Министерство науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

АНАЛИЗ ГЕНЕТИЧЕСКОГО АЛГОРИТМА (1 + (ЛЯМБДА, ЛЯМБДА)) НА ЗАДАЧЕ МАКСИМАЛЬНОГО РАЗРЕЗА ГРАФА

Автор: Черноокая Виктория Александровна			
Направление подготовки:	01.03.02 Прикладная		
	математика и информатика		
Квалификация: Бакалавр			
Руководитель ВКР: Антипов Д.С., PhD			

Обучающийся Черноокая Виктория Александровна Группа M3435 Факультет ИТиП

Направленность (профиль), специализация Информатика и программирование

ВКР принята «»	20 г.		
Оригинальность ВКР%			
ВКР выполнена с оценкой			
Дата защиты «»	20 г.		
Секретарь ГЭК Павлова О.Н.			
Листов хранения			
Демонстрационных материалов/Чертежей хранения			

СОДЕРЖАНИЕ

Bl	ВЕДЕ	ЕНИЕ	5	
1.	При	менение генетического алгоритма $(1+(\lambda,\lambda))$ на задаче поиска		
максимального разреза графа				
	1.1.	Генетический алгоритм $(1+(\lambda,\lambda))$	6	
	1.2.	Задача о максимальном разрезе графа	8	
	Выв	оды по главе 1	9	
2.	Teop	ретическая оценка времени работы алгоритма	10	
	2.1.	Анализ существующих алгоритмов	10	
	2.2.	Анализ алгоритма $(1+(\lambda,\lambda))$ на полных графах	10	
	Выв	оды по главе 2	10	
3.	Эмп	ирическая оценка времени работы алгоритма для всех типов		
	граф	00В	11	
		Конфигурации тестовых запусков	11	
	3.2.	Результаты экспериментов	11	
	Выв	оды по главе 3	11	
3 /	КЛЮ	ОЧЕНИЕ	12	
П	РИЛО	ОЖЕНИЕ А. Исходный код	13	

ВВЕДЕНИЕ

В Главе 1 подробно описывается область исследования, которая включает в себя описание алгоритма $(1+(\lambda,\lambda))$ -ГА, задачи поиска максимального разреза графа. Далее, в Главе 2 приводится теоретическая оценка предложенного алгоритма на полных графах, а также сравнение с ожидаемым временем работы других эволюционных алгоритмов. В Главе 3 описываются результаты выполнения известных эволюционных алгоритмов, включая $(1+(\lambda,\lambda))$ -ГА на полных, полных двудольных и случайных графах, а также их сравнение.

ГЛАВА 1. ПРИМЕНЕНИЕ ГЕНЕТИЧЕСКОГО АЛГОРИТМА $(1+(\lambda,\lambda))$ НА ЗАДАЧЕ ПОИСКА МАКСИМАЛЬНОГО РАЗРЕЗА ГРАФА

В данной главе описывается алгоритм $(1+(\lambda,\lambda))$ и постановка исследуемой задачи, а именно поиска максимального разреза графа. Также сформулированны условия для получения теоретической и эмпирической оценки применения алгоритма $(1+(\lambda,\lambda))$ на задаче максимального разреза графа.

1.1. Генетический алгоритм $(1 + (\lambda, \lambda))$

Генетический алгоритм $(1+(\lambda,\lambda))$ — относительно недавно сформулированный эволюционный алгоритм, минимизирующий функцию приспособленности $f(x): \{0,1\}^n \to \mathbb{R}$ и содержайщий в себе 3 главных параметра:

- размер популяции $\lambda \in \mathbb{N}$;
- вероятность мутации $p \in [0, 1]$;
- смещённость скрещивания $c \in [0, 1]$.

 $(1 + (\lambda, \lambda))$ -ГА работает с одной родительской особью x, которая инициализируется случайной битовой строкой длины n, где n - размер проблемы. Затем проходят итерации, каждая из которых состоит из двух фаз: мутации и скрещивания (или кроссовера). На этапе мутации алгоритм сначала выбирает силу мутации ℓ из биномиального распределения Bin(n,p) с n испытаниями и вероятностью успеха p. В алгоритме в фазе мутации (1+1)-ЭА мы имеем $p=\frac{1}{n}$, но поскольку мы стремимся к более быстрому результату, то обычно рассматривают вероятность p, превышающую $\frac{1}{n}$. После этого создается λ потомков, каждый путем инвертирования ℓ случайных бит родителя. То есть выбираем набор из ell различных позиций в [n] случайным образом и создаем потомка, перевернув битовые значения в этих позициях. Все эти потомки находятся на одинаковом расстоянии от родителя. На промежуточном этапе отбора потомок с наименьшим значением функции приспособленности выбирается победителем мутации для дальнейшего участия в фазе скрещивания. Если таких несколько, то победитель выбирается равномерно случайным образом. Обозначим этого потомка как x'. Далее следует фаза скрещивания. Снова создается λ потомков. На это раз каждый бит потомка берется из победителя мутации с вероятностью c и из родителя с вероятностью 1-c. Победитель скрещивания у получается тем же способом, как и на фазе мутации. В конце итерации происходит отбор или фаза выбора, где происходит сравнение значений функции приспособленности родителя x и победителя скрещивания y. Родитель заменяется особью-победителем y фазы скрещивания, если значение f(y) не больше f(x). Псевдокод алгоритма представлен в Листинге 1.

```
Листинг 1 — Псевдокод (1 + (\lambda, \lambda))-ГА, минимизирующего f
x \leftarrow СЛУЧАЙНАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ БИТ ДЛИНЫ n
for t \leftarrow [1, 2, 3...] do
    Выбрать \ell из Bin (n, p)
                                                                               ⊳ Фаза мутации
    for i \in [1..\lambda] do
         x^{(i)} \leftarrow копия x с инвертированными \ell битами, взятыми из равно-
МЕРНОГО РАСПРЕДЕЛЕНИЯ
    end for
    x' \leftarrow \arg\min\nolimits_{z \in \{x^{(1)}, \dots, x^{(\lambda)}\}} f(z)
    for i \in [1..\lambda] do
                                                                          ⊳ Фаза срещивания
         y^{(i)} \leftarrow каждый бит с вероятностью c берётся из x' иначе из x
    end for
    y \leftarrow \arg\min_{z \in \{y^{(1)}, \dots, y^{(\lambda)}\}} f(z)
    if f(y) \leqslant f(x) then
                                                                                         ⊳ Отбор
         x \leftarrow y
    end if
end for
```

Алгоритм зависит от размера популяции $\lambda \in \mathbb{N}$, и вероятностей мутации и скрещивания $p,c \in [0,1]$. Без доказательства заметим, что алгоритм не сходится к оптимальному решению, когда p=0 или c=0, или p=c=1. Для всех остальных случаев он в конце концов находит (и сохраняет) оптимум. При c=1 на фазе скрещивания получается победитель мутации, что исключает влияние фазы кроссовера и $(1+(\lambda,\lambda))$ -ГА сводится к $(1+\lambda)$ -ЭА. В частности, для $c=1,p=\frac{1}{n}\lambda=1$ алгоритм является уже упомянутым (1+1)-ЭА. Во всех остальных случаях 0< c<1 результат алгоритма $(1+(\lambda,\lambda))$ -ГА зависит от фазы скрещивания. Поскольку для многих эволюционных алгоритмов, основанных на мутациях, вероятность мутации $\frac{1}{n}$ является рекомендуемым выбором [ссылка] (и иногда доказуемо оптимальным [ссылка]), то следует использовать алгоритм $(1+(\lambda,\lambda))$ с p,c, удовлетворяющим $pc=\frac{1}{n}$. Из интуитивных соображений в [ссылка] было предложено использовать такое соотношение параметров размера задачи n и размера популяции λ :

$$-p = \frac{\lambda}{n};$$
$$-c = \frac{1}{\lambda}.$$

Также такое соотношение параметров показало свою эффективность и было оптимальным на других анализируемых задачах, таких как OneMax [ссылка], LeadingOnes [ссылка] и MAX-3SAT [ссылка]). В данной работе также будем исспользовать предложенные соотношения параметров.

1.2. Задача о максимальном разрезе графа

Смысл задачи о максимальном разрезе графа - для заданного неориентированного графа без петель и паралельных ребер G=(V,E) с множеством вершин V и ребер E разбить множество вершин на 2 непересекающихся подмножества V_1 и V_2 так, что количество «разрезанных» ребер максимально и $V_1 \cup V_2 = V$. Ребро $(v,u) \in E$ назвается «разрезанным», если инцидентные ему вершины находятся в разных подмножествах V_1 и V_2 , то есть $v \in V_1 \cap u \in V_2$ или $v \in V_2 \cap u \in V_1$.

P - разбиение множества V на 2 подмножества V_1 и V_2 . Представим его в виде битовой строки, где i-ый бит равен нулю, если $v_i \in V_1$, и единице, если $v_i \in V_2$. Определим функцию Cut от разбиения P :

$$Cut(P) = |\{e = (v_1, v_2) \in E : v_1 \in V_1 \cap v_2 \in V_2\}|.$$

Неформально говоря, это количество «разрезанных» ребер.

Задача является NP-трудной, что в текущих реалиях означает, что не существует детерминированного алгоритма, решающего задачу за полиномиальное время. Поэтому используются эволюционные алгоритмы. Обычно это нетривиальная задача, так как мы не можем заранее знать сколько ребем мы можем «разрезать». Например, для полного графа K_n с четным n оптимальным разбиение является то, которое разбивает вершины на два подмножества размером $\frac{n}{2}$. В этом случае мы разрезаем $\frac{n^2}{4}$ ребер, что чуть больше половины всех $\frac{n(n-1)}{2}$ ребер.

В рамках этой работы функцию приспособленности определим как

$$f(x) = E - 2Cut(x),$$

где х - разбиение, и будем считать, что разрез найден, если разрезана хотя бы половина ребер. Это позволит нам получить хоть какую-то оценку эволюционных алгоритмов, а также для многих частных случаев является приближенным значением. Ранее уже проводились исследования работы других эволюцион-

ных алгоритмов на данной задаче с таким условием остановки, но для алгоритма $(1+(\lambda,\lambda))$ -ГА результатов ожидаемого времени работы еще получено не было.

Выводы по главе 1

В данной главе был сформулирован алгоритм $(1+(\lambda,\lambda))$, а также задача используемая для анализа времени работы на нем. Сформулированны и предложены оптимальные параметры для генетического алгоритма, а также затронуто сравнение реализации $(1+(\lambda,\lambda))$ с другими существующими эволюционными алгоритмами.

ГЛАВА 2. ТЕОРЕТИЧЕСКАЯ ОЦЕНКА ВРЕМЕНИ РАБОТЫ АЛГОРИТМА

2.1. Анализ существующих алгоритмов

2.2. Анализ алгоритма $(1 + (\lambda, \lambda))$ на полных графах

Доказательство. Рассмотрим одну итерацию фазы мутации. ℓ - сила мутации, x' - особь победителя, $B'=\{i\in[n]\mid x_i=0\cap x_i'=1\}$ - набор битов, которые стали единицами из нулей. Так как $\lambda=\omega(1)$ и ℓ из $\mathrm{Bin}\left(n,\frac{\lambda}{n}\right)$, то простое применение границ Чернова [ссылка] говорит, что $|\ell-\lambda|\leqslant \frac{\lambda}{2}$ с вероятностью 1-o(1), то есть $\ell\in[\frac{\lambda}{2},\frac{3\lambda}{2}]$.

Определим d=d(x) - количество нулей в разбиении x. Проанализируем генерацию одного из λ потомств. $B_1=\{i\in[n]\mid x_i=0\cap x_i^{(1)}=1\}$. Тогда снова используя границы Чернова, но для гипергеометрического распределения $HG(d,n,\ell)$ [ссылка], получим $Pr[|B_1|\geqslant \frac{d\ell}{2n}]=1-o(1)$. Так как все потомки имеют одинаковое расстояние Хэмминга от x, а победитель мутации всегда особь с максимальным B_1 , то $|B'|\geqslant |B_1|\geqslant \frac{d\ell}{2n}\geqslant \frac{\ell}{4}$. Учитывая ограничения, полученные для ℓ , $Pr[|B'|\geqslant \frac{\lambda}{8}]=1-o(1)$.

 $\mathit{Леммa}$ 2. Вероятность, что из победителя мутации будет взято хотя бы $\frac{c\lambda}{log\lambda}$ бит равна $\Omega(1)$

Доказательство.

Выводы по главе 2

В этой главе была получена верхняя оценка математического ожидания времени работы алгоритма $(1+(\lambda,\lambda))$ на задаче разреза половины ребер на полных графах $\mathbb{E}[T]=O(nlog(\lambda))$. Также исходя из полученных данных остальных алгоритмов для этой задачи, можно сделать вывод, что применение этого алгоритма менее эффективно.

ГЛАВА 3. ЭМПИРИЧЕСКАЯ ОЦЕНКА ВРЕМЕНИ РАБОТЫ АЛГОРИТМА ДЛЯ ВСЕХ ТИПОВ ГРАФОВ

3.1. Конфигурации тестовых запусков 3.2. Результаты экспериментов Выводы по главе 3

ЗАКЛЮЧЕНИЕ

В данном разделе размещается заключение.

приложение а. исходный код