Probabilistic Graphical Models

Prof. Joschka Boedecker and Hao Zhu

Department of Computer Science University of Freiburg

universität freiburg

3. Markov models

 Markov chains Inference Parameter learning Convergence

 Hidden Markov models Inference Decoding Parameter learning Continuous observation space

Outline

- Markov chains Inference Parameter learning Convergence
- Hidden Markov models
 Inference
 Decoding
 Parameter learning
 Continuous observation space

Markov chains

Markov chain: a stochastic process $\{X_0, X_1, \ldots, X_t, \ldots\}$ with Markov property

$$\mathbf{P}(x_{t+1} \mid x_0, \dots, x_t) = \mathbf{P}(x_{t+1} \mid x_t)$$

- ullet X: state space
- time-homogeneous if $P(X_{t+1} = x_j \mid X_t = x_i)$ is constant for all t

Markov chains

initial state distribution

$$\rho = (\dots, \mathbf{P}(X_0 = x_i), \dots), \quad i = 1, \dots, m$$

• $\rho \in \mathbf{R}^m$; $\rho \succeq 0$; $\rho^T \mathbf{1} = 1$

transition matrix

$$P_{ij} = \mathbf{P}(x_j \mid x_i), \quad \text{for all } x_i, x_j \in X$$

- $P \in \mathbf{R}^{m \times m}$
- $P_{ij} \geq 0$ for all $i = 1, \ldots, m$, $j = 1, \ldots, m$
- $P_{i:}^T \mathbf{1} = 1$ for all $i = 1, \dots, m$

given:

- ullet parameters $\Theta = \{ \rho, P \}$ of a Markov chain
- observed sequence of states $\zeta = \{X_0 = x_i, X_1 = x_j, X_2 = x_k, \ldots\}$

calculate the probability of observing the sequence ζ

$$\mathbf{P}(\zeta \mid \rho, P) = \rho_i P_{ij} P_{jk} \cdots$$

example

$$\rho = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) \qquad P = \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.3 & 0.3 & 0.4 \end{bmatrix}$$

$$\mathbf{P}(x_1, x_2, x_3, x_1 \mid \rho, P) = \frac{1}{3} \times 0.1 \times 0.2 \times 0.3$$

given a set of observed state sequences $\mathcal{D}=\{\zeta_1,\zeta_2,\ldots\}$ with $\zeta=\{x_0,\ldots,x_N\}$ estimate $\Theta=\{\rho,P\}$

• learning initial state distribution ρ :

$$\rho_i = \mathbf{E}_{\zeta \sim \mathcal{D}}[\mathbf{P}(X_0 = x_i \mid \zeta)], \quad i = 1, \dots, m$$

• learning transition matrix *P*:

$$P_{ij} = \frac{\mathbf{E}_{\zeta \sim \mathcal{D}, t} \left[\mathbf{P}(X_t = x_i, X_{t+1} = x_j \mid \zeta) \right]}{\mathbf{E}_{\zeta \sim \mathcal{D}, t} \left[\mathbf{P}(X_t = x_i \mid \zeta) \right]}, \quad i = 1, \dots, m, \quad j = 1, \dots, m$$

$$-t=0,\ldots,N-1$$

proof

$$\begin{aligned} & \underset{\text{subject to}}{\text{maximize}} \quad l_{\mathcal{D}}(\Theta) = \mathbf{E}_{\zeta \sim \mathcal{D}} \left[\log \mathbf{P}(\zeta \mid \rho, P) \right] \\ & \text{subject to} \quad \rho \succeq 0, \quad \rho^T \mathbf{1} = 1 \\ & P_{ij} \geq 0, \quad P_{i:}^T \mathbf{1} = 1, \quad i = 1, \dots, m, \quad j = 1, \dots, m \end{aligned}$$

$$& l_{\mathcal{D}}(\Theta) = \mathbf{E}_{\zeta \sim \mathcal{D}} \left[\log \mathbf{P}(x_0 \mid \rho) \prod_{t=0}^{N-1} \mathbf{P}(x_{t+1} \mid x_t, P) \right] \\ & = \mathbf{E}_{\zeta \sim \mathcal{D}} \left[\log \mathbf{P}(x_0 \mid \rho) \right] + \mathbf{E}_{\zeta \sim \mathcal{D}} \left[\sum_{t=0}^{N-1} \log \mathbf{P}(x_{t+1} \mid x_t, P) \right] \\ & = \mathbf{E}_{\zeta \sim \mathcal{D}} \left[\sum_{i=1}^{m} I_{x_i}(x_0) \log \rho_i \right] + \mathbf{E}_{\zeta \sim \mathcal{D}} \left[\sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{t=0}^{N-1} I_{x_i}(x_t) I_{x_j}(x_{t+1}) \log P_{ij} \right] \end{aligned}$$

example

observed state sequences from a 3-states Markov chain:

- \bullet $(x_2, x_2, x_3, x_3, x_3, x_3, x_1)$
- \bullet $(x_1, x_3, x_2, x_3, x_3, x_3, x_3)$
- \bullet (x_3, x_3, x_2, x_2)
- \bullet $(x_2, x_1, x_2, x_2, x_1, x_3, x_1)$

$$\rho = \begin{pmatrix} \frac{1}{4}, \frac{2}{4}, \frac{1}{4} \end{pmatrix}
= (0.25, 0.5, 0.25)$$

$$P = \begin{bmatrix} \frac{0}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{2}{7} & \frac{3}{7} & \frac{2}{7} \\ \frac{2}{11} & \frac{2}{11} & \frac{7}{11} \end{bmatrix}$$

Convergence

requirements

• irreducible: $P(x_i \mid x_i) > 0$, for all $x_i, x_i \in X$

• aperiodic: no fixed interval returning back to the same state

convergence: when $t \to \infty$

$$\pi P = \pi$$

$$\lim_{t \to \infty} P^t = \mathbf{1} \pi^T$$

ullet $\pi \in \mathbf{R}^m_+$: stationary state distribution

Outline

- Markov chains
 Inference
 Parameter learning
 Convergence
- Hidden Markov models
 Inference
 Decoding
 Parameter learning
 Continuous observation space

Hidden markov models

hidden Markov model (HMM) consists of

- ullet a Markov chain $\{X_0,X_1,\ldots,X_t,\ldots\}$ with states not observable
- ullet an observable stochastic process $\{Y_0,Y_1,\ldots,Y_t,\ldots\}$ with

$$\mathbf{P}(y_t \mid x_0, \dots, x_t) = \mathbf{P}(y_t \mid x_t)$$

- Y: observation space

emission matrix

$$B_{ij} = \mathbf{P}(y_j \mid x_i)$$

- $B \in \mathbf{R}^{m \times n}$
- $B_{ij} \ge 0$ for all i = 1, ..., m, j = 1, ..., n
- $B_{i}^{T} \mathbf{1} = 1$ for all i = 1, ..., m

given:

- parameters $\Theta = \{\rho, P, B\}$ of an HMM
- ullet some sequence of observations $arphi=\{y_0,\ldots,y_N\}$

calculate the probability of observing the observation sequence φ

direct method

$$\mathbf{P}(\varphi \mid \Theta) = \sum_{\zeta} \mathbf{P}(\varphi, \zeta \mid \Theta)$$

$$= \sum_{x_0, \dots, x_N} \mathbf{P}(x_0 \mid \rho) \mathbf{P}(y_0 \mid x_0, B) \prod_{t=0}^{N-1} \mathbf{P}(x_{t+1} \mid x_t, P) \mathbf{P}(y_{t+1} \mid x_{t+1}, B)$$

• complexity: $2Nm^N$ (or simply m^N)

forward algorithm

$$\alpha_t(i) = \mathbf{P}(y_0, \dots, y_t, X_t = x_i \mid \Theta), \quad i = 1, \dots, m$$

- $\alpha_t \in \mathbf{R}_+^m$: forward probability
- recursive expression:

$$\alpha_t(i) = \begin{cases} \rho_i \mathbf{P}(y_0 \mid X_0 = x_i, B) & t = 0 \\ \alpha_{t-1}^T P_{:i} \mathbf{P}(y_t \mid X_t = x_i, B) & t > 0, \end{cases} i = 1, \dots, m$$

ullet probability of observing the observation sequence arphi

$$\mathbf{P}(\varphi \mid \Theta) = \alpha_N^T \mathbf{1}$$

forward algorithm

```
given hidden Markov model parameters \Theta, observation sequence \varphi. for i=1,\ldots,m do \alpha_0(i)\coloneqq \rho_i\mathbf{P}(y_0\mid X_0=x_i,B). end for for t=1,\ldots,N do for i=1,\ldots,m do \alpha_t(i)\coloneqq \alpha_{t-1}^TP_{:i}\mathbf{P}(y_t\mid X_t=x_i,B). end for end for return \mathbf{P}(\varphi\mid\Theta)=\alpha_N^T\mathbf{1}.
```

• complexity: Nm^2 (or simply m^2)

Decoding

given:

- parameters $\Theta = \{\rho, P, B\}$ of an HMM
- ullet some sequence of observations $arphi=\{y_0,\ldots,y_N\}$

find:

- ullet the most probable state x_t^* at time t
- ullet the most probable state sequence $\zeta^* = \{x_0^*, \dots, x_N^*\}$ that generated arphi

Optimal state prediction

$$\beta_t(i) = \mathbf{P}(y_{t+1}, \dots, y_N \mid X_t = x_i, \Theta), \quad i = 1, \dots, m$$

- $\beta_t \in \mathbf{R}^m_{\perp}$: backward probability
- recursive expression:

$$\beta_t(i) = \begin{cases} \sum_{j=1}^m \beta_{t+1}(j) P_{ij} \mathbf{P}(y_{t+1} \mid X_{t+1} = x_j, B) & t < N \\ 1 & i = 1, \dots, m \end{cases}$$

 \bullet probability of observing the observation sequence φ

$$\mathbf{P}(\varphi \mid \Theta) = \alpha_t^T \beta_t$$

for all $t = 1, \dots, N$

Optimal state prediction

$$\gamma_t(i) = \mathbf{P}(X_t = x_i \mid \varphi, \Theta), \quad i = 1, \dots, m$$

- $\gamma_t \in \mathbf{R}_+^m$
- in terms of α_t and β_t :

$$\gamma_t(i) = \frac{\mathbf{P}(X_t = x_i, \varphi \mid \Theta)}{\mathbf{P}(\varphi \mid \Theta)} = \frac{\alpha_t(i)\beta_t(i)}{\alpha_t^T \beta_t}, \quad i = 1, \dots, m$$

ullet the most probable state x_t^* given φ and Θ

$$x_t^* = \operatorname*{argmax}_{x_i} \gamma_t(i)$$

$$x_0^*, \dots, x_N^* = \operatorname*{argmax}_{x_0, \dots, x_N} \mathbf{P}(x_0, \dots, x_N \mid \varphi, \Theta)$$

approximate solution

$$\tilde{\zeta}^* = \left\{ \underset{x_i}{\operatorname{argmax}} \gamma_t(i) \mid t = 0, \dots, N \right\}$$

- computationally efficient
- not the global optimal
- does not consider state transitions

$$\mathbf{P}(\zeta \mid \varphi, \Theta) = \frac{\mathbf{P}(\zeta, \varphi \mid \Theta)}{\mathbf{P}(\varphi \mid \Theta)} \propto \mathbf{P}(\zeta, \varphi \mid \Theta)$$

Viterbi algorithm

$$\delta_t(i) = \max_{x_0, \dots, x_{t-1}} \mathbf{P}(x_0, \dots, x_{t-1}, X_t = x_i, y_0, \dots, y_t \mid \Theta)$$
$$= \max_{j=1, \dots, m} (\delta_{t-1}(j)P_{ji}) \mathbf{P}(y_t \mid X_t = x_i, B), \quad i = 1, \dots, m$$

• $\delta_t \in \mathbf{R}_+^m$: probability of being in state x_i at time t given that the state subsequence up until t-1 is optimal w.r.t. the partial observation sequence $\{y_0, \dots, y_{t-1}\}$

$$\psi_t(i) = \operatorname*{argmax}_{j=1,\ldots,m} \delta_{t-1}(j) P_{ji}, \quad i = 1,\ldots,m$$

• $\psi_t \in \mathbf{Z}_{++}^m$: the index j of the previous state x_j at time t-1 that gives the maximum probability $\delta_{t-1}(j)P_{ji}$, for each state i at time t

Viterbi algorithm

```
given hidden Markov model parameters \Theta, observation sequence \varphi.
1. Initialization.
for i = 1, \ldots, m do
    \delta_0(i) := \rho_i \mathbf{P}(y_0 \mid X_0 = x_i, B).
end for
2. Recursion.
for t = 1, \ldots, N do
    for i = 1, \ldots, m do
         \delta_t(i) := \max_{j=1,\dots,m} (\delta_{t-1}(j)P_{ji}) \mathbf{P}(y_t \mid X_t = x_i, B).
         \psi_t(i) := \operatorname{argmax}_{i=1} \quad {}_m \delta_{t-1}(j) P_{ii}.
    end for
end for
```

```
\begin{array}{l} \textbf{3. Termination.} \\ p^* \coloneqq \max_{i=1,...,m} \delta_N(i). \\ i_N^* \coloneqq \underset{i=1,...,m}{\operatorname{argmax}} \delta_N(i). \\ x_N^* \coloneqq x_{i_N^*}. \\ \textbf{4. Backtracking.} \\ \textbf{for } t = N, \dots, 1 \ \textbf{do} \\ i_{t-1}^* \coloneqq \psi_t(i_t^*). \\ x_{t-1}^* \coloneqq x_{i_{t-1}^*}. \\ \textbf{end for} \end{array}
```

expectation-maximization (EM) algorithm

- 1. initialize parameters Θ
- 2. E-step: calculate some likelihood function w.r.t. Θ
- 3. M-step: update Θ by maximizing the likelihood function from 2
- 4. repeat 2-3 until convergence

- can be proved to converge to local optimum
- not guarantee to find the global optimum

for each EM-iteration

- $\Theta = \{\rho, P, B\}$: the set of estimated parameters from previous iteration
- $\Theta^+ = \{\rho^+, P^+, B^+\}$: the new set of parameters to be updated

$$\rho_{i}^{+} = \mathbf{E}_{\varphi \sim \mathcal{D}} \left[\mathbf{P}(X_{0} = x_{i} \mid \varphi, \Theta) \right], \quad i = 1, \dots, m$$

$$P_{ij}^{+} = \frac{\mathbf{E}_{\varphi \sim \mathcal{D}, t} \left[\mathbf{P}(X_{t} = x_{i}, X_{t+1} = x_{j} \mid \varphi, \Theta) \right]}{\mathbf{E}_{\varphi \sim \mathcal{D}, t} \left[\mathbf{P}(X_{t} = x_{i} \mid \varphi, \Theta) \right]}, \quad i = 1, \dots, m, \quad j = 1, \dots, m$$

$$B_{ij}^{+} = \frac{\mathbf{E}_{\varphi \sim \mathcal{D}, t} \left[\mathbf{P}(X_{t} = x_{i}, Y_{t} = y_{j} \mid \varphi, \Theta) \right]}{\mathbf{E}_{\varphi \sim \mathcal{D}, t} \left[\mathbf{P}(X_{t} = x_{i} \mid \varphi, \Theta) \right]}, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

• $t = 0, \ldots, N-1$

Baum-Welch algorithm

$$\xi_t(i,j) = \mathbf{P}(X_t = x_i, X_{t+1} = x_j \mid \varphi, \Theta)$$

$$= \frac{\mathbf{P}(X_t = x_i, X_{t+1} = x_j, \varphi \mid \Theta)}{\mathbf{P}(\varphi \mid \Theta)}, \quad i = 1, \dots, m, \quad j = 1, \dots, m$$

- $\xi_t \in \mathbf{R}_+^{m \times m}$:probability of transitioning from state x_i at t to state x_j at t+1 given φ
- in terms of α_t and β_t :

$$\xi_t(i,j) = \frac{\alpha_t(i)P(i,j)\mathbf{P}(y_{t+1} \mid X_{t+1} = x_j, B)\beta_{t+1}(j)}{\sum_{i=1}^m \sum_{j=1}^m \alpha_t(i)P(i,j)\mathbf{P}(y_{t+1} \mid X_{t+1} = x_j, B)\beta_{t+1}(j)}$$

for all i = 1, ..., m, j = 1, ..., m

• $\gamma_t(i) = \sum_{j=1}^m \xi_t(i,j)$, for all $i = 1, \dots, m$

Baum-Welch algorithm

$$\rho_i^+ = \mathbf{E}_{\varphi \sim \mathcal{D}}[\gamma_0(i)], \quad i = 1, \dots, m$$

$$P_{ij}^+ = \frac{\mathbf{E}_{\varphi \sim \mathcal{D}, t}[\xi_t(i, j)]}{\mathbf{E}_{\varphi \sim \mathcal{D}, t}[\gamma_t(i)]}, \quad i = 1, \dots, m, \quad j = 1, \dots, m$$

$$B_{ij}^+ = \frac{\mathbf{E}_{\varphi \sim \mathcal{D}, t}[\gamma_t(i)I_j(y_t)]}{\mathbf{E}_{\varphi \sim \mathcal{D}, t}[\gamma_t(i)]}, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

• indicator function $I_j(y)=1$ if the index of $y\in Y$ is equal to j, and 0 otherwise

Continuous observation space

Gaussian hidden Markov models

- $\operatorname{dom}(Y) = \mathbf{R}$
- the emission map from X to Y is given by the Gaussian density function $\mathcal{N}(\mu_i, \sigma_i^2)$:

$$p(y \mid X = x_i) = \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left(-\frac{(y - \mu_i)^2}{2\sigma_i^2}\right), \quad i = 1, \dots, m$$

- $\mu_i \in \mathbf{R}$: mean of the Gaussian distribution
- $-\sigma_i^2 \in \mathbf{R}$: variance of the Gaussian distribution