

Nonstationary Envelope in Random Vibration Theory

The theory consolidates years of stochastic-process research into a compact framework that treats the nonstationary envelope of linear-system responses as the modulus of a complex (analytic) output excited by an analytic input. The attached manuscript exhaustively derives every required result; the summary below extracts the essentials without conjecture or digressions into "latest trends."

Essence of the Analytic-Process Framework

- Stationary random excitations are recast as complex pre-envelopes: $f(t)=n(t)+i\hat{n}(t)$ where $\hat{n}(t)$ is the Hilbert transform of n(t). This guarantees a one-sided PSD so power exists only for $\omega>0$. [1]
- For genuinely nonstationary loading the physically admissible prescription is $f(t) = F(t) \left[n(t) + i \hat{n}(t) \right]$ where F(t) is a deterministic shaping function. This removes unphysical negative-time artifacts in the imaginary component.
- Linear time-invariant (LTI) systems preserve analyticity: the complex response $x(t)=y(t)+i\tilde{y}(t)$ follows, with $\tilde{y}(t)=\hat{y}(t)$ only in the stationary limit F(t)=1.
- The envelope is strictly $a(t)=\sqrt{y^2(t)+\tilde{y}^2(t)}$. All subsequent reliability metrics hinge on moments and correlations of x(t) and its derivatives.

Analytic Signal Envelope Amplitude Complex Plane Repsentation

Conceptual illustration of analytic signal, Hilbert transform, and envelope definition.

Cross-Correlation Matrix Construction

General nonstationary case

For a vector of order m containing derivatives up to order m-1:

$$\mathbf{X}_m(t) = \left[x(t), x^{(1)}(t), \dots, x^{(m-1)}(t)\right]^T,$$

the Hermitian cross-correlation matrix

$$\mathbf{R}_{m,x}(t_1,t_2) = \mathbb{E}ig[\mathbf{X}_m(t_1)\mathbf{X}_m^*(t_2)ig]$$

is obtained via double convolution of system derivatives $h^{(r)}(\tau)$ with the complex input correlation $E[f(t_1-\tau_1)f^*(t_2-\tau_2)]$. Closed-form expression:

$$p_{s,v,x}(t_1,t_2)=4\int_0^\infty\!\!U(\omega)G_n(\omega)e^{i\omega(t_1-t_2)}K_s(\omega,t_1)K_v^*(\omega,t_2)\,d\omega,$$

where K_r is a truncated Fourier transform of $h^{(r)}F$. [1]

Stationary specialization

With F(t)=1 and $t o\infty$ one recovers the classical spectral representation

$$p_{s,v,x}(au) = 4 \int_0^\infty \! G_n(\omega) H(\omega) H^*(\omega) (-i\omega)^s (i\omega)^v e^{i\omega au} \, d\omega.$$

Spectral Moments and Cross-Covariance Spectral (CCS) Matrix

- Stationary moments: $\lambda_{k,x}=4\int_0^\infty \omega^k G_n(\omega)|H(\omega)|^2\,d\omega$. These equal variances of analytic derivatives and populate the Hermitian CCS matrix $\Lambda_{m,x}$.
- Nonstationary moments: $\lambda_{s,v,x}(t)=(-i)^sp_{s,v,x}(t,t)$. Two indices are essential because symmetry linking orders s,v breaks when $F(t) \neq 1$. [1]

Envelope Statistics

Joint PDF of envelope and its derivative

For m=2 define ${f Z}_2={f X}_2/\sqrt{2}.$ The joint PDF of $a,\dot a$ at time t is Gaussian-derived:

$$p_{a\dot{a}}(a,\dot{a};t) = rac{a}{\sqrt{2\pi\lambda_{0,x}(t)|oldsymbol{\Lambda}_{2,z}(t)|}} \mathrm{exp} \Big[-rac{\lambda_{0,x}(t)\lambda_{2,x}(t)a^2 - 2\operatorname{Re}\lambda_{1,x}(t)a\dot{a} + \lambda_{0,x}(t)\dot{a}^2}{2|oldsymbol{\Lambda}_{2,z}(t)|} \Big].$$

Mean up-crossing rate of a circular barrier

$$u_a^+(\eta,t) = rac{1}{\sqrt{2\pi}}\sqrt{rac{\lambda_{2,x}(t)}{|\mathbf{\Lambda}_{2,z}(t)|}}\expigl[-\eta^2/(2\lambda_{0,x}(t))igr] \Big[1+\Phiigl(\eta\,\operatorname{Im}\lambda_{1,x}(t)igl/\sqrt{2\lambda_{0,x}(t)|\mathbf{\Lambda}_{2,z}(t)}igr)\Big]$$

exact for arbitrary F(t). In the stationary limit this collapses to the Rice-Cramér formula $\nu_a^+(\eta)=\frac{1}{\sqrt{2\pi}}\sqrt{\lambda_{2,x}/\lambda_{0,x}}\exp[-\eta^2/(2\lambda_{0,x})]$. [1]

First-Passage Probability

- Define half-cycle spacing $\Delta t=\pi/\omega_a(t)$ with $\omega_a(t)=\sqrt{\lambda_{2,x}(t)/\lambda_{0,x}(t)}.$
- Under Poisson assumption: failure rate $b(t_j) = \exp[-\eta^2/(2\lambda_{0,x}(t_j))].$
- Under one-step Markov assumption:

$$b(t_j) = rac{q(t_j, \Delta t)}{1 - q_0(t_j - \Delta t)}, \quad q(t_j, \Delta t) = \int_0^{\eta} \!\! da_1 \int_{\eta}^{\infty} \!\! p_{a_1 a_2}(a_1, a_2; t_j, \Delta t) \, da_2,$$

where $p_{a_1a_2}$ follows from the 2 imes 2 complex-correlation determinant $|{f R}_{1,z}|$. Closed form involves modified Bessel function I_0 and the modulus $r_0=|p_{0,z}(t_j-\Delta t,t_j)|$. [1]

Key Outcomes

- 1. Analytic inputs guarantee physically meaningful one-sided spectra and circumvent negative-time artifacts.
- 2. The CCS matrix offers a compact route to all variances, rendering direct differentiation of evolutionary PSD unnecessary.
- 3. Exact, closed-form expressions for mean up-crossing rates and first-passage probabilities emerge for nonstationary Gaussian loads—improvements over historical approximations.

No speculative addenda are necessary; the derivations stand on rigorous convolution and moment theory presented in the source manuscript.

1. paste.txt