

Departamento de Matemática

Curso: Eng.ª Informática

Disciplina: Matemática Computacional

Ano Letivo: 2015-16

TP_PL_2 – Método das Bisseções Sucessivas 2ª Aula

1. A equação $x^2 - 3x = 2\ln(x)$ tem duas raízes reais positivas.

- a. Localize graficamente a menor delas.
- b. Determine essa raiz a menos de 0.5×10^{-1} .
- 2. Dada a função F(x) = ln(x) + sen(x)
 - a. Separe as raízes reais da equação F(x) = 0.
 - b. Quantas vezes é necessário determinar F(x), para determinar a raiz $X \in]0.5, 1[$, com erro não superior a 10^{-2} .
- 3. Dada a equação $e^{0.5x} x^2 + 4 = 0$.
 - a. Separe as raízes da equação.
 - b. Determine a raiz positiva com erro inferior a 10^{-2} .
- 4. Dada a equação $x^4 x 1 = 0$.
 - a. Separe as suas raízes reais.
 - b. Calcular a raiz, $x \in [1, 2]$, com erro máximo 10^{-6} .
- 5. Considere a seguinte equação $2(x-1)e^x 4 = 0$.
 - a. Separe as suas raízes reais.
 - b. Efetue cinco iterações pelo método das Bisseções Sucessivas para calcular um valor aproximado da menor das raízes positivas e determine o respetivo erro absoluto máximo.
- 6. Verifique que a função $f(x)=x^3-2e^{-x}$ tem um zero no intervalo]0,1[. Calcule este zero com três algarismos significativos.
- 7. Considere a equação definida por $f(x) = x \ln(1 + \sqrt{x}) 1$, x > 0.
 - a. Verifique, usando o Teorema de Bolzano-Cauchy, que a equação f(x) = 0 tem uma solução $\alpha \in [1, 2]$.
 - b. Determine, pelo Método das Bisseções Sucessivas, um intervalo de amplitude inferior a 10^{-1} que contenha a raiz α (começar com o intervalo [1,2]).
 - c. Considerando o intervalo [1,2], quantas vezes seria necessário aplicar o referido método para encontrar a raiz com erro inferior a 0.5×10^{-5} .

- 8. Dada a equação $x^3 2\cos(x) = 0$ $x \in]1,2[$
 - a. Partindo do intervalo dado, verifique a aplicabilidade do método das bisseções sucessivas na determinação dessa raiz.
 - b. Apresente a estimativa da raiz obtida no final da segunda iteração. Trabalhe com 4 casas decimais e indique um limite superior do erro absoluto da estimativa obtida.
- 9. Considere a seguinte equação $f(x) = (x+1)^2 e^{x^2-2}$.
 - a. Separe as raízes reais da equação f(x) = 1 em intervalos de amplitude unitária.
 - b. Determine a raiz positiva com erro inferior a 10^{-4} .
- 10. Seja $f(x) = x^8 x^7 6x^6 + 6x^5 + 9x^4 9x^3 4x^2 + 4x$.
 - a. Determine os zeros da função (apresentando-os com 4 algarismos significativos), identificados pelo método das bisseções sucessivas nos intervalos seguintes: $I_1 = \begin{bmatrix} -0.5, 0.9 \end{bmatrix}$, $I_2 = \begin{bmatrix} -3 & -1.5 \end{bmatrix}$, $I_3 = \begin{bmatrix} 0.4 & 1.3 \end{bmatrix}$ e $I_4 = \begin{bmatrix} 1.1 & 4 \end{bmatrix}$.
 - b. Represente graficamente a função e indique os erros absolutos das aproximações encontradas na alínea anterior.
- 11. Calcule o número mínimo de iterações do método das bisseções sucessivas, necessárias para encontrar uma aproximação com erro máximo de 10^{-4} para a solução da equação $\left(\frac{x}{2}\right)^2 = sen(x)$ no intervalo $\left[1.5, 2.5\right]$. Encontre uma aproximação da raiz com essa precisão.
- 12. Verifique que a função $f(x) = e^{-x} (3.2 \operatorname{sen}(x) 0.5 \operatorname{cos}(x))$ tem um zero no intervalo [3, 4]. Calcule este zero com cinco algarismos significativos.
- 13. Dada a equação $|x| = e^x$.
 - a. Separe as suas raízes e verifique a aplicabilidade do método das bisseções sucessivas nos intervalos encontrados.
 - b. Considerando o intervalo [-0.7, 0.1], determine a raiz da equação com erro inferior a 10^{-5} .
- 14. Um tanque de comprimento L tem uma secção transversal no formato de um semicírculo com raio r (ver figura). Quando cheio de água até uma distância h do topo, o volume V da água é dado pela expressão $V = L \left(4.5\pi r^2 r^2 arcsen \left(\frac{h}{r} \right) h \sqrt{r^2 h^2} \right)$. Supondo que $L = 3.05 \, m$, $r = 0.3 \, m$ e $V = 3.78 \, m^3$, encontre a profundidade da água no tanque com precisão $0.001 \, m$.

Lic. Eng. Informática

МАТСР

2ºS 15/16

pg. 2 de 2