# Sprawdzian z informatyki nr 2

## Zadanie 1

**Liczba doskonała (definicja)** to taka liczba naturalna, której suma jej dzielników właściwych (bez niej samej) jest jej równa.

Kilka kolejnych liczb doskonałych: 6, 28, 496, 8128, 33550336, 8589869056, 137438691328

- a) Napisz funkcję sprawdzającą czy podana liczba jest liczbą doskonałą.
- b) Wypisz wszystkie liczby doskonałe z zadanego przedziału (podajesz n prawy koniec przedziału)

### Zadanie 2

Napisz program, który wczyta z klawiatury dwa wielomiany, a następnie wyznaczy wielomian będący ich sumą i go wypisze.

#### Zadanie 3

W laboratorium genetycznym wyhodowano komórki o przekroju prostokątnym, których podział odbywał się równolegle do krótszego boku. W ten sposób powstawała kolonia w kształcie nici. Wszystkie komórki dzielą się dokładnie na dwie części w tym samym czasie. W wyniku badań określono, że w trakcie podziału zachodzą mutacje genowe, które występują według określonego schematu:

A → BD

B → CA

B → CD

C -> DD

D -> BC

Organizm pierwotny o wyselekcjonowanym genie A w trakcie pierwszego podziału mutuje do BD. Przy drugim podziale może powstać mutacja CABC lub CDBC itd.



W pliku genetyka. txt zapisano kombinacje różnych kolonii, w różnym stadium podziału, które wygenerowali studenci na potrzeby badań. Napisz program, który sprawdzi liczbę kolonii, których nie można utworzyć w pełni zgodnie z opisanym schematem mutowania.

## Zadanie 4

Napisz program znajdujący tzw. wypukłą otoczkę zbioru punktów wg dołączonego algorytmu. Wypukła otoczka to podzbiór zbioru punktów tworzący wielokąt wypukły zawierający wszystkie punkty zbioru. Dane do programu wczytaj z pliku tekstowego punkty\_1.txt.

W pliku w pierwszym wierszu znajduje się jedna liczba całkowita dodatnia n >= 3, określająca liczbę punktów, w następnych n wierszach pliku znajdują się po dwie liczby rzeczywiste oddzielone spacja, określające współrzędne kolejnych punktów w kartezjańskim układzie współrzędnych.

Wynik, czyli współrzędne punktów tworzących wypukłą otoczkę, zapisz w pliku tekstowym (np. punkty\_1\_wynik.txt) w każdym wierszu pliku współrzędne jednego punktu oddzielone spacja.

## Algorytm wyznaczania otoczki wypukłej (Algorytm Jarvisa)

- $\bullet$   $P_1$  punkt na otoczce wypukłej o najmniejszej współrzędnej y (jeśli jest więcej niż jeden, wybierany jest ten o najmniejszej współrzędnej x),
- $P_0 := [-\infty, y(P_1)],$
- i := 1,
- powtarzaj:
  - ullet  $P_{i+1}$  punkt N, dla którego kąt  $P_{i-1}P_iN$  jest największy,
  - ullet jeśli  $N=P_1,$  koniec iterowania,
  - i := i + 1,
- ullet ostatecznie otoczkę tworzą punkty  $P_{1\ldots i}$  .

Implementację można usprawnić, odrzucając w każdej iteracji punkty znajdujące się po prawej stronie wektora  $P_1P_i$ , ponieważ na pewno nie będą należały do otoczki. Zabieg ten nie wpływa jednak na asymptotyczną złożoność obliczeniową algorytmu.



Przebieg algorytmu Jarvisa dla przykładowych danych