Baby measurable cardinals

Philipp Schlicht, University of Bristol European Set Theory Conference Torino, 30 August 2022

Based on work in progress with Victoria Gitman.

. 3

29 pages, in preparation

▶ Victoria Gitman, Philipp Schlicht: Baby measurable cardinals

Motivation

- The area of Ramsey-like cardinals aims to understand large cardinals between weakly compacts and measurables.
- We study *n*-baby measurable cardinals, introduced by Bovykin and McKenzie to answer a question of Holmes.

Ramsey-like cardinals

Definition: A cardinal κ is Ramsey if every coloring $f: [\kappa]^{<\omega} \to 2$ has a homogeneous set of size κ .

Definition: A cardinal κ is remarkable if it is virtually Magidor supercompact.

Definition: A cardinal κ is completely ineffable if there exists a collection of subsets of κ that is closed under applications of Ramsey's theorem for pairs.

Definition: A cardinal κ is ineffable if for every sequence $\{A_{\xi} \mid \xi < \kappa\}$ with $A_{\xi} \subseteq \xi$, there is a $A \subseteq \kappa$ and a stationary set S such that for all $\xi \in S$, $A \cap \xi = A_{\xi}$.

Theorem: (Kunen, Jensen) A cardinal κ is ineffable if and only if every coloring $f: [\kappa]^2 \to 2$ of pairs of elements of κ in 2 colors has a stationary homogeneous set.

Definition: A cardinal κ is called weakly compact if every coloring $f: [\kappa]^2 \to 2$ has a homogeneous set of size κ .

Small models

We always assume that κ is inaccessible.

Definition

- A weak κ -model is a transitive set $M \models \mathsf{ZFC}^-$ of size κ with $H_{\kappa} \in M$.
- A κ -model is a weak κ -model with $M^{<\kappa} \subset M$.
- An basic κ -model is a (not necessarily transitive) set $M \models \mathsf{ZFC}^-$ of size κ with $H_{\kappa} \in M$ and $M \prec_{\Sigma_0} V$.
- An basic $<\kappa$ -closed κ -model is a basic κ -model with $M^{<\kappa}\subseteq M$.

In each case, we will say that M is simple if κ is the largest cardinal in M^1

¹The definition of (weak) κ -models in the literature is slightly different, in particular it is usually not assumed that κ is inaccessible and $H_{\kappa} \in M$.

(Normal) ultrafilters

Suppose that M is a weak κ -model.

• An M-ultrafilter is a set $U \subseteq P^M(\kappa)$ that is a uniform filter on κ , i.e. it contains the tail sets $\kappa \setminus \alpha$, such that

$$\langle M, \in, U \rangle \models$$
 "U is a normal ultrafilter on κ ."

An *M*-ultrafilter *U* is called good if the ultrapower of *M* by *U* is well-founded.

Note: separation and collection may fail badly in the structure $\langle M, \in, U \rangle$.

Weakly amenable ultrafilters

Suppose that M is a weak κ -model, U is an M-ultrafilter, and $j_U: M \to N$ is the ultrapower embedding.

For iterated ultrapowers, we need to define " $j_U(U)$ ". This works if U is weakly amenable.

Definition

- An M-ultrafilter U is weakly amenable (to M) if for every $A \in M$ with $|A|^M \le \kappa$, $U \cap A \in M$.
- Amenable means this holds for all $A \in M$.

Weakly amenable M-ultrafilters U are "partially internal" to M.

Proposition: If M is simple, then U is (weakly) amenable to M if and only if $\langle M, \in, U \rangle$ satisfies Σ_0 -separation.

Weakly amenable ultrafilters

Suppose M is a weak κ -model and U is an M-ultrafilter.

Definition: An elementary embedding $j: M \to N$ with $crit(j) = \kappa$ is κ -powerset preserving if $P^M(\kappa) = P^N(\kappa)$.

Proposition (folklore):

- If U is good and weakly amenable, then the ultrapower $j_U: M \to N$ is κ -powerset preserving.
 - If M is simple, then $M = H_{\kappa^+}^N$.
- If $j: M \to N$ is κ -powerset preserving, then the M-ultrafilter U generated by κ via j is weakly amenable.

Some embedding characterisations

Proposition (folklore): The following are equivalent for an inaccessible cardinal κ :

- 1. κ is weakly compact.
- 2. Every subset A of κ is contained in a transitive model (M, \in) of ZFC⁻ of size κ such that there exists a countably complete (in V) M-normal ultrafilter U on $P(\kappa)^M$.
- 3. As in 2., but replacing countable completeness of *U* by having a wellfounded ultrapower.
- 4. As in 2., but replacing countable completeness of U by the statement that M is $<\kappa$ -closed.
- 5. Same as any of the above, but replacing a transitive M with $M \prec H_{\theta}$ for any regular $\theta > \kappa$.

Some embedding characterisations

Theorem (essentially Di Prisco, Zwicker 1980): The following are equivalent for an inaccessible cardinal κ :

- 1. κ is ineffable.
- 2. κ has the normal filter property, i.e. as in the above characterisation (2.) of weakly compacts, but additionally the diagonal intersection of U is stationary (in V).

Properties I: well-founded targets

Well-founded ultrapowers are already necessary in the embedding characterisation of weakly compact cardinals.

Suppose that M is a weak κ -model.

Definition: An *M*-ultrafilter *U* is α -iterable if it is weakly amenable and has α many well-founded iterated ultrapowers. *U* is iterable if it is α -iterable for every $\alpha \in \operatorname{Ord}$.

Proposition: (Gaifman) If an M-ultrafilter U is ω_1 -iterable, then U is iterable.

Theorem: (Kunen) If an M-ultrafilter U is ω_1 -complete, then U is iterable.

Definition: (Gitman, Welch) A cardinal κ is α -iterable, for $1 \le \alpha \le \omega_1$, if every $A \subseteq \kappa$ is contained in a weak κ -model M that admits an α -iterable M-ultrafilter.

Theorem:

- (Gitman) A 1-iterable cardinal is a limit of ineffable cardinals.
- (Gitman, Welch) A β -iterable cardinal is a limit of α -iterable cardinals for all $\alpha < \beta$.

Properties II: closure

Definition: (Holy, S.) A cardinal κ is α -Ramsey for a regular α with $\omega \leq \alpha \leq \kappa$ if for every $A \subseteq \kappa$ and arbitrarily large regular θ , there is a basic κ -model $M \prec H_{\theta}$, with $A \in M$, such that $M^{<\alpha} \subseteq M$ for which there is a weakly amenable M-ultrafilter.

Theorem: (Holy, S.)

- A measurable cardinal is a limit of κ -Ramsey cardinals κ .
- An ω_1 -Ramsey cardinal is a limit of Ramsey cardinals.
- For $\omega \leq \alpha < \beta \leq \kappa$, a β -Ramsey cardinal κ is a limit of α -Ramsey cardinals.

The proof that the α -Ramsey cardinal form a strict hierarchy is proved via the following game.

Properties II: closure

Definition: (Holy, S.) Fix regular uncountable $\alpha \leq \kappa < \theta$. The game $G^{\theta}_{\alpha}(\kappa)$ is played by the challenger and the judge.

At every stage $\gamma < \alpha$:

- the challenger plays an basic $\langle \kappa$ -closed κ -model $M_{\gamma} \prec H_{\theta}$ extending his previous moves with $\{\langle M_{\bar{\gamma}}, \in, U_{\bar{\gamma}} \rangle \mid \bar{\gamma} < \gamma\} \in M_{\gamma}$.
- the judge responds with an M_{γ} -ultrafilter U_{γ} extending her previous moves,

The judge wins if she can play for α -many moves and otherwise the challenger wins.

Observations: Suppose the judge wins a run of the game $G^{\theta}_{\alpha}(\kappa)$.

- $M = \bigcup_{\gamma < \alpha} M_{\gamma}$ is closed under $< \alpha$ -sequences.
- $U = \bigcup_{\gamma < \alpha} U_{\gamma}$ is a weakly amenable M-ultrafilter.

The existence of winning strategies for either player is independent of θ .

Properties II: closure

Theorem: (Holy, S.) The following are equivalent.

- κ is α -Ramsey.
- The challenger does not have a winning strategy in the game $G_{\alpha}^{\theta}(\kappa)$ for some/all θ .

The existence of winning strategies for the judge is connected with ideals with certain closure properties (Foreman, Magidor, Zeman 2020).

Properties III: amenability

Recall that κ is always inaccessible.

Fact: The following are equivalent:

- 1. A cardinal κ is weakly compact.
- 2. Every subset A of κ is contained in weak κ -model M that admits a countably complete (in V) M-ultrafilter U on $P(\kappa)^M$.

Theorem (implicit in work of Mitchell):

A cardinal κ is Ramsey if 2. holds as above, but additionally the ultrafilter U is amenable.

Properties III: amenability

Theorem (Holy, Lücke 2021)

The following are equivalent:

- 1. A cardinal κ is completely ineffable.
- 2. For all regular $\theta > \kappa$, every subset A of κ is contained in some M \prec H $_{\theta}$ that admits an M-amenable M-ultrafilter U.

Properties III: amenability

Let ZFC_n^- denote the restriction to Σ_n -formulas of the axioms and schemes² of ZFC_n^- .

The following definition of n-baby measurable cardinals is a slight (but not equivalent) variant of the definition of n-baby measurables of Bovykin and McKenzie.

Definition:

- A cardinal κ is very weakly n-baby measurable if every subset A of κ is contained in a weak κ -model M that admits an M-ultrafilter U such that $\langle M, \in, U \rangle \models \mathsf{ZFC}_n^-$.
- A cardinal κ is weakly *n*-baby measurable if the previous statement holds, but *U* is additionally good.
- A cardinal κ is n-baby measurable if the previous statement holds, but M is additionally $<\kappa$ -closed.

²We use the collection instead of the replacement scheme.

Ramsey-like cardinals and Kelley-Morse

Quine's New Foundations NF is a system with unrestricted comprehension for typed formulas. Randall Holmes claimed a proof of its consistency in ZFC a few years ago.

NFU denotes NF with Urelements. This is equiconsistent with a weak subsystem of ZFC by Jensen 1969.

Holmes' 1998 textbook introduced an extension NFUM of NFU to facilitate the formalisation of mathematics. This lead to the original motivation for studying *n*-baby measurable cardinals.

Ramsey-like cardinals and Kelley-Morse

Definition

Let KM_U denote KM in the language with a unary hyperclass predicate U
and the the assertion:

"U is a normal ultrafilter on Ord."

 Let ZFC⁻_U denote ZFC⁻ in the language with a unary predicate U and the the assertion:

"U is a normal ultrafilter on the largest cardinal κ ."

Proposition (Marek?)

 KM_U and ZFC_U^- are equiconsistent:

Theorem (Holmes, Solovay 2001)

KMu and NFUM are equiconsistent:

Ramsey-like cardinals and Kelley-Morse

Theorem (Bovykin, McKenzie 2012)

The following theories are equiconsistent:

- 1. ZFC with the scheme of assertions for $n < \omega$:

 There exists a n-baby measurable cardinal κ such that $V_{\kappa} \prec_{n} V$.
- 2. KM_U
- Bovykin, McKenzie: Ramsey-like cardinals that characterize the exact consistency strength of NFUM Preprint, 2012

n-baby measurables in the hierarchy

Proposition (Gitman, S.): A very weakly n + 2-baby measurable cardinal is an n-baby measurable limit of n-baby measurable cardinals.

To show this, one constructs a κ -model $\overline{M} \in M$ such that $\langle \overline{M}, \in, U \rangle \prec_{\Sigma_{n+1}} \langle M, \in, U \rangle$ and shows $\langle \overline{M}, \in, U \rangle \models \mathsf{ZFC}_n^-$.

n-baby measurables in the hierarchy

Theorem: (Gitman, S.) A weakly 0-baby measurable cardinal below which the GCH holds is a limit of 1-iterable cardinals.

The first step: suppose that

- · M is a simple weak κ -model and
- *U* is a weakly amenable ultrafilter on *M*.

Then (M, \in, U) has a Δ_1 -definable global wellorder. If the GCH holds below κ , then its order type is Ord^M .

One can then do Σ_1 -recursion along the wellorder.

n-baby measurables in the hierarchy

Theorem: (Gitman, S.) A very weakly 1-baby measurable cardinal is a limit of cardinals α that are α -Ramsey.

We further study stronger versions of n-baby measurable cardinals and characterisations by games similar to that of α -Ramsey cardinals.

Outlook

We aim for some technical improvements, for instance:

Problem

Can the assumption of GCH be avoided in the study of 0-baby measurable cardinals?

Is there a sequence of large cardinal notions, unbounded below a measurable cardinal in consistency strength?