

Benchmarking the State of the Art in Visual Tracking

吴毅

https://sites.google.com/site/wuyi2018/

江苏省大数据分析技术重点实验室

2014.10.15

Tracking in Computer Vision

Initialization in the 1st frame

Estimated states in the N-th frame

- A fundamental problem in computer vision
- A challenging and difficult task
- Numerous applications

Applications

Motion analysis

Surveillance

Autonomous robots/cars

Image Guided Surgery

Biomedical image analysis

Human computer interaction

Tracking Challenges

deformation

illumination variation

blur & fast motion

background clutter

out-of-plane rotation

scale variation

occlusion out-of-view

Tracking techniques

- Object representation
- Searching mechanism
- Model update
- Advanced tracking techniques
 - Mixture model
 - Observation
 - Dynamic model
 - Tracker
 - Context information
 - Re-detection

Object representation

- Holistic feature
 - Intensity template
 - Color/intensity histograms
 - **MS**: D. Comaniciu, V. Ramesh, and P. Meer, "Kernel-Based Object Tracking," T-PAMI, vol. 25, no. 5, pp. 564–577, 2003.
- Local feature
 - Histograms of Oriented Gradient (HOG)
 - Local Binary Patterns (LBP)
 - Fragments-based representation
 - **Frag**: A. Adam, E. Rivlin, and I. Shimshoni, "Robust Fragments-based Tracking using the Integral Histogram," in CVPR, 2006.

Object representation

- Generative model
 - Subspace representation
 - PCA
 - IVT: D. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, "Incremental Learning for Robust Visual Tracking," IJCV, 2008.
 - Sparse representation
 - X. Mei and H. Ling, "Robust Visual Tracking using L1 Minimization," in *ICCV*, 2009.

Object representation

- Discriminative model
 - A binary classifier is on-line learned to discriminate the target from the background
 - Encoding the background information
 - Machine learning techniques
 - SVM: S. Avidan, "Support Vector Tracking," T-PAMI, vol. 26, no. 8, pp. 1064–1072, 2004.
 - **Structured SVM**: S. Hare, A. Saffari, and P. H. S. Torr, "Struck: Structured output tracking with kernels," in *ICCV*, 2011.
 - Boosting: S. Avidan, "Ensemble Tracking," T-PAMI, vol. 29, no. 2, pp. 261–271, 2008.
 - Online Boosting: H. Grabner, M. Grabner, and H. Bischof, "Real-Time Tracking via On-line Boosting," in BMVC, 2006.
 - Online Multiple Instance Boosting: B. Babenko, M.-H. Yang, and S. Belongie, "Visual Tracking with Online Multiple Instance Learning," in CVPR, 2009.

Searching mechanism

- Deterministic method
 - Local optimum search
 - Lucas-Kanade
 - Mean Shift
 - Dense sampling
 - Learning based approach
- Stochastic method (Particle filter)
 - A flexible tracking framework
 - How to design the likelihood

Model update

- Adapting the model to the appearance variations of target
 - Template update
 - I. Matthews, T. Ishikawa, and S. Baker, "The Template Update Problem," T-PAMI, 2004.
 - Incremental subspace learning
 - IVT: D. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, "Incremental Learning for Robust Visual Tracking," IJCV, 2008.
 - Online-learning of discriminative model
 - Online Boosting
 - Online SVM

Mixture of observations

- Y. Li, H. Ai, T. Yamashita, S. Lao, and M. Kawade, "Tracking in Low Frame Rate Video: A Cascade Particle Filter with Discriminative Observers of Different Life Spans," *T-PAMI*, vol. 30, no. 10, pp. 1728–1740, 2008.
- B. Stenger, T. Woodley, and R. Cipolla, "Learning to Track with Multiple Observers," in *CVPR*, 2009.
- J. Kwon and K. M. Lee, "Visual Tracking Decomposition," in CVPR, 2010.

Mixture of dynamic models

• J. Kwon and K. M. Lee, "Visual Tracking Decomposition," in CVPR, 2010.

Mixture of trackers

- B. Zhong, H. Yao, S. Chen, R. Ji, X. Yuan, S. Liu, and W. Gao, "Visual tracking via weakly supervised learning from multiple imperfect oracles," in *CVPR*, 2010.
- J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof, "PROST: Parallel Robust Online Simple Tracking," in *CVPR*, 2010.
- J. Kwon and K. M. Lee, "Tracking by Sampling Trackers," in *ICCV*, 2011.
- J. H. Yoon, D. Y. Kim, and K. Yoon, "Visual Tracking via Adaptive Tracker Selection with Multiple Features," in *ECCV*, 2012.

Context information

- T. B. Dinh, N. Vo, and G. Medioni, "Context tracker: Exploring supporters and distracters in unconstrained environments," in CVPR, 2011.
- M. Yang, Y. Wu, and G. Hua, "Context-aware visual tracking," *T-PAMI*, pp. 1195–1209, 2008.
- H. Grabner, J. Matas, L. V. Gool, and P. Cattin, "Tracking the Invisible: Learning Where the Object Might be," in *CVPR*, 2010.

Re-detection

- H. Grabner, M. Grabner, and H. Bischof, "Real-Time Tracking via On-line Boosting," in BMVC, 2006.
- H. Grabner, C. Leistner, and H. Bischof, "Semi-supervised On-Line Boosting for Robust Tracking," in ECCV, 2008.
- S. Stalder, H. Grabner, and L. van Gool, "Beyond Semi-Supervised Tracking: Tracking Should Be as Simple as Detection, but not Simpler than Recognition," in ICCV Workshop, 2009.
- Z. Kalal, J. Matas, and K. Mikolajczyk, "P-N learning: Bootstrapping binary classifiers by structural constraints," CVPR, 2010.
- T. B. Dinh, N. Vo, and G. Medioni, "Context tracker: Exploring supporters and distracters in unconstrained environments," in CVPR, 2011.

Problems in Tracking

- Weakness of most proposed trackers is not clear
- Bias in the performance comparison
 - Different ground truth bounding boxes
 - Different initializations

Problems in Tracking

- Weakness of most proposed trackers is not clear
- Bias in the performance comparison
 - Different ground truth bounding boxes
 - Different initializations

Which tracker is more robust?

Problems in Tracking

- Weakness of most proposed trackers is not clear
- Bias in the performance comparison
 - Different ground truth bounding boxes
 - Different initializations

A Benchmark is urgent for tracking!

Tracking Benchmark

- Evaluated Trackers and Dataset
- Evaluation Methodology
- Evaluation Results
- Concluding Remarks

Yi Wu Nanjing University of Information Science and Technology, China

Jongwoo Lim Hanyang university, Korea

MingHsuan Yang University of California, Merced, USA

Evaluated Trackers

NAME	CODE	REFERENCE
CPF	CPF	P. Pe'rez, C. Hue, J. Vermaak, and M. Gangnet. Color-Based Probabilistic Tracking. In ECCV, 2002.
KMS	KMS	D. Comaniciu, V. Ramesh, and P. Meer. Kernel-Based Object Tracking. PAMI, 25(5):564-577, 2003.
SMS	SMS	R. Collins. Mean-shift Blob Tracking through Scale Space. In CVPR, 2003.
VR-V	VIVID/VR	R. T. Collins, Y. Liu, and M. Leordeanu. Online Selection of Discriminative Tracking Features. PAMI, 27(10):1631-1643, 2005. [www]
		* We also evaluated four other trackers included in the VIVID tracker suite. (PD-V, RS-V, MS-V, and TM-V).
Frag	Frag	A. Adam, E. Rivlin, and I. Shimshoni. Robust Fragments-based Tracking using the Integral Histogram. In CVPR, 2006. [www]
OAB	OAB	H. Grabner, M. Grabner, and H. Bischof. Real-Time Tracking via On-line Boosting. In BMVC, 2006. [www]
IVT	IVT	D. Ross, J. Lim, RS. Lin, and MH. Yang. Incremental Learning for Robust Visual Tracking. IJCV, 77(1):125–141, 2008. [www]
SemiT	SBT	H. Grabner, C. Leistner, and H. Bischof. Semi-supervised On-Line Boosting for Robust Tracking. In ECCV, 2008. [www]
MIL	MIL	B. Babenko, MH. Yang, and S. Belongie. Visual Tracking with Online Multiple Instance Learning. In CVPR, 2009. [www]
BSBT	BSBT	S. Stalder, H. Grabner, and L. van Gool. Beyond Semi-Supervised Tracking: Tracking Should Be as Simple as Detection, but not Simpler than
		Recognition. In ICCV Workshop, 2009. [www]
TLD	TLD	Z. Kalal, J. Matas, and K. Mikolajczyk. P-N Learning: Bootstrapping Binary Classifiers by Structural Constraints. In CVPR, 2010. [www]
VTD	_	J. Kwon and K. M. Lee. Visual Tracking Decomposition. In CVPR, 2010. [www]
CXT	CXT	T. B. Dinh, N. Vo, and G. Medioni. Context Tracker: Exploring supporters and distracters in unconstrained environments. In CVPR, 2011. [www]
LSK	LSK	B. Liu, J. Huang, L. Yang, and C. Kulikowsk. Robust Tracking using Local Sparse Appearance Model and K-Selection. In CVPR, 2011. [www]
Struck	Struck	S. Hare, A. Saffari, and P. H. S. Torr. Struck: Structured Output Tracking with Kernels. In ICCV, 2011. [www]
VTS	_	J. Kwon and K. M. Lee. Tracking by Sampling Trackers. In ICCV, 2011. [www]
ASLA	ASLA	X. Jia, H. Lu, and MH. Yang. Visual Tracking via Adaptive Structural Local Sparse Appearance Model. In CVPR, 2012. [www]
DFT	DFT	L. Sevilla-Lara and E. Learned-Miller. Distribution Fields for Tracking. In CVPR, 2012. [www]
L1APG	LıAPG	C. Bao, Y. Wu, H. Ling, and H. Ji. Real Time Robust L1 Tracker Using Accelerated Proximal Gradient Approach. In CVPR, 2012. [www]
LOT	LOT	S. Oron, A. Bar-Hillel, D. Levi, and S. Avidan. Locally Orderless Tracking. In CVPR, 2012. [www]
MTT	MTT	T.Zhang, B. Ghanem,S. Liu,and N. Ahuja. Robust Visual Tracking via Multi-task Sparse Learning. In CVPR, 2012. [www]
ORIA	ORIA	Y. Wu, B. Shen, and H. Ling. Online Robust Image Alignment via Iterative Convex Optimization. In CVPR, 2012. [www]
SCM	SCM	W. Zhong, H. Lu, and MH. Yang. Robust Object Tracking via Sparsity-based Collaborative Model. In CVPR, 2012. [www]
CSK	CSK	F. Henriques, R. Caseiro, P. Martins, and J. Batista. Exploiting the Circulant Structure of Tracking-by-Detection with Kernels. In ECCV, 2012. [www]
CT	CT	K. Zhang, L. Zhang, and MH. Yang. Real-time Compressive Tracking. In ECCV, 2012. [www]

Evaluated Trackers

Method	Representation	Search	MU	Code	FPS
CPF [44]	L, IH	PF	N	С	109
LOT [43]	L, color	PF	Y	M	0.70
IVT [47]	H, PCA, GM	PF	Y	MC	33.4
ASLA [30]	L, SR, GM	PF	Y	MC	8.5
SCM [65]	L, SR, GM+DM	PF	Y	MC	0.51
L1APG [10]	H, SR, GM	PF	Y	MC	2.0
MTT [64]	H, SR, GM	PF	Y	M	1.0
VTD [33]	H, SPCA, GM	MCMC	Y	МС-Е	5.7
VTS [34]	L, SPCA, GM	MCMC	Y	МС-Е	5.7
LSK [36]	L, SR, GM	LOS	Y	M-E	5.5
ORIA [58]	H, T, GM	LOS	Y	M	9.0
DFT [49]	L, T	LOS	Y	M	13.2
KMS [16]	H, IH	LOS	N	C	3,159
SMS [14]	H, IH	LOS	N	C	19.2
VR-V [15]	H, color	LOS	Y	MC	109
Frag [1]	L, IH	DS	N	C	6.3
OAB [22]	H, Haar, DM	DS	Y	C	22.4
SemiT [23]	H, Haar, DM	DS	Y	C	11.2
BSBT [50]	H, Haar, DM	DS	Y	C	7.0
MIL [5]	H, Haar, DM	DS	Y	C	38.1
CT [63]	H, Haar, DM	DS	Y	MC	64.4
TLD [31]	L, BP, DM	DS	Y	MC	28.1
Struck [26]	H, Haar, DM	DS	Y	C	20.2
CSK [27]	H, T, DM	DS	Y	M	362
CXT [18]	H, BP, DM	DS	Y	C	15.3

Benchmark dataset

- 50 sequences
 - 29491 frames

Benchmark dataset

• 11 attributes are defined for tracking sequence

- illumination variations
- scale variations
- occlusions
- deformation
- motion blur
- fast motion
- in-plane rotation
- out-of-plane rotation
- out-of-view
- background clutters
- low resolution

Attr	Description
IV	Illumination Variation - the illumination in the target region is
	significantly changed.
SV	Scale Variation - the ratio of the bounding boxes of the first
	frame and the current frame is out of the range $[1/t_s, t_s], t_s > 0$
	$1 (t_s=2).$
OCC	Occlusion - the target is partially or fully occluded.
DEF	Deformation - non-rigid object deformation.
MB	Motion Blur - the target region is blurred due to the motion of
	target or camera.
FM	Fast Motion - the motion of the ground truth is larger than t_m
	pixels $(t_m=20)$.
IPR	In-Plane Rotation - the target rotates in the image plane.
OPR	Out-of-Plane Rotation - the target rotates out of the image
	plane.
OV	Out-of-View - some portion of the target leaves the view.
BC	Background Clutters - the background near the target has the
	similar color or texture as the target.
LR	Low Resolution - the number of pixels inside the ground-truth
	bounding box is less than t_r (t_r =400).

- Illumination variations
 - Compared with the first frame, the illumination in the target region is changed visually

illumination variations

- Out-of-plane rotation
 - Compared with the first frame, the target rotates out of the image plane

out-of-plane rotation

- In-plane rotation
 - Compared with the first frame, the target rotates in the image plane

in-plane rotation

- Deformation
 - non-rigid deformation occurs in the frame

deformation

- Scale variations
 - The ratio of the number of pixels in the bounding box of 1st frame to current frame is not less than a threshold t or not larger than 1/t (e.g. t=2)

scale variations

- Out-of-view
 - One portion of the target is out of the image region
 - At present, we only consider partial out-of-view. Our dataset does not include the sequence where the target is totally out-of view
 - The annotation bounding box is inside the image plane

out-of-view

- Background clutters
 - The background near the target has the similar color or texture as the target

background clutter

- Low resolution
 - The number of pixels inside the groundtruth bounding box is less than a threshold (e.g. 400)

- Motion blur
 - The target region is blurred due to the motion of target or camera
- Fast motion
 - The motion computed from the ground truth is larger than t pixels (e.g. t=20)

blur & fast motion

- Occlusions
 - The target is occluded by other objects
 - Even though the target is fully occluded in one frame, we also annotate the bounding box

Attribute Distribution

Evaluation Methodology

- Metrics
 - Bounding box overlap (success plot)

$$S = \frac{|r_t \cap r_0|}{|r_t \cup r_0|}$$

 T_t : a tracked bounding box

 r_0 : the ground-truth bounding box

- Center location error (precision plot)
 - Euclidian distance between the center of tracking result and the center of annotation

success plot

Evaluation Methodology

- One-Pass Evaluation (OPE)
 - The conventional way to evaluate trackers
 - Only one initialization
 - Bias or randomness
- Robustness Evaluation
 - Temporal Robustness Evaluation (TRE):
 - Sampling the frames for tracking initialization on each sequence
 - Spatial Robustness Evaluation (SRE):
 - Sampling the initial bounding box in the first frame by shifting or scaling the ground truth

Sensitivity to the initialization

Evaluation Methodology

- One-Pass Evaluation (OPE)
- Robustness Evaluation
 - Temporal Robustness Evaluation (TRE)
 - Spatial Robustness Evaluation (SRE)

Evaluation Results

Attribute-based Performance Analysis

Initialization with Different Scales

Initialization with Different Scale

- Performance decreases with the increase of initialization scale
 - TLD, CXT, DFT and LOT
- Some perform better when the scale factor is smaller
 - L1APG, MTT, LOT and CPF
- Some trackers perform well or even better when the initial bounding box is enlarged
 - Struck, OAB, SemiT, and BSBT

Concluding Remarks

- Some tracking components that are essential for improving tracking performance.
 - Background information: serving as discriminative model or context
 - Local models: effective for handling partial occlusion or deformation
 - Motion model or dynamic model: improving the tracking efficiency
- Tracking evaluation platform http://visual-tracking.net/
 - Tracker library
 - Dataset with annotation

Concluding Remarks

- Tracking evaluation platform
 - Tracker library
 - Dataset with annotation
 - Evaluation toolkit

http://visual-tracking.net/

Q&A