- 1. (10 pts) For a general linear regression problem with p covariates (including intercept and p-1 additional covariates) and sample size n, the regression model can be written as $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$, where $\mathbf{e} \sim N(0, \sigma^2 I_{n \times n})$, and \mathbf{X} is full rank.
 - (a) (4 pts) What are the dimensions of matrix/vector of \mathbf{y} , \mathbf{X} , $\boldsymbol{\beta}$, and \mathbf{e} ? What is the rank of \mathbf{X} ? Please explain why $cov(\mathbf{e}) = \sigma^2 I_{n \times n}$ implies the assumptions of independence and homogeneity.

The Xnxp enx | Yank (x)=p diaghals

(w(e)= 52 (10) => (independent since of diaghals

homogeneity since

(b) (1 pts) Parison the local accuracy actions to a (xIx)=1(xIv) by 1/ax 1/4;1=x2

(b) (4 pts) Derive the least squares estimates: $\hat{\beta} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}(\mathbf{X}^{\mathsf{T}}\mathbf{y})$ by minimizing the least squares objective function, i.e., to minimize $(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$.

See factive note

(c) (4pts) Calculate $E(\hat{\beta})$ and $cov(\hat{\beta})$.

See lecture hate

(a) (2 pts) Prease show cov(e) =
$$I_{n \times n}$$
.
(ov (Q) = $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}$

(b) (2 pts) For a linear regression problem $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$, the formula for least squares estimates is: $\hat{\boldsymbol{\beta}} = (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}(\mathbf{X}^\mathsf{T}\mathbf{y})$. Please use this formula to calculate the least squares estimates of regression coefficients $\hat{\boldsymbol{\alpha}}$ for the regression model $\tilde{\mathbf{y}} = \tilde{\mathbf{X}}\boldsymbol{\alpha} + \tilde{\mathbf{e}}$, in terms of \mathbf{X} , \mathbf{y} and $\boldsymbol{\Sigma}$.

$$Q = (XX)^{-1}X^{T}$$

$$= (XX)^{1$$

$$E(\hat{\chi}) = (X^{T} \Sigma^{-1} X)^{-1} X^{T} \Sigma^{-1} X \beta = \beta$$

$$Cou(\hat{\chi}) = (X^{T} \Sigma^{-1} X)^{-1} X^{T} \Sigma^{-1} \Sigma \Sigma^{-1} X^{0} (X^{T} \Sigma^{-1} X)^{-1}$$

$$= (X^{T} \Sigma^{-1} X)^{-1} X^{T} \Sigma^{-1} X^{0} (X^{T} \Sigma^{-1} X)^{-1}$$

$$= (X^{T} \Sigma^{-1} X)^{-1} X^{T} \Sigma^{-1} X^{0} (X^{T} \Sigma^{-1} X)^{-1}$$

$$= (X^{T} \Sigma^{-1} X)^{-1} X^{T} \Sigma^{-1} X^{0} (X^{T} \Sigma^{-1} X)^{-1}$$

- 3. (20pts) We are interested in data collected by the Environmental Protection Agency (EPA) at the Health Effects Research Laboratory at UNC: Chapel Hill. One hundred seventy young adult males received a battery of pulmonary function tests. Fit a model with average forced vital capacity (FVC) (in ml) as the outcome and height, weight, body mass index (BMI= weight (kg)/(height (m))²), body surface area, age, average treadmill elevation, average treadmill speed, temperature, barometric pressure, and humidity as predictors.
 - (a) (5pts) To assess for possible co-linearity in the covariates, we perform PCA on the correlation matrix of this data. As shown in the following output, the 10-th eigen-value is very small, which means a particular

Eigenvalue decomposition of the Correlation Matrix

Eigenvalues of the Correlation Matrix

	Eigenvalue	Difference	Proportion	Cumulative
1	2.98457157	0.95976513	0.2985	0.2985
2	2.02480644	0.36097943	0.2025	0.5009
3	1.66382702	0.63279205	0.1664	0.6673
4	1.03103496	0.06376972	0,1031	0.7704
5	0.96726525	0.20929379	0.0967	0.8672
6	0.75797146	0.20748316	0.0758	0.9429
7	0.55048830	0.53278371	0.0550	0.9980
8	0.01770459	0.01584173	0.0018	0.9998
9	0.00186286	0.00139531	0.0002	1.0000
10	0.00046755		0.0000	1.0000

Eigenvectors

		Prinl	Prin2	Prin3	Prin4
height	Height (cm)	0.429342	0.036906	0.384653	240983
weight	Weight (kg)	0.562292	092679	095943	0.026718
bmi		0.340930	147689	443854	0.239531
area	Body Surface Area (M**2)	0.566969	047500	0.092208	079656
age	Age (years)	0.084799	~.102998	198442	~.321636
avtrel	Average Treadmill Elevation (deg)	116240	026373	0.497176	0.182497
avtrsp	Average Speed of Treadmill (mph)	0.144346	0.094273	0.571216	0.156073
temp	Air Temperature (deg C)	0.084996	0.675223	123262	0.099538
barm	Barometric Pressure (mmHg)	0.070861	175834	013681	0.832373
hum	Relative Humidity %	0.089569	0.677455	095377	0.116735

Eigenvectors

	Prin5	Prin6	Prin7	Prin8	Prin9	Prin10
height	120483	361837	0.222180	0.018428	0.521355	0.375921
weight	012319	0.158716	0.071437	0.004011	639418	0.475397
bmi.	0.092604	0.520638	117929	0.006137	0,557078	0.060451
area	061800	035176	0.137407	017784	093401	792758
age	0.856166	289687	149123	013509	001675	003181
avtrel	0.442067	0.455127	0.550162	0.007661	000498	001474
avtrsp	0.112098	0.166298	760874	0.019013	010800	0.001191
temp	0.096489	017527	0.055784	0.706187	007909	015994
barm	0.121960	502455	0.060375	0.005988	0.003385	001295
hum	0.087996	009950	0.046292	707073	0.009011	0.017050

linear combination of the covariates has small variance. Which linear combination it is? Explain why is it possible that this combination has small variance? Could this PCA captures co-linearity between intercept and other covariates? and why?

Weight Array Array

Vo judereept effect has been remarked from correlation matrix some

it remode

Mean voluel

(b) (4pts) Consider a linear regression model with all the covariates. Let $\beta = (\beta_0, \beta_1, ..., \beta_{10})^T$ be the intercept and the regression coefficients for height, weight, bmi, area, age, avtrel, avtrsp, temp, barm, and hum, respectively. Test the hypothesis: H_0 : $\beta_1 = \beta_2 = 2\beta_4$ using general linear hypothesis. Please write down C and θ_0 so that the test can be written $C\beta = \theta_0$, and please write down the formula of test-statistic while denoting the data matrix for intercept and the 10 covariates by X, and denoting the residual variance of this linear regression model by $\hat{\sigma}^2$.

regression model by
$$\hat{\sigma}^2$$
.

$$\begin{pmatrix}
0 & 1 & -1 & 0 & -0 & -0 & -0 & 0 \\
0 & 1 & 0 & 0 & -2 & 0 & -0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
\hat{A} - \hat{\theta}_0
\end{pmatrix} M^{-1} \begin{pmatrix}
\hat{B} - \hat{\theta}_0
\end{pmatrix} M^{-2} \begin{pmatrix}
\hat{A} - \hat{\theta}_0
\end{pmatrix} M^{-1} \begin{pmatrix}
\hat{A} - \hat{$$

(c) (7pts) After a few rounds of testing, we decide to have final model without area, temp, hum, and barm.

i. (2pts) Based on the following ANOVA table, what is the R^2 ? Please show your calculation and you may round those numbers to simplify the calculation.

Analysis of Variance

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model Error Corrected To	6 163 tal 169	49984918 65242013 115226931	8330820 400258	20.81	<.0001
	Root MSE Dependent Mean Coeff Var	632.65927 5335.43235 11.85769	R-Square Adj R-Sq	0.4130	
	н.	7=	115		

ii. (2pts) Based on the following t-table, if we test whether the regression coefficient for age is 0 by added last test, what is the value of F-statistic, and what are the degrees of freedom?

Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	Intercept	1	4899,55068	13356	0.37	0.7142
height	Height (cm)	1	-32.70393	75.89989	-0.43	0.6671
weight	Weight (kg)	1	119.42970	92.38958	1.29	0.1980
bmi		1	-286.38260	297.80536	-0.96	0.3377
age	Age (years)	1	27.86381	13.61020	2.05	0.0422
avtrel	Average Treadmill Elevation (deg)	1	51.50263	37.65313	1.37	0.1733
avtrsp	Average Speed of Treadmill	1	755.16631	379.56118	1.99	0.0483

 $F = (2.05)^2$ df = (1, (63))

iii. (3pts) Based on this reduced model with 6 covariates, which characteristics are associated with the best (largest) FVC?

Shorter heavier, Inw bont, older, hopher survel and higher autrop (d) (4pts) In the diagnosis of this model, we detect a few data points as outliers based on either leverage or cook's distance. Please explain

outliers based on either reverse what are the difference of leverage and cook's distance.

Myh Deverage means sullet in X

lorge (sole's distance means by high influence many and influence means of regression between to study the association between the study the association and the study the association between the study the association and the study the association as the study the association

environment and 1 for enriched one) and dosage of a drug (with dosage 0, 1, and 2).

observation	activity	environment	drug
1	102	0	0
2	97	0	0
3	102	0	1
4	82	0	1
5	108	0	2
6	111	0	2
7	95	1	0
8	100	1 .	0
9	106	1	1
10	110	1	1
11	118	1	2
12	116	1	2

(a) (4pts) First consider a linear model with two covaraites:

 $E(\text{activity}) = b_0 + b_1 \text{environment} + b_2 \text{dose}$

If we write the above model by a matrix form: y = Xb + e, what are the meanings of y, X and e, and what are their dimensions?

(b) (4pts) Please calculate the correlation between two variables: environment and drug. For added in-order test, would the p-values for environment and drug remain the same for two orders: environment followed by drug; and drug followed by environment?

$$(\operatorname{or}(\operatorname{en},\operatorname{drug}) = \operatorname{E}(XY) - \operatorname{E}(x) \operatorname{E}(x)$$

$$\stackrel{+}{+} = \operatorname{E}(XY) - \operatorname{E}(x) \operatorname{E}(x)$$

(c) (8pts) Given the following regression coefficient estimates and type III ANOVA table.

	Estimate	Std.	Error	t value	Pr(> t)
(Intercept)	92.958		4.000	23.240	2.41e-09
enviorment	7.167		4.276	1.676	0.1281
drug	7.375		2.619	2.816	0.0202

Response: activity

Df Sum Sq Mean Sq F value Pr(>F)
enviorment 1 154.08 154.08 2.8088 0.12806
drug 1 435.12 435.12 7.9321 0.02017
Residuals 9 493.71 54.86

Please test the null hypothesis H_0 : $b_1 = b_2 = 0$ using (1) general linear hypothesis testing and (2) comparison of the sum squares of two models. Write down your test statistic, its asymptotic distribution and the degree of freedom. You should plug in the numbers into your formula of test statistic but do not need to calculate it. If you need $(X'X)^{-1}$. Simply use $(X'X)^{-1}$ rather than the actual numbers.

 $M = C(X'X)^{-1} C'$

(2) Mode 1 $f \sim \beta_0$ $(552 - 551)/2 = \frac{(154,08 + 435,12)/2}{5251/9} = \frac{(154,08 + 435,12)/2}{402.71/9} = \frac{df-(2,9)}{402.71/9}$

y~B+Bi drug Model Ja Bot Ben + Be dry (d) (4pts) What is the R^2 of a smaller model with intercept and drug? What is the R^2 of a larger model with intercept, environment, and drug? Feel free to use approximations in your calculation. Then if we double the sample size from 12 to 24, while assuming the \mathbb{R}^2 of these two models remain the same, what would be the F-statistic to test the null hypothesis that the regression coefficient for environment is -Sulth Squares - R2 / N-p) Nhew-P