RAJIV GANDHI PROUDYOGIKI VISHWAVIDYALAYA, BHOPAL

New Scheme Based On AICTE Flexible Curricula

Electronics & Communication Engineering V-Semester

Departmental Elective EC- 503 (A) Communication Network and Transmission Lines (CNTL)

Unit I

Characteristic Parameters of symmetrical and asymmetrical two port networks and their design Image impedance, iterative impedance, characteristic impedance, propagation coefficient, image transfer coefficient, iterative transfer coefficient, Lattice and Bridged T networks, reactive matching networks, matching techniques, insertion loss, symmetrical and asymmetrical attenuators and their design.

Unit II

Passive LC Filters Analysis and design of Low pass, high pass, band pass and band elimination filters, m-derived filters, composite filters, Filter specifications, Butterworth approximation, Chebyshev approximation, elliptic function approximation, frequency transformation.

Unit III

Positive real function LC, RL, RC, and RLC network synthesis, Foster and Cauer network, minimum positive real function, Brune's method, Bott-Duffin method, Synthesis-Coefficient.

Unit IV

Transmission line fundamentals Lumped parameter equivalent, voltage and current on a transmission line, infinite line, characteristic impedance and propagation constant, waveform distortion, attenuation and phase equalizers, distortion-less line, loading, liner reflection on a line, reflection coefficient, input and transfer impedances, open circuit and short circuit line, reflection factors, reflection loss, insertion loss, T and π equivalents of a line, location of line fault, construction and design of two wire line and coaxial cable. Academic Session 2017-18

Unit V

Line at radio frequencies Parameters of line and coaxial cable at radio frequencies, dissipation-less line, voltage and current on a dissipation-less line, standing waves, standing wave ratio, input impedance of open circuit and short circuit, power and impedance measurement on lines, eighth-wave, quarter-wave and half wave line, circle diagram, Smith chart, solution of problems using Smith chart, single and double stub matching introduction to micro-strip lines and its analysis.

References:

- 1. Ryder: Networks and Transmission Lines, PHI Learning.
- 2. Valkenberg: Introduction to Modern Network synthesis, Wiley India.
- 3. Suresh: Electric Circuits and Networks, Pearson Education.
- 4. Raju: Electromagnetic field theory and Transmission Lines, Pearson Education.
- 5. Ganesan: Transmission Lines and Waveguides, TMH.
- 6. Rao: Electromagnetic Waves and Transmission Lines, PHI learning.

RAJIV GANDHI PROUDYOGIKI VISHWAVIDYALAYA, BHOPAL

New Scheme Based On AICTE Flexible Curricula

Electronics & Communication Engineering V-Semester

Departmental Elective EC-503 (B) MOBILE COMMUNICATION

Unit I Introduction to wireless communication systems, different generations of wireless networks. Cellular system design fundamentals, frequency reuse, handoff strategies, Interference and system capacity, Trunking and grade of service.

Unit II Mobile radio propagation: free space propagation model, Ground reflection propagation model, Long term fading, Small scale multipath propagation, Time dispersion parameters, Coherence bandwidth, Doppler spread and coherence time, types of small scale fading, Clarke's model for flat fading, level crossing and fading statistics.

Unit III Capacity in cellular systems, cell splitting and sectoring, cell-site antennas and mobile antenna, cochannel interference reduction, Frequency management and channel assignment.

Unit IVFrequency division and time division multiple access. Global System for Mobile: System Architecture. GSM Radio subsystem,. GSM. GSM Traffic Channel and Control Channel, Frame Structure.

Unit V Spread spectrum multiple access (Frequency Hopped Multiple Access and. Code Division Multiple Access). Different spreading codes.CDMA Digital Cellular system: different standards with detailed description of forward and reverse channels. Capacity of cellular systems.

Reference Books:

- 1. Mobile cellular telecommunication- W. C. Lee, McGraw-Hill
- 2. Wireless communication -T. S. Rappaport, Prentice Hall
- 3. Wireless communication Simon Haykins, Pearson

RAJIV GANDHI PROUDYOGIKI VISHWAVIDYALAYA, BHOPAL

New Scheme Based On AICTE Flexible Curricula

Electronics & Communication Engineering V-Semester

Departmental Elective EC- 503 (C) ADVANCED CONTROL SYSTEM

Unit I Advantages and disadvantages of digital control system, Ideal sampler, sampled and hold circuit, zero order hold circuit, Z transform, Inverse Z transform by various method, mapping between s plane and Z plane, solution of the linear difference equation.

Unit II Pulse transfer function, general procedure for obtaining pulse transfer function, pulse transfer function of cascaded elements, pulse transfer function of closed loop systems. Transfer function of discrete data system, stability analysis of closed loop system in the z plane, Jury stability test.

Unit III Non Linear Systems: introduction, common physical non linearity's, phase plane method, basic concepts, singular points, stability of non linear system, construction of phase trajectories, system analysis by phase plane method, Describing functions methods, basic concepts derivation of describing function, liapunov's stability criterion.

Unit IV Review of root locus, lead compensation, lag compensation, lag-lead compensation and their comparison, review of state space methods, observability and controllability of system , pole placement by state feedback.

UnitV Tuning rules of PID controller, modifications of PID controllers, Introduction to software package used in control systems- MATLAB SIMULINK.

Reference Books:

- 1. Automatic control system—B. C.Kuo, wiley
- 2. Control system engineering—Nagrath & gopal, Publishers: New Age International
- 3. Modern control engineering –K. Ogata, Pearson; 5 edition
- 4. Control system engineering—Norman Nise, **P**ublisher: Wiley
- 5. Discrete time Control system— K. Ogata, Pearson; 2 edition