数电实验9报告

17341015 数据科学与计算机学院 计科一班 陈鸿峥

1 内容一

1.1 实验目的

设计16进制异步加法计数器

1.2 实验原理

1. 真值表如下

Q3	Q2	Q1	Q0
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1

Q3	Q2	Q1	Q0	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

2. 次态卡诺图

$^{ m Q}_{ m 1}$	Q_0				
Q_3Q_2	00	01	11	10	
00	0001	0010	0100	0011	
01	0101	0110	1000	0111	
11	1101	1110	0000	1111	
10	1001	1010	1100	1011	

3. 状态方程

$$\begin{split} Q_3^{n+1} &= Q_3 \, \overline{Q_2} + Q_3 \, \overline{Q_1} + Q_3 \, \overline{Q_0} + \overline{Q_3} \, Q_2 Q_1 Q_0 \\ Q_2^{n+1} &= Q_2 \, \overline{Q_1} + Q_2 \, \overline{Q_0} + \overline{Q_2} \, Q_1 Q_0 \\ Q_1^{n+1} &= \overline{Q_1} \, Q_0 + Q_1 \, \overline{Q_0} \\ Q_0^{n+1} &= \overline{Q_0} \end{split}$$

4. 驱动方程,将状态方程化为JK触发器形式可得

$$J_0 = 1$$
 $K_0 = 1$ $K_0 = Q_0$ $K_1 = Q_0$ $K_2 = Q_1Q_0$ $K_3 = Q_2Q_1Q_0$ $K_4 = Q_1Q_0$

1.3 实验细节

1.3.1 Protues仿真

电路图如下所示

仿真结果如下

1.3.2 实验仪器及器件

- 1. 数字电路实验箱、示波器、导线若干
- 2. 74LS73*4

1.3.3 实验流程与结果分析

如Protues电路连线 实验箱连线如下

通过观察01显示器,符合波形

2 内容二

2.1 实验目的

实现16进制同步加法计数器

2.2 实验原理

同实验1

2.3 实验细节

2.3.1 Protues仿真

电路图如下所示

仿真结果如下

2.3.2 实验仪器及器件

- 1. 数字电路实验箱、示波器、导线若干
- 2. 74LS73*4

2.3.3 实验流程及结果分析

如Protues电路连线 实验箱连线如下

通过观察01显示器,符合波形

3 内容三

3.1 实验目的

使用JK触发器和门电路设计实现一个二进制四位计数器模仿74LS194功能

3.2 实验原理

74LS194功能如下

\overline{Cr}	S_1	S_0	功能
0	X	X	置零
1	0	0	保持
1	0	1	右移
1	1	0	左移
1	1	1	并行送数

仅左移右移次态卡诺图

Q ₁ Q ₂	000 Q ₀ D	001	011	010	
00	00010	10001	X	00110	
01	Х	Х	Х	Х	
11	Х	11101	Х	Х	
10	Х	11001	Х	Х	

110	111	101	100
01110	X	X	Х
11110	11110 X		Х
Х	Х	11111	Х
Х	Х	Х	Х

状态方程

$$\begin{aligned} Q_3^{n+1} &= Q_2 + D \\ Q_2^{n+1} &= Q_3 + Q_1 \\ Q_1^{n+1} &= Q_2 + Q_1 + Q_0 \\ Q_0^{n+1} &= Q_1 + \overline{D} \end{aligned}$$

驱动方程,将状态方程化为JK触发器形式可得

$$J_{0} = \overline{\overline{Q_{1}}} D \qquad K_{0} = \overline{Q_{1}} D$$

$$J_{1} = \overline{\overline{Q_{2}}} \overline{\overline{Q_{0}}} \qquad K_{0} = 0$$

$$J_{2} = \overline{\overline{Q_{3}}} \overline{\overline{Q_{1}}} \qquad K_{2} = \overline{Q_{3}} \overline{Q_{1}}$$

$$J_{3} = \overline{\overline{Q_{2}}} \overline{D} \qquad K_{3} = \overline{Q_{2}} \overline{D}$$

3.3 实验细节

3.3.1 Protues仿真

全功能74LS194电路图如下

具体功能测试如下

1. 左移

2. 右移

3. 并行送数, 图为1011

4. 保持,图为左移过程中出现0011后立即切换状态为保持

仅左移右移74LS194电路图如下

3.3.2 实验仪器及器件

- 1. 数字电路实验箱、示波器、导线若干
- 2. 74LS73*4

3.3.3 实验流程与结果分析

连线如Protues所示, 结果如下图

4 内容四

4.1 实验目的

用JK触发器实现12进制同步计数器

4.2 实验原理

1. 状态转换图

$$0001 \rightarrow 0010 \rightarrow 0011 \rightarrow 0100 \rightarrow 0101 \rightarrow 0110$$
 \uparrow
 $1100 \leftarrow 1011 \leftarrow 1010 \leftarrow 1001 \leftarrow 1000 \leftarrow 0111$

2. 确定电路所需触发器数目 ${\rm hf} 2^4 = 16 > 12$,故需要4个JK触发器

3. 次态卡诺图

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Q_0				
Q_3Q_2	00	01	11	10	
00	X	0010	0100	0011	
01	01 0101		1000	0111	
11	0001	X	X	Х	
10	1001	1010	1100	1011	

4. 触发器状态方程,由卡诺图可得

$$\begin{split} Q_0^{n+1} &= \overline{Q_0} \\ Q_1^{n+1} &= Q_0 \overline{Q_1} + \overline{Q_0} Q_1 \\ Q_2^{n+1} &= Q_0 Q_1 \overline{Q_2} + \overline{Q_1} Q_2 \overline{Q_3} + \overline{Q_0} Q_2 \overline{Q_3} \\ Q_3^{n+1} &= \overline{Q_2} Q_3 + Q_0 Q_1 Q_2 \overline{Q_3} \end{split}$$

5. 触发器驱动方程,由

$$Q^{n+1} = J\,\overline{Q^n} + \overline{K}\,Q^n$$

将状态方程整理为上式形式,可得

$$J_0 = 1$$

$$K_0 = 1$$

$$J_1 = Q_0$$

$$K_0 = Q_0$$

$$J_2 = Q_1 Q_0$$

$$K_2 = \overline{Q_3} \overline{Q_1} + \overline{Q_3} \overline{Q_0} = \overline{Q_3} + Q_1 Q_0$$

$$J_3 = Q_2 Q_1 Q_0$$

$$K_3 = Q_2$$

6. 检查自启动

当输入为1111和0000时,可自动跳转至0001;输入为1101时,跳转至0010;输入为1110时,跳转至0011

4.3 Protues仿真

电路图连接如下

仿真结果如下

波形符合12进制转换

4.4 实验细节

4.4.1 实验仪器及器件

- 1. 数字电路实验箱、示波器、导线若干
- 2. 74LS73*4, 74LS00*2, 74LS08*2

4.4.2 实验流程与结果分析

如Protues电路图所示连线 将输出接01显示器,可见01显示器按照状态转换图顺序依次闪烁

5 内容五

5.1 实验目的

用Protues和Vivado分别实现一个有控制变量D的12进制计数器,并在七段数码管上显示计数结果

5.2 实验原理

1. 状态转移图

$$0001 \stackrel{?}{\rightleftharpoons} 0010 \stackrel{?}{\rightleftharpoons} 0011 \stackrel{?}{\rightleftharpoons} 0100 \stackrel{?}{\rightleftharpoons} 0101 \stackrel{?}{\rightleftharpoons} 0110$$

$$\uparrow \downarrow \qquad \qquad \uparrow \downarrow$$

$$1100 \stackrel{?}{\rightleftharpoons} 1011 \stackrel{?}{\rightleftharpoons} 1010 \stackrel{?}{\rightleftharpoons} 1001 \stackrel{?}{\rightleftharpoons} 1000 \stackrel{?}{\rightleftharpoons} 0111$$

2. 次态卡诺图

Q_1	Q_0D									
Q ₃ Q ₂	000	001	011	010			110	111	101	100
00	Х	X	11001	00100			01000	00101	00011	00110
01	01010	00111	01001	01100			10000	01101	01011	01110
11	00010	10111	Х	Х			Х	Х	Х	Х
10	10010	01111	10001	10100			11000	10101	10011	10110
					۱ ا	١				

3. 状态方程

$$\begin{split} Q_0^{n+1} &= \overline{Q_0} \\ Q_1^{n+1} &= \overline{Q_1} \, \overline{Q_0} \, D + \overline{Q_1} \, Q_0 \, \overline{D} + Q_1 Q_0 D + Q_1 \, \overline{Q_0} \, \overline{D} = (Q_0 \oplus D) \, \overline{Q_1} + \overline{Q_0} \oplus \overline{D} \, Q_1 \\ Q_2^{n+1} &= \overline{Q_3} \, Q_2 \, \overline{Q_0} \, \overline{D} + \overline{Q_2} \, \overline{Q_1} \, \overline{Q_0} \, D + Q_2 \, \overline{Q_1} \, Q_0 + \overline{Q_3} \, \overline{Q_2} \, \overline{Q_1} \, D + Q_2 Q_1 D + \overline{Q_2} \, Q_1 Q_0 \, \overline{D} \\ &= (\overline{Q_1} \, \overline{Q_0} \, D + Q_1 Q_0 \, \overline{D} + \overline{Q_3} \, \overline{Q_1} \, D) \, \overline{Q_2} + (\overline{Q_3} \, \overline{Q_0} \, \overline{D} + \overline{Q_1} \, Q_0 + Q_1 D) Q_2 \\ Q_3^{n+1} &= Q_3 Q_1 + \overline{Q_3} \, Q_2 Q_1 Q_0 \, \overline{D} + Q_3 Q_0 + Q_3 \, \overline{Q_2} \, \overline{Q_1} \, \overline{D} + Q_3 Q_2 D + \overline{Q_3} \, \overline{Q_2} \, \overline{Q_1} \, D \\ &= (Q_2 Q_1 Q_0 \, \overline{D} + \overline{Q_2} \, \overline{Q_1} \, D) \, \overline{Q_3} + (Q_1 + Q_0 + \overline{Q_2} \, \overline{Q_1} \, \overline{D} + Q_2 D) Q_3 \end{split}$$

4. 驱动方程

$$J_{0} = 1$$

$$K_{0} = 1$$

$$J_{1} = Q_{0} \oplus D$$

$$K_{1} = Q_{0} \oplus D$$

$$K_{2} = \overline{Q_{1}} \overline{Q_{0}} D + Q_{1} Q_{0} \overline{D} + \overline{Q_{3}} \overline{Q_{1}} D$$

$$K_{2} = \overline{\overline{Q_{3}} \overline{Q_{0}} \overline{D} + \overline{Q_{1}} Q_{0} + Q_{1} D}$$

$$K_{3} = \overline{Q_{1} + Q_{0} + \overline{Q_{2}} \overline{Q_{1}} \overline{D} + Q_{2} D}$$

5.3 Protues仿真

电路图连接如下

仿真结果如下,正向计数

逆向计数

波形符合12进制转换

5.4 Basys板电路实现

Verilog程序如下,12进制计数器部分,包括控制变量D的实现(变量名为fb)

```
module Counter(
    input clr , // clear , say reset
    input wire clk, // clock
    input wire fb, // add or minus
    output [6:0] seg,
output [3:0] an
    );
    reg [3:0] out;
    parameter MAX_COUNT = 12;
    // time counter
    {\bf localparam~MAX\_COUNT\_TIME}~=~50\, {\tt \_000\, {\tt \_000}}~;~~//~~0.5\, s
    reg [25:0] count; // 26 bits to store count: 2^26 > 5*10^7
    always @ (posedge clk or posedge clr)
    begin
         if (clr == 1) // reset
              count <= 0;
         else if (count == MAX_COUNT_TIME - 1) // return 0
             count <= 0;
              \mathtt{count} \ <= \ \mathtt{count} \ + \ 1;
    // frequency divisor (flip-flop)
    reg clk_div;
    {\bf always} \ @ \ ({\bf posedge} \ {\tt clk} \ , \ {\bf posedge} \ {\tt clr} \ )
    begin
         if (clr == 1)
             clk_div \le 0;
         {\tt else \ if \ (count == MAX\_COUNT\_TIME - 1) \ // \ reset}
             clk_div <= ~clk_div;
         {\tt else} \ // \ set
              clk_div <= clk_div;
    end
    // 12 system counter
    always @ (posedge clk_div or posedge clr)
    if (fb == 0)
```

```
begin
              if (clr == 1)
                   \quad \text{out} \ <= \ 0\,;
              if (out == MAX_COUNT)
                   out \leq 0:
                   out \leq= out + 1:
         end
    else
         begin
              if (clr == 1)
                   \quad \text{out} \ <= \ 0\,;
              if (out == 0)
                  out <= 4'b1100;
                   out \leq= out - 1:
    display disp1 (.digit(out),.seven_seg(seg));
    // only turn on the first seven segment display
    assign an = 4'b1110;
endmodule
```

分频计数器与七段数码管连接部分

```
\scriptsize
module display (
    input [3:0] digit,
    output reg [6:0] seven_seg
    always @(digit)
         case (digit)
             1: seven\_seg = 7'b100\_1111;
             2: seven\_seg = 7'b001\_0010;
             3: seven\_seg = 7'b000\_0110;
             4: seven_seg = 7'b100_1100;
             5: seven_seg = 7'b010_0100;
             6: seven\_seg = 7'b010\_0000;
             7: seven_seg = 7'b000_1111;
             8: seven_seg = 7'b000_0000;
             9: seven_seg = 7'b000_0100;
             10: \ \mathtt{seven\_seg} \ = \ 7\, , \\ \mathtt{b000\_1000} \ ; \ \ // \ \ a
             11: seven_seg = 7'b110_0000; // b
             12: seven_seg = 7'b011\_0001; // c
         endcase // clk
```

endmodule

限制文件如下

```
set_property PACKAGE_PIN W4 [get_ports {an[3]}]
set_property PACKAGE_PIN V4 [get_ports {an[2]}]
set_property PACKAGE_PIN U4 [get_ports {an[1]}]
set_property PACKAGE_PIN U2 [get_ports {an[0]}]
set_property PACKAGE_PIN W7 [get_ports {seg[6]}]
set_property PACKAGE_PIN W6 [get_ports {seg[5]}]
set_property PACKAGE_PIN U8 [get_ports {seg[4]}]
set_property PACKAGE_PIN V8 [get_ports {seg[3]}]
set_property PACKAGE_PIN U5 [get_ports {seg[2]}]
set_property PACKAGE_PIN V5 [get_ports {seg[1]}]
set_property PACKAGE_PIN U7 [get_ports {seg[0]}]
set_property PACKAGE_PIN W5 [get_ports clk]
set_property IOSTANDARD LVCMOS33 [get_ports {an[3]}]
set_property IOSTANDARD LVCMOS33 [get_ports {an[2]}]
set_property IOSTANDARD LVCMOS33 [get_ports {an[1]}]
set_property IOSTANDARD LVCMOS33 [get_ports {an[0]}]
set_property IOSTANDARD LVCMOS33 [get_ports {seg[6]}]
set_property IOSTANDARD LVCMOS33 [get_ports {seg[5]}]
set_property IOSTANDARD LVCMOS33 [get_ports {seg[4]}]
set_property IOSTANDARD LVCMOS33 [get_ports {seg[3]}]
```

```
set_property IOSTANDARD LVCMOS33 [get_ports {seg[2]}]
set_property IOSTANDARD LVCMOS33 [get_ports {seg[1]}]
set_property IOSTANDARD LVCMOS33 [get_ports {seg[0]}]
set_property IOSTANDARD LVCMOS33 [get_ports clk]

set_property PACKAGE_PIN V17 [get_ports clr]
set_property PACKAGE_PIN R2 [get_ports fb]
set_property IOSTANDARD LVCMOS33 [get_ports clr]
set_property IOSTANDARD LVCMOS33 [get_ports fb]
```

最终结果图如下

通过调整最左下角的拨码开关,可实现任意时刻计数器的正向计数和反向计数

6 心得体会

- 1. 学会了移位寄存器及JK触发器的使用及其功能
- 2. 明白同步异步时序电路如何进行设计
- 3. 更好地学会用Verilog进行电路设计分析,并成功上板实现