Classification of User Satisfaction with Social Signals In-The-Wild

Michael Schiffmannmichael.schiffmann@th-koeln.deAnja Richertanja.richert@th-koeln.de

Appendix A – Figure of the Zones of the Handcrafted Feature Approach

Appendix B – Table of Social Signal Metrics Formulas

All Formulas are derived from the Approach of McColl and Nejat¹ and are reformulated to fit to the body landmarks of MediaPipe.

Feature	Description	Formula
Head's heading	The deviation, by which the head faces away from the robot. Where 0° being the direction of the robot.	$-\frac{\vec{v}_{h1,x}}{\left \vec{v}_{h1,x}\right } \cdot \arccos\left(\frac{\vec{v}_{h1}\cdot -\vec{e}_z}{\left\ \vec{v}_{h1}\right\ \cdot \left\ -\vec{e}_z\right\ }\right) \tag{1}$ $\vec{v}_{h1} \text{ is the sum of the two normal vectors to the areas enclosed by the eyes' contours after projection into the XZ-Plane.}$
Head's pitch @ a heading of 0°	The head's attitude relative to the horizon.	$\frac{\vec{\sigma}_{h2,y}}{\left \vec{\sigma}_{h2,y}\right } \cdot \arccos\left(\frac{\vec{\sigma}_{h2} \cdot - \vec{\sigma}_z}{\left\ \vec{\sigma}_{h2}\right\ \cdot \left\ -\vec{\sigma}_z\right\ }\right) \tag{2}$ $\vec{\sigma}_{h2,y} \text{ is the sum of the two normal vectors to the areas}$ enclosed by the eyes' contours after projection into the YZ-Plane.
Head's tilt ® a heading of 0°	The head's deviation from it's upright position along the x-axis.	$-\frac{\overrightarrow{\sigma}_{h\Im,y}}{\left\ \overrightarrow{\sigma}_{h\Im,y}\right\ }\cdot\arccos\left(\frac{\overrightarrow{\sigma}_{h\Im}\cdot\overrightarrow{\sigma}_{x}}{\left\ \overrightarrow{\sigma}_{h\Im}\right\ \cdot\left\ \overrightarrow{\sigma}_{x}\right\ }\right)\tag{3}$ $\overrightarrow{\sigma}_{h\Im}\text{ is the vector from the inner corner of the right eye to the inner corner of the left eye.}$
Trunk's heading	The deviation, by which the trunk faces away from the robot. Where 0° being the direction of the robot.	$-\frac{\vec{v}_{t1,x}}{ \vec{v}_{t1,x} } \cdot \arccos\left(\frac{\vec{v}_{t1} \cdot - \vec{e}_x}{ \vec{v}_{t1} \cdot -\vec{e}_x }\right) \tag{4}$ $\vec{v}_{t1} \text{ is the normal vector of the area enclosed by the trunk's contours after projection into the XZ-Plane.}$
Trunk's pitch @ a heading of 0°	The trunks attitude relative to the horizon.	$-\frac{\vec{v}_{t2,z}}{ \vec{v}_{t2,z} } \cdot \arccos\left(\frac{\vec{v}_{t2} \cdot - \vec{s}_y}{ \vec{v}_{t2} \cdot - \vec{s}_y }\right) \tag{5}$ \vec{v}_{t2} is the vector from the middle point between the hips to the middle point between the shoulders after projection into the YZ-Plane.
Trunk's tilt ② a heading of 0°	The trunk's deviation from its upright position along the x-axis	$-\frac{\vec{v}_{tS,x}}{ \vec{v}_{tS,x} } \cdot \arccos\left(\frac{\vec{v}_{tS} - \vec{e}_{y}}{ \vec{v}_{tS} \cdot -\vec{e}_{y} }\right) \tag{6}$ $\vec{v}_{tS} is the vector from the middle point between the hips to the middle point between the shoulders after projection into the XY-Plane.$
Arms' opening	Average separation between each hand and the center of the trunk	$\frac{1}{2}\left(\left\ L_{15}-P_{to}\right\ +\left\ L_{16}-P_{to}\right\ \right)\tag{7}$ L_{15} represents the left hand L_{16} represents the right hand P_{to} represents the center of the trunk
Expansion	Spacial extension of the body in three dimensions	$width = \max_{i} \left(L_{i,x}\right) - \max_{j} \left(L_{j,x}\right) $ (8) $height = \max_{i} \left(L_{i,y}\right) - \max_{j} \left(L_{j,y}\right) $ (9) $depth = \max_{i} \left(L_{i,z}\right) - \max_{j} \left(L_{j,z}\right) $ (10)
Vertical head's position	Distance along the y-axis from the head's center to the middle point between the shoulders	$P_{hc,y} - P_{sc,y}$ (11) P_{hc} is the point at the center of the head P_{sc} is the point at the center between the shoulders
Sagittal head's position	Distance along the z-axis from the head's center to the middle point between the shoulders	$P_{ho,z} - P_{\sigma o,z} \tag{12}$ $P_{ho} \text{ is the point at the center of the head \&} P_{\sigma o} \text{ is the point at the center between the shoulders}$
Vertical body motion	Average movement of the body along the y-axis	$\frac{1}{S}\sum_{i=1}^{S}\left(L_{i,y,n}-L_{i,y,n-1}\right) \tag{13}$ S is the number of landmarks that make up a pose. n denotes the current frame. n-1 denotes the previous frame.
Sagittal body position	Average movement of the body along the z-axis	$\frac{1}{S}\sum_{i=1}^{S}\left(L_{i,z,n}-L_{i,z,n-1}\right) \tag{14}$ S is the number of landmarks that make up a pose. n denotes the current frame. $n-1$ denotes the previous frame.
Body speed	Body's motion velocity	$\frac{1}{S}\sum_{i=1}^{S}\left(\frac{\left\ L_{i,n}-L_{i,n-1}\right\ }{\epsilon_{n}-\epsilon_{n-1}}\right)$ $S \text{ is the number of landmarks that make up a pose.}$ $n \text{ denotes the current frame.}$ $n-1 \text{ denotes the previous frame.}$

¹ D. McColl und G. Nejat, "Determining the affective body language of older adults during socially assistive HRI", in *2014 IEEE/RSJ International Conference on Intelligent Robots and Systems*, Chicago, IL, USA: IEEE, Sep. 2014, S. 2633–2638. doi: 10.1109/IROS.2014.6942922.

Appendix C – Top Ten Features tsfresh Approach

Feature	Score	P-Value
MainPhase_distancefft_coefficientattr_"real"coeff_51	12,54	0,000955
MainPhase_fe_fearfft_coefficientattr_"angle"coeff_42	17,05	0,000160
MainPhase_widthfft_coefficientattr_"angle"coeff_87	15,24	0,000321
MainPhase_head_headingfft_coefficientattr_"imag"coeff_49	14,15	0,000495
MainPhase_vertical_motionfft_coefficientattr_"angle"coeff_51	14,02	0,000522
MainPhase_vertical_head_positionf	12,64	0,000917
ft_coefficientattr_"angle"coeff_4		
MainPhase_head_tiltfft_coefficientattr_"imag"coeff_41	14,08	0,000509
MainPhase_distancefft_coefficientattr_"real"coeff_98	12,02	0,001187
MainPhase_fe_surprisefft_coefficientattr_"imag"coeff_35	11,91	0,001243
MainPhase_head_pitchfft_coefficientattr_"real"coeff_95	11,88	0,001258

Appendix D – Top Ten Features catch22 Approach

Feature	Score	P-Value
MainPhase_trunk_tilt_SC_FluctAnal_2_dfa_50_1_2_logi_prop_r1	4,88	0,032472
MainPhase_head_heading_DN_OutlierInclude_p_001_mdrmd	4,59	0,037711
MainPhase_vertical_motion_CO_trev_1_num	4,61	0,037406
MainPhase_width_SB_BinaryStats_diff_longstretch0	5,14	0,028285
MainPhase_height_DN_HistogramMode_10	6,39	0,015111
MainPhase_depth_PD_PeriodicityWang_th0_01	5,17	0,027976
MainPhase_distance_CO_HistogramAMI_even_2_5	5,07	0,029397
MainPhase_distance_SP_Summaries_welch_rect_area_5_1	6,21	0,016523
MainPhase_fe_disgust_SC_FluctAnal_2_rsrangefit_50_1_logi_prop_r1	5,75	0,020762
MainPhase_fe_happiness_DN_OutlierInclude_p_001_mdrmd	5,66	0,021708

Appendix E – Top Ten Features hc features Approach

Feature	Score	P-Value
MainPhase_trunk_heading_Wndw2_Freq_of_Zone_5	5,76	0,020689
MainPhase_trunk_pitch_longest_Period_of_Zone_2	3,93	0,053571
MainPhase_trunk_pitch_shortest_Period_of_Zone_2	4,56	0,038294
MainPhase_head_heading_Wndw1_Freq_of_Zone_5	5,81	0,020201
MainPhase_body_speed_CountZoneChanges	3,80	0,057607
MainPhase_body_speed_shortest_Period_of_Zone_10	4,56	0,038294
MainPhase_body_speed_Wndw1_Freq_of_Zone_8	4,42	0,041328
MainPhase_distance_Wndw5_Freq_of_Zone_3	5,66	0,021801
MainPhase_fe_disgust_Wndw1_Freq_of_Zone_2	4,00	0,051694
MainPhase_fe_neutral_CountZoneChanges	8,96	0,004507