Reporting process

mja@statgroup.dk 2016-02-02

Contents

Introduction	1
Setup	2
Get the process description	2
Reporting process from "Using Define.xml Metadata to Ensure End-to-End Submission Integrity", slide 15	2
rstepshape	4
Grid for "Diagram of the SW Initiatives"	5
How to make the HTML file	8

Introduction

This note shows how to use RDF to describe the reporting process, and present it graphically.

The reporting processes are taken from:

- Brega, John, and Colins, Linda. 'Beyond OpenCDISC: Using Define.xml Metadata to Ensure Endto-End Submission Integrity.' Gilead offices, Foster City, CA, 2015. (http://www.pharmasug.org/download/sde/sf2015/PharmaSUG_SF2015SDE_07_Brega_Collins.pdf)
- Williams, Tim. 'Diagram of the SW Initiatives?' CS Working Group: End to End Connectivity, 7 April 2015. https://phuse.teamworkpm.net/notebooks/48268.

The graphical presentation is made using the R-package DiagrammeR (https://github.com/rich-iannone/DiagrammeR). The R-package uses mermaid a javascript blibrary (https://github.com/knsv/mermaid), described as in the credits as > Many thanks to the d3 (http://d3js.org/) and dagre-d3 (https://github.com/cpettitt/dagre-d3) projects for providing the graphical layout and drawing libraries! > Thanks also to the js-sequence-diagram (http://bramp.github.io/js-sequence-diagrams) project for usage of the grammar for the sequence diagrams.

It may be nescessary to install the latest version of R-package DiagrammeR from GitHub

devtools::install_github('rich-iannone/DiagrammeR')

This is under development

mja@statgroup.dk 16-jan-2015.

Setup

```
devtools::load_all(pkg="../..")
```

Loading rrdfqbcrndex

```
library("DiagrammeR")
library(rrdf)

pretty.print.rq<- function(rqstring) {
    ## print sparql query with line numbers - use full for finding errors
    ## when using knitr in Rmd files use highlight instead

rqlines<- unlist(strsplit(rqstring,"\n"))
cat(paste( format(seq(rqlines),format="f",digits=floor(log10(length(rqlines)+1))), rqlines, sep=": ", c
}</pre>
```

Get the process description

The process description is converted into RDF. Please comment - this is my first attempt to model a process in RDF. It is done from scratch - I am aware of there are more sophiscated ways to do it, and would appreciate learning more on that approach.

```
modelTTLFile<- system.file("extdata/sample-rdf", "clinical-data-process-model.ttl", package="rrdfqbcrnd
model<- load.rdf(modelTTLFile,"TURTLE")
# identify the prefixes in the turtle file
# The prefixes are part of the RRDF model, but I do not know how to extract it from the model.
ttlfile<- readLines(modelTTLFile)
prefix.text<- gsub("@prefix ([^:]+:) +([^>]+>) *\\. *$", "PREFIX \\1 \\2", ttlfile[grep("^@prefix .+$",
```

Reporting process from "Using Define.xml Metadata to Ensure End-to-End Submission Integrity", slide 15

The process steps with labels and shapes are stored in a data frame.

```
RP.names.rq<- paste0( paste0(prefix.text, collapse="\n"), "
select ?rstep ?rsteplabel ?rstepshape
where {
    ?rstep a repr:PR .
    optional { ?rstep rdfs:label ?rsteplabel }
    optional { ?rstep repr:DisplayShape ?rstepshape }
    .
    }
order by ?rstep
", collapse="\n" )
pretty.print.rq(RP.names.rq)</pre>
```

```
## 1: PREFIX rdf: <a href="http://www.w3.org/1999/02/22-rdf-syntax-ns">http://www.w3.org/1999/02/22-rdf-syntax-ns</a>
## 2: PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
## 3: PREFIX cswg: <http://www.example.org/phuse/wg#>
## 4: PREFIX repr: <a href="http://www.example.org/phuse/reportingprocess#">http://www.example.org/phuse/reportingprocess#>
## 5: select ?rstep ?rsteplabel ?rstepshape
## 6: where {
## 7:
             ?rstep a repr:PR .
             optional { ?rstep rdfs:label ?rsteplabel }
## 8:
## 9:
             optional { ?rstep repr:DisplayShape ?rstepshape }
## 10:
## 11:
             }
## 12: order by ?rstep
```

RP.names<- data.frame(sparql.rdf(model, RP.names.rq),stringsAsFactors=FALSE)
knitr::kable(RP.names)</pre>

rstep	rsteplabel	rstepshape
repr:r01	SDTM Datasets	Magnetic Disk
repr:r02	Create Analysis Datasets	Alternate Process
repr:r03	ADaM Datasets	Magnetic Disk
repr:r04	Analysis Programs	Alternate Process
repr:r05	Tables, Listings, Graphs	Multidocuments
repr:r06	Dataset specs	Multidocuments
repr:r07	Codelist specs	Multidocuments
repr:r08	Report specs	Multidocuments
repr:r09	Prepare submission data & docs	Alternate Process
repr:r10	Selected code	Multidocuments
repr:r11	Submission.xpt	Magnetic Disk
repr:r12	Define.xml	Multidocuments
repr:r13	Data Guide	Multidocuments

For later use, get an overview of the shapes used for reporing.

```
RP.shapes.rq<- paste0( paste0(prefix.text, collapse="\n"), "
select distinct ?rstepshape
where {
    ?rstep a repr:PR;
        repr:DisplayShape ?rstepshape
    .
    }
", collapse="\n" )
pretty.print.rq(RP.shapes.rq)</pre>
```

```
## 1: PREFIX rdf: <a href="http://www.w3.org/1999/02/22-rdf-syntax-ns">
## 2: PREFIX rdfs: <a href="http://www.w3.org/2000/01/rdf-schema">
## 3: PREFIX cswg: <a href="http://www.example.org/phuse/wg">http://www.example.org/phuse/wg">
## 4: PREFIX repr: <a href="http://www.example.org/phuse/reportingprocess">http://www.example.org/phuse/reportingprocess">http://www.example.org/phuse/reportingprocess</a>
## 5: select distinct ?rstepshape
## 6: where {
## 7: ?rstep a repr:PR;
```

```
## 8: repr:DisplayShape ?rstepshape
## 9: .
## 10: }
```

```
RP.shapes<- data.frame(sparql.rdf(model, RP.shapes.rq),stringsAsFactors=FALSE)
knitr::kable(RP.shapes)</pre>
```

rstepshape

Multidocuments Magnetic Disk Alternate Process

Now get the links between the steps.

RP.feedsto<- data.frame(sparql.rdf(model, RP.feedsto.rq),stringsAsFactors=FALSE)
knitr::kable(RP.feedsto)</pre>

rstepfrom	rstepto
repr:r09	repr:r12
repr:r07	repr:r04
repr:r02	repr:r03
repr:r04	$\scriptstyle \operatorname{repr:r05}$
repr:r09	repr:r11
repr:r08	repr:r04
repr:r09	$\operatorname{repr:r} 10$
repr:r08	$\scriptstyle \operatorname{repr:r09}$
repr:r06	$\scriptstyle \operatorname{repr:r09}$
repr:r07	$\scriptstyle \operatorname{repr:r09}$
repr:r01	$\operatorname{repr:r02}$
repr:r03	repr:r04
repr:r06	$\operatorname{repr:r02}$
repr:r09	repr:r13

Finally, generate the mermaid commands for showing the process.

```
mermaid.commands<- paste(</pre>
           "graph TB",
           paste( RP.names$rstep,"(", RP.names$rsteplabel, ")", sep="", collapse=" \n" ),
          paste( RP.feedsto$rstepfrom, "-->", RP.feedsto$rstepto, sep="", collapse=" \n" )
          sep=" \n", collapse=" \n")
cat(mermaid.commands,"\n")
## graph TB
## repr:r01(SDTM Datasets)
## repr:r02(Create Analysis Datasets)
## repr:r03(ADaM Datasets)
## repr:r04(Analysis Programs)
## repr:r05(Tables, Listings, Graphs)
## repr:r06(Dataset specs)
## repr:r07(Codelist specs)
## repr:r08(Report specs)
## repr:r09(Prepare submission data & docs)
## repr:r10(Selected code)
## repr:r11(Submission.xpt)
## repr:r12(Define.xml)
## repr:r13(Data Guide)
## repr:r09-->repr:r12
## repr:r07-->repr:r04
## repr:r02-->repr:r03
## repr:r04-->repr:r05
## repr:r09-->repr:r11
## repr:r08-->repr:r04
## repr:r09-->repr:r10
## repr:r08-->repr:r09
## repr:r06-->repr:r09
## repr:r07-->repr:r09
## repr:r01-->repr:r02
```

Then display the graph.

##

repr:r03-->repr:r04 ## repr:r06-->repr:r02 ## repr:r09-->repr:r13

```
DiagrammeR( mermaid.commands )
```

Grid for "Diagram of the SW Initiatives"

The ordering of the rows and columns in the grid is described in the turtle file by a collection. The Jena extension list:index is used to get the position in the collection. See (http://stackoverflow.com/questions/17523804/is-it-possible-to-get-the-position-of-an-element-in-an-rdf-collection-in-sparql/17530689#17530689).

```
wg.names.rq<- pasteO( pasteO(prefix.text, collapse="\n"), "</pre>
PREFIX list: <a href="http://jena.hpl.hp.com/ARQ/list#">http://jena.hpl.hp.com/ARQ/list#>
select ?wg ?wglabel ?wgdisplayorder
 where {
            ?wg a cswg:WG ;
           cswg:CSWGCollection cswg:DisplayOrder ?lswg .
 order by ?wgdisplayorder
 ", collapse="\n")
pretty.print.rq(wg.names.rq)
 ## 1: PREFIX rdf: <a href="http://www.w3.org/1999/02/22-rdf-syntax-ns">http://www.w3.org/1999/02/22-rdf-syntax-ns</a>
 ## 2: PREFIX rdfs: <a href="http://www.w3.org/2000/01/rdf-schema">
 ## 3: PREFIX cswg: <a href="http://www.example.org/phuse/wg#>">" a: PREFIX cswg: <a href="http://www.example.org/phuse/wg#>">" a: PREFIX cswg: <a href="http://www.example.org/phuse/wg#>">" a: PREFIX cswg: <a href="http://www.example.org/phuse/wg#">" a: Prefix cswg: <a href="ht
 ## 4: PREFIX repr: <a href="http://www.example.org/phuse/reportingprocess">http://www.example.org/phuse/reportingprocess</a>
 ## 5: PREFIX list: <http://jena.hpl.hp.com/ARQ/list#>
 ## 6: select ?wg ?wglabel ?wgdisplayorder
 ## 7: where {
 ## 8:
                               ?wg a cswg:WG ;
 ## 9:
                              rdfs:label ?wglabel .
 ## 10:
                               optional{
                               cswg:CSWGCollection cswg:DisplayOrder ?lswg .
 ## 11:
 ## 12:
                               ?lswg list:index (?wgdisplayorder ?wg)
 ## 13:
                               }
 ## 14:
 ## 15: order by ?wgdisplayorder
wg.names<- data.frame(sparql.rdf(model, wg.names.rq),stringsAsFactors=FALSE)
lc.names.rq<- paste0( paste0(prefix.text, collapse="\n"), "</pre>
PREFIX list: <a href="http://jena.hpl.hp.com/ARQ/list#">http://jena.hpl.hp.com/ARQ/list#>
where {
            ?lc a cswg:DaLi ;
           optional{
                            ?lslc list:index (?lcdisplayorder ?lc)
 order by ?lcdisplayorder
  ", collapse="\n")
pretty.print.rq(lc.names.rq)
 ## 1: PREFIX rdf: <a href="http://www.w3.org/1999/02/22-rdf-syntax-ns">http://www.w3.org/1999/02/22-rdf-syntax-ns</a>
 ## 2: PREFIX rdfs: <a href="http://www.w3.org/2000/01/rdf-schema">
```

```
## 3: PREFIX cswg: <a href="http://www.example.org/phuse/wg">
## 4: PREFIX repr: <a href="http://www.example.org/phuse/reportingprocess">http://www.example.org/phuse/reportingprocess</a>
## 5: PREFIX list: <http://jena.hpl.hp.com/ARQ/list#>
## 6: select ?lc ?lclabel ?lcdisplayorder
## 7: where {
## 8:
            ?lc a cswg:DaLi ;
## 9:
                 rdfs:label ?lclabel .
## 10:
            optional{
## 11:
                   cswg:LifeCycleCollection cswg:DisplayOrder ?lslc .
## 12:
                   ?lslc list:index (?lcdisplayorder ?lc)
## 13:
            }
## 14:
## 15: order by ?lcdisplayorder
lc.names<- data.frame(sparql.rdf(model, lc.names.rq),stringsAsFactors=FALSE)</pre>
str(lc.names$lcdisplayorder)
```

```
## chr [1:9] "0" "1" "2" "3" "4" "5" "6" "7" "8"
```

```
## 1: PREFIX rdf: <a href="http://www.w3.org/1999/02/22-rdf-syntax-ns">
## 2: PREFIX rdfs: <a href="http://www.w3.org/2000/01/rdf-schema">
## 3: PREFIX cswg: <a href="http://www.example.org/phuse/wg">http://www.example.org/phuse/wg">http://www.example.org/phuse/wg">http://www.example.org/phuse/reportingprocess">
## 5: PREFIX list: <a href="http://jena.hpl.hp.com/ARQ/list">http://jena.hpl.hp.com/ARQ/list">http://jena.hpl.hp.com/ARQ/list">http://jena.hpl.hp.com/ARQ/list">http://jena.hpl.hp.com/ARQ/list">http://jena.hpl.hp.com/ARQ/list">http://jena.hpl.hp.com/ARQ/list">http://jena.hpl.hp.com/ARQ/list">http://jena.hpl.hp.com/ARQ/list">http://jena.hpl.hp.com/ARQ/list">http://jena.hpl.hp.com/ARQ/list">http://jena.hpl.hp.com/ARQ/list">http://jena.hpl.hp.com/ARQ/list">http://jena.hpl.hp.com/ARQ/list">http://jena.hpl.hp.com/ARQ/list">http://jena.hpl.hp.com/ARQ/list">http://jena.hpl.hp.com/ARQ/list">http://jena.hpl.hp.com/ARQ/list">http://jena.hpl.hp.com/ARQ/list">http://jena.hpl.hp.com/ARQ/list">http://jena.hpl.hp.com/ARQ/list">http://jena.hpl.hp.com/ARQ/list">http://jena.hpl.hp.com/ARQ/list">http://jena.hpl.hp.com/ARQ/list">http://jena.hpl.hp.com/ARQ/list">http://jena.hpl.hp.com/ARQ/list</a>
```

```
## 8: { select ?wg ?wglabel ?wgdisplayorder where {
                                                         ?wg a cswg:WG;
## 9:
           rdfs:label ?wglabel .
## 10:
           optional{
           cswg:CSWGCollection cswg:DisplayOrder ?lswg .
## 11:
## 12:
           ?lswg list:index (?wgdisplayorder ?wg)
## 13:
## 14:
           } }
## 15: { select ?lc ?lclabel ?lcdisplayorder where {
## 16:
           ?lc a cswg:DaLi ;
               rdfs:label ?lclabel .
## 17:
## 18:
           optional{
                 cswg:LifeCycleCollection cswg:DisplayOrder ?lslc .
## 19:
                 ?lslc list:index (?lcdisplayorder ?lc)
## 20:
## 21:
                 }
## 22:
## 23: }
## 24: bind( if( exists { ?wg cswg:RelatesTo ?lc }, '*', ' ') AS ?cell )
## 26: order by ?wgdisplayorder ?lcdisplayorder
```

Finally, create a grid and fill in the values into the grid

	Clinical Development Plan	Study Protocol	Study Design	Collect
Study Data Standardization Plan	*			
Clinical Program Design in RDF	*	*		
Study Design and Protocol in RDF	*	*	*	
Best Practices for Data Standards Implementation				*
SEND Implementation User Group				*
CDISC Foundational Standards in RDF				*
Application of SEND for Data Analysis				
Analysis Results & Metadata				
Standard Scripts for Analysis Programming				
SDRG & ADRG				
Non-Clinical SDRG				
Data Standards and Traceability	*	*	*	*

How to make the HTML file

```
rmarkdown::render("reporting-process.Rmd")
```