Hieu Pham

Assignment Section_2.5 due 05/01/2014 at 11:58pm MST

1. (1 pt) Let

$$f(x) = \sqrt{2x^2 + 4x + 4}$$

 $f'(x) = \underline{\qquad}$ $f'(5) = \underline{\qquad}$

Answer(s) submitted:

- $(x+1) / ((sqrt((x^2/2) + x + 1)))$
- 6sqrt(2/37)

(correct)

Correct Answers:

- (0.5*(2*x*x+4*x+4)^(-0.5))*(2*2*x+4)
- (0.5*(2*5*5+4*5+4)^(-0.5))*(2*2*5+4)

2. (1 pt) Let $f(x) = (5x+6)^{-1}$.

$$f'(x) = \underline{\qquad}$$
$$f'(3) = \underline{\qquad}$$

Answer(s) submitted:

- (-5) / $((5x+6)^2)$
- -(5/441)

(correct)

Correct Answers:

- (-1*(5*x+6)^(-1-1))*(5)
- (-1*(5*3+6)^(-1-1))*(5)

3. (1 pt) Let

$$y = \sqrt{6 - 2 \tan x}$$

 $\frac{dy}{dx} =$

Answer(s) submitted:

• -((sec^2(x))/(sqrt(6-(2tan(x)))))

(correct)

Correct Answers:

• $-2/2*(sec(x))^2*(6+-2*tan(x))^(-.5)$

4. (1 pt) Let $f(x) = 2\sin(2x-2)$. Find f'(x). $f'(x) = \underline{\hspace{1cm}}$

Answer(s) submitted:

• 4cos (2-2x)

(correct)

Correct Answers:

• 2*2*cos(2*x-2)

5. (1 pt) Let $f(x) = 7\sin^2 x$.

 $f'(x) = \underline{\hspace{1cm}}$

Answer(s) submitted:

• 7sin(2x)

(correct)

Correct Answers:

• $7*2*(\sin(x))^2(2-1)*\cos(x)$

6. (1 pt) Match the functions and their derivatives:

 $_1. y = \cos^3(x)$

 $2. y = \cos(\tan(x))$

___3. y = tan(x)

 $4. y = \sin(x) \tan(x)$

A. $y' = -3\cos^3(x)\tan(x)$

B. $y' = \sin(x) + \tan(x)\sec(x)$

C. $y' = 1 + \tan^2(x)$

D. $y' = -\sin(\tan(x))/\cos^2(x)$

Answer(s) submitted:

- A
- D
- C
- B

(correct)
Correct Answers:

- A
- D
- C
- B

7. (1 pt) Let

$$f(x) = 4\csc(2x)$$

$$f'(x) =$$

Answer(s) submitted:

• -8cot (2x) csc(2x)

(correct)

Correct Answers:

• $-4*2/(\tan(2*x)*\sin(2*x))$

8. (1 pt) Let

$$f(x) = (-4x^2 + 3)^4 (6x^2 + 6)^{12}$$

 $f'(x) = \underline{\hspace{1cm}}$

 $Answer(s)\ submitted:$

• $17414258688x(x^2+1)^11(4x^2-3)^3(16x^2-5)$

(correct)

Correct Answers:

• $(-4*x^2+3)^3 * (6*x^2+6)^{11} * (-768*x^3 + 240*x)$

9. (1 pt) Let

$$f(x) = 8\cos(\sin x)$$

$$f'(x) = \underline{\hspace{1cm}}$$

Answer(s) submitted:

• $-8\sin(\sin(x))\cos(x)$

(correct)

Correct Answers:

• -8*sin(sin(x))*cos(x)

10. (1 pt) If
$$f(t) = (6t - \frac{6}{t})^{\frac{2}{9}}$$
, find $f'(t)$.

Answer(s) submitted:

• $(2((6/t^2)+6))/(9(6t - (6/t))^(7/9))$

(correct)

Correct Answers:

11. (1 pt) Let

$$f(x) = \frac{9x}{\sqrt{9 - 2x}}$$

$$f'(x) = \underline{\hspace{1cm}}$$

Answer(s) submitted:

• $-(9(x-9)) / ((9-2x)^{3}(3/2))$

(correct)

Correct Answers:

•
$$(9*(9-2*x)+9*2*x/2)/(9-2*x)**(3/2)$$

12. (1 pt) Let

$$y = (5 + \cos^2 x)^6$$

dx =

Answer(s) submitted:

• $-12\sin(x)\cos(x)((\cos^2(x) + 5)^5)$

(correct)

Correct Answers:

• $-2*\cos(x)*\sin(x)*6*(5+(\cos(x))^2)^(6-1)$

13. (1 pt) Find an equation of the tangent line to the curve

$$y = \sin(7x) + \cos(6x)$$

at the point $(\frac{\pi}{6}, y(\frac{\pi}{6}))$. Tangent line:

y = _____

Answer(s) submitted:

• ((-7xsqrt(3))/2) + ((7 pi)/(4sqrt(3))) - (3/2)

(correct)

Correct Answers:

• $\sin(7*pi/6) + \cos(6*pi/6) + (7*\cos(7*pi/6) - 6*\sin(6*pi/6)) * (x-pi/6)$

14. (1 pt) Let $f(x) = 4x^2 \cos(6x)$.

Then f'(x) is _____ and f'(3) is _____ f''(x) is ____ and f''(3) is _____

Answer(s) submitted:

- $8x(\cos(6x) 3x\sin(6x))$
- 24(cos(18)-9sin(18))
- $8((1-18x^2)\cos(6x) 12x\sin(6x))$
- \bullet -8(36sin(18) + 161cos(18))

(correct)

Correct Answers:

- 2*4*x*cos(6*x) 4*(x**2)*sin(6*x)*6
- 178.06084630054
- $2*4*\cos(6*x) 4*4*x*\sin(6*x)*6 4*(x**2)*\cos(6*x)*(6**2)$
- -634.203593148133

15. (1 pt) A table of values for f, g, f', and g' is given below.

	X	f(x)	g(x)	f'(x)	g'(x)
	1	3	2	2	1
	2	1	2	2	2
ĺ	3	1	2	3	3

- 2
- 2

(correct)

Correct Answers:

- 2
- 2

16. (1 pt) Suppose that

$$f(x) = \frac{5x}{(1 - 4x)^4}.$$

Find an equation for the tangent line to the graph of f at x = 2.

Tangent line: y =

Answer(s) submitted:

• (320/16807) - (125x/16807)

(correct)

Correct Answers:

• -0.00743737728327483*(x-2) + 0.0041649312786339

17. (1 pt) A Cepheid variable star is a star whose brightness alternately increases and decreases. Suppose that Cephei Joe is a star for which the interval between times of maximum brightness is 4.6 days. Its average brightness is 4.1 and the brightness changes by ± 0.65 . Using this data, we can construct a mathematical model for the brightness of Cephei Joe at time t, where t is measured in days:

$$B(t) = 4.1 + 0.65 \sin(2\pi t/4.6)$$

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America

(a) Find the rate of change of	the brightness after	<i>t</i> days.
--------------------------------	----------------------	----------------

Rate of change = _____

(b) Find, correct to two decimal places, the rate of increase after one day.

Rate of increase = _____

Answer(s) submitted:

- 0.888cos(1.36591t)
- 0.180669

(correct)

Correct Answers:

- 0.65*2*pi/4.6*cos(2*pi*t/4.6)
- 0.65*2*pi/4.6*cos(2*pi/4.6)

18. (1 pt) Find the 20 th derivative of y = cos(3x). Answer: _____

Answer(s) submitted:

• 3486784401cos(3x)

(correct)

Correct Answers:

• (3**(20))*cos(3*x)