1830

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ ИУ	«Информатика и системы ;	управления»
КАФЕЛРА ИУ-7 "	Программное обеспечение	ЭВМ и информационные технологии»

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ НА ТЕМУ:

«Исследование методов распознавания дорожных знаков на снимке для обработки автопилотом»

Студент	ИУ7-51Б	Косарев А.А.
Руководит	ель	Шаповалова М.С.

РЕФЕРАТ

Расчетно-пояснительная записка 20 с., 7 рис., 10 источников, 1 прил. КОМПЬЮТЕРНОЕ ЗРЕНИЕ, АВТОПИЛОТ, ДОРОЖНЫЕ ЗНАКИ, ПОИСК КОНТУРОВ, МЕТОД СРАВНЕНИЯ С ЭТАЛОНОМ, СВЕРТОЧНЫЕ НЕЙРОННЫЕ СЕТИ

Объектом исследования являются методы обнаружения дорожных знаков на изображении.

Цель работы — рассмотрение технологии компьютерного зрения, в частности, для решения задачи распознавания дорожных знаков на снимке.

В процессе работы были изучены существующие методы детектирования объектов на изображении и возможность их применения в системах с автопилотом.

СОДЕРЖАНИЕ

РЕФЕРАТ				
B	ВЕД	ЕНИЕ	5	
1	Ана	ализ предметной области	7	
	1.1	Используемые библиотеки и платформы	7	
	1.2	Компьютерное зрение в области транспортных средств	7	
2	Исс	следование существующих методов		
	pac	познавания объектов на изображении	9	
	2.1	Классификация алгоритмов	9	
	2.2	Методы детектирования объектов на		
		изображении	10	
		2.2.1 Поиск контуров	10	
		2.2.2 Метод сравнения с эталоном	12	
		2.2.3 Сверточные нейронные сети	13	
	2.3	Вывод	14	
3	Пр	именение изученных методов в системах с автопилотом	15	
3	ЧК Л	ЮЧЕНИЕ	17	
\mathbf{C}	пис	СОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	19	
П	РИЛ	ІОЖЕНИЕ А Презентация научно-исследовательской		
	работы			

ВВЕДЕНИЕ

В современном мире люди все чаще слышат об искусственном интеллекте из самых разных источников и в различных сферах деятельности. Технологии нейронных сетей, машинного обучения и глубокого обучения стремительно развиваются и используются человеком во многих отраслях его работы, например:

- медицине и фармацевтике;
- транспортных системах с контролем нагрузки;
- системах «умный дом»;
- системах автопилота;
- аналитике данных;
- распознавании речи и рукописного текста;
- цифровых помощниках.

Целью же данной научно-исследовательской работы является рассмотрение технологии компьютерного зрения, в частности, для решения задачи распознавания дорожных знаков на снимке.

Актуальность этой темы объясняется повышением интереса к системам автопилота. По данным исследования, проведенным *Gartner*, мировой рынок беспилотных автомобилей стремительно растет. Оказалось, что в 2018 году общее количество новых полностью автоматизированных транспортных средств составило 137 129 единиц, а в 2019 году — 332 932 единиц. По данным аналитиков, к 2023 году количество самоуправляемых машин достигнет 745 705 единиц [1].

Для достижения поставленной в работе цели предстоит решить следующие задачи:

- провести исследование существующих методов распознавания объектов на снимке;
- определить преимущества и недостатки рассмотренных методов;

_	проанализировать возможность применения изученных алгоритмов ком-
	пьютерного зрения для распознавания дорожных знаков на снимке си-
	стемами с автопилотом.

1 Анализ предметной области

1.1 Используемые библиотеки и платформы

Задача распознавания объектов на снимке решается с применением технологии компьютерного зрения. Существует ряд программных платформ, которые позволяют реализовывать алгоритмы для решения данной задачи [2]. Ниже представлены некоторые из них:

- OpenCV один из самых популярных пакетов, который распространяется бесплатно и имеет открытый исходный код. Это библиотека, реализованная на C++, но имеющая API для таких популярных языков программирования, как Python, Java, Matlab и других.
- PCL тоже открытая платформа, в которой реализованы алгоритмы разных методов для обработки двумерных и трехмерных изображений.
- ROS специальная библиотека, разработанная для управления робототехникой.
- CUDA пакет, разработанный компанией *NVIDIA*, который нацелен на ускорение работы системы, обрабатывающей изображения, путем параллельных вычислений на графических процессорах этой компании.

1.2 Компьютерное зрение в области транспортных средств

Как было сказано выше, машинное обучение применяется во многих сферах жизни человека, и область транспортных средств не является исключением. Компьютерное зрение активно используется при разработке новых систем управления автомобилем и помощи водителю.

В связи с бурным ростом производства беспилотных автомобилей [1] создается необходимость в развитии и улучшении технологий автопилота. В частности, они дали толчок для эволюции методов обработки изображений с использованием нейронных сетей (рисунок 1.1 [3]). Сложная структура сетей

позволяет выполнять операции нелинейного преобразования, что в результате делает возможным решение задачи распознавания дорожных знаков.

Рисунок 1.1 – Пример детектирования дорожных знаков с помощью нейронных сетей

2 Исследование существующих методов распознавания объектов на изображении

2.1 Классификация алгоритмов

Существует несколько характерных классификаций для методов распознания объектов.

По степени используемой обучающей информации:

- «распознавание с учителем» заключается в том, что данные предописываются тем, кто проводит исследование, то есть размечаются по какому-либо принципу;
- «распознавание без учителя» модель обучается на данных, которые не были предварительно обработаны, таким образом модели приходится самой выделять полезные признаки из изображения.

По принципу реализации метода:

- метод перебора обрабатываемые изображения сравниваются с имеющейся в базе информацией, которая хранит все модификации изображения;
- анализ характеристик образа основывается на более глубоком изучении исследуемого образа, например, определении его геометрических характеристик, цвета, линейных размеров и так далее;
- использование нейронных сетей метод, требующий большого количества обучающих данных и значительных вычислительных ресурсов, но позволяющий получать больше полезной информации о снимке. В последнее время такие системы активно развиваются и появляются все более эффективные принципы их построения [4].

2.2 Методы детектирования объектов на изображении

В данном разделе будут представлены основные методы распознавания объектов на снимке.

2.2.1 Поиск контуров

Алгоритм поиска контуров заключается в применении математических методов, направленных на выявление точек в цифровом изображении, в которых яркость и цвет резко меняется. Такие точки организованы в виде набора кривых линий и называются границами или контурами.

Изменение яркости изображения может соответствовать: различным материалам, различию в освещении отдельных частей сцены, перепадам глубины или изменению ориентации поверхности. В идеальном случае определение краев помогает установить границы и форму объекта.

Существуют различные методы контурного анализа. Ниже рассмотрены некоторые из них.

— Метод активных контуров. Для обнаружения границ на изображении применяются кривые минимальной энергии. Контур инициализируется как простая линия, а потом изменяется, чтобы создать область объекта. Каждая точка в контуре стремится к границе объекта при минимизации ее функции энергии 2.1.

$$E_i = \alpha E_{int}(v_i) + \beta E_{ext}(v_i), \qquad (2.1)$$

где α , β — константы, необходимые для коррекции энергии, $E_{int}(v_i)$, $E_{ext}(v_i)$ — функции энергии, зависящие от формы контура и от свойств изображения соответственно.

— Детектор границ Кэнни. Данный алгоритм включает в себя сглаживание, поиск градиентов, подавление немаксимумов, двойную пороговую фильтрацию и трассировку области неоднозначности. Все данные этапы

нацелены на то, чтобы детектор мог точно определять линию границы и реагировать на каждую ровно один раз, но при этом игнорировал ложные. Более того алгоритм Кэнни устойчив к шумам на изображении благодаря использованию метода Гаусса. На рисунке 2.1 продемонстирован пример работы детектора границ Кэнни [5].

Рисунок 2.1 – Пример работы детектора границ Кэнни

— Кластеризация. Данный метод является наиболее эффективным для изображений с помехами. Пусть есть две линии, которые обозначены как $\{a_1, ..., a_n\} \in A$ и $\{b_1, ..., b_n\} \in B$ при условии, что они удовлетворяют следующим неравенствами:

$$\{|x_{ai} - x_{bj}| + |y_{ai} - y_{bj}|\} \le \alpha_d; \tag{2.2}$$

$$\{|u_{ai} - u_{bj}|\} \le \alpha_u; \tag{2.3}$$

$$\{|v_{ai} - v_{bj}|\} \le \alpha_v,\tag{2.4}$$

где α_d , α_u и α_v — пороговые константы; u_a , v_a — составляющие скорости точки a в координатах $(x_a,\ y_a)$ [5].

Несмотря на то, что алгоритмы поиска контуров являются довольно простыми в реализации с математической точки зрения, они имеют ряд значительных ограничений, которые не позволяют использовать эти методы повсеместно:

— они не могут быть применены, если на изображении невозможно различить контур, например, из-за плохого цветового контраста;

- они не способны адекватно обработать перекрытие одних объектов другими;
- большинство из них неустойчивы к шуму (кроме метода Кэнни), плохая видимость или плохое качество изображения сильно ухудшают результат их работы [2].

2.2.2 Метод сравнения с эталоном

Это один из простых методов распознавания, который заключается в сравнении с эталоном. Эталоны — изображения, которые имеют форму и признаки исследуемых предметов и заранее классифицированы по группам. Тогда задача обнаружения сводится к тому, чтобы проверить снимок на наличие частей похожих на эталон, и в случае обнаружения отнести найденный объект к классу эталона. В качестве меры близости могут применяться различные типы расстояний.

Так, например, при поиске объекта по некому шаблону формы часто используется среднеквадратичная разность значений яркости изображений шаблона и анализируемого снимка 2.5. На рисунке 2.2 показан пример обхода изображения шаблоном формы [6].

$$diff = \frac{\sqrt{\sum_{i=0}^{\infty} (pixelI1_i - pixelI2_i) \cdot (pixelI1_i - pixelI2_i)}}{n-1}$$
 (2.5)

Рисунок 2.2 – Пример обхода изображения шаблоном формы

Метод сравнения с эталоном часто применяется, когда речь идет о задачах небольшой размерности пространства признаков. Однако он имеет вы-

сокую зависимость результатов классификации от выбранной меры близости изучаемого экземпляра и прототипа.

2.2.3 Сверточные нейронные сети

Сверточные нейронные сети — это разновидность моделей глубокого обучения, которые очень часто используются для распознавания образов. Главной идеей данной технологии является операция свертывания, которая заключается в извлечении шаблонов из входной карты признаков и их последующего одинакового преобразования для получения выходной карты признаков (рисунок 2.3) [7].

Рисунок 2.3 – Пример разбития изображения на шаблоны

Картой признаков в этом случае называют трехмерный тензор, у которого две оси указывают размерность изображения (высоту и ширину), а третья — глубину, которая соответвует так называемым фильтрам, отвечающим за наличие того или иного параметра на изучаемом шаблоне (рисунок 2.4 [7]). Фильтры представляют собой конкретные аспекты входных данных: на верхнем уровне, например, они могут соответствовать понятию «присутствие лица на входе».

Рисунок 2.4 – Понятие карты признаков

Однако при использовании нейронных сетей можно столкнуться с некоторыми проблемами:

- для максимального качества результата необходим большой объем обучающих данных;
- при ограниченном объеме данных главной проблемой становится переобучение нейронной сети, с которой приходится бороться различными методами.

2.3 Вывод

Изучив вышеописанные методы, можно сказать, что нельзя выделить один единственный, который явно превосходил бы остальные по всем параметрам. Каждый из изученных алгоритмов имеет свои преимущества и недостатки. Все они могут применяться для решения узконаправленных задач, в которых данные не противоречат ограничениям этих методов.

Однако в настоящее время в большинстве случаев, когда необходимо распознать тот или иной объект на снимке, используют технологию сверточных нейронных сетей. Несмотря на то, что для реализации такой системы требуется большое количество тренировочных данных и вычислительных ресурсов, она зарекомендовала себя как одну из самых эффективных. Эта модель способна обучаться и выделять намного больше полезных признаков со снимка на каждой итерации «тренировки». Также в ее алгоритмах обработки изображений возможно использование ранее изученных методов, что дает гибкость в решении различных задач.

3 Применение изученных методов в системах с автопилотом

В современном мире разработка автономного транспорта требует систем обработки изображения для обнаружения дорожных знаков. Такая область, как компьютерное зрение, является главным ведущим звеном в решении этой задачи.

Рассмотренные в прошлых частях алгоритмы обработки снимков для последующего детектирования объектов широко применяются в этой сфере.

Так, например, методы поиска контуров комбинируют с алгоритмами сравнения с эталоном. В связи с тем, что снимки с камер систем автопилота не всегда высокого качества и часто имеют шумы из-за плохой погоды или высокой скорости движения, сначала используют методы аналогичные детектору границ Кэнни для того, чтобы определить края дорожного знака (рисунок 3.1 [8]). Следующим этапом является сравнение участков полученного изображения с эталоном дорожного знака для распознания его на снимке. В случае совпадения определенных ранее границ с шаблоном, обнаруженный знак относят к классу эталона.

Рисунок 3.1 – Определение краев дорожного знака

Преобразование Хафа, относящееся к методам сравнения с эталоном, не редко используется как самостоятельный алгоритм распознавания дорожных знаков. Его суть заключается в поиске объектов на изображении, которые относятся к определенному классу фигур. Однако в случае устройств систем с

автопилотом, когда на вход алгоритму подаются снимки, имеющие различные дефекты (шумы, засветы, размазанность картинки вследствии нестабилизированности камеры и т. д.), этот метод показывает не лучшие результаты. Поэтому для исправления такой ситуации используют различные способы предварительной обработки полученных снимков [9].

Однако исходя из информации, полученной в ходе исследования, самым приоритетным вариантом решения задачи детектирования дорожных знаков на снимке являются сверточные нейронные сети (рисунок 3.2 [10]). Существует большое количество моделей таких сетей, например: STN (spatial transformer network), IDSIA и MultiNet. Данный подход применяется во многих устройствах с автопилотом, так как такие системы более устойчивы к помехам на снимке, они обладают более высокой скоростью и точностью распознавания дорожных знаков вне зависимости от состояния знака или условий съемки. Нейронные сети позволяют получать намного больше информации об изображении, которая в дальнейшем может быть использована для «тренировки» модели. Главным преимуществом такого метода является возможность постоянного дообучения системы, что впоследствии приводит к увеличению качества классификации и обнаружения дорожных знаков.

Рисунок 3.2 – Пример структуры сверточной нейронной сети

ЗАКЛЮЧЕНИЕ

Цель, которая была поставлена в начале научно-исследовательской работы, была достигнута: изучена технология компьютерного зрения и методы, применяемые для решения задачи распознавания дорожных знаков на снимке.

Решены все поставленные задачи:

- проведено исследование существующих методов распознавания объектов на снимке;
- определены преимущества и недостатки рассмотренных методов;
- проанализирована возможность применения изученных алгоритмов компьютерного зрения для распознавания дорожных знаков на снимке системами с автопилотом.

В ходе исследования были определены особенности, преимущества и недостатки рассмотренных подходов к распознаванию объектов на изображении.

Алгоритмы поиска контуров являются простыми в реализации с точки зрения математики, однако они имеют существенные недостатки и ограничения:

- они не дают нужного результата на изображених с плохим цветовым контрастом, так как становится невозможным выделение контура;
- они не способны обработать перекрытие одних объектов другими;
- большинство таких методов неусточивы к шуму.

Методы сравнения с эталоном удобно применять, когда имеются заготовленные шаблоны обнаруживаемых объектов разделенные по классам. Одной из главных сложностей такого подхода является правильное определение используемой меры близости исследуемого экземпляра и эталона, от которой зависят результаты работы алгоритма.

Сверточные нейронные сети возможно использовать в случае, когда имеется большой объем обучающих данных. Если же количество тренировочных данных невелико, то возникает одна из главных проблем нейронных

сетей — переобучение. В тех случаях, в которых другие методы сталкиваются с ограничениями, связанными с качеством изображения, такая модель справляется лучше за счет свойства самообучения.

Стоит отметить, что алгоритмы компьютерного зрения и обработки изображений постоянно оптимизируются и улучшаются с целью повышения качества результата, и вполне возможно, что скоро системы с автопилотом станут обыденностью.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Беспилотные автомобили (мировой рынок) [Электронный ресурс]. URL: https://www.tadviser.ru/index.php/%D0%A1%D1%82%D0%B0%D1%82%D1%8C%D1%8F:%D0%91%D0%B5%D1%81%D0%BF%D0%B8%D0%BB%D0%BE%D1%82%D0%BD%D0%B5_%D0%B0%D0%B2%D1%82%D0%BE%D0%BC%D0%BE%D0%B1%D0%B8%D0%B8%D0%B8%D0%B8%D0%B8%D0%B8%D0%B8%D0%B8%D0%B8%D0%B8%D0%B8%D0%B8%D0%B8%D0%B8%D0%B9_%D1%80%D1%88%D0%BD%D0%BE%D0%BA) (дата обращения: 02.12.2022)
- 2. Горячкин Б.С., Китов М.А. Компьютерное зрение Саранск: Е-Scio, 2020.
- 3. Девяткин А.В., Филатов Д.М. Нейросетевая система обнаружения знаков дорожного движения СПб.: СПбГЭТУ «ЛЭТИ», 2019.
- 4. Калинина Н.Д., Куров А.В. Анализ методов распознавания и поиска образов на космических снимках М.: Издательство МГТУ им. Н.Э. Баумана, 2012.
- 5. Сакович И.О., Белов Ю.С. Обзор основных методов контурного анализа для выделения контуров движущихся объектов. М.: Издательство МГТУ им. Н.Э. Баумана, 2014.
- 6. Чичварин Н.В. Распознавание образов. М.: Издательство МГТУ им. Н.Э. Баумана, 2016.
- 7. Шолле Ф. Глубокое обучение на Python СПб.: Питер, 2018. 400c.
- 8. Медведев М.В., Кирпичников А.П., Синичкина Т.А. Детектирование дорожных знаков при помощи компьютерного зрения. Казань: Вестник Казанского технологического университета, 2016.
- 9. Якимов П.Ю. Распознавание дорожных знаков в реальном времени с использованием мобильного ГПУ Самара: Издательство СГАУ им. академика С.П. Королева, 2016.
- 10. Каковкин П.А., Друки А.А., Спицын В.Г. Применение алгоритмов глубокого обучения для локализации и распознавания дорожных знаков на снимке Томск: Издательство ТПУ, 2015.

ПРИЛОЖЕНИЕ А Презентация научно-исследовательской работы

Презентация научно-исследовательской работы содержит 11 слайдов, на которых представлено краткое описание научно-исследовательской работы.