

CLAIM AMENDMENTS

This listing of claims will replace all prior versions and listings of claims in the application.

1

1 1. (Currently Amended) A method of performing a reduction operation in a

2 cryptographic calculation in a digital computer, the method comprising:

3 selecting a modulus having a first section with a plurality of "1" Most

4 Significant Word states and a second section which further comprises: a plurality of

5 "1" or "0" states whereby a number formed of the two sections is a modulus; and

6 operating a reduction operation on the modulus comprising:

7 multiplying a first variable n_0 by a second variable r_3 to produce a first

8 result;

9 adding the first result to a third variable r_1 and B multiplied by a fourth

10 variable $B r_2 - r_2$ to produce a first sum, wherein the first sum corresponds to a first

11 equation: $n_0 r_3 + B r_2 + r_1$;

12 dividing the first sum into an upper half and a lower half;

13 multiplying the upper half by the first variable n_0 to produce a second result;

14 adding the second result to the lower half and a fifth variable r_0 to produce a

15 second sum, thereby permitting use of the second sum as the modulus; and

16 using the modulus in the cryptographic calculation.

1 2. (Currently Amended) A—The method according to of claim 1, further
2 comprising:

3 effecting a plurality of multiplication operations.

1
1 3. (Currently Amended) A—The method according to of claim 2, further
2 comprising:

3 effecting a plurality of multiplication operations followed by effecting a
4 reduction operation.

1
1 4. (Currently Amended) A—The method according to of claim 3, further
2 comprising:

3 repeating the—~~combined multiplication operations and reduction operation~~
4 effecting step of claim 3.

1
1 5. (Currently Amended) A—The method according to of claim 1, further
2 comprising:

3 using a multiple of the modulus.

1
1 6. (Currently Amended) A—The method according to of claim 1, further
2 comprising:

3 ~~wherein, when a last multiplication gives an overflow, the overflow is added~~
4 adding an overflow from a last multiplication to a part of a selected number.

1 7. (Currently Amended) A-The method ~~according to~~of claim 6, further
2 comprising:

3 ~~wherein, when the overflow addition step produces an overflow, then adding the~~
4 first variable n_0' is added to the overflow.

1 8. (Currently Amended) A-The method ~~according to~~of claim 1, wherein a carry c
2 between two adjacent multiplications is effected as an addend in ~~the next a~~
3 subsequent multiplication.

1 9. (Currently Amended) A-The method ~~according to~~of claim 1, further
2 comprising:

3 ~~monitoring the a number of leading "1"s to determine if the number is less~~
4 than $(k-2)$.

1 10. (Currently Amended) A-The method ~~according to~~of claim 9, further
2 comprising:

3 initiating a next calculation-when the number of leading "1"s is less than -(k-
4 2).
1

1 11. (Currently Amended) A-The method according to-of claim 1, the method
2 further comprising:

3 operating 192-bit ECC and a word size of 64-bit,
4 the modulus comprises a first section of 138 bits and a second section of 54
5 bits.

1
1 12. (Currently Amended) A-The method according to-of claim 1, the method
2 further comprising:

3 operating 128-bit ECC and a word size of 64-bit,
4 the modulus comprises a first section of 74 bits and a second section of 54
5 bits.

1
1 13. (Currently Amended) A-The method according to-of claim 1, the method
2 further comprising:

3 operating 256-bit ECC and a word size of 64-bit,
4 the modulus comprises a first section of 202 bits and a second section of 54
5 bits.

1 14. (Currently Amended) A computer program product directly loadable into the
2 internal memory of a digital computer, comprising:

3 software code portions for performing the method of claim 1 ~~when said~~
4 ~~product is run on~~ a computer.

1

1 15. (Currently Amended) A computer program directly loadable into the internal
2 memory of a digital computer, comprising:

3 software code portions for performing the method of claim 1 ~~when said~~
4 ~~program is run on~~ a computer.

1

1 16-17. (Canceled).

1

1 18. (Currently Amended) An apparatus that performs a reduction operation in a
2 cryptographic calculation on a digital computer, the apparatus comprising:

3 a plurality of input registers that store a plurality of input operands;
4 a plurality of output registers that store a plurality of outputs; and
5 a multiplier that produces said outputs using a function that operates on
6 variables from both said input registers and said output registers; wherein said
7 multiplier selects a modulus having a first section with a plurality of "1" states and
8 a second section having a plurality of "1" or "0" states whereby a number formed of

9 the two sections is a modulus and performs a reduction operation on the modulus,
10 the reduction operation comprising:

11 multiplying a first variable n_0 by a second variable r_3 to produce a first
12 result;

13 adding the first result to a third variable r_1 and B multiplied by a fourth
14 variable $B r_2 - r_2$ to produce a first sum, wherein the first sum corresponds to a first
15 equation: $n_0 r_3 + B r_2 + r_1$;

16 dividing the first sum into an upper half and a lower half;

17 multiplying the upper half by the first variable n_0 to produce a second result;
18 adding the second result to the lower half and a fifth variable r_0 to produce a second
19 sum, thereby permitting use of the second sum as the modulus; and
20 using the modulus in the cryptographic calculation.

1
1 19. (Previously Presented) The apparatus of claim 18, further comprising:
2 means to effect a plurality of multiplication operations.

1
1 20. (Previously Presented) The apparatus of claim 19, further comprising:
2 means to effect a plurality of multiplication operations followed by a
3 reduction operation.

1

1 21. (Previously Presented) The apparatus of claim 20, further comprising:
2 means to repeat the plurality of multiplication operations and the reduction
3 operation.

1

1 22. (Previously Presented) The apparatus of claim 18, further comprising:
2 means to use a multiple of the modulus.

1

1 23. (Currently Amended) The apparatus of claim 18, further comprising:
2 means, ~~when a last multiplication gives an overflow, to add the overflow to a~~
3 ~~part of a selected number to add an overflow from a last multiplication to part of a~~
4 selected number.

1

1 24. (Currently Amended) The apparatus of claim 23, further comprising:
2 means, ~~when the overflow addition step produces an overflow, to add~~ to add
3 the first variable no^r to the overflow.

1

1 25. (Currently Amended) The apparatus of claim 18, further comprising:
2 means to effect a carry c between two adjacent multiplications as an addend
3 in the ~~next~~ a subsequent multiplication.

1

1 26. (Currently Amended) ~~Apparatus according to The apparatus of claim 18,~~
2 further comprising:

3 means to monitor ~~the-a~~ number of leading "1"s to determine if the number is
4 less than (k-2).

1

1 27. (Currently Amended) The apparatus of claim 26, further comprising:

2 means to initiate a next calculation-when the number of leading "1"s is less
3 than ~~(k-2)~~.

1

1 28. (Currently Amended) The apparatus of claim 18, ~~further comprising:~~
2 ~~with means for 192-bit ECC and a word size of 64-bit,~~
3 wherein the modulus comprises a first section of 74 bits and a second section of 54
4 bits.

1

1 29. (Currently Amended) The apparatus of claim 18, ~~further comprising:~~
2 ~~with means for 128-bit ECC and a word size of 64-bit,~~
3 wherein the modulus comprises a first section of 74 bits and a second section of 54
4 bits.

1

1 30. (Currently Amended) The apparatus of claim 18, ~~further comprising:~~ with

2 means, for 256 bit ECC and word size of 64 bit, wherein the modulus comprises a
3 first section of 202 bits and a second section of 54 bits.

1

1 31-33. (Canceled).