

Varianta 030

Subjectul I

a)
$$\left| \frac{3+5i}{7-i} \right| = \frac{\sqrt{17}}{5}$$
.

b)
$$\frac{2\sqrt{3}}{3}$$
.

c) Ecuația tangentei este 3x + 4y - 13 = 0

d) Deoarece
$$\begin{vmatrix} x_L & y_L & 1 \\ x_M & y_M & 1 \\ x_N & y_N & 1 \end{vmatrix} = 0$$
, punctele L, M, N sunt coliniare.

e)
$$V_{ABCD} = \frac{13}{3}$$
.

f)
$$a = 0$$
 și $b = -32$.

Subjectul II.

1.

b) Probabilitatea căutată este $p = \frac{1}{5}$

$$\mathbf{c}) \quad A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in M_2(\mathbf{C})$$

d)
$$x \in \{-1, 1\}.$$

e)
$$A^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$$
.

2

a)
$$f'(x) = (1 + 2x^2) \cdot e^{x^2}$$
, $\forall x \in \mathbb{R}$.

b)
$$\int_{0}^{1} f(x) dx = \frac{e-1}{2}$$
.

c) f'(x) > 0, $\forall x \in \mathbf{R}$, deci f este strict crescătoare pe \mathbf{R} .

d)
$$\lim_{x\to 0} \frac{f(x)-f(1)}{x-1} = 3e$$
.

e)
$$\int_{0}^{1} \frac{x^{2}}{x^{3} + 1} dx = \frac{\ln 2}{3}.$$

Subjectul III.

- a) Evident.
- b) Se folosește definiția funcției injective.

- c) Deoarece G este o mulțime finită și funcția $f:G\to G$ este injectivă, rezultă că ea este si bijectivă.
- **d**) Pentru $\hat{a} \in G$, deoarece f este bijectivă, avem $\hat{1} \cdot \hat{2} \cdot \dots \cdot (\hat{p} \hat{1}) = f(\hat{1}) \cdot f(\hat{2}) \cdot \dots \cdot f(\hat{p} \hat{1}) = \hat{1} \cdot \hat{2} \cdot \dots \cdot (\hat{p} \hat{1}) \cdot \hat{a}^{p-1} \iff \hat{a}^{p-1} = \hat{1}$.
- e) Pentru $\hat{x} \in G$ avem $g(\hat{x}) = \hat{x}^{p-1} \hat{1} = \hat{1} \hat{1} = \hat{0}$ iar $h(\hat{x}) = (\hat{x} \hat{1})(\hat{x} \hat{2}) \cdot \dots \cdot (\hat{x} (\hat{p} \hat{1})) = \hat{0}$, deoarece unul dintre factori este $\hat{0}$.
- **f**) Considerăm polinomul $u = g h \in \mathbb{Z}_p[X]$. Obținem că u are cel puțin p-1 rădăcini și apoi că u este polinomul nul.

Atunci, g(X) = h(X), deci şi $g(\hat{0}) = h(\hat{0})$, adică $\hat{1} \cdot \hat{2} \cdot ... \cdot (\hat{p} - \hat{1}) + \hat{1} = \hat{0}$.

g) Aducând la același numitor în relația din enunț și calculând în \mathbf{Z}_n , obținem:

$$\hat{b} \cdot (\hat{2} \cdot \hat{3} \cdot \dots \cdot (\hat{p} - \hat{1}) + \hat{1} \cdot \hat{3} \cdot \hat{4} \cdot \dots \cdot (\hat{p} - \hat{1}) + \dots + \hat{1} \cdot \hat{2} \cdot \dots \cdot (\hat{p} - \hat{2})) = \hat{1} \cdot \hat{2} \cdot \dots \cdot (\hat{p} - \hat{1}) \cdot \hat{a}$$
(1)

Dar $\hat{1} \cdot \hat{2} \cdot \dots \cdot (\hat{k} - \hat{1}) \cdot (\hat{k} + \hat{1}) \cdot \dots \cdot (\hat{p} - \hat{1}) = \hat{1} \cdot \hat{k}^{-1}, \quad \forall \hat{k} \in \mathbf{Z}_{p}^{*}$

Egalitatea (1) devine
$$\hat{b} \cdot (\hat{1}^{-1} + \hat{2}^{-1} + ... + (\hat{p} - \hat{1})^{-1}) = \hat{a}$$
 (2)

Avem $G = \{\hat{1}^{-1}, \hat{2}^{-1}, ..., (\hat{p} - \hat{1})^{-1} \}$, deci (2) $\iff \hat{b} \cdot (\hat{1} + \hat{2} + ... + (\hat{p} - \hat{1})) = \hat{a}$.

Deoarece p este un număr prim impar, rezultă ușor că $\hat{1}+\hat{2}+...+(\hat{p}-\hat{1})=\hat{0}$, deci p îl divide pe a.

Subjectul IV.

a)
$$I_0 = \frac{\pi}{2}$$
 și $I_1 = 1$.

- b) Se arată prin calcul direct.
- c) Se folosește primul principiu de inducție și relația de la punctul b).
- d) Se folosește primul principiu de inducție și relația de la punctul b).
- e) Se arată uşor că şirul $(I_n)_{n \in \mathbb{N}^*}$ este strict descrescător şi că $I_n > 0$, $\forall n \in \mathbb{N}^*$.

Atunci, din **b**) obținem
$$I_{n+1} = \frac{n}{n+1} \cdot I_{n-1} > \frac{n}{n+1} \cdot I_n \implies 1 < \frac{I_n}{I_{n+1}} < \frac{n+1}{n}, \forall n \in \mathbb{N}^*$$

f) Din **c**) și **d**) rezultă
$$I_{2n} = \frac{w_n}{\sqrt{2n+1}} \cdot \frac{\pi}{2}$$
 și $I_{2n+1} = \frac{1}{w_n \cdot \sqrt{2n+1}}$, de unde

obţinem
$$\frac{I_{2n}}{I_{2n+1}} = w_n^2 \cdot \frac{\pi}{2}, \quad \forall n \in \mathbb{N}^*$$
.

g) Trecând la limită în dubla inegalitate de la e), obținem că $\lim_{n\to\infty} \frac{I_n}{I} = 1$, și din f)

rezultă că
$$\lim_{n\to\infty} w_n = \lim_{n\to\infty} \sqrt{\frac{I_{2n+1}}{I_{2n}}} \cdot \sqrt{\frac{2}{\pi}} = \sqrt{\frac{2}{\pi}}$$
.