

Politechnika Śląska Wydział Automatyki, Elektroniki i Informatyki

Projekt inżynierski

Wykorzystanie sieci neuronowych do detekcji ziaren w obrazach termowizyjnych

Autor: Maciej Ziaja

Kierujący pracą: dr inż. Sebastian Budzan

	Streszczenie	
Tematem pracy jest		

Deklaracja

Deklaruję że...

Podziękowania

Pragnę podziękować...

Spis treści

1	Wstep			
	1.1	Motyv	vacja projektu	
	1.2	Cel pr	acy	
2	Zał	ożenia	projektowe i wykorzystane narzędzia	
	2.1	Analiz	zowane pyły rud miedzi	
	2.2	Rodza	nje termowizji i idea wykorzystania pomiarów termowizyjnych	
	2.3	Kame	ra termowizyjna FLIR A320	
		2.3.1	Opis sprzętowy wykorzystywanej kamery	
		2.3.2	Oprogramowanie do obsługi kamery	
	2.4	Narzę	dzia programistyczne	
		2.4.1	Język programowania Python	
		2.4.2	Biblioteka przetwarzania obrazu scikit-image	
		2.4.3	Interfejs sieci neuronowych Keras i biblioteka TensorFlow	
3	Ana	naliza i ekstrakcja danych z kamery termowizyjnej		
	3.1	Proces	s pomiarowy i budowa zbioru danych	
	3.2	Analiz	za zebranych obrazów termowizyjnych	
		3.2.1	Prezentacja przykładowej serii pomiarowej	
		3.2.2	Przetwarzanie danych wizyjnych	
		3.2.3	Poprawa jakości obrazu	
		3.2.4	Automatyczny odczyt zakresu pomiarowego temperatur z obrazu .	
	3.3	Poszu	kiwanie zależności użytecznych w klasyfikacji	
		3.3.1	Rozważane możliwości użycia cech obrazu w klasyfikacji	
		3.3.2	Wybór algorytmu detekcji ziaren	
		3.3.3	Algorytm śledzenia ziaren w serii zdjęć	
		3.3.4	Wizualizacja zebranych cech i ocena ich użyteczności	
4	Pro	totypo	owanie sieci neuronowej klasyfikującej ziarna miedzi	
	4.1	Budov	va prototypu sieci neuronowej	
		4.1.1	Dobór struktury sieci	
		4.1.2	Trening sieci neuronowej	
	4.2	Walid	acia i ocena działania sieci	

SPIS TREŚCI SPIS TREŚCI

5 Podsumowanie 5

Wstęp

- 1.1 Motywacja projektu
- 1.2 Cel pracy

Założenia projektowe i wykorzystane narzędzia

- 2.1 Analizowane pyły rud miedzi
- 2.2 Rodzaje termowizji i idea wykorzystania pomiarów termowizyjnych
- 2.3 Kamera termowizyjna FLIR A320
- 2.3.1 Opis sprzętowy wykorzystywanej kamery
- 2.3.2 Oprogramowanie do obsługi kamery
- 2.4 Narzędzia programistyczne
- 2.4.1 Język programowania Python
- 2.4.2 Biblioteka przetwarzania obrazu scikit-image
- 2.4.3 Interfejs sieci neuronowych Keras i biblioteka TensorFlow

Analiza i ekstrakcja danych z kamery termowizyjnej

- 3.1 Proces pomiarowy i budowa zbioru danych
- 3.2 Analiza zebranych obrazów termowizyjnych
- 3.2.1 Prezentacja przykładowej serii pomiarowej
- 3.2.2 Przetwarzanie danych wizyjnych
- 3.2.3 Poprawa jakości obrazu
- 3.2.4 Automatyczny odczyt zakresu pomiarowego temperatur z obrazu
- 3.3 Poszukiwanie zależności użytecznych w klasyfikacji
- 3.3.1 Rozważane możliwości użycia cech obrazu w klasyfikacji
- 3.3.2 Wybór algorytmu detekcji ziaren
- 3.3.3 Algorytm śledzenia ziaren w serii zdjęć
- 3.3.4 Wizualizacja zebranych cech i ocena ich użyteczności

Prototypowanie sieci neuronowej klasyfikującej ziarna miedzi

- 4.1 Budowa prototypu sieci neuronowej
- 4.1.1 Dobór struktury sieci
- 4.1.2 Trening sieci neuronowej
- 4.2 Walidacja i ocena działania sieci

Podsumowanie

Spis rysunków

Spis tablic

Spis listingów

Bibliografia

[1] Michel Goossens, Frank Mittelbach, Alexander Samarin. The $\slash\hspace{-0.6em}AtE\!X$ Companion. Addison-Wesley, 1993.