```
In [3]: #import stats packages
        import pandas as pd
        import statsmodels.api as sm
        from numpy import random
        import numpy as np
        #import plot packages
        import plotly.express as plt
        import geopandas as gpd
        import plotly.graph_objects as go
        import matplotlib.pyplot as mp
        from shapely.geometry import Point
In [4]: #opening files
        cities = pd.read_csv('pset3_cities.csv')
        distances = pd.read_csv('pset3_distances.csv')
        stations = pd.read_csv('pset3_stations.csv')
        lines = pd.read_csv('pset3_lines.csv')
In [5]: #creating deltalines
        stations = stations.merge(lines, how = 'left')
        stations['year_opening'] = stations['year_opening'].replace([2017, 201])
        stations = stations.dropna()
        stationsdum = pd.qet dummies(stations['cityid'])
        cities['numstat'] = cities['cityid']
        cities['numlinks'] = cities['cityid']
        cities['avgspd'] = cities['cityid']
        a = []
        for i in cities['cityid']:
            if i in stationsdum.columns:
                cities['numstat'] = cities['numstat'].replace(i, stationsdum[i
            else:
```

cities['numstat'] = cities['numstat'].replace(i, 0)

```
In [6]: #creating log distance to nearest station

cities['logdist'] = cities['cityid']
for i in list(set(list(cities['cityid']))):

    trunc = distances[distances['cityid1']==i]
    if cities[cities['cityid']==i]['numstat'].mean() > 0:
        cities['logdist'] = cities['logdist'].replace(i, trunc[trunc['else:
        citiestr = cities[cities['numstat'] > 0]
        df = pd.DataFrame(columns = ['cityid1', 'cityid2', 'dist'])
        for a in list(set(list(citiestr['cityid']))):
            df = df.append(trunc[trunc['cityid2'] == a])
        cities['logdist'] = cities['logdist'].replace(i, df['dist'].mi
```

```
In [10]: #re-initiating stations
stations = pd.read_csv('pset3_stations.csv')
```

```
In [11]: #converting to logs
  cities['logdist'] = np.log(cities['logdist'])
```

```
In [12]: #A no FE no constant
    citiesempt = cities.dropna(subset = ['empgrowth'])
    treat = ['logdist']
    vals = sm.OLS(citiesempt['empgrowth'], citiesempt[treat])
    out = vals.fit(cov_type = 'HCO')
    print(out.summary())
```

OLS Regression Results _____ Dep. Variable: empgrowth R-squared (uncentered): 0.460 Model: 0LS Adj. R-squared (uncentered): 0.458 Method: Least Squares F-statistic: 211.8 Date: Sat, 18 Nov 2023 Prob (F-statistic): 6.12e-36 Time: 20:12:06 Log-Likelihood: -31.535 No. Observations: 275 AIC: 65.07 Df Residuals: 274 BIC: 68.69 Df Model: 1 HC0 Covariance Type: coef std err z P>|z| [0.025 0.975] 0.0580 0.004 14.554 logdist 0.000 0.050 0.066 13.243 Omnibus: Durbin-Watson: 1.332 Prob(Omnibus): 0.001 Jarque-Bera (JB): 25.376 -0.222Prob(JB): Skew: 3.09e-06 Kurtosis: 4.421 Cond. No. 1.00

Notes:

[1] R^2 is computed without centering (uncentered) since the model doe s not contain a constant.

[2] Standard Errors are heteroscedasticity robust (HC0)

```
In [13]: #A no FE with constant
    citiesempt = cities.dropna(subset = ['empgrowth'])
    treat = ['logdist']

vals = sm.OLS(citiesempt['empgrowth'], sm.add_constant(citiesempt[trea out = vals.fit(cov_type = 'HC0')
    print(out.summary())

FEs = out.predict(sm.add_constant(citiesempt[treat]))
```

OLS Regression Results

=======						
Dep. Variable	:	empgrow ⁻	th	R-squ	ared:	
0.119 Model:		OI	LS	Δdi	R-squared:	
0.115		O1	LJ	Auj.	iv squareu.	
Method:		Least Square	es	F-sta	tistic:	
23.45		•				
Date:	Sa	t, 18 Nov 202	23	Prob	(F-statistic):	
2.15e-06		20.12.1	16	امما	المحمطة العالم	
Time: 2.1976		20:12:	10	Log-L	ikelihood:	
No. Observation	ons:	2	75	AIC:		
-0.3952						
Df Residuals:		27	73	BIC:		
6.838			_			
Df Model:		11/	1			
Covariance Typ	oe: 	пі 	CØ 			
=======						
	coef	std err		Z	P> z	[0.025
0.975]						
const	0.8526	0.119	7	. 158	0.000	0.619
1.086						
•	-0.1373	0.028	-4	.842	0.000	-0.193
-0.082						
=======================================				=====	=========	
Omnibus:		6.98	82	Durbi	n-Watson:	
1.606						
Prob(Omnibus)	:	0.03	30	Jarqu	e-Bera (JB):	
9.296		0.14	0.4	D 1 /	3D)	
Skew: 0.00958		0.18	81	Prob(JR):	
Kurtosis:		3.83	25	Cond.	No.	
30.6		210		22		
==========		========	====	=====	========	
=======						

Notes:

[1] Standard Errors are heteroscedasticity robust (HC0)

```
In [14]: #A with FE
    regions = pd.get_dummies(cities['province_en'])
    cities = pd.concat([cities, regions], axis = 1)

    citiesempt = cities.dropna(subset = ['empgrowth'])

    treat = ['logdist']
    dummies = list(set(list(citiesempt['province_en'])))

    vals = sm.OLS(citiesempt['empgrowth'], citiesempt[treat+dummies])
    out = vals.fit(cov_type = 'HCO')
    print(out.summary())

    FEs = out.predict(citiesempt[treat+dummies])
```

OLS Regression Results

====== Dep. Variable: 0.460		empgrowth	R-squared:			
Model:	OLS Least Squares Sat, 18 Nov 2023		•			
0.393 Method:						
nan						
Date: nan						
Time:		20:12:17	Log-Likelihood:			
69.538 No. Observations:	275		AIC:			
-77 . 08		244	DIC.			
Df Residuals: 35.04		244	BIC:			
Df Model:		30 HC0				
Covariance Type: =========	=======	пси =======	========	========	=======	
======================================	coef	std err	Z	P> z	[0.02	
	-0.0812	0.023	-3.472	0.001	-0.12	
7 -0.035 tibet	0.4938	0.083	5.942	0.000	0.33	
1 0.657 tibet	0.4938	0.083	5.942	0.000	0.33	
1 0.657				0.000	0.33	
jilin 5 0.388	0.2667	0.062	4.312	0.000	0.14	
jilin	0.2667	0.062	4.312	0.000	0.14	
5 0.388 inner mongolia	0.2763	0.070	3.946	0.000	0.13	
9 0.414 inner mongolia	0.2763	0.070	3.946	0.000	0.13	
9 0.414 henan 1 0.454	0.3574	0.049	7.252	0.000	0.26	

henan	0.3574	0.049	7.252	0.000	0.26
1 0.454 sichuan 2 0.422	0.2920	0.066	4.404	0.000	0.16
sichuan 2 0.422	0.2920	0.066	4.404	0.000	0.16
hunan 1 0.356	0.2532	0.052	4.845	0.000	0.15
hunan 1 0.356	0.2532	0.052	4.845	0.000	0.15
heilongjiang 1 0.201	0.0754	0.064	1.173	0.241	-0.05
heilongjiang 1 0.201	0.0754	0.064	1.173	0.241	-0.05
shaanxi 0 0.448	0.3388	0.056	6.086	0.000	0.23
shaanxi 0 0.448	0.3388	0.056	6.086	0.000	0.23
chongqing 3 0.591	0.4771	0.058	8.191	0.000	0.36
chongqing 3 0.591	0.4771	0.058	8.191	0.000	0.36
jiangsu 4 0.550	0.4371	0.057	7.601	0.000	0.32
jiangsu 4 0.550	0.4371	0.057	7.601	0.000	0.32
jiangxi 1 0.487	0.3842	0.053	7.294	0.000	0.28
jiangxi 1 0.487	0.3842	0.053	7.294	0.000	0.28
anhui 6 0.434	0.3302	0.053	6.234	0.000	0.22
anhui 6 0.434	0.3302	0.053	6.234	0.000	0.22
hubei 2 0.591	0.4566	0.069	6.643	0.000	0.32
hubei 2 0.591	0.4566	0.069	6.643	0.000	0.32
ningxia 4 0.405	0.2745	0.067	4.127	0.000	0.14
ningxia 4 0.405	0.2745	0.067	4.127	0.000	0.14
shandong 0 0.404	0.3070	0.050	6.193	0.000	0.21
shandong 0 0.404	0.3070	0.050	6.193	0.000	0.21
qinghai 8 0.421	0.3345	0.044	7.546	0.000	0.24
qinghai 8 0.421	0.3345	0.044	7.546	0.000	0.24
guangxi 4 0.401	0.2974	0.053	5.625	0.000	0.19
guangxi 4 0.401	0.2974	0.053	5.625	0.000	0.19
zhejiang 9 0.452	0.3350	0.059	5.636	0.000	0.21

zhejian	-	0.3350	0.059	5.636	0.000	0.21
gansu 1 gansu 1 hebei 4 hebei 4 guangdo	0.452	0.3205	0.056	5.739	0.000	0.21
	0.430	0.3205	0.056	5.739	0.000	0.21
	0.430	0.2624	0.055	4.763	0.000	0.15
	0.370	0.2624	0.055	4.763	0.000	0.15
	0.370 na	0.3392	0.053	6.429	0.000	0.23
6 guangdo	0.443	0.3392	0.053	6.429	0.000	0.23
6 fujian	0 . 443	0.3094	0.054	5.724	0.000	0.20
3	0.415					
fujian 3	0.415	0.3094	0.054	5.724	0.000	0.20
tianjin 0	0.434	0.3423	0.047	7.301	0.000	0.25
tianjin 0	0.434	0.3423	0.047	7.301	0.000	0.25
shangha	i	0.5034	0.043	11.722	0.000	0.41
9 shangha		0.5034	0.043	11.722	0.000	0.41
9 xinjian	-	0.3474	0.070	4.939	0.000	0.20
9 xinjian	-	0.3474	0.070	4.939	0.000	0.20
9 liaonin	0.485 g	0.2012	0.054	3.715	0.000	0.09
5 liaonin	0.307	0.2012	0.054	3.715	0.000	0.09
5	0.307	0.3329	0.065	5.091	0.000	0.20
yunnan 5 yunnan 5	0.461					
	0.461	0.3329	0.065	5.091	0.000	0.20
beijing 1	0. 483	0.3872	0.049	7.924	0.000	0.29
beijing 1 shanxi 2 shanxi 2 guizhou		0.3872	0.049	7.924	0.000	0.29
		0.2353	0.053	4.475	0.000	0.13
	0.338	0.2353	0.053	4.475	0.000	0.13
	0.338	0.3187	0.056	5.676	0.000	0.20
9 guizhou	0.429	0.3187			0.000	0.20
9	0.429					

=======

Omnibus: 15.713 Durbin-Watson:

2.209

Prob(Omnibus): 24.932

0.000 Jarque-Bera (JB):

Cond. No.

0.366 Prob(JB): Skew:

3.86e-06 Kurtosis:

4.281 1.03e+17

=======

Notes:

- [1] Standard Errors are heteroscedasticity robust (HC0)
- [2] The smallest eigenvalue is 4.86e-31. This might indicate that the re are

strong multicollinearity problems or that the design matrix is singul

```
In [30]: lines['draws1'] = 0
         for h in range(999):
             adds = []
             for i in range(19):
                 short = lines[lines['nlinks'] == i]
                 xtrashort = len(short[short['year_opening']<=2016])</pre>
                 new = list(set(list(short.index)))
                 new2 = list(random.permutation(new)[:xtrashort])
                 adds= adds + new2
             sl = adds
             lines_temp = lines.iloc[sl]
             stations_temp = stations.merge(lines_temp)
             stationsdum = pd.get_dummies(stations_temp['cityid'])
             cities['numstattemp'] = cities['cityid']
             for i in cities['cityid']:
                 if i in stationsdum.columns:
                     cities['numstattemp'] = cities['numstattemp'].replace(i, s
                 else:
                     cities['numstattemp'] = cities['numstattemp'].replace(i, 0
             citiestr = cities[cities['numstattemp'] > 0]
             cities['logdist'] = cities['cityid']
             for i in list(set(list(cities['cityid']))):
                 trunc = distances[distances['cityid1']==i]
                 if cities[cities['cityid']==i]['numstattemp'].mean() > 0:
                      cities['logdist'] = cities['logdist'].replace(i, trunc[tru
                 else:
                     df = pd.DataFrame(columns = ['cityid1', 'cityid2', 'dist']
                     for x in list(set(list(citiestr['cityid']))):
                          df = df.append(trunc[trunc['cityid2'] == x])
                     cities['logdist'] = cities['logdist'].replace(i, df['dist'])
             if h == 0:
                 cities['logdistfinal1'] = cities['logdist']
                 cities['logdistl'] = cities['logdist']
             else:
                 cities['logdistfinal1'] = cities['logdistfinal1'] +cities['log
             print(h)
         cities['logdistfinal1'] = cities['logdistfinal1']/(h+1)
         cities.head(30)
         #i dont wanna talk about how ugly this code is. i'm sorry. i'm just so
         0
```

10 of 22

1

```
3
         4
         5
         6
         7
         8
         9
         10
         11
         12
         13
         14
         15
         16
         17
         18
In [31]: np.log(cities['logdistfinal1']).describe()
Out[31]: count
                   340.000000
                     4.487112
         mean
                     0.790581
         std
         min
                     2.832481
         25%
                     3.996449
                     4.295818
         50%
         75%
                     4.769178
                     7.338823
         max
         Name: logdistfinal1, dtype: float64
In [32]: cities.to_csv('interpset3.csv')
```

```
In [33]: stations = pd.read_csv('pset3_stations.csv')
         stations = stations.merge(lines, how = 'left')
         stations['year_opening'] = stations['year_opening'].replace([2017, 201
         stations = stations.dropna()
         stationsdum = pd.get_dummies(stations['cityid'])
         cities['numstat'] = cities['cityid']
         cities['numlinks'] = cities['cityid']
         cities['avgspd'] = cities['cityid']
         a = []
         for i in cities['cityid']:
             if i in stationsdum.columns:
                 cities['numstat'] = cities['numstat'].replace(i, stationsdum[i
                 cities['numstat'] = cities['numstat'].replace(i, 0)
         cities['logdist'] = cities['cityid']
         for i in list(set(list(cities['cityid']))):
             trunc = distances[distances['cityid1']==i]
             if cities[cities['cityid']==i]['numstat'].mean() > 0:
                 cities['logdist'] = cities['logdist'].replace(i, trunc[trunc['
             else:
                 citiestr = cities[cities['numstat'] > 0]
                 df = pd.DataFrame(columns = ['cityid1', 'cityid2', 'dist'])
                 for a in list(set(list(citiestr['cityid']))):
                      df = df.append(trunc[trunc['cityid2'] == a])
                 cities['logdist'] = cities['logdist'].replace(i, df['dist'].mi
In [54]: | cities.to_csv('final2_pset3.csv')
In [55]: cities = pd.read csv('final2 pset3.csv')
In [56]: cities['logdistf'].describe()
Out[56]: count
                  340,000000
                    4.487112
         mean
         std
                    0.790581
                    2.832481
         min
         25%
                    3.996449
         50%
                    4.295818
         75%
                    4.769178
                    7.338823
         max
         Name: logdistf, dtype: float64
```

```
In [64]: cities['loglogdist'] = np.log(cities['logdist'])
In [58]: cities['logdistf'] = np.log(cities['logdistfinal1'])
```

```
In [65]: #reading in csv so i dont have to rerun this crazy long simulation
    #no FE with constant
    citiesempt = cities.dropna(subset = ['empgrowth'])
    treat = ['loglogdist', 'logdistf']
    vals = sm.OLS(citiesempt['empgrowth'], sm.add_constant(citiesempt[trea out = vals.fit(cov_type = 'HCO')
    print(out.summary())
```

OLS Regression Results ====== Dep. Variable: empgrowth R-squared: 0.123 Model: 0LS Adj. R-squared: 0.117 Method: Least Squares F-statistic: 11.64 Date: Sun, 19 Nov 2023 Prob (F-statistic): 1.42e-05 21:20:37 Log-Likelihood: Time: 2.9031 No. Observations: 275 AIC: 0.1938 Df Residuals: 272 BIC: 11.04 2 Df Model: Covariance Type: HC0 [0.025 coef std err P>|z| Z 0.975] 0.9278 0.141 6.585 0.000 0.652 const 1.204 loglogdist -0.0936 0.042 -2.224 0.026 -0.176-0.011 logdistf -0.06070.048 -1.2760.202 -0.1540.033 7.107 Durbin-Watson: Omnibus: 1.617 Prob(Omnibus): 0.029 Jarque-Bera (JB): 9.807 Skew: 0.168 Prob(JB): 0.00742 3.862 Cond. No. Kurtosis: 51.5

Notes:

[1] Standard Errors are heteroscedasticity robust (HC0)

```
OLS Regression Results
______
=======
Dep. Variable:
                       empgrowth
                                R-squared:
0.016
Model:
                           0LS
                                Adj. R-squared:
0.013
                   Least Squares
                                F-statistic:
Method:
4.863
Date:
                 Sun, 19 Nov 2023
                                Prob (F-statistic):
0.0283
Time:
                       21:20:42
                                Log-Likelihood:
-12.877
No. Observations:
                            275
                                AIC:
29.75
Df Residuals:
                            273
                                BIC:
36.99
Df Model:
                             1
Covariance Type:
                            HC0
______
                                                 [0.025
              coef std err
                                 z P>|z|
0.975]
            0.2624
                     0.016
                              16.605
                                                 0.231
const
                                        0.000
0.293
           -0.0976
                     0.044
                              -2.205
                                        0.027
                                                 -0.184
-0.011
=======
                          8.219
                                Durbin-Watson:
Omnibus:
1.433
Prob(Omnibus):
                          0.016
                                Jarque-Bera (JB):
14.592
Skew:
                         -0.019
                                Prob(JB):
0.000678
Kurtosis:
                          4.128
                                Cond. No.
=======
```

Notes:

[1] Standard Errors are heteroscedasticity robust (HC0)

```
In [51]: #maps!
    shapefile = gpd.read_file("chn_admbnda_adm2_ocha.shp")
    crs = {'init': shapefile.crs}
    geometry = [Point(xy) for xy in zip(cities['longitude'], cities['latit gdf1 = gpd.GeoDataFrame(cities, crs=crs, geometry=geometry)
    shapefile2 = gpd.sjoin(gdf1, shapefile, how="right", op='intersects')
    base = shapefile2.plot(figsize=(15,9), column = 'logdistf', edgecolor=
```

/opt/anaconda3/lib/python3.8/site-packages/pyproj/crs/crs.py:141: Fut ureWarning: '+init=<authority>:<code>' syntax is deprecated. '<author ity>:<code>' is the preferred initialization method. When making the change, be mindful of axis order changes: https://pyproj4.github.io/pyproj/stable/gotchas.html#axis-order-changes-in-proj-6 (https://pyproj4.github.io/pyproj/stable/gotchas.html#axis-order-changes-in-proj-6) in_crs_string = _prepare_from_proj_string(in_crs_string) /opt/anaconda3/lib/python3.8/site-packages/IPython/core/interactivesh ell.py:3357: FutureWarning: The `op` parameter is deprecated and will be removed in a future release. Please use the `predicate` parameter instead.
 if (await self.run_code(code, result, async_=asy)):

if (await self.run_code(code, result, async_=asy)): <ipython-input-51-aba84b46b721>:9: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries. Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.

```
Left CRS: +init=epsg:4326 +type=crs
Right CRS: EPSG:4326
    shapefile2 = gpd.sjoin(gdf1, shapefile, how="right", op='intersects')
```



```
In [52]: #maps!
         shapefile = gpd.read_file("chn_admbnda_adm2_ocha.shp")
         cities['demeaned'] = cities['logdist'] - cities['logdistf']
         crs = {'init': shapefile.crs}
         geometry = [Point(xy) for xy in zip(cities['longitude'], cities['latit
         gdf1 = gpd.GeoDataFrame(cities, crs=crs, geometry=geometry)
         shapefile2 = gpd.sjoin(gdf1, shapefile, how="right", op='intersects')
         base = shapefile2.plot(figsize=(15,9), column = 'demeaned', edgecolor=
         /opt/anaconda3/lib/python3.8/site-packages/pyproj/crs/crs.py:141: Fut
         ureWarning: '+init=<authority>:<code>' syntax is deprecated. '<author
         ity>:<code>' is the preferred initialization method. When making the
         change, be mindful of axis order changes: https://pyproj4.github.io/p
         yproj/stable/gotchas.html#axis-order-changes-in-proj-6 (https://pypro
         j4.github.io/pyproj/stable/gotchas.html#axis-order-changes-in-proj-6)
           in_crs_string = _prepare_from_proj_string(in_crs_string)
         opt/anaconda3/lib/python3.8/site-packages/IPython/core/interactivesh
         ell.py:3357: FutureWarning: The `op` parameter is deprecated and will
         be removed in a future release. Please use the `predicate` parameter
         instead.
           if (await self.run_code(code, result, async_=asy)):
         <ipython-input-52-03edc0c08ced>:11: UserWarning: CRS mismatch between
         the CRS of left geometries and the CRS of right geometries.
         Use `to_crs()` to reproject one of the input geometries to match the
         CRS of the other.
         Left CRS: +init=epsg:4326 +type=crs
         Right CRS: EPSG:4326
           shapefile2 = gpd.sjoin(gdf1, shapefile, how="right", op='intersects
         1)
```



```
In [53]: #maps!
    shapefile = gpd.read_file("chn_admbnda_adm2_ocha.shp")

    crs = {'init': shapefile.crs}
    geometry = [Point(xy) for xy in zip(cities['longitude'], cities['latit gdf1 = gpd.GeoDataFrame(cities, crs=crs, geometry=geometry)
    shapefile2 = gpd.sjoin(gdf1, shapefile, how="right", op='intersects')
    base = shapefile2.plot(figsize=(15,9), column = 'logdist', edgecolor='
    /opt/anaconda3/lib/python3.8/site-packages/pyproj/crs/crs.py:141: Fut
```

/opt/anaconda3/lib/python3.8/site-packages/pyproj/crs/crs.py:141: Fut ureWarning: '+init=<authority>:<code>' syntax is deprecated. '<author ity>:<code>' is the preferred initialization method. When making the change, be mindful of axis order changes: https://pyproj4.github.io/pyproj/stable/gotchas.html#axis-order-changes-in-proj-6 (https://pyproj4.github.io/pyproj/stable/gotchas.html#axis-order-changes-in-proj-6) in_crs_string = _prepare_from_proj_string(in_crs_string) /opt/anaconda3/lib/python3.8/site-packages/IPython/core/interactivesh ell.py:3357: FutureWarning: The `op` parameter is deprecated and will be removed in a future release. Please use the `predicate` parameter instead.

if (await self.run_code(code, result, async_=asy)): <ipython-input-53-5232853c41c3>:10: UserWarning: CRS mismatch between the CRS of left geometries and the CRS of right geometries. Use `to_crs()` to reproject one of the input geometries to match the CRS of the other.

```
Left CRS: +init=epsg:4326 +type=crs
Right CRS: EPSG:4326

shapefile2 = gpd.sjoin(gdf1, shapefile, how="right", op='intersects
')
```

