Killing form

Shing Tak Lam

July 10, 2023

1 Solvability

In this section, let \mathfrak{g} be a real Lie algebra.

Definition 1.1 (ideal)

A subspace $I \subseteq \mathfrak{g}$ is an *ideal* if $[I, \mathfrak{g}] \subseteq I$.

Remark 1.2. Every ideal is a Lie subalgebra of \mathfrak{g} .

Definition 1.3 (simple)

 \mathfrak{g} is simple if $\mathfrak{g} \neq 0$, and the only ideals of \mathfrak{g} are 0 and \mathfrak{g} .

Definition 1.4 (derived series, solvable)

The derived series of $\mathfrak g$ is

$$\mathfrak{g}^{(0)} = \mathfrak{g}$$
 and $\mathfrak{g}^{(i+1)} = [\mathfrak{g}^{(i)}, \mathfrak{g}^{(i)}]$

Each $\mathfrak{g}^{(i)}$ is an ideal of \mathfrak{g} . We say that \mathfrak{g} is *solvable* if $\mathfrak{g}^{(n)}=0$ for some n.

Definition 1.5 (radical, semisimple)

 \mathfrak{g} has a unique maximal solvable ideal, called the *radical* of \mathfrak{g} , and denoted $\operatorname{rad}(\mathfrak{g})$. We say that \mathfrak{g} is *semisimple* if $\operatorname{rad}(\mathfrak{g})=0$.

Lemma 1.6. Suppose $\mathfrak g$ is a complex Lie algebra, $\operatorname{tr}(\operatorname{ad}_x\operatorname{ad}_y)=0$ for all $x\in\mathfrak g,y\in[\mathfrak g,\mathfrak g]$. Then $\mathfrak g$ is solvable.

2 Killing form

In this section, $\mathfrak g$ is a finite dimensional complex Lie algebra.

Definition 2.1 (Killing form)

The Killing form of $\mathfrak g$ is

$$\kappa(x, y) = \operatorname{tr}(\operatorname{ad}_x \operatorname{ad}_y)$$

where $ad_x(y) = [x, y]$, $ad : \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g})$ is the adjoint representation of \mathfrak{g} .

Lemma 2.2. κ defines a symmetric bilinear form on \mathfrak{g} . Moreover,

$$\kappa([x,y],z) = \kappa(x,[y,z])$$

Definition 2.3 (radical)

The radical of κ is the ideal

$$rad(\kappa) = \{ x \in \mathfrak{g} \mid \kappa(x, y) = 0 \text{ for all } y \in \mathfrak{g} \}$$

Theorem 2.4. The following are equivalent:

- (i) g is semisimple,
- (ii) κ is non-degenerate, that is, $rad(\kappa) = 0$,
- (iii) if x_1, \ldots, x_n is a basis of \mathfrak{g} , then $\det(\kappa(x_i, x_j)) \neq 0$.

Theorem 2.5. Suppose \mathfrak{g} is semisimple. Then there exists ideals l_1, \ldots, l_t of \mathfrak{g} which are simple (as Lie algebras), such that

$$\mathfrak{g} = I_1 \oplus \cdots \oplus I_t$$

Moreover, each simple ideal of \mathfrak{g} is one of the I_j , and the Killing form of I_j is $\kappa|_{I_j}$.

2.1 Killing form over \mathbb{R}

Now suppose instead that \mathfrak{g} is a real Lie algebra.

Definition 2.6 (abelian)

 \mathfrak{g} is abelian if [x, y] = 0 for all $x, y \in \mathfrak{g}$.

Lemma 2.7. \mathfrak{g} is semisimple if and only if there are no non-zero abelian ideals of \mathfrak{g} .

Lemma 2.8. Any abelian ideal of \mathfrak{g} is contained in rad(κ).

Proof. Let $I \subseteq \mathfrak{g}$ be an abelian ideal, $x \in I$, $y \in \mathfrak{g}$. We want to show that $\kappa(x,y) = 0$. First, note that we have

$$\mathfrak{g} \stackrel{\text{ad}_y}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} \mathfrak{g} \stackrel{\text{ad}_x}{-\!\!\!\!-\!\!\!\!-} I \stackrel{\text{ad}_y}{-\!\!\!\!-\!\!\!\!-} I \stackrel{\text{ad}_x}{-\!\!\!\!-\!\!\!\!-} 0$$

as I is an ideal, and I is abelian. Therefore, we have that $(ad_x ad_y)^2 = 0$. As any nilpotent endomorphism is tracefree, we must have that $\kappa(x, y) = 0$.

2

Theorem 2.9. \mathfrak{g} is semisimple if and only if κ is non-degenerate.

Proof. Suppose κ is non-degenerate. Then we've shown any abelian ideal is contained in rad(κ) = 0, therefore we must have that rad(\mathfrak{g}) = 0, i.e. \mathfrak{g} is semisimple.

On the other hand, suppose $\operatorname{rad}(\kappa) \neq 0$. Let \mathfrak{h} be any real Lie algebra. $\mathfrak{h}_{\mathbb{C}} = \mathfrak{h} \otimes_{\mathbb{R}} \mathbb{C}$ be the complexification of \mathfrak{h} . We can make $\mathfrak{h}_{\mathbb{C}}$ into a complex Lie algebra via

$$[v \otimes \lambda, w \otimes \mu] = [v, w] \otimes (\lambda \mu)$$

With this, we can see that \mathfrak{h} is abelian if and only if $\mathfrak{h}_{\mathbb{C}}$ is abelian, and as $[\mathfrak{h}_{\mathbb{C}},\mathfrak{h}_{\mathbb{C}}]=[\mathfrak{h},\mathfrak{h}]_{\mathbb{C}},\mathfrak{h}$ is solvable if and only if $\mathfrak{h}_{\mathbb{C}}$ is solvable. Moreover, by the above definition of the Lie bracket, we can see that the Killing form of $\mathfrak{g}_{\mathbb{C}}$ is the complexification of the Killing form of \mathfrak{g} , i.e.

$$\kappa_{\mathbb{C}}(v \otimes \lambda, w \otimes \mu) = \lambda \mu \cdot \kappa(v, w)$$

Therefore, we get that $rad(\kappa_{\mathbb{C}}) = rad(\kappa)_{\mathbb{C}}$. In particular, by lemma 1.6, we see that $rad(\kappa)_{\mathbb{C}}$ is solvable, hence $rad(\kappa)$ is solvable. Therefore, \mathfrak{g} is not semisimple.

Moreover, we have a similar result to the complex case, in

Theorem 2.10. Suppose \mathfrak{g} is semisimple. Then there exists ideals l_1, \ldots, l_t of \mathfrak{g} which are simple (as Lie algebras), such that

$$\mathfrak{g} = I_1 \oplus \cdots \oplus I_t$$

Moreover, each simple ideal of \mathfrak{g} is one of the I_j , and the Killing form of I_j is $\kappa|_{I_j}$.

2.2 Diagonalisation

Recall Sylvester's law of inertia:

Theorem 2.11 (Sylvester's law of inertia). Let A be a symmetric bilinear form on a finite dimensional real vector space V. Then there exists a basis of V such that

$$[A] = \begin{pmatrix} I_p & & \\ & -I_q & \\ & & 0 \end{pmatrix}$$

In the complex case, we can get

Corollary 2.12. Let A be a symmetric bilinear form on a finite dimensional complex vector space V. Then there exists a basis of V such that

$$[A] = \begin{pmatrix} I_{p+q} & \\ & 0 \end{pmatrix}$$

Note however a general symmetric bilinear form on a complex vector space will *not* be positive definite, since A(iv, iv) = -A(v, v).