- ullet Пусть m(буква открытого текста) это Случайная величина распределенная на ${\mathcal M}$
- ullet Пусть с(буква шифр текста) это Случайная величина распределенная на $\mathcal C$
- ullet Пусть k(буква ключа) это Случайная величина распределенная на ${\mathcal K}$

Лемма 1

Случайная величина $\mathcal X$ распределенная на множестве A, Случайная величина $\mathcal Y$ распределенная на множестве B. $f:B\to C$ тогда случайная величина $\mathcal Z=\mathrm{f}(\mathcal Y)$ распределенная на множестве C. При этом $\mathcal X,\mathcal Y$ - независимы Тогда $\mathcal X,\mathcal Z$ - независимы

Д-ВО

Берём
$$\forall$$
 пару $(a,c) \in A \times C$. $\not \preceq$
$$P(\mathcal{X}=a,\mathcal{Z}=c)=$$

$$P(\mathcal{X}=a,f(\mathcal{Y})=c)=$$

$$\sum_{b \in B:f(b)=c} P(\mathcal{X}=a,\mathcal{Y}=b)=$$

$$[\text{т.к X и Y независимы}]=$$

$$\sum_{b \in B:f(b)=c} P(\mathcal{X}=a) \cdot P(\mathcal{Y}=b)=$$

$$P(\mathcal{X}=a) \cdot \sum_{b \in B:f(b)=c} P(\mathcal{Y}=b)=$$

$$P(\mathcal{X}=a) \cdot P(\mathcal{Z}=c)$$

Лемма 2

Пусть $\Sigma = \{0,1,2,...|\Sigma|-1\}$ т.е мы просто пронумеровали все буквы. Здесь $|\Sigma|$ - это мощность алфавита Пусть

- \mathcal{X} равномерно распределена на Σ (это множество чисел, т.е X это число)
- ullet распределена на Σ
- \bullet \mathcal{X}, \mathcal{Y} независимы

Тогда $\mathcal{Z}=(\mathcal{X}+\mathcal{Y})\%|\Sigma|$ - тоже равномерно распределена на Σ

Д-ВО

$$\angle P(t=(\mathcal{X}+\mathcal{Y})\%|\Sigma|) = \\ \sum_{s\in\Sigma} P(\mathcal{Y}=s,X=(t-s)\%|\Sigma|) = \\ [\text{Т.к X и Y независимы}] \\ \sum_{s\in\Sigma} P(\mathcal{Y}=s)\cdot P(X=(t-s)\%|\Sigma|) = \\ \bullet \text{ Т.к X - распределена равномерно, то } P(X=(t-s)\%|\Sigma|) = \frac{1}{l} \cdot \Sigma_{s\in\Sigma} P(\mathcal{Y}=s) = \\ \frac{1}{l} \cdot \Sigma_{s\in\Sigma} P(\mathcal{Y}=s) = \\$$

Лемма 3

Пусть

- ullet равномерно распределена на Σ
- $\mathcal Y$ распределена на Σ
- \mathcal{X}, \mathcal{Y} независимы

Тогда $P(\mathcal{X}=\mathcal{Y})=rac{1}{l}=rac{1}{|\Sigma|}$

Д-ВО

$$\begin{split} &P(\mathcal{X}=\mathcal{Y}) = \\ &\Sigma_{s \in \Sigma} P(\mathcal{X}=s, \mathcal{Y}=s) = \end{split}$$

• По независимости \mathcal{X}, \mathcal{Y}

$$\begin{array}{l} \Sigma_{s\in\Sigma}P(\mathcal{X}=s)\cdot P(\mathcal{Y}=s) = \\ \frac{1}{|\Sigma|}\cdot \Sigma_{s\in\Sigma}P(\mathcal{Y}=s) = \\ \frac{1}{|\Sigma|} \end{array}$$

Лемма 4

 m_i, m_j, k_i, k_j - случайные величины распределенные на Σ

$$\bullet \ c_i = (m_i + k_i)\% |\Sigma|$$

•
$$c_i = (m_i + k_i)\%|\Sigma|$$

•
$$k_i, k_j$$
 - равномерно распределены на Σ

$$ullet$$
 m_i - не зависит от k_i, k_j, m_j

$$ullet$$
 m_i - не зависит от k_i, k_i, m_i

Тогда

$$P(c_i=c_j)= egin{cases} \sum\limits_{s\in\Sigma}P^2(M=s) & \text{если } k_i=k_j \ rac{1}{|\Sigma|} & \text{если } k_i & k_j \text{ не зависимы} \end{cases}$$

Д-ВО

1 случай, когда $k_i=k_j$

$$\begin{split} &P(c_i = c_j) = \\ &P(m_i = m_j) = \\ &\Sigma_{s \in \Sigma} P(m_i = s, m_j = s) = \end{split}$$

• по независимости

$$\sum_{s \in \Sigma} P(m_i = s) \cdot P(m_i = s) =$$

 $P(m_i=s) \ P(m_j=s)$ - это вероятности, что некоторая буква открытого текста m принимает значение s $\Sigma_{s\in\Sigma}P^2(M=s)$

${f 2}$ случай, когда k_i k_j не зависимы

$$\begin{split} &P(c_i=c_j) = P(m_i + k_i = m_j + k_j(mod(|\Sigma|))) = \\ &P(c_i=c_j) = P(m_i = m_j + k_j - k_i(mod(|\Sigma|))) = \end{split}$$

- 1. Случайные величины (m_i) и $(m_j+k_j-k_i)$ не зависимы по **ЛЕММЕ 1**
- 2. $m_j + k_j k_i (mod(|\Sigma|))$ равномерно распределена по **ЛЕММЕ 2**, т.к m_j и $k_j k_i$ независимые случайные величины
- 3. Можно воспользоваться ЛЕММОЙ 3

ОПР(индекса совпадения)

Пусть Σ - некоторый конечный алфавит. Тогда **индексом совпадения** для слова $w=w_1w_2...w_n$ называют

$$IC(w) = \Sigma_{i=1}^{|\Sigma|} \frac{F_i(F_i-1)}{n(n-1)}$$

Где:

ullet F_i - это частота встречаемости буквы w_i в w

Если по-простому то IC(w) это доля пар совпадающих букв из слова w

Также можно сказать, что IC(w) - это вероятность того, что 2 случайно выбранные буквы из слова w окажутся одинаковыми

Пример

•
$$IC(математика) = \frac{3+1+1}{C_{10}^2} = \frac{1}{9}$$

Теорема об индексе совпадений в криптограмме(Главная теорема билета)

```
Пусть \sim - это эквивалентность на \{1,2, \dots n\}
 \mathcal{K}=\Sigma^n Множество ключей это цепочки длины п
 \mathcal{M} = \Sigma^n
 \mathcal{C} = \Sigma^n
 U \subseteq \mathcal{K} такое что:
                        • i \sim j \Rightarrow k_i = k_j
                        • i \nsim j \Rightarrow k_i, k_j независимы
 c = c_1...c_n где c_i = (m_i + k_i)\%|\Sigma|
 k = k_1 ... k_n
 m = m_1 ... m_n
 Тогда
 M[IC(c)|k \in U] =
 P(c_i = c_i | k \in U) =
|\sim|\backslash n\cdot \tfrac{1}{n(n-1)}\cdot \Sigma_{i\in\Sigma}p_i^2\,+\,|\overset{-}{\sim}|\cdot \tfrac{1}{n(n-1)}\cdot \tfrac{1}{\Sigma}
                        • p_i = P(буква открытого текста = i)
                         ullet | \sim | - дополнение отношения \sim
                         • |\sim| \  \  |
```

Д-ВО

$$P(c_i = c_j | k \in U) = \sum\limits_{(i,j)} P(c_i = c_j | k \in U, i,j) \cdot P(i,j) =$$

- \bullet P(i,j) вероятность выбрать і и ј позиции вместе
- суммируем по всем парам (i, j)
- P(i,j) это вероятность одинакова для всех пар (i,j) и равна $\frac{1}{n(n-1)}$

$$\tfrac{1}{n(n-1)} \cdot \Sigma_{(i,j)} P(c_i = c_j | k \in U, i,j) =$$

- Теперь разделяем пары на 2 кучки:
 - пары из отношения \sim
 - пары из отноешения \sim

$$\textstyle \frac{1}{n(n-1)} \cdot \Sigma_{(i,j) \in \sim} P(c_i = c_j | k \in U, i,j) \, + \, \frac{1}{n(n-1)} \cdot \Sigma_{(i,j) \in \sim} P(c_i = c_j | k \in U, i,j) = 1$$

- ullet Если пары из отношения \sim , то ключи одинаковые, тогда по **ЛЕММЕ 4** $P(c_i=c_i|k\in U,i,j)=\Sigma_{s\in\Sigma}P^2(M=s)$
- ullet Если пары из отношения \sim , то ключи независимые, тогда по **ЛЕММЕ 4** $P(c_i=c_j|k\in U,i,j)=\frac{1}{|\Sigma|}$

$$\tfrac{1}{n(n-1)} \cdot \Sigma_{(i,j) \in \sim} \bigl(\Sigma_{s \in \Sigma}(p_s^2) \bigr) \, + \, \tfrac{1}{n(n-1)} \cdot \Sigma_{(i,j) \in \sim} \bigl(\tfrac{1}{|\Sigma|} \bigr) =$$

 \bullet иначе | \sim |\ n т.к мы выкидываем одинаковые пары вида (i,i)

$$\tfrac{|\sim|\setminus n}{n(n-1)} \cdot \Sigma_{i \in \Sigma} p_i^2 \, + \, \tfrac{|\bar{\sim}|}{n(n-1)} \cdot \tfrac{1}{\Sigma}$$

Для шифра виженера мы выбираем такое $U\subseteq\mathcal{K}$ что :

ullet $i\sim j\Longleftrightarrow p|(j-i)$ т.е отношение волна связывает все пары букв на расстоянии кратном длине ключа

Пусть для простоты p|n, т.е $n = p \cdot k$

Отношение \sim разбивает множество $\{1,2,...n\}$ на р классов, в каждом из которых по k элементов τ е разбиение \sim = $\{$

```
т.е разбиение \sim = { \{1, p+1, 2p+1, ...\}, \{2, p+2, 2p+2, ...\}, ... \{p, 2p, 3p, ...\}
```

буквы в одном классе шифруются одной и той же буквой ключа

$$\angle \mid \sim \mid \setminus n = p \cdot k \cdot (k-1) = p \cdot k \cdot (k-1)$$

- р кол-во классов
- k кол-во элементов в классе

• k-1 - кол-во пар в одном классе

Тогда |
$$\stackrel{-}{\sim}$$
 | = $n(n-1)-pk(k-1)$ =

• Преобразуем выражения, сделав замену $[k=\frac{n}{p}]$

•
$$|\sim| \setminus n = p \cdot \frac{n}{p} \cdot (\frac{n}{p} - 1) = \frac{n(n-p)}{p}$$

$$\bullet \mid \sim \mid \backslash n = p \cdot \frac{n}{p} \cdot (\frac{n}{p} - 1) = \frac{n(n-p)}{p}$$

$$\bullet \mid \stackrel{-}{\sim} \mid = n(n-1) - \frac{n(n-p)}{p} = \frac{n^2(p-1)}{p}$$
 \otimes можем преобразовать ф-лу из теоремы \otimes

$$|\sim|\backslash n\cdot \tfrac{1}{n(n-1)}\cdot \Sigma_{i\in\Sigma}p_i^2\,+\,|\overset{-}{\sim}|\cdot \tfrac{1}{n(n-1)}\cdot \tfrac{1}{\Sigma}\,=\,$$

$$\frac{n-p}{p(n-1)}\cdot \boldsymbol{\Sigma}_{i\in \Sigma} p_i^2 \,+\, \frac{n(p-1)}{p(n-1)}\cdot \frac{1}{|\Sigma|}$$