Cammini Minimi

Grafi Pesati

- In un grafo non pesato, ogni arco ha associato un valore numerico, chiamato peso dell'arco
- I pesi dell'arco possono rappresentare distanze, costi, etc.
- Esempio:
 - In un grafo di rotte aeree, il peso di un arco rappresenta la distanza in miglia tra gli aereoporti terminali

Cammini Minimi

- lacktriangle Dato un grafo pesato e due vertici u e v, vogliamo trovare un cammino di minimo costo totale tra u e v.
 - Lunghezza di un cammino e' la somma dei pesi degli archi
- Esempio:
 - Cammini minimi tra Providence and Honolulu
- Applicazioni
 - Routing di pacchetti in Internet
 - Penotazione di aerei

Proprieta' dei Cammini Minimi

Proprieta' 1:

Un sottocammino di un cammino minimo e' un cammino minimo

Proprieta' 2:

L'insieme dei cammini minimi da un vertice di partenza a tutti gli altri vertici forma un albero

Esempio:

Albero dei cammii minimi da Providence

Algoritmo di Dijkstra

- La distanza di un vertice v da un vertice s e' la lunghezza del cammino minimo tra s e v
- L'algoritmo di Dijkstra calcola le distanze di tutti i vertici da un dato vertice di partenza s
- Assunzioni:
 - il grafo e' connesso
 - gli archi sono non diretti
 - i pesi degli archi sono non negativi

- Cresciamo una "nuvola" di vertici che si espande da s fino a coprire tutti i vertici
- Memorizziamo per ogni vertice v un'etichetta d(v) rappresentante la distanza da s a v nel sottografo formato dalla nuvola e dai suoi vertici adiacenti
- Ad ogni passo
 - Aggiungiamo alla nuvola il vertice u al di fuori della nuvola con la minima etichetta di distanza d(u)
 - Aggiorniamo le etichette dei vertici adiacenti a u

Rilassamento di un Arco

- Considera un arco e = (u,z) tale che
 - u e' il vertice aggiunto piu' recentemente alla nuvola
 - z non e' nella nuvola
- Il rilassamento di un arco e aggiorna la distanza d(z) come segue :

$$d(z) \leftarrow \min\{d(z), d(u) + weight(e)\}\$$

Esempio

© 2004 Goodrich, Tamassia

Shortest Paths

Esempio (cont.)

Algoritmo di Dijkstra

- Una coda di priorita'
 memorizza i vertici fuori
 della nuvola
 - Chiave: distanza
 - Elemento: vertice
- Metodi basati su Locator
 - insert(k,e) restituisce un locator
 - replaceKey(l,k) modifica la chiave di un elemento
- Memorizziamo due etichette per ogni vertice v:
 - Distanza (d(v) etichetta)
 - locator nella coda di priorita'

```
Algorithm DijkstraDistances(G, s)
Q \leftarrow new heap-based priority queue
for all v \in G.vertices()
   if v = s
      setDistance(v, 0)
   else
      setDistance(v, \infty)
   l \leftarrow Q.insert(getDistance(v), v)
   setLocator(v,l)
while \neg Q.isEmpty()
   u \leftarrow Q.removeMin()
   for all e \in G.incidentEdges(u)
      \{ \text{ relax edge } e \}
      z \leftarrow G.opposite(u,e)
      r \leftarrow getDistance(u) + weight(e)
      if r < getDistance(z)
         setDistance(z,r)
         Q.replaceKey(getLocator(z),r)
```

Analisi dell'Algoritmo di Dijkstra

- Operazioni su Grafi
 - Metodo incidentEdges chiamato una volta per ogni vertice
- Operazioni sulle etichette
 - Assegna/accede O(deg(z)) volte le etichette distanza e locator di un vertice z
 - Assegna/accede un'etichetta in tempo O(1)
- Operazioni sulla coda di priorita'
 - Ogni vertice e' inserito e rimosso una volta dalla coda di priorita', dove ogni inserimento o rimozione ha costo $O(\log n)$
 - La chiave di un vertice nella coda di priorita' e' modificata al massimo deg(w) volte, dove ogni modfica di chiave costa O(log n)
- \bullet Dijkstra ha costo $O((n + m) \log n)$ se il grafo e' rappresentatp con una lista di adiacenza
 - Ricorda che $\sum_{v} \deg(v) = 2m$
- lacktriangle Il tempo di esecuzione e' anche $O(m \log n)$ poiche' il grafo e' connesso

Shortest Paths Tree

- Usando il metodo
 template pattern,
 possiamo estendere
 l'algoritmo di Dijkstra
 per restituire un albero
 di cammini minimi dal
 vertice di partenza a
 tutti gli altri vertici
- Memorizziamo con ogni vertice una terza etichetta:
 - arco parent nell'albero dei cammini minimi
- Nel passo di rilassamento di un arco, aggiorniamo l'etichetta parent

```
Algorithm DijkstraShortestPathsTree(G, s)
for all v \in G.vertices()
   setParent(v, \emptyset)
   for all e \in G.incidentEdges(u)
      \{ \text{ relax edge } e \}
      z \leftarrow G.opposite(u,e)
      r \leftarrow getDistance(u) + weight(e)
      if r < getDistance(z)
         setDistance(z,r)
         setParent(z,e)
         Q.replaceKey(getLocator(z),r)
```

Perche' Dijkstra Funziona

- L'algoritmo di Dijkstra e' basato sull'utilizzo del metodo greedy. Aggiunge vertice di distanza crescente dall'origine.
 - Si assuma che non trovi tutte le distanze minime. Sia F il primo vertice con distanza sbagliata.
 - Quando il nodo precedente, D, su un cammino minimo corretto e' stato considerato, la sua distanza era corretta.
 - Ma l'arco (D,F) e' stato rilassato in quel momento!
 - Quindi, finche' d(F)>d(D), la distanza di F non puo' essere sbagliata.

Perche' non Funziona per Archi con Peso Negativo

L'algoritmo di Dijkstra e' basato sul metodo greedy. Aggiunge vertici a distanza crescente.

- Se un nodo con un arco incidente con peso negativo fosse aggiunto piu' tardi nella nuvola, potrebbe alterare le distanze dei vertici gia' nella nuvola
- L'algoritmo di Bellman-Ford funziona per Grafi con archi di peso negativo ma, attenzione, il a vera distanza di C e' 1, problema non e' definito se esiste un ciclo con peso complessivo negativo.

ma e' gia' nella nuvola quando d(C)=5!