

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

⑯ Patentschrift
⑯ DE 3201224 C2

⑮ Int. Cl. 4:
B 05 D 7/26

B 05 D 7/02
B 05 D 7/16
C 04 B 41/61
C 09 D 3/72
C 09 G 18/62

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

⑯ Patentinhaber:
Hüls AG, 4370 Marl, DE

⑯ Erfinder:
Flakus, Werner, Dipl.-Chem. Dr., 4350
Recklinghausen, DE; Disteldorf, Josef, Dipl.-Chem.
Dr., 4690 Herne, DE

⑯ Für die Beurteilung der Patentfähigkeit
in Betracht gezogene Druckschriften:

DE-OS 29 16 201

⑯ Verfahren zur Herstellung von licht- und wetterstabilen Polyurethanbeschichtungen

DE 3201224 C2

DE 3201224 C2

PS 32 01 224

Beschreibung

Isophorondiisocyanat (IPDI) bildet bei der Umsetzung mit hydroxylgruppenhaltigen Verbindungen (Polyole) Urethansysteme, die als Überzüge verwendet werden.

5 In der Praxis werden sehr vielfältige Anforderungen an die Überzüge gestellt. Man verlangt eine hohe Beständigkeit gegenüber Oxidation, Hydrolyse und Lösungsmittelleinflüssen. Sie dürfen weder zu hart noch zu weich sein. Ein besonderes Problem stellt die Herstellung licht- und wetterstabiler Überzüge dar.

Die Eigenschaften derartiger Überzüge können bereits verbessert werden, wenn man anstelle des Monomeren IPDI-Addukte einsetzt. Als IPDI-Addukte im Rahmen dieser Anmeldung sollen angesehen werden:

10 1. Oligomere des IPDI, insbesondere das Isocyanurat,
2 Umsetzungsprodukte von IPDI mit mehrfunktionellen niedrigen Alkoholen, z. B. Trimethylolpropan.

Derartige IPDI-Addukte sind allgemeiner Stand der Technik und beispielsweise nach dem Verfahren der
15 DE-OS 29 16 201 zugänglich.

Die Auswahl der hydroxylgruppenhaltigen Verbindungen (Polyole), die mit IPDI-Addukten zur Reaktion gebracht werden können, ist sehr groß. So sind beispielsweise niedermolekulare Diole und Triole, aber auch höhernmolekulare hydroxylgruppenhaltige Verbindungen, wie Oxyester, Oxyether oder ihre Mischungen geeignet, mit der Isocyanatkomponente zu Zweikomponenten-Reaktivsystemen verwendet zu werden.

20 Während nun bei Umsetzung von Oxyestern mit IPDI-Addukten relativ viskose Harzmischungen anfallen, deren gehärtete Filme eine merkliche Hydrolyseempfindlichkeit aufweisen, erhält man mit Oxyethern niedrig viskose Harze, deren Filme zwar hydrolysebeständig, aber dafür licht- und oxidationsanfällig sind.

Als leistungsfähig hinsichtlich der Licht- und Wetterstabilität haben sich hydroxylgruppenhaltige Polymerisate auf der Basis Acrylester, Vinylester und Styrol erwiesen. Diese hydroxylgruppenhaltige Polyacrylate weisen üblicherweise ein Molekulargewicht von 500 bis 5000 auf, ihre Hydroxylzahl liegt zwischen 20 und 200. Hydroxylgruppenhaltige Polyacrylate verschiedenster Bauart sind wohlbekannte, handelsübliche Verbindungen.

25 Es liegt nun auf der Hand, derartige hydroxylgruppenhaltige Polyacrylate als Hydroxylkomponente zur Herstellung leistungsfähiger PUR-Beschichtungen zu verwenden. Ihr Nachteil aber ist: die Filme sind hart und spröde.

30 Durch Oxyester-Zusätze läßt sich zwar naturgemäß eine Elastifizierung erreichen, gleichzeitig wird aber die angestrebte Hydrolysebeständigkeit des Makromolekülarbandes vermindert.

Wenn man das hydroxylgruppenhaltige Polyacrylat/IPDI-System mit Polyethylenglykol- oder Polypropylen-glykolethern flexibilisiert, so stellt sich heraus, daß man eine reduzierte UV- und Oxidationsbeständigkeit der Filme in Kauf nehmen muß. Darüber hinaus geht die Lösungsmittelbeständigkeit zurück.

35 Aufgabe dieser Erfindung war es nun, auf Basis der bekannten Beschichtungssysteme ein Verfahren zu entwickeln, mit dessen Hilfe elastische, hydrolysebeständige und insbesondere licht- und wetterstabile Filme hergestellt werden können.

Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung von Überzügen mit hoher Licht- und Wetterstabilität und zudem guter Elastizität und Hydrolysebeständigkeit

40 durch Umsetzung von IPDI-Addukten mit handelsüblichen hydroxylgruppenhaltigen Polymerisaten auf der Basis (Meth)acrylsäureester, Vinylester und Styrol,
durch Applizierung der erhaltenen Harzmischungen auf Oberflächen und anschließende Härtung,
welches dadurch gekennzeichnet ist, daß man

45 a) IPDI-Isocyanurat oder Umsetzungsprodukte von IPDI mit mehrfunktionellen niedrigen Alkoholen mit hydroxylgruppenhaltigen Polyacrylat-Verbindungen im NCO/OH-Verhältnis von $x : 1$ umsetzt, wobei die Bedingung $1,1 > x > 0,7$ gilt und diese hydroxylgruppenhaltigen Polyacrylat-Verbindungen aus
b) 10 bis 90 Gewichtsprozent hydroxylgruppenhaltigen Polyacrylaten und
c) entsprechend 90 bis 10 Gewichtsprozent Tetrahydrofuran-Polymerisaten mit einem Molekulargewicht
50 zwischen 200 und 5000 bestehen.

Als zu beschichtende Oberflächen kommen Metalle in jeder Form, Holz, Kunststoff, Beton usw. in Betracht.

Als hydroxylgruppenhaltige Polyacrylate kommen hydroxylgruppenhaltige Copolymerisate auf der Basis (Meth)acrylsäurealkylester, Vinylester und Styrol etc. zum Einsatz. Die genaue chemische Struktur der im Handel angebotenen Produkte, wie DESMOPHEN® A 151 (Hersteller: Bayer), LUMITOL® AM 80 (Hersteller: BASF), MACRYNAL® SM 540 (Hersteller: Fa. Cassella), LUMITOL® ALR 8432 (Hersteller: BASF) und DEGAN-LAN® LS 75/151 (Hersteller: Degussa) ist unbekannt, es handelt sich jedenfalls immer um acrylathaltige Verbindungen.

Unter dem Namen TERACOL® 650 (Hersteller: Du Pont) ist ein THF-Polymerisat im Handel erhältlich, dessen Molekulargewicht ca. 650 beträgt. Den Harzmischungen können PigmentierungsmitTEL, wie z. B. KRONOS® CL 220 (TiO_2 , Hersteller: Kronos-Titan-GmbH) beigefügt werden.

Als übliche Lackzusätze sind herkömmliche Verlaufsmittel anzusehen.

Die Erfindung betrifft weiterhin die nach diesem Verfahren erhaltenen Überzüge.
Die Umsetzung der IPDI-Addukte mit den hydroxylgruppenhaltigen Polyacrylat-Verbindungen erfolgt in der Weise, daß diese miteinander gemischt und entweder kalt oder heiß gehärtet werden. Je nach dem erfolgt die Härtung dann in wenigen Minuten bei z. B. $200^\circ C$ oder in Tagen bzw. Stunden bei Umgebungstemperatur.

Das Verhältnis, in dem die IPDI-Addukte mit hydroxylgruppenhaltigen Polyacrylat-Verbindungen umgesetzt werden, wird so gewählt, daß auf eine NCO-Gruppe 0,7 bis 1,1 OH-Gruppen kommen. Vorzugsweise werden

PS 32 01 224

stöchiometrische Mengen eingesetzt.

Die Vorteile des erfindungsgemäßen Verfahren sind signifikant:

1. Es ist nunmehr möglich, Filme ausreichender Elastizität und unterschiedlicher Härte herzustellen. 5
2. Die Licht- und Wetterstabilität der erhaltenen Filme ist überraschenderweise maßgeblich verbessert gegenüber Systemen, die kein THF-Polymerisat enthalten (vgl. Tabelle 4). Sie ist auch besser als bei Systemen, die anstelle des IPDI andere Isocyanate enthalten (vgl. Tabellen 5 bis 7).
3. Die Aliphatenverträglichkeit wie auch die Superbenzinbeständigkeit der gehärteten Filme ist gut und nicht beeinträchtigt.
4. Die Verträglichkeit aller Reaktionspartner der Harzmischungen ist vollauf gewährleistet und erlaubt es, hochglänzende z. B. weißpigmentierte Beschichtungen herzustellen. 10
5. Die hochviskosen hydroxylgruppenhaltigen Polyacrylate werden üblicherweise nur in Gegenwart von etwa 35 bis 40% Lösungsmitteln eingesetzt. Bei der Verwendung von THF-Polymerisaten, deren Viskosität unter 500 m²/sec liegt, können daher beträchtliche Mengen an Lösungsmitteln eingespart werden, womit eine high-solid Arbeitsweise gewährleistet ist. 15

Das erfindungsgemäße Verfahren wird durch die nachfolgenden Tabellen 2 bis 8 illustriert. Alle in diesen Tabellen untersuchten Harzmischungen weisen ein NCO/OH-Verhältnis von 1 : 1 auf. Als Pigmentierungsmittel wird Titandioxid eingesetzt. Die Härtung der Harzmischungen erfolgt innerhalb von 30 Minuten bei 120°C. 20

Das in den Tabellen 3 und 6 aufgeführte IPDI-Trimethylolpropan-Addukt wird durch Umsetzung der Komponenten erhalten, wobei das stöchiometrische Verhältnis so gewählt wird, daß auf eine OH-Gruppe zwei NCO-Gruppen kommen. 25

In den Tabellen 1 bis 3 sind die Pendelhärten und Erichsentiefungen sowie die Zusammensetzungen der entsprechenden Harzmischungen aufgeführt. Tabelle 1 führt die nach dem Stand der Technik bekannten Filme auf; die Tabellen 2 und 3 enthalten die Daten erfindungsgemäßer Harzzusammensetzungen. 25

Tabelle 1 (Stand der Technik)

Filmdaten: IPDI-Isocyanurat/hydroxylgruppenhaltiges Polyacrylat

Pigmentierung: KRONOS® CL 220, PVK 15

Harzzusammensetzung NCO : OH = 1 : 1 mit	Pendelhärte König (s)	Erichsen- tiefeung (mm)	
DESMOPHEN® A 151	173	0,3	
LUMITOL® AM 80	171	1,1	
MACRYNAL® SM 540	168	0,5	40
LUMITOL® ALR 8432	128	8,0	
DEGALAN® LS 75/151	127	8,0	

Tabelle 2

Filmdaten: IPDI-Isocyanurat/hydroxylgruppenh. Polyacrylat/TERACOL®

Pigmentierung: KRONOS® CL 220, PVK 15

Harzzusammensetzung NCO : OH = 1 : 1 mit	Pendelhärte König (s)	Erichsen- tiefeung (mm)	
DESMOPHEN® 151	60 T	149	55
TERACOL® 650	40 T		
LUMITOL® AM 80	60 T	141	60
TERACOL® 650	40 T		
MACRYNAL® SM 540	80 T	158	65
TERACOL® 650	20 T		
LUMITOL® ALR 8432	90 T	108	
TERACOL® 650	10 T		
DEGALAN® LS 75/151	90 T	107	
TERACOL® 650	10 T		

PS 32 01 224

Tabelle 3

Filmdaten: IPDI-Trimethylpropan-Addukt/MACRYNAL® SM 540/ggf. TERACOL® 650

Pigmentierung: KRONOS® CL 220, PVK 15

Harzzusammensetzung NCO : OH = 1 : 1 mit		Pendelhärte König (s)	Erichsen- tiefeung (mm)
MACRYNAL® SM 540	80 T	172	0,5
MACRYNAL® SM 540	20 T	85	> 10,0
TERACOL® 650			

Osram-Sylt-Test

Der Osram-Sylt-Test in Anwesenheit von Wasser erlaubt es, mit einfachster Ausstattung eine qualitative Differenzierung der Licht- oder Wetterstabilität von Systemen untereinander vorzunehmen.

Als Maßstab der Beurteilung fungieren die Glanzwerte, die im zeitlichen Abstand von je 500 Stunden gemessen werden und hier vereinfacht nur nach 1000 und 2000 Stunden dargestellt werden.

Tabelle 4

Glanzwerte: (Gardner) nach 1000 und 2000 h Osram-Sylt-Test in Anwesenheit von Wasser an
IPDI-Isocyanurat-Systemen

Pigmentierung: KRONOS® CL 220, PVK 15

Harzzusammensetzung NCO : OH = 1 : 1 mit		Ausgangs- glanzwerte			Glanzwerte nach 1000 h			Glanzwerte nach 2000 h		
		20°	60°	85°	20°	60°	85°	20°	60°	85°
DESMOPHEN® A 151		76	83	96	24	60	95	17	43	96
DESMOPHEN® A 151	60 T	79	86	98	72	82	97	49	72	97
TERACOL® 650	40 T									
MACRYNAL® SM 540		77	86	94	24	62	95	19	44	93
TERACOL® 650	80 T	72	82	97	53	85	98	29	63	97
LUMITOL® AM 80		68	88	95	50	72	97	35	72	97
LUMITOL® AM 80	60 T	77	85	97	68	82	98	69	82	96
TERACOL® 650	40 T									
DEGALAN® LS 75/151		70	79	90	55	80	92	59	82	93
DEGALAN® LS 75/151	90 T	74	86	97	62	73	96	70	86	98
TERACOL® 650	10 T									
LUMITOL® ALR 8432		76	92	96	66	80	94	60	72	95
LUMITOL® ALR 8432	90 T	74	89	94	60	79	95	69	77	96
TERACOL® 650	10 T									

Den Glanzwerten nach dem 2000 Stunden Osram-Sylt-Test zufolge führt die Verwendung von TERACOL® zu einer erkennbaren Verbesserung der Glanzhaltung, und zwar zunehmend mit steigender Menge.

Um den Stellenwert dieser Feststellung zu ermitteln, bedarf es auch der Gegenüberstellung anderer Isocyanat/hydroxylgruppenhaltiger Polyacrylat/Systeme.

PS 32 01 224

Tabelle 5

Osram-Sylt-Test LUMITOL® AM 80/diverse Isocyanate

Pigmentierung: KRONOS® CL 220, PVK 15

LUMITOL® AM 80 OH : NCO = 1 : 1 in Kombination mit	Ausgangs- glanzwerte			Glanzwerter nach 1000 h			Glanzwerter nach 2000 h			10
	20°	60°	85°	20°	60°	85°	20°	60°	85°	
HDI-Biuret	59	84	94	52	75	95	37	62	92	
HDI-Isocyanurat	68	80	98	58	76	97	50	72	95	
IPDI-Isocyanurat	68	88	95	50	72	97	35	72	97	
IPDI-Isocyanurat sowie TERACOL®-Zusatz gem. Tabelle 2	77	85	97	68	82	98	69	82	96	15

In den Tabellen 6 und 7 werden die Eigenschaften von Harzen auf Basis der hydroxylgruppenhaltigen Polyacrylate DEGALAN® LS 75/151 und LUMITOL® ALR 8432 mit diversen Isocyanaten verglichen.

Tabelle 6

Osram-Sylt-Test DEGALAN® LS 75/151/diverse Isocyanate

Pigmentierung: TiO₂ KRONOS® CL 220, PVK 15

DEGALAN® LS 75/151 OH : NCO = 1 : 1 in Kombination mit	Ausgangs- glanzwerte			Glanzwerter nach 1000 h			Glanzwerter nach 2000 h			30
	20°	60°	85°	20°	60°	85°	20°	60°	85°	
HDI-Biuret	67	80	91	53	70	97	41	72	93	
HDI-Isocyanurat	61	78	95	63	78	96	60	81	95	
IPDI-Isocyanurat	70	79	90	55	80	92	59	82	93	
IPDI-Isocyanurat sowie TERACOL®-Zusatz gem. Tabelle 2	74	86	97	62	73	96	70	86	98	40

Tabelle 7

Osram-Sylt-Test LUMITOL® ALR 8432/diverse Isocyanate

Pigmentierung: KRONOS® CL 220, PVK 15

LUMITOL® ALR 8432 OH : NCO = 1 : 1 in Kombination mit	Ausgangs- glanzwerte			Glanzwerter nach 1000 h			Glanzwerter nach 2000 h			50
	20°	60°	85°	20°	60°	85°	20°	60°	85°	
HDI-Biuret	64	84	93	35	66	96	37	72	96	
HDI-Isocyanurat	70	78	97	52	76	97	40	65	94	
IPDI-Isocyanurat	76	92	96	66	80	94	60	72	95	
IPDI-Isocyanurat sowie TERACOL®-Zusatz gem. Tabelle 2	74	89	94	60	78	95	69	77	96	55

PS 32 01 224

Tabelle 8

Glanzwerte (Gardner) nach 1000 und 2000 h

Osram-Sylt-Test in Anwesenheit von Wasser bei
Systemen gemäß Tabelle 3

10	Harzzusammensetzung NCO : OH = 1 : 1 mit	Ausgangs- glanzwerte			Glanzwerte nach 1000 h			Glanzwerte nach 2000 h			
		20°	60°	85°	20°	60°	85°	20°	60°	85°	
	MACRYNAL® SM 540		77	85	97	35	71	96	21	46	97
15	MACRYNAL® SM 540 TERACOL® 650	80 T 20 T	78	84	97	50	73	95	32	63	95

Patentansprüche

20 1. Verfahren zur Herstellung von Überzügen mit hoher Licht- und Wetterstabilität und zudem guter Elastizität und Hydrolysebeständigkeit durch Umsetzung von IPDI-Addukten mit handelsüblichen hydroxylgruppenhaltigen Polymerisaten auf der Basis (Meth)acrylsäureester, Vinylester und Styrol, durch Applizierung der erhaltenen Harzmischungen auf Oberflächen und anschließende Härtung, dadurch gekennzeichnet, daß man

25 a) IPDI-Isocyanurat oder Umsetzungsprodukte von IPDI mit mehrfunktionellen niedrigen Alkoholen mit hydroxylgruppenhaltigen Polyacrylat-Verbindungen in NCO/OH-Verhältnis von $x : 1$ umsetzt, wobei die Bedingung $1,1 > x > 0,7$ gilt und diese hydroxylgruppenhaltigen Polyacrylat-Verbindungen aus

30 b) 10 bis 90 Gewichtsprozent hydroxylgruppenhaltigen Polyacrylaten und c) entsprechend 90 bis 10 Gewichtsprozent Tetrahydrofuran-Polymerisaten mit einem Molekulargewicht zwischen 200 und 5000 bestehen.

35 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die THF-Polymerisate ein Molekulargewicht zwischen 500 und 1000 aufweisen.

40

45

50

55

60

65