Yakeen NEET 2.0 2026

Physics by Manish Raj Sir Laws of Motion

DPP: 1

- **Q1** A particle is in a straight line motion with uniform velocity. A force is not required
 - (A) To increase the speed
 - (B) To decrease the speed
 - (C) To maintain the same speed
 - (D) To change the direction
- **Q2** A body of mass 40 g is moving with a constant velocity of 2 cm/s on a horizontal frictionless table. The force on the body (in dynes) is
 - (A) zero
- (B) 39200
- (C) 160
- (D) 80
- ${\bf Q3}$. An aircraft is moving with a velocity of $300~ms^{-1}.$ If all the forces acting on it are balanced, then
 - (A) It still moves with the same velocity
 - (B) It will be just floating at the same point in space
 - (C) It will fall down instantaneously
 - (D) It will lose its velocity gradually
- $\bf Q4$ A body of mass 2~kg is sliding with a constant velocity of 4~m/s on a frictionless horizontal table. The force required to keep the body moving with the same velocity is
 - (A) 8 N
 - (B) 0 N
 - (C) $2 \times 10^4 \text{ N}$
 - (D) 12 N

When a train stops suddenly, passengers in the running train feel an instant jerk in the forward direction because

- (A) The back of seat suddenly pushes the passengers forward
- (B) Inertia of rest stops the train and takes the body forward
- (C) Upper part of the body continues to be in the state of motion whereas the lower part of the body in contact with seat remains at rest
- (D) Nothing can be said due to insufficient data
- **Q6** A man getting down a running bus falls forward because
 - (A) Due to inertia of rest, road is left behind and man reaches forward
 - (B) Due to inertia of motion upper part of body continues to be in motion in forward direction while feet come to rest as soon as they touch the road
 - (C) He leans forward as a matter of habit
 - (D) Of the combined effect of all the three factors stated in (1), (2) and (3)
- Q7 There are two bodies A&B of same mass. Body A is at rest while body B is under going uniform motion,

which is correct statements?

- (A) Inertia of A> inertia of B
- (B) Inertia of B > inertia of A
- (C) Inertia of A = inertia of B

Q5

- (D) Either $1^{\rm st}$, $2^{\rm nd}$ or $3^{\rm rd}$ depending upon the shape of body.
- **Q8** In a circus a horse rider takes a vertically jump on a moving horse, and falls back on the horse because
 - (A) the inertia of motion is present
 - (B) the length of the circus horse is large
 - (C) the motion is in circular path
 - (D) in reality the rider does not jump
- **Q9** A body of mass $5~\mathrm{kg}$ is suspended by a spring balance on an inclined plane as shown in figure. The spring balance measure

- (A) 50 N
- (B) 25 N
- (C) 500 N
- (D) 10 N
- **Q10** Two masses M_1 and M_2 connected by means of a string which is made to pass over light, smooth pulley are in equilibrium on a fixed smooth wedge as shown in figure. If $\theta=60^\circ$ and $\alpha=30^\circ$, then the ratio of M_1 to M_2 is:

- (A) 1:2
- (B) $2:\sqrt{3}$
- (C) $1:\sqrt{3}$
- (D) $\sqrt{3}:1$
- Q11 A mass is suspended by a rope from a rigid support at A as shown in figure. Another rope is tied at the end B, and it is pulled horizontally with a force F. If the rope AB makes an angle θ with the vertical in equilibrium, then the tension in the string AB is

- (A) $F \sin \theta$
- (B) $F/\sin\theta$
- (C) $F\cos\theta$
- (D) $F/\cos\theta$
- **Q12** Reading of spring balance is $(\mathrm{g}=10~\mathrm{m/s^2})$

- (A) 1 kg wt
- (B) 2 kg wt
- (C) 3 kg wt
- (D) 4 kg wt
- **Q13** A block is placed on a table. The force of reaction will be
 - (A) Downwards by the table
 - (B) Upwards by the table
 - (C) No reaction force

Answer	Key
---------------	-----

Q1	(C)	Q8	(A)
Q2	(A)	Q8 Q9 Q10	(B)
Q3	(A)	Q10	(C)
Q4	(B)	Q11	(B)
Q5	(C)	Q12	
Q6	(B)	Q13	(B)
Q7	(C)		

Master NCERT with PW Books APP