2.

۷.	
	Homework
	2.2V W = x) - x - 3x1 = 2-1-3 = -2
	$-2*w = -3\begin{bmatrix} 2 \\ 1 \end{bmatrix}\begin{bmatrix} -6 \\ 2 \end{bmatrix}$
	$\frac{1}{1} - \frac{3}{1} = \frac{3}$
	$0. M + 1 = \begin{bmatrix} 20 & 15 & 0 \\ 1 & 25 & 10 \\ 0 & 20 & 5 \end{bmatrix} = \begin{bmatrix} 1 & -15 & 160 \\ 1 & -15 & 160 \\ 0 & 20 & 5 \end{bmatrix} = \begin{bmatrix} 1 & -15 & 160 \\ 0 & 20 & 5 \\ 0 & 20 & 15 \end{bmatrix} = \begin{bmatrix} 1 & -15 & 160 \\ 0 & 20 & 15 \\ 0 & 20 & 15 \end{bmatrix}$
	d. M+N = [20 15 0] [-20 5 10] = [0 20 10] = [5 15 20] = [5 15 20] = [5 15 20]
	C, M-N = 130 150
	f, z ^T = [1 1 1]
	9. ZZ=[1 1 1] 1 -3 - THHH+1 5-3+2+4] = [4 8]
	$\frac{1}{2} \cdot Z^{7}Y = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -3 & 2 & 4 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ -1 & -1 & -3 & -2 & 12 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & -3 & -2 & 12 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 1 & -3 & -2 & 12 \end{bmatrix}$
	$ \hat{J} = (\bar{I}^T Z)^{-1} Z^T Y = \begin{bmatrix} \frac{27}{76} - \frac{1}{19} \\ -\frac{1}{19} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{27M}{76} - \frac{17}{19} \\ -\frac{1}{19} + \frac{17}{28} \end{bmatrix} = \begin{bmatrix} \frac{67}{76} \\ \frac{7}{38} \end{bmatrix} $
	k. del(z ⁷ z) = 4x14-64=216-64=152

```
3.
Source Code:
#Problem 3
library(MASS)
#Create Matrix
Z <- matrix(c(1, 5, 1, -3, 1, 2, 1, 4),
      nrow = 4,
      ncol = 2,
      byrow = T)
Y <- matrix(c(2, 1, -1, 3),
      nrow = 4,
      ncol = 1,
      byrow = T)
M <- matrix(c(20, 15, 0, 5, 25, 10, 0, 20, 5),
      nrow = 3,
      ncol = 3,
      byrow = T)
```

```
N <- matrix(c(-20, 5, 10, 0, -10, 10, 5, 20, -5),
       nrow = 3,
       ncol = 3,
      byrow = T)
v <- matrix(c(1, -1, 3),
      nrow = 3,
      ncol = 1,
       byrow = T)
w <- matrix(c(2, 1, -1),
      nrow = 3,
      ncol = 1,
      byrow = T)
#a. v.w
crossprod(v, w)
#b. -3*w
-3 * w
#c. M * v
M %*% v
#d. M + N
M + N
#e. M - N
M - N
#f. Z(T)
Zt \leftarrow t(Z)
Zt
#g. Z(T)Z
ZtZ = Zt %*% Z
ZtZ
#h. (Z(T)Z)^(-1)
inverse <- fractions(ginv(ZtZ))</pre>
inverse
#i. Z(T)Y
ZtY <- Zt %*% Y
ZtY
#j. Beta
beta <- fractions(inverse %*% ZtY)
beta
```

```
#k. det(Z(T)Z)
detZtZ <- det(ZtZ)
detZtZ

#dataset x y
x <- c(5, -3, 2, 4)
y <- c(2, 1, -1, 3)

dataSet <- data.frame(x, y)
fit <- lm(y ~ x, data = dataSet)
summary(fit)</pre>
```

Output:

4.

a.

Source Code: #Problem 4

#a.

head(mtcars)

```
A <- mtcars[c("cyl", "disp", "hp", "wt", "carb")]
Y <- mtcars[c("mpg")]
b.
Source Code:
A$count <- rep(1, nrow(A))
A \leftarrow A[c(6, 1, 2, 3, 4, 5)]
c.
Source Code:
#c.
A <- as.matrix(A)
Y <- as.matrix(Y)
d.
Source Code:
#d.
At <- t(A)
inverse <- fractions(ginv(At %*% A))</pre>
AtY <- At %*% Y
beta <- inverse %*% AtY
beta
Output:
 > beta <- inverse %*% AtY
[1,] 40.815359236
[2,] -1.291898563
[3,] 0.011485584
[4,] -0.020352893
[5,] -3.846949031
[6,] -0.006746893
e.
Source Code:
#e.
dataSet <- mtcars[c("cyl", "disp", "hp", "wt", "carb", "mpg")]</pre>
model <- Im(mpg ~ cyl + disp + hp + wt + carb, data = dataSet)
summary(model)
Output:
```

Comparing the output between d and e, I find that the matrix of beta is the same as the coefficients of the model between mpg and the other five attributes.

```
5. Source Code:
```

londonOlympic <- read.csv2("/Users/Yiyang/Documents/CSC 424/Homework-1-DataFiles/olympics.csv", sep = ",", header = T)

londonOlympic\$ratio <- (londonOlympic\$Female.count + londonOlympic\$Male.count)/londonOlympic\$X2010.population

modelL <- Im(Gold.medals ~ ratio, data = IondonOlympic) summary(modelL) plot(IondonOlympic\$ratio, IondonOlympic\$Gold.medals)

Output:

The point I am going to talk is between the athletics/population ratio and the amount of gold medals. As I see, almost all the country, the athletics ratio is similar, there are three outliers, which athletics ratio is larger than the others. Except these three countries, those countries which have the similar ratio, however, they don't have the same amount of medals. The leader of the gold medals ranking is US, and second place is China, the third one is UK, I can find a thing, these three countries don't have a high athletics ratio, the reason why they could get many medals, in my view, is the athletic practicing level, these countries spend a large part of money to support sports industry, so athlete could have a better environment to practice, and reach the best level to prepare matches.

```
6.
Source Code:
maple <- read.table("/Users/Yiyang/Documents/CSC 424/Homework-1-DataFiles/maple.txt", header =
TRUE)
print(maple)
X1 <- maple$Latitude
X2 <- maple$JulyTemp
```

a. Source Code: #a.

Y <- maple\$LeafIndex

m1 <- lm(Y ~ X1) summary(m1)

Output:

```
> m1 < lm(Y ~ X1)
> summary(m1)

Call:
lm(formula = Y ~ X1)

Residuals:
Min 1Q Median 3Q Max
-3.2348 -0.8488 0.0773 1.0074 3.3305

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.66716 3.05202 -0.546 0.589
X1 0.45369 0.07427 6.108 1.03e-06 ***
---
Signif. codes: 0 **** 0.001 *** 0.01 ** 0.05 *. 0.1 * 1

Residual standard error: 1.673 on 30 degrees of freedom
Multiple R-squared: 0.5543, Adjusted R-squared: 0.5394
F-statistic: 37.31 on 1 and 30 DF, p-value: 1.031e-06
```

b.Source Code:#b.m2 <- Im(Y ~ X2)summary(m2)

Output:

```
Source Code:
#c.
m3 <- lm(Y ~ X1 + X2)
summary(m3)
```

Output:

The coefficients of X1 in a) is 0.45369, in c) is 0.31393, X2 in b) is -0.33318, in c) is -0.13524. The coefficient of X1 is decreasing, X2 is increasing. Since X1 is the latitude, and X2 is the temperature, these two factors also influence each other, if latitude increase the temperature may decrease. This could be the reason why the coefficient changes.

d.

Output:

I think p-value could detect this issue, the p-value of these two variables are 0.0169 for X1 and 0.1728 for X2.

```
7.
Source Code:
chicinsur <- read.table("/Users/Yiyang/Documents/CSC 424/Homework-1-DataFiles/chicinsur.txt",
header = TRUE)
print(chicinsur)
a.
Source Code:
c <- data.frame(pctmin = chicinsur$pctmin,
        fires = chicinsur$fires,
        thefts = chicinsur$thefts,
        pctold = chicinsur$pctold,
        income = chicinsur$income,
        newpol = chicinsur$newpol)
C <- cor(c)
library(corrplot)
corrplot(C, method = "circle")
```

```
fires
pctmin
                  0.5927956
                             0.2550647
                                        0.2505118 -0.7037328 -0.7594196
fires
       0.5927956
                             0.5562105
                                        0.4122225 -0.6104481 -0.6864766
       0.2550647
                  0.5562105
                                        0.3176308 -0.1729226 -0.3116183
pctold
      0.2505118
                  0.4122225
                             0.3176308
                                        1.0000000 -0.5286695 -0.6057428
      -0.7037328 -0.6104481 -0.1729226 -0.5286695
         7594196 -0.6864766 -0.3116183 -0.6057428
```

The coefficients matrix could support the prediction about the signs, and the correlation plot is very clear to show how the variables influence each other.

b.

Source Code:

c6 <- $lm(newpol \sim fires + pctmin + thefts + pctold + income, data = chicinsur)$ summary(c6)

Output:

i.

From the summary of the model, the adjusted R^2 is 0.7688, pctmin and pctold have the most significant correlation with newpol, fires has less significant correlation with newpol, the other variables don't have significant correlation with newpol.

ii.

From the report, thefts and income have coefficients that are significantly different form zero.

iii.

Almost all the predictors are different than suggested by their simple correlations. I think simple correlations are the relationship between two variables, but if put them together in to a multiple regression model, they will influence each other and then they change.

Output:

The problem I notice is that the predicted value and residual value are approaching to a straight line from 0 to 6, which means this plot is nearly heteroscedastic.

```
8. Source Code:
```

```
housing <- read.table("/Users/Yiyang/Documents/CSC 424/housing.data", header = FALSE) colnames(housing) <- c("CRIM", "ZN", "INDUS", "CHAS", "NOX", "RM", "AGE", "DIS", "RAD", "TAX", "PTRATIO", "B", "LSTAT", "MEDV") print(housing)
```

```
modelH < -lm(CRIM \sim ZN + INDUS + CHAS + NOX + RM + AGE + DIS + RAD + TAX + PTRATIO + B + LSTAT + MEDV, data = housing)
summary(modelH)
```

Output:

```
**Summary(modelit)

Call:

Le(Formula = CRIM = 2H + INDUS + CMAS + NOK + RM + AGE + DIS +

Residuals:

Min 10 Median 30 Max
-9.934 -2.120 -0.535 1.019 75.051

Confficients:

Estimate Std. Error t value Pr(-it)

(Intercept) 17.083228 7.234983 2.334 0.018949 *

27.035 0.044855 0.018744 2.339 0.017053 *

DOM: 0.044855 0.018745 2.3394 0.017053 *

DOM: 0.044855 0.018745 2.3394 0.017053 *

DOM: 0.044855 0.018745 2.3394 0.017053 *

DOM: 0.044855 0.018745 2.3395 0.017053 *

DOM: 0.044855 0.018745 0.018745 0.01874 *

DOM: 0.044855 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.018745 0.0187
```

From the report, I get the R² is 0.454, and adjusted R² is 0.4396, the value is not that large, so I think this is not a very good model for these values. The utility for this model is going to predict the crime rate from different factors that may influence the crime rate. The estimated coefficients and Std. Errors of each variable are showing in the report, according to the report, DIS, RAD, ZN, B, MEDV, NOX and LSTAT have significant correlation, DIS and RAD have the highest significant correlation with CRIM.

b. Source Code:

fwd.model <- step(lm(CRIM \sim 1, data = housing), direction = 'forward', scope = \sim ZN + INDUS + CHAS + NOX + RM + AGE + DIS + RAD + TAX + PTRATIO + B + LSTAT + MEDV)

Output:

From the report, the model with smallest AIC model is CRIM \sim RAD + LSTAT + B + MEDV + ZN + DIS + NOX + PTRATIO, which means these factors may be the suitable factors for the final model.

```
c.
```

Source Code:

```
bwd.model <- step(Im(CRIM ^{\sim} ZN + INDUS + CHAS + NOX + RM + AGE + DIS + RAD + TAX + PTRATIO + B + LSTAT + MEDV, data = housing), direction = 'backward', scope = ^{\sim} 1)
```

Output:

```
Step: AIC-1891.83
CRIM - ZN + NOX + DIS + RAD + PTRATIO + B + LSTAT + MEDV

Df Sum of Sq. RSS. AIC
GRORES
- LSTAT 1 194.7 29637 1892.4
- PTRATIO 1 119.0 20652 1892.8
- B 1 198.4 20731 1894.7
- ZN 1 239.6 20772 1895.7
- NOX 1 296.6 20829 1897.1
- MEDV 1 430.2 20963 1990.3
- DIS 1 507.8 21040 1990.2
- RAD 1 4739.5 25272 1994.9
```

The final model I get from backward selection method is CRIM $^{\sim}$ ZN + NOX + DIS + RAD + PTRATIO + B + LSTAT + MEDV, which is actually same as the forward selection method. So it means this model is the best model for this problem.