Strongly Connected Components

- Every pair of vertices are reachable from each other
- Graph G is strongly connected if, for every u and v in V, there is some path from u to v and some path from v to u.

Strongly Connected

Not Strongly Connected

Example

Finding Strongly Connected Components

- Input: A directed graph G = (V,E)
- Output: a partition of V into disjoint sets so that each set defines a strongly connected component of G

Algorithm

Strongly-Connected-Components(G)

- call DFS(G) to compute finishing times f[u] for each vertex u.
 Cost: O(E+V)
- 2. compute G^T Cost: O(E+V)
- 3. call DFS(G^T), but in the main loop of DFS, consider the vertices in order of decreasing f[u] Cost: O(E+V)
- 4. output the vertices of each tree in the depth-first forest of step 3 as a separate strongly connected component.

The graph G^T is the transpose of G, which is visualized by reversing the arrows on the digraph.

Cost: O(E+V)

Example

Questions

■ Let C={C₁,C₂....,C_n} be the set of strongly connected components of G=(V,E).
Let,

 $G^{SCC} = (V^{SCC}, E^{SCC})$ where $V^{SCC} = \{v_1, v_2, ..., v_n\}$ where each vertex v_i in V^{SCC} represents the strongly connected component C_i in C. There is a directed edge (v_i, v_k) in E^{SCC} if there is a directed edge $(x,y) \in E$ such that $x \in C_i$ and $y \in C_k$.

Then, $((G^T)^{SCC})^T = G^{SCC}$ where G^T denotes the transpose graph of G.

True/False?

■ Consider a directed graph G=(V,E) where each node is initially colored white. What should be the minimum number of nodes that we should change to red such that for each white node *v* in G, there exists at least one red node *r* such that there is a directed path from *r* to *v* and *v* to *r*. Assume that for every node there is at least one other node it is reachable from and can reach to.