8.4 The Normal Distribution

Goals for the Day

1

Normal Distribution Properties

Normal Distribution Properties

- It's a symmetric, unimodal and <u>bell-shaped</u> distribution
 → which implies mean = median = mode.
- Total area under curve (probability) is equal to 1 = 100%.
- Completely described by its mean μ (location) and standard deviation σ (spread).

The normal distribution allows us to find any probability, not just for points that lie exactly 1, 2, or 3 standard deviations ("steps") away from the mean like with the empirical rule!

2

Z-scores

Z-scores

- Z-scores ("Standard" scores in Hawkes Certify)
- Definition: A **z-score** <u>standardizes</u> observations based on the <u>mean</u> (center) and <u>standard deviation</u> (spread) of the distribution
 - Allows for comparisons on different scales.
 - Ex) ACT vs SAT

Formula:
$$z = \frac{x-\mu}{\sigma} = \frac{x-\bar{x}}{s} = \frac{obs-mean}{st\ dev}$$

Z-scores

Interpretation: A z-score tells us <u>how many standard deviations</u> an observation is <u>away from the mean</u>.

STEPS

Z-scores Examples

Example 1) For each data set with the stated μ and σ , find the standard score (z score) corresponding to the given observation, x.

a)
$$\mu = 8$$
, $\sigma = 3$, $x = 17$

$$z = \frac{17 - 8}{3} = 3$$
 Above mean

b)
$$\mu = 100$$
, $\sigma = 16$, $x = 80$

$$z = \frac{80 - 100}{16} = -1.25$$
 Below mean

- C) Which observation is further from the mean relatively?
 - (a) because z = 3 is a "larger" value

3

Finding Probabilities

Finding probabilities based on the Normal Distribution

- Handout: Normal Distribution Table
 - Use the handout to <u>convert z-scores</u> to <u>percentiles</u> ("left probabilities").

ALWAYS gives probability LESS THAN Z: P(Z < z).

"LEFT"

- Left Probability = Table (directly)
- Right Probability = 1 Left (table)
- Between Probability = Left Z_2 Left Z_1
- Outside Probability = Left Z_1 + Right Z_2

Draw, Label and Shade curve