Sistemi Operativi AA 2018/19 Esercitazione

26 Novembre 2018

Esercizio 1

Sia dato un sottosistema di memoria con segmentazione e paginazione, caratterizzato dalle seguenti dimensioni:

- frame 4KB
- memoria fisica indirizzabile 16GB

Inoltre, ogni indirizzo logico necessita di 48 bit. Date queste premesse, rispondere alle seguenti domande

- 1. Quanti bit sono necessari per l'address bus?
- 2. Quanti bit sono necessari per indicizzare una pagina?
- 3. Quanti segmenti ci saranno al massimo in questo sistema?

Soluzione In base alle specifiche avremo:

- 1. L'address bus dovra' essere in grado di indirizzare almeno 16GB di memoria, quindi saranno necessari 34 bit (come minimo).
- 2. Per indicizzare una pagine necessiteremo di (34 12) bit = 22 bit.
- 3. Il numero di segmenti potra' essere banalmente calcolato come 2^k dove k=48-34=14.

Esercizio 2

Si consideri in sottosistema di memoria il caratterizzato dalle seguenti tabelle

Segments:

Number	Base	Limit
0x0	0x00	0x02
0x1	0x02	0x01
0x2	0x04	0x01
0x3	0x05	0x02

Pages:

Page	Frame
0x00	0x07
0x01	0x06
0x02	0x05
0x03	0x04
0x04	0x03
0x05	0x02
0x06	0x01
0x07	0x00

Assumendo che le pagine abbiano una dimensione di 256 byte, che la tabella delle pagine consista di 256 elementi e che la tabella dei segmenti possa contenere 16 elementi, come vengono tradotti in indirizzi fisici i seguenti indirizzi logici?

- -0x10012
- -0x00134
- -0x30156
- -0x30300

Soluzione Ogni indirizzo virtuale e' cosi' composto:
$$0x10012 \rightarrow 0x$$
 1 00 offset spiazzamento offset

Usiamo il primo *nibble* per individuare la base dalla tabella dei segmenti. In seguito, il frame sara' individuato da confrontando base + offset con le entries della tabella delle pagine. Infine, l'indirizzo fisico sara' semplicemente 0x[frame spiazzamento]. Avremo quindi:

- $\bullet \ 0x10012 \rightarrow 0x0512$
- $0x00134 \rightarrow 0x0634$
- $0x30156 \rightarrow 0x0156$
- $0x30300 \rightarrow invalid address$ limit exceeded.

Esercizio 3

Sia dato un sottosistema di memoria con paginazione, caratterizzato dalle seguenti dimensioni:

- frame 4KB
- memoria fisica indirizzabile 64GB

Date queste premesse, rispondere alle seguenti domande:

- 1. Calcolare il numero di bit necessari per individuare una pagina in un indirizzo virtuale
- 2. Considerato che il tempo di accesso medio ad una pagina e quello di accesso al TLB siano definiti rispettivamente come $EAT = 120 \ ns$ e $T_{TLB} = 1 \ ns$ mentre la probabilita' di page fault sia pari a $p_{fault} = 1e 3$, calcolare il tempo di un ciclo di lettura/scrittura T_{RAM} .

Soluzione

- I La dimensione di un frame e' pari a 4KB, per cui necessita di 12 bit $(2^{12} = 4K)$; il numero di bit necessari ad indirizzare 64GB di memoria fisica invece sono 36 $(2^{36} = 64G)$. Percio', in tale sistema il numero di bit per il page number sara' 36 12 = 24.
- II La formula generica del Effective Access Time e' data dalla relazione

$$EAT = p_{hit}(T_{TLB} + T_{RAM}) + p_{fault}(2T_{TLB} + 2T_{RAM})$$

$$\tag{1}$$

dove p_{hit} indica l'hit ratio del sistema. Notiamo che vale la relazione $p_{hit} + p_{fault} = 1$ - descrivendo una probabilita' la loro somma **deve** essere unitaria. Dalla Eq. 1 potremo calcolare T_{RAM} sostituendo i valori numerici ai parametri, ottenendo il seguente valore:

$$T_{RAM} = \frac{119001}{1001} \approx 118.88 \ ns$$