ЛАБОРАТОРНАЯ РАБОТА № 5 ИССЛЕДОВАНИЕ РЕЖИМОВ РАБОТЫ БИПОЛЯРНОГО ТРАНЗИСТОРА В СХЕМЕ С ОБЩИМ ЭМИТТЕРОМ

Цель задания

Расчет параметров биполярных транзисторов и других элементов, при включении транзистора в схему с ОЭ.

Постановка задачи

Для соответствующего варианта:

- 1) Произвести расчет параметров транзистора и требуемых элементов схемы. Расчету подлежат: I_{9} , I_{κ} , $U_{\kappa-9}$ и значения параметров элементов схемы, для которых в соответствующем столбце варианта находится знак «?».
- 2) Осуществить моделирование схемы, для подтверждения результатов расчета. Т.е. измерить значения токов и напряжений в цепях включения транзистора.

Содержание отчета

- 1) Постановка задачи.
- 2) Расчетные формулы, по которым определялись параметры транзистора и других элементов.
- 3) Схема исследования транзистора, с указанием значений параметров элементов, входящих в нее.
- Выводы.

Методические указания

1) Схема включения транзистора для всех вариантов имеет вид, показанный на рис.1.

Рис.1. Схема включения транзистора

Номиналы элементов, входящих в схему для каждого варианта различны.

- 2) В схеме на рис.1. в качестве биполярного транзистора используется элемент ВЈТ_NPN из группы Transistors_Virtual. Его параметры можно изменить с помощью контекстного меню, пункт Properties. Необходимо выбрать вкладку Value и через кнопку Edit Model можно изменять параметры транзистора.
- 3) Для определения параметров транзистора используются следующие расчетные формулы:

$$\beta = \frac{\alpha}{1 - \alpha} \tag{1}$$

$$\alpha = \frac{\beta}{1+\beta} \tag{2}$$

$$I_{\kappa} = \alpha I_{9} + I_{\kappa 60} \tag{3}$$

$$I_{\mathfrak{I}} = I_{\kappa} + I_{\tilde{\mathfrak{O}}} \tag{4}$$

$$I_{\kappa \ni 0} = (\beta + 1)I_{\kappa \delta 0} \tag{5}$$

$$\alpha = \frac{I_{\kappa} - I_{\kappa 60}}{I_{9}} \tag{6}$$

$$\beta = \frac{I_{\kappa} - I_{\kappa \ni 0}}{I_{\delta}} \tag{7}$$

где β — статический коэффициент усиления по току (коэффициент передачи тока базы) для схемы ОЭ;

 α — статический коэффициент усиления по току (коэффициент передачи тока эмиттера) для схемы ОБ;

 I_{κ} – ток коллектора;

 $I_{\scriptscriptstyle 9}$ – ток эмиттера;

 I_{6} – ток базы;

 $I_{\kappa\delta0}$ — начальный ток коллектора (неуправляемый обратный ток);

 $I_{\kappa \ni 0}$ — начальный сквозной ток;

- 4) Кроме основных формул (1-7), для входного и выходного контура можно использовать законы Кирхгофа. Например, для выходного контура схемы, изображенной на рис.1, можно составить уравнение $V_{\kappa} = U_{\kappa-2} + R_{\kappa}I_{\kappa} + R_{E}I_{2}$.
- 5) Для всех вариантов используются одинаковые значения: $U_{\delta^{-9}}=0.7B$, $I_{\delta}=40$ мкA , $I_{\kappa\delta0}=0$.
- 6) С учетом полученных значений параметров элементов произвести моделирование схемы и определить значения токов в цепях включения транзистора и напряжений между выводами транзистора.

Значения параметров β и $U_{\delta-9}$ задаются в таблице *Edit Model*. Параметру β соответствует строка с именем *BF Ideal maximum forward beta*. Значению $U_{\delta-9}$ соответствует строка с именем *VJE B-E built in potential*.

Варианты

В столбцах таблицы указаны значения параметров транзистора и элементов схемы. Знак «?» в столбце, какого — либо параметра означает, что этот параметр необходимо определить.

№	α	β	R _K (кОм)	R E(кОм)	R _В (кОм)	V _K (B)	V _B (B)
1	?	85	3	1	?	15	10

2	0,987	?	2	?	60	16	8
3	?	80	2	1	?	14	8
4	?	100	3	2	?	25	15
5	0,976	?	3	?	50	15	8
6	?	90	2	?	40	20	12
7	0,956	?	5	8	?	22	14
8	?	120	3	1	?	20	6
9	0,988	?	2	?	60	20	8
10	?	100	1	?	40	15	8
11	0,978	?	2	4	?	13	10
12	?	95	4	3	?	30	14
13	0,998	?	1	?	87	25	5
14	?	120	2	?	50	25	7
15	0,986	?	4	3	?	22	10
16	?	70	4	?	60	19	5
17	0,996	?	1	1	?	25	12
18	?	40	1	?	77	12	8
19	0,987	?	4	2	?	20	12
20	?	55	3	?	68	20	14
21	0,977	?	8	?	89	25	8
22	?	90	2	3	?	20	12
23	0,989	?	2	3	?	30	15
24	?	60	4	?	69	16	9
25	0,975	?	3	1	?	22	15
26	?	74	3	?	40	20	5
27	0,978	?	5	3	?	15	10
28	?	89	2	?	50	14	7
29	0,979	?	1	1	?	15	8
30	?	76	1	?	60	20	9