

Unit - I 1.4 Work, Power, Energy, Energy Sources and its Conversion

Dr.Santhosh.T.K.

Syllabus

UNIT - I

Source J 10 Period

Introduction and Basic Concepts: Concept of Potential difference, voltage, current - Fundamental linear passive and active elements to their functional current-voltage relation - Terminology and symbols in order to describe electric networks - Concept of work, power, energy and conversion of energy- Principle of batteries and application.

Principles of Electrostatics: Electrostatic field - electric field intensity - electric field strength - absolute permittivity - relative permittivity - capacitor composite - dielectric capacitors - capacitors in series & parallel - energy stored in capacitors - charging and discharging of capacitors.

Simple Power System

- Every large-scale power system has three major components:
 - generation: source of power, ideally with a specified voltage and frequency
 - load or demand: consumes power; ideally with a constant resistive value
 - transmission system: transmits power; ideally as a perfect conductor
- Additional components include:
 - distribution system: local reticulation of power (may be in place of transmission system in case of microgrid),
 - control equipment: coordinate supply with load.

Power System Examples

- Interconnection: can range from quite small, such as ar island, to one covering half the continent:
 - there are five major interconnected ac power systems in India
 each operating at 60 Hz AC is used in some other countries.
- Airplanes and Spaceships: reduction in weight is primary consideration; frequency is 400 Hz.
- Ships and submarines.
- Automobiles: DC with 12 volts standard and higher voltages used in electric vehicles.
- Battery operated portable systems.

Power

- Power:
 - Instantaneous rate of consumption of energy,
 - –How hard you work!
- Power = voltage x current for dc
- Power Units:

```
Watts = amps times volts (W)
```

```
kW - 1 \times 10^3 Watt
```

MW
$$-$$
 1 x 10⁶ Watt

Energy

- Energy:
 - Integration of power over time,
 - Energy is what people really want from a power system,
 - How much work you accomplish over time.
- Energy Units:

```
Joule = 1 watt-second (J)
```

kWh - kilowatthour (3.6 x 10⁶ J)

Btu - 1055 J; 1 MBtu=0.292 MW

What is energy?

- Energy is the power to change things. It is the ability to do work.
- Energy lights our cities, powers our vehicles, and runs machinery in factories. It warms and cools our homes, cooks our food, plays our music, and gives us pictures on television.
- Joule A unit of energy. One joule equals 0.2388 calories

Energy forms

Main forms of energy are:

- -Chemical
- -Electromagnetic
- -Nuclear
- -Mechanical

Energy Conversion

All forms of energy can be converted into other forms.

- The sun's energy through solar cells can be converted directly into electricity.
- Green plants convert the sun's energy (electromagnetic) into starches and sugars (chemical energy).
- In an automobile engine, fuel is burned to convert chemical energy into heat energy. The heat energy is then changed into mechanical energy.

Electrical energy conversion

 In an electric motor, electromagnetic energy is converted to mechanical energy.

 In a battery, chemical energy is converted into electromagnetic energy.

 The mechanical energy of a waterfall is converted to electrical energy in a generator.

The Law of Conservation of Energy

- Energy can be neither created nor destroyed by ordinary means.
 - It can only be converted from one form to another.
 - If energy seems to disappear, then scientists look
 for it leading to many important discoveries.

Renewable & Non-renewable Energy

RENEWABLE:

--can be regenerated in a relatively short period of time; unlimited

NON-RENEWABLE:

--can not be replaced in a short amount of time; limited

Energy Sources

- Solar
- Wind
- Nuclear
- Hydroelectric
- Thermal
- Tidal
- Geothermal

Installed Capcity

Installed Capacity Category wise(Sep-2021)

Total Installed Capacity: 388848.77999999997 MW

Generation Capacity

Source: National Power Portal https://npp.gov.in/publishedReports

ALL INDIA									
16	STATE SECTOR	66921.50	7119.85	236.01	74277.36	0.00	26958.50	2381.03	103616.90
17	PVT SECTOR	76003.00	10598.74	273.70	86875.45	0.00	3394.00	85216.08	175485.53
18	CENTRAL SECTOR	62930.00	7237.91	0.00	70167.91	6780.00	15346.72	1632.30	93926.93
Total of ALL INDIA		205854.50	24956.51	509.71	231320.72	6780.00	45699.22	89229.42	373029.35

Break up of RES all India as on 30/09/2020 is given below (in MW):

Small Hydro Power	Maria de Danssa	Bio-Po	Callan Barrara	T	
	Wind Power	BM Power/Congen	Waste to Energy	Solar Power	Total Capacity
4739.97	38124.15	10145.92	168.64	36050.74	89229.42

ALL INDIA									
16	STATE SECTOR	66871.50	7087.35	236.01	74194.86	0.00	27114.50	2403.27	103712.64
17	PVT SECTOR	75403.00	10574.24	273.70	86250.95	0.00	3751.00	97497.27	187499.22
18	CENTRAL SECTOR	66340.00	7237.91	0.00	73577.91	6780.00	15646.72	1632.30	97636.93
Total of ALL INDIA		208614.50	24899.51	509.71	234023.72	6780.00	46512.22	101532.85	388848.78

Break up of RES all India as on 80/09/2021 is given below (in MW):

Small Hydro Power	W 1 D	Bio-Po	Callan Bassasa	T-1-1 C'	
	Wind Power	BM Power/Congen	Waste to Energy	Solar Power	Total Capacity
4809.81	39870.45	10175.61	401.84	46275.14	101532.85

Source: https://cea.nic.in/dashboard/?lang=en

Transmission Lines (220 kV and above) Commissioned/Ready for commissioning During Aug-2021

Click the columns to view further distribution.

Electrical Energy Sales to Ultimate Consumers (2017–18)

Last Year Demand

https://eal.iitk.ac.in/____

Today's Demand (26 October 2021 @5 am)

Frequency Variations(October 2020)

https://www.srldc.in/Daily-Reports

Frequency Variations (05 April 2020)

https://www.srldc.in/var/ftp/reports/freq/2020/Apr20/05-04-2020-freq.pdf

Frequency Variations(25 October 2021)

https://www.srldc.in/var/ftp/reports/freq/2021/Oct21/25-10-2021-freq.pdf

Summary

-> Power

-> Energy

Energy Convertion

Source

John