Knowledge Representation & Reasoning

(CSCA-203)

Lecture Week 6/1: Semantic Network

Farhad Muhammad Riaz

National University of Modern Languages

Semantic Networks

- A Semantic Network (SN) is a simple notation scheme for logical knowledge representation.
- A SN consists of a *concepts* and *relations* between concepts.
- Representing a SN with a directed graph:
 - **Vertices** : denote concepts.
 - Edges: represent relation between concepts.
- The graphical depiction associated with a SN is a significant reason for their popularity.

Semantic Networks

- Consists of nodes and arcs.
- Nodes represents objects.
- Arcs represents relationships between the objects.
- Relationships:
 - is-a
 - Instance
 - has/has-a
 - Others

Semantic Networks Example (1)

- "Bill is taller than John."
 - Non appropriate scheme :

Appropriate scheme :

- For an appropriate scheme:
 - Draw relations on the basic of primitives.
 - Represent complicated relations with this primitives.

- The ISA (is-a) relation is often used to link instances to classes, classes to superclasses.
- Some links (e.g. isPart) are inherited along ISA paths.
- The semantics of a SN can be relatively very formal or informal.
 - often defined at the implementation level

• Some times we had to override a relation for an inherited node (e.g travel by).

Semantic Networks Reification

- Non-binary relationships can be represented by "turning the relationship into an object"
- This is an example of what logicians call "reification".
 - consider an abstract concept to be real.
 - We might want to represent the generic give event as a relation involving four things: an agent, a recipient, an object and an activation time.

Semantic Networks Reification

- Consider this: "John gave Mary the book."
 - Abstract concept (gave) => real.

Semantic Networks Example (2)

- Family relationships.
- Primitives:
 - father, mother, brother, sister, son, daughter.
- More complicated relations representing with primitives:
 - aunt (man) : sister (father (man))
 - causion (man) : son (brother (mother (man)))
 - etc.

Semantic Networks Example (3)

- "Every dog has bitten a postman."
- Is equal to:
 - $\forall X (dog(X) \longrightarrow \exists Y (postman(Y) \& bitten(X, Y)))$
- Represent SN for one (dog, postman).
- Quantify the represented SN.
- GS is the set of generilized statements that has been quanified.

Semantic Networks Example (3)

Clyde is an elephant.

Short Question

- John's height is 72.
- John is taller than Bill.
- John gives Mary the book.
- Mary gave the green coloured vase to her favorite cousin.

John's height is 72.

John is taller than Bill.

John gives Mary the book.

Using Case Frames

- Problems with semantic networks
- Attempts to standardize semantic networks led to the development of case frames.
- Each sentence is represented by a case frame.
- Each case frame represents an actions.
- Case frames define case relationships: agent, object, instrument, location and time.

Example: Case Frame

Exercises

Construct semantic networks for the following statements:

- Pompeian(Marcus),
 Blacksmith(Marcus).
- Mary gave the green coloured vase to her favorite cousin.
- John went downtown to deposit his money in a bank.

Conceptual Graphs

- Is a connected bipartite graph.
- Conceptual relation nodes represent relations between concepts.
- The arcs connecting nodes are not labeled.
- Concepts are represented by boxes.
- Relations are represented by arcs.

Conceptual Graph Relations

Mary gave John the book.

Unique Markers

- If an individual object is unknown a unique marker can be used in place of the name of the object.
- A unique marker is comprised of a hash symbol (#) followed by a number.
- Each object has its own unique marker.

Example 1: Unique Markers

Example 2: Unique Marker

Her name was McGill and she called herself Lil, but everyone knew her as Nancy.

Generic Markers

- A generic marker is used to represent an unspecified individual of a type.
- A generic marker is represented by an asterisk *.
- Name variables can also be used, e.g., *X to indicate an unspecified individual.

Example: Generic Marker

The dog is scratching its ear with its paw.

Display Form

John is going to Boston by bus.

Linear Form

John is going to Boston by bus.

```
[Go] -
(Agnt) \rightarrow [Person: John]
(Dest) \rightarrow [City: Boston]
(Inst) \rightarrow [Bus]
```

Exercises

Construct conceptual graphs for the following statements:

- Jane gave Tom an ice cream.
- Basketball players are tall.
- Paul cut down the tree with an axe.
- Place all the ingredients in a bowl and mix thoroughly.

