Coil Printer Spacing Calculation / Arduino Device Use

Main Spacing Calculation: $Spacing = \frac{V_{extruder}}{rpm_{rod}}$

2 Main Factors to Consider for Spacing:

- Linear velocity of the extruder ($V_{extruder}$)
- Rotational speed of the vascular graft rod (rpm_{rod})

For Rotational Speed of the Vascular Rod...

y = 1.0715x + 2.6653 (trendline made in excel)

y = Resistance Setting

x = Actual RPM

For a 13 Resistance Setting:

13 = 1.0715x + 2.6653

 $x = 9.64507699 \ rev/min$

For Linear Velocity of the Extruder...

$$\begin{aligned} V_{extruder} &= \pi \times diameter_{extruder} \times r \frac{rev}{min} \\ V_{extruder} &= \pi \times 12 \ mm \times r \frac{rev}{min} \approx 37.699 \times r \frac{rev \times mm}{min} \end{aligned}$$

$$r = rpm_{extruder}$$

$$V_{extruder} = 37.699 \times r \frac{rev \times mm}{min}$$

Calculating a
$$\frac{3 \text{ mm}}{\text{spacing w/}}$$
 Spacing w/ ~9.645 rev/min:
$$Spacing = \frac{\frac{37.699 \times r\frac{rev \times mm}{min}}{9.64507699\frac{rev}{min}}$$

$Spacing = 3.90862614 \times rmm$

$$3 mm = \frac{37.699 \times r \frac{rev \times mm}{min}}{9.64507699 \frac{rev}{min}}$$

 $r = 0.767533117 \, rpm$

To Use the Current Iteration of the Device:

- Button 1: Increase Rotational Extruder Speed (r)
- Button 2: Decrease Rotational Extruder Speed (r)
- Button 3: Change Direction of Extruder
- **Button 4: Move Printer**

Notes*

- Spacings will stay the same as long as the linear velocity and rotational speed of the vascular rod are the same (only coil thickness will change based on uptake speed)
- Needle gauges/pump speed will also determine coil thickness - this should be investigated more thoroughly
 - Arduino code is also uploaded in Jonathan's Folder

