Research Question:

- 1. What are **trajectory factors** (e.g., intersections, turns, length etc.) that influence pedestrian **map checking behavior**, and how do these factors affect the map checking behavior?
- 2. What are the differences in map-checking behavior between heavy and light traffic density conditions?

Indicator of map checking behavior in this case:

- Duration of each mobile map inactive phase
- Why?
- If we know the duration of each mobile map inactive phase, it can help achieve automatic map activation or other forms of navigation prompts.

Research questions adjustments:

- 1. What are **trajectory factors** (e.g., intersections, turns, length etc.) that influence pedestrian **map checking behavior**, and how do these factors affect the map checking behavior?
- 2. What are the differences in map-checking behavior between heavy and light traffic density conditions?
- 1. Which properties of the **environment** impact duration of each mobile map inactive phase in a map-assisted pedestrian navigation session?
- 2. Which of properties of **wayfinders** have an impact on duration of each mobile map inactive phase in a map-assisted pedestrian navigation?
- 3. Which of **map interactions** have an impact on duration of each mobile map inactive phase in a map-assisted pedestrian navigation?

Descriptive:

Independent Variable metrics:

Wayfinder	Environment	Map interaction
gender	Traffic_density	map_type
age	if_cross_road	if_pan
sbsod_score	if_pre_cross_road	if_selflocation
mobile_map_using_frequency	if_shortcut	if_follow
	num_poi	if_zoom
	segment_length	
	route_completion_rate	

Dependent Variable:

The duration of each map inactivity

Why survival analysis?

Ordinary linear regression:

Wayfinder	β	p	Environment	β	р	Map interaction	β	р
age	1.80548	0.000125	Traffic_density	1.20512	0.016657	if_follow	-5.37718	0.002824
_			<u> </u>	17.24221	< 2e-1	map_type	0.23975	0.630537
mobile_map_usingfrequency	-1.75111	0.000200	if_pre_cross_intersection	1.91026	0.007193	if_pan	-0.17795	0.819914
gender	0.53554	0.367696	route_completion_rate	-6.97748	8.13e-14	if_selflocation	1.94606	0.782931
			if_shortcut	0.01729	0.977283	if_zoom	-1.02105	0.174546
			num_poi	tbd	tbd			
			segment_length	tbd	tbd			

Ordinary linear regression:

Adjusted $R^2 = 24.22$

Why survival analysis:

- 1. Less restricted by model assumptions.
- 2. Covariate effects over time. (For instance, a factor may have little effect on shorter durations, but a large effect on longer durations.)
- 3. Interpretation of results: Survival curve, hazard functions, hazard ratio, etc.
- 4. Robust to choose when to automatic active the mobile map or give other types navigation aids. For different covariates set, the predicted outcome is not a specific number, it is survival curve. (Comparing with linear model that we give covariates to it, and it returned a specific value.)

7/10/2024

Survival analysis(KM curve):

Survival analysis(Hazard function):

Survival Analysis (model selection):

Proportional hazards model: the covariates have a constant multiplicative effect on the hazard function.

Accelerated failure time (AFT): effect of the covariates on the hazard function is multiplicative on the time scale, thus not constant. More plausible alternative (Giannopoulos, 2017)

RQ

Survival Analysis results:

Wayfinder	Exp(β)	р	Environment	Exp(β)	р	Map interaction	Exp(β)	р
age	1.153955	0.0019	Traffic_density	1.1765054	0.0010	if_follow	0.673645	0.0253
sbsod_score	1.243211	<2e-16	if_cross_intersection	5.9758095	<2e-16	map_type	0.948879	0.2835
mobile_map_using _frequency	0.835751	0.0001	if_pre_cross_intersection	1.1501770	0.0448	if_pan	0.923867	0.3021
gender	1.172570	0.0064	route_completion_rate	0.7601516	0.0027	if_selflocation	1.357681	0.6592
			if_shortcut	1.0095016	0.8739	if_zoom	1.041577	0.5810
			num_poi	tbd	tbd			
			segment_length	tbd	tbd			

 β : coefficients (β) represent the effect of covariates on the (log-transformed) survival time.

 $Exp(\beta)$: if $exp(\beta) = 1.5$, the expected survival time is 1.5 times longer for a one-unit increase in the covariate.

RQ

Survival Analysis results:

UZH

Wayfinder	Exp(β)	р	Environment	Exp(β)	р	Map interaction	Exp(β)	р
age	1.153955	0.0019	Traffic_density	1.1765054	0.0010	if_follow	0.673645	0.0253
sbsod_score	1.243211	<2e-16	if_cross_intersection	5.9758095	<2e-16	map_type	0.948879	0.2835
mobile_map_using _frequency	0.835751	0.0001	if_pre_cross_intersection	1.1501770	0.0448	if_pan	0.923867	0.3021
gender	1.172570	0.0064	route_completion_rate	0.7601516	0.0027	if_selflocation	1.357681	0.6592
			if_shortcut	1.0095016	0.8739	if_zoom	1.041577	0.5810
			num_poi	tbd	tbd			
			segment_length	tbd	tbd			

Vs linear

Wayfinder	β	p	Environment	β	p	Map interaction	β	p
age	1.80548	0.000125	Traffic_density	1.20512	0.016657	if_follow	-5.37718	0.002824
sbsod_score	1.73167	3.69e-13	if_cross_intersection	17.24221	< 2e-1	map_type	0.23975	0.630537
mobile_map_using_fr	-1.75111	0.000200	if_pre_cross_intersection	1.91026	0.007193	if_pan	-0.17795	0.819914
equency			-					
gender	0.53554	0.367696	route_completion_rate	-6.97748	8.13e-14	if_selflocation	1.94606	0.782931
			if_shortcut	0.01729	0.977283	if_zoom	-1.02105	0.174546
			num_poi	tbd	tbd			
			segment_length	tbd	tbd			

Survival Analysis results:

Survival Analysis results:

Compare the survival curves for a female aged 18-24 with an SBSOD score of 3 and a map use frequency of at most once a week, under two conditions:

crossing road or not crossing road

Survival Analysis results:

Compare the survival curves for a female aged 18-24 with an SBSOD score of 3 and a map use frequency of at most once a week, under two conditions:

20% completion rate vs 80% completion rate