Lucy Y. Pao Lecture 24 Page 1 ECEN 5458

# **Sample Rate Selection**

- Trade-offs
- Absolute lower bound
- Smoothness
- Delay
- Disturbances
- Quantization
- Anti-aliasing filters

# Other Topics of Interest . . .

Lucy Y. Pao Lecture 24 Page 2 ECEN 5458

## **Sample Rate Selection Trade Offs**

|                    | Advantages                                                                      | Disadvantages       |
|--------------------|---------------------------------------------------------------------------------|---------------------|
| Faster<br>Sampling | <ul> <li>better performance (faste response, lower overshoot,)</li> </ul>       | r cost              |
| Slower<br>Sampling | <ul><li>less sensitive to word length limitations</li><li>less costly</li></ul> | • lower performance |

- For mass produced systems: general rule of thumb is design to sample as slow as possible such that performance specifications can be met.
- For one-of-a-kind or few-of-a-kind systems (e.g., satellites): sample faster to simplify control design because labor costs are significant portions of overall costs.

Lucy Y. Pao Lecture 24 Page 3 ECEN 5458

### **Absolute Lower Bound**

The absolute lower bound on possible sample rates is dictated by the sampling theorem:  $\omega_s > 2\omega_h$ 

If  $\omega_s < 2\omega_b$ , then sampling will cause aliasing of signals near bandwidth frequency  $\omega_b$  to lower frequencies.

In state-space designs where overall closed-loop poles are those of controller and estimator poles, estimator poles usually are faster than controller poles. So is diotated largely by controller poles.

Typically: 
$$20 \leq \frac{\omega_s}{\omega_h} \leq 40$$

If ratio lower than 20, it may cause unsmooth responses and slower rise times.

Lucy Y. Pao Lecture 24

## Sample rate selection affects smoothness of responses:

Figure 11.2

Double integrator step response for the sampling multiple with  $\omega_s/\omega_b$  equal to (a) 4, (b) 8, (c) 20, and (d) 40



Page 4

**ECEN 5458** 

For reasonably smooth responses, need  $\omega_s/\omega_b \ge 20$ .

Lucy Y. Pao Lecture 24 Page 5 ECEN 5458

# Reducing the sampling rate can also cause a delay up to one period in the response of the system.



Lucy Y. Pao Lecture 24 Page 6 ECEN 5458

## **Example 11.2 of Text**

#### Figure 11.3

Double integrator step response with worst case phasing between command input and the sampler with  $\omega_s/\omega_b$  equal to (a) 4, (b) 8, (c) 20, (d) 40



Lucy Y. Pao Lecture 24 Page 7 ECEN 5458

# Effects of $\omega_s$ and Disturbances

#### Figure 11.4

Block diagrams of the systems for disturbance analysis

Figure 11.5

Discrete controller degradation versus sample rate for full state feedback and driven by a white disturbance, Example 11.3



# Sample Rate Effects and Quantization

For slower  $\omega_{\rm s}$  , poles generally are more spread out.



For faster  $\omega_s$ , poles move to the right and are more bunched together (near z=1).

$$T = 0.01 \text{sec}$$
  
 $z = e^{sT} = 0.99, 0.98$ 



Lucy Y. Pao Lecture 24 Page 9 ECEN 5458

# Some Rules of Thumb on Sample Rate Effects from Quantization

Generally, if the word size is  $\geq 16$  its, sampling faster does not cause problems. is a of affected by word size in both cascade and parallel realizations.

If the word size is  $\leq 8$ bits, sampling faster usually causes problems. Increasing  $\omega$  increases the variance in states.

If 8 bits < word size < 16 bitthe effects depend on pole locations and the implementation (cascade, parallel, direct realization). Cascade and parallel implementations of lower-order transfer functions are always better numerically than direct realizations of a higher-order controller.

Lucy Y. Pao Lecture 24 Page 10 ECEN 5458

# **Measurement Noise and Anti-Aliasing Filters**

Anti-aliasing filters are generally needed to remove high-frequency noise in sensor measurements.

### Anti-aliasing filter is a low-pass filter:

$$G_p(s) = \frac{\omega_p}{s + \omega_p}$$



Lucy Y. Pao Lecture 24 Page 11 ECEN 5458

**Figure 11.11** 

Block diagram showing the location of the antialiasing filter



Lucy Y. Pao Lecture 24 Page 12 ECEN 5458

# Effect of Anti-Aliasing Filter on Sample Rate Selection

### **Example 11.6 of Text**

#### **Figure 11.12**

Demonstration of the effects of an antialiasing filter or prefilter, Example 11.6. (a) Signal plus noise; (b) samples of (a) at  $\omega_s = 28 \ Hz$ ; (c) signal in (a) passed through antialiasing filter; (d) sampling of signal in (c)









**Figure 11.13** 

Root mean square response of Example 11.7 to white sensor noise showing effects of prefiltering,  $\omega_p$ , and sampling,  $\omega_s$ 



In general, as 
$$\omega_s$$
 and/or

$$\frac{\omega_{p}}{\omega_{b}}$$
 (but > 2 or so)



less sensitivity of system to sensor noise

Lucy Y. Pao Lecture 24 Page 14 ECEN 5458

# **Other Sample Rate Selection Topics**

Effects of resonances 11.3) (Section

- Sensitivity to parameter variations (Section 11.4)
- Multi-rate sampling (Section 11.6)

Lucy Y. Pao Lecture 24 Page 15 ECEN 5458

# Other Control System Topics of Interest (1/3)

- Robust Control (we briefly discussed at the level of Section 7.4.2, ECEN 50x8 covers in detail)
  - Robust and optimal control, K Zhou, JC Doyle, and K Glover, Prentice Hall, 1996
  - Essentials of robust control, K Zhou and JC Doyle, Prentice Hall, 1998
- Controllability, Observability, and other linear systems analysis concepts (ECEN 5448 covers in detail)
  - Linear Systems, T Kailath, Prentice Hall, 1980
  - Linear System Theory and Design, CT Chen,
     Oxford University Press, 1999

Lucy Y. Pao Lecture 24 Page 16 ECEN 5458

# Other Control System Topics of Interest (2/3)

- Optimal control (Chapter 9 introduces, ECEN 5358 covers in detail)
  - Calculus of Variations and Optimal Control
     Theory: A Concise Introduction, D Liberzon,
     Princeton University Press, 2012
- Multi-variable control (Chapter 9 introduces, ECEN 5418 covers in detail)
  - Linear Systems, T Kailath, Prentice Hall, 1980
  - Linear Systems Theory, JP Hespanha, Princeton University Press, 2009

Lucy Y. Pao Lecture 24 Page 17 ECEN 5458

# Other Control System Topics of Interest (3/3)

- System identification (Chapter 12 introduces, ASEN 6xxx covers in detail)
  - System Identification: Theory for the User,
     Ljung, Prentice Hall, 2<sup>nd</sup> Edition, 1999
- Nonlinear systems and control (Chapter 13 introduces, ECEN 7438 covers in detail)
  - Nonlinear Systems, HK Khalil, Prentice Hall,
     3<sup>rd</sup> Edition, 2002
  - Applied Nonlinear Control, JE Slotine and W Li,
     Prentice Hall, 1991