Solutions to Midterm Exam #2

1 Suppose f(z) = u(x,y) + iv(x,y) is analytic in an open set. Use the Cauchy-Riemann equations to show that the real part u is harmonic, that is, $u_{xx} + u_{yy} = 0$. What assumptions, if any, are necessary for your derivation to be correct?

Proof. We know that since f(z) is analytic, partial derivatives of u, v exist and satisfy CR equations:

$$u_x(x,y) = v_y(x,y), \quad u_y(x,y) = -v_x(x,y).$$

Assuming that there exist second derivatives of u, v, we can differentiate the first equation with respect to x and the second equation with respect to y:

$$u_{xx}(x,y) = v_{yx}(x,y), \quad u_{yy}(x,y) = -v_{xy}(x,y).$$

Since $v_{yx} = v_{xy}$, we derive that $u_{xx} + u_{yy} = 0$.

For now we must assume that the second derivatives are continuous, so that $v_{yx} = v_{xy}$, to make this argument work. (Later will see that this is not necessary to assume; the fact that f is analytic actually implies that it has continuous derivatives of all orders.)

2 Compute $\log(-i)$.

Proof.
$$\log(-i) = \log(1 \cdot e^{-\frac{\pi}{2}}) = \ln 1 + i(-\frac{\pi}{2} + 2n\pi) = i(-\frac{\pi}{2} + 2n\pi), \text{ for } n \in \mathbb{Z}.$$

3 Explain why $\int_{-C} f(z) dz = -\int_{C} f(z) dz$.

Proof. By definition, when we have parametrization of contour C by the function z(t), $t \in [a, b]$, then the contour -C is parametrized by z(-t), $t \in [-b, -a]$ (or, equivalently, z(b+a-t), $t \in [a, b]$).

On the other hand

$$\int_C f(z) dz = \int_a^b f(z(t))z'(t) dt.$$

Using the definition of integral and changing variable we have

$$\int_{-C} f(z) dz = \int_{-b}^{-a} f(z(-t)) \frac{d}{dt} z(-t) dt = -\int_{-b}^{-a} f(z(-t)) z'(-t) dt$$

$$\stackrel{[\tau = -t]}{=} \int_{b}^{a} f(z(\tau)) z'(\tau) d\tau = -\int_{a}^{b} f(z(\tau)) z'(\tau) d\tau = \int_{C} f(z) dz$$

(If the formula "z(b+a-t), $t \in [a,b]$ " was used for -C then the substitution is $\tau = b+a-t$.) \square

4 Show that $\exp(z)$ is real if and only if $\operatorname{Im} z = n\pi$ for some integer n.

Proof. If z = x + iy then the representation $e^z = e^x(\cos y + i\sin y)$ implies that e^z is real if and only if $\sin y = 0$. This holds if and only if $\text{Im } z = y = n\pi, n \in \mathbb{Z}$.

- **5** (a) Define "cos z" if z is a complex number. Definition: $\cos z = \frac{e^{iz} + e^{-iz}}{2}$.
- (b) Show that $\cos z = \cos x \cosh y i \sin x \sinh y$ if z = x + iy.

Proof. We use the formula $\cos(x+iy) = \cos x \cos iy - \sin x \sin iy$. Note that $\cos iy = \cosh y$ and $\sin iy = i \sinh y$, we get $\cos(x+iy) = \cos x \cosh y - i \sin x \sinh y$.

6 (a) Show that $f(z) = \exp(\overline{z})$ is not analytic at any point of the complex plane.

Proof. Let us rewrite our function as $f(z) = e^{\bar{z}} = e^x \cos y - ie^x \sin y$. Thus $u(x,y) = e^x \cos y$, $v(x,y) = -e^x \sin y$. The C-R equation $u_x = v_y$ is only true when $e^x \cos y = -e^x \cos y$. This implies $\cos y = 0$, or $y = \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$. The other C-R equation $u_y = -v_x$ is only true when $-e^x \sin y = e^x \sin y$. That is, $\sin y = 0$ or $y = k\pi$, $k \in \mathbb{Z}$. The conditions $\cos y = 0$ and $\sin y = 0$ cannot hold simultaneously. Thus, the C-R equations are satisfied nowhere and the function $f(z) = \exp(\bar{z})$ is analytic nowhere.

(b) Let C be the contour given by the parameterization z(t) = t + i(1 - t) for $0 \le t \le 1$. For the function f(z) in part (a), compute $\int_C f(z) dz$.

Proof. We have z(t) = x(t) + iy(t) = t + i(1-t), so x(t) = t, y(t) = 1 - t, z'(t) = 1 - i and we can evaluate:

$$\int_C e^{\bar{z}} dz = \int_0^1 e^{x(t) - iy(t)} z'(t) dt = \int_0^1 e^{t - i(1 - t)} (1 - i) dt = e^{-i} (1 - i) \int_0^1 e^{t(1 + i)} dt$$
$$= e^{-i} \frac{1 - i}{1 + i} e^{t(1 + i)} \Big]_0^1 = \frac{1 - i}{1 + i} (e - e^{-i}).$$

7 (a) State the definition of " z^c " for z and c complex numbers (and $z \neq 0$). Definition: $z^c = e^{c \log z}$.

(b) Find the principal value of $(1+i)^{4i}$.

Proof. We know that $1+i=\sqrt{2}e^{i\frac{\pi}{4}}$. Then $(1+i)^{4i}=e^{4i\operatorname{Log}(1+i)}=e^{4i\operatorname{Log}(\sqrt{2}e^{i\pi/4})}=e^{4i(\ln\sqrt{2}+i\pi/4)}=e^{-\pi+2i\ln2}$.

(c) Show that $(z^c)^n = z^{cn}$ if n = 1, 2, 3, ...

Proof. Using the definition of z^c twice, we get $(z^c)^n = (e^{c \log z})^n = e^{cn \log z} = z^{cn}$.

8 (a) Find an antiderivative of $f(z) = 1/z^2$. Is this antiderivative multi-valued? Can an antiderivative ever be multi-valued according to the definition in the textbook?

Proof. An antiderivative of $f(z) = \frac{1}{z^2}$ in $\mathbb{C}\setminus 0$ is $F(z) = -\frac{1}{z}$. It is analytic except at z = 0 and single-valued. Antiderivatives of any function, if they exist, must be single-valued functions by definition.

(b) Suppose C is the circle $z = e^{i\theta}$, $-\pi \le \theta \le \pi$. Compute $\int_C \frac{dz}{z^2}$.

Proof. Since $f(z) = \frac{1}{z^2}$ has an antiderivative F(z) as above, and because $-1 = e^{i(-\pi)} = e^{i\pi}$ at both ends of the contour C,

$$\int_C \frac{dz}{z^2} = F(-1) - F(-1) = 0.$$

Extra Credit See separate note.