A MATLAB Tour of Morphological Filtering

Dilation

$$Y = X \oplus B = \bigcup_{b \in B} X_b = \bigcup_{x \in X} B_x = B \oplus X$$

Erosion

$$Y=X \bigcirc B = \{x: B_x \subset X\}$$

Erosion

X

$$Y=X \bigcirc B$$

0

```
>X=zeros(6,7);X(2:3,4:6)=1;X(4:5,3:5)=1;
>se=[0 1;1 1];
>Y=imerode(X,se);
```

Relationship Between Dilation and Erosion

$$(X \bigcirc B)^c = X^c \oplus \hat{B}$$

```
>se1=[0 1;1 1];
>se2=fliplr(flipud(se1));
>X1=imdilate((1-X),se2)
>X2=1-imerode(X,se1)
```

Opening

$$X \circ B = (X \bigcirc B) \oplus B$$

X

 \circ

mask B

 $X \circ B$

>X=zeros(6,9);X(3:5,2:4)=1; >X(3:5,6:8)=1;X(5,5)=1;X(2,7)=1 >se=strel('square',3); >Y=imdilate(imerode(X,se),se); %Y=bwmorph(X,'open');

Closing

$$X \bullet B = (X \oplus B) \bigcirc B$$

$$X$$
 • • • • • •

$$X \circ B$$

```
>X=zeros(6,9);X(3:5,2:4)=1;
>X(3:5,6:8)=1;X(5,5)=1;X(2,7)=1
>se=strel('square',3);
>Y=imerode(imdilate(X,se),se);
%Y=bwmorph(X,'close');
```

Relationship Between Opening and Closing

$$(X \bullet B)^C = X^C \circ \hat{B}$$

$$(X \circ B)^C = X^C \bullet \hat{B}$$

```
>se=strel('line',10,45);
>se2=fliplr(flipud(se));
```

$$>X1=\sim imopen(X,se);$$

$$>X1=\sim imclose(X,se);$$

$$>$$
X2=imopen(\sim X, se2);

Hit-Miss Operator

$$X \circledast B = (X \bigcirc B_1) \cap (X^c \bigcirc B_2)$$

 $mask B_1 mask B_2$

0 0 0

```
>bw = [0 0 0 0 0 0;

0 0 1 1 0 0;

0 1 1 1 1 0;

0 1 1 1 1 0;

0 0 1 1 0 0;

0 0 1 0 0 0]

>se = [0 -1 -1;

1 1 -1; 0 1 0];

>bw2 = bwhitmiss(bw,se)
```

Boundary Extraction

$$\partial X = X - (X \bigcirc B)$$

- X=zeros(8,11);X(2:4,4:8)=1;X(5:7,2:10)=1;
- > se=strel('square',3);
- >Y=X-imerode(X,se);
- %Y=imdilate(X,se)-X;

Image Example

Region Filling

Pseudo Codes of Region Filling

Iterations: expansion stop at the boundary $Y_0 = P \qquad \qquad Y_k = (Y_{k-1} \oplus B) \cap X^c, \ k=1,2,3\dots$

Terminate when $Y_k = Y_{k-1}$, output $Y_k \cup X$

MATLAB
Codes
of
Region
Filling

```
function out=region_fill(in,pos,kernel)

current=zeros(size(in));
last=current;
last(pos(1),pos(2))=1;
current=imdilate(last,kernel)&~in;
while any(current(:)~=last(:));
    last=current;
    current=imdilate(last,kernel)&~in;
end
out=current+in;
```

Image Example

Y

Ζ

```
>se=strel('square',3);
>r=round(size(Y,1)/2);
```

- > c = round(size(Y,2)/2);
- >Z=region_fill(Y,[r,c],se);

Thinning

$$X_0=X$$

$$X_k=(\ldots(\ (X_{k-1}\otimes B^1)\otimes B^2\ \ldots\otimes B^8)$$

where $X \otimes B=X-X(*)$ B

Stop the iteration when $X_k = X_{k-1}$

Question unanswered on the blackboard: For $B^2,...,B^8$, do they operate on $X_{k-1} \otimes B^1$ or X_{k-1} ?

MATLAB Implementation

function y=thinning(x,iter)

```
se{1}=[-1 -1 -1;0 1 0;1 1 1];
                                y=x;z=x;
                                                                 Scheme
se{2}=[0-1-1;11-1;110];
                               for i=1:iter
                                                                    Α
se{3}=fliplr(rot90(se{1}));
                                for k=1:8
se{4}=flipud(se{2});
                                y=y&\sim bwhitmiss(y,se\{k\});
se{5}=flipud(se{1});
                                y=y\&\sim bwhitmiss(z,se\{k\});
se{6}=fliplr(se{4});
                                end
se{7}=fliplr(se{3});
                                z=y;
                                                                 Scheme
se{8}=fliplr(se{2});
                                end
                                                                    B
```

Which One is Right?

Original image

Scheme A Scheme B

Result by Using BWMORPH

Scheme A

Scheme B

> y=bwmorph(x,'thin',inf);

Summary of Morphological Filtering

Operation	Equation	Comments (The Roman numerals refer to the structuring elements shown in Fig. 9.26).	MATLAB codes
Translation	$(A)_z = \{w \mid w = a + z, \text{ for } a \in A\}$	Translates the origin of A to point z .	circshift(A,z)
Reflection	$\hat{B} = \{ w \mid w = -b, \text{ for } b \in B \}$	Reflects all elements of B about the origin of this set.	fliplr(flipud(B))
Complement	$A^c = \{w \mid w \notin A\}$	Set of points not in A.	│ ~A or 1-A
Difference	$egin{aligned} oldsymbol{A} - oldsymbol{B} &= \{ oldsymbol{w} oldsymbol{w} \in oldsymbol{A}, oldsymbol{w} otin oldsymbol{B}^c \ &= oldsymbol{A} \cap oldsymbol{B}^c \end{aligned}$	Set of points that belong to A but not to B.	A &~B
Dilation	$A \oplus B = \{z \mid (\widehat{B})_z \cap A \neq \emptyset\}$	"Expands" the boundary of A. (I)	imdilate(A,B)
Erosion	$A\ominus B=\big\{z (B)_z\subseteq A\big\}$	"Contracts" the boundary of A. (I)	imerode(A,B)
Opening	$A \cdot B = (A \oplus B) \oplus B$	Smoothes contours, breaks narrow isthmuses, and eliminates small islands and sharp peaks. (I)	imopen(A,B)
Closing	$A \cdot B = (A \oplus B) \ominus B$	Smoothes contours, fuses narrow breaks and long thin gulfs, and eliminates small holes. (I)	imclose(A,B)

Summary (Con'd)

$= (A \ominus B_1) - (A \oplus \hat{B}_2)$	(coordinates) at which, simultaneously, B_1 found a match ("hit") in A and B_2 found a match in A^c .	bwhitmiss(A,B)
$\beta(A) = A - (A \ominus B)$	Set of points on the boundary of set A. (I)	A&~(imerode(A,B))
$X_k = (X_{k-1} \oplus B) \cap A^c; X_0 = p \text{ and } k = 1, 2, 3, \dots$	Fills a region in A, given a point p in the region. (II)	region_fill.m
$A \otimes B = A - (A \oplus B)$ $= A \cap (A \oplus B)^{c}$ $A \otimes \{B\} =$ $\{(\dots ((A \otimes B^{1}) \otimes B^{2}) \dots) \otimes B^{n})$ $\{B\} = \{B^{1}, B^{2}, B^{3}, \dots, B^{n}\}$	Thins set A. The first two equations give the basic definition of thinning. The last two equations denote thinning by a sequence of structuring elements. This method is normally used in	bwmorph(A,'thin');
	$\mathcal{B}(A) = A - (A \oplus B)$ $X_k = (X_{k-1} \oplus B) \cap A^c; X_0 = p \text{ and } k = 1, 2, 3,$ $A \otimes B = A - (A \oplus B) = A \cap (A \oplus B)^c$ $A \otimes \{B\} = \{(\dots ((A \otimes B^1) \otimes B^2) \dots) \otimes B^n\}$	$= (A \ominus B_1) - (A \oplus \hat{B}_2)$ $= (A \ominus B_1) - (A \oplus \hat{B}_2)$ $= (A \ominus B_1) - (A \oplus \hat{B}_2)$ $= (A \ominus B_1) - (A \oplus B_2)$ $= (A \ominus B_1) - (A \oplus B_2)$ $= (A \ominus B_1) - (A \oplus B_2)$ $= (A \ominus B_1) - (A \ominus B_2)$ Simultaneously, B_1 found a match in A^c . Set of points on the boundary of set A . (I) Fills a region in A , given a point p in the region. (II) $A \otimes B = A - (A \oplus B_2)$ $= A \cap (A \oplus B_2)$ Thins set A . The first two equations give the basic definition of thinning. The last two equations denote thinning by a sequence of structuring elements. This method