

TRANSFORMACIONES RÍGIDAS

Alan Reyes-Figueroa Geometría Diferencial

(AULA 06) 26.ENERO.2023

Definición

Sea $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ una función de distancia en \mathbb{R}^n (e.g. la distancia euclideana). Una **transformación rígida (movimiento rígido** o **euclideano**) en \mathbb{R}^n es una transformación $M: \mathbb{R}^n \to \mathbb{R}^n$ que satisface

$$d(M\mathbf{x}, M\mathbf{y}) = d(\mathbf{x}, \mathbf{y}), \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.$$

¿Qué tipos de transformaciones rígidas hay?

• Traslaciones:

Todo vector $\mathbf{v} \in \mathbb{R}^n$ define una única traslación $\mathbf{x} \mapsto \mathbf{x} + \mathbf{v}$. Representamos el grupo de translaciones por \mathbb{R}^n .

• Rotaciones y Reflexiones: Se representan por una trasformación lineal $A: \mathbb{R}^n \to \mathbb{R}^n$ que satisface la propiedad de *isometría*

$$\langle A\mathbf{x}, A\mathbf{y} \rangle = \langle \mathbf{x}, \mathbf{y} \rangle, \quad \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.$$

En consecuencia, A es una matriz ortogonal real (sus columnas son una base ortonormal de \mathbb{R}^n). El grupo de matrices ortogonales se llama el **grupo ortogonal** O(n).

$$A \in O(n)$$
 \Rightarrow $A^{T}A = I$ \Rightarrow $A^{-1} = A^{T}$,
 \Rightarrow $\det(A)^{2} = \det(A^{T}) \det(A) = \det(A^{T}A) = \det(I) = 1$
 \Rightarrow $\det(A) = \pm 1$.

- o Rotaciones: se caracterizan por tener determinante 1, Ellas forman la mitad del grupo ortogonal. El grupo de rotaciones se llama el **grupo especial ortogonal** SO(n).
- <u>Reflexiones</u>: se caracterizan por tener determinante −1. Forman la otra mitad del grupo ortogonal.

Propiedad

Una transformación rígida en \mathbb{R}^n es de la forma

$$M(\mathbf{x}) = A\mathbf{x} + \mathbf{t}, \ \ donde \ A \in O(n), \ \mathbf{t} \in \mathbb{R}^n.$$

<u>Prueba</u>: Traslaciones, rotaciones y reflexiones, son de la forma $A\mathbf{x} + \mathbf{t}$. La composición es de esa forma:

$$A_2(A_1x + t_1) + t_2 = A_2A_1x + (A_2t_1 + t_2) = Ax + t.$$

Definición

El grupo de transformaciones rígidas en \mathbb{R} se llama el **grupo euclideano** E(n).

Propiedad

La longitud de arco es invariante bajo transformaciones rígidas.

Prueba:

Sea $\alpha: I \to \mathbb{R}^n$ curva regular, $M(\mathbf{x}) = A\mathbf{x} + \mathbf{v}$ un movimiento rígido. Entonces $\beta(\mathbf{s}) = (M \circ \alpha)(\mathbf{s})$. Luego

$$\beta'(s) = (M \circ \alpha)'(s) = (A\alpha(s) + \mathbf{v})' = A\alpha'(s).$$

De ahí

$$\begin{array}{lcl} \ell_{\beta}(s) & = & \int_{s_{0}}^{s} |\beta'(u)| \, du \, = \, \int_{s_{0}}^{s} |A\alpha'(u)| \, du \, = \, \int_{s_{0}}^{s} \langle A\alpha'(u), A\alpha'(u) \rangle^{1/2} \, du \\ & = & \int_{s_{0}}^{s} \langle \alpha'(u), \alpha'(u) \rangle^{1/2} \, du \, = \, \int_{s_{0}}^{s} |\alpha'(u)| \, du = \ell_{\alpha}(s), \, \forall s. \end{array}$$

Esto muestra que ℓ es invariante bajo movimientos rígidos. \Box

Propiedad

La curvatura κ y la torsión τ son invariantes bajo transformaciones rígidas.

Prueba:

Sea $\alpha: I \to \mathbb{R}^3$ curva regular, $M(\mathbf{x}) = A\mathbf{x} + \mathbf{v}$ un movimiento rígido. Sea $\beta(s) = (M \circ \alpha)(s)$. Ya vimos que $\beta'(s) = A\alpha'(s)$. Luego, $\beta''(s) = A\alpha''(s)$ y $\beta'''(s) = A\alpha'''(s)$. En particular,

$$\begin{array}{lcl} \mathbf{t}_{\beta}(\mathbf{s}) & = & \beta'(\mathbf{s}) = A\alpha'(\mathbf{s}) = A\mathbf{t}_{\alpha}(\mathbf{s}), \\ \mathbf{n}_{\beta}(\mathbf{s}) & = & A\mathbf{n}_{\alpha}(\mathbf{s}) & (\text{ya que } \beta''(\mathbf{s}) = A\alpha''(\mathbf{s})), \\ \mathbf{b}_{\beta}(\mathbf{s}) & = & \mathbf{t}_{\beta}(\mathbf{s}) \times \mathbf{n}_{\beta}(\mathbf{s}) = A\mathbf{t}_{\alpha}(\mathbf{s}) \times A\mathbf{n}_{\alpha}(\mathbf{s}) = A(\mathbf{t}_{\alpha}(\mathbf{s}) \times \mathbf{n}_{\alpha}(\mathbf{s})) = A\mathbf{b}_{\alpha}(\mathbf{s}). \end{array}$$

Luego A lleva el triedro de Frenet de α , en el triedro de Frenet de β .

Además,

$$\begin{array}{lll} \kappa_{\beta}(\mathbf{s}) & = & \langle \beta''(\mathbf{s}), \mathbf{n}_{\beta}(\mathbf{s}) \rangle = \langle A\alpha''(\mathbf{s}), A\mathbf{n}_{\alpha}(\mathbf{s}) \rangle = \langle \alpha''(\mathbf{s}), \mathbf{n}_{\alpha}(\mathbf{s}) \rangle \\ & = & \kappa_{\alpha}(\mathbf{s}), \ \forall \mathbf{s}; \\ \mathbf{y} \\ \tau_{\beta}(\mathbf{s}) & = & \langle \mathbf{b}_{\beta}'(\mathbf{s}), \mathbf{n}_{\beta}(\mathbf{s}) \rangle = \langle A\mathbf{b}_{\alpha}'(\mathbf{s}), A\mathbf{n}_{\alpha}(\mathbf{s}) \rangle = \langle \mathbf{b}_{\alpha}'(\mathbf{s}), \mathbf{n}_{\alpha}(\mathbf{s}) \rangle \\ & = & \tau_{\alpha}(\mathbf{s}), \ \forall \mathbf{s}. \end{array}$$

De ahí que κ y au son invariantes bajo movimientos rígidos. \Box

