2. Übungsblatt

Aufgabe 5

a)

$$\sum_{n=0}^{\infty} \frac{n^2}{1+n^3} (x-1)^n$$

Der 0. Koeffizient a_0 ist 0, daher kann der Index verschoben werden:

$$\sum_{n=1}^{\infty} \frac{n^2}{1+n^3} (x-1)^n = \sum_{n=1}^{\infty} \frac{1}{\frac{1}{n^2}+n} (x-1)^n < \sum_{n=1}^{\infty} \frac{(x-1)^n}{n}$$

Die Reihe $\sum_{n=1}^{\infty} \frac{1}{n}$ besitzt den Konvergenzradius 1, sodass wir jetzt nur noch die Randpunkte bestimmen müssen (diese sind um $x_0 = 1$ nach oben verschoben):

- Für x=0: $\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \Rightarrow$ alternierende Nullfolge, konv. nach Leibnizkriterium
- Für x = 2: $\sum_{n=1}^{\infty} \frac{1}{n} \Rightarrow$ divergiert

Damit konvergiert die Potenzreihe für $x \in [0, 2)$

b)

$$\sum_{n=0}^{\infty} \frac{n! 2^{2n}}{(2n)!} (x-1)^n$$

da alle Koeffizienten $\neq 0$ sind, kann die Formel $r=\frac{1}{\lim_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}}$ benutzt werden:

$$r = \frac{1}{c} \text{ mit } c = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$$

$$= \lim_{n \to \infty} \frac{(n+1)! \ 2^{2n+2}}{(2n+2)!} \frac{(2n)!}{n! \ 2^{2n}}$$

$$= \lim_{n \to \infty} \frac{4(n+1)}{(2n+2)(2n+1)}$$

$$= \lim_{n \to \infty} \frac{2}{2n+1} = 2$$

$$\Rightarrow r = \frac{1}{2}$$

Die Konvergenz an den Randpunkten folgt aus dem Quotientenkriterium (aufgrund der Betragsstriche ist dabei die Betrachtung von $x = x_0 - 0.5$ mit der von $x = x_0 + 0.5$ identisch.

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{(n+1)! \ 2^{2n+2} \ (\pm 0.5)^{n+1}}{(2n+2)!} \frac{2n!}{n! * 2^{2n} * (\pm 0.5)^{n+1}} \right| \stackrel{!}{<} 1$$

$$= \left| \frac{(n+1) * 4 * (\pm 0.5)}{(2n+2)(2n+1)} \right|$$

$$= \left| \frac{\pm 2}{2 * (2n+1)} \right| = \frac{1}{2n+1} < 1 \quad \text{für } n \in \mathbb{N}$$

Durch die Konvergenz and den Rändern des Intervalls besitzt die Reihe das Konvergenzintervall

$$x \in \left[\frac{1}{2}, \frac{3}{2}\right].$$

c)
$$\sum_{n=0}^{\infty} n^2 2^n \left(x + \frac{1}{4} \right)^n$$

Die Berechnungsformel für den Konvergenzradius:

$$\begin{split} r &= \frac{1}{c} \text{ mit } c = \limsup_{n \to \infty} \sqrt[n]{|a_n|} \\ &= \limsup_{n \to \infty} \sqrt[n]{n^2 2^n} \\ &= \limsup_{n \to \infty} 2\sqrt[n]{n^2} \\ &= \limsup_{n \to \infty} 2\left(\sqrt[n]{n}\right)^2 = 2 \\ \Rightarrow r &= \frac{1}{2}, \quad x_0 = -\frac{1}{4} \end{split}$$

Für die Randpunkte:

- $x = -\frac{1}{2} + x_0 = -\frac{3}{4}$: $\sum_{n=0}^{\infty} n^2 2^n \left(-\frac{1}{2}\right)^n = \sum_{n=0}^{\infty} n^2 (-1)^n \Rightarrow$ keine Nullfolge, somit divergiert die Reihe bei $x = -\frac{3}{4}$
- $x = \frac{1}{2} + x_0 = \frac{1}{4}$: $\sum_{n=0}^{\infty} n^2 2^n \left(\frac{1}{4} + \frac{1}{4}\right)^n = \sum_{n=0}^{\infty} n^2 2^n \left(\frac{1}{2}\right)^n = \sum_{n=0}^{\infty} n^2 \Rightarrow$ keine Nullfolge, die Reihe divergiert bei $x = \frac{1}{4}$

Die Reihe Konvergiert also für $x \in \left(-\frac{3}{4}, \frac{1}{4}\right)$

Aufgabe 6

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = (1+x)e^x$$

Für eine Funktion der Form $(a+x)e^x$ folgt die Ableitung aus der Produktregel:

$$\frac{d}{dx}((a+x)e^x) = (a+x) * \frac{d}{dx}e^x + \left(\frac{d}{dx}(a+x)\right)e^x = (a+x)e^x + 1 * e^x = (a+1+x)e^x$$

Die n-te Ableitung von f lautet demnach:

$$f^{(n)}(x) = (1 + n + x)e^x$$

Am Entwicklungspunkt $x_0 = -1$ lautet diese:

$$f^{(n)}(-1) = n * e^{-1} = \frac{n}{e}$$

Aus den Ableitungen folgt die Taylorreihe:

$$T_{\infty}(x;-1) = \sum_{i=0}^{\infty} \frac{f^{(i)}(-1)}{i!} * (x+1)^{i} = \sum_{i=0}^{\infty} \frac{i}{e*i!} * (x+1)^{i}$$

Die Koeffizienten a_n des Taylorpolynoms sind für n > 0 positiv, da der Funktionswert am Entwicklungspunkt 0 ist, kann das 0. Taylorpolynom vernachlässigt werden. Der Konvergenzradius folgt dann:

$$r = \frac{1}{c} \text{ mit } c = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$$

$$= \lim_{n \to \infty} \frac{n+1}{e * (n+1)!} * \frac{e * n!}{n}$$

$$= \lim_{n \to \infty} \frac{(n+1) * n!}{(n+1)! n}$$

$$= \lim_{n \to \infty} \frac{1}{n} = 0$$

$$\Rightarrow r = \frac{1}{c} = \infty$$

Da der Konvergenzradius gegen ∞ geht, stellt es die Funktion f auf ganz $\mathbb R$ dar.