

Cálculo Numérico Lista de Exercícios 2: Interpolação Polinomial Prof^a: Dayanne Gouveia Coelho

1 - Calcular a partir da tabela de y = sen(x)

X	у			
0,3	0,2955			
0,4	0,3894			
0,5	0,4794			

os valores a seguir utilizando os polinômios de Newton:

- **a)** $P_1(0,33)$
- **b)** $P_2(0,33)$
- **c)** $P_1(0,38)$
- **d)** $P_2(0,38)$
- e) Compare os resultados acima com o resultado exato do problema.

2 - Seja a tabela

X	\mathbf{y}			
1,	0,8415			
1,3	1,2526			
1,7	1,6858			
2,0	1,8186			

utilizando os polinômios de Lagrange calcule:

- a) $L_1(1,1)$
- **b)** $L_2(1,1)$
- c) $L_2(1,5)$
- **d)** $L_3(1,3)$

3 - Considere a tabela:

X	y				
2,0	0,9803				
2,2	1,1695				
2,4	1,3563				
2,5	1, 4488				
2,7	1,6331				
2,9	1,8131				

Calcule $P_1(2,1)$, $P_2(2,1)$, $P_3(2,1)$ utilizando o polinômio interpolador de Newton.

- 4 Compare os três resultados do exercício 3 com o valor exato f(2,1)=1,0752
- 5 Seja a tabela:

X	y			
2,1	0,3693			
2,2	0,5137			
2,3	0,6732			
2,4	0,8424			

- a) Construa a tabela de diferenças divididas.
- **b)** Calcular $P_1(2,15)$, $P_2(2,15)$ e $P_3(2,15)$ utilizando o polinômio interpolador de Newton.
- c) Calcular $L_1(2,15)$, $L_2(2,15)$ e $L_3(2,15)$ utilizando o polinômio interpolador de Lagrange.
- d) Compare os resultados com o resultado exato f(2,15) = 0,4393.
- **6** Considere a tabela da função $f(x) = x\sqrt{x}$:

X	y			
2,0	2,8284			
2,5	3,9528			
3,2	5,7243			
3,9	7,7019			
4,1	8,3019			
5,0	11,1803			

- a) Calcule $P_2(3,5)$ utilizando os pontos de abcissas x=2,5; 3,2 e 3,9.
- b) Calcule $P_2(3,5)$ utilizando os pontos de abcissas x=3,2; 3,9 e 4,1.
- c) Compare os resultados com o resultado exato f(3,5) = 6,5479
- ${f 7}$ Considere a tabela abaixo que relaciona o calor específico da água em função da temperatura.

Temepratura em ${}^{\mathbf{o}}C$	20	30	45	55
Calor específico	0,99907	0,99826	0,99849	0,99919

Calcular o calor específico da água a uma temperatura 25°, usando um polinômio de 2° grau e:

- a) Polinômio de Lagrange
- b) Polinômio de Newton
- c) Compare os resultados obtidos pelos métodos utilizando o valor real 0,99852

Respostas: Consulte a Referência.

Referências

[1] F. F. Campos Filho Algoritmos Numéricos. LTC editora, Rio de Janeiro, 2ª edição, 2012.