Aprendizagem

Instituto Superior Técnico setembro de 2023

Homework 2 - Report

Joana Pimenta (103730), Rodrigo Laia (102674)

Pen and Paper

1. (a) y_1, y_2, y_3, y_4 and y_5 independent $\implies p(y_1, y_2, y_3, y_4, y_5) = p(y_1, y_2) \times p(y_3, y_4) \times p(y_5)$

Fórmulas utilizadas:

$$P(y_6 = H|\vec{x}) = \frac{P(\vec{x}|y_6 = H)}{P(\vec{x})}$$
(1)

$$P(\vec{x}|\mu,\sigma^2) = \frac{1}{(2\pi)^{m/2}\sqrt{|\Sigma|}} e^{-\frac{1}{2}(\vec{x}-\vec{\mu})^T \cdot \Sigma^{-1} \cdot (\vec{x}-\vec{\mu})}$$
(2)

$$\vec{\mu} = \begin{bmatrix} E(y_1) \\ E(y_2) \end{bmatrix} \tag{3}$$

$$\Sigma = \begin{bmatrix} cov(y_1, y_2) & cov(y_1, y_1) \\ cov(y_2, y_1) & cov(y_2, y_2) \end{bmatrix}$$

$$\tag{4}$$

$$|\Sigma| = cov(y_1, y_2) \cdot cov(y_2, y_1) - cov(y_1, y_1) \cdot cov(y_2, y_2)$$
 (5)

$$\Sigma^{-1} = \frac{1}{|\Sigma|} \cdot \begin{bmatrix} cov(y_2, y_2) & -cov(y_1, y_2) \\ -cov(y_2, y_1) & cov(y_1, y_1) \end{bmatrix}$$
 (6)

Parâmetros das gaussianas multivariadas:

Classe A:

$$n\vec{\mu}_A = \begin{bmatrix} 0.24\\0.52 \end{bmatrix}$$

$$\Sigma_{A} = \begin{bmatrix} 0.004267 & -0.0064 \\ -0.0064 & 0.02240 \end{bmatrix}$$

$$|\Sigma|_{A} = 5.4613 \cdot 10^{-5}$$

$$\Sigma_{A}^{-1} = \begin{bmatrix} 410.1563 & -117.1875 \\ -117.1875 & 78.125 \end{bmatrix}$$

$$P(\vec{x}|A) = N(\vec{x}|\mu_{A}, \Sigma_{A}) = \frac{1}{(2\pi)^{m/2} \sqrt{|\Sigma_{A}|}} e^{-\frac{1}{2}(\vec{x} - \vec{\mu}_{A})^{T} \cdot \Sigma_{A}^{-1} \cdot (\vec{x} - \vec{\mu}_{A})}$$

Classe B:

$$\vec{\mu}_B = \begin{bmatrix} 0.5925 \\ 0.3275 \end{bmatrix}$$

$$\Sigma_B = \begin{bmatrix} 0.01717 & -0.00732 \\ -0.00732 & 0.02362 \end{bmatrix}$$

$$|\Sigma|_B = 3.519 \cdot 10^{-4}$$

$$\Sigma_B^{-1} = \begin{bmatrix} 67.1101 & 20.7954 \\ 20.7954 & 48.7831 \end{bmatrix}$$

$$P(\vec{x}|B) = N(\vec{x}|\mu_B, \Sigma_B) = \frac{1}{(2\pi)^{m/2} \sqrt{|\Sigma_B|}} e^{-\frac{1}{2}(\vec{x} - \vec{\mu}_B)^T \cdot \Sigma_B^{-1} \cdot (\vec{x} - \vec{\mu}_B)}$$

Probabilidades para $\{y_3, y_4\}$ condicionadas a A e B:

Classe A:

$$y_3 = 0$$
 $y_3 = 1$
 $y_4 = 0$ $P=0$ $P=1/3$
 $y_4 = 1$ $P=1/3$ $P=1/3$

Tabela 1: Probabilidades para y_3, y_4 condicionadas a A

Classe B:

$$y_3 = 0$$
 $y_3 = 1$
 $y_4 = 0$ $P=1/2$ $P=1/4$
 $y_4 = 1$ $P=1/4$ $P=0$

Tabela 2: Probabilidades para y_3, y_4 condicionadas a B

Probabilidades para $\{y_5\}$ condicionadas a A e B :

Classe A:

$$P(y_5 = 0|A) = 1/3$$

$$P(y_5 = 1|A) = 1/3$$

$$P(y_5 = 2|A) = 1/3$$

Classe B:

$$P(y_5 = 0|A) = 1/4$$

$$P(y_5 = 1|A) = 1/2$$

$$P(y_5 = 2|A) = 1/4$$

Priors:

$$P(A) = \frac{3}{7}$$

$$P(B) = \frac{4}{7}$$

(b) Uma vez que o denominador é o mesmo para todas para saber qual a classe mais provável, basta comparar os numeradores das probabilidades.

$$P(A|\vec{x}_8) = \frac{P(\vec{x}_8|A) \cdot P(A)}{P(\vec{x}_8)}$$

$$= \frac{P(y_1 = 0.38, y_2 = 0.52|A) \cdot P(y_3 = 0, y_4 = 1|A) \cdot P(y_5 = 0|A) \cdot P(A)}{P(\vec{x}_8)}$$

$$= \frac{\frac{3}{7} \cdot 0.3868 \cdot \frac{1}{3} \cdot \frac{1}{3}}{P(\vec{x}_8)}$$

$$= \frac{0.018}{P(\vec{x}_8)}$$

$$P(B|\vec{x}_8) = \frac{P(\vec{x}_8|B) \cdot P(B)}{P(\vec{x}_8)}$$

$$= \frac{P(y_1 = 0.38, y_2 = 0.52|B) \cdot P(y_3 = 0, y_4 = 1|B) \cdot P(y_5 = 0|B) \cdot P(B)}{P(\vec{x}_8)}$$

$$= \frac{\frac{4}{7} \cdot 1.7678 \cdot \frac{1}{4} \cdot \frac{1}{4}}{P(\vec{x}_8)}$$

$$= \frac{0.063}{P(\vec{x}_8)}$$

Como $P(A|\vec{x}_8) < P(B|\vec{x}_8)$, então \vec{x}_8 é classificado como B.

$$P(A|\vec{x}_9) = \frac{P(\vec{x}_9|A) \cdot P(A)}{P(\vec{x}_9)}$$

$$= \frac{P(y_1 = 0.42, y_2 = 0.59|A) \cdot P(y_3 = 0, y_4 = 1|A) \cdot P(y_5 = 0|A) \cdot P(A)}{P(\vec{x}_9)}$$

$$= \frac{\frac{3}{7} \cdot 0.1013 \cdot \frac{1}{3} \cdot \frac{1}{3}}{P(\vec{x}_9)}$$

$$= \frac{0.0048}{P(\vec{x}_9)}$$

$$P(B|\vec{x}_8) = \frac{P(\vec{x}_8|B) \cdot P(B)}{P(\vec{x}_8)}$$

$$= \frac{P(y_1 = 0.42, y_2 = 0.59|B) \cdot P(y_3 = 0, y_4 = 1|B) \cdot P(y_5 = 1|B) \cdot P(B)}{P(\vec{x}_8)}$$

$$= \frac{\frac{4}{7} \cdot 1.4927 \cdot \frac{1}{4} \cdot \frac{1}{2}}{P(\vec{x}_8)}$$

$$= \frac{0.1066}{P(\vec{x}_8)}$$

Como $P(A|\vec{x}_9) < P(B|\vec{x}_9)$, então \vec{x}_9 é classificado como B.

(c) Assumindo o critério de Maximum Likelihood, para classificar uma observação apenas interessam as probabilidades $P(\vec{x}|A)$ e $P(\vec{x}|B)$:

$$h = argmax(P(\vec{x}_8|h))$$

Considerando diferentes thresholds θ para as probabilidades é possível maximizar a accuracy do nosso classificador:

$$f(\vec{x}_8) = \begin{cases} A & \text{se } P(A|\vec{x}_8) > \theta \\ B & \text{otherwise} \end{cases}$$

$$P(\vec{x}_8|A) = P(y_1 = 0.38, y_2 = 0.52|A) \cdot P(y_3 = 0, y_4 = 1|A) \cdot P(y_5 = 0|A) = 0.043$$

$$P(\vec{x}_9|A) = P(y_1 = 0.42, y_2 = 0.59|A) \cdot P(y_3 = 0, y_4 = 1|A) \cdot P(y_5 = 0|A) = 0.0113$$

Assumindo o critério de maximum Likelihood os priors são todos iguais. Escolhendo qualquer valor no intervalo (0.0113,0.043) como threshold θ , a accuracy do classificador é de 100% para estas observações de teste.

2. As fórmulas utilizadas neste exercício são:

$$\hat{z} = \frac{\sum_{i=1}^{k} w_i \cdot z_i}{\sum_{i=1}^{k} w_i}$$

$$MAE = \frac{\frac{1}{n}}{\sum_{i=1}^{n} |z_i - \hat{z}|}$$

Para discretizar a variável y_2 , considerando equal-width, é necessário dividir o intervalo [0,1] em 2 partes iguais. Assim, os intervalos são: [0,0.5], [0.5,1].

Para cada observação, y_2 pode assumir os valores 0 ou 1, consoante o intervalo em que se encontra o seu valor.

(a) Em 3-Fold cross-validation o dataset é dividido em 3 partes iguais. Duas delas são usadas para teste e uma para treino.

Porque não há shuffling:

Tabela 3: $1^{\underline{0}}$ Fold

Tabela 4: 2^{0} Fold

Tabela 5: 3° Fold

(b)

D	y_1	y_2	y_3	y_4	y_5	y_6	
x_1	0.24	0	1	1	0	A	
x_2	0.16	0	1	0	1	A	
x_3	0.32	1	0	1	2	A	TRAIN
x_4	0.54	0	0	0	1	В	HUAIN
x_5	0.66	0	0	0	0	В	
x_6	0.76	0	1	0	2	В	
x_7	0.41	1	0	1	1	В	
x_8	0.38	1	0	1	0	A	TEST
x_9	0.42	1	0	1	1	В	

Para x_7 :

As observações com menor distância de Hamming são $x_3,\,x_4$ e x_5 . O output previsto pelo kNN é dado por

$$\hat{z}_7 = \frac{1/2 \cdot 0.32 + 1/2 \cdot 0.54 + 1/3 \cdot 0.66}{1/2 + 1/2 + 1/3} = 0.4875$$

Para x_8 :

As observações com menor distância de Hamming são $x_1,\,x_3$ e x_5 . O output previsto pelo kNN é dado por

$$\hat{z}_8 = \frac{1/2 \cdot 0.24 + 1 \cdot 0.32 + 1/3 \cdot 0.66}{1/2 + 1 + 1/3} = 0.36$$

Como as observações x_7 e x_9 são iguais, o output previsto pelo kNN para x_9 é igual ao output previsto para x_7 .

$$\hat{z}_9 = \hat{z}_7 = 0.4875$$

Por fim, o MAE deste classificador é dado por:

$$MAE = \frac{1}{3} \cdot (|0.41 - 0.4875| + |0.38 - 0.36| + |0.42 - 0.4875|) = 0.055$$

Programming - Código Python e Resultados Obtidos

1. (a) Caixas de bigodes.