Universidad Industrial de Santander

ESCUELA DE INGENIERÍA DE SISTEMAS E INFORMÁTICA

PROYECTO PARA LA ASIGNATURA DE MATEMÁTICAS
DISCRETAS 2021-2

Chat en tiempo real cifrado de extremo a extremo

by Carlos Daniel Peñaloza Torres

Introducción

Uno de los principales problemas de las comunicaciones son los ataques *Man in the middle* los cuales pueden ser muy peligrosos ya que pueden suplantar identidades en las comunicaciones y capturar información delicada, el objetivo de este proyecto fue bridar un canal de comunicación seguro para organizaciones que necesiten de un canal de comunicación privada y seguro.

Métodología

Para solucionar este problema se implementara mediante *sockets*, una comunicación en tiempo real en la cual cada mensaje estará cifrado de extremo a extremo usando el *algoritmo asimétrico RSA*, pues es el primer y más utilizado algoritmo de este tipo y es válido tanto para cifrar como para firmar digitalmente.

Solución del problema

RSA

Rivest, Shamir y Adleman (RSA) es un sistema criptográfico de clave pública de clave pública para cifrar y firmar mensajes, desarrollado en 1979, que utiliza factorización de números enteros.

RSA

Los mensajes enviados se representan mediante números, y el funcionamiento se basa en el producto, conocido, de **dos números primos grandes elegidos al azar** y mantenidos en secreto.

Actualmente estos primos son del orden de 10^300

Como en todo sistema de clave pública, cada usuario posee dos claves de cifrado: *una pública* y *otra privada*.

Cuando se quiere enviar un mensaje, el emisor busca la clave pública del receptor, cifra su mensaje con esa clave, y una vez que el mensaje cifrado llega al receptor, este se ocupa de descifrarlo usando su clave privada.

RSA

Se cree que **RSA** será seguro mientras no se conozcan formas rápidas de descomponer un número grande en producto de primos.

Herramientas utilizadas

Flask es un framework minimalista escrito en Python, utilizado para realizar el backend del aplicativo.

HTML, CSS, JavaScript,
Bootstrap y JQuery son las
tecnologías utilizadas para
realizar la funcionalidad e
interfaz del proyecto

Visual Studio Code fue editor de código fuente utilizado para la realización del proyecto

Resultado

Pantalla de Login

Inicio de sesión

Pholluxion

1

Entrar

© Universidad Industrial de Santander 2022

Pantalla del Chat

Llave publica

Mensaje encriptado

Chat by Daniel Peñaloza

Bienvenido a la sala 1

Juan

b'----BEGIN PRIVATE KEY-----

\nMIIEvwIBADANBgkqhkiG9w0BAQEFAASCBKkwggSlAgEAAoIBAQD Q9dK5h7AG5q2z\n9Qbq3v3nB51FFCqhaJ/aE3mt0i5ZakI9d3dzxc XGpQTAaGuqg+ZH+JktUiHhhY8A\n4aeaLcK4xK2uLpxkamrSI63hY

Mensaje encriptado

Juan:

 $b'\x90x\tmO\xe8\x0f\xce.,K)\x04~B\xee\xe2\xc2\xc5$ $\c3\x0c\xd0ZP\xc9V\xa0\xb8\xb0\'\x9b1"T>\xd5\x8$ $a\e^3w\e^2y\x1d\xa9\xe6Z\%M\xdd\xe7\xe1\x94\$ $xb0\xe7d\xc6\xd7"\xac\x1f\x9f\x88-$

"\xc2\xd7\x97\xb98X9L\x9d\xe3\x8a\xde\xce\x86w $@\x05\xa5qt\xea^\xc0\x15\xa1C\xaa\x92\x99\x92q\$ xd3\x087\x87?

 $\c^{\xc7\xc15{\hf}=\x94\xaf\x88\xb9\xb9\x9bX6\xba>?^4}$ $\x1b9\x89\x1a\xd1\xc3\xf0H\x9b\xe6B\x80p\x95(\xd$

(t\x99{<D\xaf\xcd\xc4.\xa5:ZB\x13\xc2:\xf4\x95!3\$\x $f0\xe0\xf4\xd8\xbbrF\x9a\x1b0\xa5.\xfdVN=\xce\xb$ $3\rNqykrY>\xbb[X\xd7J\xd1\xb0U\xe4\xf7$?$ b\x84\xa6\x8f\x82\x1e\x83\xd7\xaa\xd2? 95,L\xf1\xc8~\xd0l\x0b\x83\xb5i`\x80\$\x7f\x90\x05\ \\xd8'

x zhU4k/W0u1cQdezNVae/flexr1KPFD+\nZCGgVhy6LmHp ufWfGuAIhJiiRHyQ6cd9wh1lo6v73re01Fh3zDsw0zml\ F5YS7EnICttsUzV0CQcWEiRXcQPQz8am8i35iXU37NkEUI DRvB\n11zqP6vYalWVAhiC1+SZNaiO1QHWlWz3Id39/pa 1mgg7obG00MZi6HU5\n54n/S531AgMBAAECggEAep4Vlo hlneUchspgDh4kWezkCHrvJwGz8wI4\ndos5DDWctdE1t vD1KbQNb6II5VKFICMEJZo79H8jhIUxw7fuG9e5ROSS\n +ZpycHWullmRR+DqiAbFIt+8A1tMpCKD3vjCuduxa2cfr rz4\nIGzLtxieaPBnUJrzPtPB5Wb2qI74+1pra7Deo7Nj yH/a7fJk3mWVCVEw\nTsJJ9hgd5o9/8kW+U5Pdw8NsMTK zJIlslGOML3r3iJVAltDhVzcj1lnE\nYsxWq6YKK05Ow/ taT5/4HeT1zaJuX8bm7QKBgQD33GLTyRo7L1HZBE7d\n9 CyeUFZIyZlw+gRR+eZKUysjhCRWNr8NFR83mNxnaRM4S4 d+\nuQI/nRk5oLl1uI+VDMr220l4NBiO8wx2k9tK8GsK0 BtFTxNw6EeqzYGn\n4EALIGRWVP+UmubmK4qFNeYNwwKB CAUTERDUIE AND RERVIAMENTANDALL ENABLANDATUE /NEW

EGIN PUBLIC KEY-----

ANBakahkiG9w0BAQEFAAOCAQ8AMIIBCaKCAQEA0PXSuYewB Of\x8f\xa0c\xb7\xbc6\xcf\x80\x84\x84\x0e\xf5\xb1\xLVIh4YWPAOGnmi3C\nuMStri6cZGpq0iOt4WCvE9sri8M4VOJ XszVWnv3yHsa9SjxQ/mQhoFYc\nui5h6YC7E4co7bn1nxrg kOnHfcIdZaOr+963tNRYd8w7MNM5pU3s9Yfh\neWEuxJyAr HFhIkV3ED0M/GpvIt+Yl1N+zZBFCJAH+JIvMg0bwddc6j+r \n2GpVlQIYgtfkmTWojtUB1pVs9yHd/f6WgKdfa6LJdZqoO6GxjtDGY uh10eeJ/0ud\n9QIDAQAB\n----END PUBLIC KEY----\n'

Pholluxion : b'Hola' Juan : b'Hola Daniel'

Mensajes desencriptados

Usuarios conectados

<Juan entró>

Salir

Escribe un mensaje...

Enviar

¿Cómo usar?

- 1. Tener instalado Python 3.+ y Git
- 2. Clonar el repositorio
 - o git clone https://github.com/Pholluxion/Proyecto-Matematicas-Discretas-2021-2-UIS.git
- 3. Instalar virtualenv para crear un entorno virtual.
 - pip install virtualenv
 - o py -m venv env
- 4. Activar entorno virtual en la raíz del proyecto y ejecutar el comando
 - pip install -r .\requirements.txt
- 5. Ejecutar el archivo app.py

Referencias

- RSA cryptography 37.0.0.Dev1 documentation. (s/f). Cryptography.lo. Recuperado el 7 de marzo de 2022, de https://cryptography.io/en/latest/hazmat/primitives/asymmetric/rsa/
- Vollebregt, B. (s/f). Asymmetric encryption and decryption in Python. Nitratine.Net. Recuperado el 7 de marzo de 2022, de https://nitratine.net/blog/post/asymmetric-encryption-and-decryption-in-python/

¿Tienes alguna pregunta?