Exercice3:

Plan d'adressage IP d'entreprise

("Il faut pas apprendre par coeur mais, par le coeur")

.....

- 1) Choisir la classe optimale Des @IP (ici nombre max d'@ par SR est 29)
 - Nb d'@ = 2^{ZM} 2 \Rightarrow 29 \leq 2^{5} 2 \Rightarrow 5 bits H
 - Nb de SR = $2^{\text{NbDe1dansS}}$ 2 \Rightarrow 3 SR \leq 2³ 2 \Rightarrow 3 bits S
 - Nbre total de bits empruntés: 3bits S + 5 bits H = 8 bits
 - ⇒ On peut donc travailler en classe C
- 2) Nombre de bits S
 - Nb de SR = 2^{NbDe1dansS} 2 (si RFC950)
 - 3 SR ≤ 2³ 2
 - S = 3 bits (6 reseaux potentiels)
- Masque
 - Masque = MasqParDefaut + NbDeBitsS
 - = /24 + 3 = /27
 - = 255.255.255.**224**

.....

- 4) Nombre de machines configurables (Nb @ = 2ZM 2)
 - SR1: 21 @ \leq 2⁵ 2 \Rightarrow 30 machines potentielles
 - SR2: 29 @ ≤ 2⁵ 2 ⇒ 30 machines potentielles
 - SR3: 23 @ ≤ 2⁵ 2 ⇒ 30 machines potentielles
- 5) Plages d'adresses utilisees dans chaque sous-reseau
 - Premier sous-réseau

```
224 = 111 | 0 .0000 0000

SR1 ⇒ 001 | 0 .0000 0000 = 32+1 fast

⇒ 001 | 1 .1111 1111 = 63-1 last

@SR1= 192.X.Y.32 [ 192.X.Y.33 à 192.X.Y.62 ]
```

- Adresse de diffusion192.X.Y.63
- Machines réellement installés.......... [192.X.Y.33 à 192.X.Y.53]

Deuxieme sous-réseau

```
224 = 111 \mid 0.0000\ 0000

SR2 \Rightarrow 010 \mid 0.0000\ 0000 = 64+1 fast

\Rightarrow 010 \mid 1.1111\ 1111 = 95-1 last

@SR1= 192.X.Y.64 [ 192.X.Y.65 à 192.X.Y.94 ]
```

- Troisième sous-réseau

```
224 = 111 \mid 0.00000000

SR1 \Rightarrow 011 \mid 0.00000000 = 96+1 \quad fast

\Rightarrow 011 \mid 1.111111111 = 127-1 \quad last

@SR1= 192.X.Y.96 [ 192.X.Y.97 à 192.X.Y.126 ]
```

- Adresse de diffusion192.X.Y.127
- Machines réellement installés..........[192.X.Y.97 à 192.X.Y.119]

.....

- X = 168 Pourquoi ?
- Y = 0 Pourquoi?
- · "Qui veut faire l'ange fait la bête " Pascal

......

Recapitulatif des 3 premieres question:

- 1) Classe optimale: "il faut savoir le nbre de bits S et le nbre de bits H"
- 2) Nombre de bits pour la configuration des sous-reseaux
 - Nombre de bits S : Nb SR = $2^{\text{nb de Bits1 Dans S}} 2$ $3 \leqslant 2^3 - 2 \Rightarrow 3 \text{ bits S}$
- 3) Masque: "il faut savoir le nbre de bits H"
 - Nombre de bits S : Nb @ = $2^{\text{nb de Bits0 Dans H}} 2$ $29 \le 2^5 - 2 \implies 5 \text{ bits H}$
- 1) Classe optimale: $S + H = 3 + 5 = 8 \Rightarrow Classe C$