Exercise 0.1 (9.16). Let [A] be a real $n \times n$ matrix. Show for its complex Jordan normal form that every Jordan block with a nonreal eigenvalue can be paired with a Jordan block of the same size and the conjugated eigenvalue.

Solution. Suppose $[A|_{M_i}]$ is a Jordan block occurring in some normal form of A over \mathbb{C} . Let λ_i be the eigenvalue. Then by assumption, letting M_i denote the generalized eigenspace for the eigenvalue λ_i , we get $M_i = \left\{x \in V \mid \exists k > 0 \colon (A - \lambda)^k \ x = 0\right\}$. Now, taking the complex conjugate over this equation (considered as matrices such that [A] is real), we get

$$([A] - \overline{\lambda}I)^k \, \overline{x} = 0$$

so $\overline{x} \in M_{\overline{\lambda_i}}$, hence $\overline{\lambda_i}$ must be some λ_j . And clearly the above argument gives $\dim M_i = \dim M_j$, the bijective correspondence being $x \mapsto \overline{x}$.