Turing Machine as an Acceptor

Q1. Design Turing Machine to accept $\{a^n b^n \mid n \ge 0\}$. Simulate for string "aabb"

Ans: Approach:

Step 1: Replace the first a by Blank

Step 2: Move right till last non-Blank symbol.

Step3: Replace last b by Blank.

Step 4: Move left till first non-Blank symbol of tape.

Step 5: Repeat from Step 1.

7-tuple representation of TM

M=(Q, Z, T,	8,20,B	.F)
5 = { a, b},	Z = {a,	6, 3
8 maps QXZ		
2 a b)	B

Q Z	a	5	B
201	(21,B,R)	_	(24,18,5)
91	(4,a,R)	(2, 6, R) ((22B,L)
22	_	(23,B,L)	•
23	(23,0,6)	(23, 6, 4)	(20,B,R)
94	_	_	_

Q = 220, 21, 22, 23, 247, F = 1248

Simulation for "aabb"

⊦q0aab bB	⊦Bq1ab bB	⊦Baq1b bB	FBabq1 bB
⊦Bab bq1B	⊦ Babq2bB	⊦Baq3b BB	⊢Bq3abBB
⊦q3BabBB	⊦ B q0 a b B B	⊦BBq1 bBB	⊦BB bq1BB
F B B q2 b B B	F B q3 B B B B	F B B q0 B B B	⊢ B B q4 B B B

Q2. Design Turing Machine to accept {w c w | w ∈ (a+b)*).

Ans: Approach:

- Step 1: Replace the first symbol by Blank. For input a, go to Step 2 and for input b, go to Step 3.
- Step 2: Move right till input is c and go to Step 4 (with memory of leftmost as a)
- Step 3: Move right till input is c and go to Step 5 (with memory of leftmost as b)
- Step 4: Replace the symbol after c by Blank, if the symbol is a (Skip X, if any) and go to Step 6.
- Step 5: Replace the symbol after c by Blank, if the symbol is b (Skip X, if any) and go to Step 6.
- Step 6: Move left till first non-Blank symbol of tape.
- Step 7: Repeat from Step 1.

7-tuple representation of TM

 $M = (Q, \geq, T, \delta, 20, B, F)$ $\geq = \{a, b, c\}, T = \{a, b, c, X, B\}$ $\{ \text{maps} \ QX \ T \Rightarrow QX \ T \times \{L, L, S\}$

Q T	a	6	C	×	B
	(21, B,R)				
2.	(21,a,K)	(2, 6, R)	(G, C, R)		
22	(2,9,R)	(E2, 6, R)	(24,c,k)		
23	(95,X,L)			(93,×,R)	
24	V -	(95,X,L)		(24, ×, l)	
25			25-16,L)	(25,× L)	(90 B, R)
96		, ,	_		(77,B,5)
27	_	_	_	_	Ù

Q-420,21,21,23,2,25,26,27 == 1275

Spephical seprentation:

\[
\langle a | \alpha | \beta | \chi | \

Turing Machine as an Generator

Q1. Design Turing Machine to add 2 binary numbers.

Ans:

Assume 2 way infinite model of TM.

Assume input in form "m + n", where m is first number and n is second number (both in Binary representation)

Approach

Step 1: Move right till last non-Blank symbol (i.e. LSB of n).

Step 2: Decrement n by 1. If n is 0, go to Step 6

Step 3: Move left till LSB of m (i.e. left of +).

Step 4: Increment m by 1.

Step 5: Repeat from step 1.

Step 6: Blank all symbols from last non-Blank symbol on right till + (plus) and stop/ halt.

m has been replaced by m + n

Q2. Design Turing Machine to compute a2.

Ans:

Assume input is a, followed by infinite Blank symbols.

Assume that a is represented in Unary where alphabet set is {1}

Approach:

Step 1: Decrement a by 1 (replace by B) and for that add a * and 1 at the end.

Step 2: Repeatedly decrement a by 1 (replace 1 by X) and add 1 after *.

When no more 1s in a, tape has (a-1)-times X, followed by *, followed by a-times 1.

Step 3: Replace all X by 1 to get (a-1) times 1, followed by *, followed by a-times 1.

