Zagadnienia

- 1. Nie wchodzi
- 2. Podstawowe informacje o świetle. Współczynnik załamania dla różnych materiałów. Co można policzyć, znając współczynnik załamania światła (zadanie obliczeniowe, przynieść kalkulator). Prawo lambertabeera. Co to są tensory. Moment dipolowy.
- 3. Mikroskopy, sondy, rozdzielczości, zastosowania (dlaczego taki a nie inny mikroskop). ważne
- 4. Spin elektronu, prąd spinowy, wytwarzanie prądu spinowego, ferromagentyzm i antyferromagnetyzm w ujęciu spintroniki.
- 5. Warstwowe materiały ograniczone kwantowo , wykresy gęstości stanów, wzrost epitaksjalny, kropki kwantowe (wytwarzania, zastosowania, prekursory) (pytanie opsiowe)
- 6. MEMS skrót, metody wytwarzania, zastosowania (pytanie opisowe); wielkości, sensory akutatory przykłady. Maszyny molekularne (przykłady), 'o co chodzi w skalowaniu', optofluidyka
- 7. Materiały węglowe, ruchliwość elektronów w grafenie, powstawanie nanorurek i innych nanostruktur węglowych.
- 8. Podział diód w zależności od sposobu wzbudzania, elektroluminescencja, 'przejście tych spinów przez te dziury', budowa oledów, wydajność, perowskity w fotowoltaice, metoda wytwarzania paneli fotowoltaicznych
- 9. Metody wytwarzania kryształów fotonicznych, wpływ metody na wartość przerwy wzbronionej

Wykład 2

Moment dipolowy

Moment dipolowy układu ładunków punktowych:

 $\mu = \sum_i q_i r_i$, pod warunkiem, że $\sum_i q_i = 0$ (warunek obojętności elektrycznej)

Wzór uogólniony dla "rozmytej" gęstości elektronowej:

$$\mu = e \sum_A Z_A R_A - e \int_V
ho(r) r d au$$

Moment dipolowy wykazują w szczególności cząsteczki dwuatomowe posiadające spolaryzowane wiązanie - najprostsze związki polarne.

Indukowany moment dipolowy i tensor polaryzowalności

Jeżeli umieścimy swobodną cząsteczkę w zewnętrznym polu elektrycznym E to na skutek zmiany rozkładu gęstości elektronowej pojawi się indukowany moment dipolowy μ_{ind}

$$\mu_{ind} = ilde{lpha} E$$

współczynnik $ilde{lpha}$ nazywamy polaryzowalnością

Uogólnienie momentu indukowanego na przestrzeń trójwymiarową:

$$\begin{pmatrix}
\mu_{x,ind} \\
\mu_{y,ind} \\
\mu_{z,ind}
\end{pmatrix} = \begin{pmatrix}
\alpha_{xx} & \alpha_{xy} & \alpha_{xz} \\
\alpha_{yx} & \alpha_{yy} & \alpha_{yz} \\
\alpha_{zx} & \alpha_{zy} & \alpha_{zz}
\end{pmatrix} \begin{pmatrix}
E_{x} \\
E_{y} \\
E_{z}
\end{pmatrix}$$

Tensor – uogólnienie pojęcia wektora; wielkość, której własności pozostają identyczne niezależnie od wybranego układu współrzędnych. Ale co to właściwie znaczy?

Dlaczego ten tensor ma aż 9 pozycji? Bo indukowany moment magnetyczny w danym kierunku (x, y albo z), zależy w różnym stopniu od wartości pola elektrycznego w każdym z trzech kierunków przestrzeni. To, jak zależy, opisuje odpowiedni element danego **wiersza** tensora polaryzowalności. **Ten zapis macierzowy to nic innego jak układ 3 równań.** Całkowity moment indukowany w kierunku x jest sumą momentów indukowanych w tym kierunku przez składową pola elektrycznego w kierunku x, w kierunku y i w kierunku z. $\mu_{x,ind} = \alpha_{xx}E_x + \alpha_{xy}E_y + \alpha_{xz}E_z$

Jako, że przestrzeń opisujemy 3 wymiarami, to gdyby tensor miał mniej elementów to polaryzowalność nie byłaby w pełni opisana - moglibyśmy tak obrócić obiekt w polu, że nie wiedzielibyśmy jaki indukujemy moment. Tensor nie musi mieć zaś więcej elementów, bo kolejne kolumny tensora musiałyby być matematycznie związane z tymi poprzednimi - dałoby się je z nich wywnioskować.

Polaryzacja

Podział:

- polaryzacja indukowana
 - elektronowa przemieszczenie ujemnie naładowanych chmur elektronowych
 - atomowa przemieszczeni dodatnio naładowanych jąder atomowych (jeżeli występują wiązania jonowe to nazywana też jonową)
- polaryzacja orientacyjna (dipolowa)

Każdej z tych polaryzacji odpowiada polaryzowalność (α) i związana z nią polaryzowalność molowa (Π)

Zmienne pole elektryczne (np. pochodzące od fali elektromagnetycznej), powoduje, zależne od częstotliwości, straty energii związane z polaryzacją dipoli, elektronów i atomów. Z tymi stratami związane są zjawiska załamania fali EM, dlatego współczynnik załamania n jest związany z przenikalnością elektryczną ε .

Co można obliczyć znając współczynnik załamania światła?

Coś co w przestrzeni 3-wymiarowej porusza się w jakimś kierunku, można opisać 2 liczbami. Dlatego na przykład pole elektryczne fali elektromagnetycznej można opisać wektorem na płaszczyźnie prostopadłej do kierunku rozchodzenia się fali.

Dlatego też zjawiska związane z polaryzacją fali EM opisują wartości o dwóch współrzędnych np. w relacji Fresnela reflektancje: r_p i r_s , lub współczynniki załamania przy dwójłomności kołowej.

Wzory

Dwójłomność kołowa:

$$\Delta n^C = n_+ - n_-$$

Kąt skręcenia polaryzacji

$$\theta = \frac{\pi (n_{-} - n_{+})}{\lambda} d$$

Skręcalność optyczna

$$\rho = \frac{\pi (n_- - n_+)}{\lambda_0}$$

Kat Brewstera:

$$r_y = 0$$

Polaryzacja przez odbicie

$$r_{y} = \frac{n_{y,2} \cos \theta_{1} - n_{y,1} \cos \theta_{2}}{n_{y,2} \cos \theta_{1} + n_{y,1} \cos \theta_{2}}$$

Wartości współczynnika załamania światła

0środek	n
powietrze	1
woda	1.33
etanol	1.36
szkło	1.52

0środek	n
NaCl	1.54
diament	2.42

Wykład 3

TEM

- modus operandi: przejście wiązki elektronów przez próbkę (próbka musi być cienka, dostajemy projekcję 2D), obraz na "fosforyzującym" (sic! lepiej: "elektroluminescencyjnym") ekranie za próbką.
- rozdzielczość ~1nm

SEM

- mo: próbkę skanuje wysokoenergetyczna wiązka elektronów. Detektory zliczają elektrony wstecznie rozproszone (BSE) przez próbkę.
 Dostajemy mapę 3d powierzchni.
- r: ~5nm

STM

Skaningowy Mikroskop Tunelowy Scanning Tunneling Microcope (STM)

STM mierzy topografię powierzchni przy pomocy prądu tunelowania

- => Prąd tunelowania zależy eksponencjalnie od odległości d między końcówką sondy i powierzchnią
- Sonda jest ostrym stożkiem wykonanym ze stopu (platyna-iryd lub wolfram)
- · Między sondą a próbką przykłada się napięcie
- Gdy sonda zbliży się na niewielką odległość do powierzchni, to elektrony zaczynają tunelować poprzez przerwę
- prądu tunelowania zmienia się wraz z odległością i daje sygnał detektorowi kreującemu obraz

Można badać tylko materiały przewodzące (można ewentualnie karbonizować próbkę, lub naparować na nią metal)

• sonda: platyna-iryd / wolfram

rozdzielczość: 0.01 nm (10pm)

SPM (scannig probe microscopes)

nadają się do badania żywych komórek

AFM

Mikroskop Sił Atomowych (AFM)

- AFM bazuje na podstawach pracy STM
- Sonda jest ostro zakończonym piramidalnym twardym materiałem o średnicy 10 nm
- Sonda (tip) jest przyklejona do elastycznego ramienia (cantilever) (wysokiego na 5 μm i o długości 100-500 μm)
- Siły działające na sondę ze strony podłoża mogą wyginać lub odkształcać ramię
- Wiązka lasera skierowana na ramię w miejscu sondy odbijając się pada na kwadrantowy detektor mierzący odkształcenie ramienia w czasie skanowania

- Komputer tworzy obraz topografii powierzchni na podstawie ruchów ramienia z sondą
- Duże wzmocnienie sygnału uzyskuje się wykorzystując dużą wartość stosunków długośc ramię - detektor i długości samego ramienia
- W wyniku tego dużego wzmocnienia w układzie możliwa jest rejestracja zmian topografii powierzchni w zakresie 1 nm.

sodny: SiN, SiC

mody: tapping (przerywanego kontaktu) , contanc, non-contact

- rozdzielczość 1nm
- przykłady preparatów:
 - drożdże
 - powierzchnie płyt CD, DVD
 - powierzchnia grafitu
 - cienkie warstwy polimerów
- szczególne podtypy
 - LFM (mikroskop sił bocznych, może wykrywać zmiany w składzie)
 - MFM (mikroskop sił magnetycznych, można mierzyć np. dyski HDD)
 - EFM (j.w. tylko polem elektrycznym)
 - FMI (obrazowanie z modulacją siły właściwości mechaniczne [sprężystość/sztywność])

SNOM (scanning near-field optical microscope)

- mo: tunelowanie fotonów przez 80 nm aperturę
- sonda: zaostrzony światłowód pokryty warstwą aluminium
- mody: SFM (shear force), reflection, MAC (magnetic cantilever, ruch o małej amplitudzie)
- preparaty
 - DNA
 - kropki kwantowe

Wykład 4

Momenty magnetyczne powstają w wyniku ruchu elektronów **i spinu elektronów**. Całkowity moment magnetyczny atomu jest sumą momentów pochodzących od wszystkich elektronów i jądra. Moment magnetyczny wynikający z obecności jednego niesparowanego elektronu \rightarrow magneton Bohra = $\mu_B = 9.273 \cdot 10^{-24} A/m2$

Prąd spinowy

Przepływ spinu przy braku przepływu ładunku. Jak można wpływać na kierunek spinu, a co za tym idzie generować prąd spinowy? Polem magnetycznym, efektem Kondo (odwrócenie spinu przy rozproszeniu elektronu w ujęciu falowym na domieszce magnetycznej), optycznie (to chyba znaczy też polem magnetyczny ale z fali EM)

Ferromagnetyzm i antyferromagnetyzm

Zjawisko, w kórym materia wykazuje własne, spontaniczne namagnesowanie. Mają wysoką, dodatnią wartość podatności magnetycznej.

W antyferromagnetykach, momenty magnetyczne ustawione są antyrównolegle, dając zerowe namagnesowanie.

Materialy: metale ferromagnetczne.

Raczej nie są to "nowe materiały magnetyczne", ale w spintronice są stosowane, gdyż:

1 Oddziaływanie wymiany powoduje, że koncentracja elektronów o spinie ↑ i spinie ↓ może być różna.

- 2. Mają anizotropowy magnetoopór.
- N(E) gęstość stanów E_F – energia Fermego w metalu E - energia

₩ Wstrzykiwanie spinu z metalu do metalu

Spin injection from metals into metals

Prąd ładunku przenosi nadmiarową populację spinu do metalu N

Lepszym rozwiązaniem jest stworzenie złącz ferromagnetycznego metalu i półprzewodnika, takich przez które elektrony tunelują.

Gigantyczny magnetoopór w metalach: początki spintroniki.

Opór układów wielowarstwowych złożonych z magnetyka przedzielonego warstwą niemagnetyka silnie zależy od pola magnetycznego.

Wykład 5

RODZAJE STRUKTUR:

- 3D półprzewodnik objętościowy (lity) Ruch nośników nie jest ograniczony w żadnym kierunku
- 2D studnia kwantowa dwuwymiarowa (warstwa półprzewodnika). Ruch nośników ograniczony w jednym wymiarze
- •1D drut kwantowy Ruch nośników ograniczony w dwóch wymiarach
- •0D kropka kwantowa. Ruch nośników ograniczony w trzech wymiarach

Gęstość stanów D(E) jest zdefiniowana jako liczba stanów energetycznych pomiędzy energią E i E+dE, i określona jest jako dn(E)/dE. Dla objętościowego półprzewodnika D(E) ~ $E^{1/2}$

Wzrost epitaksjalny: energia powierzchniowa i naprężenie

- Epitaksja jest procesem polegającym na otrzymywaniu cienkich warstw, w szczególności materiałów półprzewodnikowych.
- Jest to proces wzrostu monokrystalicznej warstwy półprzewodnika na monokrystalicznym podłożu, w kierunku krystalograficznym, zgodnym z orientacją podłoża.
- Wzrastająca warstwa przedłuża strukturę kryształu podłoża stąd termin epitaksjalny, który wywodzi się z greckiego epi - na i taksis uporządkowanie.
- Odwzorowywana jest struktura podłoża orientacja przestrzenna podłoża, kształt i wielkość komórki elementarnej (homoepitaksja).
- Przy krystalizacji innego materiału niż materiał podłoża mówimy o heteroepitaksji.

Wzrost epitaksjalny: energia powierzchniowa i naprężenie

Dwuwymiarowa standardowa epitaksja

Wzrost z naprężeniem

Epitaksja z wiązki molekularnej (MBE)

- wytwarzanie
 - litografia wiązką elektronową
 - epitaksjalny wzrost z naprężeniem (samoorganizujące się kropki kwantowe)
 - mokra synteza w kolbie trójszyjnej (Schlenka) z udziałem czynnika stabilizująceg kropki - en.cap, najczęściej TOPO
- zastosowanie
 - lasery
 - materiały widmami absorpcji/emisjii, zależnymi od wielkości kropek
- skład
 - CdSe + ZnSe
 - CdSe
 - InAs
 - InP +ZnS (korszel)
 - CdS+Hgs (korszel)

Skład	Metoda	Zastosowanie
CdSe + ZnSe	litografia wiązką elektronową	
InAs	epitaksjalny wzrost z naprężeniem	laser

Wykład 6

MEMS - micro electro-mechanical systems, mikrosystemy. Co najmniej jeden wymiar w skali mikro (0.1-100 um)

- wytwarzanie:
 - mikroobróbka krzemu lub szkła
 - anizotropowe trawienie (np. w KOH) z maską
 - dla układów polimerowych (PDMS, PU, PMMA)
 - wytłaczanie na gorąco
 - odlewanie w formie
 - wtryskiwanie
 - litografia
 - Vis
 - UV, X-ray, e-beam
 - FIB
- zastosowania
 - sensory (czujniki)
 - akcelerometr

- mikrofon
- procesory
- aktuatory (siłowniki)
 - mikropompy
 - wtryskarki atramentu
 - elementy komunikacji optycznej
 - lustra skanujące
- przekładnie
- zawiasy
- wytwarzanie 2:
 - odciskanie (replica molding) matryca
 - ullet mikrodrukowanie kontaktowe (μCP) jak pieczątką
 - mikro kontaktowe wytłaczanie
 - nanodrukowanie tipem jak do AFMu (zamoczonym w 'atramecie' albo z rezerwuarem atramentu)
 - dwufotonowa polimeryzacja
- zastosowania 2

Obszary zastosowań MEMS

- Inwazyjne i nieinwazyjne sensory biomedyczne
- Miniaturowe biochemiczne urządzenia analityczne
- Systemy wspomagania pracy serca np. rozruszniki, cewniki
- Systemy podawania leków
- Zaburzenia neurologiczne
- Kontrola pracy silnika i napędu
- Bezpieczeństwo użytkowników samochodów, w systemach hamowania i zawieszenia
- Obróbka sygnałów elektromechanicznych
- Układy rozłożone sensorów do monitorowania stanu zdrowia pacjentów
- Układy sensorów do kontroli systemów aerodynamicznych i hydrodynamicznych
- wielkości

Typowa wielkość	L=100 μm	L=10 μm
Objętość	1 nanolitr	1 pikolitr
Masa	1 μg	1 ng
Siła	10-100 nN	0.1-1 nN
Pole E dla 1V	10 000 V/m	100 000 V/m
Częstotliwość	10-100 kHz	0.1-1 MHz
Stała czasowa	10-100 μs	1-10 μs

Optofluidyka

Systemy wykorzystujące interakcji cieczy i światła. Sensoryka, analiza chemiczna. "Lab-on-a-chip". Pomiary: fotoluminescencji, chemiluminescencji, zmian współczynnika załamania światła, inne spektroskopie. Połączone z mikropompami, mikromieszalnikami, itp. Małe, dokładne, tanie, mobilne, zautomatyzowane. Biosensor, refraktometr, interferometr.

Maszyny molekularne

- rotaksany (pierścień na sztandze)
- katenany (obrączki)
- pochodzenia biologicznego
 - kinezyny
 - maszyny na ATP (pompy ?)

Skalowanie

Mikrostruktury mają znacznie większy stosunek powierzchni do objętości niż struktury milimetrowe

Jakie to ma znaczenie?

- Oddziaływanie gazu z powierzchnią ciała stałego większa czułość sensorów chemicznych
- Szybkie odprowadzanie ciepła, trudno utrzymać gradient temperatury w mikroskali
- Przepływ masy nasyca się szybko w małej objętości, równowaga ustala się szybko, trudno utrzymać gradient koncentracji
- Zanieczyszczenie powierzchni odgrywa dużą rolę w mikroskali

Wykład 7

diament - sp3 grafit - sp2 karbin - sp

grafen fulereny nanorurki

Ruchliwość elektronów w temp. pokojowej $2.5\cdot 10^5 cm2/Vs$

Osiągane są wysokie ruchliwości elektronów właściwie niezależne od temperatury!!! Ruchliwość dziur i elektronów: $10^5cm2/Vs$ Elektronika oparta na grafenie może zastąpić technologię krzemową

Zarówno dziury jak i elektrony mogą być nośnikami ładunku.

Prędkość elektronów na poziomie Fermiego jest odwrotnie proporcjonalna do masy efektywnej - grafen ma tę masę b. małą.

niby półprzewodnik, ale nie ma przerwy energetycznej

Metody otrzymywania fulerenów:

- laserowa
- płominiowa
- elektrołukowa
- pieca słonecznego

potem rozdzielanie

Metody otrzymywania nanorurek:

- elektrołukowa
- elektrołukowa katalityczna (Gd203, Gd)
- katalityczna piroliza węglowodorów
- laserowe rozpylanie grafitu

wysokotemperaturowa synteza elektrolityczna

Nanorurki

- single wall
- multiwall

zig-zag

armchair

Wykład 8

Przykłady luminescencji:

- fotoluminescencja
- elektroluminescencja
- chemoluminescencja
- bioluminescencja
- sonoluminescencja
- katodoluminescencja

Elektroluminescencja to luminescencja wzbudzona przez energię pola elektrycznego.

Gdy złącze p-n zostanie spolaryzowane w kierunku przewodzenia, czyli półprzewodnik p połączony jest z dodatnim biegunem zasilania , wtedy w warstwie typu n, o grubości 1µm, więcej elektronów znajduje się w pasmie przewodnictwa niż na górnych poziomach pasma walencyjnego. Jest to stan odwrócenia obsadzeń (inwersja obsadzeń). Oznacza to, że elektrony mogą przejść na puste poziomy pasma podstawowego i rekombinować z dziurami znajdującymi się po stronie p złącza p-n. Temu przejściu towarzyszy emisja światła widzialnego lub bliskiej podczerwieni.

nista, b) bezpromienista

OLEDs - ORGANICZNE DIODY ELEKTROLUMINESCENCYJNE

Organic Light-Emitting Diodes

R.H. Friend et al., Nature 397, 121 (1990)

ZASADA PRACY OLED

Zwiększanie wydajności OLED powyżej 25%

Aby ominąć ograniczenie 25% wydajności luminescencji:

- zaprojektowano cząsteczki kompleksów
 organicznych zawierających ciężki metal. Ciężki
 metal miksuje stany trypletowe i singletowe na skutek
 sprzężenia spin-orbita pozwalając singletom przejść
 poprzez ISC do emisyjnych stanów trypletowych.
 Pozwala to uzyskać nawet 100% wewnętrzną
 wydajność emisji.
- wykorzystanie procesu opóźnionej fluorescencji, tryplety muszą przejść rISC (reversed Intersystem Crossing) aby wytworzyć singlety. Ten mechanizm może być wydajny tylko wtedy gdy różnica energii między trypletami a singletami jest rzędu energii termicznej w temperaturze pokojowej tzn. 25 meV.

Metoda przygotowania

- Są dwie podstawowe metody:
 - 1) jednokrokowa: spin-coating mieszaniny roztworów CH₃NH₃I i PbI₂
 - 2) dwukrokowa: spin-coating CH₃NH₃I a później PbI₂

Small

Volume 11, Issue 1, pages 10-25, 30 OCT 2014 DOI: 10.1002/smll.201402767 http://onlinelibrary.wiley.com/doi/10.1002/smll.201402767/full#smll201402767-fig-0005

53

Wykład 9

Mikromanipulacja (układanie kulek krzemu i lateksu) - 11% gap

Litografia warstwowa (rentgenowska?) - 27% gap

Sterta drewna (łączenie wytrawionych w krzemie belek) - 17% gap

Litografia UV - 5% gap

GLAD (GLancing angle deposition) - 15% gap

Auto-klonowanie - 14% gap

Metody masowej produkcji:

Litografia dwufotonowa (bez masek)

Sedymentacja z koloidu

Kopolimery blokowe