# SDS/MTH 220: Badge Challenge 1

| Name: |  |
|-------|--|
|       |  |

#### Instructions

- This badge challenge must be your own work entirely.
- This is an open mind, closed stats notebook, closed textbook, and closed fellow statistician badge challenge.
- All questions will be graded under the badge level grading system. On badge challenges, you must show all work for computational answers and justify all claims for expository questions.
- Keep your explanations contextually meaningful and concise!
- You do not have to perform any long computations. For example, if the answer is 18.5, you will receive full credit for writing  $2.5 * (4 + 3.5) (1/2)^2$ .
- Use the provided blank sheets of paper to write your answers. You may also use these pages for your scratch work.
- Please write on <u>one side</u> of the blank pages and staple any pages you want graded to the badge challenge. Your answers should appear in question order.
- Put your name on the top right corner of each page that you submit and do not write where the staple will go.
- The front page must have two timestamps on it. Timestamps will be strictly enforced. Any badge challengs with pairs of timestamps indicating than more than 140 minutes or missing timestamps are subject to an honor board case.
- This is the first of four opportunities to demonstrate your current understanding of the first five badges for the course. You may complete as many badges as you would like. Questions left unattempted will not receive a badge level.

| Name: |  |  |
|-------|--|--|
|-------|--|--|

| Question                      | Badge 1 | Badge 2 | Badge 3 | Badge 4 | Badge 5 |
|-------------------------------|---------|---------|---------|---------|---------|
| 1                             |         |         |         |         |         |
| 2                             |         |         |         |         |         |
| 3                             |         |         |         |         |         |
| 4                             |         |         |         |         |         |
| 5                             |         |         |         |         |         |
| Recorded<br>Score by<br>Badge |         |         |         |         |         |

(a) Say you have a data frame named example that has 4 variables and 4 rows of data:

| type | fruit  | city     | number |
|------|--------|----------|--------|
| D    | apple  | Toronto  | 3      |
| В    | apple  | Montreal | 4      |
| A    | orange | Toronto  | 2      |
| С    | orange | Montreal | 1      |

• Draw the histogram for the variable number using the bins indicated with the dashed vertical lines. Be sure to write down appropriate y-axis information.



- List the elements of the "Grammar of Graphics" for a **generic** plot. In other words, what are the ingredients of *any* visualization in **ggplot2**?
- Write out pseudocode to create the histogram you created in the first part of this question. Specify where you use each element of the "Grammar of Graphics."
- (b) A researcher from eastern Massachusetts is a big Starbucks fan. She has a suspicion that Starbucks tend to locate in richer neighborhoods, while this is not the case for Dunkin Donuts. She writes code to pull data from the internet about all 1024 census tracts (areas where decennial census data are collected) in Eastern Massachusetts. She summarizes her results in the following graphic:





- (a) Write out the elements of the "Grammar of Graphics" that need to be specified to create this graphic. You do not need to specify the axes labels, the plot title, nor the regression lines
- (b) Assuming there are no missing data, how many rows are in the data frame that we input into the ggplot() function?
- (c) Does the presented visualization support or contradict the researcher's suspicion? Why?

| -11                                   | 1 | 12 | 15 | 20   | 20   | 30 | 30 | 30 | 30 | 40 | 40 | 40 | 40 | 41 | 51 |
|---------------------------------------|---|----|----|------|------|----|----|----|----|----|----|----|----|----|----|
| 1st quartile   Average   3rd quartile |   |    |    |      |      | _  |    |    |    |    |    |    |    |    |    |
|                                       |   |    | 20 | 28.5 | 3333 |    |    | 40 |    |    |    |    |    |    |    |



- (c) For which of the following pairs of variables would you visualize with a scatterplot? Circle which pairs.
  - Pair 1: "Distance from school in miles" and "mode of transportation to school (bike, walking, bus)
  - Pair 2: "Number of years at a job" and "Salary"
  - Pair 3: "Years experience playing an instrument" and "number of mistakes made playing a song"
  - Pair 4: "Number of years since a person retired" and "favorite sport"
  - Consider a subset of the gapminder dataset we've seen numerous times in class:

| ## # A tibble: 284 x 6 |     |             |             |             |             |             |             |  |
|------------------------|-----|-------------|-------------|-------------|-------------|-------------|-------------|--|
| ##                     |     | country     | continent   | year        | lifeExp     | pop         | gdpPercap   |  |
| ##                     |     | <fct></fct> | <fct></fct> | <int></int> | <dbl></dbl> | <int></int> | <dbl></dbl> |  |
| ##                     | 1   | Afghanistan | Asia        | 1957        | 30.3        | 9240934     | 821.        |  |
| ##                     | 2   | Afghanistan | Asia        | 2007        | 43.8        | 31889923    | 975.        |  |
| ##                     | 3   | Albania     | Europe      | 1957        | 59.3        | 1476505     | 1942.       |  |
| ##                     | 4   | Albania     | Europe      | 2007        | 76.4        | 3600523     | 5937.       |  |
| ##                     | 5   | Algeria     | Africa      | 1957        | 45.7        | 10270856    | 3014.       |  |
| ##                     | 6   | Algeria     | Africa      | 2007        | 72.3        | 33333216    | 6223.       |  |
| ##                     | 7   | Angola      | Africa      | 1957        | 32.0        | 4561361     | 3828.       |  |
| ##                     | 8   | Angola      | Africa      | 2007        | 42.7        | 12420476    | 4797.       |  |
| ##                     | 9   | Argentina   | Americas    | 1957        | 64.4        | 19610538    | 6857.       |  |
| ##                     | 10  | Argentina   | Americas    | 2007        | 75.3        | 40301927    | 12779.      |  |
| ##                     | # . | with 274    | more rows   |             |             |             |             |  |

Using this data, we can create the following plot:



Write out in bullet point form all the elements of the "Grammar of Graphics" that need to be specified in a ggplot() function call to create this graphic. Note

- You don't need to write code, you only need to specify all components of the graphic.
- There is no need to specify the x and y axes labels.
- Write out pseudocode to create a collection of boxplots of GDP per capita with one boxplot per continent. Specify where you use each element of the "Grammar of Graphics."



For this question consider the below box plot.



- (a) For each of the below statements, state whether it is true or false and briefly <u>explain</u> your answer.
  - The range of extremes is [3,47].
  - According to the boxplot, the number of data points used to construct the box plot is 17.
  - The 50% coverage interval is [7,30].
  - The data is skew-left.
  - According to the boxplot, the mean is 20.
- (b) If you would like to know the above 5 summary statistics (i.e. range of extremes, skewness, mean, coverage intervals, and number of data points), is a box plot the best visual representation for your data? If not, what visualization would be better? Justify your answer.
- (c) List the elements of the "Grammar of Graphics" for a **generic** plot. In other words, what are the ingredients of *any* visualization in **ggplot2**?
- (d) Write out pseudocode to create this boxplot in ggplot2. Specify where you use each element of the "Grammar of Graphics."

(a) Recall the babynames dataset that contains all babynames used more than 5 times for any given year, split by sex, for the years 1880 through 2015. Here is a preview of the first 10 rows:

| year | sex | name      | n    | prop      |
|------|-----|-----------|------|-----------|
|      |     |           |      | 1 1       |
| 1880 | F   | Mary      | 7065 | 0.0723836 |
| 1880 | F   | Anna      | 2604 | 0.0266790 |
| 1880 | F   | Emma      | 2003 | 0.0205215 |
| 1880 | F   | Elizabeth | 1939 | 0.0198658 |
| 1880 | F   | Minnie    | 1746 | 0.0178884 |
| 1880 | F   | Margaret  | 1578 | 0.0161672 |
| 1880 | F   | Ida       | 1472 | 0.0150812 |
| 1880 | F   | Alice     | 1414 | 0.0144870 |
| 1880 | F   | Bertha    | 1320 | 0.0135239 |
| 1880 | F   | Sarah     | 1288 | 0.0131960 |

- a) Write the pseudocode that is going to compute the total number of babies born between 1950 and 2000 that are named "Riley."
- **b)** You want to compare the degree to which the names "Casey" and "Riley" have been "unisex" names for all years between 1950 to 2000, in other words the focus is on the degree to which the names have been used by both sexes
  - Write the pseudocode for the data wrangling.
  - Specify all the elements of the grammar of graphics that is going to generate an appropriate visualization.

| origin | year | month | day | hour | temp  | humid | wind_speed | precip | pressure | visib |
|--------|------|-------|-----|------|-------|-------|------------|--------|----------|-------|
| EWR    | 2013 | 1     | 1   | 1    | 39.02 | 59.37 | 10.35702   | 0      | 1012.0   | 10    |
| EWR    | 2013 | 1     | 1   | 2    | 39.02 | 61.63 | 8.05546    | 0      | 1012.3   | 10    |
| EWR    | 2013 | 1     | 1   | 3    | 39.02 | 64.43 | 11.50780   | 0      | 1012.5   | 10    |
| EWR    | 2013 | 1     | 1   | 4    | 39.92 | 62.21 | 12.65858   | 0      | 1012.2   | 10    |
| EWR    | 2013 | 1     | 1   | 5    | 39.02 | 64.43 | 12.65858   | 0      | 1011.9   | 10    |
| EWR    | 2013 | 1     | 1   | 6    | 37.94 | 67.21 | 11.50780   | 0      | 1012.4   | 10    |

(b) You are presented with data on the Titanic disaster of 1912 in a data frame Titanic, which cross-classifies survival vs death by class, sex, and age. Write down the *pseudocode* of the commands that will output a table comparing survival vs death counts for the following three scenarios. For each scenario, under your pseudocode, draw what the output table would look like, but do **not** fill in the numbers in the table.

- a) by sex
- b) by sex and age
- c) by sex and class
- (c) What would you use to address the question if the "women and children"-first policy of the White Star Line Company (the company that ran the Titanic) held true or not.

**Note**: you don't need to calculate the output table, just write the pseudocode that would produce it where the more concise the pseudocode the better. Here is what the **Titanic** data looks like:

| Class | Sex    | Age   | Survived | n   |
|-------|--------|-------|----------|-----|
| 1st   | Male   | Child | No       | 0   |
| 2nd   | Male   | Child | No       | 0   |
| 3rd   | Male   | Child | No       | 35  |
| Crew  | Male   | Child | No       | 0   |
| 1st   | Female | Child | No       | 0   |
| 2nd   | Female | Child | No       | 0   |
| 3rd   | Female | Child | No       | 17  |
| Crew  | Female | Child | No       | 0   |
| 1st   | Male   | Adult | No       | 118 |
| 2nd   | Male   | Adult | No       | 154 |
| 3rd   | Male   | Adult | No       | 387 |
| Crew  | Male   | Adult | No       | 670 |
| 1st   | Female | Adult | No       | 4   |
| 2nd   | Female | Adult | No       | 13  |
| 3rd   | Female | Adult | No       | 89  |
| Crew  | Female | Adult | No       | 3   |
| 1st   | Male   | Child | Yes      | 5   |
| 2nd   | Male   | Child | Yes      | 11  |
| 3rd   | Male   | Child | Yes      | 13  |
| Crew  | Male   | Child | Yes      | 0   |
| 1st   | Female | Child | Yes      | 1   |
| 2nd   | Female | Child | Yes      | 13  |
| 3rd   | Female | Child | Yes      | 14  |
| Crew  | Female | Child | Yes      | 0   |
| 1st   | Male   | Adult | Yes      | 57  |
| 2nd   | Male   | Adult | Yes      | 14  |
| 3rd   | Male   | Adult | Yes      | 75  |
| Crew  | Male   | Adult | Yes      | 192 |
| 1st   | Female | Adult | Yes      | 140 |
| 2nd   | Female | Adult | Yes      | 80  |
| 3rd   | Female | Adult | Yes      | 76  |
| Crew  | Female | Adult | Yes      | 20  |

You are investigating if countries get a 'bump' in their gold medal count when they host the Winter Olympics. Recalling that the 2010 Winter Olympics were in Vancouver Canada, you decide to use Canada as a first test case. You found the following Canadian gold medal tallies for the past 9 Winter Olympics:

| Year        | 1984 | 1988 | 1992 | 1994 | 1998 | 2002 | 2006 | 2010 | 2014 |
|-------------|------|------|------|------|------|------|------|------|------|
| Canada's    |      |      |      |      |      |      |      |      |      |
| Gold Medals | 2    | 0    | 2    | 3    | 6    | 7    | 7    | 26   | 10   |

- (a) What is the median number of gold medals that Team Canada have won over the past 9 Winter Olympics? Show all work.
- (b) Find the 50% coverage interval. Show all work.
- (c) Based on the above table and results, do you think that Canada got a 'bump' for being the host country? Justify your answer.
- (d) You double check the table's data and notice that for the 2010 games, the listed number of medals is the total number and not the just the gold medals. The correct number of gold medals is actually 13 gold medals. Does the median number of gold medals that Team Canada has won over the past 9 Winter Olympics change? Does the mean change? Justify **both** your answers **without** doing any **additional** computations.

#### Standard normal curve



- (a) Consider the following hypothetical study. Say you collect two variables of information from a population of interest: y = life expectancy and x = annual income out of college measured in units of thousands of dollars. You find that
  - (a) the correlation coefficient is 0.25
  - (b) the fitted regression line  $\hat{y} = 45 + 0.5x$

Write down what the following two quantities would be if x was not measured in units of thousands of dollars, but measured in units of dollars:

- (a) the correlation coefficient
- (b) the fitted slope  $b_1$  of the regression line  $\hat{y} = b_0 + b_1 x$

Interpret the coefficients  $b_0$  and  $b_1$  in contextually meaningful ways.

(b) Recall our teaching evaluation dataset seen in class. We're interested in fitting a model of teaching score (evaluated by students) as a function of instructor age.

```
ggplot(data = evals, mapping = aes(x = age, y = score)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE) +
  labs(x = "Instructor age", y = "Teaching score")
```



```
model_score <- lm(score ~ age, data = evals)
get_regression_table(model_score)</pre>
```

```
## # A tibble: 2 x 7
                estimate std_error statistic p_value lower_ci upper_ci
##
     term
##
     <chr>
                   <dbl>
                             <dbl>
                                        <dbl>
                                                <dbl>
                                                          <dbl>
                                                                    <dbl>
## 1 intercept
                   4.46
                             0.127
                                        35.2
                                                0
                                                          4.21
                                                                    4.71
## 2 age
                  -0.006
                             0.003
                                        -2.31
                                                0.021
                                                         -0.011
                                                                  -0.001
```

a) Interpret the intercept term in the estimate column of the regression table.

b) Give the precise interpretation of the slope for age in the estimate column of the regression table.

c) The regression line visualized in the above figure is considered the "best fitting line" through these points. By what criteria do we mean "best"?

d) What is the correlation coefficient of age and score? Is it positive or negative?

e) Consider the first row of the following output. Write down the equation that computes the first value of score\_hat: 4.25.

```
model_points <- get_regression_points(model_score)</pre>
model_points
## # A tibble: 463 x 5
##
          ID score
                      age score_hat residual
      <int> <dbl> <int>
                               <dbl>
                                         <dbl>
##
##
    1
           1
               4.7
                       36
                                4.25
                                         0.452
           2
    2
               4.1
                                4.25
                                       -0.148
##
                       36
                                4.25
                                       -0.348
    3
           3
               3.9
##
                       36
##
    4
           4
               4.8
                       36
                                4.25
                                         0.552
    5
           5
               4.6
                       59
                                4.11
                                         0.488
##
               4.3
                                4.11
##
    6
           6
                       59
                                         0.188
               2.8
   7
           7
                                4.11
                                       -1.31
##
                       59
##
   8
           8
               4.1
                                4.16
                                       -0.059
                       51
##
    9
           9
               3.4
                       51
                                4.16
                                       -0.759
## 10
          10
               4.5
                       40
                                4.22
                                         0.276
## # ... with 453 more rows
```

f) Write down the equation that computes the first value of residual: 0.452.

g) Write down the data wrangling pseudocode to apply to model\_points to compute the value of the criteria described in part c).

Estimate Std. Error

(a) Note: for this question, you do not need to do the arithmetic (adding, subtracting, multiplying, dividing), but rather write down what you would enter into a calculator if you had one. Let's consider the gapminder development data, but only for the year 2007. Let's look at a random sample of 5 out of the 142 rows of this dataset:

| country  | continent | lifeExp |
|----------|-----------|---------|
| Namibia  | Africa    | 52.906  |
| Portugal | Europe    | 78.098  |
| Iran     | Asia      | 70.964  |
| Brazil   | Americas  | 72.390  |
| Italy    | Europe    | 80.546  |

## add Nambia and Italy here

We are interested in modeling the relationship between the outcome variable y =life expectancy in years and the categorical explanatory variable x =continent. You fit a following regression and obtain the following regression table rounded to the nearest integer:

| ## # | A tibble: 5 x 7           |             |             |             |             |             |             |
|------|---------------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| ##   | term                      | estimate    | std_error   | statistic   | p_value     | lower_ci    | upper_ci    |
| ##   | <chr></chr>               | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> |
| ## 1 | intercept                 | 54.8        | 1.02        | 53.4        | 0           | 52.8        | 56.8        |
| ## 2 | ${\tt continentAmericas}$ | 18.8        | 1.8         | 10.4        | 0           | 15.2        | 22.4        |
| ## 3 | continentAsia             | 15.9        | 1.65        | 9.68        | 0           | 12.7        | 19.2        |
| ## 4 | continentEurope           | 22.8        | 1.70        | 13.5        | 0           | 19.5        | 26.2        |
| ## 5 | continentOceania          | 25.9        | 5.33        | 4.86        | 0           | 15.4        | 36.4        |

- a) What is the fitted value  $\hat{y}$  of life expectancy in years for the below countries? (Show all work to justify your steps.)
- (a) Togo
- (b) Lestho
- (c) Bulgaria

Are you surprised by these results? Why or why not?

- a) What is the fitted value  $\hat{y}$  of life expectancy in years for any given country in:
- (a) Africa

(b) Europe

Show all work to justify your steps.

- c) What is the residual for the following three countries?
- (a) Nambia
- (b) Italy

Show all work to justify your steps.

- d) What is the mean life expectancy for countries in the following continents:
- (a) Africa
- (b) Asia
- (c) Europe

Show all work to justify your steps.