

CARTESIAN PRODUCTS

Why

Does a set exist of all the ordered pairs of elements from an ordered pair of sets?

Definition

Indeed. Let A and B denote sets and let a and b denote objects. If $a \in A$ and $b \in B$, then $\{a\} \subset A$ and $\{b\} \subset B$ and so $\{a\}, \{b\}, \{a, b\} \in (A \cup B)^*$.

The *product* of the set denoted by A and the set denoted by B is the set of all ordered pairs. This set is also called the *cartesian product*. If $A \neq B$, the ordering causes the product of A and B to differ from the product of B with A. If A = B, however, the symmetry holds.

Notation

We denote the product of A with B by $A \times B$, read aloud as "A cross B." In this notation, if $A \neq B$, then $A \times B \neq B \times A$.

