13. Consider the set of all linear combinations of the form $x_1n_1 + x_2n_2 + \dots + x_sn_s$. Clearly, the integers $abs(n_1)$, $abs(n_2)$, ... $abs(n_s)$ themselves belong to this set. Now consider the smallest positive integer c that belongs to this set. Clearly, $c <= abs(n_1)$, $c <= abs(n_2)$, ... and $c <= abs(n_s)$. Consider the remainder r obtained by dividing $abs(n_1)$ by c. We can write r as $abs(n_1) - qc$ for some quotient q. Since $abs(n_1)$ and c can both be written in the linear combination form above, so too can r. However, since c is the smallest positive such linear combination, r cannot be positive. In other words, we must have r=0, or equivalently, $c|abs(n_1)$. We can similarly derive that $c|abs(n_2)$, ... and $c|abs(n_s)$. This tells us that c is a common divisor of n_1 , n_2 , ... and n_s . In particular c|d, where $d = GCD(n_1, n_2, ... n_s)$. Since c can be expressed as a linear combination of the above form, so too can d. This concludes the proof. In fact, since d must divide all integers of the linear combination form above, we must have d|c, which leads us to the conclusion that c = d.