Session 13:

Supervised learning, part 2

Andreas Bjerre-Nielsen

Agenda

- 1. model building
- 2. model selection
 - cross validation
 - tools for selection
- 3. dimensionality reduction
- 4. measures for classification

Vaaaamos

```
In [51]: import warnings
    from sklearn.exceptions import ConvergenceWarning
    warnings.filterwarnings(action='ignore', category=ConvergenceWarning)

import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    import seaborn as sns

plt.style.use('default') # set style (colors, background, size, gridlines etc.)
    plt.rcParams['figure.figsize'] = 10, 4 # set default size of plots
    plt.rcParams.update({'font.size': 18})
```

Supervised problems (1)

What is the tradeoff for making supervised regression models?

In [3]: # f_bias_var['regression'][2] Out[3]: **Underfitting:** Balanced model: Overfitting: Non-linear Hyper-sensitive Linear 1.0 1.0 1.0 0.8 0.8 0.8 0.6 0.6 0.6 > 0.4 0.4 0.4 0.2 0.2 0.2 0.0 0.00 0.0 0.0 0.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 Х Х estimated model data generating process

Supervised problems (2)

What was a remedy to overfitting in linear models? How do we measure overfitting?

Regularization

- Too many irrelevant features solved by L1 regularization ~ lasso
- Exploding coefficients solved by L2 regularization ~ ridge

Model building

Model pipelines (1)

Is there a smart way to build ML models?

Yes, we build a pipeline:

- Preprocessing data
 - Standard: adding polynomials, imputation, rescaling
 - Unsupervised learning (more info..)
- Supervised learning

Model pipelines (2)

Model pipelines (3)

What are the advantages of using a pipeline?

- Ensures good practice we only fit on training data.
- Much less code!

Applying a model pipeline (1)

What would this look like in Python?

ly=False))

('standardscaler', StandardScaler(copy=True, with mean=True, with std=True))

Applying a model pipeline (2)

Let's some load Boston house price data

```
In [49]:
         print('\n'.join(load boston()['DESCR'].split('\n')[13:28]))
             :Attribute Information (in order):
                            per capita crime rate by town
                 - CRIM
                 - ZN
                           proportion of residential land zoned for lots over 25,000 sq.ft.
                 - INDUS
                            proportion of non-retail business acres per town
                           Charles River dummy variable (= 1 if tract bounds river; 0 otherwi
                 - CHAS
         se)
                 - NOX
                            nitric oxides concentration (parts per 10 million)
                            average number of rooms per dwelling
                 - RM
                 - AGE
                            proportion of owner-occupied units built prior to 1940
                            weighted distances to five Boston employment centres
                 - DIS
                            index of accessibility to radial highways
                 - RAD
                 - TAX
                            full-value property-tax rate per $10,000
                 - PTRATIO
                           pupil-teacher ratio by town
                            1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
                 - B
                 - LSTAT
                            % lower status of the population
                            Median value of owner-occupied homes in $1000's
                 MEDV
```

Applying a model pipeline (3)

And how do I apply the pipe on the data?

'B' 'LSTAT']

```
In [41]: from sklearn.model_selection import train_test_split
    from sklearn.datasets import load_boston
    X = load_boston().data
    y = load_boston().target

print(load_boston().feature_names)

# splitting into train and test data
    X_train, X_test, y_train, y_test = train_test_split(X, y)

# apply preproc - fit on train
    pipe_preproc.fit(X_train) # fit to training
    X_train_prep = pipe_preproc.transform(X_train) # transform training data
    X_test_prep = pipe_preproc.transform(X_test) # transform test data

['CRIM' 'ZN' 'INDUS' 'CHAS' 'NOX' 'RM' 'AGE' 'DIS' 'RAD' 'TAX' 'PTRATIO'
```

Applying a model pipeline (4)

And how do I apply the pipe on the data?

```
In [56]: # THE PIPE APPLIED
         # apply preproc - fit on train
         pipe preproc = make pipeline(PolynomialFeatures(),
                                       StandardScaler())
         pipe_preproc.fit(X_train) # fit to training
         X train prep = pipe preproc.transform(X train) # transform training data
         X test prep = pipe preproc.transform(X test) # transform test data
         # WITHOUT PIPE
         poly trans = PolynomialFeatures()
         scaler = StandardScaler()
         X train poly = poly trans.fit transform(X train)
         X test poly = poly trans.fit transform(X test)
         scaler.fit(X train poly)
         X train prep alt = scaler.transform(X train poly)
         X test prep alt = scaler.transform(X test poly)
```

Model selection

Measuring the problem

Does machine learning work out of the box?

- In some cases ML works quite well out of the box.
- Often ML requires making careful choices.
 - Note that automated machine learning packages and services exist.

Which choices are to be made?

- We need to pick model building hyperparameters.
- E.g. λ for Lasso, Ridge.

Model validation (1)

How do we measure our model's performance for different hyperparameters?

Remember we cannot use the test set.

Could we somehow mimick what we do with test data?

- Yes, we can split the remaining non-test data into training and validation data:
 - we train model for various hyperparameters on training data;
 - pick the hyperparameters which performs best on validation data.

Model validation (2)

The non-test data is split into training and validation

Model validation (3)

What would this look like in Python?

```
In [57]: # splitting into development (2/3) and test data (1/3)
X_dev, X_test, y_dev, y_test = train_test_split(X, y, test_size=1/3, random_state=1)
# splitting development into train (1/3) and validation (1/3)
X_train, X_val, y_train, y_val = train_test_split(X_dev, y_dev, test_size=1/2, random_state=1)
```

Model validation (4)

Let's train a linear regression model

e, n jobs=1, normalize=False))])

with std=True)), ('linearregression', LinearRegression(copy X=True, fit intercept=Tru

Model validation (5)

Let's find the Lasso model which performs best in the validation set

0.01 17.318434 dtype: float64

Model validation (6)

Let's compare the performance of the Lasso vs. Linear Regression

Lasso 12.382 LinReg 17.895

Bias and variance (1)

How do we describe the modelling error?

From <u>Wikipedia Sunday, August 19, 2018</u> (<u>https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff</u>):

- model bias: an error from erroneous assumptions in the learning algorithm
 - oversimplification of models, cannot approximate all patterns found
- model variance: an error from sensitivity to small fluctuations in the training set
 - reacts too much to sample errors and thus finds too many spurious relations

Bias and variance (2)

- over fitting: low bias / high variance
 - traning our model captures all patterns but we also find some irrelevant
 - examples: Decision Trees, Support Vector Machines or Neural Networks
- under fitting: high bias / low variance
 - traning our model captures all patterns but we also find some irrelevant
 - examples: linear and logistic regression (without polynomial expansion)

Bias and variance (3)

Not so fast.. OLS is unbiased, right?

Yes, OLS is unbiased. But ..

• Requires we know the true form of the model.

What happens if we introduce regularization? • Then model is no longer unbiased.

Smarter validation

Is this approach the smartest way for deciding on choice of hyperparameters?

NO

Our model choice depends a lot on which sample we pick. Could we use more of the data?

Cross validation

The holdout method

How do we got the more out of the data?

We reuse the data in the development set repeatedly

- We test on all the data
- Rotate which parts of data is used for test and train.

Leave-one-out CV

How do we got the most of the data?

The most robust approach

- Each single observation in the training data we use the remaining data to train.
- Makes number of models equal to the number of observations
- Very computing intensive does not scale! LOOCV

K fold method (1)

How do balance computing time vs. overfitting?

We split the sample into K even sized test bins.

• For each test bin k we use the remaining data for training.

Advantages:

- We use all our data for testing.
- Training is done with 100-(100/K) pct. of the data, i.e. 90 pct. for K=10.

K fold method (2)

In K-fold cross validation we average the errors.

K fold method (3)

How would we use K-fold cross validation to select our model?

```
In [61]:
         from sklearn.model selection import KFold
         kfolds = KFold(n_splits=10)
         mseCV = []
         for lambda in lambdas:
             pipe lassoCV = make pipeline(PolynomialFeatures(degree=3, include bias=False),
                                           StandardScaler(),
                                           Lasso(alpha=lambda , random state=1))
             mseCV = []
             for train idx, val idx in kfolds.split(X dev, y dev):
                 X train, y train, = X dev[train idx], y dev[train idx]
                 X val, y val = X dev[val idx], y dev[val idx]
                  pipe lassoCV.fit(X train, y train)
                 mseCV .append(mse(pipe lassoCV.predict(X val), y val))
             mseCV.append(mseCV )
```

K fold method (4)

Lasso 12.4 Lasso CV 12.4 LinReg 17.9

Learning curves (1)

What does a balanced model look like?

Learning curves (2)

	Test	Train
sample size		
20	327.856169	0.040538
40	67.607438	0.836417
60	52.208482	1.592246
80	50.194690	1.911472
101	36.249970	3.419180

Learning curves (3)

Out[38]: Text(0,0.5, 'Mean squared error')

Tools for model selection

Validation curves (1)

```
from sklearn.model selection import validation curve
train scores, test scores = \
    validation curve(estimator=pipe lasso,
                     X=X train,
                     y=y train,
                     param name='lasso alpha',
                     param range=lambdas,
                     scoring='neg mean squared error',
                     cv=3)
mse score = pd.DataFrame({'Train':-train scores.mean(axis=1),
                          'Validation':-test scores.mean(axis=1),
                          'lambda':lambdas})\
              .set index('lambda')
print(mse score.Test.nsmallest(1))
AttributeError
                                          Traceback (most recent call last)
<ipython-input-78-ff6698fa70dc> in <module>()
                                  'lambda':lambdas})\
     13
     14
                      .set index('lambda')
---> 15 print(mse score.Test.nsmallest(1))
~\AppData\Local\Continuum\miniconda3\envs\Python3\lib\site-packages\pandas\core\gener
ic.py in getattr (self, name)
   3612
                    if name in self. info axis:
   3613
                        return self[name]
                    return object. getattribute (self, name)
-> 3614
   3615
   3616
           def setattr (self, name, value):
AttributeError: 'DataFrame' object has no attribute 'Test'
```

In [78]:

Validation curves (2)

In [79]: mse_score.plot(logx=True, logy=True)

Out[79]: <matplotlib.axes._subplots.AxesSubplot at 0x2910f9e4128>

Grid search (1)

How do we search for two or more optimal parameters?

• Goal: find the optimal parameter combination:

$$\lambda_1^*, \lambda_2^* = rg\min_{\lambda_1, \lambda_2} MSE^{CV}(X_{train}, y_{train})$$

- Option 1: We can loop over the joint grid of parameters.
 - One level for each parameter.
 - Caveats:
- Option 2: sklearn has GridSearchCV has a tool which tests all parameter combinations.

Grid search (2)

How does this look in Python?

- Notation: double underscore between estimator and hyperparameter, e.g. 'est_hyperparam'
- Scoring: negative MSE as we're maximizing the score ~ minimize MSE.

Grid search (3)

What if we have 10,000 parameter combinations?

- Option 1: you buy a cluster on Amazon, learn how to parallelize across computers. Intro in last lecture.
- Option 2: you drop some of the parameter values
- Option 3: RandomizedSearchCV searches a subset of the combinations.

Enhancing cross validation (1)

- Model validation does not consider that we are also tuning hyperparameters:
 - Leads too overfitting (Varma & Simon 2006; Cawley, Talbot 2010).
- Solution is **nested cross validation**.
 - Validation step should not be modelled as 1) train; 2) test.
 - Better way is 1) model selection: train, validate; 2) test.
 - Implement as pp 204-205 in Python for Machine Learning:
 - first inner loop: GridSearchCV
 - second outer loop: cross_val_score

Enhancing cross validation (1)

Cross-val. suffers from the fact that it models test-train

Dimensionality reduction

Principal components analysis (1)

How can we reducing the number of features?

One solution is finding the **principal components**.

- essence: we get **fewer features** of **greater importance**.
- the new features are:
 - uncorrelated (i.e. linearly independent, orthogonal)
 - ordered so decreasing in how much variation of the feature data they explain

The method is called **principal components analysis**

- corresponds to eigen decomposition of matrix into
 - principal eigenvectors (factors)
 - principal eigenvalues (factor importance)

Principal components analysis (2)

Finding principal components for two features. Notice:

- The factors are orthogonal
- The first factor explains more variation, |PC1| > |PC2|

Principal components analysis (3)

We can plot the explained variation against the component indices, often called scree plot.

Principal components analysis (4)

How do we choose the number of components?

• Standard is to look for an *elbow* in the previous scree plot.

What might go wrong about this approach??

• The number of feautures should be a hyperparameter in the model building!!!

Principal components analysis (5)

How does this look in Python?

Out[22]: {'lasso_alpha': 0.1778279410038923, 'pca_n_components': 13}

Measures for classification

Breakdown by error type (1)

We measure the accaracy as the rate of true predictions, i.e.

$$ACC = rac{TP + TN}{TP + TN + FP + FN} = rac{True}{True + False}$$

where our measures are

Breakdown by error type (2)

Some powerful measures:

• Precision: share of predicted positive that are true

■ PRE =
$$\frac{TP}{TP+FP}$$

• Recall: share of actual positive that are true

• REC =
$$\frac{TP}{TP+FN} = \frac{TP}{AP}$$

- Also known as True Positive Rate, TPR
- F1: mix recall and precision: $\frac{2 \cdot PRE \cdot REC}{PRE \cdot REC}$
- False Positive Rate: share of actual negatives that are true

■
$$FPR = \frac{FP}{FP + TN} = \frac{FP}{AN}$$

In []: from sklearn.metrics import precision_score, recall_score, f1_score

Breakdown by error type (3)

Classification models provide a predicted likelihood of being in the class or not:

- Receiver Operating Characteristic (ROC) curve by varying thresholds for predicted true.
 - ROC is a *theoretical* measure of model performance based on probabilities.
 - AUC: Area Under the (ROC) Curve.

The end

Return to agenda