

Stochastic Processes and Correlation Functions

Gunvor Elisabeth Kirkelund Lars Mandrup

Agenda for Today

- Stochastic Processes (repetition)
 - Mean and variance
 - Stationarity (WSS, SSS)
 - Ergodic Processes
- Correlation functions
 - Autocorrelation functions
 - Cross-correlation functions
- Power spectrum density

Stochastic Processes

Definitions:

A stochastic process is a <u>time dependent</u> stochastic variable:

A discrete stochastic process is given by:

$$X[n] = X(nT)$$

where n is an integer.

Random events that develops in time

Notice:

 When we sample a signal from a stochastic process, we observe only one <u>realization</u> of the process

Sample Function / Ensemble

Definitions:

- A sample function is a realization of a stochastic process x(t)
- The <u>ensemble</u> of a stochastic process is the collection of all possible realizations x(t) of the stochastic process X

Example:

- A coin is thrown every minute: H = head, T = tail
- One realization of the stochastic signal is: HTHT ...
- The ensemble of the stochastic signals is: HTHT, HHTT, TTHH, THTH, THHT, TTHT, HHHH...

Stochastic Processes (signals)

Additive Noisemodel

 $observed\ signal = signal\ +\ noise$

Ensemble mean and variance (to a specific time).

If independent of time: WSS

The Mean Functions

Ensemple mean:

The mean of all possible realizations to time t

$$\mu_{X(t)}(t) = E[X(t)] = \int_{-\infty}^{\infty} x(t) f_{X(t)}(x(t)) dx(t)$$

The time average for one realization of the stochastic process

• Temporal mean:

$$\hat{\mu}_{X_i} = \langle X_i \rangle_T = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x_i(t) \ dt$$

The Variance Functions

Ensemple variance:

The variance of all possible realizations to time t

$$Var(X(t)) = \sigma_{X(t)}^2(t) = E[\left(X(t) - \mu_{X(t)}(t)\right)^2]$$

The variance over time for one realization of the stochastic process

Temporal variance:

$$\hat{\sigma}_{X_i}^2 = \left\langle X_i^2 \right\rangle_T - \left\langle X_i \right\rangle_T^2 = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \left(x_i(t)^2 - \hat{\mu}_{X_i}^2 \right) dt = Var(X_i)$$

Stationarity in the Wide Sense (WSS)

Ensemble mean is a constant

Can be tested.

$$\mu_X(t) = E[X(t)] = \mu_X$$
 - independent of time

Ensemble variance is a constant

$$\sigma_X^2(t) = E[X(t)^2] - E[X(t)]^2 = \sigma_X^2$$

- independent of time

Stationarity in the Strict Sense (SSS):

• The density function $f_{X(t)}(x(t))$ do not change with time

Difficult to test in reality.

Ergodicity

- We can say something about the properties of the stochastic process in general <u>based on one sample function</u>, as long as we have observed it for long enough.
- If ensemble averaging is equivalent to temporal averaging:

Discrete stochastic process:

$$Y(n) = X + W(n);$$

 $X \sim \mathcal{B}(10,0.5)$ $W(n) \sim \mathcal{U}_i[-2,2]$

3 realizations 11 samples (n=0,..,10)

Ergodic 🕂

Discrete stochastic process:

$$Y(n) = W(n);$$

$$W(n) \sim \mathcal{N}(5,2)$$

3 realizations 11 samples (n=0,..,10)

Continous stochastic process:

$$Y(t)=W;$$

$$W \sim \mathcal{N}(5,2)$$

3 realizations $0 \le t \le 10$

Ergodic 🕂

Continous stochastic process:

$$Y(t) = W;$$

 $W \sim \mathcal{N}(5,2)$

3 realizations 11 samples (n=0,..,10)

Continous stochastic process:

$$X(t) = A(1 - e^{-k \cdot t});$$

$$A = 1; k \sim \mathcal{N}(1,0.4)$$

20 realizations $0 \le t \le 10$

WWS ÷

Ergodic +

Continous stochastic process:

$$X(t) = A(1 - e^{-k \cdot t}) + w(t);$$

 $A = 1; k \sim \mathcal{N}(1,0.4);$
 $w(t) \sim \mathcal{U}[-0.1,0.1]$

3 realizations $0 \le t \le 10$

wws ÷

Ergodic 🕂

Continous stochastic process:

$$X(t) = A(1 - e^{-k \cdot t}) + w(t);$$

$$A = 1; k \sim \mathcal{N}(1,0.4);$$

$$w(t) \sim \mathcal{U}[-0.1,0.1]$$

1 realization 11 samples (n=0,..,10)

wws ÷

Ergodic 🕂

Comparing realizations

Correlations

We compare the process at two different times.

Correlation of a realization with itself

- Autocorrelation: $R_{XX}(t_1, t_2) = E[X(t_1)X(t_2)^*]$
 - > Says something about how much the signal $X(t_1)$ resembles itself at time t_2
 - Must depent on how rapidly the signal changes over time
 - > Larger if $|t_1 t_2|$ is small

Correlation of two realizations

- Crosscorrelation: $R_{XY}(t_1, t_2) = E[X(t_1)Y(t_2)^*]$
 - Can be used to look for places where the signal X(t) is similar to the signal Y(t)

Autocorrelation

• In general:

$$R_{XX}(t_1, t_2) = E[X(t_1)X(t_2)^*]$$

$$= \iint_{-\infty}^{\infty} x(t_1) x(t_2)^* f_{X(t_1), X(t_2)}(x(t_1), x(t_2)) dx(t_1) dx(t_2)$$

For a stationary process (WSS):

$$R_{XX}(t_1, t_2) = R_{XX}(t_1 + T, t_2 + T) = E[X(t_1 + T)X(t_2 + T)^*]$$

Independent of time (t_1) Depends only on $\tau = t_2 - t_1$

• We rewrite to: $R_{XX}(\tau) = E[X(t)X(t+\tau)^*]$

$$\tau = t_2 - t_1$$
 is the lag!

Autocorrelation

- For Real WSS: $R_{XX}(\tau) = E[X(t)X(t+\tau)]$
- Properties of the autocorrelation function $R_{XX}(\tau)$:
 - > An even function of τ $(R_{XX}(\tau) = R_{XX}(-\tau))$
 - > Bounded by: $|R_{XX}(\tau)| \le R_{XX}(0) = E[X^2]$ (max. in $\tau = 0$)
 - > If X(t) changes fast, then $R_{XX}(\tau)$ decreases fast from $\tau = 0$
 - > If X(t) changes slowly, then $R_{XX}(\tau)$ decreases slowly from $\tau = 0$
 - If X(t) is periodic, then $R_{XX}(\tau)$ is also periodic

Convolution

Temporal Autocorrelation

Temporal autocorrelation:

$$\mathcal{R}_{XX}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) \cdot x(t+\tau) dt$$

 If the process is <u>ergodic</u> the temporal autocorrelation is equal to the ensemble autocorrelation:

Estimate Autocorrelation

Autocorrelation function:

In practise, with respect to the lag:

temporal
$$\mathcal{R}_{XX}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) \cdot x(t+\tau) dt$$

N+1 measurements $\chi(0), \chi(\Delta t), \chi(2\Delta t), ..., \chi(N\Delta t)$

The estimated autocorrelation function:

$$\hat{R}_{XX}(n\Delta t) = \frac{1}{N-n+1} \sum_{k=0}^{N-n} x(k\Delta t) \cdot x((k+n)\Delta t)$$
 Number of terms (T/ Δt)

Autocorrelation Functions – Example

Let a stochastic process be defined as:

$$X(t) = \sum_{i=1}^{n} (A_i cos \omega_i t + B_i sin \omega_i t)$$

- where A_i , $B_i \sim \mathcal{N}(0, \sigma^2)$ and i.i.d., and $\omega_i = i \cdot \omega_0$
- Find the autocorrelation:

$$E[X(t)X(t+\tau)] = E\left[\sum_{i=1}^{n} \sum_{j=1}^{n} (A_i cos\omega_i t + B_i sin\omega_i t) \cdot (A_j cos\omega_j (t+\tau) + B_j sin\omega_j (t+\tau))\right]$$

Autocorrelation Functions – Example (cont'd)

$$E[X(t)X(t+\tau)] = E\left[\sum_{i=1}^{n} \sum_{j=1}^{n} (A_i cos\omega_i t + B_i sin\omega_i t) \cdot (A_j cos\omega_j (t+\tau) + B_j sin\omega_j (t+\tau))\right]$$

• Since A and B are i.i.d. (and $E[A_i] = E[B_i] = 0$):

$$i \neq j : E[A_i A_j] = 0, E[A_i B_j] = 0, E[B_i A_j] = 0, E[B_i B_j] = 0$$

• We get:
$$E[X(t)X(t+\tau)] = \sum_{i=1}^{n} (E[A_i^2] \cdot \cos \omega_i t \cdot \cos \omega_i (t+\tau) + E[B_i^2] \cdot \sin \omega_i t \cdot \sin \omega_i (t+\tau))$$

Autocorrelation Functions – Example (cont'd)

We can rewrite to:

$$\begin{split} R_{XX}(\tau) &= E[X(t)X(t+\tau)] \\ &= \sum_{i=1}^{n} (E[A_i^2] \cdot \cos \omega_i t \cdot \cos \omega_i (t+\tau) + E[B_i^2] \cdot \sin \omega_i t \cdot \sin \omega_i (t+\tau)) \\ &= \sigma^2 \sum_{i=1}^{n} \cos \omega_i \tau \qquad \text{(since } E[A_i^2] = E[B_i^2] = \sigma^2 \text{ and } \\ &\cos(\theta_1 - \theta_2) = \cos \theta_1 \cdot \cos \theta_2 + \sin \theta_1 \cdot \sin \theta_2) \end{split}$$

• We have: $R_{XX}(0) = n\sigma^2$

Autocorrelation Functions – Example (cont'd)

Autocovariances

Autocovariance function:

$$C_{XX}(t_1, t_2) = E[(X(t_1) - \mu_X(t_1))(X(t_2) - \mu_X(t_2))^*]$$

= $R_{XX}(t_1, t_2) - \mu_X(t_1)\mu_X(t_2)$

Especially: $C_{XX}(t,t) = E[(X(t) - \mu_X(t))^2] = E[X(t)^2] - E[X(t)]^2 = \sigma_X^2(t)$

Autocorrelation coefficient:

$$r_{XX}(t_1, t_2) = \frac{c_{XX}(t_1, t_2)}{\sqrt{c_{XX}(t_1, t_1)c_{XX}(t_2, t_2)}}; \qquad 0 \le r_{XX}(t_1, t_2) \le 1$$

Especially: $r_{XX}(t,t) = 1$ (X(t) is totally correlated to itself!)

Autocovariances

For i.i.d. Gaussian (stationary) noise

Autocorrelation and autocovariance

Two Stochastic Processes

- If we have two stochastic processes X(t) and Y(t)
 - We can compare them by looking at the cross-correlation and cross-covariance:

Cross-correlation
$$R_{XY}(t_1, t_2) = E[X(t_1)Y(t_2)^*]$$

Cross-covariance
$$C_{XY}(t_1, t_2) = E[X(t_1)Y(t_2)^*] - E[X(t_1)]E[Y(t_2)]$$

Ensemble Cross-correlation

Ensemble means that it applied for the ensemble of the two processes

In general:

$$R_{XY}(t_1, t_2) = E[X(t_1)Y(t_2)^*]$$

$$= \iint_{-\infty}^{\infty} x(t_1) y(t_2)^* f_{X(t_1),Y(t_2)}(x(t_1), y(t_2)) dx(t_1) dy(t_2)$$

For two WSS stationary processes:

$$R_{XY}(t_1, t_2) = R_{XY}(t_1 + T, t_2 + T) = E[X(t_1 + T)Y(t_2 + T)^*]$$

• We write: $R_{XY}(\tau) = E[X(t) \cdot Y(t+\tau)^*]$

Cross-Correlation Functions

• For Real WSS processes X(t) and Y(t):

$$R_{XY}(\tau) = E[X(t)Y(t+\tau)]$$

- Properties of the cross-correlation function $R_{XY}(\tau)$:
 - $ightharpoonup R_{XY}(\tau) = R_{YX}(-\tau)$
 - $> |R_{XY}(\tau)| \le \sqrt{R_{XX}(0)R_{YY}(0)} = \sqrt{E[X^2]E[Y^2]}$
 - $|R_{XY}(\tau)| \le \frac{1}{2} (R_{XX}(0) + R_{YY}(0))$
 - > If X(t) and Y(t) are orthogonal, then $R_{XY}(\tau) = 0$
 - > If X(t) and Y(t) are independent, then $R_{XY}(\tau) = \mu_X \cdot \mu_Y$

Temporal Cross-correlation

Temporal only looks at one realization of the two stochastic processes.

The temporal cross-correlation between X and Y:

Convolution

$$\mathcal{R}_{XY}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t) \cdot y(t+\tau) dt$$

 If the two processes are <u>ergodic</u> the temporal cross-correlation is equal to the ensemble cross-correlation:

$$R_{XY}(\tau) = \mathcal{R}_{XY}(\tau)$$
 Ensemble
$$R_{YX}(\tau) = \mathcal{R}_{YX}(\tau)$$
 Temporal

Cross-correlation – Uncalibrated noisy signal

- Comparing two signals:
 - \triangleright An uncalibrated and noisy signal: $f_2(t)$
 - > Reference signal: $f_0(t) = 10 \cdot e^{-10t^2}$

Cross-correlation – Uncalibrated noisy signal

- Comparing two signals:
 - \triangleright An uncalibrated and noisy signal $f_2(t)$
 - > Reference signal $f_0(t) = 10 \cdot e^{-10t^2}$
- Cross-correlation: $R_{02}(\tau) = \int_{-\infty}^{\infty} f_0(t) \cdot f_2(t+\tau) dt$

Deterministic vs. Stochastic

The probability mass function:

The two random processes have the same pmf.

Deterministic

Autocorrelation for Stochastic

-200

- Frequency domain:
 - \triangleright Deterministic signals $f(t) \rightarrow$ Fourier-transformation $\mathcal{F}(f(t))$
 - \triangleright Random signals X(t) \rightarrow ÷Fourier-transformation
- For Real WSS:
- Properties of the autocorrelation function $R_{XX}(\tau)$:
 - > If X(t) changes fast, then $R_{XX}(\tau)$ decreases fast from $\tau = 0$
 - > If X(t) changes slowly, then $R_{XX}(\tau)$ decreases slowly from $\tau = 0$
 - > If X(t) is periodic, then $R_{XX}(\tau)$ is also periodic
 - $\rightarrow R_{XX}(\tau)$ contain information about the frequency content in X(t)

• Deterministic signals x(t):

- Average power: $P_X = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} x(t)^2 dt$
- x(t) periodic T_0 : $\langle R_{XX}(\tau) \rangle_{T_0} = \frac{1}{T_0} \int_0^{T_0} x(t) x(t+\tau) dt$
- Power Spectral Density Function (psd):

$$S_{XX}(f) = \mathcal{F}(\langle R_{XX}(\tau) \rangle_{T_0}) \Rightarrow P_X = \int_{-\infty}^{\infty} S_{XX}(f) df$$
 Fourier-transform
Average power in $x(t)$

- WSS random signals X(t):
- Power Spectral Density Function (psd):

Significant Density Function (psu). Fourier-transform
$$S_{XX}(f) = \mathcal{F}(R_{XX}(\tau)) = \int_{-\infty}^{\infty} R_{XX}(\tau) e^{-j \cdot 2\pi f \cdot \tau} d\tau$$

Invers Fourier-transform

$$\Rightarrow R_{XX}(\tau) = \mathcal{F}^{-1}(S_{XX}(f)) = \int_{-\infty}^{\infty} S_{XX}(f) e^{j \cdot 2\pi f \cdot \tau} df$$

Figure 3.19a Psd of a lowpass random process X(t).

Figure 3.19 Autocorrelation function of X(t).

- Properties of psd $S_{XX}(f)$ (spectrum of X(t)):
 - $\succ S_{XX}(f) \in \mathbb{R}$
 - $ightharpoonup S_{XX}(f) \ge 0$
 - ightharpoonup If $X(t) \in \mathbb{R}$: $R_{XX}(-\tau) = R_{XX}(\tau)$ and $S_{XX}(-f) = S_{XX}(f) \to \text{even functions}$
 - \succ If X(t) periodic components: $S_{XX}(f)$ will have impulses (δ-functions)
 - $[S_{XX}(f)] = \frac{W}{Hz} \rightarrow \text{Distribution of power with frequency (power spectral density of the stationary random process X(t))}$
 - $P_X = E[X(t)^2] = R_{XX}(0) = \int_{-\infty}^{\infty} S_{XX}(f) df$ i.e. if X(t) = V(t) (voltage signal) $P_X = P_X =$
 - $ho P_X[f_1, f_2] = 2 \int_{f_1}^{f_2} S_{XX}(f) df \rightarrow \text{Power in the frequency-interval } [f_1, f_2]$

Power Spectral Density – Random Binary Signal

Figures from "Random Signals"

Figure 3.7 Random binary waveform.

Figure 3.18a Autocorrelation function of the random binary waveform.

Figure 3.18b Power spectral density function of the random binary waveform.

Words and Concepts to Know

Cross-correlation

Power Spectral Density

Deterministic

Cross-covariance

psd

Temporal Autocovariance

Autocorrelation Coefficient

Temporal cross-correlation

Non-deterministic