Grunnatriði

Bergur Snorrason

January 15, 2024

Grunntög og takmarkanir þeirra

- ▶ Í grunninn snýst forritun um gögn.
- Þegar við forritum flokkum við gögnin okkar með tögum.
- ▶ Dæmi um tög í C/C++ eru int og double.
- ► Helstu tögin í C/C++ eru (yfirleitt):

Heiti	Lýsing	Skorður
int	Heiltala	Á bilinu $[-2^{31}, 2^{31} - 1]$
unsigned int	Heiltala	Á bilinu $[0, 2^{32} - 1]$
long long	Heiltala	Á bilinu $[-2^{63}, 2^{63} - 1]$
unsigned long long	Heiltala	Á bilinu $[0, 2^{64} - 1]$
double	Fleytitala	Takmörkuð nákvæmni
char	Heiltala	$ ilde{A}$ bilinu $[-128,127]$

Hvað með tölur utan þessa bila?

Einn helsti kostur Python í keppnisforritun er að heiltölur geta verið eins stórar (eða litlar) og vera skal.

```
1 from math import factorial
2 print(factorial(100))

1 >> python factorial.py
2 109332621544394415268169923885626670049071596826438162
3 146859296389521759999322991560894146397615651828625369
4 792082722375825118521091686400000000000000000000000
```

▶ Það er einnig hægt að nota fractions pakkann í Python til að vinna með fleytitölur án þess að tapa nákvæmni.

Hvað með tölur utan þessa bila?

- Sumir C/C++ þýðendur bjóða upp á gagnatagið __int128 (til dæmis gcc).
- ightharpoonup Petta tag býður upp á að nota tölur á bilinu $[-2^{127},2^{127}-1].$
- Þetta þarf ekki að nota oft.

Röðun

▶ Við munum reglulega þurfa að raða gögnum í einhverja röð.

```
Forritunarmál Röðun

C qsort(...)

C++ sort(...)

Python this.sort() eða sorted(...)
```

Skoðum nú hvert forritunarmál til að sjá nánar hvernig föllin eru notuð.

Röðun í C++

- ▶ Í grunninn tekur sort(...) við tveimur gildum.
- Fyrra gildið svarar til fyrsta staks þess sem við viljum raða og seinna gildið vísar á enda þess sem við viljum raða (ekki síðasta stakið)
- Ef við erum með n staka fylki a þá röðum við því með sort(a, a + n).
- Við getum raðað flestum ílátum með sort .
- ► Ef við erum með eitthvað ílát (til dæmis vector) a má raða með sort(a.begin(), a.end()).
- Við getum líka bætt við okkar eigin samanburðarfalli sem þriðja inntak.
- ▶ Það kemur þá í stað "minna eða samasem" samanburðarins sem er sjálfgefinn.

Röðun í Python

- Til að raða lista í Python þá má nota annað hvort this.sort() eða sorted(...).
- Gerum ráð fyrir að listinn okkar heiti a.
- Þá nægir að kalla á a.sort() og eftir það er a raðað.
- ► Hinsvegar skilar sorted(a) afriti af a sem hefur verið raðað.
- Til að raða a á þennan hátt þarf a = sorted(a).
- Nota má inntakið key til að raða eftir öðrum samanburðum.
- ▶ Pað er einnig inntak sem heitir reverse sem er Boole gildi sem leyfir auðveldlega að raða öfugt.

Röðun í C

- Í C er enginn sjálfgefinn samanburður, svo við þurfum alltaf að skrifa okkar eigið samanburðarfall.
- ► Til röðunar notum við fallið qsort(...).
- ► Fallið tekur fjögur viðföng:
 - void *a. Þetta er fylkið sem við viljum raða.
 - size_t n . Þetta er fjöldi staka í fylkinu sem a svarar til.
 - size_t s . Petta er stærð hvers staks í fylkinu okkar (í bætum).
 - int (*cmp)(const void*, const void*). Þetta er samanburðarfallið okkar.
- Síðasta inntakið er kannski flókið við fyrstu sýn en er einfalt fyrir okkur að nota.
- ▶ Petta er *fallabendir* (e. *function pointer*) ef þið viljið kynna ykkur það frekar.

Röðun í C

```
1 #include <stdio.h>
 2 #include <stdlib.h>
 3
4 int cmp(const void* p1, const void* p2)
 5
   {
       int x = *(int*)p1, y = *(int*)p2;
 6
 7
       return (x \le y) - (y \le x):
 8
   }
9
10 int rcmp(const void* p1, const void* p2)
11
   {
12
       int x = *(int*)p1, y = *(int*)p2;
13
       return (x \ge y) - (y \ge x):
14 }
15
16 int main()
17
18
       int n, i;
       scanf("%d", &n);
19
20
       int a[n];
       for (i = 0; i < n; i++) scanf("%d", &a[i]);
21
22
       qsort(a, n, sizeof *a, cmp);
       for (i = 0; i < n; i++) printf("%d ", a[i]); printf("\n");
23
24
       qsort(a, n, sizeof *a, rcmp);
25
       for (i = 0; i < n; i++) printf("%d ", a[i]); printf("\n");</pre>
26
       return 0:
27 }
```

Uppsetning dæma

- Dæmin sem við sjáum á Kattis eru (oftast) af stöðluðu sniði.
 - Saga.
 - Dæmið.
 - Inntaks -og úttakslýsingar.
 - Sýnidæmi.
- Fyrstu tveir punktarnir geta verið blandaðir saman.
- Þeir eru líka lengsti hluti dæmisins.

A Different Problem

Write a program that computes the difference between non-negative integers.

Input

Each line of the input consists of a pair of integers. Each integer is between 0 and 10^{15} (inclusive). The input is terminated by end of file.

Output

For each pair of integers in the input, output one line, containing the absolute value of their difference.

Sample Input 1

10 12 71293781758123 72784 1 12345677654321

Sample Output 1

2 71293781685339 12345677654320

Röng lausn. Hver er villan?

```
1 #include <bits/stdc++.h>
2 using namespace std;
3
4 int main()
5 {
6    int a, b;
7    while (cin >> a >> b)
8    {
9       cout << abs(a - b) << endl;
10    }
11    return 0;
12 }</pre>
```

Rétt lausn

```
1 #include <bits/stdc++.h>
2 using namespace std;
3
4 int main()
5 {
6 long long a, b;
7 while (cin >> a >> b)
8 {
9 cout << abs(a - b) << endl;
10 }
11 return 0;
12 }</pre>
```

typedef

- Við getum notað typedef til að spara okkur skriftir.
- ▶ Við bætum við typedef <gamla> <nýja>; ofarlega í skrána.
- Venjan í keppnisforritun er að nota typedef long long 11;
- Við munum nota typedef aftur í námskeiðinu.

Rétt lausn með typedef

Time Limit Exceeded

- Hvernig vitum að lausnin okkar sé of hæg?
- ► Ein leið er að útfæra lausnina, senda hana inn og gá hvað Kattis segir.
- Pað myndi þó spara mikla vinnu ef við gætum svarað spurningunni án þess að útfæra.
- Einnig gæti leynst önnur villa í útfærslunni okkar sem gefur okkur Time Limit Exceeded (TLE).
- Til að ákvarða hvort lausn sé nógu hröð þá notum við tímaflækjur.
- Sum ykkar þekkja tímaflækjur en önnur kannski ekki.
- Skoðum fyrst hvað tímaflækjur eru í grófum dráttum.

Tímaflækjur í grófum dráttum

- Keyrslutími forrits er háður stærðinni á inntakinu.
- Tímaflækjan lýsir hvernig keyrslutími forritsins eykst þegar inntakið stækkar (í versta falli).
- ▶ Ef forritið er með tímaflækju $\mathcal{O}(f(n))$ þýðir það að keyrslutíminn vex eins og f þegar n vex.
- ▶ Til dæmis ef forritið hefur tímaflækju $\mathcal{O}(n)$ þá tvöfaldast keyrslutími þegar inntakið tvöfaldast.
- ► Til annars dæmis ef forritið hefur tímaflækju $\mathcal{O}(n^2)$ þá fjórfaldast keyrslutími þegar inntakið tvöfaldast.
- Við gerum ráð fyrir að grunnaðgerðirnar okkar taki fastann tíma, eða séu með tímaflækju $\mathcal{O}(1)$.

- ▶ Ef forritið okkar þarf að framkvæma $\mathcal{O}(f(n))$ aðgerð m sinnum þá er tímaflækjan $\mathcal{O}(m \cdot f(n))$.
- Þetta er reglan sem við notum oftast í keppnisforritun.
- ► Hún segir okkur til dæmis að tvöföld for -lykkja, þar sem hver for -lykkja er n löng, er $\mathcal{O}(n^2)$.
- Ef við erum með tvær einfaldar for -lykkjur, báðar af lengd n, þá er forritið $\mathcal{O}(n+n)=\mathcal{O}(n)$
- Einnig gildir að tímaflækja forritsins okkar takmarkast af hægasta hluta forritsins.
- ► Til dæmis er $\mathcal{O}(n+n+n+n+n^2) = \mathcal{O}(n^2)$.

Stærðfræði

▶ Við segjum að fall g(x) sé í menginu $\mathcal{O}(f(x))$ ef til eru rauntölur c og x_0 þannig að

$$|g(x)| \le c \cdot f(x)$$

fyrir öll $x > x_0$.

- Petta þýðir í raun að fallið |g(x)| verður á endanum minna en $c \cdot f(x)$.
- Pessi lýsing undirstrikar betur að f(x) er efra mat á g(x), það er að segja g(x) hagar sér ekki verr en f(x).

Þekktar tímaflækjur

► Tímaflækjur algengra aðgerða eru:

Aðgerð	Lýsing	Tímaflækja
Línulega leit	Almenn leit í fylki	$\mathcal{O}(n)$
Helmingunarleit	Leit í röðuðu fylki	$\mathcal{O}(\log n)$
Röðun á heiltölum	Röðun á heiltalna fylki	$\mathcal{O}(n \log n)$
Strengjasamanburður	Bera saman tvo strengi af	$\mathcal{O}(n)$
Almenn röðun	lengd n Röðun með samanburði í $\mathcal{O}(T(m))$ tíma	$\mathcal{O}(T(m) \cdot n \log n)$

10⁸ reglan

- Þegar við ræðum tímaflækjur er "tími" ekki endilega rétt orðið.
- Við erum frekar að lýsa fjölda aðgerða sem forritið framkvæmir.
- ▶ Í keppnisforritun notum við 10⁸ regluna:
 - Tökum verstu tilfellin sem koma fyrir í inntakslýsingunni á dæminu, stingum því inn í tímaflækjuna okkar og deilum með 108.
 - Ef útkoman er minni en fjöldi sekúnda í tímamörkum dæmisins þá er lausnin okkar nógu hröð, annars er hún of hæg.
- Þessa reglu mætti um orða sem: "Við gerum ráð fyrir að forritið geti framkvæmt 108 aðgerðir á sekúndu".
- Reglan er gróf nálgun, en virkar mjög vel því þetta er það sem dæmahöfundar hafa í huga þegar þeir semja dæmi.
- ► Reglan gefur eftirfarandi töflu.

Stærð n	Versta tímaflækja	Dæmi
<u>≤ 10</u>	$\mathcal{O}((n+1)!)$	TSP með tæmandi leit
≤ 15	$\mathcal{O}(n^2 2^n)$	TSP með kvikri bestun
≤ 20	$\mathcal{O}(n2^n)$	Kvik bestun yfir hlutmengi
≤ 100	$\mathcal{O}(n^4)$	Almenn spyrðing
≤ 400	$\mathcal{O}(n^3)$	Floyd-Warshall
$\leq 10^4$	$\mathcal{O}(n^2)$	Lengsti sameiginlegi hlutstrengur
$\leq 10^5$	$\mathcal{O}(n\sqrt{n})$	Reiknirit sem byggja á rótarþáttun
$\leq 10^6$	$\mathcal{O}(n \log n)$	Röðun (og margt fleira)
$\leq 10^8$	$\mathcal{O}(n)$	Línulega leit
$\leq 2^{10^8}$	$\mathcal{O}(\log n)$	Helmingunarleit
$> 2^{10^8}$	$\mid \mathcal{O}(1) \mid$	Ad hoc

TLE trikk

- Stundum fær maður TLE þótt maður sé viss um að lausnin sé nógu hröð.
- Ef forritið þarf að lesa eða skrifa mikið gæti það verið að hægja nóg á forritun til að gefa TLE.
- Þegar við lesum af staðalinntaki eða skrifum á staðalúttak þarf forritið að tala við stýrikerfið.
- Slíkar að gerðir eru mjög hægar.
- ► Til að leysa þetta skrifa föll oft í biðminni (e. buffer) og prenta bara þegar það fyllist.
- ► Svona er þetta gert í C .

TLE trikk

- ▶ Í C++ er biðminnið tæmt þegar std::endl er prentað.
- ► Til að koma í veg fyrir þetta er hægt að prenta \n í staðinn.
- ► Til dæmis cout « x « '\n'.
- Pað borgar sig einnig að setja
 ios::sync_with_stdio(false) fremst (main() .
- ► Ef þið eruð í Java er hægt að nota Kattio.
- Það má finna á GitHub.