

Sep 06, 2022

Thawing of feeder-free hPSCs

In 1 collection

Hanqin Li¹, Oriol Busquets², Steven Poser², Dirk Hockemeyer¹, Frank Soldner²

¹University of California, Berkeley; ²Albert Einstein College of Medicine

dx.doi.org/10.17504/protocols.io.b4k9quz6

ABSTRACT

This protocol describes the procedure of thawing feeder-free human pluripotent stem cells (hPSCs) using mTeSR-plus or StemFlex

General Notes

- Throughout this protocol, the term hPSC is used to collectively refer to both hiPSCs and hESCs. All described procedures have been tested and work equally well for hiPSCs and hESCs.
- 2. Until otherwise indicated, feeder-free hPSCs are routinely grown in a humidified cell culture incubator under "low" oxygen conditions. We have successfully maintained hPSCs using either 3% 02 (3% 02, 5% C02) or 5% 02 (5% 02, 5% C02) conditions.
- 3. We have routinely maintained feeder-free cells in either mTeSR-plus or StemFlex. However, these two mediums are not interchangeable. Pick one and stick to it.
- 4. We have routinely maintained feeder-free hPSC cultures on VTN, Matrigel and Geltrex-coated cell culture plates without observing obvious differences.

DOI

dx.doi.org/10.17504/protocols.io.b4k9quz6

PROTOCOL CITATION

Hanqin Li, Oriol Busquets, Steven Poser, Dirk Hockemeyer, Frank Soldner 2022. Thawing of feeder-free hPSCs. **protocols.io**

https://dx.doi.org/10.17504/protocols.io.b4k9quz6

FUNDERS ACKNOWLEDGEMENT

Aligning Science Across Parkinson's

Grant ID: ASAP-000486

1

Citation: Hanqin Li, Oriol Busquets, Steven Poser, Dirk Hockemeyer, Frank Soldner Thawing of feeder-free hPSCs https://dx.doi.org/10.17504/protocols.io.b4k9quz6

COLLECTIONS (i)

Feeder-free culturing of hPSCs

KEYWORDS

ASAPCRN

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Feb 02, 2022

LAST MODIFIED

Sep 06, 2022

PROTOCOL INTEGER ID

57729

PARENT PROTOCOLS

Part of collection

Feeder-free culturing of hPSCs

Item	Vendor	Catalog #
DMEM/F12	Thermo	11320082
	Fisher	
mTeSR-plus	STEMCELL	100-0276
	Technologies	
StemFlex	Thermo	A3349401
	Fisher	
Penicillin & Streptomycin	Thermo	15140163
(100X)	Fisher	
Vitronectin	Thermo	A14700
(VTN-N) Recombinant Human	Fisher	
Protein, Truncated		
DMSO	Fisher	BP231-100
	Scientific	
Y-27632	Chemdea	CD0141
Accutase	Thermo	SCR005
	Fisher	
Matrigel	Corning	CV40234
Geltrex	Fisher	A1413302
	Scientific	
ReLeSR	Stem Cell	05872
	Technologies	

Note: This protocol makes reference to protocols in other collections. Please check for any materials found in those protocols, which might not be listed here

1 Prepare one 6-well VTN/Matrigel/Geltrex-coated plate for each vial of frozen hPSCs.

A detailed protocol on "Coating plates" can be found in the "Feeder-free culturing of hPSCs" collection. A link to this collection can be found in the title section of this protocol, located above

- 2 Place vial of frozen hPSCs in § 37 °C water bath with constant agitation.
- 3 Pipette thawed cell suspension into 10 ml pre-warmed DMEM/F12.

5m

4 Centrifuge **200-300** x g, 00:05:00

Citation: Hanqin Li, Oriol Busquets, Steven Poser, Dirk Hockemeyer, Frank Soldner Thawing of feeder-free hPSCs

While cells are spinning, aspirate the VTN/Matrigel/Geltrex solution from the coated plates and add 2 ml pre-warmed Feeder-free medium + Rock inhibitor to each well.

5.1 Feeder-free Medium (version A)

StemFlex	450 ml
basal medium	
StemFlex	50 ml
supplement	

Final volume: 500ml

Feeder-free Medium (version B)

mTeSR-plus	400 ml
basal medium	
mTeSR-plus	100 ml
supplement	

Final volume: 500ml

- Feeder-free mediums (version A & B) are not interchangeable. Pick one and stick to it.
- It is possible to include 5 ml Penicillin & Streptomycin (100X) in the feeder-free medium

Y-27632 (1,000X)

Y-27632	5 mg
DMSO	1.56 ml

Feeder-free medium + Rock inhibitor

Α	В
Feeder-free medium	50 ml
Y-27632 (1,000X)	50 μΙ

Final volume: 50ml

6	Aspirate most of the medium on the centrifuged hPSCs, being careful not to disturb the pellet
7	Add 1 ml Feeder-free medium + Rock inhibitor
8	Re-suspend the cells using a P1000 tip.
9	Dispense the cells onto the VTN/Matrigel/Geltrex-coated plate, adding 160 µl per well.
10	Check the cells under the microscope to get an idea of the resulting cell density.
11	Spread the cells by moving the plate in left-right, then backward-forward motion.
12	Place the plate in the low oxygen incubator
13	Change 2 ml pre-warmed Feeder-free medium for each well every other day. When large colonies emerge or hPSCs density reaches 50-80%, passage using Accutase or ReLeSR. It usually takes 5-7 days for the thawed cells to grow to this point.
	A detailed protocol on passaging using Accutase or ReLeSR can be found in the "Passaging of hPSCs" protocol, in the "Feeder-free culturing of hPSCs" collection. A link to this collection can be found in the title section of this protocol, located above