EASYBUILDER PRO

быстрый старт

мнемосхема

СОДЕРЖАНИЕ

ОБОБЩЕННАЯ СХЕМА СИСТЕМЫ УПРАВЛЕНИЯ	
СХЕМА АВТОМАТИЗАЦИИ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА	4

ПЛК

ПАНЕЛЬ

ЗАДАНИЕ

MODBUS

- ТИПЫ ДАННЫХ
- ТАБЛИЦЫ РЕГИСТРОВ

EASYBUILDER

- НОВЫЙ ПРОЕКТ
- НАСТРОЙКА СВЯЗИ С ПЛК
- ТЕГИ
- ПОЛЬЗОВАТЕЛЬСКИЕ ТЕГИ
- МАКРОСЫ
- МЕТКИ
- ПОЛЬЗОВАТЕЛЬСКИЕ ИЗОБРАЖЕНИЯ
- ГЛАВНЫЙ ЭКРАН
- ЭКРАН МЕНЮ
- КОМПИЛЯЦИЯ ПРОЕКТА

СИМУЛЯЦИЯ

- ВВЕДЕНИЕ
- ПЛК / ЭМУЛЯТОР MODBUS
- ПАНЕЛЬ / EASYBUILDER
- ПРИМЕР 1
- ПРИМЕР 2
- ПРИМЕР 3
- ПРИМЕР 4
- ПРИМЕР 5
- ПРИМЕР 6
- ПРИМЕР 7
- ПРИМЕР 8
- ПРИМЕР 9

ОБОБЩЕННАЯ СХЕМА СИСТЕМЫ УПРАВЛЕНИЯ

ОБЪЕКТ УПРАВЛЕНИЯ / TARGET OBJECT

СХЕМА АВТОМАТИЗАЦИИ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА

Позиция	Описание
T-001	Емкость технологической воды
P-001	Hacoc
LT-001	Датчик уровня (гидростатический, аналоговый)
XV-001	Клапан разгрузки (двухпозиционный, электромагнитный)
LIC-001	Регулятор уровня (ПЛК+Панель)
AT-001	Аварийная сигнализация

ПЛК

- Модель
 - ???
- Модули ввода/вывода
 - ОП дискретный ввод (дискретные датчики)
 - DO дискретный вывод (дискретные исполнительные механизмы)
 - АІ аналоговый ввод (аналоговые датчики)
 - AO аналоговый вывод (аналоговые исполнительные механизмы)
- Сетевой интерфейс
 - ∘ ETHERNET / LAN1 (настройки см. ниже)
 - ModBus TCP *Slave* Server (карта регистров приведена ниже)
 - сервер располагает данными
 - ожидает запросы от Мастера
 - при поступлении запроса от Мастера овечает ему (отправляет данные)

ETHERNET / LAN1

ІР:сетевой порт	192.168.11.218:503
ID станции	1
Timeout (sec)	0.3 (300 msec)
Мин.время команды (мс)	0
Повторная отправка команды	0

Карта адресов регистров данных адресация начинается с 0

Опиосино	Tup goull by	ModBus		
Описание	Тип данных	адрес	таблица	
Состояние насоса Р-001 0— выкл, 1 - вкл	BOOL	1 INPUTS		
Состояние клапана XV-001 0— выкл, 1 - вкл	BOOL	2	INPUTS	
Аварийная сигнализация АТ-001 0— выкл, 1 - вкл	BOOL	3	INPUTS	
Показание уровнемера LT-001 0100%	WORD	1	INPUT REGISTERS	
Код состояния процесса STAT 0 — останов, 1 — работа / загрузка, 2 — работа / разгрузка, 3 — авария (уровень ниже нижнего), 4 — авария (уровень выше верхнего), 5 — авария (неисправность уровнемера)	WORD	2	INPUT REGISTERS	
Уставка уровня для отключения насоса LEVEL_SET 50100%	WORD	1 HOLDING REGISTERS		

ПАНЕЛЬ

- Модель
 - Weintek MT8071iE
- Сенсорный экран
- Сетевой интерфейс
 - ∘ ETHERNET / LAN1 (настройки см. ниже)
 - ModBus TCP *Master* Pool
 - опрашивает Сервер с определенным перидом (запрос данных)
 - ожидает ответа от Сервера
 - полученные от Сервера данные записывает в сетевые переменные проекта
 - сетевые переменные связаны с графическим интерфейсом проекта
- Среда разработки
 - EasyBuilder Pro V6

ETHERNET / LAN1

IP	192.168.11.219		
ID станции	2		

ВНИМАНИЕ!

Адресация тегов ModBus в проекте EasyBuilder Панели начинается с единицы (1).

Если адресация тегов подчиненных устройств начинается с нуля (0), то:

- в проекте EasyBuilder адреса задавать со смещением +1.

Пример

ПЛК (подчиненное устройство)

- адресация тегов ModBus начинается с 0
- тег LT 001 с адресом 1

Панель / Проект EasyBuilder (ведущее устройство)

- адресация тегов ModBus начинается с 1
- для тега LT 001 адрес 2 (1 +1)

ЗАДАНИЕ

Реализовать человеко-машинный интерфейс Панели

- Экран 1: Главный
 - Мнемосхема, анимированная
 - бак с трубопроводами
 - состояние насоса
 - показание датчика уровня
 - состояние клапана разгрузки
 - состояние аварийной сигнализации
 - состояние технологического процесса (в виде текста)
 - ∘ Кнопка перехода к Экрану 2
- Экран 2: Меню
 - Дублирование показаний и состояний с Экрана 1
 - в виде битовых ламп, числовых полей, текстовых меток
 - Ввод уставки значения уровня для отключения насоса
 - Кнопка переключения языков перевода
 - Кнопка перехода к Экрану 1
- Значение уровня
 - ∘ от 0 до 100 %
- Уровень бака дополнительно отображать цветом (как степень заполнения)
 - ∘ пусто / нижний (уровень 0%)
 - немного выше трубы разгрузки (уровень > 0 % и < 50%)
 - ∘ центр (уровень >= 50% и < 70%)
 - немного ниже трубы аварийного слива / верхний (уровень >= 70% и < 100%)
 - полный / аварийный верхний (уровень 100%)
- Языки перевода
 - 1 английский
 - ∘ 2 русский
- Символы мнемосхемы
 - системные, P&ID (схема автоматизации)
- Аварийный сигнал дублировать мигающей битовой лампой
 - восклицательный знак, вписанный в красный треугольник
 - отображается и мигает только при наличии аварийного сигнала (AT-001 == TRUE)
 - расположение центр бака (самый верхний слой)

MODBUS

типы данных

	Vод типо	Ассоциация по языкам		Размер		
Имя	Код типа данных	IEC	С	кол-во слов	кол-во байт	кол-во бит
бит	Х	BOOL	uint8_t	0,0625	1	8
байт	В	BYTE, USINT SINT	uint8_t int8_t	0,5	1	8
слово	W	WORD, UINT INT	uint16_t int16_t	1	2	16
двойное слово	D	DWORD, UDINT DINT REAL	uint32_t int32_t float	2	4	32
длинное слово	L	LWORD, ULINT LINT LREAL	uint64_t int64_t double	4	48	64

Данные в таблицах ModBus хранятся только в двух типах (базовых): BOOL, WORD. Для каждого типа существует своя таблица.

Одна ячейка таблицы — регистр.

Значения остальных типов раскладываются на основе базовых, занимая нужное количество регистров (например одно значение типа DWORD займет два WORD-регистра).

MODBUS

ТАБЛИЦЫ РЕГИСТРОВ

	Код функции доступа к данным			Как хранится значение	
Таблица	чтение	запись	Что хранится	одного регистра в памяти (диапазон значений)	
COILS (битовые флаги / катушки)	1 (0x)*	5, 15	 Выходы дискретные Битовые команды, уставки Битовые пользовательские данные 	8-бит BOOL BYTE	
INPUTS (битовые входы)	2 (1x)*		• Входы дискретные • Битовые флаги, состояния	UINT (0, 1)	
HOLDING REGISTERS (числовые данные)	3 (4x)*	6, 16	 Выходы аналоговые Числовые настройки, уставки Числовые пользовательские данные 	16-бит WORD	
INPUT REGISTERS (числовые входы)	4 (3x)*		Аналоговые входыЧисловые константыЧисловые коды состояния	- (0 65535)	

(...)* - коды функций, используемые в EasyBuilder

Таблица — массив значений.

Каждая таблица может содержать до 65535 элементов (регистров). Каждый элемент таблицы, соответственно адресуется с 0 до 65535. Адресация для каждой таблицы своя.

Доступны два вида таблиц: битовые (BOOL), числовые (WORD).

К элементу таблицы можно обратиться на чтение и/или запись.

Обращение осуществляется по коду функции.

Функции чтения позволяют считывать от 1 до N значений регистров за один запрос.

Функции записи 5 и 6 позволяют записывать только 1 значение регистра за один запрос.

Функции записи 15 и 16 — записывают от 1 до N значений регистров за один запрос.

новый проект

НАСТРОЙКА СВЯЗИ С ПЛК

- 1. Диалоговое окно «Системные параметры»
- открывается всегда после создания нового проекта
- или Домой / Системные параметры
- 2. Устройство / Новое устройство/сервер...

Если будет выполняться симуляция ПЛК с помощью программы ModBus Slave, то:

- ІР-адрес ПЛК можно сразу задать как 127.0.0.1

НАСТРОЙКА СВЯЗИ С ПЛК

3. Добавить диапазон адресов ... / Добавить

3.1 для битовых регистров таблицы INPUTS:

- 3.2 OK
- 4. Выход
- 5. OK
- 6. OK

ТЕГИ

1. Проект / Адрес

Откроется Библиотека адресных меток (тегов) проекта

- Пользовательские теги, создаваемые пользователем (по-умолчанию, пусто).
- Системные теги целевой системы Панели
 - выключить/включить звуковое оповещение
 - показать/скрыть графический курсор
 - и пр.

Теги используюся

- в графическом интерфейсе
 - для привязки к графическим элементам (например, для вывода значения в поле)
- в скриптах / макросах
 - в исходном тексте алгоритмов

ПОЛЬЗОВАТЕЛЬСКИЕ ТЕГИ

P_001

- состояние насоса Р-001
- PLC1.MODBUS.INPUTS[1] (+1 для панели = 1х 2)
- 1. Проект / Адрес / Пользоват.
- 2. Создать...

ПОЛЬЗОВАТЕЛЬСКИЕ ТЕГИ

XV_001

- состояние клапана разгрузки XV-001
- PLC1.MODBUS.INPUTS[2] (+1 для панели = 1х 3)
- 1. Проект / Адрес / Пользоват.
- 2. Создать...

ПОЛЬЗОВАТЕЛЬСКИЕ ТЕГИ

AT_001

- состояние аварийной сигнализации АТ-001
- PLC1.MODBUS.INPUTS[3] (+1 для панели = 1х 4)
- 1. Проект / Адрес / Пользоват.
- 2. Создать...

ПОЛЬЗОВАТЕЛЬСКИЕ ТЕГИ

LT_001

- значение уровнемера LT-001 (0...100%)
- PLC1.MODBUS.INPUT_REGISTERS[1] (+1 для панели = 3x 2)
- 1. Проект / Адрес / Пользоват.
- 2. Создать...

ПОЛЬЗОВАТЕЛЬСКИЕ ТЕГИ

STATE

- код состояния технологического процесса (0...5)
- PLC1.MODBUS.INPUT_REGISTERS[2] (+1 для панели = 3х 3)
- 1. Проект / Адрес / Пользоват.
- 2. Создать...

ПОЛЬЗОВАТЕЛЬСКИЕ ТЕГИ

LEVEL_SET

- уставка для отключения насоса (50...100%)
- PLC1.MODBUS.HOLDING_REGISTERS[1] (+1 для панели = 4x 2)
- 1. Проект / Адрес / Пользоват.
- 2. Создать...

ПОЛЬЗОВАТЕЛЬСКИЕ ТЕГИ

LEVEL

- код уровня бака для цветовой индикации заполнения
- LOCAL.WORD[0] (= LW-0)
- 1. Проект / Адрес / Пользоват.
- 2. Создать...

ПОЛЬЗОВАТЕЛЬСКИЕ ТЕГИ

Итоговая таблица

1. Проект / Адрес / Пользоват.

МАКРОСЫ

1. Проект / Адрес

Откроется Список макросов проекта

МАКРОСЫ

Макросы используются

- для преобразований, вычислений, формирования значений тегов
- язык программирования
 - ST / Pascal
- предоставляется доступ к библиотеке функций
 - встроенные
 - ∘ пользовательские
 - глобальные или уровня проекта
 - можно импортировать извне
- выполнение
 - однократное при старте панели (обычно используется для инициализации данных значениями «по-умолчанию» при старте)
 - периодическое (в мсек)
 - определенной пользователем
 - при чтении/записи тегов
 - при отображении на экране
- безопасность
 - определение дополнительного условия выполнения (например, выполнять только при определенном значении какого-нибудь бита)

МАКРОСЫ

macro_Level

- функционал
 - чтение из ПЛК текущего значения уровня LT-001
 - формирование кода уровня бака для индикации цветового заполнения (LEVEL)
- выполнение
 - периодическое (10 x 100 мсек = 1000 мсек = 1 сек)
- 1. Проект / Макрос
- 2. Создать...

- 3. Сохран. и Скомпилир.
- 4. Выход

МАКРОСЫ

Итоговый список

1. Проект / Макрос

МЕТКИ

Метка — это текстовый объект, имеющий следующие свойства

- имя
 - используется в проекте
- количество состояний
 - определяет размер массива строк (от 1 до 7)
- языки
 - определяет набор языковых переводов (24 языка) для каждого состояния

Количество больше 1 определяет метку как массив строк (многомерная метка).
Эту многомерную метку можно использовать для вывода динамических текстовых состояний, привязав ее к какому-нибудь числовому тегу.

Например:

- ПЛК
 - $^{\circ}$ perистр MODBUS.HOLDING_REGISTERS[10] (+1 для панели = 3x 11)
 - это код состояния тех.процесса: 0 останов, 1 работа, 2 авария
- Панель
 - ∘ создается тег STATE (3x 11)
 - создается метка STATE (3 состояния)
 - 0-е состояние: язык 1 останов, язык 2 stop
 - 1-е состояние: язык 1 работа, язык 2 work
 - 2-е состояние: язык 1 авария, язык 2 alarm
 - на экран выводится числовой индикатор
 - чтение: тег STATE
 - фигура: без изображения
 - метка: использовать библ. и выбрать метку STATE

Номер используемого в данный момент языка содержится в Системном теге (LW-9134). Изменяя значение этого тега — можно изменять язык интерфейса.

МЕТКИ

LANG

- количество состояний
 - · 2
- значения
 - состояние 0
 - язык 1 (английский): ENG
 - язык 2 (русский): ENG
 - ∘ состояние 1
 - язык 1 (английский): RUS
 - язык 2 (русский): RUS
- 1. Проект / Метка
- 2. Создать...

- 3. OK
- 4. Ввести значения

Выбор состояний осуществляется кнопками 0, 1, 2, ...

МЕТКИ

LEVEL_SET

- количество состояний
 - ° 1
- значения
 - ∘ состояние 0
 - язык 1 (английский): setpoint of level to stop pump
 - язык 2 (русский): уставка уровня для отключения насоса
- 1. Проект / Метка
- 2. Создать...

- 3. OK
- 4. Ввести значения Выбор состояний осуществляется кнопками 0, 1, 2, ...

МЕТКИ

MAIN

- количество состояний
 - ° 1
- значения
 - ∘ состояние 0
 - язык 1 (английский): MAIN - язык 2 (русский): ГЛАВНЫЙ
- 1. Проект / Метка
- 2. Создать...

- 3. OK
- 4. Ввести значения Выбор состояний осуществляется кнопками 0, 1, 2, ...

МЕТКИ

MENU

- количество состояний
 - · 1
- значения
 - ∘ состояние 0
 - язык 1 (английский): MENU - язык 2 (русский): MEHЮ
- 1. Проект / Метка
- 2. Создать...

- 3. OK
- 4. Ввести значения Выбор состояний осуществляется кнопками 0, 1, 2, ...

МЕТКИ

PROCESS

- количество состояний
 - · 1
- значения
 - ∘ состояние 0
 - язык 1 (английский): PROCESS язык 2 (русский): TEX.ПРОЦЕСС
- 1. Проект / Метка
- 2. Создать...

- 3. OK
- 4. Ввести значения Выбор состояний осуществляется кнопками 0, 1, 2, ...

МЕТКИ

STATE

- количество состояний
 - · 6
- значения
 - состояние 0
 - язык 1 (английский): STOP язык 2 (русский): OCTAHOB
 - ∘ состояние 1
 - язык 1 (английский): UPLOADING
 - язык 2 (русский): ЗАГРУЗКА
 - ∘ состояние 2
 - язык 1 (английский): DOWNLOADING
 - язык 2 (русский): РАЗГРУЗКА
 - ∘ состояние 3
 - язык 1 (английский): LEVEL IS LOW-LOW
 - язык 2 (русский): УРОВЕНЬ НИЖЕ НИЖНЕГО
 - состояние 4
 - язык 1 (английский): LEVEL IS HIGH-HIGH
 - язык 2 (русский): УРОВЕНЬ ВЫШЕ ВЕРХНЕГО
 - состояние 5
 - язык 1 (английский): FAULT LT-001
 - язык 2 (русский): НЕИСПРАВНОСТЬ LT-001
- 1. Проект / Метка
- 2. Создать...

- 3. OK
- 4. Ввести значения Выбор состояний осуществляется кнопками 0, 1, 2, ...

МЕТКИ

МЕТКИ

WATER

- количество состояний
 - ° 1
- значения
 - ∘ состояние 0
 - язык 1 (английский): WATER
 - язык 2 (русский): ВОДА
- 1. Проект / Метка
- 2. Создать...

- 3. OK
- 4. Ввести значения Выбор состояний осуществляется кнопками 0, 1, 2, ...

ПОЛЬЗОВАТЕЛЬСКИЕ ИЗОБРАЖЕНИЯ

БИТОВЫЙ ИНДИКАТОР

1. Проект / Изображения

2. Менеджер изображений / Проект / Добавить новое изображение

3. Переименовать

ПОЛЬЗОВАТЕЛЬСКИЕ ИЗОБРАЖЕНИЯ

Добавление двух состояний (0, 1). Для каждого состояния свое изображение (см. директорию libs).

5. Новый...

ПОЛЬЗОВАТЕЛЬСКИЕ ИЗОБРАЖЕНИЯ

ИНДИКАТОР ПРЕДУПРЕЖДЕНИЯ

1. Проект / Изображения

- 2. Менеджер изображений / Проект / Добавить новое изображение
- 3. Вставить прозрачное состояние (0-е состояние)

ПОЛЬЗОВАТЕЛЬСКИЕ ИЗОБРАЖЕНИЯ

ИНДИКАТОР УРОВНЯ ЗАПОЛНЕНИЯ

1. Проект / Изображения

2. Менеджер изображений / Проект / Добавить новое изображение

Ширина изображения каждого уровня соответствует ширине бака. Размеры изображения полного заполнения соответствуют размерам бака.

ГЛАВНЫЙ ЭКРАН

- ІD экрана
 - ° 10
- имя экрана
 - WINDOWS_010

Эскиз экрана

ГЛАВНЫЙ ЭКРАН

Бак

1. Объекты / Рисование / Прямоугольник

- 2. OK
- 3. Разместить элемент на экране

ГЛАВНЫЙ ЭКРАН

Фланцы

- 2. OK
- 3. Разместить элементы на экране

ГЛАВНЫЙ ЭКРАН

Фланцы

- 2. OK
- 3. Разместить элементы на экране

ГЛАВНЫЙ ЭКРАН

Трубопроводы основные

- 2. OK
- 3. Разместить элементы на экране

ГЛАВНЫЙ ЭКРАН

Трубопроводы аварийные, для датчика

- 2. OK
- 3. Разместить элементы на экране

ГЛАВНЫЙ ЭКРАН

Вход / Выход потока

1. Объекты / Рисование / Изображение

2. Создать Изображение объект / Библиотека изображений

3. Менеджер изображений / Библиотека / System Button / Flat / 6

Менеджер изображений

Библиотека Проект Q 🧖 System Background - Standard System Background System Bar Graph 1 System Button Flat Background - Sta... System Check Box Ribbon Состояния: 1 System Control Panel Standard Объекты : 0

Button - Flat

Состояния: 2

Объекты: 2

4. OK

ГЛАВНЫЙ ЭКРАН

5. Изображение Параметра объекта / Измените размер объекта к исходному (выключить)

Для входного потока «WATER»

Для входного потока «PROCESS»

- 6. OK
- 7. Расположить элементы на экране

ГЛАВНЫЙ ЭКРАН

Hacoc

1. Объекты / Рисование / Изображение

2. Создать Изображение объект / Библиотека изображений

3. Менеджер изображений / Библиотека / System P&ID Symbols / Pump Symbol 1 / 0

4. OK

- 5. OK
- 6. Расположить элемент на экране

ГЛАВНЫЙ ЭКРАН

Разделительная мембрана для датчика уровня

1. Объекты / Рисование / Изображение

2. Создать Изображение объект / Библиотека изображений

3. Менеджер изображений / Библиотека / System P&ID Symbols / Piping Symbol / 19

4. OK

- 5. OK
- 6. Расположить элемент на экране

ГЛАВНЫЙ ЭКРАН

Клапан

1. Объекты / Рисование / Изображение

2. Создать Изображение объект / Библиотека изображений

3. Менеджер изображений / Библиотека / System P&ID Symbols / Valve Symbols / 46

4. OK

- 5. OK
- 6. Расположить элемент на экране

ГЛАВНЫЙ ЭКРАН

Емкость аварийного перелива

1. Объекты / Рисование / Изображение

2. Создать Изображение объект / Библиотека изображений

3. Менеджер изображений / Библиотека / System P&ID Symbols / Vessel Symbol / 37

4. OK

- 5. OK
- 6. Расположить элемент на экране

ГЛАВНЫЙ ЭКРАН

Метка с названием экрана

1. Объекты / Рисование / Текст/Комментарий

- 2. Каждый язык
- 3. OK
- 4. Расположить элемент на экране

ГЛАВНЫЙ ЭКРАН

Метка с названием входного потока

1. Объекты / Рисование / Текст/Комментарий

- 2. Каждый язык
- 3. OK
- 4. Расположить элемент на экране

ГЛАВНЫЙ ЭКРАН

Метка с названием выходного потока

1. Объекты / Рисование / Текст/Комментарий

- 2. Каждый язык
- 3. OK
- 4. Расположить элемент на экране

ГЛАВНЫЙ ЭКРАН

Индикатор состояния технологического процесса

1. Объекты / Индикаторы / Числовой индикатор

X

ГЛАВНЫЙ ЭКРАН

Для каждого состояния метки свои атрибуты:

- 2. OK
- 3. Расположить элемент на экране

ГЛАВНЫЙ ЭКРАН

Битовые индикаторы

1. Объекты / Индикаторы / Битовый индикатор

ГЛАВНЫЙ ЭКРАН

- 2. OK
- 3. Расположить элемент на экране

Аналогично для XV-001, AT-001

ГЛАВНЫЙ ЭКРАН

Индикатор значения уровнемера

1. Объекты / Ввод/вывод / Число

- 2. OK
- 3. Расположить элемент на экране

ГЛАВНЫЙ ЭКРАН

Индикатор предупреждения

1. Объекты / Индикаторы / Битовый индикатор

- 2. OK
- 3. Расположить элемент на экране (в центре бака)

ГЛАВНЫЙ ЭКРАН

Индикатор уровня заполнения бака

1. Объекты / Индикаторы / Числовой индикатор

Индикатор слова/Многопозиционный переключатель Параметры объекта × Общие Безопасность Фигура Метка Профиль Описание: LEVEL Числовой индикатор Многопозиционный переключат Режим: Значение Смещение: 0 Чтение устройство: Локально панель 16-bit Unsigned адрес: LEVEL (0 - LL, 1 - LOW (<50%), 2 - MID (5) ∨ Атрибуты Кол-во состояний: 5 Скрыть изображение / фигуру, если нет соответствующего из Общие Безопасность Фигура Метка Профиль Состояние: 0 Имя: LEVEL BMP 1x1

- 2. OK
- 3. Расположить элемент на экране (наложить на бак, на задний план)

ГЛАВНЫЙ ЭКРАН

Кнопка перехода к экрану 2

1. Объекты / Кнопки/переключатели / Функциональная кнопка

- 2. OK
- 3. Расположить элемент на экране

ГЛАВНЫЙ ЭКРАН

Позиционные обозначения оборудования

1. Объекты / Рисование / Текст/Комментарий

- 2. OK
- 3. Расположить элемент на экране

Аналогично для LT-001, XV-001, AT-001, T-001

ЭКРАН МЕНЮ

Эскиз экрана

Следующие элементы добавляются с Главного экрана путем Copy-Paste:

- битовые индикаторы AT-001, XV-001, P-001
- числовое поле LT-001
- числовой индикатор STATUS
- кнопка MENU (здесь для нее заменяется метка на MAIN)

Процесс добавления остальных элементов описан далее.

ЭКРАН МЕНЮ

Поле ввода уставки

1. Объекты / Ввод/вывод / Число

ЭКРАН МЕНЮ

ЭКРАН МЕНЮ

- 2. OK
- 3. Расположить элемент на экране

ЭКРАН МЕНЮ

Кнопка-переключатель языков перевода

Состояния кнопки:

- кнопка отжата: язык 1 (ENG)
- кнопка нажата: язык 2 (RUS)
- переключатель связан с системным тегом LW-9134
- текст переключателя связан с меткой LANG
- 1. Объекты / Кнопки/переключатели / Многопозиционный переключатель

2. Переход к вкладке «Метка»

ЭКРАН МЕНЮ

- 3. OK
- 4. Разместить кнопку-переключатель на экране.

КОМПИЛЯЦИЯ ПРОЕКТА

1. Проект / Компиляция

2. Компилировать

ВВЕДЕНИЕ

При отсутствии ПЛК и Панели их можно симулировать.

Симулятор ПЛК:

- программа «Эмулятор устройств ModBus» (версия 2.34.65.953, 2022)
- реальная связь по Ethernet / ModBus TCP
- значения тегов вводятся вручную, через ОРС или генерируются по заданной функции

Симулятор Панели:

- среда разработки EasyBuilder
- реальная связь по Ethernet / ModBus TCP
- программная симуляция панели и заложенного функционала

ПЛК / ЭМУЛЯТОР MODBUS

1 Запустить программу mtcpServerEmulator.exe

2 Правка / Добавить Сервер

ПЛК / ЭМУЛЯТОР MODBUS

2.1 Ввести настройки сервера и нажать ОК

Для добавленного сервера:

- 3 Правка / Добавить устройство
- 3.1 ввести настройки устройства и нажать ОК

ПЛК / ЭМУЛЯТОР MODBUS

Для добавленного устройства:

- 4 Правка / Добавить группу
- 4.1 ввести имя группы и нажать ОК

ПЛК / ЭМУЛЯТОР MODBUS

Для группы INPUTS:

- 5 Правка / Добавить тег
- 5.1 Ввести настройки тега и нажать Применить

ПЛК / ЭМУЛЯТОР MODBUS

Для группы INPUT_REGISTERS:

- 6 Правка / Добавить тег
- 6.1 Ввести настройки тега и нажать Применить

ПЛК / ЭМУЛЯТОР MODBUS

Для группы HOLDING_REGISTERS:

- 7 Правка / Добавить тег
- 7.1 Ввести настройки тега и нажать Применить

ПЛК / ЭМУЛЯТОР MODBUS

Запустить симуляцию сервера PLC1

- 8 Работа / Пуск
- 8.1 Очистить Modbus пространство устройства?

Да — сбросить все значения в состояние «по-умолчанию» (обнулить)

Нет — оставить значения от предыдущего сеанса симуляции

Отмена — отменить запуск симуляции

8.2 Выбрать устройство ModBusSlave (1) из дерева объектов слева

ПАНЕЛЬ / EASYBUILDER

1. Проект / Онлайн симуляция

ПРИМЕР 1

ЭКРАН: ГЛАВНЫЙ

P-001: ВКЛ (ввести в симуляторе ПЛК) **XV-001: ОТКР** (ввести в симуляторе ПЛК)

STATE: ЗАГРУЗКА (ввести в симуляторе ПЛК)

LT-001: 1% (ввести в симуляторе ПЛК)

AT-001: HET

ПРИМЕР 2

ЭКРАН: ГЛАВНЫЙ

P-001: ВКЛ XV-001: ОТКР STATE: ЗАГРУЗКА

LT-001: 50% (ввести в симуляторе ПЛК)

AT-001: HET

ПРИМЕР 3

ЭКРАН: ГЛАВНЫЙ Р-001: ВКЛ

XV-001: OTKP STATE: 3AГРУЗКА

LT-001: **90**% (ввести в симуляторе ПЛК)

AT-001: HET

ПРИМЕР 4

ЭКРАН: ГЛАВНЫЙ P-001: ВКЛ XV-001: ОТКР

STATE: УРОВЕНЬ ВЫШЕ ВЕРХНЕГО (ПЕРЕЛИВ) (ввести в симуляторе ПЛК)

LT-001: 100% (ввести в симуляторе ПЛК) **AT-001: АВАРИЯ** (ввести в симуляторе ПЛК)

ПРИМЕР 5

ЭКРАН: ГЛАВНЫЙ

Р-001: ВЫКЛ (ввести в симуляторе ПЛК)

XV-001: OTKP

STATE: РАЗГРУЗКА (ввести в симуляторе ПЛК)

LT-001: 95% (ввести в симуляторе ПЛК) **AT-001: HET** (ввести в симуляторе ПЛК)

ПРИМЕР 6

ЭКРАН: МЕНЮ (выбрать в симуляторе Панели)

P-001: ВЫКЛ XV-001: ОТКР

STATE: РАЗГРУЗКА

LT-001: 95% AT-001: HET LEVEL_SET: 0% ЯЗЫК: ENG

ПРИМЕР 7

ЭКРАН: МЕНЮ P-001: ВЫКЛ XV-001: ОТКР

STATE: РАЗГРУЗКА

LT-001: 95% AT-001: HET

LEVEL_SET: 90% (ввести в симуляторе Панели и нажать Enter на клавиатуре)

ЯЗЫК: ENG

пример 8

ЭКРАН: МЕНЮ P-001: ВЫКЛ XV-001: ОТКР

STATE: РАЗГРУЗКА

LT-001: 95% AT-001: HET LEVEL_SET: 90%

ЯЗЫК: RUS (выбрать в симуляторе Панели)

ПРИМЕР 9

ЭКРАН: ГЛАВНЫЙ (выбрать в симуляторе Панели)

P-001: ВЫКЛ XV-001: ОТКР

STATE: РАЗГРУЗКА

LT-001: 95% AT-001: HET LEVEL_SET: 90% ЯЗЫК: RUS

