Dynamic Elias-Fano Representation

Giulio Ermanno Pibiri

University of Pisa and ISTI-CNR Pisa, Italy giulio.pibiri@di.unipi.it

Rossano Venturini

University of Pisa and ISTI-CNR
Pisa, Italy
rossano.venturini@unipi.it

The 28-th Annual Symposium on Combinatorial Pattern Matching (CPM 2017)

Warsaw, Poland

06/07/2017

A **dynamic ordered set** S is a data structure representing n objects and supporting the following operations:

- Insert(x) inserts x in S
- Delete(x) deletes x from S
- Search(x) checks whether x belongs to S
- Minimum() returns the minimum element of S
- Maximum() returns the maximum element of S
- Predecessor(x) returns max{ $y \in S : y < x$ }
- Successor(x) returns min{ $y \in S : y \ge x$ }

A **dynamic ordered set** S is a data structure representing n objects and supporting the following operations:

- Insert(x) inserts x in S
- Delete(x) deletes x from S
- Search(x) checks whether x belongs to S
- Minimum() returns the minimum element of S
- Maximum() returns the maximum element of S
- Predecessor(x) returns max{ $y \in S : y < x$ }
- Successor(x) returns min{ $y \in S : y \ge x$ }

In the **comparison model** this is solved optimally by any self-balancing tree data structure in $O(\log n)$ time and O(n) space.

A **dynamic ordered set** S is a data structure representing n objects and supporting the following operations:

- Insert(x) inserts x in S
- Delete(x) deletes x from S
- Search(x) checks whether x belongs to S
- Minimum() returns the minimum element of S
- Maximum() returns the maximum element of S
- Predecessor(x) returns max{ $y \in S : y < x$ }
- Successor(x) returns min{ $y \in S : y \ge x$ }

In the **comparison model** this is solved optimally by any self-balancing tree data structure in $O(\log n)$ time and O(n) space.

More efficient solutions there exist if the considered objects are **integers** drawn from a bounded universe of size u.

A **dynamic ordered set** S is a data structure representing n objects and supporting the following operations:

- Insert(x) inserts x in S
- Delete(x) deletes x from S
- Search(x) checks whether x belongs to S
- Minimum() returns the minimum element of S
- Maximum() returns the maximum element of S
- Predecessor(x) returns max{ $y \in S : y < x$ }
- Successor(x) returns min{ $y \in S : y \ge x$ }

In the **comparison model** this is solved optimally by any self-balancing tree data structure in $O(\log n)$ time and O(n) space.

More efficient solutions there exist if the considered objects are **integers** drawn from a bounded universe of size u.

Challenge

How to **optimally** solve the **integer** dynamic ordered set problem in **compressed space**?

Integer Data Structures

- van Emde Boas Trees
- X/Y-Fast Tries
- Fusion Trees
- Exponential Search Trees
- •

- EF(S(n,u)) = $n \log(u/n) + 2n$ bits to encode an ordered integer sequence S
- O(1) **Access**
- O(1 + $\log(u/n)$) Predecessor

Integer Data Structures

- van Emde Boas Trees
- X/Y-Fast Tries
- Fusion Trees
- Exponential Search Trees
- •

- + time
- space
- + dynamic

- EF(S(n,u)) = $n \log(u/n) + 2n$ bits to encode an ordered integer sequence S
- O(1) Access
- O(1 + $\log(u/n)$) Predecessor

Integer Data Structures

- van Emde Boas Trees
- X/Y-Fast Tries
- Fusion Trees
- Exponential Search Trees
- •

- + time
- space
- + dynamic

- EF(S(n,u)) = $n \log(u/n) + 2n$ bits to encode an ordered integer sequence S
- O(1) **Access**
- O(1 + $\log(u/n)$) Predecessor
 - + time
 - + space
 - static

Integer Data Structures

- van Emde Boas Trees
- X/Y-Fast Tries
- Fusion Trees
- Exponential Search Trees
- •

- + time
- space
- + dynamic

- $\mathsf{EF}(S(n,u)) = n \log(u/n) + 2n \text{ bits to}$
 - encode an ordered integer sequence S
- O(1) **Access**
- $O(1 + \log(u/n))$ **Predecessor**
 - + time
 - + space
 - static

Integer Data Structures

- van Emde Boas Trees
- X/Y-Fast Tries
- Fusion Trees
- Exponential Search Trees
- •

- + time
- space
- + dynamic

- $\mathsf{EF}(S(n,u)) = n \log(u/n) + 2n \, \mathsf{bits} \, \mathsf{to}$
 - encode an ordered integer sequence S
- O(1) **Access**
- $O(1 + \log(u/n))$ **Predecessor**
 - + time
 - + space
 - static

Integer Data Structures

- van Emde Boas Trees
- X/Y-Fast Tries
- Fusion Trees
- Exponential Search Trees
- •

Elias-Fano Encoding

- $\mathsf{EF}(S(n,u)) = n \log(u/n) + 2n \, \mathsf{bits} \, \mathsf{to}$
 - encode an ordered integer sequence S
- O(1) Access
- $O(1 + \log(u/n))$ **Predecessor**

- + time
- space
- + dynamic

- + time
- + space
- static

Can we grab the best from both?

Extend the *static* Elias-Fano representation of S as to support

- 1. Predecessor
- 2. Access/Insert/Delete

in **optimal time** and using $n \log(u/n) + 2n$ bits

Extend the *static* Elias-Fano representation of S as to support

- 1. Predecessor
- 2. Access/Insert/Delete

in **optimal time** and using $n \log(u/n) + 2n$ bits +

sublinear redundancy

o(n) bits

Extend the *static* Elias-Fano representation of S as to support

- 1. Predecessor
- 2. Access/Insert/Delete

sublinear redundancy

in **optimal time** and using
$$n \log(u/n) + 2n$$
 bits + $o(n)$ bits What is optimal?

Extend the static Elias-Fano representation of S as to support

- 1. Predecessor
- 2. Access/Insert/Delete

sublinear redundancy

in **optimal time** and using
$$n \log(u/n) + 2n$$
 bits + $o(n)$ bits What is optimal?

Lower bounds

Extend the static Elias-Fano representation of S as to support

- → 1. Predecessor
 - 2. Access/Insert/Delete

sublinear redundancy

in **optimal time** and using $n \log(u/n) + 2n$ bits + o(n) bits What is optimal?

Lower bounds

- 1. [Patrascu and Thorup, STC 2007]
- Optimal space/time trade-off
- m bits, where $a = \log(m/n) \log w$

$$\Theta\Big(\min\Big\{\log_w n,\log\frac{w-\log n}{a},\frac{\log\frac{w}{a}}{\log(\frac{a}{\log n}\log\frac{w}{a})},\frac{\log\frac{w}{a}}{\log(\log\frac{w}{a}/\log\frac{\log n}{a})}\Big\}\Big)$$

Extend the static Elias-Fano representation of S as to support

- → 1. Predecessor
- → 2. Access/Insert/Delete

sublinear redundancy

in **optimal time** and using $n \log(u/n) + 2n$ bits + o(n) bits What is optimal?

Lower bounds

- 1. [Patrascu and Thorup, STC 2007]
- Optimal space/time trade-off
- m bits, where $a = \log(m/n) \log w$

$$\Theta\Big(\min\Big\{\log_w n,\log\frac{w-\log n}{a},\frac{\log\frac{w}{a}}{\log(\frac{a}{\log n}\log\frac{w}{a})},\frac{\log\frac{w}{a}}{\log(\log\frac{w}{a}/\log\frac{\log n}{a})}\Big\}\Big)$$

2. [Fredman and Saks, STC 1989]

Dynamic List Representation Problem:

- Access/Insert/Delete in Ω(log n / loglog n)
 amortized time
- $w \le \log^{\gamma} n$ for some γ

Extend the static Elias-Fano representation of S as to support

- → 1. Predecessor
- → 2. Access/Insert/Delete

sublinear redundancy

in **optimal time** and using $n \log(u/n) + 2n$ bits + o(n) bits What is optimal?

Lower bounds - polynomial universes

- 1. [Patrascu and Thorup, STC 2007]
- Optimal space/time trade-off
- m bits, where $a = \log(m/n) \log w$

$$\Theta\Big(\min\Big\{\log_w n,\log\frac{w-\log n}{a},\frac{\log\frac{w}{a}}{\log(\frac{a}{\log n}\log\frac{w}{a})},\frac{\log\frac{w}{a}}{\log(\log\frac{w}{a}/\log\frac{\log n}{a})}\Big\}\Big)$$

2. [Fredman and Saks, STC 1989]

Dynamic List Representation Problem:

- Access/Insert/Delete in Ω(log n / loglog n)
 amortized time
- $w \le \log^{\gamma} n$ for some γ

Extend the static Elias-Fano representation of S as to support

- → 1. Predecessor
- → 2. Access/Insert/Delete

sublinear redundancy

in **optimal time** and using
$$n \log(u/n) + 2n$$
 bits + $o(n)$ bits What is optimal?

Lower bounds - polynomial universes

- 1. [Patrascu and Thorup, STC 2007]
- Optimal space/time trade-off
- m bits, where $a = \log(m/n) \log w$

$$\Theta\Big(\min\Big\{\log_w n.\log\frac{w-\log n}{a}.\frac{\log\frac{w}{a}}{\log(\frac{a}{\log n}\log\frac{w}{a})},\frac{\log\frac{w}{a}}{\log(\log\frac{w}{a}/\log\frac{\log n}{a})}\Big\}\Big)$$

For Elias-Fano, $a = \log(\log(u/n) + 2)$ bits: the second branch becomes $O(\log\log n)$ 2. [Fredman and Saks, STC 1989]

Dynamic List Representation Problem:

- Access/Insert/Delete in Ω(log n / loglog n)
 amortized time
- $w \le \log^{\gamma} n$ for some γ

- EF(S(n,u)) + o(n) bits
- O(1) Access
- O(min{1+log(u/n), loglog n}) Predecessor

- EF(S(n,u)) + o(n) bits
- O(1) Access
- O(min{1+log(u/n), loglog n}) Predecessor

S

$$EF(S(n,u)) = n \log(u/n) + 2n \text{ bits}$$

- EF(S(n,u)) + o(n) bits
- O(1) Access
- O(min{1+log(u/n), loglog n}) Predecessor

- EF(S(n,u)) + o(n) bits
- O(1) Access
- O(min{1+log(u/n), loglog n}) Predecessor

Predecessor in O(loglog *n*) by binary search

- EF(S(n,u)) + o(n) bits
- O(1) Access
- O(min{1+log(u/n), loglog n}) Predecessor

- EF(S(n,u)) + o(n) bits
- O(1) Access
- O(min{1+log(u/n), loglog n}) Predecessor

- EF(S(n,u)) + o(n) bits
- O(1) Access
- O(min{1+log(u/n), loglog n}) Predecessor

- EF(S(n,u)) + o(n) bits
- O(1) Access
- O(min{1+log(u/n), loglog n}) Predecessor

- EF(S(n,u)) + o(n) bits
- O(1) Access
- O(min{1+log(u/n), loglog n}) Predecessor for the tiny range $1 \le \gamma \le 1 + \log\log n / \log n$

For
$$u = n^{\gamma}$$
, $\gamma = \Theta(1)$:

- EF(S(n,u)) + o(n) bits
- O(1) Access
- O(1) Append (amortized)
- O(min{1+log(u/n), loglog n}) Predecessor

- EF(S(n,u)) + o(n) bits
- O(1) Access
- O(1) Append (amortized)
- O(min{1+log(u/n), loglog n}) Predecessor

For $u = n^{\gamma}$, $\gamma = \Theta(1)$:

- EF(S(n,u)) + o(n) bits
- O(1) Access
- O(1) Append (amortized)
- O(min{1+log(u/n), loglog n}) Predecessor

S

For $u = n^{\gamma}$, $\gamma = \Theta(1)$:

- EF(S(n,u)) + o(n) bits
- O(1) Access
- O(1) Append (amortized)
- O(min{1+log(u/n), loglog n}) Predecessor

 $log^2 u$

- EF(S(n,u)) + o(n) bits
- O(1) Access
- O(1) Append (amortized)
- O(min{1+log(u/n), loglog n}) Predecessor

- EF(S(n,u)) + o(n) bits
- O(1) Access
- O(1) Append (amortized)
- O(min{1+log(u/n), loglog n}) Predecessor

- EF(S(n,u)) + o(n) bits
- O(1) Access
- O(1) Append (amortized)
- O(min{1+log(u/n), loglog n}) Predecessor

- $\mathsf{EF}(S(n,u)) + \mathsf{o}(n)$ bits
- O(1) Access
- O(1) Append (amortized)
- O(min{1+log(u/n), loglog n}) Predecessor

Results - Extensible Elias-Fano

For $u = n^{\gamma}$, $\gamma = \Theta(1)$:

- EF(S(n,u)) + o(n) bits
- O(1) Access
- O(1) Append (amortized)

Results - Extensible Elias-Fano

For $u = n^{\gamma}$, $\gamma = \Theta(1)$:

- EF(S(n,u)) + o(n) bits
- O(1) Access
- O(1) Append (amortized)

 $EF(S(n,u)) = n \log(u/n) + 2n \text{ bits}$

The encoding of the blocks takes $\leq EF(S(n,u))$ bits

Results - Extensible Elias-Fano

For $u = n^{\gamma}$, $\gamma = \Theta(1)$:

- EF(S(n,u)) + o(n) bits
- O(1) Access
- O(1) Append (amortized)
- O(min{1+log(u/n), loglog n}) Predecessor $O(n / \log^2 u) \times O(\log u)$

 $EF(S(n,u)) = n \log(u/n) + 2n \text{ bits}$

The encoding of the blocks takes $\leq EF(S(n,u))$ bits

For
$$u = n^{\gamma}$$
, $\gamma = \Theta(1)$:

- $\mathsf{EF}(S(n,u)) + \mathsf{o}(n)$ bits
- $O(\log n / \log \log n)$ Access
- O(log n / loglog n) Insert/Delete (amortized)
- O(min{1+log(u/n), loglog n}) Predecessor

For
$$u = n^{\gamma}$$
, $\gamma = \Theta(1)$:

- EF(S(n,u)) + o(n) bits
- $O(\log n / \log \log n)$ Access
- O($\log n / \log \log n$) Insert/Delete (amortized)
- O(min{1+log(u/n), loglog n}) Predecessor

 $\mathsf{EF}(S(n,u)) = n \log(u/n) + 2n \, \mathsf{bits}$

mini block of size b = log n / loglog n

For
$$u = n^{\gamma}$$
, $\gamma = \Theta(1)$:

- EF(S(n,u)) + o(n) bits
- $O(\log n / \log \log n)$ Access
- O(log n / loglog n) Insert/Delete (amortized)
- O(min{1+log(u/n), loglog n}) Predecessor

For
$$u = n^{\gamma}$$
, $\gamma = \Theta(1)$:

- EF(S(n,u)) + o(n) bits
- $O(\log n / \log \log n)$ Access
- O(log n / loglog n) Insert/Delete (amortized)
- O(min{1+log(u/n), loglog n}) Predecessor

block of $\log^2 n$ mini blocks

EF(S(n,u)) = $n \log(u/n) + 2n$ bits

mini block of size b = $\log n / \log \log n$

For $u = n^{\gamma}$, $\gamma = \Theta(1)$:

- EF(S(n,u)) + o(n) bits
- $O(\log n / \log \log n)$ Access
- $O(\log n / \log\log n)$ Insert/Delete (amortized)
- O(min{1+log(u/n), loglog n}) Predecessor

block of $\log^2 n$ mini blocks

 $\mathsf{EF}(S(n,u)) = n \log(u/n) + 2n \, \mathsf{bits}$

mini block of size b = log n / loglog n

 \mathcal{T} is a k-ary tree of constant height:

- O(loglog n) time
- $O(\log^2 n \log \log n)$ bits

lower level

For
$$u = n^{\gamma}$$
, $\gamma = \Theta(1)$:

- EF(S(n,u)) + o(n) bits
- $O(\log n / \log \log n)$ Access
- $O(\log n / \log\log n)$ Insert/Delete (amortized)
- O(min{1+log(u/n), loglog n}) Predecessor

block of $\log^2 n$ mini blocks

 $\mathsf{EF}(S(n,u)) = n \log(u/n) + 2n \, \mathsf{bits}$

mini block of size $b = \log n / \log \log n$

 \mathcal{T} is a k-ary tree of constant height:

- O(loglog n) time
- $O(\log^2 n \log \log n)$ bits

lower level

o(n) bits

For $u = n^{\gamma}$, $\gamma = \Theta(1)$:

- EF(S(n,u)) + o(n) bits
- $O(\log n / \log \log n)$ Access
- O($\log n / \log \log n$) Insert/Delete (amortized)
- O(min{1+log(u/n), loglog n}) Predecessor

block of log² n mini blocks

 $\mathsf{EF}(S(n,u)) = n \log(u/n) + 2n \, \mathsf{bits}$

mini block of size $b = \log n / \log \log n$

 \mathcal{T} is a k-ary tree of constant height:

- O(loglog n) time
- $O(\log^2 n \log \log n)$ bits

lower level

o(n) bits

For
$$u = n^{\gamma}$$
, $\gamma = \Theta(1)$:

- EF(S(n,u)) + o(n) bits
- $O(\log n / \log \log n)$ Access
- O($\log n / \log \log n$) Insert/Delete (amortized)
- O(min{1+log(u/n), loglog n}) Predecessor

 $\mathsf{EF}(S(n,u)) = n \log(u/n) + 2n \, \mathsf{bits}$

mini block of size $b = \log n / \log \log n$

 \mathcal{T} is a k-ary tree of constant height:

- O(loglog n) time
- $O(\log^2 n \log \log n)$ bits

lower level

o(n) bits

For $u = n^{\gamma}$, $\gamma = \Theta(1)$:

- EF(S(n,u)) + o(n) bits
- $O(\log n / \log \log n)$ Access
- O($\log n / \log \log n$) Insert/Delete (amortized)
- O(min{1+log(u/n), loglog n}) Predecessor

For $u = n^{\gamma}$, $\gamma = \Theta(1)$:

- EF(S(n,u)) + o(n) bits
- $O(\log n / \log \log n)$ Access
- O($\log n / \log \log n$) Insert/Delete (amortized)
- O(min{1+log(u/n), loglog n}) Predecessor

For $u = n^{\gamma}$, $\gamma = \Theta(1)$:

- EF(S(n,u)) + o(n) bits
- $O(\log n / \log \log n)$ Access
- O(log n / loglog n) Insert/Delete (amortized)
- O(min{1+log(u/n), loglog n}) Predecessor

 $\mathsf{EF}(S(n,u)) = n \log(u/n) + 2n \, \mathsf{bits}$

mini block of size $b = \log n / \log \log n$

For $u = n^{\gamma}$, $\gamma = \Theta(1)$:

- EF(S(n,u)) + o(n) bits
- $O(\log n / \log \log n)$ Access
- $O(\log n / \log\log n)$ Insert/Delete (amortized)
- O(min{1+log(u/n), loglog n}) Predecessor

 $\mathsf{EF}(S(n,u)) = n \log(u/n) + 2n \, \mathsf{bits}$

mini block of size $b = \log n / \log \log n$

For $u = n^{\gamma}$, $\gamma = \Theta(1)$:

- EF(S(n,u)) + o(n) bits
- $O(\log n / \log \log n)$ Access
- O($\log n / \log \log n$) Insert/Delete (amortized)
- O(min{1+log(u/n), loglog n}) Predecessor

 Υ is an Y-fast trie

O(loglog n) time

 \mathcal{P} is a dynamic prefix-sums DS [1]

O(b) time

 $O(n / (b \times log^2 n)) \times O(log u) = o(n)$ bits each

 \mathcal{T} is a k-ary tree of constant height:

- O(loglog *n*) time
- $O(\log^2 n \log \log n)$ bits

lower level

upper level

o(n) bits

o(n) bits

 $\mathsf{EF}(S(n,u)) = n \log(u/n) + 2n \, \mathsf{bits}$

The encoding of the mini blocks takes $\leq EF(S(n,u)) + O(n)$ bits

mini block of size $b = \log n / \log \log n$

For $u = n^{\gamma}$, $\gamma = \Theta(1)$:

- EF(S(n,u)) + o(n) bits
- $O(\log n / \log \log n)$ Access
- O(log n / loglog n) Insert/Delete (amortized)
- O(min{1+log(u/n), loglog n}) Predecessor

 $\mathsf{EF}(S(n,u)) = n \log(u/n) + 2n \, \mathsf{bits}$

The encoding of the mini blocks takes $\leq EF(S(n,u)) + O(n)$ bits

mini block of size $b = \log n / \log \log n$

For $u = n^{\gamma}$, $\gamma = \Theta(1)$:

- $\mathsf{EF}(S(n,u)) + \mathsf{o}(n)$ bits
- $O(\log n / \log \log n)$ Access
- $O(\log n / \log \log n)$ Insert/Delete (amortized)
- O(min{1+log(u/n), loglog n}) Predecessor

Memory management for the mini blocks:

Corollary 3 from [3]: random Access in O(1).

Theorem 6 from [2]: address and allocate the high part of a mini block in O(1).

The overall redundancy is o(n) bits.

 $\mathsf{EF}(S(n,u)) = n \log(u/n) + 2n \, \mathsf{bits}$

The encoding of the mini blocks takes $\leq EF(S(n,u)) + O(n)$ bits

mini block of size $b = \log n / \log \log n$

For $u = n^{\gamma}$, $\gamma = \Theta(1)$:

- EF(S(n,u)) + o(n) bits
- $O(\log n / \log \log n)$ Access
- $O(\log n / \log \log n)$ Insert/Delete (amortized)
- O(min{1+log(u/n), loglog n}) Predecessor

Memory management for the mini blocks:

b
$$\log(u/b)$$
 + 2b bits

Corollary 3 from [3]: random Access in O(1).

Theorem 6 from [2]: address and allocate the high part of a mini block in O(1).

The overall redundancy is o(n) bits.

 $EF(S(n,u)) = n \log(u/n) + 2n \text{ bits}$

The encoding of the mini blocks takes $\leq EF(S(n,u)) + O(n)$ bits

mini block of size $b = \log n / \log \log n$

[1] Philip Bille, Patrick Hagge Cording, Inge Li Gørtz, Frederik Rye Skjoldjensen, Hjalte Wedel Vildhøj, and Søren Vind. *Dynamic relative compression. CoRR*, abs/1504.07851, 2015.

[2] J. Jansson, K. Sadakane, and Wing-Kin Sung. *CRAM: Compressed random access memory.* ICALP 2012.

[3] R. Raman, V. Raman, and S. Srinivasa Rao. *Succinct dynamic data structures*. WADS 2001.

For $u = n^{\gamma}$, $\gamma = \Theta(1)$:

- EF(S(n,u)) + o(n) bits
- $O(\log n / \log \log n)$ Access
- $O(\log n / \log \log n)$ Insert/Delete (amortized)
- O(min{1+log(u/n), loglog n}) Predecessor

 $\mathsf{EF}(S(n,u)) = n \log(u/n) + 2n \, \mathsf{bits}$

The encoding of the mini blocks takes $\leq EF(S(n,u)) + O(n)$ bits

mini block of size $b = \log n / \log \log n$

[1] Philip Bille, Patrick Hagge Cording, Inge Li Gørtz, Frederik Rye Skjoldjensen, Hjalte Wedel Vildhøj, and Søren Vind. *Dynamic relative compression. CoRR*, abs/1504.07851, 2015.

[2] J. Jansson, K. Sadakane, and Wing-Kin Sung. *CRAM: Compressed random access memory.* ICALP 2012.

[3] R. Raman, V. Raman, and S. Srinivasa Rao. *Succinct dynamic data structures*. WADS 2001.

Thanks for your attention, time, patience!

Any questions?