Course material at: https://git.io/fjFga

Regression, Overfitting and Optimization

Monday, Lecture 2 FASE ML Bootcamp

Based on material from Joseph Redmon, Christopher Bishop, Polo Chau Elements of Statistical Learning by Hastie, Tibshirani, Friedman

Regression

Data points (x,t) generated by adding noise to $sin(2\pi x)$

Errors in Regression
$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Error as a function of degree of polynomial

Dealing with Overfitting: (1) more data!

Dealing with Overfitting: (2) regularization minimize:

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} ||\mathbf{w}||^2$$

Model's squared error

Penalty on parameters

Regularization in Classification

- Decision Trees
 - Limit the depth of the tree
 - Prune subtrees after training
- Support Vector Machines
 - Built-in, tunable regularization term
- Logistic Regression
 - Can add a tunable regularization term to MLE objective

Penalize large parameter values!

Underfitting: model is too simplistic!

Dealing with Overfitting: (2) regularization

minimize:
$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

Parameters vs Hyper-parameters

Example hyper-parameters

- Decision tree: maximum depth of the tree
- Polynomial regression: regularization coefficient $\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$
- Hyper-parameters are determined through trial-and-error / cross validation

Example parameters: directly optimized, "learned"!

- Decision tree: attributes you split on
- Logistic regression: weights β

$$p(x; \beta) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \dots + \beta_d x_d)}}$$

Regression

Examples:

- Stock price prediction
- Forecasting epidemics
- Weather prediction

We will look at:

- Linear Regression
- Ridge Regression
- LASSO

Regression

What is the temperature going to be tomorrow?

https://medium.com/@ali_88273/regression-vs-classification-87c224350d69

Linear Regression

Data: $S = \{(x_i, y_i)\}_{i=1,...,n}$

x_i: data example with **d** attributes

y_i: target of example (what you care about)

Model:

$$f(x; \boldsymbol{\beta}) = \beta_0 + \beta_1 x_1 + \dots + \beta_d x_d$$

Loss function: Residual Sum of Squares

$$RSS(\boldsymbol{\beta}) = \sum_{i=1}^{\infty} (y_i - f(x_i; \boldsymbol{\beta}))^2$$

Linear Regression

Minimizing RSS to find β^* :

- Closed-form solution!
- If closed-form fails, can use standard optimization methods

Model:

$$f(x; \boldsymbol{\beta}) = \beta_0 + \beta_1 x_1 + \dots + \beta_d x_d$$

Loss function: Residual Sum of Squares

$$RSS(\boldsymbol{\beta}) = \sum_{i=1}^{N} (y_i - f(x_i; \boldsymbol{\beta}))^2$$

Ridge Regression

- Linear Regression uses all features; model may be complicated
- Ridge Regression penalizes large parameter values

Model:

$$f(x; \boldsymbol{\beta}) = \beta_0 + \beta_1 x_1 + \dots + \beta_d x_d$$

Loss function: Residual Sum of Squares + penalty term
$$RSS(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i - f(x_i; \boldsymbol{\beta}))^2 + \lambda \sum_{j=0}^{d} \beta_j^2$$

Lasso Regression

- As in Ridge Regression, Lasso penalizes large parameters
- Penalizes absolute instead of squared coefficient values
- Zeroes out more coefficients BUT optimization is more involved

Model:

$$f(x; \boldsymbol{\beta}) = \beta_0 + \beta_1 x_1 + \dots + \beta_d x_d$$

Loss function: Residual Sum of Squares + penalty term
$$RSS(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i - f(x_i; \boldsymbol{\beta}))^2 + \lambda \sum_{j=0}^{d} |\beta_j|$$

Example: Prostate Cancer

Stamey et al. (1989)

- x: cancer volume, prostate weight, age, ...
- y: amount of prostate-specific antigen

Term	LR	Best Subset	Ridge	Lasso
Intercept	2.465	2.477	2.452	2.468
lcavol	0.680	0.740	0.420	0.533
lweight	0.263	0.316	0.238	0.169
age	-0.141		-0.046	
lbph	0.210		0.162	0.002
svi	0.305		0.227	0.094
lcp	-0.288		0.000	
${\tt gleason}$	-0.021		0.040	
pgg45	0.267		0.133	
Test Error	0.521	0.492	0.492	0.479
Std Error	0.179	0.143	0.165	0.164
_				

- Bias

- Error from assumptions model makes about data
- Linear model assumes data is linear, bad for data that isn't

- Bias

- Error from assumptions model makes about data
- Linear model assumes data is linear, bad for data that isn't

Variance

- Algorithm's sensitivity to noise
- More complex algorithms are more sensitive!

Variance

- Algorithm's sensitivity to noise
- More complex algorithms are more sensitive!

Variance

- Algorithm's sensitivity to noise
- More complex algorithms are more sensitive!
- High variance hurts generalization, overfitting

Error = Noise + Bias + Variance

- Noise
 - Random variations in data
- Bias
 - Error from assumptions model makes about data
 - Less complex algorithms -> more assumptions about data
- Variance
 - Algorithm's sensitivity to noise
 - More complex algorithms are more sensitive!
 - High variance hurts generalization

Linear regression

- $f^*(x) = ax + b$
- High bias: linear assumption
- Low variance
- Benefits:
 - Closed form solution
 - Fast to compute for new data
- Weaknesses:
 - Not very powerful, assumes linear
 - Underfit more interesting data

Nearest neighbor regression

- $f^*(x) = f(x')$ for nearest x' in training set
- Low bias: no assumptions about data
- High variance: very sensitive to training set
- Benefits:
 - Super easy to implement
 - Easy to understand
 - Arbitrarily powerful, esp
 with lots of data
- Weaknesses:
 - Hard to scale
 - Prone to **overfitting** to noise

ML as an Optimization problem: Regression minimize:

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

Model's squared error

ML as an Optimization problem: Logistic Regression

$$p(x; \beta) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_1 + \dots + \beta_d x_d)}}$$

Data:
$$S = \{(x_i, y_i)\}_{i=1,...,n}$$

Data: $S = \{(x_i, y_i)\}_{i=1,...,n}$ $\begin{cases} x_i : \text{ example with d attributes (age, #pregnancies, ...)} \\ y_i : \text{ cervical cancer diagnosis (0 or 1)} \end{cases}$

Maximum Likelihood Estimation (MLE)

Likelihood of observing the data for a given β :

$$\prod_{i=1}^n p(x_i; \boldsymbol{\beta})^{y_i} \times \left(1 - p(x_i; \boldsymbol{\beta})\right)^{1 - y_i}$$

MLE seeks parameters β that maximize the likelihood

The optimal parameters, β^* , can be found by optimization

Convexity

Graphically... which of these is convex?

For convex problems, gradient descent gets us to **global minima**. It's that easy!

Non-convexity

Usually no easy way to find global or local optima, harder to optimize

For some loss function $L(\mathbf{w})$, gradient $\nabla L(\mathbf{w})$ points towards in direction of steepest ascent.

For some loss function $L(\mathbf{w})$, gradient $\nabla L(\mathbf{w})$ points towards in direction of steepest ascent.

For some loss function $L(\mathbf{w})$, gradient $\nabla L(\mathbf{w})$ points towards in direction of steepest ascent.

For some loss function $L(\mathbf{w})$, gradient $\nabla L(\mathbf{w})$ points towards in direction of steepest ascent.

For some loss function $L(\mathbf{w})$, gradient $\nabla L(\mathbf{w})$ points towards in direction of steepest ascent.

In 1d, either points left or right

Algorithm:

Take derivative
Move slightly in other
direction
Repeat

For some loss function $L(\mathbf{w})$, gradient $\nabla L(\mathbf{w})$ points towards in direction of steepest ascent.

In 1d, either points left or right

Algorithm:

Take derivative
Move slightly in other
direction
Repeat

Algorithm:

Take derivative
Move slightly in other
direction
Repeat

End up at local optima

Formally:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \nabla L(\mathbf{w})$$

Where η is step size, how far to step relative to the gradient

Optimization in Classification

Decision Trees

- Very hard to find optimal tree (min. misclassification)
- Top-down heuristic as shown in Lecture 1

Support Vector Machines

Convex optimization!

Logistic Regression

Convex optimization!

Recap

- Regression models:
 - Linear Regression
 - Ridge Regression
 - Lasso
- Overfitting and Underfitting
- Bias-Variance Tradeoff
- Gradient Descent for ML

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \nabla L(\mathbf{w})$$