

29th Summer Conference on

100° has a periodic billiard trajectory. A phenomenon discovered by Schwartz:

Let P be a polygon in the plane. We define $\tilde{L}(P)$ to be the length of the shortest periodic billiard trajectory in P or ∞ if none exists.

Theorem (Schwartz): The function L is not locally finite at the (30, 60, 90) triangle.

Parallels for Isosceles triangles **Theorem** (H-Schwartz): There is a neighborhood of the set of isosceles triangles so that every triangle in the neighborhood has

Conjecture (H-Schwartz): The function L is not locally finite at the triangle with angles

 $\left(\frac{\pi}{2^k}, \frac{\pi}{2^k}, \frac{\pi(2^{k-1}-1)}{2^{k-1}}\right)$ for any integer $k \geq 3$ **Todays Goal:**

I'll give some ideas that I expect will lead to a proof of this

conjecture. **Idea 1:** Consider real analytic paths of polygons. Theorem (Criterion for non-local boundedness):

a periodic billiard trajectory.

orbit type \mathcal{O} so that P_t lies in the orbit tile of \mathcal{O} for $0 < t < \epsilon$. A related classification problem:

Given $t \mapsto P_t$ real analytic, find all \mathcal{O} so that there is an $\epsilon > 0$ so that P_t lies in the orbit tile when $0 < t < \epsilon$. Idea 2: A translation surface is a topological surface with an

atlas of charts to the plane so that the transition functions are

Let $t \mapsto P_t$ be real analytic and defined on [0, a) for some a > 0. If L is locally bounded at P_0 , then there is an $\epsilon > 0$ and a single

Translation surfaces can sometimes be used to answers to the following questions:

translations.

polygon P_0 . For a real analytic path $t \mapsto P_t$,

1. Classify the orbit types of periodic billiard trajectories in a

2. Classify the orbit types so that P_t lies in the orbit tile for $0 \le t < \epsilon \text{ for some } \epsilon > 0.$ 3. Classify the orbit types so that P_t lies in the orbit tile for $0 < t < \epsilon$ for some $\epsilon > 0$.

The translation surface associated to a polygon:

Given a polygon P, let DP denote the double of P across its

boundary. • DP is a Eucidean cone surface.

 Closed geodesics on DP have trivial rotational holonomy.

The cover of DP^* associated to ker(hol)

is the minimal translation surface

homomorphism:

cover.

- There is a folding map $DP \rightarrow P$. • A periodic billiard trajectory in Plifts to a closed geodesic in DP.
- Let DP^* denote the double of P with its cone singularities removed. Rotational holonomy gives a group homomophism
 - $hol: \pi_1(DP^*) \to \mathbb{R}/2\pi\mathbb{Z}.$

Let $t \mapsto P_t$ be a real analytic path of polygons defined on [0, a)for some a > 0. Then, for each t, we get a rotational holonomy

 $hol_t: \pi_1(DP_t^*) \to \mathbb{R}/2\pi\mathbb{Z}.$ The associated analytic path of translation surfaces is the family

of covers of DP_t^* associated to $\bigcap_t ker(hol_t)$.

Fact: Let $t \mapsto P_t$ be as above, and let $t \mapsto S_t$ be the analytic path of translation surfaces. Let γ be periodic billiard path in P_0 with orbit type \mathcal{O} . Then, P_t lies in the orbit tile of \mathcal{O} (with \mathcal{O} of even length) for $0 \le t < \epsilon$ for some $\epsilon > 0$ if and only if γ lifts to S_0 .

Again, sometimes S_0 admits special symmetries allowing for the classification of closed geodesics. **Theorem:** Let P_t be a real analytic path of triangles with P_0 the $(\frac{\pi}{2^k}, \frac{\pi}{2^k}, *)$ triangle for an integer $k \geq 3$. If P_t is not contained in a line in the space of triangles, then there are no orbit types so that P_t lies in the orbit tile for $0 \le t < \epsilon$ for a positive ϵ . Streched limits of analytic paths of translation surfaces: **Observations:** Translation surfaces arising from polygonal billiard tables are special: All singularities are of cone type, and the distance between singularities is bounded from below by some $\eta > 0$. We call such surfaces η -forthright. There is a natural definition of an real analytic path in the

space of pointed η -forthright surfaces having to do with the motion of cone singularities. This singularites move around

• There is a naural way to identify homotopy classes within an analytic family. Closed geodesics lie in a cylinder whose

• There is a $GL(2,\mathbb{R})$ action on translation surfaces, and it preserves

• The η -forthright surfaces form a closed set in a natural topology on the space of all pointed translation surfaces. This topology is described in a pair of articles on the ArXiv, Immersions and

in a real analytic way, except they may tend to ∞ .

circumferences and widths vary real analytically in t.

the forthright surfaces.

translation structures on the disk and Immersions and the space of all translation structures. Theorem (Stretched limits): Let $t \mapsto S_t$ be a real analytic path in the space of η -forthright surface defined for $t \in [0, a)$. Define the family of matrices:

 $A_t = \left[\begin{array}{cc} 1 & 0 \\ 0 & \frac{1}{t} \end{array} \right].$

Then, there is a limit $S_0' = \lim_{t\to 0} A_t(S_t)$. Furthermore, the path defined by S'_0 and $S'_t = A_t(S_t)$ for $t \in [0, a)$ is a real analytic path

Suppose a family of cylinders in S_t is assymptotically horizontal as t o 0 and has width function $w(t) = ct + O(t^2)$. If the homotopy class has a limit in $S'_0 = \lim_{t\to 0} A_t(S_t)$, then there is a cylinder in

Remarks: The cylinders can be arranged to be assymptotically horizontal by rotating S_t uniformly. The homotopy classes can be made to converge by choosing basepoints appropriately.

of η -forthright translation surfaces. Theorem (Using streched limits):

this homotopy class.

- for k > 1 can be detected by successively rotating and stretching k times. (1,-1)Fact (Classification): (-3,9) In some cases, the
- successive strecthed limits of an analytic

• Cylinders whose width functions are $w(t) = ct^k + O(t^{k+1})$

family $t \mapsto S_t$ can be classified. (-2,4)**Example:**

(1,0)