

Licenciatura em Engenharia Electrotécnica e de Computadores (LEEC)

Algoritmos e Estruturas de Dados Aula de Laboratório #02 - Conectividade

Objectivos

Este laboratório foca-se, de forma prática e experimental, nos algoritmos estudados nas aulas teóricas sobre o **Problema da Conectividade**. É fornecido o código para executar quatro algoritmos ou variantes, bem como para ler ficheiros de dados, dos quais também é fornecido um conjunto de teste.

Os objectivos, detalhados mais abaixo, são analisar os algoritmos e obter dados experimentais da sua complexidade de execução, e acrescentar apresentação de resultados num dos casos. Será necessário modificar o código fornecido e correr o programa sobre dados de teste.

Plano da Aula

O ficheiro labconn.c abre e lê o ficheiro de entrada fornecido como argumento na linha de comando. O programa apresenta no terminal um menu para escolha de algoritmo para resolver o problema de conectividade.

A sintaxe do ficheiro de entrada é muito simples: na primeira linha do ficheiro é indicado o número de objectos/nós do problema. Nas linhas seguintes são indicados os pares de ligações. O programa deve ler todo o ficheiro até esgotar os dados.

O ficheiro connectivity.c tem código para quatro algoritmos:

- Procura Rápida QuickFind (QF)
- União Rápida Quick Union (QU)
- União Rápida Equilibrada Weighted Quick Union (WQU)
- União Rápida com Compressão de Caminhos Compressed and Weighted Quick Union (CWQU)

Nota: Ao analisar o desempenho dos diversos algoritmos, como métrica de contabilização e no sentido de simplificar a análise, vamos assumir que <u>uma operação elementar</u> corresponde a <u>um acesso (leitura ou escrita)</u> a uma posição da tabela de dados, seja ela id[.] ou sz[.].

Desta forma, qualquer acesso, seja para ler, testar ou alterar o valor de uma posição da tabela de dados conta como uma operação elementar (se o teste ou comparação envolver dois elementos da tabela de dados deverão ser contabilizadas duas operações).

O trabalho a efectuar no laboratório consiste nos quatro items seguintes:

- 1. Analise o fluxograma de um algoritmo genérico para o problema da conectividade que se apresenta na Fig. 1. Para o caso particular do algoritmo de Procura Rápida (QF) analise ainda os fluxogramas dos procedimentos de Procura e de União. Correlacione com o código fornecido, identificando com o que cada algoritmo faz, e calcule o que será expectável do programa em termos de complexidade.
- 2. Adicione código para contabilizar o número de operações elementares nos procedimentos <u>abstractos</u> de procura e de união efectuadas. Obtenha igualmente o total de operações elementares de cada algoritmo.
 - Nos algoritmos WQU e CWQU contabilize também as operações associadas aos procedimentos de equilíbrio e de compressão como operações de união.

No final do programa, estes valores devem ser escritos para o terminal (stdout). Pretende-se obter dados suficientes para preencher a Tabela 1 ou similar, indicando para cada ficheiro e algoritmo os valores contabilizados do número de nós (retirado da 1^a linha do ficheiro, número de pares de entrada (contados ao ler as linhas de cada ficheiro de dados), o número de ligações efetuadas (cada chamado ao procedimento abstrato de união é uma ligação) e para cada conjunto de dados o total de operações elementares efectuado no processo de procura e união (para cada um dos algoritmos indicados).

Nota1: A execução dos algoritmos de Procura Rápida e União Rápida pode ser muito demorada nos ficheiros de maiores dimensões pelo que deverá ser feita <u>antes</u> do laboratório. Pode suceder que alguns dos exemplos sejam demasiado demorados ou requeiram demasiados recursos, caso em que devem ser ignorados.

Nota2: Dada a dimensão de alguns ficheiros, os contadores a utilizar podem atingir valores elevados pelo que se sugere que sejam definidos como variáveis do tipo unsigned long int.

Nota3: Poderá ser útil reproduzir uma tabela similar à Tabela 1 numa folha de cálculo, como o Excel, o LibreOffice, o Gnumeric, o Numbers (no MacOS) ou equivalente, e preenchê-la diretamente com os dados das sucessivas execuções. Isso poderá facilitar os passos seguintes.

- 3. Verifique se os resultados obtidos experimentalmente estão de acordo com os resultados teóricos. Para isso poderá ser útil visualizar os resultados graficamente. Introduza os dados da Tabela 1 numa folha de cálculo (como foi dito pode usar qualquer aplicação, como o Excel, o Libreoffice, ou qualquer aplicação semelhante) e utilize os instrumentos de regressão nela disponibilizados. Sugere-se em particular fazer uma visualização com scatterplot e obter uma trendline para os dados, mostrando a equação e o factor de adaptação. Sugere-se que tentem mais do que uma alternativa e vejam qual é a que melhor se adapta aos dados (erro menor, que pode ser visto através do parâmetro R^2 que todas as aplicações disponibilizam).
- 4. Pretende-se agora que no final sejam apresentados os diferentes conjuntos resultantes da união usando o QuickFind. Para tal, desenvolva código para que o programa escreva no terminal (stdout) a solução obtida.

Cada conjunto deverá ser impressos numa linha distinta, sendo os elementos separados por um hífen. Para terminar deverá ser impresso o número de conjuntos.

Exemplo com 3 conjuntos distintos:

Indique qual a complexidade (em função do número de nós) do algoritmo que implementou para obter o resultado pretendido.

Figura 1: Fluxogramas

					Quick Find			Quick Union			WQU			CWQU		
Ficheiro	Nós	Pares	Ligações	Find	Union	Total	Find	Union	Total	Find	Union	Total	Find	Union	Total	
z10.txt																
z20.txt																
z50.txt																
z100.txt																
z200.txt																
z500.txt																
z1000.txt																
z2000.txt																
z5000.txt																
z10000.txt																
z20000.txt																
z50000.txt																
z100000.txt																
z200000.txt																
z500000.txt																

Tabela 1: Resultados experimentais