CB N°10 - INTEGRALES A PARAMETRE

EXERCICE 1

On considère la fonction $f: x \mapsto \int_0^{+\infty} \frac{e^{-xt}}{1+t} dt$

1. Montrer que f est de classe C^1 sur $]0, +\infty[$.

On note $g:(x,t)\mapsto \frac{\mathrm{e}^{-xt}}{1+t}$ définie sur $]0,+\infty[\times[0,+\infty[$.

- $\forall x \in]0, +\infty[, \forall t \in [0, +\infty[, |g(x,t)| \le e^{-xt}, \text{ donc par comparaison à une intégrale de référence convergente, } t \mapsto g(x,t)$ est intégrable sur $[0, +\infty[$.
- $\forall t \in [0, +\infty[, x \mapsto g(x, t) \text{ est de classe } C^1 \text{ sur }]0, +\infty[$
- $\forall x \in]0, +\infty[, t \mapsto \frac{\partial g}{\partial x}(x, t) = \frac{-t}{1+t} e^{-xt}$ est continue sur $[0, +\infty[$.
- Soit $[a,b] \subset]0, +\infty[$ $(a>0); \forall x \in [a,b], \forall t \in [0,+\infty[,\left|\frac{\partial g}{\partial x}(x,t)\right| \leq e^{-at}.$

La fonction $\varphi: t \mapsto e^{-at}$ est intégrable sur $[0, +\infty[$ (c'est une intégrale de référence).

Le théorème de dérivation donne f de classe C^1 sur $]0, +\infty[$.

2. Donner une équation différentielle vérifiée par f.

La formule de Leibniz donne : $\forall x \in]0, +\infty[, f'(x)] = \int_0^{+\infty} \frac{-t}{1+t} e^{-xt} dt$

 $\int_0^{+\infty} \frac{e^{-xt}}{1+t} dt \text{ et } \int_0^{+\infty} \frac{-t}{1+t} e^{-xt} dt \text{ convergent donc, par linéarité des intégrales généralisées, on a :}$

$$f'(x) = \int_0^{+\infty} \frac{1 - (t+1)}{1+t} e^{-xt} dt = f(x) - \int_0^{+\infty} e^{-xt} dt = f(x) - \frac{1}{x}.$$

Ainsi f est solution sur $]0, +\infty[$ de l'équation différentielle : $y' - y = -\frac{1}{x}$.

EXERCICE 2

On considère la fonction $f: x \mapsto \int_0^{+\infty} \frac{\mathrm{e}^{-t}}{\sqrt{t}} \mathrm{e}^{ixt} \mathrm{d}t$

1. Calculer f(0).

On rappelle l'intégrale de Gauss : $\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$.

On note $\varphi: t \mapsto \frac{\mathrm{e}^{-t}}{\sqrt{t}}$.

- $\Rightarrow \varphi$ est positive et continue sur $]0,+\infty[$ donc localement intégrable.
- \leadsto En $0: \varphi(t) \underset{t\to 0}{\sim} \frac{1}{\sqrt{t}}; \int_0^1 \frac{\mathrm{d}t}{\sqrt{t}}$ est une intégrale de Riemann convergente donc, par comparaison de fonctions positives, $\int_0^1 \varphi(t) \mathrm{d}t$ converge.
- \rightarrow En $+\infty$: Sur $[1, +\infty[$, $0 \le \varphi(t) \le e^{-t}$ et $\int_1^{+\infty} e^{-t} dt$ est une intégrale de référence convergente donc, par comparaison de fonctions positives, $\int_1^{+\infty} \varphi(t) dt$ converge.

Finalement, φ est intégrable sur $]0, +\infty[$.

On a : $f(0) = \int_0^{+\infty} \varphi(t) dt$. On effectue le changement de variable $u = \sqrt{t}$ (qui donne $du = \frac{dt}{2\sqrt{t}}$)

Spé PT B Page 1 sur 2

bijectif de $]0, +\infty[$ dans $]0, +\infty[$, et on obtient :

$$f(0) = \int_0^{+\infty} e^{-u^2} 2 du = \sqrt{\pi}.$$

2. Montrer que f est de classe C^1 sur \mathbb{R} . On note $g:(x,t)\mapsto \frac{\mathrm{e}^{-t}}{\sqrt{t}}\mathrm{e}^{ixt}$ définie sur $\mathbb{R}\times]0,+\infty[$.

- $\forall x \in \mathbb{R}, |g(x,t)| = \overset{\mathbf{v}}{\varphi}(t)$ donc $t \mapsto g(x,t)$ est intégrable sur $]0,+\infty[$, d'après la question précédente. $\forall t \in]0,+\infty[,\underset{\sim}{x} \mapsto g(x,t)$ est de classe C^1 sur \mathbb{R} .
- $\forall x \in \mathbb{R}, t \mapsto \frac{\partial g}{\partial x}(x, t) = i\sqrt{t}e^{-t + ixt}$ est continue sur $]0, +\infty[$.
- $\forall x \in \mathbb{R}, \left| \frac{\partial g}{\partial x}(x,t) \right| = \sqrt{t} e^{-t}$; La fonction $t \mapsto \sqrt{t} e^{-t}$ est continue sur $[0, +\infty[$ donc localement intégrable, et $\sqrt{t}e^{-t} = o_{t\to+\infty}\left(\frac{1}{t^2}\right)$, elle est donc intégrable sur $[0,+\infty[$.

Le théorème de dérivation donne f de classe C^1 sur \mathbb{R} .

3. A l'aide d'une intégration par parties, montrer que f est solution de l'équation différentielle

$$y' = \frac{i - x}{2(1 + x^2)} y$$
 (E)

La formule de Leibniz donne : $\forall x \in \mathbb{R}, f'(x) = \int_0^{+\infty} i\sqrt{t}e^{-t+ixt}dt$.

On considère les fonctions $u: t \mapsto \frac{-i e^{-t(1-ix)}}{1-ix}$ et $v: t \mapsto \sqrt{t}$.

Elles sont de classe C^1 sur $[0,+\infty[,\lim_{t\to\infty}uv=0$ et on sait que $\int_0^{+\infty}i\sqrt{t}\mathrm{e}^{-t+ixt}\mathrm{d}t$ converge donc le théorème d'intégration par parties donne :

$$f'(x) = \int_0^{+\infty} i\sqrt{t}e^{-t+ixt}dt = \frac{i}{2(1-ix)}f(x) = \frac{i-x}{2(1+x^2)}f(x).$$

4. Résoudre (E) est en déduire l'expression de f.

On a: $\int \frac{i-x}{2(1+x^2)} dx = \frac{i}{2} Arctan(x) - \frac{1}{4} ln(1+x^2) + C, C \in \mathbb{R}.$

On en déduit (avec la question 1) que pour $x>0, f(x)=\sqrt{\pi}\,\frac{\mathrm{e}^{\frac{i}{2}\mathrm{Arctan}(x)}}{\sqrt[4]{1+r^2}}.$