Regressions- och tidsserieanalys Föreläsning 2 - Enkel linjär regression

Mattias Villani

Statistiska institutionen Stockholms universitet

Institutionen för datavetenskap Linköpings universitet

Översikt

- **■** Enkel linjär regression
- Minsta-kvadratmetoden för att skatta regression.
- **■** Korrelation
- Variansanalys
- Inflytelserika observationer
- Extrapolation

Skattad regressionslinje hälsobudget $(x) \rightarrow$ livslängd (y)

livslängd
$$= 76.035 + 1.03757 \cdot \text{hälsobudget}$$

$$y = \underbrace{76.035}_{a} + \underbrace{1.038}_{b} \cdot x$$

- Förväntade livslängden är ca 76 år om hälsobudget = 0.
- Livslängden ökar med 1.038 år om hälsobudgeten ökar med 1 (tusen US dollar per capita).

Mattias Villani

Cykeluthyrningar

Regressionsekvation antal uthyrningar $= 1214.64 + 6640.71 \cdot \text{temperatur}$

Mattias Villani ST123

Interceptet a - värdet på y när x=0

Mattias Villani

ST1230

Lutningen b - hur ändras y när x ändras en enhet?

Mattias Villani

ST123G

Lutningen b - hur ändras y när x ändras en enhet?

Mattias Villani

ST123G

Skattning av regressionslinjen - minsta kvadrat

Prediktion f\u00f6r den i:te observationen i stickprovet:

$$\hat{y}_i = a + b \cdot x_i$$

Prediktionsfel (residualer)

$$e_i = y_i - \hat{y}_i$$

■ Välj a och b som minimerar residualkvadratsumman

$$Q = \sum_{i=1}^{n} e_i^2$$

■ Sum of Squared Errors (SSE).

- Kalkylark (Excel) kan beräkna residualer och kvadrater etc.
- Orange cell är residualkvadratsumman Q för a och b i blå cell.
- Notera att t ex $\hat{y}_1 = 77 + 1 \cdot 3.357 = 80.357$.
- Se länk på kurssida till kalkylarket.

	A	В	С	D	E	F
1	country	spending (x)	lifespan (y)	yHat	e = y-yHat	e ²
2	Australia	3.357	81.4	80.357	1.043	1.087849
3	Austria	3.763	80.1	80.763	-0.663	0.439569
4	Belgium	3.595	79.8	80.595	-0.795	0.632025
5	Canada	3.895	80.7	80.895	-0.195	0.038025 2.643876 4.460544 0.1156
6	Czech	1.626	77	78.626	-1.626	
7	Denmark	3.512	78.4	80.512 79.84	-2.112 -0.34	
8	Finland	2.84	79.5			
9	France	3.601	81	80.601	0.399	0.159201
10	Germany	3.588	80	80.588	-0.588	0.345744
11	Greece	2.727	79.5	79.727	-0.227	0.051529
12	Hungary	1.388	73.3	78.388	-5.088	25.887744
13	Iceland	3.319	81.2	80.319	0.881	0.776161
14	Ireland	3.424	79.7	80.424	-0.724	0.524176
15	Italy	2.686	81.4	79.686	1.714	2.93779
16	Japan	2.581	82.6	79.581	3.019	9.11436
17	Korea	1.688	79.4	78.688	0.712	0.50694
8	Luxembourg	4.162	79.4	81.162	-1.762	3.10464
19	Mexico	0.823	75	77.823	-2.823	7.96932
0	Netherlands	3.837	80.2	80.837	-0.637	0.405769
11	N.Zealand	2.454	80.2	79.454	0.746	0.55651
2	Norway	4.763	80.6	81.763	-1.163	1.35256
13	Poland	1.035	75.4	78.035	-2.635	6.943225
4	Portugal	2.15	79.1	79.15	-0.05	0.0029
25	Slovakia	1.555	74.3	78.555	-4.255	18.105029
0.0	Spain	2.671	81	79.671	1.329	1.76624
7	Sweden	3.323	81	80.323	0.677	0.458329
15	Switzerland	4.417	81.9	81.417	0.483	0.23328
19	Turkey	0.618	73.4	77.618	-4.218	17.79152
30	UK	2.992	79.5	79.992	-0.492	0.24206
31	USA	7.29	78.1	84.29	-6.19	38.3161
32	Summa				-25.58	146.968268
13						
34	Regressionscor	efficienter				
35	a	77				
36	b	1				

Skattning av regressionslinjen - minsta kvadrat

Residualkvadratsumman beror på a och b:

$$Q(a,b) = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - a - b \cdot x_i)^2$$

Q(a, b) minimeras när partialderivatorna är noll:

$$\frac{\partial Q}{\partial a} = -2 \sum_{i=1}^{n} (y_i - a - b \cdot x_i) = 0$$

$$\frac{\partial Q}{\partial b} = -2 \sum_{i=1}^{n} (y_i - a - b \cdot x_i) x_i = 0$$

- Derivatan av en summa: $\frac{d}{dx}(f(x)+g(x))=\frac{df(x)}{dx}+\frac{dg(x)}{dx}$
- Potensregeln för derivator: $\frac{dx^p}{dx} = px^{p-1}$, t ex $\frac{dx^2}{dx} = 2x$
- Kedjeregeln för derivator (specialfall): $\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$, där $f'(x) = \frac{d}{dx} f(x)$ är ett alternativt sätt att uttrycka derivatan.

Minsta kvadrat - alternativa formler

Minstakvadratskattningar

$$b = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

Alternativ formel för b för handberäkning:

$$b = \frac{\sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y}}{\sum_{i=1}^{n} x_i^2 - n\bar{x}^2}$$

Bevis

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} (x_i^2 + \bar{x}^2 - 2\bar{x}x_i) = \sum_{i=1}^{n} x_i^2 + n\bar{x}^2 - 2\bar{x}\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i^2 + n\bar{x}^2 - 2\bar{x}n\bar{x} = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2 = \sum_{i=1}^{n} x_i^2 + n\bar{x}^2 = \sum_{i=1}^{n} x_i^2$$

Hälsobudgetdata

$$b = \frac{7151.8229 - 30 \cdot 2.989333333 \cdot 79.13666667}{320.944068 - 30 \cdot 2.989333333^2} \approx 1.03757$$

 $a = 79.13666667 - 1.03757 \cdot 2.989333333 \approx 76.03502$

Minsta kvadrat i kalkylark

	A	В	C	D	E	F	G	Н
1	country	spending (x)	lifespan (y)	yHat	e = y-yHat	e²	X ²	xy
2	Australia	3.357	81.4	79.5181466	1.881853403	3.541372231	11.269449	273.2598
3	Austria	3.763	80.1	79.93940005	0.1605999533	0.02579234501	14.160169	301.4163
4	Belgium	3.595	79.8	79.76508827	0.03491172565	0.001218828588	12.924025	286.88
5	Canada	3.895	80.7	80.0763593	0.6236407037	0.3889277273	15.171025	314.326
6	Czech	1.626	77	77.7221128	-0.7221128002	0.5214468962	2.643876	125.202
7	Denmark	3.512	78.4	79.67896996	-1.278969958	1.635764154	12.334144	275.340
8	Finland	2.84	79.5	78.98172287	0.5182771309	0.2686111845	8.0656	225.78
9	France	3.601	81	79.77131369	1.228686305	1.509670037	12.967201	291.68
10	Germany	3.588	80	79.75782528	0.2421747162	0.05864859315	12.873744	287.0
11	Greece	2.727	79.5	78.86447745	0.6355225492	0.4038889106	7.436529	216.796
12	Hungary	1.388	73.3	77.47517112	-4.175171123	17.4320539	1.926544	101.740
13	Iceland	3.319	81.2	79.47871893	1.721281066	2.962808508	11.015761	269.502
14	Ireland	3.424	79.7	79.58766379	0.1123362082	0.01261942367	11.723776	272.892
15	Italy	2.686	81.4	78.82193708	2.578062922	6.646408431	7.214596	218.640
16	Japan	2.581	82.6	78.71299222	3.88700778	15.10882948	6.661561	213.190
17	Korea	1.688	79.4	77.78644214	1.613557855	2.603568952	2.849344	134.027
18	Luxembourg	4.162	79.4	80.35339051	-0.9533905059	0.9089534567	17.322244	330,462
19	Mexico	0.823	75	76.88894403	-1.888944031	3.568109554	0.677329	61.72
20	Netherlands	3.837	80.2	80.01618023	0.1838197679	0.03378970708	14.722569	307.727
21	N.Zealand	2.454	80.2	78.58122082	1.618779179	2.620446031	6.022116	196.810
22	Norway	4,763	80.6	80.97697012	-0.3769701199	0.1421064713	22.686169	383.897
23	Poland	1.035	75.4	77.10890889	-1.708908887	2.920369584	1.071225	78.03
24	Portugal	2.15	79.1	78.26579952	0.8342004815	0.6958904433	4.6225	170.06
25	Slovakia	1,555	74.3	77.64844532	-3.348445325	11.21208609	2.418025	115.536
26	Spain	2.671	81	78.80637353	2.193626473	4.811997104	7.134241	216.35
27	Sweden	3.323	81	79.48286921	1.517130786	2.301685821	11.042329	269.16
28	Switzerland	4.417	81.9	80.61797087	1.282029125	1.643598679	19.509889	361.752
29	Turkey	0.618	73.4	76.67624217	-3.276242166	10.73376273	0.381924	45.361
30	UK	2.992	79.5	79.13943352	0.3605664798	0.1300081864	8.952064	237.86
31	USA	7.29	78.1	83.59890969	-5.498909695	30.23800783	53.1441	569.349
32	Summa	7.20	10.2		0.100000000	125.0824413	320.944068	7151.822
33	Medelvärde	2.989333333	79.13666667		·			1202.022
34		2.0000000	. 0.2030001					
35	Minsta-kvadratskattningar							
36	a 76.03502386							
37	b	1.037570073						
38	U	1.00/0/00/0						

gif-time!

På webbsidan ligger en animerad gif:en com visar hur olika regressionlinjer ger olika SSE. gif

Regression i SAS

```
Title "Hälsobudget - regression ";

proc reg data = work.healthdata;

model lifespan = spending;

run;
```

Hälsobudget - regression

The REG Procedure Model: MODEL1 Dependent Variable: lifespan

Number of Observations Read 30 Number of Observations Used 30

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	1	56.90723	56.90723	12.74	0.0013		
Error	28	125.08244	4.46723				
Corrected Total	29	181.98967					

 Root MSE
 2.11358
 R-Square
 0.3127

 Dependent Mean
 79.13667
 Adj R-Sq
 0.2881

 Coeff Var
 2.67080
 *
 *

Parameter Estimates								
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t			
Intercept	1	76.03502	0.95084	79.97	<.0001			
spending	1	1.03757	0.29071	3.57	0.0013			

Mattias Villani

ST1230

Residualvarians

Residualvariansen - hur bra regressionslinjen passar data:

$$s_e^2 = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n-2}$$

Kom ihåg: stickprovsvariansen delar med n-1 eftersom vi måste beräkna \bar{y} först:

$$s_y^2 = \frac{\sum_{i=1}^n (y_i - \bar{y})^2}{n-1}$$

- Residualvariansen delar med n-2 eftersom vi måste beräkna både a och b först. Väntevärdesriktig. Se F3.
- Residualstandardavvikelsen (residualspridningen):

$$s_e = \sqrt{s_e^2}$$

Hälsobudgetdata

$$s_e^2 = rac{125.0824413}{30-2} pprox 4.467 \qquad \qquad s_e = \sqrt{4.467} pprox 2.11 \, {
m ar}$$

Mattias Villani ST123

Korrelation

Korrelationskoefficienten mäter graden av linjärt samband

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x}_i)(y_i - \bar{y}_i)}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x}_i)^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y}_i)^2}}$$

Alternativ formel för handräkning

$$r = \frac{n \sum x_i y_i - (\sum x_i) (\sum y_i)}{\sqrt{\left(n \sum x_i^2 - (\sum x_i)^2\right) \left(n \sum y_i^2 - (\sum y_i)^2\right)}}$$

■ Korrelationskoefficienten är ett normerat mått:

$$-1 \le r \le 1$$

Korrelation

Mattias Villani ST123G

Korrelation hälsobudget vs livslängd

Korrelation mäter linjärt samband

Regression är korrelation, inte kausalitet

- Regression handlar om korrelation. Samvariation.
- Korrelation kan användas för prediktion.
- Kausala samband (orsak → verkan):
 - Studietimmar → Tentaresultat.
 - $Sm\ddot{a}rtstillande \rightarrow Sm\ddot{a}rtlindring$.
 - Marknadsföring \rightarrow Försäljning.

Eller kan det också vara tvärtom?

David Hume Filosof

Donald Rubin Statistiker

Judea Pearl Datavetare

Korrelation innebär inte kausalitet $\hat{\rho} = 0.952$

People who drowned after falling out of a fishing boat correlates with

Marriage rate in Kentucky

tylervigen.co

Korrelation innebär inte kausalitet $\hat{\rho} = 0.666$

Number of people who drowned by falling into a pool correlates with

Films Nicolas Cage appeared in

tylervigen.com

Variansanalys (Analysis of Variance - ANOVA)

ANOVA-uppdelningen:

$$\underbrace{\sum_{i=1}^{n} (y_i - \bar{y})^2}_{SST} = \underbrace{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}_{SSE} + \underbrace{\sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2}_{SSR}$$

Total variation i $y=\mathsf{O}$ förklarad variation i $y+\mathsf{F}$ örklarad variation

$$SST = SSE + SSR$$

- SSR kallas för Sum of Squares Model is SAS.
- Hälsobudgetdata:
 - \triangleright SSE = 125.082 (Excelark ovan)
 - ► SST = 181.990 (kan beräknas med liknande Excelark)
 - SSR = SST SSR = 56.908.

Variansanalys (ANOVA)

Mattias Villani S

ST123G

Andel förklarad variation - R²

ANOVA:

$$SST = SSE + SSR$$

Andel förklarad variation (determinationskoefficienten)

$$R^2 = \frac{\text{SSR}}{\text{SST}}$$

För regression med en förklarande variabel gäller att

$$R^2 = r^2$$
 (r är korrelationskoefficienten)

Hälsobudgetdata:

$$R^2 = \frac{\text{SSR}}{\text{SST}} = \frac{56.908}{181.990} \approx 0.313.$$

Samma regression på väldigt olika data 🐨

- Samma linjära regression trots väldigt olika samband.
- Se upp för:
 - ▶ icke-linjära samband
 - outliers (både i x och y)
 - observationer med stor påverkan på anpassningen.

Mattias Villani

ST1230

Med USA

livslängd = $76.035 + 1.038 \cdot \text{hälsobudget}$

Utan USA

 $livslängd = 74.164 + 1.763 \cdot hälsobudget$

Mattias Villani

ST123G

Extrapolering

Extrapolering

- Rymdfärjan Challenger exploderade strax efter start.
- Gummi-packningar (O-rings) hade skadats av kylan.

