Алгоритмы и структурам данных: ДЗ #13, дерево отрезков СП6, CS-Center, осенний семестр 2015/16

13.Base $[2/2]$		3
Задача 13А.	Сумма [0.4 sec, 256 mb]	3
Задача 13В.	Звёзды [0.2 sec, 256 mb]	4
13.Advanced	[4/8]	5
Задача 13С.	RMQ [0.9 sec, 256 mb]	5
Задача 13D.	Сумма [0.7 sec, 256 mb]	6
Задача 13Е.	Художник [1.2 sec, 256 mb]	7
Задача 13F.	K -инверсии $[0.1 \; \mathrm{sec}, \; 256 \; \mathrm{mb}]$	8
Задача 13 G .	Перестановки [1 sec, 256 mb]	9
Задача 13Н.	Окна [1.5 sec, 256 mb]	10
Задача 13І.	Вложенные отрезки [1.5 sec, 256 mb]	11
Задача 13Ј.	Ближайшая большая справа [0.5 sec, 256 mb]	12
13.Hard $[0/3]$		13
Задача 13К.	Золотые рудники [0.4 sec, 256 mb]	13
Задача 13L.	Обратная инверсия-2 [1 sec, 256 mb]	14
Задача 13М.	Приказы [2 sec, 256 mb]	15

Алгоритмы и структурам данных: ДЗ #13, дерево отрезков СПб, CS-Center, осенний семестр 2015/16

Общая информация:

Bход в контест: http://contest.yandex.ru/contest/1930/

Дедлайн на задачи: 10 дней, до 12-го декабря 23:59.

К каждой главе есть более простые задачи (base), посложнее (advanced), и сложные (hard).

В скобках к каждой главе написано сколько любых задач из этой главы нужно сдать.

Caйт курса: https://compscicenter.ru/courses/algorithms-1/2015-autumn/

Семинары ведут Сергей Копелиович (burunduk30@gmail.com, vk.com/burunduk1) и Глеб Леонов (gleb.leonov@gmail.com, vk.com/id1509292)

В каждом условии указан таймлимит для С/С++.

Таймлиминт для Java примерно в 2-3 раза больше.

Таймлиминт для Python примерно в 5 раз больше.

C++:

Быстрый ввод-вывод.

http://acm.math.spbu.ru/~sk1/algo/input-output/cpp_common.html

В некоторых задачах нужен STL, который активно использует динамическую память (set-ы, map-ы) переопределение стандартного аллокатора ускорит вашу программу:

http://acm.math.spbu.ru/~sk1/algo/memory.cpp.html

Java:

Быстрый ввод-вывод.

http://acm.math.spbu.ru/~sk1/algo/input-output/java/java_common.html

13.Base [2/2]

Задача 13A. Сумма [0.4 sec, 256 mb]

Дан массив из N элементов, нужно научиться находить сумму чисел на отрезке.

Формат входных данных

Первая строка входного файла содержит два целых числа N и K — число чисел в массиве и количество запросов. ($1 \le N \le 100\,000$), ($0 \le K \le 100\,000$). Следующие K строк содержат запросы

- 1. А і х присвоить *i*-му элементу массива значение x ($1 \le i \le n, 0 \le x \le 10^9$)
- 2. Q l r найти сумму чисел в массиве на позициях от l до r. $(1 \le l \le r \le n)$

Изначально в массиве живут нули.

Формат выходных данных

На каждый запрос вида Q 1 r нужно вывести единственное число — сумму на отрезке.

Примеры

sum.in	sum.out
5 9	0
A 2 2	2
A 3 1	1
A 4 2	2
Q 1 1	0
Q 2 2	5
Q 3 3	
Q 4 4	
Q 5 5	
Q 1 5	

Задача 13В. Звёзды [0.2 sec, 256 mb]

Астрономы часто исследуют звёздные карты, на которых звёзды представлены точками на плоскости, каждая звезда имеет декартовы координаты. Пусть уровень звезды – количество звёзд, которые не выше и не правее данной звезды. Астрономы хотят найти распределение уровней звёзд.

 $*^{1}$ $*^{2}$ $*^{3}$

Для примера посмотрим на карту звёзд на картинке выше. Уровень звезды номер 5 равен 3 (т.к. есть звёзды с номерами 1, 2, 4). Уровни звёзд 2 и 4 равны 1. На данной карте есть только одна звезда на уровне 0, две звезды на уровне 1, одна звезда на уровне 2 и одна звезда на уровне 3. Напишите программу, считающую количество звёзд на каждом уровне.

Формат входных данных

Вам дан один или несколько тестов. Каждый тест описывается следующим образом.

В первой строке количество звёзд N ($1 \le N \le 15\,000$). Следующие N строк описывают координаты звёзд (два целых числа X и Y, разделённые пробелом, $0 \le X, Y \le 32,000$). В каждой точке плоскости находится не более одной звезды. Звёзды перечислены в порядке возрастания Y координаты, при равенстве в порядке возрастания X координаты.

Формат выходных данных

Выведите ответ для каждого теста. Ответ для теста описывается следующим образом. N строк, по одному числу в строке. i-я строка содержит количество звёзд на уровне i (i=0...N-1).

Примеры

stars.in	stars.out
5	1
1 1	2
5 1	1
7 1	1
3 3	0
5 5	1
5	2
1 1	1
5 1	1
7 1	0
3 3	
5 5	

Замечание

Сканирующая прямая...

13.Advanced [4/8]

Задача 13C. RMQ [0.9 sec, 256 mb]

Дан массив a[1..n]. Требуется написать программу, обрабатывающую два типа запросов.

- Запрос "max l r". Требуется найти максимум в массиве **a** от l-ой ячейки до r-ой включительно.
- Запрос "add $l \ r \ v$ ". Требуется прибавить значение $v \$ к каждой ячейке массива a от l-ой до r-ой включительно.

Формат входных данных

Первая строка содержит два целых числа n и q ($1 \le n, q \le 10^5$) — длина массива и число запросов соответственно. Вторая строка содержит n целых чисел a_1, \ldots, a_n ($|a_i| \le 10^5$), задающих соответствующие значения массива. Следующие q строк содержат запросы.

В зависимости от типа запрос может иметь вид либо "max l r", либо "add l r v". При этом $1 \le l \le r \le n$, $|v| \le 10^5$.

Формат выходных данных

Для каждого запроса вида " $\max l \ r$ " требуется в отдельной строке выдать значение соответствующего максимума.

Примеры

rmq.in	rmq.out
5 3	3
1 2 3 4 -5	7
max 1 3	
add 1 2 5	
max 1 3	

Задача 13D. Сумма [0.7 sec, 256 mb]

Дан массив из N элементов, нужно научиться находить сумму чисел на отрезке.

Формат входных данных

Первая строка входного файла содержит два целых числа N и K — число чисел в массиве и количество запросов. ($1 \le N \le 100\,000$), ($0 \le K \le 100\,000$). Следующие K строк содержат запросы:

- 1. А l r x присвоить элементам массива с позициями от l до r значение x ($1 \le l \le r \le N$, $0 \le x \le 10^9$)
- 2. Q l r найти сумму чисел в массиве на позициях от l до r. $(1 \leqslant l \leqslant r \leqslant N)$

Изначально массив заполнен нулями.

Формат выходных данных

На каждый запрос вида Q 1 r нужно вывести единственное число — сумму на отрезке.

Примеры

sum.in	sum.out
5 9	3
A 2 3 2	2
A 3 5 1	3
A 4 5 2	4
Q 1 3	2
Q 2 2	7
Q 3 4	
Q 4 5	
Q 5 5	
Q 1 5	

Задача 13E. Художник [1.2 sec, 256 mb]

Итальянский художник-абстракционист Ф. Мандарино увлекся рисованием одномерных черно-белых картин. Он пытается найти оптимальное местоположение и количество черных участков картины. Для этого он проводит на прямой белые и черные отрезки, и после каждой из таких операций хочет знать количество черных отрезков на получившейся картине и их суммарную длину.

Изначально прямая — белая. Ваша задача — написать программу, которая после каждой из таких операций выводит в выходной файл интересующие художника данные.

Формат входных данных

В первой строке входного файла содержится общее количество нарисованных отрезков $(1 \le N \le 100\,000)$. В последующих N строках содержится описание операций. Каждая операция описывается строкой вида $c\ x\ l$, где c — цвет отрезка (\mathbb{W} для белых отрезков, \mathbb{B} для черных), а сам отрезок имеет вид [x;x+l), причем координаты обоих концов — целые числа, не превосходящие по модулю $500\,000$. Длина задается положительным целым числом.

Формат выходных данных

После выполнения каждой из операций необходимо вывести в выходной файл на отдельной строке количество черных отрезков на картине и их суммарную длину, разделенные одним пробелом.

Пример

painter.in	painter.out
7	0 0
W 2 3	1 2
B 2 2	1 4
B 4 2	1 4
B 3 2	2 6
B 7 2	3 5
W 3 1	0 0
W 0 10	

Замечание

Эта задача на обыкновенное дерево отрезков. Разобрана на семинаре.

Алгоритмы и структурам данных: ДЗ #13, дерево отрезков СПб, CS-Center, осенний семестр 2015/16

Задача 13F. K-инверсии [0.1 sec, 256 mb]

Пусть дана перестановка a_1, a_2, \ldots, a_n . Назовем k-инверсией набор чисел i_1, i_2, \ldots, i_k таких, что $1 \leqslant i_1 < i_2 < \ldots < i_k \leqslant n$ и $a_{i_1} > a_{i_2} > \ldots > a_{i_k}$. Ваша задача — подсчитать количество различных k-инверсий в заданной перестановке.

Формат входных данных

В первой строке входного файла находятся число n — длина перестановки $(1\leqslant n\leqslant 20\,000),$ и число k $(2\leqslant k\leqslant 10).$ Во второй строке n чисел — сама перестановка.

Формат выходных данных

В выходной файл выведите единственное число — количество k-инверсий в заданной перестановке по модулю 10^9 .

Пример

kinverse.in	kinverse.out
3 2	2
3 1 2	
5 3	10
5 4 3 2 1	

Замечание

Разобрана на семинаре. Динамика с деревом отрезков за $\mathcal{O}(nk\log n)$.

Задача 13G. Перестановки [1 sec, 256 mb]

Вася выписал на доске в каком-то порядке все числа от 1 по N, каждое число ровно по одному разу. Количество чисел оказалось довольно большим, поэтому Вася не может окинуть взглядом все числа. Однако ему надо всё-таки представлять эту последовательность, поэтому он написал программу, которая отвечает на вопрос — сколько среди чисел, стоящих на позициях с x по y, по величине лежат в интервале от k до l. Сделайте то же самое.

Формат входных данных

В первой строке лежит два натуральных числа — $1 \leqslant N \leqslant 100\,000$ — количество чисел, которые выписал Вася и $1 \leqslant M \leqslant 100\,000$ — количество вопросов, которые Вася хочет задать программе. Во второй строке дано N чисел — последовательность чисел, выписанных Васей. Далее в M строках находятся описания вопросов. Каждая строка содержит четыре целых числа $1 \leqslant x \leqslant y \leqslant N$ и $1 \leqslant k \leqslant l \leqslant N$.

Формат выходных данных

Выведите M строк, каждая должна содержать единственное число — ответ на Васин вопрос.

Пример

permutation.in	permutation.out
4 2	1
1 2 3 4	3
1 2 2 3	
1 3 1 3	

Замечание

Сканирующая прямая... Решение за $\mathcal{O}(N \log N)$.

Задача 13H. Окна [1.5 sec, 256 mb]

На экране расположены прямоугольные окна, каким-то образом перекрывающиеся (со сторонами, параллельными осям координат). Вам необходимо найти точку, которая покрыта наибольшим числом из них.

Формат входных данных

В первой строке входного файла записано число окон n ($1 \le n \le 50\,000$). Следующие n строк содержат координаты окон $x_{(1,i)}$ $y_{(1,i)}$ $x_{(2,i)}$ $y_{(2,i)}$, где ($x_{(1,i)},y_{(1,i)}$) — координаты левого верхнего угла i-го окна, а ($x_{(2,i)},y_{(2,i)}$) — правого нижнего (на экране компьютера y растет сверху вниз, а x — слева направо). Все координаты — целые числа, по модулю не превосходящие $2 \cdot 10^5$.

Формат выходных данных

В первой строке выходного файла выведите максимальное число окон, покрывающих какую-либо из точек в данной конфигурации. Во второй строке выведите два целых числа, разделенные пробелом — координаты точки, покрытой максимальным числом окон. Окна считаются замкнутыми, т.е. покрывающими свои граничные точки.

Пример

windows.in	windows.out
2	2
0 0 3 3	3 2
1 1 4 4	

Замечание

Сканирующая прямая... Решение за $\mathcal{O}(N \log N)$.

Задача 13I. Вложенные отрезки [1.5 sec, 256 mb]

Даны n отрезков на прямой. Пара отрезков называются вложенной, если отрезки не совпадают, и один отрезок содержит второй. Посчитать количество пар вложенных отрезков.

Формат входных данных

Целоы число $n\ (1\leqslant n\leqslant 300\,000)$ и n пар целых чисел $0\leqslant l_i\leqslant r_i\leqslant 10^9$.

Формат выходных данных

Одно число – количество пар вложенных отрезков.

Примеры

segs.in	segs.out
4	3
1 4	
2 5	
1 3	
3 4	

Замечание

Сканирующая прямая. Разобрана на семинаре.

Задача 13J. Ближайшая большая справа [0.5 sec, 256 mb]

Дан массив a из n чисел. Нужно обрабатывать запросы:

0. set(i, x) — a[i] = x; 1. get(i, x) — найти $\min k : k \geqslant i$ и $a_k \geqslant x$.

Формат входных данных

На первой строке длина массива n и количество запросов m. На второй строке n целых чисел — массив a. Следующие m строк содержат запросы.

Индексы в массиве нумеруются с 1.

Запрос типа set: "О і х".

Запрос типа get: "1 i x".

 $1 \leqslant n, m \leqslant 200\,000.$

 $0 \leqslant i < n$.

 $0 \leqslant x, a_i \leqslant 200\,000.$

Формат выходных данных

На каждой запрос типа get на отдельной строке выведите k. Если такого k не существует, выведите -1.

Примеры

nearandmore.in	nearandmore.out
4 5	1
1 2 3 4	3
1 1 1	-1
1 1 3	2
1 1 5	
0 2 3	
1 1 3	

Замечание

Можно сдать решение за $\mathcal{O}(\log^2)$ на запрос. Есть простое решение за $\mathcal{O}(\log n)$, разобрано на семинаре.

13.Hard [0/3]

Задача 13К. Золотые рудники [0.4 sec, 256 mb]

Байтмен, один из заслуженных работников компании по добыче золота в Байтленде, собирается в этом году на пенсию. Начальство компании решило вознаградить его за заслуги перед отечеством. Байтмену разрешили присвоить себе прямоугольную часть земли, со сторонами s и w, параллельными осям координат, со всеми входящими туда рудниками. Положение (сдвиг) участка он выбирает сам. Назовем стоимостью участка количество рудников, лежащих внутри него и на его границе. Ваша задача вычислить максимально возможную стоимость такого участка.

Формат входных данных

В первой строке входного файла находятся два целых числа s и w, разделенных одиночным пробелом ($1 \le s, w \le 10\,000$). Они означают длины сторон, параллельных осям 0Х и 0У соответственно. Во второй строке находится целое число N ($1 \le N \le 15\,000$), количество рудников. В последующих N строках находятся координаты рудников. В i+2 строке содержатся 2 целых числа x,y ($-30\,000 \le x,y \le 30\,000$), означающих координаты i-го рудника.

Формат выходных данных

В первой строке выходного файла нужно вывести максимальное количество рудников внутри площадки. Во второй строке нужно вывести координату угла любой из возможных оптимальных площадок. У прямоугольника четыре угла. Вам следует выводить тот, у которого x и y координаты максимальны. Выведенные координаты должны быть целыми и не должны превосходить 10^9 по абсолютной величине.

Пример

mine.in	mine.out
1 2	4
12	3 3
0 0	
1 1	
2 2	
3 3	
4 5	
5 5	
4 2	
1 4	
0 5	
5 0	
2 3	
3 2	

Замечание

Сканирующая прямая... Решение за $\mathcal{O}(N \log N)$.

Задача 13L. Обратная инверсия-2 [1 sec, 256 mb]

Таблицей инверсий для перестановки $A=(a_1,a_2,\ldots,a_n)$ чисел $\{1,2,\ldots,N\}$ называется массив $X=(x_i)_{1\leq i\leq N}$, в котором на i-м месте стоит количество элементов, больших i, но стоящих левее, чем i, т.е $x_i=$ число таких j', что $j'< j, a_{j'}>a_j=i$.

Например, таблицей инверсий для перестановки (2,5,1,3,4) будет (2,0,1,1,0), а для перестановки (6,1,3,7,5,4,2)-(1,5,1,3,2,0,0).

Обратной перестановкой A^{-1} к перестановке A называется такая перестановка чисел, что на i-м месте в A^{-1} стоит номер места, на котором стоит элемент, равный i, в перестановке A.

Например, для перестановки (2,5,1,3,4) обратной будет (3,1,4,5,2) (т.к. 1 стоит на третьем месте, 2 — на первом, 3 — на четвертом, 4 — на пятом, а 5 — на втором), а для перестановки (2,7,3,6,5,1,4) обратной будет (6,1,3,7,5,4,2).

Ваша задача — по таблице инверсий перестановки A посчитать таблицу инверсий обратной перестановки A^{-1} .

Формат входных данных

Файл состоит ровно из N чисел, разделенных пробелами и переводами строки, задающих таблицу инверсий перестановки A. Число N находится в пределах от 1 до **262 144**.

Формат выходных данных

Выведите N целых чисел, разделенных пробелами — таблицу инверсий для обратной перестановки.

Пример

invers2.in	invers2.out
2 0 1 1 0	1 3 0 0 0
5 0 1 3 2 1 0	1 5 1 3 2 0 0

Замечание

Есть решение за $\mathcal{O}(N \log N)$. Зайдёт даже решение за $\mathcal{O}(N \sqrt{N})$.

Задача 13М. Приказы [2 sec, 256 mb]

Вася работает в НИИГСД (НИИ Государственных Структур Данных). Он изучает приказы правительства далёкого государства.

В том государстве все города расположены вдоль одной дороги. Они пронумерованы в порядке обхода. Изначально качество жизни в каждом из них равно нулю.

Далее последовательно издаются указы вида «уровень жизни в городах с i по j должен стать не меньше x».

Также есть некоторые официальные заявления. Они имеют следующую форму: «средний уровень жизни в городах с i по j равен x». Вася нуждается в помощи с проверкой этих утверждений: для каждого из них известны i и j, требуется подсчитать верное значение x.

Можете считать, что каждый приказ исполняется, а также в каждый момент времени каждый город имеет минимальный неотрицательный уровень жизни, удовлетворяющий всем приказам.

Формат входных данных

Ввод состоит из одного или более тестов. Каждый тест начинается строкой с двумя целыми числами n и k — числом городов и событий, соответственно. Следующие k строк содержат по одному описанию события:

- 1. ^ $i \ j \ x$ означает приказ: после этого, все города с номерами от $i \ до \ j$ включительно должны иметь уровень жизни не менее $x \ (1 \leqslant x \leqslant 10^9, \ 1 \leqslant i \leqslant j \leqslant n)$.
- 2. ? $i \ j$ означает официальное заявление: следует подсчитать средний уровень жизни в городах с i по j включительно $(1 \le i \le j \le n)$.

В конце ввода будет помещён тест с n = k = 0, который не требуется обрабатывать. Сумма n по всему вводу не превысит 100 000. Сумма k по всему вводу не превысит 100 000.

Формат выходных данных

Для каждого официального заявления выведите на отдельной строке искомый средний уровень жизни в виде несократимой дроби с наименьшим возможным натуральным знаменателем. Если знаменатель равен 1, выведите вместо дроби целое число. Следуйте формату вывода, как это показано в примере.

Пример

orders.in	orders.out
10 10	0
? 1 10	1
^ 1 10 1	10
? 1 10	10
^ 2 3 10	5
^ 3 4 5	27/5
? 2 2	16/5
? 3 3	
? 4 4	
? 1 5	
? 1 10	
0 0	

Замечание

Сложная задача. Есть решение деревом отрезков за $\mathcal{O}(N\log^2 N)$. Можно сдать $\mathcal{O}(N\sqrt{N})$.