Clase 4

En esta ocasión introduciremos el concepto de *valor absoluto* de un número real y algunas propiedades relacionadas a este.

Valor aboluto

Definición 1 Para cada número mayor o igual que cero a, denotamos por \sqrt{a} al único número mayor o igual que cero cuyo cuadrado es a.

Sabemos que la expresión $0 \le a$ se lee "cero es menor o igual que a" o bien "a es mayor o igual que cero", pero también se puede leer como "a es no negativo". De manera similar $a \le 0$ se puede leer como "a es no positivo".

Definición 2 Sea $a \in \mathbb{R}$. Definimos el valor absoluto de a, denotado por |a|, como sigue

$$|a| = \begin{cases} a & \text{si } a \ge 0 \\ -a & \text{si } a \le 0. \end{cases}$$

Observación 3 Consideremos $a \in \mathbb{R}$. Si $a \ge 0$, entonces $|a| = a \ge 0$ y si $a \le 0$, entonces $-a \ge 0$, de donde $|a| = -a \ge 0$. En cualquier caso, tenemos que $|a| \ge 0$, es decir, el valor absoluto de un número nunca es negativo. ¿Puede ser cero? Si sí, ¿cuándo lo es?

Ejemplo 4 Halle el valor absoluto de $\sqrt{3} - \sqrt{7}$.

Solución. Para hallar $\left|\sqrt{3}-\sqrt{7}\right|$, según la Definición 2, debemos averiguar si $\sqrt{3}-\sqrt{7}$ es mayor o igual a cero o menor o igual que cero. Ahora, se tiene que $\sqrt{3}<\sqrt{7}$ (¿cómo lo demostrarían?), por lo que $\sqrt{3}-\sqrt{7}<0$, así que nos encontramos en el "segundo caso". Por lo tanto $\left|\sqrt{3}-\sqrt{7}\right|=-\left(\sqrt{3}-\sqrt{7}\right)$, es decir,

$$\left|\sqrt{3} - \sqrt{7}\right| = \sqrt{7} - \sqrt{3}.$$

Proposición 5 Sean $a, b \in \mathbb{R}$ con $b \ge 0$. Se tiene que |a| = b si y sólo si a = b o a = -b.

Demostración.

 \Rightarrow] Supongamos que |a|=b. Si $a\geq 0$, entonces a=|a|. Luego, por hipótesis, a=b. Ahora, si $a\leq 0$, se tiene que -a=|a| y de aquí, usando la hipótesis, que -a=b, es decir, a=-b. Así, a=b o a=-b.

 \Leftarrow] Supongamos ahora que a=b o a=-b. Si a=b, entonces $a\geq 0$, pues $b\geq 0$, así |a|=a, de donde |a|=b. Si a=-b, entonces $a\leq 0$, pues $b\geq 0$, de donde |a|=-a. Como a=-b, entonces -a=b y de aquí que |a|=b.

Ejemplo 6 Halle todos los números x tales que |x-7|=12.

Solución. Según la Proposción 5, tenemos dos posibilidades, x-7=12 o bien x-7=-12. De aquí que x=19 o x=-5.

El valor absoluto de un número a se puede interpretar como la "distancia" del número a al 0, por ejemplo, |5| = 5 mientras que |-5| = 5, es decir la distancia de 5 a 0 es la misma distancia que de -5 a 5. Ahora, una expresión como |a-b| se puede interpretar como la distancia de a a b o bien de b a a. Así, en el ejemplo anterior lo que queríamos era hallar todos los números x cuya distancia al 7 fuera 12.

Teorema 7 Sean $a, b \in \mathbb{R}$ con $b \ge 0$. Se tiene que $|a| \le b$ si y sólo si $-b \le a \le b$.

Demostración.

- \Rightarrow] Supongamos que $|a| \le b$. Si $a \ge 0$, entonces, por definición de valor absoluto y la hipótesis, tenemos que $0 \le a = |a| \le b$ y de aquí que $-b \le 0 \le a \le b$. Por lo tanto, $-b \le a \le b$. Ahora, si $a \le 0$, por definición de valor absoluto y la hipótesis, tenemos que $0 \le -a = |a| \le b$ y de aquí que $-b \le a \le 0 \le b$. En este caso también ocurre que $-b \le a \le b$.
- \Leftarrow] Supongamos ahora que $-b \le a \le b$. Si $a \ge 0$, entonces |a| = a, de donde $-b \le |a| \le b$. En particular $|a| \le b$. Si $a \le 0$, entonces |a| = -a y de aquí que $-b \le -|a| \le b$. Multiplicando esta última desigualdad por (-1), tenemos que $b \ge |a| \ge -b$ y de aquí que $|a| \le b$. En cualquier caso $|a| \le b$.

Ejemplo 8 Halle todos los números x para los que se cumple que $|x+4| \le 5$.

Solución. Por el Teorema anterior, resolver $|x+4| \le 5$ es equivalente a resolver $-5 \le x+4 \le 5$. Pero, sumando -4, tenemos que $-9 \le x \le 1$, es decir, los números que satisfacen $|x+4| \le 5$ son aquellos que satisfacen $-9 \le x \le 1$. Concluimos que los números que pertenecen al intervalo [-9,1] son los que cumplen la desigualdad $|x+4| \le 5$.

Note que en el teorema anterior podemos cambiar \leq por < y obtenemos un resultado similar:

$$|a| < b \text{ si y s\'olo si } -b < a < b.$$

Entonces, si $\delta > 0$, escribir $|x - c| < \delta$ es equivalente a escribir $-\delta < x - c < \delta$ y esto es equivalente a $c - \delta < x < c + \delta$. Así, utilizando la notación de intervalo, tenemos que $|x - c| < \delta$ es equivalente a que x pertenezca al intervalo $(c - \delta, c + \delta)$. ¿Y en términos de "distancia"? Ah, pues lo que estaríamos diciendo es que todos los números x que distan de c menos que δ pertenecen al intervalo $(c - \delta, c + \delta)$. ¿Tuvieron un déjà vu?

Para concluir esta sesión enunciaremos, y demostraremos, una de las desigualdades más importantes en matemáticas.

Teorema 9 (Desigualdad del Triángulo) Sean $a, b \in \mathbb{R}$. Entonces,

$$|a+b| \le |a| + |b|.$$

Demostración. Por definición de valor absoluto tenemos que |a| = a o |a| = -a, es decir, sucede que |a| = a o -|a| = a. De aquí que

$$-|a| \le a \le |a|. \tag{1}$$

De la misma manera ocurre que

$$-|b| \le b \le |b|. \tag{2}$$

Ahora, sumando (1) con (2), tenemos que

$$-(|a|+|b|) < a+b < (|a|+|b|).$$

Luego, por el Teorema 7, concluimos que $|a+b| \leq |a| + |b|$.