Using Sketching in Machine Learning Pipeline Dimensionality Reduction

CS-430 Project Students: Akhil Pabbathi , Kapil Pathak & Sai Chenchala

Theme:

Effect of different sketching techniques on the classifier accuracy and performance.

Motivation

- Working with very large and high dimensional data is challenging
- Resources and Time

```
(myenv) sai@sai-Lenovo-Z580:~/Desktop/CS-430_Project/30-04-2017$
Python 3.5.2 (default, Nov 17 2016, 17:05:23)
[GCC 5.4.0 20160609] on linux
Type "help", "copyright", "credits" or "license" for more inform
>>> import numpy
>>> a = 4000
>>> instances = 4000
>>> numpy.zeros((instances,dimension))
Traceback (most recent call last):
   File "<stdin>", line 1, in <module>
MemoryError
>>> Image: Addition of the control of t
```

An Elegant Solution:

Many dimensionality reduction techniques such as Feature hashing, Random Projections are available

PIPELINE

- Load Data
- Apply appropriate dimensionality reduction techniques
- Use it for machine learning

Outline

- Techniques: b bit minwise hashing, Feature hashing, JL Random Projection
- Classifiers: Linear SVM, Nonlinear SVM, Logistic Regression & Decision Tree
- Primary Data Set: Reuters Corpus Volume -1
- Secondary Data Set: Farm Ads

A Brief Introduction - b bit minwise hashing

Computing similarity between two sets S1 and S2

$$R = |S1 \cap S2|/|S1 \cup S2|$$

Probabilistic Approach - Apply random permutations to elements of S1 and S2

$$R = Pr(min (\Pi(S1)) = min (\Pi(S2)))$$

Store only the lowest b bits

Binary Quantization - Challenge

- Naive Approach: Using a threshold
- Representing N (<= 2^b) using

 2^{b} length vector Ex: $\{3\} = \{0,0,0,1\}$

Feature Hashing (Hashing trick)

- Feature hashing is mainly used for reducing the dimensionality of feature vectors while feeding them to classifiers.
- Most of the text categorization datasets are sparse in nature. Feature hashing is useful to eliminate this sparsity and save the memory space.
- It allows easy handling of missing data
- It's not possible achieve inverse mapping

Feature Hashing (Hashing trick)

- The effect of hash collisions can be alleviated by using signed hash function
- Mathematically it can be written as,

$$\phi_i^{(h,\xi)}(x) = \sum_{j:h(j)=i} \xi(j)x_j$$

- The results are derived using MurmurHash3 hash function inbuilt in scikit learn library
- Feature hashing is used to reduce the dimensionality of each dataset to 40000, 30000 and 10000 respectively

A brief introduction on JL Random Projections

 $X \in R^{nxd}$ is the data matrix with n samples in R^d

 $P \in R^{dxr}$ is a random projection matrix where r<<d

The new projected data matrix would be $XP \in R^{nxr}$

If P is carefully chosen, then all pairwise Euclidean distances are preserved with high probability.

There many possible constructions for P, one of them is a matrix whose entries are i.i.d standard Gaussian random variables.

An approach for matrix multiplication

As the random projection matrix P is quite large we have divided the columns of P into a set of blocks say $(P_1, P_2,, P_{10})$, then multiplied X with each of the P_i 's and concatenated the results of the multiplications and created the final projected data matrix which has been used for training and testing the classifiers.

Accuracy Plot Linear SVM

Comparison of different dimension reduction techniques for linear SVM classifier

- -Feature Hashing
- -JL Random Projection
- b bit min hash

Accuracy Plot Linear Regression

- -Feature Hashing
- -JL Random Projection
- b bit min hash

Accuracy Plot Decision Tree

Comparison of different dimension reduction techniques for decision trees

-Feature Hashing

- -JL Random Projection
- b bit min hash

Accuracy Plot Nonlinear SVM

-Feature Hashing

- -JL Random Projection
- b bit min hash

References

- K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. Feature hashing for large scale multitask learning. In ICML'09
- RCV-1
- Farm-Ads
- Feature Hashing Video Tutorial
- S. Paul, C. Boutsidis, M. Magdon-Ismail, and P. Drineas. Random projections for support vector machines. In Proceedings of the 16th International Conference on Artificial Intelligence and Statistics (AISTATS) (2013), pp. 498–506.
- https://arxiv.org/abs/1105.4385

