Name:	
4-digit code:	

- Write your name and the last 4 digits of your SSN in the space provided above.
- The test has seven (7) pages, including this one.
- Enter your answer in the box(es) provided.
- You must show sufficient work to justify all answers unless otherwise stated in the problem. Correct answers with inconsistent work may not be given credit.
- Credit for each problem is given in parentheses at the right of the problem number.
- No books, notes or calculators may be used on this test.

Page	Max. points	Your points
2	20	
3	15	
4	15	
5	30	
6	10	
7	10	
Total	100	

Problem 1 (5 pts). Find f(3) and $f(\pi)$ for $f(x) = \begin{cases} \sqrt{x+1} & \text{if } x \ge 1, \\ 3 & \text{if } x < 1. \end{cases}$

$$f(3) =$$

$$f(\pi) =$$

Problem 2 (5 pts). Find the domain of $f(x) = 2 + \sqrt{x-1}$.

domain =

Problem 3 (10 pts). Express the function f(x) = |x| + 3x + 1 in piecewise form without using absolute values.

$$f(x) = \left\{ \begin{array}{c} \\ \end{array} \right.$$

Problem 4 (5 pts). Let $f(x) = x^2 + 3$ and $g(x) = \sqrt{x}$. Find $(g \circ f)(x)$.

$$(g \circ f)(x) =$$

Problem 5 (5 pts). Classify the function $f(x) = x^5$ as even, odd or neither.

f is

Problem 6 (5 pts). Find the amplitude and period of

$$y = 3\cos\left(2x + \frac{\pi}{2}\right).$$

period =

amplitude =

Problem 7 (5 pts). Solve for x: $\log(3x) - 3\log(x^{-1/3}) = \log 27$.

Exam#1.

$$x =$$

Problem 8 (10 pts). Sketch the curve by eliminating the parameter (i.e. try to write y = f(x)), and indicate the direction of increasing t

$$x = \sqrt{t}, \quad y = \frac{3}{4}t + 3 \quad (0 \le t \le 4).$$

Problem 9 (30 pts). Compute the following limits:

(a)
$$\lim_{x \to 1} \frac{x^2 - 2x - 8}{x^2 - 4} = \boxed{}$$

(b)
$$\lim_{x \to \infty} \frac{x^2 - 2x - 8}{x^2 - 4} =$$

(c)
$$\lim_{x \to \infty} \left(1 + \frac{5}{x} \right)^{3x} = \boxed{}$$

Problem 10 (10 pts). Recall the " ε - δ " definition of limit:

Exam#1.

We write
$$\lim_{x\to a} f(x) = L$$
 if for all $\varepsilon > 0$ there exists $\delta > 0$ such that $|x-a| < \delta$ implies $|f(x)-L| < \varepsilon$.

Use this definition to prove that $\lim_{x\to 4} 5x - 2 = 18$.

Problem 11 (10 pts). Find the value of the constant k for which the following function is continuous everywhere:

$$f(x) = \begin{cases} 2k^2x^3 & \text{if } x < 2, \\ x + 32k - 18 & \text{if } x \ge 2. \end{cases}$$