Angewandte Regression — Musterlösungen zur Serie 5

1. a) Ohne Variablenselektion:

summary (modback)

```
R-Code:
   d.concept <- read.table("http://stat.ethz.ch/Teaching/Datasets/</pre>
               WBL/concept.dat", header=TRUE)
   attach(d.concept)
   model1 <- regr(gpa~iq+alter+sex+total+c1+c2+c3+c4+c5+c6, data=d.concept)</pre>
   summary(model1)
   R-Output:
   regr(formula = gpa ~ iq + alter + sex + total + c1 + c2 + c3 +
      c4 + c5 + c6, data = d.concept)
  Fitting function lm
  Terms:
                     coef
                               stcoef
                                          signif R2.x df p.value
   (Intercept) 2.520984023 0.000000000 0.27199074
                                                  NA 1 0.5890
               0.073390658 0.460395291 2.09481514 0.2898 1 0.0001
   alter
              -0.410205964 -0.123711419 -0.70381025 0.1120 1 0.1647
              -0.575292611 -0.134957849 -0.73019102 0.1555 1 0.1497
   sex
   total
              -0.066639252 -0.393960015 -0.56869311 0.7747 1 0.2604
              0.188234182  0.255619950  0.84927309  0.4814  1  0.0947
   c1
   c2
              0.128613669 0.233979733 0.72342766 0.5174 1 0.1534
   сЗ
              0.122059074 0.200728570 0.64017323 0.5022 1 0.2057
   c4
              -0.003138792 -0.004392463 -0.01386129 0.5074 1 0.9780
   с5
              с6
               St.dev.error: 1.441 on 67 degrees of freedom
  Multiple R^2: 0.5903 Adjusted R-squared: 0.5291
  F-statistic: 9.653 on 10 and 67 d.f., p.value: 9.589e-10
  Factor(s) with two levels converted to 0-1 variable(s):
    sex
  0 "1"
  1 "2"
   Mit multipler Regression stellt sich der ig als signifikant heraus.
b) Mit Variablenselektion:
   R-Code:
   stepback <- step(model1,direction="backward")</pre>
   formula(stepback)
   modback <- regr(formula(stepback),data=d.concept)</pre>
```

(19.10.07) — Angewandte Regression — Musterlösungen zur Serie 5 —

Wenn man den obigen R-Code ausführt, sieht man, dass Variablen im Modell aufgenommen werden, jedoch stellt sich immer der iq als signifikant heraus.

R-Output:

```
Call:
```

```
regr(formula = formula(stepback), data = d.concept)
Fitting function lm
```

Terms:

```
coef
                        stcoef
                                  signif R2.x df p.value
(Intercept) 2.47444426 0.0000000 0.2721850
                                           NA 1 0.5889
           0.07352652  0.4612476  2.2631592  0.2457  1  0.0000
alter
          -0.40666273 -0.1226428 -0.7167479 0.1015
          -0.57485722 -0.1348557 -0.7701066 0.1221 1 0.1290
sex
total
          -0.06493277 -0.3838716 -0.7434638 0.7022 1 0.1426
           0.18921701 0.2569546 0.9248499 0.4467 1 0.0693
c1
c2
           с3
           0.12419305 0.2042379 0.6973449 0.4751 1 0.1686
           0.14315563  0.1963707  0.6998099  0.4521  1  0.1672
с5
```

St.dev.error: 1.42 on 69 degrees of freedom Multiple R^2: 0.5902 Adjusted R-squared: 0.5427

F-statistic: 12.42 on 8 and 69 d.f., p.value: 7.587e-11

Factor(s) with two levels converted to 0-1 variable(s):
 sex
0 "1"

0 "1" 1 "2"

c) plot(modback)

Modell - backwards

 $_{\rm Es}$

Modell - backwards

Man sieht keine wirklichen Ausreisser. Transformationen sind keine nötig.

d) Wir betrachten die folgenden Residual-plots zweier Eingangsvariablen:

```
plres2x(~ iq + alter,modback)
plres2x(~ iq + c1,modback)
plres2x(~ iq + total,modback)
plres2x(~ sex + total, modback)
plres2x( ~ sex + c2, modback)
plres2x(~ c3 + c5,modback)
```

residuals ~ in + c1 residuals - sex + tota 8 5

sieht nicht nach Wechselwirkungen in den ersten beiden Plots aus.

```
e) R-Code:
```

(19.10.07)

```
add1.regr(modback)
R-Output:
```

Single term additions

```
Model:
gpa ~ iq + alter + sex + total + c1 + c2 + c3 + c5
           Df Sum of Sq
RSS
        AIC F value
                        Pr(F)
<none>
                        139.090 63.116
I(iq^2)
                  4.154 134.935 62.751 2.0935 0.1525210
I(alter^2)
           1
                 22.476 116.614 51.368 13.1061 0.0005618 ***
I(total^2)
                  0.416 138.673 64.882 0.2040 0.6529275
I(c1^2)
                  0.054 139.035 65.085
                                        0.0266 0.8710275
I(c2^2)
                  0.007 139.082 65.112 0.0035 0.9532760
I(c3^2)
                  6.397 132.693 61.444 3.2782 0.0746258
I(c5^2)
                  3.168 135.922 63.319 1.5849 0.2123615
iq:alter
                  0.099 138.991 65.060
                                        0.0484 0.8264768
iq:sex
            1
                  1.376 137.713 64.340
                                        0.6795 0.4126481
iq:total
            1
                  5.983 133.107 61.686
                                        3.0564 0.0849307
iq:c1
                  0.561 138.528 64.800
                                        0.2756 0.6013222
                  3.857 135.233 62.922 1.9394 0.1682753
iq:c2
iq:c3
                  0.936 138.153 64.589
                                        0.4609 0.4995198
iq:c5
                  0.019 139.070 65.105
                                        0.0094 0.9231646
alter:sex
                  0.304 138.785
                                64.945
                                        0.1491 0.7006489
                  0.850 138.240
                                64.638
                                        0.4180 0.5201130
alter:total
                  0.671 138.418 64.739
                                        0.3297 0.5677023
alter:c1
alter:c2
                  1.557 137.532 64.238
                                        0.7700 0.3833105
alter:c3
                  0.034 139.055 65.097 0.0167 0.8975330
                  0.293 138.796 64.951 0.1437 0.7058409
alter:c5
                  7.869 131.221 60.574 4.0776 0.0474005 *
sex:total
           - 1
                  4.866 134.224 62.338 2.4650 0.1210515
sex:c1
                  8.309 130.781
                                60.311 4.3203 0.0414373 *
sex:c2
                  2.084 137.005 63.938
                                        1.0346 0.3126920
sex:c3
            1
                  4.623 134.467 62.480 2.3376 0.1309200
sex:c5
            1
                  1.584 137.506 64.223 0.7832 0.3792894
total:c1
total:c2
                  0.068 139.022 65.078
                                        0.0331 0.8561746
total:c3
                  2.410 136.680 63.753
                                        1.1990 0.2773843
                  0.540 138.549 64.812 0.2653 0.6081950
total:c5
c1:c2
                  2.032 137.057 63.968
                                        1.0084 0.3188515
c1:c3
                  1.281 137.809
                                64.394
                                        0.6319 0.4294122
c1:c5
                  2.354 136.735 63.784
                                        1.1708 0.2830593
c2:c3
                  0.904 138.185 64.607 0.4450 0.5069865
c2:c5
                  0.395 138.694 64.894 0.1937 0.6612543
c3:c5
                  7.054 132.036 61.056 3.6327 0.0608820 .
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
```

f) Wir nehmen das volle lineare Modell mit den signifikanten quadratischen Termen und Wechselwirkungen:

```
model2 <- regr(gpa~iq+alter+sex+total+c1+c2+c3+c4+c5+c6</pre>
          +I(alter^2)+I(c3^2)+iq:total+sex:total+sex:c2+c3:c5, data=d.concept)
summary(model2)
stepback <- step(model2,direction="backward")</pre>
formula(stepback)
```

modback <- regr(formula(stepback),data=d.concept)</pre>

summary (modback)

Mit der backward-analyse erhalten wir:

> Call:

regr(formula = formula(stepback), data = d.concept)

Fitting function lm

Terms:

```
coef
                           stcoef
                                     signif R2.x df p.value
(Intercept) -1.348058e+02 0.0000000 -1.7432472
                                                NA 1 0.0009
          -2.177437e-02 -0.1365953 -0.2030645 0.7985 1 0.6865
alter
           2.270072e+01 6.8461658 1.8900714 0.9626 1 0.0003
sex
           -2.433626e+00 -0.5709041 -0.8427025 0.7999 1 0.0972
           -2.888571e-01 -1.7076746 -1.3323839 0.8942 1 0.0098
total
c1
           2.213165e-01 0.3005454 1.2070279 0.4556 1 0.0188
c2
           1.124524e-01 0.2045784 0.7501769 0.5029 1 0.1390
с5
           1.661921e-01 0.2279705 0.9065870 0.4609 1 0.0748
I(alter^2) -8.942918e-01 -6.9758117 -1.9272515 0.9625 1 0.0003
I(c3^2)
           7.318765e-03 0.1903856 0.7930607 0.4353 1 0.1181
iq:total
          1.829685e-03 1.5601484 0.9597051 0.9166 1 0.0597
sex:total 3.335942e-02 0.4776021 0.6676067 0.8105 1 0.1871
```

St.dev.error: 1.251 on 66 degrees of freedom Multiple R^2: 0.6957 Adjusted R-squared: 0.645

F-statistic: 13.72 on 11 and 66 d.f., p.value: 3.417e-13

Ausreisser: keine.

Transformationen: keine nötig

Wichtig: Datensatz mit detach(concept) wieder abhängen!

2. a) Schrittweise rückwärts: Wir betrachten das volle Modell

```
\log(\text{RUT}) = \beta_0 + \beta_1 \log(\text{VISC}) + \beta_2 \text{ ASPH} + \beta_3 \text{ BASE} + \beta_4 \text{ FINES} + \beta_5 \text{ VOIDS} + \beta_6 \text{ RUN}
```

und eliminieren schrittweise die am wenigsten signifikante Variable

> r.bw <- step(r.asp, direction="backward")

Start: AIC=-129

log10(RUT) ~ log10(VISC) + ASPH + BASE + FINES + VOIDS + RUN

	Df	Sum of Sq	RSS	AIC					
- FINES	1	0.0039	0.3	-130.7					
- BASE	1	0.0065	0.3	-130.4					
<none></none>			0.3	-129.1					
- RUN	1	0.1	0.4	-125.8					
- VOIDS	1	0.1	0.4	-121.9					
- ASPH	1	0.2	0.5	-113.2					
- log10(VISC)	1	0.6	0.9	-96.4					
Step: AIC=-131									
log10(RUT) ~ 1	log1	LO(VISC) +	ASPH +	BASE +					

S

VOIDS + RUN 1

```
RSS AIC
            Df Sum of Sq
- BASE
                  0.012
                          0.3 -131.5
<none>
                          0.3 -130.7
- RUN
                    0.1
                          0.4 -127.7
- VOIDS
             1
                    0.1 0.4 -121.8
- ASPH
                    0.2 0.6 -114.7
```

```
(19.10.07)
                 — Angewandte Regression — Musterlösungen zur Serie 5 —
      - log10(VISC) 1
                            0.7 1.0 -96.6
      regr(formula = log10(RUT) ~ log10(VISC) + ASPH + VOIDS + RUN,
      Terms:
                    coef stcoef signif R2.x df p.value
       (Intercept) -1.742 0.000 -1.31 NA 1 0.012
      log10(VISC) -0.547 -0.852 -4.07 0.671 1 0.000
      ASPH
                   0.465 0.166 2.11 0.124 1 0.000
      VOIDS
                   0.144 0.137 1.56 0.216 1 0.004
      RUN
                  -0.222 -0.186 -0.91 0.663 1 0.073
      St.dev.error: 0.111 on 26 degrees of freedom
      Multiple R^2: 0.971 Adjusted R-squared: 0.966
      F-statistic: 216 on 4 and 26 d.f., p.value:
      Das Endmodell lautet mit schrittweiser Variablenselektion rückwärts:
                   \log(\text{RUT}) = \beta_0 + \beta_1 \log(\text{VISC}) + \beta_2 \text{ ASPH} + \beta_3 \text{ VOIDS} + \beta_4 \text{ RUN}.
      Schrittweise vorwärts: Wir betrachten das Modell log(RUT) = \beta_0 und fügen schritt-
       weise die signifikanteste der verbleibenden Variable hinzu.
      > r.start <- regr(log10(RUT) ~ 1, data = d.asp)</pre>
      > r.fw <- step(r.start, scope = formula(r.asp), direction="forward")
      Start: AIC=-29.9
      log10(RUT) ~ 1
                    Df Sum of Sq
                                   RSS
       + log10(VISC) 1
                           10.5
                                   0.6 -118.0
                                   1.5 -89.4
      + RUN
                            9.5
                    1
      + VOIDS
                            1.9 9.2 -33.7
                    1
      + FINES
                    1
                            1.1 9.9 -31.3
       <none>
                                  11.1 -30.0
       + BASE
                            0.4 10.7 -29.1
                    1
      + ASPH
                            0.3 10.8 -28.7
      Step: AIC=-118
      log10(RUT) ~ log10(VISC)
                             RSS AIC
              Df Sum of Sq
      + ASPH 1
                      0.1
                             0.5 -122.0
       <none>
                              0.6 -118.0
      + VOIDS 1 0.0298
                             0.6 -117.6
      + RUN 1
                   0.0231
                             0.6 -117.2
      + FINES 1 0.0084
                             0.6 -116.4
      + BASE 1 0.0055
                             0.6 -116.3
         . . .
      Step: AIC=-131
      log10(RUT) ~ log10(VISC) + ASPH + VOIDS + RUN
                             RSS AIC
              Df Sum of Sq
       <none>
                             0.3 -131.5
      + BASE 1 0.0122
                             0.3 -130.7
```

+ FINES 1 0.0096

> summary(r.fw)

Call:

0.3 -130.4

b) All Subsets: Wir berechnen alle möglichen Untermodelle und untersuchen die besten Modelle mit einer, zwei, drei, ... Variablen. Wir suchen uns diejenigen Modelle mit den kleinsten Cp-Werten.

```
> library(leaps)
> r.allsub <- regsubsets(log10(RUT)~log10(VISC)+ ASPH + BASE + FINES
                       + VOIDS + RUN, data=d.asp, nbest=2)
> r.allsub <- regsubsets(formula(r.asp), data=d.asp, nbest=2)
> summary(r.allsub)
Subset selection object
Call: regsubsets.formula(formula(r.asp), data = d.asp, nbest = 2)
6 Variables (and intercept)
           Forced in Forced out
log10(VISC)
              FALSE
                         FALSE
ASPH
               FALSE
                          FALSE
BASE
               FALSE
                          FALSE
FINES
               FALSE
                         FALSE
VOTES
               FALSE
                         FALSE
               FALSE
                         FALSE
2 subsets of each size up to 6
Selection Algorithm: exhaustive
        log10(VISC) ASPH BASE FINES VOIDS RUN
1 (1) "*"
1 (2)""
2 (1) "*"
2 (2) "*"
3 (1) "*"
3 (2) "*"
4 (1) "*"
4 (2) "*"
5 (1) "*"
5 (2) "*"
6 (1) "*"
> r.cp <- summary(r.allsub)$cp
> names(r.cp) <- c(t(outer(1:5, 1:2, paste, sep=".")), 6.1)
> cat("\n Cp-Wert für Modell x.v \n")
 Cp-Wert für Modell x.y
> r.cp
 1.1 1.2 2.1 2.2 3.1 3.2 4.1 4.2 5.1 5.2 6.1
20.33 91.96 13.98 20.00 5.66 12.21 4.26 7.44 5.30 5.51 7.00
```

Das Endmodell lautet mit schrittweiser Variablenselektion vorwärts gleich wie das Endmodell der rückwärts Variablenselektion. Auch bei der All Subset Methode ist dieses Modell (Modell 4.1) das beste, gemessen am Cp-Wert.

(19.10.07) — Angewandte Regression — Musterlösungen zur Serie 5 —

Bemerkung: Das Resultat der Forward-Methode kann deutlich verschieden von der Backward-Methode sein, welche der Forward-Methode in der Regel vorzuziehen ist. Falls einige erklärende Variablen stark miteinander korreliert sind, können sich die besten Modelle je nach Verfahren unterscheiden.

3. a) R-Code:

Bemerkung:

- Die Sterbewahrscheinlichkeiten sind im Jahr 2005 bedeutend kleiner als im Jahr 1951.
- Wir werden sehr wahrscheinlich Schwierigkeiten bekommen in der linearen Modellierung für das ganze Specktrum, da im Alter zwischen 0 und 10 die Sterbewahrscheinlichkeiten stark sinken, zwischen 10 und 20 wieder steigen, zwischen 20 und 30 Konstant bleibend (sogar leicht fallend) und im höheren alter wieder monoton steigend.

b) Die finallen Modelle sind:

1 "1"

Residuen-Analyse:

```
d.mort1 <- d.mort0[(d.mort0$Year==2005),]</pre>
 • Modell 1: für das nicht-transformiertes Modell erhalten wir:
  R-Code:
   r.mort1 <- regr(formula=DeathProz~Age+Sex,data=d.mort1)</pre>
   add1.regr(r.mort1)
   r.mort1 <- regr(formula=DeathProz~Age*Sex+I(Age^2)*Sex
                   +I(Age^3)*Sex,data=d.mort1)
   summary(r.mort1)
   R-Output:
   > add1.regr(r.mort1)
   Single term additions
   Model:
   DeathProz ~ Age + Sex
                                      AIC F value Pr(F)
           Df Sum of Sq
   <none>
                            0.07 -2719.31
   I(Age^2) 1
                   0.04
                            0.04 -2949.73 335.677 < 2e-16 ***
   Age:Sex 1 0.0007654
                           0.07 -2720.78 3.437 0.06467 .
   Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
   > summary(r.mort1)
   regr(formula = DeathProz ~ Age * Sex + I(Age^2) * Sex + I(Age^3) *
       Sex, data = d.mort1)
   Fitting function lm
   Terms:
                        coef
                                  stcoef
                                            signif R2.x df p.value
   (Intercept) -3.932926e-03 0.00000000 -1.9056321
                                                       NA 1 0.0002
   Age
                9.650666e-04 1.83489999 4.2927984 0.9274 1 0.0000
   Sex
                1.892865e-03 0.07696326 0.6485268 0.7383 1 0.2021
   I(Age^2)
                -4.225177e-05 -6.64258366 -6.4476179 0.9699 1 0.0000
   I(Age^3)
                4.965719e-07 5.96613934 9.2252527 0.9520 1 0.0000
                -4.376591e-04 -0.92351696 -1.3765887 0.9537 1 0.0073
   Sex:I(Age^2) 1.865965e-05 2.63731918 2.0134596 0.9763 1 0.0001
   Sex:I(Age^3) -2.139609e-07 -2.13900399 -2.8107060 0.9592 1 0.0000
   St.dev.error: 0.00246 on 154 degrees of freedom
   Multiple R^2: 0.9619 Adjusted R-squared: 0.9602
   F-statistic: 556.2 on 7 and 154 d.f., p.value:
   Factor(s) with two levels converted to 0-1 variable(s):
     Sex
   0 "0"
```

— Angewandte Regression — Musterlösungen zur Serie 5 —

Beobachtung: Die Residuen-Analyse bekräftigt, dass das Modell alle wesentlichen Voraussetzungen nicht erfüllt.

• Modell 2: für das Log-transformiertes Modell

```
R-Code:
r.mort2 <- regr(formula=log(DeathProz)~Age+Sex,data=d.mort1)</pre>
add1.regr(r.mort2)
r.mort2 <- regr(formula=log(DeathProz)~Age*Sex+I(Age^2)*Sex
                       +I(Age^3)*Sex,data=d.mort1)
summary(r.mort2)
R-Output:
> add1.regr(r.mort2)
Single term additions
Model:
log(DeathProz) ~ Age + Sex
                         RSS
                                  AIC F value Pr(F)
                      239.994 -91.242
<none>
I(Age^2) 1
             61.613 178.381 -185.370 110.5281 <2e-16 ***
Age:Sex 1 0.353 239.640 -89.720 0.4719 0.4926
```

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

> summary(r.mort2)

Terms:

	coef	stcoef	signif	R2.x	df	p.value
(Intercept)	-8.548668e+00	0.00000000	-20.14427495	NA	1	0.0000
Age	-4.195296e-03	-0.05056388	-0.09075607	0.9274	1	0.8579
Sex	-8.569355e-02	-0.02208689	-0.14278623	0.7383	1	0.7783

11

log(DeathProz)~Age * Sex + I(Age^2) * Sex + I(Age^3) * Sex

Sex
Beobachtung: Dieses Modell scheint besser zu sein, ist aber auch nicht ganz überzeugend.

Verbesserungsvorschläge:

Residuen-Analyse:

- Mann und Frau getrennt anschauen
- Was zu Beginn betreffend den möglichen Schwierigkeiten schon vermutet wurde, hat sich in den Residuden-Analyse bestätigt. Es scheint angebracht, zusätzliche drei Modell zu machen, Alter zwischen 0 und 20, Alter zwischen 20 und 30, Alter grösser als 30.

Als Beispiel betrachten wir den Altersbereich 0 bis 20 für Frauen (Log-Modell). Wir erhalten ein nicht fertiges Modell, das die Voraussetzungen besser erfüllt:

```
d.mort3 <- d.mort1[(d.mort1$Gender==1)&(d.mort1$Age<=19),]
r.mort3 <- regr(formula=log(DeathProz)~Age+I(Age^2)+I(Age^3),data=d.mort3)
summary(r.mort3)</pre>
```

Residuen-Analyse:

• andere Regressionstechniken