MJERENJE TLAKA:

DEFINICIJA TLAKA:

$$p = \frac{F}{S}$$
, $\left[N/m^2 \right]$ $\left[Pa \right]$

JEDINICE:

TABLE 26.1 Pressure Unit Conversion Table

	<u> </u>						
Units	kPa	psi	in H ₂ O	cm H ₂ O	in. Hg	mm Hg	mbar
kPa	1.000	0.1450	4.015	10.20	0.2593	7.501	10.00
psi	6.895	1.000	27.68	70.31	2.036	51.72	68.95
in. H ₂ O	0.2491	3.613×10^{-2}	1.000	2.540	7.355×10^{-2}	1.868	2.491
cm H ₂ O	0.09806	1.422×10^{-2}	0.3937	1.000	2.896×10^{-2}	0.7355	0.9806
in. Hg	3.386	0.4912	13.60	34.53	1.000	25.40	33.86
mm Hg	0.1333	1.934×10^{-2}	0.5353	1.360	3.937×10^{-2}	1.000	1.333
mbar	0.1000	0.01450	0.04015	1.020	0.02953	0.7501	1.000

30

Key:

- (1) kPa = kilopascal;
- (2) psi = pound force per square inch;
- (3) in. H_2O = inch of water at 4°C;
- (4) cm H_2O = centimeter of water at 4°C;
- (5) in. Hg = inch of mercury at 0°C;
- (6) mm Hg = millimeter of mercury at 0°C;
- (7) mbar = millibar.

Prikaz apsolutnog, relativnog (engl. gauge presure) i diferencijalnog tlaka

Mjerenje tlaka svodi se na mjerenje POMAKA osjetilnog elementa:

FIGURE 26.1 Pressure-sensing elements: (a) flat diaphragm; (b) corrugated diaphragm; (c) capsule; (d) bellows; (e) straight tube; (f) C-shaped Bourdon tube; (g) twisted Bourdon tube; (h) helical Bourdon tube; (1) spiral Bourdon tube. (From Norton, H. N., Handbook of Transducers, Englewood Cliffs, NJ: Prentice-Hall, 1989, 294-330. Reprinted with permission.)

Uslijed razlike tlakova dolazi do pomaka osjetilnog elementa (membrana, mijeh, spiralna cijev, ...) koji se može detektirati pretvornikom pomaka

MJERENJE TLAKA KORIŠTENJEM KAPACITIVNIH PRETVORNIKA POMAKA

FIGURE 26.2 Operating principle of capacitive pressure sensors. (a) Single capacitor design; and (b) differential capacitor design.

MJERENJE TLAKA KORIŠTENJEM TENZOMETARSKIH PRETVORNIKA

Izvedba s elastičnim perom

FIG. 5.7g
Bonded strain gauge transducer with bellows elements.

Izvedba s elastičnom membranom

MJERENJE TLAKA KORIŠTENJEM PIEZOOTPORNIČKIH PRETVORNIKA

Piezootpornički efekt – promjena specifičnog otpora materijala pod utjecajem naprezanja.

U silicij n-tipa se p-baznom difuzijom difundiraju područja koja čine piezootpornike.

$$\frac{\Delta R}{R} \approx \frac{\Delta \rho}{\rho} = \pi \sigma$$

 π = piezootpornička konstanta

Obzirom na smjer djelovanja sile u odnosu na tok struje i orijentaciju kristalne rešetke, razlikujem longitudinalni i transverzalni piezootpornički koeficijent.

$$\frac{\Delta R}{R} = \pi_l \sigma_l + \pi_t \sigma_t$$

Otpornici su orijentirani i postavljeni tako da dominira jedan od koeficijenta.

Difundiraju se na mjesta najvećeg naprezanja membrane.

FIGURE 9.5. Position of piezoresistors on a silicon diaphragm.

- KreismembranLongitudinal-Transversal
- Anordnuna (100)-Fläche
- Druckbereich: 100 kPa 100 MPa
- Isotrope Ätzung
- · Linearitätsfehler/
- Meßspanne: mittel Hoher Überlastfaktor

- Kreismembran · Longitudinal Anordnung
- (111)-Fläche
- Druckbereich: 100 kPa 1 MPa
- Isotrope Ätzung
- · Linearitätsfehler/
- Meßspanne: groß
 Hoher Überlastfaktor

- Kreisringmembran
- Longitudinal Anordnung
- (111)-Fläche
- Druckbereich: 1 kPa 10 kPa
 Isotrope Ätzung
 Linearitätsfehler/
- Meßspanne: klein
- Hoher Überlastfaktor

Prednosti Si-piezootporničkih pretvornika tlaka:

- 1. veći koeficijent pretvorbe (gauge factor) od metalnih oko 120.
- 2. Silicij je mehanički dobar materijal nema histereze
- 3. otpornici su difundirani u membranu naprezanje se perfektno prenosi s membrane na otpornik
- 4. Otporinci su pozicionirani na mjesta na površini membrane koja se najviše deformiraju pod utjecajem tlaka
- 5. Svi otpornici su dobiveni istim tehnološkim procesom dobro se prate svojstva
- 6. Tehnologija izrade jednaka je tehnologiji izrade integriranih krugova -idealno za minijaturizaciju i integraciju senzora i sklopova za obradu na jedan chip.

Glavni nedostatak piezootporničkih pretvornika je temperaturna ovisnost:

- otpornici: +0.06%/°C ÷ +0.24%/°C
- piezootpornički koeficijent: -0.06%/°C ÷ -0.24%/°C

Posljedica je smanjenje osjetljivosti s porastom temperature:

Figure 15 Characteristics of an Elementary Pressure Sensor.

Provodi se temperaturna kompenzacija na istom chipu.

Jedna od mogućnosti je korištenje pozitivnog temperaturnog koeficijenta otpora piezootpornika:

Porastom temperature povećava se iznos otpornika u mostu. Ako R₀ ima zanemariv temperaturni koeficijent otpora posljedica će biti porast napona napajanja mosta koji može kompenzirati pad osjetljivosti zbog negativnog temperaturnog koeficijenta piezootporničkog koeficijenta.

Izvedbe i način pakiranja pretvornika tlaka izvedenih pomoću piezootpornika:

Figure 10a/b
Construction of Rear-side Coupled Housing KPY 40-A/R Series
a) Relative Pressure
b) Absolute Pressure

- 1 Ni-cap (TO-8)
- 2 Pressure sensitive Chip
- 3 Si-temperature sensor
- 4 Capillary tube: open for differential sensors
- 5 Electrical contacts
- 6 Centre tube for chip mounting and as pressure coupling port
- 7 Capillary tube: weld sealed for absolute pressure sensors

MJERENJE TLAKA VIBRIRAJUĆOM ŽICOM

FIG. 5.7k
Resonant-wire-type differential pressure sensor. (Courtesy of The Foxboro Co.)

Ovisno o sili kojom je napeta, žica ima određenu rezonantnu frekvenciju

$$f = \frac{1}{2l} \sqrt{\frac{F}{m_1}}$$

$$f = \frac{1}{2l} \sqrt{\frac{\sigma}{\rho}}$$

I [m] – duljina žice m_1 [kg/m] – specifična masa žice (masa po jedinici duljine) σ [N/m²] – naprezanje ρ [kg/m³] – gustoća

Kada na žicu dovedemo strujni impuls, dolazi do njenog otklona u magnetskom polju permanentnog magneta.

$$F_{\scriptscriptstyle M} = BIl$$

Nakon prestanka impulsa žica titra vlastitom frekvencijom f u magnetskom polju – inducira se napon čija **frekvencija** je proporcionalna drugom korijenu sile napetosti žice.

Metoda se koristi još i za mjerenje sile, pomaka i akceleracije.

MIKROFONI

Osjetljivost

Pod osjetljivošću mikrofona razumijeva se odnos elektromotorne sile mjerene na izlaznim priključnicama prema zvučnom tlaku slobodnog zvučnog polja na mjestu mikrofona:

$$s = \frac{e}{p}$$

Osjetljivost se izražava ili u milivoltima po paskalu, ili u decibelima. Ako se izražava u decibelima, uspoređivanje se obično obavlja sa zamišljenim mikrofonom, koji bi uz tlak od jednog paskala dao na izlazu elektromotornu silu od jednog volta:

$$s = 20\log \frac{\frac{e}{p}}{\frac{1V}{1Pa}} = 20\log \frac{e}{p} \left[dB \right]$$

Razina zvučnog tlaka (engl. Sound Pressure Level) je u decibelima izražen odnos nekog zvučnog tlaka prema referentnom zvučnom tlaku (tlak praga čujnosti $2 \cdot 10^{-5} Pa$):

$$SP(dB) = 20\log \frac{SP(Pa)}{2 \cdot 10^{-5} Pa}$$

Npr. kod normalnog razgovora iznosi 60 dB, a na udaljenosti 30 m od mlaznog aviona pri polijetanju iznosi 140 dB

UGLJENI MIKROFON

Načelna shema ugljenog mikrofona

Slika 2.1. Presjek i strujni krug mikrofona s ugljenim zrncima

Slika 7.1. Presjek telefonskog ugljenog mikrofona

Električki otpor ugljenih zrnaca ovisi o pritisku membrane koja titra u ritmu zvučnih valova. Struja koja teče u krugu mijenja svoju jakost u ritmu tih titraja.

Osjetljivi su na prekomjernu vlagu i temperaturu – nakon nekoliko godina upotrebe osjetljivost telefonskog mikrofona padne za dva do tri decibela.

Osjetljivost: oko 100 mV/Pa.

Impedancija: 50 Ω ili 200 do 500 Ω

ELEKTROMAGNETSKI MIKROFON

Promjena širine zračnog raspora uzrokuje promjenu magnetskog toka zbog promjene magnetskog otpora.

Slika 2.5. Načelna shema elektromagnetskog mikrofona

$$e = -z \frac{d\Phi}{dt}$$

$$\Phi = \frac{zI}{R_m}$$

$$R_m = \frac{1}{\mu_0 \mu_r} \frac{l_m}{S} + \frac{1}{\mu_0} \frac{\delta}{S} \quad \rightarrow \text{zanemarimo prvi član zbog } \mu_r >> \Phi \approx \frac{zI\mu_0 S}{\delta}$$

Osjetljivost: 1 do 3 mV/Pa Impedancija: 500 do 2000 Ω

DINAMIČKI MIKROFON

Najraširenija vrsta mikrofona, kako po broju, tako i po primjeni.

Zavojnica se nalazi u zračnom rasporu permanentnog magneta, pa se pri titranju u njoj inducira elektromotorna sila

$$e = Blv$$

Osjetljivost: 1.5 do 2 mV/Pa.

Impedancija: 200 Ω

KONDENZATORSKI MIKROFON

Membrana je metalna ili metalizirana folija debljine 10 do 15 μ m napeta ispred čvrste metalne protuelektrode na udaljenosti 10 do 20 μ m. Akustički tlak mijenja razmak između ploča kondenzatora, a time i kapacitet. Izlazni napon (uz uvjet R >>) iznosi:

$$u = E_0 \frac{\Delta C}{C_m + C_p}$$

E₀ – polarizacijski napon

△C – promjena kapaciteta zbog pomaka membrane

C_m - kapacitet mikrofona

 C_p – parazitni kapacitet

Slika 2.3. Presjek i strujni krug kondenzatorskog mikrofona

Slika 6.2. Ovisnost osjetljivosti kondenzatorskog mikrofona o polarizacijskom naponu. Izvučena linija predstavlja mjerenu osjetljivost, a crtkana izračunatu bez uzimanja u obzir da postoji približavanje membrane zbog elektrostatskog privlačenja

Osjetljivost: 30 do 50 mV/Pa

Otpor R mora biti čim veći da osigura približno konstantan naboj na mikrofonu (1 ÷ 10 GΩ)

Prednosti:

- odlična stabilnost
- konstantan amplitudno-frekvencijski odziv

Osnovni nedostaci:

- potreba za polarizacijskim naponom.
- zbog malog kapaciteta mikrofon se mora uključiti neposredno na ulaz mikrofonskog pretpojačala

ELEKTRET MIKROFON (ECM - ELECTRET CONDENSER MICROPHONE])

Elektret – električki polariziran dielektrik.

Umetanjem elektretskog materijala debljine 5 do 10 μ m među elektrode kondenzatorskog mikrofona dobiva se unutarnji izvor istosmjernog napona potreban za njegov normalni rad, a kapacitet mu se pri tome poveća i do deset puta u odnosu na zračni dielektrik.

Slika 1.2. Formiranje unutarnjeg prostornog naboja

Primjenom električnog polja uz povišenu temperaturu naboji se kreću prema suprotnim polovima. Sniženjem temperature i kasnijim uklanjanjem električkog polja nosioci naboja ostaju u razmaknutom položaju Odjeljivanje naboja nije potpuno jer se zaustavljaju na različitim udaljenostima od površine materijala

Za primjene kod mikrofona elektret se najčešće formira bombardiranjem materijala elektronskim ili ionskim snopom u vakuumu. Pri tome nije potrebno zagrijavati dielektrik. Naboj jednog predznaka deponiran je neposredno uz površinu uzorka. Životni vijek ovakvog elektreta je vrlo stabilan i najdulji u odnosu na ostale vrste elektreta.

Slika 1.9. Mikrofon s nategnutom membranom od metalizirane elektretske folije, prema [18]

Slika 1.11. Frekvencijski odziv osjetljivosti uobičajenog elektretskog mikrofona

KRISTALNI MIKROFON

Koristi se piezoelektrički efekt.

Najčešće se koriste Rochelleova sol i piezoelektričke keramike temeljenje na Barijevom titanitu.

Element za gradnju mikrofona dobiva se od dvije pločice rezane iz X-reza po suprotnim dijagonalama. Ako se takve dvije pločice slijepe i podvrgnu savijanju, dobiva se na vanjskim plohama naboj jednog predznaka, a na unutarnjim plohama naboj drugog predznaka. Na vanjske i unutarnje plohe pločica se nanesu elektrode pomoću kojih se odvodi naboj. Ovakav element od dvije pločice se naziva **bimorf** i predstavlja jedinicu koja se upotrebljava za izradu mikrofona.

Slika 5.4. Mikrofonski element dobiva se lijepljenjem dviju pločica kao pod c), koje su izrezane po suprotnim dijagonalama iz X-reza kao pod a) i b). Radi odvođenja naboja plohe pločica oblažu se listićima staniola kao što je pokazano pod d)

Prema konstrukciji i načinu rada kristalni mikrofoni se dijele na mikrofone s membranom i mikrofone sa zvučnom ćelijom.

Slika 5.5. Konstrukcije kristalnih mikrofona s membranom

Membrana ima relativno veliku masu pa je rezonantna frekvencija mikrofona s membranom niska. Takav mikrofon prenosi frekvencijsko područje do oko 10 KHz.

Osjetljivost: 20-30 mV/Pa

Zbog toga se kristalni mikrofoni koji trebaju prenositi i najviše čujne frekvencije grade bez membrane, tj. kao membrana služi sam kristalni element.

Osjetljivost: 10 mV/Pa

Slika 5.7. a) Kristalni mikrofon tlačnog tipa bez membrane gradi se od dva kristalna elementa; b) savijanje kristalnih elemenata uz pretlak i c) uz potlak

MEMS MIKROFON

Kapacitivni mikrofoni – promjena kapaciteta uslijed pomaka membrane uzrokovane promjenom tlaka

Pogled odozgo:

Smještaj u kućištu

Uobičajene dimenzije: 3 mm x 4 mm x 1 mm Novije izvedbe: 2,5 mm x 3,35 mm x 0,98 mm

Omogućavaju korištenje polja mikrofona (engl. microphone array)

"Top port" MEMS mikrofon

"Bottom port" MEMS mikrofon

"Bottom port" MEMS mikrofoni zahtijevaju rupu na tiskanoj pločici