

Análise de Algoritmos

- Algoritmo e Problema
- ► Correcção e Eficiência
- Análise Experimental
- Análise Assintótica
- Notação O

Algoritmo e Problema

Um **algoritmo** é um método apropriado para resolver um determinado **problema** de forma computacional.

Exemplo:

problema da pesquisa

Problema da Pesquisa

Dada uma sequência X averiguar se um dado x existe nos primeiros n elementos de X, com $n \le |X|$

Algoritmo da Procura Linear

input: sequência X, elemento x e natural n com n≤|X|

output: true se x é um dos primeiros n elementos de X e false caso contrário

Percorrer a sequência desde o 1° até ao n-ésimo elemento, comparando cada elemento com x. Terminar quando se encontra elemento igual a x (output é true) ou quando já se comparou com o n-ésimo elemento (output é false)

Problemas, instâncias e algoritmos

 Um problema é definido por uma descrição genérica dos seus parâmetros e por uma condição que as soluções têm de satisfazer.

- Uma instância de um problema obtém-se especificando valores particulares para todos os parâmetros desse problema.
- Um algoritmo que resolve um problema é uma descrição, passo a passo, de uma forma genérica de encontrar uma solução de qualquer instância do problema.
 - Os parâmetros do problema são o input do algoritmo
 - A solução calculada é o output do algoritmo

Representação dos algoritmos

- Precisamos de formas de descrever a sequência de passos que compreende um algoritmo
 - Linguagem natural
 - Acessível a todos
 - Grande poder expressivo
 - Pseudo-código
 - Descrições mais estruturadas e rigorosas mas ainda de alto nível
 - Apropriadas para serem processadas por humanos
- É comum começar por expressar as ideias principais de um algoritmo em linguagem natural e depois passar para pseudocódigo para tornar mais claros e precisos os detalhes do algoritmo

Exemplo: Procura linear

input: sequência X, elemento x e natural n com $n \le |X|$

output: true se x é um dos primeiros n elementos de X e false caso contrário Percorrer a sequência desde o 1° até ao n-ésimo elemento, comparando cada elemento com x. Termina quando encontra elemento igual a x (output é true) ou quando já comparou com o n-ésimo elemento (output é false)

Linguagem natural

Exemplo: Procura linear

input: sequência X, elemento x e natural n com $n \le |X|$

output: true se x é um dos primeiros n elementos de X e false caso contrário Percorrer a sequência desde o 1º até ao n-ésimo elemento, comparando cada elemento com x. Termina quando encontra elemento igual a x (output é true) ou quando já comparou com o n-ésimo elemento (output é false)

Linguagem natural

```
Algorithm linearSearch(X,x,n){
    i:=1
    found:=false
    while i ≤ n and not found
    if X(i)=x then
        found:=true
    else
        i:=i+1
    return found
}
```

Pseudo-código

Correção e Eficiência

Os algoritmos devem ser corretos e eficientes.

- Correção: Para todas as instâncias do problema, o que é calculado pelo algoritmo é de facto uma solução do problema.
- Eficiência: Para todas as instâncias do problema, a solução é calculada com um consumo aceitável de recursos. Em geral, mede-se a eficiência relativamente a dois recursos computacionais espaço e tempo e como uma função do tamanho do *input*.

Mais sobre problemas e correção de algoritmos

A noção de problema e de correção de algoritmo para um problema anteriormente apresentada é simples mas estrita.

Problemas que envolvem aproximações

- Dados 3 pontos num plano, saber se são colineares
- Dado um número x, encontrar a sua raiz quadrada

Problemas probabilísticos

- Dado um número natural n, gerar uma permutação aleatória dos números entre 1 e n
- Baralhar uma sequência de números X

No 1º caso é necessário definir o que é uma boa aproximação. No 2º caso é necessário considerar a probabilidade com que cada solução para uma instância é gerada.

Análise de Algoritmos

- Existem diferentes técnicas de análise de algoritmos
- Em AED o focus será em técnicas de análise que permitem:
 - Prever o desempenho
 - Comparar algoritmos relativamente ao seu desempenho
 - Dar garantias relativamente ao desempenho

- Pode-se fazer um estudo experimental dos recursos consumidos (observações empíricas)
- É preciso fixar uma implementação, um ambiente de execução, uma máquina, e um conjunto de instâncias (testes de *input*)
- Por exemplo, em Java, para medir o tempo de execução podemos usar System.currentTimeMillis()

```
public class Stopwatch {
   private final long start;
   public Stopwatch() {
      start = System.currentTimeMillis();
   }

   // return time (in seconds) since this object was created public double elapsedTime() {
      long now = System.currentTimeMillis();
      return (now - start) / 1000.0;
   }
}
```


- Pode ser usado o método científico para encontrar uma função
 T(N) que modele o tempo que o programa consome a resolver um problema de tamanho N
- Corre-se o programa para vários tamanhos de input e medese o seu tempo de execução para formular uma hipótese

N	time (seconds) †
250	QO
500	QO
1,000	01
2,000	0.8
4,000	64
8000	51.1
16,000	?
■ Ciências	Informática [f., a.

 Para formular a hipótese pode ser útil recorrer antes a uma representação log-log dos pontos recolhidos

- Depois de ter a hipótese, usá-la para fazer previsões e ver se as observações a validam
- Caso necessário, reformular a hipótese a partir de mais dados

[from Sedgewick&Wayne]

Em resumo, para testar a hipótese

$$T(N) \sim a \cdot N^b$$

para uma dada implementação de um algoritmo:

- 1. Calcular $T(N_0)$ e $T(2 \cdot N_0)$ correndo o programa
- 2. Calcular b usando

$$log_2(T(2 \cdot N_0)/T(N_0)) \rightarrow b$$
 qdo N_0 cresce

3. Calcular a usando

$$T(N_0)/N_0^b \rightarrow a$$
 qdo N_0 cresce

N	time (seconds) †		
250	0.0		
500	0.0		
1,000	0.1		
2,000	0.8		
4,000	6.4		
8,000	51.1		
16,000	?		

- Limitações desta técnica de análise

- limitada às instâncias cobertas pelas experiências efectuadas
- não permite comparar com outros algoritmos sem os executar nas mesmas condições
- não se aplica a descrições de alto nível (temos que ter uma implementação)

- Vantagens desta técnica de análise

 Essencial para entender o desempenho de uma implementação específica

Análise de Algoritmos: Teoricamente

Estimar os recursos necessários através de uma análise assintótica

Ideias chave:

- caracterizar o tempo e espaço consumidos em termos de duas funções T(n) e S(n) no tamanho n do input independentemente da máquina, ambiente de execução, linguagem de programação
- dar importância apenas às taxas de crescimento, ou seja,
 como crescem as funções à medida que se aumenta o n

Análise de Algoritmos: Teoricamente

- Contabilidade (modelo de custos):
 - Para a taxa de crescimento, as constantes aditivas e multiplicativas não são relevantes pelo que se considera uma contabilidade muito simplificada dos recursos consumidos
 - No caso do tempo, contam-se apenas o número de operações básicas, por exemplo
 - Avaliar uma expressão
 - Atribuir valor a variável
 - Aceder a posição de vector
 - Chamada a procedimento
 - Retorno de procedimento
 - É preciso ter em atenção que para o mesmo tamanho de input pode haver vários casos...

Análise por casos

- Pode-se fazer uma análise por casos:
 - pior caso: tomar o máximo para todos os inputs com um dado tamanho;
 - melhor caso: tomar o mínimo para todos os inputs com um dado tamanho;
 - caso esperado: a "média" para todos os inputs com um dado tamanho, baseada em certas hipóteses sobre a distribuição do input.
- A análise do caso esperado é usualmente difícil de obter, nomeadamente porque hipóteses realistas sobre a distribuição do *input* são frequentemente matematicamente intratáveis.


```
Algorithm linearSearch(X,x,n){
  i:=1
  found:= false
  while i ≤ n and not found
    if X(i)=x then
      found:=true
    else
      i:=i+1
  return found
}
```

Melhor caso? # Ops?


```
# operações primitivas
Algorithm linearSearch(X,x,n) {
                                    min
  i := 1
  found:= false
                                    1
  while i \leq n and not found
      if X(i) = x then
          found:=true
      else
          i := i + 1
  return found
                                    0
                                     8
```

• Melhor caso: quando X(1)=x e o ciclo é executada apenas uma vez


```
# operações primitivas
Algorithm linearSearch(X,x,n) {
                                    min
                                              max
  i:=1
                                    1
  found:= false
  while i \leq n and not found
                                              n+1
      if X(i) = x then
                                              2n
          found:=true
      else
          i := i + 1
                                    ()
                                              2n
  return found
                                              5n+4
```

- Melhor caso: quando X(1)=x e o ciclo é executada apenas uma vez
- Pior caso: quando o elemento n\u00e3o existe e o ciclo \u00e9 executado n vezes


```
Algorithm linearSearch(X,x,n) {
   i:=1
   found:= false
   while i ≤ n and not found
      if X(i)=x then
        found:=true
      else
        i:=i+1
   return found
}
```

$$T(n) = \sum_{i=1}^{n} (5 \cdot i + 3) \cdot \frac{p}{n} + (5 \cdot n + 4) \cdot (1 - p)$$

A simplificação de T(n) pode ser feita recorrendo a conhecimentos de matemática discreta ou a ferramentas como o *WolframAlpha* ou *Maple*

Outro Exemplo

```
input n \ge 0, v vector com números e |v| \ge n
ouput maior número no vector até v[n-1]
Algorithm arrayMax(v,n) {
  currentMax:=v[0]
  for i:=1 to n-1 do
     if v[i]>currentMax then
        currentMax:=v[i]
      i := i + 1
    return currentMax
```

Melhor caso? # Ops?


```
# operações primitivas
                                  min
Algorithm arrayMax(v,n) {
  currentMax:=v[0]
                                  2
  for i:=1 to n-1 do
                                  1+n
                                  2(n-1)
     if v[i]>currentMax then
        currentMax:=v[i]
                                  2(n-1)
     i := i + 1
    return currentMax
                                  5n
```

• Melhor caso: quando v[0] é o maior elemento


```
# operações primitivas
                                min
Algorithm arrayMax(v,n) {
                                           max
  currentMax:=v[0]
  for i:=1 to n-1 do
                                1+n
                                           1+n
     if v[i]>currentMax then
                                2(n-1)
                                          2(n-1)
        currentMax:=v[i]
                                          2(n-1)
     i := i + 1
                                2(n-1)
                                          2(n-1)
   return currentMax
                                5n
                                           7n-2
```

- **Melhor caso**: quando v[0] é o maior element
- Pior caso: quando os elementos estão ordenados de forma crescente

Pior caso

- A análise do pior caso é a mais estudada pois
 - é matematicamente mais tratável e universalmente aplicável
 - dá uma informação importante um valor que é garantido não ser ultrapassado por nenhuma execução do algoritmo
 - em alguns algoritmos o pior caso ocorre frequentemente.
 - o caso esperado é frequentemente da mesma ordem que o pior caso
- Assim, a partir de agora as referências a T(n) referem-se em geral ao tempo de execução no pior caso
- Isto é equivalente a focar a análise nos limites superiores do tempo de execução dos algoritmos

Notação O (big-O)

- Uma notação apropriada para raciocinar acerca de limites superiores de taxa de crescimento de uma função; compara quão depressa crescem duas funções quando n → ∞
- Definição

Sejam
$$f,g:N \to R^+$$
. $f \notin O(g)$
sse

existe n_0 e c em R^+ tal que $f(n) \le c \cdot g(n)$ para todo o $n \ge n_0$

- Interpretação
 - Se f é O(g) então f cresce como g ou mais devagar.

Notação O (big-O): Exemplos

• 10n+5 é O(n)

• $n^2 + 15n \in O(n^2)$

Notação O (big-O): Exemplos

• $3 \log n + 5 \notin O(\log n)$

Notação O (big-O): Algumas Regras Simples

- Se f(n) é um polinómio de ordem d então f(n) é O(nd)
 - pode-se esquecer os termos de ordem inferior
 - pode-se esquecer o coeficiente de grau d
- Deve-se usar a classe de funções mais pequena possível
 - 2n é O(n) é preferível a 2n é O(n²)
- Deve-se usar o representante da classe mais simples
 - -3n+5 é O(n) é preferível a 3n+5 é O(3n)

Notação Θ

- Outra notação muito usada, útil para classificar algoritmos relativamente à taxa de crescimento assintótica
- Definição

Sejam
$$f,g:N \to R^+$$
. $f \in \Theta(g)$

sse

existe $c1,c2,n_0$ em R^+ tal que

 $c1 \cdot g(n) \le f(n) \le c2 \cdot g(n)$ para todo o $n \ge n_0$

Interpretação

$$g(n) \in O(f(n)) \in f(n) \in O(g(n))$$

a taxa de crescimento das duas funções é a mesma

order of growth	name		
1	constant		
log N	logarithmic		
N	linear		
N log N	linearithmic		
N ²	quadratic		
N ³	cubic		
2 ^N	exponential		

order of growth	name		
1	constant		
log N	logarithmic		
N	linear		
N log N	linearithmic		
N ²	quadratic		
N³	cubic		
2 ^N	exponential		

order of growth	name		
1	constant		
log N	logarithmic		
N	linear		
N log N	linearithmic		
N ²	quadratic		
N³	cubic		
2 ^N	exponential		

O que isto significa na prática

Interpretando o valor de f em microsegundos (10⁻⁶s) temos:

f∖n	20	30	40	60	1000	100000
n	.00002 s	.00003 s	.00004 s	.00006 s	.001 s	.1 s
n²	.0004 s	.0009 s	.0016 s	.0036 s	1 s	3 h
n³	.008 s	.027 s	.064 s	.216 s	17 mn	31 anos
n ⁵	3.2 s	24.3 s	1.7 mn	13 mn	31 anos	10 ¹⁰ sec
2 ⁿ	1 s	7.9 mn	12.7 dias	366 sec		
3 ⁿ	58 mn	6.5 anos	3855 sec	10 ¹³ sec		

- Ter um computador "100x mais rapido" é equivalente a dividir por 100 a função f
- Inventar algoritmos melhores dá melhor resultado do que arranjar *hardware* mais potente

order of growth	name	typical code framework	description	example	T(2N) / T(N)
1	constant	a = b[0] + b[1];	statement	add two array elements	1
log N	logarithmic	while (N > 1) { N = N / 2; }	divide in half	binary search	~ 1
N	linear	for (int i = 0; i < N; i++) { }	loop	find the maximum	2
N log N	linearithmic	[see mergesort lecture]	divide and conquer	mergesort	~ 2
N ²	quadratic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) { }</pre>	double loop	check all pairs	4
N ³	cubic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) for (int k = 0; k < N; k++) { }</pre>	triple loop	check all triples	8
2 ^N	exponential	[see combinatorial search lecture]	exhaustive search	check all subsets	T(N)

Importante relembrar

$$\sum_{i=0}^{n} i = \frac{n \cdot (n+1)}{2}$$

$$\sum_{i=1}^{n} a^{i} = \frac{a^{n+1} - a}{a - 1}$$

$$x = \log_b n$$
 sse $b^x = n$
 $\log_2 n = \log n$ $\log_b a = \frac{\log_c a}{\log_c b}$

$$\sum_{i=1}^{N} \frac{1}{i} < log_e N + 1$$

Análise Teórica vs Experimental

- Os limites teóricos são usados como referência e são úteis em muitas situações
- Mas não servem para dar estimativas do desempenho de uma implementação
 - ignoradas constantes multiplicativas
 - não captura aspetos que influenciam fortemente o desempenho

