PANEL DATA

Joan Llull

PANEL DATA AND DURATION MODELS BARCELONA GSE

joan.llull [at] movebarcelona [dot] eu

Introduction

Panel data

The term **panel data** refers to data sets with **repeated observations** over time for a given cross-section of individuals.

Individuals can be persons, households, firms, countries,...

It is different from repeated cross-sections.

Main advantages of panel data:

- Permanent unobserved heterogeneity
- Dynamic responses and error components

Micro and macro panel data

Micro panel data usually has large N, small T (e.g. household surveys).

Macro panel data usually have longer T, but smaller N (e.g. daily stock market returns for three composites).

Our interest here: fixed T, $N \to \infty$ (micro panels).

Approaches are closer to cross-section approaches than to time series.

Employment equations for U.K. firms

We will use the same **example** all over the chapter.

Consider the following equation for firm i demand of employment in year t:

$$n_{it} = \beta_0 + \beta_1 w_{it} + \beta_2 k_{it} + \eta_i + v_{it},$$

where:

- n_{it} is log employment,
- w_{it} is log wage,
- k_{it} is log capital,
- $\eta_i + v_{it}$ is unobserved.

STATIC MODELS

General notation

We consider the following **model**:

$$y_{it} = \mathbf{x}'_{it}\boldsymbol{\beta} + (\eta_i + v_{it}),$$

where y_{it} and x_{it} are **observed**, and $\eta_i + v_{it}$ is **unobserved**.

Let $\{y_{it}, \boldsymbol{x}_{it}\}_{i=1,\dots,N}^{t=1,\dots,T}$ be our **sample**. We define:

$$egin{aligned} oldsymbol{y}_i &\equiv egin{pmatrix} y_{i1} \ dots \ y_{iT} \end{pmatrix}, X_i = egin{pmatrix} oldsymbol{x}'_{i1} \ dots \ oldsymbol{x}'_{iT} \end{pmatrix}, oldsymbol{\eta}_i = \eta_i oldsymbol{\iota}_T, ext{ and } oldsymbol{v}_i = egin{pmatrix} v_{i1} \ dots \ v_{iT} \end{pmatrix}, \ oldsymbol{y} &\equiv egin{pmatrix} oldsymbol{y}_1 \ dots \ oldsymbol{y}_N \end{pmatrix}, X = egin{pmatrix} X_1 \ dots \ X_N \end{pmatrix}, oldsymbol{\eta} &= egin{pmatrix} oldsymbol{\eta}_1 \ dots \ oldsymbol{\eta}_N \end{pmatrix}, ext{ and } oldsymbol{v} &= egin{pmatrix} oldsymbol{v}_1 \ dots \ oldsymbol{v}_N \end{pmatrix}, \end{aligned}$$

where ι_T is a size T vector of ones.

Hence, we can use the following **compact notation**:

$$y_i = X_i \boldsymbol{\beta} + (\boldsymbol{\eta}_i + \boldsymbol{v}_i), \text{ and } \boldsymbol{y} = X \boldsymbol{\beta} + (\boldsymbol{\eta} + \boldsymbol{v})$$

General assumptions for static models

For static models, we assume:

- Fixed effects: $\mathbb{E}[\boldsymbol{x}_{it}\eta_i] \neq 0$ or random effects: $\mathbb{E}[\boldsymbol{x}_{it}\eta_i] = 0$.
- Strict exogeneity: $\mathbb{E}[\boldsymbol{x}_{it}v_{is}] = 0 \ \forall s,t$. This assumption rules out effects of past v_{is} on current \boldsymbol{x}_{it} (e.g. \boldsymbol{x}_{it} cannot include lagged dependent variables).
- Error components: $\mathbb{E}[\eta_i] = \mathbb{E}[v_{it}] = \mathbb{E}[\eta_i v_{it}] = 0.$
- Serially uncorrelated shocks: $\mathbb{E}[v_{it}v_{is}] = 0 \ \forall s \neq t$.
- Homoskedasticity and i.i.d. errors: $\eta_i \sim iid(0, \sigma_{\eta}^2)$ and $v_{it} \sim iid(0, \sigma_v^2)$, which does not affect any crucial result, but simplifies some derivations.

Pooled OLS

A simple approach: define: $u \equiv \eta + v$ and estimate β by OLS:

$$\hat{\boldsymbol{\beta}}_{OLS} = (X'X)^{-1}X'\boldsymbol{y}.$$

The **properties** of $\hat{\boldsymbol{\beta}}_{OLS}$ depend on $\mathbb{E}[\boldsymbol{x}_{it}\eta_i]$, as $\mathbb{E}[\boldsymbol{x}_{it}v_{it}] = 0$:

- If $\mathbb{E}[\boldsymbol{x}_{it}\eta_i] = 0 \Rightarrow_{\mathbb{E}[\boldsymbol{x}_{it}, \boldsymbol{y}_{it}] = 0} \mathbb{E}[\boldsymbol{x}_j u_j] = 0$ (random effects):
 - $\hat{\boldsymbol{\beta}}_{OLS}$ is **consistent** as $N \to \infty$, or $T \to \infty$, or both.
 - it is **efficient** only if $\sigma_n^2 = 0$.
- If $\mathbb{E}[\boldsymbol{x}_{it}\eta_i] \neq 0 \Rightarrow \mathbb{E}[\boldsymbol{x}_ju_j] \neq 0$ (fixed effects):
 - $\hat{\beta}_{OLS}$ is inconsistent as $N \to \infty$, or $T \to \infty$, or both.
 - cross-section results are also inconsistent (but panel helps in constructing a consistent alternative).

Pooled OLS in Employment equations

In our previous example, we would **redefine** our regression as:

$$n_j = \beta_0 + \beta_1 w_j + \beta_2 k_j + u_j,$$

where I used subindex j to emphasize that each observation it is considered as one **independent** observation.

	OLS		
Constant (β_0)	2.557	(0.676)	
Wages (β_1)	-0.364	(0.216)	
Capital (β_2)	0.811	(0.032)	

Potential problems:

- More productive firms $\Rightarrow \uparrow w$ and $\uparrow n$.
- Larger plant capacity $\Rightarrow \uparrow k$ and $\uparrow n$.

•

The fixed effects model. Within groups estimation

Within groups estimator

Write the model in **deviations from individual means**, $\tilde{y}_{it} \equiv y_{it} - \bar{y}_i$, where $\bar{y}_i \equiv T^{-1} \sum_{t=1}^{T} y_{it}$:

$$\tilde{y}_{it} = (\boldsymbol{x}_{it} - \bar{\boldsymbol{x}}_i)'\boldsymbol{\beta} + (\eta_i - \bar{\eta}_i) + (v_{it} - \bar{v}_i) = \tilde{\boldsymbol{x}}'_{it}\boldsymbol{\beta} + \tilde{v}_{it}.$$

Given the previous assumptions:

$$\mathbb{E}[\tilde{\boldsymbol{x}}_{it}\tilde{v}_{it}] = 0.$$

Therefore, OLS on the transformed model:

$$\hat{\pmb{\beta}}_{WG} = \left(\tilde{X}'\tilde{X}\right)^{-1}\tilde{X}'\tilde{y},$$

is a **consistent** estimator either if $\mathbb{E}[\boldsymbol{x}_{it}\eta_i] \neq 0$ or $\mathbb{E}[\boldsymbol{x}_{it}\eta_i] = 0$.

Strict exogeneity is a crucial assumption (see next slide).

The role of strict exogeneity

In the case where $N \to \infty$ and T is fixed, consistency depends on strict exogeneity.

To see it, recall that:

$$\tilde{x}_{it} = x_{it} - \frac{1}{T}(x_{i1} + ... + x_{iT}) \text{ and } \tilde{v}_{it} = v_{it} - \frac{1}{T}(v_{i1} + ... + v_{iT}).$$

Therefore $\mathbb{E}[\tilde{\boldsymbol{x}}_{it}\tilde{v}_{it}] = 0$ requires $\mathbb{E}[\boldsymbol{x}_{it}v_{is}] = 0 \ \forall \ s,t \text{ unless } T \to \infty.$

This has motivated the development of dynamic panel data models, to relax this assumption.

Pros and cons of within groups estimator

Advantage: consistent either if $\mathbb{E}[\mathbf{x}_{it}\eta_i] \neq 0$ or $\mathbb{E}[\mathbf{x}_{it}\eta_i] = 0$.

Limitations:

• Not efficient:

- When $N \to \infty$ but T is fixed, less efficient that e.g. $\hat{\boldsymbol{\beta}}_{GLS}$ if $\mathbb{E}[\boldsymbol{x}_{it}\eta_i] = 0$.
- If $\mathbb{E}[\boldsymbol{x}_{it}\eta_i] \neq 0$, it is only efficient when all regressors are correlated with η_i .
- It does not allow to identify coefficients for **time-invariant** regressors, and identification is through switchers.

Within Groups in Employment equations

In our example:

	О	LS	V	VG
Constant (β_0)	2.557	(0.676)	2.495	(0.354)
Wages (β_1)	-0.364	(0.216)	-0.368	(0.116)
Capital (β_2)	0.811	(0.032)	0.640	(0.045)

Least Squares Dummy Variables

The Within Groups estimator can also be obtained by including a set of N individual **dummy variables**:

$$y_{it} = \mathbf{x}'_{it}\mathbf{\beta} + \eta_1 D_{1i} + ... + \eta_N D_{Ni} + v_{it},$$

where $D_{hi} = \mathbb{1}\{h = i\}$ (e.g. D_{1i} takes the value of 1 for the observations on individual 1 and 0 for all other observations).

OLS estimation of this model gives numerically equivalent estimates to WG (that's why $\hat{\beta}_{WG}$ is a.k.a. $\hat{\beta}_{LSDV}$).

This gives intuition on why WG is **not very efficient** if there is only limited time-series variation (degrees of freedom are NT - K - N = N(T - 1) - K).

LSDV in Employment equations

We can generate individual (firm) dummies and estimate by OLS, to check that it delivers the same results:

	OLS	WG	LSDV
Constant (β_0)	2.557	2.495	
	(0.676)	(0.354)	
Wag es (β_1)	-0.364	-0.368	-0.368
	(0.216)	(0.116)	(0.116)
Capital (β_2)	0.811	0.640	0.640
	(0.032)	(0.045)	(0.045)
Firm 1 $(\beta_0 + \eta_1)$			2.804
			(0.288)
Firm 2 $(\beta_0 + \eta_2)$			3.455
			(0.398)
Firm 3 $(\beta_0 + \eta_3)$			2.891
			(0.416)
Firm 4 $(\beta_0 + \eta_4)$			2.908
(, 4 . , 1-7			(0.384)
Firm 5 $(\beta_0 + \eta_5)$			3.490
(, , , , , , , , , , , , , , , , , , ,			(0.433)
Firm 6 $(\beta_0 + \eta_6)$			2.092
(1-0-1-10)			(0.325)
Firm 7 $(\beta_0 + \eta_7)$			1.769
(/-0 1 71)			/

First-Differenced Least Squares

Another transformation we can consider is **first differences**:

$$\Delta y_{it} = \Delta x'_{it} \beta + \Delta v_{it}$$
, for $i = 1, ..., N; t = 2, ..., T$

where $\Delta y_{it} = y_{it} - y_{it-1}$.

Takes out time-invariant individual effects ($\Delta \eta_i = \eta_i - \eta_i = 0$), so OLS on the differenced model is **consistent**.

Consistency requires $\mathbb{E}[\Delta x_{it} \Delta v_{it}] = 0$ which is implied by but weaker than strict exogeneity.

WG more efficient than FDLS under classical assumptions.

FDLS more efficient if v_{it} random walk $(\Delta v_{it} = \varepsilon_{it} \sim iid(0, \sigma_{\varepsilon}^2))$.

FDLS in Employment equations

To get FDLS we generate fist differences and estimate by OLS:

	OLS	WG	LSDV	FDLS	
Constant (β_0)	2.557	2.495			
	(0.676)	(0.354)			
Wages (β_1)	-0.364	-0.368	-0.368	-0.417	
	(0.216)	(0.116)	(0.116)	(0.134)	
Capital (β_2)	0.811	0.640	0.640	0.469	
	(0.032)	(0.045)	(0.045)	(0.046)	
Firm 1 $(\beta_0 + \eta_1)$			2.804		
			(0.288)		
Firm 2 $(\beta_0 + \eta_2)$			3.455		
			(0.398)		
Firm 3 $(\beta_0 + \eta_3)$			2.891		
			(0.416)		
Firm 4 $(\beta_0 + \eta_4)$			2.908		
			(0.384)		
· · · · · · · · · · · · · · · · ·					

The random effects model. Error components

$Uncorrelated\ effects$

Now we assume uncorrelated or random effects: $\mathbb{E}[x_{it}\eta_i] = 0$.

In this case, OLS is consistent, but not efficient.

The inefficiency is provided by the **serial correlation** induced by η_i :

$$\mathbb{E}[u_{it}u_{is}] = \mathbb{E}[(\eta_i + v_{it})(\eta_i + v_{is})] = \mathbb{E}[\eta_i^2] = \sigma_\eta^2$$

The variance of the unobservables (under classical assumptions) is:

$$\mathbb{E}[u_{it}^2] = \mathbb{E}[\eta_i^2] + \mathbb{E}[v_{it}^2] = \sigma_\eta^2 + \sigma_v^2$$

Error structure

Therefore, the variance-covariance matrix of the unobservables is:

$$\mathbb{E}[\boldsymbol{u}_i\boldsymbol{u}_i'] = \begin{pmatrix} \sigma_{\eta}^2 + \sigma_v^2 & \sigma_{\eta}^2 & \dots & \sigma_{\eta}^2 \\ \sigma_{\eta}^2 & \sigma_{\eta}^2 + \sigma_v^2 & \dots & \sigma_{\eta}^2 \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{\eta}^2 & \sigma_{\eta}^2 & \dots & \sigma_{\eta}^2 + \sigma_v^2 \end{pmatrix} = \Omega_i,$$

whose dimensions are $T \times T$, and $\mathbb{E}[\boldsymbol{u}_i \boldsymbol{u}_h'] = 0 \ \forall \ i \neq h$, or:

$$\mathbb{E}[oldsymbol{u}oldsymbol{u}'] = egin{pmatrix} \Omega_1 & 0 & \dots & 0 \ 0 & \Omega_2 & \dots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \dots & \Omega_N \end{pmatrix} = \Omega,$$

which is block-diagonal with dimension $NT \times NT$.

Generalized Least Squares

Under the classical assumptions, GLS (Balestra-Nerlove) estimator is **consistent and efficient** if $\mathbb{E}[\boldsymbol{x}_{it}\eta_i] = 0$:

$$\hat{\boldsymbol{\beta}}_{GLS} = \left(X' \Omega^{-1} X \right)^{-1} X' \Omega^{-1} \boldsymbol{y}.$$

If $\mathbb{E}[\boldsymbol{x}_{it}\eta_i] \neq 0$ GLS is **inconsistent** as $N \to \infty$ and T is fixed.

This estimator is **unfeasible** because we do not know σ_n^2 and σ_n^2 .

Theta-differencing

 $\hat{\boldsymbol{\beta}}_{GLS}$ is **equivalent** to OLS on the theta-differenced model:

$$y_{it}^* = \boldsymbol{x_{it}^*}'\boldsymbol{\beta} + u_{it}^*,$$

where:

$$y_{it}^* = y_{it} - (1 - \theta)\bar{y}_i,$$

and:

$$\theta^2 = \frac{\sigma_v^2}{\sigma_v^2 + T\sigma_\eta^2}.$$

Consistency relies on $\mathbb{E}[x_{it}\eta_i] = 0$ (as η_i not eliminated).

Two special cases:

- If $\sigma_{\eta}^2 = 0$ (i.e. no individual effect), OLS is efficient.
- If $T \to \infty$, then $\theta \to 0$, and $y_{it}^* \to \tilde{y}_{it} = y_{it} \bar{y}_i$: WG is efficient.

Feasible GLS

 $\hat{\boldsymbol{\beta}}_{GLS}$ is **unfeasible** because we do not know σ_{η}^2 and σ_{v}^2 .

A consistent estimator of σ_v^2 is provided by the **WG residuals**:

$$\hat{\tilde{v}}_{it} \equiv \tilde{y}_{it} - \tilde{\boldsymbol{x}}'_{it} \hat{\boldsymbol{\beta}}_{WG}$$

$$\hat{\sigma}_v^2 = \frac{\hat{\boldsymbol{v}}'\hat{\boldsymbol{v}}}{N(T-1) - K}$$

Then, a consistent estimator of σ_n^2 is given by the **BG residuals**:

$$\bar{y}_i = \bar{x}_i' \boldsymbol{\beta} + \bar{\eta}_i + \bar{v}_i, \quad i = 1, ..., N \Rightarrow \boldsymbol{\hat{\beta}}_{BG}$$

$$\hat{\bar{u}}_i \equiv \bar{y}_i - \bar{\boldsymbol{x}}_i' \hat{\boldsymbol{\beta}}_{BG}$$

$$\widehat{\sigma}_{\bar{u}}^2 = \widehat{\left(\sigma_{\eta}^2 + \frac{1}{T}\sigma_v^2\right)} = \frac{\widehat{\boldsymbol{u}}'\widehat{\boldsymbol{u}}}{N-K} \quad \Rightarrow \quad \widehat{\sigma}_{\eta}^2 = \widehat{\sigma}_{\bar{u}}^2 - \frac{1}{T}\widehat{\sigma}_v^2.$$

Feasible GLS in Employment equations

In our example, if we now estimate $\hat{\beta}_{FGLS}$, we get:

	OLS	WG	FGLS
Constant (β_0)	2.557 (0.676)	2.495 (0.354)	2.454 (0.165)
Wages (β_1)	-0.364 (0.216)	-0.368 (0.116)	-0.342 (0.051)
Capital (β_2)	0.811 (0.032)	$0.640 \\ (0.045)$	$0.696 \\ (0.017)$

Testing for correlated individual effects

Panel Data 2'

Testing for correlated effects (Hausman test)

 $\hat{\boldsymbol{\beta}}_{WG}$ is **consistent regardless** of $\mathbb{E}[\boldsymbol{x}_{it}\eta_i]$ being equal to zero or not.

 $\hat{\boldsymbol{\beta}}_{FGLS}$ is consistent only if $\mathbb{E}[\boldsymbol{x}_{it}\eta_i] = 0$.

⇒ we can test whether both estimates are similar!

The **Hausman test** does exactly this comparison:

$$h = \hat{\boldsymbol{q}}'[avar(\hat{\boldsymbol{q}})]^{-1}\hat{\boldsymbol{q}} \overset{a}{\sim} \chi^2(K)$$

under the **null hypothesis** $\mathbb{E}[\boldsymbol{x}_{it}\eta_i] = 0$, where:

$$\hat{m{q}} = \hat{m{eta}}_{WG} - \hat{m{eta}}_{FGLS},$$

and:

$$avar(\hat{\boldsymbol{q}}) = avar\left(\hat{\boldsymbol{\beta}}_{WG}\right) - avar\left(\hat{\boldsymbol{\beta}}_{FGLS}\right).$$

Requires classical assumptions (FGLS to be more efficient than WG).

Hausman test in Employment equations

Output from software packages often includes the Hausman test. In our example:

	Statistic	P-value
Hausman test	24.661	0.000

DYNAMIC MODELS

Autoregressive models with individual effects

$Autor regressive\ panel\ data\ model$

We consider the following model:

$$y_{it} = \alpha y_{it-1} + \eta_i + v_{it} \quad |\alpha| < 1.$$

Other regressors can be included, but main results unaffected.

We assume:

- Error components: $\mathbb{E}[\eta_i] = \mathbb{E}[v_{it}] = \mathbb{E}[\eta_i v_{it}] = 0$.
- Serially uncorrelated shocks: $\mathbb{E}[v_{it}v_{is}] = 0 \ \forall \ s \neq t$.
- Predetermined initial cond.: $\mathbb{E}[y_{i0}v_{it}] = 0 \ \forall \ t = 1, ..., T$.

Properties of pooled OLS and WG estimators

Even assuming $\mathbb{E}[y_{it-1}v_{it}] = 0$, still **OLS** yields:

$$\underset{N \to \infty}{\text{plim}} \, \hat{\alpha}_{OLS} > \alpha,$$

because
$$\mathbb{E}[y_{it-1}\eta_i] = \sigma_{\eta}^2 \left(\frac{1-\alpha^{t-1}}{1-\alpha}\right) + \alpha^{t-1} \mathbb{E}[y_{i0}\eta_i] > 0.$$

Doing the within groups transformation we see that:

$$\underset{N\to\infty}{\text{plim}} \hat{\alpha}_{WG} < \alpha$$

$$\text{because } \mathbb{E}\big[\tilde{y}_{it-1}\tilde{v}_{it}\big] = -A\sigma_v^2 < 0. \ \left(A = \frac{(1-\alpha)\left(1+T\left(1-\alpha^{t-1}-\alpha^{T-1-t}\right)\right) + \alpha T\left(1-\alpha^{T-1}\right)}{T^2(1-\alpha)^2} \right)$$

WG bias vanishes as $T \to \infty$ (bias not small even with T = 15).

Supposedly consistent estimators that give $\hat{\alpha} >> \alpha_{OLS}$ or $\hat{\alpha} << \hat{\alpha}_{WG}$ should be seen with suspicion.

Anderson and Hsiao

Consider the model in **first differences**:

$$\Delta y_{it} = \alpha \Delta y_{it-1} + \Delta v_{it}.$$

OLS in first differences is **inconsistent**: $\mathbb{E}[\Delta y_{it-1} \Delta v_{it}] = -\sigma_v^2 < 0$.

However, y_{it-2} or Δy_{it-2} are valid **instruments** for Δy_{it-1} :

- Relevance: $\mathbb{E}[\Delta y_{it-2} \Delta y_{it-1}] \neq 0$, $\mathbb{E}[y_{it-2} \Delta y_{it-1}] \neq 0$.
- Orthogonality: $\mathbb{E}[\Delta y_{it-2} \Delta v_{it}] = \mathbb{E}[y_{it-2} \Delta v_{it}] = 0.$

Anderson and Hsiao (1981) proposed this **2SLS estimators**:

$$\hat{\alpha}_{AH} = \left(\widehat{\Delta \boldsymbol{y}_{-1}'} \widehat{\Delta \boldsymbol{y}_{-1}}\right)^{-1} \widehat{\Delta \boldsymbol{y}_{-1}'} \Delta \boldsymbol{y},$$

where:

$$\widehat{\Delta \boldsymbol{y}_{-1}} = Z \left(Z'Z \right)^{-1} Z' \Delta \boldsymbol{y}_{-1},$$

where Z can be y_{-2} or Δy_{-2} .

Requires min. three periods $(T=2 \text{ and } y_{i0})$. Only efficient if T=2.

AR(1) employment equations (no covariates)

In our example, we redefine the model to be an AR(1) process (for now without regressors):

$$n_{it} = \alpha n_{it-1} + \eta_i + v_{it}.$$

The Anderson-Hsiao results (together with OLS and WG) are:

	OLS	WG	An der son- Hsi ao
Lagged employment (α)	0.982 (0.003)	0.884 (0.061)	$1.395 \\ (0.090)$

Differenced GMM estimation

GMM in 3 slides (I): the setup

GMM finds parameter estimates that come as close as possible to satisfy **orthogonality conditions** (or moment conditions) in the sample.

E.g., consider K regressors x_i and L "instruments" z_i :

$$u_i = y_i - f(\boldsymbol{x}_i, \boldsymbol{\beta})$$
 $\boldsymbol{z}_i = g(\boldsymbol{x}_i).$

The model specifies L moment conditions: $\mathbb{E}[z_i u_i] = \mathbf{0}$.

Sample analogue:

$$\boldsymbol{b}_N(\boldsymbol{\beta}) = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{z}_i u_i(\boldsymbol{\beta}).$$

GMM in 3 slides (II): the estimation

Two possible cases cases:

- L = K (just identified): $b_N(\hat{\beta}_{GMM}) = 0$.
- L > K (overidentified): $\hat{\boldsymbol{\beta}}_{GMM} = \arg \min_{\beta} \boldsymbol{b}_{N}(\boldsymbol{\beta})' W_{N} \boldsymbol{b}_{N}(\boldsymbol{\beta})$.

 W_N is a **positive definite** weighting matrix.

Optimal GMM (efficient) uses $\left(\frac{1}{N}\sum_{i=1}^{N}\mathbb{E}[\boldsymbol{z}_{i}u_{i}u_{i}'\boldsymbol{z}_{i}']\right)^{-1}$, the inverse of the variance-covariance matrix, as weighting matrix.

GMM in 3 slides (III): asymptotic properties

 $\hat{\boldsymbol{\beta}}_{GMM}$ is a **consistent** estimator of $\boldsymbol{\beta}$.

It is asymptotically normal, with the following variance:

$$avar(\hat{\beta}_{GMM}) = (D'WD)^{-1}D'WS_0WD(D'WD)^{-1}$$

where:

$$D \equiv \underset{N \to \infty}{\text{plim}} \frac{\partial \boldsymbol{b}_{N}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta'}},$$

$$W \equiv \underset{N \to \infty}{\text{plim}} W_{N},$$

$$S_{0} \equiv \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}[\boldsymbol{z}_{i}u_{i}u'_{i}\boldsymbol{z}'_{i}].$$

Moment conditions

Given previous assumptions, several moment conditions:

Equation	Instruments	Orthogonality cond.
$\Delta y_{i2} = \alpha \Delta y_{i1} + \Delta v_{i2}$	y_{i0}	$\mathbb{E}[\Delta v_{i2}y_{i0}] = 0$
$\Delta y_{i3} = \alpha \Delta y_{i2} + \Delta v_{i3}$	y_{i0},y_{i1}	$\mathbb{E}\left[\Delta v_{i3}egin{pmatrix} y_{i0} \ y_{i1} \end{pmatrix} ight] = 0$
$\Delta y_{i4} = \alpha \Delta y_{i3} + \Delta v_{i4}$	y_{i0},y_{i1},y_{i2}	$\mathbb{E}\left[\Delta v_{i4}egin{pmatrix} y_{i0}\ y_{i1}\ y_{i2} \end{pmatrix} ight]=0$
	:	:
$\Delta y_{iT} = \alpha \Delta y_{iT-1} + \Delta v_{iT}$	$y_{i0}, y_{i1}, y_{i2},, y_{iT-2}$	$\mathbb{E}\left[\Delta v_{iT} \begin{pmatrix} y_{i0} \\ y_{i1} \\ y_{i2} \\ \vdots \\ y_{iT-2} \end{pmatrix}\right] = 0$

We end up with (T-1)T/2 moment conditions.

Moment conditions in matrix form

We can write these **moment conditions** as $\mathbb{E}[Z_i'\Delta v_i] = 0$, where:

$$Z_i = \begin{pmatrix} y_{i0} & 0 & 0 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & y_{i0} & y_{i1} & 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \dots & \vdots \\ 0 & 0 & 0 & 0 & \dots & y_{i0} & y_{i1} & \dots & y_{iT-2} \end{pmatrix} \text{ and } \Delta \boldsymbol{v}_i = \begin{pmatrix} \Delta v_{i2} \\ \Delta v_{i3} \\ \vdots \\ \Delta v_{iT} \end{pmatrix},$$

and the sample analogue is:

$$\boldsymbol{b}_{N}(\alpha) = \frac{1}{N} \sum_{i=1}^{N} Z_{i}' \Delta \boldsymbol{v}_{i}(\alpha).$$

Hence, the GMM estimator (proposed by Arellano and Bond, 1991) is:

$$\begin{split} \hat{\alpha}_{GMM} &= \arg\min_{\alpha} \left(\frac{1}{N} \sum_{i=1}^{N} \Delta \boldsymbol{v}_{i}'(\alpha) Z_{i} \right) W_{N} \left(\frac{1}{N} \sum_{i=1}^{N} Z_{i}' \Delta \boldsymbol{v}_{i}(\alpha) \right) = \\ &= \left(\Delta \boldsymbol{y}_{-1}' Z W_{N} Z' \Delta \boldsymbol{y}_{-1} \right)^{-1} \Delta \boldsymbol{y}_{-1}' Z W_{N} Z' \Delta \boldsymbol{y}. \end{split}$$

Optimal weighting matrix

The optimal weighting matrix (efficient GMM) is:

$$W_N = \left(rac{1}{N}\sum_{\mathrm{i}=1}^{\mathrm{N}}\mathbb{E}[Z_i'\Deltaoldsymbol{v}_i\Deltaoldsymbol{v}_i'Z_i]
ight)^{-1}.$$

The sample analogue is obtained in a two-step procedure:

$$W_N = \left(\frac{1}{N} \sum_{i=1}^{N} [Z_i' \widehat{\Delta v_i(\hat{\alpha})} \widehat{\Delta v_i'(\hat{\alpha})} Z_i]\right)^{-1}.$$

Windeijer (2005) proposes a **finite sample correction** of the variance that accounts for α being estimated.

The most common **one-step** (and first-step) matrix uses the structure of $\mathbb{E}[\Delta v_i \Delta v_i']$:

$$\mathbb{E}[\Delta m{v}_i \Delta m{v}_i'] = \sigma_v^2 egin{pmatrix} 2 & -1 & 0 & 0 & \dots & 0 \ -1 & 2 & -1 & 0 & \dots & 0 \ dots & dots & dots & dots \ 0 & 0 & 0 & 0 & \dots & 2 \end{pmatrix}.$$

GMM on Employment equations

GMM results in our example are:

	Coefficient	Standard Error
Least Squares (OLS)	0.982	(0.003)
Within Groups (WG)	0.884	(0.061)
Anderson-Hsiao	1.395	(0.090)
One-step GMM	1.023	(0.104)
Two-step GMM	0.994	(0.040)
${\bf Two\text{-}step~GMM~small~sample}$	0.994	(0.121)

Panel Data 4:

Potential limitations of Arellano-Bond

Weak instruments:

- When $\alpha \to 1$, relevance of the instrument decreases.
- Instruments are still valid, but have poor small sample properties.
- Monte Carlo evidence shows that with $\alpha > 0.8$, estimator behaves poorly unless huge samples available.
- There are alternatives in the literature.

Overfitting:

- "Too many" instruments if T relative to N is relatively large.
- We might want to **restrict** the number of instruments used.
- It is always good practice to check robustness to different combinations of instruments.

$Dynamic\ linear\ model$

Once we include **regressors**, the model is:

$$y_{it} = \alpha y_{it-1} + \mathbf{x}'_{it} \boldsymbol{\beta} + \eta_i + v_{it} \quad |\alpha| < 1.$$

We maintain the **previous assumptions**: error components, serially uncorrelated shocks, and predetermined initial conditions.

Therefore, moment conditions of the kind:

$$\mathbb{E}[y_{it-s}\Delta v_{it}] = 0 \quad t = 2, ..., T, s \ge 2,$$

are still valid.

Assumptions on regressors

Different assumptions regarding x_{it} will enable different additional **orthogonality conditions**:

- x_{it} can be correlated or uncorrelated with η_i .
- x_{it} can endogenous, predetermined, or strictly exogenous with respect to v_{it} .

For instance, if assumptions are analogous to those for y_{it-1} , we may use x_{it-1} (and longer lags) as instruments:

$$Z_i = egin{pmatrix} y_{i0} & oldsymbol{x}'_{i0} & oldsymbol{x}'_{i1} & \dots & 0 & \dots & 0 & oldsymbol{0}' & \dots & oldsymbol{0}' \\ dots & dots \\ 0 & oldsymbol{0}' & oldsymbol{0}' & \dots & y_{i0} & \dots & y_{iT-2} & oldsymbol{x}'_{i0} & \dots & oldsymbol{x}'_{iT-1} \end{pmatrix}.$$

Employment equations with regressors

In our example, we rewrite the employment equations as follows:

$$n_{it} = \alpha n_{it-1} + \beta_1 w_{it} + \beta_2 k_{it} + \eta_i + v_{it}.$$

Results are:

	OLS	WG	GMM
Lagged dep (α)	0.947 (0.011)	0.528 (0.064)	0.495 (0.127)
Wages (β_1)	$0.010 \\ (0.006)$	-0.501 (0.098)	-0.607 (0.143)
Capital (β_2)	$0.049 \\ (0.011)$	$0.369 \\ (0.044)$	$0.338 \\ (0.051)$

System GMM estimation

$Additional\ orthogonality\ conditions$

Recall our (T-1)T/2 moment conditions:

$$\mathbb{E}[y_{it-s}\Delta v_{it}] = 0 \quad t = 2, ..., T; s \ge 2.$$

System GMM (Arellano and Bover, 1995) uses the assumption $\mathbb{E}[y_{i0}|\eta_i] = \frac{\eta_i}{1-\alpha}$:

$$\mathbb{E}[\Delta y_{is}\eta_i] = 0,$$

or, alternatively:

$$\mathbb{E}[\Delta y_{iT-s}u_{iT}] = 0, \quad u_{iT} = \eta_i + v_{iT}, \quad s = 1, ..., T-1$$

The System GMM estimator

Analogously to the first-differenced GMM, the estimator is given by $\mathbb{E}[(Z^*)'u_i^*] = 0$:

$$\hat{\alpha}_{Sys-GMM} = ((X^*)'Z^*W_N(Z^*)'X^*)^{-1}X^*Z^*W_N(Z^*)'y^*,$$

where:

$$Z_i^* = \begin{pmatrix} Z_i & \mathbf{0} & \dots & \mathbf{0} \\ 0 & \Delta y_{i1} & \dots & \Delta y_{iT-1} \end{pmatrix}, \boldsymbol{u}_i^* = \begin{pmatrix} \Delta \boldsymbol{v}_i \\ \eta_i + v_{iT} \end{pmatrix}, X_i^* = \begin{pmatrix} \Delta \boldsymbol{y}_{-1i} \\ y_{iT-1} \end{pmatrix} \text{ and } \boldsymbol{y}_i^* = \begin{pmatrix} \Delta \boldsymbol{y}_i \\ y_{iT} \end{pmatrix},$$

This estimator is **more efficient**, as it uses additional moment conditions.

It reduces small sample bias, especially when $\alpha \to 1$.

$System\mbox{-}GMM$ on Employment equations

GMM results in our example are:

	Coefficient	Standard Error
Least Squares (OLS)	0.982	(0.003)
Within Groups (WG)	0.884	(0.061)
Anderson-Hsiao	1.395	(0.090)
One-step GMM	1.023	(0.104)
Two-step GMM	0.994	(0.040)
Two-step GMM small sample	0.994	(0.121)
One-step $\operatorname{System-GMM}$	0.926	(0.023)
Two-step System-GMM small	0.911	(0.032)

Specification tests

Specification tests

There are several relevant aspects for the validity of the estimation that can be **tested formally**.

- Orthogonality conditions: are they small enough to not reject that they are zero (overidentifying restrictions).
- Validity of a subset of more restrictive assumptions (difference Sargan test, Hausman test).
- Serial correlation in the data: vital for the validity of the instruments (Arellano-Bond test).

$Sargan/Hansen\ overidentifying\ restrictions\ test$

The null hypothesis is whether the **orthogonality** conditions are **satisfied** (i.e. moments are equal to zero).

The test can only be implemented if the problem is **overidentified** (otherwise the sample moments are exactly zero by construction).

The test is:

$$S = NJ_N(\beta) = N\left(\frac{1}{N}\sum_{i=1}^N \hat{\boldsymbol{u}}_i'Z_i\left(\frac{1}{N}\sum_{i=1}^N Z_i'\hat{\boldsymbol{u}}_i\hat{\boldsymbol{u}}_i'Z_i\right)^{-1}\frac{1}{N}\sum_{i=1}^N Z_i'\hat{\boldsymbol{u}}_i\right),$$

where \hat{u} are predicted residuals from the first step and $\hat{\hat{u}}$ are those predicted from the second stage, and:

$$S \stackrel{a}{\sim} \chi^2(L-K).$$

$Testing\ stronger\ assumptions$

Some of the assumptions that we make are **stronger** than others.

If the problem is overidentified, we can **test** whether results change if we **include or exclude** the orthogonality conditions generated by them.

If they are true, increase efficiency, but if not, inconsistent!

Two ways of testing it:

- Overidentifying restrictions (difference in Sargan should be close to zero: $\Delta S = S S^A \stackrel{a}{\sim} \chi^2(L L^A)$).
- $oldsymbol{eta}$ Differences in coefficients (Hausman test: $oldsymbol{\hat{q}} = oldsymbol{\hat{\delta}}_{GMM}^A oldsymbol{\hat{\delta}}_{GMM}^A).$

Direct test for serial correlation

The test was proposed by Arellano-Bond (1991).

Tests for the presence of **second order autocorrelation** in the first-differenced residuals.

If differences in residuals are second-order correlated, some instruments would not be valid!

The **test** is:

$$m_2 = \frac{\widehat{\Delta v}_{-2}' \widehat{\Delta v}_*}{se} \stackrel{a}{\sim} \mathcal{N}(0,1),$$

where Δv_{-2} is the second lagged residual in differences, and Δv_* is the part of the vector of contemporaneous first differences for the periods that overlap with the second lagged vector.

Values close to zero do not reject the hypothesis of **no serial** correlation.