Math 280 A Fall '21

Administrative

(See Canvas for details)

· Lectures recorded by EVT and podcast System. sign up! Media Gallery

Canvas

- · Piazza for discussion
- · Gradescope for Homework

- Reference list at
 math. ucsd. edu/~pfitz
 click on 280 A link
 - Course Grade based on HW
 assignments (7 or 8 in total).

Math 280 content

A: Goal is SLLN (Chap. 1-7)

- · probability space
- random variable
- · expectation (= integration)
- · independence
- · modes of convergence

(3)

B: CLT \(\overline{\text{X}}_n = \mu + \frac{\sigma}{\sigma} \(\overline{\text{Z}} + \ldots \)

Martingale (key tool in modern probability)

C: Markov Chains Brownian Motion

Ergodic Theory or Poisson process

Preview Borel's Strong Law of Large Numbers X, x2, ... i.i.d. Bernoulli r.v. s $P(X_k = 1) = P(X_k = -1) = \frac{1}{2}$

$$E(X_{k}) = 0$$
 $Van(X_{k}) = 1$

Define
$$\overline{X}_n = \frac{1}{n} \sum_{k=1}^n X_k$$
 ("running average")

SLLN: $\overline{X}_n \rightarrow 0$ a.s., $n \rightarrow \infty$

That is
$$P\left(\lim_{n\to\infty} X_n = 0\right) = 1$$
(C)

Notice
$$E(\bar{X}_n) = 0$$

 $Van(\bar{X}_n) =$

$$Van(\bar{X}_n) = \frac{1}{n}$$

$$E[\bar{X}_n] = \frac{3}{n^2} - \frac{2}{n^3} \le \frac{3}{n^2}$$

$$\frac{\infty}{\sum_{n=1}^{\infty} E\left(\frac{y}{x_n}\right)} \leq \frac{x}{\sum_{n=1}^{\infty} \frac{y}{x_n}} = \frac{\pi^2}{2} \leq \infty$$

$$\sum_{n=1}^{\infty} E\left(\frac{y}{x}\right) \leq \sum_{n=1}^{\infty} \frac{3}{n^2} = \frac{\pi^2}{2} < \infty$$

If this sum diverged we assign it value
$$+\infty$$

$$P\left(\sum_{i=1}^{\infty} x_{i} < \infty\right) = 1$$

$$P\left(\lim_{i \to \infty} x_{i} = 0\right) = 1$$

$$P(dim = 0) = 1$$

...
$$P\left(\lim_{N\to\infty} X_n = 0\right) = 1$$
(Needs only $E(X_k) = 0$, $E(X_k') < \infty$)

σ-field (aka σ-algebra)

Ω non-empty set "sample space"

$$A$$
 σ-field is a collection $B \subset P(\Omega)$

such that

 (1) $\emptyset \in B$
 (2) $B \in B \Rightarrow B \in B$
 (3) B_1 , B_2 , ... $\in B \Rightarrow 0$ $B_n \in B$

(2) is "closure under formation of complements"

(3) is "closure under formation of countable unions"

Because of (1), if B, B2, ---, Bn are & B

then so is 0 B 1 B, B, B, B, 1 B, 1

10

It is a field ((a,a)= β) but is not a σ -field: $0, 1- \frac{1}{n} = (0,1) \notin A$ Ex. 2 Generators or bitrary

 $C \subset \mathcal{O}(\Omega)$

o(C) = n{B: B is a r-field, B>Cb

= T-field generated by C

If $A \subset \Omega$ then

 $A \in \sigma(C)$ iff

= least o-field containing C

A e B for each σ -field B > C (12

Another way to say this: o (C) is a o-field containing C, and if B is another σ -field containing C then o (C) ⊂ B.

Important Special Cate A as in Qx. 1 orl A) is called the Borel o-field on (0,1)

Similarly $G(R) = \sigma(\{(-\infty, 6]: b \in R\}).$

14)