REAL ANALYSIS Qualifying Exam February 21, 1996

Do eight problems. In 1-5, (X, \mathcal{M}, μ) is a measure space.

- 1. Let μ be σ -finite, and let $\{E_{\alpha} : \alpha \in A\}$ be a disjoint collection of measurable sets in X. Prove that $\mu(E_{\alpha}) > 0$ for at most countably many $\alpha \in A$.
- **2.** Let $1 \leq p < \infty$. Prove the completeness of $L^p(\mu)$.
- 3. Let $\{w_n\}_1^{\infty}$ be an orthonormal set in $L^2(\mu)$ such that

$$C = \sup\{\|w_n\|_{\infty} : n \ge 1\} < \infty.$$

Prove that for each $f \in L^1(\mu)$, $\int f w_n d\mu \to 0$ as $n \to \infty$.

Hint: Approximate f by a simple measurable function s, then apply Bessel's inequality to s.

- 4. Let $f: X \to [0, \infty]$ be a measurable function such that $\int_E f d\mu < \infty$ for each measurable set E with $\mu(E) < \infty$. Prove that $\forall \epsilon > 0$, $\exists \delta > 0$ such that $\int_E f d\mu < \epsilon$ for every measurable set E with $\mu(E) < \delta$.
- **5.** Let $f: X \to [0, \infty]$ be measurable and 0 . Prove

$$\int f^p d\mu = p \int_0^\infty t^{p-1} \mu(\{f > t\}) dt.$$

6. Let μ be a finite (positive) Borel measure on a Hausdorff space X such that

$$\mu(V) = \sup\{\mu(K) : K \text{ is compact and } K \subset V\}$$

for each open set $V \subset X$. Prove:

(a) Given a Borel set $E \subset X$ and $\epsilon > 0$, there exists a closed set F and an open set V such that

$$F \subset E \subset V$$
 and $\mu(V \setminus F) < \epsilon$.

(b) The closed set F in (a) can be chosen to be compact.

6. Let $f: X \times [0,1] \to \mathbb{C}$. State (nontrivial) conditions on f that guarantee

(*)
$$\frac{d}{dt} \int f(x,t) d\mu(x) = \int \frac{\partial f}{\partial t}(x,t) d\mu(x) \qquad \forall t \in (0,1)$$

and then prove (*).

7. Let f and g be Borel functions on \mathbb{R}^+ such that

$$\int_0^\infty (|f(x)| + |g(x)|) \frac{dx}{x} < \infty.$$

Define

$$(f * g)(x) = \int_0^\infty f(y)g(x/y)\frac{dy}{y}$$

for x > 0 whenever the integral in the right-hand side exists.

Prove: (i) $|f * g| < \infty$ Lebesgue-almost everywhere, (ii) f * g is Borel measurable, and

(iii)
$$\int_0^\infty |(f*g)(x)| \frac{dx}{x} \le \int_0^\infty |f(x)| \frac{dx}{x} \cdot \int_0^\infty |g(y)| \frac{dy}{y}.$$

8. Let f be a 2π -periodic differentiable function on $\mathbb R$ with $\int_0^{2\pi} |f'(t)|^2 dt < \infty$. Prove that

$$\sum_{n=-\infty}^{\infty} n^2 |\hat{f}(n)|^2 < \infty.$$

7. Suppose that f is a continuous function on $D:=\{z\in\mathbb{C}:|z|<1\}$, $g\in L^1([0,2\pi])$, and $||f_r-g||_1\to 0$ as $r\to 1$, where $f_r(t)=f(re^{it})$ for $0\le r<1$ and $0\le t\le 2\pi$. Prove

$$\limsup_{r \to 1} \int_0^{2\pi} \log |f_r| dt \le \int_0^{2\pi} \log |g| dt,$$

where $\log x = -\infty$ for x = 0.

Hint: $x - \log x > 0$ for $0 \le x < \infty$.

- 8. Consider $F(x) := \int_0^1 \frac{e^{-x^2(t^2+1)}}{t^2+1} dt$, $x \in \mathbb{R}$.
 - (a) Justify differentiating F "behind the integral".
 - (b) Use (a) to show that the function

$$G(x) := \left(\int_0^x e^{-t^2} dt \right)^2 + F(x), \quad x \in \mathbb{R},$$

is constant. What is that constant?

- (c) By letting $x \to +\infty$ in (b) deduce the value of $\int_0^\infty e^{-t^2} dt$.
- **9.** True or false: Lebesgue measure λ in \mathbb{R}^n has the property that $\lambda(\overline{U} \setminus U) = 0$ for every open set U.
- 10. X is a compact metric space, μ a positive finite Borel measure on X which annihilates every countable set, S_n are Borel and diameter $(S_n) \to 0$ as $n \to \infty$. Prove that $\mu(S_n) \to 0$ as $n \to \infty$.