

MA211 - Lista 08

Integrais triplas e Integrais Triplas em Coordenadas Cilíndricas

19 de outubro de 2016

EXERCÍCIOS RESOLVIDOS

1. \bigstar ([1], seção 15.6) Calcule a integral tripla $\iiint_T x^2 dV$, onde T é o tetraedro sólido com vértices (0,0,0), (1,0,0), (0,1,0) e (0,0,1).

Solução: Para resolvermos a integral tripla, vamos desenhar dois diagramas: um da região sólida T (Figura 1) e o outro a sua projeção D no plano xy (Figura 2).

Figura 1: Figura 1

Figura 2: Figura 2

A fronteira inferior do tetraedro T é o plano z=0 e a superior é o plano x+y+z=1 (ou z=1-x-y). Notemos que os planos x+y+z=1 e z=0 se interceptam na reta x+y=1 (ou y=1-x) no plano xy. Logo a projeção de T é a região triangular da Figura 2 e temos

$$T = \{(x, y, z) | 0 \le x \le 1, \ 0 \le y \le 1 - x, \ 0 \le z \le 1 - x - y\}.$$

Assim,

$$\iiint_T x^2 dV = \int_0^1 \int_0^{1-x} \int_0^{1-x-z} x^2 dz dy dx = \int_0^1 \int_0^{1-x} x^2 z \Big|_0^{1-x-y} dy dx$$

$$= \int_0^1 \int_0^{1-x} x^2 (1-x-y) dy dx = \int_0^1 \int_0^{1-x} (x^2 - x^3 - x^2 y) dy dx$$

$$= \int_0^1 \left(x^2 y - x^3 y - x^2 \frac{y^2}{2} \right) \Big|_0^{1-x} dx = \int_0^1 \left(x^2 (1-x) - x^3 (1-x) - \frac{x^2}{2} (1-x)^2 \right) dx$$

$$= \int_0^1 \left(\frac{x^2}{2} - x^3 + \frac{x^4}{2} \right) dx = \left[\frac{1}{2} \cdot \frac{x^3}{3} - \frac{x^4}{4} + \frac{1}{2} \cdot \frac{x^5}{5} \right]_0^1 = \frac{1}{60}.$$

2. \bigstar ([2], seção 5.4) Use a integral tripla para determinar o volume do sólido dado por $x^2 + y^2 \le z \le \sqrt{4 - 3x^2 - 3y^2}$.

Solução: Primeiramente, vamos determinar a projeção no plano xy da interseção de

$$z = \sqrt{4 - 3x^2 - 3y^2} \tag{1}$$

$$z = x^2 + y^2 \tag{2}$$

Da equação (1) temos que

$$z = \sqrt{4 - 3x^2 - 3y^2} \Leftrightarrow z^2 = 4 - 3x^2 - 3y^2 \Leftrightarrow z^2 = 4 - 3(x^2 + y^2).$$
 (3)

Substituindo a equação (2) na equação (3) obtemos que

$$z^{2} = 4 - z \Leftrightarrow z^{2} + 3z - 4 = 0 \Leftrightarrow (z - 1)(z - 4) = 0.$$

Logo,z=-4 e z=1. Notemos que z=-4 não satisfaz as equações (1) e (2), então a projeção D no plano xy é o círculo de raio 1, isto é, $D=\{(x,y)\in\mathbb{R};\ x^2+y^2\leq 1\}$. Assim, o volume, V, do sólido é:

$$V = \iint\limits_{D} \left[\int_{x^2 + y^2}^{\sqrt{4 - 3x^2 - 3y^2}} 1 \, dz \right] dA = \iint\limits_{D} \sqrt{4 - 3x^2 - 3y^2} - (x^2 + y^2) \, dA.$$

Passando para coordenadas polares temos que

$$x = r \cos \theta$$
$$y = r \sin \theta$$
$$dA = r dr d\theta$$
$$0 \le r \le 1$$
$$0 \le \theta \le 2\pi$$

Então,

$$V = \int_0^{2\pi} \int_0^1 (\sqrt{4 - 3r^2} - r^2) r \, dr \, d\theta = \int_0^{2\pi} \int_0^1 (r\sqrt{4 - 3r^2} - r^3) \, dr \, d\theta$$
$$= \int_0^{2\pi} d\theta \cdot \left[\left(\underbrace{\int_0^1 r\sqrt{4 - 3r^2} \, dr}_{du = -6r \, dr} \right) - \left(\int_0^1 r^3 \, dr \right) \right]$$

$$= \theta \Big|_0^{2\pi} \cdot \left[\left(\int_4^1 r \cdot u^{1/2} \frac{du}{-6r} \right) - \left(\frac{r^4}{4} \Big|_0^1 \right) \right]$$

$$= 2\pi \cdot \left[\left(-\frac{1}{6} \int_4^1 u^{1/2} du \right) - \frac{1}{4} \right] = 2\pi \cdot \left[\left(-\frac{1}{6} \cdot \frac{2}{3} u^{3/2} \Big|_4^1 \right) - \frac{1}{4} \right]$$

$$= 2\pi \cdot \left[-\frac{1}{9} + \frac{1}{9} \cdot 8 - \frac{1}{4} \right] = 2\pi \cdot \frac{19}{36} = \frac{19\pi}{18}.$$

3. \bigstar (Prova, 2013) Encontre o volume da região sólida limitada abaixo pelo plano z=0, lateralmente pelo cilindro $x^2+y^2=1$ e acima pelo paraboloide $z=x^2+y^2$.

Solução: Temos que a região sólida E está acima do plano z=0, abaixo do paraboloide $z=x^2+y^2$ e limitado lateralmente pelo cilindro $x^2+y^2=1$. Notemos que podemos dividir a região sólida em quatro porções simétricas. Assim, levando em consideração a porção da região sólida E que está no primeiro octante, temos em coordenadas cilíndricas

$$0 \le \theta \le \frac{\pi}{2}, \ 0 \le r \le 1 \ e \ 0 \le z \le x^2 + y^2 = r^2.$$

Assim, o volume da região sólida E é:

$$V = \iiint_E 1 \, dV = 4 \int_0^{\frac{\pi}{2}} \int_0^1 \int_0^{r^2} 1 \, r \, dz \, dr \, d\theta$$
$$= 4 \int_0^{\frac{\pi}{2}} \int_0^1 zr \Big|_0^{r^2} \, dr \, d\theta = 4 \int_0^{\frac{\pi}{2}} \int_0^1 r^3 \, dr \, d\theta$$
$$= 4 \int_0^{\frac{\pi}{2}} \, d\theta \cdot \int_0^1 r^3 \, dr = 4 \cdot \theta \Big|_0^{\frac{\pi}{2}} \cdot \frac{r^4}{4} \Big|_0^1$$
$$= 4 \cdot \frac{\pi}{2} \cdot \frac{1}{4} = \frac{\pi}{2}.$$

4. \blacklozenge (Prova, 2008) Determine o volume do sólido que está acima do plano xy, abaixo do paraboloide $z = x^2 + y^2$ e que se encontra dentro do cilindro $x^2 + y^2 = 2x$ e fora do cilindro $x^2 + y^2 = 1$.

Solução: Temos que $0 \le z \le x^2 + y^2$. Como o sólido se encontra dentro do cilindro $x^2 + y^2 = 2x$ e fora do cilindro $x^2 + y^2 = 1$, devemos fazer a interseção desses dois cilindros, isto é,

$$\begin{cases} x^2 + y^2 = 2x \\ x^2 + y^2 = 1 \end{cases} \Rightarrow 2x = 1 \Leftrightarrow x = \frac{1}{2}$$

Em coordenadas cilíndricas temos que

$$x = r \cos \theta$$

$$y = r \sin \theta$$

$$z = z$$

$$dz dy dx = r dz dr d\theta$$

Da equação $x^2 + y^2 = 1$ temos que

$$r^2 = 1 \Rightarrow = \pm 1$$
,

como devemos ter $r \ge 0$, então nesse caso r = 1.

Da equação $x^2 + y^2 = 2x$ temos que

$$r^2 = 2r \cos \theta \Rightarrow r = 2 \cos \theta$$
.

Agora, sendo $x = \frac{1}{2}$ e r = 1 temos que

$$\cos \theta = \frac{1}{2} \Rightarrow \theta = \pm \frac{\pi}{3}.$$

Assim, em coordenadas cilíndricas temos que o sólido E é dado por

$$E = \{(\theta, r, z) | -\frac{\pi}{3} \le \theta \le \frac{\pi}{3}, 1 \le r \le 2\cos\theta, 0 \le z \le r^2\}.$$

Então,

$$V = \iiint_{E} 1 \, dV = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \int_{1}^{2\cos\theta} \int_{0}^{r^{2}} 1 \, r \, dz \, dr \, d\theta = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \int_{1}^{2\cos\theta} zr \Big|_{0}^{r} \, dr \, d\theta$$

$$= \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \int_{1}^{2\cos\theta} r^{3} \, dr \, d\theta = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{r^{4}}{4} \Big|_{1}^{2\cos\theta} \, d\theta = \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \left(4\cos^{4}\theta - \frac{1}{4} \right) d\theta$$

$$= 4 \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \underbrace{\cos^{4}\theta}_{\text{função par}} \, d\theta - \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \underbrace{\frac{1}{4}}_{\text{função par}} \, d\theta = 8 \int_{0}^{\frac{\pi}{3}} \cos^{4}\theta \, d\theta - 2 \int_{0}^{\frac{\pi}{3}} \frac{1}{4} \, d\theta$$

$$= 8 \left[\frac{3}{8}\theta + \frac{1}{4} \sec(2\theta) + \frac{1}{32} \sec(4\theta) \right] \Big|_{0}^{\frac{\pi}{3}} - \left(\frac{1}{2}\theta \right) \Big|_{0}^{\frac{\pi}{3}}$$

$$= 8 \left[\frac{3}{8} \cdot \frac{\pi}{3} + \frac{1}{4} \sec\left(\frac{2\pi}{3}\right) + \frac{1}{32} \sec\left(\frac{4\pi}{3}\right) \right] - \frac{1}{2} \cdot \frac{\pi}{3}$$

$$= \pi + \sqrt{3} - \frac{\sqrt{3}}{8} - \frac{\pi}{6} = \frac{5\pi}{6} + \frac{7\sqrt{3}}{8}.$$

EXERCÍCIOS PROPOSTOS

- 5. ([1], seção 15.6) Calcule a integral tripla $\iiint_B xyz^2\,dV$, onde B é a caixa retangular dada por $B=\{(x,y,z)\in\mathbb{R}^3|\ 0\le x\le 1,\ -1\le y\le 2,\ 0\le z\le 3\}$, integrando primeiro em relação a y, depois a z e então a x.
- 6. ♦ ([1], seção 15.6) Calcule a integral iterada.
 - $\mathbf{a)} \int_0^1 \int_0^z \int_0^{x+z} 6xz \ dy dx dz$
- **b)** $\int_{0}^{3} \int_{0}^{1} \int_{0}^{\sqrt{1-z^2}} ze^y \ dx dz dy$
- c) $\int_0^{\pi/2} \int_0^y \int_0^x \cos(x+y+z) \, dz dx dy$
- 7. \blacklozenge ([1], seção 15.6)([2], seção 5.4) Calcule a integral tripla.
 - a) $\iiint_E 2x \, dV$, onde $E = \{(x, y, z) | 0 \le y \le 2, 0 \le x \le \sqrt{4 y^2}, 0 \le z \le y \}.$
 - b) $\iiint_E 6xy \, dV$, onde E está abaixo do plano z=1+x+y e acima da região do plano xy limitada pelas curvas $y=\sqrt{x}, \ y=0$ e x=1.
 - c) $\iiint_E x^2 e^y dV$, onde E é delimitado pelo cilindro parabólico $z = 1 y^2$ e pelos planos z = 0, x = 1 e x = -1.
 - d) $\iiint_E x \, dV$, onde E é limitado pelo paraboloide $x = 4y^2 + 4z^2$ e pelo plano x = 4.
 - e) $\iiint_E z\,dV$, onde E é limitado pelo cilindro $y^2+z^2=9$ e pelos planos $x=0,\,y=3x$ e z=0 no primeiro octante.
 - f) $\iiint_E xyz \ dxdydz$, onde E é o paralelepípedo $0 \le x \le 2, \ 0 \le y \le 1$, e $1 \le z \le 2$.
 - g) $\iiint\limits_E x\; dxdydz, \text{ onde } E \text{ \'e o conjunto } 0 \leq x \leq 1, \; 0 \leq y \leq 1 \text{ e}$ $x+y \leq z \leq x+y+1.$
 - h) $\iiint_E \sqrt{1-z^2} \, dx dy dz$, onde E é o conjunto $0 \le x \le 1$, $0 \le z \le 1$ e $0 \le y \le z$.

- i) $\iiint\limits_E \sqrt{1-z^2} \; dx dy dz, \text{ onde } E \text{ \'e o cubo } 0 \leq x \leq 1, \, 0 \leq y \leq 1 \text{ e } 0 \leq z \leq 1.$
- j) $\iiint_E dxdydz$, onde E é o conjunto $x^2 + y^2 \le z \le 2x$.
- 1) $\iiint_E (x^2 + z^2) \, dx dy dz$, onde E é o cilindro $x^2 + y^2 \le 1$ e $0 \le z \le 1$.
- m) $\iiint_E dxdydz$, onde E é o conjunto $x^2 + y^2 \le z \le 2x + 2y 1$.
- n) $\iiint_E y \ dxdydz$, onde E é o conjunto $x^2 + 4y^2 \le 1$ e $0 \le z \le 1$.
- o) $\iiint\limits_E x \, dx dy dz$, onde E é o conjunto $x^2 + y^2 \le 4$, $x \ge 0$ e $x + y \le z \le x + y + 1$.
- p) $\iiint\limits_E 2z \ dxdydz, \text{ onde } E \text{ \'e o conjunto } x^2+y^2 \leq 1, \ x^2+y^2+z^2 \leq 4 \text{ e}$ z > 0.
- q) $\iiint\limits_E x \ dx dy dz, \text{ onde } E \text{ \'e o conjunto } x^2 y^2 \le z \le 1 2y^2.$
- r) $\iiint_E e^{x^2} dx dy dz$, onde E é o conjunto $0 \le x \le 1$, $0 \le y \le x$ e $0 \le z \le 1$.
- s) $\iiint_E x \, dx dy dz$, onde E é o conjunto $x^2 \le y \le x$, $0 \le z \le x + y$.
- t) $\iiint_E 2z \ dxdydz$, onde E é o conjunto $x^2 + y^2 + z^2 \le 4$ e $z \ge 0$.
- u) $\iiint_E 2z \ dxdydz$, onde E é o conjunto $4x^2 + 9y^2 + z^2 \le 4$ e $z \ge 0$.
- **v)** $\iiint_E \cos z \ dxdydz, \text{ onde } E \text{ \'e o conjunto } 0 \leq x \leq \frac{\pi}{2}, \ 0 \leq y \leq \frac{\pi}{2} \text{ e}$ expression and the expression of the exp
- w) $\iiint_E (y-x) \ dxdydz, \text{ onde } E \text{ \'e o conjunto } 4 \leq x+y \leq 8, \ \frac{1}{x} \leq y \leq \frac{2}{x},$ $y>x \text{ e } 0 \leq z \leq \frac{\sqrt[3]{xy}}{\sqrt{x+y}}.$
- 8. ♦ ([3], seção 12.4) Calcule as integrais mudando a ordem de integração de maneira apropriada.

a)
$$\int_0^4 \int_0^1 \int_{2y}^2 \frac{4 \cos(x^2)}{2\sqrt{z}} dx dy dz$$

b)
$$\star \int_0^1 \int_0^1 \int_{x^2}^1 12xze^{zy^2} dydxdz$$

c)
$$\int_0^1 \int_{\sqrt[3]{z}}^1 \int_0^{\ln 3} \frac{\pi e^{2x} \sin(\pi y^2)}{y^2} dx dy dz$$

9. ([3], seção 12.4) Encontre a constante a tal que

$$\int_0^1 \int_0^{4-a-x^2} \int_a^{4-x^2-y} dz dy dx = \frac{4}{15}.$$

- 10. \blacklozenge ([2], seção 5.4) ([1], seção 15.6) Use a integral tripla para determinar o volume do sólido dado.
 - a) $0 \le x \le 1$, $0 \le y \le 1$ e $0 \le z \le 5 x^2 3y^2$
 - **b)** $0 \le x \le 1, \ 0 \le y \le x^2 \ e \ 0 \le z \le x + y^2.$
 - c) $x^2 + y^2 \le z \le 4$.
 - **d)** $x^2 + 4y^2 \le z \le 1$.
 - e) $x^2 + y^2 \le 4 e^2 + y^2 + z^2 \le 9$.
 - $f) \ x^2 + 4y^2 + 9z^2 \le 1.$
 - g) $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}$, $(a > 0, b > 0 \ e \ c > 0)$.
 - h) $x^2 + y^2 \le z \le 4x + 2y$.
 - i) $x^2 + y^2 \le 1$ e $x^2 + z^2 \le 1$.
 - j) $(x-a)^2 + y^2 \le a^2$, $x^2 + y^2 + z^2 \le 4a^2$, $z \ge 0$ (a > 0).
 - 1) $x^2 + y^2 \le a^2 e^2 x^2 + z^2 \le a^2 (a > 0)$.
 - m) $x^2 + y^2 + z^2 \le a^2$ e $z \ge \frac{a}{2}$ (a > 0).
 - n) $x^2 \le z \le 1 y e y \ge 0$.
 - o) $x^2 + 2y^2 \le z \le 2a^2 x^2 \ (a > 0)$.
 - **p)** $x^2 + y^2 + (z 1)^2 \le 1 \text{ e } z \ge x^2 + y^2.$
 - q) $4x^2 + 9y^2 + z^2 \le 4 e^2 + 4x^2 + 9y^2 \le 1$.
 - r) O tetraedro limitado pelos planos coordenados e o plano 2x + y + z = 4.
 - s) O sólido limitado pelo paraboloide $x = y^2 + z^2$ e pelo plano x = 16.
 - t) O sólido delimitado pelo cilindro $x = y^2$ e pelos planos z = 0 e x + z = 1.
- 11. ([3], seção 12.4) Para qual valor de c o volume do elipsoide $x^2 + (y/2)^2 + (z/c)^2 = 1$ é igual a 8π ?

12. ([1], seção 15.6)([4], seção 17.5) Esboce o sólido cujo volume é dado pela integral iterada.

a)
$$\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{2-2z} dy dz dx$$
 b) $\int_{0}^{2} \int_{0}^{2-y} \int_{0}^{4-y^{2}} dx dz dy$ c) $\int_{0}^{1} \int_{\sqrt{1-z}}^{\sqrt{4-z}} \int_{2}^{3} dx dy dz$ d) $\int_{0}^{2} \int_{x^{2}}^{2x} \int_{0}^{x+y} dz dy dx$

b)
$$\int_0^2 \int_0^{2-y} \int_0^{4-y^2} dx dz dy$$

$$\mathbf{c)} \int_0^1 \int_{\sqrt{1-z}}^{\sqrt{4-z}} \int_2^3 dx dy dz$$

d)
$$\int_{0}^{2} \int_{x^{2}}^{2x} \int_{0}^{x+y} dz dy dx$$

13. ([4], seção 17.5) Esboce a região limitada pelos gráficos das equações e use uma integral tripla para calcular seu volume.

a)
$$z + x^2 = 4$$
, $y + z = 4$, $y = 0$ e $z = 0$.

b)
$$y = 2 - z^2$$
, $y = z^2$, $x + z = 4$ e $x = 0$.

c)
$$y^2 + z^2 = 1$$
, $x + y + z = 2$ e $x = 0$.

- 14. ([3], seção 12.4) Escreva seis integrais triplas iteradas diferentes para o volume do sólido retangular no primeiro octante limitado pelos planos coordenados e pelos planos x = 1, y = 2 e z = 3. Calcule uma das integrais.
- 15. ★ ([1], seção 15.6) A figura mostra a região de integração da integral

$$\int_{0}^{1} \int_{\sqrt{x}}^{1} \int_{0}^{1-y} f(x, y, z) \ dz dy dx.$$

Reescreva essa integral como uma integral iterada equivalente nas cinco outras ordens.

16. ([1], seção 15.6) A figura mostra a região da integral

$$\int_0^1 \int_0^{1-x^2} \int_0^{1-x} f(x, y, z) \, dy dz dx.$$

Reescreva essa integral como uma integral iterada equivalente nas cinco outras ordens.

8

- 17. ([1], seção 15.6)([2], seção 5.4) Determine a massa e o centro de massa do cubo dado por $0 \le x \le a, \ 0 \le y \le a, \ 0 \le z \le a$ e com função densidade:
 - a) $\rho(x, y, z) = x^2 + y^2 + z^2$.
 - **b)** $\rho(x, y, z) = x + y + z$.
- 18. \blacklozenge ([4], seção 17.5) Ache o centro de massa de E, em que:
 - a) A densidade de um ponto P de um sólido cúbico E de aresta a é diretamente proporcional ao quadrado da distância de P a um vértice fixo do cubo.
 - b) E é o tetraedro delimitado pelos planos coordenados e o plano 2x+5y+z=10 e a densidade em P(x,y,z) é diretamente proporcional à distância do plano xz a P.
- 19. ([2], seção 5.4) Calcule a massa do sólido $x+y+z \le 1, x \ge 0, y \ge 0$ e $z \ge 0$, sendo a densidade dada por $\rho(x,y,z)=x+y$.
- 20. ([1], seção 15.6) Suponha que o sólido tenha densidade constante k. Encontre os momentos de inércia para um cubo com comprimento do lado L se um vértice está localizado na origem e três arestas estão nos eixos coordenados.
- 21. \bigstar ([1], seção 15.6) Determine o sólido E para a qual a integral

$$\iiint\limits_{E} (1 - x^2 - 2y^2 - 3z^2) \, dV$$

é máxima.

- 22. ([2], seção 5.4) Calcule a massa do cilindro $x^2+y^2\leq 4$ e $0\leq z\leq 2$, sabendo que a densidade no ponto (x,y,z) é o dobro da distância do ponto ao plano z=0.
- 23. ([3], seção 12.5) Encontre o centróide e os momentos de inércia I_x , I_y e I_z do tetraedro cujos vértices são os pontos (0,0,0), (1,0,0), (0,1,0) e (0,0,1).

9

- 24. ([3], seção 12.5) Um cubo sólido de 2 unidades de lado é limitado pelos planos $x = \pm 1, z = \pm 1, y = 3$ e y = 5. Encontre o centro de massa e os momentos de inércia desse cubo.
- 25. (Prova, 2010) Seja C o cilindro de base circular e eixo (Oz), com raio 2 e altura 3, com base na origem e densidade inversamente proporcional \grave{a} distância ao eixo.
 - a) Determine o momento de inércia de C com relação ao eixo (Oz).
 - b) Se C gira em torno do eixo (Oz) com energia cinética K, qual a velocidade instantânea nos pontos de sua superfície lateral? (Fórmulas: Momento de inércia: $I = \iiint_C \rho \cdot l^2 dV$, onde ρ é a densidade e l é a distância ao eixo; Energia cinética de rotação: $K = \frac{1}{2}I\omega^2$.)
- 26. ([1], seção 15.7) Marque o ponto cujas coordenadas cilíndricas são $(2, \pi/4, 1)$ e $(4, -\pi/3, 5)$. Em seguida, encontre as coordenadas retangulares do ponto.
- 27. ([1], seção 15.7) Mude as coordenadas de (1, -1, 4) de retangulares para cilíndricas.
- 28. ([1], seção 15.7) Identifique a superfície cuja equação é dada por $z=4-r^2$.
- 29. ([1], seção 15.7) Esboce o sólido descrito pelas desigualdades $0 \le r \le 2$, $-\pi/2 \le \theta \le \pi/2$ e $0 \le z \le 1$.
- 30. ([1], seção 15.7) Uma casca cilíndrica tem 20 cm de comprimento, com raio interno de 6 cm e raio externo de 7 cm. Escreva desigualdades que descrevam a casca em um sistema de coordenadas adequado. Explique como você posicionou o sistema de coordenadas em relação à casca.
- 31. ([3], seção 12.6) Seja D a região limitada abaixo pelo plano z=0, acima pela esfera $x^2+y^2+z^2=4$ e dos lados pelo cilindo $x^2+y^2=1$. Monte as integrais triplas em coordenadas cilíndricas que dão o volume de D usando as ordens de integração a seguir.
 - a) $dzdrd\theta$
 - **b)** $drdzd\theta$
 - c) $d\theta dz dr$
- 32. ([1], seção 15.7) Faça o esboço do sólido cujo volume é dado pela integral e calcule essa integral.

a)
$$\int_0^4 \int_0^{2\pi} \int_r^4 r \, dz d\theta dr$$
 b) $\int_0^{\pi/2} \int_0^2 \int_0^{9-r^2} r dz dr d\theta$

33. ♦ (Prova, 2010) Considere a integral tripla iterada

$$\int_{-\sqrt{2}}^{\sqrt{2}} \int_{-\sqrt{2-x^2}}^{\sqrt{2-x^2}} \int_{x^2+y^2}^{4-x^2-y^2} dz dy dx.$$

- a) Transforme a integral utilizando coordenadas cilíndricas.
- b) Calcule a integral.
- c) Descreva o sólido cujo volume é dado por essa integral.
- 34. ♦ ([1], seção 15.7)(Prova, 2013) Calcule as seguintes integrais triplas.
 - a) $\iiint_E \sqrt{x^2+y^2}\,dV, \text{ em que } E \text{ \'e a região que est\'a dentro do cilindro}$ $x^2+y^2=16 \text{ e entre os planos } z=-5 \text{ e } z=4.$
 - b) $\iiint_E y\,dV$, em que E é o sólido que está entre os cilindros $x^2+y^2=1$ e $x^2+y^2=4$, acima do plano xy e abaixo do plano z=x+2.
 - c) $\iiint_E x \, dV$, em que E está delimitidado pelos planos z = 0 e z = x + y + 5 e pelos cilindros $x^2 + y^2 = 4$ e $x^2 + y^2 = 9$.
 - d) $\iiint_E x^2 dV$, em que E é o sólido que está dentro do cilindro $x^2 + y^2 = 1$, acima do plano z = 0 e abaixo do cone $z^2 = 4x^2 + 4y^2$.
 - e) $\iiint_E xyz \, dV$, em que E é o sólido limitado pelos paraboloides $z = x^2 + y^2$, $z = 8 x^2 y^2$.
 - $\mathbf{f)} \int_{-2}^{2} \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} \int_{\sqrt{x^2+y^2}}^{2} xz \, dz dx dy$
- 35. ([1], seção 15.7) Seja Ea região limitada pelos paraboloides $z=x^2+y^2$ e $z=36-3x^2-3y^2.$
 - a) Ache o volume da região E.
 - b) Encontre o centroide de E (centro de massa no caso em que a densidade é constante).
- 36. (Prova, 2013) Calcule, usando integração, o volume do sólido limitados pelas superfícies z=1, z=2 e $z=\sqrt{x^2+y^2}$.
- 37. (Prova, 2014) Determine o volume do sólido limitado pelo cilindro $x^2 + y^2 = 4$ e pelos planos z = 0 e y + z = 3.

- 38. (Prova, 2010) Vamos demonstrar a expressão geral para o volume de um cone circular de altura he raio da base ${\cal R}.$
 - a) Representando o cone com vértice na origem e base no plano z=h, expresse V por meio de uma integral dupla.
 - **b)** Calculando a integral, verifique que $V = \frac{\pi R^2 h}{3}$.

RESPOSTAS DOS EXERCÍCIOS PROPOSTOS

- 5. $\frac{27}{4}$.
- 6. **a)** 1.
 - **b**) $\frac{e^3-1}{3}$.
 - c) $-\frac{1}{3}$.
- 7. **a**) 4.
 - **b**) $\frac{65}{28}$.
 - c) $\frac{8}{3e}$.
 - d) $\frac{16\pi}{3}$.
 - e) $\frac{27}{8}$.
 f) $\frac{3}{2}$.

 - g) $\frac{1}{2}$. h) $\frac{1}{3}$. i) $\frac{\pi}{4}$. j) $\frac{\pi}{2}$. l) $\frac{7\pi}{12}$.
 - $\mathbf{m)} \ \frac{\pi}{2}.$
 - **n**) 0.
 - o) $\frac{16}{3}$.
 - **p**) $\frac{7\pi}{2}$.
 - **q**) 0.
 - r) $\frac{e-1}{2}$.
 - s) $\frac{11}{120}$.
 - t) 8π .

- **u**) 0.
- **v**) 2.
- **w**) $3 6\sqrt[3]{2} 2\sqrt{2} + 6\sqrt[6]{2^5}$.
- 8. a) $2 \operatorname{sen}(4)$.
 - **b)** 3e 6.
 - **c**) 4.
- 9. $\frac{13}{3}$ ou 3.
- 10. **a**) $\frac{11}{3}$.
 - **b**) $\frac{25}{84}$.
 - **c**) 8π .
 - **d**) $\frac{\pi}{4}$.
 - e) $\left(36 \frac{20\sqrt{5}}{3}\right)\pi$.
 - f) $\frac{2\pi}{9}$.
 - g) $\frac{4\pi abc}{3}$.
 - h) $\frac{25\pi}{4}$
 - i) $\frac{16}{3}$.
 - **j**) $\frac{16a^3}{3} \left(\frac{\pi}{2} \frac{2}{3} \right)$.
 - 1) $\frac{16a^3}{3}$.
 - **m**) $\frac{5\pi a^3}{24}$.
 - n) $\frac{4}{15}$.
 - **o)** πa^4 .
 - **p**) $\frac{71\pi}{54}$.
 - **q**) $\frac{7\pi}{12}$.
 - r) $\frac{16}{3}$.

- s) 128π .
- t) $\frac{8}{15}$.
- 11. 3.
- 12. **a**) .

b)

- c) $\{(x,y,z); 2 \le x \le 3, \sqrt{1-z} \le y \le \sqrt{4-z}, 0 \le z \le 1\}$.
- d) $\{(x, y, z); 0 \le x \le 2, x^2 \le y \le 2x, 0 \le z \le x + y\}$.
- 13. **a**) $\frac{128}{5}$.
 - **b**) $\frac{32}{3}$.
 - c) 2π .

14.

$$6 = \int_0^1 \int_0^2 \int_0^3 dz dy dx = \int_0^2 \int_0^1 \int_0^3 dz dx dy = \int_0^3 \int_0^2 \int_0^1 dx dy dz$$
$$= \int_0^2 \int_0^3 \int_0^1 dx dz dy = \int_0^3 \int_0^1 \int_0^2 dy dx dz = \int_0^1 \int_0^3 \int_0^2 dy dx dx.$$

15.

$$\begin{split} & \int_0^1 \int_{\sqrt{x}}^1 \int_0^{1-y} f(x,y,z) \ dz dy dx = \int_0^1 \int_0^{y^2} \int_0^{1-y} f(x,y,z) \ dz dx dy \\ & = \int_0^1 \int_0^{1-z} \int_0^{y^2} f(x,y,z) \ dx dy dz = \int_0^1 \int_0^{1-y} \int_0^{y^2} f(x,y,z) \ dx dz dy \\ & = \int_0^1 \int_0^{1-\sqrt{x}} \int_{\sqrt{x}}^{1-z} f(x,y,z) \ dy dz dx = \int_0^1 \int_0^{(1-z)^2} \int_{\sqrt{x}}^{1-z} f(x,y,z) \ dy dx dz. \end{split}$$

16.

$$\int_{0}^{1} \int_{0}^{1-x^{2}} \int_{0}^{1-x} f(x,y,z) \, dydzdx = \int_{0}^{1} \int_{0}^{\sqrt{1-z}} \int_{0}^{1-x} f(x,y,z) \, dydxdz$$

$$= \int_{0}^{1} \int_{0}^{1-y} \int_{0}^{1-x^{2}} f(x,y,z) \, dzdxdy = \int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x^{2}} f(x,y,z) \, dzdydx$$

$$= \int_{0}^{1} \int_{0}^{1-\sqrt{1-z}} \int_{0}^{\sqrt{1-z}} f(x,y,z) \, dxdydz + \int_{0}^{1} \int_{1-\sqrt{1-z}}^{1} \int_{0}^{1-y} f(x,y,z) \, dxdydz$$

$$= \int_{0}^{1} \int_{0}^{2y-y^{2}} \int_{0}^{1-y} f(x,y,z) \, dxdzdy + \int_{0}^{1} \int_{2y-y^{2}}^{1} \int_{0}^{\sqrt{1-z}} f(x,y,z) \, dxdzdy.$$

- 17. **a)** Massa: a^5 ; centro de massa: $\left(\frac{7a}{12}, \frac{7a}{12}, \frac{7a}{12}\right)$.
 - **b)** Massa: $\frac{3a^4}{2}$; centro de massa: $\left(\frac{5a}{9}, \frac{5a}{9}, \frac{5a}{9}\right)$.
- 18. a) $\left(\frac{7a}{12}, \frac{7a}{12}, \frac{7a}{12}\right)$.

b)
$$\left(1, \frac{4}{5}, 2\right)$$
.

19.
$$\frac{1}{12}$$
.

20.
$$I_x = I_y = I_z = \frac{2kL^5}{3}$$
.

21.
$$E = (\{(x, y, z); x^2 + 2y^2 + 3z^2 \le 1\}.$$

22. 16π .

23. Centróide:
$$\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$$
, $I_x = I_y = I_z = \frac{1}{30}$.

24. Centro de massa:
$$(0,4,0)$$
, $I_x = \frac{400}{3}$, $I_y = \frac{16}{3}$, $I_z = \frac{400}{3}$.

25. **a)** 6π .

$$\mathbf{b)} \ \sqrt{\frac{K}{3\pi}}.$$

26. Para
$$(2, \pi/4, 1)$$
: $(\sqrt{2}, \sqrt{2}, 1)$ e para $(4, -\pi/3, 5)$: $(2, -2\sqrt{3}, 5)$.

27.
$$(\sqrt{2}, \frac{7\pi}{4}, 4)$$
.

28.
$$z = 4 - x^2 - y^2$$
, o parabolóide circular com vértice $(0, 0, 4)$.

29. .

- 30. $6 \le r \le 7, 0 \le \theta \le 2\pi, 0 \le z \le 20.$
- 31. a) $\int_0^{2\pi} \int_0^1 \int_0^{\sqrt{4-r^2}} r dz dr d\theta$.
 - **b)** $\int_0^{2\pi} \int_0^{\sqrt{3}} \int_0^1 r dr dz d\theta + \int_0^{2\pi} \int_{\sqrt{3}}^2 \int_0^{\sqrt{4-z^2}} r dr dz d\theta.$
 - c) $\int_{0}^{1} \int_{0}^{\sqrt{4-r^2}} \int_{0}^{2\pi} r d\theta dz dr$.
- 32. **a)** $\frac{64\pi}{3}$; esboço:

b) 7π ; esboço:

- 33. a) $\int_0^{2\pi} \int_0^{\sqrt{2}} \int_{r^2}^{4-r^2} r dz dr d\theta$.
 - **b**) 4π
 - c) Região entre os parabolóides $z = x^2 + y^2$ e $z = 4 x^2 y^2$.
- 34. **a)** 384π .
 - **b**) 0.
 - c) $\frac{65\pi}{4}$.
 - **d**) $\frac{2\pi}{5}$.

- **e**) 0.
- **f)** 0.
- 35. **a)** 162π .
 - **b)** (0, 0, 15).
- 36. $\frac{7\pi}{6}$.
- 37. 12π .
- 38. **a)** $V = 2 \int_0^h \int_{-\frac{R}{h}z}^{\frac{R}{h}z} \sqrt{\frac{R^2}{h^2}z^2 x^2} dx dz$.
 - **b)** Note que $\int_0^h \int_{-\frac{R}{h}z}^{\frac{R}{h}z} \sqrt{\frac{R^2}{h^2}z^2 x^2} dx dz = \frac{\pi R^2 h}{6}$ é o volume da parte superior (ou inferior) do cone.

Referências

- [1] J. Stewart. $C\'{a}lculo$, Volume 2, 6^a Edição, São Paulo, Pioneira/ Thomson Learning.
- [2] H. L. Guidorizzi. $Um\ Curso\ de\ C\'alculo,\ Volume\ 3,\ 5^a\ Edição,\ 2002,\ Rio\ de\ Janeiro.$
- [3] G. B. Thomas. $C\'{a}lculo$, Volume 2, 10^a edição, São Paulo, Addison-Wesley/Pearson,2002.
- [4]E. W. Swokowski. Cálculo com Geometria Analítica, Volume 2, 2^a Edição, Markron Books, 1995.