第一章 函数、极限、连续

习 题 1.1

(A)

5. 分别写出实数集 A 下无界、上无界和无界的定义.

解 设 $A\subseteq \mathbb{R}$,且A 非空. 若对 $\forall l\in \mathbb{R}$,总 $\exists x_0\in A$ 使 $x_0\leqslant l$,称集合A 下无界.

若 \forall L ∈ \mathbb{R} , \exists x_0 ∈ A, 使 x_0 \geqslant L, 那么称非空集 A 上无界.

若∀M>0,∃ $x_0\in A$,使| x_0 | $\geqslant M$,那么称集合 A 无界.

6. 设 $A \subseteq \mathbb{R}$,证明 A 有界 $\Leftrightarrow \exists M > 0$,使得 $\forall x \in A$,恒有 $|x| \leq M$.

证 必要性("⇒")

由于 A 有界,所以 A 有上界且有下界. 于是, $\exists L, l$,使 $\forall x \in A$,恒有 $l \le x \le L$. 取 $M = \max\{|L|, |l|\}, \emptyset, y \le M, \forall x \in A$.

充分性(" \leftarrow ")由 $\exists M > 0$,使 $\forall x \in A$,恒有 $|x| \leq M$,即 $\forall x \in A$, $-M \leq x \leq M$,即 A 有上界 M 和下界 -M,即 A 有界.

役 A⊆R,试写出 A 的下确界 infA 的定义.

解 设 $A\subseteq \mathbb{R}$, $A\neq\emptyset$. 若存在 $S\in \mathbb{R}$,满足:

- (1) $\forall x \in A$,都有 $x \geqslant S$;
- (2) $\forall \epsilon > 0$, $\exists x_0 \in A$, 使 $x_0 < S + \epsilon$, 则称 $S \neq A$ 的下确界,记作 $\inf A$.

14. 设 $y = f(x) = \frac{ax+b}{cx-a}$,证明 x = f(y),其中 a,b,c 为常数,且 $a^2 + bc \ge 0$.

证 如果 a=0 或 bc=0,结论显然成立、

如果 $a \succeq 0$, $bc \succeq 0$, 由于 $a^2 + bc \succeq 0$, 所以 $\frac{a}{c} \notin R(f)$.

$$f[f(x)] = f(y) = \frac{ay+b}{cy-a} = \frac{a\frac{ax+b}{cx-a}+b}{c\frac{ax+b}{cx-a}-a} = x.$$

即 x = f(y).

17. 设 $f: x \mapsto x^3 - x, \varphi: x \mapsto \sin 2x$. 试求 $(f \circ \varphi)(x), (\varphi \circ f)(x), (f \circ f)(x)$.

$$\begin{aligned} & (f \circ \varphi)(x) = f[\varphi(x)] = f(\sin 2x) = \sin^3 2x - \sin 2x, \\ & (\varphi \circ f)(x) = \varphi[f(x)] = \varphi(x^3 - x) = \sin 2(x^3 - x), \\ & (f \circ f)(x) = f(x^3 - x) = (x^3 - x)^3 - (x^3 - x) \\ & = x^9 - 3x^7 + 3x^5 - 2x^3 + x. \end{aligned}$$

20. 将一圆形金属片,自圆心处剪去一扇形后,围成一无底圆锥形的杯子. 试将该杯的容积表示为余下部分中心角 θ 的函数,并指出其定义区间.

解 设圆锥的底半径为 R_1 ,则 $2\pi R_1 = \theta R$,即 $R_1 = \frac{\theta R}{2\pi}$.圆锥体高 H =

$$\sqrt{R^2 - \frac{\theta^2 R^2}{4\pi^2}}$$
,故无底圆锥体的容积为

$$V = \frac{1}{3} \pi R_1^2 H = \frac{1}{24} \frac{R^3 \theta^2}{\pi^2} \sqrt{4 \pi^2 - \theta^2}, \theta \in (0, 2\pi).$$

(B)

4. 研究下列两组函数:

(1)
$$f: x \mapsto \sqrt{x^2 - 1}, g: x \mapsto \sqrt{1 - x^2};$$

(2)
$$f(x) = \begin{cases} 2x, x \in [-1,1], & g(x) = \frac{1}{2}\arcsin(\frac{x}{2}-1), \\ x^2, x \in (1,3), \end{cases}$$

它们能否进行复合运算?若能,试在能进行复合运算的集合上写出复合函数 $(f \circ g)(x)$ 与 $(g \circ f)(x)$ 的表达式.

解 (1) $D(f) = (-\infty, -1] \cup [1, +\infty)$, $R(f) = [0, +\infty)$, D(g) = [-1, 1], R(g) = [0, 1]. 由于 $R(g) \cap D(f) = \{1\}$, $R(f) \cap D(g) = [0, 1]$, 故 $f \circ g$, $g \circ f$ 均无意义. 但如果限定 g 的定义域为 $\{0\}$. 则 $f \circ g$ 有意义,且 $(f \circ g)(0) = f[g(0)] = f(1) = 0$; 同样限制 f 的定义域为 $[-\sqrt{2}, -1] \cup [1, \sqrt{2}]$,则 f 的值域为[0, 1],于是 $g \circ f$ 在 $[-\sqrt{2}, -1] \cup [1, \sqrt{2}]$ 上有定义,且 $(g \circ f)(x) = g(\sqrt{x^2-1}) = \sqrt{1-(\sqrt{x^2-1})^2} = \sqrt{2-x^2}$.

(2)
$$D(f) = [-1,3), D(g) = [0,4], R(f) = [-2,9), R(g) = \left[-\frac{\pi}{4}, \frac{\pi}{4}\right].$$
 由于 $D(f) \cap R(g) = \left[-\frac{\pi}{4}, \frac{\pi}{4}\right],$ 所以 $\forall x \in D(g), (f \circ g)(x) = f\left[\frac{1}{2}\arcsin\left(\frac{x}{2}-1\right)\right] = \arcsin\left(\frac{x}{2}-1\right).$ 由于 $R(f) \nsubseteq D(g),$ 所以 $f = g$ 不能复合. 又因为 $D(g) \cap R(f) = g$

[0,4],且 $x \in [0,2]$ 时, $f(x) \in [0,4]$,所以

$$(g \circ f)(x) = \begin{cases} g(2x) = \frac{1}{2} \arcsin(x-1), & x \in [0,1], \\ g(x^2) = \frac{1}{2} \arcsin(\frac{x^2}{2} - 1), & x \in (1,2]. \end{cases}$$

5. 求分段函数

$$f(x) = \begin{cases} x^2 - 1, & x \in [-1, 0), \\ x^2 + 1, & x \in [0, 1]. \end{cases}$$

的反函数表达式,并画出它们的图像.

解 当 $x \in [-1,0)$ 时, $f^{-1}: y \mapsto -\sqrt{y+1}, y \in (-1,0]$,当 $x \in [0,1]$ 时, $f^{-1}: y \mapsto \sqrt{y-1}, y \in [1,2]$. 所以

$$f^{-1}(x) = \begin{cases} -\sqrt{x+1}, & -1 < x \le 0, \\ \sqrt{x-1}, & 1 \le x \le 2. \end{cases}$$

6. 设 f(x),g(x)都是区间[a,b]上的单调增函数,并且在该区间上, $f(x) \le g(x)$. 试证 $f[f(x)] \le g[g(x)]$.

证 $\forall x \in [a,b], \diamondsuit x_1 = f(x), x_2 = g(x), 则 x_1 \leqslant x_2, f[f(x)] = f(x_1) \leqslant f(x_2) \leqslant g(x_2) = g[g(x)].$

7. 设有函数 $f: \mathbf{R} \rightarrow \mathbf{R}$,并且对任何 $x, y \in \mathbf{R}$,都有

$$f(xy) = f(x)f(y) - x - y,$$

试求 f(x)的表达式.

解 由题设: $\forall x \in \mathbb{R}, y=1$, 恒有 f(x) = f(x) f(1) - x - 1, 即[f(1) - 1] f(x) = x + 1; 又由于对 x = 1, y = 1 有 $f(1) = f^2(1) - 2$. 所以 f(1) = 2 或 f(1) = -1. 于是 f(x) = x + 1 或 $f(x) = -\frac{1}{2}(x + 1)$. 而 $f(x) = -\frac{1}{2}(x + 1)$ 与题设不符,舍去.

8. 设有函数 $f: \mathbf{R} \rightarrow \mathbf{R}$,并且对任何 $x, y \in \mathbf{R}$,都有

$$f(xy) = xf(x) + yf(y)$$
,

证明 f(x) = 0.

证 取 x=1,y=1,由题设得 f(1)=f(1)+f(1),即 f(1)=0.又由于 $\forall x \in \mathbb{R}$ 及 y=1,有 f(x)=xf(x)+f(1)=xf(x),即 (1-x)f(x)=0,于是 $\forall x \in \mathbb{R}$, f(x)=0.

9. 设
$$f(x+\frac{1}{x})=x^2+\frac{1}{x^2}$$
, 试求 $f(x)$ 与 $f(x-\frac{1}{x})$.

解 由于
$$f(x+\frac{1}{x}) = x^2 + \frac{1}{x^2} = (x^2 + \frac{1}{x^2} + 2) - 2 = (x + \frac{1}{x})^2 - 2$$
,所以

 $f(x) = x^2 - 2$, $x \in (-\infty, -\sqrt{2}] \cup [\sqrt{2}, +\infty)$. 于是 $f(x - \frac{1}{x}) = x^2 + \frac{1}{x^2} - 4$, $x \in (-\infty, -\sqrt{2} + 1] \cup [\sqrt{2} - 1, +\infty)$.

习 题 1.2

(A)

- 1. 下列说法能否作为 a 是数列{a_n}的极限的定义? 为什么?
- (1) 对于无穷多个 $\varepsilon > 0$,存在 $N \in \mathbb{N}_+$,当 n > N 时,不等式 $|a_n a| < \varepsilon$ 成立;
- (2) 对于任给的 $\epsilon > 0$,存在 $N \in \mathbb{N}_+$,当 $n \ge N$ 时,有无穷多项 a_n ,使不等式 $|a_n a| < \epsilon$ 成立;
 - (3) 对于给定的很小的正数 $\epsilon_0 = 10^{-10}$,不等式 $|a_n a| < 10^{-10}$ 恒成立.
- 解 (1) 不能,有无穷多个 $\epsilon > 0$ 满足(2.2)式,不能推出对任意 $\epsilon > 0$ 满足(2.2)式.
- (2) 不能,例如发散数列 $1,\frac{1}{2},1,\frac{1}{3},\cdots,1,\frac{1}{n},\cdots$. 对 $\forall \epsilon > 0$, $\exists N = \left[\frac{1}{\epsilon}\right]$, $\exists n > N$ 时,有无穷多项 a_n 满足 $|a_n 0| < \epsilon$.
- (3) 不能,如数列 $\left\{10^{-11}\sin\frac{1}{n}\right\}$. $\varepsilon_0 = 10^{-10}$, $\left|10^{-11}\sin\frac{1}{n} 0\right| < 10^{-10}$ 恒成立. 但 $\lim_{n \to +\infty} 10^{-11}\sin\frac{1}{n}$ 不存在.
 - 2. 说明下列表述都可作为 a 是{a_n}极限的定义:
 - (2) 对任给的 $\varepsilon > 0$,存在 $N \in \mathbb{N}_+$,当 n > N 时,不等式 $|a_n a| \leq \varepsilon$ 成立;
- (3) 对任给的 $\varepsilon > 0$,存在 $N \in \mathbb{N}_+$,当 n > N 时,不等式 $|a_n a| < k\varepsilon$ 成立,其中 k 是正常数;
- (4) 对于任给的 $m \in \mathbb{N}_+$, 存在 $N \in \mathbb{N}_+$, 当 n > N 时, 不等式 $|a_n a| < \frac{1}{m}$ 成立;
- (5) 对于任给的 $\varepsilon > 0$,存在 $N \in \mathbb{N}_+$,使不等式 $|a_{N+}, -a| < \varepsilon$ 对于任意的正整数 p 都成立.
 - 解 (2) $\forall \epsilon > 0, \frac{\epsilon}{10} > 0.$ 则 $\exists N \in \mathbb{N}_+, \exists n > N$ 时,

$$|a_n-a| \leq \frac{\varepsilon}{10} < \varepsilon$$
. $\text{MU} \lim_{n\to\infty} a_n = a$.

(3) $\forall \epsilon > 0, \frac{\epsilon}{k} > 0$. 则∃ $N \in \mathbb{N}_+$, 当 n > N 时,

$$|a_n-a| < k \cdot \frac{\varepsilon}{k} = \varepsilon \Rightarrow \lim_{n\to\infty} a_n = a.$$

- (4) $\forall \varepsilon > 0$, $\exists m \in \mathbb{N}_+$, 使 $\frac{1}{m} < \varepsilon$, 反之也成立.
- (5) 由题设, $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}_+$, 对一切 n > N, 恒有 $|a_n a| < \varepsilon$.
- 3. 若 $\{a_n\}$ 与 $\{b_n\}$ 是两个发散数列,它们的和与积是否发散? 为什么? 若其中一个收敛,一个发散,它们的和与积的收敛性又如何?

解 若 $\{a_n\}$, $\{b_n\}$ 均发散,和与积不一定发散.

如 $a_n = (-1)^n$, $b_n = (-1)^{n+1}$, $a_n + b_n = 0$, 收敛. $a_n \cdot b_n = -1$ 收敛.

若 $\{a_n\}$ 收敛, $\{b_n\}$ 发散. $\{a_n+b_n\}$ 一定发散.

(假设 $c_n = a_n + b_n$ 收敛. 由极限的有理运算法则知. $b_n = c_n - a_n$ 收敛矛盾,所以 $\{c_n\}$ 发散.)

 $\{a_n \cdot b_n\}$ 不一定收敛,也不一定发散.

$$\left(\text{如} a_n = \frac{1}{n}, b_n = n^2, \{a_n \cdot b_n\} = \{n\}$$
 发散. $a_n = \frac{1}{n^2}, b_n = n, \{a_n \cdot b_n\} = \left\{ \frac{1}{n} \right\}$ 收敛. $\right)$

如果 $\{a_n\}$ 收敛且 $\lim a_n \rightleftharpoons 0$, $\{b_n\}$ 发散则 $\{a_n \cdot b_n\}$ 一定发散.

(假设 $c_n = a_n \cdot b_n$ 收敛. 则 $b_n = \frac{c_n}{a_n}$ 且 $\lim a_n \neq 0$. 由有理运算法则 $\{b_n\}$ 收敛产

生矛盾.)

- 5. 若把保序性中的条件 $a_n \leq b_n$ 改为 $a_n < b_n$, 是否仍得到结论 a < b?
- 解 不能. 例如 $a_n = \frac{1}{n}$, $b_n = \frac{10}{n}$, $\forall n \in \mathbb{N}_+$, $a_n < b_n$. 但 $a = \lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n = 0 = b$.
- 6. 下列结论是否正确? 若正确,请给出证明;若不正确,请举出反例.
- (1) 若 $\lim_{n\to\infty} a_n = A$,则 $\lim_{n\to\infty} |a_n| = |A|$;
- (2) 若 $\lim |a_n| = |A|$,则 $\lim a_n = A(A \neq 0)$;
- (3) 若 $\lim_{n\to\infty} |a_n| = 0$,则 $\lim_{n\to\infty} a_n = 0$;
- (4) 若 $\lim_{n\to\infty} a_n = A$,则 $\lim_{n\to\infty} a_{n+1} = A$;
- (5) 若 $\lim_{n\to\infty} a_n = A$,则 $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$;
- (6) 若对任何实数 α , $\lim_{n\to\infty} \alpha a_n = \alpha A$, 则 $\lim_{n\to\infty} a_n = A$.
- 解 (1) 正确. 由于 $||a_n| |A|| \le |a_n A|$, 且 $\lim_{n \to +\infty} a_n = A$, 所以 $\forall \epsilon > 0$, $\exists N \in \mathbb{N}_+$, 使 $\forall n > N$, 恒有 $||a_n| |A|| \le |a_n A| < \epsilon$. 即 $\lim_{n \to +\infty} |a_n| = |A|$.
 - (2) 不正确. 如 $a_n = (-1)^n$, $\lim_{n \to +\infty} |a_n| = 1$, 但 $\lim_{n \to +\infty} a_n$ 不存在.

- (3) 正确. 由 $\lim_{n \to +\infty} |a_n| = 0$ 可知 $\forall \epsilon > 0$, $\exists N \in \mathbb{N}_+$, 当 n > N 时, $|a_n| 0| = |a_n| = |a_n 0| < \epsilon$. 故 $\lim_{n \to +\infty} a_n = 0$.
- (4) 正确. 由 $\lim_{n\to+\infty} a_n = A$ 知 $\forall \varepsilon > 0$, $\exists N_1 \in \mathbb{N}_+$, $\exists n > N_1$ 时, $|a_n A| < \varepsilon$ 成立. 即 $\forall \varepsilon > 0$, 取 $N = N_1 1$, 那么当 $n > N_1$ 时, $|a_{n+1} A| < \varepsilon$ 成立, 故 $\lim_{n\to+\infty} a_{n+1} = A$.
 - (5) 不正确. 如 $a_n = \frac{\alpha^n}{n!} (\alpha \in \mathbf{R})$, $\lim_{n \to +\infty} a_n = 1$, 而 $\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = 0$.
 - (6) 正确. 由于对 $\forall \alpha \in \mathbb{R}$, $\lim_{n \to \infty} \alpha a_n = \alpha A$, 所以对 $\alpha = 1$, 应有 $\lim_{n \to \infty} a_n = A$.
 - 7. 用 ϵN 定义证明下列极限:
 - (1) $\lim_{n\to\infty} \frac{1}{n} \sin \frac{n\pi}{2} = 0;$ (2) $\lim_{n\to\infty} (n \sqrt{n^2 n}) = \frac{1}{2};$
 - (3) $\lim_{n\to\infty} \frac{1+\cos n}{n^2} = 0;$ (4) $\lim_{n\to\infty} \sqrt[n]{n} = 1.$
 - 解 (1) $\forall \epsilon > 0$. 取 $N = \left[\frac{1}{\epsilon}\right]$. 当 n > N 时,恒有 $\left|\frac{1}{n}\sin\frac{n\pi}{2} 0\right| \leq \frac{1}{n} < \epsilon \text{ th } \lim_{n \to +\infty} \frac{1}{n}\sin\frac{n\pi}{2} = 0.$
 - (2) $\forall \epsilon > 0$. 取 $N = \left[\frac{1}{2\epsilon}\right]$. $\forall n > N$,恒有 $\left|n \sqrt{n^2 n} \frac{1}{2}\right| = \frac{n}{2\left(n + \sqrt{n^2 n}\right)^2} \leqslant \frac{1}{2n} < \epsilon,$

故 $\lim_{n\to+\infty} (n-\sqrt{n^2-n})=\frac{1}{2}$.

- (3) $\forall \epsilon > 0$. 取 $N = \left[\frac{2}{\epsilon}\right]$. 对 $\forall n > N$,恒有 $\left|\frac{1 + \cos n}{n^2}\right| \leq \frac{2}{n^2} < \frac{2}{n} < \epsilon$,故 $\lim_{n \to +\infty} \frac{1 + \cos n}{n^2} = 0$.
- (4) 解法一 令 $\sqrt[n]{n} = 1 + x_n$,则 $x_n > 0$ 由二项式公式 $n = 1 + nx_n + \frac{1}{2}n(n-1)x_n^2 + \dots + x_n^n \geqslant 1 + \frac{1}{2}n(n-1)x_n^2$, i有 $1 \leqslant \sqrt[n]{n} = 1 + x_n \leqslant 1 + \sqrt{\frac{2}{n}}$,

从而有

由夹逼性知 $\lim \sqrt[n]{n} = 1$.

解法二 由于
$$\left| \sqrt[n]{n} - 1 \right| = \frac{n-1}{1 + \sqrt[n]{n} + \left(\sqrt[n]{n}\right)^2 + \dots + \left(\sqrt[n]{n}\right)^{n-1}} < \frac{n-1}{\frac{1}{2}(n-1)\sqrt{n}} = \frac{n-1}{n-1}$$

 $\frac{2}{\sqrt{n}}$,所以 $\forall \epsilon > 0$,取 $N = \left[\frac{4}{\epsilon^2}\right]$,当 n > N 时, $\left|\sqrt[n]{n} - 1\right| < \epsilon$ 成立.故 $\lim_{n \to \infty} \sqrt[n]{n} = 1$.

8. 试写出数列无上界,无下界的定义.

- 解 如果 $\forall M > 0$, 总 $\exists n_0 \in \mathbb{N}_+$, 使 $a_{n_0} > M$, 称数列 $\{a_n\}$ 无上界. 如 $\forall M > 0$, 总 $\exists n_0 \in \mathbb{N}_+$, 使 $a_{n_0} < -M$. 称 $\{a_n\}$ 无下界.
- 9. 设由数列 $\{a_n\}$ 的奇数项与偶数项组成的两个子列收敛于同一个常数 a_n 证明 $\{a_n\}$ 也收敛于 a_n

证 $\forall \varepsilon > 0$,由于 $\lim_{n \to \infty} a_{2m} = a$, $\lim_{n \to \infty} a_{2m+1} = a$, $\exists N_1, N_2 \in \mathbb{N}_+$,对 $\forall m > N_i$,i = 1, 2,但有 $|a_{2m} - a| < \varepsilon$, $|a_{2m+1} - a| < \varepsilon$. 所以取 $N = \max\{N_1, N_2\}$,当 n > N 时, $|a_n - a| < \varepsilon$ 成立,其中 n = 2m 或 n = 2m + 1,故 $\lim_{n \to \infty} a_n = a$.

10. 求下列数列的极限:

(1)
$$\lim_{n\to\infty} \frac{(n+1)(n+2)(n+3)}{5n^3} = \lim_{n\to\infty} \frac{1}{5} \left(1 + \frac{1}{n}\right) \left(1 + \frac{2}{n}\right) \left(1 + \frac{3}{n}\right) = \frac{1}{5}.$$

(2)
$$\lim_{n\to\infty} \frac{3^n + (-2)^n}{3^{n+1} + (-2)^{n+1}} = \lim_{n\to\infty} \frac{\frac{1}{3} + \left(-\frac{2}{3}\right)^n \frac{1}{3}}{1 + \left(-\frac{2}{3}\right)^{n+1}} = \frac{1}{3}.$$

(3)
$$\lim_{n\to\infty} \left(\frac{1+2+\cdots+n}{n+2} - \frac{n}{2}\right) = \lim_{n\to\infty} \left(\frac{n(n+1)}{2(n+2)} - \frac{n}{2}\right) = \lim_{n\to\infty} \frac{-n}{2(n+2)} = -\frac{1}{2}.$$

(4)
$$\lim_{n\to\infty} \sqrt{n} \left(\sqrt{n+4} - \sqrt{n} \right) = \lim_{n\to\infty} \frac{4}{\sqrt{1+\frac{4}{n}} + 1} = 2.$$

(5)
$$\lim_{n \to \infty} (\sqrt{2}\sqrt[4]{2}\sqrt[8]{2} \cdots 2\sqrt[n]{2}) = \lim_{n \to \infty} 2^{\left(\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \cdots + \frac{1}{2^n}\right)} = \lim_{n \to \infty} 2^{\left(\frac{1}{2} - \frac{1}{2^n}\right)} = 2.$$

(6) 由于
$$\sqrt[n]{2} \leqslant \sqrt[n]{2 + \sin^2 n} \leqslant \sqrt[n]{3}$$
,且 $\lim_{n \to \infty} \sqrt[n]{2} = \lim_{n \to \infty} \sqrt[n]{3} = 1$,所以

$$\lim_{n \to \infty} \sqrt[n]{2 + \sin^2 n} = 1.$$

(7)
$$\frac{1+4+\cdots+n^{2}}{n^{3}+n} \leq \frac{1}{n^{3}+1} + \frac{4}{n^{3}+2} + \cdots + \frac{n^{2}}{n^{3}+n} \leq \frac{1+4+\cdots+n^{2}}{n^{3}+1},$$

$$\lim_{n \to \infty} \frac{1+4+\cdots+n^{2}}{n^{3}+n} = \lim_{n \to \infty} \frac{1}{6} \frac{(n+1)(2n+1)}{n^{2}+1} = \frac{1}{3},$$

$$\lim_{n \to \infty} \frac{1+4+\cdots+n^{2}}{n^{3}+1} = \lim_{n \to \infty} \frac{1}{6} \frac{n(n+1)(2n+1)}{n^{3}+1} = \frac{1}{3},$$

所以由夹逼性
$$\lim_{n\to\infty} \left(\frac{1}{n^3+1} + \frac{4}{n^3+2} + \dots + \frac{n^2}{n^3+n}\right) = \frac{1}{3}$$
.

(8)
$$\lim_{n\to\infty} \left(1+\frac{1}{n+1}\right)^n = \lim_{n\to\infty} \left(1+\frac{1}{n+1}\right)^{n+1} \left(1+\frac{1}{n}\right)^{-1} = e.$$

(9)
$$\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^n = \lim_{n\to\infty} \left[\left(1+\frac{-1}{n}\right)^{-n}\right]^{-1} = e^{-1}$$
.

(10)
$$\lim_{n\to\infty} \left(1+\frac{1}{n-4}\right)^{n+4} = \lim_{n\to\infty} \left(1+\frac{1}{n-4}\right)^{n-4} \left(1+\frac{1}{n-4}\right)^8 = e.$$

11. 判别下列数列的敛散性,

(1)
$$a_n = \frac{1}{3+1} + \frac{1}{3^2+1} + \dots + \frac{1}{3^n+1}$$
.

$$0 \leqslant a_n \leqslant \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^n} = \frac{1}{2} \left(1 - \frac{1}{3^n} \right) \leqslant \frac{1}{2}, \{a_n\}$$
有界,

因为
$$a_{n+1} = a_n + \frac{1}{3^{n+1} + 1} \geqslant a_n, \langle a_n \rangle$$
 单调增.

由单调有界准则,{a,,}收敛.

(2)
$$a_n = \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{4}\right) \cdots \left(1 - \frac{1}{2^n}\right).$$

 $0 \le a_n \le 1, \quad \exists a_{n+1} = a_n \left(1 - \frac{1}{2^{n+1}}\right) \le a_n.$

故 $\{a_n\}$ 单减有下界. 从而 $\{a_n\}$ 收敛.

(3)
$$a_1 = \sqrt{2}, a_2 = \sqrt{2 + \sqrt{2}}, \dots, a_n = \sqrt{2 + \sqrt{2 + \dots + \sqrt{2}}}, \dots$$

 $0 < a_1 = \sqrt{2} < 2, 0 < a_2 = \sqrt{2 + a_1} < 2$, 由数学归纳法证得 $0 < a_n = \sqrt{2 + a_{n-1}} < 2, n = 1, 2, \cdots$.

$$a_{n+1}-a_n=\sqrt{2+a_n}-a_n=\frac{(2-a_n)(a_n+1)}{\sqrt{2+a_n}+a_n}>0$$

故 $\{a_n\}$ 为单增有界数列,即 $\{a_n\}$ 收敛.

设 $\lim_{n\to\infty} a_n = A$,则 $A \ge 0$. 由 $a_{n+1} = \sqrt{a_n + 2}$ 得

$$A=\sqrt{A+2}$$
,所以 $A=2$.

(4)
$$a_n = 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$$

因为
$$a_n < 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}}$$
 (因为 $k \ge 2$ 时, $2^{k-1} < k!$)
$$= 2\left(1 - \frac{1}{2^n}\right) < 2,$$

且 $a_{n+1} = a_n + \frac{1}{(n+1)!} > a_n$,故 $\{a_n\}$ 单增有上界. $\{a_n\}$ 收敛.

注意,还可用下述方法证明 a_n 的有界性.

$$a_{n} < 1 + \frac{1}{2 \cdot 1} + \frac{1}{3 \cdot 2} + \dots + \frac{1}{n(n-1)} = 1 + \frac{1}{2} + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right)$$
$$= 2 - \frac{1}{n} < 2.$$

(5)
$$a_n = 1 + \frac{\sin 1}{1^2} + \frac{\sin 2}{2^2} + \dots + \frac{\sin n}{n^2}$$
.

$$|a_{n+p}-a_n| = \left| \frac{\sin(n+1)}{(n+1)^2} + \frac{\sin(n+2)}{(n+2)^2} + \dots + \frac{\sin(n+p)}{(n+p)^2} \right|$$

$$\leq \frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(n+p)^2}$$

$$\leq \frac{1}{n(n+1)} + \frac{1}{(n+1)(n+2)} + \dots + \frac{1}{(n+p-1)(n+p)}$$

$$\leq \frac{1}{n} - \frac{1}{n+p} < \frac{1}{n},$$

则 $\forall \epsilon > 0$,取 $N = \left[\frac{1}{\epsilon}\right]$,当 n > N 时, $\forall p \in \mathbb{N}_+$,有 $|a_{n+p} - a_n| < \epsilon$,由 Cauchy 原理知,原数列 $\{a_n\}$ 收敛.

13. 求下列数列的极限点:

(1)
$$\frac{1}{2}$$
, $\frac{1}{2}$, $\frac{1}{4}$, $\frac{3}{4}$, $\frac{1}{8}$, $\frac{7}{8}$, ..., $\frac{1}{2^n}$, $\frac{2^n-1}{2^n}$,

因为 $\lim_{n\to\infty} \frac{1}{2^n} = 0$, $\lim_{n\to\infty} \frac{2^n-1}{2^n} = 1$, 所以此数列有两个极限点 0,1.

(2)
$$a_n = 3\left(1 - \frac{1}{n}\right) + 2(-1)^n$$
.

因为 $\lim_{n\to\infty} a_{2n} = 5$, $\lim_{n\to\infty} a_{2n+1} = 1$, 所以此数列有两个极限点 5,1.

(3)
$$a_n = \frac{n + (-1)^n n}{2} + \frac{1}{n}$$
.

由于 $\lim_{n\to\infty} a_{2n+1}=0$,所以此数列有唯一的极限点 0.

14. 设 $0 < x_1 < 1, x_{n+1} = 1 - \sqrt{1-x_n}$,证明:数列 $\{x_n\}$ 收敛,并求 $\lim_{n \to \infty} x_n$ 与 $\lim_{n \to \infty} \frac{x_{n+1}}{x_n}$.

解 因为 $0 < x_1 < 1$. 设 $0 < x_{n-1} < 1$,由数学归纳法证得 $0 < x_n < 1$.

又因为 $\frac{x_{n+1}}{x_n} = \frac{1 - \sqrt{1 - x_n}}{x_n} = \frac{1}{1 + \sqrt{1 - x_n}} < 1$,即 $x_{n+1} < x_n$, $\{x_n\}$ 单调减,由

单调有界准则知{x,}收敛.

设 $\lim_{n\to\infty} x_n = A$. 由等式 $x_{n+1} = 1 - \sqrt{1-x_n}$ 得 $A = 1 - \sqrt{1-A}$,故 A = 0,或 A = 1 (舍),故 $\lim_{n\to\infty} x_n = 0$.

$$\lim_{n\to\infty}\frac{x_{n+1}}{x_n} = \lim_{n\to\infty}\frac{1}{1+\sqrt{1-x_n}} = \frac{1}{2}.$$

15. 设
$$a > 0$$
, $x_1 > 0$, $x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$, 证明: $\lim_{n \to \infty} x_n = \sqrt{a}$.

证 因为 a>0, $x_1>0$, 所以 $x_2=\frac{1}{2}\left(x_1+\frac{a}{x_1}\right) > \sqrt{a}>0$, 由数学归纳法可知

 $x_n \gg \sqrt{a}$,从而

$$\frac{x_{n+1}}{x_n} = \frac{1}{2} \left(1 + \frac{a}{x_n^2} \right) \leqslant \frac{1}{2} (1+1) = 1$$
, $\mathbb{P} x_{n+1} < x_n$,

故 $\{a_n\}$ 单减有下界.故 $\{a_n\}$ 收敛.

设 $\lim_{n\to\infty} a_n = A$. 由于 $x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$ 且 $x_n \geqslant \sqrt{a} > 0$,所以 A > 0 且 $A = \frac{1}{2} \left(A + \frac{a}{A} \right)$. 故 $A = \sqrt{a}$.

16. 设 $\{a_n\}$ 单调增, $\{b_n\}$ 单调减, $\lim_{n\to\infty}(b_n-a_n)=0$. 证明: $\{a_n\}$ 与 $\{b_n\}$ 都收敛,并且有相同的极限.

证 由于 $\{a_n\}$ 单调增, $\{b_n\}$ 单调减,所以 $\{b_n-a_n\}$ 单调减,又由于 $\lim_{n\to\infty}(b_n-a_n)=0$,即 0 为单减数列 $\{b_n-a_n\}$ 的下确界,所以 $\forall n\in\mathbb{N}_+$, $b_n-a_n\geqslant 0$,即 $b_n\geqslant a_n$. 故单增数列 $\{a_n\}$ 有上界 b_1 ,单调减数列 $\{b_n\}$ 有下界 a_1 . 从而 $\{a_n\}$ 与 $\{b_n\}$ 均收敛. 且 $\lim_{n\to\infty}b_n=\lim_{n\to\infty}[(b_n-a_n)+a_n]=\lim_{n\to\infty}(b_n-a_n)+\lim_{n\to\infty}a_n=\lim_{n\to\infty}a_n$.

(B)

1. 判别数列 $\{x_n\}$ 的收敛性,其中

$$x_n = a_0 + a_1 q + a_2 q^2 + \dots + a_n q^n (|q| < 1, |a_k| \le M, k = 0, 1, 2, \dots).$$

解 若 q=0, $x_n=a_0$, $\{x_n\}$ 收敛.

若 0 < |q| < 1,由于 $|a_k| \le M, k = 1, 2, \dots$,所以 $\forall n, p \in \mathbb{N}_+$,

$$|x_{p+n}-x_n| = |a_{n+1}q^{n+1} + \dots + a_{n+p}q^{n+p}|,$$

$$\leq M|q|^{n+1} \frac{1-|q|^p}{1-|q|} \leq \frac{M}{1-|q|}|q|^{n+1}.$$

注意到 $\ln |q| < 0$. 对 $\forall \epsilon > 0$, 取 $N = \left[\frac{\ln(1-|q|)\epsilon - \ln M}{\ln |q|}\right] \in \mathbb{N}_+$, 对 $\forall n > 0$

 $N, p \in \mathbb{N}_+$,恒有 $|x_{n+p} - x_n| < \varepsilon$,由 Cauchy 收敛原理知 $\{x_n\}$ 收敛.

2. 求下列数列的极限:

(1)
$$\lim_{n\to\infty} \frac{x^{n}-2}{x^{n}+2} = \begin{cases} \overline{A}\overline{A}\overline{A}, & x=-1, \\ -\frac{1}{3}, & x=1, \\ -1, & |x|<1, \\ \lim_{n\to\infty} \frac{1-\frac{2}{x^{n}}}{1+\frac{2}{x^{n}}} = 1, & |x|>1. \end{cases}$$

(2)
$$\lim_{n\to\infty} \left[1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{27} + \dots + \frac{(-1)^{n-1}}{3^{n-1}}\right] = \lim_{n\to\infty} \frac{1 - \left(-\frac{1}{3}\right)^n}{1 + \frac{1}{3}} = \frac{3}{4}.$$

(3)
$$\lim_{n \to \infty} \left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \cdots \left(1 - \frac{1}{n^2}\right)$$

$$= \lim_{n \to \infty} \frac{(2^2 - 1)(3^2 - 1) \cdots (n^2 - 1)}{2^2 \cdot 3^2 \cdot \cdots \cdot n^2}$$

$$= \lim_{n \to \infty} \frac{(2 - 1)(3 - 1) \cdots (n - 1)(2 + 1)(3 + 1) \cdots (n + 1)}{2^2 \cdot 3^2 \cdot \cdots \cdot n^2}$$

$$= \lim_{n \to \infty} \frac{(n - 1)!(n + 1)!}{2(n!)^2} = \lim_{n \to \infty} \frac{n + 1}{2n} = \frac{1}{2}.$$

$$(4) \lim_{n\to\infty} \sqrt[n]{2\sin^2 n + \cos^2 n}$$

解 因为 $1 \le \sqrt[n]{2\sin^2 n + \cos^2 n} = \sqrt[n]{1 + \sin^2 n} \le \sqrt[n]{2}$,由夹逼性 $\lim_{n \to \infty} \sqrt[n]{2\sin^2 n + \cos^2 n} = 1$.

(5) 解法—
$$\lim_{n\to\infty} \left(\frac{n+1}{n+2}\right)^{3n} = \lim_{n\to\infty} \frac{\left(1+\frac{1}{n}\right)^{3n}}{\left(1+\frac{2}{n}\right)^{3n}} = \frac{e^3}{e^6} = \frac{1}{e^3}.$$

$$\mathbf{解法} = \lim_{n\to\infty} \left(\frac{n+1}{n+2}\right)^{3n} = \lim_{n\to\infty} \left[\left(1+\frac{-1}{n+2}\right)^{-(n+2)} \left(1-\frac{1}{n+2}\right)^2\right]^{-3} = e^{-3}.$$

(6) 解法
$$\lim_{n \to \infty} \left(\frac{n^3 - 1}{n^3 - 2} \right)^{4n^3} = \lim_{n \to \infty} \left[\left(1 + \frac{-1}{n^3} \right)^{-n^3} \right]^{-4} / \left[\left(1 + \frac{-2}{n^3} \right)^{-\frac{n^3}{2}} \right]^{-8} = e^4.$$

$$\text{解法 } \lim_{n \to \infty} \left(\frac{n^3 - 1}{n^3 - 2} \right)^{4n^3} = \lim_{n \to \infty} \left[\left(1 + \frac{1}{n^3 - 2} \right)^{n^3 - 2} \left(1 + \frac{1}{n^3 - 2} \right)^2 \right]^4 = e^4.$$

3. 证明:

(1) 若
$$a_n \rightarrow 0$$
,则 $b_n = \frac{a_1 + a_2 + \dots + a_n}{n} \rightarrow 0 (n \rightarrow \infty)$;

(2) 若 $a_n \rightarrow a$,则 $b_n \rightarrow a(n \rightarrow \infty)$, b_n 同(1).

 \mathbf{M} (1) 由 $a_n \to 0$ ($n \to \infty$)知: $\forall \varepsilon > 0$, $\exists N_1 \in \mathbf{N}_+$, $\notin \forall n > N_1$, $|a_n| < \frac{\varepsilon}{2}$.

而由
$$\frac{1}{n}$$
 $\rightarrow 0$ $(n \rightarrow \infty)$ 知: $\exists N_2 \in \mathbb{N}_+$. 使 $\forall n > N_2$, $\frac{|a_1 + \cdots + a_{N_1}|}{n} < \frac{\varepsilon}{2}$,

从而
$$|b_n| = \left| \frac{a_1 + \cdots + a_{N_1}}{n} + \frac{a_{N_1+1} + \cdots + a_n}{n} \right| < \frac{\varepsilon}{2} + \left(1 - \frac{N_1}{n}\right) \frac{\varepsilon}{2} < \varepsilon$$

故 $\lim_{n\to\infty} b_n = 0$.

(2) 令 $\bar{a}_n = a_n - a$. 则 $\lim_{n \to \infty} \bar{a}_n = 0$. 由结论(1),

$$\lim_{n\to\infty} \bar{b}_n = \lim_{n\to\infty} \frac{\bar{a}_1 + \dots + \bar{a}_n}{n} = \lim_{n\to\infty} \left(\frac{a_1 + \dots + a_n}{n} - a \right) = 0,$$

即 $\lim_{n\to\infty}b_n=a$.

4. 证明下列数列收敛,并求其极限:

(1)
$$x_n = \frac{n^k}{a^n} (a > 1, k > 0).$$

证 因为 $a>1,a^{\frac{1}{k}}>1,$ 令 $a^{\frac{1}{k}}=1+b(a>b>0),$ 则

$$\frac{n^{k}}{a^{n}} = \left[\frac{n}{(1+b)^{n}}\right]^{k} = \left[\frac{n}{1+nb+\frac{1}{2}n(n-1)b^{2}+\dots+b^{n}}\right]^{k} \leqslant \left[\frac{n}{nb+\frac{n}{2}(n-1)b^{2}}\right]^{k}$$

$$= \left[\frac{1}{b+\frac{1}{2}b^{2}(n-1)}\right]^{k}. 注意到 \lim_{n\to\infty} \frac{1}{b+\frac{1}{2}b^{2}(n-1)} = 0, \text{ } \lim_{n\to\infty} \frac{n^{k}}{a^{n}} = 0.$$

证 显然 $a_n > 0$. $a_1 = \sqrt{a} < 1 + \sqrt{a}$. 设 $a_{n-1} < 1 + \sqrt{a}$,则 $a_n = \sqrt{a + \sqrt{a_{n-1}}} < \sqrt{a + \sqrt{a + 1}} < \sqrt{a} + 1$. 由数学归纳法知. $\forall n \in \mathbb{N}_+, 0 < a_n < \sqrt{a} + 1$. 即 $\{a_n\}$ 有界.

又由数学归纳法: $a_1 = \sqrt{a}$, $a_2 = \sqrt{a+a_1} > \sqrt{a} > a_1$,假设 $a_n > a_{n-1}$,那么 $a_{n+1} = \sqrt{a+a_n} > \sqrt{a+a_{n-1}} = a_n$.故 $\{a_n\}$ 为单增数列.从而 $\{a_n\}$ 收敛.

设
$$\lim_{n\to\infty} a_n = A$$
,由 $a_{n+1} = \sqrt{a+a_n}$ 可知 $A = \sqrt{a+A}$.

注意到 $0 < a_n < \sqrt{a} + 1$,可得 $A = \frac{1 + \sqrt{1 + 4a}}{2}$,即 $\lim_{n \to \infty} a_n = \frac{1 + \sqrt{1 + 4a}}{2}$.

(3)
$$0 < x_1 < \sqrt{3}, x_{n+1} = \frac{3(1+x_n)}{3+x_n}$$
.

证 因为 $0 < x_1 < \sqrt{3}$,所以 $x_n > 0$. ($\forall n \in \mathbb{N}_+$).

$$x_2 - \sqrt{3} = \frac{(3 - \sqrt{3})(x_1 - \sqrt{3})}{3 + x_1} < 0.$$
 所以 $0 < x_2 < \sqrt{3}$.

假设 $0 < x_{n-1} < \sqrt{3}$,那么 $x_n - \sqrt{3} = \frac{(3 - \sqrt{3})(x_{n-1} - \sqrt{3})}{3 + x_{n-1}} < 0$,由数学归纳法知 $0 < x_n < \sqrt{3}$,即 $\{x_n\}$ 有界.

因为 $x_{n+1}-x_n=\frac{3-x_n^2}{3+x_n}=\frac{(\sqrt{3}-x_n)(\sqrt{3}+x_n)}{3+x_n}>0$,所以 $x_{n+1}>x_n$, $\{x_n\}$ 单调增. 故 $\{x_n\}$ 收敛.

设 $\lim_{n\to\infty} x_n = A$,则 $0 \le A \le \sqrt{3}$. 且 $A = \frac{3(1+A)}{3+A}$,即 $A = \sqrt{3}$. 故 $\lim_{n\to\infty} x_n = \sqrt{3}$.

(4)
$$a_1 = 1, a_n = 1 + \frac{1}{a_{n-1} + 1}$$
 $(n = 2, 3, \dots).$

证 由 $a_1 = 1 < \sqrt{2}, a_n > 0$ 且 $a_n - \sqrt{2} = \frac{-(a_{n-1} - \sqrt{2})(\sqrt{2} - 1)}{a_{n-1} + 1}$ 知 $a_n - \sqrt{2}$ 与 $a_{n-1} - \sqrt{2}$ 异号. 从而 $0 < a_{2m-1} < \sqrt{2}, a_{2m} > \sqrt{2}$. $m = 1, 2, \cdots$.

又因为
$$a_{n+2}-a_n=1+\frac{1}{1+\left(1+\frac{1}{1+a_n}\right)}-a_n=\frac{2(2-a_n^2)}{2a_n+3}, n=1,2,\cdots$$

所以 $\{a_{2m}\}$ 单调减, $\{a_{2m-1}\}$ 单调增.

由单调收敛准则, $\{a_{2m}\}$, $\{a_{2m-1}\}$ 均收敛.

不妨设 $\lim_{m\to\infty} a_{2m} = A$,则 $A > \sqrt{2}$. 又因为 $a_{2m+2} = \frac{3a_{2m}+4}{2a_{2m}+3}$,所以 $A = \frac{3A+4}{2A+3}$,即 $A = \sqrt{2}$.

同理可证 $\lim_{a_{2m-1}} = \sqrt{2}$,故 $\lim_{a_n} = \sqrt{2}$.

5. $\{a_n\}$ 为一单增数列,并且有一子列收敛于 a,证明 $\lim_{n\to\infty} a_n = a$.

证法一 设 $\{a_n\}$ 为 $\{a_n\}$ 的收敛于a的子列.

假设 $\{a_n\}$ 无上界,则 $\forall M>0$. $\exists n_0 \in \mathbb{N}_+$,使 $a_{n_0}>M$. 又因为 $\{a_n\}$ 单调增,所以 $a_{n_0+p}>a_{n_0}>M$, $\exists p_0 \in \mathbb{N}_+$ 使 $a_{n_0+p_0} \in \{a_{n_k}\}$,所以 $\{a_{n_k}\}$ 无界与已知矛盾. 所以 $\{a_n\}$ 有上界. 由单调收敛原理, $\{a_n\}$ 收敛且 $a_{n_k} \rightarrow a$. $(k \rightarrow \infty)$.

证法二 由 $\{a_n\}$ 的子列 $\{a_{n_k}\}$ 收敛于 a 知; $\forall \epsilon > 0$, $\exists N_1 \in \mathbb{N}_+$, 使 $\forall k > N_1$, $|a_{n_k} - a| < \epsilon$. 取 $N = n_{N_1+1}$. $\forall n > N$ 存在 $k \in \mathbb{N}_+$, 使 a_{n_k} , $a_{n_{k+1}} \in \{a_{n_k}\}$ 且 $n_k \le n \le n_{k+1}$. 再注意到 $\{a_n\}$ 单调增可得 $a_{n_k} \le a_n \le a_{n_{k+1}}$. 从而

$$|a_n-a| \leq \max\{|a_{n_k}-a|, |a_{n_{k+1}}-a|\} < \varepsilon,$$

故 $\{a_n\}$ 收敛于 a.

6. 设
$$a_n = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{(-1)^{n-1}}{n}$$
,证明数列 $\{a_n\}$ 收敛.

证 由于
$$\forall n, p \in \mathbb{N}_+, |a_{n+p} - a_n| = \left| \frac{1}{n+1} - \frac{1}{n+2} + \dots + \frac{(-1)^{p-1}}{n+p} \right|.$$

当
$$p$$
 为偶数时, $\left(\frac{1}{n+1} - \frac{1}{n+2}\right) + \cdots + \left(\frac{1}{n+p-1} - \frac{1}{n+p}\right) > 0$.

当
$$p$$
 为奇数时, $\left(\frac{1}{n+1} - \frac{1}{n+2}\right) + \dots + \left(\frac{1}{n+p-2} - \frac{1}{n+p-1}\right) + \frac{1}{n+p} > 0$.

利用上述结论易得
$$|a_{n+p}-a_n|=\frac{1}{n+1}-\left(\frac{1}{n+2}-\frac{1}{n+3}+\cdots+\frac{(-1)^{p-1}}{n+p}\right)<$$

 $\frac{1}{n+1}$. 所以 $\forall \varepsilon > 0$, 只要取 $N = \left[\frac{1}{\varepsilon}\right]$, 则 $\forall n > N$ 及 $p \in \mathbb{N}_+$, 恒有 $|a_{n+p} - a_n| < \varepsilon$. 故 $\{a_n\}$ 为 Cauchy 列, 因而收敛.

7. 设{ $[a_n,b_n]$ }为一列闭区间,若满足条件:(1)它是递缩的: $[a_1,b_1]$ $\supseteq [a_2,b_2]$ $\supseteq \cdots \supseteq [a_n,b_n]$ $\supseteq \cdots$;(2) $\lim_{n\to\infty} (b_n-a_n)=0$,则称{ $[a_n,b_n]$ }为一个闭区间套. 试利用单调有界原理证明闭区间套定理:任何闭区间套必有唯一的公共点,即存在唯一的{ ξ },使 $\bigcap_{n=1}^{\infty} [a_n,b_n]=\{\xi\}$.

证 数列 $\{a_n\}$ 单增, $\{b_n\}$ 单减且 $\lim_{n\to\infty}(b_n-a_n)=0$. 由习题 1. 2(A)第 16 题, $\{a_n\}$, $\{b_n\}$ 均收敛. 且 $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=\xi$ 且 $a_n\leqslant \xi\leqslant b_n$,即 \forall $n\in\mathbb{N}_+$, $\xi\in\bigcap_{n=1}^\infty[a_n,b_n]$. 由极限的唯一性知 $\bigcap_{n=1}^\infty[a_n,b_n]=\{\xi\}$.

8. 利用闭区间套定理(第7题)证明 Weierstrass 定理.

证 设 $\{x_n\}$ 是有界数列,则必存在 $a_1,b_1 \in \mathbb{R}$,使得 $\forall n \in \mathbb{N}_+$,都有 $x_n \in [a_1,b_1]$. 等分 $[a_1,b_1]$ 为两个子区间,则至少有一个含 $\{x_n\}$ 的无穷多项,记该子区间为 $[a_2,b_2]$ (若两个子区间都含 $\{x_n\}$ 的无穷多项,则可任取其一). 等分 $[a_2,b_2]$,按照同样的方法又可得含 $\{x_n\}$ 无穷多项的子区间 $[a_3,b_3]$. 照此办理,可得一个闭区间列 $\{[a_k,b_k]\}$,满足:

$$[a_1,b_1] \supseteq [a_2,b_2] \supseteq \cdots \supseteq [a_k,b_k] \supseteq \cdots,$$

$$b_k - a_k = \frac{b_1 - a_1}{2^{k-1}} \rightarrow 0 (k \rightarrow \infty),$$

因此它是一个闭区间套. 根据闭区间套定理,存在唯一的 $\xi \in \mathbb{R}$,使得 $\bigcap_{k=1}^{\infty} [a_k,b_k] = \{\xi\}$,并且 $\lim_{k \to \infty} a_k = \lim_{k \to \infty} b_k = \xi$.

由于每个闭区间都含数列 $\{x_n\}$ 的无穷多项,所以我们能在每个 $[a_k,b_k]$ 中选取 $\{x_n\}$ 的一项 x_{n_k} ,并使 $n_1 < n_2 < \cdots < n_k < \cdots$,从而得到 $\{x_n\}$ 的一个子列 $\{x_{n_k}\}$,满足: $a_k \le x_{n_k} \le b_k (\ \forall \ k \in \mathbb{N}_+).$

根据夹逼原理, $\lim_{k \to \infty} x_{n_k} = \xi$.

习 题 1.3

(A)

3. 设 $\lim_{x\to x_0} f(x) = a$,且 f(x)在 x_0 有定义.问在 $x\to x_0$ 的过程中,x 可否取

到 x_0 ? 是否必有 $a=f(x_0)$?

解 可以取到
$$x_0$$
. 但未必有 $a = f(x_0)$. 例 $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0, \\ 1, & x = 0, \end{cases}$

 $\lim_{x\to 0} f(x) = 0 \Rightarrow f(0) = 1$,

- 5. 下列命题是否正确? 若正确,请给出证明;若不正确,请举出反例.
- (1) $\lim_{x \to x_0} f(x) = a$ 的充要条件是 $\lim_{x \to x_0} |f(x)| = |a|$;
- (2) 若 $\lim_{x \to x_0} f(x) = a$,则 $\lim_{x \to x_0} [f(x)]^2 = a^2$;
- (3) 若 $\lim_{n\to\infty} f\left(\frac{1}{n}\right) = a$,则 $\lim_{n\to 0^+} f(x) = a$;
- (4) 若 $\lim_{x \to x_0} f(x)$ 与 $\lim_{x \to x_0} [f(x) + g(x)]$ 都存在,则 $\lim_{x \to x_0} g(x)$ 必存在;
- (5) 若 $\lim_{x \to x_0} f(x)$ 与 $\lim_{x \to x_0} f(x)g(x)$ 都存在,则 $\lim_{x \to x_0} g(x)$ 必存在;
- (6) 若在 x_0 的某邻域内 f(x) > 0,并且 $\lim_{x \to a} f(x) = a$,那么必有 a > 0.
- 解 (1) 不正确. $\lim_{x \to x_0} f(x) = a$,则 $\lim_{x \to x_0} |f(x)| = |a|$. 但反过来不成立.

例
$$f(x) = \begin{cases} 1, & x \ge 0, \\ -1, & x < 0, \end{cases} |f(x)| = 1, \lim_{x \to 0} |f(x)| = 1,$$

但 $\lim_{x \to x_0} f(x)$ 不存在.

(2) 正确. 因为 $\lim_{x \to x_0} f(x) = a$, $\exists U(x_0, \delta_1)$ 与 M > 0, 使得 $\forall x \in U(x_0, \delta_1)$, $|f(x) + a| \leq M$. 从而 $\forall \varepsilon > 0$, $\exists \delta > 0 (\delta < \delta_1)$, 使得 $\forall x \in U(x_0, \delta)$,

$$|[f(x)]^2 - a^2| = |f(x) + a| |f(x) - a| < M \cdot \frac{\varepsilon}{M} = \varepsilon,$$

$$\lim_{x \to x_0} [f(x)]^2 = a^2.$$

即

- (3) 不正确. $\lim_{n\to\infty} \sin \frac{\pi}{\frac{1}{n}} = \lim_{n\to\infty} \sin n\pi = 0$. 但 $\lim_{x\to 0^+} \sin \frac{\pi}{x}$ 不存在.
- (4) 正确. 由极限的有理运算法则 $\lim_{x \to x_0} g(x) = \lim_{x \to x_0} [f(x) + g(x)] \lim_{x \to x_0} f(x)$.
- (5) 不正确. 取 f(x) = x, $g(x) = \sin \frac{1}{x}$, $\lim_{x \to 0} f(x) = \lim_{x \to 0} f(x)g(x) = 0$, 但 $\lim_{x \to 0} g(x)$ 不存在.

如果 $\lim_{x \to x_0} f(x) = a \ge 0$,且 $\lim_{x \to x_0} f(x)g(x)$ 存在,则 $\lim_{x \to x_0} g(x)$ 存在.

(6) 不正确. 如
$$f(x) = \begin{cases} x^2, & x \neq 0, \\ 1, & x = 0, \end{cases}$$

9. 下列运算有无错误? 若错,错在何处?

(1)
$$\lim_{x \to 0} \frac{\sin x}{x} = \frac{\lim_{x \to 0} \sin x}{\lim_{x \to 0} x} = \frac{0}{0} = 1;$$
 (2) $\lim_{x \to \infty} \frac{\sin x}{x} = \frac{\lim_{x \to \infty} \sin x}{\lim_{x \to \infty} x} = 0;$

- (3) $\lim_{x\to 0} x \sin \frac{1}{x} = \lim_{x\to 0} x \lim_{x\to 0} \sin \frac{1}{x} = 0.$
- 答:(1) 错. 分母极限为零. (2) 错. lim sin x 不存在.
 - (3) 错. $\lim_{x\to 0} \sin \frac{1}{x}$ 不存在.
- 10. 用定义证明下列各题:
- (2) $\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$; (4) $\lim_{x \to 1} \frac{x^2}{x+1} = \frac{1}{2}$.

解 (2) $\forall x > 0$, 由 $0 < \frac{\pi}{2} - \arctan x = |\arctan x - \frac{\pi}{2}| < \varepsilon < \frac{\pi}{2} \Leftrightarrow \tan\left(\frac{\pi}{2} - \arctan x\right) = \cot(\arctan x) < \tan \varepsilon \Leftrightarrow \frac{1}{x} = \frac{1}{\tan(\arctan x)} < \frac{1}{\cot \varepsilon} \Leftrightarrow x > \cot \varepsilon$, 可得 $\forall \varepsilon > 0$. 如 $\varepsilon < \frac{\pi}{2}$. 取 $X = \cot \varepsilon > 0$; 如 $\varepsilon > \frac{\pi}{2}$, $0 < \varepsilon - \frac{n\pi}{2} < \frac{\pi}{2}$, 取 $X = \cot\left(\varepsilon - \frac{n\pi}{2}\right) > 0$,那么 $\forall x > X$. $\left|\arctan x - \frac{\pi}{2}\right| < \varepsilon$, 即 $\lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$.

(4) 不妨设|x-1| < 1.则 1 < x+1 < 3, 1 < 2x+1 < 5. $\forall \varepsilon > 0$, 取 $\delta = \min\left(1, \frac{2}{5}\varepsilon\right) > 0$,则 $\forall x \in U(1, \delta)$,有

$$\left| \frac{x^2}{x+1} - \frac{1}{2} \right| = \frac{2x+1}{2(x+1)} |x-1| < \frac{5}{2} |x-1| < \varepsilon.$$

- 11. 用 Heine 定理证明下列极限不存在:
- (1) $\lim_{x\to 0} \cos \frac{1}{x}$; (2) $\lim_{x\to +\infty} x(1+\sin x)$.

解 (1) 取 $x_n = \frac{1}{2n\pi}$, $y_n = \frac{1}{2n\pi + \pi/2}$, 那么当 $n \to +\infty$ 时, $x_n \to 0$, $y_n = 0$, $\cos \frac{1}{x_n} = 1 \to 1$ $(n \to +\infty)$, $\cos y_n = 0 \to 0$ $(n \to +\infty)$, 由 Heine 定理 $\lim_{x \to 0} \cos \frac{1}{x}$ 存在.

- (2) 取 $x_n = 2n\pi \rightarrow +\infty$, $y_n = 2n\pi \frac{\pi}{2} \rightarrow +\infty$ $(n \rightarrow +\infty)$, 那么 $\lim_{n \rightarrow +\infty} x_n (1 + \sin x_n) = \lim_{n \rightarrow +\infty} x_n = +\infty$, $\lim_{n \rightarrow +\infty} y_n (1 + \sin y_n) = \lim_{n \rightarrow +\infty} 0 = 0$. 则 $\lim_{x \rightarrow +\infty} x (1 + \sin x)$ 存在.
 - 12. 求下列极限:

(4)
$$\lim_{x\to 0} \frac{x}{\sqrt{2+x}-\sqrt{2-x}} = \lim_{x\to 0} \frac{x(\sqrt{2+x}+\sqrt{2-x})}{2x} = \sqrt{2}$$
.

(6)
$$\lim_{x \to 1} \left(\frac{2}{1 - x^2} - \frac{3}{1 - x^3} \right) = \lim_{x \to 1} \frac{2(1 + x + x^2) - 3(1 + x)}{(1 - x^2)(1 + x + x^2)}$$
$$= \lim_{x \to 1} \frac{2x + 1}{(1 + x)(1 + x + x^2)} = \frac{1}{2}.$$

(8)
$$\lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin x}{\Delta x} = \lim_{\Delta x \to 0} \frac{\sin x \cos \Delta x + \cos x \sin \Delta x - \sin x}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \left[\frac{(\cos \Delta x - 1) \sin x}{\Delta x} + \cos x \frac{\sin \Delta x}{\Delta x} \right]$$
$$= \lim_{\Delta x \to 0} \frac{-2 \sin^2 \frac{\Delta x}{2} \sin x}{\Delta x} + \cos x$$
$$= \cos x$$

(10)
$$\lim_{x \to 0} \frac{\sqrt[n]{1+x}-1}{x} (n \in \mathbb{N}_{+})$$

$$= \lim_{x \to 0} \frac{(\sqrt[n]{1+x})^{n}-1}{x \left[(\sqrt[n]{1+x})^{n-1}+(\sqrt[n]{1+x})^{n-2}+\cdots+\sqrt{1+x}+1\right]} = \frac{1}{n}.$$

13. 利用两个重要极限求下列极限:

(2)
$$\lim_{x \to 0} \frac{\tan x - \sin x}{x^3} = \lim_{x \to 0} \frac{\sin x (1 - \cos x)}{x^3 \cos x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{\sin^2 \frac{x}{2}}{2(\frac{x}{2})^2} \cdot \frac{1}{\cos x} = \frac{1}{2}.$$

(3)
$$\lim_{x \to n\pi} \frac{\sin x}{x - n\pi} = \lim_{x \to n\pi} \frac{(-1)^n \sin(n\pi - x)}{n\pi - x} = (-1)^n.$$

(4)
$$\Leftrightarrow t=1-x, \lim_{x\to 1}(1-x)\tan\frac{\pi x}{2} = \lim_{t\to 0}t\cot\frac{\pi}{2}t = \lim_{t\to 0}\frac{\frac{\pi}{2}t}{\sin\frac{\pi}{2}t} \cdot \frac{\cos\frac{\pi t}{2}}{\frac{\pi}{2}} = \frac{2}{\pi}.$$

(7) 因为
$$\lim_{x \to \infty} x \sin \frac{\pi}{x} = \lim_{x \to \infty} \pi \frac{\sin \frac{\pi}{x}}{\frac{\pi}{x}} = \pi$$
. 由 Heine 定理, $\lim_{n \to \infty} 2^n \sin \frac{\pi}{2^n} = \pi$.

(8)
$$\lim_{x \to \infty} \left(1 + \frac{2}{x}\right)^x = \lim_{x \to \infty} \left[\left(1 + \frac{2}{x}\right)^{\frac{x}{2}}\right]^2 = e^2$$
. 由 Heine 定理, $\lim_{n \to \infty} \left(1 + \frac{2}{3^n}\right)^{3^n} = e^2$.

14. 讨论下列函数的极限是否存在:

(1)
$$f(x) = \frac{1}{1+2^{\frac{1}{x}}}, \quad x \to 0;$$
 (2) $f(x) = \begin{cases} \frac{\sin x}{x}, & x < 0 \\ (1+x)^{\frac{1}{x}}, & x > 0, \end{cases}$

(3)
$$f(x) = \frac{1}{x} \cos \frac{1}{x}, \quad x \to \infty.$$

解 (1) 由 $\lim_{x\to 0^+} 2^{\frac{1}{x}} = +\infty$, $\lim_{x\to 0^-} 2^{\frac{1}{x}} = 0$ 知 f(0+0) = 0, f(0-0) = 1. 从而 $\lim_{x\to 0^+} f(x)$ 不存在.

(2)
$$f(0+0) = \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (1+x)^{\frac{1}{x}} = e, f(0-0) = \lim_{x \to 0^-} f(x) = e$$

 $\lim_{x\to 0^{-}} \frac{\sin x}{x} = 1, f(0+0) + f(0-0), \text{ in } \lim_{x\to 0} f(x) = 7.$

(3)
$$\lim_{x\to\infty}\frac{1}{x}\cos\frac{1}{x}=0.$$

15. 用夹逼原理证明 $\lim_{x\to 0} x \left[\frac{1}{x}\right] = 1$, []表示取整.

证 由
$$x \neq 0$$
 时, $\frac{1}{x} - 1 \leqslant \left[\frac{1}{x}\right] \leqslant \frac{1}{x}$. 于是,当 $x > 0$ 时, $1 - x \leqslant x \left[\frac{1}{x}\right] \leqslant 1$,

当 x < 0 时, $1 \le x \left[\frac{1}{x}\right] \le 1 - x$,

由夹逼准则, $\lim_{x\to 0} x \left[\frac{1}{x}\right] = 1$.

16. 试确定常数
$$a$$
 与 b ,使 $\lim_{x\to\infty} \left(\frac{x^2+3}{x-2}+ax+b\right)=0$.

解 因为
$$\lim_{x\to\infty} \left(\frac{x^2+3}{x-2}+ax+b\right) = \lim_{x\to\infty} \left[\frac{(1+a)x^2-2ax+3}{x-2}+b\right] = 0$$
,

所以
$$\lim_{x\to\infty} \frac{(1+a)x^2-2ax+3}{x-2} = -b$$
,于是 $1+a=0$,即 $a=-1,b=-2$.

17. 求下列极限:

(1)
$$\lim_{x\to\infty} \left(\frac{3x-1}{3x+1}\right)^{3x-1}$$
; (2) $\lim_{x\to 1} (2-x)^{\sec\frac{xx}{2}}$;

(3)
$$\lim_{x\to 0^+} (\cos\sqrt{x})^{\frac{1}{x}};$$
 (4) $\lim_{x\to 0} (\frac{\pi + e^{\frac{1}{x}}}{1 + e^{\frac{4}{x}}} + \arctan\frac{1}{x}).$

$$\text{ (1) } \lim_{x \to \infty} \left(\frac{3x - 1}{3x + 1} \right)^{3x - 1} = \lim_{x \to \infty} \frac{\left[\left(1 + \frac{-1}{3x} \right)^{-3x} \right]^{-1}}{\left(1 + \frac{1}{3x} \right)^{3x}} \left[\frac{1 - \frac{1}{3x}}{1 + \frac{1}{3x}} \right]^{-1} = \frac{1}{e^2},$$

$$\lim_{x \to \infty} \left(\frac{3x - 1}{3x + 1} \right)^{3x - 1} = \lim_{x \to \infty} \left[\left(1 + \frac{-2}{3x + 1} \right)^{\frac{3x + 1}{-2}} \right]^{-2} \left(\frac{3x - 1}{3x + 1} \right)^{-2} = e^{-2}.$$

(2) 因为
$$\lim_{x \to 1} \left(\sec \frac{\pi}{2} x \right) \ln(2 - x) = \lim_{x \to 1} \frac{\ln(2 - x)}{\cos \frac{\pi}{2} x}$$

$$= \lim_{x \to 1} \frac{1-x}{\sin \frac{\pi}{2} (1-x)} \ln \left[1 + (1-x) \right]^{\frac{1}{1-x}}$$

$$= \frac{2}{\pi},$$

所以 $\lim_{x\to 1} (2-x)^{\frac{\pi}{2}x} = \lim_{x\to 1} e^{\left(\sec\frac{\pi}{2}x\right)\ln(2-x)} = e^{\frac{2}{\pi}}.$

(3) 因为
$$\lim_{x\to 0^+} \frac{1}{x} \ln \cos \sqrt{x} = \lim_{x\to 0^+} \frac{\cos \sqrt{x}-1}{\left(\sqrt{x}\right)^2} \ln \left[1+(\cos \sqrt{x}-1)\right]^{\frac{1}{\cos \sqrt{x}-1}} = -\frac{1}{2}$$
,

所以
$$\lim_{x\to 0^+} (\cos\sqrt{x})^{\frac{1}{x}} = \lim_{x\to 0^+} e^{\frac{1}{x}\ln(\cos\sqrt{x})} = e^{-\frac{1}{2}}.$$

(4)
$$\lim_{x \to 0^{+}} \left(\frac{\pi + e^{\frac{1}{x}}}{1 + e^{\frac{4}{x}}} + \arctan \frac{1}{x} \right) = \lim_{x \to 0^{+}} \left(\frac{\pi e^{-\frac{4}{x}} + e^{-\frac{3}{x}}}{e^{-\frac{4}{x}} + 1} + \arctan \frac{1}{x} \right) = \frac{\pi}{2},$$

$$\lim_{x \to 0^{-}} \left(\frac{\pi + e^{\frac{1}{x}}}{1 + e^{\frac{4}{x}}} + \arctan \frac{1}{x} \right) = \pi - \frac{\pi}{2} = \frac{\pi}{2},$$

故
$$\lim_{x\to 0} \left(\frac{\pi + e^{\frac{1}{x}}}{1 + e^{\frac{4}{x}}} + \arctan \frac{1}{x} \right) = \frac{\pi}{2}.$$

(B)

1. 证明 Dirichlet 函数 $D(x) = \begin{cases} 1, x \in \mathbf{Q}, \\ 0, x \in \mathbf{R} \setminus \mathbf{Q} \end{cases}$ 在任何 $x \in \mathbf{R}$ 处的极限都不存在.

证 由实数的稠密性, $\forall a \in \mathbb{Q}$, $\exists \{x_n\} \subseteq \mathbb{Q}$, $\{y_n\} \subseteq \mathbb{R} \setminus \mathbb{Q}$,且 $x_n \rightarrow a$, $y_n \rightarrow a$ ($n \rightarrow +\infty$),但 $D(x_n) = 1$, $D(y_n) = 0$,所以 $\forall a \in \mathbb{Q}$, $\lim_{x \rightarrow a} D(x)$ 不存在. 同理可证 $\forall b \in \mathbb{R} \setminus \mathbb{Q}$.

2. 设 $f: \mathbf{R} \to \mathbf{R}$ 是周期函数,若 $\lim_{x \to \infty} f(x) = a$,则 f(x) = a.

证 用反证法. 设 $f(x) \neq a$, 不妨设 $f(x_0) = b \Rightarrow a$, 则可构造一点列 $\{x_0 + nT\}$. T 为 f(x) 的最小正周期,则 $f(x_0 + nT) = f(x_0) = b$,即 $\lim_{n \to \infty} f(x_0 + nT) = b \Rightarrow a$ 与 $\lim_{n \to \infty} f(x) = a$ 矛盾.

3. 设[a,b]是一个有限闭区间,如果 $\forall x_0 \in [a,b]$, $\lim_{x \to x_0} f(x)$ 存在,证明: f(x)在[a,b]上有界.

证 反证法. 若 f(x)在[a,b]上无界,则 $\exists \{x_n\} \subseteq [a,b]$,使 $f(x_n) \to \infty (n \to \infty)$. 又由于 $\{x_n\} \subseteq [a,b]$ 有界数列. 则必存在收敛子列 $\{x_{n_k}\}$. 设 $x_{n_k} \to x_0 (k \to \infty)$,则 $x_0 \in [a,b]$ 且 $\lim_{k \to +\infty} f(x_{n_k}) = \infty$. 与 $\forall x_0 \in [a,b]$, $\lim_{x \to x_0} f(x)$ 存在矛盾.

4. 设 $f:(a,b)\to \mathbb{R}$ 是 无 界 函 数,证 明: ∃ $\{x_n\}\subseteq (a,b)$,使 得 $\lim_{n\to\infty} f(x_n)=\infty$.

证 因为 $f:(a,b)\to \mathbb{R}$ 是无界函数. 故 $\forall n\in \mathbb{N}_+$, $\exists x_n\in(a,b)$,使 $f(x_n)>n$. 这样便得到一个数列 $\{x_n\}\subseteq(a,b)$,使得 $\lim_{n\to\infty}f(x_n)=\infty$.

5. 设 $f:[a,+\infty)\to \mathbb{R}$,证明: $\lim_{x\to+\infty} f(x)$ 存在⇔ $\forall \varepsilon > 0$, $\exists M > 0$,使得 $\forall x_1$, $x_2 > M$,恒有 $|f(x_1) - f(x_2)| < \varepsilon$.

证 必要性 设 $\lim_{x\to +\infty} f(x) = a$,则 $\forall \varepsilon > 0$,引 M > 0,当 x > M 时,恒有 $|f(x) - a| < \frac{\varepsilon}{2}$. 任取 $x_1, x_2 > M$. 则

$$|f(x_i)-a|<\frac{\varepsilon}{2}, i=1,2,$$

于是 $|f(x_1)-f(x_2)| \leq |f(x_1)-a|+|f(x_2)-a| < \varepsilon$.

充分性 任取两个数列 $\{x_n\},\{y_n\}\subseteq [a,+\infty)$,且

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = +\infty.$$

(i) 证明数列 $\{f(x_n)\},\{f(y_n)\}$ 收敛.

由 $\forall \varepsilon > 0$, $\exists M > 0$,使 $\forall x_1, x_2 > M$,有 $|f(x_1) - f(x_2)| < \varepsilon$. 及 $\lim_{n \to \infty} x_n = +\infty$ 知:对上述的 M > 0, $\exists N \in \mathbb{N}_+$,使 $\forall m, n > N$ 有 $x_m, x_n > M$. 从而 $|f(x_m) - f(x_n)| < \varepsilon$,即 对 数 列 $\{f(x_n)\}$ 来 说: $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}_+$, $\forall m, n > N$ 恒 有 $|f(x_m) - f(x_n)| < \varepsilon$. 由数 列 的 Cauchy 收敛原理知数 列 $\{f(x_n)\}$ 收敛. 不妨设 $\lim_{n \to \infty} f(x_n) = a$.

同理可证 $\{f(y_n)\}$ 收敛.

(ii) 证明{f(y_n)}也收敛于 a.

由 $\lim_{n\to\infty} y_n = \lim_{n\to\infty} x_n = +\infty$ 及已知条件 $\forall \epsilon > 0$, $\exists N \in \mathbb{N}_+$, 当 n > N 时, 使 x_n ,

$$y_n > M$$
,则 $|f(x_n) - a| < \frac{\varepsilon}{2}$,且 $|f(x_n) - f(y_n)| < \frac{\varepsilon}{2}$,进而

$$|f(y_n)-a| \leq |f(x_n)-f(y_n)|+|f(x_n)-a| < \varepsilon$$

即 $\lim f(y_n) = a$. 由(i)、(ii),命题得证.

习 题 1.4

(A)

2. 下列说法是否正确? 为什么?

- (1) 无穷小量是很小很小的数,无穷大量是很大很大的数;
- (2) 无穷小量就是数 0;数 0 是无穷小量;
- (3) 无穷大量一定是无界变量;
- (4) 无界变量一定是无穷大量;
- (5) 无穷大量与有界量的乘积是无穷大量;
- (6) 无限多个无穷小之和仍为无穷小.
- 解 (1) 不正确. 无穷小量和无穷大量都是变量,不是常数.
- (2) 错误. 无穷小量是以 0 为极限的变量,数 0 是无穷小量. 除此之外,其他任意常数都不是无穷小量.
 - (3) 正确.
 - (4) 错误. $y=x \sin \frac{1}{x}$ 是无界变量,但 $\lim_{x\to\infty} x \sin \frac{1}{x}$ 不存在,非无穷大.
 - (5) 错误. x 无穷大量. $\sin \frac{1}{x}$ 有界变量. 但 $x \sin \frac{1}{x}$ 不是无穷大.
 - (6) 错误. $\forall m \in \mathbb{N}_+$, $\frac{1}{\sqrt{n^2+m}} \rightarrow 0 (n \rightarrow +\infty)$ 都是无穷小量.

$$\lim_{n \to +\infty} \left(\frac{1}{\sqrt{n^2 + 1}} + \frac{1}{\sqrt{n^2 + 2}} + \dots + \frac{1}{\sqrt{n^2 + n}} \right) = 1.$$

3. 下列运算是否正确? 如有错误,请指出错在何处.

(1)
$$\lim_{x\to 0} \frac{\tan x - \sin x}{x^3} = \lim_{x\to 0} \frac{x - x}{x^3} = 0;$$

(2)
$$\lim_{x\to 0} \frac{\sin\left(x^2 \sin\frac{1}{x}\right)}{x} = \lim_{x\to 0} \frac{x^2 \sin\frac{1}{x}}{x} = \lim_{x\to 0} x \sin\frac{1}{x} = 0.$$

解 (1) 错. 利用无穷小的等价代换求极限时,只能对分子和分母中的无穷 小因子进行.

(2) 错误. 这里应用了等价无穷小代换 $\sin\left(x^2\sin\frac{1}{x}\right)\sim x^2\sin\frac{1}{x}(x\to 0)$,这是错误的. 因为这里疏忽了无穷小 $\alpha(x)$ 与 $\beta(x)$ 作阶的比较时的前提条件: 分母 $\beta(x)$ 不能等于零. 这里 $\beta(x)=x^2\sin\frac{1}{x}$,当 x 取 $x_n=\frac{1}{n\pi}(n\in\mathbb{N}_+)$ 时, $\beta(x_n)=0$,且 $x_n\to+\infty$.

正确的解法为当 $x \neq 0$ 时, $\forall \varepsilon > 0$, 取 $\delta = \varepsilon$, 则 $\forall |x| < \delta$ 有

$$\left|\frac{\sin\left(x^2\sin\frac{1}{x}\right)}{x}\right| \leqslant \frac{\left|x^2\sin\frac{1}{x}\right|}{|x|} \leqslant |x| < \varepsilon,$$

$$\lim_{x\to 0} \frac{\sin\left(x^2 \sin\frac{1}{x}\right)}{x} = 0.$$

4. 当 x→0 时,下列函数哪些是 x 的高阶无穷小? 哪些是 x 的同阶或等价 无穷小?哪些是 x 的低阶无穷小?并指出无穷小的阶数.

(1)
$$x^4 + \sin 2x, x \in \mathbb{R}$$
;

(2)
$$\sqrt{x(1-x)}, x \in (0,1);$$

$$(3) \ \frac{2}{\pi} \cos \frac{\pi}{2} (1-x), x \in \mathbf{R}$$

(3)
$$\frac{2}{\pi}\cos\frac{\pi}{2}(1-x), x \in \mathbb{R};$$
 (4) $2x\cos x \sqrt[3]{\tan^2 x}, x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right);$

(5)
$$\csc x - \cot x, x \in (0, \pi)$$
.

解 (1)
$$\lim_{x\to 0} \frac{x^4 + \sin 2x}{2x} = 1$$
,所以 $x^4 + \sin 2x$ 与 x 同阶.

(2)
$$\lim_{x\to 0} \frac{x}{\sqrt{x(1-x)}} = \lim_{x\to 0} \sqrt{\frac{x}{1-x}} = 0, \sqrt{x(1-x)} \not = x$$
 的低阶无穷小.

因为
$$\lim_{x\to 0} \frac{\sqrt{x}}{\sqrt{x(1-x)}} = 1$$
,所以 $\sqrt{x(1-x)}$ 是 $\frac{1}{2}$ 阶无穷小.

(3)
$$\lim_{x \to 0} \frac{\frac{2}{\pi} \cos \frac{\pi}{2} (1-x)}{x} = \lim_{x \to 0} \frac{\sin \frac{\pi}{2} x}{\frac{\pi}{2} x} = 1, \text{ if } \frac{2}{\pi} \cos \frac{\pi}{2} (1-x) \sim x.$$

(4)
$$\lim_{x\to 0} \frac{2x \cos x \sqrt[3]{\tan^2 x}}{x^{\frac{5}{3}}} = \lim_{x\to 0} 2\cos x \left(\frac{\tan x}{x}\right)^{\frac{2}{3}} = 2$$
,

所以 $2x \cos x \sqrt[3]{\tan^2 x} = x$ 的高阶无穷小,阶为 $\frac{5}{3}$.

(5) 因为
$$\lim_{x\to 0} \frac{\csc x - \cot x}{x} = \lim_{x\to 0} \frac{1 - \cos x}{x^2} \cdot \frac{x}{\sin x} = \frac{1}{2}$$
,

所以 $\csc x - \cot x = \sin x$ 同阶.

6. 证明下列关系式:

(1)
$$\arcsin x = x + o(x), x \rightarrow 0;$$

(4)
$$\sqrt{1+\tan x} - \sqrt{1+\sin x} \sim \frac{1}{4}x^3, x \to 0;$$

(5)
$$\sqrt{x+\sqrt{1+\sqrt{x}}} \sim \sqrt{x}, x \rightarrow +\infty;$$

(6)
$$1 + \cos(\pi x) \sim \frac{\pi^2}{2} (x - 1)^2, x \rightarrow 1.$$

(1) \diamondsuit $t = \arcsin x$, $-\frac{\pi}{2} \leqslant t \leqslant \frac{\pi}{2}$, $\bowtie \lim_{t \to 0} \frac{\arcsin x}{x} = \lim_{t \to 0} \frac{t}{\sin t} = 1$, 所以 $arcsin x \sim x$,即 $x \rightarrow 0$, arcsin x = x + o(x).

(4)
$$\lim_{x \to 0} \frac{\sqrt{1 + \tan x} - \sqrt{1 + \sin x}}{\frac{1}{4}x^3} = 4\lim_{x \to 0} \frac{\tan x - \sin x}{x^3 \left[\sqrt{1 + \tan x} + \sqrt{1 + \sin x}\right]}$$

$$=4\lim_{x\to 0}\frac{\sin x}{x}\cdot\frac{1-\cos x}{x^2}\cdot\frac{1}{\cos x}\cdot\frac{1}{\sqrt{1+\tan x}+\sqrt{1+\sin x}}=1.$$

(5) 因为
$$\lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x}}}}{\sqrt{x}} = \lim_{x \to +\infty} \sqrt{1 + \sqrt{\frac{1}{x} + \sqrt{\frac{1}{x^3}}}} = 1$$
,

所以 $\sqrt{x+\sqrt{x+\sqrt{x}}}\sim\sqrt{x},x\rightarrow+\infty$.

(6) 因为
$$\lim_{x \to 1} \frac{1 + \cos \pi x}{\frac{\pi^2}{2}(x-1)^2} = \lim_{x \to 1} \frac{2 \cos^2 \frac{\pi}{2} x}{(x-1)^2} = \lim_{x \to 1} \frac{4}{\pi^2} \cdot \frac{\sin^2 \frac{\pi}{2}(1-x)}{(1-x)^2} = 1$$

所以 $1+\cos \pi x \sim \frac{\pi^2}{2}(x-1)^2, x \to 1$.

7. 利用无穷小的等价代换求下列极限:

(1)
$$\lim_{x\to 0} \frac{1-\cos x}{\sin^2 x}$$
;

(2)
$$\lim_{x\to 0} \frac{5x^2-2(1-\cos^2 x)}{3x^3+4\tan^2 x}$$
;

(3)
$$\lim_{x\to 0} \frac{\sqrt{1+\sin^2 x}-1}{x\tan x}$$
;

(4)
$$\lim_{x\to 0} \frac{\tan(\tan x)}{\sin 2x};$$

(5)
$$\lim_{x\to 0} \frac{(\sqrt[3]{1+\tan x}-1)(\sqrt{1+x^2}-1)}{\tan x-\sin x}$$
; (6) $\lim_{x\to 0^-} \frac{(1-\sqrt{\cos x})\tan x}{(1-\cos x)^{\frac{3}{2}}}$.

(6)
$$\lim_{x\to 0^{-}} \frac{(1-\sqrt{\cos x})\tan x}{(1-\cos x)^{\frac{3}{2}}}$$
.

$$\mathbf{f} \qquad (1) \lim_{x \to 0} \frac{1 - \cos x}{\sin^2 x} = \lim_{x \to 0} \frac{\frac{1}{2}x^2}{\sin^2 x} = \frac{1}{2}.$$

(2)
$$\lim_{x \to 0} \frac{5x^2 - 2(1 - \cos^2 x)}{3x^3 + 4\tan^2 x} = \lim_{x \to 0} \frac{5x^2 - 2\sin^2 x}{3x^3 + 4\tan^2 x} = \lim_{x \to 0} \frac{5 - 2\frac{\sin^2 x}{x^2}}{3x + 4\frac{\tan^2 x}{x^2}} = \frac{3}{4}.$$

(3)
$$\lim_{x \to 0} \frac{\sqrt{1 + \sin^2 x} - 1}{x \tan x} = \lim_{x \to 0} \frac{\frac{1}{2} \sin^2 x}{x^2} = \frac{1}{2}.$$

(4)
$$\lim_{x\to 0} \frac{\tan(\tan x)}{\sin 2x} = \lim_{x\to 0} \frac{\tan x}{2x} = \frac{1}{2}$$
.

(5)
$$\lim_{x \to 0} \frac{(\sqrt[3]{1 + \tan x} - 1)(\sqrt{1 + x^2} - 1)}{\tan x - \sin x} = \lim_{x \to 0} \frac{\left(\frac{1}{3} \tan x\right) \cdot \left(\frac{1}{2} x^2\right)}{\frac{1}{2} x^3} = \frac{1}{3}.$$

(由第 6 题(4)知: $x \rightarrow 0$, $\tan x - \sin x \sim \frac{1}{2}x^3$)

(6)
$$\lim_{x\to 0^{-}} \frac{\left(1-\sqrt{\cos x}\right)\tan x}{\left(1-\cos x\right)^{\frac{3}{2}}} = \lim_{x\to 0^{-}} \frac{\left(1-\sqrt{1+(\cos x-1)}\right)\tan x}{\left(1-\cos x\right)^{\frac{3}{2}}}$$

$$= \lim_{x \to 0^{-}} \frac{-\frac{1}{2}(\cos x - 1)x}{\left(\frac{1}{2}x^{2}\right)^{\frac{3}{2}}}$$

$$= \lim_{x \to 0^{-}} \frac{-\frac{1}{4}x^{2}x}{\left(\frac{1}{2}\right)^{\frac{3}{2}}x^{3}} = -\frac{1}{\sqrt{2}}.$$
(B)

- 1. 设 P 是曲线 y = f(x) 上的动点. 若点 P 沿该曲线无限远离坐标原点时,它到某定直线 L 的距离趋于 0,则称 L 为曲线 y = f(x) 的渐近线. 若直线 L 的斜率 $k \succeq 0$,称 L 为斜渐近线.
 - (1) 证明:直线 y=kx+b 为曲线 y=f(x)斜(或水平)渐近线充分必要条件为 f(x)

$$k = \lim_{x \to \infty} \frac{f(x)}{x}, \qquad b = \lim_{x \to \infty} (f(x) - kx).$$

(2) 求曲线 $f(x) = \frac{x^2+1}{x+1} (x \in \mathbb{R} \setminus \{-1\})$ 的斜渐近线方程.

证 (1) f(x)的点 P(x,f(x))到直线 y=kx+b 的距离

$$d = \frac{|f(x) - kx - b|}{\sqrt{1 + k^2}}$$
.

且 y=kx+b 为 y=f(x)的新近线 $\Leftrightarrow \lim_{x\to\infty} d=0 \Leftrightarrow \lim_{x\to\infty} (f(x)-kx-b)=0$.

充分性 由于 $\lim_{x\to\infty} (f(x)-kx)=b$,所以 $\lim_{x\to\infty} (f(x)-kx-b)=0$.

必要性 因为 $\lim_{x \to a} (f(x) - kx - b) = 0$, 所以 $\lim_{x \to a} (f(x) - kx) = b$.

因为
$$\lim_{x\to\infty} \frac{1}{x} = 0$$
,所以 $\lim_{x\to\infty} \frac{1}{x} [f(x) - kx - b] = 0$. 所以 $\lim_{x\to\infty} \left(\frac{f(x)}{x} - k - \frac{b}{x} \right) = 0$

0. 从而 $\lim_{x\to\infty} \frac{f(x)}{x} = k$.

(2)
$$k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^2 + 1}{x(x+1)} = \lim_{x \to \infty} \frac{1 + \frac{1}{x^2}}{1 + \frac{1}{x}} = 1, b = \lim_{x \to \infty} [f(x) - kx] =$$

$$\lim_{x \to \infty} \left[\frac{x^2 + 1}{x + 1} - x \right] = \lim_{x \to \infty} \frac{1 - x}{1 + x} = -1,$$
所以 $y = f(x)$ 的斜渐近线为 $y = x - 1$.

2. 确定 a,b,c 的值,使下列极限等式成立:

(1)
$$\lim_{x\to +\infty} (\sqrt{x^2-x+1}-ax+b)=0$$
;

(2)
$$\lim_{x \to 1} \frac{a(x-1)^2 + b(x-1) + c - \sqrt{x^2 + 3}}{(x-1)^2} = 0.$$

解 (1) 如果 $a \le 0$. 则无论 b 取何值 $\lim_{x \to +\infty} \left[\sqrt{x^2 - x + 1} - ax + b \right] = +\infty$, 所以 a > 0,由 $\lim_{x \to +\infty} \left[\sqrt{x^2 - x + 1} - ax + b \right] = 0$ 可知 $b = \lim_{x \to +\infty} \left[ax - \sqrt{x^2 - x + 1} \right] = \lim_{x \to +\infty} \frac{(a^2 - 1)x^2 + x - 1}{ax + \sqrt{x^2 - x + 1}}$ 存在. 所以 a = 1, $b = \lim_{x \to +\infty} \frac{x - 1}{x + \sqrt{x^2 - x + 1}} = \frac{1}{2}$.

(2) 由
$$\lim_{x \to 1} \frac{a(x-1)^2 + b(x-1) + c - \sqrt{x^2 + 3}}{(x-1)^2} = 0$$
 知 $f(x) = a(x-1)^2 + b(x-1) + c - \sqrt{x^2 + 3}$ 是 $f(x) = a(x-1)^2 + b(x-1) + c - \sqrt{x^2 + 3}$ 是 $f(x) = a(x-1)^2 + b(x-1) + c - \sqrt{x^2 + 3}$ 是 $f(x) = a(x-1)^2 + b(x-1) + c - \sqrt{x^2 + 3}$ 的高阶无穷小,所以 $\lim_{x \to 1} f(x) = a(x-1)^2 + b(x-1) + c - \sqrt{x^2 + 3}$ 是 $\lim_{x \to 1} \frac{f(x)}{x-1} = 0$ 可得 $\lim_{x \to 1} \frac{\sqrt{x^2 + 3} - 2 - \frac{1}{2}(x-1)}{(x-1)^2} = \lim_{x \to 1} \frac{2\sqrt{x^2 + 3} - (x+3)}{2(x-1)^2} = \lim_{x \to 1} \frac{3}{2(2\sqrt{x^2 + 3} + x + 3)} = \frac{3}{16}$.

习 题 1.5

(A)

2. 两个在 x_0 处不连续函数之和在 x_0 是否一定不连续? 若其中一个在 x_0 处连续,一个在 x_0 处不连续,则它们的和在 x_0 处是否一定不连续?

证 两个在 x₀ 处不连续函数之和在 x₀ 不一定连续,不一定不连续.

如: $f(x) = \frac{1}{x}$, $g(x) = -\frac{1}{x} + \sin x$, $h(x) = \sin \frac{1}{x}$ 在 $x_0 = 0$ 处均不连续. 但 f(x) + g(x)在 $x_0 = 0$ 处连续, f(x) + h(x)在 $x_0 = 0$ 处不连续.

如果一个函数在 x。处连续,另一个不连续,两个之和一定不连续.

3. 证明:若f连续,则|f|也连续,逆命题成立吗?

证 因为 $\forall \epsilon > 0$,由 f 在 x_0 处连续可知: $\exists \delta > 0$,使得 $\forall x$,只要 $|x - x_0|$ $< \delta$,有 $|f(x) - f(x_0)| < \epsilon$,从而

$$||f(x)|-|f(x_0)|| \leq |f(x)-f(x_0)| < \varepsilon,$$

故 $\lim_{x \to x_0} |f(x)| = |f(x_0)|$. 命题得证. 逆命题不成立,如 $f(x) = \begin{cases} 1, & x \ge 0, \\ -1, & x < 0, \end{cases}$ |f(x)| 在 x = 0 连续,但 f(x) 在 x = 0 不连续.

4. 设 $f,g \in C[a,b]$,记

$$\varphi(x) = \max_{x \in [a,b]} \{ f(x), g(x) \}, \psi(x) = \min_{x \in [a,b]} \{ f(x), g(x) \}$$

证明: $\varphi, \psi \in C[a,b]$.

$$\begin{split} \text{ if } \quad \varphi(x) &= \max_{x \in [a,b]} \{f(x),g(x)\} = \frac{f(x) + g(x) + |f(x) - g(x)|}{2}, \\ \psi(x) &= \min_{x \in [a,b]} \{f(x),g(x)\} = \frac{f(x) + g(x) - |f(x) - g(x)|}{2}. \end{split}$$

因为 f(x), $g(x) \in C[a,b]$, 由连续函数的有理运算性质. 及第 3 题可知 $\varphi(x)$, $\psi(x) \in C[a,b]$.

5. 设函数 f 在 $(-\infty, +\infty)$ 上满足 Lipschitz 条件:

 $\exists L>0$,使得 $\forall x,y\in(-\infty,+\infty)$,恒有|f(x)-f(y)|≪L|x-y|,

证明:f在($-\infty$, $+\infty$)上一致连续.

证 由函数 f 在 $(-\infty, +\infty)$ 上满足 Lipschitz 条件可知: $\forall \epsilon > 0$, 取 $\delta = \frac{\epsilon}{L} > 0$, 当 $|x_1 - x_2| < \delta$ 时, 有 $|f(x_1) - f(x_2)| \le L|x_1 - x_2| < \epsilon$, 所以 f 在 $(-\infty, +\infty)$ 上一致连续.

7. 设函数 $f: I \to \mathbb{R}$ 在 $x_0 \in I$ 处连续,且 $f(x_0) > 0$. 证明:存在 x_0 的一个邻域,在该邻域内, $f(x) \geqslant q > 0$.

证 取 $\epsilon_0 = \frac{1}{2} f(x_0) > 0$,由 f 的连续性,日 $\delta_0 > 0$, $\forall x \in U(x_0, \delta)$,恒有 $|f(x) - f(x_0)| < \epsilon_0$. 即 $f(x_0) - \epsilon_0 < f(x) < \epsilon_0 + f(x_0)$,取 $q = f(x_0) - \epsilon_0 = \frac{1}{2} f(x_0) > 0$ 即可.

8. 讨论下列函数在指定点处的连续性. 若是间断点,说明它的类型:

(3)
$$f(x) = 2^{\frac{1}{x-3}}, x=3;$$
 (4) $f(x) = \begin{cases} x\sin\frac{1}{x}, & x < 0, \\ 1, & x \ge 0, \end{cases}$

解 (3) $f(3+0) = \lim_{x \to 3^+} 2^{\frac{1}{x-3}} = +\infty$, f(3-0) = 0, 所以 x=3 为第二类间断点.

- (4) $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} x \sin \frac{1}{x} = 0$, $\lim_{x\to 0^+} f(x) = 1$, f(x) = 0 为跳跃间断点.
- 9. 讨论下列函数的连续性. 若有间断点,说明间断点的类型:

(2)
$$f(x) = e^{x + \frac{1}{x}};$$
 (4) $f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0, \\ 2, & x = 0; \end{cases}$

(5)
$$f(x) = \begin{cases} \sin \frac{1}{x^2 - 1}, & x < 0, \\ \frac{x^2 - 1}{\cos \frac{\pi}{2}x}, & x \ge 0. \end{cases}$$

解 (2) $f(x) = e^{x + \frac{1}{x}}$ 在 $x \neq 0$ 的所有点处连续.

$$f(0+0) = \lim_{x\to 0^+} e^{x+\frac{1}{x}} = +\infty$$
, $f(0-0) = \lim_{x\to 0^-} e^{x+\frac{1}{x}} = 0$. $x=0$ 为第二类间断点.

- (4) $\lim_{x\to 0} f(x) = \lim_{x\to 0} e^{-\frac{1}{x^2}} = 0 \Rightarrow f(0) = 2, x = 0$ 为可去间断点. $\forall x \Rightarrow 0, f(x)$ 连续.
- (5) $\lim_{x \to -1} \sin \frac{1}{x^2 1}$ 不存在,x = -1 为第二类间断点.

$$f(0+0) = \lim_{x \to 0^+} \frac{x^2 - 1}{\cos \frac{\pi}{2} x} = -1, f(0-0) = \lim_{x \to 0^-} \sin \frac{1}{x^2 - 1} = \sin(-1), \text{ if } x = 0$$

为 f(x)的跳跃间断点。

因为
$$\lim_{x \to 1} \frac{x^2 - 1}{\cos \frac{\pi}{2} x} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{\sin \frac{\pi}{2} (1 - x)} = -\frac{4}{\pi}, x = 1$$
 为 $f(x)$ 可去间断

点. 由于
$$\lim_{x\to 2k+1} \frac{x^2-1}{\cos\frac{\pi}{2}x} (k=1,2,\cdots)$$
不存在. 故 $x=(2k+1)(k\in\mathbb{N}_+)$ 为 $f(x)$

的第二类间断点.

$$f(x)$$
在 $(-\infty,-1)$ $\bigcup (-1,0)$ $\bigcup (0,1)$ $\bigcup ((2k-1,2k+1))$ 上连续

10. 求下列函数的极限:

(1)
$$\lim_{x \to 1} \frac{\arctan x}{\sqrt{x + \ln x}};$$
 (2)
$$\lim_{x \to 0} \frac{\ln(1 + 2x)}{\sin 3x};$$

(3)
$$\lim_{x\to 0} \left(\cot x - \frac{e^{2x}}{\sin x}\right);$$
 (4) $\lim_{x\to 0} (\cos x)^{\frac{1}{x^2}};$

$$(5) \lim_{x \to \frac{\pi}{2}} (1 + \cos x)^{\tan x}$$

$$\mathbf{f} \qquad (1) \lim_{x \to 1} \frac{\arctan x}{\sqrt{x + \ln x}} = \frac{\pi}{4}.$$

(2)
$$\lim_{x\to 0} \frac{\ln(1+2x)}{\sin 3x} = \lim_{x\to 0} \left(\frac{\ln(1+2x)}{2x} \cdot \frac{3x}{\sin 3x} \cdot \frac{2}{3} \right) = \frac{2}{3}$$
.

(3)
$$\lim_{x \to 0} \left(\cot x - \frac{e^{2x}}{\sin x} \right) = \lim_{x \to 0} \frac{\cos x - 1 + 1 - e^{2x}}{\sin x}$$

= $\lim_{x \to 0} \left(\frac{\cos x - 1}{x} + \frac{1 - e^{2x}}{2x} \cdot 2 \right) \frac{x}{\sin x} = -2.$

(4) 因为
$$\lim_{x\to 0} [1+(\cos x-1)]^{\frac{1}{\cos x-1}} = e$$
, $\lim_{x\to 0} \frac{\cos x-1}{x^2} = -\frac{1}{2}$, 所以 $\lim_{x\to 0} (\cos x)^{\frac{1}{x^2}} = \lim_{x\to 0} [(1+\cos x-1)^{\frac{1}{\cos x-1}}]^{\frac{\cos x-1}{x^2}} = e^{-\frac{1}{2}}$.

(5)
$$\lim_{x \to \frac{\pi}{2}} (1 + \cos x)^{\tan x} = \lim_{x \to \frac{\pi}{2}} [(1 + \cos x)^{\frac{1}{\cos x}}]^{\sin x} = e.$$

11. 证明:

(1)
$$\lim_{\Delta x \to 0} \frac{e^{x_0 + \Delta x} - e^{x_0}}{\Delta x} = e^{x_0};$$
 (2) $\lim_{\Delta x \to 0} \frac{(x_0 + \Delta x)^{\alpha} - x_0^{\alpha}}{\Delta x} = \alpha x_0^{\alpha - 1} (\alpha \in \mathbf{R}).$

M (1)
$$\lim_{\Delta x \to 0} \frac{e^{x_0 + \Delta x} - e^{x_0}}{\Delta x} = \lim_{\Delta x \to 0} e^{x_0} \frac{e^{\Delta x} - 1}{\Delta x} = e^{x_0}$$
.

(2)
$$\lim_{\Delta x \to 0} \frac{(x_0 + \Delta x)^{\alpha} - x_0^{\alpha}}{\Delta x} = \lim_{\Delta x \to 0} x_0^{\alpha} \frac{\left(1 + \frac{\Delta x}{x_0}\right)^{\alpha} - 1}{\Delta x} = x_0^{\alpha} \lim_{\Delta x \to 0} \frac{\alpha \cdot \frac{\Delta x}{x_0}}{\Delta x} = \alpha x_0^{\alpha - 1}.$$

12. 试确定常数 a,b,使下列函数在 x=0 处连续:

(2)
$$f(x) = \begin{cases} \arctan \frac{1}{x}, & x < 0, \\ a + \sqrt{x}, & x \ge 0; \end{cases}$$
 (3) $f(x) = \begin{cases} \frac{\sin ax}{x}, & x > 0, \\ 2, & x = 0, \\ \frac{1}{bx} \ln(1 - 3x), & x < 0. \end{cases}$

M (2)
$$f(0+0) = a$$
, $f(0-0) = \lim_{x\to 0^{-}} \arctan \frac{1}{x} = -\frac{\pi}{2}$.

因为 f(0) = a = f(0+0) = f(0-0)时,即 $a = -\frac{\pi}{2}$. f(x)在 x = 0 处连续.

(3)
$$f(0+0) = \lim_{x \to 0^+} \frac{\sin ax}{x} = a$$
, $f(0-0) = \lim_{x \to 0^-} \frac{1}{bx} \ln(1-3x) = -\frac{3}{b}$, $f(0) = 2$, $\text{id} \ a = 2$, $b = -\frac{3}{2}$.

14. 用介值定理证明: 当 n 为奇数时, 方程

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = 0$$

至少有一个根,其中 $a_i \in \mathbb{R}$ 为常数 $(i=0,1,\dots,n), a_n \succeq 0$.

证 令 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$,不妨设 $a_n > 0$,由于 n 为奇数, $\lim_{x \to +\infty} f(x) = +\infty$, $\lim_{x \to -\infty} f(x) = -\infty$,于是存在 $x_1 > 0 > x_2$,使 $f(x_1) f(x_2) < 0$,由零点定理在[x_2 , x_1]内至少存在一点 ξ ,使 $f(\xi) = 0$.

15. 设 $f \in C[a,b]$, $a < x_1 < x_2 < \dots < x_n < b$. 证明至少存在一点 $\xi \in (a,b)$, 使

$$f(\xi) = \frac{1}{\lambda} \sum_{i=1}^{n} \lambda_i f(x_i),$$

其中
$$\lambda = \sum_{i=1}^{n} \lambda_i$$
,且 $\lambda_i > 0$ ($i=1,2,\dots,n$).

证 因为 $f \in C[a,b]$ 且 $a < x_1 < x_2 < \dots < x_n < b$,所以 $f(x) \in C[x_1,x_n]$,由定理 5.5 f(x)在 $[x_1,x_n]$ 上必取得最大值 M 与最小值 m. 且 $m \le f(x_i) \le M$, $i = 1,2,\dots,n$. 于是 $\left(\sum_{i=1}^n \lambda_i\right) m \le \sum_{i=1}^n \lambda_i f(x_i) \le \left(\sum_{i=1}^n \lambda_i\right) M$,即 $m \le \frac{1}{\lambda} \sum_{i=1}^n \lambda_i f(x_i) \le M$. 由介值定理,至少存在一点 $\xi \in [x_1,x_2] \subset (a,b)$ 使 $f(\xi) = \frac{1}{\lambda} \sum_{i=1}^n \lambda_i f(x_i)$.

(B)

1. 设函数 $f: \mathbf{R} \to \mathbf{R}$ 满足可加性,即对任何 $x_1, x_2 \in \mathbf{R}, f(x_1 + x_2) = f(x_1) + f(x_2)$,并且 f 在 x = 0 处连续,证明 f 在 \mathbf{R} 上连续.

证 由 f 的可加性知 f(0) = f(0+0) = f(0) + f(0),即 f(0) = 0.又 f 在 x = 0连续.知 $\forall x_0 \in \mathbb{R}$,恒有 $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f[(x-x_0) + x_0] = \lim_{x \to x_0} [f(x-x_0) + f(x_0)] = f(x_0)$.故 f 在 x_0 处连续,由 x_0 的任意性 f(x) 在 \mathbb{R} 上连续.

2. 设 $f \in C[a, +\infty)$,并且 $\lim_{x \to a} f(x)$ 存在,证明 f 在 $[a, +\infty)$ 上有界.

证 由 $\lim_{x \to +\infty} f(x)$ 存在(不妨设为 A)知:对 $\varepsilon_0 = 1 > 0$, $\exists M > 0$,使 $\forall x \in (M, +\infty)$,恒有 |f(x) - A| < 1,即 $\forall x \in (M, +\infty)$,A - 1 < f(x) < 1 + A,于是 f(x) 在($M, +\infty$)有界. 又由 $f(x) \in C[a, +\infty)$ 知,对上述的 $M, f(x) \in C[a, M]$,即 f(x)在[a, M]上有界. 故 f(x)在[a, M] $\bigcup (M, +\infty) = [a, +\infty)$ 上有界.

3. 设 $f \in C(a,b)$,并且 f(a+0)与 f(b-0)存在(包括极限为无穷大)且异号,证明:在(a,b)内至少存在一点 ξ ,使 $f(\xi)=0$.

证 不妨设 f(a+0)>0,则 f(b-0)<0,由极限的局部保号性可知: $\exists x_1$, x_2 , $a< x_1 < x_2 < b$ 使 $f(x_1)>0$, $f(x_2)<0$. 因为 $f\in C(a,b)$,所以 $f\in C[x_1,x_2]$. 由介值定理知: 至少存在一点 $\xi\in (x_1,x_2)\subset (a,b)$,使 $f(\xi)=0$.

4. 设 $f \in C(-\infty, +\infty)$, 并且 f 是奇函数, 证明方程 f(x) = 0 至少有一个根. 若 f 是严格单调的,则 x = 0 是它的唯一根.

证 因为 f(x)是奇函数,所以 f(-x) = -f(x),则 f(0) = 0.

如果 f 是严格单增的连续函数,那么 $\forall x>0$, f(x)>f(0)=0,而 $\forall x<0$, f(x)< f(0)=0,即 $\forall x \neq 0$. $f(x)\neq 0$. 故 x=0 是 f(x)=0 唯一根. 同理可证 f(x) 严格单减函数. x=0 仍是 f(x)=0 的唯一根.

5. 证明:若 $a_n > |a_{n-1}| + |a_{n-2}| + \dots + |a_1| + |a_0|$,则方程 $a_n \cos nx + a_{n-1} \cos (n-1)x + \dots + a_1 \cos x + a_0 = 0$ 在(0,2 π)内至少有 2n 个根.

证 令 $f(x) = a_n \cos nx + a_{n-1} \cos(n-1)x + \dots + a_1 \cos x + a_0$. 将 $(0, 2\pi)$ 平均分成 2n 个小区间,其中第 k 个子区间为 $\left\lceil \frac{(k-1)\pi}{n}, \frac{k\pi}{n} \right\rceil$. 可以证明:

 $f\left(\frac{k-1}{n}\pi\right) \cdot f\left(\frac{k\pi}{n}\right) < 0$. 从而至少存在一点 $\xi_k \in \left(\frac{(k-1)}{n}\pi, \frac{k\pi}{n}\right)$ 使 $f(\xi_k) = 0$. 即 $\Phi(0,2\pi)$ 上 f(x) = 0 至少有 2n 个根.

下面证明:
$$f\left(\frac{k-1}{n}\pi\right) \cdot f\left(\frac{k}{n}\pi\right) < 0.$$

如 k 为偶数,则
$$f\left(\frac{k}{n}\pi\right) = a_n + a_{n-1}\cos\frac{(n-1)k\pi}{n} + \dots + a_1\cos\frac{k\pi}{n} + a_0 \geqslant a_n - a_{n-1} - \dots - a_1 + a_0 \geqslant a_n - (|a_{n-1}| + \dots + |a_1| + |a_0|) > 0$$
,而 $f\left(\frac{k-1}{n}\pi\right) = -a_n + a_{n-1}\cos\frac{(n-1)(k-1)}{n}\pi + \dots + a_1\cos\frac{(k-1)\pi}{n} + a_0 \leqslant -a_n + |a_{n-1}| + \dots + |a_1| + |a_0| < 0$. 故 k 为偶数时, $f\left(\frac{k-1}{n}\pi\right) \cdot f\left(\frac{k\pi}{n}\right) < 0$.

同理可证 k 为奇数时,结论成立.

综合练习题

1. 设有一对新出生的兔子,两个月之后成年. 从第三个月开始,每个月产一对小兔,且新生的每对小兔也在出生两个月之后成年,第三个月开始每月生一对小兔. 假定出生的兔均无死亡,(1)问一年后共有几对兔子? (2)问n个月之后有多少对兔子? (3)若n个月之后有 F_n 对兔子,试求 $\lim_{n\to\infty} = \frac{F_n}{F_{n+1}}$ (题中所讲的一对兔子均是雌雄异性的).

说明:该问题是意大利数学家 Fibonacci 于 13 世纪初(1202 年)研究兔子繁殖过程中数量变化规律时提出来的,其中的数列 $\{F_n\}$ 被后人称为 Fibonacci 数列. 有趣的是,极限 $\lim_{n\to\infty}\frac{F_n}{F_{n+1}}=\frac{\sqrt{5}-1}{2}$ \approx 0. 618 正是"黄金分割"数,在优选法及许多领域得到很多新的应用.

解 第 n 月有小兔 F_n 对,且这 F_n 对小兔到第 n+1 月均成熟,所以第 n+2 月新生小兔 F_n 对,故 $F_{n+2} = F_{n+1} + F_n$.

- (1) $F_1 = 1$, $F_2 = 1$, $F_3 = 2$, $F_4 = 3$, $F_5 = 5$, $F_6 = 8$, $F_7 = 13$, $F_8 = 21$, $F_9 = 34$, $F_{10} = 55$, $F_{11} = 89$, $F_{12} = 144$, $F_{13} = 233$.
- (2) 差分方程 $F_{n+2} = F_{n+1} + F_n$ 的特征方程为 $x^2 = x+1$,解之得特征根 $x_1 = \frac{1+\sqrt{5}}{2}$, $x_2 = \frac{1-\sqrt{5}}{2}$,则 $F_n = c_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + c_2 \left(\frac{1-\sqrt{5}}{2}\right)^n$,由 $F_1 = 1$, $F_2 = 1$

1 得
$$c_1 = \frac{1}{\sqrt{5}}$$
, $c_2 = -\frac{1}{\sqrt{5}}$, 所以
$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right].$$
(3) $\lim_{n \to \infty} \frac{F_n}{F_{n+1}} = \lim_{n \to \infty} \frac{\left(1+\sqrt{5} \right)^n - \left(1-\sqrt{5} \right)^n}{2^n} \cdot \frac{2^{n+1}}{\left(1+\sqrt{5} \right)^{n+1} - \left(1-\sqrt{5} \right)^{n+1}}$

$$= 2\lim_{n \to \infty} \frac{1}{\sqrt{5}+1} \left[\frac{1 - \left(\frac{1-\sqrt{5}}{1+\sqrt{5}} \right)^n}{1 - \left(\frac{1-\sqrt{5}}{1+\sqrt{5}} \right)^{n+1}} \right] = \frac{2}{\sqrt{5}+1} = \frac{\sqrt{5}-1}{2}.$$

2. 所谓蛛网模型是在研究市场经济的一种循环现象中提出来的,现以猪肉的产量与价格之间的关系为例来说明. 若去年猪肉的产量供过于求,它的价格就会降低;价格降低会使今年养猪者减少,使猪肉的产量供不应求,于是肉价上扬;价格上扬又使明年猪肉产量增加,造成新的供过于求,如此循环下去. 设 x_n 为第 n 年的猪肉产量, y_n 为其价格,由于当年的产量确定当年价格,所以 $y_n = f(x_n)$,称为需求函数. 而第 n 年的价格又决定第 n+1 年的产量,故 $x_{n+1} = g(y_n)$,称为供应函数. 产销关系呈现出如下过程:

$$x_1 \rightarrow y_1 \rightarrow x_2 \rightarrow y_2 \rightarrow x_3 \rightarrow y_3 \rightarrow x_4 \rightarrow \cdots$$

在平面直角坐标系中描出下面的点列:

$$P_1(x_1, y_1),$$
 $P_2(x_2, y_1),$
 $P_3(x_2, y_2),$ $P_4(x_3, y_2),$... $P_{2k-1}(x_k, y_k),$ $P_{2k}(x_{k+1}, y_k), (k=1, 2, ...),$

其中所有的点 P_{2k} 都满足 x=g(y), P_{2x-1} 满足 y=f(x), 如图所示. 由于这种关系很像一个蛛网, 所以称为蛛网模型.

据统计,某城市 1991 年猪肉产量为 30 万吨,肉价为 6 元/kg;1992 年猪肉产量为 25 万吨,肉价为 8 元/kg.已知 1993 年的猪肉产量为 28 万吨. 若维持目前的消费水平和生产模式,并假定猪肉当年的价格与当年的产量之间、来年的产量与当年的价格之间都是线性关系.

(1) 试确定需求函数 $y_n = f(x_n)$ 和供应函数 $x_{n+1} = g(y_n)$;

- (2) 求 $\lim_{n\to\infty} x_{n+1}$ 与 $\lim_{n\to\infty} y_{n+1}$;
- (3) 问若干年后猪肉的产量与价格是否会趋于稳定?若能够稳定,求出稳定的产量和价格.

解 (1) 设 $x_{n+1} = ay_n + c$, $y_n = -bx_n + d$. 将 $x_1 = 30$, $y_1 = 6$, $x_2 = 25$, $y_2 = 8$, $x_3 = 28$ 代入上式,则 $a = \frac{3}{2}$, c = 16, $b = \frac{2}{5}$, d = 18. 即需求函数为 $y_n = -\frac{2}{5}x_n + 18$, 供应函数 $x_{n+1} = \frac{3}{2}y_n + 16$.

(2)
$$\Re y_n = -\frac{2}{5}x_n + 18 \, \text{RA} \, x_{n+1} = \frac{3}{2}y_n + 16 \, \text{R}$$

$$x_{n+1} = -\frac{3}{5}x_n + 43$$

$$= \left(-\frac{3}{5}\right) \left[-\frac{3}{5}x_{n-1} + 43\right] + 43 = \left(-\frac{3}{5}\right)^2 x_{n-1} + 43 \left[1 + \left(-\frac{3}{5}\right)\right]$$

$$= \cdots$$

$$= \left(-\frac{3}{5}\right)^n x_1 + \left[1 + \left(-\frac{3}{5}\right) + \cdots + \left(-\frac{3}{5}\right)^{n-1}\right] \times 43,$$

$$x_{n+1} = \left(-\frac{3}{5}\right)^n x_1 + \frac{1 - \left(-\frac{3}{5}\right)^n}{1 + \frac{3}{5}} \times 43,$$

(3) 经过若干年后猪肉的产量与价格将趋于稳定,稳定后的价格为 $\frac{29}{4}$ = 7.25 元/kg. 产量为 $\frac{215}{8}$ 万吨.

所以 $\lim_{n\to\infty} x_{n+1} = \frac{5}{8} \times 43 = \frac{215}{8}$,进而 $\lim_{n\to\infty} y_n = -\frac{2}{5} \lim_{n\to\infty} x_n + 18 = \frac{29}{4}$.