

WHAT IS CLAIMED IS:

1 1. A method for calibrating laser pulses from a laser eye surgery system
2 using an image capture device, the method comprising:

3 imaging a known object with an image capture device;
4 directing a pulsed laser beam onto a calibration surface so as to leave a mark
5 on the calibration surface;

6 imaging the mark on the calibration surface with the image capture device;
7 and

8 calibrating the laser eye surgery system by comparing the image of the mark
9 on the calibration surface to the image of the known object.

1 2. The method of claim 1, wherein the imaged object comprises a circular
2 shape having a known diameter.

1 3. The method of claim 2, wherein the known object comprises a circular
2 chrome layer on a glass plate.

1 4. The method of claim 1, further comprising removing the known object
2 prior to directing the pulsed laser beam onto the calibration surface.

1 5. The method of claim 1, wherein the imaging of the known object and
2 of the mark on the calibration surface is carried out in the same position.

1 6. The method of claim 1, wherein the directing and imaging are carried
2 out in the same plane.

1 7. The method of claim 1, wherein the directing and imaging are carried
2 out in at least one of a laser focus plane or a treatment plane, and wherein imaging of the
3 known object and imaging of the mark on the calibration surface are performed along an
4 imaging optical path coaxial with a laser optical path.

1 8. The method of claim 1, wherein the calibration surface comprises
2 photosensitive material, silkscreen material, Zapit paper, luminescent material, or
3 photographic material.

1 9. The method of claim 8, wherein the mark on the calibration surface
2 comprises a permanent change in color or a luminescent glow.

1 10. The method of claim 1, wherein the calibration surface comprises
2 photoreactive material or polymethylmethacrylate material.

1 11. The method of claim 10, wherein the mark on the calibration surface
2 comprises an ablation.

1 12. The method of claim 1, wherein the mark on the calibration surface has
2 a diameter setting in a range from about 0.65 mm to about 6.7 mm.

1 13. The method of claim 1, further comprising increasing the pulsed laser
2 beam diameter setting over time so as to form a plurality of marks, imaging the marks, and
3 comparing the marks to the known object.

1 14. The method of claim 13, further comprising decreasing the pulsed laser
2 beam diameter setting over time.

1 15. The method of claim 14, further comprising determining a hysteresis
2 of a variable aperture.

1 16. The method of claim 1, further comprising determining a relationship
2 between laser beam diameter and motor counts associated with an iris setting.

1 17. The method of claim 1, further comprising determining a shape of the
2 laser beam.

1 18. The method of claim 1, further comprising determining a center
2 position of the laser beam.

1 19. The method of claim 1, further comprising determining a drift of the
2 laser eye surgery system by monitoring a variance in center positions for each scanned and
3 imaged laser pulse.

1 20. The method of claim 1, further comprising determining a laser beam
2 deflection.

1 21. The method of the claim 1, further comprising rotating an optical
2 element along a laser delivery path and identifying a rotation-induced laser induced wobble
3 from a plurality of marks.

1 22. The method of claim 1, further comprising ablating a patient's cornea
2 with the calibrated system.

1 23. A method for calibrating laser pulses from a laser eye surgery system
2 using a microscope camera, the method comprising:

3 imaging a known object with a microscope camera;

4 scanning a pulsed laser beam across a photosensitive material so as leave an
5 ablation on the photosensitive material;

6 imaging the ablation on the photosensitive material with the microscope
7 camera;

8 determining an iris calibration of a laser eye surgery system by comparing the
9 image of the ablation on the photosensitive material to the image of the known object; and
10 ablating a patient's cornea with the calibrated system.

1 24. A system for calibrating laser pulses from a laser beam delivery system
2 comprising:

3 an image capture device orientated toward a treatment plane;

4 a known object positionable for imaging by the image capture device;

5 a pulsed laser beam delivery system;

6 a calibration surface supportable in an optical path of the pulsed laser beam so
7 as to result in a mark on the calibration surface and for imaging of the mark on the calibration
8 surface by the image capture device; and

9 a processor coupled to the image capture device, the processor determining a
10 calibration of the laser beam delivery system by comparing the image of the mark on the
11 calibration surface to the image of the known object.

1 25. The system of claim 24, wherein the image capture device comprises a
2 microscope camera.

1 26. The system of claim 24, wherein the known object comprises a circular
2 chrome layer of known diameter on a glass plate.

1 27. The system of claim 24, wherein the known object and calibration
2 surface are imaged in the same position.

1 28. The system of claim 24, wherein the known object and calibration
2 surface are positioned in at least one of a laser focus plane or the treatment plane.

1 29. The system of claim 24, wherein the laser beam delivery system
2 comprises a laser eye surgery system.

1 30. The system of claim 24, wherein the calibration surface comprises
2 photosensitive material, silkscreen material, Zapit paper, luminescent material, photoreactive
3 material, polymethylmethacrylate material, or photographic material.

1 31. The system of claim 30, wherein the mark on the calibration surface
2 comprises an ablation, a permanent change in color, or a luminescent glow.

1 32. The system of claim 24, wherein the mark on the calibration surface
2 has an iris setting in a range from about 0.65 mm to about 6.7 mm.