Boost Converter Theory

Introduction

A **Boost Converter**, also known as a step-up converter, is a DC-to-DC power converter that steps up the input voltage to a higher output voltage while stepping down the current. The main components of a boost converter are:

- 1. **Inductor (L):** Stores energy when the switch is ON and releases it to the load when the switch is OFF.
- 2. Switch (usually a MOSFET): Controls the flow of current through the inductor.
- 3. **Diode (D):** Ensures current flows in the correct direction.
- 4. Capacitor (C): Smoothens the output voltage to reduce ripples.

Working Principle

The operation of the boost converter can be divided into two main states:

- 1. Switch ON (0<t<DT):
 - The MOSFET conducts, and the inductor stores energy from the source.
 - The load is powered by the energy stored in the capacitor.
- 2. Switch OFF (DT<t<T):
 - The MOSFET turns OFF, causing the inductor to release its stored energy to the load via the diode.
 - The combined energy from the input source and the inductor is transferred to the load, increasing the output voltage.

Circuit

Switch ON: Switch OFF:

By volt-sec balance: $\int V_L dt = 0$

For
$$\underline{0 \le t \le DT}$$
, $V_L = V_S$

For
$$\underline{\mathsf{DT}} \leq \mathsf{t} \leq \mathsf{T}$$
, $V_L = V_S - V_O$

So,

$$\Rightarrow V_S \times DT + (V_S - V_O) \times (T - DT) = 0$$

$$\Rightarrow V_S(DT + T - DT) = V_O(T - DT)$$

$$\therefore V_O = \frac{V_S}{1 - D}$$
Here, $(1 - D) < 1$, so $V_O > V_S$ always.

By ampere-sec balance: $\int i_c \, dt = 0$

For
$$0 \le t \le DT$$
, $i_c = -i_o$

For
$$\underline{DT \le t \le T}$$
, $i_c = i_L - i_o$

So,

$$\Rightarrow -i_o \times DT + (i_L - i_o)(T - DT) = 0$$

$$\Rightarrow i_L(1 - D) = i_o$$

$$\therefore i_L = \frac{i_o}{1 - D}$$

Note: This i_L is the average inductor current. So, $i_L = i_L(avg)$.

Some Important Parameter

- ightharpoonup Ripple in Inductor Current: $\Delta i_L = \frac{DV_S}{fL}$
- > RMS Inductor Current: $i_L(rms) = \sqrt{i_L^2 + \left(\frac{\Delta i_L}{2\sqrt{3}}\right)^2}$
- ightharpoonup Source Current: $i_{\scriptscriptstyle S}=i_{\scriptscriptstyle L}$ (always)
- > Switch or MosFET Current: $i_{sw}(avg) = Di_L$ and $i_{sw}(rms) = \sqrt{D}i_L(rms)$ and this works only for time 0 to DT.
- ightharpoonup Diode Current: $i_D(avg)=(1-D)i_L$ and $i_D(rms)=\sqrt{(1-D)}i_L(rms)$ and works only for time DT to T.
- ightharpoonup Ripple in Output Voltage: $\Delta V_o = \frac{Di_o}{fC}$
- ightharpoonup Critical Inductance (L_c) : Value of inductance at which converter operates at boundary of continuous and discontinuous conduction. $L_c=\frac{D(1-D)^2R}{2f}$
- ightharpoonup Critical Capacitance: $C_c = \frac{D}{2fR}$

Efficiency and Losses

Boost converter efficiency (η) is the ratio of output power (P_{out}) to input power (Pin):

$$\eta = \frac{P_{\text{out}}}{P_{in}}$$

Losses can be minimized through careful component selection and optimized design. Key types of losses include:

- Conduction Losses: Caused by the resistance in inductors, switches, and diodes. Using components with low resistance can reduce these losses.
- > **Switching Losses:** Occur during MOSFET state transitions. Minimizing on-state resistance and optimizing switching speeds can help reduce these.
- > **Diode Reverse Recovery Losses:** Due to reverse current during state transitions. Selecting diodes with short reverse recovery times, like Schottky diodes, mitigates these losses.
- Magnetic Core Losses: Result from energy dissipation in the inductor core. These can be minimized by choosing suitable core materials and reducing magnetic flux density.
- > Capacitor Losses: Caused by the Equivalent Series Resistance (ESR) of capacitors. Using low-ESR capacitors improves efficiency.

Applications

Boost converters are widely used to step up input voltage in various fields:

- Power Supplies: Provide stable output voltages for portable devices, laptops, and power banks.
- ➤ **LED Lighting:** Ensure consistent brightness in LEDs by regulating current, especially in automotive systems.
- Solar Power Systems: Enhance energy extraction by stepping up panel voltage in MPPT controllers.
- Electric Vehicles: Supply higher voltages for traction motors and auxiliary systems to ensure optimal performance.
- > Telecommunications: Stabilize voltages for RF transmitters and communication equipment.
- > **Sensor Systems:** Provide stable voltage for sensitive components like ADCs in battery-operated or energy-harvesting devices.