

RDFS Semantics

Ernesto Jiménez-Ruiz

Lecturer in Artificial Intelligence

Extra session and Forums

- Extra Q&A hours:
 - During during drop-in session (Wednesdays 1-2pm).
 - Thursdays 1-2pm
- Reading week (Week 6) extra session for Q&A.
- Please do not hesitate to use the forums.

Recap

London is a city in England called Londres in Spanish

```
dbp:london a dbo:City .
```

dbp:london dbo:locationCountry dbp:england .

dbp:london rdfs:label "Londres"@es .

London is a city in England called Londres in Spanish

```
dbp:london a dbo:City .
dbp:london dbo:locationCountry dbp:england .
dbp:london rdfs:label "Londres"@es .
```

dbp:london

London is a city in England called Londres in Spanish

```
dbp:london a dbo:City .
dbp:london dbo:locationCountry dbp:england .
dbp:london rdfs:label "Londres"@es .
```


London is a city in England called Londres in Spanish

```
dbp:london a dbo:City .
dbp:london dbo:locationCountry dbp:england .
dbp:london rdfs:label "Londres"@es .
```


London is a city in England called Londres in Spanish

```
dbp:london a dbo:City .
dbp:london dbo:locationCountry dbp:england .
dbp:london rdfs:label "Londres"@es .
```


Recap: SPARQL Example (i)

Return all Cities:

```
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT DISTINCT ?city WHERE {
    ?city rdf:type dbo:City .
}
```


Recap: SPARQL Example (i)

Return all Cities: Query Result= {dbp:london}

```
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT DISTINCT ?city WHERE {
     ?city rdf:type dbo:City .
}
```


Recap: SPARQL Example (ii)

Return all Populated Places:

Recap: SPARQL Example (ii)

Return all Populated Places: Query Result= {}

Recap: Grammar for triples

- RDF imposes a basic grammar. A triple consists of subject, predicate, and object
 - URI references may occur in all positions
 - Literals may only occur in object position
 - Blank nodes can not occur in predicate position
- But one could still define:

```
dbp:london rdf:type "some string"^xsd:string .
```

Recap: Grammar for triples

 RDF imposes a basic grammar. A triple consists of subject, predicate, and object

- URI references may occur in all positions
- Literals may only occur in object position
- Blank nodes can not occur in predicate position
- But one could still define:

```
dbp:london rdf:type "some string"^^xsd:string .
```

 RDF Schema (RDFS) extends the grammar for the "expected" triples, extends the vocabulary, and include a set of inference rules.

Recap: Grammar for triples

 RDF imposes a basic grammar. A triple consists of subject, predicate, and object

- URI references may occur in all positions
- Literals may only occur in object position
- Blank nodes can not occur in predicate position
- But one could still define:

```
dbp:london rdf:type "some string"^xsd:string .
```

- RDF Schema (RDFS) extends the grammar for the "expected" triples, extends the vocabulary, and include a set of inference rules.
- We will need to wait until OWL to have a proper validation mechanism.

RDF Schema (RDFS)

Semantic Web Technology Stack

RDF Schema

- RDF Schema (RDFS) is a vocabulary defined by W3C.
 - https://www.w3.org/TR/rdf-schema/
 - https://www.w3.org/TR/rdf11-mt
- Namespace:

```
rdfs: http://www.w3.org/2000/01/rdf-schema#
```

- Originally though of as a "schema language" like XML Schema.
 - Not strictly doesn't describe "valid" RDF graphs.
- A very simple modeling language for RDF data → Taxonomies

RDFS Semantics

- RDFS is a semantic extension (adds semantics/meaning) that
 - proposes some syntactic conditions on RDF graphs,
 - comes with some (non-ambiguous) inference rules, and
 - includes some (default) triples as part of the specification.

RDFS Semantics

- RDFS is a semantic extension (adds semantics/meaning) that
 - proposes some syntactic conditions on RDF graphs,
 - comes with some (non-ambiguous) inference rules, and
 - includes some (default) triples as part of the specification.
- For example, RDFS expects as range of rdf:type a resource/IRI
 - dbp:london rdf:type "some string"^^xsd:string .
 - RDFS: Not expected triple, but not prohibited (by specification).
 - OWL semantic extension: prohibited triple will lead to an error.

RDFS Vocabulary

- RDFS adds the concept of "classes" which are sets of resources.

RDFS Vocabulary

- RDFS adds the concept of "classes" which are sets of resources.
- Defined resources:
 - rdfs:Resource: The class of resources, everything.
 - rdfs:Class: The class of classes.
 - rdfs:Literal: The class of all literal values.
 - rdfs:Datatype: The class of all datatypes.

RDFS Vocabulary

- RDFS adds the concept of "classes" which are sets of resources.
- Defined resources:
 - rdfs:Resource: The class of resources, everything.
 - rdfs:Class: The class of classes.
 - rdfs:Literal: The class of all literal values.
 - rdfs:Datatype: The class of all datatypes.
- Defined properties:
 - rdfs:domain: The domain (sources) of a relation.
 - rdfs:range: The range (targets) of a relation.
 - rdfs:subClassOf: Class inclusion.
 - rdfs:subPropertyOf: Property inclusion.

Example RDF graph and RDF Schema

Class Taxonomy (via rdfs:subClassOf)

Property Taxonomy (via rdfs:subPropertyOf)

Expected RDF/RDFS resources

Types of resources or elements:

- Object Properties like foaf:knows
- Datatype Properties like dc:title, foaf:name
- Classes like foaf:Person
- Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
- Individuals (all the rest, "usual" resources) like city:ernesto
- Datatypes like xsd:integer
- Literals like "ernesto", "39"
- (*) Not real split of properties into object and data properties in RDFS. This comes in OWL

Expected RDF/RDFS triple grammar

```
Triples
indi o-prop indi .
indi d-prop "lit" .
indi rdf:type class .
class rdfs:subClassOf class .
o-prop rdfs:subPropertyOf o-prop .
d-prop rdfs:subPropertyOf d-prop .
o-prop rdfs:domain class .
o-prop rdfs:range class .
d-prop rdfs:domain class .
d-prop rdfs:range datatype .
```

(Default) RDFS axiomatic triples (excerpt)

- Indeed RDF and RDFs include a set of default triples to guide the above grammar of expected triples.
- Only resources have types:

```
rdf:type rdfs:domain rdfs:Resource .
```

– types are classes:

```
rdf:type rdfs:range rdfs:Class .
```

– Ranges apply only to properties:

```
rdfs:range rdfs:domain rdf:Property .
```

(Default) RDFS axiomatic triples (excerpt)

– Ranges are classes:

```
rdfs:range rdfs:range rdfs:Class .
```

– Only properties have subproperties:

```
rdfs:subPropertyOf rdfs:domain rdf:Property .
```

Only classes have subclasses:

```
rdfs:subClassOf rdfs:domain rdfs:Class .
```

– ... (another 30 or so)

Classes as Sets

- A set is a mathematical object:

$$\{$$
'a', $1, \triangle \}$

 $\{\cdots\}$

– Contains 'a', 1, and \triangle , and nothing else.

– A set is a mathematical object:

{···}

- Contains 'a', 1, and \triangle , and nothing else.
- There is no order between elements

$$\{1, \triangle\} = \{\triangle, 1\}$$

- A set is a mathematical object:

$$\{$$
'a', $1, \triangle \}$

 $\{\cdots\}$

- Contains 'a', 1, and \triangle , and nothing else.
- There is no order between elements

$$\{1,\triangle\}=\{\triangle,1\}$$

Nothing can be in a set several times

$$\{1, \triangle, \triangle\} = \{1, \triangle\}$$

- A set is a mathematical object:

$$\{$$
'a', $1, \triangle \}$

- Contains 'a', 1, and \triangle , and nothing else.
- There is no order between elements

$$\{1,\triangle\}=\{\triangle,1\}$$

Nothing can be in a set several times

$$\{1, \triangle, \triangle\} = \{1, \triangle\}$$

- Sets with different elements are different:

$$\{1,2\} \neq \{2,3\}$$

Sets: Element of-relation

 $- \in$ indicates that something is element of a set:

$$1 \in \{\text{`a'}, 1, \triangle\}$$

'b' $\not\in \{\text{`a'}, 1, \triangle\}$

Sets: Element of-relation

 $- \in$ indicates that something is element of a set:

$$\begin{array}{l}
1 \in \{\text{`a'}, 1, \triangle\} \\
\text{`b'} \not\in \{\text{`a'}, 1, \triangle\}
\end{array}$$

- $\{3, 7, 12\}$: a set of numbers
 - $-3 \in \{3, 7, 12\}, 0 \not\in \{3, 7, 12\}$
- {'a', 'b', . . . , 'z'}: a set of letters
 - 'y' $\in \{$ 'a', 'b', ..., 'z' $\}$, 'æ' $\not\in \{$ 'a', 'b', ..., 'z' $\}$,
- $\mathbb{N} = \{1, 2, 3, \ldots\}$: the set of all natural numbers
 - $-713 \in \mathbb{N}, \pi \notin \mathbb{N}.$

Sets: Element of-relation

 $- \in$ indicates that something is element of a set:

$$\begin{array}{l}
1 \in \{\text{`a'}, 1, \triangle\} \\
\text{`b'} \not\in \{\text{`a'}, 1, \triangle\}
\end{array}$$

- $\{3, 7, 12\}$: a set of numbers
 - $-3 \in \{3, 7, 12\}, 0 \not\in \{3, 7, 12\}$
- {'a', 'b', ..., 'z'}: a set of letters
 - 'y' $\in \{$ 'a', 'b', ..., 'z' $\}$, 'æ' $\not\in \{$ 'a', 'b', ..., 'z' $\}$,
- $-\mathbb{N} = \{1, 2, 3, \ldots\}$: the set of all natural numbers
 - $-713 \in \mathbb{N}, \pi \notin \mathbb{N}.$
- The set P_{inm713} of people in the zoom meeting right now
 - city:ernesto $\in P_{inm713}$, dbp:Johnny_Depp $\not\in P_{inm713}$.

The Empty Set

- A set that has no elements.
- This is called the *empty set*
- Notation: ∅ or {}
- $-x \notin \emptyset$, for any x

Subsets

- Let A and B be sets
- if every element of A is also in B
- then A is called a *subset* of B

$$A \subseteq B$$

Subsets

- Let A and B be sets
- if every element of A is also in B
- then A is called a subset of B

$$A \subseteq B$$

- {city:ernesto, city:dave} $\subseteq P_{inm713}$
- $-\{1,3\} \not\subseteq \{1,2\}$
- $\{1,3\}\subseteq\mathbb{N}$
- $-\emptyset\subseteq A$ for any set A

Subsets

- Let A and B be sets
- if every element of A is also in B
- then A is called a subset of B

$$A \subseteq B$$

- {city:ernesto, city:dave} $\subseteq P_{inm713}$
- $-\{1,3\} \not\subseteq \{1,2\}$
- $\{1,3\}\subseteq\mathbb{N}$
- $-\emptyset\subseteq A$ for any set A
- -A = B if and only if $A \subseteq B$ and $B \subseteq A$

Intuition: Classes as Sets of Resources

- We can think of an rdfs:Class as denoting a set of Resources.
- (Not exactly, but OK for intuition).

Intuition: Classes as Sets of Resources

- We can think of an rdfs:Class as denoting a set of Resources.
- (Not exactly, but OK for intuition).

RDFS	Set Theory
A rdf:type rdfs:Class	A is a set of resources
x rdf:type A	$x \in A$
A rdfs:subClassOf B	$A\subseteq B$
:Person rdf:type rdfs:Class	:Person is a set of resources
:ernesto rdf:type :Person	$\texttt{:ernesto} \in \texttt{:Person}$
:Person rdfs:subClassOf :Animal	$\texttt{:Person} \subseteq \texttt{:Animal}$

Properties as Relations

Pairs

A pair is an ordered collection of two objects

$$\langle x,y
angle$$

 $\langle \cdots \rangle$

– Equal if components are equal:

$$\langle a,b
angle = \langle x,y
angle$$
 if and only if $a=x$ and $b=y$

Pairs

A pair is an ordered collection of two objects

$$\langle x,y \rangle$$

– Equal if components are equal:

$$\langle a,b
angle = \langle x,y
angle$$
 if and only if $a=x$ and $b=y$

- Order matters:

$$\langle 1, \text{`a'} \rangle \neq \langle \text{`a'}, 1 \rangle$$

– An object can be twice in a pair:

$$\langle 1, 1 \rangle$$

 $-\langle x,y\rangle$ is a pair, no matter if x=y or not.

The Cross Product

- Let A and B be sets.
- Construct the set of all pairs $\langle a, b \rangle$ with $a \in A$ and $b \in B$.
- This is called the *cross product* of *A* and *B*, written

$$A \times B$$

The Cross Product

- Let A and B be sets.
- Construct the set of all pairs $\langle a, b \rangle$ with $a \in A$ and $b \in B$.
- This is called the cross product of A and B, written

$$A \times B$$

– Example:

$$-A = \{1, 2, 3\}, B = \{\text{`a'}, \text{`b'}\}.$$

$$egin{array}{lll} -A imes B = & \left\{ & \left<1, \mbox{`a'}
ight>, & \left<2, \mbox{`a'}
ight>, & \left<3, \mbox{`a'}
ight>, \\ & \left<1, \mbox{`b'}
ight>, & \left<2, \mbox{`b'}
ight>, & \left<3, \mbox{`b'}
ight> \end{array}
ight\} \end{array}$$

Relations

- A relation R between two sets A and B is...
- $-\ldots$ a set of pairs $\langle a,b \rangle \in A \times B$

$$R\subseteq A imes B$$

- We often write a R b to say that $\langle a, b \rangle \in R$
- A relation R on some set A is a relation between A and A:

$$R \subseteq A \times A = A^2$$

Example: Family Relations

- Consider the set $A = \{Homer, Marge, Bart, Lisa, Maggie\}$.
- Consider a relation P on A such that

$$x P y$$
 iff x is parent of y

– As a set of pairs:

$$P = \{ \langle \mathsf{Homer}, \mathsf{Bart} \rangle, \langle \mathsf{Homer}, \mathsf{Lisa} \rangle, \langle \mathsf{Homer}, \mathsf{Maggie} \rangle, \langle \mathsf{Marge}, \mathsf{Bart} \rangle, \langle \mathsf{Marge}, \mathsf{Lisa} \rangle, \langle \mathsf{Marge}, \mathsf{Maggie} \rangle \} \subseteq A^2$$

- For instance:

```
\langle \mathsf{Homer}, \mathsf{Bart} \rangle \in P \qquad \langle \mathsf{Marge}, \mathsf{Maggie} \rangle \in P
```

Set operations on relations

- Since relations are just sets of pairs, we can use set operations and relations on them.
- We say that R_1 is a subrelation of R if $R_1 \subseteq R$.

Set operations on relations

- Since relations are just sets of pairs, we can use set operations and relations on them.
- We say that R_1 is a subrelation of R if $R_1 \subseteq R$.
- E.g.: if F is the father-of-relation, $F = \{ \langle \mathsf{Homer}, \mathsf{Bart} \rangle, \langle \mathsf{Homer}, \mathsf{Lisa} \rangle, \langle \mathsf{Homer}, \mathsf{Maggie} \rangle \}$ then $F \subset P$ (P=parent-of relation).
- If M is the mother-of-relation,
 - $M = \{ \langle \mathsf{Marge}, \mathsf{Bart} \rangle \,, \langle \mathsf{Marge}, \mathsf{Lisa} \rangle \,, \langle \mathsf{Marge}, \mathsf{Maggie} \rangle \}$ then $M \subseteq P$ (P=parent-of relation).

Domain and Range of Relations

- Given a relation R from A to B $(R \subseteq A \times B)$
- The *domain* of R is the set of all x with $x R \cdots$:

$$\mathsf{dom}\,R = \{x \in A \mid xRy \; \mathsf{for} \; \mathsf{some} \; y \in B\}$$

Domain and Range of Relations

- Given a relation R from A to B $(R \subseteq A \times B)$
- The *domain* of R is the set of all x with $x R \cdots$:

$$\mathsf{dom}\,R = \{x \in A \mid xRy \; \mathsf{for} \; \mathsf{some} \; y \in B\}$$

- The *range* of R is the set of all y with $\cdots Ry$:

$$\operatorname{\mathsf{rg}} R = \{y \in B \mid xRy ext{ for some } x \in A\}$$

Domain and Range of Relations

- Given a relation R from A to B $(R \subseteq A \times B)$
- The *domain* of R is the set of all x with $x R \cdots$:

$$\mathsf{dom}\,R = \{x \in A \mid xRy \; \mathsf{for} \; \mathsf{some} \; y \in B\}$$

- The *range* of R is the set of all y with $\cdots Ry$:

$$\operatorname{\mathsf{rg}} R = \{y \in B \mid xRy ext{ for some } x \in A\}$$

- Example:
 - $-R = \{\langle 1, riangle
 angle , \langle 1, riangle
 angle , \langle 2, riangle
 angle \}$
 - $dom_R = \{1, 2\}$
 - $-\operatorname{rg}_R = \{\triangle, \square, \lozenge\}$

Intuition: Properties as Relations

- An rdf: Property is like a relation on resources.
- (not exactly, but OK as intuition).

RDFS	Set Theory
R rdf:type rdf:Property	R is a relation on resources
$x \ R \ y$	$\langle x,y\rangle\in R$
R rdfs:subPropertyOf S	$R\subseteq S$
R rdfs:domain A	$dom_R \subseteq A$
R rdfs:range B	$rg_R\subseteq B$

(*) Without domain and range R is a relation from rdf:Class to rdf:Class (i.e., $R \subseteq rdf:Class \times rdf:Class = rdf:Class^2$)

Intuition: Properties as Relations

- An rdf:Property is like a relation on resources.
- (not exactly, but OK as intuition).

RDFS	Set Theory
:teaches rdf:type rdf:Property	:teaches is a relation on resources
:ernesto :teaches :inm713	$\langle : exttt{ernesto}, : exttt{inm713} angle \in : exttt{teaches}$
:teaches rdfs:subPropertyOf :manages	$\texttt{:teaches} \subseteq \texttt{:manages}$
:teaches rdfs:domain :Person	${\sf dom:teaches\subseteq:Person}$
:teaches rdfs:range :Module	$ ext{rg:teaches} \subseteq ext{:Module}$

(*) With domain and range :teaches is a relation from :Person to :Module (i.e., :teaches \subset :Person \times :Module)

Entailment via Model-Theoretic Semantics

SPARQL Example

Return all Populated Places:

SPARQL Example

Return all Populated Places: Query Result= {}

```
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
SELECT DISTINCT ?place WHERE {
     ?place rdf:type dbo:PopulatedPlace .
}
```


Entailment in RDFS

- Given a set of triples \mathcal{G} (i.e., a Graph) can we entail a triple t ($\mathcal{G} \models t$)?
- Can we entail the triple: dbp:london rdf:type dbo:PopulatedPlace and add it to the graph below?
- Similarly for dbp:england

- Interpretations might be conceived as potential "realities" or "worlds".
- Interpretations assign values to elements.
 - (The intuitions behind set-theory are formally represented.)

- Interpretations might be conceived as potential "realities" or "worlds".
- Interpretations assign values to elements.
 - (The intuitions behind set-theory are formally represented.)
- Given an interpretation $\mathcal I$ and a set of triples $\mathcal G$
- $-\mathcal{G}$ is valid in \mathcal{I} (written $\mathcal{I} \models \mathcal{G}$), iff $\mathcal{I} \models t$ for all $t \in \mathcal{G}$.
- Then \mathcal{I} is also called a **model** of \mathcal{G} .

- The following interpretation \mathcal{I} is a model of our example \mathcal{G} :
 - $dbo:City^{\mathcal{I}} = \{dbp:london\}$
 - $dbo:Country^{\mathcal{I}} = \{dbp:england\}$
 - dbo:PopulatedPlace $^{\mathcal{I}} = \{dbp:london, dbp:england\}$
 - dbo:location $^{\mathcal{I}} = \{\langle dbp:london, dbp:england \rangle\}$

– The following interpretation \mathcal{I} is a model of our example \mathcal{G} :

```
- dbo:Citv^{\mathcal{I}} = \{dbp:london\}
   - dbo: Country^{\mathcal{I}} = \{dbp: england\}
   - dbo:PopulatedPlace^{\mathcal{I}} = \{dbp:london, dbp:england\}
   - dbo:location \mathcal{I} = \{\langle dbp:london, dbp:england \rangle\}
-\mathcal{I} \models \mathcal{G}:
   - dbo:City^{\mathcal{I}} \subset dbo:PopulatedPlace^{\mathcal{I}}
   - dbo:Country^{\mathcal{I}} \subset dbo:PopulatedPlace^{\mathcal{I}}
   - dbp:london^{\mathcal{I}} \in dbo:City^{\mathcal{I}}
```

- -t = dbp:london rdf:type dbo:PopulatedPlace
- Does $\mathcal{I} \models t$?

- -t = dbp:london rdf:type dbo:PopulatedPlace
- Does $\mathcal{I} \models t$?
 - Yes: $dbo:PopulatedPlace^{\mathcal{I}} = \{dbp:london, dbp:england\}$

- -t = dbp:london rdf:type dbo:PopulatedPlace
- Does $\mathcal{I} \models t$?
 - Yes: $dbo:PopulatedPlace^{\mathcal{I}} = \{dbp:london, dbp:england\}$
- Does \mathcal{G} |= t ?

- t = dbp:london rdf:type dbo:PopulatedPlace
- Does $\mathcal{I} \models t$?
 - Yes: dbo:PopulatedPlace $^{\mathcal{I}} = \{dbp:london, dbp:england\}$
- Does \mathcal{G} $\models t$?
 - if and only if
 - For any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{G}$
 - $-\mathcal{I} \models t$.
 - Yes, in this case too.

- t = dbp:london rdf:type dbo:PopulatedPlace
- Does $\mathcal{I} \models t$?
 - Yes: $dbo:PopulatedPlace^{\mathcal{I}} = \{dbp:london, dbp:england\}$
- − Does $\mathcal{G} \models t$?
 - if and only if
 - For any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{G}$
 - $-\mathcal{I} \models t$.
 - Yes, in this case too.
- Does $\mathcal{G} \models t_2$ (t_2 =dbp:london rdf:type dbo:Country)?

- -t = dbp:london rdf:type dbo:PopulatedPlace
- Does $\mathcal{I} \models t$?
 - Yes: $dbo:PopulatedPlace^{\mathcal{I}} = \{dbp:london, dbp:england\}$
- − Does $\mathcal{G} \models t$?
 - if and only if
 - For any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{G}$
 - $-\mathcal{I} \models t$.
 - Yes, in this case too.
- Does $\mathcal{G} \models t_2$ (t_2 =dbp:london rdf:type dbo:Country)?
 - No: \mathcal{I} is a counter example. $\mathcal{I} \models \mathcal{G}$ but $\mathcal{I} \not\models t_2$

Model-Theoretic Semantics (iv)

- Model-theoretic semantics yields an unambigous notion of entailment.
- In principle, all interpretations need to be considered.
- However there are infinitely many such interpretations,
- An algorithm should terminate in finite time.

Foundations of Semantic Web Technologies. Chapter 3.

Entailment via Inference Rules

Syntactic Reasoning

- From the computation point of view, we need means to decide entailment syntactically.
- Syntactic methods operate
 - only on the form of a statement, that is on its concrete grammatical structure (i.e., triples),
 - without recurring to interpretations.
- Syntactic methods should justify that their so-called operational semantics are expected with respect to model-theoretic semantics.

Inference rules (i)

- Inference rules (also known as deduction rules or derivation rules) is an option to describe syntactic solutions.
- The general form of an inference rule is:

$$\frac{P_1,\ldots,P_n}{P}$$

- the P_i are premises
- and P is the **conclusion**.
- An inference rule may have,
 - any number of premises (typically one or two),
 - but only one conclusion.

Inference rules (ii)

- Recall that syllogisms (i.e., inference) can be traced back to Aristotle
- Example:

All men are mortal
Socrates is a man
Therefore, Socrates is mortal

Inference rules (iii)

- The whole set of inference rules given for a logic is called **deduction** calculus.
- ⊢ is the inference relation, while ⊨ was the entailment relation using model theoretic semantics.
 - − We write $\Gamma \vdash P$ if we can deduce P from the premises Γ .
- In our setting
 - the **premises** Γ are a **set of triples** (*i.e.*, a (sub)graph \mathcal{G}),
 - the conclusion is a new triple t

RDFS Inference Rules

RDFS supports several rules. Organized into three groups:

1. Type propagation:

- "London is a City, all Cities are populated places, so. . . "

2. Property propagation:

- "London is the capital of England, anything that is capital of a country is also located in that country, so..."

3. Domain and range propagation:

- "Everything that has a capital is a country, so England is a..."
- "Everything that is a capital is a city, so London is a..."

Type propagation

- Members of superclasses:

(*) rdfs9, rdfs10, rdfs11 are the names of the inference rules in the W3C standard.

Type propagation

- Members of superclasses:

$$\frac{ \text{A rdfs:subClassOf B .} \quad \text{x rdf:type A .} }{ \text{x rdf:type B .} } \text{rdfs9}$$

- Reflexivity of sub-class relation:

(*) rdfs9, rdfs10, rdfs11 are the names of the inference rules in the W3C standard.

Type propagation

Members of superclasses:

Reflexivity of sub-class relation:

Transitivity of sub-class relation:

RDFS Semantics

(*) rdfs9, rdfs10, rdfs11 are the names of the inference rules in the W3C standard.

Type propagation: Examples

– Members of superclasses:

```
:City rdfs:subClassOf :PopulatedPlace . :london rdf:type :City . :london rdf:type :PopulatedPlace . rdfs9
```

Reflexivity of sub-class relation:

```
:City rdf:type rdfs:Class .
:City rdfs:subClassOf :City .
```

Transitivity of sub-class relation:

```
:City rdfs:subClassOf :PopulatedPlace . :PopulatedPlace rdfs:subClassOf :Place . :City rdfs:subClassOf :Place .
```

Property Propagation

- Transitivity:

```
P rdfs:subPropertyOf Q . Q rdfs:subPropertyOf R .

P rdfs:subPropertyOf R . rdfs5
```

Property Propagation

- Transitivity:

– Reflexivity:

Property Propagation

- Transitivity:

- Reflexivity:

– Property transfer:

Property Propagation: Examples

- Transitivity:

```
:has_writer rdfs:subPropertyOf :has_author . :has_author rdfs:subPropertyOf :has_creator . rdfs:subPropertyOf :has_creator .
```

– Reflexivity:

```
:has_writer rdf:type rdf:Property .
:has_writer rdfs:subPropertyOf :has_writer .
```

– Property transfer:

```
:has_author rdfs:subPropertyOf :has_creator . :Hamlet :has_author :Shakespeare . rdfs:
```

Week 4. Feb 10, 2021

Domain and range propagation

Typing triggered by the use of properties.

– Domain propagation:

Domain and range propagation

Typing triggered by the use of properties.

- Domain propagation:

Range propagation:

Domain and Range Propagation: Examples

– Domain propagation:

```
:capitalOf rdfs:domain :City . :london :capitalOf :england . :clondon rdf:type :City . rdfs2
```

– Range propagation:

Properties of RDFS Semantics

Entailment and Inference

- Both have the monotonic property.
 - If a graph $\mathcal{G} \models t$ (or $\mathcal{G} \vdash t$),
 - then adding more triples $(e.g., t_1)$ does not alter the entailment $\mathcal{G} \cup \{t_1\} \models t$ (or derivation $\mathcal{G} \cup \{t_1\} \vdash t$)

Entailment and Inference

- Both have the monotonic property.
 - If a graph $\mathcal{G} \models t$ (or $\mathcal{G} \vdash t$),
 - then adding more triples $(e.g., t_1)$ does not alter the entailment $\mathcal{G} \cup \{t_1\} \models t$ (or derivation $\mathcal{G} \cup \{t_1\} \vdash t$)
- The set of RDFS rules we have seen are sound.
 - If $\mathcal{G} \vdash t$ then $\mathcal{G} \models t$

Foundations of Semantic Web Technologies. Chapter 3.

Entailment and Inference

- Both have the monotonic property.
 - If a graph $\mathcal{G} \models t$ (or $\mathcal{G} \vdash t$),
 - then adding more triples (e.g., t_1) does not alter the entailment $\mathcal{G} \cup \{t_1\} \models t$ (or derivation $\mathcal{G} \cup \{t_1\} \vdash t$)
- The set of RDFS rules we have seen are sound.
 - If $\mathcal{G} \vdash t$ then $\mathcal{G} \models t$
- But not complete.
 - Not always applies that If $\mathcal{G} \models t$ then $\mathcal{G} \vdash t$

Foundations of Semantic Web Technologies. Chapter 3.

(Non) Validation in RDFS (i)

- RDFS was conceived of as a schema language for RDF
- However, the statements in an RDFS graph never trigger inconsistencies.
- Reasoning will not lead to a "contradiction", "error", "non-valid document"
- Inference rules add more triples, but do not detect errors.

(Non) Validation in RDFS (ii)

- RDFS has no notion of negation
 - For instance, the two triples

```
city:ernesto rdf:type ex:Smoker .
city:ernesto rdf:type ex:NonSmoker .
are not inconsistent.
```

(Non) Validation in RDFS (ii)

- RDFS has no notion of negation
 - For instance, the two triples

```
city:ernesto rdf:type ex:Smoker .
city:ernesto rdf:type ex:NonSmoker .
are not inconsistent.
```

There is also not clear notion of disjointness among RDF resources:
 Object Properties, Datatype Properties, Classes, Built-in properties,
 Individuals, Datatypes and Literals.

(Non) Validation in RDFS (ii)

- RDFS has no notion of negation
 - For instance, the two triples

```
city:ernesto rdf:type ex:Smoker .
city:ernesto rdf:type ex:NonSmoker .
are not inconsistent.
```

- There is also not clear notion of disjointness among RDF resources:
 Object Properties, Datatype Properties, Classes, Built-in properties,
 Individuals, Datatypes and Literals.
- OWL includes additional vocabulary and includes consistency-checks (next week!).

Laboratory: RDFS Semantics

Tasks

- Manually checking inferences.
- Extracting inferences programmatically and checking via SPARQL.
- Python: We are using the OWL-RL library (new) owlrl.DeductiveClosure(owlrl.RDFS_Semantics).expand(g)
- Java: Jena API InfModel inf_model =
 ModelFactory.createRDFSModel(model);