From published tables to rtauargus input: an (updated) automated approach

C. Baudry, J. Jamme and N. Ferrer-Pradines 02-24-25

Reminder from previous presentation

During the March 2024 meeting, we presented the first developments of this tool. It allows, from a simple metadata table, to:

- Handle hierarchies
- Split the list of tables in linked table clusters
- Detect and regroup tables that are included in others (allowing to produce inclusion graphs)

Changes since previous presentation

- the analysis functions are now part of rtauargus package as a pre-release: https://github.com/InseeFrLab/rtauargus/releases/tag/v-1.2.999-dev
- the input metadata structure was simplified and column names of this dataframe are now expected in English
- in order to keep rtauargus dependencies scarce, inclusion graphs are no longer part of the function but can still be produced autonomously

Changes since previous presentation

- intermediatary functions are now hidden for the user but their outputs can be accessed through the option verbose=TRUE
- the package includes an example of metadata dataframe
- vignettes in French and English are available to guide users step by step, including examples for inclusion graphs: https://inseefrlab.github.io/rtauargus/articles/auto_metadata.html
- · a new function allows the metadata to be a Eurostat template

Formal description of a table

table_name : indicator ⊗ {grouping_var_1 x grouping_var_2}

Example:

T1: turnover_pizzas \otimes {nuts2 x size}

	BE10	BE21		Total
wf1	10	8		50
wf2	10	12		50
Total	20	20	60	100

List of published tables

- T1: to_pizzas ⊗ {nuts2 x size}
- T2: to_pizzas ⊗ {nuts3 x size}
- T3: to_pizzas \otimes {a10 x nuts2}
- T4: to_pizzas \otimes {a10 x nuts3}
- T5: to_pizzas \otimes {a21 x nuts2}
- T6: to_pizzas \otimes {a21 x nuts3}

- T7: to_batavia \otimes {a10 x size}
- T8: to_batavia \otimes {a10 x cj}
- T9: to_arugula \otimes {a10 x size}
- T10: to_arugula \otimes {a10 x cj}
- T11: to_lettuce \otimes {a10 x size}
- T12: to_lettuce \otimes {a10 x cj}

List of published tables

```
T1: to_pizzas ⊗ {nuts2 x size}
T2: to_pizzas ⊗ {nuts3 x size}
T3: to_pizzas ⊗ {a10 x nuts2}
T4: to_pizzas ⊗ {a10 x nuts3}
T5: to_pizzas ⊗ {a21 x nuts2}
```

• T6: to_pizzas \otimes {a21 x nuts3}

```
• T7: to_batavia \otimes {a10 x size}
```

- T8: to_batavia \otimes {a10 x cj}
- T9: to_arugula \otimes {a10 x size}
- T10: to_arugula \otimes {a10 x cj}
- T11: to_lettuce \otimes {a10 x size}
- T12: to_lettuce \otimes {a10 x cj}

List of published tables

```
    T1: to_pizzas ⊗ { nuts2 x size}
    T2: to_pizzas ⊗ { nuts3 x size}
    T3: to_pizzas ⊗ { a10 x nuts2}
    T4: to_pizzas ⊗ { a10 x nuts3}
    T5: to_pizzas ⊗ { a21 x nuts2}
    T6: to_pizzas ⊗ { a21 x nuts3}
    T7: to_batavia ⊗ { a10 x cj}
    T9: to_arugula ⊗ { a10 x size}
    T10: to_arugula ⊗ { a10 x cj}
    T11: to_lettuce ⊗ { a10 x size}
    T12: to_lettuce ⊗ { a10 x cj}
```

List of tables to protect

T1_T2: to_pizzas ⊗ { HRC_NUTS x size}
 T3_T4_T5_T6: to_pizzas ⊗ { HRC_NAF x HRC_NUTS}
 T8_T10_T12: to_lettuce ⊗ { HRC_NAF x diversity x HRC_lettuce^h}
 T7_T9_T11: to_lettuce ⊗ { HRC_NAF x size x HRC_lettuce^h }
 With HRC_lettuce^h a holding variable.

Analysis automation steps

1. The user enters the metadata for the tables to be published in the required format.

Then the program:

- 1. Identifies hierarchies and renames variables accordingly
- 2. Breaks down the request into independent sub-requests (clusters)
- 3. Detects overlapping tables
- 4. Groups tables included in each other into a single table
- 5. Creates a summary of the tables needing protection

Metadata set included in package

```
data(metadata pizza lettuce)
md pizza lettuce <- metadata pizza lettuce %>%
 mutate(field="FR ent 23")
str(md pizza lettuce)
## 'data.frame': 12 obs. of 9 variables:
   $ table_name : chr "T1" "T2" "T3" "T4" ...
##
## $ field : chr "FR ent 23" "FR ent 23" "FR ent 23" "FR ent 23" ...
   $ hrc_field : logi NA NA NA NA NA NA ...
   $ indicator : chr "to pizza" "to pizza" "to pizza" "to pizza" ...
##
   $ hrc indicator : chr NA NA NA NA ...
   $ spanning 1 : chr "nuts2" "nuts3" "a10" "a10" ...
   $ hrc spanning 1: chr "hrc nuts" "hrc nuts" "hrc naf" "hrc naf" ...
##
## $ spanning 2 : chr "size" "size" "nuts2" "nuts3" ...
## $ hrc spanning 2: chr NA NA "hrc nuts" "hrc nuts" ...
```

Metadata set included in package

table_name	field	indicator	hrc_indicator	spanning_1	hrc_spanning_1	spanning_2	hrc_spanning_2
T1	FR_ent_23	to_pizza	NA	nuts2	hrc_nuts	size	NA
T2	FR_ent_23	to_pizza	NA	nuts3	hrc_nuts	size	NA
T3	FR_ent_23	to_pizza	NA	a10	hrc_naf	nuts2	hrc_nuts
T4	FR_ent_23	to_pizza	NA	a10	hrc_naf	nuts3	hrc_nuts
T5	FR_ent_23	to_pizza	NA	a21	hrc_naf	nuts2	hrc_nuts
Т6	FR_ent_23	to_pizza	NA	a21	hrc_naf	nuts3	hrc_nuts
T7	FR_ent_23	to_batavia	hrc_lettuce	a10	hrc_naf	size	NA
Т8	FR_ent_23	to_batavia	hrc_lettuce	a10	hrc_naf	cj	NA
Т9	FR_ent_23	to_arugula	hrc_lettuce	a10	hrc_naf	size	NA
T10	FR_ent_23	to_arugula	hrc_lettuce	a10	hrc_naf	cj	NA
T11	FR_ent_23	to_lettuce	hrc_lettuce	a10	hrc_naf	size	NA
T12	FR_ent_23	to_lettuce	hrc_lettuce	a10	hrc_naf	cj	NA

All-in-one function

cluster	table_name	field	indicator	spanning_1	spanning_2	spanning_3
FR_ent_23.hrc_lettuce	T10.T12.T8	FR_ent_23	LETTUCE	HRC_NAF	cj	HRC_LETTUCE^h
FR_ent_23.hrc_lettuce	T11.T7.T9	FR_ent_23	LETTUCE	HRC_NAF	size	HRC_LETTUCE^h
FR_ent_23.to_pizza	T1.T2	FR_ent_23	to_pizza	HRC_NUTS	size	NA
FR_ent_23.to_pizza	T3.T4.T5.T6	FR_ent_23	to_pizza	HRC_NAF	HRC_NUTS	NA

All-in-one function

kable(cluster_id_dataframe %>% select(-starts_with("span"))) %>%
 style_pres()

cluster	table_name	field	indicator	hrc_spanning_1	hrc_spanning_2	hrc_spanning_3
FR_ent_23.hrc_lettuce	T10.T12.T8	FR_ent_23	LETTUCE	hrc_naf	NA	hrc_lettuce
FR_ent_23.hrc_lettuce	T11.T7.T9	FR_ent_23	LETTUCE	hrc_naf	NA	hrc_lettuce
FR_ent_23.to_pizza	T1.T2	FR_ent_23	to_pizza	hrc_nuts	NA	NA
FR_ent_23.to_pizza	T3.T4.T5.T6	FR_ent_23	to_pizza	hrc_naf	hrc_nuts	NA

Handle hierarchies

detailed_analysis <- analyse_metadata(md_pizza_lettuce, verbose = TRUE)</pre>

detailed_analysis\$identify_hrc %>% head(14) %>% kable() %>% style_pres()

table_name	field	hrc_field	indicator	hrc_indicator	spanning	hrc_spanning
T1	FR_ent_23	NA	to_pizza	NA	HRC_NUTS	hrc_nuts
T1	FR_ent_23	NA	to_pizza	NA	size	NA
T10	FR_ent_23	NA	LETTUCE	hrc_lettuce	HRC_NAF	hrc_naf
T10	FR_ent_23	NA	LETTUCE	hrc_lettuce	cj	NA
T10	FR_ent_23	NA	LETTUCE	hrc_lettuce	HRC_LETTUCE^h	hrc_lettuce
T11	FR_ent_23	NA	LETTUCE	hrc_lettuce	HRC_NAF	hrc_naf
T11	FR_ent_23	NA	LETTUCE	hrc_lettuce	size	NA
T11	FR_ent_23	NA	LETTUCE	hrc_lettuce	HRC_LETTUCE^h	hrc_lettuce
T12	FR_ent_23	NA	LETTUCE	hrc_lettuce	HRC_NAF	hrc_naf
T12	FR_ent_23	NA	LETTUCE	hrc_lettuce	cj	NA
T12	FR_ent_23	NA	LETTUCE	hrc_lettuce	HRC_LETTUCE^h	hrc_lettuce
T2	FR_ent_23	NA	to_pizza	NA	HRC_NUTS	hrc_nuts
T2	FR_ent_23	NA	to_pizza	NA	size	NA
T3	FR_ent_23	NA	to_pizza	NA	HRC_NAF	hrc_naf

Split in clusters

Split the list of tables in independant clusters, i.e. linked tables clusters.

Independant tables do not need to be treated together. Call Tau-Argus multiple times independently.

```
ISplitlettuce <- detailed_analysis$split_in_clusters
names(ISplitlettuce)
## [1] "FR_ent_23.hrc_lettuce" "FR_ent_23.to_pizza"</pre>
```

Inclusion graphs

FR_ent_23.to_pizza

Tables included in others are documented in data frames detailed_analysis\$create_edges which can be represented with inclusion graphs:

FR_ent_23.hrc_lettuce

Summary

From the 12 published tables defined in the metadata file, the program suggests to protect 4 rearranged tables.

For this particular example rtauargus::tab_multi_manager() would be called twice:

- Once for the salad turnover tables
- Once for the pizza turnover tables, for example:

Analyse from a Eurostat template

- The template is a .csv file giving the structure of the XML files sent by the NSIs to Eurostat.
- It is usually available on CIRCABC
- Some columns are pre-filled, describing all the cells expected by Eurostat. The analysis only focuses on these columns.
- The idea is to deduct from the cells description the tables to protect.
- It works with most Eurostat templates but not all (to-date).

Analyse from a Eurostat template

- New function template_formatted() automatically analyses the cells of the file and returns the list of tables to protect
- The user needs to classify the variables: indicator, spanning and field variables.
- For the spanning variables, it is necessary to specify the modality corresponding to the total.

```
format_template <- template_formatted(
  data = enterprise_template,
  indicator_column = "INDICATOR",
  spanning_var_tot = list(
    ACTIVITY = "BTSXO_S94",
    NUMBER_EMPL = "_T",
    LEGAL_FORM = "_T"),
  field_columns = c("TIME_PERIOD")
)</pre>
```

Further work

- Keep on testing the program on different lists of tables, especially for the nonnested hierarchies option recently added
- Check the hierarchies provided (nested, non-nested)
- Automatically generate the input tables for rtauargus functions tab_rtauargus() and tab_multi_manager() using the output of this analysis program
- · Release rtauargus with the addition of the two analysis functions