Zestaw zadań do skryptu z Teorii miary i całki

Katarzyna Lubnauer Hanna Podsędkowska

Ciała, σ - ciała

1. Zbadaj, czy rodzina A jest ciałem w przestrzeni X=[0,2]

a)
$$A = \left\{ \varnothing, X, \left[0, \frac{1}{2}\right), \left(\frac{1}{2}, 2\right] \right\}$$

b)
$$A = \left\{ \varnothing, X, \left[0, \frac{1}{3}\right), \left[\frac{1}{3}, 2\right] \right\}$$

c)
$$A = \{\emptyset, X, \{2\}, \{1\}, \{0\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}\}$$

Uzupełnij w sposób minimalny rodziny nie będące ciałami do ciała.

- 2. Zbadaj, czy rodzina A jest ciałem w przestrzeni X= $\{0,1,2\}$ $A = \{\emptyset, X, \{2\}, \{1\}, \{0\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}\}$.
- 3. Czy następujące rodziny są σ -ciałami w przestrzeni Ω =[0,3]

$$R_1 = \{\emptyset, X, [0,1], (1,3]\},\$$

$$R_2 = \{\emptyset, X, [0,2), [2,3]\},$$

$$R_3 = R_1 \cup R_2$$
.

Wypisz zbiory należące do R_3 .

- 4. Niech $\Omega=R$. Podać przykład takich σ -ciał R_1 , R_2 , żeby rodzina $R_3=R_1\cup R_2$ była σ -ciałem w Ω .
- 5. Rozważmy X=N oraz A rodzina wszystkich zbiorów skończonych lub o skończonych dopełnieniach. Zbadaj czy A jest ciałem i czy jest σ -ciałem.
- Niech X będzie dowolnym zbiorem nieprzeliczalnym oraz F rodziną taką, że A∈F wtedy i tylko wtedy gdy A jest przeliczalny lub A' jest przeliczalny. Zbadaj czy F jest σ-ciałem
- 7. Pokaż, że w przestrzeni skończonej każde ciało jest σ -ciałem.

- 8. Niech A będzie skończoną rodziną zbiorów $\{X_1,...,X_n\}$ parami rozłącznych oraz niech $X=X_1\cup...\cup X_n$. Znajdź F najmniejsze σ -ciało w przestrzeni X zawierające rodzinę A. Jaka jest liczebność σ -ciała F.
- 9. Zbadaj czy istnieje σ -ciało o liczebności n=1,2,3,4,5,6.
- 10. Udowodnij, że dowolne skończone ciało (σ -ciało) zbiorów ma 2^n elementów gdzie n jest pewną liczbą naturalną.
- 11. Niech n będzie liczbą naturalną. Skonstruować przykład ciała zbiorów zawierającego 2ⁿ elementów, jeżeli
- a) $X \subset N$
- b) $X \subset R$
- 12. Niech dane będą dwie przestrzenie X i Y oraz odwzorowanie $f: X \to Y$. Niech F będzie σ -ciałem na przestrzeni Y, a A σ -ciałem na przestrzeni X.

Zbadaj strukturę rodzin

- a) $f^{-1}(F)$
- b) f(A).
- 13. Zbadaj σ -ciało generowane przez zbiory jednopunktowe gdy
- a) X jest skończone lub przeliczalne
- b) X jest nieprzeliczalne.
- 14. Wykaż, że na to aby rodzina F była ciałem w X potrzeba i wystarcza by $X \in F$ i dla każdego $A,B \in F$ był spełniony warunek:

 $A \setminus B \in F \text{ i } A \cap B \in F.$

15. Zbadaj granice dolną i górną następujących ciągów zbiorów:

a)
$$A_n = [-n, n]$$

b)
$$B_n = \left[(-1)^n \frac{1}{n}, 2 \right]$$

c)
$$C_n = \left(0, 1 + (-1)^n \frac{1}{2^n}\right)$$

16. Pokaż, że dla dowolnego A_n mamy liminf $A_n \subset \text{limsup} A_n$.

Podaj przykład rodziny A_n takiej, że liminf $A_n \neq \text{limsup} A_n$.

Zbiory borelowskie

17. Udowodnij, że następujące zbiory są borelowskie w R (t.z. należą do B(R))

- a) $(-\infty,a)$
- b) $(-\infty, a]$
- c) $(a,+\infty)$
- d) $[a,+\infty)$
- e) zbiory jednopunktowe
- f) [a,b]
- g) *N*
- h) **Q**
- i) zbiór liczb niewymiernych
- j) zbiór Cantora

18. Wykaż, że następujące zbiory należą do $B(\mathbf{R}^2)$

- prosta
- zbiór jednopunktowy
- 19. Niech $\{f_n\}$ będzie rodziną funkcji ciągłych na ${\it \textbf{R}}$. Zbadaj czy zbiory

A,B,C są borelowskie w R

$$A = \{ x \in \mathbf{R} : \lim_{n \to \infty} f_n(x) = \infty \},$$

$$B = \left\{ x \in \mathbf{R} : \lim_{n \to \infty} f_n(x) \text{ istnieje} \right\},\,$$

$$C = \{x \in \mathbf{R} : \lim_{n \to \infty} f_n(x) = a\}, a \in \mathbf{R}.$$

Miara

- 1. Wykazać, że $\mu = 0$ jest miarą na dowolnym σ -ciele.
- 2. Niech (X,F) przestrzeń z σ -ciełem i niech $x_0 \in X$, sprawdź, że μ określona na F wzorem

$$\mu(A) = \begin{cases} 1, & x_0 \in A \\ 0, & x_0 \notin A \end{cases}$$

jest miarą unormowaną.

3. Niech $X = \{x_1, ..., x_n\}$ i niech μ będzie odwzorowaniem określonym na $F = 2^X$ o wartościach w \mathbf{R}_+ w następujący sposób:

$$\mu(\Phi)=0$$
,

$$\mu(\lbrace x_k \rbrace) = \frac{1}{n}; \quad k = 1,...,n$$

$$\mu(\lbrace x_1, ..., x_{k_m} \rbrace) = \frac{m}{n}$$

Wykaż, że μ jest miarą skończoną.

4. Niech X będzie zbiorem przeliczalnym (nieskończonym), a μ określone następująco:

$$\mu(\varnothing)=0,$$

$$\mu(\lbrace x_k \rbrace) = \frac{1}{2}, \quad k = 1, 2, \dots$$

$$\mu(\lbrace x_1, ..., x_{k_m} \rbrace) = \frac{m}{2}$$

Sprawdzić, czy μ jest miarą skończoną.

5. Niech $A \subset N$. Połóżmy

$$\forall A \subset \mathbf{N}; \quad \mu(A) = \begin{cases} 0, & A \text{ skonczony} \\ \infty, & A \text{ nieskonczony} \end{cases}$$

Pokaż, że μ jest skończenie addytywną funkcją, ale nie jest miarą.

6

6. Niech X będzie zbiorem nieskończonym, $F - \sigma$ -ciałem na X $\mu(A) = \begin{cases} |A|, & A \text{ skonczony} \\ \infty, & A \text{ nieskonczony} \end{cases}, c \in \mathbf{R}.$

Pokaż, że μ jest addytywną funkcją zbioru oraz, że μ jest przeliczalnie addytywną funkcją zbioru wtedy i tylko wtedy, gdy X jest skończony.

7. Wzór $\mu(A) = \sum_{n \in A} \frac{1}{2^n}$, $A \subset N$ określa miarę na σ -ciele wszystkich podzbiorów zbioru N.

Uzasadnij, że zbiór wartości miary μ pokrywa się z przedziałem [0,1]. Czy z tego, że $\mu(A) = \mu(B)$ wynika, iż A = B.

8. Niech (x_n) , (c_n) będą danymi ciągami o wyrazach w N i R_+ odpowiednio. Sprawdź, że wzór:

$$\mu(A) = \sum_{x_n \in A} c_n , A \subset \mathbf{R}$$

określa miarę na σ -ciele podzbiorów ${\bf R}$.

- 9. Niech μ będzie miarą skończoną na przestrzeni (X,M). Pokaż,że jeżeli $C \in M$ jest takim zbiorem, iż $\mu(C) = \mu(X)$, to $\mu(A) = \mu(A \cap C)$ dla dowolnego $A \in M$. Czy powyższe jest prawdziwe dla miary nieskończonej?
- 10. Niech μ będzie miarą skończoną na przestrzeni (X,M) oraz dla $A_j \in M$, j=1,2,... mamy, $\mu(A_j)=\mu(X)$ to $\mu(\bigcap_{j=1}^{\infty}A_j)=\mu(X)$.
- 11. Wykaż, że dla $(A_j)_{j=1,2,...}$ gdzie dla każdego j mamy $A_j \in M$ zachodzi:

a)
$$\mu\left(\liminf_{n\to\infty} A_n\right) \leq \liminf_{n\to\infty} \mu(A_n)$$

b)jeśli
$$\mu\left(\bigcup_{n} A_{n}\right) \prec \infty$$
 to $\mu\left(\limsup_{n \to \infty} A_{n}\right) \geq \limsup_{n \to \infty} \mu\left(A_{n}\right)$

- 12. Niech μ będzie nieujemną funkcją skończenie addytywną na σ -ciele M. Załóżmy ponadto, że dla każdego ciągu zstępującego (A_n) zbiorów z M, takiego że $\bigcap_n A_n = \varnothing$ mamy $\lim_{n \to \infty} \mu(A_n) = 0$. Wykaż, że μ jest miarą na σ -ciele M.
- 13. Wykaż, że jeśli (μ_n) jest ciągiem miar na μ -ciele M to $\mu = \sum_n \mu_n$ jest miarą na M.
- 14. Niech μ_n będzie miarą określoną na σ -ciele M_n w przestrzeni X_n , n=1,2,3..., $X_n\cap X_k=\phi$, $k\neq n$ oraz niech $X=\bigcup_n X_n$. Wykaż, że klasa M wszystkich zbiorów $A\subset X$ takich, że $A\cap X_n\in M_n$ jest σ -ciałem a funkcja μ określona wzorem $\mu(A)=\sum_n \mu(A\cap X_n)$, $A\in M$ jest miarą na M.
- 15. Niech X = [a,b], M σ -ciało podzbiorów w X takie, że $\bigvee_{x \in X} \{x\} \in M$. Niech μ będzie miarą skończoną, taką że $\bigvee_{x,y \in X} \mu(\{x\}) = \mu(\{y\})$. Wykaz, że $\mu(\mathbf{Q} \cap [a,b]) = 0$.
- 16. Niech μ będzie miarą skończoną i A_j , $j \in J$ rodziną zbiorów parami rozłącznych. Wykaż, że zbiór $I = \{j \in J : \mu(A_j) \neq 0\}$ jest przeliczalny.
- 17. Niech dana będzie przestrzeń z miarą (Y, N, v) oraz odwzorowanie $f: X \to Y$. Oznaczmy $M = \{f^{-1}(B): B \in N\}$ oraz dla każdego $A \in M$ połóżmy $\mu(A) = \inf\{v(B): B \in N, A = f^{-1}(B)\}$. Wykaż iż v jest miarą.
- 18. Niech Y będzie dowolnym zbiorem zaś (X, M, μ) przestrzenią z miarą, niech funkcja $f: X \to Y$ oraz połóżmy $N = \{B \subset Y: f^{-1}(B) \in M\}$. Określmy $v(B) = \mu(f^{-1}(B))$. Wykaż, że v jest miarą.

19. Niech (X, M, μ) będzie przestrzenią z miarą oraz niech M' oznacza klasę wszystkich zbiorów A postaci $A = B \cup C$, gdzie $B \in M$ a C jest podzbiorem pewnego zbioru mierzalnego D miary μ zero.

Pokaż, że:

- a) M'jest σ -ciałem
- b) $\mu': M' \to \mathbf{R}_+$ określone następująco $\mu'(A) = \mu(B)$, gdzie $A = B \cup C$, A, B j.w. jest miarą zupełną.
- 20. Dla dowolnej skończonej miary na σ -ciele M podzbiorów przestrzeni X istnieje taki rozkład X na dwa zbiory rozłączne i mierzalne B i C $(X = B \cup C; B, C \in M; B \cap C = \phi)$, że μ/B jest bezatomowa zaś μ/A jest czysto atomowa tzn. każdy podzbiór mierzalny zbioru C miary dodatniej jest sumą skończonej lub przeliczalnej liczby atomów.
- 21. Wykazać, że jeżeli A, B są atomami miary μ to B-A też jest atomem miary μ .
- **22.*** Wykaż, że jeżeli μ jest miarą bezatomową i $0 \prec x \prec \mu(A) \prec \infty$, $x \in \mathbf{R}$ to istnieje $B \subset A$ taki, że $\mu(B) = x$.

Wsk. Skorzystaj z lematu Kuratowskiego-Zorn'a.

Miara zewnętrzna i miara Lebesgu'a

1. Niech X będzie dowolną niepustą przestrzenią i niech dla $A \subset X$:

$$\mu^*(A) = \begin{cases} 0, & A = \emptyset \\ 1, & A \neq \emptyset \end{cases}$$

Dowiedź, że μ * jest miarą zewnętrzną i wyznacz rodzinę zbiorów μ * mierzalnych .

2. Niech X będzie dowolną niepustą przestrzenią i niech dla $A \subset X$:

$$\mu^*(A) = \begin{cases} 0, & A = \emptyset \\ 1, & A \neq \emptyset \ i \ A \neq X \\ 2, & A = X \end{cases}$$

Dowiedź, że μ * jest miarą zewnętrzną i wyznacz rodzinę zbiorów μ * mierzalnych.

Wsk. Rozpatrz przypadki cardX = 2, $cardX \neq 2$

3. Niech X będzie dowolną niepustą przestrzenią i niech dla $A \subset X$:

$$\mu^*(A) = \begin{cases} 0, & A = \phi \\ 1, & A \text{ sk. i niepusty} \\ \infty, & A \text{ niesk.} \end{cases}$$

Sprawdź, czy μ * jest miarą zewnętrzną i jeśli jest wyznacz rodzinę zbiorów μ * mierzalnych.

4. Niech X będzie dowolną niepustą przestrzenią i niech dla $A \subset X$:

$$\mu^*(A) = \begin{cases} 0, & A \text{ sk.lub przelicz.} \\ 1, & A \text{ nieprzelicz.} \end{cases}$$

Sprawdź czy μ * jest miarą zewnętrzną i jeśli jest wyznacz rodzinę zbiorów μ * mierzalnych.

5. Niech X będzie dowolną niepustą przestrzenią oraz niech $a \in X$ i niech dla każdego $A \subset X$:

$$\mu * (A) = \begin{cases} 0, & a \notin A \\ 1, & a \in A \end{cases}$$

Zbadaj czy μ^* jest miarą zewnętrzną i znajdź σ -ciało zbiorów μ^* mierzalnych.

6. Niech X będzie dowolną niepustą przestrzenią oraz niech $a,b\in X$ i niech dla

każdego $A \subset X$:

$$\mu * (A) = \begin{cases} 0, & a \notin A \land b \notin A \\ 1, & a \in A \lor b \in A \end{cases}.$$

Zbadaj czy μ^* jest miarą zewnętrzną i znajdź σ -ciało zbiorów μ^* mierzalnych.

7. Niech $X = \mathbb{N}$, oraz dla dowolnego $A \subset X$:

$$\mu*(A) = \begin{cases} \frac{cardA}{1+cardA}, & A-sk. \\ 1, & A-niesk. \end{cases}$$

Udowodnij iż μ^* jest miarą zewnętrzną i wyznacz σ -ciało zbiorów μ^* mierzalnych.

8. Niech μ^* będzie miarą zewnętrzną w X oraz $A_n \uparrow A$ $(A_n \subset X)$. Czy prawdziwe jest zdanie:

$$\forall_{A_n} \mu^*(A_n) \to \mu^*(A).$$

- 9. Wykaż, że jeżeli μ^* jest miarą zewnętrzną w X oraz $A, B \subset X$ oraz $\mu^*(B) = 0$, to $\mu^*(A \cup B) = \mu^*(A B) = \mu^*(A)$.
- 10. Wykaż równoważność warunków (1) i (2):

$$(1) \underset{W\subset A, Z\subset X-A}{\forall} \underset{W\subset A, Z\subset X-A}{\forall} \mu^*(W\cup Z) = \mu^*(W) + \mu^*(Z),$$

(2)
$$\forall_{K \subset X} \mu^*(K) = \mu^*(K \cap A) + \mu^*(K - A).$$

11.* Niech μ będzie miarą na σ -ciele M w X. Dla każdego $A \subset X$ połóżmy $\mu^*(A) = \inf\{\mu(B) : A \subset B, B \in M\}.$

Wykaż, że

jeżeli
$$A \in M$$
 to $\mu * (A) = \mu(A)$

jeżeli
$$A \subset B$$
 i $\mu(B) = 0$ to $\mu^*(A) = 0$

μ* miara zewnętrzna

 $M \subset M^*$, gdzie M^* rodzina wszystkich zbiorów spełniających warunek Caratheodory'ego

12. Niech P będzie taką rodziną podzbiorów przestrzeni X, że $\phi \in P$ oraz dla dowolnego $A \subset X$ istnieją zbiory $A_1, A_2, A_3 ... \in P$, takie że $A \subset \bigcup_{n=1}^{\infty} A_n$. Niech

$$au$$
 będzie nieujemną monotoniczną funkcją na P taką, że $au(\phi) = 0$, ponadto dla $A \subset X$ połóżmy $\mu * (A) = \inf \left\{ \sum_{n=1}^{\infty} \tau(A), A \subset \bigcup_{n=1}^{\infty} A_n, A_n \in P \right\}$

(infimum bierzemy po wszystkich rodzinach zbiorów $A_1,A_2,A_3...\in P$ takich, że $A\subset\bigcup_{n=1}^\infty A_n$). Pokaż, że μ^* jest miarą zewnętrzną.

Uwaga.

Niech P rodzina wszystkich prostokątów w \mathbf{R}^n , zaś $B \in P$. Wtedy μ^* jest miarą Lebesgua.

- 13. Wykaż, że
 - a) iloczyn mnogościowy przedziałów (prostokątów) k wymiarowych jest przedziałem (prostokątem) k wymiarowym.
 - b) dopełnienie przedziału (prostokąta) k wymiarowego jest sumą przedziałów (prostokątów) k wymiarowych.
- 14. Wykaż, że miara Lebesgua jest niezmiennicza ze względu na przesunięcie: $\bigvee_{\alpha \in \mathbb{R}^k} \lambda(A) = \lambda(A \alpha).$

15. Jeżeli $P \subset \bigcup_{n=1}^m P_n$, gdzie $P, P_1, P_2, P_3, ..., P_m$ prostokąty k wymiarowe ograniczone to zachodzi :

$$|P| \le \sum_{n=1}^{m} |P_n|$$

- 16. Pokaż, że jeżeli $A \subset \bigcup_{n=1}^m A_n$ oraz $A, A_1, A_2, A_3, ... \in B(\mathbf{R}^k)$ to $\lambda * (A) \le \sum_{n=1}^{\infty} \lambda * (A_n)$.
- 17. Wykaż, że zbiór liczb wymiernych ma w **R** miarę Lebesgua równą 0. Policz miarę Lebesgua zbioru $A = \{x \in \mathbf{R} : x \notin \mathbf{Q} \mid 0 \le x \le 1\}$.
- 18. Pokaż, że prosta l ma w \mathbf{R}^2 miarę Lebesgua równą 0.

a)
$$l = \{(x, y) \in \mathbb{R}^2 : y = a\}, a \in \mathbb{R}$$

b)
$$l = \{(x, y) \in \mathbb{R}^2 : y = x\}$$

c)
$$l = \{(x, y) \in \mathbb{R}^2 : y = ax + b\}, \ a, b \in \mathbb{R}, \ a, b \neq 0, \ a \succ 0.$$

- 19. Pokaż, że wykres funkcji ciągłej określonej na ${\bf R}$ ma w ${\bf R}^2$ miarę Lebesgua równą 0.
- 20. Pokaż, że wykres funkcji ciągłej określonej na R (na przedziale) ma w ${\bf R}^2$ miarę Lebesgua równą 0.
- 21. Wykaż, że zbiór A ma w R² miarę Lebesgua równą 0:

a)
$$A = \{(x, y) : y - x \in \mathbf{Q}\}$$

b)
$$A = \{(x, y): x^2 + y^2 = r \ gdzie \ r \in \mathbf{Q}\}.$$

22. Wykaż iż dowolny zbiór miary zewnętrznej Lebesgua 0 jest mierzalny względem miary Lebesgua.

- 23. Policz miarę Lebesgua w R zbioru Cantora.
- 24. Policz z definicji miarę Lebesgua zbioru:

$$\{(x, y): 0 \le y \le 3x \land 0 \le x \le 1\}.$$

- 25. Wykaż, że dla każdego $A \subset \mathbf{R}^n$ λ -mierzalnego takiego, że. $\lambda(A) = p \succ \varepsilon$ i dla każdego q takiego, że $0 \prec q \prec p$ istniej $B \subset A$, B który jest λ -mierzalny i $\lambda(B) = q$.
- 26. Niech $A_1,...,A_n \subset [0,1]$ takie, że $\lambda(A_1) + ... + \lambda(A_n) \succ n-1$. Wykaż, że $\lambda\left(\bigcap_{k=1}^n A_k\right) \succ 0$.
- 27. Czy istnieje w przedziale [a,b] podzbiór właściwy, domknięty o mierze Lebesgua równej b-a. Odpowiedź uzasadnij.
- 28. Wykaż, że istnieją zbiory $E_1 \supset E_2 \supset \dots$ mierzalne w sensie Lebesgue'a takie, że $\lambda \left(\bigcap_{k=1}^{\infty} E_k\right) \neq \lim_{k \to \infty} \lambda(E_k)$.
- 29. Wykaż, że jeżeli $E \subset \mathbf{R}$ i $\lambda(E) \succ 0$, to istnieją takie punkty $x, y \in \mathbf{R}$, że $x y \in \mathbf{Q}$.
- 30. Pokaż, ze istnieje zbiór niemierzalny w sensie Lebesgue'a. **Wsk.** Zbadaj zbiór Vitaliego.

Funkcje mierzalne

- 1. Wykaż, że jeżeli f i g są mierzalne, to
 - a) max(f,g) jest mierzalne
 - b) min(f,g) jest mierzalne
- 2. Wykaż, że jeżeli f i g są mierzalne i skończone, to
 - a) f+g jest mierzalne
 - b) $f \cdot g$ jest mierzalne.
- 3. Wykaż, że jeżeli f₁, f₂, ... są mierzalne, to
 - a) $\sup_{n} (f_n)$ jest mierzalne
 - b) $\inf_{n} (f_n)$ jest mierzalne.
- 4. Niech $X=A_1\cup A_2\cup ...\cup A_n$ oraz $A_i\in M$, gdzie M σ -ciało. Przypuśćmy, że dla każdego i=1, 2, ..., n f/A_i jest funkcją mierzalną. Pokaż, że f jest funkcją mierzalną.
- 5. Pokaż, że jeśli $f: X \to R$ jest mierzalna, to funkcja $h: X \to R$ określona następująco:

$$h(x) = \begin{cases} f(x) & , x \in A \\ 0 & , x \in X/A \end{cases} , A \subset X$$

też jest mierzalna.

- 6. Niech $M = \sigma(\{[0, \frac{3}{4}], [\frac{1}{4}, 1]\})$, X = [0,1]. Które z poniższych funkcji są M mierzalne:
 - a) f(t) = t, $t \in [0,1]$
 - b) $g = 2\chi_{[0,\frac{3}{4}]} \chi_{[\frac{1}{4},1]}$
 - c) $h = \chi_{\left[\frac{1}{4}, \frac{3}{4}\right]}$?

- 7. Wskaż wszystkie funkcje mierzalne względem następujących σ ciał:
 - a) $M_1 = \sigma(\{A_1, A_2, ..., A_n\})$; gdzie $A_1, A_2, ..., A_n$ stanowią rozbicie przestrzeni $X \neq \emptyset$, (tzn. $\bigcup_i A_i = X$, $A_i \cap A_j = \emptyset$, $i \neq j$)
 - b) M_2 = σ -ciało generowane przez wszystkie przeliczalne podzbiory przestrzeni ${\bf X}$
 - c) $M_3 = \{X,\varnothing\}$
 - d) $M_4 = \sigma(\lbrace A \rbrace)$, $A \subset X$.
 - 8. Pokaż, że jeżeli $f:(X,M)\to R$ jest M-mierzalne, to dla dowolnego $B\in B(R)$ $f^{-1}(B)\in M$.
 - 9. Pokaż, że każda funkcja ciągła $f: \mathbb{R}^n \to \mathbb{R}$ jest mierzalna.
 - 10. Niech $f:(X,M)\to R$ będzie funkcją mierzalną, zaś $g:R\to R$ borelowską. Wykaż, że $g\circ f$ jest M-mierzalna.
 - 11. Podaj przykład funkcji niemierzalnych f, g, takich, że:
 - i. |f| mierzalne
 - ii. f + g mierzalne.
 - 12. Wykaż, że jeżeli f jest funkcją mierzalną, to $\frac{1}{f}$ też jest funkcją mierzalną.
 - 13. Niech $f: \mathbf{R} \to \mathbf{R}$. Pokaż, że jeżeli $h = \exp f$ jest α_1 mierzalne to f także jest α_1 mierzalne. (f jest α_1 mierzalne $\Leftrightarrow \bigvee_{B \in \mathcal{B}(\mathbf{R})} f^{-1}(B) \in \alpha_1(\mathbf{R})$)
 - 14. Pokaż, że jeżeli f jest funkcją mierzalną to funkcja sgnf też jest mierzalna.

- 15. Niech $A \notin \alpha_1$, dla $x \in \mathbf{R}$ połóżmy $f(x) = x \cdot \chi_A(x) x \cdot \chi_{A'}(x)$. Czy funkcja f jest mierzalna?
- 16. Niech $A \notin M$, $M \sigma$ -ciało. Pokaż, że funkcje:
 - a) χ_A
 - b) $\chi_{A'}$
 - c) $a\chi_A + b\chi_{A'}$, $a,b \in \mathbb{R}$, $a \neq b$ nie są mierzalne.
- 17. Wykaż, że jeżeli ciąg (f_n) jest ciągiem funkcji mierzalnych mających wspólną dziedzinę A i o wartościach w \overline{R} to funkcje $\liminf_n f_n$ oraz $\limsup_n f_n$ są mierzalne oraz zbiór $\{x \in A : \text{istnieje} \}$ granica $\lim_n f_n \in \overline{\mathbb{R}}$ też jest mierzalny.
- 18. Pokaż, że przy założeniu, że zbiór $A \subset \mathbf{R}$ nie jest borelowski (np. niemierzalny), to zbiór $\{(x,0), x \in A\} \subset \mathbf{R}^2$ nie jest borelowski (choć jest mierzalny miary zero).
- 19. Pokaż, że jeżeli $A \in B(\mathbf{R})$, to zbiór $\{(x,y) \in \mathbf{R}^2 : x y \in A\}$ jest borelowski.
- 20. Wykaż, że każdy ciąg funkcji zbieżny według miary spełnia warunek Cauchyego według miary. Warunek Cauchyego według miary dla ciągu $(f_n): \begin{cases} \forall \ \forall \ \exists \ \forall \ m, n>N_0 \ \end{bmatrix} \ \psi(\{f_m(x)-f_n(x)\}>\eta\}) < \varepsilon$.

21. Niech $f_n \xrightarrow{\mu} f$, $g_n \xrightarrow{\mu} g$, f_n - wspólnie ograniczone przez $M \in \pmb{R} \ , \ f_n, g_n \ \text{mierzalne}, \ \text{prawie wszystkie skończone}, \ f_n, g_n \ \text{określone na} \ A, \ \mu(A) < \infty \ .$ Pokaż, że $f_n g_n \xrightarrow{\mu} fg$.

Całka Lebesgue'a

- 1. Oblicz na podstawie definicji całkę z funkcji prostej f na zbiorze E względem miary Lebesgue'a λ :
 - a) $E = \begin{bmatrix} 0,2 \end{bmatrix}$ $f(x) = \begin{cases} 0, & x \in \left[0, \frac{1}{2}\right) \\ 1, & x = \frac{1}{2} \end{cases}$ $\frac{2}{3}, & x \in \left(\frac{1}{2}, 2\right]$
 - b) E = [-2,2] $f(x) = \begin{cases} -1, & x \in [-2,0) \\ 0, & x \in \{0\} \\ 1, & x \in (0,2] \end{cases}$
 - c) $E = [-2,2] \times [-2,2]$ $f(x,y) = \begin{cases} 2, & x^2 + y^2 \le 4 \\ 0, & x^2 + y^2 > 4 \end{cases}$
 - d) $E = [0, \infty)$ $f(x) = \sum_{k=0}^{\infty} \frac{1}{2^k} \chi_{[k,k+1)}(x),$
 - e) $E = [0,1] \times [0,1]$ $f(x,y) = \begin{cases} 1, & (x-1)^2 + (y-1)^2 \le 1 \\ -1, & (x-1)^2 + (y-1)^2 > 1 \end{cases}$
- 2. Niech f będzie funkcją prostą M -mierzalną na przestrzeni (X, M, μ) która na zbiorze $A \in M$ przyjmuje wartości $\{b_1, ..., b_m\}$. Podaj wzór na $\int_A f d\mu$.
- 3. Niech dany będzie zbiór przeliczalny K i niech μ będzie miarą na σ -ciele wszystkich podzbiorów zbioru K określoną wzorem:

$$\mu(A) = \begin{cases} m, & A - m \text{ elementowy} \\ \infty, & A - niesk. \end{cases}$$

Niech f będzie funkcją nieujemną określoną na zbiorze K w następujący sposób $\forall f(k) = b_k$. Oblicz $\int_{V} f d\mu$.

- 4. Oblicz korzystając z definicji
 - a) $\int_{[0,1)} x \lambda(dx)$,
 - b) $\int_{[0,1)} \sqrt{x} \lambda(dx),$
 - c) $\int_{[0,1)} 2x\lambda(dx),$
 - d) $\int_{[0,2)} 3x \lambda(dx).$
- 5. Niech $f:[0,1)\to \mathbf{R}$ będzie funkcją mierzalną na \mathbf{R} . Oblicz $\int\limits_{[0,1)}f\lambda(dx)$ gdy
 - a) $f(x) = \begin{cases} \frac{1}{p}, & x = \frac{q}{p} \in \mathbf{Q} \\ 0, & x \notin \mathbf{Q} \end{cases}$ b) $f(x) = \begin{cases} 1, & x \in \mathbf{C} \\ 2, & x \notin \mathbf{C} \end{cases}$

 - c) $f(x) = \begin{cases} x^2, & x \in \mathbb{C} \\ \sqrt{x}, & x \notin \mathbb{C} \end{cases}$
 - d) $f(x) = \begin{cases} 2x, & x \in \mathbb{C} \\ 3x, & x \notin \mathbb{C} \end{cases}$.
 - 6. Oblicz całkę $\int_{[-1,1)} f\lambda(dx)$ gdy

$$f(t) = \begin{cases} t^2, & t \in [-1,0] \\ 1, & t \in \left[0, \frac{1}{2}\right]. \\ 2, & t \in \left[\frac{1}{2}, 1\right] \end{cases}$$

- 7. Oblicz całkę $\int_{[0,1]} f \lambda d(x)$, gdzie funkcja $f:[0,1] \to \mathbf{R}$ przyjmuje wartość $n \in \mathbf{N}$ na zbiorach o długości $\frac{1}{3^n}$ wyrzuconych przy konstrukcji zbioru Cantora oraz przyjmuje dowolne wartości dodatnie na zbiorze Cantora.
- 8. Niech $X = \mathbb{N}$, oraz $\mu(\lbrace n \rbrace) = \frac{1}{2^n}, \forall_{n \in \mathbb{N}}$. Oblicz $\int_X f d\mu$.
- 9. Zbadaj całkowalność funkcji $f: \mathbf{R} \to \mathbf{R}$ względem miary Lebesgue'a $f(t) = \begin{cases} 2^{-n}, & t \in [2n, 2n+1) \\ -4^{-n}, & t \in [2n+1, 2n+2) \end{cases}$

gdzie n = 1,2,3...

- 10. Niech $f(t) = \begin{cases} \frac{1}{t}, & t \neq 0 \\ 0, & t = 0 \end{cases}$. Zbadaj czy funkcja f jest całkowalna na przedziale [-1,1].
- 11. Pokaż, że jeżeli $f:(X,M,\mu) \to \mathbf{R}$ jest całkowalna to $\lim_{n \to \infty} n\mu(\{x:|f(x)| \succ n\}) = 0.$
 - 12. Niech ciąg $(f_n)_{n\in\mathbb{N}}$ funkcji określonych na (X,M,μ) spełnia warunek $\int_A |f_n| d\mu \le M \prec \infty, \ M \in \mathbf{R}, \ n=1,2,3,\dots.$ Pokaż, że jeżeli szereg $\sum_{n=1}^\infty a_n, \ a_n \in \mathbf{R}, \ n=1,2,3,\dots$ jest bezwzględnie zbieżny to szereg funkcyjny $\sum_{n=1}^\infty a_n f_n$ jest prawie pewnie zbieżny bezwzględnie.
 - 13. Niech f będzie funkcją całkowalną na zbiorze A względem miary μ . Oznaczmy $S(\varepsilon) = \sum_{n=-\infty}^{\infty} n\varepsilon\mu(A_n)$, gdzie $A_n = \{p \in A : n\varepsilon \le f(p) \prec (n+1)\varepsilon\}$. Pokaż, że $\lim_{\varepsilon \to 0} S(\varepsilon) = \int_A f d\mu$.