姓名:
学号:
学院 (系):
级班
教师:

大 连 理 工 大 学

课程名称: 工科数学分析基础 2 试卷: <u>A</u> 考试形式: <u>闭卷</u> 授课院(系): 数学科学学院 考试日期: 2014年6月20日 试卷共6页

	_	11	111	四	五.	六	七		总分
标准分	30	20	10	10	10	10	10		100
得 分									

得	
分	

一、填空题 (每题 6 分,共 30 分)

法线方程是_____。

2、向量场 $\vec{A} = (xyz, xy^2, y^2z)$ 在点 $P_0(1, 2, 1)$ 处的散度 $\vec{A}(P_0) =$ ______,

旋度 $\overrightarrow{rotA}(P_0) = \underline{\hspace{1cm}}$ 。

函数 $u(x,y,z) = x^2 + 2y^2 + z^2$ 在点 P_0 沿方向 \vec{n} 的方向 导数 $\frac{\partial u}{\partial \vec{n}}\Big|_{E} = \underline{\qquad}$

4、设f(x)是周期为 2π 的周期函数,f(x)在 $[-\pi,\pi)$ 上的表达式为

 $f(x) = \begin{cases} x, -\pi \le x < 0 \\ 0, & 0 \le x < \pi \end{cases}, f(x)$ 的 Fourier (傅里叶)级数 $\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$

的和函数是 S(x) ,则 $S(3\pi) = _____$, $a_3 = _____$ 。

5、设锥面 $z = \sqrt{x^2 + y^2}$ $(0 \le z \le 1)$ 的面密度 $f(x, y, z) = x^2 + y^2$,则此锥面的质量为____。

得 分

二、单项选择题 (每题 4 分,共 20 分)

1、微分方程组 $\begin{cases} y_1' = y_1 + 3y_2 \\ y_2' = 2y_1 + 2y_2 \end{cases}$ 的通解为 ()

(A)
$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = c_1 \begin{pmatrix} 3 \\ 2 \end{pmatrix} e^{-x} + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{4x};$$
 (B) $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = c_1 \begin{pmatrix} 3 \\ -2 \end{pmatrix} e^{-x} + c_2 \begin{pmatrix} 1 \\ 1 \end{pmatrix} e^{4x};$

(C)
$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = c_1 \begin{pmatrix} 3 \\ 2 \end{pmatrix} e^{-x} + c_2 \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{4x}$$
; (D) $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = c_1 \begin{pmatrix} 3 \\ -2 \end{pmatrix} e^{-x} + c_2 \begin{pmatrix} -1 \\ 1 \end{pmatrix} e^{4x}$

2、设函数 z = f(x, y) 的全微分 dz = (x-1)dx + (y+2)dy,则点 (1,-2) 处(

(A) 不是 f(x,y) 的连续点;

(B) 不是 f(x,y) 的极值点;

(C)是 f(x,y) 的极小值点;

(D)是 f(x,y) 的极大值点.

3、均匀半球体 $Ω: x^2 + y^2 + z^2 \le 1, z \ge 0$ 的质心坐标是(0,0,z),则z = (0,0,z)

(A) $\frac{1}{8}$ (B) $\frac{1}{4}$ (C) $\frac{3}{8}$ (D) $\frac{7}{16}$

4、设可微函数 f(x, y) 在点 (x_0, y_0) 取得极小值,则下列结论正确的是(

(A) 一元函数 $f(x, y_0)$ 在 $x = x_0$ 处的导数等于零;

(B) 一元函数 $f(x, y_0)$ 在 $x = x_0$ 处的导数大于零;

(C) 一元函数 $f(x, y_0)$ 在 $x = x_0$ 处的导数小于零;

(D) 一元函数 $f(x, y_0)$ 在 $x = x_0$ 处的导数不存在。

5、已知 $\alpha > 0$, $\sum_{i=1}^{\infty} (-1)^n \sqrt{n} \sin \frac{1}{n^{\alpha}}$ 绝对收敛, $\sum_{i=1}^{\infty} \frac{(-1)^n}{n^{2-\alpha}}$ 条件收敛,则 α 范围为()

(A) $0 < \alpha \le \frac{1}{2}$ (B) $\frac{1}{2} < \alpha \le 1$ (C) $1 < \alpha \le \frac{3}{2}$ (D) $\frac{3}{2} < \alpha < 2$

得 分

三、(10 分) 函数 z = f(x+y, x-y, xy), 其中 f 具有二阶连续偏导数,求 $\frac{\partial z}{\partial x}$, $\frac{\partial^2 z}{\partial x^2}$.

四、(10 分) 设曲线积分 $\int_{l} \left(-2f'(x)-f(x)+xe^{x}\right)ydx+f'(x)dy$ 在整个 xOy 平面内与路径

无关,其中函数f(x)二阶连续可导,求函数f(x)的通解。

五、(10 分) 已知 L 是 第一象限 中从点 O(0,0) 沿圆周 $y = \sqrt{2x - x^2}$ 到点 A(2,0),再沿圆周

 $y = \sqrt{4 - x^2}$ 到点 B(0,2) 的有向曲线。计算曲线积分 $I = \int_L 3x^2ydx + (x^3 + x + 2y)dy$ 。

六、(10分)(1) 写出函数 $f(x) = \sin x$ 在 x = 0 处的幂级数及收敛域;

(2) 求 $\sum_{n=0}^{\infty} (-1)^n \frac{n+1}{(2n+1)!} x^{2n+1}$ 的和函数及收敛域。

上、(10 分) 求曲面积分 $\oint_{\Sigma} \frac{x dy dz}{x^2 + y^2 + z^2}$, 其中 Σ 是由曲面 $x^2 + y^2 = R^2$ 及两平面 z = R 和

z = -R(R > 0)所围立体全表面的外侧。