CS224w

CH8: Applications of Graph Neural Networks

Common assumption:

Input graph ⇔ Computational graph

Proposed new idea:

do not need 1:1 between input graph & Computational graph (GNN)

 \Rightarrow Breaking the common assumption

Idea: Raw input graph ≠ computational graph

- **Graph feature augmentation**
- **Graph structure augmentation**

Reasons for breaking it

Motivation: the raw input graph is unlikely to optimal computational graph

1. Features (in the node level)

- The input graph lacks features
- Features may be hard to encode

2. Structures

- input graph too sparse ⇒ inefficient message passing (a.k.a mp)
 L a lot of iterations
- input graph too dense ⇒ message passing is to costly
 L A C.Ronaldo node in the instagram has many followers, so mp from them to Ronaldo would be too expensive
- input graph **too large** \Rightarrow cannot fit the computational graph into a GPU

Idea: Raw input graph ≠ computational graph

- Graph feature augmentation
- Graph structure augmentation

⇒ How can we get better the gnn embeddings?

Methods of the Augmentation

1. Features augmentation

- The input graph lacks features → **feature augmentation**

2. Structures augmentation

- input graph too sparse → Add virtual nodes/edges
 La lot of iterations
- input graph too dense → Sample neighbors when doing mp
 L A C.Ronaldo node in the instagram has many followers, so mp from them to Ronaldo would be too expensive
- input graph too large → Sample subgraph to compute embeddings

Why do we need feature augmentation?

1. Input graph does not have node features (∃only adj mat)

- (a) Standard approach: Assign constant values to nodes
 L What aggregation does? To count how many neighbors
- (b) Alternative approach: Assign **unique IDs** to nodes
 - * The IDs are converted to 1-hot vectors
 - L * Ordering of the nodes is arbitrary
 - Advantage: to learn expressive models
 - L The model knows what are the IDs of the neighbors of the node

_ Disadvantage:

- L hard to generalize 1-hot encoding across different graphs
- L it might be costly, for # attributes = # nodes

Feature augmentation: constant vs. one-hot

	Constant node feature	One-hot node feature
	1 D INPUT GRAPH	4 ® 5 6
Expressive power	Medium. All the nodes are identical, but GNN can still learn from the graph structure	High. Each node has a unique ID, so node-specific information can be stored
Inductive learning (Generalize to unseen nodes)	High. Simple to generalize to new nodes: we assign constant feature to them, then apply our GNN	Low. Cannot generalize to new nodes: new nodes introduce new IDs, GNN doesn't know how to embed unseen IDs
Computational cost	Low. Only 1 dimensional feature	High. $O(V)$ dimensional feature, cannot apply to large graphs
Use cases	Any graph, inductive settings (generalize to new nodes)	Small graph, transductive settings (no new nodes)

Expressiveness ↑ ⇔ Generalization ↓

Why do we need feature augmentation?

2. Certain structures are hard to learn by GNN

- **Example**: Cycle count feature
 - L Can GNN learn the length of a cycle that v1 resides in? No

 v_1 resides in a cycle with length 4

Reason: Since v1 has two neighbors and v2 also has two, so that there are not discriminative node features btn them, the

GNN do not differentiate the length of a cycle.

- ⇒ Their computational graphs will be the same binary tree
- \Rightarrow Their embeddings will be the same.
- Solution: Use **cycle count** as augmented node features

- Other used augmented features
- : Node degree, Centrality, PageRank ... studied in the Lecture2

How do we Augment sparse graphs?

1. Add virtual edges

■ Common Approach:

[Additional information]
Connect 2-hop neighbors via virtual edges

■ Intuition:

Let A be adj-mat.

Then, after connecting 2-hop, changing A into $A + A^2$

In the Lecture 2, 3, we studied the powering adj-mat counts the number of nodes that are neighbors at level 2

■ Effect:

For example, if A sending messages directly \rightarrow paper \rightarrow B, they will be able to directly exchange messages

 \Rightarrow # layers of gnn \downarrow \rightarrow training faster \uparrow

- Author-to-papers (they authored)
- 2-hop virtual edges make an author-author collaboration graph

How do we Augment sparse graphs?

1. Add virtual nodes

■ The virtual node will connect to all/some subset of the nodes in the graph

■ Example

Suppose that two nodes are ten hops apart in the super sparse graph

L where one node sending a message to the another requires 10 layer gnn

Resolution?

L Create the virtual node and then connect to several nodes. (See the picture)

- ⇒ smaller distance btn nodes
- ⇒ to be able to communicate with each other much more efficiently
- ⇒ mp will be faster
- \Rightarrow We do not need the deeper layer gnn

How do we sample nodes from the dense graphs?

1. Node Neighborhood Sampling

■ idea: Randomly sample a nodes' neighborhood for mp

■ Example

Image the **C.Ronaldo** account in the instagram. He has a million of followers. If we need to aggregate messages from million of his followers, it can be **expensive!**

In [1], it is an original dense graph. It's too expensive :(

In [2], ignore the one edge btn A & C \rightarrow Only nodes B, D will pass messages to A \bot 1 trade-off

- Good: The computational graph is smaller
- Bad: C might have important information. (The degree of the C node is 4)

In [3], ignore the one edge btn A & B \rightarrow Only nodes C, D will pass messages to A \bot For each layer or epoch of training, we can sample ignoring nodes differently

In [4], sample nodes similar to the case where all the neighbors are used
L Sample only important nodes

- ⇒ The computational graph is smaller
- \Rightarrow It allows us to scale GNN to masive graphs (In practice, to scale up gnn is a good approach)

- Q. How do you get from node embeddings to the actual prediction?
- Q. How do you evaluate them based against some ground truth labels?
- Q. How do you compute the losses?

(1) Different prediction heads

: Node-level, Edge-level, Graph-level

⇒ It implies that different task levels require different prediciton head

(1-1) Node-level

Want to make k-way prediction.

LClassification: k categories, Regression, regress on k targets.

Given that d-dim embeddings: $\{h_v^{(L)} \in \mathbb{R}^d, \forall v \in G\}$,

(1-2) Edge-level

Make prediction using pairs of node embeddings

* Want to make k-way prediction

$$\hat{y_{uv}} = HEAD_{edge}(h_u^{(L)}, h_v^{(L)})$$

Q. What are the options for HEAD_edge?

[Option1] Concat + Linear

[Option2] Dot product

$$\widehat{y}_{uv} = (\mathbf{h}_{u}^{(L)})^T \mathbf{h}_{v}^{(L)} \stackrel{\Rightarrow}{\Rightarrow} \text{Single scalar output, which is the One-way prediction}$$
Binary: Link/Not

Applying to k-way prediction, use different trainable weights (W1, ... Wk) It's like the multi-head attention

$$\begin{split} \widehat{\mathbf{y}}_{uv}^{(1)} &= (\mathbf{h}_{u}^{(L)})^{T} \mathbf{W}^{(1)} \mathbf{h}_{v}^{(L)} \\ & \cdots \\ \widehat{\mathbf{y}}_{uv}^{(k)} &= (\mathbf{h}_{u}^{(L)})^{T} \mathbf{W}^{(k)} \mathbf{h}_{v}^{(L)} \\ \widehat{\mathbf{y}}_{uv} &= \text{Concat}(\widehat{\mathbf{y}}_{uv}^{(1)}, \dots, \widehat{\mathbf{y}}_{uv}^{(k)}) \in \mathbb{R}^{k} \end{split}$$

(1-3) Graph-level

Make prediction using the node embeddings in our graph

* Want to make k-way prediction

$$\hat{y_{uv}} = HEAD_{graph}(h_v^{(L)} \in \mathbb{R}^d, \forall v \in G)$$

L It means that we have to take the individual node embeddings

(1-3) Graph-level: Many options to make a head

(1) Global mean pooling

$$\widehat{\boldsymbol{y}}_G = \operatorname{Mean}(\{\mathbf{h}_v^{(L)} \in \mathbb{R}^d, \forall v \in G\})$$

(2) Global max pooling

$$\widehat{\boldsymbol{y}}_G = \operatorname{Max}(\{\mathbf{h}_v^{(L)} \in \mathbb{R}^d, \forall v \in G\})$$

(3) Global sum pooling

$$\widehat{\boldsymbol{y}}_G = \operatorname{Sum}(\{\mathbf{h}_v^{(L)} \in \mathbb{R}^d, \forall v \in G\})$$

These options work great for small graphs

(1-3-1) Issue of Global Pooling

Global Pooling over a (large) graph will lose information

Node embeddings for G_1 : $\{-1, -2, 0, 1, 2\}$ Prediction for G_1 : $\hat{y}_G = \text{Sum}(\{-1, -2, 0, 1, 2\}) = 0$

Node embeddings for G_2 : $\{-10, -20, 0, 10, 20\}$ Prediction for G_2 : $\hat{y}_G = \text{Sum}(\{-10, -20, 0, 10, 20\}) = 0$

Although the structures of G1,G2 are clearly different, the prediction is the same. \Rightarrow The model cannot differentiate G1, G2

(1-3-2) Hierarchical Global Pooling

- Toy example: We will aggregate via ReLU(Sum(·))
 - We first separately aggregate the first 2 nodes and last 3 nodes
 - Then we aggregate again to make the final prediction
- G_1 node embeddings: $\{-1, -2, 0, 1, 2\}$
 - Round 1: $\hat{y}_a = \text{ReLU}(\text{Sum}(\{-1, -2\})) = 0$, $\hat{y}_b = \text{ReLU}(\text{Sum}(\{0, 1, 2\})) = 3$
 - Round 2: $\hat{y}_G = \text{ReLU}(\text{Sum}(\{y_a, y_b\})) = 3$
- G_2 node embeddings: $\{-10, -20, 0, 10, 20\}$
 - Round 1: $\hat{y}_a = \text{ReLU}(\text{Sum}(\{-10, -20\})) = 0$, $\hat{y}_b = \text{ReLU}(\text{Sum}(\{0,10,20\})) = 30$
 - Round 2: $\hat{y}_G = \text{ReLU}(\text{Sum}(\{y_a, y_b\})) = 30$

Now we can differentiate G_1 and G_2 !

(2) Supervised Vs Unsupervised

Supervised: The labels come from some external sources

* Notation

Node label y_v , Edge label y_{uv} , Graph label y_G

- (3) Classification Vs Regression
- (4) Evaluation Metrics

3. Setting up GNN Prediction Tasks

(1) Why splitting Graphs is special?

Document, Image dataset → Assume that data points are independent from each other

Example: Image 3 will not affect our prediction on image 1

Training

Validation

Test

Node classification: Each data point is a node

Example

Node 5 will affect our prediction on node 1

LNode 5 participate in **messagePassing** to node 1 → affect node 1

Training

Validation

Test

⇒ Problematic

3. Setting up GNN Prediction Tasks

(2) Solution1 (Trasductive setting)

- * **Split**: features | labels
- * In training, compute embeddings using entire graphs
 - * Train model using node 1&2's labels
- * In validation, compute embeddings using also entire graphs
 - * Evaluate on node 3&4's labels

Training

Validation

Test

(3) Solution2 (Inductive setting)

- Break the edges btn splits to get multiple graphs
- * In training, compute embeddings using the graph over node 1&2
 - * Train model using node 1&2's labels
- * In validation, compute embeddings using the graph over node 3&4 Test
 - * Evaluate on node 3&4's labels

Training

Validation

3. Setting up GNN Prediction Tasks

(4) Settings

	Transductive Setting	Inductive Setting
Dataset	Consist of one graph	Consist of multiple graphs
Method	 Use the entire graph at the training time Only split the labels 	1. Use a part is splitted in the entire graph at the training time2. It allows us to test how can we generalize to unseen graph
Application	Node/Edge prediction	Node/Edge/Graph tasks