

CampusLife

Measuring Self-Esteem with Passive Sensing

Mehrab Bin Morshed*
Koustuv Saha*
Munmun De Choudhury
Gregory D. Abowd
Thomas Plötz

Figure: Maslow's Hierarchy of Needs

Sensors Everywhere

The average smartphone has at least 10 sensors. Here are the most common.

Camera

What would you on do without your seflies?

Pedometer

More and more phones are including a fitness element. Experts recommend 10,000 steps a day.

Light Sensor

Have you ever turned your phone on in the dark and had it been too bright? Your light sensor may have been malfunctioning.

Thermometer

If you've ever left your phone out in the sun you've most likely seen it turn off due to heat. The thermometer is useful to monitor internal operating temperature.

Fingerprint Sensor

The new fingerprint sensor adds an extra layer of security to your phone.

Proximity Sensor

This is what keeps you from accidentally pressing buttons with your cheek during calls!

Magnetometer

The magnetometer measures the strength of the magnetic field around the device to determine what direction it is moving.

Accelerometer

Have you ever wondered how your phone knows which way you are holding it to display vertically vs. horizantally? The acceleromerter is the answer!

Gyroscope

If you like taking nonblurry photos you have the gyroscope to thank. It helps to correct for camera shake.

Microphone

The oldest sensor on any phone. Microphones make it possible for others to hear what you are saying.

Research Question

Can we automatically and scalably predict self-esteem using passive sensing modalities available on commodity devices?

Study and Dataset

Study and Dataset

CampusLife

By leveraging passive sensors, this study aims at predicting well-being of students

Prediction Methodology

Ground-truth

- EMA-based surveys of self-esteem
- Physical, Social, and Appearance self-esteem

Statistical Modeling

- Features: Passive sensing data (calls, text, conversational frequencies, physical activities)
- Regression

Results

	Performance			Social			Appearance		
Model	\mathbb{R}^2	r	SMAPE	\mathbb{R}^2	r	SMAPE	\mathbb{R}^2	r	SMAPE
GBR	0.46	0.42**	8.61	0.83	0.77***	5.64	0.79	0.59***	7.53

Feature Importance

Takeaways

- Passively sensed data can measure self-esteem.
- Wellbeing in situated communities

Measuring Self-Esteem with Passive Sensing

mehrab.morshed@gatech.edu

@mehrab_morshed

koustuv.saha@gatech.edu @kous2v

