Fisica II

Giovanni Tosini

Indice

1	Inti	roduzione	1
2	Elettrostatica nel vuoto (in assenza di materia dielettrica)		3
	2.1	Interazione (forze) di Coulomb	3
	2.2	Campo elettrostatico	5
	2.3	Energia elettrostatica	5
	2.4	Campo potenziale elettrostatico	6
	2.5	Linee di campo	8
	2.6	Superfici equipotenziali(superfici in cui V è costante)	9
	2.7	Teorema di Gauss	10
3	Elettrostatica nei conduttori		
	3.1	Proprietà di un conduttore in equilibrio	13
	3.2	Cavità in un conduttore	14
	3.3	Schermo elettrostatico	15
	3.4	Capacità elettrostatica	17
		3.4.1 Conduttore isolato	17
		3.4.2 Conduttore non isolato	18
	3.5	Collegamento di condensatori	18
	3.6	Partitore capacitivo	20
	3.7	Lastra conduttrice in un condensatore	22
	3.8	Energia	23
4	Elettrostatica nei dielettrici		
	4.1	Proprietà del dipolo elettrico	27
	4.2	Condensatore riempito di dielettrico	28
	4.3	Dielettrico lineare	30
	4.4	Teorema di Gauss nei dielettrici	31

Capitolo 1

Introduzione

Esistono due tipi di forze in assoluto:

- attrattive
- repulsive

Queste forze si possono vedere anche nelle singole cariche elettriche, quelle con identica carica si respingeranno, mentre quelle con carica opposta si attrarranno.

Esistono tre modalità per caricare un oggetto:

- strofinio
- induzione
- contatto

Da notare che la carica non dipende dal meccanismo con cui viene creata, ma dai costituenti della materia.

Un atomo è composto da: protoni, neutroni ed elettroni. La differenza di dimensioni tra un protone e un elettrone è di parecchi ordini di grandezza. La carica elettrica di un elettrone viene denominata "carica elementare", è tale perché si dice "quantizzata" essendo che si possono trovare solo cariche multiple di essa. Inoltre il modulo della carica di un elettrone è equivalente alla carica di un protone, sebbene siano due particelle differenti.

$$|qe^-| = qe^+$$

La materia ordinaria è neutra, di conseguenza pure l'atomo è neutro, ovvero il centro di simmetria del nucleo coincide con quello degli elettroni.

Con lo strofinio vengono strappati gli elettroni meccanicamente, nel sistema isolato d'esempio (in un sistema isolato la carica totale Q si conserva) preso in questione. La carica dipenderà dal potenziale di estrazione del materiale.

Per induzione invece, un oggetto q^+ avvicinato a un oggetto neutro, porterà a una divisione di cariche nell'oggetto neutro causato dall'induzione elettrostatica

Capitolo 2

Elettrostatica nel vuoto (in assenza di materia dielettrica)

Quando non c'è dipendenza dal tempo il campo elettrico e il campo magnetico sono separati.

2.1 Interazione (forze) di Coulomb

- m oggetto di massa m, trascurabile
- θ angolo
- q_1 e q_2 sono le cariche
- d la distanza
- r il versore

La forza esercitata lungo d sarà equivalente a:

$$|\vec{F}| = k \frac{q_1 q_2}{r^2}$$

Questo è un modello valido **esclusivamente** per cariche ferme nel vuoto. La costante k equivale a

$$k = \frac{1}{4\pi\epsilon_0}$$

Di conseguenza la forza esercitata su q_1 sarà equivalente a

$$\vec{F} = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r_{1,2}^2}$$

N.B.:

- l'unità di misura della carica equivale al Coulomb, q = [C].
- $\bullet \ \epsilon_0$ è la permeabilità sul vuoto (costante dielettrica del vuoto)
- $r_{1,2} = \vec{r}_{12} = \vec{r}_2 \vec{r}_1$
- \bullet se q_1q_2 è positivo allora avremo a che fare con una forza repulsiva, se negativo attrattiva

Una carica q_0 in uno spazio vuoto, con attorno N cariche, sarà sotto l'effetto della somma della forza di tutte:

$$\sum_{i=1}^{N} \frac{q_i q_0}{4\pi\epsilon_0} \frac{\hat{r}_{i0}}{r_{i0}^2}$$

N.B.:

- l'unità di misura della forza è il Newton [N]
- $\hat{r_{12}} = r_2 \hat{-} r_1$

2.2 Campo elettrostatico

$$\vec{F_{q_0}} = q_0 \vec{E_i}(\vec{r_0})$$

dove

- \vec{E} è la sommatoria senza q_0
- \vec{r}_0 equivale a $\frac{1}{4\pi\epsilon_0} \frac{q_i}{r_{i0}^2} \hat{r}_i 0$
- \bullet che a sua volta equivale a $\frac{\vec{F}_{q_iq_0}}{q_o}$
- $\bullet \ \vec{F}_{q_i q_0} = q_0 \vec{E}_i$
- $\vec{F}_{tot} = q_0 \sum \vec{E}_i$

Ogni carica genera un campo.

$$\vec{E}(\vec{r}) = \frac{q}{4\pi\epsilon_0 r^2} \hat{r}$$

$$\vec{E}_{tot}(r) = \sum_i \vec{E}_i = \sum_i \frac{q_i \hat{r}_{i0}}{4\pi\epsilon_0 (r_i - r)^2}$$

$$\vec{F} = q\vec{E}$$

Definizione "operativa" di campo elettrico:

$$\vec{E} = \frac{\vec{F}}{q} \left[\frac{N}{C} \right] = \left[\frac{V}{m} \right]$$

2.3 Energia elettrostatica

La forza elettrostatica è conservativa? Lo è se:

- L non dipende dal percorso
- L in un percorso chiuso è nullo
- Esiste una funzione di energia potenziale U t.c. L da A->B è uguale a - ΔU

- Q è la particella che genera il campo elettrico
- q invece è la particella che si sposta da A a B
- $dL = \vec{F} d\vec{l}$
- $dL = \frac{qQ}{4\pi\epsilon_0 r^2} \hat{r} d\vec{l}$

 $\hat{r}\vec{dl}$ non è nient'altro che la proiezione di r su dl ovvero dr Il lavoro da A a B invece equivale all'integrale

ofo da
$$A$$
 a B invece equivale an integrale
$$L_{AB} = \int_A^B dL = \frac{qQ}{4\pi\epsilon_0} \int_A^B \frac{\hat{r}dl}{r^2} = \int_{r_A}^{r_B} \frac{dr}{r^2} 4 = -\frac{1}{r}|_{r_A}^{r_B} \text{ che è uguale a}$$

$$\frac{qQ}{4\pi\epsilon_0} (\frac{1}{r_A} - \frac{1}{r_B}) = -\Delta U$$

$$U_{caricaq} = \frac{qQ}{4\pi\epsilon_0 r} + c$$

L'unità di misura dell'energia potenziale è il Joule [J] $U_{\infty}=0$ perché non ci sono cariche

$$U = \frac{qQ}{4\pi\epsilon_0 r} = -(U_{\infty} - U_r) = -\Delta U$$

2.4 Campo potenziale elettrostatico

N.B.: le cariche sono statiche

Definizione: $\Delta_{AB}V = \frac{\Delta U_{AB}}{q}$

Il lavoro del campo, lavoro del potenziale:

$$L = -q\Delta V$$

L'unità di misura del potenziale è il Volt [V]. Quindi

$$\Delta U_{energia} = -\int_A^B \vec{F} d\vec{l} \Rightarrow \Delta V = V_B - V_A = -\int_A^B \vec{E} d\vec{l}$$

Formula per il calcolo del potenziale:

$$\begin{cases} V(r_0) = V_0 = 0 & \text{solo in alcuni casi} \\ V(r) = -\int_{r_0}^r \vec{E} d\vec{l} & \end{cases}$$

Che cammino scelgo per calcolare E? Quello più comodo. Ogni carica genera potenziale e un proprio campo.

$$\vec{E}(r) = \frac{q}{4\pi\epsilon_0 r^2} \hat{r}$$

$$V(r) - V_0 = -\int_{r_0}^r \underbrace{\frac{q}{4\pi\epsilon_0 r^2}}_{\vec{E}(r)} \hat{r} \frac{\vec{d}r}{\vec{d}l}$$

$$-\frac{q}{4\pi\epsilon_0} \int_{r_0}^r \underbrace{\frac{1}{r^2} dr}_{r}$$

$$\frac{q}{4\pi\epsilon_0} [\frac{1}{r} - \frac{1}{r_0}]$$

Posso porre $V_0 = 0$ con

$$\begin{split} r_0 &= \infty \\ V(r) - \underbrace{V_{\infty}}_{0} &= -\int \infty r \frac{q}{4\pi\epsilon_0 r^2} = \frac{q}{\pi\epsilon_0 r} \\ V(r)_q &= \underbrace{\frac{q}{4\pi\epsilon_0 r}}_{formula effettiva} [v] con V_{\infty} = 0 \end{split}$$

 $V_{\infty}=0$ è possibile solo se a ∞ non ci sono cariche, ciò è possibile solamente in un sistema finito.

Cosa succede con N cariche discrete?

$$\vec{E}_i(r) = \frac{q_i}{4\pi\epsilon_0(r - r_i)^2} r - r_i$$
$$E_{TOT} = \sum_i E_i$$

Per il principio di sovrapposizione si possono sommare i campi.

$$V_{TOT}(r) = \sum_{i} \frac{q_i}{4\pi\epsilon_0 |r - r_i|}$$

In una distribuzione continua

$$\sum \rightarrow \int$$

quindi:

$$V(r) = \frac{1}{4\pi\epsilon_0} \int \frac{dq}{r - r'}$$

Che può essere calcolato sullo spazio, il volume o linearmente.

2.5 Linee di campo

Sono linee tangenti al campo in ogni punto, continue ed escono dalle cariche positive mentre entrano da quelle negative.

2.6 Superfici equipotenziali(superfici in cui V è costante)

La carica che genere il campo è circondata da sfere equipotenziali, la carica positiva si sposterebbe fino a

 ∞

mentre la carica negativa verrebbe attratta fino a scontrarsi con quella che genera il campo.

$$\vec{E}(r) = \frac{\vec{F}}{q} = \frac{Q}{4\pi\epsilon_0 r^2}\hat{r}$$

Si calcoli il lavoro

$$dL = -qdV$$

se

$$dV = 0$$

allora

dL

è nullo, implica che la forza generata è perpendicolare alla superficie equipotenziale.

N.B.: il lavoro è negativo quando ci si sposta nella direzione opposta alla forza

Una particella lasciata libera e non fissa nello spazio avrebbe sempre lavoro positivo perché seguirebbe la forza a cui è sottoposta senza farne resistenza.

Campo elettrostatico è conservativo, ovvero esiste una

V

t.c. il

$$L_q = -\Delta V$$

Il lavoro svolto in un percorso chiuso sarà sempre equivalente a zero, la **Prima equazione di Maxwell** afferma che:

 $\oint_{\gamma} \vec{E} \vec{dl} = 0$

2.7 Teorema di Gauss

Viene usato per calcolare

$$\vec{E}(r)$$

Prendiamo una carica puntiforme q. Il campo è costante mantenendo fissa una certa distanza, di conseguenza moltiplicando

 \vec{E} per la superficie della sfera

si otterrà una costante.

N.B.: un angolo solido è

$$d\Omega = \frac{dS_{sferica}}{r^2} = \frac{\hat{r}\hat{n}dS}{r^2}$$

Flusso del campo \vec{E}

Flusso elementare $d\Phi = \vec{E} \vec{dS}$

Dove $\vec{dS} = dS\hat{n}$, il flusso attraverso una superficie equivale a

$$\Phi(E) = \int_{sup} \vec{E} \, \widehat{\hat{n}} dS$$

che ha come unità di misura

$$[\Phi] = [E][superficie] = \frac{V}{m}m^2 = Vm$$

Avremo inoltre che il flusso sarà:

- $\bullet~>0$ quando il flusso sarà orientato con la normale di \hat{n}
- \bullet = 0 quando il flusso sarà perpendicolare alla normale
- $\bullet~<0$ quando il flusso sarà opposto alla direzione della normale

La Seconda equazione di Maxwell afferma che:

$$\Phi(\vec{E}) = \oint_{\gamma} \vec{E} d\vec{S} = \frac{Q_{TOT}}{\epsilon_0}$$

Prendendo in considerazione una carica q all'interno di una superficie e concentrandoci solo su una parte della superficie, il flusso generato dalla

carica sarà

$$\begin{split} d\Phi &= \vec{E} \vec{dS} = \\ \frac{q}{4\pi\epsilon_0 r^2} \hat{r} \hat{n} dS \\ \text{notare che} &\frac{q}{4\pi\epsilon_0} \overbrace{\frac{\hat{r} \hat{n} dS}{r^2}}^{d\Omega} \\ \text{di conseguenza} &\frac{q}{4\pi\epsilon_0} d\Omega \end{split}$$

Quindi

$$\Phi = \oint_{\gamma} d\Phi = \frac{q}{4\pi\epsilon_0} \int_{\gamma} d\Omega = \frac{q}{\epsilon_0}$$

Aggiungendo altre cariche, il flusso di tutte sarà la somma dei flussi.

Perché le cariche esterne non influenzano? Perché il loro flusso è nullo essendo che entrano ed escono dalla superficie.

Capitolo 3

Elettrostatica nei conduttori

La sorgente del campo E è una carica Q, il campo generato agisce sulle cariche e queste lo percepiscono, a loro volta ogni carica genererà un campo che verrà percepito dalle altre cariche.

La materia neutra affetta da un campo reagirà in due possibili modi:

- le cariche libere si metteranno in moto;
- i materiali dielettrici vincoleranno le cariche.

3.1 Proprietà di un conduttore in equilibrio

Figura 3.1: Conduttore in equilibrio

La cariche di un conduttore affetto da un campo esterno si sposteranno in base alla forza generata dal campo. Con questa separazione di cariche si accende un campo interno al conduttore, indotto appunto da quello esterno. Le cariche si sposteranno a fino a quando il campo interno non sarà nullo.

1. Il campo interno di un conduttore in equilibrio è 0, in caso contrario le particelle sarebbero ancora in movimento

$$E_{interno} = E_{indotto} + E_{esterno} = 0$$

2. Il potenziale nel volume del conduttore sarà costante a quello della superficie

$$V = costante$$

3. Se il campo fosse nullo per il teorema di Gauss la carica interna in un conduttore è 0

$$Q_{interna} = 0$$

ha solo carica superficiale

$$Q_{superficiale} = \int_{superficie} \sigma dS$$

4. Il campo della superficie dei conduttori è noto

$$\vec{E}_{superficie} = \frac{\sigma}{\epsilon_0} \hat{n}$$

è un campo normale alla sua superficie.

3.2 Cavità in un conduttore

Figura 3.2: Conduttore cavo, con campo $E_{interno}=0$ e potenziale V_0 costante

Le eventuali cariche si distribuiranno solo sulla superficie del conduttore e in particolar modo la superficie della cavità interna è sempre scarica. Quindi:

- 1. $\sigma_{\text{cavità}} = 0$
- 2. $\vec{E}_{\text{cavità}} = 0$

Dimostrazione:

1. Posizionando una superficie di Gauss all'interno del conduttore, abbiamo che il flusso del nostro campo sarà uguale all carica interna della superficie S_0

$$\oint_{S} \vec{E} d\vec{S} = \frac{Q_{int}}{\epsilon_0}$$

ma essendo il campo di cui calcolo il flusso, il campo interno, nullo allora la carica interna totale sarà uguale a zero

$$Q_{\text{int totale}} = 0$$

la superficie è arbitraria, quindi la posso stringere fino alla superficie della cavità, dimostrando che la carica **totale** sulla superficie della cavità è nulla, **N.B.**: questo non implica che la superficie della cavità sia scarica.

2. La carica è identicamente nulla, supponiamo che la carica totale sia nulla, ma che ci sia una separazione di carica sulla superficie della cavità, per l'elettrostatica ci sarebbe l'accensione di un campo indotto dalla separazione di cariche, ricordando che la circuitazione del campo in qualsiasi cammino Γ chiuso è sempre nulla

$$\oint_{\Gamma} E dl = 0$$

allora in una situazione simile io potrei sempre prendere una circuitazione Γ posta in parte all'interno del conduttore e in parte all'interno della cavità, una circuitazione simile viene calcolata come la somma degli integrali

$$\int_{\Gamma_{conduttore}} + \int_{\Gamma_{cavità}}$$

la parte interna al conduttore sarà nulla in quanto il campo elettrico all'interno di un conduttore è appunto nullo, quindi avrei per assurdo che la circuitazione è \neq da zero, questo non è possibile che non ci troviamo in equilibrio elettrostatico e andrebbe contro l'ipotesi di partenza.

Questo dimostra che la separazione di cariche non esiste e che la carica all'interno della cavità è identicamente nulla, questo significa a sua volte che non può esserci distribuzione di carica sulla superficie interna. Anche se caricassi il conduttore con una carica esterna la situazione della cavità non cambierà. Le leggi di Maxwell richiedono che qualunque sia la situazione delle cariche esterne dello spazio esterno il conduttore andrà in equilibrio elettrostatico distrubuendo le cariche sulla superficie esterna.

3.3 Schermo elettrostatico

Dal punto di vista generale abbiamo un conduttore cavo, possiamo avere delle cariche libere esterne e/o depositate sul conduttore. In particolare

nessuna situazione esterna non può influenzare la situazione interna, la cavità agirà da **schermo elettrostatico**, ovvero la differenza di potenziale tra esterno e cavità rimarrà costante.

$$V_{esterno} - V_{interno} = costante$$

Il potenziale della cavità cambierà in conseguenza all' esterno, se non fosse così avrei modo dall'interno di sapere cosa succede all'esterno. Il campo elettrico nullo fa da barriera tra esterno e interno. Quindi se dalla cavità non ho modo di avere informazioni sull'esterno, viceversa sarà possibile?

Ipotizziamo di inserire all'interno della cavità un altro conduttore carico, ovviamente questo conduttore sarà in equilibrio e avrà un suo potenzale. Si potrà sempre posizionare una superficie di Gauss sul bordo della cavità, il flusso attraverso questa superficie deve essere ovviamente la carica interna che come visto sopra sarà nulla. Il conduttore per essere in equilibrio indurrà la formazione di una carica uguale e opposta posizionata sulla superficie della cavità.

Poiché il conduttore esterno era inzialmente scarico, per la conservazione della carica dovrà comparire una quantità di carica $-Q_1$ sulla superficie. Apparirà solo sull'esterno poichè all'interno deve esserci campo elettrico nullo. Quindi abbiamo che una carica interna della cavità induce una carica esterna sul conduttore. Si potrà osservare un potenziale esterno dovuto alla carica Q_1 , all'interno della cavità avremo un campo $E \neq da$ zero. Ricordiamo che la differenza di potenziale tra la regione esterna e quella interna sarà sempre costante.

Supponendo di aggiungere delle cariche esterne, causeranno un cambio di potenziale, in particolare una separazione di cariche sulla superficie esterna.

- Cambierà qualcosa all'interno?
- Quanto vale la carica della cavità?

La carica sulla superficie della cavità sarà sempre l'opposto della carica sul conduttore interno, che ovviamente non potrà essere cambiata da ciò che succede all'esterno. La cavità è uno schermo elettrostatico, questo varrà anche in presenza di più conduttori all'interno della cavità.

3.4 Capacità elettrostatica

3.4.1 Conduttore isolato

Prendiamo un conduttore isolato caricato con una carica Q, come visto prima si porterà a un potenziale costante V, si definisce **capacità elettro-statica**

 $C\frac{Q}{V}$

l'unità di misura della capacità [C] è il Farad (F), il significato fisico è che la carica e il potenziale sono proporzionali. La capacità dipende solo dalla geometria del conduttore e in cosa è contenuto, nel nostro caso il vuoto.

Da un punto di vista pratico, prendiamo un conduttore isolato sferico di raggio R, depositando una carica sulla sua superficie si genererà un campo, con un corrispondente potenziale nello spazio, il campo dato da

$$E = \frac{Q}{4\pi\epsilon_0 r^2} \text{ per r esterno}$$

mentre il potenziale è

$$V = \frac{Q}{4\pi\epsilon_0 r}$$
 per r esterno

Per un eventuale r interno il campo è nullo e il potenziale ovviamente è costante. Il potenziale sulla superficie della sfera per r = R, quindi

$$C = \frac{Q}{V_{\text{superficiale r}=R}} = 4\pi\epsilon_0 R$$

è la capacità di un conduttore sferico isolato. Per ottenere la capacità di un 1 Farad occorrerà una sfera di raggio

$$R = \frac{1}{4\pi\epsilon_0} = 9 \cdot 10^9 m$$

. Si tratta di numeri molto grandi, di conseguenza solitamente la capacità si misura in

- pF ovvero $10^{-12}F$
- nF ovvero $10^{-9}F$
- μF ovvero $10^{-6} F$

3.4.2 Conduttore non isolato

Ci possono essere altri conduttori, in modo più esteso la terra stessa è un conduttore, il conduttore non essendo isolato sente effetti di induzione elettrostatica dai conduttori attorno. Quale potenziale si metterà nella definizione di capacità? Si definiranno conduttori solo a induzione completa.

Si definiscono conduttori a induzione completa, due conduttori per cui tutte le linee di campo di uno vanno nelle linee di campo dell'altro. Un metodo per realizzare la cosa è quello di mettere uno nella cavità dell'altro, perché posizionando una carica sul conduttore interno avrò una carica indotta sulla superficie della cavità dell'altro. Non ci sarà alcuna dispersione delle linee di campo. Di conseguenza la capacità si calcolerà come:

$$C = \frac{Q}{\Lambda V}$$

questa è la capacità di due conduttori in induzione completa che si definisce anche **condensatore** i due conduttori si chiamano **armature** del condensatore.

Eventualmente le due armature potranno essere cilindriche, con la lunghezza di molto maggiore al raggio, in tal caso si potranno ignorare gli effetti di induzione esterna e si potrà considerarli in induzione completa.

Un ultimo caso sono due armature sottoforma di superfici, affiancate, di modo che la loro distanza sia molto minore della lunghezza delle superfici, che in maniera simile al cilindro si rirtroveranno in induzione completa.

3.5 Collegamento di condensatori

Collegamento in **serie**.

Tale collegamento ha la caratteristica che la carica Q è sempre la stessa e che il potenziale totale è dato da

$$V_{TOT} = \sum_{i=1}^{n} V_i$$

quindi ricordando che la capacità equivale a

$$C_{TOT} = \frac{Q_{TOT}}{\Delta V_{TOT}}$$

avremo che

$$\begin{split} V_{TOT} &= \Delta V_{TOT} \\ &= \sum \frac{Q_i}{C_i} \; \text{Q essendo costante la si porta fuori} \\ &= Q \sum \frac{1}{C_i} \\ &= \frac{Q_{TOT}}{C_{TOT}} \; \text{Q totale} = \text{Q} \end{split}$$

Avremo quindi che la capacità totale di un collegamento in serie sarà data da

$$\frac{1}{C_{TOT}} = \sum_{i=1}^{n} \frac{1}{C_i}$$

Da notare che in serie la **capacità** tende a **calare** con l'aumentare dei condensatori.

Collegamento in parallelo.

Nel collegamento in parallelo a rimanere costante sarà il potenziale. La carica Q di un eventuale capacitore equivalente sarà la somma delle cariche dei singoli capacitori

$$Q_{TOT} = \sum_{i=1}^{n} Q_i$$

ricordando la definizione di capacità avremo che

$$Q_{TOT} \sum C_i V_i = V \sum C_i = V_{TOT} C_{TOT}$$

Cosa succede alla capacità di un collegamento in parallelo? La carica aumenta, il potenziale è **costante**, quindi la capacità **aumenterà**.

3.6 Partitore capacitivo

Consiste nel collegamento di condensatori in serie, come si ripartisce il potenziale negli elementi del circuito? Avere la stessa carica Q costante significa che

$$Q = C_1 V_1 = C_2 V_2 = \dots = C_n V_n$$

di conseguenza

$$Q = C_{TOT}VTOT$$

il potenziale è **inversamente proporzionale** alla capacità nei collegamenti in serie.

$$V_i = \frac{Q}{C_i} = \frac{C_{TOT}}{C_i} V_{TOT}$$

Prendiamo un caso esempio con quattro condensatori con un interrutore aperto.

Proviamo a calcolarne la capacità totale. In questo caso C_1 e C_2 sono collegati in serie come lo sono anche C_3 e C_4 . Il capacitore formato da C_1 e C_2 sarà dato da

$$\frac{1}{C_{TOT}} = \sum \frac{1}{C_i}$$

quindi

$$\frac{1}{C_{12}} = \frac{1}{C_1} + \frac{1}{C_2} = \frac{C_2 + C_1}{C_1 C_2}$$

oppure

$$C_{12} = \frac{C_1 C_2}{C_1 + C_2}$$

analogamente

$$C_{34} = \frac{C_3 C_4}{C_3 + C_4}$$

i capacitori C_{12} e C_{34} sono a loro volta collegati in parallelo perché ai capi hanno la stessa **differenza di potenziale** ovvero V_0 .

Il circuito equivalente sarà dato da

$$C_{1234} = C_{12} + C_{34}$$

Se invece l'interruttore fosse chiuso

 ${\cal C}_1$ e ${\cal C}_3$ diventano collegati in parallelo e analogamente ${\cal C}_2$ e ${\cal C}_4$ e diventa

Essendo collegati solo a un estremo saranno collegati in serie. La capacità totale si calcolerà similarmente a come fatto prima.

3.7 Lastra conduttrice in un condensatore

Ipotizziamo di inserire una lastra conduttrice tra le armature di un condensatore.

Ricordando che Q è costante, essendo il sistema **isolato** e Σ equivalente all'area delle armature e che:

$$E = \frac{\sigma}{\epsilon_0}$$

$$\sigma = \frac{Q}{\Sigma}$$

$$C = \frac{Q}{\Delta V}$$

$$= \frac{\sigma \Sigma}{\frac{\sigma}{\epsilon_0} h}$$

$$= \frac{\epsilon_0 \Sigma}{h}$$

Ricordando che

$$\Delta V = V^{+} - V^{-} = -\int_{-}^{+} \vec{E} d\vec{l} \Rightarrow V = Eh = \frac{\sigma}{\epsilon_{0}} h$$

Il potenziale aumenterà allontando le armature perché ci vuole più lavoro per lo spostamento. Inserendo la lastra conduttrice avremo un collegamento di condensatori in serie, il potenziale sarà minore a causa del conduttore perché avrà un campo nullo al suo interno. Al calare del potenziale aumenterà la capacità, il potenzale dovrà essere calcolato considerando la lasta in mezzo:

$$V = Eh_1 + 0x + E_h 2 = E(h - x)$$

quindi la capacità sarà equivalente a

$$\frac{1}{C} = \frac{h_1}{\epsilon_0 \Sigma} + \frac{h_2}{\epsilon_0 \Sigma} = \frac{(h - x)}{\epsilon_0 \Sigma}$$

avremo che la capacità effettiva con la lastra sarà equivalente a

$$C_{lastra} = \frac{\epsilon_0 \Sigma}{h - x}$$

3.8 Energia

Quale lavoro bisogna compiere per caricare le armature di un condensatore? Quanta energia è immagazzinata nelle armature? Prendiamo due armature scariche e le carichiamo sottraendo una carica Q dalla prima armatura e posizionandola sulla seconda, ciò porterà a caricare con carica +Q una e con carica -Q l'altra. Notare che la carica totale rimarrà in ogni istante nulla. Successivamente il lavoro per traspostare una carica q da una parte all'altra per la differenza di potenziale sarà dato da

$$L_{\text{TOT ext}} = \int_{0}^{Q} V(q)dq$$
$$= \int_{0}^{Q} \frac{q}{C}dq =$$
$$= \frac{1}{2} \frac{Q^{2}}{C} = U_{sistema}$$

Ricordando che $C=\frac{Q}{V}\to V=\frac{q}{C}$ Questo lavoro totale esterno è l'energia immagazzinata nel sistema. Quindi l'energia immagazzinata in un condensatore è

$$U = \frac{1}{2} \frac{Q^2}{C}$$

questa espressione si potrà esprimere in tre modi differenti:

- $\bullet \ U = \frac{1}{2} \frac{Q^2}{C}$
- $U = \frac{1}{2}CV^2$
- $U = \frac{1}{2}QV^2$

Si misura in Joule [J].

N.B.: il potenziale è lineare nella carica, il potenziale ha sempre la carica al numeratore, sono sempre quadratiche nella carica per la seconda, il potenziale va sempre con la carica, quindi c'è un Q^2 , idem per la terza, $Q \cdot V$ equivale a Q^2 . Non si scriverà **mai** $\frac{Q}{V}$.

Preso un condensatore avremo

$$C = \frac{\epsilon_0 \Sigma}{h}$$

$$E = \frac{\sigma}{\epsilon_0}$$

$$\sigma = \frac{Q}{\Sigma}$$

sostituendo la prima e la terza all'interno di

$$U = \frac{1}{2} \frac{Q^2}{C}$$

ottengo

$$U = \frac{1}{2} \frac{Q^2}{\epsilon_0} \frac{h}{h}$$
$$= \frac{\epsilon_0}{2} E^2 \cdot \text{ volume} \to \Sigma h$$

Ne ricaviamo che l'energia del condensatore piano si può esprimere anche in questa maniera. Il volume del condensatore corrisponde allo spazio tra le armature, ovvero il volume dove il campo **non** è nullo. Quindi se in una regione di spazio si ha un certo campo, allora il campo genera una densità di energia, ovvero l'energia presente in un volume dello spazio, tale densità sarà:

 $u_E = \frac{\epsilon_0 E^2}{2}$

unità di misura $\left[\frac{J}{m^3}\right]$ densità di energia elettrostatica.

Capitolo 4

Elettrostatica nei dielettrici

Sono caratterizzati dal fatto che le loro cariche sono vincolate, non sono libere di muoversi. I materiali dielettrici in presenza di campo esterno, mostrano la capacità di **polarizzarsi** ovvero avviene una distribuzione di carica. Un'ulteriore caratteristica è che i centri di carica, che normalmente nell'atomo neutro sono coincidenti, in presenza di un campo elettrico **esterno**, i costituenti carichi dell'atomo presenteranno uno spostamento dei centri di simmetria, la forza sarà data da $\vec{F} = q\vec{E}$.

Il **dipolo elettrico** è un oggetto costituito da due cariche uguali ma di segno opposto separate da una distanza rigida d e l'orientamente sarà dalla negativa alla positiva.

Momento di dipolo elettrico: la quantità data dalla carica per la distanza e si orienta dalla carica negativa alla positiva

$$\vec{p} = q\vec{d}$$

è un vettore che caratterizza il dipolo.

Il **campo di polarizzazione** sarà dato da:

$$\vec{P}(\vec{r}) = \frac{\text{momento di dipolo}}{\text{volume}}$$

4.1 Proprietà del dipolo elettrico

Potenziale: preso un punto p molto distante dal dipolo, abbastanza da non vedere la struttuta interno del dipolo. Il potenziale sarà dato da

$$V(\vec{r}) = V_{q^+} + V_{q^-} = \frac{q}{4\pi\epsilon_0} \left(\frac{1}{r^+} \frac{1}{r^-}\right) = \frac{q}{4\pi\epsilon_0} \frac{r^- - r^+}{r^+ r^-}$$

essendo r la distanza presa per il punto ed essendo di molto maggiore della distanza all'interno del dipolo d, valgono le seguente approssimazioni:

•
$$r^+r^- \cong r^2$$

•
$$r^- - r^+ \cong d \cos \theta$$

Dove θ è l'angolo preso tra il centro dell'eventuale sistema di assi costruito sul dipolo e la distanza r oppure l'angolo che si forma sempre con la distanza r ma preso da una delle cariche. Di conseguenza il potenziale sarà uguale a

$$V(\vec{r}) = \frac{qd\cos\theta}{r^2}$$

Ricorda la definizione del **momento di dipolo** lo si può riscrivere come:

$$V(\vec{r}) = \frac{\vec{p}\vec{r}}{r^3} \propto \frac{1}{r^2}$$

Ricordando che \vec{pr} è nullo quando sono ortogonali, quindi il raggio vettore r è perpendicolare al momento di dipolo p, di conseguenza si avrà che V=0 Nel cilindro attorno all'asse centrato su p non c'è

Figura 4.1: Linee di campo di un dipolo elettrico.

modo di distinguere la fisica generata dal dipolo.

4.2 Condensatore riempito di dielettrico

Prendendo un condensatore piano con area Σ e distanza d

Nel vuoto avremo:

•
$$C_0 = \frac{\epsilon_0 \Sigma}{d} [F]$$

- $\bullet \ Q = V_0 C_0 \ [C]$
- $E_0 = \frac{\sigma_0}{E_0} \left[\frac{V}{m} \right]$
- $\Delta V = E_0 d$

Isolo il sistema dal generatore, quindi la carica Q sarà **costante**, inserisco un dielettrico tra le armature. Il potenziale sarà dal rapporto tra il potenziale nel vuoto e una costante dielettrica caratteristica del materiale, sarà di conseguenza minore del potenziale nel vuoto.

$$V_K = \frac{V_0}{K} < V_0$$

Se il potenziale diminuisce, la capacità di conseguenza aumenterà.

$$C_K = (\frac{Q}{V}) = KC_0$$
$$C_K = K\epsilon_0 \frac{\Sigma}{d}$$

 $K\epsilon_0$ viene definita come **permettività** del materiale, definita normalmente come ϵ . Quindi la permettività dielettrica del vuoto è uguale a 1 perché non c'è materiale presente.

$$E_K = \frac{E_0}{K} < E_0$$

Il campo elettrico è diminuito ed è **diverso** da 0, diversamente dai conduttori. E_K è il campo elettrico **totale**. Quindi il campo indotto dai dipoli, sommato al campo precedentemente presente non dà zero. La sommma sarà equivalente a E_K .

$$\vec{E_TOT} = \vec{E_K} = \vec{E_0} + \vec{E_{\text{campo indotto}}}$$

Il campo indotto **non è** il campo totale.

Prendendo un condensatore elettrico con un dielettrico tra le armature, poniamo un cilindro di Gauss tra l'armatura e il dielettrico. Per il teorema di Gauss, il flusso passerà solo attraverso l'area del cilindro interno al dielettrico, essendo che il campo nella parte interna al condensatore è nullo per definizione.

Ricordando che per il teorema di Gauss, il flusso è dato da $\oint_{sup} \vec{E} \vec{dS}$ avremo che

 $E_T OTA + EA = \frac{Q_{int}}{\epsilon_0}$

Le cariche interne a questo cilindro saranno date dalle cariche libere del conduttore più le cariche di polarizzazione indotte nel materiale all'accensione del campo.

 $\frac{Q_{libere} - Q_{pol}}{\epsilon_0} = \frac{\sigma_0}{\epsilon_0} A - \frac{\sigma_p}{\epsilon_0} A$

Dove:

- $Q_{libere} = \sigma_0$ Area
- $Q_p = \sigma_p$ Area

L'area ovviamente sparisce, quindi abbiamo ricavato che il campo nel dielettrico, ovvero E_TOT sarà uguale a

$$E_T O T = \frac{|\sigma_0|}{\epsilon_0} - \frac{\sigma_p}{\epsilon_0}$$

Ricordando comunque che

$$E_T O T = \frac{E_0}{K}$$

Ricordando che $E_0 = \frac{\sigma_0}{\epsilon_0}$ e mettendo il tutto assieme possiamo ricavare che:

$$|\sigma_p| = |\sigma_0| \frac{K - 1}{K}$$

Questa formula ci permetterà di calcolare le cariche di polarizzazione.

Ricordiamo che per σ si intende il numero di carica per unità di superficie, prendendo una volume unitario di una superficie, che momento di dipolo avremo in un volume unitario? La polarizzazione P sarà esattamente la densità di carica della superficie.

$$|\vec{P}| = \sigma_p$$

 σ_p è il modulo del campo di polarizzazione. Avremo che:

$$\sigma_p = \vec{P}\hat{n}[\frac{C}{m^2}]$$

4.3 Dielettrico lineare

Un dielettrico per cui se io accendo un campo, mi si forma una polarizzazione P e tale polarizzazione è parallela e proporzionale al campo.

$$\vec{P} = \epsilon_0 \chi \vec{E}$$

Dove χ sta per la suscettività dielettrica del materiale. Tale suscettività è costante, il dielettrico si definirà normale, ovvero sarà lineare e

omogeneo. Risulta che il campo nel dielettrico, il campo totale, l'unico campo presente sarà uguale a

$$E_K = \underbrace{\frac{\epsilon_0}{1 - \chi}}_{K}$$

4.4 Teorema di Gauss nei dielettrici

Riprendendo l'esempio con la superficie di Gauss cilindrica, si era ottenuto che

$$\oint E = \frac{\sigma_{libere}}{\epsilon_0} - \frac{\sigma_{pol}}{\epsilon_0}$$

La carica di polarizzazione è

$$\sigma_p = \vec{P}\vec{n}$$

Si può esprimere il tutto in termini integrali di flusso

$$\oint EdS = \frac{q_{libere}}{\epsilon_0} - \frac{\oint \vec{P}d\vec{S}}{\epsilon_0}$$

Ricordando il termini generali il teorema di Gauss

$$\oint EdS = \frac{Q_{int}}{\epsilon_0}$$

Il valore di Q_int nel caso del dielettrico sarà equivalente alla carica totale tra le cariche libere e polarizzate. Non avremo più un campo nel vuoto, ma nel dielettrico ovviamente. Il problema della cariche polarizzate è che sono dipendenti dalle caratteristiche microscopiche del materiale, a noi interessa un teorema di Gauss in cui vengono usate esclusivamente le cariche libere, perché le possiamo controllare più facilmente (depositandole sui conduttori, attaccando potenziali,...).

La nuova definizione del teorema sarà quindi

$$\oint E dS = \frac{q_{libere}}{\epsilon_0} - \frac{\oint \vec{P} d\vec{S}}{\epsilon_0}$$

$$\oint \underbrace{(\epsilon_0 \vec{E} + \vec{P})}_* dS = Q_{libere}$$

(*) lo definisco come \vec{D} , è un nuovo campo e verrà definito come **induzione** dielettrica. Posso esprimere il **teorema di Gauss per i dielettrici** in notazione compatta come

$$\oint \vec{D} \vec{dS} = Q_{\text{int. totali libere}}$$

Quindi senza le cariche polerizzate.

Il nostro scopo è sempre stato quello di calcolare il campo usando il teorema di Gauss, in presenza di materiali dielettrici non possiamo farlo senza pensieri perché le cariche polarizzate genereranno a loro volta un campo che andrà a sommarsi a quello totale. Utilizziamo Gauss per ricavare \vec{D}

$$\vec{D} = \epsilon_0 E + P$$

$$P = \epsilon_0 \chi E$$

$$\vec{D} = \epsilon_0 K \vec{E} \left[\frac{C}{m^2} \right]$$

$$\vec{E_K} = \frac{\vec{D}}{\epsilon_0 K}$$

$$P = \epsilon_0 (K - 1) \vec{E} \left[\frac{C}{m^2} \right]$$

$$\vec{P} = \frac{K - 1}{K} D$$

Trovata la polarizzazione, alla richieste del valore delle cariche su una certa superficie \boldsymbol{s}

$$\sigma_p(s) = P(s)$$