Python For Data Science Cheat Sheet **NumPy Basics**

NumPy

The **NumPy** library is the core library for scientific computing in Python. It provides a high-performance multidimensional array object, and tools for working with these arrays.

Use the following import convention: >>> import numpy as np

NumPy Arrays

Creating Arrays

```
>>> a = np.array([1,2,3])
>>> b = np.array([(1.5,2,3), (4,5,6)], dtype = float)
>>> c = np.array([[(1.5,2,3), (4,5,6)], [(3,2,1), (4,5,6)]],
                 dtype = float)
```

Initial Placeholders

>>> np.zeros((3,4))	Create an array of zeros
>>> np.ones((2,3,4),dtype=np.int16)	Create an array of ones
>>> d = np.arange(10,25,5)	Create an array of evenly
	spaced values (step value)
>>> np.linspace(0,2,9)	Create an array of evenly
	spaced values (number of samples)
>>> e = np.full((2,2),7)	Create a constant array
>>> f = np.eye(2)	Create a 2X2 identity matrix
>>> np.random.random((2,2))	Create an array with random values
>>> np.empty((3,2))	Create an empty array

1/0

Saving & Loading On Disk

```
>>> np.save('my array', a)
>>> np.savez('array.npz', a, b)
>>> np.load('my array.npy')
```

Saving & Loading Text Files

```
>>> np.loadtxt("myfile.txt")
>>> np.genfromtxt("my file.csv", delimiter=',')
>>> np.savetxt("myarray.txt", a, delimiter=" ")
```

Data Types

>>> np.int64	Signed 64-bit integer types
>>> np.float32	Standard double-precision floating point
>>> np.complex	Complex numbers represented by 128 floats
>>> np.bool	Boolean type storing TRUE and FALSE values
>>> np.object	Python object type
>>> np.string_	Fixed-length string type
>>> np.unicode	Fixed-length unicode type

Inspecting Your Array

>>>	a.shape	Array dimensions
>>>	len(a)	Length of array
>>>	b.ndim	Number of array dimensions
>>>	e.size	Number of array elements
>>>	b.dtype	Data type of array elements
>>>	b.dtype.name	Name of data type
>>>	b.astype(int)	Convert an array to a different type

Asking For Help

>>> np.info(np.ndarray.dtype)

Array Mathematics

Arithmetic Operations

```
>>> g = a - b
array([[-0.5, 0., 0.],
                                             Subtraction
        [-3., -3., -3.]])
>>> np.subtract(a,b)
                                             Subtraction
>>> b + a
                                             Addition
 array([[ 2.5, 4., 6.],
        [5., 7., 9.]])
>>> np.add(b,a)
                                             Addition
>>> a / b
                                             Division
 array([[ 0.66666667, 1.
       [ 0.25 , 0.4
>>> np.divide(a,b)
                                             Division
>>> a * b
                                             Multiplication
 array([[ 1.5, 4., 9.],
       [ 4. , 10. , 18. ]])
>>> np.multiply(a,b)
                                             Multiplication
                                             Exponentiation
>>> np.exp(b)
                                             Square root
>>> np.sqrt(b)
                                             Print sines of an array
>>> np.sin(a)
>>> np.cos(b)
                                             Element-wise cosine
                                             Element-wise natural logarithm
>>> np.log(a)
>>> e.dot(f)
                                             Dot product
 array([[ 7., 7.],
        [ 7., 7.]])
```

Comparison

>>> a == b array([[False, True, True],	Element-wise comparison
<pre>[False, False, False]], dtype=bool) >>> a < 2 array([True, False, False], dtype=bool)</pre>	Element-wise comparison
	Array-wise comparison

Aggregate Functions

>>> a.sum()	Array-wise sum
>>> a.min()	Array-wise minimum value
>>> b.max(axis=0)	Maximum value of an array row
>>> b.cumsum(axis=1)	Cumulative sum of the elements
>>> a.mean()	Mean
>>> b.median()	Median
>>> a.corrcoef()	Correlation coefficient
>>> np.std(b)	Standard deviation

Copying Arrays

>>> h = a.view()	Create a view of the array with the same data
>>> np.copy(a)	Create a copy of the array
>>> h = a.copy()	Create a deep copy of the array

Sorting Arrays

>>> a.sort()	Sort an array
>>> c.sort(axis=0)	Sort the elements of an array's axis

Subsetting, Slicing, Indexing

Also see Lists

```
1 2 3
           Select the element at the 2nd index
1.5 2 3
```


1 2 3

array([[1.5, 2., 3.]]) >>> c[1,...] array([[[3., 2., 1.], [4., 5., 6.]]]) >>> a[: :-1]

array([3, 2, 1]) **Boolean Indexing** >>> a[a<2]

array([1]) Fancy Indexing

Subsetting

>>> a[2]

>>> b[1,2]

>>> a[0:2]

>>> b[:1]

array([1, 2])

array([2., 5.])

>>> b[0:2,1]

6.0 Slicina

>>> b[[1, 0, 1, 0], [0, 1, 2, 0]] array([4. , 2. , 6. , 1.5]) >>> b[[1, 0, 1, 0]][:,[0,1,2,0]]

Select the element at row 1 column 2 (equivalent to b[1][2])

Select items at index 0 and 1

Select items at rows 0 and 1 in column 1

Select all items at row o (equivalent to b[0:1, :]) Same as [1,:,:]

Reversed array a

Select elements from a less than 2

Select elements (1,0), (0,1), (1,2) and (0,0)

Select a subset of the matrix's rows and columns

Array Manipulation

Transposing Array >>> i = np.transpose(b) >>> i.T

Changing Array Shape

>>> b.ravel() >>> g.reshape(3,-2)

Adding/Removing Elements

>>> h.resize((2,6)) >>> np.append(h,g) >>> np.insert(a, 1, 5) >>> np.delete(a,[1])

Combining Arrays

>>> np.concatenate((a,d),axis=0) array([1, 2, 3, 10, 15, 20]) >>> np.vstack((a,b)) array([[1. , 2. , 3.], [1.5, 2. , 3.], [4. , 5. , 6.]]) >>> np.r [e,f] >>> np.hstack((e,f)) array([[7., 7., 1., 0.], [7., 7., 0., 1.]]) >>> np.column stack((a,d)) array([[1, 10], 2, 15], [3, 20]]) >>> np.c [a,d]

Splitting Arrays

>>> np.hsplit(a,3) [array([1]),array([2]),array([3])] >>> np.vsplit(c,2) [array([[[1.5, 2., 1.], [4., 5., 6.]]]), array([[[3., 2., 3.], [4., 5., 6.]]])]

Permute array dimensions Permute array dimensions

Flatten the array Reshape, but don't change data

Return a new array with shape (2,6) Append items to an array

Insert items in an array Delete items from an array

Concatenate arrays

Stack arrays vertically (row-wise)

Stack arrays vertically (row-wise) Stack arrays horizontally (column-wise)

Create stacked column-wise arrays

Create stacked column-wise arrays

Split the array horizontally at the 3rd

Split the array vertically at the 2nd index