Design Analysis with Bayesian Factor

1 Effect Size

Consider n_1 observations \mathbf{x}_1 from a $\mathcal{N}(0,1)$ distribution, and n_2 observations \mathbf{x}_2 from a $\mathcal{N}(\theta,1)$ distribution. We want to evaluate the effect size θ by considering Cohen's d, Hedges' g (unbiased estimator of θ derived by correcting Cohen's d by a multiplicative factor) or Glass' Δ (using only of the standard deviation of the control group). Moreover, we want to estimate the following quantities:

- $\beta = \text{prob.}$ of true positives (power);
- ϵ_S = prob. that a significant effect is estimated in the wrong direction;
- ϵ_M = average overestimation of an effect that emerges as significant;
- ϵ_N = prob. of false negatives;
- ϵ_I = prob. of an inconclusive result when the effect is significant;

Table 1 shows the possible effect sizes e. Let Z be the effect scaled by an appropriate multiplicative factor; then Z follows a noncentral t-distribution $T_{\nu,\theta N}$, with ν degrees of freedom and noncentrality parameter θN , where

$$N = \sqrt{\frac{n_1 \, n_2}{n_1 + n_2}}.$$

Table 1: Effect sizes.

	Effect e	Scaled effect Z	Degrees of freedom ν
Cohen	$rac{ar{X}_2 - ar{X}_1}{s}$	eN	$n_1 + n_2 - 2$
Hedges	$\left(1 - \frac{3}{4\nu - 1}\right) \frac{\bar{X}_2 - \bar{X}_1}{s}$	$eN\left(1-\frac{3}{4\nu-1}\right)^{-1}$	$n_1 + n_2 - 2$
Glass	$\frac{\bar{X}_2 - \bar{X}_1}{s_1}$	eN	$n_1 - 1$

2 Frequentist Approach

Consider the null hypothesis $H_0: \theta = 0$, and the alternative hypothesis $H_1: \theta \neq 0$. Under H_0 , Z follows a centered t-distribution T_{ν} with ν degrees of freedom. The p-value corresponding to an observed value z is

p-value =
$$P(Z > |z|)$$
.

For a given statistical significance α (e.g. $\alpha = 0.05$):

- if p-value $\geq \alpha$, then the evidence supports H_0 ;
- if p-value $< \alpha$, then the evidence supports H_1 .

Moreover:

$$eta=e_S=e_M=e_M=e_I=0.$$

3 Bayesian Approach

Consider the null hypothesis $H_0: \theta = 0$, and the alternative hypothesis $H_1: \theta \sim F$, where F is a distribution (analysis prior) on a set D containing zero. For simplicity, assume that F is continuous with density f. Then the Bayes factor is

$$B = \frac{P(z \mid H_1)}{P(z \mid H_0)} = \frac{\int_D P(z \mid \theta = w) f(w) dw}{P(z \mid \theta = 0)} = \frac{\int_D t_{\eta, wN}(z) f(w) dw}{t_{\eta, 0}(z)}$$

where $t_{\eta,\theta N}$ denotes the pdf of Z.

For a given threshold k (e.g. k = 3):

- if B < 1/k, then the evidence supports H_0 ;
- if $1/k \le B \le k$, then the analysis is inconclusive;
- if B > k, then the evidence supports H_1 .

Moreover:

$$\beta = P(B > k | H_1)$$

$$e_S = P(B > k, \operatorname{sgn}(e) \neq \operatorname{sgn}(\theta) | H_1, B > k)$$

$$e_M = \frac{\operatorname{mean}\{|e| : B > k\}}{\theta}$$

$$e_N = P\left(B < \frac{1}{k} | H_1\right)$$

$$e_I = P\left(\frac{1}{k} \leq B \leq k | H_1\right).$$