DATE: 11/08/2023

Experiment 2

Aim:

- a) Write Verilog codes for implementing **half-adder** having structural, data flow and behavioural model and perform synthesis by generating different synthesis and timing waveforms.
- b) Write Verilog codes for implementing **full-adder using half-adder** having structural, data flow and behavioural model and perform synthesis by generating different synthesis and timing waveforms.

Theory:

Half Adder:

A half adder is a digital circuit that performs binary addition of two inputs (A and B), generating a sum (S) and a carry (Cout).

A	В	Sum (S)	Carry (Cout)
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Full Adder:

A full adder is a digital circuit that performs binary addition of three inputs (A, B, and Cin), generating a sum (S) and a carry out (Cout).

Truth Table:

A	В	Cin	Sum (S)	Carry Out (Cout)				
0	0	0	0	0				
0	0	1	1	0				
0	1	0	1	0				
0	1	1	0	1				
1	0	0	1	0				
1	0	1	0	1				
1	1	0	0	1				
1	1	1	1	1				

Code for Half-adder:

1) Structural

```
module halfAdder_s(
  input a, b,
  output c, s
  );
  and(c,a,b);
  xor(s,a,b);
endmodule
```

2) Data Flow

```
module halfAdder_d(
  input a, b,
  output c, s
);
  assign c = a & b;
  assign s = a^b;
endmodule
```

3) Behavioural

```
module halfAdder_b(
input a, b,
output reg c, s
);
always @(a, b)
begin
c = a & b;
s = a ^ b;
end
endmodule
```

RTL Schematic:

Function Verification:

Post power report:

Total On-Chip Power:

Summary

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

1.883 W

Design Power Budget: Not Specified Process: typical **Power Budget Margin:** N/A **Junction Temperature:** 28.5°C Thermal Margin: 56.5°C (29.8 W) 25.0 °C Ambient Temperature: Effective &JA: 1.9°C/W Power supplied to off-chip devices: 0 W Confidence level: Low

Post synthesis timing summary:

Post utilization/ area summary:

Post implementation schematic:

Post implementation power report:

Post implementation utilization/ area summary:

Code for Full adder using Half-adder:

1) Structural

```
module halfadder s(
  input a, b,
  output c, s
  );
  and(c,a,b);
  xor(s,a,b);
endmodule
module full half s(
  input a, b, c,
  output sum, carry
  );
  wire w1, w2, w3;
  halfadder h1(.a(a), .b(b), .c(w2), .s(w1));
  halfadder h2(.a(w1), .b(c), .c(w3), .s(sum));
  or(carry, w2, w3);
endmodule
```

2) Data Flow

```
module halfadder_d(
  input a, b,
  output c, s
  );
  assign {c, s} = a + b;
endmodule

module full_half_d(
  input a, b, c,
  output sum, carry
  );
  wire w1, w2, w3;
  halfadder h1(.a(a), .b(b), .c(w2), .s(w1));
  halfadder h2(.a(w1), .b(c), .c(w3), .s(sum));
  or(carry, w2, w3);
endmodule
```

3) Behavioural

```
module halfadder b(
  input a, b,
  output reg c, s
  always @(a, b)
  begin
  c = a \& b;
  s = a \wedge b;
  end
endmodule
module full_half_b(
  input a, b, c,
  output sum, carry
  );
  wire w1, w2, w3;
  halfadder h1(.a(a), .b(b), .c(w2), .s(w1));
  halfadder h2(.a(w1), .b(c), .c(w3), .s(sum));
  or(carry, w2, w3);
endmodule
```

RTL Schematic:

Function Verification:

Post synthesis schematic:

Post power report:

Summary

Post synthesis timing summary:

Name	Slack ^1	Levels	Routes	High Fanout	From	То	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock
3 Path 1	co	3	4	2	c_015	carry_015	4.512	3.345	1.167	00	input port clock
→ Path 2	co	3	4	2	c_015	sum_015	4.512	3.345	1.167	00	input port clock

Post utilization/ area summary:

Post implementation schematic:

Post implementation power report:

Summary

Power analysis from Implemented netlist. Activity derived from constraints files, simulation files or vectorless analysis.

Total On-Chip Power: 0.986 W **Design Power Budget:** Not Specified Process: typical **Power Budget Margin:** N/A Junction Temperature: 26.9°C 58.1°C (30.7 W) Thermal Margin: 25.0 °C Ambient Temperature: Effective &JA: 1.9°C/W Power supplied to off-chip devices: 0 W Confidence level: Low

Post implementation timing summary:

Name	Slack ^1	Levels	Routes	High Fanout	From	То	Total Delay	Logic Delay	Net Delay	Requirement	Source Clock
3 Path 1	co	3	2	2	a_015	sum_015	5.625	3.272	2.353	00	input port clock
→ Path 2	co	3	2	2	a_015	carry_015	5.622	3.274	2.348	00	input port clock

Post implementation utilization/ area summary:

