PREVIOUS YEAR QUESTION BANK EXADEMY

Mathematics Optional Free Courses for UPSC and all state PCS

You Tube Channel WhatsApp-+91-7381987177

Telegram Channel: EXADEMY OFFICIAL

COMPLEX ANALYSIS

Q1. If $u = e^{-x}(x\sin y - y\cos y)$ find v such that f(z) = u + iv is analytic. Also find f(z) explicitly as function of z.

(Year 1992)

(20 Marks)

Q2. Let f(z) be analytic inside and on the circle C defined by |z| = R and let $z = er^{i\theta}$ be any point inside C.

Prove that
$$f(er^{i\theta}) = \frac{1}{2\pi} \int_0^{2\pi} \frac{(R^2 - r^2)f(Re^{i\emptyset})}{R^2 - 2Rrcos(\theta + \emptyset) + r^2} d\emptyset$$

(Year 1992)

(20 Marks)

Q3. Prove that all the roots of $z^7 - 5z^3 + 12 = 0$ lie between the circle |z| = 1 and |z| = 2.

(Year 1992)

(20 Marks)

Q4. Find the region of convergence of the series whose *n* terms is $\frac{(-1)^{n-1}z^{2n-1}}{(2n-1)!}$.

(Year 1992)

- Q5. Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in a Laurent series is valid for
 - (i) |z| > 3
 - (ii) 1 < |z| < 3
 - (iii) |z| < 1

(Year 1992)

(20 Marks)

Q6. By integrating along a suitable contour evaluate $\int_0^8 \frac{\cos mx}{x^2+1}$.

(Year 1992)

(20 Marks)

Q7. In the finite z-plane, show that the function $f(z) = sec(\frac{1}{z})$ has infinitely many isolated singularities in a finite interval which includes θ .

(Year 1993)

(20 Marks)

Q8. Find the orthogonal trajectories of the family of the curve in the xy - plane defined by $e^{-x}(xsiny - ycosy) = \alpha$ where α is real function.

(Year 1993)

(20 Marks)

Q9. Prove that (by applying Cauchy interval formula or otherwise)

$$\int_0^{2\pi} \cos^{2n}\theta \ d\theta = \frac{1.3.5...(2n-1)}{2.4.6...2n} 2\pi \text{ Where } n = 1,2,3...$$

(Year 1993)

(20 Marks)

Q10. If c is the curve $y = x^3 - 3x^2 + 4x - 1$ joining the points(1,1)and (2,3) find the value of $\int_c (12z^2 - 4iz) dz$.

(Year 1993)

Q11. Prove that $\sum_{n=1}^{\infty} \frac{z^n}{n(n+1)}$ converges absolutely for $|z| \le 1$ Q12. Evaluate $\int_0^{\infty} \frac{dx}{x^6+1}$ by choosing an appropriate contour.

(Year 1993)

(Year 1993)

(20 Marks)

(20 Marks)

- Q13. Suppose that z is the position vector of a particle moving on the ellipse C: $z = acos\omega t + ibsin\omega t$. Where a, b, ω are positive constants, a > b and t is the time. Determine where
 - (i) The velocity has the greatest magnitude.
 - (ii) The acceleration has the least magnitude.

(Year 1994)

(20 Marks)

- Q14. How many zeros does the polynomial $p(z) = z^4 + 2z^3 + 3z + 4$ possess in
 - (i) the first quadrant
 - (ii) the fourth quadrant.

(Year 1994)

(20 Marks)

Q15. Test of uniform convergence in the region $|z| \le 1$ the series $\sum_{n=1}^{\infty} \frac{cosnz}{n^3}$

(Year 1994)

(20 Marks)

Q16. Find Laurent series for

(i)
$$\frac{e^{2z}}{(z-1)^3} about z = 1$$

(ii)
$$\frac{1}{z^2(z-3)^2}$$
 about $z = 3$

(Year 1994)

Q17. Find the residue of $f(z) = e^z cosec^2 z$ at all its poles in the finite plane.

(Year 1994)

(20 Marks)

Q18. By means of contour integration, evaluate $\int_0^\infty \frac{(\log_e u)^2}{u^2+1} du$.

(Year 1994)

(20 Marks)

Q19. Let $u(x,y) = 3x^2y + 2x^2 - y^3 - 2y^2$. Prove that u is a harmonic function. Find a harmonic function v such that u + iv is an analytic function of z.

(Year 1995)

(20 Marks)

Q20. Find the Taylor series expansion of the function $f(z) = \frac{z}{z^2+9}$ and z = 0. Find the radius of convergence of the obtained series.

(Year 1995)

(20 Marks)

Q21. Let C be the circle |z| = 2 described counter-clocwise. Evaluate the integral $\int_C \frac{\cosh \pi z}{z(z^2+1)} dz.$

(Year 1995)

(20 Marks)

Q22. Let $a \ge 0$. Evaluate the integral $\int_0^\infty \frac{\cos ax}{x^2+1} dx$ with the aid of residues.

(Year 1995)

(20 Marks)

Q23. Let f be analytic in the entire complex plane. Suppose that there exist a constant A > 0 such that $|f(z)| \le A|z|$ for all z. Prove that there exists a complex number a such that f(z) = az for all z.

(Year 1995)

Q24. Suppose a power series $\sum_{n=0}^{\infty} a_n z^n$ convergent at a point $z_0 \neq 0$. Let z_1 be such that $|z_1| < |z_0|$ and $z_1 \neq 0$. Show that the series converges uniformly in the disc $\{z: |z| \leq |z_1|\}$.

(Year 1995)

(20 Marks)

Q25. Sketchy the ellipse C described in the complex plane by

 $Z = Acos\lambda t + iBsin\lambda t$, A > B where t is real variable and A, B, λ are positive constant. If C is the trajectory of particle with z(t) as the vector of the particle at time t, identify with justification

- (i) The two positions where the acceleration is maximum, and
- (ii) The two position where the velocity is minimum.

(Year 1996)

(20 Marks)

Q26. Evaluate $\lim_{x\to 0} \frac{1-\cos z}{\sin(z^2)}$

(Year 1996)

(20 Marks)

Q27. Show that z = 0 is not a branch point for the function $f(z) = \frac{\sin \sqrt{z}}{\sqrt{z}}$, is it a removable singularity?

(Year 1996)

(20 Marks)

Q28. Prove that every polynomial equation $a_0 + a_1 z + a_2 z^2 + \cdots + a_n z^n = 0$, $a_n \neq 0$, $n \geq 1$ has exactly n roots.

(Year 1996)

Q29. By using the residue theorem, evaluate $\int_0^\infty \frac{\log_e(x^2+1)}{x^2+1} dx$

(Year 1996)

(20 Marks)

Q30. About the singularity z = -2 find the Laurent expansion of $(z - 3)sin(\frac{1}{z+2})$ specify the region of the convergence and the naure of singularity at z = -2.

(Year 1996)

(20 Marks)

Q31. Prove that $u = e^x(xcosy - ysiny)$ is harmonic and analytic function whose real part is u.

(Year 1997)

(20 Marks)

Q32. Evaluate $\oint_C \frac{dz}{z+2}$ where C is the unit circle. Deduce that $\int_0^{2\pi} \frac{1+2\cos\theta}{5+4\cos\theta} d\theta = 0$.

(Year 1997)

(20 Marks)

Q33. If $f(z) = \frac{A_1}{z-a} + \frac{A_2}{(z-a)^2} + \cdots + \frac{A_n}{(z-a)^n}$ find residue at a for $\frac{f(z)}{z-b}$ where A_1, A_2, \dots, A_n and b are constants. What is the residue at infinity.

(Year 1997)

(20 Marks)

Q34. Find the Laurent series for the function $e^{1/z}$ in $0 < |z| < \infty$. Deduce that $\frac{1}{\pi} \int_0^{\pi} \exp(\cos\theta) \cos(\sin\theta - n\theta) d\theta = \frac{1}{n!}, (n = 0,1,2...)$

(Year 1997)

Q35. Integrating e^{-z^2} along a suitable rectangular contour show that

$$\int_0^\infty e^{-x^2} cos2bx dx = \frac{\sqrt{\pi}}{2} e^{-b^2}.$$

(Year 1997)

(20 Marks)

Q36. Find the function f(z) analytic within the unit circle, which takes the values $\frac{a-\cos\theta+i\sin\theta}{a^2-2a\cos\theta+1}, 0 \le \theta \le 2\pi \text{ on the circle.}$

(Year 1997)

(20 Marks)

Q38. Show that the function

 $f(z) = \frac{x^3(1+i)-y^3(1-i)}{x^2+y^2}$, $z \neq 0$ f(0) = 0 is continuous and *C-R* condition are satisfied at z = 0, but f'(z) does not exist at z = 0.

(Year 1998)

(20 Marks)

Q39. Find the Laurent expansion of $\frac{z}{(z+1)(z+2)}$ about the singularity z=-2. Specify the region of convergence and the nature of singularity at z=-2.

(Year 1998)

(20 Marks)

Q40. By using the integral representation of f''(0), prove that $\left(\frac{x^n}{|\underline{n}|}\right)^2 = \frac{1}{2\pi i} \oint_C \frac{x^n e^{xz}}{|\underline{n}z^{n+1}|}$

where C is any closed contour surrounding the origin. Hence show that

$$\sum_{n=0}^{\infty} \left(\frac{x^n}{\lfloor \underline{n}} \right)^2 = \frac{1}{2\pi} \int_0^{2\pi} e^{2x\cos\theta} d\theta.$$

(Year 1998)

Q41. Prove that all roots of $z^7 - 5z^3 + 12 = 0$ lie between the circle |z| = 1 and |z| = 2.

(Year 1998)

(20 Marks)

Q42. By integrating round a suitable contour show that $\int_0^\infty \frac{x s i n m x}{x^4 + a^4} dx = \frac{\pi}{4b^2} e^{-mb}$ where $b = \frac{a}{\sqrt{2}}$.

(Year 1998)

(20 Marks)

Q43. Using the residue theorem, evaluate $\int_0^{2\pi} \frac{d\theta}{3-2\cos\theta+\sin\theta}$

(Year 1998)

(20 Marks)

Q44. Examine the nature of the function

 $f(z) = \frac{x^2y^5(x+iy)}{x^4+y^{10}}$, $z \neq 0$, f(0) = 0. In the region including the origin and

hence show that Cauchy-Riemann equations are satisfied at the origin but f(z) is not analytic there.

(Year 1999)

(20 Marks)

- Q45. Find the function $f(z) = -\frac{1}{z^3 3z + 2}$ find the Laurent series of the domain
 - (i) 1 < |z| < 2
 - (ii) |z| > 2

show further that $\oint_C f(z)dz = 0$ where C is any closed contour enclosing that z = 1 and z = 2.

(Year 1999)

Q46. Show that the transformation $w = \frac{2z+3}{z-4}$ transforms the circle $x^2 + y^2 - 4x = 0$ into the straight line 4u + 3 = 0, where w = u + iv.

(Year 1999)

(20 Marks)

Q47. Use the residue method show that $\int_{-\infty}^{\infty} \frac{x \sin ax}{x^4 + 4} dx = \frac{\pi}{2} e^{-a} \sin a, (a > 0).$

(Year 1999)

(20 Marks)

Q48. The function f(z) has a double pole at z=0 with residue 2, a simple pole at z=1 with residue 2 is analytic at all other finite points of the plane and is bounded as $|z| \to \infty$. If f(2) = 5 and f(-1) = 2 find f(z).

(Year 1999)

(20 Marks)

Q49. What kind of singularities the following functions have?

(i)
$$\frac{1}{1-e^z} at z = 2\pi i$$

(ii)
$$\frac{1}{\sin z - \cos z}$$
 at $z = \frac{\pi}{4}$

(iii)
$$\frac{\cot \pi z}{(z-a)^2}$$
 at $z=a$ and $z=\infty$

In case (iii) above what happens when a is an integer (including a=0)?

(Year 1999)

(20 Marks)

Q50. Show that any four given points of the complex plane can be carried by a bilinear transformation to positions 1, -1, k and -k where the value of k depends on the given points.

(Year 2000)

(12 Marks)

Q51. Suppose $f(\zeta)$ is continous on a circle C. Show that $\int_C \frac{f(\zeta)d\zeta}{f(\zeta-x)}$ as z varies inside C is differentiable under the integral sign. Find the derivative. Hence or otherwise, derive an integral representation for f'(z) = if f(z) is analytic on and inside C.

(Year 2000)

(30 Marks)

Q52. Prove that the Riemann zeta function ζ defined by $\zeta(z) = \sum_{n=1}^{\infty} n^{-z}$ converges For Rez > 1 and converges uniformly for $Rez \ge 1 + \varepsilon$ is arbitrary small.

(Year 2001)

(12 Marks)

- Q53. (i) Find the Laurent series for the function $e^{1/z}$ in $0 < z < \infty$. Using this Expansion, show that $\frac{1}{\pi} \int_0^{\pi} \exp(\cos\theta) \cos(\sin\theta n\theta) = \frac{1}{n!}$ for 1,2,3 ...
 - (ii) Show that $\int_{-\infty}^{\infty} \frac{1}{1+x^4} dx = \frac{\pi}{\sqrt{2}}$

(Year 2001)

(15+15=30 Marks)

Q54. Suppose that f and g are two analytic function on the set of \emptyset for all complex numbers with $f\left(\frac{1}{n}\right) = g\left(\frac{1}{n}\right)$ for n = 1,2,3 ... then show that f(z) = g(z) for each z in \emptyset .

(Year 2002)

(12 Marks)

Q55. (i) Show that, when 0 < |z - 1| < 2, that function $f(z) = \frac{z}{(z-1)(z-3)}$ Has the Laurent series expansion in powers of (z - 1) as $\frac{-1}{2(z-1)} - 3\sum_{n=0}^{\infty} \frac{(z-1)^n}{2^{n+2}}$

(Year 2002)

Q56. Establish, by contour integration, $\int_0^\infty \frac{\cos(ax)}{x^2+1} dx = \frac{\pi}{2} e^{-a}$ where $a \ge 0$.

(Year 2002)

(15 Marks)

Q57. Determine all the bilinear transformations which transform the unit circle $|z| \le 1$ into the unit circle $|w| \le 1$.

(Year 2003)

(12 Marks)

Q58. Discuss the transformation $W = \left(\frac{z-ic}{z+ic}\right)^2$ (c real) showing that the upper half of the W-plane corresponds to the interior of the semi-circle lying to the right of imaginary axis in the z-plane.

(Year 2003)

(15 Marks)

Q59. Use the method of contour integration to prove that

$$\int_{0}^{\pi} \frac{ad\theta}{a^2 + \sin^2\theta} = \frac{\pi}{\sqrt{1 + a^2}} \quad (a > 0)$$

(Year 2003)

(15 Marks)

Q60. Find the image of the line y = x under the mapping $w = \frac{4}{z^2 + 1}$ and draw the same. Find the points where this transformation ceases to be conformal.

(Year 2004)

(12 Marks)

Q61. If all zeroes of the polynomial P(z) lies in a half plane show that zeros of the derivative P'(z) also lie in the same plane.

(Year 2004)

Q62. Using the contour integration evaluate $\int_0^{2\pi} \frac{\cos^3(3\theta)}{1-2p\cos 2\theta+p^2} d\theta, 0
(Year 2004)$

Q63. If f(z) = u + iv is an analytic function of the complex variable z and $u - v = e^x(\cos y - \sin y)$. Determine f(z) in terms of z.

(Year 2005)

(12 Marks)

- Q64. Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in Laurent's series which is valid for
 - (i) 1 < |z| < 3
 - (ii) |z| < 3 and
 - (iii) |z| < 1

(Year 2005)

(30 Marks)

Q65. Determine all the bilinear transformation which map the half plane $Im(z) \ge 0$ into the unit circle $|w| \le 1$.

(Year 2006)

(12 Marks)

Q66. With the aid of residue, evaluate $\int_0^{\pi} \frac{\cos 2\theta}{1 - 2a\cos\theta + a^2} d\theta$, -1 < a < 1

(Year 2006)

(15 Marks)

Q67. Prove that all the roots of $z^7 - 5z^3 + 12 = 0$ lie between the circles |z| = 1 and |z| = 2.

(Year 2006)

Q68. Prove that the function f defined by

$$f(z) = \begin{cases} \frac{z^5}{|z|^4} & z \neq 0 \\ 0 & z = 0 \end{cases}$$
 is not differentiable at $z = 0$

(Year 2007)

(12 Marks)

Q69. Evaluate (by using residue theorem) $\int_0^{2n} \frac{d\theta}{1+8\cos^2\theta}$

(Year 2007)

(15 Marks)

Q70. Show that the transformation $w = z^2$ is conformal at point z = 1 + i by finding the image of the lines y = x, x = 1 which intersect at z = 1 + i.

(Year 2007)

(15 Marks)

Q71. Find the residue of $\frac{\cot z \coth z}{z^3}$ at z = 0

(Year 2008)

(12 Marks)

Q72. Evaluate $\int_{C} \left[\frac{e^{2z}}{z^{3}(z^{2}+2z+2)} + \log(z-6) + \frac{1}{(z-4)^{2}} \right] dz$ where C is the circle |z| =

3. State the theorems you use in evaluating above integral.

(Year 2008)

(15 Marks)

Q73. Let $f(z) = \frac{a_0 + a_1 + \dots + a_{n-1} z^{n-1}}{b_0 + b_1 + \dots + b_n z^n}$, $b_n \neq 0$. Assume that the zeros of the denominator are simple. Show that the sum of the residue of f(z) at its poles is equal to $\frac{a_n - 1}{b_n}$

(Year 2009)

(12 Marks)

Q74. If α , β , γ are real numbers such that $\alpha^2 > \beta^2 + \gamma^2$ show that:

$$\int_0^{2\pi} \frac{d\theta}{\alpha + \beta \cos\theta + \gamma \sin\theta} = \frac{2\pi}{\sqrt{\alpha^2 - \beta^2 - \gamma^2}}$$

(Year 2009)

(30 Marks)

Q75. Show that $u(x,y) = 2x - x^3 + 3xy^2$ is a harmonic function. Find a harmonic conjugate of u(x,y). Hence find the analytic function f for which u(x,y) is the real part.

(Year 2010)

(12 Marks)

- Q76. (i) Evaluate the line integral $\oint_c f(z)dz$ where $f(z) = z^2$, c is the boundary of the triangle with vertices A(0,0), B(1,0), C(1,2) in that order.
 - (ii) Find the image of the finite vertical strip R: x = 5 to x = 9, $-\pi \le \gamma \le \pi$ of z-palne under the exponential function.

(Year 2010)

(15 Marks)

Q77. Find the Laurent series of the function

$$f(z) = exp\left[\frac{\lambda}{2}\left(z - \frac{1}{z}\right)\right]$$
 as $\sum_{n=-\infty}^{\infty} C_n z^n$ for $0, |z| < \infty$ where $C_n = \int_0^{\pi} \cos(n\phi - \lambda\sin\phi)d\phi$, $n = 0, \pm 1, \pm 2, ...$ with λ a given complex number and taking the unit circle C given by $z = e^{i\phi}(-\pi \le \phi \le \pi)$ as contour in this region.

(Year 2010)

(15 Marks)

Q78. If f(z) - u + iv is an analytic function of $u - v = \frac{e^x - \cos x + \sin x}{\cosh y - \cos x}$, find f(z) subject to the condition, $f\left(\frac{\pi}{2}\right) = \frac{3-i}{2}$

(Year 2011)

(12 Marks)

Q79. If the function f(z) is an analytic and one valued in |z - a| < R, prove that for 0 < r < R, $f'(a) = \frac{1}{\pi r} \int_0^{2\pi} P(\theta) e^{-i\theta} d\theta$ where $P(\theta)$ is the real part of $f(a + re^{i\theta})$

(Year 2011)

(15 Marks)

Q80. Evaluate by contour integration $\int_0^1 \frac{dx}{(x^2 - x^3)^{\frac{1}{3}}}$

(Year 2011)

(15 Marks)

Q81. Find the Laurent series for the function $f(z) = \frac{1}{1-z^2}$ with centre z = 1

(Year 2011)

(15 Marks)

Q82. Show that the function defined by $f(z) = \begin{cases} \frac{x^3y^5(x+iy)}{x^6+y^{10}}, z \neq 0 \\ 0, z = 0 \end{cases}$ is not analytic at

the origin though it satisfies Cauchy-Riemann equations at the origin.

(Year 2012)

(12 Marks)

Q83. Use Cauchy integral formula to evaluate $\int_c \frac{e^{3z}}{(z+1)^4} dz$ where c is the circle |z|=2.

(Year 2012)

Q84. Expand the function $f(z) = \frac{1}{(z+1)(z+3)}$ in Laurent's series which is valid for

- (i) 1 < |z| < 3
- (ii) |z| > 3
- (iii) 0 < |z+1| < 2
- (iv) |z| < 1

(Year 2012)

(15 Marks)

Q85. Evaluate by contour integration $l = \int_0^{\pi} \frac{d\theta}{1 - 2a\cos\theta + a^2}$, $a^2 < 1$.

(Year 2012)

(15 Marks)

Q86. Prove that if $be^{a+1} < 1$ where a and b are positive and real, then the function $z^n e^{-a} - be^z$ has n zeros in the unit circle.

(Year 2013)

(10 Marks)

Q87. Using Cauchy's residue theorem, evaluate the integral $I = \int_0^{\pi} \sin^4 \theta \ d\theta$

(Year 2013)

(15 Marks)

Q88. Prove that the function f(z) = u + iv where $f(z) = \frac{x^3(1+i)-y^3(1-i)}{x^2+y^2}$, $z \ne 0$; f(0) = 0 satisfies Cauchy-Riemann equations at the origin, but the derivative of f at z = 0 does not exist.

(Year 2014)

(10 Marks)

Q89. Expand in Laurent series the function $f(z) = \frac{1}{z^2(z-1)}$ about z = 0 and z = 1

(Year 2014)

(10 Marks)

Q91. Evaluate the integral $\int_0^{\pi} \frac{d\theta}{\left(1+\frac{1}{2}\cos\theta\right)^2}$ using residue.

(Year 2014)

(20 Marks)

Q92. Show that the function $v(x, y) = ln(x^2 + y^2) + x + y$ is harmonic. Find its conjugate harmonic function u(x, y). Also, find the corresponding analytic function f(z) = u + iv in terms of z.

(Year 2015)

(10 Marks)

Q93. Find all possible Taylor's and Laurent's series expansion of the function $f(z) = \frac{2z-3}{z^2-3z+2}$ about the point z = 0.

(Year 2015)

(20 Marks)

Q94. State Cauchy's theorem. Using it, evaluate the integral

$$\int_{C} \frac{e^{z}+1}{z(z+1)(z-i)^{2}} dz; C: |z| = 2$$

(Year 2015)

(15 Marks)

Q95. Is $v(x,y) = x^3 - 3xy^2 + 2y$ a harmonic function? Prove your claim, if yes find its conjugate harmonic function and hence obtain the analytic function u(x,y) whose real and imaginary parts are u and v respectively.

(Year 2016)

(10 Marks)

Q96. Let $\gamma: [0,1] \to C$ be the curve $\gamma(t) = e^{2\pi i t}$, $0 \le t \le 1$ find giving justicfication the values of the contour integral $\int_{\gamma} \frac{dz}{4z^2-1}$

(Year 2016)

Q97. Prove that every power series representing an analytic function inside its circle of convergence.

(Year 2016)

(20 Marks)

Q98. Determine all entire functions f(z) such that 0 is removable singularity of $f\left(\frac{1}{z}\right)$.

(Year 2017)

(10 Marks)

Q99. Using contour integral method, prove that $\int_0^\infty \frac{x \sin mx}{a^2 + x^2} dx = \frac{\pi}{2} e^{-ma}$

(Year 2017)

(15 Marks)

Q100. Let f = u + iv be analytic function on the unit disc $D = \{z \in C : |z| < 1\}$ Show that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial v^2} = 0 = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial v^2}$ at all points of D.

(Year 2017)

(15 Marks)

Q101. For a function $f: C \to C$ and $n \ge 1$. Let $f^{(n)}$ denotes the n^{th} derivative of f and $f^{(0)} = f$. Let f be an entire function such that for some $n \ge 1$, $f^{(n)}\left(\frac{1}{K}\right) = 0$ for all k = 1, 2, 3, ... show that f is polynomial.

(Year 2017)

(15 Marks)

Q102. Prove that the function: $u(x, y) = (x - 1)^3 - 3xy^2 + 3y^2$ is harmonic and find its harmonic conjugate and the corresponding analytic function f(z) in terms of z.

(Year 2018)

(10 Marks)

Q103. Show by applying the residue theorem that $\int_0^\infty \frac{dx}{(x^2+a^2)^2} = \frac{\pi}{4a^3}$, a > 0

(Year 2018)

(10 Marks)

Q104. Find the Laurent series which represent the function $\frac{1}{(1+z^2)(z+2)}$ when

- (i) |z| < 1
- (ii) 1 < |z| < 3
- (iii) |z| > 2

(Year 2018)

(15 Marks)

Q105. Evaluate $\int_{0}^{\infty} \frac{\tan^{-1}(ax)}{x(1+x^{2})} dx$, a > 0, $a \neq 1$

(Year 2019)

(10 Marks)

Q106.If f(z) is analytic function on D in c and satisfies the equation

$$Im f(z) = (Re f(z))^2$$
. Show that $f(z)$ is constant in D

(Year 2019)

(10 Marks)

Q107. Show that an isolated singular point z_0 of a function f(z) is a pole of order m if and only if f(z) can be written in the form $f(z) = \frac{\phi(z)}{(z-z_0)^m}$ where $\phi(z)$ is analytic and non zero at z_0 .

Moreover
$$\underset{z=z_0}{\text{Res}} f(z) = \frac{\phi^{m-1}(z_0)}{(m-1)!}$$
 if $m \ge 1$

(Year 2019)

Q108. Evaluate the integral $\int_{\mathcal{C}} Re\ (z^2) dz$ from 0 to 2 + 4*i* along the curve \mathcal{C} where \mathcal{C} is a parabola $y = x^2$ (Year 2019) (10 Marks) Q109. Obtain the first three terms of Laurent series expansion of the function f(z) = $\frac{1}{(e^z-1)}$ about the point z=0 valid in the region $0<|z|<2\pi$ (Year 2019) (10 Marks)