PROBLEMS I

An amplifier has a feedback fraction β equal to 0.1. Calculate the overall gain with feedback, A_f, if the open loop gain A_{ol} has the following values (a) 10; (b) 50; © 100; (d) 500; (e) 1000. From these results what would you guess the limiting value of A_f would be as A_{ol} tends to infinity? Compare this guess with the value of 1/β.

$\beta=0.1$

Aol	$A_f = \frac{A_{ol}}{1 + A_{ol}\beta}, \beta = 0.1$
10	5
50	8.33
100	9.09
500	9.8
1000	9.9
∞	10

 $A_{ol}\beta = T$ is the LOOP GAIN, if T very large $A_f \cong \frac{1}{\beta}$.

2. An amplifier with an open loop gain A_{ol} of 2500 can have the following possible β values (a) 0.2; (b) 0.4; © 0.8; (d) 1.0. Calculate the values of the overall gain with feedback A_f in each case and compare with the limiting values of A_f when A_{ol} tends to infinity (i.e. $1/\beta$).

$$A_{ol}=2500, A_{f}=?$$

β	$A_f = \frac{A_{ol}}{1 + A_{ol}\beta}$, for	$A_f = \frac{A_{ol}}{1 + A_{ol}\beta}$, for
	$A_{ol}=2500$	$A_{ol} = \infty$
0.2	4.99	5
0.4	2.498	2.5
0.8	1.25	1.25
1	1	1

$$A_{ol}\beta = T$$
 is the LOOP GAIN, if T is very large $A_f \cong \frac{1}{\beta}$.

Closed loop gain is practically independent of amplifier open loop gain, A_{ol} , provided $A_{ol}\beta$ is big.

3. Calculate the value of x_{in} for the circuit shown in fig.P3.1 when x_g = 1, if A_{ol} = 1000, β = 0.1. Has the feedback increased or decreased x_{in} ? (Without feedback x_{in} = x_g). What would the limiting value of x_{in} be as A_{ol} tends to infinity?

$$x_{in} = x_g - x_f = x_g - \beta x_o = x_g - \beta A_{ol} x_{in}$$
 $x_g = (1 + \beta A_{ol}) x_{in}$
 $x_{in} = \frac{x_g}{1 + \beta A_{ol}} = 0.0099$

The feedback reduces x_{in} !

(without feedback, $x_{in}=x_g=1$).

If
$$A_{ol} \to \infty$$
, $x_{in} \to 0$.

4. Consider the circuit shown in fig. P3.2, in which the input signal x_g has been reduced to zero and the feedback path is broken at the output. Calculate the ratio x'_o/x_o. Now consider the circuit shown in fig. P3.3, in which the connection between the summing junction and the amplifier input has been broken. Calculate x'_{in}/x_{in}. [In both cases, the answer is -A_{ol}.β. I hope you can now see why this quantity, (without the negative sign) is called the *loop gain*.].

$$x'_{o} = A_{ol}x_{in} = A_{ol}(0 - x_{f}) = -A_{ol}\beta x_{o}$$

$$\frac{x'_{o}}{x_{o}} = -\beta A_{ol}$$

$$x'_{in} = (0 - x_f) = 0 - \beta x_o = -\beta A_{ol} x_{in}$$

$$\frac{x'_{in}}{x_{in}} = -\beta A_{ol}$$

 βA_{ol} = LOOP GAIN (same all the way round/ the loop).

5. An amplifier has an open loop gain of 2400 when the transistors used in its construction have a common emitter gain of 100. If the feedback fraction is 1/21, calculate the overall gain with feedback, A_{f1}. (You will need to express your answer to 3 decimal places). If now the transistors are replaced, so that the open loop gain rises to 2600, calculate the new gain with feedback, A_{f2}. Hence calculate the fractional change in overall gain given by

$$\frac{\Delta A_f}{A_f} = \frac{A_{f2} - A_{f1}}{A_{f1}}$$

Compare this result with that using the equation given in the lecture.

$$A_{f1} = \frac{A_{ol1}}{1 + \beta A_{ol1}} = \frac{2400}{1 + \left(\frac{1}{21}\right) 2400} = 20.818$$

$$A_{f2} = \frac{A_{ol2}}{1 + \beta A_{ol2}} = \frac{2600}{1 + \left(\frac{1}{21}\right)2600} = 20.832$$

$$\frac{\Delta A_f}{A_f} = \frac{20.832 - 20.818}{20.818} = 6.7 \cdot 10^{-4}$$

Using the formula from the lecture:

$$\frac{\Delta A_f}{A_{f1}} = \frac{1}{1 + \beta A_{ol1}} \frac{\Delta A_{ol}}{A_{ol1}} = \frac{1}{1 + 2400(\frac{1}{21})} \frac{200}{2400}$$
$$= 7.23 \cdot 10^{-4}$$

$$\frac{\Delta A_f}{A_{f2}} = \frac{1}{1 + \beta A_{ol2}} \frac{\Delta A_{ol}}{A_{ol2}} = \frac{1}{1 + 2600(\frac{1}{21})} \frac{200}{2600}$$
$$= 6.16 \cdot 10^{-4}$$

$$\frac{\Delta A_f}{A_f} = \frac{1}{2} \left(\frac{\Delta A_f}{A_{f1}} + \frac{\Delta A_f}{A_{f2}} \right) = 6.7 \cdot 10^{-4}$$

 We found that A_f can be approximated by 1/β. The error made in making this assumption can be defined as the fractional gain error (FGE):

$$FGE = \frac{(\frac{1}{\beta} - \frac{A_{ol}}{(1 + A_{ol} \cdot \beta)})}{A_{ol}}$$

$$\frac{A_{ol}}{(1 + A_{ol} \cdot \beta)}$$

Calculate the FGE if β = 1/21 and A_{ol} = 2400 as a percentage.

FGE=0.874%.

7. The feedback network is normally made up of resistors. These will have a finite tolerance, for example 1%. As a result, the value of β will be unknown to some tolerance as well. Suppose β lies in the range 0.100 \pm 0.002. What is the range of A_f expected if A_{ol} is 1600. Can you use calculus to find the answer?

$$A_{f+} = \frac{1600}{1 + 1600 \cdot 0.102} = 9.744$$

$$A_{f-} = \frac{1600}{1 + 1600 \cdot 0.098} = 10.139$$

$$A_f = \frac{1600}{1 + 1600 \cdot 0.100} = 9.94$$

Thus, $9.744 < A_f < 10.139$, i.e. $A_f = 9.94 \pm 0.1975$

$$\frac{\Delta A_f}{A_f} = \frac{\pm 0.1975}{9.9415} \cdot 100\% = \pm 1.99\%$$

$$\frac{\Delta \beta}{\beta} = \frac{\pm 0.002}{0.1} \cdot 100\% = \pm 2\%$$

 Calculate the overall gains with feedback x_o/x_g for the circuits shown in fig. P3.4. Show that if the overall gains of these circuits are to be the same, then

$$\beta_1 = \frac{2.\beta_2}{A_{ol}} + \beta_2^2$$

Now calculate the overall gains on the assumption that A_{ol} is extremely large. Show that with this approximation the gains are equal when $\beta_1 \approx (\beta_2)^2$ If the overall gain of both circuits is to be 10 with AoI = 100, calculate suitable values for β_1 and β_2 .

$$x_o = A_{ol}x'_{in} = A_{ol} \cdot A_{ol}x_{in} = A_{ol}^2 x_{in}$$
 (1)

$$x_{in} = x_q - x_f = x_q - \beta_1 x_o \tag{2}$$

Substituting (2) in (1),

$$x_o = A_{ol}^2 \cdot [x_g - \beta_1 x_o]$$

and rearranging:

$$\frac{x_o}{x_g} = \frac{A_{ol}^2}{1 + \beta_1 A_{ol}^2} \tag{3}$$

If
$$A_{ol} \to \infty$$
, then $\frac{x_o}{x_g} = \frac{1}{\beta_1}$.

Now, let's look at the 2nd circuit:

$$x_{o} = A_{ol}x_{in2} = A_{ol}[x'_{o} - \beta_{2}x_{o}] \tag{4}$$

$$x_{in2} = x_o' - \beta_2 x_o \tag{5}$$

$$x_o' = A_{ol} x_{in1} \tag{6}$$

$$x_{in1} = x_g - \beta_2 x_o' \tag{7}$$

Substituting (7) in (6) gives:

$$x_o' = \frac{A_{ol}}{1 + \beta_2 A_{ol}} x_g \tag{8}$$

Substituting (8) in (4) gives:

$$\frac{x_o}{x_g} = \frac{A_{ol}^2}{(1 + \beta_2 A_{ol})^2}$$
 (9)

If
$$A_{ol} \to \infty$$
, then $\frac{x_o}{x_g} = \frac{1}{\beta_2^2}$

By equating (3) and (9), the following relation is obtained:

$$\beta_1 = \frac{2\beta_2}{A_{ol}} + \beta_2^2$$

For given values from Eq. (3): β_1 =0.1, and from Eq. (9) β_2 =0.306.

PROBLEMS II

The partial are equivalent aircrit of an amplifier is shown

loop gain in very large.

 A_{ol} is very large, thus $T = \beta A_{ol}$ is very large and the closed loop gain is

$$A_v \sim \frac{1}{\beta_v}$$

So, we need to find the feedback fraction $\beta_v = v_f/v_o$.

$$v_f = v_o \frac{R_E}{R_E + R_F}$$

$$A_{v}\cong\frac{R_{E}+R_{F}}{R_{E}}$$

PROBLEMS III

6. Find R such that $\frac{v_o}{v_g}$ = -100 when R₁ = 10k

$$\frac{V_g - 0}{R_1} = \frac{0 - V}{R_1} \quad \text{so } V = -V_g \quad (1)$$

$$\frac{0 - V}{R_1} = \frac{V}{R} + \frac{V - V_o}{R_1}$$

$$\frac{V_o}{V_g} = -(2 + \frac{R_1}{R})$$

Hence $R=102 \Omega$.

7. Find $\frac{v_o}{v_g}$ for

Label o/p of top op-amp as v and bottom as v'

Then $v_o = v - v'$. Also, for top op-amp, $v_n = v_p = v_g$

Then, for top op-amp:
$$\frac{0 - v_g}{10k} = \frac{v_g - v}{100k}$$
 giving $\frac{v}{v_g} = 11$

For bottom op-amp, $v_n = v_p = 0$

so
$$\frac{v-0}{100k} = \frac{0-v'}{100k}$$
 giving $v = -v'$

so,
$$v_o = v + v = 2v = 22v_g$$
 giving $\frac{v_o}{v_g} = 22$

*Note that
$$\frac{v'}{v_g} = -11$$