HW due Friday, 1/14	
1.1:14, 20,30 1.2:10,44,45 (use calculator for 45)	
1.2:10, 44, 45 (use calculator for 45)	
HW due Friday, 1/21	
1.3: 4,48ab, 58 2.3: 2,48'	
Last time Matrix Operations and linear combinations	
Putting it all together	
The Linear system of equations with augmented matrix	
$(A; \vec{b})$ can be written $A\vec{x} = \vec{b}$ in matrix form.	
Eg $\{x_1 + x_2 = 5\}$ Augmented matrix $\{1, 1, 5\}$	
$Majrix$ form: $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 5 \\ 1 \end{pmatrix}$	
NIS (5) a linear combination of { (1) (1) }?	
In other words, is there on X, X2 such that	
(1)	
$\left(\begin{array}{c} \chi_{i}(\cdot) + \chi_{i}(\cdot) = \begin{pmatrix} 5 \\ 1 \end{pmatrix}\right)$	
VSare as solving linear system!	
(115)(115)(15) R_=RR_2(10)	
$X_1 = 3$, $X_2 = 2$	
$50 \ 3(1) \ (2) \ (1) = (5)$	
50 , $3\binom{1}{1} + 2\binom{1}{-1} = \binom{5}{1}$	

```
Chech (23 34) \frac{1}{7} (19 12) = (12) (56) \frac{1}{3} (46) \frac{1}{7} (43 50) = (12) (56) \frac{1}{3} (46) \frac{1}{7} (43 50) = (12) (56) \frac{1}{7} (43 50) = (12) (56) = (12) (56) = (13) = (14) (15) = (15) = (15) = (15) = (15) = (15) = (17) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) = (18) 
             Then, the i,j-entry of BA is & bik aking the state of the bik aking the bik aking the state of the bik aking the bik akin
             Trick (56)
                                                                                       (1 2) (19 22)
(3 4) (43 50)
                    Some Matrix Product Rules
                  This a) For A an nxm matrix
                                                                                                    A = 1 \cdot A = 
                                                                                                                                                                                              AI_m = A = I_nA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                = \begin{pmatrix} 1 & 1 & 1 \\ \vec{e}_1 & \vec{e}_2 & \cdots & \vec{e}_k \end{pmatrix}
                                                                                               (\star) A \tilde{e}_i = \begin{pmatrix} a_i, \\ \vdots \\ a_i \end{pmatrix}
                                                                                         b) (AB)C = A(BC), so we can write ABC
```

Let
$$C = (\vec{v}, \dots, \vec{v}_n)$$
, then $(AB)C = (AB)\vec{v}_n \dots (AB)\vec{v}_n$

and $A(BC) = (AB)\vec{v}_n \dots A(B)\vec{v}_n$

AB = $A(\vec{v}_n \dots \vec{v}_p) = (A\vec{v}_n - A\vec{v}_p)$

So, $(AB)\vec{v}_n = C_nA\vec{v}_n + \dots + C_pA\vec{v}_p$

and $A(B\vec{v}_n) = A(C_n\vec{v}_n + \dots + C_pA\vec{v}_p)$

C) If A and B are nxp natrices and Can D are pxn retries, then $A(C+D) = AC + AD$
 $(A+B)C = AC + BC$

J) If A is an nxp retrix, B is a pxn retrix, and k is a Scalar,

 $(AB)\vec{v}_n = A(AB)\vec{v}_n + \dots + C_pA\vec{v}_p$

why nultiply ratrices?

A nx retrix

B A

 $\vec{v} \in \mathbb{R}^n \mapsto A\vec{v} \subset \mathbb{R}^n$