Programación

C#

TECNICATURA SUPERIOR EN PROGRAMACIÓN
LABORATORIO DE COMPUTACIÓN II

Clase Char

- Permite representar caracteres Unicode.
- Se usa cuando se necesita albergar únicamente un carácter individual.
- En caso de necesitarse varios, se puede utilizar una matriz de elementos Char. Por ejemplo:

```
char arreglo_char[];
arreglo_char[o] = 'X'; // Caracter literal
arreglo_char[1] = '\xoo58'; // Hexadecimal
arreglo_char[2] = '\uoo58'; // Unicode
```

 El valor predeterminado de Char es el carácter con el punto de código o. El punto de código es un entero que representa un determinado carácter.

Clase Char

DEC	HEX	OCT	CHAR	DEC	HEX	OCT	СН	DEC	HEX	OCT	СН	DEC	HEX	OCT	СН
0	0	000	NUL	32	20	040	500	64	40	100	@	96	60	140	0
1	1	001	SOH	33	21	041	1	65	41	101	A	97	61	141	a
2	2	002	STX	34	22	042	000	66	42	102	В	98	62	142	b
3	2 3 4	003	ETX	35	23	043	#	67	43	103	C	99	63	143	C
4	4	004	EOT	36	24	044	\$	68	44	104	D	100	64	144	d
5	5 6	005	ENQ	37	25	045	%	69	45	105	E	101	65	145	e
6	6	006	ACK	38	26	046	8.	70	46	106	F	102	66	146	f
7	7	007	BEL	39	27	047	100	71	47	107	G	103	67	147	g
8	8	010	BS	40	28	050	(72	48	110	H	104	68	150	h
9	8 9	011	TAB	41	29	051)	73	49	111	1	105	69	151	1
10	A	012	LF	42	2A	052	*	74	4A	112	J	106	6A	152	j
11	B	013	VT	43	28	053	+	75	4B	113	K	107	6B	153	k
12	C	014	FF	44	2C	054	68	76	4C	114	L	108	6C	154	
13	D	015	CR	45	2D	055	133	77	4D	115	M	109	6D	155(m
14	E	016	SO	46	2E	056	100	78	4E	116	N	110	6E	156	4
15	F	017	SI	47	2F	057	1	79	4F	117	0	111	6F	157	0
16	10	020	DLE	48	30	060	0	80	50	120	80	112	70	160	p
17	11	021	DC1	49	31	061	1	81	51	121	Q	113	71	161	q
18	12	022	DC2	50	32	062	2	82	52	122	R	114	72	162	r
19	13	023	DC3	51	33	063	3	83	53	123	S	115	73	163	s
20	14	024	DC4	52	34	064	4	84	54	124	Т	116	74	164	t
21	15	025	NAK	53	35	065	5	85	55	125	U	117	75	165	Ц
22	16	026	SYN	54	36	066	6	86	56	126	V	118	76	166	V
23	17	027	ETB	55	37	067	7	87	57	127	W	119	77	167	W
24	18	030	CAN	56	38	070	8	88	58	130	X	120	78	170	X
25	19	031	EM)	57	39	071	9	89	59	131	Y	1-21	79	171	У
26	1A	032	SUB	58	ЗА	072		90	5A	132	Z	122	7A	172	Z
27	1B	033	ESC	59	3B	073		91	5B	133	I	123	7B	173	{
28	10	034	FS	60	3C	074	<	92	5C	134	î	124	7C	174	ì
29	1D	035	GS	61	3D	075	=	93	5D	135	1	125	7D	175	}
30	1E	036	RS	62	3E	076	>	94	5E	136	٨	126	7E	176	~
31	1F	037	US	63	3F	077	?	95	5F	137	202	127	7F	177	DEL

Carácter

Punto de código

Clase Char

- La clase Char proporciona métodos para:
 - Comparar objetos Char,
 - Convertir el valor del objeto Char actual en un objeto de otro tipo,
 - O Determinar la categoría UNICODE de un objeto Char.

COMPARAR OBJETOS

CompareTo	Equals
Compara una instancia con otra y devuelve una indicación de sus valores relativos . Devuelve un entero.	Compara una instancia con otra, indicando si son iguales o no. Devuelve un booleano.
<pre>char chA = 'A', chN = 'N'; int resultado = chA.CompareTo('4'); Console.WriteLine(resultado); // Salida: "13" Console.WriteLine(chA.CompareTo(chN)); // Output: "-13"</pre>	char chA = 'A', chN = 'N', chA2 = 'A'; string str = "cadena"; Console.WriteLine(chA.Equals('A')); //True Console.WriteLine(chA.Equals(chA)); // True Console.WriteLine(chA.Equals(chN)); // False Console.WriteLine(chA.Equals(str)); //False

Ejercicio 1:

Escribir un programa que solicite al usuario que ingrese caracteres. Cada carácter ingresado debe ser comparado con el anterior e indicar si se trata del mismo, es mayor o menor. El primer carácter ingresado no se compara con ningún otro en especial. Utilice ambas funciones en el mismo ejercicio. ¿Qué diferencias encuentra? ¿Cuándo utilizaría una y cuándo otra?

GetNumericValue

 Convierte un carácter Unicode numérico en un número de tipo double. Por ejemplo:

```
char ch1 = '1'; string str = "cadena 4";
double numero = Char.GetNumericValue(ch1);
Console.WriteLine(numero); // Salida: "1"
Console.WriteLine(Char.GetNumericValue(str, 7)); // Salida: "4"
```

ToString

Convierte el valor del caracter en una cadena string equivalente. Por ejemplo:

```
string cadena = 'x'.ToString();
Console.WriteLine(cadena); // Salida: "x"
Console.WriteLine(Char.ToString('b')); // Salida: "b"
```


CONVERSIÓN ENTRE TIPOS

Parse

Convierte una cadena en el caracter equivalente. Por ejemplo:

```
string cadena = "s";
char caracter = Char.Parse(cadena);
Console.WriteLine(caracter); // Salida: 'S'
```

TryParse

Ídem Parse, pero devuelve un código indicando si la conversión fue exitosa o no. Por ejemplo:

```
char chObtenido; bool resultado;
resultado = char.TryParse("J", out chObtenido);
Console.WriteLine(resultado + " " + chObtenido); // Salida: "true J"
```

¿Qué diferencias hay entre Parse y TryParse?

CONVERSIÓN ENTRE TIPOS

Char.Parse("3")

char

Char.TryParse("3", out resultado)

DETERMINAR CATEGORÍA UNICODE

GetUnicodeCategory

UnicodeCategory categoria = Char.GetUnicodeCategory('a');
Console.WriteLine(categoria); // Salida: "LowercaseLetter"
Console.WriteLine(Char.GetUnicodeCategory('1')); // Salida: "DecimalDigitNumber"

Nota: para acceder a la enumeración *UnicodeCategory*, deberá referenciar el espacio de nombres **System.Globalization**

• Ejercicio 2:

Escribir un programa que le solicite al usuario ingresar un carácter, lo evalúe y muestre la categoría a la que pertenece. Preguntar al usuario si desea continuar, a lo que deberá contestar 'S' o 'N' para ello.

DETERMINAR CATEGORÍA UNICODE

- Para conocer si un caracter pertenece a una categoría particular, se utilizan métodos específicos, como por ejemplo:
 - IsDigit: para indica si se clasifica como un dígito decimal. Por ejemplo:
 - Console.WriteLine(Char.IsDigit('1')); // Salida: "True"
 - IsLetter: para indicar si se clasifica como carácter alfabético. Por ejemplo:
 - Console.WriteLine(Char.IsLetter(',')); // Salida: "False"
 - IsPunctuation: para indicar si se clasifica como un signo de puntuación. Por ejemplo:
 - Console.WriteLine(Char.IsPunctuation('.')); // Salida: "True"

Además: IsControl, IsHighSurrogate, IsLetterOrDigit, IsLower, IsLowSurrogate, IsNumber, IsSeparator, IsSurrogate, IsSurrogatePair, IsSymbol, IsUpper y IsWhiteSpacepara.

Ejercicio 3:

Modificar el programa anterior para que: si el usuario ingresa un carácter numérico, se le sume el doble del número y se muestre el resultado; si es una letra, se la muestre "Se ingresó la letra: X" y sino, muestre la categoría a la que pertenece. Continuar si el usuario ingresa 'S' al preguntarle.