Верификация программ методом Model Checking

А.М.Миронов

Оглавление

1	Введение							
	1.1	Проблема качества программных систем						
	1.2	Тестирование						
	1.3		- þикация	7				
		1.3.1		7				
		1.3.2		8				
		1.3.3		10				
2	Модели систем 1							
	2.1	Вырах	жения	12				
		2.1.1		12				
		2.1.2		13				
		2.1.3		14				
	2.2	Прогр	раммы	16				
		2.2.1	Понятие программы	16				
		2.2.2	Графовые модели программ	17				
	2.3	Программные системы						
	2.4		емы переходов	18				
		2.4.1		18				
		2.4.2		19				
		2.4.3	Построение СП, соответствующей программ-					
			ной системе	21				
		2.4.4		24				
3	Темпоральная логика 20							
	3.1	-						
	3.2							
		3.2.1	СТL-формулы	27 27				

		3.2.2	Значения CTL-формул	28			
		3.2.3	Эквивалентность CTL-формул	2			
		3.2.4	Примеры свойств систем, выражаемых CTL-				
			формулами	3			
	3.3	Model	l checking для CTL	3			
		3.3.1	Задача MC-CTL	3			
		3.3.2	Задача fair MC-CTL	3			
	3.4	Моно	тонные операторы и их неподвижные точки.	3			
		3.4.1	Монотонные операторы	3			
		3.4.2	Вычисление Q_{φ} на основе понятия FP \dots	3			
		3.4.3	Задача fair-MC-CTL с условиями fairness в				
			виде CTL-формул	3			
	3.5	μ-исч	исление	39			
		3.5.1	μ –формулы	4			
		3.5.2	Значения μ -формул	4			
		3.5.3	Ускоренное вычисление значений μ -формул	4			
		3.5.4	Вложение СТL в μ -исчисление	4			
	~						
4		мвольный Model Checking					
	4.1		ставление множеств булевозначными выраже-	4			
	4.0	ниями					
	4.2	Задача SMC-CTL					
	4.3		y Decision Diagrams	49			
		4.3.1		49			
		4.3.2		5			
		4.3.3	Порядок переменных в BDD	5			
		4.3.4	Операции на BDD	5			
5	Логика LTL						
_	5.1		ванторные темпоральные формулы	6			
	5.2		рормулы	6			
			l checking для LTL	6			
	0.0	5.3.1	$\mathrm{CH}\ S_{arphi}$	6			
		5.3.2	$C\Pi \ S \times S_{\varphi} \ \dots \dots \dots \dots \dots \dots$	6			
		5.3.3	Задача МС-LTL	7			
	5.4		иаты Бюхи	7			
	J.1	5.4.1	Понятие автомата Бюхи	7			
		5.4.2		7			

5.4.3	Пересечение автоматов	74
5.4.4	Использование автоматов в задаче MC-LTL	75
5.4.5	Оптимизация построения \mathcal{B}_{arphi}	79
5.4.6	Проверка включения языков	81

Глава 1

Введение

Проблемы моделирования и верификации программных систем занимают центральное положение в исследованиях по математической теории программирования. Это обусловлено, в первую очередь, высокой актуальностью создания теоретического фундамента для разработки надёжного программного обеспечения.

В настоящем учебном пособии подробно рассматривается наиболее широко распространённый подход к моделированию и верификации программных систем, известный под названием Model Checking.

1.1 Проблема качества программных систем

Современный этап развития индустрии программных систем (которые мы будем называть ниже просто системами) характеризуется значительным усложнением процесса их разработки.

В то же время, существующие методы контроля качества разрабатываемых систем характеризуются

- неполнотой,
- высокой сложностью, и
- недостаточной надёжностью.

Данная ситуация неизбежно влечет за собой увеличение числа ошибок при разработке систем.

Требования к качеству систем отражены в стандарте [1]. Отметим наиболее важные из них.

- 1. **Корректность**, т.е. соответствие системы своему предназначению.
- 2. **Безопасность**, отсутствие неавторизованной утечки информации в процессе работы системы. Способность к быстрому восстановлению работы после сбоя, возникшего в результате атаки на систему.
- 3. **Устойчивость** системы в случае непредусмотренного поведения окружения и при работе с неправильными входными данными.
- 4. Эффективность использования ресурсов времени и памяти. Оптимальность реализованных в системе алгоритмов.
- 5. **Адаптируемость** системы к небольшим изменениям окружения путём изменения её настроек, без изменения её внутренней структуры.
- 6. Чёткая и понятная документированность внутренней структуры системы, позволяющая быстро модифицировать систему в случае существенного изменения условий её использования (например в случае расширения или сужения множества допустимых входных данных).
- 7. **Переносимость** и **совместимость**, т.е. способность системы одинаково хорошо работать на разных платформах и в разных конфигурациях.

Как правило, анализ соответствия системы предъявляемым к ней требованиям производится либо путём её визуального анализа, либо методом **тестирования**.

Однако, если какое-либо из свойств системы может быть выражено формально, например, в виде формулы математической логики, то анализ этого свойства может быть проведён методами верификации.

Рассмотрим эти методы подробнее.

1.2 Тестирование

Тестирование системы заключается в анализе её поведения на некоторых выборочных входных данных.

Тестирование (в сочетании с имитационнным моделированием) является в настоящее время основной формой контроля качества систем, и занимает примерно две трети общего времени, затрачиваемого на их разработку.

Тестирование обладает очевидным фундаментальным недостатком: если его возможно провести не для всех допустимых входных данных, а только лишь для их небольшой части (что имеет место почти всегда), то оно не может служить гарантированным обоснованием того, что система обладает проверяемыми свойствами.

Как отметил Дейкстра ([2], стр. 41), тестирование может лишь помочь выявить некоторые ошибки, но отнюдь не доказать их отсутствие.

Ошибки в системах могут быть весьма тонкими, и чем тоньше ошибка, тем сложнее обнаружить её выборочным тестированием. Но во многих системах наличие даже незначительных ошибок категорически недопустимо. Например, наличие даже небольших ошибок в таких системах, как

- системы управления атомными электростанциями,
- медицинские устройства с компьютерным управлением,
- бортовые системы управления самолетов и космических аппаратов,
- системы управления секретными базами данных,
- системы электронной коммерции,

может привести к существенному ущербу для экономики и самой жизни людей.

Гарантированное обоснование качества систем может быть получено только при помощи альтернативного подхода, принципиально отличного от тестирования. Данный подход называется верификацией.

1.3 Верификация

Верификация системы состоит из следующих частей.

- 1. Построение **математической модели** анализируемой системы.
- 2. Представление проверяемых свойств в виде формального текста (называемого спецификацией).
- 3. Построение формального доказательства наличия или отсутствия у системы проверяемого свойства.

Как правило, верификация применяется для анализа первого требования к системе — её корректности. Отметим, что это требование является главным, т.к. в случае его нарушения эксплуатация системы невозможна, даже если она удовлетворяет всем остальным требованиям.

Рассмотрим отдельно каждую из вышеперечисленных частей верификации.

1.3.1 Математические модели систем

Как правило, **математическая модель системы** (называемая ниже просто **моделью**) представляет собой граф,

- вершины которого называются **состояниями**, и изображают ситуации (или классы ситуаций), в которых может находиться система в различные моменты времени, и
- рёбра которого могут иметь метки, изображающие действия, которые может исполнять система.

Функционирование системы изображается в данной модели переходами по рёбрам графа от одного состояния к другому. Если проходимое ребро имеет метку, то эта метка изображает действие системы, исполняемое при переходе от состояния в начале ребра к состоянию в его конце.

Одна и та же система может быть представлена различными моделями, отражающими

- разную степень абстракции при построении модели системы, и
- разные уровни детализации действий, исполняемых системой.

При построении модели системы следует руководствоваться следующими принципами.

- 1. Модель системы не должна быть чрезмерно детальной, т.к. излишняя сложность модели может вызвать существенные вычислительные проблемы при её формальном анализе.
- 2. Модель системы не должна быть чрезмерно упрощённой, она должна
 - отражать те аспекты системы, которые имеют отношение к проверяемым свойствам, и
 - сохранять все свойства моделируемой системы, представляющие интерес для анализа

т.к. в случае несоблюдения этого условия результаты верификации не будут иметь смысла.

1.3.2 Спецификация

Спецификация — это описание свойств системы в виде формального текста.

Спецификация может выражать, например,

- связь между входными и выходными значениями, или
- зависимость между свойствами системы и свойствами её компонентов, которая имеет вид импликации

$$\bigwedge_{i=1}^n \left(\begin{array}{c} \text{свойство} \\ i$$
–го компонента $\\ \text{системы} \end{array} \right) \to \left(\begin{array}{c} \text{свойство} \\ \text{всей системы} \end{array} \right)$

Как правило, спецификация имеет вид логической формулы, но может иметь и другой вид. Например, спецификацией может служить

- некоторая эталонная модель, относительно которой предполагается, что она обладает заданным свойством, и в этом случае верификация заключается в построении доказательства эквивалентности эталонной и анализируемой моделей, или
- представление анализируемой системы на некотором более высоком уровне абстракции (данный вид спецификаций используется при многоуровневом проектировании систем: реализацию системы на каждом уровне проектирования можно рассматривать как спецификацию для реализации этой системы на следующем уровне).

При построении спецификаций следует руководствоваться следующими принципами.

- 1. Одно и то же свойство системы может быть выражено на разных языках спецификаций (ЯС), и
 - на одном ЯС оно может иметь простую спецификацию, а
 - на другом сложную.

Например, связь между входными и выходными значениями для программы, вычисляющей разложение целого числа на простые множители, имеет

- сложный вид на языке логики предикатов, но
- простой вид на другом ЯС.

Поэтому для представления свойства системы в виде спецификации важно выбрать такой ЯС, на котором спецификация этого свойства имела бы наиболее ясный и простой вид.

- 2. Если свойство системы изначально было выражено на естественном языке, то при переводе его в спецификацию важно обеспечить адекватность
 - естественно-языкового описания этого свойства, и
 - его спецификации,

т.к. в случае несоблюдения этого условия результаты верификации не будут иметь смысла.

1.3.3 Построение доказательств

Существует два основных метода построения формального доказательства того, что модель удовлетворяет или не удовлетворяет своей спецификации:

- 1. model checking (MC), использование которого даёт наибольший эффект в том случае, когда модель не удовлетворяет спецификации, и
- 2. **логический вывод**, который более эффективен (по сравнению с МС) для обоснования того, что модель **удовлетворяет** спецификации.

Поскольку заранее неизвестно, удовлетворяет ли модель спецификации или нет, то для верификации модели следует применять одновременно оба метода.

Model checking

MC представляет собой автоматический анализ модели, которая может быть задана

- \bullet либо явно, путём перечисления всех состояний и соединяющих их рёбер
- либо неявно, путём задания булевых функций, изображающих отношение переходов и множество начальных состояний.

Если модель не удовлетворяет спецификации, то в качестве доказательства этого факта МС предъявляет **опровергающее вычисление**, т.е. последовательность действий модели, на которой нарушается эта спецификация.

Логический вывод

Как правило, логический вывод заключается в построении и формальном обосновании утверждений (называемых **инвариантами**), которые должны обладать следующими свойствами:

- 1. инварианты истинны в начальный момент работы системы
- 2. инварианты сохраняют свою истинность после каждого шага работы системы, и
- 3. из конъюнкции данных инвариантов следует спецификация системы.

Глава 2

Модели систем

В данном параграфе рассматриваются модели программных систем, состоящих из программ, которые взаимодействуют друг с другом посредством общих переменных.

2.1 Выражения

2.1.1 Понятие выражения

Мы предполагаем, что заданы

- некоторое множество Types типов, и каждому типу $\tau \in Types$ сопоставлено конечное множество \mathcal{D}_{τ} значений данного типа
- множество Var переменных, причём каждой переменной $x \in Var$ сопоставлен тип $\tau(x) \in Types$
- множество Fun, элементы которого называются функциональными символами, причём каждому $f \in Fun$ сопоставлены
 - тип $\tau(f)$, являющийся знакосочетанием вида

$$(\tau_1, \dots, \tau_k) \to \tau$$
 (2.1)

где $\tau_1, \ldots, \tau_k, \tau \in Types$, и

— функция, обозначаемая тем же символом f, и имеющая вид

$$f: \mathcal{D}_{\tau_1} \times \ldots \times \mathcal{D}_{\tau_k} \to \mathcal{D}_{\tau}$$

Из переменных, значений и функциональных символов можно строить **выражения**. Каждому выражению e сопоставляется некоторый тип $\tau(e)$.

- Каждая переменная $x \in Var$ является выражением типа $\tau(x)$.
- Для каждого типа $\tau \in Types$ произвольный элемент множества \mathcal{D}_{τ} является выражением типа τ . Такие выражения называются константами.
- Для
 - каждого списка выражений e_1, \ldots, e_k , и
 - каждого функционального символа f, тип которого имеет вид

$$(\tau(e_1),\ldots,\tau(e_k)) \to \tau$$

знакосочетание

$$f(e_1,\ldots,e_k)$$

является выражением типа au.

Совокупность всех переменных, входящих в выражение e, обозначается символом Var(e).

2.1.2 Означивания

Пусть e — некоторое выражение.

Означиванием переменных, входящих в e, называется соответствие ξ , которое связывает каждую переменную x из e с некоторым значением $\xi(x) \in \mathcal{D}_{\tau(x)}$.

Каждое означивание ξ переменных из e сопоставляет всему выражению e некоторое значение $\xi(e)$, определяемое рекурсивно:

 \bullet если $e = x \in Var$, то $\xi(e)$ уже определено

- если $e \in \mathcal{D}_{\tau}$, то $\xi(e)$ совпадает с e
- ullet если $e=f(e_1,\ldots,e_k)$ то

$$\xi(e) = f(\xi(e_1), \dots, \xi(e_k))$$

Выражения e_1 и e_2 называются **эквивалентными**, если для каждого означивания ξ входящих в них переменных имеет место равенство

$$\xi(e_1) = \xi(e_2)$$

Знакосочетание $e_1=e_2$ выражает тот факт, что e_1 и e_2 эквивалентны.

2.1.3 Булевозначные выражения

Множество Types содержит тип bool, значениями которого являются константы 0 и 1.

Булевозначным выражением называется выражение типа bool.

Булевозначное выражение e называется **истинным** на означивании ξ , если $\xi(e) = 1$, и **ложным** на ξ , если $\xi(e) = 0$.

Множество Fun содержит символы булевских операций \neg , \wedge , \vee , где

• символ ¬ имеет тип

$$\texttt{bool} \to \texttt{bool}$$

• символы \wedge и \vee имеют тип

$$(bool, bool) \rightarrow bool$$

Функции, соответствующие этим символам, определяются точно так же, как в логике высказываний.

Для каждого булевозначного выражения e выражение $\neg e$ может также обозначаться символом \overline{e} .

Как и в логике высказываний, символы ∧ и ∨ пишутся не перед, а между выражениями, которые они связывают.

Для произвольного списка e_1, \ldots, e_k булевозначных выражений знакосочетания

$$e_1 \wedge e_2 \wedge \ldots \wedge e_k$$
 и $e_1 \vee e_2 \vee \ldots \vee e_k$

являются сокращённой записью выражений

$$e_1 \wedge (e_2 \wedge (\ldots \wedge e_k) \ldots)$$
 и $e_1 \vee (e_2 \vee (\ldots \vee e_k) \ldots)$

соответственно. Данные выражения также могут обозначаться знакосочетаниями

$$\left\{ \begin{array}{c} e_1 \\ \dots \\ e_k \end{array} \right\} \quad \mathbf{u} \quad \left[\begin{array}{c} e_1 \\ \dots \\ e_k \end{array} \right]$$

соответственно.

Для каждой пары e_1, e_2 булевозначных выражений

• знакосочетание $e_1 \to e_2$ является сокращённым обозначением булевозначного выражения

$$\overline{e_1} \vee e_2$$

ullet знакосочетание $e_1 \leftrightarrow e_2$ является сокращённым обозначением выражения

$$(e_1 \rightarrow e_2) \land (e_2 \rightarrow e_1).$$

Для каждого семейства булевозначных выражений вида $\{e_i \mid i \in I\}$ и каждого условия $\varphi(i)$ на элементы множества индексов I знакосочетания

$$\bigwedge_{\varphi(i)} e_i \quad \text{if} \quad \bigvee_{\varphi(i)} e_i \tag{2.2}$$

обозначают булевозначные выражения

$$e_{i_1} \wedge \ldots \wedge e_{i_k}$$
 и $e_{i_1} \vee \ldots \vee e_{i_k}$

где $\{i_1,\ldots,i_k\}$ — множество всех индексов $i\in I$, удовлетворяющих условию $\varphi(i)$. Если множество таких индексов пусто, то (2.2) совпадают с константами 1 и 0 соответственно.

2.2 Программы

2.2.1 Понятие программы

Программа представляет собой граф (обычно называемый блоксхемой). Одна из вершин программы выделена, и называется начальной. Каждая вершина v помечена некоторым оператором Op(v) одного из следующих видов:

начало: Данным оператором помечена только начальная вершина. Op(v) имеет вид

$$Init$$
 (2.3)

где Init – булевозначное выражение, называемое **предусловием** программы.

присваивание: Op(v) имеет вид

$$x := e \tag{2.4}$$

где x – переменная, и e – выражение того же типа, что и x.

проверка условия:

$$Op(v) = b (2.5)$$

где *b* – булевозначное выражение.

остановка: Op(v) = halt

Из вершин с меткой вида (2.3), (2.4), выходит только одно ребро. Из вершин с меткой вида (2.5) выходят два ребра: одно имеет метку "+", другое – метку "-". Из вершин с меткой **halt** не выходит ни одного ребра.

Функционирование программы происходит обычным образом, и заключается в обходе её вершин, с выполнением операторов, сопоставленных проходимым вершинам. После выполнения оператора, соответствующего текущей вершине, происходит переход по выходящему из неё ребру к следующей вершине. На каждом шаге функционирования каждая переменная программы содержит некоторое значение. Значения переменных в начальный момент должны удовлетворять предусловию.

Операторы выполняются следующим образом.

- Оператор (2.4) заносит значения выражения e в переменную x.
- Оператор (2.5) вычисляет значение выражения b, и
 - если оно равно 1, то происходит переход к следующей вершине по ребру с меткой "+",
 - иначе по ребру с меткой "-".
- Оператор halt завершает выполнение всей программы.

2.2.2 Графовые модели программ

Графовая модель программы представляет собой граф G, каждое ребро которого имеет метку, называемую **действием**. Одна из вершин графовой модели выделена, и обозначается символом Start(G).

Графовая модель программы строится следующим образом.

1. На каждом ребре программы рисуется точка. Нарисованные точки являются вершинами графовой модели. Вершиной Start(G) является точка, нарисованная на ребре программы, выходящем из её начальной вершины.

2. Для

- \bullet каждой вершины v программы, и
- ullet каждой пары a_1, a_2 рёбер программы, таких, что a_1 входит в v, а a_2 выходит из v

рисуется ребро графовой модели, соединяющее точку на a_1 с точкой на a_2 , и его метка

- совпадает с Op(v), если Op(v) имеет вид (2.4),
- имеет вид b?, если Op(v) имеет вид (2.5), и a_2 помечено символом "+"
- имеет вид \bar{b} ?, если Op(v) имеет вид (2.5), и a_2 помечено символом "—".

3. Для

- ullet каждой вершины v с меткой \mathbf{halt} , и
- ullet каждого ребра a программы с концом в v

рисуется ребро, началом и концом которого является точка на a, и его метка имеет вид 1?

2.3 Программные системы

Программной системой называется некоторая конечная совокупность программ.

Функционирование системы заключается в исполнении входящих в неё программ, и может происходить двумя способами:

- последовательное исполнение: в каждый такт времени
 - исполняется действие только в одной из программ, и
 - все остальные программы на этом такте времени приостанавливают свою работу,
- параллельное исполнение: в каждый такт времени исполняется действие в каждой программе, причём все действия начинаются и заканчиваются одновременно.

2.4 Системы переходов

2.4.1 Понятие системы переходов

Системой переходов (СП) называется пятёрка S вида

$$S = (\mathcal{P}, Q, \delta, L, Q^{0})$$
 (2.6)

компоненты которой имеют следующий смысл.

- 1. \mathcal{P} множество, элементы которого называются **утверждениями**.
- 2. Q множество, элементы которого называются **состояни**ями СП S.

- 3. δ бинарное отношение на Q (т.е. $\delta \subseteq Q \times Q$), называемое **отношением перехода**.
- 4. L функция вида

$$L: Q \times \mathcal{P} \to \{0,1\}$$

называемая **оценкой**, которая имеет следующий смысл: для каждого $q \in Q$ и каждого $p \in \mathcal{P}$ утверждение p считается

- истинным в состоянии q, если L(q, p) = 1,
- ложным в состоянии q, если L(q,p) = 0.

Выражение L(q, p) может записываться более компактно в виде знакосочетания q(p).

5. $Q^0 \subseteq Q$ — множество **начальных состояний**.

СП удобно рассматривать как граф,

- вершинами которого являются состояния, и
- для каждой пары $(q, q') \in \delta$ граф содержит ребро из q в q'.

Ниже мы будем использовать следующие обозначения: для каждого состояния $q \in Q$

$$\begin{array}{cccc} \delta(q) & \stackrel{\mathrm{def}}{=} & \{q' \in Q \mid (q,q') \in \delta\} \\ \delta^{-1}(q) & \stackrel{\mathrm{def}}{=} & \{q' \in Q \mid (q',q) \in \delta\} \end{array}$$

2.4.2 Пути в СП

Путь в СП (2.6) – это последовательность состояний

$$\pi = (q_0, q_1, \dots) \tag{2.7}$$

такая, что для каждого $i \geq 0 \quad q_{i+1} \in \delta(q_i).$

Если последовательность (2.7) бесконечна, то путь π называется **бесконечным**, в противном случае он называется **конечным**. Как правило, под путями подразумеваются бесконечные

пути, а если рассматриваемый путь является конечным, то это специально оговаривается.

При рассмотрении СП как графа, путь в ней представляет собой последовательность рёбер, в которой конец каждого ребра совпадает с началом следующего ребра.

Мы будем говорить, что путь π является **путём, выходя- щим из состояния** q (или просто **путём из** q), если первым состоянием (т.е. состоянием с номером 0) на этом пути является q.

Ниже мы будем использовать следующие обозначения:

• для каждого пути π вида (2.7) и каждого $q \in Q$ знакосочетание

$$q \in \pi$$

означает, что $q=q_i$ для некоторого $i\geq 0$

• для каждого пути π вида (2.7) и для каждой пары q, q' состояний знакосочетания

$$q \geq q', \quad q > q', \quad q \leq q', \quad q \leq q'$$

означают, что существуют номера i, j, такие, что

$$q = q_i, \quad q' = q_i$$

и, кроме того,

$$i \ge j$$
, $i > j$, $i \le j$, $i < j$

соответственно.

Если π – конечный путь вида

$$\pi = (q_0, \ldots, q_n) \tag{2.8}$$

то говорят, что $\pi - \mathbf{путь}$ из q_0 в q_n .

Путь вида (2.8) называется **пустым**, если n=0.

Если π — путь вида (2.8), и π' — конечный или бесконечный путь из q_n

$$\pi' = (q_n, q_{n+1}, \dots)$$

то определена **конкатенация** π и π' , обозначаемая символом $\pi \cdot \pi'$, и являющаяся путём вида

$$(q_0, \ldots, q_n, q_{n+1}, \ldots)$$

Если π – путь вида (2.8), и $q_0=q_n$, то такой путь называется никлом.

Если π — цикл, то знакосочетание π^{ω} обозначает бесконечный путь, являющийся бесконечной конкатенацией

$$\pi \cdot \pi \cdot \dots$$

Для каждого пути π знакосочетание $\inf(\pi)$ обозначает множество

 $\{q \in Q \mid q \text{ имеет бесконечно много вхождений в } \pi\}$

2.4.3 Построение СП, соответствующей программной системе

Пусть $\Sigma = \{\Pi_1, \dots, \Pi_k\}$ – некоторая программная система. Ниже мы будем использовать следующие обозначения: для каждого $i=1,\dots k$

- ullet G_i обозначает графовую модель программы Π_i
- V_i обозначает множество переменных, входящих в Π_i
- \hat{V}_i обозначает объединение

$$V_i \cup \{at_i\}$$

где at_i – новая переменная, значениями которой являются вершины графа G_i

• V обозначает объединение $\hat{V}_1 \cup \ldots \cup \hat{V}_k$.

Для каждой переменной $x \in V$ мы будем допускать использование в выражениях её штрихованного дубликата x'.

Если

- δ выражение, в которое могут входить переменные из V и их штрихованные дубликаты, и
- ullet (ξ, ξ') некоторая пара означиваний переменных из V

то значение выражения δ на паре (ξ,ξ') определяется следующим образом: для каждой переменной x из V

- все её вхождения в δ заменяются на $\xi(x)$
- все вхождения её штрихованного дубликата x' в δ заменяются на $\xi'(x)$

и после этого вычисляется значение получившегося выражения.

Для каждого i = 1, ..., k совокупность всех рёбер графа G_i обозначается символом $Edges(G_i)$.

Каждому ребру $\alpha \in Edges(G_i)$ соответствует булевозначное выражение $\delta_i(\alpha)$, выражающее собой связь между означиваниями переменных из V до и после исполнения действия, которым помечено ребро α .

В определении выражения $\delta_i(\alpha)$ будут использоваться следующие обозначения:

- ullet символы n и n' обозначают начало и конец ребра lpha
- для каждого подмножества $X\subseteq V$ знакосочетание same(X) обозначает выражение

$$\bigwedge_{x \in X} (x' = x)$$

Выражение $\delta_i(\alpha)$ имеет следующий вид:

 \bullet если метка ребра α имеет вид x := e, то

$$\delta_{i}(\alpha) \stackrel{\text{def}}{=} \left\{ \begin{array}{l} at_{i} = n \\ at'_{i} = n' \\ x' = e \\ same(V_{i} \setminus \{x\}) \end{array} \right\}$$

 \bullet если метка ребра α имеет вид b?, то

$$\delta_{i}(\alpha) \stackrel{\text{def}}{=} \left\{ \begin{array}{l} at_{i} = n \\ at'_{i} = n' \\ b \\ same(V_{i}) \end{array} \right\}$$

Нетрудно видеть, что $\delta_i(\alpha)$ истинно на паре (ξ, ξ') означиваний в точности тогда, когда

- если перед исполнением действия, которым помечено ребро α , каждая переменная $x \in \hat{V}_i$ имела значение $\xi(x)$,
- то после исполнения этого действия каждая переменная $x \in \hat{V}_i$ будет иметь значение $\xi'(x)$.

 ${\rm C}\Pi,$ соответствущая системе $\Sigma,$ имеет следующие компоненты.

- 1. **Утверждениями** являются булевозначные выражения с переменными из V.
- 2. **Состояниями** являются означивания переменных из V.
- 3. **Отношение перехода** состоит из всех пар (ξ, ξ') означиваний, на которых истинно выражение
 - $\delta_1 \vee \ldots \vee \delta_k$, если программы в системе Σ исполняются последовательно, и
 - $\delta_1 \wedge \ldots \wedge \delta_k$, если программы в системе Σ исполняются параллельно,

где для каждого $i=1,\ldots,k$ δ_i представляет собой дизъюнкцию

$$\bigvee_{\alpha \in Edges(G_i)} \delta_i(\alpha)$$

4. **Оценка** сопоставляет паре (ξ, p) значение $\xi(p)$.

5. **Начальными состояниями** являются означивания, на которых истинно выражение

$$\begin{cases}
Init_1 \wedge \ldots \wedge Init_k \\
at_1 = Start(G_1) \\
\ldots \\
at_k = Start(G_k)
\end{cases}$$

где $Init_1, \ldots, Init_k$ – предусловия программ из Σ .

2.4.4 Fairness

Если СП S рассматривается как модель реальной системы Σ , то, в частности, каждому вычислению (т.е. последовательности действий) системы Σ должен соответствовать некоторый путь в S.

Однако, иногда S содержит и такие пути, которые не соответствуют никакому реальному вычислению системы Σ .

Один из возможных способов ограничить множество возможных путей СП S, с целью недопущения к рассмотрению тех из них, которые не соответствуют реальным вычислениям моделируемой системы Σ , заключается во введении условий допустимости на пути СП S. Данные условия называются условиями fairness. Пути, которые удовлетворяют этим условиям, называются fair путями.

Рассмотрим несколько примеров условий fairness.

1. В СП S не должно быть путей, соответствующих таким бесконечным вычислениям системы Σ , в которых одна из входящих в Σ программ не совершает никаких действий после некоторого момента времени.

2. В системе Σ

- одна из программ (Π_1) может обращаться с запросами к другой программе (Π_2), и
- программа Π_2 может посылать программе Π_1 ответы на эти запросы.

В СП S не должно быть путей, соответствующих таким бесконечным вычислениям системы Σ , в которых

- одно из действий представляет собой запрос от Π_1 к Π_2 , и
- все последующие действия не являются посылкой ответа от Π_2 к Π_1 на этот запрос.
- 3. В системе Σ одна из программ может посылать сообщения другой программе, причём сообщения при пересылке могут пропадать.

В СП S не должно быть путей, соответствующих таким бесконечным вычислениям системы Σ , в которых

- одна из программ бесконечно много раз посылает сообщения другой программе, и
- все эти сообщения пропадают.

Одна из возможных формализаций условий fairness может представлять собой задание списка F вида

$${F_i \mid i = 1, ..., k}, \text{ где } \forall i = 1, ..., k \quad F_i \subseteq Q$$
 (2.9)

и условие fairness на путь π имеет вид

$$\forall i = 1, \dots, k \qquad \inf(\pi) \cap F_i \neq \emptyset$$

т.е. π должен бесконечно много раз посещать каждое из множеств, входящих в список F.

Глава 3

Темпоральная логика

3.1 Понятие о темпоральной логике

Одним из языков, на котором можно специфицировать свойства систем, является **темпоральная логика**.

Свойства систем описываются в темпоральной логике при помощи **темпоральных формул** (которые мы будем называть также просто **формулами**).

Примеры свойств, которые могут описываться в темпоральной логике:

- 1. система при любом варианте своего функционирования не будет находиться ни в одном из состояний из заданного класса
- 2. система при некотором функционировании когда-нибудь попадёт в некоторое состояние из заданного класса

Как правило, при проведении рассуждений о темпоральных формулах рассматриваются не всевозможные формулы, а только формулы из некоторого ограниченного класса. Классы темпоральных формул принято называть темпоральными логиками, или просто логиками, т.е. словосочетание "темпоральная логика" имеет два значения:

• в первом значении – это язык, на котором можно выражать спецификации,

• а во втором – некоторый класс темпоральных формул.

Наиболее известны темпоральные логики

- CTL (Computational Tree Logic), и
- LTL (Linear Temporal Logic).

Во всех темпоральных формулах основными структурными элементами являются **утверждения**. Утверждения имеют тот же смысл, что и в системах переходов, т.е. для каждого состояния q каждой СП и каждого утверждения p определено значение $q(p) \in \{0,1\}$. Совокупность всех утверждений обозначается символом \mathcal{P} .

Каждая темпоральная логика Φ должна удовлетворять следующим условиям.

- 1. $\mathcal{P} \subset \Phi$.
- 2. Символы **1** и **0** принадлежат Φ .
- 3. Если $\psi, \eta \in \Phi$, то знакосочетания

$$\neg \psi, \quad \psi \wedge \eta, \quad \psi \vee \eta \tag{3.1}$$

тоже принадлежат логике Ф.

Формулы (3.1) называются **булевыми комбинациями** формул ψ и η .

Для более наглядной записи конъюнкций и дизъюнкций формул мы будем использовать фигурные и квадратные скобки, аналогично тому, как это делалось в пункте 2.1.3.

Также мы будем использовать в формулах символы $\overline{}$, \rightarrow и \leftrightarrow , с тем же смыслом, с каким они использовались в булевозначных выражениях в пункте 2.1.3.

3.2 Логика СТЬ

3.2.1 СТL-формулы

Темпоральная логика CTL определяется следующими дополнительными правилами:

• если $\psi \in \text{CTL}$, то CTL также содержит следующие 6 формул:

$$egin{array}{lll} \mathbf{AX} \ \psi & \mathbf{EX} \ \psi \\ \mathbf{AF} \ \psi & \mathbf{EF} \ \psi \\ \mathbf{AG} \ \psi & \mathbf{EG} \ \psi \end{array}$$

• если $\psi, \eta \in \text{CTL}$, то CTL также содержит следующие 4 формулы:

$$\mathbf{AU}(\psi, \eta)$$
 $\mathbf{EU}(\psi, \eta)$ $\mathbf{AR}(\psi, \eta)$ $\mathbf{ER}(\psi, \eta)$

Жирные символы (AX, и т.д.) в данных формулах называются CTL-операторами.

Формулы логики CTL мы будем называть **CTL-формулами**.

3.2.2 Значения CTL-формул

Пусть $S = (\mathcal{P}, Q, \delta, L, Q^0)$ – некоторая СП.

Для каждого состояния $q \in Q$ и каждой СТL-формулы φ её **значением** $q(\varphi)$ в состоянии q является булева константа 1 или 0, которая определяется индуктивно:

- 1. если $\varphi = p \in \mathcal{P}$, то $q(\varphi)$ уже определено в СП S
- 2. $q(\mathbf{1}) \stackrel{\text{def}}{=} 1$, $q(\mathbf{0}) \stackrel{\text{def}}{=} 0$
- 3. $q(\overline{\psi}) \stackrel{\text{def}}{=} \overline{q(\psi)}$
 - $q(\psi \wedge \eta) \stackrel{\text{def}}{=} q(\psi) \wedge q(\eta)$
 - $q(\psi \vee \eta) \stackrel{\text{def}}{=} q(\psi) \vee q(\eta)$
- 4. значения формул, начинающихся с CTL-оператора, определяются следующим образом:
 - $q(\mathbf{AX}\psi) = 1$, если для каждого $q' \in \delta(q)$

$$q'(\psi) = 1 \tag{3.2}$$

• $q(\mathbf{E}\mathbf{X}\psi) = 1$, если существует $q' \in \delta(q)$, такое, что имеет место (3.2)

- $q(\mathbf{AF}\psi) = 1$, если для каждого пути π из q существует состояние $q' \in \pi$, такое, что имеет место (3.2)
- $q(\mathbf{E}\mathbf{F}\psi) = 1$, если существует путь π из q и существует состояние $q' \in \pi$, такое, что имеет место (3.2)
- $q(\mathbf{AG}\psi) = 1$, если для каждого пути π из q и для каждого $q' \in \pi$ имеет место (3.2)
- $q(\mathbf{EG}\psi) = 1$, если существует путь π из q, такой, что для каждого состояния $q' \in \pi$ имеет место (3.2)
- $q(\mathbf{AU}(\psi,\eta)) = 1$, если для каждого пути π из q существует состояние $q' \in \pi$, такое, что

$$\left\{ \begin{array}{l} q'(\eta) = 1, \ \mathbf{n} \\ \forall \ q'' \leq q' \quad q''(\psi) = 1 \end{array} \right\}$$
(3.3)

- $q(\mathbf{EU}(\psi,\eta)) = 1$, если существует путь π из q и существует состояние $q' \in \pi$, такое, что имеет место (3.3)
- $q(\mathbf{AR}(\psi,\eta))=1,$ если для каждого пути π из q и для каждого $q'\in\pi$

$$\begin{bmatrix} q'(\eta) = 1, \text{ или} \\ \exists q'' \leqslant q' : \quad q''(\psi) = 1 \end{bmatrix}$$
 (3.4)

• $q(\mathbf{ER}(\psi,\eta)) = 1$, если существует путь π из q, такой, что для каждого $q' \in \pi$ имеет место (3.4).

Значением СТL-формулы φ в СП S называется множество

$$Q_{\varphi} \stackrel{\text{def}}{=} \{ q \in Q \mid q(\varphi) = 1 \} \tag{3.5}$$

3.2.3 Эквивалентность CTL-формул

Мы будем называть СТL-формулы φ и ψ эквивалентными, если для каждого состояния q в произвольной СП имеет место равенство

$$q(\varphi) = q(\psi)$$

Если СТL-формулы φ и ψ эквивалентны, то мы будем обозначать этот факт знакосочетанием $\varphi=\psi$.

Нетрудно доказать, что имеют место следующие соотношения:

• законы де Моргана:

$$\overline{\varphi \wedge \psi} = \overline{\varphi} \vee \overline{\psi}, \qquad \overline{\varphi \vee \psi} = \overline{\varphi} \wedge \overline{\psi}, \qquad \overline{\overline{\varphi}} = \varphi$$

- $\bullet \ \overline{\mathbf{A}\mathbf{X}\varphi} \ = \ \mathbf{E}\mathbf{X}\overline{\varphi}$
- $\mathbf{EF}\varphi = \mathbf{EU}(\mathbf{1}, \varphi)$
- $\bullet \ \overline{\mathbf{AF}\varphi} \ = \ \mathbf{EG}\overline{\varphi}$
- $\bullet \ \overline{\mathbf{A}\mathbf{G}\varphi} \ = \ \mathbf{E}\mathbf{F}\overline{\varphi}$

$$\bullet \ \, \overline{\mathbf{AU}(\varphi,\psi)} = \left[\begin{array}{c} \mathbf{EU}(\overline{\psi},\overline{\varphi} \wedge \overline{\psi}) \\ \mathbf{EG}\overline{\psi} \end{array} \right]$$

- $\overline{\mathbf{AR}(\varphi,\psi)} = \mathbf{EU}(\overline{\varphi},\overline{\psi})$
- $\overline{\mathbf{ER}(\varphi,\psi)} = \mathbf{AU}(\overline{\varphi},\overline{\psi})$

Из данных соотношений следует, что для любой СТL—формулы φ существует эквивалентная ей СТL—формула ψ , в которую входят только следующие СТL—операторы:

$$\mathbf{EX}, \quad \mathbf{EG}, \quad \mathbf{EU}$$
 (3.6)

3.2.4 Примеры свойств систем, выражаемых CTL—формулами

- 1. **EF** (Start \wedge Ready) (достижимо состояние, в котором свойство Start выполняется, а условие Ready не выполняется)
- 2. \mathbf{AG} (Request $\to \mathbf{AF}$ Acknowledgement) (если получен запрос, то когда-нибудь на него будет дан ответ)
- 3. **AG** (**AF** DeviceEnabled) (при любом функционировании системы условие DeviceEnabled выполнено бесконечно много раз)

4. **AG** (**EF** Restart)

(из каждого состояния достижимо состояние, в котором выполняется свойство Restart)

3.3 Model checking для CTL

3.3.1 Задача MC-CTL

Одна из возможных форм задачи **model checking** для CTL (которую мы будем ниже обозначать знакосочетанием **MC-CTL**) заключается в том, чтобы по

- заданной СП $S=(\mathcal{P},Q,\delta,L,Q^0)$, и
- ullet заданной СТL-формуле arphi

вычислить множество Q_{φ} .

Можно считать, что φ содержит только CTL—операторы вида (3.6).

Для вычисления множества Q_{φ} можно использовать следующий рекурсивный алгоритм.

- 1. Если $\varphi=p\in\mathcal{P},$ то Q_{φ} определяется непосредственно оценкой СП S.
- 2. Если φ имеет вид **1** или **0**, то Q_{φ} имеет вид соответственно Q или \emptyset .
- 3. Если φ имеет вид

$$\overline{\psi}$$
, $\psi \wedge \eta$, или $\psi \vee \eta$

то Q_{φ} имеет вид соответственно

$$Q \setminus Q_{\psi}, \quad Q_{\psi} \cap Q_{\eta}, \quad Q_{\psi} \cup Q_{\eta}$$

4. Если $\varphi = \mathbf{E} \mathbf{X} \psi$, то $Q_{\varphi} = \{q \in Q \mid \delta(q) \cap Q_{\psi} \neq \emptyset\}.$

5. Если $\varphi = \mathbf{EU}(\psi, \eta)$, то для вычисления Q_{φ} мы будем использовать вспомогательное множество $Q' \subseteq Q$, и сначала полалагаем

$$Q_{\varphi} := Q_n, \quad Q' := Q_n$$

Затем работает цикл:

while
$$(Q' \neq \emptyset)$$
 { выбираем $q \in Q'$, и удаляем q из Q' для каждого $q' \in \delta^{-1}(q)$ $\left\{ \begin{array}{l} q' \in Q_{\psi} \\ q' \notin Q_{\varphi} \end{array} \right\}$? добавляем q' к Q_{φ} и к Q' }

6. Пусть $\varphi = \mathbf{EG}\psi$.

Рассмотрение этого случая мы начнём с введения вспомогательных понятий.

Подмножество Q' множества состояний Q называется сильно связным подмножеством, если для каждой пары q_1, q_2 состояний из Q' существует непустой путь из q_1 в q_2 .

Максимальное (по включению) сильно связное подмножество называется **сильно связной компонентой** (strongly connected component, SCC).

Существует алгоритм (называемый алгоритмом Тарьяна) нахождения всех SCC, сложность которого равна $O(|Q| + |\delta|)$.

Сильно связные компоненты могут рассматриваться не для всего множества Q, а для некоторого его подмножества Q_1 . Сильно связная компонента в Q_1 будет сильно связным подмножеством и в Q, но может не быть SCC в Q.

Согласно определению, соотношение

$$q(\mathbf{EG}\psi) = 1 \tag{3.7}$$

означает, что существует путь $\pi \subseteq Q_{\psi}$ из q.

Поскольку множество Q является конечным, то существует такое состояние $q' \in \pi$, что все состояния из совокупности

$$\{q'' \in \pi \mid q'' \ge q'\}$$
 (3.8)

входят в π бесконечно много раз. Состояния, входящие в (3.8), образуют сильно связное подмножество множества Q_{ψ} , и, следовательно, содержатся в некоторой SCC множества Q_{ψ} .

Обозначим символом π_0 начальный отрезок пути π , который заканчивается в q'.

Мы установили, что из (3.7) следует соотношение

$$\exists$$
 SCC C множества Q_{ψ} , $\exists q' \in C$, \exists путь $\pi_0 \subseteq Q_{\psi}$ из q в q' (3.9)

Обратно, из (3.9) следует (3.7), т.к. полагая

$$\pi \stackrel{\text{def}}{=} \pi_0 \cdot \pi_1^{\omega} \tag{3.10}$$

где π_1 – цикл из q' в q', содержащийся в C, имеем: $\pi \subseteq Q_{\psi}$. Таким образом, порядок вычисления множества Q_{φ} может иметь следующий вид.

- (a) Находим в Q_{ψ} все SCC, и полагаем Q' равным множеству всех состояний, входящих в эти SCC. Также полагаем $Q_{\varphi} := Q'$.
- (b) Затем работает тот же цикл, что и в предыдущем пункте.

Нетрудно подсчитать, что сложность предложенного алгоритма равна

$$O(|\varphi| \cdot |S|)$$

где $|\varphi|$ – размер формулы φ , и $|S| = |Q| + |\delta|$, т.к.

- число подформул формулы φ не превосходит $|\varphi|$,
- |S|— верхняя оценка числа шагов для анализа каждой подформулы.

3.3.2 Задача fair MC-CTL

Если в СП задан список F условий fairness вида (2.9), то можно определить понятие **fair-значения** СТL-формулы φ в состоянии q этой СП, которое будет обозначаться знакосочетанием $q^F(\varphi)$.

Определение fair-значений отличается от определения из пункта 3.2.2 следующей модификацией:

- везде, где упоминается слово "путь", перед ним ставится эпитет "fair"
- для любых $q \in Q$ и $\varphi \in CTL$, если не существует ни одного fair пути из q, то $q^F(\varphi) = 0$.

Обозначим символом Q_{ψ}^{F} множество

$$\{q \in Q \mid q^F(\psi) = 1\}.$$

Небольшой модификацией рассуждений из предыдущего пункта можно обосновать, что

$$q^F(\mathbf{E}\mathbf{G}\psi) = 1$$

тогда и только тогда, когда

$$\exists$$
 fair SCC C множества Q_{ψ}^{F} , $\exists q' \in C$, \exists путь π_{0} из q в q' , причём $\pi_{0} \subseteq Q_{\psi}^{F}$ $\}$ (3.11)

где SCC C множества Q_{ψ}^F называется $\mathbf{fair},$ если

$$\forall F_i \in F \quad F_i \cap C \neq \emptyset$$

Отметим, что выражение

$$q^F(\mathbf{EG1}) \tag{3.12}$$

принимает значение 1 тогда и только тогда, когда существует fair путь из q. Данное выражение мы будем обозначать знакосочетанием

Как следует из вышесказанного, его значение может быть вычислено за время

$$O(|F| \cdot |S|)$$

где множитель |F| (число условий в списке F) присутствует по причине того, что надо проверять каждую SCC, является ли она fair.

Знакосочетание fair можно рассматривать как новое утверждение, значение которого в каждом состоянии q равно значению выражения (3.12).

Fair-значения сложных формул можно вычислять по следующим правилам:

- 1. $q^F(p) = q(p \wedge fair)$.
- 2. $q^F(\mathbf{E}\mathbf{X}\psi) = q(\mathbf{E}\mathbf{X}(\psi \wedge fair))$
- 3. $q^F(\mathbf{EU}(\psi, \eta)) = q(\mathbf{EU}(\psi, (\eta \wedge fair)).$

Из вышесказанного вытекает, что для произвольной СТL-формулы φ значение $q^F(\varphi)$ может быть вычислено за время

$$O(|\varphi| \cdot |S| \cdot |F|)$$

3.4 Монотонные операторы и их неподвижные точки

3.4.1 Монотонные операторы

Пусть Q — некоторое конечное множество, и $\mathbf{2}^Q$ — совокупность всех его подмножеств.

Монотонный оператор на ${\bf 2}^Q$ – это отображение

$$\mathcal{F}: \mathbf{2}^Q \to \mathbf{2}^Q \tag{3.13}$$

обладающее следующим свойством:

$$\forall \ A,B \in \mathbf{2}^Q \qquad A \subseteq B \quad \Rightarrow \quad \mathcal{F}(A) \subseteq \mathcal{F}(B)$$

Очевидно, что композиция монотонных операторов является монотонным оператором.

Подмножество $A \subseteq Q$ называется **неподвижной точкой** оператора (3.13), если имеет место равенство

$$A = \mathcal{F}(A)$$

Ниже вместо словосочетания "неподвижная точка" будет использоваться аббревиатура **FP** (fixpoint).

Оператор (3.13), как правило, задаётся в виде алгебраического выражения, в котором используются теоретико-множественные операции и переменная-аргумент. Мы будем указывать аргумент в скобках справа от \mathcal{F} .

Оператор $\mathcal{F}(Z)$ может иметь несколько FP. FP оператора $\mathcal{F}(Z)$ называется

- наименьшей (и обозначается $\mu Z.\mathcal{F}(Z)$), если она содержится во всех остальных FP $\mathcal{F}(Z)$, и
- наибольшей (и обозначается $\nu Z.\mathcal{F}(Z)$), если она содержит все остальные FP $\mathcal{F}(Z)$.

Каждый монотонный оператор $\mathcal{F}(Z)$ вида (3.13) имеет наименьшую и наибольшую FP, и

$$\mu Z.\mathcal{F}(Z) = \bigcup_{i \geq 0} \mathcal{F}^{i}(\emptyset) = \mathcal{F}^{i_{0}}(\emptyset)$$

$$\nu Z.\mathcal{F}(Z) = \bigcap_{i \geq 0} \mathcal{F}^{i}(Q) = \mathcal{F}^{j_{0}}(Q)$$

для некоторых i_0 и j_0 , где $\mathcal{F}^i(A) \stackrel{\text{def}}{=} \underbrace{\mathcal{F}(\dots(\mathcal{F}(A)))}$.

Один из возможных алгоритмов вычисления наименьшей и наибольшей FP монотонного оператора (3.13) имеет следующий

вид:

$$A:=\left\{\begin{array}{l}\emptyset\ \, (\text{для наименьшей FP})\\Q\ \, (\text{для наибольшей FP})\end{array}\right.$$

$$\mathbf{do} \, \left\{ \begin{array}{l} B := A \\ A := \mathcal{F}(A) \end{array} \right\} \, \, \mathbf{while} \, (B \neq A)$$

return A

3.4.2 Вычисление Q_{φ} на основе понятия FP

Изложенный в пункте 3.3.1 алгоритм вычисления множества Q_{φ} может быть преобразован в той его части, которая связана с вычислением значений формул, начинающихся с **EG** и **EU**.

Нетрудно доказать, что следующие операторы являются монотонными:

1. операторы

$$A \cap$$
 и $A \cup$: $\mathbf{2}^Q \to \mathbf{2}^Q$

(где $A\subseteq Q$ — фиксированное подмножество), которые сопоставляют каждому $B\in \mathbf{2}^Q$ подмножества $A\cap B$ и $A\cup B$ соответственно, и

2. оператор

$$\mathbf{EX}:\mathbf{2}^Q\to\mathbf{2}^Q$$

который сопоставляет каждому $B \in \mathbf{2}^Q$ подмножество

$$\mathbf{EX}(B) \stackrel{\mathrm{def}}{=} \{ q \in Q \mid \delta(q) \cap B \neq \emptyset \}$$

Из данных определений вытекает, что для любых СТL-формул ψ, η имеют место соотношения:

$$\begin{cases}
Q_{\text{EX}\psi} = \mathbf{EX}(Q_{\psi}) \\
Q_{\text{EG}\psi} = \nu Z. \left(Q_{\psi} \cap \mathbf{EX}(Z) \right) \\
Q_{\text{EU}(\psi,\eta)} = \mu Z. \left(Q_{\eta} \cup (Q_{\psi} \cap \mathbf{EX}(Z)) \right)
\end{cases}$$
(3.14)

Таким образом, вычисление значений формул, начинающихся с \mathbf{EG} и \mathbf{EU} , может быть сведено к задаче вычисления соответствующих \mathbf{FP} .

3.4.3 Задача fair-MC-CTL с условиями fairness в виде CTL-формул

Если условия fairness в списке (2.9) выражены CTL-формулами, т.е.

$$\forall i = 1, \dots, k \quad F_i = Q_{\psi_i} \quad \text{где } \psi_i \in \text{ CTL}$$
 (3.15)

то множество $Q_{\mathrm{EG}\psi}^F$ может быть представлено в виде

$$Q_{\mathrm{EG}\psi}^{F} = \nu Z. \left\{ \begin{array}{l} Q_{\psi} \\ \bigcap_{i=1}^{k} \mathbf{EX} \mathbf{EU} \Big(Q_{\psi}, Z \cap Q_{\psi_{i}} \Big) \end{array} \right\}$$
(3.16)

где фигурные скобки изображают операцию пересечения множеств.

Для обоснования равенства (3.16) мы отдельно докажем, что его левая часть содержится в его правой части, и наоборот.

1. Утверждение о том, что $Q_{\mathrm{EG}\psi}^F$ содержится в правой части (3.16), следует из того, что $Q_{\mathrm{EG}\psi}^F$ является FP оператора в правой части (3.16), т.е.

$$Q_{\mathrm{EG}\psi}^{F} = \left\{ \begin{array}{l} Q_{\psi} \\ \bigcap_{i=1}^{k} \mathbf{EX} \ \mathbf{EU} \Big(Q_{\psi}, Q_{\mathrm{EG}\psi}^{F} \cap Q_{\psi_{i}} \Big) \end{array} \right\}$$

Данное равенство верно потому, что его левая и правая части состоят из всех состояний q, из которых существует fair путь $\pi \subseteq Q_{\psi}$.

2. Обратное включение следует из того, что если Z – FP оператора из правой части (3.16), т.е.

$$Z = \left\{ \begin{array}{l} Q_{\psi} \\ \bigcap_{i=1}^{k} \mathbf{EX} \ \mathbf{EU} \Big(Q_{\psi}, Z \cap Q_{\psi_{i}} \Big) \end{array} \right\}$$

то из каждого $q\in Z$ существует fair путь $\pi\subseteq Q_{\psi}$, т.е. $Z\subseteq Q_{\mathrm{FG}\psi}^F$.

Отметим, что если

• задача fair-MC-CTL состоит не в нахождении множества $Q_{\mathrm{EG}\psi}^F$, а в вычислении значения

$$q^F(\mathbf{EG}\psi) \tag{3.17}$$

при описанных выше допущениях (3.15), и

• в случае, когда значение (3.17) равно 1, требуется предъявить fair путь $\pi \subseteq Q_{\psi}$ из q в виде (3.10),

то можно пытаться строить данный путь сразу, ещё до завершения вычисления GFP (3.16):

• при первом вычислении внутренней FP

$$\mathbf{EU}\Big(Q_{\psi}, Z \cap Q_{\psi_1}\Big)$$

мы порождаем последовательность

$$Q_0^1 \subseteq Q_0^1 \subseteq Q_0^2 \subseteq \dots$$

которую мы запоминаем, и используя которую мы находим конечный путь $\rho_1\subseteq Q_\psi$ из q в состояние $q_1\in Z\cap Q_{\psi_1}$

- затем таким же образом строим конечный путь $\rho_2 \subseteq Q_\psi$ из q_1 в состояние $q_2 \in Z \cap Q_{\psi_2}$
- и т.д.

Если искомый путь существует, то его можно построить, используя определённые выше пути ρ_1, ρ_2, \dots

3.5 μ -исчисление

CTL (и некоторые другие логики, например, PDL) можно вложить в более мощную логику, называемую μ –исчислением. Это, в частности, позволяет свести задачу MC-CTL к некоторой задаче для μ –исчисления.

 μ –исчисление позволяет описывать свойства СП с несколькими отношениями перехода, т.е. СП вида

$$(\mathcal{P}, Q, \{\delta_a \mid a \in T\}, L, Q^0)$$
 (3.18)

где T – некоторое фиксированное множество, элементы которого называются **переходами**, и для каждого перехода $a \in T$ $\delta_a \subseteq Q^2$.

3.5.1 μ -формулы

Мы будем предполагать, что задано множество RV, элементы которого называются реляционными переменными (РП).

Множество формул μ –исчисления (которые мы будем называть μ –формулами) обозначается символом Φ_{μ} . Данное множество обладает свойствами темпоральных логик, изложенными в пункте 3.1, и кроме того

- 1. $RV \subseteq \Phi_{\mu}$
- 2. для каждого $a \in T$ и каждой μ -формулы φ

$$[a]\varphi \in \Phi_u$$
 и $\langle a \rangle \varphi \in \Phi_u$

3. для каждой РП Z и каждой μ -формулы φ

$$\mu Z.\varphi \in \Phi_{\mu}$$
 и $\nu Z.\varphi \in \Phi_{\mu}$

Вхождения РП в μ -формулы бывают **свободными** и **связанными**:

- вхождение РП Z в μ -формулу Z свободное,
- \bullet если φ имеет вид

$$\overline{\psi}$$
, $\psi \wedge \eta$, $\psi \vee \eta$, $[a]\psi$, $\langle a \rangle \psi$

то каждому вхождению каждой РП Z в φ соответствует некоторое вхождение Z в ψ или η , и каждое вхождение Z в φ имеет тот же статус (свободное или связанное), который имеет соответствующее вхождение Z в ψ или η

- если φ имеет вид $\mu Z.\psi$ или $\nu Z.\psi$, то
 - все свободные вхождения Z в ψ (а также вхождение Z рядом с μ и ν) становятся связанными в φ , и
 - все остальные вхождения РП в φ имеют тот же статус, который имеют соответствующие им вхождения этих РП в ψ .

 μ —формула называется **правильной**, если для каждой её подформулы вида $\mu Z.\varphi$ или $\nu Z.\varphi$ число отрицаний в подформуле φ , располагающихся над каждым свободным вхождением Z в φ , является чётным.

Ниже все рассматриваемые μ –формулы предполагаются правильными.

3.5.2 Значения μ -формул

Означиванием РП в СП (3.18) называется отображение ζ вида

$$\zeta: RV \to \mathbf{2}^Q \tag{3.19}$$

Значением μ -формулы φ в СП (3.18) на означивании (3.19) называется подмножество $\zeta(\varphi)\subseteq Q$ определяемое рекурсивно следующим образом:

- 1. $\forall p \in \mathcal{P} \quad \zeta(p) \stackrel{\text{def}}{=} Q_p$
- 2. значения РП определяются означиванием (3.19)
- 3. $\bullet \zeta(\mathbf{1}) \stackrel{\text{def}}{=} Q, \quad \zeta(\mathbf{0}) \stackrel{\text{def}}{=} \emptyset$
 - $\zeta(\overline{\psi}) \stackrel{\text{def}}{=} Q \setminus \zeta(\psi)$
 - $\zeta(\psi \wedge \eta) \stackrel{\text{def}}{=} \zeta(\psi) \cap \zeta(\eta)$
 - $\zeta(\psi \vee \eta) \stackrel{\text{def}}{=} \zeta(\psi) \cup \zeta(\eta)$
- 4. $\zeta(\langle a \rangle \psi) \stackrel{\text{def}}{=} \{ q \in Q \mid \delta_a(q) \cap \zeta(\psi) \neq \emptyset \}$
 - $\zeta([a]\psi) \stackrel{\text{def}}{=} \{ q \in Q \mid \delta_a(q) \subset \zeta(\psi) \}$

•
$$\zeta(\nu Z.\psi) \stackrel{\text{def}}{=} \nu Z. \Big(A \mapsto \zeta[Z := A](\psi) \Big)$$

где знакосочетание

$$A \mapsto \zeta[Z := A](\psi) \tag{3.20}$$

обозначает монотонный оператор вида (3.13), сопоставляющий каждому подмножеству $Q' \subseteq Q$ подмножество

$$\zeta[Z := Q'](\psi)$$

где $\zeta[Z:=Q']$ обозначает означивание, отличающееся от ζ лишь на РП Z, которой означивание $\zeta[Z:=Q']$ сопоставляет значение Q'.

Монотонность оператора (3.20) следует из правильности ψ .

Заметим, что значение $\zeta(\varphi)$ зависит только от значений ζ на тех РП, которые имеют свободные вхождения в φ . В частности, если в φ нет ни одного свободного вхождения РП (такие формулы называются **замкнутыми**) то её значение в СП (3.18) является одним и тем же для всех означиваний. Данное значение называется просто **значением** φ в СП (3.18).

Если значения μ -формул φ и ψ совпадают на всех означиваниях во всех СП вида (3.18), то мы будем обозначать этот факт знакосочетанием $\varphi = \psi$.

Нетрудно доказать, что имеют место соотношения

$$\overline{[a]\varphi} = \langle a \rangle \overline{\varphi} \qquad \overline{\mu Z.\varphi} = \nu Z. \overline{\varphi(\overline{Z})}
\overline{\langle a \rangle \varphi} = [a]\overline{\varphi} \qquad \overline{\nu Z.\varphi} = \mu Z. \overline{\varphi(\overline{Z})}$$
(3.21)

где формула $\varphi(\overline{Z})$ получается из φ заменой каждого свободного вхождения Z на \overline{Z} .

3.5.3 Ускоренное вычисление значений μ -формул

Определение значения $\zeta(\varphi)$ в пункте 3.5.2 является также и алгоритмом вычисления этого значения. Этот алгоритм имеет сложность $O(|S|^{|\varphi|})$, где S – СП, в которой вычисляется значение $\zeta(\varphi)$.

Вычисление значений формул вида $\mu Z.\psi$ и $\nu Z.\psi$ можно ускорить, если учесть, что в качестве первоначальной аппроксимации

для них можно взять не только 0 или 1, а любое подмножество $Q' \subseteq Q$, обладающее соответственно свойством

$$Q' \subseteq \zeta(\mu Z.\psi)$$
 или $Q' \supseteq \zeta(\nu Z.\psi)$

Основанный на этой идее алгоритм вычисления значения $\zeta(\varphi)$ для формулы φ вида $\mu Z.\psi$ выглядит следующим образом.

1. Пронесём в φ все отрицания вниз, используя законы де Моргана и соотношения (3.21). Получившуюся формулу обозначим тем же символом φ .

Из определения правильности следует, что после этого пронесения все отрицания будут располагаться только над утверждениями.

2. Обозначим символом M список всех начинающихся с μ подформул формулы φ (включая саму φ), которые не содержатся в подформулах, начинающихся с ν .

Каждой формуле $\eta \in M$ сопоставим новые РП A_{η} и B_{η} , в которых будут храниться промежуточные результаты вычисления значения η , и инициализируем A_{η} значением $\mathbf{0}$. Каждый раз, когда значение РП A_{η} будет обновляться, её старое значение будет записываться в B_{η} .

3. Далее работает цикл

$$\operatorname{do} \left\{ \begin{array}{l} B_{\varphi} := A_{\varphi} \\ A_{\varphi} := \zeta[Z := A_{\varphi}](\psi) \end{array} \right\} \text{ while } \begin{array}{l} \exists \eta \in M : \\ B_{\eta} \neq A_{\eta} \end{array}$$
 return A_{φ}

причём на каждом шаге цикла вычисление значения

$$\zeta[Z := A_{\varphi}](\psi) \tag{3.22}$$

делается не совсем так, как это предписывалось рекурсивным определением в пункте 3.5.2.

Отличие заключается только в способе вычисления значений подформул $\eta \in M$, и выглядит следующим образом.

Каждый раз, когда в процессе вычисления (3.22) дело доходит до необходимости вычислить значение вида $\zeta'(\eta)$ для некоторой формулы $\eta \in M$, и формула η имеет вид $\mu Z_{\eta}.\psi_{\eta}$, в качестве требуемого значения возвращается

$$\zeta'[Z_{\eta} := A_{\eta}](\psi_{\eta}) \tag{3.23}$$

(вычисляемое точно таким же модифицированным алгоритмом), и именно это значение заносится в РП A_n .

Отметим, что значения подформул, вычисляемые модифицированным алгоритмом, всегда являются подмножествами значений этих подформул, вычисляемых алгоритмом из пункта 3.5.2.

Для доказательства корректности данного алгоритма следует учесть, что при каждом обновлении содержимого РП A_{η} старое значение содержится в новом.

Вычисление значения формул вида $\nu Z.\psi$ может быть произведено двойственным образом.

Данный алгоритм имеет сложность $O(|S|^d)$, где d – **глубина чередования** формулы φ , определяемая как максимальная длина последовательности ψ_1,\ldots,ψ_k подформул формулы φ , каждая из которых начинается с μ или ν , и для каждого $i=1,\ldots,k-1$

- ψ_{i+1} является подформулой формулы ψ_i
- если ψ_i начинается с μ , то ψ_{i+1} начинается с ν , и если ψ_i начинается с ν , то ψ_{i+1} начинается с μ .

3.5.4 Вложение СТL в μ -исчисление

Пусть a – некоторый переход из множества T.

Каждой СТL—формуле φ , в которую входят только СТL—операторы вида (3.6), можно сопоставить замкнутую μ —формулу φ_{μ} , получаемую из φ заменой в ней подформул, начинающихся с СТL—операторов, на замкнутые μ —формулы, по следующему правилу:

- 1. **EX** ψ заменяется на $\langle a \rangle \psi$
- 2. $\mathbf{EU}(\psi,\eta)$ заменяется на $\mu Z.\Big(\eta \lor (\psi \land \langle a \rangle Z)\Big)$
- 3. **Е**G ψ заменяется на $\nu Z.(\psi \wedge \langle a \rangle Z)$

Пусть S – СП вида (2.6). Определим СП S_{μ} вида (3.18) как СП с такими же множеством состояний и оценкой, что и у S, и, кроме того, $\delta_a = \delta$. Нетрудно доказать, что для каждой СТL—формулы φ её значение Q_{φ} в S совпадает со значением φ_{μ} в S_{μ} .

Таким образом, задача MC-CTL может быть сведена к задаче вычисления значения μ -формул.

Глава 4

Символьный Model Checking

4.1 Представление множеств булевозначными выражениями

Пусть множество Q состоит из означиваний вида

$$\xi: V \to \mathcal{D} \tag{4.1}$$

где V — некоторое множество переменных, и ${\mathcal D}$ — множество их значений.

Каждому булевозначному выражению e, зависящему от переменных из множества V, соответствует подмножество $Q_e \subseteq Q$, определяемое следующим образом:

$$Q_e \stackrel{\text{def}}{=} \{ \xi \in Q \mid \xi(e) = 1 \}$$

Если для подмножества $Q'\subseteq Q$ существует булевозначное выражение e, такое, что

$$Q' = Q_e \tag{4.2}$$

то мы будем говорить, что e является **символьным представлением** подмножества Q' (или просто что e **представляет** подмножество Q').

Представление подмножества $Q' \subseteq Q$ в виде (4.2) наиболее эффективно в том случае, когда размер выражения e существенно меньше числа элементов в Q'.

Некоторым операциям над множествами означиваний соответствуют операции над представляющими эти множества булевозначными выражениями, например,

$$Q_{e_1} \cap Q_{e_2} = Q_{e_1 \wedge e_2}$$

$$Q_{e_1} \cup Q_{e_2} = Q_{e_1 \vee e_2}$$

$$Q \setminus Q_e = Q_{\neg e}$$

Вычисления над множествами означиваний, в которых вместо теоретико-множественных операций производятся соответствующие им операции над представляющими эти множества булевозначными выражениями, мы будем называть символьными вычислениями.

4.2 Задача SMC-CTL

Задача **SMC-CTL** (Symbolic Model Checking), заключается том, чтобы по заданным СТL-формуле φ и СП S, в которой

- состояниями являются означивания вида (4.1)
- отношение перехода представлено некоторым булевозначным выражением $\delta(V,V')$, зависящим от переменных из V и их штрихованных дубликатов, и имеет вид

$$\{(\xi, \xi') \in Q^2 \mid \delta(\xi, \xi') = 1\}$$

(определение значения выражения $\delta(V,V')$ на паре означиваний было приведено в пункте 2.4.3)

• для каждого утверждения p множество Q_p представлено некоторым булевозначным выражением e(p)

вычислить булевозначное выражение $e(\varphi)$, представляющее множество Q_{φ} .

Как и раньше, без ограничения общности мы можем предполагать, что в φ могут входить лишь CTL-операторы вида (3.6).

Идея излагаемого ниже алгоритма решения задачи SMC-CTL заключается в том, что выбирается некоторый класс $\mathcal C$ булевозначных выражений, который обладает следующими свойствами:

- существует алгоритм проверки эквивалентности выражений из класса \mathcal{C} (напомним, что выражения эквивалентны, если они представляют одно и то же множество означиваний)
- ullet С содержит выражения, эквивалентные константам 0 и 1
- на $\mathcal C$ реализованы булевские операции (т.е. имеются алгоритмы, вычисляющие по выражениям $e_1,e_2\in\mathcal C$ выражения из класса $\mathcal C$, эквивалентные выражениям

$$\overline{e}$$
, $e_1 \wedge e_2$, $e_1 \vee e_2$

• на $\mathcal C$ реализована операция $\mathbf E \mathbf X$, которая вычисляет по выражению $e \in \mathcal C$ выражение

$$\mathbf{EX}(e) \stackrel{\text{def}}{=} \exists V'(\delta(V, V') \land e') \tag{4.3}$$

где выражение e' получается из e заменой каждой входящей в него переменной $x \in V$ на её штрихованный дубликат x'.

Если исходные данные задачи SMC-CTL представлены выражениями из класса \mathcal{C} , то для вычисления выражения $e(\varphi)$ можно использовать следующий рекурсивный алгоритм.

- 1. Если $\varphi = p \in \mathcal{P}$, то выражение e(p) уже известно.
- 2. Если φ является булевой комбинацией своих подформул, то выражение $e(\varphi)$ получается применением соответствующей булевой операции к выражениям, которые соответствуют этим подформулам.
- 3. Если φ начинается с СТL-оператора, то $e(\varphi)$ вычисляется по следующим правилам:

$$e(\mathbf{E}\mathbf{X}\psi) = \mathbf{E}\mathbf{X}(e(\psi))$$

$$e(\mathbf{E}\mathbf{G}\psi) = \nu Z. (e(\psi) \wedge \mathbf{E}\mathbf{X}(Z))$$

$$e(\mathbf{E}\mathbf{U}(\psi, \eta)) = \mu Z. (e(\eta) \vee (e(\psi) \wedge \mathbf{E}\mathbf{X}(Z)))$$

Второе и третье выражение вычисляются по алгоритму, изложенному в конце пункта 3.4.1, т.е.

$$e_1:=\left\{egin{array}{ll} 1 & ($$
для второго выражения $) \\ 0 & ($ для третьего выражения $) \\ \mathbf{do} & \left\{ egin{array}{ll} e_2:=e_1 \\ e_1:=\mathcal{F}(e_1) \end{array}
ight\} \mathbf{while} \ (e_2
eq e_1) \\ \mathbf{return} \ e_1 \end{array}$

где $\mathcal{F}(Z)$ совпадает с записью в скобках после операторов μZ и νZ во втором и третьем выражениях.

4.3 Binary Decision Diagrams

4.3.1 Понятие BDD

Одним из классов C булевозначных выражений со свойствами, изложенными в пункте 4.2, является класс **двоичных решающих диаграмм**, сокращённо обозначаемых знакосочетанием **BDD** (Binary Decision Diagram).

BDD можно использовать для представления только таких множеств означиваний вида (4.1), в которых каждая переменная $x \in V$ имеет тип bool.

Если же тип некоторых переменных из V – не bool, то

• означивания вида (4.1) можно преобразовать в означивания вида

$$\hat{V} \to \{0, 1\} \tag{4.4}$$

где \hat{V} получается из V заменой каждой переменной $x \in V$, тип которой - не bool, на |x| новых переменных типа bool, где |x| – количество битов, необходимых для записи значений типа $\tau(x)$, и

• для представления множеств означиваний вида (4.1) можно использовать BDD, представляющие множества означиваний вида (4.4).

Ниже мы предполагаем, что каждая переменная x из V имеет тип bool.

BDD можно определить в том синтаксисе, который изложен в пункте 2.1.1. Однако наиболее наглядно BDD представляются в виде графов, поэтому мы будем определять BDD сразу в графовой форме.

BDD представляет собой ациклический граф e с выделенной вершиной Root(e), называемой **корнем**. Вершины BDD делятся на два класса - терминальные и нетерминальные.

Каждая терминальная вершина имеет метку 0 или 1. Из терминальных вершин не выходит ни одного ребра.

Каждая нетерминальная вершина v помечена некоторой переменной $l(v) \in V$. Из неё выходят два ребра, одно из которых имеет метку 0, а другое - метку 1.

Вычисление значения BDD на означивании ξ происходит посредством прохода по этой BDD, начиная с корневой вершины. В каждый момент прохода

- ullet если мы в этот момент находимся в нетерминальной вершине, то мы переходим к следующей вершине по ребру с меткой $\xi(l(v))$, и
- если мы в этот момент находимся в терминальной вершине, то вычисление заканчивается, и в качестве результата выдаётся метка этой вершины.

Две BDD называются **изоморфными**, если существует взаимнооднозначное соответствие между множествами их вершин, такое, что

- корневые вершины соответствуют друг другу,
- метки соответствующих вершин совпадают, и
- если в одной BDD пара вершин соединена ребром, то соответствующая ей пара в другой BDD тоже соединена ребром с той же меткой.

Очевидно, что если две BDD изоморфны, то они эквивалентны.

4.3.2 Редукция BDD

Редукцией BDD называется преобразование её в эквивалентную ей BDD меньшего размера.

Существуют три операции редукции.

- 1. Если BDD содержит пару v_1, v_2 вершин со следующими свойствами:
 - $l(v_1) = l(v_2)$, и
 - \bullet если v_1 и v_2 нетерминальны, то концы выходящих из v_1 и v_2 рёбер с одинаковыми метками совпадают.

то можно

- \bullet удалить v_1 и выходящие из неё рёбра, и
- рёбра, входящие в v_1 , перенаправить в v_2 .
- 2. Если BDD содержит вершину v, такую, что выходящие из v рёбра имеют один и тот же конец v_1 , то можно
 - \bullet удалить v и выходящие из неё рёбра, и
 - входящие в v рёбра перенаправить в v_1 .
- 3. Если BDD содержит недостижимую вершину v (т.е. такую вершину v, в которую не существует пути из корня), то можно удалить эту вершину и все связанные с нею рёбра.

Редуцированием BDD называется применение к ней операций редукции до тех пор, пока это возможно.

BDD называется **нередуцируемой**, если к ней невозможно применить никакую операцию редукции.

4.3.3 Порядок переменных в BDD

Пусть на множестве V переменных задан некоторый линейный порядок R.

BDD называется **согласованной** с R, если для каждого ребра из одной нетерминальной вершины v_1 в другую нетерминальную вершину v_2 имеет место неравенство

$$l(v_1) < l(v_2)$$

Можно доказать, что если две нередуцируемые BDD согласованы с одним и тем же порядком на V и эквивалентны, то они изоморфны.

Пусть заданы некоторое множество означиваний M вида (4.1), и некоторый порядок R на V.

Наименьший возможный размер BDD, которая представляет M и согласована с R, обозначается знакосочетанием

Например, если представляемое множество M состоит из всех означиваний, на которых истинно выражение

$$\bigwedge_{i=1}^{k} (x_i \leftrightarrow y_i)$$

ТО

• $size(M, R_1) = 3k + 2$, где порядок R_1 имеет вид

$$x_1 < y_1 < \ldots < x_k < y_k$$

• $size(M, R_2) = 3 \cdot 2^k - 1$, где порядок R_2 имеет вид

$$x_1 < \ldots < x_k < y_1 < \ldots < y_k$$

Порядок R на V называется **оптимальным** для представления M, если для любого порядка R' на V

$$size(M,R) \le size(M,R')$$

Задача проверки оптимальности выбранного порядка является NP-полной. Ниже все рассматриваемые BDD предполагаются согласованными с некоторым фиксированным порядком на множестве переменных.

Это, в частности, обеспечивает возможность проверки эквивалентности двух BDD, которая, ввиду вышесказанного, может быть произведена путём

- редуцирования обеих BDD, и
- проверке изоморфности получившихся BDD.

4.3.4 Операции на BDD

В этом пункте определяются булевские и некоторые другие операции на BDD. После выполнения действий, изложенных в определении каждой операции, необходимо редуцировать получившуюся BDD.

Константы 0 и 1

BDD, представляющая константу 0 или 1, состоит из одной вершины, помеченной этой константой.

Подстановка значения вместо переменной

Пусть e – некоторая BDD.

Для каждой её нетерминальной вершины v мы будем обозначать символом v_b (где b=0 или 1) конец выходящего из v ребра с меткой b.

Знакосочетание

$$[x := b]e \tag{4.5}$$

(где $x \in V$ и b=0 или 1) обозначает BDD, получаемую из e удалением всех вершин с меткой x и выходящих из них рёбер, причём перед удалением каждой такой вершины v каждое ребро, входящее в v, перенаправляется в v_b .

В том случае, когда удаляемая вершина является корнем в e, корнем в (4.5) будет v_b . В этом случае (4.5) является подграфом в e.

Нетрудно видеть, что для каждого означивания ξ имеет место соотношение

$$\xi([x := b]e) = (\xi[x := b])(e)$$

где означивание $\xi[x:=b]$ отличается от ξ лишь значением на переменной x, которой оно сопоставляет значение b.

Отрицание

Для каждой BDD e её отрицание \overline{e} получается из e заменой меток терминальных вершин: 0 заменяется на 1, а 1 - на 0.

Бинарные булевы операции

Пусть * обозначает операцию \wedge или \vee . Для каждой пары BDD e_1, e_2 их булева композиция $e_1 * e_2$ определяется следующим образом.

Если одна из BDD e_1, e_2 является константой, то $e_1 * e_2$ совпадает либо с e_1 , либо с e_2 :

$$0 \land e = 0$$
, $0 \lor e = e$, $1 \land e = e$, $1 \lor e = 1$

Пусть обе BDD e_1 и e_2 не константы. Обозначим метки вершин $Root(e_1)$ и $Root(e_2)$ символами x и y соответственно.

Если x=y, то искомая BDD имеет корень с меткой x, из которого выходит

• ребро с меткой 0 в BDD

$$([x := 0]e_1) * ([x := 0]e_2)$$

И

• ребро с меткой 1 в BDD

$$([x := 1]e_1) * ([x := 1]e_2)$$

Если x < y, то искомая BDD имеет корень с меткой x, из которого выходит

• ребро с меткой 0 в BDD

$$([x := 0]e_1) * e_2$$

И

• ребро с меткой 1 в корень BDD

$$([x := 1]e_1) * e_2$$

Если y < x, то искомая BDD определяется аналогично.

Заметим, что все участвующие в данном определении вспомогательные BDD (типа $[x:=b]e_i$) являются подграфами исходных BDD, т.е. полностью определяются вершинами исходных BDD, являющимися корневыми в данных вспомогательных BDD. Это позволяет во всех выражениях, в которых участвуют вспомогательные BDD, вместо самих этих BDD записывать только определяющие их вершины. Используя данное соображение, нетрудно доказать, что сложность задачи вычисления бинарных булевских операций на BDD имеет верхнюю оценку $O(|e_1| \cdot |e_2|)$.

Реляционные произведения

Для вычисления BDD $\mathbf{EX}(e)$, определяемой соотношением (4.3), мы реализуем более общую операцию **реляционного про-изведения** (**PП**), которая по паре BDD

$$f(X,Y)$$
 и $g(Y,Z)$

(где X,Y,Z — попарно непересекающиеся списки булевых переменных, f содержит переменные из X и Y, а g — переменные из Y и Z) строит BDD

$$\exists Y \left(f(X,Y) \land g(Y,Z) \right)$$
 (4.6)

где $\exists Y$ является сокращением знакосочетания

$$\exists y_1 \dots \exists y_k$$

если Y имеет вид (y_1, \ldots, y_k) . Для каждой BDD e знакосочетание $\exists y \ e$ является сокращённой записью BDD

$$[y := 0]e \lor [y := 1]e$$

Операция вычисления (4.6) обозначается знакосочетанием $\mathbf{Rel_Prod}$ и имеет аргументы f,g,Y. В определении этой операции используется вспомогательная переменная Cache, в которой хранятся четвёрки вида

$$(f, g, Y, \mathbf{Rel} \ \mathbf{Prod}(f, g, Y))$$

представляющие собой вычисленные значения функции **Rel_Prod** для некоторых значений её аргументов.

Операция **Rel_Prod** определяется рекурсивно следующим образом.

$$\mathbf{Rel}_{\mathbf{prod}}(f, g, Y) :=$$

- 1. если f=0 или g=0, то $\mathbf{return}\ 0$
- 2. если f = 1 и g = 1, то **return** 1
- 3. если $(f, g, Y, h) \in Cache$ то **return** h
- 4. иначе выполняем следующую последовательность действий:
 - $a := \max (f)$ (переменная в f с максимальным номером)
 - $b := \max(q)$
 - \bullet $c := \max(a, b)$
 - $h_0 := \text{Rel Prod}([c := 0]f, [c := 0]g, Y)$
 - $h_1 := \mathbf{Rel} \mathbf{Prod} ([c := 1]f, [c := 1]g, Y)$
 - $h := \begin{cases} h_0 \vee h_1 & \text{если } c \in Y \\ (z \wedge h_1) \vee (\overline{z} \wedge h_0) & \text{иначе} \end{cases}$
 - добавляем (f, g, Y, h) в Cache
 - return (h)

В наихудшем случае этот алгоритм имеет экспоненциальную сложность.

В том случае, когда

• вычисляется РП вида

$$\exists Y \left\{ \begin{array}{c} \delta(X,Y) \\ e(Y) \end{array} \right\} \tag{4.7}$$

(которое представляет основной интерес для задачи МС), и

• δ является комбинацией отношений δ_i , многие из которых зависят от небольшого числа переменных из Y

то вычисление BDD (4.7) может быть ускорено.

Например, если $\delta = \delta_1 \vee \ldots \vee \delta_n$ (что имеет место, например, в том случае, когда δ определяется по программной системе согласно правилам, изложенным в пункте 2.4.3), то вместо BDD (4.7) можно вычислять эквивалентную ей BDD

$$\bigvee_{i=1}^{n} \exists Y \left\{ \begin{array}{c} \delta_i(X,Y) \\ e(Y) \end{array} \right\}$$
 (4.8)

В частности, если моделируемая система представляет собой схему из функциональных элементов, компоненты которой работают последовательно, то

$$\delta_i = \left\{ \begin{array}{l} y_i \leftrightarrow f_i(X) \\ \bigwedge_{j \neq i} (y_j = x_j) \end{array} \right\}$$

и (4.8) можно переписать в виде

$$\bigvee_{i=1}^{n} \exists y_i \left\{ \begin{array}{l} y_i \leftrightarrow f_i(X) \\ e(x_1, \dots, x_{i-1}, y_i, x_{i+1}, \dots, x_n) \end{array} \right\}$$
 (4.9)

В другом случае, когда δ представляет собой конъюнкцию выражений, их надо сначала объединить в группы, относя в одну группу те выражения, которые связаны по смыслу. Выраже-

ние, соответствующее каждой группе, должно быть представлено единой BDD. Пусть выражения, соответствующие этим группам, имеют вид $\delta_1, \ldots, \delta_n$, тогда

$$\delta = \delta_1 \wedge \ldots \wedge \delta_n$$

Для каждого $i \in \{1, ..., n\}$ обозначим символом $Y(\delta_i)$ множество переменных из Y, которые входят в δ_i .

Если представить множество Y в виде разбиения $Y_1 \sqcup \ldots \sqcup Y_n,$ где

$$Y_1 \stackrel{\text{def}}{=} Y(\delta_1)$$

$$Y_2 \stackrel{\text{def}}{=} Y(\delta_2) \setminus Y_1$$

$$Y_3 \stackrel{\text{def}}{=} Y(\delta_3) \setminus (Y_1 \cup Y_2)$$

$$\dots$$

$$Y_n \stackrel{\text{def}}{=} Y(\delta_n) \setminus (Y_1 \cup \dots \cup Y_{n-1})$$

то вместо BDD (4.7) можно вычислять эквивалентную ей BDD

Вычисление последней BDD производится путём вычисления последовательности BDD e'_n, \ldots, e'_1 , где

$$\forall i = n, \dots, 1$$
 $e'_i \stackrel{\text{def}}{=} \exists Y_i \left\{ \begin{array}{c} \delta_i \\ e'_{i+1} \end{array} \right\}, \qquad e'_{n+1} \stackrel{\text{def}}{=} e(Y)$

Размеры BDD e'_n, \ldots, e'_1 определяются числом переменных в этих BDD и зависят от порядка конъюнктивных членов в выражении δ . Задача поиска наилучшего такого порядка является NP-полной. Порядок, близкий к оптимальному, можно найти, например, следующим образом.

1. Составляем список C конъюнктивных членов в δ .

2. Для каждой переменной y, входящей в какое-либо из множеств вида $Y(\delta')$, где $\delta' \in C$, вычисляем её "стоимость", которая может иметь вид

$$\max_{\delta' \in C, \ Y(\delta') \ni y} \ |Y(\delta')|$$
 или $\sum_{\delta' \in C, \ Y(\delta') \ni y} |Y(\delta')|$

- 3. В качестве первого конъюнктивного члена берём такое δ' , что $Y(\delta')$ содержит переменную с наименьшей стоимостью.
- 4. Исключаем δ' из списка C.
- 5. Следующий по порядку конъюнктивный член ищем среди оставшихся в списке C по точно такому же принципу.

Глава 5

Логика LTL

5.1 Бескванторные темпоральные формулы

Совокупность **бескванторных темпоральных формул** ($\mathbf{БT\Phi}$) представляет собой темпоральную логику со следующими дополнительными правилами:

- ullet если ψ БТ Φ , то ${f X}\psi,\ {f F}\psi,\ {f G}\psi$ БТ Φ
- если ψ и η БТФ, то $\mathbf{U}(\psi,\eta)$ и $\mathbf{R}(\psi,\eta)$ БТФ

Жирные символы (X, и т.д.) в данных формулах называются **темпоральными операторами**.

Пусть $\pi=(q_0,q_1,\ldots)$ – путь в некоторой СП S. Для каждого $i\geq 0$ символ π_i обозначает "хвост" пути π :

$$\pi_i = (q_i, q_{i+1}, \ldots)$$

Для каждой БТФ φ её **значением** $\pi(\varphi)$ на пути π является булева константа 1 или 0, которая определяется индуктивно:

- 1. если $\varphi = p \in \mathcal{P}$, то $\pi(\varphi) \stackrel{\text{def}}{=} q_0(\varphi)$ (данное значение уже определено в СП S)
- 2. $\pi(\mathbf{1}) = 1$, $\pi(\mathbf{0}) = 0$

- 3. значения булевых комбинаций определяются стандартным образом
- 4. $\pi(\mathbf{X}\psi) \stackrel{\text{def}}{=} \pi_1(\psi)$,
 - $\pi(\mathbf{F}\psi) = 1$, если $\exists i \geq 0 : \pi_i(\psi) = 1$
 - $\pi(\mathbf{G}\psi) = 1$, если $\forall i \geq 0 \quad \pi_i(\psi) = 1$
 - $\pi(\mathbf{U}(\psi,\eta)) = 1$, если $\exists i > 0$:

$$\left\{ \begin{array}{l} \pi_i(\eta) = 1, \ \mathbf{u} \\ \forall \ j < i \quad \pi_j(\psi) = 1 \end{array} \right\}$$
(5.1)

• $\pi(\mathbf{R}(\psi,\eta)) = 1$, если $\forall i \geq 0$

$$\left[egin{array}{l} \pi_i(\eta) = 1, & ext{или} \ \exists j < i: \ \pi_j(\psi) = 1 \end{array}
ight]$$

Мы будем называть БТФ φ и ψ эквивалентными (и обозначать этот факт знакосочетанием $\varphi = \psi$), если для каждого пути π в каждой СП

$$\pi(\varphi) = \pi(\psi)$$

Нетрудно доказать, что имеют место соотношения

- $\mathbf{F}\varphi = \mathbf{1}\mathbf{U}\varphi$
- $\overline{\mathbf{X}\varphi} = \mathbf{X}\overline{\varphi}$
- $\overline{\mathbf{G}\varphi} = \mathbf{F}\overline{\varphi}$
- $\overline{\mathbf{U}(\varphi,\psi)} = \mathbf{R}(\overline{\varphi},\overline{\psi})$

Следовательно, для любой БТ Φ существует эквивалентная ей БТ Φ , в которую входят только связки $\neg, \lor, \mathbf{X}, \mathbf{U}$.

Кроме того, имеют место соотношения

$$\mathbf{U}(\psi,\eta) = \left[\begin{array}{c} \eta \\ \psi \wedge \mathbf{X}\mathbf{U}(\psi,\eta) \end{array} \right]$$

$$\mathbf{R}(\psi, \eta) = \left\{ \begin{array}{l} \eta \\ \psi \vee \mathbf{X} \mathbf{R}(\psi, \eta) \end{array} \right\}$$

5.2 LTL-формулы

LTL—формулой называется знакосочетание вида $\mathbf{A}\psi$ или $\mathbf{E}\psi$, где ψ – $\mathrm{BT}\Phi$.

Для каждой СП S и каждого её состояния q значение LTL—формулы φ в q обозначается знакосочетанием $q(\varphi)$ и определяется следующим образом:

• $q(\mathbf{A}\psi)=1$, если для каждого пути π из q

$$\pi(\psi) = 1 \tag{5.2}$$

• $q(\mathbf{E}\psi) = 1$, если существует путь π из q, такой, что имеет место (5.2).

Из этого определения следует, что для каждой БТФ ψ

$$\overline{\mathbf{A}\psi} = \mathbf{E}\overline{\psi}$$

Можно определить стандартным образом отношение эквивалентности между СТL-формулами и LTL-формулами, и доказать, что

- 1. СТL-формула $\mathbf{AG}(\mathbf{EF}p)$ не эквивалентна ни одной LTL-формуле
- 2. LTL-формула $\mathbf{A}(\mathbf{FG}p)$ не эквивалентна ни одной CTL-формуле
- 3. дизъюнкция приведённых выше формул не эквивалентна ни одной LTL-формуле, и ни одной CTL-формуле.

5.3 Model checking для LTL

5.3.1 C Π S_{φ}

Ниже мы предполагаем, что каждая рассматриваемая БТ Φ содержит связки только из множества $\{\neg, \lor, \mathbf{X}, \mathbf{U}\}$.

Для каждой БТФ φ знакосочетание $Cl(\varphi)$ обозначает наименьшее (по отношению включения) множество формул, удовлетворяющее следующим условиям:

- 1. $Cl(\varphi)$ содержит все подформулы формулы φ
- 2. если $\mathbf{U}(\psi,\eta) \in Cl(\varphi)$, то $\mathbf{X}\mathbf{U}(\psi,\eta) \in Cl(\varphi)$

Множество $Cl(\varphi)$ называется **замыканием** φ .

Ниже множество всех $p \in \mathcal{P}$, входящих в φ , обозначается через \mathcal{P}_{φ} .

Для каждой БТФ φ символ S_{φ} обозначает СП,

• состояниями которой являются функции вида

$$K: Cl(\varphi) \to \{0, 1\} \tag{5.3}$$

удовлетворяющие следующим условиям:

$$K(\overline{\psi}) = \overline{K(\psi)}$$

$$K(\psi \vee \eta) = K(\psi) \vee K(\eta)$$

$$K(\mathbf{U}(\psi, \eta)) = \begin{bmatrix} K(\eta) \\ K(\psi) \wedge K(\mathbf{X}\mathbf{U}(\psi, \eta)) \end{bmatrix}$$
(5.4)

• для каждой пары K,K' состояний СП S_{φ} имеется ребро $K \to K',$ если для каждой формулы вида $\mathbf{X} \psi$ из $Cl(\varphi)$

$$K(\mathbf{X}\psi) = K'(\psi) \tag{5.5}$$

- для каждого $p \in \mathcal{P}_{\varphi}$ и каждого состояния K истинность p в K равна K(p),
- начальными состояниями являются такие функции K, для которых $K(\varphi)=1$
- \bullet в СП S_{φ} дополнительно задан список условий fairness, который имеет вид

$$(F_{\mathbf{U}(\psi,\eta)} \mid \mathbf{U}(\psi,\eta) \in Cl(\varphi))$$

где для каждой формулы из $Cl(\varphi)$ вида $\mathbf{U}(\psi,\eta)$

$$F_{\mathbf{U}(\psi,\eta)} \stackrel{\text{def}}{=} \{K : Cl(\varphi) \to \{0,1\} \mid K(\mathbf{U}(\psi,\eta)) \le K(\eta)\}$$

Нетрудно доказать, что путь $\kappa = (K_0, \ldots)$ в S_{φ} является fair тогда и только тогда, когда для

- каждого $i \ge 0$, и
- ullet каждой формулы вида $\mathbf{U}(\psi,\eta)$ из $Cl(\varphi)$

верно неравенство

$$K_i(\mathbf{U}(\psi,\eta)) \le \bigvee_{j\ge i} K_j(\eta)$$

Лемма.

Для каждого состояния K СП S_{φ} и каждого fair пути κ , выходящего из K, имеет место равенство

$$K(\varphi) = \kappa(\varphi)$$

Доказательство.

Докажем более общее утверждение: для каждого fair пути $\kappa = (K_0, \ldots)$ в S_{φ} имеет место соотношение

$$\forall \psi \in Cl(\varphi), \quad \forall i \ge 0 \qquad K_i(\psi) = \kappa_i(\psi)$$
 (5.6)

Доказательство этого соотношения мы проведём индукцией по структуре ψ .

- 1. $\forall p \in \mathcal{P}_{\varphi}$ $K_i(p) = \kappa_i(p)$ по определению значения БТФ на пути
- 2. $K_i(\overline{\psi}) = \overline{K_i(\psi)} = \overline{\kappa_i(\psi)} = \kappa_i(\overline{\psi})$
- 3. $K_i(\psi \lor \eta) = K_i(\psi) \lor K_i(\eta) = \kappa_i(\psi) \lor \kappa_i(\eta) = \kappa_i(\psi \lor \eta)$
- 4. $K_i(\mathbf{X}\psi) = K_{i+1}(\psi) = \kappa_{i+1}(\psi) = \kappa_i(\mathbf{X}\psi)$
- 5. для доказательства равенства

$$K_i(\mathbf{U}(\psi,\eta)) = \kappa_i(\mathbf{U}(\psi,\eta))$$

мы отдельно докажем два неравенства:

$$K_i(\mathbf{U}(\psi,\eta)) \le \kappa_i(\mathbf{U}(\psi,\eta))$$
 (5.7)

$$K_i(\mathbf{U}(\psi,\eta)) \ge \kappa_i(\mathbf{U}(\psi,\eta))$$
 (5.8)

Пусть (5.7) неверно, т.е.

$$K_i(\mathbf{U}(\psi,\eta)) = 1 \tag{5.9}$$

$$\kappa_i(\mathbf{U}(\psi,\eta)) = 0 \tag{5.10}$$

Согласно определению значения БТ Φ на пути, из (5.10) следуют соотношения

$$\kappa_i(\eta) = 0 \tag{5.11}$$

$$\kappa_i(\psi \wedge \mathbf{XU}(\psi, \eta)) = 0 \tag{5.12}$$

из которых, учитывая индуктивное предположение, мы получаем соотношения

$$K_i(\eta) = 0 \tag{5.13}$$

$$K_i(\psi) \wedge \kappa_{i+1}(\mathbf{U}(\psi, \eta)) = 0$$
 (5.14)

Из (5.4), (5.9), и (5.13) следует, что

$$K_i(\psi) \wedge K_{i+1}(\mathbf{U}(\psi, \eta)) = 1 \tag{5.15}$$

т.е.

$$K_i(\psi) = 1 \tag{5.16}$$

И

$$K_{i+1}(\mathbf{U}(\psi,\eta)) = 1 \tag{5.17}$$

Из (5.14) и (5.16) следует, что

$$\kappa_{i+1}(\mathbf{U}(\psi,\eta)) = 0 \tag{5.18}$$

Соотношения (5.17) и (5.18) представляют собой исходные соотношения (5.9) и (5.10) в которых вместо i написано i+1.

Следовательно, будут верны соотношения (5.9) и (5.10), в которых вместо i написано произвольное $j \geq i$.

В частности, поскольку из (5.9) и (5.10) следует (5.13), то для каждого $j \ge i$ будет верно (5.13), в котором вместо i написано j.

Учитывая (5.9), мы получаем противоречие с предположением о том, что путь κ – fair.

Теперь докажем обратное неравенство (5.8).

Выражение $\kappa_i(\mathbf{U}(\psi,\eta))$ по определению является дизъюнкцией выражений вида

$$\kappa_i(\psi) \wedge \ldots \wedge \kappa_{i+k-1}(\psi) \wedge \kappa_{i+k}(\eta)$$
(5.19)

где $k \geq 0$.

Для доказательства (5.8) достаточно доказать, что каждое из выражений (5.19) не превосходит

$$K_i(\mathbf{U}(\psi,\eta)) \tag{5.20}$$

По индуктивному предположению, (5.19) совпадает с

$$K_i(\psi) \wedge \ldots \wedge K_{i+k-1}(\psi) \wedge K_{i+k}(\eta)$$
 (5.21)

Поскольку

$$K_{i+k}(\eta) \le K_{i+k}(\mathbf{U}(\psi,\eta)) = K_{i+k-1}(\mathbf{X}\mathbf{U}(\psi,\eta))$$

то

$$K_{i+k-1}(\psi) \wedge K_{i+k}(\eta) \leq$$

$$\leq K_{i+k-1}(\psi) \wedge K_{i+k-1}(\mathbf{X}\mathbf{U}(\psi,\eta)) \leq$$

$$\leq K_{i+k-1}(\mathbf{U}(\psi,\eta))$$

т.е. последние два члена в выражении (5.21) можно промажорировать выражением

$$K_{i+k-1}(\mathbf{U}(\psi,\eta))$$

Производя и далее подобные мажорирующие замены, в конце концов придём к желаемому выражению (5.20).

5.3.2 C $\Pi S \times S_{\omega}$

Для каждой СП $S=(\mathcal{P},Q,\delta,L,Q^0)$, и каждой БТФ φ знакосочетание $S\times S_{\varphi}$ обозначает СП,

- ullet состояниями которой являются пары вида (q,K), где
 - $-q \in Q$,
 - -K состояние СП S_{φ} , и
 - $\forall p \in \mathcal{P}_{\varphi} \quad q(p) = K(p)$
- в СП $S \times S_{\varphi}$ имеется ребро

$$(q,K) \rightarrow (q',K')$$

если $q \to q'$ и $K \to K'$

- для
 - каждого состояния (q, K) СП $S \times S_{\varphi}$, и
 - каждого $p \in \mathcal{P}$

значение p в (q, K) равно K(p) (= q(p)).

Пусть $S = (\mathcal{P}, Q, \delta, L, Q^0)$ – некоторая СП.

Каждый путь $\pi=(q_0,\ldots)$ в S определяет fair путь $\kappa_\pi=(K_0,\ldots)$ в S_{φ} , где

$$\forall \psi \in Cl(\varphi), \quad \forall i \ge 0 \qquad K_i(\psi) = \pi_i(\psi)$$
 (5.22)

Если бы κ_{π} был не fair, то

$$\exists i_0 \geq 0 : \forall i \geq i_0 \quad K_i(\mathbf{U}(\psi, \eta)) \not\leq K_i(\eta)$$

т.е.

$$\forall i \geq i_0 \quad \pi_i(\mathbf{U}(\psi, \eta)) \not\leq \pi_i(\eta)$$

т.е.

$$\forall i \geq i_0 \quad \pi_i(\mathbf{U}(\psi, \eta)) = 1, \quad \pi_i(\eta) = 0$$

Это неверно, т.к. из $\pi_{i_0}(\mathbf{U}(\psi,\eta))=1$ следует, что

$$\exists i \geq i_0 : \quad \pi_i(\eta) = 1$$

что противоречит соотношению

$$\forall i \geq i_0 \quad \pi_i(\eta) = 0$$

Для каждого пути $\pi=(q_0,\ldots)$ в S обозначим символом σ_π путь $\pi \times \kappa_\pi$ в $S \times S_\varphi$, т.е. путь

$$((q_0, K_0), (q_1, K_1), \ldots)$$
 (5.23)

Произвольный путь σ в $S \times S_{\varphi}$ мы будем называть fair, если последовательность его вторых компонентов является fair путём в S_{φ} .

Соответствие $\pi \mapsto \sigma_{\pi}$ между путями в S и fair путями в $S \times S_{\varphi}$ биективно. Это следует из того, что для каждого fair пути σ вида (5.23) верно соотношение (5.22), в котором $\pi = (q_0, \ldots)$. Доказательство (5.22) мы проведём индукцией по структуре ψ .

1.
$$\forall p \in \mathcal{P}_{\varphi} \quad K_i(p) = q_i(p) = \pi_i(p)$$

2.
$$K_i(\overline{\psi}) = \overline{K_i(\psi)} = \overline{\pi_i(\psi)} = \pi_i(\overline{\psi})$$

3.
$$K_i(\psi \vee \eta) = K_i(\psi) \vee K_i(\eta) = \pi_i(\psi) \vee \pi_i(\eta) = \pi_i(\psi \vee \eta)$$

4.
$$K_i(\mathbf{X}\psi) = K_{i+1}(\psi) = \pi_{i+1}(\psi) = \pi_i(\mathbf{X}\psi)$$

5.
$$K_i(\mathbf{U}(\psi,\eta)) =$$

$$= \begin{bmatrix} K_{i}(\eta) \\ K_{i}(\psi) \wedge K_{i}(\mathbf{X}\mathbf{U}(\psi, \eta)) \end{bmatrix} =$$

$$= \begin{bmatrix} K_{i}(\eta) \\ K_{i}(\psi) \wedge K_{i+1}(\mathbf{U}(\psi, \eta)) \end{bmatrix} =$$

$$= \begin{bmatrix} K_{i}(\eta) \\ K_{i}(\psi) \wedge \begin{bmatrix} K_{i+1}(\eta) \\ K_{i+1}(\psi) \wedge K_{i+1}(\mathbf{X}\mathbf{U}(\psi, \eta)) \end{bmatrix} \end{bmatrix} =$$

$$= \begin{bmatrix} K_{i}(\eta) \\ K_{i}(\psi) \wedge K_{i+1}(\eta) \\ K_{i}(\psi) \wedge K_{i+1}(\eta) \end{pmatrix} =$$

$$= \begin{bmatrix} K_i(\eta) \\ K_i(\psi) \wedge K_{i+1}(\eta) \\ K_i(\psi) \wedge K_{i+1}(\psi) \wedge K_{i+2}(\mathbf{U}(\psi, \eta)) \end{bmatrix} =$$

$$= \dots =$$

$$=\begin{bmatrix} \pi_i(\eta) \\ \pi_i(\psi) \wedge \pi_{i+1}(\eta) \\ \pi_i(\psi) \wedge \pi_{i+1}(\psi) \wedge \pi_{i+2}(\eta) \\ \dots \\ \pi_i(\psi) \wedge \dots \wedge \pi_{i+k-1}(\psi) \wedge \pi_{i+k}(\eta) \\ \pi_i(\psi) \wedge \dots \wedge \pi_{i+k}(\psi) \wedge K_{i+k+1}(\mathbf{U}(\psi,\eta)) \end{bmatrix}$$
где k – произвольное неотрицательное числ

где k – произвольное неотрицательное число.

Таким образом, имеет место неравенство

$$\pi_i(\mathbf{U}(\psi,\eta)) \le K_i(\mathbf{U}(\psi,\eta))$$

Для обоснования обратного неравенства заметим, что из того, что σ – fair, следует соотношение

$$K_i(\mathbf{U}(\psi,\eta)) \le \bigvee_{j \ge i} K_j(\eta) = \bigvee_{j \ge i} \pi_j(\eta)$$

Сильно связная компонента C в $S \times S_{\varphi}$ называется $\mathbf{fair},$ если для

- каждого $(q, K) \in C$, и
- \bullet каждой формулы вида $\mathbf{U}(\psi,\eta) \in Cl(\varphi)$

верно неравенство

$$K(\mathbf{U}(\psi,\eta)) \le \bigvee_{(q',K') \in C} K'(\eta) \tag{5.24}$$

Докажем, что для каждого состояния (q, K) системы $S \times S_{\varphi}$ следующие условия эквивалентны.

1. Существует fair путь из (q, K).

2. Существует конечный путь из (q, K) в состояние (q', K'), принадлежащее некоторой fair SCC.

Сначала докажем, что из (1) следует (2). Если существует fair путь σ из (q, K), то существует состояние $(q', K') \in \sigma$, такое, что все состояния из совокупности

$$\{(q'', K'') \in \sigma \mid (q'', K'') \ge q(q', K')\}$$
 (5.25)

входят в σ бесконечно много раз.

(5.25) является сильно связным подмножеством, и, следовательно, содержится в некоторой SCC C. Докажем, что C - fair SCC, т.е. для

- каждого $(q_1, K_1) \in C$, и
- ullet каждой формулы $\mathbf{U}(\psi,\eta) \in Cl(\varphi)$

верно неравенство

$$K_1(\mathbf{U}(\psi,\eta)) \le \bigvee_{(q_2,K_2) \in C} K_2(\eta) \tag{5.26}$$

Выберем произвольное состояние (q'_1, K'_1) из (5.25). Поскольку C сильно связна, то существует конечный путь $\rho \subseteq C$ из (q_1, K_1) в (q'_1, K'_1) . Обозначим символом σ' "хвост" σ , начинающийся с (q'_1, K'_1) .

Учитывая (5.4) и (5.5), а также то, что σ' – fair путь, заключаем, что $\rho \cdot \sigma'$ – тоже fair путь, поэтому

$$K_1(\mathbf{U}(\psi,\eta)) \le \bigvee_{(q_2,K_2)\in\rho\cdot\sigma'} K_2(\eta) \tag{5.27}$$

Поскольку $\rho \cdot \sigma' \subseteq C$, то из (5.27) следует (5.26).

Теперь докажем, что из (2) следует (1). Пусть существует конечный путь σ_0 из (q, K) в $(q', K') \in C$, где C – fair SCC. Обозначим символом σ_1 путь вида

$$(q', K') \rightarrow (q', K')$$

содержащий все состояния из C. Нетрудно видеть, что конкатенация $\sigma_0 \cdot \sigma_1^\omega$ является fair путём из (q, K).

5.3.3 Задача MC-LTL

Задача MC-LTL заключается в вычислении множества

$$Q_{\psi} = \{ q \in Q \mid q(\psi) = 1 \}$$

где Q – множество состояний некоторой СП, и ψ – заданная LTL—формула.

Ниже мы рассматриваем задачу **MC-LTL** лишь для случая, когда ψ имеет вид **E** φ . Поскольку для каждой БТФ φ верно соотношение

$$\mathbf{A}\varphi = \overline{\mathbf{E}\overline{\varphi}}$$

то вычисление множества вида $Q_{{\rm A}\varphi}$ сводится к вычислению множества вида $Q_{{\rm E}\varphi}.$

Согласно определению, $q(\mathbf{E}\varphi) = 1$ означает, что

$$\exists \pi$$
 из $q: \pi(\varphi) = 1$ (5.28)

Как было установлено выше, пути π соответствует fair путь σ_{π} в $S \times S_{\varphi}$ из некоторого состояния (q, K_0) . Полагая в (5.22) i = 0 и $\psi = \varphi$, получаем:

$$\pi(\varphi) = \pi_0(\varphi) = K_0(\varphi)$$

Поэтому соотношение (5.28) эквивалентно следующему утверждению: существует состояние (q,K) СП $S \times S_{\varphi}$, такое, что

- 1. $K(\varphi) = 1$, и
- 2. из (q, K) выходит fair путь.

Как было доказано в конце предыдущего пункта, второе из этих условий равносильно существованию пути из (q, K) в некоторую fair SCC. Используя это соображение, можно построить алгоритм вычисления множества $Q_{\rm E\varphi}$, аналогичный алгоритму решения задачи MC-CTL из пункта 3.3.1. Сложность данного алгоритма имеет вид $O(|S| \cdot 2^{|\varphi|})$.

Можно доказать, что задачи MC-LTL и fair-MC-LTL являются PSPACE-полными.

Отметим, что на задачу проверки соотношения (5.28) можно смотреть и как на задачу fair-MC-CTL (и решать её символьными методами), поскольку истинность данного соотношения равносильна существованию такого состояния (q, K) системы $S \times S_{\varphi}$, что

- 1. $K(\varphi) = 1$, и
- 2. $(q, K)^F(\mathbf{EG1}) = 1$.

5.4 Автоматы Бюхи

5.4.1 Понятие автомата Бюхи

Автомат Бюхи (называемый ниже просто **автоматом**) – это пятёрка

$$\mathcal{B} = (A, Q, \delta, Q^0, F) \tag{5.29}$$

компоненты которой имеют следующий смысл:

- 1. А множество, называемое алфавитом
- 2. Q множество, элементы которого называются **состояниями**
- 3. δ подмножество множества $Q \times A \times Q$, называемое **отно- шением перехода**
- 4. $Q^0 \subseteq Q$ множество начальных состояний
- 5. $F = (F_1, \dots, F_n)$ список **fair множеств**, где для каждого $i = 1, \dots, n$ $F_i \subseteq Q$.

Элементы множества δ называются **переходами**. Произвольный переход $(q, a, q') \in \delta$ обозначается знакосочетанием $q \stackrel{a}{\to} q'$.

Автомат можно представить в виде графа, вершинами которого являются состояния. Для каждого перехода $q \stackrel{a}{\to} q'$ граф содержит ребро с меткой a из q в q'.

Для каждого пути π в этом графе символ $L(\pi)$ обозначает последовательность меток рёбер, из которых состоит данный путь, т.е. если π имеет вид

$$q_0 \xrightarrow{a_0} q_1 \xrightarrow{a_1} q_2 \xrightarrow{a_2} \dots$$
 (5.30)

TO
$$L(\pi) = (a_0, a_1, a_2, \ldots).$$

Знакосочетание $\inf(\pi)$ обозначает множество всех состояний, которые встречаются на пути π бесконечное число раз. Путь π называется **fair**, если

$$\forall i = 1, \dots, n \quad \inf(\pi) \cap F_i \neq \emptyset$$

Язык автомата \mathcal{B} – это множество $L(\mathcal{B})$ бесконечных цепочек символов алфавита A, соответствующих всевозможным fair путям из начальных состояний, т.е.

$$L(\mathcal{B}) = \{L(\pi) \mid \pi - \text{fair} \text{ путь из некоторого } q \in Q^0 \}$$

Автоматы \mathcal{B}_1 и \mathcal{B}_2 называются **эквивалентными**, если $L(\mathcal{B}_1) = L(\mathcal{B}_2)$.

Для каждого автомата \mathcal{B} вида (5.29) существует эквивалентный ему автомат

$$\mathcal{B}_1 = (A, Q_1, \delta_1, Q_1^0, F_1)$$

такой, что список F_1 состоит только из одного множества. Компоненты \mathcal{B}_1 можно определить, например, так:

- $Q_1 = Q \times \{0, 1, \dots, n\}$
- $Q_1^0 = Q^0 \times \{0\}$
- $\bullet \ F_1 = (Q \times \{n\})$
- δ_1 состоит из переходов

$$(q,j) \stackrel{a}{\rightarrow} (q',j')$$

таких, что $q \stackrel{a}{\to} q'$ и

$$j' = \left\{ \begin{array}{ll} k & \text{если } q' \in F_k \text{ и } j = k-1 \\ 0 & \text{если } j = n \\ j & \text{в остальных случаях} \end{array} \right.$$

5.4.2 Пример автомата

Рассмотрим в качестве примера автомат

Данный автомат имеет следующие компоненты:

- $A = \{a, b\}$
- $Q = \{q_1, q_2\}$
- $Q^0 = \{q_1\}$ (начальные состояния выделяются дополнительными стрелочками, ведущими в них)
- $F = (\{q_1\})$ (состояния из fair множества обозначаются двойными кружочками)

Язык данного автомата имеет вид $(b^* \cdot a)^{\omega}$.

Ниже, если у автомата не указывается вид списка F его fair множеств, то предполагается, что этот список состоит только из одного множества, которое будет обозначаться тем же символом F.

5.4.3 Пересечение автоматов

Для каждой пары автоматов $\mathcal{B}_1, \mathcal{B}_2$, где

$$\mathcal{B}_i = (A, Q_i, \delta_i, Q_i^0, F_i) \qquad (i = 1, 2)$$

существует автомат $\mathcal{B}_1 \cap \mathcal{B}_2$, называемый **пересечением** \mathcal{B}_1 и \mathcal{B}_2 , и обладающий следующим свойством:

$$L(\mathcal{B}_1 \cap \mathcal{B}_2) = L(\mathcal{B}_1) \cap L(\mathcal{B}_2) \tag{5.31}$$

Компоненты автомата $\mathcal{B}_1 \cap \mathcal{B}_2$ можно определить, например, так:

•
$$Q = Q_1 \times Q_2 \times \{0, 1, 2\}$$

•
$$Q^0 = Q_1^0 \times Q_2^0 \times \{0\}$$

•
$$F = Q_1 \times Q_2 \times \{2\}$$

• δ состоит из переходов

$$(q_1,q_2,j) \stackrel{a}{\rightarrow} (q'_1,q'_2,j')$$

таких, что $q_i \stackrel{a}{\to} q'_i \quad (i = 1, 2), \, \mu$

$$j' = \left\{ \begin{array}{ll} 1 & \text{если } j = 0 \text{ и } q_1' \in F_1 \\ 2 & \text{если } j = 1 \text{ и } q_2' \in F_2 \\ 0 & \text{если } j = 2 \\ j & \text{в остальных случаях} \end{array} \right.$$

Если $F_1 = Q_1$, то $\mathcal{B}_1 \cap \mathcal{B}_2$ можно определить проще:

•
$$Q = Q_1 \times Q_2$$
, $Q^0 = Q_1^0 \times Q_2^0$, $F = Q_1 \times F_2$.

ullet δ состоит из переходов

$$(q_1, q_2) \stackrel{a}{\rightarrow} (q'_1, q'_2)$$

таких, что $q_i \stackrel{a}{\rightarrow} q'_i$ (i=1,2)

5.4.4 Использование автоматов в задаче MC-LTL

Одна из возможных форм задачи **MC-LTL** заключается в том, чтобы для

- ullet заданной СП $S=(\mathcal{P},Q,\delta,L,Q^0),$ и
- ullet заданной LTL-формулы вида ${f A} arphi$

доказать, что

$$\forall q \in Q^0 \qquad q(\mathbf{A}\varphi) = 1 \tag{5.32}$$

т.е. для каждого пути π , выходящего из какого-либо начального состояния СП S, имеет место соотношение

$$\pi(\varphi) = 1. \tag{5.33}$$

Как было установлено в пункте 5.3.2, путь π определяет fair путь κ_{π} из некоторого состояния K СП S_{φ} , обладающего свойством

$$K(\varphi) = \pi(\varphi).$$

Так как $\pi(\varphi) = 1$, то, следовательно, состояние K, из которого выходит путь κ_{π} , является начальным.

Сопоставим пути $\pi = (q_0, ...)$ последовательность

$$L(\pi) = (L(q_0), \ldots)$$

функций вида $\mathcal{P}_{\varphi} \to \{0,1\}$, в которой для каждого $i \geq 0$ и каждого $p \in \mathcal{P}_{\varphi}$ имеет место равенство

$$L(q_i)(p) = q_i(p).$$

Пути $\kappa_{\pi}=(K_0,\ldots)$ можно сопоставить аналогичную последовательность

$$L(\kappa_{\pi}) = (L(K_0), \ldots)$$

функций вида $\mathcal{P}_{\varphi} \to \{0,1\}$, в которой для каждого $i \geq 0$ и каждого $p \in \mathcal{P}_{\varphi}$ имеет место равенство

$$L(K_i)(p) = K_i(p).$$

Из (5.22) следует, что $L(\pi) = L(\kappa_{\pi})$.

Для каждой СП S обозначим символом L(S) множество всех последовательностей вида $L(\pi)$, где π – произвольный путь в S из некоторого начального состояния (если в S присутствуют условия fairness, то рассматриваются только fair пути).

Мы доказали, что из (5.32) следует включение

$$L(S) \subseteq L(S_{\varphi}) \tag{5.34}$$

Обратно, из (5.34) следует (5.32), т.к. (5.34) означает, что для каждого пути $\pi=(q_0,\ldots)$ из произвольного начального состояния $q_0\in Q^0$ существует fair путь

$$\kappa = (K_0, \ldots)$$

в S_{arphi} , такой, что $K_0(arphi)=1$ и

$$\forall i \ge 0, \ \forall p \in \mathcal{P}_{\varphi} \qquad q_i(p) = K_i(p)$$
 (5.35)

Из (5.35) следует, что последовательность $((q_0, K_0), \ldots)$ является fair путём в $S \times S_{\varphi}$, и, как было установлено в пункте 5.3.2, отсюда следует соотношение (5.22), из которого следует (5.33).

Соотношение (5.34) эквивалентно соотношению

$$L(S) \cap L(S_{\overline{\varphi}}) = \emptyset \tag{5.36}$$

потому что

$$L(S_{\varphi}) \cap L(S_{\overline{\varphi}}) = \emptyset$$

и для каждой последовательности (a_0, \ldots) функций вида $\mathcal{P}_{\varphi} \to \{0,1\}$ имеет место одно из двух соотношений:

$$(a_0,\ldots)\in L(S_{\varphi})$$
 или $(a_0,\ldots)\in L(S_{\overline{\varphi}}).$

Действительно, рассмотрим СП,

- множество состояний которой имеет вид $\{q_0, \ldots\}$,
- отношение перехода состоит из пар вида (q_i, q_{i+1}) , и
- $\forall p \in \mathcal{P}_{\varphi}, \ \forall i \geq 0 \ q_i(p) \stackrel{\text{def}}{=} a_i(p).$

Обозначим символом π путь (q_0, \ldots) в этой СП. Ему соответствует

- fair путь κ'_{π} в S_{φ} , и
- fair путь κ''_{π} в $S_{\overline{\varphi}}$.

Согласно определению,

$$(a_0, \ldots) = L(\kappa'_{\pi}) = L(\kappa''_{\pi})$$

И

- если $\pi(\varphi) = 1$, то $(a_0, \ldots) \in L(S_{\varphi})$
- если $\pi(\varphi) = 0$, то $(a_0, \ldots) \in L(S_{\overline{\varphi}})$.

Таким образом, (5.32) эквивалентно (5.36).

Один из возможных способов проверки соотношения (5.36) заключается в

ullet построении автоматов \mathcal{B}_S и \mathcal{B}_{arphi} , обладающих свойствами

$$L(\mathcal{B}_S) = L(S), \quad L(\mathcal{B}_{\varphi}) = L(S_{\overline{\varphi}})$$

ullet и проверке пустоты языка автомата $\mathcal{B}_S \cap \mathcal{B}_{\varphi}.$

Для каждой СП $S = (\mathcal{P}, Q, \delta, L, Q^0)$ автомат \mathcal{B}_S , обладающий свойством $L(S) = L(\mathcal{B}_S)$, можно построить, например, путём добавления

- к множеству состояний этой СП нового состояния init (которое будет начальным состоянием автомата \mathcal{B}_S), и
- ullet рёбер из init во все состояния из Q^0 .

Если ребро автомата имеет вид $q \to q'$, то его метка равна L(q'), т.е. алфавит всех рассматриваемых в данном пункте автоматов состоит из функций вида

$$\mathcal{P}_{\varphi} \to \{0,1\}$$

Список F fair множеств автомата \mathcal{B}_S совпадает с аналогичным списком СП S. Если данный список состоит более чем из одного множества, то автомат \mathcal{B}_S преобразуется в эквивалентный ему автомат с одним fair множеством. Если в S fair множества не указаны (т.е. все состояния СП S являются fair), то F состоит из множества всех состояний автомата \mathcal{B} .

Нетрудно доказать эквивалентность условий:

- 1. язык автомата (5.29) непуст
- 2. существует путь из некоторого его начального состояния $q \in Q^0$ в состояние $q' \in C$, где C некоторая SCC множества Q, обладающая свойством $C \cap F \neq \emptyset$
- 3. существует путь из некоторого состояния $q \in Q^0$ в состояние $q' \in F$, через которое проходит цикл.

Таким образом, для проверки соотношения (5.36) можно проверять либо условие 2, либо условие 3.

Если проверяется условие 2, то для построения всех SCC со свойствами, указанными в условии 2, можно использовать алгоритм Тарьяна.

Если проверяется условие 3, то автомат $\mathcal{B}_S \cap \mathcal{B}_{\varphi}$ можно строить "на лету" ("on-the-fly"). Данный способ построения заключается в том, что сначала строится автомат \mathcal{B}_{φ} , который используется в процессе построения автомата \mathcal{B}_S . Пусть состояниями $\mathcal{B}_S \cap \mathcal{B}_{\varphi}$ являются пары (q_s, q_{φ}) , где q_s — состояние \mathcal{B}_S , и q_{φ} — состояние \mathcal{B}_{φ} . Если уже построено некоторое состояние q_s автомата \mathcal{B}_S , то к тому фрагменту автомата \mathcal{B}_S , который уже построен, добавляются только такие состояния q'_s , для которых существует элемент a алфавита, такой, что

- $q_s \stackrel{a}{\rightarrow} q'_s$, и
- $q_{\varphi} \stackrel{a}{\to} q'_{\varphi}$ для некоторого состояния q'_{φ} автомата \mathcal{B}_{φ} .

Если построена часть автомата $\mathcal{B}_S \cap \mathcal{B}_{\varphi}$, содержащая путь, упомянутый в условии 3, то в построении всего автомата $\mathcal{B}_S \cap \mathcal{B}_{\varphi}$ уже нет необходимости.

5.4.5 Оптимизация построения \mathcal{B}_{φ}

Автомат \mathcal{B}_{φ} можно строить не по СП $S_{\overline{\varphi}}$, а по более компактной СП S', задающей тот же самый язык.

СП S' строится следующим образом. Пронесём в $\overline{\varphi}$ все отрицания вниз, чтобы они располагались только над утверждениями, и обозначим получившуюся формулу символом α . Далее мы строим граф, каждая вершина q которого является подмножеством множества $Cl(\alpha)$, причём q разбито на два непересекающихся класса $\mathrm{New}(q)$ и $\mathrm{Old}(q)$.

На каждом шаге построения данный граф является аппроксимацией системы S'. В конце построения данный граф будет представлять собой искомую СП S'. Для каждой вершины q графа и каждого $p \in \mathcal{P}_{\varphi}$ значение q(p) равно 1, если $p \in q$, и 0 – если $\overline{p} \in q$. Каждой формуле из $Cl(\alpha)$ вида $\mathbf{U}(\psi, \eta)$ соответствует fair множество $F_{\mathbf{U}(\psi, \eta)}$, состоящее из всех состояний q, для которых верна импликация $\mathbf{U}(\psi, \eta) \in q \Rightarrow \eta \in q$.

Каждый шаг построения осуществляется в соответствии со следующим замыслом: для каждой вершины q, и каждой формулы $\psi \in q$, ψ должна быть истинной на всех fair путях, выходящих из q.

Сначала строим вершину $q_0 \stackrel{\text{def}}{=} \{\alpha\} = \text{New}(q_0).$

Для очередного шага построения выбирается произвольная вершина q, у которой $\mathrm{New}(q) \neq \emptyset$ (если таких вершин нет, то построение закончено).

- 1. Если в New(q) есть хоть одна формула β , не начинающаяся с **X**, то она переносится из New(q) в Old(q), после чего
 - (a) если $\beta = \psi \wedge \eta$, то ψ и η добавляются к $\mathrm{New}(q)$
 - (b) если $\beta = \psi \vee \eta$, то
 - создаётся дубликат q' вершины q с теми же классами New и Old, и для каждого ребра, ведущего в q, создаётся новое ребро с тем же началом, но с концом в q',
 - ψ добавляется к New(q),
 - η добавляется к New(q').
 - (c) если $\beta = \mathbf{U}(\psi, \eta)$, то выполняем те же операции, что и в предыдущем пункте, применительно к формуле $\eta \lor (\psi \land \mathbf{X}\beta)$, т.е.
 - создаются дубликат q' вершины q и новые рёбра, ведущие в q',
 - η добавляется к New(q)
 - ψ и $\mathbf{X}\beta$ добавляются к $\mathrm{New}(q')$
 - (d) если $\beta = \psi \mathbf{R} \eta$, то обрабатываем её так же, как $\eta \wedge (\psi \vee \mathbf{X} \beta)$, т.е.
 - создаются дубликат q' вершины q и новые рёбра, ведущие в q',
 - η и ψ добавляются к New(q)
 - η и $\mathbf{X}\beta$ добавляются к New(q')

Затем проверяется непротиворечивость и неизбыточность модифицированной вершины q:

- если в q входит формула $\mathbf{0}$, или пара формул вида p, \overline{p} , то q и все ведущие в неё рёбра удаляются
- \bullet если в q входит формула 1, то эта формула удаляется
- если в q входит пара одинаковых формул, то удаляется та из них, которая входит в New(q)

В случаях (b), (c), (d) те же действия выполняются для q'.

- 2. Если в New(q) все формулы начинаются с \mathbf{X} , то
 - (a) в том случае, когда $\exists q' \neq q$:

$$New(q) \subseteq New(q')$$
 и $Old(q) = Old(q')$

вершина q удаляется, а каждое ведущее в неё ребро перенаправляется в q'

- (b) иначе
 - создаются новая вершина

$$q' = \{ \psi \mid \mathbf{X}\psi \in \text{New}(q) \} = \text{New}(q')$$

и ребро из q в q', и

• все формулы из New(q) удаляются.

Начальными состояниями СП S' являются такие вершины, которые содержат формулу α .

5.4.6 Проверка включения языков

Поскольку задача МС-LTL в форме проверки условия (5.32) может быть сведена к проверке условия (5.34), то исследование проблемы включения языков также представляет большой интерес. Эту проблему можно рассмотреть в следующей постановке: по заданным автоматам \mathcal{B}_1 и \mathcal{B}_2 над одним и тем же алфавитом проверить условие $L(\mathcal{B}_1) \subseteq L(\mathcal{B}_2)$. Известно, что данная проблема PSPACE-полна.

Пусть автоматы \mathcal{B}_i (i=1,2) имеют вид

$$(A, Q_i, \delta_i, Q_i^0, F_i)$$

Обозначим символом S СП

$$(\{p_1, p_2\}, Q_1 \times Q_2, \delta, L, Q_1^0 \times Q_2^0)$$

где

- $(q_1,q_2) \to (q_1',q_2'),$ если существует a, такой, что $q_i \stackrel{a}{\to} q_i' \quad (i=1,2)$
- $(q_1, q_2)(p_i) = 1 \Leftrightarrow q_i \in F_i \quad (i = 1, 2).$

Можно доказать, что условие $L(\mathcal{B}_1) \subseteq L(\mathcal{B}_2)$ эквивалентно каждому из следующих условий:

- ullet в каждом начальном состоянии S истинна LTL-формула ${f A}({f GF}p_1 o {f GF}p_2)$
- в каждом начальном состоянии S истинна CTL-формула $\mathbf{AGAF}p_2$ с ограничениями fairness, задающимися CTL-формулой $\mathbf{AGAF}p_1$.

Литература

[1] International Standard ISO/IEC 9126.

Information Technology - Software Product Evaluation - Quality Characteristics and Guidelines for their Use. International Organization for Standardization, International Electrotechnical Commission, Geneva, 1991.

- [2] Лекции лауреатов премии Тьюринга. Москва, Мир, 1993.
- [3] E. Clarke, O. Grumberg, D. Peled: Model checking. MIT Press, 2001.