Computer Architecture and Logic Design

Top Level View of Computer Structure and Function

Engr. Rimsha

Last Lecture Review

- Difference between ISA and microarchitecture?
 - ISA :Agreed upon interface between software and hardware
 - Microarchitecture : Specific implementation of an ISA
- Hardware vs. Software Knowledge requirements?
 - Can develop better software if you understand the underlying hardware
 - Can design better hardware if you understand what software it will execute
 - Can design a better computing system if you understand both
- Why study Computer Architecture?
 - Enable Better Systems, Enable new applications, Enable better solutions to problems

Today's Lecture Topics

Computer Structure and Function

Structure and Function

- Hierarchical system
 - Set of interrelated subsystems
- Hierarchical nature of complex systems is essential to both their design and their description
- Designer need only deal with a particular level of the system at a time
 - Concerned with structure and function at each level
- Structure
 - The way in which components relate to each other
- Function
 - The operation of individual components as part of the structure

Function

A computer can perform four basic functions:

- Data processing
 - Data storage
- Data movement
 - Control

Figure 1.1 A Functional View of the Computer

(a)
Data movement

Figure 1.2 Possible Computer Operations

(b) Data storage

Figure 1.2 Possible Computer Operations

(c)
Data movement

Figure 1.2 Possible Computer Operations

(d) Control

Figure 1.2 Possible Computer Operations

What is A Computer?

- Three key components
- Computation
- Communication
- Storage (memory)

We will cover all three components

Figure 1.3 The Computer

Structure - Top Level

Generic System Bus

System Bus = Data, Address, and Control Bus (set of wires, e.g. 32 wires each) Typically multiple I/O buses, power bus, etc.

Structure - CPU

- Major components of the CPU
 - Control Unit (CU) Controls the operation of the CPU
 - Arithmetic and Logic Unit (ALU) Performs data processing functions, e.g. arithmetic operations
 - Registers Fast storage internal to the CPU, but contents can be copied to/from main memory
 - CPU Interconnect Some mechanism that provides for communication among the control unit, ALU, and registers

Structure – A Microprogrammed Control Unit

Structure

Figure 1.4 A Top-Down View of a Computer

The Von Neumann Model/Architecture

- Also called stored program computer (instructions in memory). Two key properties:
- Stored program
 - Instructions stored in a linear memory array
 - Memory is unified between instructions and data
 - The interpretation of a stored value depends on the control signals
- Sequential instruction processing
 - One instruction processed (fetched, executed, and completed) at a time
 - Program counter (instruction pointer) identifies the current instr.
 - Program counter is advanced sequentially except for control transfer instructions

The Von Neumann Model (of a Computer)

• Q: Is this the only way that a computer can operate?

- A: No.
- Qualified Answer: But, it has been the dominant way
 - i.e., the dominant paradigm for computing
 - for N decades

The Dataflow Model (of a Computer)

- Von Neumann model: An instruction is fetched and executed is control flow order
 - As specified by the instruction pointer
 - Sequential unless explicit control flow instruction
- Dataflow model: An instruction is fetched and executed in data flow order
 - i.e., when its operands are ready
 - i.e., there is no instruction pointer
 - Instruction ordering specified by data flow dependence
 - Each instruction specifies "who" should receive the result
 - An instruction can "fire" whenever all operands are received
 - Potentially many instructions can execute at the same time
 - Inherently more parallel

Von Neumann vs Dataflow

- Consider a Von Neumann program
 - What is the significance of the program order?
 - What is the significance of the storage locations?

Sequential

• Which model is more natural to you as a programmer?

More on Data Flow

- In a data flow machine, a program consists of data flow nodes
 - A data flow node fires (fetched and executed) when all it inputs are ready
 - i.e. when all inputs have tokens

Data flow node and its ISA representation

+ Data Flow Nodes

An Example Data Flow Program

Memory Hierarchy

- Design constraints on a computer's memory can be summed up by three questions:
 - How much, how fast, how expensive
- There is a trade-off among capacity, access time, and cost
 - Faster access time, greater cost per bit
 - Greater capacity, smaller cost per bit
 - Greater capacity, slower access time
- The way out of the memory dilemma is not to rely on a single memory component or technology, but to employ a memory hierarchy

⁺ Memory Hierarchy - Diagram

Figure 4.1 The Memory Hierarchy

Memory in a Modern System

Cache and Main Memory

Figure 4.3 Cache and Main Memory

A Modern Memory Hierarchy

Cache/Main Memory Structure

Typical Cache Organization

Figure 4.6 Typical Cache Organization

Figure 4.5 Cache Read Operation

Elements of Cache Design

Cache Addresses

Logical

Physical

Cache Size

Mapping Function

Direct

Associative

Set Associative

Replacement Algorithm

Least recently used (LRU)

First in first out (FIFO)

Least frequently used (LFU)

Random

Write Policy

Write through

Write back

Line Size

Number of caches

Single or two level

Unified or split

+

Logical and Physical Caches

Figure 4.7 Logical and Physical Caches

Processor	Туре	Year of Introduction	L1 Cache _a	L2 cache	L3 Cache	
IBM 360/85	Mainframe	1968	16 to 32 kB	-	_	
PDP-11/70	Minicomputer	1975	1 kB	_	_	
VAX 11/780	Minicomputer	1978	16 kB	1	2-3	
IBM 3033	Mainframe	1978	64 kB	_		
IBM 3090	Mainframe	1985	128 to 256 kB	Y	_	Table 4.3
Intel 80486	PC	1989	8 kB		_	
Pentium	PC	1993	8 kB/8 kB	256 to 512 KB	=	Carba Ciara
PowerPC 601	PC	1993	32 kB		2.—X	Cache Sizes
PowerPC 620	PC	1996	32 kB/32 kB			of Some
PowerPC G4	PC/server	1999	32 kB/32 kB	256 KB to 1 MB	2 MB	Processors
IBM S/390 G6	Mainframe	1999	256 kB	8 MB		FIOCESSOIS
Pentium 4	PC/server	2000	8 kB/8 kB	256 KB	-	
IBM SP	High-end server/ supercomputer	2000	64 kB/32 kB	8 MB	s—s	
CRAY MTA _b	Supercomputer	2000	8 kB	2 MB	-	
Itanium	PC/server	2001	16 kB/16 kB	96 KB	4 MB	
Itanium 2	PC/server	2002	32 kB	256 KB	6 MB	
IBM POWER5	High-end server	2003	64 kB	1.9 MB	36 MB	
CRAY XD-1	Supercomputer	2004	64 kB/64 kB	1MB	10-1	
IBM POWER6	PC/server	2007	64 kB/64 kB	4 MB	32 MB	^a Two values separated by a slash
IBM z10	Mainframe	2008	64 kB/128 kB	3 MB	24-48 MB	refer to instruction and data caches.
Intel Core i7 EE 990	Workstaton/ server	2011	6 × 32 kB/32 kB	1.5 MB	12 MB	^b Both caches are
IBM zEnterprise 196	Mainframe/ Server	2011	24 × 64 kB/ 128 kB	24 × 1.5 MB	24 MB L3 192 MB L4	instruction only; no data caches.

Cache Addresses Virtual Memory

- Virtual memory
 - Facility that allows programs to address memory from a logical point of view, without regard to the amount of main memory physically available
 - When used, the address fields of machine instructions contain virtual addresses
 - For reads to and writes from main memory, a hardware memory management unit (MMU) translates each virtual address into a physical address in main memory

- Mapping Function
 - Direct Mapping
 - Associative Mapping
 - Set Associative Mapping

End of Lecture