제6장 OSPF 라우팅 프로토콜

모든 장비에서 거의 다 OSPF를 쓴다. (미국 등)

- 1. OSPF(Open Shortest Path First)
 - a. Link-State 알고리즘

- 30번 네트워크는 R3에 있다는걸 알려준다.
- 또한 몇번 라우터에 연결되어 있다는걸 알려준다.
- 메트릭, 넥스트홉 외에 이걸 알려준다는거에 차이가 있다.
- b. Classless Routing Protocol
 - subnet mask 확인 후 몇 비트 자리인지 알 수 있다.
 - 별로 중요한 기능은 아니다.

- 확실하게 알려준다.
- c. VLSM, CIDR
- d. IGP
- 속도는 빠르지만 많은 양의 업데이트가 불가능하다. e. SPF 알고리즘을 사용하는 개방된 라우팅 프로토콜
- f. SPF를 사용하는 개방형 알고리즘이다.

2. 라우터 아이디(Router-ID)

- OSPF 라우터를 구분하기 위한 식별자이다
- 아이디 형식은 IPv4 주소 형식을 사용하며 라우터 아이디가 중복되면 네이버를 성립하지 않는다
- 1) 물리적 인터페이스를 이용한 라우터 아이디 선출

물리적 인터페이스만 있을 경우, 인터페이스 중에 IP 주소가 가장 높은 IP 주소로 선출한다.

F0/0:13.13.10.1

S1/0: 13.13.12.1 // 라우터 아이디로 선출됨

2) Loopback 인터페이스를 이용한 라우터 아이디 선출

Loopback 인터페이스가 있을 경우, Loopback 인터페이스 중에 IP 주소가 가장 높은 IP 주소로 선출한다.

F0/0: 13.13.10.1 S1/0: 13.13.12.1

Lo1: 11.11.11.11 // 라우터 아이디로 선출됨

- 단, 물리적 인터페이스 및 Loopback 인터페이스가 Down 상태인 인터페이스의 IP 주소로는 산출하지 않는다.
- 3) 'router-id' 명령어를 이용한 수동 선출

R1(config)#router ospf 1

R1(config-router)#router-id 1.1.1.1 // 라우터 아이디로 선출됨

- 하지만 모든 범위가 되지는 않는다 (VALID 범위 내에서 가능)

Ex) R1 에서 OSPF 를 설정한 경우, 라우터 아이디는 어떻게 되는가?

R1#show ip int bri	ef				
Interface	IP-Address	OK? Metho	d Status	Protocol	
FastEthernet0/0	unassigned	YES unset	administratively down	down	
FastEthernet0/1	13.13.23.3	YES DHCP	up	up	
Serial1/0	211.241.22.1	YES maunal	down	down	
Serial1/1	unassigned	YES unset	administratively down	down	
Serial1/2	unassigned	YES unset	administratively down	down	
Serial1/3	unassigned	YES unset	administratively down	down	
Loopback0	13.13.3.3	YES manual	administratively down	down	

- FastEthernet0/1 13.13.23.3 YES DHCP up up

!		
router ospf 100		
router-id 1().6.15.201		
log-adjacency-changes		
area 10 nssa 👵		
passive-interface f9/1	1	4. managemet link 설정
network 10.6.15.248 0.0.0.3 area 10	Γ	- BEQ-01 IGP연동
network 10.6.15.201 0.0.0.0 area 10		
network 10.7.10.208 0.0.0.3 area 10		
network 10.7.10.212 0.0.0.3 area 10		
notwork 10 22 255 0 0 0 0 63 area 10		

- 대부분 이렇게 직접 router-id를 설정한다.

3. OSPF 설정

1) OSPF 라우팅 프로토콜 설정 방법

Router(config)#router ospf [1~65535 Process-ID]
Router(config-router)#router-id [IPv4 주소 형식]
Router(config-router)#network [로컬 네트워크] [와일드카드 마스크] area [0-4294967295 area 주소]
Router(config-router)#end

- process id는 ospf를 여러개를 설정할 수 있게 도와준다. 또한 업데이트를 지역별로 할수 있게 도와준다.
- OSPF 프로세스 아이디를 지원하기 때문에 라우터에 여러 개의 OSPF 라우팅 프로토콜을 설정할 수 있다
- area 주소 ospf에서 사용하는 주소

와일드카드 마스크 vs 서브넷 마스크:

서브넷 마스크	와일드카드 마스크
255.255.255.255	0.0.0.0
255.255.255.0	0.0.0.255
255.255.0.0	0.0.255.255
255.0.0.0	0.255.255.255
0.0.0.0	255.255.255.255
255.255.255.252	0.0.0.3
255.255.255.224	0.0.0.31
255.255.248.0	0.0.7.255

- 0과 1을 반대로 쓰면된다.

2) R1, R2, R3 OSPF 라우팅 프로토콜 설정

- 정확하게 OSPF에 해당되는 IP, area를 넣어야 한다.
- 필요할때 지역분배가 가능하다.

ex) R1

```
R1, R2, R3 에서 각각의 라우터 아이디를 '1.1.1.1', '2.2.2.2', '3.3.3.3'으로 하여 OSPF Area 0 환경을 구성한다.

R1#conf t
R1(config)#router ospf 1
R1(config-router)#router-id 1.1.1.1
R1(config-router)#network 13.13.10.0 0.0.0.255 area 0
R1(config-router)#network 13.13.12.0 0.0.0.255 area 0
R1(config-router)#network 13.13.12.0 0.0.0.255 area 0
R1(config-router)#end
R1#

R1#show run

~ 중간 생략 ~ !
router ospf 1
router-id 1.1.1.1
log-adjacency-changes
network 13.13.10.0 0.0.0.255 area 0
network 13.13.12.0 0.0.0.255 area 0
```

ex) R2

```
R2#conf t
R2(config)#router ospf 1
R2(config-router)#router-id 2.2.2.2
R2(config-router)#network 13.13.12.0 0.0.0.255 area 0
R2(config-router)#network 13.13.20.0 0.0.0.255 area 0
R2(config-router)#network 13.13.23.0 0.0.0.255 area 0
R2(config-router)#end
R2#
R2#show run
~ 중간 생략 ~
router ospf 1
router-id 2.2.2.2
log-adjacency-changes
network 13.13.12.0 0.0.0.255 area 0
network 13.13.20.0 0.0.0.255 area 0
 network 13.13.23.0 0.0.0.255 area 0
```

· R3 등 다른 라우터도 이런식으로 설정이 가능하다.

네이버 테이블 확인

3) R1, R2, R3 OSPF 네이버 테이블 확인 R1#show ip ospf neighbor Neighbor ID Pri State Dead Time Address Interface 00:00:30 2.2.2.2 FULL/ -13.13.12.2 Serial1/0 R2#show ip ospf neighbor Interface Neighbor ID Pri State Dead Time Address 3.3.3.3 FULL/ -00:00:33 13.13.23.3 Serial1/0 1.1.1.1 FULL/ -00:00:31 13.13.12.1 Serial1/1 R3#show ip ospf neighbor Neighbor ID State Dead Time Address Interface 2.2.2.2 FULL/ -00:00:39 13.13.23.2 Serial1/1

show ip ospf database router show ip ospf database

- 이런식으로 R1라우터에서 R3 라우터에 연결되어있는 허브까지 다 알수 있다.

4. OSPF 메트릭

- OSPF 메트릭 단위는 'Cost'이며 'bandwidth' 기반으로 계산한다. 계산식은 다음과 같으며 로컬 라우터에서 목적지까지 Cost 값을 더한 값을 메트릭으로 사용한다
- Cost = 10⁸ / Bandwidth

5. OSPF 신뢰도

- OSPF 경로의 신뢰도는 '110'으로 설정되어 있다.

R1#show ip route ospf

13.0.0.0/24 is subnetted, 5 subnets

O 13.13.20.0 [110/65] via 13.13.12.2, 00:38:04, Serial1/0

O 13.13.23.0 [110/128] via 13.13.12.2, 00:38:04, Serial1/0

O 13.13.30.0 [110/129] via 13.13.12.2, 00:37:51, Serial1/0

Ex1) 현재 구성된 환경에서 EIGRP 100 라우팅 업데이트 환경을 구성하면 라우팅 테이블에는 어떤 경로가 등록되는가?

- EIGRP 로 등록된다 (신뢰도가 더 높다)

Ex2) 현재 구성된 환경에서 RIPv2 라우팅 업데이트 환경을 구성하면 라우팅 테이블에는 어떤 경로가 등록되는가?

- OSPF 로 된다 (신뢰도가 높다)

6. OSPF 동작 과정

- 혼자만 보내면 Init State (자기옆에 누가있는지 모른다)
- 쌍방향으로 보내면 Two Way State (자기옆에 누가있는지 안다)

다음단계:

- 라우터 아이디가 더 크면 마스터가 된다.

- 만약에 슬레이브가 3번 라우터에 대한 정보가 없으면 요청을 한다. (loading state)
- 받으면 Full State
- LSR link state reloding
- LSU link state update

7. OSPF 패킷 유형

R1# R1# 01:18:06: OSPF: DR/BDR election on FastEthernet0/0 01:18:06: OSPF: Elect BDR 0.0.0.0 01:18:06: OSPF: Elect DR 1.1.1.1 01:18:06: DR: 1.1.1.1 (Id) BDR: none 01:18:06: %OSPF-5-ADJCHG: Process 1, Nbr 2.2.2.2 on Serial1/0 from FULL to DOWN, Neighbor Down: Adjacency forced to reset 01:18:06: %OSPF-5-ADJCHG: Process 1, Nbr 2.2.2.2 on Serial1/0 from FULL to DOWN, Neighbor Down: Interface down or detached 01:18:06: OSPF: Build router LSA for area 0, router ID 1.1.1.1, seq 0x80000005 01:18:11: OSPF: Send DBD to 2.2.2.2 on Serial1/0 seq 0x5287 opt 0x00 flag 0x7 len 32 01:18:11: OSPF: Rcv DBD from 2.2.2.2 on Serial1/0 seq 0x3b97 opt 0x00 flag 0x7 len 32 mtu 1500 state EXSTART 01:18:11: OSPF: NBR Negotiation Done. We are the SLAVE 01:18:11: OSPF: Send DBD to 2.2.2.2 on Serial1/0 seq 0x3b97 opt 0x00 flag 0x2 len 32 01:18:11: OSPF: Rcv DBD from 2.2.2.2 on Serial1/0 seq 0x3b98 opt 0x00 flag 0x3 len 92 mtu 1500 state

EXCHANGE

01:18:11: OSPF: Rcv DBD from 2.2.2.2 on Serial1/0 seq 0x3b99 opt 0x00 flag 0x1 len 32 mtu 1500 state

EXCHANGE

01:18:11: OSPF: Send DBD to 2.2.2.2 on Serial1/0 seq 0x3b99 opt 0x00 flag 0x0 len 32

01:18:11: OSPF: Send DBD to 2.2.2.2 on Serial1/0 seq 0x3b98 opt 0x00 flag 0x0 len 32

01:18:11: Exchange Done with 2.2.2.2 on Serial1/0

01:18:11: OSPF: Database request to 2.2.2.2

01:18:11: OSPF: sent LS REQ packet to 224.0.0.5, length 36

01:18:11: OSPF: Send DBD to 2.2.2.2 on Serial1/0 seq 0x3b99 opt 0x00 flag 0x0 len 32

01:18:11: OSPF: Build router LSA for area 0, router ID 1.1.1.1, seq 0x80000005

01:18:11: Synchronized with with 2.2.2.2 on Serial1/0, state FULL

01:18:11: %OSPF-5-ADJCHG: Process 1, Nbr 2.2.2.2 on Serial1/0 from LOADING to FULL, Loading Done

01:18:11: OSPF: Build router LSA for area 0, router ID 1.1.1.1, seq 0x80000006

8. OSPF Area 설계

- OSPF에서는 같은 area 안에서 업데이트 진행시(라우터 추가 등) 모든 추가된 ospf 를 업데이트 시킨다.
- 추가된것만 넘기는게 아니라 전체를 다 넘긴다.

다중 Area 설계:

- 모든 정보가 불필요하게 업데이트 되는것을 막기 위해 모든 Area 는 Backbone Area 를 담당하는 Area 0 을 경유하도록 설계해야 한다.
- 이 경유하는 위치의 라우터를 ABR 이라고 한다.

ASBR

- LSU 패킷 사이즈를 줄이기 위해서 이런 설계를 한다.

9. OSPF 테이블 유형

1) 네이버 테이블

네이버 관계를 성립한 인접 라우터와의 상태 정보를 관리한다. 네이버 관계가 해지되면 네이버 테이블에 등록된 인접 라우터의 정보는 삭제된다.

R1#show ip ospf neighbor

1	2	3	4	⑤	6
Neighbor ID	Pri	State	Dead Time	Address	Interface
2.2.2.2	0	FULL/ -	00:00:30	13.13.12.2	Serial1/0

- ① 네이버 관계를 성립한 인접 라우터 R2의 라우터 아이디이다.
- ② 네이버 라우터 R2의 OSPF 우선 순위 값이다.
- ③ 네이버 라우터 R2와의 상태 정보와 DR/BDR 선출 내용을 의미한다. 현재 DR/BDR 선출이 없는 상태이다.
- ④ Hello 패켓을 수신하지 못하면 네이버를 해지하는 Dead 타이머이다.
- ③ 네이버 라우터 R2의 IP 주소이다.
- ⑥ 네이버 라우터 R2와 연결된 인터페이스이다.

2) 데이터베이스 테이블(Link-State Database)

OSPF 링크-상태 정보를 관리하며 SPF 알고리즘을 이용하여 최적 경로를 선출한다

R1#show ip ospf database

OSPF Router with ID (1.1.1.1) (Process ID 1)

Router Link States (Area 0)

Link ID	ADV Router	Age	Seq#	Checksum	Link count
1.1.1.1	1.1.1.1	29	0x80000006	0x00b678	3
2.2.2.2	2.2.2.2	22	0x80000008	0x0060ae	5
3.3.3.3	3.3.3.3	21	0x80000006	0x00876b	3

R1 Area 0 링크(3 개)	R2 Area 0 링크(5 개)	R3 Area 0 링크(3 개)
	13.13.12.0/24	
13.13.10.0/24	13.13.20.0/24	13.13.23.0/24
13.13.12.0/24	13.13.23.0/24	13.13.30.0/24
R2 와 연결된 S1/0 주소 13.13.12.1	R3 와 연결된 S1/0 주소 13.13.23.2	R2 와 연결된 S1/1 주소 13.13.23.3
	R1 과 연결된 S1/1 주소 13.13.12.2	

10. OSPF 경로 유형

OSPF는 Area 지역 내부 또는 외부에 따라서 광고하는 LSA 광고 유형이 다르며, 데이터베이스에서 각각 별도로 관리하기 때문에 경로 유형이 다양하다.

이름	코드	내용
Intra-Area 경로	0	같은 Area 네트워크
Inter-Area 경로	O IA	다른 Area 네트워크
External 경로	O E1, O E2	외부 네트워크

R3에서 다음과 같은 설정을 실시하면 Area 13 네트워크 정보를 Area 0으로 광고하므로 ABR 라우터를 수행하며 RIPv2 외부 네트워크 정보를 광고하므로 ASBR 라우터를 수행한다.

정보확인을 위한 코드

```
Gateway of last resort is not set
SPF_
        13.0.0.0/24 is subnetted, 5 subnets
도j o
          13.13.10.0 [110/65] via 13.13.12.1, 01:27:06, Serial1/1
           13.13.12.0 is directly connected, Serial1/1
           13.13.20.0 is directly connected, FastEthernet0/0
   C
           13.13.23.0 is directly connected, Serial1/0
   0
           13.13.30.0 [110/65] via 13.13.23.3, 01:28:13, Serial1/0
        100.0.0.0/24 is subnetted, 3 subnets
           100.100.1.0 [110/20] via 13.13.23.3, 00:19:30, Serial1/0
   O E2
   O E2
           100.100.2.0 [110/20] via 13.13.23.3, 00:19:30, Serial1/0
           100.100.3.0 [110/20] via 13.13.23.3, 00:19:30, Serial1/0
   O E2
        200.200.1.0/32 is subnetted, 1 subnets
          200.200.1.1 [110/65] via 13.13.23.3, 00:19:20, Serial1/0
        200.200.2.0/32 is subnetted, 1 subnets
          200.200.2.1 [110/65] via 13.13.23.3, 00:19:20, Serial1/0
   O IA
        200.200.3.0/32 is subnetted, 1 subnets
           200.200.3.1 [110/65] via 13.13.23.3, 00:19:20, Serial1/0
   O IA
```

- O는 같은 네트워크
- OIA 는 다른 AREA 네트워크
- O E2는 외부 네트워크

11. DR/BDR 선출

- 반장/부반장 이라고생각하면 쉽다.
- 하나의 네트워크에 여러개의 라우터를 넣는 설계의 경우 선출 DR 하나만 설정하면 DR 라우터가 나머지 라우터한테 다 광고해준다.

DR 선출 과정은 다음과 같다.

- ① OSPF 우선 순위 값이 큰 라우터를 DR로 선출하고 두번째 라우터를 BDR로 선출한다.
- ② 우선 순위 값이 동일하면 라우터 아이디 값이 큰 라우터를 DR로 선출하고 두번째 라우터를 BDR로 선출한다.
- ③ DR과 BDR 아닌 라우터들은 'DROTHER'라고 한다.

DR과 BDR은 다음과 같이 OSPF 우선 순위 값을 조정하여 수동으로 선출하는 것을 권장한다.

- 우선순위값이 같으면 라우터 아이디가 가장 큰 라우터를 DR로 설정한다.
- 우선순위값을 변경해서 원하는 위치의 장비를 DR, BDR로 변경가능하다.

DR에 장애가 생겨서 BDR이 DR이 된다 >> 장애복구 >> 아직 BDR >> DR된 라우터가 DR이 된다. 다시 DR에 장애가 생긴다 >> 장애복구 >> BDR이 DR이 된다.

12. OSPF 기본 경로 라우팅 업데이트

13. OSPF 삭제

R1,R2,R3#conf t

R1,R2,R3(config)#no router ospf 1

R1,R2,R3(config)#end

R1,R2,R3#