First steps to deep-learning From the perceptron to the deep generative models

Nicolas Desassis, Ferdinand Bhavsar

nicolas.desassis@minesparis.psl.eu

January 2022

Sources

- Coursera: GAN specialization
- Lil'blog

Outline

- The problem
- Deep Generative Models: a geostatistical point of view
- Training generative models
 - GAN
 - WGAN
- Conditioning (later)

Example - Dimension reduction (or compression)

Starting from a set of examples $\mathbf{x}_1, \dots, \mathbf{x}_N$, find two functions

- an encoder f_e from \mathbf{R}^n to \mathbf{R}^d with d much smaller than n
- a decoder f_d from \mathbf{R}^d to \mathbf{R}^n

The aim is to minimize the reconstruction error over all the examples

$$T(f_e, f_d) = \sum_{i=1}^{N} ||\mathbf{x}_i - f_d(f_e(\mathbf{x}_i))||^2$$

Example - Dimension reduction (or compression) Autoencoders

The problem

Aim

Given a (large?) set of training examples, generate new examples which "look like" the training examples in terms of

- fidelity or realism
- diversity or variability

The problem

Aim

Given a (large?) set of training examples, generate new examples which "look like" the training examples in terms of

- fidelity or realism
- diversity or variability

In other words, given an empirical distribution $P_{\mathbb{D}}$ over \mathbb{R}^n , find a probabilistic distribution (the model) P_G with its simulation algorithm (the generator) which is close to $P_{\mathbb{D}}$ (or its theoretical version P)

Kernel density estimation (KDE)

• Replace the empirical distribution

$$P_{\mathcal{D}}(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{\mathbf{x}_i}$$

$$P_{G_{\sigma}}(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} g\left(\frac{\mathbf{x} - \mathbf{x}_{i}}{\sigma}\right)$$

$$\delta_{s_{i}} \quad \delta_{s_{i}} \quad \delta_{s_{i}} \quad \delta_{s_{i}} \quad \delta_{s_{i}} \quad \delta_{s_{i}} \quad \delta_{s_{i}}$$

Kernel density estimation (KDE)

• Replace the empirical distribution

$$P_{\mathcal{D}}(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{\mathbf{x}_i}$$

Kernel density estimation (KDE)

• Replace the empirical distribution

$$P_{\mathcal{D}}(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{\mathbf{x}_i}$$

$$P_{G_{\sigma}}(\mathbf{x}) = rac{1}{N} \sum_{i=1}^{N} g\left(rac{\mathbf{x} - \mathbf{x}_{i}}{\sigma}
ight)$$
 $\delta_{\mathbf{x}_{i}} \quad \delta_{\mathbf{x}_{i}} \quad \delta_{\mathbf{x}_{i}} \quad \delta_{\mathbf{x}_{i}} \quad \delta_{\mathbf{x}_{i}} \quad \delta_{\mathbf{x}_{i}} \quad \delta_{\mathbf{x}_{i}}$

Kernel density estimation (KDE)

• Replace the empirical distribution

$$P_{\mathcal{D}}(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{\mathbf{x}_i}$$

$$P_{G_{\sigma}}(\mathbf{x}) = rac{1}{N} \sum_{i=1}^{N} g\left(rac{\mathbf{x} - \mathbf{x}_{i}}{\sigma}
ight)$$
 $\delta_{\mathbf{x}_{i}} \quad \delta_{\mathbf{x}_{i}} \quad \delta_{\mathbf{x}_{i}} \quad \delta_{\mathbf{x}_{i}} \quad \delta_{\mathbf{x}_{i}} \quad \delta_{\mathbf{x}_{i}}$

Kernel density estimation (KDE)

• Replace the empirical distribution

$$P_{\mathcal{D}}(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{\mathbf{x}_i}$$

$$P_{G_{\sigma}}(\mathbf{x}) = rac{1}{N} \sum_{i=1}^{N} g\left(rac{\mathbf{x} - \mathbf{x}_{i}}{\sigma}
ight)$$
 $P_{\mathsf{G}_{\sigma}}$
 $\delta_{s_{i}}$
 $\delta_{s_{i}}$

Kernel density estimation (KDE)

• Replace the empirical distribution

$$P_{\mathcal{D}}(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{\mathbf{x}_i}$$

$$P_{G_{\sigma}}(\mathbf{x}) = rac{1}{N} \sum_{i=1}^{N} g\left(rac{\mathbf{x} - \mathbf{x}_{i}}{\sigma}
ight)$$
 $P_{G_{\sigma}}$
 $\delta_{i_{2}}$
 $\delta_{i_{3}}$
 $\delta_{i_{4}}$
 $\delta_{i_{5}}$
 $\delta_{i_{4}}$
 $\delta_{i_{5}}$
 $\delta_{i_{6}}$
 $\delta_{i_{6}}$

Kernel density estimation (KDE)

• Replace the empirical distribution

$$P_{\mathcal{D}}(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} \delta_{\mathbf{x}_i}$$

$$P_{G_{\sigma}}(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} g\left(\frac{\mathbf{x} - \mathbf{x}_{i}}{\sigma}\right)$$

$$P_{G_{\sigma}}$$

$$\delta_{\mathbf{x}_{i}} \quad \delta_{\mathbf{x}_{i}} \quad \delta_{\mathbf{x}_{i}} \quad \delta_{\mathbf{x}_{i}} \quad \delta_{\mathbf{x}_{i}} \quad \delta_{\mathbf{x}_{i}}$$

Kernel density estimation (KDE)

Algorithm:

- Choose a data \mathbf{x}_i with probability $\frac{1}{N}$
- ullet Generate a value around \mathbf{x}_i by adding a gaussian noise with standard deviation σ

It could work in 2D

Problem: How to choose the kernel in high dimension?

The data belongs to a manifold

[https://en.wikipedia.org/wiki/File:Calabi-Yau.png]

First idea: use an anamorphosis like approach

Generate a latent vector

$$\mathbf{z} \sim \mathcal{N}_n(0, I_n)$$

Compute

$$\mathbf{x} = G(\mathbf{z})$$

where $G = f_{\mathbf{W}}$ is a neural network with weights \mathbf{W} to determine

First idea: use an anamorphosis like approach

Generate a latent vector

$$\mathbf{z} \sim \mathcal{N}_n(0, I_n)$$

Compute

$$\mathbf{x} = G(\mathbf{z})$$

where $G = f_{\mathbf{W}}$ is a neural network with weights \mathbf{W} to determine

Mathematical justifications:

- Most of the distributions of \mathbb{R}^n can be written as a function of a Gaussian vector of \mathbb{R}^n with independant components (inversion method + decomposition of multivariate densities as a product of conditional distributions)
- By using a high-capacity neural network G, we can approximate the target function (universal approximation theorem)

Generator

Remind

1) Cholesky algorithm (a.k.a SGS)

Gaussian vector ${\bf x}$ with mean vector μ and covariance matrix Σ

ullet Compute L (lower triangular) such as

$$\Sigma = LL^T$$

Sample

$$\mathbf{z} \sim \mathcal{N}_n(0, I_n)$$

Return

$$\mathbf{x} = \mu + L\mathbf{z}$$

1) Cholesky algorithm (a.k.a SGS)

Gaussian vector ${\bf x}$ with mean vector μ and covariance matrix Σ

ullet Compute L (lower triangular) such as

$$\Sigma = LL^T$$

Sample

$$\mathbf{z} \sim \mathcal{N}_n(0, I_n)$$

Return

$$\mathbf{x} = \mu + L\mathbf{z}$$

Anamorphosis can be handled by the activation function

2) Chebyshev algorithm (a.k.a algo de Mike)

SPDE

ullet Compute P(M) such as

$$\Sigma = P(M)^2$$

with M very sparse

Sample

$$\mathbf{z} \sim \mathcal{N}_n(0, I_n)$$

Return

$$\mathbf{x} = \mu + P(M)\mathbf{z}$$

3) Chebyshev algorithm implementation

Hörner scheme on $P(X) = \sum_{i=0}^{K} a_i X^i$

- Initialization $\mathbf{x}^{(K)} = a_K \mathbf{z}$
- Iterate

$$\mathbf{x}^{(i)} = M\mathbf{x}^{(i+1)} + a_i\mathbf{z}$$

• Return $\mathbf{x}^{(0)}$

Very deep neural network with convolutional layers and few parameters

Problem: How to handle the large number of parameters?

The data belongs to a manifold

[https://line.17qq.com/articles/cmmcohgcpv.html]

Second idea: Dimension reduction

[https://www.compthree.com/blog/autoencoder/]

The network "learns" a low dimensional representation of the inputs

Example: compression of Flumy images

Original 64×64 Flumy images (left) and reconstructed version (right) after a compression in a latent space of 121 units

Simulate in the latent space

Simulate in the latent space

A last geostatistical example

Spectral method (a.k.a Shinozuka algorithm)

Simulate a Gaussian random field with Gaussian covariance function $C(h)=e^{-h^2}$ on a $n_1\times n_2$ grid

- Simulate $(\omega_1^{(1)}, \omega_2^{(1)}), \ldots, (\omega_1^{(K)}, \omega_2^{(K)})$, K independent Gaussian vectors
- Simulate $\phi^{(1)},\dots,\phi^{(K)}$, K independent and uniform values on [0,1] (independent of the $\omega_j^{(i)}$)
- For each node (u_1, u_2) , return

$$\mathbf{x}(u_1, u_2) = \frac{\sqrt{2}}{\sqrt{K}} \sum_{i=1}^{K} \cos(\omega_1^{(i)} u_1 \sqrt{2} + \omega_2^{(i)} u_2 \sqrt{2} + 2\pi \phi^{(i)})$$

A last geostatistical example

Spectral method (a.k.a Shinozuka algorithm)

Simulate a Gaussian random field with Gaussian covariance function $C(h)=e^{-h^2}$ on a $n_1\times n_2$ grid

- Simulate $(\omega_1^{(1)},\omega_2^{(1)}),\ldots,(\omega_1^{(K)},\omega_2^{(K)})$, K independent Gaussian vectors
- Simulate $\phi^{(1)},\ldots,\phi^{(K)}$, K independent and uniform values on [0,1] (independent of the $\omega_j^{(i)}$)
- For each node (u_1, u_2) , return

$$\mathbf{x}(u_1, u_2) = \frac{\sqrt{2}}{\sqrt{K}} \sum_{i=1}^{K} \cos(\omega_1^{(i)} u_1 \sqrt{2} + \omega_2^{(i)} u_2 \sqrt{2} + 2\pi \phi^{(i)})$$

A very sparse neural network with 3K inputs, one hidden layer (activation function cosinus) with $K \times n_1 \times n_2$ outputs and an output layer with $n_1 \times n_2$ output (and linear activation function)

Generator

Generator

How to train the network?

Generative Adversarial Network (GAN)

A two players game

Generative Adversarial Networks (GAN)

Two adversarial neural networks

- A generator $X = G_{\theta}(z)$ where z is a Gaussian noise $\mathcal{N}(0, I_d)$ and θ are the weights
- A discriminator $D_{\phi}(X)$ which classifies images "true" or "fake" (ϕ are the weights)

Generative Adversarial Networks (GAN)

Two adversarial neural networks

- A generator $X = G_{\theta}(z)$ where z is a Gaussian noise $\mathcal{N}(0, I_d)$ and θ are the weights
- A discriminator $D_{\phi}(X)$ which classifies images "true" or "fake" (ϕ are the weights)

• Idea: Train G_{θ} and D_{ϕ} in order that G_{θ} misleads D_{ϕ} and D_{ϕ} tries to become better to detect fakes

Generative Adversarial Networks (GAN)

Two adversarial neural networks

- A generator $X = G_{\theta}(z)$ where z is a Gaussian noise $\mathcal{N}(0, I_d)$ and θ are the weights
- A discriminator $D_{\phi}(X)$ which classifies images "true" or "fake" (ϕ are the weights)

• D_{ϕ} is close to 1 if the discriminator classifies an image as true and close to 0 otherwise

Generative Adversarial Networks (GAN)

Two adversarial neural networks

- A generator $X = G_{\theta}(z)$ where z is a Gaussian noise $\mathcal{N}(0, I_d)$ and θ are the weights
- A discriminator $D_{\phi}(X)$ which classifies images "true" or "fake" (ϕ are the weights)

Minmax game with value function

$$\min_{G_{\theta}} \max_{D_{\phi}} V(D_{\phi}, G_{\theta})$$

with

$$V(D_{\phi}, G_{\theta}) = E_{X \sim \text{Data}}[\log D_{\phi}(X)] + E_{z \sim \mathcal{N}(0, I_d)}[\log(1 - D_{\phi}(G_{\theta}(z)))]$$

Training

Goodfellow et al. (2014)

for Number of training iterations do

for k states do

Sample minibatch of m_b noise samples $\{z_1,\ldots,z_{m_b}\} \sim \mathcal{N}(0,I_d)$ Sample minibatch of m_b examples $\{x_1,\ldots,x_{m_b}\} \sim \mathrm{Data}$ Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\phi} \frac{1}{m_b} \sum_{i=1}^{m_b} [\log D_{\phi}(x_i) + \log(1 - D_{\phi}(G_{\theta}(z_i)))]$$

end for

Sample minibatch of m_b noise samples $\{z_1,\ldots,z_{m_b}\}\sim \mathcal{N}(0,I_d)$ Update the generator by descending its stochastic gradient

$$\nabla_{\theta} \frac{1}{m_b} \sum_{i=1}^{m_b} \log(1 - D_{\phi}(G_{\theta}(z_i)))$$

end for

GAN cost function:

$$V(D,G) = E_{X \sim \text{Data}}[\log D(X)] + E_{z \sim \mathcal{N}(0,I_d)}[\log(1 - D(G(z)))]$$

For a given discriminator D, it measures a dissimilarity between the data distribution $P_{\mathbb{D}}$ and the generated distribution P_G :

$$L_D(P_{\mathcal{D}}, P_G) = E_{X \sim P_{\mathcal{D}}}[\log D(X)] + E_{X \sim P_G}[\log(1 - D(X))]$$

which is equal to

$$L_D(P_{\mathcal{D}}, P_G) = \int (P_{\mathcal{D}}(x) \log D(x) + P_G(x) \log(1 - D(x))) dx$$

which is minimum for

$$D^{\star}(x) = \frac{P_{\mathcal{D}}(x)}{P_{\mathcal{D}}(x) + P_G(x)}$$

Maximizing

$$L_{D^*}(P_{\mathfrak{D}}, P_G)$$

with respect to P_G , we obtain that the global optimum of L_{D^\star} is reached for

$$P_G^{\star} = P_{\mathcal{D}}$$

leading to $D^{\star}(x) = \frac{1}{2}$ and

$$L_{D^{\star}}(P_{\mathcal{D}}, P_G^{\star}) = \int (P_{\mathcal{D}}(x) \log D^{\star}(x) + P_G^{\star}(x) \log(1 - D^{\star}(x))) dx$$
$$= -2 \log 2$$

Maximizing

$$L_{D^*}(P_{\mathcal{D}}, P_G)$$

with respect to P_G , we obtain that the global optimum of L_{D^\star} is reached for

$$P_G^{\star} = P_{\mathcal{D}}$$

leading to $D^{\star}(x) = \frac{1}{2}$ and

$$L_{D^{\star}}(P_{\mathcal{D}}, P_G^{\star}) = \int (P_{\mathcal{D}}(x) \log D^{\star}(x) + P_G^{\star}(x) \log(1 - D^{\star}(x))) dx$$

= -2 \log 2

Under quite strong assumptions on the training algorithm, it converges towards the global optimum. In practice, it is not so easy.

Difficult training

- Instabilities (min-max game)
- Disjoint supports of the two distributions often occur (low dimensional manifolds)
- Vanishing gradient
- Mode collapse

Idea: Change the metric \rightarrow Wasserstein GAN (Arjovsky et al., 2017)

Kullback-Leibler Divergence

$$D_{KL}(p||q) = \int p(x) \log \frac{p(x)}{q(x)} dx$$

Jensen-Shannon Divergence

$$D_{JS}(p||q) = \frac{1}{2}D_{KL}(p||\frac{p+q}{2}) + \frac{1}{2}D_{KL}(q||\frac{p+q}{2})$$

GAN cost function with optimal discriminator

$$L(p,q) = 2D_{JS}(q||p) - 2\log 2$$

• Wasserstein (or earth mover) distance

$$W(p,q) = \inf_{\gamma \sim \Pi(p,q)} E_{(x,y) \sim \gamma}[||x - y||]$$

where $\Pi(p,q)$ is the set of "bivariate" distributions with p and q as marginal and ||.|| is a norm over \mathbb{R}^n .

Example of two distributions P and Q

- (x,y) with x=0 and $y \sim U[0,1]$ with P
- \bullet (x,y) with $x=\theta$ and $y\sim U[0,1]$ with Q

$$D_{JS}(P||Q) = \frac{1}{2} \text{ and } W(P||Q) = \theta$$

Kantorovich-Rubinstein Duality

Wasserstein

$$W(p,q) = \inf_{\gamma \sim \Pi(p,q)} E_{(x,y) \sim \gamma}[||x - y||]$$

where $\Pi(p,q)$ is the set of "bivariate" distributions with p and q as marginal and ||.|| is a norm over \mathbb{R}^n .

It can be rewritten

$$W(p,q) = \sup_{f \in L_{1-lipz}} E_{x \sim p}[f(x)] - E_{x \sim q}[f(x)]$$

• f will be replaced by a neural network and $f \in L_{1-lipz}$ is "controlled" by using gradient penalty (WGAN-GP). See Gulrajani et al. (2017)

To play

Google GAN lab

Flumy generator

- \bullet Generator is trained on 10000 small 64×64 training images
- The architecture of the generator (fully convolutional neural network) leads to stationary process

Example of 64×64 Flumy generated images

Results Horizontal section

Top: Flumy. Bottom: GAN

Results

Vertical section

Top: Flumy. Bottom: GAN

Example on Plurigaussian

4 images among 1000 training images

Local adaptation

Local adaptation

Local adaptation

Conditioning

Variational bayesian formulation

Perspectives

Condition by proportions Dahl et al. (2017)

Super Resolution GAN (SRGAN)

Inversion

Mosser et al. (2020)

- Condition by indirect data (seismic, production, ...)
- Minimize the misfit function with respect to the latent coordinates
- Use back-propagation, possibly coupled with the adjoint-state method

References

- Arjovsky, M., S. Chintala, and L. Bottou (2017). Wasserstein generative adversarial networks. In International conference on machine learning, pp. 214–223. PMLR.
- Dahl, R., M. Norouzi, and J. Shlens (2017). Pixel recursive super resolution. In Proceedings of the IEEE international conference on computer vision, pp. 5439–5448.
- Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio (2014). Generative adversarial nets. In Advances in neural information processing systems, pp. 2672–2680.
- Gulrajani, I., F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville (2017). Improved training of wasserstein gans. arXiv preprint arXiv:1704.00028.
- Mosser, L., O. Dubrule, and M. J. Blunt (2020). Stochastic seismic waveform inversion using generative adversarial networks as a geological prior. *Mathematical Geosciences* 52(1), 53–79.
- Pereira, M. and N. Desassis (2019). Efficient simulation of gaussian markov random fields by chebyshev polynomial approximation. *Spatial Statistics 31*, 100359.