

# **Algorithms for Data Science**

Community Detection (Louvain Algorithm)

## **Louvain Algorithm: Finding Communities**





## **How the Louvain Algorithm Works**

## **Modularity:**

$$Q = \frac{1}{2m} \sum_{i,j} \left[ A_{ij} - \frac{k_i k_j}{2m} \right] \delta(c_i, c_j)$$

### **Phase I: Local Moving Phase**

- Each node is assigned to its best neighboring community.
- Modularity is recomputed after each reassignment.

### **Phase II: Aggregation Phase**

- Communities are merged into "super nodes".
- The process repeats on the new graph.



# **Community Detection Algorithm Comparison**

| Algorithm           | Approach                  | Complexity    | Best For              |
|---------------------|---------------------------|---------------|-----------------------|
| Louvain             | Greedy Modularity         | $O(n \log n)$ | Large Graphs          |
| Girvan-Newman       | Edge Betweeness           | O(n³)         | Small Graphs          |
| Label Propagation   | Spreading Labels          | O(n)          | Real-time Updates     |
| Spectral Clustering | Eigenvectors of Laplacian | O(n²)         | Moderate-Sized Graphs |



