GUÍA MAESTRA PARA SUCESIONES Y SERIES

Autor: Daniel Pérez Ruiz

1. ALGUNAS SERIES IMPORTANTES

En la siguiente lista se muestran algunas de las series más importantes del Análisis Matemático. Además, son bastante útiles a la hora del estudio de otras series.

SERIE GEOMÉTRICA

• DEFINICIÓN:

$$\sum_{n \ge 0} x^n = x^0 + x^1 + x^2 + \ldots + x^n$$

- CONVERGENCIA:
 - \circ La serie converge sí y sólo sí |x| < 1

$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \ldots = \frac{1}{1-x} \qquad (|x| < 1)$$

SERIE ARMÓNICA

• DEFINICIÓN:

$$H_n = \sum_{k=1}^n rac{1}{k} \sim \sum_{n \geq 1} rac{1}{n}$$

- CONVERGENCIA:
 - La serie diverge positivamente: $+\infty$

$$\sum_{n=1}^{\infty} \frac{1}{n} = \lim_{n \to \infty} \left\{ 1 + 1/2 + 1/4 + \ldots + 1/n \right\} = +\infty$$

SERIE ARMÓNICA ALTERNADA

• DEFINICIÓN:

$$A_n=\sum_{n\geq 1}\frac{(-1)^{n+1}}{n}$$

- CONVERGENCIA:
 - La serie converge y su suma es igual a log(2)

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \log(2)$$

SUMA DE FACTORIALES

DEFINICIÓN:

$$H_{n!} = \sum_{n \geq 1} \frac{1}{n!}$$

- CONVERGENCIA:
 - \circ La serie converge al número e

$$\sum_{n=1}^{\infty} \frac{1}{n!} = e$$

SERIES DE BERTRAND

• DEFINICIÓN:

$$\sum_{n \geq 2} \frac{1}{n^{\alpha} \cdot log(n)^{\beta}}$$

- CONVERGENCIA:
 - \circ Las series convergen si $\alpha>1$ cualquiera sea β
 - o También convergen si $\alpha=1$ y $\beta>1$
 - En cualquier otro caso, la serie diverge

SERIES DE RIEMANN

• DEFINICIÓN:

$$\sum_{n\geq 1} \frac{1}{n^{\alpha}}$$

- CONVERGENCIA:
 - \circ La serie solamente converge si lpha>1

2. EQUIVALENCIAS ASINTÓTICAS

Útiles para el cálculo de límites, aquí se presentan las siguientes equivalencias asintóticas:

- $log(1+x_n) \sim x_n \leftrightarrow (x_n \to 0)$
- $log(x_n) \sim x_n 1 \leftrightarrow (x_n \rightarrow 1)$
- $ullet e^{x_n} 1 \sim x_n \leftrightarrow (x_n
 ightarrow 0)$
- $(1+x_n)^{\alpha} \sim \alpha \cdot x_n \leftrightarrow (x_n \to 0)$

• $x_n^{\alpha} - 1 \sim \alpha \cdot (x_n - 1) \leftrightarrow (x_n \rightarrow 1)$

3. CRITERIOS DE CONVERGENCIA PARA SUCESIONES

En el estudio de sucesiones lo interesante es ver dónde converge dicha sucesión (equivalentemente a calcular el límite). Contamos con 2 importantes criterios que nos ayudarán en nuestro análisis:

3.1 CRITERIO DE EQUIVALENCIA LOGARÍTMICA:

- *DEFINICIÓN:* Sea $\{x_n\}$ una sucesión de números reales positivos tal que $\{x_n\} \to 1$ y sea y_n cualquier sucesión de números reales.
 - \circ Para $L \in \mathbb{R}$ se tiene: $\lim \{y_n(x_n-1)\} = L \leftrightarrow \lim \{x_n^{y_n}\} = e^L$
 - $\circ \ \ \{x_n^{\ y_n}\} o +\infty \leftrightarrow \{y_n(x_n-1)\} o +\infty$
 - $\circ \ \{x_n^{y_n}\} \to 0 \leftrightarrow \{y_n(x_n-1)\} \to -\infty$

3.2 CRITERIO DE STOLZ

• DEFINICIÓN: Sea $\{y_n\}$ una sucesión positivamente divergente y estrictamente creciente y sea $\{x_n\}$ una cualquier sucesión. Se verifica que si:

$$\left\{rac{x_{n+1}-x_n}{y_{n+1}-y_n}
ight\} o L\in\mathbb{R}\cup\{\pm\infty\}\Rightarrow \left\{rac{x_n}{y_n}
ight\} o L$$

3.3 CRITERIO DE LA MEDIA ARITMÉTICA

• *DEFINICIÓN:* Supongamos que $\{a_n\} \to L$ donde L es un número real, o $L = +\infty$, o $L = -\infty$. Entonces se verifica que:

$$\left\{rac{a_1+a_2+a_3+\ldots+a_n}{n}
ight\} o L$$

3.3 CRITERIO DE LA MEDIA GEOMÉTRICA

• *DEFINICIÓN*: Supongamos que $\{a_n\} \to L$ donde $\{a_n\}$ es una sucesión de números positivos y L es un número real, o $L = +\infty$. Entonces se verifica que:

$$\left\{\sqrt[n]{a_1a_2a_3\dots a_n}
ight\} o L$$

4. CRITERIOS DE CONVERGENCIA PARA SERIES

Las propiedades de las series en raras ocasiones se pueden determinar estudiando la propia serie. Para ello se estudia la sucesión asociada $\{a_n\}$. Además, contamos con criterios de convergencia para series que nos facilitará el análisis de las mismas.

4.1 CRITERIO DE CONVERGENCIA BÁSICO PARA SERIE DE TÉRMINOS POSITIVOS:

• Una serie de términos positivos $\sum_{n\geq 1}a_n$, decimos que es convergente si y sólo si está mayorada, es decir, existe un M>0 tal que para todo $n\in\mathbb{N}$ se verifica que:

$$\sum_{k\geq 1} a_k \leq M
ightarrow \sum_{n=1}^\infty a_n = sup \left\{ \sum_{k\geq 1} a_k : n \in \mathbb{N}
ight\}$$

• En caso de que la serie no esté mayorada, diverge positivamente.

4.2 CRITERIO BÁSICO DE COMPARACIÓN

• Sea $\sum_{n\geq 1}a_n$ y $\sum_{n\geq 1}b_n$ dos series de términos positivos. Supongamos que hay un número $k\in\mathbb{N}$ tal que $a_n\geq b_n$ para todo n>k. Se verifica que:

$$\sum_{n\geq 1} a_n(converge) \leftrightarrow \sum_{n\geq 1} b_n(converge)$$

• De forma análoga se cumple para la divergencia de ambas series.

4.3 CRITERIO LÍMITE DE COMPARACIÓN

• Sea $\sum_{n\geq 1}a_n$ y $\sum_{n\geq 1}b_n$ dos series de términos positivos, y supongamos que:

$$\left\{rac{x_n}{y_n}
ight\} o L\in\mathbb{R}_0^+\cup\{+\infty\}$$

- Si $L=+\infty$ y $\sum_{n\geq 1}b_n$ es divergente, entonces $\sum_{n\geq 1}a_n$ es divergente.
- Si L=0 y $\sum_{n\geq 1}b_n$ es convergente, entonces $\sum_{n\geq 1}a_n$ es convergente.
- Si $L \in \mathbb{R}^+$, ambas series $\sum_{n \geq 1} b_n$ y $\sum_{n \geq 1} a_n$ son convergentes o divergentes.
- En particular, si dos sucesiones $\{a_n\}$ y $\{b_n\}$ son asintóticamente equivalentes, las series $\sum_{n\geq 1}a_n$ y $\sum_{n\geq 1}b_n$ convergen o divergen.

4.4 CRITERIO DE CONDENSACIÓN DE CAUCHY

• Sea $\{a_n\}$ una sucesión decreciente de números positivos. Se verifica que las series $\{A_n\}$ y $\{B_n\}_{n\in\mathbb{N}_0}$ donde:

$$A_n = a_1 + a_2 + a_3 + \ldots + a_n, Bn = a_1 + 2a_2 + 4a_3 + \ldots + 2^n a_{2^n}$$

• Ambas convergen o ambas divergen.

4.5 CRITERIO DEL COCIENTE O D'ALEMBERT

• Si se cumple que:

$$\lim\left\{rac{a_{n+1}}{a_n}
ight\} o L\in\mathbb{R}_0^+\cup\{+\infty\}$$

- Si L < 1 entonces la serie $\sum_{n \geq 1} a_n$ es convergente.
- Si L>1 o si $L=+\infty$, la sucesión $\{a_n\}$ no converge a 0 y por tanto, la serie $\sum_{n\geq 1}a_n$ no es convergente.

• Cuando L=1, la serie puede ser convergente o divergente. NO DA INFORMACIÓN, USAR OTRO CRITERIO.

4.6 CRITERIO DE LA RAÍZ O DE CAUCHY

• Sea $\sum_{n\geq 1} a_n$ una serie de términos positivos. Si se verifica que:

$$\lim \left\{ \sqrt[n]{a_n} \right\} \to L \in \mathbb{R}_0^+ \cup \{+\infty\}$$

- Si L < 1 entonces la serie $\sum_{n \geq 1} a_n$ es convergente.
- Si L>1 o si $L=+\infty$, la sucesión $\{a_n\}$ no converge a 0 y por tanto, la serie $\sum_{n\geq 1}a_n$ no es convergente.
- Cuando L=1, la serie puede ser convergente o divergente. **NO DA INFORMACIÓN, USAR OTRO CRITERIO**.

RELACIÓN ENTRE EL CRITERIO DE LA RAÍZ Y DEL COCIENTE

• Supuesto $a_n>0$ para todo $n\in\mathbb{N}$, se verifica que:

$$\varliminf\left\{\frac{a_{n+1}}{a_n}\right\} \leq \varliminf\left\{\sqrt[n]{a_n}\right\} \leq \varlimsup\left\{\sqrt[n]{a_n}\right\} \leq \varlimsup\left\{\frac{a_{n+1}}{a_n}\right\}$$

- Siempre que el criterio del cociente de información, el de la raíz también lo proporciona.
- Si el criterio del cociente no da información, es posible que el de la raíz SI LO PROPORCIONE

4.7 CRITERIO DE RAABE

• Sea $a_n>0$ para todo $n\in\mathbb{N}$, y pongamos:

$$R_n = n \cdot \left(1 - \frac{a_{n+1}}{a_n}\right)$$

- Supongamos que $\lim\{R_n\}=L\in\mathbb{R}\cup\{\pm\infty\}.$
 - $\circ \;\;$ Si L>1 o $L=+\infty$, la serie $\sum_{n\geq 1}a_n$ es convergente.
 - \circ Si L<1 o $L=-\infty$, o si existe algún $k\in\mathbb{N}$ tal que $k\le R_n$ tal que $R_n\le 1$ para todo $n\ge k$, entonces la serie $\sum_{n\ge 1}a_n$ es divergente.

4.8 CRITERIO DE RAABE (FORMA ALTERNATIVA)

- ullet Sea $\sum_{n\geq 1}a_n$ una serie de términos positivos tal que $\limrac{a_{n+1}}{a_n}=1.$
- Sea $S_n = \left(rac{a_{n+1}}{a_n}
 ight)^n$:
 - o Si $S_n o e^L$ con L>1 o si $S_n o +\infty$, la serie $\sum_{n\geq 1} a_n$ es convergente.
 - $\circ \ \ \mathsf{Si} \ S_n o e^L \ \mathsf{con} \ L < 1 \ \mathsf{o} \ \mathsf{si} \ S_n o 0 \ \mathsf{la} \ \mathsf{serie} \ \sum_{n \geq 1}^- a_n^- \ \mathsf{es} \ \mathsf{divergente}.$

4.9 CRITERIO DE LEIBNIZ PARA SERIES ALTERNADAS

• Supongamos que la sucesión $\{a_n\}$ es decreciente y convergente a cero. Entonces la serie alternada $\sum_{n\geq 1}{(-1)^{n+1}a_n}$ es convergente. Además, si:

$$\circ \ \ S_n = \sum_{k>1} (-1)^{k+1} a_k$$

$$\circ$$
 $S=\sum_{n\geq 1}^{\infty}{(-1)^{n+1}a_n}$

• Entonces, para todo $n \in \mathbb{N}$, se verifica que $|S - S_n| \leq a_{n+1}$

5. CONVERGENCIA ABSOLUTA Y CONVERGENCIA CONMUTATIVA

• DEFINICIÓN DE CONVERGENCIA CONMUTATIVA: Se dice que una serie $\sum_{n\geq 1}a_n$ es CONMUTATIVAMENTE CONVERGENTE si, para toda biyección $\pi:\mathbb{N}\to\mathbb{N}$, se verifica que la serie definida por la sucesión $\{a_{\pi(n)}\}$, es decir, la serie:

$$\sum_{n\geq 1} a_{\pi(n)} = \{a_{\pi(1)} + a_{\pi(2)} + a_{\pi(3)} + \ldots + a_{\pi(n)}\} \Rightarrow CONVERGE$$

- DEFINICIÓN DE CONVERGENCIA ABSOLUTA: Se dice que una serie $\sum_{n\geq 1} a_n$ es ABSOLUTAMENTE CONVERGENTE si la serie $\sum_{n\geq 1} |a_n|$ es convergente.
- Toda serie absolutamente convergente es conmutativamente convergente.

5.1 TEOREMA DE RIEMANN

• Sea $\sum_{n\geq 1}a_n$ una serie convergente pero no absolutamente convergente y sea $\alpha\in\mathbb{R}\cup\pm\infty$. Entonces existe una bivección $\pi:\mathbb{N}\to\mathbb{N}$ tal que:

$$\sum_{n=1}^{\infty}a_{\pi(n)}=lpha$$

CONVERGENCIA ABSOLUTA ⇔ CONVERGENCIA CONMUTATIVA