

Aktivace

- "Co vidí neuronka, když do ní pošleme vstupní data."
 - Ani ty data posílat nemusíme. Aktivační funkce (activations) požere i větší obrázek než je vstupní velikost cnn. Jednoduše vyzobne ze sítě konvoluční filtry a ty uplatní na jakýkoliv obrázek.
- (Pozadí této prezentace jsou upravené aktivace alexnet kytkou256)
- (přečtěte si nejdříve následující slajd) a vytvořte aktivace z třetí konvoluční vrstvy sítě.
- Obecně konvoluční vrstvy na začátku sítě detekují jednoduché vlastnosti jako jsou barvy a hrany. Můžete se o tom přesvědčit tím, že po zjištění aktivací z první konvoluční vrstvy je žlutá kytka celá aktivovaná (je bílá). V pozdějších konvolučních vrstvách se vlastnosti (features) kombinují ve složitější. Což je hezky (lépe než na kytce) vidět zde, kdy si neuronka natrénovala filtry pro detekci oka (a tím pádem i obličeje atd...).

Průzkum sítě

• Načtěte síť squeezenet (stejnojmenným příkazem) a analyzujte ji pomocí analyzeNetwork. Ve třetím sloupečku máte aktivace, tedy jaký objekt (o jakých rozměrech) získáte, pokud sáhnete k aktivacím z dané vrstvy. Learnables jsou hodnoty, které se mění s učením sítě. U konvolučních vrstev jsou to jádra konvolučních filtrů. To co se učí konvoluční neuronka jsou tedy především hodnoty těchto filtrů (a potom plně propojené vrstvy na konci sítě).

ANALYSIS RESULT				
	Name	Туре	Activations	Learnables
1	data 227x227x3 images with 'zerocenter' normalization	Image Input	227×227×3	-
2	conv1 64 3x3x3 convolutions with stride [2 2] and padding [0 0 0 0]	Convolution	113×113×64	Weights 3x3x3x64 Bias 1x1x64
3	relu_conv1 ReLU	ReLU	113×113×64	-
4	pool1 3x3 max pooling with stride [2 2] and padding [0 0 0 0]	Max Pooling	56×56×64	-
5	fire2-squeeze1x1 16 1x1x64 convolutions with stride [1 1] and padding [0 0 0 0]	Convolution	56×56×16	Weights 1x1x64x16 Bias 1x1x16
6	fire2-relu_squeeze1x1 ReLU	ReLU	56×56×16	-
7	fire2-expand1x1 64 1x1x16 convolutions with stride [1 1] and padding [0 0 0 0]	Convolution	56×56×64	Weights 1x1x16x64 Bias 1x1x64
	Sinco make a consequent	Date:		

- (nepřátelský obraz)
- Cíleně vytvořený obraz, tak aby se člověk a neuronka se naprosto rozcházeli v klasifikaci.
 - "Pro člověka vypadá jako květina, pro síť jakožto plameňák"
- Klasifikujte obrázek (what_is_it.png). Vypadá dosti jako náhodný šum.
 - Podobá se něčím obrázek třídě do které je klasifikování?
- Zkombinujte obrázek kytky a zdánlivého šumu, tak aby člověk klasifikoval jako kytku, síť však nikoliv. (předpokládejte, že správná třída pro kytku je daisy).

Další generování obrázků

- Přenos stylu -> Přenést styl jedněch male na jiné obrázky (pak to třeba vypadá jako by je nakreslil jiný malíř).
- Generative Adversarial Network (GAN) -> Způsob generování obrazů. Je potřeba 2 sítě a databázi obrazů jejichž podoby chcete generovat (například obličeje). Jedna neuronka generuje obrázky a předhazuje je té druhé, ta odhaduje jestli jí byl předhozen generovaný nebo obrázek z databáze. Obě neuronky se neustále doučují a tím pádem navzájem vylepšují, až generované obrázky vypadájí uvěřitelně. Viz: https://www.thispersondoesnotexist.com/ (skutečně nikdo z těchto

lidí neexistuje, a občas jsou tam děsivé artefakty)