格

离散数学

马晓星

南京大学·计算机科学与技术系

回顾

- 偏序与偏序集
 - 偏序关系,哈斯图
 - 极大(小)元,最大(小)元,上(下)界
 - 偏序,全序,良序
- 偏序集的划分
 - 链与反链,高与宽
 - 划分为反链
 - 划分为链

提要

- 偏序格
 - 在序理论下讨论一类"规整"的偏序集
- 代数格
 - 用抽象代数的视角来刻画上述结构
- 分配格与有补格
 - 满足一些特定运算性质的格,具有特定的结构特征

格(Lattice)

• 偏序格:

设(*L*,≼)是偏序集, 若

- 对于任意的 $x,y\in L$, 存在 $\{x,y\}$ 的最小上界 $lub\{x,y\}$, 【记为 $x\vee y$, 也称其为x与y的并(join)】
- 对于任意的 $x,y\in L$,存在 $\{x,y\}$ 的最大下界 $glb\{x,y\}$, 【记为 $x\wedge y$, 也称其为x与y的交(meet)】

则称L关于≼构成一个格。

格的例子

- a) $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb{Z}^+ \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb{Z}^+ \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb{Z}^+ \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb{Z}^+ \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb{Z}^+ \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb{Z}^+ \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb{Z}^+ \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb{Z}^+ \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb{Z}^+ \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb{Z}^+ \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb{Z}^+ \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb{Z}^+ \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb{Z}^+ \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb{Z}^+ \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb{Z}^+ \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb{Z}^+ \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb{Z}^+ \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb{Z}^+ \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb{Z}^+ \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb{Z}^+ \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb{Z}^+ \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb{Z}^+ \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb{Z}^+ \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb{Z}^+ \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb{Z}^+ \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb{Z}^+ \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb{Z}^+ \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb{Z}^+ \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb{Z}^+ \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb{Z}^+ \}$, $\{x \in \mathbb{Z}^+ \mid x \mid 60\}, \mid x \in \mathbb$
- b) $(\mathcal{P}(S),\subseteq)$. $x \land y = x \cap y$, $x \lor y = x \cup y$

格的例子

- $\bullet \quad (\mathbb{Z}^+, \leq). \qquad x \wedge y = \min\{x, y\}, \quad x \vee y = \max\{x, y\}$
- $(\mathbb{N} \times \mathbb{N}, \leq)$, $(a, b) \leq (c, d)$ iff. $a \leq c$ and $b \leq d$.

格与哈斯图

• 右边两个哈斯图所表示的偏序集不是格

格与哈斯图 (续)

格的基本关系式

• 根据"最小上界"和"最大下界"的定义,有如下关系式:

• $a \leq c$, $b \leq c \Rightarrow a \vee b \leq c$

• $c \le a$, $c \le b \Rightarrow c \le a \land b$

• $a \le c$, $b \le d \Rightarrow a \lor b \le c \lor d$, $a \land b \le c \land d$

格的性质

• 若(L, ≼)是格,则: $\forall a, b \in L$:

$$a \leq b \Leftrightarrow a \wedge b = a \Leftrightarrow a \vee b = b$$

可以采用循环证明

- $a \leq b \Rightarrow a \wedge b = a$
- $a \land b = a \Rightarrow a \lor b = b$
- $a \lor b = b \Rightarrow a \leq b$

格的性质

设(L,≤)是格,则∧,∨可看作L上的二元运算,它们具有下列运算性质:

• 结合律: $(a \land b) \land c = a \land (b \land c), (a \lor b) \lor c = a \lor (b \lor c)$

• 交換律: $a \wedge b = b \wedge a$, $a \vee b = b \vee a$

• 吸收律: $a \wedge (a \vee b) = a$, $a \vee (a \wedge b) = a$

• 幂等律: $a \wedge a = a$, $a \vee a = a$

关于格的对偶命题

• 对偶命题:

设P是含有格中元素以及符号=, \leq , \geq , \vee , \wedge 的命题.若P*是将P中的 \leq , \geq , \vee , \wedge 分别替换为 \geq , \leq , \wedge , \vee 所得到的命题,则称P*是P的对偶命题.

- 对偶命题的例子
 - $a \land b \leq a$ 和 $a \lor b \geq a$ 互为对偶命题
- 对偶命题构成规律
 - 格元素名不变
 - ≼与≽, ∧与∨全部互换。

格的对偶原理

- 如果命题P对一切格为真,则P的对偶命题P*也对一切格为真。证明思路:证明P*对任意格 (S, \leq) 为真
 - 定义S上的二元关系 \leq *, $\forall a,b \in S$, $a \leq$ * $b \Leftrightarrow b \leq a$, 显然 \leq * 是偏序。
 - $\forall a,b \in S$, $a \land *b = a \lor b$, $a \lor *b = a \land b$ 所以($S, \leqslant *$)也是格
 - 这里 $a \land *b$, $a \lor *b$ 分别是a,b关于偏序≤*的最大下界和最小上界。
 - P^* 在(S, ≼)中为真当且仅当 P在(S, ≼ *)中为真。
 - P在一切格中为真, : P*在一切格中为真。

代数格

格的代数性质

结合律

交换律

吸收律

幂等律

吸收律

幂等律

 $x \wedge \underline{x} = x \wedge (\underline{x \vee (x \wedge x)}) = x$ (两次应用吸收律)

同理可证: $x \lor x = x$

代数格(定义)

• 代数格: 设L是一个集合, A和V是L上的二元运算, 且满足结合律、交换律、吸收律, 则称(L, A, V)是代数格。

等式	名 称
$x \wedge (y \wedge z) = (x \wedge y) \wedge z$ $x \vee (y \vee z) = (x \vee y) \vee z$	结合律
$x \wedge y = y \wedge x$ $x \vee y = y \vee x$	交换律
$x \lor (x \land y) = x$ $x \land (x \lor y) = x$	吸收律

代数格中的偏序关系

- (L, ∧, V)为一个代数格,则有
 - $\forall x, y \in L, x \land y = x \text{ iff } x \lor y = y$
 - 若 $x \wedge y = x$,则 $x \vee y = (x \wedge y) \vee y = y$ //吸收律
 - 若 $x \lor y = y$,则 $x \land y = x \land (x \lor y) = x //吸收律$
 - $\forall x, y \in L$, 定义 $x \leq y$ iff $x \wedge y = x$ (即 $x \vee y = y$)
 - 证明这个关系满足自反性、反对称性、传递性。
 - 这个偏序构成一个格。
 - lub{x,y} 即为 x ∨ y。
 - glb{x,y} 即为 x ∧ y。
- 代数格等同于 (偏序)格

子格

- **子格**(sublattice)是格的子代数。设(L, Λ ,V)是格,非空集合 $S \subseteq L$,若S 关于L中的运算 Λ ,V 仍构成格,称(S, Λ ,V)是L的子格。
 - 例如,设L为如图所示的格,

$$S_1 = \{a, e, f, g\}, S_2 = \{a, b, e, g\}$$

 S_1 不是L的子格,因为 $e, f \in S_1$,但 $e \land f = c \notin S_1$. S_2 是L的子格.

格同态

• 设(L_1 , Λ_1 , V_1)和(L_2 , Λ_2 , V_2)是格,若有函数 $f: L_1 \to L_2$ 使得对于任意的 $a,b \in L_1$,有 $f(a \land_1 b) = f(a) \land_2 f(b)$ $f(a \lor_1 b) = f(a) \lor_2 f(b)$ 成立,则称f为从 L_1 到 L_2 的同态映射,简称**格同态**.

- 格同态是保序的: $\forall x,y \in L_1(x \leq_1 y \to f(x) \leq_2 f(y))$
 - 一般情况下逆命题不成立. 例如

• 在一些特定条件下成立.

格同构

- **格同构:**若从格(L_1 , Λ_1 , V_1)到(L_2 , Λ_2 , V_2)的同态映射f为一个双射,则称其为格同构.
- - [充分性概要]
 - 由于 $x \land_1 y \leqslant_1 x$, 由保序性, $f(x \land_1 y) \leqslant_2 f(x)$; 同理, $f(x \land_1 y) \leqslant_2 f(y)$; 于是 $f(x \land_1 y) \leqslant_2 f(x) \land_2 f(y)$
 - 由于逆映射 f^{-1} 仍然保序, $f(x) \wedge_2 f(y) \leq_2 f(x)$, $f^{-1}(f(x) \wedge_2 f(y)) \leq_1 x$; 同理 $f^{-1}(f(x) \wedge_2 f(y)) \leq_1 y$; 于是 $f^{-1}(f(x) \wedge_2 f(y)) \leq_1 x \wedge_1 y$; 再由f保序, $f(x) \wedge_2 f(y) = f(f^{-1}(f(x) \wedge_2 f(y))) \leq_2 f(x \wedge_1 y)$.
 - 于是 $f(x \land_1 y) = f(x) \land_2 f(y)$. 同理可证 $f(x \lor_1 y) = f(x) \lor_2 f(y)$

格同构

• 例: 设 $L_1 = (\{1,2,3,4,6,12\}, |), L_2 = (\{1,2,3,4,6,12\}, \leq),$ f(x) = x

则f是双射,但不是同构映射,因为 $f(2) \leq f(3)$,但2不整除3.

于是f不是同构映射.

格同构的直观特征

• 观察以下两个格的哈斯图:

格同构的直观特征(续)

格同构的直观特征(续)

- Iso ⇒ same
- Morph ⇒<mark>shape</mark>

Isomorphic lattices have same Hasse diagrams' shape

分配格与有补格

几种典型的格

- 三种典型的格:
 - (1) **链(chain)**
 - (2) 钻石格(diamond lattice, M₃)
 - (3) 五角格(pentagon lattice, N₅)

分配格

- 分配格: 设(L, Λ ,V)为格,若 $\forall a$,b, $c \in L$,
 - $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$
 - $a \lor (b \land c) = (a \lor b) \land (a \lor c)$

则称L为分配格(distributive lattice).

分配格

- 钻石格(diamond lattice, M₃) 不是分配格
 - $b \wedge (c \vee d) = b \boxtimes (b \wedge c) \vee (b \wedge d) = e$
- 五角格(pentagon lattice, N₅)不是分配格
 - $d \lor (b \land c) = d \not\sqsubseteq (d \lor b) \land (d \lor c) = c$

分配格的判定定理

- 定理(分配格判定定理一):设L为格,则L是分配格当且仅当L不含有与 M_3 (钻石格)或 N_5 (五角格)同构的子格.
 - 注意:是不含子格,不是子图

含五角格、钻石格子图 (但不是子格)的分配格

- 推论
 - 小于五元的格皆为分配格
 - 任何链皆为分配格

分配格的判定定理(续)

都不是分配格:

 ${a,b,c,d,e}$ 是 L_1 的子格,同构于钻石格; ${a,b,c,e,f}$ 是 L_2 的子格,同构于五角格; ${a,b,c,e,f}$ 是 L_3 的子格,同构于钻石格;

分配格的判定定理(续)

● 定理(分配格判定定理二): 设L为格,则L是分配格当且仅当对于任意的 $a,b,c\in L$,有

$$(a \land b = a \land c) \land (a \lor b = a \lor c) \rightarrow b = c$$

• [必要性概要]

$$b = b \lor (a \land b)$$

$$= b \lor (a \land c)$$

$$= (b \lor a) \land (b \lor c)$$

$$= (a \lor c) \land (b \lor c)$$

$$= (a \land b) \lor c$$

$$= c$$

分配格的判定定理(续)

都不是分配格:

 L_2 : $b \lor c = b \lor e, b \land c = b \land e$, 但 $c \neq e$;

 L_2 : $c \lor b = c \lor d, c \land b = c \land d, \quad (ab \neq d)$.

有界格

- 有界格(bounded lattice): 设L为格,
 - 存在 $b \in L$,使得 $\forall x \in L$ 有 $b \leq x$ 【b称为格L的全下界(bottom)】
 - 存在 $t \in L$,使得 $\forall x \in L$ 有 $x \leq t$ 【元素t称为格L的全上界(top)】 此时格L称为有界格.
 - 若格L中存在全下界或全上界,则一定唯一.
 - 一般将格L的全下界记为0,全上界记为1
 - 有界格L一般记为(L, \wedge , \vee , $\mathbf{0}$, $\mathbf{1}$), $\forall a \in L: a \vee \mathbf{0} = a, a \wedge \mathbf{1} = a$

有界格(续)

- 有界格(*L*,∧,∨, 0, 1)满足同一律、支配律:
 - 同一律: $\forall a \in L$, $a \lor 0 = a$, $a \land 1 = a$
 - 支配律: $\forall a \in L$, $a \land 0 = 0$, $a \lor 1 = 1$
 - 0是关于v运算的单位元, A运算的零元;
 - 1是关于A运算的单位元, V运算的零元。

有界格(续)

• 有限格皆为有界格,设 $L = \{a_1, a_2, \cdots, a_n\}$,则 $a_1 \wedge a_2 \wedge \cdots \wedge a_n \not\in L$ 的全下界 $a_1 \vee a_2 \vee \cdots \vee a_n \not\in L$ 的全上界

• 求涉及有界格的命题之对偶命题,须将全下界与全上界对换

补元

• **有界格的补元(complement)**: 设 $\langle L, \wedge, \vee, 0, 1 \rangle$ 为有界格, $a \in L$, 若存在 $b \in L$ 使得

$$a \wedge b = \mathbf{0} \perp a \vee b = \mathbf{1}$$

则称元素b是a的补元.

补元的存在性与唯一性

- 任何有界格中,全上界1和全下界0互补
- 对于一般元素,可能不存在补元
- 补元若存在,可能有多个(不保证唯一)

有界分配格的补元

- **有界分配格的补元唯一**: 设(L, Λ ,V,**0**,**1**)为有界分配格, $a \in L$,若a存在补元则其补元唯一.
- 证明: 假设b,c皆为a之补元,则有 $a \lor c = 1$, $a \land c = 0$; $a \lor b = 1$, $a \land b = 0$ 由于全上界和全下界唯一,从而有 $a \lor c = a \lor b$, $a \land c = a \land b$.由于L是分配格,故b = c. \Box

有补格(续)

• **有补格(complemented lattice)**: 设(L, Λ ,V,**0**,**1**)为有界格,若L中所有元素皆存在补元,则称L为有补格.

• 例: 钻石格 M_3 和五角格 N_5 皆为有补格.

有补分配格

• 代数格:结合律、交换律、吸收律、(幂等律)

• 分配格: 分配律

● 有 界: 同一律、(支配律)

● 有 补: 补 律、(双重补律、德摩根律)

42

有补分配格(代数性质)

结合律

交换律

分配律

同一律

补律

吸收律

幂等律

支配律

双重补律

德摩根律

小结

- 格是任意两个元素都有上确界和下确界的偏序集.
- 格也是定义了并和交运算且满足结合律、交换律、吸收律的代数系统.

- 有补分配格进一步满足分配律、同一律、支配律、补律、德摩根律等运算性质.
 - 将构成一种极为规整的结构