

GEOMETRÍA Capítulo 1

TRIÀNGULOS

MOTIVATING | STRATEGY

El triángulo es una de las figuras geométricas elementales y, por lo tanto, el conocimiento de sus teoremas, clases, etc., es básico para comprender mejor a las demás figuras geométricas que estudiaremos posteriormente. Esta figura tiene en la actualidad diferentes usos y aplicaciones como podemos observar.

TRIÁNGULOS

<u>Definición</u>: Es aquella figura geométrica formada al unir 3 puntos no colineales mediante segmento de recta.

- **VÉRTICES**: A, B y C
- LADOS : \overline{AB} , \overline{BC} y \overline{AC}

TEOREMAS

$$\alpha + \beta + \theta = 180^{\circ}$$

$$\omega + \phi + \gamma = 360^{\circ}$$

$$\omega = \alpha + \beta$$

$$\phi = \alpha + \theta$$

$$\gamma = \beta + \theta$$

Teorema de la correspondencia

Teorema de la existencia

Si: $\beta < \alpha$

donde: c < b < a

Clasificación

1. Según las medidas de los lados.

∆ Escaleno

Δ Isósceles

Δ Equilátero

2.Clasificación según las medidas de sus ángulos.

∆ Rectángulo

∆ Oblicuángulo

∆ Acutángulo

∆ Obtusángul

0

1. En la figura, halle el valor de x. Si PQ = QR = RS = ST.

2. En la figura, halle el valor entero que puede tomar x, si $x \in \mathbb{Z}^+$.

Resolución

- Piden: El valor entero de x
- Por teorema de la existencia

$$4x - x < 15 < 4x + x$$

 $3x < 15 < 5x$

$$3x < 15$$
 $15 < 5x$ $x < 5$ $3 < x < 5$

$$\mathbf{x}_{(entero)} = \mathbf{4}$$

3. Dos ángulos internos de un triángulo isósceles miden x y 4x. ¿Cuál es un posible valor de x?

$$4x + 4x + x = 180^{\circ}$$

 $9x = 180^{\circ}$

$$x = 20^{\circ}$$

$$x + x + 4x = 180^{\circ}$$

 $6x = 180^{\circ}$

$$x = 30^{\circ}$$

4. En un triángulo ABC, en AC se ubica el punto D y en AD se ubica el punto E. Si m₄EBD = 30°, AB = AD y BC = EC, halle m₄ABC.

5. En la figura, halle el valor de x.

6. En la figura, halle el valor de x.

Resolución

- Piden: x
- Por teorema:

7. En un triángulo rectángulo un cateto mide 12 - 2x y la hipotenusa mide x. Halle el valor entero que puede tomar x.

Resolución

- Piden: El valor entero de x.
- Por teorema de la correspondencia:

8. En la figura se tiene un jardín cuyas dimensiones de su contorno se muestra en cada lado. Determine el número entero de metros de malla metálica que se necesita desde A hasta C para cercar el jardín en dos partes.

Resolución

- Piden: x
- Por teorema de la existencia.

ΔΑΒC:

$$4 - 3 < x < 4 + 3$$

$$x = 2; 3; 4; 5 y 6$$

ΔACD:

$$7 - 2 < x < 7 + 2$$

$$x = 6;7 y 8$$

$$x = 6 m$$

m