Lecture 26: Ensemble Methods

Machine Learning

Today

- Ensemble Methods.
 - Classifier Fusion
 - "late fusion" vs. "early fusion"
 - Cross-validation as Ensemble Evaluation
 - Boosting
 - AdaBoost
 - Random Forests
- Recap of the course.

Ensemble Methods

- People don't make decisions by considering all evidence equally.
- Consider a "fake gun".
 - By shape it makes sense to call it a WEAPON
 - By material and function it makes sense to call it a TOY
- People can hold both ideas simultaneously, and combine multiple perspectives, even trusting one more than another.

Ensemble Methods

 Ensemble Methods are based around the hypothesis that an aggregated decision from multiple experts can be superior to a decision from a single system.

Classifier Fusion

Train k classifiers to map x to t where t in C

- These classifiers should be trained on either
 - Distinct features, or
 - Distinct data points

Classifier Fusion

How do you construct an answer from k predictions?

Majority Voting

- Each Classifier generates a prediction and confidence score.
- Chose the prediction that receives the most "votes" predictions from the ensemble

Weighted Majority Voting

- Most classifiers can be interpreted as delivering a distribution over predictions.
- Rather than sum the number of votes, generate an average distribution from the sum.

Sum, Min, Max

 Majority Voting can be viewed as summing the scores from each ensemble member.

Other aggregation function can be used

including:

- maximum
- minimum.

What is the implication of these?

Second Tier classifier

- Classifier predictions are used as input features for a second classifier.
- How should the second tier classifier be trained?

Second Tier classifier

- The second tier classifier must be trained on the training data.
- Want reliable predictions from C_k.
- Use 50% data to train C_k and the other 50% to train the fusion classifier.

Classifier Fusion

- Each of these approaches are called "late fusion".
 - The combination of features or data points happens after the initial classifier training.
- "Early fusion" is when the initial training data or feature set is augmented.

Classifier Fusion

Advantages

- Experts to be trained separately on specialized data
- Can be trained quicker, due to smaller data sets and feature space dimensionality.

Disadvantages

- Interactions across feature sets may be missed
- Explanation of how and why it works can be limited.

Cross-Validation

- Cross validation trains k classifiers, one for each fold.
- The evaluation measure is constructed from an average of the k evaluations

- No ensemble is used in the classification scheme.
- The ensemble is used only for evaluation

AdaBoost

- Adaptive Boosting is an approach that constructs an ensemble of simple "weak" classifiers.
- Each classifier is trained on a single feature.
 - Often single split decision trees.
- The task of the classification training is to identify an ensemble of classifiers and their weights for combination

AdaBoost classification

$$C(x) = \alpha_1 C_1(x) + \alpha_2 C_2(x) + \ldots + \alpha_k C_k(x)$$

- AdaBoost generates a prediction from a weighted sum of predictions of each classifier.
- The AdaBoost algorithm determines the weights.
- Similar to systems that use a second tier classifier to learn a combination function.

AdaBoost Algorithm

- Repeat
 - Identify the best unused classifier Ci.
 - Assign it a weight based on its performance
 - Update the weights of each data point based on whether or not it is classified correctly
- Until performance converges or all classifiers are included.

Identify the best classifier

- Evaluate the performance of each unused classifier.
- Calculate weighted accuracy using the current data point weights.

$$W_e = \sum_{y_i \neq k_m(x_i)} w_i^{(m)}$$

Assign the weight for the current classifier

$$\alpha_m = \frac{1}{2} \ln \left(\frac{1 - e_m}{e_m} \right)$$

$$e_m = \frac{W_m}{W}$$

 The larger the reduction in error, the larger the classifier weight

Update the data point weights for the next iteration

If i is a miss:

$$w_i^{(m+1)} = w_i^{(m)} e^{-\alpha_m} = w_i^{(m)} \sqrt{\frac{e_m}{1 - e_m}}$$

• If i is a hit:

$$w_i^{(m+1)} = w_i^{(m)} e^{\alpha_m} = w_i^{(m)} \sqrt{\frac{1 - e_m}{e_m}}$$

AdaBoost Algorithm

- Repeat
 - Identify the best unused classifier Ci.
 - Assign it a weight based on its performance
 - Update the weights of each data point based on whether or not it is classified correctly
- Until performance converges or all classifiers are included.

Random Forests

- Random Forests are similar to AdaBoost decision trees.
- An ensemble of classifiers is trained each on a different random subset of features.
 - Random subspace projection

Decision Tree

Construct a forest of trees

$$P(c|\mathbf{v}) = \frac{1}{T} \sum_{t=1}^{T} P_t(c|\mathbf{v})$$

Learning the Forest

- Divide training data into K subsets.
 - Improved Generalization
 - Reduced Memory requirements
- Train a unique decision tree on each K set
- Simple multi threading

These divisions can also operate across features

Course Recap

- Statistical Estimation
 - Bayes Rule
- Maximum Likelihood Estimation
 - MAP
- Evaluation
 - NEVER TEST ON TRAINING DATA
- Classifiers
 - Linear Regression
 - Regularization
 - Logistic Regression

- Neural Networks
- Support Vector Machines
- Clustering
 - K-means
 - GMM
- Expectation Maximization
- Graphical Models
 - HMMs
- Sampling

Next Time

Your Presentations