

Master of Science in Informatics at Grenoble Master Mathématiques Informatique - spécialité Informatique option Graphics Vision and Robotics

Scalable image reconstruction methods for large data: Application to Synchrotron CT of biological samples Claude Goubet

Defense Date, 2017

Research project performed at CREATIS

Under the supervision of: Juan F. P. J. Abascal

Defended before a jury composed of: Head of the jury Jury member 1 Jury member 2

June 2017

Abstract

Your abstract goes here...

Acknowledgement

Résumé

Your abstract in French goes here...

Contents

Ab	bstract	i
Ac	cknowledgement	i
Ré	ésumé	i
1	Introduction	1
2	State-of-the-Art 2.1 Dose reduction in SR Micro-CT 2.1.1 No SR 2.1.2 CS on SR micro-CT 2.2 SR Nano-CT 2.3 Wrap-up	3 3 3 3 3
3	Problem Statement	5
4	Proposed approach 4.1 Split Bregman iterative reconstruction 4.1.1 Split Bregman iteration 4.1.2 L1 regularization problem 4.2 SB-TV-2D reconstruction 4.3 SB-TV-3D	7 7 7 8 8
5	Method evaluation	9
6	Conclusion	11
A	Appendix	13
Bi	bliography	15

Introduction

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

— 2 —

State-of-the-Art

intro about CT and importance for osteoporosis diagnosis + use of SR + low dose problem CS ([3, 1, 11])

2.1 Dose reduction in SR Micro-CT

Multiple CS algorithm were developed for Micro-CT allowing to generate different spacial resolutions. Alternative methods then FBP necessary to recover missing projections. Iterative algorithms are used.

2.1.1 No SR

SART-L1 [18, 16] ASD-POCS TV [7]

2.1.2 CS on SR micro-CT

multiple iterative methods using CGTV ([17]) ART with multiple denoising (TV [15]; L1 minimisation [9]; Discrete packet shrinkage [14]) SART ([12] with TV [13]) OS-SART [8]) EST [4, 19] PCCT [5] define resolution for each solution (maybe more details?)

2.2 SR Nano-CT

Nano-CT general ref: [2] (I can have other references but are mostly about the hardware side, new materials and acquisition methodology, or image post-processing without having used low dose)

less CS reconstruction experimented Low dose nano OS-SART L1 norm TV [10]

2.3 Wrap-up

A lot of research these past few years of CSCT going toward a improvement of spacial resolution and dose reduction. Yet not so much has been done on Nano scale. In the context of osteoporosis nano scale is mandatory for a accurate diagnosis. Present our objective.

Problem Statement

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Proposed approach

We propose to use iterative reconstruction with the algorithm described by [6]. Split Bregman algorithm gives a solution to an L1-L2 constrained problem. We will here describe the bregman iteration and it's application to L2 minimisation reconstructions which will be used in our algorithm.

4.1 Split Bregman iterative reconstruction

4.1.1 Split Bregman iteration

Using Split Bregman we wish to solve the constrained reconstruction optimization problem described in the section ??:

$$\min_{u} ||\nabla_{u}||_{1} \text{ such that } Fu = f \tag{4.1}$$

Such constrained problem problems are difficult to solve directly. For this reason we need to define a new unconstrained problem. Luckily it is possible to approximate (4.1) as:

$$\min_{u} ||\nabla_{u}||_{1} + \frac{\lambda}{2} ||Fu - f||_{2}^{2}$$
(4.2)

The Bregman iteration allows us to reduce 4.1 in even shorter unconstrained problems using Bregman distances. These constrained problem can be resolved iteratively as follows:

$$u^{k+1} = \min_{u} ||\nabla_{u}||_{1} + \frac{\lambda}{2} ||Fu - f^{k}||_{2}^{2}$$

$$f^{k+1} = f^{k} + f - Fu^{k}$$
(4.3)

4.1.2 L1 regularization problem

Our compressed sensing reconstruction method is based on L1 regulation. A more faithful reconstruction problem must be formulated and we will see how to solve it iteratively with split Bregman.

The idea is to "de-couple" the L1 and L2 parts of our original problem. We wish to minimize the Total Variation ∇_u of the image and a weight function H(). We write the problem as follows:

$$\min_{u,d} ||d||_1 + H(u) \text{ such that } d = \nabla_u$$
(4.4)

Which can be computed iteratively using Split Bregman iteration as:

$$(u^{k+1}, d^{k+1}) = \min_{u, d} ||d||_1 + H(u) + \frac{\lambda}{2} ||d - \nabla_u - b^k||_2^2$$

$$b^{k+1} = b^k + \nabla_{u^{k+1}} - d^{k+1}$$
(4.5)

4.2 SB-TV-2D reconstruction

isotropic TV denoising pbl:

$$\min_{u} ||\nabla_{u}||_{1} \text{ such that } ||Fu - f||_{2}^{2} < \delta^{2}$$

$$\tag{4.6}$$

where $\nabla_u = (\nabla_x, \nabla_y)u$

$$u = d = d = (4.7)$$

4.3 SB-TV-3D

pbl: $\alpha ||(\nabla_x, \nabla_y, \nabla_z)u||_1$ such that $||Fu - f||_2^2 < \delta^2$

$$u = d = d = (4.8)$$

Method evaluation

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Conclusion

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

A —Appendix

Appendix goes here...

Bibliography

- [1] Joy C Andrews, Eduardo Almeida, Marjolein CH van der Meulen, Joshua S Alwood, Chialing Lee, Yijin Liu, Jie Chen, Florian Meirer, Michael Feser, Jeff Gelb, et al. Nanoscale x-ray microscopic imaging of mammalian mineralized tissue. *Microscopy and Microanalysis*, 16(03):327–336, 2010.
- [2] Yu-Tung Chen, Tsung-Yu Chen, Jaemock Yi, Yong S Chu, Wah-Keat Lee, Cheng-Liang Wang, Ivan M Kempson, Y Hwu, Vincent Gajdosik, and G Margaritondo. Hard x-ray zernike microscopy reaches 30 nm resolution. *Optics letters*, 36(7):1269–1271, 2011.
- [3] Martin Dierolf, Andreas Menzel, Pierre Thibault, Philipp Schneider, Cameron M Kewish, Roger Wepf, Oliver Bunk, and Franz Pfeiffer. Ptychographic x-ray computed tomography at the nanoscale. *Nature*, 467(7314):436–439, 2010.
- [4] Benjamin P Fahimian, Yu Mao, Peter Cloetens, and Jianwei Miao. Low-dose x-ray phase-contrast and absorption ct using equally sloped tomography. *Physics in medicine and biology*, 55(18):5383, 2010.
- [5] T Gaass, G Potdevin, M Bech, PB Noël, M Willner, A Tapfer, F Pfeiffer, and A Haase. Iterative reconstruction for few-view grating-based phase-contrast ctâan in vitro mouse model. *EPL* (*Europhysics Letters*), 102(4):48001, 2013.
- [6] Tom Goldstein and Stanley Osher. The split bregman method for 11-regularized problems. *SIAM journal on imaging sciences*, 2(2):323–343, 2009.
- [7] Xiao Han, Junguo Bian, Diane R Eaker, Timothy L Kline, Emil Y Sidky, Erik L Ritman, and Xiaochuan Pan. Algorithm-enabled low-dose micro-ct imaging. *IEEE transactions on medical imaging*, 30(3):606–620, 2011.
- [8] Peng He, Hengyong Yu, James Bennett, Paul Ronaldson, Rafidah Zainon, Anthony Butler, Phil Butler, Biao Wei, and Ge Wang. Energy-discriminative performance of a spectral micro-ct system. *Journal of X-ray Science and Technology*, 21(3):335–345, 2013.
- [9] Xueli Li and Shuqian Luo. A compressed sensing-based iterative algorithm for ct reconstruction and its possible application to phase contrast imaging. *Biomedical engineering online*, 10(1):73, 2011.

- [10] Zhiting Liang, Yong Guan, Gang Liu, Rui Bian, Xiaobo Zhang, Ying Xiong, and Yangchao Tian. Reconstruction of limited-angle and few-view nano-ct image via total variation iterative reconstruction. In *SPIE Optical Engineering+ Applications*, pages 885113–885113. International Society for Optics and Photonics, 2013.
- [11] Y Liu, J Nelson, C Holzner, JC Andrews, and P Pianetta. Recent advances in synchrotron-based hard x-ray phase contrast imaging. *Journal of Physics D: Applied Physics*, 46(49):494001, 2013.
- [12] R Longo, F Arfelli, R Bellazzini, U Bottigli, A Brez, F Brun, A Brunetti, P Delogu, F Di Lillo, D Dreossi, et al. Towards breast tomography with synchrotron radiation at elettra: first images. *Physics in medicine and biology*, 61(4):1634, 2016.
- [13] Yang Lu, Zhenyu Yang, Jun Zhao, and Ge Wang. Tv-based image reconstruction of multiple objects in a fixed source-detector geometry. *Journal of X-ray science and technology*, 20(3):277–289, 2012.
- [14] S Ali Melli, Khan A Wahid, Paul Babyn, David ML Cooper, and Varun P Gopi. A sparsity-based iterative algorithm for reconstruction of micro-ct images from highly undersampled projection datasets obtained with a synchrotron x-ray source. *Review of Scientific Instruments*, 87(12):123701, 2016.
- [15] Seyed Ali Melli, Khan A Wahid, Paul Babyn, James Montgomery, Elisabeth Snead, Ali El-Gayed, Murray Pettitt, Bailey Wolkowski, and Michal Wesolowski. A compressed sensing based reconstruction algorithm for synchrotron source propagation-based x-ray phase contrast computed tomography. *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 806:307–317, 2016.
- [16] Li Mengjie, Li Jing, and Sun Yi. Sparse angular differential phase-contrast computed tomography reconstruction using l[~] 1-norm and curvelet constraints. *Acta Optica Sinica*, 1:015, 2014.
- [17] Xiaoli Yang, Ralf Hofmann, Robin Dapp, Thomas Van de Kamp, Tomy dos Santos Rolo, Xianghui Xiao, Julian Moosmann, Jubin Kashef, and Rainer Stotzka. Tv-based conjugate gradient method and discrete l-curve for few-view ct reconstruction of x-ray in vivo data. *Optics express*, 23(5):5368–5387, 2015.
- [18] Li Jing Sun Yi. L_1-norm-based differential phase-contrast computerized tomography reconstruction algorithm with sparse angular resolution [j]. *Acta Optica Sinica*, 3:014, 2012.
- [19] Yunzhe Zhao, Emmanuel Brun, Paola Coan, Zhifeng Huang, Aniko Sztrókay, Paul Claude Diemoz, Susanne Liebhardt, Alberto Mittone, Sergei Gasilov, Jianwei Miao, et al. Highresolution, low-dose phase contrast x-ray tomography for 3d diagnosis of human breast cancers. *Proceedings of the National Academy of Sciences*, 109(45):18290–18294, 2012.