Grade 12 GS_LS_ES Calculus Functions Worksheet 15 (A) Logarithm Functions	Grade 12	GS_LS_ES	Calentus	Functions	Worksheet 15 (A)	Logarithmi Functions (
---	----------	----------	----------	-----------	------------------	------------------------

- I. Let f be the function defined, on]0, $+\infty[$, as $f(x) = (x e)(\ln x 1)$.
 - Let (C) be the representative curve of f in an orthonormal system (O; i,j).
 - 1) Determine the limits of f at 0 and at $+\infty$.
 - 2) Determine the derivative function of f.
 - 3) Let g be the function defined, on]0, $+\infty$ [, as $g(x) = \ln x \frac{e}{x}$.
 - a-Determine the limits of g at the boundaries of its domain of definition.
 - b-Study the variations of g.
 - c-Calculate g(e) and deduce, using part b), the sign of g(x) on $]0, +\infty[$.
 - 4) Using the results of the function g, study the variations of f.
 - 5) Determine the equation of (T), the tangent to (C) at the point of abscissa 1.
 - 6) Let (D) be the line of equation y = -x + e. Study the relative positions of (D) and (C).
 - 7) Draw (D), (T), and (C).
 - 8) Find the number of roots of the equation: f(x) = m, where m is a real number.

- I. Determine the derivative of each of the functions below.
 - 1) $f(x) = x + 1 + 2\ln x$
- 2) $f(x) = x^2 + 1 \frac{\ln x}{2x}$
- 3) $f(x) = x \ln x + x + \frac{1}{2}$

- 4) $f(x) = (\ln x)^2 + \ln x 2$
- 5) $f(x) = \frac{-1}{x+1} \ln x$
- 6) $f(x) = \ln\left(\frac{x-2}{x+1}\right)$

- 7) $f(x) = \frac{x-1}{x} \ln x$
- 8) $f(x) = (x e)(\ln x 1)$
- 9) $f(x) = \frac{x-1}{x} 3 \ln x$

- 10) $f(x) = 2(\ln x 1)^2$
- 11) $f(x) = 2x^2 2 + \ln x$
- 12) $f(x) = 2x + \frac{1 \ln x}{x}$

- 13) $f(x) = (5 x) \ln (5 x)$
- 14) $f(x) = x^3 1 2\ln x$
- 15) $f(x) = x \frac{\ln x}{x^2}$

III. Part A Let f be the function defined, on]0, $+\infty[$, as $f(x) = ax + (bx + c)\ln x$, where a, b, and c are three real numbers. The curve (C) at right is the representative curve of f in an orthonormal system $(0; \vec{1}, \vec{j})$. Find a, b, and c, knowing that $f(2) = 2 - 3\ln 2$,

A(1, 1) is a point of (C), and A is an extremum of f.

Part B Let g be the function defined, on]0, $+\infty[$, as $g(x) = x + (1 - 2x) \ln x$. Without using the given curve:

- 1) Calculate the limit of g at 0 and at +∞.
- 2) a- Determine the derivative function of g.
 - b- Study the sign of $-2\ln x$ and that of $\frac{1-x}{x}$.

Deduce the sign of g'(x) and the variations of g.

a-Solve, in \mathbb{R} , the equation g(x) - x = 0, then give a graphical interpretation of the roots.

b-Study the position of the representative curve of g with respect to the line (Δ).

Crade 1

(25)

Calculus

Functions

Worksheet 15 (D)

Logarithmic Functions (5)

IV. Consider the function f defined, on]0, $+\infty[$, as $f(x) = \frac{1}{2}x - 1 + \frac{\ln x}{x}$.

Let (C) be its representative curve in an orthonormal system (0; i, j).

- 1) a- Study the limits of f at 0 and at +∞.
 - b- Prove that the line (Δ) of equation $y = \frac{1}{2}x 1$ is an oblique asymptote to (C).
 - c- Specify the relative positions of (C) and (Δ).
- 2) a- Calculate f'(x) and f"(x). Deduce the sense of variations of f' and the sign of f'(x).
 - b- Prove that (C) has a point of inflection whose coordinates are to be determined.
 - c- Set up the table of variations of f.
- 3) a- Show that the equation f(x) = 0 has a unique root α . Verify that $1.4 < \alpha < 1.5$
 - b- Verify that $\ln \alpha = \alpha \frac{\alpha^2}{2}$.
- 4) Draw (Δ), then (C).

Grade 12 GS-LS-ES Calculus Functions Worksheet 15 (B) Logarithmic Functions (5)

- II. Part A Consider the function g defined, on]0, $+\infty[$, as $g(x) = -x^2 + 1 \ln x$.
 - 1) Study the variations of the function g.
 - 2) Calculate g(1), then study the sign of g(x) on]0, $+\infty[$.

Part B Consider the function f defined, on]0, $+\infty[$, as $f(x) = -\frac{1}{2}x + 1 + \frac{\ln x}{2x}$.

Let (C) be the representative curve of f in an orthonormal system (0; \vec{i} , \vec{j}).

- 1) Study the limits of f at 0 and at +∞.
- 2) Find a relation between f'(x) and g(x), and then set up the table of variations of f.
- 3) Prove that the equation f(x) = 0 has two roots; one on]0.4, 0.5[and one on]2.3, 2.4[.
- 4) Prove that (C) has a point of inflection I with abscissa $e\sqrt{e}$.
- 5) Let (Δ) be the line of equation $y = -\frac{1}{2}x + 1$.
 - a-Give the sign of $D(x) = f(x) + \frac{1}{2}x 1$. What do you deduce about (C) and (Δ)?
 - b-Prove that the line (Δ) is an asymptote to (C).
- 6) Draw (C) and (Δ) .

- I. Find the domain of definition of each of the functions below.
 - 1) $f(x) = \ln x \ln (2x 6)$
- 2) $f(x) = \ln \frac{x+1}{x-2}$
- $3) f(x) = \frac{1}{\ln x}$
- 4) $f(x) = \sqrt{\ln x}$
- II. Solve each of the equations below.
 - 1) $\ln (3x 3) = \ln x \text{ with } x > 1$
 - 2) $\ln (x^2 9) = \ln x \text{ with } x \ge 3$
 - 3) $\ln(x+4) + \ln(x+1) = \ln(x+10)$ with x > -1
 - 4) $(\ln x)^2 \ln x 30 = 0$

- III. Solve each of the inequalities below.
 - 1) $\ln (3x 3) > \ln x \text{ with } x > 1$
 - 2) $\ln(x^2 9) < \ln x$ with $x \ge 3$
 - $3) \frac{\ln x}{(1+x)^2} \le 0 \text{ with } x > 0$
 - 4) $\ln(x + 4) + \ln(x + 1) \ge \ln(x + 10)$ with x > -1
 - 5) $(\ln x)^2 \ln x 30 \le 0$
- IV. Find, mentally, the sign of each expression below, with x > 0.
 - 1) $f(x) = \frac{1}{x} + 1$ 2) $f(x) = \ln x$ 3) $f(x) = -\frac{1}{x}$
- - 4) $f(x) = \frac{x+1}{x+3}$ 5) $f(x) = (\ln x)^2$ 6) $f(x) = -\ln x$