Chapter 3 Theory

3.1 Basic Notions

Exercise 3.1 (World Logic) Answer to the following questions:

- What are the main characteristics of a representation language?
- What is the difference between extensional and intentional representations?
- What is the difference between an atomic formula and a complex formula?
- What is an interpretation function?
- What is entailment and what are its properties?
- What are the desired properties of logic languages?
- When it is the case that a theory is correct and complete?
- Can you describe the main reasoning problems?

Exercise 3.2 (Ambiguity) Indicate which of the following statements regarding the modeling process are TRUE (one or more):

- Given an observed phenomenon, there are always different modeling of the same phenomenon, due to differences in perceptions or conceptualizations by different people.
- Abstraction is a modeling process that allows us to identify aspects of the observed phenomenon that are relevant to the problem to be solved.
- A source of ambiguity comes from using two different terms in language to denote the same object in the world.

Exercise 3.3 Indicate which of the following statements about world models (World Logics) are TRUE (one or more):

- A model is a set of atomic analog representations, i.e., representations that cannot be further decomposed.
- An assertional theory always correctly represents all and only the facts of the model it describes.
- A domain is the set of all possible facts that are used to represent the world.

26 3 Theory

 An assertional language contains at least one assertion for each fact contained in the domain it describes.

• ER models are linguistic representations of the world for which an assertional theory can be constructed by defining an interpretation function.

Exercise 3.4 (Logic) Indicate which of the following statements about logics are TRUE (one or more):

- 1. The interpretation function is defined only for atomic formulas, and not necessarily all of them.
- 2. A theory can describe more than one model and, dually, a model can be described by more than one theory.
- 3. Solving a model checking problem consists of checking whether a theory \mathcal{T} is correct and complete with respect to a model M.
- 4. \mathcal{T}_2 is a logical consequence of \mathcal{T}_1 (" \mathcal{T}_1 logically entails \mathcal{T}_2 ") if every model of \mathcal{T}_1 is also a model of \mathcal{T}_2 .
- A representational language contains atomic assertions, complex assertions (where atomic assertions and complex assertions constitute atomic formulas), and complex formulas.