

Proposta de teste de avaliação		
Matemática A		
10.º Ano de escolaridade		
Duração: 90 minutos Data:		

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva, na folha de respostas, o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida aproximação, apresente sempre o valor exato.

1. Na figura está representado o quadrado $\begin{bmatrix} ABCD \end{bmatrix}$ e um ponto E que pertence ao lado $\begin{bmatrix} BC \end{bmatrix}$.

Sabe-se que \overline{BE} é a terça parte de \overline{BC} e que $\overline{AE} = 2\sqrt{5}$.

A área do quadrado $\begin{bmatrix} ABCD \end{bmatrix}$ é:

- **(A)** 20
- **(B)** 18
- **(C)** 16
- **(D)** $12\sqrt{3}$

2. Considere, num plano munido de um referencial ortonormado xOy, o conjunto de pontos definido pela condição

$$y \ge 0 \land 2x - y \ge 0 \land 2y - x \le 6$$

Represente graficamente este conjunto de pontos e determina a sua área.

3. Na figura está representada, num referencial o.n. xOy, a circunferência que tem centro no ponto C e qua passa na origem do referencial e no ponto A(2,-4).

Sabe-se que o ponto ${\cal C}$ pertence à bissetriz dos quadrantes ímpares.

3.4. Sabe-se que, para além da origem do referencial, a circunferência interseta os eixos coordenados em dois pontos B e D. Mostre que [BD] é um diâmetro da circunferência.

4. Na figura está representado, em referencial o.n. Oxyz, o cubo [OABCDEFG], de volume igual a 8.

Sabe-se que os vértices A, C e E pertencem aos semieixos positivos Ox, Oy e Oz, respetivamente.

Qual das seguintes pode ser uma equação do plano mediador do segmento de reta [GD]?

- (A) z = 2
- **(C)** x = 2
- **(D)** x = 1
- Considere, num referencial o.n. Oxyz o ponto A(-3, 4, -2) bem como a superfície esférica de 5. centro C, definida pela equação $x^2 + y^2 + z^2 + 2x - 4z - 31 = 0$.
 - Mostre que o ponto A pertence à superfície esférica.
 - **5.2.** Determine as coordenadas do ponto B sabendo que AB é um diâmetro da superfície esférica.
 - **5.3**. A reta definida pela condição $x = -3 \land y = 4$ interseta a superfície esférica em dois pontos: o ponto A e o ponto D. Determine a área do triângulo [ACD].
 - Considere a linha de interseção da superfície esférica com o plano xOz. Determine o 5.4. comprimento dessa linha.
- 6. No referencial ortonormado da figura está uma representação geométrica de um determinado conjunto de pontos do plano.

Qual das condições seguintes pode definir o conjunto representado?

(B)
$$\begin{cases} x^2 + y^2 \ge 4 \\ x^2 + (y - 2)^2 \le 9 \end{cases}$$

FIM

Cotações:

Item												
Cotação (em pontos)												
1.	2.	3.1.	3.2.	3.3.	3.4.	4.	5.1.	5.2.	5.3.	5.4.	6.	Total
15	20	20	15	15	20	15	15	15	20	15	15	200

Proposta de resolução

1. Designando por x a medida do lado do quadrado temos que $\overline{BE} = \frac{x}{3}$.

Pelo Teorema de Pitágoras,

$$x^{2} + \left(\frac{x}{3}\right)^{2} = \left(2\sqrt{5}\right)^{2} \Leftrightarrow x^{2} + \frac{x^{2}}{9} = 4 \times 5 \Leftrightarrow$$
$$\Leftrightarrow 9x^{2} + x^{2} = 9 \times 20 \Leftrightarrow 10x^{2} = 9 \times 20 \Leftrightarrow$$
$$\Leftrightarrow x^{2} = 18$$

Logo, a área do quadrado é igual a 18.

Resposta: (B)

2.
$$2x - y \ge 0 \Leftrightarrow y \le 2x$$

$$2y - x \le 6 \Leftrightarrow 2y \le x + 6 \Leftrightarrow y \le \frac{1}{2}x + 3$$

x	y = 2x
0	0
1	2

х	$y = \frac{1}{2}x + 3$
-6	0
0	3

Seja A o ponto de interseção das retas de equações y = 2x e $y = \frac{1}{2}x + 3$.

$$\begin{cases} y = \frac{1}{2}x + 3 \Leftrightarrow \begin{cases} 2x = \frac{1}{2}x + 3 \Leftrightarrow \begin{cases} 4x = x + 6 \\ y = 2x \end{cases} \Leftrightarrow \begin{cases} 3x = 6 \\ y = 2x \end{cases} \Leftrightarrow \begin{cases} x = 2 \\ y = 4 \end{cases}$$

A(2,4)

O domínio pedido é o triângulo [OAB] sendo A(2,4) e B(-6,0).

Relativamente à base [OB], sendo $\overline{OB} = 6$, a altura do triângulo [OAB] é 4, a ordenada de A.

$$A_{[OAB]} = \frac{6 \times 4}{2} = 12$$

- 3. A(2,-4); C(x,x), x < 0
 - **3.1.** Seja P(x, y) um ponto da mediatriz de [OA].

$$d(P,O) = d(P,A) \Leftrightarrow$$

$$\Leftrightarrow (x-0)^2 + (y-0)^2 = (x-2)^2 + (y+4)^2 \Leftrightarrow$$

$$\Leftrightarrow x^2 + y^2 = x^2 - 4x + 4 + y^2 + 8y + 16 \Leftrightarrow$$

$$\Leftrightarrow 4x - 8y = 20 \Leftrightarrow$$

$$\Leftrightarrow x - 2y = 5$$

3.2. Dado que C é o centro da circunferência, vem d(C, O) = d(C, A), ou seja, C pertence à mediatriz de [OA], de equação x - 2y = 5. Logo, como C(x, x), temos:

$$x - 2 \times x = 5 \Leftrightarrow -x = 5 \Leftrightarrow x = -5$$

Assim, C tem coordenadas (-5, -5).

3.3. Centro: C(-5, -5)

$$r = \overline{OC} = \sqrt{(-5)^2 + (-5)^2} = \sqrt{50}$$

Equação reduzida da circunferência:

$$(x+5)^2 + (y+5)^2 = 50$$

3.4. Ponto *B* :

O eixo Ox é definido pela equação y = 0. Substituindo y por 0 na equação da circunferência, vem:

$$(x+5)^{2} + (0+5)^{2} = 50 \Leftrightarrow (x+5)^{2} = 25 \Leftrightarrow$$

$$\Leftrightarrow x+5 = -5 \lor x+5 = 5 \Leftrightarrow$$

$$\Leftrightarrow x = -10 \lor x = 0$$

$$B(-10,0)$$

Ponto D:

O eixo Oy é definido pela equação x=0. Substituindo x por 0 na equação da circunferência, vem:

$$(0+5)^{2} + (y+5)^{2} = 50 \Leftrightarrow (y+5)^{2} = 25 \Leftrightarrow$$

$$\Leftrightarrow y+5 = -5 \lor y+5 = 5 \Leftrightarrow$$

$$\Leftrightarrow y = -10 \lor y = 0$$

$$D(0,-10)$$

Ponto médio de [BD]:

$$\left(\frac{-10-0}{2}, \frac{0-10}{2}\right) = \left(-5, -5\right)$$

O ponto médio da corda $\begin{bmatrix}BD\end{bmatrix}$ é o centro da circunferência. Logo, $\begin{bmatrix}BD\end{bmatrix}$ é um diâmetro da circunferência.

4. Se o volume do cubo é igual a 8 então a medida da aresta é 2.

Logo, uma equação do plano mediador do segmento de reta $\begin{bmatrix} GD \end{bmatrix}$ é x=1.

Resposta: (D)

5.
$$x^2 + y^2 + z^2 + 2x - 4z - 31 = 0 \Leftrightarrow$$

 $\Leftrightarrow (x^2 + 2x + 1) - 1 + y^2 + (z^2 - 4z + 4) - 4 - 31 = 0 \Leftrightarrow$
 $\Leftrightarrow (x + 1)^2 + y^2 + (z - 2)^2 = 36$

Raio: r = 6

Centro: C(-1, 0, 2)

5.1.
$$A(-3, 4, -2)$$

 $(-3+1)^2 + 4^2 + (-2-2)^2 = 36$
 $\Leftrightarrow 4+16+16=36 \text{ (verdadeiro)}$

A pertence à superficie esférica.

5.2.
$$A(-3,4,-2), C(-1,0,2) \in B(x,y,z)$$

Se [AB] é um diâmetro da superfície esférica, então C é o ponto médio de [AB].

$$\left(\frac{-3+x}{2}, \frac{4+y}{2}, \frac{-2+z}{2}\right) = \left(-1, 0, 2\right) \Leftrightarrow$$

$$\Leftrightarrow \frac{-3+x}{2} = -1 \wedge \frac{4+y}{2} = 0 \wedge \frac{-2+z}{2} = 2 \Leftrightarrow$$

$$\Leftrightarrow -3+x = -2 \wedge 4 + y = 0 \wedge -2 + z = 4 \Leftrightarrow$$

$$\Leftrightarrow x = 1 \wedge y = -4 \wedge z = 6$$

$$B(1, -4, 6)$$

5.3.
$$A(-3, 4, -2)$$
; $x = -3 \land y = 4$

O ponto D é da forma (-3, 4, z).

Como este ponto pertence à superficie esférica, temos:

$$(-3+1)^{2} + 4^{2} + (z-2)^{2} = 36 \Leftrightarrow$$

$$\Leftrightarrow 4+16+(z-2)^{2} = 36 \Leftrightarrow$$

$$\Leftrightarrow (z-2)^{2} = 16 \Leftrightarrow$$

$$\Leftrightarrow z-2 = -4 \lor z-2 = 4 \Leftrightarrow$$

$$\Leftrightarrow z = -2 \lor z = 6$$

Para z = -2, obtemos o ponto A.

Para z = 2, obtemos o ponto D(-3, 4, 6).

Temos:
$$A(-3,4,-2)$$
; $C(-1,0,2)$ e $D(-3,4,6)$

O triângulo [ACD] é isósceles porque $\overline{AC} = \overline{DC} = r = 6$.

$$\overline{AD} = |6 - (-2)| = 8$$

Altura do triângulo [ACD]:

$$h^{2} + 4^{2} = 6^{2}$$
$$h = \sqrt{36 - 16} = \sqrt{20} = \sqrt{4 \times 5} = 2\sqrt{5}$$

Área do triângulo [ACD]:

$$A_{[ACD]} = \frac{8 \times 2\sqrt{5}}{2} = 8\sqrt{5}$$

- **5.4.** O plano xOz é definido pela equação y=0 e, como tal, passa no centro da superfície esférica, C(-1,0,2). Logo, a interseção é uma circunferência de raio igual ao da superfície esférica, isto é, r=6. Portanto, o seu comprimento é $C=2\pi r=2\pi\times 6=12\pi$.
- **6.** Na figura está uma representação de cada um dos conjuntos definidos pelas condições dadas:

Resposta: (A)

