582206 Laskennan mallit (syksy 2012)

Harjoitus 3 (17.–20.9.)

Olkoon N_1 ja N_2 epädeterministiset automaatit jotka on kuvattu oikealla.

Tunnistavatko automaatit seuraavat sanat?

start

(a) a

(b) aa

(c) *aab*

(d) ε

(e) ab

(f) abab

(g) aba

(h) abaa

2. Minkälaisia sanoja seuraavat äärelliset epädeterministiset automaatit hyväksyvät?

- 3. Piirrä epädeterministiset automaatit tiloineen ja siirtymänuolineen seuraaville kielille.
 - (a) $L = \{w \in \{a, b\}^* \mid w \text{ sisältää korkeintaan kaksi } a:\text{ta}\}$
 - (b) $L = \{w \in \{a,b\}^* \mid w$ sisältää parillisen määrän alimerkkijonoa $ab\}$
 - (c) $L = \{w \in \{a, b\}^* \mid w: \text{n ensimm} \text{ a viimeinen kirjain ovat samat}\}$
- 4. Merkkinon $w=w_1w_2\dots w_n$ käänteismerkkijono on $w^{\mathcal{R}}=w_nw_{n-1}\dots w_1$. Olkoon kielen A käänteiskieli $A^{\mathcal{R}} = \{ w^{\mathcal{R}} \mid w \in A \}$. Näytä että jos A on säännöllinen niin myös $A^{\mathcal{R}}$ on säännöllinen (vihje: käytä epädeterministisyyttä apuna). Tee myös pienet esimerkit.
- 5. Muunna seuraavat epädeterministiset automaatit deterministisiksi käyttämällä lauseen 1.39 todistusta apuna.

- 6. Olkoon M deterministinen automaatti, missä on n tilaan, ja L(M)=A. (vihje ajattele syklejä)
 - (a) Todista että $A \neq \emptyset$ jos ja vain jos $\exists w \in A$ mille |w| < n.
 - (b) Todista että Aon ääretön jos ja vain jos $\exists w \in A$ mille $n \leq |w| < 2n$