

Applicants: Eijiro WATANABE et al.

Serial No.: 08/992,914

Group: 1638

Filed:

December 18, 1997

Examiner: D.H.Kruse

For:

RAFFINOSE SYNTHASE GENES AND THEIR USE

DECLARATION UNDER 37 CFR 1.132

Honorable Commissioner of Patents and Trademarks Washington, D.C. 20231

Sir:

- I, Akitsu NAGASAWA, citizen of Japan and residing in Kamokogahara 3-28-56, Higashi-Nada-ku, Kobe-shi, Hyogo-ken, Japan, declare and say that:
- 1. I completed the master's course, with a major in agricultural biology, of the graduate school of Kyoto University and obtained a master's degree in agriculture at Kyoto University in March, 1984.
- 2. From April, 1984 to the present, I have been an employee of Sumitomo Chemical Company, Limited, the assignee of the above-identified application.
- 3. From April, 1984 to the present, I have been engaged in research works for plant engineering using recombination and other gene manipulation, such as cloning of plant genes, preparation and evaluation of transgenic plants.
- 4. I am one of the members of the research project related to the above-identified application and am familiar with the subject matter thereof.
- 5. I have read the Office Action mailed March 11, 2005 and the reference cited, and am familiar with the subject matter thereof.
- 6. To demonstrate successful identification of raffinose synthase genes in plant, I have made the following computer analysis.

ANALYSIS

The overall sequence homologies (%) among the amino acid sequences of raffinose synthases (RFSs), seed imbibition protein (SIP) and stachyose synthases (STSs) shown in Table 1 attached hereto were calculated based on a global multiple alignment (the alignment of sequences over their entire length) using the gene analysis software GENETYX-SV/RC for Windows version 6.1.0 (GENETYX Corporation; http://www.sdc.co.jp/genetyx/) with default parameters. The global multiple alignment was generated using CLUSTAL sequence analysis program. The amino acid sequences of the RFSs, SIP and STSs used to produce the global multiple alignment are as follows:

Sc-02:

MAPPSITKTATLQDVISTIDIGNGNSPLFSITLDQSRDFLANGHPFLTQV PPNITTTTTTASSFLNLKSNKDTIPNNNNTMLLQQGCFVGFNSTEPKSH HVVPLGKLKGIKFMSIFRFKVWWTTHWVGTNGQELQHETQMLILDKNDSL GRPYVLLLPILENTFRTSLQPGLNDHIGMSVESGSTHVTGSSFKACLYIH LSNDPYSILKEAVKVIQTQLGTFKTLEEKTAPSIIDKFGWCTWDAFYLKV HPKGVWEGVKSLTDGGCPPGFVIIDDGWQSICHDDDDEDDSGMNRTSAGE **QMPCRLVKYEENSKFREYENPENGGKKGLGGFVRDLKEEFGSVESVYVWH** ALCGYWGGVRPGVHGMPKARVVVPKVSQGLKMTMEDLAVDKIVENGVGLV PPDFAHEMFDGLHSHLESAGIDGVKVDVIHLLELLSEEYGGRVELARAYY KALTSSVKKHFKGNGVIASMEHCNDFFLLGTEAISLGRVGDDFWCSDPSG DPNGTYWLQGCHMVHCAYNSLWMGNFIQPDWDMFQSTHPCAEFHAASRAI SGGPIYVSDCVGNHNFKLLKSLVLPDGSILRCQHYALPTRDCLFEDPLHN GKTMLKIWNLNKYTGVLGLFNCQGGGWCPEARRNKSVSEFSRAVTCYASP EDIEWCNGKTPMSTKGVDFFAVYFFKEKKLRLMKCSDRLKVSLEPFSFEL MTVSPVKVFSKRFIQFAPIGLVNMLNSGGAIQSLEFDDNASLVKIGVRGC GEMSVFASEKPVCCKIDGVKVKFLYEDKMARVQILWPSSSTLSLVQFLF

Sc-03:

MAPSFSKENSKTCDEVANHDDCNTCPIISLEESNFMVNGHVILSQVPSNITAISKMGFDGLFVGFDAPEPKARHVVSVGQLKGIPFMSIFRFKVWWTTHWTGSNGRDLEHETQILILDKSDEGLGRPYIVILPLIEGPFRASLQPGSVDDYVDICVESGSTKVVGDSFRAVLYIRAGPDPFKLIKDTMKEVQAHLGTFKLLDDKTPPGIVDKFGWCTWDAFYLKVEXYGVWEGVKGLVENGVPPGLVLIDDGWQSICHDDDPITDQEGINRTSAGEQMPCRLIKYEENFKFRDYKSPNIMGHEDHPNMGMRAFVRDLKEEFKTVEHVYVWHAFTGYWGGVRPNVPGLXEAQVVTPKLSPGLEMTMEDLAVDKIVNNGIGLVQPDKAQELYEGLHSHLENC

GIDGVKVDVIHLLEMMAEDYGGRVELAKTYYKAITESVRKHFKGNGVIAS
MEQCNDFMLLGTETICLGRVGDDFWPTDPSGDINGTYWLQGCHMVHCAYN
SLWMGNFIHPDWDMFQSTHPCAEFHAASRAISGGPIYVSDVVGKHNIPLL
KRLVLADGSILRCEYHALPTKDCLFVDPLHDGKTMLKIWNLNKYNGVLGV
FNCQGGGWSRESRKNLCFSEYSKPISCKTSPKDVEWENGHKPFPIKGVEC
FAMYFTKEKKLILSQLSDTIEISLDPFDYELIVVSPMTILPWESIAFAPI
GLVNMLNAGGAVKSLDISEDNEDKMVQVGIKGAGEMMVYSSEKPKACRVN
GEDMEFEYEESMIKVQVTWNHNSGGFTTVEYLF

Sc-04 (truncated):

MAPSISKTVELNSFGLVNGNLPLSITLEGSNFLANGHPFLTEVPENIIVT PSPIDAKSSKNNEDDDVVGCFVGFHADEPRSRHVASLGKLRGIKFMSIFR FKVWWTTHWVGSNGHELEHETQMMLLDKNDQLGRPFVLILPILQASFRAS LQPGLDDYVDVCMESGSTRVCGSSFGSCLYVHVGHDPYQLLREATKVVRM HLGTFKLLEEKTAPVIIDKFGWCTWDAFYLKVHPSGVWEGVKGLVEGGCP PGMVLIDDGWQAICHDEDPITDQEGMKRTSAGEQMPCRLVKLEENYKFRQ YCSGKDSEKGMGAFVRDLKEQFRSVEQVYVWHALCGYWGGVRPKVPGMPQ AKVVTPKLSNGLKLTMKDLAVDKIVSNGVGLVPPHLAHLLYEGLHSRLES AGIDGVKVDVIHLLEMLSEEYGGRVELAKAYYKALTASVKKHFKGNGVIA SMEHCNDFFLLGTEAIALGRVGDDFWCTDPSGDPNGTYWLQGCHMVHCAY NSLWMGNFIQPDWDMFQSTHPCAEFHAPLGPSLVDQFTLVIVLESTTSSC SRASLCLMGRFCVVNTMHSPHETVCLKTPCMMGRQCSKFGISTNIQVFWVYLIAKEVGGVP

Sc-05:

MAPPSVIKSDAAVNGIDLSGKPLFRLEGSDLLANGHVVLTDVPVNVTVTA SPYLADKDGEPVDASAGSF I GFNLDGEPRSRHVAS I GKLRD I RFMS I FRF KVWWTTHWVGSKGSDIENETQIIILENSGSGRPYVLLLPLLEGSFRSSFQ PGEDDDVAVCVESGSTQVTGSEFRQVVYVHAGDDPFKLVKDAMKVVRVHM NTFKLLEEKXPPGIVDKFGWCTWDAFYLTVNPDGVHKGVKCLVDGGCPPG LVLIDDGWQSIGHDSDGIDVEGMSCTVAGEQMPCRLLKFQENFKFRDYVS PKDKNEVGMKAFVRDLKEEFSTVDYIYVWHALCGYWGGLRPGAPTLPPST IVRPELSPGLKLTMQDLAVDKIVDTGIGFVSPDMANEFYEGLHSHLQNVG IDGVKVDVIHILEMLCEKYGGRVDLAKAYFKALTSSVNKHFDGNGVIASM EHCNDFMFLGTEAISLGRVGDDFWCTDPSGDINGTYWLQGCHMVHCAYNS LWMGNF I QPDWDMFQSTHPCAEFHAASRA I SGGP I Y I SDCVGQHDFDLLK RLVLPDGSILRCEHYALPTRDRLFEDPLHDGKTMLKIWNLNKYTGIIGAF NCQGGGWCRETRRNQCFSQCVNTLTATTNPKDVEWNSGNNP I SVENVEEF ALFLSQSKKLVLSGPNDDLEITLEPFKFELITVSPVVTIEGSSVQFAPIG LVNMLNTSGAIRSLVYHEESVEIGVRGAGEFRVYASRKPASCKIDGEVVE **FGYEESMVMVQVPWSAPEGLSSIKYEF**

PsRFS:

MAPPSITKTATQQDVISTVDIGNSPLLSISLDQSRNFLVNGHPFLTQVPP NITTTTTSTPSPFLDFKSNKDTIANNNNTLQQQGCFVGFNTTEAKSHHVV PLGKLKGIKFTSIFRFKVWWTTHWVGTNGHELQHETQILILDKNISLGRP YVLLLPILENSFRTSLQPGLNDYVDMSVESGSTHVTGSTFKACLYLHLSN DPYRLVKEAVKVIQTKLGTFKTLEEKTPPSIIEKFGWCTWDAFYLKVHPK GVWEGVKALTDGGCPPGFVIIDDGWQSISHDDDDPVTERDGMNRTSAGEQ MPCRL I KYEENYKFREYENGDNGGKKGL VGF VRDLKEEFRS VES VY VWHA LCGYWGGVRPKVCGMPEAKVVVPKLSPGVKMTMEDLAVDKIVENGVGLVP PNLAQEMFDGIHSHLESAGIDGVKVDVIHLLELLSEEYGGRVELAKAYYK ALTSSVNKHFKGNGVIASMEHCNDFFLLGTEAISLGRVGDDFWCCDPSGD PNGTYWLQGCHMVHCAYNSLWMGNF I HPDWDMFQSTHPCAEFHAASRA I S GGPVYVSDCVGNHNFKLLKSFVLPDGSILRCQHYALPTRDCLFEDPLHNG KTMLKIWNLNKYAGVLGLFNCQGGGWCPETRRNKSASEFSHAVTCYASPE DIEWCNGKTPMDIKGVDVFAVYFFKEKKLSLMKCSDRLEVSLEPFSFELM TVSPLKVFSKRLIQFAPIGLVNMLNSGGAVQSLEFDDSASLVKIGVRGCG ELSVFASEKPVCCKIDGVSVEFDYEDKMVRVQILWPGSSTLSLVEFLF

Ai-05:

MAPSFKNGGSNVVSFDGLNDMSSPFAIDGSDFTVNGHSFLSDVPENIVAS PSPYTSIDKSPVSVGCFVGFDASEPDSRHVVSIGKLKDIRFMSIFRFKVW WTTHWVGRNGGDLESETQIVILEKSDSGRPYVFLLPIVEGPFRTSIQPGD DDFVDVCVESGSSKVVDASFRSMLYLHAGDDPFALVKEAMKIVRTHLGTF RLLEEKTPPGIVDKFGWCTWDAFYLTVHPQGVIEGVRHLVDGGCPPGLVL IDDGWQS IGHDSDP ITKEGMNQTVAGEQMPCRLLKFQENYKFRDYVNPKA TGPRAGQKGMKAF I DELKGEFKTVEHVYVWHALCGYWGGLRPQVPGLPEA RVIQPVLSPGLQMTMEDLAVDKIVLHKVGLVPPEKAEEMYEGLHAHLEKV GIDGVKIDVIHLLEMLCEDYGGRVDLAKAYYKAMTKSINKHFKGNGVIAS MEHCNDFMFLGTEA I SLGRVGDDFWCTDPSGDPNGTFWLQGCHMVHCAND SLWMGNF I HPDWDMFQSTHP CAAFHAASRA I SGGP I YVSDSVGKHNFDLL KKLVLPDGSILRSEYYALPTRDCLFEDPLHNGETMLKIWNLNKFTGVIGA FNCQGGGWCRETRRNQCFSQYSKRVTSKTNPKDIEWHSGENPISIEGVKT FALYLYQAKKLILSKPSQDLDIALDPFEFELITVSPVTKLIQTSLHFAPI GLVNMLNTSGAIQSVDYDDDLSSVEIGVKGCGEMRVFASKKPRACRIDGE DVGFKYDQDQMVVVQVPWPIDSSSGGISVIEYLF

HvSIP:

MTVTPQITVGDGRLAVRGRTVLSGVPDNVTAAHAAGAGLVDGAFVGATAA EAKSHHVFTFGTLRDCRFMCLFRFKLWWMTQRMGTSGRDVPLETQFILIE VPAAAGNDDGDSSDGDSEPVYLVMLPLLEGQFRTVLQGNDQDELQICIES
GDKAVETEQGMNNVYVHAGTNPFDTITQAVKAVEKHTQTFHHREKKTVPS
FVDWFGWCTWDAFYTDVTADGVKQGLRSLAEGGAPPRFLIIDDGWQQIGS
ENKDDPGVAVQEGAQFASRLTGIRENTKFQSEHNQEETPGLKRLVDETKK
EHGVKSVYVWHAMAGYWGGVKPSAAGMEHYEPALAYPVQSPGVTGNQPDI
VMDSLSVLGLGLVHPRRVHRFYDELHAYLAACGVDGVKVDVQNIVETLGA
GHGGRVALTRAYHRALEASVARNFPDNGCISCMCHNTDMLYSAKQTAVVR
ASDDFYPRDPASHTVHISSVAYNTLFLGEFMQPDWDMFHSLHPAAEYHGA
ARAIGGCPIYVSDKPGNHNFDLLRKLVLPDGSVLRAQLPGRPTRDCLFSD
PARDGASLLKIWNMNKCAGVVGVFNCQGAGWCRVAKKTRIHDEAPGTLTG
SVRAEDVEAIAQAAGTGDWGGEAVVYAHRAGELVRLPRGATLPVTLKRLE
YELFHVCPVRAVAPGVSFAPIGLLHMFNAGGAVEECTVETGEDGNAVVGL
RVRGCGRFGAYCSRRPAKCSVDSADVEFTYDSDTGLVTADVPVPEKEMYR
CALEIRV

AmSTS:

MAPPYDPIPIPMSAILNFLSSTVKDNSFELLDGTLSVKNVPILTDIPS NVSFSSFSSIVQSSEAPVPLFQRAQSLSSSGGFLGFSQNEPSSRLMNSLG KFTDRDFVSIFRFKTWWSTQWVGTTGSDIQMETQWIMLDVPEIKSYAVVV PIVEGKFRSALFPGKDGHILIGAESGSTKVKTSNFDAIAYVHVSENPYTL MRDAYTAVRVHLNTFKLIEEKSAPPLVNKFGWWTWDAFYLTVEPAGIYHG VQEFADGGLTPRFL I IDDGWQS INNDDNDPNEDAKNLVLGGTQMTARLHR LDECEKFRKYKGGSMSGPNRPPFDPKKPKLLISKAIEIEVAEKARDKAAQ SGVTDLARYEAE I EKLTKELDQMFGGGGEETSSGKSCSSCSCKSDNFGMK AFTKDLRTNFKGLDD I YVWHALAGAWGGVRPGATHLNAK I VPTNLSPGLD GTMTDLAVVKIIEGSTGLVDPDQAEDFYDSMHSYLSSVGITGVKVDVIHT LEYISEDYGGRVELAKAYYKGLSKSLAKNFNGTGLISSMQQCNDFFLLGT EQISMGRVGDDFWFQDPNGDPMGVYWLQGVHMIHCAYNSMWMGQFIQPDW DMFQSDHPGGYFHAGSRAICGGPVYVSDSLGGHNFDLLKKLVFNDGTIPK CIHFALPTRDCLFKNPLFDSKTILKIWNFNKYGGVIGAFNCQGAGWDPKE QRIKGYSQCYKPLSGSVHVSGIEFDQKKEASEMGEAEEYAVYLSEAEKLS LATRDSDPIKITIOSSTFEIFSFVPIKKLGEGVKFAPIGLTNLFNAGGTI QGLVYNEGIAKIEVKGDGKFLAYSSVVPKKAYVNGAEKVFAWSGNGKLEL DITWYEECGGISNVTFVY

PsSTS-1:

MAPPLNSTTSNLIKTESIFDLSERKFKVKGFPLFHDVPENVSFRSFSSIC KPSESNAPPSLLQKVLAYSHKGGFFGFSHETPSDRLMNSIGSFNGKDFLS IFRFKTWWSTQWIGKSGSDLQMETQWILIEVPETKSYVVIIPIIEKCFRS ALFPGFNDHVKIIAESGSTKVKESTFNSIAYVHFSENPYDLMKEAYSAIR VHLNSFRLLEEKTIPNLVDKFGWCTWDAFYLTVNPIGIFHGLDDFSKGGV EPRFVIIDDGWQSISFDGYDPNEDAKNLVLGGEQMSGRLHRFDECYKFRK
YESGLLLGPNSPPYDPNNFTDLILKGIEHEKLRKKREEAISSKSSDLAEI
ESKIKKVVKEIDDLFGGEQFSSGEKSEMKSEYGLKAFTKDLRTKFKGLDD
VYVWHALCGAWGGVRPETTHLDTKIVPCKLSPGLDGTMEDLAVVEISKAS
LGLVHPSQANELYDSMHSYLAESGITGVKVDVIHSLEYVCDEYGGRVDLA
KVYYEGLTKSIVKNFNGNGMIASMQHCNDFFFLGTKQISMGRVGDDFWFQ
DPNGDPMGSFWLQGVHMIHCSYNSLWMGQMIQPDWDMFQSDHVCAKFHAG
SRAICGGPIYVSDNVGSHDFDLIKKLVFPDGTIPKCIYFPLPTRDCLFKN
PLFDHTTVLKIWNFNKYGGVIGAFNCQGAGWDPIMQKFRGFPECYKPIPG
TVHVTEVEWDQKEETSHLGKAEEYVVYLNQAEELSLMTLKSEPIQFTIQP
STFELYSFVPVTKLCGGIKFAPIGLTNMFNSGGTVIDLEYVGNGAKIKVK
GGGSFLAYSSESPKKFQLNGCEVDFEWLGDGKLCVNVPWIEEACGVSDME
IFF

PsSTS-2:

MAPPLNSTTSNL IKTES IFDLSERKFKVKGFPLFHDVPENVSFRSFSS I C KPSESNAPPSLLQKVLAYSHKGGFFGFSHETPSDRLMNSLGSFNGKDFLS IFRFKTWWSTQWIGKSGSDLQMETQWILIEVPETKSYVVIIPIIEKCFRS ALFPGFNDHVKIIAESGSTKVKESTFNSIAYVHFSENPYDLMKEAYIAIR VHLNSFRLLEEKTIPNLVDKFGWCTWDAFYLTVNPIGIFHGLDDFSKGGV EPRFVIIDDGWQSISFDGCDPNEDAKNLVLGGEQMSGRLHRFDECYKFRK YESGLLLGPNSPPYDPKKFTDLILKGIEHEKLRKKREEAISSKSSDLAEI **ESKIKKVVKEIDDLFGGEQFSSVEKSEMKSEYGLKAFTKDLRTKFKGLDD** VYVWHALCGAWGGVRPETTHLDTKFVPCKLSPGLDGTMEDLAVVEISKAS LGLVHPSQANELYDSMHSYLAESGITGVKVDVIHSLEYVCDEYGGRVDLA KVYYEGLTKS I VKNFNGNGM I ASMQQCNDFFFLGTKQ I SMGRVGDDFWFQ DPNGDPMGSFWLQGVHMIHCSYNSLWMGQMIQPDWDMFKSDHVCAKFHAG SRAICGGP I YVSDNVGSHDFDL I KKL VFPDGT I PKC I YFPLPTRDCLFKN PLFDHTTLLK I WNFNKYGGV I GAFNCQGAGWDP I MQKFRGFPECYKP I PG TVHVTQVEWDQKEETSHFGKAEEYVVYLNQAEELCLMTLKSEPIQFTIQP STFELYSFVPVTKLCGGIKFAPIGLTNMFNSGGTVIDLEYVGNGAKIKVK GGGSFLAYSSESPKKFQLNGCEVDFEWLGDGKLCVNVPWIEEACGVS

SaSTS:

MAPPNDPISSIFSPLISVKKDNAFELVGGKLSVKNVPLLSEIPSNVTFKS
FSSICQSSGAPAPLYNRAQSLSNCGGFLGFSQKESADSVTNSLGKFTNRE
FVSIFRFKTWWSTQWVGTSGSDIQMETQWIMLNLPEIKSYAVVIPIVEGK
FRSALFPGKDGHVLISAESGSTCVKTTSFTSIAYVHVSDNPYTLMKDGYT
AVRVHLDTFKLIEEKSAPPLVNKFGWCTWDAFYLTVEPAGIWNGVKEFSD
GGFSPRFLIIDDGWQSINIDGQDPNEDAKNLVLGGTQMTARLHRFDECEK
FRKYKGGSMMGPKVPYFDPKKPKLLISKAIEIEGVEKARDKAIQSGITDL

SQYEIKLKKLNKELDEMFGGGGNDEKGSSKGCSDCSCKSQNSGMKAFTND LRTNFKGLDDIYVWHALAGAWGGVKPGATHLNAKIEPCKLSPGLDGTMTD LAVVKILEGSIGLVHPDQAEDFYDSMHSYLSKVGITGVKVDVIHTLEYVS ENYGGRVELGKAYYKGLSKSLKKNFNGSGLISSMQQCNDFFLLGTEQISM GRVGDDFWFQDPNGDPMGVFWLQGVHMIHCAYNSMWMGQIIHPDWDMFQS DHCSAKFHAGSRAICGGPVYVSDSLGGHDFDLLKKLVFNDGTIPKCIHFA LPTRDCLFKNPLFDSKTILKIWNFNKYGGVVGAFNCQGAGWDPKEQRIKG YSECYKPLSGSVHVSDIEWDQKVEATKMGEAEEYAVYLTESEKLLLTTPE SDPIPFTLKSTTFEIFSFVPIKKLGQGVKFAPIGLTNLFNSGGTIQGVVY DEGVAKIEVKGDGKFLAYSSSVPKRSYLNGEEVEYKWSGNGKVEVDVPWY EECGGISNITFVF

VaSTS:

MAPPNDPVNATLGLEPSEKVFDLSDGKLTVKGVVLLSHVPENVTFSSFSS I CVPRDAPSS I LQRVTAASHKGGFLGFSHVSPSDRL I NSLGSFRGRNFLS IFRFKTWWSTQWVGNSGSDLQMETQWILIEVPETESYVVIIPIIEKSFRS ALHPGSDDHVKICAESGSTQVRASSFGAIAYVHVAETPYNLMREAYSALR VHLDSFRLLEEKTVPRIVDKFGWCTWDAFYLTVNPVGVWHGLKDFSEGGV APRFVVIDDGWQSVNFDDEDPNEDAKNLVLGGEQMTARLHRFEEGDKFRK YQKGLLLGPNAPSFNPETIKELISKGIEAEHLGKQAAAISAGGSDLAEIE LMIVKVREEIDDLFGGKGKESNESGGCCCKAAECGGMKDFTTDLRTEFKG LDDVYVWHALCGGWGGVRPGTTHLDSKIIPCKLSPGLVGTMKDLAVDKIV EGSIGLVHPHQANDLYDSMHSYLAQTGVTGVKIDVIHSLEYVCEEYGGRV EIAKAYYDGLTNSIIKNFNGSGIIASMQQCNDFFFLGTKQIPFGRVGDDF WFQDPNGDPMGVFWLQGVHMIHCSYNSLWMGQIIQPDWDMFQSDHECAKF HAGSRAICGGPVYVSDSVGSHDFDLIKKLVFPDGTVPKCIYFPLPTRDCL FRNPLFDQKTVLKIWNFNKYGGVIGAFNCQGAGWDPKGKKFKGFPECYKA ISCTVHVTEVEWDQKKEAEHMGKAEEYVVYLNQAEVLHLMTPVSEPLQLT IQPSTFELYNFVPVEKLGSSN IKFAP IGLTNMFNSGGT IQELEY IEKDVK VKVKGGGRFLAYSTQSPKKFQLNGSDAAFQWLPDGKLTLNLAWIEENDGV **SDLAIFF**

The calculated overall sequence homologies (%) are shown in Table 2 attached hereto. The homologies between RFSs and SIP are less than 40%. The homologies between RFSs and STSs are not higher than 45%. On the other hand, the homologies among RFSs are all 50% or higher. Thus, the homologies among RFSs are higher than those homologies between RFSs and SIP and between RFSs and STSs.

A molecular phylogenic tree of the RFSs, SIP and STSs shown in Table 1 is

drawn in Figure 1 attached hereto. The molecular phylogenic tree is drawn by the UPGMA method using the gene analysis software GENETYX-SV/RC for Windows version 6.1.0 (GENETYX Corporation; http://www.sdc.co.jp/genetyx/) with default parameters. In the molecular phylogenic tree, RFSs, SIP and STSs form different groups respectively.

In summary, Table 2 and Figure 1 show that RFSs, SIP and STSs can be distinguished from one another based upon a comparison of their amino acid sequences.

Attached Table 3 shows the identities obtained using the BLAST program for the amino acid sequences of RFSs, SIP and STSs shown in Table 1. Among Sc-02, Sc-03, Sc-04 and Sc-05, the identities were obtained by searching the "patent database" provided by NCBI (National Center for Biotechnology Information) with default parameters, using the amino acid sequence of each protein as the "query", and using "Protein query vs. translated database (tblastn)" of the NCBI BLAST program. Also, other identities were obtained by searching the "non-redundant database" provided by NCBI with default parameters, using the amino acid sequence of each protein as the "query", and using "Protein-protein BLAST (blastp)" of the NCBI BLAST program. The above-identified amino acid sequences of the RFSs, SIP and STSs are used as the "query" except that the amino acid sequence of Sc-04 used as the "query" is as follows:

Sc-04 (full-length):

MAPSISKTVELNSFGLVNGNLPLSITLEGSNFLANGHPFLTEVPENIIVT PSPIDAKSSKNNEDDDVVGCFVGFHADEPRSRHVASLGKLRGIKFMSIFR FKVWWTTHWVGSNGHELEHETQMMLLDKNDQLGRPFVLILPILQASFRAS LQPGLDDYVDVCMESGSTRVCGSSFGSCLYVHVGHDPYQLLREATKVVRM HLGTFKLLEEKTAPVIIDKFGWCTWDAFYLKVHPSGVWEGVKGLVEGGCP PGMVLIDDGWQAICHDEDPITDQEGMKRTSAGEQMPCRLVKLEENYKFRQ YCSGKDSEKGMGAFVRDLKEQFRSVEQVYVWHALCGYWGGVRPKVPGMPQ AKVVTPKLSNGLKLTMKDLAVDKIVSNGVGLVPPHLAHLLYEGLHSRLES AGIDGVKVDVIHLLEMLSEEYGGRVELAKAYYKALTASVKKHFKGNGVIA SMEHCNDFFLLGTEAIALGRVGDDFWCTDPSGDPNGTYWLQGCHMVHCAY NSLWMGNFIQPDWDMFQSTHPCAEFHAASRAISGGPVYVSDCVGKHNFKLLKSLALPDGTILRCQHYALPTRDCLFEDPLHDGKTMLKIWNLNKYTGVLG

LFNCQGGGWCPVTRRNKSASEFSQTVTCLASPQDIEWSNGKSPICIKGMN VFAVYLFKDHKLKLMKASEKLEVSLEPFTFELLTVSPVIVLSKKLIQFAP IGLVNMLNTGGAIQSMEFDNHIDVVKIGVRGCGEMKVFASEKPVSCKLDG VVVKFDYEDKMLRVQVPWPSASKLSMVEFLF

As shown in Table 3, the identities between RFSs and SIPs are about 40%. The identities between RFSs and STSs range from about 40% to about 50%. On the other hand the identities among RFSs are 60% or higher. The identities among STSs are also 60% or higher. That is, the identities among RFSs or the identities among STSs are higher than the identities between RFSs and SIP or the identities between RFSs and STSs. Thus, RFSs, SIP or STSs can be distinguished based on the results of analysis using BLAST program.

- Attached Table 4 shows the identities obtained using another BLAST program for the amino acid sequences of RFSs, SIP and STSs shown in Table 1. All possible pair-wised amino acid sequence comparison were made by the "Blast 2 Sequences" program from NCBI (http://www.ncbi.nlm.nih.gov/blast/bl2seq/bl2.html). Sequence identities were calculated using default parameters, program; blastp, matrix; BLOSUM62, open gap penalty; 11, extension gap penalty; 1, gap x_dropoff; 50, expect; 10.0, and word size; 3. The amino acid sequences of the RFSs, SIP and STSs used to calculate sequence identities are identical to those used as the "query" to obtain identities shown in Table 3. Results were essentially the same with former two types of comparison.
- 4) In conclusion, raffinose synthases (RFSs), seed imbibition protein (SIP) and stachyose synthases (STSs) were clearly distinguished from one another based on comparison of their amino acid sequences.

7. I declare further that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonments, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the above-identified application or any patent issued thereon.

This but day of September, 2005

Akitsu NAGASAWA

П
ð
互
يع
Η

Code	Protein*	Organism	Accession**	Reference	Author/Assignee
Sc-03	RFS	Beta vulgaris	E37133	09/301,766	Sumitomo Chemical
Sc-05	RFS	Brassica juncea	E36417	09/301,766	Sumitomo Chemical
Sc-02	RFS	Vicia faba	E24423	08/992,914	Sumitomo Chemical
Sc-04	RFS	Glycine max	E24424	08/992,914	Sumitomo Chemical
Aj-05	RFS	Cucumis sativus	AF073744	Family GH36***	Ohsumi et al.
PsRFS	RFS	Pisum sativum	AJ426475	Family GH36	Peterbauer et al.
HvSIP	SIP	Hordeum vulgare	M77475	Family GH36	Heck et al.
PsSTS-1	STS	Pisum sativum	AJ311087	Family GH36	Peterbauer et al.
PsSTS-2	STS	Pisum sativum	AJ512932	Family GH36	Peterbauer et al.
VaSTS	STS	Vigna angularis	Y19024	Family GH36	Peterbauer et al.
AmSTS	STS	Alonsoa meridionalis	AJ487030	Family GH36	Voitsekhovskaja
SSSTS	STS	Stachys affinis	AJ344091	Family GH36	Pesch and Schmitz

^{*}Protein: RFS, Raffinose synthase; SIP, Seed Imbibition Protein; STS, Stachyose synthase.

^{**}Accession: GenBank Accession Number.

^{***}Family GH36: glycoside hydrolase family 36 (see Carbohydrate-Active Enzymes (CAZy) database: http://afmb.cnrs-mrs.fr/CAZY/GH_36.html)

Table 2

VaSTS	857	43	43	36	45	43	43	34	64	7.5	74	65	
SaSTS	863	42	42	34	44	42	43	34	83	65	65		
PsSTS-1 PsSTS-2	847	42	42	35	43	43	43	34	64	98	/		
PsSTS-1	853	43	43	35	44	43	44	34	64				
AmSTS	898	43	42	35	44	42	42	33					
HvSIP	757	39	39	29	39	38	38						
Aj-05	784	64	99	50	70	64							
PsRFS	798	89	63	54	62								
Sc-05	777	62	63	20									
Sc-04	611	54	20	/									
Sc-03	783	62	/										
Sc-02	799												
Code	amino acids	Sc-02	Sc-03	Sc-04	Sc-05	PsRFS	A j-05	HvSIP	AmSTS	PsSTS-1	PsSTS-2	SaSTS	VaSTS

Table 3

VaSTS	857	50	49	52	50	50	50	38	62	72	72	64	
SaSTS	863	49	49	51	52	51	20	38	81	63	64		
PsSTS-2	847	20	39	43	51	49	50	38	64	96			
PsSTS-1	853	20	39	20	51	49	50	38	63				
AmSTS	898	52	49	39	51	51	49	38					
HvSIP	757	41	40	38	40	40	39						
Aj-05	784	63	99	65	70	65	/						
PsRFS	798	88	62	7.5	09								
Sc-05	777	61	63	29									
Sc-04	781	7.5	65										
Sc-03	783	61											
Sc-02	799												
Code	amino acids	Sc-02	Sc-03	Sc-04	Sc-05	PSRFS	A j -05	HvSIP	AmSTS	PsSTS-1	PsSTS-2	SaSTS	VaSTS

Table 4

													_
VaSTS	857	42	42	46	45	42	43	34	62	73	73	64	
SaSTS	863	41	41	42	45	42	42	33	7.8	63	64		
PsSTS-2	847	42	42	44	45	42	43	35	62	96	/		
PsSTS-1	853	42	42	43	45	42	43	35	62				
AmSTS	898	43	41	42	45	42	41	33					
HvSIP	757	41	40	38	40	40	39						
Aj-05	784	63	99	65	7.0	65							
PsRFS	798	88	62	7.5	09	/							
Sc-05	777	61	63	29	//						-		
Sc-04	781	75	64										
Sc-03	783	61											
Sc-02	799												
Code	amino acids	Sc-02	Sc-03	Sc-04	Sc-05	PsRFS	Aj-05	HvSIP	AmSTS	PsSTS-1	PsSTS-2	SaSTS	VaSTS

Fig. 1

[GENETYX : Evolutionary tree]

Date : 2004.2.4 Method: UPGMA

