Multiple Linear Regression

Special Predictors & Assumptions

Prof. Maria Tackett

02.12.20

Click for PDF of slides

Announcements

- HW 02 due TODAY at 11:59p
- HW 03 will be assigned Monday and due Feb 24
- Analysis of variance questions

Today's agenda

- Special predictors
- Checking assumptions

Peer-to-peer lender

Today's data is a sample of about 9900 applications to a peer-to-peer lending club. The full data is in the loans_full_schema dataframe in the openintro package.

```
# loan50 dataset from the openintro package
loans <- read_csv("data/loans.csv") %>%
  mutate(bankruptcy = as.factor(bankruptcy))
glimpse(loans)
```

```
## Observations: 9,974
## Variables: 9
## $ verified_income <chr> "Verified", "Not Verified", "Source Verified", ...
## $ debt_to_income
                     <dbl> 18.01, 5.04, 21.15, 10.16, 57.96, 6.46, 23.66,
                     <fct> 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
## $ bankruptcy
## $ term
                      <dbl> 60, 36, 36, 36, 36, 60, 60, 36, 36, 60, 60,
## $ credit util
                     <dbl> 0.54759517, 0.15003472, 0.66134832, 0.19673228,
## $ interest_rate
                     <dbl> 14.07, 12.61, 17.09, 6.72, 14.07, 6.72, 13.59,
                     <dbl> -1.3019882, -14.2719882, 1.8380118, -9.1519882,
## $ debt_inc_cent
## $ term_cent
                     <dbl> 16.725887, -7.274113, -7.274113, -7.274113, -7.
## $ credit_util_cent <dbl> 0.14448914, -0.25307131, 0.25824229, -0.2063737
```


Variables

Predictors

- verified_income: Whether borrower's income source and amount have been verified (Not Verified, Source Verified, Verified)
- debt_to_income: Debt-to-income ratio, i.e. the percentage of a borrower's total debt divided by their total income
- bankruptcy: Indicator of whether borrower has had a bankruptcy in the past (0: No, 1: Yes)
- **term**: Length of the loan in months
- credit_util: What fraction of total credit a borrower is utilizing,
 i.e. total credit utilizied divided by total credit limit

Response

interest_rate: Interest rate for the loan

Response variable, interest_rate

Predictor variables

Response vs. Predictors

Regression Model

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	2.233	0.198	11.276	0	1.845	2.621
verified_incomeSource Verified	1.098	0.100	11.028	0	0.903	1.293
verified_incomeVerified	2.665	0.118	22.635	0	2.434	2.896
debt_to_income	0.023	0.003	7.689	0	0.017	0.029
bankruptcy1	0.525	0.133	3.951	0	0.265	0.785
term	0.154	0.004	38.800	0	0.146	0.162
credit_util	4.838	0.163	29.676	0	4.519	5.158

Special Predictors

Interpreting the Intercept

term	estimate	std.error	statistic	p.value
(Intercept)	2.233	0.198	11.276	0
verified_incomeSource Verified	1.098	0.100	11.028	0
verified_incomeVerified	2.665	0.118	22.635	0
debt_to_income	0.023	0.003	7.689	0
bankruptcy1	0.525	0.133	3.951	0
term	0.154	0.004	38.800	0
credit_util	4.838	0.163	29.676	0

- Based on our model, what subset of borrowers do we expect to have an interest rate of 2.233%? In other words, what subset of borrowers are included in the intercept?
- Is this interpretation meaningful? Why or why not?

Mean-Centered Variables

- To have a meaningful interpretation of the intercept, use **mean-centered** predictor variables in the model (quantitative predictors only)
- A mean-centered variable is calculated by subtracting the mean from each value of the variable, i.e.

$$x_{ip} - \bar{x}_{.p}$$

 Now the intercept is interpreted as the expected value of the response at the mean value of all quantitative predictors

Loans: mean-centered variables

In-class exercise

term	estimate	std.error	statistic	p.value
(Intercept)	2.233	0.198	11.276	0
verified_incomeSource Verified	1.098	0.100	11.028	0
verified_incomeVerified	2.665	0.118	22.635	0
debt_to_income	0.023	0.003	7.689	0
bankruptcy1	0.525	0.133	3.951	0
term	0.154	0.004	38.800	0
credit_util	4.838	0.163	29.676	0

How model changes with mean-centered variables

Indicator (dummy) variables

- Suppose there is a categorical variable with k levels (categories)
- Make k indicator variables (also known as dummy variables)
- Use k-1 of the indicator variables in the model
 - Can't uniquely estimate all *k* variables at once if the intercept is in the model
- Level that doesn't have a variable in the model is called the **baseline**
- Coefficients interpreted as the change in the mean of the response over the baseline

Indicator variables: k = 2

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	11.293	0.074	151.718	0	11.148	11.439
verified_incomeSource Verified	1.098	0.100	11.028	0	0.903	1.293
verified_incomeVerified	2.665	0.118	22.635	0	2.434	2.896
debt_inc_cent	0.023	0.003	7.689	0	0.017	0.029
bankruptcy1	0.525	0.133	3.951	0	0.265	0.785
term_cent	0.154	0.004	38.800	0	0.146	0.162
credit_util_cent	4.838	0.163	29.676	0	4.519	5.158

Interpreting bankruptcy in the model:

Indicator variables: k > 2

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	11.293	0.074	151.718	0	11.148	11.439
verified_incomeSource Verified	1.098	0.100	11.028	0	0.903	1.293
verified_incomeVerified	2.665	0.118	22.635	0	2.434	2.896
debt_inc_cent	0.023	0.003	7.689	0	0.017	0.029
bankruptcy1	0.525	0.133	3.951	0	0.265	0.785
term_cent	0.154	0.004	38.800	0	0.146	0.162
credit_util_cent	4.838	0.163	29.676	0	4.519	5.158

Interpreting verified_income in the model:

Interaction Terms

- Case: Relationship of the predictor variable with the response depends on the value of another predictor variable
 - This is an interaction effect
- Create a new interaction variable that is one predictor variable times the other in the interaction
- Good Practice: When including an interaction term, also include the associated <u>main effects</u> (each predictor variable on its own) even if their coefficients are not statistically significant

Add interaction term

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	11.298	0.074	151.764	0.000	11.152	11.444
verified_incomeSource Verified	1.094	0.100	10.940	0.000	0.898	1.290
verified_incomeVerified	2.704	0.119	22.730	0.000	2.471	2.937
debt_inc_cent	0.032	0.005	6.527	0.000	0.022	0.041
bankruptcy1	0.525	0.133	3.954	0.000	0.265	0.786
term_cent	0.154	0.004	38.764	0.000	0.146	0.162
credit_util_cent	4.841	0.163	29.689	0.000	4.521	5.160
verified_incomeSource Verified:debt_inc_cent	-0.009	0.007	-1.243	0.214	-0.023	0.005
verified_incomeVerified:debt_inc_cent	-0.019	0.007	-2.699	0.007	-0.033	-0.005

Checking model assumptions

Assumptions

Inference on the regression coefficients and predictions are reliable only when the regression assumptions are reasonably satisfied:

- 1. **Linearity:** Response variable has a linear relationship with the predictor variables in the model
- 2. **Constant Variance:** The regression variance is the same for all set of predictor variables (x_1, \ldots, x_p)
- 3. **Normality:** For a given set of predictors (x_1, \ldots, x_p) , the response, y, follows a Normal distribution around its mean
- 4. Independence: All observations are independent

We will use plots of the residuals to check these assumptions

Checking linearity assumption

- Make the following plots:
 - Plot the residuals vs. the predicted (fitted) values
 - Plot the residuals vs. each predictor variable
- These plots should have no systematic / obvious pattern, i.e there should be no apparent structure
- A systematic pattern may suggestion that interactions or higherorder terms (like quadratic terms) are required.

Checking constant variance assumption

- Make a plot of the residuals vs. the predicted (fitted) values
- The height of the cloud of points should be constant as you go from left to right on the plot

Checking normality assumption

- Make the following plots:
 - Histogram of the residuals
 - Normal QQ-Plot of the residuals
- The histogram should be approximately unimodal and symmetric.
- The points on the Normal QQ-Plot should generally follow a straight diagonal line

Checking independence assumption

- In the indepednece assumption, we assume the residuals are not correlated
- If your data were collected over time, plot the residuals in time order
- There should be no pattern in the plot.
 - A cyclical pattern indicates the residuals are correlated, a violation of the assumption.
- Can generally conclude this assumption is resonably met unless there are clear violations

augment

\$.sigma

\$.cooksd

\$.std.resid

loans_aug <- augment(model_w_int)</pre>

 Use the augment function in the broom package to calculate residuals, predicted values, and other model diagnostics

```
glimpse(loans_aug)
## Observations: 9,974
## Variables: 13
## $ interest rate
                      <dbl> 14.07, 12.61, 17.09, 6.72, 14.07, 6.72, 13.59,
                      <chr> "Verified", "Not Verified", "Source Verified", ...
## $ verified_income
## $ debt inc cent
                      <dbl> -1.3019882, -14.2719882, 1.8380118, -9.1519882,
## $ bankruptcy
                      <fct> 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0,
## $ term cent
                      <dbl> 16.725887, -7.274113, -7.274113, -7.274113, -7.
## $ credit_util_cent <dbl> 0.14448914, -0.25307131, 0.25824229, -0.2063737
## $ .fitted
                      <dbl> 17.261500, 9.028191, 12.563387, 8.890419, 15.05
## $ .se.fit
                      <dbl> 0.11707102, 0.16010940, 0.08736166, 0.09266451,
## $ .resid
                      <dbl> -3.1914996, 3.5818088, 4.5266127, -2.1704190, -
## $ .hat
                      <dbl> 0.0007303468, 0.0013660418, 0.0004066981, 0.000
```

<dbl> 4.332063, 4.332032, 4.331944, 4.332127, 4.33217

<dbl> 4.411042e-05, 1.040504e-04, 4.938101e-05, 1.277

<dbl> -0.73700191, 0.82739787, 1.04514571, -0.5011389.

Check linearity: Residuals vs. Predicted

Residuals vs. Predicted

Check linearity: Residuals vs. Predictors

Check constant variance

Check Normality

Checking independence

Can check residuals versus observation number if you think there is some structure / order to the dataset. Below is the code for this dataset:

Use EDA but don't solely rely on it

- Look at a scatterplot of the response variable vs. each of the predictor variables in the exploratory data analysis before calculating the regression model
- This is a good way to check for obvious departures from linearity or constant variance
- This is <u>not</u> definitive, but it can give you an indication early on if you might need to use interactions, higher-order terms, or do a transformation (more on that next week)

