SI231 Matrix Computations Lecture 4: Orthogonalization and QR Decomposition

Ziping Zhao

Fall Term 2020-2021

School of Information Science and Technology ShanghaiTech University, Shanghai, China

Lecture 4: Orthogonalization and QR Decomposition

- QR decomposition
- Solving LS via QR decomposition
- Gram-Schmidt QR
- Householder QR
- Givens QR
- Solving Underdetermined Linear Systems via QR decomposition

Summary

QR decomposition/factorization: Any $\mathbf{A} \in \mathbb{R}^{m \times n}$ admits a decomposition

$$\mathbf{A} = \mathbf{Q}\mathbf{R},$$

where $\mathbf{Q} \in \mathbb{R}^{m \times m}$ is orthogonal, $\mathbf{R} \in \mathbb{R}^{m \times n}$ takes an upper triangular form. (\mathbf{Q}, \mathbf{R}) is called a QR factor of \mathbf{A} . (see Theorem 5.2.1 in [Golub-Van Loan'13])

- efficient to compute
 - done algorithmically by either Gram-Schmidt, Householder reflections, or Givens rotations
- can be used to compute (thread for most of the algorithms in matrix computations)
 - a basis for $\mathcal{R}(\mathbf{A})$ or for $\mathcal{R}(\mathbf{A})^{\perp}$;
 - LS solutions;
 - linear systems (not the standard method).
- a building block for the QR algorithm—a popular numerical method for solving the eigenvalue problem (all eigenvalues) (cf. Lecture 5) and computing SVD
- for complex $\mathbf{A} \in \mathbb{C}^{m \times n}$, $\mathbf{Q} \in \mathbb{C}^{m \times m}$ is unitary

Thin QR Decomposition for Tall or Square A

• for $\mathbf{A} \in \mathbb{R}^{m \times n}$ with $m \geq n$,

$$\mathbf{A} = \mathbf{Q}\mathbf{R} = egin{bmatrix} \mathbf{Q}_1 & \mathbf{Q}_2 \end{bmatrix} egin{bmatrix} \mathbf{R}_1 \ \mathbf{0} \end{bmatrix} = \mathbf{Q}_1\mathbf{R}_1,$$

where $\mathbf{Q}_1 \in \mathbb{R}^{m \times n}$, $\mathbf{Q}_2 \in \mathbb{R}^{m \times (m-n)}$, $\mathbf{R}_1 \in \mathbb{R}^{n \times n}$ which is upper triangular

- the decomposition $\mathbf{A} = \mathbf{Q}_1 \mathbf{R}_1$ is called the thin $\mathbf{Q}\mathbf{R}$ (reduced/economic $\mathbf{Q}\mathbf{R}$) decomposition of \mathbf{A} ; ($\mathbf{Q}_1, \mathbf{R}_1$) is called a thin $\mathbf{Q}\mathbf{R}$ factor of \mathbf{A}
- in contrast, the QR in the previous page is also called full QR decomposition
- properties under thin QR and $m \ge n$:
 - A has full column rank if and only if $r_{ii} \neq 0$ for all i;
 - if A has full column rank (Quiz),

$$\mathcal{R}(\mathbf{A}) = \mathcal{R}(\mathbf{Q}_1), \qquad \mathcal{R}(\mathbf{A})^{\perp} = \mathcal{R}(\mathbf{Q}_2)$$

see Theorem 5.2.2 in [Golub-Van Loan'13]

QR Decomposition for Full Column-Rank Matrices

Theorem 4.1. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ be a full column-rank matrix. Then \mathbf{A} admits a decomposition

$$\mathbf{A} = \mathbf{Q}_1 \mathbf{R}_1,$$

where $\mathbf{Q}_1 \in \mathbb{R}^{m \times n}$ is semi-orthogonal; $\mathbf{R}_1 \in \mathbb{R}^{n \times n}$ is upper triangular. If we restrict $r_{ii} > 0$ for all i, then $(\mathbf{Q}_1, \mathbf{R}_1)$ is unique.

• Proof:

- 1. let $C = A^T A$, which is PD if A has full column rank
- 2. since C is PD, it admits the Cholesky decomposition $C = R_1^T R_1$
- 3. \mathbf{R}_1 , as the upper triangular Cholesky factor, is unique (cf. Theorem 2.3)
- 4. let $\mathbf{Q}_1 = \mathbf{A}\mathbf{R}_1^{-1}$. It can be verified that $\mathbf{Q}_1^T\mathbf{Q}_1 = \mathbf{I}, \mathbf{Q}_1\mathbf{R}_1 = \mathbf{A}$
- see Theorem 5.2.3 in [Golub-Van Loan'13]
- Remark: the proof above reveals that thin QR may be computed via Cholesky decomposition, but this is not what we usually do in practice

Solving (Well-determined) Linear Systems via QR

Problem: compute the solution to

$$Ax = y$$

with nonsingular $\mathbf{A} \in \mathbb{R}^{n \times n}$

ullet if ${f A}={f Q}{f R}$ is a QR factorization, we have ${f Q}{f R}{f x}={f y}$ or

$$\mathbf{R}\mathbf{x} = \mathbf{Q}^T\mathbf{y}$$

- Solution (computational):
 - 1. factorize **A** as $\mathbf{A} = \mathbf{Q}\mathbf{R}$, $\mathcal{O}(2n^3)$ (to be shown next)
 - 2. compute $\mathbf{z} = \mathbf{Q}^T \mathbf{y}$, $\mathcal{O}(2n^2)$
 - 3. solve $\mathbf{R}\mathbf{x} = \mathbf{z}$ via backward substitution, $\mathcal{O}(n^2)$
- more expensive than Gauss elimination and LU decompositions, and hence not the standard method (to be shown next...)

Solving LS via QR

Problem: compute the solution to

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2,$$

with A being of full column rank

- this is to solve an well-determined or overdetermined linear system
- observe $(\|\mathbf{Q}^T\mathbf{z}\|_2 = \|\mathbf{z}\|_2)$

$$\begin{aligned} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} &= \|\mathbf{Q}^{T}\mathbf{y} - \mathbf{Q}^{T}\mathbf{A}\mathbf{x}\|_{2}^{2} = \|\mathbf{Q}^{T}\mathbf{y} - \mathbf{R}\mathbf{x}\|_{2}^{2} \\ &= \left\| \begin{bmatrix} \mathbf{Q}_{1}^{T}\mathbf{y} \\ \mathbf{Q}_{2}^{T}\mathbf{y} \end{bmatrix} - \begin{bmatrix} \mathbf{R}_{1}\mathbf{x} \\ \mathbf{0} \end{bmatrix} \right\|_{2}^{2} = \|\mathbf{Q}_{1}^{T}\mathbf{y} - \mathbf{R}_{1}\mathbf{x}\|_{2}^{2} + \|\mathbf{Q}_{2}^{T}\mathbf{y}\|_{2}^{2} \end{aligned}$$

- ullet it reduces to solve $\mathbf{R}_1\mathbf{x} = \mathbf{Q}_1^T\mathbf{y}$
- Solution (computational):
 - 1. compute the thin QR factor $(\mathbf{Q}_1, \mathbf{R}_1)$ of \mathbf{A} ;
 - 2. compute $\mathbf{z} = \mathbf{Q}_1^T \mathbf{y}$
 - 3. solve $\mathbf{R}_1\mathbf{x} = \mathbf{z}$ via backward substitution.

Recall the Gram-Schmidt (GS) orthogonalization procedure in Lecture 1:

Algorithm: Gram-Schmidt orthogonalization

input: a collection of linearly independent vectors $\mathbf{a}_1, \dots, \mathbf{a}_n$

$$\begin{aligned}
\tilde{\mathbf{q}}_1 &= \mathbf{a}_1, \ \mathbf{q}_1 &= \tilde{\mathbf{q}}_1 / \|\tilde{\mathbf{q}}_1\|_2 \\
\text{for } i &= 2, \dots, n \\
\tilde{\mathbf{q}}_i &= \mathbf{a}_i - \sum_{j=1}^{i-1} (\mathbf{q}_j^T \mathbf{a}_i) \mathbf{q}_j \\
\mathbf{q}_i &= \tilde{\mathbf{q}}_i / \|\tilde{\mathbf{q}}_i\|_2
\end{aligned}$$

end

output: q_1, \ldots, q_n

- let $r_{ii} = \|\tilde{\mathbf{q}}_i\|_2$, $r_{ji} = \mathbf{q}_j^T \mathbf{a}_i$ for $j = 1, \dots, i-1$
- ullet we see that ${f a}_i = \sum_{j=1}^i r_{ji} {f q}_i$ for all i, or, equivalently,

$$\underbrace{\begin{bmatrix} \mathbf{a}_1 \ \mathbf{a}_2 \ \dots \ \mathbf{a}_n \end{bmatrix}}_{=\mathbf{A}} = \underbrace{\begin{bmatrix} \mathbf{q}_1 \ \mathbf{q}_2 \ \dots \ \mathbf{q}_n \end{bmatrix}}_{=\mathbf{Q}_1} \underbrace{\begin{bmatrix} r_{11} & r_{12} & \cdots & r_{1n} \\ & r_{22} & \cdots & r_{2n} \\ & & & \vdots \\ & & & r_{nn} \end{bmatrix}}_{=\mathbf{R}_1}$$

i.e.,

$$\mathbf{A} = \mathbf{Q}_1 \mathbf{R}_1$$

where $\mathbf{Q}_1 = [\ \mathbf{q}_1, \dots, \mathbf{q}_n\]$; \mathbf{R}_1 is upper triangular with $[\mathbf{R}_1]_{ji} = r_{ji}$ for $j \leq i$

Algorithm: (classical) Gram-Schmidt iteration for thin QR input: full column-rank \mathbf{A} $\mathbf{Q}_1 = \mathbf{0}, \ \mathbf{R}_1 = \mathbf{0}$ $\mathbf{z} = \mathbf{A}(:,1), \ \mathbf{R}_1(1,1) = \|\mathbf{z}\|_2, \ \mathbf{Q}_1(:,1) = \mathbf{z}/\mathbf{R}_1(1,1)$ for $i=2,\ldots,n$ $\mathbf{R}_1(1:i-1,i) = \mathbf{Q}_1(:,1:i-1)^T\mathbf{A}(:,i)$ % (2m-1)i flops $\mathbf{z} = \mathbf{A}(:,i) - \mathbf{Q}_1(:,1:i-1)\mathbf{R}_1(1:i-1,i)$ % (2i-1)m+m flops $\mathbf{R}_1(i,i) = \|\mathbf{z}\|_2$ % 2m flops $\mathbf{Q}_1(:,i) = \mathbf{z}/\mathbf{R}_1(i,i)$ % m flops end output: \mathbf{Q}_1 and \mathbf{R}_1

- ullet complexity of Gram-Schmidt iteration: $\mathcal{O}(mn^2)$ $(\sum_{i=2}^n (4m-1)i \sim 2mn^2)$
- ullet in the ith iteration, the ith columns of both ${f Q}$ and ${f R}$ are generated
- what if A is not full column-rank?
 - i.e., $\mathbf{a}_1,...,\mathbf{a}_n$ are linear dependent, and we can find $\mathbf{z}=\mathbf{0}$ for some i, which means \mathbf{a}_i is linearly dependent on $\mathbf{a}_1,...,\mathbf{a}_{j-1}$

```
Algorithm: general (classic) Gram-Schmidt iteration for thin QR
input: A
Q_1 = 0, R_1 = 0
z = A(:,1),
if \mathbf{z} 
eq \mathbf{0}
       \mathbf{R}_1(1,1) = \|\mathbf{z}\|_2, \ \mathbf{Q}_1(:,1) = \mathbf{z}/\mathbf{R}_1(1,1)
else
       \mathbf{R}_1(1,1) = 0, \ \mathbf{Q}_1(:,1) = \mathbf{0}
end
for i = 2, \ldots, n
       \mathbf{R}_1(1:i-1,i) = \mathbf{Q}_1(:,1:i-1)^T \mathbf{A}(:,i)
       z = A(:,i) - Q_1(:,1:i-1)R_1(1:i-1,i)
       if \mathbf{z} 
eq \mathbf{0}
               \mathbf{R}_1(i,i) = \|\mathbf{z}\|_2, \mathbf{Q}_1(:,i) = \mathbf{z}/\mathbf{R}_1(i,i)
       else
              \mathbf{R}_1(i,i) = 0, \ \mathbf{Q}_1(:,i) = \mathbf{0}
       end
end
replace the 0-columns in \mathbf{Q}_1 to make it form a basis of \mathbb{R}^m
output: \mathbf{Q}_1 and \mathbf{R}_1
```

- GS is numerically unstable due to computer rounding errors
 - say, what if z is close to 0?
- there are several variants with the Gram-Schmidt procedure

Modfied Gram-Schmidt for Thin QR

- ullet GS can lead to nonorthogonal ${f q}_i$'s
- ullet denote the ith row of \mathbf{R}_1 as $\widetilde{\mathbf{r}}_i^T$, then we define the matrix $\mathbf{A}_{(:,i:n)}^{(i)} \in \mathbb{R}^{m \times (n-i+1)}$

$$\left[\mathbf{0} \mid \mathbf{A}_{(:,i:n)}^{(i)}
ight] = \mathbf{A} - \sum_{k=1}^{i-1} \mathbf{q}_k ilde{\mathbf{r}}_k^T = \sum_{k=i}^n \mathbf{q}_k ilde{\mathbf{r}}_k^T$$

or

$$\begin{bmatrix} \mathbf{0} \mid \mathbf{a}_i^{(i)} & \dots & \mathbf{a}_n^{(i)} \end{bmatrix} = \begin{bmatrix} \mathbf{0} \mid \mathbf{q}_i & \dots & \mathbf{q}_n \end{bmatrix} \begin{bmatrix} & r_{ii} & \dots & r_{in} \ & \ddots & \vdots \ & r_{nn} \end{bmatrix}$$

- it follows if $\mathbf{z} = \mathbf{a}_i^{(i)}$ then $r_{ii} = \|\mathbf{z}\|_2$, $\mathbf{q}_i = \mathbf{z}/r_{ii}$, and $[\tilde{\mathbf{r}}_i^T]_{(i+1:n)} = [r_{i,i+1},\ldots,r_{i,n}] = \mathbf{q}_i^T[\mathbf{a}_{i+1}^{(i)},\ldots,\mathbf{a}_n^{(i)}]$
- ullet we can compute $\mathbf{A}_{(:,i+1:n)}^{(i+1)}=[\mathbf{A}^{(i)}]_{(:,i+1:n)}-\mathbf{q}_i[ilde{\mathbf{r}}_i^T]_{(i+1:n)}$

Modfied Gram-Schmidt for Thin QR

the modfied Gram-Schmidt (MGS) iteratiom is

- complexity of modified Gram-Schmidt: $\mathcal{O}(mn^2)$
- ullet in the ith iteration, the ith column of ${f Q}$ and the ith row of ${f R}$ are generated
- GS and MGS tell us how we may compute the thin QR, but not the full QR

A Second Look on GS and MGS via Orthogonal Projections

in classic GS, we have

$$ilde{\mathbf{q}}_i = \mathbf{a}_i - \sum_{j=1}^{i-1} (\mathbf{q}_j^T \mathbf{a}_i) \mathbf{q}_j = \mathbf{a}_i - \mathbf{q}_1 \mathbf{q}_1^T \mathbf{a}_i - \mathbf{q}_2 \mathbf{q}_2^T \mathbf{a}_i - \ldots - \mathbf{q}_{i-1} \mathbf{q}_{i-1}^T \mathbf{a}_i$$

observe that

$$\tilde{\mathbf{q}}_i = (\mathbf{I} - \mathbf{q}_1 \mathbf{q}_1^T - \mathbf{q}_2 \mathbf{q}_2^T - \dots - \mathbf{q}_{i-1} \mathbf{q}_{i-1}^T) \mathbf{a}_i$$

$$= (\mathbf{I} - \mathbf{q}_{i-1} \mathbf{q}_{i-1}^T) \dots (\mathbf{I} - \mathbf{q}_2 \mathbf{q}_2^T) (\mathbf{I} - \mathbf{q}_1 \mathbf{q}_1^T) \mathbf{a}_i$$

defining $\mathbf{a}_i^{(1)} = \mathbf{a}_i$ and

$$\mathbf{a}_i^{(k)} = (\mathbf{I} - \mathbf{q}_{k-1} \mathbf{q}_{k-1}^T) \mathbf{a}_i^{(k-1)}$$

with $k \leq i$, we have $\tilde{\mathbf{q}}_i = \mathbf{a}_i^{(i)}$

- in fact this is the update step in MGS
- we have rearrangement of the calculation in contrast to GS

Gram-Schmidt as Triangular Orthogonalization

• GS iteration is a process of "triangular orthogonalization" - making the columns of a matrix orthogonal via a sequence of matrix operations that can be interpretated as multiplications on the right by upper-triangular matrices

$$\underbrace{\begin{bmatrix} \cdots \mathbf{q}_{i-1} \ \mathbf{a}_{i}^{(i)} \ \cdots \mathbf{a}_{n}^{(i)} \end{bmatrix}}_{=\mathbf{A}^{(i)}} \underbrace{\begin{bmatrix} \cdots & & & \\ & 1 & & \\ & & \frac{1}{r_{ii}} & \cdots & \frac{-r_{in}}{r_{ii}} \\ & & 1 & \\ & & & \ddots \end{bmatrix}}_{=\mathbf{\tilde{R}}_{1}^{(i)}} = \underbrace{\begin{bmatrix} \cdots \mathbf{q}_{i} \ \mathbf{a}_{i+1}^{(i+1)} \ \cdots \ \mathbf{a}_{n}^{(i+1)} \end{bmatrix}}_{=\mathbf{A}^{(i+1)}}$$

and hence

$$\mathbf{A}\tilde{\mathbf{R}}_1^{(1)}\tilde{\mathbf{R}}_1^{(2)}\cdots\tilde{\mathbf{R}}_1^{(n)}=\mathbf{Q}_1$$

where $\tilde{\mathbf{R}}_1^{(1)} \tilde{\mathbf{R}}_1^{(2)} \cdots \tilde{\mathbf{R}}_1^{(n)} = \mathbf{R}_1^{-1}$

- ullet in practice, we do not form these $ilde{\mathbf{R}}_1^{(i)}$'s, it just helps to get insight in to the structure of GS
- the above procedure looks similar to the Gauss eliminiation as well as LU decomposition in which case is a "triangular triangularization" procedure

Reflection Matrices

• a matrix $\mathbf{H} \in \mathbb{R}^{m \times m}$ is called a reflection matrix if

$$\mathbf{H} = \mathbf{I} - 2\mathbf{P}$$

where \mathbf{P} is an orthogonal projector.

ullet interpretation: denote ${f P}^{\perp}={f I}-{f P}$, and observe

$$\mathbf{x} = \mathbf{P}\mathbf{x} + \mathbf{P}^{\perp}\mathbf{x}, \qquad \mathbf{H}\mathbf{x} = -\mathbf{P}\mathbf{x} + \mathbf{P}^{\perp}\mathbf{x}.$$

The vector $\mathbf{H}\mathbf{x}$ is a reflected version of \mathbf{x} , with $\mathcal{R}(\mathbf{P}^{\perp})$ being the "mirror"

a reflection matrix is orthogonal:

$$\mathbf{H}^{T}\mathbf{H} = (\mathbf{I} - 2\mathbf{P})(\mathbf{I} - 2\mathbf{P}) = \mathbf{I} - 4\mathbf{P} + 4\mathbf{P}^{2} = \mathbf{I} - 4\mathbf{P} + 4\mathbf{P} = \mathbf{I}$$

Householder Reflections

ullet Problem: given $\mathbf{x} \in \mathbb{R}^m$, find an orthogonal $\mathbf{H} \in \mathbb{R}^{m \times m}$ such that

$$\mathbf{H}\mathbf{x} = egin{bmatrix} eta \ \mathbf{0} \end{bmatrix} = eta \mathbf{e}_1, \qquad ext{for some } eta \in \mathbb{R}.$$

• Householder reflection/transformation: let $\mathbf{v} \in \mathbb{R}^m$ (Householder vector), $\mathbf{v} \neq \mathbf{0}$. Let

$$\mathbf{H} = \mathbf{I} - \frac{2}{\|\mathbf{v}\|_2^2} \mathbf{v} \mathbf{v}^T,$$

which is a reflection matrix with $\mathbf{P} = \mathbf{v}\mathbf{v}^T/\|\mathbf{v}\|_2^2$

• it can be verified that (try)

$$\mathbf{v} = \mathbf{x} \mp \|\mathbf{x}\|_2 \mathbf{e}_1 \implies \mathbf{H} \mathbf{x} = \pm \|\mathbf{x}\|_2 \mathbf{e}_1;$$

the sign above may be determined to be the one that maximizes $\|\mathbf{v}\|_2$, for the sake of numerical stability

Householder QR

• let $\mathbf{H}_1 \in \mathbb{R}^{m \times m}$ be the Householder reflection w.r.t. \mathbf{a}_1 . Transform $\mathbf{A} \in \mathbb{R}^{m \times n}$ as

$$\mathbf{A}^{(1)} = \mathbf{H}_1 \mathbf{A} = \begin{bmatrix} \times & \times & \dots & \times \\ 0 & \times & \dots & \times \\ \vdots & \vdots & & \vdots \\ 0 & \times & \dots & \times \end{bmatrix}$$

• let $\tilde{\mathbf{H}}_2 \in \mathbb{R}^{(m-1)\times (m-1)}$ be the Householder reflection w.r.t. $\mathbf{A}_{2:m,2}^{(1)}$ (marked red above). Transform $\mathbf{A}^{(1)}$ as

$$\mathbf{A}^{(2)} = \underbrace{\begin{bmatrix} 1 & \mathbf{0} \\ \mathbf{0} & \tilde{\mathbf{H}}_2 \end{bmatrix}}_{=\mathbf{H}_2} \mathbf{A}^{(1)} = \begin{bmatrix} \times & \times & \dots \times \\ \mathbf{0} & \tilde{\mathbf{H}}_2 \mathbf{A}^{(1)}_{2:m,2:n} \end{bmatrix} = \begin{bmatrix} \times & \times & \times & \dots \times \\ 0 & \times & \times & \dots \times \\ \vdots & 0 & \times & \dots \times \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \times & \dots \times \end{bmatrix}$$

ullet by repeatedly applying the trick above, we can transform ${f A}$ as the desired ${f R}$

Householder QR

• assume $m \ge n$, without loss of generality (why?)

$$\mathbf{A}^{(0)}=\mathbf{A}$$
 for $k=1,\dots,n$ $\mathbf{A}^{(k)}=\mathbf{H}_k\mathbf{A}^{(k-1)}$, where

$$\mathbf{H}_k = egin{bmatrix} \mathbf{I}_{k-1} & \mathbf{0} \ \mathbf{0} & ilde{\mathbf{H}}_k \end{bmatrix},$$

 \mathbf{I}_k is the k imes k identity matrix; $\tilde{\mathbf{H}}_k$ is the Householder reflection of $\mathbf{A}_{k:m,k}^{(k-1)}$ end

• the above procedure results in

 $\mathbf{A}^{(n)} = \mathbf{H}_n \cdots \mathbf{H}_2 \mathbf{H}_1 \mathbf{A}, \quad \mathbf{A}^{(n)}$ taking an upper triangular form

- letting $\mathbf{R} = \mathbf{A}^{(n)}$, $\mathbf{Q} = (\mathbf{H}_n \cdots \mathbf{H}_2 \mathbf{H}_1)^T = \mathbf{H}_1 \mathbf{H}_2 \cdots \mathbf{H}_n$, we obtain the full QR
- the Householder QR procedure is a process of "orthogonal triangularization"
- a popularly used method for QR (used as "qr" in MATLAB and Julia)

Householder QR

$$\mathbf{A}^{(0)}=\mathbf{A}$$
 for $k=1,\dots,n$
$$\mathbf{A}^{(k)}=\mathbf{H}_k\mathbf{A}^{(k-1)}$$
 , where

$$\mathbf{H}_k = egin{bmatrix} \mathbf{I}_{k-1} & \mathbf{0} \ \mathbf{0} & \widetilde{\mathbf{H}}_k \end{bmatrix},$$

 \mathbf{I}_k is the k imes k identity matrix; $\tilde{\mathbf{H}}_k$ is the Householder reflection of $\mathbf{A}_{k:m,k}^{(k-1)}$ end

- the complexity (for $m \ge n$):
 - $\mathcal{O}(2n^2(m-n/3))$ for \mathbf{R} only
 - * a direct implementation of the above Householder pseudo-code does not lead us to this complexity; structures of \mathbf{H}_k are exploited in the implementations to lead to this complexity (cf. matrix computation tricks in Lecture 1)
 - $\mathcal{O}(4(m^2n-mn^2+n^3/3))$ if \mathbf{Q} is also wanted

Givens Rotations

• Example: Let

$$\mathbf{J} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix}$$

where $c = \cos(\theta), s = \sin(\theta)$ for some θ . Consider $\mathbf{y} = \mathbf{J}\mathbf{x}$:

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} cx_1 + sx_2 \\ -sx_1 + cx_2 \end{bmatrix}.$$

It can be verified that

- **J** is orthogonal;
- $y_2 = 0$ if $\theta = \tan^{-1}(x_2/x_1)$, or equivalently if

$$c = \frac{x_1}{\sqrt{x_1^2 + x_2^2}}, \quad s = \frac{x_2}{\sqrt{x_1^2 + x_2^2}}.$$

Givens Rotations

• Givens rotations:

$$\mathbf{J}(i,k, heta) = egin{bmatrix} i & k \ \downarrow & \downarrow \ c & s \ & \mathbf{I} \ & -s & c \ & & \mathbf{I} \end{bmatrix} \leftarrow i$$

where $c = \cos(\theta)$, $s = \sin(\theta)$.

- $\mathbf{J}(i, k, \theta)$ is orthogonal
- let $\mathbf{y} = \mathbf{J}(i, k, \theta)\mathbf{x}$. It holds that

$$y_j = \begin{cases} cx_i + sx_k, & j = i \\ -sx_i + cx_k, & j = k \\ x_j, & j \neq i, k \end{cases}$$

- y_k is forced to zero if we choose $\theta = \tan^{-1}(x_k/x_i)$.

Givens QR

 \bullet Example: consider a 4×3 matrix. Givens QR (from top to bottom) can be

Givens QR

or (from bottom to top)

where $\mathbf{B} \xrightarrow{\mathbf{J}} \mathbf{C}$ means $\mathbf{B} = \mathbf{JC}$; $\mathbf{J}_{i,k}^{(j)} = \mathbf{J}^{(j)}(i,k,\theta)$, with θ chosen to zero out the (k,j)th entry of the matrix transformed by $\mathbf{J}_{i,k}^{(j)}$.

Givens QR

• Givens QR: assume $m \ge n$. Perform a sequence of Givens rotations to annihilate the lower triangular parts of $\mathbf A$ to obtain $\mathbf R$, say

$$\underbrace{(\mathbf{J}_{n,m}^{(n)} \dots \mathbf{J}_{n,n+2}^{(n)} \mathbf{J}_{n,n+1}^{(n)}) \dots (\mathbf{J}_{2m}^{(2)} \dots \mathbf{J}_{24}^{(2)} \mathbf{J}_{23}^{(2)}) (\mathbf{J}_{1m}^{(1)} \dots \mathbf{J}_{13}^{(1)} \mathbf{J}_{12}^{(1)})}_{=\mathbf{Q}^T} \mathbf{A} = \mathbf{R}$$

where ${f R}$ takes the upper triangular form, and ${f Q}$ is orthogonal.

- the Givens QR procedure is a process of "orthogonal triangularization"
- complexity (for $m \ge n$): $\mathcal{O}(3n^2(m-n/3))$ for \mathbf{R} only
- ullet not as efficient as Householder QR for general (and dense) ${f A}$'s
 - the flop count for Householder QR is $2n^2(m-n/3)$ (for ${\bf R}$ and for $m\geq n$)
 - the flop count for Givens QR is $3n^2(m-n/3)$
- ullet can be faster than Householder QR if ${f A}$ has certain sparse structures and we exploit them

Method of Normal Equations vs. QR for LS

- In terms of complexity, method of normal equations only needs half of the arithmetic compared to QR decompostion when $m \gg n$.
- Method of normal equations can be easy for implementation, however, it is not recommended due to its numerical instability.
 - By forming the product A^TA , we square the condition number of A. (cf. Lecture 7)
- Thus, using the QR decomposition yields a better least-squares estimate than the normal equations in terms of solution quality.

Solving Underdetermined Systems by QR

For $\mathbf{A} \in \mathbb{R}^{m \times n}$ with m < n and $\operatorname{rank}(\mathbf{A}) = m$, we have

$$\mathbf{A}^T = \mathbf{Q}\mathbf{R} = egin{bmatrix} \mathbf{Q}_1 & \mathbf{Q}_2 \end{bmatrix} egin{bmatrix} \mathbf{R}_1 \ \mathbf{0} \end{bmatrix} = \mathbf{Q}_1\mathbf{R}_1 + \mathbf{Q}_2\mathbf{0}$$

note

$$\mathbf{A}\mathbf{x} = \mathbf{R}_1^T \mathbf{Q}_1^T \mathbf{x} + \mathbf{0}^T \mathbf{Q}_2^T \mathbf{x} = \mathbf{b}$$

which indicates

$$\mathbf{Q}_1^T \mathbf{x} = \mathbf{R}_1^{-T} \mathbf{b}$$

and $\mathbf{Q}_2^T \mathbf{x}$ can be anything, which we set to be \mathbf{d} . Then we have

$$\begin{bmatrix} \mathbf{Q}_1^T \mathbf{x} \\ \mathbf{Q}_2^T \mathbf{x} \end{bmatrix} = \mathbf{Q}^T \mathbf{x} = \begin{bmatrix} \mathbf{R}_1^{-T} \mathbf{b} \\ \mathbf{d} \end{bmatrix}$$

• the solution is

$$\mathbf{x} = \mathbf{Q} egin{bmatrix} \mathbf{R}_1^{-T} \mathbf{b} \ \mathbf{d} \end{bmatrix} = \mathbf{Q}_1 \mathbf{R}_1^{-T} \mathbf{b} + \mathbf{Q}_2 \mathbf{d}$$

where to get the minimum norm solution, we can set d = 0.

Other Contents on QR

- QR with column pivoting (cf. Section 5.4.2 in [Golub-Van Loan'13])
- QR algorithm for computing eigenvalues (cf. Lecture 5)

References

[Golub-Van Loan'13] G. H. Golub and C. F. Van Loan, *Matrix Computations*, 4th edition, JHU Press, 2013.