ARTIFICIAL INTELLIGENCE LAB PROGRAMS OUTPUT

Tony J Mathew

1BM17CS119

1. Implementation of Tic-Tac-Toe game

	1	2	3	
A	X	I	I	_,
В	T	I	I	_,
С	T	I	I	_

Player 2:

Enter postion: C3

	1	2	3	
A	X	I	I	_
В	T	I	I	_
С	Ī	T	10	_

	1	2	3	
A	X	T	X	— _I
В	T	I	I	_
С	T	I	10	— _I

Player 2:

Enter postion: Bl

	1	2	3	
A	X	I	X	_,
В	10	I	T	_ı
С	T	T	10	_1
	1	2	3	
A	X	X	X	_ I
В	10	T	T	_1
С	T	T	10	_ _I
Player	1 Wins			_

>>>

2. Solving 8 puzzle problem

7 8 0

3. Implementation of vacuum cleaner agent

```
{'A': 0, 'B': 0}
Vacuum is randomly placed at Location A.
Moving to Location B...
{'A': 0, 'B': 0}
Performance Measurement: -1
====== RESTART: D:\BMSCE\2 Lab\AI\VacuumCleaner.py ===
{'A': 0, 'B': 1}
Vacuum cleaner randomly placed at Location B.
Location B is Dirty.
Location B has been Cleaned.
Moving to Location A...
{'A': 0, 'B': 0}
Performance Measurement: 0
>>>
========= RESTART: D:\BMSCE\2 Lab\AI\VacuumCleaner.py ===
{'A': 1, 'B': 1}
Vacuum is randomly placed at Location A.
Location A is Dirty.
Location A has been Cleaned.
Moving to Location B...
Location B is Dirty.
Location B has been Cleaned.
{'A': 0, 'B': 0}
Performance Measurement: 1
>>>
```

4. Implementation of A* search algorithm

[8, [4, [5,	Ο,	7]			
D [8, [4, [5,	6,	7]	[8]	, 2, , 5,	6]
R [8, [4,	6,	7]	[8]	, 2, , 5,	6]
U [8, [4,	6,	0]	[8]	, 2, , 5,	0]
L [8, [4,	Ο,	6]	[8]	, 2, , 0,	5]
D [8, [4, [5,	2,	6]	[0]	, 2, , 8,	5]
L [8, [4,	2,	6]	[4]	, 2, , 8,	5]
U [8, [0,	2,	6]	[4]	, 2, , 8,	5]
U [0, [8, [4,	2,	6]	[4]	, 2, , 0, , 8,	5]
R [1, [8, [4,	2,	6]	[4,	, 2, , 5, , 8,	0]
D [1, [8, [4,	Ο,	6]	[4]	, 2, , 5, , 8,	6]

5. Implementing iterative deepening search to solve 8 puzzle problem

Screenshots not taken for middle part

Beginning	Ending
	6 1 2
	7 4 3
	8 0 5
0 1 2	
3 4 5	6 1 2
6 7 8	7 4 3
	0 8 5
1 0 2	0 0 3
3 4 5	6.1.0
6 7 8	6 1 2
0 7 0	0 4 3
0.1.0	7 8 5
0 1 2	
3 4 5	0 1 2
6 7 8	6 4 3
	7 8 5
1 4 2	
3 0 5	1 0 2
6 7 8	6 4 3
	7 8 5
1 0 2	
3 4 5	1 4 2
6 7 8	6 0 3
	7 8 5
0 1 2	/ 6 5
3 4 5	
6 7 8	1 4 2
6 7 6	6 3 0
	7 8 5
1 4 2	
0 3 5	1 4 2
6 7 8	6 3 5
	7 8 0
1 4 2	
3 0 5	1 4 2
6 7 8	6 3 5
	7 0 8
1 0 2	
3 4 5	1 4 2
6 7 8	6 3 5
	0 7 8
0 1 2	0 7 8
3 4 5	1.4.0
6 7 8	1 4 2
6 7 8	0 3 5
1.4.0	6 7 8
1 4 2	
6 3 5	1 4 2
0 7 8	3 0 5
	6 7 8
1 4 2	
0 3 5	1 0 2
6 7 8	3 4 5
	6 7 8
1 4 2	
3 0 5	0 1 2
6 7 8	3 4 5
1 0 2	6 7 8
3 4 5	Tabal number of second Con
6 7 8	Total number of moves: 945
0 / 0	Total searching time: 4.61 seconds

6. Create a knowledge base using prepositional logic and show that the given query entails the knowledge base or not

```
Enter rule :pvq
Enter the Query : p
*********Truth Table Reference*******
kb alpha
******
True True
False False
True False
The Knowlege Base does not entail query
======= RESTART: D:\BMSCE\2 Lab\AI\entail.py =
Enter rule :p^q
Enter the Query : p
*********Truth Table Reference********
kb alpha
******
True True
False False
False False
False True
The Knowlege Base entails query
>>>
```

7. Convert the given first order logic statement into conjunctive normal form (CNF)

8. Implementation of unification in first order logic

```
Enter Number of Predicates:- [2]
Enter Predicate 1:-[p]
       Enter No.of Arguments for Predicate p:-[2]
       Enter argument 1:(a)
       Enter argument 2:(b)
Enter Predicate 2:-[p]
       Enter No.of Arguments for Predicate p:-[2]
       Enter argument 1:(c)
       Enter argument 2:(b)
       =====PREDICATES ARE=====
       p(a,b)
       p(c,b)
       =====SUBSTITUTION IS=====
       c/aDo you want to continue(y/n):
Process returned 10 (0xA) execution time : 64.502 s
Press any key to continue.
```

9. Create a knowledge base consisting of first order logic statements and prove the query using forward reasoning

```
Hostile?
[{x: Nono}, {x: Jojo}, {x: Coco}]
Criminal?
[{x: West}]
```

10. Demonstrate decision tree learning for a given set of training examples and test data

```
Dataset Length: 625
Dataset Shape: (625, 5)
Dataset: 0 1 2 3 4
0 B 1 1 1 1
1 R 1 1 1 2
2 R 1 1 1 3
3 R 1 1 1 4
4 R 1 1 1 5
Results Using Entropy:
Predicted values:
'R' 'R' 'L' 'L' 'L' 'R' 'R' 'R']
Confusion Matrix: [[ 0 6 7]
[ 0 63 22]
[ 0 20 70]]
Accuracy: 70.74468085106383
Report :
        precision recall fl-score support
      0.00 0.00 0.00
   В
                 13
   L
      0.71
         0.74
             0.72
                 85
      0.71
         0.78
             0.74
                 90
             0.71
 accuracy
                 188
             0.49
macro avg 0.47 0.51 0.49 weighted avg 0.66 0.71 0.68
                 188
                 188
```