Compute Canada Cloud

Venkat Mahadevan
Cloud Systems Administrator
UBC Advanced Research Computing
June 29th, 2020

Introduction

https://en.wikipedia.org/wiki/Cloud_Computing_(horse)#/media/ File:142nd_Preakness_Stakes_Pimlico_Race_Course_(34783544586).jpg

Introduction (cont.)

 Delivers high level services and access to system resources over the Internet.

• Services: collaboration (E-mail, calendaring, etc.), web, Dropbox-like file hosting, etc.

• System resources i.e. infrastructure: compute, disk, networking, load balancing, etc.

Introduction (cont.)

https://en.wikipedia.org/wiki/Cloud_computing#/media/File:Cloud_computing_layers.png

Compute Canada Cloud

Arbutus cloud (arbutus.cloud.computecanada.ca ๔)

Node count ◆	CPU +	Memory (GB) ◆	Local (ephemeral) storage \$	Interconnect +	GPU ¢	Total cores ◆
32	2 x Gold 6130&	256	4 x 900GB 10k SAS in RAID5₺	1 x 10GbE	N/A	1024
4	2 x Gold 6130&	768	4 x 900GB 10k SAS in RAID5₺	2 x 10GbE	N/A	128
8	2 x Gold 6130&	256	4 x 1.92TB SSD in RAID5₺	1 x 10GbE	N/A	256
240	2 x E5-2680 v4r	256	4 x 900GB 10k SAS in RAID5₺	1 x 10GbE	N/A	6720
8	2 x E5-2680 v4	512	4 x 900GB 10k SAS in RAID5	2 x 10GbE	N/A	224
2	2 x E5-2680 v4	128	4 x 900GB 10k SAS in RAID5	1 x 10GbE	2 x Tesla K80 &	56
32	2 x E5-2650 v2립	256	3 x 600GB 10K SAS in RAID0₺	1 x 10GbE	N/A	512
8	2 x E5-2650 v2	512	3 x 600GB 10K SAS in RAID0	1 x 10GbE	N/A	128

Location: University of Victoria

Total compute cores: 9048 (334 nodes)

89,344 GB of RAM.

East cloud (east.cloud.computecanada.ca⊮)

Node count	CPU	Memory (GB)	Local (ephemeral) storage	Interconnect	GPU	Total cores
36	2 x E5-2650 v2	128	2x 1TB SATA 7.2K in RAID0 + SSD bcache ₽	1 x 10GbE	N/A	576

Location: Université de Sherbrooke

Total compute cores: 576

4,608 GB of RAM

Graham cloud (graham.cloud.computecanada.ca⊮)

Node count	CPU	Memory (GB)	Local (ephemeral) storage	Interconnect	GPU	Total cores
56	2 x E5-2683 v4	256	2x 500GB SSD in RAID0	1 x 10GbE	N/A	1792

Location: University of Waterloo

Total compute cores: 1792

14,336 GB of RAM

 There is also the OwnCloud service which provides 50GB of backed up Dropbox-like storage (https://www.westgrid.ca/resources_services/data_storage/cloud_storage)

The laaS clouds are built on OpenStack.

• OpenStack is a open-source software platform for deploying clouds i.e. build your own cloud environment.

Can work with a variety of hardware, network switches, hypervisors.

- Various commercial vendors provide OpenStack:
 - SUSE
 - Redhat
 - Ubuntu
 - Huawei
 - Mirantis

- Also exists a free implementation called OpenStack-Ansible which is in use by Compute Canada:
 - https://github.com/openstack/openstack-ansible

Cloud Resources

Attributes	Compute Cloud ^[1]	Persistent Cloud ^{[1][2]}
Who can request	Pls only	Pls only
VCPUs (see VM flavours)	80	25
Instances	20	10
Volumes	2	10
Volume snapshots	2	10
RAM (GB)	300	50
Floating IP	2	2
Persistent storage (GB)	10000	
Default duration	1 year ^[3] , with 1 month wall-time	1 year (renewable) ^[3]
Default renewal	April ^[3]	April ^[3]

Cloud Resources (cont.)

 You can request resources via the Rapid Access Service (RAS) or Resource Allocation Competition (RAC):

 https://www.computecanada.ca/research-portal/accessingresources/rapid-access-service/

Other Free Services

• https://www.infoworld.com/article/3179785/cloud-computing/aws-vs-azure-vs-google-cloud-which-free-tier-is-best.html

Google: 20% of 1 VCPU

• AWS, Azure: No VMs in the always free tier.

Data downloads are charged.

Time to login

https://arbutus.cloud.computecanada.ca

Use the guest account "wgtrainingXX" or your Compute Canada account.

Password will be provided in class.

• Don't use Safari; use Firefox or Chrome.

Hands-On

Overview

Limit Summary

Usage Summary

Select a period of time to query its usage:

Create SSH Key Pair and Download Private Key

Key Pairs

Q Click here for filters.

Launch Instance of a Virtual Machine

Instances

Launch Instance

Instance source is the template used to create an instance. You can use an image, a snapshot of an instance (image snapshot), a volume or a volume snapshot (if enabled). You can also choose to use persistent storage by creating a new volume.

Select Boot Source **Create New Volume** Yes No Image

Allocated

Name	Updated	Size	Туре	Visibility	
> CentOS-7-x64-2018-09	3/7/19 10:47 AM	886.56 MB	qcow2	Public	•

Flavors manage the sizing for the compute, memory and storage capacity of the instance.

Allocated

Name	VCPUS	RAM	Total Disk	Root Disk	Ephemeral Disk	Public	
> p1-1.5g	gb 1	1.5 GB	0 GB	0 GB	0 GB	No	•

♣ Create Key Pair

♣ Import Key Pair

Allocated

Displaying 1 item

	Name	Fingerprint	
>	mykey	ae:9f:ee:1c:f6:97:53:93:8d:bd:5e:4a:52:58:6b:63	•

Displaying 1 item

Launch the Instance

• Click launch to launch the virtual machine. Make sure to note the name of your instance.

OpenStack will boot the VM and insert the SSH key into it.

Once the VM is booted, we can try to access it remotely.

But need to configure security and public networking first.

Configuring Remote Access

Instances

Instances

Manage Floating IP Associations

×

Access & Security

Security Groups Key Pairs Floating IPs API Access

Filter Q + Create Security Group Delete Security Groups

Name Description Actions

default Default security group

Default security group

Description:

Rules define which traffic is allowed to instances assigned to the security group. A security group rule consists of three main parts:

Rule: You can specify the desired rule template or use custom rules, the options are Custom TCP Rule, Custom UDP Rule, or Custom ICMP Rule.

Open Port/Port Range: For TCP and UDP rules you may choose to open either a single port or a range of ports. Selecting the "Port Range" option will provide you with space to provide both the starting and ending ports for the range. For ICMP rules you instead specify an ICMP type and code in the spaces provided.

Remote: You must specify the source of the traffic to be allowed via this rule. You may do so either in the form of an IP address block (CIDR) or via a source group (Security Group). Selecting a security group as the source will allow any other instance in that security group access to any other instance via this rule.

Manage Security Group Rules: default (4fc62205-14d3-4380-905b-88d7cf61fa6b)

+ Add Rule **Delete Rules Port Range Remote IP Prefix Remote Security Group Direction Ether Type IP Protocol Actions** IPv6 default Any Any **Delete Rule** Ingress **Egress** IPv6 Any ::/0 **Delete Rule** Any **Egress** IPv4 0.0.0.0/0 Any Any **Delete Rule** IPv4 default Ingress Any Any **Delete Rule** IPv4 TCP 22 (SSH) 0.0.0.0/0 **Delete Rule** Ingress IPv4 TCP 80 (HTTP) 0.0.0.0/0 Ingress **Delete Rule** TCP IPv4 443 (HTTPS) 0.0.0.0/0 **Delete Rule** Ingress Displaying 7 items

Connect to the Instance via SSH

```
ssh -i <key>.pem centos@<public ip>
```

If using MobaXTerm, see:

https://docs.computecanada.ca/wiki/Connecting_with_MobaXTerm#Using_a_Key_Pair

Installing RStudio

```
sudo yum install epel-release
sudo yum install R -y
<< will take a while >>
sudo yum install wget -y
wget https://download2.rstudio.org/rstudio-server-rhel-
1.0.136-x86 64.rpm
sudo yum install rstudio-server-rhel-1.0.136-x86 64.rpm -y
sudo systemctl status rstudio-server.service
sudo systematl enable rstudio-server.service
```

Add Security Rule

Add User

sudo useradd rstudiouser

sudo passwd rstudiouser

Done

Si	gn in to RStudio
Username:	
Password:	
Stay signed	d in
	Sign In

Maintaining Your Instance

• Install updates to the OS, e.g. for CentOS do "yum -y update".

• Install application updates regularly for RStudio and other applications.

Resources

- Compute Canada Cloud
 - https://www.computecanada.ca/research-portal/national-services/compute-canada-cloud/
 - https://docs.computecanada.ca/wiki/Creating a Linux VM

- UBC Advanced Research Computing
 - https://www.arc.ubc.ca