Contents

1	Basi	С										1
	1.1	vimrc			 			 				. 1
	1.2	Debug Macro			 			 				. 1
	1.3	Increase Stack			 			 				. 1
	1.4	Pragma Optimization										
	1.5	IO Optimization										
	1.5	To optimization	•	 •	 	٠	 •	 	•	•	•	
2	Data	a Structure										2
_	2.1	Dark Magic										
	2.2											
		Link-Cut Tree										
	2.3	LiChao Segment Tree										
	2.4	Treap										
	2.5	Linear Basis			 			 				. 3
	2.6	Binary Search On Segment Tree			 			 				. 3
3	Grap	oh										4
	3.1	2-SAT (SCC)			 			 				. 4
	3.2	BCC			 			 				. 4
	3.3	Centroid Decomposition			 			 				. 4
	3.4	Directed Minimum Spanning Tree .										
	3.5	Dominator Tree										
	3.6	Edge Coloring										
	3.7	Lowbit Decomposition										
	3.8	Manhattan Minimum Spanning Tree										
	3.9	MaxClique										
		MaxCliqueDyn										
	3.11	Minimum Mean Cycle										
	3.12	Mo's Algorithm on Tree			 			 				. 7
	3.13	Virtual Tree			 			 				. 7
4	Mate	ching & Flow										7
	4.1	Bipartite Matching			 			 				. 7
	4.2	Dijkstra Cost Flow										
	4.3	Dinic										
	4.4	Flow Models										
	4.5											
		General Graph Matching										
	4.6	Global Min-Cut										
	4.7	GomoryHu Tree										
	4.8	Kuhn Munkres										
	4.9	Minimum Cost Circulation			 			 				. 10
	4.10	Minimum Cost Maximum Flow										
	4.11	Maximum Weight Graph Matching .			 			 				. 11
5	Matl	h										12
	5.1	Strling Number			 			 				
	5.1	Strling Number										. 12
	5.1				 			 				. 12 . 12
	5.1 5.2	5.1.1 First Kind		 	 		 	 				. 12 . 12 . 12
		5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd		 	 		 	 				. 12 . 12 . 12
	5.2 5.3	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey		 	 		 	 				. 12 . 12 . 12 . 12 . 12
	5.2 5.3 5.4	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial		 	 		 	 				. 12 . 12 . 12 . 12 . 12 . 13
	5.2 5.3 5.4 5.5	5.1.1 First Kind		 	 		 	 				. 12 . 12 . 12 . 12 . 12 . 13
	5.2 5.3 5.4 5.5 5.6	5.1.1 First Kind		 	 		 	 				. 12 . 12 . 12 . 12 . 12 . 13 . 13
	5.2 5.3 5.4 5.5 5.6 5.7	5.1.1 First Kind 5.1.2 Second Kind		 	 		 					. 12 . 12 . 12 . 12 . 12 . 13 . 13 . 13
	5.2 5.3 5.4 5.5 5.6 5.7 5.8	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler		 	 		 					. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13
	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	5.1.1 First Kind 5.1.2 Second Kind		 	 		 					. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13 . 13
	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler ExtendedFloorSum Fast Fourier Transform		 			 					. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13 . 13 . 13
	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler ExtendedFloorSum Fast Fourier Transform FloorSum					 					. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13 . 13 . 13 . 13
	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler ExtendedFloorSum Fast Fourier Transform					 					. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13 . 13 . 13 . 13
	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler ExtendedFloorSum Fast Fourier Transform FloorSum										. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13 . 13 . 13 . 13 . 14
	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler ExtendedFloorSum Fast Fourier Transform FloorSum FWT										. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13 . 13 . 13 . 14 . 14
	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler ExtendedFloorSum Fast Fourier Transform FloorSum FWT Miller Rabin										. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13 . 13 . 13 . 14 . 14 . 15 . 15
	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler ExtendedFloorSum Fast Fourier Transform FloorSum FWT Miller Rabin NTT										. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13 . 13 . 13 . 14 . 14 . 15 . 15
	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.12 5.13 5.14 5.15 5.16	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler ExtendedFloorSum Fast Fourier Transform FloorSum FWT Miller Rabin NTT Partition Number										. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13 . 13 . 14 . 14 . 15 . 15 . 15
	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.12 5.13 5.14 5.15 5.16 5.17	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler Extended FloorSum Fast Fourier Transform FloorSum FWT Miller Rabin NTT Partition Number Pi Count (Linear Sieve) Pollard Rho										. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13 . 13 . 13 . 13 . 14 . 15 . 15 . 15 . 15
	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.12 5.13 5.14 5.15 5.16 5.17 5.18	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler ExtendedFloorSum Fast Fourier Transform FloorSum FWT Miller Rabin NTT Partition Number Pi Count (Linear Sieve) Polynomial Operations										. 12 12 12 12 13 13 13 13 13 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15
	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15 5.16 5.17 5.18 5.19	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler ExtendedFloorSum Fast Fourier Transform FloorSum FWT Miller Rabin NTT Partition Number Pi Count (Linear Sieve) Pollard Rho Polynomial Operations Quadratic residue										. 12 12 12 12 13 13 13 13 13 14 14 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16
	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15 5.16 5.17 5.18 5.19 5.20	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler ExtendedFloorSum Fast Fourier Transform FloorSum FWT Miller Rabin NTT Partition Number Pi Count (Linear Sieve) Pollard Rho Polynomial Operations Quadratic residue Simplex										. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13 . 13 . 13 . 13 . 13
	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15 5.16 5.17 5.18 5.19 5.20	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler ExtendedFloorSum Fast Fourier Transform FloorSum FWT Miller Rabin NTT Partition Number Pi Count (Linear Sieve) Pollard Rho Polynomial Operations Quadratic residue										. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13 . 13 . 13 . 13 . 13
6	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15 5.16 5.17 5.18 5.19 5.20 5.21	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler Extended FloorSum Fast Fourier Transform FloorSum FWT Miller Rabin NTT Partition Number Pi Count (Linear Sieve) Pollard Rho Polynomial Operations Quadratic residue Simplex Simplex Construction										. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13
6	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.10 5.12 5.13 5.14 5.15 5.16 5.17 5.18 5.19 5.20 5.21 Geo	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler ExtendedFloorSum Fast Fourier Transform FloorSum FWT Miller Rabin NTT Partition Number Pi Count (Linear Sieve) Pollard Rho Polynomial Operations Quadratic residue Simplex Simplex Construction										. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13
6	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.10 5.12 5.13 5.14 5.15 5.16 5.17 5.18 5.20 5.21 Geod.	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler ExtendedFloorSum Fast Fourier Transform FloorSum FWT Miller Rabin NTT Partition Number Pi Count (Linear Sieve) Pollard Rho Polynomial Operations Quadratic residue Simplex Simplex Construction metry Basic Geometry										. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13
6	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.12 5.13 5.14 5.15 5.16 5.17 5.18 5.19 5.20 6.1 6.1	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler ExtendedFloorSum Fast Fourier Transform FloorSum FWT Miller Rabin NTT Partition Number Pi Count (Linear Sieve) Pollard Rho Polynomial Operations Quadratic residue Simplex Simplex Construction metry Basic Geometry Segment & Line Intersection										. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13
6	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.12 5.15 5.16 5.17 5.18 5.19 5.20 5.21 Geol 6.2 6.3	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler ExtendedFloorSum Fast Fourier Transform FloorSum FWT Miller Rabin NTT Partition Number Pi Count (Linear Sieve) Pollard Rho Polynomial Operations Quadratic residue Simplex Simplex Construction metry Basic Geometry Segment & Line Intersection 2D Convex Hull										. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13
6	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.12 5.13 5.14 5.15 5.16 5.17 5.18 5.19 5.20 6.1 6.2 6.3 6.4	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler Extended FloorSum Fast Fourier Transform FloorSum FWT Miller Rabin NTT Partition Number Pi Count (Linear Sieve) Pollard Rho Polynomial Operations Quadratic residue Simplex Simplex Construction metry Basic Geometry Segment & Line Intersection 2D Convex Hull 3D Convex Hull										. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13
6	5.2 5.3 5.5 5.6 5.7 5.8 5.10 5.12 5.13 5.14 5.16 5.17 5.18 5.19 5.20 6.1 6.2 6.3 6.4 6.5	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler Extended Floer Extended Floer Extended Floer FloorSum Fast Fourier Transform FIOOrSum FWT Miller Rabin NTT Partition Number Pi Count (Linear Sieve) Pollard Rho Polynomial Operations Quadratic residue Simplex Simplex Simplex Construction metry Basic Geometry Segment & Line Intersection 2D Convex Hull 3D Convex Hull 2D Farthest Pair										. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13
6	5.2 5.3 5.5 5.5 5.6 5.7 5.8 5.9 5.10 5.12 5.13 5.14 5.15 5.17 5.18 5.19 5.20 6.1 6.2 6.3 6.4 6.5 6.6	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler ExtendedFloorSum Fast Fourier Transform FloorSum FWT Miller Rabin NTT Partition Number Pi Count (Linear Sieve) Pollard Rho Polynomial Operations Quadratic residue Simplex Simplex Construction metry Basic Geometry Segment & Line Intersection 2D Convex Hull 2D Farthest Pair kD Closest Pair (3D ver.)										. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13
6	5.2 5.3 5.5 5.5 5.6 5.7 5.8 5.9 5.10 5.12 5.13 5.14 5.15 5.17 5.18 5.19 5.20 6.1 6.2 6.3 6.4 6.5 6.6 6.7	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler ExtendedFloorSum Fast Fourier Transform FloorSum FWT Miller Rabin NTT Partition Number Pi Count (Linear Sieve) Pollard Rho Polynomial Operations Quadratic residue Simplex Simplex Construction metry Basic Geometry Segment & Line Intersection 2D Convex Hull 3D Convex Hull 3D Convex Hull 2D Farthest Pair kD Closest Pair (3D ver.) Simulated Annealing										. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13
6	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.12 5.13 5.14 5.15 5.16 5.17 5.18 5.19 5.20 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler ExtendedFloorSum Fast Fourier Transform FloorSum FWT Miller Rabin NTT Partition Number Pi Count (Linear Sieve) Pollard Rho Polynomial Operations Quadratic residue Simplex Simplex Construction metry Basic Geometry Segment & Line Intersection 2D Convex Hull 3D Convex Hull 2D Farthest Pair kD Closest Pair (3D ver.) Simulated Annealing Half Plane Intersection										. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13
6	5.2 5.3 5.5 5.5 5.5 5.7 5.8 5.9 5.10 5.12 5.15 5.16 5.17 5.18 5.19 5.20 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler ExtendedFloorSum Fast Fourier Transform FloorSum FWT Miller Rabin NTT Partition Number Pi Count (Linear Sieve) Pollard Rho Polynomial Operations Quadratic residue Simplex Simplex Construction metry Basic Geometry Segment & Line Intersection 2D Convex Hull 2D Farthest Pair kD Closest Pair (3D ver.) Simulated Annealing Half Plane Intersection Minkowski Sum										. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13
66	5.2 5.3 5.5 5.5 5.5 5.7 5.8 5.9 5.10 5.12 5.15 5.16 5.17 5.18 5.19 5.20 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler ExtendedFloorSum Fast Fourier Transform FloorSum FWT Miller Rabin NTT Partition Number Pi Count (Linear Sieve) Pollard Rho Polynomial Operations Quadratic residue Simplex Simplex Construction metry Basic Geometry Segment & Line Intersection 2D Convex Hull 3D Convex Hull 2D Farthest Pair kD Closest Pair (3D ver.) Simulated Annealing Half Plane Intersection										. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13
66	5.2 5.3 5.5 5.5 5.5 5.7 5.8 5.9 5.10 5.12 5.15 5.16 5.17 5.18 5.19 5.20 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler ExtendedFloorSum Fast Fourier Transform FloorSum FWT Miller Rabin NTT Partition Number Pi Count (Linear Sieve) Pollard Rho Polynomial Operations Quadratic residue Simplex Simplex Construction metry Basic Geometry Segment & Line Intersection 2D Convex Hull 2D Farthest Pair kD Closest Pair (3D ver.) Simulated Annealing Half Plane Intersection Minkowski Sum										. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13
66	5.2 5.3 5.5 5.5 5.6 5.7 5.8 5.9 5.10 5.15 5.16 5.17 5.18 5.19 5.20 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.11 6.12 6.13 6.13 6.14 6.14 6.15 6.15 6.15 6.15 6.15 6.15 6.15 6.15	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler Extended FoorSum Fast Fourier Transform FloorSum FWT Miller Rabin NTT Partition Number Pi Count (Linear Sieve) Pollard Rho Polynomial Operations Quadratic residue Simplex Simplex Construction metry Basic Geometry Segment & Line Intersection 2D Convex Hull 2D Farthest Pair kD Closest Pair (3D ver.) Simulated Annealing Half Plane Intersection Minkowski Sum Circle Class Intersection of line and Circle										. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13
6	5.2 5.3 5.5 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15 5.17 5.18 5.19 5.20 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.11 6.12 6.12 6.13 6.13 6.14 6.14 6.14 6.14 6.14 6.14 6.14 6.14	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler ExtendedFloorSum Fast Fourier Transform FloorSum FWT Miller Rabin NTT Partition Number Pi Count (Linear Sieve) Pollard Rho Polynomial Operations Quadratic residue Simplex Simplex Construction metry Basic Geometry Segment & Line Intersection 2D Convex Hull 2D Farthest Pair kD Closest Pair (3D ver.) Simulated Annealing Half Plane Intersection Minkowski Sum Circle Class Intersection of Polygon and Circle Intersection of Polygon and Circle										. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13
66	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.15 5.15 5.16 5.17 5.18 5.19 5.20 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler ExtendedFloorSum Fast Fourier Transform FloorSum FWT Miller Rabin NTT Partition Number Pi Count (Linear Sieve) Pollard Rho Polynomial Operations Quadratic residue Simplex Simplex Construction metry Basic Geometry Segment & Line Intersection 2D Convex Hull 3D Convex Hu										. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13
6	5.2 5.3 5.4 5.5 5.5 5.10 5.12 5.13 5.14 5.15 5.16 5.17 5.18 5.19 5.20 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.14 6.15 6.15 6.16 6.16 6.16 6.16 6.16 6.16	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler ExtendedFloorSum Fast Fourier Transform FloorSum FWT Miller Rabin NTT Partition Number Pi Count (Linear Sieve) Pollard Rho Polynomial Operations Quadratic residue Simplex Simplex Construction metry Basic Geometry Segment & Line Intersection 2D Convex Hull 3D Convex Hull 3D Farthest Pair kD Closest Pair (3D ver.) Simulated Annealing Half Plane Intersection Minkowski Sum Circle Class Intersection of line and Circle Intersection of Polygon and Circle Point & Hulls Tangent Convex Hulls Tangent										. 12 12 12 12 13 13 13 13 13 14 15 15 15 15 15 16 17 17 17 17 17 18 18 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19
66	5.2 5.3 5.4 5.5 5.5 5.10 5.12 5.13 5.14 5.15 5.16 5.17 5.18 5.19 5.20 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.14 6.15 6.16 6.16 6.16 6.16 6.16 6.16 6.16	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler ExtendedFloorSum Fast Fourier Transform FloorSum FWT Miller Rabin NTT Partition Number Pi Count (Linear Sieve) Pollard Rho Polynomial Operations Quadratic residue Simplex Simplex Construction metry Basic Geometry Segment & Line Intersection 2D Convex Hull 3D Convex Hull 3D Farthest Pair kD Closest Pair (3D ver.) Simulated Annealing Half Plane Intersection Minkowski Sum Circle Class Intersection of line and Circle Point & Hulls Tangent Convex Hulls Tangent Tangent line of Two Circle										. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13
6	5.2 5.3 5.5 5.5 5.6 5.7 5.8 5.10 5.12 5.13 5.14 5.16 5.17 5.18 5.19 5.20 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 6.15 6.16 6.16 6.16 6.16 6.16 6.16	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler Extended Floer Extended Floer Extended Floer FloorSum Foat Fourier Transform FloorSum FWT Miller Rabin NTT Partition Number Pi Count (Linear Sieve) Pollard Rho Polynomial Operations Quadratic residue Simplex Simplex Simplex Construction metry Basic Geometry Segment & Line Intersection 2D Convex Hull 3D Convex Hull 2D Farthest Pair kD Closest Pair (3D ver.) Simulated Annealing Half Plane Intersection Minkowski Sum Circle Class Intersection of Polygon and Circle Point & Hulls Tangent Convex Hulls Tangent Tangent line of Two Circle Minimum Covering Circle										. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13
66	5.2 5.3 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.14 5.15 5.16 5.17 5.18 5.20 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.16 6.17	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler Extended FoorSum Fast Fourier Transform FloorSum FWT Miller Rabin NTT Partition Number Pi Count (Linear Sieve) Pollard Rho Polynomial Operations Quadratic residue Simplex Simplex Construction metry Basic Geometry Segment & Line Intersection 2D Convex Hull 2D Farthest Pair kD Closest Pair (3D ver.) Simulated Annealing Half Plane Intersection Minkowski Sum Circle Class Intersection of Polygon and Circle Point & Hulls Tangent Convex Hulls Tangent Tangent line of Two Circle Minimum Covering Circle KDTree (Nearest Point)										. 12 . 12 . 12 . 12 . 13 . 13 . 13 . 13
6	5.2 5.3 5.5 5.5 5.5 5.7 5.8 5.9 5.10 5.15 5.17 5.18 5.19 5.20 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.12 6.13 6.14 6.15 6.16 6.17 6.18	5.1.1 First Kind 5.1.2 Second Kind ax+by=gcd Berlekamp Massey Charateristic Polynomial Chinese Remainder De-Bruijn DiscreteLog Extended Euler Extended Floer Extended Floer Extended Floer FloorSum Foat Fourier Transform FloorSum FWT Miller Rabin NTT Partition Number Pi Count (Linear Sieve) Pollard Rho Polynomial Operations Quadratic residue Simplex Simplex Simplex Construction metry Basic Geometry Segment & Line Intersection 2D Convex Hull 3D Convex Hull 2D Farthest Pair kD Closest Pair (3D ver.) Simulated Annealing Half Plane Intersection Minkowski Sum Circle Class Intersection of Polygon and Circle Point & Hulls Tangent Convex Hulls Tangent Tangent line of Two Circle Minimum Covering Circle										. 12 12 12 12 13 13 13 13 13 14 14 15 15 15 15 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17

7	Strir	ngology	2
	7.1	Suffix Array	2
	7.2	Suffix Automaton	22
	7.3	Z value	22
	7.4	Manacher	22
	7.5	Lexico Smallest Rotation	22
	7.6	Main Lorentz	22
	7.7	BWT	23
	7.8	Palindromic Tree	23
	7.0	raillatottic free	۷.
8	Misc		23
	8.1	Theorems	23
		8.1.1 Sherman-Morrison formula	23
		8.1.2 Kirchhoff's Theorem	23
		8.1.3 Tutte's Matrix	23
		8.1.4 Cayley's Formula	23
		8.1.5 Erdős-Gallai theorem	23
		8.1.6 Havel-Hakimi algorithm	23
		8.1.7 Euler's planar graph formula	23
		8.1.8 Pick's theorem	23
		8.1.9 Matroid Intersection	23
	8.2	Bitset LCS	23
	8.3	Convex 1D/1D DP	24
	8.4	ConvexHull Optimization	24
	8.5	Josephus Problem	24
	8.6	Cactus Matching	24
	8.7	Tree Knapsack	25
	8.8	N Queens Problem	25
	8.9	Binary Search On Fraction	25
		-	
1	F	Basic	
•		Jusic	
1	1	vimrc	

1.1 vimrc

```
se is nu ru et tgc sc hls cin cino+=j1 sw=4 sts=4 bs=2
    mouse=a encoding=utf-8 ls=2
svn on
colorscheme desert
filetype indent on
inoremap {<CR>} {<CR>} <ESC>0
map <F8> <ESC>:w<CR>:!g++ "%" -o "%<" -std=c++17 -
    DKISEKI -Wall -Wextra -Wshadow -Wfatal-errors -
    Wconversion -fsanitize=address,undefined -g && echo
     success<CR>
map <F9> <ESC>:w<CR>:!g++ "%" -o "%<" -02 -std=c++17 &&
     echo success<CR>
map <F10> <ESC>:!./"%<"<CR>
```

1.2 Debug Macro

```
#ifdef KISEKI
#define safe cerr<<__PRETTY_FUNCTION__\
    <<" line "<<__LINE__<<" safe\n"</pre>
#define debug(a...) qwerty(#a, a)
#define orange(a...) dvorak(#a, a)
using std::cerr;
template <typename ...T>
void qwerty(const char *s, T ...a) {
  cerr << "\e[1;32m(" << s << ") = (";</pre>
  int cnt = sizeof...(T);
  (..., (cerr << a << \( (--cnt ? ", " : ")\e[0m\n")));
template <typename Iter>
void dvorak(const char *s, Iter L, Iter R) {
  cerr << "\e[1;32m[ " << s << " ] = [ ";</pre>
  for (int f = 0; L != R; ++L)
  cerr << (f++ ? ", " : "") << *L;
cerr << " ]\e[0m\n";</pre>
#else
#define safe ((void)0)
#define debug(...) ((void)0)
#define orange(...) ((void)0)
#endif
```

1.3 Increase Stack

```
const int size = 256 << 20;</pre>
register long rsp asm("rsp");
char *p = (char*)malloc(size)+size, *bak = (char*)rsp;
__asm__("movq %0, %%rsp\n"::"r"(p));
// main
__asm__("movq %0, %%rsp\n"::"r"(bak));
```

1.4 Pragma Optimization

```
#pragma GCC optimize("Ofast,no-stack-protector")
#pragma GCC optimize("no-math-errno,unroll-loops")
#pragma GCC target("sse,sse2,sse3,sse3,sse4")
#pragma GCC target("popcnt,abm,mmx,avx,tune=native")
__builtin_ia32_ldmxcsr(__builtin_ia32_stmxcsr()|0x8000)
;
```

1.5 IO Optimization

```
| static inline int gc() {
    constexpr int B = 1<<20;
    static char buf[B], *p, *q;
    if(p == q &&
        (q=(p=buf)+fread(buf,1,B,stdin)) == buf)
        return EOF;
    return *p++;
    }
    template < typename T >
    static inline bool gn( T &x ) {
        int c = gc(); T sgn = 1; x = 0;
        while(('0'>c||c>'9') && c!=EOF && c!='-') c = gc();
        if(c == '-') sgn = -1, c = gc();
        if(c == EOF) return false;
        while('0'<=c&&c<='9') x = x*10 + c - '0', c = gc();
        return x *= sgn, true;
}
```

2 Data Structure

2.1 Dark Magic

2.2 Link-Cut Tree

```
template <typename Val> class LCT {
private:
struct node
  int pa, ch[2];
 bool rev;
 Val v, v_prod, v_rprod;
 node() \; : \; pa\{0\}, \; ch\{0, \; 0\}, \; rev\{false\}, \; v\{\}, \; v\_prod\{\}, \\
    v_rprod{} {};
};
vector<node> nodes;
 set<pair<int, int>> edges;
bool is_root(int u) const {
 const int p = nodes[u].pa;
 return nodes[p].ch[0] != u and nodes[p].ch[1] != u;
bool is_rch(int u) const {
 return (not is_root(u)) and nodes[nodes[u].pa].ch[1]
    == u;
void down(int u) {
 if (auto &cnode = nodes[u]; cnode.rev) {
   if (cnode.ch[0]) set_rev(cnode.ch[0]);
   if (cnode.ch[1]) set_rev(cnode.ch[1]);
   cnode.rev = false;
 void up(int u) {
 auto &cnode = nodes[u];
 cnode.v_prod =
  nodes[cnode.ch[0]].v_prod * cnode.v * nodes[cnode.ch
    [1]].v_prod;
  cnode.v_rprod =
   nodes[cnode.ch[1]].v_rprod * cnode.v * nodes[cnode.
    ch[0]].v_rprod;
```

```
void set_rev(int u) {
  swap(nodes[u].ch[0], nodes[u].ch[1]);
  swap(nodes[u].v_prod, nodes[u].v_rprod);
 nodes[u].rev ^= 1;
 void rotate(int u) {
 int f = nodes[u].pa, g = nodes[f].pa, l = is_rch(u);
if (nodes[u].ch[l ^ 1])
  nodes[nodes[u].ch[1 ^ 1]].pa = f;
  if (not is_root(f))
   nodes[g].ch[is_rch(f)] = u;
  nodes[f].ch[1] = nodes[u].ch[1 ^ 1];
  nodes[u].ch[1 ^ 1] = f
  nodes[u].pa = g, nodes[f].pa = u;
 up(f);
 void splay(int u) {
  vector<int> stk = {u};
  while (not is_root(stk.back()))
  stk.push_back(nodes[stk.back()].pa);
  for (; not stk.empty(); stk.pop_back())
   down(stk.back())
  for(int f=nodes[u].pa;!is_root(u);f=nodes[u].pa){
   if(!is_root(f))rotate(is_rch(u)==is_rch(f)?f:u);
   rotate(u);
  }
 up(u);
 void access(int u) {
  int last = 0;
  for (int last = 0; u; last = u, u = nodes[u].pa) {
   splay(u);
   nodes[u].ch[1] = last;
   up(u);
 int find_root(int u) {
  access(u); splay(u);
  int la = 0:
  for (; u; la = u, u = nodes[u].ch[0]) down(u);
  return la;
 void change_root(int u) {
 access(u); splay(u); set_rev(u);
 void link(int x, int y) {
 change_root(y); nodes[y].pa = x;
 void split(int x, int y) {
 change_root(x); access(y); splay(y);
 void cut(int x, int y) {
 split(x, y)
  nodes[y].ch[0] = nodes[x].pa = 0;
 up(y);
public:
LCT(int n = 0) : nodes(n + 1) {}
 int add(const Val &v = {}) {
 nodes.push_back(v)
  return int(nodes.size()) - 2;
 int add(Val &&v) {
 nodes.emplace_back(move(v));
  return int(nodes.size()) - 2;
 void set_val(int u, const Val &v) {
 splay(++u); nodes[u].v = v; up(u);
 Val query(int x, int y) {
 split(++x, ++y)
  return nodes[y].v_prod;
 bool connected(int u, int v) { return find_root(++u)
    == find_root(++v); }
 void add_edge(int u, int v) {
 if (++u > ++v) swap(u, v)
  edges.emplace(u, v); link(u, v);
 void del_edge(int u, int v) {
 auto k = minmax(++u, ++v);
```

```
if (auto it = edges.find(k); it != edges.end()) {
                                                                } // sz(L) == k
   edges.erase(it); cut(u, v);
                                                                int getRank(node *o) { // 1-base
 }
                                                                 int r = sz(o->lc) + 1;
};
                                                                 for (;o->pa != nullptr; o = o->pa)
                                                                  if (o->pa->rc == o) r += sz(o->pa->lc) + 1;
2.3 LiChao Segment Tree
                                                                 return r:
struct L {
int m, k, id;
L() : id(-1) {}
L(int a, int b, int c) : m(a), k(b), id(c) {}
                                                                #undef sz
                                                               2.5 Linear Basis
 int at(int x) { return m * x + k; }
                                                               template <int BITS> struct Basis {
class LiChao {
                                                                array<pair<uint64_t, int>, BITS> b;
                                                                Basis() { b.fill({0, -1}); }
private:
                                                                void add(uint64_t x, int p) {
  for (int i = 0; i < BITS; ++i) if ((x >> i) & 1) {
 int n; vector<L> nodes;
static int lc(int x) { return 2 * x + 1;
static int rc(int x) { return 2 * x + 2;
                                                                  if (b[i].first == 0) {
 void insert(int 1, int r, int id, L ln) {
                                                                  b[i] = \{x, p\};
  int m = (1 + r) >> 1;
                                                                   return;
  if (nodes[id].id == -1) {
                                                                  } else if (b[i].second > p) {
   nodes[id] = ln;
                                                                   swap(b[i].first, x), swap(b[i].second, p);
   return:
                                                                  x ^= b[i].first;
  bool atLeft = nodes[id].at(1) < ln.at(1);</pre>
                                                                 }
  if (nodes[id].at(m) < ln.at(m)) {</pre>
  atLeft ^= 1
                                                                bool ok(uint64_t x, int p) {
   swap(nodes[id], ln);
                                                                 for (int i = 0; i < BITS; ++i)</pre>
                                                                  if (((x >> i) \& 1) \text{ and } b[i].second < p)
                                                                   x ^= b[i].first;
  if (r - l == 1) return;
  if (atLeft) insert(l, m, lc(id), ln);
                                                                 return x == 0;
  else insert(m, r, rc(id), ln);
                                                              };
 int query(int 1, int r, int id, int x) {
                                                               2.6 Binary Search On Segment Tree
 int ret = 0, m = (1 + r) >> 1;
if (nodes[id].id != -1)
                                                               // find_first = x -> minimal x s.t. check( [a, x) )
                                                               // find_last = x \rightarrow \max x x .t. check([x, b))
  ret = nodes[id].at(x);
  if (r - 1 == 1) return ret;
                                                               template <typename C>
  if (x < m) return max(ret, query(1, m, lc(id), x));
return max(ret, query(m, r, rc(id), x));</pre>
                                                               int find_first(int 1, const C &check) {
                                                                if (1 >= n) return n + 1;
                                                                1 += sz;
                                                                for (int i = height; i > 0; i--)
public:
                                                                 propagate(1 >> i);
 LiChao(int n_{-}) : n(n_{-}), nodes(n * 4) {}
                                                                Monoid sum = identity;
 void insert(L ln) { insert(0, n, 0, ln); }
                                                                do {
 int query(int x) { return query(0, n, 0, x); }
                                                                 while ((1 & 1) == 0) 1 >>= 1;
                                                                 if (check(f(sum, data[1]))) {
                                                                  while (1 < sz) {
2.4 Treap
                                                                   propagate(1);
namespace Treap{
                                                                   1 <<= 1;
 #define sz( x ) ( ( x ) ? ( ( x )->size ) : 0 )
                                                                   auto nxt = f(sum, data[1]);
 struct node{
                                                                   if (not check(nxt)) {
                                                                    sum = nxt;
  int size:
  uint32_t pri;
                                                                    1++:
 node *lc, *rc, *pa;
                                                                   }
  node():size(0),pri(rand()),lc(0),rc(0),pa(0){}
  void pull() {
                                                                  return 1 + 1 - sz;
  size = 1; pa = nullptr;
   if ( lc ) { size += lc->size; lc->pa = this; }
                                                                 sum = f(sum, data[1++]);
   if ( rc ) { size += rc->size; rc->pa = this; }
                                                                } while ((1 & -1) != 1);
  }
                                                                return n + 1;
 node* merge( node* L, node* R ) {
                                                               template <typename C>
  if ( not L or not R ) return L ? L : R;
                                                               int find_last(int r, const C &check) {
  if ( L->pri > R->pri ) {
                                                                if (r <= 0) return -1;</pre>
  L->rc = merge( L->rc, R ); L->pull();
                                                                r += sz;
   return L;
                                                                for (int i = height; i > 0; i--)
  } else {
                                                                 propagate((r - 1) >> i);
   R->lc = merge( L, R->lc ); R->pull();
                                                                Monoid sum = identity;
                                                                do {
   return R;
  }
 }
                                                                 while (r > 1 and (r & 1)) r >>= 1;
 void split_by_size( node*rt,int k,node*&L,node*&R ) {
                                                                 if (check(f(data[r], sum))) {
 if ( not rt ) L = R = nullptr;
                                                                  while (r < sz) {</pre>
  else if( sz( rt->lc ) + 1 <= k ) {
                                                                   propagate(r);
                                                                   r = (r << 1) + 1;
                                                                   auto nxt = f(data[r], sum);
   split_by_size( rt->rc,k-sz(rt->lc)-1,L->rc,R );
   L->pull();
                                                                   if (not check(nxt)) {
  } else {
                                                                    sum = nxt;
                                                                    r--;
   split_by_size( rt->lc, k, L, R->lc );
   R->pull();
```

if (dfn[v]) {

```
low[u] = min(low[u], dfn[v]);
   return r - sz;
                                                                 } else {
  sum = f(data[r], sum);
                                                                  ++ch, dfs(v, u);
 } while ((r & -r) != r);
                                                                  low[u] = min(low[u], low[v]);
                                                                  if (low[v] > dfn[u])
 return -1;
                                                                   bridge[t] = true
                                                                  if (low[v] >= dfn[u])
                                                                   ap[u] = true;
3
    Graph
3.1 2-SAT (SCC)
                                                                ap[u] &= (ch != 1 or u != f);
class TwoSat{
private:
                                                              public:
 int n;
                                                               void init(int n_) {
 vector<vector<int>> rG,G,sccs;
                                                                g.assign(n = n_, vector<pair<int, int>>());
 vector<int> ord,idx;
                                                                low.assign(n, ecnt = 0);
 vector<bool> vis,result;
                                                                dfn.assign(n, 0);
 void dfs(int u){
                                                                ap.assign(n, false);
  vis[u]=true
  for(int v:G[u])
                                                               void add_edge(int u, int v) {
   if(!vis[v]) dfs(v);
                                                                g[u].emplace_back(v, ecnt);
  ord.push_back(u);
                                                                g[v].emplace_back(u, ecnt++);
 void rdfs(int u){
                                                               void solve() {
 vis[u]=false;idx[u]=sccs.size()-1;
                                                                bridge.assign(ecnt, false);
  sccs.back().push_back(u);
                                                                for (int i = 0; i < n; ++i)
  if (not dfn[i]) dfs(i, i);</pre>
  for(int v:rG[u])
   if(vis[v])rdfs(v);
                                                               bool is_ap(int x) { return ap[x]; }
public:
                                                               bool is_bridge(int x) { return bridge[x]; }
 void init(int n_){
  G.clear();G.resize(n=n_);
  rG.clear();rG.resize(n);
                                                              3.3 Centroid Decomposition
  sccs.clear();ord.clear();
                                                              struct Centroid {
  idx.resize(n);result.resize(n);
                                                               vector<vector<int64_t>> Dist;
                                                               vector<int> Pa, Dep;
 void add_edge(int u,int v){
                                                               vector<int64_t> Sub, Sub2;
 G[u].push_back(v);rG[v].push_back(u);
                                                               vector<int> Cnt, Cnt2;
                                                               vector<int> vis, sz, mx, tmp
 void orr(int x,int y){
                                                               void DfsSz(int x) {
 if ((x^y)==1)return
                                                                vis[x] = true; sz[x] = 1; mx[x] = 0;
  add_edge(x^1,y); add_edge(y^1,x);
                                                                for (auto [u, w] : g[x]) {
  if (vis[u]) continue;
 bool solve(){
                                                                 DfsSz(u);
  vis.clear();vis.resize(n);
                                                                 sz[x] += sz[u]
  for(int i=0;i<n;++i)</pre>
                                                                 mx[x] = max(mx[x], sz[u]);
  if(not vis[i])dfs(i);
  reverse(ord.begin(),ord.end());
                                                                tmp.push_back(x);
  for (int u:ord){
   if(!vis[u])continue;
                                                               void DfsDist(int x, int64_t D = 0) {
   sccs.push_back(vector<int>());
                                                                Dist[x].push_back(D); vis[x] = true;
   rdfs(u);
                                                                for (auto [u, w] : g[x])
  if (not vis[u]) DfsDist(u, D + w);
  for(int i=0;i<n;i+=2)</pre>
   if(idx[i]==idx[i+1])
                                                               void DfsCen(int x, int D = 0, int p = -1) {
    return false;
                                                                tmp.clear(); DfsSz(x);
  vector<bool> c(sccs.size());
                                                                int M = tmp.size();
  for(size_t i=0;i<sccs.size();++i){</pre>
                                                                int C = -1;
   for(auto sij : sccs[i]){
                                                                for (int u : tmp) {
    result[sij]=c[i];
                                                                 if (max(M - sz[u], mx[u]) * 2 <= M) C = u;
    c[idx[sij^1]]=!c[i];
                                                                 vis[u] = false;
   }
  }
                                                                DfsDist(C);
  return true;
                                                                for (int u : tmp) vis[u] = false;
Pa[C] = p; vis[C] = true; Dep[C] = D;
 bool get(int x){return result[x];}
                                                                for (auto [u, w] : g[C])
 int get_id(int x){return idx[x];}
                                                                 if (not vis[u]) DfsCen(u, D + 1, C);
 int count(){return sccs.size();}
} sat2;
                                                               Centroid(int N, vector<vector<pair<int,int>>> g)
                                                                : Sub(N), Sub2(N), Cnt(N), Cnt2(N), Dist(N),
3.2 BCC
                                                                Pa(N), Dep(N), vis(N), sz(N), mx(N)
class BCC {
                                                                { DfsCen(0); }
private:
                                                               void Mark(int v) {
 int n, ecnt;
                                                                int x = v, z = -1
                                                                for (int i = Dep[v]; i >= 0; --i) {
 vector<vector<pair<int, int>>> g;
 vector<int> dfn, low;
                                                                 Sub[x] += Dist[v][i]; Cnt[x]++;
 vector<bool> ap, bridge;
void dfs(int u, int f) {
                                                                 if (z != -1) +
                                                                  Sub2[z] += Dist[v][i];
  dfn[u] = low[u] = dfn[f] + 1;
                                                                  Cnt2[z]++;
  int ch = 0;
  for (auto [v, t] : g[u]) if (v != f) {
                                                                 z = x; x = Pa[x];
```

void merge(int x, int y) { fa[x] = y; }

```
int find(int x, int c = 0) {
                                                                   if (fa[x] == x) return c ? -1 : x;
 int64_t Query(int v) {
                                                                   int p = find(fa[x], 1);
if (p == -1) return c ? fa[x] : val[x];
  int64_t res = 0;
  int x = v, z = -1
                                                                   if (sdom[val[x]]>sdom[val[fa[x]]]) val[x]=val[fa[x]];
  for (int i = Dep[v]; i >= 0; --i) {
                                                                   fa[x] = p;
return c ? p : val[x];
   res += Sub[x] + 1LL * Cnt[x] * Dist[v][i];
   if (z != -1) res-=Sub2[z]+1LL*Cnt2[z]*Dist[v][i];
   z = x; x = Pa[x];
                                                                 vector<int> build(int s, int n) {
// return the father of each node in the dominator tree
  return res:
 }
                                                                  // p[i] = -2 if i is unreachable from s
};
                                                                   dfs(s);
                                                                   for (int i = tk - 1; i >= 0; --i) {
  for (int u:r[i]) sdom[i]=min(sdom[i],sdom[find(u)]);
3.4
      Directed Minimum Spanning Tree
                                                                    if (i) rdom[sdom[i]].push_back(i);
struct Edge { int u, v, w; };
struct DirectedMST { // find maximum
                                                                    for (int &u : rdom[i]) {
 int solve(vector<Edge> E, int root, int n) {
                                                                     int p = find(u);
                                                                     if (sdom[p] == i) dom[u] = i;
  int ans = 0:
                                                                     else dom[u] = p;
  while (true) {
   // find best in edge
   vector<int> in(n, -inf), prv(n, -1);
                                                                    if (i) merge(i, rp[i]);
   for (auto e : E)
                                                                   vector<int> p(n, -2); p[s] = -1;
for (int i = 1; i < tk; ++i)</pre>
    if (e.u != e.v && e.w > in[e.v]) {
     in[e.v] = e.w;
     prv[e.v] = e.u;
                                                                    if (sdom[i] != dom[i]) dom[i] = dom[dom[i]];
                                                                   for (int i = 1; i < tk; ++i) p[rev[i]] = rev[dom[i]];</pre>
   in[root] = 0; prv[root] = -1;
                                                                   return p;
   for (int i = 0; i < n; i++)</pre>
    if (in[i] == -inf) return -inf;
                                                                  3.6 Edge Coloring
   // find cycle
                                                                  // max(d_u) + 1 edge coloring, time: O(NM)
   int tot = 0;
   vector < int > id(n, -1), vis(n, -1);
                                                                  int C[kN][kN], G[kN][kN]; // 1-based, G: ans
   for (int i = 0; i < n; i++) {
                                                                  void clear(int N) {
    ans += in[i];
                                                                   for (int i = 0; i <= N; i++)</pre>
                                                                    for (int j = 0; j <= \hat{N}; j++)
    for (int x = i; x != -1 && id[x] == -1; x = prv[x])
                                                                      C[i][j] = G[i][j] = 0;
     if (vis[x] == i) {
      for (int y = prv[x]; y != x; y = prv[y])
                                                                  void solve(vector<pair<int, int>> &E, int N) {
                                                                   int X[kN] = {}, a;
auto update = [&](int u) {
        id[y] = tot;
      id[x] = tot++;
      break;
                                                                    for (X[u] = 1; C[u][X[u]]; X[u]++);
     }
                                                                   auto color = [&](int u, int v, int c) {
     vis[x] = i;
                                                                    int p = G[u][v];
                                                                    G[u][v] = G[v][u] = c;
   if (!tot) return ans;
                                                                    C[u][c] = v, C[v][c] = u;
   for (int i = 0; i < n; i++)</pre>
                                                                    C[u][p] = C[v][p] = 0;
    if (id[i] == -1) id[i] = tot++;
                                                                    if(p) X[u] = X[v] = p
   for (auto &e : E) {
                                                                    else update(u), update(v);
    if (id[e.u] != id[e.v]) e.w -= in[e.v];
                                                                    return p:
    e.u = id[e.u], e.v = id[e.v];
                                                                   auto flip = [&](int u, int c1, int c2) {
                                                                    int p = C[u][c1];
   n = tot; root = id[root];
                                                                    swap(C[u][c1], C[u][c2]);
if (p) G[u][p] = G[p][u] = c2;
if (!C[u][c1]) X[u] = c1;
  }
} DMST:
                                                                    if (!C[u][c2]) X[u] = c2;
3.5 Dominator Tree
                                                                    return p:
namespace dominator {
                                                                   for (int i = 1; i <= N; i++) X[i] = 1;
for (int t = 0; t < E.size(); t++) {
  auto [u, v] = E[t];</pre>
vector<int> g[maxn], r[maxn], rdom[maxn];
int dfn[maxn], rev[maxn], fa[maxn], sdom[maxn];
int dom[maxn], val[maxn], rp[maxn], tk;
void init(int n) {
                                                                    int v0 = v, c = X[u], c0 = c, d;
 // vertices are numbered from 0 to n - 1
                                                                    vector<pair<int, int>> L; int vst[kN] = {};
 fill(dfn, dfn + n, -1); fill(rev, rev + n, -1);
                                                                    while (!G[u][v0]) {
 fill(fa, fa + n, -1); fill(val, val + n, -1);
                                                                     L.emplace_back(v, d = X[v]);
 fill(sdom, sdom + n, -1); fill(rp, rp + n, -1);
                                                                     if (!C[v][c]) for(a=L.size()-1;a>=0;a--)
fill(dom, dom + n, -1); tk = 0;
for (int i = 0; i < n; ++i) {
                                                                     c = color(u, L[a].first, c);
else if(!C[u][d])for(a=L.size()-1;a>=0;a--)
  g[i].clear(); r[i].clear(); rdom[i].clear();
                                                                       color(u, L[a].first, L[a].second);
                                                                     else if (vst[d]) break
                                                                     else vst[d] = 1, v = C[u][d];
void add_edge(int x, int y) { g[x].push_back(y); }
void dfs(int x) {
                                                                    if (!G[u][v0]) {
 rev[dfn[x] = tk] = x;
                                                                     for (; v; v = flip(v, c, d), swap(c, d));
                                                                     if (C[u][c0]) { a = int(L.size()) - 1;
 fa[tk] = sdom[tk] = val[tk] = tk; tk ++;
for (int u : g[x]) {
  if (dfn[u] == -1) dfs(u), rp[dfn[u]] = dfn[x];
                                                                      while (--a >= 0 && L[a].second != c);
                                                                      for(;a>=0;a--)color(u,L[a].first,L[a].second);
  r[dfn[u]].push_back(dfn[x]);
                                                                     } else t--;
```

3.7 Lowbit Decomposition

```
class LBD {
 int timer, chains;
 vector<vector<int>> G;
 vector<int> t1, tr, chain, head, dep, pa;
 // chains : number of chain
 // tl, tr[u] : subtree interval in the seq. of u
 // head[i] : head of the chain i
 // chian[u] : chain id of the chain u is on
 void predfs(int u, int f) {
dep[u] = dep[pa[u] = f] + 1;
  for (int v : G[u]) if (v != f) {
   predfs(v, u);
   if (lowbit(chain[u]) < lowbit(chain[v]))</pre>
    chain[u] = chain[v];
  if (chain[u] == 0) chain[u] = ++chains;
 }
 void dfschain(int u, int f) {
  tl[u] = timer++;
  if (head[chain[u]] == -1)
   head[chain[u]] = u;
  for (int v : G[u])
  if (v != f and chain[v] == chain[u])
    dfschain(v, u);
  for (int v : G[u])
  if (v != f and chain[v] != chain[u])
    dfschain(v, u);
  tr[u] = timer;
public:
 LBD(\textbf{int } n) \ : \ timer(0), \ chains(0), \ G(n), \ tl(n), \ tr(n),
 G[u].push_back(v); G[v].push_back(u);
 void decompose() { predfs(0, 0); dfschain(0, 0); }
 PII get_subtree(int u) { return {tl[u], tr[u]}; }
 vector<PII> get_path(int u, int v) {
  vector<PII> res;
  while (chain[u] != chain[v]) {
   if (dep[head[chain[u]]] < dep[head[chain[v]]])</pre>
    swap(u, v)
   int s = head[chain[u]];
   res.emplace_back(tl[s], tl[u] + 1);
   u = pa[s];
  if (dep[u] < dep[v]) swap(u, v);</pre>
  res.emplace_back(tl[v], tl[u] + 1);
  return res;
};
```

Manhattan Minimum Spanning Tree

```
typedef Point<int> P;
vector<array<int, 3>> manhattanMST(vector<P> ps) {
vi id(sz(ps));
iota(all(id), 0);
vector<array<int, 3>> edges;
 rep(k, 0, 4) {
 sort(all(id), [&](int i, int j) {
  return (ps[i] - ps[j]).x < (ps[j] - ps[i]).y;</pre>
 map<int, int> sweep;
  for (int i : id) {
  for (auto it = sweep.lower_bound(-ps[i].y);
      it != sweep.end(); sweep.erase(it++)) {
    int j = it->second;
    P d = ps[i] - ps[j];
    if (d.y > d.x) break;
    edges.push_back({d.y + d.x, i, j});
   sweep[-ps[i].y] = i;
  for (P &p : ps)
   if (k \& 1) p.x = -p.x;
   else swap(p.x, p.y);
return edges; // [{w, i, j}, ...]
```

3.9 MaxClique

```
// contain a self loop u to u, than u won't in clique
template < size_t MAXN >
class MaxClique{
private:
 using bits = bitset< MAXN >;
 bits popped, G[ MAXN ], ans
 size_t deg[ MAXN ], deo[ MAXN ], n;
 void sort_by_degree() {
  popped.reset();
  for ( size_t i = 0 ; i < n ; ++ i )</pre>
    deg[ i ] = G[ i ].count();
  for ( size_t i = 0 ; i < n ; ++ i ) {
    size_t mi = MAXN, id = 0;</pre>
    for ( size_t j = 0 ; j < n ; ++ j )
  if ( not popped[ j ] and deg[ j ] < mi )</pre>
        mi = deg[id = j];
    popped[ deo[ i ] = id ] = 1;
    for( size_t u = G[ i ]._Find_first() ;
  u < n ; u = G[ i ]._Find_next( u ) )</pre>
       -- deg[ u ];
  }
 void BK( bits R, bits P, bits X ) {
  if (R.count()+P.count() <= ans.count()) return;</pre>
  if ( not P.count() and not X.count() )
   if ( R.count() > ans.count() ) ans = R;
   return:
  /* greedily chosse max degree as pivot
  bits cur = P | X; size_t pivot = 0, sz = 0;
  for ( size_t u = cur._Find_first() ;
   u < n ; u = cur._Find_next( u ) )</pre>
  if ( deg[ u ] > sz ) sz = deg[ pivot = u ];
cur = P & ( ~G[ pivot ] );
  */ // or simply choose first
  bits cur = P & (~G[ ( P | X )._Find_first() ]);
  for ( size_t u = cur._Find_first()
   u < n ; u = cur._Find_next( u ) ) {
   if ( R[ u ] ) continue;
   R[u] = 1;
   BK( R, P & G[ u ], X & G[ u ] );
   R[u] = P[u] = 0, X[u] = 1;
public:
 void init( size_t n_ ) {
  n = n_{-};
  for ( size_t i = 0 ; i < n ; ++ i )
   G[ i ].reset();
  ans.reset();
 void add_edges( int u, bits S ) { G[ u ] = S; }
void add_edge( int u, int v ) {
  G[u][v] = G[v][u] = 1;
 int solve() {
  sort_by_degree(); // or simply iota( deo... )
  for ( size_t i = 0 ; i < n ; ++ i )
   deg[ i ] = G[ i ].count();
  bits pob, nob = 0; pob.set();
  for (size_t i=n; i<MAXN; ++i) pob[i] = 0;</pre>
  for ( size_t i = 0 ; i < n ; ++ i ) {
    size_t v = deo[ i ];</pre>
   bits tmp; tmp[ v ] = 1;
   BK( tmp, pob & G[ v ], nob & G[ v ] );
   pob[v] = 0, nob[v] = 1;
  return static_cast< int >( ans.count() );
};
3.10 MaxCliqueDyn
constexpr int kN = 150;
struct MaxClique { // Maximum Clique
 bitset<kN> a[kN], cs[kN];
int ans, sol[kN], q, cur[kN], d[kN], n;
 void init(int _n) {
  n = n, ans q = 0;
```

for (int i = 0; i < n; i++) a[i].reset();</pre>

fill(d[i+1], d[i+1]+n, inf);

```
void addEdge(int u, int v) { a[u][v] = a[v][u] = 1; }
                                                                   for(int j=0; j<m; j++) {</pre>
                                                                    int v = e[j].v, u = e[j].u;
if(d[i][v]<inf && d[i+1][u]>d[i][v]+e[j].c) {
void csort(vector<int> &r, vector<int> &c)
 int mx = 1, km = max(ans - q + 1, 1), t = 0,
    m = int(r.size());
                                                                     d[i+1][u] = d[i][v]+e[j].c;
  cs[1].reset(); cs[2].reset();
                                                                     prv[i+1][u] = v;
  for (int i = 0; i < m; i++) {
                                                                     prve[i+1][u] = j;
  int p = r[i], k = 1;
   while ((cs[k] & a[p]).count()) k++;
   if (k > mx) cs[++mx + 1].reset();
                                                                  }
   cs[k][p] = 1;
  if (k < km) r[t++] = p;
                                                                 double solve(){
                                                                  // returns inf if no cycle, mmc otherwise
 c.resize(m);
                                                                  double mmc=inf;
  if (t) c[t - 1] = 0;
                                                                  int st = -1
  for (int k = km; k <= mx; k++) {</pre>
                                                                  bellman_ford();
  for (int p = int(cs[k]._Find_first());
                                                                  for(int i=0; i<n; i++) {
        < kN; p = int(cs[k]._Find_next(p))) {
                                                                   double avg=-inf;
                                                                   for(int k=0; k<n; k++) {</pre>
    r[t] = p; c[t++] = k;
                                                                    if(d[n][i]<inf-eps)</pre>
   }
 }
                                                                     avg=max(avg,(d[n][i]-d[k][i])/(n-k));
                                                                    else avg=max(avg,inf);
}
 void dfs(vector<int> &r, vector<int> &c, int 1,
                                                                   if (avg < mmc) tie(mmc, st) = tie(avg, i);</pre>
 bitset<kN> mask) {
 while (!r.empty()) {
   int p = r.back(); r.pop_back();
                                                                 FZ(vst);edgeID.clear();cycle.clear();rho.clear();
  mask[p] = 0;
                                                                  for (int i=n; !vst[st]; st=prv[i--][st]) {
   if (q + c.back() <= ans) return;</pre>
                                                                  vst[st]++;
   cur[q++] = p;
                                                                   edgeID.PB(prve[i][st]);
   vector<int> nr, nc;
                                                                  rho.PB(st);
   bitset<kN> nmask = mask & a[p];
                                                                  while (vst[st] != 2) {
   for (int i : r)
    if (a[p][i]) nr.push_back(i);
                                                                  int v = rho.back(); rho.pop_back();
                                                                   cycle.PB(v);
   if (!nr.empty()) {
   if (1 < 4) {
                                                                   vst[v]++;
     for (int i : nr)
      d[i] = int((a[i] & nmask).count());
                                                                  reverse(ALL(edgeID));
     sort(nr.begin(), nr.end(),
                                                                 edgeID.resize(SZ(cycle));
      [&](int x, int y)
                                                                  return mmc;
       return d[x] > d[y];
                                                               } mmc;
      });
  csort(nr, nc); dfs(nr, nc, l + 1, nmask);
} else if (q > ans) {
                                                               3.12
                                                                      Mo's Algorithm on Tree
   ans = q; copy(cur, cur + q, sol);
                                                                push u
                                                                 iterate subtree
   c.pop_back(); q--;
                                                                 push u
                                                               Let P = LCA(u, v) with St(u) <= St(v)
                                                               if (P == u) query[St(u), St(v)]
int solve(bitset<kN> mask) { // vertex mask
                                                               else query[Ed(u), St(v)], query[St(P), St(P)]
 vector<int> r, c;
 for (int i = 0; i < n; i++)
                                                                3.13 Virtual Tree
   if (mask[i]) r.push_back(i);
 for (int i = 0; i < n; i++)
                                                               vector<pair<int, int>> build(vector<int> vs, int r) {
                                                                vector<pair<int, int>> res;
sort(vs.begin(), vs.end(), [](int i, int j) {
  d[i] = int((a[i] & mask).count());
  sort(r.begin(), r.end(),
                                                                  return dfn[i] < dfn[j]; });</pre>
  [&](int i, int j) { return d[i] > d[j]; });
                                                                 vector<int> s = {r};
for (int v : vs) if (v != r) {
  csort(r, c);
 dfs(r, c, 1, mask);
return ans; // sol[0 ~ ans-1]
                                                                  if (int o = lca(v, s.back()); o != s.back()) {
                                                                  while (s.size() >= 2) {
  if (dfn[s[s.size() - 2]] < dfn[o]) break;</pre>
} graph;
                                                                    res.emplace_back(s[s.size() - 2], s.back());
3.11 Minimum Mean Cycle
                                                                    s.pop_back();
/* minimum mean cycle O(VE) */
                                                                  if (s.back() != o) {
struct MMC{
                                                                    res.emplace_back(o, s.back());
#define FZ(n) memset((n),0,sizeof(n))
                                                                    s.back() = o;
#define E 101010
#define V 1021
#define inf 1e9
                                                                  s.push_back(v);
struct Edge { int v,u; double c; };
 int n, m, prv[V][V], prve[V][V], vst[V];
                                                                 for (size_t i = 1; i < s.size(); ++i)</pre>
Edge e[E];
                                                                  res.emplace_back(s[i - 1], s[i]);
vector<int> edgeID, cycle, rho;
double d[V][V];
                                                                 return res; // (x, y): x->y
void init( int _n ) { n = _n; m = 0; }
// WARNING: TYPE matters
void add_edge( int vi , int ui , double ci )
{ e[ m ++ ] = { vi , ui , ci }; }
                                                                     Matching & Flow
                                                                4.1 Bipartite Matching
void bellman_ford() {
 for(int i=0; i<n; i++) d[0][i]=0;
for(int i=0; i<n; i++) {</pre>
                                                               struct BipartiteMatching {
                                                                vector<int> X[N];
```

int fX[N], fY[N], n;

```
bitset<N> vis;
 bool dfs(int x) {
                                                                 max_flow -= d;
  for (auto i : X[x]) if (not vis[i]) {
                                                                 cost += int64_t(d) * h[t];
                                                                 for (int u = t; u != s;
    u = graph[u][p[u]].to) {
   vis[i] = true;
   if (fY[i] == -1 || dfs(fY[i])) {
    fY[fX[x] = i] = x;
                                                                  auto &e = graph[u][p[u]];
    return true;
                                                                  e.flow += d;
                                                                  graph[e.to][e.rev].flow -= d;
  return false;
                                                                 return true:
 void init(int n_, int m) {
                                                                int MincostMaxflow(
  vis.reset();
                                                                 int ss, int tt, int max_flow, int64_t &cost) {
  fill(X, X + (n = n_), vector<int>());
                                                                 this->s = ss, this->t = tt;
                                                                 cost = 0;
  memset(fX, -1, sizeof(int) * n);
  memset(fY, -1, sizeof(int) * m);
                                                                 fill_n(h, n, 0);
                                                                 auto orig_max_flow = max_flow;
                                                                 while (Dijkstra(max_flow, cost) && max_flow) {}
 void add_edge(int x, int y) { X[x].push_back(y); }
 int solve() { // return how many pair matched
                                                                 return orig_max_flow - max_flow;
  int cnt = 0;
  for (int i = 0; i < n; i++) {</pre>
                                                               };
   vis.reset()
                                                               4.3 Dinic
   cnt += dfs(i);
                                                               template <typename Cap = int64_t>
  return cnt;
                                                               class Dinic{
                                                               private:
};
                                                                 struct E{
                                                                   int to, rev;
4.2 Dijkstra Cost Flow
                                                                   Cap cap;
// kN = #(vertices)
// MCMF.{Init, AddEdge, MincostMaxflow}
                                                                 int n, st, ed;
// MincostMaxflow(source, sink, flow_limit, &cost)
                                                                 vector<vector<E>> G;
   => flow
                                                                 vector<int> lv, idx;
using Pii = pair<int, int>;
                                                                 bool BFS(){
constexpr int kInf = 0x3f3f3f3f, kN = 500;
                                                                   lv.assign(n, -1);
struct Edge {
                                                                   queue<int> bfs;
 int to, rev, cost, flow;
                                                                   bfs.push(st); lv[st] = 0;
                                                                   while (not bfs.empty()){
struct MCMF { // 0-based
                                                                     int u = bfs.front(); bfs.pop();
 int n{}, m{}, s{}, t{};
                                                                     for (auto e: G[u]) {
 vector<Edge> graph[kN];
                                                                       if (e.cap <= 0 or lv[e.to]!=-1) continue;</pre>
 // Larger range for relabeling
                                                                       bfs.push(e.to); lv[e.to] = lv[u] + 1;
 int64_t dis[kN] = {}, h[kN] = {};
                                                                     }
 int p[kN] = {};
 void Init(int nn) {
                                                                   return lv[ed] != -1;
 n = nn;
  for (int i = 0; i < n; i++) graph[i].clear();</pre>
                                                                 Cap DFS(int u, Cap f){
                                                                   if (u == ed) return f;
 void AddEdge(int u, int v, int f, int c) {
                                                                   Cap ret = 0;
  graph[u].push_back({v,
                                                                   for(int &i = idx[u]; i < int(G[u].size()); ++i) {</pre>
   static_cast<int>(graph[v].size()), c, f});
                                                                     auto &e = G[u][i];
  graph[v].push_back(
                                                                     if (e.cap <= 0 or lv[e.to]!=lv[u]+1) continue;</pre>
   {u, static_cast<int>(graph[u].size()) - 1,
                                                                     Cap nf = DFS(e.to, min(f, e.cap));
ret += nf; e.cap -= nf; f -= nf;
    -c, 0});
                                                                     G[e.to][e.rev].cap += nf;
 bool Dijkstra(int &max_flow, int64_t &cost) {
                                                                     if (f == 0) return ret;
  priority_queue<Pii, vector<Pii>, greater<>> pq;
  fill_n(dis, n, kInf);
                                                                   if (ret == 0) lv[u] = -1;
  dis[s] = 0;
                                                                   return ret;
  pq.emplace(0, s);
  while (!pq.empty()) {
                                                               public:
                                                                 void init(int n_) { G.assign(n = n_, vector<E>()); }
void add_edge(int u, int v, Cap c){
  G[u].push_back({v, int(G[v].size()), c});
   auto u = pq.top();
   pq.pop();
   int v = u.second;
   if (dis[v] < u.first) continue;</pre>
                                                                   G[v].push_back({u, int(G[u].size())-1, 0});
   for (auto &e : graph[v]) {
    auto new_dis =
                                                                 Cap max_flow(int st_, int ed_){
     dis[v] + e.cost + h[v] - h[e.to];
                                                                   st = st_, ed = ed_; Cap ret = 0;
    if (e.flow > 0 && dis[e.to] > new_dis) {
                                                                   while (BFS()) {
     dis[e.to] = new_dis;
                                                                     idx.assign(n, 0);
     p[e.to] = e.rev;
                                                                     Cap f = DFS(st, numeric_limits<Cap>::max());
     pq.emplace(dis[e.to], e.to);
                                                                     ret += f;
                                                                     if (f == 0) break;
   }
                                                                   return ret;
  if (dis[t] == kInf) return false;
                                                                 }
  for (int i = 0; i < n; i++) h[i] += dis[i];
                                                              };
  int d = max_flow;
  for (int u = t; u != s;
                                                               4.4
                                                                     Flow Models
     u = graph[u][p[u]].to) {
                                                                  · Maximum/Minimum flow with lower bound / Circulation problem
   auto &e = graph[u][p[u]];
                                                                      1. Construct super source S and sink T.
   d = min(d, graph[e.to][e.rev].flow);
                                                                      2. For each edge (x,y,l,u), connect x \to y with capacity u-l.
```

- 3. For each vertex \emph{v} , denote by $in(\emph{v})$ the difference between the sum of incoming lower bounds and the sum of outgoing lower bounds.
- 4. If in(v)>0, connect $S\to v$ with capacity in(v), otherwise, connect $v \rightarrow T$ with capacity -in(v).
 - To maximize, connect t o s with capacity ∞ (skip this in circulation problem), and let f be the maximum flow from S to T. If $f
 eq \sum_{v \in V, in(v) > 0} in(v)$, there's no solution. Otherwise, the
 - maximum flow from s to t is the answer. To minimize, let f be the maximum flow from S to T. Connect t o s with capacity ∞ and let the flow from S to T be f'. If $f+f'\neq \sum_{v\in V, in(v)>0}in(v)$, there's no solution. Otherwise, f' is the answer.
- 5. The solution of each edge e is $l_e + f_e \mbox{,}$ where f_e corresponds to the flow of edge \boldsymbol{e} on the graph.
- ullet Construct minimum vertex cover from maximum matching M on bipartite graph(X,Y)
 - 1. Redirect every edge: $y \to x$ if $(x,y) \in M$, $x \to y$ otherwise. 2. DFS from unmatched vertices in X.

 - 3. $x \in X$ is chosen iff x is unvisited.
 - 4. $y \in Y$ is chosen iff y is visited.
- · Minimum cost cyclic flow
 - 1. Consruct super source ${\cal S}$ and sink ${\cal T}$
 - 2. For each edge (x,y,c), connect $x \to y$ with (cost,cap)=(c,1) if c>0, otherwise connect $y \to x$ with (cost,cap)=(-c,1)
 - 3. For each edge with c < 0, sum these cost as K, then increase d(y)
 - by 1, decrease d(x) by 1 4. For each vertex v with d(v)>0, connect $S\to v$ with (cost,cap)=
 - (0, d(v))5. For each vertex v with d(v) < 0, connect $v \to T$ with (cost, cap) =
 - (0, -d(v))
 - 6. Flow from S to T, the answer is the cost of the flow C+K
- · Maximum density induced subgraph
 - 1. Binary search on answer, suppose we're checking answer ${\cal T}$
 - 2. Construct a max flow model, let ${\cal K}$ be the sum of all weights
 - 3. Connect source $s \to v, v \in G$ with capacity K
 - 4. For each edge (u, v, w) in G, connect $u \to v$ and $v \to u$ with capacity
 - 5. For $v \in \mathit{G}$, connect it with sink $v \to t$ with capacity K + 2T - $\left(\sum_{e \in E(v)} w(e)\right) - 2w(v)$
 - 6. T is a valid answer if the maximum flow f < K|V|
- · Minimum weight edge cover
 - 1. For each $v \in V$ create a copy v', and connect $u' \to v'$ with weight
 - 2. Connect $v \to v'$ with weight $2\mu(v)$, where $\mu(v)$ is the cost of the cheapest edge incident to v.
 - 3. Find the minimum weight perfect matching on G'.
- · Project selection problem
 - 1. If $p_v>0$, create edge (s,v) with capacity p_v ; otherwise, create edge (v,t) with capacity $-p_v$. 2. Create edge (u,v) with capacity w with w being the cost of choosing
 - u without choosing v
 - 3. The mincut is equivalent to the maximum profit of a subset of
- 0/1 quadratic programming

$$\sum_{x} c_{x} x + \sum_{y} c_{y} \bar{y} + \sum_{xy} c_{xy} x \bar{y} + \sum_{xyx'y'} c_{xyx'y'} (x \bar{y} + x' \bar{y'})$$

can be minimized by the mincut of the following graph:

- 1. Create edge (x,t) with capacity c_x and create edge (s,y) with capacity c_y
- 2. Create edge (x,y) with capacity c_{xy} . 3. Create edge (x,y) and edge (x',y') with capacity $c_{xyx'y'}$.

General Graph Matching

```
namespace matching {
int fa[kN], pre[kN], match[kN], s[kN], v[kN];
vector<int> g[kN];
queue<int> q;
void Init(int n) {
for (int i = 0; i <= n; ++i) match[i] = pre[i] = n;
for (int i = 0; i < n; ++i) g[i].clear();</pre>
void AddEdge(int u, int v) {
g[u].push_back(v);
g[v].push_back(u);
int Find(int u) {
return u == fa[u] ? u : fa[u] = Find(fa[u]);
int LCA(int x, int y, int n) {
  static int tk = 0; tk++;
x = Find(x), y = Find(y);
for (; ; swap(x, y)) {
  if (x != n) {
   if (v[x] == tk) return x;
```

```
v[x] = tk;
   x = Find(pre[match[x]]);
void Blossom(int x, int y, int 1) {
 while (Find(x) != 1) {
  pre[x] = y, y = match[x];
  if (s[y] == 1) q.push(y), s[y] = 0;
if (fa[x] == x) fa[x] = 1;
if (fa[y] == y) fa[y] = 1;
  x = pre[y];
 }
bool Bfs(int r, int n) {
 for (int i = 0; i <= n; ++i) fa[i] = i, s[i] = -1;
 while (!q.empty()) q.pop();
 q.push(r);
 s[r] = 0;
 while (!q.empty()) {
  int x = q.front(); q.pop();
  for (int u : g[x]) {
   if (s[u] == -1)
    pre[u] = x, s[u] = 1;
    if (match[u] == n) {
     for (int a = u, b = x, last; b != n; a = last, b =
     pre[a])
      last = match[b], match[b] = a, match[a] = b;
     return true;
    q.push(match[u]);
    s[match[u]] = 0;
   } else if (!s[u] && Find(u) != Find(x)) {
    int 1 = LCA(u, x, n);
    Blossom(x, u, 1);
    Blossom(u, x, 1);
  }
 return false;
int Solve(int n) {
 int res = 0;
 for (int x = 0; x < n; ++x) {
  if (match[x] == n) res += Bfs(x, n);
 return res;
}}
4.6 Global Min-Cut
```

```
const int maxn = 500 + 5;
int w[maxn][maxn], g[maxn];
bool v[maxn], del[maxn];
void add_edge(int x, int y, int c) {
w[x][y] += c; w[y][x] += c;
pair<int, int> phase(int n) {
memset(v, false, sizeof(v));
 memset(g, 0, sizeof(g));
 int s = -1, t = -1;
 while (true) {
  int c = -1;
  for (int i = 0; i < n; ++i) {
   if (del[i] || v[i]) continue;
   if (c == -1 \mid | g[i] > g[c]) c = i;
  }
  if (c == -1) break;
  v[s = t, t = c] = true;
for (int i = 0; i < n; ++i) {
   if (del[i] || v[i]) continue;
   g[i] += w[c][i];
 return make_pair(s, t);
int mincut(int n) {
 int cut = 1e9;
 memset(del, false, sizeof(del));
 for (int i = 0; i < n - 1; ++i) {
  int s, t; tie(s, t) = phase(n);
del[t] = true; cut = min(cut, g[t]);
  for (int j = 0; j < n; ++j) {
```

```
w[s][j] += w[t][j]; w[j][s] += w[j][t];
                                                               11d res = 0:
                                                               for (int i = 0; i < n; ++i) res += w[i][fl[i]];</pre>
                                                               return res;
return cut;
                                                            } km;
4.7 GomoryHu Tree
                                                             4.9 Minimum Cost Circulation
                                                            struct Edge { int to, cap, rev, cost; };
int g[maxn];
vector<edge> GomoryHu(int n){
                                                            vector<Edge> g[kN];
                                                            int dist[kN], pv[kN], ed[kN];
bool mark[kN];
vector<edge> rt;
for(int i=1;i<=n;++i)g[i]=1;</pre>
for(int i=2;i<=n;++i){
                                                            int NegativeCycle(int n) {
                                                             memset(mark, false, sizeof(mark));
memset(dist, 0, sizeof(dist));
 int t=g[i];
  flow.reset();
                // clear flows on all edge
  rt.push_back({i,t,flow(i,t)});
                                                              int upd = -1;
 flow.walk(i); // bfs points that connected to i (use
                                                              for (int i = 0; i <= n; ++i)
                                                               for (int j = 0; j < n; ++j) {
    edges not fully flow)
                                                                int idx = 0;
  for(int j=i+1;j<=n;++j){</pre>
  if(g[j]==t && flow.connect(j))g[j]=i; // check if i
                                                                for (auto &e : g[j])
                                                                 if(e.cap > 0 && dist[e.to] > dist[j] + e.cost){
                                                                  dist[e.to] = dist[j] + e.cost;
                                                                  pv[e.to] = j, ed[e.to] = idx;
return rt;
                                                                  if (i == n) {
                                                                   upd = i:
                                                                   while(!mark[upd])mark[upd]=1,upd=pv[upd];
4.8 Kuhn Munkres
                                                                   return upd:
class KM {
                                                                  }
private:
static constexpr lld INF = 1LL << 60;</pre>
                                                                 idx++;
vector<lld> h1,hr,slk;
vector<int> fl,fr,pre,qu;
                                                              }
vector<vector<lld>> w;
vector<bool> v1,vr;
                                                              return -1;
int n, ql, qr;
bool check(int x) {
                                                            int Solve(int n) {
 if (v1[x] = true, f1[x] != -1)
                                                              int rt = -1, ans = 0;
   return vr[qu[qr++] = f1[x]] = true;
                                                              while ((rt = NegativeCycle(n)) >= 0) {
 while (x != -1) swap(x, fr[fl[x] = pre[x]]);
                                                               memset(mark, false, sizeof(mark));
  return false:
                                                               vector<pair<int, int>> cyc;
                                                               while (!mark[rt]) {
 void bfs(int s) {
                                                                cyc.emplace_back(pv[rt], ed[rt]);
 fill(slk.begin(), slk.end(), INF);
                                                                mark[rt] = true;
  fill(vl.begin(), vl.end(), false)
                                                               rt = pv[rt];
 fill(vr.begin(), vr.end(), false);
  ql = qr = 0;
                                                               reverse(cyc.begin(), cyc.end());
  vr[qu[qr++] = s] = true;
                                                               int cap = kInf;
  while (true) {
                                                               for (auto &i : cyc) {
                                                               auto &e = g[i.first][i.second];
   11d d:
                                                                cap = min(cap, e.cap);
   while (ql < qr) {</pre>
    for (int x = 0, y = qu[ql++]; x < n; ++x) {
     if(!v1[x]&&slk[x]>=(d=h1[x]+hr[y]-w[x][y])){
                                                               for (auto &i : cyc)
      if (pre[x] = y, d) slk[x] = d;
                                                               auto &e = g[i.first][i.second];
      else if (!check(x)) return;
                                                                e.cap -= cap;
     }
                                                                g[e.to][e.rev].cap += cap;
                                                                ans += e.cost * cap;
   d = INF;
   for (int x = 0; x < n; ++x)
                                                              return ans;
    if (!v1[x] && d > s1k[x]) d = s1k[x];
   for (int x = 0; x < n; ++x) {
                                                             4.10 Minimum Cost Maximum Flow
   if (vl[x]) hl[x] += d;
                                                            class MiniCostMaxiFlow{
    else slk[x] -= d;
                                                              using Cap = int; using Wei = int64_t;
    if (vr[x]) hr[x] -= d;
                                                              using PCW = pair<Cap,Wei>
                                                              static constexpr Cap INF_CAP = 1 << 30;</pre>
   for (int x = 0; x < n; ++x)
    if (!v1[x] && !slk[x] && !check(x)) return;
                                                              static constexpr Wei INF_WEI = 1LL<<60;</pre>
                                                            private:
                                                              struct Edge{
public:
                                                               int to, back;
void init( int n_ ) {
                                                              Cap cap; Wei wei;
 qu.resize(n = n_);
fl.assign(n, -1); fr.assign(n, -1);
                                                               Edge() {}
                                                              Edge(int a,int b, Cap c, Wei d):
 hr.assign(n, 0); hl.resize(n);
                                                                to(a),back(b),cap(c),wei(d) {}
 w.assign(n, vector<lld>(n));
 slk.resize(n); pre.resize(n);
                                                              int ori, edd;
                                                              vector<vector<Edge>> G;
 vl.resize(n); vr.resize(n);
}
                                                              vector<int> fa, wh;
 void set_edge( int u, int v, lld x ) {w[u][v] = x;}
                                                              vector<bool> inq;
11d solve() {
                                                              vector<Wei> dis;
 for (int i = 0; i < n; ++i)
                                                              PCW SPFA(){
  hl[i] = *max_element(w[i].begin(), w[i].end());
                                                               fill(inq.begin(),inq.end(),false);
  for (int i = 0; i < n; ++i) bfs(i);</pre>
                                                               fill(dis.begin(), dis.end(), INF_WEI);
```

if $(x \le n)$ q.push(x);

```
queue<int> qq; qq.push(ori);
                                                               else for (size_t i = 0; i < flo[x].size(); i++)</pre>
                                                                 q_push(flo[x][i]);
  dis[ori] = 0;
  while(not qq.empty()){
   int u=qq.front();qq.pop();
                                                              void set_st(int x, int b) {
   inq[u] = false;
                                                               st[x] = b;
   for(int i=0;i<SZ(G[u]);++i){</pre>
                                                               if (x > n) for (size_t i = 0; i < flo[x].size(); ++i)</pre>
                                                                  set_st(flo[x][i], b);
    Edge e=G[u][i];
    int v=e.to; Wei d=e.wei;
    if(e.cap<=0||dis[v]<=dis[u]+d)</pre>
                                                              int get_pr(int b, int xr) {
     continue;
                                                               int pr = find(flo[b].begin(), flo[b].end(), xr) - flo
    dis[v] = dis[u] + d;
                                                                 [b].begin()
    fa[v] = u, wh[v] = i;
                                                               if (pr % 2 == 1) {
                                                                reverse(flo[b].begin() + 1, flo[b].end());
    if (inq[v]) continue;
    qq.push(v);
                                                                return (int)flo[b].size() - pr;
    inq[v] = true;
                                                               return pr;
  if(dis[edd]==INF_WEI) return {-1, -1};
                                                              void set_match(int u, int v) {
                                                               match[u] = g[u][v].v;
 Cap mw=INF_CAP;
  for(int i=edd;i!=ori;i=fa[i])
                                                               if (u <= n) return;</pre>
  mw=min(mw,G[fa[i]][wh[i]].cap);
                                                               edge e = g[u][v];
  for (int i=edd;i!=ori;i=fa[i]){
                                                               int xr = flo_from[u][e.u], pr = get_pr(u, xr)
   auto &eg=G[fa[i]][wh[i]];
                                                               for (int i = 0; i < pr; ++i) set_match(flo[u][i], flo</pre>
   eg.cap -= mw:
                                                                 [u][i ^ 1]);
  G[eg.to][eg.back].cap+=mw;
                                                               set_match(xr, v);
                                                               rotate(flo[u].begin(), flo[u].begin() + pr, flo[u].
  return {mw, dis[edd]};
                                                                 end());
public:
                                                              void augment(int u, int v) {
void init(int n){
                                                               for (; ; ) {
  G.clear();G.resize(n);
                                                                int xnv = st[match[u]];
                                                                set_match(u, v);
  fa.resize(n);wh.resize(n);
                                                                if (!xnv) return;
  inq.resize(n); dis.resize(n);
                                                                set_match(xnv, st[pa[xnv]]);
void add_edge(int st, int ed, Cap c, Wei w){
                                                                u = st[pa[xnv]], v = xnv;
 G[st].emplace_back(ed,SZ(G[ed]),c,w);
 G[ed].emplace_back(st,SZ(G[st])-1,0,-w);
                                                              int get_lca(int u, int v) {
PCW solve(int a, int b){
                                                               static int t = 0;
 ori = a, edd = b:
                                                               for (++t; u \mid \mid v; swap(u, v)) {
 Cap cc=0; Wei ww=0;
                                                                if (u == 0) continue;
                                                                if (vis[u] == t) return u;
 while(true){
  PCW ret=SPFA();
                                                                vis[u] = t;
   if(ret.first==-1) break;
                                                                u = st[match[u]];
  cc+=ret.first;
ww+=ret.first * ret.second;
                                                                if (u) u = st[pa[u]];
                                                               }
                                                               return 0:
 return {cc,ww};
                                                              void add_blossom(int u, int lca, int v) {
} mcmf;
                                                               int b = n + 1;
                                                               while (b \le n_x \& st[b]) ++b;
4.11
     Maximum Weight Graph Matching
                                                               if (b > n_x) ++n_x;
                                                               lab[b] = 0, S[b] = 0
struct WeightGraph {
static const int inf = INT_MAX;
                                                               match[b] = match[lca];
static const int maxn = 514;
                                                               flo[b].clear();
                                                               flo[b].push_back(lca);
struct edge {
                                                               for (int x = u, y; x != lca; x = st[pa[y]])
 int u, v, w;
                                                                flo[b].push_back(x), flo[b].push_back(y = st[match[x
 edge(){}
  edge(int u, int v, int w): u(u), v(v), w(w) {}
                                                                 ]]), q_push(y);
                                                               reverse(flo[b].begin() + 1, flo[b].end())
                                                               for (int x = v, y; x != lca; x = st[pa[y]])
int n, n_x;
edge g[maxn * 2][maxn * 2];
                                                                flo[b].push_back(x), flo[b].push_back(y = st[match[x
int lab[maxn * 2];
                                                                 ]]), q_push(y);
                                                               set_st(b, b);
int match[maxn * 2], slack[maxn * 2], st[maxn * 2], pa
                                                               for (int x = 1; x <= n_x; ++x) g[b][x].w = g[x][b].w
 int flo_from[maxn * 2][maxn + 1], S[maxn * 2], vis[
    maxn * 2];
                                                               for (int x = 1; x <= n; ++x) flo_from[b][x] = 0;
                                                               for (size_t i = 0; i < flo[b].size(); ++i) {</pre>
vector<int> flo[maxn * 2];
                                                                int xs = flo[b][i];
queue<int> q;
                                                                for (int x = 1; x <= n_x; ++x)
int e_delta(const edge &e) { return lab[e.u] + lab[e.v
                                                                 if (g[b][x].w == 0 \mid \mid e_delta(g[xs][x]) < e_delta(g[xs][x])
    ] - g[e.u][e.v].w * 2; }
 void update_slack(int u, int x) { if (!slack[x] ||
                                                                 [b][x]))
    e_delta(g[u][x]) < e_delta(g[slack[x]][x])) slack[x]
                                                                  g[b][x] = g[xs][x], g[x][b] = g[x][xs];
    ] = u; }
                                                                for (int x = 1; x <= n; ++x)
                                                                 if (flo_from[xs][x]) flo_from[b][x] = xs;
 void set_slack(int x) {
 slack[x] = 0;
  for (int u = 1; u <= n; ++u)</pre>
                                                               set_slack(b);
   if (g[u][x].w > 0 \&\& st[u] != x \&\& S[st[u]] == 0)
   update_slack(u, x);
                                                              void expand_blossom(int b) {
                                                               for (size_t i = 0; i < flo[b].size(); ++i)
  set_st(flo[b][i], flo[b][i]);</pre>
 void q_push(int x) {
```

```
int xr = flo_from[b][g[b][pa[b]].u], pr = get_pr(b,
   xr):
 for (int i = 0; i < pr; i += 2) {
  int xs = flo[b][i], xns = flo[b][i + 1];
  pa[xs] = g[xns][xs].u;</pre>
  S[xs] = 1, S[xns] = 0;
  slack[xs] = 0, set_slack(xns);
  q_push(xns);
 S[xr] = 1, pa[xr] = pa[b];
 for (size_t i = pr + 1; i < flo[b].size(); ++i) {</pre>
  int xs = flo[b][i];
  S[xs] = -1, set_slack(xs);
 st[b] = 0;
bool on_found_edge(const edge &e) {
 int u = st[e.u], v = st[e.v];
 if (S[v] == -1) {
  pa[v] = e.u, S[v] = 1;
  int nu = st[match[v]];
  slack[v] = slack[nu] = 0;
  S[nu] = 0, q_push(nu);
 } else if (S[v] == 0) {
  int lca = get_lca(u, v);
  if (!lca) return augment(u,v), augment(v,u), true;
  else add_blossom(u, lca, v);
 return false;
bool matching() {
memset(S + 1, -1, sizeof(int) * n_x);
memset(slack + 1, 0, sizeof(int) * n_x);
 q = queue<int>();
 for (int x = 1; x <= n_x; ++x)
  if (st[x] == x && !match[x]) pa[x] = 0, S[x] = 0,
   q_push(x);
 if (q.empty()) return false;
 for (; ; ) {
  while (q.size()) {
   int u = q.front(); q.pop();
   if (S[st[u]] == 1) continue;
   for (int v = 1; v <= n; ++v)
    if (g[u][v].w > 0 && st[u] != st[v]) {
     if (e_delta(g[u][v]) == 0) {
  if (on_found_edge(g[u][v])) return true;
     } else update_slack(u, st[v]);
  int d = inf;
  for (int b = n + 1; b <= n_x; ++b)
   if (st[b] == b && S[b] == 1) d = min(d, lab[b] / 2)
  for (int x = 1; x <= n_x; ++x)
   if (st[x] == x && slack[x]) {
    if (S[x] == -1) d = min(d, e_delta(g[slack[x]][x])
    else if (S[x] == 0) d = min(d, e_delta(g[slack[x
   ]][x]) / 2);
  for (int u = 1; u <= n; ++u) {
   if (S[st[u]] == 0) {
    if (lab[u] <= d) return 0;</pre>
    lab[u] -= d;
   } else if (S[st[u]] == 1) lab[u] += d;
  for (int b = n + 1; b \le n_x; ++b)
   if (st[b] == b) {
    if (S[st[b]] == 0) lab[b] += d * 2;
    else if (S[st[b]] == 1) lab[b] -= d * 2;
  q = queue<int>();
  for (int x = 1; x <= n_x; ++x)
   if (st[x] == x && slack[x] && st[slack[x]] != x &&
   e_delta(g[slack[x]][x]) == 0)
    if (on_found_edge(g[slack[x]][x])) return true;
  for (int b = n + 1; b <= n_x; ++b)
if (st[b] == b && S[b] == 1 && lab[b] == 0)
   expand_blossom(b);
 return false;
```

```
pair<long long, int> solve() {
  memset(match + 1, 0, sizeof(int) * n);
  n_x = n:
  int n_matches = 0;
  long long tot_weight = 0;
  for (int u = 0; u \le n; ++u) st[u] = u, flo[u].clear
    ();
  int w_max = 0;
  for (int u = 1; u <= n; ++u)</pre>
   for (int v = 1; v <= n; ++v) {
  flo_from[u][v] = (u == v ? u : 0);
    w_max = max(w_max, g[u][v].w);
  for (int u = 1; u <= n; ++u) lab[u] = w_max;</pre>
  while (matching()) ++n_matches;
  for (int u = 1; u <= n; ++u)
  if (match[u] && match[u] < u)</pre>
    tot_weight += g[u][match[u]].w;
  return make_pair(tot_weight, n_matches);
 void add_edge(int ui, int vi, int wi) { g[ui][vi].w =
     g[vi][ui].w = wi; }
 void init(int _n) {
  n = _n;
  for (int u = 1; u <= n; ++u)
   for (int v = 1; v <= n; ++v)
    g[u][v] = edge(u, v, 0);
};
```

5 Math

5.1 Strling Number

5.1.1 First Kind

 $S_1(n,k)$ counts the number of permutations of n elements with k disjoint cycles.

$$S_1(n,k) = (n-1) \cdot S_1(n-1,k) + S_1(n-1,k-1)$$

$$x(x+1) \dots (x+n-1) = \sum_{k=0}^{n} S_1(n,k) x^k$$

$$g(x) = x(x+1) \dots (x+n-1) = \sum_{k=0}^{n} a_k x^k$$

$$\Rightarrow g(x+n) = \sum_{k=0}^{n} \frac{b_k}{(n-k)!} x^{n-k},$$

$$b_k = \sum_{i=0}^{k} ((n-i)! a_{n-i}) \cdot (\frac{n^{k-i}}{(k-i)!})$$

5.1.2 Second Kind

 $S_2(n,k)$ counts the number of ways to partition a set of n elements into k nonempty sets.

$$S_2(n,k) = S_2(n-1,k-1) + k \cdot S_2(n-1,k)$$

$$S_2(n,k) = \sum_{i=0}^k {k \choose i} i^n (-1)^{k-i} = \sum_{i=0}^k \frac{(-1)^i}{i!} \cdot \frac{(k-i)^n}{(k-i)!}$$

5.2 ax+by=gcd

```
// ax+ny = 1, ax+ny == ax == 1 (mod n)
void exgcd(lld x,lld y,lld &g,lld &a,lld &b) {
  if (y == 0) g=x,a=1,b=0;
  else exgcd(y,x%y,g,b,a),b==(x/y)*a;
}
```

5.3 Berlekamp Massey

```
template <typename T>
vector<T> BerlekampMassey(const vector<T> &output) {
  vector<T> d(output.size() + 1), me, he;
  for (size_t f = 0, i = 1; i <= output.size(); ++i) {
    for (size_t j = 0; j < me.size(); ++j)
    d[i] += output[i - j - 2] * me[j];
    if ((d[i] -= output[i - 1]) == 0) continue;
    if (me.empty()) {
      me.resize(f = i);
      continue;
    }
    vector<T> o(i - f - 1);
    T k = -d[i] / d[f]; o.push_back(-k);
```

```
for (T x : he) o.push_back(x * k);
  if (o.size() < me.size()) o.resize(me.size());
  for (size_t j = 0; j < me.size(); ++j) o[j] += me[j];
  if (i-f+he.size() >= me.size()) he = me, f = i;
  me = o;
}
return me;
}
```

5.4 Charateristic Polynomial

```
vector<vector<int>> Hessenberg(const vector<vector<int
    >> &A) {
int N = A.size();
vector<vector<int>> H = A;
for (int i = 0; i < N - 2; ++i) {
  if (!H[i + 1][i]) {
   for (int j = i + 2; j < N; ++j) {
   if (H[j][i]) {
     for (int k = i; k < N; ++k) swap(H[i + 1][k], H[j
    ][k]);
     for (int k = 0; k < N; ++k) swap(H[k][i + 1], H[k
    ][j]);
     break:
  if (!H[i + 1][i]) continue;
  int val = fpow(H[i + 1][i], kP - 2);
  for (int j = i + 2; j < N; ++j) {
  int coef = 1LL * val * H[j][i] % kP;</pre>
   for (int k = i; k < N; ++k) H[j][k] = (H[j][k] + 1LL
   * H[i + 1][k] * (kP - coef)) % kP;
for (int k = 0; k < N; ++k) H[k][i + 1] = (H[k][i +
    1] + 1LL * H[k][j] * coef) % kP;
}
return H;
vector<int> CharacteristicPoly(const vector<vector<int</pre>
    >> &A) {
 int N = A.size();
auto H = Hessenberg(A);
 for (int i = 0; i < N; ++i) {
 for (int j = 0; j < N; ++j) H[i][j] = kP - H[i][j];
 vector<vector<int>>> P(N + 1, vector<int>(N + 1));
P[0][0] = 1;
 for (int i = 1; i <= N; ++i) {
 P[i][0] = 0;
  for (int j = 1; j \le i; ++j) P[i][j] = P[i - 1][j -
    1];
  int val = 1;
  for (int j = i - 1; j >= 0; --j) {
   int coef = 1LL * val * H[j][i - 1] % kP;
   for (int k = 0; k <= j; ++k) P[i][k] = (P[i][k] + 1
LL * P[j][k] * coef) % kP;
   if (j) val = 1LL * val * (kP - H[j][j - 1]) % kP;
 }
if (N & 1) {
  for (int i = 0; i \le N; ++i) P[N][i] = kP - P[N][i];
return P[N];
```

5.5 Chinese Remainder

```
x = a1 % m1
x = a2 % m2
g = gcd(m1, m2)
assert((a1-a2)%g==0)
[p, q] = exgcd(m2/g, m1/g)
return a2+m2*(p*(a1-a2)/g)
// 0 <= x < lcm(m1, m2)</pre>
```

5.6 De-Bruijn

```
int res[maxn], aux[maxn], sz;
void db(int t, int p, int n, int k) {
  if (t > n) {
   if (n % p == 0)
   for (int i = 1; i <= p; ++i)
    res[sz++] = aux[i];</pre>
```

```
} else {
    aux[t] = aux[t - p];
    db(t + 1, p, n, k);
    for (int i = aux[t - p] + 1; i < k; ++i) {
        aux[t] = i;
        db(t + 1, t, n, k);
    }
}
int de_bruijn(int k, int n) {
    // return cyclic string of len k^n s.t. every string
    // of len n using k char appears as a substring.
    if (k == 1) {
        res[0] = 0;
        return 1;
    }
    for (int i = 0; i < k * n; i++) aux[i] = 0;
    sz = 0;
    db(1, 1, n, k);
    return sz;
}</pre>
```

5.7 DiscreteLog

```
template<typename Int>
Int BSGS(Int x, Int y, Int M) {
  // x^? \equiv y (mod M)
  Int t = 1, c = 0, g = 1;
  for (Int M_ = M; M_ > 0; M_ >>= 1)
    g = g * x % M;
  for (g = gcd(g, M); t % g != 0; ++c) {
    if (t == y) return c;
    t = t * x % M;
  if (y % g != 0) return -1;
  t /= g, y /= g, M /= g;
  Int h = 0, gs = 1;
for (; h * h < M; ++h) gs = gs * x % M;
  unordered_map<Int, Int> bs;
  for (Int s = 0; s < h; bs[y] = ++s)
    y = y * x % M;
  for (Int s = 0; s < M; s += h) {
    t = t * gs % M;
    if (bs.count(t)) return c + s + h - bs[t];
  return -1;
}
```

5.8 Extended Euler

```
a^b \equiv \begin{cases} a^{(b \mod \varphi(m)) + \varphi(m)} & \text{if } (a,m) \neq 1 \land b \geq \varphi(m) \\ a^b \mod \varphi(m) & \text{otherwise} \end{cases} \pmod{m}
```

5.9 ExtendedFloorSum

$$\begin{aligned} & = \begin{cases} \left\lfloor \frac{a}{c} \right\rfloor \cdot \frac{n(n+1)(2n+1)}{6} + \left\lfloor \frac{b}{c} \right\rfloor \cdot \frac{n(n+1)}{2} \\ + g(a \bmod c, b \bmod c, c, n), & a \geq c \lor b \geq c \\ 0, & n < 0 \lor a = 0 \end{cases} \\ \left\lfloor \frac{1}{2} \cdot (n(n+1)m - f(c, c-b-1, a, m-1) - h(c, c-b-1, a, m-1) \right\rfloor & \text{otherwise} \end{cases} \\ & h(a,b,c,n) & = \sum_{i=0}^{n} \left\lfloor \frac{ai+b}{c} \right\rfloor^{2} \\ & = \begin{cases} \left\lfloor \frac{a}{c} \right\rfloor^{2} \cdot \frac{n(n+1)(2n+1)}{c} + \left\lfloor \frac{b}{c} \right\rfloor^{2} \cdot (n+1) + \left\lfloor \frac{a}{c} \right\rfloor \cdot \left\lfloor \frac{b}{c} \right\rfloor \cdot n(n+1) \\ + h(a \bmod c, b \bmod c, c, n) + 2 \left\lfloor \frac{a}{c} \right\rfloor \cdot g(a \bmod c, b \bmod c, c, n) \\ + 2 \left\lfloor \frac{b}{c} \right\rfloor \cdot f(a \bmod c, b \bmod c, c, n), & a \geq c \lor b \geq c \\ 0, & nm(m+1) - 2g(c, c-b-1, a, m-1) \end{cases}$$

-2f(c,c-b-1,a,m-1)-f(a,b,c,n), otherwise

5.10 Fast Fourier Transform

```
const int mod = 1000000007;
const int M1 = 985661441; // G = 3
const int M2 = 998244353;
const int M3 = 1004535809;
int superBigCRT(int64_t A, int64_t B, int64_t C) {
   static_assert (M1 <= M2 && M2 <= M3);
   constexpr int64_t r12 = modpow(M1, M2-2, M2);</pre>
```

```
constexpr int64_t r13 = modpow(M1, M3-2, M3);
                                                                    if (i != j) {
  constexpr int64_t r23 = modpow(M2, M3-2, M3);
                                                                    cplx c1 = (fa[j] + fa[i].conj());
cplx c2 = (fa[j] - fa[i].conj()) * r2;
  constexpr int64_t M1M2 = 1LL * M1 * M2 % mod;
                                                                     cplx d1 = (fb[j] + fb[i].conj()) * r3;
cplx d2 = (fb[j] - fb[i].conj()) * r4;
  B = (B - A + M2) * r12 % M2;
 C = (C - A + M3) * r13 % M3;
 C = (C - B + M3) * r23 % M3;
                                                                     fa[i] = c1 * d1 + c2 * d2 * r5;
  return (A + B * M1 + C * M1M2) % mod;
                                                                     fb[i] = c1 * d2 + c2 * d1;
                                                                    fa[j] = a1 * b1 + a2 * b2 * r5;
                                                                    fb[j] = a1 * b2 + a2 * b1;
namespace fft {
using VI = vector<int>;
using VL = vector<long long>;
                                                                   fft(fa, sz), fft(fb, sz);
const double pi = acos(-1);
                                                                   vector<int> res(sz);
                                                                   for (int i = 0; i < sz; ++i) {
cplx omega[maxn + 1];
                                                                    long long a = round(fa[i].re), b = round(fb[i].re),
void prefft() {
                                                                         c = round(fa[i].im)
for (int i = 0; i <= maxn; i++)</pre>
  omega[i] = cplx(cos(2 * pi * j / maxn),
                                                                    res[i] = (a+((b \% p) << 15)+((c \% p) << 30)) \% p;
     sin(2 * pi * j / maxn));
                                                                   return res;
void fft(vector<cplx> &v, int n) {
                                                                 }}
 int z = __builtin_ctz(n) - 1;
                                                                  5.11 FloorSum
 for (int i = 0; i < n; ++i) {
  int x = 0, j = 0;
                                                                 // @param n `n < 2^32`
  for (;(1 << j) < n;++j) x^=(i >> j & 1)<<(z - j);
                                                                 // @param m `1 <= m < 2^32`
  if (x > i) swap(v[x], v[i]);
                                                                  // @return sum_{i=0}^{n-1} floor((ai + b)/m) mod 2^64
                                                                 llu floor_sum_unsigned(llu n, llu m, llu a, llu b) {
 for (int s = 2; s <= n; s <<= 1) {
                                                                  11u ans = 0;
  int z = s \gg 1;
                                                                   while (true) {
  for (int i = 0; i < n; i += s) {
                                                                    if (a >= m) {
   for (int k = 0; k < z; ++k) {
  cplx x = v[i + z + k] * omega[maxn / s * k];
                                                                     ans += n * (n - 1) / 2 * (a / m); a %= m;
    v[i + z + k] = v[i + k] - x;
                                                                    if (b >= m) -
    v[i+k] = v[i+k] + x;
                                                                     ans += n * (b / m); b %= m;
                                                                    llu y_max = a * n + b;
                                                                    if (y_max < m) break;</pre>
                                                                    // y_max < m * (n + 1)
void ifft(vector<cplx> &v, int n) {
                                                                    // floor(y_max / m) <= n
 fft(v, n); reverse(v.begin() + 1, v.end());
                                                                    n = (11u)(y_max / m), b = (11u)(y_max % m);
for (int i=0;i<n;++i) v[i] = v[i] * cplx(1. / n, 0);
                                                                    swap(m, a);
VL convolution(const VI &a, const VI &b) {
                                                                   return ans:
// Should be able to handle N <= 10^5, C <= 10^4
 int sz = 1;
                                                                  11d floor_sum(lld n, lld m, lld a, lld b) {
 while (sz < a.size() + b.size() - 1) sz <<= 1;</pre>
                                                                  llu ans = 0:
 vector<cplx> v(sz);
                                                                   if (a < 0) {
 for (int i = 0; i < sz; ++i) {
                                                                    11u \ a2 = (a \% m + m) \% m;
 double re = i < a.size() ? a[i] : 0;
double im = i < b.size() ? b[i] : 0;</pre>
                                                                    ans -= 1ULL * n * (n - 1) / 2 * ((a2 - a) / m);
                                                                    a = a2;
  v[i] = cplx(re, im);
                                                                   if (b < 0) {
 fft(v, sz);
                                                                    11u b2 = (b \% m + m) \% m;
                                                                    ans -= 1ULL * n * ((b2 - b) / m);
 for (int i = 0; i \le sz / 2; ++i) {
 int j = (sz - i) & (sz - 1);
                                                                    b = b2:
  cplx x = (v[i] + v[j].conj()) * (v[i] - v[j].conj())
    * cplx(0, -0.25);
                                                                   return ans + floor_sum_unsigned(n, m, a, b);
  if (j != i) v[j] = (v[j] + v[i].conj()) * (v[j] - v[i]
    ].conj()) * cplx(0, -0.25);
                                                                  5.12 FWT
  v[i] = x;
                                                                  /* xor convolution:
 ifft(v, sz);
                                                                  * x = (x0, x1) , y = (y0, y1)
* z = (x0y0 + x1y1 , x0y1 + x1y0 )
 VL c(sz);
 for (int i = 0; i < sz; ++i) c[i] = round(v[i].re);</pre>
                                                                  * x' = (x0+x1, x0-x1), y' = (y0+y1, y0-y1)

* z' = ((x0+x1)(y0+y1), (x0-x1)(y0-y1))

* z = (1/2) * z''
 return c;
VI convolution_mod(const VI &a, const VI &b, int p) {
                                                                   * or convolution:
 int sz = 1;
                                                                   * x = (x0, x0+x1), inv = (x0, x1-x0) w/o final div
 while (sz + 1 < a.size() + b.size()) sz <<= 1;</pre>
 vector<cplx> fa(sz), fb(sz);
                                                                   * and convolution:
                                                                   * x = (x0+x1, x1), inv = (x0-x1, x1) w/o final div */
 for (int i = 0; i < (int)a.size(); ++i)</pre>
  fa[i] = cplx(a[i] & ((1 << 15) - 1), a[i] >> 15);
                                                                  const LL MOD = 1e9+7;
 for (int i = 0; i < (int)b.size(); ++i)</pre>
                                                                 inline void fwt( LL x[ MAXN ] , int N , bool inv=0 ) {
  fb[i] = cplx(b[i] & ((1 << 15) - 1), b[i] >> 15);
                                                                   for( int d = 1 ; d < N ; d <<= 1 ) {
 fft(fa, sz), fft(fb, sz);
                                                                    int d2 = d << 1;
 double r = 0.25 / sz;
                                                                    for( int s = 0 ; s < N ; s += d2 )
cplx r2(0, -1), r3(r, 0), r4(0, -r), r5(0, 1);
for (int i = 0; i <= (sz >> 1); ++i) {
  int j = (sz - i) & (sz - 1);
                                                                     for( int i = s , j = s+d ; i < s+d ; i++, j++ ){
  LL ta = x[ i ] , tb = x[ j ];
  x[ i ] = ta+tb;</pre>
  cplx a1 = (fa[i] + fa[j].conj());
                                                                      x[ j ] = ta-tb;
 cplx a2 = (fa[i] - fa[j].conj()) * r2;
cplx b1 = (fb[i] + fb[j].conj()) * r3;
                                                                      if( x[ i ] >= MOD ) x[ i ] -= MOD;
                                                                      if( x[ j ] < 0 ) x[ j ] += MOD;</pre>
  cplx b2 = (fb[i] - fb[j].conj()) * r4;
```

```
5.16 Pi Count (Linear Sieve)
if( inv )
                                                              static constexpr int N = 1000000 + 5;
 for( int i = 0 ; i < N ; i++ ) {
  x[ i ] *= inv( N, MOD );</pre>
                                                              11d pi[N];
                                                              vector<int> primes;
  x[ i ] %= MOD:
                                                              bool sieved[N]
 }
                                                              11d cube_root(11d x){
                                                               lld s=cbrt(x-static_cast<long double>(0.1));
                                                               while(s*s*s <= x) ++s;</pre>
     Miller Rabin
5.13
                                                               return s-1;
bool isprime(llu x)
static auto witn = [](llu a, llu u, llu n, int t) {
                                                              1ld square_root(lld x){
                                                               lld s=sqrt(x-static_cast<long double>(0.1));
 if (!a) return false;
                                                               while(s*s <= x) ++s;
 while (t--) {
                                                               return s-1;
  11u a2 = mmul(a, a, n);
  if (a2 == 1 && a != 1 && a != n - 1) return true;
                                                              void init(){
  a = a2;
                                                               primes.reserve(N);
                                                               primes.push_back(1);
for(int i=2;i<N;i++) {</pre>
 return a != 1;
                                                                if(!sieved[i]) primes.push_back(i);
if (x < 2) return false;</pre>
                                                                pi[i] = !sieved[i] + pi[i-1];
if (!(x & 1)) return x == 2;
                                                                for(int p: primes) if(p > 1) {
 int t = __builtin_ctzll(x - 1);
                                                                 if(p * i >= N) break;
11u \ odd = (x - 1) >> t;
                                                                 sieved[p * i] = true;
for (llu m:
                                                                 if(p % i == 0) break;
  {2, 325, 9375, 28178, 450775, 9780504, 1795265022})
                                                                }
  if (witn(mpow(m % x, odd, x), odd, x, t))
                                                               }
  return false:
return true;
                                                              11d phi(11d m, 11d n) {
                                                               static constexpr int MM = 80000, NN = 500;
                                                               static lld val[MM][NN];
5.14 NTT
                                                               if(m<MM&&n<NN&&val[m][n])return val[m][n]-1;</pre>
template <int mod, int G, int maxn>
                                                               if(n == 0) return m;
                                                               if(primes[n] >= m) return 1;
lld ret = phi(m,n-1)-phi(m/primes[n],n-1);
struct NTT {
static_assert (maxn == (maxn & -maxn));
 int roots[maxn];
                                                               if(m<MM&&n<NN) val[m][n] = ret+1;</pre>
NTT () {
                                                               return ret;
 int r = modpow(G, (mod - 1) / maxn);
 for (int i = maxn >> 1; i; i >>= 1) {
                                                              11d pi_count(11d);
  roots[i] = 1;
                                                              11d P2(11d m, 11d n) {
  for (int j = 1; j < i; j++)
                                                               11d sm = square_root(m), ret = 0;
   roots[i + j] = modmul(roots[i + j - 1], r);
                                                               for(lld i = n+1;primes[i]<=sm;i++)</pre>
   r = modmul(r, r);
                                                                ret+=pi_count(m/primes[i])-pi_count(primes[i])+1;
 }
                                                               return ret;
}
 // n must be 2^k, and 0 \ll F[i] \ll mod
                                                              11d pi_count(11d m) {
 void operator()(int F[], int n, bool inv = false) {
                                                               if(m < N) return pi[m];</pre>
 for (int i = 0, j = 0; i < n; i++) {
                                                               11d n = pi_count(cube_root(m));
  if (i < j) swap(F[i], F[j]);</pre>
                                                               return phi(m, n) + n - 1 - P2(m, n);
   for (int k = n > 1; (j^k < k; k > = 1);
                                                              5.17
                                                                     Pollard Rho
  for (int s = 1; s < n; s *= 2) {
   for (int i = 0; i < n; i += s * 2) {
                                                              // does not work when {\bf n} is prime
   for (int j = 0; j < s; j++) {
                                                              // return any non-trivial factor
     int a = F[i+j];
                                                              llu pollard_rho(llu n) {
     int b = modmul(F[i+j+s], roots[s+j]);
                                                               static auto f = [](llu x, llu k, llu m) {
     F[i+j] = modadd(a, b); // a + b
                                                                  return add(k, mul(x, x, m), m); };
     F[i+j+s] = modsub(a, b); // a - b
                                                               if (!(n & 1)) return 2;
    }
                                                               mt19937 rnd(120821011);
  }
                                                               while (true) {
                                                                llu y = 2, yy = y, x = rnd() % n, t = 1;
  if (inv) {
                                                                for (llu sz = 2; t == 1; sz <<= 1, y = yy) {
   int invn = modinv(n);
                                                                 for (llu i = 0; t == 1 && i < sz; ++i) {
   for (int i = 0; i < n; i++)
                                                                  yy = f(yy, x, n);
   F[i] = modmul(F[i], invn);
                                                                  t = gcd(yy > y ? yy - y : y - yy, n);
   reverse(F + 1, F + n);
}
                                                                if (t != 1 && t != n) return t;
NTT<2013265921, 31, 1048576> ntt;
5.15 Partition Number
                                                              5.18 Polynomial Operations
int b = sqrt(n);
                                                              using V = vector<int>;
ans[0] = tmp[0] = 1;
                                                              #define fi(1, r) for (int i = int(1); i < int(r); ++i)
for (int i = 1; i <= b; i++) {
  for (int rep = 0; rep < 2; rep++)
                                                              template <int mod, int G, int maxn> struct Poly : V {
                                                               static uint32_t n2k(uint32_t n) {
 for (int j = i; j <= n - i * i; j++)
                                                                if (n <= 1) return 1;</pre>
modadd(tmp[j], tmp[j-i]);

for (int j = i * i; j <= n; j++)

modadd(ans[j], tmp[j - i * i]);
                                                                return 1u << (32 - __builtin_clz(n - 1));</pre>
                                                               static NTT<mod,G,maxn> ntt; // coefficients in [0, P)
```

explicit Poly(int n = 1) : V(n) {}

```
Poly(const V &v) : V(v) {}
                                                               if (nk2 * nz >= size())
                                                                return Poly(size());
Poly(const Poly &p, size_t n) : V(n) {
                                                               nk2 \% = mod - 1;
 copy_n(p.data(), min(p.size(), n), data());
Poly &irev() { return reverse(data(), data() + size())
                                                              if (!nk && !nk2) return Poly(V{1}, size());
     *this; }
                                                              Poly X = V(data() + nz, data() + size() - nz * (nk2 -
Poly &isz(int sz) { return resize(sz), *this; }
                                                                 1));
Poly &iadd(const Poly &rhs) { // n() == rhs.n()
                                                              int x0 = X[0];
fi(0, size())(*this)[i] = modadd((*this)[i], rhs[i]);
                                                              return X.imul(modinv(x0)).Ln().imul(nk).Exp().imul(
 return *this;
                                                                modpow(x0, nk2)).irev().isz(size()).irev();
Poly &imul(int k) {
                                                             Poly InvMod(int L) { // (to evaluate linear recursion)
fi(0, size())(*this)[i] = modmul((*this)[i], k);
                                                              Poly R{1, \theta}; // *this * R mod x^L = 1 (*this[\theta] ==
 return *this;
                                                              for (int level = 0; (1 << level) < L; ++level) {</pre>
                                                               Poly 0 = R.Mul(Poly(data(), min<int>(2 << level,
Poly Mul(const Poly &rhs) const {
                                                                size())));
const int sz = n2k(size() + rhs.size() - 1);
                                                               Poly Q(2 \ll level); Q[0] = 1;
Poly X(*this, sz), Y(rhs, sz);
                                                               for (int j = (1 << level); j < (2 << level); ++j)</pre>
ntt(X.data(), sz), ntt(Y.data(), sz);
 fi(0, sz) X[i] = modmul(X[i], Y[i]);
                                                                Q[j] = modsub(mod, O[j]);
ntt(X.data(), sz, true)
                                                               R = R.Mul(Q).isz(4 << level);
 return X.isz(size() + rhs.size() - 1);
                                                              }
                                                              return R.isz(L);
Poly Inv() const { // coef[0] != 0
if (size() == 1) return V{modinv(*begin())};
                                                             static int LinearRecursion(const V &a, const V &c,
 const int sz = n2k(size() * 2);
                                                                int64_t n) { // a_n = \sum c_j a_(n-j)}
Poly X = Poly(*this, (size() + 1) / 2).Inv().isz(sz),
                                                              const int k = (int)a.size();
    Y(*this, sz);
                                                              assert((int)c.size() == k + 1);
                                                              Poly C(k + 1), W(\{1\}, k), M = \{0, 1\}; fi(1, k + 1) C[k - i] = modsub(mod, c[i]);
ntt(X.data(), sz), ntt(Y.data(), sz);
 fi(0, sz) X[i] = modmul(X[i], modsub(2, modmul(X[i],
   Y[i])));
                                                              C[k] = 1;
 ntt(X.data(), sz, true);
                                                              while (n) {
                                                               if (n % 2) W = W.Mul(M).DivMod(C).second;
 return X.isz(size());
                                                               n /= 2, M = M.Mul(M).DivMod(C).second;
Poly Sqrt() const { // coef[0] \in [1, mod)^2
    (size() == 1) return V{QuadraticResidue((*this)
                                                              int ret = 0;
   [0], mod)};
                                                              fi(0, k) ret = modadd(ret, modmul(W[i], a[i]));
Poly X = Poly(*this, (size() + 1) / 2).Sqrt().isz(
                                                              return ret;
   size());
 return X.iadd(Mul(X.Inv()).isz(size())).imul(mod / 2
   + 1);
                                                            #undef fi
                                                            using Poly_t = Poly<998244353, 3, 1 << 20>;
                                                            template <> decltype(Poly_t::ntt) Poly_t::ntt = {};
pair<Poly, Poly> DivMod(const Poly &rhs) const {
if (size() < rhs.size()) return {V{0}, *this};</pre>
                                                            5.19 Quadratic residue
 const int sz = size() - rhs.size() + 1;
Poly X(rhs); X.irev().isz(sz);
                                                            struct S {
Poly Y(*this); Y.irev().isz(sz);
                                                             int MOD, w;
Poly Q = Y.Mul(X.Inv()).isz(sz).irev();
                                                             int64_t x, y;
X = rhs.Mul(Q),
                 Y = *this;
                                                             S(int m, int w_=-1, int64_t x_=1, int64_t y_=0)
 fi(0, size()) Y[i] = modsub(Y[i], X[i]);
                                                              : MOD(m), w(w_{-}), x(x_{-}), y(y_{-}) {}
 return {Q, Y.isz(max<int>(1, rhs.size() - 1))};
                                                             S operator*(const S &rhs) const {
                                                              int w_{-} = w;
Poly Dx() const {
                                                              if (w_{-} == -1) w_{-} = rhs.w;
                                                              assert(w_ != -1 and w_ == rhs.w);
Poly ret(size() - 1);
                                                              return { MOD, w_,
(x * rhs.x + y * rhs.y % MOD * w) % MOD,
fi(0, ret.size()) ret[i] = modmul(i + 1, (*this)[i +
  11):
                                                               (x * rhs.y + y * rhs.x) % MOD };
 return ret.isz(max<int>(1, ret.size()));
                                                             }
Poly Sx() const {
Poly ret(size() + 1);
                                                            int get_root(int n, int P) {
                                                              if (P == 2 or n == 0) return n;
if (qpow(n, (P - 1) / 2, P) != 1) return -1;
fi(0, size()) ret[i + 1] = modmul(modinv(i + 1), (*
   this)[i]);
                                                              auto check = [&](int x) {
 return ret:
                                                                return qpow(x, (P - 1) / 2, P); };
                                                              if (check(n) == P-1) return -1;
Poly Ln() const { // coef[0] == 1
return Dx().Mul(Inv()).Sx().isz(size());
                                                              int64_t a; int w; mt19937 rnd(7122);
                                                              do { a = rnd() % P;
  w = ((a * a - n) % P + P) % P;
Poly Exp() const \{ // coef[0] == 0 \}
if (size() == 1) return V{1};
                                                              } while (check(w) != P - 1);
Poly X = Poly(*this, (size() + 1) / 2).Exp().isz(size
                                                              return qpow(S(P, w, a, 1), (P + 1) / 2).x;
   ());
Poly Y = X.Ln(); Y[0] = mod - 1;
                                                            5.20 Simplex
fi(0, size()) Y[i] = modsub((*this)[i], Y[i]);
 return X.Mul(Y).isz(size());
                                                            namespace simplex {
                                                            // maximize c^Tx under Ax <= B</pre>
Poly Pow(const string &K) const {
                                                            // return VD(n, -inf) if the solution doesn't exist
                                                            // return VD(n, +inf) if the solution is unbounded
int nz = 0;
 while (nz < size() && !(*this)[nz]) ++nz;</pre>
                                                            using VD = vector<double>;
 int nk = 0, nk2 = 0;
                                                            using VVD = vector<vector<double>>;
                                                            const double eps = 1e-9;
 for (char c : K) {
 nk = (nk * 10 + c - '0') % mod;
                                                            const double inf = 1e+9;
  nk2 = nk2 * 10 + c - '0';
                                                            int n, m;
```

```
VVD d;
vector<int> p, q;
void pivot(int r, int s) {
 double inv = 1.0 / d[r][s];
 for (int i = 0; i < m + 2; ++i)
  for (int j = 0; j < n + 2; ++j)
if (i != r && j != s)
    d[i][j] -= d[r][j] * d[i][s] * inv;
 for(int i=0;i<m+2;++i) if (i != r) d[i][s] *= -inv;
for(int j=0;j<n+2;++j) if (j != s) d[r][j] *= +inv;</pre>
 d[r][s] = inv; swap(p[r], q[s]);
bool phase(int z) {
 int x = m + z;
 while (true) {
  int s = -1;
  for (int i = 0; i <= n; ++i) {</pre>
   if (!z && q[i] == -1) continue;
   if (s == -1 \mid | d[x][i] < d[x][s]) s = i;
  if (d[x][s] > -eps) return true;
  for (int i = 0; i < m; ++i) {
   if (d[i][s] < eps) continue;</pre>
   if (r == -1 || \
    d[i][n+1]/d[i][s] < d[r][n+1]/d[r][s]) r = i;
  if (r == -1) return false;
  pivot(r, s);
VD solve(const VVD &a, const VD &b, const VD &c) {
 m = b.size(), n = c.size();
 d = VVD(m + 2, VD(n + 2));
 for (int i = 0; i < m; ++i)
  for (int j = 0; j < n; ++j) d[i][j] = a[i][j];</pre>
 p.resize(m), q.resize(n + 1);
 for (int i = 0; i < m; ++i)
p[i] = n + i, d[i][n] = -1, d[i][n + 1] = b[i];
 for (int i = 0; i < n; ++i) q[i] = i,d[m][i] = -c[i];
 q[n] = -1, d[m + 1][n] = 1;
 int r = 0;
 for (int i = 1; i < m; ++i)
  if (d[i][n + 1] < d[r][n + 1]) r = i;
 if (d[r][n + 1] < -eps) {</pre>
  pivot(r, n);
  if (!phase(1) || d[m + 1][n + 1] < -eps)
  return VD(n, -inf);
for (int i = 0; i < m; ++i) if (p[i] == -1) {
   int s = min_element(d[i].begin(), d[i].end() - 1)
         - d[i].begin();
   pivot(i, s);
  }
 if (!phase(0)) return VD(n, inf);
 VD x(n);
 for (int i = 0; i < m; ++i)
  if (p[i] < n) x[p[i]] = d[i][n + 1];
 return x;
}}
5.21 Simplex Construction
Standard form: maximize \sum_{1 \leq i \leq n} c_i x_i such that for all 1 \leq j \leq m,
\sum_{1 \leq i \leq n} A_{ji} x_i \leq b_j. \text{and } x_i \geq 0 \text{ for all } 1 \leq i \leq n.
  1. In case of minimization, let c_i^\prime = -c_i
  2. \sum_{1 \leq i \leq n} A_{ji} x_i \geq b_j \rightarrow \sum_{1 \leq i \leq n} -A_{ji} x_i \leq -b_j
  3. \sum_{1 < i < n} A_{ji} x_i = b_j
         • \sum_{1 \le i \le n} A_{ji} x_i \le b_j
         • \sum_{1 \le i \le n} A_{ji} x_i \ge b_j
  4. If x_i has no lower bound, replace x_i with x_i - x'.
```

6 Geometry

6.1 Basic Geometry

```
#define IM imag
#define RE real
using lld = int64_t;
using llf = long double;
using PT = std::complex<lld>;
using PTF = std::complex<llf>
auto toPTF(PT p) { return PTF{RE(p), IM(p)}; } int sgn(lld x) { return (x > 0) - (x < 0); } lld dot(PT a, PT b) { return RE(conj(a) * b); }
lld cross(PT a, PT b) { return IM(conj(a) * b); }
int ori(PT a, PT b, PT c) {
return sgn(cross(b - a, c - a));
bool operator<(const PT &a, const PT &b) {</pre>
return RE(a) != RE(b) ? RE(a) < RE(b) : IM(a) < IM(b);
int quad(PT p) {
return (IM(p) == 0) // use sgn for PTF
  ? (RE(p) < 0 ? 3 : 1) : (IM(p) < 0 ? 0 : 2);
int argCmp(PT a, PT b) {
 // -1 / 0 / 1 <-> < / == / > (atan2)
 int qa = quad(a), qb = quad(b);
 if (qa != qb) return sgn(qa - qb);
 return sgn(cross(b, a));
template <typename V> llf area(const V & pt) {
 11d ret = 0;
 for (int i = 1; i + 1 < (int)pt.size(); i++)</pre>
  ret += cross(pt[i] - pt[0], pt[i+1] - pt[0]);
 return ret / 2.0;
PT rot90(PT p) { return PT{-IM(p), RE(p)}; }
PTF project(PTF p, PTF q) { // p onto q
  return dot(p, q) * q / dot(q, q);
11f FMOD(11f x) {
 if (x < -PI) x += PI * 2;
 if (x > PI) x -= PI * 2;
 return x:
6.2 Segment & Line Intersection
struct Segment {
 PT st, dir; // represent st + t*dir for 0<=t<=1
 Segment(PT s, PT e) : st(s), dir(e - s) {}
 static bool valid(lld p, lld q)
  // is there t s.t. 0 <= t <= 1 && qt == p ?
  if (q < 0) q = -q, p = -p;
  return 0 <= p && p <= q;
 }
};
bool isInter(Segment A, PT P) {
 if (A.dir == PT(0)) return P == A.st;
 return cross(P - A.st, A.dir) == 0 &&
Segment::valid(dot(P - A.st, A.dir), norm(A.dir));
template <typename U, typename V>
bool isInter(U A, V B) {
 if (cross(A.dir, B.dir) == 0)
  return // handle parallel yourself
   isInter(A, B.st) || isInter(A, B.st+B.dir) ||
   isInter(B, A.st) || isInter(B, A.st+A.dir);
 PT D = B.st - A.st;
 11d C = cross(A.dir, B.dir);
 return U::valid(cross(D, A.dir), C) &&
   V::valid(cross(D, B.dir), C);
struct Line {
 PT st, ed, dir;
 Line (PT s, PT e)
  : st(s), ed(e), dir(e - s) {}
PTF intersect(const Line &A, const Line &B) {
 llf t = cross(B.st - A.st, B.dir) /
  llf(cross(A.dir, B.dir));
 return toPTF(A.st) + PTF(t) * toPTF(A.dir);
}
6.3 2D Convex Hull
```

void make_hull(vector<pll> &dots) { // n=1 => ans = {}

sort(dots.begin(), dots.end());

```
vector<pll> ans(1, dots[0]);
                                                                  for (int i = 0; i < k; ++i)
                                                                   m[Idx(v[i].x)][Idx(v[i].y)]
 for (int ct = 0; ct < 2; ++ct, reverse(ALL(dots)))</pre>
  for (int i = 1, t = SZ(ans); i < SZ(dots); i++) {</pre>
                                                                    [Idx(v[i].z)] = i;
   while (SZ(ans) > t && ori(
                                                                 }; rebuild_m(2);
     ans[SZ(ans) - 2], ans.back(), dots[i]) <= 0)
                                                                 for (size_t i = 2; i < v.size(); ++i) {
                                                                  const lld kx = Idx(v[i].x), ky = Idx(v[i].y),
    ans.pop_back();
                                                                     kz = Idx(v[i].z); bool found = false;
   ans.pb(dots[i]);
                                                                  for (int dx = -2; dx <= 2; ++dx) {
 ans.pop_back(), ans.swap(dots);
                                                                   const 11d nx = dx + kx;
                                                                   if (m.find(nx) == m.end()) continue;
                                                                   auto& mm = m[nx];
6.4 3D Convex Hull
                                                                   for (int dy = -2; dy <= 2; ++dy) {
                                                                    const 11d ny = dy + ky;
// return the faces with pt indexes
                                                                    if (mm.find(ny) == mm.end()) continue;
int flag[MXN][MXN];
                                                                    auto& mmm = mm[ny];
struct Point{
                                                                    for (int dz = -2; dz <= 2; ++dz) {
 ld x, y, z;
                                                                     const 11d nz = dz + kz;
 Point operator * (const ld &b) const {
                                                                     if (mmm.find(nz) == mmm.end()) continue;
  return (Point) {x*b,y*b,z*b};}
                                                                     const int p = mmm[nz];
 Point operator * (const Point &b) const {
                                                                     if (dis(v[p], v[i]) < d) {
  d = dis(v[p], v[i]);</pre>
  return(Point) {y*b.z-b.y*z,z*b.x-b.z*x,x*b.y-b.x*y};
 }
                                                                      found = true;
Point ver(Point a, Point b, Point c) {
return (b - a) * (c - a);}
                                                                   }
vector<Face> convex_hull_3D(const vector<Point> pt) {
 int n = SZ(pt), ftop = 0;
                                                                  if (found) rebuild_m(i + 1);
 REP(i,n) REP(j,n) flag[i][j] = 0;
                                                                  else m[kx][ky][kz] = i;
 vector<Face> now;
 now.emplace_back(0,1,2);
                                                                 return d;
 now.emplace_back(2,1,0);
 for (int i=3; i<n; i++){
  ftop++; vector<Face> next;
                                                                6.7 Simulated Annealing
 REP(j, SZ(now)) {
Face& f=now[j]; int ff = 0;
Id d=(pt[i]-pt[f.a]).dot(
                                                               11f anneal() {
                                                                 mt19937 rnd_engine( seed );
                                                                 uniform_real_distribution< llf > rnd( 0, 1 );
     ver(pt[f.a], pt[f.b], pt[f.c]));
                                                                 const llf dT = 0.001;
   if (d <= 0) next.push_back(f);</pre>
                                                                 // Argument p
   if (d > 0) ff=ftop;
                                                                 1lf S_cur = calc( p ), S_best = S_cur;
for ( 1lf T = 2000 ; T > EPS ; T -= dT ) {
   else if (d < 0) ff=-ftop;
   flag[f.a][f.b]=flag[f.b][f.c]=flag[f.c][f.a]=ff;
                                                                  // Modify p to p_prime
const llf S_prime = calc( p_prime );
  REP(j, SZ(now)) {
                                                                  const 11f delta_c = S_prime - S_cur
   Face& f=now[j]
                                                                  11f prob = min( ( 11f ) 1, exp( -delta_c / T ) );
   if (flag[f.a][f.b] > 0 &&
                                                                  if ( rnd( rnd_engine ) <= prob )</pre>
     flag[f.a][f.b] != flag[f.b][f.a])
                                                                   S_cur = S_prime, p = p_prime;
    next.emplace_back(f.a,f.b,i);
                                                                  if ( S_prime < S_best ) // find min</pre>
   if (flag[f.b][f.c] > 0 &&
  flag[f.b][f.c] != flag[f.c][f.b])
                                                                   S_best = S_prime, p_best = p_prime;
    next.emplace_back(f.b,f.c,i);
   if (flag[f.c][f.a] > 0 &&
  flag[f.c][f.a] != flag[f.a][f.c])
                                                                 return S_best;
                                                               }
    next.emplace_back(f.c,f.a,i);
                                                                6.8 Half Plane Intersection
                                                               // cross(pt-line.st, line.dir)<=0 <-> pt in half plane
  now=next;
                                                               bool operator<(const Line &lhs, const Line &rhs) {
  if (int cmp = argCmp(lhs.dir, rhs.dir))</pre>
 }
 return now;
                                                                    return cmp == -1;
                                                                  return ori(lhs.st, lhs.ed, rhs.st) < 0;</pre>
     2D Farthest Pair
// stk is from convex hull
                                                                // intersect function is in "Segment Intersect"
n = (int)(stk.size());
                                                               llf HPI(vector<Line> &lines) {
int pos = 1, ans = 0; stk.push_back(stk[0]);
for(int i=0;i<n;i++) {</pre>
                                                                  sort(lines.begin(), lines.end());
                                                                  deque<Line> que;
 while(abs(cross(stk[i+1]-stk[i],
                                                                  deque<PTF> pt;
   stk[(pos+1)%n]-stk[i])) >
                                                                  que.push_back(lines[0]);
   abs(cross(stk[i+1]-stk[i]
                                                                  for (int i = 1; i < (int)lines.size(); i++) {</pre>
   stk[pos]-stk[i]))) pos = (pos+1)%n;
                                                                    if (argCmp(lines[i].dir, lines[i-1].dir) == 0)
 ans = max({ans, dis(stk[i], stk[pos])},
                                                                     continue
  dis(stk[i+1], stk[pos])});
                                                               #define POP(L, R) \
                                                                    while (pt.size() > 0 \
                                                                      && ori(L.st, L.ed, pt.back()) < 0) \
6.6 kD Closest Pair (3D ver.)
                                                                      pt.pop_back(), que.pop_back(); \
                                                                    while (pt.size() > 0 \
11f solve(vector<P> v) {
 shuffle(v.begin(), v.end(), mt19937());
                                                                      && ori(R.st, R.ed, pt.front()) < 0) \
 unordered_map<lld, unordered_map<lld,
                                                                      pt.pop_front(), que.pop_front();
  unordered_map<lld, int>>> m;
                                                                    POP(lines[i], lines[i])
 llf d = dis(v[0], v[1]);
                                                                    pt.push_back(intersect(que.back(), lines[i]));
 auto Idx = [&d] (11f x) -> 11d {
                                                                    que.push_back(lines[i]);
  return round(x * 2 / d) + 0.1; };
 auto rebuild_m = [&m, &v, &Idx](int k) {
                                                                  POP(que.front(), que.back())
 m.clear();
                                                                  if (que.size() <= 1 ||</pre>
```

} else

return S;

S = 0.5 * sin(C) * a * b;

```
argCmp(que.front().dir, que.back().dir) == 0)
    return 0;
                                                            11f area_poly_circle(const vector<PTF> &poly,
 pt.push_back(intersect(que.front(), que.back()));
                                                              const PTF &0, const llf r) {
                                                             11f S = 0:
  return area(pt);
                                                             for (int i = 0, N = poly.size(); i < N; ++i)</pre>
                                                              S += _area(poly[i] - 0, poly[(i + 1) % N] - 0, r) *
6.9 Minkowski Sum
                                                                 ori(0, poly[i], poly[(i + 1) % N]);
                                                             return fabs(S);
vector<pll> Minkowski(vector<pll> A, vector<pll> B) {
hull(A), hull(B);
vector<pll> C(1, A[0] + B[0]), s1, s2;
                                                            6.13 Point & Hulls Tangent
for(int i = 0; i < SZ(A); ++i)
s1.pb(A[(i + 1) % SZ(A)] - A[i]);
                                                            #define above(P, Vi, Vj) (ori(P, Vi, Vj) > 0) // true
                                                                 if Vi is above Vj
for(int i = 0; i < SZ(B); i++)</pre>
                                                            #define below(P, Vi, Vj) (ori(P, Vi, Vj) < 0) // true
 s2.pb(B[(i + 1) % SZ(B)] - B[i])
                                                                 if Vi is below Vj
for(int p1 = 0, p2 = 0; p1 < SZ(A) \mid \mid p2 < SZ(B);)
                                                            // Rtangent_PointPolyC(): binary search for convex
 if (p2 >= SZ(B)
                                                                 polygon right tangent
    || (p1 < SZ(A) \&\& cross(s1[p1], s2[p2]) >= 0))
                                                                Input: P = a 2D point (exterior to the polygon)
  C.pb(C.back() + s1[p1++]);
                                                            //
                                                                     n = number of polygon vertices
                                                            //
                                                                     V = array of vertices for a 2D convex polygon
  C.pb(C.back() + s2[p2++]);
                                                                 with V[n] = V[0]
return hull(C), C;
                                                            // Return: index "i" of rightmost tangent point V[i]
                                                            int Rtangent_PointPolyC(PT P, int n, PT *V) {
6.10 Circle Class
                                                             int a, b, c;
                                                             int upA, dnC;
struct Circle { PTF o; llf r; };
                                                             if (below(P, V[1], V[0]) && !above(P, V[n - 1], V[0]))
vector<llf> intersectAngle(Circle A, Circle B) {
                                                              return 0;
PTF dir = B.o - A.o; 11f d2 = norm(dir);
if (norm(A.r - B.r) >= d2) // norm(x) := |x|^2
                                                             for (a = 0, b = n;;) {
 if (A.r < B.r) return {-PI, PI}; // A in B</pre>
                                                              c = (a + b) / 2
 else return {}; // B in A
                                                              dnC = below(P, V[c + 1], V[c]);
if (dnC && !above(P, V[c - 1], V[c]))
 if (norm(A.r + B.r) <= d2) return {};
11f dis = abs(dir), theta = arg(dir);
11f phi = acos((A.r * A.r + d2 - B.r * B.r) /
   (2 * A.r * dis));
                                                              upA = above(P, V[a + 1], V[a]);
11f L = FMOD(theta - phi), R = FMOD(theta + phi);
                                                              if (upA) {
return { L, R };
                                                               if (dnC) {
                                                                b = c;
                                                                } else {
vector<PTF> intersectPoint(Circle a, Circle b) {
                                                                 if (above(P, V[a], V[c]))
11f d = abs(a.o - b.o);
                                                                 b = c;
 if (d >= b.r+a.r || d <= abs(b.r-a.r)) return {};</pre>
                                                                 else
11f dt = (b.r*b.r - a.r*a.r)/d, d1 = (d+dt)/2;
                                                                 a = c;
PTF dir = (a.o - b.o) / d;
                                                                }
PTF u = dir*d1 + b.o;
                                                              } else {
PTF v = rot90(dir) * sqrt(max<llf>(0, b.r*b.r-d1*d1));
                                                               if (!dnC) {
return {u + v, u - v};
                                                                a = c;
                                                                } else +
                                                                if (below(P, V[a], V[c]))
6.11 Intersection of line and Circle
                                                                 b = c;
vector<PTF> line_interCircle(const PTF &p1,
                                                                 else
 const PTF &p2, const PTF &c, const double r)
                                                                 a = c;
PTF ft = p1 + project(c-p1, p2-p1), vec = p2-p1;
llf dis = abs(c - ft);
if (abs(dis - r) < eps) return {ft};</pre>
if (dis > r) return {};
                                                            }
vec = vec * sqrt(r * r - dis * dis) / abs(vec);
return {ft + vec, ft - vec};
                                                            // Ltangent_PointPolyC(): binary search for convex
                                                                 polygon left tangent
                                                                Input: P = a 2D point (exterior to the polygon)
6.12 Intersection of Polygon and Circle
                                                            //
                                                                     n = number of polygon vertices
// Divides into multiple triangle, and sum up
                                                            //
                                                                     V = array of vertices for a 2D convex polygon
                                                                 with V[n]=V[0]
// test by HDU2892
                                                                Return: index "i" of leftmost tangent point V[i]
11f _area(PTF pa, PTF pb, llf r) {
if (abs(pa) < abs(pb)) swap(pa, pb);</pre>
                                                            int Ltangent_PointPolyC(PT P, int n, PT *V) {
if (abs(pb) < eps) return 0;</pre>
                                                             int a, b, c
11f S, h, theta;
                                                             int dnA, dnC;
11f a = abs(pb), b = abs(pa), c = abs(pb - pa);
                                                             if (above(P, V[n - 1], V[0]) && !below(P, V[1], V[0]))
11f cosB = dot(pb, pb - pa) / a / c, B = acos(cosB);
llf cosC = dot(pa, pb) / a / b, C = acos(cosC);
                                                              return 0;
if (a > r)
 S = (C / 2) * r * r;
                                                             for (a = 0, b = n;;) {
                                                              c = (a + b) / 2;
dnC = below(P, V[c + 1], V[c]);
 h = a * b * sin(C) / c
 if (h < r && B < PI / 2)
                                                              if (above(P, V[c - 1], V[c]) && !dnC)
  S = (acos(h / r) * r * r - h * sqrt(r*r - h*h));
} else if (b > r) {
  theta = PI - B - asin(sin(B) / r * a);
                                                               return c
                                                              dnA = below(P, V[a + 1], V[a]);
 S = 0.5 * a*r * sin(theta) + (C - theta) / 2 * r*r;
                                                              if (dnA) +
```

if (!dnC) {

b = c;} else {

```
if (below(P, V[a], V[c]))
  b = c;
 else
  a = c;
} else {
if (dnC) {
 a = c;
} else {
 if (above(P, V[a], V[c]))
  b = c;
 else
  a = c:
```

6.14 Convex Hulls Tangent

```
// RLtangent_PolyPolyC(): get the RL tangent between
    two convex polygons
   Input: m = number of vertices in polygon 1
//
       V = array of vertices for convex polygon 1 with
     V[m]=V[0]
       n = number of vertices in polygon 2
       W = array of vertices for convex polygon 2 with
//
     W[n]=W[0]
   Output: *t1 = index of tangent point V[t1] for
   polygon 1
11
        *t2 = index of tangent point W[t2] for polygon
void RLtangent_PolyPolyC(int m, PT *V, int n, PT *W,
   int *t1, int *t2) {
int ix1, ix2; // search indices for polygons 1 and 2
// first get the initial vertex on each polygon
ix1 = Rtangent_PointPolyC(W[0], m, V); // right
   tangent from W[0] to V
ix2 = Ltangent_PointPolyC(V[ix1], n, W); // left
    tangent from V[ix1] to W
 // ping-pong linear search until it stabilizes
int done = false; // flag when done
while (done == false) {
 done = true; // assume done until..
 while (ori(W[ix2], V[ix1], V[ix1 + 1]) \le 0) {
  ++ix1; // get Rtangent from W[ix2] to V
 while (ori(V[ix1], W[ix2], W[ix2 - 1]) >= 0) {
            // get Ltangent from V[ix1] to W
   --ix2;
   done = false; // not done if had to adjust this
 }
 *t1 = ix1;
*t2 = ix2;
return;
```

6.15 Tangent line of Two Circle

```
vector<Line>
tanline(const Circle &c1, const Circle &c2, int sign1){
// sign1 = 1 for outer tang, -1 for inter tang
vector<Line> ret;
if (norm(c1.o - c2.o) < eps) return ret;</pre>
11f d = abs(c1.o - c2.o);
PTF v = (c2.o - c1.o) / d;
llf c = (c1.r - sign1 * c2.r) / d;
if (c * c > 1) return ret;
llf h = sqrt(max<llf>(0, 1 - c * c));
for (int sign2 : {1, -1}) {
 PTF n = c * v + sign2 * h * rot90(v);
 PTF p1 = c1.o + n * c1.r;
 PTF p2 = c2.o + n * (c2.r * sign1);
 if (norm(p2 - p1) < eps)
  p2 = p1 + rot90(c2.o - c1.o);
 ret.push_back({p1, p2});
return ret;
```

6.16 Minimum Covering Circle

```
template<typename P>
Circle getCircum(const P &a, const P &b, const P &c){
 Real a1 = a.x-b.x, b1 = a.y-b.y;
 Real c1 = (a.x+b.x)/2 * a1 + (a.y+b.y)/2 * b1;
 Real a2 = a.x-c.x, b2 = a.y-c.y;
 Real c2 = (a.x+c.x)/2 * a2 + (a.y+c.y)/2 * b2;
 Circle cc;
 cc.o.x = (c1*b2-b1*c2)/(a1*b2-b1*a2);
 cc.o.y = (a1*c2-c1*a2)/(a1*b2-b1*a2)
 cc.r = hypot(cc.o.x-a.x, cc.o.y-a.y);
 return cc:
template<typename P>
Circle MinCircleCover(const vector<P>& pts){
 random_shuffle(pts.begin(), pts.end());
 Circle c = { pts[0], 0 };
 for(int i=0;i<(int)pts.size();i++){</pre>
  if (dist(pts[i], c.o) <= c.r) continue;</pre>
  c = { pts[i], 0 };
  for (int j = 0; j < i; j++) {
   if(dist(pts[j], c.o) <= c.r) continue;</pre>
   c.o = (pts[i] + pts[j]) / 2;
   c.r = dist(pts[i], c.o);
for (int k = 0; k < j; k++) {</pre>
    if (dist(pts[k], c.o) <= c.r) continue;</pre>
    c = getCircum(pts[i], pts[j], pts[k]);
  }
 return c;
6.17
      KDTree (Nearest Point)
const int MXN = 100005;
struct KDTree {
 struct Node {
  int x,y,x1,y1,x2,y2;
  int id,f;
  Node *L, *R;
 } tree[MXN], *root;
 int n;
 LL dis2(int x1, int y1, int x2, int y2) {
  LL dx = x1-x2, dy = y1-y2;
  return dx*dx+dy*dy;
 static bool cmpx(Node& a, Node& b){return a.x<b.x;}</pre>
 static bool cmpy(Node& a, Node& b){return a.y<b.y;}</pre>
 void init(vector<pair<int,int>> ip) {
  n = ip.size();
  for (int i=0; i<n; i++) {</pre>
   tree[i].id = i;
   tree[i].x = ip[i].first;
   tree[i].y = ip[i].second;
  root = build_tree(0, n-1, 0);
 Node* build_tree(int L, int R, int d) {
  if (L>R) return nullptr;
int M = (L+R)/2; tree[M].f = d%2;
  nth_element(tree+L, tree+M, tree+R+1, d%2?cmpy:cmpx);
  tree[M].x1 = tree[M].x2 = tree[M].x;
  tree[M].y1 = tree[M].y2 = tree[M].y;
  tree[M].L = build_tree(L, M-1, d+1);
  if (tree[M].L) {
   tree[M].x1 = min(tree[M].x1, tree[M].L->x1);
   tree[M].x2 = max(tree[M].x2, tree[M].L->x2);
   tree[M].y1 = min(tree[M].y1, tree[M].L->y1);
   tree[M].y2 = max(tree[M].y2, tree[M].L->y2);
  tree[M].R = build_tree(M+1, R, d+1);
  if (tree[M].R) {
   tree[M].x1 = min(tree[M].x1, tree[M].R->x1);
   tree[M].x2 = max(tree[M].x2, tree[M].R->x2);
   tree[M].y1 = min(tree[M].y1, tree[M].R->y1);
tree[M].y2 = max(tree[M].y2, tree[M].R->y2);
  return tree+M;
```

int touch(Node* r, int x, int y, LL d2){

bool contain(int i, int j) {

```
LL dis = sqrt(d2)+1;
  if (x<r->x1-dis || x>r->x2+dis ||
    y<r->y1-dis || y>r->y2+dis)
   return 0:
                                                                 void solve(){
  return 1;
                                                                  fill_n(Area, C + 2, 0);
 void nearest(Node* r,int x,int y,int &mID,LL &md2) {
  if (!r || !touch(r, x, y, md2)) return;
  LL d2 = dis2(r->x, r->y, x, y);
  if (d2 < md2 \mid \mid (d2 == md2 \&\& mID < r->id)) {
  mID = r->id;
   md2 = d2;
  }
  // search order depends on split dim
                                                                   int E = 0, cnt = 1;
  if ((r->f == 0 \&\& x < r->x) ||
    (r->f == 1 \&\& y < r->y))
   nearest(r->L, x, y, mID, md2);
nearest(r->R, x, y, mID, md2);
                                                                     ++cnt;
  } else {
   nearest(r->R, x, y, mID, md2);
   nearest(r\rightarrow L, x, y, mID, md2);
 int query(int x, int y) {
  int id = 1029384756;
                                                                     if(B > A) ++cnt;
  LL d2 = 102938475612345678LL;
  nearest(root, x, y, id, d2);
  return id;
                                                                   else{
 }
                                                                    sort(eve, eve + E);
} tree;
                                                                    eve[E] = eve[0];
      Rotating Sweep Line
6.18
                                                                     cnt += eve[j].add;
void rotatingSweepLine(pair<int, int> a[], int n) {
 vector<pair<int, int>> 1;
 1.reserve(n * (n - 1) / 2);
 for (int i = 0; i < n; ++i)
  for (int j = i + 1; j < n; ++j)</pre>
   1.emplace_back(i, j);
 sort(1.begin(), 1.end(), [&a](auto &u, auto &v){
 1ld udx = a[u.first].first - a[u.second].first;
  11d udy = a[u.first].second - a[u.second].second;
                                                                };
 lld vdx = a[v.first].first - a[v.second].first;
lld vdy = a[v.first].second - a[v.second].second;
                                                                     Stringology
  if (udx == 0 or vdx == 0) return not udx == 0;
                                                                7.1
                                                                     Suffix Array
  int s = sgn(udx * vdx);
  return udy * vdx * s < vdy * udx * s;
                                                                namespace sfx {
                                                                bool _t[maxn * 2];
 });
 vector<int> idx(n), p(n);
 iota(idx.begin(), idx.end(), 0);
 sort(idx.begin(), idx.end(), [&a](int i, int j){
  return a[i] < a[j]; });
 for (int i = 0; i < n; ++i) p[idx[i]] = i;
 for (auto [i, j]: 1) {
  // do here
  swap(p[i], p[j]); idx[p[i]] = i, idx[p[j]] = j;
6.19
      Circle Cover
const int N = 1021;
struct CircleCover {
 int C;
 Cir c[N]
 bool g[N][N], overlap[N][N];
 // Area[i] : area covered by at least i circles
 double Area[ N ];
 void init(int _C){ C = _C;}
 struct Teve {
  PTF p; double ang; int add;
  Teve() {}
  Teve(PTF _a, double _b, int _c):p(_a), ang(_b), add(
  bool operator<(const Teve &a)const
  {return ang < a.ang;}
                                                                 if (uniq) {
 }eve[N * 2];
 // strict: x = 0, otherwise x = -1
bool disjuct(Cir &a, Cir &b, int x)
                                                                  return;
 {return sign(abs(a.0 - b.0) - a.R - b.R) > x;}
 bool contain(Cir &a, Cir &b, int x)
{return sign(a.R - b.R - abs(a.0 - b.0)) > x;}
```

```
/* c[j] is non-strictly in c[i]. */
return (sign(c[i].R - c[j].R) > 0 \mid \mid (sign(c[i].R - c[i].R) \mid c[i].R - c[i].R)
  [j].R) == 0 \&\& i < j)) \&\& contain(c[i], c[j], -1);
for(int i = 0; i < C; ++i)
for(int j = 0; j < C; ++j)
  overlap[i][j] = contain(i, j);
for(int i = 0; i < C; ++i)
for(int j = 0; j < C; ++j)
  g[i][j] = !(overlap[i][j] || overlap[j][i] ||
    disjuct(c[i], c[j], -1));
for(int i = 0; i < C; ++i){</pre>
 for(int j = 0; j < C; ++j)
  if(j != i && overlap[j][i])
 for(int j = 0; j < C; ++j)
  if(i != j && g[i][j]) {
   auto IP = intersectPoint(c[i], c[j]);
   PTF aa = IP[0], bb = IP[1];
   llf A = arg(aa-c[i].0), B = arg(bb-c[i].0);
   eve[E++] = Teve(bb,B,1), eve[E++]=Teve(aa,A,-1);
 if(E == 0) Area[cnt] += pi * c[i].R * c[i].R;
  for(int j = 0; j < E; ++j){
   Area[cnt] += cross(eve[j].p, eve[j + 1].p) * .5;
   double theta = eve[j + 1].ang - eve[j].ang;
   if (theta < 0) theta += 2. * pi;</pre>
   Area[cnt]+=(theta-sin(theta))*c[i].R*c[i].R*.5;
```

```
int hi[maxn], rev[maxn];
int _s[maxn * 2], sa[maxn * 2], _c[maxn * 2];
int x[maxn], _p[maxn], _q[maxn * 2];
// sa[i]: sa[i]-th suffix is the
// i-th lexigraphically smallest suffix.
// hi[i]: longest common prefix
// of suffix sa[i] and suffix sa[i - 1].
void pre(int *a, int *c, int n, int z) {
  memset(a, 0, sizeof(int) * n);
 memcpy(x, c, sizeof(int) * z);
void induce(int *a,int *c,int *s,bool *t,int n,int z){
memcpy(x + 1, c, sizeof(int) * (z - 1));
for (int i = 0; i < n; ++i)
if (a[i] && !t[a[i] - 1])
   a[x[s[a[i] - 1]]++] = a[i] - 1;
 memcpy(x, c, sizeof(int) * z);
 for (int i = n - 1; i \ge 0; --i)
  if (a[i] && t[a[i] - 1])
   a[--x[s[a[i] - 1]]] = a[i] - 1;
void sais(int *s, int *a, int *p, int *q,
 bool *t, int *c, int n, int z) {
 bool uniq = t[n - 1] = true;
 int nn=0, nmxz=-1, *nsa = a+n, *ns=s+n, last=-1;
 memset(c, 0, sizeof(int) * z);
 for (int i = 0; i < n; ++i) uniq &= ++c[s[i]] < 2;
for (int i = 0; i < z - 1; ++i) c[i + 1] += c[i];
  for (int i = 0; i < n; ++i) a[--c[s[i]]] = i;
 for (int i = n - 2; i \ge 0; --i)
  t[i] = (s[i] = s[i + 1] ? t[i + 1] : s[i] < s[i + 1]);
 pre(a, c, n, z);
```

if (st[i].indeg == 0) q[tail++] = i;

while (head != tail) {

```
for (int i = 1; i <= n - 1; ++i)
                                                                     int now = q[head++];
  if (t[i] && !t[i - 1])
                                                                     if (int f = st[now].fail) {
   a[--x[s[i]]] = p[q[i] = nn++] = i;
                                                                       st[f].cnt += st[now].cnt;
induce(a, c, s, t, n, z);
for (int i = 0; i < n; ++i)
                                                                       if (--st[f].indeg == 0) q[tail++] = f;
  if (a[i] && t[a[i]] && !t[a[i] - 1]) {
                                                                   }
 bool neq = last < 0 || \</pre>
  memcmp(s + a[i], s + last,
(p[q[a[i]] + 1] - a[i]) * sizeof(int));
                                                                  int run(const char* s) {
                                                                   int now = root;
                                                                   for (char c; c = *s; ++s)
 ns[q[last = a[i]]] = nmxz += neq;
                                                                     if (!st[now].ch[c -= 'a']) return 0;
sais(ns, nsa, p+nn, q+n, t+n, c+z, nn, nmxz+1);
                                                                     now = st[now].ch[c];
pre(a, c, n, z);
for (int i = nn - 1; i >= 0; --i)
                                                                   return st[now].cnt;
 a[--x[s[p[nsa[i]]]]] = p[nsa[i]];
                                                                } SAM:
induce(a, c, s, t, n, z);
                                                                 7.3 Z value
void build(const string &s) {
const int n = int(s.size());
                                                                vector<int> Zalgo(const string &s) {
for (int i = 0; i < n; ++i) _s[i] = s[i];</pre>
                                                                  vector<int> z(s.size(), s.size());
 _s[n] = 0; // s shouldn't contain 0
                                                                  for (int i = 1, l = 0, r = 0; i < z[0]; ++i) {
  int j = clamp(r - i, 0, z[i - 1]);</pre>
sais(_s, sa, _p, _q, _t, _c, n + 1, 256);
for(int i = 0; i < n; ++i) rev[sa[i] = sa[i+1]] = i;</pre>
                                                                   for (; i + j < z[0] \text{ and } s[i + j] == s[j]; ++j);
int ind = hi[0] = 0;
                                                                   if (i + (z[i] = j) > r) r = i + z[1 = i];
for (int i = 0; i < n; ++i) {
 if (!rev[i]) {
                                                                  return z;
   ind = 0:
                                                                }
   continue;
                                                                 7.4 Manacher
 while (i + ind < n && \</pre>
                                                                int z[maxn];
   s[i + ind] == s[sa[rev[i] - 1] + ind]) ++ind;
                                                                int manacher(const string& s) {
 hi[rev[i]] = ind ? ind-- : 0;
                                                                  string t = "
                                                                  for(char c: s) t += c, t += '.';
                                                                  int 1 = 0, r = 0, ans = 0;
                                                                  for (int i = 1; i < t.length(); ++i) {
z[i] = (r > i ? min(z[2 * 1 - i], r - i) : 1);
7.2 Suffix Automaton
struct SuffixAutomaton {
                                                                   while (i - z[i] >= 0 && i + z[i] < t.length()) {
struct node {
                                                                    if(t[i - z[i]] == t[i + z[i]]) ++z[i];
 int ch[K], len, fail, cnt, indeg;
node(int L = 0) : ch{}, len(L), fail(0), cnt(0),
                                                                    else break;
    indeg(0) {}
                                                                   if (i + z[i] > r) r = i + z[i], l = i;
 } st[N];
 int root, last, tot;
                                                                  for(int i=1;i<t.length();++i) ans = max(ans, z[i]-1);
void extend(int c) {
                                                                  return ans;
 int cur = ++tot;
  st[cur] = node(st[last].len + 1);
 while (last && !st[last].ch[c]) {
                                                                 7.5 Lexico Smallest Rotation
    st[last].ch[c] = cur;
                                                                string mcp(string s) {
    last = st[last].fail;
                                                                  int n = s.length();
                                                                  s += s; int i = 0, j = 1;
  if (!last) {
                                                                  while (i < n && j < n) {</pre>
    st[cur].fail = root;
                                                                   int k = 0;
  } else {
                                                                   while (k < n \&\& s[i + k] == s[j + k]) k++;
    int q = st[last].ch[c];
                                                                   ((s[i+k] \leftarrow s[j+k])?j:i) += k+1;
    if (st[q].len == st[last].len + 1) {
                                                                   j += (i == j);
      st[cur].fail = q;
    } else {
                                                                  return s.substr(i < n ? i : j, n);</pre>
      int clone = ++tot;
      st[clone] = st[q];
      st[clone].len = st[last].len + 1;
                                                                     Main Lorentz
      st[st[cur].fail = st[q].fail = clone].cnt = 0;
      while (last && st[last].ch[c] == q) {
                                                                 vector<tuple<tuple<size_t, size_t, int, int>>> reps;
        st[last].ch[c] = clone;
                                                                 void find_repetitions(const string &s, int shift = 0) {
        last = st[last].fail;
                                                                  if (s.size() <= 1)
                                                                   return;
    }
                                                                  const size_t nu = s.size() / 2, nv = s.size() - nu;
  }
                                                                  string u = s.substr(0, nu), v = s.substr(nu);
                                                                  string ru(u.rbegin(), u.rend());
string rv(v.rbegin(), v.rend());
 st[last = cur].cnt += 1;
void init(const char* s) {
                                                                  find_repetitions(u, shift);
 root = last = tot = 1;
                                                                  find_repetitions(v, shift + nu);
                                                                  auto z1 = Zalgo(ru), z2 = Zalgo(v + '#' + u),
    z3 = Zalgo(ru + '#' + rv), z4 = Zalgo(v);
  st[root] = node(0);
  for (char c; c = *s; ++s) extend(c - 'a');
                                                                  for (size_t cntr = 0; cntr < s.size(); cntr++) {</pre>
int q[N];
                                                                   size_t 1; int k1, k2;
                                                                   if (cntr < nu) {
void dp() {
 for (int i = 1; i <= tot; i++) ++st[st[i].fail].indeg</pre>
                                                                    1 = nu - cntr
                                                                    k1 = 1 < z1.size() ? z1[1] : 0;
  int head = 0, tail = 0;
                                                                    k2 = n + 1 - 1 < z2.size() ? z2[n + 1 - 1] : 0;
  for (int i = 1; i <= tot; i++)</pre>
```

} else {

1 = cntr - nu + 1;

k1 = n + 1 - 1 < z3.size() ? z3[n + 1 - 1] : 0;

```
National Taiwan University - ckiseki
   k2 = 1 < z4.size() ? z4[1] : 0;
  if (k1 + k2 >= 1)
   reps.emplace_back(cntr, 1, k1, k2);
7.7 BWT
struct BurrowsWheeler{
#define SIGMA 26
#define BASE 'a'
vector<int> v[ SIGMA ];
void BWT(char* ori, char* res){
  // make ori -> ori + ori
  // then build suffix array
void iBWT(char* ori, char* res){
 for( int i = 0 ; i < SIGMA ; i ++ )</pre>
  v[ i ].clear();
  int len = strlen( ori );
  for( int i = 0 ; i < len ; i ++ )</pre>
   v[ ori[i] - BASE ].push_back( i );
  vector<int> a;
  for( int i = 0 , ptr = 0 ; i < SIGMA ; i ++ )</pre>
   for( auto j : v[ i ] ){
   a.push_back( j );
    ori[ ptr ++ ] = BASE + i;
 for( int i = 0 , ptr = 0 ; i < len ; i ++ ){
  res[ i ] = ori[ a[ ptr ] ];</pre>
  ptr = a[ ptr ];
  res[ len ] = 0;
} bwt;
7.8 Palindromic Tree
struct palindromic_tree{
struct node{
  int next[26],f,len;
  int cnt,num,st,ed; // num = depth of fail link
 node(int l=0):f(0),len(1),cnt(0),num(0) {
  memset(next, 0, sizeof(next));
vector<node> st;
vector<char> s;
int last,n;
void init(){
 st.clear();s.clear();last=1; n=0;
 st.push_back(0);st.push_back(-1);
  st[0].f=1;s.push_back(-1); }
 int getFail(int x){
 while(s[n-st[x].len-1]!=s[n])x=st[x].f;
  return x;}
void add(int c){
  s.push_back(c-='a'); ++n;
  int cur=getFail(last);
  if(!st[cur].next[c]){
   int now=st.size();
   st.push_back(st[cur].len+2);
  st[now].f=st[getFail(st[cur].f)].next[c];
st[cur].next[c]=now;
   st[now].num=st[st[now].f].num+1;
 last=st[cur].next[c];
 ++st[last].cnt;}
 void dpcnt() { // cnt = #occurence in whole str
  for (int i=st.size()-1; i >= 0; i--)
  st[st[i].f].cnt += st[i].cnt;
int size(){ return st.size()-2;}
} pt;
int main() {
string s; cin >> s; pt.init();
for (int i=0; i<SZ(s); i++) {</pre>
 int prvsz = pt.size(); pt.add(s[i]);
  if (prvsz != pt.size()) {
  int r = i, l = r - pt.st[pt.last].len + 1;
   // pal @ [l,r]: s.substr(l, r-l+1)
```

return 0;

}

8.1

8 Misc

Theorems

8.1.1 Sherman-Morrison formula

$$(A + uv^{\mathsf{T}})^{-1} = A^{-1} - \frac{A^{-1}uv^{\mathsf{T}}A^{-1}}{1+v^{\mathsf{T}}A^{-1}u}$$

8.1.2 Kirchhoff's Theorem

Denote L be a $n\times n$ matrix as the Laplacian matrix of graph G, where $L_{ii}=d(i)$, $L_{ij}=-c$ where c is the number of edge (i,j) in G.

- The number of undirected spanning in G is $|{\rm det}(\tilde{L}_{11})|.$
- The number of directed spanning tree rooted at r in G is $|\det(\tilde{L}_{rr})|$.

8.1.3 Tutte's Matrix

Let D be a $n \times n$ matrix, where $d_{ij} = x_{ij}$ (x_{ij} is chosen uniform randomly) if i < j and $(i,j) \in E$, otherwise $d_{ij} = -d_{ji}$. $\frac{rank(D)}{2}$ is the maximum matching on G.

8.1.4 Cayley's Formula

- Given a degree sequence d_1,d_2,\ldots,d_n for each labeled vertices, there're $\frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}$ spanning trees.
- Let $T_{n,k}$ be the number of labeled forests on n vertices with k components, such that vertex $1,2,\ldots,k$ belong to different components. Then $T_{n,k}=kn^{n-k-1}$.

8.1.5 Erdős-Gallai theorem

A sequence of non-negative integers $d_1 \geq d_2 \geq \ldots \geq d_n$ can be represented as the degree sequence of a finite simple graph on n vertices if and only if $d_1 + d_2 + \ldots + d_n$ is even and

$$\sum_{i=1}^k d_i \le k(k-1) + \sum_{i=k+1}^n \min(d_i, k)$$

holds for all $1 \le k \le n$.

8.1.6 Havel-Hakimi algorithm

find the vertex who has greatest degree unused, connect it with other greatest vertex.

8.1.7 Euler's planar graph formula

$$V - E + F = C + 1, E \le 3V - 6$$
(?)

8.1.8 Pick's theorem

For simple polygon, when points are all integer, we have $A=\#\{\text{lattice points in the interior}\}+\frac{\#\{\text{lattice points on the boundary}\}}{2}-1$

8.1.9 Matroid Intersection

Given matroids $M_1=(G,I_1),M_2=(G,I_2)$, find maximum $S\in I_1\cap I_2$. For each iteration, build the directed graph and find a shortest path from s to t.

- $s \rightarrow x : S \sqcup \{x\} \in I_1$
- $x \to t : S \sqcup \{x\} \in I_2$
- $y \to x : S \setminus \{y\} \sqcup \{x\} \in I_1$ (y is in the unique circuit of $S \sqcup \{x\}$)
- $x \to y: S \setminus \{y\} \sqcup \{x\} \in I_2$ (y is in the unique circuit of $S \sqcup \{x\}$)

Alternate the path, and |S| will increase by 1. Let $R=\min(\mathrm{rank}(I_1),\mathrm{rank}(I_2)),N=|G|.$ In each iteration, |E|=O(RN). For weighted case, assign weight -w(x) and w(x) to $x\in S$ and $x\notin S$, resp. Use Bellman-Ford to find the weighted shortest path. The maximum iteration of Bellman-Ford is 2R+1.

8.2 Bitset LCS

```
scanf("%d%d", &n, &m), u = n / 64 + 1;
for (int i = 1, c; i <= n; i++)
  scanf("%d", &c), p[c].set(i);
for (int i = 1, c; i <= m; i++) {
  scanf("%d", &c), (g = f) |= p[c];
  f.shiftLeftByOne(), f.set(0);
  ((f = g - f) ^= g) &= g;
}
printf("%d\n", f.count());</pre>
```

if(!dfn[v]){

```
8.3 Convex 1D/1D DP
                                                                 par[v]=u;
                                                                 tarian(v):
struct segment {
                                                                 low[u]=min(low[u],low[v]);
 int i, l, r
                                                                 if(dfn[u]<low[v]){</pre>
 segment() {}
                                                                  g[u].push_back(v);
 segment(int \ a, \ int \ b, \ int \ c) \colon i(a), \ l(b), \ r(c) \ \{\}
                                                                  g[v].push_back(u);
inline 1ld f(int 1, int r){return dp[1] + w(1+1, r);}
                                                               }else{
void solve() {
                                                                 low[u]=min(low[u],dfn[v]);
 dp[0] = 0;
                                                                 if(dfn[v]<dfn[u]){</pre>
 deque<segment> dq; dq.push_back(segment(0, 1, n));
                                                                  int temp_v=u;
 for (int i = 1; i <= n; ++i) {
  dp[i] = f(dq.front().i, i);</pre>
                                                                  bcc_id++;
                                                                  while(temp_v!=v){
  while(dq.size()&&dq.front().r<i+1) dq.pop_front();</pre>
                                                                   g[bcc_id+n].push_back(temp_v);
  dq.front().l = i + 1;
                                                                   g[temp_v].push_back(bcc_id+n);
  segment seg = segment(i, i + 1, n);
                                                                   temp_v=par[temp_v];
  while (dq.size() &&
   f(i, dq.back().1) < f(dq.back().i, dq.back().1))
                                                                  g[bcc_id+n].push_back(v);
    dq.pop_back();
                                                                  g[v].push_back(bcc_id+n);
  if (dq.size())
                                                                  reverse(g[bcc_id+n].begin(),g[bcc_id+n].end());
   int d = 1 << 20, c = dq.back().1;</pre>
   while (d >>= 1) if (c + d <= dq.back().r)</pre>
           c+d) > f(dq.back().i, c+d)) c += d;
   dq.back().r = c; seg.l = c + 1;
                                                             int dp[maxn][2], min_dp[2][2], tmp[2][2], tp[2];
  if (seg.1 <= n) dq.push_back(seg);</pre>
                                                              void dfs(int u,int fa){
                                                               if(u<=n){
                                                                for(int i=0;i<(int)g[u].size();i++){</pre>
                                                                 int v=g[u][i];
8.4
      ConvexHull Optimization
                                                                 if(v==fa) continue;
                                                                 dfs(v,u);
 mutable int64_t a, b, p;
                                                                 memset(tp,0x8f,sizeof tp);
 bool operator<(const L &r) const { return a < r.a; }</pre>
                                                                 if(v<=n){
 bool operator<(int64_t x) const { return p < x; }</pre>
                                                                  tp[0]=dp[u][0]+max(dp[v][0],dp[v][1]);
                                                                  tp[1]=max(
struct DynamicHull : multiset<L, less<>> {
                                                                   dp[u][0]+dp[v][0]+1
 static const int64_t kInf = 1e18;
                                                                   dp[u][1]+max(dp[v][0],dp[v][1])
 bool Isect(iterator x, iterator y)
  auto Div = [](int64_t a, int64_t b) {
                                                                 }else{
    return a / b - ((a ^ b) < 0 && a % b); }
                                                                  tp[0]=dp[u][0]+dp[v][0];
  if (y == end()) { x->p = kInf; return false; }
                                                                  tp[1]=max(dp[u][0]+dp[v][1],dp[u][1]+dp[v][0]);
  if (x->a == y->a) x->p = x->b > y->b ? kInf : -kInf;
  else x->p = Div(y->b - x->b, x->a - y->a);
                                                                 dp[u][0]=tp[0],dp[u][1]=tp[1];
  return x->p >= y->p;
                                                               }else{
 void Insert(int64_t a, int64_t b) {
                                                                for(int i=0;i<(int)g[u].size();i++){</pre>
  auto z = insert({a, b, 0}), y = z++, x = y;
                                                                 int v=g[u][i];
  while (Isect(y, z)) z = erase(z);
                                                                 if(v==fa) continue;
  if (x!=begin()\&Esct(--x,y)) Isect(x, y=erase(y));
                                                                 dfs(v,u);
  while ((y = x) != begin() && (--x)->p >= y->p)
   Isect(x, erase(y));
                                                                min_dp[0][0]=0;
                                                                min_dp[1][1]=1;
 int64_t Query(int64_t x) {
                                                                min_dp[0][1]=min_dp[1][0]=-0x3f3f3f3f3f;
 auto 1 = *lower_bound(x);
                                                                for(int i=0;i<(int)g[u].size();i++){</pre>
  return 1.a * x + 1.b;
                                                                 int v=g[u][i]
                                                                 if(v==fa) continue;
};
                                                                 memset(tmp,0x8f,sizeof tmp);
                                                                 tmp[0][0]=max(
8.5
      Josephus Problem
                                                                  min_dp[0][0]+max(dp[v][0],dp[v][1]),
// n people kill m for each turn
                                                                  min_dp[0][1]+dp[v][0]
int f(int n, int m) {
 int s = 0;
                                                                 tmp[0][1]=min_dp[0][0]+dp[v][0]+1;
 for (int i = 2; i <= n; i++)
                                                                 tmp[1][0]=max(
  s = (s + m) \% i;
                                                                  \min_{dp[1][0]+\max(dp[v][0],dp[v][1])}
 return s;
                                                                  min_dp[1][1]+dp[v][0]
// died at kth
                                                                 tmp[1][1]=min_dp[1][0]+dp[v][0]+1;
int kth(int n, int m, int k){
                                                                 memcpy(min_dp,tmp,sizeof tmp);
 if (m == 1) return n-1;
 for (k = k*m+m-1; k >= n; k = k-n+(k-n)/(m-1));
                                                                dp[u][1]=max(min_dp[0][1],min_dp[1][0]);
 return k;
                                                                dp[u][0]=min_dp[0][0];
8.6 Cactus Matching
                                                              int main(){
vector<int> init_g[maxn],g[maxn*2];
                                                               int m,a,b;
                                                               scanf("%d%d",&n,&m);
int n,dfn[maxn],low[maxn],par[maxn],dfs_idx,bcc_id;
                                                               for(int i=0;i<m;i++){
  scanf("%d%d",&a,&b);</pre>
void tarjan(int u){
 dfn[u]=low[u]=++dfs_idx;
 for(int i=0;i<(int)init_g[u].size();i++){</pre>
                                                                init_g[a].push_back(b);
  int v=init_g[u][i];
                                                                init_g[b].push_back(a);
  if(v==par[u]) continue;
```

par[1]=-1;

```
tarjan(1);
 dfs(1,-1);
 printf("%d\n", max(dp[1][0], dp[1][1]));
return 0;
8.7 Tree Knapsack
int dp[N][K]; PII obj[N];
vector<int> G[N];
void dfs(int u, int mx){
 for(int s: G[u]) {
  if(mx < obj[s].first) continue;</pre>
  for(int i=0;i<=mx-obj[s].FF;i++)</pre>
   dp[s][i] = dp[u][i];
  dfs(s, mx - obj[s].first);
  for(int i=obj[s].FF;i<=mx;i++)</pre>
   dp[u][i] = max(dp[u][i],
    dp[s][i - obj[s].FF] + obj[s].SS);
}
8.8 N Queens Problem
vector< int > solve( int n ) {
 // no solution when n=2, 3
 vector< int > ret;
 if ( n % 6 == 2 ) {
 for ( int i = 2 ; i <= n ; i += 2 )
ret.push_back( i );
  ret.push_back( 3 ); ret.push_back( 1 );
  for ( int i = 7 ; i <= n ; i += 2 )
   ret.push_back( i );
  ret.push_back( 5 );
 } else if ( n % 6 == 3 ) {
 for ( int i = 4 ; i <= n ; i += 2 )
  ret.push_back( i );</pre>
  ret.push_back( 2 );
  for ( int i = 5 ; i <= n ; i += 2 )
   ret.push_back( i );
  ret.push_back( 1 ); ret.push_back( 3 );
 } else {
  for ( int i = 2 ; i <= n ; i += 2 )
  ret.push_back( i );
 for ( int i = 1 ; i <= n ; i += 2 )
  ret.push_back( i );
return ret;
8.9 Binary Search On Fraction
struct Q {
11 p, q;
Q go(Q b, 11 d) { return \{p + b.p*d, q + b.q*d\}; \}
bool pred(Q);
// returns smallest p/q in [lo, hi] such that
// pred(p/q) is true, and 0 <= p,q <= N
Q frac_bs(11 N) {
 Q lo{0, 1}, hi{1, 0};
 if (pred(lo)) return lo;
 assert(pred(hi));
 bool dir = 1, L = 1, H = 1;
 for (; L || H; dir = !dir) {
  11 len = 0, step = 1;
  for (int t = 0; t < 2 && (t ? step/=2 : step*=2);)</pre>
  if (Q mid = hi.go(lo, len + step);
  mid.p > N || mid.q > N || dir ^ pred(mid))
    t++;
   else len += step;
  swap(lo, hi = hi.go(lo, len));
  (dir ? L : H) = !!len;
return dir ? hi : lo;
```