

HARDWARE-BESCHREIBUNGSSPRACHEN

Hardwareentwurf mit VHDL

9. November 2020 Revision: 0d5ed06 (2020-11-09 20:24:57 +0100)

Steffen Reith

Theoretische Informatik Studienbereich Angewandte Informatik Hochschule **RheinMain**

GRUNDLAGEN

Pipelining ist eine grundlegende Technik, um die **Performanz** eines Systemes zu **verbessern**.

- → Idee: Tasks (wenn möglich) zeitlich überlappend auszuführen
- → Idee: kombinatorische Schaltkreise in Teilschritte aufteilen
- → Idee: verwende Register um Zwischenergebnisse für den nächsten Schritt zu speichern

Hier gibt es zwei wichtige Kenngrößen:

- → Delay: **Zeit** die die **Bearbeitung eines Tasks** benötigt
- → Durchsatz: Anzahl der bearbeiteten Tasks pro Zeiteinheit

Pipelining **verbessert** den **Delay nicht** (ehr schlechter) und vergrößert (evtl.) den **Durchsatz**.

EIN BEISPIEL: WASCHEN OHNE PIPELINING

In einer Wäscherei sind die Tasks "waschen", "trocknen" und "bügeln" durchzuführen:

Damit ergibt sich:

- → Delay: 60 Minuten (Zeit für die Bearbeitung einer Ladung Wäsche)
- → **Durchsatz**: $4/(4 \cdot 3 \cdot 20) = 1/60$ **Ladungen pro Minute**

EIN BEISPIEL: WASCHEN MIT PIPELINING

Damit ergibt sich (idealisiert):

- → Delay: unverändert 60 Minuten (Zeit für die Bearbeitung einer Ladung Wäsche)
- → **Durchsatz**: Für k Ladungen wird die Zeit 40 + 20k benötigt. In diesem Beispiel ergibt sich $4/(40 + 20 \cdot 4) = 1/30$ Ladungen pro Minute

EIN BEISPIEL: WASCHEN MIT PIPELINING (II)

Werden sehr **viele Ladungen Wäsche gewaschen**, so ergibt sich sogar

$$\lim_{k \to \infty} \frac{k}{40 + 20 \cdot k} = \frac{1}{20}$$

der dreifache Durchsatz.

Die dargestellte Situation ist stark idealisiert, denn:

- → Die drei Teilaufgaben "waschen", "bügeln" und "trocknen" haben den identischen Zeitbedarf.
- → Der zusätzliche Zeitbedarf (z.B. Ablage in einem Zwischenspeicher) für die Überlappung der Aufgaben wurde vernachlässigt.

PIPELINING MIT SCHALTKREISEN

Der gleiche Ansatz kann auf Schaltkreise angewendet werden³.

Ziel: Teile den kombinatorischen Schaltkreis in möglichst **identisch lang** arbeitende Teile auf (**Stages**).

Seien T_1 , T_2 , T_3 und T_4 die Delays der Stages 1-4, dann ist $T_{\rm max}$ der **Delay der "langsamsten" Stage**:

$$T_{\text{max}} = \max\{T_1, T_2, T_3, T_4\}.$$

³Das Prinzip des Pipelinings in CPUs wird in D. Patterson und J. Hennessy, Computer Organization and Design, Morgan Kaufmann, 2012 in den Kapiteln 4.5 und 4.6 beschrieben.

PIPELINING MIT SCHALTKREISEN (II)

Zur Regulierung des Signalflusses werden die (synchronen) Register R_1 , R_2 und R_3 eingeführt. Register R_4 dient als **Ausgabebuffer**:

Sei $T_{\rm cq}$ die **Verzögerung eines Registers** R_i mit der das Clocksignal am Q-Ausgang ankommt, dann beträgt die minimale Periodendauer T_c

$$T_c = T_{\text{max}} + T_{\text{set}} + T_{\text{cq}}$$

 T_c gibt dabei also die Dauer eines **Teilschritts** an.

PIPELINING MIT SCHALTKREISEN (III)

Der ursprüngliche kombinatorische Schaltkreis braucht für die **gesamte** Aufgabe (Delay):

$$T_{\text{comb}} = T_1 + T_2 + T_3 + T_4$$

Für die Version mit Pipeline ergibt sich der schlechtere Delay

$$T_{\text{pipe}} = 4T_c = 4T_{\text{max}} + 4(T_{\text{set}} + T_{\text{cq}})$$

Hier zeigt sich, dass die **einzelnen Stages** möglichst den **gleichen Delay** haben sollten. Dies muss man evtl. durch mehrere Implementierungsversuche "ausprobieren" und dann die Stages anpassen (Retiming).

PIPELINING MIT SCHALTKREISEN (IV)

Der Durchsatz des kombinatorischen Schaltkreises beträgt

$$\frac{1}{T_{\rm comb}}$$

Um k Tasks zu bearbeiten, benötigt die **Variante mit Pipeline**

$$3T_c + kT_c$$

Zeit und liefert den Durchsatz (für **große** k):

$$\lim_{k \to \infty} \frac{k}{3T_c + kT_c} = \frac{1}{T_c}$$

Unter den Annahmen, dass $T_{\rm set}+T_{\rm cq}$ vernachlässigbar **klein** und $T_{\rm max}=T_{\rm comb}/4$ (perfekt balancierte Stages) gilt:

$$T_{\rm pipe} = 4T_c \approx 4T_{\rm max} = T_{\rm comb}$$

PIPELINING MIT SCHALTKREISEN (V)

Damit ergibt sich

$$\frac{1}{T_c} \approx \frac{1}{T_{\text{max}}} = \frac{4}{T_{\text{comb}}},$$

d.h. der **vierfache Durchsatz**. Diese Betrachtung kann auch auf eine Pipeline mit n **Stufen übertragen** werden.

Achtung: Verwendet man sehr viele Pipelinestufen, so wird T_c klein, aber $T_{\rm set}+T_{\rm cq}$ ist nicht mehr vernachlässigbar!

Für den effektiven Einsatz von Pipelining sollte ein Schaltkreis

- → kontinuierlich große Mengen an Daten verarbeiten müssen,
- → den Durchsatz als wichtigstes Designkriterium haben,
- → in möglichst gleich "große" Stages aufteilbar sein und
- ightarrow der Delay einer Stage ist groß gegenüber $T_{
 m set} + T_{
 m cq}$.

GENERELLES VORGEHEN

Liegt ein Schaltkreis als VHDL-Beschreibung vor, so kann mit Hilfe der folgenden Schritte eine gepipelinte Version gewonnen werden:

- → Bringe die graphische Darstellung der Schaltung in eine "Kettenform"
- → Identifiziere größere Grundbausteine in der Kette und schätze deren Verzögerung
- ightarrow Teile die Kette in gleich große Stücke / Stages. Die Verzögerungszeit jeder Stage solle deutlich größer als $T_{
 m set}+T_{cg}$ sein.
- → Identifiziere alle Signale, die die Grenze zwischen zwei Stages überqueren
- → **Füge Register** für diese Signale **an den Grenzen** der Stages ein.

EIN EINFACHER 5-BIT MULTIPLIZIERER

Nun soll ein 5-Bit Multiplizierer vorgestellt werden, der dann mit einer Pipeline ausgestattet wird:

Es gilt
$$a = a_0 + a_1 \cdot 2^1 + a_2 \cdot 2^2 + \dots + a_4 \cdot 2^4$$
 und $b = b_0 + b_1 \cdot 2^1 + b_2 \cdot 2^2 + \dots + b_4 \cdot 2^4$.

EIN EINFACHER 5-BIT MULTIPLIZIERER (II)

Das **Produkt** $a \cdot b$ kann dann geschrieben werden als:

$$a \cdot b = \sum_{i=0}^{4} b_i 2^i \sum_{j=0}^{4} a_j 2^j = \sum_{i=0}^{4} b_i \sum_{j=0}^{4} a_j 2^{i+j} = \sum_{i=0}^{4} \sum_{j=0}^{4} a_j b_i 2^{i+j}$$

Die Summanden $b_i \sum_{j=0}^4 a_j 2^{i+j} = b_i a 2^i$ heißen **Bitprodukt** (von b_i und a) und können durch eine and-Verknüpfung bestimmt werden. Damit ergibt sich:

- → Genau dann, wenn $b_i = 1$ trägt das **Bitprodukt** von a und b_i den **Wert** $a2^i$ zum Produkt bei.
- \rightarrow Die Zahl $a2^i$ kann leicht durch (mehrfaches) anhängen von 0 erzeugt werden.

AUSSCHNITT DER VHDL-IMPLEMENTIERUNG

```
entity BMult is
     port (a : in std_logic_vector(4 downto 0);
2
3
           b : in std logic vector (4 downto 0);
           c : out std_logic_vector(9 downto 0));
4
5
   end entity;
6
7
   architecture Behavioral of BMult is
8
     -- Vector version of ith bit of b
9
     signal b0Vect, b1Vect, b2Vect : std_logic_vector(4 downto 0);
10
11
     -- The ith bit-product
12
     signal bitProd0, bitProd1, bitProd2 : unsigned(9 downto 0);
13
14
     -- The ith partial product
15
     signal partProd0, partProd1, partProd2 : unsigned(9 downto 0);
16
17
     -- Copies of inputs for each stage
18
     signal a0, a1, a2 : std_logic_vector(4 downto 0);
19
     signal b0, b1, b2 : std_logic_vector(4 downto 0);
20
```

AUSSCHNITT DER VHDL-IMPLEMENTIERUNG (II)

```
begin
2
     -- Stage 0
      b0Vect \le (others => b(0)):
5
      bitProd0 <= unsigned("00000" & (b0Vect and a));
     partProd0 <= bitProd0;</pre>
6
7
   a0 <= a:
     b0 \le b;
8
9
     -- Stage 1
10
      b1Vect <= (others => b0(1));
11
      bitProd1 <= unsigned("0000" & (b1Vect and a0) & "0");
12
      partProd1 <= bitProd1 + partProd0;</pre>
13
     a1 \le a0;
14
      b1 \le b0:
15
16
      -- Stage 2
17
      b2Vect <= (others => b1(2));
18
      bitProd2 <= unsigned("000" & (b2Vect and a1) & "00");
19
      partProd2 <= bitProd2 + partProd1;</pre>
20
```

AUSSCHNITT DER VHDL-IMPLEMENTIERUNG (III)

```
1     a2 <= a1;
2     b2 <= b1;
3     ...
4
5     -- Output
6     c <= std_logic_vector(partProd4);
7
8     end;</pre>
```

EIN MULTIPLIZIERER MIT PIPELINE

Nun werden an den **Grenzen** der einzelnen Stages **Pipelineregister** für alle Signale **eingefügt**, die die Grenze einer Stage überqueren:

Ausnahme: An der **Grenze zwischen Stage 0 und Stage 1** werden **keine Pipelineregister** eingefügt, da die ersten beiden Bitprodukte parallel ausgerechnet werden.

AUSSCHNITT DER VHDL-IMPLEMENTIERUNG

```
entity PMult is
     port (clk : in std_logic;
2
3
           reset : in std logic;
           a : in std_logic_vector(4 downto 0);
4
5
                  : in std logic vector(4 downto 0);
6
                 : out std logic vector(9 downto 0));
7
   end entity;
8
   architecture Behavioral of PMult is
10
   -- Registers for the copies of the input
11
   signal a1_reg, a2_reg, a3_reg : std_logic_vector(4 downto 0);
12
   signal b1_reg, b2_reg, b3_reg : std_logic_vector(4 downto 0);
13
   signal partProd1_reg, partProd2_reg, partProd3_reg,
14
          partProd4_reg : unsigned(9 downto 0);
15
16
   -- Inputs for the pipeline registers
17
   signal a1_next, a2_next, a3_next : std_logic_vector(4 downto 0);
18
   signal b1_next, b2_next, b3_next : std_logic_vector(4 downto 0);
19
   signal partProd1_next, partProd2_next, partProd3_next,
20
          partProd4 next : unsigned(9 downto 0);
21
```

AUSSCHNITT DER VHDL-IMPLEMENTIERUNG (II)

```
pipeline : process (clk)
   begin
2
3
     if (rising_edge(clk)) then
4
5
6
       if (reset = '1') then -- Init all registers
7
          a1_reg <= (others => '0');
          a2 reg <= (others => '0');
8
          a3_reg <= (others => '0');
9
          b1_reg <= (others => '0');
10
         b2 reg <= (others => '0');
11
         b3_reg <= (others => '0');
12
         partProd2_reg <= (others => '0');
13
         partProd3_reg <= (others => '0');
14
       else -- Handle the pipeline registers
15
          a1_reg <= a1_next;
16
         a2_reg <= a2_next;
17
         a3_reg <= a3_next;
18
         b1 reg <= b1 next;
19
         b2_reg <= b2_next;
20
```

AUSSCHNITT DER VHDL-IMPLEMENTIERUNG (III)

```
1
         b3_reg <= b3_next;
          partProd2_reg <= partProd2_next;</pre>
2
3
          partProd3 reg <= partProd3 next;
       end if:
4
5
     end if;
   end process;
7
8 -- Stage 2
   b2Vect <= (others => b1_reg(2));
   bitProd2 <= unsigned("000" & (b2Vect and a1_reg) & "00");
10
   partProd2_next <= bitProd2 + partProd1_reg;</pre>
11
12 a2_next <= a1_reg;</pre>
   b2 next <= b1 reg;
13
14
   -- Stage 3
15
   b3Vect <= (others => b2_reg(3));
16
   bitProd3 <= unsigned("00" & (b3Vect and a2_reg) & "000");
17
   partProd3_next <= bitProd3 + partProd2_reg;</pre>
18
   a3 next <= a2 reg;
19
20
   b3_next <= b2_reg;
```

TIMINGDIAGRAMM

Mit Hilfe einer Testbench werden nacheinander die Werte 10, 11, 12, 13 und 14 für a und 20 für b in den Multiplizierer eingegeben.

Vielen Dank!