G-Mixup: Graph Data Augmentation for Graph Classification

2022 ICML Outstanding Paper

Yuting Hu

Content

- 1. Background and Motivation
- 2. Methodology
 - ► Graphon Estimation
 - Synthetic Graph Generation Based on Graphons
 - ► G-mixup Graph Data Augmentation
- 3. Results
 - ▶ Verification Experiments
 - ► Performance Experiments

Background and Motivation

Mixup

Mixup is a cross-instance data augmentation method, which linearly interpolates random sample pair to generate more synthetic training data.

$$\mathbf{x}_{new} = \lambda \mathbf{x}_i + (1 - \lambda) \mathbf{x}_j,$$

$$\mathbf{y}_{new} = \lambda \mathbf{y}_i + (1 - \lambda) \mathbf{y}_j,$$

where $(\mathbf{x}_i, \mathbf{y}_i)$, $(\mathbf{x}_j, \mathbf{y}_j)$ are two samples randomly drawn from training data.

Mixup have been empirically and theoretically shown to improve the generalization and robustness of deep neural networks (H. Zhang et al., 2017; L. Zhang et al., 2021).

Can we mix up input graph pair to improve graph neural networks?

Challenges for Graph Mixup

Graph data is different from image data:

- Image data is regular (image can be represented as matrix)
- Image data is well-aligned (pixel to pixel correspondence)
- Image data is grid-like data
- Image is in Euclidean space

- Graph data is irregular (the number of nodes)
- Graph data is not well-aligned (nodes not naturally ordered)
- Graph has divergent topology information
- Graph is in non-Euclidean space

Graph Generator: Graphon

The real-world graphs can be regarded as generated from generator (i.e., graphon¹). For example,

The graphons of different graphs are regular, well-aligned, and in Euclidean space.

We propose to mix up graph generator (i.e., graphon) to achieve the input graph mixup.

Methodology

Graphon Concept

Concept: theory predicts that every convergent sequence of graphs $\{G_n\}$ has a limit object that preserves many local and global properties of the graphs in the sequence. This limit object, which is called a graphon, can be represented by measurable functions w: $[0,1]^2 \rightarrow [0,1]$, in a way that any w' obtained from measure preserving transformations of w describes the same graphon.

Graphons are usually seen as kernel functions for random network models (Lawrence 2005). To construct an n-vertex random graph $\mathcal{G}(n,w)$ for a given w, we first assign a random label $u_i \sim \text{Uniform}[0,1]$ to each vertex $i \in \{1,\ldots,n\}$, and connect any two vertices i and j with probability $w(u_i,u_j)$, i.e.,

$$\Pr(G[i,j] = 1 \mid u_i, u_j) = w(u_i, u_j), \qquad i, j = 1, \dots, n,$$
(1)

Reference: Stochastic block model approximation of a graphon: Theory and consistent estimation https://arxiv.org/pdf/1311.1731.pdf

Graphon Estimation

This paper uses **step function** to approximate graphon.

a step function $\mathbf{W}^P: [0,1]^2 \mapsto [0,1]$ is defined as $\mathbf{W}^P(x,y) = \sum_{k,k'=1}^K w_{kk'} \mathbb{1}_{\mathcal{P}_k \times \mathcal{P}_{k'}}(x,y)$, where $\mathcal{P} = (\mathcal{P}_1,..,\mathcal{P}_K)$ denotes the partition of [0,1] into K adjacent intervals of length 1/K, $w_{kk'} \in [0,1]$, and indicator function $\mathbb{1}_{\mathcal{P}_k \times \mathcal{P}_{k'}}(x,y)$ equals to 1 if $(x,y) \in \mathcal{P}_k \times \mathcal{P}_{k'}$ and otherwise it is 0.

[0, 1] / k slots

Algorithm 1 Graphon Estimation

Input: graph set \mathcal{G} , graphon estimator g

 \triangleright each graph G has adjacency matrix A and node features matrix X

Init: sorted adjacency matrix set $\bar{A} = \{\}$

for each graph G in \mathcal{G} do

Calculate the degree of each nodes in G

Calculate sorted adjacency matrix $\bar{\mathbf{A}}$ by sorting \mathbf{A} based on the degree

Calculate sorted node features matrix X by sorting X based on the degree

Add the sorted adjacency matrix $\bar{\mathbf{A}}$ to $\bar{\mathcal{A}}$

end for

Estimate step function $\mathbf{W}_{\mathcal{G}}$ with $\bar{\mathcal{A}}$ using g.

Obtain graphon node feature $\bar{\mathbf{X}}_{\mathcal{G}}$ by average pooling \mathbf{X}

 \triangleright we use LG as g in experiments

b we can use other pooling method (e.g., maxpooling)

Return: $\mathbf{W}_{\mathcal{G}}$, $\bar{\mathbf{X}}_{\mathcal{G}}$

Synthetic Graphs Generation

A graphon can provide arbitrarily sized graphs

$$u_1, \ldots, u_K \stackrel{\text{iid}}{\sim} \text{Unif}_{[0,1]}, \mathbb{G}(K, W)_{ij} \stackrel{\text{iid}}{\sim} \text{Bern}(W(u_i, u_j)), \\ \forall i, j \in [K].$$

- 1. Sample k nodes independently from a uniform distribution on [0,1]
- 2. Generate adjacency matrix with each element is a 0-1 dist with step function.

How about the node features?

This paper adopts average pooling of aligned node features (sort node by degree) to define node features for syntetic graphs.

G-Mixup

We propose to mixup the generator (i.e., graphon) of graphs, mix up the graphons of different classes, and then generate synthetic graphs.

The formal mathematical expression are as follows:

(1) Graphon Estimation:
$$\mathcal{G} \to W_{\mathcal{G}}, \mathcal{H} \to W_{\mathcal{H}}$$

(2) Graphon Mixup:
$$W_{\mathcal{I}} = \lambda W_{\mathcal{G}} + (1 - \lambda)W_{\mathcal{H}}$$

(3) Graph Generation:
$$\{I_1, I_2, \cdots, I_m\} \stackrel{\mathsf{i.i.d}}{\sim} \mathbb{G}(K, W_{\mathcal{I}})$$

(4) Label Mixup:
$$\mathbf{y}_{\mathcal{I}} = \lambda \mathbf{y}_{\mathcal{G}} + (1 - \lambda)\mathbf{y}_{\mathcal{H}}$$

Results

One Case

We visualize the generated synthetic graphs on REDDIT-BINARY dataset.

We make the following observations:

- The class 0 has one high-degree node while class 1 have two (a)(b).
- The generated graphs based on
 - $(1*W_0+0*W_1)$ have one high-degree node (c).
 - $(0*W_0+1*W_1)$ have two high-degree nodes (d).
 - $(0.5*W_0 + 0.5*W_1)$ have a high-degree node and a dense subgraph (e).
- **3** Graphs generated by G-Mixup are the mixture of original graphs.

Validation

We visualize the estimated graphons on IMDB-BINARY, REDDIT-BINARY, and IMDB-MULTI.

We make the following observations:

- Real-world graphs of different classes have different graphons.
- 2 This observation lays a solid foundation for our proposed method.

Performance

We present the training/validation/test curves on IMDB-BINARY, IMDB-MULTI, REDDIT-BINARY and REDDIT-MULTI-5K with GCN.

We make the following observations:

- ① The loss curves of \mathcal{G} -Mixup are lower than the vanilla model.
- $\circled{\mathcal{G}}$ -Mixup can improve the generalization of graph neural networks.

Performance

We use different GNNs for graph classification and report the performance comparisons of G-Mixup.

Dataset	IMDB-B	IMDB-M	REDD-B	REDD-M5	REDD-M12
#graphs	1000	1500	2000	4999	11929
#classes	2	3	2	5	11
#avg.nodes	19.77	13.00	429.63	508.52	391.41
#avg.edges	96.53	65.94	497.75	594.87	456.89
_ vanilla	72.18	48.79	78.82	45.07	46.90
w/ Dropedge	72.50	49.08	81.25	51.35	47.08
w/ DropNode	72.00	48.58	79.25	49.35	47.93
w/ Subgraph	68.50	49.58	74.33	48.70	47.49
w/ M-Mixup	72.83	49.50	75.75	49.82	46.92
w/\mathcal{G} -Mixup	72.87	51.30	89.81	51.51	48.06
vanilla	71.55	48.83	92.59	55.19	50.23
≥ w/ Dropedge	72.20	48.83	92.00	55.10	49.77
w/ DropNode	72.16	48.33	90.25	53.26	49.95
w/ Subgraph	68.50	47.25	90.33	54.60	49.67
w/ M-Mixup	70.83	49.88	90.75	54.95	49.81
w/\mathcal{G} -Mixup	71.94	50.46	92.90	55.49	50.50

Method	IMDB-B	IMDB-M	REDD-B	REDD-M5k
o vanilla এ w/ Dropedge	72.37	50.57	90.30	45.07
⊕ w/ Dropedge	71.75	48.75	88.96	47.43
출 w/ DropNode	69.16	48.50	81.33	46.15
o w/ Subgraph	67.83	50.83	86.08	45.75
w/ M-Mixup	71.83	51.22	87.58	45.60
w/\mathcal{G} -Mixup	72.80	51.30	90.40	46.48
o vanilla	71.68	47.75	78.40	31.61
⊕ w/ Dropedge	69.16	49.44	76.00	34.46
≒ w/ DropNode	70.25	46.83	76.68	33.10
w/ Subgraph	69.50	46.00	76.06	31.65
w/ M-Mixup	66.50	45.16	78.37	34.46
w/\mathcal{G} -Mixup	73.25	50.70	78.87	38.42
o vanilla	73.25	49.04	84.95	49.32
பூ w/ Dropedge	69.16	49.66	81.37	47.20
∃ w/ DropNode	73.50	49.91	85.68	46.82
Ę w∕ Subgraph	70.25	48.18	84.91	49.22
≥ w/ M-Mixup	70.62	49.96	85.12	47.20
w/\mathcal{G} -Mixup	73.93	50.29	85.87	50.12

We make the following observation: