Lecture 7 Informed Search

CS 180 – Intelligent Systems

Dr. Victor Chen

Spring 2021

Informed Search

Informed (heuristic) Search

Idea: Use a **heuristic function** h(n) to <u>rank nodes</u> in the <u>frontier</u> and expand the node with the <u>lowest</u> h(n) value

- Greedy search (Best-first search)
- A* search

Heuristic for the Romania problem

heuristic function h(n)

Straight-line distant	e
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	
	241
Neamt	234
Oradea	380
Pitesti	10
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374
	3/-

Straight-line distan-	ce
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	10
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374
	3/4

Straight-line distand	ce
to Bucharest	
Arad	360
Bucharest	(
Craiova	160
Dobreta	243
Eforie	16
Fagaras	170
Giurgiu	7
Hirsova	15
Iasi	220
Lugoj	24
Mehadia	
Neamt	24.
Oradea	23-
Pitesti	38
Rimnicu Vilcea	10
	193
Sibiu	25
Timisoara	329
Urziceni	8
Vaslui	199
Zerind	374

Straight-line distant	e
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	
	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	10
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	
Zerino	374

Properties of greedy search

Complete?

No – can get stuck in loops.

Properties of greedy best-first search

Complete?

No – can get stuck in loops

Optimal?

No

Properties of greedy best-first search

Complete?

No – can get stuck in loops

Optimal?

No

Time cost?

Worst case: $O(b^m)$ where b is the branching factor and m is the maximum path length

Space cost?

Worst case: $O(b^m)$

How can we fix the greedy search?

In the Romania traveling problem, greedy search only considers the **remaining distance**

Idea: Keep track of the distance already traveled in addition to the distance remaining.

A* search

Idea: Use **evaluation function** f(n) to estimate the path cost from **start node** to goal and <u>expand the</u> node with the lowest f(n) value

f(n) is to estimate path cost from start node to goal:

$$f(n) = g(n) + h(n)$$

g(n): cost from start node to node n

h(n): estimated cost from node n to goal (heuristic function)

A* search example (distance already traveled + distance remaining)

Straight-line distance		
to Bucharest	ce	
Arad	366	
Bucharest	0	
Craiova	_	
Dobreta	160	
	242	
Eforie	161	
Fagaras	176	
Giurgiu	77	
Hirsova	151	
Iasi	226	
Lugoj	244	
Mehadia	241	
Neamt	234	
Oradea	380	
Pitesti	10	
Rimnicu Vilcea	193	
Sibiu	253	
Timisoara	329	
Urziceni	80	
Vaslui	199	
Zerind	374	

Straight-line distan	ce
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	10
Rimnicu Vilcea	
Sibiu	193
	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Straight-line distan-	ce
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	
~ .	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	10
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Straight-line distant	e e
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	
	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	10
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	
	199
Zerind	374

Straight-line distan	ce
to Bucharest	
Arad	360
Bucharest	(
Craiova	160
Dobreta	243
Eforie	16
Fagaras	176
Giurgiu	7
Hirsova	15
Iasi	220
Lugoj	24
Mehadia	243
Neamt	234
Oradea	38
Pitesti	10
Rimnicu Vilcea	193
Sibiu	25
Timisoara	329
Urziceni	8
Vaslui	
	199
Zerind	37-

Straight-line distan-	ce
to Bucharest	
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	10
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374
	3/4

Dijkstra's vs Greedy vs A*

- Dijkstra's algorithm order all the nodes on their g(n) values (distance already traveled).
- Greedy algorithm order all the nodes on their h(n) values (distance remaining).
- A* balances Dijkstra's algorithm with greedy search by ordering all the nodes using f(n) = g(n) + h(n), which is the estimated path cost from start node through n to goal.

Dijkstra's algorithm

Dijkstra's vs. A* search

Source: Wikipedia

Is A* optimal?

Is A* is guaranteed to provide the shortest path?

• Theorem: If h(n) is admissible, then A* is optimal

Admissible heuristic

- A heuristic h(n) is admissible if for every node n, h(n) ≤ h*(n), where h(n) is the estimated cost from n to goal while h*(n) is the true cost from n to goal.
- Is the distance heuristic we used before in Romanian traveling problem is admissible?

Voc. Possuco straight line dictance never everestimates the

How to tell which heuristic is better?

If h_1 and h_2 are both admissible heuristics and $h_2(n) \ge h_1(n)$ for all n, then h_2 dominates h_1

Using $h_2(n)$ will lead to expanding fewer nodes than $h_1(n)$.

Properties of A*

Complete?

Yes – Will always find a solution if one exists

Optimal?

Yes If h(n) is admissible

Time/space cost?

- A* search expands every node with $h(n) \le C^* g(n)$
 - C* is the path cost of the optimal solution
 - -g(n): cost from start node to node n
 - A higher (dominating) h(n) will have a higher pruning power

Search strategies

Algorithm	Complete?	Optimal?	Time complexity	Space complexity
Greedy	No	No	where b is b	ase: O(b ^m) ranching factor mum path length
A *	Yes	Yes (if heuristic is admissible)	h(n): estimated	es with $h(n) \le C^* - g(n)$ cost from n to goal m start node to n

 \mathbf{C}^{\star} is the path cost of the optimal solution