

IAI5101: Foundations of Machine Learning for Scientists & Engineers

Winter 2022

Final Assignment

Submission Deadline: 15th April 2022 on Brightspace.

This final assignment should be **completed individually**. Upon completion, present your result in one submission, including the answers generated (**Note: not more than 15 pages**).

Part A: Data preparation (25 points)

- 1) A dataset has 500,000 records and 40 variables with 15% of the values missing, spread randomly throughout the records and variables. You have decided to remove the records with missing values. About how many records would you expect to be removed? (5 points)
- 2) Some women who were at least 21 years old, of Pima Indian heritage and living near Phoenix, Arizona, were tested for diabetes according to World Health Organization criteria. Given a sample of the data for their *age* and *BMI* in Table 1 below, answer the following (20 points):
 - a) Normalize the two attributes based on *z-score* normalization
 - b) Calculate the *correlation coefficient* (Pearson's product moment coefficient). Are these two attributes positively or negatively correlated?

Table 1: Age and BMI of Pima Indian Women

Age	24	55	35	26	23	52	25	24	63	31
BMI	30.2	25.1	35.8	47.9	26.4	35.6	34.3	25.9	32.4	43.3
Age	33	45	59	44	29	21	21	51	42	21
BMI	43.1	30.9	30.1	27.6	41.3	23.2	25.4	36.6	29.3	22.1

Part B: Classification (25 points)

Table 2 presents dataset containing details of activities at a waste water treatment plant for 13 days. Each day is described in terms of six descriptive features that are generated from different sensors at the plant.

- SS-IN solids coming into the plant per day
- SED-IN sediment coming into the plant per day
- COND-IN electrical conductivity of the water coming into the plant.
- SS-OUT, SED-OUT & COND-OUT water flowing out of the plant
- STATUS this is the target. Gives the current situation at the plant

Table 2: Waste Water Treatment

	SS	SED	COND	SS	SED	COND	
ID	-IN	-IN	-IN	-OUT	-OUT	-OUT	STATUS
1	168	3	1,814	15	0.001	1,879	ok
2	156	3	1,358	14	0.01	1,425	ok
3	176	3.5	2,200	16	0.005	2,140	ok
4	256	3	2,070	27	0.2	2,700	ok
5	230	5	1,410	131	3.5	1,575	settler
6	116	3	1,238	104	0.06	1,221	settler
7	242	7	1,315	104	0.01	1,434	settler
8	242	4.5	1,183	78	0.02	1,374	settler
9	174	2.5	1,110	73	1.5	1,256	settler
10	1,004	35	1,218	81	1,172	33.3	solids
11	1,228	46	1,889	82.4	1,932	43.1	solids
12	964	17	2,120	20	1,030	1,966	solids
13	2,008	32	1,257	13	1,038	1,289	solids

Assuming the dataset is normalized, create a Naive Bayes model to predict the output for following query:

• SS-IN = 222, SED-IN = 4.5, COND-IN = 1,518, SS-OUT = 74 SED-OUT = 0.25, COND-OUT = 1,642

Part C: Clustering (25 points)

1) Consider the following "data" to be clustered: **10 20 40 80 85 121 160 168 195.** For each part of the problem, assume that Euclidean distance will be used to measure the distance between the data points. Use hierarchical

agglomerative clustering with single linkage to cluster the data. Draw a dendrogram to illustrate your clustering and include a vertical axis with numerical labels indicating the height of each parental node in the dendrogram (10 points)

2) If DBSCAN algorithm is applied with similarity threshold of 0.8 (using the similarity matrix) **or** *eps* of 0.2 (for the dissimilarity matrix), and $MinPts \ge 2$ (required density), what are core, border, and noise points in the set of points p_i given in table 3. Explain (15 points).

	p1	p2	р3	p4	p5
p1	1.00	0.10	0.41	0.55	0.35
p2	0.10	1.00	0.64	0.47	0.98
р3	0.41	0.64	1.00	0.44	0.85
p4	0.55	0.47	0.44	1.00	0.76
p5	0.35	0.98	0.85	0.76	1.00

Table 3

Part D: Performance Evaluation (25 points)

- 1) Two models are applied to a dataset that has been partitioned. Model A is considerably more accurate than model B on the training data, but slightly less accurate than model B on the validation data. Which model are you more likely to consider for final deployment? (10 points)
- 2) A large number of insurance records are to be examined to develop a model for predicting fraudulent claims. Of the claims in the historical database, 2% were judged to be fraudulent. A sample is taken to develop a model, and oversampling is used to provide a balanced sample in light of the very low response rate. When applied to this sample (n = 1600), the model ends up correctly classifying 620 frauds, and 540 non-frauds. It missed 180 frauds, and classified 260 records incorrectly as frauds when they were not. (15 points)
 - a. Produce the confusion matrix for the sample as it stands.
 - b. Find the adjusted misclassification rate (adjusting for the oversampling).
 - c. What percentage of new records would you expect to be classified as fraudulent?