Luminus

Escuela Superior de Cómputo del IPN Escuela Superior de Cómputo, IPN

18 de octubre de 2018

Índice general

1.2. Introduccion 1.3. Introduccion 1.4. Introduccion 1.5. Introduccion 1.5. Introduccion 1.6. Introduccion 1.7. Introduccion 1.8. Introduccion 1.9. Introduccion 1.0. Introduccion 2. Capitulo 2 2 2.1. Marco Teórico 1 2.1.1. Big Data 1 2.1.2. Minería de datos 1 2.1.3. Árboles de decisión 1 2.1.4. ID3 (Iterative Dichotomiser 3) 1 2.1.5. C4.5 2 2.1.6. Algoritmo KNN (K-Nearest Neighbor) 2 2.1.7. Algoritmo K-Means 2 2.1.8. MapReduce 2 2.1.9. Hadoop 2 2.1.10. Apache Spark 3 3. Capitulo 3 3 3.1. Descripción del prototipo 3 3.2. Análisis 3 3.2.1. Análisis de la red distribuida 3 3.2.2. Análisis de los datos 3 3.3. Diseño 5	1	Control 1	1
1.2. Introduccion 1.3. Introduccion 1.4. Introduccion 1.5. Introduccion 1.6. Introduccion 1.7. Introduccion 1.8. Introduccion 1.9. Introduccion 1.10. Introduccion 1.10. Introduccion 1.10. Introduccion 1.110. Introduccion 1.1110. Introduccion 1.111	1.		_
1.3. Introduccion 1.4. Introduccion 1.5. Introduccion 1.6. Introduccion 1.7. Introduccion 1.8. Introduccion 1.9. Introduccion 1.10. Introduccion 1.10. Introduccion 2. Capitulo 2 2.1. Marco Teórico 2.1.1. Big Data 2.1.2. Minería de datos 2.1.3. Árboles de decisión 2.1.4. ID3 (Iterative Dichotomiser 3) 2.1.5. C4.5 2.1.6. Algoritmo KNN (K-Nearest Neighbor) 2.1.7. Algoritmo K-Means 2.1.8. MapReduce 2.1.9. Hadoop 2.1.10. Apache Spark 3. Capitulo 3 3.1. Descripción del prototipo 3.2. Análisis 3.2.1. Análisis de la red distribuida 3.2.2. Análisis de los datos 3.3. Diseño			1
1.4. Introduccion 1.5. Introduccion 1.6. Introduccion 1.7. Introduccion 1.8. Introduccion 1.9. Introduccion 1.10. Introduccion 1.10. Introduccion 1.10. Introduccion 1.11. Big Data 2.1.1. Big Data 2.1.2. Minería de datos 2.1.3. Árboles de decisión 2.1.4. ID3 (Iterative Dichotomiser 3) 2.1.5. C4.5 2.1.6. Algoritmo KNN (K-Nearest Neighbor) 2.1.7. Algoritmo K-Means 2.1.8. MapReduce 2.1.9. Hadoop 2.1.10. Apache Spark 3. Capitulo 3 3.1. Descripción del prototipo 3.2. Análisis 3.2.1. Análisis de la red distribuida 3.2.2. Análisis de los datos 3.3. Diseño			2
1.5. Introduccion 1.6. Introduccion 1.7. Introduccion 1.8. Introduccion 1.9. Introduccion 1.10. Introduccion 1.10. Introduccion 1.10. Introduccion 1.10. Introduccion 2. Capitulo 2 2.1. Marco Teórico 2.1.1. Big Data 2.1.2. Minería de datos 2.1.3. Árboles de decisión 2.1.4. ID3 (Iterative Dichotomiser 3) 2.1.5. C4.5 2.1.6. Algoritmo KNN (K-Nearest Neighbor) 2.1.7. Algoritmo K-Means 2.1.8. MapReduce 2.1.9. Hadoop 2.1.10. Apache Spark 3. Capitulo 3 3.1. Descripción del prototipo 3.2. Análisis 3.2.1. Análisis de la red distribuida 3.2.2. Análisis de los datos 3.3. Diseño			3
1.6. Introduccion 1.7. Introduccion 1.8. Introduccion 1.9. Introduccion 1.10. Introduccion 1.10. Introduccion 1.10. Introduccion 1.10. Introduccion 2. Capitulo 2 2.1. Marco Teórico 2.1.1. Big Data 2.1.2. Minería de datos 2.1.3. Árboles de decisión 2.1.4. ID3 (Iterative Dichotomiser 3) 2.1.5. C4.5. 2.1.6. Algoritmo KNN (K-Nearest Neighbor) 2.1.7. Algoritmo K-Means 2.1.8. MapReduce 2.1.9. Hadoop 2.1.10. Apache Spark 3. Capitulo 3 3.1. Descripción del prototipo 3.2. Análisis 3.2.1. Análisis de la red distribuida 3.2.2. Análisis de los datos 3.3. Diseño			4
1.7. Introduccion 1.8. Introduccion 1.9. Introduccion 1.10. Introduccion 2. Capitulo 2 1 2.1. Marco Teórico 1 2.1.1. Big Data 1 2.1.2. Minería de datos 1 2.1.3. Árboles de decisión 1 2.1.4. ID3 (Iterative Dichotomiser 3) 1 2.1.5. C4.5. 2 2.1.6. Algoritmo KNN (K-Nearest Neighbor) 2 2.1.7. Algoritmo K-Means 2 2.1.8. MapReduce 2 2.1.9. Hadoop 2 2.1.10. Apache Spark 3 3. Capitulo 3 3.1. Descripción del prototipo 3 3.2. Análisis 3 3.2.1. Análisis de la red distribuída 3 3.2.2. Análisis de los datos 3 3.3. Diseño 3			5
1.8. Introduccion 1.9. Introduccion 1.10. Introduccion 1 2. Capitulo 2 1 2.1. Marco Teórico 1 2.1.1. Big Data 1 2.1.2. Minería de datos 1 2.1.3. Árboles de decisión 1 2.1.4. ID3 (Iterative Dichotomiser 3) 1 2.1.5. C4.5 2 2.1.6. Algoritmo KNN (K-Nearest Neighbor) 2 2.1.7. Algoritmo K-Means 2 2.1.8. MapReduce 2 2.1.9. Hadoop 2 2.1.10. Apache Spark 3 3. Capitulo 3 3 3.1. Descripción del prototipo 3 3.2. Análisis 3 3.2.1. Análisis de la red distribuida 3 3.2.2. Análisis de los datos 3 3.3. Diseño 3			6
1.9. Introduccion 1.10. Introduccion 2. Capitulo 2 2.1. Marco Teórico 2.1.1. Big Data 2.1.2. Minería de datos 2.1.3. Árboles de decisión 2.1.4. ID3 (Iterative Dichotomiser 3) 2.1.5. C4.5 2.1.6. Algoritmo KNN (K-Nearest Neighbor) 2.1.7. Algoritmo K-Means 2.1.8. MapReduce 2.1.9. Hadoop 2.1.10. Apache Spark 3. Capitulo 3 3.1. Descripción del prototipo 3.2. Análisis 3.2.1. Análisis de la red distribuida 3.2.2. Análisis de los datos 3.3. Diseño			7
1.10. Introduccion 1 2. Capitulo 2 1 2.1. Marco Teórico 1 2.1.1. Big Data 1 2.1.2. Minería de datos 1 2.1.3. Árboles de decisión 1 2.1.4. ID3 (Iterative Dichotomiser 3) 1 2.1.5. C4.5 2 2.1.6. Algoritmo KNN (K-Nearest Neighbor) 2 2.1.7. Algoritmo K-Means 2 2.1.8. MapReduce 2 2.1.9. Hadoop 2 2.1.10. Apache Spark 3 3. Capitulo 3 3.1. Descripción del prototipo 3.2. Análisis 3 3.2.1. Análisis de la red distribuida 3 3.2.2. Análisis de los datos 3 3.3. Diseño 3			8
2. Capitulo 2 1 2.1. Marco Teórico 1 2.1.1. Big Data 1 2.1.2. Minería de datos 1 2.1.3. Árboles de decisión 1 2.1.4. ID3 (Iterative Dichotomiser 3) 1 2.1.5. C4.5 2 2.1.6. Algoritmo KNN (K-Nearest Neighbor) 2 2.1.7. Algoritmo K-Means 2 2.1.8. MapReduce 2 2.1.9. Hadoop 2 2.1.10. Apache Spark 3 3. Capitulo 3 3 3.1. Descripción del prototipo 3 3.2. Análisis 3 3.2.1. Análisis de la red distribuida 3 3.2.2. Análisis de los datos 3 3.3. Diseño 3			9
2.1. Marco Teórico 1 2.1.1. Big Data 1 2.1.2. Minería de datos 1 2.1.3. Árboles de decisión 1 2.1.4. ID3 (Iterative Dichotomiser 3) 1 2.1.5. C4.5 2 2.1.6. Algoritmo KNN (K-Nearest Neighbor) 2 2.1.7. Algoritmo K-Means 2 2.1.8. MapReduce 2 2.1.9. Hadoop 2 2.1.10. Apache Spark 3 3. Capitulo 3 3 3.1. Descripción del prototipo 3 3.2. Análisis 3 3.2.1. Análisis de la red distribuida 3 3.2.2. Análisis de los datos 3 3.3. Diseño 3		1.10. Introduccion	10
2.1. Marco Teórico 1 2.1.1. Big Data 1 2.1.2. Minería de datos 1 2.1.3. Árboles de decisión 1 2.1.4. ID3 (Iterative Dichotomiser 3) 1 2.1.5. C4.5 2 2.1.6. Algoritmo KNN (K-Nearest Neighbor) 2 2.1.7. Algoritmo K-Means 2 2.1.8. MapReduce 2 2.1.9. Hadoop 2 2.1.10. Apache Spark 3 3. Capitulo 3 3 3.1. Descripción del prototipo 3 3.2. Análisis 3 3.2.1. Análisis de la red distribuida 3 3.2.2. Análisis de los datos 3 3.3. Diseño 3	2	Capitulo 2	13
2.1.1. Big Data 1 2.1.2. Minería de datos 1 2.1.3. Árboles de decisión 1 2.1.4. ID3 (Iterative Dichotomiser 3) 1 2.1.5. C4.5 2 2.1.6. Algoritmo KNN (K-Nearest Neighbor) 2 2.1.7. Algoritmo K-Means 2 2.1.8. MapReduce 2 2.1.9. Hadoop 2 2.1.10. Apache Spark 3 3.1. Descripción del prototipo 3 3.2. Análisis 3 3.2.1. Análisis de la red distribuida 3 3.2.2. Análisis de los datos 3 3.3. Diseño 3	۷.		13
2.1.2. Minería de datos 2.1.3. Árboles de decisión 2.1.4. ID3 (Iterative Dichotomiser 3) 2.1.5. C4.5. 2.1.6. Algoritmo KNN (K-Nearest Neighbor) 2.1.7. Algoritmo K-Means 2.1.8. MapReduce 2.1.9. Hadoop 2.1.10. Apache Spark 3. Capitulo 3 3.1. Descripción del prototipo 3.2. Análisis 3.2.1. Análisis de la red distribuida 3.2.2. Análisis de los datos 3.3. Diseño			13
2.1.3. Árboles de decisión 1 2.1.4. ID3 (Iterative Dichotomiser 3) 1 2.1.5. C4.5 2 2.1.6. Algoritmo KNN (K-Nearest Neighbor) 2 2.1.7. Algoritmo K-Means 2 2.1.8. MapReduce 2 2.1.9. Hadoop 2 2.1.10. Apache Spark 3 3.1. Descripción del prototipo 3 3.2. Análisis 3 3.2.1. Análisis de la red distribuida 3 3.2.2. Análisis de los datos 3 3.3. Diseño 3		5	14
2.1.4. ID3 (Iterative Dichotomiser 3) 1 2.1.5. C4.5 2 2.1.6. Algoritmo KNN (K-Nearest Neighbor) 2 2.1.7. Algoritmo K-Means 2 2.1.8. MapReduce 2 2.1.9. Hadoop 2 2.1.10. Apache Spark 3 3.1. Descripción del prototipo 3 3.2. Análisis 3 3.2.1. Análisis de la red distribuida 3 3.2.2. Análisis de los datos 3 3.3. Diseño 3			14
2.1.5. C4.5			16
2.1.6. Algoritmo KNN (K-Nearest Neighbor) 2.1.7. Algoritmo K-Means 2.1.8. MapReduce 2.1.9. Hadoop 2.1.10. Apache Spark 3.1. Descripción del prototipo 3.2. Análisis 3.2.1. Análisis de la red distribuida 3.2.2. Análisis de los datos 3.3. Diseño			21
2.1.7. Algoritmo K-Means 2 2.1.8. MapReduce 2 2.1.9. Hadoop 2 2.1.10. Apache Spark 3 3. Capitulo 3 3 3.1. Descripción del prototipo 3 3.2. Análisis 3 3.2.1. Análisis de la red distribuida 3 3.2.2. Análisis de los datos 3 3.3. Diseño 3			26
2.1.8. MapReduce 2 2.1.9. Hadoop 2 2.1.10. Apache Spark 3 3. Capitulo 3 3 3.1. Descripción del prototipo 3 3.2. Análisis 3 3.2.1. Análisis de la red distribuida 3 3.2.2. Análisis de los datos 3 3.3. Diseño 3			 27
2.1.9. Hadoop 2 2.1.10. Apache Spark 3 3. Capitulo 3 3 3.1. Descripción del prototipo 3 3.2. Análisis 3 3.2.1. Análisis de la red distribuida 3 3.2.2. Análisis de los datos 3 3.3. Diseño 3			 29
2.1.10. Apache Spark 3 3. Capitulo 3 3 3.1. Descripción del prototipo 3 3.2. Análisis 3 3.2.1. Análisis de la red distribuida 3 3.2.2. Análisis de los datos 3 3.3. Diseño 3			
3.1. Descripción del prototipo 3.2. Análisis 3.2.1. Análisis de la red distribuida 3.2.2. Análisis de los datos 3.3. Diseño			
3.1. Descripción del prototipo 3.2. Análisis 3.2.1. Análisis de la red distribuida 3.2.2. Análisis de los datos 3.3. Diseño			
3.2. Análisis33.2.1. Análisis de la red distribuida33.2.2. Análisis de los datos33.3. Diseño3	3.		35
3.2.1. Análisis de la red distribuida			35
3.2.2. Análisis de los datos			35
3.3. Diseño			35
			36
3.3.1. Diseño de la red distribuida			37
			37
		· · · · · · · · · · · · · · · · · · ·	38
			40
3.5. Pruebas		3.5. Pruebas	41
4. Capitulo 4	Δ	Capitulo 4	45
·	т.		45

5.	Capi	itulo 5	47
	5.1.	Instalador del ambiente de análisis de datos	47
		5.1.1. Diagrama de flujo	48

CAPÍTULO 1

Capitulo 1

1.1. Introduccion

Para que la ELD pueda mantener actualizado el status de pago de los aspirantes que realizaron la operación en sucursal bancaria, es necesario que el **Contador General** actualice de forma manual dichos pagos, esto se logra con ayuda del archivo brindado por BANAMEX, el cual servirá para ser cargado en el sistema y este lo interprete y determine si es correcto, en caso de ser correcto actualizar el estado de pago de los aspirantes que allí se encuentran, de lo contrario mostrar las inconsistencias.

Una de las operaciones que brinda el sistema, es la actualización manual del status de pago de un aspirante, esta acción le permite tener el control para la actualización del status de pago de los aspirantes, esto con la finalidad de no depender del archivo de BANAMEX en caso de que presentaran conflictos con el mismo.

- 1. Solicite administrar los pagos admisión seleccionando la opción **Administración de pagos** del menú **??** y posteriormente la opción **Pagos Admisión** del menú **??**.
- 2. Se mostrará la pantalla 1.10 Administrar Pagos Admisión.

Administrar Pagos Admisión 2017-2018

Figura 1.1: Administrar Pagos Admisión

Errores Comunes

Error	Posibles Soluciones
El sistema muestra un mensaje indicando que falta información para realizar la operación.	 Verifique que exista una convocatoria Publicada. Verifique que exista un periodo de pagos. Verifique que exista un periodo de pre-registro CENEVAL vigente.
El sistema muestra un mensaje indicando que no se ha realizado la asociación de fechas de CENEVAL y Psicométrico.	• Verifique que la Coordinación de Control Escolar haya asociado las fechas CENEVAL y Psicométrico.

1.2. Introduccion

Para que la ELD pueda mantener actualizado el status de pago de los aspirantes que realizaron la operación en sucursal bancaria, es necesario que el **Contador General** actualice de forma manual dichos pagos, esto se logra con ayuda del archivo brindado por BANAMEX, el cual servirá para ser cargado en el sistema y este lo interprete y determine si es correcto, en caso de ser correcto actualizar el estado de pago de los aspirantes que allí se encuentran, de lo contrario mostrar las inconsistencias.

Una de las operaciones que brinda el sistema, es la actualización manual del status de pago de un aspirante, esta acción le permite tener el control para la actualización del status de pago de los aspirantes, esto con la finalidad de no depender del archivo de BANAMEX en caso de que presentaran conflictos con el mismo.

- 1. Solicite administrar los pagos admisión seleccionando la opción **Administración de pagos** del menú **??** y posteriormente la opción **Pagos Admisión** del menú **??**.
- 2. Se mostrará la pantalla 1.10 Administrar Pagos Admisión.

Administrar Pagos Admisión 2017-2018

Error	Posibles Soluciones
El sistema muestra un mensaje indicando que falta información para realizar la operación.	 Verifique que exista una convocatoria Publicada. Verifique que exista un periodo de pagos. Verifique que exista un periodo de pre-registro CENEVAL vigente.
El sistema muestra un mensaje indicando que no se ha realizado la asociación de fechas de CENEVAL y Psicométrico.	• Verifique que la Coordinación de Control Escolar haya asociado las fechas CENEVAL y Psicométrico.

1.3. Introduccion

Para que la ELD pueda mantener actualizado el status de pago de los aspirantes que realizaron la operación en sucursal bancaria, es necesario que el **Contador General** actualice de forma manual dichos pagos, esto se logra con ayuda del archivo brindado por BANAMEX, el cual servirá para ser cargado en el sistema y este lo interprete y determine si es correcto, en caso de ser correcto actualizar el estado de pago de los aspirantes que allí se encuentran, de lo contrario mostrar las inconsistencias.

Una de las operaciones que brinda el sistema, es la actualización manual del status de pago de un aspirante, esta acción le permite tener el control para la actualización del status de pago de los aspirantes, esto con la finalidad de no depender del archivo de BANAMEX en caso de que presentaran conflictos con el mismo.

- 1. Solicite administrar los pagos admisión seleccionando la opción **Administración de pagos** del menú **??** y posteriormente la opción **Pagos Admisión** del menú **??**.
- 2. Se mostrará la pantalla 1.10 Administrar Pagos Admisión.

Administrar Pagos Admisión 2017-2018

Cargar Archivo

Figura 1.3: Administrar Pagos Admisión

Error	Posibles Soluciones
El sistema muestra un mensaje indicando que falta información para realizar la operación.	 Verifique que exista una convocatoria Publicada. Verifique que exista un periodo de pagos. Verifique que exista un periodo de pre-registro CENEVAL vigente.
El sistema muestra un mensaje indicando que no se ha realizado la asociación de fechas de CENEVAL y Psicométrico.	• Verifique que la Coordinación de Control Escolar haya asociado las fechas CENEVAL y Psicométrico.

1.4. Introduccion

Para que la ELD pueda mantener actualizado el status de pago de los aspirantes que realizaron la operación en sucursal bancaria, es necesario que el **Contador General** actualice de forma manual dichos pagos, esto se logra con ayuda del archivo brindado por BANAMEX, el cual servirá para ser cargado en el sistema y este lo interprete y determine si es correcto, en caso de ser correcto actualizar el estado de pago de los aspirantes que allí se encuentran, de lo contrario mostrar las inconsistencias.

Una de las operaciones que brinda el sistema, es la actualización manual del status de pago de un aspirante, esta acción le permite tener el control para la actualización del status de pago de los aspirantes, esto con la finalidad de no depender del archivo de BANAMEX en caso de que presentaran conflictos con el mismo.

- 1. Solicite administrar los pagos admisión seleccionando la opción **Administración de pagos** del menú **??** y posteriormente la opción **Pagos Admisión** del menú **??**.
- 2. Se mostrará la pantalla 1.10 Administrar Pagos Admisión.

Administrar Pagos Admisión 2017-2018

Cargar Archivo

Figura 1.4: Administrar Pagos Admisión

Error	Posibles Soluciones
El sistema muestra un mensaje indicando que falta información para realizar la operación.	 Verifique que exista una convocatoria Publicada. Verifique que exista un periodo de pagos. Verifique que exista un periodo de pre-registro CENEVAL vigente.
El sistema muestra un mensaje indicando que no se ha realizado la asociación de fechas de CENEVAL y Psicométrico.	• Verifique que la Coordinación de Control Escolar haya asociado las fechas CENEVAL y Psicométrico.

Introduccion 1.5.

Para que la ELD pueda mantener actualizado el status de pago de los aspirantes que realizaron la operación en sucursal bancaria, es necesario que el Contador General actualice de forma manual dichos pagos, esto se logra con ayuda del archivo brindado por BANAMEX, el cual servirá para ser cargado en el sistema y este lo interprete y determine si es correcto, en caso de ser correcto actualizar el estado de pago de los aspirantes que allí se encuentran, de lo contrario mostrar las inconsistencias.

Una de las operaciones que brinda el sistema, es la actualización manual del status de pago de un aspirante, esta acción le permite tener el control para la actualización del status de pago de los aspirantes, esto con la finalidad de no depender del archivo de BANAMEX en caso de que presentaran conflictos con el mismo.

- 1. Solicite administrar los pagos admisión seleccionando la opción Administración de pagos del menú ?? y posteriormente la opción Pagos Admisión del menú ??.
- 2. Se mostrará la pantalla 1.10 Administrar Pagos Admisión.

Administrar Pagos Admisión 2017-2018

Figura 1.5: Administrar Pagos Admisión

Error	Posibles Soluciones
El sistema muestra un mensaje indicando que falta información para realizar la operación.	 Verifique que exista una convocatoria Publicada. Verifique que exista un periodo de pagos. Verifique que exista un periodo de pre-registro CENEVAL vigente.
El sistema muestra un mensaje indicando que no se ha realizado la asociación de fechas de CENEVAL y Psicométrico.	• Verifique que la Coordinación de Control Escolar haya asociado las fechas CENEVAL y Psicométrico.

1.6. Introduccion

Para que la ELD pueda mantener actualizado el status de pago de los aspirantes que realizaron la operación en sucursal bancaria, es necesario que el Contador General actualice de forma manual dichos pagos, esto se logra con ayuda del archivo brindado por BANAMEX, el cual servirá para ser cargado en el sistema y este lo interprete y determine si es correcto, en caso de ser correcto actualizar el estado de pago de los aspirantes que allí se encuentran, de lo contrario mostrar las inconsistencias.

Una de las operaciones que brinda el sistema, es la actualización manual del status de pago de un aspirante, esta acción le permite tener el control para la actualización del status de pago de los aspirantes, esto con la finalidad de no depender del archivo de BANAMEX en caso de que presentaran conflictos con el mismo.

- 1. Solicite administrar los pagos admisión seleccionando la opción Administración de pagos del menú ?? y posteriormente la opción Pagos Admisión del menú ??.
- 2. Se mostrará la pantalla 1.10 Administrar Pagos Admisión.

Administrar Pagos Admisión 2017-2018

Figura 1.6: Administrar Pagos Admisión

Error	Posibles Soluciones
El sistema muestra un mensaje indicando que falta información para realizar la operación.	 Verifique que exista una convocatoria Publicada. Verifique que exista un periodo de pagos. Verifique que exista un periodo de pre-registro CENEVAL vigente.
El sistema muestra un mensaje indicando que no se ha realizado la asociación de fechas de CENEVAL y Psicométrico.	• Verifique que la Coordinación de Control Escolar haya asociado las fechas CENEVAL y Psicométrico.

1.7. Introduccion

Para que la ELD pueda mantener actualizado el status de pago de los aspirantes que realizaron la operación en sucursal bancaria, es necesario que el Contador General actualice de forma manual dichos pagos, esto se logra con ayuda del archivo brindado por BANAMEX, el cual servirá para ser cargado en el sistema y este lo interprete y determine si es correcto, en caso de ser correcto actualizar el estado de pago de los aspirantes que allí se encuentran, de lo contrario mostrar las inconsistencias.

Una de las operaciones que brinda el sistema, es la actualización manual del status de pago de un aspirante, esta acción le permite tener el control para la actualización del status de pago de los aspirantes, esto con la finalidad de no depender del archivo de BANAMEX en caso de que presentaran conflictos con el mismo.

- 1. Solicite administrar los pagos admisión seleccionando la opción Administración de pagos del menú ?? y posteriormente la opción Pagos Admisión del menú ??.
- 2. Se mostrará la pantalla 1.10 Administrar Pagos Admisión.

Administrar Pagos Admisión 2017-2018

Figura 1.7: Administrar Pagos Admisión

Error	Posibles Soluciones
El sistema muestra un mensaje indicando que falta información para realizar la operación.	 Verifique que exista una convocatoria Publicada. Verifique que exista un periodo de pagos. Verifique que exista un periodo de pre-registro CENEVAL vigente.
El sistema muestra un mensaje indicando que no se ha realizado la asociación de fechas de CENEVAL y Psicométrico.	• Verifique que la Coordinación de Control Escolar haya asociado las fechas CENEVAL y Psicométrico.

1.8. Introduccion

Para que la ELD pueda mantener actualizado el status de pago de los aspirantes que realizaron la operación en sucursal bancaria, es necesario que el Contador General actualice de forma manual dichos pagos, esto se logra con ayuda del archivo brindado por BANAMEX, el cual servirá para ser cargado en el sistema y este lo interprete y determine si es correcto, en caso de ser correcto actualizar el estado de pago de los aspirantes que allí se encuentran, de lo contrario mostrar las inconsistencias.

Una de las operaciones que brinda el sistema, es la actualización manual del status de pago de un aspirante, esta acción le permite tener el control para la actualización del status de pago de los aspirantes, esto con la finalidad de no depender del archivo de BANAMEX en caso de que presentaran conflictos con el mismo.

- 1. Solicite administrar los pagos admisión seleccionando la opción Administración de pagos del menú ?? y posteriormente la opción Pagos Admisión del menú ??.
- 2. Se mostrará la pantalla 1.10 Administrar Pagos Admisión.

Administrar Pagos Admisión 2017-2018

Figura 1.8: Administrar Pagos Admisión

Error	Posibles Soluciones
El sistema muestra un mensaje indicando que falta información para realizar la operación.	 Verifique que exista una convocatoria Publicada. Verifique que exista un periodo de pagos. Verifique que exista un periodo de pre-registro CENEVAL vigente.
El sistema muestra un mensaje indicando que no se ha realizado la asociación de fechas de CENEVAL y Psicométrico.	• Verifique que la Coordinación de Control Escolar haya asociado las fechas CENEVAL y Psicométrico.

1.9. Introduccion

Para que la ELD pueda mantener actualizado el status de pago de los aspirantes que realizaron la operación en sucursal bancaria, es necesario que el **Contador General** actualice de forma manual dichos pagos, esto se logra con ayuda del archivo brindado por BANAMEX, el cual servirá para ser cargado en el sistema y este lo interprete y determine si es correcto, en caso de ser correcto actualizar el estado de pago de los aspirantes que allí se encuentran, de lo contrario mostrar las inconsistencias.

Una de las operaciones que brinda el sistema, es la actualización manual del status de pago de un aspirante, esta acción le permite tener el control para la actualización del status de pago de los aspirantes, esto con la finalidad de no depender del archivo de BANAMEX en caso de que presentaran conflictos con el mismo.

- 1. Solicite administrar los pagos admisión seleccionando la opción **Administración de pagos** del menú **??** y posteriormente la opción **Pagos Admisión** del menú **??**.
- 2. Se mostrará la pantalla 1.10 Administrar Pagos Admisión.

Mostrando registros del 1 al 10 de un total de 16 registros

Administrar Pagos Admisión 2017-2018

Cargar Archivo

B A∠

Anterior 1 2

Figura 1.9: Administrar Pagos Admisión

• 5558497628

Pago de derecho

Error	Posibles Soluciones
El sistema muestra un mensaje indicando que falta información para realizar la operación.	 Verifique que exista una convocatoria Publicada. Verifique que exista un periodo de pagos. Verifique que exista un periodo de pre-registro CENEVAL vigente.
El sistema muestra un mensaje indicando que no se ha realizado la asociación de fechas de CENEVAL y Psicométrico.	• Verifique que la Coordinación de Control Escolar haya asociado las fechas CENEVAL y Psicométrico.

1.10. Introduccion

Para que la ELD pueda mantener actualizado el status de pago de los aspirantes que realizaron la operación en sucursal bancaria, es necesario que el **Contador General** actualice de forma manual dichos pagos, esto se logra con ayuda del archivo brindado por BANAMEX, el cual servirá para ser cargado en el sistema y este lo interprete y determine si es correcto, en caso de ser correcto actualizar el estado de pago de los aspirantes que allí se encuentran, de lo contrario mostrar las inconsistencias.

Una de las operaciones que brinda el sistema, es la actualización manual del status de pago de un aspirante, esta acción le permite tener el control para la actualización del status de pago de los aspirantes, esto con la finalidad de no depender del archivo de BANAMEX en caso de que presentaran conflictos con el mismo.

- 1. Solicite administrar los pagos admisión seleccionando la opción **Administración de pagos** del menú **??** y posteriormente la opción **Pagos Admisión** del menú **??**.
- 2. Se mostrará la pantalla 1.10 Administrar Pagos Admisión.

Administrar Pagos Admisión 2017-2018

Folio ELD	 Nombre 	♦ CURP	Teléfono	Estado	Acciones
20180024	Fabiola Loredo Loredo	JALF930110MDFRRB02	• 5545673456	Evaluciones	
60180002	Juan Perez Perez	PEDL970101MJCRXX06	• 5547882013	Pago de derechos	B A ₂
60180003	Luis Lopez Chavez	PEDL970101MJCRXX01	• 4523462546	Pago de derechos	B A √
60180005	Adrian Flores Torres	FOTA951220HDFLRD07	• 5513978246 • 5513972846	Evaluciones	
60180006	Yair Lopez Rios	HORF460116HOCXXG00	• 4645653454	Pago de derechos	B A √
60180011	Raquel Martínez Bautista	MABR950513MDFRTQ07	• 5549348899	Pago de derechos	B A √
60180012	America Rendon Villa	HORF460116HOCXXG01	• 5528468745	Pago de derechos	B A √
60181008	Fabiola Jaramillo Loredo	JALF930110MDFRRB04	• 5567345623	Pago de derechos	B A ₂
60181013	Ariadna Martinez Bautista	MABR950512MDFRTQ08	• 5548962212	Pago de derechos	B A √
60183007	Luis Flores Torres	FOTA951220HDFLRD09	• 5558497628	Pago de derechos	₽A

Cargar Archivo

Figura 1.10: Administrar Pagos Admisión

Error	Posibles Soluciones
El sistema muestra un mensaje indicando que falta información para realizar la operación.	 Verifique que exista una convocatoria Publicada. Verifique que exista un periodo de pagos. Verifique que exista un periodo de pre-registro CENEVAL vigente.
El sistema muestra un mensaje indicando que no se ha realizado la asociación de fechas de CENEVAL y Psicométrico.	• Verifique que la Coordinación de Control Escolar haya asociado las fechas CENEVAL y Psicométrico.

CAPÍTULO 2

Capitulo 2

2.1. Marco Teórico

2.1.1. Big Data

El término Big Data se refiere a cantidades enormes de información, por ejemplo, la cantidad de información que se produce todos los días con el uso de una red social como Facebook, o la cantidad de datos que producen computadoras y dispositivos electrónicos que se auto monitorean mediante sensores. Esos volúmenes masivos de datos pueden ser utilizados para extraer conocimiento de ellos, y posteriormente atacar problemas que no sería posible resolver sin el Big Data.

Las 3 Vs del Big Data

Al ser el Big Data un concepto emergente y relativamente nuevo, se han tenido ciertas dificultades para definirlo de manera uniforme. Debido a las dimensiones de todo lo que conlleva entender Big Data, resultó conveniente entre los estudiosos del tema definir y acentuar las magnitudes que lo definen. Estas magnitudes se conocen como las 3 Vs del Big Data.

- 1. **Volumen:** Con Big Data, se tendrán que procesar enormes volúmenes de información. Este punto es importante ya que el crecimiento de la nececidad de almacenamiento de datos en el mundo moderno, crece de forma exponencial.
- 2. **Velocidad:** Usando Big Data, se abre la posibilidad de acceso y flujo de datos a velocidades que no se podrían conseguir de manera convencional.
- 3. Variedad: Procesamiento de datos de naturaleza heterogénea, es decir, múltiples tipos de datos.

Casos de uso del Big Data

- **Desarrollo de productos:** Compañías como Netflix y Procter & Gamble utilizan el Big Data para anticiparse a la demanda de los consumidores de sus productos. Utilizan modelos predictivos para sus nuevos productos clasificando atributos clave de sus anteriores productos modelando las relaciones entre esos atributos.
- Mantenimiento predictivo: Se pueden predecir fallas mecánicas en maquinaria que de otra forma quedarían fácilmente ignoradas. Mejorando así ampliamente la calidad y el costo del mantenimiento de dichos equipos.

- Experiencia de usuario: El uso de Big Data permite recopilar toda la información sobre el usuario y utilizarla a favor de su experiencia en un sitio o aplicación. Por ejemplo, sus búsquedas frecuentes, los sitios que visita, etc. Para de esta manera empezar a hacerle ofertas o anuncios personalizados, según sus intereses particulares.
- Machine Learning: Actualmente el machine learning es un área de mucho auge, ya que permite entrenar a las computadoras mediante conjuntos de datos de entrenamiento en lugar de programarlas. El Big Data facilita esa tarea.

2.1.2. Minería de datos

La minería de datos es el proceso de generar conocimiento a partir de un conjunto de información de gran tamaño. Para generar ese conocimiento se utilizan diferentes técnicas de análisis que detectan patrones y tendencias en la información que se está procesando. Si se intentara utilizar algún método de análisis tradicional, sería muy complicado o incluso imposible a veces encontrar patrones y tendencias útiles, ya que es muy probable que dentro de los datos existan relaciones muy complejas o simplemente la cantidad de datos sea demasiado grande.

La minería de datos puede utilizarse en escenarios como los que se enuncian a continuación:

- **Pronóstico:** Predicción de datos y eventos que vendrán a futuro a partir del comportamiento de conjuntos de datos que se tienen en el presente. Por ejemplo, predicción de ventas y tendencias de compra.
- Riesgo y probabilidad: Es un escenario muy común dentro de los negocios de Bussiness Intelligence. Por ejemplo, se llega a utilizar para encontrar puntos de equilibrio probable para escenarios de riesgo. Elección de los mejores clientes para la distribución de correo directo, determinación del punto de equilibrio probable para los escenarios de riesgo, y asignación de probabilidades a diagnósticos y otros resultados.
- Recomendaciones: Muy utilizado en sistemas como MercadoLibre o Amazon, en módulos que toman la información de búsqueda de cada usuario, la procesan y le arrojan recomendaciones de productos o servicios.
- **Búsqueda de secuencias:** Al igual que el escenario de **recomendaciones**, se utiliza mucho en sistemas de venta de artículos por internet. Se analiza el orden de los artículos que se meten a un carrito de compra para poder hacer predicciones útiles y generar conocimiento.
- **Agrupación:** Clasificación de los elementos de un conjunto de información para el posterior análisis de sus afinidades.

2.1.3. Árboles de decisión

Un árbol de decisión es un modelo de predicción que apoya al proceso de toma de decisiones. Esta herramienta tiene un campo de aplicación extremadamente amplio, pudiendo ir desde el área de finanzas hasta el área del aprendizaje de máquina. A partir de un conjunto de datos de entrada, se construyen los caminos, dentro del árbol, que llevarán a cada una de las decisiones posibles.

Los árboles de decisión están formados por los siguientes elementos:

- 1. **Nodos:** Un nodo es un punto del proceso en el que de acuerdo a ciertas condiciones o decisiones se redefine el rumbo del camino. Existen dos tipos de nodo:
 - 1.1. **Nodo de decisión:** Es un nodo en el cual se toma una decisión consciente de acuerdo a las necesidades del problema en cuestión. Estos nodos se representan con un cuadrado.
 - 1.2. **Nodo de incertidumbre:** Es un nodo en el que actúan las probabilidades y la heurística para definir el rumbo que tomará el camino que se hará dentro del árbol. Estos nodos se representan con un círculo
- 2. **Ramas:** Una rama es una de las respuestas o acciones que se toman a partir de la pregunta o escenario que se presentó en un nodo del cual salió esa rama. Una rama es el camino a otro nodo o escenario resultado de la decisión o evento que definió la rama. Este elemento se representa con una línea.

3. **Hojas:** Son escenarios finales, ya clasificados. No tienen ramificaciones, y son el resultado final de seguir un camino de decisiones, acciones y probabilidades. Este elemento se representa con un triángulo.

Figura 2.1: Representación general de un árbol de decisión

2.1.4. ID3 (Iterative Dichotomiser 3)

El algoritmo ID3 es uno de los algoritmos que utilizan árboles de decisión más populares. ID3 genera un árbol a partir de un conjunto de datos llamado **tabla de inducción**. Es útil para hacer toma de decisiones en escenarios binarios, es decir, que tienen 2 posibilidades finales.

El resultado de la ejecución de este algoritmo puede expresarse como un conjunto de reglas si-entonces.

Entropía

La entropía es la medida de la aleatoriedad. En otras palabras, la medidad e la impredictibilidad. La entropía es más alta cuando todos los eventos posibles en un escenario son igualmente probables, por ejemplo, al tirar una moneda al aire, se tiene 50 % de probabilidad de que caiga cara y 50 % de probabilidad de que caiga cruz, por lo que la entropía es de 1. Este parámetro comienca a decrecer cuando hay una probabilidad o probabilidades que parezcan aplastantes sobre las otras. Las fórmulas para calcular la entropía y la ganancia son las siguiente:

$$\operatorname{Entropia}(S) = \sum_{i=1}^n -p_i \log_2 p_i$$

Figura 2.2: Fórmula para calcular la entropía.

$$\operatorname{Gan} \operatorname{Inf}(S,A) = \operatorname{Entropia}(S) - \sum_{v \in V(A)} \frac{|Sv|}{|S|} \operatorname{Entropia}(Sv)$$

Figura 2.3: Fórmula para calcular la ganancia.

Ejemplo de ejecución del algoritmo ID3

Para ilustrar el funcionamiento del algoritmo ID3, utilizaremos la siguiente tabla de inducción que contiene información sobre factores que influyen al tomar la decisión de si un partido de tenis debería o no debería jugarse:

Necesitaremos de la 2.2 fórmula para calcular la entropía y de la 2.3 fórmula para calcular la ganancia para poder proceder con la ejecución del algoritmo.

- Primeramente se calcula la entropía. La columna de **Decisión** consta de 14 instancias e incluye dos posibles valores: **sí** y **no**. Hay 9 decisiones con la etiqueta **sí** y 5 con la etiqueta **no**. Utilizando la fórmula de la entropía, se encuentra que el resultado es de 0.940.
- Después de los 5 factores disponibles, se busca el factor más dominante para tomar la decisión. Utilizando la fórmula de la ganancia tomando como parámetros la entropía de la columna **Decisión** y **Viento**.
- El atributo de viento tiene dos posibles valores: **fuerte** y **ligero**. Y al reflejar estos dos posibles valores en la fórmula, ésta se vería más o menos así: *Ganancia(Decisión, Viento) = Entropía(Decisión) [p(Decisión, Viento = Ligero)*Entropía(Decisión, Viento = Ligero)]-[p(Decisión, Viento = Fuerte)*Entropía(Decisión, Viento = Fuerte)].*
 - Ahora se calcula (Decisión, Viento = Ligero) y (Decisión, Viento = Fuerte) respectivamente.

Dentro de la tabla de viento ligero hay 8 instancias en total, de las cuales 2 tienen la decisión final **no** y 6 tienen la decisión final **sí**. Al introducir estos datos en la 2.2 fórmula de la entropía, y obtenemos una entropía de 0.811.

Día	Aspecto	Temperatura	Humedad	Viento	Decisión
1	Soleado	Caluroso	Alta	Ligero	No
2	Soleado	Caluroso	Alta	Fuerte	No
3	Nublado	Caluroso	Alta	Ligero	Sí
4	Lluvioso	Templado	Alta	Ligero	Sí
5	Lluvioso	Fresco	Normal	Ligero	Sí
6	Lluvioso	Fresco	Normal	Fuerte	No
7	Nublado	Fresco	Normal	Fuerte	Sí
8	Soleado	Templado	Alta	Ligero	No
9	Soleado	Fresco	Normal	Ligero	Sí
10	Lluvioso	Templado	Normal	Ligero	Sí
11	Soleado	Templado	Normal	Fuerte	Sí
12	Nublado	Templado	Alta	Fuerte	Sí
13	Nublado	Caluroso	Normal	Ligero	Sí
14	Lluvioso	Templado	Alta	Fuerte	No

Cuadro 2.1: Tabla de inducción para juegos de tenis ID3.

Día	Aspecto	Temperatura	Humedad	Viento	Decisión
1	Soleado	Caluroso	Alta	Ligero	No
3	Nublado	Caluroso	Alta	Ligero	Sí
4	Lluvioso	Templado	Alta	Ligero	Sí
5	Lluvioso	Fresco	Normal	Ligero	Sí
8	Soleado	Templado	Alta	Ligero	No
9	Soleado	Fresco	Normal	Ligero	Sí
10	Lluvioso	Templado	Normal	Ligero	Sí
13	Nublado	Caluroso	Normal	Ligero	Sí

Cuadro 2.2: Tabla de para el factor de decisión Viento Ligero.

Día	Aspecto	Temperatura	Humedad	Viento	Decisión
2	Soleado	Caluroso	Alta	Fuerte	No
6	Lluvioso	Fresco	Normal	Fuerte	No
7	Nublado	Fresco	Normal	Fuerte	Sí
11	Soleado	Templado	Normal	Fuerte	Sí
12	Nublado	Templado	Alta	Fuerte	Sí
14	Lluvioso	Templado	Alta	Fuerte	No

Cuadro 2.3: Tabla de para el factor de decisión Viento Fuerte.

En la tabla de viento fuerte encontramos 6 instancias divididas en 2 partes iguales: 3 tienen la decisión final **sí** y 3 tienen la decisión final **no**. Al sustituir estos datos en la 2.2 fórmula de la entropía, obtenemos una entropía de 1.

- Ahora que tenemos esos dos valores, podemos volver a la ecuación de la ganancia. El resultado queda expresado como Ganancia(Decisión, Viento) = 0.940-[(8/14)*0.811]-[(6/14)*1] = 0.048.
- En este punto se ha concluido ya el cálculo para el factor de decisión *Viento*. Ahora se necesita hacer lo mismo para todas las demas colúmnas/factores.
 - A modo de resumen:
 - 1. Ganancia (Decisión, Aspecto) = 0.246
 - 2. Ganancia (Decisión, Temperatura) = 0.029
 - 3. Ganancia(Decisión, Humedad) = 0.151
- Como podemos ver, el factor de decisión *Aspecto* es el que produce el valor de ganancia más alto. Por tal motivo, ese factor de decisión será el nodo raíz del árbol de decisión.
 - Ahora debemos probar todos los valores posibles que tiene el factor de decisión *Aspecto*:
 - Aspecto Nublado

Día	Aspecto	Temperatura	Humedad	Viento	Decisión
3	Nublado	Caluroso	Alta	Ligero	Sí
7	Nublado	Fresco	Normal	Fuerte	Sí
12	Nublado	Templado	Alta	Fuerte	Sí
13	Nublado	Caluroso	Normal	Ligero	Sí

Cuadro 2.4: Tabla de días con aspecto nublado.

Podemos observar que siempre que el aspecto del día sea nublado, la decisión final sería sí.

Aspecto Soleado

Día	Aspecto	Temperatura	Humedad	Viento	Decisión
1	Soleado	Caluroso	Alta	Ligero	No
2	Soleado	Caluroso	Alta	Fuerte	No
8	Soleado	Templado	Alta	Ligero	No
9	Soleado	Fresco	Normal	Ligero	Sí
11	Soleado	Templado	Normal	Fuerte	Sí

Cuadro 2.5: Tabla días con aspecto soleado.

En esta tabla tenemos 5 instancias para el aspecto **soleado**. Hay 3 de esas instancias que tienen como decisión final **sí** y 2 que tienen **no**. Por lo que los valores de ganancia del factor de decisión **Aspecto Soleado** con respecto a todos los demás factores de decisión quedarán de la siguiente manera:

- 1. Ganancia(Aspecto = Soleado, Temperatura) = 0.570
- 2. Ganancia(Aspecto = Soleado, Humedad) = 0.970
- 3. Ganancia(Aspecto = Soleado, Viento) = 0.019

En este punto, la humedad es el factor de decisión con mayor ganancia cuando el aspecto del día es soleado. Por lo que debemos probar todos los valores posibles para el factor de decisión *humedad*.

Día	Aspecto	Temperatura	Humedad	Viento	Decisión
1	Soleado	Caluroso	Alta	Ligero	No
2	Soleado	Caluroso	Alta	Fuerte	No
8	Soleado	Templado	Alta	Ligero	No

Cuadro 2.6: Tabla días con aspecto soleado y humedad alta.

La decisión siempre será no cuando la humedad sea alta.

Día	Aspecto	Temperatura	Humedad	Viento	Decisión
9	Soleado	Fresco	Normal	Ligero	Sí
11	Soleado	Templado	Normal	Fuerte	Sí

Cuadro 2.7: Tabla días con aspecto soleado y humedad normal.

Por otro lado, la decisión siempre será sí cuando la humedad es normal.

De lo anterior concluimos que deberemos verificar la humedad y decidir si el aspecto del día es soleado.

Aspecto Lluvioso

Día	Aspecto	Temperatura	Humedad	Viento	Decisión
4	Lluvioso	Templado	Alta	Ligero	Sí
5	Lluvioso	Fresco	Normal	Ligero	Sí
6	Lluvioso	Fresco	Normal	Fuerte	No
10	Lluvioso	Templado	Normal	Ligero	Sí
14	Lluvioso	Templado	Alta	Fuerte	No

Cuadro 2.8: Tabla de días con aspecto *lluvioso*.

Al evaluar los valores de ganancia de los días con aspecto **lluvioso** con respecto a los demás factores de decisión, se encuentra que el factor que genera una mayor ganancia es el viento. Por lo cual se tienen que checar todos los posibles valores de ese factor de decisión.

Día	Aspecto	Temperatura	Humedad	Viento	Decisión
4	Lluvioso	Templado	Alta	Ligero	Sí
5	Lluvioso	Fresco	Normal	Ligero	Sí
10	Lluvioso	Templado	Normal	Ligero	Sí

Cuadro 2.9: Tabla de días con aspecto *lluvioso* y con viento *ligero*.

De la tabla de aspecto **lluvioso** y viento **ligero** podemos deducir que siempre que existan estas dos condiciones al mismo tiempo, la decisión final será **sí**.

Día	Aspecto	Temperatura	Humedad	Viento	Decisión
6	Lluvioso	Fresco	Normal	Fuerte	No
14	Lluvioso	Templado	Alta	Fuerte	No

Cuadro 2.10: Tabla de días con aspecto *lluvioso*.

De la tabla de aspecto **lluvioso** y viento **fuerte** podemos deducir que siempre que existan estas dos condiciones al mismo tiempo, la decisión final será **no**.

• Finalmente la construcción de este árbol de decisión es la siguiente:

Figura 2.4: Árbol de decisión resultante.

2.1.5. C4.5

El algoritmo C4.5 es la evolución del algoritmo ID3. Éste genera un árbol de decisión a partir de un conjunto de dstos de entrada de manera recursiva, al igual que su precursor. Sin embargo, aunque ID3 y C4.5 son algoritmos muy semejantes, existen ciertas diferencias:

- C4.5 permite trabajar con valores continuos, mientras que ID3 solamente trabaja con valores discretos.
- Los árboles de C4.5 son más compactos, y esto se debe a que cada nodo hoja engloba un conjunto de clases y no una sola clase particular.
 - C4.5 es más eficiente computacionalmente hablando.
- C4.5 utiliza un nuevo parámetro llamado **Gain Ratio**, en lugar de la ganancia simple. Y este a su vez requiere de la ganancia y de otro parámetro nuevo llamado **SplitInfo** cuyas fórmulas se enuncian a continuación:

$$GainRatio(A) = \frac{Gain(A)}{SplitInfo(A)}$$

Figura 2.5: Fórmula para obtener el Gain Ratio

SplitInfo_A(D) =
$$-\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{D})$$

Figura 2.6: Fórmula para obtener SplitInfo

Ejemplo de ejecución del algoritmo C4.5

Para mostrar la forma en la que se ejecuta el algoritmo C4.5 y los pasos que se deben llevar a cabo, se utilizará la siguiente tabla de inducción:

Día	Aspecto	Temperatura	Humedad	Viento	Decisión
1	Soleado	85	85	Ligero	No
2	Soleado	80	90	Fuerte	No
3	Nublado	83	78	Ligero	Sí
4	Lluvioso	70	96	Ligero	Sí
5	Lluvioso	68	80	Ligero	Sí
6	Lluvioso	65	70	Fuerte	No
7	Nublado	64	65	Fuerte	Sí
8	Soleado	72	95	Ligero	No
9	Soleado	69	70	Ligero	Sí
10	Lluvioso	75	80	Ligero	Sí
11	Soleado	75	70	Fuerte	Sí
12	Nublado	72	90	Fuerte	Sí
13	Nublado	81	75	Ligero	Sí
14	Lluvioso	80	80	Fuerte	No

Cuadro 2.11: Tabla de inducción para juegos de tenis C4.5.

- Al igual que con el ejemplo Ejemplo de ejecución del algoritmo ID3, lo primero que se hace es calcular la entropía general. Hay 15 instancias de las cuales 9 tienen una decisión final de sí y 5 tienen no. Al sustituir los valores correspondientes en la 2.2 fórmula para calcular la entropía el resultado que obtenemos es 0.940.
 - En C4.5 se utilizan Gain Ratios (radios de ganancia), mientras que en ID3 se utilizan ganancias.
 - Empezaremos por analizar el atributo de **Viento**.

Se tienen 8 instancias de viento ligero, dos de ellas concluyen en un no, y las otras 6 concluyen en sí por lo que:

- 1. Entropía (Decisión, Viento = Ligero) = 0.811
- 2. Entropía(Decisión, Viento = Fuerte) = 1
- 3. Ganancia (Decisión, Viento) = 0.049

Existen 6 instancias de viento fuerte por lo que:

- 1. SplitInfo(Decisión, Viento) = 0.985
- 2. GainRatio(Decisión, Viento) = Gain(Decisión, Viento) / SplitInfo(Decision, Viento) = 0.049
- Continuamos analizando ahora el atributo **Aspecto**.

Se tienen 5 instancias para el aspecto *soleado*, de las cuales 3 concluyen en **no** y las otras 2 concluyen en **sí**. Calculando sus valores de entropías, ganancia, SplitInfo y GainRatio:

- 1. Entropía(Decisión, Aspecto = Soleado) = 0.970
- 2. Entropía (Decisión, Aspecto = Nublado) = 0

- 3. Entropía(Decisión, Aspecto = Lluvioso) = 0.970
- 4. Ganancia(Decisión, Aspecto) = 0.246 Hay 5 instancias para *soleado*, 4 instancias para *nublado* y 5 para *lluvioso*, por lo que:
- 5. SplitInfo(Decisión, Aspecto) = 1.577
- 6. GainRatio(Decisión, Aspecto) = 0.155
- Procedemos a analizar el atributo de humedad. Cuyo caso es diferente al de los demás atributos, ya que este es un atributo continuo. Necesitamos convertir valoress continuos a valores nominales (como todos los demás atributos). C4.5 propone hacer una división binaria a partir de algún valor que podamos tomar como umbral. El umbral debe ser el valor que mayor ganancia ofrezca para ese atributo. Para esto, primero se deben ordenar las instancias de humedad de menor a mayor.

Día	Humedad	Decisión
7	65	Sí
6	70	No
9	70	Sí
11	70	Sí
13	75	Sí
3	78	Sí
5	80	Sí
10	80	Sí
14	80	No
1	85	No
2	90	No
12	90	Sí
8	95	No
4	96	Sí

Cuadro 2.12: Tabla de l atributo humedad ordenada de menor a mayor.

Ahora debemos recorrer todos los valores de humedad y separar el conjunto de datos en dos partes. Se calcularán la **Ganancia** y el **GainRatio** y el valor que maximice la ganancia será el umbral.

- 1. Se propone 65 como umbral.
 - 1.1. Entropía (Decisión, Humedad <= 65) = 0
 - 1.2. Entropía (Decisión, Humedad >65) = 0.961
 - 1.3. Ganancia (Decisión, Humedad <>65) = 0.048
 - 1.4. SplitInfo(Decisión, Humedad <>65) = 0.371
 - 1.5. GainRatio(Decisión, Humedad <>65) = 0.126
- 2. Se propone 70 como umbral.
 - 2.1. Entropía(Decisión, Humedad <= 70) = 0.811
 - 2.2. Entropía(Decisión, Humedad >70) = 0.970

- 2.3. Ganancia (Decisión, Humedad <>70) = 0.014
- 2.4. SplitInfo(Decisión, Humedad <>70) = 0.863
- 2.5. GainRatio(Decisión, Humedad <>70) = 0.016
- 3. Se propone 75 como umbral.
 - 3.1 Entropía (Decisión, Humedad ≤ 75) = 0.721
 - 3.2. Entropía(Decisión, Humedad >75) = 0.991
 - 3.3. Ganancia(Decisión, Humedad <>75) = 0.045
 - 3.4. SplitInfo(Decisión, Humedad <>75) = 0.940
 - 3.5. GainRatio(Decisión, Humedad <>75) = 0.047
- 4. Se continúa haciendo lo mismo para cada valor nuevo de humedad que se vaya encontrando en la tabla. Resumiendo:
- 5. Ganancia(Decisión, Humedad <>78) = 0.090
- 6. Ganancia(Decisión, Humedad <>80) = 0.107
- 7. Ganancia(Decisión, Humedad <>85) = 0.027
- 8. Ganancia (Decisión, Humedad <>90) = 0.016
- Como podemos ver, el valor que maximiza la ganancia es el de 80. Lo que significa que ahora se debe comparar los otros valores nominales con el valor 80 del atributo *humedad* para crear una rama en nuestro árbol. De esta forma podemos resumir los resultados en la siguiente tabla:

Atributo	Ganancia	GainRatio
Viento	0.049	0.049
Aspecto	0.246	0.155
Humedad <>80	0.101	0.107

Cuadro 2.13: Comparación de las ganancias entre atributos.

- Al igual que en el ejemplo del algoritmo ID3, el atributo **aspecto** es el nodo raíz del árbol de decisión, por lo que ahora se deben analizar todos los posibles valores que puede adquirir dicho atributo.
 - Aspecto Soleado.

Día	Aspecto	Temperatura	Humedad	Viento	Decisión
1	Soleado	85	85	Ligero	No
2	Soleado	80	90	Fuerte	No
8	Soleado	72	95	Ligero	No
9	Soleado	69	70	Ligero	Sí
11	Soleado	75	70	Fuerte	Sí

Cuadro 2.14: Tabla de inducción para el atributo Aspecto con el valor Soleado.

Ya hemos dividido la humedad a partir de su punto de umbral que es 80. Podemos observar en la siguiente tabla que la decisión final será **no**, si la humedad es mayor a 80 y el aspecto del día es soleado. La decisión final será **sí**, si

la humedad es menor o igual a 80 para un día soleado.

Día	Aspecto	Temperatura	Humedad	Viento	Decisión
3	Nublado	83	78	Ligero	Sí
7	Nublado	64	65	Fuerte	Sí
12	Nublado	72	90	Fuerte	Sí
13	Nublado	81	75	Ligero	Sí

Cuadro 2.15: Tabla de inducción para el atributo Aspecto con el valor Nublado.

Cuando el aspecto del día es **nublado**, no importa ninguna otra condición; ni temperatura, ni humedad. La decisión final siempre será **sí**.

Día	Aspecto	Temperatura	Humedad	Viento	Decisión
4	Lluvioso	70	96	Ligero	Sí
5	Lluvioso	68	80	Ligero	Sí
6	Lluvioso	65	70	Fuerte	No
10	Lluvioso	75	80	Ligero	Sí
14	Lluvioso	80	80	Fuerte	No

Cuadro 2.16: Tabla de inducción para el atributo Aspecto con el valor Lluvioso.

Cuando el aspecto es **lluvioso**, la decisión será **sí** cuando el viento es ligero, y será **no** cuando sea fuerte.

• De todo lo anterior se concluye un árbol de decisión con la siguiente estructura:

Figura 2.7: Arbol de decisión construido con C4.5.

2.1.6. Algoritmo KNN (K-Nearest Neighbor)

El algoritmo KNN es un algoritmo de aprendizaje no supervisado en el que se busca clasificar un punto en una categoría con la ayuda de un conjunto de entrenamiento.

Los pasos que sigue el algoritmo KNN se enumeran a continuación:

- 1. Se calcula la similitud entre puntos basaándose en una función de distancia.
- 2. Se encuentran los K vecinos más cercanos.

Ejemplo de ejecución del algoritmo KNN

Con base en la siguiente información que relaciona el peso, la altura y la talla de playera de personas, se hará la ejecución del algoritmo KNN.

Altura (cm)	Peso (kg)	Talla
158	58	М
158	59	M
158	63	М
160	59	M
160	60	M
163	60	M
163	61	М
160	64	L
163	64	L
165	61	L
165	62	L
165	65	L
168	62	L
168	63	L
168	66	L
170	63	L
170	64	L
170	68	L

Cuadro 2.17: Conjunto de entrenamiento para el algoritmo KNN.

Nuevo dato: Altura = 161 cm, Peso = 61 kg

• Se calcula la distancia Euclidiana entre el dato de entrada y cada uno de los datos del conjunto de entrenamiento, utilizando la siguiente fórmula.

$$d_E(P,Q) = \sqrt{(p_1-q_1)^2 + (p_2-q_2)^2 + \dots + (p_n-q_n)^2} = \sqrt{\sum_{i=1}^n (p_i-q_i)^2}.$$

Figura 2.8: Fórmula para calcular la distancia Euclidiana.

Altura (cm)	Peso (kg)	Talla	Distancia
158	58	М	4.2
158	59	М	3.6
158	63	М	3.6
160	59	М	2.2
160	60	М	1.4
163	60	М	2.2
163	61	М	2.0
160	64	L	3.2
163	64	L	3.6
165	61	L	4.0
165	62	L	4.1
165	65	L	5.7
168	62	L	7.1
168	63	L	7.3
168	66	L	8.6
170	63	L	9.2
170	64	L	9.5
170	68	L	11.4

Cuadro 2.18: Tabla del conjunto de entrenamiento con la columna Distancia ya calculada.

- Se toma la distancia más pequeña para determinar al vecino más cercano de entre todas las distancias Euclidianas calculadas previamente. Esta distancia es **1.4**.
- Se define K como el número de vecinos más cercanos que queramos conocer. Para este caso definiremos K igual a 5. Por lo que se tomarán los 5 valores más pequeños.

Altura (cm)	Peso (kg)	Talla	Distancia
160	60	М	1.4
163	61	М	2.0
163	60	М	2.2
160	59	М	2.2
160	64	L	3.2

Cuadro 2.19: Instancias de la tabla con menor distancia al nuevo dato.

2.1.7. Algoritmo K-Means

El algoritmo K-Means es un algoritmo de agrupamiento que utiliza aprendizaje no supervisado, el cual es utilizado cuando se tienen datos no etiquetados, es decir sin categorías o grupos definidos. El objetivo de este algoritmo es encontrar grupos en los datos, con el número de grupos se representa la variable K. El algoritmo arrojará como resultado final lo siguiente:

- 1. Los centroides de los K grupos.
- 2. Etiquetas para los datos de entrenamiento. Cada dato es asignado a un solo grupo.

Ejemplo de ejecución del algoritmo K-Means

Para ilustrar el funcionamiento del algoritmo K-means, se utilizará el siguiente conjunto de entrenamiento correspondiente a la puntuación de 7 individuos en 2 pruebas:

Individuo	Prueba 1	Prueba 2
1	1.0	1.0
2	1.5	2.0
3	3.0	4.0
4	5.0	7.0
5	3.5	5.0
6	4.5	5.0
7	3.5	4.5

Cuadro 2.20: Conjunto de entrenamiento para el algoritmo K-Means.

• El conjunto de datos se agrupa en dos grupos distintos. Para esto, se toman los valores de la *Prueba 1* y *Prueba 2* de los individuos que tengan estos valores más lejanos, es decir:

Grupo	Individuo	Vector (Centroide)
Grupo 1	1	(1.0, 1.0)
Grupo 2	4	(5.0, 7.0)

Cuadro 2.21: Partición inicial.

• Los individuos restantes ahora son examinados secuencialmente y son ubicados en el grupo al que son más cercanos en términos de distancia Euclidiana. El vector es recalculado cada que un nuevo miembro es agregado.

lteración	Individuo	Vector (Centroide)
1	1	(1.0, 1.0)
2	1, 2	(1.2, 1.5)
3	1, 2, 3	(1.8, 2.3)
4	1, 2, 3	(1.8, 2.3)
5	1, 2, 3	(1.8, 2.3)
6	1, 2, 3	(1.8, 2.3)

Cuadro 2.22: Tabla de individuos agregados secuencialmente al **Grupo 1**.

lteración	Individuo	Vector (Centroide)
1	4	(5.0, 7.0)
2	4	(5.0, 7.0)
3	4	(5.0, 7.0)
4	4, 5	(4.2, 6.0)
5	4, 5, 6	(4.3, 5.7)
6	4, 5, 6, 7	(4.1, 5.4)

Cuadro 2.23: Tabla de individuos agregados secuencialmente al **Grupo 2**.

• Ahora la partición inicial ha cambiado, y los dos grupos tienen las siguientes características:

Grupo	Individuo	Vector (Centroide)
Grupo 1	1, 2, 3	(1.8, 2.3)
Grupo 2	4, 5, 6, 7	(4.1, 5.4)

Cuadro 2.24: Partición inicial modificada.

• Sin embargo, no podemos asegurarnos de que esas son las clasificaciones correctas para cada dato. Así que comparamos la distancia de cada individuo a su propio grupo y al grupo opuesto:

Individuo	Distancia al Grupo 1	Distancia al Grupo 2
1	1.5	5.4
2	0.4	4.3
3	2.1	1.8
4	5.7	1.8
5	3.2	0.7
6	3.8	0.6
7	2.8	1.1

Cuadro 2.25: Cálculo de distancia de cada dato a su grupo y al opuesto.

• Solamente el individuo 3 está más cerca al centroide del grupo opuesto (Grupo 2) que de su propio grupo (Grupo 1). Por lo que el individuo 3 se reubica en el Grupo 2. Resultando la siguiente partición:

Grupo	Individuo	Vector (Centroide)
Grupo 1	1, 2	(1.8, 1.5)
Grupo 2	3, 4, 5, 6, 7	(3.9, 5.1)

Cuadro 2.26: Partición final.

- Las iteraciones continuarían hasta que ya no haya más reubicaciones.
- Es probable que el algoritmo no encuentre una solución final.

2.1.8. MapReduce

MapReduce es un paradigma de programación que permite escalabilidad masiva a través de cientos o miles de servidores en un clúster Hadoop. *MapReduce* se refiere a dos tareas distintas y separadas. La primera, *Map*, consiste en realizar mapeos. Ésta convierte un conjunto de datos en otro conjunto de datos diferente en el que los elementos individuales son separados en tuplas. La segunda, *Reduce*, toma los datos que arroja de *Map*, y combina esas tuplas en un conjunto más pequeño de tuplas. MapReduce es el corazón de Hadoop.

2.1.9. Hadoop

Es un framework de software que soporta aplicaciones distribuidas bajo una licencia libre. Permite a las aplicaciones trabajar con miles de nodos y petabytes de datos. Hadoop se inspiró en los documentos Google para MapReduce y Google File System (GFS). Hadoop utiliza su propio sistema de archivos HDFS, que divide archivos grandes y los distribuye en diferentes nodos para su procesamiento.

Características principales de Hadoop

- Procesamiento distribuido: Hadoop distribuye los datos en los diferentes nodos que formen parte de la arquitectura de clúster que estén haciendo uso de él. Pretende paalelizar tareas de procesamiento de datos.
- **Eficiencia**: Mediante la paralelización, se consigue una ganancia considerable en el tiempo de procesamiento de información.
- **Económico**: Propicia un ambiente fácilmente escalable en el que resulta sencillo añadir nodos de manera horizontal conforme se vaya requiriendo.
 - Código abierto: Es un proyecto de los llamados open source.
- Tolerancia a fallos: Utiliza replicación de datos haciendo uso de HDFS (Hadoop Distributed File System). Si un nodo falla o cae, hay nodos de respaldo que permiten mantener el ambiente en funcionamiento.

Arquitectura de Hadoop

Figura 2.9: Arquitectura básica de Hadoop.

- MapReduce: Es el módulo que permite ejecutar cómputo distribuido. Pretende la paralelización de procesos.
- HDFS (Hadoop Distributed File System:) Es el sistema de archivos distribuido que utiliza Hadoop. Éste parte los datos en fragmentos y los almacena en los nodos que conforman el clúster donde Hadoop esté ejecutándose.
 - YARN: Es el gestor de recursos de Hadoop.
 - Common Utilities: Librerías y códifo necesario para ejecutar Hadoop.

Arquitectura de un clúster Hadoop

Habitualmente, un clúster Hadoop tiene la estructura **maestro** - **esclavo**. Lo que significa que hay un nodo **maestro** que estará coordinando la ejecución de tareas y las asignará a los nodos **esclavos**.

Figura 2.10: Arquitectura de maestros y esclavos.

Distribuciones Comerciales de Hadoop

Existen varias opciones actualmente en el mercado para hacer uso de las capacidades de Hadoop, entre las cuales destacan 3 principalmente:

- **Cloudera:** Fue la primera de todas las distribuciones comerciales de Hadoop. Cuenta con una herramienta llamada Cloudera Manager que permite gestionar el clúster.
- Hortonworks: Es la distribución de Hadoop más nueva. Permite instalar el clúster mediante un cliente de virtualización.
- Microsoft Azure: Es una distribución desarrollada por Microsoft que permite tener las máquinas del clúster en la nube.

2.1.10. Apache Spark

Es un motor de análisis de datos unificado para Big Data y Machine Learning. Que se basa en Hadoop Map Reduce. Es una herramienta de código abierto que permite **dividir y ejecutar tareas de manera paralela**. Esta cualidad de Spark de poder paralelizar el trabajo se debe a que éste software en la gran mayoría de los casos es ejecutado en sistemas con arquitectura de clúster.

Características principales de Spark

• Integrado con Apache Hadoop.

- Ofrece un desempeño veloz.
- El almacenamiento de datos se administra en memoria. Se reducen mucho los tiempos de ejecución ya que hay muchas menos operaciones de lectura y escritura en disco.
 - Puede ejecutar algoritmos escritos en Java, Scala, Python y R.
 - Permite procesamiento en tiempo real.

Ventajas de usar Apache Spark

Utilizar Spark para el procesamiento de volúmenes de información de gran tamaño ofrece varios beneficios. Los principales beneficios son los siguientes:

- **Velocidad:** Gran velocidad en el procesamiento de información. Esto se debe a lo ya mencionado anteriormente sobre la gestion de datos desde memoria.
 - Potencia: Spark nos permite aprovechar el hardware de los equipos que lo estén utilizando.
- Fácil uso: A diferencia de Hadoop, que requería de un amplio conocimiento de MapReduce y de Java, Spark permite usar lenguajes de más alto nivel como Python y Scala además de Java.
- Integración SQL: Como resultado de contener el módulo Spark SQL, es posible realizar consultas en conjuntos de datos semi-estructurados utilizando lenguaje SQL.
- **Constante mejora del propio sistema:** Al ser un proyecto de código abierto, cada vez hay más personas que contribuyen a la mejora y ampliación de los alcances de Spark.
 - Escalabilidad: Spark permite que incrementar el tamaño del clúster conforme se vaya necesitando.

Componentes de Apache Spark

Podría decirse que Spark es un conjunto de módulos que nos permiten generar conocimiento usando diferentes técnicas y tecnologías.

El diagrama mostrado a continuación ilustra los principales módulos o componentes que conforman Apache Spark.

Figura 2.11: Componentes que conforman Apache Spark.

- Spark Core: Es el núcleo de Spark. Contiene librerías que se utilizan en todos los demás módulos.
- **Spark SQL:** Módulo para el procesamiento de datos estructurados y semi-estructurados. Esto se conoce como *SchemaRDD*. Este módulo hace posible el uso de lenguaje SQL para hacer consultas.
- **Spark Streaming:** Este módulo hace posible el procesamiento en tiempo real. Hace posible el flujo de gran cantidad de datos a alta velocidad.
- MLib: Este módulo contiene herramientas y algoritmos muy variados para usar de manera fácil, práctica y escalable al machine learning.
 - GraphX: Este módulo permite el procesamiento gráfico. No pinta gráficos, sino que realiza operaciones con grafos.

Capitulo 3

3.1. Descripción del prototipo

El prototipo actual busca definir el número de nodos que son necesarios para crear un ambiente de Big Data que nos permita realizar las pruebas a nuestro caso de estudio de manera satisfactoria pero que tampoco escape de las capacidades de computación con las que contamos.

Por otro lado busca definir como serán agrupados los datos que conforman el caso de estudio en los nodos que se establezcan. Para poder conocer con ello la distribución de los datos y el peso en memoria física que se le dará a cada nodo.

Se busca entonces encontrar características en común entre los datos que conforman el caso de estudio para de esta manera clasificarlos y facilitar su consulta al momento de aplicar algoritmos de minería de datos.

3.2. Análisis

3.2.1. Análisis de la red distribuida

Se pretende establecer las características que tendrá el cluster que se aplicará a la red distribuida para poder con esto, generarlo.

A continuación, se presenta el análisis de los factores que se consideran importantes para dicho objetivo:

- Se definió que es necesario realizar una replica de los datos en los nodos ya que si la información original no esta disponible, en algún espacio en el tiempo se podrá utilizar la información de respaldo que se tiene de los mismos, con lo que se lograría que los datos sean mas persistentes.
- Para poder almacenar 2 copias de la misma información la original la replica, es necesario contar con al menos 2 nodos de datos y un nodo maestro.
- El nodo maestro no puede ser considerado nodo de datos ya que este cumple otra tarea, la cual es administrar y ordenar al resto de los nodos.
- También se definió que para manejar datos de la dimensión de 21GB (tamaño de la base de datos del caso de estudio), nodos de datos de menos de 2GB de capacidad de RAM no son eficientes e incluso llegan a tener problemas con las configuraciones de memoria que se realizan mas adelante, por lo que se considera que los nodos de datos deberán trabajar con al menos 2GB de RAM.
- Para poder comunicar el cluster dentro de una red local se utilizan 2 tecnologías Spark y Hadoop además de las dependencias de estas para funcionar como son SSH y Java. Por lo que es necesario considerar el espacio que ocupa la instalación de dichas tecnologías.

3.2.2. Análisis de los datos

La base de datos que se tiene planeado utilizar como caso de estudio tiene un total de 21GB de texto plano de información de productos que se venden en tiendas departamentales en la república mexicana. Se trata de un archivo de datos de la PROFECO de uso libre el cual tiene los siguientes campos para cada producto.

```
producto, presentacion, marca, categoria, catalogo, precio, fecharegistro, cadenacomercial, giro, nombrecomercial, direccion, estado, municipio, latitud, longitud
```

El archivo contiene toda clase de productos comerciales desde alimentos, electrónica, linea blanca, papelería, etc. Cada producto viene acompañado de la información de la tienda departamental que lo comercializa, como ejemplo del contenido de dicho archivo se muestra los siguientes registros.

```
crayones | caja 12 ceras. jumbo. c.b. 201423 | crayola | material escolar | utiles escolares | 27.5 | 2011-05-18 00:00:00 | abastecedora lumen | papelerias | abastecedora lumen sucursal villa coapa | cannes no. 6 esq. canal de miramontes | distrito federal | tlalpan | 19.297 | -99.1254 |

| crayones | caja 12 ceras. tamano regular c.b. 201034 | crayola | material escolar | utiles escolares | 13.9 | 2011-05-18 00:00:00 | abastecedora lumen | papelerias | abastecedora lumen sucursal villa coapa | cannes no. 6 esq. canal de miramontes | distrito federal | tlalpan | 19.297 | -99.1254 |

| galletas populares | paquete 170 gr. marias | gamesa | galletas pastas y harinas de trigo | mercados | 6.5 | 2011-01-10 00:00:00 | walmart | tienda de autoservicio | walmart | boulevard bernardo quintana no.4113 | esquina camino a sa | queretaro | santiago de queretaro | 20.6162 | -100.398 |
```

 \mid galletas populares \mid paquete 170 gr. marias \mid gamesa \mid galletas pastas y harinas de trigo \mid mercados \mid 6.6 \mid 2011—01—10 00:00:00 \mid farmacia guadalajara \mid tienda de autoservicio \mid farmacia guadalajara sucursal 326 \mid ignacio picazo no.25 norte casi esquina allende ponien \mid tlaxcala \mid chiautempan \mid 19.3159 \mid -98.1945 \mid

Estos ejemplos que fueron tomados estratégicamente para ser analizados como se lista a continuación.

- El archivo contiene información de varios productos que se venden en la misma tienda, conservando entonces la parte de datos referente a la tienda pero cambiando la parte del producto.
- El archivo contiene información del mismo producto vendido en varias tiendas departamentales en diferentes lugares, en esta caso, la información del producto es la misma mientras que la información de la tienda departamental cambia.
- El archivo contiene productos similares que se venden en la misma tienda o bien en otras tiendas que no son precisamente iguales pero que se pueden comparar entre ellos.

Usando el análisis formulado anteriormente se puede proponer diferentes alternativas de agrupación de los datos. Las que se consideraron se listan a continuación.

- Precio del producto
- Categoría del producto
- Tienda departamental

- Zona Geográfica
- Estado de la república donde se encuentra el producto

Por otro lado se determino que el sistema de almacenamiento de datos que se va a utilizar en la red distribuida, será Hadoop, y revisando su modo de operación y de manejo de archivos en su HDFS este no permite que la forma en la que se agrupan los datos sea definida por el usuario por lo que, los datos serán distribuidos siguiendo la técnica de Hadoop.

Es mas conveniente utilizar la forma en la que Hadoop distribuye los datos debido a que no es necesario controlar el acceso a los datos de manera manual indicando donde se encuentra cada uno de ellos, sino que Hadoop se encarga de esta tarea, además de ofrecer otros beneficios como la escalabilidad, la tolerancia a fallos, replicación en tiempo real, etc.

A pesar de esto, el análisis realizado para determinar los modos de agrupamiento mas favorables no será desperdiciado pues este buscaba simplificar la operación de los algoritmos de minería de datos. y aunque no se aplique directamente sobre la distribución de los repositorios en los nodos, esta sera aplicada al momento de ejecutar los algoritmos de minería de datos.

3.3. Diseño

3.3.1. Diseño de la red distribuida

Características de la red distribuida

Las características que tiene la red distribuida se enlistan a continuación: Se diseño una red distribuida que cuenta con 4 nodos en total.

Un nodo que cumple la función de nodo maestro.

Tres nodos que son utilizados como nodos de datos/replica.

Cada nodo usará la siguiente cantidad de memoria RAM:

Nodo Maestro: 6.7 GB. Nodos Esclavos: 2 GB.

Se usa una conexión de red local para que los nodos puedan comunicarse.

Se asigno una IP estática a cada nodo para evitar problemas con la asignación dinámica de IPs mediante DHCP. Cada nodo maestro y de datos/replica estará funcionando con base en un sistema operativo Ubuntu 16.04.

Se requiere que cada nodo de datos/replica cuente con 40 GB de almacenamiento en disco duro debido a que:

Se almacenarán 21 GB de información, y 21 GB de réplica en los nodos de información y de réplica respectivamente entre los 3 nodos.

los programas que requieren tener en ejecución los nodos para funcionar correctamente, además de el sistema operativo los cuales ocupan 1.38GB de disco duro.

El espacio reservado libre para que Hadoop haga sus cambios y modificaciones de archivos en tiempo real como este lo requiera.

El espacio en disco libre que necesita el nodo para funcionar y seguir procesando datos.

Sólo los nodos de datos/replica almacenan y procesan información

El nodo maestro administra y ordena. Cada nodo funciona con Apache Spark 2.7 y Hadoop 3.1.1.

Red distribuida en la arquitectura del sistema

El diseño de la arquitectura del sistema y la red distribuida se muestran en la figura 3.1.

Como se puede observar en la arquitectura se tiene un nodo maestro y tres nodos de datos/replica conectados a través de Hadoop.

Se explicará como se busca que estos trabajen en conjunto una vez que todos los prototipos se encuentren terminados y como el diseño existente hasta este momento estará afectando dicho comportamiento.

El nodo maestro será el nodo donde el usuario experto instalará el framework para hacer uso de big data y configura

sus nodos, una vez que la instalación sea exitosa podrá ingresar sus datos, seleccionar los algoritmos que desea aplicar a los mismos y visualizará los resultados.

Mientras el usuario solicita operaciones directamente desde el nodo maestro los nodos de datos o replica se encontrarán accediendo a los datos que se encuentran alojados en cada uno de ellos y ejecutando las operaciones que se les soliciten sobre los mismos las solicitudes antes mencionadas serán hechas en su totalidad por el nodo maestro.

Posteriormente los resultados parciales obtenidos en cada uno de los nodos serán devueltos al nodo maestro para que este pueda generar el resultado final utilizando los resultados parciales de cada uno de los nodos y mostrarlo al usuario experto.

```
noot@maestro:/home/maestro
   libxcb1-dev libxdmcp-dev libxt-dev openjdk-8-jdk-headless
   openjdk-8-jre-headless x11proto-core-dev x11proto-input-dev x11proto-kb-dev
   xorg-sgml-doctools xtrans-dev
  aquetes sugeridos:
   default-jre libice-doc libsm-doc libxcb-doc libxt-doc openjdk-8-demo
   openjdk-8-source visualvm icedtea-8-plugin fonts-ipafont-gothic
 openjok-8-source visualym icediea-8-plugin fonts-ipafont-gothic fonts-ipafont-mincho fonts-wqy-microhei fonts-wqy-zenhei fonts-indic e instalarán los siguientes paquetes NUEVOS:
ca-certificates-java fonts-dejavu-extra java-common libgif7 libice-dev libpthread-stubs0-dev libsm-dev libx11-dev libx11-doc libxau-dev libxcb1-dev libxdmcp-dev libxt-dev openjdk-8-jdk openjdk-8-jdk-headless openjdk-8-jre openjdk-8-jre-headless x11proto-core-dev x11proto-input-dev x11proto-kb-dev xorg-sgml-doctools xtrans-dev
     actualizarán los siguientes paquetes:
   libx11-6
 actualizados, 22 nuevos se instalarán, 0 para eliminar y 573 no actualizados.
Se necesita descargar 40.8 MB/41.4 MB de archivos.
Se utilizarán 165 MB de espacio de disco adicional después de esta operación.
¿Desea continuar? [S/n] s
Des:1 http://mx.archive.ubuntu.com/ubuntu xenial/main amd64 java-common all 0.56
ubuntu2 [7 742 B]
Des:2 http://mx.archive.ubuntu.com/ubuntu xenial-updates/main amd64 openjdk-8-jr
e-headless amd64 8u181-b13-0ubuntu0.16.04.1 [27.0 MB]
                                                                                                                 703 kB/s 26s
       [2 openjdk-8-jre-headless 22.2 MB/27.0 MB 82%]
```

Figura 3.1: Arquitectura del sistema

3.3.2. Diseño de propuesta de agrupación de acuerdo a los nodos definidos en la red distribuida

Al usar una tecnología como Hadoop, este mismo es capaz de distribuir los datos sin que se diseñe una propuesta de agrupación por parte del programador sino que, Hadoop establece la propia.

Hadoop dentro de su arquitectura cuenta con un bloque conocido como HDFS en cual es un sistema de archivos distribuido y tolerante a fallos. Funciona sobre el conjunto de los nodos de un cluster de Hadoop, balanceando la carga de archivos entre las máquinas del cluster, de forma equitativa. Gracias a su naturaleza distribuida, proporciona alta disponibilidad y altas prestaciones que le permiten ser capaz de manejar archivos de gran tamaño.

Para realizar esta tarea es necesario proporcionarle el archivo de datos completo a HDFS e indicarle el número de copias que se harán de los datos, el archivo proporcionado será segmentado en bloques de 128 MB por parte de Hadoop como se muestra en la figura 3.2.

```
root@maestro:/home/maestro# java -version
openjdk version "1.8.0 181"
OpenJDK Runtime Environment (build 1.8.0_181-8u181-b13-0ubuntu0.16.04.1-b13)
OpenJDK 64-Bit Server VM (build 25.181-b13, mixed mode)
```

Figura 3.2: Generación de bloques de un archivo

El sistema de Hadoop ingresará cada bloque considerando este bloque como bloque de datos en algún nodo y para las réplicas ingresara nuevamente el bloque considerando este bloque como bloque de replica 1, bloque de réplica 2, bloque de réplica 3 y continua de la misma forma para la cantidad de bloques de réplica que se hayan indicado. Para cada una de las réplicas es indispensable que no sean asignadas en el mismo nodo que el bloque de datos o alguna otra réplica. No tiene sentido realizar más o igual número de réplicas que de nodos, debido a que las réplicas se realizan para garantizar el acceso a los bloques en todo momento, y si el bloque es accesible en un nodo y la réplica se encuentra en el mismo nunca sería utilizada.

Para ejemplificar la explicación anterior se mostrará la distribución que haría Hadoop para un sistema de 3 nodos con una réplica en la imagen 3.3.

Figura 3.3: Generación de bloques de un archivo

Por lo que podemos ver que en caso de que alguno de los nodos deje de responder en los otros 2 nodos tenemos acceso a todos los datos, ya sea en el bloque de datos o en el bloque de réplica, hecho que no ocurriría en caso de que 2 nodos dejen de responder, el cual se solventa realizando 2 réplicas de los datos.

En tiempo de ejecución, para realizar su trabajo Hadoop siempre toma en cuenta primeramente los bloques de datos y en caso de no encontrarlos procede a hacer uso de las réplicas generadas de los mismos.

En el servidor maestro se guarda una información conocida como NameNode que permite conocer dónde se encuentran cada uno de los bloques y sus réplicas, lo que facilita sean encontradas dentro del cluster.

Con lo que podemos concluir que si bien no diseñamos la propuesta de agrupación de los datos comprendemos cómo es que esta funciona.

3.4. Desarrollo

Para que la red distribuida se encuentre en funcionamiento se siguió el Manual de Instalación de Luminus en sus secciones

- 1 Instalación de Apache Spark en el nodo
- 1.1. Instalación de la paquetería de java
- 1.2. Instalación de la paquetería de SSH
- 1.2.1. Configuración
- 1.2.2. Conexión
- 1.3. Instalación de Spark
 - 1.3.1. Configuración maestro
- 2. Instalación de Apache Spark en los nodos de datos
- 2.1. Instalación de la paquetería de java en los nodos de datos
- 2.2. Instalación de la paquetería de SSH en los nodos de datos
- 2.3. Instalación de Spark en los nodos de datos
 - 2.3.1. Configuración
- 3. Puesta en funcionamiento
- 3.1. Configuraciones para poner en funcionamiento Apache Spark en la red distribuida

Las cuales nos permitirán instalar Apache Spark para permitir la conexión entre los nodos de datos/replica y el maestro haciendo uso de una red de internet local en la que se encuentren conectados todos los nodos. Además de contener todas las configuraciones necesarias para tal objetivo.

3.5. Pruebas

Para verificar que la instalación y configuración que se realizo al servidor Apache Spark es correcta sera necesario aplicar un algoritmo de prueba.

Un algoritmo de prueba muy común es sparkPi el cual calcula el valor del número pi utilizando todos los nodos de la red distribuida.

Esto nos permitirá comprobar que existe conectividad dentro de la red y que se pueden realizar calculos con ella. El comando a ejecutar es el siguiente

MASTER=spark://[IP del nodo maestro]:7077 run-example SparkPi como se puede apreciar en la siguiente imagen

```
root@maestro:/home/maestro# MASTER=spark://192.168.1.88:7077 run-example SparkPiUsing Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
18/10/16 17:59:23 INFO SparkContext: Running Spark version 2.1.0
18/10/16 17:59:24 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
18/10/16 17:59:24 INFO SecurityManager: Changing view acls to: root
18/10/16 17:59:24 INFO SecurityManager: Changing woify acls to: root
18/10/16 17:59:24 INFO SecurityManager: Changing wiew acls groups to:
18/10/16 17:59:24 INFO SecurityManager: Changing modify acls groups to:
18/10/16 17:59:24 INFO SecurityManager: SecurityManager: authentication disabled; ui acl s disabled; users with view permissions: Set(root); groups with view permissions: Set(); users with modify permissions: Set(root); groups with modify permissions: Set()
18/10/16 17:59:25 INFO Utils: Successfully started service 'sparkDriver' on port 46871.
18/10/16 17:59:25 INFO SparkEnv: Registering MapOutputTracker
18/10/16 17:59:25 INFO SparkEnv: Registering BlockManagerMaster
18/10/16 17:59:25 INFO BlockManagerMasterEndpoint: Using org.apache.spark.storage.Defaul
tTopologyMapper for getting topology information
18/10/16 17:59:25 INFO BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up
18/10/16 17:59:25 INFO BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up
18/10/16 17:59:25 INFO SparkEnv: Registering OutputCommitCoordinator
```

Figura 3.4: Ejecución de algoritmo SparkPi

cuando este termine podremos ver el resultado del valor de PI en la consola

```
po bytes)
18/10/16 18:31:19 INFO TaskSetManager: Starting task 1.0 in stage 0.0 (TID 1, 192.168.1.88, executor 0, partition 1, PROCESS_LOCAL, 60 18/10/16 18:31:10 INFO BlockManagerMasterEndpoint: Registering block manager 192.168.1.88:41081 with 366.3 MB RAM, BlockManagerId(0, 1 22.168.1.88, 41081, None)
18/10/16 18:31:10 INFO BlockManagerInfo: Added broadcast_0_plece0 in memory on 192.168.1.88:41081 (size: 1172.0 B, free: 366.3 MB)
18/10/16 18:31:11 INFO BlockManagerInfo: Added broadcast_0_plece0 in memory on 192.168.1.98:41081 (size: 1172.0 B, free: 366.3 MB)
18/10/16 18:31:11 INFO BlockManagerInfo: Added broadcast_0_plece0 in memory on 192.168.1.98:41081 (size: 1172.0 B, free: 366.3 MB)
18/10/16 18:31:11 INFO BlockManagerInfo: Added broadcast_0_plece0 in memory on 192.168.1.98:44087 with 413.9 MB RAM, BlockManagerId(2, 1 22.168.1.99)
18/10/16 18:31:11 INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 1661 in so on 192.168.1.88 (executor 0) (1/2)
18/10/16 18:31:11 INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 1661 in so on 192.168.1.88 (executor 0) (1/2)
18/10/16 18:31:11 INFO TaskSetManager: Finished task 1.0 in stage 0.0 (TID 0) in 1661 in 18.18 (executor 0) (2/2)
18/10/16 18:31:11 INFO TaskSetManager: Finished task 1.0 in stage 0.0 (TID 0) in 1486 ms on 192.168.1.88 (executor 0) (2/2)
18/10/16 18:31:11 INFO TaskSetManager: Finished task 1.0 in stage 0.0 (TID 0) in 1486 ms on 192.168.1.88 (executor 0) (2/2)
18/10/16 18:31:11 INFO DAGScheduler: ResultStage 0 (reduce at SparkPL.scala:38) finished in 3.398 s
18/10/16 18:31:11 INFO SparkUI: Stopped Spark web UI at http://192.168.1.88:4040
18/10/16 18:31:11 INFO SparkUI: Stopped Spark web UI at http://192.168.1.88:4040
18/10/16 18:31:11 INFO GoarseGrainedSchedulerBackendSCFIverEndpoint: Saking each executor to shut down
18/10/16 18:31:11 INFO BackManager: BlockManager stopped
18/10/16 18:31:11 INFO BlockManager: BlockManager stopped
18/10/16 18:31:11 INFO SparkUI: Stopped Spark web UI at http://doc.datorefinator/finator/finator/fina
```

Figura 3.5: Valor de Pl

cabe destacar que debido a que el valor es calculado en tiempo real con los recursos que se tiene en el cluster el valor puede variar cada ejecución pero sera muy aproximado al valor real del número.

Ahora, si accedemos a la interfaz web de Spark podremos ver que un trabajo ha sido completado dentro del cluster,

antes de esta ejecución no se mostraba nada dentro de esta sección.

Figura 3.6: Aplicación completada en Apache Spark

En caso de entrar a los detalles de la misma podremos observar que todos los trabajadores participaron en dicha aplicación y que se encuentran en el estado muerto debido a que la aplicación a finalizado su ejecución. así como también podemos visualizar los archivos de registro que generaron durante la ejecución de esta aplicación, entre otros detalles, otro punto importante es que también se puede consultar para cada uno de los nodos su participación

Figura 3.7: Detalles de la ejecución de la aplicación Spark Pi

en la ejecución de esta aplicación como se muestra en la figura 3.8 para el caso del nodo maestro

Figura 3.8: Detalles de la ejecución de la aplicación Spark Pi en un nodo

Con lo que podemos concluir:

- El cluster funciona correctamente
- Existe comunicación entre los nodos
- Los nodos de datos/replica son capaces de identificar al nodo maestro y recibir instrucciones de el
- El nodo maestro es capaz de comunicar trabajos a los nodos de datos/replica y de interpretar los resultados de sus trabajos de manera satisfactoria

Por lo tanto, el prototipo uno concluye de manera exitosa

CAPÍTULO 4

Capitulo 4

4.1. Instalación de la paquetería de java

Primeramente será necesario instalar el open-jdk de java en el sistema, esto con el objetivo de permitir la ejecución de los algoritmos de minería de datos que serán ejecutados por el map reduce haciendo uso de java. Para realizar esta tarea realizaremos lo siguiente: Acceder a la terminal GNU con privilegios de root e ingresar el siguiente comando.

1.

root@maestro:~# apt-get install openjdk-8-jdk openjdk-8-jre

```
libxcb1-dev libxdmcp-dev libxt-dev openjdk-8-jdk-headless openjdk-8-jre-headless x11proto-core-dev x11proto-input-dev x11proto-kb-dev xorg-sgml-doctools xtrans-dev

Paquetes sugeridos:
    default-jre libice-doc libsm-doc libxcb-doc libxt-doc openjdk-8-demo openjdk-8-source visualvm icedtea-8-plugin fonts-ipafont-gothic fonts-ipafont-mincho fonts-wqy-microhei fonts-wqy-zenhei fonts-indic

Se instalarán los siguientes paquetes NUEVOS:
    ca-certificates-java fonts-dejavu-extra java-common libgif7 libice-dev libxthread-stubs0-dev libxm-dev libx11-dev libx11-doc libxau-dev libxcb1-dev libxdmcp-dev libxt-dev openjdk-8-jdk openjdk-8-jdk-headless openjdk-8-jre openjdk-8-jre-headless x11proto-core-dev x11proto-input-dev x11proto-kb-dev xorg-sgml-doctools xtrans-dev

Se actualizarán los siguientes paquetes:
    libx11-6

1 actualizados, 22 nuevos se instalarán, 0 para eliminar y 573 no actualizados. Se necesita descargar 40.8 MB/41.4 MB de archivos.

Se utilizarán 165 MB de espacio de disco adicional después de esta operación. ¿Desea continuar? [S/n] s

Des:1 http://mx.archive.ubuntu.com/ubuntu xenial/main amd64 java-common all 0.56 ubuntu2 [7 742 B]

Des:2 http://mx.archive.ubuntu.com/ubuntu xenial-updates/main amd64 openjdk-8-jr e-headless amd64 8u181-b13-0ubuntu0.16.04.1 [27.0 MB]

46% [2 openjdk-8-jre-headless 22.2 MB/27.0 MB 82%]

703 kB/s 26s
```

Figura 4.1: Instalación de java en el nodo maestro

Este programa ocupara 165MB de espacio de disco y nos pedirá que confirmemos su instalación a lo que se contestará

2. 'S' para que proceda con la instalación. Una vez que esta termine se podrá consultar la versión de java en el sistema con el comando

root@maestro:~# java -version

```
root@maestro:/home/maestro# java -version
openjdk version "1.8.0_181"
OpenJDK Runtime Environment (build 1.8.0_181-8u181-b13-0ubuntu0.16.04.1-b13)
OpenJDK 64-Bit Server VM (bu<u>i</u>ld 25.181-b13, mixed mode)
```

Figura 4.2: Versión de java

		_				
$C\Lambda$	D	ΙT	ш	1	\cap	רי
-			U.	┖		\sim

Capitulo 5

5.1. Instalador del ambiente de análisis de datos

Uno de los objetivos de este trabajo terminal permitir al usuario empezar a hacer uso de Big Data de una manera más sencilla y sin demasiadas complicaciones. Por lo que se comenzó el desarrollo de un instalador que simplifique el proceso de puesta en marcha del ambiente de análisis de datos.

Si bien, el instalador, en este punto del trabajo terminal se encuentra en una fase aún experimental, logra el cometido de simplificar el proceso de puesta en marcha. Esto puede verse reflejado al comparar el número de pasos que se enuncian en el manual de instalación de Luminus, contra el número de pasos que se siguen al utilizar el instalador.

La manera en que el instalador simplifica el proceso de instalación es automatizando algunas tareas que de otra forma el usuario tendría que realizar una a una.

5.1.1. Diagrama de flujo

Figura 5.1: Diagrama de flujo de los pasos básicos que sigue el instalador.