研究生培养环节导师抽检情况汇总表

学号	号 2024200245		姓名	胡仕超	学院	机械工程学院		
兴开头	순무네	☑学术学位硕士生 □专业学位硕士生						
学生类	נל	□学术学位博士	±生 □₹	专业学位型博士生				
抽查学	纠	20 <u>2</u>	<u>24</u> 2() <u>25</u> 学年第 <u>2</u> 学期 ☑第	59周 □]第 16 周		
			学	*术活动抽查记录				
序号			学术排	设 告题目		学术报告时间		
1		我国水理	不境水资	源现状与发展前景		2025. 3.31		
2	电	池寿命预测新机	制:基于	F累计损耗量的寿命预测	方法	2025.4.6		
	课题组研讨活动抽查记录							
序号			研讨	寸主题		研讨时间		
1	豆腐干生产线改造概念方案 3.0 讨论 2025.2.25					2025.2.25		
2	豆腐干生产线改造预算讨论 2025.3.10					2025.3.10		
3		对国基	基大纲以	及细节进行讨论		2025.3.11		
文献阅读与评述抽查记录								
序号	文献题目							
1	融合多小波分解的深度卷积神经网络轴承故障诊断方法							
2		基于深度卷积神经网络的汽车图像分类算法与加速研究						
3		一种面	面向机械	设备故障诊断的可解释	卷积神经	网络		
4		基于自注意	意力机制	与卷积神经网络的隧道	衬砌裂缝	智能检测		

5	基于深度学习卷积神经网络的桑果成熟度检测研究					
本人承	上述内容为本人根据导师抽查评阅情况如实填写。					
	研究生本人签字: 胡仕超					
	2025年4月18日					

学术报告记录

	学	号	2024200245	姓名	胡仕超			
1	第 <u>4</u>	_次	学术报告题目	我国水环境水资源现状与发展前景			計景	
	主讲	‡人	李贵宝	时 间	2025 年 3月31日	地点	4243	

小结报告

李贵宝教授作为中国水利领域的权威专家,现任中国水利学会三级教授、中国国际科技促进会水利工程技术分会副会长、首届水利类工程教育认证委员会秘书处副秘书长,同时担任教育部、科技部、水利部项目认证与评价专家,并入选"科普中国"专家库。其学术与实践经历横跨科研、教育、科普与政策咨询四大领域,是推动中国水利现代化与公众科学素养提升的核心力量。

本次讲座以"水利事业与科技创新"为主题,围绕河湖长制、智慧水利、水网规划、涉水管理等前沿议题,结合李教授团队在科研攻关、科普品牌建设、基层服务中的实践经验,系统阐释了水利事业高质量发展的技术路径与社会价值。讲座内容兼具理论深度与实践指导意义,为水利行业从业者、科研工作者及公众提供了全面认知中国水利发展的新视角。

李贵宝教授长期致力于水利工程技术创新与水资源管理研究,主持多项国家级、省部级科研课题,涵盖智慧水利系统开发、水网规划优化、水生态修复等关键领域。其研究成果在《水利学报》《世界环境》等国内外权威期刊发表论文 60 余篇,主编或参编《现代水利工程技术导论》《水生态文明建设实践》等科技科普图书 10 余部,构建了完整的水利学科知识体系。

李教授指出,水利事业高质量发展需聚焦三大技术突破:

- 1. 数字孪生流域:构建高精度水文模型,实现洪涝、干旱等灾害的"预演一预警一预案"全链条管理;
 - 2. 人工智能决策: 开发 AI 驱动的流域调度系统,优化水资源配置效率;
 - 3. 生态修复材料: 研发低成本生物基净水材料, 助力水环境治理碳中和目标。

未来团队将深化两大行动计划:

- 1. "水企行"系列活动:联合龙头企业推广工业节水技术,计划覆盖钢铁、化工等高耗水行业 100 家重点企业;
- 2. 全民水科学素养提升:推出"水科学慕课平台",面向公众免费开放课程资源,目标 5 年内触达 1 亿人次。

李贵宝教授的讲座生动诠释了"水利为民"的初心。从科研攻关到科普实践,从政策制定到基层服务,其工作始终围绕"让每一滴水创造更大价值"的核心使命展开。在气候变化加剧、水资源短缺的全球背景下,李教授团队的技术创新与公益行动不仅为中国水利事业注入新动能,更为全球可持续发展提供了可复制的中国方案。未来,随着"新质生产力"理念的深化,水利科技必将在保障水安全、促进生态文明建设中发挥更重要的作用。

导师评阅意见:

导师签字: 2025 年 4 月 18 日

学术报告记录

学 号	2024200245	姓 名	胡仕超		
第_5_次	学术报告题目	电池寿命预测新机制:基于累计		计损耗量的寿命预测方法	
主讲人	吕东祯	时 间	2025 年 4月6日	地点	J2223

小结报告

随着全球能源向清洁化转型,锂电池成为电动汽车与可再生能源储能的核心,其性能与寿命预测成为 行业发展的瓶颈。预计 2030 年全球市场规模将突破 2000 亿美元,但复杂环境下(如极端温度、频繁充放 电等)性能退化显著,传统预测模型误差高达 20%,限制了工程应用。

自 2020 年起, 吕博士团队致力于突破该难题, 提出"实验研究—现实应用"一体化路径, 构建高精度 实时预测框架, 具备重大学术与产业价值。

1. 复杂场景建模:

构建了涵盖温度(-30° C~60° C)、湿度、充放电模式、机械振动等 200 余种典型工况的数据库,积累万组高保真实验数据,真实反映实际应用复杂性。

2. 预测机制创新:

团队提出"动态特征解耦一迁移强化学习"框架:

通过小波变换与降维方法提取关键影响因子;

借助迁移学习应对新场景数据稀缺问题。

该方法提升了解析效率80%,将模型参数量压缩至传统方法的1/5。

该研究推动锂电池寿命预测从理想实验条件向现实复杂环境跃迁,技术框架具备良好扩展性,适用于钠离子电池、固态电池等新体系。

未来方向包括:

多物理场融合建模(如声学、热成像);

融合碳足迹追踪,服务碳中和战略;

推进 AI 模型透明度与可解释性标准建设。

导师评阅意见:

西南交通大学博(硕)研究生课题组研讨活动记录表

学 号	2024200245		 姓 名	胡仕超	
研讨会场次	第_6_次				
研讨主题	豆腐干	生产线	改造概念方象	案 3.0 讨论	
研讨时间	2025年2月25	日	地点	线上会议	
参与人员				E慕帅、江海锋、文杰、 佩瑶、胡仕超	
研讨内容	1. 江海锋师兄介绍《豆腐干产线升级改造概念方案 3. 0》至内容; 2. 楚老师就《豆腐干产线升级改造概念方案 3. 0》发表意3. 唐总就《豆腐干产线升级改造概念方案 3. 0》发表意见4. 与孟老师等进行概念方案讨论和下一步计划安排;			概念方案 3.0》发表意见; (5)	
研究思路的 启发与收获	1.主要内容有:现有工序流程;"九宫格"物理切分豆花概念方案概念方案 3.0 与市面现有产线的优劣对比等; 2."九宫格"物理切分豆花实现方式:将多张(如9张)豆腐干所需豆花量的熟豆浆和卤水输送至点浆容器中点浆;待豆花形成,完成多张豆花到单张豆花的物理切分后注入输送线上的模具并盘; 3.详细内容见《豆腐干产线升级改造概念方案 3.0》文档;				
导师/研讨会负 责人意见	按照讨论结果,各小组进行下一步签字: 签字: 年 月 日			下一步准备。 日	

西南交通大学博(硕)研究生课题组研讨活动记录表

百 万人 超八子诗(咏)时几上外赵纽时时归约心不认					
学 号	2024200245		姓 名	胡	仕超
研讨会场次		穿	等 <u>7</u> 次		
研讨主题	豆	腐干生产	产线改造预算	订论	
研讨时间	2025年3月10	日	地点	233	38
参与人员	孟老师、江海锋、孙	小双巧、	陈志林、戚	叶亮、王佩瑶	、胡仕超
研讨内容	1. 江海锋师兄介绍豆腐干产线升级改造方案和预算说明主要内容; 2. 根据豆腐干生产厂家反馈数据清单讨论产线规格和设备尺寸、数量等用于预算估计; 3. 与孟老师等进行产线方案讨论和下一步计划安排。			格和设备尺	
研究思路的 启发与收获	1. 概念方案主要内容有:现有工序流程;"九宫格"物理切分豆花概念方案;仿人工豆花摊平装置;自动叠压装置等。 2. 预算说明主要内容:主要硬件采购费用:豆浆浓度测量仪、流量计等;研发与设计费用:定制化设计、控制系统软件开发等;其他费用:安装与调试、管理费等。 3. 详细内容见《豆腐干产线升级改造概念方案 3. 0》文档和《豆腐干产线升级预算说明》表格				
导师/研讨会负 责人意见	签字: 2025 年 4 月 18 日				

西南交通大学博(硕)研究生课题组研讨活动记录表

日用人地八丁母(吸)时几二杯巡址时时几分亿不久					
学 号	2024200245	女	生名	胡仕超	
研讨会场次		第_	8_次		
研讨主题	对目	国基大纲以	以及细节进行		
研讨时间	2025年3月11	日	地点	九里 2220	
参与人员	王慕帅 江		科 兰旭 胡信高展 易文學	仕超 王佩瑶 E	
研讨内容	1. 对国基项目的各个2. 对技术路线、大纲				
研究思路的 启发与收获	 从工程问题中提炼出科学问题,并保持学术性与实际性的平衡 建立技术路线的逻辑闭环:输入-建模-感知-决策-控制,每环均有挑战与研究价值; 深化了研究内容的颗粒度,将"导高调整"具体分解为"吊克承力索-接触线"之间的耦合结构机制; 形成从理论建模 → 感知融合 → 控制实现 → 原型验证的统性思路,可直接指导后续任务书撰写与实验系统搭建。 				
导师/研讨会负 责人意见		签字: 2	: 2025年4月	18 日	

西南交通大学博(硕)研究生文献阅读与评述记录

学 号	2024200245	姓 名 胡仕超			
第6篇	文献题目	融合多小波分解的深度卷积神经网络轴承故障诊断方法			
文献引用	陶唐飞,周文洁,况佳臣,等.融合多小波分解的深度卷积神经网络轴承故障诊断方法[J].西安交通大学学报,2024,58(05):31-41.				
文献检索类型	期刊	文献作者 陶唐飞,周文洁,况佳臣,等			
文献主要内容	(GHMMD-DCN 主要内容包括 问题背景与抗 和低质量数据时, 方法创新: 将多个一级多外的 提取,增强模型双 实验证: 型在不同工于其他力 结论: GHT 络,有效提升了转 样本的实际用力	挑战: 传统的卷积神经网络(CNN)在处理高噪声环境难以有效提取有用特征,影响故障诊断的准确性。 引入 Geronimo-Hardin-Massopust(GHM)多小波分解,被分解层与卷积层交替连接,实现信号的多尺度时频特征对强噪声的鲁棒性。 在航空高速轴承振动数据集上进行测试,结果显示该模的识别准确率均超过 99.9%,在强噪声干扰和少样本情况方法,验证了其优异的抗噪声能力和泛化能力。 MMD-DCNN 模型通过融合多小波分解与深度卷积神经网轴承故障诊断的准确性和鲁棒性,特别适用于高噪声和少			
个人启发与思考	征,提升了模型打 处理方法与深度与 本、高噪声条件	段认识到多小波分解能有效提取复杂振动信号中的关键特 抗干扰能力;同时也启发我在机械系统建模中,传统信号 学习应协同设计,不能完全依赖端到端学习。文中对少样 下的评估也提醒我,科研不仅要追求精度,更要关注模型 可落地性,对我当前接触网智能调整方向有重要借鉴意义。			
导师评阅意见		签字: 2025 年 4 月 18 日			

学 号	2024200245	姓名	胡仕超			
第7篇	文献题目	/	积神经网络的汽车图像分类算法与加速研究			
文献引用	黄佳美,张伟彬,熊官送基于深度卷积神经网络的汽车图像分类算法与加速					
文 用入 コ 川	研究[J].现代电子技术,2024,47(07):140-144.					
文献检索类型	期刊	文献作者	黄佳美,张伟彬,熊官送			
文献主要内容	的计算资源有限与于 ResNet50 的公方法包括迁移学习部署到 FPGA 上。	方深度卷积神经 交车辆图像分 可微调预训练 实验结果表	备在识别违规占用公交车道等场景中,面临 经网络高算力需求之间的矛盾,提出一种基 类方法,并在 FPGA 平台上进行加速实现。 模型、在嵌入式端进行推理加速,并将模型 明,该方法在保证分类精度的同时,实现了 了其在边缘计算设备中应用的可行性与优越			
个人启发与思考	源受限环境下通过 径。进一步认识至	过模型压缩、 引嵌入式 AI 系	中算力与算法性能的平衡问题,体现出在资 迁移学习和硬件加速协同优化是一种高效路 统设计不仅依赖算法本身,还需深入理解硬 5工程应用的紧密结合。			
导师评阅意见		/ <u>X</u>	空: 2025 年 4 月 18 日			

学 号	2024200245	姓名	胡仕超			
第8篇	文献题目		现据设备故障诊断的可解释卷积神经网络 现械设备故障诊断的可解释卷积神经网络			
- '	陈钱,陈康康,董兴建,等.一种面向机械设备故障诊断的可解释卷积神经网					
文献引用	络[J].机械工程学报,2024,60(12):65-76.					
文献检索类型	期刊	文献作者				
文献主要内容	了可解释性强的(嵌入 CNN 网络, 明确解释模型决策	Chirplet-CNN, 不仅保持了传 ^传 依据,显著	的 Chirplet 变换引入卷积神经网络中,构建用于机械故障诊断。通过将 Chirplet 卷积层统 CNN 优异的分类性能,还能在时频域上是升了故障诊断结果的可信度。实验表明,是好适应性,诊断效果与可解释性兼备。			
个人启发与思考	可解释性,特别是融合的思路,为抗	是在安全关键是升智能模型的	今断中不仅要追求高精度,还应注重模型的烦域。Chirplet-CNN 将物理模型与深度学习的透明度和工程可用性提供了新方向,也提有物理意义的变换增强模型可信度和通用			
导师评阅意见		签	字: 2025 年 4 月 18 日			

学 号	2024200245	姓名	胡仕超			
第9篇	文献题目	基于自注意	力机制与卷积神经网络的隧道衬砌裂缝智能 检测			
文献引用		周中,闫龙宾,张俊杰,等.基于自注意力机制与卷积神经网络的隧道衬砌裂				
文献检索类型	中文期刊 文献作者 周中,闫龙宾,张俊杰,等					
文献主要内容	测算法——ST-YC 的局限性,作者融 ST-YOLO 采用 对 Transformer 提取 CSPDarknet 提取 的特征融合模块过 缝的分类置信度和 通过与 SSD、 基于卷积神经网络 据集上表现出更高	DLO。为了弥 独合了自注意 双分 支 模 全 是 裂 经 细节度 电 计 定位 是 证 是 证 是 证 是 证 是 证 是 证 是 证 是 证 是 证 是	YOLOv5 框架的高精度隧道衬砌裂缝智能检 补卷积神经网络(CNN)在捕获全局特征时 力机制和卷积神经网络。在特征提取过程中, : 第一分支通过自注意力机制的 Swin 3 特征,第二分支利用卷积神经网络的 5。两个分支提取的特征经过卷积注意力增强 合,最终利用 YOLOv5 的解耦头模块输出裂 YOLOv5、EfficientDet、Faster-RCNN等五种算法进行对比,ST-YOLO 在隧道衬砌裂缝数,F1 分数达到 83.95%,AP 值为 85.26%,展 法为实际隧道工程中的裂缝病害检测提供了			
个人启发与思考	能够有效地捕获系和 的裂缝检测尤其重数 双角 的裂缝检测尤其证据 对	是缝的全局特 见制能够帮助 重要模块的将 是取模块过景。 是全局背景。 注全局背景。 这种 这种,这种 这种,这种 是一种,这种 是一种,这种,这种 是一种,这种,这种,这种,这种,这种,这种,这种,	通过将自注意力机制与卷积神经网络结合,征。传统的 CNN 方法往往局限于局部特征提模型更好地理解全局信息,这对复杂环境中计:这部分的设计展示了如何在同一模型中的 Win Transformer 和 CSPDarknet 的优势互补,细节特征,这种融合思路可以拓展到其他复种基于自注意力机制的深度网络可能需要较署在边缘设备中的场景可能是一个挑战。在率和降低资源需求,将是该领域进一步研究为隧道裂缝检测提供了一个创新的解决方案,术的优点,优化模型在实际应用中的表现。			
导师评阅意见	你对文献的理论相 比分析。		概括,建议加入该文献与其他相似研究的对			
		3	签字: 2024 年 12 月 18 日			

学 号	2024200245	姓名	胡仕超			
第 10 篇	文献题目	基于深度等	学习卷积神经网络的桑果成熟度检测研究			
文献引用	张瑞英.基于深度学习卷积神经网络的桑果成熟度检测研究[J].农机化研究,					
文 制入 引 用	2024,46(05):26-30.					
文献检索类型	中文期刊	文献作者	张瑞英			
	提出了一种基	于深度学习卷	é积神经网络(CNN)的桑果成熟度自动检			
			共一种便捷的工具,以实时了解桑果的成熟			
	情况,从而优化采	摘时机,提高	万果品质量 。			
	主要内容概述					
		以现对桑果成熟	· 度的自动判定,减少人工干预,提高检测			
	效率。					
文献主要内容			NN 目标检测算法,构建桑果检测模型。			
		比:利用 Mat	:lab 对模型参数进行训练和优化,以提高检			
	测精度。					
	实验结果:实验表明,基于图像处理和卷积神经网络的桑果成熟度检					
	测系统具有较高的准确率,具有一定的实用价值。					
	该研究为农业领域中的果品成熟度自动检测提供了一种有效的技术手					
	段,具有较高的应					
			R神经网络的桑果成熟度自动检测模型,展			
	示了深度学习在农业智能化中的有效应用,尤其是图像识别与成熟度分类					
A 1 + 10 - E = +		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	型类似视觉感知任务时,应重视数据集的构			
个人启发与思考	建与标注质量,同时思考如何结合目标作物的生长特性进行模型优化设计。					
	此外,模型部署场景(如实际采摘机器人等)对实时性和轻量化的要求,					
	也提示找应更多天	汪旲型压缩与	i边缘部署等实际工程问题。			
导师评阅意见 			2			
		<i>አ</i> .አ	字: 為			
		金	子: 2025 年 4 月 18 日			
			2023 + 1 / J 10 J			