Decision trees

Readings for today

Chapter 8: Tree-based methods. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: with applications in R (Vol. 6). New York: Springer

Topics

1. Decision trees

2. Classification trees

3. Trees vs. linear models

Decision trees

Interpretability

Linear Models:
$$\hat{y}_i = \hat{f}(x_i) = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

unit change in y that happens with each unit change in x

Assumes: 1. $Y \sim N(\mu, \sigma)$

2. *X* is *iid*

As soon as your data violates these assumptions, the interpretability of your effects is impaired.

Tree methods

Goal: Treat f(X) as a series of "if/then" rules.

Approach: Identify the best decision rules for parsing X to explain Y.

Non-parametric way of identifying subregions in X relevant to Y.

Google DeepMind

Recursive Binary Splitting

- Steps: 1. Divide X recursively into j subregions R_1, \ldots, R_j .
 - 2. Assign \hat{y} as the mode of every y_i in region R_m

Objective function

Top-down: Split most relevant feature first and then work your way down successively.

Greedy: Only the "best" split (i.e., split that explains most variance) is chosen at each step.

Splitting

Choosing the right split means finding the best border, *s*, that minimizes two residual estimates.

minimize: $\sum_{i:x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i:x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$

Bias-variance tradeoff

Number of regions you choose to split along, T, determines the flexibility of your model

$$\uparrow T = \uparrow variance$$

$$\min(\sum_{m=1}^{T} \sum_{i:x_{i} \in R_{m}}^{n} (y_{i} - \hat{y}_{R_{m}})^{2} + \hat{\alpha} |T|)$$

sparsity parameter to be tuned

$$\uparrow \alpha = \downarrow T$$

Classification trees

Classification trees

Goal: Create a tree for qualitative (categorical) Y.

classification error rate
$$E_m = 1 - \max_k (\hat{p}_{mk})$$

Proportion of training observations in region m that are members of class k.

Objective:
$$\min(\sum_{j=1}^{J}\sum_{i\in m}^{K}E_{m})$$

Minimize the classification error across classes.

Node purity

Node purity: Measure of uniqueness of categories in each R_m .

Both measures determine whether a node/region contains predominantly members of one class.

Example: 2 group classification

Y = A

Trees vs. linear models

Trees vs. linear models

The pros and cons

Advantages:

- Easy to explain
- Easily visualized
- No need for dummy coding
- "Mirrors" human heuristics
- Applicable to data that <u>does</u>
 <u>not</u> meet the assumptions of
 linear or parametric models.

Disadvantages:

- Lower predictive accuracy.
- Non-robust

small changes in data have huge impacts on model fits.

Take home message

• Decision trees are intuitive, but finicky, methods for determining $X \to Y$ relationships that are especially powerful in contexts where the data does not meet the assumptions of standard linear models.