SEMAINE DU 30/01 AU 03/02

1 Cours

Espaces vectoriels

Définition et exemples fondamentaux Définition d'un \mathbb{K} -espace vectoriel. Exemples. Si X est un ensemble, on peut munir \mathbb{K}^X d'une struture de \mathbb{K} -espace vectoriel. Conséquence : \mathbb{K}^n , $\mathbb{K}^\mathbb{N}$, $\mathbb{K}^\mathbb{K}$ sont des \mathbb{K} -espaces vectoriels.

Sous-espaces vectoriels Définition. Intersection de sous-espaces vectoriels. Combinaisons linéaires d'une famille de vecteurs. Espace vectoriel engendré par une partie ou une famille.

Somme de sous-espaces vectoriels Somme de deux sous-espaces vectoriels. Somme directe de deux sous-espaces vectoriels. Sous-espaces supplémentaires. Si $E = F \oplus G$, définition du projeté de $x \in E$ sur F parallèlement à G. Somme d'un nombre fini de sous-espaces vectoriels. Somme directe d'un nombre fini de sous-espaces vectoriels.

2 Méthodes à maîtriser

- ▶ Savoir montrer qu'une partie d'un espace vectoriel en est un sous-espace vectoriel.
- \blacktriangleright Savoir déterminer une partie génératrice d'une partie de \mathbb{K}^n définie par des équations linéaires.
- ▶ Savoir montrer que deux sous-espaces sont supplémentaires (utiliser éventuellement une méthode par analyse/synthèse).
- ▶ Savoir montrer qu'un nombre fini de sous-espaces vectoriels sont en somme directe.

3 Questions de cours

- ▶ Soient F et G deux sous-espaces vectoriels d'un espace vectoriel E. Montrer que F et G sont en somme directe si et seulement si $F \cap G = \{0_F\}$.
- ▶ On pose $E = \mathbb{R}^{\mathbb{R}}$, F l'ensemble des applications paires de \mathbb{R} dans \mathbb{R} et G l'ensemble des applications impaires de \mathbb{R} dans \mathbb{R} . Montrer que F et G sont supplémentaires dans E.
- ▶ Soient $F_1, ..., F_n$ des sous-espaces vectoriels d'un espace vectoriel E. Montrer que $F_1, ..., F_n$ sont en somme directe si et seulement si

$$\forall (x_1,\ldots,x_n) \in \prod_{i=1}^n F_i, \ \left(\sum_{i=1}^n x_i = 0_E \implies \forall i \in [1,n], \ x_i = 0_E\right)$$