Chapitre 5

Interférences en lumière non monochromatique

Spectroscopie interférentielle

A - Spectre de sources

Cas idéal

onde monochromatique

Cas réel

superposition d'ondes monochromatiques

A.1 Paramètres descriptifs d'une source monochromatique

Pulsation : ω

Longueur d'onde : $\lambda = \frac{2\pi c}{\omega}$

Vecteur d'onde spatial : $k = \frac{\omega}{c} = \frac{2\pi}{\lambda}$

Fréquence : $f = \frac{\omega}{2\pi}$

Nombre d'onde : $\sigma = \frac{1}{\lambda}$

A.1 Sources à spectre discret

Ex: lasers, lampe spectrales

A.2 Sources réelles à spectre continu

Soleil:

Lampe à filament:

Lampe fluorescente:

DEL:

Halogène:

On définit $B_{\omega}(\omega)$ ou $B_{\lambda}(\lambda)$ la **densité spectrale de puissance** 功率谱密度 de la source telle que

$$d\mathcal{P} = B_{\omega}(\omega)d\omega = B_{\lambda}(\lambda)d\lambda$$

 $B_{\omega}(\omega)$ s'exprime en Joules

Question 5.1

Déterminer en fonction de B_{ω} les densités spectrales en fréquence, nombre d'onde et pulsation spatiale : $B_f(f)$, $B_{\sigma}(\sigma)$, $B_k(k)$.

Préciser les dimensions de chacune de ces grandeurs.

A.4 Largeur spectrale 谱宽

On appelle $\Delta \omega$ la largeur spectrale du spectre à mi-hauteur

$$\Delta\omega \in \left[\omega_0 - \frac{\Delta\omega}{2} ; \omega_0 + \frac{\Delta\omega}{2}\right]$$

correspond à

$$\Delta \lambda \in \left[\frac{2\pi c}{\omega_0 + \frac{\Delta \omega}{2}} ; \frac{2\pi c}{\omega_0 - \frac{\Delta \omega}{2}} \right]$$

Montrer que

$$\frac{\Delta\lambda}{\lambda_0}\cong\frac{\Delta\omega}{\omega_0}$$

Question 5.2

Déterminer les largeurs Δk , $\Delta \sigma$, Δf pour une source de faible largeur spectrale en pulsation $\Delta \omega$

Sources réelles - Ordres de grandeur

Source	$\Delta f = \frac{\Delta \omega}{2\pi}$	$\Delta \lambda$
Laser hélium-néon stabilisé	$\sim 100 \text{ kHz}$	$\sim 10^{-15} \text{ m}$
Laser courant de laboratoire	$\sim 1~\mathrm{MHz}$	$\sim 10^{-14} \text{ m}$
Lampe spectrale	$\sim 10~\mathrm{GHz}$	$\sim 10^{-10} \text{ m}$
(Filtre coloré)	$\sim 10~\mathrm{THz}$	$\sim 5 \times 10^{-9} \text{ m}$

Approximation monochromatique si $\Delta\omega\ll\omega_0$

et la densité spectrale $B_{\omega,max} \sim \frac{\mathcal{P}}{\Delta \omega}$ est maximale

B - Interférences à deux ondes en lumière monochromatique

L'éclairement $I(\delta)$ nous donne des informations sur les caractéristiques spectrales de la source.

Comment cela est possible ?

B.1 Source à spectre discret

Cas d'une source monochromatique (rappel)

$$I(\delta) = 2I_0 \left(1 + \cos\left(\frac{2\pi}{\lambda_0}\delta\right) \right)$$

La période de I est la longueur d'onde λ

Doublet spectral

La source est composée de deux sources monochromatiques de même intensité I_0 et de pulsations ω_1 et $\omega_2(>\omega_1)$.

Sources non cohérentes

⇒les éclairements s'additionnent

Montrer que

$$I(\delta) = 4I_0 \left(1 + \cos\left(\frac{\omega_m}{c}\delta\right) \cos\left(\frac{\Delta\omega}{2c}\delta\right) \right)$$

Définir I_{max} et I_{min} Exprimer le contraste γ Regarder les périodicités

Phénomène de **battement** 拍(现象)

Question 5.3

Déterminer graphiquement le rapport $\frac{\Delta \omega}{\omega_m}$ de la figure d'interférence Figure 5.5

Question 5.4

Pour le doublet du sodium, montrer que le contraste varie périodiquement avec δ avec une période de l'ordre de 0,58 mm

Mesure de l'écart du doublet du sodium $\Delta\lambda$ avec l'IM en lame d'air (voir TP7)

Figure 3 - Éclairement dans le cas du doublet du sodium

B.2 Source de spectre continu

Cas général

Pour une source de spectre continu, chaque intervalle $[\omega; \omega + d\omega]$ donne un éclairement d'interférences monochromatique proportionnel à la puissance émise dans cet intervalle $B_{\omega}(\omega) d\omega$

L'éclairement global est la somme des éclairements de chaque intervalle spectral

On a donc

$$I(\delta) = 2K \int_0^\infty B_\omega(\omega) \left(1 + \cos\left(\frac{\omega}{c}\delta\right) \right) d\omega$$

Transformée de Fourier 傅里叶变换 en cosinus

Cas d'une source de densité spectrale rectangulaire

Montrer que

$$I(\delta) = 2I_0 \left(1 + sinc\left(\frac{\Delta\omega}{2c}\delta\right) \cos\left(\frac{\omega_m}{c}\delta\right) \right)$$

Regarder les périodicités

Définir I_{max} et I_{min} Exprimer le contraste γ

Cas d'une source de spectre quelconque de largeur spectrale $\Delta \omega$

On généralise les résultats précédents :

- Les interférences ne sont visibles que si

$$|\delta| \le \frac{2\pi c}{\Delta \omega}$$

- Le nombre de franges visibles est de l'ordre de

$$N \cong \frac{2\omega}{\Delta\omega}$$

Mesure de la largeur spectrale d'un **filtre coloré** 滤色器 (voir TP8)

Description spectrale

$$|\delta| \leq \frac{2\pi c}{\Delta \omega}$$

Description modèle du train d'onde

$$|\delta| \leq l_c$$

Montrer que

$$l_c = \frac{\lambda^2}{\Delta \lambda}$$

B.3 Conséquence et applications

Montage des trous d'Young

$$|\delta| \le l_c$$

Avec une source de longueur de cohérence l_c les interférences ne sont visibles qu'au centre de l'écran si

$$|x| < \frac{Dl_c}{a}$$

En lumière blanche

En un point *M* de l'écran, les longueurs d'onde destructives en cet endroit on une intensité nulle. Ces longueurs d'ondes vérifient

$$\lambda_m = \frac{ax}{D\left(m + \frac{1}{2}\right)}$$

Le spectre associé est appelé spectre cannelé

Spectre cannelé

Les cannelures correspondent à un ordre d'interférence demi-entier

Tomographie 断层摄影术 par cohérence optique (sigle anglais OCT)

Technique utilisée en **ophtalmologie** 眼科 pour l'étude de la **rétine** 视网膜 des patients

Tomographie 断层摄影术 par cohérence optique (sigle anglais OCT)

Les interférences ne sont visibles que si

$$2|e| \le l_c$$

Avec une source de grande largeur de raies les interférences ne sont visibles que si l'on est tout près du contact optique.

Interférométrie par TF (transformée de Fourier) 傅里叶变换 à l'aide d'un IM

Utilisée pour des applications de spectroscopie : analyse de données et comparaison avec un modèle expérimental.

C - Spectroscope à réseau

C.1 Principe et pouvoir dispersif

Rappel:

$$a(\sin \theta_m - \sin i) = m\lambda_0$$

Le **pouvoir dispersif** 色散率,色散本领à l'ordre *m* est défini par

$$P_{d,m} = \left| \frac{\mathrm{d}\theta_m}{\mathrm{d}\lambda} \right| \quad \mathbf{v}$$

A partir de la relation des réseaux, montrer que

$$P_{d,m} = \frac{|m|}{a\cos(\theta_m)}$$

Comment maximiser $P_{d,m}$?

Pour $\underline{\text{maximiser}} P_{d,m}$ on a intérêt à :

- se placer à m élevé
- choisir un pas de réseau a assez petit

Exemple: doublet du sodium

Chevauchement des ordres 叠级

On étudie un spectre dans l'intervalle $[\lambda_1, \lambda_2]$. La lumière d'ordre m occupe l'intervalle angulaire $[\theta_{m,\lambda_1}, \theta_{m,\lambda_2}]$.

Pour éviter que les différents ordres se superposent, montrer que

$$m < \frac{\lambda_1}{\lambda_2 - \lambda_1}$$

Pouvoir de résolution

Quel est le plus petit écart $\Delta \lambda$ que l'on peut séparer à l'aide d'un spectroscope à réseau ?

Critère de Rayleigh 瑞利判据

La largeur entre les deux maxima d'intensité doit être supérieure ou égale à la demi largeur angulaire du pic d'intensité d'ordre m

C.2 Mise en œuvre expérimentale

Principe des monochromateurs 单色器

2 et 4: miroirs concaves

3 : réseau de diffraction

C.3 Réseaux de la vie courante

Certaines structures se comportent comme de façon analogue aux réseaux de diffraction

Exemples de la vie courante les disques optiques (CD, DVD, Blu-ray)

les ailes de papillon, les **plumes de paon** 孔雀羽毛 ont des structures périodiques qui colorent par interférences le lumière réfléchie

D - Couleurs interférentielles

D.1 Interférences créées par des lames transparentes

Rappel: coefficients de réflexion et de transmission en amplitude

$$r = \frac{n_1 - n_2}{n_1 + n_2}$$
 et $t = \frac{2n_1}{n_1 + n_2}$

$$t = \frac{2n_1}{n_1 + n_2}$$

On considère les interférences entre deux ondes réfléchies successives

Question 5.6

Si \underline{A}_0 est l'amplitude de l'onde incidente, déterminer les amplitudes $|\underline{A}_1|$ et $|\underline{A}_2|$ des deux ondes indiquées.

Faire l'application numérique avec $n_0=n_1=1$, n=1,5.

Lame parfaitement parallèle

⇒ Franges <u>d'égale inclinaison</u>

Lame légèrement inclinée

⇒Franges <u>d'égale épaisseur</u>

En lumière blanche, on parle de couleurs interférentielles

D.2 Exemples de coloration interférentielle

Lame à faces parallèles en incidence normale

Déphasage entre les deux ondes réfléchies

$$\Delta \varphi = \frac{2\pi}{\lambda} \times 2ne + \pi$$

Interférences constructives

$$\Delta \varphi = m \times 2\pi$$

Interférences destructives

$$\Delta \varphi = \left(m + \frac{1}{2}\right) \times 2\pi$$

En lumière blanche, il existe des longueurs d'ondes λ_m pour lesquelles l'intensité réfléchie est nulle. Elles vérifient

$$\lambda_m = \frac{2ne}{\left(m + \frac{1}{2}\right)}$$

Question 5.7

Pour $e=10~\mu m$ et n=1,5, combien existe-t-il de longueurs d'ondes éteintes dans le spectre du visible ?

Il existe des longueurs d'ondes λ_m pour les quelles l'intensité réfléchie est renforcée. Elles vérifient

$$\lambda_m = \frac{2ne}{m}$$

Exemples de la vie courante

Bulle de savon 肥皂泡

Film d'huile à la surface du sol

Lame d'air entre lame de verre

Insectes recouverts d'une couche **transparente** 透明度 sur leur **carapace** 甲壳

Nacre 珍珠母 d'une coquille d'huître 牡蛎壳

Fin du chapitre 5