PCT

WORLD INTELLECTUAL PROPERTY AGENCY, INTERNATIONAL OFFICE INTERNATIONAL APPLICATION DISCLOSED

BASED ON PATENT COOPERATION TREATY INTERNATIONAL PATENT

(51) Int. Cl. ³ :		(11) International Publication No.:	WO 91/10155
G 02 C 7/04	A1	(43) Internatinal Publication Date:	July 11, 1991
(21) International Filing No.: (22) International Application Date: (30) Priority Data: No: Japanese Patent Application Note: Country: (71) Applicant (for all the designated countries Hoya Corporation 2-7-5 Nakaochiai, Shinzuku-ku, Tokyo-10 Inventors: (75) Inventors/applicants (only for USA): Yuuichi Yokoyama 24-304, Eikimae Plaza No. 2, 2-15-1 Ak Saitama-ken (postal code: 365) Hidetoshi Iwamoto 1263-9 Nanahonki, O-aza, Kamisato-che Saitama-ken (postal code: 369-03) (74) Agent: Shizuo Nakamura, patent attorney Kunitake Building 4F, 3-4-11 Iwamoto-1 Tokyo-to (postal code: 101) (54) CONTACT LENS MATERIAL AND CO	December 29, 1989 Japan except for USA): o (postal code: 161) amidai, Konosu-shi, o, Kodama-gun,	(81) Designated Countries: AT (European Patent), AU, BE (European Patent), DK (European Patent), DK (European Patent), DK (European Patent), FR (European Patent), GR (European Patent), IT (European Patent) Patent), LU (European Patent), NL (European Patent), US	ean Patent), ES SB (European Patent), i), JP (European

Attached Disclosed Documents: International Search Report

[There are no amendments to this patent.]

(57) Abstract

A contact lens material comprising a copolymer prepared from a monomer mixture containing as the essential ingredient a siloxane oligomer of formula (I) and/or another siloxane oligomer of formula (II); and a contact lens made from the copolymer (I), wherein k is an integer of 1 to 3, 1 is 0 or 1, m is an integer of 0 to 3, n is an integer of 9 to 199, Me represents CH₃, and R_1 represents (a), wherein R_2 represents H or Me, (II) wherein k is an integer of 1 to 3, 1 is 0 or 1; m is an integer of 0 to 3, p+q is an integer of 11 to 139 provided that p > 0 and q > 0, Me represent CH₃, Ph represents (b), and R_1 is as defined in formula (I).

Specification

Contact Lens Material and Contact Lens

Technical Field

The present invention pertains to a contact lens material and a contact lens made therefrom. More specifically, the present invention pertains to a hard contact lens material having oxygen permeability as well as a contact lens obtained from the material.

Conventional technique

In general, contact lenses are largely classified as hard contact lenses and soft contact lenses; as the hard contact lens, a hard contact lens with high impact resistance is in demand. As a hard contact lens material in which the impact resistance is raised, a hard contact lens material composed of a copolymer having a siloxane oligomer represented by the following formula (III) and at least one monomer component selected from a (meth)acrylate containing fluorine and a (meth)acrylate containing silicone as its main components has been proposed (Japanese Kokai Patent Application No. Sho 63[1988]-305113). Also, in this specification, "(meth)acrylate" indicates both an acrylate and methacrylate.

(III):

(In the formula, t represents an integer of 10-200, Me represents CH₃, and R₁ represents

or

 $(R_2 = H \text{ or } Me).)$

The above-mentioned conventional hard contact lens material has a good oxygen permeability, but since the siloxane oligomer represented by the above-mentioned formula (III) was used, the impact resistance was still not sufficiently satisfactory. The development of a contact lens material in which the oxygen permeability is good and in which the impact resistance is further improved has been in demand.

The present invention solves the above-mentioned problems, and its objective is to provide a contact lens material and a contact lens that have sufficient oxygen permeability and impact resistance required for actual wear.

Presentation of the invention

The present invention achieves the above-mentioned objective, and its characteristic is a contact lens material composed of a copolymer obtained from a monomer mixture of a siloxane oligomer represented by the following formula (I) and/or a siloxane oligomer represented by formula (II) as essential components, as well as a contact lens obtained by working [processing] the above-mentioned contact lens material.

(In the formula, k represents an integer of 1-3, 1 represents 0 or 1, m represents an integer of 0-3, n represents an integer of 9-199, Me represents CH_3 , and R_1 represents

(
$$R_2$$
 represents H or Me)).

$$\begin{array}{c} R_1 & -0 & \longleftarrow (CH_2 \rightarrow k & 0) \\ \hline \\ & & \\ \end{array} \begin{array}{c} Q & \longleftarrow (CH_2 \rightarrow k & 0) \\ \hline \\ & & \\ \end{array} \begin{array}{c} Me \\ Si - 0 \\ Me \\ p \end{array} \begin{array}{c} Ph \\ Si - 0 \\ Si - 0 \\ Ph \\ Q \end{array} \begin{array}{c} Ph \\ Si - 0 \\ Ph \\ Ph \end{array} \begin{array}{c} Ph \\ Si - 0 \\ Ph \\ Ph \end{array}$$

(In the formula, k represents an integer of 1-3, I represents 0 or 1, m represents an integer of 0-3, p + q represents an integer of 11-139 (however, $p \ge 0$ and $q \ge 0$), Me represents CH₃, Ph represents and R₁ is the same as in formula (I).)

Preferred embodiment of the invention

The siloxane oligomers of the above-mentioned formula (I) and/or formula (II) used in the present invention are essential in promoting an action that improves the impact resistance of a contact lens material being obtained, and its molecular weight is preferably in the range of 800-6,000. If the molecular weight is less than 800, a sufficient impact resistance cannot be rendered to the material, and if the molecular weight is more than 6,000, the softness of the material is [adversely] accelerated. More preferably, the molecular weight is in a range of 1,000-5,000.

The amount of said siloxane oligomers used depends on the kinds of monomers used for improving the oxygen permeability, the amount, etc., and it is preferably 0.1-15 wt% (hereinafter, referred to as %). If the amount is more than 15%, the polymerized product is apt to be plastically deformed, and if the amount is less than 0.1%, the improvement effect of the impact resistance cannot be obtained, which is not preferable. The amount is especially preferably 2-11%.

In the present invention, the monomers included along with the above-mentioned siloxane oligomers in the monomer mixture for the copolymer are at least one kind of siloxanyl (meth)acrylate (hereinafter, called Si (M) A) and at least one kind of (meth)acrylate containing fluorine (hereinafter, called F (M) A).

As the Si (M) A used in the present invention, trimethylsiloxydimethylsilylpropyl (meth)acrylate, bis(trimethylsiloxy)methylsilylpropyl (meth)acrylate, tris(trimethylsiloxy)silylpropyl (meth)acrylate, bis)[bis(trimethylsiloxy)methylsiloxanyl]trimethylsiloxysilylpropyl (meth)acrylate, bis(trimethylsiloxy)methylsiloxanyl monopentamethyldisiloxanyl

monotrimethylsiloxanylsilylpropyl (meth)acrylate,

bis(pentamethyldisiloxane)bis(trimethylsiloxy)methylsiloxanylsilylpropyl (meth)acrylate, etc., can be mentioned; in the present invention, one, two kinds, or more are used together combination.

The Si (M) A is used to render a high oxygen permeability to the contact lens obtained. The amount used is preferably 15-50%. If the amount is less than 15%, it is difficult to obtain the desired oxygen permeability, and if the amount is more than 50%, there is a possibility that the copolymer will be softened. The amount is especially preferably 18-35%, and tris(trimethylsiloxy)silylpropyl methacrylate is preferable.

As the F (M) A used in the present invention, for example, 2,2,2-trifluoroethyl (meth)acrylate, 2,2,2,2'2,'2'-hexafluoroisopropyl (meth)acrylate, 2,2,3,3,4,4,4-heptafluorobutyl (meth)acrylate, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9-pentadecafluoro-octyl (meth)acrylate, 2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9-hexadecafluorononyl (meth)acrylate, perfluoro-octylethyloxypropylene (meth)acrylate, perfluoro-octylethyloxyethylene (meth)acrylate, etc., can be mentioned. In the present invention, one, two kinds, or more of them are used in combination. Since the F (M) A contributes to the improvement of the oxygen permeability of the contact lens material being obtained and is excellent with respect to the compatibility with the siloxane oligomer, the dispersion of the siloxane oligomer is assisted, so that the impact resistance of the contact lens is improved. The amount being used is preferably 15-60%. If the amount is less than 15%, the oxygen permeability is considerably lowered, and if the amount is more than 60%, the contact lens material is softened. Preferably, the amount is 25-52%, and it is more preferable to use two kinds of F (M) A.

In addition to the above-mentioned monomers, the following monomers can be further appropriately added into the monomer mixture provided to the copolymerization in the present invention. As the monomers, for example, an alkyl (meth)acrylate (hereinafter, called R (M) A), hydrophilic monomer, crosslinking monomer, etc., can be mentioned.

The above-mentioned R (M) A can be added to improve the hardness of the contact lens material being obtained. As the R (M) A, for example, methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, 4-tertiary-butyl cyclohexyl methacrylate, etc., can be mentioned, and one, two kinds, or more of them are used in combination. Its amount being used is preferably 3-20%. If the amount is less than 3%, the hardness improvement effect cannot be obtained, and if the amount is more than 20%, the oxygen permeability is considerably decreased. The amount is especially preferably 4-16%.

The above-mentioned hydrophilic monomer can be added to improve the sense of wear of the lens by raising the water wettability of the contact lens material obtained. As the

hydrophilic monomer, for example, an unsaturated carboxylic acid, unsaturated amide, unsaturated ring-shaped lactam, etc., can be mentioned, and they are used alone or in combinations of two kinds or more. Furthermore, in order to improve the hardness and workability of the contact lens material obtained by improving the compatibility of the siloxane oligomers, the combination of at least one kind of unsaturated carboxylic acid and at least one kind of unsaturated amide may be used.

As the unsaturated carboxylic acid, for example, acrylic acid, methacrylic acid, etc., can be mentioned, and as the unsaturated amide, for example, acrylamide, methacrylamide, N,N-dimethylmethacrylamide, N,N-dimethylacrylamide, etc., can be mentioned. Also, as the unsaturated ring-shaped lactam, for example, pyrrolidone, etc., can be mentioned. The amount of these hydrophilic monomers being used is preferably 2-20%. If the amount is less than 2%, sufficient water wettability and hardness cannot be obtained. Also, if the amount is more than 20%, the oxygen permeability is considerably lowered, and the softness of the copolymer and the turbidity are caused, which is not preferable. The amount is especially preferably 3-16%.

As the above-mentioned crosslinking monomer, a di(meth)acrylate or tri(meth)acrylate of a divalent or polyhydric alcohol, etc., are used. For example, ethylene glycol (meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, polyethylene glycol (meth)acrylate, trimethylolpropane tri(meth)acrylate, 2-hydroxy-1,3-dimethacryloxypropane, etc., can be mentioned. Also, an allyl (meth)acrylate may be used. These crosslinking monomers may be used alone or in combinations of two kinds or more. The crosslinking monomers are used to improve the hardness of the contact lens material obtained. The amount of crosslinking monomers being is preferably 0.2-15%. If the amount is less than 0.2%, the contact lens obtained is softened, and if the amount is more than 15%, the material becomes brittle, so that the workability is deteriorated or the lens is damaged. The amount is especially preferably 1.5-8%.

As methods for manufacturing the copolymer for forming the contact lens material of the present invention, well-known polymerization methods can be used, and bulk polymerization is especially preferable. As an initiator being used at that time, peroxides such as lauroyl peroxide, cumene hydroperoxide, and bis-4-tertiary-butylcyclohexyl peroxide and azo compounds such as azobisisobutyronitrile, azobisdimethylvaleronitrile known as general radical initiators can be used; among them, azobisisobutyronitrile is preferable. The amount of polymerization initiator being used is preferably 0.05-0.8% in relation to the total amount of monomers.

For example, the contact lens material of the present invention is obtained in a rod shape or button shape by uniformly mixing the above-mentioned monomer components, casting it into a molding mold of metals, glasses, plastics, etc., sealing it, stepwise or continuously raising the temperature in a temperature range of 25-150°C in an isothermal tank, and finishing the

polymerization for about 5-144 h. Also, it is preferable to carry out the polymerization after substituting the air in the solution by an inert gas such as nitrogen and argon and sealing it. The copolymer as the contact lens material obtained is finished in a lens shape by ordinary working methods of the contact lens, for example, mechanical working such as cutting and polishing. Also, as another manufacturing method of the contact lens of the present invention, a monomer mixture solution can be cast into a mold with a preset radius of curvature and directly molded in a lens shape. Also, a photopolymerization method using ultraviolet rays, etc., can also be adopted as the polymerization process.

Next, application examples of the present invention are shown; however, the present invention is not limited to these application examples. Also, the property values and the indexes of the following application examples and comparative examples were obtained by the following methods.

Oxygen permeation coefficient: Using a film oxygen permeability gauge made by Rika Seiki Kogyo K.K., it was measured at a sample thickness of 0.2 mm in a 0.9% physiological saline solution at 35°C.

Impact resistance test: A specimen with a diameter of 12 mm and a thickness of 2 mm was prepared, and a fracture test was carried out using a Dyine [transliteration] start tester made by Toyo Seiki1 Works K.K.; when the energy required for the fracture [breakage] of the polymethyl methacrylate was assumed as 100, it was evaluated as the impact resistance index. Application Example 1

8.6% siloxane oligomer (oligomer of the formula (I), $R_2 = H$, k = 3, l = 1, m = 3, and n = 12) (hereinafter, called S-1), 19.1% tris (trimethylsiloxy)silylpropyl methacrylate (hereinafter, called Si₁), 41.5% hexafluoroisopropyl methacrylate (hereinafter, called 6F), 10.5% methyl methacrylate (hereinafter, called MMA), 11.6% 4.4% N,N-dimethylacrylamide (hereinafter, called DX), and 4.3% 2-hydroxy-1,3-dimethacryloxypropane (hereinafter, called HDMP) were mixed, and 0.5% azoisobutyronitrile (hereinafter, called AIBN) as a polymerization initiator was added to the total weight of the monomers, so that a uniform solution was formed. It was put into a tube made of polyethylene and sealed; the temperature was continuously raised for 72 h in an isothermal water tank at 42.5°C, and furthermore at 42.5-60°C for 14 h, 60-80°C for 10 h, 80-100°C for 5 h, 100°C for 10 h, and 100-125°C for 10 h in a hot-air dryer.

The copolymer obtained as a result was colorless, transparent, and optically uniform; it was also excellent in mechanical workability such as cutting and polishing. As a result of the measurement of the properties of the copolymer, the oxygen permeation coefficient was 39 x 10⁻¹¹ [mL O₂ (STP) cm/cm² · sec· mm Hg], and the impact resistance index was 88. Thus, it was clarified that the contact lens material had good oxygen permeability and excellent impact resistance.

Application Examples 2-33

Using various kinds of monomer compositions and mixture ratios shown in Table I, copolymers of each application example were manufactured by a method similar to that of the above-mentioned Application Example 1. For the copolymers of each application example, the oxygen permeation coefficient and the impact resistance index were measured. The results are shown in Table I.

Comparative examples

Using various kinds of monomer compositions and mixture ratios shown in Table I, copolymers of each comparative example were manufactured by a method similar to the application examples. For the copolymers of each comparative example, the oxygen permeation coefficient and the impact resistance index were measured. The results are shown in Table I.

Also, the abbreviations used in the application examples and the comparative examples mean the following compounds.

SIOL: Siloxane oligomer

S-1: Oligomer of formula (I), $R_2 = H$, k = 3, l = 1, m = 3, and n = 12

S-2: Oligomer of formula (I), $R_2 = H$, l = 0, m = 0, and n = 12

S-3: Oligomer of formula (I), $R_2 = CH_3$, k = 3, l = 1, m = 3, and n = 13

S-4: Oligomer of formula (I), $R_2 = H$, k = 3, l = 1, m = 3, and n = 21

S-5: Oligomer of formula (I), $R_2 = H$, k = 3, l = 1, m = 3, and n = 55

S-Z: Oligomer of formula (III), $R_3 = (b)$, $R_2 = H$, and t = 13

Si (M) A: Siloxanyl (meth)acrylate

Si₁: Tris(trimethylsiloxy)silylpropyl methacrylate

Si₂: Bis(trimethylsiloxyl)methylsilylpropyl methacrylate

Si₃: Trimethylsiloxydimethylsilylpropyl methacrylate

Si₄: Pentamethyldicyloxanylmethyl methacrylate

F (M) A: (Meth)acrylate containing fluorine

6F: Hexafluoroisopropyl methacrylate

3F: 2,2,2-trifluoroethyl methacrylate

FOMA: Perfluoro-octylethyloxypropylene methacrylate

FOIMA: Perfluoro-octylethyloxyisopropylene methacrylate

FOEMA: Perfluorooctylethyloxyethylene methacrylate

R (M) A: Alkyl (meth)acrylate

MMA: Methyl methacrylate

IPMA: Isopropyl methacrylate

CHMA: Cyclohexyl methacrylate

MA: Methacrylic acid

DX: N,N-dimethylacrylamide

HDMP: 2-hydroxy-1,3-dimethacryloxypropane

TMPT: Trimethylolpropane trimethacrylate

1G: Ethylene glycol dimethacrylate

3G: Triethylene glycol dimethacrylate

Table I

				Application Example									
				2	3	4	5	6	7	8	9	10	11
-	T	S-1	8.6	8.8	8.7	-	 	-	8.7	11	3		5
		S-2	0.0	0.0	"	 	8.7				-	 	
١.		S-3				 		8.7					
	SIOL	S-4				8.7	 	<u> </u>	-			 	
		S-5						 				5.8	
		S-Z(*1)						-	<u> </u>			 	
		Sin	19.1	19.5	20	20	20	19.7	19.7	17	25	22	30
		Sig	1	-	-								-
	Si (M) A	Sia						-					
		Si ₄						-					
Monomer composition (wt%)	F (M) A	6 F	41.5	42.4	43	43	43	37	37	35	34	37.5	
ion (3 F						13	13	10	13	- 7	40
posi		FOMA											
COL		FOIMA											
ome		FOEMA				•							
Mon		MMA	10.5	10.6	11	11	11	4.3	4.3	14.5	12	12	12
	R (M) A	IPMA							_				
		CHMA								,			
:	Hydrophilic	MA	11.6	9.8	8.7	8.7	8.7	8.7	8.7	5.3	6	8.7	5
·	monomer	DX	4.4	4.5	4.3	4.3	4.3	4.3	4.3	. 3.7	4	4.5	5.
	Crosslinking	НОМР	4.3	4.4	4.3	4.3	4.3	4.3	4.3	3.5	3	2.5	
,	monomer	TMPT											
		1 G						·					3
	·	3 G											
rties	Oxygen permeation	coefficient (*2)	39	40	38	37	40	38	37	35	44	43	42
Properties	Impact resistance index		88	85	82	84	85	87	85	84	81	83	81

^{*1:} Conventional siloxane oligomer *2: 2 x 10⁻¹¹ [mL O₂ (STP) cm/cm² · sec· mm Hg]

Table I (continued)

	· · · · · · · · · · · · · · · · · · ·	,	Application Example										
			12	13	14	15	16	17	18	19	20	21	22
		S-1	5	5	9	10	1	8		2	8	9	8
		S-2				1	1	1	1	 	ļ		1
	SIOL	S-3					1			1	1		
	0102	S-4							15				
		S-5											
		S - Z (*1)											
		Siı	25	22	25	25	25	31	15	45	30	40	31
	Si (M) A	Síg											
		Sia								1.			
્		Si ₄											
(wt9	F (M) A	6 F		38	49	50							
ition		3 F	50				† ·	1					
Monomer composition (wt%)		FOMA					23	33	50	10	30	19	
er co		FOIMA				1			1			1	30
mou		FOEMA											
, X		MMA		15		10	25	15	8	28.	16	20	16
	R (M) A	IPMA											
		СНМА										1	
	Hydrophilic	MA	10	10	12		9	8	8	9	8	4	8
	monomer	DX	5				5	5	4	4.5	4	2	4
	Crosslinking	HDMP			5							6	
• •	monomer	TMPT		10		5					4		3
		1G .	5							1.5			
		3 G											
Properties	Oxygen permeation	coefficient (*2)	42	51	59	52	37	40	49	35	40	36	41
Prop	Impact resista	Impact resistance index		76	75	78	76	77	60	78	84	80	85

^{*1:} Conventional siloxane oligomer *2: 2 x 10⁻¹¹ [mL O₂ (STP) cm/cm² · sec· mm Hg]

Table I (continued)

			1.	Application Example										
	•		23	24	25	26	27	28	29.	30	31	32	33	
		S-1	8		8	7	3	5	8	. 9	8		7	
	·	S-2												
	SIOL	S-3		9						-		7.5		
		S-4						•						
}		S-5		· .										
		S-Z(*1)												
٠.		Siı	35	30	32	40	32	32	25				23.5	
	Si (M) A	Sig								20				
	01 (111) 11	Sia									25			
G		Si4:										30		
Monomer composition (wt%)	F (M) A	6 F							25		34.5		20	
ition		3 F					·			25		35		
sodiu		FOMA		31	25.									
15 CO		FOIMA	20	·			30	29	10	15				
пош		FOEMA				20					-		15	
W.		MMA	20			18	22	21	17				20	
	R (M) A	IPMA		15	•						15			
		CHMA			17					15		10.5	·	
	Hydrophilic	MA	9	9	11	10	8	8	8	9	9	9	-8	
İ	monomer	DX	5	3	3	3	2.5	2.5	3	3	4	4.5	3.5	
	Crosslinking	HDMP							4					
٠	monomer	TMPT									4.5		3	
, [1 G	3	3	4	2				4		3.5		
		3 G					2.5	2.5						
erties	Oxygen permeation	coefficient (*2)	38	49	47	39	40	43	35	33	40	34	34	
Properties	Impact resista	nce index	81	80	79.	79	82	81	78	80	82	85	86	

^{*1:} Conventional siloxane oligomer *2: 2 x 10⁻¹¹ [mL O₂ (STP) cm/cm² · sec· mm Hg]

Table I (continued)

		· .			Com	parat	ive E	xamp.	le	
			1	2	3	4.	5	6	7	8
		S-1								
		S - 2								
	SIOL	S-3								
		S-4								
		S-5								
		S - Z (*1)	5	5	5	7	10			4.8
		Siı	30	25	22	43	30	24	21.9	19
	Si (M) A	Sig								
	0 . ()	Si ₃								
્રિ		Si ₄								
Monomer composition (wt%)	F (M) A	6 F			38			56	65.8	28.6
ition		3 F	40	50		43	45			
soar		FOMA								
5		FOIMA			<u> </u>					
эшс		FOEMA								
Mono		MMA	12		15		10	8		28.6
	R (M) A	IPMA								
		СНМА								
	Hydrophilic	MA	5	10	10	5		8	8.8	9.5
	monomer	DX .	5	5					1.75	
	Crosslinking	HDMP						4	1.75	
,	monomer	TMPT			10		5			9.5
		1 G	3	5		2				
		3 G								
Properties	Oxygen permeation	coefficient (*2)	45	42	49	55	40	60	67	21
Prop	Impact resistance index		64	62	63	60	67	55	40	70

^{*1:} Conventional siloxane oligomer *2: 2 x 10⁻¹¹ [mL O₂ (STP) cm/cm² · sec· mm Hg]

As seen from Table I, in the copolymers of Application Examples 1-33 containing the siloxane oligomers of the present invention: S-1 (oligomer of the formula (I), $R_2 = H$, k = 3, l = 1, m = 3, and n = 12), S-2 (oligomer of the formula (I), $R_2 = H$, l = 0, m = 0, and n = 12), S-3 (oligomer of the formula (I), $R_2 = CH_3$, k = 3, l = 1, m = 3, and n = 13), S-4: (oligomer of the formula (I), $R_2 = H$, k = 3, l = 1, m = 3, and n = 21), S-5 (oligomer of the formula (I), $R_2 = H$, k = 3, l = 1, m = 3, and n = 55), a large impact resistance index is obtained, compared with the copolymers of Comparative Examples 1-5 containing the siloxane oligomer used in the prior art: S-Z (oligomer of the formula (III), $R_3 = (b)$, $R_2 = H$, and t = 13). Also, the oxygen permeability of the copolymers of Application Examples 1-33 were good.

Furthermore, in the present invention, the actions of each added monomer are exerted in a multiplied fashion [multiplicative manner] in the contact lens materials of each application example in which an alkyl (meth)acrylate, hydrophilic monomer, and crosslinking monomer are added, and excellent advantages (for example, hardness, water wettability, etc.) are obtained. Any of these application examples provides excellent properties.

As mentioned above in detail, according to the contact lens material of the present invention, since specific siloxane oligomers are used, a contact lens with an oxygen permeability required for actual wearing of the contact lens and an impact resistance superior to that of the prior art can be obtained. Therefore, according to the present invention, since the generation rate of lens damage during handling can be reduced and the durability of the lens can be raised, the safety and the economical efficiency of the contact lens can be improved, and the contact lens is very useful for actual wearing.

Claims

(I)

1. A contact lens material, characterized by being composed of a copolymer obtained from a monomer mixture of a siloxane oligomer represented by the following formula (I) and/or a siloxane oligomer represented by formula (II) as essential components, as well as a contact lens obtained by working the above-mentioned contact lens material:

$$R_{1} - 0 - (CII_{2} \rightarrow k - 0) \xrightarrow{\mathbb{Q}} (CII_{2} \rightarrow m - Si \xrightarrow{Me} (0 - Si \xrightarrow{\mathbb{Q}} n - R_{1})$$

(in the formula, k represents an integer of 1-3, 1 represents 0 or 1, m represents an integer of 0-3, n represents an integer of 9-199, Me represents CH_3 , and R_1 represents:

(R₂ represents H or Me))

$$R_{1} = 0 - \left(CII_{2} \rightarrow k = 0 \right)_{\mathcal{Q}} - \left(CII_{2} \right)_{m} = \left(\begin{array}{c} Me \\ | \\ Si = 0 \\ | \\ Me \end{array} \right)_{p} = \left(\begin{array}{c} Ph \\ | \\ Si = 0 \\ | \\ Ph \end{array} \right)_{q} = \left(\begin{array}{c} Ph \\ | \\ Si = 0 \\ | \\ Ph \end{array} \right)_{q} = \left(\begin{array}{c} Ph \\ | \\ Si = 0 \\ | \\ Ph \end{array} \right)_{q} = \left(\begin{array}{c} Ph \\ | \\ Si = 0 \\ | \\ Ph \end{array} \right)_{q} = \left(\begin{array}{c} Ph \\ | \\ Si = 0 \\ | \\ Ph \end{array} \right)_{q} = \left(\begin{array}{c} Ph \\ | \\ Si = 0 \\ | \\ Ph \end{array} \right)_{q} = \left(\begin{array}{c} Ph \\ | \\ Si = 0 \\ | \\ Ph \end{array} \right)_{q} = \left(\begin{array}{c} Ph \\ | \\ Si = 0 \\ | \\ Ph \end{array} \right)_{q} = \left(\begin{array}{c} Ph \\ | \\ Si = 0 \\ | \\ Ph \end{array} \right)_{q} = \left(\begin{array}{c} Ph \\ | \\ Si = 0 \\ | \\ Ph \end{array} \right)_{q} = \left(\begin{array}{c} Ph \\ | \\ Si = 0 \\ | \\ Ph \end{array} \right)_{q} = \left(\begin{array}{c} Ph \\ | \\ Si = 0 \\ | \\ Ph \end{array} \right)_{q} = \left(\begin{array}{c} Ph \\ | \\ Si = 0 \\ | \\ Ph \end{array} \right)_{q} = \left(\begin{array}{c} Ph \\ | \\ Si = 0 \\ | \\ Ph \end{array} \right)_{q} = \left(\begin{array}{c} Ph \\ | \\ Si = 0 \\ | \\ Ph \end{array} \right)_{q} = \left(\begin{array}{c} Ph \\ | \\ Si = 0 \\ | \\ Ph \end{array} \right)_{q} = \left(\begin{array}{c} Ph \\ | \\ Si = 0 \\ | \\ Ph \end{array} \right)_{q} = \left(\begin{array}{c} Ph \\ | \\ Si = 0 \\ | \\ Ph \end{array} \right)_{q} = \left(\begin{array}{c} Ph \\ | \\ Si = 0 \\ | \\ Ph \end{array} \right)_{q} = \left(\begin{array}{c} Ph \\ | \\ Si = 0 \\ | \\ Ph \end{array} \right)_{q} = \left(\begin{array}{c} Ph \\ | \\ Si = 0 \\ | \\ Ph \end{array} \right)_{q} = \left(\begin{array}{c} Ph \\ | \\ Si = 0 \\$$

$$----(CH_2 \rightarrow m (O - CH_2 \rightarrow k) Q O - R_1$$

(in the formula, k represents an integer of 1-3, l represents 0 or 1, m represents an integer of 0-3, p + q represents an integer of 11-139 (however, $p \ge 0$ and $q \ge 0$), Me represents CH₃, Ph represents \downarrow , and R₁ is the same as in formula (I).

- 2. The contact lens material of Claim 1, characterized by the fact that the molecular weight of the siloxane oligomer represented by formula (I) or (II) is 800-6,000.
- 3. The contact lens material of Claim 1, characterized by the fact that the ratio of the siloxane oligomer represented by formula (I) and/or the siloxane oligomer represented by formula (II) included in the monomer mixture for the copolymer is 0.1-15 wt%.
- 4. The contact lens material of Claim 1, characterized by the fact that the monomer mixture for the copolymerization is composed of at least one kind of (meth)acrylate containing fluorine and at least one kind of siloxanyl (meth)acrylate as essential components.
- 5. A contact lens, characterized by being formed by working a copolymer obtained from a monomer mixture of a siloxane oligomer represented by the following formula (I) and/or a siloxane oligomer represented by formula (II) as essential components, as well as a contact lens obtained by working the above-mentioned contact lens material:

(I)
$$R_{1} = 0 - \left(\left(\text{CII}_{2} \right) + \left(\text{CII}_{$$

(in the formula, k represents an integer of 1-3, l represents 0 or 1, m represents an integer of 0-3, n represents an integer of 9-199, Me represents CH_3 , and R_1 represents:

 $(R_2 \text{ represents H or Me.}))$

(in the formula, k represents an integer of 1-3, l represents 0 or 1, m represents an integer of 0-3, p + q represents an integer of 11-139 (however, $p \ge 0$ and $q \ge 0$), Me represents CH₃, Ph represents -, and R₁ is the same as in formula (I).

- 6. The contact lens of Claim 5, characterized by the fact that the molecular weight of the siloxane oligomer represented by formula (I) or (II) is 800-6,000.
- 7. The contact lens of Claim 5, characterized by the fact that the ratio of the siloxane oligomer represented by formula (I) and/or the siloxane oligomer represented by formula (II) included in the monomer mixture for the copolymer is 0.1-15 wt%.
- 8. The contact lens of Claim 5, characterized by the fact that the monomer mixture for the copolymerization is composed of at least one kind of (meth)acrylate containing fluorine and at least one kind of siloxanyl (meth)acrylate as essential components.

INTERNATIONAL SEARCH REPORT

. International Application No PCT/JP90/01736

			MATTER (if several class						
1	_		ication (IPC) or to both N	ational Classification	on and if	PC .			٠.
Int	c. C1 ⁵	G02C7/0	4						
II. FIELD	S SEARC	HED	•						
			Minimum Docum	entation Searched	7				
Classificat	tion System			Classification Sy	mbols .				
		İ							
· IP	·C	G02C7/0	4				•		
• .				:					
		•	mentation Searched othe Extent that such Documen					•	=
	•								•
			•		•				
III. DOCI	UMENTS C	ONSIDERED TO	BE RELEVANT						
Category *	,		with Indication, where ap	propriate, of the re	levant pa	assages 12	R	elevant to	Claim No. 13
	<u> </u>		*						
A	JP,	A, 61-138	3613 (Toyo C 5 (26. 06. 8	Contact Le	ens :	K.K.),	,	1,	, 5
	Line	es 4 to 19	, upper par	t, right	col	umn,			
	page	= 6 & US.	A, 4,649,18	4 & EP, 2	A2,	184800)		
· ·	1 2.5	•	• • • • •	·	•		ļ		
				•					
						•			٠.
		•							
•						•			
						•			
			·	•					
	.	:		: . ·		•			•
									•
	ĺ	•		•					•
	1	•						•	
	ļ								
		•		•	•	•			
	· .								•
		•				••			
				• .					
					-				
* Special	categories o	f cited documents:	10	"T" later docur	ment put	olished after	the int	ernational	filling date of
		ng the general state of particular releva	of the art which is not			t in conflict in sciple or the			n but cited to invention
"E" earli		•	or after the international		ered nov				ention canno to involve an
"L" docu	ument which	may throw doubts establish the pub	on priority claim(s) or lication date of another pecified)	"Y" document of be consider	of particulared to in	volve an inv	entive s	tep when t	ention cannot he document
"O" docu			sure, use, exhibition or	is combine combinatio	d with o	one or more obvious to a	other person	such docu skilled in	iments, such
"P" docu	ment publis	hed prior to the inte ority date claimed	rnational filing date but	"&" document :	memper	of the same	patent	tamily	
IV. CERT	IFICATION					•			
Date of the	Actual Con	pletion of the Inter	national Search	Date of Malling	of this i	nternational	Search	Report	
Apri	il 1,	1991 (01.	04. 91)	April	22,	1991	(22	. 04.	91)
Internation	al Searching	Authority		Signature of Au	thorized	Officer			
Japa	anese	Patent Of	fice						

Form PCT/ISA/210 (second sheet) (January 1985)