

ML Seminar | SUT | Fall 1403 | Maryam Rezaee

SALIENCY-GUIDED TRAINING:

INTERPRETABILITY AND ROBUSTNESS IN DEEP NEURAL NETWORKS

Based on the works by:

Ismail et al. (NeurIPS 2021) and Guesmi et al. (2024)

TABLE OF CONTENTS

01

Introduction

- Problem
- Concepts
 - Interpretability
 - Robustness
 - Adversarial T
 - Saliency Map

02

SG Training

- Background
- Method
- Experiments
 - Images
 - Language
 - Time Series
- Conclusion

03

Adversarial SGT

- Background
- Method
- Experiments
 - Attacks
 - Robustness
 - Interpretability
- Conclusion

01

Introduction

1.1 Problem

Why Interpretability and Robustness?

1.2 Concepts

- Interpretability
- Robustness
- Adversarial Training
- Saliency Map

- Problem
- Concepts

SG Training

- Background
- Method
- Experiments
- Conclusion

AdversarialSGT

- Background
- Method
- Experiments
- Conclusion

1.1 PROBLEM

Why Interpretability and Robustness?

- DNNs are widely used in various tasks but it's difficult to understand or <u>quarantee</u> their performance.
- Reliable explanations are necessary for <u>critical domains</u> (e.g., medicine, finance, and autonomous driving) and <u>debugging</u>.
- Generalization is needed for improving applicability and decreasing <u>susceptibility to attacks</u> and <u>OOD issues</u>.

- Problem
- Concepts

SG Training

- Background
- Method
- Experiments
- Conclusion

AdversarialSGT

- Background
- Method
- Experiments
- Conclusion

1.2 CONCEPTS

Interpretability?

Ability to predict what changing input or parameters will cause.

Robustness?

 Sustaining stable predictive performance in the face of any variations and changes in the input data.

Adversarial Training?

Training models with malicious inputs to improve robustness.

- Problem
- Concepts

SG Training

- Background
- Method
- Experiments
- Conclusion

AdversarialSGT

- Background
- Method
- Experiments
- Conclusion

1.2 CONCEPTS

Saliency Map?

- An image highlighting the <u>most relevant regions</u> or the regions on which people's eyes focus first.
- (often) gradient calculations to assign an importance score to individual features, reflecting their influences on the model prediction.

Figure 1. Example of Saliency Maps
Source: geeksforgeeks

02

Improving Deep Learning Interpretability by Saliency Guided Training

Ismail et al. (NeurIPS 2021)

Saliency-Guided Training

2.1 Background

- Related Work
- Idea Overview

2.2 Method

- Theory
- Algorithm

2.3 Experiments

- SGT for Images
- SGT for Language
- SGT for Time Series

2.4 Conclusion

- Strengths
- Limitations

- Problem
- Concepts

SG Training

- Background
- Method
- Experiments
- Conclusion

AdversarialSGT

- Background
- Method
- Experiments
- Conclusion

2.1 Background

Related Work

- Many works on <u>post-hoc</u> (gradient- or perturbation-based) vs <u>intrinsic</u> (rule-based, sparse, etc.) interpretability of models.
- Improved algorithms for producing saliency maps (as a posthoc method) still produce <u>noisy explanations</u>.

Idea Overview

 Middle ground: a method for <u>altering input during training</u> of any model to cause self-supervision; improving intrinsic interpretability to help post-hoc <u>saliency map explanations</u>.

- Problem
- Concepts

SG Training

- Background
- Method
- Experiments
- Conclusion

AdversarialSGT

- Background
- Method
- Experiments
- Conclusion

2.2 Method

Theory

- Given standard loss function: $\min_{\theta} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}\left(f_{\theta}\left(X_{i}\right), y_{i}\right)$
- Sort gradients with: $S\left(\nabla_X f_\theta\left(X\right)\right)$ for language, use sum of grad of each word's embeddings for time series, work on each $x_{i;t}$ (input feature i at time t)
- Replace k lowest-grad features: $\widetilde{X} = M_k(S(\nabla_X f_\theta(X)), X)$ for image & series, random; for language, replace with previous salient word
- Loss: minimize $\frac{1}{n} \sum_{i=1}^{n} \left[\mathcal{L}\left(f_{\theta}\left(X_{i}\right), y_{i}\right) + \lambda D_{KL}\left(f_{\theta}\left(X_{i}\right) \parallel f_{\theta}(\widetilde{X_{i}})\right) \right]$

- Problem
- Concepts

SG Training

- Background
- Method
- Experiments
- Conclusion

AdversarialSGT

- Background
- Method
- Experiments
- Conclusion

2.2 Method

Algorithm 1: Saliency Guided Training

Given: Training samples X, # of features to be masked k, learning rate τ , hyperparameter λ

Initialize f_{θ}

for $i \leftarrow 1$ to epochs do

for minibatch do

Compute the masked input:

Get sorted index I for the gradient of output with respect to the input.

$$I = S\Big(\nabla_X f_{\theta_i}(X)\Big)$$

Mask bottom k features of the original input.

$$\widetilde{X} = M_k(I, X)$$

Compute the loss function:

$$L_{i} = \mathcal{L}\left(f_{\theta_{i}}\left(X\right), y\right) + \lambda D_{KL}\left(f_{\theta_{i}}\left(X\right) \parallel f_{\theta_{i}}(\widetilde{X})\right)$$

Use the gradient to update network parameters:

$$f_{\theta_{i+1}} = f_{\theta_i} - \tau \, \nabla_{\theta_i} L_i$$

end

end

- Problem
- Concepts

SG Training

- Background
- Method
- Experiments
- Conclusion

AdversarialSGT

- Background
- Method
- Experiments
- Conclusion

2.3 Experiments

SGT for Images

Figure 2. Comparison on Different Image Datasets

Source: Ismail et al. (2021)

Ø

Used

and VGG-16

simple CNN, ResNet18,

- Problem
- Concepts

SG Training

- Background
- Method
- Experiments
- Conclusion

AdversarialSGT

- Background
- Method
- Experiments
- Conclusion

2.3 Experiments

SGT for Images (cont.)

Regardless of the saliency method, performance improves.

Figure 3. Comparison of Accuracy Drop in Salient Feature Removal

Source: Ismail et al. (2021)

- Problem
- Concepts

SG Training

- Background
- Method
- Experiments
- Conclusion

AdversarialSGT

- Background
- Method
- Experiments
- Conclusion

2.3 Experiments

SGT for Language

• **ERASER** benchmark: -

$$\overline{X}_i = X_i - R_i$$

 $\begin{aligned} \textit{Comprehensiveness} &= f_{\theta} \left(X_{i} \right)_{j} - f_{\theta} \left(\overline{X}_{i} \right)_{j} \\ \textit{Sufficiency} &= f_{\theta} \left(X_{i} \right)_{j} - f_{\theta} \left(R_{i} \right)_{j} \end{aligned}$

	Gradient		Integrated Gradient		SmoothGrad		Random
	Trad.	Sal. Guided	Trad.	Sal. Guided	Trad.	Sal. Guided	
Movies							
Comprehensiveness ↑	0.200	0.240	0.265	0.306	0.198	0.256	0.056
Sufficiency ↓	0.042	0.013	0.054	0.002	0.034	0.008	0.294
FEVER							
Comprehensiveness [†]	0.007	0.008	0.008	0.009	0.007	0.008	0.001
Sufficiency↓	0.012	0.011	0.005	0.004	0.006	0.006	0.003
e-SNLI							
Comprehensiveness ↑	0.117	0.126	0.099	0.104	0.117	0.118	0.058
Sufficiency↓	0.420	0.387	0.461	0.419	0.476	0.455	0.366

Table 1. ERASER Benchmark Scores Source: Ismail et al. (2021)

- Problem
- Concepts

SG Training

- Background
- Method
- Experiments
- Conclusion

AdversariaISGT

- Background
- Method
- Experiments
- Conclusion

2.3 Experiments

SGT for Multivariate Time Series

Figure 4. Effect on Saliency Vanishing
Source: Ismail et al. (2021)

Figure 5. Comparison on Multivariate Time Series Source: Ismail et al. (2021)

- Problem
- Concepts

SG Training

- Background
- Method
- Experiments
- Conclusion

AdversarialSGT

- Background
- Method
- Experiments
- Conclusion

2.4 Conclusion

Strengths

- Right for the right reasons without ground truth, using regularization.
- Sharpens gradient-based explanations for <u>interpretability</u>.
- Effective on <u>images</u>, <u>language</u>, and multivariate <u>time series</u>.
- Applicable for <u>various</u> common <u>model architectures</u>.
- Reduces <u>vanishing saliency</u> of RNNs.

Limitations

- Computationally <u>expensive</u> (more space, more epochs).
- Requires two <u>hyperparameters</u> k and λ (though $\lambda = 1$ works well).

03

Exploring the Interplay of Interpretability and Robustness in Deep Neural Networks: A Saliency-Guided Approach

Guesmi et al. (2024)

Adversarial SGT

3.1 Background

- Related Work
- Idea Overview

3.2 Method

- Theory
- Algorithm

3.3 Experiments

- Chosen Attacks
- Robustness Results
- Interpretability Results

3.4 Conclusion

- Strengths
- Limitations

- Problem
- Concepts

SG Training

- Background
- Method
- Experiments
- Conclusion

AdversarialSGT

- Background
- Method
- Experiments
- Conclusion

3.1 Background

Related Work

- Relationship of <u>interpretability</u> and <u>robustness</u> is under debate.
- Surge of interest in SGT's ability to mitigate noisy gradients.
- Li et al. (ICML 2022) found SGT can rely on <u>shortcut features</u> and used <u>adversarial training</u> to learn generalizable features of images (<u>SGA</u>).
- Karkehabadi et al. (ICICIP 2024) also showed SGT is vulnerable to adversarial attacks in image classification and <u>not robust</u>.

Idea Overview

<u>Investigate</u> SGT's robustness & <u>improve</u> it with Adversarial Training.

- Problem
- Concepts

SG Training

- Background
- Method
- Experiments
- Conclusion

AdversarialSGT

- Background
- Method
- Experiments
- Conclusion

3.2 Method

- AT eliminates shortcut features; <u>SGT</u> filters out non-relevant ones.
- Unlike SGA, adversarial samples are formed <u>before masking</u>.

- Problem
- Concepts

SG Training

- Background
- Method
- Experiments
- Conclusion

AdversarialSGT

- Background
- Method
- Experiments
- Conclusion

3.2 Method

Algorithm 2 Adversarial Saliency Guided Training (ASGT)

```
1: Input: Training Sample X, \# of features to be masked
    k, attack order p, perturbation budget \epsilon, learning rate \tau,
    hyperparameter \theta
 2: Output: f_{\theta}
 3: for epochs do
        for minibatches do
            # Generate the adversarial example:
            \delta^* = \arg\max_{(|\delta|_p \leqslant \epsilon)} L(f_{\theta}(X + \delta), y),  Adversarial sample generation
           X' = X + \delta^*
            # Create the masked adversarial example:
           I = S(\nabla_{X'} f_{\theta}(X'))
     	ilde{X}' = M_k(X',I) New loss added for adversarial sample
      #Compute the loss:
           #Compute the loss:

L_i = L(f_{\theta_i}(X), y) + L(f_{\theta_i}(X'), y) +
    \lambda D_{KL}(f_{\theta_i}(\tilde{X}')||f_{\theta_i}(X)) KL divergence focused on the masked adv. sample
            #Update \theta:
13:
            \theta_{i+1} = \theta_i - \tau \nabla_{\theta_i} L_i
14:
        end for
15:
16: end for
```

- Problem
- Concepts

SG Training

- Background
- Method
- Experiments
- Conclusion

AdversarialSGT

- Background
- Method
- Experiments
- Conclusion

3.3 Experiments

Chosen Attacks

• Fast Gradient Sign Method (FGSM)

$$x^{adv} = x - \epsilon \cdot sign(\nabla_x J(x, y))$$

Projected Gradient Descent (PGD)

$$x^{t+1} = \mathcal{P}_{\mathcal{S}_x}(x^t + \alpha \cdot sign(\nabla_x \mathcal{L}_{\theta}(x^t, y)))$$

• Momentum Iterative Fast Gradient Sign Method (MIFGSM)

$$x_{t+1}^{adv} = x_t^{adv} - \alpha \cdot sign(g_{t+1}) \qquad g_{t+1} = \mu \cdot g_t + \frac{\nabla_x J(x_{t+1}^{adv}, y)}{\|\nabla_x J(x_{t+1}^{adv}, y)\|_1}$$

- Problem
- Concepts

SG Training

- Background
- Method
- Experiments
- Conclusion

AdversarialSGT

- Background
- Method
- Experiments
- Conclusion

3.3 Experiments

Results Figure 7. Robustness of SGT on MNIST Dataset Source: Guesmi et al. (2024)

Figure 8. Robustness of SGT on CIFAR-10 Dataset

tests

2

of

Average

- Problem
- Concepts

SG Training

- Background
- Method
- Conclusion

AdversarialSGT

- Background
- Method
- Experiments
- Conclusion

3.3 Experiments

Results (cont.)

Figure 9. Robustness of SGT and ASGT on MNIST Source: Guesmi et al. (2024)

Figure 10. Robustness of SGT and ASGT on CIFAR-10

Source: Guesmi et al. (2024)

tests

2

of

Average

- Problem
- Concepts

SG Training

- Background
- Method
- Experiments
- Conclusion

AdversarialSGT

- Background
- Method
- Experiments
- Conclusion

3.3 Experiments

Results (cont.)

Figure 11. Interpretability of ASGT

Source: Guesmi et al. (2024)

- Problem
- Concepts

SG Training

- Background
- Method
- Experiments
- Conclusion

AdversarialSGT

- Background
- Method
- Experiments
- Conclusion

3.4 Conclusion

Strengths

- Right for the right reasons without ground truth, using regularization.
- Sharpens gradient-based explanations for <u>interpretability</u>.
- Improved robustness next to interpretability.

Limitations

- Computationally <u>expensive</u> (more space, more epochs).
- Requires two <u>hyperparameters</u> k and λ (though $\lambda = 1$ works well).
- Only focused on computer vision despite SGT flexibility.
- Disagreement with previous findings requires further investigation.

THANKS!

Any questions?

Presentation by Maryam Rezaee

Machine Learning Seminar | Fall-Winter 1403

Dr. Fatemeh SeyyedSalehi

Sharif University of Technology