universität freiburg

Measure theory for probabilists

Winter semester 2024

Lecture: Prof. Dr. Peter Pfaffelhuber

Assistance: Samuel Adeosun

https://pfaffelh.github.io/hp/2024WS_measure_theory.html

https://www.stochastik.uni-freiburg.de/

Tutorial 13 - Product spaces I

Exercise 1 (4 Points).

Prove Lemma 5.19 (Convolution of distributions with densities): let λ be a measure on $\mathcal{B}(\mathbb{R})$, $\mu = f_{\mu} \cdot \lambda$ and $\nu = f_{\nu} \cdot \lambda$ for measurable densities $f_{\mu}, f_{\nu} : \mathbb{R} \to \mathbb{R}_{+}$. Then $\mu * \nu = f_{\mu * \nu} \cdot \lambda$ with

$$f_{\mu*\nu}(t) = \int f_{\mu}(s) f_{\nu}(t-s) \lambda(ds).$$

Hint: Theorem 5.13 (Fubini's theorem)!

Exercise 2 (4 Points).

Show the following convolution formulas.

(a) Let $f_{\Gamma(\theta,r)}$ and $f_{\Gamma(\theta,s)}$ be the density functions of two gamma distributions, where θ is the scale parameter and r and s are the shape parameters, with $\theta > 0$ and r,s > 0. Show that

$$f_{\Gamma(\theta,r)} * f_{\Gamma(\theta,s)} = f_{\Gamma(\theta,r+s)}.$$

(b) Let $f_{\text{Cau}(r)}$ and $f_{\text{Cau}(s)}$ be the density functions of two Cauchy distributions, where r and s are the scale parameters, with r,s>0. Show that

$$f_{\operatorname{Cau}(r)} * f_{\operatorname{Cau}(s)} = f_{\operatorname{Cau}(r+s)}.$$

Note: The density function of a Gamma distribution and a Cauchy distribution is given (respectively) by

$$f_{\Gamma(\theta,r)}(x) = \frac{1}{\Gamma(r)\theta^r} x^{r-1} e^{-x/\theta} \quad \text{for } x > 0, \quad \text{and} \quad f_{\operatorname{Cau}(r)}(x) = \frac{1}{\pi r \left(1 + \left(\frac{x}{r}\right)^2\right)} \quad \text{for } x \in \mathbb{R}.$$

Exercise 3 (4 Points).

Let μ_i , i = 1,2 be two σ -finite measures on $(\mathbb{R},\mathcal{B}(\mathbb{R}))$. Let $D_i = \{x : \mu_i(\{x\}) > 0\}, i = 1,2$.

- (a) Show that $D_1 \cup D_2$ is countable.
- (b) Let $\varphi_i(x) = \mu_i(\{x\})$ for $x \in \mathbb{R}$, i = 1,2. Show that φ_i is Borel measurable for i = 1,2.
- (c) Show that

$$\int \varphi_1 d\mu_2 = \sum_{z \in D_1 \cap D_2} \varphi_1(z) \varphi_2(z).$$

Exercise 4 (4 Points).

Let X be the unit interval [0,1] with Lebesgue measure λ (and the Lebesgue σ -algebra $\mathcal{L}([0,1])$). Let Y be the unit interval [0,1] with counting measure μ (and the discrete σ -algebra $2^{[0,1]}$). Let $f := 1_E$ be the indicator function of the diagonal $E := \{(x,x) : x \in [0,1]\}$.

- (a) Show that f is measurable in the product σ -algebra.
- (b) Show that

$$\int_X \left(\int_Y f(x,y) \, d\mu(y) \right) d\lambda(x) = 1.$$

(c) Show that

$$\int_{Y} \left(\int_{X} f(x,y) \, d\lambda(x) \right) d\mu(y) = 0.$$

(d) Discuss why the results obtained in (b) and (c) do not contradict Fubini's theorem.