$ident, x, y, y_p, y_f, -$, abbrev, r subscripts: p for pointers, f for functions

n, i, j index variables

 $impl_const$ implementation-defined constant member C struct/union member name

Ott-hack, ignore (annotations)

nat OCaml arbitrary-width natural number

 mem_ptr abstract pointer value mem_val abstract memory value

Ott-hack, ignore (locations)

mem_iv_c OCaml type for memory constraints on integer values

 UB_name undefined behaviour

string OCaml string

Ott-hack, ignore (OCaml type variable TY) Ott-hack, ignore (OCaml Symbol.prefix)

mem_order, _ OCaml type for memory order

linux_mem_order OCaml type for Linux memory order

Ott-hack, ignore (OCaml type variable bt)

```
Sctypes_{-}t, \tau
                                                 C type
                                                    pointer to type \tau
tag
                                                 OCaml type for struct/union tag
                     ::=
                           ident
β, _
                                                 base types
                     ::=
                                                    unit
                           unit
                           bool
                                                    boolean
                                                    integer
                           integer
                                                    rational numbers?
                           real
                                                   location
                           loc
                           \operatorname{array} \beta
                                                    array
                           \mathtt{list}\, eta
                                                    list
                                                    tuple
                           \mathtt{struct}\,tag
                                                    struct
                           \operatorname{\mathfrak{set}} \beta
                                                    \operatorname{set}
                           opt(\beta)
                                                    option
                                                   parameter types
                           \beta \to \beta'
                           \beta_{\tau}
                                           Μ
                                                    of a C type
binop
                                                 binary operators
                                                    addition
                                                    subtraction
                                                    multiplication
                                                    division
                                                    modulus
                                                    remainder
                           rem_f
                                                    exponentiation
                                                    equality, defined both for integer and C types
```

	!= > < >= <= /\	inequality, similiarly defined greater than, similarly defined less than, similarly defined greater than or equal to, similarly defined less than or equal to, similarly defined conjunction disjunction
$binop_{arith}$::=	arithmentic binary operators
$binop_{rel}$::=	relational binary operators
$binop_{bool}$::= 	boolean binary operators
mem_int	::=	memory integer value

		1 0	M M	
$object_value$::=	$\begin{array}{l} mem_int \\ mem_ptr \\ \operatorname{array}\left(\overline{loaded_value_i}^i\right) \\ (\operatorname{struct} ident)\{\overline{.member_i:\tau_i = mem_val_i}^i\} \\ (\operatorname{union} ident)\{.member = mem_val\} \end{array}$		C object values (inhabitants of object types), which can be read/stored integer value pointer value C array value C struct value C union value
$loaded_value$::= 	$\verb specified object_value $		potentially unspecified C object values specified loaded value
value	::=	$object_value \ loaded_value \ Unit \ True \ False \ eta[\overline{value_i}^i] \ (\overline{value_i}^i)$		Core values C object value loaded C object value unit boolean true boolean false list tuple
$bool_value$::= 	True False		Core booleans boolean true boolean false
$ctor_val$::=	$\begin{array}{c} \operatorname{Nil}\beta\\ \operatorname{Cons}\\ \operatorname{Tuple} \end{array}$		data constructors empty list list cons tuple

		Array Specified	C array non-unspecified loaded value
	ı	Specifica	-
$ctor_expr$::=		data constructors
		Ivmax	max integer value
		Ivmin	min integer value
		Ivsizeof	sizeof value
		Ivalignof	alignof value
		IvCOMPL	bitwise complement
		IvAND	bitwise AND
		IvOR	bitwise OR
		IvXOR	bitwise XOR
		Fvfromint	cast integer to floating value
		Ivfromfloat	cast floating to integer value
name	::=		
name	—	ident	Core identifier
		$impl_const$	implementation-defined constant
	'	1	•
pval	::=		pure values
		ident	Core identifier
		$impl_const$	implementation-defined constant
		value	Core values
		$\mathtt{constrained}(\overline{mem_iv_c_i,pval_i}^{i})$	constrained value
		$\mathtt{error}\left(string, pval ight)$	impl-defined static error
		$ctor_val(\overline{pval_i}^i)$	data constructor application
		$(\mathtt{struct}ident)\{\overline{.member_i=pval_i}^{i}\}$	C struct expression
		$(\verb"union" ident") \{ .member = pval \}$	C union expression
tpval	::=		top-level pure values
cpout			top tevel pure variets

		$\begin{array}{l} {\tt undef} \ \ UB_name \\ {\tt done} \ pval \end{array}$		undefined behaviour pure done
$ident_opt_eta$::= 	$_{::}eta \ ident:eta$	$binders = \{\}$ $binders = ident$	type annotated optional identifier
pattern	::= 	$ident_opt_eta \ ctor_val(\overline{pattern_i}^i)$	$\begin{aligned} & \text{binders} = \text{binders}(ident_opt_\beta) \\ & \text{binders} = \text{binders}(\overline{pattern}_i^{\ i}) \end{aligned}$	
z	::=	$i \\ mem_int \\ size_of(au) \\ offset_of_{tag}(member) \\ ptr_size \\ max_int_{ au} \\ min_int_{ au}$	M M M M M M	OCaml arbitrary-width integer literal integer size of a C type offset of a struct member size of a pointer maximum value of int of type τ minimum value of int of type τ
$\mathbb{Q},\ q,\ _{-}$::=	$rac{int_1}{int_2}$		OCaml type for rational numbers
lit	::=	$ident$ unit $bool$ z \mathbb{Q}		

```
ident\_or\_pattern
                                  ident
                                                                             binders = ident
                                                                             binders = binders(pattern)
                                  pattern
bool\_op
                                  \neg term
                                  term_1 = term_2

    \bigwedge(\overline{term_i}^i) \\
    \bigvee(\overline{term_i}^i)

                                  term_1 \ binop_{bool} \ term_2
                                                                             Μ
                                  if term_1 then term_2 else term_3
arith\_op
                                  term_1 + term_2
                                  term_1 - term_2
                                  term_1 \times term_2
                                  term_1/term_2
                                  term_1 \, {\tt rem\_t} \, term_2
                                  term_1 \, {\tt rem\_f} \, term_2
                                  term_1 \hat{} term_2
                                  term_1 \ binop_{arith} \ term_2
                                                                             Μ
cmp\_op
                                  term_1 < term_2
                                                                                                                     less than
                                  term_1 \le term_2
                                                                                                                     less than or equal
                                  term_1 binop_{rel} term_2
                                                                             Μ
list\_op
                                  nil
                                  term_1 :: term_2
```

```
\mathtt{tl}\, term
                           term^{(int)}
tuple\_op
                    ::=
                           (\overline{term_i}^i)
                           term^{(int)}
pointer\_op
                    ::=
                           mem\_ptr
                           term_1 +_{ptr} term_2
                           {\tt cast\_int\_to\_ptr}\, term
                           {\tt cast\_ptr\_to\_int}\, term
array\_op
                    ::=
                           [\mid \overline{term_i}^i \mid]
                           term_1[term_2]
param\_op
                           ident:\beta.\ term
                           term(term_1, ..., term_n)
struct\_op
                    ::=
                           term.member
ct\_pred
                    ::=
                           \texttt{representable}\left(\tau, term\right)
                           \mathtt{aligned}\left(\tau, term\right)
                           alignedI(term_1, term_2)
term, \ \_
                    ::=
```

```
lit
                    arith\_op
                    bool\_op
                    cmp\_op
                    tuple\_op
                    struct\_op
                    pointer\_op
                    list\_op
                    array\_op
                    ct\_pred
                    param\_op
                    (term)
                                                                S
                                                                        parentheses
                                                               Μ
                    \sigma(term)
                                                                        simul-sub \sigma in term
                                                               Μ
                    pval
                                                                     pure expressions
pexpr
                   pval
                                                                        pure values
                    ctor\_expr(\overline{pval_i}^i)
                                                                        data constructor application
                    array\_shift(pval_1, \tau, pval_2)
                                                                        pointer array shift
                   member\_shift(pval, ident, member)
                                                                        pointer struct/union member shift
                   \mathtt{not}\left(pval\right)
                                                                        boolean not
                   pval_1 \ binop \ pval_2
                                                                        binary operations
                   {\tt memberof}\ (ident, member, pval)
                                                                        C struct/union member access
                   name(\overline{pval_i}^i)
                                                                        pure function call
                    assert_undef (pval, UB_name)
                    bool\_to\_integer(pval)
                    \mathtt{conv\_int}\left(	au, pval
ight)
                    \mathtt{wrapI}\left( 	au,pval 
ight)
                                                                     top-level pure expressions
tpexpr
             ::=
```

		tpval		top-level pure values
		$ ext{case } pval ext{ of } \overline{\mid tpexpr_case_branch_i}^i ext{ end} \ ext{let } ident_or_pattern = pexpr ext{ in } tpexpr \ ext{let } ident_or_pattern: (y_1:eta_1. \ term_1) = tpexpr_1 ext{ in } tpexpr_2 \ ext{let } ident_or_pattern: (y_1:eta_1. \ term_1) = tpexpr_2 \ ext{ in } tpexpr_2 \ ext{ of } in tpexpr_2$	bind binders($ident_or_pattern$) in $tpexpr$ bind binders($ident_or_pattern$) in $tpexpr_2$ bind y_1 in $term_1$	pattern matching pure let pure let
		$\begin{array}{l} \texttt{if} \ pval \ \texttt{then} \ tpexpr_1 \ \texttt{else} \ tpexpr_2 \\ \sigma(tpexpr) \end{array}$	M	pure if simul-sub σ in $tpexpr$
$tpexpr_case_branch$::=	$pattern \Rightarrow tpexpr$	bind $binders(pattern)$ in $tpexpr$	pure top-level case expression top-level case expression br
m_kill_kind	::=	$\begin{array}{c} \texttt{dynamic} \\ \texttt{static} \tau \end{array}$		
bool, _	::=	true false		OCaml booleans
$int, \ _$::=	i		OCaml fixed-width integer literal integer
res_term	::= 	emp $points_to$ $ident$ $\langle res_term_1, res_term_2 \rangle$ $pack (pval, res_term)$ $\sigma(res_term)$	M	resource terms empty heap single-cell heap variable seperating-conjunction pair packing for existentials substitution for resource terms

```
mem\_action
                                                                                                         memory actions
                       ::=
                             create(pval, \tau)
                             create_readonly (pval_1, \tau, pval_2)
                            alloc(pval_1, pval_2)
                            kill(m_kill_kind, pval, pt)
                            store(bool, \tau, pval_1, pval_2, mem\_order, pt)
                                                                                                            true means store is locking
                            load(\tau, pval, mem\_order, pt)
                            rmw(\tau, pval_1, pval_2, pval_3, mem\_order_1, mem\_order_2)
                            fence(mem\_order)
                             cmp\_exch\_strong(\tau, pval_1, pval_2, pval_3, mem\_order_1, mem\_order_2)
                             cmp_exch_weak(\tau, pval_1, pval_2, pval_3, mem_order_1, mem_order_2)
                            linux_fence (linux_mem_order)
                            linux\_load(\tau, pval, linux\_mem\_order)
                            linux\_store(\tau, pval_1, pval_2, linux\_mem\_order)
                            linux_rmw(\tau, pval_1, pval_2, linux_mem_order)
polarity
                                                                                                          polarities for memory actions
                       ::=
                                                                                                            (pos) sequenced by let weak and let strong
                                                                                                            only sequenced by let strong
                            neg
pol\_mem\_action
                                                                                                         memory actions with polarity
                       ::=
                             polarity\ mem\_action
                                                                                                         operations involving the memory state
mem\_op
                       ::=
                            pval_1 \ binop_{rel} \ pval_2
                                                                                                            pointer relational binary operations
                                                                                                            pointer subtraction
                            pval_1 -_{\tau} pval_2
                            \mathtt{intFromPtr}\left(	au_{1},	au_{2},pval
ight)
                                                                                                            cast of pointer value to integer value
                            ptrFromInt(\tau_1, \tau_2, pval)
                                                                                                            cast of integer value to pointer value
                            ptrValidForDeref(\tau, pval, pt)
                                                                                                            dereferencing validity predicate
                            ptrWellAligned (\tau, pval)
```

```
ptrArrayShift (pval_1, \tau, pval_2)
                       memcpy(pval_1, pval_2, pval_3)
                       memcmp(pval_1, pval_2, pval_3)
                       realloc(pval_1, pval_2, pval_3)
                       va\_start(pval_1, pval_2)
                       va\_copy(pval)
                       va\_arg(pval, \tau)
                       va\_end(pval)
spine\_elem
                                                                                                                          spine element
                                                                                                                             pure or logical value
                       pval
                                                                                                                             resource value
                       res\_term
                       \sigma(spine\_elem)
                                                            Μ
                                                                                                                             substitution for spine elements / return values
spine
                                                                                                                          spine
                 ::=
                       \overline{spine\_elem_i}
                                                                                                                           (effectful) top-level values
tval
                 ::=
                                                                                                                             end of top-level expression
                       {\tt done}\, spine
                                                                                                                             undefined behaviour
                       undef UB\_name
res\_pattern
                 ::=
                                                                                                                           resource terms
                                                            binders = \{\}
                                                                                                                             empty heap
                       emp
                                                            binders = \{\}
                                                                                                                             single-cell heap
                       pt
                       ident
                                                            binders = ident
                                                                                                                             variable
                                                            binders = binders(res\_pattern_1) \cup binders(res\_pattern_2)
                       \langle res\_pattern_1, res\_pattern_2 \rangle
                                                                                                                             seperating-conjunction pair
                       pack (ident, res_pattern)
                                                            binders = ident \cup binders(res\_pattern)
                                                                                                                             packing for existentials
ret\_pattern
                                                                                                                          return pattern
                 ::=
                       comp ident\_or\_pattern
                                                            binders = binders(ident\_or\_pattern)
                                                                                                                             computational variable
```

		log $ident$ res $res_pattern$	$binders = ident \\ binders = binders(res_pattern)$	logical variable resource variable
init,	::= 	✓ ×		initialisation status initialised uninitalised
$points_to, pt$::=	$term_1 \stackrel{init}{\mapsto}_{\tau} term_2$		points-to separation logic predicate
res	::=	emp $points_to$ $res_1 * res_2$ $\exists ident: \beta. res$ $term \land res$ $\sigma(res)$	M	resources empty heap points-top heap pred. seperating conjunction existential logical conjuction simul-sub σ in res
$ret, \ _$::=	$\Sigma ident:\beta. \ ret$ $\exists ident:\beta. \ ret$ $res \otimes ret$ $term \wedge ret$ I $\sigma(ret)$	M	return types return a computational value return a logical value return a resource value return a predicate (post-condition) end return list simul-sub σ in ret
seq_expr	::= 	$\begin{array}{c} \texttt{ccall}\left(\tau, ident, spine\right) \\ \texttt{pcall}\left(name, spine\right) \end{array}$		sequential (effectful) expressions C function call procedure call

seq_texpr	::=	$tval \ ext{run} ident \overline{pval_i}^i$		sequential top-level (effectful) expres (effectful) top-level values run from label
		let $ident_or_pattern = pexpr$ in $texpr$ let $ident_or_pattern:(y_1:\beta_1.\ term_1) = tpexpr$ in $texpr$	bind binders($ident_or_pattern$) in $texpr$ bind binders($ident_or_pattern$) in $texpr$ bind y_1 in $term_1$	pure let pure let
		$egin{aligned} let \overline{ret_pattern_i}^i &= seq_expr in texpr \ let \overline{ret_pattern_i}^i : ret &= texpr_1 in texpr_2 \end{aligned}$	bind y_1 in $term_1$ bind $binders(\overline{ret_pattern_i}^i)$ in $texpr$ bind $binders(\overline{ret_pattern_i}^i)$ in $texpr_2$	bind return patterns annotated bind return patterns
		$ ext{case } pval ext{ of } \overline{\mid texpr_case_branch_i}^i ext{ end} \ ext{if } pval ext{ then } texpr_1 ext{ else } texpr_2 \ ext{bound } [int](is_texpr)$		pattern matching conditional limit scope of indet seq behaviour
$texpr_case_branch$::=	$pattern \Rightarrow texpr$	bind $binders(pattern)$ in $texpr$	top-level case expression branch top-level case expression branch
is_expr	::=	$tval$ $memop (mem_op)$ pol_mem_action		indet seq (effectful) expressions (effectful) top-level values pointer op involving memory memory action
is_texpr	::= 	$\begin{array}{l} \texttt{letweak}\overline{ret_pattern_i}^{\;i} = is_expr\texttt{in}texpr\\ \texttt{letstrong}\overline{ret_pattern_i}^{\;i} = is_expr\texttt{in}texpr \end{array}$	bind binders $(\overline{ret_pattern_i}^i)$ in $texpr$ bind binders $(\overline{ret_pattern_i}^i)$ in $texpr$	indet seq top-level (effectful) express weak sequencing strong sequencing
texpr	::= 	seq_texpr is_texpr $\sigma(texpr)$	M	top-level (effectful) expressions sequential (effectful) expressions indet seq (effectful) expressions simul-sub σ in $texpr$
arg	::=			argument/function types

```
\Pi ident:\beta. arg
                         \forall ident: \beta. arg
                         res \multimap arg
                         term \supset arg
                         ret
                         \sigma(arg)
                                                    М
                                                              simul-sub \sigma in arg
                                                          pure argument/function types
pure\_arg
                         \Pi ident:\beta. pure_arg
                         term \supset pure\_arg
                         pure\_ret
pure\_ret
                                                          pure return types
                  ::=
                         \Sigma ident:\beta. pure\_ret
                         term \land pure\_ret
\mathcal{C}
                                                          computational var env
                         C, ident: \beta
\mathcal{L}
                                                          logical var env
                         \mathcal{L}, ident: \beta
\Phi
                                                          constraints env
                         \Phi, term
```

```
\overline{\Phi_i}^{\ i}
\mathcal R
                                                                                                                      resources env
                                  \mathcal{R}, \mathit{res}
                                 \frac{\mathcal{R}, ident:res}{\mathcal{R}_i}^i
\sigma, \psi
                                                                                                                      substitutions
                             spine\_elem/ident, \sigma
                                 term/ident, \sigma
                                 \overline{\sigma_i}^i
\sigma(\psi)
                                                                                                             Μ
                                                                                                                          apply \sigma to all elements in \psi
typing
                                 \mathtt{smt}\,(\Phi\Rightarrow term)
                                ident: eta \in \mathcal{C} \ ident: eta \in \mathcal{L} \ 	ext{struct} \ tag \ \& \ \overline{member_i: 	au_i}^i \in 	ext{Globals}
                                  \overline{\mathcal{C}_i; \mathcal{L}_i; \Phi_i \vdash mem\_val_i \Rightarrow mem \beta_i}^i
                                                                                                                          dependent on memory object model
opsem
                                  \forall i < j. \ \mathsf{not} \ (pattern_i = pval \leadsto \sigma_i)
                                  fresh(mem\_ptr)
                                  term
                                  pval:\beta
formula
                                  judgement
```

```
typing
                                                  opsem
                                                  term \equiv term'
                                                 name:pure\_arg \equiv \overline{x_i}^i \mapsto tpexpr \in Globals
                                                  name: arg \equiv \overline{x_i}^i \mapsto texpr \in Globals
heap, h
                                                                                                                                      heaps
                                                  h + \{points\_to\}
object\_value\_jtype
                                                 C; \mathcal{L}; \Phi \vdash object\_value \Rightarrow \mathsf{obj}\,\beta
pval\_jtype
                                                 C; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta
res\_jtype
                                                 \Phi \vdash res \equiv res'
                                                 C; \mathcal{L}; \Phi; \mathcal{R} \vdash res\_term \Leftarrow res
spine\_jtype
                                         ::=
                                                 C; \mathcal{L}; \Phi; \mathcal{R} \vdash \overline{x_i = spine\_elem_i}^i :: arg \gg \sigma; ret
pexpr\_jtype
                                                 C; \mathcal{L}; \Phi \vdash pexpr \Rightarrow ident: \beta. term
comp\_pattern\_jtype
                                                 pattern: \beta \leadsto \mathcal{C} \text{ with } term
                                                 ident\_or\_pattern: \beta \leadsto \mathcal{C} \ \mathtt{with} \ term
```

 $res_pattern_jtype ::=$

| $res_pattern:res \leadsto \mathcal{L}; \Phi; \mathcal{R}$

 $ret_pattern_jtype ::=$

 $| \overline{ret_pattern_i}^i : ret \leadsto \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}$

 $tpval_jtype ::=$

 $| \mathcal{C}; \mathcal{L}; \Phi \vdash tpval \Leftarrow ident: \beta. term$

 $tpexpr_jtype$::=

 $| \mathcal{C}; \mathcal{L}; \Phi \vdash tpexpr \Leftarrow ident: \beta. term$

action_jtype ::=

 $| \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash mem_action \Rightarrow ret$

 $memop_jtype$::=

 $| \quad \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash mem_op \Rightarrow ret$

 $tval_jtype$

 $\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash tval \Leftarrow ret$

 seq_expr_jtype

 $\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash seq_expr \Rightarrow ret$

 is_expr_jtype ::=

 $C; \mathcal{L}; \Phi; \mathcal{R} \vdash is_expr \Rightarrow ret$

 $texpr_jtype$::=

 $| \quad \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash seq_texpr \Leftarrow ret$ $| \quad \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash is_texpr \Leftarrow ret$

```
C; \mathcal{L}; \Phi; \mathcal{R} \vdash texpr \Leftarrow ret
subs\_jtype
                                                       ::=
                                                                     pattern = pval \leadsto \sigma
                                                                     ident\_or\_pattern = pval \leadsto \sigma
                                                                     res\_pattern = res\_term \leadsto \sigma
                                                                     \overline{ret\_pattern_i = spine\_elem_i}^i \leadsto \sigma
                                                                    \overline{x_i = spine\_elem_i}^i :: arg \gg \sigma; ret
pure\_opsem\_jtype
                                                                     \langle pexpr \rangle \longrightarrow \langle pexpr' \rangle
                                                                     \langle pexpr \rangle \longrightarrow \langle tpexpr:(y:\beta. term) \rangle
opsem\_jtype
                                                       ::=
                                                                     \langle h; seq\_expr \rangle \longrightarrow \langle h'; texpr:ret \rangle
                                                                     \langle h; seq\_texpr \rangle \longrightarrow \langle h'; texpr \rangle
                                                                     \langle h; mem\_op \rangle \longrightarrow \langle h'; tval \rangle
                                                                     \langle h; mem\_action \rangle \longrightarrow \langle h'; tval \rangle
                                                                     \langle h; is\_expr \rangle \longrightarrow \langle h'; is\_expr' \rangle
                                                                    \langle h; is\_texpr \rangle \longrightarrow \langle h'; texpr \rangle
                                                                     \langle h; texpr \rangle \longrightarrow \langle h'; texpr' \rangle
lemma\_jtype
                                                                   \overline{x_i}^i :: arg \leadsto \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \mid ret
\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq \mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}'
\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma): (\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}')
```

 $\mathcal{C}; \mathcal{L}; \Phi \vdash object_value \Rightarrow \mathsf{obj}\,\beta$

 $\overline{\mathcal{C};\mathcal{L};\Phi \vdash mem_int} \Rightarrow \mathtt{objinteger}$

Ty_Pval_Obj_Int

$$\overline{\mathcal{C};\mathcal{L};\Phi \vdash mem_ptr \Rightarrow \mathtt{objloc}} \quad \mathrm{TY_PVAL_OBJ_PTR}$$

$$\frac{\overline{\mathcal{C};\mathcal{L};\Phi \vdash loaded_value_i \Rightarrow \beta}^i}{\mathcal{C};\mathcal{L};\Phi \vdash \mathtt{array}\left(\overline{loaded_value_i}^i\right) \Rightarrow \mathtt{obj}\,\mathtt{array}\,\beta} \quad \mathsf{TY_PVAL_OBJ_ARR}$$

$$\frac{\text{struct} \, tag \, \& \, \overline{member_i : \tau_i}^{\, i} \, \in \, \text{Globals}}{\overline{\mathcal{C}; \mathcal{L}; \Phi \vdash mem_val_i \, \Rightarrow \, mem \, \beta_{\tau_i}^{\, i}}}$$

$$\frac{C; \mathcal{L}; \Phi \vdash (\text{struct} \, tag) \{ \overline{.member_i : \tau_i = mem_val_i^{\, i} \, \} \, \Rightarrow \, \text{obj struct} \, tag}}{\mathcal{C}; \mathcal{L}; \Phi \vdash (\text{struct} \, tag) \{ \overline{.member_i : \tau_i = mem_val_i^{\, i} \, \}} \, \Rightarrow \, \text{obj struct} \, tag}}$$

 $\mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta$

$$\frac{x:\beta \in \mathcal{C}}{\mathcal{C}; \mathcal{L}; \Phi \vdash x \Rightarrow \beta} \quad \text{Ty_Pval_Var_Comp}$$

$$\frac{x:\beta \in \mathcal{L}}{\mathcal{C}; \mathcal{L}; \Phi \vdash x \Rightarrow \beta} \quad \text{Ty_Pval_Var_Log}$$

$$\frac{\mathcal{C}; \mathcal{L}; \Phi \vdash object_value \Rightarrow \mathsf{obj}\,\beta}{\mathcal{C}; \mathcal{L}; \Phi \vdash object_value \Rightarrow \beta} \quad \text{Ty_Pval_Obj}$$

$$\frac{\mathcal{C}; \mathcal{L}; \Phi \vdash object_value \Rightarrow \mathtt{obj}\,\beta}{\mathcal{C}; \mathcal{L}; \Phi \vdash \mathtt{specified}\,object_value \Rightarrow \beta} \quad \mathsf{TY_PVAL_LOADED}$$

$$\overline{\mathcal{C};\mathcal{L};\Phi \vdash \mathtt{Unit} \Rightarrow \mathtt{unit}} \quad \mathtt{TY_PVAL_UNIT}$$

$$\overline{\mathcal{C};\mathcal{L};\Phi \vdash \mathtt{True} \Rightarrow \mathtt{bool}} \quad \mathtt{TY_PVAL_TRUE}$$

$$\overline{\mathcal{C}; \mathcal{L}; \Phi \vdash \mathtt{False} \Rightarrow \mathtt{bool}} \quad \mathtt{TY_PVAL_FALSE}$$

$$\frac{\overline{\mathcal{C}; \mathcal{L}; \Phi \vdash value_i \Rightarrow \beta}^i}{\mathcal{C}; \mathcal{L}; \Phi \vdash \beta[\overline{value_i}^i] \Rightarrow \mathtt{list}\,\beta} \quad \mathsf{TY_PVAL_LIST}$$

$$\frac{\overline{C; \mathcal{L}; \Phi \vdash value_i \Rightarrow \overline{\beta_i}^i}}{C; \mathcal{L}; \Phi \vdash (\overline{value_i}^i) \Rightarrow \overline{\beta_i}^i} \quad \text{TY_PVAL_TUPLE}$$

$$\frac{\mathtt{smt}\,(\Phi\Rightarrow\mathtt{false})}{\mathcal{C};\mathcal{L};\Phi\vdash\mathtt{error}\,(string,pval)\Rightarrow\beta}\quad \mathsf{TY_PVAL_ERROR}$$

$$\overline{\mathcal{C};\mathcal{L};\Phi \vdash \mathtt{Nil}\,\beta(\,) \Rightarrow \mathtt{list}\,\beta} \quad \mathrm{TY_PVAL_CTOR_NIL}$$

$$\begin{array}{c} \mathcal{C}; \mathcal{L}; \Phi \vdash pval_1 \Rightarrow \beta \\ \mathcal{C}; \mathcal{L}; \Phi \vdash pval_2 \Rightarrow \mathtt{list}\,\beta \\ \hline \mathcal{C}; \mathcal{L}; \Phi \vdash \mathtt{Cons}(pval_1, pval_2) \Rightarrow \mathtt{list}\,\beta \end{array} \quad \texttt{TY_PVAL_CTOR_CONS}$$

$$\frac{\overline{\mathcal{C}; \mathcal{L}; \Phi \vdash pval_i \Rightarrow \beta_i}^i}{\mathcal{C}; \mathcal{L}; \Phi \vdash \mathsf{Tuple}(\overline{pval_i}^i) \Rightarrow \overline{\beta_i}^i} \quad \mathsf{TY_PVAL_CTOR_TUPLE}$$

$$\frac{\overline{\mathcal{C};\mathcal{L};\Phi \vdash pval_i \Rightarrow \beta}^i}{\mathcal{C};\mathcal{L};\Phi \vdash \mathtt{Array}(\overline{pval_i}^i) \Rightarrow \mathtt{array}\,\beta} \quad \mathsf{TY_PVAL_CTOR_ARRAY}$$

$$\frac{\mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta}{\mathcal{C}; \mathcal{L}; \Phi \vdash \mathsf{Specified}(pval) \Rightarrow \beta} \quad \mathsf{TY_PVAL_CTOR_SPECIFIED}$$

$$\frac{\texttt{struct} \, tag \, \& \, \overline{member_i : \tau_i}^{\, i} \, \in \, \texttt{Globals}}{\mathcal{C}; \mathcal{L}; \Phi \vdash pval_i \Rightarrow \beta_{\tau_i}^{\, i}} \\ \frac{\mathcal{C}; \mathcal{L}; \Phi \vdash pval_i \Rightarrow \beta_{\tau_i}^{\, i}}{\mathcal{C}; \mathcal{L}; \Phi \vdash (\, \texttt{struct} \, tag) \{ \, \overline{. \, member_i = pval_i}^{\, i} \, \} \Rightarrow \texttt{struct} \, tag} \quad \text{Ty_Pval_Struct}$$

 $\Phi \vdash res \equiv res'$

$$\overline{\Phi \vdash \mathtt{emp} \ \equiv \ \mathtt{emp}} \quad \mathrm{TY_RES_EQ_EMP}$$

$$\frac{\operatorname{smt}\left(\Phi\Rightarrow\left(term_{1}=term_{1}'\right)\wedge\left(term_{2}=term_{2}'\right)\right)}{\Phi\vdash term_{1}\overset{init}{\mapsto}_{\tau}term_{2}\equiv term_{1}'\overset{init}{\mapsto}_{\tau}term_{2}'} \quad \text{Ty_Res_Eq_PointsTo}$$

$$\frac{\Phi \vdash res_1 \equiv res'_1}{\Phi \vdash res_2 \equiv res'_2} \\
\frac{\Phi \vdash res_1 * res_2 \equiv res'_1 * res'_2}{\Phi \vdash res_1 * res_2 \equiv res'_1 * res'_2} \quad \text{TY_RES_EQ_SEPCONJ}$$

$$\frac{\Phi \vdash res \equiv res'}{\Phi \vdash \exists \, ident: \beta. \, res \equiv \exists \, ident: \beta. \, res'} \quad \text{TY_RES_EQ_EXISTS}$$

$$\begin{array}{c} \operatorname{smt}\left(\Phi, term \Rightarrow term'\right) \\ \operatorname{smt}\left(\Phi, term' \Rightarrow term\right) \\ \overline{\Phi \vdash res \equiv res'} \\ \overline{\Phi \vdash term \land res \equiv term' \land res'} \end{array} \quad \text{TY_Res_Eq_Term} \end{array}$$

 $C; \mathcal{L}; \Phi; \mathcal{R} \vdash res_term \Leftarrow res$

$$\overline{\mathcal{C};\mathcal{L};\Phi;\cdot\vdash\mathtt{emp}\leftarrow\mathtt{emp}}\quad \mathtt{TY_RES_EMP}$$

$$\frac{\Phi \vdash points_to \equiv points_to'}{\mathcal{C}; \mathcal{L}; \Phi; \cdot, points_to \vdash points_to' \Leftarrow points_to'} \quad \text{Ty_Res_PointsTo}$$

$$\frac{\Phi \vdash res \equiv res'}{\mathcal{C}; \mathcal{L}; \Phi; \cdot, r: res \vdash r \Leftarrow res'} \quad \text{TY_RES_VAR}$$

$$\begin{array}{c} \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}_1 \vdash res_term_1 \Leftarrow res_1 \\ \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}_2 \vdash res_term_2 \Leftarrow res_2 \\ \hline \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R}_2 \vdash \langle res_term_1, res_term_2 \rangle \Leftarrow res_1 * res_2 \end{array} \quad \text{Ty_Res_SepConj}$$

$$\begin{array}{l} \operatorname{smt} (\Phi \Rightarrow term) \\ \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash res_term \Leftarrow res \\ \hline \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash res_term \Leftarrow term \land res \end{array} \quad \text{Ty_Res_Conj} \\$$

$$\begin{split} & \mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta \\ & \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash res_term_2 \Leftarrow pval/y, \cdot (res) \\ & \overline{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \operatorname{pack}\left(pval, res_term_2\right) \Leftarrow \exists \, y : \beta. \, res} \end{split} \quad \text{Ty_Res_Pack} \end{split}$$

$$\boxed{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \overline{x_i = spine_elem_i}^i :: arg \gg \sigma; ret}$$

$$\overline{\mathcal{C};\mathcal{L};\Phi;\cdot\vdash ::\! \mathit{ret} \gg \cdot;\mathit{ret}} \quad \mathsf{TY_Spine_Empty}$$

$$\begin{array}{c} \mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta \\ \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \overline{x_i = spine_elem_i}^i :: arg \gg \sigma; ret \\ \hline \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash x = pval, \overline{x_i = spine_elem_i}^i :: \Pi x : \beta. \ arg \gg pval/x, \sigma; ret \end{array} \quad \text{TY_Spine_Comp}$$

$$\begin{aligned} & \mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta \\ & \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \overline{x_i = spine_elem_i}^i :: arg \gg \sigma; ret \\ & \overline{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash x = pval, \overline{x_i = spine_elem_i}^i :: \forall \, x : \beta. \, arg \gg pval/x, \sigma; ret} \end{aligned} \text{TY_Spine_Log}$$

$$\begin{aligned} & \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}_1 \vdash \underbrace{res_term \Leftarrow res}_{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}_2 \vdash \underbrace{x_i = spine_elem_i}^i :: arg \gg \sigma; ret}_{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}_1, \mathcal{R}_2 \vdash x = res_term, \underbrace{x_i = spine_elem_i}^i :: res \multimap arg \gg res_term/x, \sigma; ret} \end{aligned}$$
 TY_SPINE_RES

$$\frac{\operatorname{smt}\left(\Phi\Rightarrow term\right)}{\mathcal{C};\mathcal{L};\Phi;\mathcal{R}\vdash \overline{x_{i}=spine_elem_{i}}^{i}::arg\gg\sigma;ret} \\ \frac{\mathcal{C};\mathcal{L};\Phi;\mathcal{R}\vdash \overline{x_{i}=spine_elem_{i}}^{i}::term\supset arg\gg\sigma;ret} \\ \text{TY_Spine_Phi}$$

 $C; \mathcal{L}; \Phi \vdash pexpr \Rightarrow ident: \beta. term$

$$\frac{\mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta}{\mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow y : \beta. \ y = pval} \quad \text{TY_PE_VAL}$$

$$\begin{split} \mathcal{C}; \mathcal{L}; \Phi \vdash pval_1 \Rightarrow \texttt{loc} \\ \mathcal{C}; \mathcal{L}; \Phi \vdash pval_2 \Rightarrow \texttt{integer} \\ \hline \mathcal{C}; \mathcal{L}; \Phi \vdash \texttt{array_shift} (pval_1, \tau, pval_2) \Rightarrow y : \texttt{loc}. \ y = pval_1 +_{\texttt{ptr}} (pval_2 \times \texttt{size_of}(\tau)) \end{split} \quad \text{TY_PE_Array_Shift} \end{split}$$

$$\begin{array}{c} \mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \mathtt{loc} \\ & \mathtt{struct} \ tag \ \& \ \overline{member_i : \tau_i}^i \in \mathtt{Globals} \\ \hline \mathcal{C}; \mathcal{L}; \Phi \vdash \mathtt{member_shift} \ (pval, tag, member_j) \Rightarrow y : \mathtt{loc.} \ y = pval +_{\mathtt{ptr}} \ \mathtt{offset_of}_{tag}(member_j) \end{array} \\ \text{TY_PE_MEMBER_SHIFT}$$

$$\frac{\mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \texttt{bool}}{\mathcal{C}; \mathcal{L}; \Phi \vdash \texttt{not} \, (pval) \Rightarrow y \texttt{:bool}. \, y = \neg \, pval} \quad \texttt{TY_PE_NOT}$$

$$\begin{array}{c} \mathcal{C}; \mathcal{L}; \Phi \vdash pval_1 \Rightarrow \mathtt{integer} \\ \mathcal{C}; \mathcal{L}; \Phi \vdash pval_2 \Rightarrow \mathtt{integer} \\ \hline \mathcal{C}; \mathcal{L}; \Phi \vdash pval_1 \ binop_{arith} \ pval_2 \Rightarrow y \mathtt{:integer}. \ y = (pval_1 \ binop_{arith} \ pval_2) \end{array} \\ \texttt{TY_PE_ARITH_BINOP}$$

```
C; \mathcal{L}; \Phi \vdash pval_1 \Rightarrow \mathtt{integer}
                                                                                                   \mathcal{C}; \mathcal{L}; \Phi \vdash pval_2 \Rightarrow \mathtt{integer}
                                                                                                                                                                                                          TY_PE_REL_BINOP
                                                          \mathcal{C}; \mathcal{L}; \Phi \vdash pval_1 \ binop_{rel} \ pval_2 \Rightarrow y: bool. \ y = (pval_1 \ binop_{rel} \ pval_2)
                                                                                                      \mathcal{C}: \mathcal{L}: \Phi \vdash pval_1 \Rightarrow bool
                                                                                                     C; \mathcal{L}; \Phi \vdash pval_2 \Rightarrow bool
                                                                                                                                                                                                          TY_PE_BOOL_BINOP
                                                       \overline{\mathcal{C};\mathcal{L};\Phi\vdash pval_1\ binop_{bool}\ pval_2\Rightarrow y\text{:bool.}\ y=(pval_1\ binop_{bool}\ pval_2)}
                                                                             name:pure\_arg \equiv \overline{x_i}^i \mapsto tpexpr \in Globals
                                                                            \mathcal{C}; \mathcal{L}; \Phi; \cdot \vdash \overline{x_i = pval_i}^i :: pure\_arg \gg \sigma; \Sigma y: \beta. \ term \land \mathtt{I}
                                                                                                                                                                                                    Ty PE CALL
                                                                                            C; \mathcal{L}; \Phi \vdash name(\overline{pval_i}^i) \Rightarrow y:\beta. \ \sigma(term)
                                                                                                    C; \mathcal{L}; \Phi \vdash pval \Rightarrow bool
                                                                                                    smt(\Phi \Rightarrow pval)
                                                          \frac{\mathcal{C};\mathcal{L};\Phi \vdash \mathsf{assert\_undef}\,(\mathit{pval},\,\mathit{UB\_name}) \Rightarrow y{:}\mathsf{unit}.\,\,y = \mathsf{unit}}{\mathcal{C};\mathcal{L};\Phi \vdash \mathsf{assert\_undef}\,(\mathit{pval},\,\mathit{UB\_name}) \Rightarrow y{:}\mathsf{unit}.\,\,y = \mathsf{unit}}
                                                                                                \mathcal{C}: \mathcal{L}: \Phi \vdash pval \Rightarrow bool
                                                                                                                                                                                                      Ty_PE_Bool_To_Integer
                                           \overline{\mathcal{C};\mathcal{L};\Phi\vdash\mathtt{bool\_to\_integer}\,(pval)\Rightarrow y\mathtt{:integer}.\,\,y=\mathtt{if}\,pval\,\mathtt{then}\,1\,\mathtt{else}\,0}
                                                                                               \mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \mathtt{integer}
                                                                                               abbrev_1 \equiv \max_{\cdot} \inf_{\tau} - \min_{\cdot} \inf_{\tau} + 1
                                                                                               abbrev_2 \equiv pval \, rem_f \, abbrev_1
                                                                                                                                                                                                                                          TY_PE_WRAPI
                                  \overline{\mathcal{C};\mathcal{L};\Phi\vdash \mathtt{wrapI}\left(\tau,pval\right)\Rightarrow y:\beta.\;y=\mathtt{if}\;abbrev_2\leq \mathtt{max\_int}_{\tau}\,\mathtt{then}\;abbrev_2\,\mathtt{else}\;abbrev_2-abbrev_1}
pattern: \beta \leadsto \mathcal{C} \text{ with } term
                                                                                                 \underline{\hspace{1cm}}:\beta:\beta \leadsto \cdot with_- TY_PAT_COMP_NO_SYM_ANNOT
```

 $\overline{x{:}\beta{:}\beta \leadsto \cdot, x{:}\beta \, \text{with} \, x} \quad \text{Ty_Pat_Comp_Sym_Annot}$

 $\overline{{\tt Nil}\,\beta(\,){:}{\tt list}\,\beta \leadsto \cdot {\tt with}\,{\tt nil}} \quad {\tt TY_PAT_COMP_NIL}$

 $pattern_1: eta \leadsto \mathcal{C}_1 ext{ with } term_1 \ pattern_2: ext{list } eta \leadsto \mathcal{C}_2 ext{ with } term_2$

 $\frac{puttern_2: \texttt{list}\, \rho \leadsto \texttt{C}_2\, \texttt{with}\, term_2}{\texttt{Cons}(pattern_1, pattern_2): \texttt{list}\, \beta \leadsto \texttt{C}_1, \texttt{C}_2\, \texttt{with}\, term_1 :: term_2} \quad \texttt{TY_PAT_COMP_CONS}$

 $\frac{\overline{pattern_i:\beta_i \leadsto \mathcal{C}_i \, \text{with} \, term_i}^i}{\text{Tuple}(\overline{pattern_i}^i):\overline{\beta_i}^i \leadsto \overline{\mathcal{C}_i}^i \, \text{with} \, (\overline{term_i}^i)} \quad \text{TY_PAT_COMP_TUPLE}$

 $\frac{\overline{pattern_i}:\beta\leadsto\overline{C_i\,\text{with}\,term_i}^i}{\operatorname{Array}(\,\overline{pattern_i}^i\,):\operatorname{array}\,\beta\leadsto\overline{\overline{C_i}}^i\,\text{with}\,[|\,\,\overline{term_i}^i\,|]}\quad \text{Ty_Pat_Comp_Array}$

 $\frac{pattern: \beta \leadsto \mathcal{C} \, \mathtt{with} \, term}{\mathtt{Specified}(pattern): \beta \leadsto \mathcal{C} \, \mathtt{with} \, term} \quad \mathtt{TY_PAT_COMP_SPECIFIED}$

 $ident_or_pattern:\beta \leadsto \mathcal{C} \ \text{with} \ term$

 $\overline{x{:}\beta \leadsto \cdot, x{:}\beta \, \mathtt{with} \, x} \quad \text{Ty_Pat_Sym_Or_Pattern_Sym}$

 $\frac{pattern: \beta \leadsto \mathcal{C} \, \text{with} \, term}{pattern: \beta \leadsto \mathcal{C} \, \text{with} \, term} \quad \text{Ty_Pat_Sym_Or_Pattern_Pattern}$

 $res_pattern:res \leadsto \mathcal{L}; \Phi; \mathcal{R}$

 $\frac{}{\texttt{emp:emp} \leadsto \cdot; \cdot; \cdot} \quad \text{TY_PAT_RES_EMPTY}$

 $\frac{}{points_to:points_to} \sim \cdot; \cdot; \cdot, points_to \qquad \text{TY_PAT_RES_POINTSTO}$ $\frac{}{r:res \leadsto \cdot; \cdot; \cdot, r:res} \quad \text{TY_PAT_RES_VAR}$

 $\frac{\mathit{res_pattern}_1:\mathit{res}_1 \leadsto \mathcal{L}_1; \Phi_1; \mathcal{R}_1}{\mathit{res_pattern}_2:\mathit{res}_2 \leadsto \mathcal{L}_2; \Phi_2; \mathcal{R}_2} \\ \frac{\mathit{res_pattern}_2:\mathit{res}_2 \leadsto \mathcal{L}_2; \Phi_2; \mathcal{R}_2}{\langle \mathit{res_pattern}_1, \mathit{res_pattern}_2 \rangle :\mathit{res}_1 * \mathit{res}_2 \leadsto \mathcal{L}_1, \mathcal{L}_2; \Phi_1, \Phi_2; \mathcal{R}_1, \mathcal{R}_2} \quad \text{Ty_Pat_Res_SepConj}$

 $\frac{\mathit{res_pattern}:\mathit{res} \leadsto \mathcal{L}; \Phi; \mathcal{R}}{\mathit{res_pattern}:\mathit{term} \land \mathit{res} \leadsto \mathcal{L}; \Phi, \mathit{term}; \mathcal{R}} \quad \mathsf{TY_PAT_RES_CONJ}$

 $\frac{res_pattern: x/y, \cdot (res) \leadsto \mathcal{L}; \Phi; \mathcal{R}}{\operatorname{pack}(x, res_pattern): \exists \ y: \beta. \ res \leadsto \mathcal{L}, x: \beta; \Phi; \mathcal{R}} \quad \text{Ty_Pat_Res_Pack}$

 $\overline{ret_pattern_i}^i: ret \leadsto \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}$

 $\frac{}{: \mathsf{I} \leadsto \cdot; \cdot; \cdot; \cdot} \quad \mathsf{TY_PAT_RET_EMPTY}$

 $\frac{ident_or_pattern:\beta \leadsto \mathcal{C}_1 \text{ with } term_1}{\overline{ret_pattern_i}^i : term_1/y, \cdot (ret) \leadsto \mathcal{C}_2; \mathcal{L}_2; \Phi_2; \mathcal{R}_2}}{\operatorname{comp} ident_or_pattern, \ \overline{ret_pattern_i}^i : \Sigma \ y : \beta. \ ret \leadsto \mathcal{C}_1, \mathcal{C}_2; \mathcal{L}_2; \Phi_2; \mathcal{R}_2}} \quad \text{Ty_Pat_Ret_Comp}$

 $\frac{\overline{\mathit{ret_pattern}_i}^i : \mathit{ret} \leadsto \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}}{\log y, \ \overline{\mathit{ret_pattern}_i}^i : \exists \ y : \beta. \ \mathit{ret} \leadsto \mathcal{C}; \mathcal{L}, y : \beta; \Phi; \mathcal{R}} \quad \text{Ty_Pat_Ret_Log}$

$$\frac{\underset{res_pattern:res \rightarrow \mathcal{L}_{1}; \Phi_{1}; \mathcal{R}_{1}}{\underset{ret_pattern_{i}}{ret_pattern_{i}}^{i}:ret \rightarrow \mathcal{C}_{2}; \mathcal{L}_{2}; \Phi_{2}; \mathcal{R}_{2}}}{\underset{res_pattern, \overline{ret_pattern_{i}}^{i}:res \otimes ret \rightarrow \mathcal{C}_{2}; \mathcal{L}_{1}, \mathcal{L}_{2}; \Phi_{1}, \Phi_{2}; \mathcal{R}_{1}, \mathcal{R}_{2}}} Ty_Pat_Ret_Res}$$

$$\frac{\overline{ret_pattern_i}^i : ret \leadsto \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}}{\overline{ret_pattern_i}^i : term \land ret \leadsto \mathcal{C}; \mathcal{L}; \Phi, term; \mathcal{R}} \quad \text{TY_PAT_RET_PHI}$$

 $C; \mathcal{L}; \Phi \vdash tpval \Leftarrow ident: \beta. term$

$$\frac{\mathtt{smt}\left(\Phi\Rightarrow\mathtt{false}\right)}{\mathcal{C};\mathcal{L};\Phi\vdash\mathtt{undef}\ \mathit{UB_name} \Leftarrow y{:}\beta.\,\mathit{term}}\quad \mathtt{TY_TPVAL_UNDEF}$$

$$\begin{split} & \mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta \\ & \underbrace{\mathsf{smt} \left(\Phi \Rightarrow pval/y, \cdot (term) \right)}_{\mathcal{C}; \mathcal{L}; \Phi \vdash \mathsf{done} \; pval \Leftarrow y: \beta. \; term} \quad \mathsf{TY_TPVAL_DONE} \end{split}$$

 $|\mathcal{C}; \mathcal{L}; \Phi \vdash tpexpr \Leftarrow ident: \beta. term$

$$\begin{split} \mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \texttt{bool} \\ \mathcal{C}; \mathcal{L}; \Phi, pval &= \texttt{true} \vdash tpexpr_1 \Leftarrow y \text{:} \beta. \ term \\ \mathcal{C}; \mathcal{L}; \Phi, pval &= \texttt{false} \vdash tpexpr_2 \Leftarrow y \text{:} \beta. \ term \\ \hline \mathcal{C}; \mathcal{L}; \Phi \vdash \texttt{if} \ pval \ \texttt{then} \ tpexpr_1 \ \texttt{else} \ tpexpr_2 \Leftarrow y \text{:} \beta. \ term \end{split} \quad \texttt{TY_TPE_IF}$$

$$\begin{split} \mathcal{C}; \mathcal{L}; \Phi \vdash pexpr &\Rightarrow y_1 \text{:} \beta_1. \ term_1 \\ ident_or_pattern \text{:} \beta_1 \leadsto \mathcal{C}_1 \ \text{with} \ term \\ \mathcal{C}, \mathcal{C}_1; \mathcal{L}; \Phi, term/y_1, \cdot (term_1) \vdash tpexpr \Leftarrow y_2 \text{:} \beta_2. \ term_2 \\ \hline \mathcal{C}; \mathcal{L}; \Phi \vdash \text{let} \ ident_or_pattern = pexpr \ \text{in} \ tpexpr \Leftarrow y_2 \text{:} \beta_2. \ term_2 \end{split} \quad \text{TY_TPE_LET}$$

$$\begin{array}{c} \mathcal{C}; \mathcal{L}; \Phi \vdash tpexpr_1 \Leftarrow y_1 : \beta_1. \ term_1 \\ ident_or_pattern : \beta_1 \leadsto \mathcal{C}_1 \ \text{with} \ term \\ \mathcal{C}, \mathcal{C}_1; \mathcal{L}; \Phi, term/y_1, \cdot (term_1) \vdash tpexpr \Leftarrow y_2 : \beta_2. \ term_2 \\ \hline \mathcal{C}; \mathcal{L}; \Phi \vdash \text{let} \ ident_or_pattern : (y_1 : \beta_1. \ term_1) = tpexpr_1 \ \text{in} \ tpexpr_2 \Leftarrow y_2 : \beta_2. \ term_2 \\ \hline \\ \frac{\mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta_1}{pattern_i : \beta_1 \leadsto \mathcal{C}_i \ \text{with} \ term_i}^i \\ \hline \\ \frac{\mathcal{C}; \mathcal{C}; \mathcal{L}; \Phi, term_i = pval \vdash tpexpr_i \Leftarrow y_2 : \beta_2. \ term_2}{\mathcal{C}; \mathcal{L}; \Phi, term_i = pval \vdash tpexpr_i \Leftarrow y_2 : \beta_2. \ term_2}^i \\ \hline \\ \frac{\mathcal{C}; \mathcal{L}; \Phi \vdash \text{case} \ pval \ \text{of} \ \overline{\mid pattern_i \Rightarrow tpexpr_i}^i \ \text{end} \ \Leftarrow y_2 : \beta_2. \ term_2} \\ \hline \end{array} \quad \text{TY_TPE_CASE} \\ \end{array}$$

 $C; \mathcal{L}; \Phi; \mathcal{R} \vdash mem_action \Rightarrow ret$

$$\begin{array}{c} \mathcal{C};\mathcal{L};\Phi\vdash pval\Rightarrow \mathtt{integer} \\ \hline \mathcal{C};\mathcal{L};\Phi;\vdash \mathtt{create}\,(pval,\tau)\Rightarrow \Sigma\,y_p\mathtt{:loc.}\,\mathtt{representable}\,(\tau*,y_p)\land\mathtt{alignedI}\,(pval,y_p)\land\exists\,y\mathtt{:}\beta_\tau.\,y_p\overset{\times}{\mapsto}_\tau\,y\otimes\mathtt{I} \\ \hline \\ \mathcal{C};\mathcal{L};\Phi\vdash \mathtt{pval_0}\Rightarrow\mathtt{loc} \\ \mathtt{smt}\,(\Phi\Rightarrow pval_0=pval_1) \\ \hline \mathcal{C};\mathcal{L};\Phi;\mathcal{R}\vdash \mathtt{pval_1}\overset{\checkmark}{\mapsto}_\tau\,pval_2\Leftarrow pval_1\overset{\checkmark}{\mapsto}_\tau\,pval_2 \\ \hline \\ \mathcal{C};\mathcal{L};\Phi;\mathcal{R}\vdash\mathtt{load}\,(\tau,pval_0,..,pval_1\overset{\checkmark}{\mapsto}_\tau\,pval_2)\Rightarrow\Sigma\,y\mathtt{:}\beta_\tau.\,\,y=pval_2\land pval_1\overset{\checkmark}{\mapsto}_\tau\,pval_2\otimes\mathtt{I} \\ \hline \\ \mathcal{C};\mathcal{L};\Phi\vdash pval_0\Rightarrow\mathtt{loc} \\ \mathcal{C};\mathcal{L};\Phi\vdash pval_0\Rightarrow\mathtt{loc} \\ \mathcal{C};\mathcal{L};\Phi\vdash pval_1\Rightarrow\beta_\tau \\ \mathtt{smt}\,(\Phi\Rightarrow\mathtt{representable}\,(\tau,pval_1)) \\ \mathtt{smt}\,(\Phi\Rightarrow\mathtt{pval_2}=pval_0) \\ \mathcal{C};\mathcal{L};\Phi;\mathcal{R}\vdash\mathtt{pval_2}\mapsto_\tau-\Leftarrow pval_2\mapsto_\tau - \\ \hline \\ \mathcal{C};\mathcal{L};\Phi;\mathcal{R}\vdash\mathtt{store}\,(..,\tau,pval_0,pval_1,..,pval_2\mapsto_\tau -)\Rightarrow\Sigma\mathtt{::unit.}\,pval_2\overset{\checkmark}{\mapsto}_\tau\,pval_1\otimes\mathtt{I} \\ \hline \end{array}$$

$$\begin{split} \mathcal{C}; \mathcal{L}; \Phi \vdash pval_0 \Rightarrow \text{loc} \\ & \text{smt} \left(\Phi \Rightarrow pval_0 = pval_1 \right) \\ & \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash pval_1 \mapsto_{\tau_-} \Leftarrow pval_1 \mapsto_{\tau_-} \\ & \overline{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \text{kill} \left(\text{static} \ \tau, pval_0, pval_1 \mapsto_{\tau_-} \right) \Rightarrow \Sigma_-: \text{unit. I}} \end{split} \quad \text{Ty_Action_Kill_Static} \end{split}$$

 $C; \mathcal{L}; \Phi; \mathcal{R} \vdash mem_op \Rightarrow ret$

$$\begin{array}{c} \mathcal{C}; \mathcal{L}; \Phi \vdash pval_1 \Rightarrow \mathtt{loc} \\ \mathcal{C}; \mathcal{L}; \Phi \vdash pval_2 \Rightarrow \mathtt{loc} \\ \hline \mathcal{C}; \mathcal{L}; \Phi; \cdot \vdash pval_1 \ binop_{rel} \ pval_2 \Rightarrow \Sigma \ y \mathtt{:bool.} \ y = (pval_1 \ binop_{rel} \ pval_2) \wedge \mathtt{I} \end{array} \\ \text{TY_MEMOP_REL_BINOP}$$

$$\frac{\mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \mathtt{loc}}{\mathcal{C}; \mathcal{L}; \Phi; \cdot \vdash \mathtt{intFromPtr}\left(\tau_1, \tau_2, pval\right) \Rightarrow \Sigma \ y : \mathtt{integer}. \ y = \mathtt{cast_ptr_to_int} \ pval \wedge \mathtt{I}} \quad \mathtt{TY_MEMOP_INTFROMPTR}$$

$$\frac{\mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \mathtt{integer}}{\mathcal{C}; \mathcal{L}; \Phi; \cdot \vdash \mathtt{ptrFromInt}\left(\tau_1, \tau_2, pval\right) \Rightarrow \Sigma \, y : \mathtt{loc}. \, y = \mathtt{cast_int_to_ptr} \, pval \wedge \mathtt{I}} \quad \mathtt{TY_MEMOP_PTRFROMINT}$$

$$\begin{split} \mathcal{C}; \mathcal{L}; \Phi \vdash pval_0 \Rightarrow \mathsf{loc} \\ \mathsf{smt} \left(\Phi \Rightarrow pval_1 = pval_0 \right) \\ \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash pval_1 \overset{\checkmark}{\mapsto}_{\tau} \ _ \Leftarrow pval_1 \overset{\checkmark}{\mapsto}_{\tau} \ _ \end{split}$$

$$\frac{\mathcal{C}; \mathcal{L}; \Phi \vdash pval_1 \Rightarrow \mathtt{loc}}{\mathcal{C}; \mathcal{L}; \Phi; \cdot \vdash \mathtt{ptrWellAligned}\left(\tau, pval\right) \Rightarrow \Sigma \ y : \mathtt{bool}. \ y = \mathtt{aligned}\left(\tau, pval\right) \wedge \mathtt{I}} \quad \mathsf{TY_MEMOP_PTRWellAligneD}$$

$$\begin{split} \mathcal{C}; \mathcal{L}; \Phi \vdash pval_1 \Rightarrow \texttt{loc} \\ \mathcal{C}; \mathcal{L}; \Phi \vdash pval_2 \Rightarrow \texttt{integer} \\ \hline \mathcal{C}; \mathcal{L}; \Phi; \cdot \vdash \texttt{ptrArrayShift} \left(pval_1, \tau, pval_2\right) \Rightarrow \Sigma \ y : \texttt{loc.} \ y = pval_1 +_{\texttt{ptr}} \left(pval_2 \times \texttt{size_of}(\tau)\right) \land \texttt{I} \end{split}$$

 $C; \mathcal{L}; \Phi; \mathcal{R} \vdash tval \Leftarrow ret$

$$\overline{\mathcal{C};\mathcal{L};\Phi;\cdot\vdash \mathtt{done}\ \Leftarrow \mathtt{I}}\quad \mathtt{TY_TVAL_I}$$

$$\begin{split} & \mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta \\ & \frac{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \mathsf{done} \ \overline{spine_elem_i}^{\ i} \Leftarrow pval/y, \cdot (ret)}{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \mathsf{done} \ pval, \ \overline{spine_elem_i}^{\ i} \Leftarrow \Sigma \ y : \beta. \ ret} \end{split} \quad \text{TY_TVAL_COMP}$$

$$\begin{split} & \mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta \\ & \frac{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \mathsf{done} \ \overline{spine_elem_i}^{\ i} \Leftarrow pval/y, \cdot (ret)}{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \mathsf{done} \ pval, \ \overline{spine_elem_i}^{\ i} \Leftarrow \exists \ y : \beta. \ ret} \end{split} \quad \mathsf{TY_TVAL_LOG}$$

$$\begin{array}{l} \operatorname{smt}\left(\Phi\Rightarrow term\right) \\ \mathcal{C};\mathcal{L};\Phi;\mathcal{R}\vdash\operatorname{done}spine\Leftarrow ret \\ \overline{\mathcal{C};\mathcal{L}};\Phi;\mathcal{R}\vdash\operatorname{done}spine\Leftarrow term\wedge ret \end{array} \quad \text{TY_TVAL_PHI} \\$$

$$\begin{split} & \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}_1 \vdash \mathit{res_term} \Leftarrow \mathit{res} \\ & \frac{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}_2 \vdash \mathsf{done} \, \overline{\mathit{spine_elem}_i}^i \Leftarrow \mathit{ret}}{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}_2 \vdash \mathsf{done} \, \mathit{res_term}, \, \overline{\mathit{spine_elem}}^i \Leftarrow \mathit{res} \otimes \mathit{ret}} \end{split} \quad \mathsf{TY_TVAL_RES} \end{split}$$

$$\frac{\mathtt{smt}\,(\Phi\Rightarrow\mathtt{false})}{\mathcal{C};\mathcal{L};\Phi;\cdot\vdash\mathtt{undef}\,\,\mathit{UB_name} \Leftarrow\mathit{ret}}\quad \mathtt{TY_TVAL_UNDEF}$$

 $C; \mathcal{L}; \Phi; \mathcal{R} \vdash seq_expr \Rightarrow ret$

$$\begin{array}{l} \mathit{ident:arg} \equiv \overline{x_i}^i \mapsto \mathit{texpr} \in \mathtt{Globals} \\ \frac{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \overline{x_i = \mathit{spine_elem}_i}^i :: \mathit{arg} \gg \sigma; \mathit{ret}}{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \mathtt{ccall}\left(\tau, \mathit{ident}, \overline{\mathit{spine_elem}_i}^i\right) \Rightarrow \sigma(\mathit{ret})} \end{array} \\ \text{Ty_Seq_E_CCALL} \end{array}$$

$$\begin{array}{l} name: arg \equiv \overline{x_i}^i \mapsto texpr \in \texttt{Globals} \\ \frac{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \overline{x_i = spine_elem_i}^i :: arg \gg \sigma; ret}{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \texttt{pcall}\left(name, \overline{spine_elem_i}^i\right) \Rightarrow \sigma(ret)} \quad \text{Ty_Seq_E_Proc} \end{array}$$

 $C; \mathcal{L}; \Phi; \mathcal{R} \vdash is_expr \Rightarrow ret$

$$\frac{\mathcal{C};\mathcal{L};\Phi;\mathcal{R} \vdash mem_op \Rightarrow ret}{\mathcal{C};\mathcal{L};\Phi;\mathcal{R} \vdash memop \, (mem_op) \Rightarrow ret} \quad \text{Ty_Is_E_MEMOP}$$

$$\frac{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash mem_action \Rightarrow ret}{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash mem_action \Rightarrow ret} \quad \text{Ty_Is_E_ACTION}$$

$$\frac{\mathcal{C};\mathcal{L};\Phi;\mathcal{R} \vdash mem_action \Rightarrow ret}{\mathcal{C};\mathcal{L};\Phi;\mathcal{R} \vdash neg\,mem_action \Rightarrow ret} \quad \text{Ty_Is_E_Neg_Action}$$

 $C; \mathcal{L}; \Phi; \mathcal{R} \vdash seq_texpr \Leftarrow ret$

$$\frac{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash tval \Leftarrow ret}{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash tval \Leftarrow ret} \quad \text{TY_SEQ_TE_TVAL}$$

$$\begin{split} \mathcal{C}; \mathcal{L}; \Phi \vdash pexpr \Rightarrow y : \beta. \ term \\ ident_or_pattern : \beta \leadsto \mathcal{C}_1 \ \text{with} \ term_1 \\ \mathcal{C}, \mathcal{C}_1; \mathcal{L}; \Phi, term_1/y, \cdot (term); \mathcal{R} \vdash texpr \Leftarrow ret \\ \hline \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \text{let} \ ident_or_pattern = pexpr \ \text{in} \ texpr \Leftarrow ret \end{split}$$
 TY_SEQ_TE_LETP

$$\begin{split} \mathcal{C}; \mathcal{L}; \Phi \vdash tpexpr &\Leftarrow y : \beta. \ term \\ ident_or_pattern : \beta &\leadsto \mathcal{C}_1 \ \text{with} \ term_1 \\ \mathcal{C}, \mathcal{C}_1; \mathcal{L}; \Phi, term_1/y, \cdot (term); \mathcal{R} \vdash texpr &\Leftarrow ret \\ \hline \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \text{let} \ ident_or_pattern : (y : \beta. \ term) &= tpexpr \ \text{in} \ texpr &\Leftarrow ret \end{split}$$
 TY_SEQ_TE_LETPT

$$\begin{array}{c} \mathcal{C};\mathcal{L};\Phi;\mathcal{R}'\vdash seq_expr\Rightarrow ret_1\\ \hline ret_pattern_i^i:ret_1\leadsto\mathcal{C}_1;\mathcal{L}_1;\Phi_1;\mathcal{R}_1\\ \hline \mathcal{C},\mathcal{C}_1;\mathcal{L},\mathcal{L}_1;\Phi,\Phi_1;\mathcal{R},\mathcal{R}_1\vdash texpr\Leftarrow ret_2\\ \hline \mathcal{C};\mathcal{L};\Phi;\mathcal{R}',\mathcal{R}\vdash \operatorname{let} ret_pattern_i^i:=seq_expr\operatorname{in} texpr\Leftarrow ret_2\\ \hline \\ \mathcal{C};\mathcal{L};\Phi;\mathcal{R}',\mathcal{R}\vdash \operatorname{let} ret_pattern_i^i:=seq_expr\operatorname{in} texpr\Leftarrow ret_2\\ \hline \\ \mathcal{C};\mathcal{L};\Phi;\mathcal{R}'\vdash \operatorname{texpr}_1\Leftarrow ret_1\\ \hline ret_pattern_i^i:ret_1\leadsto\mathcal{C}_1;\mathcal{L}_1;\Phi_1;\mathcal{R}_1\\ \hline \mathcal{C},\mathcal{C}_1;\mathcal{L},\mathcal{L}_1;\Phi,\Phi_1;\mathcal{R},\mathcal{R}_1\vdash \operatorname{texpr}_2\Leftarrow ret_2\\ \hline \\ \mathcal{C};\mathcal{L};\Phi;\mathcal{R}',\mathcal{R}\vdash \operatorname{let} \overline{ret_pattern_i^i}:ret_1=\operatorname{texpr}_1\operatorname{in} \operatorname{texpr}_2\Leftarrow ret_2\\ \hline \\ \mathcal{C};\mathcal{L};\Phi;\mathcal{R}',\mathcal{R}\vdash \operatorname{let} \overline{ret_pattern_i^i}:ret_1=\operatorname{texpr}_1\operatorname{in} \operatorname{texpr}_2\Leftarrow ret_2\\ \hline \\ \mathcal{C};\mathcal{L};\Phi;\mathcal{R}\vdash \operatorname{pval}\Rightarrow\beta_1\\ \hline pattern_i:\beta_1\leadsto\mathcal{C}_i\operatorname{with} \operatorname{term_i^i}\\ \hline \mathcal{C};\mathcal{L};\Phi,\operatorname{term_i}=\operatorname{pval};\mathcal{R}\vdash \operatorname{texpr_i}\Leftarrow \operatorname{ret}\\ \hline \mathcal{C};\mathcal{L};\Phi,\operatorname{rem_i}=\operatorname{pval};\mathcal{R}\vdash \operatorname{texpr_i^i}=\operatorname{end}\Leftarrow \operatorname{ret}\\ \hline \mathcal{C};\mathcal{L};\Phi,\operatorname{pval}=\operatorname{false};\mathcal{R}\vdash \operatorname{texpr_i^i}\Rightarrow\operatorname{end}\Leftarrow \operatorname{ret}\\ \hline \mathcal{C};\mathcal{L};\Phi,\operatorname{pval}=\operatorname{false};\mathcal{R}\vdash \operatorname{texpr_i^i}\Rightarrow\operatorname{ret}\\ \hline \mathcal{C};\mathcal{L};\Phi,\operatorname{pval}=\operatorname{false};\mathcal{R}\vdash \operatorname{texpr_i^i}\Rightarrow\operatorname{ret}\\ \hline \mathcal{C};\mathcal{L};\Phi,\operatorname{pval}=\operatorname{false};\mathcal{R}\vdash \operatorname{texpr_i^i}\Rightarrow\operatorname{ret}\\ \hline \mathcal{C};\mathcal{L};\Phi,\operatorname{rem_i^i}=\operatorname{pval_i^i}::\operatorname{arg}\gg\sigma;\operatorname{false}\wedge\operatorname{I}\\ \hline \mathcal{C};\mathcal{L};\Phi;\vdash \operatorname{run}\operatorname{ident}\operatorname{pval_i^i}\in\operatorname{false}\wedge\operatorname{I}\\ \hline \mathcal{C};\mathcal{L};\Phi;\vdash \operatorname{run}\operatorname{ident}\operatorname{pval_i^i}\in\operatorname{false}\wedge\operatorname{I}\\ \hline \mathcal{C};\mathcal{L};\Phi;\mathcal{R}\vdash\operatorname{run}\operatorname{ident}\operatorname{pval_i^i}\in\operatorname{false}\wedge\operatorname{I}\\ \hline \mathcal{C};\mathcal{L};\Phi;\mathcal{R}\vdash\operatorname{run}\operatorname{ident}\operatorname{pval_i^i}\in\operatorname{false}\wedge\operatorname{I}\\ \hline \mathcal{C};\mathcal{L};\Phi;\mathcal{R}\vdash\operatorname{run}\operatorname{ident}\operatorname{pval_i^i}(\operatorname{stexpr})\Leftarrow\operatorname{ret}\\ \hline \mathcal{C};\mathcal{L};\operatorname{ret}_1\\ \hline \mathcal{C};\mathcal{L};\Phi;\operatorname{ret}_1\\ \hline \mathcal{C};\mathcal{L};\Phi;\operatorname{ret}_1\\ \hline \mathcal{C}$$

 $C; \mathcal{L}; \Phi; \mathcal{R} \vdash is_texpr \Leftarrow ret$

$$\begin{split} & \frac{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash is_expr \Rightarrow ret_1}{ret_pattern_i}{}^i : ret_1 \leadsto \mathcal{C}_1; \mathcal{L}_1; \Phi_1; \mathcal{R}_1 \\ & \frac{\mathcal{C}, \mathcal{C}_1; \mathcal{L}, \mathcal{L}_1; \Phi, \Phi_1; \mathcal{R}, \mathcal{R}_1 \vdash texpr \Leftarrow ret_2}{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash \mathtt{let} \, \mathtt{strong} \, \overline{ret_pattern_i} \,}^i = is_expr \, \mathtt{in} \, texpr \Leftarrow ret_2} \end{split} \qquad \text{Ty_Is_TE_LETS} \end{split}$$

 $C; \mathcal{L}; \Phi; \mathcal{R} \vdash texpr \Leftarrow ret$

$$\frac{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash is_texpr \Leftarrow ret}{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash is_texpr \Leftarrow ret} \quad \text{TY_TE_IS}$$

$$\frac{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash seq_texpr \Leftarrow ret}{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash seq_texpr \Leftarrow ret} \quad \text{TY_TE_SEQ}$$

 $pattern = pval \leadsto \sigma$

$$\frac{}{ : := pval \leadsto } \quad \text{Subs_Decons_Value_No_Sym_Annot}$$

$$\overline{x:=pval \leadsto pval/x,}$$
 Subs_Decons_Value_Sym_Annot

$$\begin{aligned} pattern_1 &= pval_1 \leadsto \sigma_1 \\ pattern_2 &= pval_2 \leadsto \sigma_2 \\ \hline \texttt{Cons}(pattern_1, pattern_2) &= \texttt{Cons}(pval_1, pval_2) \leadsto \sigma_1, \sigma_2 \end{aligned} \text{ SUBS_DECONS_VALUE_CONS}$$

$$\frac{\overline{pattern_i = pval_i \leadsto \sigma_i}^i}{\text{Tuple}(\overline{pattern_i}^i) = \text{Tuple}(\overline{pval_i}^i) \leadsto \overline{\sigma_i}^i} \quad \text{Subs_Decons_Value_Tuple}$$

$$\frac{\overline{pattern_i = pval_i \leadsto \sigma_i}^i}{\operatorname{Array}(\overline{pattern_i}^i) = \operatorname{Array}(\overline{pval_i}^i) \leadsto \overline{\sigma_i}^i} \quad \text{Subs_Decons_Value_Array}$$

$$\frac{pattern = pval \leadsto \sigma}{\texttt{Specified}(pattern) = pval \leadsto \sigma} \quad \texttt{Subs_Decons_Value_Specified}$$

 $ident_or_pattern = pval \leadsto \sigma$

$$\frac{}{x = pval \leadsto pval/x, \cdot}$$
 Subs_Decons_Value'_Sym

$$\frac{pattern = pval \leadsto \sigma}{pattern = pval \leadsto \sigma} \quad \text{Subs_Decons_Value'_Pattern}$$

 $res_pattern = res_term \leadsto \sigma$

$$\frac{}{\texttt{emp} = \texttt{emp} \leadsto} \cdot \quad \text{SUBS_DECONS_RES_EMP}$$

$$\frac{}{pt = pt \leadsto}$$
 Subs_Decons_Res_Points_to

 $\overline{ident = \mathit{res_term} \leadsto \mathit{res_term}/ident,} \cdot \quad \text{Subs_Decons_Res_Var}$

$$\frac{res_pattern_1 = res_term_1 \leadsto \sigma_1}{res_pattern_2 = res_term_2 \leadsto \sigma_2} \frac{res_pattern_2 = res_term_2 \leadsto \sigma_2}{\langle res_pattern_1, res_pattern_2 \rangle = \langle res_term_1, res_term_2 \rangle \leadsto \sigma_1, \sigma_2} \quad \text{Subs_Decons_Res_Pair}$$

$$\frac{res_pattern = res_term \leadsto \sigma}{\texttt{pack} \, (ident, res_pattern) = \texttt{pack} \, (pval, res_term) \leadsto pval/ident, \sigma} \quad \texttt{Subs_Decons_Res_Pack}$$

$$\overline{ret_pattern_i = spine_elem_i}^i \leadsto \sigma$$

Subs_Decons_Ret_Empty

$$\frac{ident_or_pattern = pval \leadsto \sigma}{\overline{ret_pattern_i = spine_elem_i}^i \leadsto \psi}$$

$$\frac{comp\ ident_or_pattern = pval,\ \overline{ret_pattern_i = spine_elem_i}^i \leadsto \sigma, \psi}{ret_pattern_i = spine_elem_i}^i \leadsto \sigma, \psi}$$
 Subs_Decons_Ret_Comp

$$\frac{\overline{ret_pattern_i = spine_elem_i}^i \leadsto \psi}{\log ident = pval, \ \overline{ret_pattern_i = spine_elem_i}^i \leadsto pval/ident, \psi} \quad \text{Subs_Decons_Ret_Log}$$

$$\frac{res_pattern = res_term \leadsto \sigma}{ret_pattern_i = spine_elem_i{}^i \leadsto \psi} \\ \frac{res_pattern = res_term, \overline{ret_pattern_i = spine_elem_i{}^i} \leadsto \psi}{res_res_pattern = res_term, \overline{ret_pattern_i = spine_elem_i{}^i} \leadsto \sigma, \psi} \\ \text{Subs_Decons_Ret_Res}$$

$$\overline{x_i = spine_elem_i}^i :: arg \gg \sigma; ret$$

$$\frac{}{::ret \gg \cdot; ret}$$
 Subs_Decons_Arg_Empty

$$\frac{\overline{x_i = spine_elem_i}^i :: arg \gg \sigma; ret}{x = pval, \ \overline{x_i = spine_elem_i}^i :: \Pi \, x:\beta. \ arg \gg pval/x, \sigma; ret} \quad \text{Subs_Decons_Arg_Comp}$$

$$\frac{\overline{x_i = spine_elem_i}^i :: arg \gg \sigma; ret}{x = pval, \ \overline{x_i = spine_elem_i}^i :: \forall \, x : \beta. \ arg \gg pval/x, \sigma; ret} \quad \text{Subs_Decons_Arg_Log}$$

$$\frac{x_i = spine_clem_i^{\ i} :: arg \gg \sigma; ret}{x = res_term, \ \overline{x_i} = spine_clem_i^{\ i} :: res \multimap arg \gg res_term/x, \sigma; ret}$$
 Subs_Decons_Arg_Phi
$$\frac{x_i = spine_elem_i^{\ i} :: arg \gg \sigma; ret}{\overline{x_i} = spine_elem_i^{\ i} :: term \supset arg \gg \sigma; ret}$$
 Subs_Decons_Arg_Phi
$$\frac{x_i = spine_elem_i^{\ i} :: term \supset arg \gg \sigma; ret}{\overline{x_i} = spine_elem_i^{\ i} :: term \supset arg \gg \sigma; ret}$$
 Subs_Decons_Arg_Phi
$$\frac{mem_ptr' \equiv mem_ptr + p_{tr} mem_int \times size_of(\tau)}{\overline{(array_shift(mem_ptr, \tau, mem_int))} \longrightarrow \overline{(mem_ptr')}}$$
 Op_Pe_Pe_ArrayShift
$$\frac{mem_ptr' \equiv mem_ptr + p_{tr} offset_of_{tag}(member)}{\overline{(mem_shift(mem_ptr, tag, member))} \longrightarrow \overline{(mem_ptr')}}$$
 Op_Pe_Pe_Not_True
$$\frac{\overline{(not(True))} \longrightarrow \overline{(False)}}{\overline{(not(True))} \longrightarrow \overline{(False)}}$$
 Op_Pe_Pe_Not_True
$$\frac{mem_int}{\overline{(mem_int_1 binop_{arith} mem_int_2}}$$
 Op_Pe_Pe_Arrii_Binop
$$\frac{bool_value \equiv mem_int_1 binop_{ret} mem_int_2}{\overline{(mem_int_1 binop_{ret} mem_int_2)}}$$
 Op_Pe_Pe_Rel_Binop
$$\frac{bool_value \equiv mem_int_1 binop_{ret} mem_int_2}{\overline{(bool_value)}}$$
 Op_Pe_Pe_Bool_Binop}

```
OP_PE_PE_Assert_Under
                                                                                 \overline{\langle \mathtt{assert\_undef}\,(\mathtt{True},\,UB\_name)\rangle \longrightarrow \langle \mathtt{Unit}\rangle}
                                                                                 \frac{}{\langle \texttt{bool\_to\_integer}\,(\texttt{True})\rangle \longrightarrow \langle 1\rangle} \quad \text{Op\_PE\_PE\_Bool\_To\_INTEGER\_TRUE}
                                                                               \frac{}{\langle \texttt{bool\_to\_integer}\,(\texttt{False})\rangle \longrightarrow \langle 0\rangle} \quad \text{Op\_PE\_PE\_Boot\_To\_Integer\_False}
                                                             abbrev_1 \equiv \max_{\cdot} \inf_{\tau} - \min_{\cdot} \inf_{\tau} + 1
                                                             abbrev_2 \equiv pval \, rem_f \, abbrev_1
                                                            mem\_int' \equiv \text{if } abbrev_2 \leq \max\_int_{\tau} \text{ then } abbrev_2 \text{ else } abbrev_2 - abbrev_1
                                                                                                                                                                                                                                      OP_PE_PE_WRAPI
                                                                                                   \langle \mathtt{wrapI} (\tau, mem\_int) \rangle \longrightarrow \langle mem\_int' \rangle
\langle pexpr\rangle \longrightarrow \langle tpexpr:(y{:}\beta.\: term)\rangle
                                                                                       \begin{array}{l} name:pure\_arg \equiv \overline{x_i}^i \mapsto tpexpr \in \texttt{Globals} \\ \overline{x_i = pval_i}^i :: pure\_arg \gg \sigma; \Sigma \ y:\beta. \ term \land \texttt{I} \\ \overline{\langle name(\overline{pval_i}^i) \rangle} \longrightarrow \langle \sigma(tpexpr): (y:\beta. \ \sigma(term)) \rangle \end{array} \quad \text{Op\_PE\_TPE\_CALL} \\ \end{array}
\langle tpexpr \rangle \longrightarrow \langle tpexpr' \rangle
                                                                                                   pattern_i = pval \leadsto \sigma_i
                                                                         \frac{\forall \, i < j. \, \, \text{not} \, (pattern_i = pval \leadsto \sigma_i)}{\langle \text{case} \, pval \, \text{of} \, \overline{\mid pattern_i \Rightarrow tpexpr_i}^i \, \text{end} \rangle \longrightarrow \langle \sigma_j(tpexpr_j) \rangle} \quad \text{Op\_TPE\_TPE\_CASE}
                                                                        \frac{ident\_or\_pattern = pval \leadsto \sigma}{\langle \texttt{let}\, ident\_or\_pattern = pval \, \texttt{in}\, tpexpr \rangle \longrightarrow \langle \sigma(tpexpr) \rangle} \quad \mathsf{OP\_TPE\_TPE\_LET\_SUB}
                                   \frac{\langle pexpr\rangle \longrightarrow \langle pexpr'\rangle}{\langle \text{let } ident\_or\_pattern = pexpr } \text{ Op\_TPE\_TPE\_Let\_Let}
```

```
\frac{\langle pexpr\rangle \longrightarrow \langle tpexpr_1 : (y : \beta. \ term)\rangle}{\langle \text{let} \ ident\_or\_pattern = pexpr \ in} \underbrace{\langle pexpr_2\rangle \longrightarrow \langle \text{let} \ ident\_or\_pattern : (y : \beta. \ term) = tpexpr_1 \ in} \underbrace{\text{OP\_TPE\_TPE\_LET\_LETT}}
                                                                                                                 ident\_or\_pattern = pval \leadsto \sigma
                                                         \frac{}{\langle \text{let } ident\_or\_pattern: (y:\beta. \ term) = \text{done } pval \ \text{in } tpexpr\rangle \longrightarrow \langle \sigma(tpexpr)\rangle} \quad \text{OP\_TPE\_TPE\_LETT\_SUB}
\frac{\langle tpexpr_1'\rangle \longrightarrow \langle tpexpr_1'\rangle}{\langle \texttt{let} \ ident\_or\_pattern: (y:\beta. \ term) = tpexpr_1 \ \texttt{in} \ tpexpr_2\rangle \longrightarrow \langle \texttt{let} \ ident\_or\_pattern: (y:\beta. \ term) = tpexpr_1' \ \texttt{in} \ tpexpr_2\rangle} \quad \text{Op\_TPE\_TPE\_LetT\_LetT}
                                                                                          \frac{}{\langle \texttt{if True then} \, tpexpr_1 \, \texttt{else} \, tpexpr_2 \rangle \, \longrightarrow \, \langle tpexpr_1 \rangle} \quad \text{OP\_TPE\_TPE\_IF\_TRUE}
                                                                                        \overline{\langle \mathtt{if}\,\mathtt{False}\,\mathtt{then}\,tpexpr_1\,\mathtt{else}\,tpexpr_2\rangle \longrightarrow \langle tpexpr_2\rangle} \quad \mathsf{OP\_TPE\_TPE\_IF\_FALSE}
  \langle h; seq\_expr \rangle \longrightarrow \langle h'; texpr:ret \rangle
                                                                                                                ident:arg \equiv \overline{x_i}^i \mapsto texpr \in Globals
                                                                                      \frac{\overline{x_i = spine\_elem_i}^i :: arg \gg \sigma; ret}{\langle h; \mathsf{ccall} \left(\tau, ident, \overline{spine\_elem_i}^i \right) \rangle \longrightarrow \langle h; \sigma(texpr) : \sigma(ret) \rangle} \quad \mathsf{OP\_SE\_TE\_CCALL}
                                                                                        \frac{name: arg \equiv \overline{x_i}^i \mapsto texpr \in \texttt{Globals}}{\overline{x_i = spine\_elem_i}^i :: arg \gg \sigma; ret} \\ \frac{\langle h; \texttt{pcall} \left( name, \overline{spine\_elem_i}^i \right) \rangle \longrightarrow \langle h; \sigma(texpr) : \sigma(ret) \rangle}{\langle h; \texttt{pcall} \left( name, \overline{spine\_elem_i}^i \right) \rangle \longrightarrow \langle h; \sigma(texpr) : \sigma(ret) \rangle}
\langle h; seq\_texpr \rangle \longrightarrow \langle h'; texpr \rangle
                                                                                                                  ident:arg \equiv \overline{x_i}^i \mapsto texpr \in Globals
                                                                                                               \frac{\overline{x_i = pval_i}^i :: arg \gg \sigma; \mathtt{false} \wedge \mathtt{I}}{\langle h; \mathtt{run}\, ident\, \overline{pval_i}^i \rangle \longrightarrow \langle h; \sigma(texpr) \rangle} \quad \mathsf{OP\_STE\_TE\_RUN}
```

```
pattern_i = pval \leadsto \sigma_i
                                                                                 \frac{\sqrt[3]{i < j. \; \text{not} \; (pattern_i = pval \leadsto \sigma_i)}}{\langle h; \mathsf{case} \; pval \; \mathsf{of} \; \overline{\mid pattern_i \Rightarrow texpr_i}^i \; \mathsf{end} \rangle \longrightarrow \langle h; \sigma_j(texpr_j) \rangle} \quad \mathsf{OP\_STE\_TE\_CASE}
                                                                             \frac{ident\_or\_pattern = pval \leadsto \sigma}{\langle h; \texttt{let}\, ident\_or\_pattern = pval\, \texttt{in}\, texpr \rangle \longrightarrow \langle h; \sigma(texpr) \rangle} \quad \text{Op\_STE\_TE\_Letp\_Sub}
                                    \frac{\langle pexpr\rangle \longrightarrow \langle pexpr'\rangle}{\langle h; \mathtt{let}\, ident\_or\_pattern = pexpr\, \mathtt{in}\, texpr\rangle \longrightarrow \langle h; \mathtt{let}\, ident\_or\_pattern = pexpr'\, \mathtt{in}\, texpr\rangle} \quad \mathsf{OP\_STE\_TE\_LETP\_LETP}
                                                                                                         \langle pexpr \rangle \longrightarrow \langle tpexpr:(y:\beta.\ term) \rangle
                  \frac{\langle pexpr_{/} \longrightarrow \langle tpexpr_{.}(y.\beta.\ term)\rangle}{\langle h; \mathsf{let}\ ident\_or\_pattern = pexpr\ \mathsf{in}\ texpr\rangle \longrightarrow \langle h; \mathsf{let}\ ident\_or\_pattern: (y:\beta.\ term) = tpexpr\ \mathsf{in}\ texpr\rangle} \quad \mathsf{OP\_STE\_TE\_LETP\_LETTP}
                                                                                                                ident\_or\_pattern = pval \leadsto \sigma
                                                      \frac{}{\langle h; \mathtt{let}\, ident\_or\_pattern: (y:\beta.\,\, term) = \mathtt{done}\, pval\,\, \mathtt{in}\, texpr\rangle \longrightarrow \langle h; \sigma(texpr)\rangle} \quad \text{Op\_STE\_TE\_LETTP\_Sub}
\frac{\langle tpexpr\rangle \longrightarrow \langle tpexpr'\rangle}{\langle h; \mathtt{let}\, ident\_or\_pattern: (y:\beta.\,\, term) = tpexpr\, \mathtt{in}\, texpr\rangle \longrightarrow \langle h; \mathtt{let}\, ident\_or\_pattern: (y:\beta.\,\, term) = tpexpr'\, \mathtt{in}\, texpr\rangle} \quad \text{Op\_STE\_TE\_LetTP\_LetTP}
                                                            \frac{\overline{ret\_pattern_i = spine\_elem_i}^i \leadsto \sigma}{\langle h; \mathtt{let}\, \overline{ret\_pattern_i}^i : ret = \mathtt{done}\, \overline{spine\_elem_i}^i \, \mathtt{in}\, texpr \rangle \longrightarrow \langle h; \sigma(texpr) \rangle} \quad \mathsf{OP\_STE\_TE\_LETT\_SUB}
                                    \frac{\langle h; seq\_expr\rangle \longrightarrow \langle h; texpr_1 : ret\rangle}{\langle h; \mathsf{let} \ \overline{ret\_pattern_i}^i = seq\_expr \ \mathsf{in} \ texpr_2\rangle \longrightarrow \langle h; \mathsf{let} \ \overline{ret\_pattern_i}^i : ret = texpr_1 \ \mathsf{in} \ texpr_2\rangle} \quad \mathsf{OP\_STE\_TE\_LET\_LETT}
                                \frac{\langle h; texpr_1 \rangle \longrightarrow \langle h'; texpr_1' \rangle}{\langle h; \mathsf{let} \ \overline{ret\_pattern_i}^i : ret = texpr_1 \ \mathsf{in} \ texpr_2 \rangle \longrightarrow \langle h'; \mathsf{let} \ \overline{ret\_pattern_i}^i : ret = texpr_1' \ \mathsf{in} \ texpr_2 \rangle} \quad \mathsf{OP\_STE\_TE\_LETT\_LETT}
```

```
OP_STE_TE_IF_TRUE
                                                                       \overline{\langle h; \text{if True then } texpr_1 \text{ else } texpr_2 \rangle \longrightarrow \langle h; texpr_1 \rangle}
                                                                                                                                                                                OP_STE_TE_IF_FALSE
                                                                      \overline{\langle h; \text{if False then } texpr_1 \text{ else } texpr_2 \rangle \longrightarrow \langle h; texpr_2 \rangle}
                                                                                                                                                                        OP_STE_TE_BOUND
                                                                                 \overline{\langle h; \mathtt{bound} [int] (is\_texpr) \rangle} \longrightarrow \langle h; is\_texpr \rangle
   \langle h; mem\_op \rangle \longrightarrow \langle h'; tval \rangle
                                                                       bool\_value \equiv mem\_int_1 \, binop_{rel} \, mem\_int_2
                                                                                                                                                                              OP_MEMOP_TVAL_REL_BINOP
                                                        \overline{\langle h; mem\_int_1 \ binop_{rel} \ mem\_int_2 \rangle \longrightarrow \langle h; done \ bool\_value \rangle}
                                                       \frac{mem\_int \equiv \texttt{cast\_ptr\_to\_int} \, mem\_ptr}{\langle h; \texttt{intFromPtr} \, (\tau_1, \tau_2, mem\_ptr) \rangle \longrightarrow \langle h; \texttt{done} \, mem\_int \rangle}
                                                                                                                                                                          Op_Memop_TVal_IntFromPtr
                                                                        mem\_ptr \equiv \texttt{cast\_ptr\_to\_int} \ mem\_int
                                                                                                                                                                          OP_MEMOP_TVAL_PTRFROMINT
                                                       \overline{\langle h; \mathtt{ptrFromInt} \left(\tau_1, \tau_2, mem\_int\right)\rangle \longrightarrow \langle h; \mathtt{done} \ mem\_ptr\rangle}
                                                                                           bool\_value \equiv \mathtt{aligned}\left(\tau, mem\_ptr\right)
\frac{\langle h + \{mem\_ptr \overset{\checkmark}{\mapsto}_{\tau} \_\}; \mathsf{ptrValidForDeref}\left(\tau, mem\_ptr, mem\_ptr \overset{\checkmark}{\mapsto}_{\tau} \_\right)\rangle \longrightarrow \langle h + \{mem\_ptr \overset{\checkmark}{\mapsto}_{\tau} \_\}; \mathsf{done}\,bool\_value, mem\_ptr \overset{\checkmark}{\mapsto}_{\tau} \_\rangle}{}
                                                                                                                                                                                                                                                                   OP_MEMOP_TVAL_PTRVALID
                                                                     bool\_value \, \equiv \, \mathtt{aligned} \, (\tau, mem\_ptr)
                                               \frac{}{\langle h; \mathtt{ptrWellAligned}\left(\tau, mem\_ptr\right)\rangle \longrightarrow \langle h; \mathtt{done}\,bool\_value\rangle}
                                                                                                                                                                      Op_Memop_TVal_PtrWellAligned
                                         \frac{mem\_ptr' \equiv mem\_ptr +_{\text{ptr}} (mem\_int \times \text{size\_of}(\tau))}{\langle h; \texttt{ptrArrayShift} (mem\_ptr, \tau, mem\_int) \rangle \longrightarrow \langle h; \texttt{done} \ mem\_ptr' \rangle}
                                                                                                                                                                                OP_MEMOP_TVAL_PTRARRAYSHIFT
```

 $\frac{pval:\beta_{\tau}}{\langle h; \mathtt{create}\,(mem_int,\tau)\rangle \longrightarrow \langle h + \{mem_ptr \overset{\times}{\mapsto}_{\tau}\,pval\}; \mathtt{done}\,mem_ptr,pval,mem_ptr \overset{\times}{\mapsto}_{\tau}\,pval\rangle} \quad \mathsf{OP_ACTION_TVAL_CREATE}$

 $\frac{}{\langle h + \{mem_ptr \overset{\checkmark}{\mapsto}_{\tau} \ pval\}; \texttt{load} \ (\tau, mem_ptr, _, mem_ptr \overset{\checkmark}{\mapsto}_{\tau} \ pval) \rangle} \quad \text{Op_Action_Tval_Load}$

 $\frac{-}{\langle h + \{mem_ptr \overset{\checkmark}{\mapsto}_{\tau} _\}; \mathtt{store} \left(_, \tau, mem_ptr, pval, _, mem_ptr \overset{\checkmark}{\mapsto}_{\tau} _\right) \rangle} \longrightarrow \langle h + \{mem_ptr \overset{\checkmark}{\mapsto}_{\tau} pval\}; \mathtt{done} \, \mathtt{Unit}, mem_ptr \overset{\checkmark}{\mapsto}_{\tau} pval \rangle}$ $OP_ACTION_TVAL_STORE$

 $\overline{\langle h + \{mem_ptr \mapsto_{\tau} _\}; \texttt{kill} \left(\texttt{static} \ \tau, mem_ptr, mem_ptr \mapsto_{\tau} _\right) \rangle} \quad \text{Op_Action_Tval_Kill_Static}$

 $|\langle h; is_expr \rangle \longrightarrow \langle h'; is_expr' \rangle$

$$\frac{\langle h; mem_op \rangle \longrightarrow \langle h; tval \rangle}{\langle h; \mathsf{memop}\,(mem_op) \rangle \longrightarrow \langle h; tval \rangle} \quad \mathsf{OP_ISE_ISE_MEMOP}$$

$$\frac{\langle h; mem_action \rangle \longrightarrow \langle h'; tval \rangle}{\langle h; mem_action \rangle \longrightarrow \langle h'; tval \rangle} \quad \text{Op_IsE_IsE_Action}$$

$$\frac{\langle h; mem_action \rangle \longrightarrow \langle h'; tval \rangle}{\langle h; \mathsf{neg}\, mem_action \rangle \longrightarrow \langle h'; tval \rangle} \quad \mathsf{OP_ISE_ISE_NEG_ACTION}$$

 $\langle h; is_texpr \rangle \longrightarrow \langle h'; texpr \rangle$

$$\frac{\overline{ret_pattern_i = spine_elem_i}^i \leadsto \sigma}{\langle h; \mathtt{let strong} \, \overline{ret_pattern_i}^i = \mathtt{done} \, \overline{spine_elem_i}^i \, \mathtt{in} \, texpr \rangle \longrightarrow \langle h; \sigma(texpr) \rangle} \quad \mathsf{OP_ISTE_ISTE_LETS_SUB}$$

$$\frac{\langle h; is_expr\rangle \longrightarrow \langle h'; is_expr'\rangle}{\langle h; \mathsf{let}\,\mathsf{strong}\,\overline{ret_pattern_i}^i = is_expr\,\mathsf{in}\,texpr\rangle \longrightarrow \langle h'; \mathsf{let}\,\mathsf{strong}\,\overline{ret_pattern_i}^i = is_expr'\,\mathsf{in}\,texpr\rangle} \quad \mathsf{OP_}$$

OP_ISTE_ISTE_LETS_LETS

 $\langle h; texpr \rangle \longrightarrow \langle h'; texpr' \rangle$

$$\frac{\langle h; seq_texpr\rangle \longrightarrow \langle h; texpr\rangle}{\langle h; seq_texpr\rangle \longrightarrow \langle h; texpr\rangle} \quad \text{OP_TE_TE_SEQ}$$

$$\frac{\langle h; is_texpr\rangle \longrightarrow \langle h'; texpr\rangle}{\langle h; is_texpr\rangle \longrightarrow \langle h'; texpr\rangle} \quad \text{OP_TE_TE_IS}$$

 $|\overline{x_i}^i :: arg \leadsto \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} | ret$

$$\frac{}{::ret \leadsto :; :; : | ret} \quad Arg_Env_Ret$$

$$\frac{\overline{x_i}^i :: arg \leadsto \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \mid ret}{x, \overline{x_i}^i :: \Pi \, x : \beta. \, arg \leadsto \mathcal{C}, x : \beta; \mathcal{L}; \Phi; \mathcal{R} \mid ret} \quad \text{Arg_Env_Comp}$$

$$\frac{\overline{x_i}^i :: arg \leadsto \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \mid ret}{x, \overline{x_i}^i :: \forall x : \beta. arg \leadsto \mathcal{C}; \mathcal{L}, x : \beta; \Phi; \mathcal{R} \mid ret} \quad \text{Arg_Env_Log}$$

$$\frac{\overline{x_i}^i :: arg \leadsto \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \mid ret}{\overline{x_i}^i :: term \supset arg \leadsto \mathcal{C}; \mathcal{L}; \Phi, term; \mathcal{R} \mid ret} \quad \text{Arg_Env_Phi}$$

$$\frac{\overline{x_i}^i :: arg \leadsto \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \mid ret}{x, \overline{x_i}^i :: res \multimap arg \leadsto \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}, x: res \mid ret} \quad \text{Arg_Env_Res}$$

$$\boxed{\mathcal{C};\mathcal{L};\Phi;\mathcal{R}\sqsubseteq\mathcal{C}';\mathcal{L}';\Phi';\mathcal{R}'}$$

$$\frac{}{\cdot;\cdot;\cdot;\cdot\sqsubseteq\cdot;\cdot;\cdot}\quad \text{Weak_Empty}$$

$$\frac{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq \mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}'}{\mathcal{C}, x : \beta; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq \mathcal{C}', x : \beta; \mathcal{L}'; \Phi'; \mathcal{R}'} \quad \text{Weak_Cons_Comp}$$

$$\frac{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq \mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}'}{\mathcal{C}; \mathcal{L}, x : \beta; \Phi; \mathcal{R} \sqsubseteq \mathcal{C}'; \mathcal{L}', x : \beta; \Phi'; \mathcal{R}'} \quad \text{Weak_Cons_Log}$$

$$\frac{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq \mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}'}{\mathcal{C}; \mathcal{L}; \Phi, term; \mathcal{R} \sqsubseteq \mathcal{C}'; \mathcal{L}'; \Phi', term; \mathcal{R}'} \quad \text{Weak_Cons_Phi}$$

$$\frac{\mathcal{C};\mathcal{L};\Phi;\mathcal{R}\sqsubseteq\mathcal{C}';\mathcal{L}';\Phi';\mathcal{R}'}{\mathcal{C};\mathcal{L};\Phi;\mathcal{R},\mathit{res}\sqsubseteq\mathcal{C}';\mathcal{L}';\Phi';\mathcal{R}',\mathit{res}}\quad \text{Weak_Cons_Res_Anon}$$

$$\frac{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq \mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}'}{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}, x: res \sqsubseteq \mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}', x: res} \quad \text{Weak_Cons_Res_Named}$$

$$\frac{\mathcal{C};\mathcal{L};\Phi;\mathcal{R}\sqsubseteq\mathcal{C}';\mathcal{L}';\Phi';\mathcal{R}'}{\mathcal{C};\mathcal{L};\Phi;\mathcal{R}\sqsubseteq\mathcal{C}',x:\beta;\mathcal{L}';\Phi';\mathcal{R}'}\quad\text{Weak_Skip_Comp}$$

$$\frac{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq \mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}'}{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq \mathcal{C}'; \mathcal{L}', x : \beta; \Phi'; \mathcal{R}'} \quad \text{Weak_Skip_Log}$$

$$\frac{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq \mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}'}{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \sqsubseteq \mathcal{C}'; \mathcal{L}'; \Phi', term; \mathcal{R}'} \quad \text{Weak_Skip_Phi}$$

$$\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma) : (\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}')$$

$$\overline{\mathcal{C};\mathcal{L};\Phi;\cdot\vdash(\cdot):(\cdot;\cdot;\cdot;\cdot)}\quad \text{Ty_Subs_Empty}$$

$$\begin{array}{c} \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma) : (\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}') \\ \mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta \\ \hline \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash (pval/x, \sigma) : (\mathcal{C}', x : \beta; \mathcal{L}'; \Phi'; \mathcal{R}') \end{array} \quad \text{Ty_Subs_Cons_Comp}$$

$$\begin{split} & \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma) : (\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}') \\ & \frac{\mathcal{C}; \mathcal{L}; \Phi \vdash pval \Rightarrow \beta}{\mathcal{C}; \mathcal{L}; \Phi \vdash (pval/x, \sigma) : (\mathcal{C}'; \mathcal{L}', x : \beta; \Phi'; \mathcal{R}')} \quad \text{Ty_Subs_Cons_Log} \end{split}$$

$$\begin{array}{l} \mathcal{C};\mathcal{L};\Phi;\mathcal{R}\vdash(\sigma):(\mathcal{C}';\mathcal{L}';\Phi';\mathcal{R}')\\ \frac{\mathtt{smt}\;(\Phi\Rightarrow term)}{\mathcal{C};\mathcal{L};\Phi;\mathcal{R}\vdash(\sigma):(\mathcal{C}';\mathcal{L}';\Phi',term;\mathcal{R}')} \end{array} \quad \text{Ty_Subs_Cons_Phi} \end{array}$$

$$\begin{aligned} & \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma) : (\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}') \\ & \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}_1 \vdash res_term \Leftarrow res \\ & \overline{\mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}, \mathcal{R}_1 \vdash (res_term/x, \sigma) : (\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}', x : res)} \end{aligned} \quad \text{Ty_Subs_Cons_Res_NameD}$$

$$\begin{array}{l} \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R} \vdash (\sigma) : (\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}') \\ \mathcal{C}; \mathcal{L}; \Phi; \overline{\cdot, res_i}^i \vdash res_term \Leftarrow res \\ \hline \mathcal{C}; \mathcal{L}; \Phi; \mathcal{R}, \overline{\cdot, res_i}^i \vdash (\sigma) : (\mathcal{C}'; \mathcal{L}'; \Phi'; \mathcal{R}', \overline{\cdot, res_i}^i) \end{array} \quad \text{Ty_Subs_Cons_Res_Anon}$$

Definition rules: 200 good 0 bad Definition rule clauses: 446 good 0 bad