Calculatrice : ✓ Durée : 1 heure

Exercice 1 | 2 points

1. Donner l'expression générale de la forme canonique d'un polynôme du second degré.

2. Soient $a \neq 0$, $b \in \mathbb{R}$ et $c \in \mathbb{R}$ tels que $f(x) = ax^2 + bx + c$. Donner les relations coefficients/racines (somme et produits des racines en fonction des coefficients de f).

Correction

1. Pour tout $x \in \mathbb{R}$, $f(x) = a(x - \alpha)^2 + \beta$ où $a \in \mathbb{R}^*$, $\alpha \in \mathbb{R}$ et $\beta \in \mathbb{R}$.

2. En notant x_1 et x_2 les racines de f (éventuellement confondues), on a :

$$x_1 + x_2 = -\frac{b}{a} \qquad x_1 x_2 = \frac{c}{a}$$

Exercice 2 | 4 points

1. Écrire sous forme canonique les polynômes du second degré suivants :

a)
$$f(x) = x^2 - 6x + 5$$

b)
$$g(x) = x^2 + 8x - 4$$

2. Résoudre dans \mathbb{R} , à partir de la question précédente, les équations f(x) = -4 et g(x) = -4.

Correction

1. a)
$$f(x) = (x-3)^2 - 4$$

b)
$$g(x) = (x+4)^2 - 20$$

2.

$$f(x) = -4$$

$$\Leftrightarrow (x-3)^2 - 4 = -4$$

$$\Leftrightarrow (x-3)^2 = 0$$

$$\Leftrightarrow x - 3 = 0$$
$$\Leftrightarrow x = 3$$

$$\Leftrightarrow x =$$

$$g(x) = -4$$

$$\Leftrightarrow (x+4)^2 - 20 = -4$$

$$\Leftrightarrow (x+4)^2 = 16$$

$$\Leftrightarrow x + 4 = 4$$
 ou $x + 4 = -4$

$$\Leftrightarrow x = 0 \text{ ou } x = -8$$

Exercice 3 | 4 points

Déterminer sous forme factorisée et développée réduite la fonction polynôme du second degré f vérifiant les conditions suivantes.

1. Ses racines sont -2 et 5, f(-1) = -36.

2. Ses racines sont $\sqrt{2}$ et $-\sqrt{2}$, f(0) = 2.

Correction

Pour les deux questions, f est de la forme $f(x) = a(x - x_1)(x - x_2)$ où $a \ne 0$ et x_1, x_2 sont les racines de f.

- 1. f(x) = a(x+2)(x-5) mais comme f(-1) = -36, alors a(-1+2)(-1-5) = -36. On a donc a = 6 et $f(x) = 6(x + 2)(x - 5) = 6x^2 - 18x - 60$.
- 2. $f(x) = a(x \sqrt{2})(x + \sqrt{2})$ mais comme f(0) = 2, alors $-a\sqrt{2}\sqrt{2} = 2$. On a donc a = -1 et $f(x) = -(x - \sqrt{2})(x + \sqrt{2}) = -x^2 + 2$.

Exercice 4 | 10 points

Résoudre dans R les équations suivantes.

1.
$$10x^2 - 17x + 3 = 0$$

2.
$$2x^2 - 3x + 10 = 0$$

3.
$$x^2 - x - 9 = x + 2$$

4.
$$4x^4 - 13x^2 + 3 = 0$$

5.
$$2x^4 + 7x^2 = 15$$

6.
$$x^8 - 2x^4 + 1 = 0$$

Correction

1. On calcule pour commencer le discriminant Δ de f avec $f(x) = 10x^2 - 17x + 3$. Les racines réelles de f seront les solutions réelles de $10x^2 - 17x + 3 = 0$.

$$\Delta = (-17)^2 - 4 \times 10 \times 3 = 289 - 120 = 169$$

 $\Delta > 0$ donc il y a deux racines réelles distinctes x_1 et x_2

$$x_1 = \frac{-(-17) + \sqrt{24}}{2 \times 10} = \frac{17 + 13}{20} = \frac{3}{2}$$

$$x_2 = \frac{-(-17) - \sqrt{24}}{2 \times 10} = \frac{17 - 13}{20} = \frac{1}{5}$$

2. $f(x) = 2x^2 - 3x + 10$ et son discriminant est $\Delta = (-3)^2 - 4 \times 2 \times 10 = -71$

 $\Delta < 0$ donc il n'y aucune solution réelle à $2x^2 - 3x + 10 = 0$

3. $x^2 - x - 9 = x + 2 \Leftrightarrow x^2 - 2x - 11 = 0$ donc on pose $f(x) = x^2 - 2x - 11$.

 $\Delta = 48 > 0 \text{ donc } x_1 = \frac{2 + \sqrt{48}}{2} = 1 + 2\sqrt{3} \text{ et } x_2 = 1 - 2\sqrt{3}.$

4. $4x^4 - 13x^2 + 3 = 0$ est une équation bicarrée. Posons $X = x^2$, $4x^4 - 13x^2 + 3 = 0$ se réécrit en $4X^2 - 13X + 3 = 0$ qu'on peut résoudre.

Soit $f(X) = 4X^2 - 13X + 3$.

On détermine ses racines réelles grâce au discriminant et on trouve deux racines réelles $X_1 = \frac{1}{4}$ et $X_2 = 3$.

Ainsi, il y a quatre solutions réelles à $4x^4 - 13x^2 + 3 = 0$: les solutions réelles des équations $x^2 = \frac{1}{4}$ et $x^2 = 3$.

C'est-à-dire,

$$\mathscr{S} = \left\{ -\frac{1}{2}; \frac{1}{2}; -\sqrt{3}; \sqrt{3} \right\}.$$

5. $2x^4 + 7x^2 = 15 \Leftrightarrow 2x^4 + 7x^2 - 15 = 0$ est une équation bicarrée qu'on résout de la même manière que la précédente.

$$2X^2 + 7X - 15 = 0$$
 admet pour solutions réelles $\frac{3}{2}$ et -5 .

Ainsi,

$$\mathcal{S} = \left\{ -\sqrt{\frac{3}{2}}; \sqrt{\frac{3}{2}} \right\}.$$

6. Pour x⁸ - 2x⁴ + 1 = 0, on va faire deux changements de variables. Posons X = x².
Ainsi, nous devons résoudre X⁴ - 2X² + 1 = 0 dans R qui est une équation bicarrée. Posons maintenant, Y = X².
X⁴ - 2X² + 1 = 0 se réécrit en Y² - 2Y + 1 = 0 qui a pour unique solution 1. Donc, X = -1 ou X = 1. Enfin, on obtient x = 1 ou x = -1 comme seules solutions réelles de x⁸ - 2x⁴ + 1 = 0.

$$\mathcal{S} = \{-1; 1\}$$