基礎コンピュータ工学 第2章 情報の表現

情報の表現

コンピュータの内部で情報が表現されるか. どのような回路で扱うことができるか.

コンピュータは電気で動くので情報も電気で表現する必要がある.

電気を用いた情報の表現(おおかみ情報)

電気の「ON/OFF」を用いて情報を表現する.

ランプ	意味
OFF	おおかみは来ていない
ON	おおかみが来た!!

ビット

前例のような「二つのどちらか」を表す情報が「情報の最小単位」になります.情報の最小単位のことを「**ビット(bit)**」と呼びます.

ビットの値は「ON/OFF」ではなく、「1/0」で書く.

 $\left(\begin{array}{ccc}
\mathsf{ON} & : & 1 \\
\mathsf{OFF} & : & 0
\end{array}\right)$

「おおかみが来た情報」をビットで表現する.

ビット値	意味
0 (off)	おおかみは来ていない
1 (on)	おおかみが来た!!

◆ロト ◆団ト ◆豆ト ◆豆 ・ りへで

より複雑な情報の表現(拡張おおかみ情報)

複雑な情報は複数のランプ (ビット) の組み合わせで表現する.

2,2		
ビット値	意 味	
00	おおかみはきていない(平気)	
01	おおかみが1頭来た(戦う)	
10	おおかみが2頭来た(?)	
11	おおかみがたくさん来た(逃げる)	

ビットの組合せと表現できる情報

拡張おおかみ情報は 2 ビットで 4 種類の情報を表現した。一般には n ビットで 2^n 種類の情報を表現できる。

ビット数	ビットの組合せ	組合せ数
1	0 1	2
2	00 01 10 11	4
3	000 001 010 011	
	100 101 110 111	8
•••		
n		2^n

[拡張おおかみ情報」のように、ビットの組合せに意味を持たせることで様々な情報を表現できる.

ビットの組合せの意味を表にして定義する.

ビット、ニブル、バイト

「ビット」は情報の最小単位 「ビット」は小さすぎるので「4 ビット」,「8 ビット」 まとめたものもある.

名前	ビット数	組合せの数
ビット (bit)	1	$2^1 = 2$
ニブル(nibble)	4	$2^4 = 16$
ニブル (nibble) バイト (byte)	8	$2^8 = 256$

スマフォの容量:32GB, 64GB, 128GB (「B」は**バイト**の意味) USBメモリの容量:32GB, 64GB, 128GB (「B」は**バイト**の意味) 通信速度制限:7GB を超えると制限される (「B」は**バイト**の意味)

通信速度:通常は 100Mbps (「b」は**ビット**の意味)

通信速度:制限されると 128kbps (「b」は**ビット**の意味)

参考: bps:【bits per second / ビット毎秒】

数値の表現

これまで、ビットの組合せの意味決める。(表などにする) ビットの組合せの意味を**ルールで決める**場合もある。 コンピュータの内部では数値は**2進数**で表現する。

10 進数

- 0~9の10種類の数字だけを使用する数値の表現方法.
- 一桁毎に 10 倍の重みを持つ

2 進数

- 0,1の2種類の数字だけを使用する数値の表現方法。
- 一桁毎に2倍の重みを持つ
- 0, 1の2種類の数字をビットの0, 1と対応付けしやすい。
- nビット(桁)の2進数で0~2ⁿ−1までの値を表現できる.

4ビットの2進数

bit 3	bit 2	bit 1	bit 0	意味
(b_3)	(b_2)	(b_1)	(b_0)	
0		0	0	0
0	0 0 0	0	1	1
0		1	0	2 3
0	0	1	1	
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	1 0 0 0 0	1	0	10
1		1	1	11
1	1	0	0	12
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15

2進数から10進数への変換

2進数の桁ごとの重みは、桁の番号をnとすると 2^n になる.

$$b_3$$
 b_2 b_1 b_0
 $2^3 = 8$ $2^2 = 4$ $2^1 = 2$ $2^0 = 1$

2 進数の数値は,その桁の重みと桁の値を掛け合わせたものの合計. 例えば 2 進数の 1010_2 は, 2^3 の桁が 1, 2^2 の桁が 0, 2^1 の桁が 1, 2^0 の桁が 1 ですから,次のように計算できる.

$$1010_2 = 2^3 \times 1 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 0$$

$$= 8 \times 1 + 4 \times 0 + 2 \times 1 + 1 \times 0$$

$$= 8 + 0 + 2 + 0$$

$$= 10_{10}$$

◆ロト ◆団ト ◆豆ト ◆豆ト ・豆 ・ かへぐ

2進数から10進数への変換(問題)

問題;次の2進数を10進数に変換しなさい.

1) 00011100₂

2) 00111000₂

3) 11100000₂

10 進数から2 進数への変換

2進数を2で割ると右に1桁移動する. (10進数は10で割ると右に1桁移動した.) その時の余りは最下位の桁からはみ出した数になる. 同じ値の10進数を2で割っても余りは同じ.

10 進数から 2 進数への変換

2で割る操作を繰り返しながらはみ出して来た数を記録する. 右から並べると2進数で表したときの0/1の並びが分かる.

10進数から2進数への変換(問題)

問題;次の10進数を8桁の2進数に変換しなさい.

- **1)** 16₁₀
- **2)** 50₁₀
- **3)** 100₁₀
- **4)** 127₁₀
- **5)** 130₁₀

16 進数

- 2進数4桁を16進数1桁で書く。
- 16種類の数字が必要,
- AからFを数字の代用にする.
- 2進数の書き方 01100100₂ 01100100_b
- 16 進数の書き方 64₁₆ 64H
- 右の表は暗記すること.

2 進数	16 進数	10 進数
0000_{2}	016	010
0001_{2}	1_{16}	1_{10}
0010_{2}	2_{16}	2_{10}
0011_{2}	3_{16}	3_{10}
0100_{2}	4_{16}	4_{10}
0101_{2}	5_{16}	5_{10}
0110_{2}	6_{16}	6_{10}
0111_{2}	7 ₁₆	7_{10}
1000_{2}	8 ₁₆	810
1001_{2}	9_{16}	9_{10}
1010_{2}	A_{16}	10_{10}
1011_{2}	B_{16}	11_{10}
1100_{2}	C_{16}	12_{10}
1101_{2}	D_{16}	13_{10}
1110_{2}	E_{16}	14_{10}
1111_{2}	F_{16}	15_{10}

16 進数の FF まで数えてみよう

```
00 10 20 30 40 50 60 70 80 90 A0 B0 C0 D0 E0 F0
  11 21 31 41 51 61 71 81 91 A1 B1 C1 D1 E1 F1
02 12 22 32 42 52 62 72 82 92 A2 B2 C2 D2 E2 F2
03 13 23 33 43 53 63 73 83 93 A3 B3 C3 D3 E3 E3
   14 24 34 44 54 64 74 84 94 A4 B4 C4 D4 F4 F4
05 15 25 35 45 55 65 75 85 95 A5 B5 C5 D5 E5 F5
06 16 26 36 46 56 66 76 86 96 A6 B6 C6 D6 E6 F6
  17 27 37 47 57 67 77 87 97 A7 B7 C7 D7 F7 F7
08 18 28 38 48 58 68 78 88 98 A8 B8 C8 D8 F8 F8
09 19 29 39 49 59 69 79 89 99 A9 B9 C9 D9 E9 F9
OA 1A 2A 3A 4A 5A 6A 7A 8A 9A AA BA CA DA EA FA
  1B 2B 3B 4B 5B 6B 7B 8B 9B AB BB CB DB EB FB
  1C 2C 3C 4C 5C 6C 7C 8C 9C AC BC CC DC EC FC
      2D 3D 4D 5D 6D 7D 8D 9D AD BD CD DD
     2E 3E 4E 5E 6E 7E 8E 9E AE BE CE DE EE
     2F 3F 4F 5F 6F 7F 8F 9F AF
                                 BF CF
```

16 進数との変換

- 2進数 <==> 16 進数 4 桁の 2進数と 1 桁の 16 進数の対応は暗記する.
- 10 進数 <==> 16 進数
 - 10 進数 <==> 2 進数 <==> 16 進数 一度,2 進数に変換してから変換する。
 100₁₀ = 01100100₂ = 64₁₆
 - 直接計算する 桁の重みは16倍になっていく。

$$h_3$$
 h_2 h_1 h_0
 $16^3 = 4096$ $16^2 = 256$ $16^1 = 16$ $16^0 = 1$
 $2^{12} = 4096$ $2^8 = 256$ $2^4 = 16$ $2^0 = 1$

16 進数との変換

16 進数 => 10 進数 -

16 進数の数値は、その桁の重みと桁の値を掛け合わせたものの合計。

$$64_{16} = 16^{1} \times 6 + 16^{0} \times 4$$
$$= 16 \times 6 + 1 \times 4$$
$$= 96 + 4$$
$$= 100_{10}$$

16 進数 (問題 1/4)

問題1: 00_{16} から FF_{16} まで,声に出して数えなさい.

問題2:次の2進数を2桁の16進数に変換しなさい.

- **1)** 00011100₂
- **2)** 00111000₂
- **3)** 11100000₂
- **4)** 01110101₂

16進数(問題2/4)

問題3:次の16進数を8桁の2進数に変換しなさい.

- **1)** 11₁₆
- **2)** 56₁₆
- **3)** AB_{16}
- **4)** *CD*₁₆
- **5)** 3*C*₁₆

16進数(問題3/4)

問題4:次の16進数を10進数に変換しなさい.

- **1)** 11₁₆
- **2)** 56₁₆
- **3)** AB_{16}
- **4)** *CD*₁₆
- **5)** 3*C*₁₆

16進数(問題4/4)

問題5:次の10進数を2桁の16進数に変換しなさい.

- **1)** 16₁₀
- **2)** 50₁₀
- **3)** 100₁₀
- **4)** 127₁₀
- **5)** 130₁₀