# DARING研究背景与意义



|                                 | (B)      | (B)     | B)    | B    | B)      | B)      | B                   | B)      | (B)     | (B)       | (B)     | (B)     |
|---------------------------------|----------|---------|-------|------|---------|---------|---------------------|---------|---------|-----------|---------|---------|
| Predicted Graph (Chain)         | A C      | A-©     | A-©   | A ©  | A+©     | (A)+(C) | A-C                 | A ©     | A-C     | (A) • (C) | A C     | A+©     |
| Reconstruction Loss             | 6.00     | 6.97    | 6.17  | 6.17 | 6.96    | 6.33    | 6.16                | 6.80    | 6.33    | 7.00      | 5.65    | 7.00    |
| Residuals Mutually Independent? | ✓        |         |       | ✓    |         |         |                     | ✓       |         |           |         |         |
| Predicted Graph (Fork)          | B        | B       | B     | B    | B       | B       | B                   | B       | B       | B         | B       | B       |
|                                 | A C      | (A)-(C) | A • C | A C  | (A)+(C) | (A)+(C) | A+C                 | (A) (C) | (A)-(C) | (A)+(C)   | (A) (C) | (A)+(C) |
| Reconstruction Loss             | 1.67     | 2.17    | 1.83  | 1.67 | 2.17    | 1.83    | 1.83                | 2.00    | 1.83    | 2.33      | 1.78    | 2.33    |
| Residuals Mutually Independent? |          |         |       |      |         |         |                     | ✓       |         |           |         |         |
| Predicted Graph (Collider)      | <u>B</u> | B       | B     | B    | B       | B       | B                   | B       | B       | B         | B       |         |
|                                 | A C      | A-C     | A-C   | A C  | A-C     | (A)+(C) | <b>A</b> + <b>©</b> | A C     | A-C     | A C       | A C     | (A)+(C) |
| Reconstruction Loss             | 1.89     | 2.00    | 2.22  | 1.89 | 2.00    | 2.22    | 2.22                | 1.67    | 2.22    | 1.83      | 2.11    | 1.83    |
| Residuals Mutually Independent? |          |         |       |      |         |         |                     |         |         |           | ✓       |         |

#### 口 数据生成机制:

#### 传统可微CD学到 的loss最小的结果

ground truth

- **६ ६**:  $A = \epsilon_A(\sim \mathcal{N}(0,1)), B = A + \epsilon_B(\sim \mathcal{N}(0,4)), C = B/5 + \epsilon_C(\sim \mathcal{N}(0,1))$
- **叉式:**  $B = \epsilon_B(\sim \mathcal{U}(-2,2)), A = B/2 + \epsilon_A(\sim \mathcal{U}(-1,1)), C = B/2 + \epsilon_C(\sim \mathcal{U}(-1,1))$
- **对撞:**  $A = \epsilon_A(\sim \mathcal{N}(0,1)), C = \epsilon_C(\sim \mathcal{N}(0,1)), B = A/3 + C/3 + \epsilon_B(\sim \mathcal{N}(0,1/9))$

#### 传统可微因果发现过拟合噪声,导致残差之间存在依赖性,偏离真实因果图

[He Y, Cui P, Shen Z, et al. Daring: Differentiable causal discovery with residual independence[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 2021: 596-605.]

# **DARING** Pipeline





DARING增加残差独立性约束,通过对抗学习优化两套参数

[He Y, Cui P, Shen Z, et al. Daring: Differentiable causal discovery with residual independence[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 2021: 596-605.]

# DARING模型



# 口 残差独立性度量:

### > 双变量独立性:

LEMMA 3.2 (DAUDIN [3]). X and Y are independent if and only if for all functions  $h \in L_X^2$ ,  $g \in L_Y^2$ ,

$$Cov[h(X), g(Y)] = 0, (6)$$

where

$$L_X^2 = \left\{ h(X) \mid \mathbb{E}\left[h(X)^2\right] < \infty \right\},\$$

$$L_Y^2 = \left\{ g(Y) \mid \mathbb{E}\left[g(Y)^2\right] < \infty \right\},$$
(7)

are square summable functions on X and Y.

#### > 多变量独立性:

THEOREM 3.3. Let  $R = \{R_i\}_{i=1}^d$  be a set of random variables and  $R_{-i} = \{R_1, ..., R_{i-1}, R_{i+1}, ..., R_d\}$ . All variables of R are mutually independent if and only if  $\forall h_i \in L_{R_{-i}}^2, \forall g_i \in L_{R_i}^2, i \in \{1, ..., d\}$ ,

$$Cov[h_i(R_{-i}), g_i(R_i)]| = 0.$$
 (8)

# DARING定理证明



THEOREM. Let  $R = \{R_i\}_{i=1}^d$  be a set of random variables and  $R_{-i} = \{R_1, ..., R_{i-1}, R_{i+1}, ..., R_d\}$ . All variables of R are mutually independent if and only if  $\forall h_i \in L^2_{R_{-i}}$ ,  $\forall g_i \in L^2_{R_i}$ ,  $i \in \{1, ..., d\}$ ,



$$Cov[h_i(R_{-i}), g_i(R_i)]| = 0.$$
 (12)

Similar with Equation 7,  $L_{R_{-i}}^2$  and  $L_{R_i}^2$  are the spaces of square summable functions on  $R_{-i}$  and  $R_i$  respectively.

PROOF. On the basis of Lemma 3.1,  $\forall i$ , given the condition

$$Cov[h_i(R_{-i}) \cdot g_i(R_i)] = 0, \quad \forall h_i \in L^2_{R_{-i}}, g_i \in L^2_{R_i},$$

# DARING定理证明



we have  $R_i \perp R_{-i}$ , i.e.,

$$P(R) = P(R_i) \cdot P(R_{-i}).$$

Integrate the above function over  $R_1, ..., R_{i-1}$ , we have

$$P(R_i, ..., R_d) = P(R_i) \cdot P(R_{i+1}, ..., R_d).$$

Hence,

$$P(R) = P(R_1)P(R_2, R_3, ..., R_d)$$
  
 $P(R) = P(R_1)P(R_2)P(R_3, ..., R_d)$   
 $= ...$ 

$$=\prod_{i=1}^d P(R_i).$$

As a result, *R* are mutually independent.





证明:以上过程反向,能推出 $P(R)=P(R_i)P(R_{-i})$ ,即 $R_i\perp R_{-i}$ ,再由引理即可。

# DARING模型



## 口 提出衡量独立性的统计量:

 $h_i$ 和 $g_i$ 可以通过NN拟合,但在数据有限情况下,参数空间巨大,容易过拟合。



为防止过拟合,令 $g_i(R_i) = R_i$ ,减少参数空间 为适应连续优化框架,用2-范数替换1-范数

$$\mathcal{L}_{\mathrm{M}}(R,\phi) = \sum_{i=1}^{d} \left\| \frac{\mathrm{Cov}[\mathrm{MLP}(R_{-i},\phi_{i}),R_{i}]}{\sqrt{\mathrm{Var}[\mathrm{MLP}(R_{-i},\phi_{i})]} \cdot \sqrt{\mathrm{Var}[R_{i}]}} \right\|_{2}^{2}$$

残差独立性统计量

DARING提出衡量残差独立性的统计量,优化可微因果发现学习过程

# DARING模型



### 口 优化问题:

$$\min_{G,\theta} \max_{\phi} \mathcal{L}(\mathbf{X}, G, \theta) = \mathcal{L}_{\text{rec}}(G, \mathbf{X}, \theta) + \alpha \mathcal{L}_{\text{DAG}}(G)$$

生成器 判别器

+ 
$$\beta \mathcal{L}_{\text{sparse}}(G) + \gamma \mathcal{L}_{M}(X - f(X, \theta), \phi)$$

- ightharpoonup 重构项:  $\mathcal{L}_{rec}(G, \mathbf{X}, \theta)$
- ightharpoonup 残差独立性约束:  $\mathcal{L}_{\mathrm{M}}(X-f(X,\theta),\phi)$

$$\mathcal{L}_{\mathrm{M}}(R,\phi) = \sum_{i=1}^{d} \left\| \frac{\mathrm{Cov}[\mathrm{MLP}(R_{-i},\phi_{i}),R_{i}]}{\sqrt{\mathrm{Var}[\mathrm{MLP}(R_{-i},\phi_{i})]} \cdot \sqrt{\mathrm{Var}[R_{i}]}} \right\|_{2}^{2}$$

ightharpoonup DAG约束:  $\mathcal{L}_{DAG} = \alpha_t h(\mathcal{G}) + \frac{\mu_t}{2} |h(\mathcal{G})|^2$ 

▶ 稀疏性约束: L1, L2正则化

#### 通过对抗学习优化生成器和判别器参数

[He Y, Cui P, Shen Z, et al. Daring: Differentiable causal discovery with residual independence[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 2021: 596-605.]

# DARING算法



#### **Algorithm 1** Causal Discovery with DARING

**Input:**  $X = \left\{ \mathbf{x}^{(k)} \right\}_{k=1}^{n}$  i.i.d. sampled from P(X) and threshold  $\Delta$ 

Output: Causal graph G

Initial G, parameters of causality fitting model  $\theta$  ( $\theta_1, ..., \theta_d$ ) and

parameters of independence test model  $\phi$  ( $\phi_1$ , ...,  $\phi_d$ )

Pretrain G and  $\theta$  to minimize  $\mathcal{L}^{(0)}$  for  $\tau_0$  steps 为了更好地收敛,先预训练几个epoch

while not arriving maximal iteration or triggering termination conditions do

**for** t = 1 to  $\tau_1$  **do** 

Fix G,  $\theta$  and calculate  $\mathcal{L}_{M}(R,\phi)$  in Equation 10

Update  $\phi$  to maximize  $\mathcal{L}_{M}(R,\phi)$ 

end for

for t = 1 to  $\tau_2$  do

Fix  $\phi$  and calculate total  $\mathcal{L}$  in Equation 11

Update G,  $\theta$  to minimize  $\mathcal{L}$ 

end for

end while

Prune the edges less than  $\Delta$  of G

return: G

 $\max_{\phi} \mathcal{L}_{M}(R,\phi) = \sum_{i=1}^{d} \left\| \frac{\text{Cov}[\text{MLP}(R_{-i},\phi_{i}), R_{i}]}{\sqrt{\text{Var}[\text{MLP}(R_{-i},\phi_{i})]} \cdot \sqrt{\text{Var}[R_{i}]}} \right\|^{2}$ 

$$\max_{\phi} \mathcal{L}_{M}(R,\phi) = \sum_{i=1}^{\infty} \left\| \frac{\text{Cov}[\text{WLF}(R_{-i},\phi_{i}), R_{i}]}{\sqrt{\text{Var}[\text{MLP}(R_{-i},\phi_{i})]} \cdot \sqrt{\text{Var}[R_{i}]}} \right\|$$

在给定DAG拟合模型下,学习Ø

### **在给定Ø下,学习DAG拟合模型**

$$\min_{G,\theta} \max_{\phi} \mathcal{L}(X, G, \theta) = \mathcal{L}_{rec}(G, X, \theta) + \alpha \mathcal{L}_{DAG}(G)$$

+ 
$$\beta \mathcal{L}_{\text{sparse}}(G) + \gamma \mathcal{L}_{\text{M}}(X - f(X, \theta), \phi)$$