MATH 420 Assignment 1

Jingyuan Hu (Juan) #41465155

Problem 1.

Proof. Let $\{A_i\}$ be a family of σ -algebras, obviously $\emptyset \in \cap_i A_i$ since \emptyset is in every A_i Let $A \in \cap_i A_i \Rightarrow A \in A_i, \forall i$

Since all \mathcal{A}_i are σ -algebras, $A^c \in \mathcal{A}_i, \forall i \Rightarrow A^c \in \cap_i \mathcal{A}_i$

Let $\{A_j\}_{j=1}^{\infty}$ be a countable subsets of $\cap_i \mathcal{A}_i$ where $A_j \in \cap_i \mathcal{A}_i, \forall j$, then we can get $A_j \in \mathcal{A}_i, \forall i, \forall j \Rightarrow \cup_j^{\infty} A_j \in \mathcal{A}_i, \forall i \Rightarrow \cup_j^{\infty} A_j \in \cap_i \mathcal{A}_i$

Therefore $\cap_i \mathcal{A}_i$ is also a σ -algebra

Problem 2.

Proof. \mathcal{B} is generated by family of sets $\{(-\infty, a] | a \in \mathbb{R}\}$, hence $\{(-\infty, a] | a \in \mathbb{R}\} \subset \mathcal{B}$ Since \mathcal{B} is σ -algebra, it is closed under complement \Rightarrow family of sets of the form $\{(a, \infty) | a \in \mathbb{R}\}$ is also contained in \mathcal{B}

Family of sets $\{(a,b)|a,b\in\mathbb{R}\}$ is constructed by taking the intersections of sets in the form of $\{(a,\infty)|a\in\mathbb{R}\}$ with a< b

Similarly, family of sets $\{[a,b]|a,b\in\mathbb{R}\}$ is contained in \mathcal{B} , by taking the intersections of $\{(-\infty,a]|a\in\mathbb{R}\}$ with a< b, thus the compelement, family of sets $\{(-\infty,a)\cup(b,\infty]|a,b\in\mathbb{R}\}$ is also in \mathcal{B}

By taking the intersections of sets in the form of $\{(-\infty, a) \cup (b, \infty] | a, b \in \mathbb{R}\}$ and $\{(-\infty, a) | a \in \mathbb{R}\}$ are family of sets $\{(-\infty, a) | a \in \mathbb{R}\}$ is also in \mathcal{B}

Therefore σ -algebra \mathcal{B} contains all open intervals

Next we'll show that $\mathcal{B} = \mathcal{B}_{\mathbb{R}}$:

where $\mathcal{B}:=\{\sigma\text{-algebra generated by set of all open intervals}\}$, $\mathcal{B}_{\mathbb{R}}:=\{\sigma\text{-algebra generated by set of all open sets}\}$

Let $A \in \mathcal{B}$, then A is an open intervals, thus also a open sets $\Rightarrow A \in \mathcal{B}_{\mathbb{R}}, \mathcal{B} \subseteq \mathcal{B}_{\mathbb{R}}$

Let $A \in \mathcal{B}_{\mathbb{R}}$, then A is an open set in \mathbb{R} , which is a countable (disjoint) union of open intervals (Folland, Prop0.21), $A = \bigcup_{i=1}^{\infty} E_{i}$ where $\{E_{i}\}_{i=1}^{\infty}$ are countable (disjoint) open intervals Notice that $\{E_{i}\} \in \mathcal{B}$, so $\bigcup_{i=1}^{\infty} E_{i} \in \mathcal{B}$ by definition, hence $A \in \mathcal{B}$, so $\mathcal{B}_{\mathbb{R}} \subseteq \mathcal{B}$ In conclusion, $\mathcal{B} = \mathcal{B}_{\mathbb{R}}$

Problem 3.

Proof. Denote the counting measure by μ on $(X, \mathcal{P}(X))$

If X is a countable set, each element e_i in X is correspond to a set $E_i = \{e_i\}, i \in \mathbb{N}$ by definition of countable, then the family of disjoint sets $\{E_i\}_i^{\infty}$ s.t. $X = \bigcup_i^{\infty} E_i$, where due to our construction only one element is in each of the sets, $\mu(E_i) = 1 < \infty, \forall i$, therefore μ is σ -finite

If the counting measure on $(X, \mathcal{P}(X))$ is σ -finite, there is a sequence of (assume all disjoint without loss of generality) sets $\{E_i\}_i^{\infty}$ s.t. $\bigcup_i^{\infty} E_i = X$, where $\mu(E_i) < \infty, \forall i$, hence each E_i is finite by the definition of counting measure, and countable union of finite sets is countable, therefore set X must be countable

Problem 4(a).

Proof. First show $\emptyset \in f^{-1}(\mathcal{B})$: $\exists B = \emptyset \in \mathcal{B}, f^{-1}(B) = f^{-1}(\emptyset) = \emptyset$ $\therefore \emptyset \in f^{-1}(\mathcal{B})$ by definition

Then we'll show it is closed under complement:

Let $A \in f^{-1}(\mathcal{B})$, want to show $A^c \in f^{-1}(\mathcal{B})$

 $\exists B \in \mathcal{B} \text{ s.t. } f^{-1}(B) = A, \text{ then } A^c = [f^{-1}(B)]^c = f^{-1}(B^c), \text{ where } B^c \in \mathcal{B}, \text{ then } A^c \in f^{-1}(B)$ Show $f^{-1}(\mathcal{B})$ is also closed under countable unions:

Let $\{a_i\}_{i=1}^{\infty} \in f^{-1}(\mathcal{B})$ be a countable sequence of disjoint sets, then $\forall i, \exists B_i \in \mathcal{B} \text{ s.t. } f^{-1}(B_i) = A_i$

Then
$$\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} f^{-1}(B_i) = f^{-1}(\bigcup_{i=1}^{\infty} B_i)$$
 where $\bigcup_{i=1}^{\infty} B_i \in \mathcal{B}$
 $\therefore \bigcup_{i=1}^{\infty} A_i \in f^{-1}(\mathcal{B}), f^{-1}(\mathcal{B})$ is a σ -algebra on X

Problem 4(b).

Proof. First show $\emptyset \in f_*\mathcal{A}$: this can be easily shown since $\emptyset \subset Y, f^{-1}(\emptyset) = \emptyset \in \mathcal{A}$ since \mathcal{A} is a σ -algebra

Then we'll show it is closed under complement:

Let $A \in f_* \mathcal{A}$, then by definition $A \subset Y, f^{-1}(A) \in \mathcal{A}$

 \therefore $A^c \subset Y$, and since \mathcal{A} is a σ -algebra, $(f^{-1}(A))^c = f^{-1}(A^c) \in \mathcal{A} \Rightarrow A^c \in f_*\mathcal{A}$ by the properties of pre-image

Next show f_*A is also closed under countable unions:

Let $\{A_i\}_{i=1}^{\infty}$ by a sequences of disjoint sets in $f_*\mathcal{A}$, then $A_i \subset Y, f^{-1}(A_i) \in \mathcal{A}, \forall i$

Then $\bigcup_{i=1}^{\infty} A_i \subset Y$, and since \mathcal{A} is a σ -algebra, $f^{-1}(\bigcup_{i=1}^{\infty} A_i) = \bigcup_{i=1}^{\infty} f^{-1}(A_i) \in \mathcal{A}$ by the properties of pre-image

Problem 4(c).

Proof. First prove $\mathcal{M}(f^{-1}(\mathcal{E})) \subseteq f^{-1}(\mathcal{M}(\mathcal{E}))$:

It is sufficient to show: $(i)f^{-1}(\mathcal{M}(\mathcal{E}))$ is a σ -algebra, and $(ii)f^{-1}(\mathcal{E}) \subseteq f^{-1}(\mathcal{M}(\mathcal{E}))$ since by definition $\mathcal{M}(f^{-1}(\mathcal{E}))$ is the smallest σ -algebra generated by $f^{-1}(\mathcal{E})$

From part(a), we know that a pre-image of σ -algebra is still σ -algebra, which indicates (i)

Also by the properties of pre-image, $\mathcal{E} \subseteq \mathcal{M}(\mathcal{E})$ indicates (ii), therefore we've shown $\mathcal{M}(f^{-1}(\mathcal{E})) \subseteq f^{-1}(\mathcal{M}(\mathcal{E}))$

Next we'll prove $f^{-1}(\mathcal{M}(\mathcal{E})) \subseteq \mathcal{M}(f^{-1}(\mathcal{E}))$:

Define $\mathcal{C} := \{ E \in \mathcal{M}(\mathcal{E}) | f^{-1}(E) \in \mathcal{M}(f^{-1}(\mathcal{E})) \}$

Then from part (b) we know that $\mathcal{C} = \mathcal{M}(\mathcal{E}) \cap f_* \mathcal{M}(f^{-1}(\mathcal{E}))$, where both $\mathcal{M}(\mathcal{E})$, $f_* \mathcal{M}(f^{-1}(\mathcal{E}))$ are σ -algebra and $f_* \mathcal{M}(f^{-1}(\mathcal{E})) = \{ E \subset Y | f^{-1}(E) \in \mathcal{M}(f^{-1}(\mathcal{E})) \}$

From the result in Q1, \mathcal{C} is the intersection of two σ -algebras, so \mathcal{C} is also a σ -algebra

 $\forall E \in \mathcal{E}$, we know $E \in \mathcal{M}(\mathcal{E})$ and $f^{-1}(E) \in f^{-1}(\mathcal{E}) \subseteq \mathcal{M}(f^{-1}(\mathcal{E})) \Rightarrow \mathcal{E} \subseteq \mathcal{C}$ and we already proved that \mathcal{C} is a σ -algebra

(A)Thus $\mathcal{M}(\mathcal{E}) \subseteq \mathcal{C}$ by minimality of the generated σ -algebra

 $\forall E \in \mathcal{M}(\mathcal{E}) \Rightarrow f^{-1}(E) \in f^{-1}(\mathcal{M}(\mathcal{E})) \Rightarrow \mathcal{C} = \mathcal{M}(\mathcal{E}) = f_* \mathcal{M}(f^{-1}(\mathcal{E})) \text{ by the definition of } \mathcal{C}$ $\therefore f^{-1}(\mathcal{M}(\mathcal{E})) = f^{-1}(f_* \mathcal{M}(f^{-1}(\mathcal{E}))) \subseteq \mathcal{M}(f^{-1}(\mathcal{E}))$

(B)Another way to interpret $\mathcal{M}(\mathcal{E}) \subseteq \mathcal{C}$ is:

 $\forall E \in \mathcal{M}(\mathcal{E}), f^{-1}(E) \in f^{-1}(\mathcal{M}(\mathcal{E})) \Rightarrow E \in \mathcal{C}, f^{-1}(E) \in \mathcal{M}(f^{-1}(\mathcal{E}))$ by the construction of \mathcal{C}

Then,
$$f^{-1}(\mathcal{M}(\mathcal{E})) \subseteq \mathcal{M}(f^{-1}(\mathcal{E}))$$

In conclusion, $f^{-1}(\mathcal{M}(\mathcal{E})) = \mathcal{M}(f^{-1}(\mathcal{E}))$

Problem 5(a).

Proof. From 4(b) we've shown that if \mathcal{M} is a σ -algebra on X, $f_*\mathcal{M}$ is also a σ -algebra on Y. Show that $f_*\mu(E)$ is a measure:

$$f_*\mu(\emptyset) = \mu(f^{-1}(\emptyset)) = \mu(\emptyset) = 0, \ f_*\mu(E) = \mu(f^{-1}(E)) \ge 0, \forall E \in f_*\mathcal{M} \text{ since } \mu \text{ is a measure}$$

Also, $f_*\mu(\bigcup_{i=1}^{\infty} A_i) = \mu(f^{-1}(\bigcup_{i=1}^{\infty} A_i)) = \mu(\bigcup_{i=1}^{\infty} f^{-1}(A_i)) = \sum_{i=1}^{\infty} \mu(f^{-1}(A_i)) = \sum_{i=1}^{\infty} f_*\mu(A_i)$
where A_i is a sequence of disjoint set on $f_*\mathcal{M}$

Therefore
$$(Y, f_*\mathcal{M}, f_*\mu)$$
 is a measure space

Problem 5(b).

Proof.
$$f_*\mu(y_0) = \mu(f^{-1}(y_0)) = \mu(X)$$
 since $f(x) = y_0, \forall x \in X$
 $f_*\mu(y) = \mu(f^{-1}(y)) = \mu(\emptyset) = 0$ for all $y \neq y_0$ in Y

Then for an arbitrary set $E \in f_*\mathcal{M}$, $f_*\mu(E) = \mu(X)$ if $y_0 \in E$, otherwise $f_*\mu(E) = 0$, which works as an indicator function for sets in Y, that tells us whether y_0 is in the given set, this is known as Dirac Measure.

Problem 6(a).

Proof. We first verify that $\sum_{j=1}^{\infty} a_j \mu_j \geq 0$ since $\mu_j \geq 0$ by definition of measure and $\{a_j\}_{j=1}^{\infty} \subset (0, \infty)$ are all positive, also $\sum_{j=1}^{\infty} a_j \mu_j(\emptyset) = 0$ since $\mu_j(\emptyset) = 0, \forall j$

Then, let $\{A_i\}_{i=1}^{\infty} \in \mathcal{M}$ be a countable sequence of disjoint sets (without loss of generality), we can show countable additivity:

$$\sum_{j=1}^{\infty} a_j \mu_j(\bigcup_{i=1}^{\infty} A_i) = \sum_{j=1}^{\infty} a_j \left[\sum_{i=1}^{\infty} \mu_j(A_i)\right] = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_j \mu_j(A_i) = \sum_{i=1}^{\infty} \left(\sum_{j=1}^{\infty} a_j \mu_j(A_i)\right)$$
(This can be done since all measure, μ_j must be nonnegative)

Problem 6(b).

Proof.
$$\forall E \in \mathcal{P}(X), \sum_{j=1}^{\infty} a_j \delta_{x_j}(E) \leq \sum_{j=1}^{\infty} a_j \delta_{x_j}(X) = \sum_{j=1}^{\infty} a_j$$

since $E \subset X, \{x_j\}_{j=1}^{\infty}$ is in X

 \therefore The measure is finite if $(i) \sum_{j=1}^{\infty} a_j < \infty$ and $(ii)a_j \ge 0, \forall j$, due to the property of measure

We can write X as $X = \bigcup_{i=1}^{\infty} \{x_j\} \cup A$ where $A = X \setminus (\bigcup_{i=1}^{\infty} \{x_j\})$, then clearly none of $\{x_j\}_{j=1}^{\infty}$ is in $A \Rightarrow \sum_{j=1}^{\infty} a_j \delta_{x_j}(A) = 0 < \infty$

And for each $\{x_j\}$, $\sum_{j=1}^{\infty} a_j \delta_{x_j}(\{x_j\}) = a_j$, therefore the measure is σ -finite as long as $0 \le a_j < \infty$

Problem 7.

Proof. Suppose μ is a measure, then consider $j < 0, E_i = \{\lceil i^{-\frac{2}{j}} \rceil \}$, then we should have:

$$\mu(\cup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu(E_i) = \sum_{i=1}^{\infty} (\lceil i^{-\frac{2}{j}} \rceil)^j \le \sum_{i=1}^{\infty} (i^{-\frac{2}{j}})^j = \sum_{i=1}^{\infty} i^{-2} < \infty$$
 since $j < 0, i^{-\frac{2}{j}} \le \lceil i^{-\frac{2}{j}} \rceil$

However $\mu(\bigcup_{i=1}^{\infty} E_i) = \infty$ by the definition of $\mu(E)$ since $\# \bigcup_{i=1}^{\infty} E_i = \infty$

This leads to a contradiction, therefore $j \geq 0$

Next we'll show that if $j \ge 0 \Rightarrow \mu(E)$ is a measure:

First we can easily show that $\mu(\emptyset) = \sum_{n \in \emptyset} n^j = 0$ and $\mu(E) = \sum_{n \in E} n^j \ge 0$ since $n > 0 (E \in \mathcal{P}(\mathbb{Z}_+))$

Let $\{E_i\}_i^{\infty}$ be a family of disjoint sets in \mathbb{Z}_+ :

(Without loss of generality, we assume $E \neq \emptyset, \#E \geq 1$)

Case 1:
$$\exists i \text{ s.t. } \#E_i = \infty, \text{ then } \# \cup_i^{\infty} E_i = \infty, \mu(\cup_i^{\infty} E_i) = \infty$$

Case 2:
$$\forall i \text{ s.t. } \#E_i < \infty, \cup_i^{\infty} E_i \in \mathcal{P}(\mathbb{Z}_+), \text{ and } \#\cup_i^{\infty} E_i = \infty, \text{ therefore } \mu(\cup_i^{\infty} E_i) = \infty$$

Hence, to show $\mu(\cup_i^{\infty} E_i) = \sum_i^{\infty} \mu(E_i)$, it suffices to show $\sum_i^{\infty} \mu(E_i) = \infty$

Where
$$\sum_{i=1}^{\infty} \mu(E_i) = \sum_{i=1}^{\infty} \sum_{n \in E_i} n^j \ge \sum_{i=1}^{\infty} \sum_{n \in E_i} n^0 = \sum_{i=1}^{\infty} (\#E_i) = \infty$$

Therefore, $\mu(E)$ is a measure on $(\mathbb{Z}_+, \mathcal{P}(\mathbb{Z}_+))$ if and only if $j \geq 0$

Problem 8.

Proof. Since $E \subset \mathbb{R}$ is countable, we can let $E = \bigcup_{i=1}^{\infty} \{e_i\}$, where $\{e_i\}_{i=1}^{\infty}$ is a countable set of points on \mathbb{R}

Hence $\forall \epsilon > 0, \forall e_i$, we can find a_i, b_i with $a_i < b_i$ such that the open interval $(a_i, b_i) \subset \mathbb{R}$ and $e_i \in (a_i, b_i)$ where $b_i - a_i = \frac{\epsilon}{2^i}$, then $E \subset \bigcup_i^{\infty} (a_i, b_i)$

$$\therefore m^*(E) \leq \sum_{i=1}^{\infty} m_0((a_i, b_i)) = \sum_{i=1}^{\infty} \frac{\epsilon}{2^i} = \epsilon$$
 by the definition of the outer measure

Since
$$m^*(E) \ge 0$$
, we know that $m^*(E) = 0$