

### **Lecture 10**

# **Semantic Analyzer**

Part 2: Type checking

**Hyosu Kim** 

**School of Computer Science and Engineering** 

**Chung-Ang University, Seoul, Korea** 

https://sites.google.com/view/hyosukim

hskimhello@cau.ac.kr, hskim.hello@gmail.com

### **Overview**







# Semantic analyzer

#### **Checks many kinds of semantic grammars**

Semantic grammars can be different depending on the programming language

#### **Common semantic grammars**

- 1. All variables must be declared before their use (globally or locally)
- 2. All variables must be declared only once (locally)
- 3. All functions must be declared only once (globally)
- 4. All variables must be used with the right type of constant or variables
- 5. All functions must be used with the right number and type of arguments

### How to check them?????



# Semantic analyzer

#### **Checks many kinds of semantic grammars**

Semantic grammars can be different depe

Through scope checking!!

#### **Common semantic grammars**

- 1. All variables must be declared before their us globally or locally)
- 2. All variables must be declared only once (locally)
- 3. All functions must be declared only once (globally)
- 4. All variables must be used with the right type of constant or variables
- 5. All functions must be used with the right number and type of arguments

### How to check them?????





### **Checks many kinds of semantic grammars**

Semantic grammars can be different depending on the programming language

#### **Common semantic grammars**

- 1. All variables must be declared before their use (globally or locally)
- 2. All variables must be declared only once (locally)
- 3. All functions must be declared only once (globally)
- 4. All variables must be used with the right type of constant or variables
- 5. All functions must be used with the right number and type of arguments

How to check them?????

Through type checking!!



### What is a type (data type)?

An attribute of data which tells compilers how programmers intend to use the data

#### **Examples of type** (in C)

- int a;
- char a;
- int a[32];
- char\* a;
- bool a;



### What is a type (data type)?

An attribute of data which tells compilers how programmers intend to use the data

#### What is a type system?

A set of rules that assign specific types to the various constructs of a computer program

#### **Examples of rules in a type system** (e.g., in C)

- a && b
   Both a and b are expected to be booleans and the result of a && b is also of type boolean
- char a = b;b is expected to be a character
- a = 3.0f;
   a is expected to be of type float or double



### What is a type (data type)?

An attribute of data which tells compilers how programmers intend to use the data

#### What is a type system?

A set of rules that assign specific types to the various constructs of a computer program

### What is a type checking?

Ensuring that the types of the operands match the type expected by the operator



### Why do we need type checking?

A lot of type errors can occur in our source code

```
while (foo(x + 5) <= 10) {
    if (1.0 + 2.0) {
    } else if (1 == null) {
    }
}</pre>
```



### Why do we need type checking?

Let's suppose the following assembly language: add \$r1, \$r2, \$r3

#### What are types of \$r1, \$r2, and \$r3????

- If all of them are of type int, this operation is correct
   (e.g., int a = 0; int b = 1; int c = a + b;)
- If \$r2 is a pointer but \$r3 is a floating point number, this operation is not allowed
   (e.g., int\* a = malloc(...); float b = 3.5; int c = a + b;)

### But, both operations have the same assembly language implementation!!!!

- We can not distinguish them in the assembly language level
- We should do the type checking with higher-level representations (e.g., AST)



# Two kinds of languages

#### Statically-typed languages

- The type of a variable is determined / known at compile time
- Type checking is performed during compile-time (before run-time)
  - e.g., C, C++, java, Go, ...: int a = 3; a = "ok";
- Advantage: better run-time performance +
   easy-to-understand/easy-to-find type-related bugs (due to strict rules)

### Dynamically-typed languages

- The type of a variable is associated with run-time values
- Type checking is performed on the fly, during execution
- e.g., python, javascript, ...: a = 3; a = "ok";
- Advantage: higher flexibility + rapid prototyping support



# How types are used/checked in practice?

### In statically-typed languages,

#### Programmers declare types for all identifiers statically

Types are associated with specific keywords (e.g., int, float, bool, char, ...)

#### Compilers

- 1) Infer the type of each expression from the types of its components
- 2) Confirm that the types of expressions matches what is expected

# How??



Inference rules usually have the form of "if-then" statements

If hypothesis is true, then conclusion is true

"If you are a student at CAU, then you are smart"



### Inference rules usually have the form of "if-then" statements

If hypothesis is true, then conclusion is true

### Type checking computes via reasoning

e.g., for an expression A + B,

if A has type int and B has type int, then A + B has type int





### Inference rules usually have the form of "if-then" statements

If hypothesis is true, then conclusion is true

### Type checking computes via reasoning

- e.g., for an expression A + B,
   if A has type int and B has type int, then A + B has type int
- e.g., for an expression A && B,
   if A has type bool and B has type bool, then A && B has type bool





#### **Notations for rules of inferences**

- x: T = x has type T
- $\frac{Hypothesises}{Conclusions}$  = if-then statement "if hypotheses are true, conclusions are true"
- ⊢ = "we can infer"

#### **Examples**

For an expression A && B

- if we can infer that A has type bool and B has type bool, then we can infer that A && B has type bool
- We can infer that A has type bool and B has type bool

  We can infer that A && B has type bool





### More examples

- Axioms:  $\frac{}{\vdash true:bool}$   $\frac{}{\vdash false:bool}$   $\frac{}{\vdash 1:int}$   $\frac{}{\vdash 1000:int}$
- Simple inference rules:

• More complex rules:





### More examples

More complex rules:

$$\frac{\vdash e_1:T \quad \vdash e_2:T \quad T \ is \ a \ primitive \ type \ (e.g., byte, short, int, long, float, double, char)}{\vdash e_1 == e_2:bool}$$

$$\frac{\vdash e_1:T \quad \vdash e_2:T \quad T \ is \ a \ primitive \ type \ (e.g., byte, short, int, long, float, double, char)}{\vdash e_1 \leq e_2:bool \quad \vdash e_1 \geq e_2:bool \quad \vdash e_1! = e_2:bool}$$





#### Free variables?

A variable is free in an expression if its type is not defined/declared within the expression

### **Examples of free variables**

• int y = x + 3;

• y = x + 3;

• if (a == b)





When x + 3, we can use the following rule

$$\frac{\vdash e_1: T \qquad \vdash e_2: T \qquad T \text{ is short, int, long, float or double}}{\vdash e_1 + e_2: T}$$

But, there is no enough information to decide the type of a free variable  $oldsymbol{x}$ 

$$\frac{x \text{ is a variable}}{\vdash x : ??}$$



# Solution: adding scope information

### **Scoping** information can give types for free variables

$$S \vdash e : T$$

We can infer that an expression  $\boldsymbol{e}$  has type  $\boldsymbol{T}$  in scope  $\boldsymbol{S}$ 

Types are now proven relative to the scope the expressions are in

#### **Examples**



# Solution: adding scope information

### More examples

$$\frac{x \text{ is a variable } x \text{ is declared in scope S with type int}}{S \vdash x : \text{int}}$$

$$\begin{array}{c} \textit{f is a non-member function in scope S} \\ \textit{f is globally declared with type } (T_1, ... T_n) \rightarrow \textit{U} \\ \hline S \vdash e_i : T_i \quad \textit{for } 1 \leq i \leq n \\ \hline S \vdash f(e_1, ..., e_n) : \textit{U} \end{array}$$

$$\frac{S \vdash e_1:T[\ ] \quad S \vdash e_2:int}{S \vdash e_1[e_2]:T}$$





### So far, we've defined inference rules for expressions

e.g., A + B, A&&B, ...

# Q. How to check whether statements are semantically well-formed or not? Examples of semantically well-formed statements

- int a = 3;
- bool well\_formed = true;
- string s = "this is well-formed";
- while (1 > 0) { well-formed statement1; well-formed statement2; well-formed statement3; ...}
- if (10 == 10) { well-formed statements; ... } else {well-formed statements; ... }



# Solution: defining well-formedness rules

### Extend our proof system (rules of inferences) to statements

$$S \vdash WF(stmt)$$

We can infer that a statement stmt is semantically well-formed in scope S

#### **Examples**

For assignment statements

$$\frac{S \vdash e_1 \text{ is a variable} \quad S \vdash e_2 \text{ is a variable or constant} \quad S \vdash e_1 : T \quad S \vdash e_2 : T}{S \vdash WF(e_1 = e_2;)}$$

For return statements

$$\frac{S \text{ is in a function returning type T} \quad S \vdash e:T}{S \vdash WF(return e;)} \qquad \frac{S \text{ is in a function returning type void}}{S \vdash WF(return;)}$$



# Solution: defining well-formedness rules

#### More examples

For a set of statements

$$\frac{S \vdash WF(stmt_1) \quad S \vdash WF(stmt_2) \quad \dots \quad S \vdash WF(stmt_n)}{S \vdash WF(stmt_1 \quad stmt_2 \quad \dots \quad stmt_n)}$$

For while loop statements

```
\frac{S \vdash e:bool \quad S' is \ the \ scope \ inside \ the \ while \ loop \quad S' \vdash WF(stmt_1 \quad stmt_2 \quad ... \quad stmt_n)}{S \vdash WF(while(e)\{stmt_1 \quad stmt_2 \quad ... \quad stmt_n\})}
```

Q. for if-else statements



# How types are used/checked in practice?

In statically-typed languages,

#### **Programmers declare types for all identifiers**

Types are associated with specific keywords (e.g., int, float, bool, char, ...)

#### Compilers

- 1) Infer the type of each expression from the types of its components
- 2) Confirm that the types of expressions matches what is expected

Especially, by using the rules of inference + scope information + well-formedness rules

How to use the inference rules for type checking???



# How types are used/checked in practice?

#### How to use the inference rules for type checking???

- First, before doing type checking, do scope checking.
- For each statement:
  - Do type checking for any subexpressions it contains
  - Do type checking for child statements
  - Check the overall well-formedness

#### Example: for a statement "if (A && B) { var = 3; }"

- Do type checking for a subexpression "A&&B"
- Do type checking for a child statement "var = 3;"
  - Do type checking for a subexpression "var" and "3"
  - Check the well-formedness of "var = 3;"
- Check the well-formedness of "if (A&&B) { var = 3; }"



### Recursively walk abstract syntax trees

1. Do scope checking





### Recursively walk abstract syntax trees

2. Do type checking for a subexpression **a** != **b** 

Symbol table after scope checking



 $S \vdash e \text{ is a variable } S \vdash e \text{ is declared with type } T$ 

 $S \vdash e: T$ 



### Recursively walk abstract syntax trees

2. Do type checking for a subexpression a != b





Symbol table after scope checking

# Implementation of type checking

### Recursively walk abstract syntax trees

2. Do type checking for a subexpression **a** != **b** 





### Recursively walk abstract syntax trees

3. Do type checking for a child statement  $\mathbf{a} = \mathbf{a} + \mathbf{1}$ 

Symbol table after scope checking



 $S \vdash e \text{ is a variable } S \vdash e \text{ is declared with type } T$ 

 $S \vdash e: T$ 



### Recursively walk abstract syntax trees

3. Do type checking for a child statement  $\mathbf{a} = \mathbf{a} + \mathbf{1}$ 





### Recursively walk abstract syntax trees

3. Do type checking for a child statement  $\mathbf{a} = \mathbf{a} + \mathbf{1}$ 





### Recursively walk abstract syntax trees

3. Do type checking for a child statement  $\mathbf{a} = \mathbf{a} + \mathbf{1}$ 





### Recursively walk abstract syntax trees

3. Do type checking for a child statement  $\mathbf{a} = \mathbf{a} + \mathbf{1}$ 







### Recursively walk abstract syntax trees

4. Check the overall well-formedness







Another example: Let's check whether a return statement is well-formed or not

bool compare (int a, int b) {





# **Summary: type checking**

Ensuring that the types of the operands match the type expected by the operator

#### In statically-typed languages,

#### Programmers declare types for all identifiers statically

Types are associated with specific keywords (e.g., int, float, bool, char, ...)

#### Compilers

- 1) Infer the type of each expression from the types of its components
- 2) Confirm that the types of expressions matches what is expected

Especially, by using the rules of inference + scope information + well-formedness rules



# **Summary: type checking**

### How to use the inference rules for type checking???

- First, before doing type checking, do scope checking.
- For each statement:
  - Do type checking for any subexpressions it contains
  - Do type checking for child statements
  - Check the overall well-formedness.

## So far...



