

Database Design: 3NF

Assignment Project Exem Helpsaction

https://powcoder.cwanagement

Add WeChat powcoder

Abdu Alawini

University of Illinois at Urbana-Champaign

CS411: Database Systems

October 15, 2018

Announcements

Assignment Project Exam Help

- HW 2 is due TODAY (23:59) https://powcoder.com
- Midterm: 10/29 in class 11-12:15 pm
 Add WeChat powcoder
 I'll announce the midterm review session once
- I'll announce the midterm review session once I reserve a room.

Outline

Assignment Project Exam Help

- Third Normal forms (3NF) powcoder.com
 Transactions and ACID properties: the dangers in concurrent executions (Ch. 6.6) (Ch. 6.6) Add WeChat powcoder
 Transactions and SQL: isolation levels (Ch. 18.1-18.4)

Normal Forms

First Normal Form = all attributes are atomic Assignment Project Exam Help Second Normal Form (2NF) = old and obsolete

https://powcoder.com

Boyce Codd Normal Form (BCNF)
Add We Chat poweder
Fourth Normal Form (4NF)

Others...

So where's the problem?

Phone	Address	Phone	Name
1234	10 Downin	g 1234	John
5678	10 Downing Ssignment Pro	g 5678	John
FD's: Phone	Assignment Pre- -> Address: Addr	ess, Name ->	Phone Y

No problem so far. All local Box are aristied m

Let's put all the data into Wingletablerowcoder

Phone	Address	Name
1234	10 Downing	John
5678	10 Downing	John

Violates the dependency: Address, Name → Phone

Preserving FDs

- Thus, if the X and Y of a FD X->Y do not both end up in the same decomposed to der.com
 - Such a decomposition is not "dependency-preserving."
 No way to force BCNF to preserve dependencies
- Thus, while BCNF gives us lossless join and less redundancy, it doesn't give us dependency preservation

An alternative: 3rd Normal Form (3NF)

A simple condition for removing anomalies from relations:

A relation Assignated entraphogenetif Exam Help

Whenever there is a sion was compension A_1 , A_2 , ..., $A_n \rightarrow B$, ... B_n for A_1 , A_2 , ..., A_n is a super-key for A_1 , A_2 , ..., A_n

- → Prevents the "Phone → Address" FD from causing a decomposition
- Textbook uses rule with many B_i on the RHS, if so, then each one must be part of some key.

3NF vs. BCNF

- R is in BCNF if whenever X->A holds then X is a superkey.

 Assignment Project Exam Help
 - Slightly stricter than 3NF.
 - Doesn't let https://phiwicocher.com key
 - Thus, BCNF "more aggressive" in splitting
- Example: R(A,B,C) with EA,Bat powcoder
 - 3NF but not BCNF

Decomposing R into 3NF

Some preliminaries first: the "minimal basis"

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

Minimal basis

- Given a set of FDs: S.
- Say the season the season of from S and v. versa.
 - Any such S' https://powcoder.com

"Minimal basis" Add WeChat powcoder

- - A basis with all RHS singletons, where any modifications lead to no longer a basis, including:
 - Dropping attribute from LHS of a rule: compact rules
 - Dropping a rule: small # of rules

Example of minimal basis

- R(A, B, C) with FDs:
 - A-> B,C; B.-> A,C; C.-> Project Exam Help
- A basis:
- One minimal basis:
 Add WeChat powcoder
 - $A \rightarrow B$

 - Check this.

$$\frac{A+}{AB \leq}$$

$$\frac{B+}{B < A}$$

12

Conversion into minimal basis

- "Minimal basis" Condition
 - A basis with all RHS singletons, where any modifications lead to no longer a basis, including:
 - Dropping an agriculture in the Project Fxam Help
 - Dropping a rule

Algorithm for converting S to a minimal basis

- R = S with all Ald single Chat powcoder
- Repeat until convergence:
 - If a rule minus an attribute from LHS is inferred from S, replace rule with rule minus attribute from LHS
 - If a rule is inferred from rest, drop it

Minimal basis example

Given R (u v w x y) and $F = \{U->X, VW->UX, W->V, Y->U, Y->X\}$

Find F', the minimal basis for F.

Assignment Project Exam Helphyly singleton in RHS

2- Remove unnecessary a

2- Remove unnecessary att. from LHS

3- Remove FDs that can be inferred from the rest

https://powcoder.com

Add WeChat powcoder

Decomposing R into 3NF

- 1. Get a "minimal basis" G of given FDs (Section 3.2.7)
- 2. For each FDA B in the minimal basis 6, use AB as the schema of a new relation.

 1. The schema of a new relation.

 2. The schema of a new relation.

 3. If none of the schemas from Step 2 is a superkey, add
- 3. If none of the schemas from Step 2 is a superkey, add another relation. Step 2 is a superkey, add relation.

Result will be lossless, will be dependency-preserving, 3NF; might not be BCNF

Decomposing R into 3NF

- 1. Get a "minimal basis" G of given FDs (Section 3.2.7)
- 2. For each FDA B in the minimal basis 6, use AB as the schema of a new relation.

 1. The schema of a new relation.

 2. The schema of a new relation.

 3. If none of the schemas from Step 2 is a superkey, add
- 3. If none of the schemas from Step 2 is a superkey, add another relation whose chamais ackey for the original relation. Implicitly this is connecting all the LHSs with the remaining attributes

Result will be lossless, will be dependency-preserving Basically every minimal FD is preserved somewhere

Example

•R(A, B, C) with FDs: Assignment Project Exam Help •A->B,C; B->A,C; C->A,B

Minimal Basilatos Byrowcoder Adm

Add WeChat powcoder

So, first cut:

R(A, B), R(B, C), R(C, A)

Any attributes left? Nope → done

•R(A, B, C, D, E) with FDs:

• A -> B; CD -> B; DA -> C

BCNFAssignment Project Exam Help

(AB), (ACD), (ADE) or: https://powcoder.com (BCD), (ACD), (ADE)

Which FDs daddh Wrechattpowegger

Minimal Basis:

A -> B, CD -> B) DA -> C)

3NF Decomp: (AB), (BCD), (ACD), (ADE)

Desirable Properties of Schema Refinement

Assignment Project Exam Help

- 1) minimizente dun de la minimizente de la minimiza della minimiza della minimiza de la minimiza della mi
- 2) avoid info loss
 3) preserve dependency
- 4) ensure good query performance

3NF

Fact of life...

Assignment Project Exam Help

Finding a decomposition which is both lossless and dependency-preserving is not always possible.

Add WeChat powcoder

Guideline: Aim for BCNF and settle for 3NF

Multi-valued Dependencies and 4NF

Assignment Project Exam Help

• we will not cover this.

https://powcoder.com

Add WeChat powcoder

Caveat

- Normalikatignismenttlerbjeett Enchendlichtlpf DB design
- Example: suppose attributes A and B are always used together, but normalization theory says they should be in different tablesdd WeChat powcoder
 - decomposition might produce unacceptable performance loss (extra disk reads)

Outline

Assignment Project Exam Help

- Third Normal forms (3.NF) powcoder.com

 Transactions and ACID properties: the dangers in concurrent executions (Ch. 6.6)
- (Ch. 6.6) Add WeChat powcoder
 Transactions and SQL: isolation levels (Ch. 18.1-18.4)

Ch 6.6.1 - 6.6.3

and 18.1-18.4

Motivating "Transactions"

- We've learned how to interact with DB using SQL.
- We assumed that:
 - each operation (e.g., operation executes, perhaps changes the DB state, then next perhaps changes the DB state, then next perhaps changes the DB state.
 - each operation is executed in entirety or not executed at all. (ATOMIC)
 Add WeChat powcoder
- Complications arise if these assumptions are violated
 - multiple operations acting on the same table simultaneously?
 - system crash in the middle of an operation (e.g., half the tuples have been updated the others not)

Example 1: flight seat selection

22 A

- Program:
 - •• Check if seat is available : SFW (A)
 - Book seat Alssignment Projecte ExampHelp

Two simultaneous runs

https://powcoder.com

Add WeChat powcoder

B1

• Two executions of the same "UPDATE ... SET ... WHERE" leads to seat being double-booked

B2

Example 1: lesson

- Group the SEIGHMERT MICHTER WHICH retrieved seat availability) and the "UPDATE ... SET ... WHERE" (which reserved a seat) into one TRANSAUDEN POWCOder.com
- Transaction is a sequence of statements that are considered a "unit of operation" on a hadbasWeChat powcoder
- Either useri's transaction executes first and then user2's transaction, or the other way, but not in parallel. *Serializability of transactions*.

Example 2: bank inter-account transfer

Problems can also occur if a crash occurs in the middle of executing a transaction:

Transfer

Need to guarantee that the write to X does not persist (ABORT)

• Default assumption if a transaction doesn't commit

Example 2: lesson

- Steps 2 and 3 must be done as one unit. *Atomically*. https://powcoder.com
- Either they poth execute opositheteloes.
- Transactions must be atomic.

Transactions

- Standardspigtion for Projeter Example from:
 - Sequence of read and write operations on data items that logically typic topow 60 denic of work
 - If it succeeds, the effects of all write operations persist (commit); if it fails, no effects persist (abort)
 - These guarantees are made despite concurrent activity in the system, and despite failures that may occur

Transaction Manager

- Part of the DBMS
- Its job is to ensure that a transaction is executed as expected signment Project Exam Help
- Purpose 1: Ensure that transactions that execute in papelle power in content with each other.
 - Purpose 2: Add W'tomMapager pelisures that steps inside a transaction are being "logged".
 - Purpose 3: Performs recovery after crashes, using logs.
 - We will not cover recovery in this class.

ACID Properties

Atomicity

either all of the actions of a transaction are executed, or none are. Assignment Project Exam Help

Consistency

• each transaction executed in isolation keeps the database in a consistent state

Add WeChat powcoder Isolation

 Transactions are isolated from the effects of other, concurrently executing, transactions.

Durability

updates stay in the DBMS!!!

Outline

Assignment Project Exam Help

- ✓ Third Normal forms (3.NF) powcoder.com
 ✓ Transactions and ACID properties: the dangers in concurrent executions (Ch. 6.6)
- (Ch. 6.6) Add WeChat powcoder
 Transactions and SQL: isolation levels (Ch. 18.1-18.4)

Transactions in SQL

- A transaction begins when any SQL statement that queries the db begins.
- To end a Arguiggtingethte Arcrisotte ExamMMEI pr ROLLBACK statement.

```
Add Add Add Add Alawini & COMMIT:
```

34

Read-Only Transactions

- When a transaction only repts information, we have more freedom to let the transaction execute concurrently with other transactions.
- We signal this to the system by stating:

```
Add WeChat powcoder SET TRANSACTION READ ONLY;

— SELECT * FROM Accounts

— WHERE account#= '1234';
...
```

35

Read-Write Transactions

• If we state "read-only", then the transaction cannot perform any updates.

```
SET TRANSACTION READ ONLY;

ILLEGAA'S SIGNOCHA Project Exam Help

SET balance = balance - $100

https://powcoder.com

WHERE account#= 1234;...
```

• Instead, we must specify that the transaction may update (the default):

```
SET TRANSACTION READ WRITE;
update Accounts
set balance = balance - $100
where account#= '1234';...
```