Deep Q-Networks for Event Summarization

Francisco Javier Arceo, Chris Kedzie

Columbia University in the City of New York

December 13, 2016

Event Summarization

Motivation

Deep Q-Networks

Policy

Reward

Q-Learner

Actions

Core Algorithm

Experiments

Benchmarking

DQN-BOW

DQN-LSTM

Resources

Event Summarization

$$\hat{\boldsymbol{\beta}}_{ridge} = argmin_{\beta} (\boldsymbol{y} - \boldsymbol{x}^T \boldsymbol{\beta})^2 + \boldsymbol{\lambda} \boldsymbol{\beta}^2$$
 (1)

► First published by the Russian Mathematician Andrey Nikolayevich Tikhonov (1906-1993) in 1943

Policy

- ▶ A policy takes as input a state and a set of possible actions and returns the optimal state
- ▶ The policy can be deterministic or probabilistic

DQN-LSTM for Event Summarization Training Procedure

```
Input: \{D: \text{ Event queries, } X_d: \text{ Input sentences, } N: \text{ Number of epochs}\}
Output: \{\hat{Q}: \text{ extraction policy, } \tilde{Y}_d: \text{ event summary for query } d\}
 1: Initialize extraction policy \hat{Q} with random weights
 2: Initialize memory and summary: \Gamma, \tilde{Y} = \{\emptyset\}_{d=1}^{|\mathcal{D}|}, \{\emptyset\}_{d=1}^{|\mathcal{D}|}
 3: for epoch = 1, ..., N do
           for query d \in \mathcal{D} do
 4:
                 \vec{X}_d, \vec{Y}_d = \{\text{Extract } t = 1, ..., T_d \ (\text{sentences}_d, \text{summary}_d)\}
 5:
                for x_t, \tilde{y}_t \in X_d, \tilde{Y}_d do
 6:
                      Set s_t = s(x_t, \tilde{y}_t, d)
 7:
                      \forall a_t \in \mathcal{A}(s_t) \text{ compute } \hat{Q}(s_t, a_t) \text{ and select } a_t^* = \operatorname{argmax}_{a_t} \hat{Q}(s_t, a_t)
 8:
                      if random() < \epsilon then select a_t^* at random with Pr(a_t) = \frac{1}{|A|}
 9:
                      Update \tilde{y}_{t+1} according to equation (1)
10.
11:
                      Execute action a_t^* and observe reward r_t and new state s_{t+1}
12:
                      Update \Gamma_d = \Gamma_d \cup \{[s_t, a_t^*, r_t, s_{t+1}]\}
           for j = 1, ..., J transitions sampled from \Gamma do
13:
14:
                                Set y_j = \begin{cases} r_j & \text{if } s_{j+1} \text{ is terminal} \\ r_j + \gamma \max_{a'} \hat{Q}(s_{j+1}, a'; \theta) & \text{if } s_{j+1} \text{ is non-terminal} \end{cases}
                 Perform gradient step on \mathcal{L}(\theta) = (y_i - \hat{Q}(s_i, a_i; \theta))^2
15:
```

Useful Links below

Thank you

► GitHub