计算机学院专业课程

计算机组成

流水线处理器 形式建模综合方法

高小鹏

北京航空航天大学计算机学院

挑战

- □ 流水线设计目标: 给定<mark>任意指令集</mark>,确保基于该指令集的任意程 序均能全速运行
 - ◆ 功能:能发现所有可能导致冒险的指令组合
 - 性能:尽力转发~~凡能转发的,绝不暂停!
 - 用暂停来规避转发,背离了流水线设计初衷
- □ 挑战:通过枚举构造冲突的方法,难以证明穷尽所有的可能
 - 箴言:测试只能发现错误,不能证明没有错误!
- □ 方法: 针对任意指令集,正确、高效的构造全速转发流水线

NOTE

方法适用于单发射标准流水线,不 不适用乱序执行等最先进流水线

流水线方法的概述

□ 基本思路: 因为是全速流水线, 所以转发是暂停的前提

	数据通路	控制						
转发	构造无转发的基础流水线	与单周期控制器相同						
	增加转发电路							
	根据流水线架构构造每条指	旨令的T _{use} 和T _{new}						
暂停	构造暂停/转发 <mark>策略矩阵</mark> (
首情	根据策略矩阵生成 <mark>暂停</mark> 控制表达式							
	根据策略矩阵生成 <mark>转发</mark> 控制							

3

提纲

- 数据通路构造方法
 - 基础流水线规划
 - ◆ 建模指令RTL
 - ◆ RTL制导的独立数据通路
 - 综合无转发数据通路
 - 综合转发电路
 - 构造功能MUX控制表达式
- □ 暂停及转发的分析方法
- □ 暂停机制构造方法
- □ 转发机制构造方法
- □ 控制冒险处理机制

流水线寄存器命名

NOTE

望文生义:内容与形式统一

- □ 指导思想: 使用无二义性的名字; 直观易懂
 - 例如rt就存在二义性
 - 可能代表第2个源寄存器编号,也可能是写寄存器编号

名字	宽度	描述	对应的指令域	命名考虑
A1	5位	第1个源寄存器编号	当前只有rs	与RF设计一致
A2	5位	第2个源寄存器编号	当前只有rt	A3需要由rd/rt/+31转
А3	5位	目的寄存器编号	rd或rt或+31	换得到(后续介绍)
V1	32位	RF的第1个寄存器输出值		Value的首字母
V2	32位	RF的第2个寄存器输出值		Valueny自于中
E32	32位	EXT的32位扩展结果		扩展的英文缩写
AO	32位	ALU计算结果		沿用多周期命名
DR	32位	DM输出值		石田夕问 粉甲石
PC4	32位	下一条指令地址		
			6	北京航空航天大学计算机学院 School of Computer Science and Engineering, Beihang University

3

				指今
	流水线数据通路描述表	P	PC.	18.4
	加小 纹数循 进 陷油处农	_	M	
		AD	D4	
	1、描述表的架构:与流水线执行路径尽量保持一致	D级	IR PC4	
	2、RF:将读出与写入分离,更易于理解5阶段	RF	A1 A2	
-	20 M: 付货山马马八刀齿,丈勿了垤肿300枚	EXT	A2	
l_			PC4	
	3、流水寄存器有2个用途	NPC	126	
		CMP	D1	
	◆ 3.1:保存刚产生的信息:与前级功能部件密切相关	CIVII	D2	
	Ind In the -		V1 V2	
	• 例如: E级的A3		A1	
	。2.2 机闪化学信息 然始始苦气机华拉	E级	A2	
	3.2:级间传递信息:简单的前后级衔接		A3	
	• 例如:M级和W级的A3 🔲		EXT	
	• 例如: M级和W级的A3		PC4	
	4 出2.2可加 工具达少虫大型的发拉头系具国立的	ALU	A B	
"	4、由3.2可知,大量流水寄存器的连接关系是固定的,		V2	
	因此问题焦点是解决信息的最初来源		A2	
		M级	AO	
	◆ 例如A3:E级初值来自IR,M级/W级则为简单传递		A3	
	/////////////////////////////////////		PC4	
	◆ 例如AO:M级初值来自ALU,W级则为简单传递	DM	WD	
	7776701 11777		A3	
		w级	PC4	
		VV S/X	AO	
	अंक इंड के अ		DR	
	に 京 都 文 和 文 和 文 School of Computer Scient	RF	A3 WD	

- □ 数据通路构造方法
 - 基础流水线规划
 - 建模指令RTL
 - ◆ RTL制导的独立数据通路
 - 综合无转发数据通路
 - 综合转发电路
 - 构造功能MUX控制表达式
- □ 暂停及转发的分析方法
- □ 暂停机制构造方法
- □ 转发机制构造方法
- □ 控制冒险处理机制

建模lw的RTL: 计算 $R[rt] \leftarrow MEM[R[rs] + sign ext(imm16)]$ □ Cycle -3: 基地址加偏移, 结果写入AO ◆ 基地址来源于rs寄存器,即V1;偏移来源于扩展单元,即E32 ◆ 由于有V1, 就必须同时建立A1 • V1/A1结对的理由: 需要判断是否存在其他指令在A1(即rs)上相关 (ALU) PC IM RF DM RF ◆ A3仍然需要从E级向W级传递 ADD4 EXT NPC CMP A3 А3 А3 步骤 控制信号 RTL 回写 RF[A3@W] ←DR@W RFWr:1 DR@W -DM[AO@M] V1 访存 M9EA→ W9EA Α1 DR AO@M ←ALU(V1@E,E32@E) 计算 ALUOp:ADD A3@M ←A3@E E32 D级 E级 M级 W级

- 数据通路构造方法
 - 基础流水线规划
 - 建模指令RTL
 - ◆ RTL制导的独立数据通路
 - 综合无转发数据通路
 - 综合转发电路
 - ◆ 构造功能MUX控制表达式
- □ 暂停及转发的分析方法
- □ 暂停机制构造方法
- □ 转发机制构造方法
- □ 控制冒险处理机制

- 数据通路构造方法
 - 基础流水线规划
 - 建模指令RTL
 - ◆ RTL制导的独立数据通路
 - 综合无转发数据通路
 - 综合转发电路
 - ◆ 构造功能MUX控制表达式
- □ 暂停及转发的分析方法
- □ 暂停机制构造方法
- □ 转发机制构造方法
- □ 控制冒险处理机制

			lw	sw	add	sub	ori	beq	j	jal	jr
	Р	С	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4 NPC	NPC	NPC	RF.RD1
	II	VI	PC	PC	PC	PC	PC	PC	PC	PC	PC
	AD	D4	PC	PC	PC	PC	PC	PC	PC	PC	
每条指令	D级	IR	IM	IM	IM	IM	IM	IM	IM	IM	IM
	DAX	NPC	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	
对应的数	RF	A1	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D			IR[rs]@D
	KF	A2		IR[rt]@D	IR[rt]@D	IR[rt]@D		IR[rt]@D			
据通路	EXT		IR[i16]@D	IR[i16]@D			IR[i16]@D				
<i>3</i> .H.~~-	NPC	PC4						PC4@D	PC4@D	PC4@D	
	NPC	126						IR[i16]@D	IR[i26]@D	IR[i26]@D	
	CMP	D1						RF.RD1			
	CIVIP	D2						RF.RD2			
		V1	RF.RD1	RF.RD1	RF.RD1	RF.RD1	RF.RD1				
		V2		RF.RD2	RF.RD2	RF.RD2					
		A1	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D				
	E级	A2		IR[rt]@D	IR[rt]@D	IR[rt]@D					
		A3	IR[rt]@D		IR[rd]@D	IR[rd]@D	IR[rt]@D			31	
		E32	EXT	EXT							
		PC4								PC4@D	
	ALU	Α	V1@E	V1@E	V1@E	V1@E	V1@E				
	ALO	В	E32@E	E32@E	V2@E	V2@E	E32@E				
		V2		V2@E							
		A2		RD2@E							
	M级	AO	ALU	ALU	ALU	ALU	ALU				
		A3	A3@E		A3@E	A3@E	A3@E				
		PC4								PC4@E	
	DM	Α	AO@M	AO@M	AO@M	AO@M	AO@M				
	J.11.	WD		RD2@M							
		A3	A3@M		A3@M	A3@M	A3@M				
	w级	PC4								PC4@M	
		AO	AO@M		AO@M	AO@M	AO@M				
		DR	DM								
	RF	A3	A3@W		A3@W	A3@W	A3@W				
	111	WD	DR@W		AO@W	AO@W	AO@W			PC4@W	

		lw	SW	add	sub	ori	beq	j	jal	jr	MUX	0	1	2
Р	С	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4 NPC	NPC	NPC	RF.RD1	MPC	ADD4	NPC	RF.RD1
11	VI	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC			
AD	D4	PC	PC	PC	PC	PC	PC	PC	PC		PC			
D级	IR	IM	IM	IM	IM	IM	IM	IM	IM	IM	IM			
D织	NPC	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4		ADD4			
RF	A1	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D			IR[rs]@D	IR[rs]@D			
KF	A2		IR[rt]@D	IR[rt]@D	IR[rt]@D		IR[rt]@D				IR[rt]@D			
EXT		IR[i16]@D	IR[i16]@D			IR[i16]@D					IR[i16]@D			
NPC	PC4						PC4@D	PC4@D	PC4@D		PC4@D			
MPC	126						IR[i16]@D	IR[i26]@D	IR[i26]@D		IR[i26]@D			
CA AD	D1						RF.RD1				RF.RD1			
CMP	Π2						RF RD2				RF.RD2			
											RF.RD1			
	_	~_	1.517	T 34	17 1						RF.RD2			
Ш	٥.	开后	ᅜᅑᅬ	介开	1415 /						IR[rs]@D			
1	┛.	/ I I -,		~ / / /	THY	1-73		OA,			IR[rt]@D			
ΙI	[/	一	する	ゟエ	杜 4	・米什・	居通	中女			MA3E	IR[rt]@D	IR[rd]@D	
J	12	以兀	,定日	ソフし	キマ ク	乙女乂1	冱咫	ഥ。			EXT			
١.								_, .			PC4@D			
Ŀ	=	曲 圧	1 # H	么	141 甘	日迷灯:	据通	股外	<u> </u>	屰 □	V1@E			
1	. ر	十/4	12411	ン	1미 7	刀多人。	冲匹	ルロニル	ハロノ	/J _	MALUB	V2@E	E32@E	
2	+ •	一人	ᆉᄆᇉ	-							V2@E			
	広:	兀王	相同]							A2@E			
N											ALU			
											A3@E			
	PC4								PC4@E		PC4@E			
	Α	AO@M	AO@M	AO@M	AO@M	AO@M					AO@M			
DM	WD		RD2@M								V2@M			
	A3	A3@M	- Č	A3@M	A3@M	A3@M					A3@M			
	PC4								PC4@M		PC4@M			
W级	AO	AO@M		AO@M	AO@M	AO@M					AO@M			
	DR	DM									DM			
	A3	A3@W		A3@W	A3@W	A3@W					A3@W			
RF	WD	DR@W		AO@W	AO@W	AO@W			PC4@W		MRFWD	AO@W	DR@W	PC4@V
	WVD	שות		7060	7060	AC W W			1.0-10-10		IVIII VVD	7064	אישאים	, C+@V

- □ 方法的流程概述
- □ 数据通路构造方法
 - 基础流水线规划
 - 建模指令RTL
 - ◆ RTL制导的独立数据通路
 - 综合无转发数据通路
 - 构造功能MUX控制表达式
 - 综合转发电路
- □ 暂停及转发的分析方法
- □ 暂停机制构造方法
- □ 转发机制构造方法
- □ 控制冒险处理机制

北京航空航天大学计算机学院

转发的设计思路

- 如果beq比较电路前移至D级,则D级还必须考虑rs和rt的暂停与 转发!
 - ◆ 暂停: 例如, E级是cal类指令或load类指令, 等等
 - ◆ 转发: M、W肯定需要转发。但E级是否存在转发的必要性?!

支持转发的完整数据通路

□ 遍历数据通路的功能部件,找到所有与RF.RD1和RF.RD2相关的需求者

◆ 注意: V1--RF.RD1及V2--RF.RD2的关联关系

□ 示例: PC和ALU.B

◆ PC: 输入2来自RF读出的第1个源操作数

◆ ALU.B: 输入0来自V2, 即RF读出的第2个源操作数

支持转发的完整数据通路

- 转发设计的基本思路:需求者以后的所有可能存储新数据的流水寄存器,均需要向需求者转发数据
- □ 示例: MALUB的输入0(来自V2@E), 需要替换为MFALUBE
 - ◆ 分析: ALU的后级为M和W。M存储ALU的计算结果,W存储ALU的计算结果或DM的读出数据
 - ◆ 结论: M和W均需要向MFALUBE转发
 - M转发: AO; W转发: AO、DR

	lw	sw	add	sub	ori	beq	j	jal	jr	MUX	0	1	2
:	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4 NPC	NPC	NPC	RF.RD1	MPC	ADD4	NPC	RF.RD1
В	E32@E	E32@E	V2@E	V2@E	E32@E					MALUB	V2@E	E32@E	
		- Am IV.	7 8/8	4 \ 10			0	1	2	3			
					MFAL	.UBE	V2@E	DR@W	AO@V	V AO@M			
					优先	级	低	ı	†				
	B DTE JXF	B E32@E DTE JX的端口 , 但最好	ADD4 ADD4 B E32@EE32@E TE JX的端口规划 ,但最好按照	ADD4 ADD4 ADD4 B E32@EE32@E V2@E OTE JX的端口规划不影响,但最好按照数越力	ADD4 ADD4 ADD4 ADD4 B E32@E E32@E V2@E V2@E V2@E JX的端口规划不影响设	ADD4 ADD4 ADD4 ADD4 ADD4 ADD4 B E32@E E32@E V2@E V2@E E32@E U2@E U2@E U2@E E32@E U2@E U2@E U2@E E32@E U2@E U2@E U2@E U2@E U2@E U2@E U2@E U	ADD4 ADD4 ADD4 ADD4 ADD4 ADD4 NPC B E32@EE32@E V2@E V2@E E32@E OTE JX的端口规划不影响设 ,但最好按照数越大优	ADD4 ADD4 ADD4 ADD4 ADD4 ADD4 NPC	ADD4 ADD4 ADD4 ADD4 ADD4 ADD4 NPC NPC NPC B E32@E E32@E V2@E V2@E E32@E	ADD4 ADD4 ADD4 ADD4 ADD4 ADD4 NPC NPC NPC RF.RD1	ADD4 ADD4 ADD4 ADD4 ADD4 ADD4 NPC NPC NPC RF.RD1 MPC	ADD4 ADD4 ADD4 ADD4 ADD4 ADD4 NPC NPC NPC RF.RD1 MPC ADD4 NPC NPC	ADD4 ADD4 ADD4 ADD4 ADD4 ADD4 NPC NPC NPC RF.RD1 MPC ADD4 NPC

		lw	SW	add	sub	ori	beq	j	jal	jr	MUX	0	1	2
Р	С	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4 NPC	NPC	NPC	RF.RD1	MPC	ADD4	NPC	RF.RD1
II.	VI	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC			
AD	D4	PC	PC	PC	PC	PC	PC	PC	PC		PC			
D级	IR	IM	IM	IM	IM	IM	IM	IM	IM	IM	IM			
D级	NPC	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4		ADD4			
RF	A1	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D			IR[rs]@D	IR[rs]@D			
KF	A2		IR[rt]@D	IR[rt]@D	IR[rt]@D		IR[rt]@D				IR[rt]@D			
EXT		IR[i16]@D	IR[i16]@D			IR[i16]@D					IR[i16]@D			
NPC	PC4						PC4@D	PC4@D	PC4@D		PC4@D			
INPC	126						IR[i16]@D	IR[i26]@D	IR[i26]@D		IR[i26]@D			
СМР	D1						RF.RD1				RF.RD1			
CIVIP	D2						RF.RD2				RF.RD2			
	V1	RF.RD1	RF.RD1	RF.RD1	RF.RD1	RF.RD1								
	V2		RF.RD2	RF.RD2	RF.RD2									
	A1	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D					IR[rs]@D			
E级	A2		IR[rt]@D	IR[rt]@D	IR[rt]@D						IR[rt]@D			
	A3	IR[rt]@D		IR[rd]@D	IR[rd]@D	IR[rt]@D			31		MA3E	IR[rt]@D	IR[rd]@D	
	E32	EXT	EXT								EXT			
	PC4								PC4@D		PC4@D			
ALU	Α	V1@E	V1@E	V1@E	V1@E	V1@E					V1@E			
ALU	В	E32@E	E32@E	V2@E	V2@E	E32@E					MALUB	V2@E	E32@E	
	V2		V2@E								V2@E			
	A2		RD2@E								A2@E			
M级	AO	ALU	ALU	ALU	ALU	ALU					ALU			
	A3	A3@E		A3@E	A3@E	A3@E					A3@E			
	PC4								PC4@E		PC4@E			
DM	Α	AO@M	AO@M	AO@M	AO@M	AO@M					AO@M			
DIVI	WD		RD2@M								V2@M			
	A3	A3@M		A3@M	A3@M	A3@M					A3@M			
w级	PC4								PC4@M		PC4@M			
VV SX	AO	AO@M		AO@M	AO@M	AO@M					AO@M			
	DR	DM									DM			
RF	A3	A3@W		A3@W	A3@W	A3@W					A3@W			
ΝF	WD	DR@W		AO@W	AO@W	AO@W			PC4@W		MRFWD	AO@W	DR@W	PC4@V

		lw	SW	add	sub	ori	beg	i	jal	ir	MUX	0	1	2
┢	·C	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4 NPC	NPC	NPC	RF.RD1	MPC	ADD4	NPC.	MEPCE
<u> </u>	<u>й</u>	PC	PC	PC PC	PC	PC	PC	PC	PC	PC	PC	71001		
AD		PC	PC	PC	PC	PC	PC	PC	PC		PC			
\vdash	IR	IM	IM	IM	IM	IM	IM	IM	IM	IM	IM			
D级	NPC	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4	ADD4		ADD4			
	A1	IR[rs]@D		IR[rs]@D		IR[rs]@D	IR[rs]@D			IR[rs]@D	IR[rs]@D			
RF	A2			IR[rt]@D		. ,-	IR[rt]@D				IR[rt]@D			
EXT		IR[i16]@D	IR[i16]@D			IR[i16]@D	. , , -				IR[i16]@D			
	PC4		. ,-			, ,-	PC4@D	PC4@D	PC4@D		PC4@D			
NPC	126						IR[i16]@D	IR[i26]@D	IR[i26]@D		IR[i26]@D			
CLAR	D1						RF.RD1				MFCMP1D			
СМР	D2						RF.RD2				MFCMP2D			
	V1	RF.RD1	RF.RD1	RF.RD1	RF.RD1	RF.RD1								
	V2		RF.RD2	RF.RD2	RF.RD2									
	A1	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D	IR[rs]@D					IR[rs]@D			
E级	A2		IR[rt]@D	IR[rt]@D	IR[rt]@D						IR[rt]@D			
	A3	IR[rt]@D		IR[rd]@D	IR[rd]@D	IR[rt]@D			31		MA3E	IR[rt]@D	IR[rd]@D	
	E32	EXT	EXT								EXT			
	PC4								PC4@D		PC4@D			
ALU	Α	V1@E	V1@E	V1@E	V1@E	V1@E					V1@E			
	В	E32@E	E32@E	V2@E	V2@E	E32@E					MALUB	MFALUBE	E32@E	
	V2		V2@E								MFV2M			
	A2		RD2@E								A2@E			
M级		ALU	ALU	ALU	ALU	ALU					ALU			
	A3	A3@E		A3@E	A3@E	A3@E					A3@E			
	PC4								PC4@E		PC4@E			
lьм	Α	AO@M	AO@M	AO@M	AO@M	AO@M					AO@M			
L	WD		RD2@M								MFWDM			
	A3	A3@M		A3@M	A3@M	A3@M					A3@M			
w级	PC4								PC4@M		PC4@M			-
^	AO	AO@M		AO@M	AO@M	AO@M					AO@M			<u> </u>
<u> </u>	DR	DM									DM			
RF	A3	A3@W		A3@W	A3@W	A3@W					A3@W			
	WD	DR@W		AO@W	AO@W	AO@W			PC4@W		MRFWD	AO@W	DR@W	PC4@W

- □ 数据通路构造方法
 - 基础流水线规划
 - 建模指令RTL
 - ◆ RTL制导的独立数据通路
 - 综合无转发数据通路
 - 综合转发电路
 - 构造功能MUX控制表达式
- □ 暂停及转发的分析方法
- □ 暂停机制构造方法
- □ 转发机制构造方法
- □ 控制冒险处理机制

构造功能MUX控制信号表达式

- □ 数据通路中包含2类MUX: 功能MUX、转发MUX
 - ◆ 功能MUX: 与指令执行的功能(即操作语义)相关
 - 转发MUX: 与指令执行的性能相关

		lw	SW	add	sub	ori	beq	j	jal	jr	MUX	0	1	2
СМР	D1						RF.RD1				MFCMP1D			
CIVIF	D2						RF.RD2				MFCMP2D			
E级	А3	IR[rt]@D		IR[rd]@D	IR[rd]@D	IR[rt]@D			31		MA3E	IR[rt]@D	IR[rd]@D	
ALU	В	E32@E	E32@E	V2@E	V2@E	E32@E					MALUB	MFALUBE	E32@E	
M级	V2		V2@E								MFV2M			
DM	WD		RD2@M								MFWDM			

- □ 目前先构造<mark>功能MUX</mark>控制信号表达式
 - ◆ 在暂停与转发控制部分讲解转发MUX控制信号表达式

构造功能MUX控制信号表达式

□ 示例:构造PC的功能MUX的控制信号PCSel表达式

ALUBSel = (lw+sw+ori) ? `ALUB_E32 : `ALUB_RT

- □ 数据通路表:决定了MUX控制信号的取值
 - ◆ 注意1: 表格和表达式的颜色对应关系
 - 注意2: 转发MUX与寄存器值之间的关系
 - 示例: MFALUBE就是与RF.RD2相关的转发MUX
 - `define ALUB_E32 1'b1 `define ALUB_RT 1'b0

NOTE 通过宏提高代码可读 性、可维护性

- □ 数据通路构造方法
 - 基础流水线规划
 - 建模指令RTL
 - ◆ RTL制导的独立数据通路
 - 综合无转发数据通路
 - 综合转发电路
 - ◆ 构造功能MUX控制表达式
- □ 暂停及转发的分析方法
- □ 暂停机制构造方法
- □ 转发机制构造方法
- □ 控制冒险处理机制

北京航空航天大学计算机学院 School of Computer Science and Engineering, Beihang University

33

流水线的执行特点及数据冒险对策的基本构思1/4

- □ 目前的流水线的基本特点是:按序发射。按序完成
 - 一旦当前指令阻塞,后续指令就被阻塞
- 这意味着,对于需要暂停的指令来说,无论在哪级暂停,其后续指令都不能执行
- 既然如此,那么对于数据相关的暂停和转发,就可以分成两个独立环节
 - 在D级检测

流水线的执行特点及数据冒险对策的基本构思2/4

- □ 在D级就暂停住指令可能是不合理的
- □ 下面的例子,由于sub被冻结在D直至冒险解除,因此beq指令在 cycle4才进入D

					ı							
			PC+4			RF((读)	Α	LU	DI	M	
地址	指令	CLK	PC	IM)	E		М		W	RF
0 lw	\$t0, 0(\$t1)		0	lw	Ιν	٧						
U IW	\$CO, 0(\$CI)	1 1	4	sub	写t0	3						
/ enh	\$t3, \$t0, \$t2		4	sub	su	ıb	lw	/				
4 Sul	7 70, 700, 702	1 2	8	and	读t0	1	写t0	2				
8 bec	4		8	beq	su	ıb	no	n	lw			
8 Dec	1	1 3	8	beq	读t0	1	no	þ	写t0	1		
12 XXX	7		8	beq	be	eq	su	b	non		lw	
12 ΛΛΛ	7	1 4	12	XXX	读t0	1	读t0	0	nop		新t0 0	
16												
10												
					35						航天大学计 Science and Engineering,	

流水线的执行特点及数据冒险对策的基本构思3/4

- □ 如果允许sub前进直至必须暂停,那么beq在cycle3就进入了D
- □ 由于beq是在D级执行的,因此sub进入E级处于执行时,D级的beq也能同时执行
- □ 对于5级流水线来说,只有b和j在D级执行,因此是受益指令

			PC+4			RF((读)	Α	LU	DN	1	
地址	指令	CLK	PC	IM)	E		М		W	RF
0	lw \$t0, 0(\$t1)		0	lw	١١	v						
U .	TW 200, 0 (201)	1 1	4	sub	写t0	3						
4	sub \$t3, \$t0, \$t2		4	sub	Sι	ıb	Ιν	v				
4	3ub 903, 900, 902	1 2	8	beq	读t0	1	写t0	2				
o 1	beg		8	beq	be	eq.	su	ıh	lw			
0 1	ped	1 3	12	xxx			30	ıb	写t0	1		
12	XXX		12	xxx	X)	(X	su	ıb	non		lw	
12	AAA	1 4	16	ууу			读t0	0	nop		新t0 C)
16	77777											
10	Y Y Y											
					36							计算机学院 ering, Beihang University

流水线的执行特点及数据冒险对策的基本构思4/4

- □ 如果采用该方案,则就必须再增加标记:
 - 标记每个流水段是否执行结束
 - 当然,对于5级流水线来说,这个标记可以只在D级就可以了。
 - 虽然E和M都是执行(分别对应ALU和DM),但M级只有转发了
- 当指令是b/j时,标志置位,意味着可以再继续执行,否则就必须 阻塞了
- □ 该方案将使得流水线的控制更加复杂
- □ 我认为由于受益指令非常有限,而且方法学重点在于解决100%的覆盖性,因此仍然保持原设计: D级阻塞需要暂停的指令

37

数据冒险: 需求与供给能否匹配?

- 需求者: 使用或传递寄存器值的功能部件和流水线寄存器
 - ◆ 例1: add/sub/or的需求在E级的ALU
 - 例2: i指令不需要读取任何寄存器, 因此i指令没有需求
- □ 供给者:保存有reg新结果的流水线寄存器
 - ◆ 例1: 所有运算类指令的供给者是M级和W级
 - ◆ 例2: load类指令的供给者是W级
- □ 数据冒险可以转化为:需求与供给的匹配
 - ◆ 暂停:结果产生的时间晚于指令到达需求者时(前)的时间
 - ◆ 转发:结果产生的时间早于/等于指令到达需求者时(前)的时间
- □ Q: 如果有多个供给者, M级、W级哪个值是最新值?

41

需求者的最晚时间模型

- □ *T*_{use}(time-to-use): 指令进入D级后, 其后的某个功能部件再经过 多少cycle就必须要使用寄存器值
- □ 特点1: Tuse是静态值,读取操作数的时间上限
 - ◆ 例如,R型计算类指令的Tuse为1 (rs/rt均在E级使用)
- □ 特点2: 同一条指令可以有2个不同的Tuse
 - ◆ 例1, store型指令的Tuse分别为1(rs在E级使用)和2(rt在M级使用)
 - 例2: 假设存在一条指令要读取3个寄存器,那么就可能有3个不同的Tuse
 - 【注】要支持读取3个寄存器,则必须修改RF的设计。MIPS并无这种需求。
- □ Beq指令:由于寄存器比较功能被前移至D级,因此Tuse =0
 - ◆ 如果beg不前移,则Tuse必然不为0

供给者的最早时间模型

- □ *T_{new}*(time-to-new): 位于E级及其后各级的指令,再经过多少周期能够产生要写入寄存器的结果
- □ 特点1: 动态值, 随着指令的流动, 该值在不断减小, 直至0
- □ 特点2: 一条指令可以有多个不同的Tnew
- □ 例如、R型计算类指令的Tnew为1或0
 - ◆ 1: 指令位于E级, ALU正在计算
 - ◆ 0: 指令位于M级或W级,结果已经存储在相应级
- □ 例如, load型计算类指令的T_{new}为2, 1, 0
 - ◆ 2: 指令位于E级,尚未读取存储器
 - ◆ 1: 指令位于M级,正在读取存储器
 - ◆ 0: 指令位于W级,结果已经存储在W级

43

- □ 数据通路构造方法
 - 基础流水线规划
 - 建模指令RTL
 - ◆ RTL制导的独立数据通路
 - 综合无转发数据通路
 - ◆ 综合转发电路
 - ◆ 构造功能MUX控制表达式
- □ 暂停及转发的分析方法
- □ 暂停机制构造方法
- □ 转发机制构造方法
- □ 控制冒险处理机制

北京航空航天大学计算机学院 School of Computer Science and Engineering, Beihang University

45

构造指令集的T_{use}

- □ 思路:结合流水线架构,逐条指令构造Tuse及Tnew
- □ T_{use}注意事项
 - 1) 只关注每条指令的操作语义
 - ◆ 2)指令可能有2个不同的Tuse,如sw
 - ◆ 3) 指令集或流水线架构的变化,均可能导致Tuse变化
 - 例如:流水线从5级变为6级且第5级为访存,则sw的rt将会延后1级被使用,故rt的Tuse会变为{0,1,2,**3**}

	T_{use}								
	rs	rt							
add	1	1							
sub	1	1							
andi	1								
ori	1								
lw	1								
sw	1	2							
beq	0	0							
jr	0								
	{0,1}	{0,1,2}							

构造指令集的Tnew

- □ 思路:结合流水线架构,逐条指令构造Tuse 及Tnew
- □ T_{new}注意事项:
 - 一旦减为0,则不再继续减少!
 - 0: 有效结果已经产生了
 - 非0: 有效结果尚未产生

1七人	川川肥	new						
指令	部件	Е	М	W				
add	ALU	1	0	0				
sub	ALU	1	0	0				
andi	ALU	1	0	0				
ori	ALU	1	0	0				
lw	DM	2	1	0				
sw								
beq								
jal	PC	0	0	0				

- 为了便于分析,用产生结果的功能部件来 代表指令
 - ◆ 例如, ALU可以代表所有的计算类指令

	F			М		W			
ALU	DM	PC	ALU	DM	PC	ALU	DM	PC	
1	2	0	0	1	0	0	0	0	

产生结果的 功能部件

北京航空航天大学计算机学员 School of Computer Science and Engineering, Beihang Universi

根据Tuse和Tnew构造策略矩阵

- □ 结合指令T_{use}/T_{new},分别构造rs/rt寄存器的策略矩阵
 - ◆ T_{new} > T_{use}: 只能暂停
 - 结果产生的时间太晚,不可能通过转发实现,必须暂停
 - Tnew ≤ Tuse: 通过转发可以解决冲突

rs策略矩阵

_		Е			М			W	
nev	ALU	DM	PC	ALU	DM	PC	ALU	DM	PC
use	1	2	0	0	1	0	0	0	0
0	S	S	F	F	S	F	F	F	F
1	F	S	F	F	F	F	F	F	F

rt策略矩阵

\ <u>_</u>		E			M			W			
new	ALU	DM	PC	ALU	DM	PC	ALU	DM	PC		
use	1	2	0	0	1	0	0	0	0		
0	S	S	F	F	S	F	F	F	F		
1	F	S	F	F	F	F	F	F	F		
2	F	F	F	F	F	F	F	F	F	天大学计算机学院	
	School of Computer Science and Engineering, Beihang Ur										

	如何用变量表示T _{use} 与T _{new} ?											
	T _{use} :						指令	T _{use}				
	◆ 对于rs和rt,可以分别各用一组	日译码	小帝量!	与取借	相求	协	1H 4	rs	rt			
add												
T _{new} : sub 1 1												
	每条指令有多个,因此需要在	息	andi	1								
	需要一种相对简洁的表示方法		ori	1								
								1				
		指令	功能		T _{new}		sw	1	2			
		, H	部件	E	М	W	beq	0	0			
		add	ALU	1	0	0	jr	0				
		sub	ALU	1	0	0		{0,1}	{0,1,2}			
		andi	ALU	1	0	0						
		ori	ALU	1	0	0						
		lw	DM	2	1	0						
		sw										
		beq										
		jal	PC	0	0	0			算机学院 Beihang University			

用变量表示Tuse

- □ 用变量来表示策略矩阵的Tuse
 - rs有2个取值,因此对应2个变量
 - ◆ rt有3个取值,因此对应3个变量

Tuse_RS0 = beq + jr
Tuse_RS1 = add + sub + andi + ... + sw

Tuse_RT0 = ...
Tuse_RT1 = ...
Tuse RT2 = sw

	Tu	se
	rs	rt
add	1	1
sub	1	1
andi	1	
ori	1	
lw	1	
sw	1	2
beq	0	0
jr	0	
	{0,1}	{0,1,2}

构造暂停条件表达式

□ 将rs和rt的暂停"或"起来,就形成了总的暂停条件

- □ 数据通路构造方法
 - 基础流水线规划
 - 建模指令RTL
 - ◆ RTL制导的独立数据通路
 - 综合无转发数据通路
 - 综合转发电路
 - ◆ 构造功能MUX控制表达式
- □ 暂停及转发的分析方法
- □ 暂停机制构造方法
- 转发机制构造方法
- □ 控制冒险处理机制

北京航空航天大学计算机学院 School of Computer Science and Engineering, Beihang University

57

- □ 转发的核心:控制转发MUX选择最新的数据
- □ 【案例分析】ALU的B输入转发MUX转发M级数据的条件:
 - ◆ 1) 读寄存器编号与写寄存器编号相同: A2 E == A3 M
 - ◆ 2) M级存储了有效结果(用Tnew与写使能这2个信息表示结果是否有效)

转发控制的基本分析方法2/4

1和2:

E级指令在E级执行正确性与是否 读rt寄存器无关;由此可知转发

不影响E级指令的正确性。

- □ 分析: E级指令存在如下3种可能
 - ◆ 1) 无效的rt域:如j
 - ◆ 2) 有效的rt域: 写rt, 如ori/lw
 - ◆ 3) 有效的rt域:读rt,如add/sub
 - ◆ 1和2, 转发了也不会导致错误; 3, 转发为必须
- □ 结论: 故无需进一步增加条件

转发控制的基本分析方法3/4

- 优先级问题:当流水线中2条以上指令都写同一个寄存器,意味着2级以上流水寄存器均包含新值,则转发MUX选择哪级流水寄存器的新值呢?
- A: 新值距离D越近,则意味着新值越"新鲜"。因此距离D越近, 转发的优先级越高;反之则越低。
- □ 【示例MFRTE 】E级转发优先级最高; W级次之; RF的输出最低

转发控制的基本分析方法4/4

- □ 转发MUX控制信号表达式(注意优先级)
- □ 示例: ALU的B端的转发MUX控制信号~MFALUBE SEL

```
`define M2E ALU 3 //M向E转发ALU结果
`define W2E ALU 2 //W向E转发ALU结果 书写表达式时,尽量多
`define W2E DM 1 //W向E转发DM结果
```

NOTE 使用宏,增加可读性。

MFALUBE SEL =

E		N	Λ	W		
ALU	DM	ALU	DM	ALU	MD	
1	2	0	1	0	0	

指令集的T_{new}

注意: 仅为示意, 可能不完整

		_		
	0	1	2	3
MFALUBE	V2@E	DR@W	AO@W	AO@M

转发MUX 注:可能不完整

提纲

61

- □ 数据通路构造方法
 - 基础流水线规划
 - ◆ 建模指令RTL
 - ◆ RTL制导的独立数据通路
 - 综合无转发数据通路
 - ◆ 构造功能MUX控制表达式
 - 综合转发电路
- □ 暂停及转发的分析方法
- □ 暂停机制构造方法
- □ 转发机制构造方法
- □ 控制冒险处理机制

北京航空航天大学计算机学院

62

控制冒险处理机制

□ 分歧点1: 是否实现延迟槽

◆ 如果实现,需要注意jal及jalr指令应保存PC+8(需要在D级再部署一个PC+4)

□ 分歧点2: 比较功能是否前移至ID阶段

□ 课程要求: 实现延迟槽, 并且比较前移至ID阶段

延迟槽前移	是	否
是	硬件无需处理	B类:有条件清除IF/ID J类:无条件清除IF/ID
否	编译调度指令	B类:有条件清除IF/ID、ID/EX J类:无条件清除IF/ID、ID/EX、EX/MEM

Q: JAL、JALR的回写寄存器怎么处理呢?

A: 视同普通的回写

63

总结

- □ 流水线设计的复杂性在于对冲突的覆盖性分析
 - 覆盖性分析使得设计与测试均具备了完整的正向设计的理论基础
 - 缺乏覆盖性分析,就不能断言是否处理了所有冲突
 - 避免了频繁的、无谓的试错;提高开发效率,确保开发正确性
- □ 教科书的不足
 - 没有覆盖性分析,难以满足大规模指令集的流水线设计与测试需求
 - ▶ 没有覆盖性分析,必然遗漏部分数据相关
 - 如lw~sw指令的rt,必须暂停。但事实上可以通过增加转发MUX实现不停顿
 - 如cal~sw指令,未给出此类指令序列,也就没有给出处理机制了
 - ◆ RF内部的数据转发语焉不详
 - 内部转发: 当读和写同一个寄存器时, 读出的数据应该为要写入的数据

策略矩阵制导构造暂停案例

- □ 当建立策略矩阵后,可以反向构造暂停和转发案例
 - ◆ 示例: rs策略矩阵制导的rs相关暂停用例

rs策略 矩阵

\		Ε			М			W	
	ALU	DM	PC	ALU	DM	PC	ALU	DM	PC
'use \	1	2	0	0	1	0	0	0	0
0	S1	S2	F	F	S3	F	F	F	F
1	F	S4	F	F	F	F	F	F	F

NOTE load类、store类、运算类、b类均包含多条指令。 因此,从指令角度,造成暂停的指令组合

数量巨大。

rs相关 暂停 用例

S1	运算类 \$1 , \$x, \$y b类 \$1 , \$x, im	运算类 \$1, \$x, \$y jr \$1	
S2	load类 \$1, x(\$y) b 类 \$1, \$x, im	load类 \$1, x(\$y) jr \$1	
S3	load类 \$1, x(\$y) XXXXX b 类 \$1, \$x, im	load类 \$1, x(\$y) XXXXX jr \$1	
S4	load类 \$1 , x(\$y) 运算类 \$x, \$1 , \$y	load类 \$1 , x(\$y) load类 \$x, y(\$1)	load类 \$1, x(\$y) store类 \$x, x(\$1)

策略矩阵制导构造转发案例

□ 示例: rt策略矩阵制导的可以转发的rt相关用例

rt策略 矩阵

	_	<u> </u>				M			W		
		ALU	DM	PC	ALU	DM	PC	ALU	DM	PC	
	use \	1	2	0	0	1	0	0	0	0	
ī	0	S	S	F	F	S	F	F3	F3	F3	
	1	F	S	F	F	F	F	F3	F3	F3	
	2	F	F1	F	F	F2	F	F3	F3	F3	

NOTE 相对于暂停,转发类 相关数据更为惊人。 覆盖性分析方法带来 很多重要启示,进一 步深化流水线认识。

rt相关 转发 用例

F1	load类 \$1 , \$x, \$y store类 \$1 , x(\$y)	启示: W级应该有向M级的 转发通路
F2	load类 \$1, x(\$y) XXXXX store类 \$1, x(\$y)	启示:同步信息的流水线寄 存器也是需求点
F3	运算类 \$1, \$x, \$y XXXXX XXXXX store类 \$1, x(\$y)	启示: RF需要支撑内部转发 (2017新方法也可以采用外 部显式转发)
		<u> </u>

与技术相关的注意事项

- □ 延迟槽:如果实现延迟槽,则对于如jal/b类等,为了使得PC+8能 传递至W级,就必须在某个流水段再增加 "PC+4"的功能
 - ◆ 1) 可以单独用一个adder实现
 - 2)也可以在NPC中实现
- 目前的转发旁路综合方法以及转发控制,所有的转发均是"显式" 实现的
 - ◆ 换言之, RF可以不具有内部转发功能
- □ 特别提醒: PPT中的各建模表格、流水线通路等,可用于设计工作的参考基础,但不能被简单的认为就是设计本身。
 - 图: 多为示意性; 表格: 部分表格甚至被故意去除了部分内容
 - 好的学习方法:按照方法,自行推演出全部的设计过程

67

与技术相关的注意事项

- □ T_{new}/T_{use}表格与表达式的关系
 - 控制器中并没有一张表格;控制器中只有表达式(或者说是电路)
 - 为使得流水线能正确处理所有数据冒险,设计师需要一种能覆盖所有数据冒险的分析方法
 - 表格:是一种服务于覆盖性分析的形式建模方法,用于帮助设计师100% 正确的构造表达式
 - 兼顾抽象与直观表达;建模速度快;能确保100%覆盖率
 - 从表格到表达式:就是从设计到实现

与认识相关的注意事项

- □ 流水线开发复杂度远高于单周期和多周期,其主要原因在于并行 性导致的思考点总量及关联度急剧攀升
 - 指令集的任何变化均会产生大量连锁反应
 - 类比:如果单周期、多周期是树,那么流水线就是图
- □ 除了流水线方法,确保流水线开发效率与正确性的重要因素之一: 严谨的设计过程
 - 设计过程必须是显式的,而非隐式的
 - 显式的设计过程: 各个设计环节必须有存证(文字、图、表、伪代码等)
- □ 只有详尽的显式设计过程,才能确保:
 - 正确并高效的完成设计调整与工程实现
 - 回溯整个设计过程以快速定位错误(这条甚为重要)

69

忠告

- 不要急于编码!
- □ 设计越细致、越充分越好!
- 所有的设计规划都会有回报的(是加速型回报)!
- 不要急于编码!
- □ 设计越细致、越充分越好!
- 所有的设计规划都会有回报的(是加速型回报)!
- 不要急于编码!
- □ 设计越细致、越充分越好!
- 所有的设计规划都会有回报的(是加速型回报)!

70

流水线实验的教学定位

- 流水线实验需耗费大量的时间与精力,有必要吗?!
 - 这是不少同学对此的质疑
 - 以下我谈一下流水线实验的设计初衷
- □ 首先,现代工程由于复杂度非常高,故必须:
 - 采用基于模型和抽象描述的开发方法,否则难以精确描述开发对象
 - 建立严密的自顶向下、层次递进的设计过程,否则难以合理规划各环节
 - 设计过程必须是显式和严谨的,否则无法在高复杂度前提下完成增量设计和错误(故障)定位
 - 设计与实现必须分离, 否则实现细节会严重干扰设计过程

71

流水线实验的教学定位

- 其次,现实中的计算机问题几乎都没有标准答案。
- 求解计算机问题的难点与魅力往往体现在 其设计是一个迭代过程,即在设计空间中 搜索一个合理的解,其核心要义是平衡性

- 1) 自顶向下的正向分解,与自底向上的反向实现的结合,并且会局部(甚至全局)推倒重来
- 2) 通常不存在最优解
- 3)持续追求局部最优、往往全局不是最优
- ◆ 4)问题越复杂,设计空间涉及的要素越多
- 这就要求思维方法必须同时兼具足够的广度、深度和精细度。
 - ◆ 示例1: 开发能计算2个正整数相加的程序

流水线实验的教学定位

- □ 我们强烈希望北航毕业生是未来的社会精英,是现代工程的领导 者、驾驭者
 - 不能在面对现代工程时思考无绪、进退失据!
- □ 为此,我们需要寻找这样一个载体
 - 首先,它能有效体现现代工程的特点
 - 其次能依托这个载体来培养学生对现代工程开发的正确认识,理解并掌握 其基本内涵与要点
 - 最后也是最重要的是其复杂度是学生通过自身努力能够驾驭的
- □ 经过反复分析、实践与权衡,我们认为全速5级流水线就是一个 非常好的教学案例。

73

流水线实验的教学定位

- "站在全系统的高度,建立系统的层次关系并厘清各层的组成要 素及其作用关系,能对系统进行抽象建模并通过显式的逻辑推演 完成设计过程,借助甚至开发相应工具来完成与加速设计到实现 的转换"
 - 我将其称之为系统能力,并将相应的思维方法称之为系统思维
 - 它并非只针对硬件系统有效,对软件开发甚至非技术工作都具有普适性

当课程结束后,电路、指令集、汇编、流水 线等等,这一切的一切都会变得模糊。

但我非常希望你们能掌握这样的思维方法, 具备这样的能力。

我坚信这些方法与能力未来会展现它的效力。

北京航空航天大学计算机学院

新版本修改的注意事项

- □ 从设计的角度,需要一个简单的方法能发现所有可能的阻塞组合
- □ 对Tnew/Tuse的解读要体现出:
 - ◆ 1、如何分析
 - 发现暂停的思路:将D级与其后各级比较2个时间的早晚
 - 这样就将数据相关的分析表示为一个简单的数学模型
 - 2、表格与表达式的关系
 - 表格: 给人看表格很容易理解模型
 - 表达式:硬件只能用表达式,因此就必须为每行、每列都构造变量;交叉点位"S"就对应行列变量的"与"

77

新版本修改的注意事项

- □ 暴力转发的最少控制信息分析
 - ◆ 1、R编号==W编号; 2、W编号的真实性; 3、同级多个转发源的选择
 - 条件1: 很好理解
 - 条件2: 防止后级指令的相应域([20:16]、[15:11])与R编号巧合
 - 条件3: 例如M级,包含ALU和PC4;W级包含ALU、DM、PC4
 - ◆ 能否找到
- □ A1/V1, A2/V2: 伴生关系
- 先总结冒险分析的基本思路
- 先总结数据相关的基本思路

