UNIVERSIDAD FRANCISCO MARROQUÍN

Álgebra Lineal sección "A"

Profesor: Christiaan Ketelaar

Auxiliar: Carlos Morales

Laboratorio # 2 Python:

Instalación de paquetes
 En la parte inferior de pycharm, dar click en "Terminal"

escribir "sudo pip install numpy" sin las comillas:

```
Terminal: Local × +

(venv) Carloss-MacBook:Pycharm carlosmorales$ sudo pip install numpy

Password:
```

al presionar Enter les pedirá la contraseña de su computadora, después de ingresarla y presionar Enter se procederá a instalar el paquete de numpy.

*Realizar el mismo procedimiento para instalar:

sympy: "sudo pip install sympy"

matplotlib: "sudo pip install matplotlib"

Comandos básicos de matplotlib para python

Usaremos la libería matplotlib para generar gráficas de ecuaciones lineales y de desigualdades lineales. Documentación https://matplotlib.org y Lab2.py adjunto en el zip.

Comandos básicos Matplotlib:

- plt.plot
- plt.axhline

- plt.axvline
- plt.title

- plt.grid
- plt.xlim

plt.ylim

plt.show()

plt.figure()

plt.savefig

El archivo Lab2.py que se encuentra en las instrucciones, contiene el ejemplo de como graficar 4 funciones, encontrar sus interceptos en X y Y, rellenar la región limitada, da como resultado lo siguiente:

R:

1. Instalación de paquetes: hacer click en packages, después en install, buscar la librería que se quiere instalar y dar click en install

*Realizar el mismo procedimiento para instalar: tidyverse

Comandos básicos de ggplot para R

Usaremos la libería ggplot para generar gráficas de ecuaciones lineales y de desigualdades lineales. Documentación https://ggplot2.tidyverse.org/reference/ggplot.html Lab2.R adjunto en el zip.

Al correr el archivo Lab2.R, como resultado tendremos 2 gráficas, tomar en cuenta que se debe graficar una por una para visualizar y poder exportarlas.

Comparativa comandos Python vs R

Python	R
def	function
range(-10,10)	c(-10,10)
plt.plot	ggplot
plt.axhline	aes(x = x)
plt.axvline	aes(y = y)
plt.title	ggtitle
plt.grid	
plt.xlim	scale_x_continuous
plt.ylim	scale_y_continuous
plt.legend	aes(colour = " ")
plt.show	
plt.figure	No es necesario
plt.savefigure	ggsave
plt.fill	geom_polygon
solve	uniroot

Ejercicio.

- 1. Grafique en Python las funciones lineales (todas en la misma gráfica), agregue títulos, leyendas y ajuste la escala de las gráficas: (30 pts.)
- 2. Grafique en R las funciones lineales (todas en la misma gráfica), agregue títulos, leyendas y ajuste la escala de las gráficas: (30 pts.)

$$f1(x) = 2x - 10$$
 $f2(x) = 6 - x$ $f3(x) = x + 6$

3. Grafique la región factible de las funciones tanto en Python cono en R (40 pts.)