Tutorial 2: Predicate Logics

Department of Computer Science and Engineering Hong Kong University of Science and Technology

Consider the statement:

"For all prime number p, p is odd or p is 2"

- (a) Express the above statement using predicate and universal quantifiers.
- (b) Express the negation of the statement in (a) using an existential quantifier.

Solution:

- (a) Let r(p) stand for "p is a prime", s(p) stand for "p is odd". The statement is: $\forall p \in Z^+(r(p) \to (s(p) \lor p = 2))$.
- (b) $\exists p \in Z^+(r(p) \land \neg s(p) \land p \neq 2)$).

For each of the following parts, select the answer (from (i) to (iv)) that are logically equivalent to it.

- (a) $\exists x (P(x) \lor Q(x))$
 - (i) $\forall x (P(x) \land Q(x))$
 - (ii) $\neg(\forall x \neg P(x)) \lor \neg(\forall x \neg Q(x))$
 - (iii) $\neg(\forall x \neg P(x)) \land \neg(\forall x \neg Q(x))$
 - (iv) $\neg(\forall x \neg P(x)) \lor (\forall x \neg Q(x))$
- (b) $\exists x P(x) \rightarrow \forall y Q(y)$
 - (i) $\exists x \neg P(x) \lor \forall y Q(y)$
 - (ii) $\exists x \neg P(x) \land \forall y Q(y)$
 - (iii) $\exists x \neg P(x) \rightarrow \forall y Q(y)$
 - (iv) $\forall x \neg P(x) \lor \forall y Q(y)$
- (c) $\neg \forall x \exists y (P(y) \land Q(x,y))$
 - (i) $\forall x \forall y (P(y) \rightarrow \neg Q(x,y))$
 - (ii) $\exists x \forall y (P(y) \rightarrow \neg Q(x, y))$
 - (iii) $\forall x \forall y (P(y) \rightarrow Q(x, y))$
 - (iv) $\forall x \exists y (P(y) \rightarrow Q(x, y))$

Solution:

- (a) (ii)
- (b) (iv)
- (c) (ii)

Consider the following quantification about elements in some universe U:

$$\neg \forall x \in U \ (\exists y \in U \ (P(x,y) \land Q(x,y))) \tag{1}$$

Let $R(x,y) = \neg P(x,y)$ and $S(x,y) = \neg Q(x,y)$ Express the quantification in Equation (1) in terms of R(x,y) and S(x,y). The negation sign (\neg) should *not* appear in the answer. Show how you derived your new quantification.

Solution:

Using the facts:

- * $\neg \forall x \in U (p(x))$ is equivalent to $\exists x \in U (\neg p(x))$
- * $\neg \exists x \in U (p(x))$ is equivalent to $\forall x \in U (\neg p(x))$
- * DeMorgan's laws

we get

$$\neg \forall x \in U \ (\exists y \in U \ (P(x,y) \land Q(x,y)))$$

$$= \exists x \in U \ (\neg \exists y \in U \ (P(x,y) \land Q(x,y)))$$

$$= \exists \in U \ (\forall y \in U \ \neg (P(x,y) \land Q(x,y)))$$

$$= \exists \in U \ (\forall y \in U \ (\neg P(x,y) \lor \neg Q(x,y)))$$

$$= \exists x \in U \ (\forall y \in U \ (R(x,y) \lor S(x,y)))$$

Is
$$(\exists x \in U (p(x))) \land (\exists y \in U (q(y)))$$
 logically equivalent to $\exists z \in U (p(z) \land q(z))$?

Solution:

No. Consider the following counterexample.

Set $U = Z^+$, p(x) = "x is even" and q(x) = "x is odd".

Obviously, $(\exists x \in U \ (p(x)))$ is true because there exists some even integers in Z^+ and $(\exists y \in U \ (q(y)))$ is true because there exists some odd integers in Z^+ . So, $(\exists x \in U \ (p(x))) \land (\exists y \in U \ (q(y)))$ is true.

However, $\exists z \in U \ (p(z) \land q(z))$ is false because there is no integer $z \in Z^+$ that is both even and odd.

Therefore, they are not logically equivalent.