Logistic Regression

Julien ABOUTARD

Marwin LAUNAY

DevIA#2-24/10/2022

Présentation de la Logistic Regression

- -Avant d'être un Algorithme c'est un Modèle Mathématique.
- -Elle permet de calculer la probabilité d'un certain résultat en fonction des relations entre les divers caractéristiques.
- -Deux grand type de Logistic Regression : Binaire et Multinomiale puis La "Ordinale" qui est un sous type de la Multinomiale

Secteur d'application fréquent

Les Variables de Logistic Regression

un modèle de régression dont la variable dépendante est dichotomique/binaire.

variables indépendantes peuvent être quantitatives (continues ou discrète) ou qualitative (catégorielle)

Leur lien est appelé "relation"

exemple

Les Hyperparamètres en Machine Learning

C: force de régularisation doit être un flottant positif (compris généralement entre 0.001 et 1)

Solver : possèdes plusieurs paramètres en son sein

-lbfgs

-sag

-saga

-newton-cg

-liblinear

Penalty: "L1", "L2" ou les deux (elasticnet) on peut aussi ne pas lui en assigner avec "None"

L1 ou L2?

7

- Pénaliser un algorithme

(Attention ! certaine Penalty ne fonctionne pas avec certains solvers, documentation recommandée !!)

-Système de "weight"

L1 (ou Lasso) : combat l'overfitting en rendant les weight à 0

L2(ou Ridge): combat l'overfitting en forçant les weights à être minime, mais sans les rendre exactement 0.

Binary classification:

$$S(X)= hinspace{} hin$$

$$\begin{aligned} Sigmoid(t) &= \frac{1}{1-e^{-t}} \\ H(X) &= Sigmoid(S(X)) = \frac{1}{1-e^{-\Theta X}} \\ H(X) &= P(y=1 \parallel X; \ \Theta) \\ P(y=0 \parallel X; \ \Theta) = 1 - P(y=1 \parallel X; \ \Theta) \end{aligned}$$

Exemples de Logistic Regression

Crédit pour le code : Satish Gunjal

Exemples de Logistic Regression

Crédit pour le code à : Gaël Varoquaux et Jaques Grobler.

Avantages

- Extrêmement efficace
- Faible besoin puissance de calcul
- Simple à régulariser
- Pas de mise à l'échelle nécessaire

Inconvénients

- Utile que pour les problèmes linéaires
- Algorithmes alternatives sont plus puissant
- Vulnérable à l'overfitting si trop peu d'observation