

Multi Objective Optimization of Multi **Output Neural Trees**

Varun Ojha, University of Reading Giuseppe Nicosia, University of Cambridge

Contributions

- A new algorithm Neural Architectural Search called Multi-output Neural Tree (MONT) is designed for classification tasks
- A Pareto-optimality of evolutionary learning processes was investigated using hypervolume indicator analysis.
- A comprehensive analysis of the MONT's (trained with NSGA-III) performance compared with other algorithms and with MONT's other two training version GP, NSGAII is presented.

Multi Output Neural Tree

Neural Node

Multi Output Tree Properties

- Minimum Node $n \leq \frac{(m^{p+1}-1)}{m-1}$, where $m \geq 2$ is max child per node and p is the depth
- Time Complexity is O(n), where n is the number of nodes in the tree.

• Max possible combination of tree Architecture is roughly close to Catalan number $C_n = \frac{1}{[(m-1)(n+1)]} \cdot {m \choose n}$

Multiple Objectives

Minimization of miss classification rate:

$$f_1 = \frac{1}{N} \sum_{i=1}^{N} (\widehat{y} \neq y)$$

where \hat{y} is predicted out of the tree and y is the target output, N is the number of examples.

Minimization of Tree size

$$f_2 = Tree Size$$

Multi Objective Optimization

Algorithm 1 Evolutionary Learning of MONT

Require: Initial population P_0 of randomly generated neural trees, objectives $\mathcal{F} = [f_1, f_2]$, data \mathcal{S} , maximum evolutionary generations (termination criteria) g_{max} .

Ensure: Final population $P_{g_{max}}$ of Pareto-optimal trees

1: **function** Tree Evolution($P_0, \mathcal{F}, \mathcal{S}, g_{max}$.)

```
while number of generation g reached g<sub>max</sub> do
selection: parent trees for crossover and mutation
generation: a new population Q
combined population: R = P<sub>g</sub> + Q
evaluation: NSGA-II/III non-dominated sorting(R)
survive: elitism/niching (P<sub>g+1</sub>, size(P<sub>0</sub>), R)
```

8: **end while**

e return $P_{g_{max}}$

10: end function

Hypervolume Indicator Analysis for Pareto-Optimality

Algorithm that cover larger area is better.

• Pareto points are p_i for objectives 1 and 2

ullet Reference point is indicated by r

objective 1

SPONSORS:

objective

Quality of Hypervolume Indicator H_i On Three Versions of MONT

QUALITY OF TRADE-OFF OBTAINED BY HYPERVOLUME INDICATOR H_i ON THREE VERSIONS OF MONT.

- MONT₁ = Genetic Algorithm
- MONT₂ = NSGA II
- MONT₃ = NSGA III

Data	$MONT_1$	$MONT_2$	$MONT_3$
aus	84.10	83.57	83.57
gls	44.14	56.16	52.35
hrt	78.74	77.46	77.46
ion	85.65	83.83	88.97
irs	85.60	90.00	89.97
pma	73.38	76.01	76.01
vhl	49.21	52.72	51.99
win	86.47	87.44	87.28
wis	90.68	90.55	91.34
Avg.	75.33	77.53	77.66

Classification Results

Average Test Error-Rate F_{μ} and Variance F_{σ} of 30 Runs of Experiments on MONT₃ and Other Algorithms

		data									
Algorithm	f_1	aus	hrt	ion	pma	wis	irs	win	vhl	gls	Avg.
$MONT_3$	f_{μ}	0.111	0.191	0.102	0.201	0.038	0.011	0.048	0.450	0.371	0.169
	f_{σ}	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.001	0.021
HFNT	$f_{m{\mu}}$	0.174	0.230	0.178	0.284	0.065	0.189	0.176	0.591	0.601	0.276
	$\dot{f_\sigma}$	0.006	0.004	0.003	0.003	0.001	0.019	0.014	0.005	0.015	0.039
MLP	$f_{m{\mu}}$	0.175	0.213	0.094	0.249	0.024	0.040	0.037	0.183	0.367	0.154
	f_{σ}	0.001	0.004	0.001	0.001	0.001	0.002	0.000	0.001	0.004	0.013
REP-T	$f_{m{\mu}}$	0.150	0.247	0.107	0.255	0.096	0.064	0.071	0.291	0.348	0.181
	f_{σ}	0.001	0.004	0.002	0.001	0.003	0.001	0.000	0.001	0.005	0.012
NBC	$f_{m{\mu}}$	0.231	0.176	0.166	0.244	0.026	0.047	0.070	0.544	0.525	0.225
	f_{σ}	0.001	0.003	0.002	0.001	0.001	0.001	0.001	0.001	0.008	0.035
DT	$f_{m{\mu}}$	0.146	0.312	0.126	0.337	0.514	0.070	0.370	0.463	0.337	0.297
	f_{σ}	0.001	0.012	0.001	0.001	0.004	0.001	0.002	0.002	0.006	0.024
SVM	$f_{m{\mu}}$	0.455	0.461	0.073	0.353	0.532	0.029	0.369	0.754	0.353	0.376
	f_{σ}	0.002	0.004	0.001	0.001	0.006	0.001	0.002	0.000	0.004	0.046

Note: for all datasets three lowest average test error rates are marked in Bold.

Example Tree Selection

Tree Best Activation Function

Gaussian, sigmoid (evaluated best), and tanh respectively marked 1, 2, and 3 as the subscript of dataset names.

Question?

v.k.ojha@reading.ac.uk

