卒業論文 2019年度(令和元年度)

RDMAを用いたメモリ探索による 遠隔ベアメタルマシンのプロセス情報の取得

慶應義塾大学 環境情報学部 石川 達敬

徳田・村井・楠本・中村・高汐・バンミーター・植原・三次・中澤・武田 合同研究プロジェクト

2020年1月

卒業論文 2019年度(令和元年度)

RDMAを用いたメモリ探索による 遠隔ベアメタルマシンのプロセス情報の取得

論文要旨

大規模データセンターの管理者は、通常時の監視に加えて緊急時の原因究明など、コンピュータを解析する場面に直面する. しかし、顧客にコンピュータを貸し出している場合は、管理者権限がないことも多い.

既存の監視手法では、監視対象ホストのプロセスとして起動する監視ソフトウェアや、VMとして起動しデバッグを行う手法がある。また、緊急時、例えばカーネルパニックがおきた際はコアダンプの解析を行う。

しかし、顧客に貸与している大量の物理的なコンピュータに対して、データセンター管理者が顧客の管理者権限が必要になるソフトウェアの組み込みなどを伴う解決策を導入することは難しい.

そこで本研究では、大量のコンピュータに対して、電源さえ入っていればオペレーティングシステムが停止していても動作するデバッグ環境である NetTLP がプログラムされた FPGA ボードを監視対象ホストに物理的に設置し、NetTLP に実装された RDMA の実装を用いてメモリ探索を行い、動作中のネットワーク越しにある物理的なコンピュータのオペレーティングシステムのコンテキストを復元することを目的とする.

実装および評価として、限られた情報の中で、ネットワーク越しにある 64bit Linux の監視対象ホストのプロセス一覧を、自ホストから取得し、復元できることを示す。

RDMAを用いたメモリ探索でプロセス一覧を復元するに際し、本研究ではプロセス ID として 0を持つプロセスである init_task を起点として探索を行う. init_task は task_struct 構造体を保持しているが、監視対象ホストで動作中の task_struct 構造体の型情報はカーネルコンフィグから推測するほかない. 本研究では、task_struct 構造体の型情報の取得、すなわち各フィールドのオフセットの算出を、実装したプログラムを実行するホストにてアトミックではないメモリダンプを解析しカーネルコンフィグの値を収集、再度ビルドすることで達成している.

キーワード

オペレーティングシステム, RDMA, メモリ探索, Linux 慶應義塾大学 環境情報学部

石川 達敬

Abstract Of Bachelor's Thesis Academic Year 2019

Title

Summary

Managers of a large number of physical computers, such as a large data center, are faced with a situation in which computers are analyzed in addition to normal surveillance and investigation of causes in an emergency. However, if you rent a computer to a customer, you often do not have root privileges.

Existing monitoring methods include monitoring software that starts as a process on the monitored host and a method that starts and debugs as a VM. In an emergency, for example, when a kernel panic occurs, the core dump is analyzed.

However, in managing a large number of physical computers, it is difficult to introduce various solutions to address the problem.

Therefore, in this research, under the NetTLP environment, which is a debugging environment that operates even if the operating system is stopped as long as the power is on, for a large number of computers, The purpose of this study is to perform a memory search using the implementation of RDMA implemented in NetTLP and to restore the context of the operating system of a physical computer over a running network.

As an implementation and evaluation, we show that, with limited information, a process list of the monitored host of 64bit Linux over the network can be obtained from the host, restored, and output.

When restoring a process list by memory search using RDMA, in this research, search is performed starting from init_task, which is a process having a process ID of 0. init_task holds a task_struct structure, but the type information of the task_struct structure running on the monitored host must be inferred from the kernel config. In this research, acquisition of type information of task_struct structure, that is, calculation of offset of each field, This is achieved by analyzing the non-atomic memory dump on the host executing the implementation, collecting the kernel configuration values, and rebuilding.

Keywords

Operating system, RDMA, Linux

Bachelor of Arts in Environment and Information Studies Keio University

Tatsunori Ishikawa

目 次

第1章	序論	1
1.1	背景	1
1.2	課題	1
1.3	目的	2
1.4	本論文の構成	2
第2章	関連技術	4
2.1	オペレーティングシステム解析手段	4
	2.1.1 コアダンプを用いた静的解析	4
	2.1.2 VM を用いた解析	5
2.2	RDMA	5
	2.2.1 Infiniband における RDMA 実装	5
第3章	アプローチ	6
3.1	オペレーティングシステムのコンテキスト	6
	3.1.1 task_struct 構造体	6
	3.1.2 オペレーティングシステムのビルドにおけるコンフィグ	7
	3.1.3 ホスト自身によるレジスタやシンボルの参照	7
3.2	本研究で保持する情報	7
3.3	導出する情報	8
第4章	実装	9
4.1	実装の概要	9
4.2	NetTLP	9
	4.2.1 NetTLP における process-list.c	9
4.3	実験環境	10
4.4	実装の前提情報	10
4.5	実装の全体	12
4.6	$mem_dump.c \dots \dots \dots \dots \dots \dots \dots \dots \dots $	13
4.7	カーネルコンフィグの復元	13
4.8	Linux カーネルをプリプロセッサに通す	16
4.9	task_struct 構造体の確定	17
	4.9.1 init_task の開始アドレスの算出	18

4.10	プロセス一覧の表示	18
	4.10.1 環境に依存するパラメータ	18
4.11	実装のまとめ	19
第5章	評価	20
5.1	評価手法	20
5.2	実験環境	20
5.3	評価手順	20
	5.3.1 前提	21
	5.3.2 メモリダンプの取得	21
	5.3.3 カーネルコンフィグを復元する	21
	5.3.4 復元したカーネルをプリプロセッサに通す	21
	$5.3.5$ 実行環境における $\mathrm{init}_t ask$ の先頭アドレス \ldots	22
	5.3.6 process-list.c の実行	23
5.4	評価	23
	5.4.1 値が正しいこと	23
	5.4.2 通常稼働中における評価	24
	5.4.3 カーネルパニック発生時における評価	29
5.5	評価のまとめ	34
第6章	まとめと結論	35
6.1	まとめ	35
6.2	結論	35
6.3	今後の課題	36
	6.3.1 セキュリティ的な課題	36
謝辞		37
参考文献	\sharp	38

义	Ħ	次

表目次

5.1	実装したプログラムを実行するホスト	20
5.2	監視対象ホスト	20

第1章 序論

1.1 背景

コンピュータの管理者は、動作中、あるいはカーネルパニックなどによって停止したコンピュータの情報を監視・解析することが必要となる場面がある。動作中のコンピュータ自身に対しては、同一ホスト内の top コマンドや ps コマンドを用いて、プロセスの一覧を得たり、gdb コマンドを用いてプロセスをトレースし、プロセスの状態を把握する。ユーザー空間ではなくカーネルのデバッグしたい場合は、kdb と呼ばれるデバッガを、カーネルビルド時に有効にすることで、使用することができる。

論理的に停止したコンピュータに対しては、kdumpと呼ばれる機構を通してメモリダンプを静的に解析し、原因の究明をする。また、状態を監視したいホストを物理的なマシンではなく、仮想マシンとして起動し、qemuや Xen などの基盤上で libvmi などを通して状態を解析する手法がすでに存在している。

上述した状況は、コンピュータの管理者、すなわち root 権限を保持している人にとって可能な手法である.

一方で、データセンター管理者など、大量の物理サーバーを保持し、顧客に貸し出している人の場合、上記の手法を使用することはできない。通常は、顧客の情報にアクセスすることはするべきではないが、例えば貸し出しているサーバーがマルウェアなどに感染するなどした場合に事業者としての責任として、原因究明や現状調査のために、解析する必要が出てくる可能性がある。

サーバーを貸し出している会社は、本来はセキュリティ対策として、サーバーを稼働しているオペレーティングシステム上に、セキュリティソフトを入れたいが、大量にあるコンピュータの全てにセキュリティソフトを入れることは容易ではない。当然、顧客から root パスワードを知らされることもないため、ログインをすることもできない。

1.2 課題

1.1 節で述べたように、データセンターの管理者は、顧客に貸し出している物理的なコンピュータの内部の状態を知ることはできない。すなわち、死活監視として、ネットワーク越しの監視を行うことは可能であるが、コンピュータのオペレーティングシステムにおけるコンテキストを知ることはできない。オペレーティングシステムの内部で起こっていることは、当然、通常は知るべきではないが、マルウェアに感染した場合、意図しない挙動を起こした場合、あるいはカーネルパニックに陥った場合、これらの状態の時に、どの状態でも監視・解析を行うことができるツー

ルが存在しない.

VM を用いた解析では、様々な解析手段がすでに豊富にあることは、1.1 節で述べ、後述するとおり、VM を管理している物理的なコンピュータに異常が起きた場合に対処ができない.

大量の物理的なコンピュータに対する監視の場合,ネットワーク越しの死活監視,あるいはコンピュータの中でプロセスとしてセキュリティソフト,あるいは状態監視ツールを起動するほかない.この手法は,大量のコンピュータに適用するのは,現実的ではない.理由として,第一に,顧客に貸し出すサーバーのリソースを使用してしまうという点,第二に,全てのサーバーにセットアップするのが大変だという点があげられる.

また、このプロセスとして起動する方法は、物理的なコンピュータのオペレーティングシステムがカーネルパニックに陥った際、コアダンプの解析を行う他に解析手段が存在しない。コアダンプの設定を正しく行っていれば、静的ファイルを解析することは可能であるが、ストレージの不足など、不測の事態によって、ダンプを取ることができない可能性も存在する。

さらに、マルウェアなどに感染し、ログインをして解析することが危険にさらされる可能性も ある場合、コンピュータにログインすることが推奨されない場合も存在する.

以上のことをまとめて、本研究における解決したい課題として、ネットワーク越しにある物理的なコンピュータに対して、電源さえ入っていればリアルタイムで安全に解析可能なオペレーティングシステムの監視・解析ツールが存在しないこと、と定義する.

1.3 目的

本研究では、大規模データセンターのような、大量かつ様々な環境の物理的なコンピュータを管理する現場において、root 権限がない中でネットワーク越しにあるコンピュータの状態を一元的に把握できることを示すことで、1.2節で述べた問題を解決することを目指す.

この章で述べた様々な環境とは、同じバージョンのオペレーティングシステムでもビルドする際の設定によって、挙動が変わるという意味である.

本研究の実装によって、事前に与える情報が少ない中で、オペレーティングシステムのコンテキストを復元できることを示すために、タスクキューに乗っているプロセスの一覧を取得することを目指す.

1.4 本論文の構成

2章では、既存の解析基盤や様々な解析手法と、基盤技術として使用することになる RDMA の 既存の実装について述べる.

3章では、本研究のアプローチとして、メモリからオペレーティングシステムのコンテキスト の復元に必要な情報について述べる.

4章では、本研究で実装したものについて述べる.

5章では、本研究における評価として、Linux カーネルのバージョンのみが与えられた状態でプロセスリストの一覧を取得できることを示す。

6章では、本研究に関する結論と、今後の課題について述べる.

第2章 関連技術

本章では、本研究における手法を選ぶに当たって、既存の基盤手法の比較と、基盤技術として使用する RDMA(Remote Direct Memory Access)に関して述べる.

2.1 オペレーティングシステム解析手段

本セクションでは、1章で述べた、既存のオペレーティングシステムおよびプロセスの解析技術について述べる。コアダンプを用いた静的解析や、kgdb、VMを用いた解析に関して述べた後、その手法の一つである libvmi について述べる。

2.1.1 コアダンプを用いた静的解析

コアダンプとは、カーネルクラッシュダンプとも呼称する [5] が、この技術は、オペレーティングシステムが何かしらの原因でパニックに陥った際に、停止した時点のメモリの情報を 2 次記憶装置に書き出し、あとで解析できるようにするための機構である.

Linux においては、kdump と呼ばれる機構を通して、メモリダンプを取得する. 適切に設定をしておくことで、システムはパニックに陥ったのち、kdump を実行するためだけの緊急用のカーネルを起動し、メモリの内容を書き出していく.

ここで得られたファイルを、Volatility[4] のようなツールを用いて、オペレーティングシステムが停止する前にどのような状態にあったのかに関する解析を行う.

(1) Volatility

Volatility[4] とは, 2.1.1 節などを用いて取得した静的なメモリダンプに対して, 解析を行うソフトウェアである.

Volatility では、取得したメモリダンプがアトミックである前提のもと、オペレーティングシステムがどのような状態にあったかを解析するためのものである。Volatility で使用されている手法は本研究において大いに参考になるが、このソフトウェアは、静的なファイルにのみ対応している。つまり、動作中のコンピュータに対する解析を行うことはできない。

2.1.2 VM を用いた解析

VM を用いた解析では、監視したいホストを VM として起動することで監視を実現する手法である.

VM として起動する際に用いる技術としては,QEMU[3] がある。qemu とはコンピュータ全体をエミュレーションし,仮想マシンとしてオペレーティングシステムを起動するためのソフトウェアである。qemu ではプロセッサだけでなく,マウスやキーボードなどの周辺機器をエミュレートするため単体での使用も可能だが,近年では,Linux カーネルに実装されている仮想化モジュールである KVM[2] と組み合わせて使用することも多くなった。

(1) libvmi

VM を用いた解析手法として, libvmi[9] を用いた解析手法が存在する. libvmi とは実行中の仮想マシンに対して,メモリの状態や,プロセスの状態などを監視することを実現するための API を提供しているライブラリである. libvmi は仮想化のプラットフォームは, KVM/QEMU 及びXen に対応している

2.2 RDMA

RDMA (Remote Direct Memory Access) とは、DMA (Direct Memory Access) [7] 転送をネットワーク越しに行う技術のことである。DMA は、メモリを読まれる対象のホストのマザーボード上の PCIeBus の上で動作する規格であるため、メモリを読まれる対象のホストの CPU コアを介さない通信が可能である。RDMA では、ネットワーク越しに DMA message を発行する技術であり、解析の際に CPU コアのリソースを使用しない、ゼロ・オーバーヘッド動作環境を実現することができる。さらに、監視対象ホストのオペレーティングシステムの状態に依存しない、つまり、電源さえ入っている状態であれば、動作中であろうとカーネルパニックが発生している状態であろうと、DMA message を発行し、結果を得ることが可能となる。

2.2.1 Infiniband における RDMA 実装

RDMA の実装として、Infiniband[8] における RDMA 実装がある.

しかし、infiniband における RDMA[1] では、実際のパケットの送受信を行うのは、Host Channel Adapter(HCA) であるが、この HCA がアクセスできる領域はあらかじめ Memory Region として監視対象ホストの OS に登録されている。アクセスできる領域の仮想アドレスと物理アドレスの変換表は HCA が保持し、変換した上でアクセスする。そのため、infiniband RDMA では規格上、許可された仮想アドレス空間の指定しかできず、メモリ空間の全てを参照することはできない。したがって、infiniband RDMA では、オペレーティングシステム全体の監視・解析を行うことは難しい。

第3章 アプローチ

1.3節で、本研究の目的を、動作中のコンピュータのメモリのダンプをリアルタイムで解析することで、コンピュータの状態をリモートホストから知ることができるようにする、と定義した.

そこで本章では、メモリのダンプをリアルタイムで取得.解析する上で前提となる情報と、この手法における課題について述べる.

3.1 オペレーティングシステムのコンテキスト

コンピュータの状態,すなわちオペレーティングシステムの動作中におけるコンピュータのコンテキストは,コンピュータ内部におけるレジスタの値および,内部から参照できる仮想アドレス空間上に保持されている.その例を下に示す.

あるプロセスを実行する際に、プロセッサはインストラクションポインタレジスタの命令を読み込み、逐次実行をしていく。call 命令などで別の関数を呼ぶ際には、その時点におけるインストラクションポインタレジスタの値をメモリ上に退避し、関数が終わった際に、呼び出し元に返るように設定されている。実行コードが整合性を保っているかは、実行可能ファイルを生成したコンパイラの責務なので、本論文では述べないが、プロセッサはプログラムの実行を行う際、レジスタの値を参照、退避、復帰、上書きさせることで、状態を保持、進行させていると言える。これは、カーネルのコードを実行する際も同様である。

ここでは、オペレーティングシステムから見たコンピュータの状態として、プロセスの切り替え処理、コンテキストスイッチにおける処理の流れを述べる。コンテキストスイッチとは、割り込み処理などによって定期的に呼ばれるプロセススケジューラーから呼ばれる機構である。この機構は、実行中のプロセスの状態、すなわち、各レジスタの値および仮想アドレス空間に関する情報などをカーネルが管理しているメモリ上にあるデータ構造の中に退避する。

本セクションのまとめとして、コンピュータの状態は、ある瞬間においてはレジスタの値であり、この状態を保存する際は、メモリ上にレジスタの値を退避させていることを述べた.

3.1.1 task_struct 構造体

3.1 節でコンテキストスイッチにおいて、退避されるプロセスの情報は、対応したデータ構造に 退避されると述べたが、この時に使用されるデータ構造が task_struct 構造体である. task_struct 構造体には、プロセスに関する情報が格納されている. その中には、仮想アドレス空間に関する 情報を保持する mm_struct 構造体を参照するフィールドも存在する. コンテキストスイッチ時には、task_struct 構造体に保持されている情報をレジスタに復帰させることで、中断される直前の情報を復元している.

3.1.2 オペレーティングシステムのビルドにおけるコンフィグ

task_struct 構造体をはじめとして、Linux カーネルの変数や型、関数は、様々なアーキテクチャやカーネルコンフィグに対応するため、マクロによって分岐されている。この分岐が確定するのは、Linux カーネルをビルドするときであり、構造体のメンバへのアクセス、関数のアドレスなどはコンパイラが保証している。

実際のカーネルのバイナリは、vmlinuxとしてコンパイルされた後、stripされbzImageとなる. ユーザーが作成したカーネルモジュールなどで関数を呼び出す際は、シンボルとアドレスの変換表である'/boot/System.map'を参照し、仮想アドレスを得たのち、実際にメモリにアクセスする際に物理メモリアドレスを算出しアクセスしている.

3.1.3 ホスト自身によるレジスタやシンボルの参照

3.1 節で述べたように、オペレーティングシステムでは、その実行中のコンテキストにおいて、レジスタの値などを退避する際、そのプロセッサ自身が'push' 命令などを用いてメモリにアクセスできる.

さらにレジスタを参照して、Memory Management Unit を通じ、ページウォークなどをすることも可能となっている.

本研究では、メモリの情報のみから監視対象ホストのオペレーティングシステムのコンテキストを復元することを試みるが、CPUレジスタの値は直接知ることができないため、例えばプロセスの一覧を取得したい場合は、コンテキストスイッチ時に退避された値を辿っていく必要がある。しかし、上述の通りtask_structはビルドされた際のカーネルコンフィグによって、どのフィールドが先頭アドレスからどのオフセットに保持されているかは変動する。

3.2 本研究で保持する情報

これまでで述べたように、本研究では、メモリダンプを局所的に取得し、動作中のコンピュータのメモリを探索することで、ネットワーク越しにある物理的なコンピュータからオペレーティングシステムのコンテキストを復元することを目的と設定した。そこで、本研究では、事前に解析者が保持する情報として、監視対象ホストのオペレーティングシステムの種類とバージョン情報を与えるものとする.

3.3 導出する情報

オペレーティングシステムの状態を保持しているものとして、3.1 節で述べたようにレジスタがある。しかし、3.2 節で述べたように、現在のレジスタの値など、オペレーティングシステムの状態を保持する領域は、メモリから知ることはできない。そのため、オペレーティングシステムの内部のシンボル、一例として、プロセス情報を保持するシンボルおよびその型情報を復元することを試みる。

第4章 実装

4.1 実装の概要

本研究では、RDMAを用いて、動作中のマシンのメモリの値を取得していくことで、リモートホストから監視対象ホストのオペレーティングシステムのコンテキストを復元していくことを目指す.この目的を実現するために、本研究では、NetTLP[6]を用いて実験を行う.

4.2 NetTLP

NetTLP の目的は、PCIe デバイスの開発プラットフォームである.

その機能の一つとして,DMA message と ethernet パケットを相互変換する機能がある.2 章 で述べたが,RDMA の Infiniband 実装は,制限が多い.NetTLP における RDMA では,物理アドレスを指定することで,1Byte から 4096Byte までの任意のバイト数の値を取得することが可能である.また,NetTLP を用いた RDMA では,メインメモリの全メモリアドレスにアクセスすることが可能であり,アクセスできないメモリアドレスは存在しない,すなわち全メモリアドレス空間から値を取得することが可能となっている.

NetTLP は FPGA ボード上で動作するものであり、これを利用するためのインターフェースとして、libtlp が用意されている。libtlp では、RDMA を用いてメモリダンプを取得するためのインターフェースが関数として用意されている。この関数を含んだヘッダファイルを include し、プログラムから呼び出すことで、メモリアドレスの値が返ってくる。

用意されている関数は、dma_read 関数と dma_write 関数の二つである。dma_read 関数は、値を読みだすための関数であり、呼び出す際に読みたいメモリアドレスを渡す。dma_write 関数は、値を指定した物理アドレスに書き込むための関数であり、呼び出す際に、書き込みたいメモリアドレスと値を渡す。

本研究では、dma_read 関数のみを用いる.

4.2.1 NetTLP における process-list.c

NetTLP[6] のユースケースの一つとして、process-list.c が実装されている。このプログラムでは、引数として監視対象ホストの/boot/config ファイルを受け取り、そのファイルの中身を検索している。すなわち、pid 0 を持つプロセスの情報として、監視対象ホストの init_task の情報を

定めている. 与えられた init_task の開始アドレスから,連結リストとなっている task_struct を全て辿ることを試みている.

しかしこの実装は、task_struct の各フィールドのオフセットに関する値やマクロによって決定されるべき値がハードコーディングされているため、論文中の実行環境以外で実行することが困難となっている。この、task_struct の各フィールドのオフセットに関する値やマクロによって決定されるべき値は、Linux カーネルのバージョンと、カーネルコンフィグの値によって決まるが、本研究では、このプログラムを、ある特定のバージョンであれば、どのようなカーネルコンフィグを持っていても動作することができるように変更をする。具体的な変更内容については、4.10節にて述べる。

4.3 実験環境

本研究で実装を行う環境は、図 4.1 にあるように、NetTLP Adapter が書き込まれた FPGA が刺さった監視対象ホストと、本研究における実装したプログラムを実行するホストの 2 台で構成する.

監視対象ホストは、Linux 4.15.0-72-generic の ubuntu であり、PCIe デバイスとして、NetTLP が書き込まれた FPGA ボードが刺さっている。本研究では、FPGA ボードとして、ザイリンクス の Kintex-7 FPGA KC705 評価キットを使用した。また、この FPGA ボードは、ネットワーク インターフェースでもあり、本研究の実験環境では、IP アドレスとして、192.168.10.1 を静的に振ってある。

実装したプログラムを実行するホストは、Linux 4.19.0-6-amd64の Debian buster であり、LCLC ケーブルに対応した NIC を刺している.以後、実装ホストと呼称する.この NIC には IP アドレスとして、192.168.10.3 を静的に振ってある.監視対象ホストに対して RDMA を実行する際は、 dma_read 関数,あるいは dma_wirte 関数を通して 192.168.10.1 に対して IP パケットを送信する.

4.4 実装の前提情報

本研究では、3章で述べたように、動作中のコンピュータのメインメモリの値を読むことによって監視対象ホストにおけるオペレーティングシステムのコンテキストを復元することを目的としている。その手法として、RDMA NIC を物理的に設置することで、この目的を達成することを試みている。

そこで、本研究の実装側のホストに与える情報を少なくすることが必要となる。本セクションでは、本研究の実験において、実装したプログラムを実行するホストが持っている情報と、初期 段階では持っていないが解析の結果導き出す情報を分類する。

3章で述べたように、オペレーティングシステムのコンテキストの復元、その中でも Linux においてプロセス情報の一覧を出すために必要な情報は以下の三点である.

一点目は, init_task という, pid が 0 のプロセスの task_struct 構造体の開始アドレスである.

図 4.1: 全体

init_task はコンピュータが起動する際に最初に実行されるプロセスであり、全てのプロセスは親プロセスを辿っていくことで、このプロセスにたどり着くことができる。この情報は、実験に際して実装したプログラムを実行するホストは、知らないこととする。(いいのか?)

二点目は、task_struct 構造体の各フィールドの有無である。Linux カーネルでは、ビルドする際に、数千に及ぶ設定を記述し、マクロとして設定される。この設定、kconfig によって task_structは、どのフィールドを有効にするか、マクロとして定義された構造体の実体は何になるのか、などが決まる。kconfig の結果によって、フィールドが存在するか否か、またそのフィールドが先頭アドレスからどのくらいのオフセットを持った状態で保持されているかが決まる。すなわち、kconfig の情報によって、task_struct のサイズや各フィールドの先頭アドレスからのオフセットが確定する。この kconfig に関する情報は実験に際して実装したプログラムを実行するホストは知らないこととする。

三点目は、Linux カーネルのバージョンに関する情報である。本研究では、実験する際に、監視対象ホストのカーネルのバージョンと同じソースコードを使用した上で実験を行う。当然、Linux カーネルのバージョンに関する情報は知っている必要がある。Linux カーネルのバージョンは、実装ホストは持っている情報とする。3.3節で述べたもののうち、Linux カーネルのバージョンは通知することとする

4.5 実装の全体

実験における第一段階として、3.3 節で述べたように、監視対象ホストのカーネルコンフィグおよび init_task の先頭アドレスの仮想アドレスを知ることを目指す。そこで、本研究では、この情報をメモリ上から探す。4.6 節で述べる実装では、取得できるメモリダンプを全て取得し、解析する手法に関して述べる。

第二段階として、与えられた Linux カーネルのバージョンのソースコードより、カーネルコンフィグの一覧を抽出し、その文字列を取得したメモリダンプから文字列探索をする。文字列探索の結果取得したカーネルコンフィグの値をパースし、メモリ上から監視対象ホストのカーネルコンフィグを復元する。4.7 節で述べる実装では、カーネルコンフィグを復元する際の実装の詳細に関して記述する。

第三段階として、収集したカーネルコンフィグを元に手元のコンピュータで Linux カーネルのソースコードに対してプリプロセスの処理を行い、task_struct 型を確定する。また、??節で述べた、監視対象ホストで動いているプロセスの一覧情報を取得するためのさらに、ソースコード上にある__phys_addr 関数の実体を収集する.

最後に、この工程で得られた情報をもとに、libtlpで提唱されている手法を用いて、プロセスの一覧を正しく取得できることを確認する.

4.6 mem_dump.c

第一の工程として、メモリの全ての情報を取得する.ソースコードは以下である.この実装を実装ホストで実行し、出力結果をファイルに格納する.この実装では、libtlp を通して、監視対象ホストのメモリを全探索する.ここで取得したメモリダンプは、System.map のうち、init_taskが配置されている仮想アドレス空間に関する情報および、Linux カーネル 4.15.0 におけるカーネルコンフィグに関する情報を収集するためのものである.

実行方法 -

./dump_mem > dump

4.7 カーネルコンフィグの復元

Linux カーネル 4.15.0 におけるカーネルコンフィグの一覧は、下に示す通りである(あとではるかも)

これらのコンフィグに関する情報を以下のスクリプトで読み出す.

カーネルコンフィグには、各設定項目に対する値として、y,m や文字列、数値などがあり、設定しない項目については、その行がコメント行になるのに加えて、is not set という文言が付け足される。これらの特徴を踏まえ、本研究では、 $restore_k config.py$ というスクリプトを Python を用いて実装した。このスクリプトでは、得られたメモリダンプから、strings コマンドを用いて文字列を抽出し、そこから kconfig の特徴である、CONFIG という文字列を含む行を grep コマンドを用いて抽出する。実行するシェルスクリプトは以下である。

 \cdot strings

strings dump | grep CONFIG > str_list

生成されたファイルに対して、上述したスクリプトを実行し、ファイルに書き出す. ここでは書き出すファイル名を restored_kconfig とする.

```
search config script —
import sys
configs = [
    "CONFIG_64BIT", "CONFIG_X86_64", "CONFIG_X86",
    "CONFIG_INSTRUCTION_DECODER", "CONFIG_OUTPUT_FORMAT",
    "CONFIG_ARCH_DEFCONFIG", "CONFIG_LOCKDEP_SUPPORT",
    # 省略
    "CONFIG_ARCH_HAS_PMEM_API", "CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE",
    "CONFIG_SBITMAP", "CONFIG_PARMAN", "CONFIG_STRING_SELFTEST"
]
# 有効な文字列が見つかった場合は1を返す
def classification(l, s):
    if "#if" in 1 or "#endif" in 1:
        # sys.stderr.write("No!! -> Macro, "+1)
        return 0
    if 1[:3] != "CON" and 1[:3] != "# C":
        # sys.stderr.write("No!! -> NOT CONFIG, "+1)
        return 0
    if s + "=y" in 1:
        print(s + "=y")
        return 1
    elif s + "=m" in 1:
        print(s + "=m")
        return 1
    elif s + " is not set" in 1:
        print("# " + s + " is not set")
        return 1
    elif s + '=' in 1:
        print(1)
        return 1
    else:
        # sys.stderr.write("No!! -> No match, "+1)
        return 0
```

```
- search config script2 —
def search_config_str(file_name, s):
    ld = open(file_name)
    lines = ld.readlines()
    ld.close()
    for line in lines:
        if line.find(s) >= 0:
            if classification(line[:-1], s):
                return 1
    return 0
def search(file_name):
    for s in configs:
        # print("Searching "+s+" .....")
        if not search_config_str(file_name, s):
            # print("# Cannot find " + s)
            sys.stderr.write("# Cannot find " + s)
def usage():
    print("usage: python find_kconfig.py path/to/str_list")
def main():
    args = sys.argv
    if len(args) < 2:
        usage()
        return 0
    file_name = args[1]
    search(file_name)
if __name__ == "__main__":
   main()
```

上述した処理によって得られた $\operatorname{restored}_k \operatorname{conf} ig$ というファイルを、後述するビルド時にコンフィグとして利用する.

4.8 Linux カーネルをプリプロセッサに通す

この工程では、収集したカーネルコンフィグを元に手元のコンピュータで Linux カーネルのソースコードに対してプリプロセスの処理を行い、task_struct型、および__phys_addr 関数など、process-list.c の影響のあるソースコードを確定する.

また、pid~0のプロセスの task_struct 構造体の先頭アドレスを知るため、またそれぞれのフィールドの先頭アドレスからのオフセットを確定させるため、オフセットを得る処理を施す.

まずは、事前に知らされた情報である Linux カーネルのバージョンより、適合したカーネルを取得する. このソースコードに対して、4.7節で生成したファイルをコンフィグとして埋め込む.

- build Linux kernel —

- cd /path/to/linux-source-4.15.0
- cp /path/to/restored_kconfig .config

また、この工程では、カーネルビルド時における task_struct 型をバイナリではなくテキストファイルとして取得する必要があるため、マクロを適用した直後の状態、すなわちプリプロセッサに通した直後の状態を保存するため、ビルド時の設定に変更を加える. Linux カーネルにおいては、ビルド時に Makefile を使用するため、このファイルを編集する. 例として、Linux カーネル、バージョン 4.15.0-74-generic においては、Makefile の 447 行目付近に、-save-temps オプションを以下のような形で設定する.

· -save-temps オプションの設定・変更前 -

KBUILD_AFLAGS := -D__ASSEMBLY__

KBUILD_CFLAGS := -Wall -Wundef -Wstrict-prototypes -Wno-trigraphs \

- -fno-strict-aliasing -fno-common -fshort-wchar \
- -Werror-implicit-function-declaration \
- -Wno-format-security \
- -std=gnu89

KBUILD_CPPFLAGS := -D__KERNEL__

KBUILD_AFLAGS_KERNEL :=

KBUILD_CFLAGS_KERNEL :=

KBUILD_AFLAGS_MODULE := -DMODULE
KBUILD_CFLAGS_MODULE := -DMODULE

KBUILD_LDFLAGS_MODULE := -T \$(srctree)/scripts/module-common.lds

設定ファイルを書き終わったらビルドを行う.

- ビルド make -j10

4.9 task struct 構造体の確定

本セクションでは、4.8 節で述べた工程を経た結果生成された中間ファイルから、task_struct 構造体を導出し、プロセス情報一覧の表示に必要なフィールドのオフセットを求める.

Linux カーネルのビルドが完了すると、上述した Makefile の KBUILD $_CFLAGS$ の設定によって、中間ファイルを含む巨大なディレクトリおよび、vmlinux、bzImage が作成される。本研究では、このビルドされた bzImage は使用しない。

ビルドの際に、プリプロセッサの出力を残したことで、ソースコード中の全てのマクロおよび include されたファイルが展開された状態のソースコードがファイルとして残っている。例として/kernel/pid.c をあげると、このファイルでは、task_struct 構造体を呼び出している箇所があるが、このファイルをプリプロセッサに通すことで、pid.i が作成される。pid.i を通して見てみると、task_struct 構造体が全て展開され、そこから参照される全ての構造体や typedef の情報がソースコード上にあることがわかる。

この中間ファイルから、task_struct およびそこから参照される全ての要素を抽出し、以下のソースコードの struct task_struct{}; と書かれている部分に記述する. このファイルをビルドす

ることで、task_struct 構造体の各フィールドのオフセットを導出する.

print_offset.c の実行結果は以下の通りである.

ここで得られたオフセットを用いて、後述する 4.9.1 節にて $init_t$ task の開始アドレスを求める.

4.9.1 init_task の開始アドレスの算出

本セクションでは、プロセス ID として 0 を持つプロセスである、init_task の先頭開始アドレスの算出開始アドレスを算出する.

init_task の開始アドレスは、監視対象ホストの、/proc/kallsyms に記述されているが、その開始アドレスは本研究の実験環境においては、実装したプログラムを実行するホストは情報として持っていない、そのため、後述する手法を用いてその開始アドレスを算出する.

4.6 節では、ネットワーク越しに、監視対象ホストのメモリダンプを取得する工程について記述した。このメモリダンプからプロセス ID 0 をもつ init_task を探す。init_task は task_struct 構造体であるため、メモリダンプの中から、init_task に特有の文字列をなどを探し、それを目印として init_task の先頭アドレスを算出する。

本研究においては、task_struct 構造体の、comm フィールドの値に着目した。comm フィールドには、プロセスに関する情報のうち、実行可能ファイルの名前が 16Byte で記載されている。init_task における comm フィールドの値は、swapper/0 であるため、この値をメモリダンプから、以下のスクリプトを用いて検索を行う。

- find swapper/0 —

xxd dump | grep swapper/0

この値から、4.9 節にて求めた、comm フィールドの値を引き、そこからさらに、ブートローダの使用領域である 128 KB を足すことで、 $init_task$ の先頭アドレスを算出する.

4.10 プロセス一覧の表示

以上の実装により得られた値を用いて、??節で述べた process-list.c のうち、監視対象ホストの環境に依存した部分を書き換えることで、プロセスの一覧を取得する.

4.10.1 環境に依存するパラメータ

本セクションでは、プロセスの一覧を得る上で、マシンごとに異なる設定を述べる.

一点目として、カーネル空間に仮想アドレスにおける仮想アドレスから物理アドレスへ変換する際に使用する関数の実体が異なる./proc/kallsyms に書いてある値をはじめとして、子プロセ

スの開始アドレスを格納しているフィールドには、カーネル空間における仮想アドレスが格納されているが、本研究においてメモリアドレスを指定する際には、物理アドレスを指定する必要がある。 Linux カーネル 4.15.0 においては、変換に用いる関数およびその中で使用されているシンボルは、CONFIG $_DEBUG_VIRTUAL$ という設定や、64bit かどうかを示す値であり、この値はソースコードからマクロを辿っていくことで知ることが可能である。本研究では、4.7 節にて述べたように、復元したマクロの値を参照しつつ、この関数の実体を確定させる。

二点目として、監視対象ホストの上における task_struct 構造体におけるオフセットの値である. この値に関しては、4.9 節で求めたため、その値を以下の6 行に記載する.

- macros

#define OFFSET_HEAD_STATE 16

#define OFFSET_HEAD_PID 2216

#define OFFSET_HEAD_CHILDREN 2248

#define OFFSET HEAD SIBLING 2264

#define OFFSET_HEAD_COMM 2640

#define OFFSET_HEAD_REAL_PARENT 2232

4.11 実装のまとめ

本章では、監視対象ホストに関する情報として、動作している Linux カーネルのバージョンのみを実装したプログラムを実行するホストに与えた。その上で、RDMA の NetTLP 実装を用いてメモリダンプを取得し解析を行うことで、カーネルコンフィグをはじめとした、プロセス一覧の取得に必要な情報を収集するための実装について述べた。

第5章 評価

本章では、本研究における実装によって、正しく監視対象ホストの状態を取得できているかどうかを評価とする。また、hoge、fuga な時にもその評価が正しくできているかを確認する。

5.1 評価手法

評価手法として,カーネルのバージョンのみわかる状態から,正しくps aux と同じような出力を得られるかどうか,実験用に起動したプロセスを,本研究の実装上から確認できるかどうかを評価とする.また,実験の最中に導出した値が実際のホストにおいて正しいかどうかを確認し,それを評価とする.

プロセスとして監視を行う手法と、本研究の実装を、通常稼働中とカーネルパニック発生時における実行の可否について述べる.

5.2 実験環境

本研究では,以下の環境で実験を行う.

表 5.1: 実装したプログラムを実行するホスト

Linux カーネルのバージョン Linux 4.19.0-6-amd64 ディストリビューション Debian buster 10.2

表 5.2: 監視対象ホスト

Linux カーネルのバージョン Linux 4.15.0-74-generic ディストリビューション Ubuntu 18.04.3 LTS (Bionic Beaver)

5.3 評価手順

評価手順として、4章で述べた実装を用いて、実際に全ての工程を、手順に沿って実行していく.

5.3.1 前提

前述したように、本研究の実験においては、実装したプログラムを実行するホストは、監視対象ホストに関して、Linux カーネルのバージョンのみを情報として保持する.

5.3.2 メモリダンプの取得

4.6 節で述べた実装である, $dump_mem$ を用いて,メモリダンプを取得する.

実行方法 -

./dump_mem > dump

このファイルを実行すると、搭載している物理メモリの大きさに等しい、8GBのファイルが作成される.

このファイルを以後,メモリダンプと呼ぶ.

5.3.3 カーネルコンフィグを復元する

取得してきたメモリダンプに対して、4.7節で述べたように、処理を施し、ビルド時のカーネルコンフィグを復元する.

- strings —

strings dump | grep CONFIG > str_list

ここで生成された resotred $_k$ config を,実装したプログラムを実行するホストでカーネルをビルドする際に, .config としてそのまま用いる.

5.3.4 復元したカーネルをプリプロセッサに通す

4.8 節で述べたように、5.3.3 節の結果得られたカーネルコンフィグを用いて、カーネルのビルドを実装したプログラムを実行するホストで行う.

- build Linux kernel ——

cd /path/to/linux-source-4.15.0

cp /path/to/restored_kconfig .config

その際に、4.8 節で述べたように、プリプロセッサによる処理である中間ファイルを残す設定とするため、Makefile に変更を加える。本研究では、監視対象ホストのバージョンは、Linux 4.15.0-74-generic でありその変更は、4.8 節で述べたものと同じである。

変更したのちに、以下のコマンドを実行し、ビルドを開始する.

- ビルド make -j10

ビルドが終了すると、ソースコードが中間ファイルの生成によって以下のようなサイズとなる.

ビルド

\$ du -shc linux-source-4.15.0

64G linux-source-4.15.0

64G total

5.3.5 実行環境における $init_t ask$ の先頭アドレス

4.9 節で述べた内容に基づいて、作成した printoffset を実行した結果は以下となった.

- 名前考える ―

\$./print_offset_restore

task_struct size: 9088

state: 16
pid: 2216

children: 2248 # sibling: 2264

comm: 2640

real_parent: 2232

この結果をもとに、5.3.5節にて、init_task の先頭アドレスを算出する.

5.3.2 節で取得したメモリダンプから、4.9.1 節で述べたように、swapper/0 という文字列を以下のコマンドで検索を行う.

```
find swapper/0

$ xxd dump | grep swapper/0

# 023f3ed0: 7377 6170 7065 722f 3000 0000 0000 0000 swapper/0.....

# e09f3ed0: 7377 6170 7065 722f 3000 0000 0000 0000 swapper/0.....
```

以上の結果となった. このうち一つ目の値を取り出すと、023f3ed0 であるが、4.9.1 節に倣って、0x023f3ed0 の 10 進表記である 37699280 から、comm フィールドのオフセットである 2640 を減算し、128KB のバイト数である 131072 を加算する. その結果、得られた値は、37699280-2640+131072=37827712 となる. この値は物理アドレスであるため、これをカーネルの仮想アドレスに変換する.

Linux カーネルで物理アドレスが 0 からのストレートマップとなるのは、上述のソースコード内における三項演算子のうち、条件式が真となる場合である。この関数から、37827712 の 16 進数表記である 0x2413480 という結果が帰る場合は条件式が真となる場合であるため、カーネル空間の仮想アドレスにおいて、37827712 という物理アドレスに対応する仮想アドレスは、0x2413480 + phys_base + 0xfffffff80000000 の結果である 0xfffffff82413480 となり、これが本研究における監視対象ホストの init_task の仮想アドレスと推定する。また、この値を process-list.c の引数として使用する。

5.3.6 process-list.c の実行

5.3.5 節で導いた値を引数として,以下のようにコマンドを実行する.実行結果については,5.4.2 節で述べる.

5.4 評価

5.4.1 値が正しいこと

5.3 節における評価手順において、導出した値として、init_task の仮想アドレスが正しいかどうかを評価する、評価手法としては、実験の際に導いた 0xffffffff82413480 という値が監視対象ホストの値と等しいかどうかを、監視対象ホストの kallsyms を参照することで比較する.

比較結果は以下であり、導出した 0xfffffff82413480 という値が正しい値であることを示した.

- kallsyms の出力 —

- \$ sudo cat kallsyms | grep "D init_task"
- # ffffffff82413480 D init_task

5.4.2 通常稼働中における評価

5.3 節によって求めた値を用いて、process-list.c を実行する. 実行の際は、引数として、5.3.5 節で導出した値を実行時に渡す.

- process-list の出力 -----

./process-list 0xFFFFFFF82413480

実行結果は、5.4.2 に添付してあるが、プロセス ID 0 を持つプロセスに始まり、全てのプロセスを取得できている.

比較対象として、監視対象ホストにて実行した ps コマンドの出力結果を用意した. 実行結果は、5.4.2 に添付してあるが、この結果と先ほど 5.4.2 で取得した結果を比較してみると一致していることがわかる.

\$./process-list 0xFFFFFFF82413480

```
init_vm_addr: 0xfffffff82413480
PhyAddr
               PID STAT COMMAND
0x00000002413480
                     0 R: swapper/0
0x000002361f0000
                      1 S: systemd
0x0000022ea616c0
                    287 S: systemd-journal
0x0000022da0ad80
                   297 S: blkmapd
0x0000022e232d80
                    308 S: systemd-udevd
0x000002333c8000
                    527 S: systemd-timesyn
0x000002333cc440
                    530 S: rpcbind
0x00000233d72d80
                    534 S: cron
                    536 S: atd
0x00000233d70000
0x0000022e732d80
                    545 S: rsyslogd
0x0000022dbfad80
                    556 S: irqbalance
                    561 S: accounts-daemon
0x0000022dbf96c0
0x0000022dbfdb00
                    569 S: dbus-daemon
0x0000022f752d80
                    586 S: wpa_supplicant
                    589 S: systemd-logind
0x0000022f754440
0x0000022ea40000
                    592 S: networkd-dispat
0x0000022f7e0000
                    607 S: polkitd
0x0000022f750000
                    634 S: systemd-resolve
0x0000022da08000
                    663 S: dhclient
0x00000235378000
                   777 S: nmbd
                   781 S: unattended-upgr
0x00000234bac440
0x00000234baad80
                   783 S: sshd
0x00000234ba2d80
                  3009 S: sshd
0x0000022e735b00
                  3142 S: sshd
0x00000234ba16c0
                  3143 S: zsh
0x00000234ba8000
                   787 S: agetty
0x00000234ba0000 819 S: smbd
0x00000234452d80
                    821 S: smbd-notifyd
0x000002344516c0
                 822 S: cleanupd
0x00000234450000 823 S: lpqd
0x0000022f7e4440
                  3032 S: systemd
0x0000022f7516c0
                  3033 S: (sd-pam)
0x000002361f5b00
                      2 S: kthreadd
0x000002361f16c0
                      4 D: kworker/0:0H
0x0000023622ad80
                      6 D: mm_percpu_wq
```

```
process-list の出力 2 -
0x000002362296c0
                      7 S: ksoftirqd/0
                      8 D: rcu sched
0x0000023622c440
0x00000236228000
                      9 D: rcu_bh
0x0000023622db00
                     10 S: migration/0
0x00000236254440
                     11 S: watchdog/0
0x000002362516c0
                     12 S: cpuhp/0
0x0000023625c440
                     13 S: cpuhp/1
0x00000236258000
                     14 S: watchdog/1
0x0000023625db00
                     15 S: migration/1
0x0000023625ad80
                     16 S: ksoftirqd/1
0x0000023630db00
                     18 D: kworker/1:0H
0x0000023630ad80
                     19 S: cpuhp/2
0x000002363096c0
                     20 S: watchdog/2
0x0000023630c440
                     21 S: migration/2
0x00000236308000
                     22 S: ksoftirqd/2
                     24 D: kworker/2:0H
0x00000236372d80
0x000002363716c0
                     25 S: cpuhp/3
0x00000236374440
                     26 S: watchdog/3
                     27 S: migration/3
0x00000236370000
0x000002363dad80
                     28 S: ksoftirqd/3
0x000002363dc440
                     30 D: kworker/3:0H
0x00000235c54440
                     31 S: kdevtmpfs
0x00000235c9ad80
                     32 D: netns
0x00000235c996c0
                     33 S: rcu_tasks_kthre
0x00000235c9c440
                     34 S: kauditd
0x00000235c98000
                     35 D: kworker/0:1
0x00000235d596c0
                     37 S: khungtaskd
0x00000235d5c440
                     38 S: oom_reaper
0x00000235d6ad80
                     39 D: writeback
0x00000235d696c0
                     40 S: kcompactd0
0x00000235d6c440
                     41 S: ksmd
0x00000235d68000
                     42 S: khugepaged
0x000002363d8000
                     43 D: crypto
0x000002363ddb00
                     44 D: kintegrityd
0x00000235d7db00
                     45 D: kblockd
以下省略
```

監視対象ホストにおける ps コマンドの結果 —

USER	PID	%CPU	%MEM	VSZ	RSS	TTY	STAT	START	TIME	COMMAND
root	1	0.0		225484	9196		Ss	Jan27		/sbin/init nopti
nospectre_v2 nokaslr									_	
root	2	0.0	0.0	0	0	?	S	Jan27	0:00	[kthreadd]
root	4	0.0	0.0	0	0	?	I <	Jan27	0:00	[kworker/0:OH]
root	6	0.0	0.0	0	0	?	I <	Jan27	0:00	[mm_percpu_wq]
root	7	0.0	0.0	0	0	?	S	Jan27	0:00	[ksoftirqd/0]
root	8	0.0	0.0	0	0	?	I	Jan27	0:02	[rcu_sched]
root	9	0.0	0.0	0	0	?	I	Jan27	0:00	[rcu_bh]
root	10	0.0	0.0	0	0	?	S	Jan27	0:00	[migration/0]
root	11	0.0	0.0	0	0	?	S	Jan27	0:00	[watchdog/0]
root	12	0.0	0.0	0	0	?	S	Jan27	0:00	[cpuhp/0]
root	13	0.0	0.0	0	0	?	S	Jan27	0:00	[cpuhp/1]
root	14	0.0	0.0	0	0	?	S	Jan27	0:00	[watchdog/1]
root	15	0.0	0.0	0	0	?	S	Jan27	0:00	[migration/1]
root	16	0.0	0.0	0	0	?	S	Jan27	0:00	[ksoftirqd/1]
root	18	0.0	0.0	0	0	?	I <	Jan27	0:00	[kworker/1:0H]
root	19	0.0	0.0	0	0	?	S	Jan27	0:00	[cpuhp/2]
root	20	0.0	0.0	0	0	?	S	Jan27	0:00	[watchdog/2]
root	21	0.0	0.0	0	0	?	S	Jan27	0:00	[migration/2]
root	22	0.0	0.0	0	0	?	S	Jan27	0:00	[ksoftirqd/2]
root	24	0.0	0.0	0	0	?	I <	Jan27	0:00	[kworker/2:0H]
root	25	0.0	0.0	0	0	?	S	Jan27	0:00	[cpuhp/3]
root	26	0.0	0.0	0	0	?	S	Jan27	0:00	[watchdog/3]
root	27	0.0	0.0	0	0	?	S	Jan27	0:00	[migration/3]
root	28	0.0	0.0	0	0	?	S	Jan27	0:00	[ksoftirqd/3]
root	30	0.0	0.0	0	0	?	I<	Jan27	0:00	[kworker/3:0H]
root	31	0.0	0.0	0	0	?	S	Jan27	0:00	[kdevtmpfs]
root	32	0.0	0.0	0	0	?	I<	Jan27	0:00	[netns]
root	33	0.0	0.0	0	0	?	S	Jan27	0:00	[rcu_tasks_kthre
root	34	0.0	0.0	0	0	?	S	Jan27	0:00	[kauditd]
root	35	0.0	0.0	0	0	?	I	Jan27	0:00	[kworker/0:1]
root	37	0.0	0.0	0	0	?	S	Jan27	0:00	[khungtaskd]
root	38	0.0	0.0	0	0	?	S	Jan27	0:00	[oom_reaper]
root	39	0.0	0.0	0	0	?	I<	Jan27	0:00	[writeback]
root	40	0.0	0.0	0	0	?	S	Jan27	0:00	[kcompactd0]
root	41	0.0	0.0	0	0	?	SN	Jan27	0:00	[ksmd]

- 監視対	像ホス	くトにさ	おける」	os コマンド	の糸	吉果	2 ——			
root	42	0.0	0.0	0		?	SN	Jan27	0:00	[khugepaged]
root	43	0.0	0.0	0	0	?	I<	Jan27	0:00	[crypto]
root	44	0.0	0.0	0	0	?	I<	Jan27	0:00	[kintegrityd]
root	45	0.0	0.0	0	0	?	I<	Jan27	0:00	[kblockd]
root	46	0.3	0.0	0	0	?	I	Jan27	2:13	[kworker/2:1]
root	47	0.0	0.0	0	0	?	I	Jan27	0:00	[kworker/3:1]
root	48	0.0	0.0	0	0	?	I<	Jan27	0:00	[ata_sff]
root	49	0.0	0.0	0	0	?	I<	Jan27	0:00	[md]
root	50	0.0	0.0	0	0	?	I<	Jan27	0:00	[edac-poller]
root	51	0.0	0.0	0	0	?	I<	Jan27	0:00	[devfreq_wq]
root	52	0.0	0.0	0	0	?	I<	Jan27	0:00	[watchdogd]
root	55	0.0	0.0	0	0	?	S	Jan27	0:00	[kswapd0]
root	56	0.0	0.0	0	0	?	I<	Jan27	0:00	[kworker/u9:0]
root	57	0.0	0.0	0	0	?	S	Jan27	0:00	[ecryptfs-kthrea]
root	99	0.0	0.0	0	0	?	I<	Jan27	0:00	[kthrotld]
root	100	0.0	0.0	0	0	?	I<	Jan27	0:00	[acpi_thermal_pm]
root	105	0.0	0.0	0	0	?	I	Jan27	0:00	[kworker/1:2]
root	109	0.0	0.0	0	0	?	I<	Jan27	0:00	[ipv6_addrconf]
root	118	0.0	0.0	0	0	?	I<	Jan27	0:00	[kstrp]
root	135	0.0	0.0	0	0	?	I<	Jan27	0:00	[charger_manager]
root	181	0.0	0.0	0	0	?	S	Jan27	0:00	[scsi_eh_0]
root	182	0.0	0.0	0	0	?	I<	Jan27	0:00	[scsi_tmf_0]
root	183	0.0	0.0	0	0	?	S	Jan27	0:00	[scsi_eh_1]
root	184	0.0	0.0	0	0	?	I<	Jan27	0:00	[scsi_tmf_1]
root	185	0.0	0.0	0	0	?	S	Jan27	0:00	[scsi_eh_2]
root	186	0.0	0.0	0	0	?	I<	Jan27	0:00	[scsi_tmf_2]
root	187	0.0	0.0	0	0	?	S	Jan27	0:00	[scsi_eh_3]
root	188	0.0	0.0	0	0	?	I<	Jan27	0:00	[scsi_tmf_3]
root	189	0.0	0.0	0	0	?	S	Jan27	0:01	[scsi_eh_4]
root	190	0.0	0.0	0	0	?	I<	Jan27	0:00	[scsi_tmf_4]
root	191	0.0	0.0	0	0	?	S	Jan27	0:00	[scsi_eh_5]
root	192	0.0	0.0	0	0	?	I<	Jan27	0:00	[scsi_tmf_5]
root	198	0.0	0.0	0	0	?	I<	Jan27	0:00	[e1000e]
root	199	0.0	0.0	0	0	?	I<	Jan27	0:00	[e1000e]
root	201	0.0	0.0	0	0	?	I<	Jan27	0:00	[kworker/1:1H]
root	230	0.0	0.0	0	0	?	I<	Jan27	0:00	[kworker/3:1H]
root	232	0.0	0.0	0	0	?	S	Jan27	0:00	[jbd2/sda1-8]

以下省略

(1) 特定のプロセス名の取得

以上の結果に加えて, ユーザーが独自に起動したプロセスの情報を取得できているかを下に示す. この評価では、特定のプロセスに関する名前とプロセス ID に関する情報が正しく取得できて いるかを示す、手法として、userという無限ループするのみのユーザープロセスを起動し、その プロセスに関する行を,検索し取得する. 取得した情報のうち,プロセス ID が一致していること を示す.

監視対象ホストの ps コマンドから user というプロセスを検索 -

ps aux | grep "user" tatsu 3032 0.0 0.0 76648 7624 ? Ss 02:47 0:00

/lib/systemd/systemd --user

808 pts/1 S+ 03:51 0:00 ./user tatsu 4189 0.0 0.0 4508 4207 0.0 0.0 15452 1004 pts/0 S+ 03:52 0:00 tatsu

grep --color=auto --exclude-dir=.bzr --exclude-dir=CVS --exclude-dir=.git --exclude-dir=.hg --exclude-dir=.svn user

監視対象ホストで ps コマンドを実行した結果, user というコマンド名を持つプロセスの ID は 4189 であることがわかる. 一方で、process-list の出力結果から user という文字列で検索をかけ た結果以下のような行が抽出できた.

process-list から user というプロセスを検索 -

./process-list 0xFFFFFFF82413480 | grep user

0x00000234ba96c0 4189 S: user

プロセス ID として 4189 を持つプロセスを取得できていることがわかる.

user という名前を持つプロセスのプロセス ID が一致していることが確認できたため、processlist.c が正しくプロセスの情報を取得できていることを示した

5.4.3 カーネルパニック発生時における評価

カーネルパニック発生時は既存の手法、プロセスとして起動する方法はだめだが、本研究にお ける実装では問題なく動作することを示す.

本セクションでは、物理マシンがカーネルパニックを起こした際に、本研究の実装を実行し、コ ンピュータの最後の状態を取得できることを示す.

物理マシンに対して、監視対象ホストのプロセスとして起動する方式では、監視対象ホストで カーネルパニックが起きた際にプロセスそのものが停止してしまい、監視を続けることができな くなってしまう. しかし本研究で用いる NetTLP 環境は, 電源さえ入っていれば監視対象ホスト

がカーネルパニックを起こした際にも動作可能であるため、カーネルパニック発生後にプロセス情報の一覧を取得することを試みる.

評価の準備として,以下のコマンドを監視対象ホストで実行し,意図的にカーネルパニックを 引き起こす.

```
意図的にカーネルパニックを発生させる
sudo sh -c 'echo 1 > /proc/sys/kernel/sysrq'
sudo sh -c 'echo c > /proc/sysrq-trigger
```

コマンド実行後,process-list.c を実行した結果が以下である.最後に実行したコマンドは c という文字列を/proc/sysrq-trigger に出力するコマンドである.出力のうち,プロセス ID 1318 という行があるが,これが最後に正しく実行した命令である.カーネルパニック発生時にも,オペレーティングシステムが正常に動作していた時の情報を監視対象ホストから取得できることを示した.

```
./process-list 0xFFFFFFF82413480
init_vm_addr: 0xffffffff82413480
PhyAddr
               PID STAT COMMAND
0x00000002413480
                      0 R: swapper/0
0x000002361f16c0
                      1 S: systemd
0x0000022e35ad80
                    273 S: systemd-journal
0x0000022ea70000
                    295 S: blkmapd
0x0000022ea30000
                    298 S: systemd-udevd
0x0000022e35db00
                    562 S: rpcbind
0x000002325f5b00
                    565 S: systemd-timesyn
0x000002325f4440
                    567 S: atd
0x000002325f2d80
                    568 S: rsyslogd
0x000002325f0000
                    569 S: networkd-dispat
0x00000234be0000
                    571 S: irqbalance
0x0000022d858000
                    577 S: cron
0x0000022e6a5b00
                    580 S: systemd-logind
0x0000022ea20000
                    581 S: accounts-daemon
0x0000022ea25b00
                    582 S: dbus-daemon
0x0000022eaa96c0
                    598 S: wpa_supplicant
0x000002337c8000
                    642 S: polkitd
0x0000022db1c440
                    669 S: systemd-resolve
0x000002337cdb00
                    698 S: dhclient
0x00000231ccdb00
                    815 S: unattended-upgr
0x00000231ccad80
                    816 S: nmbd
0x00000231cc8000
                    817 S: sshd
0x0000022eaac440
                    843 S: sshd
0x00000233ab8000
                    954 S: sshd
                    955 S: zsh
0x0000022ea716c0
                   1317 S: sudo
0x0000022eaa8000
0x0000023357db00
                   1318 R: sh
0x00000231cc96c0
                    821 S: agetty
0x0000022eaaad80
                    836 S: smbd
0x000002325796c0
                    838 S: smbd-notifyd
0x0000023257ad80
                    839 S: cleanupd
0x00000232578000
                    840 S: 1pqd
0x000002325f16c0
                    845 S: systemd
0x00000235d5db00
                    846 S: (sd-pam)
0x000002337c96c0
                   1299 S: certbot
```

```
0x000002361f0000
                      2 S: kthreadd
                      3 D: kworker/0:0
0x000002361f5b00
                      4 D: kworker/0:0H
0x000002361f4440
0x000002361f2d80
                      5 D: kworker/u8:0
0x0000023622db00
                      6 D: mm_percpu_wq
0x0000023622c440
                      7 S: ksoftirqd/0
0x0000023622ad80
                      8 D: rcu_sched
0x000002362296c0
                      9 D: rcu_bh
0x00000236228000
                     10 S: migration/0
0x00000236255b00
                     11 S: watchdog/0
0x00000236250000
                     12 S: cpuhp/0
0x0000023625c440
                     13 S: cpuhp/1
0x0000023625ad80
                     14 S: watchdog/1
0x000002362596c0
                     15 S: migration/1
0x00000236258000
                     16 S: ksoftirqd/1
0x0000023625db00
                     17 D: kworker/1:0
0x0000023630db00
                     18 D: kworker/1:0H
0x0000023630c440
                     19 S: cpuhp/2
0x0000023630ad80
                     20 S: watchdog/2
                     21 S: migration/2
0x000002363096c0
0x00000236308000
                     22 S: ksoftirqd/2
                     23 D: kworker/2:0
0x00000236372d80
0x000002363716c0
                     24 D: kworker/2:0H
0x00000236370000
                     25 S: cpuhp/3
0x00000236375b00
                     26 S: watchdog/3
0x00000236374440
                     27 S: migration/3
0x000002363dad80
                     28 S: ksoftirqd/3
0x000002363d96c0
                     29 D: kworker/3:0
0x000002363d8000
                     30 D: kworker/3:0H
0x00000235c52d80
                     31 S: kdevtmpfs
0x00000235c9db00
                     32 D: netns
0x00000235c9c440
                     33 S: rcu_tasks_kthre
0x00000235c9ad80
                     34 S: kauditd
0x00000235c996c0
                     35 D: kworker/0:1
0x00000235c98000
                     36 D: kworker/1:1
0x00000235d5ad80
                     37 S: khungtaskd
0x00000235d596c0
                     38 S: oom_reaper
0x00000235d68000
                     39 D: writeback
0x00000235d6db00
                     40 S:
```

```
3
0x00000235d6c440
                     41 S: ksmd
0x00000235d6ad80
                     42 S: khugepaged
0x000002363ddb00
                     43 D: crypto
0x000002363dc440
                     44 D: kintegrityd
0x00000235d7ad80
                     45 D: kblockd
0x00000235d796c0
                     46 D: kworker/2:1
0x00000235d78000
                     47 D: kworker/3:1
0x00000235d7db00
                    48 D: ata_sff
0x00000235d7c440
                    49 D: md
0x00000235eb2d80
                    50 D: edac-poller
0x00000235eb16c0
                     51 D: devfreq_wq
0x00000235eb0000
                     52 D: watchdogd
0x00000235c516c0
                     53 D: kworker/u8:1
0x00000235c55b00
                     55 S: kswapd0
0x00000235c54440
                     56 D: kworker/u9:0
0x0000022ea02d80
                    57 S: ecryptfs-kthrea
0x00000235eb5b00
                    99 D: kthrotld
0x00000235eb4440
                    100 D: acpi_thermal_pm
                    101 D: kworker/0:2
0x0000022ea00000
0x00000235d696c0
                    102 D: kworker/u8:2
0x00000235c50000
                    103 D: kworker/2:2
                    105 D: kworker/1:2
0x0000022ea74440
0x0000022ea04440
                    109 D: ipv6_addrconf
0x0000022ea10000
                    118 D: kstrp
0x0000022ea72d80
                    135 D: charger_manager
0x0000022e6a2d80
                    180 S: scsi_eh_0
0x0000022e6a4440
                    181 D: scsi_tmf_0
0x00000235d5c440
                    182 S: scsi_eh_1
0x0000022ea2ad80
                    183 D: scsi_tmf_1
0x0000022ea2db00
                    184 S: scsi_eh_2
0x0000022ea18000
                    185 D: scsi_tmf_2
0x0000022ea1db00
                    186 S: scsi_eh_3
0x0000022ea196c0
                    187 D: scsi_tmf_3
0x0000022ea28000
                    188 S: scsi_eh_4
0x0000022ea296c0
                    189 D: scsi_tmf_4
0x0000022ea15b00
                    190 S: scsi_eh_5
                    191 D: scsi_tmf_5
0x0000022ea1c440
0x0000022d852d80
                    192 D: kworker/u8:3
```

```
0x0000022d8516c0
                    193 D: kworker/u8:4
0x0000022d850000
                   194 D: kworker/u8:5
0x0000022d855b00
                    195 D: kworker/u8:6
0x0000022d854440
                   196 D: kworker/u8:7
0x0000022d85db00
                    197 D: e1000e
0x0000022d85c440
                   198 D: e1000e
0x0000022d85ad80
                    200 D: kworker/1:1H
0x0000022d8596c0
                    202 D: kworker/2:1H
0x0000022ea22d80
                    231 D: jbd2/sda1-8
0x0000022ea24440
                    232 D: ext4-rsv-conver
0x0000022e6a0000
                    234 D: kworker/0:1H
0x0000022e6a16c0
                    246 D: kworker/3:1H
0x0000022ea34440
                    275 D: kworker/3:2
0x00000234fc96c0
                   278 D: rpciod
0x00000234fc8000
                    279 D: xprtiod
0x00000234be2d80
                    370 D: ttm_swap
```

5.5 評価のまとめ

本研究の実装に対する評価として、オペレーティングシステムのコンテキストの復元を行う上で、監視対象ホストのカーネルコンフィグに依存する情報を正しく復元できていることを示した.

また、4章で述べた構成の元、ネットワーク越しに存在している物理的なマシンのプロセス情報の一覧を正しく取得することで、RDMAを用いたメモリ探索を行うことで、オペレーティングシステムの復元をすることが可能であることを示した。

さらに、監視対象ホストでカーネルパニックが発生した際にも、オペレーティングシステムが 正常に動いていた最後の状態を取得できていることを示した.

第6章 まとめと結論

6.1 まとめ

本論文のまとめとして,各章の内容を述べる.

1章では、本研究の背景および課題として、大規模データセンタのコンピュータ管理者にとって、様々な設定をもつ大量の物理的なコンピュータの監視および解析が困難であることを述べたそこで本研究の目的として、

2章では、仮想環境によるオペレーティングシステムのデバッグや、監視対象ホスト内で監視プロセスを起動する手法など、既存のオペレーティングシステムのコンテキストを監視する手法について述べた。さらに、様々な RDMA 実装がある中で、本研究で使用する NetTLP による RDMA を使う理由について述べた。

3章では、動作中のコンピュータから取得したアトミックではないメモリダンプからオペレーティングシステムのコンテキストを復元するための手法について述べた。その上で、メモリからどのような情報を探索することで、コンピュータの状態を復元できるのかについて述べた。さらに、物理メモリアドレスのみを指定できる中で、取得が困難な情報がどのような種類の情報で、その情報を本研究においてどのように復元していくかについて述べた。

4章では、3章で述べた手法を実現するための具体的な実装について述べた。特にメモリダンプしかない状態からいかにして、監視対象ホストのカーネルコンフィグの値を復元するか、復元した値からコンピュータの内部的な値、すなわち構造体のオフセットを復元する実装について述べた。最終的に、Linux カーネルのバージョンのみを通知された状態から、プロセス一覧に関する情報を取得するために必要な値を復元し、プロセス一覧を出力できる実装について述べた。

5章では、本研究における評価として、Linux カーネルのバージョンのみが与えられた状態でプロセスリストの一覧を取得できることを示した。実験として、4章で述べた工程を一つずつ実行した過程を示した。最終的に、本研究の実装の出力結果と監視対象ホストで実行した ps コマンドの出力結果を比較し、任意に起動したプロセスの ID が等しくなっていることを示した。さらに、監視対象ホストにおいてカーネルパニックを発生させ、オペレーティングシステムが停止した状態の中でも、プロセス情報の一覧を取得できることを示した。

6.2 結論

本研究の結論として、4章で述べた実装を用いることで、監視対象ホストのバージョン情報の みを知らされた状態で、オペレーティングシステムのコンテキストの一つであるプロセス情報の 一覧を取得できることを示した.

プロセス一覧を探索するにあたり、監視対象ホストが内部で使用している値、例えば、task_struct 構造体の各フィールドのオフセットや、init_task のカーネル空間における仮想アドレスを、自ホ ストで推定、導出するために、メモリダンプから収集したカーネルコンフィグの値から、実装し たプログラムを実行するホストで再度ビルドすることで、復元できることを示した.

また、カーネル空間はストレートマップであるがゆえに、メモリダンプから特定の値、本研究の実験では、swapper/0という文字列を走査し、そこから物理アドレスおよびカーネル空間における仮想アドレスを導出することができることを示した。

6.3 今後の課題

本研究の実験における環境として、オペレーティングシステムの情報、すなわち Linux カーネルのバージョンに関する情報は、事前に実装したプログラムを実行するホストは知っていることとした。しかし、現実のコンピュータは特定の Linux カーネルのバージョンで動いているわけではない。特に大規模データセンタにおいては、各ホストは様々なカーネルバージョンおよびディストリビュージョンで動作している。

よって今後の課題として、メモリダンプの情報から Linux カーネルのバージョンを特定することをあげる.

6.3.1 セキュリティ的な課題

本研究における環境では、FPGAボードを物理的に設置する、という工程のみでメモリの情報を取得でき、オペレーティングシステムのコンテキストを復元できてしまう。その一例として、本研究の実装では、プロセス情報の一覧を、Linuxカーネルのバージョン情報のみから復元できることを示した。

当然,ルート権限はおろか,通常のユーザー権限すらない中での復元となるため,悪用された場合に存在そのものがセキュリティ的なリスクとなってしまう。そのため、今後の研究では、6.3で述べた課題に加えて、本研究のセキュリティ面におけるリスク軽減に関する研究を行っていく。

謝辞

本研究を進めるにあたり、ご指導いただいた慶應義塾大学環境情報学部教授 村井純博士、同学部教授 中村修博士、同学部教授 楠本博之博士、同学部教授 高汐一紀博士、同学部教授 Rodney D. Van Meter III 博士、同学部准教授 植原啓介博士、同学部教授 三次仁博士、同学部教授 中澤仁博士、同学部教授 武田圭史博士、同大学政策・メディア研究科特任准教授 佐藤雅明博士、同大学政策・メディア研究科特任准教授 佐藤雅明博士、同大学政策・メディア研究科特任教授 鈴木茂哉博士、同大学 SFC 研究所上席所員 斉藤賢爾博士に感謝いたします。Arch 研究グループでは、日頃より研究をご指導いただきました松谷健史博士、空 閑洋平博士、大江将史博士に感謝いたします。

村井・楠本・中村・高汐・バンミーター・植原・三次・中澤・武田合同研究プロジェクトに所属している学部生、大学院生、卒業生の皆さまに感謝いたします。長い研究室生活で多くの時間を過ごした、森島隆成氏、菅藤佑太氏、安井瑛男氏、城一統氏、阿部涼介氏、豊田安信氏、Korry Luke 氏、小西遼氏、矢内洋祐氏、用澤玄汰氏、山田真也氏、橘直雪氏、水野史暁氏、栗原祐二氏、深川祐太氏、鈴木雄祐氏、島津翔太氏、井手田悠希氏、勝又海氏、米山涼氏、上田侑真氏、坂本優太氏、根本樹氏に感謝いたします。研究に関して相談できる大切な仲間です。進路に関して相談に乗ってくださった木下瞬氏に感謝いたします。ありがとうございました。また、研究室を日々きれいに使うとともに居心地をよくしてくれた学部生と大学院生の皆さまには大変感謝しています。本論文執筆に際して IATEX テンプレートを作成し研究室内で知見を共有してくれた、研究室の同期と先輩方に感謝申し上げます。

参考文献

- [1] . http://www.nminoru.jp/~nminoru/network/infiniband/iba-concept.html.
- [2] KVM. https://www.linux-kvm.org/page/Main_Page.
- [3] QEMU. https://www.qemu.org/.
- [4] The Volatility Foundation Open Source Memory Forensics. https://www.volatilityfoundation.org/.
- [5] 第 7 章 カーネルクラッシュダンプガイド Red Hat Enterprise Linux 7 Red Hat Customer Portal. https://access.redhat.com/documentation/ja-jp/red_hat_enterprise_linux/7/html/kernel_administration_guide/kernel_crash_dump_guide.
- [6] Nettlp: A development platform for pcie devices in software interacting with hardware. In 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20), Santa Clara, CA, February 2020. USENIX Association.
- [7] Nader Amini, Patrick M Bland, Bechara F Boury, Richard G Hofmann, and Terence J Lohman. System direct memory access (dma) support logic for pci based computer system, September 12 1995. US Patent 5,450,551.
- [8] Nusrat S Islam, Mohammad Wahidur Rahman, Jithin Jose, Raghunath Rajachandrasekar, Hao Wang, Hari Subramoni, Chet Murthy, and Dhabaleswar K Panda. High performance rdma-based design of hdfs over infiniband. In SC'12: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, pp. 1–12. IEEE, 2012.
- [9] Bryan D. Payne. Libvmi, version 00, 9 2011.