

E-R 모델

- 1. E-R 모델
- 2. E-R 다이어그램

학습목표

- E-R 모델의 기본 개념을 이해한다.
- 개체, 속성, 관계의 유형을 살펴본다.
- E-R 다이어그램 표기법을 이해하고 작성 방법을 알아본다.

1. E-R 모델

- 개체-관계 모델(Entity-Relationship model) 또는 E-R 모델
 - 1976년 피터 첸(Peter Chen)이 처음 제안
 - 현실 세계를 개체와 관계를 이용하여 개념 구조로 표현하는 대표적 개념적 모델링 방법
 - E-R 다이아그램(diagram)이라는 그래픽 기호로 표현하여 쉽게 이해할 수 있음
- E-R 다이아그램의 구성 요소
 - 기본적으로 개체를 표현하는 사각형
 - ▶ 관계를 나타내는 마름모
 - 개체나 관계의 속성을 표현하는 타원
 - 그리고 이들을 연결하는 링크(link)

1.2 개체

- E-R 다이아그램에서 현실 세계를 모델링하는 가장 중요한 요소
- 개체(entity)
 - 현실 세계에서 저장할 가치가 있는 데이터와 관련된 독립적 존재를 의미
 - 사람(학생, 교수 등), 사물(컴퓨터, 도서 등), 장소(강의실, 주차장 등)와 같은 물리적 존 재뿐만 아니라 추상적 개념(과목, 학과) 등이 해당
 - 개체는 개체의 특성을 나타내는 속성에 의해 구별

- 데이터베이스 관점에서는 각 개체 정보의 저장 구조를 구성하는 것이 중요하므로 개체의 공통된 특성을 모아 구조를 정의
- E-R 다이아그램에서 사각형 기호로 표시
 - 다른 개체와 구별되는 고유한 개체 이름과 하나 이상의 속성으로 정의
 - 개체의 속성은 개체 고유의 특성이나 상태 정보를 표현
 - 사각형 안에 개체 이름을 표기, 속성은 타원형 기호로 표시하여 사각형에 링크로 연결

개체와 개체 타입, 개체 집합

- •개체와 개체 타입, 개체 집합의 차이점
 - 개념 데이터 모델링 과정에서 개체(entity)와 개체 타입(entity type), 개체 집합(entity set) 3가지 용어는 비슷하지만 개념적으로 다름

개체(entity) 또는 개체 인스턴스	개체 집합(entity set)	개체 타입(entity type)
데이터베이스 관점에서 관심을 갖는 현실 세계의 특정 존재 하나하나를 의 미한다.	공통된 속성을 갖는 개체들을 모아놓 은 그룹이다.	같은 속성을 갖는 개체 집합의 추상적 표현이다.
예) '홍길동', '18413', '데이터베이스'	예) {홍길동, 홍장미, 홍미림}, {18413, 18221}, {데이터베이스, 자료구조}	예) 학생, 강의실, 교과목

■ 개체와 개체 타입, 개체 집합의 예

[참고] 릴레이션의 구성 요소

- •릴레이션
 - 릴레이션 스키마와 릴레이션 인스턴스 2가지 요소로 구성
- •릴레이션의 구성

학생

릴레이션

학번_	이름	학년	성별
s001	김연아	4	여
s002	홍길동	1	남
s003	이승엽	3	남

릴레이션 스키마 (relation schema)

릴레이션 인스턴스(relation instance)

No	구분	설명
1	릴레이션 스키마 (Relation Schema)	 <u>릴레이션의 구조와 형식을 정의하는 일종의 틀 또는 청사진</u>입니다. 스키마는 릴레이션의 열(속성)에 대한 정보를 포함하며, 각 열의 이름과 데이터 유형 (예: 문자열, 숫자, 날짜)을 명시합니다. 스키마는 데이터베이스 디자이너에 의해 정의되며, 릴레이션의 구조를 변경하려면 스키마를 수정해야 합니다.
2	릴레이션 인스턴 스 (Relation Instance)	 실제 데이터로 채워진 릴레이션의 인스턴스 또는 구체적인 데이터 집합을 나타냅니다. 각 행(튜플)은 릴레이션 스키마에 정의된 열에 대한 값으로 채워집니다. 릴레이션 인스턴스는 데이터베이스에서 실제로 저장되는 정보를 나타내며, 사용자가 조회, 삽입, 갱신 및 삭제 작업을 수행할 때 조작되는 데이터입니다.

[참고] 개체 타입과 개체 집합

개체타입	속성	예시 개체집합
학생	학번, 이름, 전공	{1, "홍길동", "컴퓨터 공학"}
교수	교번, 이름, 전공	{101, "김교수", "전자공학"}
강의	강의코드, 강의명, 학점	{"CS101", "프로그래밍 기초", 3}
강의실	강의실번호, 건물, 정원	{"A101", "공학관", 50}

- 1.학생 개체타입: 학생에 대한 개체타입으로, 각 학생은 학번, 이름, 전공과 같은 속성을 가지고 있습니다. 예시 개체집합에는 학생들의 실제 데이터가 포함됩니다.
- 2.교수 개체타입: 교수에 대한 개체타입으로, 교수의 교번, 이름, 전공과 같은 속성을 정의합니다. 예시 개체집합에는 교수들의 정보가 나열되어 있습니다.
- 3.강의 개체타입: 강의에 대한 개체타입으로, 강의코드, 강의명, 학점과 같은 속성을 가지고 있습니다. 예시 개체 집합에는 다양한 강의들의 정보가 포함되어 있습니다.
- 4.강의실 개체타입: 강의실에 대한 개체타입으로, 강의실번호, 건물, 정원과 같은 속성을 정의합니다. 각 개체집합에는 강의실들의 실제 정보가 포함됩니다.
- ※ 관계형 모델과의 관계: 개체=투플, 개체 타입 = 릴레이션 스키마, 개체 집합 = 릴레이션 인스턴스

1.3 속성

- 속성(attribute)
 - 개체 또는 관계가 갖는 고유한 특성
 - 스스로 존재할 수는 없는 종속적 개념
 - 개체나 관계와 연결되어 가장 작은 정보 단위로서 중요한 의미를 표현
 - 타원형 기호로 표현하며 타원 안에 고유한 속성 이름을 표기, 직사각형이나 마름모 기호 와 실선으로 연결

속성 유형

- 1) 단일 값 속성과 다중 값 속성
 - 특정 속성이 갖는 값이 하나이면 단일 값 속성(single-valued attribute)
 - 만약 개체가 갖는 속성 값이 여러 개이면 다중 값 속성(multivalued attribute)

2) 단순 속성과 복합 속성

- 단순 속성(simple attribute): 의미적으로 더 이상 분해할 수 없는 속성
 - 기본 속성으로 대부분의 속성이 이에 속함
- 복합 속성(composite attribute): 둘 이상의 속성으로 이루어져 의미적으로 더 작은 단위로 분해가 가능한 속성
 - 타원 모양의 상위 속성과 하위 속성을 실선 링크로 연결
 - 단순 속성은 의미가 하나이지만 복합 속성은 여러 의미를 포함

속성 유형

3) 저장 속성과 유도 속성

- 저장 속성(stored attribute): 실제 값을 저장하는 속성
- 유도 속성(derived attribute): 값을 저장하지 않아도 다른 속성 값에서 계산되거나 유도 될 수 있는 속성

4) 키 속성

■ 키 속성(key attribute): 각 개체를 유일하게 식별할 수 있는 고유한 값을 갖는 속성

속성의 종류

1.4 관계

- 관계(relationship)
 - 개체와 개체 사이에 맺어지는 연관성을 의미
 - 주로 저장 가치가 있는 데이터를 발생시키는 의미 있는 연관성을 표현
 - 관계는 개체 없이는 존재할 수 없는 종속적 존재
 - 거래(등록, 구매, 예약 등), 행위(치료, 상담, 수강 등), 신분(소속, 관리 등)과 같은 물리적, 추상적 개념들이 해당
 - '관계성'이라고도 하며 관계 이름과 필요한 속성들로 정의
- E-R 다이아그램에서 마름모 기호로 표시
 - 보통 둘 이상의 개체와 실선으로 연결
 - 관계의 속성은 각 관계를 맺음으로써 발생하는 특성 정보를 표현
 - 마름모 기호 안에 관계 이름(정확하게는 관계 타입)을 표기하고 타원형 기호로 표시되는
 속성을 마름모에 실선으로 연결

관계와 관계 타입, 관계 집합

- •관계와 관계 타입, 관계 집합의 차이
 - 관계
 - 특정 개체와 개체 사이에 맺어지는 하나의 연관성을 의미
 - 관계 집합
 - 개체 집합과 개체 집합 사이에 실제로 맺어지는 모든 관계 인스턴스를 의미
 - 관계 타입
 - 개체 타입과 개체 타입 사이에 성립할 수 있는 모든 관계를 총체적으로 추상화하여 표현
 - 개체 타입의 모든 인스턴스들, 즉 개체 집합 사이의 사상을 의미

관계와 관계 타입, 관계 집합의 예

[참고] 관계와 관계 타입, 관계 집합의 차이점

관계 타입	속성	예시 관계 집합
학생과 강의	수강일자, 성적	{("홍길동", "CS101", "2023-01-15", "A"), ("이영희", "CS101", "2023-01-15", "B")}
교수와 연구실	연구분야, 연구실 위치	{("김교수", "인공지능", "Room 301"), ("박교수", "로봇공학", "Room 202")}
회원과 주문	주문일자, 주문금액	{("고객1", "2023-01-20", 150.00), ("고객2", "2023-01-21", 200.00)}
부서와 직원	입사일자, 직위	{("영업부", "직원1", "2023-01-10", "매니저"), ("개발부", "직원2", "2023-01-15", "엔지니어")}

- 1.학생과 강의 관계 타입: 학생과 강의 간의 관계를 나타내는데, 이 관계에는 수강일자와 성적과 같은 속성이 포함됩니다. 예시 관계 집합에는 특정 학생이 특정 강의를 언제 수강했고 어떤 성적을 받았는지에 대한 정보가 나열되어 있습니다.
- 2.교수와 연구실 관계 타입: 교수와 연구실 간의 관계를 나타내며, 연구분야와 연구실 위치와 같은 속성을 가지고 있습니다. 관계 집합에는 특정 교수가 속한 연구실과 그 연구실의 위치, 그리고 교수의 연구분야 등이 기록되어 있습니다.
- 3.회원과 주문 관계 타입: 회원과 주문 간의 관계를 정의하며, 주문일자와 주문금액과 같은 속성을 포함합니다. 예시 관계 집합에는 각 회원이 언제 주문을 했고 주문 금액이 어떻게 되는지에 대한 정보가 담겨 있습니다.
- 4.부서와 직원 관계 타입: 부서와 직원 간의 관계를 나타내고, 입사일자와 직위와 같은 속성을 가집니다. 관계 집합에는 특정 부서에 속한 직원이 언제 입사했고 어떤 직위에 있는지에 대한 정보가 포함되어 있습니다.

1.5 관계의 유형

- ●분류기준1: 관계 카디널리티(relationship cardinality)
 - 관계를 맺는 두 개체 집합 간의 사상(mapping) 형태를 정의
 - 두 개체 집합이 서로 관계를 맺을 때 각 개체 인스턴스에 사상되는 상대 개체 인스턴 스의 개수가 기준이 됨

1) 최대 사상 수

- 특정 개체와의 관계에 실제 참여하는 상대 개체의 수 중에서 최대값을 표현
- 최대값은 1 또는 다수(many)를 의미하는 m(혹은 n)으로 표기
- 일대일(1:1)
 - 두 개체가 서로 오직 하나의 개체와만 관계를 맺을 수 있다면 일대일 관계

관계의 유형(최대 사상 수)

- 일대다(1:n)
 - 한 개체는 여러 개체와 관계를 맺을 수 있지만 <u>상대 개체는 많아야 하나의 개체와만</u> 관계를 맺을 수 있다면 일대다 관계

- 다대일(n:1)
 - 한 개체는 최대 하나의 개체와 관계를 맺을 수 있지만 <u>상대 개체는 여러 개체와 관계</u>를 맺을 수 있다면 다대일 관계

관계의 유형(최대 사상 수)

- 다대다(m:n)
 - 두 개체가 서로 여러 개체와 관계를 맺을 수 있다면 다대다 관계

2) 관계의 유형(최소 사상 수)

- 특정 개체와의 관계에 실제 참여하는 상대 개체의 수 중에서 최소값을 표현
- 최소값 1인 경우(전체 참여)
 - 만약 개체가 적어도 하나 이상의 개체와 반드시 관계를 맺어야 한다면 최소 사상 수는 1

- 최소값 0인 경우(부분 참여)
 - 만약 개체가 다른 개체와 관계를 맺을 수도 혹은 맺지 않을 수도 있다면 최소 사상 수는 0

관계의 유형(관계차수)

- 분류기준2: <u>관계 차수</u>(relation degree)
 - 관계에 참여하는 개체의 수
- 1진 관계 또는 순환(recursive) 관계
 - 차수가 1이며 개체가 자기 자신과 스스로 맺는 관계

- 2진 관계
 - 차수가 2인 가장 일반적인 관계 유형이다. 두 개의 개체가 서로 맺는 관계

- 3진 관계
 - 3개의 개체가 함께 맺는 관계

[참고] 관계 차수

1진 관계 (순환계: Mentorship)

개체	설명
사람	각 사람은 자신과 멘토 또는 멘티 사이의 관계를 맺을 수 있다.

예를 들어, "A"가 "B"의 멘토이면, "B"는 "A"의 멘티이며, 이러한 관계가 계속해서 순환될 수 있다.

2진 관계 (고객, 예약, 영화: 예약 관계)

개체	설명
고객	여러 고객이 여러 예약을 할 수 있음
예약	특정 고객이 특정 영화를 특정 시간에 예약함
영화	여러 예약 중에 각각은 특정 영화와 관련이 있음

예를 들어, 고객이 특정 영화를 특정 시간에 예약하는 예약 관계가 있다.

3진 관계 (매도자, 중개인, 매수자: 계약 관계)

개체	설명
매도자	여러 매도자가 여러 계약을 맺을 수 있음
중개인	여러 중개인이 여러 계약에서 매매에 중개할 수 있음
매수자	여러 매수자가 여러 계약에 참여할 수 있음
계약	특정 매도자, 중개인, 매수자 간의 거래 계약 정보

예를 들어, 특정 계약은 특정 매도자가 중개인을 통해 특정 매수자에게 어떤 물품을 판매하는 관계를 나타낼 수 있습니다.

관계의 유형(관계 종속성)

- •분류기준3: 관계의 종속성
- 1) 비식별 관계와 식별 관계
 - 비식별 관계 (non-identifying relationship)
 - 보통 독립적인 두 개체가 대등한 관계를 맺을 때 실선 마름모로 표시
 - 식별 관계(identifying relationship)
 - 두 개체가 대등한 관계가 아닌 종속적 관계를 맺는 경우 이중 실선 마름모로 표시

- '부양가족' 개체는 '직원' 개체에 존재 종속(existence dependence)
- 강 개체(strong entity): 자신을 고유하게 식별할 수 있는 속성을 갖는 개체
- 약 개체(weak entity): 자신을 고유하게 식별할 수 있는 속성을 갖지 못하는 개체 ✓강 개체에 종속되는 약 개체는 독립된 존재가 아니므로 고유한 식별 속성을 갖지 못함 ✓대신 키의 일부가 될 수 있는 부분키(partial key) 속성만을 갖으며 점선 밑줄로 표시

[참고] 비식별 관계와 식별 관계

비식별 관계:

비식별 관계에서는 자식 엔터티(테이블)의 기본 키가 부모 엔터티의 기본 키와 독립적입니다. 부모 엔터티의 기본 키 값이 변경되어도 자식 엔터티의 기본 키 값은 변하지 않습니다.

부모 테이블	부모 테이블의 기본 키	자식 테이블	자식 테이블의 기본 키
주문 (Orders)	주문 번호 (OrderID)	주문 상세 (OrderDetail)	상세 주문 번호 (DetailID)

여기서 "주문 상세" 테이블의 기본 키는 "상세 주문 번호 (DetailID)"이며, 이 키는 주문 번호에 의존하지 않습니다. 주문이 삭제되어도 상세 주문은 남을 수 있습니다.

식별 관계:

식별 관계에서는 자식 엔터티의 기본 키가 부모 엔터티의 기본 키에 종속적입니다. 부모 엔터티의 기본 키 값이 변경되면 자식 엔터티의 기본 키 값도 함께 변경됩니다.

교수 (Professor)	교수 번호 (ProfessorID)	강의 (Course)	강의 번호 (CourselD)
1	101	데이터베이스	101-DB
2	102	알고리즘	102-Algo

여기서 "강의" 테이블의 기본 키 "강의 번호 (CourselD)"는 해당 교수의 번호와 결합하여 유일한 값을 가지며, 교수 번호에 의존합니다. 따라서 교수 번호가 변경되면 "강의" 테이블의 기본 키 값도 변경될 수 있습니다.

관계의 유형(관계 종속성)

2) 일반화(generalization) 관계

- 개체 사이의 상하 관계
- 'IS-A 관계'라고도 하며 역삼각형으로 표현
- 역삼각형 위로는 상위 개체(supertype entity)를, 아래에는 하위 개체(subtype entity)를 실선으로 연결
 - 상위 개체는 하위 개체들이 공통으로 갖는 속성을 표현
 - 하위 개체는 공통 속성 이외에 추가로 갖는 고유 속성만을 표현
 - 상위 개체의 속성 중에 구별자(discriminator) 역할의 속성을 포함

[참고] 일반화 관계 = IS-A 관계

일반화 관계에서 "IS-A"는 개체 간의 관계를 설명하는 데 사용되는 표현 중 하나입니다.
"IS-A"는 한 개체가 다른 개체의 특수한 유형이라는 것을 나타냅니다.
이 표현은 상위(일반화된)와 하위(특수화된) 개체 간의 관계를 간단하게 나타내기 위해 사용됩니다.

예를 들어, "강아지 IS-A 동물"이라고 말할 수 있습니다. 이는 강아지가 동물의 특수한 유형이라는 의미입니다. 여기서 "동물"은 상위 개체이고 "강아지"는 이를 일반화하는 하위 개체입니다. 따라서 "강아지 IS-A 동물"이라고 표현할 수 있습니다.

- 이 관계를 통해 간단하게 설명할 수 있습니다.
- •"강아지 IS-A 동물"
- •"고양이 IS-A 동물"
- •"장미 IS-A 식물"

이처럼 "IS-A"는 개체 간의 일반화 관계를 나타내며, 상위 개체의 특성을 하위 개체가 상속하는 관계를 강조합니다.

개체와 관계의 종류

2.1 E-R 다이아그램의 표기법 요약

기호	의미	기능
	(강) 개체	고유한 키 속성을 갖는 개체
	약 개체	키 속성을 갖지 못하는 개체
$\langle \rangle$	(비식별) 관계	강 개체와 강 개체 사이의 대등한 관계
	식별 관계	강 개체와 약 개체 사이의 종속적 관계
	(단일, 저장, 단순) 속성	의미적으로 분해되지 않는 값 하나를 저장하는 속성
	키 속성	개체를 고유하게 구별짓는 속성
	부분키 속성	키의 일부에 속할 수 있는 속성
	다중 값 속성	값 여러 개를 가질 수 있는 속성
200	복합 속성	의미적으로 더 분해 가능한 속성
	유도 속성	다른 속성들로부터 값을 유도 또는 계산 가능한 속성
	전체참여 개체	관계에 빠짐없이 참여해야하는 개체
\Diamond	부분참여 개체	관계에 참여하지 않을 수도 있는 개체
	일반화 관계	개념을 포함하는 상위 개체와 하위 개체와의 관계

E-R 다이아그램의 표기 예

●올바른 표기법과 옳지 않은 표기법의 예

2.2 수강신청 E-R 다이아그램의 작성 예(통합)

