Zara Antonia-claria
30413

Troblem 1

$$\gamma_0 = X_1 x_0 + x_1 y_0$$

- asym automaton

a) Draw the schematic

b) Implement in VHDL

library. IEEE; USL IEEE std-logic_1164 all; USL IEEE std-logic_arith all; USL IEEE std-logic_unsigned.all; endity prob1 is

std-logic;

Y1, Yo: out std-logic;

end prob1; architecture art of prob1 is signal y, yo: std-logic; begin1: \(\frac{1}{2}\), \(\frac{1}{2}\):=0; \(\frac{1}{2}\). -- initialization process (x,,xo) y = (y and yo and x 1) or (y 1 and (not y 1) and xo)
or ((not y 1) or and yo and (not x,) and xo); $y_0 \in (x, \text{ and } x_0) \text{ or } (x, \text{ and } y_0);$ end process; $Y_1 \in Y_1;$ $Y_0 \in Y_0;$ end wh; c) Deter mine state transition:

State XIXO	00	101	1 11	1 10	
9,30	00/00	00/00		00/00	(1) considered Yn Yo outputs
1.0	00/00	10/10	11/11	00/00	well as functions) but it was
11	00/00	60/00	11/11	00/60	mot a good idea
outout	same a		+ stat	o horo	2

2

for
$$0000 \Rightarrow y_1 = 0 + 0 + 0 = 0$$
 $y_1, y_2, y_3 = 0$
 $y_1 = 0$

for $0000 \Rightarrow y_1 = 0$
 $y_0 = 0$

for $0000 \Rightarrow y_1 = 0$; $y_0 = 0$
 $y_0 = 1$

for $0000 \Rightarrow y_1 = 0$; $y_0 = 0$
 $0/0/0 \Rightarrow y_1 = 0$; $y_0 = 0$
 $0/0/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$; $y_0 = 1 + 1 = 1$; $y_0 = 0 + 0 = 0$
 $0/0/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$; $y_0 = 0 + 1 = 1$

for $10000 \Rightarrow y_1 = 0 + 0 + 0 = 0$; $y_0 = 0 + 1 = 1$

for $10000 \Rightarrow y_1 = 0 + 0 + 0 = 0$; $y_0 = 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$; $y_0 = 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$; $y_0 = 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$; $y_0 = 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$; $y_0 = 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$; $y_0 = 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$; $y_0 = 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$; $y_0 = 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$; $y_0 = 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$; $y_0 = 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$; $y_0 = 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$; $y_0 = 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$; $y_0 = 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$; $y_0 = 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$; $y_0 = 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$; $y_0 = 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$; $y_0 = 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$; $y_0 = 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$; $y_0 = 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$; $y_0 = 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$; $y_0 = 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$; $y_0 = 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$; $y_0 = 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$; $y_0 = 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$; $y_0 = 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$; $y_0 = 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$; $y_0 = 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$
 $100/0 \Rightarrow y_1 = 0 + 0 + 0 = 0$
 1

2) Potential problems are critical races: we have this kind of problem at the transition from: $\Delta \rightarrow A$ (11 \rightarrow 00) B→C (01→10) We can solve this by adding another state variable and I wo new states like so: to encode them adjacently: so we have : states : 000 001 011 100 161 110 111

9) New transition table:

On A VIX	ð			
States	00	01	11	10
A 000	(000)	000	001	000
B 001	000	001	001)	3000
C 010 B'011		(010)		82
D' 100	000	000	(100)	000
- 101				
0110	100	100	(111)	100
- 111		-		

5