TECNOLOGÍA ELECTRÓNICA DE COMPUTADORES

2º Curso – GRADO EN INGENIERÍA INFORMÁTICA EN TECNOLOGÍAS DE LA INFORMACIÓN

BLOQUE III: CIRCUITOS ELECTRÓNICOS DIGITALES

Tema 5. Circuitos integrados digitales: familias lógicas.

Lección 7. Álgebra de Boole.

Lección 7. Álgebra de Boole

- 7.1 Definición
- 7.2 Operaciones en el álgebra de Boole
- 7.3 Funciones en el álgebra de Boole
- 7.4 Funciones lógicas elementales

Bibliografía de la lección

Lectura clave:

Thomas L.Floyd. Fundamentos de sistemas digitales.

Ed. Prentice Hall – Pearson Education.

Tema 4. Álgebra de Boole y simplificación lógica. Apartados 4.1. a 4.7.

7.1. Definición

Objetivo del Álgebra de Boole:

PROPORCIONAR HERRAMIENTAS MATEMÁTICAS PARA FACILITAR EL DISEÑO DE CIRCUITOS DIGITALES, DE SISTEMAS DIGITALES

Variable booleana: Sólo puede tomar dos valores (0 ó 1

7.2. Operaciones en el álgebra de Boole

Operaciones básicas (complemento, suma y producto). Son internas porque el resultado de la operación es también una variable booleana.

Operaciones que se definen:

Complemento (NC	T)	
-----------------	----	--

Α	A
0	1
1	0

Suma (OR)

АВ	A+B
0 0	0
0 1	1
1 0	1
1 1	1

Producto (AND)

A	В	A·B
0	0	0
0	1	0
1	0	0
1	1	1

Leyes del Álgebra de Boole:

- Conmutativa

A+B=B+A

 $A \cdot B = B \cdot A$

- Asociativa

(A+B)+C=A+(B+C)

 $(A \cdot B) \cdot C = A \cdot (B \cdot C)$

- Distributiva

A+(B-C)=(A+B)-(A+C)

 $A \cdot (B+C) = A \cdot B + A \cdot C$

Reglas del Álgebra de Boole:

A + 0 = A

A + 1 = 1

 $A \cdot 0 = 0$

 $A \cdot 1 = A$

A + A = A

 $A + \overline{A} = 1$

 $A \cdot A = A$ $A \cdot \overline{A} = 0$

 $\frac{=}{A} = A$

 $A + A \cdot B = A$

 $A + A \cdot B = A + B$

Ejercicio:

Demostrar que:

 $(A + B) \cdot (A + C) = A + B \cdot C$

Leyes de DeMorgan:

 $\overline{A \cdot B} = \overline{A} + \overline{B}$ 1a Ley de DeMorgan

 $\overline{A + B} = \overline{A \cdot B}$ 2a Ley de DeMorgan

Ley de DeMorgan generalizada:

$$\overline{f(A,B,C,...,+,\cdot)} = f(\overline{A},\overline{B},\overline{C},...,\cdot,+)$$

7.3. Funciones en el álgebra de Boole

Función lógica:

- "Conjunto de variables booleanas relacionadas entre sí por las operaciones de suma, producto y complemento".
- Una función lógica también es una variable booleana.
- Toda función lógica se puede descomponer en una serie de funciones lógicas básicas que se pueden realizar físicamente mediante dispositivos denominados "puertas lógicas".

7.4. Funciones lógicas elementales

Puertas lógicas básicas: El número de variables de entrada no está limitado a dos

Ejemplo de puerta lógica (no se limitan al ámbito de la electrónica)

OTRAS FUNCIONES / PUERTAS LÓGICAS

$$\frac{A}{B}$$

$$A \longrightarrow A \oplus B$$

$$A \longrightarrow A \longrightarrow A \oplus B$$

			,		~ ~
-	ıın	CIC	n	N	OR
	uii		<i>_</i> !!	1.4	\mathbf{v}

Α	В	A+B
0	0	1
0	1	0
1	0	0
1	1	0

Función NAND

Α	В	Ā·B
0	0	1
0	1	1
1	0	1
1	1	0

Función XOR (OR Exclusiva)

Α	В	A⊕ B
0	0	0
0	1	1
1	0	1
1	1	0

Función XNOR (NOR Exclusiva)

АВ	Ā⊕B
0 0	1
0 1	0
1 0	0
1 1	1

Ejercicio:

Formular los siguientes enunciados como funciones lógicas y representarlas por medio de puertas:

- a) "Debe encenderse la luz cuando se accione el interruptor A o el B, y no se accione el interruptor C "
- b) "La alarma se activará si las puertas A y B están cerradas, y se trata de abrir la ventana C "

