

Fakultät Elektrotechnik und Informationstechnik Institut für Automatisierungstechnik

BACHELOR THESIS

zum Thema

Image Based Visual Servoing for Aerial Robot

vorgelegt von Pablo Rodríguez Robles im Studiengang Aerospace Engineering, Jg. 2014 geboren am 28.02.1996 in León, Spain

Betreuer: Dipl.-Ing. Chao Yao

Verantwortlicher Hochschullehrer: Prof. Dr. techn. Klaus Janschek

Tag der Einreichung: 27.03.2018

Contents

	ation and Backgroud
eoretica	l Background and State of the Art
tware F	Requirements Specification and Structured Analysis
Gener	al Description
3.1.1	Product Perspective
	User Characteristics
3.1.3	Assumptions and Dependencies
	Functional Requirements
3.1.5	Other Requirements
3.1.6	General Constraints
	cured Analysis
	Motive Aims coretical tware F Gener 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5

List of Figures

List of Tables

List of Listings

1 Introduction

1.1 Motivation and Backgroud

During the last decade, the use of Unmanned Aerial Vehicles (UAV) has spread among very different applications. The use of flying robots can be very helpful to improve the way some tasks are already achieved by terrestrial robots. For example object transportation, environment mapping or surveillance. At the Institute of Automation Engineering¹ of the Technical University of Dresden, a drone is being developed in cooperation with the Institute of Solid Mechanics² to investigate the use of flying robots in aerial manipulation.

When dealing with manipulation of objects, it is desired that the aerial robot adopts a certain pose with respect to the target before the manipulation process really starts. The present work deals with the development of a Visual Servoing (VS) control system that helps a quadrotor robot to acquire the desired pose by means of image data.

A monocular monochrome camera as well as an Inertial Measurement Unit (IMU) are planed to be the only available on board sensors. For the controller proposed the feedback is directly computed from image features rather than estimating the robot's pose and using the pose errors as control input.

In order to integrate the visual servoing algorithm into the future modular robot system, the algorithm has been designed and tested on a underactuated conventional quadrotor. The aerial robot is implemented within the ROS³ framework, where the visual servoing controller developed for this thesis is also integrated. Instead of using real hardware the complete system is simulated using Gazebo⁴.

¹Technische Universität Dresden. Institut für Automatisierungstechnik. 01062 Dresden, Germany

²Technische Universität Dresden. Institut für Festkörpermechanik. 01062 Dresden, Germany

³www.ros.org

⁴www.gazebosim.org

1.2 Aims and Objectives

The aim of this work is to implement and test a VS control algorithm for a quadrotor, which could be later used by the Flypulator (TODO: Add reference) project. This includes the review of the state of the art with regard to Visual Servoing, the design of a solution and a prototypical implementation with in the ROS framework and simulation with Gazebo of a test case.

The present thesis documents comprehensively the theoretical background, implementation details and results of the conducted work through the following structure. In Chapter 2 the theoretical background and state of the art of Visual Servoing is presented. Chapter 3 gives a description of the system requirements as well as the system decomposition by Structure Analysis (SA) Systementwurf mit Strukturierter Analyse 2016. Chapter 4 describes the solution developed and the algorithms to be tested. Chapter 5 deals with the implementation, testing and validation. Finally, Chapter 6 contains the final results and conclusions and Chapter 7 suggests future improvement and research paths.

2 Theoretical Background and State of the Art

3 Software Requirements Specification and Structured Analysis

Chapter 3 deals with the Software Requirement Specification (SRS) *IEEE 830-1998 - IEEE Recommended Practice for Software Requirements Specifications* 2017 and the Structured Analysis of the system developed in this work. Thanks to these two procedures, the objectives that the system must fulfil and a decomposition of it into different functions are stated. This leads to a complete definition of the system.

The purpose of this work is to design a Visual Servoing controller to provide an underactuated aerial robot the commands necessary to reach a desired pose with respect to a target object.

The VS controller developed is to be integrated into the hector_quadrotorMeyer et al., 2012, an underactuated aerial robot equipped with a monocular monochrome camera pointing downwards.

3.1 General Description

In this section the Software Requirement Specification *IEEE 830-1998 - IEEE Recommended Practice for Software Requirements Specifications* 2017 for the Visual Servoing controller developed in this thesis is presented. Using SRS helps to define the system that is being designed, tracking continuously that the product developed satisfies the needs of the user. Only when every requirement stated therein is fulfilled the implementation would be completed.

3.1.1 Product Perspective

The VS controller is to be used with an aerial robotic system based on the ROS framework. From the perspective of the robotic system, the VS controller subsystem will appear as a ROS node which publishes control commands through a ROS topic to the rest of the system.

The used aerial robotic system is the hector_quadrotor¹ model Meyer et al., 2012. (TODO: Add diagram).

The subsystem developed here is to interact with the camera hardware of the robot, a monocular monochrome camera pointing downwards (TODO: Add hardware). The output of the subsystem are the control inputs of the aerial robot dynamics (TODO: Add which are the quadrotor control inputs), this inputs interact with the inner control loop for the attitude and outer control loop for the position already implemented in the robotic system (TODO: Position loop is not related to vs system, but can be useful for benchmark).

3.1.2 User Characteristics

The product developed in this thesis will be used as part of a ROS-based system, thus the expected user is a designer willing to implement a VS control strategy for his robotic system. The user should be familiarized with the ROS framework and the system will need the structure and interfaces of any standard ROS product.

3.1.3 Assumptions and Dependencies

The software has been tested on the following platforms, forward or backward support is not guaranteed on a different set-up.

• ROS version: ROS Indigo

• Operating System: Ubuntu 14.04 Trusty Tahr, 64 bit

3.1.4 Functional Requirements

The functional requirements describe what the system must do to complete the overall task:

• F1: Give visual servoing control input. Control input based on image data so that the aerial robot comes closer to the target pose. Control as a difference on the image features, no pose estimation.

¹wiki.ros.org/hector_quadrotor

• F2: Tell user when the target pose is achieved. The system must be able of telling the user whether the target pose has been already achieved or not.

3.1.5 Other Requirements

- A1: All components are working reliably.
- A2: The software is sufficiently fast, modular and modifiable.
- A3: The implementation is transparent and comprehensible.
- A5: Control inputs must provide stable and smooth flight manoeuvres.
- A6: Robot must be able to start from different initial positions.
- A7: Algorithm must be fast enough to allow real time control of the aerial robot.
- A8: The implementation should follow the style guide of ROS ROS_Style

3.1.6 General Constraints

- The environment must be sufficiently illuminated for the camera to work.
- The target pose must be provided by a sufficient number of features (TODO: How many?) in form of a 2D code (TODO: At least in the first version).
- The target must be always in the filed of view of the camera, so features can be extracted an control input computed.
- Testing computer is a MacBook Pro (Early 2015) with 2.7 GHz Intel Core i5 processor, 8 GB 1867 MHz DDR3 memory and Intel Iris Graphics 6100 1536 MB graphics. Linux OS is run using Oracle VM VirtualBox² (Version 5.1.14 r112924) with 5 GB base memory and two processors.

3.2 Structured Analysis

²www.virtualbox.org

References

IEEE 830-1998 - IEEE Recommended Practice for Software Requirements Specifications (2017). URL: https://standards.ieee.org/findstds/standard/830-1998.html (visited on 11/14/2017) (cit. on p. 4).

Meyer, Johannes, Alexander Sendobry, Stefan Kohlbrecher, Uwe Klingauf, and Oskar von Stryk (2012). "Comprehensive Simulation of Quadrotor UAVs using ROS and Gazebo". In: to appear (cit. on pp. 4, 5).

Systementwurf mit Strukturierter Analyse (2016). German. URL: https://www.et.tu-dresden.de/ifa/fileadmin/user_upload/www_files/richtlinien_sa_da/Nutzeranforderungen_nach_IEEE.pdf (visited on 11/14/2017) (cit. on p. 2).

Selbstständigkeitserklärung

Hiermit versichere ich, Pablo Rodríguez Robles, geboren am 28.02.1996 in León, Spain, dass ich die vorliegende Bachelor Thesis zum Thema

Image Based Visual Servoing for Aerial Robot

ohne unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als solche kenntlich gemacht. Bei der Auswahl und Auswertung des Materials sowie bei der Herstellung des Manuskripts habe ich Unterstützungsleistungen von folgenden Personen erhalten:

Dipl.-Ing. Chao Yao

Weitere Personen waren an der geistigen Herstellung der vorliegenden Bachelor Thesis nicht beteiligt. Mir ist bekannt, dass die Nichteinhaltung dieser Erklärung zum nachträglichen Entzug des Diplomabschlusses (Masterabschlusses) führen kann.

Dresden, den 27.03.2018	
,	Unterschrift