Final Review

illusion

Especially made for smy

School of Mathematical Science

XMU

Saturday 4th January, 2025

Review of §4.6 Invariant Subspace

设 $\varphi \in \mathcal{L}(V)$ V_1, V_2 为 φ — 子空间且满足 $V = V_1 \oplus V_2$,取 V_1 的一组基为 ξ_1, \cdots, ξ_r , V_2 的一组基为 ξ_{r+1}, \cdots, ξ_n ,拼成 V 的一组基 $\xi_1, \cdots, \xi_r, \xi_{r+1}, \cdots, \xi_n$,那么就有

$$\varphi(\xi_1, \dots, \xi_r, \xi_{r+1}, \dots, \xi_n) = (\xi_1, \dots, \xi_r, \xi_{r+1}, \dots, \xi_n) \begin{bmatrix} A & O \\ O & B \end{bmatrix}$$
(1)

反之,若成立 (1) 式,那么存在 $V_1=\langle \xi_1,\cdots,\xi_r\rangle,\ V_2=\langle \xi_{r+1},\cdots,\xi_n\rangle$ 为 φ —子空间且满足 $V=V_1\oplus V_2$ 。

Try

若 $\varphi\in\mathcal{L}(V)$ 在一组基下的矩阵为 $\boldsymbol{J}(1,2)=\begin{bmatrix}1&1\\0&1\end{bmatrix}$,那么 V 能否分解为两个非平凡 $\varphi-$ 子空间的直和呢?

(illusion) Discussion Session 5 Saturday 4th January, 2025

例 1

证明: 若 $\varphi \in \mathcal{L}(V)$ 在一组基下的矩阵为

$$\boldsymbol{J}(\lambda,n) = \begin{bmatrix} \lambda & 1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda & 1 & \cdots & 0 & 0 \\ 0 & 0 & \lambda & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & 1 \\ 0 & 0 & 0 & \cdots & 0 & \lambda \end{bmatrix}$$

那么 V 不能分解为两个非平凡 φ –子空间的直和。

Note: 如何求所有的 φ -子空间?

Problems to solve in Chapter 5-7

- 几何语言: 是否存在 V 的一组基使得 φ 在这组基下的表示矩阵形状比较简单? (上三角矩阵? 对角矩阵? 分块对角阵?)
- 代数语言: 一个给定矩阵在相似关系下的最简代表元是什么? 有没有相似标准型? (Schur, Frobenius, Jordan)
- 相似关系下的全系不变量是什么? (Chapter 6 中的特征值,特征多项式, 极小多项式也都只是必要条件,有没有充要条件?)
- 任何一个线性空间都可以分解为一维子空间的直和,这是平凡的,但当直和分解出的子空间带有性质时就有意义了。能不能将空间分解为若干 φ -子空间的直和? 进一步,若干不可再分的 φ -子空间的直和? (空间第一,第二分解定理,准素分解和循环分解)

A brief introduction to Jordan Canonical Form

例: 设 dim V=n, $\varphi\in \mathrm{End}_F(V)$, 且 $\varphi^3-2\varphi^2+\varphi=\mathscr{O}$. 证明:

- (1) $V = \operatorname{Im} \varphi \oplus \operatorname{Ker} \varphi$;
- (2) 存在 V 的一组基 ξ_1, \ldots, ξ_n 使得

$$\varphi(\xi_1,\ldots,\xi_n)=(\xi_1,\ldots,\xi_n)\begin{pmatrix} A & O \\ O & O \end{pmatrix},$$

其中 A 为一个 r 阶可逆方阵, $\dim \operatorname{Im} \varphi = r$.

Notes:

- 你能说明 $\operatorname{Im}\varphi = \operatorname{Ker}(\varphi \operatorname{id}_V)^2$ 吗?
- 其实 (1) 可以改写为 $V = \operatorname{Ker} \varphi \oplus \operatorname{Ker} (\varphi \operatorname{id}_V)^2$,能直接证明吗?
- Hint: $(\varphi id_V)^2 (\varphi 2id_V)\varphi = id_V \rightsquigarrow$ 同构意义下创造单位阵打洞!
- (Chapter 5) Generally, if we have $f,g\in F[x], f(\varphi)g(\varphi)=\mathscr{O}, \gcd(f,g)=1$, then

$$V = \operatorname{Ker} f(\varphi) \oplus \operatorname{Ker} g(\varphi), \operatorname{Im} f(\varphi) = \operatorname{Ker} g(\varphi).$$

(illusion) Discussion Session 5 Saturday 4th January, 2025 5/20

A brief introduction to Jordan Canonical Form

由于 $\varphi(\operatorname{Im}\varphi)=\operatorname{Im}\varphi^2\subseteq\operatorname{Im}\varphi$,所以 $\operatorname{Im}\varphi$ 为 φ -子空间,即 $\varphi|_{\operatorname{Im}\varphi}$ 仍然为 $\operatorname{Im}\varphi$ 上的线性变换。在上例中,我们知道 $(\varphi-\operatorname{id}_V)^2|_{\operatorname{Im}\varphi}=\mathscr{O}$ 。令 $\psi=\varphi-\operatorname{id}_V$,则存在 $\operatorname{Im}\varphi$ 的一组基 ξ_1,\cdots,ξ_r 使得

$$\psi(\xi_1,\dots,\xi_r) = (\xi_1,\dots,\xi_r) \operatorname{diag}\{J(0,2),\dots,J(0,2),J(0,1),\dots,J(0,1)\}.$$

这其实说明

$$\varphi(\xi_1,\dots,\xi_r) = (\xi_1,\dots,\xi_r) \operatorname{diag}\{J(1,2),\dots,J(1,2),J(1,1),\dots,J(1,1)\}.$$

将 ξ_1,\cdots,ξ_r 扩为 V 的一组基 ξ_1,\cdots,ξ_n ,则 φ 在这组基下的矩阵为

$$\operatorname{diag}\{\boldsymbol{J}(1,2),\cdots,\boldsymbol{J}(1,2),\boldsymbol{J}(1,1),\cdots,\boldsymbol{J}(1,1),\boldsymbol{J}(0,1),\cdots,\boldsymbol{J}(0,1)\}.$$

记上述分块对角矩阵为 φ 在 F 上的 **Jordan 标准型**。

Descending and Ascending Chain of $\text{Ker}\varphi$, $\text{Im}\varphi$

Thm 2

设 dim $V = n, \varphi \in \operatorname{End}_F(V)$,则成立

- (1) $\operatorname{Ker}\varphi \subseteq \operatorname{Ker}\varphi^2 \subseteq \cdots \subseteq \operatorname{Ker}\varphi^m \subseteq \cdots$
- (2) $\rightsquigarrow \operatorname{Ker} \varphi^i = \operatorname{Ker} \varphi^j \Leftrightarrow \dim \operatorname{Ker} \varphi^i = \dim \operatorname{Ker} \varphi^j$
- (3) $\operatorname{Im}\varphi \supset \operatorname{Im}\varphi^2 \supset \cdots \supset \operatorname{Im}\varphi^m \supset \cdots$
- (4) $\rightsquigarrow \operatorname{Im} \varphi^i = \operatorname{Im} \varphi^j \Leftrightarrow \dim \operatorname{Im} \varphi^i = \dim \operatorname{Im} \varphi^j$
- (5) 存在 $s \in \mathbb{N}^*$, 对任意的 $p \in \mathbb{N}^*$ 有 $\operatorname{Ker}\varphi^s = \operatorname{Ker}\varphi^{s+1} = \cdots = \operatorname{Ker}\varphi^{s+p}$
- (6) 存在 $t \in \mathbf{N}^*$, 对任意的 $p \in \mathbf{N}^*$ 有 $\operatorname{Im} \varphi^t = \operatorname{Im} \varphi^{t+1} = \cdots = \operatorname{Im} \varphi^{t+p}$

Try

设 dim V = n, $\varphi \in \text{End}_F(V)$, 若存在 $m \in \mathbb{N}^*$ 使 $\varphi^m = \mathscr{O}$, 求证: $\varphi^n = \mathscr{O}$.

(illusion) Discussion Session 5

Fitting Lemma

Thm 3

设 dim $V = n, \varphi \in \text{End}_F(V)$,则成立

- (1) $\operatorname{Ker}\varphi^s = \operatorname{Ker}\varphi^{s+1} \Leftrightarrow \operatorname{Im}\varphi^s = \operatorname{Im}\varphi^{s+1} \Leftrightarrow V = \operatorname{Ker}\varphi^s \oplus \operatorname{Im}\varphi^s$
- (2) 存在幂零矩阵 B,可逆矩阵 C 和 V 的一组基 ξ_1, \dots, ξ_n 使得

$$\varphi(\xi_1, \dots, \xi_n) = (\xi_1, \dots, \xi_n) \begin{bmatrix} B & O \\ O & C \end{bmatrix}$$
 (2)

(3) 取 $V_1 = \bigcup_{i=1}^{+\infty} \operatorname{Ker} \varphi^i$, $V_2 = \bigcap_{i=1}^{+\infty} \operatorname{Im} \varphi^i$, 则 V_1, V_2 均为 φ —子空间,其中 $\varphi|_{V_1}$ 幂零, $\varphi|_{V_2}$ 可逆,且 $V = V_1 \oplus V_2$.

Note: (Chapter 6) 设 φ 的特征多项式 $f_{\varphi}(\lambda) = \lambda^k g(\lambda), g(0) \neq 0$, 那么由准素分解定理 $V = \operatorname{Ker} \varphi^k \oplus \operatorname{Ker} g(\varphi)$.

Saturday 4th January, 2025

Chapter 3: Examples

Thm 4

设 $\dim V=n$, V_i $(i=1,\cdots,n)$ 为 V 的两两不同的非平凡子空间,求证:

$$(1) \exists \alpha \in V, \alpha \notin \bigcup_{i=1}^{2} V_{i}$$

(2)
$$\exists \beta \in V, \beta \notin \bigcup_{i=1}^{n} V_i$$

Notes:

Hint: Consider the vectors in the set

$$S = \{\xi_1 + j\xi_2 + j^2\xi_3 + \dots + j^{n-1}\xi_n \mid j = 1, 2, \dots\}$$

• (Chapter 4 Review C Ex.1) 设 $\varphi_1, \cdots, \varphi_s \in \operatorname{End}_F(V)$ 非零,求证:存 $\alpha \in V$,使得 $\varphi_i(\alpha) \neq 0$ 均成立。

(illusion) Discussion Session 5 Saturday 4th January, 2025 9/20

Chapter 3: Examples

Try

设 n 维空间 V 的两个子空间 V_1, V_2 的维数均为 m, 且 m < n, 求使得

$$V_1 \oplus U = V_2 \oplus U$$

的 U 的最大维数 k, 并构造 U.

Notes:

- 回顾补空间不唯一:设 W 是 V 的子空间,那么存在不同的子空间 L_1,L_2 满足 $V=W\oplus L_1=W\oplus L_2$
- 本题相当于已知补空间,找原空间的过程,扩基法不太适用了。

(illusion)

Outline of Chapter 3

- 线性空间的定义: 2 (F,V) + 2 (+, scalar) + 4 (group) + 4 (module)
- 扩基/找补空间: 从简单的一组基里面找向量扩充 → Laplace
- 求解 $\langle S \rangle$ 的一组基: $V \cong F^n \leadsto$ 打洞!
- 求 $V_1 \cap V_2$ 的一组基: $\alpha = \sum_{i=1}^n a_i \xi_i = \sum_{j=1}^m b_j \zeta_j \leadsto AX = O$
- $V_1 \oplus V_2$: $V_1 \cap V_2 = \{ \mathbf{0} \}$ easiest!
- $\bigoplus_{i=1}^m V_i$: $V_i \cap \left(\bigcup_{j < i} V_j\right) = \{\mathbf{0}\} \leadsto$ 多个子空间的维数公式

(illusion)

Discussion Session 5

Discussion Session 1

$$V_1 + V_2 + \dots + V_n = V_1 \oplus V_2 \oplus \dots \oplus V_n = \bigoplus_{i=1}^n V_i$$

$$\Leftrightarrow V_i \cap \left(\bigcup_{j \neq i} V_j\right) = \{\mathbf{0}\}, i = 1, \cdots, n$$

$$\Leftrightarrow V_i \cap \left(\bigcup_{j=1}^{i-1} V_j\right) = \{\mathbf{0}\}, \ i = 2, \cdots, n$$

$$\Leftrightarrow \dim\left(\sum_{i=1}^{n} V_i\right) = \sum_{i=1}^{n} \dim V_i$$

$$\rightsquigarrow \sum_{i=1}^{m} \dim V_i = \dim \left(\sum_{i=1}^{m} V_i\right) + \sum_{i=2}^{m} \dim \left(V_i \cap \sum_{j=1}^{i-1} V_j\right)$$

12/20

(illusion) Discussion Session 5 Saturday 4th January, 2025

Discussion Session 1

为了求 $V_1 \cap V_2$ 的一组基,考虑 $\gamma \in V_1 \cap V_2$

$$\gamma = c_1 \alpha_1 + \dots + c_r \alpha_r = k_1 \beta_1 + \dots + k_t \beta_t$$

$$\Rightarrow c_1 A_1 + \dots + c_r A_r - k_1 B_1 - \dots - k_t B_t = O \text{ (Why?)}$$

$$\Rightarrow (A_1, \dots, A_r, B_1, \dots, B_r) \begin{pmatrix} c_1 \\ \vdots \\ c_r \\ -k_1 \\ \vdots \\ -k_t \end{pmatrix} = O$$

Let $A=(A_1,\cdots,A_r,B_1,\cdots,B_r) \leadsto \mathsf{Solve}\ AX=O$

(illusion) Discussion Session 5 Saturday 4th January, 2025 13/20

- \mathbf{x} dim_{**R**} $\mathbf{C}^{n \times n}$, dim $(V_1 \times V_2)$, dim_{**Q**} $\mathbf{Q}(\sqrt{2}, \sqrt{3})$.
- $V_1 = \{C \in F^{n \times n} \mid AC = O\}$, $V_2 = \{D \in F^{n \times n} \mid BD = O\}$, 若 r(A) = r, r(B) = s, $r\begin{pmatrix} A \\ B \end{pmatrix} = k$, 求 $\dim(V_1 + V_2)$.
- 设 $\xi_1, \xi_2, \dots, \xi_n$ 是 V 的基。若 $\beta \in V$,且 β 为 $\xi_1, \xi_2, \dots, \xi_n$ 中任意 n-1 个向量的线性组合,求 β .

(illusion) Discussion 5 Saturday 4th January, 2025

- 举反例: 设 V_1, V_2, V_3 均为线性空间 V 的子空间,则 $V_1 + (V_2 \cap V_3) = (V_1 + V_2) \cap V_3$ 和 $(V_1 + V_2) \cap V_3 = (V_1 \cap V_3) + (V_2 \cap V_3)$ 不一定成立。
- 证明: $\dim(V_1 + V_2) = \dim(V_1 \cap V_2) + 1 \implies V_1 \subseteq V_2 \ \ \ \ \ \ V_2 \subseteq V_1.$
- (ℝ+,⊕,⊙) 成为 ℝ 上线性空间:

$$a \oplus b = ab, k \odot a = a^k$$

 $\vec{x} \oplus$ 的单位元和逆元, 判断 2 与 4 的线性相关性。

例 5

设在 $F^{2\times 2}$ 中,记

$$V_1 = \left\{ \begin{bmatrix} 2a+b & a+c \\ 2b+3c & a-3c \end{bmatrix} \middle| a,b,c \in F \right\}, \quad V_2 = \left\{ \begin{bmatrix} a & b \\ -a & c \end{bmatrix} \middle| a,b,c \in F \right\}.$$

- (1) 若 $V = V_1 \oplus U$,构造出 2 个不同的 U;
- (2) 写出 $V_1 + V_2$ 和 $V_1 \cap V_2$ 的一个基和维数,并证明。

(illusion)

Discussion Session 5

例 6

设 V 为 $F^{n \times n}$ 的子空间,若 V 中的非零矩阵都可逆,求证: $\dim V \leq n$.

例 7

设 V 是 $F^{n \times n}$ 的一个非空子集合,且满足以下条件:

- (1) V 中至少有一个非零方阵;
- (2) 对 V 中任意方阵 A,B,总有 $A-B \in V$;
- (3) 对 V 中任意方阵 A,以及 $F^{n\times n}$ 中任意方阵 X,总有 $AX,XA\in V$ 。

证明: $V = F^{n \times n}$

Note: If R is a division ring, then $M_n(R)$ has only trivial ideals.

Outline of Chapter 4

- 扩基法 \leadsto 同态基本定理 $V/\mathrm{Ker}\varphi\cong\mathrm{Im}\varphi\leadsto$ 维数公式
- 同构 \rightsquigarrow 化归为熟悉的向量空间: $V \cong F^n, \mathcal{L}(V, U) \cong F^{m \times n}$
- 确定线性映射/变换 → 确定在基下的像 → 同构映射的确定
- 相似标准型 \longleftrightarrow 是否存在一个基使得 φ 在这组基下的表示矩阵形状简单?
- ullet \hookrightarrow 尝试将空间分解为 φ -子空间的直和 \leadsto 特殊情形: 可对角化
- 准素分解定理: $f(\varphi)g(\varphi) = \mathcal{O}, \gcd(f,g) = 1 \leadsto V = \operatorname{Ker} f(\varphi) \oplus \operatorname{Ker} g(\varphi)$

18 / 20

Basis Extension Method - II

例 8

设 $\dim V = n, \ \varphi, \theta \in \operatorname{End}_F(V)$ 满足 $\dim \operatorname{Im} \varphi + \dim \operatorname{Im} \theta \leq n$. 证明:存在 V 的可逆线性变换 σ ,使得

$$\varphi\sigma\theta=\mathscr{O}.$$

An example in HW-3

Try

若存在 m, 使得 $\varphi^m = \mathcal{O}, \varphi^{m-1} \neq \mathcal{O}$, $\dim \operatorname{Im} \varphi = n-1$, 求证:

- (1) dim $\operatorname{Im}\varphi^m \geqslant n m$;
- (2) 取 $\alpha \notin \text{Ker}\varphi^{m-1}$, 则 $\alpha, \varphi(\alpha), \cdots, \varphi^{m-1}(\alpha)$ 线性无关;
- (3) 存在 V 的一组基 ξ_1, \dots, ξ_n 满足

$$\varphi(\xi_1, \dots, \xi_n) = (\xi_1, \dots, \xi_n) \begin{pmatrix} O & O \\ E_{n-1} & O \end{pmatrix}.$$

(4) 思考本题能不能用扩基的方法?

