Izomorfizm Curry'ego-Howarda

Rafał Szczerski

2018 Październik

1 IPC(\rightarrow)

1.1 Język elementarny

Definicja 1.

• Zbiorem Φ formuł IPC(\rightarrow) nazywamy język generowany przez gramatykę

$$\Phi \coloneqq V \mid (\Phi \to \Phi) \mid \bot$$

$$V \coloneqq_{D} \mid V'$$

- Wyrażenia powstałe z produkcji V nazywamy zmiennymi zdaniowymi. Zmienne zdaniowe oraz 1 są formułami atomowymi. Pozostałe wyrażenia nazywamy formułami złożonymi.
- W języku podmiotowym wprowadzamy następujące oznaczenia

$$\lceil \neg \varphi \rceil := \lceil \varphi \to \bot \rceil$$

$$\lceil \top \rceil := \lceil \bot \to \bot \rceil$$

Konwencja.

- 1. Zamiast p', p'', p''', ... używamy kolejno liter p, q, r, ...
- 2. Zmienne metasyntaktyczne oznaczamy późniejszymi literami greckiego alfabetu, tj. φ, ψ, \dots
- $3. \rightarrow jest \ laccina \ w \ prawo.$
- 4. \neg ma najwyższy priorytet, \rightarrow najniższy.
- 5. Pomijamy najbardziej zewnętrzne nawiasy.

1.2 Implikacyjny fragment dedukcji naturalnej

Definicja 2.

• Wprowadzamy relację wyprowadzalności $\vdash \subset \mathcal{P}(\Phi) \times \Phi$ spełniającą poniższe reguły:

$$\Gamma, \varphi \vdash \varphi \text{ (Ax)}, \quad \frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi} \text{ (\rightarrowI)}, \quad \frac{\Gamma \vdash \varphi \to \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi} \text{ (\rightarrowE)}.$$

Każdy element relacji \vdash nazywamy sqdem.

- 1. W korzeniu drzewa znajduje się sąd $\Gamma \vdash \varphi.$
- 2. Liście są aksjomatami, tj. sądami postaci $\Gamma, \varphi \vdash \varphi.$
- $3.\,$ Każdego rodzica można otrzymać z jego dzieci przez zastosowanie którejś z reguł wyprowadzania nowych sądów.

Definicja 3. Dwójkę (Φ, \vdash) nazywamy *implikacyjnym fragmentem logiki intuicjonistycznej* i oznaczamy $NJ(\rightarrow)$.

1.3 Semantyka

Twierdzenie 1. (O pełności) System dedukcyjny $\mathrm{NJ}(\to)$ jest pełny względem modeli Kripkego.

Literatura