Professor: Fred Khoury

1. Find the standard matrix for the operator T defined by the formula

a)
$$T(x_1, x_2, x_3, x_4) = (7x_1 + 2x_2 - x_3 + x_4, x_2 + x_3, -x_1)$$

b)
$$T(x_1, x_2, x_3) = (2x_1 + x_3, x_1 + x_2 - x_3, x_1 - x_2 + x_3)$$

- 2. Find the characteristic equation, eigenvalues, and eigenvectors of $\begin{pmatrix} 10 & -9 \\ 4 & -2 \end{pmatrix}$
- 3. Find the characteristic equation, eigenvalues, and eigenvectors of $\begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$
- **4.** Find the eigenvalues, and eigenvectors of $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
- 5. Find the characteristic equation, eigenvalues, and eigenvectors of $\begin{bmatrix} 3 & 0 & -5 \\ \frac{1}{5} & -1 & 0 \\ 1 & 1 & -2 \end{bmatrix}$
- **6.** Find the characteristic equation, eigenvalues, and eigenvectors of $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & -5 & 4 \end{pmatrix}$
- 7. Find a matrix *P* that diagonalizes $A = \begin{bmatrix} -1 & 4 & -2 \\ -3 & 4 & 0 \\ -3 & 1 & 3 \end{bmatrix}$
- **8.** Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, determine when *A* is diagonalizable, not diagonalizable. (*Hint: discriminant of the characteristic equation*)
- **9.** Show that $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ are not similar matrices
- **10.** Show that the matrix $A = \begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix}$ is not diagonalizable
- 11. Show that the function $T: \mathbb{R}^3 \to \mathbb{R}^2$ given the formula $T(x_1, x_2, x_3) = (2x_1 x_2 + x_3, x_2 4x_3)$ is linear transformation
- 12. Determine whether the function $T: M_{22} \to R$ is linear transformation

a)
$$T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = 3a - 4b + c - d$$
 b) $T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = a^2 + b^2$

13. Consider the basis $S = \{v_1, v_2, v_3\}$ for R^3 , where $v_1 = (-2, 1)$ $v_2 = (1, 3)$ and let $T: R^2 \to R^3$ be the linear transformation for which

$$T(v_1) = (-1, 2, 0), T(v_2) = (0, -3, 5)$$

Find a formula for $T(x_1, x_2, x_3)$, and then use that formula to compute T(2,4,-1)

Solution

1. a)
$$\begin{pmatrix} 7 & 2 & -1 & 1 \\ 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}$$
 b) $\begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$

1.
$$\lambda^2 - 8\lambda + 16$$
 Eigenvalue: $\lambda = 4$ Eigenvector: $\begin{pmatrix} \frac{3}{2} \\ 1 \end{pmatrix}$

2.
$$\lambda^2 - 6\lambda + 8$$
 Eigenvalue: $\lambda = 2, 4$ Eigenvector: $\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

3.
$$\lambda^2 - 1 = 0$$
 Eigenvalue: $\lambda = \pm 1$ Eigenvector: $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

4.
$$-\lambda^3 + 2\lambda = 0$$
 Eigenvalue: $\lambda = 0$, $\pm \sqrt{2}$ Eigenvector:
$$\begin{pmatrix} \frac{5}{3} \\ \frac{1}{3} \\ 1 \end{pmatrix} \begin{pmatrix} -\frac{5}{\sqrt{2} - 3} \\ \frac{1}{7} \frac{3 + \sqrt{2}}{1 + \sqrt{2}} \\ 1 \end{pmatrix} \begin{pmatrix} \frac{5}{3 + \sqrt{2}} \\ \frac{1}{7} \frac{3 - \sqrt{2}}{1 - \sqrt{2}} \\ 1 \end{pmatrix}$$

5.
$$-\lambda^3 + 4\lambda^2 - 5\lambda + 2$$
 Eigenvalue: $\lambda_{1,2} = 1$, $\lambda_3 = 2$ Eigenvector: $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ $\begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$

6.
$$P = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 3 & 3 \\ 1 & 3 & 4 \end{pmatrix}$$

7. diagonalizable:
$$(a-d)^2 + 4bc > 0$$
, not diagonalizable: $(a-d)^2 + 4bc < 0$

8.
$$\det(A) = -3 \neq \det(B) = 3$$

9.
$$a) -4 b) -16$$

10.
$$(2-\lambda)^2 = 0 \rightarrow \lambda_{1,2} = 2$$
 repeated eigenvalues therefore is not diagonalizable

11. Let
$$\vec{u} = (u_1, u_2, u_3)$$
 and $\vec{v} = (v_1, v_2, v_3)$

$$T(u+v) = T(u_1 + v_1, u_2 + v_2, u_3 + v_3)$$

$$= (2u_1 + 2v_1 - u_2 - v_2 + u_3 + v_3, u_2 + v_2 - 4u_3 - 4v_3)$$

$$= (2u_1 - u_2 + u_3, u_2 - 4u_3) + (2v_1 - v_2 + v_3, v_2 - 4v_3)$$

$$= T(u) + T(v)$$

$$\begin{split} T(r\boldsymbol{u}) &= T\Big(ru_1, \ ru_2, \ ru_3\Big) \\ &= \Big(2ru_1 - ru_2 + ru_3, \ ru_2 - 4ru_3\Big) \\ &= r\Big(2u_1 - u_2 + u_3, \ u_2 - 4u_3\Big) \\ &= rT(\boldsymbol{u}) \end{split}$$

Since T(u+v) = T(u) + T(v) and T(ru) = rT(u), then function T is a linear transformation.

12.

a)
$$T(A+B) = T \begin{bmatrix} a_1 + a_2 & b_1 + b_2 \\ c_1 + c_2 & d_1 + d_2 \end{bmatrix}$$

 $= 3a_1 + 3a_2 - 4b_1 - 4b_2 + c_1 + c_2 - d_1 - d_2$
 $= (3a_1 - 4b_1 + c_1 - d_1) + (3a_2 - 4b_2 + c_2 - d_2)$
 $= T(A) + T(B)$ \checkmark

$$T(kA) = T \begin{pmatrix} k \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix} \end{pmatrix}$$

$$= T \begin{pmatrix} \begin{bmatrix} ka_1 & kb_1 \\ kc_1 & kd_1 \end{bmatrix} \end{pmatrix}$$

$$= 3ka_1 - 4kb_1 + kc_1 - kd_1$$

$$= k \begin{pmatrix} 3a_1 - 4b_1 + c_1 - d_1 \end{pmatrix}$$

$$= kT(A)$$

b)
$$T(A+B) = T \begin{bmatrix} a_1 + a_2 & b_1 + b_2 \\ c_1 + c_2 & d_1 + d_2 \end{bmatrix}$$

 $= (a_1 + a_2)^2 + (b_1 - b_2)^2$
 $= a_1^2 + a_2^2 + 2a_1a_2 + b_1^2 + b_2^2 + 2b_1a_2$
 $= (a_1^2 + b_1^2) + (a_2^2 + b_2^2) + 2a_1a_2 + 2b_1a_2$
 $= T(A) + T(B)$ #

It is not a linear transformation

13.
$$T(x_1, x_2, x_3) = (-x_1 + 4x_2 - x_3, 5x_1 - 5x_2 - x_3, x_1 + 3x_3)$$

 $T(2, 4, -1) = (15, -9, -1)$