

COPY OF PAPERS Attorney's Doctet No.: 13425-053001 / 00395-US

ORIGINALLY FILED

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant: Lars Abrahmsén et al.

Art Unit : 1645

Serial No.: 10/081,408

Examiner: Unknown

Filed

: February 21, 2002

Title

: METHODS FOR PROTEIN PURIFICATION

Commissioner for Patents Washington, D.C. 20231

TRANSMITTAL OF CERTIFIED PRIORITY DOCUMENT UNDER 35 USC §119

In accordance with the provisions of 35 U.S.C. §119, applicants hereby claim priority of Swedish Patent application No. 0100625-3, filed February 23, 2001. A certified copy of the application is submitted herewith. As the priority application is in the English language, all of the requirements of §119 have been met.

Please apply any charges or credits to Deposit Account No. 06-1050, referencing Attorney Docket No. 13425-053001.

Respectfully submitted,

Reg. No. 47,443

Fish & Richardson P.C. 225 Franklin Street

Boston, Massachusetts 02110-2804

Telephone: (617) 542-5070 Facsimile: (617) 542-8906

20431101.doc

CERTIFICATE OF MAILING BY FIRST CLASS MAIL

I hereby certify under 37 CFR §1.8(a) that this correspondence is being deposited with the United States Postal Service as first class mail with sufficient postage on the date indicated below and is addressed to the Commissioner for Patents, Washington, D.C. 20231.

Date of Deposit

Signature

Darlene J. Morin

Typed or Printed Name of Person Signing Certificate

Intyg C rtificate

Härmed intygas att bifogade kopior överensstämmer med de handlingar som ursprungligen ingivits till Patent- och registreringsverket i nedannämnda ansökan.

This is to certify that the annexed is a true copy of the documents as originally filed with the Patent- and Registration Office in connection with the following patent application.

(71) Sökande Biovitrum AB, Stockholm SE Applicant (s)

(21) Patentansökningsnummer 0100625-3 Patent application number

(86) Ingivningsdatum
Date of filing

2001-02-23

Stockholm, 2002-04-15

För Patent- och registreringsverket For the Patent- and Registration Office

Hjördis Segerlund

Avgift

Fee 170:-

METHODS FOR PROTEIN PURIFICATION

TECHNICAL FIELD

The present invention relates to a recombinant construct comprising a nucleotide sequence encoding a fusion protein comprising a soluble form of human SSAO (Semicarbazide-Sensitive Amine Oxidase), a secretable fusion partner, a signal peptide; and a protease cleavage site. The invention also relates to methods for purification of a soluble form of human SSAO, said methods utilizing the recombinant construct.

10

15

20

25

30

BACKGROUND ART

Semicarbazide-Sensitive Amine Oxidases (SSAOs) belong to the copper-containing amine oxidase family of enzymes (CuAO; EC.1.4.3.6) and are widely distributed among both eukaryotic and prokaryotic organisms (Buffoni, 1993). The physiological role of this abundant enzyme is essentially unknown and endogeneous substrates with high affinity have so far not been identified, although benzylamine is an artificial high-affinity substrate (Buffoni, 1993; Callingham et al., 1995; Lyles, 1996, Hartmann and McIntire, 1997; Holt et al., 1998). In humans high SSAO activity is found in vascular smooth muscle cells (Lewinsohn 1984; Nakos and Gossrau, 1994; Yu et al., 1994; Lyles and Pino, 1998; Jaakkola et al., 1999). SSAO activity has also been detected in smooth muscle cells of non-vascular type and in endothelial cells (Lewinsohn, 1984; Castillo et al., 1998; Jaakkola et al., 1999). Small amounts of SSAO protein is also found in blood showing similar properties compared to the tissue-bound form (Yu and Zuo, 1993; Yu et al., 1994; Kurkijärvi et al., 1998).

Many studies have demonstrated that SSAO activity in blood plasma is elevated in several human conditions such as heart failure, atherosclerosis and diabetes (Lewinsohn, 1984; Boomsma et al., 1997; Ekblom, 1998; Boomsma et al., 1999; Meszaros et al., 1999). The mechanism(s) underlying these alterations of enzyme activity are currently uncharacterized. It has been suggested that reactive aldehydes and hydrogen peroxide produced by endogenous amine oxidases could be causative or

15

20

25

30

contribute to the progression of cardiovascular diseases, and that inhibition of SSAO activity in diabetics might decrease vascular complications (Ekblom, 1998).

Recently it was found that the cDNA sequence of human SSAO (Zhang and McIntire, 1996) is identical to the vascular adhesion protein 1 (VAP-1), which participates in lymphocyte recirculation by mediating the binding of lymphocytes to peripheral lymph node vascular endothelial cells (Smith et al., 1998; see also WO 98/53049). The cDNA sequence of SSAO / VAP-1 is deposited under GenBank Accession Nos. U39447 and NM_003734 (SEQ ID NO: 1). VAP-1 has also been found to be up-regulated on the endothelial cell surface under inflammatory conditions (Smith et al., 1998). However, the adhesive properties of SSAO have only been found in endothelial cells. In smooth muscle cells, SSAO does not support binding of lymphocytes (Jaakola et al., 1999). DNA-sequence analysis, structural modeling and experimental data suggest that human SSAO is a homodimeric glycoprotein consisting of two 90-100 kDa subunits anchored to the plasma membrane by a single N-terminal membrane spanning domain (Morris et al., 1997; Smith et al., 1998; Salminen et al., 1998).

No reports have so far been published regarding the purification of a recombinant mammalian SSAO or purification to near homogeneity of larger amounts of a human SSAO from a natural source. One report has described the use of a FLAG peptide fused to the N-terminal end of full-length human SSAO for detection purposes, but no results were presented regarding its use for purification of the human SSAO protein (Smith et al., 1998). Monoclonal antibodies have been used to immunoaffinity purify small amounts of human SSAO from serum and tissue homogenates for immunoblotting (Smith et al., 1998; Kurkijärvi et al., 1998). Consequently, there is a need for alternative methods for the purification of human SSAO in significant amounts.

Glutathione S-transferase (GST) from Schistosoma japonicum is a homodimeric cytoplasmic enzyme that can be purified by affinity chromatography using immobilized cofactor glutathione, followed by competitive elution using reduced glutathione (GSH). Taking advantage of this specific interaction, a gene fusion system for E. coli intracellular expression was developed by Smith and co-workers (Smith & Johnson, 1988; see also WO 88/09372) to facilitate detection and purification of recombinant

proteins fused to GST. A potential drawback with using GST as fusion partner is the possibility that the free cysteines on its surface can crosslink with free cysteines on e.g. the fused target protein when exposed to an oxidizing environment. To minimize this risk and to allow for secretion of GST-fusion proteins a mutant form of GST was recently developed, which retain both its ability to form homo-dimers and its enzyme activity (Tudyka and Skerra, 1997). The homo-dimerization propensity of GST can be used to provoke dimerization of the fused target protein e.g. for the purpose of increased avidity effects (Tudyka and Skerra, 1997).

Alternative homodimeric fusion partners described in the literature are e.g. the Fc region of immunoglobulins (Hollenbaugh et al., 1992; Sakurai et al., 1998; Lo et al., 1998; Dwyer et al., 1999) and leucine zippers such as GCN4 (Rieker and Hu, 2000; Müller et al., 2000). Several different proteins have been fused to these homodimeric protein domains for different purposes e.g. to increase avidity (Dwyer et al., 1999; Muller et al., 2000) and to restore high-affinity DNA binding of truncated DNA-binding proteins (Rieker and Hu, 2000). Fc-fusion protein can be purified by protein A-affinity chromatography involving elution with low pH buffers (Sakurai et al., 1998; Lo et al., 1998), which may decrease activity of the fused target protein (Gräslund et al., 1997). Another problem associated with using Fc as fusion partner is the use of serum for cell growth, which complicate detection and purification of secreted Fc-fusions since serum contains large amounts of immunoglobulins (Sakurai et al., 1998). The leucine zipper GCN4 has mostly been used as fusion partner for proteins expressed in *E. coli* (Müller et al., 2000) and an affinity-tag might has to be fused to facilitate purification.

25

30

10

15

20

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1

Schematic illustration of the GST-SSAO DNA construct. The three cysteine to serine mutations (residues 85, 138, and 178 according to the sequence having GenBank Accession No. M14654) in the GST fusion partner are shown with boldface letters. Boxed sequence represents the recognition sequence for the 3C-protease.

Fig. 2

Overview of the SSAO purification process. The determined specific activities for each purification step are indicated.

Fig. 3

5

15

20

30

Schematic illustration of the GST-SSAO expression vector designated pMB887.

10 DISCLOSURE OF THE INVENTION

According to the present invention, it has unexpectedly been found that soluble human SSAO can be produced in milligram quantities in a purification system utilizing a fusion partner capable of enabling dimerization of soluble SSAO. Consequently, in a first aspect this invention provides a recombinant construct comprising a nucleotide sequence encoding a fusion protein comprising

- (i) a soluble form of human SSAO;
- (ii) a secretable fusion partner enabling dimerization of SSAO;
- (iii) a signal peptide allowing for secretion of a polypeptide from a host cell into the culture medium; and
- (iv) a protease cleavage site located between the human SSAO variant and the fusion partner.

As will be understood by the skilled person, the recombinant construct can optionally comprise one or more nucleotide sequences coding for spacer amino acid sequences of various lengths. Such spacer sequences could be used in order to increase the flexibility within the fusion protein, or to increase the space between protein domains so that folding can take place independently of adjacent domains. Further, spacers could be useful for increasing the accessibility for a protease to cleave at an introduced cleavage recognition sequence.

The said soluble form of human SSAO is preferably lacking the membrane spanning portion of wild-type human SSAO. The membrane spanning portion of the SSAO

30

. [

polypeptide is known in the art (Morris et al., 1997; Holt et al., 1998; Smith et al., 1998) and is essentially set forth as amino acids 5 to 27, in particular amino acids 6 to 26, of SEQ ID NO: 2.

The amino acid sequence for human SSAO, excluding the membrane spanning portion, preferably comprises, or essentially consists of, positions 29 to 763 in SEQ ID NO: 2. However, the skilled person will understand that a part of the membrane-spanning portion could be included in the SSAO polypeptide while the polypeptide would still retain its essentially soluble properties. Consequently, the amino acid sequence for human SSAO could comprise e.g. positions 27 to 763, or 28 to 763, of SEQ ID NO: 2, including fragments thereof having substantially the biological activities of human SSAO. Further, the term "human SSAO polypeptide" is intended to encompass mutants and naturally occurring variants of human SSAO, either having retained enzymatic activity or protein interaction (e.g. adhesion function), or designed to facilitate structural studies (e.g. improved properties for crystallization), or mutated to facilitate studies of structure/function relationships (which also includes inactive mutants).

The fusion partner can be fused to the C-terminal or N-terminal portion of the human SSAO polypeptide. It is envisaged that the fusion protein could comprise more than one fusion partner, for instance one fused to the N-terminal and one fused to the C-terminal part of SSAO. An additional fusion partner could be an additional affinity tag, or a reporter protein such as Enhanced Green Fluorescent Protein (EGFP).

A large number of different gene fusion systems and fusion partners have been described. In such systems, different types of interactions, such as enzyme—substrate, bacterial receptor—serum protein, polyhistidines—metal ion, and antibody—antigen, have been utilized (Uhlén et al., 1992). Various gene fusion systems for affinity purification are also known in the art. Examples of fusion partners used in such systems (for reviews, see e.g. Nilsson et al., 1997; or Sheibani, 1999) comprise staphylococcal Protein A and its derivative Z; the albumin-binding protein from streptococcal Protein G; glutathione S-transferase (GST); polyhistidine tags; biotinylated affinity tags (e.g Biotin AviTag); E. coli maltose-binding protein; cellulose binding domains; the FLAG peptide; and Strep-tag. Alternative systems may be engineered using protein scaffolds

for generation of novel ligand receptors (see Skerra, 2000, and references therein). These novel binding proteins, e.g. affibodies, may then be useful as fusion partners for different applications (Nygren and Uhlén, 1997; Nord et al., 1997).

According to this invention, the said fusion partner should enable dimerization of SSAO. A suitable fusion partner is glutathione S-transferase (GST), because of its propensity to dimerize and because the purification procedure has the potential to be performed under mild conditions using chromatography media with immobilized glutathione (e.g. from Amersham Pharmacia Biotech, Uppsala, Sweden). In addition, GST can conveniently be detected either by its enzymatic activity or by the use of GST 10 specific antibodies or glutathione, using commercially available GST detection systems (e.g. from Amersham Pharmacia Biotech). The fusion partner could also be a functionally equivalent variant of GST, having retained propensity for dimerization and having binding properties allowing affinity purification. The said fusion partner is more preferably a variant of S. japonicum GST (GenBank Accession No. M14654; SEQ ID 15 NOS: 3 and 4), designed for secretion out of the host cell, having one or more of the cysteine residues in positions 85, 138, and 178 replaced with other amino acid residue(s). Most preferably, the said variant has all the cysteine residues in positions 85, 138, and 178 replaced with serine residues (see Tudyka & Skerra, 1997 and SEQ ID NO: 5). 20 ·

In addition, the said recombinant construct should comprise a nucleotide sequence encoding an N-terminal signal peptide, which allows for secretion of the said fusion protein from a host cell into the culture medium. For production of a human protein such as SSAO in a eukaryotic cell a homologous signal peptide is preferred. For production of SSAO in HEK293 cells e.g. a mouse IgG1 heavy chain signal peptide (Kabat et al., 1991) may be used. Other suitable signal peptides are known in the art and are described in e.g. Kabat et al., supra.

Several methods have been described for site-specific cleavage of fusion proteins based on treatment with chemical agents such as CNBr or hydroxylamine, or enzymes such as enterokinases, Factor Xa, thrombin, subtilisin or other proteases (see e.g. Nilsson et al. (1997) and references therein). According to this invention, the said fusion partner can

30

. [

conveniently be removed from human SSAO by protease cleavage. The protease to be used for cleavage can e.g. be a 3C protease from the picornavirus family, e.g. a rhinovirus or enterovirus 3C protease (Walker et al., 1994). Consequently, the protease cleavage site can preferably be a cleavage site for a 3C-protease from the picornavirus family, e.g. a rhinovirus or enterovirus 3C protease. In one exemplified form of the invention, the said 3C protease cleavage site comprises the amino acid sequence EALFQG. However, the skilled person will be able to identify other suitable cleavage sites, see e.g. Blom et al. (1996) and references therein.

The recombinant construct according to the invention could e.g. comprise a nucleotide sequence encoding essentially the amino acid sequence shown in Figure 1. The invention also provides an expression vector, prepared according to standard methods, comprising the recombinant construct according to the invention. Such an expression vector is exemplified by the expression vector termed pMB887, shown in Figure 3.

In another aspect, the invention provides a method for the purification of a recombinant human SSAO polypeptide comprising the steps of:

- (i) transfecting cells with an expression vector according to the invention, as defined above;
- (ii) culturing the said cells under conditions allowing for the fusion protein expressed by the vector to be secreted into the cell medium;
 - (iii) binding the obtained fusion protein to a medium comprising a ligand having affinity for the fusion partner;
 - (iv) separating the said fusion partner and the SSAO polypeptide; and
- 25 (v) recovering the purified human SSAO polypeptide.

The fusion partner can be separated from the human SSAO variant either when the fusion protein is still attached to the affinity ligand, or when the fusion protein has been released from the affinity ligand. When the said fusion partner is GST, the said ligand having affinity for the fusion partner is preferably glutathione, or a derivative thereof. Alternatively, antibodies directed to GST could be used as affinity ligands.

15

20

25

30

11

As mentioned above, the fusion partner can be separated from human SSAO by protease cleavage with e.g. a picornavirus, such as rhinovirus, 3C-protease. The said protease can be fused to a fusion partner, thereby obtaining a "fusion protease" (see Walker et al., 1994; Gräslund et al., 1997). Such a fusion partner can conveniently be the same fusion partner as used for the SSAO polypeptide, e.g. glutathione Stransferase. However, other suitable fusion partners for proteases, such as albumin-binding protein from streptococcal Protein G, are known in the art, see e.g. Gräslund et al., 1997. The said fusion protease can be separated from the SSAO polypeptide by a process comprising binding the fusion protease to a medium comprising a ligand having affinity for the said fusion partner. Consequently, when the fusion partner is GST, the said ligand is preferably glutathione, or a derivative thereof. As mentioned above, antibodies directed to the fusion partner could also be used as affinity ligands. A commercially available system is the PreScission Protease (Amersham Pharmacia Biotech,) which is a genetically engineered fusion protein consisting of *S. japonicum* GST and human rhinovirus 3C protease.

For certain application, it might be advantageous to have SSAO immobilized. This may be achieved e.g. by an affinity-tag such as GST as described above. Examples of applications where a fusion protein is immobilized via an affinity-tag include: capture of protein ligands, analysis of protein-protein interactions, and use in bioreactors (Nilsson et al., 1996; Nord et al., 1997; Shpigel et al., 1999). However, many alternative methods for protein immobilization are described (see e.g. Tischer and Kasche, 1999, and references therein), that also may be applicable for immobilization of GST-SSAO or SSAO after removal of the fusion partner, such as covalent binding and non-covalent adsorption. In addition, the SSAO protein might also be encapsulated in e.g. sol-gel or an artificial cell e.g. a liposome (see e.g. Liang et al., 2000, and references therein). One advantage with an affinity-tag such as GST is that an oriented immobilization can be achieved, often in a one-step procedure directly from e.g. a cell lysate (Nilsson et al., 1997; Saleemuddin, 1999). This may result in good steric accessibility of active binding sites and increased stability (Saleemuddin, 1999; Turkova, 1999). Examples of alternative affinity-tag approaches that has been used for immobilization of proteins are e.g. peptides and proteins that can be specifically biotinylated by biotin ligase and used as fusion partners to take advantage of the very strong interaction ($K_d \sim 10^{-15}$) between

biotin and streptavidin or avidin (Nilsson et al., 1997), and CBDs which binds specifically to cellulose (Linder et al., 1998; Tomme et al., 1998). Oriented immobilization of a protein may also be achieved by using immobilized antibodies that binds the protein or through carbohydrate moieties that may be present on the protein surface (Turkova, 1999).

Recently, amine oxidase from pea seedlings was immobilized using a modified carbon paste to yield a biosensor for determination of biogenic and synthetic amines (Wimmerova and Macholan, 1999). Similarly, recombinant human SSAO might be immobilized for construction of biosensors to detect e.g. the cardiovascular toxin allylamine which is used in industrial organic processes and is a substrate for SSAO (Boor and Hysmith, 1987; Conklin et al., 1998). When immobilized, recombinant SSAO may be envisioned to mimic a membrane-anchored SSAO and its characteristics, which might differ from the soluble state.

15

20

25

30

10

Consequently, as shown in the following examples, the invention provides a procedure for the production of a highly purified soluble recombinant human SSAO with enzymatic activity. The exemplified procedure involves the use of a mutant form of *S. japonicum* glutathione *S*-transferase (GST), designed for transport out of the host cells (Tudyka and Skerra, 1997), as an affinity fusion partner. The fusion protein was secreted from mammalian cells and could be purified directly from the culture medium by glutathione-affinity chromatography. By specific proteolysis and an additional glutathione-affinity chromatography step, the fusion partner and the protease were removed, whereby pure, soluble and highly active recombinant human SSAO protein was obtained in milligram quantities. To the inventors' knowledge, this is the first time an active recombinant soluble form of the human SSAO protein has been produced and purified to near homogeneity.

It is believed that the disclosed process for production of recombinant human SSAO will be applicable also to other mammalian amine oxidases, such as the human placenta diamine oxidase (Zhang et al., 1995) and the human retina-specific amine oxidase (Imamura et al., 1998), as well as for other secretable proteins. The disclosed process may also facilitate the discovery and identification of modifications e.g. the

identification of the active site cofactor, e.g. by isolation of cofactor-containing peptides or by crystal structure determination.

In the following examples, it is shown that SSAO is active and soluble without its transmembrane region, and that GST can be proteolytically removed. These findings support the hypothesis that SSAO is released into circulation by proteolytic cleavage near the transmembrane region (shedding), a process which is common for Type I and Type II membrane proteins (Hooper et al., 1997). The elevated SSAO activity in plasma in e.g. diabetes (Boomsma et al., 1999) may thus be the consequence of increased proteolytic activity of a protease that cleave the membrane-anchored SSAO, or of increased surface localization increasing the substrate availability for an existing protease.

15 EXPERIMENTAL METHODS

20

PCR-amplification and cloning of the human SSAO gene from aorta cDNA

Two PCR-primers were designed with the help of the published cDNA sequence of human placenta amine oxidase (GenBank Accession No. U39447; Zhang and McIntire, 1996). The 5'-primer XNQZ-15 (5'-CCG GAA TTC CAA CGC GTC CAT GAA CCA GAA GAC AAT CCT CGT G-3') was designed to hybridize to the 5'- end of the SSAO coding sequence including the ATG start codon and to contain the restriction enzyme cleavage sites *Eco*RI and *Mlu*I for cloning. The 3'-primer XNQZ-17 (5'-CCC CCA AGC TTG TCG ACT CAC TAG TTG TGA GAG AGA AGC CCC CCC-3') was designed to hybridize to the 3'-end including the native stop codon TAG followed by an additional stop codon TGA and two restriction enzyme cleavage sites for cloning, *SaI*I and *Hin*dIII. As template for the PCR 0.5 μl human aorta or human smooth muscle cell QUICK-Clone cDNAs (1ng/μl, Clontech Laboratories, Palo Alto, CA) were tested. The following conditions was used for the PCR-reaction, 20 pmol of each primer XNQX-15 and XNQZ-17, 1 μl dNTPs (10 mM), 1 μl Advantage cDNA Polymerase Mix (Clontech), 5 μl 10x cDNA PCR reaction buffer (Clontech) in a total volume of 50 μl.

20

25

Amplification was performed with a Perkin-Elmer 2400 thermocycler (Perkin-Elmer, Norwalk, CT). The PCR-program consisted of an initial denaturation at 94°C for 5 min, 35 cycles of 94°C for 30 s, 60°C for 30 s and 72°C for 3 min followed by a final extension at 72°C for 3 min. TA-cloning was then used to insert the PCR-product into the vector pCR2.1-TOPO (Invitrogen, Carlsbad, CA). The cloned PCR-fragment was sequenced in both directions according to a standard protocol for dye terminator cycle sequencing and analyzed on a DNA sequencer ABI 377 (Applied Biosystems, Foster City, CA).

10 Construction of vectors for expression of SSAO in mammalian cells

A vector for expression of the complete SSAO protein in mammalian cells was prepared by insertion of the *Eco*RI and *SaI*I fragment from the pCR2.1TOPO-SSAO vector into the same sites of the vector pCI-neo (Promega, Madison, WI), resulting in the vector pMB843. This vector was used as template for PCR-amplification of the region corresponding to residues 29-763 of the human SSAO (Zhang and McIntire, 1996). A 5'-primer 5'- GAG GAA GCT TTG TTC CAA GGT GGA GAT GGG GGT GAA-3' was synthesized containing codons for a partial 3C protease cleavage site (see below) and a *Hind*III restriction enzyme cleavage site upstream of the codon for residue 29. The 3'-primer 5'-GCA TTC TAG TTG TGG TTT GTC-3' is a pCI-neo vector specific primer annealing downstream of the cloned SSAO fragment. The resulting PCR-product was digested with *Hind*III and *Not*I and cloned into the plasmid pET38b(+) (Novagen, Inc., Madison, WI) cut with same enzymes, resulting in pET38-SSAO. DNA sequencing was performed as described above to verify expected sequence of the cloned SSAO fragment.

A mutated form (SEQ ID NO: 5) of the glutathione S-transferase (GST) from S. japonicum previously used as a secretable enzymatically active dimerization module for a recombinant protein (Tudyka and Skerra, 1997) was prepared by PCR-mediated mutagenesis and assembly of fragments as described below. The mutations was performed to replace three cysteine residues 85, 138, and 178 located close to the GST protein surface as revealed in the crystal structure of the S. japonicum GST (Lim et al., 1994; Tudyka and Skerra, 1997) with serine residues in order to avoid unwanted

15

20

30

11

disulphide formation after export of the GST fusion protein to an oxidizing environment (Tudyka and Skerra, 1997). The following PCR-primers were used to construct the mutated GST and to introduce the first part of a 3C protease cleavage site (see below) as well as suitable restriction enzyme cleavage sites for cloning. In addition, the primers introduce internal restriction sites for control cleavage and for possibility to assemble PCR-fragments by ligation: ROEL-1 (5'-GCC GGA ATT CGA CGC GTC CCC TAT ACT AGG TTA TTG G-3') contains EcoRI and MluI for cloning and anneals to codons 2-8 of GST (M14654); ROEL-2 (5'-CTC TGC GCG CTC TTT TGG AGA ACC CAA CAT GTT GTG C-3') contains a BssHII site; ROEL-3 (5'-GGT TCT CCA AAA GAG CGC GCA GAG ATT TCA ATG CTT GAA G-3') contains a BssHII site; ROEL-4 (5'-ATG AGA TAA ACG GTC TTC GAA CAT TTT CAG CAT TTC-3') contains a BbsI site; ROEL-5 (5'-GTT CGA AGA CCG TTT ATC TCA TAA AAC ATA TTT AAA TGG TGA TC-3') contains a BbsI site; ROEL-6 (5'-AAA AGA AAC TAG TTT TGG GAA CGC ATC CAG GCA-3') contains a SpeI site; ROEL-7 (5'-CCC AAA ACT AGT TTC TTT TAA AAA ACG TAT TGA AGC TAT C-3') contains a SpeI site; ROEL-8 (5'-ACC CAA GCT TCC TGA CTT TGT GAC TTT GGA GGA TGG TCG CCA CC-3') contains HindIII for cloning and anneals to codons 212-218 of GST (M14654). ROEL-8 will also introduce codons for a spacer-sequence SQSQ before a partial 3C protease cleavage site. Overlapping parts of the GST gene were amplified in separate PCR-reactions with primer pairs ROEL-1/2, ROEL-3/4, ROEL-4/5 and ROEL-7/8, using plasmid pGEX-6P-2 (Amersham Pharmacia Biotech) as template. This allowed the complete mutated GST gene to be assembled by mixing the four PCRfragments and using them as templates in a PCR reaction with primers ROEL-1 and ROEL-8. The PCR-reactions was performed using the Advantage cDNA PCR Kit (Clontech). In the next step the GST fragment was digested with EcoRI and HindIII and cloned into the same sites of pUC18 (Amersham Pharmacia Biotech), yielding pMB809. DNA sequencing was performed as described above to confirm the expected sequence of the mutated GST fragment. The pMB809 vector was cleaved with EcoRI and HindIII and the GST fragment was isolated and cloned upstream of the SSAO fragment in the pET38-SSAO vector cut with the same enzymes. This step resulted in the creation of a complete 3C protease cleavage site EALFQG of human rhinovirus-14 and coxsackievirus (Miyashita et al., 1996; Wang et al., 1997) between GST and SSAO (residues 29-763) (see Fig. 1).

20

30

The GST-SSAO fragment was cloned in the *MluI* and *SaII* site of the vector pMB565, in which a mutated signal sequence of a murine IgG1 heavy chain (Fig. 1) is cloned in the multilinker of the mammalian expression vector pCI-neo (Promega). The resulting GST-SSAO expression vector was named pMB887 (Fig. 3).

Transfection and selection of stable clones

Three 25 cm² T-flasks were seeded with approximately 4x10⁵ human embryo kidney 293 cells (HEK293 cells, ATCC CRL-1573, Rockville, MD). Cells were grown to ~50% conflueny in growth medium containing Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS) and 2 mM L-Glutamine. The FBS was heat-inactivated at 56°C for 30 min before mixed with the growth medium components. The expression vector pMB887 was then introduced into the cells by liposome-mediated transfection using LipofectAMINE according to the manufacturer's recommendations (Life Technologies, Frederick, MD). After 48 hours of growth the medium was changed in all flasks to growth medium supplemented with 1 mg/ml geneticin (G418) for selection of stably transfected cells. Approximately two weeks later, resistant cells emerged and were grown to confluency. Cells from the three T-flasks were pooled (clone-mixture) and diluted in growth medium supplemented with 1.2 mg/ml G418 and seeded in a 15-cm Petri dish. Individual colonies emerged after two weeks and were picked to be expanded individually for subsequent analysis of GST-SSAO production. Detection of GST proteins in collected medium from expanded clones was performed using the GST 96-Well Detection Module (Amersham Pharmacia Biotech). Seven positive clones were selected and frozen.

Production of GST-SSAO in Cell Factories

Clone number 10 was expanded and cultured in growth medium containing DMEM supplemented with 5 % FBS (heat-inactivated), 2 mM L-Glutamine and 1.2 mg/ml G418 and used to seed a 6320 cm² Nunc Cell Factory (Nalge Nunc Int., Naperville, IL) containing 1500 ml of growth medium and grown at 37°C. After four days of growth, cells were confluent and medium was collected. New growth medium (1500 ml) with

10

15

20

25

30

reduced amount of FBS (2%) was then added to the cells in the same Cell Factory followed by harvest of conditioned medium after three days. This procedure was repeated once resulting in a total of ~4.5 liters of harvested medium from one Cell Factory. Collected medium was centrifuged and stored at ~70°C.

Concentration of conditioned cell medium

Frozen conditioned medium from two Cell Factories (9.4 liters) was thawed in a waterbath at 30°C. The material was pumped through an Omega membrane (MWCO (Molecular-Weight Cut-Off) 10000) using a Centramate ultra-filtration equipment (Pall Filtron, Northborough, MA), until a volume of 600 ml was achieved. The retentate was filtered through a 0.45 μ m filter, Sartobran P, equipped with a 0.65 μ m prefilter (Sartorius, Göttingen, Germany). Remaining filtrate in tubings was displaced by 250 ml of phosphate-buffered saline (PBS) yielding 850 ml of filtered sample.

Purification and cleavage of GST-SSAO

The GST-SSAO fusion protein was purified by glutathione-affinity chromatography on a HR 10/10 column (Amersham Pharmacia Biotech) packed with 8 ml glutathione-Sepharose 4 Fast Flow (Binds ~10 mg GST/ml gel, Amersham Pharmacia Biotech), equilibrated with 10 column volumes of PBS. The filtered material (850 ml), was loaded at 0.9 ml/min over night at room temperature. Flow-through material was collected for analysis and stored at ~20°C. After washing the column with PBS, bound proteins were eluted with elution buffer (20 mM GSH, 0.1 M NaCl, 0.1 M Tris-HCl, pH 8.2).

The eluate was loaded on a HiPrep Desalt 26/10 column (Amersham Pharmacia Biotech) equilibrated with helium-sparged cleavage-buffer (150 mM NaCl, 1 mM EDTA, 50 mM Tris-HCl, pH 7.5 at 25°C) and the protein peak was collected. Cleavage was started by adding DTT (dithiothreitol) to 5 mM and 380 units of PreScission protease (Amersham Pharmacia Biotech). The PreScission Protease is a genetically engineered fusion protein consisting of GST and human rhinovirus 3C protease and

cleaves specifically between the Gln (Q) and Gly (G) residues of its recognition sequence.

The cleavage mixture was incubated at 5°C. After 63 hours of incubation the material was loaded on a glutathione-Sepharose column as described above, equilibrated with cleavage buffer. The flow-through (36 ml) was collected and stored at 5°C for approximately one week in an open tube. Samples were withdrawn and analyzed by SDS-PAGE (non-reducing). Proteins captured on the column were eluted with elution buffer for analysis. The collected protein sample was applied on a JumboSep device (MWCO 30000, Pall Filtron) for buffer exchange and concentration. Five cycles of centrifugation and dilution with a buffer containing 50 mM Tris-HCl (pH 7.5) and 150 mM NaCl were performed. A sample was taken for different analyses. The buffer exchanged and concentrated material (4.2 ml) was then stored at -70°C.

15 Protein analyses

10

20

The purification and size of SSAO were analyzed by SDS-PAGE. Samples were electrophoresed in the presence or absence of 2-mercaptoethanol in gradient gels 4-20% or 4-12% (Novex, Copenhagen, Denmark) and proteins were visualized by Coomassie staining (PhastGel Blue R, Amersham Pharmacia Biotech). Protein concentrations were determined with Coomassie Plus protein assay reagent kit (Pierce, Rockford, IL) in 96-well plates with bovine serum albumin as standard according to the manufacturer's procedure.

Size exclusion chromatography was performed on a Superdex 200 PC 3.2/30 column (Amersham Pharmacia Biotech) using the SMART System (Amersham Pharmacia Biotech). The column was equilibrated at room temperature with a buffer containing 50 mM Tris-HCl (pH 7.5), 150 mM NaCl and 1 mM EDTA. Injection volume was 10 μl and samples were eluted at a flow rate of 0.1 ml/min. For column calibration molecular weight markers Blue Dextran 2000 (~2000 kDa), thyroglobulin (669 kDa), ferritin (440 kDa), catalase (232 kDa) and aldolase (158 kDa) from the Gel Filtration HMW Calibration Kit (Amersham Pharmacia Biotech) was used.

15

20

30

N-terminal sequencing was performed on purified GST-SSAO and SSAO by repeated Edman degradation using a HP G1000A protein sequencer coupled to a HP 1090 PTH analyzer (Hewlett Packard, Palo Alto, CA). The GST-SSAO sample was desalted to remove glutathione prior to analysis. SSAO was taken from the flow-through of the glutathione-Sepharose column after cleavage.

A spectrophotometric assay for monoamine oxidases described by Holt and coworkers (Holt et al., 1997) was used to determine amine oxidase activity in samples from the different purification steps. The assay was performed in 96-well microtiter plates incubated at 37°C in a SPECTRAmax 250 microplate spectrophotometer (Molecular Devices, Sunnyvale, CA). The reagent mix containing 1 mM vanillic acid (Sigma, St. Louis, MO), 500 µM 4-aminoantipyrine (Sigma), and 4U ml⁻¹ peroxidase (type VI from horseradish, Sigma) in 0.2 M potassium phosphate buffer (pH 7.6) was prepared on the same day assays were performed and kept at 5°C until used. Reactions were started by mixing 50 µl sample, 50 µl reagent mix and 200 µl potassium phosphate buffer with or without 750 µM benzylamine hydrochloride (Sigma) and were performed in triplicate. In order to obtain blank reference values, wells were analyzed with buffer added in place of sample. Absorbance changes were followed at 490 nm for 10-40 minutes. Standard curves were prepared with dilutions of a stock solution of H₂O₂ in potassium phosphate buffer ranging from 10 nmol/well to 120 nmol/well. When inhibition experiments were carried out, the samples were incubated in 300 µM semicarbazide at 37°C for 30 minutes, before addition of the benzylamine solution.

25 EXAMPLES

EXAMPLE 1: Cloning of SSAO cDNA

٠1

A PCR-strategy was used to amplify the gene of a human SSAO from human aorta cDNA. The PCR-primers were designed to include sequences flanking the human placenta amine oxidase gene (Zhang and McIntire, 1996) and to include restriction enzyme cleavage sites for cloning into different expression vectors. The ~2300 bp PCR-product was cloned and subsequent DNA-sequencing showed that the sequence of the

10

20

30

Ħ

cloned PCR-product was identical to the human placenta amine oxidase sequence (Zhang and McIntire, 1996) and to the VAP-1 sequence cloned from lung cDNA (Smith et al., 1998).

EXAMPLE 2: Purification of membrane-bound SSAO (Example for comparison)

Attempts to produce a recombinant SSAO protein showed that active SSAO could be produced in human embryo kidney (HEK293) cells using the pMB843 vector in which the entire coding sequence of human SSAO was cloned. Active protein was found after extraction using solubilizing agents, but only microgram amounts of protein could be partially purified.

EXAMPLE 3: Rationale and design of a gene construct for expression of a soluble form of SSAO

An alternative strategy was developed for production of a non-membrane-bound SSAO in mammalian cells. Purification and detection were performed by replacing the N-terminal region containing the putative membrane spanning peptide with an affinity fusion partner having an inherent dimerization propensity. The strategy also involved the use of a secretable affinity fusion partner to be able to secrete the fusion protein into the culture medium. A mutated variant of *S. japonicum* glutathione S-transferase (GST) was selected. This mutant GST retains its activity as well as its propensity to dimerize and have been optimized for secretion (Tudyka and Skerra, 1997).

A protease cleavage site was designed to enable release of SSAO from the purified GST-SSAO fusion protein. Scanning of the predicted amino acid sequence revealed an arginine at position 28 flanked by three glycine residues. Several human proteases cleave after basic residues (Carter, 1990; Hooper et al., 1997) and short stretches of glycine residues have been suggested to enhance accessibility to proteases (Carter, 1990). In addition, the proteolytic release of the extracellular region (shedding) of many membrane-anchored proteins into the blood stream occurs close to the membrane

(Hooper et al., 1997). The glycine residue at position 29 was therefore chosen to be linked to a suitable substrate for site-specific proteolysis after purification of the GST-SSAO fusion protein. Thus, a protease that can cleave a substrate having a glycine in the P1' position and having high specificity was desired. Several commercial proteases exist having these two properties such as factor Xa, thrombin, enterokinase and 3C protease (Nilsson et al., 1997). The ability to easily capture the protease after cleavage was another factor considered, leading to the selection of a commercially available 3C protease fused to GST. The 3C protease cleavage site EALFQG (Miyashita et al., 1996; Wang et al., 1997) was introduced in the GST-SSAO fusion construct (Fig. 1).

10

The GST-SSAO fragment was cloned in frame with a signal sequence to achieve secretion of the GST-SSAO fusion protein into the culture medium. A signal sequence derived from the heavy chain of a murine antibody was used (see Fig. 1). The final construct thus encoded a fusion protein comprising of an antibody signal peptide, an 18 amino acid spacer region, the mutated GST protein, a substrate sequence for the 3C protease and residues 29-763 of the human SSAO protein cloned from human aorta cDNA (Fig. 1). The calculated molecular weight of the unmodified GST-SSAO fusion protein is 112 kDa.

20

15

EXAMPLE 4: Initial analyses on conditioned medium from HEK293 cells transfected with the GST-SSAO expression vector

25

Benzylamine oxidase activity in the conditioned medium from small-scale cultures of HEK293 cells, stably transfected with the GST-SSAO expression vector pMB887, indicated that GST-SSAO was secreted into the culture medium. Further analyses showed that glutathione-Sepharose beads could be used to purify small amounts of the GST-SSAO fusion protein directly from the conditioned medium (data not shown), and that the purified material had benzylamine oxidase activity. Interestingly, the GST-SSAO fusion protein was found to be active also when immobilized on the glutathione-Sepharose beads. The amount of GST-SSAO fusion protein in the conditioned medium was calculated to be ~1 mg/l, by estimation of the amount of protein captured on the beads.

10

15

20

25

EXAMPLE 5: Preparative purification and site-specific cleavage of the GST-SSAO fusion protein

An overview of the affinity purification based procedure is shown in Fig. 2. The results of the purification are summarized in Table 1. One selected clone was expanded and grown in Cell Factories to generate larger amounts of GST-SSAO for purification. The harvested conditioned medium were concentrated and filtrated to reduce the time for loading on the glutathione-Sepharose column. Glutathione-affinity chromatography was then applied to purify the GST-SSAO fusion protein from the concentrated and filtered conditioned medium. Proteins captured on the column were eluted with 20 mM GSH and analyzed by SDS-PAGE under reducing conditions. This showed that the GST-SSAO fusion protein had high purity and that it could be isolated from large amounts of other proteins in the culture medium in a single step. The GST-SSAO fusion protein migrated in level with the 116 kDa protein in the molecular weight marker. In total 8.8 mg of protein was recovered from the glutathione-Sepharose column. The specific activity of the GST-SSAO fusion protein was determined to 343 nmol · min⁻¹ · mg⁻¹. Interestingly, the specific activity was almost doubled (634 nmol · min⁻¹ · mg⁻¹) by the buffer exchange step which removed the reducing agent GSH.

The glutathione-affinity purified GST-SSAO was cleaved with the GST-3C protease fusion protein (46 kDa) to remove the GST fusion partner from SSAO. Analytical experiments suggested that cleavage was slow, but precise, with no observable side-products. Moreover, complete cleavage could be obtained after ~48 hours incubation. The cleavage mixture was passed over the glutathione-Sepharose column to capture the removed GST fusion partner and the GST-3C protease. Flow-through material was collected and analyzed by SDS-PAGE under reducing conditions which showed only the expected SSAO product with a molecular weight of ~97 kDa. Captured material was also analyzed, which showed only the GST fusion partner (~28 kDa) and the GST-3C protease. This indicated that a complete cleavage had occurred and all GST containing proteins had been captured on the glutathione-Sepharose column. It also indicated that

20

: 1

all SSAO protein had passed through the column since no SSAO protein was seen in the eluted material.

The specific activity of the purified SSAO protein was determined to 522 nmol·min⁻¹ · mg⁻¹ which was less than the specific activity determined before cleavage. Since DTT had been used to ensure 3C protease activity during cleavage of the GST-SSAO fusion protein, we made an SDS-PAGE analysis (non-reducing) to see if the cleavage buffer had affected possible disulphide bridges in the SSAO homodimer (Kurkijärvi et al., 1998; Smith et al., 1998; Salminen et al., 1998). Only presumed SSAO monomers (~97 kDa) could be seen (data not shown). However, the SSAO protein was transformed to ~170 kDa in size (analyzed by SDS-PAGE) during storage at 5°C, indicating that one or several disulphides were formed. The cleavage buffer was removed by diafiltration and SDS-PAGE analysis showed that the SSAO protein was still apparently dimeric with a molecular weight of ~170 kDa. In total 3.6 mg of recombinant SSAO was obtained from 9.4 liters of conditioned medium having a specific activity of 809 nmol·min⁻¹ · mg⁻¹. The overall yield in the process was 22 % based on determined benzylamine oxidase activity.

Interestingly, the GST fusion partner did not significantly affect the benzylamine oxidase activity of the SSAO protein. The specific activity of the purified GST-SSAO fusion protein after the buffer exchange step, was determined to 634 nmol·min⁻¹·mg⁻¹. After removal of the GST fusion partner, the specific activity of SSAO was determined to 809 nmol·min⁻¹·mg⁻¹. However, the molecular mass of the GST fusion partner is ~25 % of the GST-SSAO fusion protein and the increase in specific activity after removal of GST was in the same range. This opens up possibilities to use the fusion protein for enzyme characterization. Furthermore, an affinity fusion partner such as GST can be used to bind or immobilize a recombinant protein in a directed manner on solid supports to study e.g. protein-protein interactions and enzyme characteristics (Nilsson et al., 1997). The GST-SSAO fusion protein was indeed active when it was bound to glutathione-Sepharose beads.

EXAMPLE 6: Initial characterization of purified SSAO proteins

: 1

A gel filtration experiment was performed to analyze the size of the SSAO protein under non-denaturing conditions. A sample from the SSAO protein material that migrated as a dimeric protein when investigated by SDS-PAGE under non-reducing conditions was loaded on a calibrated analytical Superdex 200 column. The SSAO protein eluted at 1.29 ml, which was slightly faster than catalase (232 kDa), which eluted at 1.35 ml.

N-terminal amino acid sequencing of the purified SSAO protein showed that the GST-3C protease had specifically cleaved the 3C protease substrate sequence EALFQG in the GST-SSAO fusion protein (Fig. 1). Twenty-nine amino acids were determined and corresponded exactly to residues number 29-58 in the predicted SSAO amino acid sequence (SEQ ID NO: 2). N-terminal sequencing was also performed on the GST-SSAO fusion protein, which showed that the signal peptide had been processed as anticipated.

Finally, the purified SSAO protein was found to be sensitive to inhibition by semicarbazide as expected. In the presence of 0.1 mM semicarbazide more than 95 % of the benzylamine oxidase activity was inhibited.

- 22 -

Purification of recombinant human SSAO TABLEI

Purification step To (sample)	Total volume (ml)	Total protein (mg)	Total SSAO activity ^a (nmol min ⁻¹)	Specific activity (nmol min-1 mg ⁻¹)	Yield (%)
Conditioned medium	9400	9024	9243	1.0	1
Concentrated medium	009	0906	13200	1.5	100
Filtrate	850	9065	11900	1.3	96
GSH-affinity step-1 (eluate)	8.9	8.8	3029	343	23
Buffer exchange	15	8.9	5624 ^b	634 ^b	43
GSH-affinity step-2 (flow-through)°	ا، 36	5.5	2859	522	22
Diafiltrate ^d	4.2	3.6	2919	608	22

^a Activity was measured as nmol of H₂O₂ produced per minute using 0.5 mM benzylamine as substrate. SSAO activity was confirmed with 0.1 mM semicarbazide as inhibitor.

^b Measured before addition of 5 mM DTT and GST-3C protease.

^c This step was performed after site-specific cleavage of the GST-SSAO fusion protein to capture removed GST fusion partner and GST-3C protease.

^d Buffer exchange and sample concentration by ultra-filtration.

20

30

REFERENCES

Blom, N., Hansen, J., Blaas, D. and Brunak, S. (1996) Cleavage site analysis in picornaviral polyproteins: Discovering cellular targets by neural networks. *Protein Science* 5, 2203-2216.

Boomsma, F., van Veldhuisen, D. J., de Kam, P. J., Man in't Veld, A. J., Mosterd, A., Lie, K. I., and Schalekamp, M. A. (1997) Plasma semicarbazide-sensitive amine oxidase is elevated in patients with congestive heart failure. *Cardiovasc. Res.* 33(2), 387-391.

Boomsma, F., van den Meiracker, A. H., Winkel, S., Aanstoot, H. J., Batstra, M. R., Man in 't Veld, A. J., and Bruining, G. J. (1999) Circulating semicarbazide-sensitive amine oxidase is raised both in type I (insulin-dependent), in type II (non-insulin-dependent) diabetes mellitus and even in childhood type I diabetes at first clinical diagnosis. *Diabetologia* 42(2), 233-237.

Boor, P. J., and Hysmith, R. M. (1987) Allylamine cardiovascular toxicity. *Toxicology* 44(2), 129-145.

Buffoni, F. (1993) Properties, distribution and physiological role of semicarbazidesensitive amine oxidases. *Curr. Top. Pharmacol.* 2, 33-49.

Callingham, B. A., Crosbie, A. E., and Rous, B. A. (1995) Some aspects of the pathophysiology of semicarbazide-sensitive amine oxidase enzymes. *Prog. Brain Res.* 106, 305-321.

Carter, P. (1990) Site-specific proteolysis of fusion proteins. In *Protein purification:*From molecular mechanism to large-scale processes (Am. Chem. Soc. Symp. Ser. No. 427) (Ladish, M. R., Willson, R. C., Painton, C. C., and Builder, S. E., eds), pp. 181-193, American Chemical Society Press.

20

25

30

::::

ŧΙ

Castillo, V., Lizcano, J. M., Visa J., and Unzeta, M. (1998) Semicarbazide-sensitive amine oxidase (SSAO) from human and bovine cerebrovascular tissues: biochemical and immunohistological characterization. *Neurochem. Int.* 33(5), 415-423.

- 5 Conklin, D. J., Langford, S. D., and Boor, P. J. (1998) Contribution of serum and cellular semicarbazide-sensitive amine oxidase to amine metabolism and cardiovascular toxicity. *Toxicol. Sci.* 46(2), 386-392.
- Dwyer, M. A., Huang, A. J., Pan, C. Q., and Lazarus, R. A. Expression and characterization of a DNase I-Fc fusion enzyme. (1999) *J. Biol. Chem.* 274(14), 9738-9743.
 - Ekblom, J. (1998) Potential therapeutic value of drugs inhibiting semicarbazidesensitive amine oxidase: vascular cytoprotection in diabetes mellitus. *Pharmacol. Res.* 37(2), 87-92.
 - Gräslund, T., Nilsson, J., Lindberg, A. M., Uhlén, M., and Nygren, P. Å. (1997) Production of a thermostable DNA polymerase by site-specific cleavage of a heat-eluted affinity fusion protein. *Protein Expression Purif.* 9(1), 125-132.
 - Hartmann, C., and McIntire, W. S. (1997) Amine-oxidizing quinoproteins. *Methods Enzymol.* 280, 98-150.
 - Hollenbaugh, D., Chalupny, N. J., and Aruffo, A. (1992) Recombinant globulins: novel research tools and possible pharmaceuticals. *Curr. Opin. Immunol.* 4(2), 216-219.
 - Holt, A., Sharman, D. F., Baker, G. B., and Palcic, M. M. (1997) A continuous spectrophotometric assay for monoamine oxidase and related enzymes in tissue homogenates. *Anal. Biochem.* 244(2), 384-392.
 - Holt, A., Alton, G., Scaman, C. H., Loppnow, G. R., Szpacenko, A., Svendsen, I., and Palcic, M. M. (1998) Identification of the quinone cofactor in mammalian semicarbazide-sensitive amine oxidase. *Biochemistry* 37(14), 4946-4957.

25

Hooper, N. M., Karran, E. H., and Turner, A. J. (1997) Membrane protein secretases. Biochem J. 321(Pt 2), 265-279.

- Imamura, Y., Noda, S., Mashima, Y., Kudoh, J., Oguchi, Y., and Shimizu, N. (1998)

 Human retina-specific amine oxidase: genomic structure of the gene (AOC2),

 alternatively spliced variant, and mRNA expression in retina. Genomics 51(2), 293-298.
- Jaakkola, K., Kaunismaki, K., Tohka, S., Yegutkin, G., Vanttinen, E., Havia, T.,
 Pelliniemi, L. J., Virolainen, M., Jalkanen, S., and Salmi, M. (1999) Human vascular adhesion protein-1 in smooth muscle cells. *Am. J. Pathol.* 155(6), 1953-1965.
- Kabat, E. A., Wu, T. T., Perry, H. M., Gottesman, K. S., and Foeller, C. (1991)
 Sequences of proteins of immunological interest. (U.S. Department of Health and
 Human Services; Public Health Service National Institutes of Health) NIH Publication
 No. 91-3242.
 - Kurkijärvi, R., Adams D. H., Leino R., Mottonen T., Jalkanen S., and Salmi, M. (1998) Circulating form of human vascular adhesion protein-1 (VAP-1): Increased serum levels in inflammatory liver diseases. *J. Immunol.* 161, 1549-1557.
 - Larsson, L. N., Johansson, C., Lindholm, L., and Holmgren, J. (1988) Mouse monoclonal antibodies for experimental immunotherapy promotes killing of tumor cells. *Int. J. Cancer* 42, 877-882.
 - Lewinsohn, R. (1984) Mammalian monoamine-oxidizing enzymes, with special reference to benzylamine oxidase in human tissues. *Braz. J. Med. Biol. Res.* 17(3-4), 223-256.
- Liang, J. F., Li, Y. T., and Yang, V. C. (2000) Biomedical application of immobilized enzymes. J. Pharm. Sci. 89(8), 979-990.

25

30

: 1

- Linder, M., Nevanen, T., Söderholm, L., Bengs, O., and Teeri, T. T. (1998) Improved immobilization of fusion proteins via cellulose-binding domains. *Biotechnol. Bioeng.* 60(5), 642-647.
- Lim, K., Ho, J. X., Keeling, K., Gilliland, G. L., Ji, X., Ruker, F., and Carter, D. C. (1994) Three-dimensional structure of Schistosoma japonicum glutathion S-transferase fused with a six-amino acid conserved neutralizing epitope of gp41 from HIV. *Protein Sci.* 3(12), 2233-2244.
- Lo, K. M., Sudo, Y., Chen, J., Li, Y., Lan, Y., Kong, S. M., Chen, L., An, Q., and Gillies, S. D. (1998) High level expression and secretion of Fc-X fusion proteins in mammalian cells. *Protein Eng.* 11(6), 495-500.
- Lyles, G. A. (1996) Mammalian plasma and tissue-bound semicarbazide-sensitive amine oxidases: biochemical, pharmacological and toxicological aspects. *Int. J. Biochem. Cell Biol.* 28(3), 259-274.
 - Lyles, G. A., and Pino, R. (1998) Properties and functions of tissue-bound semicarbazide-sensitive amine oxidases in isolated cell preparations and cell cultures. *J. Neural. Transm. Suppl.* 52, 239-250.
 - Meszaros, Z., Karadi, I., Csanyi, A., Szombathy, T., Romics, L., and Magyar, K. (1999) Determination of human serum semicarbazide-sensitive amine oxidase activity: a possible clinical marker of atherosclerosis. *Eur. J. Drug Metab. Pharmacokinet.* 24(4), 299-302.
 - Miyashita, K., Okunishi, J., Utsumi, R., Komano, T., Tamura, T., and Satoh, N. (1996) Cleavage specificity of coxsackievirus 3C proteinase for peptide substrate. *Biosci. Biotechnol. Biochem.* 60(4), 705-707.
 - Morris, N. J., Ducret, A., Aebersold, R., Ross, S. A., Keller, S.R., and Lienhard, G. E. (1997) Membrane amine oxidase cloning and identification as a major protein in the adipocyte plasma membrane. *J. Biol. Chem.* 272, 9388-9392.

- Müller, K. M., Arndt, K. M., and Alber, T. (2000) Protein fusions to coiled-coil domains. *Methods Enzymol.* 328, 261-282.
- Nakos, G., and Gossrau, R. (1994) Light microscopic visualization of semicarbazidesensitive amine oxidase (benzylamine oxidase) using a cerium method. *Folia Histochem. Cytobiol.* 32(1), 3-10.
- Nilsson, J., Larsson, M., Ståhl, S., Nygren, P. Å., and Uhlén, M. (1996) Multiple affinity domains for the detection, purification and immobilization of recombinant proteins. J. Mol. Recognit. 9(5-6), 585-594.
- Nilsson, J., Ståhl S., Lundeberg J., Uhlén M., and Nygren, P. Å. (1997) Affinity fusion strategies for detection, purification and immobilization of recombinant proteins.

 Protein Expression Purif. 11, 1-16.
 - Nord, K., Gunneriusson, E., Ringdahl, J., Ståhl, S., Uhlén, M., and Nygren, P. Å. (1997) Binding proteins selected from combinatorial libraries of an alpha-helical bacterial receptor domain. *Nat. Biotechnol.* 15(8), 772-777.
 - Nygren, P. Å, and Uhlén, M. (1997) Scaffolds for engineering novel binding sites in proteins. Curr. Opin. Struct. Biol. 7(4), 463-469.
- Rieker, J. D., and Hu, J. C. (2000) Molecular applications of fusions to leucine zippers.

 Methods Enzymol. 328, 282-296.
 - Sakurai, T., Roonprapunt, C., and Grumet, M. (1998) Purification of Ig-fusion proteins from medium containing Ig. *Biotechniques* 25(3), 382-385.
- Saleemuddin M (1999) Bioaffinity based immobilization of enzymes. Adv. Biochem. Eng. Biotechnol. 64, 203-226.
 - Salminen, T. A., Smith, D. J., Jalkanen, S., and Johnson, M. S. (1998) Structural model

11

of the catalytic domain of an enzyme with cell adhesion activity: human vascular adhesion protein-1 (HVAP-1) D4 domain is an amine oxidase. *Protein Eng.* 11(12), 1195-204.

- Sheibani, N. (1999) Prokaryotic gene fusion expression systems and their use in structural and functional studies of proteins. *Prep. Biochem. & Biotechnol.* 29, 77-90.
- Shpigel, E., Goldlust, A., Efroni, G., Avraham, A., Eshel, A., Dekel, M., and Shoseyov, O. (1999) Immobilization of recombinant heparinase I fused to cellulose-binding domain. *Biotechnol. Bioeng.* 65(1), 17-23.
 - Skerra, A. (2000) Engineered protein scaffolds for molecular recognition. *J. Mol. Recognit*.13(4), 167-187.
- Smith, D.B. and Johnson, K.S. (1988) Single-step purification of polypeptides expressed in *Escerichia coli* as fusions with glutathione S-transferase. *Gene* 67, 31-40.
 - Smith, D. J., Salmi, M., Bono, P., Hellman, J., Leu, T., and Jalkanen, S. (1998) Cloning of vascular adhesion protein 1 reveals a novel multifunctional adhesion molecule. *J. Exp. Med.* 188, 17-27.
 - Tischer, W., and Kasche, V. (1999) Immobilized enzymes: crystals or carriers? *Trends Biotechnol.* 17(8), 326-335.
- Tomme, P., Boraston, A., McLean, B., Kormos, J., Creagh, A. L., Sturch, K., Gilkes, N. R., Haynes, C. A., Warren, R. A., and Kilburn, D. G. (1998) Characterization and affinity applications of cellulose-binding domains. *J. Chromatogr. B Biomed. Sci. Appl.* 715(1), 283-296.
- Tudyka, T., and Skerra, A. (1997) Glutathione S-transferase can be used as a C-terminal enzymatically active dimerization module for a recombinant protease inhibitor, and functionally secreted into the periplasm of *Escherichia coli*. *Protein Sci.* 6, 2180-2187.

15

30

Turkova, J. (1999) Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function. J. Chromatogr. B Biomed. Sci. Appl. 722(1-2), 11-31.

Uhlén, M., Forsberg, G., Moks T., Hartmanis, M., and Nilsson, B. (1992) Fusion proteins in Biotechnology. *Curr. Opin. Biotechnol.* 3, 363-369.

Wang, Q. M., Johnson, R. B., Cox, G. A., Villarreal, E. C., and Loncharich, R. J. (1997) A continuous colorimetric assay for rhinovirus-14 3C protease using peptide pnitroanilides as substrates. *Anal. Biochem.* 252(2), 238-245.

Walker, P.A., Leong, L. E., Ng, P. W., Tan, S. H., Waller, S., Murphy, D., and Porter, A. G. (1994) Efficient and rapid affinity purification of proteins using recombinant fusion proteases. *Bio/Technology* 12, 601-605.

Wimmerova, M., and Macholan, L. (1999) Sensitive amperometric biosensor for the determination of biogenic and synthetic amines using pea seedlings amine oxidase: a novel approach for enzyme immobilisation. *Biosens. Bioelectron.* 14(8-9), 695-702.

- Yu, P. H. and Zuo, D. M. (1993) Oxidative deamination of methylamine by semicarbazide-sensitive amine oxidase leads to cytotoxic damage in endothelial cells. Possible consequences for diabetes. *Diabetes* 42(4), 594-603.
 - Yu, P. H., Zuo, D. M., and Davis, B. A. (1994) Characterization of human serum and umbilical artery semicarbazide-sensitive amine oxidase (SSAO). Species heterogeneity and stereoisomeric specificity. *Biochem. Pharmacol.* 47(6), 1055-1059.
 - Zhang, X., Kim, J., and McIntire, W. S. (1995) cDNA sequences of variant forms of human placenta diamine oxidase. *Biochem. Genet.* 33(7-8), 261-268.
 - Zhang, X and McIntire, W. S. (1996) Cloning and sequencing of a copper-containing, topa quinone-containing monoamine oxidase from human placenta. *Gene* 179, 279-286.

CLAIMS

10

15

25

- A recombinant construct comprising a nucleotide sequence encoding a fusion protein comprising
- 5 (i) a soluble form of human SSAO;
 - (ii) a secretable fusion partner enabling dimerization of SSAO;
 - (iii) a signal peptide allowing for secretion of a polypeptide from a host cell into the culture medium; and
 - (iv) a protease cleavage site located between the human SSAO variant and the fusion partner.
 - The method according to claim 1 wherein the said soluble form of human SSAO is lacking the membrane spanning portion essentially shown as amino acids 6 to 26 in SEQ ID NO: 2.
 - 3. The method according to claim 2 wherein the said soluble form of human SSAO essentially consists of amino acids 29 to 763 of SEQ ID NO: 2.
- 4. The recombinant construct according to any one of claims 1 to 3, encoding a fusion protein wherein the said fusion partner is fused to the N-terminal portion of the human SSAO polypeptide.
 - 5. The recombinant construct according to any one of claims 1 to 4 wherein the said fusion partner is glutathione S-transferase or a functionally equivalent variant thereof.
 - 6. The recombinant construct according to claim 5 wherein the said fusion partner is a variant of *Schistosoma japonicum* glutathione S-transferase, said variant having at least one of the cysteine residues in positions 85, 138, and 178 replaced by another amino acid residue.
 - 7. The recombinant construct according to any one of claims 1 to 6 wherein the said signal peptide is a mouse IgG1 heavy chain signal peptide.

- 8. The recombinant construct according to any one of claims 1 to 7 wherein the said protease cleavage site is a 3C protease cleavage site.
- 5 9. The recombinant construct according to claim 8 wherein the said 3C protease cleavage site comprises the amino acid sequence EALFQG.
 - 10. The recombinant construct according to any one of claims 1 to 9 comprising nucleotide sequence encoding essentially the amino acid sequence shown in Figure 1.
 - 11. An expression vector comprising the recombinant construct according to any one of claims 1 to 10.
- 12. The expression vector according to claim 11, which is the expression vector termed pMB887, shown in Figure 3.
 - 13. A method for the purification of a recombinant human SSAO polypeptide comprising the steps of:
- 20 (i) transfecting cells with an expression vector according to claim 11;
 - (ii) culturing the said cells under conditions allowing for the fusion protein expressed by the vector to be secreted into the culture medium;
 - (iii) binding the obtained fusion protein to a medium comprising a ligand having affinity for the fusion partner;
- 25 (iv) separating the said fusion partner and the SSAO polypeptide; and
 - (v) recovering the purified human SSAO polypeptide.
 - 14. The method according to claim 13 wherein the said ligand having affinity for the fusion partner is glutathione, or a derivative thereof.
 - 15. The method according to claim 13 or 14 wherein the said fusion partner is separated from human SSAO in step (iv) by protease cleavage.

20

- The method according to claim 15 wherein the said protease is a picornavirus 3Cprotease.
- The method according to claim 16 wherein the said protease is rhinovirus 3Cprotease.
 - 18. The method according to claim 16 or 17 wherein the said protease is fused to a fusion partner, thereby obtaining a "fusion protease".
- 19. The method according to claim 18 wherein the said fusion protease is separated from the SSAO polypeptide by a process comprising binding the said fusion protease to a medium comprising a ligand having affinity for the said fusion protease.
- 20. A method for the preparation of an immobilized recombinant human SSAO polypeptide comprising the steps of:
 - (i) transfecting cells with an expression vector according to claim 11;
 - (ii) culturing the said cells under conditions allowing for the fusion protein expressed by the vector to be secreted into the culture medium;
 - (iii) binding the obtained fusion protein to a medium comprising a ligand having affinity for the fusion partner.
 - 21. An immobilized recombinant human SSAO polypeptide obtainable by the method as defined in claim 20.
 - 22. An immobilized or encapsulated recombinant human SSAO polypeptide obtainable by the method as defined in claim 13.

ABSTRACT

: 1

The present invention relates to a recombinant construct comprising a nucleotide sequence encoding a fusion protein comprising a soluble form of human SSAO (Semicarbazide-Sensitive Amine Oxidase), a secretable fusion partner, a signal peptide; and a protease cleavage site. The said construct is useful in methods for purification of a soluble form of human SSAO.

-1-

SEQUENCE LISTING

<110>	Pharmacia	AB										
<120>	Methods for Protein Purification											
<130>	00395											
<160>	5											
<170>	PatentIn version 3.0											
<210> <211> <212> <213>	1 4040 DNA human											
<220> <221> <222>	CDS (161)(2	2452)										
<300> <308> <309>	GenBank/N 2000-01-2		4									
<300> <308> <309>	GenBank/U											
<400> gtcctt	1 ccca ccctt	tagtcc (aggcate	ctg act	accgo	gga	acct	cago	ca g	agto	cggga	60
gccccc	cacc ccgt	ccagga (ccaaca	gag cco	ccgto	ctt	gctg	gcgt	ga g	gaata	cattg	120
ctctcc	tttg gttga	aatcag (tgtccc	tct tc	gtggga		atg Met 1	aac Asn	cag Gln	aag Lys	aca Thr 5	175
atc ct Ile L e	c gtg ctc u Val Leu	ctc at Leu Il	ctg g e Leu A	cc gtc la Val	atc a Ile 1 15	acc Thr	atc Ile	ttt Phe	gcc Ala	ttg Leu 20	gtt Val	223
tgt gt Cys Va	c ctg ctg l Leu Leu 25	gtg gg Val Gl	c agg g y Arg G	gt gga Sly Gly 30	gat (Gly ggg	ggt Gly	gaa Glu	ccc Pro 35	agc Ser	cag Gln	27
ctt co Leu Pr	c cat tgc to His Cys 40	ccc tc Pro Se	r Val S	ct ccc Ser Pro	agt (gcc Ala	cag Gln	cct Pro 50	tgg Trp	aca Thr	cac His	31
cct gg Pro G1 5!	gc cag agc Ly Gln Ser	cag ct Gln Le	g ttt g u Phe A 60	gca gac Na Asp	ctg Leu	agc Ser	cga Arg 65	gag Glu	gag Glu	ctg Leu	acg Thr	36

gct Ala 70	gtg Val	atg Met	cgc Arg	ttt Phe	ctg Leu 75	acc Thr	cag Gln	cgg Arg	ctg Leu	80 Gly aga	cca Pro	ggg Gly	ctg Leu	gtg Val	gat Asp 85	415
gca Ala	gcc Ala	cag Gln	gcc Ala	cgg Arg 90	ccc Pro	tcg Ser	gac Asp	aac Asn	tgt Cys 95	gtc Val	ttc Phe	tca Ser	gtg Val	gag Glu 100	ttg Leu	463
cag Gln	ctg Leu	cct Pro	ccc Pro 105	aag Lys	gct Ala	gca Ala	gcc Ala	ctg Leu 110	gct Ala	cac His	ttg Leu	gac Asp	agg Arg 115	Gly ggg	agc Ser	511
ccc Pro	cca Pro	cct Pro 120	gcc Ala	cgg Arg	gag Glu	gca Ala	ctg Leu 125	gcc Ala	atc Ile	gtc Val	ttc Phe	ttt Phe 130	ggc	agg Arg	caa Gln	559
ccc Pro	cag Gln 135	ccc Pro	aac Asn	gtg Val	agt Ser	gag Glu 140	ctg Leu	gtg Val	gtg Val	Gly	cca Pro 145	ctg Leu	cct Pro	cac His	ccc Pro	607
Ser 150	Tyr	Met	Arg	Asp	gtg Val 155	Thr	Val	Glu	Arg	His 160	GIĀ	GIA	Pro	ьeu	165	655
Tyr	His	Arg	Arg	Pro 170	gtg Val	Leu	Phe	Gln	Glu 175	Tyr	Leu	Asp	IIe	180	GIN	703
atg Met	atc Ile	ttc Phe	aac Asn 185	Arg	gag Glu	ctg Leu	ccc Pro	cag Gln 190	gct Ala	tct Ser	GJÀ aaa	ctt Leu	ctc Leu 195	cac His	cac His	751
Cys	Cys	Phe 200	Tyr	Lys	His	Arg	Gly 205	Arg	Asn	Leu	Val	210	Met	Thr		799
Ala	215	Arg	Gly	Leu	Gln	Ser 220	Gly	Asp	Arg	Ala	225	Trp	Pne	GIY	ctc Leu	847
Тух 230	Туг	Asn	ılle	Ser	Gly 235	Ala	Gly	Phe	Phe	240	His	H1S	val	. сту	ttg Leu 245	895
gag Glu	g ctg Lev	cta Lev	gtg Val	aac Asn 250	. His	aag Lys	gcc	ctt Leu	gac Asp 255	Pro	gcc Ala	cgc Arg	tgg Trp	act Thr 260	atc : Ile	943
Glr	ı Lys	val	265	Э Туг Б	Gln	Gly	Arç	771 270	Tyr)	Asr	Ser	. Lei	275	GII	g ctg 1 Leu	991
gaç Glı	g gco 1 Ala	c cag a Glr 280	n Phe	gag Glu	g gco 1 Ala	ggo Gly	cto Lev 285	ı Val	aat Asr	gtg n Val	g gtg L Val	g ctg Lev 290	1 116	e cca	a gac o Asp	1039

H

aat Asn	ggc Gly 295	aca Thr	ggt Gly	Gly ggg	tcc Ser	tgg Trp 300	tcc Ser	ctg Leu	aag Lys	tcc Ser	cct Pro 305	gtg Val	ccc Pro	ccg Pro	ggt Gly	1087
cca Pro 310	gct Ala	ccc Pro	cct Pro	cta Leu	cag Gln 315	ttc Phe	tat Tyr	ccc Pro	caa Gln	ggc Gly 320	ccc Pro	cgc Arg	ttc Phe	agt Ser	gtc Val 325	1135
cag Gln	gga Gly	agt Ser	cga Arg	gtg Val 330	gcc Ala	tcc Ser	tca Ser	ctg Leu	tgg Trp 335	act Thr	ttc Phe	tcc Ser	ttt Phe	ggc Gly 340	ctc Leu	1183
gga Gly	gca Ala	ttc Phe	agt Ser 345	ggc Gly	cca Pro	agg Arg	atc Ile	ttt Phe 350	gac Asp	gtt Val	cgc Arg	ttc Phe	caa Gln 355	gga Gly	gaa Glu	1231
aga Arg	cta Leu	gtt Val 360	tat Tyr	gag Glu	ata Ile	agc Ser	ctc Leu 365	caa Gln	gag Glu	gcc Ala	ttg Leu	gcc Ala 370	atc Ile	tat Tyr	ggt Gly	1279
gga Gly	aat Asn 375	tcc Ser	cca Pro	gca Ala	gca Ala	atg Met 380	acg Thr	acc Thr	cgc Arg	tat Tyr	gtg Val 385	gat Asp	gga Gly	ggc	ttt Phe	1327
ggc Gly 390	Met	ggc Gly	aag Lys	tac Tyr	acc Thr 395	acg Thr	ccc Pro	ctg Leu	acc Thr	cgt Arg 400	Gly	gtg Val	gac Asp	tgc Cys	ecc Pro 405	1375
tac Tyr	ttg Leu	gcc Ala	acc Thr	tac Tyr 410	gtg Val	gac Asp	tgg Trp	cac His	ttc Phe 415	ctt Leu	ttg Leu	gag Glu	tcc Ser	cag Gln 420	gcc Ala	1423
ccc Pro	aag Lys	aca Thr	ata Ile 425	Arg	gat Asp	gcc Ala	ttt Phe	tgt Cys 430	gtg Val	ttt Phe	gaa Glu	cag Gln	aac Asn 435	cag Gln	ggc	1471
cto Leu	ccc Pro	ctg Leu 440	Arg	cga Arg	cac His	cac His	tca Ser 445	Asp	ctc Leu	tac Tyr	tcg Ser	cac His 450	туr	Phe	Gly	1519
ggt Gly	ctt Leu 455	Ala	gaa Glu	acg Thr	gtg Val	ctg Leu 460	gto Val	gtc Val	aga Arg	tct Ser	atg Met 465	Ser	acc Thr	ttg Lev	ctc Leu	1567
aac Asr 470	туг	gad Ası	tat Tyr	gtg Val	tgg Trp 475	Asp	acg Thr	gtc Val	tto Phe	cac His	Pro	agt Ser	Gly ggg	gco Ala	ata Ile 485	1615
gaa Glu	a ata ı Ile	cga Arg	a tto g Phe	tate Tyr	: Ala	acg Thr	Gl ⁷	tac Tyr	: ato : Ile 495	e Sei	tco Ser	g gca Ala	tto Phe	cto Lev 500	ttt Phe	1663
gg! Gly	gct Ala	act	ggg r Gly 50	/ Lys	g tac Tyr	Gly ggg	aac Asr	caa Glr 510	ı Va.	g tca L Sei	a gag c Glu	g cac ı His	acc Thi	. re	n Gly	1711

il

acg g Thr V	/al	cac His 520	acc Thr	cac His	agc Ser	gcc Ala	cac His 525	ttc Phe	aag Lys	gtg Val	gat Asp	ctg Leu 530	gat Asp	gta Val	gca Ala	1759
gga o	ctg Leu 535	gag Glu	aac Asn	tgg Trp	gtc Val	tgg Trp 540	gcc Ala	gag Glu	gat Asp	atg Met	gtc Val 545	ttt Phe	gtc Val	ccc Pro	atg Met	1807
gct g Ala N 550	gtg Val	ccc Pro	tgg Trp	agc Ser	cct Pro 555	gag Glu	cac His	cag Gln	ctg Leu	cag Gln 560	agg Arg	ctg Leu	cag Gln	gtg Val	acc Thr 565	1855
cgg a	aag Lys	ctg Leu	ctg Leu	gag Glu 570	atg Met	gag Glu	gag Glu	cag Gln	gcc Ala 575	gcc Ala	ttc Phe	ctc Leu	gtg Val	gga Gly 580	agc Ser	1903
gcc Ala	acc Thr	cct Pro	cgc Arg 585	Tyr	ctg Leu	tac Tyr	ctg Leu	gcc Ala 590	Ser	aac Asn	cac His	agc Ser	aac Asn 595	aag Lys	tgg Trp	1951
ggt Gly	cac His	ccc Pro 600	Arg	ggc	tac Tyr	cgc Arg	atc Ile 605	GIn	atg Met	ctc Leu	agc Ser	ttt Phe 610	7.4	gga Gly	gag Glu	1999
ccg Pro	ctg Leu 615	ccc	caa Gln	aac Asn	agc Ser	tcc Ser 620	atg Met	gcg Ala	aga Arg	ggc	tto Phe 625	: Ser	tgg Trp	gag Glu	agg Arg	2047
tac Tyr 630	cag Gln	ctg Leu	gct Ala	gtg Val	acc Thr 635	Gln	cgg Arg	aag Lys	gag Glu	gag Glu 640	GIU	g ccc i Pro	agt Ser	ago Ser	agc Ser 645	2095
agc Ser	gtt Val	ttc Phe	aat Asn	cag Gln 650	Asn	gac Asp	cct	tgg Trp	g gcc Ala 655	Pro	act Thi	gtg Val	gat L Asp	tto Phe 660	agt Ser	2143
gac Asp	ttc Phe	ato Ile	aac Asr 665	n Asr	gag Glu	acc Thr	att Ile	gct Ala 670	a Gly	a aag	g gat s Asj	t ttg p Lev	g gtg ı Val 675	LATO	tgg Trp	2191
gtg Val	aca Thr	gct Ala	a Gly	ttt Phe	c ctg	g cat 1 His	ato 110 68	e Pro	a cat	t gca s Ala	a gag a Gl	g gad u Asj 69	5 116	e Pr	aac Asn	2239
aca Thr	gtg Va: 699	L Th	t gtg r Va	g ggg	g aad y Asi	gg(Gl)	, va.	g gg 1 Gl	c tt y Ph	c tt e Ph	c ct e Le 70	u AL	a cco g Pro	c ta b Ty	t aac r Asn	2287
ttc Phe 710	Pho	t ga e As	c ga p Gl	a ga u As	c cc p Pro 71	o Se	c tt r Ph	c ta e Ty	c tc r Se	t gc r Al 72	a As	c tc p Se	c at	c ta e Ty	c ttc r Phe 725	2335
cga Arg	gg Gl	g ga y As	c ca p Gl	g ga n As 73	p Al	t gg a Gl	g gc y Al	c tg a Cy	c ga s Gl 73	u va	c aa 1 As	c cc n Pr	c ct o Le	a gc u Al 74	t tgc a Cys 0	2383

?) :

.

ctg ccc cag gct gct gcc tgt gcc ccc gac ctc cct gcc ttc tcc cac Leu Pro Gln Ala Ala Ala Cys Ala Pro Asp Leu Pro Ala Phe Ser His 745	2431
ggg ggc ttc tct cac aac tag gcggtcctgg gatggggcat gtggccaagg Gly Gly Phe Ser His Asn 760	2482
gctccagggc cagggtgtga gggatgggga gcagctgggc actgggccgg cagcctggtt	2542
ccctctttcc tgtgccagga etctctttct tccactaccc tccctcgcat ccgcctctga	2602
gccaggagcc tectgaceet gtgatgeetg acacagggga caetgaacet tgttgatgee	2662
agetgtactg agtteteate cacagaggee aggeatggee cageetggag eegtggeega	2722
gggcttccct agatggttcc ctttgttgct gtctggcttt cccgaatctt tttaggccac	2782
ctccaaggac tctaaaaggg ggctattccc tggagacccc agagtagggt tgccagtcct	2842
gcaagtccat agetgagetg gaaaggatge ttetgeteae attecetete atccaggtee	2902
ttteettete gtetteetet eteteaceta etteeteete eteeteetgt teetgeette	2962
tettetatee tgeaatttet eeegaateet gaggggatat eeetatgtee cageeeetgg	3022
tactececea geceteagtt tteagteaag tteegtetee tetecageee tatggaagte	3082
tcaaggtcac gggaccccta atcagagtgg ccaatccctg tgtgtcgttc ccttgtgtct	3142
gttgcttatt gggagtagga gttgctccta cccctgtcct ggggctgggt gtgtttcagg	3202
acagetgett etgtgeattt gtgtetgeet geeteatget etetatagag gaggatggte	3262
atcgtgacag cagcagctca agttagcatt tcaagtgatt tggggggtgca atgataatga	3322
agaatggcca ttttgtacca gggctctgta ttctgcaaca gcctgtttgg gaggctggag	3382
tggaaacaaa gggtgggcat caaagatgag aagccaaagc ccctacaact ccagccaccc	3442
agccaggagg ggctgtccaa tcacattcag gcatgcgaat gagctgggcc ctgggtgagg	3502
tgggggtctg gcctagtggg gaggggcctg gcctgggtgg ggcagggcct ggcctggtcc	3562
aggettggge tecattecea teactgetgt eceteetgag gtetggattg gggatgggga	3622
caaagaaata gcaagagatg agaaacaaca gaaacttttt tctctaaagg actggttaaa	3682
tcaattctga tacagcctta caatacaata gtatgcagct aaaaaataat tgtatgtctt	3742
tatatactaa tatgtaataa tetteaggtg aaaaaggeaa geeacagaaa tgtgtatage	3802
gcacttccca tttgtgtttc agaaaggagt agaatataaa cacataattg cttatgtatg	3862
cctattcaga ataaatgggt aacactgatt acttttggga ggggaaccag taggttgagg	3922
acaggagagg gaagggtett aacacttaca ceettttgta cattttgaat tttgaaccat	3982

4040

gtgactgtat tacctattca aaataaacaa taaatgggcc caaaaaaaaa aaaaaaaa 2 <210> <211> 763 <212> PRT <213> human <400> 2 Met Asn Gln Lys Thr Ile Leu Val Leu Leu Ile Leu Ala Val Ile Thr Ile Phe Ala Leu Val Cys Val Leu Leu Val Gly Arg Gly Gly Asp Gly Gly Glu Pro Ser Gln Leu Pro His Cys Pro Ser Val Ser Pro Ser Ala Gln Pro Trp Thr His Pro Gly Gln Ser Gln Leu Phe Ala Asp Leu Ser Arg Glu Glu Leu Thr Ala Val Met Arg Phe Leu Thr Gln Arg Leu Gly Pro Gly Leu Val Asp Ala Ala Gln Ala Arg Pro Ser Asp Asn Cys Val Phe Ser Val Glu Leu Gln Leu Pro Pro Lys Ala Ala Leu Ala His Leu Asp Arg Gly Ser Pro Pro Pro Ala Arg Glu Ala Leu Ala Ile Val 120 Phe Phe Gly Arg Gln Pro Gln Pro Asn Val Ser Glu Leu Val Val Gly 135 Pro Leu Pro His Pro Ser Tyr Met Arg Asp Val Thr Val Glu Arg His Gly Gly Pro Leu Pro Tyr His Arg Arg Pro Val Leu Phe Gln Glu Tyr Leu Asp Ile Asp Gln Met Ile Phe Asn Arg Glu Leu Pro Gln Ala Ser Gly Leu Leu His His Cys Cys Phe Tyr Lys His Arg Gly Arg Asn Leu 200 Val Thr Met Thr Thr Ala Pro Arg Gly Leu Gln Ser Gly Asp Arg Ala Thr Trp Phe Gly Leu Tyr Tyr Asn Ile Ser Gly Ala Gly Phe Phe Leu

His His Val Gly Leu Glu Leu Leu Val Asn His Lys Ala Leu Asp Pro

250

Ala Arg Trp Thr Ile Gln Lys Val Phe Tyr Gln Gly Arg Tyr Tyr Asp 260 265 270

i 1

- Ser Leu Ala Gln Leu Glu Ala Gln Phe Glu Ala Gly Leu Val Asn Val 275 . 280 285
- Val Leu Ile Pro Asp Asn Gly Thr Gly Gly Ser Trp Ser Leu Lys Ser
- Pro Val Pro Pro Gly Pro Ala Pro Pro Leu Gln Phe Tyr Pro Gln Gly 305 310 315 320
- Pro Arg Phe Ser Val Gln Gly Ser Arg Val Ala Ser Ser Leu Trp Thr
- Phe Ser Phe Gly Leu Gly Ala Phe Ser Gly Pro Arg Ile Phe Asp Val
- Arg Phe Gln Gly Glu Arg Leu Val Tyr Glu Ile Ser Leu Gln Glu Ala 355 360 365
- Leu Ala Ile Tyr Gly Gly Asn Ser Pro Ala Ala Met Thr Thr Arg Tyr
- Val Asp Gly Gly Phe Gly Met Gly Lys Tyr Thr Thr Pro Leu Thr Arg
- Gly Val Asp Cys Pro Tyr Leu Ala Thr Tyr Val Asp Trp His Phe Leu 405 410 415
- Leu Glu Ser Gln Ala Pro Lys Thr Ile Arg Asp Ala Phe Cys Val Phe 420 425 430
- Glu Gln Asn Gln Gly Leu Pro Leu Arg Arg His His Ser Asp Leu Tyr 435 440 445
- Ser His Tyr Phe Gly Gly Leu Ala Glu Thr Val Leu Val Val Arg Ser 450 455 460
- Met Ser Thr Leu Leu Asn Tyr Asp Tyr Val Trp Asp Thr Val Phe His 465 470 475 480
- Pro Ser Gly Ala Ile Glu Ile Arg Phe Tyr Ala Thr Gly Tyr Ile Ser 485 490 495
- Ser Ala Phe Leu Phe Gly Ala Thr Gly Lys Tyr Gly Asn Gln Val Ser 500 505 510
- Glu His Thr Leu Gly Thr Val His Thr His Ser Ala His Phe Lys Val
- Asp Leu Asp Val Ala Gly Leu Glu Asn Trp Val Trp Ala Glu Asp Met 530 535 540

<300>

<308> GenBank/M14654 <309> 1994-03-14

Val Phe Val Pro Met Ala Val Pro Trp Ser Pro Glu His Gln Leu Gln Arg Leu Gln Val Thr Arg Lys Leu Leu Glu Met Glu Gln Ala Ala 565 Phe Leu Val Gly Ser Ala Thr Pro Arg Tyr Leu Tyr Leu Ala Ser Asn 585 His Ser Asn Lys Trp Gly His Pro Arg Gly Tyr Arg Ile Gln Met Leu Ser Phe Ala Gly Glu Pro Leu Pro Gln Asn Ser Ser Met Ala Arg Gly Phe Ser Trp Glu Arg Tyr Gln Leu Ala Val Thr Gln Arg Lys Glu Glu 630 Glu Pro Ser Ser Ser Val Phe Asn Gln Asn Asp Pro Trp Ala Pro Thr Val Asp Phe Ser Asp Phe Ile Asn Asn Glu Thr Ile Ala Gly Lys 665 Asp Leu Val Ala Trp Val Thr Ala Gly Phe Leu His Ile Pro His Ala 680 Glu Asp Ile Pro Asn Thr Val Thr Val Gly Asn Gly Val Gly Phe Phe Leu Arg Pro Tyr Asn Phe Phe Asp Glu Asp Pro Ser Phe Tyr Ser Ala Asp Ser Ile Tyr Phe Arg Gly Asp Gln Asp Ala Gly Ala Cys Glu Val Asn Pro Leu Ala Cys Leu Pro Gln Ala Ala Cys Ala Pro Asp Leu Pro Ala Phe Ser His Gly Gly Phe Ser His Asn 760 <210> <211> 739 <212> DNA <213> S.japonicum <220> CDS <221> (17)..(673) <222>

<pre><400> 3 tttaggtaac ttggtc atg tcc cct ata cta ggt tat tgg aaa att aag ggc Met Ser Pro Ile Leu Gly Tyr Trp Lys Ile Lys Gly 1 5</pre>										52			
ctt gtg ca Leu Val Gl	ln Pro	act c Thr A	ga ctt rg Leu	ctt Leu 20	ttg Leu	gaa Glu	tat Tyr	Leu	gaa Glu 25	gaa Glu	aaa Lys	tat Tyr	100
gaa gag ca Glu Glu Hi 30	at ttg is Leu	tat g Tyr G	ag cgc lu Arg 35	gat Asp	gaa Glu	ggt Gly	gat Asp	aaa Lys 40	tgg Trp	cga Arg	aac Asn	aaa Lys	148
aag ttt ga Lys Phe G 45	aa ttg lu Leu	Gly L	tg gag eu Glu	ttt Phe	ccc Pro	aat Asn	ctt Leu 55	cct Pro	tat Tyr	tat Tyr	att Ile	gat Asp 60	196
ggt gat g Gly Asp V	tt aaa al Lys	tta a Leu T 65	ca cag hr Glr	tct Ser	atg Met	gcc Ala 70	atc Ile	ata Ile	cgt Arg	tat Tyr	ata Ile 75	gct Ala	244
gac aag c Asp Lys H	ac aac is Asn 80	atg t Met I	tg ggt Leu Gly	ggt Gly	tgt Cys 85	cca Pro	aaa Lys	gag Glu	cgt Arg	gca Ala 90	gag Glu	att Ile	292
tca atg c Ser Met L 9	tt gaa eu Glu 5	gga g Gly A	gcg gti Ala Val	ttg Leu 100	Asp	att Ile	aga Arg	tac Tyr	ggt Gly 105	gtt Val	tcg Ser	aga Arg	340
att gca t Ile Ala T 110	at agt yr Ser	aaa q Lys #	gac tt: Asp Pho	e Glu	act Thr	ctc Leu	aaa Lys	gtt Val 120	gat Asp	ttt Phe	ctt Leu	agc Ser	388
aag cta c Lys Leu P 125	ct gaa Pro Glu	Met I	ctg aa Leu Ly: 130	a atg s Met	ttc Phe	gaa Glu	gat Asp 135	cgt Arg	tta Leu	tgt Cys	cat His	aaa Lys 140	436
aca tat t Thr Tyr L	ta aat eu Asn	ggt g Gly 1	gat ca Asp Hi	t gta s Val	acc Thr	cat His 150	cct Pro	gac Asp	ttc Phe	atg Met	ttg Leu 155	tat Tyr	484
gac gct c Asp Ala L	ett gat Leu Asp 160	Val '	gtt tt Val Le	a tac u Tyr	atg Met 165	Asp	cca Pro	atg Met	tgc Cys	ctg Leu 170	gat Asp	gcg Ala	532
ttc cca a Phe Pro I	aaa tta Lys Leu 175	gtt Val	tgt tt Cys Ph	t aaa e Lys 180	: Lys	cgt Arg	att Ile	gaa Glu	gct Ala 185	TIE	cca Pro	caa Gln	580
att gat a Ile Asp I 190	aag tac Lys Tyr	ttg Leu	aaa to Lys Se 19	r Sei	aag Lys	tat Tyr	ata Ile	gca Ala 200	Trp	cct Pro	ttg Leu	cag Gln	628
ggc tgg (Gly Trp (205	caa gco Gln Ala	Thr	ttt gg Phe Gl 210	t ggt y Gly	t ggc y Gly	gac Asp	cat His	Pro	cca Pro	aaa Lys	taa	ı	673

733 739

attaagaatg attgttttag taaacattat ttatcactta caattaaact aaatataaat									
gtcgac									
<210> 4 <211> 218 <212> PRT <213> S.japonicum									
<400> 4 Met Ser Pro Ile Le 1 5	u Gly Tyr Trp	Lys Ile Lys	Gly Leu Val Gln Pro 15						
Thr Arg Leu Leu Le	u Glu Tyr Leu	Glu Glu Lys 25	Tyr Glu Glu His Leu 30						
Tyr Glu Arg Asp Gl	u Gly Asp Lys	Trp Arg Asn	Lys Lys Phe Glu Leu						
35	40		45						
Gly Leu Glu Phe Pr	o Asn Leu Pro	Tyr Tyr Ile	Asp Gly Asp Val Lys						
50	55		60						
Leu Thr Gln Ser Me	et Ala Ile Ile	Arg Tyr Ile	Ala Asp Lys His Asn						
	70	75	80						
Met Leu Gly Gly Cy		Arg Ala Glu	Ile Ser Met Leu Glu						
85		90	95						
Gly Ala Val Leu As	p Ile Arg Tyr	Gly Val Ser 105	Arg Ile Ala Tyr Ser 110						
Lys Asp Phe Glu Th	nr Leu Lys Val 120	Asp Phe Leu	Ser Lys Leu Pro Glu 125						
Met Leu Lys Met Ph	ne Glu Asp Arg	Leu Cys His	Lys Thr Tyr Leu Asn						
130	135		140						
Gly Asp His Val Th	nr His Pro Asp	Phe Met Leu	Tyr Asp Ala Leu Asp						
	150	155	160						
	et Asp Pro Met	Cys Leu Asp	Ala Phe Pro Lys Leu						
	55	170	175						
Val Cys Phe Lys Ly	ys Arg Ile Glu	Ala Ile Pro	Gln Ile Asp Lys Tyr						
180		185	190						
Leu Lys Ser Ser Ly	ys Tyr Ile Ala		Gln Gly Trp Gln Ala						
195	200		205						
Thr Phe Gly Gly G	ly Asp His Pro	Pro Lys							

<210> 5

<211> 217

<212> PRT

<213> S.japonicum

Arg Leu Leu Glu Tyr Leu Glu Glu Lys Tyr Glu Glu His Leu Tyr
20 25 30

Glu Arg Asp Glu Gly Asp Lys Trp Arg Asn Lys Lys Phe Glu Leu Gly 35 40 45

Leu Glu Phe Pro Asn Leu Pro Tyr Tyr Ile Asp Gly Asp Val Lys Leu 50 55 60

Thr Gln Ser Met Ala Ile Ile Arg Tyr Ile Ala Asp Lys His Asn Met 65 70 75 80

Leu Gly Gly Ser Pro Lys Glu Arg Ala Glu Ile Ser Met Leu Glu Gly 85 90 95

Ala Val Leu Asp Ile Arg Tyr Gly Val Ser Arg Ile Ala Tyr Ser Lys 100 105 110

Asp Phe Glu Thr Leu Lys Val Asp Phe Leu Ser Lys Leu Pro Glu Met 115 120 125

Leu Lys Met Phe Glu Asp Arg Leu Ser His Lys Thr Tyr Leu Asn Gly

Asp His Val Thr His Pro Asp Phe Met Leu Tyr Asp Ala Leu Asp Val 145 150 155 160

Val Leu Tyr Met Asp Pro Met Cys Leu Asp Ala Phe Pro Lys Leu Val 165 170 175

Ser Phe Lys Lys Arg Ile Glu Ala Ile Pro Gln Ile Asp Lys Tyr Leu 180 185 190

Lys Ser Ser Lys Tyr Ile Ala Trp Pro Leu Gln Gly Trp Gln Ala Thr 195 200 205

Phe Gly Gly Gly Asp His Pro Pro Lys 210 215 1/3

Fig. 1

+ 1

mouse IgG1 heavy chain signal peptide

M D W L R N L L F L M A A A Q S I N A A Q H D E A V D N K F N K E Q Q aty gat tgg ctg cgg aac ttg cta ttc ctg atg gcc gct caa agt atc aac gcc gcg caa cac gat gaa gcc gta gac aac aac aaa ttc aac aaa gaa caa caa

	L				
	-36aa				
	ᄄ	tt	•		
	ß	tet			
	>	gtt			
	Н	asa cta gtt tct ttt			
	区	aaa			
	GSPKERA -43aa- EDRLSH -35aa- KLVSF -36aa-				gac
	H	gaa gac cgt tta tct cat			tot cac aac tag tga gtc gac
	ß	ţċţ		TER	tga
	н	tta		TER	tag
T	出	cgt		z	aac
		gac	ପ	H	cac
S	⊡	gaa	2-67	ß	tct
mutated GST	-43aa-		hSSAO(residues 29-763)	A L F QVG G D -729aa- S H N TER TER	
	A	gca	SAO	Ω	gat
	ፈ	ggt tct cca aaa gag cgc gca BrsHII	PS	ტ	gaa gct ttg ttc caa ggt gga gat HhdIII
	臼	gag	į	G	ggt
	X	888		Õ	саа
	ы	CCB	3c—	ഥ	ttc
	ល	tct	3(П	ttg
	Ŋ	ggt		A	HandIII
	l di			田	gaa
	-79aa			O _i	Cag
		æ		K S Q S Q	a agt
	Τ	ata		Q	a ca
	щ	50		വ	y tc:
	NASP	aac gcg tcc cct ata		저	cct cca aag tca caa agt cag
	Æ.	Afail		Ъ	t 00
	Z	ğΙ		ΙД	ដូ

SE

Fig. 2

3/3

Fig. 3

