Scipy Continuous Distribution Matrix

Distribution	MEAN	VAR	PDF	CDF
Normal ex: heights of women or heights of men are normally distributed loc is μ , $scale$ is σ	μ	σ^2	$rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$	$rac{1}{2}\left[1+ ext{erf}\left(rac{x-\mu}{\sigma\sqrt{2}} ight) ight]$
<pre>norm_dist = scs.norm(loc=0, scale=2) norm_sample = scs.norm.rvs(loc=0, scale=1, size=20)</pre>	norm_dist.mean()	norm_dist.var()	norm_dist.pdf(x=0)	norm_dist.cdf(x=0)
Uniform ex: distribution of results of die rolls $\log a$, scale is $b-a$	$\frac{a+b}{2}$	$\frac{(a+b)^2}{12}$	$rac{1}{b-a}$ for $x \in \mid a,b \mid 0$ otherwise	0 for $x < a rac{x-a}{b-a}$ for $x \in \mid a,b \ 1$ for $x \geq b$
<pre>unif_dist = scs.uniform(loc=0, scale=10) unif_sample = scs.uniform.rvs(loc=0, scale=10, size=20)</pre>	unif_dist.mean()	unif_dist.var()	unif_dist.pdf(x=3)	unif_dist.cdf(x=3)
Exponential scale is λ , loc is typically 0	λ^{-1}	λ^{-2}	$\lambda e^{-\lambda x}$	$\lambda e^{-\lambda x}$
<pre>exp_dist = scs.expon(loc=0, scale=2) exp_sample = scs.expon.rvs(loc=0, scale=2, size=20)</pre>	exp_dist.mean()	exp_dist.var()	exp_dist.pdf(x=1)	exp_dist.cdf(x=1)

Distribution	MEAN	VAR	PDF	CDF
Gamma ${\mathfrak a}$ is k , scale is θ , loc is typically 0	k heta	$k heta^2$	$rac{1}{\Gamma(k) heta^k}x^{k-1}e^{-rac{x}{ heta}}$	$rac{1}{\Gamma(k)}\gamma(k,rac{x}{ heta})$
<pre>gam_dist = scs.gamma(a=1, loc=0, scale=2) gam_sample = scs.gamma.rvs(a=1, loc=0, scale=2, size=20)</pre>	gam_dist.mean()	am_dist.var()	gam_dist.pdf(x=3)	gam_dist.cdf(x=3)

References

Mathematical equations are copied from Wikipedia.