

1. Сформулировать определение первообразной. Сформулировать свойства первообразной и неопределённого интеграла

Функция y = F(x) называется первообразной функции y = f(x) в интервале (a; b), если для $\forall x \in (a; b) y = F(x)$ дифференцируема и F'(x) = f(x)

Свойства первообразной:

- 1) Если y = F(x) первообразная функции y = f(x) в интервале (a; b), C const, то F(x) + C — первообразная.
- 2) Если функция $\varphi(x)$ дифференцируема в интервале (a;b) и $\varphi'(x) = 0$ для $\forall x \in (a;b)$, то $\varphi(x) = C, C - const$
- 3) Если $F_1(x)$ и $F_2(x) \forall$ первообразные функции y = f(x) в интервале (a; b), то $F_1(x) - F_2(x) = C$, C - const
- 4) Если функция y = f(x) непрерывна в интервале (a; b), то она имеет в этом интервале первообразную

Свойства неопределённого интеграла:

- 1) $\left(\int f(x)dx\right)' = f(x)$
- 2) $d(\int f(x)dx) = f(x)dx$
- 3) $\int dF(x) = F(x) + C$
- 4) $\int Af(x)dx = A \int f(x)dx$
- 5) $\int (f_1(x) \pm \cdots \pm f_n(x)) dx = \int f_1(x) dx \pm \cdots \pm \int f_n(x) dx$
- 6) Если $\int f(x)dx = F(x) + C$ и $U = \varphi(x) \forall$ дифференцируемая функция, то $\int f(U)dU =$

2. Разложение правильной рациональной дроби на простейшие. Интегрирование простейших

orall правильная рациональная дробь $rac{Q_m(x)}{P_n(x)}$ (при m < n), где $P_n(x) = a_0(x-x_1)^{k_1} * (x-x_2)^{k_2} * \dots * n$

$$(x-x_s)^{k_s}*(x^2+p_1x+q_1)^{l_1}*(x^2+p_2x+q_2)^{l_2}*...*(x^2+p_mx+q_m)^{l_m}$$
 единственным образом может быть представлена в виде суммы простейших дробей:
$$\frac{q_m(x)}{P_n(x)} = \frac{1}{a_0} \left[\frac{A_1}{(x-x_1)^{k_1}} + \frac{A_2}{(x-x_1)^{k_1-1}} + \cdots + \frac{A_{k_1}}{x-x_1} + \cdots + \frac{B_1}{(x-x_s)^{k_s}} + \frac{B_2}{(x-x_s)^{k_s-1}} + \cdots + \frac{B_{k_s}}{x-x_s} + \frac{C_1x+D_1}{(x^2+p_1x+q_1)^{l_1}} + \frac{C_2x+D_2}{(x^2+p_1x+q_1)^{l_1-1}} + \cdots + \frac{C_{l_1}x+D_{l_1}}{x^2+p_1x+q_1} + \cdots + \frac{M_1x+N_1}{(x^2+p_mx+q_m)^{l_m}} + \frac{M_2x+N_2}{(x^2+p_mx+q_m)^{l_m-1}} + \cdots + \frac{M_{l_m}x+N_{l_m}}{x^2+p_mx+q_m} \right],$$
 где $A_1,A_2,\ldots,B_{k_s},\ldots,C_1,D_1,\ldots,N_{l_m},M_{l_m}$ — постоянные неизвестные коэффициенты, называемые коэффициентами разложения.

Интегрирование простейших дробей:

- 1) $\int \frac{A}{x-a} dx = A \ln|x-a| + C$
- 2) $\int \frac{A}{(x-a)^k} dx = \frac{A(x-a)^{-k+1}}{-k+1} + C, k \neq 1$

3)
$$\int \frac{Mx+N}{x^2+px+q} dx = \begin{vmatrix} x+\frac{p}{2} = t \\ dx = dt \\ x = t - \frac{p}{2} \end{vmatrix} = \int \frac{M(t-\frac{p}{2})+N}{t^2+a^2} dt = M \int \frac{t}{t^2+a^2} + \left(N-M\frac{p}{2}\right) \int \frac{dt}{t^2+a^2} = \frac{M}{2} ln|t^2 + a^2| + \left(N-M\frac{p}{2}\right) \frac{1}{a} \arctan g \frac{t}{a} = \frac{M}{2} ln|x^2 + px + q| + \left(N+M\frac{p}{2}\right) \frac{1}{a} \arctan g \frac{2x+p}{2a} + C, \text{ где}$$

$$a = \sqrt{q-\frac{p^2}{4}}$$

4)
$$Y_m = \int \frac{dt}{(t^2 + a^2)^m} = \begin{vmatrix} U = (t^2 + a^2)^{-m} & dU = -m(t^2 + a^2)^{-m-1} * 2tdt \\ dV = dt & V = t \end{vmatrix} = \frac{t}{(t^2 + a^2)^m} + 2m \int \frac{dt}{(t^2 + a^2)^m} - 2ma^2 \int \frac{dt}{(t^2 + a^2)^{m+1}} \Leftrightarrow Y_m = \frac{t}{(t^2 + a^2)^m} + 2mY_m - 2ma^2 Y_{m+1} \\ Y_{m+1} = \frac{1}{2ma^2} \left[\frac{t}{(t^2 + a^2)^m} + (2m-1)Y_m \right], \text{ rge } Y_1 = \int \frac{dt}{t^2 + a^2} = \frac{1}{a} \arctan \frac{t}{a} + C \\ m = 1: Y_2 = \frac{1}{2a^2} \left[\frac{t}{t^2 + a^2} + Y_1 \right] \\ m = 1: Y_3 = \frac{1}{4a^2} \left[\frac{t}{(t^2 + a^2)^2} + 3 * Y_2 \right]$$

3, 4, 5, 6, 8, 11. Сформулировать свойства определенного интеграла

- 1) Если функция f(x) интегрируема на [a,b], то $\int_a^b \left(f_1(x)\pm f_2(x)\pm\cdots\pm f_n(x)\right)dx=$ $\int_{a}^{b} f_{1}(x)dx \pm f_{2}(x)dx \pm \dots \pm \int_{a}^{b} f_{n}(x)dx$ 2) $\int_{a}^{b} Cf(x)dx = C \int_{a}^{b} f(x)dx$
- 3) $\int_a^b C dx = C(b-a)$
- 4) $\int_a^b f(x) dx = -\int_b^a f(x) dx$, если f(x) интегрируема на [a,b] 5) Если функция f(x) интегрируема на [a,b] и $f(x) \ge 0$, $(f(x) \ne 0)(f(x) \le 0)$, то $\int_{a}^{b} f(x)dx \ge 0, \left(\int_{a}^{b} f(x)dx \le 0\right)$
- f(x) dx = 0, f(x) dx = 0)

 6) Если функции f(x) и $\varphi(x)$ интегрируемы на [a,b] и $f(x) \ge \varphi(x)$ для $\forall x \in (a,b)$, то $\int_a^b f(x) dx \ge \int_a^b \varphi(x) dx$ 7) Для \forall чисел a,b,c расположенных в интервале интегрируемости функции f(x) $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$
- 8) Если функция f(x) непрерывна на [a,b], то $\left|\int_a^b f(x)dx\right| \leq \int_a^b |f(x)|dx$
- 9) Если m и M соответственно наименьшее и наибольшее значения интегрируемой на [a,b]функции f(x), то $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$
- 10) Если m и M соответственно наименьшее и наибольшее значения интегрируемой на [a,b]функции f(x) и функция $\varphi(x) \ge 0$ интегрируема на [a,b], то $m\int_a^b \varphi(x)dx \leq \int_a^b f(x)\varphi(x)dx \leq M\int_a^b \varphi(x)dx$ 11) Если функция f(x) непрерывна на [a;b] и функция $\varphi(x)$ интегрируема и знакопостоянна
- на [a;b], то существует точка $c\in(a;b)$ такая, что $\int_a^b f(x)\varphi(x)\,dx=f(c)\int_a^b \varphi(x)\,dx$
- 12) Если функция f(x) интегрируема на [a,b], то она ограниченна на этом отрезке
- 3. Доказать теорему о сохранении определенным интегралом знака подынтегральной функции Если функция y = f(x) интегрируема на [a,b] и $f(x) \ge 0 \ (f(x) \ne 0) \ (f(x) \le 0)$, то $\int_a^b f(x) \, dx \ge 0, \, \left(\int_a^b f(x) \, dx \le 0 \right)$

 $\int_a^b f(x)\,dx = \lim_{\substack{n o \infty \ \max \Delta x_k o 0}} \sum_{k=1}^n f(\xi_k) * \Delta x_k$. Пусть по условию: $f(\xi_k) \geq 0$; $\Delta x_k \geq 0 \Rightarrow f(\xi_k) * \Delta x_k \geq 0 \Rightarrow \sum_{k=1}^n f(\xi_k) * \Delta x_k \geq 0 \Rightarrow$ (По теореме о сохранении знака предела функции) $\Rightarrow \lim_{\substack{n \to \infty \\ \max \Delta x_k \to 0}} \sum_{k=1}^n f(\xi_k) * \Delta x_k \ge 0 \Rightarrow \int_a^b f(x) \, dx \ge 0$

4. Доказать теорему об оценке определенного интеграла

Если m и M соответственно наименьшее и наибольшее значения интегрируемой на [a,b]функции f(x), то $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$ По условию $m \leq f(x) \leq M$, где $m = \min_{[a;\,b]} f(x)$; $M = \max_{[a;\,b]} f(x)$; f(x) интегрируема на $[a;b] \Rightarrow$ (По теореме об интегрировании неравенства) $\Rightarrow \int_a^b m \, dx \leq \int_a^b f(x) \, dx \leq \int_a^b M \, dx \Rightarrow$ (По свойству определённого интеграла) $\Rightarrow m(b-a) \leq \int_a^b f(x) \, dx \leq M(b-a)$

5. Доказать теорему об оценке модуля определенного интеграла

Если функция f(x) непрерывна на [a,b], то $\left|\int_a^b f(x)dx\right| \leq \int_a^b |f(x)|dx$ По условию f(x) непрерывна на $[a,b]\Rightarrow -|f(x)|\leq f(x)\leq |f(x)|$ для $\forall\,x\in[a,b]\Rightarrow$ (По теореме об интегрировании неравенства) $\Rightarrow -\int_a^b |f(x)| dx \le \int_a^b f(x) dx \le \int_a^b |f(x)| dx \Rightarrow$ (По определению модуля) $\Rightarrow \left| \int_a^b f(x) dx \right| \leq \int_a^b |f(x)| dx$

Доказать теорему о среднем для определенного интеграла

Если функция f(x) непрерывна на [a;b] и функция $\varphi(x)$ интегрируема и знакопостоянна на [a;b],

то существует точка $c \in (a;b)$ такая, что $\int_a^b f(x) \varphi(x) \, dx = f(c) \int_a^b \varphi(x) \, dx$ По условию f(x) непрерывна на $[a;b] \Rightarrow$ (по Т. Вейерштрасса) \Rightarrow функция достигает на [a,b]свои $m = \min_{[a;b]} f(x)$ и $M = \max_{[a;b]} f(x)$. $m \le f(x) \le M$ на $[a;b] | * \varphi(x) \ge 0$; $m\varphi(x) \leq f(x)\varphi(x) \leq M\varphi(x) \Rightarrow$ (По теореме об инвариантности неравенства) $\Rightarrow m\int_a^b \varphi(x)\,dx \leq \int_a^b f(x)\varphi(x)\,dx \leq M\int_a^b \varphi(x)\,dx;$ по условию $\varphi(x) \geq 0 \Rightarrow \int_a^b \varphi(x)\,dx \geq 0 \Rightarrow$ (По теореме о сохранении определенным интегралом знака подынтегральной функции) $\Rightarrow m \leq \frac{\int_a^b f(x) \varphi(x) \, dx}{\int_a^b \varphi(x) \, dx} \leq M \Rightarrow$ (По теореме Больцано-Коши) $\Rightarrow \exists \ c \in (a,b) : \frac{\int_a^b f(x) \varphi(x) \, dx}{\int_a^b \varphi(x) \, dx} = 0$ $f(c) \Leftrightarrow \int_a^b f(x) \varphi(x) \, dx = f(c) \int_a^b \varphi(x) \, dx$. Аналогично доказывается теорема с $\varphi(x) \leq 0$

7. Сформулировать определение интеграла с переменным верхним пределом. Доказать теорему о производной от интеграла по его верхнему пределу

Функция $Y(x) = \int_a^x f(t) \ dt$ называется определённым интегралом с переменным верхним пределом, где $[a;x] \subset [a;b]$

Если функция y=f(x) непрерывна на [a;b], то $Y'(x)=rac{d}{dx}\int_a^x f(t)\ dt=f(x)$ По определению $Y(x)=\int_a^x f(t)\ dt$, где $x\in (a;b), (x-\forall). Y(x+\Delta x)=\int_a^{x+\Delta x} f(t)\ dt$, где $x+\Delta x\in(a;b)$. Таким образом: $\Delta Y=Y(x+\Delta x)-Y(x)=\int_a^{x+\Delta x}f(t)\;dt-\int_a^xf(t)\;dt\Rightarrow$ (По теореме о разбиении отрезка на частичные) $\Rightarrow \int_a^x f(t) \, dt + \int_x^{x+\Delta x} f(t) \, dt - \int_a^x f(t) \, dt =$ $\int_{x}^{x+\Delta x} f(t) \ dt$. Так как по условию f(x) непрерывна, то по теореме о среднем: $\int_{x}^{x+\Delta x} f(t) \ dt = f(c)(x+\Delta x-x) = f(c)\Delta x$, где $c \in (x;x+\Delta x)$. По определению производной: $Y'(x) = \lim_{\Delta x \to 0} \frac{\Delta Y(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(c)\Delta x}{\Delta x} \Rightarrow \begin{pmatrix} \Delta x \to 0 \\ x < c < x + \Delta x \end{pmatrix} \Rightarrow \lim_{c \to x} f(c) = f(x)$

8. Вывести формулу Ньютона- Лейбница

Если функция y=f(x) непрерывна на [a;b], то $\int_a^b f(x)\,dx=F(x)\big|_a^b=F(b)-F(a)$ Пусть F(x) — \forall первообразная функции f(x) на $[a;b]; Y(x) = \int_a^x f(t) \, dt$ — первообразная функции f(x) на $[a;b] \Rightarrow$ (По основной теореме о первообразной) $\Rightarrow \int_a^x f(t) \ dt = F(x) + C$, Положим x=a. $\int_a^a f(t) \ dt = F(a) + C = 0 \Leftrightarrow C = -F(a)$, тогда $\int_a^x f(t) \ dt = F(x) - F(a)$ Положим x = b, тогда $\int_a^b f(t) dt = F(b) - F(a) = F(x) \Big|_a^b$

9. Сформулировать и доказать теорему об интегрировании подстановкой для определённого интеграла

Если функции $x=\varphi(t), \varphi'(t), f\bigl(\varphi(t)\bigr)$ непрерывны на [a,b] и $\varphi(\alpha)=a, \; \varphi(\beta)=b,$ то $\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\varphi(t)) * \varphi'(t)dt \oplus$

По формуле замены переменной в неопределенном интеграле: $\int f(x)dx = \int f(\varphi(t)) *$ $\varphi'(t)dt$, то есть если F(x) – первообразная функции f(x), то $F(\varphi(t))$ – первообразная функции $f(\varphi(t)) * \varphi'(t)$. Применяя формулу Ньютона-Лейбница к левой и правой частям формулы $\oplus: \int_a^b f(x) \ dx = F(x)|_a^b = F(b) - F(a); \int_\alpha^\beta f(\varphi(t)) * \varphi'(t) dt = F(\varphi(t))|_\alpha^\beta = F(a) + F$ $F(\varphi(\beta)) - F(\varphi(\alpha)) = F(b) - F(a) \Rightarrow \mathbb{O}$

10. Сформулировать и доказать теорему об интегрировании по частям для определённого

Если функции u(x) и v(x) дифференцируемы в (a;b), то $\int_a^b u \, dv = uv \Big|_a^b - \int_a^b v \, du$ $d(uv) = u \ dv + v \ du \Rightarrow u \ dv = d(vu) - v \ du \Rightarrow$ (В силу непрерывности функций u(x) и v(x)на [a;b] \exists определённый интеграл от функций) $\Rightarrow \int_a^b u \ dv = \int_a^b d(uv) - \int_a^b v \ du \Rightarrow$ (По формуле Ньютона-Лейбница) $\Rightarrow \int_a^b u \ dv = uv \Big|_a^b - \int_a^b v \ du$

11. Интегрирование периодических функций, интегрирование четных и нечетных функций на отрезке, симметричном относительно начала координат

- 11. Интегрирование периодических функций, интегрирование четных и нечетных функций на отрезке, симметричном относительно начала координат
 - 1) Пусть f(x) четная на [-a;a], f(-x)=f(x) $\int_{-a}^{a} f(x) \, dx = \int_{-a}^{0} f(x) \, dx + \int_{0}^{a} f(x) \, dx = \begin{vmatrix} x=-t & x_1=-a; & t_1=a \\ dx=-dt & x_2=0; & t_2=0 \end{vmatrix} = -\int_{a}^{0} f(t) \, dt + \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(t) \, dt + \int_{0}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx$
 - 2) Пусть f(x) нечетная на [-a;a], f(-x) = -f(x) $\int_{-a}^{a} f(x) dx = \int_{-a}^{0} f(x) dx + \int_{0}^{a} f(x) dx = \begin{vmatrix} x = -t & x_{1} = -a; & t_{1} = a \\ dx = -dt & x_{2} = 0; & t_{2} = 0 \end{vmatrix} = -\int_{a}^{0} f(-t) dt + \int_{0}^{a} f(x) dx = -\int_{0}^{a} f(t) dt + \int_{0}^{a} f(x) dx = 0$
 - $\int_0^a f(x) \, dx = -\int_0^a f(t) \, dt + \int_0^a f(x) \, dx = 0$ 3) Если периодическая функция f(x) (Т-период) непрерывна на $[a; \ a+T]$, то $\forall \ a \in \mathbb{R}$, для T>0 $\int_a^{a+T} f(x) \, dx = \int_0^T f(x) \, dx$
- 12, 13, 14. Сформулировать определение несобственного интеграла 1-го рода Несобственным интегралом от непрерывной на $[a; +\infty)$ функции называется предел определённого интеграла:

ределённого интеграла:
$$\int_a^{+\infty} f(x) dx = \lim_{b \to +\infty} \int_a^b f(x) \, dx = \lim_{b \to +\infty} F(x) \Big|_a^b = \lim_{b \to +\infty} F(b) - F(a)$$

$$\int_{-\infty}^b f(x) dx = \lim_{a \to -\infty} \int_a^b f(x) \, dx = \lim_{a \to -\infty} F(x) \Big|_a^b = F(b) - \lim_{a \to -\infty} F(a)$$

$$\int_{-\infty}^{+\infty} f(x) dx = \lim_{a \to -\infty} \int_a^b f(x) \, dx = \lim_{b \to +\infty} F(b) - \lim_{a \to -\infty} F(a)$$

12. Сформулировать и доказать признак сходимости по неравенству для несобственных интегралов 1-го рода

Если функции f(x) и $\varphi(x)$ непрерывны в $[a; +\infty)$ и $\int_a^{+\infty} \varphi(x) \ dx$ сходится и для $\forall \ x \in [a; +\infty)$ выполняется неравенство $0 < f(x) \le \varphi(x)$, то $\int_a^{+\infty} f(x) \ dx$ сходится, причём $\int_a^{+\infty} f(x) \ dx \le \int_a^{+\infty} \varphi(x) \ dx$

 $\int_{a}^{+\infty}f(x)\,dx \leq \int_{a}^{+\infty}\varphi(x)\,dx$ По условию $\int_{a}^{+\infty}\varphi(x)\,dx$ сходится \Longrightarrow В конечный $\lim_{b\to +\infty}\int_{a}^{b}\varphi(x)\,dx = M \Rightarrow \int_{a}^{b}\varphi(x)\,dx \leq M.$ По условию $0 < f(x) \leq \varphi(x)$ для $\forall x \in [a; +\infty) \Rightarrow$ (По теореме об интегрировании неравенства) $\Rightarrow 0 < \int_{a}^{b}f(x)\,dx \leq \int_{a}^{b}\varphi(x)\,dx \leq M \Rightarrow \int_{a}^{b}f(x)\,dx \leq M.$ $\int_{a}^{b_{1}}f(x)\,dx = \int_{a}^{b}f(x)\,dx + \int_{b}^{b_{1}}f(x)\,dx > \int_{a}^{b}f(x)\,dx \Rightarrow \text{функция}\int_{a}^{b}f(x)\,dx \text{ возрастает с возрастанием } b \Rightarrow$ (По теореме Вейерштрасса) \Rightarrow В конечный $\lim_{b\to +\infty}\int_{a}^{b}f(x)\,dx \leq M \Longrightarrow_{\text{опр.}}\int_{a}^{+\infty}f(x)\,dx \text{ сходится}$

13. Сформулировать и доказать предельный признак сравнения для несобственных интегралов 1-го рода

Если функции f(x)>0 и g(x)>0 непрерывны в $[a;+\infty)$ и \exists конечный $\lim_{x\to+\infty}\frac{f(x)}{g(x)}=\lambda>0$, то $\int_a^{+\infty}f(x)\ dx$ и $\int_a^{+\infty}g(x)\ dx$ сходятся или расходятся одновременно.

По условию \exists конечный $\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lambda \Leftrightarrow ($ для $\forall \ \varepsilon > 0 \ \exists \ M = M(\varepsilon)$: для $\forall \ x : x > M)$ $\Leftrightarrow \left| \frac{f(x)}{g(x)} - \lambda \right| < \varepsilon \Leftrightarrow (\lambda - \varepsilon)g(x) < f(x) < (\lambda + \varepsilon)g(x)$ для $\forall \ x > M$. Пусть a > M. Подберём ε так, чтобы $\lambda - \varepsilon > 0$.

- 1) Пусть $\int_a^{+\infty} f(x) \, dx$ сходится; $(\lambda \varepsilon)g(x) < f(x) \Rightarrow$ (По признаку сходимости по неравенству) $\Rightarrow \int_a^{+\infty} (\lambda \varepsilon)g(x) \, dx$ сходится \Rightarrow (По свойству линейности) $\Rightarrow \int_a^{+\infty} g(x) \, dx$ сходится.
- 2) Пусть $\int_a^{+\infty} g(x) \ dx$ сходится \Rightarrow (По свойству линейности) \Rightarrow $(\lambda + \varepsilon) \int_a^{+\infty} g(x) \ dx$ сходится; $f(x) < (\lambda + \varepsilon)g(x) \Rightarrow$ (По признаку сходимости по неравенству) $\Rightarrow \int_a^{+\infty} f(x) \ dx$ сходится.

Скопировано в буфер обмена.

- 3) Пусть $\int_a^{+\infty} f(x) \, dx$ расходится; $f(x) < (\lambda + \varepsilon)g(x) \Rightarrow$ (По признаку расходимости по неравенству) \Rightarrow $(\lambda + \varepsilon) \int_a^{+\infty} g(x) \ dx$ расходится \Rightarrow (По свойству линейности) \Rightarrow $\int_{a}^{+\infty} g(x) dx$ расходится.
- 4) Пусть $\int_a^{+\infty} g(x) \ dx$ расходится \Rightarrow (По свойству линейности) \Rightarrow $(\lambda \varepsilon) \int_a^{+\infty} g(x) \ dx$ расходится; $(\lambda - \varepsilon)g(x) < f(x) \Rightarrow$ (По признаку расходимости по неравенству) \Rightarrow $\int_{a}^{+\infty} f(x) dx$ расходится.
- 14. Сформулировать и доказать признак абсолютной сходимости для несобственных интегралов

Если функция y = f(x) непрерывная и знакопеременная в $[a; +\infty)$ и $\int_a^{+\infty} |f(x)| \, dx$ сходится, то $\int_{a}^{+\infty} f(x) dx$ сходится абсолютно

По условию f(x) непрерывна в $[a;+\infty) \Rightarrow -|f(x)| \leq f(x) \leq |f(x)| \Rightarrow 0 \leq f(x) + |f(x)| \leq$ 2|f(x)|; по условию $\int_{a}^{+\infty} |f(x)| dx$ сходится \Rightarrow (По свойству линейности) $\Rightarrow 2\int_{a}^{+\infty} |f(x)| dx$ сходится \Rightarrow (По признаку сходимости по неравенству) $\Rightarrow \int_a^{+\infty} (f(x) + |f(x)|) \ dx$ сходится $\Rightarrow \int_a^{+\infty} f(x) \ dx = \int_a^{+\infty} (f(x) + |f(x)|) \ dx - \int_a^{+\infty} |f(x)| \ dx$ сходится абсолютно

- 15. Сформулировать определение несобственного интеграла 2-го рода и признаки сходимости таких интегралов

 - 1) $\int_{a}^{b} f(x) dx = \lim_{\varepsilon \to 0} \int_{a}^{b-\varepsilon} f(x) dx = \lim_{\varepsilon \to 0} F(x) \Big|_{a}^{b-\varepsilon} = \lim_{\varepsilon \to 0} F(b-\varepsilon) F(a), \text{ rge } f(b) = \infty$ 2) $\int_{a}^{b} f(x) dx = \lim_{\varepsilon \to 0} \int_{a+\varepsilon}^{b} f(x) dx = \lim_{\varepsilon \to 0} F(x) \Big|_{a+\varepsilon}^{b} = F(b) \lim_{\varepsilon \to 0} F(a+\varepsilon), \text{ rge } f(a) = \infty$ 3) $\int_{a}^{b} f(x) dx = \lim_{\varepsilon \to 0} \int_{a}^{c-\varepsilon} f(x) dx + \lim_{\varepsilon \to 0} \int_{c+\varepsilon}^{b} f(x) dx, \text{ rge } f(c) = \infty, \ a < c < b$ Признаки сходимости:
 - 1) Если функции f(x) и $\varphi(x)$ непрерывны в [a,b) и $f(b)=\infty$, $\varphi(b)=\infty$ и для $\forall \ x\in [a,b)$ $0 < f(x) \le \varphi(x)$ и $\int_a^b \varphi(x) \, dx$ сходится, то $\int_a^b f(x) \, dx$ сходится, причем $\int_{a}^{b} f(x) dx \leq \int_{a}^{b} \varphi(x) dx$
 - 2) Если функции f(x) и $\varphi(x)$ непрерывны в [a,b) и $f(b)=\infty$, $\varphi(b)=\infty$ и для $\forall \, x \in [a,b)$ $0< f(x) \leq \varphi(x)$ и $\int_a^b \varphi(x) \, dx$ расходится, то $\int_a^b f(x) \, dx$ расходится
 - 3) Если функция f(x) непрерывна и знакопеременная в [a,b) и $f(b)=\infty$ и
 - $\int_a^b |f(x)| \ dx$ сходится, то $\int_a^b f(x) \ dx$ сходится абсолютно 4) Если функции f(x)>0 и g(x)>0 непрерывны в [a,b) и $f(b)=\infty$, $g(b)=\infty$ и \exists конечный $\lim_{x\to b} \frac{f(x)}{g(x)}=\lambda>0$, то $\int_a^b f(x) \ dx$ и $\int_a^b g(x) \ dx$ сходятся или расходятся одновременно
- 16. Фигура ограничена кривой $y = f(x) \ge 0$, прямыми x = a, x = b и y = 0 (a < b). Вывести формулу для вычисления с помощью определенного интеграла площади этой фигуры

Рассмотрим данную криволинейную трапецию. Назовём [a,b]основанием трапеции. Разобьём [a,b] на n частичных отрезков точками $x_0 = a < x_1 < x_2 < \dots < x_{k-1} < x_k < \dots < x_n = b$. В каждом частичном интервале возьмём произвольно точку ξ_{k} , (k=1,n). Проведем прямые, параллельные оси 0y через точку ξ_k : $f(\xi_1)$, $f(\xi_2)$, $f(\xi_3)$, ..., $f(\xi_n)$. Каждую частичную криволинейную трапецию заменяем прямоугольником со сторонами $f(\xi_k)$ и Δx_k , где $\Delta x_k = x_k - x_{k-1}$.

 $S_k = f(\xi_k) * \Delta x_k; \; S_n = \sum_{k=1}^n S_k = \sum_{k=1}^n f(\xi_k) * \Delta x_k.$ Заменяем площадь криволинейной трапеции интегральной суммой: $\lim_{\max \Delta x_k \to 0} \sum_{k=1}^n f(\xi_k) * \Delta x_k = \int_a^b f(x) dx$

17. Фигура ограничена лучами $\phi=\alpha, \phi=\beta$ и кривой $r=f(\phi)$. Здесь r и ϕ — полярные координаты точки, $0\leq \alpha<\beta\leq 2\pi$, где r и ϕ — полярные координаты точки. Вывести формулу для вычисления с помощью определенного интеграла площади этой фигуры

Разобьём криволинейный сектор на n частичных криволинейных секторов лучами.

 $arphi_0=lpha<arphi_1<arphi_2<\dots<arphi_{k-1}<arphi_k<\dots<arphi_n=eta$. В каждом частичном секторе возьмём произвольно $\widetilde{arphi_k},(k=\overline{1,n})$, где $r(\widetilde{arphi_k})$ — радиус-вектор, соответствующий углу $\widetilde{arphi_k}$.

 $S_{ ext{крив.сек.}}pprox S_{ ext{круг.сек.}}=S_k;\ S_k=rac{1}{2}r^2(\widetilde{\varphi_k})\Delta\varphi_k$, где $\Delta\varphi_k=\varphi_k-\varphi_{k-1}.\ S_n=\sum_{k=1}^nrac{1}{2}r^2(\widetilde{\varphi_k})\Delta\varphi_k\Rightarrow$ (В силу непрерывности $r=r(\varphi)$ на $[\alpha;eta]\Rightarrow r^2(\varphi)$ непрерывна на $[\alpha;eta])\Rightarrow$ \exists конечный $\lim_{\max\Delta\varphi_k o 0}\sum_{k=1}^nrac{1}{2}r^2(\widetilde{\varphi_k})\Delta\varphi_k=rac{1}{2}\int_{lpha}^{eta}r^2(\varphi)\ d\varphi$

18. Тело образовано вращением вокруг оси Oy криволинейной трапеции, ограниченной кривой $y=f(x)\geq 0$, прямыми x=a, x=b и y=0 (a< b). Вывести формулу для вычисления с помощью определенного интеграла объема тела вращения

$$V(x) = \pi x_k^2 f(\xi_k) - \pi x_{k-1}^2 f(\xi_k) = \pi f(\xi_k) (x_k - x_{k-1}) (x_k + x_{k-1}) = 2\pi \xi_k f(\xi_k) \Delta x_k.$$

$$V_n = \sum_{k=1}^n 2\pi \xi_k f(\xi_k) \Delta x_k \Rightarrow$$
 (В силу непрерывности функции $x*f(x)$ на $[a,b]$) \Rightarrow \exists конечный $\lim_{\max \Delta x_k \to 0} \sum_{k=1}^n 2\pi \xi_k f(\xi_k) \Delta x_k = 2\pi \int_a^b x*f(x) dx$

Если вопрос по оси Ох:

$$\overline{V = \int_a^b S(x) dx}; \ S(x) = \pi f^2(x) \Rightarrow V = \pi \int_a^b f^2(x) dx$$

19. Кривая задана в декартовых координатах уравнением y = f(x), где x и y- декартовые координаты точки, $a \le x \le b$. Вывести формулу для вычисления длины дуги этой кривой

Пусть функции f(x) и f'(x) непрерывны на отрезке [a,b]. Разобьём [a,b] на n частичные: $x_0=a< x_1< x_2< \cdots < x_{k-1}< x_k< \cdots < x_n=b$. Проведём хорды через соседние точки разбиения $M_{k-1}(x_{k-1};f(x_{k-1}))$ и $M_k(x_k;f(x_k))$, $(k=\overline{1,n});\ l_k=[M_{k-1}M_k];\ l_n=\sum_{k=1}^n l_k$.

 $l_k = \sqrt{(\Delta x_k)^2 + (\Delta y_k)^2} = \Delta x_k \sqrt{1 + \left(\frac{\Delta y_k}{\Delta x_k}\right)^2}$. По теореме Лагранжа

 $\frac{\Delta y_k}{\Delta x_k} = \frac{(f(x_k) - f(x_{k-1}))}{x_k - x_{k-1}} = f'(\xi_k) \Rightarrow l_k = \sqrt{1 + \left(f'(\xi_k)\right)^2} * \Delta x_k.$ $l_n = \sum_{k=1}^n \sqrt{1 + \left(f'(\xi_k)\right)^2} * \Delta x_k \Rightarrow (\text{В силу непрерывности}$ функции $y = \sqrt{1 + \left(f'(x)\right)^2}$ на [a, b]) \Rightarrow \exists конечный

 $\lim_{\substack{n\to\infty\\\max\Delta x_k\to 0}} \sum_{k=1}^n \sqrt{1+\left(f'(\xi_k)\right)^2} * \Delta x_k = \int_a^b \sqrt{1+\left(f'(x)\right)^2} dx = l$

20. Кривая задана в полярных координатах уравнением $r=f(\phi)>0$, где r и ϕ — полярные координаты точки, $\alpha \leq \phi \leq \beta$. Вывести формулу для вычисления длины дуги этой кривой В полярной системе координат $r=r(\phi)$ и $r'(\phi)$ непрерывны на $[\alpha,\beta]$

$$\begin{cases} x = r\cos\varphi \\ y = r\sin\varphi \end{cases} \begin{cases} x'_{\varphi} = r'\cos\varphi - r\sin\varphi \\ y'_{\varphi} = r'\sin\varphi + r\cos\varphi \end{cases}$$

$$\left(x_{\varphi}'\right)^{2} + \left(y_{\varphi}'\right)^{2} = (r')^{2}\cos^{2}\varphi - 2r'r\cos\varphi\sin\varphi + r^{2}\sin^{2}\varphi + (r')^{2}\sin^{2}\varphi + 2r'r\sin\varphi\cos\varphi + r^{2}\sin\varphi\cos\varphi + r^{2}\cos\varphi\cos\varphi + r^{2}\cos\varphi + r^{2}\cos\varphi\cos\varphi + r^{2}\cos\varphi + r^{2}\cos$$

$$r^2\cos^2 \varphi = r^2 + (r')^2$$
. Подставим в формулу $l = \int_{lpha}^{eta} \sqrt{\left(x'_{arphi}
ight)^2 + \left(y'_{arphi}
ight)^2} \, d \varphi = \int_{lpha}^{eta} \sqrt{r^2 + (r')^2} \, d \varphi$

21. Линейные дифференциальные уравнения первого порядка. Интегрирование линейных неоднородных дифференциальных уравнений первого порядка методом Бернулли (метод " $u \cdot v$ ") и методом Лагранжа (вариации произвольной постоянной)

21. Линейные дифференциальные уравнения первого порядка. Интегрирование линейных неоднородных дифференциальных уравнений первого порядка методом Бернулли (метод " $u \cdot v$ ") и методом Лагранжа (вариации произвольной постоянной)

Рассмотрим y' + p(x)y = q(x) линейное д.у. ①

Метод Бернулли (метод " $u \cdot v$ "):

Пусть $y_{\text{он}} = U(x)V(x)$, где U(x)- частное решение, V(x) – общее. $y_{\text{он}}' = U'V + UV'$. Подставляем в д.у. \oplus : U'V + UV' + p(x)UV = q(x).

1)
$$U' + p(x)U = 0$$
; $\frac{dU}{dx} = -p(x)U$; $\int \frac{dU}{U} = -\int p(x)dx$; $\ln |U| = \ln e^{-\int p(x)dx}$; $U = e^{-\int p(x)dx}$

2)
$$UV' = q(x)$$
; $\frac{dV}{dx} = q(x)e^{\int p(x)dx}$; $\int dV = \int q(x)e^{\int p(x)dx}dx$; $V = \int q(x)e^{\int p(x)dx}dx + C$
 $y = U(x)V(x) = e^{-\int p(x)dx} \left(\int q(x)e^{\int p(x)dx}dx + C \right) = Ce^{-\int p(x)dx} + e^{-\int p(x)dx} \int q(x)e^{\int p(x)dx}dx$
 $y_{\text{OH}} = y_{\text{OO}} + y_{\text{HH}}$

Метод Лагранжа (вариации произвольной постоянной):

1)
$$y' + p(x)y = 0$$
 – соответствующее однородное д.у. с разделяющимися переменными. $\frac{dy}{dx} = -p(x)y; \int \frac{dy}{y} = -\int p(x)dx; \ln|y| = \ln e^{-\int p(x)dx} + \ln C; \ y_{00} = Ce^{-\int p(x)dx}$, где $C - const.$

2) Пусть
$$y_{\text{он}} = C(x)e^{-\int p(x)dx}; \ y_{\text{он}}' = C'e^{-\int p(x)dx} + Ce^{-\int p(x)dx} \Big(-p(x)\Big).$$
 Подставляем $y_{\text{он}}$ и $y_{\text{он}}'$ в д. у. \oplus : $C'e^{-\int p(x)dx} - p(x)Ce^{-\int p(x)dx} + p(x)Ce^{-\int p(x)dx} = q(x) \Rightarrow C'e^{-\int p(x)dx} = q(x);$ $\frac{dC}{dx} = q(x)e^{\int p(x)dx}; \ C(x) = \int q(x)e^{\int p(x)dx}dx + C_1,$ где $C_1 - const.$ Подставляем $C(x)$ в $y_{\text{он}}$: $y_{\text{он}} = (\int q(x)e^{\int p(x)dx}dx + C_1)e^{-\int p(x)dx} = C_1e^{-\int p(x)dx} + e^{-\int p(x)dx}\int q(x)e^{\int p(x)dx}dx$ $y_{\text{он}} = y_{\text{он}} + y_{\text{чн}}$

22. Сформулировать теорему Коши о существовании и единственности решения дифференциального уравнения n-го порядка. Интегрирование дифференциальных уравнений n-го порядка, допускающих понижение порядка

Если в д.у. $y^{(n)}=f(x,y,y',...,y^{(n-1)})$ функция $f(x,y,y',...,y^{(n-1)})$ и её частные производные $f_y',f_y'',f_{y''}',...,f_{y^{(n-1)}}'$ непрерывны в некоторой области (n+1) мерного пространства $(x,y,y',...,y^{(n-1)})$, то для \forall точки $\left(x_0,y_0,y_0',...,y_0^{(n-1)}\right)\in D$ в $U(x_0)$ \exists ! решение $y=\varphi(x)$ д. у. $y^{(n)}=f(x,y,y',...,y^{(n-1)})$, удовлетворяющее начальным условиям $y(x_0)=y_0,y'(x_0)=y_0',...,y^{(n-1)}(x_0)=y_0^{(n-1)}$

Интегрирование д.у. n-го порядка, допускающих понижение порядка:

1) $y^{(n)} = f(x)$ ①

Общее решение д.у. \oplus находится методом последовательного интегрирования $y^{(n-1)} = \int f(x) dx + C_1$

$$y^{(n-2)} = \int \left(\int f(x)dx + C_1 \right) dx = \int dx \int f(x)dx + C_1 x + C_2$$

$$y = \int dx \int dx \dots \int f(x) dx + \frac{c_1 x^{n-1}}{(n-1)!} + \frac{c_2 x^{n-2}}{(n-2)!} + \dots + C_{n-1} x + C_n$$
2) $F(x, y^{(k)}, y^{(k+1)}, \dots, y^{(n)}) = 0$

Метод подстановки: $y^{(k)}=p(x);\;y^{(k+1)}=p'(x);\;...;\;y^{(n)}=p^{(n-k)}(x)$ понижает порядок д.у. на k.

 $F(x,p,p',\dots,p^{(n-k)})=0$ ②. Если найдено общее решение д.у. ② $p=\psi(x,C_1,C_2,\dots,C_{n-k})$, то д.у. $y^{(k)}=\psi(x,C_1,C_2,\dots,C_{n-k})$ интегрируется методом последовательного интегрирования.

3) $F(y, y', y'', ..., y^{(n)}) = 0$

Метод подстановки: $y'=p(y);\;y''=rac{d}{dx}y'=rac{dp}{dy}rac{dy}{dx}=p'p;$... понижает порядок д.у. на .

4) $\frac{d}{dx}F(x,y,y',...,y^{(n-1)})=0$

Получим уравнение вида $F(x, y, y', ..., y^{(n-1)}) = C_1$.

23. Сформулировать теорему Коши о существовании и единственности решения линейного дифференциального уравнения n-го порядка. Доказать свойства частных решений линейного однородного дифференциального уравнения n-го порядка

Рассмотрим ЛНДУ $\textcircled{1}: y^{(n)} + p_1(x)y^{(n-1)} + p_2(x)y^{(n-2)} + \cdots + p_{n-1}(x)y' + p_n(x)y = f(x)$. Если функции $p_1(x), p_2(x), \dots, p_n(x)$ и f(x) непрерывны на [a,b], то для \forall начальных условий $y(x_0) = y_0, y'(x_0) = y_0', \dots, y^{(n-1)}(x_0) = y_0^{(n-1)}$ \exists ! решение $y = \varphi(x)$ ЛНДУ 1 на этом отрезке. Свойства частных решений ЛОДУ n-го порядка:

Рассмотрим ЛОДУ ②: $y^{(n)}+p_1(x)y^{(n-1)}+p_2(x)y^{(n-2)}+\cdots+p_{n-1}(x)y'+p_n(x)y=0$. Множество частных решений ЛОДУ ② с непрерывными $p_i(x),\ (i=\overline{1,n}),$ на [a,b] функциями образует линейное пространство.

- 1) Пусть по условию $y_1(x)$ частное решение д.у. $@ \Longrightarrow_{\text{опр.}} L[y_1] \equiv 0$. $L[x_1] = c = 0 \Rightarrow c = 0 \Rightarrow c = 0$
- $L[cy] = cL[y] = c0 = 0 \Rightarrow cy_1$ решение д.у. 2. 2) Пусть по условию $y_1(x), y_2(x)$ — частные решения д.у. $\textcircled{2} \Longrightarrow L[y_1] \equiv 0, \ L[y_2] \equiv 0.$ $L[y_1 + y_2] = L[y_1] + L[y_2] = 0 + 0 = 0 \Rightarrow y_1 + y_2$ — решение д.у. 2. Из 1) и 2) \Rightarrow множество частных решений д.у. 2 образует линейное пространство.

Сформулировать определения линейно зависимой и линейно независимой систем функций

Функции $y_1(x), y_2(x), \dots, y_n(x)$ называются линейно зависимыми (независимыми) на [a,b], если \exists нетривиальная (только тривиальная) линейная комбинация этих функций, равная 0 на этом отрезке.

$$\alpha_1 y_1(x) + \alpha_2 y_2(x) + \dots + \alpha_n y_n(x) = 0$$
. $\exists \alpha_i \neq 0 \text{ (Bce } \alpha_i = 0\text{)}$

24. Сформулировать и доказать теорему о вронскиане линейно зависимых функций

Если функции $y_1(x), y_2(x), \dots, y_n(x)$ линейно зависимы на [a,b], то W(x)=0 для $\forall \, x \in [a,b]$. По условию функции $y_1(x), \dots, y_n(x)$ линейно зависимы на $[a,b] \Longrightarrow \exists \, \alpha_i \neq 0$. Линейную

комбинацию дифференцируем (n-1) раз: $\begin{cases} \alpha_1 y_1(x) + \alpha_2 y_2(x) + \dots + \alpha_n y_n(x) = 0 \\ \alpha_1 y_1'(x) + \alpha_2 y_2'(x) + \dots + \alpha_n y_n'(x) = 0 \\ \dots \\ \alpha_1 y_1^{(n-1)}(x) + \alpha_2 y_2^{(n-1)}(x) + \dots + \alpha_n y_n^{(n-1)}(x) = 0 \end{cases}$ — система линейных однородных

алгебраических уравнений с неизвестными $\alpha_1, \dots, \alpha_n$ (const), и определителем системы

$$W(x) = \begin{vmatrix} y_1(x) & \cdots & y_n(x) \\ \vdots & \ddots & \vdots \\ y_1^{(n-1)}(x) & \cdots & y_n^{(n-1)}(x) \end{vmatrix}$$
 и имеющее ненулевое решение (Так как по условию $W(x_0) = 0 \Leftrightarrow W(x) = 0$ для $\forall \ x \in [a,b]$.

25. Сформулировать и доказать теорему о вронскиане системы линейно независимых частных решений линейного однородного дифференциального уравнения n-го порядка

Рассмотрим ЛОДУ $\textcircled{1}: y^{(n)} + p_1(x)y^{(n-1)} + p_2(x)y^{(n-2)} + \cdots + p_{n-1}(x)y' + p_n(x)y = 0.$ Если линейно независимы на [a,b] функции $y_1(x), y_2(x), \ldots, y_n(x)$ являются частными решениями ЛОДУ 1 с непрерывными $p_i(x), \ (i=\overline{1,n}),$ на [a,b] коэффициентами, то $W(x) \neq 0$ для $\forall \ x \in [a,b].$

Метод от противного:

Предположим, что в произвольной точке $x_0 \in [a,b]$ $W(x_0) = 0$. Подберем $\alpha_1, \dots, \alpha_n$ так,

чтобы система *
$$\begin{cases} \alpha_1 y_1(x) + \alpha_2 y_2(x) + \dots + \alpha_n y_n(x) = 0 \\ \alpha_1 y_1'(x) + \alpha_2 y_2'(x) + \dots + \alpha_n y_n'(x) = 0 \\ \dots \\ \alpha_1 y_1^{(n-1)}(x) + \alpha_2 y_2^{(n-1)}(x) + \dots + \alpha_n y_n^{(n-1)}(x) = 0 \end{cases}$$
 имела ненулевое

решение: $\exists \; \alpha_i \neq 0 \; ($ Так как по условию $W(x_0) = 0)$. По условию $y_1(x), y_2(x), \dots, y_n(x)$ являются частными решениями ЛОДУ $\bigoplus_{\text{опр.}} L[y_1] \equiv 0, \; L[y_2] \equiv 0, \dots, L[y_n] \equiv 0.$

$$\begin{array}{l} L[\alpha_1y_1(x)+\alpha_2y_2(x)+\cdots+\alpha_ny_n(x)]=\alpha_1L[y_1]+\alpha_2L[y_2]+\cdots+\alpha_nL[y_n]=\alpha_10+\alpha_20+\cdots+\alpha_n0=0 \Rightarrow y=\alpha_1y_1(x)+\alpha_2y_2(x)+\cdots+\alpha_ny_n(x)-\text{решение д.у. } \mathbb{O}, \text{ где }\alpha_1,...,\alpha_n-const, \end{array}$$

удовлетворяющие нулевым начальным условиям $y(x_0) = 0$, $y'(x_0) = 0$, ..., $y^{(n-1)}(x_0) = 0$ из системы *. Таким образом $y = \alpha_1 y_1(x) + \alpha_2 y_2(x) + \cdots + \alpha_n y_n(x)$ — решение д.у. $\mathbb O$, удовлетворяющее нулевым начальным условиям. Но таким же нулевым начальным условиям удовлетворяет и тривиальное решение y = 0. По условию $p_i(x)$, $(i = \overline{1,n})$ непрерывны на $[a,b] \Rightarrow$ выполняется условие Т. Коши о \exists и ! решения $\Rightarrow \alpha_1 y_1(x) + \alpha_2 y_2(x) + \cdots + \alpha_n y_n(x) = 0$ и \exists $\alpha_i \neq 0 \Longrightarrow y_1(x), y_2(x), \ldots, y_n(x)$ — линейно зависимы на [a,b], что противоречит условию \Rightarrow предположение $W(x_0) = 0$ неверно \Rightarrow $W(x_0) \neq 0$, и так как $x_0 \in [a,b]$ — произвольная точка на [a,b], то $W(x_0) \neq 0$ для \forall $x \in [a,b]$

26. Сформулировать и доказать теорему о существовании фундаментальной системы решений линейного однородного дифференциального уравнения n-го порядка

Для \forall ЛОДУ n-го порядка $L_n(y)=0$ с непрерывными коэффициентами $p_i(x), \ (i=\overline{1,n}),$ на (a,b) \exists ФСР.

$$b_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, b_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, b_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}.$$
 Векторов n штук.
$$\begin{pmatrix} L_n(y) = 0 \\ y(x_0) = 1 \\ y'(x_0) = 0 \\ \vdots \\ y^{(n-1)}(x_0) = 0 \end{pmatrix} \Rightarrow \text{По T. Коши } \exists \,! \text{ решение } y_1(x)$$

$$\vdots \\ y^{(n-1)}(x_0) = 0 \\ y(x_0) = 0 \\ y'(x_0) = 1 \Rightarrow \text{По T. Коши } \exists \,! \text{ решение } y_2(x)$$

$$\vdots \\ y^{(n-1)}(x_0) = 0 \\ \vdots \\ y^{(n-1)}(x_0) = 0 \\ y'(x_0) = 0 \\ y'(x_0) = 0 \Rightarrow \text{По T. Коши } \exists \,! \text{ решение } y_n(x)$$

$$\vdots \\ y^{(n-1)}(x_0) = 1 \end{cases}$$

Покажем, что $y_1(x), y_2(x), ..., y_n(x)$ — линейно независимые решения в т. x_0

$$W(x_0) = \begin{vmatrix} y_1(x_0) & y_2(x_0) & \dots & y_n(x_0) \\ y_1'(x_0) & y_2'(x_0) & \dots & y_n'(x_0) \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)}(x_0) & y_2^{(n-1)}(x_0) & \dots & y_n^{(n-1)}(x_0) \end{vmatrix} = \begin{vmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{vmatrix} = 1 \neq 0 \Rightarrow$$

 $y_1(x), y_2(x), \dots, y_n(x)$ — линейно независимые \Rightarrow (По свойству определителя Вронского) \Rightarrow \exists ФСР

27. Сформулировать и доказать теорему о структуре общего решения линейного однородного дифференциального уравнения n-го порядка

Общее решение ЛОДУ n-го порядка с непрерывными $p_i(x)$, $(i=\overline{1,n})$, на [a,b] функциями равно линейной комбинации ФСР с произвольными постоянными.

$$y_{00} = C_1 y_1(x) + C_2 y_2(x) + \dots + C_n y_n(x), \text{ rge } C_i - const, (i = \overline{1,n}).$$

Рассмотрим ЛОДУ $\textcircled{1}: y^{(n)} + p_1(x)y^{(n-1)} + p_2(x)y^{(n-2)} + \dots + p_{n-1}(x)y' + p_n(x)y = 0.$

- 1) Докажем, что y_{00} решение д.у. 1. По условию $y_1(x), y_2(x), ... y_n(x)$ частные решения д.у. 1 \Rightarrow L[y_1] \Rightarrow 0, L[y_2] \Rightarrow 0, ..., L[y_n] \Rightarrow 0 $L[C_1y_1(x) + C_2y_2(x) + \cdots + C_ny_n(x)] = C_1L[y_1] + C_2L[y_2] + \cdots + C_nL[y_n] = C_10 + C_20 + \cdots + C_n0 = 0 \Rightarrow y_{00} = \sum_{i=1}^n C_iy_i(x)$ решение д.у. 1
- 2) Докажем, что y_{00} общее решение д.у. ①. По условию $p_i(x)$, $(i=\overline{1,n})$, непрерывны на $[a,b] \Rightarrow$ выполняется условие Т. Коши о \exists и ! решения \Rightarrow решение $y_{00} = \sum_{i=1}^n C_i y_i(x)$ будет

общим, если для произвольно заданных начальных условий $@y(x_0) = y_0, \ y'(x_0) =$ $y_0',\dots,y^{(n-1)}(x_0)=y_0^{(n-1)}$ постоянные C_1,C_2,\dots,C_n найдутся единственным образом. Пусть $y_{oo}=C_1y_1(x)+C_2y_2(x)+\dots+C_ny_n(x)$ удовлетворяющее начальным условиям 2. $\begin{cases} C_1y_1(x_0)+C_2y_2(x_0)+\dots+C_ny_n(x_0)=y_0\\ C_1y_1'(x_0)+C_2y_2'(x_0)+\dots+C_ny_n'(x_0)=y_0'\\ \dots\\ C_1y_1^{(n-1)}(x_0)+C_2y_2^{(n-1)}(x_0)+\dots+C_ny_n^{(n-1)}(x_0)=y_0' \end{cases} - \text{система линейных}$

неоднородных алгебраических уравнений с неизвестными $C_1, C_2, ..., C_n$ и определителем

системы
$$W(x_0) = \begin{vmatrix} y_1(x_0) & y_2(x_0) & \dots & y_n(x_0) \\ y_1'(x_0) & y_2'(x_0) & \dots & y_n'(x_0) \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)}(x_0) & y_2^{(n-1)}(x_0) & \dots & y_n^{(n-1)}(x_0) \end{vmatrix} \neq 0$$
, так как $x_0 \in [a,b]$ и по

условию $y_1(x),y_2(x),\dots y_n(x)$ образуют Φ СР \Rightarrow $C_{10},C_{20},\dots,C_{n0}$ — единственное решение системы $\divideontimes\Rightarrow y_{oo}=\sum_{l=1}^{n}C_{l}y_{l}\left(x\right)$ — общее решение д.у. 1, а $y=\sum_{l=1}^{n}C_{l0}y_{l}\left(x\right)$ — частное

28. Вывести формулу Остроградского-Лиувилля для линейного дифференциального уравнения 2-го порядка

 $y'' + p_1(x)y' + p_2(x)y = 0$. Пусть $y_1, y_2 -$ линейно независимые частные решения. ① $y_1'' + p_1(x)y_1' + p_2(x)y_1 = 0 \mid *y_2$ ② $y_2'' + p_1(x)y_2' + p_2(x)y_2 = 0 \mid *y_1$ $\frac{dW}{W} = -p_1(x)dx; \ln|W| = \ln e^{-\int_{x_0}^x p_1(x)dx} + \ln|C|; W(x) = Ce^{-\int_{x_0}^x p_1(x)dx}$ $W(x) = Ce^{-\int_{x_0}^x p_1(x)dx} \Rightarrow C = W_0$ $W(x) = W_0 e^{-\int_{x_0}^x p_1(x)dx} | W(x) = Ce^{-\int p_1(x)dx} |$

29. Вывести формулу для общего решения линейного однородного дифференциального уравнения второго порядка при одном известном частном решении

$$\begin{array}{l} y'' + p_1(x)y' + p_2(x)y = 0, \; y_1 - \text{известное частное решение}. \\ W(x) = Ce^{-\int p_1(x)dx} \\ y_2'y_1 - y_2y_1' = Ce^{-\int p_1(x)dx} \mid \div y_1^2 \\ \frac{y_2'y_1 - y_2y_1'}{y_1^2} = \frac{c}{y_1^2}e^{-\int p_1(x)dx} \\ \left(\frac{y_2}{y_1}\right)' = \frac{c}{y_1^2}e^{-\int p_1(x)dx} \\ \frac{y_2}{y_1} = \int \frac{c}{y_1^2}e^{-\int p_1(x)dx} dx + \widetilde{C}. \text{ Так как ищем частное решение } y_2, \text{ то } \widetilde{C} = 0; \; C = 1 \\ y_2 = y_1\int \frac{e^{-\int p_1(x)dx}}{y_1^2} dx \end{array}$$

30. Сформулировать и доказать теорему о структуре общего решения линейного неоднородного дифференциального уравнения n-го порядка

Пусть $y_1(x), y_2(x), ..., y_n(x)$ — линейно независимые частные решения $L_n(y) = 0$ с непрерывными $p_i(x)$, $(i=\overline{1,n})$, на [a,b]; а $\overline{y}(x)$ — частное решение $L_n(y)=f(x)$ с непрерывной f(x) на [a,b]. Тогда $y(x) = \sum_{k=1}^{n} C_k y_k(x) + \bar{y}(x)$ есть общее решение $L_n(y) = f(x)$. $L_n(y) = L_n(\sum_{k=1}^n C_k y_k(x) + \bar{y}(x)) = \sum_{k=1}^n C_k L_n(y_k(x)) + L_n(\bar{y}(x)) = f(x)$ Докажем, что оно общее. Выберем начальные условия: $y(x_0) = y_0, y'(x_0) = y'_0, ..., y^{(n-1)}(x_0) = y_0^{(n-1)}$

$$\begin{cases} C_1y_1(x_0) + C_2y_2(x_0) + \dots + C_ny_n(x_0) = y_0 - \bar{y}(x_0) \\ C_1y_1'(x_0) + C_2y_2'(x_0) + \dots + C_ny_n'(x_0) = y_0' - \bar{y}'(x_0) \\ \dots & - \text{СЛАУ с} \end{cases}$$
 — СЛАУ с
$$\begin{cases} C_1y_1^{(n-1)}(x_0) + C_2y_2^{(n-1)}(x_0) + \dots + C_ny_n^{(n-1)}(x_0) = y_0^{(n-1)} - \bar{y}^{(n-1)}(x_0) \\ \text{определителем системы } W(x_0) \neq 0; \ x_0 \in [a,b] \Rightarrow \exists \ ! \ C_1 = C_1^0, \dots, C_n = C_n^0; \\ y(x) = C_1^0y_1(x) + \dots + C_n^0y_n(x) + \bar{y}(x) - \text{частное решение.} \\ y_{\text{OH}} = y_{\text{OO}} + y_{\text{ЧH}} \end{cases}$$

31. Вывести формулу для общего решения линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами в случае кратных корней характеристического уравнения

$$\begin{aligned} k_1 &= k_2 = k \in \mathbb{R}; \ y'' + a_1 y' + a_2 y = 0; \ k^2 + a_1 k + a_2 = 0; \ k_{1,2} = -\frac{a_1}{2} \pm \sqrt{\frac{a_1^2}{4} - a_2} \\ k &= -\frac{a_1}{2} \Rightarrow a_1 = -2k \\ y_1 &= e^{kx}; \ y_2 = y_1 \int \frac{e^{-\int a_1 dx}}{y_1^2} dx = e^{kx} \int \frac{e^{\int 2k dx}}{e^{2kx}} dx = x e^{kx} \end{aligned}$$

Докажем, что
$$y_1, y_2$$
 образуют ФСР:
$$W(x) = \begin{vmatrix} e^{kx} & xe^{kx} \\ ke^{kx} & e^{kx} + kxe^{kx} \end{vmatrix} = e^{2kx} + kxe^{2kx} - kxe^{2kx} = e^{2kx} \neq 0$$
 для $\forall \ x \in [a,b] \Rightarrow y_1$ и y_2 линейно независимые $\Rightarrow \boxed{y_{00} = C_1e^{kx} + C_2xe^{kx}}$

32. Вывести формулу для общего решения линейного однородного дифференциального уравнения второго порядка с постоянными коэффициентами в случае комплексных корней характеристического уравнения

$$k_{1,2}=\alpha\pm\beta i$$
, где $\beta\neq 0$; $e^{(\alpha+\beta i)x}=e^{\alpha x}(\cos\beta x+i\sin\beta x)=y$ $y_1=Re\ y=e^{\alpha x}\cos\beta x$; $y_2=Im\ y=e^{\alpha x}\sin\beta x$ Докажем, что y_1,y_2 образуют ФСР.
$$W(x)=\begin{vmatrix} e^{\alpha x}\cos\beta x & e^{\alpha x}\sin\beta x \\ \alpha e^{\alpha x}\cos\beta x & e^{\alpha x}\sin\beta x \end{vmatrix}= \beta e^{2\alpha x}\cos\beta x -\beta e^{\alpha x}\sin\beta x & \alpha e^{\alpha x}\sin\beta x +\beta e^{\alpha x}\cos\beta x \end{vmatrix}= \beta e^{2\alpha x}\cos^2\beta x +\beta e^{2\alpha x}\sin^2\beta x =\beta e^{2\alpha x}\neq 0$$
 для $\forall\ x\in[a,b]\Rightarrow y_1$ и y_2 линейно независимые $\Rightarrow y_0=e^{\alpha x}(C_1\cos\beta x+C_2\sin\beta x)$

33. Частное решение линейного неоднородного дифференциального уравнения с постоянными коэффициентами и правой частью специального вида (являющейся квазимногочленом). Сформулировать и доказать теорему о наложении частных решений

$$y^{(n)} + a_1 y^{(n-1)} + \cdots + a_{n-1} y' + a_n y = f(x)$$
 ① $y^{(n)} + a_1 y^{(n-1)} + \cdots + a_{n-1} y' + a_n y = 0$ ② $k^n + a_1 k^{n-1} + \cdots + a_{n-1} k + a_n = 0$ ③ $y_{00} = C_1 y_1 + C_2 y_2 + \cdots + C_n y_n$ $f(x)$ имеет вид квазимногочлена. $f(x) = e^{\alpha x} (P_n(x) \cos \beta x + Q_m(x) \sin \beta x) \Rightarrow y_{\rm HH} = x^r e^{\alpha x} (T_s(x) \cos \beta x + R_s(x) \sin \beta x),$ где r — кратность корня $\alpha \pm \beta i$ характеристического уравнения ③. $T_s(x), R_s(x)$ — полные многочлены степени $S = \max(n,m)$ с неопределёнными коэффициентами. $y_{\rm OH} = y_{00} + \sum_{i=1}^p y_{\rm HH_i}$

Теорема о наложении частных решений:

Если
$$y_i(x)$$
 — частное решение д.у. $L[y] = f_i(x)$, то $\sum_{i=1}^k \alpha_i y_i(x)$ — решение д.у. $L[y] = \sum_{i=1}^k \alpha_i f_i(x)$ По условию $y_i(x)$ — решение д.у. $L[y] = f_i(x) \Rightarrow L[y_i] = f_i(x)$.
$$L\left[\sum_{i=1}^k \alpha_i y_i\right] = \sum_{i=1}^k L[\alpha_i y_i] = \sum_{i=1}^k \alpha_i L[y_i] = \sum_{i=1}^k \alpha_i f_i(x) \Rightarrow \sum_{i=1}^k \alpha_i y_i(x)$$
 — решение д.у. $L[y] = \sum_{i=1}^k \alpha_i f_i(x)$

34. Метод Лагранжа вариации произвольных постоянных для нахождения решения линейного неоднородного дифференциального уравнения 2-го порядка и вывод системы соотношений для варьируемых переменных

для варыруемых переменных
$$y^{(n)} + p_1(x)y^{(n-1)} + p_2(x)y^{(n-2)} + \cdots + p_{n-1}(x)y' + p_n(x)y = 0$$
 Решением соответствующее ЛОДУ и получаем y_{00} : $y_{00} = C_1y_1 + C_2y_2 + \cdots + C_ny_n$ Варыруем константы, то есть $y_{00} = C_1(x)y_1 + C_2(x)y_2 + \cdots + C_n(x)y_n$ $p_n(x) *$ $y = C_1(x)y_1 + C_2(x)y_2 + \cdots + C_n(x)y_n$ $y' = C_1(x)y_1 + C_2(x)y_2 + \cdots + C_n(x)y_n + C_1(x)y_1' + C_2(x)y_2' + \cdots + C_n(x)y_n'$ $y' = C_1(x)y_1' + C_2(x)y_2' + \cdots + C_n(x)y_n' + C_1(x)y_1' + C_2(x)y_2' + \cdots + C_n(x)y_n'$ $y'' = C_1(x)y_1' + C_2(x)y_2' + \cdots + C_n(x)y_n' + C_1(x)y_1'' + C_2(x)y_2'' + \cdots + C_n(x)y_n''$ $y'' = C_1(x)y_1'' + C_2(x)y_2' + \cdots + C_n(x)y_n'' + C_1(x)y_1'' + C_2(x)y_2'' + \cdots + C_n(x)y_n''$ $y'' = C_1(x)y_1'' + C_2(x)y_2'' + \cdots + C_n(x)y_n'' + C_1(x)y_1'' + C_2(x)y_2'' + \cdots + C_n(x)y_n''$ $y'' = C_1(x)y_1'' + C_2(x)y_2'' + \cdots + C_n(x)y_n''$ $y'' = C_1(x)y_1'' + C_2(x)y_2'' + \cdots + C_n(x)y_n'' + C_1(x)y_1'' + C_2(x)y_2'' + \cdots + C_n(x)y_n''$ $y'' = C_1(x)y_1'' + C_2(x)y_2'' + \cdots + C_n(x)y_n'' + C_1(x)y_1'' + C_2(x)y_2'' + \cdots + C_n(x)y_n'' + C_1(x)y_1'' + C_2(x)y_2'' + \cdots + C_n(x)y_n'' + C_1(x)y_1'' +$

$$\begin{cases} C_1'(x)y_1 + C_2'(x)y_2 + \dots + C_n'(x)y_n = 0 \\ C_1'(x)y_1' + C_2'(x)y_2' + \dots + C_n'(x)y_n' = 0 \\ \vdots & - \text{СЛАУ с неизвестными } (C_1', C_2', \dots, C_n') \text{ и} \\ C_1'(x)y_1^{(n-2)} + C_2'(x)y_2^{(n-2)} + \dots + C_n'(x)y_n^{(n-2)} = 0 \\ C_1'(x)y_1^{(n-1)} + C_2'(x)y_2^{(n-1)} + \dots + C_n'(x)y_n^{(n-1)} = f(x) \\ \vdots & - \text{СЛАУ с неизвестными } (C_1', C_2', \dots, C_n') \text{ и} \\ \vdots & - \text{СЛАУ с неизвестными } (C_1', C_2', \dots, C_n') \text{ и} \\ \vdots & - \text{СЛАУ с неизвестными } (C_1', C_2', \dots, C_n') \text{ и} \\ \vdots & - \text{СЛАУ с неизвестными } (C_1', C_2', \dots, C_n') \text{ и} \\ \vdots & - \text{СЛАУ с неизвестными } (C_1', C_2', \dots, C_n') \text{ и} \\ \vdots & - \text{СЛАУ с неизвестными } (C_1', C_2', \dots, C_n') \text{ и} \\ \vdots & - \text{СЛАУ с неизвестными } (C_1', C_2', \dots, C_n') \text{ и} \\ \vdots & - \text{СЛАУ с неизвестными } (C_1', C_2', \dots, C_n') \text{ и} \\ \vdots & - \text{СЛАУ с неизвестными } (C_1', C_2', \dots, C_n') \text{ и} \\ \vdots & - \text{СЛАУ с неизвестными } (C_1', C_2', \dots, C_n') \text{ и} \\ \vdots & - \text{СЛАУ с неизвестными } (C_1', C_2', \dots, C_n') \text{ и} \\ \vdots & - \text{СЛАУ с неизвестными } (C_1', C_2', \dots, C_n') \text{ u} \\ \vdots & - \text{C.} \text{ (In the properties of the proper$$

определителем системы
$$W(x) = \begin{vmatrix} y_1 & y_2 & \dots & y_n \\ y_1' & y_2' & \dots & y_n' \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \dots & y_n^{(n-1)} \end{vmatrix} \neq 0$$
, так как y_1, y_2, \dots, y_n

составляют ФСР ⇒ (по теореме о вронскиане системы линейно независимых частных решений ЛОДУ) \Rightarrow не существует решение $C_1'(x) = \varphi_1(x), C_2'(x) = \varphi_2(x), ..., C_n'(x) = \varphi_n(x)$ Интегрируем проученные функции:

$$\begin{array}{l} C_1(x) = \int \varphi_1(x) \, dx + \widetilde{C_1} \\ C_2(x) = \int \varphi_2(x) \, dx + \widetilde{C_2} \\ \vdots \end{array}$$

$$C_n(x) = \int \varphi_n(x) dx + \widetilde{C_n}$$

Подставляем в $y_{\text{он}}$:

$$\begin{aligned} y_{\text{OH}} &= \left(\int \varphi_1(x) \, dx + \widetilde{C_1}\right) y_1 + \left(\int \varphi_2(x) \, dx + \widetilde{C_2}\right) y_2 + \dots + \left(\int \varphi_n(x) \, dx + \widetilde{C_n}\right) y_n = \widetilde{C_1} y_1 + \widetilde{C_2} y_2 + \dots + \widetilde{C_n} y_n + y_1 \int \varphi_1(x) \, dx + y_2 \int \varphi_2(x) \, dx + \dots + y_n \int \varphi_n(x) \, dx \\ y_{\text{OH}} &= y_{\text{OO}} + y_{\text{HH}} \end{aligned}$$

35. Сформулировать определение дифференциального уравнения n-го порядка, разрешенного относительно старшей производной, и сформулировать задачу Коши для такого уравнения. Описать метод сведения этого уравнения к нормальной системе дифференциальных уравнений

 $y^{(n)} = f(x, y, y', ..., y^{(n-1)}) - д.у.$, разрешённое относительно старшей производной \oplus Задача Коши:

Найти решение д.у. ①, удовлетворяющее начальным условиям:

$$y(x_0) = y_0, \ y'(x_0) = y_0', \ ..., y^{(n-1)}(x_0) = y_0^{(n-1)}$$

Метод сведения к нормальной системе д.у.:

$$y^{(n)}+p_1(x)y^{(n-1)}+p_2(x)y^{(n-2)}+\cdots+p_{n-1}(x)y'+p_n(x)y=f(x)$$
 — ЛНДУ n -го порядка $@$. Пусть $y=y_1$ — общее решение д.у. $@$.

Пусть
$$y=y_1$$
 — общее решение д.у. ②.
Обозначим: $y'=\frac{dy_1}{dx}=y_2$; $y''=\frac{dy_2}{dx}=y_3$; ...; $y^{(n-1)}=\frac{dy_{(n-1)}}{dx}=y_n$; $y^{(n)}=\frac{dy_n}{dx}=f(x)-p_1(x)y_n-p_2(x)y_{n-1}-\cdots-p_{n-1}(x)y_2-p_n(x)y_1$
$$\begin{cases} \frac{dy_1}{dx}=y_2\\ \frac{dy_2}{dx}=y_3\\ \vdots\\ \frac{dy_{n-1}}{dx}=y_n \end{cases}$$
 Получаем систему:
$$\begin{cases} \frac{dy_n}{dx}=f(x)-p_1(x)y_n-p_2(x)y_{n-1}-\cdots-p_{n-1}(x)y_2-p_n(x)y_1 \end{cases}$$

36. Сформулировать задачу Коши для нормальной системы дифференциальных уравнений и теорему Коши о существовании и единственности решения этой задачи. Описать метод сведения нормальной системы к одному дифференциальному уравнению высшего порядка

$$\begin{cases} \frac{dx_1}{dt} = f_1(t, x_1, \dots, x_n) \\ \frac{dx_2}{dt} = f_2(t, x_1, \dots, x_n) \\ \vdots \\ \frac{dx_n}{dt} = f_n(t, x_1, \dots, x_n) \end{cases}$$

Задача Коши:

Найти решение нормальной системы @, удовлетворяющее начальным условиям @:

$$x_1(t_0) = x_{10}, x_2(t_0) = x_{20}, \dots, x_n(t_0) = x_{n0}$$

Т. Коши:

Если функции $f_i(t,x_1,x_2,...,x_n)$, $(i=\overline{1,n})$, и их частные производные $f_{1x_1}^{'},f_{1x_2}^{'},...,f_{1x_n}^{'},f_{2x_1}^{'},f_{2x_2}^{'},...,f_{2x_n}^{'},...,f_{nx_n}^{'},f_{nx_2}^{'},...,f_{nx_n}^{'}$ непрерывны в некоторой области (n+1) мерного пространства $(t,x_1,x_2,...,x_n)$, то для \forall точки $(t_0,x_{10},x_{20},...,x_{n0}) \in D$ в $U(t_0)$ \exists ! решение $x_1(t),x_2(t),...,x_n(t)$ системы 0, удовлетворяющее начальным условиям 2.

Метод сведения нормальной системы к одному д.у.:

Дифференцируем первое уравнение системы ⁽¹⁾.

$$\frac{d^2x_1}{dt^2} = f_{1t}' + f_{1x_1}' * x_{1t}' + f_{1x_2}' * x_{2t}' + \dots + f_{1x_n}' * x_{nt}' = f_{1t}' + f_{1x_1}' f_1(t, x_1, \dots, x_n) + f_{1x_2}' f_2(t, x_1, \dots, x_n) + \dots + f_{1x_n}' (t, x_1, \dots, x_n) = f_{1t}' + \sum_{i=1}^n f_{1x_i}' f_i(t, x_1, \dots, x_n) = F_2(t, x_1, \dots, x_n).$$

Аналогично дифференцируем последнее уравнение:

$$\begin{array}{l} \frac{d^3x_1}{dt^3} = F_{2\,t}^{\;\prime} + F_{2\,x_1}^{\;\prime} * x_{1\,t}^{\;\prime} + F_{2\,x_2}^{\;\prime} * x_{2\,t}^{\;\prime} + \cdots + F_{2\,x_n}^{\;\prime} * x_{n\,t}^{\;\prime} = \\ F_{2\,t}^{\;\prime} + F_{2\,x_1}^{\;\prime} f_1(t,x_1,\ldots,x_n) + F_{2\,x_2}^{\;\prime} f_2(t,x_1,\ldots,x_n) + \cdots + F_{2\,x_n}^{\;\prime}(t,x_1,\ldots,x_n). \end{array}$$

Аналогично дифференцируем последнее уравнение и получаем систему:

$$\begin{cases} \frac{dx_1}{dt} = f_1(t, x_1, \dots, x_n) \\ \frac{d^2x_1}{dt^2} = F_2(t, x_1, \dots, x_n) \\ \vdots & \textcircled{2} \\ \frac{d^{(n-1)}x_1}{dt^{(n-1)}} = F_{n-1}(t, x_1, \dots, x_n) \\ \frac{d^nx_1}{dt^n} = F_n(t, x_1, \dots, x_n) \end{cases}$$

Из первых (n-1) уравнений системы @ выражаем x_2, x_3, \dots, x_n как функции, зависящие от

$$t, x_1, \frac{dx_1}{dt}, \dots, \frac{d^{(n-1)}x_1}{dt^{(n-1)}} \colon \begin{cases} x_2 = \psi_2\left(t, x_1, \frac{dx_1}{dt}, \dots, \frac{d^{(n-1)}x_1}{dt^{(n-1)}}\right) \\ \vdots \\ x_n = \psi_n\left(t, x_1, \frac{dx_1}{dt}, \dots, \frac{d^{(n-1)}x_1}{dt^{(n-1)}}\right) \end{cases}$$
 $\ensuremath{\mathfrak{G}}$; и подставляем в последнее уравнение $x_1, x_2, \dots, x_n \in \mathbb{R}$

$$\left(x_n = \psi_n\left(t, x_1, \frac{dx_1}{dt}, ..., \frac{dx_1}{dt^{(n-1)}}\right)\right)$$
 системы ②: $\frac{d^n x_1}{dt^n} = F_n\left(t, x_1, \psi_2\left(t, x_1, \frac{dx_1}{dt}, ..., \frac{d^{(n-1)} x_1}{dt^{(n-1)}}\right), ..., \psi_n\left(t, x_1, \frac{dx_1}{dt}, ..., \frac{d^{(n-1)} x_1}{dt^{(n-1)}}\right)\right) = 0$

 $\Phi\left(t,x_1,rac{dx_1}{dt},...,rac{d^{(n-1)}x_1}{dt^{(n-1)}}
ight)$ — д.у. \circledast n-го порядка, зависящее только от одной переменной $t,x_1,rac{dx_1}{dt}$. Если система \circledast линейная, то д.у. \circledast линейное.

Решая д.у. 4, находим $x_1=\varphi_1(t,C_1,C_2,...,C_n)$ и $\frac{dx_1}{dt}=\frac{d\varphi_1}{dt}; \frac{d^2x_1}{dt^2}=\frac{d^2\varphi_1}{dt^2}; ...; \frac{d^nx_1}{dt^n}=\frac{d^n\varphi_1}{dt^n}$ подставляем в систему 3. Находим $x_2=\varphi_2(t,C_1,C_2,...,C_n),...,x_n=\varphi_n(t,C_1,C_2,...,C_n)$ $\begin{cases} x_1=\varphi_1(t,C_1,C_2,...,C_n)\\ x_2=\varphi_2(t,C_1,C_2,...,C_n) \end{cases}$ — общее решение системы 1

 Сформулировать определение первого интеграла нормальной системы дифференциальных уравнений. Описать методы нахождения первых интегралов и их применение для решения системы дифференциальных уравнений

$$\begin{cases} \frac{dx_1}{dt} = f_1(t, x_1, \dots, x_n) \\ \frac{dx_2}{dt} = f_2(t, x_1, \dots, x_n) \\ \vdots \\ \frac{dx_n}{dt} = f_n(t, x_1, \dots, x_n) \end{cases}$$

Первым интегралом системы ① называется уравнение $\Phi(t, x_1, ..., x_n) = C$, которое после подстановки в него решений $x_1(t), ..., x_n(t)$ система ① обращается в верное тождество.

Пример:

Общий интеграл системы:
$$\begin{cases} x_1 + x_2 = c_1 e^t \\ x_1 - x_2 = c_2 e^{-t} \end{cases}$$
 Общее решение системы:
$$\begin{cases} x_1 + x_2 = c_1 e^t \\ x_1 - x_2 = c_2 e^{-t} \end{cases}$$

$$\begin{cases} x_1 + x_2 = c_1 e^t \\ x_1 - x_2 = c_2 e^{-t} \end{cases}$$

Применение:

Сложение, вычитание, арифметические операции, понижение порядка системы д.у.