Projeto - Localização de Facilidades - P centros

Organização do Trabalho e Questões

Nome 1:	NUSP:
Nome 2:	NUSP:
Nome 3:	NUSP:

Trabalho da Disciplina Pesquisa Operacional

O trabalho contará com 3 partes e poderá ser entregue em um mesmo notebook com as analises separadas no texto:

- 1. Parte 1 Esta parte cobrirá uma aplicação elaborada pelo Monitor Guilherme. O objetivo desta parte é mostrar como trabalhar com uma base de dados e construir modelos de otimização linear e linear inteira para analisar diversas situações em que precisa tomar decisões. Será disponibilizado um notebook com as instruções desta parte.
- 2. Parte 2 Nesta parte, o grupo irá implementar um problema clássico de otimização. Alguns exemplos serão disponibilizados para testes. O grupo deve analisar as soluções bem como comentar sobre o desempenho do solver em resolver os testes. Após a análise, o grupo deve falar sobre o problema apresentando uma breve revisão da literatura considerando no mínimo duas referências sobre o problema. Nesta revisão, falar sobre a aplicação e como resolveram o problema (modelagem com o solver de otimização, heurísticas, metaheurísticas).
- 3. Parte 3 Nesta parte, o grupo deve propor e definir um problema, desenvolver um modelo matemático, apresentar um exemplo prático e analisar a solução. O problema pode ser uma variação criativa de um desafio já definido na literatura, ou o grupo pode optar por trazer à tona um problema inspirado em situações do cotidiano.

0.1 Parte 2 - O Problema de Localização de Instalações - P centros

A localização de instalações é um aspecto crítico do planejamento estratégico de empresas privadas e públicas. Exemplos típicos no setor público envolvem decisões de localização de centros de saúde, escolas e estações de bombeiros, enquanto no setor privado tem-se a localização de fábricas, armazéns e centros de distribuição. Em diversas situações, tais como em sistemas de distribuição, as decisões de localização de instalações e de designação de clientes a instalações são feitas simultaneamente. Neste escopo, o Problema de Localização de Instalações Capacitado considera que cada cliente requer o processamento de um dado volume de demanda e cada instalação (planta industrial) tem um limite do volume de demanda total que ela pode processar. O objetivo do problema consiste em decidir a localização das instalações e a designação de clientes a elas com o mínimo custo. Em diversas situações, tais como em sistemas de distribuição, as decisões da localização de facilidades e de designação de clientes a facilidades são feitas simultaneamente. O problema das p-centros envolve a localização de p facilidades e a designação de clientes a facilidades de modo a minimizar a distância máxima de clientes a facilidades. Este problema admite variações do modelo básico (cite uma variação no relatório). O problema de p-centros-nós restringe os nós de facilidades aos nós de clientes, enquanto o problema de p-centros-absolutos permite que os nós de facilidades estejam em qualquer lugar dos arcos que ligam nós de clientes.

Para tal, considere os seguintes parâmetros:

- J : Conjunto de nós j que representam os clientes
- I : Conjunto de locais i candidatos à localização de facilidades
- q_j : Demanda do cliente j
- c_{ij} : Distância do cliente j à facilidade localizada em i (atenção, no projeto de localização de facilidades, consideramos esse valor como o custo).
- \bullet f_i : Custo fixo de instalação de uma facilidade no local i
- Q_i : Capacidade da facilidade instalada no local i

Instância 1: Considere a situação na qual uma empresa possui 5 centros de distribuição para suas atividades logísticas. Estes CDs atendem clientes espalhados por todo o país, mas que por conveniência do planejamento da empresa, são "agregados" em 6 cidades. A empresa desconfia que alguns desses CDs sejam desnecessários, de forma que economias substanciais podem ocorrer com o fechamento destes CDS sem que haja deterioração do nível de serviço. A tabela abaixo apresenta os custos para atender a demanda total da cidade j a partir de cada CD i, assim como outros dados relevantes.

								CS_i	CF_t
	1	16750	3200	8220	9780	8120	30800	18	7650
CD i	2	14600	15520	11640	600	3465	13200	24	3500
	3	19250	19200	17100	3000	6650	8800	27	5000
	4	3800	10840	6516	6270	4655	25531	22	4100
	5	9220	13168	8400	3048	2177	19767	31	2200
		10	8	12	6	7	11		

CS; = capacidade mensal de suprimento do CD i (em toneladas)

 D_i = demanda mensal da cidade j (em toneladas)

 CF_i = custo fixo mensal do CD i

Instância 2: Número de localidades para CDs duplicado em relação ao da Instância 1. Dados na tabela a seguir

Cidade j												
		1	2	3	4	5	6	CS_i	CF_i			
	1	16750	3200	8220	9780	8120	30800	18	7650			
	2	14600	15520	11640	600	3465	13200	24	3500			
	3	19250	19200	17100	3000	6650	8800	27	5000			
	4	3800	10840	6516	6270	4655	25531	22	4100			
	5	9220	13168	8400	3048	2177	19767	31	2200			
CD i	6	16750	3200	8220	9780	8120	30800	18	8000			
	7	14600	15520	11640	600	3465	13200	24	350			
	8	19250	19200	17100	3000	6650	8800	40	5000			
	9	3800	10840	6516	6270	4655	25531	22	410			
	10	9220	13168	8400	3048	2177	19767	31	220			
	D_{j}	10	8	12	6	7	11					

Variáveis:

- x_{ij} : 1 se o cliente j é atendido pela facilidade localizada em i, 0 caso contrário;
- y_i : 1 se a facilidade é aberta no local i, 0 caso contrário
- r: Distância máxima de um cliente quando designado a uma facilidade
- (1) $min \quad z = r$

- (1) $min^{-}z = r$ (2) $r \ge \sum_{i=1}^{N} d_{ij}x_{ij}$ $para^{-}j = 1, ..., M$ (3) $\sum_{i=1}^{N} x_{ij} = 1$ $para^{-}j = 1, ..., M$ (4) $\sum_{i=1}^{N} y_{i} = p$ (5) $\sum_{j=1}^{M} q_{j}x_{ij} \le Q_{i}y_{i}$ $para^{-}i = 1, ..., N$

- (6) $x_{ij} \in \{0, 1\}, y_i \in \{0, 1\}$ para i = 1, ..., N, j = 1, ..., M

Nas instâncias, dadas nas figuras, considere que o valor de c_{ij} como a distância, apesar de estar escrito como custo. Explique as restrições no relatório e a função objetivo. Faça variações dos valores de P (P=1,..., P=Número de facilidades possíveis). Veja que para alguns valores de P, o problema será infactível. Assim que P for factivel, vá aumentando o P e verifique o custo total de instalação, agora considerando o valor de f_i . Apresente um gráfico com a variação do custo, com o aumento de P. Analise também a distância máxima r quando faz a variação de P. Explique as restrições no relatório e a função objetivo. O relatório, como dito, pode ser feito no notebook (python + resolver de otimização Gurobi, como mostrado em sala).

- retire agora as restrições que obrigam a instalar P centros. Analise agora esse novo problema considerando todas as instâncias anteriores e as variações de P.
- Atenção, esse problema com o modelo está na página 266 do livro de Pesquisa Operacional (livro texto) da edição 2 (nova).

Instância 3: Instância 2 com as demandas das cidades duplicadas.

Instância 4: Número de cidades duplicado em relação ao do Exemplo 1. Dados na tabela a seguir

	Cidade j														
	1	16750	3200	8220	9780	8120	30800	16750	3200	8220	9780	8120	30800	18	7650
	2	14600	15520	11640	600	3465	13200	14600	15520	11640	600	3465	13200	24	3500
CD i	3	19250	19200	17100	3000	6650	8800	19250	19200	17100	3000	6650	8800	27	5000
	4	3800	10840	6516	6270	4655	25531	3800	10840	6516	6270	4655	25531	22	4100
	5	9220	13168	8400	3048	2177	19767	9220	13168	8400	3048	2177	19767	31	2200
	D_j	10	8	12	6	7	11	10	8	12	6	7	11		

0.2 Trabalho Parte 3 - Parte criativa

o grupo deve propor e definir um problema. Desenvolver um modelo matemático, apresentar um exemplo prático e analisar a solução. O problema pode ser uma variação criativa de um problema já definido na literatura. O grupo também pode optar por trazer um problema inspirado em situações do seu cotidiano. O problema pode ser simples porém, o aluno deve ilustrar dois exemplos. Para apresentar o problema tem que seguir o exemplo do problema definido na parte 2, bem como a modelagem. Para apresentar o modelo, pode usar uma forma genérica porém, pode descrever de uma forma mais detalhada.