David Yan

Tuesday, January 12, 2016 12:57 PM

4.1:32 If a is an odd integer and bis an even integer, then 2a + 3b is even

$$a = 2k+1 \text{ odd} \qquad \forall x \in D, P(x) \rightarrow Q(x)$$

$$b = 2m \qquad \text{even}$$

$$2(2k+1) + 3(2m) \qquad 2x + 2m$$

$$2(2k+1) + 3(2m)$$
 $2x + 2n$
 $4k+2 + 6m$ $2(2k+1+3m)$ $2(x+n)$

4.1:61 Suppose that integers in and in are perfect squares. Then m+n+ 25mn is also a perfect square. Why?

$$M = \sqrt{m} \cdot \sqrt{m}$$
 let $\sqrt{m} = x$ $k^2 = \sqrt{m^2 + \sqrt{n^2} + 2\sqrt{m}}$
 $N = \sqrt{n} \cdot \sqrt{n}$ let $\sqrt{n} = y$ $k^2 = x^2 + y^2 + 2xy$
let $k^2 = \text{perfect square}$ $k^2 = (x+y)(x+y)$
 $k^2 = (x+y)^2$
 $k^2 = (x+y)^2$

4.2:20 Given any two rational numbers rands, with resiltare is another rational number between

r and s.
Let
$$r = \frac{a}{b}$$
 at $\frac{1}{4}$ $\frac{c}{d}$ $\frac{ad+be}{2}$ $\frac{ad+be}{2bd}$ of integers and +bc are both integers. He denorminator is a various humber between them are $\frac{ad+be}{2}$ $\frac{ad+be}$

assuming a and bill an integer (which is also rational theorem 4,2,1) we can say that the is a rational humber between two rational numbers or and s.

4.2:25 If v is any rational number, then 3r2-2r+4 is rational.

21.6:28 For all intogers mand n, if mh is even then mis even or n is oven $\forall x \mid nD$, if P(x) then Q(x)

by mD if Qrx) is false then b(x) is false

P(x) = m is even or nis even Q(x) = imn is even $Q(x) \rightarrow 2P(x)$ if m is not even and n is not even, then mn is not even

if m is odd and n is odd, then mn is odd m = 2a + l n = 2b + l mn = (2a + l)(2b + l) = 4ab + 2a + 2b + 2 = 2(2ab + a + b + l)mn is even.