Grupos e Corpos

Prof. Lucas Calixto

Aula 3 - Teoremas de: Lagrange, Euler, Fermat, Cayley; Produtos diretos de grupos

Classes laterais

Fixe $H \leq G$

Se $g \in G$, definimos a classe lateral à esquerda de H associada a g como sendo

$$gH = \{gh \mid h \in H\}$$

A classe lateral à direita de H associada a g é

$$Hg = \{ hg \mid h \in H \}$$

Note: se G é abeliano, as classes laterias à esquerda e à direita coincidem

Exemplo: As classes laterais de $\{0,3\} = H \leq \mathbb{Z}_6$ são

$$0 + H = \{0, 3\} = 3 + H$$

$$1 + H = \{1, 4\} = 4 + H$$

$$2+H=\{2,5\}=5+H$$

Exemplo: Seja $S_3 = \{(1), (123), (132), (12), (13), (23)\}$ e $H = \{(1), (123), (132)\}$

As classes laterais à esquerda e à direita de ${\cal H}$ coincidem

$$(1)H = H(1) = (123)H = H(123) = (132)H = H(132) = H$$

 $(12)H = H(12) = (13)H = H(13) = (23)H = H(23) = \{(12), (13), (23)\}$

Isso não vale para $K = \{(1), (12)\} \leq S_3$, já que, por exemplo

$$(23)K = \{(23), (132)\} \neq K(23) = \{(23), (123)\}$$

Lema: Se $H \leq G$ e $g_1, g_2 \in G$, então as condições a seguir são equivalentes

- $g_1H = g_2H$
- $Hg_1^{-1} = Hg_2^{-1}$
- $g_1H \subset g_2H$
- **4** g_1 ∈ g_2H
- $g_1H \cap g_2H \neq \emptyset$
- **6** $g_1^{-1}g_2 \in H$

Observe: em todos os exemplos as classes laterais gH (ou Hg) particionam G, ou seja decompoem G em subconjuntos disjuntos

Teorema: Se $G \leq H$, então $G = \dot{\bigcup}_{g \in G} gH$ ($\dot{\bigcup} = \text{união disjunta}$)

Prova: É obvio que $G = \bigcup_{g \in G} gH \ (g = ge \in gH)$

Como $g_1H \cap g_2H \neq \emptyset \Rightarrow g_1H = g_2H$. Logo,

$$\bigcup_{g \in G} gH = \dot{\bigcup}_{g \in G} gH$$

Obs: O mesmo resultado vale para classes laterais à direita

Defina: O <u>indice de</u> H em G como sendo $[G:H] = |\{gH \mid g \in G\}|$

Proposição: $|\{gH \mid g \in G\}| = |\{Hg \mid g \in G\}|$

Prova: Defina $\phi: \{gH \mid g \in G\} \to \{Hg \mid g \in G\}$ tal que $\phi(gH) = Hg^{-1}$

 ϕ é bem definida

$$g_1 H = g_2 H \Rightarrow H g_1^{-1} = H g_2^{-1} \Rightarrow \phi(g_1 H) = \phi(g_2 H)$$

 ϕ é bijeção com inversa $\psi:\{Hg\mid g\in G\}\rightarrow \{gH\mid g\in G\},\, \psi(Hg)=g^{-1}H$

Proposição: |H| = |gH|

Prova: Defina $\phi: H \to gH$ tal que $\phi(h) = gh$

 ϕ é bijeção com inversa $\psi: Hg \to H, \psi(hg) = h$

Teorema (Lagrange): Se G é grupo finito, e $H \leq G$, então |G| = [G:H]|H|

Prova: Sejam $g_1H, \ldots, g_{[G:H]}H$ as classes laterais distintas de G (por definição de índice, temos exatamente [G:H] dessas). Então

$$G = \bigcup_{i=1}^{[G:H]} g_i H \Rightarrow |G| = \sum_{i=1}^{[G:H]} |g_i H| = [G:H]|H| \qquad \blacksquare$$

Corolário: Se $g \in G$, então |g| divide |G|

Corolário: Se |G|=p com p primo, então $G=\langle g \rangle$ para qualquer $g \neq e$. Em particular, G é cíclico

Corolário: Se $K \leq H \leq G$, então [G:K] = [G:H][H:K]

Prova: Sabemos $|G|=[G:H]|H|,\ |H|=[H:K]|K|$ e |G|=[G:K]|K|. Logo

$$[G:H][H:K] = \frac{|G|}{|H|} \frac{|H|}{|K|} = \frac{|G|}{|K|} = [G:K] \qquad \blacksquare$$

$$H \leq G \Rightarrow |H| \text{ divide } |G|$$

Pergunta: se *n* divide $|G| \Rightarrow$ existe $H \leq G$ tal que |H| = n?

Proposição: A_4 não possui grupo com ordem 6

Prova: Suponha que tal H existe

 $[G:H]=2\Rightarrow$ existem somente duas classes laterais distintas H e gH (qualquer $g\notin H$ funciona)

$$g \notin H \Rightarrow gH = Hg \Rightarrow gHg^{-1} = H$$

Sabemos que existem 8 3-cíclos em $A_4 \Rightarrow H$ contém um 3-cíclo

Assuma (123) $\in H$ (poderia ser qualquer outro) \Rightarrow (123)⁻¹ = (132) $\in H$

Como $qhq^{-1} \in H$ para todo $h \in H$, temos que

$$(124)(123)(124)^{-1} = (124)(123)(142) = (243)$$

 $(243)(123)(243)^{-1} = (243)(123)(234) = (142)$

pertencem a H

Logo, todos os elementos

$$(1), (123), (123)^{-1} = (132), (243), (243)^{-1} = (234), (142), (142)^{-1} = (124)$$

pertencem a $H \Rightarrow |H| \geq 7$ Contradição

Note: No exemplo anterior, a partir de (123), construimos todos os outros 3-cilos de S_4 . Isso, não foi por acaso!

Proposição: Dois cíclos $\tau, \mu \in S_n$ tem o mesmo comprimento se e só se eles são conjugados por algum elemento de S_n , ou seja, existe $g \in S_n$ tal que $\mu = q\tau q^{-1}$

Prova: (\Rightarrow) Escreva

$$\tau = (a_1 \cdots a_k)$$

$$\mu = (b_1 \cdots b_k)$$

Defina $g \in S_n$ tal que $g(a_i) = b_i$ para todo i, e defina g(x) de qualquer forma de modo que g seja bijeção

•
$$g\tau g^{-1}(b_i) = g\tau(a_i) = g(a_{i+1}) = b_{i+1} = \mu(b_i)$$

•
$$x \neq b_i \ \forall i \Rightarrow g^{-1}(x) \neq a_i \ \forall i \Rightarrow g\tau g^{-1}(x) = gg^{-1}(x) = x = \mu(x)$$

 (\Leftarrow) Escreva $\tau = (a_1 \cdots a_k)$, e tome $g \in S_n$ qualquer

Afirmação:
$$g\tau g^{-1} = (g(a_1)\cdots g(a_k))$$

- $g\tau g^{-1}(g(a_i)) = g\tau(a_i) = g(a_{i+1})$
- $x \neq g(a_i) \ \forall i \Rightarrow g^{-1}(x) \neq a_i \ \forall i \Rightarrow g\tau g^{-1}(x) = gg^{-1}(x) = x$

Teoremas de Fermat e de Euler

Definição: A função ϕ de Euler é a função $\phi: \mathbb{N} \to \mathbb{N}$ tal que $\phi(1) = 1$ e $\phi(n) = |\{1 \le k < n \mid mdc(k,n) = 1|$

Lembrem: na Aula 1 provamos que $U(n)=\{a\in\mathbb{Z}_n\mid mdc(a,n)=1\}$ junto com a multiplicação é grupo abeliano

Observe: O grupo U(n) tem ordem $\phi(n)$

Teorema (Euler): Se $a \in \mathbb{Z}$, $n \in \mathbb{N}$ e mdc(a, n) = 1, então $a^{\phi(n)} = 1 \pmod{n}$

Prova: Se $b \in \mathbb{Z}_n$ é um representante de a (i.e. $b \pmod{n} = a \pmod{n}$), então $b^{\phi(n)} = 1 \pmod{n}$ (pois nesse caso $b \in U(n)$ e portanto |b| divide |U(n)|). Logo $a^{\phi(n)} = 1 \pmod{n}$

Pequeno Teorema de Fermat: Se $a\in\mathbb{Z},\,p\in\mathbb{N}$ é primo e $p\nmid a,$ então $a^{p-1}=1\ (mod\ p)$

Prova: $mdc(a, p) = 1 \Rightarrow a^{\phi(p)=p-1} = 1 \pmod{p}$

Isomorfismos

Definição: Dois grupos (G,\cdot) e (H,\circ) são isomorfos se existe uma bijeção $\phi:G\to H$ que preserva a operação dos grupos, isto é

$$\phi(a \cdot b) = \phi(a) \circ \phi(b), \quad \forall \ a, b \in G$$

A função ϕ é chamada isomorfismo e denotamos $G \cong H$

Usando isomorfismos, podemos pensar em vários grupos aditivos como grupos multiplicativos e vice-versa

Exemplo: $\mathbb{Z}_4 \cong \langle i \rangle = \{\pm 1, \pm i\} \leq \mathbb{C}^*$. De fato, $\phi : \mathbb{Z}_4 \to \langle i \rangle$, $\phi(k) = i^k$ é isomorfismo pois é bijeção e

$$\phi(m+n) = i^{m+n} = i^m i^n = \phi(m)\phi(n)$$

Exemplo: Cálculo $1 \Rightarrow exp : \mathbb{R} \to \mathbb{R}^+$, $\exp(x) = e^x$ define uma bijeção

Identifique os conjuntos \mathbb{R}^+ e $\{e^x \mid x \in \mathbb{R}\}$ usando exp

$$(\mathbb{R}^+,\cdot),$$
onde $e^x e^y = e^{x+y}$ (produto usual) é um grupo abeliano (cheque!)

$$\exp(x+y) = e^{x+y} = e^x e^y = \exp(x) \exp(y) \Rightarrow \exp \text{ \'e iso } \Rightarrow (\mathbb{R},+) \cong (\mathbb{R}^+,\cdot)$$

Exemplo: Vimos que $H = \{2^n \mid n \in \mathbb{Z}\} \subset \mathbb{Q}^*$ é subgrupo

A função $\phi:\mathbb{Z}\to H,\,\phi(n)=2^n$ é claramente bijeção. Além disso,

$$\phi(m+n) = 2^{m+n} = 2^m 2^n = \phi(m)\phi(n) \Rightarrow \mathbb{Z} \cong H$$

Existir uma bijeção entre dois grupos não é suficiente para que esses grupos sejam isomorfos

Exemplo: $|S_3| = \mathbb{Z}_6 \Rightarrow \exists$ bijeção entre os grupos. Contudo, $S_3 \ncong \mathbb{Z}_6$

Um dos problemas aqui é que \mathbb{Z}_6 é abeliano e S_3 não é abeliano

Se existe $\phi: \mathbb{Z}_6 \to S_3$ um iso, então todo $a \in S_3$ é dá forma $\phi(m_a)$ para algum $m_a \in \mathbb{Z}$. Logo, para todo $a, b \in S_3$ temos

$$ab = \phi(m_a)\phi(m_b) = \phi(m_a + m_b) = \phi(m_b + m_a) = \phi(m_b)\phi(m_a) = ba$$

Isso impica S_3 abeliano Contradição

Proposição Se $\phi:G\to H$ é iso de grupos, então

- \bullet $\phi^{-1}: H \to G$ é iso
- |G| = |H|
- \bullet G é abeliano \Rightarrow H é abeliano
- G é cíclico $\Rightarrow H$ é cíclico

Prova: (1): Obviamente ϕ^{-1} é bijeção. Além disso,

$$\phi^{-1}(h_1h_2) = \phi^{-1}(\phi(\phi^{-1}(h_1))\phi(\phi^{-1}(h_2)))$$
$$= \phi^{-1}(\phi(\phi^{-1}(h_1)\phi^{-1}(h_2)))$$
$$= \phi^{-1}(h_1)\phi^{-1}(h_2)$$

- (2) Óbvia
- (3) Exercício

(4)
$$G = \langle g \rangle \Rightarrow H = \langle h = \phi(g) \rangle$$
, pois se $a \in H$ temos

$$a = \phi(g^n) = \phi(g)^n = h^n$$

Caracterização de grupos cíclicos

Teorema: Se G é cíclico e $|G| = \infty$, então $G \cong \mathbb{Z}$

Prova: Suponha $G = \langle g \rangle$ e defina $\phi : \mathbb{Z} \to G$, $\phi(n) = g^n$.

Afirmação: ϕ é iso

- \bullet sobrejetividade: se $h \in G,$ então $h = g^n = \phi(n)$
- injetividade: suponha $m \neq n$

$$\phi(m) = \phi(n) \Leftrightarrow g^m = g^n \Leftrightarrow g^{n-m} = e \Rightarrow |G| = |g| < \infty$$

Teorema (Exercício): Se G é cíclico e |G| = n, então $G \cong \mathbb{Z}_n$

Corolário: Se G é arbitrário e |G|=p com p primo, então $G\cong \mathbb{Z}_p$

Prova: Vimos que |G| = p implica G cíclico

Teorema de Cayley

Note: Se G é grupo e $g \in G$, então $\lambda_g : G \to G$, $\lambda_g(h) = gh$ é permutação de G

 $\overline{G} = \{\lambda_g \mid g \in G\} \subset S_G \text{ \'e subgrupo de } S_G$

- $\lambda_e = id$
- $\bullet \ \lambda_g^{-1} = \lambda_{g^{-1}}$
- $\lambda_g \lambda_h = \lambda_{gh}$

Teorema (Cayley): A função $\lambda: G \to \overline{G}, \lambda(g) = \lambda_g$ é isomorfismo

Prova:

- λ é bijetora, pois $\alpha(\lambda_g) = g$ é a inversa de λ
- $\lambda(gh) = \lambda_{gh} = \lambda_g \lambda_h = \lambda(g)\lambda(h)$

Produtos de grupos

Suponha (G,\cdot) e (H,\circ) grupos

O conjunto $G \times H$ munido do produto

$$(g_1,h_1)(g_2,h_2)=(g_1\cdot g_2,h_1\circ h_2)$$

é um grupo (cheque!)

O grupo $G \times H$ é o produto direto externo de G e H

A mesma construção pode ser aplicada para n grupos: $\prod G_i = G_1 \times \cdots \times G_n$

Se $G_1 = \ldots = G_n = G$, denotamos $G_1 \times \cdots \times G_n$ por G^n

Exemplo: $(\mathbb{R}^2, +)$ onde

$$(a,b) + (c,d) = (a+c,b+d)$$

é um grupo. Note: o grupo \mathbb{R}^2 é simplesmente $\mathbb{R} \times \mathbb{R}$

Exemplo: Os grupos $\mathbb{Z}_2 \times \mathbb{Z}_2$ e \mathbb{Z}_4 não são isomorfos

Se $\phi: \mathbb{Z}_4 \to \mathbb{Z}_2 \times \mathbb{Z}_2$ fosse um tal isomorfismo, então $\phi(1)$ deveria ter ordem 4 (isomorfismos preservam ordem de grupos, e ordem de elementos)

Todos elementos de $\mathbb{Z}_2 \times \mathbb{Z}_2$ tem ordem 1 ou 2

Exemplo: O grupo \mathbb{Z}_2^n é muito importante em ciência da computação

Óbvio que $|G \times H| = |G||H|$

Teorema: Se $g \in G$ tem ordem $r, h \in H$ tem ordem $s \Rightarrow |(g, h)| = mmc(r, s)$

Prova: Seja m = mmc(r, s) e n = |(g, h)|

$$(g,h)^m = (g^m, h^m) = (e_G, e_H) \Rightarrow n \text{ divide } m \Rightarrow n \leq m$$

 $(e_G,e_H)=(g,h)^n=(g^n,h^n)\Rightarrow r$ divide ne s divide $n\Rightarrow n$ é múltiplo de re de $s\Rightarrow n>m$

Logo, m = n

Corolário: Se $g_i \in G_i$ tem ordem $r_i \Rightarrow (g_1, \ldots, g_n) \in \prod G_i$ tem ordem $mmc(r_1, \ldots, r_n)$

Exemplo: Tome $(8,56) \in \mathbb{Z}_{12} \times \mathbb{Z}_{60}$. Sabemos que

$$|8| = 12/mdc(8, 12) = 12/4 = 3$$
 (lembrem: $8 = 8 \cdot 1$ (ou 1^8) e $|1| = 12$ em \mathbb{Z}_{12})

$$|56| = 60/mdc(56, 60) = 60/4 = 15$$

$$Logo, |(8,56)| = mmc(3,15) = 15$$

Exemplo: Diferente do exemplo do slide anterior, temos $\mathbb{Z}_2 \times \mathbb{Z}_3 \cong \mathbb{Z}_6$

Afirmamos que $\mathbb{Z}_2 \times \mathbb{Z}_3$ é cíclico (logo o resultado segue, pois $|\mathbb{Z}_2 \times \mathbb{Z}_3| = 6$)

Prove
$$\mathbb{Z}_3 \times \mathbb{Z}_3 = \langle (1,1) \rangle$$

Teorema: $\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn} \Leftrightarrow mdc(m,n) = 1$

Prova: (\Rightarrow) Suponha mdc(m,n)=d>1. Como mn=mdc(m,n)mmc(m,n) (prove), temos $mn/d=mmc(m,n)\Rightarrow m$ divide mn/d e n divide mn/d

Logo, $(a,b)^{mn/d}=(a^{mn/d},b^{mn/d})=(0,0)\Rightarrow \nexists \ (a,b)\in \mathbb{Z}_m\times \mathbb{Z}_n$ de ordem mn

Logo, $\mathbb{Z}_m \times \mathbb{Z}_n \ncong \mathbb{Z}_{mn}$

 (\Leftarrow) Como mdc(m,n)=1e mn=mdc(m,n)mmc(m,n),temos que

$$|(1,1)| = mmc(m,n) = mn$$

Portanto $\langle (1,1) \rangle = \mathbb{Z}_m \times \mathbb{Z}_n \Rightarrow \mathbb{Z}_m \times \mathbb{Z}_n$ é cíclico de ordem mn

Assim, $\mathbb{Z}_m \times \mathbb{Z}_n \cong \mathbb{Z}_{mn}$

Corolário: $\Pi_{i=1}^k \mathbb{Z}_{n_i} \cong \mathbb{Z}_{n_1 \cdots n_k} \Leftrightarrow mdc(n_i, n_j) = 1 \ \forall i \neq j$. Em particular, se $m = p_1^{r_1} \cdots p_k^{r_k}$ com p_i primo e $p_i \neq p_j$, então

$$\mathbb{Z}_m \cong \mathbb{Z}_{p_1^{r_1}} \times \cdots \times \mathbb{Z}_{p_k^{r_k}}$$

Produto direto interno

Pergunta: Quando um grupo pode ser escrito como produto direto de alguns de seus subgrupos próprios?

Exemplo: Note que $H = \{(x,0) \in \mathbb{R}^2 \mid x \in \mathbb{R}\}$ e $K = \{(0,y) \in \mathbb{R}^2 \mid y \in \mathbb{R}\}$ são subgrupos próprios de \mathbb{R}^2 , e além disso $HK = \{hk \mid j \in H, \ k \in K\} = \mathbb{R}^2$

Definição: G é o produto direto interno de subgrupos $H, K \leq G$ se valem:

- $\bullet \ G = HK = \{hk \mid h \in H, \ k \in K\}$
- $\bullet \ H \cap H = \{e\}$
- hk = kh para todo $h \in H, k \in K$

Exemplo: $U(8) = \{1, 3, 5, 7\} \subset \mathbb{Z}_8$ é o produto direto interno de

$$H = \{1, 3\}$$
 e $K = \{1, 5\}$

Exemplo: $D_6 = \{id, r, \dots, r^5, s, rs, \dots, r^5s\}$ é o produto direto interno de

$$H = \{id, r^3\} \quad \text{e} \quad K = \{id, r^2, r^4, s, r^2s, r^4s\}$$

Além disso, $H\cong S_2\cong \mathbb{Z}_2$ e $K\cong S_3$ (permutações dos vértices 1,3,5 do poligono de 6 lados)

Note: nem todo grupo é o produto direto interno de subgrupos próprios

Exemplo: S_3 (lembrem: S_3 = simetrias do triângulo equilátero) não é o produto direto de subgrupos próprios

•
$$S_3 = HK \ e \ H \cap K = \{e\} \Rightarrow |H| = 3, \ |K| = 2 \Rightarrow H = \{id, \rho_1, \rho_2\}$$

Como $\nexists \mu_i$ que comuta com todos $\rho_j \Rightarrow$ tal subgrupo K não existe

Teorema: Se G é produto direto interno de $H, K \leq G$, então $G \cong H \times K$

Prova: Defina $\phi: H \times K \to G, \, \phi(h,k) = hk$

Afirmação: ϕ e iso

- $G = HK \Rightarrow \phi$ é sobrejetiva
- $H \cap K = \{e\} \Rightarrow \phi$ é injetiva: $g = h_1 k_1 = h_2 k_2 \Rightarrow h_2^{-1} h_1 = k_2 k_1^{-1} \in H \cap K = \{e\} \Rightarrow h_1 = h_2, \ k_1 = k_2$

Logo, ϕ é bijeção

 \bullet Como $hk=kh \ \forall \ h\in H, \ k\in K,$ temos

$$\phi((h_1, k_1)(h_2, k_2)) = \phi(h_1 h_2, k_1 k_2) = h_1 h_2 k_1 k_2 = h_1 k_1 h_2 k_2 = \phi(h_1, k_1) \phi(h_2 k_2)$$

Logo, ϕ é iso

Exemplos: $\bullet \mathbb{R}^2 \cong \mathbb{R} \times \mathbb{R}$

- $U(8) \cong H \times K$, onde $H = \{1, 3\}, \ K = \{1, 5\} \leq U(8)$
- $D_6 \cong \mathbb{Z}_2 \times S_3$

G é o produto direto interno de subgrupos $H_1, \ldots, H_n \leq G$ se valem:

- $\bullet \ G = \prod H_i = \{h_1 \cdots h_n \mid h_i \in H_i\}$
- $h_i h_j = h_j h_i$ para todos $h_i \in H_i$, $h_j \in H_j$ e $i \neq j$
- $H_i \cap \prod_{j \neq j} H_j = \{e\}$

Teorema: Se G é o produto direto interno de H_1, \ldots, H_n , então $G \cong \prod H_i$