Handout Cours 1

Mots, Langages, et Expressions Rationnelles

1 Mots

1.1 Définitions de base

Un alphabet est un ensemble fini de lettres (ou symboles).

Un mot sur un alphabet Σ est une séquence de lettres de l'alphabet Σ . On note

- ϵ (prononcé "epsilon") pour le *mot vide*. C'est la séquence de longueur 0 qui ne contient aucune lettre.
- Σ^* pour l'ensemble de tous les mots sur l'alphabet Σ .
- |w| pour la longueur du mot w. Pour tous les mots w, |w| est un nombre entier non-négatif qui peut être 0.

Suivant la tradition dans les langages de programmation, les positions dans un mot w sont numérotées de 0 jusqu'à |w|-1. Si w est un mot et $0 \le i < |w|$, nous écrivons w[i] pour la lettre de w à la position i.

```
Exemple: Soit l'alphabet \Sigma = \{a, b, c, d\}. w = ababca est un mot sur l'alphabet \Sigma, c.-à-d. w \in \Sigma^*. |w| = 6, et on a que w[3] = b.
```

1.2 Mesures sur des mots

Nous avons déjà vu la notion de longueur |w| d'un mot w. Si w est un mot sur Σ et $a \in \Sigma$, alors $|w|_a$ est le nombre d'occurrences de a dans w. L'ensemble des occurrences de la lettre a dans le mot w est $\{i \mid w[i] = a\}$.

1.3 Opérations sur des mots

Soit un alphabet Σ . La concaténation de deux mots $v = a_0 \dots a_{n-1} \in \Sigma^*$ et $w = b_0 \dots b_{m-1} \in \Sigma^*$, est le mot $a_0 \dots a_{n-1}b_0 \dots b_{m-1}$ (attention les mots v et w peuvent être vides). On note $v \cdot w$ pour la concaténation de v et w, très souvent on n'écrit pas l'opérateur \cdot , et on écrit vw à la place de $v \cdot w$.

Par exemple, $abab \cdot cd = ababcd$

Propriétés importantes de la concaténation :

- pour tous mots $w : \epsilon \cdot w = w$
- pour tous mots $w: w \cdot \epsilon = w$
- pour tous mots $u, v, w : u \cdot (v \cdot w) = (u \cdot v) \cdot w$

Si w est un mot et n un nombre non-négatif, alors nous écrivons w^n pour

$$\underbrace{w \cdot \cdot \cdot w}_{n}$$

Si $w = a_0 \dots a_{n-1}$ est un mot de longueur n, alors son miroir, noté \overline{w} , est le mot $\overline{w} = a_{n-1} \cdots a_0$.

1.4 Relations entre des mots

Soit Σ un alphabet. On a les relations suivantes entres des mots sur Σ :

- v est un préfixe de w s'il existe un mot u tel que $w = v \cdot u$. Il s'agit d'un préfixe propre quand $u \neq \epsilon$.
- v est un suffixe de w s'il existe un mot u tel que $w = u \cdot v$. Il s'agit d'un suffixe propre quand $u \neq \epsilon$.
- v est un facteur de w s'il existe deux mots x, y tels que $w = x \cdot v \cdot y$.
- v est un sous-mot de w quand v est obtenu de w en supprimant certains positions de w. Autrement dit, v est un sous-mot de w quand il y a une décomposition de w en facteurs

$$w = w_0 v_0 \cdots w_{n-1} v_{n-1} w_n$$

tel que

$$v = v_0 \cdots v_{n-1}$$

2 Langages

Un langage sur un alphabet Σ est simplement un sous-ensemble de Σ^* . Autrement dit, un langage sur Σ est un ensemble de mots sur Σ .

Toutes les notions ensemblistes s'appliquent donc aux langages : \emptyset est le langage vide, $L_1 \cup L_2$ est l'union des deux langages L_1 et L_2 , et $L_1 \cap L_2$ est leur intersection. Quand on parle du complément d'un langage L il faut être précis sur l'alphabet sous-jacent, car le complément du langage L par rapport à l'alphabet Σ est

$$L^{comp} = \{ w \in \Sigma^* \mid w \not\in L \}$$

Plus intéressant sont les opérations qui sont spécifiques aux langages : La concaténation de deux langages L_1 et L_2 est définie par

$$L_1 \cdot L_2 = \{ w_1 \cdot w_2 \mid w_1 \in L_1, w_2 \in L_2 \}$$

Cela nous permet de définir, pour un langage L et $n \ge 0$:

$$L^n = \underbrace{L \cdot \ldots \cdot L}_{n \text{ fois}}$$

et finalement

$$L^* = \bigcup_{n \ge 0} L^n$$

L'opérateur * est appelé l'étoile de Kleene, en honneur du mathématicien Stephen C. Kleene.

3 Expressions Rationnelles

L'ensemble des expressions rationnelles sur un alphabet Σ est défini par induction. C'est le plus petit ensemble RAT tel que

- $\epsilon \in \text{Rat}$
- $\emptyset \in Rat$
- pour tout $a \in \Sigma : a \in RAT$
- si $r_1, r_2 \in \text{RAT}$, alors $(r_1 + r_2) \in \text{RAT}$
- si $r_1, r_2 \in \text{RAT}$, alors $(r_1 r_2) \in \text{RAT}$
- si $r \in RAT$, alors $r^* \in RAT$

Les anglophones les appellent regular expressions.

On associe à chaque expression rationnelle r un langage $\mathcal{L}(r)$, sa sémantique. Cette association est formalisée par une fonction définie par récurrence :

- $\mathcal{L}(\epsilon) = \{\epsilon\}$
- $\mathcal{L}(\emptyset) = \{\}$ (l'ensemble vide)
- si $a \in \Sigma$, alors $\mathcal{L}(a) = \{a\}$
- $\mathcal{L}((r_1+r_2)) = \mathcal{L}(r_1) \cup \mathcal{L}(r_2)$
- $\mathcal{L}((r_1r_2)) = \mathcal{L}(r_1) \cdot \mathcal{L}(r_2)$
- $\mathcal{L}(r^*) = (\mathcal{L}(r))^*$

Quand on écrit des expressions rationnelles on se permet d'omettre des parenthèses qui ne sont pas utiles, sachant que les deux opérateurs binaires + et \cdot sont associatives, et que \cdot prend la priorité sur +.

Quelques raccourcis ("sucre syntaxique") fréquents :

- r? est une abréviation pour $r + \epsilon$
- r^+ est une abréviation pour rr^*

Un langage L est rationnel quand il existe une expression rationnelle r telle que $L = \mathcal{L}(r)$.