Notes on Optimization

Peize Sun

1 Preliminary

Theorem 1-1 Assume $\varphi(\lambda) = f(\boldsymbol{x} + \lambda \boldsymbol{p})$, then

$$\varphi'(\lambda) = \nabla^T f(\boldsymbol{x} + \lambda \boldsymbol{p}) \ \boldsymbol{p}$$
$$\varphi''(\lambda) = \boldsymbol{p}^T \ \nabla^2 f(\boldsymbol{x} + \lambda \boldsymbol{p}) \ \boldsymbol{p}$$

Theorem 1-2 Assume f(x) is continuous second-order differentiable. Given one point x and one direction p, then

$$f(\boldsymbol{x} + \lambda \boldsymbol{p}) = f(\boldsymbol{x}) + \nabla^T f(\boldsymbol{x}) \ \boldsymbol{p} \ \lambda + \frac{1}{2} \boldsymbol{p}^T \ \nabla^2 f(\boldsymbol{x}) \ \boldsymbol{p} \ \lambda^2 + \circ (\lambda^2)$$
$$f(\boldsymbol{x} + \lambda \boldsymbol{p}) = f(\boldsymbol{x}) + \nabla^T f(\boldsymbol{x}) \ \boldsymbol{p} \ \lambda + \frac{1}{2} \boldsymbol{p}^T \ \nabla^2 f(\boldsymbol{\xi}) \ \boldsymbol{p} \ \lambda^2$$

where $\boldsymbol{\xi}$ is one point between \boldsymbol{x} and $\boldsymbol{x} + \lambda \boldsymbol{p}$.

Theorem 1-3 Assume f(x) is continuous second-order differentiable. Given one point x_0 , then $\forall x$:

$$f(\mathbf{x}) = f(\mathbf{x_0}) + \nabla^T f(\mathbf{x_0}) (\mathbf{x} - \mathbf{x_0}) + \frac{1}{2} (\mathbf{x} - \mathbf{x_0})^T \nabla^2 f(\mathbf{x_0}) (\mathbf{x} - \mathbf{x_0}) + o(||\mathbf{x} - \mathbf{x_0}||^2)$$

$$f(\mathbf{x}) = f(\mathbf{x_0}) + \nabla^T f(\mathbf{x_0}) (\mathbf{x} - \mathbf{x_0}) + \frac{1}{2} (\mathbf{x} - \mathbf{x_0})^T \nabla^2 f(\boldsymbol{\xi}) (\mathbf{x} - \mathbf{x_0})$$

where $\boldsymbol{\xi} = \boldsymbol{x_0} + \theta(\boldsymbol{x} - \boldsymbol{x_0})$ (0 < θ < 1) is one point between $\boldsymbol{x_0}$ and \boldsymbol{x} .

2 Unconstrained optimization

Formulation Denote f(x) is function of n-dimension variable x, then unconstrained optimization is formulated as

$$\min_{\boldsymbol{x}} f(\boldsymbol{x})$$

Theorem 2-1 Assume f(x) is differentiable, $x^* \in \mathbb{R}^n$ is one local minimum point, then

$$\nabla f(\boldsymbol{x}^*) = 0$$

Theorem 2-2 Assume f(x) is differentiable, if one point x^* , $\nabla f(x^*) = 0$, and $\nabla^2 f(x^*)$ is positive-definite, then x^* is one local minimum point. (Sufficient Condition)

Theorem 2-3 Assume $f(\mathbf{x})$ is differentiable, if one point \mathbf{x}^* is local minimum point, then $\nabla f(\mathbf{x}^*) = 0$, and $\nabla^2 f(\mathbf{x}^*)$ is positive semi-definite. (Necessary Condition)

3 Line Search

Formulation Assume $\varphi(\lambda) = f(\boldsymbol{x} + \lambda \boldsymbol{p})$, given one point \boldsymbol{x} and one direction \boldsymbol{p} , then line search is formulated as

$$\lambda^* = \arg\min_{\lambda>0} \varphi(\lambda) = \arg\min_{\lambda>0} f(\boldsymbol{x} + \lambda \boldsymbol{p})$$

Golden Section Search

1. Assume $\varphi(\lambda)$ has "single valley" in range [a, b]: decreases in $[a, \lambda^*]$, increases in $[\lambda^*, b]$. Accordingly, find search range [a, b] as follows^[1]:

(a) a = 0, c = a + step length. If $\varphi(a) \leq \varphi(c)$, narrow step length, until $\varphi(a) > \varphi(c)$.

(b) b = c+step length. If $\varphi(c) \geq \varphi(b)$, push right $a, c \to c$, b(when $\varphi(a) > \varphi(c) > \varphi(b)$, it shows $\varphi(\lambda)$ is keeping decreasing, so search starting point a could be push right $a, c \to c, b$) and enlarge step length, until $\varphi(c) < \varphi(b)$.

2. Denote left point $\lambda = b - \tau(b - a)$, right point $\mu = a + \tau(b - a)$, $\tau > \frac{1}{2}$. If $\varphi(\lambda) < \varphi(\mu)$, then $\lambda^* \in [a, \mu]$, $a, b \to a, \mu$; else $a, b \to \lambda, b$. Narrow search range iteratively.

For τ , considering example of $[a, b] \to [a, \mu]$, new right point $\mu_{new} = a + \tau(\mu - a)$, making $\mu_{new} = \lambda$ could ease computation cost, so

$$\mu_{new} = \lambda$$

$$a + \tau(\mu - a) = b - \tau(b - a)$$

$$a + \tau(a + \tau(b - a) - a) = b - \tau(b - a)$$

$$(\tau^2 + \tau - 1)(b - a) = 0$$

$$(\tau^2 + \tau - 1) = 0$$

$$\tau = \frac{1}{2}(-1 + \sqrt{5}) \approx 0.618$$

Two Point Cubic Interpolation Search

I don't like it. Skip it.

4 Conjugate Gradient

Steepest Desent Method

$$\mathbf{p} = -\nabla f(\mathbf{x})$$

.

Lemma 4-0 From x, along any direction p, execute line search one step

$$\varphi(\lambda^*) = \min_{\lambda} \varphi(\lambda) = \min_{\lambda} f(\boldsymbol{x} + \lambda \boldsymbol{p})$$

and obtain $\hat{\boldsymbol{x}} = \boldsymbol{x} + \lambda^* \boldsymbol{p}$, then $\nabla f(\hat{\boldsymbol{x}})$ is orthogonal to \boldsymbol{p} , i.e.

$$\nabla f(\hat{\boldsymbol{x}}) \cdot \boldsymbol{p} = 0$$

(Steepest descent method is searching by a way of "zigzag")

Definition 4-1 Suppose $p_0, p_1, \ldots, p_{k-1} (k \leq n)$ are non-zero directions in \mathbb{R}^n , and \mathbf{A} is $n \times n$ positive-definite matrix. If $\forall i, j, i \neq j$

$$\boldsymbol{p_i}^T \boldsymbol{A} \ \boldsymbol{p_j} = 0$$

then $p_0, p_1, \ldots, p_{k-1}$ is pairwise A-conjugate. When A is identity matrix, $p_0, p_1, \ldots, p_{k-1}$ is pairwise orthogonal. So conjugate is generalization of orthogonal.

Theorem 4-2 Suppose A is $n \times n$ positive-definite matrix, if non-zero $p_0, p_1, \ldots, p_{k-1}$ is pairwise A-conjugate, then $p_0, p_1, \ldots, p_{k-1}$ is linear independent.

Theorem 4-3 Suppose f(x) is positive-definite quadratic function

$$f(\boldsymbol{x}) = \frac{1}{2}\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} + \boldsymbol{b}^T \boldsymbol{x} + c$$

and non-zero $p_0, p_1, \ldots, p_{k-1}$ is pairwise A-conjugate. Starting from any point x_0 , along $p_0, p_1, \ldots, p_{k-1}$ accordingly, execute line search and arrive at x_k

$$x_0 \overset{p_0}{\longrightarrow} x_1 \overset{p_1}{\longrightarrow} x_2 \cdots x_{k-1} \overset{p_{k-1}}{\longrightarrow} x_k$$

then $\nabla f(x_k)$ is orthogonal to all previous search directions. i.e.

$$\boldsymbol{p}_{i}^{T} \cdot \nabla f(\boldsymbol{x}_{k}) = 0 \quad (j = 0, 1, \dots, k - 1)$$

Theorem 4-4 Suppose f(x) is positive-definite quadratic function

$$f(\boldsymbol{x}) = \frac{1}{2}\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} + \boldsymbol{b}^T \boldsymbol{x} + c$$

and non-zero $p_0, p_1, \ldots, p_{n-1}$ is pairwise A-conjugate. Starting from any point x_0 , along $p_0, p_1, \ldots, p_{n-1}$ accordingly, execute line search and arrive at x_n , then x_n is minumum point.

Conjugate Gradient Method for positive-definite quadratic function $f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T \mathbf{A}\mathbf{x} + \mathbf{b}^T \mathbf{x} + c$,

$$\begin{cases}
\mathbf{p_0} = -\nabla f(\mathbf{x}) \\
\mathbf{p_k} = -\nabla f(\mathbf{x_k}) + a_k \mathbf{p_{k-1}} \\
a_k = \frac{\mathbf{p_{k-1}^T} \mathbf{A} \nabla f(\mathbf{x_k})}{\mathbf{p_{k-1}^T} \mathbf{A} \mathbf{p_{k-1}}} \quad (k = 1, 2, \dots, n-1)
\end{cases}$$

Conjugate Gradient Method for any differentiable function f(x),

$$\begin{cases}
\mathbf{p_0} = -\nabla f(\mathbf{x}) \\
\mathbf{p_k} = -\nabla f(\mathbf{x_k}) + a_k \mathbf{p_{k-1}} \\
a_k = \frac{||\nabla f(\mathbf{x_k})||^2}{||\nabla f(\mathbf{x_{k-1}})||^2} \quad (k = 1, 2, \dots, n-1)
\end{cases}$$

More is coming....

Reference

1. Tashan Su. Optimization calculation principle and algorithm program design[M]. 2004.