Couche Réseau IP & ICMP

UE LU3IN033 Réseaux 2023-2024

Bruno Baynat

Bruno.Baynat@sorbonne-universite.fr

Programme de l'UE LU3IN033

11 Web & DNS

- 8 Routage
- 7 DHCP & NAT
- 6 Paquet IP & ICMP
- 5 Adressage IP & ARP

Application

Transport

Réseau

Liaison

Physique

10 TCP (suite)

9 UDP & TCP

- 4 Réseaux locaux
- 3 Méthodes d'accès
- 2 Couche physique

1 Introduction

Plan du cours

- Entête du paquet IP
 - Champs de la partie fixe
 - Options IP
 - Contrôle d'erreur
- Longueur d'un paquet IP
 - Taille maximale
 - Fragmentation
- Charge utile du paquet IP
 - Protocoles encapsulés
- Acheminement IP
 - Acheminement direct vs indirect
 - Table d'acheminement
- Protocole ICMP
 - Tests et diagnostic d'erreurs
 - Commandes ping et traceroute

Paquet IP

Paquet IPv4

Champs de l'entête IP

Version (4 bits)

- Indique la version du protocole IP
- Nécessaire pour déterminer la structure de l'entête du paquet
 - valeurs courantes : "4" (pour IPv4) et "6" (pour IPv6)

Header Length (4 bits)

- Taille de l'entête exprimée en nombre de mots de 32 bits (4 octets)
 - valeur min "5" (0101): 20 octets (pas d'option IP)
 - valeur max "15" (1111): 60 octets (40 octets d'options IP)

Type-of-Service (8 bits)

- Type de chemin sur lequel acheminer le paquet
- Priorité du paquet par rapport aux autres paquets vus par le routeur
 - délai faible (transfert audio/video), capacité élevée (téléchargement)

Champs de l'entête IP

- Total Length (16 bits)
 - Taille totale du paquet exprimée en octets
 - → taille max d'un paquet : 65,535 octets (2¹⁶ -1)
 - La taille d'un paquet est limitée par la MTU
 - Maximum Transmission Unit
 - taille max du champ données des trames utilisées par la couche liaison de données sous-jacente
- Fragmentation (32 bits)
 - Permet de gérer la fragmentation d'un paquet et le réassemblage des fragments
 - Tous les fragments issus d'un même paquet possèdent le même identifiant

Fragmentation IP

MTU (*Maximum Transmission Unit*) : taille maximale du champ données des trames utilisées par la couche liaison de données sous-jacente

- Flags: 3 bits (Réservé: 0, DF, MF)
 - DF: Don't Fragment (les paquets trop grands sont rejetés)
 - MF : More Fragment (positionné sur le dernier fragment)

4	HL	ToS	Total Length			
	Iden	tifier	RPM	Fragment Offset		
Т	TL	Protocol	Не	eader Checksum		
Source IP address						
Destination IP address						

• Fragment Offset

 taille en octets des données des fragments précédant le fragment courant divisée par 8

Exemple

- Données encapsulées : 1300 octets
- Entêtes des fragments sur le réseau 2 : 576 20 = 556
 - valeur multiple de 8 la plus proche : 552 = 69 * 8
 - ightharpoonup F1 : offset 0 MF = 1 (taille des données : 552 octets)
 - F2: offset 69 = 552/8 MF = 1 (taille des données : 552 octets)
 - \rightarrow F3 : offset 138 = 1104/8 MF = 0 (taille des données : 196 octets)

Champs de l'entête IP

Time-To-Live (8 bits)

- Nombre maximal de sauts autorisé sur le chemin emprunté
- Valeur décrémentée de 1 par chacun des routeurs que traverse le paquet
 - suppression du paquet dont le TTL = 0
 - envoi à la source d'un message ICMP Time exceeded

Protocol (8 bits)

- Identifie le protocole du message encapsulé dans le paquet IP
 - 1 : ICMP
 - ▶ 6 : TCP
 - → 17: UDP

• Header Checksum (16 bits)

- Code de détection d'erreurs portant sur l'entête
- Vérification de bout en bout
 - · la source calcule la valeur du checksum du paquet envoyé
 - le récepteur vérifie la valeur du checksum du paquet reçu

Exemple: calcul du checksum

Exemple : vérification du checksum

Adresses source et destination

Deux adresses IP

- Adresse IP de la source (32 bits)
- Adresse IP de la destination (32 bits)

Adresse destination

- Identifie la machine hôte destination
- Utilisée par les routeurs pour acheminer le paquet
- Résulte fréquemment de la résolution du nom d'un serveur (DNS)

Adresse source

- Identifie la machine hôte source
- Permet à la destination d'accepter ou de rejeter le paquet
- Utilisée par la destination pour répondre à la source
- Configurée manuellement (administrateur) ou découverte dynamiquement (DHCP)

IHL * 4 =

Total length - (IHL * 4) =

14 octets entête Ethernet entête IP

20 octets

52 octets données

numéro en hexa de l'octet en début de ligne

0×00	80	00	20	87	b0	44	80	00	11	80	с0	63	80	00	45	00	octets 0 à 15
0×10	00	48	49	ba	00	00	1e	06	69	8d	c1	37	33	f6	c1	37	octets 16 à 31
0×20	33	04	17	70	96	d4	39	7f	84	c2	bf	3a	21	fd	50	18	octets 32 à 47
0x30	11	1c	99	bc	00	00	0e	00	31	3f	02	с0	00	11	00	00	octets 48 à 63
0×40	3e	c1	00	00	00	11	00	00	00	02	28	28	a7	b0	80	29	octets 64 à 79
0x50	ea	fc	81	58	90	70											octets 80 à 85

Paquet IPv4 (sans options)

- Version : 0x4 → paquet IPv4
- Longueur de l'entête IP : 0x5 → 20 (5*4) octets
- ToS: 0x00
- Longueur totale : 0x0048 → 72 octets
- Identifiant: 0x49ba
- DF : 0, MF: 0, Fragment offset : 0 → pas de fragmentation
- TTL : $0x1e \rightarrow 30$ sauts possibles
- Protocole : 0x06 → TCP
- Somme de contrôle : 0x698d
- Adresse IP source : 0xc13733f6 → 193.55.51.246
- Adresse IP destination: 0xc1373304 → 193.55.51.4
- Longueur des données : 72 20 = 52 (longueur totale longueur de l'entête)

Options IP

Туре	Option	Rôle						
0	End of Options List	Utilisée pour aligner la fin des options et la fin de l'entête IP (octet de bourrage)						
1	No Operation	Utilisée pour aligner les octets dans une liste d'options						
7	Record Route (RR)	Utilisée pour enregistrer la route empruntée par le paquet IP						
68	Time Stamp (TS)	Utilisée pour enregistrer le temps (en temps universel) où chaque équipement réseau reçoit le paquet pendant son trajet du point d'origine à sa destination						
131	Loose Routing	Si utilisée, permet de spécifier une liste (incomplète) de routes que le paquet doit emprunter lors de son parcours de la source à la destination						
137	Strict Routing	Si utilisée, permet de spécifier la liste exhaustive de routes que le paquet doit emprunter lors de son parcours de la source à la destination						

Option Record Route

Paquet IPv4 avec option Record Route

Paquet IPv4 avec option Record Route

Acheminement IP

Couche réseau

Acheminement direct

- La machine de destination est sur le même sous-réseau que la machine source (pas de routeur entre la source et la destination)
 - La source envoie des paquets IP encapsulés dans des trames dont l'adresse MAC et l'adresse IP de destination correspondent à la même machine

Acheminement indirect

- La machine de destination n'est pas sur le même sous-réseau que la machine source (au moins un routeur les sépare)
 - La source envoie des paquets IP encapsulés dans des trames dont
 - · l'adresse IP de destination est celle de la destination finale
 - l'adresse MAC de destination est celle du routeur de sortie du sous-réseau de la source (passerelle ou gateway)

Table de routage IP

• Table de routage IP ou table d'acheminement IP ou FIB (Forwarding Information Base)

Destination	Masque	Suivant	Interface

- La colonne Destination indique la destination que permet de joindre cette entrée
 - adresse IP d'un réseau ou d'une machine (importante)
- La colonne Masque (*Mask*) spécifie le masque associé à la destination
 - si la destination est une machine le masque est « 255.255.255.255 »
- La colonne Suivant (Gateway) indique l'adresse du prochain routeur
 - en cas de routage direct, la colonne contient « * » ou « 0.0.0.0 »
- La colonne Interface indique l'interface sur laquelle le paquet doit être transmis pour suivre la route considérée

Acheminement des paquets

- Chaque machine (hôte ou routeur) maintient une table de routage
 - hôte : table simple généralement configurée manuellement
 - routeur : table complexe mise à jour à l'aide de protocoles de routage
- À la réception d'un paquet
 - la machine consulte l'adresse de destination du paquet
 - inspecte sa table de routage pour déterminer la « meilleure » entrée correspondant à cette adresse
 - achemine le paquet sur l'interface indiquée par cette entrée
- Exemple

Destination	Masque	Suivant	Interface
10.0.0.192	255.255.255.224	10.0.0.63	eth0
10.0.0.0	255.255.255.192	*	eth0
10.0.0.128	255.255.255.192	*	eth1
0.0.0.0	0.0.0.0	10.0.0.191	eth1

- un paquet à destination de 10.0.0.136 est envoyé directement sur eth1
- un paquet à destination de 10.0.0.200 est envoyé indirectement au routeur 10.0.63 sur l'interface eth0
- un paquet à destination de 10.0.1.8 est envoyé indirectement au routeur 10.0.191 sur l'interface eth1

Protocole ICMP

Couche réseau

Protocole ICMP

- Internet Control Message Protocol
- Fonctionnalités du protocole ICMP
 - diagnostics d'erreur en cas de problème d'acheminement ou de délivrance
 - temps de vie d'un paquet dépassé
 - paquet trop gros ne pouvant être fragmenté
 - destination inaccessible
 - ٠...
 - tests de connectivité
 - pour vérifier si une machine est joignable
 - pour identifier des problèmes de routage
- Implémenté au dessus d'IP
 - message encapsulé dans un paquet IP
 - champ Protocol IP: 1
 - au même niveau que TCP (6) ou UDP (17)

Encapsulation dans IP

Message ICMP

- Type: nature du message ICMP
 - messages d'erreur
 - messages de test
- Code : cause de l'erreur (en cas de message d'erreur)
- Checksum : somme de contrôle
 - Vérification de l'intégrité
 - du message ICMP
 - · d'un pseudo-entête IP (similaire à celui de TCP et d'UDP)

Types et codes ICMP

Туре	Code	Message
0	0	Echo Reply
3	0	Destination Network Unreachable
3	1	Destination Host Unreachable
3	2	Destination Protocol Unreachable
3	3	Destination Port Unreachable
3	6	Destination Network Unknown
3	7	Destination Host Unknown
4	0	Source Quench
5	0	Redirect
8	0	Echo Request
11	0	Time Exceeded
11	1	Reassembly Time Exceeded
12		Parameter Problem
13		Timestamp
14		Timestamp Reply
15		Information Request
16		Information Reply
17		Address Mask Request
18		Address Mask Reply

Echo Request (Type 8) / Echo Reply (Type 0)

- Pour vérifier si une machine est joignable
 - une machine envoie un Echo Request à la machine dont elle veut tester l'accessibilité, celle-ci lui répond par un Echo Reply
 - envoyer plusieurs Echo request à une même machine permet de faire des statistiques (délai moyen AR, paquets perdus)
- Champ Identifier
 - permet de faire correspondre les messages Echo Reply reçus aux messages Echo Request envoyés (si envoyés à différentes machines)
- Champ Sequence Number
 - permet de faire correspondre un Echo Reply à l'Echo request correspondant (si plusieurs Echo Request envoyés à la même machine)
- Exploités par la commande Unix « ping »
 - Ex: ping -c 3 10.0.0.1

Command Traceroute

- La commande Unix Traceroute permet à une machine source de connaître la route complète vers une destination
- Envoi d'une succession de messages ICMP Echo Request en incrémentant le TTL du paquet IP qui les encapsule

Conclusion

- Champs d'entête du paquet IP
 - taille comprise entre 20 et 60 octets
 - les erreurs sur l'entête sont détectées par le champ checksum
 - la durée de vie du paquet est limitée par le champ TTL
- Longueur d'un paquet IP
 - les paquets trop longs peuvent être
 - fragmentés
 - détruits
- Charge utile du paquet IP
 - identifié par le champ Protocole
 - · 6:TCP
 - ▶ 17 : UDP
 - → 1: ICMP
- Acheminement IP
 - direct ou indirect
 - réalisé par consultation des tables d'acheminement
- Protocole ICMP
 - pour diagnostiquer des erreurs de routage ou de livraison
 - pour tester la connectivité
 - ping et traceroute

A faire

- Cours 6
 - à relire attentivement
- Devoir 6 sur Moodle
 - date de rendu : dimanche 15 octobre