Ответы на вопросы для подготовки к РК 1

I) Определение

1. Софрмулируйте определение окрестности точки х ∈ R

Окрестностью $U_{(x0)}$ точки x_0 называют любой интервал, содержающий эту точку.

2. Софрмулируйте ε -определение окрестности точки $x \in R$

 ϵ -Окрестностью $U_{(\epsilon,x0)}$ точки x_0 называют множество точек, расстояние от которых до точки x_0 не больше ϵ .

$$U_{(\varepsilon,x0)} = (x - \varepsilon; x + \varepsilon)$$

3. Сформулируйте определение окрестности +∞

Окрестностью $+\infty$ называют интервал вида (a; $+\infty$), где а — произвольное действительное число.

4. Сформулируйте определение окрестности -∞

Окрестностью - ∞ называют интервал вида (- ∞ ; а), где а – произвольное действительное число.

5. Сформулируйте определение окрестности ∞

Окрестностью ∞ называют объядинение двух интервалов (- ∞ ; a) \cup (a; + ∞), где а – произвольное действительное число.

6. Сформулируйте определение предела последовательности

Число а называется пределом последовательности $\{x_n\}$, если для любого положительного числа ϵ существует номер $N=N(\epsilon)$ такой, что для всех номеров n>N выполняется неравенство $|x_n-a|<\epsilon$.

$$\lim_{n\to\infty}x_n=\mathbf{a} \Leftrightarrow \forall \varepsilon>0 \; \exists N=\; N(\varepsilon) \colon \forall n>\; N, |x_n-\; a|<\varepsilon$$

7. Сформулируйте определение сходящейся последовательности

Последовательность, имеющая конечный предел, называется сходящейся, иначе расходящейся.

8. Сформулируйте определение ограниченной последлвательностьи

Последовательность $\{x_n\}$, ограниченная как сверху, так и снизу, называется ограниченной.

9. Сформулируйте определение монотонной последовательности

Монотонная последовательность – это последовательность, элементы которой с увеличением номером не убывают или не возрастают.

10. Сформулируйте определение возрастающей последовательности

Последовательность $\{x_n\}$ называется возрастающей, если каждый следующий элемент этой последовательности превашает предыдущий.

11. Сформулируйте определение убывающей последовательности

Последовательность $\{x_n\}$ называется убывающей, если каждый предыдущий элемент этой последовательности превашает следующий за ним.

12. Сформулируйте определение не возрастающей последовательности

Последовательность $\{x_n\}$ называется не возрастающей, если каждый следующий элемент этой последовательности не превосходит предыдущего.

13. Сформулируйте определение не убывающей последовательности

Последовательность $\{x_n\}$ называется не возрастающей, если каждый предыдущий элемент этой последовательности не превосходит следующего за ним.

14. Сформулируйте определение фундаментальной последовательности

Фундаментальная последовательность – это последовательность такая, что $\forall \varepsilon > 0$ $\exists N = N(\varepsilon): \forall i, j > 0$ выполнено $|a_i - a_i| < \varepsilon$.

15. Сформулируйте критерий Коши существования предела последовательности

Для того, чтобы последовательность была сходящейся необходимо и достаточно, чтобы она была фундаментальной.

16. Сформулируйте определение по Гейне предела функции

А – предел функции f(x) в точки $x_0 = a$, если для каждой последовательности $\{x_n\}$, сходящейся к точке a, последовательность $f(x_n)$ сходит к A.

$$\forall x_n; \ x_n \neq a; \ \lim_{n \to +\infty} x_n = a \to \lim_{n \to +\infty} f(x_n) = A$$

17. Сформулируйте определение бесконечно малой функции

Функции f(x) называется бесконечно малой при $x \to x_0$, если $\lim_{x \to x_0} f(x) = 0$

18. Сформулируйте определение бесконечно большой функции

Функции f(x) называется бесконечно большой при $x \to x_0$, если $\lim_{x \to x_0} f(x) = \infty$

19. Сформулируйте определение бесконечно малых функций одного порядка

f(x) и g(x) являются бесконечно малыми функциями одного порядка при $x \to x_0$, если существует конечный отличный от нуля предел $\lim_{x \to x_0} \frac{f(x)}{g(x)} = C$

20. Сформулируйте определение несравнимых бесконечно малых функций

f(x) и g(x) не сравнимы при $x \to x_0$, если $x \to x_0$ не существует предела $\lim_{x \to x_0} \frac{f(x)}{g(x)}$.

21. Сформулируйте определение эквавилентных бесконечно малых функций

f(x) и g(x) называется эквавилентными бесконечно малых функций при $x \to x_0$, если $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1.$

22. Сформулируйте определение порядка малости одной функции относительно другой

Пусть f(x) и g(x) – бесконечно малые функции при $x \to x_0$

Если при некотором k бесконечно малые f(x) и $(g(x))^k$ являются бесконечно малыми одного порядка, то говорят, что f(x) имеет порядок k по сравнению с g(x) при $x \to x_0$ 23. Сформулируйте определение приращения функции

Приращением аргумента в точке x_0 называется разность $\Delta x = x - x_0$, где точка xлежит в окрестности точки x_0 .

Приращением функции в точке x_0 , соответствующим приращению Δx , называется разность $\Delta f = f(x_0 + \Delta x) - f(x_0)$

24. Сформулируйте определение непрерывности функции в точке (любое)

y = f(x) непрерывная в точке x = a, если:

- Определит в точке х = а
- Существует конечные пределы $\lim_{x \to a+0} f(x)$ и $\lim_{x \to a-0} f(x)$ $\lim_{x \to a+0} f(x) = \lim_{x \to a+0} f(x) = \lim_{x \to a+0} f(x) = f(a)$

$$-\lim_{x \to a+0} f(x) = \lim_{x \to a-0} f(x) = \lim_{x \to a+0} f(x) = f(a)$$

25. Сформулируйте определение непрерывности функции на интервале.

y = f(x) непрерывная на интервале (a, b), если $\forall x \in (a, b)$, f(x) непрерывная.

26. Сформулируйте определение непрерывности функции на отрезке.

y = f(x) непрерывная на отрезке [a, b], если

- f(x) непрерывная на интервале (a, b)

$$-\lim_{x\to a+0} f(x) = f(a)$$

$$-\lim_{x \to a+0} f(x) = f(a)$$

-
$$\lim_{x \to b-0} f(x) = f(b)$$

27. Сформулируйте определение точки разрыва

Точка разрыва функции – точка, в которой нарушается условие непрерывности.

28. Сформулируйте определение точки устранимого разрыва

Точка разрыва х₀ называется точкой устранимого разрыва, если односторонные пределы в этой точке конечны и равны, но не равны $f(x_0)$ или не существует $f(x_0)$.

29. Сформулируйте определение точки разрыва І-ого рода

Точки разрыва І-ого рода
$$\Leftrightarrow \lim_{x \to x_0 + 0} f(x) \neq \lim_{x \to x_0 - 0} f(x)$$
 и $\lim_{x \to x_0 \pm 0} f(x) \neq \infty$

30. Сформулируйте определение точки разрыва ІІ-ого рода

Точки разрыва II-ого рода, если в этой точке:

$$\exists \lim_{x \to x_0 + 0} f(x)$$
 или $\exists \lim_{x \to x_0 - 0} f(x)$
или $\lim_{x \to x_0 + 0} f(x) = \infty$ или $\lim_{x \to x_0 - 0} f(x) = \infty$

- II) Определение предела по Коши
- 1. Сформулируйте определение по Коши $\lim_{\mathbf{x}\to 0}f(\mathbf{x})=b$, где $b\in R$

Пусть функция f(x) определена в проколотой окрестности точки x = 0. Число b нызывается пределом функции f(x) при $x \to x_0$, если для любого $\varepsilon > 0$ существует положительное число $\delta = \delta (\varepsilon)$ такое, что:

$$0 < |\mathbf{x}| < \delta(\varepsilon)$$
, to $|\mathbf{f}(\mathbf{x}) - \mathbf{b}| < \varepsilon$

2. Сформулируйте определение по Коши $\lim_{\mathbf{x} \to a} f(\mathbf{x}) = +\infty$, где $a \in R$

Пусть функция f(x) определена в проколотой окрестности точки x = a. Для любого M>0 существует положительное число $\delta=\delta(M)$ такое, что:

$$0 < |x - a| < \delta$$
, to $f(x) > M$

3. Сформулируйте определение по Коши $\lim_{x\to\infty} f(x) = 0$

Для любого $\varepsilon > 0$ существует положительное число $N = N(\varepsilon)$ такое, что:

$$|x| > N$$
, to $|f(x)| < \varepsilon$

4. Сформулируйте определение по Коши $\lim_{x \to a-0} f(x) = -\infty$, где $a \in R$

Для любого M > 0 существует положительное число $\delta = \delta(M)$ такое, что:

$$0 < a - x < \delta$$
, to $f(x) < -M$