HW2

Justin Nguyen

September 14, 2024

1. $9 \cdot 10^6 = 9,000,000$ seven-digit phone numbers.

- 2. (a) 8! = 40320 seatings
 - (b) $5! \cdot 4 \cdot 3! = 2880$ consecutive male seatings.
 - (c) $4! \cdot 2^4 = 384$ consecutive couples seatings.
- 3. $6m, 7s, 4e \rightarrow 2$ books
 - (a) $\binom{6}{2} + \binom{7}{2} + \binom{4}{2} = 42$ choices of the two books who share the same subject.
 - (b) $\binom{6}{1}\binom{7}{1} + \binom{6}{1}\binom{4}{1} + \binom{7}{1}\binom{4}{1} = 94$ choices of two books who don't share the same subject.
- 4. $8w, 6m \rightarrow 3w, 3m$
 - (a) $\binom{8}{3} \begin{bmatrix} \binom{6}{3} \binom{4}{1} \end{bmatrix} = 896$ committees where m_1, m_2 don't work together.
 - (b) $\binom{6}{3} \begin{bmatrix} \binom{8}{3} \binom{6}{1} \end{bmatrix} = 1000$ committees where w_1, w_2 don't work together.
 - (c) $\binom{8}{3}\binom{6}{3} P_3^7 = 910$ committees where w_1, m_1 don't work together.
- 5. Let $D_6 = \{1, 2, 3, 4, 5, 6\}$, $A = \text{rolling } 1 \dots 6$ in any order, and $|S| = |D_6|^6$. If the point $r_1 = (1, 2, 3, 4, 5, 6) \in A \implies$ other points in A must be arrangements of $r_1 \implies |A| = |D_6|!$ $\therefore P(A) = \frac{|A|}{|S|} = \frac{6!}{6^6} \approx 0.015$
- 6. $|S| = \binom{10}{5}, |A| = \binom{6}{5} \implies P(A) = \frac{|A|}{|S|} \approx 0.02$

7.

- 8. 52 cards \rightarrow 5 cards; $|S| = {52 \choose 5}$
 - (a) $P(3A, 2K) = \frac{\binom{4}{3}\binom{4}{2}}{\binom{52}{5}} \approx 0.000009$
 - (b) $P(3R_1, 2R_2) =$

9.

 $^{{}^{1}}P_{3}^{7}$ is a simplification of the number of committees where w_{1}, m_{1} work together.