Linear Classifiers (Part 2)

CS114B Lab 3

Kenneth Lai

February 10, 2022

▶ What is *g*?

- ▶ What is *g*?
 - ► Function with many names
 - In the context of generalized linear models, this is called a link function
 - ► In the context of neural networks, this is called an activation function

- ▶ What is *g*?
 - ► Function with many names
 - In the context of generalized linear models, this is called a link function
 - In the context of neural networks, this is called an activation function
- ► A dot product of two vectors produces a scalar, but in general, we don't just want an arbitrary real number

- ▶ What is *g*?
 - ► Function with many names
 - In the context of generalized linear models, this is called a link function
 - In the context of neural networks, this is called an activation function
- ► A dot product of two vectors produces a scalar, but in general, we don't just want an arbitrary real number
 - ► Sometimes, we want a probability (logistic regression)
 - Sometimes, we just want the decision itself (perceptron)

▶ Let $z = \theta \cdot \mathbf{x}$ (or $\mathbf{w} \cdot \mathbf{x} + b$)

- ▶ Let $z = \theta \cdot \mathbf{x}$ (or $\mathbf{w} \cdot \mathbf{x} + b$)
- ► Logistic regression: logistic (sigmoid) function

- Let $z = \theta \cdot \mathbf{x}$ (or $\mathbf{w} \cdot \mathbf{x} + b$)
- ► Logistic regression: logistic (sigmoid) function

► Perceptron: (Heaviside) step function

$$H(z) = \begin{cases} 1, & \text{if } z > 0 \\ 0, & \text{if } z < 0 \end{cases}$$

- Let $z = \theta \cdot \mathbf{x}$ (or $\mathbf{w} \cdot \mathbf{x} + b$)
- ► Logistic regression: logistic (sigmoid) function

► Perceptron: (Heaviside) step function

$$H(z) = \begin{cases} 1, & \text{if } z > 0 \\ 0, & \text{if } z < 0 \end{cases}$$

 $\blacktriangleright \text{ What if } z = 0?$

- Let $z = \theta \cdot \mathbf{x}$ (or $\mathbf{w} \cdot \mathbf{x} + b$)
- ► Logistic regression: logistic (sigmoid) function

► Perceptron: (Heaviside) step function

$$H(z) = \begin{cases} 1, & \text{if } z > 0 \\ 0, & \text{if } z < 0 \end{cases}$$

- What if $\hat{z} = 0$?
 - ► Set by convention (1, 0, or 1/2)

► Input (including dummy feature 1)

► Parameters (weights and bias term)

► Sum function ∑

Activation function g

- ► Activation function *g*
 - Logistic, step, etc.

- Output
- ► Input

- Output
- ► Input

- Output
- ► Input
- $\hat{y} = g(\theta \cdot \mathbf{x})$
 - ▶ We will assume that the dummy feature 1 is part of x