AEDC-TSR-78-V10 June 1978

ey 2

axxaxx

HEAT-TRANSFER TEST ON THE NASA/ROCKWELL INTERNATIONAL SPACE SHUTTLE ORBITER AT MACH NUMBER 8.0 IN AEDC/VKF TUNNEL B

E. C. Knox
ARO, Inc., AEDC Division
A Sverdrup Corporation Company
von Kármán Gas Dynamics Facility
Arnold Air Force Station, Tennessee

Period Covered: February 20 thru April 27, 1978

Approved for public release; distribution unlimited.

Reviewed by:

ERVIN P. JASKOLSKI, Capt., USAF Test Director, VKF Division Directorate of Test Operations Approved for Publication:

FOR THE COMMANDER

CHAUNCEY D. SMITH, JR, Lt Colonel, USAF

Director of Test Operations
Deputy for Operations

Prepared for: National Aeronautics and Space Administration

Johnson Space Center, ES3 Houston, Texas 77058

Aroperty of U. S. Air Force
AEDC LIBRARY
F40203-77-C-0003

ARNOLD ENGINEERING DEVELOPMENT CENTER
AIR FORCE SYSTEMS COMMAND
ARNOLD AIR FORCE STATION, TENNESSEE

UNCLASSIFIED

UNCLASSIFIED

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM		
1. REPORT NUMBER	2. GOVT ACCESSION NO.			
AEDC-TSR-78-V10				
4. YITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED		
Heat Transfer Test on the NASA/Roc		Final Report - February 20,		
national Space Shuttle Orbiter at	Mach number 8.0	and April 27, 1978		
in AEDC/VKF Tunnel B		6. PERFORMING ORG. REPORT NUMBER		
7. AUTHOR(#)		6. CONTRACT OR GRANT NUMBER(=)		
E. C. Knox	•			
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
Arnold Engineering Development Cen	ter/D0	THE TANK BITT HOME TO		
Air Force Systems Command	0700	Program Element 921E01		
Arnold Air Force Station, Tennesse	e 3/389			
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE		
NASA-JSC, ES3	•	June 1978		
Houston, Texas 77058		13. NUMBER OF PAGES		
		64		
14. MONITORING AGENCY NAME & ADDRESS(If dilleren	t Irom Controlling Office)	15. SECURITY CLASS, (of this report)		
		UNCLASSIFIED		
·		15a. DECLASSIFICATION/DOWNGRADING \$CHEDULE		
16. DISTRIBUTION STATEMENT (of this Report)				
Approved for public release; distribution unlimited.				
17. DISTRIBUTION STATEMENT (of the abstract entered)	in Black 20. If different trop	n Report)		
,				
18. SUPPLEMENTARY NOTES				
	•			
Arred 1-b 1- d- DDC				
Available in DDC.				
19. KEY WORDS (Continue on reverse side if necessary and				
heat transfer space shuttle orbiter				
thin skin				
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)				
Heat-transfer data were obtained on a 0.0175-scale and on a 0.04-scale model of the NASA/Rockwell International Space Shuttle Orbiter. The data were obtained at Mach 8 in the AEDC/VKF Tunnel B at angles of attack from 25 to 42.5 deg and at several free-stream Reynolds numbers from 0.5 x 106 to 3.7 x 106 per ft.				
		.,		
ì				
<u>.</u>	•	, 1		

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

CONTENTS

	•	Page
1.0 2.0	APPARATUS	6
3.0	2.1 Wind Tunnel	-
•	3.1 Test Conditions	8
4.0	3.3.2 Reduced Data 3.4 Data Reduction DATA PACKAGE PRESENTATION	8 9 9 11
	APPENDICES	
ı.	ILLUSTRATIONS	
Figu	ıre.	
1.	Tunnel B	13
2.	83- ϕ Model Coordinate Systems and Dimensions Defined	14
3.	60-φ Model Dimensions	16
4.	83-\$ Model Installation Sketch	17
5.	60-φ Model Installation Sketch	18
6.	83- Model Shown in Tunnel B at 30-deg Angle of Attack	19
7.	60-\$ Model Shown in Tunnel B at 30-deg Angle of Attack	20
8.	Thermocouple Locations on 83-\$ Model	21
9.	Thermocouple Locations on 60-\$\phi\$ Model	27
10.	Comparisons of Current and Previous Data Results on 83-\$ Model	28
11.	Comparisons of Current and Previous Data Results on 60-\$ Model	29

	•	rage
II.	TABLES	
Tab1	<u>.e</u>	
1.	Model Dimensional Data - 83-φ Model	31
2.	Model Dimensional Data - 60-φ Model	33
3.	83- ϕ Model Thermocouple Locations and Skin Thickness	41
4.	60-φ Model Thermocouple Locations and Skin Thickness	54
5.	Test Summary: 83-φ Model	5 9
6.	Test Summary: 60-\$ Model	60
7.	60-φ Model Deflection Angles at Thermocouple Locations	61
R	Sample Tahulated Data	63

NOMENCLATURE

b, SKIN THICKNESS Model skin thickness, in. or ft as noted

C Local wing chord (see Fig. 3 and Table 4), in.

c_p, CP Model skin material specific heat, Btu/1bm-°R

dT_/dt, DTW/DT Wall temperature change with time, °R/sec

GROUP Data identification number

h_{FR}, HFR Reference heat-transfer coefficient based on Fay-Riddell theory for a scaled 1-ft-diam sphere, $R_n = 0.04$ -ft (83- ϕ) or 0.0175 (60- ϕ), Btu/ft²-sec- $^{\circ}$ R

HFR =
$$\frac{0.005156}{\sqrt{R_n}}$$
 $\left(2.27 \frac{(T_0)^{1.125}}{(198.6 + T_0)}\right)^{0.4} \left(p_{\infty}\right)^{0.5} \left(\frac{6M_{\infty}^2}{5}\right)^{0.875}$

$$\left(\frac{6}{7M_{\infty}^2-1}\right)^{0.625} \left[\left(\frac{6M_{\infty}^2}{5}\right)^{3.5} \cdot \left(\frac{6}{7M_{\infty}^2-1}\right)^{2.5} - 1\right]^{0.25}$$

$$\left[0.2235 + 1.35 \times 10^{-5} \left(T_0 + 560\right)\right]$$

h_o, H(TO) Heat-transfer coefficient (see Eq. (1)), Btu/ft²-sec-°R

h(0.9T₀), H(0.9T0) Heat-transfer coefficient (see Eq. (4)), Btu/ft²-sec-°R

h(T_{sw}), H(TAW) Heat-transfer coefficient (see Eq. (5)), Btu/ft²-sec-°R

L Reference length, in. (see Figs. 2 and 3)

L/LN Location coordinates for thermocouples in thrusters (see Fig. 2b)

Mo, MACH NO. Free-stream Mach number

MU-INF Free-stream viscosity, 1bf-sec/ft²

PHI, ϕ Radial angle of thermocouple in model coordinates, deg (see Fig. 1)

Po, Po Tunnel stilling chamber pressure, psia

p_{∞} , P-INF	Free-stream static pressure, psia
QDOT	Heat-transfer rate, H(TO)/(TO-TW), Btu/ft ² -sec
q_{∞} , Q-INF	Free-stream dynamic pressure, psia
RE/FT	Free-stream unit Reynolds number, ft ⁻¹
Re _L	Free-stream Reynolds number based on L
ROLL	Tunnel sector roll position, deg (180 denotes model inverted)
St _{FR} , STFR	Stanton number based on HFR, HFR/ ρ_{∞} · V_{∞} [0.2235 + 1.35 x 10 ⁻⁵ (T _o + 560)]
t ,	Time from model lift off, sec
Taw, TAW	Computed adiabatic wall temperature (see Eq. (6)), °R
TC NO .	Thermocouple number .
T _{oo} , T-INF	Free-stream temperature, °R
To, TO	Tunnel stilling chamber temperature, °R
T _w , TW	Model wall temperature at midpoint of data interval, °R
V_{∞} , V-INF	Free-stream velocity, ft/sec
w	Model skin material density, lbm/ft ³
. x	Axial distance from model nose or wing leading edge, in.
X _o	Axial distance from point 235 in. ahead of orbiter nose, in. (see Fig. 1)
х/ г	Thermocouple axial distance values supplied by RI for plots. For TC No. > 68, L equals local wing chord (see Table 4)
Y/S	Thermocouple lateral distance from model G referenced to wing semi-span
α, Alpha-m .	Model angle of attack, deg

a, ALPHA-I	Indicated pitch mechanism angle of attack, deg
α _p , ALPHA-P	Sting prebend angle at zero sector pitch, deg
ρ _{co} , RHO-INF	Free-stream density, lbm/ft ³
ε	Local model surface deflection angle (see Eq. 6), deg
θ	Orientation angle of thermocouple position with respect to thruster, deg (see Fig. 2b)
Subscript	•

Initial conditions

i

1.0 INTRODUCTION

The work reported herein was conducted by the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC) at the request of the National Aeronautics and Space Administration (NASA), Johnson Space Center (JSC), Houston, Texas, for Rockwell International (RI), Space Division, Downey, California, under Program Element 921E01. The NASA-JSC project monitor was Dorothy B. Lee (ES3) and the RI project monitors were Paul Lemoine (AD38) for the first test phase (A) and Jim Cummings (AD38) for the second test phase (B). The tests were conducted by ARO, Inc., AEDC Division (a Sverdrup Corporation Company), contract operator of AEDC, AFSC, Arnold Air Force Station, Tennessee, in the von Karmán Gas Dynamics Facility (VKF) Hypersonic Wind Tunnel (B) on February 20, and April 27, 1978, for Phases A and B, respectively, under ARO Project Number V41B-V2. Final data from these tests were mailed to both NASA-JSC and RI on March 21, and May 26, 1978, for Phases A and B, respectively.

For the Phase A test, the 0.04-scale model (83- ϕ) was used and the test conditions were Mach number 8 at free-stream unit Reynolds numbers of 0.5 x 10⁶, 0.875 x 10⁶, and 1.6 x 10⁶ per ft. The model was tested at angles of attack from 25 to 42.5 deg. For Phase B, the 0.0175 model (60- ϕ) were used and the test conditions were free-stream unit Reynolds numbers 0.5 x 10⁶, 1.5 x 10⁶, 2.5 x 10⁶, and 3.7 x 10⁶ per ft, also at Mach number 8, with the model at angles of attack of 30, 35, and 40 deg.

The objectives in test Phase A were to obtain heat-transfer data on the 83-\$\phi\$ model after a leak at a lap joint in the model was detected and repaired to assess its effect on earlier data. Also an additional cross-sectional row of thermocouples were added to assess the peak heating at the chine. The objective in test Phase B was to measure the heat flux on the windward wing surface of the orbiter with a turbulent boundary layer. Wing leading edge and fuselage nose trips were used to produce the turbulent boundary layer.

Inquiries to obtain copies of the test data should be directed to Dorothy B. Lee, ES3, NASA-JSC, Houston, Texas, 77058. A microfilm record has been retained in the VKF at AEDC.

2.0 APPARATUS

2.1 WIND TUNNEL

Tunnel B is a closed circuit hypersonic wind tunnel with a 50-in.-diam test section. Two axisymmetric contoured nozzles are available to provide Mach numbers of 6 and 8 and the tunnel may be operated continuously over a range of pressure levels from 20 to 300 psia at $M_{\infty} = 6$, and 50 to 900 psia at $M_{\infty} = 8$, with air supplied by the VKF main compressor plant. Stagnation temperatures sufficient to avoid air liquefaction in the test section (up to 1350°R) are obtained through the use of a natural gas fired combustion heater. The entire tunnel (throat, nozzle, test section, and diffuser) is cooled by integral, external water jackets. The tunnel

is equipped with a model injection system, which allows removal of the model from the test section while the tunnel remains in operation. A description of the tunnel may be found in the Test_Facilities Handbook*.

Sketches of the tunnel are presented in Fig. 1, Appendix I.

2.2 MODELS

The test article for Test Phase A, designated the 83- ϕ model, is a 0.04-scale thin-skin thermocouple model of the forward 50 percent of the Rockwell International Space Shuttle Orbiter (Rockwell lines VL70-000140C), and the test article for test Phase B, designated the 60- ϕ model, is a 0.0175-scale thin-skin thermocouple model of the same orbiter configuration. Both models were constructed of 17-4PH stainless steel with a nominal 0.030-ip. skin thickness at the instrumented areas. Sketches showing overall length and coordinate definitions are presented in Figs. 2 and 3; installation drawings are shown in Figs. 4 and 5; and photographs of each model injected in the Tunnel B test section are presented in Figs. 6 and 7 for the 83- ϕ (Phase A) and the 60- ϕ (Phase B) models, respectively. Rockwell International model dimensional data specifications for each model are presented in Table 1 (83- ϕ) and Table 2 (60- ϕ), Appendix II.

2.3 INSTRUMENTATION AND ACCURACY

Tunnel B stilling chamber pressure is measured with a 100- or 1000-psid transducer referenced to a near vacuum. Based on periodic comparisons with secondary standards, the accuracy (a bandwidth which includes 95-percent of residuals) of the transducers is estimated to be within ± 0.1 percent of reading or ± 0.06 psi, whichever is greater for the 100-psid range and ± 0.1 percent or ± 0.5 psi, whichever is greater for the 1000-psid range. Stilling chamber temperature measurements are made with Chromel -Alumel thermocouples which have an uncertainty of $\pm (1.5^{\circ}\text{F} + 0.375 \text{ percent of reading})$ based on repeat calibrations.

The 83- ϕ model instrumentation consisted of 482 Chromel-constantan thermocouples (TC), of these 255 thermocouples were recorded for the subject tests. The 60- ϕ model instrumentation consisted of 548 iron-constantan thermocouples (TC), of these 69 thermocouples were monitored for the subject tests. The TC wire for both models was #30 AWG (0.010-in.) with Kapton® insulation. At the measurement point, the TC wires were spot welded to the inner surface of the model skin with approximately 0.02 in. between the two wires. The estimated temperature measurement accuracy is ± 0.5 percent of the reading.

TC instrumentation locations for each model are illustrated in Figs. 8 and 9; their dimensional locations and skin thicknesses are tabulated in Tables 3 and 4.

The thermocouple output was digitized via a Beckman 210 converter system. The Beckman system was set up to sample 98 TC's every 0.067 sec;

^{*}Test Facilities Handbook (Tenth Edition). "von Karman Gas Dynamics Facility, Vol. 4," Arnold Engineering Development Center, May 1974.

the analog-to-digital conversion introduced approximately ±0.5 deg uncertainty into the TC measurements.

3.0 PROCEDURE

3.1 TEST CONDITIONS

The test was conducted at approximately Mach number 8.0. The test Reynolds number, based on model length, was from 0.9×10^6 to 7.05×10^6 . A summary of the test conditions at each Reynolds number for each model is given below.

		_			83-¢ Model	60-φ Model
<u> </u>	P _o , psia	To R	q _∞ , psia	p_{∞} , psia	$\frac{\text{Re}_{L} \times 10^{-6}}{}$	$\frac{\text{Re}_{\text{L}} \times 10^{-6}}{}$
7.88	85.0	1180.0	0.422	0.0097	1.08	0.90
7.93	165,0	1227.0	0.790	0.018	1.83	
7.96	300.0	1267.0	1.412	0.032		2.73
7.97	338.0	1278.0	1.580	0.036	3.46	
7.98	5.47.0	1310.0	2.539	0.057		4.72
8.00	853.0	1339.0	3.913	0.087		7.05

Test summaries, run logs, and photographic logs, showing all configurations tested and the variables for each are presented in Tables 5 and 6 for both test phases.

3.2 TEST PROCEDURE

Prior to each test run, the output of the thermocouples to be recorded were monitored to ascertain that all the model temperatures were approximately 80°F within ±5°F. The model was then injected at the desired test attitude, taking about 2 sec to reach the tunnel centerline. The model remained at this position for about 3 sec and was then retracted, after which it was cooled and prepared for a subsequent injection.

To insure a turbulent boundary-layer on the 60-0 model, spherical balls of various sizes were spotwelded to thin metal strips which were attached to the model surface (see Fig. 9 for locations and Table 6 for sizes).

3.3 DATA UNCERTAINTY

An evaluation of the influence of random measurement errors is presented in this section to provide a partial measure of the uncertainty of the final test results presented in this report. Although evaluation of the systematic measurement error (bias) is not included, it should be noted that the instrumentation accuracy values (given in Section 2.3) used in this evaluation represent a total uncertainty combination of both systematic and two-sigma random error contributions.

3.3.1 Test Conditions

Accuracy of the basic tunnel parameters Po and To (see Section 2.3) and the two-sigma deviation in Mach number determined from test section

flow calibrations were used to estimate uncertainties in the other freestream properties, using the Taylor series method of error propagation; i.e.,

$$(\Delta F)^{2} = \left(\frac{\partial F}{\partial x_{1}} \Delta x_{1}\right)^{2} + \left(\frac{\partial F}{\partial x_{2}} \Delta x_{2}\right)^{2} + \left(\frac{\partial F}{\partial x_{3}} \Delta x_{3}\right)^{2} \ldots + \left(\frac{\partial F}{\partial x_{n}} \Delta x_{n}\right)^{2}$$

where ΔF is the absolute uncertainty in the dependent parameter $F = f(X_1, X_2, X_3, \dots, X_n); X_1, X_2, X_3, \dots, X_n$ are the independent measurements; and $\Delta X_1, \Delta X_2, \Delta X_3, \dots, \Delta X_n$ are the errors in the independent measurements.

Uncertainty	(±), perc	ent
-------------	-----------	-----

<u>~</u>	M _∞	P ₀	T _o	P _{cc}	. q _∞	Re _L
7.88	0.5	0.1	0.4	3.3	2.3	1.5
7.93-7.96	0.4	1.		2.5	1.7	1.2
7.97-8.00	0.3	♦	₩	1.6	1,1	0.9

3.3.2 Reduced Data

Estimated uncertainties for the individual terms in Eq. (2) were used in the Taylor series method of error propagation to obtain uncertainty values of heat-transfer coefficient as represented typically by the ranges listed below:

h _o	Uncertainty (±), percent
10-4	10 ·
10 ⁻³	7 .
10 ⁻²	5

3.4 DATA REDUCTION

The reduction of thin-skin thermocouple data normally involves only the calorimetric heat balance, which, in coefficient form is

$$h_0 = wbc_p \frac{dT_w/dt}{T_0 - T_w}$$
 (1)

Radiation and conduction losses are neglected in this heat balance, and data reduction simply requires evaluation of $dT_{\rm W}/dt$ from the temperaturetime data and determination of model material properties. For the present tests, radiation effects were negligible; however, conduction effects were potentially significant in several regions of the model. To permit identification of these regions and improve evaluation of the data, the following procedure was used.

Separation of variables and integration of Eq. (1), assuming constant w, b, \mathbf{c}_{p} , and \mathbf{T}_{0} yields

$$\frac{h_o}{wbc_p} (t - t_i) = gn \frac{T_o - T_w}{T_o - T_w}$$
 (2)

Since h_0/wbc_p is a constant, plotting $\ln[(T_0 - T_w)/(T_0 - T_w)]$ versus time will give a straight line if conduction is negligible. Thus, deviations from a straight line can be interpreted as conduction effects.

The data were evaluated in this manner, and generally, a reasonably linear portion of the curve could be found for all thermocouples. A linear least-squares curve fit of $\ln[T_{\rm o}-T_{\rm w_i}]/(T_{\rm o}-T_{\rm w})]$ versus time was applied to the data beginning at the time when the model reached tunnel centerline and extending for a time span which was a function of the heating rate, as shown below:

Range	Number of Points
dT _w /dt > 32	,5
16 < dT _w /dt ≤ 32	7
$8 < dT_w/dt \le 16$	9
$4 < dT_{W}/dt \le 8$.	13
$2 < dT_w/dt \le 4$	17
$1 < dT_w/dt \le 2$	25
dT _w /dt ≤ 1	41

In general, the time spans given above were adequate to keep the evaluation of the right-hand side of Eq. (2) within the linear region. Strictly speaking, the value of c_p is not constant, as assumed, and the following relation

$$c_p = 0.0797 + (5.556 \times 10^{-5}) T_w$$
, (17-4 PH stainless steel) (3)

was used with the computed value of T_w at the midpoint of the curve fit. The maximum variation of c_p over any curve fit was less than 1.5 percent. Thus, the assumption of constant c_p was reasonable. The value of density used for the 17-4 PH stainless steel skin was $w = 490.0 \, \text{lbm/ft}^3$ and the skin thickness (b) for each thermocouple is listed in either Table 3 or 4.

In addition to computing heat-transfer coefficients using T_o as the reference temperature, coefficients were computed using 0.9 T_o and a T_{aw} as the reference temperature, viz,

$$h(0.9 T_0) = h_0 \frac{(T_0 - T_w)}{(0.9 T_0 - T_w)}$$
 (4)

and

$$h(T_{aw}) = h_0 \frac{(T_0 - T_w)}{(T_{aw} - T_w)}$$
 (5)

where T is computed by the equation (supplied by RI)

$$T_{aw} = T_0 [0.867 + 0.133 (sin (\alpha + \epsilon))^{1.55}]$$
 (6)

where

$$\alpha = \alpha_{\mathbf{p}} - \alpha_{\mathbf{i}} \tag{7}$$

is the model angle of attack and ϵ is the local model surface deflection angle at the thermocouple. The h(T_{aw}) calculation was done only with TC's 273 thru 295 for test Phase A and the ϵ values for these TC's are presented in the following table.

TC	ε, deg	<u>TC</u>	€, deg
273	75. 0	284	20.0
274	68.5	285	18.5
275	54.5	286	16.5
276	42.0	287	14.5
277	38.5	288	7.0
278	34.5	289	4.0
279 🕝	30.0	290	2.5
280	28.0	291	1.0
281	26.0	292	
282	24.5	293	1
283	22.0	294	
•		295	₹

The same calculation was done with all TC's for the second test phase and the ϵ values are presented in Table 7.

4.0 DATA PACKAGE PRESENTATION

Sample data tabulations from both test phases are presented in Table 8; the parameters listed are identified in the Nomenclature. Representative plotted data are presented in Figs. 10 and 11 for the (A) and (B) test phases, respectively. Also shown are data obtained from previous tests using these same models. As can be seen, the agreement is excellent in both cases and is considered a validation of the current test results. Moreover, sealing the lap joint at the 83- ϕ model nose eliminated the rise in heating at x/L \approx 0.02 observed in the previous results shown in Fig. 10.

APPENDIX I

ILLUSTRATIONS

a. Tunnel assembly

b. Tunnel test section Fig. 1. Tunnel B

*FULL SCALE VALUES

MODEL SCALE: 0.04

ALL DIMENSIONS IN INCHES

UNLESS NOTED

a. 83- Model Coordinates and Dimensions

Figure 2. 83-4 Model Coordinate Systems and Dimensions Defined

b. RCS Nozzle Reference System
Figure 2. Concluded

Figure 4. 83-4 Model Installation Sketch

Figure 6. $83-\phi$ Model Shown in Tunnel B at 30-Deg Angle-of-Attack

Figure 7. $60-\phi$ Model Shown in Tunnel B at 30-Deg Angle-of-Attack

(a) TC LOCATIONS ON FUSELAGE RIGHT SIDE

FIG 8 - THERMOCOUPLE LOCATIONS ON 83-6 MODEL

FIG8 - CONTINUED

i. Locations Around RCS Nozzles (Top)

Figure 8. Continued

Figure 8. Continued

Figure 8. Continued

Figure 9. Thermocouple Locations on $60-\phi$ Model

Figure 10. Comparisons of Current and Previous Data Results on the 83-0 Model

Figure 11. Comparisons of Current and Previous Data Results on the 60-0 Model

APPENDIX II

TABLES

- 1. Model Dimensional Data 83-φ Model
- 2. Model Dimensional Data 60-0 Model
- 3. 83-\$ Model Thermocouple Locations and Skin Thickness
- 4. 60-¢ Model Thermocouple Locations and Skin Thickness
- 5. Test Summary and Test Logs: 83-φ Model
- Test Summary and Test Logs: 60-φ Model
- · 7. 60-φ Model Deflection Angles at Thermocouple Locations
 - 8. Sample Tabulated Data

TABLE 1

MODEL DIMENSIONAL DATA - 83-4 MODEL

MODEL COMPONENT : BODY - 1	360	
GENERAL DESCRIPTION :50% orb	iter forebody, vehic	cle 140C.
NOTE: This body includes a sma	ill portion of the wi	ng glove.
	•	
MODEL SCALE: 0.040		
DRAWING NUMBER: VL70-000140C	;	
	•	
DIMENSIONS :	FULL SCALE	MODEL SCALE
Length	645.15	25.80
Max Width	330.00	13. 20
Max Depth		
Fineness Ratio	···	
Area		
Max. Cross-Sectional		•
Planform		
Wetted	····	<u> </u>
D		

TABLE I (Continued)

MODEL DIMENSIONAL DATA - 83-4 MODEL

MODEL COMPONENT : CANOPY - C10	· · ·	
GENERAL DESCRIPTION : Configuration	4 canopy and w	vindshield as used
with B25, six glass panes in windshie	<u>ld.</u>	
		
MODEL SCALE: 0.040	•	·
DRAWING NUMBER: VL70-000140B, 140	C, 202B	
	•	
	•	
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length (X _o =434.643 to 670), In.	235.357	9.414
Max Width	·	
Max Depth (Glass, In.	28.00	1.12
Fineness Ratio		·
Area		
Max. Cross-Sectional		
Planform		
. Wetted		
Base	•	-
Nose/windshield intersection, X	= 434.643	17.386

TABLE 2 MODEL DIMENSIONAL DATA - 60-6 MODEL

LUCEUT CONDONE	יחאי	BODY - B ₆	2		
MODEL COMPONE					· ····································
GENERAL DESC					
MCR 200-R4 Si					•
and improved	midbody-w	ing-boot 1	airing,	$X_0 = 940$	to $X_0 = 1040$
MODEL SCALE:	0.0175	* :			
	VII 5	20. 000140C	_00020	2C, -00020	5A
DRAWING NUMB	ER: <u>- VI</u>	0-000200B,	-000203		•
					•
DIMENSIONS :			FUL	L SCALE	MODEL SCALE
T.engi)	(IML: FV	/D Sta X ₀ =2	38), In.	1290.3	22, 58
Length	(OML: F	vd Sta Xo=2	235), I <u>n.</u>	1293.3	22. 63
J -	dih (At Xo =	• .		264.0	4, 62
Max D	epth (At Xo	= 1464), In	·,	250.0	4.38
. Finene	ss Ratio			4, 899	4.899
Area	- Ft ²			• · · .	·
	Max. Cross-	Sectional		340.885	0. 104
	Planform		. _ -	·	·
•	Wetted		· · · · ·		
	Base		٠ .	<u> </u>	

TABLE 2 (Continued)

MODEL DIMENSIONAL DATA - 60-0 MODEL

MODEL COMPONENT : BODY FLAP - F ₁₀	
GENERAL DESCRIPTION: Configuration 140C body f	lap. Hingeline
located at $X_0 = 1532$, $Z_0 = 287$.	
MODEL SCALE: 0.0175	
DRAWING NUMBER:VL70-000140C, -355114	
DIMENSIONS: FULL SCALE	MODEL SCALE
Length $(X_0 = 1525.5 \text{ to } X_0 = 1613)$, In. 87.50	1.531
Mox Width (At L. E., X = 1525.5), In. 256.00	4.480
Max Depth (Xo = 1532), In. 19.798	4
Fineness Ratio	- -
Area - Ft ²	
, Max. Cross-Sectional (At H. L.) 35.19	6 0.011
Planform135.00	
Wetted	
Bose (X _o = 1613) 4.89	0.0015

TABLE 2 (Continued) MODEL DIMENSIONAL DATA - 60-φ MODEL

MODEL COMPONENT : CANOPY - C ₁₂	
GENERAL DESCRIPTION : Configuration 140C orbi	ter canopy.
Vehicle cabin No. 31 updated to MCR 200-B4. U	Jsed with
fuselage B ₆₂ .	
MODEL SCALE: 0.0175	
DRAWING NUMBER:VL70-000140C, -000202B, -000	204
DIMENSIONS: FULL SCALE	MODEL SCALE
Length (X _o = 434.643 to 578), In. 143.35	7 2.508
Max Width (At X = 513, 127), In. 152.41	2 2,667
Max Depth (Z ₀ = 501 to 449.39), In. 51.61	0, 903
Finaness Ratio	
Area	<u> </u>
Max. Cross-Sectional	-
Planform	
Wetted	
Base	

MODEL DIMENSIONAL DATA - 60-\$\phi\$ MODEL

MODEL COMPONENT: E	LEVON E ₅₂		
GENERAL DESCRIPTION: EI			
= 1387, elevon split	t line $X_W = 31$	2.5, 6.0", beveled	d edges,
and centerbodies.		. ,	
mODEL SCALE: 0.0175			·
BANTING NUMBER:	VL70-0001400	C, -006089, -00609	2
MENSIONS:	•	FULL-SCALE	MODEL SCALE
Area - Ft ²		210.0	0.064
Span (equivalent) -	In.	349. 2	6. 111
Inb'd equivalent cro	rd- In.	118.0	2. 065
Outb'd equivalent che	ord	55. 19	0.966
Ratio movable surface total surface chore	•	•	
At Inb'd equiv.	chord .	0.2096	0. 2096
At Outb'd equiv	. chord	0.4004	0.4004
Sweep Back Angles, d	egr ees		
Leading Edge		0.0	0.0
. Tailing Edge		<u>- 10.056</u>	- 10.056
Hingeline		0.0	0.0
Area Moment (Product	of area & c)	1587. 25	0.008
Mean Aerodynamic Chor	d, In.	90.7	1.587
Hingeline dihedral (of $Z_0 = 261.3509$), deg		5. 229	5. 229

MODEL DIMENSIONAL DATA - 60-φ MODEL :

MODEL COMPONENT: OMS POD - M ₁₆		
GENERAL DESCRIPTION: Configurati	on 140C orbiter	, <u></u>
OMS Pod - short pod.	,	
MODEL SCALE: 0.0175	•	•
DRAWING NUMBER: VL70-008401, -0	008410	•
DIMENSIONS:	FULL SCALE	MODEL SCALE
Length (OMS Fwd Sta X = 1310.	5),In. 258. 50	4. 524
Max Width (At $X_n = 1511$), In.	136, 8	2.394
Max Depth (At X = 1511), In.	74. 70	1.307
Fineness Rotto	2. 484	2. 484
Area = Ft ²		·
Max. Cross—Sectional	58.864	0.018
Planform		
Wetted		47 1
Base		
· · · · · · · · · · · · · · · · · · ·		

MODEL DIMENSIONAL DATA - 60-\$\phi\$ MODEL

· · · · · · · · · · · · · · · · · · ·	-	
MODEL COMPONENT: RUDDER - R ₁₈		
GENERAL DESCRIPTION: The rudder is a s		,
trailing edge of the vertical fin that	imparts yaw for	ces. This
dimensional data was calculated from t	he OML master di	mensions.
MODEL SCALE: 0.0175		
DRAWING NUMBER: Vehicle 5 Conf	figuration MCR 20	0, Rev. 7
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area - Ft ²	97.84	0,030
Span (equivalent) - In.	198.614	3.476
Inb'd equivalent chord - In.	91.07	1.594
Outb'd equivalent chord - In.	50.80	0.889
Ratio movable surface chord/ total surface chord	•	
At Inb'd equiv. chord	0.400	0.400
At Outb'd equiv. chord	0.400	0.400
Sweep Back Angles, degrees	1	•
Leading Edge	34,833	34.833
Tailing Edge	<u> 26 249</u>	26.249
Hingeline	34.833	34.833
Area Moment (Product of Area & c), Ft3	593,889	.0032

Mean Aerodynamic Chord, In.

72.840

1..275

TABLE 2 (Continued) MODEL DIMENSIONAL DATA- 60-\$ MODEL

MODEL COMPONENT: VERTICAL - V8	·			•
GENERAL DESCRIPTION: Configurat	ion 140C	orbi	ter vertic	al tail
(identical to configuration 140	A/B vert	ical	tail).	
	•	٠		
MODEL SCALE: 0.0175		: *:		
DRAWING NUMBER: VL70-000140C,	-000146B			
DIMENSIONS:			ULL SCALE	MODEL SCALE
TOTAL DATA	:	٠,		
Area (Theo) - Ft2 Planform Span (Theo) - In. Aspect Ratio Rate of Taper Taper Ratio Sweep-Back Angles, Degrees. Leading Edge Trailing Edge O.25 Element Line Chords: Root (Theo) WP Tip (Theo) WP MAC Fus. Sta. of .24 MAC W.P. of .25 MAC B.L. of .25 MAC			413, 253 315, 72 1, 675 0, 507 0, 404 45, 000 26, 25 41, 13 268, 50 108, 47 199, 81 1463, 35 635, 52 0, 0	0, 127 5, 350 1, 675 0, 507 0, 404 45, 000 26, 25 41, 13 4, 699 1, 898 3, 497 25, 609 11, 122 0, 0
Airfoil Section Leading Wedge Angle - De Trailing Wedge Angle - D Leading Edge Radius			10.00 14.92 2.00	10.00 14.92 2.00
Void Area	•	•	13.17	0.0040
Blanketed Area			0.0	0.0

MODEL DIMENSIONAL DATA - 60-\$ MODEL

ENERAL	DEGOUTELION.	figuratio			-,	· ····································
OTE:	Identical to W ₁₁₄ exc	ept airfo	il thic	kness.	Dihedr	al angle i
. >	along trailing edge of	of wing.	Geometr	ic twist	:= 0.	
ODEL S	SCALE: 0.0175					
ST NO.		DRAWING	NO.:	VL70-000)140A,	-000200
IMENS I		•	-	FULL-SCA	TE	MODEL SCALE
			-			,
	AL DATA Area (.neo.) Ft ²	ı			_•	
	Planform	40-		2690.1		<u> </u>
	Span (Theo In.	. •	•	936.		<u>16.392</u>
	Aspect_Ratio	•		2_	265 177	2. 265 1. 177
	Rate of Taper				500 7.1	0.200
	Taper Ratio Dihedral Angle, degrees	•		3.	500	3.500
	Incidence Angle, degrees		. • •		500	0.500
٠ - :	Aerodynamic Twist, degrees	5				
	Sweep Back Angles, degrees					
·	Leading Edge			45.		45.000
	Trailing Edge		•	- 10.0	<u>)56</u>	- 10.056
	0.25 Element Line	-		35.2	<u> 209</u> .	<u>35, 209</u>
	Chords:		•	600) <i>A</i>	12, 062
	Root (Theo) B.P.O.O.	-	•	689.7 137.8		2, 412
	Tip, (Theo) B.P.	•		474,8		8, 309
•	MAC Fus. Sta. of .25 MAC		-	1136.8		19, 895
	W.P. of .25 MAC	•		290.		5. 085
	B.L. of .25 MAC			182.		3. 187
ew			f _{see}			<u></u>
EXP	OSED DATA Area (Theo) Ft ²	• • •	i.	1751.5	50	0.536
	Area (Theo) Ft Span; (Theo) In. BP108	• •] .	720, (12, 612
	Aspect Ratio	•		2. (<u> </u>	2. 059
	Taper Ratio	••	1	0, 2	245	0. 245
	Chords		.1	-		
	Root BP108	•	ì	<u>562. (</u>		<u>9.837</u>
•	Tip 1.00 <u>b</u>			137.8	12	2.412
	MAC 2			392.8	33	6.875
	Fus. Sta. of .25 MAC	• •	1	1185.9	8_	20, 755
	W.P. of .25 MAC		:	294.3 251.	0	5.150
•	B.L. of .25 MAC	;	•	251.	7.7	4, 406
•	Airfoil Section (Rockwell	Mod NASA)	•	:		
	Root b =	(0.1	113	0.113
	Tip b =		;	·	120	0. 120
	7	•				
	Data for (1) of (2) Sides				•	
	Leading Edge Cuff			113,	18	0.035
_	Planform Area, Ft ² Leading Edge Intersect	te Fue M I	a c+2	500.0	00	8,750
-	Leading Edge Intersect	parija (lehe Letija – p.C.	- Ju	1024.0	<u> 50 </u>	17,920

TABLE 3. 83-0 MODEL THERMOCOUPLE LOCATIONS AND SKIN THICKNESS

T/C No.	LOCATION	. ,	X _o (INCHES)	X/L	•	φ, (deckees)	ekin Thickness (inches)	
273	ВОТТОМ		236, 25	0.0010			0: 0269	
274	CENTERLINE	!	237.37	0.0018		1	0.0272	
275	I		240. 25	0.0041	} .`·]	0.0277	
276		1	244.00	0.0070			0.0280	•
277		!	248. 28	0.0103	1		0.0279	
278		j i	254.48	0.0151]		0,0283	
279		1	260.75	0. 0199			0.0232	
280			26500	0.0232			0.0210	
281			269.00	0. 0263			0.0190	
282	:	1	273, 63	0. 0299	1		0.0230	
283			278.75	0. 0338		l	0.0231	
284		•	284. 25	0:0381	1		0.0230	
285			288.50	0.0414	İ		0.0230	l .
286			293.5	0, 0452	'		0.0240	i
287	,	1	300.00	0.0503	1	ļ	0.0230	
288	<u>:</u>	ļ.	364.330	0.100	,		0.0280	
289			428. 995	0.150	-	1	0.0300	1 .
290		1	493.660	0. 200			0.0260	{ .
291		1 .	558.325	0, 250	.]	.	0.0273	1
:292	1		622.990	0.300	•		0.0275	
293] [.	1	6 87. 655	0.350			0.0261	
294	<u> </u>		752. 320			1	0.0276	
295	\	1	816.985	0.450		1	0.0292	1

Model Mat'l: 17-4

T/C	LOCATION	NOT USED	X _o (INCHES)	X/L		φ, (DEGREES)	skin Thiçkness (inches)	
131 132 133 134 135 136 137 138 139 140	LOWER RCS NOZZIES	390.0 390.0 383.8 371.3 374.55 370.55 370.55 366.05 362.4 362.4	345.8 359.8 347.8 351.8 359.8 359.8 355.1 355.1 360.8	0.0857 0.0963 0.0857 0.0872 0.0903 0.0960 0.0872 0.0928 0.0916 0.0934 0.0973			0.0331 0.0261 0.0272 0.0300 0.0269 0.0249 0.0293 0.0258 0.0286 0.0285	NOT USED
143 144	PILOT LEFT NOSE	355.2 349.0	353.8 357.7	0.0919 0.0949	1		0.0225 0.0295	
145 146 147 148 150 151 152 153 154 155 156	T/C's (EVERY 0.2")	338.0	236.0 238.0 240.5 247.25 250.75 263.25 267.5 272.0 276.25 280.75 285.0	0.0008 0.0023 0.0043 0.0068 0.0095 0.0122 0.0218 0.0251 0.0286 0.0319 0.0354 0.0387	•		0.0300 0.0306 0.0300 0.0310 0.0322 0.0319 0.0313 0.0302 0.0272 0.0277	

			,					
1 ,	i i					φ,	skin	
T/C	· .	NOT	X _o		-		THICKNESS	•
NO.	LOCATION	USED	(INCHES)	X/L		(DECREES)	(INCHES)	
	NOSE T/C'S							
160	(EVERY 0.2")		300.23	0.0506	١,		0.0235	
157		338.0	289.25	0.0420		,	0.0274	_
158		338.0	294.75	0.0462			0.0274	•
159	A	338.0	300.0	0.0503	•	1	0.0250	
	UPPER RCS NOZZLES			•		1		
161		- 7.5	315.0	0.0619	•		0.0265	
162	<u> </u>	-7.5	326.7	0.0709	•		0.0212	
163	[-7.5	339-3	0.0807	-	٠.	0.0275	
164	, ,	-7.5	357.0	0.0943			0.0292	
165	``	-7.5	361.5	0.0978	•]	0.0282	
166	• •	-7.5	366.0	0.1013		į.	0.0287	
167	!	-15.0	315.0	0.0619			0.0303	
168]]	-15.0	326.7	0.0709		Ì	0.0235	-
169		-15.0	339-3	0.0807		ļ	0.0272	•
170		-15.Q	357.0	0.0943	,		0.0280	
171		-15.0	361.5	0.0978		,	0.0270	
172	1 1	-15.0	366.0	0.1013			0.0292	
173		-22.5	339.3	0.0807	·		0.0299	
174]	-22.5	357.0	0.0943		t	0.0255	
175	}	-22.5	361.5	0.0978			0.0321	
176	i ▼	-22.5	366.0	0.1013			0.0305	
-,-]			•		
i			1	ŧ				
1			1	1		1		•
1	4		i			1		,
j	!							
1						}		
	1					ł		ļ
			<u> </u>	<u> </u>	<u> </u>	l	<u> </u>	I

TABLE 3: Continued

T/C	LOCATION	. ,	X _o	x /L	<i>Ø,</i> (decrees)	SKIN THICKNESS (INCHES)	·
296 297 298 299 300 301 302 303 304 305 306 307 308 309	MHB LINE		267. 333 299. 665 331. 998 364. 330 396. 663 428. 995 461. 327 493. 660 525. 993 558. 325 590. 658 655. 323 719. 988 784. 318	0. 075 0. 100 0. 125 0. 150 0. 175 0. 200 0. 225 0. 250 0. 275 0. 325		0. 0292 0. 0268 0. 0270 0. 0278 0. 0252 0. 0280 0. 0306 0. 0280 0. 0205 0. 0283 0. 0340 0. 0245 0. 0290 0. 0298	
311 312 313 314 315 316 317 318 319			493.66 525.993 558.325 590.658 622.990 655.323 687.655 719.988 752.320	0. 200 0. 225 0: 250 0. 275 0. 300 0. 325 0. 350		0. 0230 0. 0250 0. 0296 0. 0279 0. 0308 0. 0279 0. 0311 0. 0302 0. 0278	
321	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		816.985	0.450		0, 0276	

TABLE 3: Continued

T/C No.	LOCATION	, X _o (INCHES)	x/L··.	(DI	¢, skin Thickne Theres) (inche	
322	MHB LINE	849.318	0. 475	1	0.026	0
323		493.660	0.200		0.025	9 ,
324		525.993	0. 225	i li	0.026	8
325		558.325	0. 250		0. 027	'9.
326		590.658	0. 275		0.026	J'-
327		622.990	0.300		0.028	6
328		655.323	0.325	İ	0. Q2 <i>4</i>	9
329		687.655	0.350		0.030	6
330		719.988	.0. 375	•	0,028	2
331	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	752.320	0.400	1	0.026	9
332		784: 653	0, 425	j	0.027	76
333		816.985	ਹ. 450		0.027	73
334	· .	525.993	0. 225	1	0.025	55
335		558,325	0.250	•	0. 028	39
336] '	590. 65 8	0.275		0.026	
337].	622.990	0.300	1	0.030	D
338		655.323	0.325		0.026	59 .
339		687.655	0.350	ι	0. 030)2, ·
'541		752.320	0.400		0.02	79
342	١,	784, 653	0.425		0.02	70
343		816, 985	0.450		0.02	76
344	i	655.335	0.325	} [0, 03	
345		687, 655	0.350] [0.03	,
346	1	719.988	0.375		0.03	
347		752, 320	0.400	ļ	0.03	1
348		784, 653	0.425	[[0.03	1
849	1 1	816, 985	0.450	*.	0.03	
350	I V .	850, 600	1	į l	.0.03	

T/C	LCCATICE	, X _o (INCHES)	x/L	0_	Ø, (degrees)	SKIN •THICKNESS (INCHES)	
351 352	. CCL LINE	299. 665 331. 998		`.	· ·	0.0271 0.0269	
354 355 356 357 358 359 360 361 362 363 364 365 366		396.663 428.995 461.328 493.660 590.658 622.990 655.323 687.655 719.988 752.320 784.653 816.985 850.600	0.150 0.175 0.200 0.275 0.300 0.325 0.350 0.375 0.400 0.425 0.450			0. 0268 0. 0273 0. 0311 0. 0262 0. 032 0. 0292 0. 030 0. 0305 0. 030 0. 032 0. 032 0. 032 0. 0315	

T/C	LOCATION		(INCHES)	·x/L		φ, (degrees)	SKIN THICKNESS (INCHES)	·
NO.			,					
l	CARGO BAY HINGES -		,			,		l i
	HINGE NO. 2	664.8	405.0	0.3323	` !		0.0281	NOT
250	<u> </u>	669.8	405.0	0.3362		ļ	0.0275	NOI
251	V	609.0	403.0	0.,,,,,,	1		.,	USED
1	HINGE NO. 3	742.3	420.0	.0.3923			0.0325	1
252	1. 1	747.3	420.0	0.3961			0.0325	
253	() () () () () () () () () ()	737-3	415.0	0.3884			0.031	-
254	1 :	732.3	405.0	0.3845	_		0.0302	<u>)</u>
257 258	\ ▼	737.3	405.0	0.3884			0.0305	
2,50	TOP CENTERLINE	131-3						Ĺ
357	101 01111111111111111111111111111111111		235.000	0.000		•	0.0263	
368		İ	236.000	0.0008			0.0284	
369	1 1	Į.	237.500	0.0019			0.0262	
370	·	i	239.750				0.0273	•
371	! ! '	1	242.500		_		0.0219	:
372		1	246.250			' '	0.0268	
373	1 -1		250.250		ì		0.0293	
374		· .	254.50	0.0151	}	.	0.0293	
375			258.50	0.0182	ļ.	[0.0306	
376	1	i.	262.75	0.0215	J·	ľ	0.0215	
377			266.75	0.0246		· .	0.0261	
378			271.00	0.0278			0.0261	
379			313.75	0.0609	1		0.0275	•
385			318.50	0.0646	1	1	0.023	·
381	1 1	}	323.50	0.0684			0.029	
382	l i	1	328.25	0.0721	1.		0.0293	t
383	4	1	333.25	0.0760	l .		0.030	1
384	Y	ł _	338.00	0.0796	1	<u> </u>	0.0312	l

4

T/C	LOCATION	X _o (Inches)	x/L	1	ø (degrees)	SKIN THICKNESS (INCHES)	
385 386 387 388 399 399 399 399 399 399 401 405 405 409 409 409 409 409 409 409 409 409 409	TOP CENTERLINE	357.00 357.00 357.00 366.75 385.00 389.50 394.25 399.00 413.00 417.50 436.25 431.50 436.25 450.25 450.25 450.25 466.75 466.75 471.75	0.0789 0.0789 0.1019 0.1160 0.1195 0.1231 0.1268 0.1305 0.1338 0.1376 0.1411 0.1448 0.1483 0.1519 0.1556 0.1582 0.1608 0.1664		(DESREES)	0.0288 0.0265 0.0275 0.0213 0.0325 0.0353 0.0357 0.0384 0.0379 0.0376 0.0335 0.0332 0.0332 0.0315 0.0299 0.0299 0.0272 0.0271 0.0271 0.0271 0.0289 0.0328 0.0322 0.0322 0.0322	NOT USED
411 412	\	480.00 474.75	0.1894 0.1931		,	0.0336 0.0304	V

·	I			T		CVTV	·
T/C		x _o	Į.	ı	a l	ekin Thickness	ļ
NO.	LOCATION	(INCHE) X/L		ϕ_{j}	(INCHES)	,
					(2232033)		
413	TOP CENTERLINE	490.00		1	!	0.0300	1 1
414	i	500.00		1	! ·	0.0300	1
415		525.99		`		0.0221	
416		558.3	0.250	1	1	0.0262	NOT
417		590.6	.275	1		0.0330	S
418] .	622.99	300			0.0350	USED
419	•	655.31	3 .325			0.0330	
1450		687.6	55 -350		<u> </u>	0.0322	
421	i !	719.9	38 .375			0.0329	1
422		752.3				0.0328	
1423 `	l \;	784.6	2 .425	1		0.0316	
424		816.9		1	1 .	0.0335	
425	. ▼	849.3		İ] 1	0.034	
426	PILOT RIGHT (Cross	270	.027	ŀ	350 343	0.0206	
427	Section)		ł ,	j	343	0.0219	ļ ⁻
428	1 ,		1 1		335	0.0239	
1429] ' '		{	.i	324	0.0259	
430]]	1 1	1	320	0.0279	
431			1. .	1	310	0.0285	
432	1 · 1			1	303	0.0288	
433	i i		1 1	1	295	0.0288	
434		1 1	1 1	-	287.5	0.0292	
435	<u> </u>		1 1	j	280	0.0293	
436		▼	₩	1	273	0.0295	
437		300	.050	1	352.5	0.025	
438]		1 1	1	347	0.0258	
439				1	339	0.0249	
1110	! ▼ !	🛊	 	1	334	0.024	•
<u> </u>	<u></u>	L		1			

T/C	LOCATION	,	X _o (INCHES)	x/L	(d) (decrees)	SKIN THICKNESS (INCHES)	
44444444444444444444444444444444444444	PILOT RIGHT (Cross Section)		500	.2049	327.5 321.5 318 311 306 300 295 289 284 274 355 346 338 339 320 317.5 310.5 317.5 31	0.024 0.028 0.0283 0.0270 0.026 0.0245 0.0225 0.0278 0.025 0.025 0.023	

-/5			<u>. </u>		T	<u></u>	SKIN	,
T/C	LOCATION	, (3	X _o Inches)	X/L .		<i>Ø,</i> (Degrees)	THICKNESS (INCHES)	
469 470 471 473 474 475 502 503 505 507 509 511	PILOT RIGHT.(Cross Section)		0.75	.0200		295 292 290 287 284 278 275.5 273 270 348.5 338.2 328.7 320.5 312.3 303.5 296.5 278.6 270.0 262	0.028 0.023 0.021 0.0275 0.023 0.023 0.024 0.0253 0.022 0.021 0.025 0.026	

TABLE 3: Continued

RCS NOZZLES

(SIDE AND DOWNWARD FIRING - FIGURE 2(b))

DOWNWARD FIRE	NG NOZZLES (FUS)	ELAGE SIDE - FOR	WARD NOZZLE)
T/C <u>L</u> NO. LN	θ, DEG	SKIN THICKNESS In.	.'. REMARKS
817 818 3.12 819 2.56 820 1.56 821 2.13	270 270 270 180 180 NG NOZZLES (FUSE	0.0260 0.0300 0.0360 0.0300 0.0300	0.2 IN. FWD OF O DEG. REF ON NOZZLE NOZZLE)
822 823 3.32 824 2.76 825 2.19 826 1.62 827 1.05 828 0.48 829 0.85 830 1.28 831 1.99 832 2.42 833 2.42	270 270 90 180 180 180	0.0270 0.0400 0.0410 0.0380 0.0370 0.0240 0.0230 0.0230 0.0230 0.0300 0.0300 0.0310	BETWEEN DOWN FIRING NOZZLE
834 1.19 835 0.57 836 1.14 837 1.19 838 1.19	270 0 90 180 180 2ZLES (FUSELAGE 270 180 0 180 90	0.0280 0.0280 0.0285 0.0280 0.0280	

 $\mathbf{L_{N}}$ = length from nozzlé throat

TABLE 3: Concluded

RCS NOZZLES

FORWARD AND UPWARD FIRING - FIGURE 2(b)

CENTER FORWARD FIRE T/C NO.	ING NOZZLE L LN	θ, DEG	SKIN THICKNESS, in.	remarks
854 853 852 851 850 871 870 869 868 867 855	4.83 4.40 4.00 3.55 3.13 1.99 0.48 0.00 0.51 1.14 2.13 1.70	270 270 90 90 0	0.0310 0.0260 0.0270 0.0280 0.0280 0.0303 0.0351 0.0323 0.0304 0.0306 0.0306	(CENTER)
LEFT FORWARD FIRIN 857 858 859 860 861 862	4.69 2.41 2.70 2.13 0.0 0.85	270 270 0 0 0 90	0.0305 0.0331 0.0295 0.0291 0.0343 0.0125	(CENTER)
LEFT UPWARD FIRING 863 864 865 866	0.20 0.26 0.48 0.00	0 90 180 0	0.0354 0.0332 0.0365 0.0294	(CENTER)
CENTER UPWARD FIRI 872 873 874 875	NG NOZZLE - 0.07 0.09 0.17 0.00	0 90 180 0	0.0384 0.0403 0.0532 0.0305	(CENTER)

TABLE 4
60-φ MODEL THERMOCOUPLE LOCATIONS AND SKIN THICKNESS

-			Full	Sca	ماد	Mode		cale	·			
				1	Ī		27 2	Z*		Skin		-
T/		Z/L	X _o	·Y	Z _o *	Xfrom	3,7	from	φ _D	Thickness,		
NG	· · · ^	./ L	0	<u> </u>	-0	nose	Y	FRP	. П	in.	Mat'l	Remarks
	1 0	0	235.0	0	_	0	0	0	180	.040	17-4	Bottom G
		005	241.47	Ιì	1 1	.113	Ĭ	Ĭ	1	.032	11	porrou a
		01	247.93			.226		1		033		l l
		02	260.87			.453				.040		
ł	5 . (03	273.80			.679	1		;	.040		
Ì	6 . (04	286.73			.905				.040		
		05	299.67]	1.132				.033		
		06	312.60			1.358				.035		
		07	325.53			1.584		·		.032		
1		80	338.46			1.811				.032		
1		09	351.40		1	2.037				.035		
1		10	364.33]	2.263		. [.037		
1		12	390.20		1 1	2.716			l i	.040		
1		13	403.13			2.942				.038		
1.		14	416.06			3.169			•	.035		
1 1		15	429.00			3.395				.036		
1			441.93			3.621				.036		
1		17	454.86		1	3.848				.035		
1		18	467.79		1 1	4.074				.035		
20			480.73			4.300				.035		
2			493.66			4.527	-		' <u> </u>	.035		
2:		225	525.99			5.092	- 1-1		1 1	.035		
2		25	558.33			5.658			1 1	.035		•
24		30	622.99			6.790	- 1-1		- 1	.035		
2:			687.66			7.922			[[.035		
2	1	- 1	752.32			9.053	-			.034		
2			816.99	1	1	10.186		j		.033		j
29			881.65	$\ \cdot\ $		11.316				.032		
30			946.32] }		12.448				.030		[
3			1010.9 1075.6			13.580				.030		. [
3:			1140.3			14.711				.030		
3:			1204.9			15.843 16.975			.	.029		i
34			1269.6	1]		1	↓ !	1 1	- Į	.030]	1 1
3	' '°	"	1203.0	[1	18.106	7 }	f	' ·	.030	7	₹
- L											1	

*Not Used

TABLE 4 Continued

		Fu	11 Scale	v, 	Mod	el Scal	e			1)	
T/C No.	X/L	x _o	Y	z _o *	X from nose	Y	z _{from} FRP	φ _D	Skin Thickness, in.	Mat.l	Remarks
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 58 60 61 62 66 66 67	.85 .90 .925 .950 .975 1.015 1.03 1.045 1.06 .20 .20 .40 .50 .60 .70 .80 .975 1.015 1.03 1.045 1.060 .40 .50 .60 .70 .80 .95	1324.3 1398.9 1431.3 1463.6 1493.9 1547.7 1567.1 1586.5 1605.0 299.67 364.33 429.0 493.66 493.66 752.32 881.65 1010.9 1140.3 1269.6 1398.6 1463.6 1495.9 1547.7 1567.1 1586.5 1605.0 752.32 881.63	25.0 20.0 24.0 25.0 50.0 46.8		19.068 20.369 20.935 21.501 22.067 22.972 23.312 23.651 23.977 1.132 2.263 3.395 4.527 4.527 9.053 11.316 13.580 15.843 18.106 20.369 21.501 22.067 22.972 23.312 23.651 23.977 9.053 11.316 13.580 15.848 19.106 20.369	.438 .350 .420 .438 .875 .819	FRP	ΨD 180 194 190 190 191.5 204	1n. .029 .031 .027 .027 .023 .030 .030 .028 .0265 .032 .036 .035 .034 .025 .028 .025 .028 .025 .030 .030 .030 .030 .030 .031 .032 .031 .033 .029 .031 .030	Mat.1	Remarks Bottom (

^{*}Not Used

TABLE 4 Continued

	<u></u> [['] Fu	11 S	cale	Мос	lel Scal	e		 	·
T/C	/5		x _o		Xfrom	77	Elevon	Skin Thickness	Mat'l	Remarks
No.	Y/S	X/C	0	Y	L.E.	Y	T/C	inickness	LINE I	Remarks
73	.30	0		140.5	0	2.459		.020	17-4	Wing Lower Sur.
74		.05		⁻	.670	'		.020	1 1	
75		.10			1.340		ı İ	.026	1.	
76	1 1 1	. 20	•		2.680	٠,		.031	1 1	
77		.30			4.020			.030		C = 13.4 in.
78		.40		i	5.360		i i	.031	}	1 1
79		.50		1 1	6.700			.030		
80		.60	ļ		8.040			.030		! ! !
81	1 1 1	.70	1		9.380	į		.031		1 1 1
82		.80			10.720			.030		!!!
83		.90	1		12.060		х	.0305	1] {
84	∳	.95		+	12.730	†	X	.031	1 1	1 1
85	.35	0	1	163.9	0	2.869		.026		\
86	.40	0		187.3	0	3.287		022	-	
87	Li	.05	1		.438	l i		.031	1 1	•
> €<	1	.10		•	.876]		.031		Open
89	1	.20	١.		1.753] '	.030	1	C = 8.764 in.
90		.30			2.629		1	.031	1 1	- I
91	11	.40			3.506			.029	1- 1	1
92	1 1	.60	1		5.258	1	1 1	.033	1 1	
93	1 1	.70]		6.135	1 1	l i	.033	1 1	1
94	11	.75		1	6.573			.030		
95	11	.85] [7.449			.0295	1 1	1
96		.90		1	7.888) X	.026		
97] †	.95		•	8.326		X	.0275	1	1 1
>>8<		0	-	210.7			x	.030		Open
99	.50	0		234.1		4.098	1	.027	1	
100	11	.05			.364]]	.029	1	
101		1.10	}	1 1	.727		1 1	.030		C = 7.27 in.
102		.20	1]	1.454			.031		0 = ./.2/ 1n.
103		.30			2.181			.031		
104	11.	.40			2.908			.031	1 1	
105		.60		1 1	4.362		1 1 '	.032		1 1
106	†	1.70	1	, ,	5.089	1		.031	7	₹
			<u> </u>				1	<u></u>		<u></u>

TABLE 4 Continued

1 1		Fu1	.1 Sc	ale	Mode	1 Scale				
T/C	1		**	,	Xfrom	,	Elevon	Skin		İ
No.	Y/S	X/C	Xo	Y	L.E.	Y	· T/C	Thickness	Mat'l	Remarks
]
107	.50	.90		234.1 257.6	6.543	4.098	X	.0285	17-4	Wing Lower Sur.
108 109	.55	0		281.0	0 0	4.508		.026	[,
110	- 90	.025		201.0	.157	4.710		.029	1	
111	1 1	.025			.314			.029		<u> </u>
112	[]	.075			.470			.030		
112		.10			.627		1	.031	ļ ,	
113		.20	•		1.254	1 1		.031		C = 6.27 in.
115		.30			1.882	i		.033	l	0.27 111.
113		.40]	2.059	1 1 1		.032		1
117		.50			3.136]		.032		1 1
118		.60		1 1	3.763			.032		1
119		.70			4.390			.031		
120		.80	ŀ		5.018		x	.030		
120		.85			5.331	! ! !	x	.0305	!	
122		.90		1	5.695	!	x	.0295	1	
123	 	.95			5.958		x	.0295	1 1	1
124	.65	l o		309.4	0	5.327	**	.026		1
125	.70	١٥]	327.8	ő	5.737		.017]	
126	1	.025	ł]]]]	.133	13.737		.024 .		
127		.10]	.531	1		.032		
128		.20		1 1	1.061			.036		, ,
129		.30			1.592			.036	1 1	C = 5.31 in.
130		.40			2.123	1 ! !	ļ	.035		1
131		.60	ļ		3.84		Ì	.035		
132	! ₩ .	.90		↓	4.776		x	.031		1 4
133	.75	0	{	352.8	0	6.174	,	.028		1
134	1	.025	1		.121		}	.028	1 1	
135		.05	Ì		.241			.030	- ,	
136		.10	1		.483			.032	'	
137		.20			.965			.032		C = 4.825 in.
138		.30		1 1	1.448			.035		
139		.40			1.930			.034		
140	₩	.60		+	2.895	†		.033	†	!

TABLE 4 Concluded

		Fu	11 Sc	ale	Mode	l Scale		-			
T/C	Ì				Xfrom			Elevon	Skin		
No.	Y/S	x/c	X _o	Y	L.E.	Y		T/C		35	. .
110.	175	- A/ U	<u> </u>		L.D.	1		1/6	Thickness	Mat'l	Remarks
141	.75	.70		352.8	3.378	6,174			.031	17-4	Wing Lower Surf.
142	1	.80		1 1	3.860	1		x	.027	- ′ ′	C = 4.825 in.
143		.90			4.343			X	.0305		1
144	•	.95		∳	4.584	♦.:		X .	.0295	1 1	1 1
145	.80	0.		374.6	o	6.557			.024		4
146	l 1	.20		1 1	.868	1		•	.032		C = 4.343 fm.
147		.40			1.737				.031		1
148	Ť	.90		🕴 ;	3.908	₩		x	.0305	1	}
149	.85	0		398.1	0	6.967			.028	·	Ψ
150		.20		1	.772	1			.031		C = 3.860 in.
151	♦	.40		♦ .	1.544	↓			.030		
152	.90	0		421.4	0	7.376			.028		1 1 1
153		.10		1 1	.338	Ī			.030		ļ
154		.20		.]	.675				.031		C = 3.377 in.
155		.30			1.013				.031		1
156		.50	i		1.689				.031		
157		.60			2.026				.032		
158		.80			2.702	· }	i	х	.0285		
159		.90		🛊	3.039	+ !		X	.028	<u> </u>	
160	.95	0		444.9	0	7.786			.030		
161	1	-05			.138	1			.031		
162		.10			.276				.030		
163		.20			.552				.032		C = 2.758 in.
164		.30			.827)			.031		21,30 2
165		.50			1.379				.030		
166		.70			1.931			X	.0295		
167		.80			2.206			X	.030		
168	†	.90		†	2.482	*		X	.0295		. ↓
243	.250	.085		117.0	1.357	2.049			.030		Wing Upper Surf.
244		.135		1	2.156	1	,		.050		
245	↓	.225	- 1		3.593	- ∤	ļ		080		
246	.400	.05		187.3	.483	3.278		}	.024		
247		.20		1	1.753		ŀ	_	.028		
248	+	.40		- ∳]	3.506	1]	- 1		.024	. .	
<u></u>						[,	

TABLE 5
TEST SUMMARY

Model Configuration: 83-\$\phi\$

,	SWITCH	ITCH GROUP NUMBER									
⊄, DEG	POSITION	$RE/FT = 0.5 \times 10^{\circ}$	$RE/FT = 0.875 \times 10^{6}$	$RE/FT = 1.6 \times 10^{6}$							
	1	20	46 .	1, 4							
-25	2	21	47	2							
	^3	22, 45	.48	. 3							
	1	23	. 49	5 ,							
30	2	24	50	6							
	3	25, 44	51	7							
	1	26, 38	52, 65	8							
3,5	. 2	27, 39	53	9							
. \	3	28, 40	54	10							
	1	29, 41	56	11 .							
37.5	. 2	30, 42	57	12							
	3	31, 43	. 58	_13							
	1	32	59	14							
40	. 2	33	60	15							
	3	34 .	61	16							
	1	68 ,	66	17 , 7 4							
42.5	2	69	-	18							
•	3	70	67	. 19							

NOTES: Groups 35, 36, 37, 62, 63, and 64 omitted because of unsteady tunnel flow.

Group 55 omitted because of aborted lift-off sequence.

Three different hookups (switch positions) were required to sample all the 255 TC's.

TABLE 6
TEST SUMMARY

	<u> </u>	Roughness Configuration									
RE/FT x 10 ⁻⁶	α, deg	0000	0010	0015	2000	2015	3000	3015			
0.5	30 35 40		r	113 114				118 119 120			
1.5	30 35 40	145 146 147	143 144	108 109 110	140 · 141 142	124 125 126	149 150 151	121 122 123			
2.5	30 35 40			105 106 107	137 138 139	128 · 129 130	152 153 154	115 116 117			
3.7	30 35 40			101,104 102 103	134 135 136	131 132 133	155 156 157				

NOTES: 1. Groups III, 112 omitted because of unsteady tunnel flow.

- 2. Groups 127, 148 are calibration data.
- 3. Roughness configuration code: XX YY

XX denotes fuselage roughness size in thousandths of an inch located at X/L = 0.1 YY denotes wing roughness size in thousandths of an inch located at X/C = 0.15

TABLE 7 $60\text{-}\phi$ MODEL DEFLECTION ANGLES AT THERMOCOUPLE LOCATIONS

			,	····	•		
ממ בבגכ	£°	774	e°	77.C 17.C	e°	3LT	٤.
ľ	90	_2.1	' Z.0	· 41	-4.5	70	-4.5
- Z	.50	22	1.4	42	-4.5	71	-4.5
. 3	ેક્ડ.હ	<i>2</i> 3	<u> L.o.</u>	43	-4.5	7z	-4.5
4 -	73.0	24	·	49	16		:
. 5	17.7	25		5.		73	90.0.
4.	14.4	26		Si	·	74	8.5
7	12,0	27		5 2		75-	6.75
8	10.3	28		53	,	74	4.6
9	و/.8	29		54		77	3.25
. 10	7.3	\$ 0		55	4	78	2.75
•1	6.4	81				79	1.0
12	. 5.5	3 ⁱ L		6-1-	<u>1+O</u> .	80	· - } ;-l
· 13	4,3	33		L Z		81	0.75
14.	: 3.9	34	1.0	63		52	-0.5
\2	3.4	35	1.5	4		83	-5.7_
16	3.4	′ š (p	- 2.0	65		24	-8.0
17	3.1	37	- 2.6	44	- Z.O		
18	z.8	38.	-3.2	67	-3.2	85	90.0
19	2.40	59	_ 3.8	168	- 3.8	,	
20	2.3	40	-4.5	109	_ 4.5		

And the second of		*					
TIC No	ć.,	TYC No	ư	F/40	٤.	7/C No	'
86	90.0	106	0,4	127	. 4 . 5	148	-7.25
87	12:2	108	90.0	128	2.25	149	90.0
88	ษล	109	900.	129	1.2	150	z. <u>Z</u>
89 ·	3,2	110	16,75	130	1.2	151	2.0
-90	1.1	111	10.5	131	1.0	152	90.0
91	1.0	112	6.25	132	-7.5	153	3.75
92	مادا	113	4.0	133	90.0	154	3.0
93	વન 🐩	0.4	1.2	134	18.0	155	2.25
94 .	のえ	1115	1.2	135	9.0	157	1.75
95	-3.5	114	レフス	134	4.5	15 <i>8</i>	- 3.O
96-	- 7.5	117.	1.1	137	2,1	159	-7.75
97	-9.25	118	1.0 ! -	138	1.6	160	90.0
98	90.0	119	-0.5	139	آدیا	161	8,2,
99	90.0	. 120	-3.5	141	1.0	162	5.0
100	11.2	121	-4.6	142	_3.4	163	2.5
101	5.0	122	-8.0	143	-7.4	164	2.0
102	2:10	123	-9.2,5	144	- 29.	165	1.5
103	1.5	124	90,0.	145	90.0	166	-0.5
104	1.25	125	90.0	146	2.0	167	-4.5
105	1.0	126	17.5	147	1,75	168	_ 7. 🖛

SYERDPUP-ARO-INC AEDC DIVISION YON KARHAN GAS DYNAHICS FACILITY 50 HYPERSOMIC TUNNEL B ARHOLD AIR FORCE STATION, TN. DATE 02/20/78 PROJECT NO. Y418-Y2X

83-\$ MODEL,

PROJECT ENGRS E.C. KNOX / W.K. CRAIN

	GROUP S	1300K 63-0	MACH NO 7.97	20,P			KA-H, DEG 9.98	ALPHA-I,DEG 0.02	ALPHA , OE	-,	ROLL, DEG 180.00	SWITCH POS 1
•	T-INF (DEG R) 93.2	P-INF (PSIA) 3.53E-02		IA) (-inf FT/8) 72.5	RHO-INF (LBM/FT3) 1.028E-03	HU-INF (LBF-5/F7 7.502E-08	RE/FT (FT-1) 1.61E+	(B)	R(R=0.04 FI IU/FT2-S-DE Z.035E-02	GR) (R=	R 0,04FT) 22E=02
TC NO	skin Thickness	CP (BTU/	TW (OEGR)	DIH/DT (DEG/3)	0-00T [2TV/T72=	HTO S) (BTU/FI2- S-DEGR)	HTO/ HFR	H(.9TO) (BTU/FI2= S-DEGR)	H(.910)/ HFR	h(TAW) (BTU/FT2 -S-DEGR)		LOCATION
	(IN)	LB⇒DEGR	,			0-00041		2 DOCAP			•	BOITOM CL X/L
			F	40.17	8.580	1.263E-0	0.621	1.555g-02	0.764	1.2805-02	0,629	0,0010
273	0.0369	0,1129	5ga.2	69,17	8.380 8.446	1.2365-0		1.523E-02	0.749	1.243E-02	6.611	0,0018
274	0.0272	0.1128	395,4	67,43	7.769	1.139E-0		1.402E-02	0.689	1.141E-02	0.561	0,0041
275	0.0277	0.1126	595.6	60.90	7.413	1.076E-0		1.3212-02	0.649	1.096E-02	0.539	0.0070
276	0.0280	0.1124	588.7	. 57.68	6.807	9,8462-0		1.208E-02	0.594	1.011E-02	0.497	0.0103
277	0,0279	0.1123	'586.3	53.22		1_010R=0		1.236E-02	0,508	1.0482-02	0.515	0.0151
218	0.0293	0.1119	572.6	54.52	7.051	6.317E-0		7.7178-03	0,379	6.637E-03	0.326	0.0159
279	0.6232	0.1116	573,4	42.09	4.449	2.007E-0		2.428E-03	0.119	2.1186-03	0,104	0.0232
280	0.0210	0.1097	540,6	15.72	3.828	5,4398+0		6.646E-03	0.327	5.792E-03	0.265	0,0263
291	0.0190	0,1116	574.0	44.21	. 3,958	5.585E-0		6.815E-03	0.335	5.978E-03	0.294	0,0299
393		0,1113	569.1	37.86	3,514	4.916E-0		5.986E-03	0.294	5.305E-03	0.261	0,0338
283	0.0231	0.1110	562.8	33,57	3.208	4.4805-0		5.453E-03	0.268	4.872E-03	0,239	0,0391
284	0.0230	0.1109	561,6	30.80	3.031	4.22bE-0		5,142E-03	0.253	4.621E-03	0.227	0,0414
285	0.0230	0.1109	360,4	29.12	2,971	4.116E-0		5.001E-03	0.246	4.535E-03	0.223	0.0452
256	0.0240	0.1106	555.9	27.41	2,736	3.80ZE-0		4.623E-03	0.227	4.225E-03	0,205	0.0503
267	0.0230	0.1107	558.1	26.31	**.70	4,004	,,		-			
289	DELETE	A 1003	532.9	10.54	1.411	1.8948-0	3 0.093	2.2875-03	0.112	2,1915-03	0.108	0.1500
248	0.0300	0.1093	534.1	9.97	1,157	1.556E-0		1.879E-03	0.092	1.812E-03	0.089	0,2000
290	0.0260	0,1094	534.7	8,38	1.022	1.376E-0		1.662E-03	0.082	1.613E-03	0.079	0,2500
. 291	0.0273	0,1094	536,1	6,40	0,787	1.0615-0		1.282E-03	0.063	1.244E-03	0,661	0,3000
292	0.0275	0.1095	549.3	9.15	1.075	1.476E-0		1.790E-03	0.088	1.737E-03	0,065	0,3500
293	0.0251			8.93	1,109	1.526E=0		1.851E-03	0.091	1.796E-03	0.088	0,4500
294	0.0276	0.1103	550.6 \$51.1	9.71	1.278	1.7596-0		2.134E=03	0.105	2.07DE-03	0.102	0,4500
295	0.0292	0.1103	. 321.1	7.14	*****		• • • • • • • • • • • • • • • • • • • •	•••	•			STA 10.43
						•						PHI, DEG
		0.1117	575.4	41.71	4,185	5.9636-0	3 0.293	7.290E=03	0.350			348.5000
501	0.0320		571.2	42.51	4.062	5.7506-0		7.019E-03	0.345			338,2000
502		- 0.1114	573.2	40.30	4,589	6.5148-0		7.9578-03	0.391			328,6000
501		0.1115		39.77	5.047	7.6645-0		8.602E-03	0.423		-	320,5000
304		0.1110		39.74	4,753	6.701E-0		8.174E-03	0.402			312.3000
305		0.1113	568,4 564,6	39.51	4.479	6,282E-0		7.654E-03	0.376			305.5000
506		0.1111		41.48	3.956	5.571E=0		6.793E-03	0.334		_	296,5030
507		0,1112		36.85	3,172	4.438E~		5.404E-03	0.266	•	•	287.0006
508		0.1110		27.63	2.884	3.975E-0		4.824E-03	0.237			278,6000
509		0.1104			2.428	3.330E-(4.037E-03	0.198			270.0000
510		0.1102	548,5	23.47		3,334E=0		4.028E-03	0.198			262,0000
511	0.0260	0.1101	546.3	20.81	2,431	3.3246-1		JANEAR. AA				=

NOTE: Only first page each group presented as typical all pages.

O

AEDC 1 ISION
VON KARMAN GAS DYNAMICS FACILITY
50 HYPERSONIC TUNNEL 8
ARNOLO AIR FORCE STATION, TN.
DATE 04/27/78 PROJECT NO. Y418-Y2A

TABLES CONCLUDED

60- MODEL TRIP GEOM: 0.0 0 FUSELAGE / 0.0 0 WING

	GROUP 145	MODEL 60-0	MACH NO. 7.96	PO.PSIA 301.54	TO, DE		PHA-M,DEG 30.00	A <i>l</i> Pha -0.	-I,DEG			ROLL, DE	:G	WITCH I	POS
	T-INF	P-INF	Q-INF	Y-IN	F 8:	HO-INF	WH-THE							_	
	(DEG R)	(PSIA)	(PSIA) (FT/		DM/FT3)	MU-INF (LBF-s/F		REFFT	H	FR(R=0.0175	FT)	STPR		
	93.2	-3.19E-02	1,415	3767.		237E-04	7.502E-0		(FT-1)	- (BTU/FT2-S-DE	GR)	(R=0,0	175FT)	
							1,5045-0	/ 0	1.44E+06		2.923E-02		3,3835	-02	
TC	SKIN	CP		TW/DT Q	-DOT	HTO	HTO/	H(.9	TO3 .						
NO	THICKNE		(DEGR) (DEG/5) (BT	U/FT2=5)	(BTU/FT2		(BTU/	-	H(.9TO) HFR		HCTA	W) DIM	ENSION	
	(IN)	LB-DEGR)				S-DEGR)		· 8-DEG	•	nr K	(BTU/FT2				
7	0.0330	0.1104		5,40 3	926	5,432E-0		6,5965		225	-S-DEGR)		X/L	Y/5	
10	0.0320	0,1100	546,0 1	8.43 2	650	3.6368-0		4.407E		151	6.095E-03	0.205	-,	.000	
16	0.0360	0.1099	543.6 1	1.91 1	924	2.632E-0		3.18BE			4.1592-03	0,142		.000	
21	0.0350	0.1099	543,0 1:	1.00 1	727	2.360E-0		2.85BE		,109 ,098	3.061E-03	0,105		.000	•
22	OPEN							2,0000	-U3 U.	070	2.761E-03	0.094	0.20	.000	
23	0.0350	0.1098		0.06 1	.578	Z.150E-03	0.074	2.603E	-07 0	089					
24	0.0350	0.1097	. 540,6	7.09 1	426	1.942E-0		2.350E		080	2.525E-03	0.086		.000	
26	0.0340	0.1100		9.59	454	2.006E=0	0.069	2.431E			2.220E-03	0.078	0.30	.000	
28	0.0320	0.1101	546.3		187	1,629E-0	0.056	1.975E		083	2,358E-03	0.081		.000	
37	0.0270	0.1102	548,7		721	9,9245-04	0.034	1.204E		830,	1.916E-03	0.066	,	.000	
39	0.0230	0.1102	549.4	.17 0.	535	7.373E-04	0.025	8.945E		041	1.186E-03	0,041		.000	-
43	0.0265	0.1098	541,9		252	3.581E-04		4.3358	-04. 0.	031	8.861E-04	0.030		.000	
		\ \		- •	,	-,,	0,012	4.3336.	-04 U,	015	4.30BE-04	0.015	1.06	.000	
49	0.0280	0,1100	546.2 11	.55 1.	453	1.995E-03	0.06B	2.418E			.				
50	0.0580	0.1102			337	1.844E-03				083	2,346E-03	0.080	0,40	.100	
51	0.0250	0,1103	550,6 (909	1,256E-03	0.043	2.237E		077	2,170E-03	0.074	0.50	.100	
52	0.0300	0.1104	553.2		036	1.436E-03	0.049	1.524E	_	052 -	1.478E-03	0,051	0.50	100	
53-	OPEN			'	,	181305-00	0.043	1.744E	-03 0,	060	1,691E-03	0.058	0.70	100	
56-	0.0280	0.1100	546.0	.75 0.	347	4.762E-04	0.016	E 7700			_		•	•	-
60	0.0310	0.1098			354	4.832E-04		5.772E	*04 . 0.	020	5.5992-04	0.019	0.98	.100	
_				• •		4.0725-04	0.011	5.849E-	-04 D.	020	5.676E-04-	0.019	1.06	.000	
62	0.0310	0.1102	548.4 10	.91 1.	521	2.0955-03	0.072				_			• • • •	
63	0.0330	0.1103			303	1.801E-03	~,~.~	2.541E-	-03 0.	087	2.464E-03	0,084	0,50	200	•
64	OPEN		•	• • • • • • • • • • • • • • • • • • • •		1.0012-03	0,062	2.187E-	-03 0.	075	2.121E-03	0.073	0.60	200	
65	0,0310	0.1104	552.8 6	.63 0.	927	1.284E-03				_			-	•	
68	0.0280	0.1102			867	1.196E-03		1.560E-		053	1.513E-03	0.052	0.80	-200	
						1.1705-03	0.041	1.451E-	-03 0,	050 .	1,438E-03	0.049	0.98	-200	
77	0.0300	0.1105 -	553.5 13	.20 1.	785	0 4760 A3		_				•	••••		
79	0.0300	0,1103			791	2,476E-03		3.007E-		103	2.887E-03	0.099	0.30	. 300	
80	0.0300	0.1103			674	1.092E-03		1.325E-		045 '	1.2852-03	0.044	0,50	. 300	
91	0.0310	0,1103			643 .	9.317E-04		1.131E-		039	1.096E-03	0.038	0.50	300	
84	0.0310	0,1096				8,893E-04		1.080E-		037	1.048E-03	0.036	0.70	.300	
	-			•=0	222	3.013E-04	0.010	3,644E-	.04 0.	012	3.431E-04	0.012	0.95	300	
69	0.0300	0.1105 .	554.9 15	.25 2.	065					•		.,	4470	4 4	
91	0.0290	0.1105			305	2.8698-03	0.098	3.486E-		119	3.358E-03	0.115	0.20	401	
92	0.0330	0.1105				1.8100-03	0.062	2.199E-		075	2.1328-03	0.073	0,40	401	
94	0.0300	0,1104			324	1.837E-03		2.231E-	03 0.	076	2.158E-03	0.074	0,60	401	
95	0.0295	0.1101			221	1,689E-03		2.051E-	03 . 0.	070	1.996E-03	0.068	0.75	401	
97	0.0275	0.1099	_	,	103	1.518E-03		1.841E-	0.0	063.	1.821E-03	0.062	0.85	401	
	-		414.0	. 50 D.	679	9.292E-04	0,032	1.126E-		039	1.141E-03	0.039	0.05	401	
									- •		-,	A 6 A 2 2	0,95	•467	

NOTE: Only first page each group presented as typical all pages.