

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА ПО ДИСЦИПЛИНЕ "ИНФОРМАТИКА" Вариант №7

КУРСОВАЯ РАБОТА

Подп. и дата	
Инв. № дубл.	
Взам. инв. №	
Подп. и дата	
Инв. № подл.	2019

СОДЕРЖАНИЕ

1	Вст	упление	3
2	Oc	новная часть	4
	2.1	Задание на курсовую работу	4
	2.2	Решение уравнения и исследование функции	5
	2.3	Нахождение коэффициентов кубического сплайна	11
		2.3.1 Задания и исходные данные для решения	11
		2.3.2 Теория и вывод уравнения сплайна	12
	2.4	Решение задачи оптимального распределения неоднородных ресурсов	16
3	3a 1	ключение	17

Подп. и дата									
Инв. № дубл.									
Взам. инв. №									
Подп. и дата						I.Z			
	_	Лист	№ докум.	Подп.	Дата	Курсовая раб 			
Инв. № подл.	Разр Про: Н. к Утв.	в.	Зацепина МЕ Прокшин АН			Пояснительная записка по дисциплине "Информатика" Вариант №7	Лит.	Лист 2	Листов 17

1 ВСТУПЛЕНИЕ

Цель курсовой работы:

уметь применять персональный компьютер и математические пакеты прикладных программ в инженерной деятельности

Тема курсовой работы:

решение математических задач с использованием математического пакета "Scilab" и "Smath".

_								
Подп. и дата								
Инв. № дубл.								
B 3 a M. M HB. \mathcal{W} $^{\underline{\nu}}$								
Подп. и дата								
тодл.								
Инв. № подл.	-						Курсовая работа	Лист
$N_{ m H}$		Изм	Лист	№ докум.	Подп.	Дата	11) peoport poorto	3

2 ОСНОВНАЯ ЧАСТЬ

2.1 Задание на курсовую работу

1. Даны функции:

$$f(x) = \sqrt{3}sin(x) + cos(x)$$
, и $g(x) = cos(2x + \pi/3) - 1$

- а) Решить уравнение f(x) = g(x).
- b) Исследовать функцию h(x)=f(x)-g(x) на промежутке $[0\ ;\ (5\pi)/6].$
- 2. Найти коэффициенты кубического сплайна, интерполирующего данные, представленные в векторах \vec{V}_x и \vec{V}_y .

Построить на одном графике функцию f(x) и функцию $f_1(x)$, полученную после нахождения коэффициентов кубического сплайна.

Представить графическое изображение результатов интерполяции исходных данных различными методами с использованием встроенных функций $cspline(V_x, V_y)$, $pspline(V_x, V_y)$, $lspline(V_x, V_y)$ и $interp(V_k, V_x, V_y, x)$.

3. Решить задачу оптимального распределения неоднородных ресурсов. Исходные данные представлены в таблице 1.

Таблица 1

Инв. № дубл.

Взам. инв. №

Используемые ресурсы, a_i	Изг	отав	лива	емые изделия	Наличие ресурсов, a_i
	И1	И2	Из	H_4	
Трудовые	2	4	2	9	20
Материальные	5	5	5	6	10
Финансовые	5	6	4	8	30
Прибыль	25	45	60	20	

Изм	Лист	№ докум.	Подп.	Дата

a)
$$f(x) = g(x)$$

 $\sqrt{3}sin(x) + cos(x) = cos(2x + \frac{\pi}{3}) - 1$

$$\sqrt{3}sin(x) + cos(x) = 0$$
 $\cos(2x + \frac{\pi}{3}) - 1 = 0$ $2x + \frac{\pi}{3} = arccos(1)$ $2x + \frac{\pi}{3} = 0$ $2x = -\frac{\pi}{3}$ $x = -\frac{\pi}{6} + 2\pi k$, где $k \in Z$. $x = 2x + \frac{\pi}{3} = 0$ $x = -\frac{\pi}{6} + 2\pi k$, где $x = 2x + 2\pi k$, где $x = 2x + 2\pi k$

b) Исследовать функцию h(x)=f(x)-g(x) на промежутке $[0\ ; rac{5\pi}{6}].$

1. Область определения функции

Выражение имеет смысл при любом значении x на интервале $[0; \frac{5\pi}{6}]$.

2. Четность, нечетность функции

Функция четная, если y(-x) = y(x). Функция нечетная, если y(-x) = -y(x).

$$h(x) = \sqrt{3}sin(x) + cos(x) - (cos(2x + \frac{\pi}{3}) - 1)$$

$$h(x) = \sqrt{3}sin(x) + cos(x) - cos(2x)cos\frac{\pi}{3} + sin(2x)sin\frac{\pi}{3} + 1)$$
 (1)

$$h(-x) = \sqrt{3}\sin(-x) + \cos(-x) - \cos(-2x)\cos\frac{\pi}{3} - \sin(-2x)\sin\frac{\pi}{3} + 1$$

$$h(-x) = -\sqrt{3}\sin(x) + \cos(x) - \cos(2x)\cos\frac{\pi}{3} - \sin(2x)\sin\frac{\pi}{3} + 1$$
 (2)

Таким образом, $h(-x) \neq h(x)$, и $h(-x) \neq -h(x)$, следовательно функция h(x) не обладает свойствами четности и нечетности.

Инв. № дубл.

Взам. инв. №

Подп. и дата

Изм	Лист	№ докум.	Подп.	Дата

Курсовая работа

$$h(x) = 0 (3)$$

Полученные из уравнения (3) значения x - это точки пересечения функции h(x) с осью ОХ.

$$\sqrt{3}\sin(x) + \cos(x) - (\cos(2x + \frac{\pi}{3}) - 1) = 0 \tag{4}$$

$$\sqrt{3}sin(x) + cos(x) = 2\sqrt{3}sin(\frac{x}{2})cos(\frac{x}{2}) + cos^2(\frac{x}{2}) - sin^2(\frac{x}{2})$$
(5)

Разделим выражение (5) на $\cos^2(\frac{x}{2})$.

$$\sqrt{3}sin(x) + cos(x) = 2\sqrt{3}tg(\frac{x}{2}) + 1 - tg^2(\frac{x}{2})$$

$$cos(2x + \frac{\pi}{3}) - 1 = -(1 - cos(2x + \frac{\pi}{3})) = -2sin^2(x + \frac{\pi}{6}) =$$
(6)

$$= -2(\frac{\sqrt{3}}{2}sin(x) + \frac{1}{2}cos(x))^{2} =$$

$$= -2(\frac{\sqrt{3}}{2}2sin(\frac{x}{2})cos(\frac{x}{2}) + \frac{1}{2}cos^{2}(\frac{x}{2}) - \frac{1}{2}sin^{2}(\frac{x}{2}))^{2} =$$

$$= -2(\sqrt{3}sin(\frac{x}{2})cos(\frac{x}{2}) + \frac{1}{2}cos^{2}(\frac{x}{2}) - \frac{1}{2}sin^{2}(\frac{x}{2}))^{2}$$

$$= -2(\sqrt{3}sin(\frac{x}{2})cos(\frac{x}{2}) + \frac{1}{2}cos^{2}(\frac{x}{2}) - \frac{1}{2}sin^{2}(\frac{x}{2}))^{2}$$
(7)

Разделим выражение $\binom{7}{1}$ на $\cos^2(\frac{x}{2})$:

$$\cos(2x + \frac{\pi}{3}) - 1 = -2(\sqrt{3}tg(\frac{x}{2}) + \frac{1}{2} - \frac{1}{2}tg^2(\frac{x}{2}))^2$$
(8)

Тогда, подставляя выражения (7) и (8) в (4):

$$2\sqrt{3}tg(\frac{x}{2}) + 1 - tg^2(\frac{x}{2}) + 2(\sqrt{3}tg(\frac{x}{2}) + \frac{1}{2} - \frac{1}{2}tg^2(\frac{x}{2}))^2 = 0$$
(9)

Заменим $tg(\frac{x}{2}) = t$.

$$(2\sqrt{3}t + 1 - t^2) + 2(\sqrt{3}t + \frac{1}{2} - \frac{1}{2}t^2)^2 = 0$$
(10)

$$2(\sqrt{3}t + \frac{1}{2} - \frac{1}{2}t^2) + 2(\sqrt{3}t + \frac{1}{2} - \frac{1}{2}t^2)^2 = 0$$
(11)

$$(\sqrt{3}t + \frac{1}{2} - \frac{1}{2}t^2)(2 + 2(\sqrt{3}t + \frac{1}{2} - \frac{1}{2}t^2)) = 0$$
(12)

Изм	Лист	№ докум.	Подп.	Дата

Курсовая работа

Лист 6

Подп. и дата

Инв. № дубл.

Взам. инв. №

одп. и дата

№ подл.

$$(\sqrt{3}t + \frac{1}{2} - \frac{1}{2}t^2)(2 + 2(\sqrt{3}t + \frac{1}{2} - \frac{1}{2}t^2) = 0$$

$$(\sqrt{3}t + \frac{1}{2} - \frac{1}{2}t^2)(2 + 2\sqrt{3}t + 1 - t^2) = 0$$

$$(\sqrt{3}t + \frac{1}{2} - \frac{1}{2}t^2)(3 + 2\sqrt{3}t - t^2) = 0$$
(13)

Найдем корни уравнения (13), для этого решим систему:

$$\begin{cases}
-2\sqrt{3}t - 1 + t^2 = 0 \\
-3 - 2\sqrt{3}t + t^2 = 0
\end{cases}$$
(14)

Корни уравнений:

Взам. инв. $\mathbb{N}^{\underline{b}}$ | Инв. $\mathbb{N}^{\underline{b}}$ дубл.

Подп. и дата

$$\begin{cases} t_1 = \sqrt{3} + \sqrt{2} \\ t_2 = \sqrt{3} - \sqrt{2} \\ t_3 = \sqrt{3} + \sqrt{6} \\ t_4 = \sqrt{3} - \sqrt{6} \end{cases}$$
 (15)

$$\begin{cases} tg\frac{x}{2} = \sqrt{3} + \sqrt{2} \\ tg\frac{x}{2} = \sqrt{3} - \sqrt{2} \\ tg\frac{x}{2} = \sqrt{3} + \sqrt{6} \\ tg\frac{x}{2} = \sqrt{3} - \sqrt{6} \end{cases}$$

$$(16)$$

$$\begin{cases} x = 2arctg(\sqrt{3} + \sqrt{2}); \ x \in [-\frac{\pi}{2}; 0] \\ x = 2arctg(\sqrt{3} - \sqrt{2}); \ x \in [-\frac{\pi}{2}; 0] \\ x = 2arctg(\sqrt{3} + \sqrt{6}); \ x \in [-\frac{\pi}{2}; 0] \\ x = 2arctg(\sqrt{3} - \sqrt{6}); \ x \in [-\frac{\pi}{2}; 0] \end{cases}$$

$$(17)$$

На интервале $[0; \frac{5\pi}{6}]$ график функции h(x) не пересекает ось ОХ.

Изм	Лист	№ докум.	Подп.	Дата	

4. Промежутки знакопостоянства

Если функция положительна на интервале - график расположен выше оси абсцисс; если функция отрицательна - график ниже оси абсцисс.

$$\begin{array}{l} h(0) = \sqrt{3}sin(0) + cos(0) - (cos(2 \cdot 0 + \frac{\pi}{3}) - 1) = \\ = 0 + 1 - cos(\frac{\pi}{3}) + 1 = \frac{3}{2} > 0; \\ h(\frac{5\pi}{6}) = \sqrt{3}sin(\frac{5\pi}{6}) + cos(\frac{5\pi}{6}) - (cos(2 \cdot \frac{5\pi}{6} + \frac{\pi}{3}) - 1) = \\ = \sqrt{3} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} - 1 + 1 = \frac{3 - \sqrt{3}}{2} > 0 \end{array}$$

Таким образом, функция h(x) положительна на интервале $[0; \frac{5\pi}{6}]$, следовательно, график расположен выше оси абсцисс.

5. Промежутки возрастания и убывания функции.

Если f'(x) > 0 на промежутке, то f(x) возрастает на этом промежутке.

Если f'(x) < 0 на промежутке, то f(x) убывает на этом промежутке.

Первая производная h'(x) от функции h(x) (с учетом замены на t) имеет вид:

$$(2\sqrt{3}t - 2t)(3 + 2\sqrt{3}t - t^2) + (2\sqrt{3} - 2t)(2\sqrt{3}t + 1 - t^2) = 0$$
$$(2\sqrt{3}t - 2t)(3 + 2\sqrt{3}t - t^2 + 2\sqrt{3}t + 1 - t^2) = 0$$

$$(2\sqrt{3}t - 2t)(4 - 2t^2 + 4\sqrt{3}t) = 0$$

$$2(\sqrt{3}t - t)2(2 - t^2 + 2\sqrt{3}t) = 0$$
(18)

Найдем корни уравнения (18), для этого решим систему:

$$\begin{cases} t(\sqrt{3} - 1) = 0\\ 2 - t^2 + 2\sqrt{3}t = 0 \end{cases}$$
 (19)

Корни уравнений:

Инв. № дубл.

Взам. инв. №

$$\begin{cases} t_1 = 0 \\ t_2 = \sqrt{3} - \sqrt{5} \\ t_3 = \sqrt{3} + \sqrt{5} \end{cases}$$
 (20)

Изм	Лист	№ докум.	Подп.	Дата

$$\begin{cases} tg\frac{x}{2} = 0\\ tg\frac{x}{2} = \sqrt{3} - \sqrt{5}\\ tg\frac{x}{2} = \sqrt{3} + \sqrt{5} \end{cases}$$

$$(21)$$

$$\begin{cases} x = 0; \ x \in [0; \frac{5\pi}{6}] \\ x = 2arctg(\sqrt{3} - \sqrt{5}); \ x \in [-\frac{\pi}{2}; 0] \\ x = 2arctg(\sqrt{3} + \sqrt{5}); \ x \in [-\frac{\pi}{2}; 0] \end{cases}$$
 (22)

$$h'(x) = 2\left[\sqrt{3}tg(\frac{x}{2}) - tg(\frac{x}{2})\right] \cdot 2\left[2 - tg^2(\frac{x}{2}) + 2\sqrt{3}tg(\frac{x}{2})\right] = 0$$

$$h'(0) = 0$$
(23)

При $[-\infty;0]$ производная h'(x)<0, следовательно функция h(x) убывает на промежутке $[0;\frac{5\pi}{6}]$.

При $[0; +\infty]$ производная h'(x) > 0, следовательно функция h(x) возрастает на промежутке $[0; \frac{5\pi}{6}]$.

6. Выпуклость графика функции, точки перегиба

Функция f(x) выпукла вниз, если f'(x) возрастает на промежутке, при этом f''(x) > 0.

Функция f(x) выпукла вверх, если f'(x) убывает на промежутке, при этом f''(x) < 0.

Вторая производная h''(x) от функции h(x) (с учетом замены на t) имеет вид:

$$h'(x) = 2(\sqrt{3}t - t) \cdot 2(2 - t^2 + 2\sqrt{3}t) = 0$$
(24)

$$h'(x) = 8\sqrt{3}t - 4\sqrt{3}t^3 + 24t^2 - 8t + 4t^3 - 8\sqrt{3}t^2$$
(25)

$$h''(x) = 8\sqrt{3} - 12\sqrt{3}t^2 + 48t - 8 + 12t - 16\sqrt{3}t \tag{26}$$

 $\sqrt{D} < 0$, значит точек перегиба нет, h"(x) не обращается в ноль.

$$h''(0) = 8\sqrt{3} - 8 > 0 \tag{27}$$

Изм	Лист	№ докум.	Подп.	Дата

Курсовая работа

Лист 9

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

Таким образом, h''(x) > 0 и h'(x) возрастает на промежутке, значит функция h(x) выпукла вниз.

График функции h(x) показан на рисунке 1.

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Инв. № подл.

Рисунок 1 - График функции h(x)

L						
					Kunganag nakara	Лист
Из	вм Лис	г № докум.	Подп.	Дата	Курсовая работа	10

2.3 Нахождение коэффициентов кубического сплайна

2.3.1 Задания и исходные данные для решения

- 1. Найти коэффициенты кубического сплайна, интерполирующего данные, представленные в векторах \vec{V}_x и \vec{V}_y .
- 2. Построить на одном графике: функцию f(x) и $f_1(x)$,полученную после нахождения коэффициентов кубического сплайна.
- 3. Представить графическое изображение результатов интерполяции исходных данных.

$$\vec{V}_x = \begin{pmatrix} 0 \\ 0.5 \\ 1.4 \\ 2.25 \\ 3.5 \end{pmatrix}, \quad \vec{V}_y = \begin{pmatrix} 3.0 \\ 2.7 \\ 3.7 \\ 3.333 \\ 3.667 \end{pmatrix}$$

Необходимо оценить погрешность в точке x=2.4. Вычислить значение функции в точке x=1.2.

Подп. и дата	
Инв. № дубл.	
B 3 a M. n HB. N $^{\varrho}$	
Подп. и дата	
в. № подл.	

Изм	Лист	№ докум.	Подп.	Дата

Уравнение сплайна находится по пяти точкам $(x_1;y_1),(x_2;y_2),(x_3;y_3),(x_4;y_4),(x_5;y_5)$

Представим сплайн полиномом третьей степени на каждом отрезке $[x_i, x_{i+1}]$.

$$F_i(x) = A_{i0} + A_{i1}x + A_{i2}x^2 + A_{i3}x^3, (28)$$

 $x \in [x_i, x_{i+1}].$

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Найдем коэффициенты A_{ij} исходя из того, что в точках склейки функция не имеет разрывов, изломов и изгиб ее слева и справа совпадает.

На каждом из отрезков $[x_i, x_{i+1}]$ график $F_i(x)$ проходит через точки y_i, y_{i+1} .

$$y_i = A_{i0} + A_{i1}x_i + A_{i2}x_i^2 + A_{i3}x_i^3 (29)$$

Получаем 8 уравнений:

$$y_{1} = A_{10} + A_{11}x_{1} + A_{12}x_{1}^{2} + A_{13}x_{1}^{3}$$

$$y_{2} = A_{10} + A_{11}x_{2} + A_{12}x_{2}^{2} + A_{13}x_{2}^{3}$$

$$y_{2} = A_{20} + A_{21}x_{2} + A_{22}x_{2}^{2} + A_{23}x_{2}^{3}$$

$$y_{3} = A_{20} + A_{21}x_{3} + A_{22}x_{3}^{2} + A_{23}x_{3}^{3}$$

$$y_{3} = A_{30} + A_{31}x_{3} + A_{32}x_{3}^{2} + A_{33}x_{3}^{3}$$

$$y_{4} = A_{30} + A_{31}x_{4} + A_{32}x_{4}^{2} + A_{33}x_{4}^{3}$$

$$y_{4} = A_{40} + A_{41}x_{4} + A_{42}x_{4}^{2} + A_{43}x_{4}^{3}$$

$$y_{5} = A_{40} + A_{41}x_{5} + A_{42}x_{5}^{2} + A_{43}x_{5}^{3}$$
(30)

Производные первого порядка во внутренних точках x_i должны совпадать, т.е. производная слева

$$F_{i}'(x_{i}) = A_{i1} + 2A_{i2}x_{i} + 3A_{i3}x_{i}^{2}$$

должна быть равна производной справа

$$F'_{(i+1)}(x_i) = A_{(i+1)1} + 2A_{(i+1)2}x_i + 3A_{(i+1)3}x_i^2$$

Изм	Лист	№ докум.	Подп.	Дата

Курсовая работа

$$A_{11} + 2A_{12}x_2 + 3A_{13}x_2^2 = A_{21} + 2A_{22}x_2 + 3A_{23}x_2^2$$

$$A_{21} + 2A_{22}x_3 + 3A_{23}x_3^2 = A_{31} + 2A_{32}x_3 + 3A_{33}x_3^2$$

$$A_{31} + 2A_{32}x_4 + 3A_{33}x_4^2 = A_{41} + 2A_{42}x_4 + 3A_{43}x_4^2$$
(31)

Производные второго порядка в точках склейки x_i должны совпадать, т.е. вторая производная слева

$$F_i''(x_i) = 2A_{i2} + 6A_{i3}x_i$$

должна быть равна второй производной справа

$$F''_{(i+1)}(x_i) = 2A_{(i+1)2} + 6A_{(i+1)3}x_i$$

Физический смысл равенства вторых производных состоит в том, что в точках склейки изгиб сплайна справа и слева должен быть одинаковым.

$$2A_{12} + 6A_{13}x_2 = 2A_{22} + 6A_{23}x_2$$

$$2A_{22} + 6A_{23}x_3 = 2A_{32} + 6A_{33}x_3$$

$$2A_{32} + 6A_{33}x_4 = 2A_{42} + 6A_{43}x_4$$
(32)

Еще два уравнения - из граничных условий в крайних точках x_1, x_n :

$$C_{11}F'x_1 + C_{12} + F''(x_1) = C_{13}$$

$$C_{n1}F'n_1 + C_{n2} + F''(n_2) = C_{n3}$$
(33)

Найдем график сплайна в случае, когда концы сплайна оставлены свободными в граничных точках (x1,y1), (x5,y5). Соответственно, уравнения имеют вид:

$$2A_{12} + 6A_{13}x_1 = 0$$

$$2A_{42} + 6A_{43}x_5 = 0$$
(34)

В итоге - 16 уравнений для определения 16 коэффициэнтов A_{ij} .

И	ЗМ	Лист	№ докум.	Подп.	Дата

Подп. и дата

Инв. № дубл.

Взам. инв. №

Подп. и дата

Курсовая работа

```
\begin{array}{c} {x_1}^2 \\ {x_2}^2 \\ 2x_2 \end{array}
                      \begin{array}{c} {x_1}^3 \\ {x_2}^3 \\ {3x_2}^2 \end{array}
                                                                                    0
                                                                                                                 0
                                                                                                                                                                                                                                                                                                                                                                                  у<sub>2</sub>
0
                                                                                                                                                                                                                                                                                                                                           A<sub>11</sub>
                                                                                                                                                                                                                                                                                                                                            A_{12}
                                                                                                                                                                                                                                                                                                                                                                                    0

\begin{array}{c}
-2 \\
x_2^2 \\
x_3^2
\end{array}

                                                                                                           -6x_{2}
x_{2}^{3}
x_{3}^{3}
                                                                                                                                                                                                                                                                                                                                            \rm A_{13}
                                                                                                                                                                                                                                                                                                                                                                                  У2
                          0
                                                                                                                                                                                                                                                                                                                                            \rm A_{20}
                                                                                                                                                                                                                                                                                                                                                                                  уз
0
                                                         x_3
                                                                                                                                                                                                                                                                                                                                            A_{21}
                                                                                                                                                                                                    -3x_3^2
                                                                                                                                                                                                                                                                                                                                           A_{22}
                                                                                                                                                                                                                                                                                                                                                                                    0
                                                                                                                                                                                                                                                                                                                                            \rm A_{23}

\begin{array}{c}
x_3^3 \\
x_4^3 \\
3x_4^2
\end{array}

                                                                                                                                                                                                                                                                                                                                           A_{30}
                                                                                                                                                   x_3
                                                                                                                                                                                                                                                                        0
                                                                                                                                                                                                                                                                                                    0
                                                                                                                                                                                                                                                                                                                                           A_{31}
                                                                                                                                                                                                                                                              0
-2x_4
-2
x_4^2
x_5^2
0
2
                                                                                    0
                                                                                                                                                                                                                                                                                              -3x_{4}^{2}
                                                                                                                                                                                                                                                                                                                                           A_{32}

\begin{array}{c}
-6x_4 \\
-6x_4 \\
x_4 \\
x_5 \\
0
\end{array}

                                                                                                                                                                                                                                                                                                                                                                                  У4
                                                                                                                                                                                                                                                                                                                                                                                  у5
0
                                                                                                                                                                                                                                                                                                                                           A_{40}
                         0
```

Коэффициенты A_{ij} :

A_{10}		-12.708
A_{11}		15.708
A_{12}		-5.154
A_{13}		0.634
A_{20}		2.196
A_{21}		0.504
A_{22}		-3.258
A_{23}		1.849
A_{30}	=	13.057
A_{31}		-9.357
A_{32}		2.849
A_{33}		1.768
A_{40}		4.12
A_{41}		-0.787
A_{42}		-0.021
A_{43}		2.569
1 -0	I	

Подп. и дата	
Инв. № дубл.	
Bзам. инв. N	
Подп. и дата	
з. № подл.	

Изм Лист

 $\mathcal{N}_{\underline{0}}$ докум.

Подп.

Дата

Уравнение сплайна имеет вид:

$$F(x) = \begin{cases} F_1(x) = 0.634x^3 - 5.154x^2 + 15.708x - 12.708, & x \in [0, 0.5]; \\ F_2(x) = 1.849x^3 - 3.258x^2 + 0.504x + 2.196, & x \in [0.5, 1.4]; \\ F_3(x) = 1.768x^3 + 2.849x^2 - 9.357x + 13.057, & x \in [1.4, 2.25]; \\ F_4(x) = 2.569x^3 - 0.021x^2 - 0.787x + 4.12, & x \in [2.25, 3.5]. \end{cases}$$

$$F(1.2) = 19.579$$

Изм Лист № докум. Подп. Дата

Взам. инв. №

Инв. № подл.

Курсовая работа

2.4 Решение задачи оптимального распределения неоднородных ресурсов

Постановка задачи.

. Для изготовления n видов изделий $\mathbf{M}_1, \, \mathbf{M}_2, \, \cdots \, \mathbf{M}_n$ необходимы ресурсы m видов: трудовые, материальные, финансовые и др.

Известно требуемое количество отдельного i-го ресурса для изготовления каждого j-го изделия - норма расхода i.

Пусть определено количество каждого вида ресурса, которым предприятие располагает в данный момент - j. Известна прибыль j, получаемая предприятием от изготовления каждого j-го изделия.

Требуется определить, какие изделия и в каком количестве должны производиться предприятием, чтобы прибыль была максимальной.

Математическая модель задачи выглядит следующим образом.

Целевая функция имеет вид:

$$25x_1 + 45x_2 + 60x_3 + 20x_4 \to max$$

Ограничения имеют вид:

$$2x_{1} + 4x_{2} + 2x_{3} + 9x_{4} = 20$$

$$5x_{1} + 5x_{2} + 5x_{3} + 6x_{4} = 10$$

$$5x_{1} + 6x_{2} + 4x_{3} + 8x_{4} = 30$$

$$x_{j} \ge 0; \ j = \overline{1,4}$$

$$(35)$$

После решения системы видно, что

$$x_1 = 12, 5,$$

$$x_2 = 0,$$

Инв. № дубл.

Взам. инв. №

Подп. и дата

$$x_3 = 7, 5,$$

$$x_4 = 0.$$

В оптимальном решении Изделие1=12,5; Изделие2=0; Изделие3=7,5; Изделие4=0. При этом максимальная прибыль будет составлять 100, а количество использованных ресурсов равно: трудовых=20, материальных=7, финансовых=30.

И	Ізм	Лист	№ докум.	Подп.	Дата

3 ЗАКЛЮЧЕНИЕ

Курсовая работа состояла из трех частей:

В первой части была исследована функция и построен ее график. Во второй части найдены коэффициенты кубического сплайна. В третьей части решалась задача оптимального распределения неоднородных ресурсов.

Подп. и дата													
Инв. № дубл.													
Взам. инв. №													
Подп. и дата													
подл.													
Инв. № подл.							Kyp	сова	—— я раб	 ота		-	Тист 17
И	Изм Ли	ист № до	ОКУМ.	Подп.	Дата		_						1/