

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕ	Т «Информатика и системы управления»
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работе № 5 по курсу «Моделирование»

на тему: «Моделирование работы информационного центра»

Студент <u>ИУ7-73Б</u>		Марченко В.
(Группа)	(Подпись, дата)	(И. О. Фамилия)
r		D II D
Iреподаватель		Рудаков И. В.
	(Подпись, дата)	(И. О. Фамилия)

СОДЕРЖАНИЕ

1	Теоретическая часть		
	1.1 Задачи на лабораторную работу	, .	9
2	Примеры работы программы		4

1 Теоретическая часть

1.1 Задачи на лабораторную работу

В информационный центр приходят клиенты через интервал времени 10 ± 2 минуты. Если все три имеющихся оператора заняты, клиенту отказывают в обслуживании. Операторы имеют разную производительность и могут обеспечить обслуживание среднего запроса пользователя за 20 ± 5 , 40 ± 10 и 40 ± 20 мин. Клиенты стремятся занять свободного оператора с максимальной производительностью. Полученные запросы сдаются в накопитель, откуда выбираются на обработку. На первый компьютер попадают запросы от 1-го и 2-го операторов, на второй — от 3-го. Время обработки запроса первым компьютером — 15 мин, вторым — 30 мин. Промоделировать процесс обработки трехсот запросов. Определить вероятность отказа в обслуживании.

Рисунок 1.1 – Схема информационного центра

В процессе взаимодействия клиентов с информационным центром возможны два режима: режим нормального обслуживания (т. е. клиент выбирает одного из свободных операторов, отдавая предпочтение тому, у которого меньше номер) и режим отказа в обслуживании, когда все операторы заняты.

Эндогенные переменные: время обработки задания i-м оператором и время решения этого задания j-м компьютером.

Экзогенные переменные: число обслуженных клиентов и число клиентов, получивших отказ.

Вероятность отказа можно вычислить по формуле $P=\frac{n_d}{n_d+n_p},$ где n_d — количество клиентов, получивших отказ, а n_p — количество обслуженных клиентов.

2 Примеры работы программы

На рисунках 2.1–2.2 показаны результаты работы программы при различных значениях параметров.

Рисунок 2.1 — Результат работы программы N_{0} 1

			-		×		
Параме	Па	араметры мод	елиро	вания			
Интервал п		Количество	заяв	OK			
8	±	1		800			
Параме	гры операторов	3	P	езультат моде	элиро	вания	
Время обработ	ки первым опер	ратором		Количество	отказ	ОВ	
10	±	3		32			
Время обработ	ки вторым опер	ратором		Вероятность	отка	за	
20	±	5		4.00%	ó		
Время обработ	ки третьим опер	ратором		Начальные з	начен	RNI	
30	±	9		Моделиро	вать		
			-				

Рисунок 2.2 – Результат работы программы N_2 2