

Team Members

<u>Atsushi Ikeda</u> - M.Eng student

Major: Computer Science and Application

Interests: Machine Learning, Deep Learning

Jong Heon Kim - M.Eng student

Major: Computer Science and Application

Interests: Machine Learning, Security

Problem Description

Image classification - one of the major research areas of Al

Problem we tackled:

- Implement multiple machine learning algorithms to predict the correct digits for handwritten digits in the MNIST dataset
- Evaluate and compare their performances
- Lessons learned from the process

Approaches - Dataset

MNIST Dataset

- Include 60,000 handwritten digit images for training
- Include 10,000 test images
- With the true label of the handwritten digit "0-9"

Approaches - Implemented Models

K-Nearest Neighbors (KNN)

- Neural Network

K-means based classifier

Approaches - Performance Evaluation Metrics

Accuracy: Closeness of measurements to the true value

Precision: The fraction of a cluster that consists of objects of a specified class

Recall: The extent to which a cluster contains all objects of a specified class

F1-score: Harmonic mean of the

Precision and Recall

https://www.nature.com/articles/nmeth.3945/figures/1

K-Nearest Neighbors (KNN)

- refers to the k training examples that are close to a test instance, given the test instance
- In this experiment, we use k=245, and euclidean distance

Performance evaluation:

Accuracy	0.924
Precision	0.93
Recall	0.923
F1-score	0.924

Neural Network

- build a simple neural network model
- Input layer is the linear transform layer of [784, 10]
- Next layer is the ReLU layer of [10, 10]
- Output layer is the softmax and cross entropy loss layer

Neural Network (Cont.)

- In this experiment, we set dropout probability to 0.25
- Optimizer is SGD with a Learning Rate=0.0001
- Epoch=100, Batch_size=32

Performance evaluation:

Accuracy	0.802
Precision	0.889
Recall	0.857
F1-score	0.873

Neural Network (Cont.)

K-means Clustering based Classifier

- Classifier not based on supervised learning
- Unseen image can be classified through:
 - 1. Form clusters based on the similarity of 28*28 pixel values (updating centroids of each cluster until no centroids change)

Figure: 28*28 pixel image data in MNIST

- 2. Make each cluster as a label (digit number)
- 3. Compute similarity between new unseen data and centroids of all clusters
- 4. Predict a label of unseen data by choosing the label of the cluster whose centroid is most similar to unseen data's pixel value (lowest difference)

K-means Clustering based Classifier

- 10 Cluster was not enough, 256 Clusters was acceptable

K-means clustering on the digits dataset (PCA-reduced data)

10 Centroids are marked with white dots

- Accuracy for training data: 0.53

- Accuracy for test data: 0.12

K-means Clustering based Classifier (Cont.)

16 sample Centroids in 256 Clusters

Clusters differ from:

- Number on the image
- Style (font) of the number

Performance evaluation (256 clusters):

Accuracy	0.895
Precision	0.897
Recall	0.893
F1-score	0.894

K-means Clustering based Classifier (Cont.)

K-means clustering on the digits dataset (PCA-reduced data) 10 Centroids are marked with white dots

Accuracy for training data: 0.53

- Accuracy for test data: 0.12

K-means clustering on the digits dataset (PCA-reduced data) 256 Centroids are marked with white dots

- Accuracy for training data: 0.886

- Accuracy for test data: 0.895

Strength & Weakness of ML algorithms

Metric	KNN	NN	K-means
Accuracy	0.924	0.802	0.895
Precision	0.93	0.889	0.897
Recall	0.923	0.857	0.893
F1-score	0.924	0.873	0.894
Strength:	Best performance	Likely to be improved when problem become more	Acceptable performance based on unsupervised learning
	Lowest computation cost	complicated	
vvedkiless.	Likely to be degraded when problem become more	Worst performance	Difficult to manipulate decision boundaries and set # of clusters
	complicated	Highest computation cost	Sensitive to Outliers

Lesson Learned

- Neural network is known to be one of the best ML algorithm, but didn't make the best performance in this project
- There is no absolutely superior ML algorithms for all problems
- If you plan to use a ML model, choosing ML algorithm appropriate to the characteristics of the problem is important
- Preprocessing a dataset is as difficult task as making a machine learning model

Future Work

- Develop a KNN classifier using cosine similarity for the similarity calculation, instead of euclidean distance
- Performance evaluation of the convolutional neural network (CNN) model and the difference between various hyper parameter settings
- Develop a classifier taking advantage of **K-means clustering** and supervised learning algorithm (e.g. **KNN**, Logistic regression), which performs better than the supervised learning alone.

Thank you!

