CS335: Top-down Parsing

Swarnendu Biswas

Semester 2019-2020-II CSE, IIT Kanpur

Example Expression Grammar

```
Start \rightarrow Expr

Expr \rightarrow Expr + Term|Expr - Term|Term

Term \rightarrow Term \times Factor|Term \div Factor|Factor

Factor \rightarrow (Expr)|num|name
```

priority

Sentential Form	Input
Expr	↑ name + name × name
Expr + Term	↑ name + name × name
Term + Term	↑ name + name × name
Factor + Term	↑ name + name × name
name + Term	↑ name + name × name
name + $Term$	name ↑ +name × name
name + Term	name +↑ name × name
$name + Term \times Factor$	name +↑ name × name
$name + Factor \times Factor$	name +↑ name × name
$name + name \times Factor$	name +↑ name × name
$name + name \times Factor$	name + name ↑× name
$name + name \times Factor$	name + name ×↑ name
name + name × name	name + name ×↑ name
name + name × name	name + name × name ↑

Sentential Form	Input
Expr	↑ name + name × name
Expr + Term	↑ name + name × name
Term + Term	↑ name + name × name
Factor + Term	↑ name + name × name
name + Term	↑ name + name × name
name + Term	name ↑ +name × name
name + Term	name +↑ name × name
The current input terminal be lookahead symbol	
The current input terminal be	
The current input terminal be lookahead symbol	eing scanned is called the
The current input terminal be lookahead symbol name + name × Factor	eing scanned is called the name + name 1× name

General Idea of Top-Down Parsing

Start with the root (start symbol) of the parse tree

Grow the tree downwards by expanding productions at the lower levels of the tree

 Select a nonterminal and extend it by adding children corresponding to the right side of some production for the nonterminal

Repeat till

• Lower fringe consists only terminals and the input is consumed

Top-down parsing basically finds a leftmost derivation for an input string

General Idea of Top-Down Parsing

Start with the root of the parse tree

Grow the tree by expanding productions at the lower levels of the tree

 Extend a nonterminal by adding children corresponding to the right side of some production for the nonterminal

Repeat till

- Lower fringe consists only terminals and the input is consumed
- Mismatch in the lower fringe and the remaining input stream
 - Selection of a production may involve trial-and-error
 - Wrong choice of productions while expanding nonterminals
 - Input character stream is not part of the language

Leftmost Top-down Parsing Algorithm

```
root = node for Start symbol
curr = root
push(null) // Stack
word = nextWord()
while (true):
  if curr ∈ Nonterminal:
     pick next rule A \rightarrow \beta_1 \beta_2 \dots \beta_n to
expand curr
     create nodes for \beta_1, \beta_2, ..., \beta_n as
children of curr
     push(\beta_n, \beta_{n-1}, \beta_1)
     curr = \beta_1
```

```
if curr == word:
    word = nextWord()
    curr = pop()
if word == eof and curr == null:
    accept input
else
    backtrack
```

Implementing Backtracking

- To backtrack
 - Set curr to parent and delete the children
 - Expand the node curr with untried rules if any
 - Create child nodes for each symbol in the right hand of the production
 - Push those symbols onto the stack in reverse order
 - Set curr to the first child node
 - Move curr up the tree if there are no untried rules
 - Report a syntax error when there are no more moves

Rule#	Production
0	$Start \rightarrow Expr$
1	$Expr \rightarrow Expr + Term$
2	$Expr \rightarrow Expr - Term$
3	$Expr \rightarrow Term$
4	$Term \rightarrow Term \times Factor$
5	$Term \rightarrow Term \div Factor$
6	$Term \rightarrow Factor$
7	$Factor \rightarrow (Expr)$
8	$Factor \rightarrow \text{num}$
9	$Factor \rightarrow name$

Rule #	Sentential Form	Input
	Expr	↑ name + name × name
1	Expr + Term	↑ name + name × name
3	Term + Term	↑ name + name × name
6	Factor + Term	↑ name + name × name
9	name + Term	↑ name + name × name
	name + Term	name ↑ +name × name
	name + Term	name +↑ name × name
4	$name + Term \times Factor$	name +↑ name × name
6	$name + Factor \times Factor$	name +↑ name × name
9	$name + name \times Factor$	name +↑ name × name
	$name + name \times Factor$	name + name ↑× name
	$name + name \times Factor$	name + name ×↑ name
9	name + name × name	name + name ×↑ name
	name + name × name	name + name × name ↑

Rule#	Production	Rule #	Sentential Form	Input
0	$Start \rightarrow Expr$		Expr	↑ name + name × name
1	$Expr \rightarrow Expr + Term$	1	Expr + Term	↑ name + name × name
2	$Expr \rightarrow Expr - Term$	3	Term + Term	↑ name + name × name
3	$Expr \rightarrow Term$	6	Factor + Term	↑ name + name × name
4	$Term \rightarrow Term \times Factor$	9	name + Term	↑ name + name × name
5	$Term \rightarrow Term \div Factor$		name + Term	name ↑ +name × name
6 7	How does a top-down parser choose which rule to apply? k name			
8	$Factor \rightarrow \text{num}$	6	$name + Factor \times Factor$	name +↑ name × name
9	$Factor \rightarrow \text{name}$	9	$name + name \times Factor$	name +↑ name × name
3	1 detor / Hame		name + name \times Factor	name + name ↑× name
			name + name \times Factor	name + name ×↑ name
		9	name + name × name	name + name ×↑ name
			name + name × name	name + name × name ↑

Rule#	Production
0	$Start \rightarrow Expr$
1	$Expr \rightarrow Expr + Term$
2	$Expr \rightarrow Expr - Term$
3	$Expr \rightarrow Term$
4	$Term \rightarrow Term \times Factor$
5	$Term \rightarrow Term \div Factor$
6	$Term \rightarrow Factor$
7	$Factor \rightarrow (Expr)$
8	Factor → num
9	$Factor \rightarrow name$

Rule #	Sentential Form	Input
	Expr	↑ name + name × name
1	Expr + Term	↑ name + name × name
1	Expr + Term + Term	↑ name + name × name
1	$Expr + Term + Term + \cdots$	↑ name + name × name
1		↑ name + name × name
1		↑ name + name × name

Rule#	Production	Rule #	Sentential Form	Input
0	$Start \rightarrow Expr$		Expr	↑ name + name × name
1	$Expr \rightarrow Expr + Term$	1	Expr + Term	\uparrow name $+$ name \times name
2	$Expr \rightarrow Expr - Term$	1	Expr + Term + Term	↑ name + name × name
3	$Expr \rightarrow Term$	1	$Expr + Term + Term + \cdots$	\uparrow name $+$ name \times name
4	Tomas V Easton	1		<u>↑ name + name</u> × name
5	A top-down parser can loop indefinitely with left-recursive × name			
6	grammar			
7	$Factor \rightarrow (Expr)$			
8	$Factor \rightarrow num$			
9	$Factor \rightarrow name$			

Left Recursion

- A grammar is left-recursive if it has a nonterminal A such that there is a derivation $A\Rightarrow A\alpha$ for some string α
 - Direct left recursion: There is a production of the form $A \to A\alpha$
 - Indirect left recursion: First symbol on the right-hand side of a rule can derive the symbol on the left

We can often reformulate a grammar to avoid left recursion

Remove Left Recursion

$$A \rightarrow A\alpha_1 |A\alpha_2| \dots |A\alpha_m|\beta_1| \dots |\beta_n|$$

$$\begin{vmatrix} A \to \beta_1 A' | \beta_2 A' | \dots | \beta_n A' \\ A' \to \alpha_1 A' | \alpha_2 A' | \dots | \alpha_m A' | \epsilon \end{vmatrix}$$

Remove Left Recursion

$$E \to E + T|T$$

$$T \to T * F|F$$

$$F \to (E)|id$$

$$E \to TE'$$

$$E' \to +TE'$$

$$T \to FT'$$

$$T' \to * FT'$$

$$F \to (E)|id$$

Non-Left-Recursive Expression Grammar

Rule#	Production
0	$Start \rightarrow Expr$
1	$Expr \longrightarrow Expr + Term$
2	$Expr \longrightarrow Expr - Term$
3	$Expr \longrightarrow Term$
4	$Term \rightarrow Term \times Factor$
5	$Term \rightarrow Term \div Factor$
6	$Term \rightarrow Factor$
7	$Factor \longrightarrow (Expr)$
8	$Factor \rightarrow num$
9	$Factor \longrightarrow name$

Rule #	Production
0	$Start \rightarrow Expr$
1	$Expr \longrightarrow Term \ Expr'$
2	$Expr' \longrightarrow + Term Expr'$
3	$Expr' \longrightarrow -Term \ Expr'$
4	$Expr' \longrightarrow \epsilon$
5	$Term \rightarrow Factor Term'$
6	$Term' \longrightarrow \times Factor Term'$
7	$Term' \rightarrow \div Factor Term'$
8	$Term' \rightarrow \epsilon$
9	$Factor \longrightarrow (Expr)$
10	$Factor \longrightarrow num$
11	$Factor \rightarrow name$

Indirect Left Recursion

$$S \to Aa|b$$

$$A \to Ac|Sd|\epsilon$$

• There is a left recursion because $S \rightarrow Aa \rightarrow Sda$

Eliminating Left Recursion

- Input: Grammar G with no cycles or ϵ —productions
- Algorithm

```
Arrange nonterminals in some order A_1, A_2, \dots, A_n
```

```
for i \leftarrow 1 \dots n
for j \leftarrow 1 to i - 1
```

If \exists a production of the form $A_i \to A_j \gamma$, then replace $A_i \to A_j \gamma$ with one or more productions that expand A_j

Eliminate the immediate left recursion among the A_i productions

Eliminating Left Recursion

- Input: Grammar G with no cycles or ϵ —productions
- Algorithm

```
Arrange nonterminals in some order A_1, A_2, ..., A_n
```

```
for i \leftarrow 1 \dots n
for j \leftarrow 1 to i-1
If \exists a production of the form A_i \rightarrow A_i v, then re-
```

If \exists a production of the form $A_i \to A_j \gamma$, then replace $A_i \to A_j \gamma$ with one or more productions that expand A_j

Eliminate the immediate left recursion among the A_i productions

Loop invariant at the start of outer iteration i

 $\forall k < i$, no production expanding A_k has A_l in its righthand side for all l < k

Eliminating Indirect Left Recursion

$$S \to Aa|b$$

$$A \to Ac|Sd|\epsilon$$

$$A' \to cA'|adA'|\epsilon$$

Cost of Backtracking

Backtracking is expensive

- Parser expands a nonterminal with the wrong rule
- Mismatch between the lower fringe of the parse tree and the input is detected
- Parser undoes the last few actions
- Parser tries other productions if any

Avoid Backtracking

- Parser is to select the next rule
 - Compare the curr symbol and the next input symbol called the lookahead
 - Use the lookahead to disambiguate the possible production rules
- Backtrack-free grammar is a CFG for which the leftmost, top-down parser can always predict the correct rule with one word lookahead
 - Also called a predictive grammar

FIRST Set

- Intuition
 - Each alternative for the leftmost nonterminal leads to a distinct terminal symbol
 - Which rule to choose becomes obvious by comparing the next word in the input stream
- Given a string γ of terminal and nonterminal symbols, FIRST(γ) is the set of all terminal symbols that can begin any string derived from γ
 - We also need to keep track of which symbols can produce the empty string
 - FIRST: $(NT \cup T \cup \{\epsilon, EOF\}) \rightarrow (T \cup \{\epsilon, EOF\})$

Steps to Compute FIRST Set

- 1. If X is a terminal, then $FIRST(X) = \{X\}$
- 2. If $X \to \epsilon$ is a production, then $\epsilon \in FIRST(X)$
- 3. If X is a nonterminal and $X \to Y_1 Y_2 \dots Y_k$ is a production
 - Everything in $FIRST(Y_1)$ is in FIRST(X)
 - If for some $i, a \in \text{FIRST}(Y_i)$ and $\forall 1 \leq j < i, \epsilon \in \text{FIRST}(Y_j)$, then $a \in \text{FIRST}(X)$
 - If $\epsilon \in \text{FIRST}(Y_1 \dots Y_k)$, then $\epsilon \in \text{FIRST}(X)$

FIRST Set

Generalize FIRST relation to string of symbols

FIRST(
$$X\gamma$$
) \rightarrow FIRST(X) if $X \nrightarrow \epsilon$
FIRST($X\gamma$) \rightarrow FIRST(X) \cup FIRST(Y) if $X \rightarrow \epsilon$

Compute FIRST Set

```
Start \rightarrow Expr
Expr \rightarrow Term Expr'
Expr' \rightarrow +Term\ Expr'
          |-Term\ Expr'|\ \epsilon
Term \rightarrow Factor Term'
Term' \rightarrow \times Factor Term'
          |\div Factor Term'| \epsilon
Factor \rightarrow (Expr) \mid \text{num} \mid \text{name}
```

Compute FIRST Set

```
Start \rightarrow Expr
Expr \rightarrow Term Expr'
Expr' \rightarrow +Term Expr'
          |-Term\ Expr'|\ \epsilon
Term \rightarrow Factor Term'
Term' \rightarrow \times Factor Term'
          |\div Factor Term'| \epsilon
Factor \rightarrow (Expr) \mid \text{num} \mid \text{name}
```

```
FIRST(Expr') = {(, name, num}

FIRST(Expr') = {+, -, \epsilon}

FIRST(Term) = {(, name, num}

FIRST(Term') = {\epsilon \times , \div}

FIRST(Factor) = {(, name, num}
```

FOLLOW Set

- FOLLOW(X) is the set of terminals that can immediately follow X
 - That is, $t \in FOLLOW(X)$ if there is any derivation containing Xt

Terminal c is in FIRST(A) and a is in FOLLOW(A)

Steps to Compute FOLLOW Set

- 1. Place \$ in FOLLOW(S) where S is the start symbol and \$ is the end marker
- 2. If there is a production $A \to \alpha B \beta$, then everything in FIRST(β) except ϵ is in FOLLOW(B)
- 3. If there is a production $A \to \alpha B$, or a production $A \to \alpha B\beta$ where FIRST(β) contains ϵ , then everything in FOLLOW(A) is in FOLLOW(B)

Compute FOLLOW Set

```
Start \rightarrow Expr
Expr \rightarrow Term Expr'
Expr' \rightarrow +Term\ Expr'
          |-Term\ Expr'|\ \epsilon
Term \rightarrow Factor Term'
Term' \rightarrow \times Factor Term'
          |\div Factor Term'| \epsilon
Factor \rightarrow (Expr) \mid \text{num} \mid \text{name}
```

Compute FOLLOW Set

```
Start \rightarrow Expr
Expr \rightarrow Term Expr'
Expr' \rightarrow +Term Expr'
          |-Term\ Expr'|\ \epsilon
Term \rightarrow Factor Term'
Term' \rightarrow \times Factor Term'
          | \div Factor Term' | \epsilon
Factor \rightarrow (Expr) \mid \text{num} \mid \text{name}
```

```
FOLLOW(Expr') = {$,)}

FOLLOW(Expr') = {$,)}

FOLLOW(Term) = {$,+,-,)}

FOLLOW(Term') = {$,+,-,)}

FOLLOW(Factor) = {$,+,-,×,÷,)}
```

Conditions for Backtrack-Free Grammar

• Consider a production $A \to \beta$ $FIRST^+ = \begin{cases} FIRST(\beta) & \text{if } \epsilon \notin FIRST(\beta) \\ FIRST(\beta) \cup FOLLOW(A) & \text{otherwise} \end{cases}$

• For any nonterminal A where $A \to \beta_1 |\beta_2| \dots |\beta_n$, a backtrack-free grammar has the property

$$FIRST^{+}(A \to \beta_i) \cap FIRST^{+}(A \to \beta_j) = \phi, \quad \forall 1 \le i, j \le n, i \ne j$$

Backtracking

```
Start \rightarrow Expr
Expr \rightarrow TermExpr'
Expr' \rightarrow +TermExpr'
|-TermExpr'|\epsilon
Term \rightarrow FactorTerm'
Term' \rightarrow \times FactorTerm'
|\div FactorTerm'|\epsilon
```

```
Factor 
ightarrow name
| name [Arglist]
| name (Arglist)
Arglist 
ightarrow Expr MoreArgs
MoreArgs 
ightarrow , Expr MoreArgs
| \epsilon
```

Backtracking

```
Start \rightarrow Expr
Expr \rightarrow TermExpr'
Expr' \rightarrow +TermExpr'
|-TermExpr'|\epsilon
Term \rightarrow FactorTerm'
Term' \rightarrow \times FactorTerm'
|\div FactorTerm'|\epsilon
```

```
Factor 	o name
| name [Arglist]
| name (Arglist)
Arglist 	o Expr MoreArgs
MoreArgs 	o , Expr MoreArgs
| \epsilon
```

Not all grammars are backtrack free

Left Factoring

 Left factoring is the process of extracting and isolating common prefixes in a set of productions

Factor
$$\rightarrow$$
 name Arguments
Arguments \rightarrow [ArgList] | (ArgList) | ϵ

Algorithm

$$A \to \alpha \beta_1 |\alpha \beta_2| \dots |\alpha \beta_n |\gamma_1| |\gamma_2| \dots |\gamma_j|$$

$$A \to \alpha B |\gamma_1|\gamma_2| \dots |\gamma_j|$$

$$B \to \beta_1 |\beta_2| \dots |\beta_n|$$

Key Insight in Using Top-Down Parsing

- Efficiency depends on the accuracy of selecting the correct production for expanding a nonterminal
 - Parser may not terminate in the worst case
- A large subset of the context-free grammars can be parsed without backtracking

Recursive-Descent Parsing

Recursive-Descent Parsing

- Recursive-descent parsing is a form of top-down parsing that may require backtracking
- Consists of a set of procedures, one for each nonterminal

```
void A() {
   Choose an A-production A \to X_1 X_2 \dots X_k
   for i \leftarrow 1 \dots k
   if X_i is a nonterminal
      call procedure X_i()
   else if X_i equals the current input symbol a
   advance the input to the next symbol else
   // error
}
```

Limitations with Recursive-Descent Parsing

- Consider a grammar with two productions $X \longrightarrow \gamma_1$ and $X \longrightarrow \gamma_2$
- Suppose FIRST $(\gamma_1) \cap FIRST(\gamma_2) \neq \phi$
 - Say a is the common terminal symbol
- The function corresponding to the nonterminal X in a recursive-descent parser will not know which production to use on an input token α

Recursive-Descent Parsing with Backtracking

- To support backtracking
 - All productions should be tried in some order
 - Failure for some production implies we need to try remaining productions
 - Report an error only when there are no other rules

Predictive Parsing

- Special case of recursive-descent parsing that does not require backtracking
 - Lookahead symbol unambiguously determines which production rule to use
 - Advantage is that the algorithm is simple and the parser can be constructed by hand

```
stmt \rightarrow expr;

| if (expr)stmt

| for (optexpr; optexpr; optexpr) stmt

| other

optexpr \rightarrow \epsilon | expr
```

Pseudocode for a Predictive Parser

```
void stmt() {
  switch(lookahead) {
    case expr:
      match(expr); match(';'); break;
    case if:
      match(if); match('('); match(expr); match(')'); stmt(); break;
    case for:
      match(for); match('('); optexpr(); match(';'); optexpr();
      match(';'); optexpr(); match(')'); stmt(); break;
    case other:
      match(other); break;
    default:
      report("syntax error");
```

LL(1) Grammars

- Class for grammars for which no backtracking is required is called LL(1)
 - First L stands for left-to-right scan, and second L stands for leftmost derivation
 - LL(1) grammars need no backtracking
 - There is one lookahead token
- No left-recursive or ambiguous grammar can be LL(1)
- In LL(k), k stands for k lookahead tokens
 - Predictive parsers accept LL(k) grammars
 - Every LL(1) grammar is a LL(2) grammar

Table-Driven Predictive Parser

Predictive Parsing Algorithm

- Input: String w and parsing table M for grammar G
- Algorithm:

Predictive Parsing Table

$$E \to TE'$$

$$E' \to +TE'|\epsilon$$

$$T \to FT'$$

$$T' \to *FT'|\epsilon$$

$$F \to (E)|\mathbf{id}$$

Nonterminal	id	+	*)	\$
E	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		$E' \rightarrow +TE'$			$E' \to \epsilon$	$E' \to \epsilon$
T	$T \to FT'$			$T \to FT'$		
T'		$T' \to \epsilon$	$T' \to *FT'$		$T' \to \epsilon$	$T' \to \epsilon$
F	$F \rightarrow id$			$F \to (E)$		

Construction of a Predictive Parsing Table

• **Input**: Grammar *G*

Algorithm:

- For each terminal a in FIRST (α) , add $A \to \alpha$ to M[A, a]
- If ϵ is in FIRST(α), then for each terminal b in FOLLOW(A), add $A \to \alpha$ to M[A,b]
- If ϵ is in FIRST(α) and \$ is in FOLLOW(A), add $A \to \alpha$ to $M[A, \alpha]$
- No production in M[A, a] indicates error

Predictive Parsing

 Grammars whose predictive parsing tables contain no duplicate entries are called LL(1)

- If grammar G is left-recursive or is ambiguous, then parsing table M will have at least one multiply-defined cell
- Some grammars cannot be transformed into LL(1)
 - The following grammar is ambiguous

```
S \rightarrow iEtSS' \mid a

S' \rightarrow eS \mid \epsilon

E \rightarrow b
```

Predictive Parsing Table

$$S \rightarrow iEtSS' \mid a$$

 $S' \rightarrow eS \mid \epsilon$
 $E \rightarrow b$

Nonterminal	а	b	е	i	t	\$
S	$S \rightarrow a$			$S \rightarrow iEtSS'$		
S'			$S' \to \epsilon$ $S' \to eS$			$S' \to \epsilon$
E		$E \rightarrow b$		$T \to FT'$		

References

- A. Aho et al. Compilers: Principles, Techniques, and Tools, 2nd edition, Chapter 4.4.
- K. Cooper and L. Torczon. Engineering a Compiler, 2nd edition, Chapter 3.3.