CheatSheet di Ricerca Operativa e Pianificazione delle Risorse

Fabio Ferrario

@fefabo

2022/2023

Indice

1 Ottimizzazione Non Lineare Vincolata		3
	1.1 Condizioni di KKT	3

Capitolo 1

Ottimizzazione Non Lineare Vincolata

1.1 Condizioni di KKT

In un problema di ottimizzazione vincolata definito come:

opt
$$f(x_1, ..., x_n)$$

$$\begin{cases} g_1((x_1,...,x_n)) = 0\\ ... & \text{Vincoli di Uguaglianza}\\ g_m((x_1,...,x_n)) = 0 \end{cases}$$

$$\begin{cases} h_1((x_1, ..., x_n)) \leq 0 \\ ... & \text{Vincoli di Disuguaglianza} \\ h_l((x_1, ..., x_n)) \leq 0 \end{cases}$$

Generiamo la Lagrangiana cosí definita:

$$L(V) = f(X) + \sum_{i=0}^{m} \lambda_i \cdot g_i(X) + \sum_{j=0}^{l} \mu_j \cdot h_j(X)$$
 Per i problemi di MIN

$$L(V) = f(X) - \sum_{i=0}^m \lambda_i \cdot g_i(X) - \sum_{i=0}^l \mu_j \cdot h_j(X)$$
 Per i problemi di MAX

con $V = \{x_1, ..., x_n, \lambda_1, ..., \lambda_m, \mu_1, ..., \mu_l\}$, ovvero tutte le variabili e $X = \{x_1, ..., x_n\}$, ovvero tutte le variabili originiali.

4 CAPITOLO 1. OTTIMIZZAZIONE NON LINEARE VINCOLATA

I punti stazionari vengono caratterizzati con le condizioni KKT che generano un sistema di n+m+l incognite cosí definito:

Stazionarietá Problemi di MIN (-)			
$\nabla f(X) = -\sum_{i=0}^{m} \lambda_i \cdot \nabla g_i(X) - \sum_{j=0}^{l} \mu_j \cdot \nabla h_j(X)$			
Stazionarietá Problemi di MAX (+)			
$\nabla f(X) = + \sum_{i=0}^{m} \lambda_i \cdot \nabla g_i(X) + \sum_{j=0}^{l} \mu_j \cdot \nabla h_j(X)$			
V. Uguaglianza	$g_i(X) = 0 \text{ con } i = 1,, m$		
V. Disuguaglianza	$h_j(X) \le 0 \text{ con } j = 1,, l$		
Complementarietá	$\mu_j \cdot h_j = 0 \text{ con } j = 1,, l$		
Non Negativitá	$\mu_j \ge 0 \text{ con } j = 1,, l$		