

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
lId. (de l'isodesmotropo- santonine)	$[\alpha]_{b}^{28} - 74^{\circ}, 50$	Alc. abs. $(c = 4,91)$	ANDREOCCI [R. C. dei Lincei (5° s.), t. II (2° sem.), p. 180; 1893].
-santoneux (acide Benzyldesmotropo- C ¹⁵ H ¹⁹ O ³ (C ⁷ H ¹)	[a]in - 39°,3	Alc. abs. $(c = 4)$	CASTORO [R. C. dei Lincei (5° s.), t. IV (2° sem.), p. 155; 1895].
-santoneux (acide Bidesmotropo-). (C15 II19 ()3)2	[a] ²¹ — 64°,5	Alc. abs. (c = 4)	ANDREOGCI [R. C. dei Lincei (5° s.), t. IV (1° som.), p. 164; 1895].
dsantoneux (acide Bi-) $(C^{15}H^{19}O^{3})^{2}$). $[\alpha]_{b}^{21} + 85^{\circ}, 9$	Alc. abs. $(c = 4)$	Id.
lId.	$[\alpha]_0^{21} - 85^{\circ}, 8$	Alc. abs. $(c = 4)$	
-santoneux (acide Bromo desmotropo-). (C15 H19 Br (C3)	$[\alpha]_{0}^{15} - 50^{\circ}, 4$	Alc. abs. (c = 4,26)	ANDREOCCI [Gazz. chim. ital., t. XXV (I), p. 538; 1895].
-santoneux (2) (acide Bromo-). C ¹⁵ II ¹⁹ Br () ³	[\alpha] 14 + 69°,7	Alc. abs. $(c = 4)$	Id., p. 504.
/Id. (2)	$[\alpha]_{0}^{21}-69^{\circ},4$	Alc. alps. $(c = 2,66)$	[Id., p. 521.
-santoneux (β) (acide Bromo-). C ¹⁵ H ¹⁹ Br O ³	[\alpha] 14 + 61°,9	Alc. abs. $(c = 2)$	/d., p. 504.
-santoneux (acide Desmotropo-). C ¹⁵ H ²⁰ () ³ (de desmotroposantonine)	[x] ₀ — 53°, 3	Alcool	Andreocci (Ber. d. D. ch Ges., t. XXVI, p. 1373 1893).
-santoneux (acide Éthy desmotropo-). C ¹⁵ H ¹⁹ (C ² H ³)O ³	1- [α] ^{2*} - 47°, 2	Alc. abs. (c = 4.16)	Andreocci
D.		•	69

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
	$[\alpha]_{8} - 54^{\circ}$	Chlorof. (c sans infl.)	NASINI (<i>id.</i> , t. XIII, p. 161, 1883).
-santonate (Para-) éthylique.	$[\alpha]_{b}^{26}-98^{\circ},98$	Chloroforme $(c=4,98)$	CARNELUTTI et Nasini (loc. cit.).
C ¹⁷ H ²⁴ O ⁴ = C ¹⁵ H ¹⁹ O ⁴ .C ² H ⁵	[\alpha]_1 — 57° " \alpha - 70° " \alpha - 99° " \alpha - 137° " \b_1 - 144° " \b_1 - 180° " \ell - 269° " \ell - 317°	Chlorof. (c sans infl.)	NASINI (loc. cit., t. XIII, p. 157).
-santonate (Para-) méthylique. C ¹⁶ H ²² O ⁴ = C ¹⁵ H ¹⁹ O ⁴ .CH ³	[2] ^{26,5} —108°,91	Chloroforme (c=4,77)	Carnelutti et Nasini (loc. cil.).
	$[\alpha]_{D}^{26}-91^{\circ},27$	Chloroforme ($c=5,22$)	Id.
npropylique. C ¹⁸ H ²⁶ O ⁴ = C ¹⁵ H ¹⁹ O ⁴ . CH ² . CH ² . CH ³	$[\alpha]_{B} - 58^{\circ}$ $[\alpha]_{B} - 68^{\circ}$ $[\alpha]_{B} - 68^{\circ}$ $[\alpha]_{B} - 91^{\circ}$ $[\alpha]_{B} - 135^{\circ}$ $[\alpha]_{B} - 135$	Chlorof. (c sans infl.)	Nasini (<i>loc. cit.,</i> p. 159).
dSantoneux (acide).	$ \begin{array}{c c} [\alpha]^{20}_{5} + 74^{\circ}, 43 \\ + 74^{\circ}, 73 \\ + 74^{\circ}, 61 \end{array} $	Alcool $(c = 1,79)$ Id. $(c = 6,18)$ Ac. acétique $(c = 1,54)$	CARNELUTTI et NASINI [Atti dei Lineel (3° s.), t. V, p. 286; 1881].
-	1	Alc. abs. $(c = 1,70)$ Id. $(c = 5,02)$	
(de ldesmotroposantonine)			

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
-santonide (Méta-). C ¹⁵ H ¹⁸ O ³	$[\alpha]_{b}^{26}-223^{\circ},46$	Chloroforme ($c = 1,5$)	CARNELUTTI et Nasini (loc. cit.).

-santonide (Para-).

C15 II118 O3

$$\begin{bmatrix}
\alpha \end{bmatrix}_{0}^{26} + 897^{\circ}, 25 | \text{Chloroforme } (c = 1, 04)| & Id. \\
\hline
\alpha \end{bmatrix}_{0}^{26} + 580^{\circ}, 5 | & \text{Chloroforme } (c = 2, 6 \text{ à } 50, 3)| & \text{NASINI } (loc. cit., p. 145).} \\
\hline
\alpha \end{bmatrix}_{0}^{26} + 891^{\circ}, 7 | & c + 2510^{\circ} \\
a b b + 1334^{\circ} \\
a c + 2510^{\circ} \\
a c + 2510^{\circ} \\
a c + 2510^{\circ} \\
b c + 2963^{\circ}
\end{bmatrix}$$

$$\begin{bmatrix}
\alpha \end{bmatrix}_{0}^{20} + 830^{\circ} \\
\begin{bmatrix}
\alpha \end{bmatrix}_{0}^{20} + 888^{\circ}, 0 \\
481^{\circ}, 3 \\
481^{\circ}, 4 \\
481^{\circ}, 6 \\
4852^{\circ}, 3 \\
4852^{\circ}, 3 \\
4837^{\circ}, 0 \\
4834^{\circ}
\end{bmatrix}$$

$$\begin{bmatrix}
A \text{hlydride acétique } (c = 0, 2051) \\
(c = 0, 4 \text{ à } 21) \\
\hline
A \text{NASINI } (Ber. d. D. ch. Ges., t. XIV, p. 1514; 1881).}$$

-santonide (Photo-). Voir -santonlactonate (Photo-) éthylique.

Santoninate de sodium.
$$|[\alpha]_0^{2^{2},5} - [18,70 + 0,33c] (c = 2 \text{ à 6}) | \text{Hesse (Lieb. Ann., t.} \\ |[\alpha]_0^{2^{5}} - [19,3 + 0,24c] (c = 3 \text{ à 10}) | \text{CLXXVI, p. 125; 1875}.$$
Eau ou alcool 80 %

NOM ET FORMULE.		UVOIR 6 spécifique.	DISSOLVANT	ET TENEUR.	OBSERVATEURS.
dsantoneux (acide Éthyl-). C ¹⁵ H ¹⁹ (C ² H ⁵) O ³	[\alpha] _u ^{2 0}	+ 74°,8 + 77°,9 + 77°,9	Alcool Chloroformo Benzène	(c=3,7)e $(c=3,7)$	CARNELUTTI et NASINI [Atti dei Lincei (3° s.), t. V, p. 286; 1881].
	[\alpha] 15	+ 73°, 1	Alc. abs.	(c = 4)	ANDREOCCI
(de <i>l</i> éthyldesmotropo- santonine)	[a] _b .	+ 77°,0 + 68°,4	Alc. abs. (Id. (c = 2,63) c = 3,81)	Andreocci et Bertolo (f. C. dei Lincei (5° s.), t. VII (2° sem.), p. 324; 1898].
lId. (de éthylisodesmotropo- santonine).	[\alpha]_{\bullet}^{15}	— 73°,3 — 72°,9	Alc. abs.	(c = 4)	ANDREOGCI [Gazz. chim. ital., t. XXV (I), p. 508; 1895].
antoneux (acide Hypo-). , C ¹⁵ H ²⁰ O ²	· [a]28	+ 75°, 95	Alc. abs. (c=3,86)	GRASSI-CRISTALDI [Gazz. chim. ital., t. XXVI (II , p. 456; 1896].
-santoneux (acide Méthyldesmotropo-). C ¹⁵ H ¹⁹ (CH ³) O ³	$\begin{bmatrix} \alpha \end{bmatrix}_{\mathbf{D}}^{29}$	8 — 49°,3 9 — 48°,5	Alc. abs. (Id. (c = 4,27) $c = 4,34)$	Andreocci (<i>loc. cit.,</i> p. 533).
dsantoneux (acide Méthyl-). C ¹⁵ H ¹⁹ (CH ³)O ³	$[\alpha]_{\mathfrak{b}}^{21}$	+ 72°,2	Alcool	absolu	<i>Id.</i> , p. 498.
Santonide. C15 H18 O3.	$[\alpha]_{\mathbf{b}}^{26.5}$	+ 744°,6	Chlorof. (d	2 = 1,04)	CARNELUTTI et NASINI (Gazz. chim. ital., t. X, p. 538; 1880).
	RAIE.	c=3 à 3 c	c = 1,83.		NASINI (<i>Id.</i> , t. XIII, p. 149; 1883).
	B	+ 484 + 549	+ 378° + 462 + 666	+ 442 + 504	
	E b ₁ F	+1088 +1148	+ 969 + 1028	+ 991 +1053	
	$\left \begin{array}{c} \mathbf{r} \\ e \\ g \end{array}\right $	+1444 $+2201$ $+2610$	+-1292 +-1966 +-2332	l I	

TABLE XVIII. - POUVOIRS ROTATOIRES DES CORPS LIQUIDES OU DISSOUS.

[#].	t.	c.	DISSOLVANT.		
-246° -409 -361 -325	30 27 27	11 21 12	Acide azotique ($d = 1.33$) Acide sulfurique ($d = 1.82$) Id. et eau ($d = 1.68$) Acide phosphorique et eau ($d = 1.697$)		

Andresocci et Burtolo (Ber. d. D. ch. Ges., t. XXXI, p. 3131; 1898).

NON ET PORMULE.	POUVOIR rotatoice specifique.	DISSOLVANT ET TENEUR.	
dsantonine (Acétyl- desmotropo-), C ¹⁵ H ¹⁷ O ² (C ² H ² O)	[a] _a ^{2a} + 92°, 85	Alcool (c = 1,36)	ANDREOGCE [R. C. dei Lincel (5° n), t. II (2° nem.), p. 180; 1893].
/-santonine (Acétyl- desmotropo-). C ¹³ H ¹⁷ O ³ (C ² H ³ O)	$[\alpha]_0^{21}-122^{\bullet},9$	Alc. abs. (c = 1,84)	ANDRECCE at BERTOLO [R. C. del Lincei (5° s.), t. VII (5° som.), p. 324, 1898].
d. santonine (Acétyliso- cesmotropo-). C ¹³ H ¹³ O ³ (C ² H ¹ O)	[a] ²⁴ + 122°,6	Alcool ($c = \iota, 36$)	ANDREOCCI [R. C. del Lincel (5° s.), t. 11 (2° sem.), p. 180; 1893].
-santonine (Benzyldesmo- tropo-). C" H" O" (C" H")	[α] ₀ ¹⁴ + 102°,6	Alc. abs. (c = 0,20)	CASTORO [R. C. del Lincel (5° 8.), t. IV (1° sem.), p. 155; 1895].
-santonine (Benzyliso- desmotropo-). C ¹⁵ H ¹⁷ O ³ (C ⁷ H ³)	[[x]] + 136",5	Id. (c = 2,09)	id.
dsantonine (Desmo- tropo-). C" H" O'	[x] ₀ ¹¹ + 110°,30	Atcool	Andresocci [R. C del Lincel (5° s.), t. H (2° som.), p. 177; 1893].
L-santonine (Desmo- tropo-). C15 H10 O3	[τ] ²⁴ — 140°, 0 — 138°, 4	Alc. abs. $(c = 1,603)$ Id. $(c = 1,905)$	ANDREOCCI et BERTOLO [R. C. dei Lincei (5° 8.), t. VII (2° 8001.), p. 321; 1898].
-santonine (Dichloro-), Cia His Cla Oa	[α] ¹ , — 23°, ο	Alcool 97 % (c = 1)	HESSE (Lieb. Ann., t. CLXXVI, p. 125; 1875).

Santonine.

	SOLUTIONS	
RAIES.	dans le chloroforme ($p=3.5 \text{ à } 25$).	dans l'aicool ($c = 1,782$).
В	$[\alpha]^{20} - [119, 25 + 0, 2085p]$	[a]20-110,4
C	-[133,75+0,1555p]	-118,8
D	-[171,84+0,3086p]	— 161,0
E	-[227,40+0,5820p]	-222,6
$b_1 \dots $	-[236,81+0,6557p]	-237,1
F	-[282,71+0,8284p]	-261,7 $-380,0$
e	-[382,58+1,5240p]	360,6

NASINI (Gazz. chim. ital., t. XIII, p. 139; 1883).

RAIE.	Chloroforme ($c=3$ à 14).
D	[a] - [170, 17 + 0, 249c]

HAMMERSCHMIDT (Inaug.-Dissert. Berlin; 1889).

Solution dans le chloroforme.

couleur.	LONGUEUR d'onde (1).	[2].
Rouge	666 ^{µµ}	—128°,4
Jaune	592	-172,0
Vert	533	226 ,8
Bleu clair	489	-281,7
Bleu foncé	448	377,0

(1) Voir Table XVII [I.E].

LANDOLT (Ber. d. D. ch. Ges., t. XXVII, p. 2872; 1894).

[a].	t.	c .	DISSOLVANT.
-171,53 -173,81	15 15	2 à 10 1 à 2	Chloroforme Alcool 97 % en vol.
—175,40	15	2	Id. 90 º/o id.
<u> </u>	15	2	Id. 80 % id.
			Hesse (Licb. Ann., t. CLXXVI, p. 125; 1875).
O	oC		
173	10	1,35	Alcool absolu
-339,4	10	1,23	Acide chlorhydrique à 38 %
340,0	10	2,46	Id.
-344,3	10	1,23	Acide bromhydrique ($d = 1,38$)

Andreocci | Gazz. chim. ital., t. XXV (1), p. 465: 1895].

Mark Matti. — An		Ra Bra Comia Fideings	
NOM ET FORMULE.	rotaleira specifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
-santonine (Méthyldes- motropo-). C ¹⁵ H ¹ O ³ (CH ³)	[x]; +91°,9	Alcool abs. (c = 1,72)	ANDRESSE: [Gazz, chim ital., t. XXV (I), p. 473; 1895].
-santonine (Méthyliso-	[z];+118°,2	Alcool abs. (c = 3,80)	ld., p. 481.
C12 H1, O2 (CH2)	ļ		
*************	er, samer, same	10	ANNOUNCE THE
hydrazine. G ²¹ H ²¹ Az ² O ²	[2] ₆ + 152°, 42 		GRABSI-CRISTALDI (Gazz. chim ital., t. XIX, p. 384; 1869).
Santoninique (acide). C ¹⁵ H ²⁶ O ¹	[2];;,5—25°,82 —26°,46	Alcool 97°/4 (c = 1 à 3) Id. 80°/4 (c = 2 à 3)	HEBBE (<i>Lieb. Ann.</i> , t. CLXXVI, p. 126, 1875).
-santoninique (acide Hypo-). C ¹³ II ²⁸ O ³	[α], 4°, 62	Alcoul (c == 4,03)	Gucciet Grassi-Cristaldi [Gass. chim. ital., t. XXII (I), p. 18; 1891 .
-santoninique (acide Isohypo-). C ¹³ H ²⁶ O ³	[2], + 71", 56 [+ 58°, 10 (apr. 3 h.)]	Alcool (c = 4,28)	Id., p. 21.
Santoninoxime. C"H"O": Az OH	[a], — 80", 83		Gueer (Gazz. chim ital., t. XIX, p. 367; 1889).
-santoninoxime (Hydro- méta-). C ¹⁵ H ²⁶ O ² ; Az OH	[a], — 239°	Alcool (c = 1,79)	FRANCESCONI Gazz. chim., ital., t. XXV (11), p. 16; , 1895 }.
santoninoxime (Méta-). C ¹⁵ H ¹⁶ O ² ; AzOII	[α] ²⁵ — 377°	Alcool (c = 1,68)	ld., p. 465.
Santonique (acide). C'5 H20 O4 (Voir la suite au verso)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chloroforme ($c = 4,48$) Alc. éthylique ($c = 3,29$) Alc. méthyl. (id.)	CARNELUTTI of NASINI [Atti del Lineel (3° s.), t. V, p. 286, 1881] [td. (Gazz. chim. ital., t. X,
(Voir la suite au verso)	54",96	Mc. propyl. (id.)	(881).]

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
dsantonine (Éthyl- desmotropo-). C ¹⁵ H ¹⁷ O ³ (C ² H ⁵)	$[\alpha]_{0}^{2^{4}} + 114^{0}, 0 + 114^{0}, 2$	Alc. abs. $(c = 1,05)$ Id. $(c = 1,23)$	Andreocci [Gazz. chim. ital., t. XXV (I), p. 475; 1895].
lsantonine (Éthyl- desmotropo-). C ¹⁵ H ¹⁷ O ³ (C ² H ⁵)	[a]; - 129°,3	Alc. abs. (c = 4,37)	Andreocci et Bertolo (loc. cit., p. 323).
-santonine (Éthyliso- desmotropo-). C ¹⁵ H ¹⁷ O ³ (C ² H ⁵)	[2] ₀ + 129°,3 + 129°,6	Alc. abs. $(c = 5, 13)$ Id. $(c = 6, 05)$	Andreoggi (loc. cit., p. 483).
-santonine (Hydrométa-). C ¹⁵ H ²⁰ O ³	[2] ²⁵ — 102°,6	Chloroforme (c = 2,89)	FRANCESCONI [Gazz.chim. ital., t. XXV (II), p. 466; 1895].
-santonine (Hypo -). C ¹⁵ H ¹⁸ O ²	$[\alpha]_{b} + 32^{\circ}, 37 + 32^{\circ}, 71$	Benzène ($c = 2,2$) Id. ($c = 2,4$)	Gucciet Grassi-Cristal Di [Gazz. chim. ital., t. XXII (I), p. 13; 1892'.
-santonine (Isodesmo- tropo-). C ¹⁵ H ¹⁸ O ³	$[\alpha]_{b}^{28}+127^{\circ},92$	Alcool ($c = 1,32$)	ANDREOGCI [R. C. dei Lincei (5° s.), t. II (2° sem.), p. 177; 1893].
	$[\alpha]_{0}^{28}+129^{\circ},7$	Alcool (c = 2,82)	ID. [Gazz. chim. ital. L. XXV (I), p. 477; 1895].
-santonine (Isohypo-). C15 H18 O2	[2] ₀ — 73°, 73		Gucci et Grassi-Cristaldi (loc. cit., p. 20).
-santonine (Méta-). C ¹⁵ H ¹⁸ O ³	$[\alpha]_{b}^{26}+118^{\circ},76$	Chloroforme (c = 1,04)	CARNELUTTI et NASINI (Gazz. chim. ital., t. X, p. 538; 1880).
	[2] ²⁰ + 92° » c + 104° » n + 124° » g + 167° » h ₁ + 182° » r + 217° » e + 257°	Chloroforme (c = 2,21)	NASINI (Gazz. chim. ital., t. XIII, p. 155; 1883).

NOM ET FORMULE.	POUVOIR rotatoire »pécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.

Id. [id. (oxime de l'éther diméthylique du)]. Voir Supplément. Céto-β.-santorate diméthylique (oxime du).

Id. [id. (éther monométhylique du)]. Voir Supplément. Céto-β.-santorate monométhylique.

Santonique (dérivé tétracarboxylique de l'acide). Voir Supplément. Santorique (acide).

-santonique (lactone Isophoto-). C ¹⁵ H ²⁰ () ¹	$[a]_{0}^{11} + 124^{\circ}, 3$	Alcool $(c = 2,41)$	CANNIZZARO et FABRIS (<i>Ber. d. D. ch. Ges.,</i> t. XIX, p. 2260; 1886).
Id. [id. (dérivé acétylé de la)]. C ¹⁵ H ¹⁹ (C ² H ³ O)O ⁴		+ 58°,1 à 59° ol (c = 0,93)	Id.
-santonique (lactone Photo-). C ¹⁵ H ²⁰ O ¹	[2] _b —118° —125°,3 —119°,3 —113°,0	Alcool $(c = 0.5 \text{ à 1})$ Id. $(c = 3.3 \text{ à 4})$ Chlorof. $(c = 1.26)$ Id. $(c = 2 \text{ à 5})$) NASINI (Gazz. chim. ital., 8) t. XIII, p. 378; 1883).
Santonique (oxime d'acide). C ¹⁵ H ²¹ O ⁴ Az = CH ² CH ² COOH AzOH: C	[α] _b — 64°, 9	Alcool	FRANCESCONI [Gazz. chim ital., t. XXII (1), p. 188;
dSantonite éthylique.	[a] _b +72°,76 +77°,86 +77°,86 +67°,25	Alcool ($c = 6,88$) Chlorof. ($c = 3,7$ à decent d) CARNELUTTI et NASINI 7 [Atti dei Lincei (3° 8.), t. V, p. 286; 1881].
	$[\alpha]_{0}^{27} + 70^{\circ}, 95$	Alcool (c = 1,35)	ANDREOCCI [R. C. dei Lincei (5° s.), t. II (2° sem.), p. 181; 1893].
lId.	$[a]_{b}^{2} - 70^{\circ}, 62$	Alcool $(c = 1.35)$	Id. In. [Gazz. chim. ital., t. XXV (I), p. 514: 1895].
	$[\alpha]_{0}^{22}-70^{\circ},2$	Id. $(c = 4.15)$	ID. Gazz. chim. ital., t.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
	$[\alpha]_{0}^{20} - 49^{\circ}$	Chlorof. (c = 27,19)	NASINI (Gazz. chim. ital., t. XIII, p. 164; 1883).
	» e — 197° » g — 230°		
	- 52°, 2 - 74°, 1 - 87°, 9 - 111°, 7 - 125°, 7	Alc. abs. $(c = 2,64)$ Alc. 90 % (id.) Alc. 50 % ($c = 1,32$) H Cl à 9,5 % ($c = 0,66$) H Cl à 19,0 % ($c = 1,32$) H Cl à 26.6 % ($c = 2,64$) H Cl à 38 % ($c = 1,32$) à 2,64)	ital., t. XXV (I), p. 468; 1895].
-santonique (acide Déhy- drophoto-). $C^{15}H^{20}O^4 = C^{13}H^{18}(COOH)^2$	[a] _b +31°,9	Alcool (c = 1,42)	VILLAVECCHIA (Ber. d. D. ch. Ges., t. XVIII, p. 2863; 1885).
	$[\alpha]_{D} + 48^{\circ}, 31$		CANNIZARO et Gucci [R. C. dei Lincei (5° s.), t. I (2° sem.) p. 149; 1892].
-santonique (acide Iso-). C15 H20 O4	$[\alpha]_{b}^{25}-73^{\circ},92$	Chloroforme ($c = 3,38$)	FRANCESCONI [Gazz.chim. ital., t. XXV (II) p. 472; 1895].
-santonique (acide Méta-). C ¹⁵ H ²⁰ O ⁴	[α] _D — 92°,8	Chloroforme (c = 4)	NASINI (<i>Gazz. chim. ital.,</i> t. XIII, p. 378; 1883).
-santonique (acide Para-). C ¹⁵ H ²⁰ O ⁴	$[\alpha]_{0}^{26}-98^{\circ},51$	Chloroforme ($c = 4,47$)	CARNELUTTI et Nasini (Gazz. chim. ital., t. X, p. 538; 1880).

Santonique (dérivé cétonique de l'acide). Voir Supplément. Céto-3.-santorique (acide).

Id. [id. (éther diméthylique du)]. Voir Supplément. Céto-β.-santorate diméthylique.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Santonone. C ³⁰ H ³⁴ O ⁴	[a] _b + 129",46	Benzène	GRASSI-CRISTALDI [R. C. dei Lincei (5° s.), t. I (2° sem.), p. 123; 1892].
-santonone (Iso-).	[2] ₀ — 264°, 70	Acide acétique	Id.
Santononique (acide).	[a] _p + 37°, 08	Alcool	Id.
-santononique (acide Iso- C ³⁰ H ³⁸ O ⁶	·). [2] _D — 40°, 39	Alcool	ld.
Santonyle (bromure de C ¹⁵ H ¹⁹ O ³ , Br	$ \cdot [\alpha]^{26,5}_{\nu}$ — 100°, 53	Chloroforme (c = 5,5)	CARNELUTTI et NASINI (Gazz. chim. ital., t. X, p. 538; 1880).
Santonyle (chlorure de C ¹³ H ¹⁹ O ³ . Cl). [α] ₀ ^{26,5} + 13°, 14	Id. $(c = 4.8)$	<i>Id</i> .
Santonyle (iodure de)	$[a]_{0}^{16}-99^{\circ},21$	Id. $(c = 6,3)$	ld.
Saponine. C32 H54 O18 (de la racine de saponaire	[α] _D — 7°, 3ο	Eau (p = 4)	Schiaparelli ("jazz.chim. ital., t. XIII, p. 423; 1883).
Saporubrine. (C ¹⁸ H ²⁸ O ¹⁰) ⁴	[a] _b — 5°, 44		Von Schulz (Pharm. Zeits. f. Russl., t. XXXV, p. 817; 1896).
Sapotine. C ²⁹ H ⁵² O ²⁰	$[a]_j - 32^n, 11$	Alcool	MICHAUD (Amer. Chem. J., t. XIII, p. 572; 1891).
Scammonine. C**H ¹⁵⁶ O ⁴² (?)	$[\alpha]_0 = 23^\circ, 2$ $(moy.)$		KROMER (Zeit, Öster. Apoth. Verein, t. XLIX; 1895).

DONNÉES NUMÉRIQUES. — OPTIQUE.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
dSantonite méthylique.	$[\alpha]_{b}^{18} + 84^{\circ}, 9$	Alcool $(c = 4,64)$	<i>ld.</i> , p. 493.
dsantonite (Benzoyl-) éthylique. $C^{24}H^{28}O^4 =$ $C^{7}H^{5}O.C^{14}H^{18}O.COOC^{2}H^{5}$	[α] ² ° + 59°,9	Alcool abs. (c = 4)	ld., p. 495.
lId.	$[\alpha]_{b}^{20}-59^{\circ},8$	Id. (id.)	Id., p. 515.
dsantonite (Bromo-) éthylique. $C^{17}H^{23}BrO^3 =$ $C^{14}H^{18}BrO.COOC^2H^5$	$[\alpha]_{0}^{15} + 68^{\circ}, 2$	Id. (id.)	<i>Id.</i> , p. 502.
lId.	$[\alpha]_{b}^{15}-68^{\circ},5$	Id. (id.)	<i>ld.</i> , p. 520.
-santonite (Desmotropo-) méthylique. C ¹⁵ H ¹⁹ (CH ³) O ³	$[\alpha]_{b}^{16}$ — 41°,8	Id. (c = 1,17)	<i>Id.</i> , p. 531.
d.-santonite (Éthyl-) éthylique. $C^{19}H^{28}O^3 =$ $C^2H^5O.C^{14}H^{18}.COOC^2H^5$	$[\alpha]_{D}^{21} + 70^{\circ}, 5$	Id. (c = 4)	[d., p. 499.
lId.	[a] _b ²¹ — 70°, 3	Id. (id.)	Id., p. 317.
-santonite (Hypo-) méthylique. C ¹⁵ H ¹⁹ (CH ³) O ²	$[\alpha]_{5}^{25} + 79^{\circ}, 14$	Alc. abs. $(c = 3,47)$	GRASSI-CRISTALDI [Gazz. chim. ital., t. XXVI (II). p. 460; 1896].
asantonlactonate (Photo-) éthylique. (Photosantonide)	[α] ¹⁴ — 121°,6 — 118°,4	Alcool $(c = 2,002)$ Id. $(c = 2,196)$	VILLAVECCHIA (Ber. d. D. ch. Ges., t. XVIII, p. 2861; 1885).
Id. (3) $C^{16}H^{24}O^{4} =$ $C^{13}H^{19}(COOC^{2}H^{5})$	$ [\alpha]_{b}^{\cdot,3}+76^{\circ},77$	Id. $(c = 0.765)$	

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
-shikimique (acide Hydro	·	-	e).
-shikimique (acide Triacétyl-). $C^{13}H^{16}O^8=C^7H^7(C^2H^3O)^3O^3$	[2] ₀ — 169°,9 — 191°,6 — 189°,5	Alc. abs. (c = 1,4 à 5,5) Benzène (c = 2,4 à 7,2) Chloroforme (c = 4)	ld., p. 1284.
-shikimique (acide Triisobutyryl-). $C^{19}H^{28}O^8 =$ $C^7H^7[(CH^3)^2: CH.CO]^3O^3$	— 157 ",9	Alc. abs. $(c = 9,31)$ Benzène $(c = 7,25)$	Id.
-shikimique (acide Tripropionyl-). C ¹⁶ H ²² O ⁸ = = C ¹ H ¹ (CH ³ , CH ² , CO ³) O ⁵	[2] ₀ — 159°, 0 — 173°, 0	Alc. abs. $(c = 3,6 \text{ à } 7,4)$ Benzène $(c = 5,4 \text{ à } 7,1)$	ld.
Sinalbine. $C^{30}H^{12}Az^2S^2O^{15} + 5H^2O$	[2] ₀ — 8°, 38	Eau	GADAMER (Ber. d. D. ch. Ges., t. XXX, p. 2327; 1897).
Sinigrine. C¹º H¹6 AzS² KO³ + H²O	[a] ₀ — 15°, 22	Eau	ld., p. 2323.
Sinistrine. C ⁶ H ¹⁰ () ⁵ (de <i>Urginea Scilla</i>)	[2] _D — 41°, 2 (moy.)	Eau (c sans influence)	Schmiedeberg (Zeits. f. physiol. Chem., t. III, p. 112; 1879).
(de Orginea Senta)	[2] _D 40°, 7	Eau	TANRET [Bull. Soc. chim. (3° s.), t. V, p. 731; 1891].
	[a] ₀ —	- 44 " à — 48 " Eau	KELLER (Inaug. Dissert., Münster; 1894).
Sitostène.	[α]υ — 38", 79	Éther (c = 3,60)	Burián (<i>Monatsh. f. Ch.</i> , t. XVIII, p. 564; 1897).
Sitostérine.	[z], — 26°, 55 — 26°, 87	Éther $(c = 3, 01)$ Id. $(c = 4, 58)$	<i>Id.</i> , p. 554.

DONNERS NUMÉRIQUES. — OPTIQUE.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	observateurs.
Scammonique (acide).	[a] _D —	29°,6 à 28°,95	ld.
Scopolamine. C17 H21 Az O4	[α] ¹⁵ — 13°, 7	Alc. abs. $(c = 2,65)$	HESSE (Lieb. Ann., t. CCLXXI, p. 111; 1892).
[Hyoscine de Hesse]) HESSE (<i>Lieb. Ann.</i> , t CCCIII, p. 160; 1898).
Scopolamine (brom- hydrate de).	. [α] ¹⁵ — 22°, 5	Eau (c = 4)	HESSE (Lieb. Ann., t CCLXXI, p. 113; 1892).
$(C^{17}H^{21}AzO^4)HBr + 3H^2O$	$[\alpha]_{n}^{15,8}-25^{\circ},71$	Eau [p = 7 (anh.)]	SCHMIDT (Arch. d. Pharm. t. CCXXX, p. 697; 1892)
	$[\alpha]_{\mu}^{15}$ — 25°, 86	Eau [c = 4 (anh.)]	HESSE (Lieb. Ann., t CCCIII, p. 157; 1898).
Sedanolide. C ¹² H ¹⁸ O ³	$[\alpha]_{b}^{26.5} - 23^{\circ},66$	Pur. $d^{26,5} = 1,0374$	NASINI in CIANICIAN et SILBER [Gazz. chim. Ital., t. XXVIII (I), p. 479; 1898].
Sedanolide. C ¹² H ¹⁸ O ³	$[\alpha]_{\nu}^{26.5}$ — 23°,66	Pur. $d^{26,5} = 1,0374$	NASINI in CIANICIAN et SILBER [Gazz. chim. Ital., t. XXVIII (I), p.
Senécionine. C ¹⁸ H ²⁶ Az O ⁶ Sennite. Voir Pinite.	[α] _D — 80°, 49	Chloroforme	GRANDVAL et LAJOUX (C. R., t. CXX, p. 1132; 1895).
Sésamine . (C ¹¹ H ¹² O ³) ²	$[\alpha]_{\rm b}^{2^2} + 68^{\circ}, 36$		VILLAVECCHIA et FABRIS (Ann. d. Lab. d. Gab., t. III, p. 13; 1897).
sesquiterpène. <i>Voir</i> Cadin	ène, et Patchou	lène.	
Shikimate d'ammonium. C¹Hº(AzH4)O³	$[\alpha]_{b}^{17}$ — 172°, 1 — 189°, 7	Eau ($c = 5,23$) Id. ($c = 32,0$)	EYKMAN (Ber. d. D. ch. Ges., t. XXIV, p. 1180; 1891).
Shikimique (acide). C'H'O'		$81^{\circ}, 3 + 0,65c$ $37) [t = 18^{\circ} à 19^{\circ}]$	ld.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Sorbitetriformal. C ⁶ H ⁴ O ⁶ (CH ²) ³	[α] _μ — 30°, 3 — 29°, 3	Chlorof. $(c = 2,58)$ Id. $(c = 4,58)$	Schulz et Tollens (Lich. Ann., t. CCLXXXIX, p. 21; 1895).
Sorbose. C ⁶ H ¹² O ⁶	[a] ⁵ _{rouge} — 35°,97 [a] _j — 46°,7 (calculé)	Eau (p = 23,91)	BERTHELOT [Ann. de Ch. et Phys. (3° s.), t. XXXV, p. 230; 1832].
	[a] _b — 43°,4	Eau (p = 10)	WEHMER (Inaug. Dissert., Göttingen; 1886).
Spartéine. C ¹⁵ H ²⁶ Az ²	[α] ²⁶ — 14°,6	Alcool 96 % (c = 23,9)	BERNHEIMBR (Gazz. chim. ital., t. XIII, p. 451; 1883).
Stachyose.	$[\alpha]_{D}+148^{o},1$	Eau (p = 9)	Von Planta of Schulze (Ber. d. D. ch. Ges., t. XXIII, p. 1695; 1890).
Strophantine.	[a] _b +30°	Eau (c == 2,3)	ARNAUD (C. R., t. CVII, p. 179; 1888).
Strychnidine. C ²¹ H ²⁴ Az ² O	$[\alpha]_{\nu}^{2n} - 8^{\circ}, 28$	Chloroforme (c = 6,4)	TAFEL (Lieb. Ann., t. CCCI, p. 307; 1898).
Strychnine. C ²¹ H ²² Az ² O ²	Chloroford [2] ₀ — 128°	$-3,43c-0,154c^{2}$] nc $(c=1,5 \text{ à 4})$ Alcool $(c=0,91)$ Alc. amylique (id.)	OUDEMANS (Lieb. Ann., t. CLXVI, p. 76; 1873). [Bouchardat (Ann. de Ch. et Phys. (3° s.), t. IX; 1843).]
(Voir la suite au verso)	$[\alpha]_0^{2^0}$ —114°,75 —109°,3	Alcool 83 $^{\circ}/_{0}$ ($c = 0.41$) Id. ($c = 1.00$)	TYKOCINER (Inaug. Dis- scrt. Freiburg: 1882).

de sodium.

(Mo[†]O²⁴Na⁶)

d.-Id.

l.-Id.

1104 DO	NNÉES NUMÉRI	QUES. — OPTIQUE.	
NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
sitostérine (Para-). Voir	Parasitostérine.	1	
dSobrerol. C ¹⁰ H ¹⁸ O ²	$[\alpha]_{D}$ + 150°	Alcool ($c = 5$)	ARMSTRONO et Pope (J. c. chem. Soc., t. LIX, p. 31, 1891).
<i>l</i> Id.	[α] ₀ — 150°	Id.	
Soie (fibroïne de). (du Bombyx mori)		39°,5 à 44°,2 du 11°B' (c = 4)	Vignon (C. R., t. CXI) p. 130; 1892).
(du B. m. polyvoltin)	$[\alpha]_{D}-48^{\circ},2$	Id. (c = 4,35)	
(du <i>Bombyx mori</i> ou du <i>Yamma-Ma</i> ï)	[α] _υ — 50°, ο	${1 \text{ vol. SO}^4 \text{H}^2 \atop 1 \text{ vol. H Cl (22°)}}(c=1)$ 2 vol. Eau	
Soie (grès de). (du <i>Bombyx mori</i>)		$-31^{\circ} \text{à} -44^{\circ}$ a OH ($c = 1, 2 \text{ à } 2, 8$)	. 1d.
(du Yamma-Maï)	[a] ₀ — 15°, 1	Id. $(c = 2, 2)$	
du <i>Bombyx mori</i> polyvoltin)	[α] _D — 9°, ο	Id. $(c = 1,3)$	
Sorbine. Voir Sorbose.			
dSorbite. C ⁶ H ¹⁴ O ⁶ + ½ H ² O	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Eau Eau + 40 ⁵⁷ borax et 30 ⁵⁷ lessive de soude pour 100 ⁰⁶ (c = 10)	VINCENT et DELACHANA (C. R., t. CVIII, p. 355 1889).
	$[\alpha]_0^{17}-2^{\circ},01$	Eau $(c = 6,632)$	GERNEZ (C. R., t. CXII
Id. avec molybdate acide d'ammonium. [Mo¹O²⁴(Az H⁴) ⁶]	[α] ¹¹ + 40°, 76 (maximum)	Eau $+\frac{6,75}{24}$ mol. sel $(c = 6,632)$	p. 1031; 1891).
Id. avec molybdate acide	$[\alpha]_0^{11} + 41^{\circ}, 34$	Id.	Id.

(maximum)

 $[\alpha]_{D}^{20}+1^{\circ},4$

 $[\alpha]_{0}^{20}-1^{\circ},4$

Eau saturée de borax E. Fischer et Stahel (Ber.

(p = 8,69)

d. D. ch. Ges., t XXIV,

p. 21 (4; 1891).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
dId.	$[\alpha]_{0}^{11}-22^{\circ},33$	Eau $(c = 2,13)$	Id.
Strychnine (lméthoxy- succinate neutre de). $St^2(C^5H^*O^5)$	[α] ¹² —29°,68	Eau (c = 3,71)	Id.
Strychnine (phényl- glycolate de). $St(C^TH^SO^3)$	$[\alpha]_{D}^{21}-23^{\circ},3$	Eau (c = 1,2 å 2,4)	Hädrich (loc. cit.).
Strychnine (séléniate de). St ² SeO'H ² + 5H ² O	[2] _D — 17°, 2	Alcool $(p = 0,5)$	WYROUBOFF [Ann. de Ch. et Phys. (7° 5.), t. I, p. 51; 1894].
Strychnine (sulfate de). St ² SO'H ² +5H ² O			Id. Hädrich (loc. cit.).
Strychnine (tartrate de). St(C4H6O6)	[a] ₀ —15°,64	Eau (c = 0,296)	HAMMERSCHMIDT (Inaug Dissert., Berlin; 1889).
Strychnine monochlorée. C ²¹ H ²¹ Cl Az ² O ²	[a] _D — 104°,6 — 38°,75	Alcool Ac. sulfurique étendu	RICHET et BOUCHARDAT (C. R., t. XCI, p. 990; 1880).

-strychnine (Oxyéthyl-). Voir Oxyéthylstrychnine.

Styrolène. Voir Cinnamène.

Sucre de cannes. Voir Saccharose.

Sucre interverti. C ⁶ H ¹² O ⁶	$[\alpha]_{j}^{t} - [31,56 - 0,3506t]$ Eau [t = 14° à 90°]		DUBRUNFAUT (C. R., t. XLII, p. 901; 1856).	
(Voir la suite au verso)	$[\alpha]_{D}^{t} - [27,9-0,32t]$ Eau $(c = 17,21)$ $[t = 0^{\circ} \text{ à } 30^{\circ}]$		Tuchschmidt [J. f. prakt. Ch. (2° s.), t. II, p. 235; 1870].	
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(80 vol. ⁰ / ₀) tique (5 vol. ⁰ / ₀) $c = 20$)	LANDOLT (Ber. d. D. ch. Ges., t. XIII, p. 2335; 1880).	
n			70	

Influence des acides.

n gr. acide pour 10gr sucre interv. et 100gr eau.

Sucre interverti par l'ac. oxalique (02,01 ac. pour 1 sucre).

(Dissolutions aqueuses).

$$[\alpha]_{0}^{2n} = -[19,454 \div 0,06090p - 0,0002239p^{2}]$$

$$(p = 9 \triangleq 68)$$

$$[\alpha]_{0}^{2n} = -[19,657 + 0,03611c]$$

$$(c = 9 \triangleq 35),$$

$$[\alpha]_{0}^{n} = [\alpha]_{0}^{2n} + 0,3041(t - 20) + 0,001654(t - 20)^{2}$$

$$[t = 0^{\circ} \triangleq 30^{\circ}](c = 9 \triangleq 30)$$

$$[\alpha]_{0}^{n} = [\alpha]_{0}^{2n} + 0,32464(t - 20) + 0,002105(t - 20)^{2}$$

$$[t = 20^{\circ} \triangleq 100^{\circ}](c = 9 \triangleq 30)$$
Gubbe (Ber. d. D. ch. Ges., t. XVIII, p. 2207; 1885).

Mélange de fructose (1 mol.) et glucose (1 mol.).

$$[\alpha]_0^{20} - [19.82 \pm 0.040p]$$
Eau $(p = 1 \text{ à 10})$
OST $(Ber. d. D. ch. Ges., t. XXIV, p. 1640; 1891).$

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
dSylvestrène.	[2] ¹⁶ +19",5	Pur. d16 = 0,8612	ATTERBERO (Ber. d. D. ch. Gcs., t. X, p. 1206; 1877).
(de Pinus sylvestris)	$\frac{1}{\left \alpha\right _{0}^{15} \dashv 17^{\circ}, 0}$	Pur. $d^{1} = 0.8653$	TILDEN (J. of chem. Soc., t. XXXIII, p. 80; 1878.
	[x]10 66,32	'Chloroforme(p=14.32) 	WALLACH et CONRADY (Lieb. Ann., t. CCLII. p. 149; 1889).
lId. (de Pinus abies)	$[\alpha]_{0}^{10} - 18^{\circ}, 3$	Pur. $d^{10} = 0.8664$	KURILOFF [J. f. prakt. Ch. (2° 8.), t. XLV. p. 126; 1892].

NOM ET FORMULE	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Sylvestrène (dibromhy- drate de). (C10 II16) 2 II Br	$[\alpha]_{b}^{2,5}+17^{\circ},89$	Chloroforme (<i>p</i> = 4,36)	WALLACH et CONRADY (loc. cit., p. 150).
Sylvestrène (dichlorhy- drate de). (C ¹⁰ II ¹⁶) 2 II Cl	$[\alpha]_{D}^{8}+18^{\circ},99$	Chloroforme (p=14,20)	<i>Id.</i> , p. 149.
Sylvestrène (tétrabro- mure de). C ¹⁰ II ¹⁶ Br ⁴	[2] ^{9.5} + 73°,74	Chloroforme (p=4,34)	
Sylvestrènenitrolbenzyl amine. C ¹⁰ H ¹⁶ (AzO) Az H (C ¹ H ¹)		Chloroforme (p=1,91	Id.
Sylvestrènenitrolbenzyl amine (chlorhydrate de) [C ¹⁰ H ¹⁶ (\zO) AzH(C ¹ H ¹)] H C	•	Alc. étendu (p=1,57)	ld.
Sylvique (acide). C ²⁰ H ³⁰ O ² [mél. d'ac. d. et l. pima- rique (?)]	[α] _D — 53°, ο	Alcool	S. HALLER (Rer. d. D. ch. Ges., t. XVIII, p. 2167; 1885).
-sylvique (anhydride Iso-). C ⁴⁰ H ^{5*} O ³	$[\alpha]_0 + 63^\circ, o$	Alcool	Bischoff et Nastvoorl (Ber. d. D. ch. Ges., t. XXIII, p. 1919; 1890).
Synanthrine. 8 (C ⁶ H ¹⁰ O ⁵) + H ² O	[α] _b — 17° (app.)	Eau	TANRET [Bull. Soc. chim. (3° s.), t. IX, p. 623; 1893].
Syntonine: (de la myosine)	[2] _n — 72° — 84°, 8	HCl très étendu Id. (chaussé en tube scellé) (c sans infl.)	Hoppe-Seyler (Zeits. f. Chem. u. Pharm., 1861, p. 737).

Influence des acides.

n gr. acide pour 10^{gr} sucre interv. et 100^{gr} eau.

Sucre interverti par l'ac. oxalique (ogr, o1 ac. pour 1st sucre).

(Dissolutions aqueuses).

$$[\alpha]_{0}^{20} = -[19,454 + 0,06090p - 0,0002239p^{2}]$$

$$(p = 9 \text{ à } 68)$$

$$[\alpha]_{0}^{20} = -[19,657 + 0,03611c]$$

$$(c = 9 \text{ à } 35)$$

$$[\alpha]_{0}^{t} = [\alpha]_{0}^{20} + 0,3041(t - 20) + 0,001654(t - 20)^{2}$$

$$[t = 0^{\circ} \text{ à } 30^{\circ}](c = 9 \text{ à } 30)$$

$$[\alpha]_{0}^{t} = [\alpha]_{0}^{20} + 0,32464(t - 20) + 0,002105(t - 20)^{2}$$

$$[t = 20^{\circ} \text{ à } 100^{\circ}](c = 9 \text{ à } 30)$$
Gubbr (Ber. d. D. ch. Ges., t. XVIII, p. 2207; 1885).

Mélange de fructose (1 mol.) et glucose (1 mol.).

$$[\alpha]_{D}^{20}$$
 — $[19,82 + 0,040p]$
Eau $(p = 1 \text{ à 10})$
Ost $(Ber. d. D. ch. Ges., t. XXIV, p. 1640; 1891).$

NOM ET FORMULE.	POUVOIR rotatoire spécifique. DISSOLVANT ET TENEUR. OBSERVATEUR	18.
dSylvestrène.	[α] ₀ ¹⁶ + 19°,5 Pur. d^{16} = 0,8612 Atterberg (Ber. d. Ges., t. X, p. 1206	
(de Pinus sylvestris)	$[\alpha]_0^{15} + 17^\circ, 0$ Pur. $d^{15} = 0.8653$ Tilden (J. of chem t. XXXIII, p. 80	n. Soc., ; 1878).
	[2] $_{\rm n}^{10}$ + 66°, 32 Chloroforme($p=14,32$) Wallach et Co (<i>Lieb. Ann.</i> , t. p. 149; 1889).	ONRADY CCLII.
lId. (de Pinus abies)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
	$[\alpha]_{D} + 75^{\circ}$. $+ 21^{\circ}$	Eau $(c = 1)$ Acétate éthyl. $(id.)$	WALDEN (Ber. d. D. ch. Ges., t. XXX, p. 555; 1897).
	[2]666 + " b + " 533 +	57° + 62°, 5 75° + 75° 99°, 5 + 115°, 5 24° + 133°, 5	Voir Table XVII (I.E)].
	*	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$ \frac{[\alpha]_{\rm b}^{1.5} + 75^{\rm o}, 2}{+ 75^{\rm o}, {\rm o}} $		ROSENIIEIM et Schidro- WITZ (J. of chem. Soc., t. LXXIII, p. 886; 1898).
	$+66^{\circ}, 1$ [α] $^{15}_{0} + 15^{\circ}, 0$	Id. $(c = 10)$	
	+ 11°,6	Id. + 50°/ ₀ éther (id.) Id. + 50°/ ₀	
•	+ 12°,5 + 16°,6	Id. + 50 % acétoacétate éthylique (id.) Id. + 50 %	
	+ 14°,3	Id. + 50 % benzène (id.) Id. + 50 % chlorof. (id.) Acétate éthyl. (id.)	
	+ 12°,6	Acétoacétate éth. (id.) Acétone + 50 % CCl4	

Insluence des sels en solutions aqueuses.

$$(c=1) \ t=15^{\circ C}$$

Minimum de [a], pour A^{gr} sel en 10^{ec}.

SEI.	FORMULE.	MUMINIM.	Α.
	m . 0	0	
Tungstate de sodium	Tu ⁴ O ¹³ Na ² + 10 H ² O	+12,9	1
Borate de sodium	$B^4 O^7 Na^2 + 10 H^2 O$	+25,6	2
Borate de potassium	$B^4O^7K^2 + 5H^2O$	+26,3	2
Borate d'ammonium	$B^{4}O^{7}(AzH^{4})^{2}+4H^{2}O$	+26,5	2
Borate de lithium	B 6 O 7 Li2	+28,3	1
Bicarbonate de sodium	CO ² Na H	+54,0	1
Chlorure de sodium	Na Cl	+-68,0	0,1
Chlorure de potassium	K CI	+70,6	0,1
Chlorure d'ammonium	Az H ⁵ Cl	+71,1	0,2
Chlorure de lithium	LiCl + H2O	+70,0	0,2
	Rosenheim e	t Schidrowitz	(loc. cit.).

NOM RT FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUI	OBSERVATEURS.
ψ Tagatosazone. C ¹⁸ H ²⁴ Az ⁴ O ⁴ = C ⁶ H ¹⁸ O ⁴ (Az. Az HC ⁶ H ³) ²	$[\alpha]_{b} + 18^{\circ}, 9 \\ + 21^{\circ}, 0$	Alc. méthylique Ac. acétique	LOBRY DE BRUYN et VAN EKENSTEIN (Rec. Trav. chim. d. P. B., t. XVI, p. 267; 1897).
dTagatose. C ⁶ H ¹² O ⁶	[a] _p +1°,0	Eau	Id.
ψ Tagatose. C ⁶ H ¹² O ⁶	$[\alpha]_{0}^{11} + 33^{\circ} + 35^{\circ}, o$	Eau ($p = 2$) Id. ($p = 6$)	îd.
dTalomucique (acide).	$[\alpha]_{b}^{20}+29^{\circ},4$	Eau (p = 3,84)	E. FISCHER (Ber. d. D. ch. Ges., t. XXIV, p. 3627;
lId.	$\left \left[\alpha \right]_{\mathfrak{b}}^{20} - 33^{\mathfrak{o}}, 9 \right $	Eau ($p = 1,84$)	E. FISCHER et MORELL (Ber. d. D. ch. Ges., t. XXVII, p. 392; 1894).
Tanacétone. C ¹⁰ H ¹⁶ O	$[\alpha]_{0}^{20} + 21^{\circ},09$	Pur. d20 = 0,9126	SBMMLER (Ber. d. D. ch. Ges., t. XXV, p. 3343; 1892).
Tanghinine. C ²¹ H ⁴⁰ O*	[a] ²⁰ — 67"	Alcool ($c \doteq 5,25$)	ARNAUD (C. R., t. CVIII, p. 456; 1889).
Tannin. C ¹⁴ H ¹⁰ O ⁹ (de la noix de galle)	$[\alpha]_{0}^{17} + 38^{\circ}, 1$		VAN TIBOHEM [Ann. Sc. Nat. (5° 8.), t. VII, p. 232; 1867].
	$ \begin{array}{c c} $	Eau $(c = 13, 11)$ Alcool $(c = 4, 60)$ Ac. acét. $(c = 11, 58)$	FLAWITSKY [J. Soc. phys chim. Russe, t. XXX, p. 748; 1898]. [Id. (Id., t. XXII; 1890).]
	$[\alpha]_{b}^{20}+75^{\circ}$	Eau (c = 1)	GÜNTHER (Ber.d.D. pharm. Ges., t. V, p. 172; 1895).
	[a] _b + 50° + 17°	Eau Alc. et ac. acétique	Schiff (Chem. Zeit., t. XX, p. 865; 1896).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.	
Tartrate acide de rubi- dium. (C'H'O') RbH	$[\alpha]_{b}^{20} + 18^{\circ}, 38$	Eau (p = 0,31)	Id.	
Tartrate acide de sodium. (C'H'O') Na H	$[\alpha]_{i}^{20} + 23^{\circ}, 95$	Eau (c=4,41)	LANDOLT (loc. cit.).	
	$[2]_{c}^{15} + 19^{\circ}, 8$	Eau (c = 8,6)	Kummel (loc. cit.).	
	$[\alpha]_{\nu}^{20} + 27^{\circ}, 11$	Eau (c = 0,23)	WECHSLER in PRIBRAM (loc. cit.).	
	$+21^{\circ},85$ $[\alpha]_{0}^{20}+21^{\circ},85$ $[\alpha]_{0}^{25}+22^{\circ},0$	Eau $(c = 6,54)$ Id. $(c = 7,89)$ Id. $(c = 6,5 \pm 9,3)$ Id. $(c = 6,5 \pm 10,7)$ Id. $(c = 6,5 \pm 13,5)$	THOMSEN [J. f. prakt. Ch. (2° 8.), t. XXXIV, p. 85; 1886].	
	[α] ₀ ²⁰ + 24 ⁰ , 33 (constant) + 20°, 27 (immédiat) + 25°, 00 (après 24 heures) + 25°, 27 (après 73 heures)	Id. (p = 0,20)	Von Sonnenthal (loc.cit.).	
Tartrate acide de thal- lium. (C'H'O')TH	$[x]_{0}^{20}+12^{\circ},02$	Eau (c = 1)	Long [Amer. J. of Sc. (3° s.). t. XXXVIII, p. 276; 1889].	
	$[\alpha]_{b}^{2b}+12^{\circ},06$	Eau (c = 0,47)	WECHSLER in PRIBRAM (loc. cit.).	
Tartrate d'acétamide. (C'H'O6)(C2H3AzO)2	=	Eau Id. + 10 %, acétamide Id. + 20 %, acétamide		
$C^{*}\Pi^{*}O^{6}(AzH^{4})^{2}$ [dr. et g.]	[\alpha]; + 38°, 195 (d'acide droit) - 38°, 195 (d'acide gauche)	Eau (p = 12,16)	PASTRUR [Ann. de Chim. et Phys. (3° 8)., t. XXVIII, p. 84; 1850].	

NOM ET FORMULE.	Pouvoir	DISSOLVANT ET TENEUR.	OBSERVATEURS.		
	rotatoire spécifique				
Tannin pentacétylé.	$[\alpha]_{\rm b}+20^{\rm o}$	Acide acétique	Schipp (Chem. Zeit. L XX		
C14 H5 (C2 H3 O)5 O9	+ 17° \lcool et acide acétique P. 865; 1896				
	$[\alpha]_{0}^{15}+16^{\circ},6$	$\left\{\begin{array}{l} Alc. \ et \ ac. \\ (acétique (1:1)) \end{array}\right\} (c = 1)$	ROSENHEIM et SCHI DROWITZ (loc. cu., p		
	+ 10°,0	Acide acétique (id.)	0047.		
	•	Acétate éthyl. (id.)			
	•	Acétone (id.) Chloroforme (id.)			
	, ,,,	(101)	1		
Tartrate acide d'ammo-	[~120 _1 ~50 65	1 Page 1	II amount Dock Norwing		
nium. (C'H'O')(AzH')H	[2], + 25,05	Eau (C = 1,712)	2º éd., p. 493; 1898).		
nium. (C'H'O')(AzH')H			2º éd., p. 493; 1898).		
nium. (C'H'O')(AzH')H Tartrate acide d'arsényle.	$[\alpha]^{20}_{\mu} + 16^{\circ}, 91$	Eau (c = 12,30)			
nium. (C'H'O')(AzH')H Fartrate acide d'arsényle. (C'H'O')(AsO)H Fartrate acide de césium. (C'H'O')CsH Fartrate acide de lithium.	$[\alpha]_{\nu}^{20} + 16^{\circ}, 91$ $[\alpha]_{\nu}^{20} + 15^{\circ}, 84$	Eau ($c = 12,30$) Eau ($p = 0.375$)	2° éd., p. 493; 1898).		
nium. (C'H'O ⁶)(AzH')H Fartrate acide d'arsényle. (C'H'O ⁶)(AsO)H Fartrate acide de césium.	$[\alpha]_{b}^{20} + 16^{\circ}, 91$ $[\alpha]_{b}^{20} + 15^{\circ}, 84$ $[\alpha]_{b}^{15} + 27^{\circ}, 43$ $[\alpha]_{c}^{15} + 20^{\circ}, 8$ $[\alpha]_{c}^{15} + 25^{\circ}, 2$	Eau ($c = 12,30$) Eau ($p = 0.375$) Eau ($c = 8,00$)	2° éd., p. 493; 1898). Id., p. 496. WECHSLER in Pribrate (Monaish. f. Ch., t. XIV p. 712; 1893).		
nium. (C'H'O')(AzH')H Fartrate acide d'arsényle. (C'H'O')(AsO)H Fartrate acide de césium. (C'H'O')CsH Fartrate acide de lithium.	$[\alpha]_{\nu}^{20} + 16^{\circ}, 91$ $[\alpha]_{\nu}^{20} + 15^{\circ}, 84$ $[\alpha]_{\nu}^{15} + 27^{\circ}, 43$ $[\alpha]_{\nu}^{15} + 20^{\circ}, 8$	Eau $(c = 12,30)$ Eau $(p = 0,375)$	2° éd., p. 493; 1898). Id., p. 496. Wechsler in Pribra (Monatsh. f. Ch., t. XIV p. 742; 1893). LANDOLT (loc. cit., p. 493 Kummel (Wied. Ann.,		

Tartrate acide de potas- sium. (C'H'O')KH	$[\alpha]_{u}^{20} + 22^{\circ}, 61$	Eau ($c=$ 0,615)	LANDOLT (loc. cit., p. 492)
	[\alpha]_{\mu}^{20} + 22^{\circ}, 12 constant + 22^{\circ}, 24 immédiat + 22^{\circ}, 38 après 48 heures + 23^{\circ}, 03 après 80 heures	Eau (p = 0,41) Eau (p = 0,24)	Von Sonnenthal (Zeits.) physik. Ch., t. IX, p 667; 1892).
	$[\alpha]_0^{20} + 21^{\circ}, 57$	Eau ($p = 0,25$)	WECHSLER in PRIBRA

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVA	T ET TENEUR.	OBSERVATEURS.
Tartrate d'ammonium et potassium. (C'H'O')(AzH')K	$[\alpha]_{b}^{20} + 31^{\circ}, 11$ Eau $(c = 10, 52)$		LANDOLT (loc. cit., p. 495).	
	$\frac{[\alpha]_{b}^{20} + 30^{\circ}, 85}{\text{Eau } (c = 20)}$ SEL. [\alpha];	+ ngr sel		LONG [Amer. J. of Sc. (3° 8.), t. XL, p. 282; 1890].
	KCI →	• •	+30,60 $+31,42$ $+28,51$	
Tartrate d'ammonium	$[\alpha]_{b}^{20}+32^{\circ},65$	Eau (c=9,70)	LANDOLT (loc. cit.).
et sodium. (C'H'O')(AzH')Na	$[\alpha]_{G}^{15} + 27^{\circ}, 1$ $[\alpha]_{G}^{15} + 27^{\circ}, 1$ $[\alpha]_{G}^{15} + 32^{\circ}, 65$ $[\alpha]_{G}^{15} + 32^{\circ}, 65$ $[\alpha]_{G}^{15} + 43^{\circ}, 0$ $[\alpha]_{G}^{15} + 43^{\circ}, 0$ $[\alpha]_{G}^{15} + 62^{\circ}, 0$	Eau (c = 18,9	KÜMMEL (loc. cit.).
d. et lId. hydraté (C'H'O6) (AzH') Na + 4H2O [sel de Seignette ammoniacal]	(d'acide droit)		p=33,3	PASTEUR [Ann. de Chim. et Phys. (3° 8.), t. XXVIII, p. 90; 1850].
Tartrate d'ammonium et thallium. (C'H'()6)(AzH')Tl	$ \begin{array}{r} [\alpha]_{0}^{20} + 10^{\circ}, 03 \\ + 8^{\circ}, 81 \\ - 7^{\circ}, 91 \\ + 7^{\circ}, 56 \\ [\alpha]_{0}^{31} + 9^{\circ}, 65 \end{array} $	Id. Id. Id.	(c = 5) (c = 10) (c = 15) (c = 20) (c = 10)	Long [Amer. J. of Sc. (3° s.), t. XXXVIII, p. 271; 1889].
d. ct lTartrate d'antimo- nyle et potassium. (C'H'O')(SbO)K + ½H'O			= 6,8 (hydr.)]	PASTEUR (loc. cit., p. 87).
dId.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		= 5 (hydr.)]	KRECKE (Arch. Néerl., t. VII, p. 97; 1872).
	$[\alpha]_0^{20} + 142^\circ, 76$	Eau [c =	= 7,98 (anh.)]	LANDOLT (loc. cit., p. 496).
(<i>Voir</i> la suite au verso.)	$[a]_{D}^{20} + 140^{\circ}, 69$ - 141°, 14 - 141°, 27	Eau [c] Id. [c] Id. [c]	== 2 (hydr.)] == 4 (id.)] == 5 (id.)]	Long (loc. cit., p. 264).
(Voir la suite au verso.)	· · · · · · · · · · · · · · · · · · ·	; 1a. [<i>c</i>	:: o (ld.)]	:

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Id. dr.	$[\alpha]_{c}^{25} + 31^{\circ}, 08$ » $_{D} + 37^{\circ}, 09$ » $_{E} + 43^{\circ}, 05$ » $_{B} + 45^{\circ}, 27$ » $_{F} + 53^{\circ}, 76$	Eau (c = 20)	KRECKE (Arch. Néerl., t. VII, p. 97; 1872).
	$[\alpha]_{u}^{20}+34^{\circ},26$	Eau $(c = 9,43)$	LANDOLT (loc. cit., p. 435).
	$[\alpha]_{c}^{15} + 28^{\circ}, 0$	Eau (c = 18,4)	Kümmel (loc. cit.).
	$[\alpha]_{\nu}^{20} + 35^{\circ}, 46$	Eau ($c = 0,245$)	WECHSLER in PRIBRAM (loc. cit.).
	$[\alpha]_{ii}^{20} + 33^{\circ}, 68$ (constant)	Eau (p = 1,24)	VON SONNENTHAL (loc. cit p. 665).
	+ 29°, 11 (initial) + 31°, 92 (après 24 heures) + 33°, 10	Id. (p = 0,3)	
	+ 35°, 16 (après 24 heures) + 35°, 79 (après 48 heures)	(p=0,25)	
Tartrate d'ammonium et arsényle. (C'H'O')(AzH')AsO	+ 31°, 1 + 51°, 4 + 72°, 4	Eau $(c = 0.80)$ Id. $(c = 1.61)$ Id. $(c = 3.21)$ Id. $(c = 6.42)$ Id. $(c = 12.85)$	HÄDRICH (Zeits. f. physik. Ch., t. XII, p. 494; 1893).
Tartrate d'ammonium et boryle. (C ⁴ H ⁴ O ⁶)(Az H ⁴)BO	+ 55°, 4 + 62°, 7	Id. $(c = 1,21)$ Id. $(c = 2,41)$ Id. $(c = 4,82)$ Id. $(c = 9,65)$	Id.
Tartrate d'ammonium et lithium. (C ⁴ H ⁴ O ⁶)(AzH ⁴)Li	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Eau (c = 17,3)	Künnel (loc. cit.).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	OBSERVATEURS.	
Tartrate d'ammonium	$[\alpha]_{D}^{20} + 31^{\circ}, 11$	Eau (c = 10,52)	LANDOLT (loc. cit., p. 495).
et potassium. (C4H4O6)(AzH4)K	Eau $(c = 20)$	Eau ($c = 20$) + n^{sr} sel pour 100^{so} $(n = 5)$. $[\alpha]_{B}^{20}(n = 10)$.	LONG [Amer. J. of Sc. (3*8.), t. XL, p. 282; 1890].
	KCI -	+30,66 $+30,60$ $+31,42$ $+29,96$ $+28,51$	
Tartrate d'ammonium	$[\alpha]_{\rm b}^{20} + 32^{\rm o},65$	Eau (c = 9,70)	LANDOLT (loc. cit.).
et sodium. (C'H'O')(AzH')Na	$[\alpha]_{c}^{15} + 27^{\circ}, 1$	Eau (c = 18,9)	Kümmel (loc. cit.).
d. et lId. hydraté (C'H'O')(AzH')Na + 4H'O [sel de Seignette ammoniacal]	(d'acide droit)		PASTEUR [Ann. de Chim. et Phys. (3° s.), t. XXVIII, p. 90; 1850].
et thallium. (C'H'O')(AzH')Tl		Id. $(c = 10)$ Id. $(c = 15)$ Id. $(c = 20)$	LONG [Amer. J. of Sc. (3° s.), t. XXXVIII, p. 271; 1889].
d. et lTartrate d'antimo- nyle et potassium. (C'H'O')(SbO)K + ½H'O	[a]; + 156°, 2 (d'acide <i>droit</i>) — 156°, 2 (d'acide gauche)		PASTEUR (loc. cit., p. 87).
dId.	$[\alpha]_{c}^{25} + 111^{\circ}, 82$ $[\alpha]_{c}^{25} + 111^{\circ}, 82$ $[\alpha]_{c}^{25} + 138^{\circ}, 66$ $[\alpha]_{c}^{25} + 138^{\circ}, 66$ $[\alpha]_{c}^{25} + 138^{\circ}, 39$ $[\alpha]_{c}^{25} + 138^{\circ}, 39$ $[\alpha]_{c}^{25} + 138^{\circ}, 39$ $[\alpha]_{c}^{25} + 111^{\circ}, 82$ $[\alpha]_{c}^{25} +$		KRECKE (Arch. Néerl., t. VII, p. 97; 1872).
	$[\alpha]_{b}^{20} + 142^{\circ}, 76$	Eau [$c = 7,98$ (anh.)	LANDOLT (loc. cit., p. 496).
(<i>Voir</i> la suite au verso.)	$\begin{array}{c} \alpha]_{0}^{20} + 140^{\circ}, 69 \\ + 141^{\circ}, 14 \\ + 141^{\circ}, 27 \\ + 141^{\circ}, 49 \end{array}$	Eau $[c = 2 \text{ (hydr.)}]$ Id. $[c = 4 \text{ (id.)}]$ Id. $[c = 5 \text{ (id.)}]$ Id. $[c = 6 \text{ (id.)}]$	Long (loc. cit., p. 264).

NOM LT FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
	$[\alpha]_{b}^{25} + 143^{\circ}, 3 + 144^{\circ}, 0 + 144^{\circ}, 4$	Eau[c=0,25 à 0,5(anh.)] Id. [c=1,01 (id.)] Id. [c=2,02à4,04(id.)]	HÄDRICH (<i>Zeits. f. physik.</i> Ch., t. XII, p. 494; 1893).

Influence des sels dissous.

Eau (c = 5) $(t = 20^{\circ})$ n^{gr} sel pour $100^{\circ c}$.

	n=2.	n=5.	n = 10.	n=15.
Chlorure de sodium	"	+140,61	+138,925	+137,53
Azotate de sodium	"	+140,36	+138,825	+137,37
Acétate de sodium (1)	// 0	+128,94	+123,59	"
Chlorure de potassium		"	"	"
Bromure de potassium	"	+139,95	"	"
Azotate de potassium	+141,26	"	"	"
Chlorure d'ammonium	″	+141,18	140,05	n n
Azotate d'ammonium	"	+141,01	+139,56	+138,33

(1) hydraté (C2H2O2, Na + 3H2O).

Long (loc. cit.).

Tartrate d'antimonyle	$[[\alpha]_0^{20} + 100^0, 44]$	Eau ($c=2$)	Id., p. 269.
et thallium.	$[\alpha]_{0}^{21} + 99^{\circ}, 64$	Id. (id)	!
$(C^4H^4O^6)(SbO)Tl + \frac{1}{2}H^2O$			

Influence des sels dissous.

Eau (c = 2) ($t = 20^{\circ}$) n^{gr} sel pour 100^{ce} .

	n=2.	n=4.
Sulfate de sodium	+99,06	+98,60
Acétate de sodium (1)	+88,80	"
Azotate de potassium	+98,385	"
Sulfate de potassium	+98,295	"
Acétate de potassium	+86,75	"
Azotate d'ammonium	+98,34	+98,59
Sulfate d'ammonium	- ⊢98,04	-+97,00

(1) hydraté (C2H3O2.Na + 3H2O).

Long (loc. cit.).

Tartrate d'arsényle et ammonium. Voir T. d'ammonium et arsényle.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
	$[\alpha]_0^{20} + 37^{\circ}, 57$ initial + 38°, 04 final	Eau (p = 0,22)	Von Sonnenthal (Zeits. f. physik. Ch., t. IX, p. 666) 1892).
	+ 35°, 15 initial + 36°, 94 final	Id. $(p = 0.30)$	
	+ 36°, 07 + 37°, 53		•
	$[\alpha]_{\mu}^{20} + 35^{\circ}, 58$	Eau (c = 0,216)	WECHSLER in PRIBRAM (loc. cit.).
Tartrate de lithium et potassium. (C'H'O') K Li	$ \begin{bmatrix} 2 \end{bmatrix}_{0}^{15} + 25^{\circ}, 9 \\ y_{0} + 31^{\circ}, 2 \\ y_{0} + 41^{\circ}, 4 \\ y_{0} + 47^{\circ}, 0 \\ y_{0} + 59^{\circ}, 7 $	Eau (c = 19,4)	Kümmbl (loc cit.).
Tartrate de lithium et sodium. (C ⁴ H ⁴ O ⁶)Na Li	$[\alpha]_{c}^{13} + 25^{\circ}, 9$	Eau (c = 17,8)	Id.
Tartrate de lithium et thallium. (C'H'O')TlLi+Il'O	+ 7",80 + 7",14 + 6",69 + 10",10	Eau $(c = 5)$ Id. $(c = 10)$ Id. $(c = 15)$ Id. $(c = 20)$ Eau + 5 ^{gr} SO ⁴ Li ² p. 100 ^{cc} $(c = 10)$ Id. + 5 ^{gr} SO ⁴ Tl p. 100 ^{cc} $(c = 10)$	Long (loc. cit., p. 269).
Cartrate de magnésium.			Landolt (loc. cit., p. 495).

Tartrate de narcotine. Voir Narcotine (tartrate de).

Tartrate d'oxamide. $[\alpha]_n + 25^n, 82$ $(C^4 H^4 O^6) (C^2 H^4 Az^2 O^2)^2$ TOPIN | Ann. de Chim. et Eau Phys. (7*8.). t. V. p. 125; r895].

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Tartrate de boryle et sodium. (C'H'O')(BO)Na	$[\alpha]_{b}^{20} + 55^{\circ}, o2 + 63^{\circ}, 48 + 71^{\circ}, 47$	Eau $(c = 2,54)$ Id. $(c = 5,075)$ Id. $(c = 10,15)$	LANDOLT (<i>loc. cit.</i> , p. 496).
	$ \begin{array}{r} [\alpha]_{0}^{24} + 37^{\circ}, 4 \\ + 45^{\circ}, 0 \\ + 54^{\circ}, 0 \\ + 61^{\circ}, 6 \\ + 69^{\circ}, 7 \\ + 76^{\circ}, 8 \end{array} $	Eau $(c = 0,62)$ Id. $(c = 1,24)$ Id. $(c = 2,475)$ Id. $(c = 4,95)$ Id. $(c = 9,90)$ Id. $(c = 19,80)$	HÄDRIGH (<i>loc. cit.</i>).
Tartrate de césium. (C'H'O') Cs2	[α] _D ^{2•} + 13°, 78	Eau (c = 0,55)	WECHSLER in PRIBRAM (Monatsh. f. Ch., t. XIV,

Tartrate de cinchonicine. Voir Cinchonicine (tartrate de).

Tartrate de cinchonidine. Voir Cinchonidine (tartrate de).

Tartrate de cinchonine et antimonyle. Voir Cinchonine et antimonyle (tartrate de).

Tartrate d'éthylène-
diamine.
$$[\alpha]_0^{18} + 29^{\circ}, 36$$
 Eau $(c = 2, 1)$ Colson $(C. R., t. CXV, p. 729; 1892)$. $C^{\circ}H^{6}O^{6}(C^{2}H^{8}Az^{2})$

Tartrate de hydroquinine. Voir Hydroquinine (tartrate de).

Tartrate de hyoscyamine. Voir Hyoscyamine (tartrate de).

Tartrate de limonènenitrolbenzylamine. Voir Limonènenitrolbenzylamine (tartrate de).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
		POUR 100cc.	
	$[x]_{0}^{20} + 28^{\circ}, 89 \\ + 26^{\circ}, 99 \\ + 22^{\circ}, 84 \\ + 28^{\circ}, 80 \\ + 27^{\circ}, 51 \\ + 23^{\circ}, 79 \\ + 28^{\circ}, 78 \\ + 28^{\circ}, 08 \\ + 25^{\circ}, 78 \\ + 28^{\circ}, 89 \\ - 28^{\circ}, 46 \\ + 27^{\circ}, 16$	Eau + 25 sr K Cl Eau Eau + 25 sr Na Cl [c = 10 (hydr.)] Eau + 22 sr K Cl Eau Eau + 22 sr Na Cl [c = 20 (hydr.)] Eau + 14 sr K Cl Eau Eau + 14 sr Na Cl [c = 30 (hydr.)] Eau + 8 sr K Cl Eau Eau + 8 sr K Cl Eau Eau + 8 sr Na Cl [c = 40 (hydr.)]	Scnütt (Ber. d. D. ch. Ges., t. XXI, p. 2586; 1888). Calculé par Landolt [Dreh verm. (2° édit.), p. 217; 1898].

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Tartrate de potassium. (C'H'O')K'+ ½H'2()	$[\alpha]_{c}^{25} + 22^{\circ}, 04$ $[\alpha]_{c}^{25} + 32^{\circ}, 95$	Eau [c = 20 (hydr.)]	Кписки (Arch. Néerl., t. VII, p. 97; 1872).
	$[\alpha]_{b}^{20} + 28^{\circ}, 48$	Eau [c = 11,6 (anh.)]	LANDOLT (loc. cit., p. 493).
•	$[2]_{c}^{15} + 23^{\circ}, 05$ $[2]_{c}^{15} + 28^{\circ}, 05$ $[3]_{c}^{15} + 23^{\circ}, 05$	Eau [c = 22,6 (anh.)]	Kümmrl (loc. cit.).
	$[\alpha]_{\rm b}^{20}+[27,62+6]$	0,0925p—0,000649p ¹] 0,1064p—0,001884p ²] 0,0951p—0,000991p ²] 1 9 à 54,5 (anh.)]	Ch. (2° 5.), t. XXXIV,
	[\alpha] _{\bullet} ²⁰ + 26°, 23 initial + 27°, 93 après 65 heures + 28°, 70 final + 25°, 06 initial	Eau [$p = 0.21$ (hydr.)]	
	+ 25°, 53 final + 25°, 52	Id. $[p = 0.30 \text{ (hydr.)}]$ Id. $[p = 2.06 \text{ (hydr.)}]$	
	$[a]_{b}^{20}+25^{\circ},62$	Eau (p = 0,302)	WECHSLER in PRIBRAN (loc. cit.).
	Eau [p + [2] Eau [p + [2] Eau [p + [2]	7,03 + 0,1453 p] = 1 à 9 (anh.)] 7,69 + 0,0712 p] = 9 à 17 (anh.)] 7,91 + 0,0585 p] = 17 à 30 (anh.)] 8,95 + 0,0248 p] = 30 à 54 (anh.)]	PRIBRAM et GLÜCKSMANN (Monatsh. f. Ch., t. XIX, p. 167; 1898).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS		
Tartrate de quinine. Voir Quinine (tartrate de).					

 $[\alpha]_{0}^{20}+18^{\circ},97$ Tartrate de rubidium. WECHSLER in PRIBRAM (C4H4O6)Rb2 (Monatsh. f. Ch., t. XIV, p. 472; 1893). $[\alpha]_{666}^{20} + [15,185 + 0,04605p]$ | RIMBACH (Zeits. f. physik. Ch., t. XVI, p. 675; 1895). $> _{D} + [19,505 + 0,06123 p]$ [Voir Table XVII (I.-E.)]. = 533 + [24,401 + 0,07247p] $_{489} + [29,498 - 0,08616p]$ > 448 + [34,84 + 0,1035p]Eau (p = 1,5 à 64,5) $[\alpha]_{0}^{20} + [18,69 + 0,2106p]$ PRIBRAM et GLÜCKSMANN Eau (p = 0.53 à 10.25)(Monatsh. f. Ch., t. XVIII, p. 521; 1897).

 $[\alpha]_c^{25} + 20^\circ, 82$ | Eau [c = 20 (hydr.)] | KRECKE (Arch. Néerl., t. Tartrate de sodium. VII, p. 97; 1872). 9 $_{0}$ $+ 25^{\circ}, 79$ $(C^4H^4O^6)Na^2+2H^2O$ $= +31^{\circ},67$ $b + 32^{\circ}, 70$ $> + 38^{\circ}, 49$ $[\alpha]_{D}^{22,5} + [27,85 - 0,17c]$ HESSE (Licb. Ann., t. CLXXVI, p. 122; 1875). Eau [c = 5 å 15 (hydr.)] $[\alpha]_{D}^{20} + 30^{\circ}, 85$ | Eau [c = 9.95 (anh.)] | LANDOLT (Dreh.-Vermögen, 2º éd., p. 493). |Eau [c = 19,4 (anh.)]|Kümmel (Wied. Ann., t. XLIII, p. 512; 1891). » ₆ + 55", 8 $[\alpha]_{\nu}^{15} + [26,413 - 0,03615p]$ THOMSEN [J. f. prakt. Ch. (2° s.), t. XXXIV, p. 80; $-0,000612p^2$ 1886]. $[\alpha]_{\mu}^{20} + [26,330 - 0,02020p]$ $-0,000963 p^2$

 $[\alpha]_{0}^{25} + [26,674 - 0,03686p]$

Eau [p = 9 à 37 (hydr.)]

 $-0,000693 p^2$

[2]₀³⁰ + [26,174 + 0,02646 p - 0,002 260 p^2] (Voir la suite au verso) Eau [p = 9 à 18 (hydr.)]

INFLUENCE DES SELS EN SOLUTIONS AQUEUSES.

(c = 20) $(t = 20^{\circ})$. n^{gr} sel pour 100^{ce} .

SE	L.		FORMULE.	n=5.	n=10.	n=15.	n=20.
Chlorure de	sodiu	m	Na Cl	+21,80	+21,21	+20,54	+19,75
Bromure	id.	• • • • •	Na Br	21,89	21,67	21,40	21,10
Sulfate	id.	• • • •	SO ⁴ Na ²	21,67	21,32	20,94	20,50
Hyposulfite	id.	• • • •	$S^2O^3Na^2+5H^2O$	21,86	21,53	21,24	20,91
Azotate	id.	• • • •	Az O ³ Na	21,72	21,51	21,29	21,07
Phosphate	id.		PO4Na2H + 12H2O	21,91	21,80	21,69	21,58
Phosph. acide	id.	• • • •	PO'Na H² + H²O	21,90	21,44	20,90	20,32
Borate	id.	• • • •	$B^1O^1Na^2 + 10H^2O$	"	21,82	"	н
Tungstate	id.		Tu O ⁴ Na ²	"	20,69	"	ų
Acétate	id.		$C^2H^3O^2.Na + 3H^2O$	21,95	21,70	21,41	21,12
Chlorure de	lithiu	m	Li Cl	[20,43](1)	"	"	,
Sulfate de th	alliun	n	SO'Tl2	18,67	"	"	"
Chlorure de	potass	sium	K Cl	+22,72	+ 22,85	+23,07	+23,43
Bromure	id.	•••	K Br	22,72	22,81	22,93	23,11
Iodu re	id.		KI	22,29	22,56	22,76	22,95
Sulfate	id.		SO4 K2	22,60	22,73	N	#
Azotate	id.		Az O ³ K	22,46	22,76	23,10	23,47
Sulfocyanure	id.		(CAz)SK	22,48	22,58	22,69	22,83
Acétate	id.		C2H3O2.K	22,52	22,73	22,90	23,12
Oxalate	id.		$C^2O^4K^2+H^2O$	22,57	"	"	,,
Chlorure d'an	nmon	ium	Az H ⁴ Cl	22,58	"	"	23,10
Bromure	id.		Az H ⁴ Br	22,47	"	22,73	<i>"</i>
Sulfocyanure	id.	• • •	(CAz)SAzH ⁴	22,51	"	"	n
Oxalate	id.	• • •	$C^2O^4(AzH^4)^2 + H^2O$	"	22,59	"	"

(1) n = 6,752. Long (loc. cit.).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Tartrate de potassium et thallium. (C'H'O') K Ti	$[\alpha]_{b}^{20} + 10^{\circ}, 06$ $+ 8^{\circ}, 84$ $+ 8^{\circ}, 36$ $+ 8^{\circ}, 17$ $[\alpha]_{b}^{30} + 10^{\circ}, 09$,	Long [Amer. J. of Sc. (3° s.), t. XXXVIII, p. 270; 1888].
	$[\alpha]_{n}^{20} + 11^{\circ}, 15 + 11^{\circ}, 35 + 11^{\circ}, 42 + 6^{\circ}, 79$		

Insluence des sels dissous.

Eau $(c = 5) (t = 20^{\circ}) 5^{\circ r}$ sel pour 100°c.

Azotate de sodium	+8,21
Sulfate de sodium	+8,41
Acétate de sodium (1)	
Azotate de potassium	+7,11
Carbonate de potassium	+9,17
Acétate de potassium	- ⊢7 ,56
Sulfate de thallium	+4,57

(1) Hydraté (C2H3O2Na 4-3H2O).

Long (loc. cit.).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Tartrate amylique. (d'amyle actif)	$[\alpha]_{b}^{20}+17'',73$	Pur. $d_4^{20} = 1,0636$	WALDEN (Zeits. f. physik. Ch., t. XVII, p. 723; 1895).
(damyte data)	$[\alpha]_{D} + 18^{\circ},61$	Pur. $d = 1,0575$	GUYE et GOUDET (C. R. t. CXXII, p. 933; 1896)
Id. (d'amyle inactif)	$[\alpha]_{\rm D}^{20} + 14^{\circ}, 10$	Pur. $d_4^{20} = 1,0637$	WALDEN (loc. cit.).
	$[a]_{0} + 14^{\circ}, 67$	Pur. $d = 1,0696$	GUYE et GOUDET (loc. cit.)
Id. (amyle actif)	$[\alpha]_{0}^{20}+3^{\circ},37$	Pur. $d_4^{20} = 1.064$	WALDEN (loc. cit.).
· (acide inactif)	$[\alpha]_{\nu}+3^{\circ},38$	Pur. $d = 1,0554$	GUYE et GOUDET (loc. cit.).
Tartrate n butylique. $C'H'O^6(C'H^9)^2$	$[\alpha]_{b}^{19} + 10^{\circ}, 3$ $[\alpha]_{b}^{15} + 11^{\circ}, 3$	Pur. (surfondu) $d = 1,098$ Alcool ($c = 5,52$)	FREUNDLER [Ann. de Ch. et Phys. (7° 8.), t. III. p. 447; 1894].
Tartrate <i>i</i> butylique. $C^{1}H^{1}O^{6}(C^{1}H^{9})^{2}$	[α] ¹⁰⁰ +19",87	Pur. $d = 1,0145$	Pictet Arch. de Gen. (3° pér.), t. VII, p 82; 1882 .
	[a] ₀ + 11°, 3	Pur.	GUYE ot FAYOLLAT [Bull, Soc. chim. (3° 8.), t. XIII p. 199; 1895].
Tartrate éthylique. C'll'()6(C'll')2	+ [8,09 Eau (9 + [8,41 Alcool (+ [8,42	Pur. $d = 1,1989$ + 0,2003 q] q = 30 à 86) + 0,0187 q] q = 22 à 78) + 0,0625 q 003479 q^2]	LANDOLT (Lieb. Ann., t. CLXXXIX, p. 324; 1877).
(Voir la suite au verso)	•	90.3479 q^x yl. ($q = 22 \text{ à } 85$)	1

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
	[\alpha]_b^2 + 33°,01 (final) + 30°,05	Eau [$p = 0.26 \text{ (hydr.)}$]	Von Sonnenthal (Zeits. f. physik. Ch., t. IX, p. 664; 1892).
	(initial) + 31", 67	Id. $[p = 0.30 (id.)]$	
	•	Id. $[p = 1,05 \text{ (id.)}]$ Id. $[p = 2,22 \text{ (id.)}]$	
	$[\alpha]_{0}^{20} + 31^{\circ}, 11$	Eau [c = 0,259 (anh.)]	WECHSLER in PRIBRAN (loc. cit.).
	Eau [$p = + [31]$ Id. ($p = -[31]$,025 — 0,009 2 p] 0,6 à 6,7 (anh.)] ,42 — 0,0677 p] 6,7 à 19) ,30 — 0,1138 p]	PRIBRAM et Glücksmann (Monatsh. f. Ch., t. XIX. p. 175; 1898).
•	Id. (p =	19 à 28)	•

Tartrate de sodium et thallium.

(C4 H4 O6) Na Tl + 4 H2 O

$$\begin{bmatrix}
\alpha \end{bmatrix}_{0}^{20} + 9^{\circ}, 06 \\
+ 7^{\circ}, 70 \\
+ 6^{\circ}, 99 \\
+ 6^{\circ}, 49
\end{bmatrix}$$
Id. $[c = 10 \text{ (id.)}]$

$$\begin{bmatrix}
\alpha \end{bmatrix}_{0}^{20} + 8^{\circ}, 59 \\
\begin{bmatrix}
\alpha \end{bmatrix}_{0}^{20} + 8^{\circ}, 59
\end{bmatrix}$$
Eau $[c = 10 \text{ (id.)}]$

$$\begin{bmatrix}
\alpha \end{bmatrix}_{0}^{20} + 8^{\circ}, 59
\end{bmatrix}$$
Eau $[c = 10 \text{ (anh.)}]$

$$\begin{bmatrix}
\alpha \end{bmatrix}_{0}^{20} + 8^{\circ}, 49
\end{bmatrix}$$
Id. $[id. \text{ (id.)}]$

$$\begin{bmatrix}
\alpha \end{bmatrix}_{0}^{20} + 8^{\circ}, 49
\end{bmatrix}$$
Eau $[c = 10 \text{ (anh.)}]$

$$\begin{bmatrix}
\alpha \end{bmatrix}_{0}^{20} + 10^{\circ}, 19$$
SO4 Na² $[c = 10 \text{ (anh.)}]$

$$+ 5^{\circ}, 49$$
SO4 Tl² $[id.]$

Tartrate de strychnine. Voir Strychnine (tartrate de).

Tartrate de thallium.

(C⁴H⁴O⁶)Tl² +
$$\frac{1}{2}$$
H²O

$$\begin{bmatrix}
\alpha \end{bmatrix}_{0}^{19} + 4^{\circ}, 58 \\
[\alpha]_{0}^{26} + 4^{\circ}, 76 \\
[\alpha]_{0}^{28,4} + 5^{\circ}, 70
\end{bmatrix}$$
Eau [$p = 0.74$ (anh.)] Weigher in Pribran (loc. cit., p. 7i3).

+ $4^{\circ}, 58$ | Id. [$p = 4.96$ (id.)] + $2^{\circ}, 68$ | Id. [$p = 27.23$ (id.)]

Insluence des sels dissous.

Eau $(c = 5) (t = 20^{\circ}) 5^{sr}$ sel pour 100^{cc} .

Azotate de sodium	+8,21
Sulfate de sodium	+8,41
Acétate de sodium (1)	+7,04
Azotate de potassium	+7,11
Carbonate de potassium	+9,17
Acétate de potassium	- - -7,56
Sulfate de thallium	+4,57

(1) Hydraté ($C^2H^3O^2Na + 3H^2O$).

Long (loc. cit.)

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Tartrate amylique. C'H'O'(C'H')2 (d'amyle actif)	$[\alpha]_{b}^{20}+17^{\circ},73$	Pur. $d_4^{20} = 1,0636$	WALDEN (Zeits. f. physik. Ch., t. XVII, p. 723; 1895).
(a diagree dosse,	$[\alpha]_{\scriptscriptstyle D} + 18^{\scriptscriptstyle O},61$	Pur. $d = 1,0575$	GUYE et GOUDET (C. R., t. CXXII, p. 933; 1896).
Id. (d'amyle inactif)	$ [\alpha]_{B}^{20}+14^{\circ},10$	Pur. $d_4^{20} = 1,0637$	WALDEN (loc. cit.).
	$[\alpha]_0 + 14^{\circ}, 67$	Pur. $d = 1,0696$	GUYE ot GOUDET (loc. cit.).
Id. (amyle actif)	$[\alpha]_{b}^{20} + 3^{\circ}, 37$	Pur. d ₄ ²⁰ = 1,064	WALDEN (loc. cit.).
(acide inactif)	$[\alpha]_{\scriptscriptstyle D}$ + 3°, 38	Pur. $d = 1,0554$	GUYE et GOUDET (loc. cit.).
Tartrate nbutylique. C'H'O'(C'H')2	$[\alpha]_{D}^{19} + 10^{\circ}, 3$ $[\alpha]_{D}^{15} + 11^{\circ}, 3$	Pur. (surfondu) $d = 1,098$ Alcool ($c = 5,52$)	FREUNDLER [Ann. de Ch. et Phys. (7° 8.), t. III, p. 447; 1894].
Tartrate ibutylique. C'II'() ⁶ (C'H ⁹) ²	[2]b06+19",87	Pur. d = 1,0145	Pictet [Arch. de Gen. (3° pér.), t. VII, p 82; 1882].
	[a] _b +11°,3	Pur.	GUYE of FAYOLLAT [Bull. Soc. chim. (3° 8.), t. XIII p. 199; 1895].
Tartrate éthylique. C'H'O'(C'H')2	+ [8,09 Eau (4 + [8,41 Alcool (+ [8,42 - 0,0	Pur. $d = 1,1989$ + 0,2003 q] $q = 30 \text{ à } 86$) + 0,0187 q] $q = 22 \text{ à } 78$) + 0,0625 q $= 3603479q^2$]	LANDOLT (Lieb. Ann., t. CLXXXIX, p. 324; 1877).
(Voir la suite au verso)	Alc. méth	yl. ($q = 22 \ a \ 85$)	1

1126	VVERS MAMPHI	QUES. — OFFIQUE.	
NOM ET FORMULE.	POUVOIR rotatuire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
	$[\alpha]_{0}^{20} + 7^{\circ}, 66$ $[\alpha]_{0}^{100} + 13^{\circ}, 29$	Pur. $d^{20} = 1,2059$	PICTET (loc. cit.).
	d^{1}	t + 0.0936 (t - 16) t = 1.2087 $t = 12^{\circ} $	PERKIN (J. of chem. Soc. t. LI, p. 363; 1887). {Calculé d'après les résul tats de l'auteur].
	$[\alpha]_{\nu} + 8^{\circ}, 30 + 5^{\circ}, 35$	Pur. Éther (c = 27,7)	GUYR et FAYOLLAT (loc cit., p. 199).
Tartrate éthylique et icyanate phénylique. C ²² H ²⁴ Az ² O ⁶ = C ² H ² OOC-CHO-COAzHC ⁶ H ² C ² H ³ OOC-CHO-COAzHC ⁶ H ²		Chloroforme (c = 2,22)	HALLER (C. R., L. CXXI p. 193; 1895).
Tartrate méthylique. C ⁴ H ⁴ O ⁶ (CH ³) ²	$\begin{array}{ } [\alpha]_{0}^{20} + 2^{\circ}, 14 \\ [\alpha]_{0}^{100} + 6^{\circ}, \infty \end{array}$	Pur. $d^{26} = 1,3284$	PICTET (loc. cit.).
	— 8°, 8	Benzène $(c=5,60)$ Chloroforme $(c=5,525)$	FREUNDLER (loc. cit., t. II p. 443).
Tartrate n propylique. $C^4H^4O^6(C^3H^7)^2$	$[2]^{100}_{100} + 17^{\circ}, 11$		
	$[\alpha]_{D}^{27} + 20^{\circ}, 1$ $[\alpha]_{D}^{23} + 6^{\circ}, 8$ $[\alpha]_{D}^{24} - 0^{\circ}, 6$ $[\alpha]_{D}^{23} + 12^{\circ}, 0$	Benzène $(c = 5,87)$ Chloroforme $(c = 5,49)$ Bromure $(c = 5,41)$ Alcool $(c = 5,43)$ Acétone $(c = 5,49)$	FRRUNDLER (loc. cit., L II) p. 446).
Tartrate ipropylique.			PICTET (loc. cit.).
-tartrate (Diacétyl-) acide d'éthylènediamine (C'H''O')2C2H*Az2	[a] ₁₁ — 18",96	Eau (c = 10,33)	COLSON (C. R., t. CXV p. 729; 1892).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
-tartrate (Dibenzoyl-) <i>i.</i> -butylique. $C^{26} H^{30} O^{8} = C^{4} H^{2} (C^{7} H^{5} O)^{2} O^{6} (C^{4} H^{9})^{2}$	$[\alpha]_{b}^{19} - 41^{\circ}, 95$ $- 42^{\circ}, 94$ $[\alpha]_{b}^{22} - 48^{\circ}, 86$	Alcool $(c = 2,88)$ Id. $(c = 4,92)$ Id. $(c = 14,085)$	PICTET (loc. cit.).
-tartrate (Dibenzoyl-) éthylique. C ²² II ²² () ⁸ =	$[\alpha]_0^{16} - 57^\circ, 72$	Alcool $(c = 2,69)$ Id. $(c = 5,73)$ Id. $(c = 9,175)$	Id. [Guye et Fayollat (Bull. Soc. chim. (3° s.), t. XIII, 1895).]
C, H ₂ (C, H ₂ O) ₅ O ₆ (C ₃ H ₂) ₅	[a] ₀ — 68°, 43 — 67°, 25	Alcool $(c = 9,2)$ Ether $(c = 13,22)$	FREUNDLER [Ann. de Ch. et Phys. (7° 8.), t. III, p. 478; 1894].
	[2] ₆₆₆ — 40°, 07 " _D — 56°, 23 " ₅₃₃ — 77°, 00 " ₄₈₉ — 86°, 95 " ₄₄₈ — 134°, 45		GUYB et JORDAN (C. R., t. CXXII, p. 884; 1896). [Voir Table XVII (I.E).]
	$ \begin{array}{c c} (t = 0) & (t = 0) \\ & [\alpha]_{0}^{t} & (t = 0) \\ & [\alpha]_{0}^{t} & (t = 0) \end{array} $	= 0° à 60°) 62,28 (max.)	FRANKLAND et WHARTON (J. of chem. Soc., t. LXIX, p. 1586; 1896). (Formules calculées d'après les nombres des auteurs.)
$C^{20} H^{18} O^{8} =$	— 88°, 24	Chlorof. $(c = 8,60)$ Id. $(c = 11,61)$ Alcool $(c = 0,245)$	PICTET (loc. cit.).
C4H2(C1H3O)2O6(CH3)2	- 78", 1 - 88°, 9 - 92", 2 - 96°, 9	Alcool $(c = 1)$ Acétone $(c = 5)$ Chloroforme $(c = 5)$ Acide acétique $(c < 5)$ Benzène $(id.)$ Brom. d'éthylène $(id.)$	
	$ \begin{array}{ l } \hline (\alpha)_{b}^{100} - 72^{\circ}, 56 \\ \hline (\alpha)_{b}^{131} - 66^{\circ}, 84 \\ \hline (\alpha)_{b}^{183} - 58^{\circ}, 94 \end{array} $	Pur. $d_4^{150} = 1,1285$	FRANKLAND et WHARTON (loc. cit., p. 1585).
-tartrate (Dibutyryl-) nbutylique. $C^{26} H^{35} O^{5} = C^{5} H^{2} (C^{5} H^{5} O)^{2} O^{6} (C^{5} H^{5})^{2}$	$[\alpha]_{0}^{14} + 5^{\circ}, 2$ $[\alpha]_{0}^{19} + 6^{\circ}, 2$	Pur. $d^{16} = 1,048$ Alcool ($c = 5,39$)	FRBUNDLBR (loc. cit., t. III, p. 460).

NOM ET FORMULE.	POUVOIR rotatoire specifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
-tartrate (Diacétyl-) méthylique.	$[\alpha]_0^{15}$ — 14°, 29 $[\alpha]_0^{18}$ — 14°, 23	Alcool ($c = 3,25$) Id. ($c = 3,57$)	Pictet (loc. cit.).
$C^{10} H^{14} O^{n} =$ $C^{4} H^{2} (C^{2} H^{3} O)^{2} O^{6} (CH^{3})^{2}$	$\begin{array}{c} [\alpha]_{0}^{25} - 15^{\circ}, 1 \\ [\alpha]_{0} - 15^{\circ}, 5 \\ - 16^{\circ}, 3 \\ - 17^{\circ}, 3 \end{array}$	Alc. abs. (c = 2,48) Id. (c = 5 à 6) Alcool 94 % (id.) Acétone (id.)	FREUNDLER (loc. cit., t. 111, p. 454 et t. 1V, p. 244).
	29°,4 22°,8	Benzène (id.) Chloroforme (id.) Tétrachl. de carb. (id.)	
npropylique.	$[\alpha]_{D}^{15} + 6^{\circ}, 52$ $[\alpha]_{D}^{14} + 7^{\circ}, 04$	Alcool ($c = 3.25$) Id. ($c = 7.855$)	Pictet (loc. cit.).
C ¹⁴ H ²² O ⁴ = C ⁴ H ² (C ² H ³ O)^() ⁶ (C ³ H ⁷) ² (1) Rotation pour 1 décim.	$ \alpha_{n} + 13^{\circ}, 4(^{1}) $ $ [\alpha]_{n}^{23} + 9^{\circ}, 6 $ $ [\alpha]_{n}^{23} + 9^{\circ}, 9 $ $ + 12^{\circ}, 1 $ $ + 7^{\circ}, 6 $ $ + 10^{\circ}, 4 $ $ + 8^{\circ}, 5 $ $ + 6^{\circ}, 2 $ $ + 36^{\circ}, 7 $ $ + 1^{\circ}, 2 $ $ + 3^{\circ}, 4 $ $ + 5^{\circ}, 7 $ $ + 1^{\circ}, 2 $ $ + 3^{\circ}, 4 $ $ + 6^{\circ}, 4 $ $ + 6^{\circ}, 4 $ $ + 1^{\circ}, 7 $ $ - 2^{\circ}, 6 $ $ + 8^{\circ}, 6 $ $ + 4^{\circ}, 7 $	Pur (surfondu). Alc. abs. (c = 5 à 6) Alcool 94 % (id.) Alc. méthyl. (id.) Éther (id.) Acétone (id.) Butyrone (id.) Ligroïne (id.) Sulf. de carb. (id.) Benzène (id.) Toluène (id.) Chl. de méthylène (id.) Chloroforme (id.) Tétrachl. de carb. (id.) Chlor. d'éthylène (id.) Chlor. d'éthylid. (id.) Id. chloré (id.) Br. de mé hylène (id.) Bromoforme (id.) Bromoforme (id.) Bromoforme (id.)	
-tartrate (Diacetyl-) <i>i.</i> -propylique. $C^{14}H^{22}O^{8} = C^{4}H^{2}(C^{2}H^{3}O)^{2}O^{6}(C^{3}H^{7})^{2}$		Alc. abs. (c = 5,58)	FREUNDLER (loc. cit., t. 111, p. 466).
-tartrate (Dibenzoyl-) benzylique. $C^{32}H^{26}O^{6} = C^{4}H^{2}(C^{7}H^{5}O)^{2}O^{6}(C^{7}H^{7})^{2}$	$ [\alpha]_{0}^{18} + 6^{\circ}, 2(?)^{*} + 41^{\circ}, 7$	1	FREUNDLER [Bull. Soc. chim. (3° s.), t. XIII. p. 832; 1895]. [faute de calcul: il faut probabl. lire 12.4].

NOM ET FORMULE.	rouvoin rotateire spécifique.		OBSERVATEURS.
	+ 0°,6 + 3°,1 + 2°,7 + 2°,3 + 2°,4 - 3°,8 + 5°,5 + 2°,4 + 1°,7		
	$[\alpha]_{a}^{20} - 5^{\circ}, 3$ $[\alpha]_{b}^{100} - 5^{\circ}, 5$ $[\alpha]_{b}^{10} + 0^{\circ}, 6$ $[\alpha]_{b}^{100} + 1^{\circ}, 4$	Bromoforme (c = 6,3) Bromure d'éthylène bromé (c = 5,4)	Id., t. 1V, p. 239.
-tartrate (Di-ibutyryl-) n -propylique. C''H''O' = C''H''(C''H''O)''O'(C''H'')''		Pur. d ¹⁶ = 1,066 Alcool (c = 5,70)	Id., t. 111, p. 470.
-tartrate (Dicaproyl-) ibutylique. C'II''O' == C'II''(C'II''O)'2O''(C'II'')'		Pur. $d^{13} = 1,013$ Alcool ($c = 5,46$)	ld., p. 468.
-tartrate (Dicaproyl-) éthylique. C'* H'' O' = C'H'(C'H'' O)' O'(C'H')'		Pur. $d^{(4,1)} = 1,049$ Alcool ($c = 4,56$)	Id., p. 464.
-tartrate (Dicaproyl-) méthylique. C''	$\frac{[\alpha]_{a}^{11}-12^{a},4}{[\alpha]_{a}^{12}-[1]}$	Pur. $d^{14} = 1,078$ Alcool ($c = 5,58$) $a_1,5 = 0,206c$ $(c = 2,4 \pm 24)$	[d., p. 463. [Calculé d'après les nom- bres de l'auteur, t. 1V, p. 253.]
-tartrate (Dicaproyl-) npropylique. C'211'*O'= C'H'(C'H''O)'2O'(C'H')'2 (Voir la sinte au verso)	$ \begin{bmatrix} \alpha \end{bmatrix}_{b}^{11} + 3^{\circ}, 6 \\ [2]_{a} + 5^{\circ}, 4 \\ + 5^{\circ}, 3 \\ + 1^{\circ}, 3 \end{bmatrix} $	Alcool (c= 5,51) Alc. méthyl. Acétone Butyrone (c= 5 à 6)	Id., t. 11f, p. 464, et t. fV, pp. 245, 253, 254.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
-tartrate (Dibutyryl-) ibutylique. C ²⁰ H ³⁴ O ⁸ = C ⁴ H ² (C ⁴ H ¹ O) ² O ⁶ (C ⁴ H ⁹) ²	$[\alpha]_{n}^{19} + 8^{\circ}, 5$ $[\alpha]_{n}^{14} + 8^{\circ}, 1$	Pur. $d^{16} = 1,050$ Alcool ($c = 5,44$)	<i>Id.</i> , p. 466.
-tartrate (Di-i-butyryl-) ibutylique. C ²⁰ H ³⁴ O ⁵ = C ⁴ H ² (C ⁴ H ⁷ O) ² O ⁶ (C ⁴ H ⁹) ²	$[\alpha]_{0}^{14} + 8^{\circ}, 4$ $[\alpha]_{0}^{14} + 10^{\circ}, 1$	Pur. $d^{16,5} = 1,048$ Alcool ($c = 5,42$)	ld., p. 471.
-tartrate (Dibutyryl-) éthylique. C ¹⁶ H ²⁶ O ⁸ = C ⁴ H ² (C ⁴ H ¹ O) ² O ⁶ (C ² H ⁵) ²	$[\alpha]_{b}^{16}$ — 0°, 8 $[\alpha]_{b}^{19}$ + 0°, 3	Pur. $d^{13,5} = 1,105$ Alcool ($c = 5,50$)	Id., p. 460.
-tartrate (Di-ibutyryl-) éthylique. C ¹⁶ H ²⁶ O ⁸ == C ⁴ H ² (C ⁴ H ¹ O) ² O ⁶ (C ² H ⁵) ²	$[\alpha]_{0}^{11,5}$ — 1°,5 $[\alpha]_{0}$ + 1°,4	Pur. $d^{11} = 1,095$ Alcool ($c = 5,76$)	ld., p. 469.
-tartrate (Dibutyryl-) méthylique. C'4 H ²² O* = C4 H ³ (C4 H ³ O) ² O6 (CH ³) ²	$[\alpha]_{0}^{13}$ — 15°, 1 $[\alpha]_{0}^{19}$ — 12°, 6	Pur. $d^{14} = 1,145$ Alcool ($c = 5,83$)	<i>Id.</i> , p. 459.
-tartrate (Di-ibutyryl-) méthylique. $C^{14}H^{22}O^{8} =$ $C^{4}H^{2}(C^{4}H^{1}O)^{2}O^{6}(CH^{3})^{2}$	[α] ¹⁷ — 13°,4	Alcool (c = 5,99)	<i>Id.</i> , p. 469.
-tartrate (Dibutyryl-) npropylique. C ¹⁸ H ³⁰ O ⁸ = C ⁴ H ² (C ⁴ H ⁷ O) ² O ⁶ (C ³ H ⁷) ²	- 1°,4 + 0°,6	Pur. dis,5 = 1,067 Alcool (c = 5,39) Alc. méthyl. (c = 5 à 6) Éther (id.) Acétone (id.) Butyrone (id.) Ligroïne (id.) Sulf. de carbone (id.) Benzène (id.) Toluène (id.) Chl. de méthylène (id.) Chloroforme (id.)	Id., p. 460. Id., t. IV, p. 245.

NON ET FORMULE.	rotatelre spécifique.	:	OBSERVATEURS.
	$ \begin{array}{r} -3^{\circ}, 8 \\ +5^{\circ}, 5 \\ +2^{\circ}, 4 \\ +1^{\circ}, 7 \end{array} $ $ [\alpha]_{a}^{2^{\circ}} -5^{\circ}, 3 \\ [\alpha]_{b}^{4^{\circ}} -5^{\circ}, 5 $	Id. chloré (id.) Br. de méthylène (id.) Bromoforme (id.) Brom. d'éthylène (id.) Brom. de propyle (id.) (id.) Bromoforme (c = 6,3) Bromure d'éthylène bromé (c = 5,4)	
-tartrate (Di-ibutyryl-) npropylique. C'' H'' O' = C' H'' (C' H' O)' O' (C' H')'		Pur. d'4 = 1,066 Alcool (c = 5,70)	Id., t. III, p. 470.
-tartrate (Dicaproyl-) ibutylique. C'H'O' = C'H'(C'H'O)'O'(C'H')'	ŀ	Pur. $d^{13} = 1,613$ Alcool ($c = 5,46$)	Id., p. 468.
-tartrate (Dicaproyl-) éthylique. C*H**(C*H***O)*O*(C*H*)*	ľ	Pur. d ^{14,5} = 1,049 Alcool (c = 4,56)	ld., p. 464.
-tartrate (Dicaproyl-) méthylique. C'' H'' O'' = C' H'' (C'' H''' O)' O'' (C'' H'')''	$\frac{\{\alpha\}_{n}^{10} - 12^{n}, 4}{[\alpha]_{n}^{11} - \{1\}_{n}^{11}}$	Alcool ($c = 5,58$)	Calculé d'apres les nom- bres de l'auteur, t. IV,
-tartrate (Dicaproyl-) npropylique. C ²² 11 ³¹ O ³ = C ⁴ H ² (C ⁶ H ¹¹ O) ² O ⁶ (C ³ H ⁷) ² (Voir la suite au verso)	$[\alpha]_{0}^{16} + \alpha^{\circ}, \alpha$ $[\alpha]_{0}^{14} + 3^{\circ}, 6$ $[\alpha]_{0}^{14} + 5^{\circ}, 4$ $+ 5^{\circ}, 3$ $+ \alpha^{\circ}, 3$	Pur. $d^{16} = 1,027$ Alcool (c= 5,51) Alc. méthyl.) Acétone Butyrone (c= 5 à 6)	pp. 245, 253, 254.

NOM BT FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
	$[x]_{b} - [5]$ Benzène $[\alpha]_{b} - 2^{n}, 1$ $- 4^{n}, 0$ $- 1^{n}, 9$ $+ 0^{n}, 3$ $+ 0^{n}, 6$ $- 8^{n}, 0$ $- 7^{n}, 1$ $- 5^{n}, 2$	(c = 1,5 à 20) Toluène Chloroforme Tétrachlor. de carbone (c=5à6) Chl.d'éthylène (Chlor.d'éthylide dène chloré (c = 2,39) Bromoforme (c = 5,88)	[Calculé.]
-tartrate (Didichlor- acétyl-) éthylique. C ¹² H ¹⁴ O ⁸ Cl ⁴ = C ⁴ H ² (C ² H Cl ² O) ² O ⁶ (C ² H ²) ²	(t -=	5,10 + 0,0096t] 16° à 100°) ,4324 — 0,001155t	FRANKIAND et PATTERSON (J. of chem. Soc., t. LXXIII, p. 189; 1898). [Calculé d'après les nom- bres des auteurs.]
-tartrate (Didichlor- acétyl-) méthylique. C ¹⁰ H ¹⁰ O ⁸ Cl ⁴ = C ⁴ H ² (C ² H Cl ² O) ² O ⁶ (CH ³) ²	(t =	$69 - 0,0425t$ $+ 0,000254t^{2}$ = 19° à 99°) $5306 - 0,001327t$ $+ 0,00000104t^{2}$	[d., p. 190. [d.]
-tartrate (Dimonochlor-acétyl-) ibutylique. $C^{16}H^{24}O^{8}Cl^{2} = C^{4}H^{2}(C^{2}H^{2}Cl^{3})^{2}O^{5}(C^{4}H^{9})^{2}$	$[\alpha]_{0}$ + 8°,0 + 13°,6 + 11°,2	Pur. $d^{30} = 1,195$ Benzène Alcool ($c=4,77$) Chloroforme ($c=5,23$) Sulf. de carb. ($c=5,15$)	
-tartrate (Dimonochlor- acétyl-) éthylique. C ¹² H ¹⁶ O*Cl ² = C ⁴ H ² (C ² H ² ClO) ² O ⁶ (C ² H ³) ²	$[\alpha]_0 + 10^{\circ}, 8$ + 90°, 4 + 80°, 5	Pur. d ¹⁵ = 1,311 Benzène Alcool (c=5,36) Chloroforme (c=7,95) Sulf. de carb. (c=6,49))

NON ET PORMULE.	POUVOIR rotatoire spécifique	DISSOLVANT ET TENEUR.	OBSKRVATEURS.
	(t =	0,0628/0,000105 <i>t</i> ³] : 15" à 100°) :,3473 0,001082 <i>t</i>	FRANKLAND of PATTERISON (loc. cit., p. 192).
	$\begin{cases} t = \frac{d^{\ell}_{i} - 1.3}{d^{\ell}_{i} - 1.3} \\ [\pi]_{0}^{\ell} + [6.40 + 0] \end{cases}$ $(\ell = \frac{\ell}{2})$,0593 t — 0,000 047 t ²] 13°,5 à 100°) 460 — 0,001 107 t ,058 1 t — 0,000 046 t ²] 11°,5 à 100°) 486 — 0,001 146 t	FHANKLAND et TURNBULL (J. of chem. Soc., t. LXXIII, p. 20>; 1898). [Formules calculées d'a- pres les nombres des au- teurs.]
-tartrate (Dimonochlor- acétyl-) méthylique. C''	[a] _n - 1°, 1 + 11°, 5	Pur. $d^{14} = 1.409$ Benzène ($c=6.50$) Br.d'éthylène($c=7.225$)	FREUNDLER (loc. clt.).
C+H2(C2H2C1O)2O2(CII2)2	$[x]_0^t - [1,05 - 0]$	0,0118 <i>t</i> — 0,000245 <i>t</i> 2] : 14° à 100°) :,4411 0,001147 <i>t</i>	FRANKLAND et PATTERSON (loc. cit., p. 193).
<u> </u>	(t =	,0140 <i>t</i> — 0,000214 <i>t</i> ²] - 18° à 100°) -,4469 — 0,001224 <i>t</i>	FRANKLAND et TURNBULL (loc. cit., p. 208). [Calculé d'après les auteurs.]
-tartrate (Dimonochlor- acétyl-) npropylique. C"H"*O"Cl"= C"H"(C"H"ClO)"O*(C"H")"	$ x _n + 9^n, 9$ + 17", 2	· ·	
-tartrate (Dicenanthyl-) npropylique. C*(H*(C'H*(O)*O*(C*H*)*	$\begin{array}{c c} -a^{n},5 \\ [x]_{0}^{24} + 5^{n},0 \end{array}$	Pur. $d^{14} = 1,013$ Benzène $(c=5,1)$ Alcool 92 $^{6}/_{6}$ $(c=6,7)$ Br. d'éthylene $(c=3,6)$	chim. (3° a.), t. XIII, p. 830; 1895].
-tartrate (Diphényl- acétyl-) éthylique. C*H*(C*H*,CH*,CO)* O*(C*H*)*	[2]; + 20°, 2 [2]; + 14", 6 + 22", 1 + 50", 1 + 14", 0 + 17", 1 + 18°, 4 + 19", 5	Alcool (c=0.91) Acétone (c=1410)	FREUNDLER (Ann. de Ch. Phys. (7° S.), t. III, p. 476; 1894 et t. IV, pp. 246 et 252, 1893).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
-tartrate (Diphényl- acétyl-) méthylique. C ²² H ²² O ⁸ = C ⁴ H ² (C ⁶ H ⁵ .CH ² .CO) ² · O ⁶ (CH ³) ²	$[\alpha]_{b}^{18} + 14^{\circ}, 5$ $[\alpha]_{b}^{16} + 19^{\circ}, 7$	Pur. $d^{11} = 1,223$ Alcool ($c = 0,89$)	ld., t. III, p. 475.
-tartrate (Diphényl- acétyl-) propylique. C ²⁶ H ³⁰ O ⁶ = C ⁴ H ² (C ⁶ H ⁵ . CH ² . CO) ² O ⁶ (C ³ H ¹) ²	$[\alpha]_{0}^{21} + 25^{\circ}, 2$ $[\alpha]_{0} + 27^{\circ}, 2$ $+ 14^{\circ}, 6$ $+ 15^{\circ}, 7$	Pur. $d^{18} = 1,143$ Alcool abs. $(c=0,72)$ Ac. acétique Nitrobenzène Benzène Br. d'éthylène	р. 246.
-tartrate (Dipropionyl-) nbutylique. C ¹⁸ H ³⁰ O ⁸ = C ⁴ H ² (C ³ H ⁵ O) ² O ⁶ (C ⁴ H ⁹) ²	$[\alpha]_{b}^{18,5} + 8^{\circ}, o$	Pur. $d^{15,5} = 1,068$ Alcool ($c = 5,50$)	<i>ld.,</i> t. III, p. 458.
-tartrate (Dipropionyl-) ibutylique. $C^{18} H^{30} O^{8} = C^{4} H^{2} (C^{3} H^{5} O)^{2} O^{6} (C^{4} H^{9})^{2}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pur. $d^{16,5} = 1,073$ Alcool $(c = 5,13)$ Benzène $\{(c = 1,55)\}$ $(c = 3,10)$	<i>Id.,</i> t. III, p. 467, ct t. IV. p. 253.
-tartrate (Dipropionyl-) 6thylique. C ¹⁴ H ²² O ⁸ = C ⁴ H ² (C ³ H ⁵ O) ² O ⁶ (C ² H ⁵) ²	$[\alpha]_{\nu}^{11} + 1^{\circ}, 2$	Alcool absolu ($c=5,58$)	p. 245.
-tartrate (Dipropionyl-) méthylique. C ¹² H ¹⁸ O ⁸ = C ⁴ H ² (C ³ H ⁵ O) ² O ⁶ (CH ³) ²	$ \begin{bmatrix} \alpha \end{bmatrix}_{0}^{15} - 10^{\circ}, 7 \\ - 12^{\circ}, 4 \\ [\alpha]_{0} - 13^{\circ}, 2 \\ - 12^{\circ}, 0 \\ - 18^{\circ}, 2 \\ - 23^{\circ}, 1 \end{bmatrix} $	Pur. $d^{15} = 1,181$ (surf.) Alcool abs. (c=5,30) Alcool 94 % Acétone Benzène	

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
	$[\alpha]_{666} - 11^{\circ}, 40$ $[\alpha]_{0} - 16^{\circ}, 00$ $[\alpha]_{533} - 18^{\circ}, 65$ $[\alpha]_{189} - 23^{\circ}, 88$ $[\alpha]_{148} - 33^{\circ}, 36$ $[t = 16^{\circ} \text{ à } 19^{\circ}]$		GUYE et JORDAN (C. R., t. CXXII, p. 884; 1896). [Voir Tuble XVII (I.E).]
-tartrate (Dipropionyl-) propylique. $C^{16}H^{26}O^{8} = C^{4}H^{2}(C^{3}H^{5}O)^{2}O^{6}(C^{3}H^{1})^{2}$	$[\alpha]_{0}^{15,5}+6^{\circ},3$	Alcool abs. $(c=5,67)$	FREUNDLER (loc. cit., t. III, p. 457, et t. IV, p. 252. [Id. (C. R., t. CXVII, p. 556; 1893).]
-tartrate (Di-otoluyl-) éthylique. $C^{21}H^{26}O^{8} =$ $C^{1}H^{2}(CH^{3}, C^{6}H^{4}, CO)^{2}$ (1) (2) $O^{6}(C^{2}H^{5})^{2}$	(t =	76 — 0,000 4 t — 0,000 579 t²] 11° à 135°) ,1959 — 0,000 84 t	FRANKLAND et WHARTON (J. of chem. Soc., t. LXIX, p. 1312; 1896). [Formules calculées d'après les nombres des auteurs.]
Idm. (1)(3)	(t=2)	$14 + 0.0340t$ $-0.000834t^{2}$ $10^{\circ}, 5 \approx 136^{\circ})$ $10^{\circ}, 5 \approx 136^{\circ}$	[Id., p. 1317. [Id.]
Idp. (1) (4)	$[\alpha]_{\mathbf{b}}^{t}-[108,t]$ $(t=1)$	Alcool $(c = 0.87)$ $59 - 0.1538t$ $-0.0003225t^{2}$ $00^{\circ} à 183^{\circ}.5)$ $2 - 0.00079(t - 100)$	FREUNDLER (loc. cit., t. III, p. 480). FRANKLAND et WHARTON (loc. cit., p. 1314). [Id.]
-tartrate (Di-otoluyl-) méthylique. $C^{22}H^{22}O^{8} =$ $C^{4}H^{2}(CH^{3}, C^{6}H^{4}, CO)^{2}$ (1) $O^{6}(CH^{3})^{2}$	(t =	83 — 0,0803 t — 0,000384 t²] 12° à 183°) 2472 — 0,000956 t	[Id., p. 1313.
Idm. (1) (3)	•	$54 - 0,3191t$ $+ 0,0003586t^{2}$] $100^{\circ} 1183^{\circ}$) $5 - 0,00085(t - 100)$	[Id., p. 1318. [Id.]

NOM RT FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	OBSERVATEURS.
Idp. (1)(4)	[a] ¹⁶ — 108°,7	Alcool $(c = 0.87)$	FREUNDLER (loc. cit., t. III, p. 480).
•	(t =	$37 - 0,3482t$ $+ 0,0001267t^{2}$ $100^{\circ} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	FRANKLAND et WHARTON (loc. cit., p. 1315).
-tartrate (Divaléryl-) amylique. C ²⁴ H ⁴² O ⁸ = C ⁴ H ² (C ⁵ H ⁹ ()) ² O ⁶ (C ⁵ H ¹¹) ²	$(ac. T act., ac$ $[\alpha]_0 + 6^{\circ}, 42$	Pur. $d = 1,0089$ 2. V act., amyle act.) $d = 1,0172$	GUYE et GOUDET (C. R., t. CXXII, p. 934; 1896).
	$[\alpha]_{0} + 3^{\circ}, 48$ (ac. T in., ac $[\alpha]_{0} + 2^{\circ}, 44$	c. V in., amyle in.) $d = 1,0066$. V act., amyle in.) $d = 1,0095$ in., amyle act.)	
-tartrate (Di-nvaleryl-) nbutylique. C ²² H ³⁸ O ⁸ = C ⁴ H ² (C ⁵ H ⁹ O) ² O ⁶ (C ⁴ H ⁹) ²	$[\alpha]_{0}^{15} + 4^{\circ}, 8$ $[\alpha]_{0}^{14} + 6^{\circ}, 0$	Pur. $d^{13} = 1,031$ Alcool ($c = 5,30$)	FREUNDLER (loc. cit., t. III, p. 463).
-tartrate (Di-nvaléryl-) ibutylique. $C^{22} H^{38} O^{8} =$ $C^{4} H^{2} (C^{5} H^{9} O)^{2} O^{6} (C^{4} H^{9})^{2}$	$[\alpha]_{0}^{18,5} + 7^{\circ}, 4$ $[\alpha]_{0}^{18} + 7^{\circ}, 7$	Pur. $d^{18,5} \doteq 1,032$ Alcool ($c = 5,08$)	Id., p. 468.
-tartrate (Di-ivaléryl-) ibutylique. C ²² H ³⁸ O ⁸ = C ⁴ H ² (C ⁵ H ⁹ O) ² O ⁶ (C ⁴ H ⁹) ²		Pur. $d^{18} = 1,028$ Alcool ($c = 5.57$)	Id., p. 473.
-tartrate (Di-nvaléryl-) éthylique. C ¹⁸ H ³⁰ O ⁸ = C ⁴ H ² (C ⁵ H ⁹ O) ² O ⁶ (C ² H ⁵) ²	$[\alpha]_{0}^{15} - 2^{\circ}, 0$ $[\alpha]_{0}^{18} - 0^{\circ}, 7$	Pur. $d^{12} = 1,068$ Alcool ($c = 5,58$)	ld., p. 462.
-tartrate (Di-ivaléryl-) éthylique. $C^{18}H^{30}O^{8} = C^{4}H^{2}(C^{5}H^{7}O)^{2}O^{6}(C^{2}H^{5})^{2}$	$[\alpha]_{0}^{16} - 1^{\circ}, 4$ $[\alpha]_{0}^{19} + 0^{\circ}, 5$	Pur. $d^{11,5} = 1,067$ Alcool ($c = 5,42$)	Id., p. 472.

NOM ET FORMULE.	POUVOIR rotatoire specifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
-tartrate (Di.nvaléryl-) méthylique. $C^{16}H^{26}O^{8} =$ $C^{1}H^{2}(C^{3}H^{9}O)^{2}O^{6}(CH^{3})^{2}$		Pur. $d^{18} = 1,101$ Alcool ($c = 5,58$)	/d., p. 461.
-tartrate (Di-ivaléryl-) méthylique. C'6 H ²⁶ O* = C' H ² (C ⁵ H ⁹ O) ² O ⁶ (CH ³) ²	[2], - 9°, 4 [2], - 9°, 6 - 5°, 9 + 18°, 7 - 18°, 7 - 10°, 9 - 13°, 4 - 17°, 0	Alcool abs. $(c=5,48)$	p. 245.
-tartrate (Di-nvaléryl-) npropylique. $C^{20} H^{31} O^{8} = C^{4} H^{2} (C^{5} H^{9} O)^{2} O^{6} (C^{3} H^{7})^{2}$	$[\alpha]_0^{16} + 3^{\circ}, 6$	Pur. $d^{16,5} = 1,050$ Alcool ($c = 5,57$)	Id., t. III, p. 462.
-tartrate (Di-ivaléryl-) npropylique. C ²⁰ H ³⁴ O* = C ¹ H ² (C ⁵ H ⁹ O) ² O ⁶ (C ³ H ¹) ⁵	$[\alpha]_{0}^{20}+1^{\circ},7$	Pur. $d^{18,5} = 1,049$ Alcool ($c = 5,74$)	Id., p. 472.
-tartrate (Éthyl-) de baryum.	$[\alpha]_{\nu}^{20} + 25^{\circ},68$	Eau $(c = 12.59)$	LANDOLT (Dreh Verm. 2º éd., p. 498; 1898).
(C ² H ³ , C ⁴ H ⁴ O ⁶) ² Ba	$[\alpha]_{n}^{20} + 20^{\circ}, 3$	Eau $(c = 3, 11)$	FAYOLLAT (C. R., t. CXVII, p. 632; 1893).
-tartrate (Éthyl-) de calcium. (C ² H ³ , C ⁴ H ⁴ O ⁶) ² Ca	[2] ₀ + 24", 3	Eau (c = 2,49)	ld.
-tartrate (Éthyl-) de lithium. (C ² H ³ , C ⁴ H ⁴ O ⁶) Li	$[\alpha]_0 + 28^{\circ}, 8$ + 20°, 5	Eau (c = 2,33) Alcool (c == 0.71)	14.

		•	
NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	OBSERVATEURS.
-tartrate (Éthyl-)	$[\alpha]_{D}^{20} + 29^{\circ}, 91$	Eau $(c = 11,08)$	LANDOLT (loc. cit.).
de potassium. (C ² H ³ .C ⁴ H ⁴ O ⁸)K	$[\alpha]_{0}^{20} + 21^{\circ}, 6$ + 22° (app.)	Eau $(c = 2,73)$ Id. $(c = 0,03)$	FAYOLLAT (loc. cit.).
-tartrate (Éthyl-) de sodium. (C ² H ¹ .C ⁴ H ⁴ O ⁶)Na	$[\alpha]_{D} + 27^{\circ}, 5$ $[\alpha]_{D} + 19^{\circ}$ (app.)	Eau (c = 2,53) Alcool (c = 0,09)	Id.
-tartrate (Méthyl-) d'ammonium. (CH3.C4H4O6)AzH4	$[\alpha]_{\mathfrak{o}}+28^{\mathfrak{o}},0$	Eau (c = 2,29)	Id.
-tartrate (Méthyl-) de lithium. (CH ³ .C ⁴ H ⁴ O ⁶)Li	$[\alpha]_{D} + 26^{\circ}, 5$ + 14° (app.)	Eau $(c = 2,15)$ Alcool $(c = 0,16)$	Id.
-tartrate (Méthyl-) de potassium. (CH3.C4H4O6)K	[\alpha]_0 + 22°, 7 + 38° (app.)	Eau $(c = 2,56)$ Alcool $(c = 0,009)$	ld.
-tartrate (Méthyl-) de sodium. (CH ³ .C ⁴ H ⁴ O ⁶)Na	[2] _b + 21°,0 + 26° (app.)	Eau (c = 2,35) Alcool (c = 0,026)	Id.
-tartrate (Monoacétyl-) <i>i.</i> -butylique. $C^{14}H^{24}O^{1} = C^{4}H^{3}(C^{2}H^{3}O)O^{6}(C^{4}H^{9})^{2}$	[α] _D + 7",8	Pur. $d = 1,148$	GUYE et FAYOLLAT [Bul. Soc. chim. (3° 8.), XIII, p. 208; 1895].
-tartrate (Monoacétyl-) éthylique. $C^{10} H^{16} O^{1} =$ $C^{4} H^{3} (C^{2} H^{3} O) O^{4} (C^{2} H^{5})^{2}$		Ether $(c = 25,5)$	<i>Id.</i> , p. 205.
tartrate (Monobenzoyl-) ibutylique. $C^{19} H^{26} O^{7} =$ $C^{4} H^{3} (C^{7} H^{5} O) O^{6} (C^{4} H^{9})^{2}$	[a] _b + 11°,5	Pur. d = 1,172	Id., p. 203.

NOM ET FORMULE.	POUVOIR rotatoire apécifique.	DISSOLVANT ET TENEUR.	OUSERVATEURS.
-tartrate (Monobenzoyl-)	[z] ₀ + 1°,5	Éther (c = 17,6)	/d., p. 201.
éthylique. C¹º ¹º (C¹ ¹º () (C² ¹)² C¹ ¹ (C¹ ¹ () (C² ¹)²	$(t = 0.00)$ For. $d = 0.00$ $(2)_0 + 12^0, 95$ $+ 13^0, 34$ $+ 10^0, 75$	76 — 0,0442 t + 0,000 031 t^2] 24° à 135°) ,2325 — 0,001 041 t [Ac. acét. ($p = 4,85$)] Id. ($p = 6,55$) Benzène ($p = 7,52$) Id ($p = 10,10$)	
-tartrate (Monobutyryl-) i -butylique C'H2(C'H2O)O'(C'H2)2	[α] ₀ + 9",7	Pur. d = 1,097	GUYE of FATOLLAT (foc. cit., p. 208).
-tartrate (Monobutyryl-) éthylique. $C^{(2)H^{24}(C)} = C^{(4)H^{2}(C^{(4)H^{2}(C)})^{2}}$		Éther (c = 36,8)	fd., p. 207.
-tartrate (Monochlor- acétyl-) éthylique. C'*H'*ClO' == C'H'*(C'H'*ClO)O*(C'H'*)'	$[x]_{s}^{20} + 11^{\circ},44$ $[x]_{s}^{100} + 17^{\circ},32$	Pur. d²• = 1,2775	FRANKLAND et TURNBULL (J. of chem. Soc., t. LXXIII, p. 197, 1898).
-tartrate (Monopropionyl-) -tartrate (Monopropionyl-) -thylique. C'H''O' = C'H'(C'H'O)O'(C'H')'	[α], 4- 2", 24 4- 2", 34	Ether $(c = 17, 2)$ Id. $(c = 36, 7)$	GUYE et FAYOLLAT (loc. cit., p. 206).
-tartrate (Mono-otoluyl-) éthylique. C'* H'' (CH'', C'* H', CO) (1) (2) O'* (C'* H'')''	$(t = i)$ Pur. $d_i^t = i$,	295 0,0224 t + 0,000 080 t ²] 20° à 136°,5) 2066 0,000 882 t 0,000 000 78 t ² Ac. acét. (p = 8,96) Id. (p = 13,67)	FRANKLAND et MAC CHAR (inc. cii., pp. 31 j et 322). [Formules calculées d'a- près les nombres des au- teurs.]

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	. OBSERVATEURS.
Idm. (1) (3)	Pur. $d_4^2 = 1$ $[\alpha]_0 + 7^0, 45$	$76 - 0.0075t$ $-0.000044t^{2}$] $4^{\circ}.5 \text{ à } 136^{\circ})$ $1942 - 0.000918t$ Ac. acétique ($p = 5.07$) Id. ($p = 8.47$)	
Idp. (1) (4)	$(t = 1)$ Pur. $d_4^t = 1, 1122$ $[\alpha]_0 + 15^\circ, 11$	$26 - 0.0836t$ $+ 0.000194t^{2}$ $100^{\circ} \text{ à } 180^{\circ}$) $- 0.000754(t - 100)$ Ac. acét. $(p = 6.36)$ Id. $(p = 10.01)$	
-tartrate (Monotrichlor- acétyl-) éthylique. C ¹⁰ H ¹² Cl ³ O ⁷ = C ¹ H ³ (C Cl ³ O) O ⁶ (C ² H ³) ²	(t=1)	$32 + 0.0394t$ $-0.000121t^{2}$ $2^{\circ} à 98^{\circ}.5)$ $088 - 0.001063t$ $-0.0000061t^{2}$	FRANKLAND et PATTERSON (J. of chem. Soc., t. LXXIII, p. 186; 1898). [Formules calculées d'après les nombres des auteurs].
-tartrate (Monotrichlor-acétyl-) méthylique. C*H*C 3O; = C*H3(CC 3O)O*(CH3)2	(t =	9 + 0,0165 <i>t</i> + 0,000051 <i>t</i> ²] 17° à 100°) 5280 - 0,001 197 <i>t</i>	fd.
Tartrimide éthylique. C ⁶ H ⁹ Az O ⁴ = CO CH (OH) Az (C ² H ³) CH (OH)		1,27 + 0,459 p] = 5,7 à 8,6)	LADENBURO (Ber. d. D. ch. Ges., t. XXIX, p. 2710; 1896).
Tartrimide méthylique C's H' Az O's		30 - 0.2877p] $p = 7 à 13$)	ld.
-tartrimide (Dibenzoyl-) méthylique. C ¹⁹ H ¹⁵ Az O ⁶ = CO	L 30 / //	Acét. éthyl. ($p = 7,93$) Id. ($p = 15,83$)	_
CH.O(C ¹ H ² O) CH.O(C ¹ H ² O) CO	[α] _u +188°,8 +189°,8 (composé β)	Id. $(p = 7,93)$ Id. $(p = 15,84)$	

d.-Tartrique (acide). $C^{\dagger}H^{6}O^{6} = CO.OH$ CH(OH)

co.он

1° DISSOLUTIONS AQUEUSES.

$$t = 24^{oC}$$
. $p = 5 à 5o$.

RAIES.	[a] ² .
C	+[12,194-0,09446p]
D	+[12,194-0,09446p] +[14,980-0,13030p]
E	+[17,667-0,17514p]
$b_2,\ldots\ldots$	+[18,315-0,19147p]
F	+[10,379-0,23977p]
e	+[21,780-0,31437p]

ARNDTSEN [Ann. de Ch. et Phys. (3. s.), t. LIV, p. 412; 1858].

Raie D
$$(t = 0^{\circ} à 100^{\circ}) (p = 10 à 40)$$
.

TEMPERAT.	p=10.	p=20.	p = 40.
			
U	0 _	00	
o	+ 9,95	+ 8,66	+5,53
10	+10,94	+ 9,96	+ 7,49
20	+12,25	+11,57	+8,32
3o	+13,93	+12,49	+9,62
40	+15,68	+13,65	+11,03
5o	+17,11	+15,01	+12,27
60	+18,31	+16,18	+12,63
70	+19,42	+17,16	+13,38
80	+20,72	+18,40	+14,27
90	+22,22	+19,99	+15,91
100	+23,79	+21,48	+17,66

KRECKE (Arch. neerl., t. VII, p. 97; 1872).

$$[\alpha]_{b}^{20} + [15,06 - 0,131c] (c = 0,5 à 15)$$

LANDOLT (Ber. d. D. ch. Ges., t. VI, p. 1073; 1873).

$$\begin{array}{l} \left[\alpha\right]_{0}^{15} + \left[14,90 - 0,14c\right] \\ \left[\alpha\right]_{0}^{22,5} + \left[15,22 - 0,14c\right] \end{array} \right\} c = 5 \text{ à } 15.$$

HESSE (Lieb. Ann., t. CLXVI, p. 120; 1875).

Raie D $(t = 10^{\circ} \text{ à } 30^{\circ}) (p = 20 \text{ à } 50).$

TEMPÉRAT.	[a] _b .
10	+[14.154-0.1644n]
15	+[14,154-0,1644p] +[14,615-0,1588p]
	+[15,050-0,1535p] +[15,430-0,1480p]
30	+[15,429-0,1480p] +[15,784-0,1429p]

THOMSEN [J. f. prakt. Ch. (20 8.), t. XXXII, p. 211; 1885].

p .	[2] ²⁰ .
0,347	+16,28
0,577	+15,58
1,26	+14,65
2,23	+14,47
3,09	+14,27
4,72	+14,20

PRIBRAM (Ber. d. D. ch. Ges., t. XX, p. 1846; 1887).

	p=31.	p=50.			
RAIES.	(t = 15°).	(l = 15°).	$(t=60^{\circ}).$	(t=75°).	
C	+ 6,60	+ 5,96	"	"	
D	+9,84	+ 6,57	+11,50	+15,38	
<i>Tl</i>	+10,65	+6,62	+12,93	"	
F	+10,79	+ 5.59	+14,13	+19,53	
Sr = 461	+10,06	+ 3,11	+14,08	"	
$H\gamma \dots$	+ 8,58	+ 1,68	+12,44	"	
Rb = 420	+ 7,16	"	"	"	

SEYFFART (Wied. Ann., t. XLI, p. 134; 1890).

$$[\alpha]_{p}^{26} + [17,195 - 1,735p] \qquad (p = 0,2 \text{ à } 1,1)$$

$$+ [15,61 - 0,315p] \qquad (p = 1,2 \text{ à } 4,7)$$

$$+ [14,83 - 0,149p] \qquad (p = 4,7 \text{ à } 16)$$

$$+ [14,85 - 0,144p] \qquad (p = 20 \text{ à } 35)$$

$$+ [15,615 - 0,165p] \qquad (p = 36 \text{ à } 50)$$

PRIBRAM et Glücksmann (Monatsh. f. Ch., t. XIX. p. 136; 1898).

1	<i>t</i> = 20°.					
RAIES.	p = 10,06.	p = 20,92.	p=30.08.	p = 38,58.	p = 48,83.	
c	+11,73	-10,34	+ 9,42	+ 8,18	+6,82	,
D	+13,44	+12,23	+10,89	+ 9,42	+7,62	
E	+16,25	+13,82	+12,17	+10,46	+8,16	
b	+16,72	+14,30	+12,72	+10,58	+ 8,14	
F	+17,54	+14,62	+12,48	+10,19	+7,53	

	p = 18,66.					
RAIES.	/ = 0°.	t=10°.	/ = 20°.	l = 30°.	l = 50°.	
C	+ 8,90	+10,04	+10,06(1)	+11,43	+12,70	
D	+ 9,77	+11,49	+12,57	+13,26	+14,81	
E	+11,70	+12,95	+14,22	+15,60	+17,69	
b	+11,33	+13,16	+14,66	+16,00	+18,17	
F	+10,70	+12,99	+14,72	+16,31	+19,02	

(1) Faute d'impression probable. Lire 10,66.

	p=41,18.					
RAIES.	ℓ = 0°.	l = 10°.	t=20°.	t = \$0°.	t = 50°.	
C	+ 5,75	+ 6,80	+7°,75	+ 8,73	+10,41	
D E	$+6,05 \\ +5,98$	+ 7,50 + 7,80	+8,86 +9,687	+10,04 +11,36	+12,14 $+14,10$	
<i>b</i>	+5,75 +4,14	+7,75 +7,11	+9,689 +9,37	+11,53 +11,32	+14,41 +14,85	

WENDELL (Wied. Ann., t. LXVI, p. 1152; 1898).

2º DISSOLUTIONS DANS L'ALCOOL ÉTHYLIQUE.

Alcool absolu (p = 18,06).

RAIES.	[x] ^{21,5} .
C	+3,99
D E	+4,69 +3,53
b ₂	+3,37 +1,20
e	-4,975

ARNDTSEN (loc. cit., p. 415).

Alcool absolu.

$$[\alpha]_{0}^{20} + 3^{\circ}, 79 \quad \bullet (c = 5) \quad (2),$$

 $[\alpha]_{0}^{20} + 4^{\circ}, 21 \quad (c = 9, 79) \quad (1).$

PRIBRAM [Monatsh. f. Ch., t. IX, p. 485; 1888 (1)].

10. [Ber. d. D. ch. Ges., t. XXII, p. 6; 1889 (2)].

Alcool 97 $^{0}/_{0}$ (c = 1,8 à 16,3).

 $[\alpha]_0 + [4,33 - 0,06805c + 0,0018253c^2].$

HAMMERSCHMIDT (Inang. Dissert. Berlin; 1889).

Alcool 99
$$0/0$$
 ($c = 0.95$). [α]₀ + 5° , 5.

FAYOLLAT (C. R., t. CXVII, p 632; 1893).

3° DISSOLVANTS NEUTRES.

	[a] _D .	c.
	0	
Alcool methylique	+2,18	7,7
Alcool methylique	+1,39	15,4
Acétone (anhydre)	+0,71	18,4
Acétone et éther	—0,95	8,37

LANDOLT (Ber. d. D. ch. Ges., t. XIII, p. 2331; 1880).

	$\left[\begin{array}{c}\mathbf{z}\end{array}\right]_{\mathbf{D}}^{2\bullet}$.	c.
Eau et a vol. •/.		
Acctone $(a = 0 \text{ à } 75)$	+[14,405-0,149a]	4,866 9,389
Id. $(a = o \grave{a} 5 o) \dots$	+[13,76 -0,144a]	9,389
Id. (a = o à 5o)	+[12,44 -0,129a]	18,786
Alc. méthylique ($a = 0$ à 50).	$+[13,12-0,0356a-0,000557a^2]$	
Alc. éthylique $(a = 0 \text{ à 50})$.	$+[13,12-0,0705a-0,000886a^2]$	10,0
	$+[13,12-0,1215a-0,001026a^2]$	
/ Alcool mo	Sthylique $[\alpha]_0^{20} + 9.99$	

PRIBRAM (Monatsh. f. Ch., t. IX, p. 485; 1888).

Alcool éthylique...

| Ca |
$$a = 0.000$$
 | Ca | $a = 0.000$ | Ca | Ca | $a = 0.000$ | Ca | Ca | $a = 0.000$
Eau et agr urée pour 100gr du mélange.

$$[\alpha]_{0}^{20} = +[13,75+0,2743a+2001232a^{2}],$$

 $(c = 9,389), \qquad (a = 0 \text{ à } 16).$

PRIBRAM (Ber. d. D. ch. Ges., t. XXII, p. 6; 1889).

4º DISSOLVANTS ACIDES.

Dans l'eau, n mol. acide pour 1 mol. acide tartrique $[t = 25^{\circ}]$.

		D18801		
ACIDES.	n.	récentes.	chauffées à 100°.	<i>p</i> .
"	0	+13,12	0 //	14,29
Acide sulfurique	2	+10,56	"	12,04
Id	4	+8,27	"	10,40
Id	6	+ 6,21	\div 6,13	9,16
Id	16,8	+ 2,35	"	6,31
Acide azotique	6	+ 5,47	+ 4,89	13,48
Acide chlorhydrique	6	+ 7,01	+ 6,20	13,80
Acide acétique	6	+10,01	+ 9,29	13,51

Acide acétique à 99,3
$$^{0}/_{0}$$
..... $\left[\alpha\right]_{0}^{20} + 3^{0},94 \mid p = 2,16 + 7^{0},02 \mid p = 9,42$

LANDOLT (Ber. d. D. ch. Ges., t. XIII, p. 331; 1880).

Dans l'eau, Air acide pour 100st du mélange.

ļ	[x] _b ^{1.5} .	[2] ² •.	[æ] _p 2.	p.	A.
Acide sulfurique. SO'H ² + 2H ² ()	+10,67 $+9,32$ $+8,14$ $+6,32$	+11,28 + 9,84 + 8,65 + 6,97	+11,73 $+10,34$ $+9,29$ $+7,63$	12,44 22,20 16,21 32,29	12,87 11,40 25,64 17,10
Acide acétique. C² H¹ O²	+10,56 $+10,62$ $+9,69$ $+7,03$ $+6,85$ $+7,03$	+11,07 +11,15 +10,32 +7,70 +7,54 +7,73	+11,68 +11,67 +10,85 + 8,37 + 8,16 + 8,30	8,33 16,66 14,99 16,66 33,33 25,0	17,01 8,51 15,31 34,03 17,02 25,52
Acide citrique. C ⁶ H ⁸ O ¹	+10,32 $+10,63$ $+9,64$ $+6,74$ $+6,70$ $+6,77$	+10,84 +11,17 +10,22 + 7,55 + 7,38 + 7,47	+11,43 +11,69 +10,85 + 8,12 + 8,07 + 8,11	8,33 16,67 14,98 16,66 33,33 25,0	16,67 8,33 14,98 33,34 16,67 25,0

D'après l'auteur, le pouvoir totatoire est donné par les mêmes formules que pour l'eau pure, en y remplaçant p par $p+\Lambda$.

$$[\alpha]_0^{15} = + [14,615 - 0,1588(p + \Lambda)],$$

$$[\alpha]_0^{20} = + [15,050 - 0,1535(p + \Lambda)],$$

$$[\alpha]_0^{25} = + [15,429 - 0,1480(p + \Lambda)],$$

THOMSEN [J. f. prakt. Ch. (2' s.), t. XXXII, p. 211; 1885].

			$[\alpha]_{\rm b}^{20}$.	<i>c</i> .
Acide formiqu Acide acétique		+[13,02-0,107a] $+[13,02-0,128a]$ $+[12,02-0,145a]$		
Vol. égaux :	Acide formique Acide acétique	• • • • • • • • • • • • • • • • • • • •	$[\alpha]_{\nu}^{2^{0}} + 7,35$ + 6,53	c = 9,935.

$$Eau (admis) + 13, 12 (c = 10).$$

PRIBRAM (Monatsh. f. Ch., t. IX, p. 485; 1888).

5° ACTION DES SELS DISSOUS.

Eau.....
$$[\alpha]_0^{20} + 13^{\circ}, o3 \ (c = 15)$$

Eau + 8⁶ Na Cl dans 100^{cc}. $[\alpha]_0^{20} + 6^{\circ}, 16 \ (c = 15)$

Long [Amer. J. of Sc. (3° s.), t. XXXVI, p. 352; 1888].

Solutions aqueuses (n mol. sel pour 1 mol. acide tartrique).

t.	c.	SEL.	n.	MAXIMUM de [α] _D .	
17"	2,5	Molybdate acide d'ammonium. Mo¹ O²¹ (Az H⁴) ⁶	O 1 3	+ 13°,5 + 781°	GERNEZ (C. R., t. CV, p. 803; 1887, et t. CVIII, p. 943; 1889).
17"	Id.	Molybdate de sodium. Mo O' Na ²	0	+ 13°,5 + 517°	Id. (t. CIV, p. 785; 1887, et t. CVIII, p. 943; 1889).
16"	Id.	Molybdate de lithium. MoO'Li ²	0	+ 14°,0 + 484°	I.l. (t. CVIII, p. 943; 1889).
16°	Id.	Molybdate de magnésium. Mo O'Mg	0	+ 14°,0 + 523°	Id.
16°	Id.	Tungstate de potassium. Tu O'K ²	0	+ 14°,0 + 327°	Id. (t. CVI, p. 1528; 1888).
16°	Id.	Tungstate de sodium. Tu O ⁴ Na ²	0	+ 14°,0 + 278°	Id.

Eau avec potasse et azotate d'uranyle.

	MOLÉCULES.		
C+ H+ O+.	KOII.	(AzO*)*UO*.	$\begin{bmatrix} \mathbf{a} \end{bmatrix}_{\mathbf{D}}.$ $c = 0.75.$
1	0	0	+ 14,7
1	4	0	+ 46
1	0	4	+ 40
1	2	0,8	+240
1	2	4	+182
1	4	1,25	+265
1	4	4	+303
1	4	8	+223
1	6	4	-+231

Alcool avec potasse et azotate d'uranyle.

MOLÉCULES.			
C4 He Oe.	кон.	(AzO*)*UO*.	$\begin{bmatrix} \alpha \end{bmatrix}_{\mathbf{b}}.$ $c = 0.75.$
1	0	0	+ 6,6
1	0	4	+ 62,6
1	2	4	+113,4
1	4	4	+173,3

WALDEN (Ber. d. D. ch. Ges., t. XXX, pp. 2889 et 2894; 1897).

NOM ET FORMULE.	POUVOIR rotatoire «pécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
lTartrique (acide).	Identique, sauf le signe.		PASTEUR [Ann. de Ch. et Phys. (3° s.), t. XXVIII, p. 74; 1850].
tartrique (acide Diacétyl-) C* H ¹⁰ O* = CO OH CH.O.CO CH ³ CH.O.CO CH ³ CO OH	$-20^{\circ}, 07$ $-21^{\circ}, 33$ $-21^{\circ}, 50$ $-22^{\circ}, 16$ $-22^{\circ}, 48$ $-23^{\circ}, 04$ $[\alpha]_{0}^{2^{2}} -21^{\circ}, 52$ $+23^{\circ}, 14$ $-23^{\circ}, 63$	Eau $(c = 3,76)$ Id. $(c = 4,71)$ Id. $(c = 7,35)$ Id. $(c = 9,19)$ Id. $(c = 11,49)$ Id. $(c = 14,36)$ Id. $(c = 17,95)$ Alc. éthyl. $(c = 3,27)$ Id. $(c = 4,91)$ Id. $(c = 7,37)$ Alc. méthyl. $(c = 4,68)$	Pictet [Arch. de Genève (3° pér.), t. VII, p. 82; 1882].
-tartrique (acide Dibenzoyl-). $C^{18}H^{14}O^{8} = C^{4}H^{4}(C^{7}H^{5}O)^{2}O^{6}$			
-tartrique (acide Éthyl-). C ⁶ H ¹⁰ O ⁶ = CO OC ² H ⁵ CH (OH)	[a] _u +21°,8 + 7°,1	Eau $(c = 2,25)$ Alcool $(c = 1,13)$	FAYOLLAT (C. R., t. CXVII p. 632; 1893).

-tartrique (acide Éthyl-).
$$\alpha = \frac{1}{2} + \frac{1$$

-tartrique (acide Méthyl-).
$$\alpha_0 + 18^\circ$$
, 1 Eau $\alpha_0 = 2.07$ Hd. $\alpha_0 = 0.07$ Hs $\alpha_0 = 0.07$ Hs $\alpha_0 = 0.07$ Hs $\alpha_0 = 0.07$ Hz $\alpha_0 = 0.07$

Eau avec potasse et azotate d'uranyle.

MOLÉCULES.			
C. II. 0.	кон.	(Az O ²) ² UO ² .	$[a]_{0}$. $c = 0.965$.
1	0	0	+ 18°
1	3,3	0	+32
1	0	3,3	+ 23
1	1,6	3,3	+104
1	3,3	3,3	+232
1	3,3	6,7	+175
1	5	3,3	+209

WALDEN (Ber. d. D. ch. Ges., t. XXX, p. 2891; 1897).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
-tartrique (anhydride Diacétyl-). C*H*O' = CO CH.O(C'H'') CH.O(C'H'') CO	+ 58°,69	Id. $(c = 2,09)$ Acétone $(c = 4,40)$	Pictet (loc. cit.).
-tartrique (anhydride Dibenzoyl-). $C^{16}H^{12}O^{1} = C^{1}H^{2}(C^{1}H^{5}O)^{2}O^{5}$	+142",94	Acétone $(c = 1,57)$ Id. $(c = 4,64)$	Id.
-tartrique (anhydride Dicinnamyl-). $C^{22}H^{16}O^{7}=C^{6}H^{2}(C^{9}H^{1}O)^{2}O^{5}$	$[\alpha]_0^{15}$ + 203°, 2 + 232°, 8	Acetone ($c = 3,06$) Chlorof. ($c = 1,39$)	FRBUNDLER [Ann. de Ch. et Phys. (7° s.), t. III, p. 487; 1894].
-tartrique (anhydride Diphénylacétyl-). C ²⁶ H ¹⁶ O ¹ = C ⁴ H ² (C ⁶ H ³ . CH ² . CO) ² O ³	· , ,	Acétone $(c=2,30)$ Id. $(c=3,35)$ Chlorof. $(c=1,61)$ Alc. absolu $(c=2,26)$ Alc. étendu $(c=1,59)$	
-tartrique (anhydride Diphénylpropionyl-). $C^{22}H^{20}O^{1} = C^{4}H^{2}(C^{6}H^{3}.CH^{2}.CH^{2}.CO)^{2}O^{3}$	$[\alpha]_{D} + 38^{\circ}, 2$	Acétone (c = 3,17)	<i>Id.</i> , p. 486.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Tartrodiamide. C ⁴ H ⁴ Az ² O ⁴ = COAz H ² CH.OH	$[\alpha]_j + 133^\circ, 9$ (de l'ac. $dr.$) $[\alpha]_j^{11} - 134^\circ, 15$ (de l'ac. $g.$)	Eau Id. (p = 1,305)	PASTEUR [Ann. de Ch. ct Phys. (3°s.), t. XXXVIII, p. 466; 1853].
CO Az H²	$[\alpha]_b + 108^\circ, 0$ + 109°, 4 + 109°, 2 + 108°, 5	Id. $(c = 2,5)$ Id. $(c = 5)$	WALDEN (Zeits. f. physik. Ch., t. XVII, p. 596; 1895).
Taurocholate de sodium. C ²⁶ H ⁴⁴ Na Az SO ⁷	$\begin{array}{c c} [\alpha]_{b} + 21^{\circ}, 5 \\ [\alpha]_{r} + 34^{\circ}, 0 \\ [\alpha]_{b} + 24^{\circ}, 5 \\ [\alpha]_{r} + 39^{\circ}, 0 \end{array}$	Eau $[c = 9 \text{ (sans infl.)}]$ Alcool (id.)	Hoppe-Sevler [J. f. prakt. Ch. (15° 8.), t. LXXXIX, p. 25; 1863].
Tautocinchonine. C ¹⁹ H ²² Az O ²	$[\alpha]_{b}^{20}+209^{\circ},42$	vol. alc., 2 vol. chlorof. $(c = 3)$	Cordier von Löwenhaupt (Monatsh. f. Ch., t. XIX, p. 461; 1898).
Térébangélène (a).	[α] _D +15°,2	Pur. d ⁰ = 0,833	NAUDIN [Bull. Soc. chim., (2° 8.), t. XXXVII, p. 109; 1882].
Id . (β).	$[\alpha]_{D}+3^{\circ},2$	Pur. d ⁰ = 0,870	ID. (id., t. XXXIX, p. 407; 1883).
lTérébenthène. C10 H16 [de l'essence française,	[a]10 — 40", 30	Pur. $d^{10} = 0,8685$	RIBAN [Ann. de Ch. et Phys. (5° s.), t. VI, p. 15; 1875].
de Pinus maritima]	$[\alpha]_0^{20}-43^{\circ},40$	Pur. $d^{20} = 0.8587$	FLAWITSKY (Ber. d. D. ch. Ges., t. XII, p. 2357; 1879).
	•	Pur. $d = 0,860$ Sulf. de carb. $(p = 4)$ Alc. abs. $(p = 5)$	AIGNAN [Ann. de Ch. et Phys. (7° s.), t. I, p. 440; 1894].
dTérébenthène. C ¹⁰ H ¹⁶ [de l'ess. suédoise ou russe, de Pinus sylvestris]	$[\alpha]_{b}^{16} + 36^{\circ}, 3$	Pur. $d^{16} = 0,8681$	ATTERBERG (Ber. d. D. ch. Ges., t. X, p. 1202; 1877). [Tilden (J. of chem. Soc., t. XXXIII; 1878).]
	$[\alpha]_{\nu}^{20} + 32^{\circ}, o$	Pur. $d_4^{20} = 0.8600$	FLAWITSKY (Ber. d. D. ch. Ges., t. XX, p. 1956; 1887).
[des aiguilles de Pinus cembra]	$[\alpha]_{0}^{20} + 45^{\circ}, 04$	Pur. $d_{4}^{18} = 0,8601$	ID. [J. f. prakt. Ch. (2° S.), t. XLV, p. 117; 1892].

TABLE XVIII. - POUVOIRS ROTATOIRES DES CORPS LIQUIDES OU DISSOUS. 1151

NOM ET FORMULE.	POUVOIR retatoire specifique.	DISSOLVANT RT TENEUR.	obskrvateurs.
[de l'essence d'Eucaly ptus globulus]	[a]. + 40°	Pur. d ⁰ = 0,88	Votav (C. 8., t. CVI, p. 1450, 1888).
	[α] ¹⁵ + 39°	Pur. d* = 0,870	Bouchardat et Tardy Bull. Soc. chim. (3" \$.), t. XIII, p. γ66; 1895 .
[de l'essence américaine, de Pinus australis]	[a]j+21°,5		R., t. LV.
(Australène)	[α] ₀ + 13°,95	Pur. d = 0,864 Pur. d ⁷⁶ = 0,861	PESCI (Gazz. chim. ital., t. XVIII, p. 219; (882).
	[x]20 + 22", 85	Pur. d34 = 0,861	BARBIER et HILT (C. R., t. CVIII, p. 519; 1889).
-térébenthène (Iso-) (2). C'é H'é de l'australène	[2] ²² redge— to"	Pur. d ²⁹ = 0,8432	BERTHELOT [Ann. de Ch. et Phys. (3° 8.), t. XXXIX, p. 16; 1853].
	[x] ²⁰ — 8°,38	Pur. d ²⁰ = 0,8412	(C. R., 1889).
Id. (3). du 1térébenthène	[2];• 9°,45	Pur. d'* = 0,843	RIBAN (Ann. de Ch. et Phys. (5°s.), t. VI. p. ar8; r875].
(C1+H1+) H Br)-			,
(de).	[a] o°		Persci (loc. cit.). Wallach et Conrady (loc. cit.).
(chlor- bydrate de). (C ^D H ^D) H Cl [solide]	$[(\alpha)_{\text{runge}}^{24} - 23^{\circ}, 9]$	(c = 33,35)	BERTRELOT { Ann. de Ch. et Phys. (3* s.), t. XL, p. 14; 1854]. WALLACH et CONRADY (loc. cit).
factorel	[2] ₀ — 26°,3	1	Wallacii of Conrady (loc.
1d. [liquide]	[α] _p — 6°,85	Pur. d ⁰ = 1,016	BARGER (C. R., t. XCVI, p. 1066, 1883).
Id. [1d]	[2]a-29°	Pur d' = 1,017	1

NOM ST FORMULE.	POUVOIR rotatoire specifique	DISSOLVANT ET TENEUR.	OBSERVATEURS.
d (chlor- hydrate de). (C''H'') H Cl [solide] de Pinus cembra	[α] _a ^{1,4} + 31°, 23 + 30°, 96	Alcool (p = 12,24) Id. (p = 28,7)	FLAWITSKY [J f prakt. Ch. (2*0.), t. XLV, p. 117, 1892].
Id. de l'australène.	[α] ¹⁶ rouge + 9°,ο	l	BERTHELOT (loc. cit., p. 34.
!	[a] ± 0°	I	Pesci (loc. cit.).
-térébenthène a. (chlor- hydrate d'Iso-). (C''H'') HCl [solide]	[z] _{rouge} — 11", 2	i vol. alc., 2 vol. éther (c = 28,6)	BERTHELOT [Ann. de Ch. et Phys. (3° s.), t. XXXIX, p. 18, 1853]
-térébenthène β. (chlor- hydrate d'Iso-). (C''H'') HCl [hquide]	[2] ₀ —0",47	Pur. d*= 0,9927	Rinan (Ann. de Ch. et Phys. (5° s.), t. VI, p. 223, 1875).
	돌돌 de	Voir	
(dibro- mure de). C ¹⁰ H ¹¹ Br ² (du <i>Pinus cembra</i>)	[α] ₀ ¹² + 30°,5	Per. $d_4^{13} = 1,5813$	Flawitsky (loc. cit.).
(de l'essence française)	[α] ^{1π} 56°, 2	Pur. $d_4^{16} = 0,9201$	FLAWITSKY (Ber. d. D. ch Ges. t. VII, p. 2500 (879)
dTérébenthène (hydrate de). C'*H'*O (de l'essence russe)	[z] ^{19,5} → 48",4	Pur. d ₄ ^{19,5} = 0,9189	In. (1d., t. XX, p. 1989 1987)
dTérébenthène mono- nitré. C"H" (Az O1) (de l'australenc)	[a]h+2",98	Pur d = 1,0499	PESCI (Gazz. chim ital., t. XVIII, p. 219 (888).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT KT TENEUR.	OBSERVATEURS.
Cérébenthine (essence de). ssence française, de Pinus maritima)	$l = 0^{\circ}$ $[\alpha]_{0} - 28^{\circ}, 49$ $[\alpha]_{0} - 36^{\circ}, 61$ $[\alpha]_{0} - 36^{\circ}, 61$ $[\alpha]_{0} - 36^{\circ}, 61$ $[\alpha]_{0} - 71^{\circ}, 01$ $[\alpha]_{0} - 71^{\circ}, 01$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GERNEZ [Ann. Éc. norm. sup. (1° 8.), t. I, p. 25; 1864]. [Wiedemann (Pogg. Ann., t. LXXXII, 1851).]
	[2] ₀ ² - [36 Alco - [36 Benzè	$6,97 + 0,0048q$ $+ 0,000133q^{2}$]; $001 (q = 10 \text{ à } 90)$ $6,97 + 0,0215q$ $+ 0,000067q^{2}$] $0010000000000000000000000000000000000$	LANDOLT (Lieb. Ann., t. CLXXXIX, p. 311; 1877).
	$[\alpha]_{d}^{20} - 29^{\circ}, 74$	Pur. $d_4^{26} = 0.8614$	WENDELL (Wied. Ann., t. LXVI, p. 1159; 1898).
L (ess. américaine, de Pinus australis)	$[\alpha]_b^{22} + [1$	Pur. $d^{21} = 0.9108$ 4.17 + 0.0118q] (q = 27 à 78)	LANDOLT (loc. cit.).
	$[\alpha]_{c}^{2^{\circ}} + 15^{\circ}, 345$ $\Rightarrow p + 19^{\circ}, 535$ $\Rightarrow k + 25^{\circ}, 59$ $\Rightarrow k + 26^{\circ}, 61$ $\Rightarrow k + 30^{\circ}, 915$		WENDELL (loc. cit.).
Id. (css. russe, de Pinus sylvestris)	$[\alpha]_{b}^{20} + [34,$ Alcool $[\alpha]_{b}^{20} + [34,$ Acide acéti $[\alpha]_{b}^{20} + \frac{35}{1}$ v vol. ac. acét.; (1	q - 120,27 (q = 10 à 90) +,89 - 0,00175q $+ 0,000335q^2$] que (q = 10 à 90) $\frac{12 - 0,2218v}{1 - 0,0062v}$ (1) 1000000000000000000000000000000000000	

NOM ET FORMULE.	POUVOIR retatuire specifique	DISSOLVANT ET TENEUR.	ODSERVATEURS.
Voir Cam	phène.	•	l
Terpène.	[a]24+37°,9	Pur. d ²³ = 0,8525	LANDSBENG (Arch. d. Pharm. t. CCXXVIII, p. 85; 1890).
(de l'essence de carotte)	<u> </u>	1	
(de l'essence de citron) (voir Limonène)			FLAWITSKY [Bull. Soc. chim. (2* s.), t. XXXV, p. 271; 1881].
	NI NI		Outvert (Gazz, chim, ital., t. XXI, p. 318; 1891).
(de l'essence de cumin)	[a]n+29",46	Pur. d ²⁴ = 0,8604	WOLPIAN (Pharm. Zelt. Russl., t. XXXV, p. 145, 1896).
(de l'ess, de menthe poivrée)	[a]24 - 41°,09	Pur. di* = 0,8571	***
(de l'essence de thuya)	$[\alpha]_{n}^{15} + 36^{\circ}, 7$	Pur. d15 = 0,852	J
(du goudron de pin)	[a],-19°,1	Pur. d ² = 0,866	RENARD (C. R., t. CXIX, p. 165; 1894).
(du menthol)	[2] _f + 5°, 2	Pur. d10 = 0,8178	of chem. Soc., t. XLI, p. 49; 1881).
Terpène (iso-). C'* H'* (dérivé de l'ess. française)	[2]n - 61",0	Pur. d ²⁰ = 0,8486	FLAWITSKY (Ber. d. D. ch. Ges., t. XII, p. 2355; 1879)
Id. (dérivé de l'ess. russe)	[α] ^{2#} 57",6	Pur. d24 = 0,8480	lb. (Id., t. XX, p. 1961. 1887).
Id. (dérivé de la résine de sapin)	[a], -47", 5	Pur. d'' = 0,8569	KURILOVE [J. f. prakt. Ch. (2* 8.), L. XLV, p. 231, 1892].
Terpène (dibromure de). C ¹⁰ H ¹⁶ Hr? (de l'ess. de cumin)	[a];* 7", 04	Pur d ¹⁶ = 1,1242	WOLPIAN (Pharm. Zeits. Russi., t. XXXV, p. 145, 1896).
Terpène (nitrosochlo- rure de). (C ¹⁰ II ¹⁶) Az O Cl (de l'ess. de menthe porvree)	1	Chlorof (c = 0,546)	Andres et Andresw (J Soc. physchim russe t. XXIII, p 26, 1891)

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Terpène (tétrabro- mure de). C'' H'' Br'	[2] _D — 18°, 71		ld.
Terpilène.	$[\alpha]_{b}-62^{\circ},15$	Pur. d [•] = 0,86	BOUCHARDAT et LAFONT (C. R., t. CII, p. 320; 1886).
Terpilène (acétate de). C ¹⁰ H ¹⁶ (C ² H ⁴ O ²)	$[\alpha]_{0}^{15}-58^{\circ},4$	Pur. $d^0 = 0.9827$	Id.
Terpilène (formiate de C ¹⁰ H ¹⁶ (CH ² O ²) (de l'essence française)	LAFONT [Bull. Soc. chim. (2° S.), t. XLIX, p. 328; 1888].		
(de l'essence américaine)	$ [\alpha]_{b} + 16^{\circ},55$	Pur. $d^0 = 0.9989$	
Terpilénol. C''H''O (de l'acétate g.)	[a] _b — 64°, 3	Pur. d ⁰ = 0,961	Bouchardat et Lafont (C. R., t. CII, p. 433; 1886].
(du formiate g.)	[a] _p — 80°	Pur. $d = 0.9530$	LAFONT (loc. cit.).
(du formiate dr.)	[α] _b +19°, 08	Pur.	-
(du térébenthène dr. d'Eucalyptus)	[a] _v + 88°		BOUCHARDAT et TARDY [Bull. Soc. chim. (3° s), t. XIII, p. 766; 1895].
(du 1térébenthène)	[x] _u — 117",5		ERTSCHIKOWSKY (J. Soc. phys chim. russe, t. XXVIII, p. 132; 1896).

Terpinol. Voir Térébenthène (hydrate de) et Terpilénol.

Tétrahydronaphtylène- diamine (chlorhydrate de). (ac.1.5) C ¹⁶ H ¹⁴ Az ² .2 H Cl	$\begin{array}{c c} [\alpha]_{\nu}^{17.5} - 7^{\circ}, 5\\ (\text{gauche}) \end{array}$	Eau ($c = 3.96$)	BAMBERGER (Ber. d. D. ch. Ges., t. XXIII, p. 292; 1890).
	$\frac{\left[\alpha\right]_{0}^{11.3}+8^{\circ},15}{(\text{droit})}$	Eau (c 2,44)	
lTétrahydropapavérine. C ²⁶ H ²⁵ Az O ⁴	Pope et Peachey (J. of chem. Soc., t. LXXIII, p. 809; 1898).		
dId.	$[\alpha]_{D} + 153^{\circ}, 7$ + 198°, 3	Chloroforme (c = 4.34 Ac .acétique (c = 4.00)	

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	. OBSERVATEURS.
l Tétrahydropapavérin (dabromocamphosul fonate de). (C ²⁰ H ²⁵ AzO ⁴) C ¹⁰ H ¹⁴ BrO.SO ³	1-	Alc. absolu (c = 0,28)	Id.
dTétrahydroquinaldine C'OH'Az = C'OH'Az H.CH(CH3)	3• [α] ¹ • + 55°, 99	Pur. $d^{16} = 0.959$	LADENBURG (Ber. d. D. ch. Ges., t. XXVII, p. 78, 1894).
Tétratérébenthène. C ⁴⁹ H ⁶⁴	$[\alpha]_{p} + 20^{o}$ $(app.)$	Alc., 1 vol.; éther, 1 vol.	RIBAN [Ann. de Ch. et Phys. (5° 8.), t. VI, p. 44; 1875].
Tewfikose. Voir Lactose	•		-
Thébaine.	$[\alpha]_0^{25} - 215^\circ, 5$ $[\alpha]_0^{15} - 218^\circ, 6$	Alcool 97 */ ₀ (c = 1) Id. (c = 2) Id. (id.) Chloroforme (c = 5)	HESSE (Lieb. Ann., t. CLXXVI, p. 196; 1875).
Thébaine (chlorhydrate de). (C ¹⁹ H ²¹ Az O ³) H Cl + H ² O	Eau [a]; 2.3 — 163°, 25	$(c = 2 \grave{a} 4)$	1
oToluylcarvoxime. $C^{18}H^{21}AzO^{2} = C^{10}H^{14}.AzO.CO.C^{6}H^{4}.CH$ (1)	; 3 '	Chlorof. (p = 9,19)	GOLDSCHMIDT of FREUND (Zeits. f. physik. Ch., t. XIV, p. 404; 1894).
Idm. (1) (3)	[[α] ^{15.5} 26°.86]	Chlorof. $(p = 10,02)$	
Idp. (1) (4)	$ [\alpha]_0^{15.5} + 23^{\circ}, 44 $	Chlorof. $(p = 9.97)$	
Tréhalose. C12H22O11 + 2H2O (de l'ergot de seigle)	$[\alpha]_n \leftarrow 173^n, 2$	Eau [c = 10 (hydr.)]	MITECHERLICH (Monatsb. Akad. Berlin, 1857; p. 473).
(du tréhala)	[2], - 199°	Eau [r = 8.4 à 14,8 (hydr.)]	BERTHELOT [Ann. de Ch. et Phys. (3° s.), t. LV. p. 276; 1859].

NOM BT FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT RT TENEUR.	OBSERVATEURS.
(de l'ergot de seigle)	$[\alpha]^{15}_{\nu}+199^{\circ}$	Eau [$c = 6$ (anh.)]	MUNTZ [Ann. de Ch. et Phys. (5° s.), t. VIII,
(du tréhala)	$\frac{ [\alpha]_0^{16}-201^{\circ},5}{[\alpha]_0^{14}+200^{\circ},3}$	Eau [$c = 5,5$ (anh.)] Id. [$c = 7,7$ (id.)]	
(de Lactarius piperatus)	• •	Eau [$c = i$ (anh.)] Id. [$c = 3$ (id.)]	BOURQUELOT (Ball. Soc. Mycol., t. V, p. 119; 1889).
	[a] ₀ + 197°, 28	Eau [$p = 10 \text{ (anh.)}$]	APPING (Thèse, Dorpat;
	[a] _b + 176°,3	Eau (hydraté)	WINTERSTEIN (Zeits. f. physiol. Ch., t. XIX, p. 70; 1893).
Tréhalose octonitré. C ¹² H ¹⁴ (Az O ²)*O ¹¹	$[\alpha]_{0}^{70} + 173^{\circ}, 8$	Acide acétique (c = 3,5)	WILL et LENZE (Ber. d. D. ch. Ges., t. XXXI, p. 85; 1898).
Tréhalum. C ²¹ H ¹² O ²¹	[2] ¹³ +179°	Eau (c = 0,26 à 0,36)	Scheibler et Mittelmeier (Ber. d. D. ch. Ges., t. XXVI, p. 1331; 1893).

Triacétonemannite. Voir Mannitetriacétone.

Triacétylskikimique (acide). Voir -skikimique (acide Triacétyl-).

Triamylamine.
$$[\alpha]_b^{13} = 55^\circ, 5$$
 Pur. $d^{13} = 0.7964$ PLIMPTON (C. R., 1. XCII, p. 883; 1881).

Tri-i.-butyrylshikimique (acide). Voir -shikimique (acide Tri-i.-butyryl-).

Tribromocamphène. Voir Camphène tribromé.

Triméthylènesaccharine. C'2 H'' (CH2) 2 O'*	[a] ₀ — 22°, 9 — 22°, 8	Acétone ($c = 4,80$) Id. ($c = 5,88$)	WEBER et TOLLENS (Lieb. Ann., t. CCXCIX, p. 334; 1897).
lTrioxyglutarato de potassium. (C ⁵ H ⁶ O ⁷) K ² (du rhamnose)	$\begin{array}{c} [\alpha]_{0}^{13} + 9^{\circ}, 50 \\ [\alpha]_{0}^{16} + 9^{\circ}, 35 \\ [\alpha]_{0}^{14} - 9^{\circ}, 58 \end{array}$	Eau ($p = 8,42$) Id. ($p = 9,80$) Id. ($p = 22,28$)	WILL et PRIERS (Ber. d. D. ch. Ges., t. XXII, p. 1697; 1889).
(de l'arabinose)	$[\alpha]_{\nu}^{20} + 9^{\circ}, 13$	Eau (p = 3,57)	

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	OBSERVATEURS.
/Trioxyglutarique (acide). C'SH*O' = COOH[CH(OH)]'COOH (de l'arabinose)	[2] ² - 22°,7	Eau (p = 9,59)	E. FISCHER (Ber. d. D. c. Ges., t. XXIV, p. 1845 1891).
dId.	[2] ¹⁴ + 20°, 8	Eau	VON LIPPMANN (Ber. d. l. ch. Ges., t. XXVI, 1 3060; 1893).
-trioxystéarique (acide 2Iso-). C ¹¹ H ³⁶ O ⁵ = C ¹² H ³² (OH) ³ CO OH	1	-6°, 25 à 6°, 0 que (c == 10 à 15)	WALDEN (Ber. d. D. ch Ges., t. XXVII, p. 3475 1894).
Fripropionylshikimique (
Triticine. 6(C'H''O'S) II'O	$[\alpha]_j$ — 50°	Eau $(c = 2 å 4)$	MÜLLER (Arch. d. Pharm. t. CCIII, p. 3: 18-3).
(de Triticum repens)	[a] _b — 43",6	Eau	REIDEMEISTER (Jahr. & Forts. d. Thierch., 1881 p. 69).
	[2] _D — 47°	Eau (p = 10)	TANRET [Bull. Soc. chim. (3° s.), t. V, p. 731; 1891].
		Eau (sol. concentrée) Id. (sol. étendue)	KELLER (Inaug. Dissert. Münster: 1894).
(de Triticum repens)	[a] ₀ — 41°,07	Eau	EKSTRAND et JOHANSON (Ber. d. D. ch. Ges., t.
(de Dracaena australis)	$[a]_{n}$ — 36", 61	Eau	XX, p. 3317; 1887).
Tropinique (acide).	= = =	;	LIEBERMANN (Ber. d. D. ch. Ges., t. XXIV, p. 611; 1891).
dTropique (acide). C ⁹ H ¹⁰ O ³ ·: C ⁶ H ² CH ² OH CO OH	[2] _n - 71°.4		LADENBURG et HUNDT (Ber. d. D. ch. Ges., t. XXII p. 2591; 1889).
/ 73	[α] ₀ ·· 65°, 2	·	

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
βTruxilline. Voir Isoatro	pylcocaine.		
Turanose.		" à + 68" (app.) p = 50 à 35)	ALEKHINE [Ann. de Ch. et de Phys. (6° s.), t. XVIII, p. 547; 1889].
Turmerol. C ¹³ H ¹⁶ O (?)	$[\alpha]_{b}^{11} + 33^{\circ}, 52$	Pur. $d^{17} = 0,9016$	JACKSON et MENKE (Amer. chem. J., t. IV, p. 371; 1883).
	$[\alpha]_{\rm b}^{24} + 24^{\circ},58$	Pur. $d_4^{24} = 0.9561$	JACKSON et WARREN (Id., t. XVIII, p. 114; 1896).
Turpéthine. C16 H128 O36 (?)	[2] _D — 30°, 14		KROMBR (Zeit. Öster. ApothVerein, t. XLIX; 1895).
Turpéthique (acide).] 2] _D — 37°, 49		ld.
lTyrosine. C' H'' Az O' = OH.C'' H'.CH'.CH(AzH')COOH (1) (1)	$[\alpha]_{D}^{16,2} - 7^{\circ}, 98$ $[\alpha]_{D}^{20,3} - 9^{\circ}, 01$ $[\alpha]_{D}^{16,1} - 8^{\circ}, 86$	Eau et $\{c = 4,51\}$ Eau et $\{c = 5,8\}$ $\{c = 5,8\}$ Eau et $\{c = 5,8\}$ $\{c = 11,6^{\circ}/_{0} \text{ KOH}\}$	MAUTHNER [Sitzb. Akad. Wien, t. LXXXV (IIb), p. 882; 1882].
(des mélasses de betterave)			
(de la conglutine)	$[\alpha]_{D}$ — 15°,6 — 8°,48	Eau et $4^{\circ}/_{0}$ HCl (c=5) Eau et 21 $^{\circ}/_{0}$ HCl (id.)	SCHULZE et Bosshard (Zeits. f. physiol. Ch., t. IX, p. 98; 1885).
dId. C ⁹ H ¹¹ Az O ³	$[\alpha]_{n} \rightarrow 6^{n}, 85$	Eau et 25 $^{0}/_{0}$ H Cl $(p = 1,51)$	VON LIPPMANN (loc. cit.).
		•	
Urochloralate de potas- sium. C* H1* K Cl3 O1	[z] <i>j</i> — 60 °(app.)		MUSCULUS et von MERING [Bull. Soc. chim. (2° 5.)., t. XXIII, p. 488; 1875].
Urochloralate de sodium. C*H1*Na Cl3 O1	$[\alpha]_{D}$ — 65°°, 2	Eau $(p = 1)$	KÜLZ (Arch. f. Physiol., t. XXVIII, p. 306; 1881).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	., OBSERVATEURS
Valéraldoxime. Voir Valé	rique (aldoximo	9).	i
Valérate d'aniline. C'H'. COOH (AzH'. C'H')	[x] _u - 6°,30	Eau (c = 4,68)	GUYE et Rossi [Bull. Soc. chim. (3° s.), t. XIII, p. 468; 1895].
Valérate de diéthylamine. C'H'. CO OH [Az H (C'H')]	[z] _b + 4",99	Eau (c = 4,23)	ld.
Valérate de lithium. C'H'. CO O Li	[a] _• + 8°, o	Eau (c = 2,49)	<i>Id.</i> , p. 466.
Valérate de potassium. C'H'.COOK	[2] _b - 6°,4	Eau ($c = 3,23$)	Id.
Valérate de pyridine. C'H2.COOH(C5H3Az)	[z] _D + 6°, 36	Eau (c = 4,36)	/d., p. 468.
Valérate de rubidium. C ⁴ H ⁹ . CO O Rb	[a] _u 5°,4	Eau (c = 4,31)	ld., p. 466.
Valérate de sodium. C'11º. CO O Na	[2] _b 7°, 2	Eau (c = 2,86)	ld.
Valérate amylique. $C^{10} H^{20} O^2 = C^5 H^9 O^2$, $C^5 H^{11}$ (?)	[x] _b + 4".9		PIERRE et PUCHOT (C. R., t. LXXVI, p. 1332; 1873). [Erlenmeyer et Hell (Lieb. Ann., t. CLX, 1871).]
	[a] _v - 8",7		LEY (Bcr. d. D. ch. Ges. t. VI, p. 1368; 1873).
/ malánata vl	$\begin{array}{c} [\alpha]_{0}^{14} & \cdots & 12^{o}, 32 \\ (ac. dr.; alc. g.) \\ [\alpha]_{0}^{17} & \rightarrow & 10^{o}, 11 \\ (ac. dr.; alc. rac.) \end{array}$		GUYE et GAUTIER [Bull. Soc. chim. (3° s.), t. XIII, p. 461; 1895]. [Guye et Guerchgorine (Arch. de Gen. (4° Pér.), t. IV, 1897).]
Valérate iamylique. $C^{10} H^{20} O^2 = C^4 H^9$. $COO CH^2$. CH^2 . $CH(CH^3)^2$	[α] ^{1:} + 9",96	Pur. $d^{17}=$ 0,857	Id.
Valérate benzylique. C12 H16 O2 G• H9, CO O CH2, C9 H•	$[\alpha]_{\mu}^{22} - 5^{\circ}, 3_{1}$	Pur. $d^{22} = 0.982$	GUYR et CHAVANNE (C. R., t. CXVI, p. 1455; 1893).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	OBSERVATEURS.
Valérate n butylique. $C^9H^{18}O^2 =$	$[\alpha]_{b}^{22}+10^{\circ},60$	Pur. $d^{22} = 0.856$	Id. [Pierre et Puchot (loc. cit.).]
C'H'.COO.CH'.CH'.CH'.CH'	$[\alpha]_{b}^{17}+9^{\circ},52$	Pur. d:= 0,860	GUYK [Bull. Soc. chim. (3° 8.), t. XI, p. 1110; 1894]. [Guye et Guerchgorine (loe. cit.).]
Valérate i butylique. $C^9H^{11}O^2 =$	$[\alpha]_0^{22} + 10^\circ, 48$	Pur. $d^{22} = 0.855$	GUYE et CHAVANNE (loc. cit.).
C'H ³ . CO O CH ² . CH (CH ³) ²	$[\alpha]_{b}^{1}+9^{c},17$	Pur. $d^{11} = 0.856$	GUYE (loc. cit.). [Guye et Guerchgorine (loc. cit.).]
Valérate éthylique. C'H'' O' = C'H''. COOC'H''	$[\alpha]_{u}^{22} \rightarrow 13^{\circ},44$	Pur. $d^{22} = 0,864$	GUYE et CHAVANNE (loc. cit.). [Pierre et Puchot (loc. cit.).]
$C^6 H^{12} O^2 = C^1 H^9 \cdot CO O CH^3$	$[\alpha]_{0}^{22}+16^{\circ},83$	Pur. $d^{22} = 0,882$	Id.
	$[a]_{\mu}^{18} + 14^{\circ}, 63$	Pur.	Do AMARAL [Arch. de Gen. (3° Pér.)., t. XXXIII, p. 434; 1895].
	$[\alpha]_{666} + 11^{\circ}, 53$ $p + 14^{\circ}, 62$ $p_{533} + 18^{\circ}, 47$ $p_{489} + 21^{\circ}, 14$ $p_{448} + 28^{\circ}, 81$ $(\ell = 16^{\circ} \text{ à } 19^{\circ})$	Pur. d = 0,884	GUIE et JORDAN (C. R., t. CXXII, p. 884; 1896). [Voir Table XVII (I. E.).]
Valérate n propylique $C^s H^{16} O^2 = C^4 H^3$. CO O CH ² . C ² H ³	$[z]_{D}^{22} + 11^{\circ},68$	Pur. $d^{23} = 0,860$	GUYE et CHAVANNE (loc. cit.). [Picrre et Puchot (loc. cit.).] [Guye ct Guerchgorine (loc. cit.).]
d.-Valérique (acide). $C^3H^{10}O^2 = \frac{CH^3}{C^2H^3}$ CH.COOH	$[\alpha]_{D}^{22}+13^{\circ},64$	Pur. $d^{22} = 0.938$	Id. [Lcy (Ber. d. D. ch. Ges., t. VI; 1873).]
(de l'alc. amylique g.)	$[\alpha]_{b}^{32}+13^{\circ},9$	Pur. $d^{22} = 0.936$	ROOBRS (J. of chem. Soc., t. LXIII, p. 1134; 1893).
	[2] ₀ +13°,64 +17°,3	Pur. Eau $(c = 2,46)$	Guyz et Rossi [Bull. Soc. chim. (3. s.), t. XIII, p. 465; 1895].
(Voir la suite au verso)	$[\alpha]_{0}^{11} + 11^{\circ}, 27$ $[\alpha]_{0}^{59,5} + 10^{\circ}, 84$	Pur.	Oo Amaral [Arch. de Gen. (3° Pér.), t. XXXIII, p. 434; 1895].

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pur.	GUYE et MII. ASTON (C. R., t. CXXIV, p. 196; 1897).
(de la convolvuline).	[x]" 17°,5	Pur. d ¹⁵ = 0,948	TAVERNE (Rec. Trav. chim. d. P. B., t. XIII, p. 201; 1894).
lId. (par dédoublement de l'acide inactif de synthèse)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 3 5	Schützet Markwald (Ber. d. D. ch. Ges., t XXIX, p. 57: 1896). Voir Table XVII (I. E.)}.
Valérique (aldéhyde). $C^{2}H^{10}O = \frac{C^{2}H^{5}}{CH^{3}}CH.COH$	$\frac{[\alpha]_0^{12,5} = -11^0, 14}{}$	$\frac{d^{12,5} = 0.765}{\text{Pur. } d^{14,6} = 0.813}$	Do Amaral (loc. cit.).
Valérique (aldoxime). C ⁵ H ¹¹ Az () = C ² H ⁵ CH, CH; Az, OH	$\begin{array}{c} [\alpha]_{b}^{20} \rightarrow 11^{\circ}, 13 \\ [\alpha]_{b}^{20,9} 9^{\circ}, 97 \end{array}$	Pur. $d^{20} = 0,8908$ $d^{50,9} = 0,8706$	ld., p. 121.
iValéryl-decgonine méthylique (chlor- hydrate de). (C ¹³ H ²⁵ Az O ¹) H Cl == (C ⁵ H ⁹ O,C ⁹ H ¹³ Az O ³ ,CH ³)H C		Alcool (c = 2,01)	DECKERS et EINHORN (Ber. d. D. ch. Ges., t. XXIV, p. 10; 1891).
iValéryl-lphénylglyco- late éthylique. C ¹⁵ H ²⁰ O ⁴ C ⁶ H ⁵ , CH, CO O C ² H ⁵ O — CO, C ⁴ H ⁹	$[a]_{b}-116^{\circ},9$	Pur. d ²⁰ = 1,0544 Sulf. de carb. (c = 5) Id	WALDEN (Zeits. f. physik. Ch., t. XVII, p. 712; 1895).
Vellosine.	[α] ²³ 22 ⁿ , 8	Chlorof. (c 10.81)	FREUND et FAUVET (<i>Lieb.</i> Ann., t. CCLXXXII, p. 251; 1894).

		OBSERVATEURS.	DISSOLVANT ET TENEUR.	POUVOIR rotatoire spécifique.	NOM ET FORMULE.
Vincétoxine.	. 277;	TANRET (<i>C. R.</i> , t. C, p. 2 1885).		[a] _u — 50°	Vincétoxine. C16 H24 O6

Viscose. Voir Dextrane.

Vitelline.	$\begin{array}{c c} [\alpha]_b - 43^c, 4 \\ (moy.) \end{array}$		CHITTENDEN et MENDEL (Jahr. f. Thierch., 1895; p. 29).
Volémite. C' H'6 O'	$[\alpha]_{b}+2^{\circ},4$ + 2°,0	Eau $(c = 12,9)$ Id. $(c = 15,1)$	BOURQUELOT (Bull. Soc. Mycol., t. V, p. 161; 1889).
	$[\alpha]_{\nu}^{20}+1^{\circ},92$	Eau $(c = 12,9)$ Id. $(c = 15,1)$ Eau $(p = 10)$	E. FISCHER (Ber. d. D. ch. Ges., t. XXVIII, p. 1973; 1895).
Xylane. C'HO' (du bois de hêtre)	1		THOMSEN (Ber. d. D. ch. Ges., t. XIII, p. 2168; 1880).
(du saule).	$[\alpha]_{b}-60^{\circ}$	Id. $(c=0,7 \text{ à } 1,4)$	ID. (1d., t. XIV, p. 135; 1881).
(du hètre).	[2] _b — 69°, 62	Less. de soude à 2 $^{0}/_{0}$ ($c=2$)	WHEELER et TOLLENS (Lieb. Ann., t. CCLIV, p. 322; 1889).
(de la paille de blé).	$ [\alpha]_D - 84^n, 1$	Id. (c=1,96)	ALLEN et TOLLENS (Lieb.
(de Luffa cylindrica).	[a] _b - 69°, 23	$ \qquad \qquad (c=1,6)$	ALLEN et TOLLENS (Lieb. Ann., t. CCLX, pp. 293 et 298; 1890).
Xylite . C ⁵ H ¹² O ⁵	$[\alpha]_{0}^{12} + o^{\circ}, 8$	Eau (p = 10)	BERTRAND [Bull. Soc. chim. (3°s.), t. V, p. 556; 1891].
	inactif		E. FISCHER et STAHEL (Ber. d. D. ch. Ges., t. XXIV, p. 538; 1891).
Xylochloral . C'H'Cl'O' = C'H'O'.CO.CCl	$[\alpha]_0 - 13^\circ, 6$	•	HANRIOT (C. R., t. CXX, p. 154; 1895).
Xylonate de strontium. (C ⁵ H ⁹ () ⁶) ² Sr	$[2]_0 + 12^0, 14$	Eau (c = 4,305)	ALLEN et TOLLENS (Lich. Ann., t. CCLX, p. 311; 1890).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISGOLVANT ET TENEUR	OBSERVATEURS.
Xylonique (acide). C'H10 O'S	[2] _D - 7°, 1 (après 10 min.) = 0° (après 4 lieures) + 17°, 48 (après 24 heures)	Eau (c = 3,425)	Id.
Xylosamine . C ⁵ H ⁹ O ⁴ (Az H ²)	[α] _b + 18°, 05	Eau (c = 10)	LOBRY DE BRUTN et VAN LEENT (Rec. Trav. chim. d. P. B., t. XIV, p. 137; 1895).
Xylosazone. $C^{11}H^{20}Az^4O^3 = C^3H^6O^3[Az.AzH(C^6H^3)]^2$		Alc. 95 $^{\circ}/_{\circ}$ ($p = 2,815$)	ALLEN et TOLLENS (loc. cit.).
Xylose. C'H''O' = HOHH HO.CH''.C.C.C.COH OHHOH (du bois de hêtre)	[2] ²⁰ + 85°, 86 (après 5 min.) + 18°, 59 (après 16 heures)	Eau (c = 10,24)	WHEBLERetTollens(Lieb. Ann., t. CCLIV, p. 311; 1889). [Bauer (Id., t. CCXLVIII; 1888).]
	[α] _u ²⁰ \div 78°,61 (après 4,5 min.) \div 19°,22 (après 24 heures)	Eau (c = 11,07)	PARCUS et TOLLENS (1d., t. CCLVII, p. 175; 1890).
(de la paille de blé) (du bois de cerisier)	[2] _n 19 ⁿ , 51 19 ⁿ , 3	1d $(c = 10, 13)$	ALLEN et TOLLENS (Id., t. CCLX, pp. 294 et 297; 1890). [Hébert (C. R., t. CX; 1890).]
(de la paille d'avoine)	[2] ²³ 19°, 07	Eau ($p = 9,77$)	BERTRAND [Bull.Soc. chim. (3° 5.), t.VII, p. 500; 1892].
	Eau (p [α]; α = [23,089 — o Eau (p [α]; α \rightarrow [40,86	· ·	Schulzk et Tollens (Lieb. Ann., t. CCLXXI, p. 44; 1892). (1) Formule calculée par Schütt (Tabellen, 2º éd., p. 457).

NOM ET FORMULE.	POUVOIR rotatoire spécifique,	DISSOLVANT ET TENEUR	OBSERVATEURS.
•	$[x]_{b} + 34^{\circ}, 17 + 28^{\circ}, 0$	Alc. 90 $^{0}/_{0}$ ($p = 6,54$) Alc. 60 $^{0}/_{0}$ (id.)	TANRET [Bull. Soc. chim. (3° s.), t. XV, p. 202; 1896].
Xylose tétracétylé. C'3 H ⁶ (C ² H ³ O) ⁴ O ³	[2],—25°,43	Alcool	STONE (Amer.ch.J., t.XV, p. 654; 1893).

Xylosecarbonique (lactone). Voir l.-Gulonique (lactone).

Xylose-β.naphtyl- hydrazone.

$$(2)_{D} + 18^{\circ}, 6$$
Alc. méthyl. $(p = 0.5)$
Alb. Van Ekenstein et Lobry de Bruyn (Rec. Trav. chim. d. P. B., t. XV, p. 226; 1896).

Ylangol. [
$$\alpha$$
]_b — 20°, 7 Alcool ($p = 10, 22$) REYCHLER [Bull. Soc. chim. (3° s.), t. XI, p. 411; 1894].

APPENDICE A LA TABLE XVIII.

POUVOIRS ROTATOIRES DES VAPEURS.

I. Gernez [Ann. Sc. Éc. Norm. sup. (1^{re} s.), t. I, p. 37; 1864].

Pouvoirs rotatoires pour le jaune moyen [2]; (avec la lumière Drummond).

Camphre $\begin{cases} (\text{fondu}) &70,33 \\ (\text{en vapeurs}) &70,31 \end{cases}$	Température. o C
Camphre (fondu)70,33	204
(en vapeurs)70,31	220
Faconce de térébonthine ((liquide)35,81	154
Essence de térébenthine { (liquide)35,81 (vapeur)35,49	168
Essence de bigarade $\begin{cases} (liquide) & (-78,06) \\ (vapeur) & (-75,70) \\ (vapeur) & (-70,22) \end{cases}$	156
Essence de bigarade	172
((vapeur) +70,22	190
	154
Essence d'orange { (inquité)	176
Essence d'orange $ \begin{cases} (liquide) & -88,15 \\ (vapeur) & +77,09 \end{cases} $	195

II. Guye et do Amaral [Arch. de Genève (3° pér.), t. XXXIII, p. 513; 1895].

Pouvoirs rotatoires pour le jaune moyen [x]; (avec un bec Auer).

SUBSTANCE.	TEMPÉRATURE.	[z], VAPEUR.	$[\alpha]_j$ LIQUIDE (température ordinaire).
Amylamine	154	$-2,1 \dot{a} - 2,2$	- 1,8
Amyle (bromure d')	138° à 137°	+ 1,9	-i- 2 ,8
Amyle (iodure d')	156° à 157°	-3,9 à + 4,1	-:- 5,6
Amylique (acétate)	161° 189° à 183°	3,1 2,6 à 3,2	+ 2,8
Amylique (alcool)	147°.5 à 148° 5 175° à 176°5	-5,8 a - 6,5 -6,4 a - 5,9	_ 5,ı
Amylique (chloracétate)	198"	· 1,9 à 1,6	+ 3,1
Biamyle	173°	$+10,9 \ a +10,7$	-11,1
Diamylamine	199°	+5,9 à + 5,3	- + - 6,3
Valérate méthylique	146°	+14.8 à14.5	+16,4
Valérique (acide)	188,	-10.9 à +10.7	-+13,5
Valérique (aldéhyde)	137° 145°, 5	+ 7,1 6,4	+14,6

TABLE XIX.

COULEURS D'INTERFÉRENCES.

Cette Table donne les couleurs produites par des rayons de lumière blanche normaux à une lame d'air de l'épaisseur indiquée (en millionièmes de millimètre).

I. NEWTON.

- [(1) Optice, Liber secundus, Pars II, p. 195; 1rd édition. Londres, 1706]
- [(2) Optique, Livre II, 2º Partie. Traduction Coste. Paris, 1722]

		RAYONS RÉFLÉCHIS.		
	EPAISSEUR.	(1)	(2)	
Couleurs	μμ 12,5	Nigerrimus.	Très noir.	
du premier ordre.	25,5 51	Niger. Nigrescens.	Noir. Commencement de noir.	
	61	Cæruleus.	Bleu.	
		Albus.	Blanc.	
	180,5	Flavus.	Jaune.	
	203	Aureus.	Orangé.	
	228,5	Rubeus.	Rouge.	
	 			
Couleurs	283,5	Violaceus.	Violet.	
du deuxième ordre.	326	Indicus.	Indigo.	
	355,5	Cæruleus.	Bleu.	
	384	Viridis.	Vert.	
	413,5	Flavus.	Jaune.	
	437,5	Aureus.	Orangé.	
		Rubeus clarior.	Rouge éclatant.	
	499,5	Coccineus.	Écarlate.	

!	1	RAYONS RÉFLECHIS.		
	RPAISSEUR.	(1)	(2)	
Couleurs	533,5	Purpureus.	Pourpre.	
du troisième ordre.		Indicus.	Indigo.	
	594,5	Cæruleus.	Bleu.	
•	640	Viridis.	Vert.	
	689,5	Flavus.	Jaune.	
	736,5	Rubeus.	Rouge.	
	813	Rubeus subcæruleus.	Rouge bleuåtre.	
Couleurs	863,5	Viridis subcæruleus.	Vert bleuåtre.	
du quatrième ordre.	•	Viridis.	Vert.	
	•	Viridis flavescens.	Vert jaunätre.	
		Rubeus.	Rouge.	
Couleurs	1168,5	'Cæruleus subviridis.	Bleu verdâtre.	
du cinquième ordre.	1333,5	Rubeus.	Rouge.	
Couleurs	1492	Cæruleus subviridis.	Bleu verdåtre.	
du sixième ordre.	1651	Rubeus.	Rouge.	
Couleurs	1803,5	Cæruleus subviridis.	Bleu verdatre.	
du septième ordro.	1956	Albus rubescens.	Blanc rougeâtre.	

II. WERTHEIM.

[Annales de Chimie et de Physique (3° s.), t. XL, p. 180; 1854]

	ÉPAISSEUR.	RAYONS REFLÉCHIS.	RAYONS TRANSMIS.
Couleurs	μμ	Noir.	Blanc.
du premier ordre.	20	Gris de fer.	Blanc.
-	1	Gris de lavande.	Blanc jaunâtre.
	•	Gris bleu.	Blanc brunåtre.
	1	Gris plus clair.	Jaune brun.
	1	Blanc avec une légère teinte verte.	!
	129,5	Blanc presque pur.	Rouge clair.
	1	,	Rouge carmin.
1	137,5	Jaune paille.	Rouge brun très foncé presque noir.
	$=\lambda j \times \frac{1}{3}$!	
	140,5	Jaune paille.	Violet foncé.
	1	Jaune clair.	Indigo.
	166	Jaune brillant.	Bleu.
	215	Jaune orangé.	Bleu verdåtre.
		1 0	Vert bleuåtre.
	268	Rouge chaud. Rouge plus foncé.	Vert påle.
	275,5	Rouge plus foncé.	Vert jaunåtre.
	$j=\lambda j\times \frac{1}{2}$		
	ı .o. 5	LD.	187 and miles a lair
Couleurs	1	Pourpre.	Vert plus clair.
lu deuxième ordre.	287,5	violet.	Jaune verdâtre.

Couleurs	282,5	Pourpre.	Vert plus clair.
iu deuxième ordre.	287,5	Violet.	Jaune verdâtre.
	294,5	Indigo.	Jaune vif.
	332	Bleu.	Orangé.
	364	Bleu verdåtre.	Orangé brunatre.
	373,5	Vert.	Rouge carmin clair.
	413	Vert plus clair.	Pourpre.
	$=\lambda j\times \frac{3}{4}$		
	421,5	Vert jaunâtre.	Pourpre violacé.
	433	Jaune verdatre.	Violet.
	455	Jaune pur.	Indigo.
	474	Orangé.	Bleu foncé.
	499	Orangé rougeatre vis.	Bleu verdåtre.
	550,5	Rouge violacé foncé.	Vert.
1	$=\lambda j$		

	ÉPAISSEUR.	RAYONS RÉPLÉCHIS.	RAYONS TRANSMIS.
Couleurs du troisième ordre.	564 ^{μμ}	Violet bleuâtre clair, teinte de passage.	Vert jaunätre.
	575,5	Indigo.	Jaune impur.
ı	629	Bleu, teinte verdatre.	Couleur de chair.
	667	Vert bleuâtre (vert d'eau).	Rouge mordoré.
	688	Vert brillant.	Violet.
	$=\lambda j \times \frac{5}{4}$		
	713	Jaune verdåtre.	Bleu violacé grisâtre.
	747,5	Rouge rose.	Bleu verdåtre.
•		Rouge carmin.	Vert beau.
	810,5	Carmin pourpré.	Vert clair.
	826	Gris violacé.	Vert jaunätre.
	$-\lambda j \times \frac{3}{2}$		
Couleurs	841	Gris bleu.	Jaune verdâtre.
du quatrième ordre.	855,5	Bleu verdåtre clair.	Gris jaune.
	872	Vert bleuâtre.	Mauve.
	905,5	Vert beau clair.	Carmin.
	963,5	Gris vert clair.	Gris rouge.
	$=\lambda j \times \frac{7}{4}$	Gris vert clair.	
	1003,5	Gris presque blanc.	Gris bleu.

III. QUINCKE.

(Pogg. Ann., t. CXXIX, p. 180; 1866).

Reproduction du Tableau de Wertheim, avec les modifications et additions suivantes :

	137,5	Jaune paille pâle.))
	215	Jaune brun.	Gris bleu.
	294,5	,,	Jaune d'or.
		Bleu ciel.	n
	667	Vert de mer.	Rouge brun.
	747,5	Couleur de chair.	Vert de mer.
	, , ,	Pourpre terne.	Vert de mer, terne.
	1	Vert de mer, terne.	,
	•	Rouge chair.	Vert.
	$-\lambda j < \cdot$	_	
Couleurs	•	Bleu vert, terne.	'Rouge chair, terne.
du cinquième ordi	~	Rouge chair, terne.	Bleu vert, terne.

IV. — ROLLETT.

[Sitzb. Akad. Wien, t. VII (III Ab.), p. 177; 1878].

ÉPAISSEUR. RAYONS RÉFLÉCHIS.		RAYONS TRANSMIS.	
Couleurs	μμ	Noir.	Blanc.
du premier ordre.	100	Gris lavande sombre.	Blanc brunâtre.
	107	Gris lavande plus clair.	Brun clair.
	116	Gris lavande très clair.	Brun sombre.
	124	Blanc bleuâtre.	Brun rouge.
•	129	Blanc verdâtre.	Pourpre sombre.
	135	Blanc jaunâtre.	Violet sombre.
		Jaune paille pâle.	Bleu sombre.
	140 164	Jaune brun.	Bleu plus clair, tendant au verdâtre.
	235	Orangé.	Bleu encore plus clair.
	245	Rouge.	Vert bleu påle.
	1 243	i rrougo.	, voic biod paic.
			
Couleurs	257	Pourpre.	Vert påle.
du deuxième ordre	272	Violet.	Vert jaune clair.
	282	Indigo.	Jaune clair.
	300	Bleu ciel.	Jaune d'or.
	352	Bleu ciel plus clair.	Orangé.
	372	Vert bleu très clair.	Rouge.
	387	Vert clair.	Pourpre foncé.
	409	Vert jaune.	Violet.
	435	Jaune.	Bleu.
	465	Orangé clair.	Bleu plus clair.
	490	Rouge.	Vert bleuâtre.
Couleurs	520	Pourpre.	Vert.
du troisième ordre.	55o	Violet.	Vert jaune clair.
	570	Bleu.	Jaune.
	600	Vert de mer.	Rouge chair.
	65o	Vert.	Pourpre.
	68 0	Vert jaune påle.	Bleu gris.
	726	Jaune sauve.	Bleu gris.
	, 750	Rouge.	Vert de mer.
D.	,	~	74

	ÉPAISSEUR.	RAYONS RÉFLÉCHIS.	RAYONS TRANSMIS.
Couleurs du quatrième ordre.	780 ^{µµ}	1 .	Vert, puis vert jaune.
	1	Bleu gris.	Jaune terne.
	870	Vert de mer.	Rouge chair.
	912	Vert et vert gris.	Rouge gris.
	996	Rouge gris, rouge et rouge terne.	Vert gris, puis vert et blanc verdâtre.
Couleurs du cinquième ordre.	1168	Vert gris, terne au com- mencement et à la sin.	7
	1264	Rouge chair, terne au com- mencement et à la fin.	Vert de mer.
Couleurs du sixième ordre.	1450	Vert bleu, terne au com- mencement.	Rouge chair.

SUPPLÉMENT

(clos pour fin décembre 1899).

TABLES II A V.

Longueur d'onde de la raie D₁

 $[l = 15^{\circ C}, II = 76^{\circ m}],$ 589\(\mu\psi, 5945.

Longueurs d'onde de quelques raies solaires

(calculées pour la temp. de 20°C.).

	μμ	1	μ ս
\mathbf{C}	<i>II</i>	· (Triple)	547,6588
	Ca 643,9125	Fe	545,5589
	Fe 643,0929	Fe	544,5057
	Fe 640,0097	Fe	537,1497
	Fe	Fe	528,3616
	Ca 612,2272	E_1 Fe, Ca	527,3400
	Ca 610,2760	Fe	522,6861
$\mathbf{D}_{\mathbf{i}}$	$Na \dots 589,5974$	$b_1 Mg \dots b_1 Mg \dots$	518,3655
	\ 568,8252	$b_2 Mg \dots $	517,2726
	Na	b_3 Ni, Fe	516,9024
	Fe 562,4584	b_* Mg , Fe	516,7422
	$Ca \dots 560, 1303$	Fe	509,0790
	Ca 559,4530	?	508,4118
	Fe 559,2251	Fe	508,3380
	Ca 558,8783	F //	486,1339
	Fe 558,6792	<i>Ti</i>	480,5093
	M_g	Mn	478,3429
	Ni 547,6942		

Raies du sodium (dans la flamme).

[pour
$$t = 20^{\circ C_{\cdot}}$$
].

THALÉN [Nova Acta Reg. Soc. Sc. Upsal. (sér. 3) 1898].

Raies du cadmium.

Cd 1	μμ 643,850 (admis) (¹)	Cd 4	^{μμ} 5 08,586
"	632,519	Cd5	479,994
Cd 2	537,815	Cd 6	467,8175
Cd3;	533,750	"	466,237
"	515,468	[Cd7	441,572

(1) Valeur de Michelson (ramenée à t = 20° C.).

HAMY (C. R., t. CXXVI, p. 231; 1898).

Raies du mercure.

Rapportées à λ_{Cd} = 508 $\mu\mu$, 5848 (1).

μμ 579,0677 576,9626 546,0769

(¹) Valeur de Michelson (ramenée à t = 20° °C.).

PEROT et FABRY (C. R., t. CXXVI, p. 1709; 1898).

TABLE VI.

INDICES DES GAZ.

GAZ.	RAIF	2.	$\frac{n-1}{a-1}$.		n [$0^{\circ C}$, $76^{\circ m}$].	
Argon.	D		0,9596		1,000 280 5	1.
Pur sans néon ni hélium.	D		0,9665	1	1,000 2825	3.
Azote.	D		1,0163	1	1,000 297 1	1.
Carbonique (anhydride).	D	1	1,5316		1,0004477	2.
Hydrogène.	D	1	0,4733		1,000 1383	1.
Oxygène.	_l D		0,9243		1,0002702	1.
1. R. 2. 3.	I	t Trav d.	ERS (Proc. Roy. Soc. (Zeits. f. physik. (Id., t. XXVIII.)	Ch., t. 2	(XV, p. 100; 1898).)-

^{3.} ID. (1d., t. XXVIII, p. 2 (9: 1899).

TABLE VII.

LIQUIDES REMARQUABLES.

	RAIES.	INDICE.	dn dit	OBSERVATEURS.
Eau.	C F H,	1,34031	$-10^{-7}(133,6+34,88t)$ $-10^{-7}(197,6+35,28t)$ $-10^{-7}(346,2+30,08t)$ (pour l'air froid) $[t = 10^{\circ} \text{ à } 40^{\circ}]$	BENDER (Wied. Ann., t. LXVIII, p. 343; 1899).
	C F H ₇	1,32738 1,33319 1,33640 [t = 50°]	$ \begin{vmatrix} -10^{-7}(359,0+24,19t) \\ -10^{-7}(256,8+27,22t) \\ -10^{-7}(97,0+30,34t) \end{vmatrix} $ [Id.] [$t = 40^{\circ} \text{ à } 70^{\circ}$]	<i>ld.</i> , p. 6-,6.
Chloroforme (chimiquement pur). $d_4^{18} = 1,4844$	C D Tl F	1,44346 1,44389 1,44643 1,44924 1,45271 1,45779		BRÜHL (<i>Zeits. f. physik.</i> Ch., t. XXX, p. 18; 1899).
Glycérine. cl(-: 1,2604 0,000662(t 20)	D	$[t = 20^{\circ}]$	$\begin{bmatrix} -10^{-7}(2387 + 0.876t) \\ [t = 20^{\circ} à 80^{\circ}] \end{bmatrix}$	Scheij (Rec. Trav. chim. d. P. B., t. XVIII, p. 181; 1899).
Naphtaline bromée (2)		1,64798 1,65667 1,68030 1,70215 [t == 23°] 1,61361 1,62200 1,64421 1,66622 [t == 98°, 8]		LEISS (Zeits. f. InstrK., t. XIX, p. 73; 1899).

TABLE VIII.

INDICES DES LIQUIDES.

A.
LIQUIDES INORGANIQUES.

NOM, FORMULE ET DENSITÉ.	RAIE.	INDICE.	VARIATION pour 1°C. dn dt	OBSERVATEURS.
Tétrabromure de silicium.	C	1,55820		ABATI (Zeits. f. physik.
Si Br ⁴	D	1,56267		Ch., t. XXV, p. 355; 1898).
$d_4^{23,5}=2,7722$	F			
	H_{γ}	1,57410		
Tétrachlorure de silicium. Si Cl ⁴ $d_4^{22,9} = 1,4756$	C D F	1,41019 1,41257 1,41829 1,42306		Id.

B.
LIQUIDES ORGANIQUES.

NOM, FORMU LE ET DENSITÉ.	RAIE.	INDICE.	VARIATION pour 1°C. $\frac{dn}{dt}$.	OBSERVATEURS.
Acétate de carvomenthol. $C^{12}\Pi^{22}C^{2} = C^{10}\Pi^{19}C.CC.C\Pi^{3}$ $d_{3}^{22} = 0.9280$	D	1,45079 [t-22°]		KONDAROFF et LUTSCHI- NINE [J. f. prakt. Ch. (2° s.), t. LX, p. 271; 1899].
Acétate de dihydroeucarvéol. $C^{12}\Pi^{20}O^2 = C^{10}\Pi^{11}O.CO.CH^3$ $d^{20} = 0.951$	D	1,46315 [t = 20°]		KLAGES et KRAITH (Ber. d. D. ch. Ges., t. XXXII, p. 2562: 1893).
Acétate de diméthyl (1.3)- Cyclohexanol (5). $C^{16}H^{18}O^{2} = C^{8}H^{15}O.CO.CH^{3}$ $d_{4}^{21} = 0.9226$	D	1,4370 [t = 21°]		KNORVENAGEL et MAC GARVEY (Lieb. Ann., t. CCXCVII, p. 162; 1897).
Acétate de méthylphényl- cyclohexanol. $C^{15} II^{20} O^2 = C^{13} II^{17} O.CO.CH^3$ $d_4^{20} = 1.0254$	D	1,5155 [t=20°]		KNŒVENAGEL et Gold- SMITH (Lieb. Ann., t CCCIII, p. 263; 1898).
Allylméthyl-tertbutyl- carbinol. C ³ H ¹⁴ O = (CH ³) ³ ;C.C(CH ³)(OH).CH ² .CH;CH ² d ²ⁿ = 0.855 o8	F	1,4452 1,4476 1,4538 1,4580 [!== 20"]		KANONNIKOFF in GNEDIN {J. f. prakt. Ch. (2° 5.), t. LVII, p. 106; 1898}.

oAminobenzoate amylique $(d'am, actif)$. $C^{12}H^{17}AzO^2 =$	D	1.5364 [/ - 17°]	GUYE et Babel [Arch. de Gen. (4º pér.), t. VII, p. 32; 1899].
$AzH^{2}.C^{6}H^{4}.COOC^{5}H^{44}$ $d^{15} = 1,047$	 - -		
Id m . (1) (3) $d^{18} = 1.051$	l D	1,5351	
Idp. (1) (4) discri,050	D	1,5369 [/ = 75°]	

NOM, FORMULE ET DENSITÉ.	RAIK.	INDICE.	VARIATION pour 1°C. $\frac{dn}{dt}$.	OBSERVATEURS.
2Aminocampholène. $C^9 H^{11} Az =$ CH^2 $Az H^2 . CH^2 . CH - C$ $CH^2 - CH^2$ $CH^2 - CH^2$ CH^3 $CH^3 = 0.8795$	1)	1,4797 [t = 15°]		BLAISE et BLANC (C. R., t. CXXIX, p. 106; 1899).
$\betaId.$ Az H ² . CH ² . C = C (CH ³) CII ² - CH ² CH ³ $d^{15} = 0.8778$	D	[t = 15°]		
Aminodécanaphtène (secondaire). $C^{10} \Pi^{19} \Lambda z \Pi^{2}$ $d_{4}^{20} = 0,85488$	D	1,45679 [t=:20°]		MARKOWNIKOFF et RUDE- WITSCH (J. Soc. phys chim. Russc, t. XXX, p. 586; 1898).
Id. (tertiaire). $C^{10} H^{19} Az H^{2}$ $d_{4}^{20} = 0,85296$	D	1,45209 [t == 20°]		
Aminomenthone. $C^{10} H^{17} (Az H^2) O$ $d_4^{20} = 0,9605$	D	$ \begin{vmatrix} 1,47397 \\ t = 20^{\circ} \end{bmatrix} $		ISCHEWSKY (Ber. d. D. ch. Ges., t. XXXI, p. 1478; 1898).
Amylacétate nbutylique (d'amyle actif). $C^{11}H^{22}O^2 = C^3H^{11}.CH^2.COOCH^2.CH^2.C^2H^3$ $d^{16,2} = 0.8688$	D	$\begin{bmatrix} 1,41217 \\ t = 16^{\circ},2 \end{bmatrix}$		GUYE et GUERCHGORINE [Arch. de Gen. (4° pér.), t. IV, p. 208; 1897].
Amylacétate ibutylique (d'amyle actif). $C^{11}H^{22}O^2 = C^3H^{11}.CH^2.COOCH^2.CH(CH^3)^2$ $d^{16,2} = 0,8653$	D	$[t = 16^{\circ}, 2]$		/d., p. 209.
Amylacétate secbutylique (d'amyle actif). $C^{11}H^{22}O^2 = C^5H^{11}.CH^2.COOCH < C^2H^3$ $d^{16},^2 = 0.8656$	D	1,41748 [t=16°,2]		ld.

Amylacétate npropylique (d'amyle actif). C ¹⁰ H ²⁰ O ² = C ⁵ H ¹¹ .CH ² .COOCH ² .C ² H ⁵ d ¹⁶ , ² = 0,8688	RAIE.	INDICE.	VARIATION pour 1°C. $\frac{dn}{dt}$.	OBSERVATEURS.	
	1)	1,4190 [t=16°,2]		Id., p. 207.	
Amylacétate ipropylique (d'amyle actif). $C^{16}H^{26}O^2 = C \cdot H^{11} \cdot CH^2 \cdot COOCH (CH^3)^2$ $cl^{16,2} = 0.865 \circ$	1)	1,4159 [t=16°,2]		ld., p. 208.	
Benzène ochlorobromé. Cl. C ⁶ II ⁴ . Br (1) (2) $cl^{12,5} = 1,6555$	Ð	1,583 [t = 15°]		DOBBY et MARSDEN (J. of chem. Soc., t. LXXIII, p. 255; 1898).	
Id. m . Cl. C ⁶ H ⁴ . Br (1) (3) $d^{14} = 1,6274$	D	$ 1,578 [t = 15^{\circ}]$			
Benzoylacétoxime. $C^{10} \Pi^{11} Az O^{2} = \begin{array}{c} C\Pi^{3} \\ C\Pi^{3} \end{array} \qquad \begin{array}{c} O \\ Az - CO \cdot C^{6}\Pi^{2} \end{array}$ $d_{A}^{14} = 1,0981$	D	$[t = 14^{\circ}]$		SCHMIDT (Ber. d. D. ch. Ges., t. XXXI, p. 3229; 1898).	
Bromhydrate de carvo- menthène (rac.). C''H''Br	D	1,48822 [t = 20°,5]		Kondakoff et Lutschi- ning [J. f. prakt. (k. (2° s.), t. LX, p. 276; 1899].	
oBromobenzoate amylique (d'amyle actif). $C^{12}H^{15}Br \Delta z O^{2} = Br . C^{6}H^{4}.COOC^{5}H^{11}$ $C^{16} : = 1,279$	D	1,5243 [l=16"]		GUYE et BABEL [Arch. de Gen. (4° pér.), t. VII, p. 29; 18(9).	
Id m . (1) (3) $d^{+} = 1.285$	1)	1,5243 $[t=17^{\circ}]$			
Id p . (1) (4). $d^{16} = 1.288$	1)	1,5282 [t 16°]			

NOM, FORMULE ET DENSITÉ.	RAIE.	INDICE.	VARIATION pour 1°C. dn/dl	OBSERVATEURS.
Bromure carvomenthylique (rac.) $C^{10} H^{19}.Br$ $d_4^{21} = 1,1847$	D	1,49060 [t = 21°]		KONDAKOFF et LUTSCHI- NINE (loc. cit., p. 272).
n.-Butyrique (acide). $C^4 H^8 O^2 = CH^3.CH^2.CH^2.CO OH$ $d_4^{76} = 0.9590$	D	1,39906 [t=20°]		Schrij (Rec. Trav. chim. d. P. B., t. XVIII, p. 182; 1899).
n Caprique (acide). $C^{10} H^{20} O^2 = CH^3 (CH^2)^8 CO OH$ $d_4^{40} = 0,8858$	D	1,42855 [t=40°]		/d., p. 185.
$n. ext{-Caprolque (acide)}.$ $C^6 H^{12} O^2 = CH^3 (CH^2)^4 CO OH$ $d_4^{20} = 0.9274$	D	1,41635 [t=20°]		[ld., p. 183.
nCaprylique (acide). $C^{6}H^{16}O^{2} = CH^{3}(CH^{2})^{6}COOH$ $d_{4}^{20} = 0,9100$	D	1,42825 [t=20°]		/d., p 185.
Carbonate allylphénylique. $C^{10}H^{10}O^3 = C^3H^5.O.CO.O.C^6H^5$ d=?	D	$\begin{vmatrix} 1,50258 \\ [t = 16^{\circ}, 1] \end{vmatrix}$		MORKL Bull. Soc. chim. (3° s.), t. XXI, p. 822; 1899].
Carbonate <i>i.</i> -amylgaľacylique. $C^{13}H^{16}O^{4} = C^{3}H^{11}.O.COO.C^{6}H^{4}.O.CH^{3}$ $d^{6} = 1,081$	D	1,47087 [t = 15°,7]		ld.
Carbonate iamylphénylique. $C^{12} H^{16} O^3 = C^5 H^{11} \cdot O \cdot CO \cdot O \cdot C^6 H^5$ $d^0 = 1,00$	D	$\begin{bmatrix} 1,47768 \\ [t = 16^{\circ}, 1] \end{bmatrix}$		Id.

NOM, FORMULE ET DENSITÉ.	RAIE.	INDICE.	VARIATION pour 1°C.	OBSERVATEURS.
Carbonate benzylgalacylique. C''s H''O' = C'H''. CH''. O. CO. O. C'' C''	D	1,49265 [t=15°,7]		Id.
Carbonate benzylphénylique. $C^{14}H^{12}O^{3} = C^{3}H^{3}.CH^{2}.O.CO.O.C^{6}H^{3}$ $d^{6} = 1,1366$	Đ	1,49141 [t=15°,7]		I.J.
Carbonate ibutylgalacylique. C ¹² H ¹⁶ O ¹ == (CH ³) ² CH.CH ² .O.CO.O.C ⁶ H ¹ .OCH ³ cl ⁰ =1,092	D	$\begin{bmatrix} 1,46781 \\ t = 15^{\circ},7 \end{bmatrix}$		Id.
Carbonate n butylphénylique. $C^{11}H^{14}O^3 = CH^3(CH^2)^3O.CO.OC^6H^3$ $d^6 = 1,0507$	D	$\begin{bmatrix} 1,47951 \\ t = 16^{\circ}, 1 \end{bmatrix}$		Id.
Carbonate ibutylphénylique. $C^{11}H^{14}O^3 = (CH^3)^2CH.CH^2.O.CO.O.C^6H^5$ $d^0 = 0.9941$	D	1,47334 [t=16°,1]		ld.
Carbonate éthyl- p chloro- phénylique. C9H9ClO3 = C2H5.O.CO.O.C6H5.Cl $d^3 = 1,1726$	D	1,51700 [t- 15°,7]		Iđ.
Carbonate éthylo-crésylique. $C^{10}\Pi^{12}O^3 = C^2\Pi^3.O.CO.O.C^6\Pi^3.C\Pi^3$ $d^0 = 1,1271$	þ	1,49399 [t=15°,7]		Id.
Id m . (1) (3). $d'' = 1,1351$	D	1,49522 [[t-15",7]		
Idp. (1) (1). $d^{n} = 1.138 q$	D	1,49647 t = 15",7		

Nom, FORMULE ET DENSITÉ. Carbonate C10H12O4=C2H3.O.CO.O.C4H3.OCH3 d0=1,150	RAIE.	1,502 97 [t=15*,7]	VARIATION pour 1+C. dn dt	OBSERVATEURS.
Carbonate éthylphénylique. C ² H ¹⁰ O ³ = C ² H ⁵ .O.CO.O.C ⁶ H ⁵ d ⁶ = 1,1228	D	1,49093 [t=16*,1]		14
Carbonate éthylthymylique. $C^{12}\Pi^{14}O^{3} = {}^{(3)}C^{2}\Pi^{3} \cdot O \cdot CO \cdot O \cdot C^{4}\Pi^{5} \stackrel{C\Pi^{3} - (1)}{C^{3}\Pi^{5} \cdot (4)}$ $d^{6} = 1,1524$	Đ	1,49981 [t=15°,7]		ht.
Carbonate nheptylphénylique. $C^{14}H^{20}O^3 = C^2H^{15}, O, CO, O, C^0H^5$ $d^0 = 1,0465$	D	[t = 16*, t]		fd.
Carbonate hexylphénylique, C'3 [114 O3 = C5]113. O. CO. O. C6 H3 d'4 = 1,0492	D	1,48224 [t = 15*,7]		ld,
Carbonate méthylgalacylique. Chillogia: CHi.O.CO.O.Calli.O.Cilli dec. 1,196	Ď	1,51736 [t=15*,7]		1d.
Carbonate methylphenylique. C'H'O' = CH'O.CO.O.C'H' d' = 1,1607	Þ	1,50221 [fd.
Carbonate noctylphénylique. $C^{15}H^{22}O^3 = C^4H^4, O, CO, O, C^4H^3$ $d^9 = 1,0432$	D	1,47647 [t=16*,1]		îd.
Carbonate npropylgaïa- cylique. C'' H'' O' = C'H'', CH'' O.CO.O.C' H'', O CH'' d'' == 1,116	υ	1,49872 [t=15°.7]		fd.

NON, FORMULE ET DENSITÉ.	RAIE.	INDICE.	VARIATION pour 1°C. dn dt	OBSERVATEURS.
Carbonate npropylphėny- lique. C ¹⁰ H ¹² O ³ == C ² H ³ .CH ² .O.CO.O.C ⁶ H ³ d ⁶ == 1,0756	D	1,48640 [t=16°,1]		Id.
Carbonate ipropylphénylique. C ¹⁰ H ¹² O ³ = (CH ³) ² CH.O.CO.O.C ⁶ H ³ $d = ?$	D	[1,48429 [l = 16°, 1]		Id.
$d.$ -Carone. $C^{10} \prod^{16} O$ $d_{s}^{21} = 0.9556$	D	$\begin{bmatrix} 1,47664 \\ [t=21^{\circ}] \end{bmatrix}$		Kondakopp et Gorbunoff [J. f. prakt. Ch. (2° 8.), t. LVI, p. 257; 1897].
$d_{\bullet}^{1^{n,n}} = 0.9577$	Li C D Tl F	1,47548 1,47597 1,47877 1,48187 1,48560 1,49122 [t=18°,8]		Вийнь (Ber. d. D. ch. Ges., t. XXXII, p. 122;; 1899).
Carvacrol (C10 II11 () (d18.6 = = 0,9774	[) <i>Tl</i> F	1,51926 1,52009 1,52450 1,52950 1,53581 1,54550 [t=18°,6]		Id.
Carvénone. $C^{10} H^{16} ()$ $cl_{1}^{20} = 0.919$	D	1,47664 [t=20°]	·	Kondakoff et Gorbunoff (loc. cit., p. 254).
$d_{3}^{19,1} = 0.9271$	Li C D Tl F	1,47958 1,48017 1,48377 1,48781 1,49289 1,50087 [t=19^,1]		Brünk (loc. cit.).

NOM, FORMULE ET DENSITÉ.	RAIE.	INDICE.	VARIATION pour 1°C. dn at	OBSERVATEURS.
Carvol. Voir Carvone.				
lCarvomenthène. C:0]:8 (de lcarvomenthol) $d_1^{16,5} = 0,8230$	D	$[t=16^{\circ},5]$		KONDAKOFF et LUTSCHI- NINE [J. f. prakt. Ch. (2° s.), t. LX, p. 274; 1899].
dId. (du bromhydrate de carvomenthène) $d_4^{20} = 0,8230$	D	$[t=20^{\circ}]$		ld., p. 276.
1Carvomenthol. $C^{10} H^{19}.OH$ $d^{20,2} = 0,9070$	D	1,4672 [t=20°,2]		Id., p. 270.
$d\mathrm{Id}.$ $d^{23}=0,901$	D	$\begin{array}{ c c c c } & 1,4696 \\ & [t=23^{\circ}] \end{array}$		
dCarvone (Carvol). C!* H!*O $d_4^{1*,4} = 0.9626$	Li C D Tl F	1,49543 1,49614 1,49994 1,50429 1,50978 1,51824 [t=18°,4]		BRUHL (Ber. d. D. ch. Ges., t. XXXII, p. 1224; 1899).
Carvotanacétone. $C^{10} H^{16} O$ $d_4^{20} = 0,935 1$	Li C D Tl F	1,47669 1,47730 1,48056 1,48430 1,48887 1,49606 [t = 20°]		Id.
Caryophyllène. $C^{15}H^{24}$ $d^{29} = 0,9032$	1)	1,500 19 [t=20°]		KREMERS, SCHREINER et Miss James (Pharm. Arch., t. 1, p. 209; 1898).
$d_4^{20} = 0,9019$	C D F H ₇	1,49694 1,50024 1,50830 1,51528 [t = 20°]		SCHREINER et KREMERS (1d., t. II, p. 281; 1899).
(redistillé) $d_4^{2n} = 0,9014$	D	1,49976 [t = 20°]		

NOM, FORMULE ET DENSITE.	RAIE.	INDICE.	VARIATION pour 1°C. $\frac{dn}{dt}$.	OBSERVATEURS.
Chlorhydrate de carvomenthène (actif). $C^{10}H^{10}Cl$ $d_{4}^{19}=0.939$	D	1,46494 [t=19°]		KONDAROFF of LUTSCHI- NINE (loc. cit., p. 274).
Chlorhydrate de dihydrocarvone. $C^{10} H^{11} O Cl$ $d_4^{20} = 1,0248$	Þ	1,47877 [t=20°]		Kondakoff et Gorbunoff [J. f. prakt. Ch. (2°\$.), t. LVI, p. 257; 1897].
Chlorocinnamène. Voir Phénylc	hloréthy	lène.		
(2) Chlorocymene. $C^{10}H^{13}Cl = C^{6}H^{3}(CH^{3})Cl(C^{3}H^{3})$ $d^{10} = 1,01$	D	1,50782 [t=18°]		KLAGES et KRAITH (Ber. d. D. ch. Ges., t. XXXII, p. 2555; 1899).
2Chloro-3diéthoxyacrylate éthylique. $C^{9}H^{13}ClO^{4} =$ $(OC^{2}H^{3})^{2}C:CCl.COOC^{2}H^{3}$ $d_{4}^{2,9} = 1,0843$	D	1,4319 [t=20°]		FRITSCH (<i>Lieb. Ann.</i> , t. CCXCVII, p. 319; 1897).
(2) Chlorodihydrocymène. $C^{10}H^{13}Cl$ $d^{10}=1,01$	D	1,51202 [t=18°]		KLAGES et KRAITH (loc. cit., p. 2554).
(2) Chloro- $\Delta^{1/3}$ -dihydrocymène. $C^{18}H^{15}Cl =$ $CH^{2}.C$ $CH^{2} - CH^{2}$ $C.C^{5}H^{2}$ $d^{28} = 1,023$	Þ	1,51620 [t=20°]		ld., p. 2559.
CH'.C CH': — CH': CH'.C CH': — CH': CH'.C CH': — CH': CH'.C CH': — CH':	Þ	1,46179 [t = 18°]		Id., p. 2551.

NOM, FORMULE ET DENSITÉ.	RAIE.	INDICE.	VARIATION pour 1°C. $\frac{dn}{dt}$.	OBSERVATEURS.
Chloromalonate diéthylique. $C^{7}H^{11}ClO^{4} = CHCl < COOC^{2}H^{5}$ $C^{2}H^{1}ClO^{4} = CHCl < COOC^{2}H^{5}$ $COOC^{2}H^{5}$ $COOC^{2}H^{5}$	D	1,4327 [t=20°]		FRITSCH (loc. cit., p. 320).
d Chloropropionate i butylique. $C^1 H^{13} Cl O^2 = CH^3.CH Cl. CO O C^4 H^9$ $d_A^{20} = 1,0312$	D	1,4247 [t=20°]		WALDEN (J. Soc. physchim. Russe, t. XXX, p. 483; 1898).
(3) Chloro- $\Delta^{2(4,8)}$ -terpadiène. C ¹⁰ H ¹⁵ Cl = CH = C Cl CH ² - CH ² Ci C (CH ³) ² $d^{19} = 0.983$	D	1,49928 [l=19°]		KLAGES (Ber. d. D. ch. Ges., t. XXXII, p. 2565; 1899).
(2) Chloro- Δ^1 -tétrahydro- cymène. C'' H'' Cl = CH ³ . C Cl - CH ² CH ² - CH ² CH C ³ H' $d^{18} = 1,001$	D	$[t = 18^{\circ}]$		KLAGES et KRAITH (loc. cit., p. 2552).
Chlorure d'amylacétyle. (d'amyle actif) C'H''CIO = CH' C'H'S CH.CH'2.CH'2.CO CI C'2H'S d'11,5 = 0,9787	D	1,4283 [t = 17°,5]		Guye et Guerchgoring [Arch. de Gen. (4° pér.), t. IV, p. 206; 1897].
Chlorure de carvomenthol ($rac.$). $C^{10} H^{19} Cl$ $d_4^{21} = 0.945 o$	D	$ \begin{vmatrix} 1,46534 \\ [t = 21^{\circ}] \end{aligned} $		KONDAKOFF et LUTSCHI- NINE [J. f. prakt. Ch. (2° 5.), t. LX, p. 272; 1899].
Chlorure de dihydroeucarvéol. C'' H'' Cl d'' = 0,935 D.	D	1,46179 [t = 18°]		KLAGES et KRAITH (loc. cit., p. 2562).

NOM, FORMULE ET DENSITÉ.	RAIE	INDICE.	VARIATION pour 1° C. dn dt	OBSERVATEURS.
Cinnamène. $C^{\bullet}H^{\bullet} = C^{\bullet}H^{\circ}.CH:CH^{\circ}$ $d_{\bullet}^{15} = 0.911$	D	1,5457 [t = 15*]		BILTZ (<i>Lieb. Ann.</i> , t. CCXCVI, p. 277; 1897).
Citriodorique (aldéhyde). C ¹⁰ H ¹⁶ O = CH ³ C:CH.CH ² .CH:C(CH ³). CH ³ CH ² .CHO $d^{20} = 0,8883$	D	1,48538 [t = 20°]		STIEHL [J. f. prakt. Ch. (2° 8.), t. LVIII, p. 77; 18;8].
Citriodorylidèneacétone. $C^{13}H^{20}O = C^{9}H^{15}.CH:CH.CU.CH^{3}$ $d^{20} = 0.8980$	D	$1,52903$ [$t = 20^{\circ}$]		Id., p. 79.
Citronnellique (acide). $C^{10} H^{18} O^{2}$ $d^{21} = 0,9292$	D	1,4534 [t = 21°]		TIEMANN (Ber. d. D. ch. Ges., t. XXXI, p. 2901; 1898).
Coriandrol. $C^{10} H^{16}()$ $d^{17,5} = 0,8726$	D	1,46455 [t=17°,5]		ld., p. 827.
pCrésylnitrométhane. $C^{n}H^{9}Az O^{2} = CH^{3}.C^{6}H^{4}.CH^{2}.Az O^{2}$ $(1) \qquad (3)$ $d_{4}^{20} = 1,1233$	1)	1,531 06 [(t:-20"]		KONOWALOFF (J. Soc. phys chim. Russe, t. XXXI, p. 254; 1899).
Diacetylsuccinate diethylique. CH ³ . C(OH): C. CO OC ² H ⁵ CH ³ . C(OH): C. CO OC ² H ⁵ (α_1) $d_A^{2,0} = 1,1238$	D	$\begin{vmatrix} 1,4595 \\ t = 20^{\circ} \end{vmatrix}$		KNORR (<i>Lieb. Ann.</i> , t. CCCVI, p. 371; 1899).
Id. (z ₂).	1)	1,4545 [t = 20"]		<i>ld.</i> , p. 3 ₇ 3.
Id. (x ₃).	1)	1,4392 [t-20"]	0,000 29 (20" ct 35"	Id., p. 376.

NOM, FORMULE ET DENSITÉ.	nair.	INDICE.	VARIATION pour I°C.	OBSERVATEURS.
Dibenzoylsuccinate diéthy- lique. $C^{12}H^{122}O^{6} = C^{6}H^{3} \cdot C(OH) : C \cdot CO \cdot OC^{2}H^{3}$ $C^{14}H^{12} \cdot C(OH) : C \cdot CO \cdot OC^{2}H^{3}$ $d_{4}^{14} = 1,158$	D	1,5471 [t = 20°]		Id., p. 387.
Dibromure de benzal. $C^{\epsilon}H^{\epsilon}.CHBr^{\epsilon}$ $d^{\epsilon \epsilon}=\epsilon,5\epsilon$	D	1,541 [t=?]		CURTION et QUEDNISELD [J. f. prakt. Ch. (2° 5.), 5. LVIII, p. 390, 1898].
Dichlorure iamyl- phosphoreux. C'H'', OP Cl ² d ²⁺ ₄ =1,1364	D	1,45566 [t = 20°]		Kowalewsky (J. Soc. physchim. Russe, t. XXIX, p. 232; 1897).
Dichlorure ibutyl- phosphoreux. $C^{i}H^{i}.OPCl^{2}$ $d_{4}^{2i}=1,1657$	Ð	1,46084 [\$ = 20°]		Id.
Dichlorure éthylphosphoreux. C ² H ³ , OP Cl ² d ²⁴ = 1,2857	D	[t = 20°]		fd.
Dichlorure méthyl- phosphoreux. CH ³ .OP Cl ² d ³⁶ = 1,398 o	D	1,47725 [f = 20°]		fd.
Dichlorure npropylphos- phoreux. C'H'. OP Cl' d'20 = 1,227 8	D	1,466 04 [8 == 20°]		Id.
$C^{4}H^{16}Az O^{2} = CH^{2}, CH^{2}(OH)$ $C^{2}H^{3}, Az H < CH^{2}, CH^{2}(OH)$ $d_{4}^{24} = 1, a135$	D	1,4663 [t = 20°]		Knorn et Schmidt (Bee. d. D. ch. Ges., t. XXXI., p. 2074., 1868).

NOM, FORMULE ET DENSITÉ.	RAIE.	INDICE.	VARIATION pour 1°C. dn di	OBSERVATEURS.
Diéthanolméthylamine. $C^5 H^{14} Az O^2 =$ $CH^2 . CH^2 . CH^2 (OII)$ $CH^2 . CH^2 (OH)$ $d_4^{26} = 1,0377$	D	1,4678 [t = 20°]		KNORR et MATTHES (Ber. d. D. ch. Ges., t. XXXI) p. 1071; 1898).
Difluorobromoéthylène. $C^{2}H Fl^{2}Br$ $d_{4}^{\bullet} = 1,8434$	D	1,38461 [l = 0°]		SWARTS [Bull. Acad. Belg. (3° s.), t. XXXIV, p. 314; 1897].
Difluorodibromoethane. $C^{2}H^{2}Br^{2}Fl^{2}$ $d_{4}^{20} = 2,3120$	D	1,46223 [t = 20°]		ID. (<i>id.</i> , t. XXXIII, p. 445; 1897).
Difluorodibromoéthylène. $C^2 Br^2 Fl^2$ $d_4^{20} = 2,3121$	D	1,45345 [t = 20°]		lb. (id., t. XXXIV, p. 316).
Difluorotribromoéthane. $C^2 \operatorname{HBr}^2 \operatorname{Fl}^2$ $d_4^{17,5} = 2,6077$	D	1,50787 [t=17°,5]		Id., p. 309.
Dihydrobenzène. $C^6 H^*$ $d_4^{15,5} = 0,84785$	C F H _γ	1,47254 1,48687 1,49589 [t=15°,5]		PERKIN in FORTEY (J. of chem. Soc., t. LXXIII. p. 944; 1898).
Dihydrocarvone. $C^{10}H^{16}O$ $d_A^{17.5} = 0.9273$	Tl F H _ž	1,46840 1,46884 1,47175 1,47490 1,47870 1,48449 [t==17°,5]		Вийні. (<i>Ber. d. D. ch. Ges.</i> , t. XXXII, p. 1224; 1899).
(de <i>l.</i> -carvone). $d^{16} = 0.9308$ (de <i>d.</i> -carvone). $d^{22} = 0.9269$		1,47243 t = 16"		KONDAKOFF et LUTSCHI- NINE [J. f. prakt, Ch. (3° s.), t. LX, p. 261; 1899].

NOM, FORMULE ET DENSITÉ.	RAIE.	INDICE.	VARIATION pour 1°C. dn dt	OBSERVATEURS.
Dihydroeucarvéol. $C^{10} H^{18} O$ $d^{20} = 0,929$	D	1,47586 [t=20°]		ELAGES et KRAITH (Ber. d. D. ch. Ges., t. XXXII, p. 2562; 1899).
Dihydroeucarvone. $C^{10} H^{16} O$ $d_4^{18,9} = 0,9232$	D	1,46412 1,46455 1,46739 1,47046 1,47406 1,47965 [t=18°,9]	•	BRÜHL (loc. cit.).
$d^{20}=0,927$	D	1,46978 [t=20°]		KLAGES et KRAITH (loc. cit., p. 2563).

Dihydroisophorone. Voir Triméthylcyclohexanone.

Diiodure de méthylène. CH ² I ²	C D F H _y	1,732 1,743 1,767 1,794 [t=15°]	MADAN (J. Roy. microsc. Soc., 1897; p. 273).
d = 3,334	C D F	$\begin{vmatrix} 1,73136 & -0,0 \\ 1,74129 & -0,0 \\ 1,76849 & -0,0 \\ [t=21^{\circ}] & [t=2 \\ a] \end{vmatrix}$	1° [18°, 7] LEISS (Zeits. f. InstrK., 1899).

Diméthyl (1.3) cyclohexane. Voir Diméthylhexaméthylène.

Diméthyl (1.3) cyclohexanol (5). $C^{n}H^{16}O =$ $CH^{2}-CH(CH^{3})-CH^{2}$ $CH(OH)-CH^{2}-CH(CH^{3})$ $d_{4}^{21}=0,9109$	D	1,4540 [t=21°]	KNORVENAGEL et MAC GAR- VEY (Lieb. Ann., t. CCXCVII, p. 161; 1897).
$d_4^{16} = 0,9019$	D	[t = 16"]	KNŒVENAGEL et WEDE- MEYER (Lich. Ann., t. CCXCVII, p. 182; 1897).

NOM, FORMULE ET DENSITÉ.	RAIE.	INDICE.	VARIATION pour 1°C. dn dt	observateurs.
Diméthyl(1.3) cyclo- hexanone (5). $CH^{2}-CH(CH^{3})-CH^{2}$ $C^{4}H^{14}O= \begin{array}{cccc} & & & & & & & \\ & & & & & & \\ & & & & $	D	1,4450 [t=17°]		KNŒVRNAGRL et Mac Garvey (loc. cit., p. 164).
$d_4^{11} = 0,8994$	D	1,44537 [t=17°]		KNŒVENAGEL et WEDE- MEYER (loc. cit., p. 184).
Diméthyl (1.3) Δ_{s} cyclohexène. $C^{n}H^{14} = CH - CH (CH^{3}) - CH^{2}$ $\ddot{C}H - CH^{2} - CH (CH^{3})$ $d_{4}^{18} = 0,8005$	D	1,4430 [t=18°]		KNŒVENAGEL et MAC GARVEY (loc. cit., p. 166).
Dlméthyl(2.6)heptanon(5)- olique(1) (acide). C ⁹ II ¹⁶ O ³ = CH ³ CH.CO.CH ² .CH ² .CH.COOH CH ³ CH^3 CH^3	D	1,4488 [t=20°]		TIRMANN ot SRMMLER (Ber. d. D. ch. Ges., t. XXXI, p. 2893; 1898).
Diméthylhexahydrophénol. Voir	· Dimétl	hylcyclohe:	xanol.	
Diméthyl(1.3) hexaméthylène. $C^{8}H^{16} = CH^{2} - CH(CH^{3}) - CH^{2}$ $CH^{2} - CH^{2} - CH(CH^{3})$ $d_{4}^{18} = 0,7736$	D	[t = 18°]		KNŒVENAGEL et MAC GARVEY (loc. cit., p. 167).
Diméthyl (1.4) hexaméthylène. $C^{4}H^{16} = CH^{2} - CH(CH^{3}) - CH^{2}$ $CH^{2} - CH(CH^{3}) - CH^{2}$ $d_{4}^{20} = 0.7690$	D	1,4244 [t = 20°]		ZELINSKY et Naumow (Ber. d. D. ch. Ges., t. XXXI, p. 3207; 1898).
Diméthyl(1.1) triméthylène. $C^{5}\Pi^{10} = (CH^{3})^{2} : C < \begin{matrix} CH^{2} \\ I \\ CH^{2} \end{matrix}$ $d_{3}^{20} = 0.6604$	D	1,3659 [t=20°]		Gustavson et Melle Popper [J. f. prakt. Ch. (2° 8.), t. LVIII, p. 459; 1898)].
Dioxyde de tanacétogène. $C^{9}H^{16}O^{2}$ $cl^{20}=0.9775$	D	1,4450 [t == 20°]		TIEMANN et SEMMLER (Berd. D. ch. Ges., t. XXX, p. 441; 1897).

NOM, FORMULE ET DENSITÉ.	RAIE.	INDICE.	VARIATION pour 1°C. $\frac{dn}{dt}$.	OBSERVATEURS.
Diphénylméthane $C^{13}H^{12}=C^{6}H^{5}.CH^{2}.C^{6}H^{5}$ $d^{16}=0,944$	D	1,56957 [t=16°]		KLAGES et ALLENDORFF (Ber. d. D. ch. Ges., t. XXXI, p. 999; 1898).
Disilicate hexapropylique. $Si^2O(OC^3H^1)^6$ $d_4^{22,6} = 0,9769$	C D F H _y	$ \begin{array}{c cccc} 1,40566 \\ 1,40759 \\ 1,41252 \\ 1,41652 \\ [t = 22^{\circ},6] \end{array} $,	ABATI (Zeits. f. physik. Ch., t. XXV, p. 362; 1898).
β -Dithioéthylbutyrate éthylique. $C^{10} H^{20} S^2 O^2 =$ $CH^3 . C(SC^2 H^3)^2 . CH^2 . CO OC^2 \Pi^3$ $d_4^{16} = 1,0335$	D	$[t=15^{\circ}]$		POSNER (Ber. d. D. ch. Ges., t. XXXII, p. 2805; 1899).
β -Dithioéthylglutarate diéthylique. $C^{12}H^{24}S^{2}O^{4} =$ $(SC^{2}H^{3})^{2}C < CH^{2}.COOC^{2}H^{3}$ $CH^{2}.COOC^{2}H^{3}$ $d_{4}^{17} = 1,1006$	D	1,505 10 [t=15°]		[Id., p. 2812.
Ethanoléthylamine. $C^4 H^{11} Az O = C^2 H^3 . Az H . CH^2 . CH^2 OH$ $d_4^{26} = 0,9140$	D	$ 1,4440 [t = 20^{\circ}] $		KNORR et Schmidt (Ber. d. D. ch. Ges., t. XXXI, p. 1073; 1898).
Éthanolméthylamine. $C^{3}H^{9}AzO = CH^{3}.AzH.CH^{2}.CH^{2}OH$ $d_{4}^{2} = 0.9370$	D	$\begin{vmatrix} 1,4385 \\ [t=20^{\circ}] \end{vmatrix}$		KNORR et MATTHES (Ber. d. D. ch. Ges., t. XXXI, p. 1070; 1898).
a-Éthyl- β -dithioéthylbutyrate éthylique. C ¹² H ²⁴ S ² O ² = CH ³ .C(SC ² H ³) ² .CH(C ² H ³).COOC ² H ³ $d_4^{15} = 1,0071$	D	$ \begin{vmatrix} 1,49394 \\ [t = 15^{\circ}] \end{vmatrix} $		Posner (Ber. d. D. ch. Ges., t. XXXII, p. 2808; 1899).
(1) Éthylmorpholine. $C^{6}H^{13}AzO = C^{2}H^{5}Az < CH^{2}CH^{2} > O$ $d_{4}^{2} = 0.8996$	D	$[t = 20^{\circ}]$		KNORR et SCHMIDT (Lieb. Ann., t. CCCI, p. 15; 1898).

NOM, FORMULE ET DENSITÉ.	RAIE.	INDICE.	VARIATION pour 1°C. dn dt	OBSERVATEURS.
N-Éthyl-(α)-pipécoléine. C ¹ H ¹⁵ Az = CH ² $\langle \text{CH} = \text{C}(\text{CH}^3) \rangle$ Az.C ² H ³ $d_4^{11,5} = 0,8907$	D F	1,48610 1,49427 [t = 17°,5]		LADENBURG (<i>Lieb. Ann.</i> , t. CCCIV, p. 56; 1899).
N-Éthyl-(2)-pipécoléyl- (3)-alkine. C'H1: AzO = (CH2.OH) C = C(CH2) CH2-CH2-CH2 $d_4^{11,5} = 0,93965$	D F	$ \begin{array}{c} 1,46260 \\ 1,46864 \\ [t = 24^{\circ},5] \end{array} $		ld., p. 59.
N-Éthyl-(α)-pipécoline. C* H ¹⁷ Az = CH ²	D F	$\begin{vmatrix} 1,44800 \\ 1,45417 \\ [t = 24^{\circ}, 5] \end{vmatrix}$		/d., p. 57.
N-Éthyl-(α)-pipécolyl- (β)-alkine. C' H ¹⁹ Az O = (CH ² .OH) CH . CH (CH ³) CH ² - CH ² - CH ² $d_4^{17,5} = 0.9549$	D F	1,47780 1,48439 [l=21°,75]		Id., p. 60.
Eucarvone. $C^{10} H^{14} O$ $d^{20} = 0.952$	D	1,5048 [t = 20°]		Löнк (<i>Lieb. Ann.,</i> t. CCCV, р. 238; 1899).
Fabianol.	D	1,5076 [t = ?]		Kunz-Krause (Arch. d. Pharm., t. CCXXXVII, p. 1; 1899).
Fenelène. $C^{10}\Pi^{16}$ $d^{20}=0,84?$	D	1,474 ³⁹		WALLACH (Lieb. Ann., t. CCC, p. 312; 1898).

NOM, FORMULE ET DENSITÉ.	R	AIE.	INDICE.	VARIATION pour 1°C. $\frac{dn}{d\bar{t}}$	observateurs.
Fenoylėnique (alcool). $C^{10}H^{10}O$ $d=0,922$		D	1,47321 [t=?]		Id., p. 311.
Fluoracétate éthylique. CH ² Fl.COOC ² H ³ $d_{\bullet}^{17} = 1,330$		D	1,4073 [t = 17°]		SWARTS
Fluoracétate méthylique. $CH^2FI.COOCH^3$ $d_4^{18} = 1,1666$		D	1,36987 [t = 18°]		Id.
Fluorobromoéthylène. $C^2 H^2 Br Fl$ $d_4^{16,5} = 1,6939$		D	$\begin{bmatrix} 1,41765 \\ [t = 16^{\circ}, 5] \end{bmatrix}$		ID. (<i>Id.,</i> t. XXXIII, p. 456; 1897).
Fluorochlorobromométhane. CH Cl Br Fl $d_4^{16} = 1,9293$		D	$\begin{bmatrix} 1,42209 \\ [t = 16°] \end{bmatrix}$		ID. (Id., t. XXXIV, p. 302; 1897).
Fluorodibromoéthylène. $C^2 H Br^2 Fl$ $d_4^{17,5} = 2,2908$		D	1,49533 [t = 17°]		Id.
Fluorodibromométhane. CH Br ² Fl $d_4^{17,5} = 2,2403$		D	1,47333 [t=17°,5]		ld.
Fluorotétrabromoéthane. C ² H Br ⁴ Fl $d_4^{16} = 2,9387$		D	1,59707 [t = 16°]		In. (Id., t. XXXIII, p. 470;
Fluorotribromoéthane. $C^{2} H^{2} Br^{3} Fl$ $d_{4}^{18} = 2,6737$		1)	1,56383 [t = 18°]		<i>Id.</i> , p. 446.

NOM, FORMULE ET DENSITÉ.	RAIE.	INDICE.	VARIATION pour 1°C. dn dt	OBSERVATEURS.
Fluorotribromoéthylène. $C^2 \operatorname{Br}^2 \operatorname{Fl}$ $d_4^{20} = 2,6659$	D	1,54821 [t = 20°]		/d., p. 471.
Fluorotrichlorométhane. CCI ³ Fl $d_4^{16} = 1,4944$	D	1,3856 [t = 16°]		In. (Id., t. XXXIV, p. 301;
Galipène. C15 H24 d20 = 0,9110	D	$ \begin{vmatrix} 1,50374 \\ [t = 20^{\circ}] \end{vmatrix} $		BRCKURTS et TRECER (Arch. d. Pharm., t. CCXXXV, p. 318; 1897).
Galipénique (alcool). $C^{15}H^{26}O$ $d^{26}=0,9270$	D	$[t = 20^{\circ}]$		Id.
Géranial. C ¹⁶ H ¹⁶ O d ²⁶ = 0,8898	D	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		STIRRL [J. f. prakt. Ch. (2° 8.), t. LVIII, p. 82; 1898)].
$aId.$ $d^{20} = 0,8898$	D	1,4891 [t = 20°]		TIRMANN (Ber. d. D. ch. Ges., t. XXXII, p. 120; 1899).
$\betaId.$ $d^{20} = 0,8888$	D	$\begin{vmatrix} 1,4895 \\ [t=20°] \end{vmatrix}$		
Géraniique (acide). $C^{10} H^{16} O^2 =$ CH^3 $C:CH.CH^2.CH^2.C:CH.COOH$ CH^3 CH^3 $d^{19} = 0.964$	D	1,48362 [t=19°]		TIEMANN (Ber. d. D. ch. Ges., t. XXXI, p. 827; 1898).
Géranylidèneacétone. Voir Pseu	idoionoi	ne.		•
Glutaconate éthylique. CH. CH ² . CO OC ² H ⁵ CH. CO OC ² H ⁵ CH . CO OC ² H ⁵ CH . CO OC ² H ⁵	D	$ \begin{bmatrix} 1,44747 \\ [t = 20^{\circ}] \end{bmatrix} $		HRNRICH (Monatsh. f. Ch., t. XX, p. 553; 1899).

NOM, FORMULE ET DENSITÉ.	RAIE.	INDICE.	VARIATION pour 1°C. $\frac{dn}{dt}$.	OBSERVATEURS.
Heptylénique (acide). $C^{1}H^{12}O^{2}$ $d^{22} = 0.943$	D	$ \begin{array}{c} 1,44204 \\ [t = 22^{\circ}] \end{array} $		WALLACH (Lieb. Ann., t. CCCIX, p. 8; 1899).
Hexachloro-(2)-cétocyclo- pentène. $C^{5} Cl^{6} O$ $d_{4}^{20} = 1,7616$	D	1,56626 [t = 20°]		SCHAUM (<i>Lieb. Ann.,</i> t. CCC, p. 211; 1898).
Hexachloropropylène. $C^{3} Cl^{6} = C Cl^{2}; C Cl, C Cl^{3}$ $d_{4}^{26} = 1,765 2$	D	$\begin{bmatrix} 1,5091 \\ [t = 20°] \end{bmatrix}$		FRITSCH (<i>Lieb. Ann.</i> , t. CCXCVII, p. 3:5; 1897).
Hexahydrotoluène. $C^{1}H^{14}$ $d_{4}^{19,5} = 0,7662$	D	1,41705 [t=18°,5]		KNŒVRNAGEL et TÜBBEN (Lieb. Ann., t. CCXCVII, p. 158; 1897).
Hexaméthylène. $C^{6}H^{12}$ [du pétrole de Galicie] $d_{4}^{11,4} = 0,7742$	D F	$ \begin{array}{c cccc} 1,41977 \\ 1,4218 \\ 1,42211 \\ 1,42446 \\ 1,42960 \\ 1,43391 \\ [t=17^{\circ},4] \end{array} $	·	PRRKIN in FORTEY (J. of chem. Soc., t. LXXIII, p. 939; 1898).
Hexaméthylène dichloré. $C^{6}H^{10}Cl^{2}$ $d_{4}^{16,6}=1,670$	D F	1,48274 1,48517 1,48556 1,48862 1,49467 1,50189 [t=16°,6]		Id., p. 944.
Hexaméthylène monobromé. $C^6H^{11}Cl$ $d_4^{14,6}=1,3264$	Li C D	1,49177 1,49255 1,49564 [(=14°,6]	•	ld., p. 947.

NOM, FORMULE ET DENSITÉ.	RAIE.	INDICK.	$\frac{dn}{dt}$.	OBSERVATEURS.
Hexaméthylène monochloré. $C^{6}H^{11}CI$ $d_{4}^{18}=0,9765$	A Li C D F	1,45053 1,45267 1,45313 1,45552 1,46153 1,46644 [t=18*]		ld., p. 911.
Ionène. C ¹³ H ¹⁸ (de α -Ionone) $d^{20} = 0.937$	D	1,527 [t = 20°]		TIRMANN (Ber. d. D. ch. Ges., t. XXXI, p. 879; 1898).
Id. (de β -Ionone). $d^{18} = 0.936$	D	1,5274 [t = 18°]		[d., p. 873.
α -Ionone. $C^{13} H^{20} O$ $d^{20} = 0.932$	D	1,4980 [t = 20°]		<i>Id.</i> , p. 876.
$\beta\text{-Id.}$ $d^{17}=0,946$	D	1,521 [t = 17°]		[d., p. 871.
Isolauronolate éthylique. $C^{11}H^{13}O^2 =$ $(CH^3)^2C - CH^2$ $CCCOOC^2H^3$ $CH^3.CH.CH$ $CH^3.CH.CH$	D	1,45950 1,46238 1,46307 1,46624 1,47429 1,48127 [t=17°,2]	•	PERKIN (J. of chem. Soc., t. LXXIII, p. 833; 1898).
Isolauronolate méthylique. $C^{16} H^{16} O^2 = C^6 H^{13}. CO O CH^3$ $d_4^{17,3} = 0,9721$	A Li C D F	1,46278 1,46575 1,46634 1,46970 1,47795 1,48517 [t=17°,3]		Id.

Isophorone. Voir Trimethylcyclohexenone.

NOV. FORMULE ET DENSITÉ.	RAIE.	INDICE	VARIATION pour t'c. dn dt	OBSERVATEURS.
Laurique (acide). C'' H'' O' d'' = 0,8642	D	1,42665 [t = 60°]	<u> </u>	Schutt (Rec. Trav. chim. d. P. B., t. XVIII, p. 186; 1899).
Allo-Lemonal. C'' H''O = CH? CH? CH2 CH2 CH^2 CH^2 CH^2 CH^2 CH^2	υ	1,483 o6 [f == 20*]		STIRBL [J. f. prakt. Ch. (2° 8.), t. LVIII, p. 87; 1898].
Allo-Lemonylidènescétone. C ¹³ H ²⁶ $O = C^{14}$ H ¹⁶ ; CH, CO, CH ³ $d_4^{24} = 0,9000$	D	1,53150 [&= 20°]		ld., p. 8g.
Voir				
/Linalol. C'' H'' O d'' = 0.8622	ע	1,461 08 [4 = 20°]		TIEMANN (Ber. d. D. ch. Ges., t. XXXI, p. 827; 1898).
(de l'essence de petitgrain). $d^{15} = 0,8699$	р	[t = 15°]		CHARABOT et PILLET [Buil. Soc. chim. (3* s.), t. XXI, p. 76; 1899].
Id. (inactif) (du géraniol) $d_{+}^{12}=0,870$	h	1 ,462 70 [{ == 20^]		STEPHAN [J. f. prakt. Ch. (2*8.), t. LX, p. 253, 1899].
Monthène. C'o Hio (de lmenthylamine) d'o = 0,811	D	1,45209 [t = 18*]		Wallach (Leeb. Ann., t. CCC, p. 282; 1898).
Menthénone. C™H™O d™ = 0,919	D	$\begin{cases} 2.4733 \\ [t = 20^{\circ}] \end{cases}$		WALLAGE (Lieb. Ann., t. CCGV, p. 272; 1819).

1300 DONNÉES	NUMBEL	φεκε — 0	PTIQUE.	
NOM, PORMELE ET DENSITÉ.	RAIE.	INDIGE.	VARIATION pont 1°C. dn di	observa t eurs.
C10 H15. Az H2 d20 = 0,857	D	1,45940 [t = 20°]?		WALLACH (<i>Lieb. Ann.</i> , t. CCC, p. 284, 1893).
Méthyl-(1)-ibutyl-(3)-cyclo- 31). $CH = C(CH^3) - CH^2$ $CH = C(CH^3) - CH(C^4H^3)$ $d_4^{24+3} = 0.9198$	D	1,4807 [t=21*,5]		Knorvenagel et Schü- renberg (<i>Lieb. Ann.</i> , t. CCXCVII, p. 139; 1897).
Voir Hexab	ydrotolu	ène.		
M6thyl-(1 5), (CH4OH) = CH2-CH2	D	[t=16*]	!	Tüssen (Inaug. Dissert. Heldelbarg; :497).

NOM, FORMULE ET DENSITÉ. α-Méthyl-β-dithioéthyl- butyrate éthylique. C'' H ²² S ² O ² = CH ³ .C (SC ² H ³) ² .CH (CH ³).COOC ² H ³ d' ₄ ³ = 1,0525	RAIE.	1,51326 [t=15°]	VARIATION pour 1° C . $\frac{dn}{dt}$.	OBSERVATEURS.	
	D			Posner (Ber. d. D. ch. Ges., t. XXXII, p. 2807; 1899).	
Méthyl-(1)-éthyl-(3)-hexamé- thylène. $C^{9}H^{16} = CH^{2}.CH(CH^{3}).CH^{2}$ $CH^{2} - CH^{2} - CH(C^{2}H^{3})$ $d_{4}^{20} = 0,7989$	Ъ	1,4386 [l=20°]		ZELINSKY et OUERLENDER (J. Soc. phys chim. Russe, t. XXXI, p. 496; 1899].	
Méthylhepténol. C'H''O = CH''>C: CH.CH''.CH''.CH.CH'' OH $d_4^{22} = 0,8531$	D	1,4503 [l=22°]		TIEMANN (Ber. d. D. ch Ges., t. XXXI, p. 2922; 1898).	
Méthyl-(1)-hexyl-(3)-cyclo- hexénone-(5). $C^{13}H^{22}O = CH; C(CH^{3}), CH^{2}$ $CO - CH^{2} - CH(C^{6}H^{13})$ $d_{4}^{21,5} = 0,9003$	D	1,4738 [t=21°,5]		KNŒVENAGEL et Schü- RENBERG (Lieb. Ann., t. CCXCVII, p. 139; 1897).	
Méthylhexylènecarbinol. Voir b	féthylhe	pténol.			
(3)-Méthyl-(5)-méthylpropyl- pyrazoline. C*H'*Az* = CH*. C - CH*	D	1,463 18 [t=10°]		Curtius et Zinkrisen [J. f. prakt. Ch. (2° s.), t. LVIII, p. 322; 1898].	

(1)-Méthylmorpholine.
C⁵ H¹¹ Az O = CH³.Az
$$\begin{pmatrix} \text{CH}^2 - \text{CH}^2 \\ \text{CH}^2 - \text{CH}^2 \end{pmatrix}$$
 (1) $\begin{pmatrix} 1,4332 \\ [t = 20^n] \end{pmatrix}$ (2) KNORR et MATTHES (Lieb. Ann., t. CCCl, p. 11; 1898).

 $d^{10} = 0,888$

Now, FORMULE ET DENSITÉ. Méthyl-(1)-phényl-(3)-cyclo- hexanol-(5). CH2—CH(CH3)—CH2 CH(OH)—CH2—CH(C6H5) d18 = 1,024	RAIE. D	1,5395 [\(\ell = 18^{\circ} \)]	VARIATION pour 1° C. dn dt	CCCIII, p. 262; 1898).
Méthyl-(1)-phényl-(5)-cyclo- hexène-(?). $C^{13}H^{16}$ $d_4^{22} = 0.9581$. D	1,5402 [l=22°]		Id., p. 264.
Méthyl-(1)-ipropyl-(3)-cyclo- hexane. $CH^{2}-CH(CH^{3})-CH^{2}$ $CH^{2}-CH^{2}-CH(C^{3}H^{3})$ $d_{4}^{14}=0,8033$	D	1,44204 [t=14°]		KNŒVENAGEL et WIEDER- MANN (Lieb. Ann., t. CCXCVII, p. 174; 1897).
Méthyl-(1)-ipropyl-(3)-cyclo- hexanol-(5). $CH^2-CH(CH^3)-CH^2$ $CH(OH)-CH^2-CH(C^3H^1)$ $d_4^{13,6}=0,9020$	D	1,46454 [t=13°,6]		<i>ld.</i> , p. 170.
$d_4^{22} = 0,8989$	1)	1,45965 [t=22°]		KNOEVENAGEL et WEDE- MEYER (ld., p. 182).
Méthyl-(1)-ipropyl-(3)-cyclo- hexanone-(5). $CH^2-CH(CH^3)-CH^2$ $C^{10}H^{18}O=1$ CO - CH ² -CH(C ³ H ³) $d_4^{18}=0,9040$	1)	[t = 18°]		Knævenagel et Wieder- mann (loc. cit., p. 172).
$d_4^{19} = 0,9014$	D	1,45329 [t=19°]		KNŒVRNAGEL et WEDE- MEYER (loc. cit., p. 184).
Méthyl-(1)-ipropyl-(3)-cyclo- hexène. $C^{10}H^{18}$ $d_A^{16} = 0,8197$	D	1,45609 [t=16°]		KNŒVENAGEL et Wieder- Mann (loc. cit., p. 173).

NOM, FORMULE ET DENSITÉ.	RAIE.	INDICE.	VARIATION pour 1°C. dn/dt	OBSERVATEURS.
Méthyl-(1)-ipropyl-(3)-cyclo- hexénone-(5). $CH = C(CH^{3})-CH^{2}$ $CO - CH^{2} - CH(C^{3}H^{1})$ (I) $d_{4}^{15} = 0.9333$ (II) $d_{4}^{15} = 0.9390$	D	(I). 1,4944 [$t = 15^{\circ}$] (II). 1,4890 [$t = 15^{\circ}$]		Knævenagel et Schüren- Berg (Lieb. Ann., t. CCXCVII, p. 139; 1897).
Méthyl-ipropylphénylamino- méthane. CH ³ C'' H'' Az = Az H ² — C. CH $\stackrel{\text{CH}^3}{\text{CH}^3}$ C^6 H ⁵ $d_4^{26} = 0.9347$	D	1,51781 [t=20°]		Konowaloff et Egoroff (J. Soc. physchim. Russe, t. XXX, p. 1031; 1898).
Méthyl-(1)-ipropylphényl-(3)-cyclohexène-(?). $C^{16}H^{22} = CH - CH(CH^3) - CH^2$ (?) CH - CH ² - CH.C ⁶ H ⁴ .C ³ H ⁷ (4) (1) $d_4^{14} = 0.9376$	D	1,5283 [t=14°]		KNEVENAGEL, WEDE- MEYER et GIESE (Lieb. Ann., t. CCCIII, p. 272; 1898).
Méthyl-ipropylphénylnitro- méthane. CH ³ $C^{11}H^{15}AzO^2 = AzO^2 - \dot{C}.CH < CH^3$ C^6H^5 $d_4^{26} = 1,0781$	D	1,52040 [t=20°]		Konowalopf et Egoroff (loc. cit.).
Morpholine. $C^4H^9AzO = H.Az < CH^2 - CH^2 > O$ $d_4^{29} = 1,0007$	D	1,4540 [t=20°]		Knorr (<i>Lieb. Ann.</i> , t.CCCI, p. 3; 1898).
Myristique (acide). $C^{14}H^{28}O^{2}$ $d_{3}^{69} = 9,8584$ D.	D	1,43075 [t=60°]		Scheij (Rec. Trav. chim. d. P. B., t. XVIII, p. 187 1899).

NOM, FORMULE ET DENSITÉ.	RAIE.	INDICE.	VARIATION pour 1° C. dn dt	OBSERVATEURS.
α -Nitro-iamylbenzène. $C^{11}H^{15}AzO^{2} =$ $C^{6}H^{5}.CH(AzO^{2}).CH^{2}.CH(CH^{3})^{2}$ $d_{4}^{20} = 1,0735$	D	1,53140 [l=20°]		Konowaloff et Egoroff (J. Soc. physchim. Russe, t. XXX, p. 1031; 1898).
oNitrobenzoate amylique (d'amyle actif). $C^{12}H^{15}O^{4}Az=AzO^{2}.C^{6}H^{4}.COOC^{5}H^{11}$ (1) (2) (I) $d^{17}=1,135$ (II) $d^{16}=1,135$	D	$\begin{bmatrix} (1). \\ 1,5132 \\ [t=17^{\circ}] \\ (11). \\ 1,5107 \\ [t=16^{\circ}] \end{bmatrix}$		Guye et Babel [Arch. de Gen. (4° pér.), t. VII, pp. 27-29; 1899].
Idm. (1.3.). $d^{19} = 1,144$	D	1,5187 [t=19°]		
Idp. (1.4.). $d^{11} = 1,140$	D	1,5203 [t=17°]		
Nitrodécanaphtène (secondaire). $C^{10} H^{19} Az O^2$ $d_4^{20} = 0,9777$	D	1,4529 [t=20°]		MARKOWNIKOFF et RUDE- WITSCH (J. Soc. phys chim. Russe, t. XXX, p. 586; 1898).
Id. (tertiaire). $d_4^{20} = 0.9830$	D	1,46009 [t=20°]		_

ω.-Nitrotoluène. Voir Phénylnitrométhane.

Orthotrichloracrylate triéthylique. CCl^2 $C^9H^{15}Cl^3O^3 = C.Cl$ $C(OC^2H^3)^3$ $d_4^{29} = 1,2183$	D	1,4649 [t=20°]	FRITSCH (Lieb. Ann., t. CCXCVII, p. 315; 1897).
Oxydihydrogéraniate éthylique. $C^{12}H^{22}O^{3}$ $d^{1^{*},5}=0,9621$	D	1,45759 [t=17°,5]	TIEMANN (Ber. d. D. ch. Ges., t. XXXI, p. 826; 1898).

ω.-Nitro-p.-xylène. Voir p.-Crésylnitrométhane.

١,

NOM, FORMULE ET DENSITÉ.	RAIE.	INDICE.	VARIATION pour 1°C. dn dt	OBSERVATEURS.
Oxydihydrogéraniique (acide). $C^{10}H^{10}O^{3} =$ $CH^{3}.C:CH.CH^{2}.CH^{2}.C(OH).$ CH^{3} CH^{3} CH^{3} $CH^{2}.COOH$ $d^{16} = 1,020$	D	1,46998 [t = 16°]		Id.

Palmitique (acide).
$$C^{16}H^{32}O^{2}$$
 $d_{4}^{80} = 0,8412$

$$\begin{array}{c|c}
1,42693 \\
[t = 80^{\circ}]
\end{array}$$

Senets (Rec. Trav. chim. d. P.B., t. XVIII, p. 188; 1899).

Pentaérythrite tétraéthylique.
$$C(CH^2, OC^2H^3)^4$$

 $d_4^{21} = 0.9017$

$$\begin{bmatrix} 1,41647 \\ [t = 21^{\circ}] \end{bmatrix}$$

Gustavson et M¹¹ Popper [J. f. prakt. Ch. (2°8.), t. LVI, p. 95; 1897].

Phénylchloréthylène.

$$C^6H^1Cl = C^6H^5$$
. CH: CHCl
 $d_4^{15} = 1,1122$

Autre. $d_4^{25} = 1,1040$

$$\begin{array}{c|c}
D & 1,5808 \\
[t = 15^{\circ}]
\end{array}$$

D

1,5736

 $[t=25^{\circ}]$

BILTZ (Lieb. Ann., t. CCXCVI, p. 267; 1897).

Phényldichloréthane.

$$C^8 H^8 Cl^2 = C^6 H^5 . CH Cl . CH^2 Cl$$

 $d_4^{15} = 1,240$

D
$$1,5544$$
 [$t = 15^{\circ}$]

ld:, p. 277.

Phényldichloréthylène.

$$C^8 H^6 Cl^2 = C^6 H^3 . CH : CCl^2$$

 $d_A^{15} = 1,2651$

D
$$[t = 15^{\circ}]$$

Id.

Phényléthylène. Voir Cinnamène.

Phénylnaphtylcétone.

$$C^{17}H^{12}O = C^{6}H^{3}.CO.C^{10}H^{1}$$

 $d=?$

MADAN (J. R. microsc. Soc. 1897; p. 273).

NOM, FORMULE ET DENSITÉ.		RAIE.	INDICE.	VARIATION pour 1°C. $\frac{dn}{dt}$.	OBSERVATEURS.
Phényltétrachloréthane. $C^4 H^6 Cl^4 = C^6 H^5 \cdot CH Cl \cdot CCl^3$ $d_A^{15} = 1,453$		D	1,5718 [t = 15°]		BILTZ (loc. clt.).
Phényltrichloréthane. $C^8 H^7 Cl^3 = C^6 H^5 \cdot CH Cl \cdot CH Cl^2$ $d_4^{15} = 1,362$		D	1,5646 [t = 15°]		Id.
Phényltrichloréthylène. $C^6 H^5 Cl^3 = C^6 H^5 . C Cl : C Cl^2$ $d_4^{15} = 1,3761$		D	1,586 1 [t = 15°]		Id.
Pinocamphéol. $C^{10} H^{11}.OH$ $d^{20} = 0.9655$		D	1,48612 [t = 20°]		WALLACH (<i>Lieb. Ann.</i> , t. CCC, p. 289; 1898).
Pinocamphone. $C^{10} H^{16} O$ $d^{21} = 0.959$		D	1,47273 [t = 21°]		. <i>Id.</i> , p. 288.
Pinolol. $C^{10}H^{11}.OH$ $cl^{20} = 0.913$		D	1,47292 [t = 20°]		STIEHL et SIEWERTS in WALLACH (Lieb. Ann., t. CCCVI, p. 276; 1899).
Pinolone. $C^{10} H^{16}()$ $d^{20} = 0.916$		D	1,466 o 3 [t = 20°]		Id.
Pseudoionone. $C^{13}H^{20}O = CH^3$ $C:CH.CH^2.CH^2.C:CH.CH$ CH^3	:	D	1,5312 (moy.) $[t = 20^{\circ}]$		TIBMANN (<i>Ber. d. D. ch. Ges.</i> , t. XXXI, p. 842; 1898).

NOM, FORMULE ET DENSITÉ.	RAIE.	INDICE.	VARIATION pour 1°C. dn dt	OBSERVATEURS.
(du géranial) $d^{20} = 0,9037$	D	1,52736 [t = 20°]		STIEHL [J. f. prakt. Ch. (2° S.), t. LVIII, p. 84; 1898].
(du géranial α) d ²⁰ = 0,898 ο	D	1,5335 [t=20°]		TIBMANN (Ber. d. D. ch. Ges., t. XXXII, p. 118; 1899).
Pulégénique (acide). $C^{10} H^{16} O^{2}$ $d^{21} = 0,9955$	D	$ \begin{vmatrix} 1,47547 \\ t = 21^{\circ} \end{bmatrix} $		WALLACH (<i>Lieb. Ann.,</i> t. CCC, p. 261; 1898).
Pulégol. (de synthèse) $C^{10}H^{17}.OH$ $d^{20}=0,912$	D	1,4792 [t=20°]		[d., p. 273.
Pulégone. (de synthèse) $C^{10}H^{16}O$ $d^{20}=0,918$	D	$\begin{bmatrix} 1,46732 \\ t = 20^{\circ} \end{bmatrix}$		ld., p. 270.

Sedanolide.	C	1,48924	Nasini <i>in</i> Ciamician et
CH.C4H9	D	1,49234	SILBER [Gazz. chim.
$C^{12}H^{16}O^2 = C^6H^6 \bigcirc O$	F	1,50005	ital., t. XXVIII (I), p. 478; 1898].
čo	1	$[t=24^\circ,5]$	
$d^{24,5} = 1,0383$			
		•	

Silicate hexapropylique. Voir Disilicate hexapropylique.

Silicate tétraméthylique.	C	1,36597	ABATI (Zeits. f. physik.
Si(OCH3)4	D	1,36773	Ch., t. XXV, p. 362:
$d_4^{22} = 1,02804$	F	1,365 97 1,367 73 1,371 77	r898).
•	H_{γ}	$1,37509$ $[t=22^{\circ}]$	
	}	$ [t = 22^{\circ}] $	1

NOM, FORMULE ET DENSITÉ.	RAIE.	INDICE.	VARIATION pour 1°C. dn dt	OBSERVATEURS.
Silicate tétrapropylique.	С	1,39957		Id.
Si (OC3H1)4	D	1,40159		
$d_4^{22,7} = 0,9158$	F	1,40636	1	
	H_{γ}	1,41024	i	
	!	$ [t=22^{\circ},7]$		
Siliciumtétraéthyle.		I.	1	Id.
Si (C ² H ⁵) ⁴	C	1,42479		
$1. d_4^{22,3} = 0,76819$	D	1,42715		
11. $d_{\lambda}^{22,1} = 0.7689$	F	1,43325	i i	
 — 6,766 y	H,	1,43826	<u> </u>	
	1	$[t=22^{\circ},3]$	1	
		II.		
	C	1,42389		
	D	1,42628		
			1	
	H	1,43221 1,43721 [t=22°,7]		
		[4-22-2]	1	
	• • • • • • • • • • • • • • • • • • •	1[6-22,/])	
Stéarique (acide).	D	1,43003	<u> </u>	SCHEIJ (Rec. Trav. chim.
C10 H36 O3		1,43003 [t = 80°]		d. P. B., t. XVIII, p. 188;
$d_4^{\mathfrak{so}} = \mathfrak{o},8386$				1899).

Tanacétogène (dioxyde de). Voir Dioxyde de tanacétogène.

Tanacétone. $C^{16}H^{16}O$ $d_4^{11,6} = 0,9182$	Li C D Tl F	1,44938 1,44986 1,45220 1,45492 1,45808 1,46279 [t = 17°,6]	Вийні (Ber. d. D. ch. Ges., t. XXXII, p. 1224; 1899).
Terpène. (du pulégol) $C^{10}H^{16}$ $d^{14} = 0,823$	D	[t = 18°]	WALLAGH (Lieb. Ann., 1 CCC, p. 27;; 1898).

NOM, FORMULE ET DENSITÉ.	RAIE.	INDICE.	VARIATION pour 1°C. $\frac{dn}{dt}$.	OBSERVATEURS.
Terpinéol. C ¹⁰ H ¹⁸ O (fusible à 35°) d ¹⁸ = 0,9385 du géraniol	D	1,48198 [t = 20°]		STEPHAN [J. f. prakt. Ch. (2° s.), t. LX, p. 246; 1899]. [Id. (Id., t. LVIII, p. 108; 1898).]
Id. (liquide). du pinène $d = 0.937$	D	1,48323 [t = 20°]		
du géraniol d ¹⁵ = 0,937	D	$\begin{vmatrix} 1,48151 \\ [t = 20^{\circ}] \end{vmatrix}$		
Tétrahydrobenzène. C^6H^{10} $d_1^{14,4} = 0,7993$	C F H _Y	$ \begin{vmatrix} 1,43998 \\ 1,44943 \\ 1,45507 \\ [t = 14°,4] \end{vmatrix} $		PERKIN in FORTEY (J. of chem. Soc., t. LXXIII, p. 943; 1898).
Tétrahydrocarone. $C^{10} H^{20} O$ (de <i>l.</i> -carvomenthol) $d_4^{10} = 0,9020$	D	1,455 29 [i = 19°]		Kondakoff et Lutschi- ning [J. f. prakt. Ch. (2° s.), t. LX, p. 270; 1899].
Tétrahydro- m chlorotoluène. $C^{1}H^{11}Cl = CH^{3}.C^{6}H^{6}.Cl$ (1) (3) $d^{16} = 1,021$	D	1,48891 [t = 18°]		KLAGES (Ber. d. D. ch. Ges., t. XXXII, p. 2569; 1899).
Tétrahydroquinaldine. $C^{10} H^{13} Az = C^{6} H^{4} < CH^{2} - CH^{2} \\ Az H - CH (CH^{3}) $ $d_{4}^{23} = 1,0169$	D Tl	1,57162 1,57954		Pope et Peachey (J. of chem. Soc., t. LXXV, p. 1114; 1899).
Tétraméthylènecarbonique (acide). $CH^2 - CH^2$ $C^3H^4O^2 = \begin{vmatrix} & & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & \\ & & & \\ & &$	Li C D Tl F	1,44101 1,44151 1,44393 1,44652 1,44976 1,45453 [t=16°,6]		BRÜHL (Ber. d. D. ch. Ges., t. XXXII, p. 1225; 1899).

POTTING B		···	widess -	OFILGUE.	
NOM, FORMULE ET DENSITE.		RAIR.	mune	VARIATION pour 1°C. dn dt	OBSERVATEURS.
$C^{0}\Pi^{12} = \frac{CH^{3}}{CH^{3}}C:C < \frac{CH^{3}}{CH^{3}}$ $d^{10} = 0,7077$		D	1,4248 [f = 18°]		KONDAROPF [J. f. prakt. Ch. (2* 8.), t. LIX, p. 295; 1899].
mToluate amylique. (d'amyle actif) C'' H'' O' = CH''. C'' H''. CO OC' H'' (1) (1) (2) d'' = 0,976		Þ	1,4929 [t = 20*]		Gove et Baust [Arch. de Gen. (4° pér.), t. VII, p. 33; 1899].
Toluène difluorochloré. C ⁶ H ³ . C Fl ² Cl d ¹³ = 1,25445		D	1,46969 [t = 13*]		SWARTS [Bull. Acad. Beig. (3° s.), t. XXXV, p. 383; 1898].
Toluène monofluoré. C'H'Fl d'' = 0,996 :		D	1,47024 [t = 18*]		(in. (id., t. XXXIV, p. 302, 1897).
Toluène trifluoré. C ⁴ H ³ . C Fl ³ d ¹⁴ = 1,1963		D	1,41707 [t=14°]		Ed., t. XXXV, p. 383.
Toluène trifluoronitré. Az O ² . C ⁶ H ¹ . C Fl ³ d ¹⁵ = 1,435 7		11	1,47582 [t = 15°]	ï	<i>ld.</i> , p. 388.
Tributyrine. $CH^{2}.O.CO.C^{3}H^{3}$ $C^{13}H^{26}O^{6} = CH^{2}.O.CO.C^{3}H^{3}$ $CH^{3}.O.CO.C^{3}H^{3}$ $CH^{3}.O.CO.C^{3}H^{3}$ $d_{4}^{26} = 1,0324$		b	1,43587 [t = 20*]	— 0,000425 — 0,00000081 [Schrif (Rec. Trav. chim. d. P. B., t. XVIII, p. 191; 1899).
Tricaprine. $C^{33}H^{62}O^{4} = CH^{2}.O.CO.C^{9}H^{19}$ $CH^{2}.O.CO.C^{9}H^{19}$ $CH^{2}.O.CO.C^{9}H^{19}$ $d_{4}^{33} = 0.9205$		D	1,44461 [t-40 ⁿ]	-0,000382 [# = 40° et 60°]	Id., p. 191.

NOM, FORMULE BT DENSITÉ. Tricaproïne. $C^{21}H^{30}O^{6} = CH^{2}.O.CO.C^{5}H^{11}$ $CH.O.CO.C^{5}H^{11}$ $CH^{2}.O.CO.C^{5}H^{11}$ $d^{20}_{4} = 0,9817$	RAIE.	1,44265 [t = 20°]	VARIATION pour 1° C. dn/dt -0,0003635 -0,0000030t [20°, 40° et 60°]	OBSERVATEURS. Id., p. 193.
Tricapryline. $C^{21}H^{50}O^{6} = CH^{2}.O.CO.C^{7}H^{15}$ $CH.O.CO.C^{7}H^{15}$ $CH^{2}.O.CO.C^{7}H^{15}$ $d_{4}^{20} = 0.9540$	D	1,44817 [t=20°]	—0,0003702 —0,0000006 <i>t</i> [20°,40° et 60°]	Id.
Trichloracrylate éthylique. $C^3H^3Cl^3O^2 = CCl^2:CCl.COOC^2H^3$ $d_4^{20} = 1,3740$	D	1,4839 [t=20°]		FRITSCH (<i>Lieb. Ann.,</i> t. CCXCVII, p. 316; 1897).
Trichloracrylate triéthylique.	Voir Ort	hotrichlor	acrylate éthy	lique.
Trifluorobromoéthylique (éther). $C^4 H^6 Fl^3 Br O$ $d^{10,5} = 1,6121$	D	1,37938 [t=10°,5]		SWARTS (Bull. Acad. Belg., 1899; p. 368).
Trifluorodibromoethane. $C^2 H Fl^3 Br^2$ $d^{14} = 2,2540$	D	1,41447 [t=14°]		<i>Id.</i> , p. 36o.
Trifluorotoluidine. $C^6H^4(AzH^2)CFl^3$ $d_4^{12,3}=1,3047$	D	1,4847 [t=12°,5]		ID. (id., t. XXXV, p. 390; 1898).
Trifluorotolunitrile. $C^6 H^4 (CAz) CFl^3$ $d_4^{26} = 1,2813$	D .	1,45048 [t=20"]		<i>Id.</i> , p. 3 ₉₇ .

NOM, FORMULE ET DENSITÉ.	RAIE.	INDICE.	VARIATION pour 1°C. dn dt	OBSERVATEURS.
Trifluorotribromoethane. $C^2 Fl^3 Br^3$ $d^3 = 2,6666$	D	1,4666 [t=7°]		Id. (id., 1899; p. 379).
Trilaurine. $C^{39} H^{14} O^{6} = C^{3} H^{3} (O.CO.C^{11} H^{23})^{3}$ $d_{4}^{69} = 0.8944$	D	1,440 ³⁹		Schrif (Rec. Trav. chim. d. P. B., t. XVIII, p. 196; 1899).
Triméthyl-(1.3.3)-cyclohexane. $C^9H^{18} = CH^2 - CH(CH^3) - CH^2$ $CH^2 - CH^2 - CCH^3$ $d_4^{15} = 0.7048$	D	1,4324 [t=15°]		KNŒVENACEL et C.FISCHER (Lieb. Ann., t. CCXCVII. p. 203; 1897).
Triméthyl-(1.3.3)-cyclo- hexanol-(5). $C^9H^{16}O = CH^2 - CH(CH^3) - CH^2$ $CH(OH) - CH^2 - C < CH^3$ $CH^{16} = 0,9006$	D	1,4550 [t=16°]		<i>Id.</i> , p. 197.
Triméthyl-(1. 3. 3.)-cyclohexa- none-(5). $CH^{2}-CH(CH^{3})-CH^{2}$ $C^{9}H^{16}O = \begin{matrix} I & CH^{3} & CH^{3} \\ CO & CH^{2} & -C & CH^{3} \\ CH^{3} & CH^{3} & CH^{3} \end{matrix}$ $d_{4}^{15} = 0.8923$	D	1,4455 [t=15°]		<i>ld.</i> , p. 199.
Triméthyl-(1. 3. 3.)-cyclo- hexène-(Δ 1. 5. ?). $CH - CH (CH^3) - CH^2$ $C^9H^{16} = (?) \stackrel{ !}{CH} - CH^2 - C \stackrel{ }{C} \stackrel{CH^3}{CH}^3$ $d_1^{2,3} = 0,7981$		1,4453 [t=23°]		ld., p. 201.
Trimethyl-(1. 3. 3.)-cyclohexe- none-(5). $CH = C(CH^3) - CH^2$ $C^9H^{11}O = \begin{vmatrix} 1 & CH^3 & CH^3 \\ CO & CH^2 & -C & CH^3 \end{vmatrix}$ $d_4^{14} = 0.9228$	D	1,4766 [t=18°]		Id., p. 187.

NOM, FORMULE ET DENSITÉ.	RAIE.	INDICE.	VARIATION pour 1°C. dn dt	OBSERVATEURS.
Triméthylènecarbonique (acide). $C^{4}H^{6}O^{2} = \begin{matrix} CH^{2} \\ I \\ CH^{2} \end{matrix} CH.COOH$ $d_{4}^{17,1} = 1,0907$	F	1,43450 1,43488 1,43754 1,44035 1,44363 1,44856 [t=17°,1]		BRUHL (Ber. d. D. ch. Ges., t. XXXII, p. 1225; 1899).
Trimyristine. $C^{45}H^{46}O^{6} = C^{3}H^{5}(O.CO.C^{13}H^{21})^{3}$ $d_{4}^{60} = 0,8848$	D	$[t = 60^{\circ}]$		Schru (Rec. Trav. chim. d. P. B., t. XVIII, p. 197; 1899).
Tripalmitine. $C^{51} H^{98} O^{6} = C^{3} H^{5} (O.CO.C^{15} H^{31})^{3}$ $d_{4}^{89} = 0,8657$	D	1,43807 [t=80°]		<i>Id.</i> , p. 199.
Tristéarine. $C^{57} H^{110} O^{6} = C^{3} H^{5} (O.CO.C^{17} H^{35})^{3}$ $d_{4}^{50} = 0,8621$	D	1,43987 [t=80°]		<i>ld.</i> , p. 200.
Tubérone. C ¹³ H ²⁰ O d ⁰ = 0,9707	D	$\begin{bmatrix} 1,516 \\ [t=14^{\circ}] \end{bmatrix}$		VERLEY [Bull. Soc. chim. (3° s.), t. XXI, p. 207; 1899].
nValérate amylique $(d'am. \ actif)$. $C^{10}H^{20}O^{2}$ $d^{16}=0,8629$	D	1,41495 [t=16°]		Guyr et Gurrchooring [Arch. de Gen. (4° pér.), t. IV, p. 116; 1897].
iValérate amylique (d'am. actif). $C^{10}H^{20}O^2$ $d^{16}=0,8607$	D	1,4201 [t=16°]		Id., p. 117.
racValérate amylique (d'am. actif). $C^{10}H^{20}O^{2}$ $d^{16} = 0,8553$	D	1,4121 [t=16°]		Id., p. 118.

NOM, FORMULE ET DENSITÉ.	RAIE.	indick.	VARIATION POUR 1°C. da dr dr	OBSERVATEURS.
actValérate racamylique. C**H**O* d******O*	D	1,41527 [t=16*,2]		14., p. 124.
$act.$ $C^{9}H^{19}O^{3}$ $d^{19}=0,8643$	D	1,4103 [4=18°]		<i>ld.</i> , p. 111.
act C'H'' O' d''', '' = 0,8565	"	1,4060 [f=16*,2]		M, p. 153.
actValérate secbutylique. $C^{0}H^{11}O^{3}$ $d^{14,2}=\circ,8534$	D	1,40604 [4=16°,2]		Ed.
actValérate npropylique. $C^{\bullet}H^{10}O^{2}$ $d^{11}=0,8653$	D	1,40464 [t=15°]		(d., p. 13t.
actValérate ipropyliqué. $C^{1}H^{14}O^{3}$ $d^{19,2}=0,8510$		1,3989 [t = 19*, 2]		7d., p. 183.
actValérique (acide). $C^{5}H^{10}O^{2} = \frac{C^{7}H^{5}}{CH^{2}}CH.COOH$ $d^{14,6} = 0.9374$	D	1,4061 [t=14*,6]		id., p. 119. (faute d'impression dans le texte).
$pXylylamine.$ $C^{c}H^{11}Az = CH^{2}.C^{c}H^{1}.CH^{2}.AzH^{2}$ $d_{4}^{2,c} = 0.9519$	o l	1,53639 [t = 20°]		KONOWALOFF (J. Soc. phys chim. Russe, t. XXXI, p. 154; 1899).

TABLE X.

INDICES DES'DISSOLUTIONS ET MÉLANGES.

A. — DISSOLUTIONS AQUEUSES DE SOLIDES.

NOM ET FORMULE.	p.	$\left(\frac{n-n_0}{p}\right)_{\mathbb{D}}$.	OBSERVATEURS.
Azotite de sodium. Az O² Na $t=20^\circ$	44,9 40 à 16 10 à 2,6	0,001 157 1 165 · 117	Boouski (J. Soc. physchim Russe, t. XXXI, p. 550; 1899)
		/ _ 	
•	c	$\left(\frac{n-n_0}{c}\right)_{\mathbb{D}}$.	

Chlorure de lithium.

Li Cl

$$t = 18^{\circ}$$

$$\begin{bmatrix}
\frac{dn}{dt} = -0,000083 \\
0,00208 (1) \\
2,12 \\
0,00208 (1) \\
211 (2)
\\
0,00208 (1) \\
211 (2)
\\
0,00208 (1) \\
211 (2)
\\
0,00208 (1) \\
211 (2)
\\
0,00208 (1)
\\
211 (2)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\
0,00208 (1)
\\$$

Chlorure de potassium.

K Cl

$$t = 18^{\circ}$$

$$\begin{bmatrix} \frac{dn}{dt} = -0,000095 \\ 85 \end{bmatrix} (1)$$
 $(t = 10^{\circ} \text{ à } 20^{\circ})$

NOM ET FORMULE.	c .	$\left(\frac{n-n_{\bullet}}{p}\right)_{\mathfrak{v}}$	OBSERVATEURS.
Chlorure de rubidium. Rb Cl t = 18°	12,07 6,035	0,00089 90	Id.
Chlorure de sodium. Na Cl $t = 18^{\circ}$	4	$ \begin{vmatrix} 0,000171 & (1) \\ 173 & (2) \end{vmatrix} $ $ = 10^{\circ} \stackrel{1}{a} 20^{\circ}) $	Id.
Dichloracétate de potassium CH Cl ² . CO OK $t = 12^{\circ}, 5$	2,11	0,001 202	HALLWACES (loc. cit., p. 39).
Sucre de cannes. C'2 H22 O'11 l = 19°	$ \begin{array}{c c} Li & o, \infty \\ C & D \\ F & H_{\gamma} \end{array} $ $ \frac{dn}{dt} = -[o,]$	$\frac{-n_{0}}{p}(p = 10 \text{ à } 70).$ $013877 + 0,0^{5}7166p$ $13918 $	B. MATTHIESSEN (InsugDis- sert., Rostock; 1898).
l = 17°, 78	13,42 3,34 0,83 0,41	$\frac{\left(\frac{n-n_{\bullet}}{c}\right)_{D}}{0,001426}$ $\frac{1431}{1439}$ $\frac{1447}{1447}$	HALLWACHS (loc. cit., p. 35).
Trichloracétate de potassium. CCl ³ .COOK t = 12°,5	2,57	0,001148	Id., p. 39.

B. - MÉLANGES DE LIQUIDES ET D'EAU.

NOM ET FORMULE.	c.	$\left(\frac{n-n_{\bullet}}{c}\right)_{\mathbf{D}}$	OBSERVATEURS.		
Acide chlorhydrique. HCl t = 18°		0,00228 (1) $223 (2)$ $-0,000077$ 72 (1) 72 (2) $= 10° à 20°)$	Sir J. Conroy (<i>Proc. Roy. Soc. Lond.</i> , t. LXIV, p. 311; 1899).		
Acide dichloracétique. CH Cl^2 . CO OH $t = 12^{\circ}, 5$	64,10 12,82 3,21 0,80 0,40 0,20	0,001 008 1 144 1 221 1 302 1 342 1 350	HALLWACHS (loc. cit., p. 39).		
Acide trichloracétique. CCl3.COOH t = 12°,5	83,02 16,64 8,30 4,16 2,07 1,04 0,52 0,26	0,001 025 1 234 1 262 1 277 1 285 1 299 1 303 1 318	id.		

C. — DISSOLUTIONS DIVERSES.

	RAIES.	INDICE.	
			=
Phosphore et diiodure	C	1,929	MADAN (J. Roy. microsc. Soc.,
de méthylène.	D	1,944	1897; p. 273).
$t=18^{\circ}$ $p=5^{\circ}$	F	1,984	
	H_{γ}	2,021	

TABLE XI.

INDICES DE QUELQUES SOLIDES REMARQUABLES.

I. - CALCITE.

A. — Spectre visible.

		INDICE			
RAIES.	LONGUEURS d'unde.	ordinaire (t = 20°).	extraordinaire (l=20°).		
	μμ		•		
$K_{\alpha} \dots$	768,0	1,649741	1,482607		
	743,5	1,65061	1,48298		
	718,5	1,65158	1,48340		
	695,5	1,65258	1,48383		
	673,1	<i>"</i>	1,48428		
<i>Li</i>	670,8	1,653688	1,484331		
	652,9	<i>"</i>	1,48472		
	633,7	"	1,48520		
	615,7	"	1,48567		
D_1D_2	589,3	1,658369	1,486449		
<i>Tl</i>	535,0	1,662671	1,488421		

B. — Spectre infra-rouge

	IND	DICE		INDICE		
LONGUEURS d'onde.	ordinaire (t = 20°).	extraordinaire (/=20°).	LONGUEURS d'onde.	ordinaire (<i>t</i> = 20°).	extraordinaire (/=20°).	
μ 2,3243 2,1719	" 1,62099	1,47392	μ 1,3958 1,3685	1,63637 1,63681	1,47789.	
2,0998	"	1,47492	1,3195	1,63767	"	
2,0531 1,9457	1,62372 1,62602	"	1,3070	1,63789	1,47831	
1,9085 1,8487	" 1,62800	1,47573	1,2288 1,1592	1,63926 1,64051	1,47870	
1,7614 1,7487	1 ,629 74 "	1,47638	1,0973	1,64167 1,64276	1,47948	
1,6815 1,6146	1,631 27 "	1,47695	0,9914	1,64380 1,64480	1,48022	
1,6087 1,5414	1,63261 1,63381	"	0,9047 0,8671	1,64578 1,64676	1,48098 1,48136	
1,4972 1,4792	1,63457 1,63490	1,47744	0,8325 0,8007	1,64772 1,64869	1,48176 1,48216	
1,4219	1,63590	"	0,7711	1,64965	1,48257	

CARVALLO (C. R., t. CXXVI, p. 950; 1898).

C. — Variation des indices par la température.

Indices à 20°C.

		INDICE			
RAIES.	LONGUEURS d'onde.	ordinaire.	extraordinalic.		
C	656,3	1,65448	1,48490		
D	589,3	1,65844	1,48666		
F	486,1	1,66784	1,49087		
Hg	435,8	1,67536	1,49431		

Variation pour 10t à la température moyenne 0.

Indice ordinaire.

	C.		D.		F.		Hg.	
f .	Air chaud.	Air froid.	Air chaud.	Air froid.	Air chaud.	Air froid.	Air chaud.	Air froid.
o C	÷10 ⁻⁵ ×	+10 ⁵ ×	+10-5~	10 ⁻³ ×	+10 ⁻⁵ ×	+10 ⁻⁸ ×	+10 ⁻⁸ ×	 +10 ⁻⁵ ×
57,1	0,188	0,071	0,195	0,078	0,252	0,134	0,263	0,144
152,1	0,170	0,100	0,170	0,100	0,230	0,159	0,236	0,165
248,5 .	0,169	0,120	0,181	0,132	0,250	0,201	0,263	0,214
349	0,186	0,152	0,202	0,168	0,270	0,236	0,280	0,246
			Indice e	extraordi	inaire.			
57,1	1,167	1,062	1,199	1,094	1,285	1,179	1,298	1,192
152,1	1,216	1,153	1,248	1,185	1,336	1,273	1,353	1,289
248,5	1,319	1,275	1,357	1,313	1,448	1,404	1,466	1,422
349	1,443	1,413	1,465	1,435	1,591	1,560	1,620	1,589
				Refi	Wied. An	n., t. LXV,	p. 731; 1898	1.

II. - QUARTZ.

A. — Spectre visible et infra-rouge.

		•	J				
·	IN	DICE		INDICE			
LONGUEURS d'onde.	ordinaire.	extraordinaire.	d'onde.	ordinalre.	extraordinaire.		
2,1719	1,51799	1,52609	μ 1,1592	1,53283	1,54152		
2,0531	1,52005	1,52823	1.0973	1,53366	1,54238		
1.9457	1,52184	1,53004	1,0417	1,53442	1,54317		
1,8487	1,52335	1,53163	0,9914	1,53514	1,54392		
1,7614	1,52468	1,53301	0,9460	1,53583	1,54464		
1,7487	1,52485	1,53319	0,9047	1,53649	1,54532		
1,6815	1,52583	1,53422	0,8671	1,53712	1,54598		
1,6146	1,52679	1,535 24	0,8325	1,53773	1,54661		
1,6087	1,52687	1,535 29	0,8007	1,53834	1,54725		
1,5414	1.52781	1,53630	0.7711	1,53895	1,54789		
1 . 497 2	1,52842	1,53692	0.7435	1,53956	1.54852		
1 ,479 2	1,52865	1,53716	0,7185	1,54017	1,54915		
1,4219	1,52942	1,53796	0.6950	1,54078	1,54978		
1 , 3958	1,52977	1,53832	0.6731	1 , 541 39	1,55041 (1)		
1,3685	1,53011	1,53869	0.0529	••	1,55103		
1,3195	1,53076	"	0.6337	••	1,55167		
1,3070	1,53090	1,53051	0.6157	••	1,55231		
1,2288	1,531 92	1,54057	0.50855	••	1,55298		

^(*) Spectre visible.

CARVALLO C. R., t. CXXVI, p. 730; 1898).

d'onde.	INDICE ordinaire.
 β1,1	2,12
56,0	2,18
51,2	2,46

RUBENS et ASCHKINASS (Wied. Ann., t. LXVII, p. 463; 1899).

B. — Variation des indices par la température.

Variation de l'indice ordinaire pour l'air froid et la longueur d'onde $\lambda = 546\mu$, 08 (raie verte du mercure).

$$[t = 20^{\circ C} \text{ à } 230^{\circ C}]$$

$$\frac{dn}{dt} = -10^{-3} [0,5882 - 0,000272t + 0,000005327t^{2}].$$

REIMBRDES (Inaug. Dissert., Iéna, 1896).

Indices à 20°.

	LONGUEURO	INDICE			
RAIES.	LONGUEURS d'onde.	ordinaire.	extraordinaire.		
c.		1,54185	1,55082		
D	589,3	1,54421	1,55325		
F	486,1	1,54961	1,55884		
<i>Hg</i>	435,8	1,55374	1,56309		

Variation moyenne pour 1°C, entre to et t'o.

Indice ordinaire.

	C	: . [D.		F.		IIg.	
t° — t'°.	Air chaud.	Air frold.	Air chaud.	Air froid.	Air chaud.	Air froid.	Air chaud.	Air froid.
oC oC	-10 ⁻⁵ ×	10 ⁻⁵ ×	—10 ⁻⁵ ×	-10 ⁻⁵ ×	-10 ⁻⁵ ×	-10 ⁻⁸ ×	-10 ⁻⁸ ×	—10 ⁻⁵ ×
23 à 99,4	0,506	0,615	0,498	0,607	0,463	0.572	0,451	0,561
99,4 à 151	0,614	0,691			0,550	0.627	0,533	0.610
151 à 203	0,711	0,771	0,700	0.760	0.632	0.692	0,620	0,680
203 à 252	0,806	0,854	0,794	0,842	0,739	0,788	0.722	0,771
252 à 298	0,926	0,967	0,908	0.949	0,847	0,888	0.823	0,864
298 à 358	1,165	1,199	1,150	1,184	1,092	1,126	1,073	1,107
358 à 412	1,551	1,585	1,540	1,568	1,489	1,517	1,463	1.491
412 à 458	1.928	1.952	1,903	1,927	1,836	1,860		1

Indice extraordinaire.

		.	D). 	F	· (H	g.
t° − t'°.	Air chaud.	Air froid.						
o C • C	-10 ⁻⁵ ×	-10 ⁻⁸ ×	—10 ⁻⁵ ×	—10 ⁻⁵ ×	-10 ⁻⁶ ×	-10 ⁻⁵ ×	-10 ⁻⁸ ×	-10 ⁻⁵ ×
23° à 99,4		0,773	0,656	0,766	0,613	0,723	0,597	0,707
99,4 à 151	0,766					0,789	• •	0,771
151 à 203	0,884	0,944	0,873	0,933	0,830	0,890	0,812	0,873
203 à 252	0,981	1,030	0,963	1,012	0,928	0,977	0,903	0,952
252 à 298	1,150	1,191	1,137	1,178	1,092	1,133	1,065	1,106
298 à 358	1,393	1,427	1,385			1,375	1,314	1,348
358 à 412	1,831	1,859	1,812	1,840	1,760	1,788	1,725	1,753
412 à 458	2,251	2,275	2,229	2,253	2,167	2,191	2,125	2,149

RERD (Wied. Ann., t. LXV, p. 732; 1898).

III. - FLUORINE.

Indice à 20°C.

RAIES.	LONGUBUR8 d'onde.	INDICE.		
C D F	μμ 656,3 589,3 486,1 435,8	1,43245 1,43380 1,43698 1,43937		

Variation pour 1°C, à la température moyenne θ [t = 18° à 412°].

_		. .	Į t).	F	F	H_{i}	g.
θ.	Air chaud.	Air froid.						
o C	-10 ⁻⁵ ×	-10 ⁻⁵ ×	-10 ⁻⁵ ×	_10 ⁻⁵ ×	-10 ⁻⁵ ×	-10 ⁻⁸ ×	-10 ⁻⁸ ×	—10 ⁻⁵ ×
58,8	1,111	1,215	1 ,092	1,196	1,067	1,171	1,057	1,161
66,9	1,114	1,213	1,103	1,202	1 ,083	1,182	1,074	1,173
152,9	1,271	1,334	1,263	1,226	1,224	1,287	1,215	1,278
233	1,332	1,377	1,318	1,363	1,281	1,326	1,267	1,313
277,5	1,443	1,481	1,432	1,470	1,387	1,425	1,378	1,416
326,5	1,508	1,540	1,493	1,525	1,456	1,488	1,443	1,475
385	1,604	1,625	1,584	1,605	1,535	1,556	1,521	1,542

REED (Wied. Ann., t. LXV, p. 731; 1898).

IV. - SEL GEMME.

Spectre infra-rouge.

LONGUEURS d'onde.	INDICE.		
μ 22,3 20,57	1,340 1,3735	-	1
17,93	1,4106 1,4251		
13,96 11,88 9,95	1,4373 1,4476 1,4561		2

- 1. Rubens et Nichols (Wied. Ann., t. LX, p. 454; 1897).
- 2. Rubens et Trowbridge (Id., p. 733).

V. - SYLVINE.

Spectre infra-rouge.

d'onde.	INDICE.	_
μ 22,5 20,60	1,369 1,3882	} 1
18,10 14,14 10,01	1 ,416 2 1 ,436 2 1 ,456 1	} 2

- 1. RUBENS et NICHOLS (loc. cit.).
- 2. Rubens et Trowbridge (loc. cit.).

d'onde.	INDICE.	TEMPÉR.	LONGUEURS d'onde.	INDICE.	TEMPÉR.
μ 11,197	1,45166	o€ 17	μ 4,714	1,47054	oC
10,193	1,45437	17,1	4,125	1,47156	14,4
9,006	1 ,459 75	17	3,200	1,47268	"
8,840	1,46005	17	2,947	1,47365	"
7,661	1,46393	16,5	2,357	1,47422	14,0
7,080	1,46547	"	1,768	1,47542	13,9
6,482	1,46729	15,4	1,570	1,47563	14,0
5,893	1 ,468 24	15,2	1,473	1,47644	"
5,471	1,46937	15,1	1,179	1,47747	14
5,304	1,46938	14,1	0,982	1,47967	"
5,137	1,47008	15,6			

TROWBRIDGE (Wied. Ann., t. LXV, p. 612, 1898).

TABLE XII.

INDICES DE VERRES.

Variation moyenne pour 1°C, entre to et to (pour l'air froid).

FLINT DE SILICE (très dense) S.57 (voir p. 462).

RAIES.	LONGUEURS d'onde.	INDICE a 20 C.
C F	656,3 589,3 486,1 435,8	1,94910 1,96249 1,99795 2,02887

[Après refroidissement, l'indice pour la raie D a diminué de 0,00081.]

<i>t</i> ° − <i>t</i> ′°.	C.	D.	F.	Hg.
oC oC 15,8 à 109,4 109,4 à 203 203 à 263 263 à 299	$+ 10^{-3} \times$ $1,218$ $1,579$ $1,928$ $1,591$	$+ 10^{-5} \times 1,472$ $1,809$ $2,251$ $1,911$	$+ 10^{-5} \times$ 2,110 2,536 3,212 2,918	+ 10 ⁻⁵ × 2,800 " " "

FLINT DE SILICE (très dense) S. 163 (voir p. 453).

RAIES.	LONGUEURS d'onde.	INDICE a 20 C.
C	589,3	1,87929 1,89035
$H_g \dots$, '75'0	1,91923

[Après refroidissement, l'indice pour la raie D a diminué de 0,00017.]

t° t'".	C.	D.	F.	llg.
oG ot	$+$ 10 ⁻⁵ \times	+ 10 ⁻⁵ ×	+ 10 ⁻⁵ ×	+ 10 ⁻⁵ ×
20 à 101	1,119	1,278	1,752	2,161
101 à 150	1,275	1,442	1,959	2,477
150 à 205	1,379	1,594	2,098	2,617
205 à 296	1,577	1,783	2,396	2,992
296 à 364	1,808	2,027	2,753	"

FLINT DE SILICE (dense) O.165 (voir p. 462).

RAIES.	LONGUEURS d'onde.	INDICE a 20°C.
C D F	μμ 656,3 589,3 486,1 435,8	1,74685 1,75453 1,77428 1,79074

[Après refroidissement, l'indice pour la raie D a diminué de 0,000 14.]

t° — t'°.	C.	D.	F.	Hg.
o C o C	+ 10 ⁻⁵ ×			
15,4 à 100°	0,703	0,778	1,058	1,294
100 à 152	0,916	1,051	1,302	1,668
152 à 201	0,960	1,092	1,430	1,714
201 à 261	1,127	1,237	1,632	1,993
261 à 300	1.277	1,396	1,790	2,140
300 à 350	1,382	1,544	1,960	2,405
350 à 408	1,758	1,904	2,263	2,893

FLINT DE SILICE (léger) O.154 (voir p. 462).

RAIES.	LONGUEURS d'onde.	INDICE à 20°C.
C	μμ 656,3 589,3 486,1 435,8	1,56708 1,57090 1,58034 1,58789

[Après refroidissement, l'indice pour la raie D a diminué de 0,00093.]

DONNÉES NUMÉRIQUES. — OPTIQUE.

t° t'° (1).	C.	D.	F.	Hg.
oC oC 17,8 à 98,2 98,2 à 201	+ 10 ⁻⁵ × 0,226 0,324	+ 10 ⁻⁵ × 0,250 0,362	+ 10 ⁻³ × 0,307 0,456	+ 10 ⁻⁸ × 0,360 0,548
201 à 302	0,509	0,568	0,666	0,768
302 à 401	0,577	0,639	0,751	0,870
401 à 452	- 10 ⁻⁸ × 1,861	$-10^{-5} \times 1,720$	- 10 ⁻⁸ × 1,504	$-10^{-5} \times 1,329$

(1) Calculé d'après la courbe p. 729.

FLINT DE BARYTE (léger) O.527 (voir p. 463).

RAIES.	LONGUEURS d'onde.	INDICE à 20°C.	
C D	μμ 656,3 589,3 486,1 435,8	1,56839 1,57171 1,57975 1,58605	

[Après refroidissement, l'indice pour la raie D n'a pas varié.]

ℓ° — ℓ′°.	C.	D.	F.	Hg.
ο C ο C	- 10 · 5 ×	+ 10 ⁻⁵ ×	+ 10 ⁻⁵ ×	+ 10 ⁻⁵ ×
13,8 à 99,2	0,014	0,045	0,107	0,150
99,2 à 215	0,094	0,111	0,179	0,246
215 à 308	0,144	0,167	0,249	0,355
308 à 406	0,217	0,249	0,350	0,461

CROWN SILICEUX DE BARYTE (lourd) O.211 (voir p. 463).

RAIES.	LONGUEURS d'onde.	INDICE à 20°C.
C	589,3	1,56975 1,57270 1,57968 1,58520

[Après refroidissement, l'indice pour la raie D n'a pas varié.]

$t^{\circ}-t'^{\circ}$.	C.	D.	F.	Hg.
oC oC 22,4 à 100 100 à 208	+ 10 ⁻⁵ × 0,024 0,096	$+ 10^{-5} \times 0,035$ 0,113	+ 10 ⁻⁵ × 0,092 0,152	+ 10 ⁻⁵ × 0,099 0,186
208 à 310	0,156	0,174	0,223	0,258
310 à 406	0,221	0,247	0,297	0,340

(?) CROWN DE BARYTE (très lourd) O.1299 (1).

RAIES. LONGUEURS d'onde.		INDICE 4 20° C.
C	μμ 656,3	1,60678
D	589,3	1,60987
F	486,1	1,61734
<i>Hg</i>	435,8	1,62309

[Après refroidissement, l'indice pour la raie D a augmenté de 0,00001.]

<i>t</i> ° — <i>t</i> ′°.	C.	D.	F.	Hg.
8,8 à 103 103 à 193 193 à 309 309 à 404	+ 10 ⁻⁵ × 0,394 0,419 0,455 0,509	+ 10 ⁻⁵ × 0,410 0,444 0,489 0,555	+ 10 ⁻⁸ × 0,504 0,543 0,603 0,648	+ 10 ⁻⁵ × 0,528 0,577 0,629 0,682

⁽¹⁾ Probablement identique à O.1442, p. 457.

REED (Wicd. Ann., t. LXV, pp. 728 et 735; 1898).

TABLE XII.

INDICES DE VERRES.

Variation moyenne pour 1°C, entre to et t'o (pour l'air froid).

FLINT DE SILICE (très dense) S.57 (voir p. 462).

RAIES.	LONGUEURS d'onde.	INDICE à 20 C.
C D F <i>Hg</i>	656,3 589,3 486,1 435,8	1,94910 1,96249 1,99795 2,02887

[Après refroidissement, l'indice pour la raie D a diminué de 0,00081.]

t° — ℓ′°.	C.	D.	F.	Hg
o C o C o C 15,8 à 109,4 109,4 à 203 263 à 263 263	+ 10 ⁻⁸ × 1,218 1,579 1,928 1,591	+ 10 ⁻⁸ × 1,472 1,809 2,251 1,911	$+ 10^{-5} \times 2,110$ $2,536$ $3,212$ $2,918$	+ 10 ⁻⁵ × 2,800 " "

FLINT DE SILICE (très dense) S. 163 (voir p. 453).

RAIES.	LONGUEURS d'onde.	INDICE à 20°C.
C F	656,3 589,3 486,1 435,8	1,87929 1,89035 1,91923 1,94407

[Après refroidissement, l'indice pour la raie D a diminué de 0,00017.]

t° — t'•.	C.	D.	F.	Hg.
oC oC 22,4 à 100 100 à 208 208 à 310 310 à 406	+ 10 ⁻⁵ × 0,024 0,096 0,156 0,221	+ 10 ⁻⁸ × 0,035 0,113 0,174 0,247	+ 10 ⁻⁸ × 0,092 0,152 0,223 0,297	+ 10 ⁻⁵ × 0,099 0,186 0,258 0,340

(?) CROWN DE BARYTE (très lourd) O.1299 (1).

RAIES.	LONGUEURS d'onde.	INDICE 4 20° C.
C	μμ 656,3 589,3 486,1 435,8	1,60678 1,60987 1,61734 1,62309

[Après refroidissement, l'indice pour la raie D a augmenté de 0,00001.]

<i>t</i> °− <i>t</i> ′°.	C.	D.	F.	Hg.
8,8 à 103°C 103°à 193 193°à 309 309°à 404	+ 10 ⁻⁵ × 0,394 0,419 0,455 0,509	+ 10 ⁻⁸ × 0,410 0,444 0,489 0,555	+ 10 ⁻⁸ × 0,504 0,543 0,603 0,648	$+ 10^{-5} \times 0,528$ $0,577$ $0,629$ $0,682$

(1) Probablement identique à O.1442, p. 457.

REED (Wied. Ann., t. LXV, pp. 728 et 735; 1898).

TABLE XIII.

PROPRIÉTÉS OPTIQUES DES SOLIDES INORGANIQUES.

A. — Minéraux.

OBSERVATEURS.	L. XXII, p. 471; 1819 et Gr. Zeits., t. XXXI, p. 371; 1899).
RAIE on couleur.	
INDICES PRINCIPAUX.	
ES PHIN	
INDICI n ₃ .	
RAIE ou couleur.] C [] [] [] [] [] [] [] [] []
ANGLE des aves.	2E 30"33' 30"46' 31" 8' [1 -= 23",5]
BISSECTRICES	9
BISSEC	e
SIGNE OPTIQUE.	
PARAMÈTRES.	0,6216
SYSTÈME cristallin.	
NOW 1 F PORMULE.	Aragonite. CO Ca rose (de Dognaska)[.

Nort Herbrit Suith (Miner. Magaz., t. XII. p. 15: 1898).	D Spencer (Winer, Magaz t. XII. p. 1; 1898).
,	<u> </u>
1,831	;
1,861	1,575
1,880 1,861 1,831	1,5893 1,5752
vert	<u> </u>
2V 74"56'	2E 82°30'
Ç	9
~	,5419 1 c 34" ,2708 ,112"27"
0 0.6613	1,6419
	N
Atakamite. H Cu²ClO³ de Sierra Gorda (Chila	Augélite. MPO'(MOID): (de Bolivie).

$t^{\circ}-t'^{\circ}$.	C.	D.	F.	Hg.
oC oC 22,4 à 100 100 à 208 208 à 310 310 à 406	+ 10 ⁻⁸ × 0,024 0,096 0,156 0,221	+ 10 ⁻⁸ × 0,035 0,113 0,174 0,247	+ 10 ⁻⁸ × 0,092 0,152 0,223 0,297	+ 10 ⁻⁵ × 0,099 0,186 0,258 0,340

(?) CROWN DE BARYTE (très lourd) O.1299 (1).

RAIES.	LONGUEURS d'onde.	INDICE \$ 20° C.
c	μμ 656,3	1,60678
D	589,3	1,60987
F	486,1 435,8	1,61734 1,62309

[Après refroidissement, l'indice pour la raie D a augmenté de 0,00001.]

<i>t</i> ° — <i>t</i> ′°.	C.	D.	F.	Hg.
8,8 à 103 103 à 193 193 à 309 309 à 404	+ 10 ⁻⁸ × 0,394 0,419 0,455 0,509	+ 10 ⁻⁸ × 0,410 0,444 0,489 0,555	+ 10 ⁻⁸ × 0,504 0,543 0,603 0,648	+ 10 ⁻⁵ × 0,528 0,577 0,629 0,682

(1) Probablement identique à O.1442, p. 457.

REED (Wied. Ann., t. LXV, pp. 728 et 735; 1898).

	OBSERVATEURS.		D KLEIN (Sitzb. Akad. Berlin, 1899; p. 362).	D WALLERANT (Bull. Soc. Minér., t. XX, p. 254; 1897).	A VIOLA (Gr. Zeits., t. XXX, a p 436; 1898). C C D D KLEIN (foc. cit.). D VIOLA [R. C. det Lincel, t. VIII (irr som.), p. 537; 1899).	D WALLERANT (Bull. Soc. Miner., t. XX, p. 254; 1897).
	ou could	eur.	<u> </u>			
	AUX.	, d R	1,5192	1,5306	522, 422, 525, 525, 525, 525, 525, 525,	1,5367
	ES PRINCIPAUX.	A 28.	1,5192	1,5333	1,52618 1,52935 1,53935 1,53330 1,53701 1,53987 1,53987 1,5333	1,5419
	INDICES	29 85	1,5229	1,5383	1,53095 1,53292 1,53468 1,53814 1,54160 1,5424 1,5424 1,55095 1,53887	1,5449
	RAIF ou could	The state of the s	۵			
	ANGLE des exes.		2 V o" (app.)			
	BISSECTRICES	aiguë. obtuse.				
8163	NE OPT	ique.		,4 <u>%</u> <u>%</u>		<u>+ × × + </u>
PA	RAMÈT	RES.		0,633 0,558 $z = 94^{\circ}$ $3 = 116^{\circ}$ $\gamma = 88^{\circ}$		0,632 0,553 $x = 93^{\circ}$ $y = 116^{\circ}$ $y = 90^{\circ}$
	YSTÈ cristalli			-		F
	NOM ET FORMULE.		San. (de l'Eifel).	Atbite. Na ² Al ² Si ⁶ O ¹⁶ (d'un granulite de la Vendée).	(de Schmirn). (de Carrare).	Oligoclase. (d'un granulite de la Vendée).

OBSERVATEURS.	KLRIN (Süzb. Akad. Berlin, 1899; p. 361).	WALLERANT (Bull. Soc. Minér., t. XX, p. 254; 1897).	Viola (Gr. Zeits., t. XXX, p. 436; 1898).		VIOLA [R. C. dei Lincei, t. VIII (1°° 80m.), p. 537; 1899).	WALLERANT (Bull. Soc. Miner., t. XX, p. a54; 1897).
RAIE ou couleur.	G	Q		ŋ	D	Q
PAUX.	1,5192	1,5306	1,52340 1,52411 1,52648 1,52965 1,53213 1,53274 1,53374 1,53550	11,5291	1,52823	1,5367
ES PRINCIPAUX	1,5192	1,5333	1,52618 1,52935 1,53058 1,53640 1,53640 1,53701 1,53987 1,53987	1,5340	,53887 1,53232	1,5419
INDICES "F.	1,5229	1,5383	1,53095 1,53292 1,53614 1,53814 1,54160 1,5424 1,5424 1,54553 1,55095	1,5388	1,53887	1,5449
RAIE ou couleur.	Q					
ANGLE des axes.	2 V o" (app.)					
BISSECTRICES gué. obtuse.						
PARAMÈTRES.		0,633 $\frac{x}{0} = 94^{\circ} 4'$ $\frac{4'}{3} = 116^{\circ} 28'$ $\frac{7}{7} = 88^{\circ} 8'$		_		0,632 0,553 = 93° 4' 116° 28'
8 Y S T È M E cristallin.		F				H GT >-
NOM ET FORMULE.	San. (de l'Eifel).	Albite. Na ² Al ² Si ⁶ O ¹⁶ (d'un granulite de la Vendée).	(de Lakous).	(de Schmirn).	(de Carrare).	Oligoclase. (d'un granulite de la Vendée).

5 1,5539 1,5501 D	1 1,5533 1,5502 D	1,588 49 1,583 48 1,575 56 D 1899; p. 358). 1,588 40 1,583 27 1,575 24 D VIOLA (Gr. Zeits., t. XXXI, p. 491; 1899).	1,722 1,686 D PENFIELD OF WAHREN [Amer. J. of Sc. (1° 8.), t. VIII, p. 345; 1899].	D WALLERANT (Bull. Soc. Miner., t. XX, p. 353;	1,7568 Li Nrwland (Trans. N. F. 1,7610 D Acad., t. XVI, p. 24; 1,7650 Tl 1897).	1,7647 Li 1,7700 D 1,7747 Tl	5 1,5229 1,5204 D KLEIN (10c. cit., p. 361).
1,5585	1,5581	a (o21) 76°30' 76°49 76°47' 71 1,58849	c 2V 60°51' D 11,735	0659,1			11,5296
+		T 0,635 $-$ 0,550 $\alpha = 93^{\circ}13'$ $\beta = 115^{\circ}55'$ $\gamma = 88^{\circ}48'$	0 0,566 - 0	M 0,55 $-$ 0,29 $\beta = 105^{\circ}$			M 0,7444 + ο,4124 β=113°51'
Andésine. (du porphyre de Saint-Raphaël).	(d'un granulite de la Vendée).	Anorthite. Ca Al ¹ Si ² O ³ (du Vésuve).	Glaucochrofte. Si O'Ca Mn [de Franklin (N. J.)].	Glaucophane. (Na ² FeMgCa)(AlFe) ² Si ⁴ O ¹² (de l'Ile de Groix).	Grenat. Almandin [de Silberbach (Fichtelgebirge)].	[de Fallser Höhe (id.)].	Gypse. SO*Ca + 2 H ² O (de Sicile).

1233	po	33665 31 M	KKIQLES	s orrige	7.4
OBSERVATEURS.	Henbert Smith (Miner Magaz, t. XII, p. 1021 1898).	WALLERANT IN TERMIER (Bull Soc Miner., L. XXII, p. 30; (Rog)		Viola [R. C. del Lincel, L. VIII (** sem.), p. 537, 1809] ot (Gr. Zelts., t. XXXII, p. 179, 1899).	Ramsay et Zilliacus (Ocf. Finska VetSoc. Förk t. XXXIX, 1898).
RAIE On couleur	<u> </u>	٩		=	۵
PRINCIPAUX.	2,0767	1,554		1,60274'1,59472 1,56188	1,8372 1,7879 1,7863
ES PRINC	2,1161	1,582		1,59472	1,7879
INDICES	2,1580	1,582		1,60274	1,8372
NAIE ou couleur	<u> </u>				=
ANGLE des aves	2 V 81"32"	rrès petit			2V 12"30'
BISSECTRICES			-		4
31881E	8	ō	Lote plus form Supplément à la Table AA		4
SIGNE OPTIQUE					<u> </u>
PARAMETRES.	0,7385		Suppléme	0,578 3,293 3=90°4	0,9693 0,9256 3=103°40'
SYSTEME cristallin		ps	ilus form	N N	<u>z</u>
NOM RT FORMULF	Laurionite Pb Cl (OH) (du Laurium).	Leverriérite. (112K²) APS;²O² de Quartier Gaillard)	l oir p	Mica. Muscovite (de Monte Orfan 1).	Monazite. PO'(Ce La Dr) (de Impilaks).

Péridot, Voir Glaucochrofte.

2,1446 2,1181 D Handert Saith (Miner.	Magaz, t. XII, p tex	, la galla .	
_		_	
1 + 088 + 1			
Phosgénite. Q	4.O4Pb PbCl7	(du Laurium).	

Pyroxène. Augite (de Mährisch-Mestadt- Goldenstein).	×	1,09 0,59 3 - 105*49		c 36°51' c 126°51' c 36°36' c 126°36' (') Rate du lithium.		c 36"51" c 126"51" a f5 112"30" c 36°36" c 126"36" t 10" 1" (') Rate du lithium.	Tough D					PETIKAS E. XIX 1499 J.	PRITRAN (Trek. Mitthell., k. XIX (m. 1867.), p. 1081; 1899.),
Quarzine. Si O ²	-		<u>+</u>		1	aV 58"		1,540 1,5435 1,548	1,535 1,535 1,540	1,531	007	Wallerant minér., t. 1897 b.	AANT (Bull Soc.
Stokésite (Silicate de Na et Ca (Avec 6 * 4 SiliO2)	0	0,3479	- F		*	2 V 69''30'	â	1,622		*	a	HUTCHINGON (3° 8.), t. M (899).	CTCHINGON [Phil. Mag. (5° 8.), t. ALVIII, p. 180 1899 }.
Thalénite. II:Y'S ₁ 'O'-		1,154 0,602 3=99*48'			٩	27 67"35"	a	1,7436	1,7436 1,7375	1,7312	<u> </u>	BENEDICKS Forh., t.	3ks (Geol. Foren,
Thaumasite. Si O'Ca CO ³ Ca SO'Ca iSH ² O (de Skottvång).	=			-			-		1,505	1,468	<u></u>	Backstrom Forb., t	ROM (Gent Foren.
Triphyline. Vor. plus loin Supplément à la Table W Zolzite (3). 911*Ca* M*Sr*O** H*Ca* Fe*Sr*O**	noin Su O	applemen	# # # # # # # # # # # # # # # # # # #	N 0 N	-	2 \ 12° à	\$	1,7034	+ " + " "	$1,7034 \frac{n_m + n_p}{2} = 1,6961$	<u> </u>	WALLER (Bull.)	Wallerant in Termine (Buil. Soc miner., t. XXI. p. 153, 1498).
(de Bobbio).			_										

B. — Substances inorganiques artificielles.

OBSERVATEURS.	BARTALINI in PICCINI (Zeits. f. anorg. Ch., t. XX, p. 14; 1899).	rouge 1d., t. XVII, p. 357; 1898. jaune vert bleu violet	rouge [14., p. 359.	rouge Id., t. XIII, p. 446; 1897. D vert bleu violet	14.
RAIE ou couleur.	rouge	rouge jaune vert bleu	rouge	rouge D vert bleu	rouge D vert violet
INDICES PRINCIPAUX.	1,487 à 1,479	1,472 1,475 1,476 1,480	1,465	1,4735 1,4755 1,478 1,483	1,476 1,478 1,481 1,488
RAIB ou couleur.					
ANGLE des axes.					
BISSECTRICES aignē. obtuse.			•		
PARAMÈTRES.					
SYSTÈME cristallin.	S	C	O	C	O
NOM ET FORMULE.	Alun de manganèse et césium. SO'Cs+(SO') ³ Mn ² +2 ⁴ H ² O	Alun de titane et césium. \$\text{SO}^{1}\text{Cs}^{2} + (\text{SO}^{1})^{3}\text{Ti}^{2} + 2\frac{1}{4}\text{H}^{2}\text{O}\text{.}	Alun de titane et rubidium. SO'Rb²+(SO')³Ti²+24H²O	Alun de vanadium et ammonium. \$(0)^{4} (Az H^{4})^{2} + (50^{4})^{3} Va^{2} + 24 H^{2}O	Alun de vanadium et césium. SO'Cs²+(SO')³Va²+2¼II²O

'	Alun de vanadium et rubidium. SO'Rb'+(SO')'Va?+24H2O	-	*				- 1-				,469 ,476 ,480	rouge vert violet	t 14.	
υ.	Alun de vanadium et thallium. SO'Tl'+(SO') ³ Va ² +24H ² O	ပ ———					•				1,5075 1,514 1,521	rouge vert violet	t et	•
	Azotate d'ammonium et thorium (à 5 H ² O). Az O ³ Az H ⁴ + (Az O ³)'Th + 5 H ² O	0	0,5132		v	<u> </u>	a a	2E 40°52' p > v faible	a				WYROUBOFF (Communica- tion particulière).	Communica- lière).
	Id. ($\frac{4}{9} \frac{9}{2} H^2 O$). Az O ³ Az H ⁴ + (Az O ³) Th + $\frac{1}{9} H^2 O$	c 	0,7377		o		2	2Ε 69°30' ρ>υ faible	۵ ،				14.	
-	Azotite de strontium. (AzO ²) ² Sr + II ² O) 									1,5854	Li	i Epplen (Gr. Zeits., t. XXX, pp. 134 et 609; 1898).	eits., t. XXX,
	Bromure de baryum. Ba Br²+ H¹O	W	$\begin{vmatrix} 1,4494 \\ 1,1656 \\ 3=113°30' \end{vmatrix}$	<u>0</u>	°o	& 	°%			1,7267,1	1,7190 1,7137	7137 D	/d., pp. 131 et 609.	609.
- 78	Bromure de mercure et potassium. Hg $\mathrm{Br}^2+\mathrm{K}\mathrm{Br}+\mathrm{Hl}^2\mathrm{O}$	o 	0,6015	10:0	v		9	2 H 102° 30' 0 > v très grand	a				WYROUBOPP (Communica- tion particulière).	Communica- lière).
•	Bromure de mercure et rubidium. Ilg Br ² + 2 Rb Br + {H ² O	o 	0,4890		9		s s	2E 36°40′ 63°50′	Li D				14.	•

RAIE ou couleur.	Id. [Marignac (paramètres)].	Id. [Rammelsberg (paramè- tres)].	D [.Marignac (paramètres)].	D [[14.].	rouge Вёмвя (<i>N. Jahrb. f. Min.</i> , jaune 1899; t. II, p. 79).	WYROUBOYP (Communica- tion particulière). [Schabus (paramètres)].	Ids
INDICES PRINCIPAUX.			1,5055	1,538	1,643		
ANGLE ANGLE des axes.	2E 70"34' D p>v	2E 54"42' Li 52°30' D 49°2' Tl	2V 53°48' D p > v faible	2 V 46°10' D p > v faible	2 V 56°42' rouge 56°27' jaune	2E 64°26' p < v faible	2E 51° 9′ D p < v faible
BISSECTRICES aigué. obtuse.	- p	- q	a +	+ a p	+ c 1.41 c 91041	- b c 20' 1	+ c 127° 8' c 37° 8'
PARAMÈTRES. SYSTÈME cristallin.	0 0,8268	0 0,751 0	0 0,7221 0	0 0,7827	M	M 1,1946 1,1,6354 36 36 36	M 0,7309 0,4606
NOM ET FORMULE.	Carbonate de sodium à 1 H ² O. CO ³ Na ² + H ² O	Id. à 7H ² O. CO ³ Na ² + 7H ² O	Chlorure d'ammonium et zinc. Zn Cl ² + 2 Az H'Cl	Chlorure d'ammonium et zinc. Zn Cl ² + 3 Az H'Cl	Chlorure de cadmium. Cd Cl²+2¼H2O	Chlorure de fer. FeCl ² +4H ² O	Chlorure de mercure et rubidium. illg CP + Rb Cl

JES. 1257	Li Epplen (Gr. Zeils., t. XXX, D pp. 125 et 609; 1898).		$\left \frac{n_g + n_m}{2} \right _{1,500.7} 1,4659$	Hydroxyde de baryum. M o,9884 - c 10" c 100" 2E 20° 9' D n_g + Ba (OH) ² + 8H ² O $\frac{1}{3}$ - 99° $\frac{3}{7}$ $\frac{3}{9}$ - 99° $\frac{3}{9}$ $\frac{3}{9}$ - 99° $\frac{3}{9}$ - 99° $\frac{3}{9}$ $\frac{3}{9}$ - 99° $\frac{3}{9$
INURGANIQ	<i>ld.</i> . p. 35.			Diffuoiodate de rubidium. O 0,9855 $-$ c b 2 E 60° IO? FI? Rb 1,4423 $-$ 1,4423
DES SOLIDES	Id., p. 31.			Diffuoiodate de potas- $\begin{vmatrix} 0 & 0.9925 \\ sium. \\ 10.4148 \end{vmatrix} - \begin{vmatrix} c & a \\ 1,4148 \end{vmatrix} = \begin{vmatrix} 2E & 48 \\ p > v \end{vmatrix}$
ETES OPTIQUES	CIRNOIBBL in WEINLAND et LAUENBIBIN (Zeits. f. anorg. Ch., t. XX, p. 34; 1899).			Diffuoiodate d'ammo- $\begin{vmatrix} 0 & 0.9871 \\ -1.4107 \end{vmatrix} - \begin{vmatrix} c & b \\ 1.4107 \end{vmatrix} = \begin{vmatrix} b & 2E 35^n \\ b & b & b \end{vmatrix}$
III. — PROPRI	ZIRNGIRBL in WRINLAND of ALFA (Zeits. f. anorg. Ch., t. XXI, p. 50; 1899).			Diffuodisulfate tri- M 1,013 c 90° b 2 E 70° D potassique. S207 Fl2 K3 II + H2O $3 = 108^{\circ}39'$
- TABLE X	Wyroubow (Communica- tion particulière).			Dichromate de lithium. M 0,9618 $ - c 141$
UPPLEMENT.	Li Epplen (Sr. Zeits., t. XXX, D pp. 129 et 609; 1898).	1,4836	1,5327	Chlorure de strontium. R 0,5150 Sr Cl ² + 6H ² O
50	Id.			11g Cl ² + 3 Rb Cl ·+ 11 ² O o, 700 2 + b " 2 II 89' 20' D p < v très grand

OBSERVATEURS.	1d., pp. 127 et 609.	Wyrouborr (Communica- tion particulière).	14.	Id.	id. [Krenner (param.)].	Id	scacchi (param.)].
RAIE ou couleur.	Q				Li		Q
PRINCIPAUX.	1,4578						
INDICES PRINC	1,4991				1,509		1,510
RAIK ou couleur.		G	l o	a	Li ri		a
ANGLE des axes.		2 H $_{a}$ 1.25° $^{\rho}$ $< ^{\rho}$ très grand	$2 \prod_{\alpha} 117^{\alpha} 10'$ $\rho > \rho$ très grand	$2 \prod_{\alpha} 87^{\alpha} 30'$ $\rho < \nu$ très grand	2V 63"33' 64°16'	aE134" 4' p < v faible	2V 82"10' p < v trés faible
BISSECTRICES igué. obtuse.		·	a	v	c 110"45'	c 33°15′	9
BISSE(9	v	9	q	q	c 135°25'
SIGNE OPTIQUE.			+	+	+		!
PARAMÈTRES.	0,6442	0,8146	0,8925 0,7926	0,6989	0,9873 2,0246 3=104°45'	1,5002 1,0877 399"13'	1,6102 1,6928 3-92°30'
SYSTÈME cristallin.	C'	<u> </u>	C	C	N	M	2
~	Hydroxyde de strontium. Sr(OH) ² +8H ² O	Iodure de mercure et potassium. ([HgI2+KI]+3H2O	Iodure de mercure et rubidium. Ilg I ² + Rb I + H ² O	Iodure de mercure et rubidium. Ilg I ² + 2 Rb I + 4 H ² O	Sulfate de cadmium et potassium. (SO') ² Cd K ² + ³ H ² O	Sulfate de cérium. (SO') ³ Cc ² + 5H ² O [Voir page 617]	Sulfate de lithium. SO'Li²+ 11º0

[Id. (id.)]	Id. [Marignac (param.)].	14.	D 1d.	Id. [Nordenskiöld (param.)].
1,512		1,473	1,5168	
2V 61"48' D p < v	2 H 68° γ < γ	$\begin{vmatrix} 2 V 55^{\circ}52' & D \\ \rho < \rho \\ \text{très faible} \end{vmatrix}$	$\begin{vmatrix} 2V & 76^{\circ}20' & D \\ \rho < \nu \\ \text{très faible} \end{vmatrix}$	2E 83°40' p < v faible
M 0,9735 + 6 (~ 100° 1,958 3 -= 104°0′	M 1,2485 $ + c$ 11° b 1,0324 $ 3=95^{\circ}o' $	$\begin{vmatrix} 0 & 0,7497 & + & a & c \\ 0,5989 & + & a & c \end{vmatrix}$	M 0,7535 $ c $ 65° $ c $ 155° 0,557 $ g $ 93° $ g $	M 0,598 $- c 68^{\circ}20' b$
Sulfate de manganèse et potassium. $(SO^4)^2MnK^2 + \frac{3}{2}H^2O$	Sulfate de manganèse et potassium. (SO')2MnK2+4H2O	Sulfate de rubidium. SO'RbH	Sulfate de thorium. (à 8H ² O) (SO') ² Tlı + 8H ² O	Id. (à 9H ² O). (SO ⁴) ² Th + 9H ² O

TABLE XIV.

PROPRIÈTÉS OPTIQUES DES SOLIDES ORGANIQUES.

CH:(AzH:), CH2, GOOH

C. H. AzO2-

1,2756 $- c-94^{\circ} ^{2}$	1,6702 + c 129"30' c 39"30' aV 71°22' Li 1,6103 Li Reuten (N. Jakrb. f. Min., 1,9766 D 1,6200 D 1,6200 Ti D 1,6298 Ti D 1,6298 Ti D 1,6298 Ti D D D D D D D D D	$a_{1} + 1984$ - pr perp. $a_{2} + 1984$ - pr perp. $a_{3} + 1984$ -	2,1571 + c 60°36' b 2V 64°56' Li 1,624 Li Turre (N. Jahrb. f Min 6,9071	0,4049 + c 131° c 41° 2V50° 4′ Li 1,5542 Li Reuter (for. cit., p. 203) 0,9759 50° 12′ Ti 1,5607 D 1,5607 Ti	0,9503 + c 94°20' b 2V 77°18' Lt 1,7940 1,6322 1,5480 Lt Tietze (1 00. cii., p 13). 1,6137 1,6137 1,8154 1,6382 1,5487 D 76°39' Ti 1,8302 1,6442 1,5525 Ti
		1	+	+ c 131*	÷

	 sys	SIGNEO	alss:	BISSECTRICES	,		INDICES PRINCIPAUX.		-
NOM ET FORMU	IÈTRES. TÈME	PTIQUE.	signé.	obtuse.	drs axes.	ouleur.	ng.	oulcur.	OBSERVATEURS.
Id. (3).	N 1,4533 1,2674 3-98°22	·· · · · ·	с 150° (арр.)	c 60° (app.)	2V 55"46' 56"24' 56"59'	E 27	1,6352		i Id., p. 17.
Benzénazo-o-phénétol. CHPAZO = CHPAZIAZIAZOSHYOCHY	M 1,5089 2,8505 3 95"2'	2,5	; 41 :	9	2V 76°43' 67"30' (app.)	<i>Fi</i>	1,8862 1,7102	1,5070 Li	i Tietze (N. Jahrb. f. Min., 1899 : t. II, p. 02).
Bromanhydrocampho- ronate méthylique. C''ll'ABrO'	0 0,9136	9 4	2	O	(dans le				FOCK in Brrdt (Lieb Ann., t. CCXCIX, p. 147; 1898).
Bromomésaconate de zinc. CH'BrO'Zn + 8H²O	N 1.4172 0,8586	2.0	° 4	9	2 E 118" 15'	â	1,4743	<u> </u>	REUTER (N. Jahrb. f. Min., 1899; t. I. p. 211).
Camphoranate diméthy- lique. C'' H'6()6 := O COURT COURT	0,9115	5 4	e	c.	2E 50° e > ¢				FOCK (loc. cit., p. 153).
Camphre 22-chlorobromé. C'' H'' Cl Br U	0 0,6520	+	9	· ·	aV 78" (app.)				LOWRY (J. of chem. Soc., t. LXXIII. p. 579: 1498).

	SUPPLEMEN	I. — IABLE XIV	PROPRIETES	OPTIQUES DES SOL	abes ondaniques. 1245
Windthorr (Communica- tion particulière). [Ditscheiner (param.)].	1d. [Handl (param.)].	D BOWMAN (Gr. Zeits., t. XXXI, p. 388; 1899).	D [1d., p. 387.	Tibrze (N. Jahrb. f. Min., BeilB. XII, p. 44; 1898).	rouge Graber in Brunner (Mo-D) natsh. f. Ch., t. XVIII, bleu p. 10.3; 1897).
 					<u>r</u>
		1,7189 1,6167 1,551	1,654 1,604		,652 ,657 ,677
	 ,	8			<u>ਜ ਜ ਜ</u>
	ouge	D 11,718	D 1,718	<i>Li D T</i>	rouge D bleu
<u> </u>	-		<u></u>		
tII 80° p > v très faible	"(app.	81°39′	85°58′	68°55′ 68°24′ 68°21′	46° 3°, 46° 39°, 47° 22°,
1 80° ρ > υ es fuib	3 o''(
2 II p	2	2 \	> -	<u>д</u>	2 \
v	105°	9	c 54°±	9	ø
	2		<u>v</u>	-	
9	15°	57°	P	95°54′	B
-	o	c 167°		0	
	<u> </u>		+		
0,8795	0,8713 0,4959 9=104°38'	28 42 3° 4'	0,9682 0,8409 3=100°34',5	1,0284 2,3351 3=94°25'	0,8496
o o	0,8 0,4	2,828 3,242 9=93°4'	0,0 1,0,8	1,0 2,4 9 ≡ 9	%, o %, t,
					
		N	X 	Z	0
Cobaltioyanure de baryum. Ba ³ Co ² Cy ¹² + 20 H ² O	Cyanure de baryum et nickel. Ba Cy²+ Ni Cy²+ 3H²O	Diacétyldioxystilbène. $C^{18}H^{16}O^4 = C^6H^3 - C - O - COCH^3$ $C^6H^3 - C - O - COCH^3$ $C^6H^3 - C - O - COCH^3$	Dibenzoyldioxystilbène. $C^{2s}H^{20}O^{4} = C^{6}H^{5} - C - 0 - COC^{6}H^{5}$ $C^{6}H^{5} - C - 0 - COC^{6}H^{5}$ $C^{6}H^{5} - C - 0 - COC^{6}H^{5}$	Dibromomalonyldiethyl- urée. $C^{3} H^{10} Br^{2} Az^{2} O^{2} = CO \left\langle Az C^{2} H^{3} . CO \right\rangle_{C} Br^{2}$	Pr. 3.3Diméthyl-2-indo- linone. $C^{10}H^{11}AzO = CH$ CH CH $C - C(CH^3)^2$ CH CH $C - C(CH^3)^2$
	S &	ia	Dit C ³⁴ 1 C	Dib	Pr.

124.		DUNEER ULBER	iği ke. — deriği i	**	
ODSERVATEURS.	FOCK IN STORMH (J. f. press, Ch. (se m.), t. LV, p. 56, 1897).	BokutstRiv, di Miner, itali., t. XVII, p. 42 , 1897).	id., p. 45.	Harmann (Indug.dissert., Broslan, 1897).	Tinte (N. Jahré, f. 1604., Heil -H. XII, p. 27, 1898)
RAIE ou couleur.					77
	<u>:</u>			-	
GIPAUX.					∞ - 4
<u> </u>					1,4808
INDIC] 				
RAIR on content		a	A	7.7 1.7 1.7	n n
ANGLE dos axes.	аЕ 7а° (арр.)	aΕ 30°45' ρ>ν	2V 85°11',5	2E 136°22' 143°28' 146''30'	aV 51°34' 51°14' 51° o'
DISSECTRICES atgus	9	r 123° 1 - 6	b 10134°	, c	<i>v</i>
SIGNE OPTIQUE	1	<u> </u>		. — —	
PARAMÈTRES.	0,4578	0,5160 0,4890 3-123°13	1,8537 2,5837 2 = 93°4°	0,4169	0,5938
SYSTEME eristniðn.	c	, <u>, , , , , , , , , , , , , , , , , , </u>	>	0	٥
NOM ET FORMLIE.	; Diméthylpipérazine (bromhydrate de); (C'H" \z^2) · H Br + H · O	Discentinosoanéthol. Cio Hilaza Osta Comerce Comerce Cita Comerce Com	Di-t -nitrosoanéthol (anhydride de) C"II." \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	cartrate $C^{28}H^{23}Az^{4}O^{4} =$ $C^{8}H^{3}Az^{4}Az^{4} = C^{6}O^{2}H^{5}$ $C^{8}H^{2}Az^{4} = C^{6}O^{2}H^{5}$	2Éthylglucoside.

1 *						
GRARRE & BRUNER (No- restab. f. Ch., t. XVIII, p. 541; 1897).	D Вреции (Gr. Zeitl., b. XXX, pp. 137 et 609: 1898).	D 144.		Li Tierze (N. Jahrb. f. Min., BeilB. XII, p. 48, 1896).	Li 14. p. 3s. D	Eirnoirel <i>in Mutharn</i> (<i>Ber. d. D. ch. Get.</i> , L.XXXI, p. 1881, 1894).
•	1,462 1,439	1,510 1,505 1,497		1,5710 1,5547 1,5526	1,4987 1,4998 1,5016	
	1,486	,510		,5710		
	a a	<u>-</u> -		77 9	77 D 77	
(app.)	2V 67"40'	2V 75" 4"		74" 4'	75° 42′ 77° 4′ 77° 24′	aE 3o* (app.) p>¢
3 ° °	<u>-</u>	-	ide).	4	2 V	4
•	6210	*	90	06 0	9	ů
(app.)	46°	° 110	éthylurigu	6	c 27°	B
1,2927 1,2927 3=105*19'	$\begin{vmatrix} 1,5481 & - & c \\ 1,4950 & c \\ 3 = 104°45' & c \end{vmatrix}$	1,0434	zoyldioxystilbêne. (acide). <i>Voir</i> Oxydiméthylurique (acide).	1,2891 + c	2,8297 + c	1,5962
-	- M	<u></u>	yldio cide).	<u></u>	N	0
C's 3Sthyl-3-indolinone. C's II!''Az 0 = CH CH CH C — CH (C'1!') CH C — CO CH C — CH Ethylsuifate de calcium. (C ² H ² O.SO ³) ² Ca + 2H ² O	Ethylsulfate de strontum (C: 11:0.SO:)2Sr + 211:0	Isobenzile, Foir Dibenzoyldioxystilbène, Isoxyd (acide). Foir Oxyd	de potassium. K³ Mn Cy*	Mannitetriacétone. Collido	Méthionate de baryum. CH ² (SO ²) ² Ba + 2 H ² O	

1240	10.4.4	RES AUMEN	ių troj.	i i i Çe L.		_
OBSERVATEURS.	WEDEKIND (Ber. d. D. ch. Ges., t. XXXII, p. 3563; 1899).	FOCK in WRDEKIND (Ber. d. D. ch. Ges., t. XXXII, p. 520; 1859).	REUTER (N. Jahrh. f. Min., 1899; t. l, p. 173).	Tibrzk (<i>N. Jahrb. f. Min.</i> . BoilB. XII, p. 20; 1898).	Id., p. 23.	<i>ld.</i> , p. 38.
RAIE ou couleur.			7.0	12 D	Li 13	Li U
PRINCIPAUX.			1,5202	0 - 9	1,5113	1,527
PRINC			5217 5230 5260	5420 5431 5446	37 37 36	,528 ,530
INDICES			1,5273 1, 1,5286 1, 1,5316 1,	<u> </u>	1,5274	1,5322 1
RAIE ou couleur.			<i>Li</i> D 77	<i>Li</i> D 72		Z D
ANGLE des axes.	2 E 100° (app.)	aE 95° (app.)	2V 52°59' 53° 5' 53°41'	2V 85°32' 85°18' 85°9'		2V 46°40' 46°58' 47°24'
RICES '	а	B	9	v v	anomalies optiques).	a
BISSECTRICES aigué. obtui	9	9	<u> </u>	<u> </u>	(anomalies optiques).	
SIGNE OPTIQUE.			1.	!		+
PARAMÈTRES.	0,889	0,8915	0,6225	0,7672	1,0000	0,9275
SYSTÈME cristallin.	0	0	<u> </u>	• • • • • • • • • • • • • • • • • • •	ი ps. Q	0
NOM ET FORMULE.	Méthylallylphényl- benzylammonium (chlorure de). CH (C'H') (C'H') Az Cl	Méthylallylphénylben- zylammonium (iodure de). CH (C ³ H ⁵) (C ⁴ H ⁵) (C H ⁷) Az I	* Méthylgalactoside. C*H***O*.CH3	2-Méthyl-d-glucoside. C ⁶ H ¹¹ O ⁶ . CH ³	3-Méthyl-d-glucoside. C ⁶ H ¹¹ O ¹ , CH ³	2-Méthylmannoside (d. et g.). Céllu Oé.CH ³

	SUPPLICATION IN				1247
MILLOREVICH [R. C. del Lin- cel (5°8.). t. VI (2° 80m.), p. 357; 1897].	D Epplen (Gr. Zeits., t. XXX, p. 142 et 609; 1898).	Lt RRUTER (N. Jahrb. f. Min., D 1899; t. I, p. 178). Tl	Li Tiktze (loc. cil., p. 40). D Ti	Li REUTER (loc. cil., p. 169). D Tl	CESÀRO [Bull. Acad. Belg (3° s.), t. XXXIII, p. 323; 1897].
	,4543	1,5337 1,5362 1,5392	1,5329		
	,5590'1	,5376 ,5403 ,5431	1,5411	1,5213 1,5236 1,5272	
	1,6246 1,5590'1	1,5380 1 1,5407 1 1,5434 1	1,5524 1 1,5562 1 1,5591 1		
ng.				Li D Ti	
rouge	Q 				·
° 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	56°42′	37°31′ 36°11′ 34°51′	82"45' 82"31' 82° 14'	35° 17′ 35° 14′ 34° 46′	33° < ° < ° < ° < ° < ° < ° < ° < ° < °
त स	3 A	2 \	2 <	2 V	ন
	. pp.			•	ိ
E	cs pr	a	v	°00°	o
	des axes pr. à g'(010)].		u		
U	[pl. des axes pr. pp. a g'(010)].	S	P	c 150°	%
					<u> </u>
0,9014	$ \begin{array}{c} 1,0686 \\ 0,5874 \\ 3 = 100°50' \\ 3 = 149°0' \\ 7 = 32°10' \end{array} $	0,6206 0,5637	0,9124	1,2772 0,8020 =111°46'	0,8489 0,9494 = 91°47
၀ ၀ စ	4.0 H C Y	9,0	6,0	م. 4 ∞ ا	o o ∈ ∞ ∞ o ∈ ∈
C	F		0		
	9		- 7 - Igue H H O O H	· · · · · · · · · · · · · · · · · · ·	11. 12.0H - CH 3
d (-)-	onato	side.	Méthyltétraméthyl - γ - oxypyridinecarbonique (acide). H ²¹ Az O ³ = CH ³ . C(CH ³) ² , CH ² COH	de.	rcol. СН²ОН С — СН СН²ОН
nény olon z²()	lcarl um. 3a +	mno CH3	méth carb H³.	rlosi CH ³	1 g1y
l (3) phén rodiazolo C° H*Az*O	lpyrazolcar de baryum. Az²O²)²Ba+	thylrhamno C ^e H ^u O ^s , CH ³	étra dine = Cl	éthyl≭ylos i C ^s H²O³. CH³	buty = Az (
Méthyl (3) phényl (pyrrodiazolone. C ⁹ H*Az*O	ylpy de 4.7.2°	a- Méthylrhamnosi ð C ⁶ H ¹¹ O ⁵ . CH ³	thyll pyri de). AzO ³ CH ³)	z- Méthylxyloside C ⁵ H ² O ⁵ .CH ⁴	Nitro-i-butylglycol. CH ² CH^{2} $Az O' = Az O^{2} - C - C$ CH^{2} CH^{2}
Mét p	Méthylpyrazolcarbonate de baryum. (C'H'Az'O')'Ba + ½H'O	8 - M	A-Méthyltétraméthyl - γ - oxypyridinecarbonique (acide). CHH ²¹ Az O ³ = CH ³ . C(CH ³) ² . CH ² COH	Н	Nitro-i-butylglycol. $CH^{2}OH$ $C'H^{9}AzO' = AzO^{2} - C - CH$ $C'H^{9}AzO' = AzO^{2} - C - CH$
	4	l		I	l ü

	OBSERVATEURS.	BORRIS (Riv. di Miner. ital., t. XVII, p. 36; 1897).	EPPLER (Gr. Zeits., t. XXX, pp. 144 ot 609).	D [1d., pp. 145 et 609.	D [1d., pp. 143 et 609.	WYROUBOFF (Communica- tion particulière).	[Harignac (paramètres)].
	ulear.		<u> </u>				<u>-</u>
PRINCIPAUX.	id R		1,462	1,453	1,367		
	· E	•	1,643	1,637	1,409		1,4945
INDICES	ë ë		1,722	1,7065	1,536		
	AIR ulear.	۵	<u> </u>	a		Δ	<u> </u>
ANGLE	des axes.	2V 73°48' p>v	aV 32"26'	2V 32°28'		2 E 22"32' p < v	2V 37"13' P < v
BISSECTRICES	obtuse.	c 52°	9	9	000 000 16°	9	9
	aiguë.	7 142	(app.)	c 90° (app.)	c 16° nu 106°	<u> </u>	c 43"3o"
PARAMI	1	0,7128 1,3890 3 97°14'	1,2752 - ? ?==91"25'	1,4393 - 3 3 3 3 3 42'	1,1640 +	0,9048	0,6195 0,3359 3=110°19'
8 Y S T	ſ	Z	N	7	N .	<u></u>	Z
NOW ET FORMILE.		3 3 3 3	Nitrotétronate de cal- cium. (C'II-O3.Az O2)2Ca + '((?) H2O	Nitrotétronate de stron- tium. (C'11 ² O ³ , Az O ²) ² Sr + 4 (?) H ² O	Nitrotétronique (acide).	Oxalate acide d'ammo- nium. C ² O'(AzH')H+H ² O	Oxalate acide de potas- sium (anhydre). C?O'KH

Id. (hy.lrate). O 0,459 b a 2 75"40' D C O'KH + 1120 o,1959 b c a 2 75"40' D			ld. [Rammelsberg (param.)].
Oxalate d'aluminium, am- M 0,4369 - b c 13"14' 2 E 132"45' D c 20")* Al ² Na ³ (Az H ⁴) ³ + 8 H ² O $\beta = 90^{\circ}15'$ $\beta =$			14.
Oxalate d'aluminium M 1,0188 + c 90" c 0" 2V 80"32' D et rubidium. (C'0') Al? Rb ⁶ + 6 H O $\beta = 95^{\circ}2'$ $\beta = 95^{\circ}2$	1,494	<u> </u>	Id.
Oxalate d'aluminium M 1,3940 $- c 172"30' c 82"30' $ $2 \times 83°30'$ D et sodium. 1,1980 $ 3=99°28' $ $ 3=99°2$			Id.
Oxalate d'ammonium, $M = 0,4217 - b c 12^a 45' 2 E 98^a 20' D $ obrome et sodium.			14.
Oxalate d'ammonium, M 0,4098 b c 15°50′ 2E 83° D for et sodium. $0,5811$ $p>v$ $p=v$ $p=$			14.
Oxalate de calcium. Voir Whewellite.			
Oxalate de chrome 0 0,5840 -			14.

OBSERVATEURS.	Id. [Rammelsberg (param.)].	Id. [De la Provostaye (para- mètres)].	TIRTZR (N. Jahrb. f. Min., 1899; t. II, p. 87) [1d. in Clemm (Ber. d. D. ch. Ges., t. XXXI, p. 1452; 1898].	HINTZE In EMMERLING (Ber. d. D. ch. Ges., t. XXXII, p. 2685; 1899).	Michailowsky (C. R. Soc. Nat. Varsovie; 1896).	FOCK in Wedreing (Ber. d. D. ch. Ges., t. XXXII, p. 1409; 1899).
RAIB ou couleur.			Li D 71			
INDICES PRINCIPAUX.			1,6648 1,5086 1,4911 1,6716 1,5206 1,5025 1,5025			·
RAIE ou couleur.	Q	۵	Li D Tl	Z C Z	<u> </u>	<u> </u>
ANGLE des axes.	2E 67°36′ p > v	2H 97°30′	2V 40° 2′ 40° 9′ 40° 14′	2E 91°46′ 92°33′ 93°44′	2E 76°30'	a 55° a s.°°
BISSECTRICES aiguë. obtuse.	- c 10"24' c 100°24'	- c 40° 45' c 130° 45'	c 177° 45′ b	c 97° b	<i>p q</i>	<i>v</i>
PARAMÈTRES.	1,3866 1,2012 3=100°24'	$\begin{vmatrix} 1,477 \\ 1,710 \\ 3=110^{\circ}58' \end{vmatrix}$	0,7965 + 1,2178 3=90°51'	$\frac{c}{a} = 0,8622$ $\beta = 114^{\circ}$	0,754	0,496
SYSTÈME cristallin.	Z	2	Z ,	X	0	0
NOM ET FORMULE.	Oxalate de chrome et sodium. (C'O') Cr'Na ⁶ + 9 H'O	Oxalate de potassium. C ² O ⁴ K ² + H ² O	iOxy (3.7)-diméthylu- rique (acide). C'll'oAz'O's	Oxypipéridone. C: $H^{9}Az O^{2} =$ $CH^{2} - CH^{2}$ $CH^{2} - CH^{2}$ $CH^{2} - Az H$	Pinolglycol (chlorhy-drine du).	Pipéridine (bromhydrate de). (Calluta) Calluta

jaune Müoob (N. Jahrb. f. Min., 1899; t. II. p. 72).	,7886	Racémate de baryum. M 3,3461 + b c 73° 2 H o 93°1' jaune 1,7886 C'H'O'Ba + 5H'O
FOCK In VON KOSTANECKI, LEVI et TAMBOR (Ber. d. D. ch. Ges., t. XXXII, p. 329; 1899).		Quinacétophénone T o,8630 norm. " $_{2 \to 85^{\circ}}$ D diéthylique. $_{2,829}$ $_{2 \to 87^{\circ}45'}$ [pl. des axes bissecte $_{3,829}$ $_{4,829}$ $_{5,829}$ $_$
Groth in Einhorn (<i>Lieb.</i> Ann., t. ССС, p. 146; 1898).		Pyrocatéchinecarbonate M 1,2261 + c 55° (c145° 2E 1°34' Li de diéthylamine. Cu Hus Az O3 $\begin{vmatrix} \beta = 114^{\circ}26' \\ \beta = 114^{\circ}26' \end{vmatrix}$ $\begin{vmatrix} \beta = 114^{\circ}26' \\ \beta = 114^{\circ}46' \end{vmatrix}$ $\begin{vmatrix} \beta = 114^{\circ}46' \\ \beta = 114^{\circ}46' \end{vmatrix}$
,5554 1,4587 D BPPLER (Gr. Zells., t. XXX, pp. 139 et 609; 1898).	1,55	3. 5. Pyrazoldicarbonique M 2,855 5 c 43° b av 76°52′ b (acide). c av 43° av
BURWELL (Lieb. Ann., t. CCCIV, p. 274; 1899).		i-Propylisoparaconique M 0,6623 + c 83° b 2E 51°12' D c 4853 c 4853 c 4853 d $\beta = 107^{\circ}5'$ $\beta = 107^{\circ}5'$
5842 Tr 1899; t. I, p. 155). 5891 bl. cl. p. 791. 6057 bl. f. (1) Voir Tablo XVII (I.E.), (1)	1,5842 1,5891 1,5984 1,6057	### Platinooyanure de ma. M 0,9654 - c 28" b 21; 17"25' Li c 30°10' c 120°10 2V 17"39' D c 34°30' c 124°30' 2V 34°10' Ti c 47° c 137° 2V 59°53' bl. cl. c 61° c 151° 2V 89°51' bl. f. (1)

1202		Ю	ANEES ALMERI	Qt ns.	— OPTIQUE.	_	
OBSERVATEURS.		Wyrouborr (Communica- tion particulière).	Zirnoiebl <i>in</i> List of Stein (<i>Ber. d. D. ch. Ges.</i> , t. XXXI, p. 1654; 1898).	<u> </u>	FERRO (Riv. di Miner. ital., t. XVIII, p. 75; 1897).	RRUTER (N. Jahrb. f. Min., 1899; t. I, p. 164).	ld., p. 307.
RAI ou coul		_			jaune moy.	13 a 21	<i>Li</i> 17
PRINCIPAUX.	n p.				1,4871	1,5320	
	P _M .	1,488			7 1,4988	6 1,6041 9 1,6093 9 1,6153	1,6378 1,6447 1,6509
INDICES	ng.				1,5657	1,7496 1,7539 1,7639	
RA1	_	۵			<u> </u>	Li D D TI	<i>Li</i> 77
ANOLE	des axes.	2V 56° 6' 9 > v (très faible)	2 E 60° 10'	2E 60°57′	2E 73"32' p < v	2V 75°41' 75°19' 74"43'	2V 84"24' 84"55' 85°31'
BISSECTRICES	obtase.	د 48	. T	9	B	9	r 62"30'
BISSEC	aiguë.	c 174°	9	· ·	9	c 170"30'	9
SIGNE OPT	rique.		+		+	+	1
PARAMÈ	TRES.	1,2646 0,9024 3 = 91°42'	1,8521 2,0057 3=90°32'	1,8103(¹) 2,0997	0,7355	1,7887 1,9144 3=118°19'	1,1766 1,1251 3=100°31'
SYST i cristal		M	N	0	0	N	N.
NOM ET PORMULE.		Racémate de rubidium. C'H'O'Rb' + 2 H'O	o-Sulfobenzolque (dichlo- rure d'acide). C:H'SO ³ Cl ² =C ⁶ H' SO ² Cl (1) (forme stable)	(forme instable).	Tétracétylhydrazide. C: II'' $Az^2 O' = CH^3 \cdot CO \setminus Az - Az \setminus CO \cdot CH^3$ C: II'' $CO \setminus Az - Az \setminus CO \cdot CH^3$	Tétraméthy lurique (acide). C ⁹ H ¹² Az ⁴ O ³	Tolanisbenzhydroxyl- amine. Chi Hit Az Os Az. O.CO.C' H'O

SUPPL	EMENT. — TABLE X	av. — ppoprietes	OPTIQUES DES	S SOLIDES ORGANIQUE	ES. 1255
	Li Tietze (N. Jahrb. f. Min., D BeilB. NII, p. 3; 1898). Ti	7 D SOMMERFELD (N. Jahrb. f. Min., 1899; t. II, p. 76).	7 Li REUTER (loc. cil., p. 187). 4 Tl	ld., p. 182.	Miers et Bowman (J. of chem. Soc., t. LXXI, p, 294; 1897).
101.6'1	1,6843	1,5787	1,5857 1,5649 1,5627 1,5944 1,5688 1,5661 1,6031 1,5736 1,5704		
D T!	Li D Tl	Li D bleu	Li D Tl	Li D Ti	Q
2E 111-30 113° 6' 114"10'	68° 32′ 68° 0′ 68° 0′ 68° 0′	12°57' 72°24',5 70°4' (huile d'olive)	2V 35°53′ 36°14′ 36°38′,5	2E 94°55′ 95°16′ 95°40′	2H 53°45' (huile de cèdre)
່ ດ ວ	c 32°50'	c 31°50' 30°	9		B
2 11,	2	- P	5 + c 49°	3. +- 51.	9
0,5042 3 == 107" 41	M 0,4290 0,4412 3=98°11'	M 3,245 2,541 3=100°58'	$ \left \begin{array}{c c} M & 1,4923 \\ 1,3205 \\ 3=123^{\circ}27' \end{array} \right $	T 0,747 0,377 $x = 94^{\circ}$ $x = 94^{\circ}$ $x = 85^{\circ}$	0 0,7203
T. Olaniany uroxamique (acide). Cie H ¹⁵ Az O ¹ Az. O. CO. C ¹ H ¹ O =C ¹ H ¹ . C OH	Tolbenzanishydroxyl- amine. $C^{23} H^{19} Az O^{3}$ $= C^{3} H^{3} . C CO . C^{6} H^{3}$ $= C^{3} H^{3} . C CO . C^{6} H^{3}$	p-Tolhydroxamate ethylique. C'* H'^3 O^2 Az = Az OC^2 H^3 CH^3. C'* H'. C	Triacétonediamine (chlorozincate de). (C ³ H ²⁰ Az ² O) ² H Cl + Zn Cl ²	Triacétonedihydroxylamine (anhydride de). C ⁹ H ¹⁸ Az ² O ³ = (CII ³) ² :C.CH ² .CO.CH ² .C:(CH ³) ² Az H — O — Az H	Tribromocamphène (bromhydrate de). C''H'' Br'

OBSERVATEURS.	Tarassenko (J. Soc. phys chim. Russe, t. XXX, p. 383; 1898).	MONKE IN GRISENHRIMER of Angenutz (Lieb. Arn., t. CCCVI, p. 45; 1899).	<i>ld.</i> , p. 64.	Schubert (Tscherm. Mith., t. XVIII, p. 251; 1899).
RAIE ou couleur.		7.7 D	D 22	<u></u>
AUX.	84,1	1,535 2 1,5366 1,5387	1,4877	
PRINCIPAUX.	6	1,5528 1,5542 1,5566	1,5011	<u></u>
INDICES "F.	- 1,	1,5756 1,5767 1,5793	1,5271	
RAIE on conjeur.		<i>Li Ti</i>	D 7.7	
ANGLE des axes.		2 V 83° 45',5 84° 1',5 84° 22',5	aV 72°15',5 71°41',5	2 V 89°
nices obtuse.		8	<i>z</i>	9
BISSECTRICES aiguě. obtus		c	ပ	3 ·
SIGNE OPTIQUE.				+
PARAMÈTRES.	1,8248	3,3097	o, 7386 3, 0499	$0,8696$ $1,3695$ $\beta = 107^{\circ}19^{\circ}$
SYSTĖME cristallin.	=	0	0	Z
NOM ET FORMULE.	Trimésate triéthylique. C'5 18 06 = C'6 18 1.3.5.	Uréinedioxysuccinate diéthylique. (?) II!''Az'O' = CO.OC'H'' IIO.C.Az II	Uréinedioxysuccinate diméthylique. C: H'' Az' O' = CO. O CH'' HO. C. Az H HO. C. Az H CO. O CH'' CO. O CH'' HO. C. Az H	Whewellite. C'0'Ca + H'0

TABLE XV.

INFLUENCE DE LA TEMPÉRATURE SUR LES PROPRIÉTÉS OPTIQUES DES SOLIDES.

Lithiophilite
(Triphyline)

PO⁴(Mn Fe) Li
(de Branchville)
$$t = -15^{\circ} \text{ à 190}^{\circ}$$
(Triphyline)
$$n_m = 1,708(D)$$

$$\frac{dV}{dt} = 1,14 + 0,004t \text{ (cn minutes)}$$

(Calculé d'après les nombres de l'auteur.)

SOMMERFELDT (N. Jahrb. f. Min., 1899; t. I, p. 152).

Calcite, voir p. 1220.

Quartz, voir p. 1221.

Fluorine, voir p. 1222.

Verres, voir pp. 1224 à 1227.

TABLE XVI.

INDICES DES MÉTAUX ET DISPERSION ANOMALE.

RAIES.	ANTIMOINE (ind. ordin.).	BISMUTH (ind. ordin.).	GALÈNE.	PLATINOCYANURE de magnésium.
c	2,965	1,841	4,015	1,363
D	2,571	1,670	3,912	1,294
E	1 ,962	1,563	3,886	1,141
F	1,578	1,466	3,796	0,974
G	1,246	1,385	3,383	0,902

(Calculé d'après Drude, au moyen des constantes de la réslexion métallique.)

HORN (N. Jahrb. f. Min., Beil.-B. XII, pp. 326 à 340; 1898).

TABLE XVIII.

POUVOIRS ROTATOIRES DES CORPS LIQUIDES OU DISSOUS.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
$lAlanine.$ $C^{3}H^{1}AzO^{2} = CH^{3}.CH(AzH^{2}).COOH$	[α] ₀ — 2° (app.)	Eau ($p = 8,8$)	E. FISCHER (Ber. d. D. ch. Ges., t. XXXII, p. 2457; 1899).
de). (C3 H1 Az O2) H Cl	$[\alpha]_{\mu}^{20}-9^{\circ},68$	Eau (p = 9,30)	Id.
dId.	$[\alpha]_{a}^{20}+9^{\circ},55$	Eau $(p = 8,59)$	Id., p. 2459.
Albumine (des œufs, cristallisée).	[α] _n — 28°, ο à — 29°, 8	Eau (p = 1,7 à 6,7)	OSBORNE (J. of Amer. chem. Soc., t. XXI, p. 482; 1899).
Amygdalinamidoxime. $C^{2c} H^{30} Az^{2} O^{11} + 3 H^{2} O =$ $(C^{12} H^{21} O^{10}) O.$ $CH(C^{6} H^{5}).C$ $Az OH$ $Az H^{2}$	[a] _D — 72°, 2	Eau (c = 3,64)	Schiff (Ber. d. D. ch. Ges., t. XXXII, p. 2701; 1899).
Amygdaline. $C^{20} H^{21} Az O^{11} =$ $(C^{12} H^{21} O^{10}) O. CH < C^{6} H^{3}$ $C Az$	[a] _n —40° (moy.)	Eau (c = 4 à 5)	Id.
Amyléthylique (sulfure). C ³ H ¹¹ .S.C ² H ² (d'alc. amylique [2], — 4°, 34)	[2]" + 13°, 75	Pur. $d_4^{19} = 0.836$	BRJUCHONENKO [J.f. prakt. Ch. (2° 5.), t. LIX, p. 46; 1899].

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Amylique (oaminoben- zoate). $C^{12}H^{17}AzO^{2} = AzH^{2}.C^{6}H^{4}.COOC^{5}H^{14}$	$[\alpha]_{b}^{11} + 5^{\circ}, 98$ $[\alpha]_{b}^{15} + 4^{\circ}, 99$	Pur. $\begin{cases} d^{11} = 1,047 \\ d^{15} = 1,042 \end{cases}$	GUYE et BABEL [Arch. de Gen. (4° pér.), t. VII, p. 32; 1899].
Idm. (1) (3).	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pnr. $\begin{cases} d^{16} = 1,051 \\ d^{15} = 1,045 \end{cases}$	
Id. -p. (1) (4).	$[\alpha]_{0}^{15}+4^{\circ},19$	Pur. $d^{15} = 1,050$	
Amylique (obromoben- zoate). $C^{12}H^{15}BrO^2 =$ $Br.C^6H^4.COOC^5H^{11}$	$[\alpha]_{0}^{16} + 1^{\circ}, 88$ $[\alpha]_{0}^{15} + 1^{\circ}, 43$	Pur. $\begin{cases} d^{16} = 1,279 \\ d^{15} = 1,252 \end{cases}$	<i>ld</i> ., p. 30.
Idm. (1) (3).	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pur. $\begin{cases} d^{16} = 1,285 \\ d^{13} = 1,265 \end{cases}$	
Idp. (1) (4).	$[\alpha]_{b}^{16} + 3^{\circ}, 18$ $[\alpha]_{b}^{15} + 2^{\circ}, 35$	Pur. $\begin{cases} d^{16} = 1,288 \\ d^{15} = 1,269 \end{cases}$	
Amylique (disulfure di-).	[α] $_{p}^{20}$ + 72 $^{\circ}$, 48	Pur. $d_4^{26} = 0,923$	Brjuchonenko (loc. cit. pp. 47 et 596).
I. — Purifié. II.) III.) Moins pur.		Pur. Sulf. de carb. (p=23,1) Pur.	
		Benzène ($p = 23,1$)	
Amylique (onitroben- zoate). $C^{12}H^{15}AzO^{4}=$		Pur. $\begin{pmatrix} d^{18} = 1,135 \\ d^{15} = 1,112 \end{pmatrix}$	GUYR et BABEL (loc. cit. p. 27).
$Az O^2 . C^6 H^4 . COOC^5 H^{11}$			
(1) (2)	$ \frac{ [\alpha]_{0}^{19} + 5^{\circ}, 85}{[\alpha]_{0}^{13} + 4^{\circ}, 28} $	Pur. $\begin{pmatrix} d^{19} = 1,144 \\ d^{15} = 1,120 \end{pmatrix}$	<i>Id.</i> , p. 28.
Idm. (1) (3).		Pur. $\begin{cases} d^{19} = 1,144 \\ d^{15} = 1,120 \end{cases}$ Pur. $\begin{cases} d^{17} = 1,140 \\ d^{15} = 1,117 \end{cases}$	

NOM ET FORMULE.	POUVOIR rotatoire spēcifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Amylique (mtoluate). C ¹³ H ¹⁴ O ² = CH ³ , C ⁴ H ⁴ , COOC ³ H ¹³ (1)	[α] ² * + 5°, ο5	Pur. d ²⁰ = 0,976	GUYE et BABEL (loc. clt., p. 34).
Amylméthylique (disul- fure). (C ⁵ II ¹¹) (CH ²) S ² (d'alc. amylique [a] ₀ — 1°, 74).		Pur. $d_4^{14,3} = 0,836$	Вилионовико (lac. ett., р. 46).
Amylméthylique (sulfure). C'H'', S. CH' (d'alc. amylique [a], -4°, 34).		Pur. d'* = 0,84	Id.
NiAmyl-(x)-pipécoline. $C^{11}H^{22}Az = CH(CH^2)-CH^2$ $C^3H^{11}.Az = CH^2-CH^2-CH^2$		Pur. d ¹⁹ = 0,8310	HOHENEMSER et WOLFFEN- STEIN (Ber. d. D. ch. Ges., t. XXXII, p. 2514; 1899)
Anagyrine (azotate d'). (C ¹³ H ²² Az ² O) Az O ³ H + H ³ O	[α] _a — 126°, 03	Eau (p = 1,00)	Klostermann (Inaug. Dis- sert., Marburg; 1898).
Anagyrine (chlorhydrate d'). (C"11"Az"O) HCI + H'O	[@] ₆ —142',47	Eau (p = 1,81)	Id.
Voir p Voir		camphre.	
L-Arabinosazone. $C^{i_1}H^{2i_1}O^2Az^i = C^2H^0O^2(Az,AzH,C^4H^3)^2$	[a] _a + 58°	2 vol. pyridine, 3 vol. alcool ($c = 2$)	NEUBERG (Ber. d. D. ch. Ges., t. XXXII, p. 3386; 1899).
$\begin{array}{ccc} & pbro-\\ & m\acute{e}e.\\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & &$	[α] ₀ + 23°	Id. (id.)	fd.
dArabinose.	[2] ²⁴ — 105°. 1	Eau $(c = 9.42)$	Russ (Rev. d. D. ch Ges., t. XXXII, p. 554, 1899).

NOM ET FORMULE.	POUVOIR relateire specifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
L-Arabita. C ³ H ¹² O ³	[a], — 43° — 94°	Eau + $\frac{6,75}{24}$ mol. de molybdate ac. d'AzH'	LOBRY OF BRUYN et VAN ERENSTEIN (Sec. Trav. chim. d. P. B., t. XVIII, p. 151; 1899)
d .− Id .	1	Eau saturée de borax (c = 9,26)	Ruff (loc. clt., p. 556).
dArabonique (lactone)· [2];*+73°,73	Eau (c = 10,06)	fd.
Arginine. C'H"Az'O' (de la clupéine)	[[x]; + 11*,37	Eau + $\frac{2}{4}$ mol. Ba (OH) ² ($p = 3.47$)	GULEWITECH (Zeite. f. pkysiol. Ck., t. XXVII, p. 188; 1899).
Arginine (azotate d'). (C ^t H' ¹ Az ^t O ²) Az O ² II (de la clupéine)		Eau ($p = 1,78$) Id. ($p = 9,86$) Eau+4AzO ² H($p=5,21$)	
(de l'histone)	$[\alpha]_a^{2^2} + 9^a,47$	Eau (p = 6,45)	LAWROW (Id., t. XXVIII, p. 393; 1899).
Arginine (azotate d'argent et d'). (C ⁴ H ¹⁴ Az ⁴ O ²) \ZO ³ H + AzO ³ \	g [2]2+5",60	Eau (p = 8,11)	Gulewitson (loc. cit., p. 200).
Arginine (chlorhy- drate d'). (CfH ¹¹ Az ¹ O ²)HCl (de la clupeine)	$+ 21^{\circ}, 22$ $[\alpha]_{0}^{10} + 20^{\circ}, 94$ $[\alpha]_{0}^{21} + 20^{\circ}, 88$ $[\alpha]_{0}^{21} + 21^{\circ}, 22$ $+ 21^{\circ}, 32$	Eau ($p=9,30$) Id. ($p=16,85$) Eau + II GI ($p=9,21$) Id. + 2 iI GI ($p=6,33$) Id. +6; II GI ($p=4,28$) Id. + id. ($p=4,21$) Id. + zoli GI ($p=1,24$)	
(de l'histone)		Eau $(p = 7.09)$ Id. = 4BCl $(p = 4.625)$	

NOM ET FORMULE.	rouvoir rotatoire spécifique.	DISSOLVANT ET TENEUR.	
Arginine (sulfate d'). (C6H14Az4O2)2SO4H2	$+ 8^{\circ}, 23$ $+ 15^{\circ}, 01$	Eau ($p = 4,83$) Id. ($p=11,22$) Eau+SO ⁴ H ² ($p=3,17$) Id. +6 ¹ / ₄ SO ⁴ H ² ($p=2,25$)	
lAspartique (acide). C'H'AzO' = CH(AzH2).COOH CH2 — COOH (de l'asparagine)	— 1°,9 — 1°,15 — 25 °,7	Eau + 3NaOH ($p=3,34$) Eau + 2NaOH ($p=6$) Id. ($p=9,2$) Eau + 3HCl ($p=4,17$) Id. ($p=8,82$)	Ges., t. XXXII, pp. 2462 et 2464; 1899).
(de l'acide benzoyl-laspar- tique)	$[\alpha]_{\nu}^{20}-2^{\circ},24$	Eau + 3 K OH ($p=3,32$)	
dId. (de l'acide benzoyl-daspar- tique)		Eau + 3 H Cl $(p=4,16)$	

Benzal-(a)-glucohepto- nique (acide). C ¹ H ¹² (C ¹ H ⁶) O ⁸	[x] ₀ — 59°	Alc. méthyl. $(p = 0,4)$	ALB. VAN EKENSTEIN et LOBRY DE BRUYN (Rec. Trav. ch. d. P. B., t. XVIII, p. 308; 1899).
Benzal-dsaccharique (acide). C ⁶ H ⁸ (C ⁷ H ⁶) O ⁸	[a] _b + 84"	Id. (id.)	Id.
Benzal-dsorbite. C ⁶ H ¹² (C ⁷ H ⁶)O ⁸	[a] _D + 6"	Alcool (p = 0,25 à 0,5)	ID. (Id., p. 151).
Benzoyl- l alanine. C^{10} H ¹¹ Az O ³ = CH ³ .CH[AzH(C ³ H ⁵ O)].COOH	— 37°, 4	Eau ($p = 0.99$) Eau + KOH ($p = 9.90$)	E. FISCHER (Ber. d. D. ch. Ges., t. XXXII, p. 2456; 1899).
dId.	$[\alpha]_{i} + 37^{\circ}, 13$	Eau \div KOH $(p=9,2)$	Id p. 2 j58.
Benzoyl-1aspartique (acide). C'H'Az O' =	$[\alpha]_{b}^{20} + 37^{\circ}, 5$	Eau + 2 KOH (p=9,02)	Id., p. 2 j60.
CH[AzH(C'H'O)].COOH CH2— COOH			
dId.	יי,6	Id. (p=9.75)	Id., p. 2463.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	OBSERVATEURS.
Benzoyl- l glutamique (acide). $C^{12}H^{13}Az O^{3} =$	- ·	Eau ($p = 4,80$) Eau +2KOH ($p = 9,51$)	
CH[AzH(C'H'O)].COOH			
CH ² — CH ² — CO OH			
	$[\alpha]_{\nu}^{20}+17^{\circ},18$	Id. $(p=9,31)$	/ <i>Id.</i> , p. 2169.
Benzoyl-ltétrahydroqui-	[a]28 . L 250° 2	Renzène (c o oo)	Pope et Peachey (J. o.
naldine.	$[\alpha]_0^{27,5} + 250^{\circ}.8$	Id. $(c = 1.99)$	chem. Soc., t. LXXV, p.
naldine. C'' H'2 Az. CO. C'H3 (de ltétrahydroquinaldine)	$[\alpha]_{c}^{23} + 251^{\circ}.3$	Id. $(c = 3.96)$	1077; 1899).
(de 1tétrahydroguinaldine)	$[a]_{5}^{23,3} + 303^{\circ}.7$	Chlorof. $(c = 1.99)$	Lond, t. XV n. 12i
` .	$[\alpha]_0^{25} + 316^{\circ}, 6$	Acétone $(c=1,98)$	1899).]
			•
	$[\alpha]_{\rm p}^{26} + 326^{\circ}, 6$	Alcool $(c = 1,99)$ Acét. éthyl. $(id.)$	
		Ac.acétique (id.)	
dId.	$[\alpha]_0^{18} - 246^\circ, 1$	Benzène $(c = 0,99)$	/ld., p. 1083.
(de dtétrahydroquinaldine)	- 247°,0	Id. $(c = 1.98)$	
	248°,5	Id. $(c = 3,96)$	
	$[\alpha]_0^{11} - 246^{\circ}, 3$	Id. $(c = 1,98)$	
	— 249°, 5	Id. $(c = 3,96)$	
		Chlorof. $(c = 1,98)$	
	— 319°, 2	Acétone (id.) Alcool (id.)	
	— 327°, 5	Alcool (id.)	
		Acét. éthyl. (id.) Ac. acétique (id.)	
Benzoyl-ltétrahydro- ptoluquinaldine. C ¹¹ H ¹⁴ Az. CO. C ⁶ H ⁵	[a]is + 229°	Benzène (<i>c</i> = 2,05)	POPE et RICH (J. of chem. Soc., t. LXXV. p. 1100;
Benzoyl-ltyrosine C ¹⁶ H ¹⁵ Az O ⁴	$[\alpha]_{0}^{20} + 18^{\circ}, 29 + 19^{\circ}, 25$	(Eau 1 mol. KOII (p = 5,11) [d. (p == 8,04)	E. Fischen (Ber. d. D. ch. Ges., t. XXXII, p. 3642; 1899).
		Id. (p = 7.72)	11d., p. 3645.
Benzylcamphre. C ¹⁷ H ²² O == CH · CH ² · C ⁶ H ³	$[\alpha]_0 = 143^{\circ},08$ $[\alpha]_0^{20} = 144^{\circ},01$	Toluène $(p = 3.46)$ Id. $(p = 6.85)$	A. HALLER et MULLER (C. R., t. CXXIX, p. 1006; 1899).

NOM ET FORMULE.	POUVOIR rotatoiro spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Benzylidènecamphre. C ¹⁷ H ²⁰ O = C ² H ¹¹ CC CH. C ⁶ H ⁵ CO	$[\alpha]_0 + 421^\circ, 25 + 425^\circ, 11$	Id. $(p = 6,78)$ Id. $(p = 13,47)$	ID. (id., t. CXXVIII, p. 1372; 1899).

Benzylidène.... Voir Benzal....

 dαBenzylphénylallyl-méthylammonium (bromure de). C²⁰ H²⁰ Az Br == [C⁶ H³. CH². Az (C⁶ H³)(C³ H³)(CH³)]Br 		Alc. abs. (c =	9,39)	POPE et PEACHEY (J. of chem. Soc., t. LXXV, p. 1130; 1899).
lId.	$[\alpha]_{\scriptscriptstyle D}$ — 67°, 3	Id. (c =	14,93)	

dαBenzylphénylallyl- méthylammonium (d camphosulfonate de). C ²⁰ H ²⁰ Az. SO ³ . C ¹⁰ H ¹⁵ O	$[\alpha]_{D}+44^{\circ},2$	Eau (c = 21,02)	Id., p. 1128.
lId. (acide dr.)	[a] _D — 18°,6	Id. $(c = 17, 18)$	

Bromocamphosulfonate de tétrahydronaphtylamine. Voir Tétrahydronaphtyl-amine....

Id. de tétrahydroquinaldine. Voir Tétrahydroquinaldine....

πBromo-ωchlorocam- phorique (anhydride). C ¹⁰ H ¹² Cl Br O ³	$[a]_0^{14}-26^{\circ}$	Chlorof. $(c=4,61)$	KIPPINO (J. of chem. Soc., t. LXXV, p. 132; 1899).
ψπBromonitrocam- phrate de potassium. C ¹⁰ H ¹³ Br Az O ³ K + 2 H ² O	$[\alpha]_{0}^{15} + 221^{\circ}$	Eau (c = 3)	LOWRY (J. of chem. Soc., t. LXXV, p. 223; 1899).

Bromonitrocamphre. Voir Camphre bromonitré.

Brucine (dérythronate de). (C ²³ H ²⁶ Az ² O ⁴) C ⁴ H ⁴ O ⁵	POUVOIR rotatoire spécifique. [α] ²⁰ — 23°, 5	Eau ($c = 3,99$)	OBSERVATEURS. RUFF (Ber. d. D. ch. Ges., t. XXXII, p. 3678; 1899).
secButylthiourée. C ⁵ H ¹² Az ² S	$[\alpha]_{\mu}^{2^{\bullet}}$ + 33°,6 + 22,°85 (moy.)	Eau (c = 1) Alcool (c = 3,5)	GADANER (Arch.d.Pharm., t. CCXXXVII, p. 92; (899).

Camphononique (acide).

$$[\alpha]_{b}^{16} + 21^{\circ}, 97$$
 Acétate éthyl. $(c = 1,53)$
 LAPWORTH et CHAPMAN $(J. of chem. Soc., t. LXXV, p. 1001; 1899).$

 d.-Camphoroxime.
 $[\alpha]_{b}^{21} - 41^{\circ}, 3$
 Alc. abs. $(c = 2,27)$
 POPE $(J. of chem. Soc., t. LXXV, p. 1107; 1899).$

 (du camphre droit)
 $[\alpha]_{b} - 41^{\circ}, 1$
 Id. $(c = 3,2)$
 FORSTER $(id., p. 1144).$

 l.-Id.
 $[\alpha]_{b} + 41^{\circ}, 7$
 Id. $(c = 2,61)$
 POPE $(Ioc. cit.)$.

 d.-Camphoroxime $(d.-cam-phosulfonate de).
 $[\alpha]_{b}^{21} + 4^{\circ}, 3$
 Id. $(c = 1,75)$
 Id.

 d.-Camphoroxime $(dérivé)$ bromonitrosé de).
 $[\alpha]_{b}^{21} - 65^{\circ}, 6$
 Alc. abs. $(c = 0,99)$
 FORSTER $(Ioc. cit.)$.

 d.-Camphosulfonate d'ammonium.
 $[\alpha]_{b}^{16} + 21^{\circ}, 0$
 Eau $(c = 1)$
 POPE et PEACHEY $(J. of chem. Soc., t. LXXV, p. 1003; 1899)$.

 d.-Camphosulfonate d'ammonium.
 $[\alpha]_{b}^{16} + 21^{\circ}, 0$
 Eau $(c = 1)$
 POPE et PEACHEY $(J. of chem. Soc., t. LXXV, p. 1003; 1899)$.$

Camphosulfonate de benzylphénylallylméthylammonium. Voir Benzylphénylallylméthylammonium....

Camphosulfonate de camphoroxime. Voir Camphoroxime....

dCamphosulfonate de α -phénéthylamine ($rac.$). $C^{18}H^{21}O^{1}SAz = [C^{6}H^{5}.CH(CH^{3}).AzH^{2}]$. 2	Eau (c = 2,02)	Pope et Harvey (J. of chem. Soc., t. LXXV, p. 1110; 1899).
C10 H12 O ' 2O3 H			

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.

Camphosulfonate de tétrahydroquinaldine. Voir Tétrahydroquinaldine....

Camphre nπbromonitré C¹º H¹ʿBr (Az O²) O	[a] ¹³ — 51°, 4 (initial) — 37,5 (après 6 jours)	Benzène ($c = 3,33$)	Lowry (J. of chem. Soc., t. LXXV, pp. 226 et 227; 1899).
Id . ψπ.	[α] ₀ ¹⁵ + 188°,4 (initial) - 38,0 (après 4 jours)	Benzène (<i>c</i> = 3,33)	
	[α] ₁ ,4 + 188°,5 (initial) +31°,3 (final)	Chloroforme ($c = 5$)	

Camphre nitré. C¹⁶ H¹⁵ (Az O²) O

DISSOLVANT.	TEMP.	[2] _D initial.	[2] _D Anal.	DURÉE de l'observation.	c.
	15°	-124	-104	4 jours	5
Benzène	16	-116	 93	4 jours	10
	13	—110	— 77	12 heures	20
	20	106	- 87	12 heures	5
Toluène	18	100	— 79	Id.	10
	17	 87	- 66	ld.	20
	13		<u> </u>	7 jours	5
Chloroforme	16	— 27	— 13	7 jours	10
	16	— 27	<u> </u>	6 heures	20
Sulfure de carbone	17	— 83	<u> </u>	2 jours	5
Xylène	20	 99	— 75	4 jours	5
Benzoate éthylique	17	 50	— 28	12 heures	5
Éther	18	— 37	- 18	2 »	5
Acétate éthylique	14	— 13	2	2 »	5
Acétone	20	– 7	+ 8	1 3	5
Alcool méthylique	16	— 31	- 12	3 »	5
» éthylique	15	— 26	— 9	5 »	5
» propylique	17	— 24	— 10	2 »	5
Acide formique	15	± •	+ 12	3 »	5
» acétique	13	_ 3	+ 8	5 5	5
» propionique	14	. 5	+ 5	2 »	5
-				Lowry (loc. cit.,	p. 222).

NOM ET FORMULE.	Polivoin retateire specifique.		
Camphylbenzoyléthyl- amine. C'' H'' Az O = C'' H'' Az (C' H' O) C' H'	[2] ²¹ — 65°, 2		•
amine. C"H" Az O = C"H" .Az (C'H'O) CH'	$[\alpha]_{n}^{24} - 65^{*}, 5$	Alc. abs. (c = 1,77)	M., p. 943.
amine. C ¹⁰ H ¹⁰ Az O = C ¹⁰ H ¹¹ . Az (C ¹ H ¹ O) C ¹ H ¹	[a]i - 60°,3	Alc. abs. (c = 1,96)	fd., p. 949-
Camphylbenzylamine. C ¹⁵ H ²⁵ Az == C ¹⁶ H ¹⁵ , Az H, CH ² , C ⁶ H ⁵	$\begin{bmatrix} \alpha \end{bmatrix}_{0}^{17} + 82^{\circ}, 2 \\ [\alpha]_{0}^{14} + 84^{\circ}, 1 \\ [\alpha]_{0}^{24} + 75^{\circ}, 7 \end{bmatrix}$	Pur. $d_0^{11} = 0.9818$ Benzène $(c = 2.01)$ Alc abs. $(c = 2.23)$	[fd. , pp. 95t et 95a.
(C ¹¹ H ²² Az) II Cl	[x], + 35°, 8	Alc. abs. (c = 1,7)	<i>ld.</i> , p. 952.
Camphylbenzylidên- amine. C ¹⁷ H ¹³ Az == C ¹⁸ H ¹⁵ , Az; CH, C ⁶ H ⁵	$\begin{array}{c} [\alpha]_{n}^{20} + 27^{n}, 4 \\ [\alpha]_{n}^{10} + 62^{n}, 6 \end{array}$	Benzêne (c = 2,01) Alc. abs. (c = 2,05)	Id., p. 1151.
Camphyl-nbutylamine. C'' H'' Az = C'' H'' , Az H, CH'', CH'', C'' H''	[α] ¹⁶ 80", 3	Benzène (c = 1,95)	
Camphyl-nbutylamine (chlorhydrate de). (C''H2'Az)HCl	$[\alpha]_n + 3a^n, \gamma$	Alc. abs. (c = 2)	td.
Camphyl-n butylamine (iodhydrate de).	[α] _* + 23°,8	Alc. abs. (c = 2)	Id. /

SUPPLÉMENT. — TABLE XVIII. — POUVOIRS ROTATOIRES DES CORPS LIQUIDES OU DISSOUS. 1267

Camphyldiéthylamine.	ATEURS.
Camphyldiméthylamine. Camphyléthylamine.	
C12 H 13 Az = C16 H 15 . Az (CII3) 2	
(chlorhydrate de). (C ¹² H ²³ Az)HCl Camphyldiméthylbutyl- ammonium (iodure de). C ¹⁶ H ²³ AzI = C ¹⁹ H ¹⁷ .Az(CH ³) ² C ⁴ H ⁹ .1 Camphyldiméthyléthyl- ammonium (iodure de). C ¹⁴ H ²⁸ AzI = C ¹⁹ H ¹⁷ .Az(CH ³) ² C ² H ³ .1 Camphyldiméthylpropyl- ammonium (iodure de). C ¹⁵ H ²⁸ AzI = C ¹⁹ H ¹⁷ .Az(CH ³) ² C ² H ³ .1 Camphyldiméthylpropyl- ammonium (iodure de). C ¹⁵ H ³⁹ AzI = C ¹⁶ H ¹⁷ .Az(CH ³) ² C ³ H ⁷ .1 Camphyléthylamine. [α] ₀ ²¹ + 93°, o Pur. d ²¹ ₄ = 0,8947 Id., p. 945.	
ammonium (iodure de). $C^{16}H^{32}AzI = C^{10}H^{11}.Az(CH^3)^2C^4H^9.1$ Camphyldiméthylethylamine. [a]_0 — 3°, 3	d.
ammonium (iodure de). $C^{14}H^{26}AzI = C^{10}H^{17}.Az(CH^3)^2C^2H^3.I$ Camphyldiméthylpropylammonium (iodure de). $C^{15}H^{30}AzI = C^{10}H^{17}.Az(CH^3)^2C^3H^7.I$ Camphyléthylamine. $[\alpha]_0^{1} + 93^{\circ}, 0$ Pur. $d_4^{21} = 0,8947$ $[d., p. 949.$	
ammonium (iodure de). $C^{15}H^{30}AzI = C^{10}H^{11}.Az(CH^3)^2C^3H^7.I$ Camphylethylamine. $ \alpha _0^{21} + 93^{\circ}, 0$ Pur. $d_4^{21} = 0.8947$ [id., p. 945.	
Camphylethylamine. $[\alpha]_0^{21} + 93^{\circ}$, o Pur. $d_4^{21} = 0.8947$ $[dp. 945]$. $C^{12}H^{23}Az = C^{10}H^{11}.AzH.C^2H^5$ $[\alpha]_0^{15} + 90^{\circ}, 3$ Benzène $(c = 2.03)$	
$ \alpha _{D} + 75^{\circ}, 4$ Alc. abs. $(c = 2,67)$	
Camphyléthylamine $[\alpha]_p + 35^\circ, 6$ Eau $(c = 1,3)$ Id., p. 946. (Cl ² H ²³ Az) H Cl	
Camphyléthylamine $ z _0 + 26^\circ, 6$ Alc. abs. $(c = 2)$ (iodhydrate de). $(C^{12} II^{23} Az) III$ D.	d. 80

DONNÉES NUMÉRIQUES. — OPTIQUE.

NOM ET FORMULE.	POUVOIR rolatoire spēcifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS,
Camphyl-ohydroxyben- zyliděnamine. C ¹⁷ H ²² Az O = C ¹⁸ H ¹³ .Az : CH. C ⁴ H ⁴ .OH	[α] ₆ ¹¹ + 112°,3	Alc. abs. (c = 1,95)	fd., p. 1154.
	[2]n+107°,1	Alc. abs. (c = 2,02)	
Camphylméthylamine. C"H"Az = C"H".AzH.CH	$[\alpha]_{6}^{21} + 96^{\circ}, 8$ $[\alpha]_{6}^{13} + 95^{\circ}, 9$ $[\alpha]_{6}^{13} + 81^{\circ}, 9$	Pur. $d_{\lambda}^{21} = 0,9075$ Bensène ($c = 2,07$) Alc. abs. ($c = 2,03$)	ld., p. 942.
(de). (C''H ²¹ A2)HCl	[a] _e + 31°, o	Alc. abs. (c = 2,4)	fd.
(iodhydrate de). (C ¹¹ H ²¹ Az)HI	[z] _n + 26°, 6	Alc. alis. (c = 1)	łd.
Camphyl-onitrobenzyla- mine $C^{1^{\circ}}H^{24}Az^{2}O^{2} =$ $C^{10}H^{11},AzH.CH^{2},C^{4}H^{3},AzO^{2}$ (1)	$[\alpha]_{\mu}^{32} + 61^{\circ}, 2$	Benzène (c = 2,03) Alc. abs. (c = 2.03)	ld., p. 953,
Idp. (t) ('4).	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Benzêne (c = 2,03) Mc. abs. (c = 2,03)	
Camphyl-o nitrobenzyl- amine (chlorhydrate de). (C ¹⁷ H ²¹ Az ² O ²) H Cl	[2] _b ÷ 113°, 2	Alc. abs. (c = 2)	1 1d.
Idp.	[z] _n ÷ 20°,3	Alc abs. (c = 2)	1
Camphyl- o - nitrobenzyli- denamine. $C^{(1)}II^{22}Az^{7}O^{2} =$ $C^{(0)}H^{(1)}Az$; CH , $C^{6}H^{(1)}Az$ $O^{(2)}$	$\begin{array}{l} [\alpha]_{0}^{23} + 41^{\circ}, 6 \\ [\alpha]_{0}^{23} + 8^{\circ}, 6 \end{array}$	Benzene (c = 2,00) Alc abs (c 2.03)	/d., p. 1153.
Id. -p. (i) (4).	$[x]_{0}^{1} + 23^{\circ}, o$ $[x]_{0}^{2} + 51^{\circ}, 5$	Benzène (c = 1,63) Alc. abs (c = 1,79)	1

NOM KT FORMULE.	POUVOIR releigire spécifique.	DISSOLVANT ET TENEUM.	OBSERVATEURS.
Camphyl-npropylamine. C'' H'' Az = C'' H'' Az H.CH'.C'H'	[x], + 87°, 1	Pur. $d_1^{16} = 0.8919$ Benzenc $(c = 2.42)$ Alc. abs. $(c = 2.08)$	Id., p. 948.
C ¹³ H ²⁵ Az → C ¹⁶ H ¹¹ • Az H • CH (CH ²) ²	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pur. $d_4^{14} = 0,8861$ Benzène ($c = 2,00$) Alc. abs. ($c = 2,01$)	ld., p. 919.
Camphyl-npropylamine (chlorhydrate de). (C ¹³ H ²¹ Az)HCl	$[\alpha]_b + 34^\circ, 4$	Alc. abs. (r - 2)	ld., p. g.js.
I SANGKARININA BIRANINA TERAIN	46		
Camphyl-npropylamine (iodhydrate de). (C ¹² H ²⁵ Az)H[[α] _e + 25°, ο	Alc. abs. (c = 2)	řá.
Camphyltriméthylammo- nium (chlorure de). $C^{13}H^{24}AzCl = \\ C^{16}H^{11}.Az(CH^3)^3Cl$	[2],-4",4	Eau (c = 4,1)	/d., p. 945.
nium (iodure de). C ¹³ 11 ³⁶ Az I == C ¹⁶ H ¹³ .Az (CH ³) ³ I	[a], - 3°, 9	Alc. #bs. (c = 2.9)	Id.
() CiaHirOz	[x]" 138", 5	Éther (p 6,72)	Onlinmacher (<i>Lieb, Ann.,</i> t. CCCV, p. 250; 1899).
(de lcarvone)	$ \{\alpha\}_{0}^{14}+i45^{\circ},3$	Éther (p = 6,40)	
/Carvénolide (dibro- mure de). C"H" O'Br ²	[a], 67", o5		Id., p. sSr.
Carvénolique (acide). C'* H'* (b') (de dcarvone)	[α] ₀ + 178°, 7	Éther (p = 3,47)	ld., p. 254.

BONNÉES NUMÉRIQUES. — OPTIQUE

NOM ET FORMULE.	Pot Voir	DISSOLVANT ET TENEUR.	OBSERVATEURS.
(de)			KONDAKOPP et LUTSCHI- NISE [J. f. prekt. (h (* s.), t. LX, p. 1-5, 1899].
dId. (du bromhydrate inactif de carvomenthene)	[2],+0°,4	Pur. d;* = 0,8230	ld., p. 377.
ICarvomenthène (chlor- hydrate de). C'HIICI	[z] _e —1*,37	Pur. di = 0.939	Id.
l-Carvomenthol. Collo.OH (de lcarvone)	[x]2" — 3", 53	Pur. $d_3^{24} = 0,9055$	<i>ld.</i> , p. 371.
$d. ext{-Id}.$ (de l -tétrahydrocarvone)	[a]; - 1", 37	Pur. d; 5 - 0,890	
de). C ¹² H ²² O ² = C ¹⁰ H ¹⁰ O.CQ.CH ² (de carvomenthol <i>rac.</i>)		Pur. d;2 == 0,928	M., p. 172.
I C15 H24	[α] ^{2*} —8·,89	Pur. d2* 0,9019	Schneiner et Kremens (Pharm, Arch., t. II, p. 181, 1894).
	$\{\alpha\}_{n=0}^{n}$ 8°, 96	d;* 0,9014	
(azotite de). C ¹² H ²⁴ \z ² () ³ (de <i>L</i> -caryophyllene)	[2] ₀ 102", 95	Benzene (c - 1,39)	Id., p. 185.
Cérine. C° II" O°	[2] ₀ -84",69 —81',20	Chlorof. $(c = 0.33)$ Id. $(c = 0.43)$	ISTRATE of OSTROGOVICE (* . #., t. CXXVIII, p. 1579; 1899).

Céto-(\$)-santorique (acide). Voir -santorique (acide Céto-).

Chitosamine.	[2]b+44°	Eau (p = 0.4)	EKENSTEIN (Rec. Trav. chim. d. P. B. t. XVIII.
			p. 80 . (80g).

SUPPLÉMENT. — TABLE XVIII. — POUVOIRS ROTATOIRES DES CORPS LIQUIDES OU DISSOUS. 1271

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Chitosamine pentacé- tylee (β). C ¹⁶ H ²³ Az O ¹⁰ = C ⁶ H ⁶ (CO.CH ³) ⁵ O ⁵ . Az H ²	[a] _D + 86°,5	Chloroforme (c = 2)	ld., p. 84.
/Chlorosuccinique (acide). C'H'CIO' = CHCI.COOH CH'2.COOH	$\pm o^{\circ}$	Alc. méthyl. + 157,9 (NaOH pour 100°°(c=1,4) (Id. + 157 Li OH (pour 100°° (c=1,5) (Id. + 457, 1 Rb OH) pour 100°° (c=1,5)	1899).
Cholestérine. C ²⁶ H ⁴⁴ O (de la betterave) (des calculs biliaires).	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Chloroforme (c = 12,9) Id.	Schulze in von Lippmann (Ber. d. D. ch. Ges., t. XXXII, p. 1211; 1899).
6Cinchonine. C ¹⁹ H ²² Az ² O	[α] _b ^{2•} + 140", 7	Alcool (p = 1)	VON ARLT (Monatsh. f. Ch., t. XX, p. 140; 1899).
Cinchonine (dphényl- glycolate de). $C^{21}H^{30}Az^{2}O^{4} = (C^{19}H^{22}Az^{2}O)C^{6}H^{5}.$ $CH(OH)COOH$ $lId.$		Alcool $(c = 2,43)$ Id. $(c = 2,335)$	Rimbach (Ber. d. D. ch. Ges., t. XXXII, p. 2390; 1899).
Cuminal camphre. $C^{20} H^{26} O = C^{20} H^{10} C^{10} $		Toluène (p = 4,025)	A. HALLER et MULLER(C. R., t. CXXVIII, p. 1372; 1899).
Cuminylcamphre. $C^{20}H^{20}O = CH.CH^2.C^6H^4.C^3H^4$ $C^{4}H^{14} = CO$		Toluënc (p = 6,51)	In. (Id., t. CXXIX, p. 1006 ;
2Cyclométhylhexano- nisooxime. C'H ¹³ Az O	[2] ¹⁶ —3°,24	Alcool (p = 9,55)	WALLACH (Lieb. Ann., L. CCCIX, p. 4: 1899).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Dextrinique (acide).	[a] _b + 193°,5	Eau	BROWN et MILLAR (J. of chem. Soc., t. LXXV, p. 525; 1899).
Diacétylcodéine. C ²² H ²¹ Az O ³ := C ¹⁷ H ¹⁸ Az (CH ³ O) (C ² H ³ O ²) ²	[2] _b — 450°	Alcool	[CAURSE [J. de Pharm. et Ch. (6° s.), t. IX, p. 380; 1899].
Dibenzal-l-idonique (acide). C ⁶ H*(C ¹ H ⁶) ² () ¹	[α] _υ — 5"		ALB. VON EKENSTEIN et LOBRY DE BRUYN (Rec. Trav. chim. d. P. B., t. XVIII, p. 308; 1899).
Dibenzalperséite. C ¹ H ¹² (C ¹ H ⁶) ² O ¹	[a] ₀ — 60°	Acétone (c = 0,25 à 0,5)	ld., p. 151.
Dibenzalrhamnite. C ⁶ H ¹⁰ (C ⁷ H ⁶) ² () ³	[a] _b — 55°	Chlorof. (id.)	Id.
Dibenzal- d sorbite. $C^6 H^{10} (C^7 H^6)^2 O^7$	[a] _b + 29"	Acétone (id.)	Id.
Dibenzal- l -xylonique. (acide). (l^3 H ⁶ (l^3 H ⁶) l^2 (l^6)	[a], 22"	Alc. méthyl. (p == 0,4) <i>Id.</i> , p. 308.
πω-Dibromocampho- rique (anhydride). C ¹⁰ H ¹² Br ² O ³	$[\alpha]_{n}^{14}-31^{n},2$	Chlorof. $(c = 4,63)$	KIPPING (J. of chem. Soc., t. LXXV, p. 132; 1899).
22'-Dibromocamphosul- fonate d'ammonium. C ¹⁰ H ¹⁴ Br ² SO ³ . Az H ⁴	[α] ¹⁸ + 51°,5	Eau (c = 3,03)	LAPWORTH (J. of chem. Soc., t. LXXV, p. 564: 1899).
d. d. sec. Dibutylthiourée.	$[\alpha]_{\mathfrak{b}}^{\mathfrak{d}}+4\mathfrak{1}^{\mathfrak{a}}$	Alcool $(c=3,3)$	GADANER (Arch. d. Pharm., t. CCXXXVII. p. 92; 1899).
Id. r. d.	$[\alpha]_{\nu}^{15} + 18^{\circ}, 53$	ld.	- b. a-)
l(a) Dicarvelone. C ²⁰ H ³⁰ () ² (de dcarvone)	[2] ₀ 15 73°, 92	Chloroforme (p = 1.5) Löhr et Lipczynski (<i>Lieb.</i> <i>Ann.</i> , t. CCCV, p. 226; 1899].
d(a) Id . (de lcarvone)	$ [\alpha]_0^{18} + 73^{\circ}, 28$	Id. (p = 1,47	

SUPPLÉMENT. — TABLE XVIII. — POUVOIRS ROTATOIRES DES CORPS LIQUIDES OU DISSOUS. 1273

NON ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
$d(\beta)$ Id. [de $l(\alpha)$ dicarvelone]	$[\alpha]_{5}^{20} + 79^{\circ}, 18$	Id. $(p=1,85)$	Id., p. 229.
l(β) Id. [de d(α) dicarvelone]	$[\alpha]_{\rm b}^{20} - 82^{\circ}, 66$	Id. $(p=1,76)$	
$l(\gamma)$ Id. [de $d(\alpha)$ dicarvelone]	$ [\alpha]_{0}^{18} - 213^{\circ}, 4$	Id. $(p=1,56)$	/d., p. 231.
[de d(β) dicarvelone].	$ [z]^{18}_{\mu}-201^{\circ},8$	$ \qquad \text{Id.} \qquad (p=1,55)$	
d(γ) Id. (de lcarvone)	$[\alpha]_{0}^{15} + 236^{\circ}, 8$	Id. $(\rho = 1,53)$	
dDiéthoxysuccinate diéthylique. C ¹² H ²² O ⁶ = CH(OC ² H ³).COOC ² H ³ CH(OC ² H ³).COOC ² H ³	$[\alpha]_{\nu}^{28} + 92^{\circ}, 23$	Pur. $d_4^{18} = 1,0460$	Purdie et Pitkeathly (J. of chem. Soc., t. LXXV, p. 159; 1899).
dDiéthoxysuccinique (acide). $CH(OC^2H^3).COOHC^3H^{13}O^6 = CH(OC^2H^3).COOHCC^4H^3).COOHCC^4$	1	Eau $(c = 4.06)$ Id. $(c = 10,15)$	ld.
dDihydrocarvone. C''ll'6() (de lcarvone)	$[\alpha]^{16}_{\nu} + 17^{\circ}, 42$	Pur. d ¹⁶ =0,9308	Kondakoff et Lutschi- nine [J. f. prakt. Ch. (2° 8.), t. LX, p. 261; 1899].
lId. (de dcarvone)	$[\alpha]_{0}^{22}-19^{\circ},05$	Pur. $d^{22} = 0,9269$	
Diméthylènegalacto- nique (acide). $C^{\mu}H^{12}O^{1} = C^{6}H^{4}(CH^{2})^{2}O^{1}$	$[\alpha]_{u}+45^{\circ},3$	Eau (c = 0,65)	CLOWES et TOLLENS (Lieb. Ann., t. CCCX, p. 168; 1899).
Diméthylènexylonique (acide). $C^{1}H^{10}O^{6} = C^{5}H^{6}(CH^{2})^{2}O^{6}$	[a] _b +39°,2	Eau (c = 0,76)	<i>ld</i> ., p. 178.
Dioxybutyrique (acide). C'H'O'	[α] _b — 2°, 6 (initial) + 13°, 7 orės 2 jours)	Eau	VON FABER et TOLLENS (Ber. d. D. ch. Ges., t. XXXII, p. 2599; 1899).

NOM ET FORMULE.	POUVOIR rotatoire specifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
dÉrythronate de brucine	e. Voir Brucine	(dérythronate de)	
dÉrythronate de calcium. (C'H'O')2Ca + 2H2O	$[a]_{u}^{20} + 8^{\circ}, 2$	Eau (c = 9,03)	RUFF (Ber. d. D. ch. Ges., t XXXII, p. 3680; 1899).
dÉrythronique (lactone). C'H [©] O'	[a] ^{2*} —73°,3	Eau (c = 8,04)	ld., p. 3679.
dÉrythronique (phényl- hydrazide d'acide). C ¹⁴ H ¹⁴ () ⁴ Az ² = C ³ H ¹ O ³ .CO.AzH.AzH(C ⁶ H ²)		Eau (c = 3,46)	ld., p. 3680.
$d.$ -Érythrose. $C'H^*O' = H H$ $CH^2OH - \dot{C} - \dot{C} - COH$ $OH OH$	[2] ² + 1° (après 10 min.) — 14°, 5 (après 3 jours)	Eau (c = 11,03)	ld., p. 3676.
/Id. ОН ОН СН²ОП — С̀ — С̀ СОП Н Н	[α] _υ - 32",7	Eau et 25,94 S()4H ² dans 100° (c = 1,36)	WOHL (Ber. d. D. ch. Ges., t. XXXII, p. 3670; 1899).
lÉrythrose (dérivé ammoniacal de). C ⁸ H ¹⁵ O ⁶ Az	[2] ₀ + 136°, 3 (final)	Eau (c 1.3)	ld., p. 3672.
dÉrythrosebenzyl- phénylhydrazone. $C^{17}H^{26}Az^{2}O^{3} = C^{4}H^{4}O^{3}; Az^{2}(C^{6}H^{3})(C^{7}H^{4})$	$[\alpha]_0^{20}-32^{\circ}$	Alcool 95 " , (p = 10,32)	RUBF (loc. cit., p. 3675).
lÉrythrosediacétamide $C^8 H^{16} Az^2 O^5 = C^5 H^8 O^3 (Az H.CO.CH^2)^2$	[2] ₀ — 7°,9	Eau (c = 2,5)	Wont (loc. cit., p. 3669).

o.-Éthoxybenzylcamphre. Voir Éthylsaligénylcamphre.

NOM ET FORMULE.	POUVOIR rolatoire spécifique,	DISSOLVANT ET TENEUR	OBSBRYATEURS.
iÉthoxypropionate de calcium. (C°H°O°)²Ca	$-44^{\circ}, 5$ $[\alpha]_{0}^{14} - 37^{\circ}, 7$ $[\alpha]_{0}^{24} - 36^{\circ}, 6$ $[\alpha]_{0}^{34} - 35^{\circ}, 5$ $[\alpha]_{0}^{32} - 10^{\circ}, 34$	Eau ($c = 5,36$) Id. ($c = 10,72$) Id. ($p = 24,43$) Id. ($ad.$) Id. ($ad.$) Alcool ($c = 5,51$) Id. ($c = 11,02$)	Pundiz et Invint (J. of chem. Sec., t. LXXV, pp. 490 et 492; 1899).
(C'H+O')1Mg	[2]20 — 44°,5 — 42°,6 — 40°,2	Eau $(c = 5,24)$ Id. $(c = 10,48)$ Id. $(c = 20,96)$	Id., p. 490.
de sodium. C ⁵ H ⁵ O ³ . Na	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Eau $(c = 2.40)$ Id. $(c = 4.74)$ Id. $(c = 11.85)$ Id. $(c = 23.70)$	ld.
lÉthoxypropionate de zinc. (C ¹ H ² O ²) ⁷ Zn	— 28",8 — 21°,3	Eau $(c = 3,87)$ Id. $(c = 7,74)$ Id. $(c = 15,49)$ Id. $(c = 30,97)$	id.
L-Éthoxypropionate éthylique. C'H'' O' = CH''.CH (OC' H').CO OC' H'	$[a]_{b}^{13} - 80^{\circ}, 30$ $[a]_{b}^{24} - 79^{\circ}, 69$	Pur. $d_4^{13} = 0.9450$ Id. $d_4^{20} = 0.9355$	<i>ld.</i> , pp. 487 et 488
C³ H³ O³ . CH³	[x] ^{2*} — 81*,60	Pur. d: = 0,9610	/d., p. 487.
l (acide). C¹H¹¹O² = CH².CII (OC²II²).CO OII	$ \begin{array}{c c} [\alpha]_{5}^{2^{n}}-66^{n},36\\ -51^{n},7\\ -51^{n},4\\ -51^{n},3\\ -52^{n},1 \end{array} $	Pur. $d_1^{24} = 1.0395$ Ean $(c = 4.025)$ Id. $(c = 10.06)$ Id. $(c = 20.12)$ Id. $(c = 30.57)$	fd., pp. 485 et 400.
Ethoxysuccinate acide d'ammonium. (C*II*O*) Az II*	[x], — 29°,91	Eau (c = 10,03)	Pundis of Pitkenthly (J. of chem. Soc., t. LXXV, p. 158; 1899).

DONNÉES NUMÉRIQUES. — OPTIQUE.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
/Éthoxysuccinate diéthylique. C ¹⁰ H ¹⁰ O ⁵ = (C ² H ³ O) CH — CO OC ² H ⁵ CH ² — CO OC ² H ⁵	[2]\$ — 54°, 14	Pur. d ₄ = 1,0501	Id.
ℓ Éthoxysuccinique (acide). $C^{6}H^{10}O^{5} = (C^{2}H^{5}O)CH - COOH^{\dagger}CH^{2} - COOH^{\dagger}CH^{2}$	$[\alpha]_{b}^{1}-31^{\circ},14$	Eau (c = 8,06)	Id.
NÉthyl(α) pipécoline. C ³ H ¹¹ Az = C ² H ³ . Az CH (CH ³). CH ² CH ² . CH ² . CH ²	[α] ¹⁸ +101°,06	Pur. d ¹⁸ = 0,8361	HOHENEMBER et WOLF- FRNSTEIN (Ber. d. D. ch. Ges., t. XXXII, p. 2522; 1899).
Éthylsaligénylcamphre. C ¹⁹ H ²⁶ O ² = C ⁸ H ¹⁴ CH.CH ² .C ⁶ H ⁴ .OC ² H ⁵ CO (2)	[2] ^{2•} +102°,69	Toluène (<i>p</i> = 6,58)	A. HALLER et MULLER (C. R., t. CXXIX, p. 1006, 1899).

aFenoylénique (acide)). $ [\alpha]_{0}^{16} + 30^{\circ}, 73 $	Pur. d ¹⁶ == 1,0069	COCKBURN (J. of chem. Soc., t. LXXV, p. 506; 1899).
βId. (de dfenone).	[2] _b + 19",64	Alcool	[ld., p. 503.
zFenoylénonitrile. C9 II15. CAz	[a], + 28", 98	Alcool	//d., p. 505.
βId.	[α] ₀ + 43°,66	Id.	
Friedeline. CiallinO2 (?)	[2] ₀ — 48°.7	Chlorof. (c := 0,82)	ISTRATI et OSTROGOVICH (C.R., t.CXXVIII, p. 1579; 1899).

•		•	•
NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Fructose. C ⁶ H ¹² O ⁶	$[\alpha]_{D}$ — 93°, 74 — 91°, 2	Eau ($c = 5,76$) Id. ($c = 10$) (Eau et 105 aldéhyde	POTTEVIN [J.de Phys.(3° s. t. VIII, p. 376; 1899].
		Eau et 10 ^{gr} aldéhyde formique dans 100 cc ($c=10$)	
	— 75°, 7	Eau $(80^{sr}, 4)$ et aldé- hyde acétique $(19^{sr}, 6)$ (c = 5, 76)	
Fructose (dérivé ammo- niacal du). C ⁶ H ⁹ Az O ⁴	[α] ₀ — 75° — 80°	Eau (c = 0,4) Id. (c = 1,0)	LOBRY DE BRUYN (Red Trav. chim. d. P. B t. XVIII, p. 74; 1899).
Id. tétracétylé. C ⁶ H ⁵ (C ² H ³ O) ⁴ Az O ⁴	[a] ₀ — 6°, 7	Chlorof. $(c=2,4)$	ld.

| Continuous d.-Galactosazone. |
$$[\alpha]_0 + 40^{\circ}$$
 | $[\alpha]_0 + 40^{\circ}$
Glucosamine. Voir Chitosamine.

NOM ET FORMULE.	POUVOIR rotatoire specifique.	DISSOLVANT	ET TENBUR.	OBSER VATE URS.
dGlutamique (acide). C ⁵ H ⁹ O ⁴ (de la caséine)	[a] _b + 30°, 45	Eau + HCl	(p=5,36)	E. FISCHER (Ber. d. D. ch. Ges., t. XXXII, p. 2470; 1899).
(de l'acide benzoyl-dgluta- mique).	$[\alpha]_{\text{\tiny D}}+30^{\circ},85$	Id.	(p=4,73)	
lId. (de l'acide benzoyl-lgluta- mique)	[α] _b — 30", 05	Id.	(p=5,30)	ld., p. 2468.
-glycérate (Di-otoluyl-) éthylique. C ²¹ H ²² O ⁶ = H ² C.O.CO.C ⁶ H ⁴ .CH ³ HC.O.CO.C ⁶ H ⁴ .CH ³ COOC ² H ⁵	Pur. (<i>t</i>	3,42 — 0,09 = 19°,5 à 14 38 — 0,000 9	ho.)	FRANKLAND et ASTON (J. of chem. Soc., t. LXXV, p. 497; 1899). [Formules calculées d'a- près les nombres des auteurs.]
Idm. (1)(3).	•	$0,1070t - 0$ $= 18^{\circ}, 5 \text{ à } 13$ $= 31 - 0,0008$	8°)	<i>Id.</i> , p. 496. <i>Id</i> .]
Idp. (1)(4).	Pur. (t)	6,53 — 0,20 16°,5 à 140 196 — 0,000 8	o°, 5)	ld., p. 495. [ld.]
	$[\alpha]_{\nu}^{20} + 41^{\circ},60 + 36^{\circ},65$	Alcool (A	p = 4,76) ne (id.)	ld., p. 500.
-glycérate (Di-otoluyl-) méthylique. C ²⁰ H ²⁰ O ⁶ = H ² C.O.CO.C ⁶ H ³ .CH ³ HC.O.CO.C ⁶ H ⁴ .CH ³ COOCH ³	Pur. (0,08331—0 l=20°à139 529—0,0009)")	[Id., p. 497. [Id.]
Idm. (1)(3).	Pur. (<i>t</i>	$8,80 - 0,13$ $2 = 20^{\circ} \text{ à } 138$ $200 - 0,0009$	°)	[Id., p. 496. [Id.]
Idp. (1) (4).	Pur. (t	3,69 — 0,18 = 51°,5 à 13 131 — 0,0009	37°)	[Id., p. 494. [Id.]
	$ \begin{array}{r r} \hline [a]_{0}^{20} + 39^{\circ}, 30 \\ + 34^{\circ}, 92 \end{array} $	Alcool (ld., p. 500.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Hédérine. C ⁶⁴ H ¹⁰⁴ O ¹⁹	$[\alpha]_{b}^{2^{2}}+16^{\circ},27$	Alcool	Houdas (C. R., t. CXXVIII, p. 1463; 1899).
Hédérose. C ⁶ II ¹² O ⁶	[2] ²² + 102°, 66	Eau	ld.
dtrans-Hexahydrophta- late diméthylique. (281110 (CH2)2O1	[x] ²⁰ + 28°, 7	Acétone (p = 12,87)	Conrad (Inaug. Dissert. Zürich; 1898).
lId.	[α] ²⁰ — 29",6	Id. $(p = 13, 10)$	
dtrans-Hexahydrophta- late monométhylique. C*H ¹¹ (CH ³)O'	$[\alpha]_{\nu}^{20} + 26^{\circ}, 5$	Id. $(p = 11.3)$	[d.
lId.	[x] ₀ :0 — 24°,8	Id. $(p = 11,2)$	
dtrans-Hexahydrophta- lique (acide). C"H'2O' = CH2 — CH2 HC.COOH COOH.CH CH2 — CH2	$[\alpha]_0^{2\bullet} \rightarrow 18^{\circ}, 2$	Id. (p = 5,17)	Id.
/Id.	$[\alpha]_0^{20}-18^{\circ},5$	Id. $(p = 7,49)$	
trans-Hexahydrophta- lique (anhydride). ("H" O" (d'acide droit)	[α];• — 76°, 7	Id. (p = 9,74)	Id.
(d'acide gauche)	$[\alpha]_{b}^{20} + 75^{\circ}, 8$	Id. (p = 10,05)	
Histidine.	[a] _u — 39°, 74	Eau (c = 3,18)	Kosset (Zeits. f. physiol Ch., t. XXVIII, p. 382 1899).
Histidine (chlorhydrate d') (C ⁶ H ⁹ Az ³ O ²) H Cl	[2] ₀ + 1°, 74	Eau (c 2,59)	Id.

NOM RT FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Histidine (dichlorhydrate d').		Eau ($c = 4,83$) Id. + 2 H Cl ($c = 3,38$)	id.
(C ⁶ H ⁹ Az ³ O ²) 2 H Cl	$[a]_{n}^{\bullet} + 6^{\circ}, 64$	Eau (p = 1,60)	LAWROW (1d., p. 393).
Homocamphoronique (acide). $C^{10}H^{16}O^{6}=C^{7}H^{15}(COOH)^{3}$	[2] 10°, 28	Eau (c = 2,03)	LAPWORTH et CHAPMAN (J. of chem. Soc., t. LXXV, p. 996; 1899).
Hyoscyamine. C ^{1:} H ²³ Az () ³ (de Hyoscyamus mulicus)	[a] _u ¹⁹ — 25", 32	Alc. abs. (c == 2,04)	Dunstan et Brown (J. of chem. Soc., t. LXXV, p. 75; 1899).
Hyoscyamine (sulfate de). $(C^{17} H^{23} \Lambda z O^{3})^{2} SO^{4} H^{2}$	$[\alpha]_{n}^{15}$ — 28", 6 — 28", 2	Eau $(c = 2)$ Id. $(c = 4)$	HESSR (<i>Lieb. Ann.</i> , t. CCCIX, p. 81; 1899).
lIdite. (% H14()6 (de l'acide l-idonique)	(2) ₀ + 107" + 37°	Eau + 6.75 mol. molyhdate ac. d'ammonium Mo [†] O ²⁴ (Az H [†]) ⁶ (p=0,5) [d.+id.+o ^{gr} ,784 SO ⁴ H ² dans 100 ^{cc}	LOBRY DE BRUYN et VAN EKENSTEIN (Rec. Trav. chim. d. P. B., t. XVIII, p. 151; 1899).
$I. ext{-Isodiphényloxyéthyl-} $ amine. $C^{11}H^{12}AzO = C^6H^5.CH.OH$ $C^6H^5.CH.AzH^2$	[a], — 109°, 66	Alcool (c = 3,68)	ERLENMEYER JUN. (Ber. d. D. ch. Ges., t. XXXII, p. 2377; 1899).
dId.	[a] ₀ +109",69	Id. $(c = 2,74)$	
lIsodiphényloxyéthyl- amine (dtartrate de). (C14 H15 Az O) ² C4 H6 ()6	[a] ₀ — 37°, 57	Eau (c = 2,38)	Id.
dId.	$[\alpha]_0 + 54^\circ, 33$	Id. $(c=3,09)$	
aIsopulégone.	$[\alpha]_{\nu}^{19,3}-7^{\circ},13$	Pur. d ^{19,5} == 0,9192	HARRIES et ROEDER (Ber. d. D. ch. Ges., t. XXXII, p. 3371; 1899).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
d Lactate méthylique. $C^{4}H^{8}O^{3} = CH^{3}.CH(OH).COOCH^{3}$ (de l'acide dr .)	[a] _b — 8°, 25	Pur. $d_4^{20} = 1,0925$	Purdie et Irving (J. of chem. Soc., t. LXXV, p. 484; 1899).
Lactose. C ¹² H ²² O ¹¹ + H ² O		Eau (c = 10) Eau + 105° aldéh. form. dans 100° (c = 10)	Роттичім [J.de Phys. (3° в.), t. VIII, p. 375; 1899].
dLimonène. C'* H''s (dér. du carvène)	[α] _B + 125°,60	Pur. $d_4^{20} = 0.8425$	GODLEWSKY et ROBHANO- WITSCH (J. Soc. phys chim. Russe, t. XXXI, p. 200: 1899)
Linalol. C''H''() (de l'ess. de petitgrain)	[α] ¹⁵ — 15°,72	Pur. $d^{15} = 0.8699$	CHARABOT et PILLET [Bull, Soc. Chim. (3° s.), t. XXI, p. 76; 1809].
Lysine. C ⁶ H ¹⁴ Az ² () ²	$[\alpha]_{b}^{20} + 17^{\circ}$	Eau (p = 3,68)	LAWROW (Zeits. f. physiol, Ch., t. XXVIII, p. 397; 1899).
Lysine (dichlorhydrate de). (C°H"Az°O²) 2HCl	+ 16", 36 + 16", 68 + 17°, 22 + 17", 25 + 17", 00	Eau $(p = 2,84)$ Id. $(p = 5,61)$ Id. $(p = 11,07)$ Id. $(p = 18,43)$ Id. $+ HCl(p = 11,72)$ Id. $+ 2HCl(p = 9,76)$ Id. $+ 4HCl(p = 7,30)$ Id. $-8HCl(p = 4,84)$	
Malate d'ammonium et glucinium. C*H*O'2Gl'(AzH')2 (Diglucinomalate)	[2] ¹³ —110° (moy.)	Eau (c = 0,3 à 2,3)	ROSENHEIM et Ivzig (Ber. d. D. ch. Ges., t. XXXII, p. 3433; 1899).

 $| [\alpha]_{u}^{20} - 63^{\circ}, 75 | \text{Eau} (c = 0, 26 \text{ à 2, 12}) | ld., p. 3635.$

Malate d'ammonium

et glucinium.

 $C^8 H^8 O^{11} Gl^2 (Az H^4)^2$

(Monoglucinomalate)

DONNÉES NUMÉRIQUES. — OPTIQUE.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Malate de glucinium et potassium. C'HGO12G14K2 (Diglucinomalate)	[2]:6 — 97°,5	Eau (c = 0,2 å 2)	Id., p. 3431.
Malate de glucinium et sodium. (*H*O''2Gl'Na'' (Diglucinomalate)	[2]6—107°,6	Eau (c = 0,2 à 2,8)	Id.
Malate diéthylique. C*H''O'	$[\alpha]_0^{20}$ — 10°, 44	Pur. $d_4^{20} = 1,1340$	FRANKLAND et WHARTON (J.of chem. Soc., t.LXXV, p. 339; 1899).
Malate diméthylique.	$[\alpha]_0^{20} - 6^{\circ}, 84$	Pur. $d_4^{20} = 1,2301$	Id.
$C_{12}H_{18}O_{6} = C_{12}H_{18}O_{6} = C_{1$	» 35 — 5°, 28 » 46 — 6°, 20	$d_i^i = 1,1779 - 0,00104l$	ld., p. 340.
C ⁶ H ³ , CO, O, CH, CO O CH ³ CH ² , CO O CH ³	» 44 — 6°.89 » 44 — 7°.87		Id., p. 341.
-malate (Méthyl-) Voir	Méthylmalate	••	

-malate (o.-Toluyl-) $[x]_{0}^{21} - 6^{\circ}, 25$ Pur. diéthylique. $[x]_{0}^{21} - 7^{\circ}, 48$ d = 1,1571 - 0,00086t 0.56 + 1.571 - 0,00086t $0.571 - 8^{\circ}, 93$ $0.571 - 8^{\circ}, 93$ $0.571 - 10^{\circ}, 38$ $0.571 - 10^{\circ$

۰ ل

NON BY FORMULE.		OBSERVATEURS.
Idm. (1) (3).		M., p. 343.
Idp. (1) (4).	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Id., p. 344.
diméthylique. Cutpuot = CH2.Cull.COO.CH .COOCH2	$[\alpha]_{0}^{23} - 8^{\circ}, 94 \text{Pur.}$ $0^{-38,8} - 9^{\circ}, 49 d_{k}^{\ell} = 1,2152 - 0,06$ $0^{-4k} - 10^{\circ}, 06$ $0^{-4k} - 10^{\circ}, 85$ $0^{-8k} - 12^{\circ}, 40$ $0^{-13k} - 14^{\circ}, 09$	eo 97 f
Id. -m. (1) (3)	$\begin{bmatrix} a \end{bmatrix}_{0}^{24} & -6^{\circ}, 34 \\ n^{-32} & -7^{\circ}, 36 \\ n^{-44} & -8^{\circ}, 45 \\ n^{-67,6} & -9^{\circ}, 89 \\ n^{-99} & -11^{\circ}, 73 \\ n^{-124} & -13^{\circ}, 49 \end{bmatrix}$	id., p. 343.
Idp. (1) (4)	[α] ₀ ¹⁰ ,5 — 3°, 14 α ²⁰ ,5 — 4°, 03 α ^{37,8} — 4°, 60 α ³⁰ — 5°, 47 α ⁶⁴ — 6°, 47 α ³⁹ — 8°, 33 α ¹³⁶ — 10°, 14	id., p. 345.
	$[a]_a = 22^n (\text{moy.})_1$ Arctone $(c = 5)$ — `au $(c = 4)$	(6) WALDEN (Ber. d. D. ck Ger., t. XXXII, p. 2713, 1899.

Malique (acide). C'H⁶O⁵

DISSOLVANT.	c.	ROUGE ./. = 446 ^{PP} ·	$y = qee_{hh}.$	VERT	y = 188, cr.		t.
Alcool benzylique			+ 4,0			+11,0	"C. 18
Alc. benzyl. 1 vol.; benzène 1 vol. Alc. benzyl, 6 vol.; sulfure de carbone ; vol		1	+ 3,4	•	+ 6,75	+ 9,7 + 8,5	
Acide acétique		— o,8		0,4	- 0,6	#	18 18
Acctone	(1d. 2 3.7 1d.	_ 5,o	+ 1,1 6,0 5.5	- 7,1	I	, , , , , , , , , , , , , , , , , , ,	18
Acétone 6 vol.; benzène 4 vol	9,44	- 4,0	- 4,1	- 4,1	- 4,2		18 18
Phénylméthylcétone	5	– 3, 0	- 4,0 - 3,0	- 3,o	- 3,0	"	18
Acétone i vol.; alcool ébuty- lique i vol	11,8	- 5,8	- 6,6	- 7,4		_"	18
Alcool ibutylique	a 58		- 3.7 - 8,9			— 5,o 	18
Acétone s vol.; aldéhyde s vol Aldéhyde	11,8		 17,62 28.7	1 -	-27,5 -38,7	, ,,	18 18
Pyridine Benzaldéhyde	5	2 3 ,o	-30,0 - 5,0	36,o		"	18

WALDEN (Ber. d. D. ch. Ges., t. XXXII, pp. 1856-1859 ; 1899).

[Fair Table XVIII (1, E), p. 791].

Eau avec potasse et sulfate de glucinium.

 $[\pi]_0^{2^n}$ =142°.4 (maximum pour 1 mol. C*H*O*, 5 mol. KOH, 2 mol. SO*Gl). (c = 0.661).

Eau avec soude et sulfate de glucinium.

[2]^{2*} = 145*, 1 (maximum pour 1 mol. C⁵ H⁶O³, 5 mol. NaOll, 2 mol. SO⁵ Gl).

ROSENBEM et l'izin (Ber. d. D. ch. Ges., t. XXXII, p. 3427; 1899).

NOW LT FORMULE.	ि एका Visite rolatoire specsilque	DISSOLVANT AT TENFUR	OBSERVATEURS.
-malique (acide Anhydro-)	[2],"—18',8	* Acetone (c = 5.05)	WALDEN (Bee, d, D, ch, 6es., t XXXII, p 2707 (899)
C*B**O* (C*H*O*(COOH)	- 14°,0	Eau (c = 5)	

⁻malique (acide Méthyl-) Foir Méthylmalique (acide).

SUPPLÉMENT. - TABLE AVIII. - POUVOIRS ROTATOIRES DES CORPS LIQUIDES OU DISSOUS. 1285

NOM ET FORMULE.	rouvoin relatelre specifique.	DISSOLVANT ET TENEUR.	observateurs.
. C ¹⁶ H ¹⁴ O ² Az ² = CH (OH).CO.Az H.C ⁶ H ¹⁵ CH ² .CO.Az H.C ⁶ H ³	[α] ₀ ¹⁵ — 101°, 1	Pyridine (p = 5,26)	Guys et Bansu Arch. de Gen. (4° pér.), t. VII, p. 38; 1899}.
C ¹⁴ H ²⁴ O ³ Az ² = CH (OH).CO, Az H, C ⁴ H ⁴ , CH ² CH ² CO, Az H, C ⁴ H ⁴ , CH ² (1) (2)	[a]i, 61,8	Id. (id.)	Įd.
Я			
	466		
$\begin{array}{c} O \\ C_{15} H_{51} O_{14} \\ O \\ C_{15} H_{51} O_{14} \\ C_{14} H_{45} O_{24} = \end{array}$	[2], — 181" à —- 183°	Eau	Bnows et Millar (J. of chem. Soc., t. LXXV, p. 191; (899).
Maltodextrinique (acide). C ²⁹ H ²⁰ O ²⁰ = C ¹² H ²¹ O ¹⁰ C ¹² H ²⁰ O ³	[α] _s +192",3	Eau	Id., p. 196.
Maltosazone. C ²⁴ H ³² O ⁵ Az ⁴ = C ¹² H ²⁴ O ⁵ (Az .Az H .C ⁶ H ³) ²	[2] ₀ +75°	2 vol. pyridine, 3 vol alcool (c = 2)	NRUBERG (Ber. d. D. ch. Ges., t. XXXII, p. 3386, 1899).
Maltose. CuH#Ou	[x] ₀ + 140°, 1 + 144°, 0	Eau ($c = 10$) Eau + 10^{sr} aldéh, formique dans 100^{cs} ($c = 10$)	Роттичих [J. de Phys. (3° в.); t. VIII, p. 3-5, 1899].
Mannite. C ^e H ¹⁵ O ⁶		Eau $+\frac{6.75}{24}$ mol. moly lybdate ac. d'ammon. MO'O''(Az H')6 ($p = 0.5$) (Id. + id. + o'''.784 SO'II' dans 100°	LOBRY DE BRUYN et van Eksnatrin (Rec. Tear. chim. d. P. B., t. XVIII, p. 121; 1899).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR	. OBSERVATEURS.
Mélibiose. C ¹² H ²² O ¹¹ + 2H ² O (cristallisé)	$C^{12}H^{22}O^{11} + 2H^2O$		BAU (Woch. f. Brauerei t. XVI, p. 397; 1899).
Menthène. C ¹⁰ H ¹⁸ (du menthylxanthate méthylique)	$[\alpha]_{0}^{20} + 115^{\circ}$ (moy.)	Pur. d ²⁰ = 0,813	TSCHÚGABFF (Ber. d. D. ch Ges., t. XXXII, p. 3335 1899).
Menthène (nitrosochlo- rure de). C ¹⁰ H ¹⁸ Az O Cl	[2] _D + 242°,5	Benzène (c = 3,26)	Id.
m Méthoxybenzyl- camphre. $C^{19}H^{24}O^{2} = CH.CH^{2}.C^{6}H^{4}.O.CH^{2}$ $C^{8}H^{14} = CH.CH^{2}.C^{6}H^{4}.O.CH^{2}$		Toluène ($p=6,21$)	A. HALLRR of MULLER (C. R., t. CXXIX, p. 1006; 1899).
Idp. (1) (4).	$ [\alpha]^{20}_{\mu} + 95^{\circ}, 43 $	Id. $(p = 7,77)$	
oMéthoxybenzylidène- camphre. $C^{18}H^{22}O^{2} = C^{2}CH.C^{8}H^{4}.OCH^{3}$ $C^{4}H^{14} = C^{1}CO$		Toluène (<i>p</i> = 7,60)	Id. (id., t. CXXVIII, p. 1372; 1899).
Idm. (1) (3).	$[\alpha]_{0}^{20} + 379^{\circ}, 07]$	Id. $(p = 7,65)$	\
Idp. (1) (4).	$ [\alpha]_{\nu}^{20} \div 463^{\circ}, 32 $ $\div 467^{\circ}, 07 $	Id. $(p = 3.86)$ Id. $(p = 7.60)$	
lMéthoxypropionate de baryum. (C ⁴ H ⁷ O ³) ² Ba	— 34 ", 9	Eau $(c = 3,66)$ Id. $(c = 7,32)$ Id. $(c = 18,29)$ Id. $(c = 36,58)$	PURDIR et IRVINE (J. of chem. Soc., t. LXXV, p. 490; 1899).
(C ⁵ H ⁵ O ³) ² Ca	— 38°, 3 — 34°, 7	Eau $(c = 4,82)$ Id. $(c = 9,64)$ Id. $(c = 12,05)$ Id. $(c = 24,10)$	

NOM ET FORMULE.	POUVOIR rolatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
lMéthoxypropionate	$[\alpha]_{D}^{20}-41^{\circ},6$	Eau $(c = 5,49)$	Id.
de magnésium.		Id. $(c = 10,99)$	
$(C^4H^1O^3)^2Mg$	— 30°,6	Id. $(c = 21,98)$	
lMéthoxypropionate	$[\alpha]_{\nu}^{20} - 49^{\circ}, 8$	Eau $(c = 3,21)$	Id.
de sodium.	— 48°,8	Id. $(c = 6,49)$	
C4H1O3.Na	—47°,7	Id. $(c = 16, 23)$	
	— 43 °, 3	Id. $(c = 32,46)$	
lMéthoxypropionate	$[\alpha]^{20}_{1}$ — 24°,6	Eau (c = 1,87)	Id.
de zinc.	— 16°, 3	Id. $(c = 3,75)$	
$(C^4H^7O^3)^2Zn$	— 6°, 1	Id. $(c = 7,49)$	
	+ 4°,6	Id. $(c = 14,98)$	
	+ 17°, 0	Id. $(c = 29,96)$	
éth y lique.	[α] ²⁰ — 90°, 08	Pur. $d_4^{20} = 0,9551$	<i>ld.</i> , p. 487.
$^{6}H^{12}O^{3}=$			
CH ³ . CH (OCH ³). COOC ² H ³		l l	

lMéthoxypropionate	$ [\alpha]_{b}^{10} - 97^{\circ},66 $	1	$d_4^{10} = 0,9994$	Id., pp. 487 et 488.
méthylique.	$[\alpha]_0^{15} - 96^{\circ}, 45$	Pur.	$d_4^{15} = 0,9982$	
C4H1O3.CH3	$\begin{bmatrix} \alpha \end{bmatrix}_{b}^{15} - 96^{\circ}, 45 \\ [\alpha]_{b}^{20} - 95^{\circ}, 53 \end{bmatrix}$		$d_4^{20} = 0,9967$	

lMéthoxypropionique	$[\alpha]_{\nu}^{20}-75^{\circ},47$	Pur. $d_4^{20} = 1,0908$	ld., pp. 487 et 490.
(acide).	-63°,8	Eau $(c = 3,5 \text{ à } 8,8)$	1
$C_4 H_4 O_3 =$	- 63°, 9	Id. $(c = 17,55)$	
CH3.CH(OCII3).COOH	 64", o	Id. $(c = 26,73)$	
Purisié par distillation.	$[\alpha]_{n}^{20}-63^{\circ},5$	Eau $(c = 8,52)$	

Méthylènasparagine.

$$[\alpha]_{0}^{18} - 47^{\circ}, 8$$
 Eau $(p = 2, 08)$
 | Schiff [Gazz. chim. ital., t. XXIX (II), p. 294; t. XX

Méthylèneglucose.

$$[\alpha]_0 + 9^{\circ}, 3$$
 Eau $(c = 11, 26)$
 Tollens (Ber. d. D. ch. 4.72)

 $C^6H^{10}(CH^2)O^6 \div \frac{1}{2}H^2O$
 $+9^{\circ}, 5$
 Id. $(c = 11, 72)$
 Ges., t. XXXII, p. 2586; 1899).

NOM ET FORMULE.	POUVOIR rotatoire specifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Méthylène- d manno- nique (lactone). $C^1H^{10}O^6 = C^6H^4(CH^2)O^6$	$[\alpha]_{D}+91^{\circ}$	Eau (c = 1,02)	CLOWES et TOLLENS (<i>Lieb.</i> Ann., t. CCCX, p. 172; 1899).
lId.	[x] ₀ - 88°	Eau (c = 0, 29)	Id., p. 173.
Id. (isomère)	$[\alpha]_{D}$ — 53°, 3	Eau $(c = 1, 13)$	Id., p. 174.

d.-Méthylmalate de sodium.

(C5H6O5)Na2

Dissolutions aqueuses $(t = 14^{\circ})$.

c .	ROUGE. λ=666μμ.	D. λ = \$89μμ.	VERT. λ=833μμ.	BLEU CLAIR.	BLEU FONCE. $\lambda = 648 \mu\mu$.
7,2 12 20	+29,72 +30,07 +29,79	+38,65 $+38,61$ $+38,00$	+48,49 +48,33 +48,12	+56,83 +56,87 +56,37	+62,47 $+62,21$ $+61,00$

MARKWALD et AXELROD (Ber. d. D. ch. Ges., t. XXXII, p. 716; 1899). [Voir Table XVII (1.E.), p. 791.]

d.-Méthylmalique (acide). $C^5H^8O^5 = CH^8.C(OH).COOH$ $CH^2.COOH$

Dissolutions aqueuses $(t = 14^{\circ})$.

<i>c</i> .	ROUGE. λ = 66 μμ.	D. λ = 589μμ.	VERT. λ == 3.344.	BLEU CLAIR. λ=\$89μμ.	BLEU FONCE. λ=418μμ.
4,04	+20,11	$-25^{\circ},59$	+31,32	-+37,41	+41,07
7,89	÷19,45	+25,25	+31,33	+37,00	+40,50
14,47	+21,14	+27,73	+33,73	+39,99	+43,69
26,5	+21,29	-+27,50	+34,06	+40,03	+43,50
35,5	¹ 23,80	+30,80	+37,95	+45,20	49,22
49,3	+23,70	+31,10	+38,33	+46,97	+48,75
60,0	+25,34	32,57	÷40,23	+47,26	+50,96
74,2	"	+34,67	"	"	"

MARKWALD et AXELROD (loc. cit., p. 715).

NOM ET FORMULE.	POUVOIR rolatoire specifique.	DISSOLVANT KT TKNKUR.	OBSKUVATKUBS,
oOxyquinolineglycu-	$[a]_{b}^{1s}$ — 76°, 59	Eau (c = 1,87) Id. (c = 3,73) Id. (c = 4,23)	linanm (Aoite, f. physiol.
ronate de potassium.	— 81°, 82		Ch., t. XXVIII, p. 445;
C ¹³ H ¹⁴ Az O ⁷ K	— 82°, 83		(479).

Perséite. C'H'6O'	[2] _u + 48° + 132°	Eau + 6.75 mol. mol. mol. Mol. Mol. Mol. (Azili) (p - 0.5) Id. + id. + or, 784 SOill duns 100".	LOBBY OR HRUYN OF VAN KRENNTHIN (Her, Trav. Chim. d. P. M., L. XVIII, p. 161; 1800).
dPhénylbromolactique (acide). Co Ho Br Oo = CoHo.CH (OH).CH Br.CO OH	[2] ₀ + 21",46	Alcool (c 2,40)	Enganmerka at Montes (Nor. d. 1), ch, ties., t, XXXII, p. style; (Ma)
dPhényldihydroisolau- ronolate ibutylique. (C'5 H'9 O2) C' H9	[a] ²³ 1°,5	Alcool (p 1,5)	(\$\$0.Ami; Bull. Am. o.htm; (\$= m.1, L XXI, g) NSN, (Ngg)
dPhényldihydroisolau- ronolate méthylique. (C'' H'' O'') CH'	[2]2" 11",9	Alexad (p 3)	14
dPhényldihydroisolau- ronolique (acide). C''s H'*O' = (CH'')' : C CH' (CH'')	{2}: ~ 6,93	Alexand (p %)	14

CH:-CH.CICOH

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT BT TENEUR.	OBSERVATEURS.
/Phényléthoxyacétate	$[\alpha]_{b}^{14}-66^{\circ},4$	Eau $(c = 2,71)$	Id.
de baryum. (C¹•H¹¹O³)²Ba	$-67^{\circ}, 3$ $[\alpha]_{b}^{11}-67^{\circ}, 6$	Id. $(c = 5,42)$ Id. $(c = 6,31)$	·
	$[\alpha]_{b}^{14}-70^{\circ},7$	Id. $(c = 13,55)$	·
lPhényléthoxyacétate	$ [\alpha]_{0}^{21,5}-32^{\circ},32$	Pur. $d_4^{21,5} = 1,0429$	Id., p. 759.
éthylique.		Pur. $d_4^{21,5} = 1,0429$	<i>Id.</i> , p. 759.
éthylique. C ¹² H ¹⁶ O ³ =		Pur. $d_4^{21,5} = 1,0429$ Acétone ($c = 2,99$) Id. ($c = 3,79$)	

Phénylglycolate de cinchonine. Voir Cinchonine (phénylglycolate de).

dPhénylglycolate	$[\alpha]_{b}^{20} + 98^{\circ}, 5$	Eau ($p = 0.058$)	RIMBACH (Zeits. f. physik
de sodium.	+ 99°,3	Id. $(p = 0, 102)$	Ch., t. XXVIII, p. 254
C ⁸ H ¹ O ³ .Na	+ 102°,6	Id. $(p = 0, 136)$	1899).
	+ 103°,85	Id. $(p = 0, 203)$	
	+ 104°, 51	Id. $(p = 0.231)$	
	+ 104°,02	Id. $(p = 0.291)$	
	+ 104°,01	Id. ($p = 0.310$)	1
	+ 103°, 47	1d. $(p = 0.356)$	1
	+ 102°, 53	Id. $(p = 0,415)$	•
	+ 102°, 21	Id. $(p = 0.610)$	
	$[\alpha]_0^{20} + [101,43 -$	+ o,398 <i>p</i>]	
		Eau ($p = 0.78 \text{ à } 9.93$	

Dissolutions aqueuses $(t = 20^{\circ C})$.

c .	ROUGE λ=666 ^{μμ} .	$D = 589^{\mu\mu}.$	VERT $\lambda = 533^{\mu\mu}.$	BLEU CLAIR $\lambda = 189^{\mu\mu}$.	rleu foncέ λ=448 ^{μμ} .
0,293	+110,8	+149,5	+195,6 $+195,2$ $+198,8$ $+200,7$ $+203,3$	+242,8	+304,2
0,587	+113,5	+153,0		+246,9	+309,1
1,523	+115,7	+154,4		+250,7	+311,9
3,399	+117,0	+156,7		+253,0	+315,5
4,791	+117,6	+157,7		+255,3	+318,7

RIMBACH (Ber. d. D. ch. Ges., t. XXXII, p. 2387; 1899).

[Voir Table XVII (I. E), p. 791].

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
(par le sel de cinchonine)	$ \begin{array}{c c} [\alpha]_{b} + 158^{\circ}, 2(d) \\ - 156^{\circ}, 3(l) \\ [\alpha]_{b}^{6} + 158^{\circ}, 7(d) \\ [\alpha]_{b}^{7} - 159^{\circ}, 8(l) \end{array} $	Id. $(c = 3,09)$ Id. $(c = 3,95)$	MCKENZIR (J. of chem. Soc., t. LXXV, p. 964; 1899).
	— 85°, 2	Eau $(c = 0.89)$ Id. $(c = 1.77)$ Id. $(c = 4.41)$	ld., p. 762.
lPhénylméthoxyacétate de calcium. (C9 H9 O3)2 Ca	$\begin{array}{c c} [a]_{0}^{14,5} - 96^{\circ}, o \\ - 98^{\circ}, 4 \end{array}$		[d.
(C ⁹ H ⁹ O ³) ² M g	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Id.
lPhénylméthoxyacétate de potassium. C ⁹ II ⁹ O ³ . K	$-93^{\circ},9$ $[\alpha]_{0}^{14,15}-94^{\circ},4$ $-96^{\circ},3$	Eau $(c = 0.74)$ Id. $(c = 1.85)$ Id. $(c = 3.71)$ Id. $(c = 4.63)$ Id. $(c = 9.27)$	Id.
lPhénylméthoxyacétate de sodium. C ⁹ H ⁹ O ³ . Na		Eau $(c = 2,125)$ Id. $(c = 4,25)$ Id. $(c = 10,59)$	Id.

V			
NOM ET FORMULE.	POUVOIR rotatoire specifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
de strontium. (C'H'O')2Sr		Eau $(c = 0.91)$ Id. $(c = 1.82)$	Id.
/Phénylméthoxyacétate de zinc. (C'H')'Zn	1080, 1	Id. $(c = 0.53)$ Id. $(c = 0.69)$	/d.
acétique (acide). $C^9H^{10}O^3=$	$ \begin{bmatrix} \alpha \end{bmatrix}_{0}^{13.5} - 165^{\circ}, 8 \\ \begin{bmatrix} \alpha \end{bmatrix}_{0}^{25} - 160^{\circ}, 3 \\ \hline \begin{bmatrix} \alpha \end{bmatrix}_{0}^{13} - 150^{\circ}, 6 \\ \hline -151^{\circ}, 1 \\ \begin{bmatrix} \alpha \end{bmatrix}_{0}^{13.5} - 150^{\circ}, 0 \\ \hline \begin{bmatrix} \alpha \end{bmatrix}_{0}^{13.5} - 122^{\circ}, 0 \\ \hline \begin{bmatrix} \alpha \end{bmatrix}_{0}^{13.25} - 122^{\circ}, 9 \\ \begin{bmatrix} \alpha \end{bmatrix}_{0}^{13.25} - 122^{\circ}, 9 $	Id. $(c = 0.59)$ Id. $(c = 1.17)$ Id. $(c = 1.57)$	
/Phénylpropoxyacétate de potassium. C ¹¹ H ¹³ O ³ . K	[z] ₀ 15 — 61°, 9	Eau (c = 1,96)	ld., p. 763.
/Phénylpropoxyacétate de sodium. C ¹¹ H ¹³ O ³ . Na	[α] ^{13,3} — 65°,3 67°,0	Eau $(c = 0.83)$ Id. $(c = 2.07)$! Id.
/Phénylpropoxy- acétique (acide). C ¹¹ H ¹³ O ³ = C ⁶ H ⁵ , CH (OC ³ H ²), CO OH		Acétone (c = 3,75)	 1 d.
Pilocarpine (azotate de) (C ²³ H ²⁴ Az ⁴ O ⁴) Az O ³ H	[[α] _ν + 81° à 83°		JOWETT Pharm. J. Trans (4° s.), t. IX, p. 91; 1899
Pilocarpine (chlor- hydrate de). (C ² ' ''\\z'O') C	[z] ₀ + 90" à 92"		Id.

SUPPLÉMENT. — TABLE XVIII. — POUVOIRS ROTATOIRES DES CORPS LIQUIDES OU DISSOUS. 1293

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Pinolglycol. C10 H10 O3	[α] _b + 11",9	Alcool $(c = 7)$	WAGNER et SLAWINSKI (Ber. d. D. ch. Ges., t. XXXII, p. 2072; 1899).
Pipéronalcamphre. $C^{18} H^{29} O^3 =$ $C^* H^{14} \stackrel{C}{{\sim}} C^* C^* C^* C^* C^* C^* C^* C^* C^* C^*$		Toluène (p = 4,04)	A. HALLER et MULLER (C. R., t. CXXVIII, p. 1372; 1899).
Pipéronylcamphre $C^{18}H^{22}O^{3} = C^{8}H^{14} C^{6}(C^{6}H^{3}O^{2}.CH^{2})$		Id. (p = 8,11)	[d., p. 1006.
Plumiéride. (glucoside du Plumiera acutifolia)		Eau $(c = 0,5)$ Alc. abs. $(c = 0,93)$	FRANCHIMO T (Rec. Trav. chim. d. P. B., t. XVIII, p. 334; 1899).
Plumiéridique (acide). (de la plumiéride)	[z] ²⁰ —118°,7	Eau (c = 0,5)	ld.
NPropyl-(2)-pipécoline. C ⁹ H ¹⁰ Az = $CH(CH^3) - CH^2$ C ³ H ¹ . Az $CH^2 - CH^2 - CH^2$		Pur. d ²⁰ = 0,8296	HOHENEMBER et WOLF- FENSTEIN (Ber. d. D. ch Ges., t XXXII, p. 2523) 1899).
Rhamninite.	· [2] _u — 57"	<u>;</u>	Cn, et G. Tanhet (C. H. t. CXXIX, p. 7/5; 1899)
Rhamninose.	[2],-41°		/d.
Rhamninose octacétylé. C''H''(C'H''U)''U''	[2], 30°,87 - 31°,7		10. [Ball, Soc. chim. 13. 8. 1. XXI, p. 1064, 1849].
Rhamninotrionique (acide). C ¹⁸ H ³² O ¹² = C' H ³ O .CO OH	[2] _H - 94"	1	10 (C. R., t. CXXIX

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Rhamnite. C ⁶ H ¹⁴ O ⁵	[2], — 45	Eau + $\frac{6,75}{24}$ mol. molyb- date ac. d'ammonium Mo ¹ O ²⁴ (AzH ⁴) ⁴ (p = 0,5) Id.+id.+ o ⁵⁷ ,784SO ⁴ H ² dans 100 ⁶⁹	LOBRY DE BRUYN et VAN EKENSTEIN (Rec. Trav. chim. d. P. B., t. XVIII, p. 151; 1899).
Rhamnosazone. $C^{16} H^{22} Az^4 O^3 = CH^3 .C^5 H^7 O^3 (Az.Az H.C^6 H^5)^2$	[2] _b + 70°	2 vol. pyridine, 3 vol. alcool $(c = 2)$	NEUBRRG (Ber. d. D. ch. Ges., t. XXXII, p. 3386; 1899).

Insluence de la température.

Eau (
$$c = 26,00$$
). [α]₀^t = +66,516 - 0,01036($t - 20$). $t = 4^{\circ c} \dot{a} \cdot 40^{\circ c}$.

(Calculé d'après les nombres de l'auteur).

WILEY (J. of Amer. chem. Soc., t. XXI, p. 594; 1899).

Eau et ngr aldéhyde formique dans 100° du dissolvant.

(1) Interpolé.

Eau (80^{gr}, 36) et aldéhyde acétique (19^{gr}, 64).

$$[\alpha]_0 = 4.72^{\circ},09$$
 $(c = 9.81)$ $[t = 12^{\circ} \text{ à } 14^{\circ}]$
Pottevin [J. de Phys. (3° s.), t. VIII, p. 375; 1899].

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.	
Samandarine. C ²⁶ H ¹⁰ Az ² O	[a] _b — 53°, 69	Eau ($p = 5,2$)	FAUST (Arch. f. exp. Path. t. XLVIII, p. 87; 1899)	
Santonate méthylique (2oxime de). C ¹⁶ H ²³ AzO ⁴ = C ¹⁵ H ¹⁹ (CH ³)O ³ ;AzOH	$[\alpha]_{b}^{26}-40^{\circ},66$	Alcool (p = 1,5)	WEDEKING (Ber. d. D. ch. Ges., t. XXXII, p. 1414; 1899).	
Idβ.	$ [\alpha]_{b}^{19}+18^{\circ},15$	Alcool $(p = 0.83)$		
-santonate (Tricéto-) éthylique. C ¹⁷ H ¹⁸ O ⁷ = C ¹⁴ H ¹³ O ⁵ . COOC ² H ⁵		Alcool (c = 1,16)	FRANCESCONI [Gazz. chim. ital t. XXIX (II), p. 255; 1899].	
lsantonine (Acétyldes- motropo-). $C^{17}H^{20}O^4 = C^{15}H^{17}O^2 \cdot O \cdot C^2H^3O$		Ac. acétique (c = 10)	ANDREOGCI [R. C. dei Lincel (5° s.), t. VIII (2° sem.), p. 81, 1899].	
dId.	$ [\alpha]_{D}^{24}+93^{\circ},6$	Id. (id.)	i	
Santonique (dioxime d'acide). $C^{15}H^{22}Az^{2}O^{4} = C^{15}H^{20}O^{2}(AzOH)^{2}$	[2] _u — 102°,4	Alcool (c = 2,97)	FRANCESCONI (loc. cit., p. 228).	
-santonique (acide Tricéto-). C ¹⁵ H ¹⁴ O ⁷	[2] ¹⁴ — 458°,7	Alcool (c = 2,54)	<i>Id.</i> , p. 253.	
2Santorate tétraméthy- lique. C ¹³ H ¹⁴ (CH ³) ⁴ O ⁸	[2] _u + 56°, 02		Id., p. 238. [Francesconi (R. C. dei Lin- cei (5° 8.), t. V (2° 80m.), p. 214; 1896).]	
β Id .	[a] _u ± o°	1		
-3santorate (aCéto-) diméthylique. $C^{14}H^{20}O^{5} = C^{10}H^{14}O(COOCH^{3})^{2}$	[2], — 106°, 6	Alcool (c = 1.34)	[Id., p. 244. [Id.]	
Idb.		Alcool (c = 1,46)	1	

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
-3santorate (Céto-) dimé- thylique (oxime de). C ¹⁴ H ²⁰ O ⁴ : Az OH	$[\alpha]_{n} + 25^{\circ}, 62$	Alcool $(c = 1,30)$	/d., p. 246. [/d.]
-3santorate (Céto-) mono- méthylique. $C^{13}H^{14}O^{5} = C^{16}H^{14}O < COOCH^{3} + \frac{1}{2}H^{2}O$	[2] _n — 94°,3	Alcool (c = 2,25)	[fd., p. 245. [fd.]
aSantorique (acide). C ¹³ H ¹⁸ O ⁸ = CH ³ HOOC.C.CH.CH ² .COOH CH ³ (de l'acide santonique)	$[a]_{D} + 28^{\circ}, 56$	Eau	Id., p. 237. Id.}
(de l'acide métasantonique)	$[\alpha]_0 + 28^{\circ},66$	Eau	
β Id .	$[\alpha]_{b} + 29^{\circ}, 16$	Eau	Id., p. 238 [Id.].
-βsantorique (acide Céto-). C¹² H¹6 O⁵ (cristallisé dans l'eau)	[α] _b — 128°, 1	Alcool (c = 3,11)	[d., p. 24s [ld.].
(cristallisé dans HCl)	[a] ₀ — 117°, 7	Alcool $(c=2,71)$	Id., p. 2.j2 Id. .
Sorbosazone. $C^{18}H^{22}Az^4O^4 = C^6H^{10}O^4(Az.AzH.C^6H^5)^2$	[a] _B —12°,5	Pyridine, 2 vol. Alcool, 3 vol. $(c = 2)$	NEUBERG (Ber. d. D. ch. Ges., t. XXXII, p. 3386; 1899).
dSorbite. C ⁶ H ¹⁴ O ⁶	1 10 . 4-	Eau $+\frac{6,75}{24}$ moléc. moly lybdate ac. d'ammon. Mo ⁷ O ²⁴ (AzH ⁴) ⁶ (p =0,5) Id. $+$ id. $+$ o ⁵⁷ ,784 SO ⁴ H	LOBRY DE BRUYN et VAN EKENSTEIN (Rec. Trav. chim. d. P. B., t. XVIII. p. 151; 1899).

NOW ET FORMULE.	POUVOIR Poistoire spécifique.	DISSOLVANT RT TENEUR.	OBSKRYATEURS.
Strychnine (racémate de). (C ²¹ H ²² Az ² O ²) ² C ⁴ H ⁴ O ⁴		$\begin{bmatrix} 1 \\ 1,379 - 3,749P \end{bmatrix}$ $p = 0.5 \pm 2)$	d. D. ch. Gez., t. XXXII, p. 50; 1899).
Strychnine (dtartrate de). (C ²¹ H ²² Az ² O ²) ² C ⁴ H ⁴ O ⁴	-	o,607 — o,937 <i>p</i>] id. (id.)	Id.
ℓ1d.		1,363 — 1,356p] d. (id.)	
dTalite. C ^e H ¹⁴ O ^e (de l'acide dtalonique)	[2]a+60° + 8°	Eau + $\frac{6.75}{24}$ moléc. Moléc. moléc. moléc. Moléc. moléc. Moléc. moléc. Moléc. moléc. Moléc. moléc. Moléc. moléc. Moléc. moléc. Moléc. moléc. Moléc. moléc. Moléc. moléc. Moléc. moléc. Moléc. molé	LOBBY DE BRUYS et VAN ERRSTEIN (Rec. Trav. chim. d. P. B., 1. XVIII, p. 151; 1899).
Tartrate d'ammonium	[z] ²⁴ + 121",5 + 118",6	Equ (c = 0,3 & 0,6) Id. (c - 1,15 & 4,6)	ROBENHEIM of ITZIO (Ber. d. D. ch. Ges., t. XXXII, p. 3114; 1899).
Tartrate d'ammonium	[z] ^{2*} + 68°, o	Eau (c = 0,14 à 1,9)	/d , p. 3430.
Tartrate de glucinium. C'H'O'GI'+7H'O	[a]; + 93°,5 91°,5 90°,5	Eau (c == 0,4 å 0,8) Id. (c == 1,63) Id. (c == 3,26)	[ld , p. 3/3).
Tartrate de glucinium et potassium. C'H'() GPK (diglucinotartrate)	[2] ₀ ²⁴ -+ 102°,4 + 100°,7 -+ 98°,8	Eau (c - 0.23) ld. (c - 0.47) ld. (c - 0.94 à 1.89)	Id. p. 1426.

DONNÉES NUMÉRIQUES. — OPTIQUE.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
Tartrate de glucinium et potassium. C ⁶ H ⁹ O ¹³ Gl ² K ² (monoglucinotartrate)	$[\alpha]_{b}^{20} + 61^{\circ}$ (moy.)	Eau (c = 0,2 à 3,7)	<i>Id.</i> , p. 343o.

Tartrate de glucinium et sodium.
$$[\alpha]_{p}^{20} + 110^{\circ}, 3$$
 Eau $(c = 0, 15 à 0, 6)$ Eau $(c = 0, 15 a 0, 6)$ Eau $(c =$

Tartrate de strychnine. Voir Strychnine (tartrate de).

Tartrique (acide). C'H'O'

Dissolutions aqueuses.

p.	t.	ROUGE. λ = 666 ^{μμ} .	$\lambda = 589^{\mu\mu}$.	VERT. λ = 533 ^{μμ} .	BLEU CLAIR. $\lambda = \$89^{\mu,\mu}.$	BLEU FONCĖ. λ=44κ ^{μμ} .
66,48 (1)	оС 20	+3,89	+ 4,07	+ 3,48	+ 2,05	— 1,22
63,17	40	+6,68	+7,83	+ 8,25	+ 7,97	+ 6,14
62,26	5o	+7,79	+ 9,19	+10,13	+10,37	+ 9,19
62,26	60	+8,60	+10,14	+11,43	+11,99	+11,46

(1) Dissolution sursaturée.

LEPESCHKIN (Ber. d. D. ch. Ges., t. XXXII, p. 1182; 1899).

[Voir Table XVII (I. E.), p. 791].

Eau et ng aldehyde formique dans 100c du dissolvant.

EAU + 7gr, 5 ALDÉHYDE FORMIQUE EAU (80gr, 36) ET ALDÉHYDE DANS 100cc DE SOLUTION. ACETIQUE $(19^{gr}, 64)$. $[\alpha]_{D}$ [2] **C**. \boldsymbol{c} . (/=20' a 22'). (t = 12° a 14°). +24,32,02 1,00 +17,05,06 +23,7+15,75,02 **--22,8** +15,1510,07 9,90 +22,615,01 +14,5215,28 20,05 +22,3+13,9219,90 30,19 **-**+22,1 +21,540,07

POTTEVIN [J. de Phys. (3° s.), t. VIII, pp. 374 et 376; 1899].

Alcool méthylique + ner acide borique dans 100ce de solution. $(t = 18^{nr})(c = 15).$

n.	$[\alpha]_{\mathrm{D}}^{18}$.	n.	$[\alpha]_{D}^{18}$.
0	+ 5,07	2,0	+17, ⁵ 5
0,05	+ 9,0	2,5	+19,0
1,0	+13,2	3,0	+20,0
1,5	+15,5	"	<i>"</i>

BLYTH (J. of chem. Soc., t. LXXV, p. 723; 1899).

Eau avec potasse et sulfate de glurinium.

 $[\alpha]_{0}^{20} + 140^{\circ}, 6 \text{ (maximum pour 1 mol. C$^{\cup}H$^{6}O$^{6}, 5 mol. KOH, 2 mol. SO$^{\cup G}]}.$ (c = 0.75).

Eau avec soude et sulfate de glucinium.

 $[\alpha]_3^{20} + 143^{\circ}$, 1 (maximum pour 1 mol. C+H6O6, 5 mol. KOH, 2 mol. SO+GI). (c = 0,75).

Rosenhrim et Itzig (Ber. d. D. ch. Ges., t. XXXII. p. 3436; 1899).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
-tartrique (acide Éthyl-). $C^6H^{16}O^6 = CH(OH).COOC^2H^5$ $CH(OH).COOH$, -	Eau ($c = 1,0175$) Id. + 4KOII + 2SO'Gl (id.)	Rosenheim et Itzia (loc. cit., p. 3438).
D.	•		8:2

NOM ET FORMULE.	POUVOIR rotaloire spécifique.	DISSOLVANT ET TENEUR.	OBSERVATKURS.
Tartrodianilide. C ¹⁶ H ¹⁶ Az ² O ¹ = CH (OH). CO. Az H. C ⁶ H ⁵ CH (OH). CO. Az H. C ⁶ H ⁵	$[\alpha]_{\mu}^{15} + 259^{\circ}$	Pyridine ($p = 5,26$)	Guys et Babel [Arch. de Gen. (4° pér.), t. VII, p. 34; 1899].
Tartrodi-otoluidide. C ¹⁰ H ²⁰ Az ² O ⁴ = CH (OH).CO.Az H.C ⁶ H ⁴ .CH ³ (1) (2) CH (OH).CO.Az H.C ⁶ H ⁴ .CH ³		Id. (id.)	<i>Id.</i> , p. 35.
Idm. (1) (3).	$[\alpha]_0^{15}+233^{\circ}$	Id. (id.)	
Idp. (1) (4).	$[\alpha]_n^{15}+239^n$	Id. (id.)	
Tautocinchonine.	$[\alpha]_{0}^{20} + 215^{\circ}, 51$	Alcool. 1 vol. Chlorof. 2 vol. (p=3)	Von Arlt (Mmatsh. f. Ch., t. XX, p. 443; 1899).

1.-Térébenthène.

 $[\alpha]_{\nu}^{2_{1},2}$ — 36",97. Pur.

DISSOLVANT.	$[\alpha]_{0}(c=2).$	$[\alpha]_{\mathfrak{b}}(c=4).$	$[a]_{\scriptscriptstyle D}(c=12).$
Alcool méthylique	·	- 37,3 38,6	—38,3 —38,7
Éther éthylique	• •	37,5 37,6	-38,1 $-37,6$
Benzène	•	-39,1 $-39,5$	-39,2 $-39,4$
Acétate éthylique	-39,2	-39,6	-39,4
Tétrachlorure de carbone Acide acétique	1	-39,3 -40,0	-40,7 -40,4
Chloroforme	-41,5	-41 ,7	-42 ,0

Pope et Peachey (J. of chem. Soc., t. LXXV, p. 1118: 1899).

/Térébenthène (chlorhydrate de). [de térébenthène [2]]17°,19	· · · · · · · · · · · · · · · · · · ·	Benzène (c = 20)	Lona (J. of Amer. chem. Soc., t. XXI, p. 640; 1899).
/-Terpinéol. CIMHISO (CH3)2; C(OH). CH \(\frac{CH2.CH2}{CH2.CH2} \) C.CH2	[x] ₁₁ — 95°, 47	Alcool (c 21.46)	GODLEWSKY (J. Soc. physchim. Russe, t. XXXI, p. 203: 1899).

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	[n.n.a	OBSERVATEURS.
L-Terpinéol (dérivé céto- lactonique du). C'é H'é O ³ = (CH ³) ²	[x] _e ÷ 55°, 3	Alcool (c = 2,62)	Id.
C.CII CH. CH. CO. CH.	 		· · ·
CHB+O	[2] ¹⁷ — 2°,025	Pur. d ₁ ¹⁰ = 0,902	KONDAROFF of Lurschi- NINE [J. f. prakt. Ch.
(de lcarvomenthol)			(#4 8.), t. LX, p. 271, (1895].
d -acTétrahydro-3- naphtylamine. C*H"Az H1	[x]; + 3:"	Benzène ($e = 16$)	Pope (Proc. chem. Soc. Lond., t. XV, p. 170; 1899).
d. tylamine [d.(z)-bromo-	[z] _n + 78"	Alc. abs. (c = 5)	Id.
(C#H ^{III} AzH ²)C#H ¹⁴ BrO.SO ² H			1
β-naph- camphosul- fonate de). (C*H* \zH2)C*H**O.SO*H		1 - Eau (c - 2)	<i>ta</i> l.
!Tétrahydroquinaldine.	[a] ^{co} — 58°, 12	Pur. d?*=1.0103	Pore of Peacher (J. of
ČH − CH = C − CH3−CH3 CAPAX =	$[\alpha]_{0}^{\alpha_{1}} = 45^{\circ}, 9$ $[\alpha]_{0}^{\alpha_{1}} = 50^{\circ}, 8$	Pipéridine $(c = 8,25)$ Éther $(c = 2,5)$	p. 1116; 18cg).
CH = CH = C= /*H - CH (CH+)	[2]2,,2 584,9	Tétrahydroquinoline (c = 7,10)	t. XV, p. 111; 1899 [.]
	$[\alpha]_{0}^{19.5} - 63^{\circ}, 3$ $[\alpha]_{0}^{19} - 63^{\circ}, 6$	Acétone (c = 2,54) VMéthyltétrahydro-	<u></u>
	[z] ^{111,5} — 64°, o	VMéthyltétrahydro- quinoline (c. 18,77) Alc. ethyl. (c. 2,56)	
	$\{[x]_{n}^{19_{12}} - 75^{\circ}, 1\}$	Alc methyl, (c 2,53)	
	z 2 - 88°,6	Alc methyl. (c 2,53) Chloroforme (c 2,66) Renzene (c - 2,56)	
	[2] ₀ ^{21,1} - 97°,6	(Tétrachlorure de car-	
	[2], 117",9	\c. a ² 64)	
dId.	$ x _{N}^{24} = 58^{\circ}, og$	D	[Id], p_1081

NOM ET FORMULE.	POUVOIR rotatoire «pécifique.	DISSOLVANT ET TENEUR.	OBSERVATEURS.
l Tétrahydroquinaldine (d. 2. bromocamphosul- fonate de). (C'H''Az) C'H''Br().S() ³ H	$[\alpha]_0^{21} + 41^{\circ}, 5$		
l Tétrahydroquinaldine (d. camphosulfonate de). (C ¹⁰ II ¹³ Az) C ¹⁰ II ¹⁵ O. SO ³ H	[2] ^{19,1} — 18°,3	Eau (c = 2,03)	[Id., p. 1085. [Id. (id.).]
dId. (d'acide dr.)	$[\alpha]_{b}^{19,1} + 45^{\circ}, 7$	Eau (c = 2,03)	
/ Tétrahydroquinaldine (chlorhydrate de). (C ¹⁰ H ¹³ Az) H Cl		Eau (c = 1,78) Alc. abs. (c = 1,97)	Id., p. 1072. (1) Faute de calcul dans le texte.
dId.	$[\alpha]_{0}^{21,4}+66^{\circ},1$	Eau (c = 1,90)	/d., p. 1081.
/ Tétrahydroquinaldine (picrate de). (C ¹⁰ H ¹³ Az) C ⁶ H ² (Az O ²) ³ . OH		Mc. abs. (c = 1,99)	ld., p. 1072.
$C^{11}H^{13}Az =$	$\begin{bmatrix} \alpha \end{bmatrix}_{0}^{18} - 59^{\circ}, 1 \\ - 67^{\circ}, 6 \\ - 78^{\circ}, 8 \end{bmatrix}$	Acétone $(c = 2,14)$ Alc.éthyl. $(c = 2,11)$	Pope et Rich (J. of chem. Soc., t. LXXV, p. 1097; 1899). [Id. (Proc. chem. Soc. Lond., t. XV, p. 171; 1899)]
dId.	[x]" 80°,7	Benzène (<i>c</i> = 1.95)	// ld p. 1102.
lTétrahydro-ptoluqui- naldine (chlorhydrate de).	a 19 70°.6	Eau (c = 1,91)	ld., p. 1099.
dId.	$[\alpha]_{n}^{18} + 70^{\circ}, 3$	Eau (c = 2,03)	Id , p. 1101.
Triacétylmorphine. $C^{23}H^{21}AzO^6 \rightarrow H^2O$ $C^{17}H^{17}Az(C^2H^3O^2)^3 \rightarrow H^2O$	[a] ₀ — 180"	Alcool	CAUSSE J. de Pharm. et Ch. (6° 8.). t. 1X. p. 379 : (899 .

NOM ET FORMULE.	POUVOIR rotatoire specifique	DISSOLVANT ET TENEUR.		
Tribenzal-L-idite. C*H*(C'H*)'O*	[a] _n — 6 ⁿ	Acétone (p = 0,25 à 0,5)	ELENSTEIN (Sec. Trav. chim. d. P. B., t. XVIII. p. 151; 1899).	
Tribenzalmannite. C*H*(C'H*) ² O*	[2] _b — 13°	Chloroforme (id.)	Id.	
Tribonzal-dtalite. C*H*(C'H*)2O*	[α] ₀ + 40°	ld. (id.)	id.	
(acide) Voir	(acide Tricéto-).		
d (acide). C*H*O* = COOH.(CHOH)*,COOH	[a]; + 22°, 88	Eau (c = 5,13)	Russ (Ber. d. D. ch. Ges., t. XXXII, p. 556; (199).	
lTyrosine. C'H"AzO' (de benzoyl-l-tyrosine)	[2]2°-13°,2	Eau et $4^{\circ}/_{\bullet}$ H Cl $(p = 4,68)$ Eau et 21 $^{\circ}/_{\bullet}$ H Cl $(p = 3,94)$	E. Fischen (Ber. d. D. ch. Ger., t XXXII, pp. 3643 et 3645; 1899).	
	- 8",64	(p = 3,94)		
dId. (de benzoyl-d-tyrosine)	$[\pi]_0^{14} + 8^\circ, 64$	Id. (p 4,61)		

Valéranilide. C ¹¹ H ¹⁵ Az O = C ² H ³ .CH(CH ³).CO.AzH.C ⁴ H ² [(2) _b ¹⁵ d'ac. valér. + 11°, 12]	·	Alcool ($\rho = 11, 11$)	GUYR et BABEL [Arch. de Gen. (4º Pér.), t. VII, p. 36, 1899].
Valérotoluidide C ¹² H ¹ Az O C ² H ³ . CH (CH ³), CO. Az H. C ⁶ H ⁴ , CH ³ (1)	[x]; +9°,3	Alcool (p = 11,11)	Fd.
Idm. (1) (3)	[2] _b == 0"		
Id. -p. (i) ({i)	[x] _a ¹¹ → 19",1	Alcool (p = 11,11)	

DONNÉES NUMÉRIQUES. — OPTIQUE.

NOM ET FORMULE.	POUVOIR rotatoire spécifique.	DISSOLVANT ET TENEUR.	CH. et G. TANRET [Bull. Soc. chim. (3° s.), t. XXI, p. 1075; 1899].	
Xanthorhamnine (2).	[a] _b 3°, 75	Eau		
Id. (β).	$[\alpha]_{\mathfrak{p}}+5^{\circ}$	Eau		
Xylonique (lactone).	[α] _p — 74°, 4	Eau (c = 0,79)	CLOWES et TOLLENS (Lieb. Ann., t. CCCX, p. 176; 1899).	
Xylosazone. $C^{17}H^{20}O^{3}Az^{4} = C^{5}H^{6}O^{3}(Az.AzH.C^{6}H^{5})^{2}$	[2] _b — 12°,5	Pyridine, 2 vol. Alcool, 3 vol. (c = 2)	NEUBERO (Ber. d. D. ch. Ges., t. XXXII, p. 3386; 1899).	
Xylosazone pbromée. $C^{17}H^{10}Br^{2}O^{3}Az^{4} =$ $C^{5}H^{6}O^{3}(Az.AzH.C^{6}H^{4}.Br)^{3}$ (1)		Id. (id.)	Id.	

Yohimbine.
$$[2]_0 + 50^{\circ}, 9$$
 Alcool $(c = 1)$ Spiegel (Chem. Zeitg., t. + 103°, 4 Solution chlorhydrique XXIII, p. 56; 1899). (id.)

TITRES DÉVELOPPÉS

DES

OUVRAGES OU RECUEILS CITÉS.

- Abh. Akad. Berlin. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin. Berlin.
- Acc. dei Lincei (Rendiconti). Voir R. C. dei Lincei.
- Acc. dei Lincei (Transunti). Voir Atti dei Lincei (Trans.).
- Acta Soc. scient. Fenn. Acta Societatis scientiarum Fennicae. Helsingfors.
- Amer. chem. J. The American chemical Journal, edited by Ira Remsen. Bal-timore.
- Amer. J. of Sc. The American Journal of Science, established by B. Silliman, edited by E.-S. Dana. Newhaven.
- Ann. Ch. e Farm. Annali di Chimica e di Farmacologia. Direttori : P. Albertoni e J. Guareschi. Milan.
- Ann. de Ch. et Phys. Annales de Chimie et de Physique. Paris.
- Ann. de l'Obs. de Paris. Annales de l'Observatoire de Paris. Paris.
- Ann. des Mines. Annales des Mines, ou Recueil de Mémoires sur l'exploitation des mines et sur les Sciences et les Arts qui s'y rattachent, rédigées par les Ingénieurs des Mines. Paris.
- Ann. d. Lab. d. Gab. Annali del Laboratorio chimico centrale delle Gabelle. Rome.
- Ann. du Cons. d. A. et M. Annales du Conservatoire des Arts et Métiers, publiées par les professeurs. Paris.
- Ann. Éc. Norm. sup. Annales scientifiques de l'École Normale supérieure, publiées sous les auspices du Ministre de l'Instruction publique par un comité de rédaction composé des maîtres de conférences de l'École. Paris.
- Ann. N.-Y. Acad. Annals of the New-York Academie of Science (late Lyceum of Natural History). New-York.

- Ann. Sc. natur. (Bot.). Annales des Sciences naturelles (Botanique). Paris.
- Annu. Bur. Long. Annuaire pour l'an, publié par le Bureau des Longitudes. Paris.
- Arch. de Gen. Bibliothèque universelle de Genève. Archives des Sciences physiques et naturelles. Genève.
- Arch. d. Pharm. Archiv der Pharmacie. Eine Zeitschrift des allgemeinen Apotheker-Vereins, herausgegeben vom Directorium unter Redaction von E. Reichardt. Halle.
- Arch. f. exp. Pathol. Archiv für experimentelle Pathologie und Pharma-kologie. Leipzig.
- Arch. f. ges. Physiol. Archiv für gesammte Physiologie des Menschen und der Thiere, herausgegeben von Dr E.-F.-W. Pflüger. Bonn.
- Arch. Mus. Teyler. Archives du Musée Teyler. Harlem.
- Arch. néerl. Archives néerlandaises des Sciences exactes et naturelles, publiées par la Société hollandaise des Sciences à Harlem. Harlem.
- Ass. fr. av. Sc. Association française pour l'ayancement des Sciences.
- Astr. Nachr. Astronomische Nachrichten. Kiel.
- Astroph. Journ. Astrophysikal Journal, an international Review of Spectroscopy and Astronomical Physiks. Chicago.
- Atti dell' Acc. di Nap. Atti della Reale Accademia delle Scienze fisiche e matematiche (Società Reale di Napoli). Naples.
- Atti dei Lincei. Atti della Reale Accademia dei Lincei (Memorie). Rome.
- Atti dei Lincei (Trans.). Atti della Reale Accademia dei Lincei. Transunti, 1876-1884. Rome.
- Atti R. Ist. Ven. Atti del Reale Istituto Veneto di Scienze, Lettere ed Arti. Venise.
- Atti Soc. Tosc. Sc. Nat. Atti della Società Toscana di Scienze Naturali, residente in Pisa. Pise.
- Beilstein's II. d. org. Ch. Handbuch der organischen Chemie, von Dr F. Beilstein. 3° édition. Hambourg et Leipzig. 1892-1899.
- Ber. d. D. ch. Ges. -- Berichte der Deutschen chemischen Gesellschaft. Berlin.
- Ber. d. D. pharm. Ges. Berichte der Deutschen pharmazeutischen Gesellschaft. Berlin.
- Ber. d. Oberh. Ges. f. Nat. Berichte der Oberhessischen Gesellschaft für Natur- und Heilkunde. Giessen.
- Ber. Münch. Akad. Voir Denks. d. Münch. Akad.

- Bih. t. Sv. Vet.-Akad. Handl. Bihang till Kongliga Svenska Vetenskaps-Akademiens Handlingar. Stockholm.
- Brit. Assoc. Rep. Reports of the ... Meeting of the British Association for the Advancement of Science. Londres.
- Bull. Acad. Brux. Bull. Ac. roy. Belg. Bulletins de l'Académie royale des Sciences, des Lettres et des Beaux-Arts de Belgique. Bruxelles.
- Bull. Ac. Sc. Cracovie. Bulletin international de l'Académie des Sciences de Cracovie. Cracovie.
- Bull. of Geol. Inst. of Upsala. Bulletin of the geological Institut of Upsala. Upsal.
- Bull. Soc. chim. Bulletin de la Société chimique de Paris. Paris.
- Bull. Soc. minér. Bulletin de la Société minéralogique de France, 1877-1886 — de la Société française de Minéralogie (depuis 1886). Paris.
- Bull. Soc. Mycol. Bulletin de la Société mycologique. Paris.
- Bull. Soc. Sc. Bucarest. Bulletin de la Société des Sciences. Bucarest.
- Chem. Centr.-Bl. -- Chemisches Central-Blatt. Leipzig.
- Chem. News. The Chemical News and Journal of physikal Science, edited by W. Crookes. Londres.
- Chem.-Zeitg. -- Chemiker-Zeitung. Central Organ für Chemiker, Techniker, Fabrikanten, Apotheker, Ingenieure. Herausgeber und verantwortlicher Redacteur: Dr G. Krause. Cöthen.
- C. R. ou Comptes rendus. Comptes rendus hebdomadaires des séances de l'Académie des Sciences, par MM. les Secrétaires perpétuels. Paris.
- C. R. Soc. Nat. Varsovie. Comptes Rendus de la section de physique et chimie de la Société des Naturalistes de Varsovie. Varsovie.
- Denksch. Ak. Wien. Denkschriften der Kaiserlichen Akademie der Wissenschaften in Wien. Vienne.
- Denksch. d. Münch. Ak. Denkschriften der Königlichen Baierischen Akademie der Wissenschaften zu München. Munich.
- Dict. de Würtz (2° supp.). Deuxième Supplément au **Dictionnaire de Chimie** pure et appliquée de A. Würtz, publié sous la direction de Ch. Friedel. Paris.
- Dove's Rep. Phys. Repertorium der Physik, eine vollständige Zusammenstellung der neuern Fortschritte dieser Wissenschaft, herausgegeben von H.-W. Dove und L. Moser. Berlin.
- Dreh. Verm. Das optische Drehungsvermögen organischer Substanzen und die praktischen Anwendungen desselben, von Dr H. Landolt. Braunschweig, 1^{re} édition, 1879; 2^e édition, 1898.

- Edinb. J. of Sc. Edinburgh Journal of Science, edited by D. Brewster, 1824-1832. Edimbourg.
- Edinb. Trans. Transactions of the Royal Society of Edinburgh. Edimbourg. Festsch. d. Naturf. Ges. zu Halle. Festschrift der Naturforschenden Gesellschaft zu Halle. Halle.
- Földt. Közl. Földtani Közlöny (Geologische Mittheilungen), Zeitschrift der ungarischen geologischen Gesellschaft. Budapest.
- Forh. i Vid.-Selsk i Christiania. Forhandlinger i Videnskabs-Selskabet i Christiania. Christiania.
- Forsch. ü. Leb. Forschungsberichte über Lebensmittel und ihre Beziehungen zur Hygiene, über forense Chemie und Pharmacognosie. Herausgegeben von Rud. Emmerich, Alb. Hilger, Ludwig Pfeisser und Rudolph Sendtner. Munich
- Gazz. chim. ital. Gazetta chimica italiana. Rome.
- Geol. Fören. Förhandl. Geologiska Föreningens i Stockholm Fürhandlingar. Stockholm.
- Ges. d. ges. Nat. zu Marburg. Schriften der Gesellschaft zur Beförderung der gesammten Naturwissenschaften zu Marburg. Marbourg.
- Giorn. di Min. di Sansoni. Giornale di Mineralogia, Cristallografia e Petrografia, diretto dal D' Sansoni. Milan, 1890-1895.
- Groth's Phys. Kryst. Voir Physik. Kryst.
- Gr. Zeits. Zeitschrift für Krystallographie und Mineralogie . . . herausgegeben von P. Groth. Leipzig.
- Jahr. Forsch. d. Thierch. Jahresbericht über die Forschritte der Thier-Chemie oder der physiologischen und pathologischen Chemie, begründet von R. Maly. Wiesbaden.
- J. Coll. of Sc., Imp. Univ. of Japan. Journal of the College of Science, Imperial University of Japan, published by the University. Tokio.
- J. de Pharm. et Ch. --- Journal de Pharmacie et de Chimie, rédacteur principal, M. Riche, Paris.
- J. de Phys. Journal de Physique théorique et appliquée, fondé par J.-Ch. d'Almeida, publié par MM. E. Bouty, A. Cornu, E. Mascart, A. Potier. Paris.
- J. f. prakt. Ch. Journal für praktische Chemie, herausgegeben von Ernst von Meyer (depuis 1885). Leipzig.
- J. of. Amer. ch. Soc. Journal of the American chemical Society. Easton (Pa.).
- J. of chem. Soc. Journal of chemical Society. Londres.
- J. Roy. Microsc. Soc. Journal of the Royal microscopical Society. Londres.

- J. Soc. phys.-chim. Russe. Journal de la Société physico-chimique russe à l'Université de Saint-Pétersbourg (en russe). Saint-Pétersbourg.
- Kryst. opt. Unters. Krystallographische-optische Untersuchungen, von Grailich. Vienne, 1858.
- Landw. Vers. Die Landwirthschaflichen Versuchstationen. Organ für wissenschaftliche Forschungen auf dem Gebiete der Landwirthschaft, herausgegeben von Fried. Nobbe. Berlin.
- Lieb. Ann. Annalen der Chemie und Pharmacie (1832-1873). Justus Liebig's Annalen der Chemie und Pharmacie (1873-1874). Justus Liebig's Annalen der Chemie (1874-1899). Leipzig et Heidelberg.
- Man. de Minér. Manuel de Minéralogie, par A. Des Cloizeaux, t. I, 1862; t. II, 1874-1893. Paris.
- Math. u. Nath.-Wiss. Ber. aus Ungarn. Mathematische und Naturwissenschaftliche Berichte aus Ungarn. Mit Unterstützung der ungarischen Akademie der Wissenschaften und der Königlich ungarischen naturwissenschaftlichen Gesellschaft. Redigirt von J. Fröhlich. Budapest.
- Med.-chem. Unters. Medicinisch-chemische Untersuchungen aus dem Laboratorium für angewandte Chemie zu Tubingen, herausgegeben von Dr. Hoppe Seyler. Berlin.
- Mem. dei Lincei. Voir Atti dei Lincei.
- Mém. de l'Ac. des Sc. Mémoires de l'Académie des Sciences de l'Institut de France. Paris.
- Mém. de l'Ac. de Saint-Pétersb. Mémoires de l'Académie impériale des Sciences de Saint-Pétersbourg. Saint-Pétersbourg.
- Mem. dell' Accad. di Torino. Memorie della Reale Accademia delle Scienze di Torino. Turin.
- .Werck's Jahr. Jahresbericht der Merck'schen Fabrik. Darmstadt.
- Mikrosk.-Physiog. Mikroskopische Physiographie der petrographischwichtigen Mineralien von Rosenbusch. 3° édition, 1893. Stuttgard.
- Minér. de la Fr. Minéralogie de la France et de ses colonies. Description physique et chimique des minéraux. Étude des conditions géologiques de leurs gisements, par A. Lacroix. T. I, 1893 et 1895; t. II, 1896 et 1897. Paris.
- Minér. des roches. Les Minéraux des roches. 1° Application des méthodes minéralogiques et chimiques à leur étude microscopique, par A. Michel Lévy; 2° Données physiques et optiques, par A. Michel Lévy et A. Lacroix. Paris, 1888.
- Miner. Magaz. The Mineralogical Magazine and Journal of the mineralogical Society of Great-Britain and Ireland. Londres.
- Monatsb. Akad. Berlin. Monatsberichte der Königlich preussischen Akademie der Wissenschaften zu Berlin. 1856-1881. Berlin.

- Monatsh. f. Ch. Monatshefte für Chemie und verwandte Theile anderer Wissenschaften. Vienne.
- Monit. Scient. Le Moniteur scientifique, Journal des Sciences pures et appliquées, fondé et dirigé par le D' Quesneville [depuis 1890, Le Mon. sc. du Docteur Quesneville ...]. Paris.
- Münch. Ges. f. Morphol. Münchener Gesellschaft für Morphologie und Physiologie. Munich.
- N. Acta Soc. sc. Upsal. Nova Acta Regiæ Societatis scientiarum Upsaliensis. Upsal.
- Naturw. Jahrb. « Lotos ». Jahrbuch für Naturwissenschaft « Lotos ». Im Auflage des Vereins « Lotos », herausgegeben von Th. Knoll. Prague.
- Ned. Tijds. Pharm. Nederland Tijdschrift voor Pharmacie, Chemie en Toxicologie. La Haye.
- N. Jahrb. f. Min. Neues Jahrbuch für Mineralogie, Geologie und Palæon-tologie. Stuttgard.
- Nyt Mag. for Naturvid. Nyt Magazin for Naturvidenskaberne, grundlagt af den physiographiske Forening i Christiania. Christiania.
- N. Zeits. f. Rüb.-Z. Ind. -- Neue Zeitschrift für Rüben-Zucker Industrie. Wochenblatt für die Gesammtinteressen der Zuckerfabrikation. Herausgegeben unter Mitwirkung von Fachmännern von C. Scheibler. Berlin.
- Oef. Finska Vet.-Soc. Förh. Oefversigt af Finska Vetenskaps-Societetens Förhandlingar. Helsingfors.
- Oest. Z. Zuck.-Ind. Oesterreichisch-Ungarische Zeitschrift für Zucker-Industrie und Landwirthschaft. Herausgegeben vom Central-Verein für Rüben-zucker-Industrieen der oesterreichisch-ungarische Monarchie. Redigirt von F. Strohmer. Vienne.
- Org. d. Oest. Ver. f. Rübz.-Ind. Organ des Central-Vereins für Rübenzucker-Industrie in der Oesterreich-Ungarischen Monarchie. Zeitschrift für Landwirthschaft und technischen Fortschritt der Landwirthschaftlichen Gewerbe, vorzugsweise für Rübenzucker-Industrie. Redigirt von Otto Kohlrausch. Vienne.
- Overs. Dan. Vid. Selsk. Forh. -- Oversigt over det Kongelige Danske Videnskabernes Selskabs Forhandlinger og dets Medlemmers Arbejder i Aaret. Copenhague.
- Pharm. Arch. -- Pharmaceutical Archives, edited by Edward Kremers. Milwaukee (Wisc.).
- Pharm. J. Trans. The pharmaceutical Journal and Transactions. Londres.
- Pharm. Zeits. f. Russ. Pharmaceutische Zeitschrift für Russland, herausgegeben von der pharmaceutischen Gesellschaft zu Saint-Petersburg. Saint-Pétersburg. bourg.

- Philos. Magaz. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science. Londres.
- Philos. Trans. Philosophical Transactions of the Royal Society of London. Londres.
- Physik. Kryst. Physikalische Krystallographie und Einleitung in die krystallographische Kenntniss der wichterigen Substanzen, von P. Groth. 2° éd. Leipzig, 1885.
- Pogg. Ann. Annalen der Physik und Chemie, herausgegeben zu Berlin von J.-C. Poggendorss. Leipzig, 1824-1877.
- Proc. Chem. Soc. Lond. Proceedings of the Chemical Society of London. Londres.
- Proc. R. Soc. Lond. Proceedings of the Royal Society of London. Londres.
- Progr. d. Realsch. zu Charlottenburg. Progresse der Realschule zu Charlottenburg. Berlin.
- Pubbl. dell'Ist. ch. di Roma. Pubblicazione dell' Istituto chimico di Roma.

 Rome.
- Publ. d. astroph. Obs. zu Potsdam. Publicationen des Astrophysikalischen Observatoriums zu Potsdam. Potsdam.
- R. C. dell'Acc. di Napoli. Rendiconto dell'Accademia delle Scienze fisiche e matematiche (Sezione della Società Reale di Napoli). Naples.
- R. C. dei Lincei. Atti della Reale Accademia dei Lincei (Rendiconti). Rome, 1884-1899.
- R. C. Ist. Lomb. Reale Istituto Lombardo di Scienze e Lettere (Rendiconti). Milan.
- Rech. Astron. Obs. Utrecht. Recherches astronomiques de l'Observatoire d'Utrecht. La Haye.
- Rec. Trav. chim. d. P. B. Recueil des Travaux chimiques des Pays-Bas [depuis 1897, ...des Pays-Bas et de la Belgique]. Leyde.
- Riv. di Miner. ital. Rivista di Mineralogia e Cristallografia italiana, diretta da Panebianco. Padoue.
- Sachsse Phytoch. Unt. -- Phytochemische Untersuchungen, von Robert Sachsse. Leipzig, 1880.
- Sav. étr. Mémoires présentés par divers savants à l'Académie des Sciences de l'Institut de France et imprimés par son ordre. Paris.
- Sitzh. Akad. Berlin. Sitzungsberichte der Königlich preussischen Akademie der Wissenschaften zu Berlin, 1882-1899. Berlin.
- Sitzb. Akad. Wien. Sitzungsberichte der Kaiserlich-Königlichen Akademie der Wissenschaften in Wien. Vienne.

- Sitzb. d. Böhm. Ges. Sitzungsberichte der Königlich Böhmischen Gesellschaft der Wissenschaften in Prag. Prague.
- Sitzb. d. Niederrh. Ges. Sitzungsberichte der Niederrheinischen Gesellschaft für Natur- und Heilkunde. Bonn.
- Sitzb. d. Ver « Lotos ». Sitzungsberitchte der Deutschen natur-medicinischen Vereins « Lotos ». Prague.
- Soc. Tosc. Sc. Nat. Voir Atti Soc. Tosc. Sc. Nat.
- Tabellen. Physikalisch-Chemische Tabellen, herausgegeben von H. Landolt und R. Bornstein, 2" édition, 1894. Berlin.
- Tab. des Min. d. R. Tableaux des Minéraux des Roches. Résumé de leurs propriétés optiques, cristallographiques et chimiques, par A.-Michel Lévy et A. Lacroix, 1899. Paris.
- Termész. Füs. Természetrajzi Füsetek, herausgegeben vom ungarischen National Museum. Budapešt.
- Termész. Közl. Természettudományi Közlöny, Monatschrift der Königlichen und Naturwissenschaftlichen Gesellschaft in Budapest. Budapest.
- Trans. of Connect. Acad. Transactions of the Connecticut Academie of Arts and Sciences. Newhaven.
- Trans. N.-Y. Acad. -- Transactions of the New-York Academie of Science (late Lyceum of Natural History). New-York.
- Trav. et Mém. d. B. int. des P. et M. Travaux et Mémoires du Bureau international des Poids et Mesures. Paris.
- Tsch. Mittheil. Tschermak's Mineralogische und Petrographische Mittheilungen, herausgegeben von G. Tschermak, 1878–1889; von F. Becke, 1889-1899. Vienne.
- Verh. d. physik.-med. Ges. Verhandlungen der physikalisch-medicinischen Gesellschaft in Würzburg. Erlangen et Würtzbourg.
- Verh. Min. Ges. St-Peters. Verhandlungen der Russich-Kaiserlichen mineralogischen Gesellschaft zu Saint-Petersburg. Saint-Pétersbourg.
- Wied. Ann. -- Annalen der Physik und Chemie (Neue Folge), herausgegeben von G. Wiedemann, 1877-1893; von G. und E. Wiedemann, 1893-1899. Leipzig.
- Woch. f. Brauerei. Wochenschrift für Brauerei. Berlin.
- Zeits. d. D. geol. Ges. --- Zeitschrift der Deutschen geologischen Gesellschaft. Berlin.
- Zeits f. anal. Ch. Zeitschrift für analytische Chemie, begrundet von R. Fresenius, herausgegeben von den Directoren und Inhabern der Chemischen Laboratoriums Fresenius in Wiesbaden, Wiesbaden,

- Zeits f. angew. Ch. Zeitschrift für angewandte Chemie. Organ des Vereins Deutscher Chemiker, herausgegeben von Ferd. Fischer. Berlin.
- Zeits. f. anorg. Ch. Zeitschrift für anorganische Chemie. begründet von Gehrard Krüss, herausgegeben von R. Lorenz und F.-W. Küster. Hambourg et Leipzig.
- Zeits f. Biol. Zeitschrift für Biologie, herausgegeben von M. von Pettenkofer und C. Voit. Munich.
- Zeits. f. Ch. u. Pharm. Zeitschrift für Chemie und Pharmacie, herausgegeben von E. Erlenmeyer und G. Lewinstein. Erlangen et Heidelberg.
- Zeits. f. Instr.-K. Zeitschrift für Instrumenten-Kunde. Organ für Mittheilungen aus dem gesammten Gebiete der wissenschaftlichen Technick, redigirt von St. Lindeck. Berlin.
- Zeits. f. Math. u. Phys. Zeitschrift für Mathematik und Physik, herausgegeben von O. Schlömilch und Cantor. Leipzig.
- Zeits. f. Naturwiss. Zeitschrift für Naturwissenschaften, herausgegeben von Naturwissenschaften-Vereine für Sachsen und Thuringen in Halle. Berlin.
- Zeits. f. physik Ch. Zeitschrift für physikalische Chemie, Stöchiometrie und Verwandtschafslehre, herausgegeben von Wilh. Ostwald und J.-H. Van't Hoff. Leipzig.
- Zeits. f. physiol. Ch. Zeitschrift für physiologische Chemie, herausgegeben von Hoppe Seyler (depuis 1899, Hoppe Seyler's Zeitschrift, etc., herausgegeben von A. Kossel). Strasbourg.
- Zeits. f. Rub.z.-Ind. Zeitschrift des Vereins für die Rübenzucker-Industrie des Deutschen Reichs, herausgegeben vom Vereins-Directorium. Berlin.
- Zeits. Oest. Apoth.-Ver. Zeitschrift des allgemeinen österreichischen Apotheker-Vereins, redigirt von Fr. Klinger. Vienne.

• • •

