

Algebra

Written by

Logarithm

05 July 2020

UO1_ Solve the given simple problem based on laws of logarithm

What we will learn today

- 1. Logarithmic form
- 2. Conversion of index form to log form
- 3. Laws of logarithm
- 4. Solve problems using laws of logarithm

Key takeaways

Logarithmic form, laws of logarithm

Anantmati Patil Lecturer in Mathematics,

Concept Map

Page 6

Definition

Logarithm:

If $y = a^x$, a > 0, $a \ne 1$, $a \in R$, then x is called logarithm of y to the base a and it is written as $x = \log_a y$.

For example,

1) If
$$9 = 3^2$$
 then $2 = \log_3 9$

2) If
$$2^4 = 16$$
 then $\log_2 16 = 4$

Concept Explanation

Note:

►
$$a^0 = 1$$
 : $\log_a 1 = 0$

►
$$a^1 = a$$
 :: $\log_a a = 1$

$$ightharpoonup$$
 $a^{\log_a x} = x$

- $ightharpoonup log_{10} x$ is called common logarithm
- $ightharpoonup \log_e x$ is called natural logarithm

Concept Explanation

LAWS OF LOGARITHM:

- $\log_a(m)^n = n \log_a m$

Word Problem/ Problem

Evaluate:

1.
$$\log_2 8 + \log_2 3 - \log_2 6$$

Solution: Using laws of logarithm

$$\log_2 8 + \log_2 3 - \log_2 6$$

$$=\log_2\left(\frac{8\times 3}{6}\right)$$

$$= \log_2 4$$

$$= \log_2(2^2)$$

$$= 2 \times \log_2 2$$

$$= 2 \times 1 = 2$$

Trine

1. Supring E-lags

Standing or fract

Supring E-lags

deg (2)

ring E

Problem/ Question Explanation and step by step Solution

2. Simplify: $log_3 25 \times log_5 27$

Solution: Using change of base we get

$$\log_3 25 \times \log_5 27$$

$$= \frac{\log 25}{\log 3} \times \frac{\log 27}{\log 5}$$

$$= \frac{\log 5^2}{\log 3} \times \frac{\log 3^3}{\log 5}$$

$$= \frac{2 \log 5}{\log 3} \times \frac{3 \log 3}{\log 5}$$

Problem/ Question Explanation and step by step Solution

3. Find x if $\log_3(x^2+2) = 3$

Solution: $\log_3(x^2+2) = 3$

$$3^3 = x^2 + 2$$

$$27 = x^2 + 2$$

$$25 = x^2$$

$$\therefore$$
 x = 5 or - 5

Evaluate the following

- 1. $\log_2 \sqrt{2}$
- *2.* log₂ 128
- $3. \log_{10} \sqrt[3]{1000}$
- 4. log₁₆ 2
- $5. \quad \log_{\sqrt{3}} 9$

Key: 1. ½

- 2. 7
- 3. 1
- 4. 1/4
- 5. 4

Find x if:

$$\log_4 x = \frac{1}{2}$$

$$2. \log_{x} 125 = 3$$

$$\log_2(x+5) = 4$$

4.
$$\log_4(2x+3) = 0$$

$$5. \quad \log_2(\sqrt[4]{2}) = x$$

Key:

- 1. 2
- 2. 5
- 3.
- 4. -1
- 5. ½