Méthodes d'analyse multicritères

Mohamed Essaied Hamrita

2022

Table des matières

1	Introduction			3
	1.1	Défini	tions	3
		1.1.1	Actions ou alternatives	3
		1.1.2	Critère	3
		1.1.3	Poids	3
		1.1.4	Matrice ou tableau de performance	3
		1.1.5	Préférences	3
	1.2	La noi	rmalisation	4
2	La	méthod	de de la somme pondérée	6

1 Introduction

Les méthodes d'analyse multicritère ont pour but la résolution des problèmes d'Aide à la décision multicritère. Elles constituent une étape importante du processus de décision, qui suit celle d'identification et de définition du problème, et aboutissent au choix d'une ou plusieurs solutions optimale(s).

Il existe de nombreuses méthodes d'analyse multicritère, mais celles-ci peuvent être regroupées en deux approches:

- agrégation a priori de critères en un critère unique (somme pondérée, analyse hiérarchique).
- approche fondée sur le surclassement (ELECTRE, PROMOTHEE).

1.1 Définitions

1.1.1 Actions ou alternatives

L'Aide à la décision multicritère s'intéresse au choix parmi un nombre fini d'actions possibles (projet, investissement, décision, solution, plan, variante, candidat...) pour atteindre un objectif.

$$A = \{a_1, a_2, \dots a_n\}$$

1.1.2 Critère

Un critère est une fonction définie sur l'ensemble des actions représentant les préférences de l'utilisateur selon son point de vue.

$$C = \{c_1, c_2, \dots, c_m\}$$

1.1.3 Poids

Le poids mesure l'importance d'un critère par rapport aux autres du point de vue du décideur.

1.1.4 Matrice ou tableau de performance

Une caractéristique standard de l'analyse multicritères est la matrice de performance dans laquelle chaque ligne décrit une option (alternative) et chaque colonne décrit la performance des options par rapport à chaque critère.

Actions	C_1	C_2		C_m
a_1	a_{11}	a_{12}		a_{1m}
a_2	a_{21}	a_{22}		a_{2m}
:	:	:	:	:
a_n	a_{n1}	a_{n2}		a_{nm}
Poids	w_1	w_2		w_m

1.1.5 Préférences

Un ensemble de fonctions de préférences qui exprime comment on préfère une action plutôt qu'une autre.

a est préféré à b:aPb

a est indifférent à b:aIb

a et b incomparable : aRb.

Propriétés des relations de préférences :

La relation P est **antisymétrique**: $aPb \Longrightarrow \text{non } bPa$.

La relation P est **transitive**: aPb et $bPc \Longrightarrow aPc$.

La relation I est **réflexive**: aIa.

La relation R est **irréflexive**: non aRa.

Exemple: Considérons le problème du choix d'une voiture. Les critères peuvent être : prix, puissance, économie, confort. Les alternatives : Peugeot, Citroën, Renault, Volkswagen, Toyota.

Marque	Prix	Puissance	Consommation	Confort
Peugeot	31000	75	7	3
Citroën	32500	75	7.5	3
Renault	36000	85	6.5	4
Volkswagen	42000	110	7	5
Toyota	45000	90	5.5	6
Poids	4	3	2	1

Le choix se repose sur la **minimisation** du prix et de la consommation et la **maximisation** de la puissance et du confort.

D'après le critère Prix, on a Peugeot est préféré à Citroën. Tandis que, Peugeot est indifférent à Citroën du point de vue puissance et confort.

1.2 La normalisation

Il existe plusieurs définitions de la normalisation des données, selon le domaine d'étude. Par exemple, dans les bases de données, la normalisation des données est considérée comme un processus où les attributs de données, au sein d'un modèle de données, sont organisés en tableaux pour augmenter la cohésion et l'efficacité de la gestion des données. Dans la théorie statistique et ses applications, la définition la plus courante est le processus d'ajustement des valeurs mesurées sur différentes échelles à une échelle commune, souvent avant de les agréger.

En général, la normalisation dans l'analyse multicritères est un processus de transformation pour obtenir des données d'entrée **numériques** et **comparables** en utilisant une échelle commune. Le tableau suivant résume les différentes méthodes de normalisation.

Méthode	$\mathrm{objectif}_j$	Formule
Linéaire Max	Max	$v_i = \frac{a_{ij}}{\max_i(a_{ij})}$
	Min	$v_i = \frac{\min_i(a_{ij})}{a_{ij}}$
Linéaire Max-Min	Max	$v_i = \frac{a_{ij} - \min_i(a_{ij})}{\max_i(a_{ij}) - \min_i(a_{ij})}$
	Min	$v_i = \frac{\max_i(a_{ij}) - a_{ij}}{\max_i(a_{ij}) - \min_i(a_{ij})}$
Linéaire somme	Max	$v_i = \frac{a_{ij}}{\sum_i a_{ij}}$
	Min	$v_i = \frac{1/a_{ij}}{\sum_i 1/a_{ij}}$
Normalisation vectorielle	Max	$v_i = \frac{a_{ij}}{\sqrt{\sum_i a_{ij}^2}}$
	Min	$v_i = 1 - \frac{a_{ij}}{\sqrt{\sum_i a_{ij}^2}}$

Table 1: Tableau normalisé - linéaire Max

	Prix	Puissance	Consommation	Confort
Peugeot	1.0000	0.6818	0.7857	0.5000
Citroën	0.9538	0.6818	0.7333	0.5000
Renault	0.8611	0.7727	0.8462	0.6667
Volkswagen	0.7381	1.0000	0.7857	0.8333
Toyota	0.6889	0.8182	1.0000	1.0000

Table 2: Tableau normalisé - linéaire Max-Min

	Prix	Puissance	Consommation	Confort
Peugeot	1.0000	0.0000	0.25	0.0000
Citroën	0.8929	0.0000	0.00	0.0000
Renault	0.6429	0.2857	0.50	0.3333
Volkswagen	0.2143	1.0000	0.25	0.6667
Toyota	0.0000	0.4286	1.00	1.0000

Table 3: Tableau normalisé - linéaire somme

	Prix	Puissance	Consommation	Confort
Peugeot	0.2357	0.1724	0.1893	0.1429
Citroën	0.2249	0.1724	0.1767	0.1429
Renault	0.2030	0.1954	0.2038	0.1905
Volkswagen	0.1740	0.2529	0.1893	0.2381
Toyota	0.1624	0.2069	0.2409	0.2857

Tableau normalisé - vectorielle

	Prix	Puissance	Consommation	Confort
Peugeot	0.6322	0.3814	0.5351	0.3078
Citroën	0.6144	0.3814	0.5019	0.3078
Renault	0.5728	0.4322	0.5683	0.4104
Volkswagen	0.5016	0.5593	0.5351	0.5130
Toyota	0.4660	0.4576	0.6348	0.6156

2	La méthode de la somme pondérée