Nonparametric Sequential Prediction of Time Series. Extension to quantile prediction.

G. Biau – B. Patra

University Paris VI - University Paris VI - Lokad

ENGREF, June 2009

Outline

- Nonparametric mean prediction
 - Context
 - A consistent strategy
 - Experimental results
- Non parametric quantile prediction
 - Context and quantile regression
 - A similar consistent strategy
 - Experimental results
- Other contexts
- 4 Conclusion

Outline

- Nonparametric mean prediction
 - Context
 - A consistent strategy
 - Experimental results
- Non parametric quantile prediction
 - Context and quantile regression
 - A similar consistent strategy
 - Experimental results
- Other contexts
- Conclusion

Introduction

- Time series prediction has a long history [Yule, 1927].
- Genetics, medecine, climate, finance...
- Until 1970's, parametric approach.
- Recently: nonparametric approaches.

Nonparametric framework

A slightly different spirit

- Consider the sequential (= on-line) prediction of time series.
- Including series that do not necessarily satisfy classical statistical assumptions for bounded, mixing or Markovian processes.

Goal

Show consistency results under a minimum of hypotheses.

Nonparametric framework

A slightly different spirit

- Consider the sequential (= on-line) prediction of time series.
- Including series that do not necessarily satisfy classical statistical assumptions for bounded, mixing or Markovian processes.

Goal

Show consistency results under a minimum of hypotheses.

Context

Sequential prediction

- At time n = 1, 2, ..., predict the next outcome $y_n \in \mathbb{R}$ of sequence $y_1, y_2, ...$
- Side information $x_1, x_2, ...$, where each $x_i \in \mathbb{R}^d$.

Notation

- $y_1^{n-1} = (y_1, \ldots, y_{n-1}).$
- $x_1^n = (x_1, \ldots, x_n).$

On-line learning

The elements y_0, y_1, y_2, \ldots and x_1, x_2, \ldots are revealed one at a time, in order, beginning with $(x_1, y_0), (x_2, y_1), \ldots$

Context

Sequential prediction

- At time n = 1, 2, ..., predict the next outcome $y_n \in \mathbb{R}$ of sequence $y_1, y_2, ...$
- Side information $x_1, x_2, ...$, where each $x_i \in \mathbb{R}^d$.

Notation

- $y_1^{n-1} = (y_1, \ldots, y_{n-1}).$
- $x_1^n = (x_1, ..., x_n).$

On-line learning

The elements y_0, y_1, y_2, \ldots and x_1, x_2, \ldots are revealed one at a time, in order, beginning with $(x_1, y_0), (x_2, y_1), \ldots$

Context

Sequential prediction

- At time n = 1, 2, ..., predict the next outcome $y_n \in \mathbb{R}$ of sequence $y_1, y_2, ...$
- Side information $x_1, x_2, ...$, where each $x_i \in \mathbb{R}^d$.

Notation

- $y_1^{n-1} = (y_1, \ldots, y_{n-1}).$
- $\bullet \ X_1^n = (x_1, \ldots, x_n).$

On-line learning

The elements y_0, y_1, y_2, \ldots and x_1, x_2, \ldots are revealed one at a time, in order, beginning with $(x_1, y_0), (x_2, y_1), \ldots$

Prediction

Strategy

• Sequence $g = \{g_n\}_{n=1}^{\infty}$ of forecasting functions

$$g_n: (\mathbb{R}^d)^n \times \mathbb{R}^{n-1} \to \mathbb{R}.$$

• Prediction at time n is $g_n(x_1^n, y_1^{n-1})$.

Hypotheses

- $(x_1, y_1), (x_2, y_2), \dots$ are realizations of random variables $(X_1, Y_1), (X_2, Y_2), \dots$
- The process $\{(X_n, Y_n)\}_{-\infty}^{\infty}$ is jointly stationary and ergodic.

Prediction

Strategy

• Sequence $g = \{g_n\}_{n=1}^{\infty}$ of forecasting functions

$$g_n: (\mathbb{R}^d)^n \times \mathbb{R}^{n-1} \to \mathbb{R}.$$

• Prediction at time n is $g_n(x_1^n, y_1^{n-1})$.

Hypotheses

- $(x_1, y_1), (x_2, y_2), \ldots$ are realizations of random variables $(X_1, Y_1), (X_2, Y_2), \ldots$
- The process $\{(X_n, Y_n)\}_{-\infty}^{\infty}$ is jointly stationary and ergodic.

Measuring the error

Definition

At time n, the (normalized) cumulative prediction error on the strings X_1^n and Y_1^n is

$$L_n(g) = \frac{1}{n} \sum_{t=1}^n \left(g_t(X_1^t, Y_1^{t-1}) - Y_t \right)^2.$$

Goal versus reality

- Goal: make $L_n(g)$ small.
- Reality: fundamental limit L* [Algoet, 1994].

Measuring the error

Definition

At time n, the (normalized) cumulative prediction error on the strings X_1^n and Y_1^n is

$$L_n(g) = \frac{1}{n} \sum_{t=1}^n \left(g_t(X_1^t, Y_1^{t-1}) - Y_t \right)^2.$$

Goal versus reality

- Goal: make $L_n(g)$ small.
- Reality: fundamental limit L* [Algoet, 1994].

How good can we get?

Fundamental limit [Algoet, 1994]

For any prediction strategy g and jointly stationary ergodic process $\{(X_n, Y_n)\}_{-\infty}^{\infty}$,

 $\liminf_{n\to\infty} L_n(g) \geq L^*$ almost surely,

where

$$L^{\star} = \mathbb{E}\left\{\left(Y_0 - \mathbb{E}\left\{Y_0 | X_{-\infty}^0, Y_{-\infty}^{-1}\right\}\right)^2\right\}$$

is the minimal mean squared error of any prediction for the value of Y_0 based on the infinite past observation sequences

$$Y_{-\infty}^{-1} = (\dots, Y_{-2}, Y_{-1})$$
 and $X_{-\infty}^{0} = (\dots, X_{-1}, X_{0}).$

Consistency

Definition

A prediction strategy g is universally consistent with respect to a class \mathcal{C} of stationary and ergodic processes $\{(X_n, Y_n)\}_{-\infty}^{\infty}$ if for each process in the class,

$$\lim_{n \to \infty} L_n(g) = L^*$$
 almost surely.

- There exist universally consistent strategies for the class $\mathcal C$ of all bounded, stationary and ergodic processes [Algoet, 1992 and Morvai et al., 1996].
- Very complex or slow-converging algorithms.

Consistency

Definition

A prediction strategy g is universally consistent with respect to a class \mathcal{C} of stationary and ergodic processes $\{(X_n, Y_n)\}_{-\infty}^{\infty}$ if for each process in the class,

$$\lim_{n \to \infty} L_n(g) = L^*$$
 almost surely.

- There exist universally consistent strategies for the class $\mathcal C$ of all bounded, stationary and ergodic processes [Algoet, 1992 and Morvai et al., 1996].
- Very complex or slow-converging algorithms.

Outline

- Nonparametric mean prediction
 - Context
 - A consistent strategy
 - Experimental results
- Non parametric quantile prediction
 - Context and quantile regression
 - A similar consistent strategy
 - Experimental results
- Other contexts
- 4 Conclusion

State of the art

A book on prediction of individual sequences.

Cesa-Bianchi, N. and Lugosi, G. Prediction, Learning, and Games, Cambridge University Press, New York, 2006.

Quantization strategies

- Györfi and Lugosi (2001) and Nobel (2003): bounded processes.
- Györfi and Ottucsák (2007): fourth-finite moment processes.

Biau and al. contribution

Several simple nonparametric strategies for non-necessarily bounded processes:

- Kernel-based strategy.
- Nearest neighbor-based strategy.

State of the art

A book on prediction of individual sequences.

Cesa-Bianchi, N. and Lugosi, G. Prediction, Learning, and Games, Cambridge University Press, New York, 2006.

Quantization strategies

- Györfi and Lugosi (2001) and Nobel (2003): bounded processes.
- Györfi and Ottucsák (2007): fourth-finite moment processes.

Biau and al. contribution

Several simple nonparametric strategies for non-necessarily bounded processes:

- Kernel-based strategy.
- Nearest neighbor-based strategy.

State of the art

A book on prediction of individual sequences.

Cesa-Bianchi, N. and Lugosi, G. Prediction, Learning, and Games, Cambridge University Press, New York, 2006.

Quantization strategies

- Györfi and Lugosi (2001) and Nobel (2003): bounded processes.
- Györfi and Ottucsák (2007): fourth-finite moment processes.

Biau and al. contribution

Several simple nonparametric strategies for non-necessarily bounded processes:

- Kernel-based strategy.
- Nearest neighbor-based strategy.

• Define infinite array of experts $h^{(k,\ell)} = \{h_n^{(k,\ell)}\}_{n=1}^{+\infty}$. $k, \ell = 1, 2, ...$

What are k and $\bar{\ell}$?

- *k* is the length of the past observation vector we consider.
- $\bar{\ell}$ (simple function of ℓ) is the number of nearest neighbors of length k we consider.
- More precisely, $\bar{\ell} = \lfloor p_{\ell} n \rfloor$ where $p_{\ell} \in (0,1)$ and $\lim_{\ell \to \infty} p_{\ell} = 0$.

Each expert has a job

• Define infinite array of experts $h^{(k,\ell)} = \{h_n^{(k,\ell)}\}_{n=1}^{+\infty}$. $k,\ell=1,2,\ldots$

What are k and $\bar{\ell}$?

- *k* is the length of the past observation vector we consider.
- $\bar{\ell}$ (simple function of ℓ) is the number of nearest neighbors of length k we consider.
- More precisely, $\bar{\ell}=\lfloor p_\ell n \rfloor$ where $p_\ell \in (0,1)$ and $\lim_{\ell \to \infty} p_\ell = 0$.

Each expert has a job

• Define infinite array of experts $h^{(k,\ell)} = \{h_n^{(k,\ell)}\}_{n=1}^{+\infty}$. $k,\ell=1,2,\ldots$

What are k and $\bar{\ell}$?

- *k* is the length of the past observation vector we consider.
- $\bar{\ell}$ (simple function of ℓ) is the number of nearest neighbors of length ${\it k}$ we consider.
- More precisely, $\bar{\ell}=\lfloor p_\ell n \rfloor$ where $p_\ell \in (0,1)$ and $\lim_{\ell \to \infty} p_\ell = 0$.

Each expert has a job

• Define infinite array of experts $h^{(k,\ell)} = \{h_n^{(k,\ell)}\}_{n=1}^{+\infty}$. $k,\ell=1,2,\ldots$

What are k and $\bar{\ell}$?

- *k* is the length of the past observation vector we consider.
- $\bar{\ell}$ (simple function of ℓ) is the number of nearest neighbors of length k we consider.
- More precisely, $\bar{\ell}=\lfloor p_\ell n \rfloor$ where $p_\ell \in (0,1)$ and $\lim_{\ell \to \infty} p_\ell = 0$.

Each expert has a job

1,34	1,78	2,56	1,88	0,57	-1,25	0,19	3,18	4,13	2,22	1,34	0,26	-1,90	-2,29	0,88	1,28	3,31	4,12	5,15	3,31
2,27	2,89	2,12	1,78	2,67	-3,16	0,01	1,16	5,17	6,17	7,18	9,10	8,18	7,16	6,17	5,15	3,14	2,18	1,18	0,99
0,10	1,15	2,17	3,72	-1,71	6,39	5,16	3,13	1,89	0,90	0,91	0,11	-0,20	1,89	2,84	3,92	2,99	2,21	1,73	?

Figure: Work of fundamental expert with k = 3 and $\overline{\ell} = 4$.

1,34	1,78	2,56	1,88	0,57	-1,25	0,19	3,18	4,13	2,22	1,34	0,26	-1,90	-2,29	0,88	1,28	3,31	4,12	5,15	3,31
2,27	2,89	2,12	1,78	2,67	-3,16	0,01	1,16	5,17	6,17	7,18	9,10	8,18	7,16	6,17	5,15	3,14	2,18	1,18	0,99
0,10	1,15	2,17	3,72	-1,71	6,39	5,16	3,13	1,89	0,90	0,91	0,11	-0,20	1,89	2,84	3,92	2,99	2,21	1,73	?

1,34	1,78	2,56	1,88	0,57	-1,25	0,19	3,18	4,13	2,22	1,34	0,26	-1,90	-2,29	0,88	1,28	3,31	4,12	5,15	3,31
2,27	2,89	2,12	1,78	2,67	-3,16	0,01	1,16	5,17	6,17	7,18	9,10	8,18	7,16	6,17	5,15	3,14	2,18	1,18	0,99
0,10	1,15	2,17	3,72	-1,71	6,39	5,16	3,13	1,89	0,90	0,91	0,11	-0,20	1,89	2,84	3,92	2,99	2,21	1,73	?

2,99 2,21 1,73

1,34	1,78	2,56	1,88	0,57	-1,25	0,19	3,18	4,13	2,22	1,34	0,26	-1,90	-2,29	0,88	1,28	3,31	4,12	5,15	3,31
2,27	2,89	2,12	1,78	2,67	-3,16	0,01	1,16	5,17	6,17	7,18	9,10	8,18	7,16	6,17	5,15	3,14	2,18	1,18	0,99
0,10	1,15	2,17	3,72	-1,71	6,39	5,16	3,13	1,89	0,90	0,91	0,11	-0,20	1,89	2,84	3,92	2,99	2,21	1,73	?

1,34	1,78	2,56	1,88	0,57	-1,25	0,19	3,18	4,13	2,22	1,34	0,26	-1,90	-2,29	0,88	1,28	3,31	4,12	5,15	3,31
2,27	2,89	2,12	1,78	2,67	-3,16	0,01	1,16	5,17	6,17	7,18	9,10	8,18	7,16	6,17	5,15	3,14	2,18	1,18	0,99
0,10	1,15	2,17	3,72	-1,71	6,39	5,16	3,13	1,89	0,90	0,91	0,11	-0,20	1,89	2,84	3,92	2,99	2,21	1,73	?

1,34	1,78	2,56	1,88	0,57	-1,25	0,19	3,18	4,13	2,22	1,34	0,26	-1,90	-2,29	0,88	1,28	3,31	4,12	5,15	3,31
2,27	2,89	2,12	1,78	2,67	-3,16	0,01	1,16	5,17	6,17	7,18	9,10	8,18	7,16	6,17	5,15	3,14	2,18	1,18	0,99
0,10	1,15	2,17	3,72	-1,71	6,39	5,16	3,13	1,89	0,90	0,91	0,11	-0,20	1,89	2,84	3,92	2,99	2,21	1,73	?

Prediction and Aggregation

Prediction of one expert

$$h_n^{(k,\ell)}(x_1^n,y_1^{n-1}) = T_{\min\{n^{\delta},\ell\}} \left(\frac{\sum_{\{t \in J_n^{(k,\ell)}\}} y_t}{|J_n^{(k,\ell)}|} \right).$$

Aggregated prediction of all experts

$$g_n(x_1^n, y_1^{n-1}) = \sum_{k,\ell=1}^{\infty} \mathbf{p}_{k,\ell,n} h_n^{(k,\ell)}(x_1^n, y_1^{n-1}).$$

Where do the $p_{k,\ell,n}$ come from?

Exponentially weight the experts based on their past performance.

Prediction and Aggregation

Prediction of one expert

$$h_n^{(k,\ell)}(x_1^n,y_1^{n-1}) = T_{\min\{n^\delta,\ell\}} \left(\frac{\sum_{\{t \in J_n^{(k,\ell)}\}} y_t}{|J_n^{(k,\ell)}|} \right).$$

Aggregated prediction of all experts

$$g_n(x_1^n, y_1^{n-1}) = \sum_{k,\ell=1}^{\infty} \rho_{k,\ell,n} h_n^{(k,\ell)}(x_1^n, y_1^{n-1}).$$

Where do the $p_{k,\ell,n}$ come from?

Exponentially weight the experts based on their past performance.

Prediction and Aggregation

Prediction of one expert

$$h_n^{(k,\ell)}(x_1^n,y_1^{n-1}) = T_{\min\{n^\delta,\ell\}} \left(\frac{\sum_{\{t \in J_n^{(k,\ell)}\}} y_t}{|J_n^{(k,\ell)}|} \right).$$

Aggregated prediction of all experts

$$g_n(x_1^n, y_1^{n-1}) = \sum_{k,\ell=1}^{\infty} \rho_{k,\ell,n} h_n^{(k,\ell)}(x_1^n, y_1^{n-1}).$$

Where do the $p_{k,\ell,n}$ come from?

Exponentially weight the experts based on their past performance.

Aggregation continued....

Definitions

- Let $\{q_{k,\ell}\}$ be a probability distribution over all pairs (k,ℓ) of positive integers such that $q_{k,\ell} > 0$ for all (k,ℓ) .
- For $\eta_n > 0$, we define the weights

$$W_{k,\ell,n} = q_{k,\ell} e^{-\eta_n(n-1)L_{n-1}(h^{(k,\ell)})}.$$

• We normalize these weights:

$$p_{k,\ell,n} = \frac{w_{k,\ell,n}}{\sum_{i,j=1}^{\infty} w_{i,j,n}}.$$

Global prediction

$$g_n(x_1^n, y_1^{n-1}) = \sum_{k,\ell=1}^{\infty} \rho_{k,\ell,n} h_n^{(k,\ell)}(x_1^n, y_1^{n-1}).$$

Aggregation continued....

Definitions

- Let $\{q_{k,\ell}\}$ be a probability distribution over all pairs (k,ℓ) of positive integers such that $q_{k,\ell} > 0$ for all (k,ℓ) .
- For $\eta_n > 0$, we define the weights

$$W_{k,\ell,n} = q_{k,\ell} e^{-\eta_n(n-1)L_{n-1}(h^{(k,\ell)})}.$$

• We normalize these weights:

$$p_{k,\ell,n} = \frac{w_{k,\ell,n}}{\sum_{i,j=1}^{\infty} w_{i,j,n}}.$$

Global prediction

$$g_n(x_1^n, y_1^{n-1}) = \sum_{k,\ell=1}^{\infty} \mathbf{p}_{k,\ell,n} h_n^{(k,\ell)}(x_1^n, y_1^{n-1}).$$

Aggregation continued....

Definitions

- Let $\{q_{k,\ell}\}$ be a probability distribution over all pairs (k,ℓ) of positive integers such that $q_{k,\ell} > 0$ for all (k,ℓ) .
- For $\eta_n > 0$, we define the weights

$$W_{k,\ell,n} = q_{k,\ell} e^{-\eta_n(n-1)L_{n-1}(h^{(k,\ell)})}.$$

• We normalize these weights:

$$p_{k,\ell,n} = \frac{w_{k,\ell,n}}{\sum_{i,j=1}^{\infty} w_{i,j,n}}.$$

$$g_n(x_1^n, y_1^{n-1}) = \sum_{k,\ell=1}^{\infty} p_{k,\ell,n} h_n^{(k,\ell)}(x_1^n, y_1^{n-1}).$$

Aggregation continued....

Definitions

- Let $\{q_{k,\ell}\}$ be a probability distribution over all pairs (k,ℓ) of positive integers such that $q_{k,\ell} > 0$ for all (k,ℓ) .
- For $\eta_n > 0$, we define the weights

$$W_{k,\ell,n} = q_{k,\ell} e^{-\eta_n(n-1)L_{n-1}(h^{(k,\ell)})}.$$

• We normalize these weights:

$$p_{k,\ell,n} = \frac{w_{k,\ell,n}}{\sum_{i,j=1}^{\infty} w_{i,j,n}}.$$

$$g_n(x_1^n, y_1^{n-1}) = \sum_{k,\ell=1}^{\infty} p_{k,\ell,n} h_n^{(k,\ell)}(x_1^n, y_1^{n-1}).$$

Result

Theorem [Biau, Bleakley, Györfi, Ottucsák, 2009]

- Let \mathcal{C} be the class of all jointly stationary and ergodic processes $\{(X_n, Y_n)\}_{-\infty}^{\infty}$ such that $\mathbb{E}\{Y_0^4\} < \infty$.
- Choose parameter η_n as

$$\eta_n = \frac{1}{\sqrt{n}} \, .$$

• Then the nearest neighbor forecasting strategy is universally consistent with respect to the class C, that is

$$\lim_{n\to\infty} L_n(g) = L^*$$
 almost surely.

Result

Theorem [Biau, Bleakley, Györfi, Ottucsák, 2009]

- Let \mathcal{C} be the class of all jointly stationary and ergodic processes $\{(X_n, Y_n)\}_{-\infty}^{\infty}$ such that $\mathbb{E}\{Y_0^4\} < \infty$.
- Choose parameter η_n as

$$\eta_n=\frac{1}{\sqrt{n}}.$$

 Then the nearest neighbor forecasting strategy is universally consistent with respect to the class C, that is

$$\lim_{n\to\infty} L_n(g) = L^*$$
 almost surely.

Result

Theorem [Biau, Bleakley, Györfi, Ottucsák, 2009]

- Let \mathcal{C} be the class of all jointly stationary and ergodic processes $\{(X_n, Y_n)\}_{-\infty}^{\infty}$ such that $\mathbb{E}\{Y_0^4\} < \infty$.
- Choose parameter η_n as

$$\eta_n=\frac{1}{\sqrt{n}}.$$

• Then the nearest neighbor forecasting strategy is universally consistent with respect to the class C, that is

$$\lim_{n\to\infty} L_n(g) = L^*$$
 almost surely.

Outline

- Nonparametric mean prediction
 - Context
 - A consistent strategy
 - Experimental results
- Non parametric quantile prediction
 - Context and quantile regression
 - A similar consistent strategy
 - Experimental results
- Other contexts
- 4 Conclusion

Experimental results

Call center data set

- Daily call volumes entering a call center.
- Long series between 382 and 826 time values. 21 series.

Future outcome predictions results

Model Name	Avg Abs Error	Avg Sqr Error	Mape (%)
<i>AR</i> (7)	65.80	9738	31.6
DayOfTheWeekMean	53.95	7099	22.8
HoltWinters	49.84	6025	21.5
MeanExpertMixture	52.37	6536	22.3
MA	179	62448	52.0

Figure: Forecasting future outcomes

Outline

- Nonparametric mean prediction
 - Context
 - A consistent strategy
 - Experimental results
- Non parametric quantile prediction
 - Context and quantile regression
 - A similar consistent strategy
 - Experimental results
- Other contexts
- 4 Conclusion

Quantile forecasting

Given a stochastic process Y_1, Y_2, \ldots

- Previously, estimate the conditional mean of Y_n given Y_1, \ldots, Y_{n-1} .
- Now: the conditional τ th quantile of Y_n given Y_1, \ldots, Y_{n-1} .

Quantile forecasting

Given a stochastic process $Y_1, Y_2, ...$

- Previously, estimate the conditional mean of Y_n given Y_1, \ldots, Y_{n-1} .
- Now: the conditional τ th quantile of Y_n given Y_1, \ldots, Y_{n-1} .

What for?

- Understand conditional distributions.
- $\tau = 0.5$ robust forecasting.
- Build confidence interval.

Applications fields

- Finance: CVAR. Also biology, medecine, telecoms...
- Here: call volumes (optimize staff in a call center).

What for?

- Understand conditional distributions.
- $\tau = 0.5$ robust forecasting.
- Build confidence interval.

Applications fields

- Finance: CVAR. Also biology, medecine, telecoms...
- Here: call volumes (optimize staff in a call center).

Figure: Quantile forecast with $\tau = 0.1, 0.9$.

Quantile Regression

Conditional quantiles

X multivariate random variable, Y real valued random variable,

$$q_{\tau}(X) \triangleq F_{Y|X}^{\leftarrow}(\tau) = \inf\{t \in \mathbb{R} : F_{Y|X}(t) \geq \tau\}.$$

 $F_{Y|X}$ conditional cumulative distribution function.

Proposition [Koenker, 2005]

$$q_{\tau}(X) \in \underset{q(.) \in \mathbb{R}}{\operatorname{argmin}} \mathbb{E}_{\mathbb{P}_{Y|X}} \left[\rho_{\tau} \left(\mathbf{Y} - q(X) \right) \right].$$

If $F_{Y|X}$ is (strictly) increasing then $q_{\tau}(X)$ is the unique minimizer.

Quantile Regression

Conditional quantiles

X multivariate random variable, Y real valued random variable,

$$q_{\tau}(X) \triangleq F_{Y|X}^{\leftarrow}(\tau) = \inf\{t \in \mathbb{R} : F_{Y|X}(t) \geq \tau\}.$$

 $F_{Y|X}$ conditional cumulative distribution function.

Proposition [Koenker, 2005]

$$q_{\tau}(X) \in \operatorname*{argmin}_{q(.) \in \mathbb{R}} \mathbb{E}_{\mathbb{P}_{Y|X}} \left[\rho_{\tau} \left(\frac{Y}{Y} - q(X) \right) \right].$$

If $F_{Y|X}$ is (strictly) increasing then $q_{\tau}(X)$ is the unique minimizer.

Figure: Pinball function graph.

Non parametric framework

Framework

- Here, we observe a string realization y_1^{n-1} of a stationary and ergodic process $\{Y_n\}_{n=-\infty}^{\infty}$...
- ... and try to estimate $q_{\tau}(y_1^{n-1}) = F_{Y_n|Y_1^{n-1}=y_1^{n-1}}^{\leftarrow}(\tau)$, the conditional quantile at time n.

Strategy

Sequence $g=\{g_{\mathsf{n}}\}_{\mathsf{n}=1}^\infty$ of auth $\mathsf{quantile}$ forecasting functions

$$g_n: \mathbb{R}^{n-1} \longrightarrow \mathbb{R}$$

Quantile estimation at time *n* is $g_n(y_1^{n-1})$.

Non parametric framework

Framework

- Here, we observe a string realization y_1^{n-1} of a stationary and ergodic process $\{Y_n\}_{n=-\infty}^{\infty}$...
- ... and try to estimate $q_{\tau}(y_1^{n-1}) = F_{Y_n|Y_1^{n-1}=y_1^{n-1}}^{\leftarrow}(\tau)$, the conditional quantile at time n.

Strategy

Sequence $g = \{g_n\}_{n=1}^{\infty}$ of τ th quantile forecasting functions

$$g_n: \mathbb{R}^{n-1} \longrightarrow \mathbb{R}$$
.

Quantile estimation at time *n* is $g_n(y_1^{n-1})$.

Errors

Empirical measure criterion.

At time *n* the cumulative pinball error of the strategy *g* is

$$G_n(g) = \frac{1}{n} \sum_{t=1}^n \rho_{\tau} \left(\mathbf{y}_t - g_t(\mathbf{y}_1^{t-1}) \right).$$

Adapted result of [Algoët, 1994]

For any stationary and ergodic process $\{Y_n\}_{n=-\infty}^{+\infty}$,

$$\liminf_{n\to\infty}G_n(g)\geq G^*$$
 a.s.,

where

$$\mathcal{G}^{\star} = \mathbb{E}\left[\min_{q(.)} \mathbb{E}_{\mathbb{P}_{\mathbf{Y_0}|Y_{-\infty}^{-1}}}\left[
ho_{ au}\left(Y_0 - q(Y_{-\infty}^{-1})
ight)
ight]
ight]$$

Errors

Empirical measure criterion.

At time *n* the cumulative pinball error of the strategy *g* is

$$G_n(g) = \frac{1}{n} \sum_{t=1}^n \rho_{\tau} \left(\mathbf{y}_t - g_t(\mathbf{y}_1^{t-1}) \right).$$

Adapted result of [Algoët, 1994]

For any stationary and ergodic process $\{Y_n\}_{n=-\infty}^{+\infty}$,

$$\liminf_{n\to\infty} G_n(g) \geq G^{\star}$$
 a.s.,

where

$$G^{\star} = \mathbb{E}\left[\min_{q(.)} \mathbb{E}_{\mathbb{P}_{\stackrel{\mathbf{Y}_0|Y_{-\infty}^{-1}}{\infty}}}\left[
ho_{ au}\left(rac{\mathbf{Y}_0}{0} - q(rac{\mathbf{Y}_{-\infty}^{-1}}{0})
ight)
ight]
ight].$$

Outline

- Nonparametric mean prediction
 - Context
 - A consistent strategy
 - Experimental results
- Non parametric quantile prediction
 - Context and quantile regression
 - A similar consistent strategy
 - Experimental results
- Other contexts
- 4 Conclusion

Nearest neighbors strategy

Elementary predictors

• Define infinite array of experts $h^{(k,\ell)} = \{h_n^{(k,\ell)}\}_{n=1}^{+\infty}$. $k, \ell = 1, 2, ...$

Each expert has a job

• At time n, expert $h_n^{(k,\ell)}$ finds the $\bar{\ell}$ nearest neighbors of length k.

Nearest neighbors strategy

Elementary predictors

• Define infinite array of experts $h^{(k,\ell)} = \{h_n^{(k,\ell)}\}_{n=1}^{+\infty}$. $k, \ell = 1, 2, ...$

Each expert has a job

• At time n, expert $h_n^{(k,\ell)}$ finds the $\bar{\ell}$ nearest neighbors of length k.

1,34	1,78	2,56	1,88	0,57	-1,25	0,19	3,18	4,13	2,22	1,34	0,26	-1,90	-2,29	0,88	1,28	3,31	4,12	5,15	3,31
2,27	2,89	2,12	1,78	2,67	-3,16	0,01	1,16	5,17	6,17	7,18	9,10	8,18	7,16	6,17	5,15	3,14	2,18	1,18	0,99
0,10	1,15	2,17	3,72	-1,71	6,39	5,16	3,13	1,89	0,90	0,91	0,11	-0,20	1,89	2,84	3,92	2,99	2,21	1,73	?

Figure: Work of fundamental expert with k = 3 and $\overline{\ell} = 4$.

	1,34	1,78	2,56	1,88	0,57	-1,25	0,19	3,18	4,13	2,22	1,34	0,26	-1,90	-2,29	0,88	1,28	3,31	4,12	5,15	3,31
[2,27	2,89	2,12	1,78	2,67	-3,16	0,01	1,16	5,17	6,17	7,18	9,10	8,18	7,16	6,17	5,15	3,14	2,18	1,18	0,99
[),10	1,15	2,17	3,72	-1,71	6,39	5,16	3,13	1,89	0,90	0,91	0,11	-0,20	1,89	2,84	3,92	2,99	2,21	1,73	?

9 2,21 1,73 ?

1,34	1,78	2,56	1,88	0,57	-1,25	0,19	3,18	4,13	2,22	1,34	0,26	-1,90	-2,29	0,88	1,28	3,31	4,12	5,15	3,31
2,27	2,89	2,12	1,78	2,67	-3,16	0,01	1,16	5,17	6,17	7,18	9,10	8,18	7,16	6,17	5,15	3,14	2,18	1,18	0,99
0,10	1,15	2,17	3,72	-1,71	6,39	5,16	3,13	1,89	0,90	0,91	0,11	-0,20	1,89	2,84	3,92	2,99	2,21	1,73	?

2,99 2,21 1,73

1,34	1,78	2,56	1,88	0,57	-1,25	0,19	3,18	4,13	2,22	1,34	0,26	-1,90	-2,29	0,88	1,28	3,31	4,12	5,15	3,31
2,27	2,89	2,12	1,78	2,67	-3,16	0,01	1,16	5,17	6,17	7,18	9,10	8,18	7,16	6,17	5,15	3,14	2,18	1,18	0,99
0,10	1,15	2,17	3,72	-1,71	6,39	5,16	3,13	1,89	0,90	0,91	0,11	-0,20	1,89	2,84	3,92	2,99	2,21	1,73	?

1,34	1,78	2,56	1,88	0,57	-1,25	0,19	3,18	4,13	2,22	1,34	0,26	-1,90	-2,29	0,88	1,28	3,31	4,12	5,15	3,31
2,27	2,89	2,12	1,78	2,67	-3,16	0,01	1,16	5,17	6,17	7,18	9,10	8,18	7,16	6,17	5,15	3,14	2,18	1,18	0,99
0,10	1,15	2,17	3,72	-1,71	6,39	5,16	3,13	1,89	0,90	0,91	0,11	-0,20	1,89	2,84	3,92	2,99	2,21	1,73	?

1,34	1,78	2,56	1,88	0,57	-1,25	0,19	3,18	4,13	2,22	1,34	0,26	-1,90	-2,29	0,88	1,28	3,31	4,12	5,15	3,31
2,27	2,89	2,12	1,78	2,67	-3,16	0,01	1,16	5,17	6,17	7,18	9,10	8,18	7,16	6,17	5,15	3,14	2,18	1,18	0,99
0,10	1,15	2,17	3,72	-1,71	6,39	5,16	3,13	1,89	0,90	0,91	0,11	-0,20	1,89	2,84	3,92	2,99	2,21	1,73	?

					_														
1,34	1,78	2,56	1,88	0,57	-1,25	0,19	3,18	4,13	2,22	1,34	0,26	-1,90	-2,29	0,88	1,28	3,31	4,12	5,15	3,31
2,27	2,89	2,12	1,78	2,67	-3,16	0,01	1,16	5,17	6,17	7,18	9,10	8,18	7,16	6,17	5,15	3,14	2,18	1,18	0,99
0,10	1,15	2,17	3,72	-1,71	6,39	5,16	3,13	1,89	0,90	0,91	0,11	-0,20	1,89	2,84	3,92	2,99	2,21	1,73	?
										•									
																2,99	2,21	1,73	?
						/	1,7	78 2,5	56 1,8	38 0,5	57								
	2.89 2.12 1,78 2,67															mnir	ical		
2,9	2,99 2,21 1,73														empirical quantile				

3,13

1,89 0,90

0,91

Prediction and Aggregation

Prediction of one expert

$$h_n^{(k,\ell)}(y_1^{n-1}) = T_{\min\{n^{\delta},\ell\}} \left(\underset{q \in \mathbb{R}}{\operatorname{argmin}} \sum_{\{t \in J_n^{(k,\ell)}\}} \rho_{\tau}(y_t - q) \right).$$

[Can be easily computed by sorting the sample.]

Aggregated prediction of all experts

$$g_n(y_1^{n-1}) = \sum_{k,\ell=1}^{\infty} \mathbf{p}_{k,\ell,n} h_n^{(k,\ell)}(y_1^{n-1}).$$

Prediction and Aggregation

Prediction of one expert

$$h_n^{(k,\ell)}(y_1^{n-1}) = T_{\min\{n^{\delta},\ell\}} \left(\underset{q \in \mathbb{R}}{\operatorname{argmin}} \sum_{\{t \in J_n^{(k,\ell)}\}} \rho_{\tau}(y_t - q) \right).$$

[Can be easily computed by sorting the sample.]

Aggregated prediction of all experts

$$g_n(y_1^{n-1}) = \sum_{k,\ell=1}^{\infty} {\color{red} \rho_{k,\ell,n} h_n^{(k,\ell)}(y_1^{n-1})}.$$

Aggregation continued...

Definitions

• For $\eta_n > 0$, we define the weights

$$W_{k,\ell,n} = q_{k,\ell} e^{-\eta_n(n-1)G_{n-1}(h^{(k,\ell)})}$$

• We normalize these weights:

$$p_{k,\ell,n} = \frac{w_{k,\ell,n}}{\sum_{i,j=1}^{\infty} w_{i,j,n}}.$$

$$g_n(y_1^{n-1}) = \sum_{k,\ell=1}^{\infty} p_{k,\ell,n} h_n^{(k,\ell)}(y_1^{n-1}).$$

Aggregation continued...

Definitions

• For $\eta_n > 0$, we define the weights

$$W_{k,\ell,n} = q_{k,\ell} e^{-\eta_n(n-1)G_{n-1}(h^{(k,\ell)})}.$$

• We normalize these weights:

$$p_{k,\ell,n} = \frac{w_{k,\ell,n}}{\sum_{i,j=1}^{\infty} w_{i,j,n}}.$$

$$g_n(y_1^{n-1}) = \sum_{k,\ell=1}^{\infty} p_{k,\ell,n} h_n^{(k,\ell)}(y_1^{n-1})$$

Aggregation continued...

Definitions

• For $\eta_n > 0$, we define the weights

$$W_{k,\ell,n} = q_{k,\ell} e^{-\eta_n(n-1)G_{n-1}(h^{(k,\ell)})}.$$

• We normalize these weights:

$$p_{k,\ell,n} = \frac{w_{k,\ell,n}}{\sum_{i,j=1}^{\infty} w_{i,j,n}}.$$

$$g_n(y_1^{n-1}) = \sum_{k,\ell=1}^{\infty} p_{k,\ell,n} h_n^{(k,\ell)}(y_1^{n-1}).$$

Aggregation continued...

Definitions

• For $\eta_n > 0$, we define the weights

$$W_{k,\ell,n} = q_{k,\ell} e^{-\eta_n(n-1)G_{n-1}(h^{(k,\ell)})}.$$

• We normalize these weights:

$$p_{k,\ell,n} = \frac{w_{k,\ell,n}}{\sum_{i,j=1}^{\infty} w_{i,j,n}}.$$

Global prediction

$$g_n(y_1^{n-1}) = \sum_{k,\ell=1}^{\infty} {}_{p_{k,\ell,n}} h_n^{(k,\ell)}(y_1^{n-1}).$$

Theoretical Results

Theorem

- Let $\mathcal C$ be the class of all jointly stationary and ergodic processes $\{Y_n\}_{n=-\infty}^\infty$ such that $\mathbb E\{Y_0^2\}<\infty$ and $F_{Y_0|Y_{-\infty}^{-1}}$ is a.s. increasing.
- Then the nearest neighbor quantile forecasting strategy is universally consistent with respect to the class C, that is, for all process $Y \in C$

$$\lim_{n \to \infty} G_n(g) = G^*$$
 almost surely

Theoretical Results

Theorem

- Let $\mathcal C$ be the class of all jointly stationary and ergodic processes $\{Y_n\}_{n=-\infty}^\infty$ such that $\mathbb E\{Y_0^2\}<\infty$ and $F_{Y_0|Y_{-\infty}^{-1}}$ is a.s. increasing.
- Then the nearest neighbor quantile forecasting strategy is universally consistent with respect to the class C, that is, for all process $Y \in C$

$$\lim_{n\to\infty} G_n(g) = G^*$$
 almost surely.

Mathematical demonstration

Difficulty

- We can not apply ergodic theorem on fundamental experts.
- Ergodicity provides weak convergence of random probability measure (almost surely).

Example

Let $J_n^{(k,\ell)}$ the set of the indices of the neighbors. We have, almost surely in term of weak convergence

$$\mathbb{P}_n^{(k,\ell)} \xrightarrow[n \to \infty]{} \mathbb{P}_{\infty}^{(k,\ell)},$$

where
$$\mathbb{P}_n^{(k,\ell)} \triangleq \frac{1}{|J_n^{(k,\ell)}|} \sum_{i \in J_n^{(k,\ell)}} \delta_{Y_i}$$
.

Mathematical demonstration

Difficulty

- We can not apply ergodic theorem on fundamental experts.
- Ergodicity provides weak convergence of random probability measure (almost surely).

Example

Let $J_n^{(k,\ell)}$ the set of the indices of the neighbors. We have, almost surely in term of weak convergence,

$$\mathbb{P}_n^{(k,\ell)} \underset{n \to \infty}{\longrightarrow} \mathbb{P}_{\infty}^{(k,\ell)},$$

where
$$\mathbb{P}_n^{(k,\ell)} \triangleq \frac{1}{|J_n^{(k,\ell)}|} \sum_{i \in J_n^{(k,\ell)}} \delta_{Y_i}$$
.

Mathematical demonstration

Lemma

Let $\{\mu_n\}_{n=1}^{\infty}$ be a uniformly integrable sequence of real probability measures, and let μ_{∞} be a probability measure with (strictly) increasing distribution function. Suppose that $\{\mu_n\}_{n=1}^{\infty}$ converges weakly to μ_{∞} . Then, for all $\tau \in (0,1)$,

$$q_{\tau,n} \to q_{\tau,\infty}$$
 as $n \to \infty$,

where $q_{\tau,n} \in \operatorname{argmin}_q \mathbb{E}_{\mu_n}[\rho_{\tau}(Y-q)]$ for all $n \geq 1$ and $\{q_{\tau,\infty}\} = \operatorname{argmin}_q \mathbb{E}_{\mu_{\infty}}[\rho_{\tau}(Y-q)].$

Outline

- Nonparametric mean prediction
 - Context
 - A consistent strategy
 - Experimental results
- Non parametric quantile prediction
 - Context and quantile regression
 - A similar consistent strategy
 - Experimental results
- Other contexts
- 4 Conclusion

Future outcome predictions results

 $\tau = 0.5$ median base forecaster : robustness.

Model Name	Avg Abs Error	Avg Sqr Error	Mape (%)
<i>AR</i> (7)	65.80	9738	31.6
<i>QAR</i> (8) _{0.5}	57.8	9594	24.9
DayOfTheWeekMean	53.95	7099	22.8
HoltWinters	49.84	6025	21.5
QuantileExpertMixture _{0.5}	48.1	5731	21.6
MeanExpertMixture	52.37	6536	22.3
MA	179	62448	52.0

Figure: Forecasting future outcomes.

Quantile forecasting

Model Name	PinBall Loss (0.1)	Ramp Loss
QuantileExpertMixture _{0.1}	13.71	0.80
<i>QAR</i> (7) _{0.1}	13.22	0.88

Figure: $\tau = 0.1$

Model Name	PinBall Loss (0.9)	Ramp Loss
QuantileExpertMixture _{0.9}	12.27	0.07
$QAR(7)_{0.9}$	19.31	0.07

Figure: $\tau = 0.9$

Quantile forecasting

Model Name	PinBall Loss (0.1)	Ramp Loss
QuantileExpertMixture _{0.1}	13.71	0.80
<i>QAR</i> (7) _{0.1}	13.22	0.88

Figure: $\tau = 0.1$

Model Name	PinBall Loss (0.9)	Ramp Loss
QuantileExpertMixture _{0.9}	12.27	0.07
$QAR(7)_{0.9}$	19.31	0.07

Figure: $\tau = 0.9$

Extensions

Binary prediction

- Predict the next outcome $y_n \in \{0, 1\}$ of a sequence of binary numbers $y_1, y_2, ...$
- We know the past sequence $y_1^{n-1} = (y_1, \dots, y_{n-1})$.
- The whole theory carries over, with

$$H_n(g) = \frac{1}{n} \sum_{t=1}^n \mathbf{1}_{[g_t(Y_1^{t-1}) \neq Y_t]}$$

and

$$g_n^*(Y_1^{n-1}) = \begin{cases} 1 & \text{if } \mathbb{P}\{Y_n = 1 | Y_1^{n-1}\} \ge 1/2 \\ 0 & \text{otherwise.} \end{cases}$$

Extensions

Binary prediction

- Predict the next outcome $y_n \in \{0, 1\}$ of a sequence of binary numbers $y_1, y_2, ...$
- We know the past sequence $y_1^{n-1} = (y_1, \dots, y_{n-1})$.
- The whole theory carries over, with

$$H_n(g) = \frac{1}{n} \sum_{t=1}^n \mathbf{1}_{[g_t(Y_1^{t-1}) \neq Y_t]}$$

and

$$g_n^*(Y_1^{n-1}) = \begin{cases} 1 & \text{if } \mathbb{P}\{Y_n = 1 | Y_1^{n-1}\} \ge 1/2 \\ 0 & \text{otherwise.} \end{cases}$$

Extensions

Binary prediction

- Predict the next outcome $y_n \in \{0, 1\}$ of a sequence of binary numbers $y_1, y_2, ...$
- We know the past sequence $y_1^{n-1} = (y_1, \dots, y_{n-1})$.
- The whole theory carries over, with

$$H_n(g) = \frac{1}{n} \sum_{t=1}^n \mathbf{1}_{[g_t(Y_1^{t-1}) \neq Y_t]}$$

and

$$g_n^*(Y_1^{n-1}) = \begin{cases} 1 & \text{if } \mathbb{P}\{Y_n = 1 | Y_1^{n-1}\} \ge 1/2 \\ 0 & \text{otherwise.} \end{cases}$$

Mathematical model

- A market with d assets.
- $y_1, y_2, \ldots \in \mathbb{R}^d_+$ represent the evolution of the market in time.
- The j-th component of y_n represents the amount obtained after investing a unit capital in the j-th asset, on the n-th training period
- The investor is allowed to diversify his capital according to a portfolio vector $\mathbf{b}_n = (b_n^{(1)}, \dots, b_n^{(d)})$.

- S_0 is the investor initial capital and $\mathbf{b}_1 = (1/d, \dots, 1/d)$.
- At the end of the first training period,

$$S_1 = S_0 \sum_{i=1}^d b_1^{(j)} y_1^{(j)} = S_0 \langle \mathbf{b}_1, \mathbf{y}_1 \rangle.$$

Mathematical model

- A market with d assets.
- $\mathbf{y}_1, \mathbf{y}_2, \ldots \in \mathbb{R}^d_+$ represent the evolution of the market in time.
- The j-th component of y_n represents the amount obtained after investing a unit capital in the j-th asset, on the n-th training period
- The investor is allowed to diversify his capital according to a portfolio vector $\mathbf{b}_n = (b_n^{(1)}, \dots, b_n^{(d)})$.

- S_0 is the investor initial capital and $\mathbf{b}_1 = (1/d, \dots, 1/d)$.
- At the end of the first training period,

$$S_1 = S_0 \sum_{j=1}^d b_1^{(j)} y_1^{(j)} = S_0 \langle \mathbf{b}_1, \mathbf{y}_1 \rangle.$$

Mathematical model

- A market with d assets.
- $\mathbf{y}_1, \mathbf{y}_2, \ldots \in \mathbb{R}^d_+$ represent the evolution of the market in time.
- The j-th component of \mathbf{y}_n represents the amount obtained after investing a unit capital in the j-th asset, on the n-th training period.
- The investor is allowed to diversify his capital according to a portfolio vector $\mathbf{b}_n = (b_n^{(1)}, \dots, b_n^{(d)})$.

- S_0 is the investor initial capital and $\mathbf{b}_1 = (1/d, \dots, 1/d)$.
- At the end of the first training period,

$$S_1 = S_0 \sum_{j=1}^d b_1^{(j)} y_1^{(j)} = S_0 \langle \mathbf{b}_1, \mathbf{y}_1 \rangle.$$

Mathematical model

- A market with d assets.
- $\mathbf{y}_1, \mathbf{y}_2, \ldots \in \mathbb{R}^d_+$ represent the evolution of the market in time.
- The j-th component of \mathbf{y}_n represents the amount obtained after investing a unit capital in the j-th asset, on the n-th training period.
- The investor is allowed to diversify his capital according to a portfolio vector $\mathbf{b}_n = (b_n^{(1)}, \dots, b_n^{(d)})$.

- S_0 is the investor initial capital and $\mathbf{b}_1 = (1/d, \dots, 1/d)$.
- At the end of the first training period,

$$S_1 = S_0 \sum_{j=1}^d b_1^{(j)} y_1^{(j)} = S_0 \langle \mathbf{b}_1, \mathbf{y}_1 \rangle.$$

Mathematical model

- A market with d assets.
- $\mathbf{y}_1, \mathbf{y}_2, \ldots \in \mathbb{R}^d_+$ represent the evolution of the market in time.
- The j-th component of \mathbf{y}_n represents the amount obtained after investing a unit capital in the j-th asset, on the n-th training period.
- The investor is allowed to diversify his capital according to a portfolio vector $\mathbf{b}_n = (b_n^{(1)}, \dots, b_n^{(d)})$.

- S_0 is the investor initial capital and $\mathbf{b}_1 = (1/d, \dots, 1/d)$.
- At the end of the first training period,

$$S_1 = S_0 \sum_{j=1}^d b_1^{(j)} y_1^{(j)} = S_0 \langle \mathbf{b}_1, \mathbf{y}_1 \rangle.$$

Mathematical model

- A market with d assets.
- $\mathbf{y}_1, \mathbf{y}_2, \ldots \in \mathbb{R}^d_+$ represent the evolution of the market in time.
- The j-th component of \mathbf{y}_n represents the amount obtained after investing a unit capital in the j-th asset, on the n-th training period.
- The investor is allowed to diversify his capital according to a portfolio vector $\mathbf{b}_n = (b_n^{(1)}, \dots, b_n^{(d)})$.

- S_0 is the investor initial capital and $\mathbf{b}_1 = (1/d, \dots, 1/d)$.
- At the end of the first training period,

$$S_1 = S_0 \sum_{j=1}^d b_1^{(j)} y_1^{(j)} = S_0 \langle {f b}_1, {f y}_1
angle.$$

Mathematical model

- A market with d assets.
- $\mathbf{y}_1, \mathbf{y}_2, \ldots \in \mathbb{R}^d_+$ represent the evolution of the market in time.
- The j-th component of \mathbf{y}_n represents the amount obtained after investing a unit capital in the j-th asset, on the n-th training period.
- The investor is allowed to diversify his capital according to a portfolio vector $\mathbf{b}_n = (b_n^{(1)}, \dots, b_n^{(d)})$.

- S_0 is the investor initial capital and $\mathbf{b}_1 = (1/d, \dots, 1/d)$.
- At the end of the first training period,

$$S_1 = S_0 \sum_{j=1}^d b_1^{(j)} y_1^{(j)} = S_0 \langle {f b}_1, {f y}_1
angle.$$

$$S_n = S_{n-1}\langle \mathbf{b}_n(\mathbf{y}_1^{n-1}), \mathbf{y}_n \rangle = S_0 \exp \left\{ \sum_{t=1}^n \log \langle \mathbf{b}_t(\mathbf{y}_1^{t-1}), \mathbf{y}_t \rangle \right\}.$$

- Goal: find the best investment strategy $\{b_n\}_{n=1}^{\infty}$ to maximize the wealth S_n .
- Equivalent to maximize the criterion $W_n(\mathbf{b}) = \frac{1}{n} \sum_{t=1}^n \log \langle \mathbf{b}_t(\mathbf{y}_1^{t-1}), \mathbf{y}_t \rangle$.
- Strategies so far: quantization, kernel and nearest neighbor on-line prediction with expert aggregation.
- References: Györfi and Schäfer (2003), Györfi et al. (2006, 2008).

$$S_n = S_{n-1}\langle \mathbf{b}_n(\mathbf{y}_1^{n-1}), \mathbf{y}_n \rangle = S_0 \exp \left\{ \sum_{t=1}^n \log \langle \mathbf{b}_t(\mathbf{y}_1^{t-1}), \mathbf{y}_t \rangle \right\}.$$

- Goal: find the best investment strategy $\{b_n\}_{n=1}^{\infty}$ to maximize the wealth S_n .
- Equivalent to maximize the criterion $W_n(\mathbf{b}) = \frac{1}{n} \sum_{t=1}^n \log \langle \mathbf{b}_t(\mathbf{y}_1^{t-1}), \mathbf{y}_t \rangle$.
- Strategies so far: quantization, kernel and nearest neighbor on-line prediction with expert aggregation.
- References: Györfi and Schäfer (2003), Györfi et al. (2006, 2008).

$$S_n = S_{n-1}\langle \mathbf{b}_n(\mathbf{y}_1^{n-1}), \mathbf{y}_n \rangle = S_0 \exp \left\{ \sum_{t=1}^n \log \langle \mathbf{b}_t(\mathbf{y}_1^{t-1}), \mathbf{y}_t \rangle \right\}.$$

- Goal: find the best investment strategy $\{b_n\}_{n=1}^{\infty}$ to maximize the wealth S_n .
- Equivalent to maximize the criterion $W_n(\mathbf{b}) = \frac{1}{n} \sum_{t=1}^n \log \langle \mathbf{b}_t(\mathbf{y}_1^{t-1}), \mathbf{y}_t \rangle$.
- Strategies so far: quantization, kernel and nearest neighbor on-line prediction with expert aggregation.
- References: Györfi and Schäfer (2003), Györfi et al. (2006, 2008).

$$S_n = S_{n-1}\langle \mathbf{b}_n(\mathbf{y}_1^{n-1}), \mathbf{y}_n \rangle = S_0 \exp \left\{ \sum_{t=1}^n \log \langle \mathbf{b}_t(\mathbf{y}_1^{t-1}), \mathbf{y}_t \rangle \right\}.$$

- Goal: find the best investment strategy $\{b_n\}_{n=1}^{\infty}$ to maximize the wealth S_n .
- Equivalent to maximize the criterion $W_n(\mathbf{b}) = \frac{1}{n} \sum_{t=1}^n \log \langle \mathbf{b}_t(\mathbf{y}_1^{t-1}), \mathbf{y}_t \rangle$.
- Strategies so far: quantization, kernel and nearest neighbor on-line prediction with expert aggregation.
- References: Györfi and Schäfer (2003), Györfi et al. (2006, 2008).

Bibliography

- Algoet, P. The strong law of large numbers for sequential decisions under uncertainty, *IEEE Trans. Inform. Theory*, **40**, 609-633, 1994.
- Biau, G., Bleakley, K., Györfi, L. and Ottucsák, G. Non-parametric sequential prediction of time series, *J. Nonparametr. Stat.*, 2009, in press.
- Gesa-Bianchi, N. and Lugosi, G. *Prediction, Learning, and Games*, Cambridge University Press, New York, 2006.
- Györfi, L., Udina, F. and Walk, H. Nonparametric nearest neighbor based empirical portfolio selection strategies, *Statist. Decis.*, 26, 145-157, 2008.
- Koenker, R. *Quantile Regression*, Cambridge University Press, Cambridge, 2005.

Thank you for your attention.