Forecasting Lightweight Vehicle Sales

Sifan Wu, Jeremy Xu, Kairan Zhong, Felix Wang, Jun Tan Time Series Analysis and Forecasting May 24, 2023

Outline

Introduction

Data Selection

Experimental results and Analysis

Model Selection

Conclusion and Future work

Introduction

- Analyze the monthly lightweight vehicle sales data from Jan 2010 to Dec 2022 (https://fred.stlouisfed.org/series/DSPIC96).
- To forecast the demand for lightweight vehicles over the next 24 months.
- To see if fuel-efficient and environmentally friendly vehicles will have a growing market
 - If so, help manufacturers prepare in advance for the increasing demand in the future
 - If not, encourage policymakers to make better policies of promoting the lightweight vehicles

Model used:

- Linear regression Sifan Wu
- Exponential smoothing Jeremy Xu
- ARIMA Kairan Zhong
- Regression with ARMA Errors Felix Wang
- Intervention Analysis Jun Tan

Data Selection

- Two variables
 - Light-weight Vehicle Sales
 - US Disposable Income
- The original data set
 - has seasonality with an upward trend.
 - is Non-stationary.
- Stationarize data
 - seasonal differencing -> first order differencing
- The sample ACF and the sample PACF seem to indicate that an AR(3) model should be specified.
- Train set: 2020/01 2020/12 Test set: 2021/01 2022/12

Time Series Decomposition

Decomposition of additive time series

Decomposition of multiplicative time series

The remainder component for multiplicative decomposition looks like a white noise, so multiplicative decomposition makes more sense.

Baseline Approaches in Forecasting

	RMSE	MAE	Ljung-Box Test (p-value)	
Average Method	192.0058	168.8056	< 0.05	
Drift Method	529.8307	496.3407	< 0.05	
Naive Method	440.5821	409.6111	< 0.05	
Seasonal Naive Method	318.3891	254.9943	< 0.05	

Linear Regression

Linear Regression

Model Fitting

Light Weight Vehicle Sales ~ US Disposable Income

Model Diagnostics

Residuals are autocorrelated

Model Evaluation

Method: Train-test Split

RMSE: 279.3836

MAE: 255.9479

Forecasts from Linear regression model

data: Residuals from Linear regression model LM test = 93.853, df = 24, p-value = 3.29e-10

Holt-Winters Seasonal Method

```
## Linear trend with additive seasonality
m_add <- hw(ts_train, h=24, seasonal="additive", damped=FALSE)
m_add$model$aicc

## [1] 1887.252

## Linear trend with additive seasonality and damping
m_damped_add <- hw(ts_train, h=24, seasonal="additive", damped=TRUE)
m_damped_add$model$aicc</pre>
```

[1] 1887.81

```
## Linear trend with multiplicative seasonality
m_multi <- hw(ts_train, h=24, seasonal="multiplicative", damped=FALSE)
m_multi$model$aicc</pre>
```

[1] 1899.315

```
## Linear trend with multiplicative seasonality and damping
m_damped_multi <- hw(ts_train, h=24, seasonal="multiplicative", damped=TRUE)
m_damped_multi$model$aicc ## best model

## [1] 1886.972</pre>
```

THE UNIVERSITY OF CHICAGO

Forecasts from Damped Holt-Winters' multiplicative method

Residuals from Damped Holt-Winters' multiplicative method


```
##
## Ljung-Box test
##
## data: Residuals from Damped Holt-Winters' multiplicative method
## Q* = 40.243, df = 24, p-value = 0.02013
##
## Model df: 0. Total lags used: 24
```

Exponential Smoothing State Space Model

ETS (Error, Trend, Seasonal)

Forecasts from ETS(M,Ad,M)

Model with *multiplicative errors, additive damped trend,* and *multiplicative seasonality*.


```
##
## Ljung-Box test
##
## data: Residuals from ETS(M,Ad,M)
## Q* = 39.554, df = 24, p-value = 0.02387
##
## Model df: 0. Total lags used: 24
```


Comparing Exponential Smoothing Models

The ETS (M, Ad, M) model has the best accuracy.

```
## ME RMSE MAE MPE MAPE ACF1 Theil's U
## Test set -186.6456 240.8748 214.1647 -16.87944 18.67013 0.5718254 1.840553
```

```
## ETS(M,Ad,M)
##
## Call:
    ets(y = ts train, model = "ZZZ")
##
     Smoothing parameters:
       alpha = 0.5253
       beta = 1e-04
       gamma = 2e-04
             = 0.9789
     Initial states:
       1 = 914.3187
       b = 14.1728
       s = 1.125 \ 0.945 \ 0.9527 \ 0.9705 \ 1.0663 \ 1.0109
               1.0325 1.0852 0.9637 1.1176 0.9285 0.8021
##
     sigma: 0.0782
##
        AIC
                 AICC
                            BIC
## 1878.922 1884.975 1930.813
```


ARIMA

ARIMA(3,0,3) with no seasonality

Series: train_ts

ARIMA(3,0,0) with non-zero mean

Box Cox transformation: lambda= 0.910537

Coefficients:

ar1 ar2 ar3 mean
0.2451 0.2065 0.4112 731.5146
s.e. 0.0812 0.0832 0.0826 48.1274

sigma^2 = 6927: log likelihood = -769.6

AIC=1549.2 AICc=1549.68 BIC=1563.62

Training set error measures:

ME RMSE MAE MPE MAPE MASE ACF1

Training set 11.9926 155.0954 122.8004 -0.5851951 10.01626 1.277135 0.0004511321

AICc = 1549.68 BIC = 1563.62

SARIMA

Model1: ARIMA(0,1,1)(2,1,2)[12]

Series: train_ts ARIMA(0,1,1)(2,1,2)[12] Box Cox transformation: lambda= 0.9105539 Coefficients: sar1 sar2 -0.4653 0.7983 -0.6690 -1.1568 0.659 s.e. 0.1139 0.2330 0.2045 0.2650 0.301 sigma^2 = 2947: log likelihood = -646.64 AIC=1305.27 AICc=1306.02 BIC=1321.95 Training set error measures: RMSE MAE ACF1 Training set -4.134603 95.38499 57.09142 -0.7680598 4.632912 0.5937556 0.04946321

Model2: ARIMA(3,0,1)(0,1,2)[12] (with d =0)

```
Series: train_ts
ARIMA(3,0,1)(0,1,2)[12]
Box Cox transformation: lambda= 0.9105539
Coefficients:
                                ma1
                                                 sma2
      -0.1314 0.5076 0.3503 0.7102 -0.3332
                                             -0.2898
s.e. 0.3431 0.2625 0.0897 0.3726 0.1633
                                              0.1453
sigma^2 = 2934: log likelihood = -649.32
AIC=1312.63 AICc=1313.63 BIC=1332.14
Training set error measures:
                         RMSE
                                  MAE
                                                                        ACF1
Training set 12.80432 95.27845 61.44751 0.580297 4.963525 0.6390592 -0.03469308
```

AICc = 1306.02 BIC = 1321.95

AICc = 1313.63 BIC = 1332.14

SARIMA

Regression with ARMA Errors

Regression with ARMA Errors

Model specification and Estimation: ARIMA(4,1,1)(0,1,1)[12] errors

Series: train_vehicle_sales

Regression with ARIMA(4,1,1)(0,1,1)[12] errors

Box Cox transformation: lambda= 0.910537

Coefficients:

	ar1	ar2	ar3	ar4	ma1	sma1	xreg	
	0.1426	0.1300	0.2447	-0.3146	-0.8344	-0.6794	-0.0978	
s.e.	0.1199	0.1048	0.0978	0.0920	0.0924	0.1198	0.0219	

sigma^2 = 2486: log likelihood = -634.95 AIC=1285.91 AICc=1287.22 BIC=1308.14

Training set error measures:

ME RMSE MAE MPE MAPE MASE
Training set -13.00368 87.19715 55.40375 -1.345904 4.4077 0.5762037

Model Diagnostics: checkresiduals()

Ljung-Box test

data: Residuals from Regression with ARIMA(4,1,1)(0,1,1)[12] errors $Q^* = 20.993$, df = 18, p-value = 0.2797

Model df: 6. Total lags used: 24

Regression with ARMA Errors

Forecast

Naive Forecasts for Disposable personal income in next 24 months

Model Evaluation:

- Train: 132 (2010.1-2020.12)
- Test: 24 (2021.1-2022.12)
- Around 80%, 20%

ME RMSE MAE MPE MAPE MASE ACF1 Theil's U
Training set -13.00368 87.19715 55.40375 -1.345904 4.40770 0.5762037 -0.03867808 NA
Test set -182.76525 271.45624 241.92899 -16.988012 20.86397 2.5160819 0.68527567 2.049608

Forecasts from Regression with ARIMA(4,1,1)(0,1,1)[12] errors

Intervention Specification - Pulse Function

Monthly Light-weight Vehicle Sales (Jan 2010 - Dec 2022)

Intervention Analysis


```
Call:
arimax(x = log(train), order = c(0, 1, 1), seasonal = list(order = c(0, 1, 0),
    period = 12), method = "ML", xtransf = data.frame(I2020, I2020), transfer = list(c(0,
   0), c(1, 0))
Coefficients:
         mal I2020-MA0 I2020.1-AR1 I2020.1-MA0
                 -0.0086
                              0.5953
                              0.1035
                                           0.1663
s.e. 0.0391
                 0.1810
sigma^2 estimated as 0.005411: log likelihood = 140.91, aic = -273.82
Training set error measures:
                                                                                  ACF1
Training set -0.01220034 0.06987645 0.04486797 -0.1744702 0.627302 0.3579166 -0.1304569
```

- Based on the pre intervention data, an ARIMA(0, 1, 1) × (0, 1, 0)[12] model was tentatively specified for the
 unperturbed process.
- The fitted model estimates that the the COVID-related activity restrictions reduced light-weight vehicle sales by 57.4% and sales k months later was lowered by (1 exp(-0.5658 * 0.5953k)) * 100%.

Intervention Analysis - Residuals and Forecasts

data: Residuals from ARIMA(0,1,1)(0,1,0)[12]Q* = 36.216, df = 23, p-value = 0.03921

Model df: 1. Total lags used: 24

Forecasts from Regression with ARIMA(0,1,1)(0,1,0)[12] errors

Conclusion and Future Work

Model Selection: Average Method

Baseline

	RMSE	MAE	Ljung-Box Test (p-value)	
Average Method	192.0058	168.8056	< 0.05	
Drift Method	529.8307	496.3407	< 0.05	
Naive Method	440.5821	409.6111	< 0.05	
Seasonal Naive Method	318.3891	254.9943	< 0.05	

Our Models

	RMSE	MAE	Ljung-Box Test (p-value)	
Linear Regression	279.3836	255.9479	< 0.05	
Exponential Smoothing	' 1 740 8748		< 0.05	
ARIMA	243.95	195.2654	> 0.05	
Regression with ARMA Errors	271.4562	241.9290	> 0.05	
Intervention Analysis	245.6292	196.0529	< 0.05	

Prediction with Average Method

Forecasts from Mean

- Forecasting Lightweight Vehicle Sales
- Forecast period: Jan 2023 to Dec 2024

##			Point	Forecast	Lo 80	Hi 80	Lo 95	Hi 95
##	Jan	2023		1282.735	1007.528	1557.942	860.3377	1705.132
##	Feb	2023		1282.735	1007.528	1557.942	860.3377	1705.132
##	Mar	2023		1282.735	1007.528	1557.942	860.3377	1705.132
##	Apr	2023		1282.735	1007.528	1557.942	860.3377	1705.132
##	May	2023		1282.735	1007.528	1557.942	860.3377	1705.132
##	Jun	2023		1282.735	1007.528	1557.942	860.3377	1705.132
##	Jul	2023		1282.735	1007.528	1557.942	860.3377	1705.132
##	Aug	2023		1282.735	1007.528	1557.942	860.3377	1705.132
##	Sep	2023		1282.735	1007.528	1557.942	860.3377	1705.132
##	Oct	2023		1282.735	1007.528	1557.942	860.3377	1705.132
##	Nov	2023		1282.735	1007.528	1557.942	860.3377	1705.132
##	Dec	2023		1282.735	1007.528	1557.942	860.3377	1705.132
##	Jan	2024		1282.735	1007.528	1557.942	860.3377	1705.132
##	Feb	2024		1282.735	1007.528	1557.942	860.3377	1705.132
##	Mar	2024		1282.735	1007.528	1557.942	860.3377	1705.132
##	Apr	2024		1282.735	1007.528	1557.942	860.3377	1705.132
##	May	2024		1282.735	1007.528	1557.942	860.3377	1705.132
##	Jun	2024		1282.735	1007.528	1557.942	860.3377	1705.132
##	Jul	2024		1282.735	1007.528	1557.942	860.3377	1705.132
##	Aug	2024		1282.735	1007.528	1557.942	860.3377	1705.132
##	Sep	2024		1282.735	1007.528	1557.942	860.3377	1705.132
##	Oct	2024		1282.735	1007.528	1557.942	860.3377	1705.132
##	Nov	2024		1282.735	1007.528	1557.942	860.3377	1705.132
##	Dec	2024		1282.735	1007.528	1557.942	860.3377	1705.132