Digital Design

Lecture of week 11 part 2 Dr Manal Tantawi

Computer Memories

- 1) Registers $\sqrt{\sqrt{}}$
- 2) RAM (self read not included in final exam)
- 3) ROM (self read not included in final exam)

Registers

4 bit register with parallel load

Only one clock is needed to upload an input

Registers

4 bit shift register (right or left)

Registers

4 bit shift register (right)

Shift register

 \triangleright Serial transfer (B = A)

Shift register

 \triangleright Serial transfer (B = A)

Shift register

 \triangleright Serial transfer (B = A)

Timing Pulse	Shift Register A	Shift Register B
Initial value	1 0 1	0 0 1 0
After T_1		0 0 1
After T ₂	1 1 1 0	1 1 0 0
After T_3	0 1 1 1	0 1 1 0
After T ₄	1 0 1 1	1 0 1 1

Find the content of the register after 4 clocks (initial value for Q = 0)

clocks	SI Last bit \oplus Q	Register content	D =Last bit	Q
	0	1 0 1 <u>0</u>	0	<u>0</u>
CLK 1	1	010 <u>1</u>	1	<u>0</u>

clocks	SI	Register content		Q
	Last bit ⊕ Q		=Last bit	
	0	101 <u>0</u>	0	<u>0</u>
CLK 1	1	0 1 0 <u>1</u>	1	<u>0</u>
CLK 2	1	<u></u> 101 <u>0</u>	0	1

clocks	SI Last bit \oplus Q	Register content	D =Last bit	Q
	0	101 <u>0</u>	0	<u>0</u>
CLK 1	1	0 1 0 <u>1</u>	1	<u>0</u>
CLK 2	1	1 0 1 <u>0</u>	0	1
CLK 3	1	110 <u>1</u>	1	<u>0</u>

clocks	SI	Register content	D	Q
	Last bit ⊕ Q		=Last bit	
	0	1 0 1 <u>0</u>	0	<u>0</u>
CLK 1	1	0 1 0 <u>1</u>	1	<u>0</u>
CLK 2	1	1 0 1 <u>0</u>	0	1
CLK 3	1	110 <u>1</u>	1	<u>0</u>
CLK 4		1110	7	1

$$X + Y + Z + W$$
 (each of them is 4 bits)

Register A

X

Register A

X + Y

Register A

X + Y + Z

Register B

Y

Register B

Z

Register B

W

1

2

(4 clocks)

3

(4 clocks)

X = 0 1 0 1

 $Y = 0 \ 0 \ 1 \ 1$ $Z = 0 \ 1 \ 1 \ 1$

Register A

Clocks	SI _A =S	Register A	SIB	Register B	D =C	Q	С	S
	0	0 1 0 <u>1</u>	1	0 0 1 <u>1</u>	1	<u>0</u>	1	0

X = 0 1 0 1

 $Y = 0 \ 0 \ 1 \ 1$ $Z = 0 \ 1 \ 1 \ 1$

Register A

Clocks	SI _A =S	Register A	SIB	Register B	D =C	Q	С	S
	0	0 1 0 <u>1</u>	1	0 0 1 <u>1</u>	1	<u>0</u>	1	0
CLK1	0	001 <u>0</u>	1	100 <u>1</u>	1	1	1	0

X = 0 1 0 1

 $Y = 0 \ 0 \ 1 \ 1$ $Z = 0 \ 1 \ 1 \ 1$

Register A

Clocks	SI _A =S	Register A	SIB	Register B	D =C	Q	С	S
	0	0 1 0 <u>1</u>	1	0 0 1 <u>1</u>	1	<u>0</u>	1	0
CLK1	0	0 0 1 <u>0</u>	1_	1 0 0 <u>1</u>	1	1	1	0
CLK2	0	000 <u>1</u>	1	⊿1 1 0 <u>0</u>	1	1	1	0

X = 0 1 0 1

 $Y = 0 \ 0 \ 1 \ 1$ $Z = 0 \ 1 \ 1 \ 1$

Register A

Clocks	SI _A =S	Register A	SIB	Register B	D =C	Q	С	S
	0	0 1 0 <u>1</u>	1	0 0 1 <u>1</u>	1	<u>0</u>	1	0
CLK1	0	0 0 1 <u>0</u>	1	1 0 0 <u>1</u>	1	1	1	0
CLK2	0	0 0 0 <u>1</u>	1	1 1 0 <u>0</u>	1	1	1	0
CLK3	1	0 0 0 <u>0</u>	0	<u> 1110</u>	0	1	0	1

X = 0 1 0 1

 $Y = 0 \ 0 \ 1 \ 1$

Z = 0 1 1 1

Register A

Clocks	SI _A =S	Register A	SIB	Register B	D =C	Q	С	S
	0	0 1 0 <u>1</u>	1	0 0 1 <u>1</u>	1	<u>0</u>	1	0
CLK1	0	0 0 1 <u>0</u>	1	1 0 0 <u>1</u>	1	1	1	0
CLK2	0	0 0 0 <u>1</u>	1	1 1 0 <u>0</u>	1	1	1	0
CLK3	1	0 0 0 <u>0</u>	0	1 1 1 <u>0</u>	0	1	0	1
CLK4		1 0 0 <u>0</u>		0 1 1 <u>1</u>		<u>0</u>		

Ζ

Selection circuit (remember)

4 bit register with parallel load \ no change

4 bit register with parallel load \ no change

Load = 0 no change

4 bit register with parallel load \ no change

Load = 1 Parallel load

4 bit Universal Shift Register example 1

4 bit Universal Shift Register (cont.) example 1

Function table

Mode	Control	_
s ₁	s _o	Register Operation
0	0	No change
0	1	Shift right
1	0	Shift left
1	1	Parallel load

3 bit Universal Shift Register(cont.) example 2

3 bit Universal Shift Register (cont.) example 2

Function table

S ₀	S 1	Register operation
0	0	Circular shift right
0	1	Parallel Load
1	0	Circular shift left
1	1	complement

Random Access Memory (RAM)

Different representations for OR gate

(a) Conventional symbol

(b) Array logic symbol

Memory unit (RAM)

0	
1	
2	
-	
•	
-	
•	
2 ^k -1	

Memory unit (RAM)

0	
1	
2	
-	
•	
•	
2 ^k -1	

RAM size = # of words x word size ex: 8 x 4 RAM number of words = 8 = 23

Word size = number of inputs = number of outputs = 4 number of address lines = 3

A Binary Cell

Diagram of a 4 x 4 RAM

If we have 32M x 8 RAM then

• Kilobyte = 2^{10} Mega = 2^{20} Gaga = 2^{30}

Number of words = $2^5 * 2^{20} = 2^{25}$

Word size = 8 bits

Number of inputs = 8 Number of outputs = 8

Number of address lines = 25

Decoder size = 25×2^{25}

Read-only Memory (ROM)

32 x 8 ROM

Example

ROM Truth Table (Partial)

Inputs						Outputs						
14	13	I ₂	1,	l _o	A ₇	A ₆	As	A ₄	A ₃	A ₂	A ₁	A ₀
0	0	0	0	0	1	0	1	1	0	1	1	0
0	0	0	0	1	0	0	0	1	1	1	0	1
0	0	0	1	0	1	1	0	0	0	1	0	1
0	0	0	1	1	1	0	1	1	0	0	1	0
1	1	i	0	0	0	0	0	0	1	0	0	1
1	1	1	0	1	1	1	1	0	0	0	1	0
1	1	1	1	0	0	1	0	0	1	0	1	0
1	1	1	1	1	0	0	1	1	0	0	1	1

Programmed ROM

ROM Truth Table (Partial)

	Inputs					Outputs							
I ₄	13	12	11	I ₀	A7	A ₆	As	A_4	A_3	A ₂	A ₁	A ₀	
0	0	0	0	0	1	0	1	1	0	1	1	0	
0	0	0	0	1	0	0	0	1	1	1	0	1	
0	0	0	1	0	1	1	0	0	0	1	0	1	
0	0	0	1	1	1	0	1	1	0	0	1	0	
1	1	1	0	0	0	0	0	0	1	0	0	1	
1	1	1	0	1	1	1	1	0	0	0	1	0	
1	1	1	1	0	0	1	0	0	1	0	1	0	
1	1	1	1	1	0	0	1	1	0	0	1	1	

Thank you