

Propiedades ópticas

Son las interacciones de los materiales con las ondas electromagnéticas en forma de ondas o fotones

En general, conocemos a las ondas electromagnéticas como "luz"

Fotones

Forma en que viaja la energía en las ondas electromagnéticas

Desde el punto de vista de mecánica cuántica

Fotones

Se pueden considerar como pequeños paquetes de energía

Ondas electromagnéticas

Tienen un comportamiento dual:

Como onda

Como partícula \rightarrow fotones

Ondas electromagnéticas

- Están formadas por dos componentes:
- Un campo eléctrico
- Un campo magnético
- Que son perpendiculares entre sí y a la vez perpendiculares a la dirección de propagación de la onda
- Se caracterizan por:
- * Un determinado intervalo de longitudes de onda (λ)
- La forma en que se generan

Espectro electromagnético

Está formado por ondas electromagnéticas con diferentes longitudes de onda (λ)

Desde los rayos gamma $\rightarrow \lambda$: 10⁻¹² m Hasta ondas de radio $\rightarrow \lambda$: 10⁵ m

Longitudes de onda en m

Luz visible

Frecuencias en Hz

La luz visible tiene un intervalo de λ de: 4×10^{-7} a 7×10^{-7} m

Interacciones de las ondas electromagnéticas con los materiales

Interacción		Propiedad	
Absorción	Los fotones ceden su energía al material	Absorbancia	$A = \frac{I_A}{I_0}$
Transmisión	Los fotones no interactúan con el material, pasan a través del material y salen	Transmitancia	$T = \frac{I_T}{I_0}$
Reflexión	Los fotones ceden su energía pero el material emite fotones con idéntica energía	Reflectancia	$R = \frac{I_R}{I_0}$
Refracción	La velocidad de los fotones disminuye al entrar al material, su dirección también cambia	Índice de refracción	$n = \frac{C}{C_0}$

Interacciones de las ondas electromagnéticas con los materiales

Es necesario tomar en cuenta algunas consideraciones:

- Al haz de ondas electromagnéticas que llega a un material, se le denomina haz incidente
- La energía de las ondas electromagnéticas se cuantifica mediante su intensidad (I)
- El haz incidente posee una cierta cantidad de energía (I_0) , es decir, tiene cierta cantidad de fotones viajando en él
- ► Todas las interacciones ocurren al mismo tiempo
- Una parte del haz incidente se absorbe, otra parte se transmite y otra parte se refleja
- ► En otras palabras esto significa que:

$$\frac{I_A}{I_0} + \frac{I_T}{I_0} + \frac{I_R}{I_0} = \frac{I_0}{I_0}$$
 ó $A + T + R = 1$

La refracción no involucra a los fotones directamente, así que no interviene desde este punto de vista, pero si ocurre junto con las otras al mismo tiempo. Relaciona la velocidad de la luz en un cierto medio (\mathcal{C}) con la velocidad de la luz en el vacío (\mathcal{C}_0)

Clasificación de los materiales

De acuerdo con la interacción predominante, los materiales pueden ser:

Clasificación	Interacción predominante	Efecto
Transparentes	Transmisión	La luz pasa a través del material
Opacos	Absorción	El material no permite el paso de la luz
Translucidos	Dispersión (el haz incidente se separa y toma diferentes direcciones dentro del material)	La luz pasa parcialmente, se dispersa y no se observa con claridad a través del material

Índice de refracción, n:

se utiliza para determinar la pureza de soluciones líquidas. Por ejemplo, el contenido de azúcar en jarabes. Dependiendo de la cantidad de azúcar presente, la solución presenta un índice de refracción específico.

Sustancia	n
Aceite de cedro	1.515
Acetona	1.359
Agua (15° C)	1.3334
Agua (20°C)	1.3329
Alcohol etílico	1.361
Alcohol metílico	1.329
Benceno	1.501
Bromo	1.654
Cloroformo	1.446
Glicerina	1.494

Sustancia	n
Hielo	1.32
Ámbar	1.546
Ácido Bórico	1.463
Alcanfor	1.532
Bálsamo de Canadá	1.530
Diamante	2.417
Vidrio de cuarzo	1.46
Zafiro, rubí (Al ₂ O ₃)	1.767
Circón $(ZrO_2 \cdot SiO_2)$	1.923

Índice de refracción de algunos sólidos

Refractómetro de Abbe

Índice de refracción de algunos líquidos a 20°C

Color:

es una reflexión selectiva, es decir el material refleja una longitud de onda o una combinación de varias

Color	Longitud de onda	Frecuencia
Rojo	625-740 nm	480-405 THz
Naranja	590-625 nm	510-480 THz
Amarrillo	565-590 nm	530-510 THz
Verde	520-565 nm	580-530 THz
Azul	450-500 nm	670-600 THz
Añil	430-450 nm	700-670 THz
Violeta	380-430 nm	790-700 THz

Se observan diferentes tonos de un color por las diferentes combinaciones de longitudes de onda

Azul RAF	Indigo
Azul Bondi	Azul Grisaceo
Azul Tiffany	Azul Acero
Celeste	Azul Cobalto
Azul Claro	Azul de Persia
Azul Bebe	Azul
Azul Maya	Azul Medio
Azul Capri	Azul Oscuro
Azur	Azul Marino
Azul Francia	Azul Oxford
Azul Royal	Azul de Prusia

Celdas solares:

Se aprovecha el fenómeno conocido como fotoinducción. Explicación muy básica: contempla la absorción de la luz solar por electrones excitados, esta energía la utilizan para pasar de la banda de valencia a la de conducción, al disminuir su energía deberían regresar a la banda de valencia y emitir el exceso de energía, pero no regresan y los electrones excitados transportan una carga eléctrica a través de un circuito.

Los semiconductores hacen esto.

Fibra óptica:

- ❖ Se utiliza la reflexión total
- Se transmiten señales mediante fotones
- Son vidrios muy delgados o fibras poliméricas, del orden de capilares
- Las fibras adyacentes no se interfieren, por lo que mejora la capacidad de transmisión
- Funcionamiento:
- Las fibras o vidrios muy delgados están rodeadas por un recubrimiento de un material con un índice de refracción menor
- Cuando el haz de luz pasa a través de un material de mayor índice de refracción, no puede regresar al de menor (reflexión total)
- Esto permite que la señal pueda recorrer grandes longitudes de fibra sin perder intensidad

Luminiscencia

La principal fuente de ondas electromagnéticas (luz) más importante en la Tierra es el Sol, que es una fuente incandescente.

Pero también hay fuentes frías de luz, a este tipo se le conoce como luminiscencia. Se tienen cinco tipos principales:

1. Bioluminiscencia: se produce por algunas reacciones metabólicas en seres vivos como luciérnagas, plancton, calamares, hongos, peces abismales, etc.

2. Triboluminiscencia: algunos cristales liberan energía en forma de luz visible cuando son pulverizados. Ejemplo: cuarzo, azúcar, sacarosa

Luminiscencia

3. Fosforescencia: la luz visible es absorbida, para posteriormente ser liberada gradualmente. Es un proceso continuo pero que es visible en la oscuridad. Ejemplo: fósforo, willemita (ZnSiO₄)

4. Fluorescencia: la luz ultravioleta es absorbida y se emite muy rápidamente luz visible. Se observa un brillo en la oscuridad. Ejemplo: Calcita, mercurio

5. Termoluminiscencia: algunos materiales emiten luz visible cuando se calientan por debajo del rojo vivo. Ejemplo: cuarzo

