Seminario Persistencia en Geometría 2024-I Secciones 4-4.1.4

Miguel Ángel Maurin García de la Vega

12 de octubre de 2023

Contenidos

Objetivos Capítulo 4

Barras Infinitas

Lema del Emparejamiento

Demostración Lema del Emparejamiento

¿Qué podemos leer de un Código de Barras?

Este capítulo introduce funcionales Lipschitz en el espacio de códigos de barras.

¿Qué podemos leer de un Código de Barras?

Este capítulo introduce funcionales Lipschitz en el espacio de códigos de barras. Dichos funcionales producen invariantes en módulos de persistencia tipo finito y representaciones de grupos finitos en módulos de persistencia.

¿Qué podemos leer de un Código de Barras?

Este capítulo introduce funcionales Lipschitz en el espacio de códigos de barras. Dichos funcionales producen invariantes en módulos de persistencia tipo finito y representaciones de grupos finitos en módulos de persistencia. Se ilustran dichos invariantes en el contexto de aproximación de funciones y geometría de espacios métricos.

Contenidos

Objetivos Capítulo 4

Barras Infinitas

Lema del Emparejamiento

Demostración Lema del Emparejamiento

Recordemos que si \mathcal{B} y \mathcal{C} son códigos de barras, $d_{bot}(\mathcal{B},\mathcal{C})$ se define como el ínfimo de las δ tales que \mathcal{B} y \mathcal{C} están δ -emparejados.

Recordemos que si \mathcal{B} y \mathcal{C} son códigos de barras, $d_{bot}(\mathcal{B},\mathcal{C})$ se define como el ínfimo de las δ tales que \mathcal{B} y \mathcal{C} están δ -emparejados. Además, un δ -emparejamiento, μ debe cumplir:

Recordemos que si \mathcal{B} y \mathcal{C} son códigos de barras, $d_{bot}(\mathcal{B},\mathcal{C})$ se define como el ínfimo de las δ tales que \mathcal{B} y \mathcal{C} están δ -emparejados. Además, un δ -emparejamiento, μ debe cumplir:

1. $\mathcal{B}_{2\delta} \subset \operatorname{coim} \mu$,

Recordemos que si \mathcal{B} y \mathcal{C} son códigos de barras, $d_{bot}(\mathcal{B},\mathcal{C})$ se define como el ínfimo de las δ tales que \mathcal{B} y \mathcal{C} están δ -emparejados. Además, un δ -emparejamiento, μ debe cumplir:

- 1. $\mathcal{B}_{2\delta} \subset \operatorname{coim} \mu$,
- 2. $\overline{\mathcal{C}}_{2\delta} \subset \operatorname{im} \mu$,

Recordemos que si \mathcal{B} y \mathcal{C} son códigos de barras, $d_{bot}(\mathcal{B},\mathcal{C})$ se define como el ínfimo de las δ tales que \mathcal{B} y \mathcal{C} están δ -emparejados. Además, un δ -emparejamiento, μ debe cumplir:

- 1. $\mathcal{B}_{2\delta} \subset \operatorname{coim} \mu$,
- 2. $\mathcal{C}_{2\delta} \subset \operatorname{im} \mu$,
- 3. Si $\mu(I) = J$, entonces $I \subset J^{-\delta}$, $J \subset I^{-\delta}$.

Consideremos un código de barras $\mathcal B$ que consiste de N barras infinitas:

Recordemos que si \mathcal{B} y \mathcal{C} son códigos de barras, $d_{bot}(\mathcal{B},\mathcal{C})$ se define como el ínfimo de las δ tales que \mathcal{B} y \mathcal{C} están δ -emparejados. Además, un δ -emparejamiento, μ debe cumplir:

- 1. $\mathcal{B}_{2\delta} \subset \operatorname{coim} \mu$,
- 2. $\mathcal{C}_{2\delta} \subset \operatorname{im} \mu$,
- 3. Si $\mu(I) = J$, entonces $I \subset J^{-\delta}$, $J \subset I^{-\delta}$.

Consideremos un código de barras $\mathcal B$ que consiste de N barras infinitas:

$$(b_1, +\infty), (b_2, +\infty), \ldots, (b_N, +\infty), b_1 \leq b_2 \leq \ldots \leq b_N.$$

Si ${\mathcal C}$ es otro código de barras que consiste solo de barras infinitas,

Recordemos que si \mathcal{B} y \mathcal{C} son códigos de barras, $d_{bot}(\mathcal{B},\mathcal{C})$ se define como el ínfimo de las δ tales que \mathcal{B} y \mathcal{C} están δ -emparejados. Además, un δ -emparejamiento, μ debe cumplir:

- 1. $\mathcal{B}_{2\delta} \subset \operatorname{coim} \mu$,
- 2. $\mathcal{C}_{2\delta} \subset \operatorname{im} \mu$,
- 3. Si $\mu(I) = J$, entonces $I \subset J^{-\delta}$, $J \subset I^{-\delta}$.

Consideremos un código de barras $\mathcal B$ que consiste de N barras infinitas:

$$(b_1, +\infty), (b_2, +\infty), \ldots, (b_N, +\infty), b_1 \leq b_2 \leq \ldots \leq b_N.$$

Si $\mathcal C$ es otro código de barras que consiste solo de barras infinitas, de existir un δ -emparejamiento, todas las barras de de $\mathcal B$ y $\mathcal C$ al ser infinitas son mayores que 2δ .

Recordemos que si \mathcal{B} y \mathcal{C} son códigos de barras, $d_{bot}(\mathcal{B},\mathcal{C})$ se define como el ínfimo de las δ tales que \mathcal{B} y \mathcal{C} están δ -emparejados. Además, un δ -emparejamiento, μ debe cumplir:

- 1. $\mathcal{B}_{2\delta} \subset \operatorname{coim} \mu$,
- 2. $\mathcal{C}_{2\delta} \subset \operatorname{im} \mu$,
- 3. Si $\mu(I) = J$, entonces $I \subset J^{-\delta}$, $J \subset I^{-\delta}$.

Consideremos un código de barras $\mathcal B$ que consiste de N barras infinitas:

$$(b_1, +\infty), (b_2, +\infty), \ldots, (b_N, +\infty), b_1 \leq b_2 \leq \ldots \leq b_N.$$

Si $\mathcal C$ es otro código de barras que consiste solo de barras infinitas, de existir un δ -emparejamiento, todas las barras de de $\mathcal B$ y $\mathcal C$ al ser infinitas son mayores que 2δ . Por lo que lo todas las barras deben emparejarse. Tenemos así, el siguiente resultado:

 $d_{bot}(\mathcal{B},\mathcal{C})<+\infty\iff \mathcal{B}$ y \mathcal{C} contienen el mismo número de barras infinitas.

 $d_{bot}(\mathcal{B},\mathcal{C})<+\infty\iff \mathcal{B}$ y \mathcal{C} contienen el mismo número de barras infinitas.

Notemos que esto es análogo al siguiente resultado obtenido para módulos de persistencia y la distancia de δ -entrelazamiento:

 $d_{bot}(\mathcal{B},\mathcal{C})<+\infty\iff \mathcal{B}$ y \mathcal{C} contienen el mismo número de barras infinitas.

Notemos que esto es análogo al siguiente resultado obtenido para módulos de persistencia y la distancia de δ -entrelazamiento: $d_{\rm int}(V,W)<+\infty\iff \dim V_\infty=\dim W_\infty$

 $d_{bot}(\mathcal{B},\mathcal{C})<+\infty\iff \mathcal{B}$ y \mathcal{C} contienen el mismo número de barras infinitas.

Notemos que esto es análogo al siguiente resultado obtenido para módulos de persistencia y la distancia de δ -entrelazamiento:

$$\mathsf{d}_{\mathsf{int}}(V,W) < +\infty \iff \mathsf{dim}\,V_\infty = \mathsf{dim}\,W_\infty$$
 (ver Ej. 1.3.2 (1) y Ej. 2.2.4)

Consideremos entonces $\mathcal B$ y $\mathcal C$ códigos de barras consistentes de $\mathcal N$ barras infinitas:

Consideremos entonces $\mathcal B$ y $\mathcal C$ códigos de barras consistentes de N barras infinitas:

$$(b_1, +\infty), (b_2, +\infty), \ldots, (b_N, +\infty), b_1 \leq b_2 \leq \ldots \leq b_N.$$

Consideremos entonces $\mathcal B$ y $\mathcal C$ códigos de barras consistentes de N barras infinitas:

$$(b_1, +\infty), (b_2, +\infty), \ldots, (b_N, +\infty), b_1 \leq b_2 \leq \ldots \leq b_N.$$

$$(c_1, +\infty), (c_2, +\infty), \ldots, (c_N, +\infty), c_1 \leq c_2 \leq \ldots \leq c_N.$$

Consideremos entonces $\mathcal B$ y $\mathcal C$ códigos de barras consistentes de N barras infinitas:

$$(b_1, +\infty), (b_2, +\infty), \ldots, (b_N, +\infty), b_1 \leq b_2 \leq \ldots \leq b_N$$
.

$$(c_1, +\infty), (c_2, +\infty), \ldots, (c_N, +\infty), c_1 \leq c_2 \leq \ldots \leq c_N.$$

¿Existe una cota inferior para $d_{bot}(\mathcal{B},\mathcal{C})$? Buscaremos un valor de δ que garantice un δ -emparejamiento.

Recordemos que el δ -emparejamiento debe cumplir $\mu(I) = J \implies I \subset J^{-\delta}, \ J \subset I^{-\delta}.$

Recordemos que el δ -emparejamiento debe cumplir $\mu(I) = J \implies I \subset J^{-\delta}, \ J \subset I^{-\delta}$. Entonces, para N = 1 tenemos:

$$\delta = |b_1 - c_1|$$

Recordemos que el δ -emparejamiento debe cumplir $\mu(I) = J \implies I \subset J^{-\delta}, \ J \subset I^{-\delta}$. Entonces, para N = 1 tenemos:

$$\delta = |b_1 - c_1|$$

Si N=2 tenemos que hacer más comparaciones:

$$|b_1-c_1|, |b_2-c_2|$$

 $|b_1-c_2|, |b_2-c_1|$

Para tener un δ -emparejamiento basta tomar:

$$\min\left\{ \max\left\{ |b_1-c_1|, \ |b_2-c_2| \right\}, \max\left\{ |b_1-c_2|, \ |b_2-c_1| \right\} \right\}$$

Para tener un δ -emparejamiento basta tomar:

$$\min \left\{ \max \left\{ |b_1 - c_1|, \ |b_2 - c_2| \right\}, \max \left\{ |b_1 - c_2|, \ |b_2 - c_1| \right\} \right\}$$

Usando el lenguaje de permutaciones, notamos que en el primer argumento del mín estamos aplicando la permutación identidad $\mathbb{1}$ a las c_i ,

Para tener un δ -emparejamiento basta tomar:

$$\min\left\{ \mathsf{m\'ax}\left\{ |b_1-c_1|,\ |b_2-c_2|\right\}, \mathsf{m\'ax}\left\{ |b_1-c_2|,\ |b_2-c_1|\right\} \right\}$$

Usando el lenguaje de permutaciones, notamos que en el primer argumento del mín estamos aplicando la permutación identidad $\mathbbm{1}$ a las c_i , en el segundo estamos aplicando la permutacion (12).

Para tener un δ -emparejamiento basta tomar:

$$\min \left\{ \max \left\{ |b_1 - c_1|, \ |b_2 - c_2| \right\}, \max \left\{ |b_1 - c_2|, \ |b_2 - c_1| \right\} \right\}$$

Usando el lenguaje de permutaciones, notamos que en el primer argumento del mín estamos aplicando la permutación identidad $\mathbbm{1}$ a las c_i , en el segundo estamos aplicando la permutacion (12). Así, para \mathcal{B}, \mathcal{C} con N barras debe ser que:

$$\mathsf{d}_\mathsf{bot}(\mathcal{B},\mathcal{C}) \geq \min_{\sigma \in \mathcal{S}_N} \max_i |b_i - c_{\sigma(i)}|$$

donde σ recorre todas las posibles permutaciones de N elementos.

Para tener un δ -emparejamiento basta tomar:

$$\min\left\{\max\left\{|b_1-c_1|,\;|b_2-c_2|\right\},\max\left\{|b_1-c_2|,\;|b_2-c_1|\right\}\right\}$$

Usando el lenguaje de permutaciones, notamos que en el primer argumento del mín estamos aplicando la permutación identidad $\mathbbm{1}$ a las c_i , en el segundo estamos aplicando la permutacion (12). Así, para \mathcal{B}, \mathcal{C} con N barras debe ser que:

$$\mathsf{d}_\mathsf{bot}(\mathcal{B},\mathcal{C}) \geq \min_{\sigma \in \mathcal{S}_N} \max_i |b_i - c_{\sigma(i)}|$$

donde σ recorre todas las posibles permutaciones de N elementos. El siguiente lema afirma que no es necesario considerar las permutaciones.

Contenidos

Objetivos Capítulo 4

Barras Infinitas

Lema del Emparejamiento

Demostración Lema del Emparejamiento

Lema del Emparejamiento

Lema 4.1.1 Para cualesquera dos conjuntos de puntos en ${\bf R}$, $b_1 \le b_2 \le \ldots \le b_N$ y $c_1 \le c_2 \le \ldots \le c_N$ tenemos:

Lema del Emparejamiento

Lema 4.1.1 Para cualesquera dos conjuntos de puntos en ${f R},$ $b_1 \leq b_2 \leq \ldots \leq b_N$ y $c_1 \leq c_2 \leq \ldots \leq c_N$ tenemos: $\min_{\sigma \in {\cal S}_N} \max_i |b_i - c_{\sigma(i)}| = \max_i |b_i - c_i|$

Corolario Cota para d_{bot}

Corolario 4.1.2

Sean V y W dos módulos de persistencia con códigos de barras $\mathcal{B} = \mathcal{B}(V), \mathcal{C} = \mathcal{B}(W)$, cada uno consistente de N barras infinitas. Denotamos por b_i y c_i los extremos de las barras infinitas en \mathcal{B} y \mathcal{C} (ordenados como en el Lema 4.1.1). Entonces, tenemos la siguiente cota inferior en la distancia cuello de botella entre los dos códigos de barras:

$$d_{bot}(\mathcal{B},\mathcal{C}) \geq \max_{i} |b_i - c_i|$$

Corolario Cota para d_{bot}

Corolario 4.1.2

Sean V y W dos módulos de persistencia con códigos de barras $\mathcal{B} = \mathcal{B}(V), \mathcal{C} = \mathcal{B}(W)$, cada uno consistente de N barras infinitas. Denotamos por b_i y c_i los extremos de las barras infinitas en \mathcal{B} y \mathcal{C} (ordenados como en el Lema 4.1.1). Entonces, tenemos la siguiente cota inferior en la distancia cuello de botella entre los dos códigos de barras:

$$d_{bot}(\mathcal{B},\mathcal{C}) \geq \max_{i} |b_i - c_i|$$

Demostraremos ahora el Lema del Emparejamiento.

Contenidos

Objetivos Capítulo 4

Barras Infinitas

Lema del Emparejamiento

Demostración Lema del Emparejamiento

Modificaciones Elementales

Sea

$$\sigma = \begin{pmatrix} 1 & \dots & N \\ \sigma(1) & \dots & \sigma(N) \end{pmatrix}$$

una permutación y supongamos que $\sigma(i+1) < \sigma(i)$.

Modificaciones Elementales

Sea

$$\sigma = \begin{pmatrix} 1 & \cdots & N \\ \sigma(1) & \cdots & \sigma(N) \end{pmatrix}$$

una permutación y supongamos que $\sigma(i+1) < \sigma(i)$. Podemos modificar σ en la permutación

$$\begin{pmatrix} 1 & \dots & i & i+1 & \dots & N \\ \sigma(1) & \dots & \sigma(i+1) & \sigma(i) & \dots & \sigma(N) \end{pmatrix} .$$

Modificaciones Elementales

Sea

$$\sigma = \begin{pmatrix} 1 & \cdots & N \\ \sigma(1) & \cdots & \sigma(N) \end{pmatrix}$$

una permutación y supongamos que $\sigma(i+1) < \sigma(i)$. Podemos modificar σ en la permutación

$$\begin{pmatrix} 1 & \dots & i & i+1 & \dots & N \\ \sigma(1) & \dots & \sigma(i+1) & \sigma(i) & \dots & \sigma(N) \end{pmatrix}.$$

transponiendo $\sigma(i)$ y $\sigma(i+1)$. Esto es llamado una modificación elemental.

Mediante una secuencia de modificaciones elementales podemos transformar cualquier $\sigma \in S_N$ en la permutación identidad 1.

Mediante una secuencia de modificaciones elementales podemos transformar cualquier $\sigma \in S_N$ en la permutación identidad 1. Para esto, hay que identificar $\sigma(i)=1$ y transponerlo con elementos a su izquierda hasta colocarlo en su lugar, es decir, la posición 1.

Mediante una secuencia de modificaciones elementales podemos transformar cualquier $\sigma \in S_N$ en la permutación identidad 1. Para esto, hay que identificar $\sigma(i)=1$ y transponerlo con elementos a su izquierda hasta colocarlo en su lugar, es decir, la posición 1. Estas transposiciones son posibles ya que se cumple $\sigma(i)=1<\sigma(j)$ para toda j< i.

Mediante una secuencia de modificaciones elementales podemos transformar cualquier $\sigma \in S_N$ en la permutación identidad 1. Para esto, hay que identificar $\sigma(i)=1$ y transponerlo con elementos a su izquierda hasta colocarlo en su lugar, es decir, la posición 1. Estas transposiciones son posibles ya que se cumple $\sigma(i)=1<\sigma(j)$ para toda j< i. Del mismo modo, repetimos el procedimiento para $\sigma(i)=2$ y así sucesivamente.

Mediante una secuencia de modificaciones elementales podemos transformar cualquier $\sigma \in S_N$ en la permutación identidad 1. Para esto, hay que identificar $\sigma(i)=1$ y transponerlo con elementos a su izquierda hasta colocarlo en su lugar, es decir, la posición 1. Estas transposiciones son posibles ya que se cumple $\sigma(i)=1<\sigma(j)$ para toda j< i. Del mismo modo, repetimos el procedimiento para $\sigma(i)=2$ y así sucesivamente. Ahora, para $\sigma\in S_N$ definimos:

$$T(\sigma) = \max_{i} |b_i - c_{\sigma(i)}|$$

Mediante una secuencia de modificaciones elementales podemos transformar cualquier $\sigma \in S_N$ en la permutación identidad 1. Para esto, hay que identificar $\sigma(i)=1$ y transponerlo con elementos a su izquierda hasta colocarlo en su lugar, es decir, la posición 1. Estas transposiciones son posibles ya que se cumple $\sigma(i)=1<\sigma(j)$ para toda j< i. Del mismo modo, repetimos el procedimiento para $\sigma(i)=2$ y así sucesivamente. Ahora, para $\sigma\in S_N$ definimos:

$$T(\sigma) = \max_{i} |b_i - c_{\sigma(i)}|$$

Queremos mostrar que la identidad 1 es el mínimo de $T(\sigma)$.

Mediante una secuencia de modificaciones elementales podemos transformar cualquier $\sigma \in S_N$ en la permutación identidad 1. Para esto, hay que identificar $\sigma(i)=1$ y transponerlo con elementos a su izquierda hasta colocarlo en su lugar, es decir, la posición 1. Estas transposiciones son posibles ya que se cumple $\sigma(i)=1<\sigma(j)$ para toda j< i. Del mismo modo, repetimos el procedimiento para $\sigma(i)=2$ y así sucesivamente. Ahora, para $\sigma\in S_N$ definimos:

$$T(\sigma) = \max_{i} |b_i - c_{\sigma(i)}|$$

Queremos mostrar que la identidad 1 es el mínimo de $T(\sigma)$. Para esto probaremos el caso N=2

Si N=2 tenemos: $b_1 < b_2$ y $c_1 < c_2$. Además, $S_N = \{1, (12)\}$.

Si N=2 tenemos: $b_1 < b_2$ y $c_1 < c_2$. Además, $S_N = \{1, (12)\}$. Hay tres posibles configuraciones para los puntos:

Si N=2 tenemos: $b_1 < b_2$ y $c_1 < c_2$. Además, $S_N=\{1,(12)\}$. Hay tres posibles configuraciones para los puntos:

1.
$$b_1 < b_2 < c_1 < c_2$$
,

Si N=2 tenemos: $b_1 < b_2$ y $c_1 < c_2$. Además, $S_N = \{1, (12)\}$. Hay tres posibles configuraciones para los puntos:

- 1. $b_1 < b_2 < c_1 < c_2$,
- 2. $b_1 < c_1 < b_2 < c_2$,

Si N=2 tenemos: $b_1 < b_2$ y $c_1 < c_2$. Además, $S_N=\{1,(12)\}$. Hay tres posibles configuraciones para los puntos:

- 1. $b_1 < b_2 < c_1 < c_2$,
- 2. $b_1 < c_1 < b_2 < c_2$,
- 3. $b_1 < c_1 < c_2 < b_2$.

Si N=2 tenemos: $b_1 < b_2$ y $c_1 < c_2$. Además, $S_N = \{1, (12)\}$. Hay tres posibles configuraciones para los puntos:

- 1. $b_1 < b_2 < c_1 < c_2$,
- 2. $b_1 < c_1 < b_2 < c_2$,
- 3. $b_1 < c_1 < c_2 < b_2$.

En cada caso, queremos comparar

$$\mathsf{máx}\left\{|b_1-c_1|,\;|b_2-c_2|\right\}$$

contra

$$\max\{|b_1-c_2|,\ |b_2-c_1|\}$$

En los casos (1) y (2) se cumple que

$$\mathsf{máx}\left\{|b_1-c_1|,\;|b_2-c_2|
ight\}<\mathsf{máx}\left\{|b_1-c_2|,\;|b_2-c_1|
ight\}=|b_1-c_2|$$

En los casos (1) y (2) se cumple que

$$\max\{|b_1-c_1|,\;|b_2-c_2|\}<\max\{|b_1-c_2|,\;|b_2-c_1|\}=|b_1-c_2|$$

Gráficamente:

Para el caso (3) si máx $\{|b_1-c_2|,\ |b_2-c_1|\}=|b_1-c_2|$, entonces $|b_1-c_1|<|b_1-c_2|$.

Para el caso (3) si máx $\{|b_1-c_2|,\ |b_2-c_1|\}=|b_1-c_2|$, entonces $|b_1-c_1|<|b_1-c_2|$. no puede ser que $|b_2-c_2|>|b_1-c_2|$ ya que en tal caso $|b_2-c_1|>|b_2-c_2|$ contradiciendo la maximalidad de $|b_1-c_2|$.

Para el caso (3) si máx $\{|b_1-c_2|,\ |b_2-c_1|\}=|b_1-c_2|$, entonces $|b_1-c_1|<|b_1-c_2|$. no puede ser que $|b_2-c_2|>|b_1-c_2|$ ya que en tal caso $|b_2-c_1|>|b_2-c_2|$ contradiciendo la maximalidad de $|b_1-c_2|$. El caso donde máx $=|b_2-c_1|$ es análogo.

Para el caso (3) si máx $\{|b_1-c_2|,\ |b_2-c_1|\}=|b_1-c_2|$, entonces $|b_1-c_1|<|b_1-c_2|$. no puede ser que $|b_2-c_2|>|b_1-c_2|$ ya que en tal caso $|b_2-c_1|>|b_2-c_2|$ contradiciendo la maximalidad de $|b_1-c_2|$. El caso donde máx $=|b_2-c_1|$ es análogo. Por lo tanto, T(1) es el mínimo.

Finalmente, generalizamos para cualquier ${\it N}$.

Finalmente, generalizamos para cualquier N.Sea $\sigma \in S_N$ una permutacion y σ' una modificacion elemental de σ , que cambia $\sigma(i)$ con $\sigma(i+1)$.

Finalmente, generalizamos para cualquier $N.\mathsf{Sea}\ \sigma \in S_N$ una permutacion y σ' una modificacion elemental de σ , que cambia $\sigma(i)$ con $\sigma(i+1)$. Notamos que estamos suponiendo $\sigma(i+1) < \sigma(i)$. Veamos que $T(\sigma') \leq T(\sigma)$

Finalmente, generalizamos para cualquier N. Sea $\sigma \in S_N$ una permutacion y σ' una modificacion elemental de σ , que cambia $\sigma(i)$ con $\sigma(i+1)$. Notamos que estamos suponiendo $\sigma(i+1) < \sigma(i)$. Veamos que $T(\sigma') \le T(\sigma)$ Podemos aislar los índices i, i+1 en las definiciones de $T(\sigma)$ y $T(\sigma')$

$$T(\sigma) = \max_{j} \left(|b_j - c_{\sigma(j)}|
ight)$$
 $= \max \left(\max_{j
eq i, i+1} \left(|b_j - c_{\sigma(j)}|, \ |b_i - c_{\sigma(i)}|, \ |b_{i+1} - c_{\sigma(i+1)}|
ight)$
 $T(\sigma') = \max_{j} \left(|b_j - c_{\sigma'(j)}|
ight)$
 $\max \left(\max_{j
eq i, j+1} \left(|b_j - c_{\sigma(j)}|, \ |b_i - c_{\sigma(i+1)}|, \ |b_{i+1} - c_{\sigma(i)}|
ight)$

Denotamos por:

$$ightharpoonup A = \max_{j \neq i, i+1} \left(|b_j - c_{\sigma(j)} \right)$$

Denotamos por:

- $ightharpoonup A = \mathsf{máx}_{j
 eq i, i+1} \left(|b_j \overline{c_{\sigma(j)}}
 ight)$
- $\blacktriangleright \ B(\sigma) = \mathsf{máx}\left(|b_i c_{\sigma(i)}|, \ |b_{i+1} c_{\sigma(i+1)}|\right)$

Denotamos por:

- $ightharpoonup A = \max_{i \neq i, i+1} (|b_i c_{\sigma(i)})$
- lacksquare $B(\sigma') = \mathsf{máx}\left(|b_i c_{\sigma(i+1)}|, \; |b_{i+1} c_{\sigma(i)}|
 ight)$

Denotamos por:

- $ightharpoonup A = \max_{i \neq i, i+1} (|b_i c_{\sigma(i)})$
- $\blacktriangleright B(\sigma) = \max(|b_i \overline{c_{\sigma(i)}}|, |b_{i+1} \overline{c_{\sigma(i+1)}}|)$
- $\blacktriangleright \ B(\sigma') = \mathsf{máx}\left(|b_i c_{\sigma(i+1)}|, \ |b_{i+1} c_{\sigma(i)}|\right)$

Por el ejercicio 4.1.4 tenemos $B(\sigma') \leq B(\sigma)$ ya que i < i+1 y $\sigma(i+1) < \sigma(i)$.

Denotamos por:

- $ightharpoonup A = \max_{i \neq i, i+1} (|b_i c_{\sigma(i)})$
- $\blacktriangleright \ B(\sigma') = \mathsf{máx}\left(|b_i c_{\sigma(i+1)}|, \ |b_{i+1} c_{\sigma(i)}|\right)$

Por el ejercicio 4.1.4 tenemos $B(\sigma') \leq B(\sigma)$ ya que i < i+1 y $\sigma(i+1) < \sigma(i)$.

Hay dos casos:

$$T(\sigma) = A,$$

Denotamos por:

- $ightharpoonup A = \max_{j \neq i, i+1} (|b_j c_{\sigma(j)})$
- $lacksquare B(\sigma') = \mathsf{máx}\left(|b_i c_{\sigma(i+1)}|, \; |b_{i+1} c_{\sigma(i)}|
 ight)$

Por el ejercicio 4.1.4 tenemos $B(\sigma') \leq B(\sigma)$ ya que i < i+1 y $\sigma(i+1) < \sigma(i)$.

Hay dos casos:

▶ $T(\sigma) = A$, entonces $B(\sigma) \le A$ y dado que $B(\sigma') \le B(\sigma)$ obtenemos $T(\sigma') = A$.

Denotamos por:

- $ightharpoonup A = \max_{j \neq i, i+1} (|b_j c_{\sigma(j)})$
- $\blacktriangleright \ B(\sigma') = \mathsf{máx}\left(|b_i c_{\sigma(i+1)}|, \ |b_{i+1} c_{\sigma(i)}|\right)$

Por el ejercicio 4.1.4 tenemos $B(\sigma') \leq B(\sigma)$ ya que i < i+1 y $\sigma(i+1) < \sigma(i)$.

Hay dos casos:

- ▶ $T(\sigma) = A$, entonces $B(\sigma) \le A$ y dado que $B(\sigma') \le B(\sigma)$ obtenemos $T(\sigma') = A$.
- $T(\sigma) = B(\sigma),$

Denotamos por:

- $ightharpoonup A = \max_{j \neq i, i+1} \left(|b_j c_{\sigma(j)}| \right)$
- lacksquare $B(\sigma') = extstyle \mathsf{máx}\left(|b_i c_{\sigma(i+1)}|, \; |b_{i+1} c_{\sigma(i)}|
 ight)$

Por el ejercicio 4.1.4 tenemos $B(\sigma') \leq B(\sigma)$ ya que i < i+1 y $\sigma(i+1) < \sigma(i)$.

Hay dos casos:

- ▶ $T(\sigma) = A$, entonces $B(\sigma) \le A$ y dado que $B(\sigma') \le B(\sigma)$ obtenemos $T(\sigma') = A$.
- ▶ $T(\sigma) = B(\sigma)$, entonces $A \le B(\sigma)$ y dado que $B(\sigma') \le B(\sigma)$ obtenemos $T(\sigma') = \max(A, B(\sigma')) \le B(\sigma) = T(\sigma)$.

Por lo tanto, si σ es una permutación con $T(\sigma)$ mínima,

Por lo tanto, si σ es una permutación con $T(\sigma)$ mínima, hemos visto que toda modificación elemental da una nueva permutación σ' con $T(\sigma') \leq T(\sigma)$.

Por lo tanto, si σ es una permutación con $T(\sigma)$ mínima, hemos visto que toda modificación elemental da una nueva permutación σ' con $T(\sigma') \leq T(\sigma)$. Además, toda permutación puede transformarse en la identidad mediante un número finito de modificaciones elementales, de manera que $T(1) \leq T(\sigma)$.

Por lo tanto, si σ es una permutación con $T(\sigma)$ mínima, hemos visto que toda modificación elemental da una nueva permutación σ' con $T(\sigma') \leq T(\sigma)$. Además, toda permutación puede transformarse en la identidad mediante un número finito de modificaciones elementales, de manera que $T(1) \leq T(\sigma)$. Y así, la identidad da el mínimo:

$$T(\sigma) = T(1) = \max_{i} |b_i - c_i|$$

