Indice

R	ELA	ZIONE FINALE VERSIONE INTEGRALE	5
1	INT	TRODUZIONE	5
2	MA	TERIALE E METODI	10
	2.1	Campionamento	10
	2.2	Esami microbiologici	10
	2.3	Antibiogrammi	10
	2.4	Caratterizzazione genotipica di ceppi ESBL e MCR	12
	2.5	Analisi metagenomiche	13
	2.6	Analisi dei dati	14
3	RIS	SULTATI	20
	3.1	Quadro generale	20
	3.2	Prevalenza animali carrier di ceppi resistenti	21
	3.3	Caratterizzazione fenotipica dell'antibiotico-resistenza degli isolati batterici	22
	3.4	Pool metagenomici	24
4	DIS	SCUSSIONE E CONCLUSIONI	25
5	Rac	ccomandazioni (max 2 pagine)	27
6	MO	DALITÀ DI DIVULGAZIONE DEI RISULTATI (1 pagina)	27
Bi	bliog	grafia	43
\mathbf{E}	len	co delle figure	
	1	Andamento annuale del numero di pubblicazioni relative all'AMR nella fauna selvatica	28

2	DAG-Direct Acyclic Graph: secondo il modello qui specificato, la probabilità di Resistenza e dipendente dalla Specie di provenienza dei campioni, dalla superificie del comune dedicata al Pascolo e dal grado di Urbanizzazione. Sia la Specie che frequenta un determinato comune che	
	il Pascolo sono dipendeni dal grado di Urbanizzazione. Specie e Pascolo sono indipendenti	
	condizionalmente al grado di Urbanizzazione.	29
3	Comuni di provenienza dei campioni	29
4	distribuzione numero di resistenze al panel di antibiotici	30
5	Distribuzione a posteriori delle stime di prevalenza di animali carrier di ceppi antibiotico-	
	resistenti nei diversi gruppi-specie	30
6	Distribuzione a posteriori delle stime di prevalenza di animali carrier di ceppi multi-resistenti	
	nei diversi gruppi-specie	31
7	Distribuzione a posteriori delle stime dei coefficenti di regressione del modello 2	31
8	Stima dell'effetto 'Superficie adibita al pascolo' sulla probabilità di un animale di essere carrier	
	di ceppi antibiotico-resistenti, condizionalmente al gruppo-specie di appartenenza	32
9	Distribuzione a posteriori delle stime di prevalenza di ceppi resistenti al panel di antibiotici nei differenti gruppi-specie	32
10	Distribuzione della frequenza dei differenti profili fenotipici di resistenza	33
11	Distribuzione della frequenza di fenotipi di resistenza nei diversi gruppi specie	33
12	Profili di diversità dei fenotipi di ceppi resistenti nei diversi gruppi specie (Reny's entropy	
	standardized	34
Elen	aco delle tabelle	
1	Caratterizzazione territoriale e demografica dei comuni di provenienza dei campioni	35
2	Distribuzione del numero di campioni di feci in base alle differenti specie di fauna selvatica di	
	origine, raggruppati per il gruppo-specie di appartenenza	35
3	Distribuzione del numero di campioni di feci in base alle caratteristiche territoriali di provenienza	
	per i differenti gruppo-specie di appartenenza (NM= Non Montani, P= Parzialmente Montani,	
	T= Totalmente Montani)	37

4	Distribuzione del numero di campioni di feci in base al grado di urbanizzazione dei comuni di	
	provenienza per i differenti gruppo-specie di appartenenza (UA= Urbanizzazione ALta, UM=	
	Urbanizzazione Media, UB= Urbanizzazione Bassa)	37
5	Distribuzione del numero e proprorzione di ceppi della famiglia Enterobacteriacee suddivise	
	per genere, isolati dai 670 campioni di feci analizzati	37
6	Stime della prevalenza di campioni resistenti suddivisi per gruppo-specie: R= numero di	
	campioni resistenti, $N=$ numero campioni esaminati, $Prevalenza=$ media della distribuzione	
	beta, inf-HPD= valore inferiore dell'intervallo HPD, sup-HPD = valore superiore dell'intervallo	
	HPD	38
7	Stime della prevalenza di campioni multi-resistenti suddivisi per gruppo-specie: MR= numero	
	di campioni resistenti, N= numero campioni esaminati, Prevalenza = media della distribuzione	
	beta, inf-HPD= valore inferiore dell'intervallo HPD, sup-HPD = valore superiore dell'intervallo	
	HPD)	39
8	Confronto tra modelli mediante K-fold cross-validation	39
9	Stime a posteriori dei parametri a effetto fisso del modello 2	39
10	Stime bayesiane della prevalenza di ceppi resistenti ai differenti antibiotici	40
11	Profilo di resistenza dei ceppi ai diversi antibiotici per gruppo-specie di provevienza del	
	campione di feci	40
12	Profilo di antibiotico-resistenza tra i diversi generi dei ceppi isolati	40
13	Valori di entropia di Renyi standardizzati tra i diversi gruppi specie	41
14	Caratterizzazione genotipica dei geni di resistenza dei 47 ceppi resistenti a Ceftiofur	41
EN	CO DEI COLLABORATORI	
• D	Or. Tranquillo Vito U.O. 1-Responsabile scientifico del progetto.Coordinamento delle U.O., Ana	alisi
at	entiation dai dati fanatiniai	

\mathbf{EL}

- statistica dei dati fenotipici.
- Dr. Fiocchi Alfredo U.O. 1-Analisi microbiologiche e antibiogrammi.
- Dr. Pongolini Stefano U.O. 2-Coordinamento U.O. e attività di analisi metagenomiche
- Dr. Bolzoni Luca U.O. 2-Attività analisi metagenomiche
- Dr. Erika Scaltriti U.O. 2-Attività analisi metagenomiche

- Dr. Bertoletti Irene U.O. 3-Analisi Microbiologiche e antibiogrammi
- Dr. Alessandro Bianchi U.O. 3-Analisi Microbiologiche e antibiogrammi
- Dr. Loris Alborali U.O. 4-Analsi genomiche ceppi Ceftiofur resistenti
- Dr. Prati Paola U.O. 5- Attività di raccolta e invio campioni a U.O.1 per successive analisi
- $\bullet\,$ Dr. Gianni Sala U.O. 6- Attività di raccolta e invio campioni a U.O.1 per successive analisi

RELAZIONE FINALE VERSIONE INTEGRALE

1 INTRODUZIONE

L'Antibiotico-Resistenza (AR) è una grave minaccia per la salute in quanto compromette la capacità di trattare le infezioni sia in medicina umana che veterinaria. La resistenza agli antibiotici si sviluppa attraverso complessi meccanismi come la mutazione sotto la pressione selettiva, derivante dall'uso/abuso di antibiotici nel trattamento delle forme infettive batteriche o all'uso metafilattico o come promotori della crescita in zootecnia (pratica oramai illegale nella EU). La diffusione dell'antibiotico-resistenza è attribuita a scambi di DNA inter e intra-specifici, prinicipalmente attraverso il trasferimento orizzontale di geni di resistenza localizzati su plasmidi che rappresenta il più importante meccanismo all'origine dell'acquisizione della resistenza in batteri patogneni rilevanti per la salute umana (Carattoli 2013).

La principale strategia per ridurre l'incidenza del fenomeno antibiotico-resistenza si basa sulla riduzione dell'uso degli antibiotici sia nell'uomo che negli animali domestici, considerando che risulta chiaro che entrambi i comparti sono strettamente collegati e copartecipano al mantenimento e alla diffusione di batteri resistenti e di geni di resistenza (Angulo, Nargund, and Chiller 2004). Queste misure si basano sul presupposto che la resistenza antimicrobica è associata a costi energetici che riducendo le performance riproduttive consentono ai batteri sensibili di superare quelli resistenti, quando non esiste una pressione selettiva legata ai farmaci antimicrobici, anche se sembra che questi costi siano estremamente variabili (Andersson and Hughes 2010) e possano essere ridotti o addirittura trasformati in benefici per il fitness da mutazioni compensative (Luo et al. 2005).

Va ricordato che batteri portatori di geni di resistenza si trovano naturalmente nei suoli in assenza di farmaci antimicrobici antropogenici a causa della produzione naturale di molecole antibiotiche da parte di alcuni batteri e funghi (Knapp 2013). Il serbatoio di geni di resistenza nell'ambiente è quindi un mix di resistenza naturale e quella dovuta alle deiezioni di animali e uomini, a cui si possono aggiungere gli effetti selettivi di inquinanti, che possono co-selezionare elementi genetici mobili che trasportano più geni di resistenza. A questo proposito è stato stabilito che anche basse concentrazioni di antibiotici e metalli pesanti posso avere attività selettiva e indurre antibiotico-resistenza (Baker-Austin et al. 2006; Gullberg et al. 2011; Kohanski, DePristo, and Collins 2010). La contaminazione ambientale dei determinanti di antibiotico-resistenza, può contribuire all'insorgenza e proliferazione di patogeni difficili o addirittura impossibili da trattare. In considerazione del potenziale impatto negativo sia sulla salute che economico della proliferazione ambientale di batteri antibiotico-resistenti, molti ricercatori, in linea con l'approccio One Health (Robinson et al. 2016) includono

nelle valutazioni dell'antibiotico resistenza, anche la contaminazione ambientale del suolo, dell'acqua e della fauna selvatica (Allen et al. 2010).

I dati disponibili mostrano che numerose specie di animali selvatici sono portatori di batteri antimicrobici resistenti in una vasta gamma di habitat, il che solleva la questione del loro ruolo nelle dinamiche di diffusione e mantenimento all'interfaccia tra popolazioni umane, animali domestici ed ecosistemi naturali. La presenza nella fauna selvatica, normalmente non sottoposta a trattamenti antibiotici, di ceppi batterici resistenti e in generale di geni di resistenza, è verosimilmente attribuibile a fenomeni di contaminazione ambientale. Per definire il ruolo della fauna selvatica nel complesso meccanismo di diffusione e mantenimento dell'antibiotico resistenza è necessario acquisire informazioni relativamente a: quali specie di batteri sono le più frequentemente trovate resistenti ai farmaci antimicrobici nei vertebrati selvatici e la loro caratterizzazione fenotipica e soprattutto genotipica; in che modo le specie selvatiche vengono colonizzate da batteri antibiotico-resistenti e quali scambi di tali batteri avvengono tra l'uomo, gli animali domestici e la fauna selvatica; cosa caratterizza gli habitat più contaminati da batteri antibiotico-resistenti e infine quali tratti ecologici favoriscono la colonizzazione e la potenziale infezione da batteri antibiotico-resistenti nella fauna selvatica ((Vittecoq et al. 2016)).

L'interesse per il ruolo della fauna selvatica nella diffusione e nel mantenimento dell'antibiotico-resistenza è aumentato nel corso degli ultimi 10 anni, con un costante aumento della produzione scientifica, come evidenziato in (Fig1). La principale preoccupazione nasce dal timore che l'eventuale dimostrazione di un ruolo della fauna selvatica come "serbatoio" e "mantenimento" di batteri portatori di geni di resistenza, contribuendo alla contaminazione ambientale di batteri resistenti o materiale genetico di resistenza (resistoma), possa compromettere gli sforzi messi in atto, soprattutto in questi ultimi anni, in campo medico e veterinario per ridurre la diffusione del fenomeno della resistenza agli antibiotici.

Una scoping review pubblicata nel 2015 (Greig et al. 2015), ha evidenziato la presenza di 866 articoli di ricerca primaria; Oltre il 90% erano studi osservazionali; la maggioranza riportano i dati di prevalenza per AR nella fauna selvatica (551/866, 63.6%). Ci sono stati 176 di 866 (20,3%) studi di genotipizzazione. AR è stata più frequentemente studiata in E. coli 150 di 866 (17,3%), Salmonella 83 di 866 (9,6%) e Enterococcus 48 di 866 (5,5%). I gruppi della fauna selvatica più frequentemente studiati erano uccelli 410 su 866 (47,3%), cervidi, 133 di 866 (15,4%) e roditori 91 di 866 (10,5%). Solo 11 articoli hanno studiato la contaminazione dei prodotti La contaminazione ambientale è stata più frequentemente riportata per l'acqua 130 di 866 (15%). Le modalità di trasmissione dell'AR è stata riportata in 110 articoli (12,7%). Tra le caratteristiche ambientali che sono state segnalate come fattori di rischio per il trasferimento di batteri patogeni e /o AR vi sono: condivisione di ambienti 161 di 866 (18,6%), infestazione o mancanza di controllo degli uccelli selvatici 124

di 866 (14,3%) e delle fonti idriche condivise 98 di 866 (11,3%). Le pratiche di mitigazione, strategie o programmi per ridurre la trasmissione di batteri e / o AR sono stati discussi o studiati in 124 su 866 (14,3%) articoli. Sono state fornite informazioni circa i tassi di contatto tra fauna selvatica e animali domestici in 29 articoli (3,3%). È interessante notare che numerosi articoli di ricerca primaria (122/866, 14.1%) hanno riportato associazioni per i fattori di rischio di trasmissione di AR o batteri patogeni dalla fauna selvatica agli animali cibo, fonti ambientali o umani.

Uno dei primi lavori in Italia sull'AR nella fauna selvatica è stato condotto da (Pagano et al. 1985) in ruminanti selvatici e marmotte del parco Nazionale dello Stelvio, in cui su 121 campioni di feci esaminati furno individuati 17 ceppi di E.coli antibiotico-resistenti. Nel 1991 (Caprioli et al. 1991) su 81 campioni di feci da mammiferi selvatici (ruminanti, marmotta) del Parco Nazionale dello Stelvio sono stati osservati complessivamente 18 ceppi di E.coli antibiotico-resistenti. I ceppi isolati hanno mostrato un profilo di multiresistenza. Gli Autori hanno concluso che i ceppi di E. coli in animali selvatici possono essere resistenti a diversi agenti antimicrobici e portatori di plasmidi R, anche se il microbioma intestinale degli animali selvatici non è direttamente esposta agli antibiotici. Così una possibile fonte di AR in E.coli potrebbe essere quegli esseri umani e animali domestici che portano AMRB e condividono gli stessi habitat (turisti, animali domestici pascolo) di animali della fauna selvatica.

Più recentemente sono stati pubblicati nuovi lavori che riguardano la presenza di antibiotico-resistenza in feci di animali selvatici in varie regioni d'Italia con particolare riferimento alle Enterobatteriacee e in particolare E.coli come microrganismo target.

Giacopello et al. (2016) hanno condotto nel 2013 uno studio osservazionale su 55 tamponi cloacali di diverse specie di avifauna selvatica raccolti da animali ospitati per varie cause presso un centro di recupero per volatili feriti della provincia di Messina. Dai tamponi sono stati isolati 83 ceppi appartenenti alle Enterobacteriacee sottoposti a test di suscettibilità ad un pannello di 16 antibiotici. La resistenza a Trimethoprim/Sulfamethoxazolo è risultata la più frequente fino ad un massimo dell'100% nel gruppo dei passeriformi, del 94% negli uccelli volatili e dell'84% nei rapaci. Importanti livelli di resistenza sono stati osservati anche nei confronti di streptomicina, amoxicillina/clavulanico e ampicillina. I livelli di suscettibilità più elevati sono stati osservati verso antibiotici della famiglia delle cefalosporine. Sono state osservate differenze nel profilo di resistenza dei diversi gruppi tassonmici di avifauna indagata.

Camarda et al. (2006) riportano i risultati di uno studio osservazionale su 48 ceppi di Escherichia coli isolati da tamponi cloacali, raccolti nel 2002, in una colonia stanziale nella baia di Gallipoli (Lecce) di esemplari di Gabbiano corso (Larus audounii). I test di suscettibilità hanno mostrato una resistenza mediamente

scarsa con oltre il 50% dei ceppi suscettibili a tutto il panel di antibiotici testati, il 30% resistente ad un solo antibiotico e il restante 20% resistente a 2 o più antibiotici.

Foti et al. (2011) hanno condotto uno studio osservazionale nel 2006 su campioni di uccelli migratori durante il loro passaggio sopra il territorio di Ustica in Sicilia. Sono stati raccolti 218 tamponi cloacali e 21 contenuti intestinali provenienti da soggetti rinvenuti morti. Sono stati isolati 183 ceppi di batteri appartenenti alla famiglia delle Enterobacteriaceae e quasi tutti hanno mostrato un elevata frequenza di suscettibilità al panel di antibiotici utilizzato. Le maggiori resistenze sono stati osservate nei confronti di Ampicillina, Amoxicillina-Acido Clavulanico e Streptomicina.

Sempre Foti et al. (2017) in uno studio osservazionale nel 2010 durante la migrazione annuale dei passeriformi nel territorio di Metaponto in Basilicata, hanno raccolto 121 tamponi cloacali di soggetti appartenenti all'ordine dei passeriformi da cui sono stati isolati 122 ceppi di Enterobacteriaceae. Lo studio di suscettibilità agli antibiotici ha mostrato una rilevante frequenza (superiore al 50%) di fenotipi di resistenza in particolare nei confronti di Ampicillina, Amoxicillina, Rifampicina e Amoxicillina-Acido Clavulanico. Rilevante è risultato di circa il 25% dei ceppi resistenti a Imipenam e circa il 7% di ceppi resistenti a Meropenem.

Uno studio osservazionale condotto nel territorio del Parco Nazionale dell'Aspromonte in Calabria nel periodo dal 2015-2017 da Foti et al. (2018) ha permesso di studiare la diffusione dell'antibiotico-resistenza in ceppi di Enterobacteriaceae da mammiferi selvatici (Volpe, Mustelidi, Gatto selvatico e Lupo) utilizzando campioni di feci raccolti direttamente dall'ambiente. SOno stati isolati 221 ceppi di Enterobacteriaceae che hanno mostrato importanti frequenze di antibiotico-resistenza nei confronti di un panel di 20 antibiotici appartenti a 10 differenti classi. In particolare viene sottolineato l'alta frequenza di ceppi resistenti al gruppo delle penicillinasi (amoxicillina, ampicillina e amoxicillina-ac.clavulanico), alle tetracicline e agli aminoglicosidi.

Bonardi et al. (2018) nel 2017-18 hanno condotto uno studio con l'obiettivo di evidenziare la presenza di Escherichia coli ESBL produttori a partire da isolati di E.coli da linfonodi meseraici di Cinghiali, abbattuti nella provincia di Parma. Un solo ceppo di Escherichia coli su 108 esaminati, è risultato ESBL produttore dal punto di vista fenotipico e confermato genotipicamente attraverso l'evidenzazione del gene bla_{TEM} .

Turchi et al. (2019) nel 2017 hanno condotto uno studio osservazionale nel Parco Regionale delle Alpi Apuane in Toscana, focalizzando l'attenzione suil profilo fenotipico e genotipico di 71 ceppi di Escherichia coli isolati da 85 campioni di feci di mammiferi selvatici di diverse specie tra cui ungulati, carnivori e lagomorfi. La più alta frequenza di antibiotico-resistenze è stata osservata fenotipicamente in cefalotina (39%) e ampicillina (34%). Il 39% dei ceppi sono risultati negativi ai test d'identificazione dei geni di resistenza.

L'attività routinaria nel periodo tra il 2002 e il 2016 (anno di presentazione di questo progetto di ricerca) presso l'IZSLER mostra che sono stati eseguiti 404 antibiogrammi di ceppi di batteri isolati da animali selvatici. Tutti questi ceppi mostrano resistenza ad almeno un antibiotico. Nel 96% si è osservata multi-resistenza; 77% erano ceppi di Salmonella spp isolati da oltre 300 cinghiali. E. coli è stato il secondo ceppo più analizzato (51). Tra le altre specie di fauna selvatica indagate ci sono: 27 ruminanti, 22 uccelli, 42 lepri, 2 volpi e un riccio. Questi dati sono indicativi della presenza e della circolazione di batteri antibiotico-resistente e geni di antibiotico-resistenza nella fauna selvatica della Lombardia.

Sulla base di questi dati è stato progettato un studio osservazionale con l'obiettivo di raccogliere informazioni sulla presenza e diffusione dell'antibiotico-resistenza in ceppi batterici della famiglia delle Enterobacteriacee isolati da feci di un ampio spettro di specie di fauna selvatica, presente in varie province della Lombardia con differenti gradi di urbanizzazione; la loro caratterizzazione fenotipica di resistenza e quella genotipica utilizzando metodiche di analisi metagenomica su pools di ceppi batterici di Escherichia coli. (Ahmed et al. (2016))

2 MATERIALE E METODI

2.1 Campionamento

Si è proceduto ad un campionamento non probabilistico di convenienza utilizzando sia i campioni raccolti durante le attività di sorveglianza del piano regionale fauna selvatica della Lombardia (cinghiali, ruminanti selvatici, lagomorfi, volatili), sia i campioni provenienti da attività di sorveglianza del piano CWD (cervi e caprioli) e del piano West Nile Disease (Cornacchie, Gazze). I campioni di feci raccolti dall'intestino degli animali, direttamente in campo per i mammiferi abbattuti durante la stagione venatoria (prevalentemente cinghiali), o durante la necroscopia per gli animali rinvenuti morti o volatili abbattuti nell'ambito del monitoraggio WND, sono stati stoccati a temperatura di congelamento in attesa di essere processati. La raccolta dei campioni è avvenuta nel periodo compreso tra la fine del 2017 e primi mesi del 2019.

2.2 Esami microbiologici

L'esame batteriologico è stato eseguito seguendo le indicazioni riportate nel metodo di prova interno IZSLER che descrive la tecnica microbiologica per la categorizzazione di isolati batterici aerobi/anaerobi facoltativi. I campioni di feci confezionati in sacchetti o barattoli o prelevati direttamente in sede necroscopica dall'intestino, sono stati disciolti in brodo di pre-arricchimento APT (acqua peptonata) e, dopo l'allestimento di tamponi, sono stati seminati su MC-Conkey Agar (terreno selettivo per enterobatteriacee) e incubati per 24-48 ore a 37°C in aerobiosi al fine di ottenere colonie isolate. Da una colonia isolata sono state realizzate colture su terreno solido Klieger Iron Agar (KIA) da utilizzare nelle successive prove di caratterizzazione (morfologica, colturale, biochimica). Il KIA costituisce un terreno differenziale impiegato principalmente come ausilio nell'identificazione di alcuni membri della famiglia delle Enterobacteriaceae. La differenziazione degli enterobatteri avviene in base alla loro capacità di fermentare il destrosio ed il lattosio e di produrre idrogeno solforato. Tutti i campioni sono stati successivamente sottoposti alla prova della citocromo ossidasi. Quelli risultanti ossidativi e fermentativi alla coltura su terreno Klieger sono stati testati per confermare fossero E.Coli (ossidasi negativo). I campioni risultati ossidasi positivi sono stati invece identificati con analisi biochimica mediante gallerie utilizzando il kit Microgen TM GnA + B-ID System.

2.3 Antibiogrammi

Tutti i ceppi isolati sono stati sottoposti al test di sensibilità agli antibatteri mediante la tecnica di diffusione in agar descritta nel metodo di prova interno per l'esecuzione dell'antibiogramma dell'Istituto Zooprofilattico

della Lombardia e dell'Emilia Romagna, redatto in conformità con le linee guida nazionali del Centro di Referenza per l'Antibiotico Resistenza (CRAB) e le linee guida internazionali del Clinical and Laboratory Standards Institute (CLSI). E' stato utilizzato un panel di 7 antibiotici scelti sulla base delle Linee Guida per l'interpretazione delle prove di sensibilità ai chemioantibiotici del Centro di Referenza Nazionale per l'Antibiotico-resistenza (link alle linee guida). Le molecole selezionate sono indicate come molecole prototipo rappresentative delle diverse classi farmacologiche:

Ampicillina (AMP). Molecola prototipo di Beta-lattamici tipo Amoxicillina, Etacillina. Antibiotico classificato dal WHO (Organization and others 2019) come Critically Important Antimicrobial e High priority in quanto incontra i criteri C1 e C2 dei criteri di categorizazzione e i criteri P2, e P3 dei criteri di prioritizzazione. Antibiotico a largo spettro di azione, usato in medicina umana e veterinaria sin dal 1961. L'ampicillina impedisce la formazione dei legami crociati tra le varie molecole di peptidoglicano (mureina), un componente fondamentale della parete cellulare batterica, e ne compromette la stabilità, rendendo così i batteri suscettibili allo shock osmotico. Alcuni batteri produttori dell'enzima beta-lattamasi (penicillinasi) possono inattivare l'antibiotico rendendo così il trattamento inefficace. E' uno dei pochi antibiotici attivo contro i ceppi multiresistenti di Enterococcus faecalis e E.faecium.

Tetraciclina (TET). Molecola prototipo di Clortetraciclina, Doxyciclina, Minociclina, Oxytetraciclina, classificato dal WHO come Highly important antimicrobial, in quanto incontra solo il criterio C2 di classificazione. Antibiotico a largo spettro d'azione in uso dal 1978 sia in medicina umana che veterinaria. Batteriostatico, penetra nella cellula complessata a Mg 2+ . Lega la sub-unità 30S impedendo l'accesso degli aminoacil-tRNA al sito recettoriale A del ribosoma; I batteri di solito acquisiscono resistenza alla tetraciclina dal trasferimento orizzontale di un gene che codifica per una pompa di efflusso o una proteina di protezione ribosomiale. Le pompe Efflux espellono attivamente la tetraciclina dalla cellula, impedendo l'accumulo di una concentrazione inibente della tetraciclina nel citoplasma (Chopra and Roberts 2001). Le proteine di protezione ribosomiale interagiscono con il ribosoma e rimuovono la tetraciclina dal ribosoma, consentendo di continuare la traduzione (Connell et al. 2003).

Ceftiofur (CFT). Molecola prototipo di Cefalosporine a spettro esteso di 3[,] 4^{e 5 generazione come Cefoperazone, Cefpodoxime e Cefquinome, classificate dal WHO come Critically Important Antimicrobial, perchè incontrano i creteri C1, C2 e C3 e Highest Priority perchè soddisfano i criteri di priorità P1, P2 e P3. In particolare Le cefalosporine di 3^{e più alte generazioni sono conosciute come in grado di selezionare ceppi resistenti di Salmonella spp e di Escherichia coli negli animali, e allo stesso tempo sono uno dei pochi strumenti terapeutici a disposizione per forme gravi di Salmonellosi e infezioni da E.coli nell'uomo e in particolare nei bambini.}}

Colistina (COL). Molecole non appartenente al panel consigliato dalla linee guida in quanto particolarmente critico per l'utilizzo in umana. E' classificata dal WHO come Critically Important Antimicrobial e Highest Priority. Le polymixine, gruppo farmacologico a cui appartiene la colistina, sono conosciute per selezionare E.coli polymixin-resistenti mediate da plasmidi. La somministrazione intravenosa di polymixina è uno dei pochi strumenti terapeutici efficaci per gravi forme di infezioni nosocomiali da E.coli e Pseudomonas aeruginosa multi-resistenti in molti paesi, soprattutto nei pazienti in condizioni critiche. E' stato inserito nel panel per verificare la presenza di resistenza a questo importante antibiotico in ceppi provenienti dalla fauna selvatica come misura del grado di contaminazione degli ambienti selvatici da parte di ceppi portatori di resistenza alle polymixine.

Kanamicina (KAN). Molecola prototipo degli Aminoglicosidi tra cui le streptomicine (isolate da attinomiceti del genere Streptomyces) quali Neomicina e Framicetina. Classificate dal WHO Critically Important Antimicrobial in quanto soddisfa i criteri C1 e C2 e Highly important in quanto soddisfa solo P2 e P3 tra i fattori di prioritizzazione.

Gentamicina (GEN). Molecola prototipo di Aminoglicosidi isolati da attinomiceti del genere Micromonospora quali Tobramicina, Apamicina, calssificata come Critically Important Antimicrobial in quanto soddisfa i criteri C1 e C2 e Highly important in quanto soddisfa solo P2 e P3 tra i fattori di prioritizzazione.

Enrofloxacin (ENR). Molecola prototipo dei fluorochinolonici, tra cui Danofloxacin, Ciprofloxacin, Marbofloxacin, Orbifloxacin, Pradofloxacin. Antibiotici classificati da WHO come Critically Important Antimicrobial e Highest Priority in quanto soddisfano sia i criteri d'importanza C1, C2 e C3 sia i fattori di prioritizzazione P1, P2 e P3). Sono antibiotici conosciuti per selezionare negli animali ceppi di E.coli e Salmonella spp resistenti ai chinoloni che sono tra i pochi strumenti terapeutici nel caso di gravi forme di infezioni da Salmonella e E.coli.

2.4 Caratterizzazione genotipica di ceppi ESBL e MCR

2.4.1 Screening

Sulla base dei risultati dell'antibiogramma sono stati selezionati i ceppi risultati resistenti a Ceftiofur e quindi sottoposti al test per identificare i ceppi ESBL fenotipicamente resistenti. I ceppi positivi al test sono quindi stati inviati all'U.O.x per la caratterizzazione genomica.

2.4.2 Conferma

I [49]campioni conferiti sono stati sottoposti a esame batteriologico con semina su piastre di agar MacConkey e di agar sangue (Oxoid, Italia) e successiva incubazione in aerobiosi per 18 ± 2 ore a $37 \pm 2^{\circ}$ C. Le colonie sospette di E. coli sono state identificate morfologicamente colorazione di Gram. Si è quindi proceduto a prelevare una colonia sospetta e seminata in BHI (Brain Heart Infusion) agar inclinato (Oxoid, Italia) e l'identificazione è stata condotta tramite il metodo biochimico API 20E (bioMérieux, Francia). Per l'indagine ESBL (produttori di beta-lattamasi a spettro allargato), una colonia sospetta di E. coli è stata inoculata in 1 ml di brodo BHI con supplemento di 1 mg/L di cefotaxime per la fase di pre-arricchimento. In seguito ad incubazione overnight, una goccia di BHI brodo è stata seminata su agar MacConkey con supplemento di 1 mg/L di cefotaxime. I ceppi positivi sono stati identificati attraverso la crescita di colonie rosa-rosa scuro ed una di queste è stata prelevata per le successive analisi molecolari.

2.4.3 Caratterizzazione genomica

Una singola colonia batterica per campione è stata risospesa in 250 μ l di acqua DNasi-RNasi free e il DNA è stato estratto mediante lisi-ebollizione (98°C per 10 minuti). Il gruppo filogenetico di ciascun isolato è stato determinato attraverso una PCR multiplex che discrimina i sette gruppi principali (A, B1, B2, C, D, E o F) come descritto da (Clermont et al. 2013). La rilevazione dei geni di resistenza presenti negli isolati è stata eseguita utilizzando un pannello di reazioni PCR. I geni del gruppo CTX-M sono stati analizzati tramite PCR multiplex, la cui positività singola o multipla, identifica i cinque gruppi filogenetici principali: CTX-M1, CTX-M2, CTX-M9 e CTX-M8 e CTX-M25 (Woodford, Fagan, and Ellington 2006). Inoltre, singole reazioni PCR sono state utilizzate per il gene SHV (Arlet, Rouveau, and Philippon 1997), il gene TEM (Mabilat et al. 1990), utilizzando primer universali come precedentemente descritto ((Chang et al. 2001); (Ahmed et al. 2007); (Cremet et al. 2011); (Gbonon et al. 2018)) e geni AmpC (CMY-2, CMY-4, CMY -6, CMY-7, CMY-12, CMY-13, CMY-14, CMY-18, LAT-3) (Dierikx et al. 2010). La ricerca dei geni mcr (plasmid-mediated colistin resistance determinants), mcr-1, mcr-2, mcr-3, mcr-4 and mcr-5, è stata condotta tramite PCR multiplex come descritto da (Rebelo et al. 2018).

2.5 Analisi metagenomiche

Le analisi metagenomiche sono state eseguite sui seguenti pools di ceppi di Escherichia coli costituiti secondo criteri di confrontabilità e rappresentatività di, area di campionamento, specie di provenienza, e in base

alla disponibilità numerica; un ulteriore pool è costituito da ceppi di Klebsiella penumoniae di particolare interesse come patogeno nosocomiale:

2.6 Analisi dei dati

2.6.1 Gestione dei dataset

I dati raccolti sono stati inseriti in foglio elettronico denominato **AMR** in formato googlesheet e quindi importato in ambiente R(R Core Team 2020) per le successive analisi. **AMR** risulta costituito da 911 righe e 23 colonne. Ogni riga corrisponde ad un isolato batterico sottoposto al test di sensibilità al panel di antibiotici identificati da una variabile univoca denominata **IDceppo**. La variabile **IDcamp** identifica in modo non univoco il campione di feci sottoposto ad analisi micorbiologica per l'isolamento e identificazione dei cepppi di *Enterobacteriacee*:

- SPECIE variabile categorica che riporta la specie di provenienza dei campioni di feci. Questa variabile contiene 33 livelli differenti che comporta una eccessiva parcellizzazione dei dati con presenza di poche unità per alcune specie. Si è quindi proceduto ad aggregare le specie sulla base di considerazioni tassonomiche e ecologiche in nove gruppi specie identificati dalla variabile Specieaggreg
- COMUNE variabile categorica che riporta i comuni di provenienza dei campioni di feci. Per 24 campioni di feci non era disponibile il dato relativo al Comune di provenienza.
- Identificazione variabile categorica che riporta il genere di appartenza dei ceppi isolati
- AMP (Ampicillina), COL (Colistina), CFT (Ceftiofur), KAN (Kanamicina), ENR (Enrofloxacin),
 GEN (Gentamicina), TET (Tetraciclina): variabili dicotomiche che identificano la Sensibilità o
 Resistenza ai differenti antibiotici del panel.

Altre variabili presenti nel dataset ma non utilizzate per l'analisi dei dati sono: FASCETTA (identificativo,quando presente, dell'animale da cui proviene il campione di feci), DATA_PRELIEVO, DATA_SEMINA, STATO_CAMPIONE (se fresco o congelato), til (tilmicosina), ox (oxacillina), er (eritromicina): questi tre antibiotici sono stati tutti utilizzati durante il test di sensibilità agli antibiotici, ma come da indicazione del centro di referenza per l'antibiotico-resistenza le **Enterobatteriacee** mostrano resistenza naturale, quindi i rispettivi risultati non sono stati utilizzati per le successive analisi dei dati.

Il dataset AMR ha una struttura gerarchica costituita da tre livelli: Comune, IDCamp, e IDceppo. I comuni contribuiscono con uno o più campioni di feci provenienti da diverse specie animali; da un singolo campione

di feci identificato dal IDcamp, possono essere isolati da uno a più ceppi batterici appartenente alla famiglia delle enterobatteriacee identificati dal IDceppo. Le statistiche relative ai campioni di feci sono quindi state ottenute escludendo per i campioni con più di un ceppo i record multipli con differente IDceppo ma identico IDcamp.

Le caratteristiche dei differenti comuni di provenienza dei campioni sono state ottenute da differenti database dell'ISTAT consultabili al sito (https://www.istat.it/it/) e quindi collegate al dataset AMR mediante il campo COMUNE, ottenendo quindi il dataset AMR_istat, costituito da 876 record, utilizzato per analizzare l'associazione tre caratteristiche ambientali-sociali dei differenti comuni e la prevalenza di animali portatori di enterobattericee resistenti ad almeno un antibiotico del panel indagato.

Le caratteristiche dei comuni utilizzate sono: **denpop(abkmq)** (densità di popolazione espressa in abitanti per Kmq), **sup(kmq)** (superficie del comune in kmq), **urb** (grado di urbanizzazione: variabile categorica con tre livelli:1=densamente popolato, 2=mediamente popolato, 3=scarsamente popolato (rurale), **hapasc** (ettari di territorio dedicati al pascolo), **capi** (numero di capi al pascolo), **aziende** (numero di aziende con animali al pascolo), **montano** (montanità del territorio), **altcentro** (altitudine in metridel comune).

2.6.2 Metodi statistici

Prevalenza animali portatori di ceppi resistenti e multiresistenti. Sulla base dei profili di resistenza dei singoli ceppi si è provveduto a classificare i ceppi in Suscettibili (ceppi sensibili a tutti gli antibiotici del panel) e Resistenti (ceppi sensibili ad almeno un antibiotico del panel) e quindi a classificare come campione di feci "Resistente", feci portatori di almeno un ceppo resistente ad almeno un antibiotico del panel indagato. Le stime puntuali e intervallari della prevalenza complessiva e specifica per gruppo- specie dei campioni "Resistenti" sono state stimate mediante l'impiego diuna distribuzione Beta a priori coniugata sulla distribuzione di p (probabilità di essere un ceppo resistente) in un esperimento binomiale ottenendo una distribuzione Beta a posteriori della probabilità P. Dal teorema di Bayes la distribuzione a posteriori di p condizionalmene ai dati osservati è data da:

$$p|x = Beta(x + \alpha, n - x + \beta)$$

dove: \mathbf{p} = probabilità di un campione di feci resistente (secondo la definizione data sopra); \mathbf{n} = numero di osservazioni; \mathbf{x} = numero di campioni resistenti; α e β sono gli iperparametri della distribuzione a priori beta di \mathbf{p} , che in questo caso è una Jeffrey's prior con distribuzione Beta(0.5, 0.5). Dalla distribuzione posteriore viene costruito quindi un intervallo di credibilità che raccoglie la più alta probabilità di densità di valori di \mathbf{p}

(HPD) corrispondente al 95% dei valori di p stimati. La stima puntuale della prevalenza è rappresentata dalla media della distribuzione Beta a posteriori data da:

$$mean = (x + 0.5)/(n + 1)$$

I risultati sono restituiti in forma tabellare e grafica mediante l'utilizzo del pacchetto binom (Dorai-Raj 2014) in ambiente R.

La stessa procedura è stata utilizzata per stimare la prevalenza di campioni di feci carrier di almeno un ceppo risultato multi-resistente (MR), dove per multi-resistenti si definiscono i ceppi resistenti a tre o più antibiotici del panel.

Variabilità della Prevalenza di animali portatori di ceppi resitenti e caratteristiche ambientali Esistono evidenze in letteratura che la presenza (prevalenza/occorrenza) di animali selvatici portatori di ceppi AR è da attribuire alla contaminazione ambientale e/o all'interazione tra specie doemstiche e selvatiche. Per 648 campioni è risultato disponibile il dato geografico e la caratterizzazione territoriale ISTAT. Su questi campioni è stato quindi possibile valutare la relazione tra prevalenza di capi selvatici portatori di ceppi R (e di ceppi MR) e i caratteri territoriali di provenienza dei campioni. Per questo tipo di valutazione sono stati esclusi i dati riferiti ai gruppi-specie meno numerosi: LEPRE, UCCELLI ACQUATICI e ALTRI VOLATILI. Dopo esclusione di questi gruppi specie, il dataset comprende informazioni su 603 campioni. I dati Istat disponibili, utilizzati, per esplorare l'associazione tra prevalenza di capi portatori di AR e indicatori di "contaminazione" derivati dai singoli comuni sono: densità di popolazione (da cui deriva la classificazione del grado di urbanizzazione dell'ISTAT), superficie kmq del comune, altitudine, superfice a pascolo, numero di capi domestici al pascolo, n.aziende al pascolo. Per questo studio è stato adattato un modello bayesiano multilevel specificato a priori mediante un Direct Acyclic Graph (DAG) che ha permesso di chiarire la dipendenza delle variabili e scegliere quelle da inserire nel modello (Fig2). Formalmente il modello è il seguente:

$$R_i \sim Bernoulli(p)$$

$$logit(p) = \alpha_{Comune} + \beta * X$$

$$\alpha_{Comune} \sim Normal(\alpha, \sigma)$$

$$\alpha \sim Normal(0, 1)$$

$$\sigma \sim \text{HalfCauchy}(0,1)$$

$$\beta \sim Normal(0,1)$$

Dove X rappresenta la matrice dei predittori e α_{Comune} definisce la variabile con intercetta variabile. Tutte le variabili quantitative predittorie (Urbanizzazione e Pascolo) sono state standardizzate in accordo a quanto suggerisce (Gelman, Hill, and Vehtari 2020), sia per una maggior interpretabilità dei coefficienti sia per una migliore performance del motore HCMCM che per una miglior utilizzo delle prior del modello. Le stime dei parametri del modello sono state ottenute mediante campionamento con l'algoritmo Hamiltonian Monte Carlo utilizzando quattro catene, con 4000 iterazioni di cui 1000 di warmup (escluse dopo il campionamento). Per questo modello è stato utilizzato il pacchetto brms (Bürkner 2018) come interfaccia del linguaggio STAN (Gelman, Lee, and Guo 2015) implementato in R nel pacchetto rstan (Stan Development Team 2020). Si è proceduto ad adattare i seguenti modelli utilizzando i diversi predittori esplorando termini d'interazione ragionevoli dal punto di vista epidemiologico:

- modello 1 : $logit(p) = \alpha_{Comune} + \beta_{Specie} + \beta_{Pascolo} + \beta_{Urbanizzazione}$
- modello 2 : $logit(p) = \alpha_{Comune} + \beta_{Specie} + \beta_{Pascolo} + \beta_{Urbanizzazione} + \beta_{Specie*Pascolo}$
- modello 3: $logit(p) = \alpha_{\text{Comune}} + \beta_{\text{Specie}} + \beta_{\text{Pascolo}} + \beta_{\text{Urbanizzazione}} + \beta_{\text{Specie*Pascolo}} + \beta_{\text{Specie*Urbanizzazione}}$

Il confronto tra i diversi modelli è stato effettuato mediante l'utilizzo delle tecniche di cross-validazione K-fold cross-validation con K= 10 subset di dati(Gelman, Hill, and Vehtari 2020).

Prevalenza di ceppi resistenti e profili fenotipici di resistenza ai differenti antibiotici. Sulla base dei profili di resistenza dei singoli ceppi si è provveduto a classificare i ceppi in

- Suscettibili (ceppi sensibili a tutti gli antibiotici del panel)
- Resistenti (ceppi sensibili fino a 2 antibiotici del panel)
- Multiresistenti (ceppi sensibili a 3 o più antibiotici del panel).

Per ogni singolo antibiotico è stata stimata la distribuzione a posteriori della prevalenza di ceppi resistenti complessivamente e nelle differenti specie di provenienza dei campioni, adattando modelli bayesiani analogo al precedente a cui si rimanda.

Le distribuzioni a posteriori delle prevalenze sono state quindi riassunte mediante il calcolo della mediana e dei percentili 2.5 e 97.5, definendo quindi un intervallo di credibilità del 95%.

Biodiversità dei profili fenotipici di resistenza Sulla base delle resistenze ai differenti antibiotici del panel i ceppi sono stati caratterizzati per il loro profilo di resistenza indicato da una stringa costituita dall'abbreviazione di tre lettere degli antibiotici resistenti. Ad esempio la stringa AMP-TET-COL indica un ceppo batterico con fenotipo di resistenza a Ampicillina, Tetraciclina, e Colistina. I differenti ceppi sono stati quindi aggregati per fenotipo e per gruppo-specie di provenienza dei ceppi e analizzati mediante metodi di analisi della biodiversità calcolando quattro misure di diversità legate alle misure di entropia generalizzata di Rényi secondo l'approccio descritto da (Mather et al. 2012). L'entropia di Rényi si calcola mediante la seguente formula:

$$H_{\alpha} = \frac{Ln \sum p^{\alpha}}{1 - \alpha}$$

 α rappresenta un parametro di scala, lungo il quale la richezza del profilo e l'abbondanza relativa dei profili sono pesate in modo differente, all'aumentare di α il peso dei profili più rari è maggiormente ridimensionato nel calcolo della diversità. Alcuni comuni indici di diversità sono relazionati all'entropia di Rényi, ad esempio quando $\alpha = 1$ si ottiene l'indice di Shannon(H). Queste relazioni sono più evidenti quando si utilizza il cosidetto numero di Hill che è associato all'entropia H_{α} di Renyi da: $H_{\alpha} - Hill = exp(H_{\alpha})$. I quattro indici di diversità che sono stati confrontati tra i comparti rappresentati dai gruppi-specie si trovano a diversi livelli di α : con $\alpha = 0$ si ha l'equivalente della Richness che rappresenta una semplice conta dei differenti profili di resistenza e ignora la relativa abbondanza e quindi considera profili rari e comuni allo stesso modo; quando $\alpha=1$ si ha l'equivalente dell'esponente dell'indice di Shannon che rappresenta la probabilità che due ceppi estratti a caso hanno lo stesso profilo di resistenza; quando $\alpha=2$ si ha l'equivalente dell'inverso dell'indice S di Simpson che rappresenta l'abbondanza relativa di ogni profilo e infine con $\alpha=\infty$ si ha l'equivalente dell'inverso dell'indice di dominanza di Berger_Parker che rappresenta la proporzione dei profili più comuni nel campione. Usando l'entropia di Rényi è possibile costruire un grafico dei profili di diversità che sono più informativi di quanto non si ottenga usando i singoli indici di diversità. Curve piatte indicano che le comunità di fenotipi hanno un alto grado di uniformità con assenza di fenotipi dominanti. In caso di curve che declinano rapidamente con lunghe code, indicano comunità di fenotipi in cui sono presenti molti fenotipi rari e quindi presenza di uno o pochi fenotipi dominanti. Il confronto tra curve per siti differenti o come in questo studio per gruppo-specie differente avviene non solo attraverso la differente forma ma anche attraverso la posizione relativa rispetto all'asse y. Affinchè vengano considerati completamente differenti due comunità sulla base della diversità le curve non devono sovrapporsi. A questo riguardo può essere utile confrontare la forma delle curve partendo da un punto in comune fisso per tutte le comunità. Al valore di $\alpha = 0$ l'entropia di Renyi è interpretabile come indice di richness. Se si sottrae il valore di entropia ad $\alpha=0$ da tutti i valori di entropia misurati ai diversi valori di α si ottiene un grafico in cui tutte le curve partono da un punto in comune corrispondete appunto a $\alpha=0$. In questo modo si ottiene una standardizzazione o normalizzazione delle curve con il focus di valutazione solo sulla forma delle curve stesse. In questo studio si è proceduto quindi a stimare l'entropia di Renyi e quindi a visualizzare i risultati delle curve normalizzate di diversità delle comunità di fenotipi di resistenza dei diversi gruppi-specie, utilizzando le funzioni del pacchetto BiodiversityR, come indicato da (Kindt and Coe 2005)

3 RISULTATI

3.1 Quadro generale

3.1.1 Territorio

L'attività di campionamento si è svolta tra Settembre 2017 e Dicembre 2019 in sette province della Lombardia : Bergamo, Pavia, Varese, Como, Lecco e Brescia da un totale di 223 comuni (Fig3). Sulla base dei criteri di classificazione dei comuni adottati dall'ISTAT, in merito a grado di urbanizzazione, e montanità risulta che : 415 campioni (57%) provengono da comuni a bassa urbanizzazione (aree rurali scarsamente popolate), 221 campioni (30%) da comuni a densità intermedia di popolazione e 11 campioni (1.15%) da comuni ad alta densità di popolazione; 472 campioni (65%) provengono da comuni totalmente montani, 161 (22%) da comuni in pianura e 14 campioni (2%), da aree parzialmente montane (collinari). Questi risultati sono riferiti ad un totale di 647 campioni provenienti da comuni per i quali era disponibile il dato ISTAT di urbanizzazione e montanità. In tabella 1 sono riportate le statistiche descrittive della caratterizzazione geografica e di popolazione dei comuni da cui provengono i campioni.

3.1.2 Fauna selvatica (controllare le %)

Sono stati raccolti complessivamente 670 campioni di feci da 33 differenti specie di fauna selvatica. Le specie più frequentemente campionate sono il Capriolo (Capreolus capreolus) con 191 campioni (28.5%), la Cornacchia grigia (Corvus cornix) con 122 (18.2%), il Cervo (Cervus elaphus), con 80 campioni (11.9%), il Cinghiale (Sus scrofa) con 76 campioni (11.3%), il Camoscio (Rupicapra rupicapra) 46 campioni (6.9%) e il Muflone (Ovis aries musimon) 43 campioni (6.4%) che rappresentano complessivamente più dell'80% dei campioni esaminati. Il restante 20% è distribuito su un totale di 27 specie differenti descritte in tabella 2. Oltre il 90% di campioni dei gruppi-specie CERVIDI, BOVIDI e SUIDI proviene da territori classificati da ISTAT come Totalmente Montani; il 75% dei campioni del gruppo CARNIVORI proviene da territori Totalmente Montani; l'86% dei campioni del gruppo CORVIDI proviene da territori Non Montani e il 50% dei campioni del gruppo RAPACI proviene da territori Totalemnte Montani e il 50% da territori Non Montani. Per tutti i gruppi specie risulta poco rappresentata la categoria territoriale Parzialmente Montano (P) (tabella 3). ISTAT sulla base della densità di popolazione per Kmq classifica i comuni in 3 classi di urbanizzazione: 1=densamente popolato, 2=mediamente popolato, 3=scarsamente popolato (rurale). La distribuzione dei campioni dei diversi gruppi specie rispetto alle caratteristiche di urbanizzazione dei comuni di provenienza riflette quanto già visto per la montanità dei territori campionati, con una più alta frequenza di campioni

provenienti da territori rurali e a densità media che da comuni ad elevata densità di popolazione. In particolare dai territori a bassa urbanizzazione (rurali) proviene il 72% dei campioni del gruppo CERVIDI, il 75% dei campioni del gruppo BOVIDI, il 67% dei campioni del gruppo SUIDI, il 70% dei campioni del gruppo CARNIVORI, il 57% dei campioni dal gruppo CORVIDI e il 30% dal gruppo RAPACI (tabella 4)

3.1.3 Esami microbiologici

Dai 671 campioni di feci analizzati sono stati isolati 911 ceppi batterici identificati come appartenenti alla famiglia delle Enterobacteriacee. Escherichia coli (E.coli) rappresenta il 67.6% dei ceppi isolati, il restante 32% dei ceppi è distruibuito su un totale di 14 generi differenti (tabella 5). Per 67 ceppi non si è giunti all'identificazione basata sulle prove biochimiche di genere. Per questi ceppi non si è proceduto ad ulteriore approfondimenti diagnostici ma sono stati comunque archiviati in brodo con glicerolo e quindi congelatati.

3.1.4 Antibiogrammi

Sono stati eseguiti 910 antibiogrammi. Complessivamente 392 ceppi (43%) sono risultati Suscettibili (S) al panel di antibiotici testati ; 423 (46%) i ceppi Resistenti (R) fino ad un massimo di 2 antibiotici e infine 95 (10%) ceppi sono risultati Multiresistenti (MR), con resistenza a 3 o più antibiotici. La distribuzione del numero di resistenze al panel di antibiotici per isolato (Antibiogram length) è sintetizzata in figura 4

3.2 Prevalenza animali carrier di ceppi resistenti

Complessivamente da 670 campioni di feci di fauna selvatica da cui è stato isolato almeno un ceppo di Enterobacteriacee e su cui è stato eseguito l'antibiogramma, in 421 è stato isolato almeno un ceppo resistente ad uno o più antibiotici del panel indagato, pari ad una Prevalenza complessiva (Overall Prevalence) del 62% (95% HPD: 58-67%).

La variabilità tra i gruppi-specie è particolarmente ampia: nei CORVIDI si osserva la prevalenza più elevata (84%), mentre nei BOVIDI la più bassa (37%). A causa della bassa numerosità campionaria si osservano stime con incertezza molto ampia nei gruppi: LEPRE, ALTRI VOLATILI, UCCELLI ACQUATICI, CARNIVORI e RAPACI. In figura 5 è riportata per ogni gruppo specie la distribuzione a posteriori della prevalenza di animali carrier di ceppi antibiotico-resistenti e in tabella (6) le stime puntuali e i valori dell'intervallo di massima densità delle stime (95% High Probability Density HPD).

Su 670 campioni di feci, 92 presentano almeno un ceppo MULTI-RESISTENTE (numero di resistenze >= a 3), pari ad una prevalenza del 14% (95% HPD:11%-16%). La variabilità tra gruppi specie risulta molto ampia: la prevalenza di animali selvatici portatori di ceppi multiresistenti varia da un minimo del 4% nel gruppo UCCELLI ACQUATICI ad un massimo dell'88% nella LEPRE. La bassa numerosità dei campioni di alcuni gruppi specie rende le stime molto incerte. In figura 6 è riportata per ogni gruppo specie la distribuzione a posteriori della prevalenza di animali carrier di ceppi multi-resistenti e in tabella (7) le stime puntuali e i valori dell'intervallo di massima densità delle stime (95% High Probability Density HPD).

3.2.1 Associazione tra la prevalenza di animali carrier e caratteristiche ambientali

Il confronto tra modelli ha permesso di selezionare il modello 2 con le migliori performance in termini di predittività rispetto agli altri due modelli come indicato dai risultati della K-fold cross-validation riportati in tabella 8. Le stime dei coefficienti di regressione e gli intervalli di credibilità sono riassunti in tabella 9 e le rispettive distribuzioni a posteriori rappresentate nel grafico 7

Secondo il modello, la probabilità di un animale di essere un carrier di ceppi antibiotico resistenti di Enterobacteriacee aumenta all'aumentare della superficie comunale (in ettari) dedicata al pascolo in misura differente a seconda del gruppo-specie di appartenenza (interazione tra specie e pascolo), come raffigurato in fig 8 dove la dipendenza della probabilità di Resistenza dalla superficie dedicata al pascolo per comune è riportata condizionalmente ai diversi gruppi-specie a cui appartiene il campione risultato carrier di ceppi resistenti.

3.3 Caratterizzazione fenotipica dell'antibiotico-resistenza degli isolati batterici

Le resistenze nei confronti di AMP e TET sono risultate le più frquenti: su 910 ceppi testati nei confronti di AMP 388 risultano resistenti (%), 342 ceppi risultano resistenti a TET (). Si osserva una frequenza di resistenza molto contenuta nei confronti degli altri antibiotici: solo l'8% di resistenze nei confronti di CFT, 5% nei confronti di COL, 5% nei confronti di ENR, 5% nei confronti di KAN e solo l'1.3% nei confronti di GEN. In tabella 10 per gli antibiotici del panel analizzato sono riportati le stime della prevalenza di resistenza con i rispettivi intervalli bayesiani di elevata densità (HPDI). In tabella 11 sono riportate le stime puntuali della prevalenza di ceppi resistenti ai diversi antibiotici suddivisi per il gruppo specie di provenienza. Escludendo i ceppi derivati da gruppi specie con ridotta dimensione del campione, la maggior frequenza di ceppi resistenti a AMP si osserva negli isolati del gruppo CORVIDI (58%), del gruppo CERVIDI (45%) e RAPACI (42%); le frequenze minori si osservano nel gruppo BOVIDI (26%) e SUIDI (22%). Le resistenze a TET sono risultate

più frequenti nei ceppi isolati dai CORVIDI (51%) e RAPACI (48%), mentre le più basse in isolati da SUIDI (34%), CERVIDI(32%), BOVIDI(20%). Nei confronti della COLISTINA, antibiotico di particolare interesse in ambito clinico umano, si osserva una bassa frequenza di ceppi resistenti da un minimo dello 0.5% osservato nei ceppi isolati dai SUIDI, ad un massimo del 16% osservato sia nei RAPACI che nella LEPRE. Anche per il CEFTIOFUR, cefalosporina di 3 generazione nei confronti dei quali si è diffusa a livello mondiale la selezione di ceppi ESBL, si osserva una bassa prevalenza di ceppi resistenti: minimo 2.1% negli UCCELLI ACQUATICI, massimo 24% nei RAPACI. La GEN risulta l'antibiotico verso cui gli isolati si sono mostrati in modo uniforme tra le differenti specie meno resistenti (12 ceppi 1.30%). Anche per ENR e KAN si osserva una bassa e uniforme prevelenza di ceppi resistenti tra i diversi gruppi specie. L'incertezza delle suddette stime sono rappresentate graficamente in figura 9. Il profilo di resistenza tra i differenti generi di ceppi isolati conferma che AMP e TET sono gli antibiotici verso i quali la maggior parte degli isolati mostra la maggior frequenza di resistenze (tabella 12).

3.3.1 Profili fenotipici di resistenza dei ceppi isolati e diversità ecologica

Complessivamente si osservano 39 differenti profili fenotipici basati sulle resistenze osservate. I profili più frequenti sono: TET-AMP (141 ceppi), AMP (130 ceppi), TET (85 ceppi), CFT-TET-AMP (27 ceppi), COL-TET-AMP (14 ceppi), COL-TET (12 ceppi) e CFT-TET (12 ceppi), che rappresentano più dell'80% dei ceppi. Il restante 20% è distribuito nei restanti 32 profili come rappresentato in figura 10 La distribuzione della frequenza ceppi in base al profilo di co-resistenza e la specie di fauna selvatica da cui provengono è rappresentata in figura 12. Si può osservare la "rarità" di molti profili presenti solo in determinati gruppi Specie. Complessivamente si osserva una scarsa uniformità di profili tra i gruppi specie, con una particolare ricchezza di differenti profili nel gruppo CERVIDI e CORVIDI che sono i più rappresentati ma anche nei ceppi isolati dai RAPACI sebbene in numero sensibilmente più ridotto rispetto ai precedenti. Gli indici di diversità (13) sono riassunti in un grafico di Renyi entropy standardizzato (11). Nella popolazione di CERVIDI si osserva un profilo di dominanza in termini di diversità con una minore diversità di profili di co-resistenza con una forte dominanza di pochi profili. AL contrario i gruppi specie BOVIDI, SUIDI, CARNIVORI, LEPRE, UCCELLI ACQUATICI e ALRI VOLATILI, mostrano un profilo di uniformità (evenness), quindi caratterizzato da maggiore diversità senza la presenza di profili di co-resistenza relativamente dominanti. Le popolazione di CORVIDI e RAPACI mostrano un profilo di diversità sovrapponibile e intermedio rispetto a quello di dominanza dei CERVIDI e di uniformità degli altri gruppi-specie.

3.3.2 Caratterizzazione genomica dei ceppi ceftiofur-resistenti

La resistenza dei ceppi isolati al Ceftiofur è risultata poco frequente x/su... di questi sono risultati positivi al test 49 ceppi z... Le analisi genomiche sono state condotte su 47 isolati dal momento che due di essi sono risultati inquinati. Dalle analisi molecolari è emersa una prevalenza di E. coli dell'85,10% (40/47) e del 14,89% (7/47) per E. fergusonii. Rispetto alle analisi sui geni di resistenza, nei ceppi di E. coli è emersa una prevalenza dell'10,00% (4/40) per il gene TEM e del 2,50% (1/40) per SHV (Tabella 1). Rispetto a E. fergusonii, è stata riscontrata una prevalenza del 14,29% (1/7) per il gene SHV 14.

3.4 Pool metagenomici

4 DISCUSSIONE E CONCLUSIONI

L'accumularsi di evidenza della presenza e diffusione nella fauna selvatica e in ambienti silvestri di ceppi batterici antimicrobico-resistenti ha portato molti Autori a ritenere che il problema AMR non è più e non solo confinato al comparto zootencino e quello umano ma è un problema di sanità pubblica più vasto con un carattere ambientale che coinvolge il comparto uomo (uso/abuso degli antibiotici nella popolazione generale e in particolare in quella ospedalizzata), animali domestici (uso/abuso degli antibiotici negli allevamenti da reddito e in animali da compagnia) e ambiente selvatico sia con il convolgimento diretto della fauna selvatica che per contaminazione ambientale. Come contributo al crescente interesse intorno al ruolo svolto dalla fauna selvatica nel mantenimento e diffusione dell'antibiotico resistenza, questo progetto di ricerca ha permesso di raccogliere dati su un ampio spettro di specie in un territorio con differenti gradi di antropomorfizzazione. Trattandosi di uno studio osservazionale, con un campionamento non probabilistico di convenienza, come la maggior parte degli studi effettuati sulla fauna selvatica, soffre delle limitazioni derivanti principalmente dalle modalità non randomizzate di selezione del campione, che introduce nelle stime distorsioni derivanti da bias di selezione non prevedibili sia in termini quantitativi che direzionali. Le specie più rappresentate del campione esaminato appartengono al gruppo dei CERVIDI per i quali il piano di sorveglianza passivo CWD in atto ha comportato una maggiore attenzione da parte delle autorità sanitarie sul territorio nel recupero di carcasse da esaminare, e al gruppo CORVIDI anche in questo caso grazie all'attività di abbattimento selettivo operato nell'ambito del piano di sorveglianza della West Nile Disease. Il gruppo suidi è risultato sottocampionato rispetto all'atteso considerando la presenza di un piano di abbattimento e controllo sanitario obbligatorio per il controllo della salmonella. Carnivori e volatili differenti da Corvidi e Rapaci rappresentano una piccola frazione del campione e quindi poco a deguati a fornire adeguate informazione sulla diffusione e mantenimeno dell'antibiotico-resistenza. Anche la distribuzione geografica di provenienza dei campioni è risultata estremamente eterogenea se si guarda principalmente al comune di provenienza, ma come era atteso la maggior parte dei campioni proviene da un territorio a carattere prevalentemente montano e quindi tendenzialmente meno urbanizzato dei territori di pianura/collina. I campioni dei Corvidi fanno eccezione perchè provengono per l'85% da territori non montani ad alta urbanizzazione, così come il 50% dei campioni di feci dei Rapaci.

A differenza degli studi pubblicati sull'argomento che, prevalentemente, focalizzano l'attenzione sul ceppo batterico, in questo progetto si è proceduto a quantificare anche la prevalenza di animali carrier di ceppi antibiotico-resistenti, definendo come "caso resistente", il campione di feci con almeno un ceppo risultato resistente ad almeno un antibiotico del panel testato e "caso multiresistente", il campione di feci con almeno un ceppo risultato resistente a tre o più antibiotici del panel testato . Indubbiamente questa definizione non

protegge da bias di misclassificazione, ma siamo confidenti che il bias abbia una direzionalità precisa e cioè comporti una sottostima del numero di "casi" dovuta ad esempio al mancato isolamento di ceppi resistenti presenti nel campione di feci ma non isolati e processati per l'esame batteriologico. Da questo punto di vista quindi le stime di prevalenza di animali carrier sono sicuramente più ottimistiche della vera prevalenza e come tale vanno interpretate.

Se limitiamo le considerazioni ai gruppi-specie con una maggiore dimensione campionaria (CORVIDI, CERVIDI, BOVIDI e SUIDI), la prevalenza di casi resistenti più elevata la si riscontra nei CORVIDI (83%), seguiti dai CERVIDI(61%), SUIDI(56%) e infine i BOVIDI(37%), da cui si può notare come la prevalenza tendenzialmente diminuisce nelle specie i cui campioni provengono da ambienti meno antropomorfizzati. I campioni dei CORVIDI come indicato in precedenza provengono infatti da aree ad alta urbanizzazione dove, come già riportato in letteratura (cit....) la frequentazione delle discariche per procurasi il cibo rappresenterebbe il principale meccanismo espositivo in grado di determinare la cross-contaminazione ambiente-animale favorendo il mantenimento e la diffusione di ceppi e materiale genetico di resistenza. I campioni dei CERVIDI e SUIDI provengono da territori montani ma con un grado di urbanizzazione medio-bassa e quindi meno antropomorfizzati (collinare/premontano) rispetto ai corvidi e quindi con minori occasioni di contaminazione con materiale di provenienza umana o da animali domestici. Infine i campioni dei BOVIDI provengono da ambienti totalmente montani con ridotta urbanizzazione. L'associazione tra prevalenza di casi resistenti è area adibita al pascolo è condizionalmente dipendente dal gruppo specie considerato; risultato ragionevole dal punto di vista biologico perchè riflette la differente frequentazione delle differenti specie in aree con diverso grado di urbanizzazione (le aree adibite al pascolo tendono a essere presenti in aree a minore grado di urbanizzazione). Si osserva comunque un aumentare della probabilità di osservare animali carrier di ceppi di Enterobacteriacee resistenti ad almeno un antibiotico, in tutti i gruppi specie con diversa entità, fatta eccezione per il gruppo CORVIDI, in cui all'aumentare dell'area adibita a pascolo si osserva una riduzione del rischio di animali carrier. Il trend di diminuzione della prevalenza di animali carrier di ceppi resistenti con la riduzione del grado di urbanizzazione si osserva anche nel caso di animali carrier di ceppi multi-resistenti. In questo caso però la prevalenza è sensibilmente più bassa. Riteniamo questo un risultato interessante relativamente alla definizione del ruolo dei selvatici nel mantenimento dell'antibiotico-resistenza.

5 Raccomandazioni (max 2 pagine)

- 5.0.1 elementi gestionali e/o diagnostici
- 5.0.2 indicazioni per la ricerca
- 5.0.3 sugg per eventuali provvedimenti normativi
- 6 MODALITÀ DI DIVULGAZIONE DEI RISULTATI (1 pagina)

ELENCO FIGURE

Figura 1: Andamento annuale del numero di pubblicazioni relative all'AMR nella fauna selvatica.

Figura 2: DAG-Direct Acyclic Graph: secondo il modello qui specificato, la probabilità di Resistenza è dipendente dalla Specie di provenienza dei campioni, dalla superificie del comune dedicata al Pascolo e dal grado di Urbanizzazione. Sia la Specie che frequenta un determinato comune che il Pascolo sono dipendeni dal grado di Urbanizzazione. Specie e Pascolo sono indipendenti condizionalmente al grado di Urbanizzazione.

Figura 3: Comuni di provenienza dei campioni

Figura 4: distribuzione numero di resistenze al panel di antibiotici

Figura 5: Distribuzione a posteriori delle stime di prevalenza di animali carrier di ceppi antibiotico-resistenti nei diversi gruppi-specie

Figura 6: Distribuzione a posteriori delle stime di prevalenza di animali carrier di ceppi multi-resistenti nei diversi gruppi-specie

Figura 7: Distribuzione a posteriori delle stime dei coefficenti di regressione del modello 2

Figura 8: Stima dell'effetto 'Superficie adibita al pascolo' sulla probabilità di un animale di essere carrier di ceppi antibiotico-resistenti, condizionalmente al gruppo-specie di appartenenza

Figura 9: Distribuzione a posteriori delle stime di prevalenza di ceppi resistenti al panel di antibiotici nei differenti gruppi-specie

Figura 10: Distribuzione della frequenza dei differenti profili fenotipici di resistenza

Figura 11: Distribuzione della frequenza di fenotipi di resistenza nei diversi gruppi specie

Figura 12: Profili di diversità dei fenotipi di ceppi resistenti nei diversi gruppi specie (Reny's entropy standardized

ELENCO TABELLE

Tabella 1: Caratterizzazione territoriale e demografica dei comuni di provenienza dei campioni

Parametri	min	q25	median	q75	max	mean	sd
Superficie (Kmq)	1.97	10.6	17.1	29.4	227	29.8	44.0
Densità di popolazione (Ab/Kmq)	4.02	45.1	128.1	257.1	2210	250.0	356.9
Altitudine mediana	48.00	185.0	600.0	1120.0	2650	773.8	684.8
Superficie al pascolo (ettari)	0.09	11.0	60.0	170.9	2630	179.1	339.0
Aziende con pascolo	1.00	3.0	8.0	16.0	425	12.6	20.3
Capi al pascolo	2.00	52.0	133.0	293.0	8429	307.5	603.1

Tabella 2: Distribuzione del numero di campioni di feci in base alle differenti specie di fauna selvatica di origine, raggruppati per il gruppo-specie di appartenenza

Gruppo	SPECIE	n	prop
	DI LOIL		ргор
CERVIDI	CAPRIOLO	191	28.51
CERVIDI	CERVO	80	11.94
CERVIDI	DAINO	1	0.15
BOVIDI	CAMOSCIO	46	6.87
BOVIDI	MUFLONE	43	6.42
BOVIDI	STAMBECCO	6	0.90
CARNIVORI	TASSO	4	0.60
CARNIVORI	VOLPE	16	2.39
SUIDI	CINGHIALE	76	11.34
LEPRE	LEPRE	3	0.45
CORVIDI	CORNACCHIA	122	18.21
CORVIDI	GAZZA	12	1.79
CORVIDI	GHIANDAIA	4	0.60

Tabella 2: Distribuzione del numero di campioni di feci in base alle differenti specie di fauna selvatica di origine, raggruppati per il gruppo-specie di appartenenza (continued)

Gruppo	SPECIE	n	prop
RAPACI	ALLOCCO	3	0.45
RAPACI	ASSIOLO	2	0.30
RAPACI	CIVETTA	10	1.49
RAPACI	CIVETTA NANA	1	0.15
RAPACI	FALCO PECCHIAIOLO	5	0.75
RAPACI	GHEPPIO	9	1.34
RAPACI	GUFO REALE	4	0.60
RAPACI	NIBBIO BRUNO	1	0.15
RAPACI	POIANA	3	0.45
RAPACI	SPARVIERO	11	1.64
UCCELLI ACQUATICI	CIGNO REALE	3	0.45
UCCELLI ACQUATICI	CORMORANO	1	0.15
UCCELLI ACQUATICI	FENICOTTERO	1	0.15
UCCELLI ACQUATICI	GABBIANO	1	0.15
UCCELLI ACQUATICI	GABBIANO REALE	1	0.15
UCCELLI ACQUATICI	GERMANO REALE	5	0.75
ALTRI VOLATILI	FAGIANO	3	0.45
ALTRI VOLATILI	PICCIONE	1	0.15
ALTRI VOLATILI	STARNA	1	0.15
Totale		670	100.00

Tabella 3: Distribuzione del numero di campioni di feci in base alle caratteristiche territoriali di provenienza per i differenti gruppo-specie di appartenenza (NM= Non Montani, P= Parzialmente Montani, T= Totalmente Montani)

Gruppo Specie	NM	Р	${ m T}$	Totale
CERVIDI	3	5	248	256
BOVIDI	0	4	88	92
CARNIVORI	5	0	15	20
SUIDI	3	1	68	72
LEPRE	1	0	2	3
CORVIDI	118	1	19	138
RAPACI	24	0	25	49
UCCELLI ACQUATICI	3	3	6	12
ALTRI VOLATILI	4	0	1	5
Totale	161	14	472	647

Tabella 4: Distribuzione del numero di campioni di feci in base al grado di urbanizzazione dei comuni di provenienza per i differenti gruppo-specie di appartenenza (UA= Urbanizzazione ALta, UM= Urbanizzazione Media, UB= Urbanizzazione Bassa)

Gruppo Specie	UA	UM	UB	Totale
CERVIDI	1	70	185	256
BOVIDI	4	19	69	92
CARNIVORI	0	6	14	20
SUIDI	0	24	48	72
LEPRE	0	1	2	3
CORVIDI	1	58	79	138
RAPACI	1	33	15	49
UCCELLI ACQUATICI	3	6	3	12
ALTRI VOLATILI	1	$_4$	0	5
Total	11	221	415	647

Tabella 5: Distribuzione del numero e proprorzione di ceppi della famiglia Enterobacteriacee suddivise per genere, isolati dai 670 campioni di feci analizzati

Genere	n	prop(%)
E.coli	615	67.58
Klebsiella	61	6.70
Enterobacter	56	6.15
Serratia	40	4.40
Pantoea	39	4.29

Tabella 5: Distribuzione del numero e proprorzione di ceppi della famiglia Enterobacteriacee suddivise per genere, isolati dai 670 campioni di feci analizzati (continued)

identificazione	n	$\operatorname{prop}(\%)$
Hafnia	36	3.96
Proteus	14	1.54
Acinetobacter	13	1.43
Citrobacter	12	1.32
Yersinia	7	0.77
Cronobacter	6	0.66
Salmonella	5	0.55
Providencia	4	0.44
Pseudomonas	1	0.11
Shigella	1	0.11
Total	910	100.00

Tabella 6: Stime della prevalenza di campioni resistenti suddivisi per gruppo-specie: R= numero di campioni resistenti, N= numero campioni esaminati, Prevalenza = media della distribuzione beta, inf-HPD= valore inferiore dell'intervallo HPD, sup-HPD = valore superiore dell'intervallo HPD

Gruppo Specie	R	N	Prevalenza	inf-HPD	sup-HPD
LEPRE	3	3	0.88	0.56	1.00
CORVIDI	115	138	0.83	0.77	0.89
ALTRI VOLATILI	4	5	0.75	0.44	1.00
CARNIVORI	15	20	0.74	0.55	0.91
RAPACI	34	49	0.69	0.56	0.81
CERVIDI	166	272	0.61	0.55	0.67
SUIDI	43	76	0.56	0.45	0.67
UCCELLI ACQUATICI	6	12	0.50	0.24	0.76
BOVIDI	35	95	0.37	0.27	0.47

Tabella 7: Stime della prevalenza di campioni multi-resistenti suddivisi per gruppo-specie: MR= numero di campioni resistenti, N= numero campioni esaminati, Prevalenza = media della distribuzione beta, inf-HPD= valore inferiore dell'intervallo HPD, sup-HPD = valore superiore dell'intervallo HPD)

Specieagg	MR	N	Prevalenza	inf-HPD	sup-HPD
LEPRE	1	3	0.38	0.01	0.77
RAPACI	15	49	0.31	0.19	0.44
CORVIDI	29	138	0.21	0.15	0.28
CARNIVORI	3	20	0.17	0.03	0.32
CERVIDI	32	272	0.12	0.08	0.16
SUIDI	7	76	0.10	0.04	0.16
ALTRI VOLATILI	0	5	0.08	0.00	0.31
BOVIDI	5	95	0.06	0.02	0.10
UCCELLI ACQUATICI	0	12	0.04	0.00	0.15

Tabella 8: Confronto tra modelli mediante K-fold cross-validation

	elpd_diff	se_diff	elpd_kfold	se_elpd_kfold
mod2	0.0	0.0	-354	13
mod1	-2.3	5.5	-356	12
mod3	-17.6	5.2	-371	15

Tabella 9: Stime a posteriori dei parametri a effetto fisso del modello 2

Parametetri	Mediana	CI_inf	CI_sup	PD	ROPE_(%)	Rhat	ESS
Intercept	0.28	-0.06	0.63	0.91	0.31	1	9547.70
Pascolo	0.60	0.16	1.06	0.99	0.05	1	8210.34
Urbanizzazione	0.08	-0.18	0.32	0.69	0.70	1	9657.94
Bovidi	-0.69	-1.23	-0.16	0.98	0.06	1	14802.64
Carnivori	1.69	-0.39	4.21	0.94	0.05	1	5027.61
Suidi	2.79	0.71	5.05	1.00	0.00	1	7060.33
Corvidi	1.64	0.79	2.52	1.00	0.00	1	8092.60
Rapaci	1.44	0.10	2.90	0.97	0.03	1	6864.94
Bovidi*Pascolo	-0.19	-0.84	0.45	0.68	0.32	1	12027.14
Carnivori*Pascolo	3.49	-0.72	9.57	0.95	0.03	1	4632.93
Suidi*Pascolo	6.16	1.03	11.83	0.99	0.00	1	7132.00
Corvidi*Pascolo	-0.92	-2.21	0.33	0.87	0.09	1	9445.26
Rapaci*Pascolo	2.42	-0.53	5.67	0.94	0.04	1	6025.29

Tabella 10: Stime bayesiane della prevalenza di ceppi resistenti ai differenti antibiotici

Antibiotico	R	N	Prevalenza	inf-HPD	sup-HPD
AMP	388	910	0.43	0.39	0.46
TET	342	910	0.38	0.34	0.41
CFT	77	910	0.09	0.07	0.10
COL	49	910	0.05	0.04	0.07
ENR	45	910	0.05	0.04	0.06
KAN	45	910	0.05	0.04	0.06
GEN	12	910	0.01	0.01	0.02

Tabella 11: Profilo di resistenza dei ceppi ai diversi antibiotici per gruppo-specie di provevienza del campione di feci

Specieagg	AMP	CFT	COL	ENR	GEN	KAN	TET
CERVIDI	0.45	0.09	0.04	0.03	0.01	0.05	0.32
BOVIDI	0.26	0.06	0.02	0.00	0.02	0.03	0.20
CARNIVORI	0.43	0.13	0.13	0.04	0.04	0.04	0.39
SUIDI	0.21	0.08	0.00	0.01	0.01	0.07	0.34
LEPRE	0.80	0.01	0.20	0.01	0.01	0.00	0.60
CORVIDI	0.58	0.07	0.08	0.10	0.01	0.04	0.51
RAPACI	0.42	0.24	0.17	0.16	0.05	0.07	0.48
UCCELLI ACQUATICI	0.18	0.00	0.00	0.00	0.00	0.12	0.35
ALTRI VOLATILI	0.50	0.00	0.00	0.00	0.01	0.01	0.67

Tabella 12: Profilo di antibiotico-resistenza tra i diversi generi dei ceppi isolati

Genere	N.ceppi	AMP	TET	CFT	COL	ENR	KAN	GEN
E.coli	615	32.52	34.96	9.43	2.93	4.07	6.50	1.30
Klebsiella	61	68.85	22.95	1.64	0.00	8.20	0.00	0.00
Enterobacter	56	87.50	67.86	0.00	7.14	5.36	1.79	1.79
Serratia	40	72.50	55.00	7.50	15.00	7.50	0.00	2.50
Pantoea	39	15.38	5.13	0.00	2.56	0.00	0.00	0.00
Hafnia	36	75.00	61.11	2.78	0.00	2.78	2.78	0.00
Proteus	14	14.29	100.00	21.43	100.00	0.00	7.14	14.29
Acinetobacter	13	84.62	23.08	76.92	7.69	30.77	0.00	0.00
Citrobacter	12	66.67	41.67	0.00	0.00	16.67	8.33	0.00
Yersinia	7	42.86	0.00	0.00	0.00	0.00	0.00	0.00
Cronobacter	6	66.67	16.67	0.00	0.00	16.67	0.00	0.00
Salmonella	5	100.00	80.00	0.00	20.00	0.00	0.00	0.00
Providencia	4	0.00	25.00	0.00	100.00	0.00	0.00	0.00
Pseudomonas	1	100.00	100.00	100.00	0.00	100.00	100.00	0.00
Shigella	1	100.00	0.00	0.00	0.00	0.00	0.00	0.00

Tabella 13: Valori di entropia di Renyi standardizzati tra i diversi gruppi specie

	0	0.25	0.5	1	2	4	8	16	32	64	Inf
CERVIDI	27	18.24	12.13	6.36	3.75	2.81	2.45	2.31	2.25	2.22	2.19
BOVIDI	9	6.88	5.26	3.36	2.15	1.73	1.60	1.55	1.53	1.52	1.51
CARNIVORI	10	9.24	8.51	7.28	5.76	4.75	4.27	3.98	3.82	3.74	3.67
SUIDI	11	8.83	7.06	4.74	2.98	2.26	2.02	1.93	1.89	1.87	1.85
LEPRE	4	3.95	3.90	3.79	3.57	3.20	2.84	2.66	2.57	2.54	2.50
CORVIDI	22	16.75	12.85	8.49	5.89	4.94	4.55	4.35	4.22	4.14	4.05
RAPACI	21	18.18	15.41	10.66	5.73	3.64	3.03	2.82	2.72	2.68	2.64
UCCELLI ACQUATICI	5	4.57	4.16	3.44	2.56	2.03	1.83	1.76	1.73	1.71	1.70
ALTRI VOLATILI	3	2.93	2.87	2.75	2.57	2.36	2.20	2.09	2.05	2.02	2.00

Tabella 14: Caratterizzazione genotipica dei geni di resistenza dei 47 ceppi resistenti a Ceftiofur

-						
idceppo	gruppo filogenetico	CTX-M	SHV	CMY	TEM	MCR
1	A	N	N	N	N	N
2	A	N	N	N	N	N
3	F	N	N	N	N	N
4	A	N	N	N	N	N
5	F	N	N	N	N	N
6	E. fergusonii	N	N	N	N	N
7	A	N	N	N	P	N
8	A	N	N	N	N	N
9	A	N	N	N	N	N
10	A	N	N	N	N	N
11	F	N	N	N	N	N
12	E. fergusonii	N	Р	N	N	N
13	A	N	N	N	N	N
14	D	N	N	N	N	N
15	A	N	N	N	N	N
16	E. fergusonii	N	N	N	N	N
17	A	N	N	N	N	N
18	A	N	N	N	N	N
19	A	N	N	N	N	N

Tabella 14: Caratterizzazione genotipica dei geni di resistenza dei 47 ceppi resistenti a Ceftiofur *(continued)*

ID Ceppo	Gruppo filogenetico	CTX-M	SHV	CMY	TEM	MCR
20	A	N	N	N	Р	N
21	A	N	N	N	N	N
22	F	N	N	N	N	N
23	A	N	N	N	N	N
24	A	N	N	N	N	N
25	F	N	N	N	N	N
26	F	N	N	N	N	N
27	E. fergusonii	N	N	N	N	N
28	F	N	N	N	N	N
29	A	N	N	N	N	N
30	A	N	N	N	P	N
31	A	N	N	N	N	N
32	A	N	N	N	N	N
33	A	N	N	N	N	N
34	F	N	N	N	N	N
35	A	N	N	N	N	N
36	E. fergusonii	N	N	N	N	N
37	A	N	N	N	N	N
38	A	N	Р	N	N	N
39	A	N	N	N	N	N
40	B1	N	N	N	P	N
41	A	N	N	N	N	N
43	A	N	N	N	N	N
44	A	N	N	N	N	N
45	E	N	N	N	N	N
46	A	N	N	N	N	N
47	E. fergusonii	N	N	N	N	N
48	E. fergusonii	N	N	N	N	N

Bibliografia

Ahmed, Ashraf M, Yusuke Motoi, Maiko Sato, Akito Maruyama, Hitoshi Watanabe, Yukio Fukumoto, and Tadashi Shimamoto. 2007. "Zoo Animals as Reservoirs of Gram-Negative Bacteria Harboring Integrons and Antimicrobial Resistance Genes." Applied and Environmental Microbiology 73 (20): 6686–90.

Ahmed, Marwa Fawzy El Metwaly, Hosny El-Adawy, Helmut Hotzel, Herbert Tomaso, Heinrich Neubauer, Nicole Kemper, Joerg Hartung, and Hafez Mohamed Hafez. 2016. "Prevalence, Genotyping and Risk Factors of Thermophilic Campylobacter Spreading in Organic Turkey Farms in Germany." *GUT PATHOGENS* 8 (June). https://doi.org/10.1186/s13099-016-0108-2.

Allen, Heather K, Justin Donato, Helena Huimi Wang, Karen A Cloud-Hansen, Julian Davies, and Jo Handelsman. 2010. "Call of the Wild: Antibiotic Resistance Genes in Natural Environments." *Nature Reviews Microbiology* 8 (4): 251–59.

Andersson, Dan I, and Diarmaid Hughes. 2010. "Antibiotic Resistance and Its Cost: Is It Possible to Reverse Resistance?" *Nature Reviews Microbiology* 8 (4): 260–71.

Angulo, FJ, VN Nargund, and TC Chiller. 2004. "Evidence of an Association Between Use of Anti-Microbial Agents in Food Animals and Anti-Microbial Resistance Among Bacteria Isolated from Humans and the Human Health Consequences of Such Resistance." *Journal of Veterinary Medicine*, Series B 51 (8-9): 374–79.

Arlet, Guillaume, Martine Rouveau, and Alain Philippon. 1997. "Substitution of Alanine for Aspartate at Position 179 in the Shv-6 Extended-Spectrum β -Lactamase." FEMS Microbiology Letters 152 (1): 163–67.

Baker-Austin, Craig, Meredith S Wright, Ramunas Stepanauskas, and JV McArthur. 2006. "Co-Selection of Antibiotic and Metal Resistance." *Trends in Microbiology* 14 (4): 176–82.

Bonardi, Silvia, Clotilde Silvia Cabassi, Simona Longhi, Federico Pia, Margherita Corradi, Stefano Gilioli, and Erika Scaltriti. 2018. "Detection of Extended-Spectrum Beta-Lactamase Producing Escherichia Coli from Mesenteric Lymph Nodes of Wild Boars (Sus Scrofa)." ITALIAN JOURNAL OF FOOD SAFETY 7 (4): 213–16. https://doi.org/10.4081/ijfs.2018.7707.

Bürkner, Paul-Christian. 2018. "Advanced Bayesian Multilevel Modeling with the R Package brms." The R Journal 10 (1): 395–411. https://doi.org/10.32614/RJ-2018-017.

Camarda, Antonio, Elena Circella, Donato Pennelli, Anna Madio, Giordano Bruni, Vito Lagrasta, Giacomo Marzano, Egidio Mallia, and Evelyn Campagnari. 2006. "Wild Birds as Bioloigical Indicators of Environmental Pollution: Biotyping and Antimicrobial Resistance Patterns of Escherichia Coli Isolated from Audouin's Gulls

(Larus Audouinii) Living in the Bay of Gallipoli (Italy)." *ITALIAN JOURNAL OF ANIMAL SCIENCE* 5 (3): 287–90.

Caprioli, A, G Donelli, V Falbo, C Passi, A Pagano, and A Mantovani. 1991. "Antimicrobial Resistance and Production of Toxins in Escherichia Coli Strains from Wild Ruminants and the Alpine Marmot." *Journal of Wildlife Diseases* 27 (2): 324–27.

Carattoli, Alessandra. 2013. "Plasmids and the Spread of Resistance." International Journal of Medical Microbiology 303 (6-7): 298–304.

Chang, Feng-Yee, LK Siu, Chang-Phone Fung, Min-Hua Huang, and Monto Ho. 2001. "Diversity of Shv and Tem β -Lactamases in Klebsiella Pneumoniae: Gene Evolution in Northern Taiwan and Two Novel β -Lactamases, Shv-25 and Shv-26." Antimicrobial Agents and Chemotherapy 45 (9): 2407–13.

Chopra, Ian, and Marilyn Roberts. 2001. "Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance." Microbiology and Molecular Biology Reviews 65 (2): 232–60.

Clermont, Olivier, Julia K Christenson, Erick Denamur, and David M Gordon. 2013. "The c Lermont E Scherichia Coli Phylo-Typing Method Revisited: Improvement of Specificity and Detection of New Phylo-Groups." *Environmental Microbiology Reports* 5 (1): 58–65.

Connell, Sean R, Dobryan M Tracz, Knud H Nierhaus, and Diane E Taylor. 2003. "Ribosomal Protection Proteins and Their Mechanism of Tetracycline Resistance." *Antimicrobial Agents and Chemotherapy* 47 (12): 3675–81.

Cremet, L, N Caroff, S Dauvergne, A Reynaud, D Lepelletier, and S Corvec. 2011. "Prevalence of Plasmid-Mediated Quinolone Resistance Determinants in Esbl Enterobacteriaceae Clinical Isolates over a 1-Year Period in a French Hospital." *Pathologie Biologie* 59 (3): 151–56.

Dierikx, Cindy, Alieda van Essen-Zandbergen, Kees Veldman, Hilde Smith, and Dik Mevius. 2010. "Increased Detection of Extended Spectrum Beta-Lactamase Producing Salmonella Enterica and Escherichia Coli Isolates from Poultry." *Veterinary Microbiology* 145 (3-4): 273–78.

Dorai-Raj, Sundar. 2014. Binom: Binomial Confidence Intervals for Several Parameterizations. https://CRAN.R-project.org/package=binom.

Foti, Maria, Antonietta Mascetti, Vittorio Fisichella, Egidio Fulco, Bianca Maria Orlandella, and Francesco Lo Piccolo. 2017. "Antibiotic Resistance Assessment in Bacteria Isolated in Migratory Passeriformes Transiting Through the Metaponto Territory (Basilicata, Italy)." AVIAN RESEARCH 8 (October). https://doi.org/10.1186/s40657-017-0085-2.

Foti, Maria, Donatella Rinaldo, Annalisa Guercio, Cristina Giacopello, Aurora Aleo, Filomena De Leo, Vittorio Fisichella, and Caterina Mammina. 2011. "Pathogenic Microorganisms Carried by Migratory Birds Passing Through the Territory of the Island of Ustica, Sicily (Italy)." AVIAN PATHOLOGY 40 (4): 405–9. https://doi.org/10.1080/03079457.2011.588940.

Foti, Maria, Antonino Siclari, Antonietta Mascetti, and Vittorio Fisichella. 2018. "Study of the Spread of Antimicrobial-Resistant Enterobacteriaceae from Wild Mammals in the National Park of Aspromonte (Calabria, Italy)." *ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY* 63 (October): 69–73. https://doi.org/10.1016/j.etap.2018.08.016.

Gbonon, VM'bengue, SA Afran, KN Guessennd, AA Toty, TFB Diplo, ASP N'Guetta, and M Dosso. 2018. "Detection of Tem and Shv Genes in Clinical Escherichia Coli and Klebsiella Pneumoniae Strains Esbl Isolated in Neonatology and Pediatric Units." *Microbiology Research Journal International*, 1–7.

Gelman, Andrew, Jennifer Hill, and Aki Vehtari. 2020. Regression and Other Stories. Cambridge University Press.

Gelman, Andrew, Daniel Lee, and Jiqiang Guo. 2015. "Stan: A Probabilistic Programming Language for Bayesian Inference and Optimization." *Journal of Educational and Behavioral Statistics* 40 (5): 530–43.

Giacopello, Cristina, Maria Foti, Antonietta Mascetti, Fabio Grosso, Deborah Ricciardi, Vittorio Fisichella, and Francesco Lo Piccolo. 2016. "Antimicrobial Resistance Patterns of Enterobacteriaceae in European Wild Bird Species Admitted in a Wildlife Rescue Centre." *VETERINARIA ITALIANA* 52 (2): 139–44. https://doi.org/10.12834/VetIt.327.1374.2.

Greig, J., A. Rajic, I. Young, M. Mascarenhas, L. Waddell, and J. LeJeune. 2015. "A Scoping Review of the Role of Wildlife in the Transmission of Bacterial Pathogens and Antimicrobial Resistance to the Food Chain." ZOONOSES AND PUBLIC HEALTH 62 (4): 269–84. https://doi.org/10.1111/zph.12147.

Gullberg, Erik, Sha Cao, Otto G Berg, Carolina Ilbäck, Linus Sandegren, Diarmaid Hughes, and Dan I Andersson. 2011. "Selection of Resistant Bacteria at Very Low Antibiotic Concentrations." *PLoS Pathogens* 7 (7).

Kindt, Roeland, and Richard Coe. 2005. Tree Diversity Analysis: A Manual and Software for Common Statistical Methods for Ecological and Biodiversity Studies. World Agroforestry Centre.

Knapp, Charles W. 2013. "Patricia L. Keen and Mark Hmm Montforts (Eds): Antimicrobial Resistance in the Environment." Springer.

Kohanski, Michael A, Mark A DePristo, and James J Collins. 2010. "Sublethal Antibiotic Treatment Leads to Multidrug Resistance via Radical-Induced Mutagenesis." *Molecular Cell* 37 (3): 311–20.

Luo, Naidan, Sonia Pereira, Orhan Sahin, Jun Lin, Shouxiong Huang, Linda Michel, and Qijing Zhang. 2005. "Enhanced in Vivo Fitness of Fluoroquinolone-Resistant Campylobacter Jejuni in the Absence of Antibiotic Selection Pressure." *Proceedings of the National Academy of Sciences* 102 (3): 541–46.

Mabilat, Claude, Sylvie Goussard, Wladimir Sougakoff, Robert C Spencer, and Patrice Courvalin. 1990. "Direct Sequencing of the Amplified Structural Gene and Promoter for the Extended-Broad-Spectrum β -Lactamase Tem-9 (Rhh-1) of Klebsiella Pneumoniae." *Plasmid* 23 (1): 27–34.

Mather, Alison E, Louise Matthews, Dominic J Mellor, Richard Reeve, Matthew J Denwood, Patrick Boerlin, Richard J Reid-Smith, et al. 2012. "An Ecological Approach to Assessing the Epidemiology of Antimicrobial Resistance in Animal and Human Populations." *Proceedings of the Royal Society B: Biological Sciences* 279 (1733): 1630–9.

Organization, World Health, and others. 2019. "Critically Important Antimicrobials for Human Medicine."

Pagano, A, G Nardi, C Bonaccorso, V Falbo, C Passi, V Sanguinetti, and A Mantovani. 1985. "Faecal Bacteria of Wild Ruminants and the Alpine Marmot." *Veterinary Research Communications* 9 (1): 227–32.

R Core Team. 2020. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

Rebelo, Ana Rita, Valeria Bortolaia, Jette S Kjeldgaard, Susanne K Pedersen, Pimlapas Leekitcharoenphon, Inge M Hansen, Beatriz Guerra, et al. 2018. "Multiplex Pcr for Detection of Plasmid-Mediated Colistin Resistance Determinants, Mcr-1, Mcr-2, Mcr-3, Mcr-4 and Mcr-5 for Surveillance Purposes." *Eurosurveillance* 23 (6): 17–00672.

Robinson, Timothy P, DP Bu, Juan Carrique-Mas, Eric M Fèvre, Marius Gilbert, Delia Grace, Simon I Hay, et al. 2016. "Antibiotic Resistance Is the Quintessential One Health Issue." *Transactions of the Royal Society of Tropical Medicine and Hygiene* 110 (7): 377–80.

Stan Development Team. 2020. "RStan: The R Interface to Stan." http://mc-stan.org/.

Turchi, Barbara, Marta Dec, Fabrizio Bertelloni, Stanislaw Winiarczyk, Sebastian Gnat, Flavio Bresciani, Fabio Viviani, Domenico Cerri, and Filippo Fratini. 2019. "Antibiotic Susceptibility and Virulence Factors in

Escherichia Coli from Sympatric Wildlife of the Apuan Alps Regional Park (Tuscany, Italy)." MICROBIAL $DRUG\ RESISTANCE\ 25\ (5):\ 772-80.\ https://doi.org/10.1089/mdr.2018.0191.$

Vittecoq, Marion, Sylvain Godreuil, Franck Prugnolle, Patrick Durand, Lionel Brazier, Nicolas Renaud, Audrey Arnal, et al. 2016. "Antimicrobial Resistance in Wildlife." *JOURNAL OF APPLIED ECOLOGY* 53 (2): 519–29. https://doi.org/10.1111/1365-2664.12596.

Woodford, Neil, Elizabeth J Fagan, and Matthew J Ellington. 2006. "Multiplex Pcr for Rapid Detection of Genes Encoding Ctx-M Extended-Spectrum β -Lactamases." Journal of Antimicrobial Chemotherapy 57 (1): 154–55.