т.е. имеет место равенство (8.37). К этому можно лишь добавить, что из существования предела $\lim_{x\to x_0} \psi(x) = 1$ следует, что окрестность $U = U(x_0)$ можно выбрать таким образом, что для всех точек $x \in X \cap U$ будет выполняться неравенство $\psi(x) \neq 0$, а их существования по множеству X предела $\lim_{x\to x_0} \frac{f(x)}{g(x)}$ следует, что окрестность U может быть выбрана еще и так, что для всех $x \in X \cap U$ будет выполняться неравенство $g(x) \neq 0$, так как частное $\frac{f(x)}{g(x)}$ должно быть определено на пересечении $X \cap U$ множества X с некоторой окрестностью U точки x_0 . Поэтому все написанные выше выражения имеют смысл.

Обе части равенства (8.37) равноправны, поэтому из доказанной теоремы следует, что предел, стоящий в левой части, существует тогда и только тогда, когда существует предел в правой части, причем в случае их существования они совпадают. Это делает очень удобным применение теоремы 2 на практике: ее можно использовать для вычисления пределов, не зная заранее, существует или нет рассматриваемый предел.

8.4. Метод выделения главной части функции и его применение к вычислению пределов

Пусть заданы функции $\alpha:X\to {\bf R}$ и $\beta:X\to {\bf R}$. Если функция β для всех $x\in X$ представима в виде

$$\beta(x) = \alpha(x) + o(\alpha(x)), x \to x_0,$$

то функция α называется главной частью функции β при $x \to x_0$.

 Π р и м е р ы. 1. Главная часть функции $\sin x \mathbf{x} \to 0$ равна \mathbf{x} , ибо $\sin x = x + o(x)$ при $x \to 0$

2. Если $P_n(x) = a_n x^n + ... + a_1 x + a_0, a \neq 0$, то функция $a_n x^n P_n(x) x \to \infty$, так как $P_n(x) = a_n x^n + o(x^n)$ при $x \to \infty$.

Если задана функция $\beta: X \to \mathbf{R}$, то ее главная часть при $x \to x_0$ не определяется однозначно: согласно теореме 1, любая функция

 $\alpha, \beta x \to x_0$, является ее главной частью при $x \to x_0$.

Например, пусть $\beta = x + x^2 + x^3$. Так как, с одной стороны, $x^2 + x^3 = o(x)$ при $x \to 0$, то $\beta = x + o(x)$ при $x \to 0$, а с другой стороны, $x^3 = o(x + x^2)$ при $x \to 0$, поэтому

$$\beta = x + x^2 + o(x + x^2)$$
 при $x \to 0$.

В первом случае главной частью можно считать $\alpha = x, \alpha = x + x^2$. Однако если задаваться определенным видом главной части, то при его разумном выборе можно добиться того, что главная часть указанного вида будет определена однозначно.

В частности, справедлива следующая лемма.

 $\Pi \, \mathbf{E} \, \mathbf{M} \, \mathbf{M} \, \mathbf{A} \, \mathbf{5}$. Пусть $X \supset \mathbf{R}$, $x_0 \in \mathbf{R}$ и x_0 – предельная точка множества X. Если функция $\beta: X \to \mathbf{R}$ обладает при $x \to x_0$ главной частью вида $A(x-x_0)^k$, $A \neq 0$, где A и k – постоянные, то среди всех главных частей такого вида она определяется таким образом.

Действительно, пусть при $x \to x_0$

$$\beta(x) = A(x - x_0)^k + o((x - x_0)^k), A \neq 0,$$

И

$$\beta(x) = A_1(x - x_0)^{k_1} + o((x - x_0)^{k_1}), A_1 \neq 0.$$

Тогда $\beta(x)$ $A(x-x_0)^k$ и $\beta(x)$ $A_1(x-x_0)^{k_1}$ при $x \to x_0, x \in X$.

Поэтому $A(x-x_0)^k A_1(x-x_0)^{k_1}, x \to x_0, x \in X$ т.е.

$$1 = \lim_{x \to x_0} \frac{A(x - x_0)^k}{A_1(x - x_0)^{k_1}} = \frac{A}{A_1} \lim_{x \to x_0} (x - x_0)^{k - k_1},$$

что справедливо лишь в случае $A=A_1$ и $k=k_1$. \square

Понятие главной части функции полезно при изучении бесконечно малых и бесконечно больших и с успехом используется при решении разнообразных задач математического анализа. Довольно часто удается бесконечно малую