

Fondamenti di Automatica

Unità 2 Calcolo del movimento di sistemi dinamici LTI

Calcolo del movimento di sistemi dinamici LTI

- Soluzione delle equazioni di stato per sistemi dinamici LTI a tempo continuo
- Esempi di soluzione delle equazioni di stato per sistemi dinamici LTI a tempo continuo
- Analisi modale per sistemi dinamici LTI a tempo continuo
- Concetti di base sulla trasformata zeta
- Soluzione delle equazioni di stato per sistemi dinamici LTI a tempo discreto
- Analisi modale per sistemi dinamici LTI a tempo discreto

Calcolo del movimento di sistemi dinamici LTI

Soluzione delle equazioni di stato per sistemi dinamici LTI a tempo continuo

Soluzione delle equazioni di stato per sistemi dinamici LTI a tempo continuo

- Soluzione nel dominio della frequenza "s" (trasformata di Laplace)
- Soluzione nel dominio del tempo (formula di Lagrange)

Soluzione nel dominio della frequenza "s"

Richiami sulla trasformata di Laplace

Richiami sulla trasformata di Laplace 1/6

y(t) = Cx(t)

Definizione

- ightharpoonup Sia $f(t): \mathbb{R} \to \mathbb{R}$
- ➤ La *trasformata* (*unilatera*) *di Laplace* è un operatore dallo spazio delle funzioni reali di variabile reale allo spazio delle funzioni complesse di variabile complessa s definita (quando esiste) da:

$$F(s) = \mathcal{L}\left\{f(t)\right\} = \int_{0}^{\infty} f(t)e^{-st}dt$$

Richiami sulla trasformata di Laplace 2/6

Linearità

Siano $f_1(t)$ ed $f_1(t)$ due funzioni, aventi trasformata di Laplace $F_1(s)$ ed $F_2(s)$ rispettivamente e $c_1, c_2 \in \mathbb{R}$. Allora:

$$\mathcal{L}\left\{c_{1}f_{1}(t)+c_{2}f_{2}(t)\right\}=c_{1}F_{1}(s)+c_{2}F_{2}(s)$$

Richiami sulla trasformata di Laplace 3/6

Derivazione

Sia f(t) una funzione derivabile n volte e avente trasformata di Laplace F(s). Allora:

$$\mathcal{L}\left\{\dot{f}(t)\right\} = sF(s) - f(0_{-})$$

$$\mathcal{L}\left\{\ddot{f}(t)\right\} = s^{2}F(s) - sf(0_{-}) - \dot{f}(0_{-})$$

$$\vdots$$

$$\mathcal{L}\left\{f^{(n)}(t)\right\} = s^{n}F(s) - s^{n-1}f(0_{-}) - s^{n-2}\dot{f}(0_{-}) - \dots - f^{(n-1)}(0_{-})$$

Richiami sulla trasformata di Laplace 4/6

Integrazione

Sia f(t) una funzione integrabile e avente trasformata di Laplace F(s). Allora :

$$\mathcal{L}\left\{\int_{0_{-}}^{t} f(\tau) d\tau\right\} = \frac{F(s)}{s}$$

Ritardo nel tempo

Sia f(t) una funzione avente trasformata di Laplace F(s). Allora:

$$\mathcal{L}\left\{f(t-\tau)\right\} = F(s)e^{-\tau s}$$

Richiami sulla trasformata di Laplace 5/6

Prodotto di convoluzione

Siano $f_1(t)$ ed $f_1(t)$ due funzioni aventi trasformata di Laplace $F_1(s)$ ed $F_2(s)$ rispettivamente, allora il loro prodotto di convoluzione definito come:

y(t) = Cx(t)

$$f_1(t) * f_2(t) = \int_{0_{-}}^{t} f_1(t-\tau) \cdot f_2(\tau) d\tau = \int_{0_{-}}^{t} f_1(\tau) \cdot f_2(\tau) d\tau$$

ammette trasformata di Laplace

$$\mathcal{L}\left\{f_1(t)*f_2(t)\right\}=F_1(s)\cdot F_2(s)$$

Richiami sulla trasformata di Laplace 6/6

Principali trasformate

f(t)	F(s)
$\delta(t)$	1
$\varepsilon(t)$	$\frac{1}{s}$
t^n	1
$\overline{n!}$	\overline{s}^{n+1}

f(t)	F(s)
e^{at}	1
	s – a
$t^n e^{at}$	1
<i>n</i> !	$\left(s-a\right)^{n+1}$
$sin(\omega_0 t)$	$\frac{\omega_0}{s^2+\omega_0^2}$
$\cos(\omega_0 t)$	$\frac{\mathcal{S}}{\mathcal{S}^2+\omega_0^2}$

f(t)	<i>F</i> (<i>s</i>)
e^{At}	$\left(sI - A \right)^{-1}$

Soluzione nel dominio della frequenza "s"

Calcolo della soluzione nel dominio della trasformata di Laplace

Descrizione di sistemi dinamici LTI TC

Il comportamento dinamico di un sistema LTI TC è descritto dalle equazioni di ingresso – stato – uscita:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

- Si ricorda che:
 - \bullet $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}^p$, $y(t) \in \mathbb{R}^q$
 - ullet $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times p}$, $C \in \mathbb{R}^{q \times n}$, $D \in \mathbb{R}^{q \times p}$

Il movimento di sistemi dinamici LTI TC

Utilizzando le equazioni di stato:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

si vuole calcolare la soluzione x(t) a partire da uno stato iniziale $x(t = 0) = x_0$ noto e a fronte di un andamento dell'ingresso u(t) noto $\forall t \geq 0$.

ightharpoonup La soluzione x(t) si indica con il termine movimento dello stato.

La soluzione nel dominio della frequenza "s" 1/5

Il calcolo di x(t) e y(t) con la trasformata di Laplace avviene secondo lo schema:

La soluzione nel dominio della frequenza "s" 2/5

La soluzione nel dominio della frequenza si ottiene trasformando le equazioni di ingresso stato - uscita:

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

$$\downarrow \mathcal{L}$$

$$\begin{cases} sX(s) - x(0_{-}) = AX(s) + BU(s) \\ Y(s) = CX(s) + DU(s) \end{cases}$$

e calcolando esplicitamente X(s) e Y(s).

La soluzione nel dominio della frequenza "s" 3/5

Per il movimento dello stato si ottiene:

$$X(s) = \underbrace{\left(sI - A\right)^{-1}}_{MOVIMENTO\ LIBERO} X(0_{-}) + \underbrace{\left(sI - A\right)^{-1}}_{MOVIMENTO\ FORZATO\ = \mathcal{L}(x_{\ell}(t))}^{MOVIMENTO\ LIBERO\ = \mathcal{L}(x_{f}(t))}_{=\mathcal{L}(x_{f}(t))}^{MOVIMENTO\ FORZATO\ = \mathcal{L}(x_{f}(t))}$$

$$= H_{0}^{x}(s)X(0_{-}) + H_{f}^{x}(s)U(s)$$

 \rightarrow Antitrasformando, x(t) risulta pari alla somma di:

$$X(t) = X_{\ell}(t) + X_{f}(t)$$

- \rightarrow $x_{\ell}(t)$ movimento libero \rightarrow dipende solo da x(0)
- \bullet $x_f(t)$ movimento forzato \rightarrow dipende solo da u(t)

La soluzione nel dominio della frequenza "s" 4/5

L'andamento di y(t), detto movimento dell'uscita o risposta del sistema, si ottiene trasformando l'equazione statica di uscita y(t) = C x(t) + D u(t):

y(t) = Cx(t)

$$Y(s) = \underbrace{C(sI - A)^{-1}}_{H_0(s)} X(0_{-}) + \underbrace{C(sI - A)^{-1}B + D}_{TRASFERIMENTO} U(s)$$

$$\underbrace{C(sI - A)^{-1}X(0_{-}) + \underbrace{C(sI - A)^{-1}B + D}_{RISPOSTA\ LIBERA} U(s)}_{RISPOSTA\ FORZATA\ = \mathcal{L}(y_f(t))}$$

$$= H_0(s)X(0_{-}) + H(s)U(s)$$

- \rightarrow Antitrasformando, y(t) risulta pari alla somma di:
 - $y_{\ell}(t)$ risposta libera \rightarrow dipende solo da $x(0_{-})$
 - $\Rightarrow y_f(t)$ risposta forzata \Rightarrow dipende solo da u(t)

La soluzione nel dominio della frequenza "s" 5/5

- \rightarrow $H(s) \rightarrow$ matrice di trasferimento del sistema (legame ingresso uscita).
- \rightarrow $H_0^x(s)$, $H_0^x(s)$, H(s) sono in generale matrici complesse i cui elementi sono funzioni razionali fratte (rapporto di polinomi) nella variabile complessa s.
- Le matrici $H_0^x(s)$, $H_0(s)$ rappresentano il legame fra le condizioni iniziali e, rispettivamente, lo stato e l'uscita.
- Le matrici $H_f^x(s)$, H(s) rappresentano il legame tra l'ingresso e, rispettivamente, lo stato e l'uscita.

La matrice di trasferimento

- ➤ La matrice H(s) è detta matrice di trasferimento e rappresenta il legame tra l'ingresso e l'uscita, nel dominio della trasformata di Laplace.
- Per un sistema a p ingressi e q uscite la matrice di trasferimento è costituita da una matrice a q righe e p colonne di funzioni razionali della variabile s.

Soluzione nel dominio della frequenza "s"

La funzione di trasferimento

La funzione di trasferimento

Se il sistema è a un ingresso (p = 1) e un'uscita (q = 1) (SISO) allora la matrice di trasferimento si dice funzione di trasferimento (fdt).

$$H(s) = \frac{N_{H}(s)}{D_{H}(s)} = \frac{b_{m}s^{m} + b_{m-1}s^{m-1} + \dots + b_{1}s + b_{0}}{s^{n} + a_{n-1}s^{n-1} + \dots + a_{1}s + a_{0}}, \quad m \leq n$$

- $m < n \rightarrow$ fdt strettamente propria (il sistema è proprio $b_m = D = 0$).
- $m = n \rightarrow$ fdt non *strettamente propria (bipropria)* (il sistema è improprio $b_m = D \neq 0$).
- \bullet radici di $N_H(s) \rightarrow zeri$ della fdt del sistema.
- ullet radici di $D_H(s) \rightarrow poli$ della fdt del sistema.

Forme fattorizzate della funzione di trasferimento 1/2

Forma "zeri e poli"

$$H(s) = K_{\infty} \frac{(s-Z_1)(s-Z_2)\cdots(s-Z_m)}{(s-p_1)(s-p_2)\cdots(s-p_n)}$$

- \Rightarrow $z_1, \ldots, z_m \rightarrow$ zeri della fdt
- $p_1, \ldots, p_n \rightarrow poli della fdt$
- \bullet $K_{\infty} \rightarrow$ "guadagno infinito"

$$K_{\infty} = \lim_{s \to \infty} s^{n-m} H(s)$$

Forme fattorizzate della funzione di trasferimento 2/2

- Forma fattorizzata di Bode (forma fattorizzata in costanti di tempo)
 - Sarà introdotta e studiata nel modulo di Controlli Automatici

nyocontoniono di cingolovità complesce 1/4

Rappresentazione di singolarità complesse 1/4

- p(s) = s² + a₁s + a₀ = (s σ₀ jω₀)(s σ₀ + jω₀)
 → polinomio di secondo grado con radici complesse coniugate s₁₂₂ = σ₀ ± jω₀.
- \bullet σ_0 e ω_0 \rightarrow parte reale e immaginaria \rightarrow rappresentazione cartesiana delle radici

Radici complesse coniugate (2/4)

 \triangleright Pulsazione naturale (ω_n) e smorzamento (ζ) di una coppia di radici complesse coniugate

- \bullet $\omega_n > 0$ $|\zeta| < 1$ per una coppia di radici complesse coniugate

Rappresentazione di singolarità complesse 3/4

 Rappresentazione di un trinomio di 2º grado in funzione di smorzamento e pulsazione naturale

$$s^2 + 2\zeta\omega_n s + \omega_n^2$$

Rappresentazione di singolarità complesse 4/4

Funzione di trasferimento nella forma "zeri e poli"

$$H(s) = K_{\infty} \frac{\prod_{i=1}^{m_r} (s - Z_i) \prod_{i=1}^{m_c} (s^2 + 2\zeta_{z,i} \omega_{nz,i} s + \omega_{nz,i}^2)}{\prod_{i=1}^{n_r} (s - p_i) \prod_{i=1}^{n_c} (s^2 + 2\zeta_{p,i} \omega_{np,i} s + \omega_{np,i}^2)}$$

- m_r → # zeri reali, m_c → # coppie zeri complessi coniugati → m_r + 2· m_c = m
- n_r → # poli reali, n_c → # coppie poli complessi coniugati → n_r + 2· n_c = n
- \bullet $K_{\infty} \rightarrow$ "guadagno infinito"

Soluzione nel dominio del tempo

La formula di Lagrange Movimento libero Movimento forzato

Descrizione di sistemi dinamici LTI TC

Il comportamento dinamico di un sistema LTI TC è descritto dalle equazioni di ingresso – stato – uscita:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$y(t) = Cx(t) + Du(t)$$

- Si ricorda che:
 - \bullet $x(t) \in \mathbb{R}^n$, $u(t) \in \mathbb{R}^p$, $y(t) \in \mathbb{R}^q$
 - ullet $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times p}$, $C \in \mathbb{R}^{q \times n}$, $D \in \mathbb{R}^{q \times p}$

Il movimento di sistemi dinamici LTI TC

Utilizzando le equazioni di stato:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

si vuole calcolare la soluzione x(t) a partire da uno stato iniziale $x(t = 0) = x_0$ noto e a fronte di un andamento dell'ingresso u(t) noto $\forall t \geq 0$.

 \Rightarrow la soluzione x(t) si indica con il termine movimento dello stato.

La formula di Lagrange per il calcolo di x(t)

L'espressione di x(t) si calcola con la formula di Lagrange:

y(t) = Cx(t)

$$X(t) = \underbrace{e^{At}X(0_{-})}_{X_{\ell}(t)} + \underbrace{\int_{0_{-}}^{t} e^{A(t-\tau)}Bu(\tau)d\tau}_{X_{\ell}(t)} =$$

$$= X_{\ell}(t) + X_{f}(t)$$

- Il movimento dello stato x(t) è la somma di due contributi:
 - \rightarrow $x_{\ell}(t)$ movimento libero \rightarrow dipende solo da x(0)
 - \bullet $x_f(t)$ movimento forzato \rightarrow dipende solo da u(t)

Calcolo del movimento dell'uscita

ightharpoonup L'andamento di y(t), detto movimento dell'uscita, si ottiene dalla relazione statica:

$$y(t) = C x(t) + D u(t)$$

dopo avere sostituito per x(t) l'espressione ottenuta dalla formula di Lagrange:

$$y(t) = \underbrace{Ce^{At} x(0_{-})}_{y_{\ell}(t)} + \underbrace{C\int_{0_{-}}^{t} e^{A(t-\tau)} Bu(\tau) d\tau + Du(t)}_{y_{\ell}(t)} =$$

$$= y_{\ell}(t) + y_{f}(t)$$

Calcolo del movimento dell'uscita

- ➤ Anche il movimento dell'uscita *y*(*t*) detto anche **risposta del sistema** è la somma di due contributi:
 - $y_{\ell}(t)$ risposta libera \rightarrow dipende solo da x(0)
 - $\Rightarrow y_f(t)$ risposta forzata \Rightarrow dipende solo da u(t)

Utilizzo della trasformata di Laplace

L'impiego diretto della formula di Lagrange richiede però l'utilizzo di procedimenti di calcolo integrale

y(t) = Cx(t)

Al fine di semplificare tali procedimenti, risulta più utile fare ricorso alla trasformata di Laplace, giustificando in tal modo la soluzione nel dominio della frequenza "s"