

Julien Simon
Principal Technical Evangelist, AI & Machine Learning
@julsimon

July 2018

The neuron

$$\sum_{i=1}^{l} x_i * w_i = u$$

"Multiply and Accumulate"

Activation functions

Source: Wikipedia

Neural networks

Neural networks

Neural networks

Initially, the network will not predict correctly $f(X_1) = Y_1$

A loss function measures the difference between the real label Y_1 and the predicted label Y'_1 error = loss (Y_1, Y'_1)

For a batch of samples:

 $\sum_{i=1}^{batch \ size} loss(Y_{i,} Y'_{i}) = batch \ error$

The purpose of the training process is to minimize loss by gradually adjusting weights

Training

Training data set

Batch size
Learning rate
Number of epochs _

Hyper parameters

Stochastic Gradient Descent (SGD)

Imagine you stand on top of a mountain with skis strapped to your feet. You want to get down to the valley as quickly as possible, but there is fog and you can only see your immediate surroundings. How can you get down the mountain as quickly as possible? You look around and identify the steepest path down, go down that path for a bit, again look around and find the new steepest path, go down that path, and repeat—this is exactly what gradient descent does.

Tim DettmersUniversity of Lugano 2015

The « step size » is called the learning rate

Optimizers

Validation

Test

This data set must have the same distribution as real-life samples, or else test accuracy won't reflect real-life accuracy.

Early stopping

« Deep Learning ultimately is about finding a minimum that generalizes well, with bonus points for finding one fast and reliably », Sebastian Ruder

Demo: fully connected network

Convolutional Neural Networks (CNN)

Le Cun, 1998: handwritten digit recognition, 32x32 pixels

Extracting features with convolution

Input image

Convolution Kernel

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

Feature map

Source: http://timdettmers.com

Convolution extracts features automatically.

Kernel parameters are learned during the training process.

Downsampling images with pooling

Pooling shrinks images while preserving significant information.

Demo: convolutional network

Gluon CV: state of the art pre-trained models

Classification

[electric_guitar], with probability 0.671

Detection

Segmentation

Demo: Gluon CV

Long Short Term Memory Networks (LSTM)

- A LSTM neuron computes the output based on the input and a previous state
- LSTM networks have memory
- They're great at predicting sequences, e.g. machine translation

Machine Translation

https://github.com/awslabs/sockeye

GAN: Welcome to the (un)real world, Neo

Generating new "celebrity" faces https://github.com/tkarras/progressive_growing_of_gans

From semantic map to 2048x1024 picture https://tcwang0509.github.io/pix2pixHD/

Scalable training on AWS

Amazon SageMaker

Build

Deploy

AWS Deep Learning AMI

Amazon EC2

Train

Getting started

https://ml.aws | https://aws.amazon.com/blogs/machine-learning/

https://mxnet.incubator.apache.org | https://github.com/apache/incubator-mxnet

https://gluon.mxnet.io | https://github.com/gluon-api | https://github.com/dmlc/gluon-cv

https://aws.amazon.com/sagemaker

https://github.com/awslabs/amazon-sagemaker-examples

https://github.com/aws/sagemaker-python-sdk | https://github.com/aws/sagemaker-spark

https://medium.com/@julsimon

https://youtube.com/juliensimonfr

https://gitlab.com/juliensimon/dlnotebooks

