Аксиома выбора

# Аксиома выбора

# Аксиома (выбора)

Из любого семейства дизъюнктных непустых множеств  $\{A_i\}$  можно выбрать непустую трансверсаль — множество S, что  $S \cap A_i = \{x_i\}$ . Иначе,  $S \in \times \{A_i\}$ .

# Теорема (функциональный вариант аксиомы выбора)

Пусть  $\{A_{\alpha}\}$  — семейство непустых множеств. Тогда существует  $f:\{A_{\alpha}\}\to \cup A_{\alpha}$ , причём  $\forall a.a\in \{A_{\alpha}\}\to f(a)\in a$ 

### Доказательство.

Пусть  $X(A_lpha)=\{\langle A_lpha,a
angle\ |\ a\in A_lpha\}$ , по семейству  $\{A_lpha\}$  рассмотрим  $\{X(A_lpha)\}$ 

- lacktriangle непустых: если  $A_lpha 
  eq \varnothing$ , то  $X(A_lpha) 
  eq \varnothing$ ;
- lacktriangle дизъюнктное: если  $A_lpha 
  eq A_eta$ , то  $X(A_lpha) \cap X(A_eta) = arnothing$

тогда по аксиоме выбора  $\exists f.f \in \times \{X(A_{lpha})\}.$ 

Обратное утверждение также легко показать.

# Аксиома выбора: альтернативные формулировки

# Теорема (Лемма Цорна)

Если задано  $\langle M, (\preceq) \rangle$  и для всякого линейно-упорядоченного  $S \subseteq M$  выполнено  $upb_MS \neq \varnothing$ , то в M существует максимальный элемент.

# Теорема (Теорема Цермело)

На любом множестве можно задать полный порядок.

### Теорема

У любой сюръективной функции существует частичная обратная.

# Теорема

Аксиома выбора ⇒ лемма Цорна: без доказательства

# Начальный отрезок

### Определение

Назовём (для данного раздела) упорядоченным множеством пару  $\langle S, (\prec_S) \rangle$ . Отношение порядка  $(\prec_S)$  может быть как строгим, так и нестрогим. Будем говорить, что  $\langle S, (\prec_S) \rangle$  — начальный отрезок  $\langle T, (\prec_T) \rangle$ , если:

- $\triangleright$   $S \subseteq T$ ;
- lacktriangle если  $a,b\in S$ , то  $a\prec_S b$  тогда и только тогда, когда  $a\prec_T b$ ;
- ightharpoonup если  $a \in S$ ,  $b \in T \setminus S$ , то  $a \prec_T b$ .

Будем обозначать это как  $(S, (\prec_S)) \sqsubseteq (T, (\prec_T))$  или как  $S \sqsubseteq T$ , если порядок на множествах понятен из контекста.

## Теорема

Отношение «быть начальным отрезком» является отношением нестрогого порядка.

# Верхняя грань семейства упорядоченных множеств

# Теорема (о верхней грани)

Если семейство упорядоченных множеств X линейно упорядочено отношением «быть начальным отрезком», то у него есть верхняя грань.

### Доказательство.

Пусть  $M = \bigcup \{T | \langle T, (\prec) \rangle \in X\}$  и  $(\prec)_M = \bigcup \{(\prec) | \langle T, (\prec) \rangle \in X\}$ . Покажем, что если  $\langle A, (\prec_A) \rangle \in X$ , то  $A \sqsubseteq M$ . Рассмотрим определение:

- ▶  $A \subseteq M$  выполнено по построению M;
- ▶ если  $a, b \in A$ , то  $a \prec_A b$  влечёт  $a \prec_M b$  (по построению M). Если же  $a \prec_M b$ , но  $a \not\prec_A b$ , то существует A', что  $a, b \in A'$  и  $a \prec_{A'} b$ . Тогда  $A \not\sqsubseteq A'$  и  $A' \not\sqsubseteq A$ , что невозможно по линейности порядка;
- lacktriangle если  $a\in A$ ,  $b\in M\setminus A$ , то найдётся B, что  $b\in B$ , отчего  $a\prec_B b$  (так как  $A\sqsubseteq B$ ) и  $a\prec_M b$  (по построению M).

Тогда  $\langle M, (\prec_M) \rangle$  — требуемая верхняя грань.

# Лемма Цорна ⇒ теорема Цермело

Пусть выполнена лемма Цорна и дано некоторое X. Покажем, что на нём можно ввести полный порядок.

- Ристь  $S = \{\langle P, (\prec) \rangle \mid P \subseteq X, (\prec)$  полный порядок $\}$ . Например, для  $X = \{0,1\}$  множество  $S = \{\langle \varnothing, \varnothing \rangle, \langle \{0\}, \varnothing \rangle, \langle \{1\}, \varnothing \rangle, \langle X, 0 \prec 1 \rangle, \langle X, 1 \prec 0 \rangle\}$
- ▶ Введём порядок на S как ( $\sqsubseteq$ ). Заметим, что это частичный, но не линейный порядок. Например,  $\langle X, 0 \prec 1 \rangle$  несравним с  $\langle X, 1 \prec 0 \rangle$ .
- ▶ По теореме о верхней грани любое линейно-упорядоченное подмножество  $\langle T, (\sqsubseteq) \rangle$  (где  $T \subseteq S$ ) имеет верхнюю грань. Например, для  $\{\langle \varnothing, \varnothing \rangle, \langle \{0\}, \varnothing \rangle, \langle X, 0 \prec 1 \rangle\}$  это  $\langle X, 0 \prec 1 \rangle$ .
- ▶ По лемме Цорна тогда есть  $\langle R, (\sqsubseteq_R) \rangle = \max S$ . Заметим, что R = X, потому что иначе пусть  $a \in X \setminus R$ . Тогда положив  $M = \langle R \cup \{a\}, (\sqsubseteq_R) \cup \{x \prec a \mid x \in R\} \rangle$  получим, что M тоже вполне упорядоченное (и потому  $M \in S$ ), значит, R не максимальное.

# Теорема Цермело $\Rightarrow$ существование обратной $\Rightarrow$ аксиома выбора

### Теорема

Теорема Цермело  $\Rightarrow$  у сюрьективных функций существует частичная обратная.

## Доказательство.

Рассмотрим сюрьективную  $f:A\to B$ . Рассмотрим семейство  $R_b=\{a\in A\mid f(a)=b\}$ . Построим полный порядок на каждом из  $R_b$ . Тогда  $f^{-1}(b)=\min R_b$ .

### Теорема

Существует частичная обратная у сюръективных функций  $\Rightarrow$  существует трансверсаль у дизъюнктных множеств.

## Доказательство.

Пусть дано семейство дизъюнктных множеств  $\{A_i\}$ . Рассмотрим  $f: \cup A_i \to \{A_i\}$ , что  $f(a) = \cup \{A_i \in \{A_i\} \mid a \in A_i\}$ . Поскольку  $A_i$  дизъюнктны,  $f(a) = A_i$  при всех a. Тогда существует  $f^{-1}(A_i) \in A_i$ . Тогда  $\{f^{-1}(A_i)\} \in \times \{A_i\}$ .

# Зачем нужна аксиома выбора?

### Определение

Пределом функции f в точке  $x_0$  по Коши называется такой y, что

$$\forall \varepsilon \in \mathbb{R}^+. \exists \delta \in \mathbb{R}^+. \forall x. |x-x_0| < \delta \rightarrow |f(x)-y| < \varepsilon$$

## Определение

Пределом функции f в точке  $x_0$  по Гейне называется такой y, что для любой  $x_n \to x_0$  выполнено  $f(x_n) \to y$ .

### Теорема

Если 
$$\lim_{x \to x_0} f(x) = y$$
 по Гейне, то  $\forall \varepsilon > 0. \exists \delta > 0. \forall x. |x - x_0| < \delta \to |f(x) - y| < \varepsilon.$ 

### Доказательство.

Пусть не так: 
$$\exists \varepsilon > 0. \forall \delta > 0. \exists x_\delta. |x_\delta - x_0| < \delta \ \& \ |f(x_\delta) - y| \ge \varepsilon.$$
 Фиксируем  $\varepsilon$  и возьмём  $\delta_n = \frac{1}{n}$  и  $p_n = x_{\delta_n}.$   $p_n \to x_0$ , так как  $|x_{\frac{1}{n}} - x_0| < \frac{1}{n}$ , по определению предела по Гейне  $f(p_n) \to y$ , но по предположению  $\forall n \in \mathbb{N}. |f(p_n) - y| \ge \varepsilon.$ 

## Теорема

Если  $\lim_{x \to x_0} f(x) = y$  по Гейне, то  $\forall \varepsilon > 0. \exists \delta > 0. \forall x. |x - x_0| < \delta \to |f(x) - y| < \varepsilon.$ 

### Доказательство.

Пусть не так:  $\exists \varepsilon > 0. \forall \delta > 0. \exists x_\delta. |x_\delta - x_0| < \delta \ \& \ |f(x_\delta) - y| \ge \varepsilon.$  Фиксируем  $\varepsilon$  и возьмём  $\delta_n = \frac{1}{n}$  и  $p_n = x_{\delta_n}.$   $p_n \to x_0$ , так как  $|x_{\frac{1}{n}} - x_0| < \frac{1}{n}$ , по определению предела по Гейне  $f(p_n) \to y$ , но по предположению  $\forall n \in \mathbb{N}. |f(p_n) - y| \ge \varepsilon.$ 

#### Пояснение

Для применения предела по Гейне нужна  $p_n$ : то есть  $p:\mathbb{N} \to \mathbb{R}$ .

# Теорема

Если  $\lim_{x \to x_0} f(x) = y$  по Гейне, то  $\forall \varepsilon > 0. \exists \delta > 0. \forall x. |x - x_0| < \delta \to |f(x) - y| < \varepsilon.$ 

## Доказательство.

Пусть не так:  $\exists \varepsilon>0. \forall \delta>0. \exists x_\delta. |x_\delta-x_0|<\delta \ \& \ |f(x_\delta)-y|\geq \varepsilon.$  Фиксируем  $\varepsilon$  и возьмём  $\delta_n=\frac{1}{n}$  и  $p_n=x_{\delta_n}.$   $p_n\to x_0$ , так как  $|x_{\frac{1}{n}}-x_0|<\frac{1}{n}$ , по определению предела по Гейне  $f(p_n)\to y$ , но по предположению  $\forall n\in \mathbb{N}. |f(p_n)-y|\geq \varepsilon.$ 

#### Пояснение

Для применения предела по Гейне нужна  $p_n$ : то есть  $p:\mathbb{N} \to \mathbb{R}.$ 

... Фиксируем  $\varepsilon$  и рассмотрим  $X_{\delta}=\{x\mid |x-x_0|<\delta\ \&\ |f(x)-y|\geq \varepsilon\}$ . Отрицание предела по Коши означает, что  $X_{\delta}\neq\varnothing$  при любом  $\delta>0$ .

## Теорема

Если  $\lim_{x \to x_0} f(x) = y$  по Гейне, то  $\forall \varepsilon > 0. \exists \delta > 0. \forall x. |x - x_0| < \delta \to |f(x) - y| < \varepsilon.$ 

### Доказательство.

Пусть не так:  $\exists \varepsilon > 0. \forall \delta > 0. \exists x_{\delta}. |x_{\delta} - x_{0}| < \delta \& |f(x_{\delta}) - y| \ge \varepsilon$ . Фиксируем  $\varepsilon$  и возьмём  $\delta_{n} = \frac{1}{n}$  и  $p_{n} = x_{\delta_{n}}.$   $p_{n} \to x_{0}$ , так как  $|x_{\frac{1}{n}} - x_{0}| < \frac{1}{n}$ , по определению предела по Гейне  $f(p_{n}) \to y$ , но по предположению  $\forall n \in \mathbb{N}. |f(p_{n}) - y| \ge \varepsilon$ .

#### Пояснение

Для применения предела по Гейне нужна  $p_n$ : то есть  $p:\mathbb{N} o\mathbb{R}.$ 

... Фиксируем  $\varepsilon$  и рассмотрим  $X_\delta = \{x \mid |x-x_0| < \delta \& |f(x)-y| \ge \varepsilon\}$ . Отрицание предела по Коши означает, что  $X_\delta \ne \varnothing$  при любом  $\delta > 0$ .

... То есть, по семейству  $Q:=\{X_1,X_{\frac{1}{2}},X_{\frac{1}{4}},\dots\}$  по аксиоме выбора построим  $q:Q\to \cup Q$ , что  $q(X_{\frac{1}{n}})\in X_{\frac{1}{n}}$ . Далее, взяв композицию  $p_n:=q(X_{\delta_n})$ , получаем  $p_n\to x_0$ , что  $\forall n\in \mathbb{N}.|f(p_n)-y|\geq \varepsilon$ .

# Предел по Коши влечёт предел по Гейне

## Теорема

Пусть  $\lim_{x\to x_0} f(x) = y$  и дана  $x_n \to x_0$ . Тогда  $f(x_n) \to y$ .

# Доказательство.

Фиксируем  $\varepsilon > 0$ .

- ▶  $\exists \delta > 0. \exists N \in \mathbb{N}. (\forall x. |x x_0| < \delta \rightarrow |f(x) y| < \varepsilon) \& (\forall n \in \mathbb{N}. n > N \rightarrow |x_n x_0| < \delta)$
- $(\forall x. |x x_0| < \delta \rightarrow |f(x) y| < \varepsilon) \rightarrow (|x_n x_0| < \delta \rightarrow |f(x_n) y| < \varepsilon) \text{ (cx. 11)}.$
- lacktriangle Поскольку  $\delta$  не используется в формуле,  $\exists \delta>0$  можно устранить.
- lackbox Отсюда  $\exists N \in \mathbb{N}. orall n \in \mathbb{N}. n > N 
  ightarrow |f(x_n) y| < arepsilon$

# Предел по Коши влечёт предел по Гейне

## Теорема

Пусть  $\lim_{x\to x_0} f(x) = y$  и дана  $x_n \to x_0$ . Тогда  $f(x_n) \to y$ .

# Доказательство.

Фиксируем  $\varepsilon > 0$ .

- ▶  $\exists \delta > 0. \exists N \in \mathbb{N}. (\forall x. |x x_0| < \delta \rightarrow |f(x) y| < \varepsilon) \& (\forall n \in \mathbb{N}. n > N \rightarrow |x_n x_0| < \delta)$
- $(\forall x. |x-x_0| < \delta \rightarrow |f(x)-y| < \varepsilon) \rightarrow (|x_n-x_0| < \delta \rightarrow |f(x_n)-y| < \varepsilon) \text{ (cx. 11)}.$
- $\exists \delta > 0. \exists N \in \mathbb{N}. \forall n \in \mathbb{N}. n > N \to |f(x_n) y| < \varepsilon.$
- lacktriangle Поскольку  $\delta$  не используется в формуле,  $\exists \delta>0$  можно устранить.
- lackbox Отсюда  $\exists N \in \mathbb{N}. orall n \in \mathbb{N}. n > N 
  ightarrow |f(x_n) y| < arepsilon$

Почему здесь не потребовалась аксиома выбора? Потому что нам нужен единственный  $\delta$ , а для него — единственный N

# Равенство и функции

Пример

Пусть  $A_0=\{0,1,3,5\}$  и  $A_1=\{3,5,1,0,0,5,3\}.$  Верно ли, что  $A_0=A_1$ ?

# Равенство и функции

## Пример

Пусть  $A_0=\{0,1,3,5\}$  и  $A_1=\{3,5,1,0,0,5,3\}$ . Верно ли, что  $A_0=A_1$ ? Да, так как  $\forall x.x \in \{0,1,3,5\} \leftrightarrow x \in \{3,5,1,0,0,5,3\}$ .

# Равенство и функции

### Пример

Пусть  $A_0=\{0,1,3,5\}$  и  $A_1=\{3,5,1,0,0,5,3\}$ . Верно ли, что  $A_0=A_1$ ? Да, так как  $\forall x.x\in\{0,1,3,5\}\leftrightarrow x\in\{3,5,1,0,0,5,3\}$ .

# Теорема (конгруэнтность)

Если  $f:A\to B$ , также  $a,b\in A$  и a=b, то f(a)=f(b).

### Доказательство.

Пусть  $F \subseteq A \times B$  — график функции f.

По определению функции,  $\forall x. \forall y_1. \forall y_2. \langle x, y_1 \rangle \in F \& \langle x, y_2 \rangle \in F \to y_1 = y_2.$ 

Также, если  $f(a)=y_1$ ,  $f(b)=y_2$ , то  $\langle a,y_1\rangle\in F$  и  $\langle b,y_2\rangle\in F$ .

Тогда:  $\langle a, y_1 \rangle = \langle b, y_1 \rangle = \langle b, y_2 \rangle = \langle a, y_2 \rangle$ , то есть  $f(a) = y_2 = f(b)$ .

# Теорема Диаконеску

#### Теорема

Если рассмотреть ИИП с ZFC, то для любого P выполнено  $\vdash P \lor \neg P$ .

#### Доказательство.

```
Рассмотрим \mathcal{B} = \{0,1\}, A_0 = \{x \in \mathcal{B} | x = 0 \lor P\} и A_1 = \{x \in \mathcal{B} | x = 1 \lor P\}. \{A_0,A_1\} — непустое семейство непустых множеств, и по акс. выбора существует f: \{A_0,A_1\} \to \cup A_i, что f(A_i) \in A_i. (Если P, то A_0 = A_1 и \{A_0,A_1\} = \{\mathcal{B}\}).
```

$$\vdash f(A_0) \in A_0 \& f(A_1) \in A_1$$
 а.выбора:  $f(A_i) \in A_i$    
  $\vdash f(A_0) \in \mathcal{B} \& (f(A_0) = 0 \lor P) \& f(A_1) \in \mathcal{B} \& (f(A_1) = 1 \lor P)$  а.выделения   
  $\vdash (f(A_0) = 0 \& f(A_1) = 1) \lor P$  Удал.  $(\&) +$  дистр.   
  $\vdash P \lor f(A_0) \neq f(A_1)$  0  $\neq 1$  и транз.

# Теорема Диаконеску

### Теорема

Если рассмотреть ИИП с ZFC, то для любого P выполнено  $\vdash P \lor \neg P$ .

### Доказательство.

```
Рассмотрим \mathcal{B} = \{0,1\}, A_0 = \{x \in \mathcal{B} | x = 0 \lor P\} и A_1 = \{x \in \mathcal{B} | x = 1 \lor P\}. \{A_0,A_1\} — непустое семейство непустых множеств, и по акс. выбора существует f: \{A_0,A_1\} \to \cup A_i, что f(A_i) \in A_i. (Если P, то A_0 = A_1 и \{A_0,A_1\} = \{\mathcal{B}\}).
```

```
\vdash f(A_0) \in A_0 \& f(A_1) \in A_1
                                                                                         а выбора: f(A_i) \in A_i
\vdash f(A_0) \in \mathcal{B} \& (f(A_0) = 0 \lor P) \& f(A_1) \in \mathcal{B} \& (f(A_1) = 1 \lor P)
                                                                                         а.выделения
\vdash (f(A_0) = 0 \& f(A_1) = 1) \lor P
                                                                                         Удал. (\&) + дистр.
\vdash P \lor f(A_0) \neq f(A_1)
                                                                                         0 \neq 1 и транз.
\vdash P \rightarrow A_0 = A_1
                                                                                         Определение A_i
\vdash A_0 = A_1 \to f(A_0) = f(A_1)
                                                                                         Конгруэнтность
\vdash f(A_0) \neq f(A_1) \rightarrow \neg P
                                                                                         Контрапозиция
\vdash P \lor \neg P
                                                                                         Подставили
```

# Слабые варианты аксиомы выбора

# Теорема (конечного выбора)

Если  $X_1 \neq \varnothing, \ldots, X_n \neq \varnothing$ ,  $X_i \cap X_j = \varnothing$  при  $i \neq j$ , то  $\times \{X_1, \ldots, X_n\} \neq \varnothing$ .

## Доказательство.

- lacktriangle База: n=1. Тогда  $\exists x_1.x_1 \in X_1$ , поэтому  $\exists x_1.\{x_1\} \in imes \{X_1\}$ .
- Переход:

$$\exists v.v \in \times \{X_{1,n}\} \to \exists x_{n+1}.x_{n+1} \in X_{n+1} \to v \cup \{x_{n+1}\} \in \times (X_{1,n} \cup \{X_{n+1}\})$$

# Аксиома (счётного выбора)

Для счётного семейства непустых множеств существует функция, каждому из которых сопоставляющая один из своих элементов

# Аксиома (зависимого выбора)

если  $\forall x \in E.\exists y \in E.xRy$ , то существует последовательность  $x_n: \forall n.x_nRx_{n+1}$ 

# Теорема Диаконеску и конечный выбор

Заметим, что семейство  $\{A_0,A_1\}$  из теоремы Диаконеску в ИИП не является конечным (равно как и бесконечным).

#### Определение

Конечное множество — равномощное некоторому конечному кардинальному числу.

- Какова мощность семейства?
- ▶ 1, если P, и 2, если ¬P.
- ▶ Но поскольку  $P \lor \neg P$  не выполнено в ИИП, мы не можем доказать, что мощность семейства 1 или 2.
- Поэтому мы не можем воспользоваться теоремой конечного выбора.

# Наследственные фундированные множества

### Определение

Наследственным свойством множества назовём такое свойство, которым обладает как само множество, так и все его подмножества.

## Определение

Фундированным множеством назовём такое, которое не пересекается хотя бы с одним своим элементом.

## Определение

Аксиома фундирования. В каждом непустом множестве найдется элемент, не пересекающийся с исходным множеством.

$$\forall x. x = \emptyset \lor \exists y. y \in x \& \forall z. z \in x \to z \notin y$$

Иными словами, в каждом множестве есть элемент, минимальный по отношению  $(\in)$ .

# Каковы возможные модели для теории множеств?

### Определение

Универсум фон Неймана V — все наследственные фундированные множества.

При наличии аксиомы фундирования можно показать, что  $V=\cup_a V_a$ , где:

$$V_a = \left\{egin{array}{ll} arnothing, & a=0\ \mathcal{P}(V_b), & a=b'\ igcup_{b < a}(V_b), & a-$$
предельный

#### Определение

Конструктивный универсум  $L=\cup_a L_a$ , где:

$$L_a = \left\{ egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{array}{ll} egin{array}{ll} eta, & a = 0 \ \{\{x \in L_b \mid arphi(x,t_1,\ldots,t_k)\} \mid arphi - \phi$$
ормула,  $t_i \in L_b\}, & a = b' \ igcup_{b < a}(L_b), & a - \pi p e g. \end{array} 
ight.$ 

# Усиление аксиомы выбора

### Определение

Аксиома конструктивности: V = L, то есть допустимы только те фундированные множества, которые задаются формулами.

### Теорема

Аксиома выбора и континуум-гипотеза следуют из аксиомы конструктивности Для некоторых теорий аксиома слишком сильна.

# Заключительный обзор

Конструктивность теории — насколько легко строить сложные объекты в ней:

- 1. Неконструктивные теории допускают доказательства чистого существования произвольных по сложности объектов.
- 2. Конструктивные теории: требуют процесс построения (желательно конечный или хотя бы счётный), состоящий из интуитивно-понятных шагов.

Аксиома выбора и её рассмотренные варианты влияют на её конструктивность:

- 1. КИП + ЦФ + Акс. выбора: менее конструктивна. Например, возможно показать существование разбиения шара на 5 частей, из которых можно составить два шара, равных исходному (теорема Банаха-Тарского). Интуитивно нарушается аддитивность объёма (формального парадокса нет).
- 2. КИП + ЦФ
- 3. ИИП + ЦФ: более конструктивна. Она проще формализуется с помощью компьютера, но мат. анализ в ней сложнее и довольно сильно отличается от классического.