

Bancos de Dados

Profa. Patrícia R. Oliveira EACH / USP

Introdução a Bancos de Dados

Introdução

- Sistemas de Banco de Dados (SBD's) são componentes essenciais no cotidiano da sociedade moderna.
- Exemplos de atividades do dia-a-dia que envolvem interação com bancos de dados:
 - transações de depósito ou retirada de dinheiro em caixas eletrônicos;
 - efetuação de reservas em hotéis ou em vôos;
 - consultas ao catálogo de uma biblioteca informatizada;
 - compra de produtos via web.

Dados "útéis" para o gerenciamento da informação

• A informação contida no BD deve representar um instante (estado) de uma determinada aplicação. Cada mudança no BD é um reflexo de um evento (ou sequência) que ocorre nesse ambiente.

Modelo de uma parte do Mundo Real (Universo de discurso ou Mini-mundo)

Sistema de Banco ——— de Dados

- Sistema de informação computacional cujo objetivo principal é registrar e manter dados.
- Lida com BDs
- Um Sistema de Banco de Dados (SBD) possui
 4 componentes:
- "Software"
- Usuários

- Dados
- "Hardware"

Importância dos Bancos de Dados

- A competitividade das empresas depende de dados precisos e atualizados.
- Conforme a empresa cresce, aumenta a sua dependência por dados abundantes e complexos.
- Problema: ferramentas de gerenciamento, extração rápida e precisa de informações tornam-se fundamentais.
- Solução: Sistema Gerenciador de Banco de Dados (SGBD).

Sistema Gerenciador de Banco de Dados (SGBD)

- É uma coleção de programas que permite a criação e manutenção de um banco de dados.
- Facilita os processos de <u>definição</u>, <u>construção</u>, <u>manipulação</u> e <u>compartilhamento</u> de banco de dados entre vários usuários e aplicações.
- A definição de um banco de dados implica em especificar os tipos de dados, as estruturas e as restrições para os dados a serem armazenados.

Sistema Gerenciador de Bancos de Dados (SGBD)

- A construção de um banco de dados é o processo de armazenar os dados em alguma mídia apropriada, controlada pelo SGBD.
- A manipulação inclui algumas funções como:
 - pesquisas para recuperar um dado específico;
 - atualização do banco para refletir mudanças no mini-mundo;
 - geração de relatórios.

Sistema Gerenciador de Bancos de Dados (SGBD)

- O compartilhamento permite aos múltiplos usuários e programas acessar de forma concorrente o banco de dados.
- Outras funções importantes de um SGBD são:
 - a proteção do sistema quanto o mau funcionamento ou falhas (crashes) no hardware ou software;
 - a segurança contra acessos não autorizados;
 - a manutenção no sistema de banco de dados, permitindo a evolução dos requisitos ao longo do tempo.

Sistema de Bancos de Dados (SBD)

- <u>Definição</u>: chama-se o banco de dados e o software SGBD, juntos, de <u>Sistema de Banco de</u> <u>Dados</u>.
- Em outras palavras,

Banco de Dados + SGBD = Sistema de Banco de Dados

Sistema de Bancos de Dados (SBD) - Configuração

- No início da computação, programas tinham o único objetivo de armazenar e manipular dados.
- Esses programas gravavam dados em discos, usando estruturas próprias.
- Programas que não conhecessem as estruturas dos dados não poderiam utilizar esses dados.

- Se vários programas precisassem compartilhar os dados de um mesmo arquivo:
 - todos os programas teriam que conhecer e manipular as mesmas estruturas.

- Se algum programa precisasse realizar alguma mudança nas estruturas de dados:
 - todos os programas que acessam esse mesmo arquivo tinham que ser alterados;
- Problema: como garantir a unicidade das estruturas de dados entre os diversos programas devido à existência de redundância?

- Solução: criar um sistema intermediário que:
 - conheça as estruturas de dados do arquivo;
 - forneça apenas os dados que os programas precisam;
 - armazene adequadamente os dados de cada programa.

- Com esse sistema intermediário:
 - os programas "verão" somente os dados que lhes interessam;
 - os programas não precisam conhecer os detalhes de como seus dados estão gravados fisicamente;
 - os programas não precisam ser modificados se as estruturas de dados que manipulam o arquivo forem modificadas;
 - as alterações ficam concentradas no sistema intermediário.

- Com o tempo, esse sistema intermediário passou a gerenciar vários arquivos;
- A essa coleção de arquivos foi dado o nome Banco de Dados e o sistema intermediário recebeu o nome de Sistema Gerenciador de Banco de Dados (SGBD).

- O primeiro SGBD comercial surgiu em 1960
 - Integrated Data Store (IDS), desenvolvido pela GE.
- Com o tempo, surgiram padrões para descrever as estruturas de dados: os modelos de dados;
- A descrição de um banco de dados, segundo um modelo de dados é chamada de meta dados.

- Hoje, um banco de dados:
 - é uma coleção de dados coerentes e logicamente relacionados com algum significado associado;
 - é projetado, construído e constituído por dados que atendem a um propósito específico;
 - representa um aspecto do mundo real (mini-mundo).

Banco de dados de uma universidade:

ALUNO	Nome	Numero	Turma	Curso_Hab
	Smith	17	1	CC
	Brown	8	2	CC

CURSO	NomedoCurso	NumerodoCurso	Creditos	Departamento
	Introdução à Ciência da Computação	CC1310	4	CC
	Estruturas de dados	CC3320	4	СС
	Matemática Discreta	MAT2410	3	MATH
	Banco de dados	CC3380	3	СС

DISCIPLINA	IdentificadordeDisciplina	NumerodoCurso	Semestre	Ano	Instrutor
	85	MAT2410	Segundo Semestre	98	King
	92	CC1310	Segundo Semestre	98	Anderson
	102	CC3320	Primeiro Semestre	99	Knuth
	112	MAT2410	Segundo Semestre	99	Chang
	119	CC1310	Segundo Semestre	99	Anderson
	135	CC3380	Segundo Semestre	99	Stone

HISTORICO_ESCOLAR	NumerodoAluno	Identificador_Disciplinas	Nota
	17	112	В
	17	119	С
	8	85	Α
	8	92	Α
	8	102	В
	8	135	Α

PRE_REQUISITO	NumerodoCurso	NumerodoPre_requisito
	CC3380	CC3320
	CC3380	MAT2410
	CC3320	CC1310

Arquivo ALUNO: conserva os dados de cada estudante na universidade:

ALUNO	Nome	Numero	Turma	Curso_Hab
	Smith	17	1	CC
	Brown	8	2	CC

Arquivo CURSO: preserva os dados sobre cada curso:

CURSO	NomedoCurso	NumerodoCurso	Creditos	Departamento
	Introdução à Ciência da Computação	CC1310	4	CC
	Estruturas de dados	CC3320	4	CC
	Matemática Discreta	MAT2410	3	MAT
	Bancos de Dados	CC3360	3	CC

Arquivo DISCIPLINA: guarda os dados de cada disciplina do curso:

DISCIPLINA	Identificador deDisciplina	NumerodoCurso	Semestre	Ano	Instrutor
-	85	MAT2410	Segundo Semestre	98	King
	92	CC1310	Segundo Semestre	98	Anderson
	102	CC3320	Primeiro Semestre	99	Knuth
	112	MAT2410	Segundo Semestre	99	Chang
	119	CC1310	Segundo Semestre	99	Anderson
	136	CC3380	Segundo Semestre	99	Stone

Arquivo HISTORICO_ESCOLAR: mantém as notas recebidas por aluno nas diversas disciplinas cursadas:

HISTORICO_ESCOLAR	NumerodoAluno	Identificador_Disciplina	Nota
	17	112	В
	17	119	С
	8	85	А
	8	92	А
	8	102	В
	8	135	А

 Arquivo PRE_REQUISITO: armazena os pré-requisitos de cada curso:

PRE_REQUISITO	NumerodoCurso	NumerodoPre_Requisito
	CC3380	CC3320
	CC3380	MAT2410
	CC3320	CC1310

- Para <u>definir</u> esse banco de dados, devemos:
 - especificar a estrutura de cada registro, em cada arquivo;
 - considerar os diferentes tipos de <u>elementos dos</u> <u>dados</u> a serem armazenados em cada registro.

- Cada registro ALUNO inclui os dados:
 - NomedoAluno
 - NumerodoAluno
 - Turma
 - calouro, ou 1
 - veterano, ou 2
 - ...
 - CursoHabilitação
 - Matemática, ou MAT
 - CiênciadaComputação, ou CC

- Cada registro CURSO apresenta dados como:
 - NomedoCurso
 - NumerodoCurso
 - Créditos
 - Departamento (que oferece o curso)

- E necessário, ainda, especificar os tipos de dados para cada elemento de dados em um registro, como:
 - NomedoAluno em ALUNO é uma string (cadeia de caracteres alfabéticos);
 - NumerodoAluno em ALUNO é um inteiro;
 - Nota em HISTORICO_ESCOLAR é um caractere único no conjunto {A, B, C, D, E, F, I};

- Para construir o banco de dados UNIVERSIDADE:
 - armazena-se os dados que representam cada aluno, curso, disciplina, relatório de notas e prérequisitos em cada registro em seu arquivo apropriado.
- Obs: os registros em diferentes arquivos podem estar relacionados.

ALUNO	Nome	Numero	Turma	Curso_Hab
	Smith	17	1	CC
	Brown	8	2	CC

registro para "Smith"
o arquivo ALUNO está
relacionado a dois
registros no arquivo
HISTORICO ESCOLAR

no

HISTORICO_ESCOLAR

NumerodoAluno	Identificador_Disciplina	Nota
17	112	В
17	119	C
8	85	A
8	92	A
8	102	В
8	135	A

- A manipulação do banco de dados envolve operações de:
 - consulta (query)
 - atualização
- Exemplos de consultas:
 - a recuperação do histórico escolar de 'Smith';
 - a relação dos nomes de alunos que cursaram a disciplina do curso de Banco de Dados no segundo semestre de 2009;

- Exemplos de atualizações:
 - mudar a turma de 'Smith' para veteranos;
 - criar uma nova disciplina para o curso de Banco de Dados nesse semestre;
 - colocar a nota A para 'Smith' na disciplina do curso Banco de Dados no último semestre.

- No tradicional processamento de arquivos:
 - cada usuário define e implementa os arquivos necessários para uma aplicação específica;
 - os arquivos são parte do programa da aplicação.

Exemplo de aplicações com processamento de arquivos

- O usuário 1, a secretaria de notas, pode manter um arquivo para os alunos e suas notas.
 - os programas para imprimir o histórico de um aluno e colocar novas notas no arquivo são implementados como parte da aplicação.
- O usuário 2, o departamento de contabilidade, pode manter um arquivo para os alunos e suas mensalidades (pagamentos).

- Conclusão: apesar dos usuários 1 e 2 precisarem dos dados sobre os alunos, cada um deles:
 - mantém suas informações em arquivos separados;
 - implementam seus próprios programas para manipular os dados nos arquivos.

Processamento de Arquivos *versus* Banco de Dados

- Resultados indesejados da abordagem com arquivos:
 - redundâncias na definição e armazenamento dos dados;
 - desperdício de espaço de armazenamento;
 - esforços redundantes para manter os dados comuns atualizados.
- Na abordagem que utiliza um banco de dados:
 - Um único repositório de dados é definido uma única vez, mantido e, então, acessado por vários usuários.

Por que utilizar SBD's?

- Principal argumento: um SBD proporciona à empresa um controle centralizado dos dados.
 - Em um sistema de arquivos, o controle dos dados pode tornar-se difícil.

Outras vantagens importantes:

- 1) Em um SBD, a redundância dos dados pode ser reduzida.
 - Em um sistema de arquivos, as informações podem estar dispersas, o que provoca a redundância.

Por que utilizar SBD's?

2) Em um SBD, é possível evitar inconsistências nos dados, como consequência direta da redução de redundância.

Ou seja,

Redundância controlada — Propagação das atualizações Redundância não controlada — Inconsistência

Por que utilizar SBD's?

- 3) Em um SBD, os dados podem ser compartilhados por diferentes aplicações.
 - Novas aplicações podem ser implementadas sem que se tenha que criar novos arquivos.
- 4) É possível aplicar restrições de segurança a um SBD, das seguintes formas:
 - garantindo que as únicas vias de acesso sejam por meio dos canais adequados;
 - definindo a execução da verificação de acesso à tentativa de acessar dados sensíveis.

Limitações de um SBD

- As limitações de um SBD referem-se principalmente aos custos incrementais e vulnerabilidade do sistema:
 - vulnerabilidade
 — natureza centralizada do sistema;
 - o processo de recuperação de falhas é mais custoso;
 - generalidade que um SGBD fornece para definir e processar os dados;
 - os custos de hardware, software e programadores são mais altos.

Quando utilizar arquivos?

- Quando o banco de dados e as aplicações forem simples, bem definidas e estáveis;
- Quando os requisitos de eficiência em tempo real forem altos;
- Quando os requisitos de acesso forem mono-usuário.

Principais características dos SBD's

- Principais características da abordagem de banco de dados:
 - natureza auto-descritiva do Sistema de Banco de Dados (SBD);
 - isolamento entre os programas e dados e a abstração dos dados;
 - suporte para múltiplas visões dos dados;
 - compartilhamento de dados e suporte a transações multi-usuários.

- O SBD não possui apenas o banco de dados, mas também:
 - uma completa <u>definição</u> ou <u>descrição</u> da estrutura do banco de dados;
 - restrições.

- A definição do banco de dados está armazenada no <u>catálogo</u> do SGBD, que contém:
 - a estrutura de cada arquivo;
 - o tipo e o formato de cada item de dado;
 - restrições sobre os dados.
- A informação armazenada no catálogo é chamada de metadados.

- O catálogo é usado:
 - pelo software SGBD;
 - pelos usuários
 - para buscar informações sobre a estrutura do banco de dados;
- Importância do <u>catálogo</u>:
 - O SGBD não é feito para uma aplicação específica
 - é necessário acessar o catálogo para conhecer os tipos e os formatos dos dados.

- Descrição dos dados no <u>processamento tradicional de</u> <u>arquivos</u>:
 - faz parte dos próprios programas da aplicação;
 - os programas estão restritos a trabalhar com um único banco de dados específico:
 - a estrutura do banco de dados declarada no programa da aplicação.
- <u>Ex</u>: Uma aplicação em C++ pode ter declarações de classes ou estruturas (structs).

Exemplo

- No banco de dados UNIVERSIDADE, o catálogo do SGBD armazena as definições de todos os arquivos:
 - ALUNO;
 - CURSO;
 - DISCIPLINA;
 - HISTORICO_ESCOLAR;
 - PRE_REQUISITO.

- As descrições dos arquivos em um SBD são:
 - especificadas pelo projetista de banco de dados;
 - e armazenadas no catálogo do SGBD.

Isolamento entre os programas e dados e abstração de dados

- Na abordagem tradicional de arquivos, mudanças na estrutura de um arquivo pode exigir alterações em todos os programas que acessam esse arquivo.
- Programas para acesso ao SGBD não exigem essas alterações.

Pergunta: Por que isso acontece?

Isolamento entre os programas e dados e abstração de dados

- Resposta: Em um SBD, a estrutura dos arquivos de dados são armazenadas no catálogo do SGBD, separadamente dos programas de aplicação.
- À essa propriedade de um SBD dá-se o nome de independência programa-dados.

Isolamento entre os programas e dados e abstração de dados

- A característica que permite a independência programa-dados é chamada de <u>abstração de</u> dados.
- Um SGBD oferece uma representação conceitual (modelo) dos dados
 - não inclui muitos detalhes de como os dados são armazenados.

- O modelo de dados utiliza conceitos lógicos:
 - objetos;
 - propriedades dos objetos;
 - inter-relacionamentos entre objetos.
- Pergunta: por que o modelo de dados é importante?

- Resposta: é mais fácil para o usuário entender conceitos lógicos do que conceitos de armazenamento computacionais.
- O modelo de dados esconde detalhes de armazenamento e implementação.

Suporte para múltiplas visões dos dados

Um banco de dados típico tem <u>muitos usuários</u>.

 Cada qual pode solicitar diferentes perspectivas, ou <u>visões</u>, do banco de dados.

Suporte para múltiplas visões dos dados

- Uma visão pode:
 - ser um subconjunto do banco de dados;
 - conter uma visão virtual dos dados:
 - dados derivados dos arquivos do banco de dados mas não explicitamente armazenados.

Exemplo

Duas visões derivadas do banco de dados UNIVERSIDADE:

(a)

HISTORICO_ESCOLAR	NomedoAluno	Histórico Escolar do Aluno				
		NumerodoCurso	Nota	Semestre	Ano	IdDisciplina
	Smith	CC1310	С	Outono	99	119
		MAT2410	В	Outono	99	112
		MAT2410	Α	Outono	98	85
		CC1310	Α	Outono	98	92
		CC3320	В	Primavera	99	102
		CC3380	Α	Outono	99	135

(b)

PRE_REQUISITOS	NomedoCurso	NumerodoCurso	Pre_Requisitos	
		000000	CC3320	
	Banco de Dados	CC3380	MAT2410	
	Estruturas de Dados	CC3320	CC1310	

Compartilhamento de dados e Processamento de transação multiusuários

- Vários usuários podem acessar o banco de dados ao mesmo tempo.
- O SGBD deve prover um controle de concorrência:
 - garante que vários usuários, ao tentar usar o mesmo dado, o façam de forma controlada;
 - assegurar resultados de atualizações corretos;

- Quando muitos atendentes tentam reservar um lugar em um vôo, o SGBD deve:
 - garantir que cada assento possa ser acessado somente por um atendente de cada vez.

Compartilhamento de dados e Processamento de transação multiusuários

- Uma <u>transação</u> é um <u>programa em execução</u> ou <u>processo</u> que inclui um ou mais acessos ao banco de dados, como:
 - leitura de registros;
 - atualização de registros.

Compartilhamento de dados e Processamento de transação multiusuários

- Cada transação deve executar um acesso logicamente correto ao banco de dados
 - para isso, deve ser executada sem a interferência de outras transações.
- A propriedade de isolamento garante que cada transação possa ser efetuada de forma isolada de outras transações.

Leitura

- Elmasri, R.; Navathe, S.B. "Sistemas de Banco de Dados", Pearson Education do Brasil, 4a. Edição, 2005.
 - Capítulo 1: Bancos de Dados e Usuários de banco de dados.