PMTH332 Assignment 1

Jayden Turner (SN 220188234)

21 July 2018

Question 1

Let \sim define an equivalence relation on the set X, and consider the quotient set $X/\sim=\{[x]|x\in X\}$.

For each $[x] \in X/\sim$, the reflexive property of \sim means that $x \in [x]$, so all [x] are nonempty.

Suppose $x, y \in X$ and $y \notin [x]$. That is, $x \sim y$ does not hold. Now suppose that $[x] \cap [y] \neq \emptyset$. Then $\exists t \in [x] \cap [y]$ such that $x \sim t$ and $y \sim t$. By the symmetry of \sim , $t \sim y$. Then, by the transitivity of \sim , there holds $x \sim y$. However this is a contradiction. Therefore, if $y \notin [x]$, then [x] and [y] are disjoint subsets of X.

As every $x \in X$ has an equivalence class [x], it holds that $\bigcup_{x \in X} [x] = X$.

 $\implies X/\sim$ defines a partition of X.

Now let $\{X_{\lambda}|\lambda\in\Lambda\}$ be a partition of X. Define the relation \sim such that $x\sim y$ if and only if $x,y\in X_{\lambda}$ for some $\lambda\in\Lambda$.

By definition $x \sim x$ holds, as does $y \sim x$ if $x \sim y$ holds. Suppose $x \sim y$ and $y \sim z$ hold. Then $x,y \in X_{\lambda}$ and $y,z \in X_{\mu}$ for $\lambda,\mu \in \Lambda$. However, as $\{X_{\lambda}\}$ is a partition of X, each element of X can belong to only one X_{λ} . Therefore, $y \in X_{\lambda}$ and $y \in X_{\mu}$ implies that $\lambda = \mu$. Further, this implies that $x,z \in X_{\lambda} = X_{\mu}$, and so $x \sim z$.

 \implies \sim is an equivalence relation on X.

Question 2

Let \bar{a} denote the right inverse of $a \in G$, and e the right neutral element of G. Then

$$(G2R) \implies \bar{a} = \bar{a} * e$$

$$= \bar{a} * (a * \bar{a})$$

$$(G1) \implies = (\bar{a} * a) * \bar{a}$$

$$(1)$$

$$(G3R) \implies e = \bar{a} * \bar{a}$$

$$(1) \implies = ((\bar{a} * a) * \bar{a}) * \bar{a}$$

$$(G1) \implies = (\bar{a} * a) * (\bar{a} * \bar{a})$$

$$(G3R) \implies = (\bar{a} * a) * e$$

$$(G1) \implies = \bar{a} * a \implies (G3)$$

That is, $\forall a \in G, \exists ! \bar{a} \in G \text{ such that } a * \bar{a} = \bar{a} * a = e.$ Now,

$$(G2R) \implies a = a * e$$

$$(G3) \implies = a * (\bar{a} * a)$$

$$(G1) \implies = (a * \bar{a}) * a$$

$$(G3) \implies = e * a \implies (G2)$$

That is, $\exists e \in G$ such that $\forall a \in G, a * e = e * a = a$. Therefore (G1), (G2) and (G3) hold, so (G, *) is a group.

Question 3

Firstly, to show that the operation is well defined, let $l, l' \in [l]$ and $k, k' \in [k]$. Consider

$$[l'] + [k'] = [l' + k']$$

Note that l-l'=cm and k-k'=dm for $a,d\in\mathbb{Z}$. Therefore, we have that

$$[l' + k'] = [l - cm + k - dm] = [l + k + em]$$

where $e = -c - d \in \mathbb{Z}$. We also have that l + k - (l + k + em) = em, which means that $l + k \cong l + k + em \cong l' + k' \mod m$. That is, [l + k] = [l' + k']. Therefore, the binary operation is well defined as it does not depend on the representatives chosen for each equivalence class.

Firstly, we have that for $[a], [b], [c] \in \mathbb{Z}_m$, [a] + ([b] + [c]) = [a] + [b+c] = [a+b+c] = ([a+b]) + c = ([a] + [b]) + [c], so (G1) holds.

Secondly, note that $[0] \in \mathbb{Z}_m$ and for $[a] \in \mathbb{Z}_m$, [a] + [0] = [a + 0] = [a] = [0 + a] = [0] + [a], so (G2) holds.

Finally, for each $[a] \in \mathbb{Z}_m$, there exists $[-a] \in \mathbb{Z}_m$, where [a] + [-a] = [a-a] = [0] = [-a+a] = [-a] + [a], so (G3) holds.

Therefore, $(\mathbb{Z}_m, +)$ is a group.

Question 4

If $(a * b)^2 = a^2 * b$, then it follows that

$$a * b * a * b = a * a * b * b$$

$$\bar{a} * a * b * a * b = \bar{a} * a * a * b * b$$

$$e * b * a * b = e * a * b * b$$

$$b * a * b * \bar{b} = a * b * b * \bar{b}$$

$$b * a * e = a * b * e$$

$$\implies b * a = a * b$$

Therefore, (G, *) is abelian.