On Functions of Bounded Variation

Jakob Schneider

July 7, 2013

Contents

1 Introduction 1

1 Introduction

It is a very interesting subject to generalize or weaken the property of a function being differentiable. It is a well known theorem that functions from \mathbb{R} to \mathbb{R} of locally bounded variation are almost everywhre differentiable. We will comment on this thing a bit.

Theorem 1.1 (Vitali's Covering Lemma). Let \mathcal{B} be a collection of closed non-degenerate balls in the \mathbb{R} -metric¹ space (X,d) with uniformly bounded radii. Then for $\varepsilon > 0$ there exists a subcollection \mathcal{B}' of \mathcal{B} of pairwise disjoint balls such that $\bigcup \rho_{3+\varepsilon}[\mathcal{B}'] \supset \bigcup \mathcal{B}$ where ρ_{α} maps a ball to a ball with the same center but scaled with α .

Proof. Let R be an upper bound of the radii. Let us write r(B) for the radius of a ball B (and consider r as a map from the balls² to the reals). The idea of the proof is to construct a maximal subcollection which satisfies the desired properties. Consider the following partition of \mathcal{B} :

$$\mathcal{B} = \bigcup_{k \in \mathbb{N}_0} \mathcal{B} \cap r^{-1} \left(C \left(1 + \frac{\varepsilon}{2} \right)^{-(k+1)}, C \left(1 + \frac{\varepsilon}{2} \right)^{-k} \right]. \tag{1}$$

Let us denote these sets by \mathcal{B}_k for $f \in \mathbb{N}_0$. We now 'inductively' choose a maximal disjoint subcollection \mathcal{C} in the following manner.

- Assume we have chosen some subcollections C_i of B_i for i < k ($k \in \mathbb{N}_0$) such that $\bigcup_{i < k} C_i$ is a maximal disjoint subcollection of $\bigcup_{i < k} B_i$.
- Then chose C_k such that $\bigcup_{i \leq k} C_i$ is a maximal disjoint subcollection of $\bigcup_{i < k} B_i$.

¹that is the metric is real valued

²or more generally bounded sets

This procedure is possible due to Zorn's lemma. We finally get $\mathcal{C} = \bigcup_{k \in \mathbb{N}_0} \mathcal{C}_k$. Now to prove the desired property, assume that there is a ball $B \in \mathcal{B}$ with $B \not\subset \bigcup \mathcal{C}$. Then B must lie in some \mathcal{B}_k $(k \in \mathbb{N}_0)$. Thus due to maximality there exists $C \in \mathcal{C}_k$ such that $B \cap C \neq \emptyset$. Now pick points $p \in B \setminus C$, $q \in B \cap C$ and let o be the center of C. We then have by triangle inequality

$$d(o, p) \le d(o, q) + d(q, p) \le r(C) + 2r(B) \le r(C)(3 + \varepsilon)$$
 (2)

where the last is due to the fact that $B, C \in \mathcal{B}_k$.

Remark 1.2. The value $3 + \varepsilon$ is best possible.

Remark 1.3. If X is σ -finite and non-degenerate balls have measure greater than zero the constructed collection is countable.

Theorem 1.4 (Vitali's Covering Theorem). Let \mathcal{B} be a collection of closed non-degenerate balls in the metric space (X,d) such that if $b \in \bigcup \mathcal{B}$ then for $\varepsilon > 0$ there exists a ball $B \in \mathcal{B}$ with $r(B) < \varepsilon$ and $b \in B$. Let a Borel-measure be assigned on X. Then there exists a disjoint subcollection \mathcal{C} fo \mathcal{B} such that $\bigcup \mathcal{B} \setminus \bigcup \mathcal{C}$ has locally finite measure.