概率论与数理统计

第四十讲 假设检验的基本思想(II)

问题 如何做出决策?
 前提 P{拒H₀|H₀真}≤α
 事件 很小的数

根据 小概率事件在一次实验中几乎不可能发生(女士品茶问题)

做出决策 等价于 找到拒绝 H₀ 对应的事件

● 关键

构造一个H₀为真时小概率事件,观察该事件在采样中是否发生,若发生则拒绝 H₀

H₀为真时的小概率事件发生对应 拒绝 H₀

步骤1 假设 H。为真,构造一个统计量

例:女士品茶问题中对应"说对的杯数"

- 步骤2 根据此统计量来确定一个事件(等价于给出 H₀的否定域)
- 要求 H_o为真时,该事件是小概率事件
 - 例: 女士品茶中,取 $\alpha = 0.05$,则事件为 {说对的杯数大于等于4}
 - 步骤3 进行实验,利用采样数据,判断小概率事件是否发生,若发生则拒绝 H₀

- 问题一 如何构造统计量?
- 问题二 如何构造事件(拒绝 H_o)?

例 某厂生产一种铆钉,直径标准定为 $\mu_0=2$ 厘米,现从该厂生产的铆钉中随机抽 100 个,测得直径的均值为 $\overline{x}=1.978$ cm,设铆钉的直径从 $N(\mu,\sigma^2)$, $\sigma=0.2$ cm,问该厂生产的铆钉是否合格?($\alpha=0.05$)

$$H_0: \mu = \mu_0 \ H_1: \mu \neq \mu_0$$

● 问题 什么情况发生会对 H。有利?

 $\frac{2}{2}$ 分析 \overline{X} 的值应在 μ 附近波动

故 $|ar{X}-\mu_0|$ 偏小对 \mathbf{H}_0 有利!

因此,可求一临界值C

如何确定未知参数C? 问题 分析 决定未知参数 C 的条件为: $P{\{拒H_0|H_0真\}} \leq \alpha$ 拒绝 H_0 \longleftrightarrow $|\bar{X} - \mu_0| \ge C$ H_0 真 $\mu = \mu_0$ $P\{$ 拒 $H_0 | H_0$ 真}= $P(|\bar{X} - \mu_0| \ge C | \mu = \mu_0) \le \alpha$ ——概率方程 如何依据上述概率方程求解未知参数C?

● 问题 如何依据上述概率方程求解C?

解
$$\mu = \mu_0$$
 成立时,显然 $\frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$

$$\left| \overline{X} - \mu_0 \right| \ge C \longrightarrow \left| \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \right| \ge \frac{C}{\sigma / \sqrt{n}}$$

拒绝
$$H_0$$
 时的事件 $\left| \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \right| \ge u_{1-\alpha/2}$ —拒绝域

下一步,计算统计量,查正态分布的分位表,观察其值是否落在拒绝域内,

$$ar{x}=1.978$$
cm, $\sigma=0.02$ cm, $\mu_0=2$ cm, $n=100$, $u_{0.975}=1.96$,
$$\left|\frac{\bar{x}-\mu_0}{\sigma/\sqrt{n}}\right|=1.1<1.96$$
接受原假设!

若
$$\overline{x} = 1.9$$
,则 $\left| \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \right| = 5 \ge 1.96$ 拒绝原假设!

- **归纳** 假设检验的步骤:
 - 1.根据问题,提出原假设 H₀和备择假设 H₁;
 - 2.构造检验统计量,其选取与原假设有关;
 - 3.对于给定的显著水平,确定H。的拒绝域;
 - 4.抽样,判断样本观察值是否落在拒绝域内!

例 从甲地发送一个讯号到乙地,由于存在线路噪声干扰,使得甲地发送一个幅值为 μ的讯号,而乙地收到的讯号是一个服从 N(μ,4)分布的随机变量.在测试中,甲地将同一讯号发送了5次,乙地收到的讯号值为

8.1, 9.3, 9.9, 8.5, 10.1

接收方有某种理由猜测甲地发送的讯号值为8, 问这种猜测是否正确 ($\alpha = 0.05$)

● 问题 能否下结论说"接收方的猜测正确"?

答:不能。

从题给数据所得结论是"接受 H₀",而此结论的II类风险有多大并不清楚.

故无法肯定接收方的猜测是"正确"的,只能 认为接收方的猜测是"有理由"的.

$$|\bar{x} - \mu_0| = |9.18 - 8| = 1.18 < 1.75$$

接收方也有理由猜测是9

需要进一步讨论的问题:

- 1.假设的类型
- 2.检验统计量的选取

与假设类型、总体分布、总体中其他参数的取值情况等有关

3.拒绝域的确定

以下只讨论正态分布的情况

例 某厂生产的固体燃料推进器燃烧率服从正态分布 $N(40,2^2)$ (cm/s), 现用新方法生产了一批推进器,从中随机抽取 n=25 只,试验后算得 $\bar{x}=41.25$,设新方法的总体方差不变,问新方法燃烧率是否有显著提高? $\alpha=0.05$

问题 要检验如下哪个假设?

双边检验
$$H_0: \mu = \mu_0 = 40, H_1: \mu \neq \mu_0$$
 ×

$$H_0: \mu \ge \mu_0 = 40$$
, $H_1: \mu < \mu_0$

单边检验
$$H_0: \mu \leq \mu_0 = 40$$
, $H_1: \mu > \mu_0$

提出假设:
$$H_0: \mu \leq \mu_0 = 40, H_1: \mu > \mu_0$$

 \bullet 分析 $X \sim N(\mu, 2^2)$

 \bar{x} 的值应在 μ 附近波动

若 H_0 成立,则 $\bar{X}-\mu_0$ 偏小于0!

因此,可求一临界值C

当
$$\bar{X} - \mu_0 \ge C$$
 时拒绝 H_0

问题 若 \mathbf{H}_0 成立,是否有 $\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}}\sim N(0,1)$

答 不一定,只有 $\frac{X-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$

● 问题 如何确定拒绝域?形式: $\bar{X} - \mu_0 \ge C$

$$\left\{ \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \ge \frac{C}{\sigma / \sqrt{n}} \middle| \mu \le \mu_0 \right\} = \left\{ \frac{\overline{X} - \mu - (\mu_0 - \mu)}{\sigma / \sqrt{n}} \ge \frac{C}{\sigma / \sqrt{n}} \middle| \mu \le \mu_0 \right\}$$

$$\leftarrow \left\{ \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \ge \frac{C}{\sigma / \sqrt{n}} \middle| \mu \le \mu_0 \right\}$$

故
$$P\left\{\frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} > \frac{C}{\sigma/\sqrt{n}} \middle| \mu \le \mu_0\right\} \le P\left\{\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} > \frac{C}{\sigma/\sqrt{n}} \middle| \mu \le \mu_0\right\}$$

$$= \alpha$$

因此拒绝域为:
$$\frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \ge u_{1-\alpha}$$

比较单边检验与双边检验

单边检验I类风险:
$$\leq \alpha$$
 双边检验I类风险: $= \alpha$

$$\bar{x} = 41.25, \ n = 25, \ \sigma = 2, \ \mu_0 = 40, \ u_{1-\alpha} = 1.65$$

$$\frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} = 3.125 \ge 1.65$$
, 拒绝原假设

综上总体
$$X \sim N(\mu, \sigma^2)$$
,方差已知时, $\frac{X-\mu}{\sigma/\sqrt{n}} \sim N(0, 1)$

- (2) $H_0: \mu \leq \mu_0$, $H_1: \mu > \mu_0$ 拒绝域 $\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \geq u_{1-\alpha}$, I类风险 $\leq \alpha$
- (3) $H_0: \mu \geq \mu_0$, $H_1: \mu < \mu_0$ 拒绝域为? $\frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \leq u_\alpha$ I类风险: $\leq \alpha$