Discrete Mathematics

Daniel Gonzalez Cedre

University of Notre Dame Spring of 2023

Chapter 4

Mathematical Induction

4.1 Weak Induction

Definition 4.1 (Well-Order). Let X be a set with a relation \leq defined on it. We say that X is well-ordered by this relation iff every non-empty subset of X has a minimal element with respect to \leq . In other words, we say that \leq is a well-order on X:

$$(\forall A \in \mathcal{P}(X))(\exists a \in A)(\forall b \in A)a \leqslant b.$$

Theorem 4.1 (\mathbb{N} is Well-Ordered).

$$(\forall A \subseteq \mathbb{N}) (A \neq \emptyset \Rightarrow (\exists a \in A) (\forall b \in A) (a \leqslant b))$$

This says that every nonempty subset of \mathbb{N} has a least element (according to the \leq order defined on \mathbb{N}).

Proof. This proof is left as an exercise.

Q.E.D.

Theorem 4.2 (Weak Induction). If $\varphi(\cdot)$ is a wff, then

$$(\forall n \in \mathbb{N})(\varphi(n)) \Leftrightarrow \varphi(0) \land (\forall k \in \mathbb{N})(\varphi(k) \Rightarrow \varphi(k+1)).$$

Proof. There are two fragments to this proof: the forward (\Rightarrow) direction and the backward (\Leftarrow) direction.

Fragment 1 (\Rightarrow):

Suppose that $(\forall n \in \mathbb{N})(\varphi(n))$. Since $0 \in \mathbb{N}$, we then obviously have $\varphi(0)$. Now, let $k \in \mathbb{N}$ and assume $\varphi(k)$. Since $k+1 \in \mathbb{N}$, we know from our initial assumption that $\varphi(k+1)$. Thus, we have $(\forall k \in \mathbb{N})(\varphi(k) \Rightarrow \varphi(k+1))$, and we have reached both of our desired conclusions.

Fragment 2 (\Leftarrow):

Assume $\varphi(0)$ and $(\forall k \in \mathbb{N})(\varphi(k) \Rightarrow \varphi(k+1))$. Towards a contradiction, suppose that there is some $n \in \mathbb{N}$ such that $\neg \varphi(a)$. Consider $A := \{x \in \mathbb{N} \mid \neg \varphi(x)\}$, which we clearly know exists by Axiom 4. We know that $n \in A$ because we assumed that $\neg \varphi(n)$, which implies that $A \neq \emptyset$. Then, we can use Theorem 4.1 to conclude that there is a minimal element a in A.

Since we know that $\varphi(0)$, it follows that $a \neq 0$, so a must be a successor number. This means there is a $b \in \mathbb{N}$ such that b+1=a.

If $b \in A$, then that would mean that $a \le b$ since a is minimal in A. However, we know that b < b+1 = a, so we would then have $a \le b < a$. \mathcal{J} Therefore, $b \notin A$.

With these two directions proven, we finally have $(\forall n \in \mathbb{N})(\varphi(n)) \Leftrightarrow \varphi(0) \land (\forall k \in \mathbb{N})(\varphi(k) \Rightarrow \varphi(k+1))$.

Q.E.D.

Notice that the above theorem actually generalizes beyond just \mathbb{N} . In fact, we can generalize the proof of Theorem 4.2 to any well-ordered set X by replacing k+1 with the least element of the non-empty subset $X \setminus \{\ell \in X \mid \ell \leq k\}$.

Let's practice induction by proving the following few theorems.

Theorem 4.3 (Gaussian Summation Formula).
$$(\forall n \in \mathbb{N}) \left(\sum_{i=0}^{n} i = \frac{n(n+1)}{2} \right)$$
.

Proof. We will prove the claim by induction on $n \in \mathbb{N}$.

Base Case:

Observe that $\sum_{i=0}^{0} i = 0 = \frac{0*(0+1)}{2}$. Therefore, the statement is satisfied at 0.

Inductive Step:

Let $k \in \mathbb{N}$ and assume $\sum_{i=0}^{k} i = \frac{k(k+1)}{2}$ (this is our inductive hypothesis). Now, observe

$$\sum_{i=0}^{k+1} i = \left(\sum_{i=0}^{k} i\right) + (k+1) \qquad \text{by definition}$$

$$= \left(\frac{k(k+1)}{2}\right) + (k+1) \qquad \text{by the } inductive \ hypothesis}$$

$$= (k+1)\left(\frac{k}{2}+1\right) \qquad \text{by the distributive property of multiplication*}^{\dagger}$$

$$= \frac{(k+1)(k+2)}{2} \qquad \text{because } \frac{k}{2}+1 = \frac{k}{2}+\frac{2}{2} = \frac{k+2}{2}.^{\dagger \ddagger}$$

Thus, we have that $\sum_{i=0}^{k+1} i = \frac{(k+1)(k+2)}{2}$, as desired.

Therefore, we can conclude that $(\forall n \in \mathbb{N}) \left(\sum_{i=0}^{n} i = \frac{n(n+1)}{2} \right)$.

Q.E.D.

Theorem 4.4. $3n \leqslant 3^n$ for all $n \in \mathbb{N}_+$.

Proof. We will prove the claim by induction on $n \in \mathbb{N}_+$.

Base Case:

Observe that $3 \cdot 0 = 0 \le 1 = 3^0$.

Inductive Step:

Let $k \in \mathbb{N}_+$ and assume $3 \cdot k \leq 3^k$ (this is our *inductive hypothesis*). Now, observe

$$\begin{array}{ll} 3\cdot (k+1) = 3\cdot k + 3 & \text{by the distributive property of multiplication} \\ \leqslant 3^k + 3 & \text{by the } inductive \ hypothesis} \\ \leqslant 3^k + 3^k & \text{because } 1 \leqslant k \ \Rightarrow \ a^1 \leqslant a^k \ \text{if } a < 0^{*\dagger} \\ \leqslant 3^k + 3^k + 3^k & \text{since } a^k \ \text{is always positive if } 0 < a^{*\dagger} \\ = 3 \cdot 3^k & \text{because } \sum_{i=1}^m a = m \cdot a \ \text{for any } a^{*\dagger} \\ = 3^{k+1} & \text{because } a^b a^c = a^{b+c} \ \text{for any } a.^{*\dagger} \end{array}$$

So, $3 \cdot (k+1) \leq 3^{k+1}$, as desired.

Therefore, $(\forall n \in \mathbb{N})(3n \leq 3^n)$.

Q.E.D.

 $^{^*}$ These "basic grade-school" algebraic properties will now be assumed without special mention.

[†]This is true in any *ordered semiring* where exponentiation is defined in terms of multiplication.

 $^{^\}ddagger \text{This}$ is true in any field.

Theorem 4.5.
$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$
 for all $n \in \mathbb{N}$.

Proof. We will prove the claim by induction on $n \in \mathbb{N}_+$.

Base Case:

Observe that
$$\sum_{i=0}^{0} 2^i = 2^0 = 1 = 2 - 1 = 2^{1+1} - 1$$

Inductive Step:

Let $k \in \mathbb{N}_+$ and assume that $\sum_{i=0}^k 2^i = 2^{k+1} - 1$. (this is our *inductive hypothesis*). Observe that

$$\sum_{i=0}^{k+1} 2^i = \left(\sum_{i=0}^k 2^i\right) + 2^{k+1} \qquad \text{by definition}$$

$$= \left(2^{k+1} - 1\right) + 2^{k+1} \qquad \text{by the } inductive \ hypothesis}$$

$$= 2 \cdot 2^{k+1} - 1 \qquad \text{using some basic algebra}$$

$$= 2^{k+2} - 1 \qquad \text{using some basic algebra}.$$

So, we get
$$\sum_{i=0}^{k+1} 2^i = 2^{k+1} - 1$$
, as desired.

Therefore, we can conclude $(\forall n \in \mathbb{N}) \left(\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1 \right)$.

Q.E.D.