Particle spectrograph

Wave operator and propagator

$t_0^{\#2} == 0$ $t_0^{\#1} - 2 i k o_0^{\#1} == 0$	rundamental Ileids	Multiplicities
$-2iko_{0+}^{*1} == 0$	$\partial_{\beta}\partial_{\alpha} r^{\alpha\beta} == 0$	1
	$\partial_{\beta}\partial_{\alpha}t^{\alpha\beta} == \partial_{\beta}\partial^{\beta}t^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	н
$\tau_1^{\#2}\alpha + 2ik \ \sigma_1^{\#2}\alpha == 0 \ \delta$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2 \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	8
$\tau_{1}^{\#1}{}^{\alpha} == 0 \qquad \qquad \dot{\alpha}$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	8
$\tau_1^{\#1}\alpha\beta == 0 \qquad \qquad \alpha$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} = =$	е
	$\partial_{\chi}\partial^{\alpha} \tau^{\chi\beta} + \partial_{\chi}\partial^{\beta} \tau^{\alpha\chi} + \partial_{\chi}\partial^{\chi} \tau^{\beta\alpha}$	
$\sigma_1^{\#_2^2 \alpha \beta} == 0 \qquad ($	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\beta\chi\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi} = \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	е
$\sigma_2^{\#1}\alpha\beta\chi == 0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta} +$	5
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \delta \alpha} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \chi \alpha} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\alpha} \sigma^{\delta \epsilon}{}_{\delta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\beta \delta \epsilon} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\alpha \delta}{}_{\delta} ==$	
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta}{}_{\delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \delta \alpha} +$	
	$4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \chi \beta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta \epsilon} +$	
	$3 \eta^{\beta\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\alpha\delta\epsilon} +$	
	$3 \eta^{\alpha\chi} \partial_\phi \partial^\phi \partial_\epsilon \partial^\epsilon \sigma^{\beta\delta}$	
$\tau_2^{\#1}\alpha\beta == 0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi} +$	2
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} == 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta\chi} +$	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi}$	

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{4 i}{k (1 + 2 k^2) (r_3 + 5)}$	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)^2(r_1+2k^2)^2(r_3+2r_5)}{k(1+2k^2)^2(r_3+2r_5)}$	0	$\frac{6k^2(r_3+2r_5)+}{(1+2k^2)^2(r_3+2r_5)}$	
$\tau_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	0	, O	0	0	'
$\sigma_{1^-}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3 k^2 (r_3 + 2 r_5) + 4 t_3}{(k + 2 k^3)^2 (r_3 + 2 r_5) t_3}$	0	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$:
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	$\frac{\frac{2}{k^2 (r_3 + 2 r_5)}}{\frac{2 \sqrt{2}}{k^2 (1 + 2 k^2) (r_3 + 2 r_5)}}$		$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$;
$\tau_{1}^{\#1}{}_{\alpha\beta}$	0	0	0	0	0	0	0	:
$\sigma_{1}^{\#2}$	0	0	0	0	0	0 0		:
$\sigma_{1}^{\#1}{}_{lphaeta}$ $\sigma_{1}^{\#2}{}_{lphaeta}$ $ au_{1}^{\#1}{}_{lphaeta}$	$\frac{1}{k^2 \left(2 r_3 + r_5\right)}$	0	0	0	0	0	0	:
•	$\sigma_{1+}^{\#1} + \alpha \beta$	$\sigma_1^{\#2} + \alpha \beta$	$\tau_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_1^{\#1} +^{\alpha}$	$t_1^{#2} + \alpha$	

ı									
$f_{1}^{\#2}$	0	0	0	$-\frac{2}{3}$ ikt $_3$	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$		
$f_{1^-}^{\#1}{}_{lpha}$	0	0	0	0	0	0	0		
$\omega_{1^{^{-}}\alpha}^{\#2}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	3 3	0	$-\frac{1}{3}i\sqrt{2}kt_3$		
$\omega_{1^-}^{\#1}_{\alpha}$	0	0	0	$k^2 \left(\frac{r_3}{2} + r_5 \right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 i k t 3 3	_	αβ
$f_{1}^{\#1}$	0	0	0	0	0	0	0	$f_{2^{+}}^{#1}$ $\omega_{2^{-}}^{#1}$ †	
$\omega_{1}^{\#2}_{\alpha\beta} \ f_{1}^{\#1}_{\alpha\beta}$	0	0	0	0	0	0	0	ω_{2} - [L
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$k^2 (2 r_3 + r_5)$	0	0	0	0	0	0	$\sigma_{0}^{#1}$ † $\tau_{0}^{#1}$ †	$\frac{1}{(1+2)^{\frac{1}{2}}}$
	$\omega_1^{\#1} +^{\alpha\beta}$	$\omega_1^{\#_2^2} \dagger^{\alpha\beta}$	$f_1^{\#1} \dagger^{\alpha\beta}$	$\omega_{1^{\bar{-}}}^{\#_1} \dagger^{\alpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1}^{\#1} \dagger^{lpha}$	$f_1^{\#2} + \alpha$	$ au_{0}^{\#2} \dagger au_{0}^{\#1} \dagger au_$	

	- 2' '					3	$k^2 r_3$	3		Ŭ	
$\omega_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}$	0			0		0				
$-\frac{3k^2r_3}{2}$	0 0			$\sigma_2^{\#1}$ †	_αβχ		0		0	0	
0	0	0			$\omega_{0}^{\#1}$		0	0	0	$k^2 r_2$	
0	0 0				$f_{0}^{#2}$		0	0	0	0	
$\sigma_{0+}^{\#1}$ $\frac{1}{(-2k^2)^2t_3}$	$\tau_{0+}^{\#1}$ $-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$		τ ₀ ^{#2} 0	σ ₀ ^{#1} 0	$f_{o}^{\#1}$	> L	<i>-i</i> √2 kt ₃	$2k^2t_3$	0	0	
$\frac{i\sqrt{2}k}{(-2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$		0	0	$\omega_{_0}^{\#1}$		t_3	$\sqrt{2} kt_3$	0	0	
0	0		0	0)			Ĭ √			
0	0		0	$\frac{1}{k^2 r_2}$		#	S ₀ + ∓	$f_{0}^{\#1}$ †	$f_{0}^{\#2}$ \dagger	$\omega_{0}^{\#1}$ \dagger	

Massive and massless spectra

Unitarity conditions

 $r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$