

MLHPC 2015

HPDBSCAN – Highly Parallel DBSCAN

Markus Götz, Christian Bodenstein and Morris Riedel Jülich Supercomputing Center (JSC) // University of Iceland

Outline

Introduction

- DBSCAN
- Related Work

Highly Parallel DBSCAN

- Parallelization Strategy
- Implementation
- Performance Evaluation

Conclusion

- Use Case Point Clouds
- Discussion

DBSCAN

Density based spatial clustering for application with noise

- Formulated 1996 by Ester et. al. (TUM, Germany)
- Unsupervised clustering algorithm

Parameters

- epsilon (ε) spatial search radius
- minPoints density threashold

Properties

- Maximize local point density recursively
- Detects arbitrarily shaped clusters (except "bow-ties")
- Filters signal for noise

Related Work

Earlier attempts

- Around 1999-2000 (three years after initial proposition)
- Focused mainly on parallelizing neighborhood queries
 - Distributed Indices
 - Works well for shared-memory/small number of core systems
- Dozens of papers/approaches

Recents attempts

- 10 years break no papers
- Resurge of interest with the Big Data hype
- Stronger focus on scalability, most notable work from Patwary et. al., SC2013

11/15/2015

Parallelization Strategy

Data Decomposition

- Essentially spatial problem
- Constant search distance
- Overlay data space with cells and split
- Requires data redistribution

Load balancing

- Estimate computational cost per cell (complexity)
- Product of neighborhood size and cell size
- Sum up grand total over all processors
- Assign cells p^{th} part of sum per processor

Parallelization Strategy

Local DBSCAN

- Data is sorted after redistribution.
- Run-length index (constant lookup time)
- Execute standard DBSCAN on local chunk

Merging

- Exchange halo regions
- Find differences in cluster labeling of core points
- Generate label mapping rules
- Exchange rules globally and apply
- Restore initial data order

Implementation

Source code

- C++ MPI+OpenMP hybrid application
- Facilitates HDF5 for data I/O
- Can be used as CL application or shared-library
- https://bitbucket.org/markus.goetz/hpdbscan

Lock-free cluster label assignment

- Cluster labels are stored consecutive in memory
- Need for synchronization between threads
- Use atomicMin on encoded labels (CLLLL...LL)

Datasets

- Bremen point cloud (~82 million entries)
- Collection of tweets (~17 million entries)

Environment

- JuDGE supercomputer at JSC
 - Intel Xeon 12-core CPUs
 - DDR3 memory
 - Infiniband
- Scaled up to 768 cores (1/4th)
- Dedicated resources

Comparison with PDSDBSCAN-D

- Presented at SC2013
- Parallel DBSCAN based on disjoint-sets
 - MPI version evaluated
 - Binary mode
- Only other with published source (thank you!)
- Results
 - Better computation time
 - Orders of magnitude better memory usage

11/15/2015

Use Cases – Point Clouds

Point clouds

- 3D to 5D laser reflection scans
- Captured by robots or drones
- Order of million to billion entries

Application

- Identify (segment) structures
- Resilient to noise (e.g. animals)
- Survey Roman ruins on Cyprus
 - Identify dig sites
 - Build model of known objects

Contact: m.goetz@fz-juelich.de

Slides: Send me a mail with a request