

Dipartimento di Elettronica e Informazione

POLITECNICO DI MILANO

Automazione industriale dispense del corso (a.a. 2008/2009)

7. Reti di Petri: esempi di proprietà e tipologie

Luigi Piroddi piroddi@elet.polimi.it

Proprietà:

- ► Limitatezza: SI
- Vivezza: SI
- Reversibilità: SI

Tipologia:

- ► SM: SI
- ► MG: SI
- FC: SI
- ► EFC: SI
- ► AC: SI

Poichè la rete di Petri è una macchina a stati, essa è strettamente conservativa.

Inoltre, poichè è una macchina a stati contenente un solo gettone, essa è anche una rete binaria. Infine, poichè è una macchina a stati fortemente connessa e inizialmente marcata, essa è una rete viva.

La vivezza si poteva verificare anche osservando che la rete di Petri è un grafo marcato in cui ogni ciclo contiene un posto marcato.

Proprietà:

- Limitatezza: NO p_2 e p_4 sono illimitati (v. sequenza t_1 t_2 t_3 t_4)*
- Vivezza: SI
- Reversibilità: NO per marcare nuovamente p_1 dopo che si sia smarcato, occorre far scattare t_4 , ma così si aggiunge un gettone in p_2

- ► SM: NO
- ► MG: NO
- ► FC: SI
- ► EFC: SI
- ► AC: SI

Proprietà:

- ► Limitatezza: SI
- Vivezza: NO t_1 non può scattare mai
- Preversibilità: SI eliminando t_1 , il resto della rete è una macchina a stati con 3 soli stati, $M_0 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$, $M_1 = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}^T$, $M_2 = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$; da M_1 si torna in M_0 con lo scatto di t_4 , da M_2 con lo scatto di t_5

- ► SM: NO
- ► MG: NO
- ► FC: NO
- ► EFC: NO
- ► AC: NO v. $p_2 \bullet = \{t_1, t_4\},$ $p_3 \bullet = \{t_1, t_5\} \rightarrow$ "confusione"

Proprietà:

- ► Limitatezza: SI
- Vivezza: NO se scatta t_3 , t_1 e t_2 non sono più abilitabili
- Reversibilità: NO se scatta t_3 , non si riesce più a marcare p_1

- ► SM: NO
- ► MG: NO
- ► FC: NO
- ► EFC: NO
- ► AC: SI

v.
$$p_2 \bullet = \{t_1, t_3\} \supset p_3 \bullet = \{t_3\}$$

Proprietà:

- ► Limitatezza: NO il posto p_1 è illimitato
- Vivezza: SI
- Reversibilità: SI t_3 può scattare tante volte quante t_2

Tipologia:

- ► SM: NO
- ► MG: SI
- FC: SI
- ► EFC: SI
- AC: SI

La rete rappresenta un modello produttori-consumatori.

Poichè la rete di Petri è un grafo marcato e ogni ciclo contiene un posto marcato, la rete è viva.

Proprietà:

- ► Limitatezza: NO p₁ è illimitato; la sua marcatura cresce di un gettone ogni volta che scatta t₃ nella sequenza ripetuta
- Vivezza: NO t_1 non è mai abilitata
- ► Reversibilità: NO la sequenza ripetuta introduce gettoni ineliminabili in *p*₁

Tipologia:

- ► SM: NO
- ► MG: NO
- ► FC: NO
- ► EFC: NO
- ► AC: NO v. $p_3 \bullet = \{t_1, t_2\},$ $p_4 \bullet = \{t_1, t_4\} \rightarrow$ "confusione"

E' consentita solo la sequenza ripetuta t_3 t_2 t_4 .

Proprietà:

- Limitatezza: NO p_1 è illimitato (v. sequenza t_4 t_3)
- Vivezza: NO t_1 non è mai abilitata
- Reversibilità: SI posso consumare i gettoni in p_1 ripetendo la sequenza t_5 t_2

- ► SM: NO
- ► MG: NO
- ► FC: NO
- ► EFC: NO
- ► AC: NO v. $p_2 \bullet = \{t_1, t_5\},$ $p_5 \bullet = \{t_1, t_2\} \rightarrow$ "confusione"

Proprietà:

- ► Limitatezza: SI
- ► Vivezza: SI
- Reversibilità: NO

Tipologia:

- ► SM: NO
- ► MG: NO
- ► FC: NO
- ► EFC: NO
- ► AC: SI v. $p_2 \bullet = \{t_2, t_4\} \supset p_3 \bullet = \{t_2\} e$

$$p_5 \bullet = \{t_4\}$$

Inizialmente può scattare solo t_1 .

Poi, è consentita solo la sequenza ripetuta t_2 t_1 t_4 t_3 .