Feuille d'exercices

- Nombres complexes, trigonométrie et applications. -

Exercice 1 —

Mettre sous forme algébrique les nombres complexes suivants.

a)
$$\frac{3+6i}{3-4i}$$
 b) $\left(\frac{1+i}{2-i}\right)^2 + \frac{-1+6i}{3-4i}$ c) $\frac{2+5i}{1-i} + \frac{2-5i}{1+i}$ d) $\left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^3$ e) $\frac{(1+i)^9}{(1-i)^7}$ f) $\frac{1}{(1+2i)(i-3)}$

Exercice 2 —

Déterminer le module et un argument des nombres complexes suivants.

a)
$$1-i$$
 b) $\left(\frac{1+i\sqrt{3}}{1-i}\right)^{20}$ c) $\frac{1+\cos(\theta)+i\sin(\theta)}{1-\cos(\theta)-i\sin(\theta)}$, pour $\theta \in \mathbb{R} \setminus 2\pi\mathbb{Z}$ d) $e^{i\alpha}+e^{i\beta}$, pour $\alpha,\beta \in \mathbb{R}$

Exercice 3 —

Montrer que pour tout $(z_1, z_2) \in \mathbb{C}^* \times \mathbb{C}$, on a l'équivalence :

$$|z_1 + z_2| = |z_1 - z_2| \iff \exists \lambda \in \mathbb{R}, z_2 = i\lambda z_1.$$

Exercice 4 —

Calculer $(\sqrt{3}+i)^n+(\sqrt{3}-i)^n$ pour $n\in\mathbb{N}$.

Exercice 5 —

Déterminer l'ensemble des triplets (u, v, w) de nombres complexes de module 1 tels que u + v + w = uvw = 1.

Exercice 6 —

Calculer les racines carrées de 5 + 12i et $46 - 14i\sqrt{3}$ sous forme algébrique.

Exercice 7 —

Calculer les racines carrées de $\frac{1+i}{\sqrt{2}}$ et en déduire les valeurs de $\cos(\frac{\pi}{8})$ et $\sin(\frac{\pi}{8})$.

Exercice 8 —

Résoudre dans $\mathbb C$ les équations suivantes.

a)
$$z^2 + z + 1 = 0$$
 b) $z^2 - (1+2i)z + i - 1$ c) $z^2 - \sqrt{3}z - i = 0$ d) $z^4 + 10z^2 + 169 = 0$ e) $z^2 + 2iz - 5 = 0$ f) $z^3 + 3z^2 + z - 5 = 0$

Exercice 9 —

On considère dans C l'équation $(E): z^3 - (8-i)z^2 + (17-8i)z + 17i = 0.$

- 1. Démontrer que (E) a une solution imaginaire pure.
- 2. En déduire la résolution de (E) dans \mathbb{C} .

Exercice 10 —

Factoriser le trinôme $z^2 - 2z\cos(\theta) + 1$, où $\theta \in \mathbb{R}$.

Exercice 11 —

Résoudre dans $\mathbb C$ les équations suivantes.

a)
$$\left(\frac{2z+1}{z-1}\right)^4 = 1$$
 b) $(z+i)^n - (z-i)^n = 0$ c) $z^3 = 4\sqrt{2}(1+i)$ d) $z^5 = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$

Exercice 12 —

Résoudre dans \mathbb{R} l'équation $\left(\frac{1+ix}{1-ix}\right)^n = e^{i\theta}$, où $\theta \in \mathbb{R}$ et $n \in \mathbb{N}^*$.

Exercice 13 —

Montrer que l'application

$$\phi: \quad \{z \in \mathbb{C} | \operatorname{Im}(z) > 0\} \quad \longrightarrow \quad \{z \in \mathbb{C} | |z| < 1\}$$

$$z \qquad \longmapsto \quad \frac{z - i}{z + i}$$

est bijective.

Exercice 14

Soit $a \in \mathbb{C}$ tel que |a| < 1 et soit $\mathcal{U} := \{z \in \mathbb{C} | |z| = 1\}$.

Montrer que l'application $\phi_a: z \longmapsto \frac{z-a}{1-\overline{a}z}$ vérifie $\phi_a(\mathcal{U}) = \mathcal{U}$.

Exercice 15 —

Déterminer et représenter dans chaque cas l'ensemble des points M du plan dont l'affixe z vérifie la relation donnée.

1.
$$|z-3| = |z-3i|$$

2.
$$|2 - 3i + z| = |2 + 3i|$$

3.
$$|\overline{z} - 4 + i| = 1$$

4.
$$|z-1| < |z+1-2i|$$

5.
$$arg(\overline{z}) = arg(-2z) [2\pi]$$

6.
$$\arg(\overline{z} + 2) = -\frac{\pi}{2} [2\pi]$$

7.
$$\arg(z-2) = \arg(z+i) [2\pi].$$

Exercice 16 —

Déterminer l'ensemble des nombres complexes z tels que les points du plan d'Argand-Cauchy d'affixes z, $\frac{1}{z}$ et z-1soient sur un même cercle de centre l'origine.

Exercice 17 —

- 1. Trouver l'ensemble des points M du plan complexe d'affixes z tels que $\left(\frac{z-i-1}{iz+1}\right)^2 \in \mathbb{R}$.
- 2. Trouver l'ensemble des points M du plan complexe d'affixes z tels que $\operatorname{Re}\left(\frac{z-1}{z-i}\right)=0$.
- 3. Trouver l'ensemble des points M du plan complexe d'affixes z tels que $\overline{z}(z-1)=z^2(\overline{z}-1)$.

Exercice 18 —

Calculer les sommes suivantes (les résultats seront donnés sous forme factorisée), où $t \in \mathbb{R}$.

$$1. \sum_{k=0}^{n} \cos(kt)$$

$$2. \sum_{k=0}^{n} \binom{n}{k} \sin(kt)$$

$$3. \sum_{k=1}^{n} \cos(kt) \cos^k(t)$$

$$4. \sum_{k=0}^{n} \sin^2(kt)$$

EXERCICE 19 — Pour
$$x \in \mathbb{R}$$
 et $n \in \mathbb{N}$, on pose $D_n(x) := \sum_{k=-n}^n e^{ikx}$.

1. Montrer que D_n est une fonction paire, 2π -périodique et calculer $D_n(x)$ pour tout $x \in \mathbb{R}$.

2. On pose, pour $x \in \mathbb{R}$ et $n \in \mathbb{N}$, $K_n(x) := \sum_{k=0}^n D_k(x)$. Calculer $K_n(x)$ pour $x \in \mathbb{R}$ et en déduire que K_n est une fonction à valeurs positives.

Exercice 20 —

Linéariser $\cos^4(\theta)$, $\sin^4(\theta)$, $\sin^5(\theta)$, $\cos^7(\theta)\sin^4(\theta)$.

Exercice 21 —

Résoudre dans $\mathbb R$ puis dans $]-\pi,\pi]$ les équations suivantes.

a)
$$\sin(5x) = \sin\left(\frac{2\pi}{3} + x\right)$$
 b) $\sin\left(2x - \frac{\pi}{3}\right) = \cos\left(\frac{x}{3}\right)$ c) $\cos(3x) = -\sin(x)$

Exercice 22 —

Soit $n \in \mathbb{N}^*$ et soit $x \in \mathbb{R}$.

Montrer que $\cos(nx)$ peut s'écrire comme un polynôme de degré n en $\cos(x)$. Préciser le coefficient dominant de ce polynôme.

EXERCICE 23 — On note
$$j:=e^{\frac{2i\pi}{3}}$$
. En utilisant astucieusement $A=(1+1)^n, B=(1+j)^n$ et $C=(1+j^2)^n$, calculer $\sum_{k=0}^{E\left(\frac{n}{3}\right)} \binom{n}{3k}$.

EXERCICE 24 — Soit $x \in \mathbb{R}$. On définit, pour tout entier $n \ge 1$, $u_n := \prod_{k=1}^n \cos\left(\frac{x}{2^k}\right)$.

- 1. Montrer: $\forall n \in \mathbb{N}^*$, $\sin(x) = 2^n \sin\left(\frac{x}{2^n}\right) u_n(x)$.
- 2. En déduire que la suite $(u_n)_{n\in\mathbb{N}^*}$ converge et préciser sa limite.

Exercice 25 —

On considère une roue de vélo en position verticale qui se déplace horizontalement le long d'un axe au cours du temps t. On se donne un plan d'Argand-Cauchy de sorte qu'à l'instant initial t=0, la roue coïncide avec le cercle de centre i et de rayon 1 et que le centre i de la roue ait pour affixe i d'instant i. On note alors i le point de la roue qui coïncide avec l'origine à l'instant initial et on étudie la trajectoire suivie par i au cours du temps. On note aussi i le point de contact de la roue avec l'axe des abscisses (i est repéré par son affixe égale à i à l'instant i).

- 1. Expliquer pourquoi, à l'instant t, $(\overrightarrow{CA}, \overrightarrow{CM}) = -t [2\pi]$ (en radians).
- 2. En déduire l'affixe (à l'instant t) du vecteur \overrightarrow{CM} en fonction de t puis établir que l'affixe de \overrightarrow{IM} à l'instant t vaut $(t-1)+(1-e^{-it})i$, où I est le point d'affixe 1.
- 3. Déduire à quel instant t la position de M est la plus proche de I.