Lecture 08 Numbers and Functions

Ryan $McWay^{\dagger}$

 $^{\dagger}Applied\ Economics,$ University of Minnesota

Mathematics Review Course, Summer 2023 University of Minnesota August 16th, 2023

1/51

► Linear Algebra:

- ► Gaussian Elimination
- ▶ Linear Operators
- ► Existence of a Solution
- ► Cramer's Rule
- ► Eigenvalues
- ► Regression as a Matrix

REVIEW ASSIGNMENT

- 1. Problem Set 07 solutions are available on Github.
- 2. Any issues or problems **You** would like to discuss?

- ► Attendance via prompt:
 - ► Name
 - ▶ Program and track
 - ▶ Daily icebreaker subject...

Topic: Numbers

5/51

- General background
 - ► The terminology of mathematics
 - ► Formalized by the branch of math called 'Number Theory'.
- ▶ Why do economists' care?
 - Economists express values, sets, and concepts using
- ► Application in this career
 - Throughout your whole experience.

- ► General background
 - ► The terminology of mathematics
 - ► Formalized by the branch of math called 'Number Theory'.
- ▶ Why do economists' care?
 - Economists express values, sets, and concepts using numerical (quantitative) values.
- ► Application in this career
 - ► Throughout your whole experience.

- General background
 - ► The terminology of mathematics
 - ► Formalized by the branch of math called 'Number Theory'.
- ▶ Why do economists' care?
 - Economists express values, sets, and concepts using numerical (quantitative) values.
- ► Application in this career
 - ► Throughout your whole experience.

6/51

OVERVIEW

- 1. Common Number Sets
- 2. Real Numbers
- 3. Absolute Value and Number Line
- 4. Triangle Inequality
- 5. Neighborhoods

Numbers

8/51

1. COMMON NUMBER SETS

- ▶ Natural Numbers: $\mathbb{N} = \{1, 2, 3, \dots\}$.
- ► Integers: $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3\}.$
- ▶ Rational Numbers: $\mathbb{Q} = \{\frac{p}{q}p, q \in \mathbb{Z}, q \neq 0\}.$
- ightharpoonup Real Numbers: $\mathbb{R} = \{ \text{ all decimals } \}.$
- Complex Numbers: $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}, i = \sqrt{-1}\}.$

1. COMMON NUMBER SETS

Real Numbers

Irrational

 $\sqrt{3}$ 0.10010001...

2. REAL NUMBERS

- ► Two binary operators for the Reals
 - ightharpoonup Addition: a+b
 - ightharpoonup Multiplication: $a \cdot b$
- ▶ Properties:
 - \blacktriangleright Commutative: $\forall a, b \in \mathbb{R}, a+b=b+a$.
 - \blacktriangleright Commutative: $\forall a, b, c \in \mathbb{R}, (a+b)+c=a+(b+c).$
 - ▶ Zero Exists: $\forall a \in \mathbb{R}, a + 0 = a$.
 - Negation Exists: $\forall a \in \mathbb{R}, \exists (-a) \in \mathbb{R} : a + (-a) = 0.$
 - ▶ Distributive: $\forall a, b, c \in \mathbb{R}, a \cdot (b+c) = (a \cdot b) + (a \cdot c)$.
- ▶ Reciprocal: $\forall a \in \mathbb{R}, \frac{1}{a}$

3. ABSOLUTE VALUE AND NUMBER LINE

- ▶ Absolute Value: $|\pm a| = a$.
- ▶ Properties:
 - $\blacktriangleright \forall a > 0 \in \mathbb{R}, |a| = a.$
 - $\forall a=0 \in \mathbb{R}, |a|=0.$
 - $\forall a < 0 \in \mathbb{R}, |a| = -a.$
 - |ab| = |a||b|.
 - $|a|^2 = |a^2|$.
 - ightharpoonup If $|a| < c \iff -c < a < c$.

- \blacktriangleright $\forall a, b \in \mathbb{R} \rightarrow |a+b| \le |a| + |b|$.
- ► Corollaries:
 - $|a| |b| \le |a b|.$
 - ▶ $|a b| \le |a| + |b|$.
- ► Visual aid [Click Me].

- ▶ Let $a, \varepsilon \in \mathbb{R}, \varepsilon > 0$.
 - \blacktriangleright Let the ε -neighborhood of a be the set $V_{\varepsilon}(a) := \{ x \in \mathbb{R} : |x - a| < \varepsilon \}.$
 - ightharpoonup I.e., x is a value within the neighborhood of a such that it is within ε distance from a.

PRACTICE: NUMBERS

Topic: Functions

Review

- General background
 - ► How we map sets onto other sets.
 - ► The most common to represent relationships between variables.
- ▶ Why do economists' care?

- ► General background
 - ► How we map sets onto other sets.
 - ► The most common to represent relationships between variables.
- ▶ Why do economists' care?
 - ► This is primary way that we represent preferences, utility, and production.
 - ► Functions are at the core of how theorems are represented.
- ► Application in this career
 - ▶ Both throughout the development and presentation of proofs, as well as in estimating equations from data.

- ► General background
 - ► How we map sets onto other sets.
 - ► The most common to represent relationships between variables.
- ▶ Why do economists' care?
 - ► This is primary way that we represent preferences, utility, and production.
 - ▶ Functions are at the core of how theorems are represented.
- ► Application in this career
 - ▶ Both throughout the development and presentation of proofs, as well as in estimating equations from data.

OVERVIEW

- 1. Relations
- 2. Correspondences and Functions
- 3. Injective & Surjective Functions
- 4. Composition of Functions
- 5. Inverse Functions
- 6. Image and Pre-image
- 7. Homogeneity
- 8. Level, Superior & Inferior Sets
- 9. Euler's Theorem
- 10. Quasiconcavity & Quasiconvexity
- 11. Concavity & Convexity
- 12. Continuity
- 13. Upper- and Lower-Hemicontinuity
- 14. Brouwer's Fixed-point Theorem
- 15. Kakutani's Fixed-point Theorem

18 / 51

1. RELATIONS

- ▶ A collection of ordered-pairs (s,t) has a binary relation sRt between sets S and T.
 - ▶ Reflexive: $\forall x \in S, x\mathcal{R}x$.
 - ▶ Symmetric: $\forall x, y \in S, x\mathcal{R}y \implies y\mathcal{R}x$.
 - ▶ Complete: $\forall x, y \in S \rightarrow x \mathcal{R} y \lor y \mathcal{R} x$.
 - ► Transitive: $\forall x, y, z \in \mathcal{R}, x\mathcal{R}y \land y\mathcal{R}z \implies x\mathcal{R}z$.
- ► Equivalent Relation (=): Is reflexive, symmetric, and transitive.
- ► Common Relations:
 - ► Equal: =
 - ► Equivalent: ≡
 - ▶ Better than: >
 - ► Less than: <

2. CORRESPONDENCES AND FUNCTIONS

- ► Correspondence: A relation that associates each element of one set (the domain) to the elements of another set (the range).
- ► Function: A relation that associates each element in the domain to a single, unique element of the range.
- ▶ Onto: Every element in the range is mapped into a point in the domain.
- ▶ One-to-one: Every element in the range is assigned only a single point in the domain.

$$f: D \to R$$

3. Injective & Surjective Functions

- ▶ Function $f: A \to B$:
 - ► Injective (one-to-one): $\forall a_1, a_2 \in A, a_1 \neq a_2 \implies f(a_1) \neq f(a_2).$
 - ▶ Surjective (onto *B*): $\forall b \in B, \exists a \in A : f(a) = b$.
 - Bijective: Both injective and surjective.

Functions

4. COMPOSITION OF FUNCTIONS

- $ightharpoonup f: A \to B \text{ and } g: B \to C, \text{ then}$ $g \circ f(x) = g(f(x)) : A \to C$
- ► Follows from associative property of functions:

$$(h \circ g) \circ f = h \circ (g \circ f)$$

▶ If f and g are surjective, then $g \circ f$ is surjective.

5. INVERSE FUNCTIONS

▶ If $f: A \to B$ is bijective, then the inverse function is $f^{-1}: B \to A$.

$$f^{-1} \circ f(x) = x$$
$$f \circ f^{-1}(x) = x$$

 $ightharpoonup f: A \to B$ is bijective iff the inverse f^{-1} is a function $f: B \to A$.

6. IMAGE AND PRE-IMAGE

- ightharpoonup Let $f:A\to B$.
 - ▶ Image: If $X \subseteq A$ is set $f(X) = \{f(x) : x \in X\} \subseteq B$.

Functions

▶ Pre-image: If $Y \subseteq B$ is set $f^{-1}(Y) = \{x \in A : f(x) \in Y\} \subseteq A$.

7. Homogeneity

- ightharpoonup Consider $f(x_1, x_2, \dots, x_N)$ is defined for all $(x_1, x_2, \ldots, x_N) > 0.$
- \blacktriangleright Homogeneous: A function $f(x_1, x_2, \dots, x_N)$ is **homogeneous** of degree $r \in \mathbb{Z}$ if $\forall x > 0$:

$$f(t(x_1), t(x_2), \dots, t(x_N)) = t^r f(x_1, x_2, \dots, x_N)$$

 \blacktriangleright For f homogeneous of degree r, then the partial derivative $(x_1, x_2, \dots, x_N)/\partial x_n$ is homogeneous of degree r-1.

8. Level, Superior, & Inferior Sets

- ► Level set: $L(y^0) \equiv \{x | x \in D, f(x) = y^0\}.$
- ► Superior set: $S(y^0) \equiv \{x | x \in D, f(x) \ge y^0\}.$
- ► Inferior set: $I(y^0) \equiv \{x | x \in D, f(x) \le y^0\}.$

Functions

9. EULER'S THEOREM

 \blacktriangleright Let $f(x_1, x_2, \dots, x_N)$ be homogeneous of degree r, and differentiable.

$$\nabla f(\bar{x}) \cdot \bar{x} = \sum_{n=1}^{N} \frac{\partial f(\bar{x}_1, \dots, \bar{x}_N)}{\partial x_n} \bar{x}_n = r f(\bar{x}_1, \dots, \bar{x}_N)$$

▶ **Application:** In production theory, Euler's theorem states that a production function homogeneous of degree 1 (CRS) with factors paid their marginal product will have no surplus or deficit in total product.

10. Ouasiconcavity & Quasiconvexity

- ▶ Quasiconcavity: $\forall x_1, x_2 \in D, f: D \rightarrow R$ iff $f(tx_1 + (1-t)x_2) \ge \min[f(x_1), f(x_2)] \forall t \in [0, 1]$
- \blacktriangleright Quasiconvexity: $\forall x_1, x_2 \in D, f: D \to R$ iff $f(tx_1 + (1-t)x_2) \le \max[f(x_1), f(x_2)] \forall t \in [0, 1]$
- ► These become **strict** when the inequalities hold for all $x_1 \neq x_2$.

QUASICONCAVE AND QUASICONVEX

Functions

QUASICONCAVE **BUT NOT** QUASICONVEX

Functions

QUASICONCAVE IN TWO DIMENSIONS

Functions

QUASICONCAVE IN TWO DIMENSIONS

▶ $f: D \to R$ is quasiconcave iff S(y) is a **convex** set for all $y \in \mathbb{R}$.

QUASICONVEX IN TWO DIMENSIONS

Functions

QUASICONVEX IN TWO DIMENSIONS

▶ $f: D \to R$ is quasiconvex iff I(y) is a **convex** set for all $y \in \mathbb{R}$.

11. Concavity & Convexity

- ▶ f is defined on a convex subset $D \subset \mathbb{R}^n \forall x_1, x_2 \in D, \forall t \in [0, 1]$:
- Concave:

$$f(tx_1 + (1-t)x_2) \ge tf(x_1) + (1-t)f(x_2)$$

Convex:

$$f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$$

► Strict concavity or convexity when the inequality holds.

CONCAVITY

CONVEXITY

Functions

CONCAVE UP (CONVEX) & CONCAVE DOWN

12. CONTINUITY

ightharpoonup Continuous: $f:\mathbb{R}^m\to\mathbb{R}^n$ at $x_0\in\mathbb{R}^m$ if whenever $\{x_n\}_{n=1}^\infty$ is a sequence in \mathbb{R}^m which converges to x_0 , then the sequence $\{f(x_n)\}_{n=1}^{\infty}$ in \mathbb{R}^n converges to $f(x_0)$.

Functions

$$\forall \varepsilon > 0, \exists \delta > 0 : \forall x \in A, [||x - x_0|| < \delta] \implies [||f(x) - f(x_0)|| < \varepsilon]$$

13. Upper- and Lower-Hemicontinuity

- $ightharpoonup A \subset \mathbb{R}^n$ and a closed set $Y \subset \mathbb{R}^n$.
 - ▶ Upper Hemicontinuous: Correspondence $f: A \to Y$ if it has a closed graph and the images of compact sets are bounded.

$$\forall B \subset A, f(B) = \{y \in Y : y \in f(x) \exists x \in B\}$$
 is bounded.

- ▶ Lower Hemicontinous: Correspondence $f: A \to Y$ if for every sequence $x^m \to x \in A$ with $x^m \in A \forall m$, and every $y \in f(x)$, we can find a sequence $y^m \to y$ and an integer $M: y^m \in f(x^m) \forall m > M.$
- Continuous: Both upper- and lower-hemicontinuous.

13. Upper-Hemicontinuity

Functions

13. Upper-Hemicontinuity

13. LOWER-HEMICONTINUITY

13. Upper- and Lower-Hemicontinuity

Not upper hemicontinuous at x_1 Not upper hemicontinuous at x_2 Lower hemicontinuous

Not lower hemicontinuous at x_1 Not lower hemicontinuous at x_2 Upper hemicontinuous

13. NOT UPPER- AND LOWER-HEMICONTINUITY

Functions

Not upper hemicontinuous at x_1 and x_2 Not lower hemicontinuous at x_1 and x_2

14. Brouwer's Fixed-Point Theorem

ightharpoonup Suppose $D \subset \mathbb{R}^m$ is non-empty, compact, convex set, and $f: D \to D$ is a **continuous function**.

▶ Then $f(\cdot)$ has a fixed point, e.g., there is an $x \in D : x = f(x)$.

15. KAKUTANI'S FIXED-POINT THEOREM

- \triangleright Suppose $D \subset \mathbb{R}^m$ is non-empty, compact, convex set, and $f: D \to D$ is a upper-hemicontinuous correspondence with the property $f(x) \subset D$ is non-empty and convex for all $x \in D$.
- ▶ Then $f(\cdot)$ has a fixed point, e.g., there is an $x \in D : x = f(x)$.

Functions

REVIEW OF NUMBERS

- 1. Real Numbers
- 2. Common Number Sets
- 3. Absolute Value and Number Line
- 4. Triangle Inequality
- 5. Neighborhoods

REVIEW OF FUNCTIONS

- 1. Relations
- 2. Correspondences and Functions
- 3. Injective & Surjective Functions
- 4. Composition of Functions
- 5. Inverse Functions
- 6. Image and Pre-image
- 7. Homogeneity
- 8. Level, Superior & Inferior Sets
- 9. Euler's Theorem
- 10. Quasiconcavity & Quasiconvexity
- 11. Concavity & Convexity
- 12. Continuity
- 13. Upper- and Lower-Hemicontinuity
- 14. Brouwer's Fixed-point Theorem
- 15. Kakutani's Fixed-point Theorem

ASSIGNMENT

- ▶ Readings on Optimization before Lecture 09:
- Assignment:
 - ► Problem Set 08 (PS08)
 - ► Solution set will be available following end of Lecture 09
- ► Struggling?
 - 1. Read the 'Encouraged Reading'
 - 2. Review 'Supplementary material'
 - 3. Reach out directly