Honework #10

Section 6.4

$$2.6) \quad (x+y)^{s} = \binom{s}{s} x^{s} y^{o} + \binom{s}{l} x^{l} y^{l} + \binom{s}{l} x^{2} y^{2} + \binom{s}{3} x^{2} y^{3} + \binom{s}{4} x^{l} y^{4} + \binom{s}{5} x^{2} y^{5}$$

$$= x^{5} + 5 x^{4} y^{+} |0|_{x}^{3} y^{2} + |0|_{x}^{2} y^{3} + 5 x y^{4} + y^{5}$$

$$4)$$
 $\binom{3}{8} = \frac{15!}{8!5!} = 1287$

7.)
$$\binom{11}{9}^{10}$$
, $(-x)^9 = -\frac{19!}{9! \cdot 10!} 2^{10} x^9 = -92378. 1029x^9 = -94995072$

7.) each flip is
$$\frac{1}{2}$$

$$P(i)=\frac{1}{2} \quad P(2)=\frac{1}{2} \quad P(3)=\frac{1}{2}\cdot\frac{1}{2$$

$$\frac{(2.)}{\binom{4}{1} \cdot \binom{98}{4}} = \frac{3243}{10824}$$

12.)
$$\frac{\binom{52}{8}}{\binom{4}{1} \cdot \binom{48}{4}} = \frac{3243}{10829}$$

21.) Outcomes = $\frac{729}{46696} = \frac{1}{64}$

36.)
$$2 \text{ dite}: \frac{1}{6} \cdot \frac{1}{6} = \frac{3}{36}$$
 gince theres 9 combod, $\frac{5}{36}$
 $3 \text{ dite}: \frac{1}{6} \cdot \frac{1}{6} = \frac{1}{6}$ since 21 combod, $\frac{21}{216}$
 $\frac{5}{36} > \frac{21}{216}$ So 2 dite more likely.

Section 7.2

5.) $(1,6)_1(2,5)_1(3,4)_1(4,3)_1(5,2)_1(6,1)$
 $P(1,6)_1 = \frac{1}{7} = \frac{1}{4} = P(2,5)P(3,4) = P(5,6) = P(6,6)$
 $P(4,3) = \frac{3}{7} = \frac{1}{7}$

6.a) $(1,2,3)_1 = \frac{3}{13} = \frac{1}{2}$

6.b) $(3,2,1)_1 = \frac{3}{13} = \frac{1}{2}$

6.c) $(3,2,1)_1 = \frac{3}{13} = \frac{1}{2}$

10a) $P(26,26) = 26!$ $P(3,13) = 13!$

10b) $P(26,26) = 26!$ $P(3,13) = 24!$ gall need to precedent 24

A: $\frac{24!}{26!} = \frac{1}{60}$

10.c) $P(26,26) = 26!$ $P(25,26) = 25!$ A2 next cach other 25

A: $\frac{7-26!}{26!} = \frac{1}{13}$

$$10.6$$
) A: $\frac{26!-2.26!}{26!}$ Since $a_{1}b$ not next to each other 10.6) A: $\frac{6.24!}{26!}$ Since 6 ways to other $a_{1}2$
 10.6) A: $\frac{26!}{26!}$ $\frac{1}{3}$ $\frac{26!}{26!}$ $\frac{1}{3}$ $\frac{26!}{3}$ $\frac{1}{3}$ $\frac{1$

[8a]
$$1 \cdot \frac{1}{7} = \frac{1}{7}$$

[8b] $N=2$ $[-\frac{7}{7} \cdot \frac{6}{7} = \frac{1}{7}$ $N=3$ $[-\frac{7}{7} \cdot \frac{6}{7} \cdot \frac{5}{7} = \frac{19}{49}]$ $N=4$ $\frac{223}{343}$
 $N=5$ $\frac{267!}{240!}$ $N=6$ $\frac{16067}{16807}$ $N=7$ $\frac{116929}{17649}$ $N=7$ 1

2(1.)
$$P(AAB) = \frac{(1)}{2} = \frac{1}{32}$$
 $P(A) = \frac{1}{2}$ $P(A) = \frac{1}{2}$

30a)
$$P=\frac{1}{2}$$

$$P(x=10)=\binom{10}{10}\cdot\binom{1}{2}^{10}\cdot(0.5)^{0}=\frac{1}{1024}$$

306)
$$P=0.6$$

$$\rho(x=10)=\binom{10}{10}\cdot 0.6^{10}\cdot (1-0.6)^0=\frac{59049}{9765625}$$

$$30.c) P(x_{1}=1) = \frac{1}{2!} P(x_{1}=1) \cdot P(x_{2}=1) \dots P(x_{6}=1)$$

$$= \frac{1}{2!} \cdot \frac{1}{2!} \cdot \frac{1}{2!0}$$

$$=\frac{1}{2^{55}}$$
 $=\frac{1}{2^{55}}$