Course Work of "Convex Optimization"

1. (Optional) Suppose $f : \mathbb{R} \to \mathbb{R}$ is convex, and $a, b \in \text{dom}(f)$ with a < b,

a). Show that

$$f(x) \le \frac{b-x}{b-a}f(a) + \frac{x-a}{b-a}f(b)$$

for all $x \in [a, b]$.

b). Show that

$$\frac{f(x) - f(a)}{x - a} \le \frac{f(b) - f(a)}{b - a} \le \frac{f(b) - f(x)}{b - x}$$

for all $x \in (a, b)$.

2. Provide examples of a function $f: \mathbb{R} \to \mathbb{R}$ and a non-empty set C of \mathbb{R} illustrating each of the following

- a). f is not convex, C is convex, and f is convex on C.
- b). f is not convex, C is not convex, and f is convex on C.

3. Let $f: \mathbb{R}^n \to]-\infty, +\infty[$ be convex, denote $X = \{ \boldsymbol{x} \in \mathbb{R}^n \, | \, f(\boldsymbol{x}) = \inf_{\boldsymbol{u} \in \mathbb{R}^n} f(\boldsymbol{u}) \}$ the set of global minimizers of f. Prove that X is convex.

4. (Arithmetic mean – geometric mean inequality) Let $x_1, x_2, ..., x_m > 0$. Show that

$$\sqrt[m]{x_1\cdots x_m} \le \frac{x_1+x_2+\cdots+x_m}{m},$$

and that equality occurs if and only if $x_1 = \cdots = x_m$.

5. The distance of a point \boldsymbol{x} to a set $\boldsymbol{S} \subseteq \mathbb{R}^n$, in the norm $\|\cdot\|$, is defined as

$$\operatorname{dist}(\boldsymbol{x}, \boldsymbol{S}) \stackrel{\text{def}}{=} \inf_{\boldsymbol{y} \in \boldsymbol{S}} \|\boldsymbol{x} - \boldsymbol{y}\|.$$

Show that the function is convex if the set S is convex. This is Example 3.16 of the book (page 88), please prove the result NOT using the ϵ -approach and the epigraph of the book

6. (Optional) Let f and g be functions from \mathbb{R}^n to $]-\infty,+\infty]$ and let $\theta\in(0,1)$. Show that

$$(\theta f + (1 - \theta)g)^* \le \theta f^* + (1 - \theta)g^*.$$

7. Let C and D be non-empty subsets of \mathbb{R}^n such that D is closed and convex. Show that

$$C \subset D \iff S_C(x) \leq S_D(x).$$

1

- **8.** Derive the conjugates of the following functions.
 - a). $f: \mathbb{R}^n \to \mathbb{R}$,

$$f(\boldsymbol{x}) = \max_{i=1,\dots,n} x_i$$

b). Let p > 1 and set q = p/(p-1). Then

$$\left(\frac{|x|^p}{p}\right)^* = \frac{|x|^q}{q}.$$

c). (Optional) Let $f(x) = \begin{cases} 1/x & \text{if } x > 0 \\ +\infty & \text{if } x \le 0 \end{cases}$. Then

$$f^*(y) = \begin{cases} -2\sqrt{-y} & \text{if } y \le 0\\ +\infty & \text{if } y > 0 \end{cases}$$

d). (Optional) (negative Burg entropy) Let $f(x) = \begin{cases} -\ln(x) & \text{if } x > 0 \\ +\infty & \text{if } x \leq 0 \end{cases}$. Then

$$f^*(y) = \begin{cases} -\ln(-y) - 1 & \text{if } y < 0 \\ +\infty & \text{if } y \ge 0 \end{cases}$$

- 9. Derive the conjugates of the following functions

 - a). $f: \mathbb{R}^n \to \mathbb{R}, \ f(\boldsymbol{x}) = \|\boldsymbol{x}\|_1 + \frac{\alpha}{2} \|\boldsymbol{x}\|^2 \text{ where } \alpha > 0.$ b). (Optional) Let $A \in \mathbb{R}^{m \times n}, \ \boldsymbol{b} \in \mathbb{R}^m \text{ and } \lambda > 0, \ f(\boldsymbol{x}) = \lambda \|\boldsymbol{x}\|_p + \frac{1}{2} \|A\boldsymbol{x} \boldsymbol{b}\|^2 \text{ where } p \ge 1.$