CS222 Homework 7

Algorithm Analysis & Deadline: 2020-11-29 Wednesday 23:59

Exercises for Algorithm Design and Analysis by Li Jiang, 2020 Autumn Semester

1. Show that if an algorithm makes at most a constant number of calls to polynomial-time subroutines and performs an additional amount of work that also takes polynomial time, then it runs in polynomial time. Also show that a polynomial number of calls to polynomial-time subroutines may result in an exponential-time algorithm.

Solution.

- 1) All the subroutines called are polynomial-time, and hence have a upper bound $T(subroutines) \leq n^d$, where d is a fixed constant positive integer. Then the input size of i-th call is bounded by $Input_i \leq n^{d^{i-1}}$. Assume we calls k subroutines, where k is a fixed constant positive integer. The total time is $T(n) \leq \sum_{i=1}^k n^{d^i} + T_{additional}(n) \leq n^{d^k+1} + T_{additional}(n)$, which is obviously a polynomial time.
- 2) Assume there is a subroutine which take in s numbers and output 2s numbers. Obviously this subroutine is polynomial-time. And assume our input is n numbers, and we call the subroutines for n times (a polynomial number of calls) in the way that the last call's output is the current call's input. Then we finally get a output with size $n \cdot 2^n$, which infers that the algorithm is exponential-time.
- 2. Given an integer $m \times n$ matrix A and an integer m-vector b, the **0-1 integer programming problem** asks whether there exists an integer n-vector x with elements in the set $\{0,1\}$ such that $Ax \leq b$. Prove that 0-1 integer programming is NP-complete. (*Hint:* Reduce from 3-CNF-SAT.)

Solution.

- 1) **NP:** Obviously, this **0-1 integer programming problem** has a poly-time certificate algorithm with poly-size certifier.
- 2) **NP-complete:** Just to show **3-SAT** \leq_P **0-1 integer programming problem:** For every variable in **3-SAT** we construct two variables $V(a) = a_1, V(\bar{a}) = a_0$, and construct two constraints: $V(a) + V(\bar{a}) \leq 1$ and $-V(a) V(\bar{a}) \leq -1$. For every clause $(x \vee y \vee z)$ in Φ , we construct a constraint: $-V(x) V(y) V(z) \leq -1$. In this way we get an **0-1 integer programming problem** and it has a solution if and only if the original **3-SAT** problem has a solution.
- 3. Algorithm class is a democratic class. Denote class as a finite set S containing every students. Now students decided to raise a student union $S' \subseteq S$ with $|S'| \le K$.

As for the members of the union, there are many different opinions. An opinion is a set $S_o \subseteq S$. Note that number of opinions has nothing to do with number of students.

The question is whether there exists such student union $S' \subseteq S$ with $|S'| \le K$, that S' contains at least one element from each opinion. We call this problem *ELECTION* problem, prove that it is NP-complete.

Solution.

- 1) **NP:** This problem can be checked in a poly-time certificate algorithm (O(|Opinions||S|K)) with a poly-size (O(K)) certifier.
- 2) NP-complete: First we show that: Set Cover problem \leq_p ELECTION problem:

- For the given set U, we construct a opinion $op_e = \emptyset$ for every element e in U.
- For every subset S_i we construct a student i. For every element e in S_i , we add the student i into the corresponding opinion op_e , i.e. $op_e \leftarrow op_e \cup \{i\}$.
- Set Cover has a solution $|\{S_{j_1}, S_{j_2}, \cdots, S_{j_k}\}| = k \leq K \Rightarrow \textbf{ELECTION}$ problem has a solution union $S' = \{j_1, j_2, \cdots, j_k\}, |S'| \leq K$. Because for every $e \in U$, $\exists S_j \in \{S_{j_1}, \cdots, S_{j_k}\}, e \in S_j \Rightarrow$ for every opinion op_e , exists $j \in union S', j \in op_e$, i.e. j is from opinion op_e .
- **ELECTION problem** has a solution union $S' = \{j_1, j_2, \dots, j_k\}, |S'| \leq K \Rightarrow$ the corresponding **Set Cover** has a solution $\{S_{j_1}, S_{j_2}, \dots, S_{j_k}\}$ with size no more than K. The reason is almost the same as the one showed above.

Then we have 3-SAT \leq_P INDEPENDENT-SET \equiv_P VERTEX-COVER \leq_P Set Cover problem \leq_P ELECTION problem.

4. Not-All-Equal Satisfiability (NAE-SAT) is an extension of SAT where every clause has at least one true literal and at least one false one. NAE-3-SAT is the special case where each clause has exactly 3 literals. Prove that NAE-3-SAT is NP-complete. (*Hint:* reduce 3-SAT to NAE-k-SAT for some k > 3 at first)

Solution.

Lemma If x is a solution for a NAE-k-SAT problem P, and we invert the assignment of variables in x to get a dual solution \bar{x} , then \bar{x} is also a solution for this NAE-k-SAT problem P.

Proof. Obviously by definition of NAE-k-SAT problem.

- 1) NP: NAE-3-SAT can be checked by a poly-time certificate algorithm with a poly-size certifier.
- 2) To show $3-SAT \leq_P NAE-4-SAT$:
 - We construct an additional $\{0,1\}$ variable v.
 - For every clause $(a_i \lor b_i \lor c_i)$ in 3-SAT, we construct a corresponding NAE-4-SAT clause $R_4(a_i, b_i, c_i, v)$.
 - The 3-SAT problem has a solution \Rightarrow the NAE-4-SAT problem has a solution. Reason: just set v=0.
 - The **NAE-4-SAT** problem has a solution \Rightarrow the 3-**SAT** problem has a solution. Reason: If v = 0 in this solution, then the solution satisfies the constraints in 3-**SAT**. If v = 1 in this solution, then by the **Lemma** above, we just invert the assignment of variables in this solution.
- 3) To show NAE-4-SAT \leq_P NAE-3-SAT:
 - For every clause $R_4(a, b, c, d)$ in **NAE-4-SAT** problem, we construct a group of corresponding **NAE-3-SAT** clauses $R_3(a, b, x) \wedge R_3(b, c, y) \wedge R_3(c, d, z) \wedge R_3(x, y, z)$, where x, y, z are three new variables. (For every clause we create 3 different new variables.)
 - $-\exists a,b,c,d,R_4(a,b,c,d)=1\Leftrightarrow \exists a,b,c,d,x,y,z,R_3(a,b,x)\land R_3(b,c,y)\land R_3(c,d,z)\land R_3(x,y,z)=1.$ Reason: (1) \Rightarrow : a,b,c,d are not all equal, then there are at least a group of neighbors which are different. Without loss of generality, we say $a\neq b$. Then let $y=\bar{b},z=\bar{c},x=\bar{y}$, and get a solution. (2) \Leftarrow : There are at least a 1 and a 0 in x,y,z. A 1 means that there are at least a 0 in a,b,c,d, and a 0 means that there are at least a 1 in a,b,c,d, so the $R_4(a,b,c,d)=1$.
- 5. Amy and Jack had just robbed a bank. They grabbed a bag of money and planned to divide the money. For each of the following scenarios, give a polynomial time algorithm, or prove that the problem is NP-complete. The input in each case is a list of n items in the bag and the value of each item.
 - (a) There are n coins in the bag, but there are only two different denominations: some denominations x dollars, and some denominations y dollars. Amy and Jack want to divide the money evenly.
 - (b) The bag contains n coins, with an arbitrary number of different denominations, but each denomination is a non-negative integer power of 2, i.e., the possible denominations are 1 dollar, 2 dollars, 4 dollars, etc. Amy and Jack wish to divide the money exactly evenly.
 - (c) The bag contains n checks, which are, in an amazing coincidence, made out to Amy and Jack. They wish to divide the checks so that they each get the exact same amount of money.
 - (d) The bag contains n checks as in part (c), but this time Amy and Jack are willing to accept a split in which the difference is no larger than 100 dollars.

Solution.

(a) I assume that x, y are all positive rational numbers (it seems not reasonable that the denomination of coins to be irrational numbers). It can be solve with a poly-time algorithm:

Denote there are A coins with denomination x, B coins with denomination y. We need to find a non-negative integer solution (a,b) s.t. ax + by = (A-a)x + (B-b)y, i.e. $\frac{A-2a}{2b-B} = \frac{y}{x}$. We transform $\frac{y}{x}$ to the irreducible fraction $\frac{y_0}{x_0}$, and this process can be done within polynomial time (finding gcd is $O(\log x)$,

linear to the input length). Now we need to solve $\frac{A-2a}{2b-B}=\frac{y_0}{x_0}$. It has a solution if and only if:

y_0	x_0	A	В	criterion
odd	odd	odd	odd	$A \ge y_0 \land B \ge x_0$
odd	odd	even	odd	False
odd	odd	odd	even	False
odd	odd	even	even	$A \ge 2y_0 \land B \ge 2x_0$
odd	even	odd	odd	False
odd	even	odd	even	$A \ge y_0 \land B \ge x_0$
odd	even	even	odd	False
odd	even	even	even	$A \ge 2y_0 \land B \ge 2x_0$
even	odd	odd	odd	False
even	odd	odd	even	False
even	odd	even	odd	$A \ge y_0 \land B \ge x_0$
even	odd	even	even	$A \ge 2y_0 \land B \ge 2x_0$

(b) Can be solved within polynomial time.

Denote the set of all the coins as U. $S \subseteq U$ is a subset of all the coins. Sum(S) represents the total amount of the coins in S. X is the goal amount we want to reach, and a coin c^* has the maximum denomination 2^m less than or equal to the goal amount X. We assert that:

Lemma : $\exists S_1 \subseteq U \text{ s.t. } Sum(S_1) = X \Leftrightarrow \exists S_2 \subseteq U \text{ s.t. } c^* \in S_2 \wedge Sum(S_2) = X.$ Proof:

- ⇐: Obviously.
- \Rightarrow : Consider two cases:
 - * $c^* \in S_1$, go straight.
 - * $c^* \notin S_1$. We have $Sum(S_1) = X = 2^m + l$, where $l \geq 0$. We find a coin $c_{m_1} \in S_1$ which has the minimum denomination 2^a in S_1 , $2^a \leq 2^m$. We have $0 \equiv Sum(S_1) \equiv 2^m + l \equiv l \mod 2^a$. If l > 0, then $l \geq 2^a$, and then we have $Sum(S_1 \setminus c_{m_1}) = 2^m + l'$, where $l' = l 2^a \geq 0$. If l' > 0, repeat the process above (select and remove the minimum coin c_{m_2} in $S_1 \setminus c_{m_1}$). Finally we will get $Sum(S_1 \setminus c_{m_1} \setminus c_{m_2} \setminus \cdots \setminus c_{m_k}) = 2^m + 0$. We construct a solution $S_2 = \{c_{m_1}, c_{m_2}, \cdots, c_{m_k}, c^*\}$.

This lemma confirms the correctness of the greedy algorithm below.

- 1. To check is there a selection (a set of coins) to make the coins' total amount equal to X.
- 2. Sort the coins in descending order of denomination.
- 3. Discuss each coin in the order. If the coin c has a denomination $2^k \leq X$, then select this coin and $X \leftarrow X 2^k$.
- 4. Finally, we check whether X=0. If X=0, there is a solution, otherwise no solution.
- (c) NP-complete. Proof: Subset Sum \leq_P (c).

Reason: For a **Subset Sum** problem, we have a set of numbers n_1, n_2, \dots, n_m with total sum S, and want to find a subset whose numbers have a sum S_1 . We construct a problem (c) with checks' amounts $n_1, n_2, \dots, n_m, |S - 2S_1|$, and then the two problem have a solution concurrently.

(d) NP-complete. Proof: (c) \leq_P (d).

Reason: For a problem (c) with check amounts c_1, c_2, \dots, c_n , we construct a problem (d) with check amounts $200c_1, 200c_2, \dots, 200c_n$. They have a solution concurrently.