

PROVINCIAL EXAMINATION NOVEMBER 2021 GRADE 11 MARKING GUIDELINES

MATHEMATICS (PAPER 1)

17 pages

MEMORANDU	JM MATHEMATICS (Paper 1)	GRADE 11
	(Paper 1)	GRADE 11

INSTRUCTIONS AND INFORMATION

A – ACCURACY **C.A.** – CONSISTENT ACCURACY

NOTE:

- If a candidate answered a question TWICE, mark only the first attempt.
- If a candidate CROSSED OUT an answer and did not redo it, mark the crossed-out answer.
- Consistent accuracy applies to ALL aspects of the marking guidelines.
- Assuming values/answers in order to solve a question is UNACCEPTABLE.

MEMORANDUM	MATHEMATICS (Paper 1)	GRADE 11
------------	-----------------------	----------

QUE	STION 1			
1.1	1.1.1	(x+2)(2x-1) = 0 $x = -2$ or $x = \frac{1}{2}$	✓ simplification ✓ both values for <i>x</i>	(2)
	1.1.2	$3-x=0$ $\therefore x=3$	✓ answer	(1)
1.2	1.2.1	$2x^{2} - 3x - 4 = 0$ $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ $x = \frac{-(-3) \pm \sqrt{(-3)^{2} - 4(2)(-4)}}{2(2)}$	✓ correct substitution ✓✓ answers	
		x = 2,35 or $x = -0,85$		(3)
	1.2.2	$(2x+3)(3-x) > 4$ $-2x^2 + 3x + 9 > 4$ $-2x^2 + 3x + 5 > 0$ $2x^2 - 3x - 5 < 0$ $(2x-5)(x+1) < 0$ $\therefore -1 < x < \frac{5}{2}$ NOTE: Candidates can write the answer as separate inequalities but must state AND between the inequalities not OP	✓ simplify ✓ standard form ✓ factors ✓ critical values ✓ answer	(5)
		AND between the inequalities, not OR.		(3)
	1.2.3	$\sqrt{x+2} + x = 4$ $\sqrt{x+2} = 4 - x$ $x+2 = 16 - 8x + x^{2}$ $0 = x^{2} - 9x + 14$ $0 = (x-7)(x-2)$ $x \neq 7 \text{ or } x = 2$	✓ squaring both sides ✓ standard form ✓ factors ✓ critical values ✓ exclusion of $x = 7$	(5)

MEMORANDUM	MATHEMATICS	
MEMOKANDUM	(Paper 1)	GRADE 11

	101				1
	1.2.4	$2^{2x+1} - 3(2^{2x-1}) + 4^x = 12$			
		$2^{2x}\left(2-\frac{3}{2}+1\right)=12$	✓	correct factorisation	
		$2^{2x}\left(\frac{3}{2}\right) = 12$	✓ ✓	simplification $2^{2x} = 8$ equating to like bases	
		$2^{2x} = 8$	✓	answer	
		$2^{2x} = 2^3$			
		$x = \frac{3}{2}$			
		2			(4)
1.3	1.3.1	$f(x) = x^2 + 8x + 16$			
		$f(2) = 2^2 + 8(2) + 16$	\		
		f(2) = 36	✓	answer	(1)
	1.3.2	f(x) > 0			
		$x^2 + 8x + 16 > 0$		C .	
		(x+4)(x+4) > 0	V	factors	
		$(x+4)^2 > 0$	✓	critical value	
		CV: -4			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	✓	answer	
		_ - -			
		$x \in \square$; $x \neq -4$			
		NOTE: Doth oritorio mayot he presented for the			
		NOTE: Both criteria must be presented for the answer mark.			(3)
L		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ı		(5)

MEMORANDUM	MATHEMATICS (Paper 1)	GRADE 11
------------	-----------------------	----------

1.4	$y-2x+1=0$ and $xy=2y+x^2+3x-10(2)$			
	$y = 2x - 1 \dots (1)$	✓	y as subject in (1)	
	, <u> </u>			
	sub (2) into (1)	✓	substitution	
	Sub (2) Into (1)		Substitution	
		√	standard form	
	$x(2x-1) = 2(2x-1) + x^2 + 3x - 10$	√	factors values for x	
	$2x^2 - x = 4x - 2 + x^2 + 3x - 10$		values for x	
	$x^2 - 8x + 12 = 0$			
	(x-6)(x-2) = 0	✓	values for y	
	x = 6 or $x = 2$			
	if x = 6 if x = 2			
	y = 2(6) - 1 $y = 2(2) - 1$			
	y = 11 y = 3			
	NOTE: Any other valid method.			(6)
				(0)
1.5	$(xp)^2 + 3 = 2x(p-x)$			
	$x^2p^2 + 3 = 2px - 2x^2$	/	standard form	
	$x^2p^2 + 3 - 2px + 2x^2 = 0$	ľ	standard form	
	$(p^2 + 2)x^2 - 2xp + 3 = 0$			
	$\Box = b^2 - 4ac$	✓	substitution	
	$= (-2p)^2 - 4(p^2 + 2)(3)$	✓	value for Δ	
	$=4p^2-12p^2-24$			
	$=-8p^2-24$	/	complete explanation	
	SP 2.		complete explanation	
	$p^2 > 0$ for $p \in \square$			
	$\therefore -8p^2 < 0 \text{for } p \in \square$			
	$\therefore -8p^2 - 24 < 0 \text{for } p \in \square$			
	7. 10 101 p C l			
	∴ roots are non-real.			(4)
				[34]

MEMORANDUM	MATHEMATICS (Paper 1)	GRADE 11
------------	-----------------------	----------

QUESTIO	N 2		
2.1 2.1	$ \begin{vmatrix} \frac{16x^2}{81x^{-2}} \\ $	 ✓ interchange base AND additive inverse of index ✓ answer 	
	NOTE: Any correct alternative method.		(2)
2.1	$ \frac{9^{x} + 3^{2x+1}}{18^{x} \cdot 2^{-x}} \\ = \frac{3^{2x} + 3^{2x+1}}{3^{2x} \cdot 2^{x} \cdot 2^{-x}} \\ = \frac{3^{2x} (1+3)}{3^{2x} \cdot 2^{0}} \\ = 4 $	✓ simplification of 9 ^x and 18 ^x ✓ factorise ✓ answer	
	NOTE: Any correct alternative method.		(3)
2.1	$ \sqrt{10-3^{2x}} = 3^{x} - 2 $ $ 10-3^{2x} = (3^{x} - 2)^{2} $ $ 10-3^{2x} = 3^{2x} - 4 \cdot 3^{x} + 4 $ $ 2 \cdot 3^{2x} - 4 \cdot 3^{x} - 6 = 0 $ $ 3^{2x} - 2 \cdot 3^{x} - 3 = 0 $ $ (3^{x} - 3)(3^{x} + 1) = 0 $ $ 3^{x} = 3 \text{or} 3^{x} = -1 $ $ x = 1 \text{no solution } (3^{x} > 0) $	 ✓ squaring both sides ✓ simplification ✓ standard form ✓ factors ✓ value of x and rejection 	
	x-1 no solution (3 > 0)		(5)
$= \chi$ $= \chi$ $= \chi$ $\sqrt{1}$	$ \frac{2a - 2\sqrt{3}a}{\sqrt{3\sqrt{2}a - 2\sqrt{3}a})^{2}} $ $ \sqrt{9.\sqrt{4a^{2} - 12\sqrt{6a^{2}} + 4.\sqrt{9a^{2}}}} $ $ \sqrt{9.2a - 12\sqrt{6a^{2}} + 4.3a} $ $ 8a - 12a\sqrt{6} + 12a $	 ✓ surd and squaring ✓ multiplication ✓ simplification ✓ simplification 	
= 1	$\sqrt{30a-12a\sqrt{6}}$		(4) [14]

MEMORANDUM	MATHEMATICS (Paper 1)	GRADE 11
------------	--------------------------	----------

QUES	STION 3	}		
3.1	3.1.1	A = 9	✓ answer	
		B = 11	✓ answer	(2)
	3.1.2	$T_n = 2n + 1$	√√ answer	(2)
	3.1.3	$T_n = 2n + 1$		
		$T_n = 2(100) + 1$	✓ substitution	
		$T_n = 201$	✓ answer	
		NOTE: Answer only, award FULL marks.		(2)
	3.1.4	$T_n = 2n + 1$		
		305 = 2n + 1	✓ substitution	
		304 = 2n	✓ answer	
		n = 152		(2)
3.2		$T_3 - T_2 = T_2 - T_1$		
	3	$(x^{2} + 4x - 3 - (2x^{2} + 5x + 2))$ $= 2x^{2} + 5x + 2 - (2x^{2} + 5x + 5)$	✓ substitution	
	3		√ simplification	
		$x^2 - x - 5 = -3$ $x^2 - x - 2 = 0$	✓ standard form	
		(x-2)(x+1)	✓ answers	
		x = 2 or $x = -1$		(4)
				[12]

MEMORANDUM	MATHEMATICS (P. 1)	CDADE 11
	(Paper 1)	GRADE 11

QUES'	TION 4			
4.1	1 2			
4.1	-1 ; <i>x</i> ; 3 ; <i>x</i> +8			
	x-(-1) 3-x x+8-3	✓	first differences	
	3-x-(x+1) $x+5-(3-x)$	✓	second differences	
	3 - x - (x+1) = x + 5 - (3-x)	✓	equating	
	3 - x - x - 1 = x + 5 - 3 + x			
	2-2x=2x+2	✓	answer	
	4x = 0			
	$\therefore x = 0$			(4)
4.2	1 0 2 0			
4.2	-1; 0; 3; 8	~	2 nd difference	
	$\begin{array}{c c} 1 & 3 & 5 \\ \hline & 2 & 2 \end{array}$	✓	value for a	
	2a = 2	✓	value for b	
	a=1	✓	value for c	
	3a+b=1	1	equation of T_n	
	3(1) + b = 1		complete the square of	
	b = -2		T_n	
	a+b+c=-1			
	1-2+c=-1			
	c = 0			
	$Tn = n^2 - 2n$			
	$Tn = n^2 - 2n + 1 - 1$			
	$Tn = (n-1)^2 - 1$			
	NOTE: If a candidate uses $Tn = (n-1)^2 - 1$ to			
	validate the quadratic pattern, award ZERO			
	marks.			(6)

MEMORANDUM	MATHEMATICS	CD A DE 11
MEMORANDUM	(Paper 1)	GRADE 11

4.3	$Tn = (n-1)^{2} - 1$ $T_{65} = (65-1)^{2} - 1$ $T_{65} = 4095$	✓ ✓	substitution answer	(2)
4.4	$(n-1)^2 - 1 > 9800$	√	setting up inequality	
	$(n-1)^{2}-1 > 9800$ $n^{2}-2n-9800 > 0$ $(n+98)(n-100)$	✓	factors	
	CVs -98 or 100	✓	choice of $n = 100$	
	n > 100	✓	answer	
	$\therefore n = 101$			(4)
				[16]

QUI	ESTIO	N 5		
5.1	5.1.1	$A = P(1-i)^{n}$ $A = 250000(1-0.1)^{5}$ $A = R147622,50$	✓ correct substitution into correct formula ✓ answer	(2)
	5.1.2	$A = P(1+i)^{n}$ $A = 250\ 000(1+0.08)^{5}$ $A = R367\ 332,02$	✓ correct substitution into correct formula ✓ answer	(2)
	5.1.3	$\frac{95}{100} \times 147 622.50$ = R140 241,375 New Machine - Sale of Old Machine R367 332,02 - R140 241,375	✓ R140 241, 375 ✓ answer	
		R227 090,65		(2)
5.2	5.2.1	$1+i_{eff} = \left(1+\frac{i_{nom}}{m}\right)^m$ $1+i_{eff} = \left(1+\frac{0.115}{12}\right)^{12}$ $i_{eff} = 12,13\%$ Bank B offers a better interest rate.	 ✓ correct substitution into correct formula ✓ 12,13% ✓ conclusion 	
		NOTE: Award no marks if candidate concludes only.		(3)

MEMORANDUM	MATHEMATICS (Paper 1)	GRADE 11
------------	-----------------------	----------

5.	$2.2 \mid A = P(1+i)^n$	
	$R280\ 000 = \left[P\left(1 + \frac{0.115}{12}\right)^{24} - 50\ 000\right] \left(1 + \frac{0.115}{12}\right)^{36}$	\checkmark value of i
		$\sqrt{n} = 24$
	P = R197759,51.	√ n = 36
	OR	✓ setting up equation
	4 74 17	√ answer
	$A = P(1+i)^n$	
	$R280000 = P\left(1 + \frac{0.115}{12}\right)^{60} - 50\ 000\left(1 + \frac{0.115}{12}\right)^{36}$	OR
	P = R197759,51	\checkmark value of i
	11231 103,02	\checkmark $n = 60$
		$\checkmark n = 36$
	OR	✓ setting up equation
	$A = P(1+i)^n$	✓ answer
	$R280\ 000 = [P(1+0.1213)^2 - 50\ 000](1+0.1213)^3$	OR
	P = R197729,98	\checkmark value of i
		$\sqrt{n}=2$
	OR	$\sqrt{n} = 3$
		✓ setting up equation
	$A = P(1+i)^n$	✓ answer
	$R280\ 000 = P(1+0.1213)^5 - 50\ 000(1+0.1213)^3$	
	P = R197727.98	OR
		\checkmark value of i
		\checkmark value of t \checkmark $n=5$
		√ n = 3
		✓ setting up equation
		✓ answer (5)
		[14]

MEMORANDUM	MATHEMATICS	CD A DE 11
MEMORANDUM	(Paper 1)	GRADE 11

QUEST	CION 6			
Q 3 = 3 =				
6.1	$f(x) = \frac{3}{x+2} - 1$ $2 = \frac{3}{k+2} - 1$	√	substitution	
	$3 = \frac{3}{k+2}$ $3k+6=3$	✓	answer	
	k = -1			(2)
6.2	x = -2 $y = -1$	✓ ✓	answer answer	(2)
6.3	$f(x) = \frac{3}{x+2} - 1$ $f(0) = \frac{3}{0+2} - 1$			
	$f(0) = \frac{1}{0+2} - 1$ $= \frac{1}{2}$			
	$ \begin{vmatrix} -\frac{1}{2} \\ \therefore \left(0; \frac{1}{2}\right) \end{vmatrix} $	√	answer	
	NOTE: Answer MUST be presented in coordinate			
	form.			(1)
				, ,
6.4	$f(x) = \frac{3}{x+2} - 1$			
	$0 = \frac{3}{x+2} - 1$	✓	simplification	
	$1 = \frac{3}{x+2}$	√	onewar	
	$ \begin{array}{c} x+2 \\ x+2=3 \end{array} $,	answer	
	x = 1			
	(1;0)			
	NOTE: Answer does NOT need to be in coordinate form.			(2)

LMFMORANDIM L	THEMATICS per 1) GRADE 11
---------------	---------------------------

6.5	$\frac{1}{2}$ $y = -1$	✓ shape ✓ asymptotes ✓ x- and y- intercepts	(3)
6.6	m = -1 and $(-2;-1)$ is on the axis of symmetry y = mx + c $-1 = -1(-2) + c$ $c = -3$ $y = -x - 3$	✓ substitution for <i>m</i> AND the point ✓ answer	
	NOTE: Any other valid method.		(2)
6.7	x > -2	✓ answer	(1)
6.8	$f(x) = \frac{3}{x+2} - 1$ $-y = \frac{3}{x+2} - 1$ $y = -\left(\frac{3}{x+2} - 1\right)$ $y = \frac{-3}{x+2-4} + 1$ $y = \frac{-3}{x-2} + 1$	✓ make y negative✓ subtract 4✓ answer	
			(3)
			[16]

MEMORANDUM	MATHEMATICS	
MEMORANDUM	(Paper 1)	GRADE 11

QUI	ESTION 7			
7.1	q = 5	√	answer	(1)
7.2	$f(x) = -x^2 - 4x + 5$			
	$x^2 + 4x - 5 = 0$	✓	factors	
	(x+5)(x-1)=0	√	critical values	
	x = -5 or $x = 1$	•	answer	
	\therefore EP = 6 units			(3)
	,			
7.3	$x = \frac{-b}{2a}$ $x = \frac{-(-4)}{2(-1)}$ $x = -2$ $f(-2) = 9$ $\therefore N(-2; 9)$		x-value y-value OR	
	OR		021	
	$f(x) = -(x^{2} + 4x) + 5$ $f(x) = -(x^{2} + 4x + 2^{2}) + 5 + 4$ $f(x) = -(x + 2)^{2} + 9$ $\therefore N(-2; 9)$	✓ ✓	<i>x</i> -value <i>y</i> -value	
	NOTE: Answer does NOT have to be in coordinate form.			(2)
7.4	m of g = 1 ∴ $m of h = -1$ $y = mx + c$ $9 = -1(-2) + c$ $c = 7$ $h(x) = -x + 7$	✓ ✓ ✓	gradient of $h = -1$ $c = 7$ answer	
	NOTE: Any other valid method.			(3)
_				()
7.5	M(0;5) and N(-2;9) $m_{MN} = \frac{y_2 - y_1}{x_2 - x_1}$ $m_{MN} = \frac{9 - 5}{-2 - 0}$ $m_{MN} = -2$	✓	correct substitution answer	
	NOTE: NO marks for applying incorrect gradient formula.			(2)

MEMORANDUM	MATHEMATICS (Paragraf)	CDADE 11
MEMORANDOM	(Paper 1)	GRADE 11

7.6	At point N: $f(-2) = 9$	(()	
	At point T: $g(-2) = 3$	$\checkmark g(-2) = 3$	
	\therefore distance of NT = 9 - 3	✓ method ✓ answer	
	= 6 units	v allswei	
	OR	OR	
	NT = f(x) - g(x)		
	NT = f(x) - g(x)		
	$=-x^2-4x+5-(x+5)$		
	$=-x^2-5x$	✓ method	
	x = -2	anounous .	
	$\therefore NT = -(-2)^2 - 5(-2)$		
	NT = 6 units	✓ substitution	
		✓ answer	
	NOTE: Any other valid method.		(3)
7.7	By symmetry:		
	S(-4;5)	√√√ answer	
	OR	OR	
	OK	OK	
	At point S: $y = 5$		
	$\therefore 5 = -x^2 - 4x + 5$	$\checkmark y = 5$	
	$x^2 + 4x = 0$	√ equating	
	x(x+4)=0		
	x = 0 or x = -4	✓ selection of –4	
	$\therefore S(-4;5)$		(3)
7.8	7.8.1 $x = -5$	√ ancwer	
7.0	1.0.1	✓ answer	
	OR	✓ answer	
	x = 0		(2)
	$7.8.2 \mid x > 1$	✓ answer	(1)
			[20]

MEMORANDUM	MATHEMATICS	
	(Paper 1)	GRADE 11

QUE	STION 8		
8.1	let x = 0		
	$f(x) = 3.2^x - 6$		
	$f(0) = 3.2^{0} - 6$		
	y = -3	✓ answer	
	∴ (0;−3)		
	NOTE: Answer MUST be in coordinate form.		(1)
8.2	let y = 0		
	$0 = 3.2^x - 6$		
	$6 = 3.2^{x}$	✓ simplify both sides	
	$2 = 2^x$	to base 2	
	x=1	✓ answer	
	∴ (1;0)		
	NOTE: Answer does NOT have to be in coordinate		
	form.		(2)
			` ′
8.3	y = -6	✓ shape ✓ asymptote ✓ x- and y- intercepts	(3)
8.4	y > -6		
	OR	✓ answer	
	$y \in [-6; \infty]$		(1)
			[7]

MEMORANDUM	MATHEMATICS	CDADE 11
	(Paper 1)	GRADE 11

QUE	STION 9			
NOT	E: Cand	idates may present answers as a fraction, decimal fraction	n or percentage.	
9.1	9.1.1	$P(\text{male}) = \frac{120}{236}$	$\checkmark \frac{120}{236}$	
		P(male)= 0,51	✓ answer	(2)
	9.1.2	$P(\text{Female and plays sport}) = \frac{67}{236}$ $P(\text{Female and plays sport}) = 0.28$	$\begin{array}{c} \checkmark \frac{67}{236} \\ \checkmark \text{answer} \end{array}$	(2)
9.2	P(Mal	le and does not play sport) = $\frac{51}{236}$ e and does not play sport) = 0,22 \neq 0 mutually exclusive	✓ 0,22 ✓ conclusion	
		OR are 51 male learners who do not play sport. Fore the two are NOT mutually exclusive.	OR ✓ statement ✓ conclusion	
	NOTE	Accept alternative answers expressed as a percentage or in fraction form.		(2)
9.3	P(mal	e and does not play sport) = 0,22 e)×P(does not play sport) $\times \frac{100}{236}$	✓✓ P(male) x P(does not play sport) = 0,22	
	$= 0.22$ $\therefore P(m)$ $= P(m)$	ale and does not play sport) nale)×P(does not play sport) events ARE independent (correct to two decimal places)	✓ equating✓ conclusion	(4)
		(the test of the desired places)		[10]

MEMORANDUM MATHEMATICS (Paper 1)	GRADE 11
------------------------------------	----------

QUES	STION 10		
10.1	0.4. ==		
10.1	c = 84 - 75		
	c = 9	✓ answer	(1)
10.0			
10.2	f + 18 + x = 41	✓ equating correctly	
	f = 41 - x - 18	✓ answer	
	f = 23 - x	· diswei	(2)
10.3	$f = 23 - x \qquad \therefore x = 23 - f$		
	$e = 17 - x \qquad \therefore x = 17 - e$	\checkmark equating expressions of x	
	$\therefore 23 - f = 17 - e$	\checkmark equating to 75	
	but $40 + e + f + x = 75$	✓ simplification	
	$\therefore \qquad e+f+x=35$	✓ answer	
	$\therefore 17 - x + 23 - x + x = 35$		
	40 - x = 35		
	x = 5		(4)
			[7]

TOTAL: 150