Prática 3 - N126

Ano Letivo 2016/2017

Os alunos, com ajuda de Octave e o estudo dos códigos fornecidos, devem elaborar um relatório com a resposta a todas as questões. Para tal deverá usar o seu número de aluno, $NUMaluno = [\alpha, \beta, \gamma]$, em alguns destes exercícios.

1. Interpolação polinomial

Considere a seguinte série de pontos para cada um dos alunos:

Numero	Aluno	Lista de dados (t_i, y_i)
101	MARTINS	((6, 19), (26, 183), (40, 357), (72, 851), (75, 911), (84, 1085))
142	MARTINS	((22, 689), (29, 1230), (33, 1583), (64, 5803), (69, 6824), (79, 8897))
177	ALMEIDA	((11, 112), (14, 199), (18, 310), (31, 987), (69, 4723), (88, 7776))
216	PIRES	((5, 17), (14, 75), (43, 402), (59, 636), (76, 930), (83, 1063))
262	MARQUES	((4, 8), (28, 150), (31, 177), (47, 324), (71, 599), (91, 868))
345	RODRIGUES	((15, 386), (36, 2281), (60, 6339), (69, 8146), (76, 10122), (88, 13341))
829	CARRUAGEM	((22, 175), (30, 287), (55, 694), (70, 1016), (80, 1243), (98, 1677))

- 1. Usando o Octave determine o polinómio que interpola dos dados indicados acima para o seu caso.
- 2. Considerando os mesmos dados, faça um ajustamento por mínimos quadrados a uma função linear f(x) = mx + b. Indique qual é a função linear que melhor se ajusta aos dados. Determine o erro relativo cometido pelo valor de $f(x_6)$ como aproximação de y_6 .
- 3. Qual é o valor aproximado da derivada da função verdadeira no ponto x=50?

2. Quadratura Gaussiana

Todas as fórmulas que estudou na aula para a integração numérica estavam baseadas em valores de x uniformemente espaçados. Gauss reparou que não é necessário determinar esses espaçamentos e que reparou que uma fórmula com n+1 parâmetros será um polinómio de grau n. As regras de quadratura Gaussiana, no entanto, só poderão ser usadas se tivermos explicitamente a função f(x).

Este método processa-se da seguinte forma:

Exemplo: Seja $I = \int_0^1 f(x) dx$, pretende-se calcular um valor aproximado de I a partir dos valores de $f(0) = f_0$, $f\left(\frac{3}{4}\right) = f_1$ e $f(1) = f_2$.

Como se observa não dá para aplicar a regra de Simpson, pois os pontos não estão igualmente espaçados. Em alternativa à soma de duas regras dos trapézios simples vamos deduzir uma nova fórmula,

$$I = I(f) = A_0 f_0 + A_1 f_1 + A_2 f_2.$$

Como temos três coeficientes A_i a determinar, vamos obrigar I(f) a ser exata para

$$f(x) = 1, f(x) = x, f(x) = x^2,$$

porque sabemos que pelo menos obteremos um polinómio de grau 2.

$$f(x) = 1 \implies \int_0^1 1 dx = 1$$

$$\begin{array}{c|c} x & f(x) \\ \hline 0 & 1 \\ \hline 3/4 & 1 \\ \hline 1 & 1 \end{array}$$

$$I(f) = A_0 f_0 + A_1 f_1 + A_2 f_2 = A_0 \times 1 + A_1 \times 1 + A_2 \times 1 = A_0 + A_1 + A_2 = 1.$$

$$f(x) = x \implies \int_0^1 x dx = \frac{1}{2}$$

x	f(x)
0	0
3/4	3/4
1	1

$$I(f) = A_0 f_0 + A_1 f_1 + A_2 f_2 = A_0 \times 0 + A_1 \times \frac{3}{4} + A_2 \times 1 = \frac{3}{4} A_1 + A_2 = \frac{1}{2}.$$

$$f(x) = x^2 \implies \int_0^1 x^2 dx = \frac{1}{3}$$

x	f(x)
0	0
3/4	9/16
1	1

$$I(f) = A_0 f_0 + A_1 f_1 + A_2 f_2 = A_0 \times 0 + A_1 \times \frac{9}{16} + A_2 \times 1 = \frac{9}{16} A_1 + A_2 = \frac{1}{3}.$$

Resolvendo o sistema, vem $A_0=5/18,\,A_1=8/9$ e $A_2=1/6.$

Daí termos então $I = \frac{1}{18}(5f_0 + 16f_1 - 3f_2)$.

Questão: Pelo mesmo método, indique qual a fórmula a utilizar se pretendêssemos $I = \int_{-\alpha}^{\gamma} f(x) dx$ calculando um valor aproximado de I a partir dos valores de $f(-\alpha) = f_0$, $f(0) = f_1$ e $f(\gamma) = f_2$.

Qual é o valor de I sabendo que f = sen(x)?

No octave defina a função:

```
function y = f (x)
y = sin(x);
endfunction
e efetue
```

Compare com o que lhe deu e conclua investigando o que esta função faz e o que ela apresenta. Calcule o erro relativo visto saber calcular o valor de *I* verdadeiro?