Trois contrôles supplémentaires.

Corrigé

Dans tout ce problème,

- on fixe $n \in \mathbb{N}^*$, un entier;
- on fixe $P \in \mathbb{C}[X]$ un polynôme complexe, unitaire, de degré n, qu'on écrit

$$P = X^n + a_{n-1}X^{n-1} + \dots + a_1X + a_0$$

 $o\dot{u} \ \forall k \in [0, n-1], \ a_k \in \mathbb{C};$

• on fixe $\alpha \in \mathbb{C}$ une racine complexe de P, quelconque.

Partie I – Inégalité de Cauchy-Schwarz

Soit $n \in \mathbb{N}^*$ et soient $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in \mathbb{R}^n$.

Le but de cette partie est de montrer l'inégalité de Cauchy-Schwarz, à savoir :

$$\sum_{k=1}^{n} x_k y_k \leqslant \sqrt{\sum_{k=1}^{n} x_k^2} \times \sqrt{\sum_{k=1}^{n} y_k^2}.$$

1. Soient $A, B, \alpha, \beta \in \mathbb{R}$. Montrer que

$$(AB + \alpha\beta)^2 \le (A^2 + \alpha^2)(B^2 + \beta^2).$$

On pose

$$D := \left(A^2 + \alpha^2\right) \left(B^2 + \beta^2\right) - \left(AB + \alpha\beta\right)^2.$$

On calcule:

$$D = \left(A^2 B^2 + A^2 \beta^2 + B^2 \alpha^2 + \alpha^2 \beta^2\right) - \left(A^2 B^2 + \alpha^2 \beta^2 + 2AB\alpha\beta\right)$$
$$= A^2 \beta^2 + B^2 \alpha^2 - 2AB\alpha\beta$$
$$= (A\beta - B\alpha)^2.$$

Donc, $D \ge 0$. D'où le résultat.

2. Pour $n \in \mathbb{N}^*$, on note P(n) l'assertion

$$\forall (x_1, \dots, x_n), (y_1, \dots, y_n) \in \mathbb{R}^n, \ \sum_{k=1}^n x_k y_k \leqslant \sqrt{\sum_{k=1}^n x_k^2} \times \sqrt{\sum_{k=1}^n y_k^2}$$
 ».

(a) Montrer que P(1) est vraie.

Soient $x_1, y_1 \in \mathbb{R}$. On a

$$|x_1y_1 \leqslant |x_1y_1| = |x_1| \times |x_1| = \sqrt{x_1^2} \times \sqrt{y_1^2}.$$

D'où P(1).

(b) Montrer que P(2) est vraie.

Soient $(x_1, x_2), (y_1, y_2) \in \mathbb{R}^2$. D'après la question 1., on a

$$(x_1y_1 + x_2y_2)^2 \le (x_1^2 + x_2^2) \times (y_1^2 + y_2^2).$$

On en déduit que

$$|x_1y_1 + x_2y_2| \le |x_1y_1 + x_2y_2| \le \sqrt{x_1^2 + x_2^2} \times \sqrt{y_1^2 + y_2^2}.$$

D'où P(2).

(c) Montrer, en utilisant P(2), que

$$\forall n \in \mathbb{N}^*, \ P(n) \implies P(n+1).$$

Soit $n \in \mathbb{N}^*$. Supposons que P(n) est vrai. Soit $(x_1, \dots, x_{n+1}), (y_1, \dots, y_{n+1}) \in \mathbb{R}^{n+1}$. On a

$$\sum_{k=1}^{n+1} x_k y_k = \sum_{k=1}^{n} x_k y_k + x_{n+1} y_{n+1} \leqslant A_n B_n + x_{n+1} y_{n+1},$$

d'après l'hypothèse de récurrence, avec $A_n := \sqrt{\sum_{k=1}^n x_k^2}$ et $B_n := \sqrt{\sum_{k=1}^n y_k^2}$.

Or, grâce à P(2) « appliquée à $A_nB_n + x_{n+1}y_{n+1}$ », on a

$$A_n B_n + x_{n+1} y_{n+1} \le \sqrt{A_n^2 + x_{n+1}^2} \times \sqrt{B_n^2 + y_{n+1}^2}.$$

Donc, on a

$$\sum_{k=1}^{n+1} x_k y_k \leqslant \sqrt{A_n^2 + x_{n+1}^2} \times \sqrt{B_n^2 + y_{n+1}^2} \qquad ie \qquad \sum_{k=1}^{n+1} x_k y_k \leqslant \sqrt{\sum_{k=1}^{n+1} x_k^2} \times \sqrt{\sum_{k=1}^{n} y_k^2}.$$

Ainsi, P(n+1) est vraie. On a bien montré que $\forall n \in \mathbb{N}^*, \ P(n) \implies P(n+1)$.

(d) Conclure.

Par récurrence, on obtient que $\forall n \in \mathbb{N}^*, P(n)$ est vraie. Ainsi,

l'inégalité de Cauchy-Schwarz est démontrée.

Partie II – Un premier contrôle

3. (a) Montrer que

$$|\alpha|^n \leqslant \sqrt{\sum_{k=0}^{n-1} |a_k|^2} \times \sqrt{\sum_{k=0}^{n-1} (|\alpha|^k)^2}.$$

Comme α est une racine de P, on a

$$\alpha^n = \sum_{k=0}^{n-1} -a_k \alpha^k.$$

Avec l'inégalité triangulaire, on obtient

$$|\alpha|^{n} = |\alpha^{n}| = \left| \sum_{k=0}^{n-1} -a_{k} \alpha^{k} \right|$$

$$\leq \sum_{k=0}^{n-1} |a_{k}| |\alpha|^{k} \leq \sqrt{\sum_{k=0}^{n-1} |a_{k}|^{2}} \times \sqrt{\sum_{k=0}^{n-1} (|\alpha|^{k})^{2}}$$

d'après l'inégalité de Cauchy-Schwarz. D'où le résultat.

(b) En déduire

$$|\alpha| \le \sqrt{1 + |a_{n-1}|^2 + |a_{n-2}|^2 + \dots + |a_1|^2 + |a_0|^2}.$$

On distingue deux cas.

- Premier cas : on suppose que tous les a_k sont nuls. Dans ce cas, on a $P = X^n$; on a nécessairement $\alpha = 0$ et l'inégalité cherchée est vraie.
- ullet Deuxème cas : on suppose qu'au moins un des a_k est non nul. On note

$$M := \sqrt{1 + |a_{n-1}|^2 + |a_{n-2}|^2 + \dots + |a_1|^2 + |a_0|^2}.$$

Raisonnons par l'absurde et supposons $|\alpha| > M$. On a

$$\sum_{k=0}^{n-1} (|\alpha|^k)^2 = \sum_{k=0}^{n-1} (|\alpha|^2)^k$$
$$= \frac{(|\alpha|^2)^n - 1}{|\alpha|^2 - 1};$$

en effet, comme M > 1, on a bien $|\alpha|^2 \neq 1$.

L'inégalité $|\alpha| > M$ entraı̂ne $|\alpha|^2 > M^2$ par stricte croissance de $(\cdot)^2$ sur \mathbb{R}_+ . On a donc

$$|\alpha|^2 > 1 + \sum_{k=0}^{n-1} |a_k|^2$$
 et donc
$$|\alpha|^2 - 1 > \sum_{k=0}^{n-1} |a_k|^2 \quad \text{et donc} \quad \frac{1}{|\alpha|^2 - 1} < \frac{1}{\sum_{k=0}^{n-1} |a_k|^2}$$

puisque $\sum_{k=0}^{n-1} |a_k|^2 \neq 0$. Enfin, on a

$$\frac{\sum_{k=0}^{n-1} |a_k|^2}{|\alpha|^2 - 1} < 1. \tag{*}$$

Or, en passant au carré l'inégalité de la question précédente, on a

$$|\alpha|^{2n} \leqslant \sum_{k=0}^{n-1} |a_k|^2 \times \sum_{k=0}^{n-1} (|\alpha|^k)^2 = \frac{\sum_{k=0}^{n-1} |a_k|^2}{|\alpha|^2 - 1} \times ((|\alpha|^2)^n - 1).$$

En composant avec (*), on obtient

$$|\alpha|^{2n} < \left(|\alpha|^2\right)^n - 1$$

ce qui est absurde. D'où le résultat.

Partie III – Un deuxième contrôle

4. (a) Montrer que

$$\forall a > -1, \ \forall \alpha > 1, \ (1+a)^{\alpha} \geqslant 1 + \alpha \times a.$$

Fixons $\alpha > 1$. On pose

$$\varphi: \left\{ \begin{array}{c}]-1, +\infty] \longrightarrow \mathbb{R} \\ a \longmapsto (1+a)^{\alpha} - (1+\alpha \times a). \end{array} \right.$$

Cette fonction est \mathscr{C}^{∞} . Soit a > -1. On calcule :

$$\varphi'(a) = \alpha(1+a)^{\alpha-1} - \alpha = \alpha((1+a)^{\alpha-1} - 1).$$

On a

$$\varphi'(a) > 0 \iff (1+a)^{\alpha-1} > 1$$
 (car $\alpha > 0$)
 $\iff (1+a) > 1$ (car $x \longmapsto x^{\frac{1}{\alpha-1}}$ est strictement croissante sur \mathbb{R}_+^*)

avec égalité si et seulement si a=0. D'où le tableau de signes et variations :

x	-	-1		0		$+\infty$
$\varphi'($	x)		_	0	+	
φ	,		φ((0) =	0	A

Donc, $\varphi \geqslant 0$. On a bien montré que

$$\forall a > -1, \ \forall \alpha > 1, \ (1+a)^{\alpha} \geqslant 1 + \alpha \times a.$$

(b) En déduire que $\forall n \in \mathbb{N}, 2^n \geqslant n$.

Soit $n \in \mathbb{N}$.

- Si n=0 ou n=1, l'inégalité est vraie.
- Sinon, on applique le résultat précédent pour a := 1 et $\alpha := n$.

Dans tous les cas, on a $2^n \ge n$.

5. On considère la fonction $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$ définie par

$$f: \left\{ \begin{array}{ll} \mathbb{R}_{+} & \longrightarrow \mathbb{R} \\ C & \longmapsto C^{n+1} - 2C + 1. \end{array} \right.$$

(a) Étudier les variations de f et déterminer le réel $w_n \ge 0$ tel que le tableau de variations de f soit

C	0	w_n	$+\infty$
f		$f(w_n)$	

La fonction f est \mathscr{C}^{∞} . Soit $C \geqslant 0$. On a $f'(C) = (n+1)C^n - 2$ et donc

$$f'(C) > 0 \iff C > \sqrt[n]{\frac{2}{n+1}},$$

avec égalité si et seulement si $C = \sqrt[n]{\frac{2}{n+1}}$.

D'où le tableau de signes et variations, en posant

ıt		n 2	
	$w_n :=$	$\sqrt{n+1}$	•

C	$0 \qquad \sqrt[n]{\frac{2}{n+1}} \qquad +\infty$
f'(C)	- 0 +
f	$f(w_n)$

(b) Montrer que f est strictement décroissante sur $\left[0,\frac{1}{2}\right]$.

Montrons que $\frac{1}{2} \leqslant w_n$. On raisonne par équivalence. On a

$$\frac{1}{2} \leqslant w_n \iff \frac{1}{2} \leqslant \sqrt[n]{\frac{2}{n+1}}$$

$$\iff \frac{1}{2^n} \leqslant \frac{2}{n+1}$$

$$\iff n+1 \leqslant 2^{n+1}.$$
(car (·)ⁿ est strictement croissante sur \mathbb{R}_+^*)

Cette dernière inégalité étant vraie d'après la question 4.(b), on a

$$\left[0,\frac{1}{2}\right] \subset [0,w_n].$$

Ainsi, f est strictement décroissante sur $\left[0,\frac{1}{2}\right]$.

(c) Soit $C \geqslant 0$. Montrer que

$$f(C) \leqslant 0 \implies C \geqslant \frac{1}{2}.$$

On veut montrer que $f(C) \leqslant 0 \implies C \geqslant \frac{1}{2}.$ On va montrer la contraposée

$$C < \frac{1}{2} \implies f(C) < 0.$$

On suppose $C < \frac{1}{2}$. Comme $C \in \left[0, \frac{1}{2}\right]$ et comme f est strictement décroissante sur $\left[0, \frac{1}{2}\right]$, on a donc $f(C) > f\left(\frac{1}{2}\right)$. Or, $f\left(\frac{1}{2}\right) = \frac{1}{2^{n+1}} > 0$; donc f(C) > 0.

Ainsi, on a bien montré que $f(C) \leqslant 0 \implies C \geqslant \frac{1}{2}$.

(d) Montrer que

$$\forall C \in \mathbb{R}_+ \setminus \{1\}, \quad C \times \frac{C^n - 1}{C - 1} \geqslant 1 \implies C \geqslant \frac{1}{2}.$$

On distingue deux cas.

• Premier cas : on suppose que C > 1. Dans ce cas, il n'y a rien à faire : que la prémisse soit vraie ou non, on aura toujours

$$C \times \frac{C^n - 1}{C - 1} \geqslant 1 \implies C \geqslant \frac{1}{2}.$$

• Deuxième cas : on suppose que C < 1. Dans ce cas, on a

$$C \times \frac{C^n - 1}{C - 1} \geqslant 1 \iff C \times (C^n - 1) \leqslant C - 1$$

 $\iff f(C) \leqslant 0.$

Ainsi, on veut montrer que $f(C) \leq 0 \implies C \geqslant \frac{1}{2}$, ce qu'on a montré dans la question précédente.

Dans tous les cas, on a montré que

$$\forall C \in \mathbb{R}_+ \setminus \{1\}, \quad C \times \frac{C^n - 1}{C - 1} \geqslant 1 \implies C \geqslant \frac{1}{2}.$$

6. On suppose $\alpha \neq 0$. Montrer que

$$1 \leqslant \sum_{k=0}^{n-1} \left(\frac{|a_k|^{\frac{1}{n-k}}}{|\alpha|} \right)^{n-k}.$$

On a déjà vu qu'on a (puisque $P(\alpha) = 0$)

$$|\alpha|^n \leqslant \sum_{k=0}^{n-1} |a_k| |\alpha|^k.$$

En divisant par $|\alpha|^n$ cette inégalité, on obtient

$$1 \leqslant \sum_{k=0}^{n-1} |a_k| |\alpha|^{k-n}.$$

Or, si $k \in [0, n-1]$, on a

$$|a_k| |\alpha|^{k-n} = \frac{|a_k|}{|\alpha|^{n-k}} = \left(\frac{|a_k|^{\frac{1}{n-k}}}{|\alpha|}\right)^{n-k}$$

Donc, on a bien

$$1 \leqslant \sum_{k=0}^{n-1} \left(\frac{|a_k|^{\frac{1}{n-k}}}{|\alpha|} \right)^{n-k}.$$

7. Dans cette question, on pose

$$A := \max\left(\left|a_{n-1}\right|, \ \left|a_{n-2}\right|^{\frac{1}{2}}, \ \left|a_{n-3}\right|^{\frac{1}{3}}, \ \dots, \ \left|a_{1}\right|^{\frac{1}{n-1}}, \ \left|a_{0}\right|^{\frac{1}{n}}\right).$$

- (a) On suppose $\alpha \neq 0$ et on note $C := \frac{A}{|\alpha|}$.
 - (i) Simplifier l'expression $\sum_{k=0}^{n-1} C^{n-k}$.

On a (en posant $\ell=n-k$) : $\sum_{k=0}^{n-1}C^{n-k}=\sum_{\ell=1}^nC^\ell$. On distingue deux cas.

- Premier cas: on suppose que C=1. On a alors $\sum_{k=0}^{n-1} C^{n-k}=1$.
- Deuxième cas : on suppose que $C \neq 1$. On a alors $\sum_{k=0}^{n-1} C^{n-k} = C \times \frac{C^n 1}{C 1}.$
 - (ii) On suppose que $C \neq 1$. Montrer que $C \times \frac{C^n 1}{C 1} \geqslant 1$. On utilisera la question **6.**

Soit $k \in [0, n-1]$. D'après la définition de A, on a $|a_k|^{\frac{1}{n-k}} \leqslant A$ et donc

$$\left(\frac{|a_k|^{\frac{1}{n-k}}}{|\alpha|}\right)^{n-k} \leqslant \left(\frac{A}{|\alpha|}\right)^{n-k} = C^{n-k}.$$

Donc, en sommant et d'après la question $\mathbf{6}$, on obtient $1 \leqslant \sum_{k=0}^{n-1} C^{n-k}$. Ainsi, en utilisant la question précédente, on obtient : $1 \leqslant C \times \frac{C^n-1}{C-1}$.

(b) Montrer que

$$|\alpha| \leqslant 2 \times \max(|a_{n-1}|, |a_{n-2}|^{\frac{1}{2}}, |a_{n-3}|^{\frac{1}{3}}, \dots, |a_1|^{\frac{1}{n-1}}, |a_0|^{\frac{1}{n}}).$$

On distingue plusieurs cas.

- \bullet Premier cas : on suppose que $\alpha=0.$ L'inégalité à démontrer est alors vraie.
- <u>Deuxième cas</u> : on suppose que C = 1. On a en particulier $C \ge \frac{1}{2}$.

• <u>Dernier cas</u>: on suppose que $C \neq 1$. D'après la question **7.**(a)(ii), on a $1 \leqslant C \times \frac{C^n - 1}{C - 1}$. D'après la question **5.**(d), on a donc $C \geqslant \frac{1}{2}$.

Or, $C \geqslant \frac{1}{2}$ s'écrit également $|\alpha| \leqslant 2A$, ie

$$|\alpha| \leq 2 \times \max(|a_{n-1}|, |a_{n-2}|^{\frac{1}{2}}, |a_{n-3}|^{\frac{1}{3}}, \dots, |a_1|^{\frac{1}{n-1}}, |a_0|^{\frac{1}{n}}).$$

Partie IV – Parties convexes de $\mathbb C$

• Segments complexes.

$$Si\ a,b\in\mathbb{C},\ on\ notera\left[a,b\right]\!:=\Big\{ta+(1-t)b\ ;\ t\in[0,1]\Big\}.$$

$$ightharpoonup On \ a \ a,b \subset \mathbb{C}.$$

- $\,\rhd\,$ L'ensemble $\big\lceil a,b\big\rceil$ est appelé segment complexe d'extrémités a et b.
- Parties convexes de \mathbb{C} .

Soit $X\subset \mathbb{C}.$ On dira que X est une partie convexe de \mathbb{C} quand

$$\forall (a,b) \in X^2, \ [a,b] \subset X.$$

- 8. Exemples de parties convexes.
 - (a) Sans justification, donner, en les dessinant, des exemples de parties convexes et des exemples de parties non convexes.
 - Voici une partie non convexe de \mathbb{C} :

• Voici une partie convexe de \mathbb{C} :

- (b) Dans cette question, on attend des justifications rapides.
 - (i) L'ensemble vide est-il une partie convexe de \mathbb{C} ?

Oui. En effet, on sait qu'une assertion quantifiée universellement sur le vide est toujours vraie.

(ii) L'ensemble $\mathbb C$ est-il convexe?

Oui puisqu'il est affirmé dans l'énoncé que pour tous $a, b \in \mathbb{C}$, on a $[a, b] \subset \mathbb{C}$.

(c) On note $\mathbb{H} := \{ z \in \mathbb{C} \mid \operatorname{Im}(z) \geqslant 0 \}$. Montrer que \mathbb{H} est convexe.

Soient $a, b \in \mathbb{H}$ et soit $t \in [0, 1]$. On calcule :

$$Im(ta + (1 - t)b) = Im(ta) + Im((1 - t)b)$$
 (par additivité)
= $t Im(a) + (1 - t) Im(b)$. (car t et $(1 - t)$ sont réels)

- Comme $t \ge 0$ et $\text{Im}(a) \ge 0$, on a $t \text{Im}(a) \ge 0$.
- De même, comme $1-t \ge 0$ et $\text{Im}(b) \ge 0$, on a $(1-t) \text{Im}(b) \ge 0$.

Ainsi, on a $\text{Im}(ta + (1-t)b) \ge 0$. Donc, $ta + (1-t)b \in \mathbb{H}$.

Finalement, \mathbb{H} est convexe.

(d) Si $a \in \mathbb{C}$ et si r > 0, on note

$$\mathsf{B}(a,r) := \Big\{ z \in \mathbb{C} \mid |z - a| \leqslant r \Big\}.$$

(i) Représenter B(i, 1).

(ii) Soient $a \in \mathbb{C}$ et r > 0. Montrer que B(a, r) est convexe.

Soient $\alpha, \beta \in \mathsf{B}(a,r)$ et soit $t \in [0,1]$.

Montrons que $t\alpha + (1-t)\beta \in \mathsf{B}(a,r)$.

Pour commencer, remarquons astucieusement que

$$a = (t + (1 - t)) \times a = ta + (1 - t)a.$$

On calcule

$$\begin{vmatrix} a - (t\alpha + (1-t)\beta) \end{vmatrix} = \underbrace{\begin{vmatrix} (t+(1-t))a - (t\alpha + (1-t)\beta) \end{vmatrix}}_{\text{l'astuce}}$$

$$= \begin{vmatrix} t(a-\alpha) + (1-t)(a-\beta) \end{vmatrix}$$

$$\leq \begin{vmatrix} t(a-\alpha) \end{vmatrix} + \begin{vmatrix} (1-t)(a-\beta) \end{vmatrix} \qquad \text{(par inégalité triangulaire)}$$

$$= t \times |a-\alpha| + (1-t) \times |a-\beta| \qquad \text{(car } t \text{ et } (1-t) \text{ sont } \geqslant 0)$$

$$\leq t \times r + (1-t) \times r \qquad \text{(car } \alpha, \beta \in B(a,r))$$

$$= r$$

Ainsi, on a $t\alpha + (1-t)\beta \in \mathsf{B}(a,r)$ et donc :

$$B(a,r)$$
 est convexe.

9. Soient $n \in \mathbb{N}^*$ et $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$. On note

$$\Delta^{n} := \left\{ (\lambda_{1}, \dots, \lambda_{n}) \in [0, 1]^{n} \, \middle| \, \sum_{i=1}^{n} \lambda_{i} = 1 \right\}.$$

$$\mathscr{H}(\alpha_{1}, \dots, \alpha_{n}) := \left\{ \sum_{i=1}^{n} \lambda_{i} \alpha_{i} \; ; \; (\lambda_{1}, \dots, \lambda_{n}) \in \Delta^{n} \right\}.$$

Montrer que $\mathcal{H}(\alpha_1,\ldots,\alpha_n)$ est convexe.

Soient $a, b \in \mathcal{H}(\alpha_1, \dots, \alpha_n)$. On écrit

$$a = \sum_{i=1}^{n} \lambda_i \alpha_i$$
 et $b = \sum_{i=1}^{n} \mu_i \alpha_i$,

où $(\lambda_i)_i \in \Delta^n$ et $(\mu_i)_i \in \Delta^n$.

Soit maintenant $t \in [0,1]$. Montrons que $ta + (1-t)b \in \mathcal{H}(\alpha_1, \dots, \alpha_n)$.

On écrit:

$$ta + (1 - t)b = t \times \left(\sum_{i=1}^{n} \lambda_i \alpha_i\right) + (1 - t) \times \left(\sum_{i=1}^{n} \mu_i \alpha_i\right)$$
$$= \sum_{i=1}^{n} (t\lambda_i + (1 - t)\mu_i)\alpha_i.$$

Fixons $i \in [1, n]$. Comme $t \ge 0$ et $1 - t \ge 0$, on a

$$0 \leqslant t\lambda_i \leqslant t$$
 et $0 \leqslant (1-t)\mu_i \leqslant 1-t$.

En sommant ces inégalités, on a $t\lambda_i + (1-t)\mu_i \in [0,1]$.

Posons donc $\rho_i := t\lambda_i + (1-t)\mu_i$. On a alors

$$ta + (1 - t)b = \sum_{i=1}^{n} \rho_i \alpha_i.$$

et $\forall i \in [1, n], \rho_i \in [0, 1].$

De plus, on a

$$\sum_{i=1}^{n} \rho_i = \sum_{i=1}^{n} t \lambda_i + (1-t)\mu_i$$

$$= t \times \sum_{i=1}^{n} \lambda_i + (1-t) \times \sum_{i=1}^{n} \mu_i = t + (1-t) = 1.$$

Ainsi, on a bien $(\rho_i)_{1 \leq i \leq n} \in \Delta^n$ et $ta + (1-t)b \in \mathcal{H}(\alpha_1, \dots, \alpha_n)$. Finalement, on a bien montré que

$$\mathcal{H}(\alpha_1,\ldots,\alpha_n)$$
 est convexe.

10. Soit X une partie convexe de \mathbb{C} , soit $n \in \mathbb{N}^*$ et soient $\alpha_1, \ldots, \alpha_n \in X$. Montrer que

$$\mathcal{H}(\alpha_1,\ldots,\alpha_n)\subset X.$$

On raisonne par récurrence. Pour $n \in \mathbb{N}^*$, on note

$$\mathscr{P}(n)$$
: « $\forall (\alpha_1, \dots, \alpha_n) \in X^n$, $\mathscr{H}(\alpha_1, \dots, \alpha_n) \subset X$. »

- Montrons que $\mathscr{P}(1)$ est vraie. Soit $\alpha \in X$. Comme $\Delta^1 = \{1\}$, on a $\mathscr{H}(\alpha) = \{\alpha\}$. On a bien $\mathscr{H}(\alpha) \subset X$.
- Montrons que $\forall n \in \mathbb{N}^*$, $\mathscr{P}(n) \Longrightarrow \mathscr{P}(n+1)$. Soit $n \in \mathbb{N}^*$ tel que $\mathscr{P}(n)$ soit vraie. Montrons que $\mathscr{P}(n+1)$. Soient $(\alpha_1, \dots, \alpha_{n+1}) \in X^{n+1}$. Montrons que $\mathscr{H}(\alpha_1, \dots, \alpha_{n+1}) \subset X$. Soit $x \in \mathscr{H}(\alpha_1, \dots, \alpha_{n+1})$; on écrit

$$x = \sum_{i=1}^{n+1} \lambda_i \alpha_i$$

avec $(\lambda_i)_{1 \leq i \leq n+1} \in \Delta^{n+1}$.

On distingue deux cas.

- \triangleright Premier cas : on suppose que $\lambda_1 = 1$. On a alors $x = \alpha_1$ et donc $x \in X$.
- \triangleright Deuxième cas : on suppose que $\lambda_1 < 1$. On écrit alors :

$$x = \lambda_1 \alpha_1 + \sum_{i=2}^{n+1} \lambda_i \alpha_i$$
$$= \lambda_1 \alpha_1 + (1 - \lambda_1) \sum_{i=2}^{n+1} \frac{\lambda_i}{1 - \lambda_1} \alpha_i$$

Or, on a

$$\sum_{i=2}^{n+1} \frac{\lambda_i}{1-\lambda_1} = \frac{1}{1-\lambda_1} \left(\left(\sum_{i=1}^{n+1} \lambda_i \right) - \lambda_1 \right) = \frac{1}{1-\lambda_1} (1-\lambda_1) = 1.$$

Comme par ailleurs il est clair que $\forall i \in [\![2,n+1]\!], \frac{\lambda_i}{1-\lambda_1} \geqslant 0$, on a donc

$$\left(\frac{\lambda_i}{1-\lambda_1}\right)_{2 \le i \le n+1} \in \Delta^n.$$

Or, d'après $\mathscr{P}(n)$, on sait que $\mathscr{H}(\alpha_2,\ldots,\alpha_{n+1})\subset X$. Donc, $\sum_{i=2}^{n+1}\frac{\lambda_i}{1-\lambda_1}\alpha_i\in X$.

Notons $\beta := \sum_{i=2}^{n+1} \frac{\lambda_i}{1-\lambda_1} \alpha_i$. Comme X est convexe, on a $\lambda_1 \alpha_1 + (1-\lambda_1)\beta \in X$. Autrement dit, on a $x \in X$.

On a bien montré que $\mathcal{H}(\alpha_1,\ldots,\alpha_{n+1})\subset X:\mathcal{P}(n+1)$ est donc vraie.

• Par récurrence, on obtient le résultat voulu.

Partie V - Théorème de Gauss-Lucas

• Dans cette partie, on considère de nouveau notre polynôme $P \in \mathbb{C}[X]$, unitaire, de degré $n \geqslant 1$. On l'écrit

$$P = \prod_{i=1}^{n} (X - \alpha_i).$$

 $o\dot{u} \ \forall i \in [1, n], \ \alpha_i \in \mathbb{C}.$

- Si $Q \in \mathbb{C}[X]$, on désigne par $\mathsf{Z}_{\mathbb{C}}(Q)$ l'ensemble des racines complexes de Q.
- **11.** Soit $z \in \mathbb{C}$ tel que $P(z) \neq 0$.
 - (a) Montrer que $\forall i \in [1, n], \ z \alpha_i \neq 0.$

Soit $i_0 \in [1, n]$. Si on avait $z - \alpha_{i_0} = 0$ alors on aurait $\prod_{i=1}^n (z - \alpha_i) = 0$ ie P(z) = 0, ce qui est exclu par hypothèse. Donc, on a

$$\forall i \in [1, n], \ z - \alpha_i \neq 0.$$

(b) Montrer que

$$\frac{P'(z)}{P(z)} = \sum_{i=1}^{n} \frac{1}{z - \alpha_i}.$$

On pourra commencer par calculer P'.

Commençons par calculer P'. Déjà, on peut remarquer que puisque P est le produit de n facteurs de degré 1, calculer sa dérivée revient à appliquer n-1 fois successives la formule de dérivation du produit de deux polynômes. Après calcul, on trouve

$$P' = \sum_{i=1}^{n} \prod_{\substack{1 \le j \le n \\ j \ne i}} (X - \alpha_j).$$

On laisse le lecteur se convaincre de la véracité cette formule, en regardant sur des exemples où n est petit. La démonstration formelle se ferait par récurrence.

Cette formule est importante : il faut la retenir.

Par conséquent, on a

$$\frac{P'(z)}{P(z)} = \frac{\sum_{i=1}^{n} \prod_{\substack{1 \le j \le n \\ j \ne i}} (z - \alpha_j)}{\prod_{1 \le j \le n} (z - \alpha_j)} = \sum_{i=1}^{n} \frac{\sum_{\substack{1 \le j \le n \\ j \ne i}} (z - \alpha_j)}{\prod_{1 \le j \le n} (z - \alpha_j)} = \sum_{i=1}^{n} \frac{1}{z - \alpha_i}.$$

12. Soit $z \in \mathbb{C}$ tel que P'(z) = 0 et $P(z) \neq 0$.

Montrer que

$$\left(\sum_{i=1}^{n} \frac{1}{|z - \alpha_i|^2}\right) \times z = \sum_{i=1}^{n} \frac{1}{|z - \alpha_i|^2} \times \alpha_i.$$

Comme P'(z) = 0, d'après la question **11.**(b), on a

$$\sum_{i=1}^{n} \frac{1}{z - \alpha_i} = 0.$$

Or, pour tout $i \in [1, n]$, on a

$$\frac{1}{z - \alpha_i} = \frac{\overline{z - \alpha_i}}{(z - \alpha_i)(\overline{z - \alpha_i})} = \frac{\overline{z - \alpha_i}}{|z - \alpha_i|^2}$$

et, en conjuguant,

$$\frac{1}{z - \alpha_i} = \frac{z - \alpha_i}{|z - \alpha_i|^2}.$$

Donc, en sommant, on a

$$\sum_{i=1}^{n} \frac{1}{z - \alpha_i} = \sum_{i=1}^{n} \frac{1}{z - \alpha_i} = 0$$
$$= \sum_{i=1}^{n} \frac{z - \alpha_i}{|z - \alpha_i|^2}.$$

Donc, on obtient

$$\sum_{i=1}^{n} \frac{z}{|z - \alpha_i|^2} = \sum_{i=1}^{n} \frac{\alpha_i}{|z - \alpha_i|^2},$$

qui se réécrit

$$\left[\left(\sum_{i=1}^{n} \frac{1}{|z - \alpha_i|^2} \right) \times z = \sum_{i=1}^{n} \frac{1}{|z - \alpha_i|^2} \times \alpha_i \right].$$

13. Théorème de Gauss-Lucas.

En déduire que

$$\mathsf{Z}_{\mathbb{C}}(P') \subset \mathscr{H}(\alpha_1, \ldots, \alpha_n).$$

Soit z une racine de P'. On pose, pour $i_0 \in [1, n]$,

$$\lambda_{i_0} := \frac{\frac{1}{|z - \alpha_{i_0}|^2}}{\sum_{i=1}^n \frac{1}{|z - \alpha_i|^2}}.$$

Déjà, on a bien $\forall i \in [1, n], \lambda_i \ge 0$. De plus, on a $\sum_{i=1}^n \lambda_i = 1$. Donc, on a bien

$$(\lambda_i)_{1 \le i \le n} \in \Delta^n$$
.

Dans la question précédente, on a montré que $z = \sum_{i=1}^{n} \lambda_i \alpha_i$.

Ainsi, on a bien $z \in \mathcal{H}(\alpha_1, \dots, \alpha_n)$. D'où

$$Z_{\mathbb{C}}(P') \subset \mathscr{H}(\alpha_1, \dots, \alpha_n).$$

Partie VI – Contrôles

Soient $Q \in \mathbb{C}[X]$ et $M \geqslant 0$.

On dit que M contrôle les racines de Q quand

$$\forall \alpha \in \mathbb{C}, \quad Q(\alpha) = 0 \implies |\alpha| \leqslant M.$$

14. Troisième contrôle.

Soit $M \in \mathbb{R}_+$.

(a) Montrer que

M contrôle les racines de $P \implies M$ contrôle les racines de P'.

Supposons que M contrôle les racines de P. On écrit

$$P = \prod_{i=1}^{n} (X - \alpha_i)$$

où $\forall i \in [1, n], \alpha_i \in \mathbb{C}$.

Soit $\gamma \in \mathbb{C}$ une racine de P'. D'après la question 13., soit $(\lambda_i)_{1 \leq i \leq n} \in \Delta^n$ tel que

$$\gamma = \sum_{i=1}^{n} \lambda_i \alpha_i.$$

On calcule

$$|\gamma| = \left| \sum_{i=1}^{n} \lambda_i \alpha_i \right|$$

$$\leq \sum_{i=1}^{n} |\lambda_i| |\alpha_i| = \sum_{i=1}^{n} \lambda_i |\alpha_i|$$

$$\leq \sum_{i=1}^{n} \lambda_i M = M \sum_{i=1}^{n} \lambda_i = 1.$$

Ainsi, M contrôle les racines de P'. Par conséquent, on a bien

M contrôle les racines de $P \implies M$ contrôle les racines de P'.

(b) La réciproque est-elle vraie?

Non : la réciproque est fausse.

Par exemple, si on considère le polynôme $P := X^2 - 1$, alors P' = 2X et 0 contrôle les racines de P' alors que 0 ne contrôle pas les racines de P'.

15. Un contrôle sur le contrôle.

Soit $M \in \mathbb{R}_+$. Montrer que

$$M$$
 contrôle les racines de $P \implies M \geqslant \frac{|a_{n-1}|}{n}$.

Supposons que M contrôle les racines de P. Par récurrence immédiate, pour tout $k \in \mathbb{N}$, M contrôle les racines de $P^{(k)}$. Or, après calcul, on trouve que

$$P^{(n-1)} = n!X + (n-1)!a_{n-1},$$

dont l'unique racine est $\frac{-a_{n-1}}{n}$. On a donc $\left|\frac{-a_{n-1}}{n}\right| \leqslant M$, ce qui se réécrit

$$\boxed{M \geqslant \frac{|a_{n-1}|}{n}.}$$

