Санкт-Петербургский политехнический университет имени Петра Великого

Физико-механический институт Высшая школа прикладной математики и физики

Отчет по лаборабороной работу №1 по дисциплине "Интервальный анализ"

Выполнил:

Студент: Зинякова Екатерина

Группа: 5030102/00201

Принял:

к. ф.-м. н., доцент

Баженов Александр Николаевич

Содержание

1	Постановка задачи		
2	Теория 2.1 Определения 2.2 Критерий Баумана	2 2 2	
3	Результаты 3.1 Задача регрессии	2 2 2 3 3 3	
1	3.2.2 критерий Баумана	4	

1 Постановка задачи

Найти минимальную δ , чтобы матрица была особенной Пусть **X** - интервальная матрица и

$$\operatorname{mid}(\mathbf{X}) = \begin{pmatrix} 1.05 & 1\\ 0.95 & 1 \end{pmatrix} \tag{1}$$

Необходимо рассмотреть матрицы X_1 и X_2 для задачи регрессии и томографии соответственно:

$$\mathbf{X_1} = \begin{pmatrix} [1.05 - \delta, 1.05 + \delta] & [1, 1] \\ [0.95 - \delta, 0.95 + \delta] & [1, 1] \end{pmatrix}$$
 (2)

$$\mathbf{X_2} = \begin{pmatrix} [1.05 - \delta, 1.05 + \delta] & [1 - \delta, 1 + \delta] \\ [0.95 - \delta, 0.95 + \delta] & [1 - \delta, 1 + \delta] \end{pmatrix}$$
(3)

2 Теория

2.1 Определения

- Середина матрицы $\operatorname{mid}(\mathbf{A}) = \{A \mid a_{ij} = \operatorname{mid}(\mathbf{a}_{ij})\}$
- Радиус матрицы $\operatorname{rad}(\mathbf{A}) = \{A \mid a_{ij} = \operatorname{rad}(\mathbf{a}_{ij})\}$
- Матрица $\mathbf{A} \in \mathbb{IR}$ называется особенной, если $\exists A \in \mathbf{A} : det(A) = 0$.
- Числа $\sigma_1...\sigma_k$, равные квадратным корням из собственных значений матрицы AA^T , называется сингулярными числами матрицы A.
- Множество вершин интревальной матрицы $\operatorname{vert}(\mathbf{A}) = \{ A \in \mathbb{IR}^{m \times n} \mid A = (a_{ij}) \, a_{ij} \in \{ \underline{\mathbf{a}}_{ij}, \overline{\mathbf{a}}_{ij} \} \}$

2.2 Критерий Баумана

Интервальная матрица А неособенна тогда и только тогда, когда

$$(\det(A')) * (\det(A'')) > 0 \quad \forall A', A'' \in \text{vert}(A)$$

$$\tag{4}$$

3 Результаты

3.1 Задача регрессии

3.1.1 Графический способ

Определитель матрицы 2x2:

$$det(A) = a_{11}a_{22} - a_{21}a_{12}$$

Получим гарфик нижней и верхней границы интервала при $\delta \in [0,1]$:

Получается, что $det(X_1)$ содержит 0 при $\delta \geqslant 0.05128$

3.1.2 Критерий Баумана

Множество $vert(\mathbf{A})$ состоит из 4 элементов:

$$\operatorname{vert}(X_1) = \left\{ \begin{pmatrix} 1.05 \pm \delta & 1\\ 0.95 \pm \delta & 1 \end{pmatrix} \right\}$$
 (5)

Получим таблицу результатов для некотрых δ

δ	особенность матрицы
0.051273	неособенная
0.051276	неособенная
0.051279	неособенная
0.051282	неособенная
0.051285	особенная
0.051288	особенная
0.051291	особенная
0.051294	особенная

Таким образом, матрица особенная при $\delta \geqslant 0.051285$

3.2 Задача томографии

3.2.1 Графический способ

Определитель матрицы 2x2:

$$det(A) = a_{11}a_{22} - a_{21}a_{12}$$

Получим гарфик нижней и верхней границы интервала при $\delta \in [0,1]$:

Получается, что $det(X_2)$ содержит 0 при $\delta > 0.025$

3.2.2 критерий Баумана

Множество $vert(X_2)$ состоит из 16 элементов:

$$\operatorname{vert}(X_2) = \left\{ \begin{pmatrix} 1.05 \pm \delta & 1 \pm \delta \\ 0.95 \pm \delta & 1 \pm \delta \end{pmatrix} \right\}$$
 (6)

Получим таблицу результатов для некотрых δ

δ	особенность матрицы
0.02473	неособенная
0.02482	неособенная
0.02491	неособенная
0.02500	неособенная
0.02509	особенная
0.02518	особенная
0.02527	особенная
0.02536	особенная

Таким образом, матрица особенная при при $\delta > 0.025$

4 Вывод

Данные матрицы X_1 , X_2 являются неособенной при $\delta < 0.051285$ и $\delta \leq 0.025$. С помощью критерия Баумана можно получить более точный результат.

В задаче регресии мы получаем более широкий интервал для δ , чем в задаче томографии.