

# ParkingIQ<sup>TM</sup>

CSCI 5673: DISTRIBUTED SYSTEMS
SPRING 2011

ADITYA SAWHNEY
AKASH AGRAWAL
MURALIKRISHNA NALLAMOTHU
SRINIVAS PANCHAPAKESAN

HTTP://CODE.GOOGLE.COM/P/PARKING-IQ/

# Background

WHAT IS PARKINGIQ?
MOTIVATION
CU PARKING SERVICE
PILOT PROJECT

### Motivation

### What is ParkingIQ<sup>TM</sup>?

An intelligent Parking Management System which serves the state as well as the public and automates various aspects of public parking thereby enhancing efficiency and transparency.

#### Motivation

- Develop a distributed system with real world application.
- Efficient parking solution Customers and Enforcement agencies
- Avoid parking violations !!
- Comprehensive automation and integration
- First prototype plan to implement at PTS @CU Boulder

#### Slide 3

AA2 Akash Agrawal, 5/1/2011

## CU parking services

#### Present parking system – PTS @CU

- No available application or service for clients to locate parking spots
- Available parking lot spaces are determined by manual counting for maintaining the database
- Lot of multi-vendor systems which are not integrated as a result trending/planning entails manually aggregating reports from multiple systems

#### How can ParkingIQ<sup>TM</sup> help?

- Customers
  - Locate available parking spots easily using smart-phone device
  - Pay online safe as no credit card required
  - Remotely add time
  - Refund for unused time
- Enforcement agencies [PTS]
  - Increased efficiency (cost and time) as manual steps are removed
  - Automated detection of violators and issuing of citations
  - Report generation used for planning/event management
  - Dynamically vary cost based on peak hours/demand and supply
  - Analysis for future logistical upgrades

## Pilot Project

#### Goal

Provide following services using "real" data from the Parking Services of CU:

#### Locate parking lots with available space (customers)

Using the current GPS location of an Android phone, display

- all the parking lots on a map
- corresponding lot id and available spaces

Also, provide ability to specify a particular location.

#### Generate Quarterly Report (PTS)

For given quarter and parking lot, generate a graphical report which displays the average space availability from Monday-Friday for 3 sessions a day – Morning, Afternoon & Evening.



# Architecture

DESIGN GOALS
HIGH LEVEL ARCHITECTURE
BUSINESS LAYER DESIGN
DATA LAYER DESIGN

### Design Goals

### Elastic Scalability

- Infrastructure Amazon EC2
- Data store Dynamo/Big Table
- Computation Hadoop/MapReduce
- High Availability
  - Failover resistant Replication
  - Always writable
- Eventual Consistency
  - o Its OK if sometimes we report incorrect space availability
- Open Source components
  - Students are broke !!

### Architecture



ParkingIQ

5/2/2011

### Business Layer Design

#### Mule ESB

- o Used as application server (HTTP) and integration platform
- Pluggable components

  - ▼ Jackson JSON processor
- Scalable and decoupled
- Hector client libraries for Cassandra
- REST resource components
  - ParkingLotResource GET parking lot details
  - AnalysisReportResource GET quarterly analysis report

### Location Parking Lots Flow

```
* Represents the REST resource for parking lots.
@Path("/parkinglots")
public class ParkingLotResource {
* Get parking lot information for given location.
* @param latitude the latitude of location
* @param longitude the longitude of location
* @return the list of parking lots which are close to the given location
 @GET
 @Produces("application/json")
 public List<ParkingLotInfo> getParkingLots(
 @DefaultValue("o.o") @QueryParam(Const.Param.LATITUDE) float latitude,
 @DefaultValue("o.o") @QueryParam(Const.Param.LONGITUDE) float longitude) {
   GeoPoint location = new GeoPoint(latitude, longitude);
   // Figure out the zone to which the given belongs
   Zone zone = this.zoneDetectionService.identifyZone(location);
   // Get all the parking lots which lie in the zone
   List<ParkingLotInfo> parkingLots = this.parkingLotInfoService.getParkingLotInfo(zone);
   // Get the current status (available spaces) for each of those lots
   this.parkingLotStatusService.updateParkingLotStatus(parkingLots);
   return parkingLots;
```

### Data Layer Design

#### Data store – Apache Cassandra

- Open source and developed by Facebook
- Amalgamation of Dynamo (implementation) and Big Table (data model)
- Satisfies all the design goals of availability, consistency etc.
- Works on Amazon EC2 and integrates with Hadoop Map Reduce.

#### Data store requirements

- Parking lot 'static' information (location, id, zone, type)
  - → ParkingLot CF
- Parking lot 'dynamic' information (available space count)
  - → LotStatusArchive CF
- Ouarterly report data → QuarterlyAnalysis SCF
  - generated periodically by running MapReduce on LotStatusArchive

## Table 1: Parking Lot Information



### Table 2: Lot Status



# Table 3: Quarterly Analysis



# Demo

**QUARTERLY REPORT GENERATOR** 

# **Quarterly Report**



# Android Application

OVERVIEW
IMPLEMENTATION DETAILS

### Overview







#### **Permissions:**

INTERNET FINE\_LOCATION COARSE\_LOCATION GOOGLE MAPS

#### **Modules:**

GPS Services
MapActivity
Google Maps API
Android.location
AsyncTask
DDMS!





### Implementation Details

- MapActivity
- GPS Services
  - To obtain current location of Customer requesting parking lot data
  - Android.location
- AsyncTask
  - o GPS service time-out
  - Included Button
- DDMS!

# Demo



ParkingIQ

5/2/2011

### Future work

- Integrate into PTS@CU Real-time database
- Customers
  - Parking lot booking service credit card
  - Android client Better UI
- Enforcement agencies [PTS]
  - Parking violation detection tool
  - Multiple servers
  - Load balancers