Mask Iterative Hard Thresholding Algorithms for Sparse Image Reconstruction of Objects with Known Contour[†]

Aleksandar Dogandžić, Renliang Gu, and Kun Qiu Center for Nondestructive Evaluation

IOWA STATE UNIVERSITY

[†]Supported by the NSF Industry/University Cooperative Research Program, Center for Nondestructive Evaluation (CNDE), Iowa State University.

Outline

- Background.
- Signal Model.
- Reconstruction Algorithms for Known Object Contour
 - Mask iterative hard thresholding (mask IHT) and its double overrelaxation (mask DORE) acceleration,
 - Convex Relaxation: Mask fixed-point continuation active set (mask FPC_{AS}) and gradient-projection for sparse reconstruction with debiasing (mask GPSR).
- Simulated X-ray CT Reconstruction Examples.

Terminology and Notation

- DSFT and FFT stand for discrete-space and fast Fourier transforms;
- $\|\cdot\|_{\ell_p}$ and "T" are the ℓ_p norm and transpose;
- I_m and $\mathbf{0}_{m \times 1}$ are the identity matrix of size m and $m \times 1$ vector of zeros;
- the thresholding operator $\mathcal{T}_r(x)$ keeps the r largest-magnitude elements of a vector x intact and sets the rest to zero, e.g.

$$\mathcal{T}_2([0,1,-5,0,3,0]^T) = [0,0,-5,0,3,0]^T;$$

ullet ho_H is the spectral norm (i.e. the largest singular value) of a matrix H.

Signal Sparsity

p pixels

transform

DWT

significant DWT coeffs $\ll p$

sparsifying transform matrix

Signal Sparsity

In this example, Ψ is an inverse DWT matrix.

Compressive Sampling (CS)

The idea behind compressive sampling is to *sense* the significant signal transform coefficients using a small number of linear measurements:

CS Applies Naturally to X-ray Tomography

Fourier slice theorem:

 $\mathcal{FT}\{\text{projection at angle }\theta_k\}(\rho) = 2 - \mathcal{FT}\{\text{image}\}(\rho\cos\theta_k,\rho\sin\theta_k)$

Tomographic X-ray projections at discrete angles lead to partial Fourier measurements in the DSFT domain:

$$y$$
 = Φ x . 2D-DSFT sampling matrix image

Outline

- Background.
- Signal Model.
- Reconstruction Algorithms for Known Object Contour
 - Mask iterative hard thresholding (mask IHT) and its double overrelaxation (mask DORE) acceleration,
 - Convex Relaxation: Mask fixed-point continuation active set (mask FPC_{AS}) and gradient-projection for sparse reconstruction with debiasing (mask GPSR).
- Simulated X-ray CT Reconstruction Examples.

Signal Model

The elements of the $p \times 1$ signal vector $\boldsymbol{x} = [x_1, x_2, \dots, x_p]^T$ are

$$x_i = \begin{cases} [\Psi s]_i, & i \in \mathbf{M} \\ 0, & i \notin \mathbf{M} \end{cases}, \quad i = 1, 2, \dots, p$$
 (1)

where $[\Psi s]_i$ denotes the *i*th element of the vector Ψs ,

- the mask M is the set of $p_M \leq p$ indices corresponding to the signal elements inside the contour of the inspected object,
- ullet is the p imes 1 sparse signal transform-coefficient vector, and
- ullet Ψ is the known orthogonal sparsifying transform matrix satisfying

$$\Psi \ \Psi^T = \Psi^T \ \Psi = I_p.$$

Sparsifying Transform

Sparsifying Transform

Remove the rows of Ψ that correspond to the signal indices outside the mask M. Construct the $p_M \times p$ matrix $\Psi_{M,:}$ containing the p_M rows of Ψ that correspond to the signal indices within the mask M.

Our Signal Model

The $p_{\mathrm{M}} \times 1$ vector of signal elements *inside the mask* M $(x_i, i \in \mathrm{M})$ is

i.e.

$$oldsymbol{x}_{ ext{M}}=arPsi_{ ext{M},:}oldsymbol{s}.$$

Our Signal Model (cont.)

Define the set of indices I of nonzero columns of $\Psi_{\rm M,:}$ containing $p_{\rm I} \leqslant p$ elements and the corresponding $p_{\rm I} \times 1$ vector $s_{\rm I}$ of identifiable signal transform coefficients under our signal model. Keep only the identifiable signal transform coefficients:

Our Measurement Model

i.e.

$$y = H s_{\text{I}}$$

where $H \stackrel{\triangle}{=} \varPhi_{:,M} \varPsi_{M,I}$ is the $N \times p_I$ sensing matrix. Here, $\varPhi_{:,M}$ is the restriction of the full sampling matrix \varPhi to the mask index set M consisting of the p_M columns of the full sampling matrix \varPhi that correspond to the signal indices within M.

A Mask and Its I for Ψ Inverse DWT

Figure 1: The white pixels in (b) correspond to the *identifiable* signal transform coefficients.

Outline

- Background.
- Signal Model.
- Reconstruction Algorithms for Known Object Contour
 - Mask iterative hard thresholding (Mask IHT) and its double overrelaxation (DORE) acceleration,
 - Convex Relaxation: Mask Fixed-point Continuation Active Set (FPC_{AS}),
 - Mask minimum norm (MN) and least squares (LS).
- Simulated X-ray CT Reconstruction Examples.

Incorporating Both the Geometric and Signal Sparsity Constraints

We wish to solve the following constrained residual squared error minimization problem:

$$\min_{\boldsymbol{s}} \|\boldsymbol{y} - H \boldsymbol{s}_{\mathrm{I}}\|_{\ell_2}^2 \quad \text{subject to } \|\boldsymbol{s}_{\mathrm{I}}\|_{\ell_0}^2 \leqslant r \tag{2}$$

where $\|s_{\rm I}\|_{\ell_0}$ counts the number of nonzero elements in the vector $s_{\rm I}$ and $H=\Phi_{\rm :,M}\,\Psi_{\rm M,I}$. We refer to r as the signal sparsity level and assume that it is known.

Incorporating Both the Geometric and Signal Sparsity Constraints

We wish to solve the following constrained residual squared error minimization problem:

$$\min_{\boldsymbol{s}} \|\boldsymbol{y} - H \boldsymbol{s}_{\mathrm{I}}\|_{\ell_2}^2 \quad \text{subject to } \|\boldsymbol{s}_{\mathrm{I}}\|_{\ell_0}^2 \leqslant r \tag{2}$$

where $\|s_{\rm I}\|_{\ell_0}$ counts the number of nonzero elements in the vector $s_{\rm I}$ and $H=\Phi_{\rm :,M}\,\Psi_{\rm M,I}$. We refer to r as the signal sparsity level and assume that it is known.

Finding the exact solution to (2) is intractable in practice.

Tractable Alternatives

Greedy: Develop iterations that <u>aim</u> <u>at</u> solving (2) approximately, i.e. decrease the residual squared error in each iteration step while maintaining the specified signal sparsity level.

Convex Relaxation: Substitute ℓ_0 with ℓ_1 in (2) and construct a Lagrange-multiplier formulation:

$$\min_{s} (\frac{1}{2} \| \boldsymbol{y} - H \, \boldsymbol{s} \|_{2}^{2} + \tau \, \| \boldsymbol{s} \|_{1}) \tag{3}$$

where τ is the regularization parameter that controls the signal sparsity. Note that (3) can be solved in polynomial time.

Mask Iterative Hard Thresholding (Mask IHT)

Assume that the signal estimate $s_{\rm I}^{(q)}$ is available, where q denotes the iteration index. *Iteration* (q+1) proceeds as follows:

$$\boldsymbol{s}_{\mathrm{I}}^{(q+1)} = \mathcal{T}_r \left(\boldsymbol{s}_{\mathrm{I}}^{(q)} + \mu^{(q)} H^T \left(\boldsymbol{y} - H \, \boldsymbol{s}_{\mathrm{I}}^{(q)} \right) \right) \tag{4}$$

where $\mu^{(q)} > 0$ is the appropriately chosen step size. Iterate until $s_{\rm I}^{(q+1)}$ and $s_{\rm I}^{(q)}$ do not differ significantly. Upon convergence yielding $s_{\rm I}^{(+\infty)}$, construct an estimate of the signal vector $\boldsymbol{x}_{\rm M}$ inside the mask M using $\boldsymbol{\Psi}_{\rm M,I} s_{\rm I}^{(+\infty)}$.

Mask Iterative Hard Thresholding (Mask IHT)

Assume that the signal estimate $s_{\rm I}^{(q)}$ is available, where q denotes the iteration index. *Iteration* (q+1) proceeds as follows:

$$\boldsymbol{s}_{\mathrm{I}}^{(q+1)} = \mathcal{T}_r \left(\boldsymbol{s}_{\mathrm{I}}^{(q)} + \mu^{(q)} H^T \left(\boldsymbol{y} - H \, \boldsymbol{s}_{\mathrm{I}}^{(q)} \right) \right) \tag{4}$$

where $\mu^{(q)}>0$ is the appropriately chosen step size. Iterate until $s_{\rm I}^{(q+1)}$ and $s_{\rm I}^{(q)}$ do not differ significantly. Upon convergence yielding $s_{\rm I}^{(+\infty)}$, construct an estimate of the signal vector $\boldsymbol{x}_{\rm M}$ inside the mask M using $\boldsymbol{\Psi}_{\rm M,I} \, s_{\rm I}^{(+\infty)}$.

For the full mask $M = \{1, 2, ..., m\}$ and constant step size (i.e. $\mu^{(q)} = \mu$ not a function of q), (4) reduces to the standard IHT algorithm in [1].

^[1] T. Blumensath and M. E. Davies, "Iterative hard thresholding for compressed sensing," *Appl. Comput. Harmon. Anal.*, vol. 27, no. 3, pp. 265–274, 2009.

DORE Acceleration (Mask DORE)

Assume that two consecutive estimates $s_{\rm I}^{(q-1)}$ and $s_{\rm I}^{(q)}$ of identifiable signal coefficients are available from the (q-1)-th and q-th iterations, respectively.

Idea: Apply *two consecutive overrelaxation steps* after one mask IHT step to accelerate the convergence of the mask IHT algorithm. These two overrelaxations use the sparse signal estimates $s_{\rm I}^{(q)}$ and $s_{\rm I}^{(q-1)}$ from the two most recently completed mask DORE iterations.

Mask DORE Iteration q+1

1. Mask IHT step.

$$\widehat{\boldsymbol{s}}_{\mathrm{I}} = \mathcal{T}_r \left(\boldsymbol{s}_{\mathrm{I}}^{(q)} + \mu^{(q)} H^T \left(\boldsymbol{y} - H \, \boldsymbol{s}_{\mathrm{I}}^{(q)} \right) \right).$$
 (5a)

2. First overrelaxation. Minimize the residual squared error $\|y - H s_{\text{I}}\|_{\ell_2}^2$ with respect to s_{I} lying on the straight line connecting \hat{s}_{I} and $s_{\text{I}}^{(q)}$:

$$\bar{\boldsymbol{z}}_{\mathrm{I}} = \hat{\boldsymbol{s}}_{\mathrm{I}} + \alpha_{1} \left(\hat{\boldsymbol{s}}_{\mathrm{I}} - \boldsymbol{s}_{\mathrm{I}}^{(q)} \right)$$
 (5b)

which has a *closed-form* solution:

$$\alpha_1 = \frac{(H\,\widehat{\boldsymbol{s}}_{\mathrm{I}} - H\,\boldsymbol{s}_{\mathrm{I}}^{(q)})^T\,(\boldsymbol{y} - H\,\widehat{\boldsymbol{s}}_{\mathrm{I}})}{\|H\,\widehat{\boldsymbol{s}}_{\mathrm{I}} - H\,\boldsymbol{s}_{\mathrm{I}}^{(q)}\|_{\ell_2}^2}.$$

3. Second overrelaxation. Minimize the residual squared error $\|y - H s_{\rm I}\|_{\ell_2}^2$ with respect to $s_{\rm I}$ lying on the straight line connecting $\bar{z}_{\rm I}$ and $s_{\rm I}^{(q-1)}$:

$$\widetilde{\boldsymbol{z}}_{\mathrm{I}} = \overline{\boldsymbol{z}}_{\mathrm{I}} + \alpha_2 \left(\overline{\boldsymbol{z}}_{\mathrm{I}} - \boldsymbol{s}_{\mathrm{I}}^{(q-1)} \right)$$
 (5c)

which has a closed-form solution as well:

$$\alpha_2 = \frac{(H \, \bar{\boldsymbol{z}}_{\text{I}} - H \, \boldsymbol{s}_{\text{I}}^{(q-1)})^T \, (\boldsymbol{y} - H \, \bar{\boldsymbol{z}}_{\text{I}})}{\|H \, \bar{\boldsymbol{z}}_{\text{I}} - H \, \boldsymbol{s}_{\text{I}}^{(q-1)}\|_{\ell_2}^2}.$$

- **4. Thresholding.** Threshold $\widetilde{\boldsymbol{z}}_{\mathrm{I}}$ to the sparsity level r: $\widetilde{\boldsymbol{s}}_{\mathrm{I}} = \mathcal{T}_r(\widetilde{\boldsymbol{z}}_{\mathrm{I}})$.
- **5. Decision.** If $\|\boldsymbol{y} H\,\widetilde{\boldsymbol{s}}_{\mathrm{I}}\|_{\ell_{2}}^{2} < \|\boldsymbol{y} H\,\widehat{\boldsymbol{s}}_{\mathrm{I}}\|_{\ell_{2}}^{2}$, assign $\boldsymbol{s}_{\mathrm{I}}^{(q+1)} = \widetilde{\boldsymbol{s}}_{\mathrm{I}}$; otherwise, assign $\boldsymbol{s}_{\mathrm{I}}^{(q+1)} = \widehat{\boldsymbol{s}}_{\mathrm{I}}$ and complete *Iteration* q+1.

Iterate until $s_{\rm I}^{(q+1)}$ and $s_{\rm I}^{(q)}$ do not differ significantly. Upon convergence yielding $s_{\rm I}^{(+\infty)}$, construct an estimate of the signal vector $\boldsymbol{x}_{\rm M}$ inside the mask ${\rm M}$ using $\boldsymbol{\varPsi}_{{\rm M},{\rm I}}\,s_{\rm I}^{(+\infty)}$.

Our Adaptive Step Size Selection: Basic Idea

In *Iteration* q+1 of our mask DORE IHT scheme, approximately find the largest step size $\mu^{(q)}$ that satisfies

$$\|\boldsymbol{y} - H \,\widehat{\boldsymbol{s}}_{\mathrm{I}}\|_{\ell_{2}}^{2} \leq \|\boldsymbol{y} - H \,\boldsymbol{s}_{\mathrm{I}}^{(q)}\|_{\ell_{2}}^{2}$$
 (6)

where $\hat{s}_{\rm I}$ is computed using (5a):

$$\widehat{oldsymbol{s}}_{ ext{I}} = \mathcal{T}_r ig(oldsymbol{s}_{ ext{I}}^{(q)} + \mu^{(q)} \, H^T \, (oldsymbol{y} - H \, oldsymbol{s}_{ ext{I}}^{(q)}) ig).$$

Note: $\mu^{(q)}$ exists and is lower bounded by $1/\rho_H^2$.

Convex Relaxation

We solve the convex problem in (3)

$$\min_{oldsymbol{s}}(rac{1}{2}\|oldsymbol{y}-Holdsymbol{s}_{ ext{ iny I}}\|_{\ell_2}^2+ au\|oldsymbol{s}_{ ext{ iny I}}\|_{\ell_1})$$

using the fixed-point continuation active set (mask FPC_{AS}) method and gradient-projection for sparse reconstruction with debiasing¹ method (mask GPSR) in [2] and [3].

¹Here, debiasing is performed if possible.

^[2] Z. Wen, W. Yin, D. Goldfarb, and Y. Zhang, "A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization, and continuation," *SIAM J. Sci. Comput.*, vol. 32, no. 4, pp. 1832–1857, 2010.

^[3] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, "Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems," *IEEE J. Select. Areas Signal Processing*, vol. 1, no. 4, pp. 586–597, 2007.

Full Mask

Full mask $M = \{1, 2, ..., p\}$ means *unknown* object contour; then

- mask FPC_{AS} and mask GPSR reduce to the FPC_{AS} and GPSR methods for compressive sampling in e.g. [2] and [3];
- mask DORE reduces to a double overrelaxation iterative hard thresholding method with an adaptive step size, which we refer to as DORE.

Outline

- Background.
- Signal Model.
- Reconstruction Algorithms for Known Object Contour
 - Mask iterative hard thresholding (Mask IHT) and its double overrelaxation (DORE) acceleration,
 - Convex Relaxation: Mask Fixed-point Continuation Active Set (FPC_{AS}),
 - Mask minimum norm (MN) and least squares (LS).
- Simulated X-ray CT Reconstruction Examples.

Initialization and Performance Metric

We initialize all (mask and traditional) sparse signal reconstruction methods using the standard *filtered backprojection* (FBP) reconstruction, which ignores both the signal sparsity and geometric object contour information.

Our performance metric is the peak signal-to-noise ratio (PSNR) of a reconstructed image $\hat{x} = [\hat{x}_1, \hat{x}_2, \dots, \hat{x}_p]^T$ inside the mask M:

PSNR (dB) =
$$10 \log_{10} \left\{ \frac{\left[(\max_{i \in M} x_i) - (\min_{i \in M} x_i) \right]^2}{\sum_{i \in M} (\widehat{x}_i - x_i)^2 / p_M} \right\}$$

where x is the true image.

Shepp-Logan Phantom Reconstruction

(a) Sampled Shepp-Logan phantom of size 512^2 .

(b) Mask.

Shepp-Logan Phantom Reconstruction (cont.)

- We take limited-angle projections with 1° spacing between projections. Each projection of an analog Shepp-Logan phantom is computed using its analytical sinogram and then sampled by a receiver array containing 511 elements.
- We compute FFT of each projection, yielding N=512 frequency-domain measurements.

Figure 2: Limited-angle sampling pattern in the frequency domain.

Shepp-Logan Phantom Reconstruction (cont.)

- The $N \times p$ sampling matrix Φ is constructed using 2D-DSFT matrix efficiently implemented by nonuniform fast Fourier transform (NUFFT) [4].
- We select the inverse Haar (Daubechies-2) DWT matrix to be the orthogonal sparsifying transform matrix Ψ ; the true signal vector s consists of the Haar wavelet transform coefficients of the phantom and is sparse:

$$\|\mathbf{s}\|_{\ell_0} = 7866 \approx 0.00382 \, p.$$

^[4] J. Fessler and B. Sutton, "Nonuniform fast Fourier transforms using min-max interpolation," *IEEE Trans. Signal Process.*, vol. 51, no. 2, pp. 560–574, Feb. 2003.

Methods Compared

- the mask DORE and DORE schemes with signal sparsity level r set to r=7000 and r=8000, respectively, where r are tuned for good PSNR performance;
- the mask GPSR (a=-5) and GPSR (a=-5) schemes, with the regularization parameter

$$\tau = 10^a \, \|H^T \, \boldsymbol{y}\|_{\ell_{\infty}}$$

where a are tuned for good PSNR performance.

FBP reconstruction (PSNR = 19.9 dB).

DORE reconstruction (PSNR =22.7 dB).

GPSR reconstruction (PSNR =22.9 dB).

 FPC_{AS} reconstruction (PSNR = 22.5 dB).

Mask DORE reconstruction (PSNR $=25.8~\mathrm{dB}$).

Mask GPSR reconstruction (PSNR $=25.3~\mathrm{dB}$).

Mask FPC_{AS} reconstruction (PSNR = 26.4 dB).

References

- [1] T. Blumensath and M. E. Davies, "Iterative hard thresholding for compressed sensing," *Appl. Comput. Harmon. Anal.*, vol. 27, no. 3, pp. 265–274, 2009.
- [2] Z. Wen, W. Yin, D. Goldfarb, and Y. Zhang, "A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization, and continuation," *SIAM J. Sci. Comput.*, vol. 32, no. 4, pp. 1832–1857, 2010.
- [3] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, "Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems," *IEEE J. Select. Areas Signal Processing*, vol. 1, no. 4, pp. 586–597, 2007.
- [4] J. Fessler and B. Sutton, "Nonuniform fast Fourier transforms using min-max interpolation," *IEEE Trans. Signal Process.*, vol. 51, no. 2, pp. 560–574, Feb. 2003.