Week #14

Class Meetings:

Monday, May 8. What drives chemical and physical changes in matter? We'll discuss Entropy, a thermodynamic state function that is important in determining whether a process is spontaneous and introduce Gibbs Free Energy, a thermodynamic state function that combines two thermodynamic concepts: ΔH and ΔS (Chapter 16).

Wednesday, May 10. Experiment 8: The Goldschmidt Reaction. Remember to come prepared for lab (notebook and clothing).

Friday, May 12. Quiz #11: Thermochemistry (Chp. 5) and Quiz retake (this is optional, please let me know by Thursday morning which quiz you'd like to retake).

Problem Set

*This is not an assignment answers will be posted.

- 1. In a particular spontaneous process, the entropy of the system decreases. What can you conclude about the sign and magnitude of $\Delta S_{\text{surr}}?$
- 2. Without doing any calculations, predict whether ΔS is positive, negative for each of the following processes, assuming each occurs at constant temperature:
 - (a) Dissolution of $HCl_{(g)}$ in water
 - (b) $2NO_2$ (g) \rightarrow 2 NO (g) + O_2 (g)
 - (c) Dew forming
 - (d) Dissolution of NaCl_(s) in water

Chemistry 129.01, Spring 2017, General Chemistry

- 3. Using the appendix of your book, compare S° at 25°C for the following pairs of substances and explain the difference in entropy values:
 - (a) $CuO_{(s)}$ and $Cu_2O_{(s)}$
 - (b) 1mol of $N_2O_{4(q)}$ and 2mol of $NO_{2(q)}$
 - (c) $SiO_{2(s)}$ and $CO_{2(g)}$
 - (d) $CO_{(g)}$ and $CO_{2(g)}$
- 4. Using S° values from the appendix of your book, calculate Δ S° values for each of the following reactions. In each case explain the sign of Δ S.
 - (a) $N_2H_{4(g)} + H_{2(g)} \rightarrow 2 NH_{3(g)}$
 - (b) $K_{(s)} + O_{2(g)} \rightarrow KO_{2(s)}$
 - (c) $Mg(OH)_{2(s)} + 2 HCl_{(q)} \rightarrow MgCl_{2(s)} + 2 H_2O_{(1)}$
 - (d) $CO_{(q)} + 2 H_{2(q)} \rightarrow CH_3OH_{(q)}$
- 5. Using values from the appendix of your book, calculate ΔS° (Problem #4), ΔH° , ΔG° values for each of the following reactions. In each case show that $\Delta G^{\circ} = \Delta H^{\circ} T\Delta S^{\circ}$. Is the process spontaneous?
 - (a) $N_2H_{4(q)} + H_{2(q)} \rightarrow 2 NH_{3(q)}$
 - (b) $K_{(s)} + O_{2(q)} \rightarrow KO_{2(s)}$
 - (c) Mg(OH)_{2(s)} + 2 HCl_(q) \rightarrow MgCl_{2(s)} + 2 H₂O₍₁₎
 - (d) $CO_{(q)} + 2 H_{2(q)} \rightarrow CH_3OH_{(q)}$
- 6. Write the equilibrum expressions for the following and determine the value of the equilibrium constant using ΔG° .
 - (a) $N_2H_{4(g)} + H_{2(g)} \rightarrow 2 NH_{3(g)}$
 - (b) $K_{(s)} + O_{2(g)} \rightarrow KO_{2(s)}$
 - (c) Mg(OH)_{2(s)} + 2 HCl_(q) \rightarrow MgCl_{2(s)} + 2 H₂O₍₁₎
 - (d) $CO_{(g)} + 2 H_{2(g)} \rightarrow CH_3OH_{(g)}$