Theoretical Machine Learning

Lectured by Zhihua Zhang

LATEXed by Chengxin Gong

March 25, 2024

Contents

1		2
2	统计决策理论	2
3	统计学习理论	5

1 简介

- 机器学习的主要任务: 生成、预测、决策. 生成: $X_1, \dots, X_n \sim F$, 推断分析 F, 无监督学习, GAN, GPT, \dots 预测: 数据对 $(X^{(1)}, Y^{(1)}), \dots, (X^{(n)}, Y^{(n)}), X^{(i)} \in \mathbb{R}^d$ 输入变量, $f: \mathcal{X} \to \mathcal{Y}, x \in \mathcal{X}, y \in \mathcal{Y}$, 归因, 有监督学习. 决策: 强化学习, Agent←action, state, reward \to 环境.
- 求解问题的途径: 参数/非参数, 频率 (MLE)/贝叶斯.
- 误差模型:有监督: $X = (X_1, \dots, X_d)^T \in \mathbb{R}^d$, 回归: $Y \in \mathbb{R}$; 分类: $Y \in \{0, 1\}(\{-1, 1\}, \{1, \dots, M\}, \{0, 1\}^M)$; X 随机, Random design(生成模型), $Y = g(X) + \varepsilon \stackrel{\text{or}}{=} g(X, Z), Y^{(i)} = g(X^{(i)}, Z^{(i)})$; X 固定 X = x, Fixed design(判别模型), $Y^{(i)} = g(x^{(i)}, Z^{(i)})$. 无监督: X = g(Z)(因子模型: $X = AZ + \varepsilon, Z \in \mathcal{N}(0, 1), \varepsilon \sim \mathcal{N}(0, \Sigma)$).

2 统计决策理论

- Consider a state space Ω , data space \mathcal{D} , model $\mathcal{P} = \{p(\theta, x)\}$, action space \mathscr{A} . Loss function: $\mathcal{L} : \Omega \times \mathscr{A} \to [-\infty, +\infty]$, measurable, nonnegative. A measurable function $\delta : \mathcal{D} \to \mathscr{A}$ is called a nonrandomized decision rule. Risk function is defined as $\mathcal{R}(\theta, \delta) = \int \mathcal{L}(\theta, \delta(x)) dP_{\theta}(x) = \mathbb{E}_{\theta} \mathcal{L}(\theta, \delta(X))$. Randomized decision: for each X = x, $\delta(x)$ is a probability distribution: $[A|X = x] \sim \delta_x$. Risk function for $\delta : \mathcal{R}(\theta, \delta) = \mathbb{E}_{\theta} \mathcal{L}(\theta, A) = \mathbb{E}_{\theta} \mathbb{E}_{a} \mathcal{L}(\theta, A|X) = \iint \mathcal{L}(\theta, a) d\delta_x(a) dP_{\theta}(x)$.
- Example [参数估计]: $\theta \in \Omega, \mathscr{A} = \Omega, \mathcal{L}(\theta, a) = \|\theta a\|_2^2 \stackrel{\text{or}}{=} \|\theta a\|_p^p (p \ge 1) \stackrel{\text{or}}{=} \int \log \frac{P_{\theta}(x)}{P_a(x)} P_{\theta}(x) dm(x) (KL).$ $\mathcal{R} = \text{Var}(a) + \text{bias}^2(a).$ Bregmass loss: $\phi : \mathbb{R}^d \to \mathbb{R}$ describe any strictly convex differentiable function. Then $\mathcal{L}_{\phi}(\theta, a) = \phi(a) \phi(\theta) (\phi a)^T \nabla \phi(a).$
- Example [Testing]: $\mathscr{A} = \{0,1\}$ with action "0" associated with accepting $H_0: \theta \in \Omega_0$ and "1": $H_1: \theta \in \Omega_1$. δ_x is a Bernolli distribution. $\mathcal{L}(\theta,a) = I\{a=1,\theta \in \Omega_0\} + I\{a=0,\theta \in \Omega_1\}$. Risk $\mathcal{R}(\theta,\delta) = \mathbb{P}_{\theta}(A=1)1_{\theta \in \Omega_0} + \mathbb{P}_{\theta}(A=0)1_{\theta \in \Omega_1}$.
- A decision rule δ is called inadmissible if a competing rule δ^* such that $\mathcal{R}(\theta, \delta^*) \leq \mathcal{R}(\theta, \delta)$ for all $\theta \in \Omega$ and $\mathcal{R}(\theta, \delta^*) < \mathcal{R}(\theta, \delta)$ for at least one $\theta \in \Omega$. Otherwise, δ is admissible.
- The maximum risk $\bar{\mathcal{R}}(\delta) = \sup_{\theta \in \Omega} \mathcal{R}(\theta, \delta)$ and the Bayes risk $r(\Lambda, \delta) = \int \mathcal{R}(\theta, \delta) d\Lambda(\theta) = \int \mathcal{L}(\theta, \delta) d\mathbb{P}(x, \theta)$ ($\Lambda(\theta)$ is a prior). A decision rule that minimizes the Bayes risk is called a Bayes rule, that is, $\hat{\delta} : r(\Lambda, \hat{\delta}) = \inf_{\delta} r(\Lambda, \delta)$. Minimax rule $\delta^* : \sup_{\theta \in \Omega} \mathcal{R}(\theta, \delta^*) = \inf_{\delta} \sup_{\theta \in \Omega} \mathcal{R}(\theta, \delta)$.
- If risk functions for all decision rules are continuous in θ , if δ is Bayesian for Λ and has finite integrated risk $r(\Lambda, \delta) < \infty$, and if the support of Λ is the whole state space Ω , then δ is admissible.
- $p(\theta|x) = \frac{p_{\theta}(x)\lambda(\theta)}{\int p_{\theta}(x)\lambda(\theta)d\theta} := \frac{p_{\theta}(x)\lambda(\theta)}{m(x)}$. Define the posterior risk of δ : $r(\delta|X=x) = \int \mathcal{L}(\theta,\delta(x))d\mathbb{P}(\theta|x)$. The Bayes risk $r(\Lambda,\delta)$ satisfies that $r(\Lambda,\delta) = \int r(\delta|x)dM(x)$. Let $\hat{\delta}(x)$ be the value of δ that minimizes $r(\delta|x)$. Then $\hat{\delta}$ is the Bayes rule.
- Application to supervised learning. Case 1: Regression. $(X,Y) \in \mathcal{X} \times \mathcal{Y}, f: \mathcal{X} \to \mathcal{Y}, \mathscr{A} = \Omega = \mathcal{Y}, \mathcal{D} = \mathcal{X}, \delta = f, \mathcal{L}(Y, f(X)) = \|Y f(X)\|_p^p, p \geq 1$, risk $R_f = \iint \mathcal{L}(y, f(x)) d\mathbb{P}(x, y) = \mathbb{E}[\mathcal{L}(Y, f(X))] = \mathbb{E}[\mathbb{E}\mathcal{L}(Y, f(X))|X]$. When p = 2, $r(f|X = x) = \int \mathcal{L}(y, f(x)) d\mathbb{P}(y|x) = \int |y f(x)|^2 d\mathbb{P}(y|x)$. 回归函数 $g(x) := \int y d\mathbb{P}(y|x) \Rightarrow R_f = \mathbb{E}|Y f(X)|^2 = \mathbb{E}|Y g(X) + g(X) f(X)|^2 = \mathbb{E}|Y g(X)|^2 + \mathbb{E}|g(X) f(X)|^2 \geq \mathbb{E}|Y g(X)|^2$.
- Case 2: Pattern classification. $Y \in \{0,1\}, p_0 = P(Y=0), p_1 = \mathbb{P}(Y=1) = 1 p_0, \mathbb{E}[\mathcal{L}(Y, f(X))] = \mathbb{P}(Y \neq f(X)).$ The Bayesian rule (predictor) is given by $f(x) = 1\{\mathbb{P}(Y=1|X=x) \geq \frac{\mathcal{L}(1,0) \mathcal{L}(0,0)}{\mathcal{L}(0,1) \mathcal{L}(1,1)}\mathbb{P}(Y=0|X=x)\}.$ (Proof: $\mathbb{E}[\mathcal{L}(Y,f(X))|X=x] = \begin{cases} \mathbb{E}[\mathcal{L}(Y,0)|X=x] = \mathcal{L}(0,0)\mathbb{P}(Y=0|X=x) + \mathcal{L}(1,0)\mathbb{P}(Y=1|X=x) \\ \mathbb{E}[\mathcal{L}(Y,1)|X=x] = \mathcal{L}(0,1)\mathbb{P}(Y=0|X=x) + \mathcal{L}(1,1)\mathbb{P}(Y=1|X=x) \end{cases}, \quad \forall \text{ \mathbb{X} \mathbb
- 连续化: $\mathbb{P}(Y = 1 | X = x) = \mathbb{E}(Y | X = x) := g(x)(回 \square), f(x) = 1\{g(x) \geq \frac{1}{2}\}.$ Then $0 \leq \mathbb{P}(\hat{f}(X) \neq Y) \mathbb{P}(f(X) \neq Y) \leq 2 \int_{\mathcal{X}} |\hat{g}(x) g(x)| \mu(\mathrm{d}x) \leq 2 (\int_{\mathcal{X}} |\hat{g}(x) g(x)|^2 \mu(\mathrm{d}x))^{\frac{1}{2}}.$

- 回到 Case 2. $f(x) = 1\{\frac{p(x|y=1)}{p(x|y=0)} \ge \frac{p_0(\mathcal{L}(0,1)-\mathcal{L}(0,0))}{p_1(\mathcal{L}(1,0)-\mathcal{L}(1,1))}\}$, 这与似然比检验 (LRT) 相同: Likelihood $L(X) := \frac{p(X|Y=1)}{p(X|Y=0)}$, 形式为 $f(x) = 1\{L(x) \ge \eta\}$.
- Confusion table:

$$egin{array}{c|ccc} Y=0 & Y=1 \\ \hat{Y}=0 & {
m true\ negative} & {
m false\ negative} \\ \hat{Y}=1 & {
m false\ positive} & {
m true\ positive} \\ \end{array}$$

Ture Positive Rate: TPR = $\mathbb{P}(\hat{Y} = 1|Y = 1)$; False Negative Rate: FNR = 1 - TPR, type II error; False Positive Rate: FPR = $\mathbb{P}(\hat{Y} = 1|Y = 0)$, type I error; True Negative Rate: TNR = 1 - FPR. Precision: $\mathbb{P}(Y = 1|\hat{Y} = 1) = \frac{p_1 \text{TPR}}{p_0 \text{FPR} + p_1 \text{TPR}}$. F_1 -score: F_1 is the harmonic mean of precision and recall, which can be written as $F_1 = \frac{2\text{TPR}}{1 + \text{TPR} + \frac{p_0}{p_1} \text{FPR}}$.

- Optimization: maximize TPR subject to FPR $\leq \alpha, \alpha \in [0,1]$. Randomized rule: Q return 1 with probability Q(x) and 0 with probability 1 Q(x). Maximize $\mathbb{E}[Q(x)|Y = 1]$ subject to $\mathbb{E}[Q(x)|Y = 0] \leq \alpha$. Suppose the likelihood functions p(x|y) are continuous. Then the optimal predictor is a deterministic LRT (N-P lemma). (Proof: Let η be the threshold for an LRT such that the predictor $Q_{\eta}(x) = 1\{\alpha(x) \geq \eta\}$ has FPR $= \alpha$. Such an LRT exists because likelihood are continuous. Let β denote the TPR of Q_{η} . Prove that Q_{η} is optimal for risk minimization problem corresponding to the loss functions $\mathcal{L}(0,1) = \eta \frac{p_1}{p_0}$, $\mathcal{L}(1,0) = 1$, $\mathcal{L}(1,1) = \mathcal{L}(0,0) = 0$ since $\frac{p_0(\mathcal{L}(0,1)-\mathcal{L}(0,0))}{p_1(\mathcal{L}(1,0)-\mathcal{L}(1,1))} = \frac{p_0\mathcal{L}(0,1)}{p_1\mathcal{L}(1,0)} = \eta$. Under these loss functions, the risk of Bayes predictor for Q is $\mathcal{R}_Q = p_0 \text{FPR}(Q)\mathcal{L}(0,1) + p_1(1 \text{TPR}(Q))\mathcal{L}(1,0) = p_1\eta\text{FPR}(Q) + p_1(1 \text{TPR}(Q))$. Now let Q be any other rule with $\text{FPR}(Q) \leq \alpha$, $\mathcal{R}_{Q_{\eta}} = p_1\eta\alpha + p_1(1-\beta) \leq p_1\eta\text{FPR}(Q) + p_1(1-\text{TPR}(Q)) \leq p_1\eta\alpha + p_1(1-\text{TPR}(Q)) \Rightarrow \text{TPR}(Q) \leq \beta$
- ROC (Receiver operating character) curve: y-axis is TPR and x-axis is FPR. Proposition: (1) The points (0,0) and (1,1) are on the ROC curve; (2) The ROC must lie above the main diagnal; (3) The ROC curve is concave. (Proof: (2): Fix $\alpha \in (0,1)$ and consider a randomized rate TPR = FPR = α , $Q(x) \equiv \alpha$; (3): Consider two rules (FPR(η_1), TPR(η_1)) and (FPR(η_2), TPR(η_2)). If we flip a biased coin and use the first rule with probability t and use the second rule with probability 1-t. Then this yields a randomized rule with (FPR, TPR) = $(tFPR(\eta_1) + (1-t)FPR(\eta_2), tTPR(\eta_1) + (1-t)FPR(\eta_2))$. Fixing FPR $\leq tFPR(\eta_1) + (1-t)FPR(\eta_2)$, TPR $\geq tTPR(\eta_1) + (1-t)TPR(\eta_2)$.)
- Markov Decision Processes (MDPs): Five elements: decision epoches, states, actions, transition probabilities and rewards. (1) Decision epoches: Let T denote the set of decision epoches, discrete: {1,2,···, N}; continuous: [0, N]; N < / = ∞: finite or infinite. (2) State and action sets: decision epoch t ∈ T, the system occupies a state S_t ∈ S, the decision maker a ∈ A. (3) Reward and transition probabilities: t, in state s, choose action a, (i) the decision maker receives a reward r_t(s, a), (ii) the system state at the next decision epoch is determined by the probability distribution p_t(·|s_t, a).
- Decision rules: Prescribe a procedure for action selection in each state at a specified decision epoch. Four cases: (1) Markovian and Deterministic: $\delta_t : \mathcal{S} \to \mathcal{A}$; (2) M and Randomized: $\delta_t : \mathcal{S} \to \Delta(\mathcal{A})(q_{\delta_t(s)}(a))$; (3) History-dependent and D: $h_t = (s_1, a_1, \dots, s_{t-1}, a_{t-1}, s_t) = (h_{t-1}, a_{t-1}, s_t), \mathcal{H}_1 = \mathcal{S}, \mathcal{H}_2 = \mathcal{S} \times \mathcal{A} \times \mathcal{S}, \dots, \delta_t : \mathcal{H}_t \to \mathcal{A}$; (4) HR: $\delta_t : \mathcal{H}_t \times \Delta(\mathcal{A})$. A policy $\pi = (\delta_1, \delta_2, \dots, \delta_{N-1})$ is stationary if $\delta_1 = \delta_2 = \dots = \delta$ for $t \in T$.
- Let $\pi = (\delta_1, \dots, \delta_{N-1})$ in HR and $R_t := r_t(X_t, Y_t)$ denote the random reward, $R_N := r_N(X_N)$, $R := (R_1, \dots, R_N)$. The expected total reward $U_N^{\pi}(s) := \mathbb{E}^{\pi} \{ \sum_{t=1}^{N-1} r_t(X_t, Y_t) + r_N(X_N) | X_1 = s \}$. Assume $|r_t(s, a)| \leq M < \infty$ for all $(s, a) \in \mathcal{S} \times \mathcal{A}$. Optimal policy: $U_N^{\pi^*}(s) \geq U_N^{\pi}(s)$, $s \in \mathcal{S}$. ε -optimal policy: $U_N^{\pi^*}(s) + \varepsilon > U_N^{\pi}(s)$, $s \in \mathcal{S}$. The value of the MDP: $U_N^{*}(s) = \sup_{\pi \in \mathcal{D}^{\text{HR}}} U_N^{\pi}(s)$, $s \in \mathcal{S}$.
- Finite-Horizon Policy Evaluation: $V_t^{\pi}(h_t) = \mathbb{E}^{\pi} \{ \sum_{k=t}^{N-1} r_k(X_k, Y_k) + r_N(X_N) | h_t \}, V_N^{\pi}(h_N) = r_N(s), \pi \in \mathcal{D}^{\text{HD}}.$ 由重期望公式, $V_t^{\pi}(h_t) = r_t(s_t, \delta_t(h_t)) + \mathbb{E}_{h_t}^{\pi} V_{t+1}^{\pi}(h_t, \delta_t(h_t), X_{t+1}) = r_t(s_t, \delta_t(h_t)) + \sum_{j \in \mathcal{S}} V_{t+1}^{\pi}(h_t, \delta_t(h_t), j) p(j|s_t, \delta_t(h_t)).$

统计决策理论

Consider randomness (i.e. $\pi \in \mathcal{D}^{HR}$): $V_t^{\pi}(h_t) = \sum_{a \in \mathcal{A}} q_{\delta_t(h_t)}(a) \{ r_t(s_t, a) + \sum_{j \in \mathcal{S}} V_{t+1}^{\pi}(h_t, a, j) p(j|s_t, a) \}$. Computational complexity: let $K = |\mathcal{S}|, L = |\mathcal{A}|$, at decision epoch t, $K^{t+1}L^t$ histories, $K^2 \sum_{i=0}^{N-1} (KL)^i$ multiplications. If $\pi \in \mathcal{D}^{MD}$, $V_t^{\pi}(s_t) = r_t(s_t, \delta_t(s_t)) + \sum_{j \in \mathcal{S}} V_{t+1}^{\pi}(j) p(j|s_t, \delta_t(s_t))$, only $(N-1)K^2$ multiplications. On the other hand, given π , this yields a valid and accurate calculation method for $U_N^{\pi}(s)$.

- The Bellman Equations: Let $V_t^*(h_t) = \sup_{\pi \in \mathcal{D}^{HR}} V_t^\pi(h_t)$. The optimality equations: $V_t(h_t) = \sup_{a \in \mathcal{A}} \{r_t(s_t, a) + \sum_{j \in \mathcal{S}} V_{t+1}(h_t, a, j) p_t(j|s_t, a)\}$ for $t = 1, 2, \cdots, N-1$ and $h_t = (h_{t-1}, a_{t-1}, s_t) \in \mathcal{H}_t$. For $t = N, V_N(h_N) = r_N(s_N)$. Suppose V_t is a solution and V_N satisfies $V_N(h_N) = r_N(s_N)$. Then $V_t(h_t) = V_t^*(h_t)$ for all $h_t \in \mathcal{H}_t$, $t = 1, \cdots, N$ and $V_1(s_1) = V_1^*(s_1) = U_N^*(s_1)$ for all $s_1 \in \mathcal{S}$. (Proof: Two parts. First prove $V_n(h_n) \geq V_n^*(h_n)$ for all $h_n \in \mathcal{H}_n$. By induction: $N: V_N(h_N) = r_N(s_N) = V_N^*(h_N)$ for all h_t, π . Now assume that $V_t(h_t) \geq V_t^*(h_t)$ for all $h_t \in \mathcal{H}_t$ for $t = n + 1, \cdots, N$. Let $\pi' = (\delta_1', \cdots, \delta_{N-1}')$ be an arbitrary policy in \mathcal{D}^{HR} . For t = n, the Bellman equations $V_n(h_n) = \sup_{a \in \mathcal{A}} \{r_n(s_t, a_t) + \sum_{j \in \mathcal{S}} p_j(j|s_n, a)V_{n+1}(h_n, a, j)\} \geq \sup_{a \in \mathcal{A}} \{r_n(s_n, a) + \sum_{j \in \mathcal{S}} p_n(j|s_n, a)V_{n+1}^*(h_n, a, j)\} \geq \sup_{a \in \mathcal{A}} \{r_n(s_n, a) + \sum_{j \in \mathcal{S}} p_n(j|s_n, a)V_{n+1}^*(h_n, a, j)\} \geq \sup_{a \in \mathcal{A}} \{r_n(s_n, a) + \sum_{j \in \mathcal{S}} p_n(j|s_n, a)V_{n+1}^*(h_n, a, j)\} \geq V_n^{\pi'}(h_n)$. Second prove for any $\varepsilon > 0$, there exists a $\pi \in \mathcal{D}^{HD}$ for which $V_n^{\pi'}(h_n) + (N-n)\varepsilon \geq V_n(h_n) \geq V_n^*(h_n)$. Construct a policy $\pi' = (\delta_1', \cdots, \delta_{N-1}')$ by choosing $\delta_n'(h_n) + (N-n)\varepsilon \geq V_n^{\pi'}(h_n) + (N-n)\varepsilon \geq V_n(h_n) \geq V_n^*(h_n)$. Assume that $V_n^{\pi'}(h_n) + (N-n)\varepsilon \geq V_n(h_n)$ for $t = n + 1, \cdots, N$. For t = n, $V_n^{\pi'}(h_n) = r_n(s_n, \pi_n'(h_n)) + \sum_{j \in \mathcal{S}} p_n(j|s_n, \delta_n'(h_n))V_{n+1}^*(h_n, \delta_n'(h_n), j) \geq V_n(h_n) (N-n)\varepsilon$.) The equations yield that $\delta_t^*(h_t) \in \arg\max_{a \in \mathcal{A}} \{r_t(s_t, a) + \sum_{j \in \mathcal{S}} p_t(s_t, a)V_{t+1}^*(h_t, a, j)\}$, which means it is HD, i.e. $U_N^*(s) = \sup_{\pi \in \mathcal{D}^{HR}} U_N^{\pi}(s) = \sup_{\pi \in \mathcal{D}^{HR}} U_N^{\pi}(s) = \sup_{\pi \in \mathcal{D}^{HR}} U_N^{\pi}(s)$.
- Let $V_t^*, t = 1, \dots, N$ be solutions of Bellman Equations. Then (a) For each $t = 1, \dots, N, V_t^*(h_t)$ depends on h_t only through s_t ; (b) For any $\varepsilon > 0$, there exists an ε -optimal policy which is D and M; (c) Max can be achieved, it is optimal, which is MD. (Proof: (a): By induction, $V_N^*(h_N) = V_N^*(h_{N-1}, a_{N-1}, s) = r_N(s)$ for all $h_{N-1} \in \mathcal{H}_{N-1}$. Assume (a) is valid for $t = n + 1, \dots, N$. Then $V_n^*(h_n) = \sup_{a \in \mathcal{A}} \{r_t(s_t, a) + \sum_{j \in \mathcal{S}} p_t(j|s_t, a)V_{t+1}^*(j)\} = V_n^*(s_t)$.)
- Backward Induction (Dynamic Programming) Algorithm: 1. Set t = N and $V_N^*(s_N) = r_N(s_N)$ for all $s_N \in \mathcal{S}$; 2. Substitute t 1 for t and compute $V_t^*(s_t)$ for each $s_t \in \mathcal{S}$: $V_t^*(s_t) = \max_{a \in \mathcal{A}} \{r_t(s_t, a) + \sum_{j \in \mathcal{S}} p_t(j|s_t, a)V_{t+1}^*(s_t)\}$, set $\mathcal{A}_{s_t} = \arg\max_{a \in \mathcal{A}} \{r_t(s_t, a) + \sum_{j \in \mathcal{S}} p_t(j|s_t, a)V_{t+1}^*(s_t)\}$; 3. If t = 1, stop. Otherwise return to Step 2.
- Other remarks: (1) At time t, specialized S_t and A_s , special structure for r_t and p_t ; (2) K = |S| and L = |A|, at eact t, only $(N-1)LK^2$ multiplications, ease computation and storage cost (because there are $(L^K)^{N-1}$ DM policies).
- Infinite-Horizon MDPs: Assumptions: Stationary reward and transition probabilities $r_t(s,a) \equiv r(s,a), p_t(j|s,a) \equiv p(j|s,a)$; Bounded rewards $|r(s,a)| \leq M < \infty$ for all $a \in \mathcal{A}$ and $s \in \mathcal{S}$; Discounting $\lambda, 0 \leq \lambda < 1$; Discrete state space \mathcal{S} . The expected total reward of policy $\pi = (\delta_1, \delta_2, \cdots) \in \mathcal{D}^{HR} : U^{\pi}(s) = \lim_{N \to +\infty} \mathbb{E}_s^{\pi} \{\sum_{t=1}^{N} \lambda^{t-1} r(X_t, Y_t)\} = \mathbb{E}_s^{\pi} \{\sum_{t=1}^{+\infty} \lambda^{t-1} r(X_t, Y_t)\}$. We say that a policy π^* is optimal when $U^{\pi^*}(s) \geq U^{\pi}(s)$ for each $s \in \mathcal{S}$ and all $\pi \in \mathcal{D}^{HR}$. Define the value of the MDP $U^*(s) = \sup_{\pi \in \mathcal{D}^{HR}} U^{\pi}(s)$. Let $U^{\pi}_{\nu}(s)$ denote the expected reward obtained by using π when the horizon ν is random. Then $U^{\pi}_{\nu}(s) = \mathbb{E}_s^{\pi} \{\mathbb{E}_{\nu \sim P} \sum_{t=1}^{\nu} r(X_t, Y_t)\}$. Let's recall geometric distribution with parameter $\lambda : \mathbb{P}(\nu = n) = (1 \lambda)\lambda^{n-1}, n = 1, 2, \cdots$.
- Suppose ν has a GD(λ). Then $U^{\pi}(s) = U^{\pi}_{\nu}(s)$ for all $s \in \mathcal{S}$. (Proof: $\mathbb{E}^{\pi}_{\nu}(s) = \mathbb{E}^{\pi}_{s} \left\{ \sum_{n=1}^{+\infty} \sum_{t=1}^{n} r(X_{t}, Y_{t})(1-\lambda)\lambda^{n-1} \right\} = \mathbb{E}^{\pi}_{s} \left\{ \sum_{t=1}^{+\infty} \sum_{n=t}^{+\infty} r(X_{t}, Y_{t})(1-\lambda)\lambda^{n-1} \right\} = \mathbb{E}^{\pi}_{s} \left\{ \sum_{t=1}^{+\infty} \lambda^{t-1} r(X_{t}, Y_{t}) \right\}$

- Suppose $\pi \in \mathcal{D}^{HR}$, then for each $s \in \mathcal{S}$, there exists a $\pi' \in \mathcal{D}^{MR}$ for which $U^{\pi'}(s) = U^{\pi}(s)$. (Proof: Note that $U^{\pi}(s) = \mathbb{E}_{s}^{\pi} \{\sum_{t=1}^{+\infty} \lambda^{t-1} r(X_{t}, Y_{t})\} = \sum_{t=1}^{+\infty} \sum_{j \in \mathcal{S}} \sum_{a \in \mathcal{A}} \lambda^{t-1} r(j, a) p^{\pi}(X_{t} = j, Y_{t} = a | X_{1} = s)$. Fix $s \in \mathcal{S}$, so we only need to check $p^{\pi}(X_{t} = j, Y_{t} = a | X_{1} = s) = p^{\pi'}(X_{t} = j, Y_{t} = a | X_{1} = s)$. For each $j \in \mathcal{S}$ and $a \in \mathcal{A}$, define the randomized Markov decision rule δ'_{t} by $q_{\delta'_{t}(j)}(a) = p^{\pi}(Y_{t} = a | X_{t} = j, X_{1} = s)$. Then $p^{\pi'}(Y_{t} = a | X_{t} = j) = p^{\pi}(Y_{t} = a | X_{t} = j, X_{1} = s)$. Assume the conclusion holds for $t = 0, 1, \dots, n-1$. Then $p^{\pi'}(X_{n} = j, Y_{n} = a | X_{1} = s) = p^{\pi'}(Y_{n} = a | X_{1} = s)$. Then by induction assumption, $p^{\pi}(X_{n} = j | X_{1} = s) = \sum_{k \in \mathcal{S}} \sum_{a \in \mathcal{A}} p^{\pi}(X_{n-1} = k, Y_{n-1} = a | X_{1} = s) p(j | k, a) = \sum_{k \in \mathcal{S}} \sum_{a \in \mathcal{A}} p^{\pi'}(X_{n-1} = k, Y_{n-1} = a | X_{1} = s) p(j | k, a) = p^{\pi'}(X_{n-1} = k, Y_{n-1} = a | X_{1} = s) p(j | k, a) = p^{\pi'}(X_{n-1} = k, Y_{n-1} = a | X_{1} = s)$
- Vector express for MDP: δ MD, define $r_{\delta}(s)$ and $p_{\delta}(j|s)$ by $r_{\delta}(s) := r(s, \delta(s)), p_{\delta}(j|s) = p(j|s, \delta(s))$. Denote $r_{\delta} = (r_{\delta}(1), \dots, r_{\delta}(|\mathcal{S}|))^T \in \mathbb{R}^{|\mathcal{S}|}, p_{\delta} = (p_{\delta})_{(s,j)} = p(j|s, \delta(s))$. For MR δ , define $r_{\delta}(s) = \sum_{a \in \mathcal{A}} q_{\delta(s)}(a)r(s, a), p_{\delta}(j|s) = \sum_{a \in \mathcal{A}} q_{\delta(s)}(a)p(j|s, a)$. The (s, j)-th component of the t-step transition probability matrix p_{π}^t satisfies $p_{\pi}^t(j|s) = [p_{\delta_1}p_{\delta_2}\cdots p_{\delta_t}](j|s) = p^{\pi}(X_{t+1} = j|X_1 = s), \mathbb{E}_s^{\pi}g(X_t) = \sum_{j \in \mathcal{S}} p_{\pi}^{t-1}(j|s)g(j) = (p_{\pi}^tg)_s$, and $U^{\pi} = \sum_{t=1}^{+\infty} \lambda^{t-1}p_{\pi}^{t-1}r_{\delta_t} = r_{\delta_1} + \lambda p_{\delta_1}(r_{\delta_1} + \lambda p_{\delta_2}r_{\delta_2} + \dots) = r_{\delta_1} + \lambda p_{\delta_1}U^{\pi_1}$. When π is stationary, $U = r_{\delta} + \lambda p_{\delta}U$.
- Define $\mathscr{L}U = \sup_{d \in \mathcal{D}^{\mathrm{MD}}} \{r_d + \lambda p_d U\}$. Suppose there exists a $U \in \mathcal{U}$ for which (a) $U \geq \mathscr{L}U$, then $U \geq U^*$; (b) $U \leq \mathscr{L}U$, then $U \leq U^*$; (c) $U = \mathscr{L}U$, then $U = U^*$. (Proof: (a) $U \geq \sup_{\delta \in \mathcal{D}^{\mathrm{MR}}} \{r_d + \lambda p_d U\} \geq r_{\delta_1} + \lambda p_{\delta_1} U \leq r_{\delta_1} + \lambda p$
- If $0 \leq \lambda < 1$, \mathscr{L} is a contraction mapping on \mathscr{U} . (Proof: Let u and v in \mathscr{U} . For each $s \in \mathscr{S}$, assume that $\mathscr{L}v(s) \geq \mathscr{L}u(s)$ and let $a_s^* = \arg\max_{a \in \mathscr{A}} \{r(s,a) + \sum_{j \in \mathscr{S}} \lambda p(j|s,a)v(j)\}$. Then $0 \leq \mathscr{L}v(s) \mathscr{L}u(s) \leq r(s,a_s^*) + \sum_{j \in \mathscr{S}} \lambda p(j|s,a_j^*)v(j) r(s,a_j^*) \sum_{j \in \mathscr{S}} \lambda p(j|s,a_s^*)u(j) = \lambda \sum_{j \in \mathscr{S}} p(j|s,a_s^*)(v(j)-u(j)) \leq \lambda \sum_{j \in \mathscr{S}} p(j|s,a_s^*)||u-v|| = \lambda ||u-v||$.)

3 统计学习理论

- $(X,Y) \sim P \in \mathcal{P}$, definite $(X_1,Y_1), \cdots, (X_n,Y_n)$ i.i.d., $\mathcal{D}_n = \{(X_1,Y_1), \cdots, (X_n,Y_n)\}, \mathcal{R}_n(f) = \mathbb{E}_{(X,Y)\in\mathcal{D}_n}l(X,Y)$. An algorithm A is a mapping from \mathcal{D}_n to function from $\mathcal{X} \to \mathcal{Y}$. Excess risk of A: $\mathcal{R}_P(A(\mathcal{D}_n)) - \mathcal{R}_P^*$. Expected error $\mathbb{E}[\mathcal{R}_P(A(\mathcal{D}_n))]$. An algorithm is called consistent in expectation for P iff $\mathbb{E}[\mathcal{R}_P(A(\mathcal{D}_n))] - \mathcal{R}_P^* \to 0$. PAC (probability approximately correct): for a given $\delta \in (0,1)$ and $\epsilon > 0$, $\mathbb{P}(\mathcal{R}_P(A(\mathcal{D}_n))) - \mathcal{R}_P^* \le \epsilon) \ge 1 - \delta$.
- $\Box \Box : g(x) = \mathbb{E}[Y|X=x], g_n(x,\mathcal{D}_n) = g_n(x), \mathbb{E}\{|g_n(X)-Y|^2|\mathcal{D}_n\} = \int_{\mathbb{R}^d} |g_n(x)-g(x)|^2 \mu(\mathrm{d}x) + \mathbb{E}|g(X)-Y|^2.$ A sequence of regression function estimates $\{g_n\}$ is called weakly consistent for a certain distribution of (X,Y) if $\lim_{n\to+\infty} \mathbb{E}\{\int [g_n(x)-g(x)]\mu(\mathrm{d}x)\} = 0$; strongly consistent for a certain distribution if $\lim_{n\to+\infty} \int [g_n(x)-g(x)]^2 \mu(\mathrm{d}x) = 0$ with probability 1; weakly universally consistent if for all distributions of (X,Y) with $\mathbb{E}[Y^2] < \infty, \cdots$; strongly universally consistent \cdots .
- Penalized model: $g_n = \arg\min_f \{\frac{1}{n} \sum_{i=1}^n |f(X_i) Y_i|^2 + J_n(f)\}$. Penalized term for $f: J_n(f) = \lambda_n \int |f''(t)|^2 dt$, $J_{n,k}(f) = \lambda_n \int \int_{t_1, \dots, t_k \in \{1, \dots, d\}} |\frac{\partial f^k}{\partial x_{t_1} \dots \partial x_{t_d}}|^2 dt$.
- Curse of dimensionality: let X, X_1, \dots, X_n i.i.d. \mathbb{R}^d uniformly distributed in $[0, 1]^d$. $d_{\infty}(d, n) = \mathbb{E}\{\min_{i=1,\dots,n} \|X X_i\|_{\infty}\} = \int_0^{\infty} \mathbb{P}\{\min_{i=1,\dots,n} \|X X_i\|_{\infty} > t\} dt = \int_0^{\infty} (1 \mathbb{P}\{\min_{i=1,\dots,n} \|X X_i\|_{\infty} < t\}) dt$. Since $\mathbb{P}\{\min_i \|X X_i\|_{\infty} < t\} \le n \mathbb{P}(\|X X_1\|_{\infty} \le t) \le n(2t)^d$, 原式 $\ge \frac{d}{2(d+1)} n^{-\frac{1}{d}}$.
- No-Free lunch: Let $\{a_n\}$ be a sequence of positive numbers converging to 0. For every sequence of regression estimates, there exists a distribution of (X,Y) such that X is uniformly distributed on [0,1], Y=g(X), g is ± 1 valued, and $\limsup_{n\to+\infty} \frac{\mathbb{E}\|g_n-g\|^2}{a_n} \geq 1$. (Proof: Let $\{p_i\}$ be a probability distribution and let $\mathscr{A}=\{\mathscr{A}_j\}$

be a partition of [0,1] such that \mathscr{A}_j is an interval of length p_j . Consider regression function indexed by a parameter $c, c = (c_1, c_2, \cdots)$ where $c_j \in \{\pm 1\}$. Define $g^{(c)} : [0,1] \to \{-1,1\}$ by $g^{(c)}(x) = c_j$ if $x \in \mathscr{A}_j$ and $Y = g^{(c)}(x)$. For $x \in \mathscr{A}_j$, define $\bar{g}_n(x) = \frac{1}{p_j} \int_{\mathscr{A}_j} g_n(z) \mu(\mathrm{d}z)$ to be the projection of g_n on \mathscr{A} . Then $\int_{\mathscr{A}_j} |g_n(x) - g^{(c)}(x)|^2 \mu(\mathrm{d}x) = \int_{\mathscr{A}_j} |g_n(x) - \bar{g}_n(x)|^2 \mu(\mathrm{d}x) + \int_{\mathscr{A}_j} |\bar{g}_n(x) - g^{(c)}(x)|^2 \mu(\mathrm{d}x) \geq \int_{\mathscr{A}_j} |\bar{g}_n(x) - g^{(c)}(x)|^2 \mu(\mathrm{d}x)$. Set $\hat{c}_{nj} = 1$ if $\int_{\mathscr{A}_j} g_n(z) \mu(\mathrm{d}z) \geq 0$; = -1, otherwise. For $x \in \mathscr{A}_j$, if $\hat{c}_{nj} = 1$ and $c_j = -1$, then $\bar{g}_n(x) \geq 0$ and $g^{(c)}(x) = -1$, implying $|\bar{g}_n(x) - g^{(c)}(x)|^2 \geq 1$; if $\hat{c}_{nj} = -1$ and $c_j = 1$, then $\bar{g}_n(x) < 0$ and $g^{(c)}(x) = 1 \Rightarrow |\bar{g}_n(x) - g^{(c)}(x)|^2 \geq 1$. Therefore $\int_{\mathscr{A}} |\bar{g}_n(x) - g^{(c)}(x)|^2 \mu(\mathrm{d}x) \geq 1_{\{\hat{c}_{nj} \neq c_j\}} \int_{\mathscr{A}_j} 1 \mu(\mathrm{d}x) \geq 1_{\{\hat{c}_{nj} \neq c_j\}} p_j \geq 1_{\{\hat{c}_{nj} \neq c_j\}} 1_{\{\mu_n(\mathscr{A}_j) = 0\}} p_j \Rightarrow \mathbb{E}\{\int |g_n(x) - g^{(c)}(x)|^2 \mu(\mathrm{d}x)\} \geq \sum_{j=1}^{+\infty} \mathbb{P}(\hat{c}_{nj} \neq c_j, \mu_n(\mathscr{A}_j) = 0) p_j := R_n(c)$. Now we randomize c. Let C_1, C_2, \cdots be a sequence of i.i.d. random variables independent of X_1, X_2, \cdots which satisfy $\mathbb{P}(c_1 = 1) = \mathbb{P}(c_1 = -1) = \frac{1}{2}$. Thus $\mathbb{E}R_n(C) = \sum_{j=1}^{+\infty} \mathbb{E}\{\hat{c}_{nj} \neq c_j, \mu_n(\mathscr{A}_j) = 0\} p_j = \sum_{j=1}^{+\infty} \mathbb{E}\{1_{\{\mu_n(\mathscr{A}_j) = 0\}} \mathbb{P}(\hat{c}_{nj} \neq C_j | X_1, \cdots, X_n)\} p_j = \frac{1}{2} \sum_{j=1}^{+\infty} \mathbb{P}(\mu_n(\mathscr{A}_j) = 0) p_j = \sum_{j=1}^{+\infty} \mathbb{P}(\mu_n(\mathscr{A}_j) = 0) p_j = \sum_{j=1}^{+\infty} (1 - p_j)^n p_j \Rightarrow \frac{\mathbb{E}_n(c)}{\mathbb{E}R_n(C)} \leq 2$. By Fatou's lemma, $\mathbb{E}\{\lim\sup_{n\to\infty} \mathbf{e}_n(C)\} \geq \lim\sup_{n\to\infty} \mathbf{e}_n(C)\} \geq \lim\sup_{n\to\infty} \mathbf{e}_n(C)\} = 1$, which implies that there exists $c \in C$ such that $\lim\sup_{n\to\infty} \mathbf{e}_n(C) \geq 1$ is $\lim\sup_{n\to\infty} \mathbf{e}_n(C) \geq 1$. Let $\{a_n\}$ be a sequence of positive numbers $\mathbb{E}\{f(g_n(C)) = 1\}$.

converging to 0 with $\frac{1}{2} \ge a_1 \ge a_2 \ge \cdots$, then there exists a probability $\{p_j\}$ such that $\sum_{j=1}^{+\infty} (1-p_j)^n p_j \ge a_n, \forall n.$)

- Minimax lower Bounds: (a) The sequence of positive numbers a_n is called the lower minimax rate of convergence for the \mathcal{P} if $\liminf_{n\to+\infty}\inf_{g_n}\sup_{P\in\mathcal{P}}\frac{\mathbb{E}\{\|g_n-g\|^2\}}{a_n}=c_1>0$. (b) a_n is called optimal rate of convergence for the class \mathcal{P} if it is a lower minimax rate of convergence and there is an estimate g_n such that $\limsup_{n\to+\infty}\sup_{P\in\mathcal{P}}\frac{\mathbb{E}\|g_n-g\|^2}{a_n}=c_n<\infty$.
- Smoothness: Let $q = k + \beta$ for some $k \in \mathbb{N}$ and $0 < \beta \le 1$ and let $\rho > 0$. A function $f : \mathbb{R}^d \to \mathbb{R}$ is called (q, ρ) -smooth if for every $\alpha = (\alpha_1, \cdots, \alpha_d), \alpha_i \in \mathbb{N}, \sum_{i=1}^d \alpha_i = k$, the partial derivative $\frac{\partial^k f}{\partial x_1^{\alpha_1} \cdots \partial x_d^{\alpha_d}}$ exists and satisfies $\left| \frac{\partial^k f}{\partial x_1^{\alpha_1} \cdots \partial x_d^{\alpha_d}}(x) \frac{\partial^k f}{\partial x_1^{\alpha_1} \cdots \partial x_d^{\alpha_d}}(z) \right| \le \rho \|x z\|^{\beta}$. Let $\mathscr{F}^{(q,\rho)}$ be the set of all (q, ρ) -smooth functions f. Let $\mathscr{P}^{(q,\rho)}$ be the class of distributions (X, Y) such that (i) X is uniformly distributed on $[0, 1]^d$; (ii) Y = g(X) + N, where $X \perp \!\!\!\perp N$, and N is standard normal; (iii) $g \in \mathscr{F}^{q,\rho}$.
- Let u be an l-dimensional real vector, let C be a zero means random variables takeing values in $\{-1,1\}$ and let N be an l-dimensional standard normal independent of C. Set Z = Cu + N. Then the error probability of the Bayesian decision for C based on Z is $\mathcal{R}^* = \min_{g:\mathbb{R}^l \to \mathbb{R}} \mathbb{P}(g(Z) \neq C) = \Phi(-\|u\|)$. (Proof: $\mathbb{P}(C=1) = \mathbb{P}(C=1) = \frac{1}{2}$, $\mathbb{P}(Z|C=1) = \mathcal{N}(u,I)$, $\mathbb{P}(Z|C=-1) = \mathcal{N}(-u,I)$. By the Bayes formula, $\mathbb{P}(C=1|Z=z) = \frac{\mathbb{P}(C=1)\mathbb{P}(Z|C=1)}{\mathbb{P}(C=1)\mathbb{P}(Z|C=1)} = \frac{1}{1+\exp(\frac{\|Z-u\|^2}{2}-\frac{\|Z+u\|^2}{2})} = \frac{1}{1+\exp(-2Z^Tu)}$. Therefore, the optimal Bayes decision is $g^*(Z) = \operatorname{sgn}(Z^Tu)$, the risk $\mathcal{R}^* = \mathbb{P}(g^*(Z) \neq C) = \mathbb{P}(Z^Tu < 0, C=1) + \mathbb{P}(Z^Tu > 0, C=-1) = \mathbb{P}(\|u\|^2 + u^TN < 0, C=1) + \mathbb{P}(-\|u\|^2 + u^TN > 0, C=-1) = \frac{1}{2}\mathbb{P}(u^TN \leq -\|u\|^2) + \frac{1}{2}\mathbb{P}(u^TN > \|u\|^2) = \Phi(-\|u\|)$.)
- For the class $\mathcal{P}^{(q,\rho)}$, the sequence $a_n = n^{-\frac{2q}{2q+d}}$ is a lower minimax rate of convergence. In particular,

$$\liminf_{n \to \infty} \inf_{g_n} \sup_{P_{(X,Y)} \in \mathcal{P}^{(q,\rho)}} \frac{\mathbb{E} \|g_n - g\|^2}{\rho^{\frac{2d}{2q+d}} n^{-\frac{2q}{2q+d}}} \ge c_1 > 0.$$

证明分为 4 步. Step 1: 构造一个辅助函数 $g^{(c)}$. Set $M_n = \lceil (\rho^2 n)^{\frac{1}{2q+d}} \rceil$. Partition $[0,1]^d$ by M_n^d cubes $\{A_{n,j}\}$ of side length $\frac{1}{M_n}$ and with centers $\{a_{n,j}\}$. Choose a function $\bar{f}: \mathbb{R}^d \to \mathbb{R}$ such that the support of \bar{f} is a subset of $[-\frac{1}{2},\frac{1}{2}]^d, \int \bar{f}^2(x) \mathrm{d}x > 0$ and $\bar{f} \in \mathscr{F}^{(q,2^{\beta-1})}$. Define $f: \mathbb{R}^d \to \mathbb{R}$ by $f = \rho \bar{f}$. Let $c_n = (c_{n,1}, \cdots, c_{n,M_n^d}) \in \mathcal{C}_n$ take values in $\{\pm 1\}$. $g^{(c_n)}(x) = \sum_{j=1}^{M_n^d} c_{n,j} f_{n,j}(x)$ where $f_{n_j}(x) = M_n^{-q} f(M_n(x - a_{n,j}))$.

Step 2: 证明 $g^{(c_n)} \in \mathscr{F}^{(q,\rho)}$. Let $\alpha = (\alpha_1, \dots, \alpha_d), \alpha_i \in \mathbb{N}$ and $\sum_{j=1}^d \alpha_j = k$. Set $D^{\alpha} = \frac{\partial^k}{\partial x_1^{\alpha_1} \dots \partial x_d^{\alpha_d}}$. If $x, z \in A_{n,j}$, $|D^{\alpha}g^{c_n}(x) - D^{\alpha}g^{(c_n)}(z)| = |c_{n,k}||D^{\alpha}f_{n,j}(x) - D^{\alpha}f_{n,j}(z)| \le \rho ||x - z||^{\beta}$. If $x \in A_{n,i}, z \in A_{n,j}$, choose \bar{x}, \bar{z} on the

line between x and z such that \bar{x} is on the boundary of $A_{n,i}$ and \bar{z} is on the boundary of $A_{n,j}$. $|D^{\alpha}g^{(c_n)}(x) - D^{\alpha}g^{(c_n)}(z)| \leq |c_{n,i}D^{\alpha}f_{n,i}(x)| + |c_{n,j}D^{\alpha}f_{n,j}(z)| = |c_{n,i}||D^{\alpha}f_{n,i}(x) - D^{\alpha}f_{n,i}(\bar{x})| + |c_{n,j}||D^{\alpha}f_{n,j}(z) - D^{\alpha}f_{n,j}(\bar{z})| \leq \rho 2^{\beta-1}(\|x-\bar{x}\|^{\beta} + \|z-\bar{z}\|^{\beta}) = \rho 2^{\beta}(\frac{\|x-\bar{x}\|^{\beta}}{2} + \frac{\|z-\bar{z}\|^{\beta}}{2}) \leq \rho 2^{\beta}(\frac{\|x-\bar{x}\|}{2} + \frac{\|z-\bar{z}\|}{2})^{\beta} \leq \rho \|x-z\|^{\beta}.$

Step 3: Prove that $\liminf_{n\to+\infty}\inf_{g_n}\sup_{Y=g^{(c)}(X)+N,c\in\mathcal{C}_n}\frac{M_n^{2q}}{\rho^2}\mathbb{E}\|g_n-g^{(c)}\|^2>0$. $\{f_{n,j}\}$ forms a set of orthogonal basis.

Let g_n be an arbitrary estimate, and the projection \bar{g}_n of g_n to $\{g^{(c)}:c\in\mathcal{C}_n\}$ is given by $\bar{g}_n=\sum_{j=1}^{M_n}\tilde{c}_{n,j}f_{n,j}(x)$.

$$||g_n - g^{(c)}||^2 = ||g_n - \bar{g}_n||^2 + ||g_n - g^{(c)}||^2 \ge ||\bar{g}_n - g^{(c)}||^2 = \sum_{j=1}^{M_n^d} \int_{A_{n,j}} (\tilde{c}_{n,j} f_{n,j}(x) - c_{n,j} f_{n,j}(x))^2 dx = \sum_{j=1}^{M_n^d} \int_{A_{n,j}} (\tilde{c}_{n,j} - c_{n,j}(x))^2 dx = \sum_{j=1$$

$$(c_{n,k})^2 f_{n,j}^2(x) dx = \int f^2(x) dx \sum_{j=1}^{M_n^d} (\tilde{c}_{n,j} - c_{n,j})^2 \frac{1}{M_n^{2q+d}}.$$
 Define $\bar{c}_{n,j} = \operatorname{sgn}(\tilde{c}_{n,j}), \ |\tilde{c}_{n,j} - c_{n,j}| \ge \frac{|\bar{c}_{n,j} - c_{n,j}|}{2} \Rightarrow ||g_n - g_n||^2$

 $g^{(c)}\|^{2} \ge \int f^{2}(x) dx \frac{1}{4} \frac{1}{M_{n}^{2q+d}} \sum_{j=1}^{M_{n}^{d}} (\bar{c}_{n,j} - c_{n,j})^{2} = \frac{\rho^{2}}{M_{n}^{2q}} \int \bar{f}^{2}(x) dx \frac{1}{M_{n}^{d}} \sum_{j=1}^{M_{n}^{d}} 1_{\{\bar{c}_{n,j} \ne c_{n,j}\}}.$

Step 4: Prove that $\liminf_{n\to+\infty}\inf_{\bar{c}_n}\sup_{c_n}\frac{1}{M_n^d}\sum_{j=1}^{M_n^d}\mathbb{P}(\bar{c}_{n,j}\neq c_{n,j})>0$. Now we randomize c_n . Let $c_{n,1},\cdots,c_{n,M_n^d}$ be i.i.d. random variables independent of $(X_1,N_1),\cdots,(X_n,N_n),\,\mathbb{P}(C_{n,1}=1)=\mathbb{P}(C_{n,1}=-1)=\frac{1}{2}.\,\,\bar{c}_{n,j}$ can be interpreted as a decision on $C_{n,j}$ using \mathcal{D}_n . Let $\bar{C}_{n,j}=1$ if $\mathbb{P}(\bar{C}_{n,j}=1|\mathcal{D}_n)\geq \frac{1}{2}$. Therefore, $\inf_{\bar{c}_n}\sup_{c_n}\frac{1}{M_n^d}\sum_{i=1}^{M_n^d}\mathbb{P}(\bar{c}_{n,j}\neq 0)$

$$c_{n,,j}) \geq \inf_{\bar{c}_n} \frac{1}{M_n^d} \sum_{j=1}^{M_n^d} \mathbb{P}(\bar{c}_{n,j} \neq C_{n,j}) \geq \frac{1}{M_n^d} \sum_{j=1}^{M_n^d} \mathbb{P}(\bar{C}_{n,j} \neq C_{n,j}) = \mathbb{P}(\bar{C}_{n,1} \neq C_{n,1}) = \mathbb{E}\{\mathbb{P}(\bar{C}_{n,1} \neq C_{n,1} | X_1, \cdots, X_n)\}.$$
Let X_{i_1}, \cdots, X_{i_t} be those $X_i \in A_{n,1}, (Y_{i,1}, \cdots, Y_{i_t}) = C_{n,1}(f_{n,1}(X_{i_1}), \cdots, f_{n,1}(X_{i_t})) + (N_{i_1}, \cdots, N_{i_t}).$ By the latest lemma, $\mathbb{E}\{\mathbb{P}(\bar{C}_{n,1} \neq C_{n,1} | X_1, \cdots, X_n)\} = \mathbb{E}\Phi\left(-\sqrt{\sum_{r=1}^t f_{n,1}^2(X_{i_r})}\right) = \mathbb{E}\Phi\left(-\sqrt{\sum_{i=1}^n f_{n,1}^2(X_i)}\right) \geq \Phi\left(-\sqrt{\sum_{i=1}^n f_{n,1}^2(X_i)}\right) \leq \Phi\left(-\sqrt{\sum_{i=1}^n f_{n,1}^2(X_i)}\right)$

 $\Phi(-\sqrt{\int f^2(x)\mathrm{d}x}) > 0.$