

AUTOMATISATION DU TEST DE BECHDEL

SOUTENANCE FINALE – PROJET INFONUM

Lucie Clemot, Sacha Muller et Guilhem Prince

19/04/2023

PLAN

Introduction

Présentation du test de Bechdel Reformulation du problème Exposition de nos objectifs

Solution technique proposée

Structure de l'outil
Base de données
Implémentation des critères
Ajout des règles
Intervention utilisateur

Site internet

Back-end et API
Développement front-end
Déploiement
Démonstration
Performance de l'outil

Prise de recul sur le projet

Pistes d'amélioration
Déroulement et avancement du
projet
Considérations éthiques et
environnementales
Conclusion et remerciements

PRÉSENTATION DU TEST DE BECHDEL

On dit qu'un film valide le test de Bechdel s'il contient :

REFORMULATION DU PROBLÈME, NOS OBJECTIFS

OBJECTIF

Créer un outil performant, rapide et accessible pour étudier si un film valide le test de Bechdel

Structure proposée

Création d'un site en ligne

&

Contribution Open Source

Qui prend en entrée un Script de film

STRUCTURE DE L'OUTIL

BASE DE DONNÉES D'ENTRAINEMENT

PARSING DES SCRIPTS

Méthode naïve

Arbre de décision construit manuellement

Parse correctement les 2/3 du dataset

Méthode Deep Learning

Modèle entraîné sur les labels inférés par l'arbre

Parse correctement le reste du dataset

Accuracy de 85%

PRÉDICTION DU GENRE DES PERSONNAGES

Méthode I : classification sur les prénoms

Peu performant dans les faits, sur des prénoms fictifs

Méthode 2 : Coréférence neuronale sur les passages narratifs

Utilisation du module neuralcoref de Spacy

TOPIC MODELING SUR LE CONTENU DES CONVERSATIONS

Une méthode naïve

JUDY

Score 2/3 ✓

Uh, Bogo Otterton? Been coming to your yoga class for like 6 years? The little boy, you know?

NANGI

I have no memory of this beaver.

JUDY

He's an otter actually.

Détection de mots clés dans les répliques.

En pratique, pas de contre exemples trouvés dans nos scripts Des éventuelles améliorations

NANGI

Do you know Jack? He's the baker accross the street.

JUDY

Yeah, a very good baker! Oh look, that's Barack Obama leaving the bakery!

NANGI

They must have talked a little.

Ajout des prénoms communs aux mots clés?

"Baker, they": Ajout de la coréférence dans les répliques

RÉFLEXION SUR LA DURETÉ DES RÈGLES

AJOUT INTERVENTION UTILISATEUR

BACK-END ET API

Back-end

POST	Upload d'un fichier texte, conversion en objet Script, calcul du score	\triangle
	Re-calcul du score après une correction de genre par l'utilisateur·ice	
GET	Récupération du score étant donné un identifiant de script	<u>*=</u>
	Récupération du contenu des scènes clé étant donné un identifiant de script	<u></u>

Base de données d'objets scripts

DÉVELOPPEMENT FRONT-END

DÉPLOIEMENT

DÉMO DE L'OUTIL

Lien vers le site internet

PERFORMANCE DE L'OUTIL

DE PRÉCISION

Sur la base de 700 films,

En configuration T, F

DE RAPPEL

Sur la base de 700 films,

En configuration F, F

Accuracies

PISTES D'AMÉLIORATION

Obtention d'un nom de domaine impactant Location d'une machine virtuelle plus performante

Création d'une base de données disponible en ligne

DÉROULEMENT ET AVANCEMENT DU PROJET

Avancement des différentes étapes

Organisation en groupe

CONSIDÉRATIONS ÉTHIQUES ET ENVIRONNEMENTALES

Enjeux éthiques

Écueil dans la prédiction de genre d'un personnage

Inclusion des individus nonbinaires dans l'outil (et donc dans le test) Impact environnemental

gCO2ePour entrainer le modèle de parsing

gCO2e
Pour calculer le score d'un film

CONCLUSION ET REMERCIEMENTS

Performant

Rapide

Accessible

Remerciements

Nous tenons à remercier les encadrants côté CentraleSupélec pour leur accompagnement pendant ce projet, et nous tenons à témoigner toute notre reconnaissance à Théo Rubenach, notre encadrant côté Illuin, pour son temps et son aide précieuse à la réalisation du projet.

TEMPS D'ÉCHANGE

MERCI POUR VOTRE ATTENTION

ANNEXES

CONSIDÉRATIONS ÉTHIQUES ET ENVIRONNEMENTALES

Enjeux éthiques

Écueil dans la prédiction de genre d'un personnage

Inclusion des individus nonbinaires dans l'outil (et donc dans le test)

Impact environnemental

	Entrainement du modèle de parsing	Inférence de l'outil
Mix électrique intensité carbone	55 gCO2e/kWh	I 28,94 gCO2e/MJ
Energie consommée (kWh)	0,107	0,0019
Emissions totales (gCO2e)	5,9	0,9

