Escuela Politécnica Nacional

FACULTAD DE CIENCIAS

ESTRUCTURA DE DATOS

Apuntes de la materia de **ESTRUCTURAS DE DATOS**, con los problemas resueltos

Autor:

Jesus Pad

MultiAlejo

Índice

1.		oritmos y complejidad computacional	2
	1.1.	Conceptos Básicos	2
	1.2.	Ejercicios	2
	1.3.	· · · · · · · · · · · · · · · · · · ·	3
	1.4.		4
	1.5.		4
	1.6.		4
	1.7.		5
	1.7.		5
	1.0.		J
2.			5
	2.1.		5
	2.2.		6
	2.3.		6
	2.4.		7
	2.4.		7
	2.6.		7
	2.7.		8
3.			8
3.	3.1.		8
	3.2.		8
	3.3.		9
	3.4.		9
	3.5.		10
	3.6.		10
	3.7.		10
4.		1	11
4.	4.1.		L I []
	4.1.		ı 1 [1
			ι 1 [1
	4.3.		
	4.4.		12
	4.5.		12
	4.6.		13
	4.7.		13
5.		1	13
Э.	5.1.		L3
	5.1.		
			[4
	5.3.		4
	5.4.		4
	5.5.		15
	5.6.		15
	5.7.		16

1. Algoritmos y complejidad computacional

1.1. Conceptos Básicos

- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()

1.2. Ejercicios

• (Ejercicio 1.1): Dado un conjunto $X = \{x_1, \dots, x_n\}$ de variables booleanas y $T = \{x_i, \neg x_i : x_i \in X\}$ el conjunto de literales. El problema SAT consiste en una familia de m cláusulas $C = \{C_1, C_2, \dots, C_m\}$, donde cada cláusula i contiene m_i literales. La familia C de cláusulas sobre X tiene una respuesta de verdadero si y solo si en todas las cláusulas al menos uno de sus miembros es verdadero.

Por ejemplo:

$$C = (C_1, C_2, C_3) = ((x_1 \lor x_3 \lor \neg x_4 \lor x_5), (x_2 \lor \neg x_3 \lor x_4), (x_1 \lor x_2 \lor x_3))$$

Claramente, una solución es: $(x_1, x_2, x_3, x_4) = (V, V, F, F, V)$ Determine la longitud de codificación de una instancia del problema anterior.

Solución:

Para determinar la **longitud de codificación** de una instancia del problema SAT, seguimos el modelo teórico:

- *a*) **Número de variables:** $n = 5 (x_1, x_2, x_3, x_4, x_5)$.
- b) Número de cláusulas: m = 3.
- c) Número total de literales en las cláusulas:
 - C_1 tiene 4 literales.
 - C_2 tiene 3 literales.
 - C_3 tiene 3 literales.
 - **Total:** 4 + 3 + 3 = 10.

Nombre: Jesus Yanchaliquin

Dado que cada variable puede tomar **2 valores** (Verdadero V o Falso F), lo que equivale a **1 bit por variable**, y para almacenar cada literal debemos indicar si está negado ($\neg x_i$), usamos **1 bit adicional por literal**.

La longitud de codificación se calcula como:

$$L = n + \sum_{i=1}^{m} m_i$$

Sustituyendo los valores:

$$L = 5 + 10 = 15$$
 bits

Por lo tanto, la longitud de codificación de esta instancia del problema SAT es 15 bits.

- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()

1.3.

- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()

1.4.

- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()

1.5.

- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()

1.6.

- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()

- ()
- ()

1.7.

- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()

1.8.

- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()

2.

2.1.

- ()
- ()
- ()
- ()

- ()
- ()
- ()
- ()
- ()
- ()

2.2.

- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()

2.3.

- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()

2.4.

- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()

2.5.

- ()
- ()
- ()
- ()
- ()
- 0
- ()
- ()
- ()
- ()

2.6.

- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()

- ()
- ()

2.7.

- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()

3.

3.1.

- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()

3.2.

- ()
- ()
- ()
- ()

- ()
- ()
- ()
- ()
- ()
- ()

3.3.

- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()

3.4.

- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()

3.5.

- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()

3.6.

- ()
- ()
- ()
- ()
- ()
- 0
- ()
- ()
- ()
- ()

3.7.

- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()

- ()
- ()

4.

4.1.

- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()

4.2.

- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()

4.3.

- ()
- ()
- ()
- ()

Bartle Pagina: 11

- ()
- ()
- ()
- ()
- ()
- ()

4.4.

- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()

4.5.

- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()

4.6.

- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()

4.7.

- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()

5.

5.1.

- ()
- ()
- ()
- ()
- ()
- ()

- ()
- ()
- ()
- ()

5.2.

- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()

5.3.

- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()

5.4.

- ()
- ()
- ()

- ()
- ()
- ()
- ()
- ()
- ()
- ()

5.5.

- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()

5.6.

- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()

5.7.

- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()
- ()