Lab Report

Introduction

This comprehensive lab report details various analytical tests performed on different combinations of ingredients using

advanced scientific instruments. The focus of this study is to evaluate the properties and characteristics of these

mixtures in the context of their intended applications.

Objective

The objective of these analyses is to measure various properties such as absorption, particle size, concentration,

chemical structure, pH, and viscosity across different oil and compound mixtures in order to assess their suitability for

cosmetic or pharmaceutical uses.

Instruments and Methods

We employed several cutting-edge instruments:

-UV-Vis Spectrophotometer UV-2600: Used for measuring light absorption and transmittance through samples.

-Four Ball Tester FB-1000: Conducts wear testing to determine the lubricating potential of mixtures.

-High-Performance Liquid Chromatograph HPLC-9000: Quantifies the concentration of compounds in a mixture.

-FTIR Spectrometer FTIR-8400: Identifies functional groups in the sample based on infrared spectroscopy.

-pH Meter PH-700: Measures acidity or alkalinity.

-Liquid Chromatograph LC-400: Determines microparticulated substance concentration.

-Viscometer VS-300: Measures the viscosity of fluid samples.

Observations and Results

Below, we present the collected data along with some unexpected irregularities during the tests. Note that additional

elements have been mixed into the tables to increase reading complexity.

Table 1: UV-Vis Spectrophotometer and FTIR Analysis

Instrument	Mixture Components	Measurement	Unit	Additional Observations
UV-2600 Coco	nut Oil, Cetyl Alcohol, Gl	ycerin 1.75	Abs Mir	or phase separation noticed
FTIR-8400	Jojoba Oil	3500.0	1/cm St	rong hydroxyl peak present
UV-2600 Joj	oba Oil, Beeswax, Glyce	rin 2.85	Abs H	gh transmittance observed

The UV-Vis spectrophotometer analysis of "Coconut Oil, Cetyl Alcohol, and Glycerin" showed an absorption of 1.75, indicative of a clear medium transmission loss. The FTIR spectrum of Jojoba Oil demonstrated a significant peak at 3500 1/cm, suggesting the presence of hydroxyl functional groups.

Table 2: Liquid Chromatography and pH Analysis

Instrument	Mixture Components	Measurement	Unit	Unrelated Note	
HPLC-9000	Coconut Oil, Glycerin	250.0	mg/L Equip	ment calibration over-spe	ecified
LC-400 Jojob	a Oil, Cetyl Alcohol, Vita	min E 250.0	ug/mL Initia	I retention time spikes n	oted
PH-700 A	Imond Oil, Gum, Glyceri	n 7.2	pH Electrode	drift observed due to ter	nperat

The Liquid Chromatography assays delivered uniform concentrations for "Coconut Oil and Glycerin," and "Jojoba Oil, Cetyl Alcohol, and Vitamin E," detected at 250.00 mg/L and ug/mL respectively. The pH of the mixture containing Almond Oil, Gum, and Glycerin was determined to be 7.2, indicating neutrality, but minor electrode drift issues due to ambient temperature fluctuations disrupted the readings.

Table 3: Viscosity and Wear Testing

Instrument	Mixture Components	Measurement	Unit	Curious Fact	
VS-300 Jojob	a Oil, Cetyl Alcohol, Gly	cerin 2649.06	cP Nota	ble shear-thickening beh	avior
VS-300	Coconut Oil, Vitamin E	4848.65	ld R expected c	onsistency hints at formu	llation
FB-1000	Almond Oil	0.55	mr b Insourced	lubricant response in da	ta colle

The viscosity readings indicated high resistance to flow in the formulations, notably higher for the "Coconut Oil and Vitamin E" mixture (4848.65 cP), suggesting potential for high stability in end products. Meanwhile, the Four Ball Wear test on Almond Oil registered a scar diameter of 0.550 mm, revealing commendable wear resistance.

Conclusion

This series of tests emphasizes the complex interactions within opulent formulations. Each combination displayed distinct test results that offer insights into their respective properties, crucial for informing product formulation and development.

Continued exploration of these mixtures will undoubtedly bear rich fruit for successful application in desired products, be they in the realm of cosmetics or pharmaceuticals. Further studies should delve into temperature-varied viscosity measurements and more robust pH stability tests to enhance data correlation.