CSCE-629 Analysis of Algorithms

Spring 2019

Instructor: Dr. Jianer Chen Teaching Assistant: Qin Huang

 Office: HRBB 315C
 Office: HRBB 315A

 Phone: 845-4259
 Phone: 402-6216

Email: chen@cse.tamu.edu

Office Hours: T,Th 11:00 am-12:30 pm

Email: huangqin@email.tamu.edu

Office Hours: MWF 3:00 pm-4:00 pm

Assignment # 6 (Due April 30, 2019)

(The homework is due April 30, at 5:00pm. Please submit it to HRBB 315C)

1. A vertex cover in an undirected graph G is a set C of vertices in G such that every edge in G has at least one end in C. Consider the following two versions of the VERTEX-COVER problem:

VC-D: Given a graph G and an integer k, decide whether G contains a vertex cover of at most k vertices.

VC-O: Given a graph G, construct a minimum vertex cover for G

Prove: VC-D is solvable in polynomial time if and only if VC-O is solvable in polynomial time.

- **2.** Prove that the VC-D problem given in Question 1 is in \mathcal{NP} .
- **3.** Using the fact that the INDEPENDENT SET problem is \mathcal{NP} -complete, prove that the following problem is \mathcal{NP} -complete:

CLIQUE: Given a graph G and an integer k, is there a set C of k vertices in G such that for every pair v and w of vertices in C, v and w are adjacent in G?

Definitions.

- 1. \mathcal{P} is the collection of all (decision) problems that can be solved in polynomial time. Thus, \mathcal{P} is the collection of all "easy" problems.
- 2. \mathcal{NP} is the collection of all (decision) problems whose solutions, though perhaps not easy to construct, but can be checked in polynomial time. \mathcal{NP} contains many problems that are not known to be in \mathcal{P} . Examples include TRAVELING SALESMAN, SATISFIABILITY, and INDEPENDENT SET. Huge amount of efforts has been paid trying to develop polynomial-time algorithms for these problems, but all failed. A common belief is that these problems are hard and do not belong to \mathcal{P} , i.e., $\mathcal{P} \neq \mathcal{NP}$.
 - 3. $Q_1 \leq_m^p Q_2$ means that up to polynomial-time computation, Q_1 is not harder than Q_2 .
- 4. \mathcal{NP} -hard problems are those that are not easier than any problems in \mathcal{NP} (up to polynomial-time computation). Based on the common belief given in 2, an \mathcal{NP} -hard problem cannot be solved in polynomial time.

Some thing you may want to remember.

- 1. To show $Q_1 \leq_m^p Q_2$, you need to construct a polynomial-time algorithm that computes a function f such that x is a yes-instance of Q_1 if and only if f(x) is a yes-instance of Q_2 .
- 2. To prove that a problem Q is in \mathcal{NP} , you need to construct a polynomial-time algorithm A(x,y) such that for any yes-instance x_1 of Q, there is a y_1 such that $A(x_1,y_1)=1$, and for any no-instance x_2 of Q, $A(x_2,y)=0$ for all y.
- 3. To prove that a problem Q is \mathcal{NP} -hard, you need to pick a problem Q_0 that is known to be \mathcal{NP} -hard, and show $Q_0 \leq_m^p Q$.
- 4. To prove that a problem Q is \mathcal{NP} -complete, you need to prove both that Q is \mathcal{NP} -hard and that Q is in \mathcal{NP} .
- 5. You should remember of the definitions of at least the following \mathcal{NP} -complete problems: SATISFIABILITY, INDEPENDENT SET, VERTEX COVER, PARTITION, and SUBSET-SUM.