高等微积分教程(上)习题解答

 $Clever_Jimmy(xze22@mails.tsinghua.edu.cn)$

2023年1月28日

目录

1	实数系与实数列的极限 4					
	1.1	习题1.1解答	4			
	1.2	习题1.2解答	4			
	1.3	习题1.3解答	4			
	1.4	习题1.4解答	4			
	1.5	习题1.5解答	4			
	1.6	第1章总复习题解答	4			
2	承数	函数的极限与连续	5			
	2.1		5			
	2.2		5			
	2.3		5			
	2.4		6			
	2.5		6			
	2.6		6			
	2.7		6			
		44 E ***	_			
3		的导数 图 1878年	7			
	3.1		7			
	3.2		7			
	3.3	., = .,,,,,	7			
	3.4	第3章总复习题解答	7			
4	导数	应用	8			
	4.1	习题4.1解答	8			
	4.2	习题4.2解答	8			
	4.3	习题4.3解答	8			
	4.4	习题4.4解答	8			
	4.5	习题4.5解答	8			
	4.6	习题4.6解答	8			
	4.7	第4章总复习题解答	8			
5	黎曼	积分	9			
	5.1		9			
	5.2		9			
	5.3		9			
	5.4	习题5.4解答				
	5.5	习题5.5解答				

3

	5.6	习题5.6解答	9
	5.7	习题5.7解答	9
	5.8	第5章总复习题解答	9
6	广义	黎曼积分	10
	6.1	习题6.1解答	10
	6.2	习题6.2解答	10
	6.3	第6章总复习题解答	10
7	常微	分方程	11
	7.1	习题7.1解答	11
	7.2	习题7.2解答	11
	7.3	习题7.3解答	11
	7.4	习题7.4解答	12
	7.5	习题7.5解答	12
	7.6	习题7.6解答	13
	7 7	第7章总复习题解答	13

1 实数系与实数列的极限

- 1.1 习题1.1解答
- 1.2 习题1.2解答
- 1.3 习题1.3解答
- 1.4 习题1.4解答
- 1.5 习题1.5解答
- 1.6 第1章总复习题解答

函数函数的极限与连续 2

- 习题2.1解答 2.1
- 习题2.2解答 2.2
- 2.3习题2.3解答

第1题 证明本节的性质1与性质2.

解

证明定理2.3.1. 第2题

解

第3题 设 $\lim_{x \to x_0} f(x) = A$, 证明: (1) $\lim_{x \to x_0} f^2(x) = A^2$;

- (2) $\lim_{x \to x_0} \sqrt{f(x)} = \sqrt{A}(A > 0);$
- (3) $\lim_{x \to x_0} \sqrt[3]{f(x)} = \sqrt[3]{A}$

解

若 $\lim_{x \to x_0} f(x) = A > B$, 则 $\exists \delta > 0$, 当 $x \in U(x_0, \delta)$ 时, f(x) > B.

解

第5题 证明定理2.3.2.

解

第6题 求下列极限(其中各题中的 m 与 n 均为正整数).

- (1) $\lim_{x \to 2} (5 3x)(3x 1);$ (2) $\lim_{x \to \frac{\pi}{2}} \frac{\sin x}{x};$
- (3) $\lim_{x \to 2} \frac{x^2 2x}{x^2 3x + 2}$;

解 (1)
$$\lim_{x \to 2} (5 - 3x)(3x - 1) = (5 - 3 \times 2)(3 \times 2 - 1) = -5$$

(2) $\lim_{x \to \frac{\pi}{2}} \frac{\sin x}{x} = \frac{\sin \frac{\pi}{2}}{\frac{\pi}{2}} = \frac{2}{\pi}$

- (3) $\lim_{x \to 2} \frac{x^2 2x}{x^2 3x + 2} = \lim_{x \to 2} \frac{x(x 2)}{(x 1)(x 2)} = \lim_{x \to 2} \frac{x}{x 1} = \frac{2}{2 1} = 2$

- 2.4 习题2.4解答
- 2.5 习题2.5解答
- 2.6 习题2.6解答

第4题 设 $f \in C[0, 2a], f(0) = f(2a)$. 求证: $\exists \xi \in [0, a]$ 使得 $f(\xi) = f(\xi + a)$.

证明 设 F(x) = f(x) - f(x+a). 由 $f \in C[0,2a]$ 知 $F \in C[0,a]$. 注意到 F(0) = f(0) - f(a), F(a) = f(a) - f(2a) = f(a) - f(0) = -F(0), 不妨设 $F(0) \le 0 \le F(a)$. 由介值定理知 $\exists \xi \in [0,a]$ 使得 $F(\xi) = 0$. 即得 $f(\xi) = f(\xi+a)$.

2.7 第2章总复习题解答

3 函数的导数 7

3 函数的导数

- 3.1 习题3.1解答
- 3.2 习题3.2解答
- 3.3 习题3.3解答
- 3.4 第3章总复习题解答

4 导数应用 8

4 导数应用

- 4.1 习题4.1解答
- 4.2 习题4.2解答
- 4.3 习题4.3解答
- 4.4 习题4.4解答
- 4.5 习题4.5解答
- 4.6 习题4.6解答
- 4.7 第4章总复习题解答

5 黎曼积分 9

5 黎曼积分

- 5.1 习题5.1解答
- 5.2 习题5.2解答
- 5.3 习题5.3解答
- 5.4 习题5.4解答
- 5.5 习题5.5解答
- 5.6 习题5.6解答
- 5.7 习题5.7解答
- 5.8 第5章总复习题解答

6 广义黎曼积分 10

6 广义黎曼积分

- 6.1 习题6.1解答
- 6.2 习题6.2解答
- 6.3 第6章总复习题解答

7 常微分方程

- 7.1 习题7.1解答
- 7.2 习题7.2解答
- 7.3 习题7.3解答

题目 求解下列微分方程.

(1)
$$y'' = 2x - \cos x, y(0) = 1, y'(0) = -1;$$

(2)
$$xy'' + (y')^2 - y' = 0, y(1) = 1 - \ln 2, y'(1) = \frac{1}{2};$$

(3)
$$y'' = 3\sqrt{y}, y(0) = 1, y'(0) = 2;$$

(4)
$$(1+x^2)y'' - 2xy' = 0$$
;

(5)
$$y'' + \frac{2}{1-y}(y')^2 = 0;$$

(6)
$$(y''')^2 + (y'')^2 = 1$$
;

(7)
$$xy'' - y' \ln y' + y' = 0;$$

(8)
$$(1+x^2)y'' + (y')^2 = -1$$
;

$$(9) (y'')^2 - y' = 0.$$

解 (1) 等式左右两边积分,可得 $y' = x^2 - \sin x + C_1$. 由 y'(0) = -1 得 $C_1 = -1$,故 $y' = x^2 - \sin x - 1$. 等式左右两边再次积分,可得 $y = \frac{1}{3}x^3 + \cos x - x + C_2$. 由 y(0) = 1 得 $C_2 = 0$,故 $y = \frac{1}{2}x^3 + \cos x - x$.

(2) 设 p = y', 则有 $xp' + p^2 - p = 0$, 即 $\frac{dp}{p-p^2} = \frac{dx}{x}$. 化简为 $\left(\frac{1}{p} - \frac{1}{p-1}\right) dp = \frac{dx}{x}$ 后, 积分得 $\ln \left|\frac{p-1}{p}\right| = \ln |x| + C_1$, 此即 $\frac{p-1}{p} = \frac{C_2}{x}$. 由于 $p(1) = y'(1) = \frac{1}{2}$, 因此 $C_2 = -1$. 故 $p = y' = 1 - \frac{1}{x+1}$. 再次积分得 $y = x - \ln(x+1) + C$. 由于 $y(1) = 1 - \ln 2$, 故 C = 0. 所以 $y = x - \ln(x+1)$.

(3) 设 p = y', 则有 $p \frac{dp}{dy} = 3\sqrt{y}$, 即 $p dp = 3\sqrt{y} dy$. 积分可得 $\frac{1}{2}p^2 = 2y^{\frac{3}{2}} + C_1$. 由 y'(0) = p(0) = 2 得 $C_1 = 0$, 故 $y' = p = 2y^{\frac{3}{4}}$ (负值舍去). 此即 $\frac{dy}{y^{\frac{3}{4}}} = 2 dx$. 积分得 $4\sqrt[4]{y} = 2x + C_2$. 由于 y(0) = 1, 故 $C_2 = 4$. 所以 $y = \left(\frac{1}{2}x + 1\right)^4$.

(4) 注意到

$$\left(\frac{y'}{1+x^2}\right) = \frac{(1+x^2)y'' - 2xy'}{(1+x^2)^2} = 0$$

因此 $y' = C_1(1+x^2)$, 积分得 $y = C_1(\frac{1}{3}x^3 + x + C)$, 这等价于 $y = C_1(\frac{1}{3}x^3 + x) + C_2$.

(5) 设 p=y', 则有 $p\frac{\mathrm{d}p}{\mathrm{d}y}+\frac{2}{1-y}p^2=0$. 这个方程可以化简为 $\frac{\mathrm{d}p}{p}=\frac{2\mathrm{d}y}{y-1}$. 积分得 $\ln |p|=2\ln |y-1|+C_1$ 即 $|p|=e^{C_1}(y-1)^2$. 由于 $p\equiv 0$ 也为方程的解,故方程的解可表示为 $p=C_2(y-1)^2$. 因此 $\frac{\mathrm{d}y}{\mathrm{d}x}=C_2(y-1)^2$, 即 $\frac{\mathrm{d}y}{(y-1)^2}=C_2\mathrm{d}x$. 积分得 $\frac{1}{1-y}=C_2x+C_3$. 故原方程的解为 $y=1-\frac{1}{C_2x+C_3}$.

(6) $\[\mathcal{P} = y'', \] \[p = y'', \] \[p = y'', \] \[p = y'' \] \[p = y'', \$

对于前者而言, 积分得 $x = \arcsin p - C_1$, 前 $y'' = p = \sin(x + C_1)$ (没有正负号是因为可以取 $C_1 \leftarrow C_1 + \pi$ 得到负号). 积分得 $y' = -\cos(x + C_1) + C_2$, 再积分得 $y = -\sin(x + C_1) + C_2x + C_3$.

7 常微分方程 12

对于后者而言, 易知有解 $y = \pm \frac{1}{2}x^2 + C_1x + C_2$.

(7) 注意到

$$\left(\frac{\ln y' - 1}{x}\right)' = \frac{\left(\frac{y''}{y'}\right)x - \ln y' + 1}{x^2} = \frac{xy'' - y'\ln y' + y'}{x^2y'} = 0$$

因此 $\frac{\ln y'-1}{x}=C_1$, 即 $\ln y'-1=C_1x$, 化简得 $\mathrm{d}y=e^{C_1x+1}\mathrm{d}x$. 积分得 $y=\frac{1}{C_1}e^{C_1x+1}+C_2$.

(8) 设 p = y', 则有 $1 + p^2 + p'(1 + x)^2 = 0$, 即 $\frac{dp}{1 + p^2} = -\frac{dx}{1 + x^2}$. 积分得 $\arctan p = -\arctan x + C$, 即 $\frac{x + p}{1 - xp} = \tan C = C_1$. 化简得 $p = \frac{C_1 - x}{1 + C_1 x}$, 积分得 $y = \ln(1 + C_1 x) - \frac{1}{C_1} \cdot \frac{1}{1 + C_1 x} + C_2(C_1 \neq 0)$, 或 $y = -\frac{1}{2}x^2 + C_2(C_1 = 0)$.

(9) 设 p=y', 则有 $(p')^2=p$, 即 $p'=\pm\sqrt{p}$, 化简得 $\frac{\mathrm{d}p}{\sqrt{p}}=\pm\mathrm{d}x$, 或 $p\equiv0$.

对于前者而言, 积分得 $x = \pm 2\sqrt{p} + C_1$, 即 $y' = p = \frac{1}{4}(x - C_1)^2$, 再次积分得 $y = \frac{1}{12}(x - C_1)^3 + C_2$.

对于后者而言, 易知有解 $y = C_3$.

7.4 习题7.4解答

7.5 习题7.5解答

第1题

解

第2题

解

第3题

解

第4题

解

第5题 设曲线 y = y(x) 满足 $4x^2y'' - 4xy' - y = 0$, 过点 (1,4), 且在点 (1,4) 处与 x 轴夹角为 $\frac{\pi}{4}$, 求 y = y(x).

7 常微分方程 13

解 设 $y = x^{\lambda}$, 则 $4\lambda(\lambda - 1) + 4\lambda - 1 = 0$. 解得 $\lambda_1 = \frac{1}{2}$, $\lambda_2 = -\frac{1}{2}$. 故通解为 $y = C_1\sqrt{x} + \frac{C_2}{\sqrt{x}}$. 求导得 $y' = \frac{C_1}{2x\sqrt{x}} - \frac{C_2}{2x\sqrt{x}}$. 由题

$$\begin{cases} y(1) = 4 \\ y'(1) = 1 \end{cases} \implies \begin{cases} C_1 + C_2 = 4 \\ \frac{1}{2}(C_1 - C_2) = 1 \end{cases}$$

解得 $C_1 = 3, C_2 = 1$. 故 $y = 3\sqrt{x} + \frac{1}{\sqrt{x}}$.

第6题 设 $y = e^{2x} + (1+x)e^x$ 为微分方程 $y'' + ay' + by = ce^x$ 的一个解, 求常系数 a, b, c 及微分方程的通解.

解

第7题 已知连续函数 y = f(x) 满足

$$f(x) = \sin x + \int_0^x (t - x)f(t)dt,$$

求 y = f(x).

解 f(0) = 0. 由 $f(x) = \sin x + \int_0^x t f(t) dt - x \int_0^x f(t) dt$ 两边求导得 $f'(x) = \cos x + x f(x) - (x f(x) + \int_0^x f(t) dt) = \cos x - \int_0^x f(t) dt$. 这蕴含着 f'(0) = 1. 再次求导得 $f''(x) = -\sin x - f(x)$, 即 $y'' + y = -\sin x$. 考虑方程 $z'' + z = e^{-ix}$. 特征方程为 $\lambda^2 + 1 = 0$, $\lambda_1 = i, \lambda_2 = -i$. 因此 $\lambda = -i$ 为特征方程的一个根. 设其有特解 $Z(x) = Axe^{-ix}$,代入有 $A = \frac{i}{2}$,则 $Z(x) = \frac{i}{2}e^{-ix}$,Im $Z(x) = \frac{1}{2}x\cos x$. 故原微分方程有通解 $y = C_1\cos x + C_2\sin x + \frac{1}{2}x\cos x$. 又因为 f(0) = 0, f(1) = 1, 故 $C_1 = 0$, $C_2 = \frac{1}{2}$. 因此 $f(x) = \frac{1}{2}\sin x + \frac{1}{2}x\cos x$.

7.6 习题7.6解答

7.7 第7章总复习题解答