Problem 1: Determine how many different lottery tickets can be made?

- (a) A ticket of selecting six numbers in [16] where repitition is allows and order matters.
- (b) A ticket of selecting five numbers in [25] where order does not matter.
- (c) A ticket of selecting four distinct numbers in [18] and order matters.

Problem 2: Binary strings are words whose characters are either 0 or 1. For each $k, n \in \mathbb{N}$, with $k \leq n$, how many binary strings of length n have exactly k ones? How many have exactly k zeros?

Problem 3: How many n-digit palindromes can be created using 1-9 and repitition is allowed?

Problem 4: How many subsets of [20] that have:

- (a) have the smallest number be 4 and the largest be 15?
- (b) contains no even numbers?
- (c) have size 10 and do not contain any number larger than 17?

Problem 5: Enumerate and count all 4-lists $(\ell_1, \ell_2, \ell_3, \ell_4)$ such that $\ell_1, \ell_2, \ell_3, \ell_4 \in \mathbb{Z}$ and $1 \leq \ell_1 < \ell_2 < \ell_3 < \ell_4 \leq 6$.

Problem 6: How many 6-letter words do not simultaneously begin and end with a vowel?

Problem 7: How many 4-permutations of [10] have maximum element equal to 6? How many have the maximum element of at most 6?

Problem 8: Find the number of 4-list of the form (x_1, x_2, x_3, x_4) such that $x_i \in \mathbb{N}$ for each integer $1 \le x_i \le 4$ such that $x_1 + x_2 + x_3 + 4x_4 = 5$

Problem 9: How many binary strings of length n have at least one 0 and at least one 1 simultaneously?

Problem 10: How many nonempty subsets of [10] have the product of their elements even?

Problem 11: In $n \in \mathbb{Z}^+$ how many are in the less-than relation on [n]? How many are in the less-than-or-equal-to relation?

Problem 12: Show that the number of subsets of [n] is equal to the number of binary strings of length n.

Problem 13: Suppose $n \in \mathbb{N}$. Show that the number of even-size subset equals to the number of odd-size subsets.

Problem 14: Define $(n)^k$ and show that $\binom{n}{k} = \frac{(n)^k}{k!}$.

Problem 15: Suppose an ice-cream shop makes three different types of ice-cream cones. How many different ways are there to buy 9 cones and eat one of them?

Problem 16: Suppose $A \subseteq \mathbb{R}$ is a finite set and $n, k \in \mathbb{Z}^+$

- (a) Prove that the number of solutions to $a_1 \leq a_2 \leq \cdots \leq a_k$ with $a_i \in A$ for each $i \in [k]$ is $\binom{|A|}{k}$.
- (b) Determine the number of solutions to $1 \le a_1 \le a_2 \le \cdots \le a_k \le n$ where a_i is an odd integer in [n] for each $i \in [k]$.

Problem 17: Suppose that $n \in \mathbb{Z}^+$ Use the sum principle to prove that the total number of compositions of n is 2^{n-1} .

Problem 18: Determine the number of ordered integer solutions to $x_1+x_2+x_3+x_4=26$ such that $1 \le x_4 \le 3$ and $x_i \ge i$ for each $i \in [3]$.

Problem 19: Suppose $k, n \in \mathbb{Z}^+$ with $m \le n$ and $k \le \lfloor \frac{m-n}{2} \rfloor$. In P_n , how many ways can we color k non-adjacent nodes red and at most m nodes green?

Problem 20: Suppose n is a positive integer. Determine the maximum and minimum possible size of an equivalence relation on [n]?

Problem 21: Suppose $n \geq 3$ is an integer. Determine the number of ways to seat n people at a round table where two arrangements are considered equivalent whenever everyone at the table has the asme exact same set of neighbors.

Problem 22: How many ways are there to seat five professors and five students around a round table with 10 chairs such that the seating alternates student-professors?

Problem 23: Use the equivalence principle to prove the formula $(n)_k = \frac{n!}{(n-k)!}$

Problem 24: How many ways can we split a group of 10 people into two groups of size 3 and one group of size 4?

Bonus: Suppose $j, k \in \mathbb{Z}+$ with $n=j\cdot k$. Use the combinatorial proof to show that

$$\frac{1}{j!} \prod_{i=0}^{j-1} \binom{n-ik}{k} = \frac{n!}{(k!)^j j!}$$

Hints: try to justify the left hand side, and then generalize the argument for arbitrary value of j and k.

Problem 25: Suppose $n \in \mathbb{Z}^+$ and let $S \in {[2n] \choose n+1}$. Prove that there exist two element in S whose sum is 2n+1.

Problem 26: Consider any five points in the plane that have integer coordinates.

- (a) Prove that there are two points such that the midpoint of the line segment joining those two points also has integer coordinates.
- (b) Show the counterexample for 4 points.

Problem 27: Show a counterexample of n^2 sequence of distinct real numbers can only have at most n increasing or decreasing subsequence.

Problem 28: Let $n \in \mathbb{Z}^+$ and $k \in \mathbb{N}$. Suppose exactly k nodes in P_n are colored blue. Prove that there exists a blue node and a non-blue node that are at least $\lceil \frac{n-k}{k+1} \rceil$ steps away from each other.

Problem 29: Consider the possible functions $f:[7] \to [9]$.

- (a) How many have f(2) = 4 and $f(3) \neq 8$?
- (b) How many have $f(3) \neq 8$ and are one-to-one?
- (c) How many have f(i) even for all $i \in [7]$ and are one-to-one?
- (d) How many have f(i) even for all $i \in [7]$?

Problem 30: Let $n \in \mathbb{Z}^+$. Determine the number of surjective functions $f:[n] \to [4]$

Problem 31: Suppose $n, j, k \in \mathbb{Z}^+$ with $k, j \leq n$. Give a combinatorial proof that

$$(n)_k = (n-j)_{(k-j)} \cdot (n)_j$$

Problem 32: Suppose k and n are integers with $1 \le k \le n$. Give combinatorial proof that

$$(n)_k = \sum_{n=k}^k k(j-1)_{k-1}$$

Problem 33: Prove that, for $k, n \in \mathbb{Z}^+$, $\binom{n}{k} = \binom{n-1}{k} + \binom{n}{k-1}$

Problem 34: Prove that, for $n \ge 1$, $3^n = \sum_{k=0}^n {n \choose k} 2^{n-k}$

Problem 35: Prove that, for $m, n \in \mathbb{Z}^+$ and $m \le n$, $\sum_{j=m}^{n} {j \choose m} = {n+1 \choose m+1}$.

Problem 36: Prove that the number of even-sized subset equals the number of odd-sized subset.

Bonus: Prove that, for $n \in \mathbb{Z}^+$ and $x, y \in \mathbb{R}$,

$$(x+y)_n = \sum_{k=0}^n \binom{n}{k} (x)_k (y)_{n-k}$$

Problem 38: Consider the letters in the wod INVISIBILITIES

- (a) How many distinct ways are there to arrange 14 letters in the word?
- (b) How many distinct ways are there if no tow I's are allowed to be adjacent?
- (c) How many distinct arrangements are there if the longest number of consecutive I's in a row is 4?

Problem 39: Let $n \in \mathbb{Z}^+$ and consider the sequence of non-negative integers x_1, x_2, \ldots, x_n . If there are some people are placed into teams so that for each $i \in [n]$, there are exactly x_i teams of size i, then the number of ways to create the teams is

$$\frac{n!}{\prod\limits_{i=1}^{n}(i!)^{x_i}x_i!}$$

Problem 40: Determine $\lim_{k \to \infty} \frac{1}{k} \binom{-1}{k}$. **Problem 41:** Prove that $\sum_{k=m}^{n} \binom{n}{k} \binom{k}{m} = \binom{n}{m} 2^{n-m}$.

Problem 42: Let A be a 10 element set. How many equivalence relations are there on A? How many have exactly 8 equivalence classes?

Problem 43: How many onto functions form [9] to [7] have only one element mapped to 7?

Problem 44: Give a formula for the nubmer of ways to place n distinguishable boxes so that at least one box stays empty.

Problem 45: Give a combinatorial proof that for integer $k, n \ge 1$, $S(n, k) = \sum_{i=1}^{n-1} i = 0 \binom{n-1}{i} S(i, k-1)$.

Problem 46: Use the face that P(n,k) = P(n-1,k-1) + P(n-k,k) for integers n,k to prove that for all integer $n \geq 3$, $P(n,k) = \lfloor \frac{n}{2} \rfloor$.

Problem 47: For each $n \in \mathbb{Z}^+$, let P(n) be the nubmer of partitions of n.

- (a) Give a combinatorial proof that $P(n) = \sum_{k=1}^{n} P(n,k)$
- (b) Gibve a bijective proof that P(n) = P(2n, n) for each $n \in \mathbb{N}$.

Problem 48: Let z_i be a partitions of n into k parts in non-increasing order. Show how to compute the conjugate of the partitions in terms of z_i

Problem 49: Suppose P(n) is odd for $n \in \mathbb{Z}^+$. Show that at least one partitions of n is self-conjugate.

Problem 50: How many integer in [100] are not divisible by 4, 6, and 7?

Problem 51: Suppose that in an inclusion-exclusion problem, there exits a functions f such that for any subset $J \subseteq P$ with |J| = j, $N_{\geq}(J) = f(j)$. Prove that

$$N_{=}(\varnothing) = \sum_{j=0}^{n} \binom{n}{j} (-1)^{j} f(j)$$

Problem 52: Use inclusion-exclusion to prove that the number of partitions of an n-set into k parts is

$$S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} {k \choose j} (-1)^{j} (k-j)^{n}$$

Problem 53: Derive an identity for $\binom{n}{k}$ via inclusion-exclusion by counting the k-multisets of [n] is which each element of [n] appears at most once.

Problem 54: Suppose $n, k \in \mathbb{Z}^+$ and suppose j is an integer with $0 \le j \le k$,

- (a) How many k-lists taken from n have exactly j entries that are n?
- (b) Use part (a) to partition the k-lists taken from [n] and get the formula for n^k .
- (c) Prove the formula using the binomial theorem

Problem 55: Prove that, for all $n, k \in \mathbb{Z}^+$, $\sum_{j=1}^n \binom{j}{k-1} = \binom{n}{k}$.

Problem 56: Prove that, for all $n, k \in \mathbb{Z}^+$, $\binom{kn}{2} = k\binom{n}{2} + n^2\binom{k}{2}$.

Problem 57: Prove the following identities:

- (a) $\binom{20}{8} \binom{8}{5} \binom{5}{3} = \binom{20}{3} \binom{17}{2} \binom{15}{4}$
- (b) For all positive integer $n \ge k \ge j$, $\binom{n}{k}\binom{k}{j} = \binom{n}{j}\binom{n-j}{k-j}$