

Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Estadística

EYP1026 - MODELOS PROBABILÍSTICOS Ayudantía N° 5

Profesor: Guido del Pino Ayudante: José Quinlan Fecha: 07 de Septiembre - 2016

- 1. Sean X_1, \ldots, X_n variables aleatorias continuas i.i.d con densidad de probabilidad común f.
 - a) Encuentre la distribución de $X_{(1)}=\min\{X_1,\ldots,X_n\}$ y $X_{(n)}=\max\{X_1,\ldots,X_n\}$.
 - b) Aplique (1.a) para el caso $X_1,\dots,X_n \overset{i.i.d}{\sim} \operatorname{Exponencial}(\lambda): \lambda \in \mathbb{R}^+.$
- 2. Sean $X \sim \text{Poisson}(\lambda_1) : \lambda_1 \in \mathbb{R}^+$ e $Y \sim \text{Poisson}(\lambda_2) : \lambda_2 \in \mathbb{R}^+$ independientes. Deduzca la distribución de X|X+Y.
- 3. Calcule la función generadora de momentos para la transformación

$$S_n = \sum_{k=1}^n X_k : n \in \mathbb{N}$$

en las siguientes situaciones:

- a) $X_1, \ldots, X_n \overset{i.i.d}{\sim} \text{Bernoulli}(p) : p \in (0, 1).$
- b) $X_1, \ldots, X_n \stackrel{i.i.d}{\sim} \text{Geométrica}(p) : p \in (0,1).$

¿Puede identificar las respectivas distribuciones?.