

Exact Solutions > Ordinary Differential Equations > Second-Order Linear Ordinary Differential Equations > Modified Bessel Equation

14.
$$x^2y_{xx}'' + xy_x' - (x^2 + \nu^2)y = 0$$
.

Modified Bessel equation. It can be reduced to the Bessel equation by means of the substitution $x = i\bar{x}$, where $i^2 = -1$.

Solution:

$$y = C_1 I_{\nu}(x) + C_2 K_{\nu}(x),$$

where C_1 and C_2 are arbitrary constants, $I_{\nu}(x)$ and $K_{\nu}(x)$ are the modified Bessel functions of the first and second kind:

$$I_{\nu}(x) = \sum_{k=0}^{\infty} \frac{(x/2)^{2k+\nu}}{k! \Gamma(\nu+k+1)}, \qquad K_{\nu}(x) = \frac{\pi}{2} \frac{I_{-\nu}(x) - I_{\nu}(x)}{\sin \pi \nu}.$$

References

Bateman, H. and Erdélyi, A., Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York, 1953.

Abramowitz, M. and Stegun, I. A. (Editors), *Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables,* National Bureau of Standards Applied Mathematics, Washington, 1964.

Polyanin, A. D. and Zaitsev, V. F., *Handbook of Exact Solutions for Ordinary Differential Equations, 2nd Edition*, Chapman & Hall/CRC, Boca Raton, 2003.

Modified Bessel Equation

Copyright © 2004 Andrei D. Polyanin

http://eqworld.ipmnet.ru/en/solutions/ode/ode0214.pdf