## Inteligencia Artificial

Clasificadores con Weka Parámetros





## 1. Visualización de todos los atributos. Archivo diabetes.arff



## 2. InfoGainAttributeEval y Ranker

```
=== Attribute selection 5 fold cross-validation (stratified), seed: 1 ===
                  average rank attribute
average merit
0.183 +- 0.006
                  1 +- 0
                                 2 plas
0.079 +- 0.007
                  2.8 +- 0.75
0.075 +- 0.009
                   3 +- 0.63
                                 8 age
0.063 +- 0.019
                   3.4 +- 1.2
                                 5 insu
0.045 +- 0.012
                   4.8 +- 0.4
                                 1 preq
0.015 +- 0.013
                   6.8 +- 0.98
                                 7 pedi
0.008 +- 0.01
                   7 +- 0.63
0.016 +- 0.015
                   7.2 +- 0.75
```

Como sabemos, el método **Ranker** ordena los atributos según su importancia, y nos muestra dos resultados diferenciados: **Average Merit** y **Average Rank**, como podemos ver en la imagen superior.

Comparando los datos de la imagen con la imagen del Apartado 1, fijándonos en **Average Rank**, podemos relacionar los resultados de la siguiente manera:

- El atributo **plas** tiene una desviación típica de 0 y está situado en la posición 1. Esto significa que en los 5 ciclos realizados, su posición no ha variado nada, considerando entonces que es el atributo con más importancia. Comparando con su gráfica, podemos corroborar estos datos ya que es la que mejor diferenciadas tiene las clases.
- Después del atributo plas, están los atributos **mass**, **age** e **insu**, que le siguen en cuanto a posición. En cuanto a la desviación típica de estos atributos, podemos ver que ronda cercana al uno, y que su nivel de importancia sigue siendo bastante alto. Esto tiene sentido comparándolo con las gráficas, ya que después del atributo **plas**, desde mi punto de vista hay gran diferenciación en cuanto a las clases en estas.
- Finalmente tenemos los atributos **preg**, **pedi**, **pres** y **skin**, que no consiguen un buen resultado, al igual que su diferenciación de clases en las gráficas.

## 3. CfsSubsetEval y GreedyStepwise

```
=== Attribute selection 5 fold cross-validation (stratified), seed: 1 ===
number of folds (%) attribute
          0(0%)
                     1 preg
          5(100 %)
                     2 plas
          0(0%)
                     3 pres
          0 ( 0 %)
                     4 skin
          1 ( 20 %)
                     5 insu
          5(100 %)
          3 (60 %)
                      7 pedi
          5(100 %)
```

En este caso, sabemos que **CfsSubsetEval** evalúa el valor de un subconjunto de atributos considerando la capacidad predictiva individual de cada característica junto con el grado de redundancia entre ellas, y nos muestra el porcentaje de veces que fueron seleccionados en los ciclos seleccionados.

Como podemos ver, los atributos **plas**, **mass** y **age** han sido seleccionados en todos los ciclos realizados, dando a entender que estos atributos son los mejores en cuanto a su criterio de funcionamiento. Estos resultados reafirman lo que se mostró en el método anterior, siendo también estos tres atributos los mejores.

Después de estos atributos, vemos que les siguen el **pedi** (60%) e **insu** (20%), como los mejores. Podemos observar que su porcentaje de selección es bastante inferior, y de nuevo, vuelve a reafirmar lo visto anteriormente y comparándolo con las gráficas obtenidas.

Finalmente, los atributos **preg**, **pres** y **skin** no han sido seleccionados en ninguno de los ciclos, queriendo decir que estos atributos no tienen la suficiente importancia según el criterio.