IT 422 Network Security Overview

Yasser F. O. Mohammad 2010.2.22

Teaching Team

- Instructor: Yasser F. O. Mohammad
 - Computers and Systems section (Intelligent Robotics)
 - Email: yasserfarouk@gmail.com
 - Web: http://www.ii.ist.i.kyoto-u.ac.jp/~yasser
- TA: Eng. Maged Ashkar
- Course Website:
 - www.ii.ist.i.kyoto-u.ac.jp/~yasser/courses/NetSecCI
- Google Group:
 - Email: netsec_2010@googlegroups.com
 - Web: http://groups.google.com/group/netsec_2010

Course Syllabus

- Introduction
- Fundamentals
 - Symmetric Key Encryption
 - Hashing and Public Key Encryption
- Applications
 - Authentication Protocols
 - E-Mail Security
 - IP Security
 - Web Security
 - LAN Security
 - Intrusion Detection
 - Malicious Software
 - Firewalls

Course Philosophy

- Maximize practical sense
- Maximize field exposure
- Minimize complex mathematics

You need to USE Network Security Algorithms and Systems not to invent new ones.

Text Books

Main Text

- Network Security Essentials
 - William Stallings

Other References

- Cryptography and Network Security
 - William Stallings
- Network Security Fundamentals
 - Gert De Laet and Gert Schauwers
- Fundamentals of Network Security
 - John E. Canavan
- Applied Cryptography
 - Bruce Schneier

Let's Play a Spy Game

- Spy knows that ENEMY will attack the CAMP at 6:00
- How can he tell the CAMP about that and know that they received the information.

Security Types

- Physical and Administrative Security
- Computer Security
- Network Security
- Internet Security

ITU-T OSI X.800

• ITU-T=International Telecommunication Unit, Telecommunication Standardization Sector

- OSI=Open Systems Interconnectivity
- X.800= Security Architecture for OSI

Threats vs. Attacks

Threat

A possible danger that might exploit a vulnerability.

Attack

An assault on system security that derives from an intelligent threat.

Security mechanism

A process that is designed to detect, prevent, or recover from a security attack.

Security service

A processing or communication service that enhances the security of the data processing systems and the information transfers of an organization.

Relations Between them

The services are intended to counter security attacks, and they make use of one or more security mechanisms to provide the service.

Security Attacks in X.800

Passive Attacks

Active Attacks

Passive Attacks

Release of Message Contents

Traffic Analysis

Active Attacks

Security Services in X.800

- Authentication
 - Pear entity authentication
 - Data origin authentication
- Access Control
- 3. Data Confidentiality
- 4. Data Integrity
- 5. Nonrepudiation
- 6. Availability

Security Mechanisms in X.800

- Specific Security Mechanisms
 - Encipherment
 - Digital Signature
 - Access Control
 - Data Integrity
 - Authentication Exchange
 - Traffic Padding
 - Routing Control
 - Notarization

Security Mechanisms in X.800

- Pervasive Security Mechanisms
 - Trusted Functionality
 - Security Label
 - Event Detection
 - Security Audit Trail
 - Security Recovery

Services and Mechanisms

Mechanism								
Service	Encipherment	Digital Signature	Access Control	Data Integrity	Authentication Exchange	Traffic Padding	Routing Control	Notarization
Peer entity authentication	Y	Y			Y			
Data origin authentication	Y	Y						
Access control			Y					
Confidentiality	Y						Y	
Traffic flow confidentiality	Y					Y	Y	
Data integrity	Υ	Y		Y				
Nonrepudiation		Y		Y				Υ
Availability				Y	Y			

Model For Network Security

Security Techniques

- Data Transformation
 - Encryption
 - Hashing
 - Padding
- Secret Information
 - Keys
 - Algorithms

Steps of any security techniques

- Algorithm Design
- [Optional] Secret Information Generation
- [Optional] Secret Information Distribution
- Protocol Specification

Network Access Model

Opponent -human (e.g., hacker) -software (e.g., virus, worm) Access channel Gatekeeper function Gatekeeper function Information system Computing resources (processor, memory, I/O) Data Processes Software Internal security controls

First Assignment

 Self Read: Section 1.6 of 'Network Security Essentials' about Standards and Internet Society

Suggest as many solutions as you can to the Spy game

