Trend Report SE3 vs P2 (Threads vs GPU Execution times for 2D 3D Heat Diffusion) -> **AKSHAYA NAGARAJAN (GTID: 903319262)**

All time units are in Seconds

Now individual Comparisons for each Conf File -

The Conf Files used to compute these are as follows –

1. Conf File 1

2D CONFIGURATION EXAMPLE
#your code should ignore lines starting with '#'
#you can assume arguments will always follow this ordering however whitespace may vary
#2D or 3D
2D
#the value for k

0.25 #number of timestep to run

#width (x-axis) and height (y-axis) of grid 1600,1600 #default starting temperature for nodes 5.55

#list of fixed temperature blocks (squares for 2D) #can be 0, 1 or more

#assume blocks won't overlap
#location_x, location_y, width, height, fixed temperature
5, 5, 1, 1, 200
500, 500, 10, 10, 300
20, 30, 60, 60, 400
400, 12, 30, 30, 600.23
200, 120, 30, 40, 50
1000,300,50,80,222.56
1350,1262,90,34,500.56

2. Conf File 2

2D CONFIGURATION EXAMPLE

#your code should ignore lines starting with '#'

#you can assume arguments will always follow this ordering however whitespace may vary #2D or 3D

2D

#the value for k

0.25

#number of timestep to run

200

#width (x-axis) and height (y-axis) of grid

800,800

#default starting temperature for nodes

5

#list of fixed temperature blocks (squares for 2D)

#can be 0, 1 or more

#assume blocks won't overlap
#location_x, location_y, width, height, fixed temperature
5, 5, 1, 1, 200
500, 500, 10, 10, 300
20, 30, 60, 60, 400
400, 12, 30, 30, 600.23
200, 120, 30, 40, 50

3. Conf File 3

2D CONFIGURATION EXAMPLE

#your code should ignore lines starting with '#'

#you can assume arguments will always follow this ordering however whitespace may vary #2D or 3D

2D

#the value for k

0.25

#number of timestep to run

30

#width (x-axis) and height (y-axis) of grid

50,50

#default starting temperature for nodes

10.5

#list of fixed temperature blocks (squares for 2D)

#can be 0, 1 or more

#assume blocks won't overlap #location_x, location_y, width, height, fixed temperature 5, 5, 4, 4, 200.2 20, 30, 6, 6, 400 12, 13, 2, 22, 36.566

4. Conf File 4

3D CONFIGURATION EXAMPLE

#your code should ignore lines starting with '#'

#you can assume arguments will always follow this ordering however whitespace may vary #2D or 3D

3D

#the value for k

0.25

#number of timestep to run

150

#width (x-axis) height (y-axis), depth (z-axis) of grid 100,50,75 #default starting temperature for nodes #list of fixed temperature blocks (cubes for 3D) #can be 0, 1 or more

#assume cubes won't overlap #location_x, location_y, location_z, width, height, depth, fixed temperature 5, 5, 5, 2, 2, 2, 200 40, 12, 50, 2, 5, 3, 600.23 10, 20, 30, 10, 5, 5, 70.5

5. Conf File 5

40, 12, 30, 10, 60, 30, 600.23 178, 99, 12, 13, 15, 77, 86.85

3D CONFIGURATION EXAMPLE ##### #your code should ignore lines starting with '#' #you can assume arguments will always follow this ordering however whitespace may vary #2D or 3D 3D #the value for k 0.25 #number of timestep to run #width (x-axis) height (y-axis), depth (z-axis) of grid 800,500,200 #default starting temperature for nodes 20.5 #list of fixed temperature blocks (cubes for 3D) #can be 0, 1 or more #assume cubes won't overlap #location_x, location_y, location_z, width, height, depth, fixed temperature 5, 5, 5, 2, 2, 2, 200 200, 30, 40, 60, 60, 70, 400

Conclusion: The Nvidia GPUs clearly outperform the threads in execution of the 2D 3D grids. They are faster and more efficient.