ESERCIZIO

Si consideri una cella di assemblaggio dove due pezzi di tipo diverso (A e B) arrivano da due nastri trasportatori (N_A e N_B) e sono trasferiti da un robot (R) su due centri di lavoro (rispettivamente, M_A e M_B) che effettuano una lavorazione. I centri di lavoro possono processare un pezzo alla volta e al termine della lavorazione bisogna attendere che il robot raccolga il pezzo lavorato. Quando *entrambi* i pezzi sono stati lavorati, il robot li preleva entrambi e li assembla, mettendo poi il prodotto finito in una cassa (C). Si assuma che N_A e N_B abbiano una capacità pari a 5 pezzi e C di 100 pezzi. La cassa può essere rimossa (da un operatore) solo quando siano stati caricati 100 pezzi.

- 1) In vista di una modellizzazione a rete di Petri del comportamento deiderato dell'impianto, si definiscano insiemi minimi di operazioni e risorse, con i quali sia possibile descrivere il flusso produttivo.
- 2) Definire un modello a rete di Petri di tipo FMS dell'impianto.
- 3) Si dica se il modello del comportamento descritto può bloccarsi in deadlock.

SOLUZIONE

1)	Operazione	Risorsa
	Trasporto su nastro N _A	N _A
	Trasporto su nastro N _B	N_B
	Trasporto da N _A a M _A	R
	Trasporto da N _B a M _B	R
	Lavorazione A	M_A
	Lavorazione B	M_{B}
	Assemblaggio	R
	Carico su cassa C	С

3) Si può verificare un deadlock se inizia il trasporto di un pezzo da N_A a M_A mentre M_A è già occupata, oppure se inizia il trasporto di un pezzo da N_B a M_B mentre M_B è già occupata.