# (19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2003-68828 (P2003-68828A)

(43)公開日 平成15年3月7日(2003.3.7)

| (51) Int.Cl.7 | 識別記号  | FΙ      |         | テーマコード(参考) |
|---------------|-------|---------|---------|------------|
| H01L          | 21/68 | H01L    | 21/68 A | 4 K 0 2 9  |
| C 2 3 C       | 14/56 | C 2 3 C | 14/56 G | 4 K 0 3 0  |
|               | 16/54 |         | 16/54   | 5 F O 3 1  |

請求項の数16 OL (全 19 頁) 審査請求 有

| (21)出願番号  | 特願2002-204518(P2002-204518) | (71)出願人                               | 000005108            |
|-----------|-----------------------------|---------------------------------------|----------------------|
| (62)分割の表示 | 特顧平7-182921の分割              |                                       | 株式会社日立製作所            |
| (22)出顧日   | 平成7年7月19日(1995.7.19)        | •                                     | 東京都千代田区神田駿河台四丁目6番地   |
|           |                             | (72)発明者                               | 空岡 稔                 |
|           |                             | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 山口県下松市大字東豊井794番地 株式会 |
|           |                             |                                       | 社日立製作所笠戸工場内          |
|           |                             | (72)発明者                               | 吉岡 健                 |
| •         |                             |                                       | 山口県下松市大字東豊井794番地 株式会 |
|           |                             |                                       | 社日立製作所笠戸工場内          |
|           |                             | (74)代理人                               | 100068504            |
|           |                             |                                       | 弁理士 小川 勝男 (外2名)      |

最終頁に続く

# (54) 【発明の名称】 真空処理装置およびそれを用いた半導体製造ライン (57)【要約】

【課題】 試料の大口径化に対応しつつ、製造コストの 上昇を抑え、かつ、メンテナンス性も損なわない真空処 理装置を提供する。

【解決手段】 1つのカセットプロックと複数の真空処 理ブロックとを有する真空処理装置であって、前記1つ のカセットブロックは、試料を収納したカセットを載置 するカセット台と前記試料を搬送する第一の試料搬送手 段とを有し、前記真空処理プロックの各々は、ロードロ ック室と真空下において前記試料を処理する真空処理室 と真空下において前記試料を搬送する第二の試料搬送手 段とを有し、前記カセット台は、前記真空処理装置のフ ロント部に配置され、前記第一の試料搬送手段は、前記 フロント部に並べられた複数のカセットと前記真空処理 ブロックの各々が有する前記ロードロック室との間にお いて前記試料を一枚毎に搬送するための共通の搬送手段 である。



#### 【特許請求の範囲】

【請求項1】1つのカセットプロックと複数の真空処理 プロックとを有する真空処理装置であって、

前記1つのカセットブロックは、試料を収納したカセットを載置するカセット台と前記試料を搬送する第一の試料搬送手段とを有し、

前記真空処理ブロックの各々は、ロードロック室と真空 下において前記試料を処理する真空処理室と真空下において前記試料を搬送する第二の試料搬送手段とを有し、 前記カセット台は、前記真空処理装置のフロント部に配 置され、

前記第一の試料搬送手段は、前記フロント部に並べられた複数のカセットと前記真空処理プロックの各々が有する前記ロードロック室との間において前記試料を一枚毎に搬送するための共通の搬送手段であることを特徴とする真空処理装置。

【請求項2】請求項1に記載の真空処理装置において、 前記第一の試料搬送手段は、前記カセット台と前記ロー ドロック室との間に配置され、複数の前記カセットが並 べられた方向へ水平移動することを特徴とする真空処理 装置。

【請求項3】請求項1に記載の真空処理装置において、 前記複数の真空処理ブロックの各々は、前記1つのカセットブロックの同一側面に並べて配置されていることを 特徴とする真空処理装置。

【請求項4】請求項1に記載の真空処理装置において、前記ロードロック室は、ロード側ロードロック室とアンロード側ロードロック室に分かれて構成されていることを特徴とした真空処理装置。

【請求項5】試料を収納したカセットを載置するカセット台と、前記試料を搬送する第一の試料搬送手段とを有する1つのカセットブロックと、

第一のロードロック室と、真空下において前記試料を処理する第一の真空処理室と、真空下において前記第一のロードロック室と前記第一の真空処理室との間において前記試料を搬送する第二の試料搬送手段とを有する第一の真空処理ブロックと、

第二のロードロック室と、真空下において前記試料を処理する第二の真空処理室と、真空下において前記第二のロードロック室と前記第二の真空処理室との間において前記試料を搬送する第三の試料搬送手段とを有する第二の真空処理プロックとを有する真空処理装置であって、前記力セット台を前記真空処理装置のフロント部に配置1.

前記第一の試料搬送手段は、前記フロント部に並べられた複数のカセットと前記第一のロードロック室と前記第二のロードロック室との間において前記試料を一枚毎に搬送するための共通の搬送手段であることを特徴とする真空処理装置。

【請求項6】請求項5に記載の真空処理装置において、

前記第一の試料搬送手段は、前記カセット台と前記第一 のロードロック室と前記第二のロードロック室との間に 配置され、複数の前記カセットが並べられた方向へ水平 移動することを特徴とする真空処理装置。

【請求項7】請求項5に記載の真空処理装置において、前記第一の真空処理ブロック及び前記第二の真空処理ブロックは、前記カセットブロックの同一側面に並べて配置されていることを特徴とする真空処理装置。

【請求項8】請求項5に記載の真空処理装置において、前記第一のロードロック室及び前記第二のロードロック室は、各々ロード側ロードロック室とアンロード側ロードロック室に分かれて構成されていることを特徴とする真空処理装置。

【請求項9】ベイエリア内に複数の真空処理装置を有し、前記真空処理装置に試料を収納したカセットを供給もしくは回収するカセット搬送手段が前記ベイエリア内を移動する半導体製造ラインであって、

前記複数の真空処理装置のうち少なくとも1つの真空処理装置は、1つのカセットブロックと複数の真空処理ブロックとから構成され、

前記1つのカセットブロックは、前記カセットを載置するカセット台と前記試料を搬送する第一の試料搬送手段とを有し、

前記真空処理プロックの各々は、ロードロック室と、真空下において前記試料を処理する真空処理室と、真空下において前記試料を搬送する第二の試料搬送手段とを有

前記カセット台は、前記真空処理装置のフロント部に配 置され。

前記第一の試料搬送手段は、前記フロント部に並べられた複数のカセットと前記真空処理プロックの各々が有する前記ロードロック室との間において前記試料を一枚毎に搬送するための共通搬送手段であることを特徴とする 半導体製造ライン。

【請求項10】請求項9に記載の半導体製造ラインにおいて、前記真空処理装置の前記第一の試料搬送手段は、前記カセット台と前記ロードロック室との間に配置され、複数の前記カセットが並べられた方向へ水平移動することを特徴とする半導体製造ライン。

【請求項11】請求項9に記載の半導体製造ラインにおいて、前記真空処理装置の前記複数の真空処理プロックの各々は、前記1つのカセットプロックの同一側面に並べて配置されていることを特徴とする半導体製造ライン。

【請求項12】請求項9に記載の半導体製造ラインにおいて、前記真空処理装置の前記ロードロック室は、ロード側ロードロック室とアンロード側ロードロック室に分かれて構成されていることを特徴とした半導体製造ライン

【請求項13】ベイエリア内に複数の真空処理装置を有

し、前記真空処理装置に試料を収納したカセットを供給 もしくは回収するカセット搬送手段が前記ベイエリア内 を移動する半導体製造ラインであって、

前記複数の真空処理装置のうち少なくとも1つの真空処理装置は、.

前記カセットを載置するカセット台と試料を搬送する第 一の試料搬送手段とを有する1つのカセットブロック と、

第一のロードロック室と真空下において前記試料を処理 する第一の真空処理室と真空下において前記第一のロー ドロック室と前記第一の真空処理室との間において前記 試料を搬送する第二の試料搬送手段とを有する第一の真 空処理プロックと、

第二のロードロック室と、真空下において前記試料を処理する第二の真空処理室と、真空下において前記第二のロードロック室と前記第二の真空処理室との間において前記試料を搬送する第三の試料搬送手段とを有する第二の真空処理プロックとを有する真空処理装置であって、前記カセット台を前記真空処理装置のフロント部に配置し、

前記第一の試料搬送手段は、前記フロント部に並べられた複数のカセットと前記第一のロードロック室と前記第 二のロードロック室との間において前記試料を一枚毎に 搬送するための共通の搬送手段であることを特徴とする 半導体製造ライン。

【請求項14】請求項13に記載の半導体製造ラインに おいて、前記真空処理装置の前記第一の試料搬送手段 は、前記カセット台と前記第一のロードロック室と前記 第二のロードロック室との間に配置され、複数の前記カ セットが並べられた方向へ水平移動することを特徴とす る半導体製造ライン。

【請求項15】請求項13に記載の半導体製造ラインに おいて、前記真空処理装置の前記第一の真空処理ブロッ ク及び前記第二の真空処理ブロックは、前記カセットブ ロックの同一側面に並べて配置されていることを特徴と する半導体製造ライン。

【請求項16】請求項13に記載の半導体製造ラインに おいて、前記真空処理装置の前記第一のロードロック室 及び前記第二のロードロック室は、ロード側ロードロッ ク室とアンロード側ロードロック室に分かれて構成され ていることを特徴とする半導体製造ライン。

## 【発明の詳細な説明】

## [0001]

【産業上の利用分野】本発明は、真空処理装置に係り、特にSi等の半導体素子基板である試料に対して、エッチング、CVD(化学的気相成長)、スパッタリング、アッシング、リンサ(水洗)等の枚葉処理をするのに好適な真空処理装置とそれを用いて半導体デバィスを製造する半導体製造ラインに関するものである。

# [0002]

【従来の技術】試料を処理する真空処理装置は、大別すると、カセットプロックと真空処理プロックから構成されており、カセットプロックは、半導体製造ラインのベイ通路に面して長手方向に伸びるフロントを有し、試料用のカセットや試料のオリエンテーションを合わせるアライメントユニットと、大気ロボットがある。真空処理プロックには、ロード側ロードロック室、アンロード側ロードロック室、真空処理室、後真空処理室、真空ポンプ及び真空ロボット等が設けられている。

【0003】これらの真空処理装置では、カセットプロックのカセットから取り出された試料が、大気ロボットにより真空処理プロックのロードロック室まで搬送される。ロードロック室から真空ロボットによりさらに処理室に搬送され、電極構造体上にセットされた試料は、プラズマエッチング等の処理がなされる。その後、必要に応じて後処理室に搬送、処理される。処理済みの試料は、真空ロボット及び大気ロボットによりカセットプロックのカセットに搬送される。

【0004】試料をプラズマエッチング処理する真空処理装置の例としては、例えば特公昭61-8153号公報、特開昭63-133532号公報、特公平6-30369号公報、特開平6-314729号公報、特開平6-314730号公報、米国特許第5,314,509号明細書に記載されたようなものがある。

# [0005]

【発明が解決しようとする課題】上記従来技術の真空処理装置は、処理室やロードロック室を同心状に配置したり、矩形状に配置している。例えば、米国特許第5,314,509号明細書に記載された装置は、真空処理ブロックの中央付近に真空ロボット、その周囲に3個の処理室が同心状に配置され、真空ロボットとカセットブロックの間に、ロード側ロードロック室、アンロード側ロードロック室が設けられている。これらの装置では、大気ロボットや真空ロボットの搬送アームの回転角度が大きく従って装置全体の必要床面積が大きいという問題がある。

【0006】一方、真空処理装置の真空処理ブロック内の処理室や真空ポンプその他各種の配管機器については、定期、不定期に点検修理等のメンテナンスを行うことが必要である。そのため、一般に、真空処理ブロックの周囲には、扉が設けられており、この扉を開けることにより、ロードロック室、アンロードロック室、処理室、真空ロボット及び各種の配管機器の点検修理が出来るようになっている。

【0007】従来の真空処理装置は、取り扱う試料の直径 dが8インチ (約200mm)以下であるが、カセットの外形寸法 Cwも、約250mm程度であり、これでも床面積の大きさは大きな問題となっていた。さらに、直径 dが12インチ (約300mm)のような大口径の試料を取り扱うことを考えると、カセットの外形寸法 Cwは、

約350mm程度と大きくなり、複数のカセットを収納するカセットプロックの幅も大きくなる。この幅に合わせて真空処理プロックの幅を決定すると、真空処理装置全体が大きなスペースを必要とすることになる。一例として、4個のカセットを収納するカセットプロックについて考えると、試料の直径 d が 8 インチから12 インチになった場合、カセットの幅は少なくとも約40 cm以上大きくならざるを得ない。

【0008】一方、試料に各種の処理を行いながら大量 の処理を行うために、一般の半導体製造ラインでは、同 じ処理を行う複数の真空処理装置を同じべイに集め、各 ベイ間の搬送を自動またはマニュアルで行っている。こ のような半導体製造ラインは、高いクリーン度を必要と するため、半導体製造ライン全体が大きなクリーンルー ム内に設置される。試料の大口径化に伴う真空処理装置 の大型化は、クリーンルーム占有面積の大型化を伴う が、これはもともと建設コストの高いクリーンルームの 建設コストを一層増加させることになる。もし、同じ面 積のクリーンルームに占有面積の大きな真空処理装置を 設置するとすれば、真空処理装置の全体の台数を減らす か、あるいは各真空処理装置間の間隔を狭くせざるを得 ない。同じ面積のクリーンルームにおける真空処理装置 の設置台数減少は、必然的に半導体の製造ラインの生産 性の低下ひいては半導体の製造コストの上昇を伴う。他 方、各真空処理装置間の間隔を狭くすることは、点検修 理のためのメンテナンススペースが不足し、真空処理装 置のメンテナンス性を著しく阻害する。

【0009】本発明の目的は、試料の大口径化に対応しつつ、製造コストの上昇を抑えることのできる真空処理 装置を提供することにある。

【0010】本発明の他の目的は、試料の大口径化に対応しつつ、メンテナンス性に優れた真空処理装置を提供することにある。

【0011】本発明の他の目的は、試料の大口径化に対応しつつ、真空処理装置の必要設置台数を確保して製造コストの上昇を抑え、かつ、メンテナンス性も損なわない半導体製造ラインを提供することにある。

# [0012]

【課題を解決するための手段】上記目的を達成するために、本発明は、カセットブロックと真空処理ブロックとから構成され、該カセットブロックには、試料を収納したカセットを載置するカセット台が設けられ、前記真空処理ブロックには、前記試料を真空処理する処理室と、前記試料を搬送する真空搬送手段とが配置された真空処理装置において、前記カセットブロックと前記真空処理ブロックの平面形状がそれぞれ略長方形であり、前記カセットブロックの幅をW1、前記真空処理ブロックの幅をW2、前記カセットの幅をCwとしたとき、W1-W2 ≧ Cw としたことを特徴とする。本発明の他の特徴は、前記カセットブロックの幅寸法を、前記真空処理ブロッ

クの幅寸法をよりも大きくし、前記真空処理装置の平面 形状をL字形またはT字形に形成したことにある。

【0013】本発明の他の特徴は、カセットブロックと真空処理ブロックからなる複数の真空処理装置をそれぞれ組み込んだベイエリアが半導体の製造工程順に複数個配置された半導体製造ラインであって、前記カセットブロックには、試料を収納したカセットを載置するカセット台が設けられ、前記真空処理ブロックには、前記試料を真空処理する処理室と、前記試料を搬送する真空搬送手段とが配置されたものにおいて、前記真空処理装置の少なくとも一つは、前記カセットブロックが300m以上の直径を有する試料を複数個収納可能に構成され、該カセットブロックの幅をW1、前記真空処理ブロックの幅をW2、前記カセットの幅をCwとしたとき、W1-W2≧Cwとした半導体製造ラインにある。

【0014】本発明の他の特徴は、300mm以上の直径を有する試料を収納するカセットブロックと、前記試料に対して真空処理を行う真空処理ブロックとからなる真空処理装置を複数個備えた半導体製造装置のライン構成方法であって、前記真空処理装置の少なくとも一つは、前記カセットブロックの幅寸法が、前記真空処理プロックの幅寸法よりも大きく、前記真空処理装置の平面形状がL字形またはT字形に形成され、前記L字形またはT字形真空処理装置と隣接する真空処理装置の間にメンテナンススペースを確保するようにしたライン構成方法にある。

# [0015]

【作用】本発明によれば、カセットブロックと真空処理ブロックの平面形状がそれぞれ略長方形であり、前記カセットブロックの幅をW1 とし、前記真空処理ブロックの幅をW2 としたとき、W1 >W2 の関係になるように構成することにより、真空処理装置全体の平面形状がL形やT形のような形状と成り、このような真空処理装置を多数配列する場合、隣接する真空処理装置の間隔を狭くしても、隣接する真空処理ブロック相互間にとは十分なスペースが確保される。例えば、W1を1.5 m、W2を0.8 mとして、隣接する真空処理装置の間に0.7 mのメンテナンススペースを確保することが出来る。

【0016】そのため、試料の大口径化にもかかわらず、同じ面積のクリーンルームにおける真空処理装置の設置台数を従来に比べて減少させることが無く、よって半導体の製造ラインの生産性の低下を招くことも無い。従って、試料の大口径化に対応しつつ、製造コストの上昇を抑えることができ、しかもメンテナンス性に優れた真空処理装置を提供することができる。

【0017】また、本発明の真空処理装置を半導体製造 ラインに組み込むことにより、試料の大口径化に対応し つつ、真空処理装置の必要設置台数を確保して製造コス トの上昇を抑え、かつ、メンテナンス性も損なわない半 導体製造ラインを提供することができる。

## [0018]

【実施例】以下、本発明の一実施例になる真空処理装置の構成を図1乃至図4により説明する。真空処理装置100は、図1に示すように、それぞれ直方体状の形状のカセットブロック1と真空処理ブロック2とから構成されている。カセットブロック1と真空処理ブロックの平面形状はそれぞれ長方形であり、全体として平面形状がし字形となっている。カセットブロック1は、後述するように半導体製造ラインのベイ通路に面して長手方向に伸びており、フロント側にはベイ通路との間で試料を収納したカセット12の授受を行うカセット台16や操作パネル14が設けられている。カセットブロック1の背面に設置された真空処理ブロック2はカセットブロック1に直角方向に伸びており、各種の真空処理を行う装置や搬送装置を内蔵している。

【0019】図2~図4に示すように、カセットブロック1には、試料搬送用の大気ロボット9及び試料保持用のカセット12がある。試料用のカセット12は、製品試料用カセット12A、12B、12C及びダミー試料用カセット12Dからなっている。必要に応じてカセット12に隣接して試料のオリエンテーション合せを設けても良い。試料用カセット12には、全て製品用の試料あるいは製品とダミー用の試料が収納される。カセットの最上段や最下段に、異物チェック用やクリーニング用の試料が収納される。

【0020】また、真空処理ブロック2には、ロード側ロードロック室4、アンロード側ロードロック室5、真空処理室6、後真空処理室7、真空ポンプ8及び真空ロボット10が設けられている。13はエッチング用の放電手段、14は後処理(アッシング)用の放電手段である。

【0021】大気ロボット9は、カセットブロック1内にカセット台16と平行に設置されたレール92の上を走行可能に設けられており、カセット12と真空処理ブロック2のロード側ロードロック室4及びアンロード側ロードロック室5の間で、試料3を搬送する。真空ロボット10は、ロード側ロードロック室4から真空処理室6まで試料3を搬送すると共に、真空処理室6、アンロード側ロードロック室5、後真空処理室7間で試料3を搬送する。本発明は、直径dが12インチ(約300mm)以上の大口径の試料を取り扱うことを前提としている。12インチの試料であれば、カセットの外形寸法Cwは、約350mm~360mm程度となる。

【0022】真空処理室6は、試料3を1個ずつ処理する、例えばプラズマエッチング処理する室であって、真空処理プロック2の左上部に設けられている。ロード側ロードロック室4とアンロード側ロードロック室5とは、真空ロボット10を挟んで真空処理室6の反対側、すなわち真空処理プロック2の下辺部分にそれぞれ設けられている。後真空処理室7は、処理済みの試料3を1

個ずつ後処理する室であって、アンロード側ロードロック室5と対応して真空処理ブロック2の中間部分に設け られている。

【0023】大気ロボット9は、伸縮アーム91を有しており、レール92の上を移動しつつ伸縮する伸縮アームの軌跡が、ローダーのカセット12並びにロード側ロードロック室4並びにアンロード側ロードロック室5を含む軌跡になるように構成されている。真空ロボット10は、伸縮アーム101を有し、該伸縮アームの旋回軌跡がロード側ロードロック室4並びに真空処理室6を含む軌跡になるようにして、真空処理ブロック2に設けられている。従って、真空の理ブロック2に設けられている。従って、真空の理ブロック2に設けられている。従って、真空の理ブロック2に設けられている。なお、大気ロボット9の位置はカセットブロック1上の右側部分でもよい。

【0024】また、各カセット12の周囲にはウエハサーチ機構が設けてあり、カセット12がセットされたときに、ウエハサーチ機構が各カセット内の試料を認識する。さらに、各ロードロック室4,5と真空処理室6と後真空処理室7には、試料押し上げ機構14A,14Bがそれぞれ設けられており、それぞれ各ロボットの伸縮アーム91,101に試料3を受渡しできる構成となっている。さらに、真空処理室6には、エッチング用放電手段13の電極及び試料載置台14Cが設けられている。エッチング用放電手段13の内部に、試料押し上げ機構14Bが設けられている。15はリング状ゲート弁である。

【0025】次に、真空処理装置100内の試料の処理操作について、プラズマエッチング処理を例にして簡単に説明する。まず、カセットプロック1の大気ロボット9をレール92上で移動させて例えばロード側カセット12Aに近づけ、さらにその伸縮アーム91を該カセット12A側に向かって伸ばすことにより、フォーク(図示せず)をロード側カセット内の試料3の下方に挿入し、フォーク上に試料3を移載する。そして、ロード側ロードロック室4の蓋を開いた状態で大気ロボット9のアーム91をロード側ロードロック室4まで移動し、試料3を搬送する。このとき、必要に応じて大気ロボット9をレール92上で移動させて伸縮アーム91のストロークがロード側ロードロック室4に届くようにする。

【0026】その後、試料押し上げ機構14Aを動作させて、試料3をロード側ロードロック室4の支持部材上に支持する。さらに、ロード側ロードロック室4を真空排気した後、支持部材を下降し、再び試料押し上げ機構14Aを動作させて真空ロボット10のアーム101に試料3を受渡し、真空処理ブロック2内の搬送経路つまり、真空中を真空処理室6まで搬送する。また、この逆の動作により試料3をカセットブロック1のアンロード側カセット位置まで搬送する。

【0027】なお、後処理が必要な場合は、真空ロボット10のアーム101により後真空処理室7を経由して 搬送する。後真空処理室7では、エッチング処理済みの 試料3に対してアッシングなどのプラズマ後処理が実施 される。

【0028】図3において、真空ロボット10のアーム101の軌跡は、例えば、ロード側ロードロック室4、真空処理室6及び後真空処理室7に試料3があって、アンロードロック室5にはウエハがない状態を考えると次のようになる。すなわち、真空ロボット10のアーム101はまず、後真空処理室7の一枚の試料3をアンロードロック室5に移し、真空処理室6の試料3を後真空処理室7に移動させる。次に、ロード側ロードロック室4の試料3を後真空処理室7に搬送する。更に、真空処理室6の試料3を後真空処理室7に搬送する。アーム101は、以下同様の軌跡を繰り返す。

【0029】また、真空処理ブロック2の側端近くに真空ロボット10が配置されているため、作業者は無理な姿勢をとらなくても真空ロボット10の点検修理が出来、メンテナンスが容易となる。

【0030】図5は、本発明の真空処理装置100を組み込んだ半導体製造ラインのベイエリア200の一例を示す平面図である。図において、L字形の真空処理装置100が、間隙G1のメンテナンススペース203を隔てて多数配置されており、パーティション120で高クリーン度の部屋201Aと低クリーン度の部屋201Bが仕切られている。高クリーン度の部屋201Aに配置されたカセットブロック1の前面に沿って、試料3を供給搬送するための自動搬送装置(以下AGV)202が設けられている。一方、低クリーン度の部屋201Bには、多数の真空処理ブロック2が配置されており、それらの間隔が後述するメンテナンススペースである。

【0031】図6は、本発明の実施例になる半導体製造 ラインにおける、試料3の流れの一部を示す図である。 各ベイエリア200の入り口部には、検査装置206、 ベイストッカー208が設けられている。各ベイエリア 200の背部はメンテナンス通路210に連通してお り、メンテナンス通路210の入り口には、エアシャワ -212が設けられている。外部からベイストッカー2 08に供給された試料3は、矢印で示すように、ライン AGV204により処理工程に応じて所定のベイエリア 200のベイ内AGV202に順次渡される。さらに、 ベイ内AGV202から真空処理装置100のカセット プロック1に渡される。真空処理装置100内では、試 料3が大気ロボット9、真空ロボット10によりカセッ トプロック1と真空処理プロック2の間を搬送される。 真空処理プロック2で処理された試料3は、ベイ内AG V202に渡され、さらに、ラインAGV204に渡さ れ、次のベイエリア200に搬送される。

【0032】ベイ内AGV202を有する半導体製造ラ

インにおいて、ベイ内AGV202は、各ベイ200毎に設けられたベイストッカー208より各真空処理装置100のカセットブロック1へ新規試料(処理前ウエハ)を供給したり、このカセットプロック1より処理済み試料を収納したカセットを回収したりする。

【0033】ベイ内AGV202は、各真空処理装置100から出される要求信号に対応して、各ベイ200に設けられているベイストッカー208より新規試料(処理前ウエハ)を収納したカセットを受け取り、真空処理装置100のカセットプロック1より要求信号が出されたカセットポジションまで走行し、停止する。

【0034】次に、ベイ内AGV202に組み込まれているカセットハンドリングロボットは、旋回動作( $\theta$  軸),上下移動(Z 軸),つかみ動作( $\phi$  軸)の3 軸制御機能を持つものや、旋回動作( $\theta$  軸),上下移動(Z 軸),つかみ動作( $\phi$  軸),前後移動(Y 軸)の4 軸制御機能を持つもの等が用いられる。

【0035】カセットハンドリングロボットは、各真空処理装置100から出された要求内容により、既に処理済みのカセット12がそのカセットブロック1の指定位置に有る場合には、先ず、このカセット12をカセットブロック1からベイ内AGV202上の空きカセット置場に回収し、次に、回収され空となった場所にベイストッカー208より搬送してきた新規カセット12を供給する。

【0036】この動作が完了すると、回収したカセット 12をベイストッカー208まで搬送し、ベイ200内 の真空処理装置100から次の要求信号が出されるまで 動作を停止して待機している。

【0037】仮に、ベイ200内の複数の真空処理装置 100,100…から短時間の間に要求信号が出された 場合、信号を受け取った順に対応するが、受信時間のず れと発信装置の位置関係を加味してベイ内AGV202 の待機位置から搬送効率の高い順に対応するかはシステ ムの構築の仕方に依るものとする。

【0038】また、受渡しするカセットの情報として場合、信号を受け取った順に対応するが、受信時間のずれと発信装置の位置関係を加味してベイ内AGV202の待機位置から搬送効率の高い順に対応するかはシステムの構築の仕方に依るものとする。

【0039】また、受渡しするカセットの情報としては、製造ライン全体の管理で用いられる各カセット特有の番号や各種情報を含み、真空処理装置100とベイ内AGV202間にて、例えば、光通信システムなどにより伝達され、カセットの管理を行うよう考慮してある。

【0040】ベイエリア200における処理の流れについて、各カセット内の試料に着目してさらに説明を加える。

【0041】大気ブロック1には、カセット11, 12 が、同一水平面に3~4個併置されている。各カセット

内には、試料、この場合、直径が300mm(12") の半導体素子基板(ウェハ)がそれぞれ所定枚数ずつ収 納されている。

【0042】 $3\sim4$ 個のカッセトの内、 $2\sim3$ 個のカセット12の中には、これがら真空処理部で所定の真空処理が施される試料(処理前ウェハ)が収納されている。 残り1個のカセット内11には、9ビーウェハが収納されている。

【0043】ダミーウェハは、真空処理部2での異物数のチェックや、真空処理領域を構成する真空処理チャンバのクリーニング処理時等に使用される。

【0044】ここで、処理前試料が収納されているカセット12を、12A、12B、12Cと呼ぶこととする。該状態で、例えば、カセット12Aの試料収納状態が、ウェハチェック手段(図示省略)によりチェックされる。この場合、カセット12Aは、試料を1枚毎、その高さ方向に収納する機能を有している。

【0045】ウェハチェック手段としては、試料の有無を接触、または非接触にて検出するセンサを備えている。そして、該センサを試料の収納位置に対応して移動させる手段を有している。また、試料が、カセット12Aの何段目に収納されているのかの信号を出力する手段も備えている。

【0046】ウェハチェック手段として、カセット12 Aの試料収納段に逐次対応するようにセンサを移動させる手段を有するものや、複数のセンサが、カセット12 Aの試料収納段にそれぞれ対応して設けられたものが使用される。この場合、センサをカセット12 Aの試料収納段に逐次対応するように移動させる手段は不用である。また、ウェハチェック手段のセンサを固定し、その代わりにカセット12 Aを移動させるようにしても良い

【0047】ウェハチェック手段により、カセット12 Aの高さ方向のどの位置に処理前試料が収納されているかがチェックされる。例えば、ウェハチェック手段が、カセット12Aの試料収納段に逐次対応するようにセンサを移動させる手段を有するものである場合、センサが、カセット12Aの、例えば、下部位置から上方に、または上部位置から下方に移動しつつ、カセット12Aの試料収納段と該収納段での処理前試料の有無を検出して行く。

【0048】該チェック結果は、ウェハチェック手段から出力され、例えば、真空処理装置全体を管理する半導体製造ライン制御用の、上位コンピュータ(図示省略)に入力されて記憶される。あるいはまた、カセット置き台上のコンソールボックス内のパーソナルコンピュータにより、あるいはこのパーソナルコンピュータを介して装置制御用の上位コンピュータに入力してもよい。

【0049】その後、この場合、大気搬送ロボット9 が、作動を開始する。該大気搬送ロボットの作動によ り、カセット12A内の処理前試料が、1枚、カセット12A外へ取り出される。

【0050】例えば、大気搬送ロボット9は、試料の被処理面とは反対面(裏面)をすくい保持するすくい部を備えている。すくい部としては、試料の裏面を吸着して保持するものや、試料の保持のための溝、凹み部を有するものや、試料の該周辺部を機械的に把握するもの等が用いられる。更に、試料の裏面を吸着して保持するものとして、真空吸着や静電吸着機能を有するものが使用される。

【0051】例えば、試料の裏面を吸着して保持するものを用いて直径300mm(12")の試料をすくい保持するものにおいては、試料の撓みを極力小さくできるような吸着部の配置、寸法を選定することが重要である。例えば、カセット内幅等も考慮し、試料の直径をdとした場合、吸着部の間隔は、試料の中心を中央としd/3~d/2に設定するようにする。

【0052】試料の撓み量、撓み方によっては、すくい部と他の手段との間での試料受渡し時に試料にずれが生じ、そのオリエンテーションがずれるといった不都合を生じる。

【0053】また、試料の裏面を吸着して保持するものを用いる場合には、移動時(移動開始及び停止を含む)に試料に作用する慣性力により試料が脱離しない程度の吸着力が必要である。これを満足しない場合、移動時に試料がすくい部から脱落したり、試料のオリエンテーションがずれたりするといった不都合を生じる。

【0054】該すくい部は、カセット12A内で、取り出す必要が有る処理前試料の裏面に対応する位置に挿入される。すくい部が挿入された状態で、カセット12Aが、所定量だけ下降させられか、または、すくい部が所定量だけ上昇させられる。該カセット12Aの下降、またはすくい部の上昇により、処理前試料は、すくい部にすくわれた状態ですくい部に渡される。該状態で、すくい部は、カセット12A内の処理前試料が、1枚、カセット12A外へ取り出される。

【0055】上記のように、大気搬送ロボット9でカセット12A内のどの処理前試料を取り出すかは、例えば、上位コンピュータにより指示され、そして、制御される。

【0056】処理前試料が、カセット12A内の何段目から取り出されたものかは、試料取り出し毎に上位コンピュータに、逐次、記憶される。

【0057】すくい部に処理前試料を1枚有する大気搬送ロボット9は、ロード・ロック室4内に該試料を搬入可能な位置に移動させられて停止される。

【0058】ロード・ロック室4内は、真空処理部2の 真空雰囲気と遮断され大気状態に有る。該状態のロード ・ロック室4内には、大気搬送ロボット9のすくい部に 保持された処理前試料が搬入され、そして、すくい部か ちロード・ロック室4内に渡される。

【0059】処理前試料をロード・ロック室4内に渡した大気搬送ロボット9は、次の操作に備えて所定の位置に退避させられる。

【0060】上記のような操作は、例えば、上位コンピュータにより指示され、そして、制御される。

【0061】ロード・ロック室4内に渡された処理前試料が、カセット12A内の何段目から取り出されたものかは、上位コンピュータに、逐次、記憶される。

【0062】処理前試料を受け取ったロード・ロック室 4内は、大気から遮断され、そして、真空排気される。 その後、真空処理部との遮断が解除され、処理前試料を 搬送可能に連通させられる。

【0063】該試料は、真空ロボット10によりロード・ロック室4から真空処理部2の真空処理領域に搬送され、そして、該真空処理領域で所定の真空処理が施される。真空処理が、終了した試料(処理済み試料)は、真空ロボット101により真空処理領域からアンロード・ロック室5に搬送され、該室内に搬入される。

【0064】ここで、真空搬送ロボットは、大気搬送ロボット9のようなすくい部を備えている。そして、すくい部としては、真空吸着機能を有するものを除き、大気搬送ロボットで使用されるものと同様のものが使用される。

【0065】処理済み試料の搬入後、アンロード・ロック室5内は、真空処理部2と遮断され、そして、内圧を 大気圧に調整される。

【0066】内圧が、大気圧となったアンロード・ロック室5内は大気開放される。該状態で、アンロード・ロック室5内には、大気搬送ロボット9のすくい部が挿入され、そして、すくい部に処理済み試料が渡される。

【0067】処理済み試料を受け取ったすくい部は、アンロード・ロック5室外へ搬出される。その後、アンロード・ロック室5内は、次の処理済み試料の搬入に備え大気から遮断されて真空排気される。

【0068】一方、すくい部に処理済み試料を有する大 気搬送ロボット9は、カセット12A内に該処理済み試 料を戻し可能な位置に移動させられて停止される。

【0069】その後、処理済み試料を有するすくい部は、該状態で、カセット12A内に挿入される。ここで、該挿入位置は、処理済み試料が、元来、収納されていた位置に戻されるように上位コンピュータにより制御される。

【0070】処理済み試料を有するすくい部の挿入完了後、カセット12Aは、上昇、またはすくい部は下降させられる。

【0071】これにより、処理済み試料は、該試料が、 元来、収納されていた位置に戻されて、再度、カセット 12Aに収納される。 【0072】このような操作が、カセット12A内の残りの処理前試料、及び、カセット12B,12C内の処理前試料に対しても同様にして実施される。

【0073】つまり、各カセットから1枚毎、順次、取り出される処理前試料は、例えば、ナンバリングされる。例えば、上位コンピュータにて、どのカセットの何段目から取り出された処理前試料は何番目の試料であるかが記憶される。

【0074】該記憶情報にて、カセットから取り出され、真空処理され、そして、真空処理完了後にカセットに戻される試料の動きは管理・制御される。

【0075】つまり、試料は、カセットから取り出され、そして、元のカセットに戻される迄に、次のような順序にて動きを成す。

【0076】(1)カセット内での収納位置チェック

- (2) 大気搬送ロボットによるカセット内の試料の取り出し
- (3) 大気搬送ロボットによるロード・ロック室内への 搬入
- (4) 真空ロボットによるロード・ロック室から真空処 理領域への搬送
- (5) 真空処理領域での真空処理
- (6) 真空ロボットによる真空処理領域からアンロード ・ロック室への搬送
- (7) 大気搬送ロボットによるアンロード・ロック室からの搬出
- (8) 大気搬送ロボットによるカセット内の元の位置へ の収納

上記のように  $(1) \rightarrow (8)$  と試料が移動するたびに、それぞれのステーションに何番の試料が有るのか、上位コンピュータのデータが逐次更新処理される。該更新処理は、試料 1 枚毎につき実施される。これによりそれぞれの試料が、つまり、何番の試料がどのステーションに有るのかが管理される。

【0077】例えば、上位コンピュータのデータの逐次 更新状態処理を、真空処理システム制御用のCRT画面 上に逐次表示するようにしても良い。この場合、CRT 画面上の各ステーション、現在、何番目の試料が有るの か、オペレータが一目で視認できるように表示される。

【0078】尚、処理前試料のオリエンテーション調整が成されるものにおいて、該ステップは、上記の(2)と(3)の間にて実施される。

【0079】このような試料の動きの管理・制御は、真空処理部2が複数の真空処理領域を有する場合にも実施される。

【0080】例えば、真空処理部2が2つの真空処理領域を有するものとする。この場合、試料は、その処理情報により、シリーズ処理されたり、パラレル処理されたりする。ここで、シリーズ処理とは、試料が1つの真空処理領域で真空処理され、該真空処理された試料が、引

続き残りの真空処理領域で真空処理されることをいい、 パラレル処理とは、試料が1つの真空処理領域で真空処 理され、他の試料が残りの真空処理領域で真空処理され ることをいう。

【0081】例えば、シリーズ処理の場合、上位コンピュータでナンバリングされた試料は、その順序に従って処理され、そして、カセット内の元の位置に戻される。

【0082】また、パラレル処理の場合、どの真空処理 領域でどのようにナンバリングされた試料が処理された かが上位コンピュータにより管理・制御されているた め、この場合も、各処理済みの試料は、カセット内の元 の位置に戻される。

【0083】尚、パラレル処理の場合、カセット内の何段目から取り出され、そして、何番目かの試料により、どちらの真空処理領域を使用するかを上位コンピュータにより管理・制御するようにしても良い。

【0084】更に、シリーズ処理とパラレル処理とが、 混在するような場合にも、どの真空処理領域でどのよう にナンバリングされた試料が処理されたかが上位コンピュータにより管理・制御されているため、この場合も、 各処理済みの試料は、カセット内の元の位置に戻される。

【0085】尚、複数の真空処理領域として、例えば、 プラズマ発生方式が同一、若しくは、異なるプラズマ・ エッチング領域の組合せや、プラズマ・エッチング領域 とアッシング等の後処理領域との組合せや、エッチング 領域と成膜領域との組合せ等が挙げられる。

【0086】また、ダミー試料のカセット内のダミー試料に対しても、例えば、該ダミー試料に、例えば、処理 前試料に対して施されるような真空処理が施されない点を除けば、同様にして実施される。

【0087】一方、カセット、大気搬送ロボットのすくい部、オリエンテーション調整ステーション、ロード・ロック室内ステーション、真空搬送ロボットのすくい部、真空処理領域のステーション、アンロード・ロック室内ステーションには、試料有無の検出手段がそれぞれ設けられている。

【0088】試料検出手段としては、接触、または非接触式のセンサが適宜選択されて用いられる。

【0089】上記のカセット, すくい部, 各ステーションが、試料の移動過程でのチェック・ポイントとなる。

【0090】このような構成において、例えば、真空搬送ロボット10のすくい部での試料有りが検出されて、真空処理領域のステーションで試料が検出されなかった場合、真空搬送ロボット10、または、真空搬送ロボットのすくい部と真空処理領域のステーションとの間の試料受渡し機械が何等かの原因で故障したことになり、その復旧が的確、かつ短時間で実施される。このため、装置全体としてのスループットの低下を抑制することができる。

【0091】また、例えば、それぞれの搬送ロボット9のすくい部に試料検出手段が設けられていない構成で、例えば、ロード・ロック室内ステーションでの試料の試料有りが検出されて、真空処理領域のステーションでの試料が検出されなかった場合、ロード・ロック室内ステーションと真空搬送ロボットのすくい部との間の試料受渡し機構、または、真空搬送ロボット、または、真空搬送ロボットのすくい部と真空処理領域のステーションとの間の試料受渡し機構が何等かの原因で故障したことになり、その復旧が的確、かつ短時間で実施される。このため、装置全体としてのスループットの低下を抑制することができる。

【0092】このような、実施例においては、次のような有用性を有する。

【0093】(1) カセット内の何段目に処理前試料が収納されているかをチェックし、該チェックされた処理前試料をナンバリングしてその動きを、逐次、管理・制御しているので、処理済み試料をカセット内の元の位置に確実に戻すことができる。

【0094】(2) 処理前試料が、その処理情報によりシリーズ処理、パラレル処理、そしてこれらの混在処理される場合であっても、カセット内の何段目にそれら処理前試料が収納されているかをチェックし、該チェックされた試料をナンバリングしてその動きを、逐次、管理・制御しているので、各種処理形態での処理済み試料をそれぞれのカセット内の元の位置に確実に戻すことができる。

【0095】(3) カセット内の何段目に処理前試料が 収納されているかをチェックし、該チェックされた処理 前試料をナンバリングしてその動きを、逐次、管理・制 御しているので、真空処理部で1枚毎処理される試料の 処理状態を木目細かく的確にチェック・管理することが できる。

【0096】例えば、試料の処理で何等かの不良が生じた場合、試料1枚毎の処理状態、即ち、処理条件等も管理されているので、不良となった試料が、どのカセットの何段目に収納されていたものかによって、その処理状態を把握することができるので、その不良発生原因を短時間に把握することができ、対策に要する時間を、その分、短縮することができる。

【0097】尚、以上の実施例では、試料の直径を300mm(12")として説明しているが、しかしながら、上記の有用性は、試料の直径に、特に限定されて奏し得るものではない。

【0098】次に、メンテナンスについて述べる。本発明の真空処理装置100のメンテナンスを行う場合は、カセットブロック1がベイ内AGV202のラインに面しているので、カセットブロック1のメンテナンスは、そのほとんどを前面から行うことができる。

【0099】一方、真空処理プロック2のメンテナンス

を行うには、オペレータが、メンテナンス通路203を経て、あるいはメンテナンス通路210を経て各ベイエリア200の背部から、真空処理プロック2のある領域まで入り込む必要がある。

【0100】図7は、真空処理ブロック2とカセットブロック1の大きさの関係を示すものであり、カセットブロック1の長辺(幅)をW1、短辺をB1とし、真空処理ブロック2の短辺(幅)をW2、長辺(奥行き)をB2としたとき、W1>B1、W2<B2であり、かつ、試料3の直径をdとしたとき、望ましくは、W1-W2=dという関係にあるのが良い。

【0101】また、真空処理装置100の隣接するカセットブロック相互間の間隙をG1とし、隣接する真空処理ブロック相互間の間隙をG2としたとき(図5参照)、G1<G2とする。そして、(W1+G1)−W2=MSが、隣接する真空処理装置100との間におけるメンテナンスペースを与える。MSはオペレータがメンテナンス作業を行うために必要な大きさである。この場合、望ましくは、(W1+G1)−W2≒dという関係にあるのが良い。メンテナンススペース203は、オペレータの出入口となるが、ベイエリア200のレイアウトによっては、このスペースを設けないこともある。その場合でも、隣接する真空処理装置100相互の設置余裕度G1が最低限必要であるが、実質的にはゼロに近い値となる。この場合、W1−W2=MSがメンテナンススペースとなる。

【0102】本発明の真空処理装置100の真空処理ブロック2の側面は、図8に示す様に、開閉式の扉構造となっている。すなわち、真空処理ブロック2の側方及び背面にそれぞれ観音開きの扉214,216が設けられている。

【0103】メンテナンスを行うためには、(1) オペレータが前後から機器、配管等をチェックできるスペースがあること、(2)各種の配管機器、例えば処理室のメインチャンバを横に取り出すスペースがあること、

(3) 扉を開くスペースがあること、が必要である。従って、メンテナンススペースMSとしては、 $90 \sim 12$ 0 cm程度とするのがよい。

【0104】本発明の真空処理装置100によれば、オペレータが真空処理プロック2の側方及び背面に接近することは容易である。また、扉214を開けることにより、ロードロック室4、アンロードロック室5、後処理室7、真空ロボット10及び各種の配管機器の点検修理が出来る。さらに、扉216を開けることにより、処理室6及び真空ポンプ及び各種の配管機器の点検修理が出来る。

【0105】各真空処理プロック2間には、メンテナンススペースMSがあるため、オペレータが側方の扉214を開閉して、メンテナンス作業を行うのになんら支障はない。また、各真空処理プロック2の背面間にも、扉

216を開閉してメンテナンス作業を行うのに十分なスペースが確保されている。

【0106】本発明の真空処理装置100は、L字形の平面形状をしていることは先に述べたとおりである。一方、従来の真空処理装置800は、図9に示すように、一般的に真空処理ブロックとカセットブロックとを併せて全体が矩形状に構成されている。矩形の形状は、真空処理装置内に配置される各種要素の形状及び相互の動作関係から、選定されたものである。従来の装置では、隣接する丸セットブロック相互間の間隙をG1とし、隣接する真空処理ブロック相互間の間隙をG2としたとき、一般に、G1≧G2である。

【0107】従来の真空処理装置800は、取り扱う試 料3の直径 dが8インチ以下であったため、上記のよう な構成でもよかったが、直径 dが 12インチのような大 口径の試料を取り扱う装置では、カセット12の外形寸 法が大きくなり、複数のカセット12を収納するカセッ トブロックの幅W1が大きくなる。このW1に併せて真空 処理ブロックの幅 (W2≒W1) が決定されるため、真空 処理装置800全体が大きなスペースを必要とすること になる。また、カセットブロックや真空処理ブロックの 幅W1、W2が大きくなると、扉214,216も大型化 せざるを得ず、扉214,216を開閉するスペースを 確保するためにも、大きなメンテナンススペースMSが 必要になる。一例として、従来の装置で12インチの試 料を取り扱うとすれば、W1=W2=150cm、G1=G2 =90cmとなり、MS=90cmが隣接する真空処理装置 100との間におけるメンテナンススペースとなる。こ のことは、各ベイエリアにおける真空処理装置800の 有効占有面積の増大となり、好ましくない。

【0108】本発明における、真空処理装置内の各種要 素の相互関係の一例を図10において説明する。図に示 したように、ロードロック室4と、アンロードロック室 5との中間位置と処理室6の中心とを結ぶ線LLの左右 いずれか一方に、すなわち真空処理部の側端側にずらし て、真空ロボット10のアームの旋回中心O1が配置さ れている。また、線分LLの反対側に後処理室7が配置 されている。従って、真空ロボット10のアームの旋回 範囲が狭く、真空処理部の側端近くに、真空ロボット1 0が配置されているこのような構成とすることにより、 真空処理装置100の全体の平面形状をL字形にするこ とができる。このような構成によれば、真空ロボット1 0のアームの旋回範囲は、円周一周の約半分となる。 ウ ェハを搬送する真空ロボット10のアームの旋回範囲を 略半円以内とすることにより、一周の略半分以内の円運 動で、ロードロック室4、アンロードロック室5、処理 室6、後処理室7に、一枚の試料3をそれぞれ搬送可能 である。このように、真空ロボット10のアームの旋回 範囲を略半円以内としたため、真空処理ブロック2の幅 W2を狭くすることが可能である。

【0109】このように、本発明の真空処理装置100は、カセットプロック1の幅W1を試料の大口径化に対応させつつ、真空処理装置内に配置される各種要素の形状及び相互の関係を工夫して、真空処理プロック2の幅W2を、極力小さくすることにより、前記メンテナンススペースを確保するようにしたものであり、各ベイエリアにおける真空処理装置100の有効占有面積が大きくたろ

【0110】各真空処理ブロック2間には、十分なメンテナンススペースMSがあるため、オペレータが側方の扉214を開閉して、メンテナンス作業を行うのになんら支障はない。また、各真空処理ブロック2の背面間にも、扉216を開閉してメンテナンス作業を行うのに十分なスペースが確保されている。

【0111】本発明の真空処理装置100において、真空処理ブロック2とカセットブロック1の位置関係は、カセットブロックの長手方向に沿って変更可能である。例えば、図11、図12に示すように、カセットブロック1の長手方向中央において真空処理ブロック2の長手方向の中心線が交差するように、換言すると全体の平面形状をT字形としてもよい。T字形にしても、隣接する真空処理ブロック2間には上記メンテナンススペースMSが確保されるため、オペレータが側方の扉214を開閉して、メンテナンス作業を行うのになんら支障はない。

【0112】なお、本発明のカセットブロック1及び真 空処理ブロック2の平面形状は、実質的に(W1+G1) -W2=MSの関係が確保される限り、必ずしも厳密な長 方形でなくても良く、それぞれ実質的に長方形、換言す ると略長方形をしていれば足りる。また、カセットプロ ック1及び真空処理ブロック2に含まれる構成要素や配 置関係は、すでに述べた実施例と異なったものとしても 良い。例えば、図13に示す実施例では、カセットブロ ック1の大気ロボット9を真空処理ブロックのロードロ ック室4、アンロードロック室5の間に位置させてい る。この場合、カセットブロック1の平面形状は厳密に は凸形であり、真空処理ブロック2の平面形状は厳密に は凹形であり、真空処理装置100全体として2個の略 長方形が組み合わされたT形である。この実施例では、 カセットブロック1の大気ロボット9をロードロック室 4、アンロードロック室5の間に位置させ、カセット1 2をレール94上に移動可能に配置することにより、大 気ロボット9がレールの上を移動しなくても、伸縮アー ム91の軌跡が、カセット12並びにロード側ロードロ ック室4並びにアンロード側ロードロック室5を含む軌 跡になるように構成できる。この実施例でも、隣接する 真空処理ブロック2間には上記メンテナンススペースM Sが確保される。

【0113】図14は、本発明の真空処理装置100の他の実施例を示すものであり、カセットプロック1に、

大気ロボット9、試料用のカセット12の他に、カセット置き台130、試料の評価、検査用のコンソールボックス132がある。

【0114】図15は、本発明の真空処理装置100の他の実施例を示すものであり、カセットプロック1に、大気ロボット9、試料オリエンテーション合せ11を備えた、T字型の真空処理装置である。

【0115】図16は、本発明のベイエリア200の他の実施例の平面図であり、一対のL字形の真空処理装置100A、100Bが対向配置されて一組となり、各組の間にコンソールボックス132がある。この例では、前記した間隔G1が無いが、コンソールボックス132の幅をW3としたとき、(W1+W3)-W2=MSがメンテナンススペースとなる。間隔G1が無いため、真空処理ブロック2のメンテナンスを行うには、オペレータがメンテナンス通路210を経て各ベイエリア200の背部から、真空処理ブロック2のある領域201Bまで入り込む必要がある。もしこのアクセスの時間を短縮する必要が有れば、コンソールボックス132と隣のカセットブロック1の間に間隔G1を設けてもよい。このときは、(W1+W3+G1)-W2=MSがメンテナンススペースとなる。

【0116】次に、図17は、本発明の他の実施例になる真空処理装置を組み込んだベイエリアの平面図である。この例の真空処理装置100では、複数のカセットブロック1のカセット台16Aを連続した一体的な構成とし、その上の共通のレール95上を複数の大気ロボット9が走行する。ベイ内AGVがベイストッカーと大気ロボット9の間に介在し、各真空処理ブロック2との間の試料の授受を行う。この場合、カセットブロック1は、機能的には各真空処理ブロック2年に対応しており、それぞれ各真空処理ブロック2に対応した略長方形が多数接続されていると考えることが出来る。

【0117】図18は、本発明の製造ラインの構成例の 平面図である。図18から明らかなように、本発明の真 空処理装置100は平面形状がL字形もしくはT字形で あり、各真空処理装置100の間隔が狭くても各真空処 理プロック2間には十分なメンテナンススペースMSが 確保される。

【0118】一方、比較のために示した従来の矩形状の真空処理装置800では、各真空処理ブロック間に十分なメンテナンススペースMSを確保しようとすると、各真空処理装置800の間隔を大きくせざるを得ない。その結果、実施例のように、同じ長さのラインにおいて、本発明の真空処理装置100は、7台配置可能なのに対し、従来の矩形状の真空処理装置800では5台しか配置できない。この2台の台数差は、半導体製造ラインの全体で考えると大きな数になり、所定のスペースのクリーンルームに装置の設置台数を確保しフットプリントを節約する上で大きな差となる。また、AGVがあるベイ

エリアから次工程のベイエリアへ試料の搬送を行うことを考えたとき、本発明の真空処理装置を採用した場合は、1つのベイエリアの片側のラインで真空処理装置7台分の処理が可能であるのに対して、従来の装置では5台分の処理しかできない。この2台の台数差は、半導体製造ラインのスループット向上に大きく影響する。

【0119】なお、真空処理の内容によっては、一部に、矩形状の真空処理装置800を使用する必要がある場合も考えられる。このような場合でも、矩形状の真空処理装置800に隣接して、本発明のL字形もしくは下字形の真空処理装置100を配置することにより、各真空処理ブロック間に適度のメンテナンススペースMSを確保できる。

【0120】図19は、本発明の真空処理装置を一部採用した半導体製造ラインの全体の構成図の他の例である。この装置はラインAGV204を備えており、各ベイエリア200A~200NとラインAGV204相互間の試料の授受は、オペレータが介在して行われるライン自動化方式である。図18の例と同様な効果がある。

【0121】図20は、本発明の真空処理装置を一部採用した半導体製造ラインの全体の構成図の他の例である。この装置はベイAGV202及びラインAGV204を備えており、各ベイエリア内及び各ベイエリア200A~200NとラインAGV204相互間の試料の授受は、オペレータが介在しないで行われる全自動化方式である。この場合も、本発明のL字形もしくはT字形の真空処理装置100同士、あるいはL字形もしくはT字形の真空処理装置100と矩形状の真空処理装置800とを隣接して配置することにより、各真空処理プロック間に適度のメンテナンススペースMSを確保できる。

【0122】また、以上の実施例では、カセット、大気搬送ロボットは、大気雰囲気に配置され、大気搬送ロボットは大気雰囲気で動作するものとして説明しているが、これに代えて、例えば、図21や図22に示すように、カセット12が真空雰囲気に配置され、搬送ロボット10が真空雰囲気のみで動作するようにしても差し支えない。図21の例は、カセット12が2個の場合を示し、図22は、カセット12が3個の場合を示している。いずれの場合も、真空処理装置全体としては、T型の形状となっている。

【0123】図21、図22において、カセット12内の試料の取り出し、該取り出された試料の真空処理領域への搬送、真空処理領域からの試料の搬送、及び該試料のカセット内の基の位置への収納は、真空雰囲気で真空搬送ロボット10によりそれぞれ実施される。この場合、真空処理システムとしては、原則として、すでに述べた実施例にみられたロート・ロック室、アンロード・ロック室を設ける必要はなく、従って、上位のコンピュータの逐次データ更新のための要素数がこの分だけ減少する。

【0124】この場合、カセットの試料収納状態は、ウエハチェック手段により真空雰囲気で実施される。また、処理前試料のオリエンテーション調整手段を有するものにおいては、このオリエンテーションの調整は、真空雰囲気で実施される。

【0125】更に、カセットと真空処理領域との間で、 真空雰囲気に中間カセットを設けるものにおいては、カ セットと中間カセットととの間で試料を搬送するロボッ トと、真空処理領域との間で試料を搬送するロボットと がそれぞれ備えられる。

【0126】これに対応する真空処理システムにおいては、中間カセットの設置のため、上位のコンピュータの 逐次データ更新のための要素数が、この分だけ増加する。

【0127】さらに、以上の実施例では、カセットでの 試料の収納状態、試料の搬送状態、及び真空処理状態 は、何れも試料の被処理面ガ上向きで水平姿勢であると して説明したが、試料の姿勢は、その他の姿勢であって も特段の支障はない。

#### [0128]

【発明の効果】本発明によれば、試料の大口径化に対応しつつ、製造コストの上昇を抑えることができ、しかもメンテナンス性に優れた真空処理装置を提供することができる。 また、本発明の真空処理装置を半導体製造ラインに組み込むことにより、試料の大口径化に対応しつつ、真空処理装置の必要設置台数を確保して製造コストの上昇を抑え、かつ、メンテナンス性も損なわない半導体製造ラインを提供することができる。

## 【図面の簡単な説明】

【図1】本発明の一実施例になる真空処理装置の外観斜 視図である。

【図2】図1の装置の要部縦断面図である。

【図3】図2のII-II線に沿った真空処理装置の平面構成を示す図である。

【図4】図2の装置のIV-IV断面図である。

【図5】本発明の真空処理装置を組み込んだ半導体製造 ラインのベイエリアの一例を示す平面図である。

【図6】本発明の実施例になる半導体製造ラインにおける、試料3の流れの一部を示す図である。

【図7】真空処理ブロック2とカセットブロック1の大きさの関係を示す図である。

【図8】本発明の真空処理装置の真空処理プロックのメンテナンスの説明図である。

【図9】従来の真空処理装置の構成例を示す平面図である。

【図10】本発明における、真空処理装置内の各種要素の相互関係の一例を示す図である。

【図11】本発明の他の実施例になる真空処理装置の平 面構成を示す図である。

【図12】図11の真空処理装置の斜視図である。

【図13】本発明の他の実施例になる真空処理装置の平 面構成を示す図である。

【図14】本発明の他の実施例になる真空処理装置の平 面構成を示す図である。

【図15】本発明の他の実施例になる真空処理装置の平 面構成を示す図である。

【図16】本発明のベイエリアの他の実施例の平面図で ある。

【図17】本発明のベイエリアの他の実施例の平面図で ある。

【図18】本発明の製造ラインの構成例の平面図であ る。

【図19】本発明の製造ラインの構成例の平面図であ

る。

【図20】本発明の製造ラインの構成例の平面図であ る。

【図21】本発明の他の実施例になる真空処理装置の平 面構成を示す図である。

【図22】本発明の他の実施例になる真空処理装置の平 面構成を示す図である。

## 【符号の説明】

1…カセットブロック、2…真空処理ブロック、3…バ ッファ室、4…ロード側ロードロック室、5…アンロー ド側ロードロック室、6…真空処理室、7…後真空処理 室、9…大気ロボット、10…真空ロボット、100… 真空処理装置

【図2】











【図 5】



【図10】

100





【図7】









【図16】



【図17】



【図22】



【図18】 【図19】

図 18 図 19



図 20



# フロントページの続き

(72)発明者 川崎 義直 山口県下松市大字東豊井794番地 株式会 社日立製作所笠戸工場内 F ターム(参考) 4K029 BD01 JA01 KA01 KA02 KA09 4K030 GA02 GA12 HA01 LA11 5F031 CA02 DA01 FA07 GA02 MA01 MA03 MA06 MA09 MA11 NA02 NA05 NA07 PA06 PA18 PA30