Classification Algorithms

TERRORISM PREDICTION in Middle East and North Africa

29/11/2018

- V. Fokker, T.J.C. Meulenbroek,
- K. Raijmann, R. Warmels

Terrorism

- Highly relevant topic
- Interest in applicability of the research
- Data from the Global Terrorism Database

Iran military parade attacked by gunmen in Ahvaz

© 22 September 2018

Gunmen have opened fire on an Iranian military parade in the south-western city of Ahvaz, killing at least 25 people, including civilians, and injuring 60, state media say.

The attackers shot from a park near the parade and were wearing military uniforms, reports say.

An anti-government Arab group, Ahvaz National Resistance, and Islamic State (IS) have both claimed the attack.

President Hassan Rouhani has vowed a "harsh response".

"The response of the Islamic Republic of Iran to the smallest threat will be harsh, but those who sponsor the terrorists must be held accountable," he said in a statement.

Original Study

Research Question

What standard supervised machine learning techniques aid in classifying terrorist groups responsible for terrorist attacks in the Middle East and North Africa based on open source data?

Our approach

- Focus on the middle east
- Use open data (GTD)
- Use 'standard' supervised methods:
 - Support Vector Machine
 - Naive Bayes
 - Decision Trees
 - K-nearest neighbour
 - New: Random Forests

Preprocessing Variables

- iyear
- imonth
- latitude
- longitude
- attacktype1
- weaptype1
- targtype1
- nkill
- nwound
- population
- Environment

```
Int64Index: 11607 entries, 4 to 34325
Data columns (total 12 columns):
          11607 non-null int64
iyear
imonth 11607 non-null int64
gname 11607 non-null object
latitude 11607 non-null float64
longitude 11607 non-null float64
attacktype1 11607 non-null int64
weaptype1 11607 non-null int64
targtype1 11607 non-null int64
nkill
         11607 non-null float64
            11607 non-null float64
nwound
population 11607 non-null float64
Environment 11607 non-null object
dtypes: float64(5), int64(5), object(2)
```


Preprocessing Locations

Preprocessing Feature importance

- Latitude / Longitude
- NKill
- Nwound
- Population
- All other 'binarized'

Preprocessing Target Variable

- GName
- 463 groups
- 193 groups after filtering for inactive groups and dropping missing values
- Only use 4 largest groups (64%)
- Other group for other terrorist groups
- Total of 5 groups
- Sampling using pipeline

Train / Test split

- Random State = 42 used for replication purposes
- Train / Test split with RepeatedKFold with 6 splits and 10 repeats.

Train Test

9027 1805

Pipeline

Undersampling

- Random Undersampling
- Undersampling with Instance hardness threshold
- Undersampling with Condensed Nearest Neighbour

Kits used

- IMbalanced-learn 0.4.3
- Scikit-learn 0.20.0
- scipy 0.13.3
- numpy 01.8.2

Models - overview

Naive Bayes

K Nearest Neighbors

Support Vector Machine

Decision Trees

Naive Bayes

	undersampling method	precision	recall	F-measure
GaussianNB	Random Undersampling	0.87	0.83	0.84
	Instance Hardness	0.85	0.80	0.81
	Condensed Nearest Neighbors	0.37	0.48	0.37
MultinominalNB	Random Undersampling	0.37	0.37	0.41
	Instance Hardness	0.64	0.35	0.39
	Condensed Nearest Neighbors	0.39	0.27	0.27
BernoulliNB	Random Undersampling	0.56	0.46	0.48
	Instance Hardness	0.55	0.39	0.41
	Condensed Nearest Neighbors	0.25	0.16	0.11

Figure: GaussianNB with random undersampling

Naive Bayes - assumption

- With GaussianNB, the
 assumption is that the features
 need to be normally distributed.
- Check for normality!
- Normality Rejected for for top 5 of the most important features.

Figure: Distributions of the features "population", "longitude", "latitude", "nkill" and "nwound".

These features are most important according to the feature importantance.

Models - overview

Naive Bayes

K Nearest Neighbors

Support Vector Machine

Decision Trees

K-Nearest Neigborgs

		precision	recall	F-measure
KNN	Random Undersampling	0.92	0.91	0.91
	Instance Hardness	0.90	0.89	0.89
	Condensed Nearest Neighbors	0.62	0.67	0.63

Figure: KNN with random undersampling

K-NN - k value tuning

• K- value is tuned to k= 3

Figure: Error rate versus the k-value

Models - overview

Naive Bayes

K Nearest Neighbors

Support Vector Machine

Decision Trees

Support Vector Machine

		precision	recall	F-measure
SVM	Random Undersampling	0.86	0.58	0.58
	Instance Hardness	0.88	0.52	0.52
	Condensed Nearest Neighbors	0.07	0.07	0.07

- Radial basis function kernel used
 - Gaussian

Figure: SVM with random undersampling

Models - overview

Naive Bayes

K Nearest Neighbors

Support Vector Machine

Decision Trees

- Overfitting
 - Coping mechanisms

		precision	recall	F-measure
DT -unpruned	Random Undersampling	0.92	0.91	0.91
(underfitted)	Instance Hardness	0.90	0.88	0.89
	Condensed Nearest Neighbors	0.41	0.40	0.37
DT Pruned	Random Undersampling	0.90	0.90	0.90
10 leafs	Instance Hardness	0.89	0.87	0.88
	Condensed Nearest Neighbors	0.28	0.41	0.32
DT Max depth	Random Undersampling	0.91	0.90	0.91
Max Dept = 5	Instance Hardness	0.89	0.88	0.88
	Condensed Nearest Neighbors	0.35	0.36	0.33
DT	Random Undersampling	0.92	0.91	0.91
Min leafs 5	Instance Hardness	0.90	0.88	0.89
	Condensed Nearest Neighbors	0.36	0.38	0.35

Models - overview

Naive Bayes

K Nearest Neighbors

Support Vector Machine

Decision Trees

		precision	recall	F-measure
RF	Random Undersampling	0.93	0.92	0.92
	Instance Hardness	0.89	0.87	0.87
	Condensed Nearest Neighbors	0.31	0.19	0.16

Figure: RF with random undersampling

- Overfitting
 - Remedy: insert more trees

Models - overview

- Random undersampling works best in all models
- All models show good F-measures, indicating decent models.
- GaussianNB performs well, but assumption not met.

Conclusion

- Nice results (for only 4 and the 'other' group)
- The methods have no aid in real life

Discussion

- Feature selection and lots of categorical data
- Scope of variables
- Shortcomings API (Population & Environment)
- Small groups target variable
- Algorithms: more possibilities and algorithms possible
- Real life application

Recommendations

- More data necessary?
- Try more algorithms and parameters
- Include more variables
- Make use of closed source intelligence

Learning achievements

- Google Colab is not (yet) functioning correctly
- Touched upon multiple algorithms
- Preprocessing masters
- Improved our python skills
- More package knowledge for Data Science purposes
- Learned to make a trade-off between effort and result
- Got real enthousiastic for Machine Learning

Classification Algorithms

TERRORISM PREDICTION in Middle East and North Africa

29/11/2018

- V. Fokker, T.J.C. Meulenbroek,
- K. Raijmann, R. Warmels

Blank

Text

Body1

Comparison

Heading1

Body1

Heading2

Body2

Ordered List

- 1 | Item1
- 2 | Item2
- 3 | Item3
- 4 | Item4
- 5 | Item5

Unordered List

Heading1

- Body1
- Body2
- Body3

- Item1
- Item2
- Item3
- Item4
- Item5

Single Image Tagline

- Item1
- Item2
- Item3
- Item4
- Item5

Multiple Images

Taglin

e

Caption1

Caption2

Caption3

Caption4

Heading1

Body1

Heading1 Body1

Register now

URL

