

Erasmus+ E(rasmus) Mundus on Innovative Microwave Electronics and Optics

3. Smith Chart and impedance matching

1. Reflection coefficient calculations

Exercise #1: Analytical calculations versus Smith chart (tutorial n1 Smith chart.pptx)

An air line, with a characteristic impedance of $Z_C = 250 \Omega$, is powered at the frequency $f_0 = 500 \text{ MHz}$.

It is 2m long and ends at an impedance Z_L . The SWR along the line is s=5 and the first maximum voltage is at d=12 cm from the load.

- Calculate $|\rho_L|$, ρ_L module and argument of the reflection coefficient on the load.
- Calculate Z₁.
- The input voltage is 10V. What is the value of the voltage at the load terminals. Give V_{max} and V_{min} on the line.

Foundations of electromagnetic wave propagation

November 2021 - 127 -

rright notice : This material can be freely used within the E.M.I.M.E.O. Erasmus Mundus consortium. Explicit authorisation of the authors is required for its use outside this E.M.I.M.E.O. consortium. This learning Programme has been funded with support from the European Commission. This publication

(2)

Erasmus+ E(rasmus) Mundus on Innovative Microwave Electronics and Optics

3. Smith Chart and impedance matching

1. Reflection coefficient calculations

Exercise #2: Graphical calculations on Smith chart (tutorial #2 Smith chart)

An air line, with a characteristic impedance of $Z_C = 20~\Omega$, is loaded at its end on an impedance $Z_L = R_L + j~X_L = (24 + j~36)~\Omega$. At the frequency of $f_0 = 3~\text{GHz}$, the length of the line is $\ell = \lambda_0/4$.

- 1) Give, using the Smith chart:
 - The reflection coefficient ρ_L , the SWR s_L on the load Z_L .
 - The reflection coefficient $\underline{\rho}_{in}$, the SWR s_{in} and the impedance Z_{in} at the distance ℓ , for f_0 = 3 GHz and f_1 = 4 GHz

Erasmus+ E(rasmus) Mundus on Innovative Microwave Electronics and Optics

3. Smith Chart and impedance matching

1. Reflection coefficient calculations

Exercise #2: Graphical calculations on Smith chart

2) A line of length ℓ_1 , with a characteristic impedance $Z_C = 20 \Omega$, short-circuited at one end, is placed in parallel on the previous load admittance $Y_L = 1 / Z_L$.

Let:

- Y_a the input admittance of this line with ℓ_1 length
- $Y_t = Y_a + Y_L$ the total admittance in x = 0

 ℓ_1 is selected to obtain a real Y_t named R_t . Use Smith chart to give ℓ_1 and R_t at f=3 GHz.

Foundations of electromagnetic wave propagation

November 2021 - 129

pyright notice. This material can be freely used within the E.M.I.M.E.O. Eramus Mundus consortism. Explicit authorisation of the authors is required for its use outside this E.M.I.M.E.O. Consortism. This learning Programme has been funded with support from the European Commission. This publication