

# Jawahar Education Societys Annasaheb Chudaman Patil College of Engineering, Kharghar, Navi Mumbai

NAME: PRIYUSH BHIMRAO KHOBRAGADE

PRN NO: 211112018

Roll No: 52

**SUBJECT: Analysis of Algorithms Lab** 

### **EXPERMINT: 01**

| PAGE NO.:                                                             |
|-----------------------------------------------------------------------|
| Experiment No:-01 DATE:: / /20                                        |
|                                                                       |
| ·Aim : Implement a e program for selection sort.                      |
|                                                                       |
| Hardware Software Required ! Turbo 'C'                                |
| · theory:                                                             |
| "Selection soet."                                                     |
| The solocition sort algorithm sort an array by repeat                 |
| finding the minimum element (comidering asending order) from the      |
| Unsorted part and putting it the beininning. The algorithm maintains  |
| two subarray in given array.                                          |
| 1) The following with the object of                                   |
| 1). The subarray which is atready sorted.                             |
| 2) Remaining sugarrey which is unsorted.                              |
| In every insortion of selection sort the minimum element (considering |
| according orders from the unsorted sugarray is picked and moved       |
| to the Sorted susarray is picked and moved to the Stoned Susan        |
| S. S                              |
| if we have the array as \$40,10,50,70,30?                             |
| and we apply selection sort to sort the array                         |
| then the resultant array after each iteration will be a rollow.       |
|                                                                       |
| Original array: 240,10,50,70,30}                                      |
| Array after first iteration: 10 + 40 + 50+ 70+ 30                     |
| Array after second iteration: 10+30+50+70+40                          |
| Array Ofter third iteration :- 10+30+40+50-70                         |
| Arm after furth iteration 1- 10+30+ 40+ 50+ 70                        |
| Arry after fifth iteration = 10730740750770                           |
| Teachers Signature                                                    |
|                                                                       |

|   | PAGE NO.:  DATE.: / / 20                                                                                                                                                                                                                          |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Sorted array 10 10,:30 40 50 70.                                                                                                                                                                                                                  |
|   | * Algorithm -  Algorithm Selection (9,n)                                                                                                                                                                                                          |
|   | 11 input: Unported array with size.  11 occupped: sorted array.                                                                                                                                                                                   |
| • | 1. for pans + 1 to n-1 do  1. min-indese + pans  3. for it pans + 1 to n                                                                                                                                                                          |
|   | 3. if (a(win -index) → a [i])  5. win-index ← i.                                                                                                                                                                                                  |
|   | 6. Swap q (min_index) +7 q (Pass)                                                                                                                                                                                                                 |
|   | · Solection Sout analysis (Bent loorent   Average (are)! -  The motime complexity of the selection sout alogorithm.is! -  The selection sort algorithm is made up of two morted (oops.  That an O(N2) time complexity due to the two needs 100ps. |
|   | Best core complexity occum when there is no need for sorting, i.e. the array has alsedy been sorted. The main time complexity of solection sort in best -core scenario is $O(N^2)$ .                                                              |
|   | Average case complexity occurs when the array element are arrangeding<br>Tumbled order that is neighber ascending mor descending correctly.  The solection 's out has an average case time compdexity of o(n2).                                   |
|   | in reverse order. Assume you need to sort the array element in avending order, but the ale in descending order. selection sort has a worst - care time complexity of $O(n^2)$ .  Teachers Signature                                               |

| PAGE NO.:  DATE.: / / 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The space complexity of the selection sort allogorithm is:  An -in -place algorithm is a selection sort algorithm.  If performs all computations in the original array and does not use any other arrays.  As a resert, the space complexity is D(1).  The space complexity is D(1). |
| $= (n-1)[n-n/2] = (n-1)[1+n/2]$ $= \Theta(n^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| · Conclusion: - thus, selection sort algorithm is implemented as well as time and space complexity is calculated.                                                                                                                                                                                                                                                                                                                                                                                             |
| Teachers Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

#### Input:

```
main.c X
  #include <stdio.h>
  #include <stdlib.h>
  int main()
  int a[100], n, i, j, position, swap;
  printf("Enter number of elements\n");
  scanf("%d", &n);
  printf("Enter %d Numbers\n", n);
  for (i = 0; i < n; i++)
  scanf("%d", &a[i]);
  for(i = 0; i < n - 1; i++)
  position=i;
  for(j = i + 1; j < n; j++)
  if(a[position] > a[j])
  position=j;
  if(position != i)
  swap=a[i];
  a[i]=a[position];
  a[position]=swap;
  printf(" \setminus Sorted array is : ");
  for(i = 0; i < n; i++)
  printf("%d", a[i]);
  return 0;
```

#### Output:

```
Enter number of elements

Enter 5 Numbers

33

16

10

25

09

Sorted array is: 910162533

Process returned 0 (0x0) execution time: 37.222 s

Press any key to continue.
```

<u>Conclusion</u>: Thus, selection sort algorithm is implemented as well as time and space complexity is calculated.