Machine Learning Model Tracking Document

1. Dataset Information

Dataset Name:	Well 283
Number of Samples:	283
Number of Features:	4 (Tf, Rs, Gg, Api)
Target Variable:	Pb
Outlier Handling:	None
Feature Engineering Applied:	None
Scaling/Normalization Applied:	None
Encoding Applied:	None

2. Preprocessing Steps

Step	Description
Train-Test Split	70% - 30%
Shuffling	Yes, using random_state=42
Handling Missing Data	None
Feature Scaling	SVM only
Feature Selection	None

3. Models Used & Hyperparameters

Model	Hyperparameters	Training Time	
Linear Regression	None	0.0008	
Ridge Regression	alpha = 1.29	0.0006	
Lasso Regression	o Regression alpha = 10.0		
Decision Tree	max_depth = 13	0.0008	
KNN	n_neighbors = 11	0.0006	
SVR	C = 100.0, kernel = linear	2.0789	

4. Evaluation Metrics

Model	MSE	RMSE	MAE	R ² Score	Adjusted R ²
Linear Regression	78159.1	279.57	190.75	0.8900	0.8845
Lasso Regression	63632.3	252.25	179.87	0.9105	0.9060
Ridge Regression	62918.3	250.84	178.56	0.9115	0.9071
Decision Tree	18932.5	137.60	98.39	0.9734	0.9720
KNN	74393.8	272.75	196.76	0.8953	0.8901
SVR	86506.3	294.12	195.92	0.8783	0.8722

5. Cross-Validation Summary (5-Fold)

Model	RMSE Mean	RMSE Std	MAE Mean	MAE Std	R ² Mean	R ² Std
Decision Tree	181.06	38.18	113.59	24.43	0.9536	0.0174
Linear Regression	248.61	45.50	180.10	21.00	0.9116	0.0333
Ridge Regression	259.79	45.44	187.98	25.86	0.9049	0.0303
Lasso Regression	262.16	47.69	189.36	27.28	0.9029	0.0322
KNN	302.92	42.48	211.00	27.34	0.8723	0.0312
SVR	358.53	41.30	247.24	25.61	0.8212	0.0396

6. Visualizations

Figure 1: Actual vs. Predicted Values for Pb (Well 283)

Figure 2: Bar Charts of MSE, RMSE, MAE for Pb (Well 283)

Figure 3: Bar Charts of \mathbb{R}^2 and Adjusted \mathbb{R}^2 for Pb (Well 283)

Figure 4: Error Bars for RMSE and R^2 from CV for Pb (Well 283)

7. Observations & Next Steps

- **Best Performing Model**: Decision Tree (RMSE: ~137.60, R²: ~0.9734)
 - Decision Tree performed best across all test metrics
 - o Regularized Linear Models (Ridge, Lasso) slightly better than Linear
 - o SVR was the weakest model

8. Code Access

The complete source code for data preprocessing, model training, evaluation, and visualization is <u>available here</u>. The repository includes organized Jupyter notebooks for each phase, dataset, and target, as well as requirements for reproducibility.