Phil Pützstück, 377247 Benedikt Gerlach, 376944 Sebastian Hackenberg, 377550

Hausaufgabe 8

Aufgabe 5

- a) $\langle Sa\langle_Aa\langle_S\langle_Bab\rangle_S\langle_Ab\rangle_Sab\rangle_S\rangle_Bb\rangle_S\rangle_A\rangle_S$ und $\langle S\langle_Aa\langle_S\langle_Bab\langle_Sa\langle_A\rangle_A\rangle_S\rangle_B\rangle_Sb\rangle_Ab\rangle_S$
- b) Sei also eine kontextfreie Grammatik $\mathcal{G} := \{N, T, S, P\}$ gegeben. Wir konstruieren $\mathcal{G}' := (N, T \cup \{\langle X, \rangle_X \mid X \in N\}, S, P')$. Für jede Produktionsregel $p \in P$ mit $p = X \to \alpha$, wobei $X \in N$ und α eine Satzform ist, haben wir eine Produktionsregel $p' = X \to \langle X\alpha \rangle_X$ in P'. Damit wird wie in der Konstruktion der Baumkodierung nach jedem Ableitungsschritt bzw. um jede Ebene im Ableitungsbaum die entsprechende Klammerung hinzugefügt.

Aufgabe 6

a)
$$\mathcal{G}:=(\{Q_0,Q_1,Q_3\},\{a,b\},P,Q_0\}$$
 mit P gegeben durch
$$Q_0\to aQ_1\mid bQ_3\qquad Q_1\to bQ_3\mid b\qquad Q_3\to aQ_1\mid a$$

b)
$$\mathcal{G}:=(\{Q_0,Q_1,Q_2\},\{a,b\},P,Q_0\}$$
 mit P gegeben durch
$$Q_0\to bQ_0\mid aQ_1\mid a\qquad Q_1\to bQ_1\mid aQ_2\mid b\mid a\qquad Q_2\to bQ_2\mid aQ_0\mid b$$

Aufgabe 7

Wir wissen aus Tutoraufgabe 1, dass die kontextfreien Grammatiken unter Spiegelbild-bildung abgeschlossen sind. Für eine gegebene linkslineare Grammatik \mathcal{G} können wir also die Grammatik $\mathcal{G}^{\mathcal{R}}$ konstruieren. Offensichtlich ist diese dann rechtslinear, denn:

Für jede Produktionsregel p der Form $N \to a$, mit N als Nichtterminal und a als Terminal haben wir auch die Produktionsregel $N \to a$ in $\mathcal{G}^{\mathcal{R}}$.

Für jede Produktionsregel p der Form $N \to Ba$ mit N, B als Nichtterminal und a als Terminal haben wir die Produktionsregel $N \to aB$ in $\mathcal{G}^{\mathcal{R}}$. Da also \mathcal{G} nur Produktionsregeln dieser Form enthalten kann, kann $\mathcal{G}^{\mathcal{R}}$ nur Produktionsregeln enthalten, welche rechtslinear sind.

Damit ist also $L(\mathcal{G}^{\mathcal{R}})$ regulär, und damit auch $L(\mathcal{G}^{\mathcal{R}})^{\mathcal{R}} = L(\mathcal{G})$ regulär, da die regulären Sprachen unter Spiegelbild-bildung ebenfalls abgeschlossen sind.

Zu einer gegebenen regulären Sprache L existiert eine rechtslineare Grammatik \mathcal{G} sodass $L = L(\mathcal{G}) \setminus \{\varepsilon\}$. Da für jede Sprache K stets $(K^{\mathcal{R}})^{\mathcal{R}} = K$, also die Spiegelbild-Operation ihr eigenes Inverses ist, folgt nach oben stehendem Argument analog, dass dann $\mathcal{G}^{\mathcal{R}}$ linkslinear ist.

Insgesamt erzeugen die linkslinearen Grammatiken genau die regulären Sprachen.

Aufgabe 8

a)

Angenommen, L_1 sei kontextfrei.

Sei $n \ge 1$ gemäß Pumping-Lemma gegeben. Wir betrachten $z = a^n b^n c^{n^2} \in L_1$. Das Pumping-Lemma liefert die Zerlegung z = uvwxy mit $vx \ne \varepsilon$ und $|vwx| \le n$.

Fall 1: $vwx = \sigma^n$ für $\sigma \in \{a, b\}$.

Es folgt nach Pumping-Lemma, dass auch $z_2 = uv^2wx^2y \in L_1$, jedoch haben wir dann $|z_2|_c < |z_2|_a \cdot |z_2|_b$, da $vx \neq \varepsilon$ und alle c's in y liegen. Dann ist jedoch $z_2 \notin L_1$. Widerspruch!

Fall 2: vwx liegt ganz im Präfix a^nb^n (und Fall 1 trifft nicht zu). Es folgt nach Pumping-Lemma, dass auch $z_0 = uwy \in L_1$, jedoch haben wir dann $|z_0|_c > |z_0|_a \cdot |z_0|_b$, da $vx \neq \varepsilon$ und alle c's in y liegen. Dann ist aber $z_0 \notin L_1$. Widerspruch!

Fall 3: vwx liegt ganz im Suffix $b^nc^{n^2}$ (aber $vwx \neq b^n$). Es folgt nach dem Pumping-Lemma, dass auch $z_0 = uwy \in L_1$. Es sind alle a's von z_0 in u. Wir haben also insgesamt die Gleichung

$$|z_0|_c = |z_0|_a \cdot |z_0|_b \iff n^2 - j = n \cdot (n - k)$$

für $j,k\in\mathbb{N}$ mit j+k=|vwx|=n. Andererseits folgt damit $n=n-k+\frac{j}{n}\Longrightarrow j=nk$. Setzen wir dies nun in j+k=n ein, folgt $k=\frac{n}{n+1}$. Da jedoch $n,k\in\mathbb{N}$ haben wir hiermit einen Widerspruch, da für n>0 stets $\frac{n}{n+1}\notin\mathbb{N}$. Damit haben wir also $|z_0|_c\neq |z_0|_a\cdot |z_0|_b$ und $uwy\notin L_1$. Insgesamt ist also in jedem Fall L_1 nicht kontextfrei.

b)

Angenommen L_2 sei kontextfrei.

Sei $n \ge 1$ gemäß Pumping-Lemma, gegeben. Wir betrachten $z = a^n b^{n+1} c^{n+2} \in L_2$. Das Pumping-Lemma liefert die Zerlegung z = uvwxy mit $vx \ne \varepsilon$ und $|vwx| \le n$.

Fall 1: vwx liegt ganz im Präfix a^nb^{n+1} .

Es folgt nach Pumping-Lemma, dass auch $z_2 = uv^2wx^2y \in L_2$, jedoch haben wir dann mindestens ein a oder b mehr als in z. Wenn wir mindestens ein b mehr haben, also $|z_2|_b > |z|_b$, dann folgt $|z_2|_b \not< |z_2|_c$, da alle c's von z_2 in y liegen. Wenn wir kein b mehr haben, so müssen wir durch $vx \neq \varepsilon$ ein a mehr haben, also $|z_2|_a > |z|_a$ und damit $|z_2|_a \not< |z_2|_b$. In beiden Fällen ist dann jedoch $z_2 \not\in L_2$. Widerspruch!

Fall 2: vwx liegt ganz im Suffix $b^{n+1}c^{n+2}$. Es folgt nach Pumping-Lemma, dass auch $z_0 = uwy \in L_2$, jedoch haben wir dann mindestens ein b oder c weniger als in z. Wenn also $|z_0|_b < |z|_b$, dann folgt $|z_0|_a \not< |z_0|_b$, da alle a's von z_0 in u sind. Wenn wir $|z_0|_c < |z|_c$, dann folgt $|z_0|_b \not< |z_0|_c$. In beiden Fällen ist dann jedoch $z_0 \notin L_2$. Widerspruch!