

OpenCore

Reference Manual (0.6.7.8)

[2021.03.28]

1 Introduction

This document provides information on the <u>format</u> of the OpenCore user configuration file <u>format</u> used to set up the correct functioning of the macOS operating system. It is to be read as the official clarification of expected OpenCore behaviour. All deviations, if found in published OpenCore releases, shall be considered to be documentation or implementation issues which should be reported via the Acidanthera Bugtracker. An errata sheet is available in OpenCorePkg repository.

This document is structured as a specification and is not meant to provide a step-by-step guide to configuring an end-user Board Support Package (BSP). The intended audience of the document is anticipated to be programmers and engineers with a basic understanding of macOS internals and UEFI functionality. For these reasons, this document is available exclusively in English, and all other sources or translations of this document are unofficial and may contain errors.

Third-party articles, utilities, books, and similar, may be more useful for a wider audience as they could provide guide-like material. However, they are subject to their authors' preferences, tastes, misinterpretations of this document, and unavoidable obsolescence. In cases of using such sources, such as Dortania's OpenCore Install Guide and related material, please refer back to this document on every decision made and re-evaluate potential consequences implications.

Please note that regardless of the sources used, users are required to fully understand every OpenCore configuration option, and the principles behind them, before posting issues to the Acidanthera Bugtracker.

Note: Creating this document would not have been possible without the invaluable contributions from other people: Andrey1970, Goldfish64, dakanji, PMheart, and several others, with the full list available in OpenCorePkg history.

1.1 Generic Terms

- plist Subset of ASCII Property List format written in XML, also know as XML plist format version 1. Uniform Type Identifier (UTI): com.apple.property-list. Plists consist of plist objects, which are combined to form a hierarchical structure. Due to plist format not being well-defined, all the definitions of this document may only be applied after plist is considered valid by running plutil -lint. External references: https://www.apple.com/DTDs/PropertyList-1.0.dtd, man plutil.
- plist type plist collections (plist array, plist dictionary, plist key) and primitives (plist string, plist data, plist date, plist boolean, plist integer, plist real).
- plist object definite realisation of plist type, which may be interpreted as value.
- plist array array-like collection, conforms to array. Consists of zero or more plist objects.
- plist dictionary map-like (associative array) collection, conforms to dict. Consists of zero or more plist keys.
- plist key contains one plist object going by the name of plist key, conforms to key. Consists of printable 7-bit ASCII characters.
- plist string printable 7-bit ASCII string, conforms to string.
- plist data base64-encoded blob, conforms to data.
- plist date ISO-8601 date, conforms to date, unsupported.
- plist boolean logical state object, which is either true (1) or false (0), conforms to true and false.
- plist integer possibly signed integer number in base 10, conforms to integer. Fits in 64-bit unsigned integer in two's complement representation, unless a smaller signed or unsigned integral type is explicitly mentioned in specific plist object description.
- plist real floating point number, conforms to real, unsupported.
- plist multidata value cast to data by the implementation. Permits passing plist string, in which case the result is represented by a null-terminated sequence of bytes (C string), plist integer, in which case the result is represented by 32-bit little endian sequence of bytes in two's complement representation, plist boolean, in which case the value is one byte: 01 for true and 00 for false, and plist data itself. All other types or larger integers invoke undefined behaviour.

2 Configuration

2.1 Configuration Terms

- OC config OpenCore Configuration file in plist format named config.plist. It provides an extensible way to configure OpenCore and is structured to be separated into multiple named sections situated under the root plist dictionary. These sections may have plist array or plist dictionary types and are described in corresponding sections of this document.
- valid key plist key object of OC config described in this document or its future revisions. Besides explicitly
 described valid keys, keys starting with the # symbol (e.g. #Hello) are also considered valid keys and while
 they behave as comments, effectively discarding their values, they are still required to be valid plist objects.
 All other plist keys are not valid, and their presence results in undefined behaviour.
- valid value valid plist object of OC config described in this document that matches all the additional requirements in specific plist object descriptions if any.
- invalid value valid plist object of OC config described in this document that is of other plist type, does not conform to additional requirements found in specific plist object descriptions (e.g. value range), or missing from the corresponding collection. Invalid values are read with or without an error message as any possible value of this plist object in an undetermined manner (i.e. the values may not be same across the reboots). Whilst reading an invalid value is equivalent to reading certain defined valid values, applying incompatible values to the host system may result in undefined behaviour.
- optional value valid value of OC config described in this document that reads in a certain defined manner provided in specific plist object description (instead of invalid value) when not present in OC config. All other cases of invalid value do still apply. Unless explicitly marked as optional value, any other value is required to be present and reads to invalid value if missing.
- fatal behaviour behaviour leading to boot termination. Implementations shall prevent the boot process from continuing until the host system is restarted. It is permitted, but not required, to execute cold reboots or to show warning messages in such cases.
- undefined behaviour behaviour not prescribed by this document. Implementations may take any measures including, but not limited to, measures associated with fatal behaviour, assumptions of any state or value, or disregarding any associated states or values. This is however subject to such measures not negatively impacting upon system integrity.

2.2 Configuration Processing

The OC config file is guaranteed to be processed at least once if found. Depending on Subject to the OpenCore bootstrapping mechanism, the presence of multiple OC config files may lead to the reading of any of them. It is permissible for no OC Config file to be present on disk. In such cases, if the implementation does not abort the boot process, all values shall follow the rules of invalid values and optional values.

The OC config file has restrictions on size, nesting levels, and number of keys:

- The OC config file size shall not exceed 32 MBs.
- The OC config file shall not have more than 32 nesting levels.
- The OC config file may have up to 32,768 XML nodes within each plist object.
 - One plist dictionary item is counted as a pair of nodes

Reading malformed OC config files results in undefined behaviour. Examples of malformed OC config files include the following:

- OC config files that do not conform to DTD PLIST 1.0.
- OC config files with unsupported or non-conformant plist objects found in this document.
- OC config files violating restrictions on size, nesting levels, and number of keys.

It is recommended, but not required, to abort loading malformed OC config files and to continue as if an OC config file is not present. For forward compatibility, it is recommended, but not required, for the implementation to warn about the use of invalid values.

4 ACPI

4.1 Introduction

ACPI (Advanced Configuration and Power Interface) is an open standard to discover and configure computer hardware. The ACPI specification define the defines standard tables (e.g. DSDT, SSDT, FACS, DMAR) and various methods (e.g. DSM, _PRW) for implementation. Modern hardware needs little-few changes to maintain ACPI compatibility , yet some of those and some options for such changes are provided as a part of OpenCore.

To compile and disassemble ACPI tables, the iASL compiler developed by ACPICA can be used. A GUI front-end to iASL compiler can be downloaded from Acidanthera/MaciASL.

ACPI changes apply globally (to every operating system) with the following effective order:

- Patch is processed.
- Delete is processed.
- · Add is processed.
- Quirks are processed.

Applying the changes globally resolves the problems of incorrect operating system detection (consistent with the ACPI specification, not possible before the operating system boots), operating system chainloading, and difficult ACPI debugging. Hence, more attention may be required when writing changes to _OSI.

Applying the patches early makes it possible to write so called "proxy" patches, where the original method is patched in the original table and is implemented in the patched table.

There are several sources of ACPI tables and workarounds. Commonly used ACPI tables are provided with OpenCore, VirtualSMC, VoodooPS2, and WhateverGreen releases. Besides those, several third-party instructions may be found on the AppleLife Laboratory and DSDT subforums (e.g. Battery register splitting guide). A slightly more user-friendly explanation of some tables included with OpenCore can also be found in Dortania's Getting started with ACPI guide. For more exotic cases, there are several alternatives such as daliansky's ACPI sample collection. Note however that the quality of the suggested solutions will be variable.

4.2 Properties

1. Add

Type: plist array Failsafe: Empty

Description: Load selected tables from the OC/ACPI directory.

Designed to be filled with plist dict values, describing each add entry. See the Add Properties section below.

2. Delete

Type: plist array Failsafe: Empty

Description: Remove selected tables from the ACPI stack.

Designed to be filled with plist dict values, describing each delete entry. See the Delete Properties section below.

3. Patch

Type: plist array Failsafe: Empty

Description: Perform binary patches in ACPI tables before table addition or removal.

Designed to be filled with plist dictionary values describing each patch entry. See the Patch Properties section below.

4. Quirks

Type: plist dict

Description: Apply individual ACPI quirks described in the Quirks Properties section below.

4.3 Add Properties

1. Comment

Type: plist string Failsafe: Empty

Description: Arbitrary ASCII string used to provide human readable reference for the entry. Whether this value is used is implementation defined.

2. Enabled

Type: plist boolean Failsafe: false

Description: Set to true to add this ACPI table.

3. Path

Type: plist string Failsafe: Empty

Description: File paths meant to be loaded as ACPI tables. Example values include DSDT.aml, SubDir/SSDT-8.aml,

SSDT-USBX.aml, etc.

The ACPI table load order follows the item order in the array. ACPI tables are loaded from the OC/ACPI directory.

Note: All tables apart from tables with a DSDT table identifier (determined by parsing data, not by filename) insert new tables into the ACPI stack. DSDT tables perform a replacement of DSDT tables instead.

4.4 Delete Properties

1. All

Type: plist boolean

Failsafe: false (Only delete the first matched table)

Description: Set to true to delete all ACPI tables matching the condition.

2. Comment

Type: plist string Failsafe: Empty

Description: Arbitrary ASCII string used to provide human readable reference for the entry. Whether this value is used is implementation defined.

3. Enabled

Type: plist boolean Failsafe: false

Description: Set to true to remove this ACPI table.

4. OemTableId

Type: plist data, 8 bytes

Failsafe: All zero (Match any table OEM ID)

Description: Match table OEM ID equal to this value.

5. TableLength

Type: plist integer

Failsafe: 0 (Match any table size)

Description: Match table size equal to this value.

6. TableSignature

Type: plist data, 4 bytes

Failsafe: All zero (Match any table signature)

Description: Match table signature equal to this value.

Note: Do not use table signatures when the sequence must be replaced in multiple places. This is particularly relevant when performing different types of renames.

4.5 Patch Properties

1. Base

Type: plist string Failsafe: Empty (Ignored)

Description: Selects ACPI path base for patch lookup (or immediate replacement) by obtaining the offset to the provided path.

Only fully-qualified absolute paths are supported (e.g. \SB.PCIO.LPCB.HPET). Currently supported object types are: Device, Field, Method.

Note: Use with care, not all OEM tables can be parsed. Use ACPIe utility to debug. ACPIe compiled with DEBUG=1 make command produces helpful ACPI lookup tracing.

2. BaseSkip

Type: plist integer

Failsafe: 0 (Do not skip any occurrences)

Description: Number of found Base occurrences to skip before finds and replacements are applied.

3. Comment

Type: plist string Failsafe: Empty

Description: Arbitrary ASCII string used to provide human readable reference for the entry. Whether this value is used is implementation defined.

4. Count

Type: plist integer

Failsafe: 0 (Apply patch to all occurrences found) **Description**: Number of occurrences to patch.

5. Enabled

Type: plist boolean Failsafe: false

Description: Set to true to apply this ACPI patch.

6. Find

Type: plist data Failsafe: Empty

Description: Data to find. Must be equal to Replace in size if set.

Note: Can be empty, when Base is specified, immediate replacement after Base lookup happens in this case.

7. Limit

Type: plist integer

Failsafe: 0 (Search entire ACPI table)

Description: Maximum number of bytes to search for.

 $8. \, {\tt Mask}$

Type: plist data

Failsafe: Empty (Ignored)

Description: Data bitwise mask used during find comparison. Allows fuzzy search by ignoring not masked (set to zero) bits. Must be equal to Replace in size if set.

9. OemTableId

Type: plist data, 8 bytes

Failsafe: All zero (Match any table OEM ID)

Description: Match table OEM ID equal to this value.

10. Replace

Type: plist data Failsafe: Empty

Description: Replacement data of one or more bytes.

11. ReplaceMask

Type: plist data

Failsafe: Empty (Ignored)

Description: Data bitwise mask used during replacement. Allows fuzzy replacement by updating masked (set to non-zero) bits. Must be equal to Replace in size if set.

12. Skip

Type: plist integer

Failsafe: 0 (Do not skip any occurrences)

Description: Number of found occurrences to skip before replacements are applied.

13. TableLength

Type: plist integer

Failsafe: 0 (Match any table size)

Description: Match table size equal to this value.

14. TableSignature

Type: plist data, 4 bytes

Failsafe: All zero (Match any table signature)

Description: Match table signature equal to this value.

In most cases, ACPI patches are not useful and are harmful:

- Avoid renaming devices with ACPI patches. This may fail or perform improper renaming of unrelated devices (e.g. EC and ECO), be unnecessary, or even fail to rename devices in certain tables. For ACPI consistency it is much safer to rename devices at the I/O Registry level, as done by WhateverGreen.
- Avoid patching _OSI to support a higher feature set level whenever possible. While this enables a number of workarounds on APTIO firmware, it typically results in a need for additional patches. Modern firmware generally does not need this These are not usually needed on modern firmware and smaller patches work well on firmware that does. However, laptop vendors often rely on this method to determine the availability of functions such as modern I2C input support, thermal adjustment and custom feature additions.
- Avoid patching embedded controller event _Qxx just to enable brightness keys. The conventional process to find these keys typically involves significant modifications to DSDT and SSDT files and in addition, the debug kext is not stable on newer systems. Please use the built-in brightness key discovery in BrightnessKeys instead.
- Avoid making ad hoc changes such as renaming _PRW or _DSM whenever possible.

Some cases where patching is actually useful include:

- Refreshing HPET (or another device) method header to avoid compatibility checks by _OSI on legacy hardware. _STA method with if ((OSFL () == Zero)) { If (HPTE) ... Return (Zero) content may be forced to always return 0xF by replacing AO 10 93 4F 53 46 4C 00 with A4 0A 0F A3 A3 A3 A3 A3.
- To provide a custom method implementation within an SSDT, to inject shutdown fixes on certain computers for instance, the original method can be replaced with a dummy name by patching _PTS with ZPTS and adding a callback to the original method.

The Tianocore AcpiAml.h source file may help with better understanding ACPI opcodes.

Note: Patches of different Find and Replace lengths are unsupported as they may corrupt ACPI tables and make the system unstable due to area relocation. If such changes are needed, the utilisation of "proxy" patching or the padding of NOP to the remaining area could be considered.

4.6 Quirks Properties

1. FadtEnableReset

Type: plist boolean

Failsafe: false

Description: Provide reset register and flag in FADT table to enable reboot and shutdown.

Mainly required on legacy hardware and a few newer laptops. Can also fix power-button shortcuts. Not recommended unless required.

5 Booter

5.1 Introduction

This section allows the application of different types of UEFI modifications to operating system bootloaders, primarily the Apple bootloader (boot.efi). The modifications currently provide various patches and environment alterations for different firmware types. Some of these features were originally implemented as part of AptioMemoryFix.efi, which is no longer maintained. Refer to the Tips and Tricks section for instructions on migration.

If this is used for the first time on customised firmware, the following requirements should be met before starting:

- Most up-to-date UEFI firmware (check the motherboard vendor website).
- Fast Boot and Hardware Fast Boot disabled in firmware settings if present.
- Above 4G Decoding or similar enabled in firmware settings if present. Note that on some motherboards, notably the ASUS WS-X299-PRO, this option results in adverse effects and must be disabled. While no other motherboards with the same issue are known, this option should be checked first whenever erratic boot failures are encountered.
- DisableIoMapper quirk enabled, or VT-d disabled in firmware settings if present, or ACPI DMAR table deleted.
- No 'slide' boot argument present in NVRAM or anywhere else. It is not necessary unless the system cannot be booted at all or No slide values are usable! Use custom slide! message can be seen in the log.
- CFG Lock (MSR 0xE2 write protection) disabled in firmware settings if present. Consider if no option is available (for advanced users only). See See ControlMsrE2 notes for more details.
- CSM (Compatibility Support Module) disabled in firmware settings if present. On NVIDIA 6xx/AMD 2xx or older, GOP ROM may have to be flashed first. Use GopUpdate (see the second post) or AMD UEFI GOP MAKER in case of any potential confusion.
- EHCI/XHCI Hand-off enabled in firmware settings only if boot stalls unless USB devices are disconnected.
- VT-x, Hyper Threading, Execute Disable Bit enabled in firmware settings if present.
- While it may not be required, sometimes Thunderbolt support, Intel SGX, and Intel Platform Trust may have to be disabled in firmware settings present.

When debugging sleep issues, Power Nap and automatic power off (which appear to sometimes cause wake to black screen or boot loop issues on older platforms) may be temporarily disabled. The specific issues may vary, but generally ACPI tables should typically be looked at first.

Here is an example of a defect found in on some Z68 motherboards. To turn Power Nap and the others off, run the following commands in Terminal:

```
sudo pmset autopoweroff 0
sudo pmset powernap 0
sudo pmset standby 0
```

Note: These settings may be reset by hardware changes and in certain other circumstances. To view their current state, use the pmset -g command in Terminal.

5.2 Properties

1. MmioWhitelist

Type: plist array

Description: Designed to be filled with plist dict values, describing addresses critical for particular firmware functioning when DevirtualiseMmio quirk is in use. See the MmioWhitelist Properties section below.

2. Patch

Type: plist array Failsafe: Empty

Description: Perform binary patches in booter.

Designed to be filled with plist dictionary values, describing each patch. See the Patch Properties section below.

3. Quirks

Type: plist dict

Description: Apply individual booter quirks described in the Quirks Properties section below.

5.3 MmioWhitelist Properties

1. Address

Type: plist integer

Failsafe: 0

Description: Exceptional MMIO address, which memory descriptor should be left virtualised (unchanged) by <code>DevirtualiseMmio</code>. This means that the firmware will be able to directly communicate with this memory region during operating system functioning, because the region this value is in will be assigned a virtual address.

The addresses written here must be part of the memory map, have EfiMemoryMappedIO type and EFI_MEMORY_RUNTIME attribute (highest bit) set. The debug log can be used to find the list of the candidates.

2. Comment

Type: plist string Failsafe: Empty

Description: Arbitrary ASCII string used to provide human readable reference for the entry. Whether this value is used is implementation defined.

3. Enabled

Type: plist boolean Failsafe: false

Description: Exclude MMIO address from the devirtualisation procedure.

5.4 Patch Properties

1. Arch

Type: plist string

Failsafe: Any (Apply to any supported architecture)

Description: Booter patch architecture (i386, x86_64).

2. Comment

Type: plist string Failsafe: Empty

Description: Arbitrary ASCII string used to provide human readable reference for the entry. Whether this value is used is implementation defined.

3. Count

Type: plist integer

Failsafe: 0 (Apply to all occurrences found)

Description: Number of patch occurrences to apply.

4. Enabled

Type: plist boolean Failsafe: false

Description: Set to true to activate this booter patch.

5. Find

Type: plist data Failsafe: Empty

Description: Data to find. Must be equal to Replace in size if set.

6. Identifier

Type: plist string

Failsafe: Any (Match any booter)

Description: Apple for macOS booter (generally_typically_boot.efi); or a name with a suffix, such as bootmgfw.efi, for a specific booter.

7. Limit

Type: plist integer

Failsafe: 0 (Search the entire booter)

Description: Maximum number of bytes to search for.

Note: This quirk may potentially weaken firmware security. Please use RebuildAppleMemoryMap if the firmware supports memory attributes table (MAT). Refer to the OCABC: MAT support is 1/0 log entry to determine whether MAT is supported.

9. ForceBooterSignature

Type: plist boolean

Failsafe: false

Description: Set macOS boot-signature to OpenCore launcher.

Booter signature, essentially a SHA-1 hash of the loaded image, is used by Mac EFI to verify the authenticity of the bootloader when waking from hibernation. This option forces macOS to use OpenCore launcher SHA-1 hash as a booter signature to let OpenCore shim hibernation wake on Mac EFI firmware.

Note: OpenCore launcher path is determined from LauncherPath property.

10. ForceExitBootServices

Type: plist boolean

Failsafe: false

Description: Retry ExitBootServices with new memory map on failure.

Try to ensure that the ExitBootServices call succeeds. If required, an outdated MemoryMap key argument can be used by obtaining the current memory map and retrying the ExitBootServices call.

Note: The need for this quirk is determined by early boot crashes of the firmware. Do not use this option without a full understanding of the implications.

11. ProtectMemoryRegions

Type: plist boolean

Failsafe: false

Description: Protect memory regions from incorrect access.

Some types of firmware incorrectly map certain memory regions:

- The CSM region can be marked as boot services code, or data, which leaves it as free memory for the XNU kernel.
- MMIO regions can be marked as reserved memory and stay unmapped. They may however be required to be accessible at runtime for NVRAM support.

This quirk attempts to fix the types of these regions, e.g. ACPI NVS for CSM or MMIO for MMIO.

Note: The need for this quirk is determined by artifacts, sleep wake issues, and boot failures. This quirk is typically only required by very old firmware.

12. ProtectSecureBoot

Type: plist boolean

Failsafe: false

Description: Protect UEFI Secure Boot variables from being written.

Reports security violation during attempts to write to db, dbx, PK, and KEK variables from the operating system.

Note: This quirk attempts to avoid issues with NVRAM implementations with fragmentation issues, such as on the MacPro5,1 as well as on certain Insyde firmware without garbage collection or with defective garbage collection.

13. ProtectUefiServices

Type: plist boolean

Failsafe: false

Description: Protect UEFI services from being overridden by the firmware.

Some modern firmware, including on virtual machines such as VMware, may update pointers to UEFI services during driver loading and related actions. Consequently, this directly obstructs other quirks that affect memory management, such as DevirtualiseMmio, ProtectMemoryRegions, or RebuildAppleMemoryMap, and may also obstruct other quirks depending on the scope of such.

Note: On VMware, the need for this quirk may be determined by the appearance of the "Your Mac OS guest might run unreliably with more than one virtual core." message.

Note: The need for this quirk is determined by early boot failures.

18. SignalAppleOS

Type: plist boolean

Failsafe: false

Description: Report macOS being loaded through OS Info for any OS.

This quirk is useful on Mac firmware, which loads different operating systems with different hardware configurations. For example, it is supposed to enable Intel GPU in Windows and Linux in some dual-GPU MacBook models.

19. SyncRuntimePermissions

Type: plist boolean

Failsafe: false

Description: Update memory permissions for the runtime environment.

Some types of firmware fail to properly handle runtime permissions:

- They incorrectly mark OpenRuntime as not executable in the memory map.
- They incorrectly mark OpenRuntime as not executable in the memory attributes table.
- They lose entries from the memory attributes table after OpenRuntime is loaded.
- They mark items in the memory attributes table as read-write-execute.

This quirk tries to update attempts to update the memory map and memory attributes table to correct this.

Note: The need for this quirk is indicated by early boot failures. Only firmware released after 2017 is typically affected.

6 DeviceProperties

6.1 Introduction

Device configuration is provided to macOS with a dedicated buffer, called EfiDevicePathPropertyDatabase. This buffer is a serialised map of DevicePaths to a map of property names and their values.

Property data can be debugged with gfxutil. To obtain current property data, use the following command in macOS:

```
ioreg -lw0 -p IODeviceTree -n efi -r -x | grep device-properties |
  sed 's/.*<//;s/>.*//' > /tmp/device-properties.hex &&
  gfxutil /tmp/device-properties.hex /tmp/device-properties.plist &&
  cat /tmp/device-properties.plist
```

Device properties are part of the IODeviceTree (gIODT) plane of the macOS I/O Registry. This plane has several construction stages relevant for the platform initialisation. While the early construction stage is performed by the XNU kernel in the IODeviceTreeAlloc method, the majority of the construction is performed by the platform expert, implemented in AppleACPIPlatformExpert.kext.

AppleACPIPlatformExpert incorporates two stages of IODeviceTree construction implemented by calling AppleACPIPlatformExpert::mergeDeviceProperties:

- 1. During ACPI table initialisation through the recursive ACPI namespace scanning by the calls to AppleACPIPlatformExpert::createDTNubs.
- 2. During IOService registration (IOServices::registerService) callbacks implemented as a part of AppleACPIPlatformExpert::platformAdjustService function and its private worker method AppleACPIPlatformExpert::platformAdjustPCIDevice specific to the PCI devices.

The application of the stages depends on the device presence in ACPI tables. The first stage applies very early but exclusively to the devices present in ACPI tables. The second stage applies to all devices much later after the PCI configuration and may repeat the first stage if the device was not present in ACPI.

For all kernel drivers that may inspect the IODeviceTree plane without probing, such as Lilu and its plugins (e.g. WhateverGreen), it is especially important to ensure device presence in the ACPI tables. A failure to do so may result in erratic behaviour caused by ignoring the injected device properties as they were not constructed at the first stage. See SSDT-IMEI.dsl and SSDT-BRGO.dsl for an example.

6.2 Properties

1. Add

Type: plist dict

Description: Sets device properties from a map (plist dict) of device paths to a map (plist dict) of variable names and their values in plist multidata format.

Note 1: Device paths must be provided in canonic string format (e.g. PciRoot(0x0)/Pci(0x1,0x0)/Pci(0x0,0x0)).

Properties will only be set if not present and not deleted.

Note 2: Currently properties may only be (formerly) added by the original driver, so unless a separate driver was installed, there is no reason to delete the variables Existing properties will not be changed unless deleted in the DeviceProperties Delete section.

2. Delete

Type: plist dict

Description: Removes device properties from a map (plist dict) of device paths to an array (plist array) of variable names in plist string format.

Note: Currently, existing properties may only exist on firmware with DeviceProperties drivers (e.g. Apple). Hence, there is typically no reason to delete variables unless a new driver has been installed.

6.3 Common Properties

Some known properties include:

7 Kernel

7.1 Introduction

This section allows the application of different kinds of kernelspace modifications on Apple Kernel (XNU). The modifications currently provide driver (kext) injection, kernel and driver patching, and driver blocking.

7.2 Properties

1. Add

Type: plist array Failsafe: Empty

Description: Load selected kernel drivers from OC/Kexts directory.

Designed to be filled with plist dict values, describing each driver. See the Add Properties section below. Kernel driver load order follows the item order in the array, thus the dependencies should be written prior to their consumers.

To track the dependency order, inspect the OSBundleLibraries key in the Info.plist of the kext. Any kext mentioned in the OSBundleLibraries of the other kext must precede this kext.

Note: Kexts may have inner kexts (Plug-Ins) in their bundle. Each inner kext must be added separately.

2. Block

Type: plist array Failsafe: Empty

Description: Remove selected kernel drivers from prelinked kernel.

Designed to be filled with plist dictionary values, describing each blocked driver. See the Block Properties section below.

3. Emulate

Type: plist dict

Description: Emulate certain hardware in kernelspace via parameters described in the Emulate Properties section below.

4. Force

Type: plist array Failsafe: Empty

Description: Load kernel drivers from system volume if they are not cached.

Designed to be filled with plist dict values, describing each driver. See the Force Properties section below. This section resolves the problem of injecting drivers that depend on other drivers, which are not cached otherwise. The issue normally typically affects older operating systems, where various dependency kexts, such as IOAudioFamily or IONetworkingFamily may not be present in the kernel cache by default. The kernel driver load order follows the item order in the array, thus the dependencies should be written prior to their consumers. Force happens before Add.

Note: The signature of the "forced" kernel drivers is not checked anyhow, making the use of this feature extremely dangerous and undesired for secure boot. This feature may not work on encrypted partitions in newer operating systems.

5. Patch

Type: plist array Failsafe: Empty

Description: Perform binary patches in kernel and drivers prior to driver addition and removal.

Designed to be filled with plist dictionary values, describing each patch. See the Patch Properties section below.

6. Quirks

Type: plist dict

Description: Apply individual kernel and driver quirks described in the Quirks Properties section below.

Note 1: It may also be the case that the CPU model is supported but there is no power management supported (e.g. virtual machines). In this case, MinKernel and MaxKernel can be set to restrict CPU virtualisation and dummy power management patches to the particular macOS kernel version.

Note 2: Normally it is only Only the value of EAXthat needs to be taken care of, since it, which represents the full CPUID. The remaining bytes are to, typically needs to be accounted for and remaining bytes should be left as zeroes. Byte The byte order is Little Endian, so for. For example, C3 06 03 00 stands for CPUID 0x0306C3 (Haswell).

Note 3: For XCPM support it is recommended to use the following combinations.

• Haswell-E (0x0306F2) to Haswell (0x0306C3):

Note 4: Be aware that the following configurations are unsupported by XCPM (at least out of the box):

- Consumer Ivy Bridge (0x0306A9) as Apple disabled XCPM for Ivy Bridge and recommends legacy power management for these CPUs. _xcpm_bootstrap should manually be patched to enforce XCPM on these CPUs instead of this option.
- Low-end CPUs (e.g. Haswell+ Pentium) as they are not supported properly by macOS. Legacy workarounds for older models can be found in the Special NOTES section of acidanthera/bugtracker#365.

2. Cpuid1Mask

Type: plist data, 16 bytes

Failsafe: All zero

Description: Bit mask of active bits in Cpuid1Data.

When each Cpuid1Mask bit is set to 0, the original CPU bit is used, otherwise set bits take the value of Cpuid1Data.

3. DummyPowerManagement

Type: plist boolean Failsafe: false Requirement: 10.4

Description: Disables AppleIntelCpuPowerManagement.

Note 1: This option is a preferred alternative to NullCpuPowerManagement.kext for CPUs without native power management driver in macOS.

Note 2: While this option is typically needed to disable AppleIntelCpuPowerManagement on unsupported platforms, it can also be used to disable this kext in other situations (e.g. with Cpuid1Data left blank).

4. MaxKernel

Type: plist string Failsafe: Empty

Description: Emulates CPUID and applies DummyPowerManagement on specified macOS version or older.

Note: Refer to the Add MaxKernel description for matching logic.

5. MinKernel

Type: plist string Failsafe: Empty

Description: Emulates CPUID and applies DummyPowerManagement on specified macOS version or newer.

Note: Refer to the Add MaxKernel description for matching logic.

7.6 Force Properties

1. Arch

Type: plist string

Failsafe: Any (Apply to any supported architecture) Description: Kext architecture (i386, x86_64).

7.8 Quirks Properties

 $1. \ {\tt AppleCpuPmCfgLock}$

Type: plist boolean Failsafe: false Requirement: 10.4

Description: Disables PKG_CST_CONFIG_CONTROL (0xE2) MSR modification in AppleIntelCPUPowerManagement.kext, commonly causing early kernel panic, when it is locked from writing.

Some types of firmware lock the PKG_CST_CONFIG_CONTROL MSR register and the bundled VerifyMsrE2ControlMsrE2 tool can be used to check its state. Note that some types of firmware only have this register locked on some cores.

As modern firmware provide a CFG Lock setting that allows configuring the PKG_CST_CONFIG_CONTROL MSR register lock, this option should be avoided whenever possible.

On APTIO firmware that do not provide a CFG Lock setting in the GUI, it is possible to access the option directly:

- (a) Download UEFITool and IFR-Extractor.
- (b) Open the firmware image in UEFITool and find CFG Lock unicode string. If it is not present, the firmware may not have this option and the process should therefore be discontinued.
- (c) Extract the Setup.bin PE32 Image Section (the UEFITool found) through the Extract Body menu option.
- (d) Run IFR-Extractor on the extracted file (e.g. ./ifrextract Setup.bin Setup.txt).
- (e) Find CFG Lock, VarStoreInfo (VarOffset/VarName): in Setup.txt and remember the offset right after it (e.g. 0x123).
- (f) Download and run Modified GRUB Shell compiled by brainsucker or use a newer version by datasone.
- (g) Enter setup_var 0x123 0x00 command, where 0x123 should be replaced by the actual offset, and reboot.

Warning: Variable offsets are unique not only to each motherboard but even to its firmware version. Never ever try to use an offset without checking.

On selected platforms, the ControlMsrE2 tool can also change such hidden options. Pass desired argument: lock, unlock for CFG Lock. Or pass interactive to find and modify other hidden options.

As a last resort, consider patching the BIOS (for advanced users only).

 $2. \ {\tt AppleXcpmCfgLock}$

Type: plist boolean Failsafe: false

Requirement: 10.8 (not required for older)

Description: Disables PKG_CST_CONFIG_CONTROL (0xE2) MSR modification in XNU kernel, commonly causing early kernel panic, when it is locked from writing (XCPM power management).

Note: This option should be avoided whenever possible. See AppleCpuPmCfgLock description for more details.

 $3. \ {\tt AppleXcpmExtraMsrs}$

Type: plist boolean

Failsafe: false

Requirement: 10.8 (not required for older)

Description: Disables multiple MSR access critical for certain CPUs, which have no native XCPM support.

This is normally typically used in conjunction with the Emulate section on Haswell-E, Broadwell-E, Skylake-SP, and similar CPUs. More details on the XCPM patches are outlined in acidanthera/bugtracker#365.

Note: Additional not provided patches will be required for Ivy Bridge or Pentium CPUs. It is recommended to use AppleIntelCpuPowerManagement.kext for the former.

 $4. \ {\tt AppleXcpmForceBoost}$

 \mathbf{Type} : plist boolean

Failsafe: false

Requirement: 10.8 (not required for older)

Description: Forces maximum performance in XCPM mode.

This patch writes 0xFF00 to $MSR_IA32_PERF_CONTROL$ (0x199), effectively setting maximum multiplier for all the time.

higher blocks. The outcome is that trimming on such SSDs will be non-functional soon after installation, resulting in additional wear on the flash.

One way to workaround the problem is to increase the timeout to an extremely high value, which at the cost of slow boot times (extra minutes) will ensure that all the blocks are trimmed. Set this option to a high value, such as 4294967295, to ensure that all blocks are trimmed. Alternatively, use over-provisioning, if supported, or create a dedicated unmapped partition where the reserve blocks can be found by the controller. Conversely, the trim operation can be disabled by setting a very low timeout value. e.g. 999. Refer to this article for more details.

18. ThirdPartyDrives

Type: plist boolean Failsafe: false

Requirement: 10.6 (not required for older)

Description: Apply vendor patches to IOAHCIBlockStorage.kext to enable native features for third-party drives, such as TRIM on SSDs or hibernation support on 10.15 and newer.

Note: This option may be avoided on user preference. NVMe SSDs are compatible without the change. For AHCI SSDs on modern macOS version there is a dedicated built-in utility called trimforce. Starting from 10.15 this utility creates EnableTRIM variable in APPLE_BOOT_VARIABLE_GUID namespace with 01 00 00 00 value.

19. XhciPortLimit

Type: plist boolean

Failsafe: false

Requirement: 10.11 (not required for older)

Description: Patch various kexts (AppleUSBXHCI.kext, AppleUSBXHCIPCI.kext, IOUSBHostFamily.kext) to remove USB port count limit of 15 ports.

Note: This option should be avoided whenever possible and may no longer in macOS 11. USB port limit is imposed by the amount of used bits in locationID format and there is no possible way to workaround this without heavy OS modification. The only valid solution is to limit the amount of used ports to 15 (discarding some). More details can be found on AppleLife.ru.

7.9 Scheme Properties

These properties are particularly relevant for older macOS operating systems. Refer to the Legacy Apple OS section for details on how to install and troubleshoot such macOS installations.

1. FuzzyMatch

Type: plist boolean

Failsafe: false

Description: Use kernelcache with different checksums when available.

On macOS 10.6 and earlier, kernelcache filename has a checksum, which essentially is adler32 from SMBIOS product name and EfiBoot device path. On certain firmware, the EfiBoot device path differs between UEFI and macOS due to ACPI or hardware specifics, rendering kernelcache checksum as always different.

This setting allows matching the latest kernelcache with a suitable architecture when the kernelcache without suffix is unavailable, improving macOS 10.6 boot performance on several platforms.

2. KernelArch

Type: plist string

Failsafe: Auto (Choose the preferred architecture automatically)

Description: Prefer specified kernel architecture (i386, i386-user32, x86_64) when available.

On macOS 10.7 and earlier, the XNU kernel can boot with architectures different from the usual x86_64. This setting will use the specified architecture to boot macOS when it is supported by the macOS and the configuration:

- i386 Use i386 (32-bit) kernel when available.
- i386-user32 Use i386 (32-bit) kernel when available and force the use of 32-bit userspace on 64-bit capable processors if supported by the operating system.
 - On macOS, 64-bit capable processors are assumed to support SSSE3. This is not the case for older 64-bit capable Pentium processors, which cause some applications to crash on macOS 10.6. This behaviour corresponds to the -legacy kernel boot argument.

- This option is unavailable on macOS 10.4 and 10.5 when running on 64-bit firmware due to an uninitialised 64-bit segment in the XNU kernel, which causes AppleEFIRuntime to incorrectly execute 64-bit code as 16-bit code.
- x86_64 Use x86_64 (64-bit) kernel when available.

The algorithm used to determine the preferred kernel architecture is set out below.

- (a) arch argument in image arguments (e.g. when launched via UEFI Shell) or in boot-args variable overrides any compatibility checks and forces the specified architecture, completing this algorithm.
- (b) OpenCore build architecture restricts capabilities to i386 and i386-user32 mode for the 32-bit firmware variant.
- (c) Determined EfiBoot version restricts architecture choice:
 - 10.4-10.5 i386 or i386-user32 (only on 32-bit firmware)
 - 10.6 i386, i386-user32, or x86 64
 - 10.7 i386 or x86_64
 - 10.8 or newer x86_64
- (d) If KernelArch is set to Auto and SSSE3 is not supported by the CPU, capabilities are restricted to i386-user32 if supported by EfiBoot.
- (e) Board identifier (from SMBIOS) based on EfiBoot version disables x86_64 support on an unsupported model if any i386 variant is supported. Auto is not consulted here as the list is not overridable in EfiBoot.
- (f) KernelArch restricts the support to the explicitly specified architecture (when not set to Auto) if the architecture remains present in the capabilities.
- (g) The best supported architecture is chosen in this order: x86_64, i386, i386-user32.

Unlike macOS 10.7 (where certain board identifiers are treated as the i386 only machines), and macOS 10.5 or earlier (where x86_64 is not supported by the macOS kernel), macOS 10.6 is very special. The architecture choice on macOS 10.6 depends on many factors including not only the board identifier, but also the macOS product type (client vs server), macOS point release, and amount of RAM. The detection of all these is complicated and impractical, as several point releases had implementation defects flaws resulting in a failure to properly execute the server detection in the first place. For this reason, OpenCore on macOS 10.6 falls back on the x86_64 architecture whenever it is supported by the board, as it is on macOS 10.7.

A 64-bit Mac model compatibility matrix corresponding to actual EfiBoot behaviour on macOS 10.6.8 and 10.7.5 is outlined below.

Model	10.6 (minimal)	10.6 (client)	10.6 (server)	10.7 (any)
Macmini	4,x (Mid 2010)	5,x (Mid 2011)	4,x (Mid 2010)	3,x (Early 2009)
MacBook	Unsupported	Unsupported	Unsupported	5,x (2009/09)
MacBookAir	Unsupported	Unsupported	Unsupported	2,x (Late 2008)
MacBookPro	4,x (Early 2008)	8,x (Early 2011)	8,x (Early 2011)	3,x (Mid 2007)
iMac	8,x (Early 2008)	12,x (Mid 2011)	12,x (Mid 2011)	7,x (Mid 2007)
MacPro	3,x (Early 2008)	5,x (Mid 2010)	3,x (Early 2008)	3,x (Early 2008)
Xserve	2,x (Early 2008)	2,x (Early 2008)	2,x (Early 2008)	2,x (Early 2008)

Note: 3+2 and 6+4 hotkeys to choose the preferred architecture are unsupported as they are handled by EfiBoot and hence, difficult to detect.

3. KernelCache

Type: plist string

Failsafe: Auto

Description: Prefer specified kernel cache type (Auto, Cacheless, Mkext, Prelinked) when available.

Different variants of macOS support different kernel caching variants designed to improve boot performance. This setting prevents the use of faster kernel caching variants if slower variants are available for debugging and stability reasons. I.e. That is, by specifying Mkext, Prelinked will be disabled for e.g. 10.6 but not for 10.7.

The list of available kernel caching types and its current support in OpenCore is listed below.

8 Misc

8.1 Introduction

This section contains miscellaneous configuration options affecting OpenCore operating system loading behaviour in addition to other options that do not readily fit into other sections.

OpenCore broadly follows the "bless" model, also known as the "Apple Boot Policy". The primary purpose of the "bless" model is to allow embedding boot options within the file system (and be accessible through a specialised driver) as well as supporting a broader range of predefined boot paths as compared to the removable media list set out in the UEFI specification.

Partitions can only booted by OpenCore when they meet the requirements of a predefined Scan policy. This policy sets out which specific file systems a partition must have, and which specific device types a partition must be located on, to be made available by OpenCore as a boot option. Refer to the ScanPolicy property for more details.

The scan process starts with enumerating all available partitions, filtered based on the Scan policy. Each partition may generate multiple primary and alternate options. Primary options represent operating systems installed on the media, while alternate options represent recovery options for the operating systems on the media.

- Alternate options may exist without primary options and vice versa.
- Options may not necessarily represent operating systems on the same partition.
- Each primary and alternate option can be an auxiliary option or not.
 - Refer to the HideAuxiliary section for more details.

The algorithm to determine boot options behaves as follows:

- 1. Obtain all available partition handles filtered based on the Scan policy (and driver availability).
- 2. Obtain all available boot options from the BootOrder UEFI variable.
- 3. For each boot option found:
 - Retrieve the device path of the boot option.
 - Perform fixups (e.g. NVMe subtype correction) and expansion (e.g. for Boot Camp) of the device path.
 - On failure, if it is an OpenCore custom entry device path, pre-construct the corresponding custom entry and succeed.
 - Obtain the device handle by locating the device path of the resulting device path (ignore it on failure).
 - Locate the device handle in the list of partition handles (ignore it if missing).
 - For disk device paths (not specifying a bootloader), execute "bless" (may return > 1 entry).
 - For file device paths, check for presence on the file system directly.
 - On the OpenCore boot partition, exclude all OpenCore bootstrap files by file header checks.
 - Mark device handle as used in the list of partition handles if any.
 - Register the resulting entries as primary options and determine their types. The option will become auxiliary for some types (e.g. Apple HFS recovery).
- 4. For each partition handle:
 - If the partition handle is marked as *unused*, execute "bless" primary option list retrieval. In case a BlessOverride list is set, both standard and custom "bless" paths will be found.
 - On the OpenCore boot partition, exclude OpenCore bootstrap files using header checks.
 - Register the resulting entries as primary options and determine their types if found. The option will become auxiliary for some types (e.g. Apple HFS recovery).
 - If a partition already has any primary options of the "Apple Recovery" type, proceed to the next handle.
 - Lookup alternate entries by "bless" recovery option list retrieval and predefined paths.
 - Register the resulting entries as alternate auxiliary options and determine their types if found.
- 5. Custom entries and tools, except such pre-constructed previously, are added as primary options without any checks with respect to Auxiliary.
- 6. System entries, such as Reset NVRAM, are added as primary auxiliary options.

The display order of the boot options in the OpenCore picker and the boot process are determined separately from the scanning algorithm.

The display order as follows:

• Alternate options follow corresponding primary options. That is, Apple recovery options will follow the relevant macOS option whenever possible.

8.3 Boot Properties

1. ConsoleAttributes

Type: plist integer

Failsafe: 0

Description: Sets specific attributes for the console.

The text renderer supports colour arguments as a sum of foreground and background colours based on the UEFI specification. The value for black background and for black foreground, 0, is reserved.

List of colour values and names:

- 0x00 EFI_BLACK
- 0x01 EFI_BLUE
- 0x02 EFI_GREEN
- 0x03 EFI_CYAN
- 0x04 EFI_RED
- 0x05 EFI_MAGENTA
- 0x06 EFI_BROWN
- 0x07 EFI LIGHTGRAY
- 0x08 EFI_DARKGRAY
- 0x09 EFI_LIGHTBLUE
- OxOA EFI_LIGHTGREEN
- OxOB EFI LIGHTCYAN
- 0x0C EFI LIGHTRED
- OxOD EFI_LIGHTMAGENTA
- OxOE EFI_YELLOW
- OxOF EFI_WHITE
- 0x00 EFI_BACKGROUND_BLACK
- 0x10 EFI_BACKGROUND_BLUE
- 0x20 EFI_BACKGROUND_GREEN
- 0x30 EFI_BACKGROUND_CYAN
- 0x40 EFI_BACKGROUND_RED
- 0x50 EFI_BACKGROUND_MAGENTA
- 0x60 EFI_BACKGROUND_BROWN
- 0x70 EFI BACKGROUND LIGHTGRAY

Note: This option may not work well with the System text renderer. Setting a background different from black could help with testing GOP functionality.

2. HibernateMode

Type: plist string

Failsafe: None

Description: Hibernation detection mode. The following modes are supported:

- None Avoid hibernation (Recommended) Ignore hibernation state.
- Auto Use RTC and NVRAM detection.
- RTC Use RTC detection.
- NVRAM Use NVRAM detection.

Note: If the firmware can handle hibernation itself (valid for Mac EFI firmware), then None should be specified to hand-off hibernation state as is to OpenCore.

3. HideAuxiliary

Type: plist boolean

Failsafe: false

Description: Set to true to hide auxiliary entries from the picker menu.

An entry is considered auxiliary when at least one of the following applies:

- Entry is macOS recovery.
- Entry is macOS Time Machine.
- Entry is explicitly marked as Auxiliary.

• Entry is system (e.g. Reset NVRAM).

To display all entries, the picker menu can be reloaded into "Extended Mode" by pressing the Spacebar key. Hiding auxiliary entries may increase boot performance on multi-disk systems.

4. LauncherOption

Type: plist string Failsafe: Disabled

Description: Register the launcher option in the firmware preferences for persistence.

Valid values:

• Disabled — do nothing.

- Full create or update the top priority boot option in UEFI variable storage at bootloader startup.
 - For this option to work, RequestBootVarRouting is required to be enabled.
- Short create a short boot option instead of a complete one.
 - This variant is useful for some older types of firmware, typically from Insyde, that are unable to manage full device paths.
- System create no boot option but assume specified custom option is blessed.
 - This variant is useful when relying on ForceBooterSignature quirk and OpenCore launcher path management happens through bless utilities without involving OpenCore.

This option allows integration with third-party operating system installation and upgrades (which may overwrite the \EFI\BOOT\BOOT\64.efi file). The BOOT\64.efi file is no longer used for bootstrapping OpenCore if a custom option is created. The custom path used for bootstrapping can be specified by using the LauncherPath option.

Note 1: Some types of firmware may have defective NVRAM implementation NVRAM implementation flaws, no boot option support, or other incompatibilities. While unlikely, the use of this option may cause result in boot failures and should only be used exclusively on the boards known to be compatible. Refer to acidanthera/bugtracker#1222 for some known issues with affecting Haswell and other boards.

Note 2: While NVRAM resets executed from OpenCore would not typically erase the boot option created in Bootstrap, executing NVRAM resets prior to loading OpenCore will erase the boot option. Therefore, for significant implementation updates (e.g. in , such as was the case with OpenCore 0.6.4), an NVRAM reset should be performed executed with Bootstrap disabled, after which it can be reenabled.

5. LauncherPath

Type: plist string Failsafe: Default

Description: Launch path for the LauncherOption property.

Default points to OpenCore.efi. User specified paths, e.g. \EFI\SomeLauncher.efi, can be used to provide custom loaders, which are supposed to load OpenCore.efi themselves.

6. PickerAttributes

Type: plist integer

Failsafe: 0

Description: Sets specific attributes for the OpenCore picker.

Different OpenCore pickers may be configured through the attribute mask containing OpenCore-reserved (BIT0~BIT15) and OEM-specific (BIT16~BIT31) values.

Current OpenCore values include:

• 0x0001 — OC_ATTR_USE_VOLUME_ICON, provides custom icons for boot entries:

For Tools, OpenCore will attempt loading a custom icon and fallback to a default icon on failure:

- ResetNVRAM Resources\Image\ResetNVRAM.icns ResetNVRAM.icns from icons directory.
- Tools\<TOOL_RELATIVE_PATH>.icns icon near the tool file with appended .icns extension.

For custom boot Entries, OpenCore will attempt loading a custom icon and fallback to the volume icon or the default icon on failure:

- <ENTRY_PATH>.icns — icon near the entry file with appended .icns extension.

For all other entries, OpenCore will attempt loading a volume icon by searching as follows, and will fallback to the default icon on failure:

- .VolumeIcon.icns file at Preboot volume in per-volume directory (/System/Volumes/Preboot/{GUID}/when mounted at the default location within macOS) for APFS (if present).
- .VolumeIcon.icns file at the Preboot volume root (/System/Volumes/Preboot/, when mounted at the default location within macOS) for APFS (otherwise).
- .VolumeIcon.icns file at the volume root for other filesystems.

Note 1: The Apple picker partially supports placing a volume icon file at the operating system's Data volume root, /System/Volumes/Data/, when mounted at the default location within macOS. This approach is flawed: the file is neither accessible to OpenCanopy nor to the Apple picker when FileVault 2, which is meant to be the default choice, is enabled. Therefore, OpenCanopy does not attempt supporting Apple's approach. A volume icon file may be placed at the root of the Preboot volume for compatibility with both OpenCanopy and the Apple picker, or use the Preboot per-volume location as above with OpenCanopy as a preferred alternative to Apple's approach.

Note 2: Be aware that using a volume icon on any drive overrides the normal OpenCore picker behaviour for that drive of selecting the appropriate icon depending on whether the drive is internal or external.

- 0x0002 0C_ATTR_USE_DISK_LABEL_FILE, provides custom rendered titles for boot entries:
 - .disk_label (.disk_label_2x) file near bootloader for all filesystems.
 - <TOOL_NAME>.1bl (<TOOL_NAME>.12x) file near tool for Tools.

Prerendered labels can be generated via the disklabel utility or the bless command. When disabled or missing text labels, (.contentDetails or .disk_label.contentDetails) are to be rendered instead.

- 0x0004 0C_ATTR_USE_GENERIC_LABEL_IMAGE, provides predefined label images for boot entries without custom entries. This may however give less detail for the actual boot entry.
- 0x0008 OC_ATTR_HIDE_THEMED_ICONS, prefers builtin icons for certain icon categories to match the theme style. For example, this could force displaying the builtin Time Machine icon. Requires OC_ATTR_USE_VOLUME_ICON.
- 0x0010 0C_ATTR_USE_POINTER_CONTROL, enables pointer control in the OpenCore picker when available. For example, this could make use of mouse or trackpad to control UI elements.
- 0x0020 OC ATTR DEBUG DISPLAY, enable display of additional timing and debug information, in Builtin picker in DEBUG and NOOPT builds only.

7. PickerAudioAssist

Type: plist boolean Failsafe: false

Description: Enable screen reader by default in the OpenCore picker.

For the macOS bootloader, screen reader preference is set in the preferences.efires archive in the isV0Enabled.int32 file and is controlled by the operating system. For OpenCore screen reader support, this option is an independent equivalent. Toggling screen reader support in both the OpenCore picker and the macOS bootloader FileVault 2 login window can also be done by using the Command + F5 key combination.

Note: The screen reader requires working audio support. Refer to the UEFI Audio Properties section for more details.

8. PollAppleHotKeys

Type: plist boolean

Failsafe: false

Description: Enable modifier hotkey handling in the OpenCore picker.

In addition to action hotkeys, which are partially described in the PickerMode section and are normally typically handled by Apple BDS, modifier keys handled by the operating system bootloader (boot.efi) also exist. These keys allow changing the behaviour of the operating system by providing different boot modes.

On certain firmware, using modifier keys may be problematic due to driver incompatibilities. To workaround this problem, this option allows registering certain hotkeys in a more permissive manner from within the OpenCore picker. Such extensions include support for tapping on keys in addition to holding and pressing Shift along with other keys instead of only pressing key combinations before selecting the boot item, and for reliable detection of the Shift key, which is not detectable when selecting the boot item, in order to work around the fact that hotkeys which are continuously held during boot cannot be reliably detected on many PS/2 keyboards.

This list of known modifier hotkeys includes:

- CMD+C+MINUS disable board compatibility checking.
- CMD+K boot release kernel, similar to kcsuffix=release.
- CMD+S single user mode.
- CMD+S+MINUS disable KASLR slide, requires disabled SIP.
- CMD+V verbose mode.
- Shift+Enter, Shift+Index safe mode, may be used in combination with CTRL+Enter, CTRL+Index.

9. ShowPicker

Type: plist boolean Failsafe: false

Description: Show a simple picker to allow boot entry selection.

10. TakeoffDelay

Type: plist integer, 32 bit

Failsafe: 0

Description: Delay in microseconds executed before handling the OpenCore picker startup and action hotkeys.

Introducing a delay may give extra time to hold the right action hotkey sequence to, for instance, boot into recovery mode. On some platforms, setting this option to a minimum of 5000-10000 microseconds may be required to access action hotkeys due to the nature of the keyboard driver.

11. Timeout

Type: plist integer, 32 bit

Failsafe: 0

Description: Timeout in seconds in the OpenCore picker before automatic booting of the default boot entry. Set to 0 to disable.

12. PickerMode

Type: plist string Failsafe: Builtin

Description: Choose picker used for boot management.

PickerMode describes the underlying boot management with an optional user interface responsible for handling boot options.

The following values are supported:

- Builtin boot management is handled by OpenCore, a simple text-only user interface is used.
- External an external boot management protocol is used if available. Otherwise, the Builtin mode is used.
- Apple Apple boot management is used if available. Otherwise, the Builtin mode is used.

Upon success, the External mode may entirely disable all boot management in OpenCore except for policy enforcement. In the Apple mode, it may additionally bypass policy enforcement. Refer to the OpenCanopy plugin for an example of a custom user interface.

The OpenCore built-in picker contains a set of actions chosen during the boot process. The list of supported actions is similar to Apple BDS and typically can be accessed by holding action hotkeys during the boot process.

The following actions are currently considered:

- Default this is the default option, and it lets the built-in OpenCore picker load the default boot option as specified in the Startup Disk preference pane.
- ShowPicker this option forces the OpenCore picker to be displayed. This can typically be achieved by holding the OPT key during boot. Setting ShowPicker to true will make ShowPicker the default option.
- ResetNvram this option erases certain UEFI variables and is normally executed by holding down the CMD+OPT+P+R key combination during boot. Another way to erase UEFI variables is to choose Reset NVRAM in the OpenCore picker. This option requires AllowNvramReset to be set to true.
- BootApple this options performs booting to the first Apple operating system found unless the chosen default operating system is one from Apple. Hold the X key down to choose this option.
- BootAppleRecovery this option performs booting into the Apple operating system recovery partition. This is either that related to the default chosen operating system, or first one found when the chosen default

operating system is not from Apple or does not have a recovery partition. Hold the CMD+R key combination down to choose this option.

Note 1: The KeySupport, OpenUsbKbDxe, or similar drivers are required for key handling. However, not all of the key handling functions can be implemented on several types of firmware.

Note 2: In addition to OPT, OpenCore supports using both the Escape key to display and Zero keys to enter the OpenCore picker when ShowPicker is disabled. This key exists for the Escape exists to support co-existence with the Apple picker (including OpenCore Apple picker modeas well as for firmware that fail) and to support firmware that fails to report held OPT keys on key, as on some PS/2 keyboards, requiring multiple presses of the. In addition, Zero is provided to support systems on which Escape is already assigned to some other pre-boot firmware feature. In systems which do not require KeySupport, pressing and holding one of these keys from after power on until the picker appears should always be successful. The same should apply when using Escapekey to access the OpenCore pickerKeySupport mode if it is correctly configured for the system, i.e. with a long enough KeyForgetThreshold. If pressing and holding the key is not successful to reliably enter the picker, multiple repeated keypresses may be tried instead.

Note 3: On Macs with problematic GOP, it may be difficult to access the Apple picker. The BootKicker utility can be blessed to workaround this problem even without loading OpenCore. On some Macs however, the BootKicker utility cannot be run from OpenCore.

13. PickerVariant

Type: plist string Failsafe: Auto

Description: Choose specific icon set to be used for boot management.

The following values are supported:

- Auto Automatically select one set of icons based on the DefaultBackground colour.
- Default Normal icon set (without prefix).
- Old Vintage icon set (Old filename prefix).
- Modern Nouveau icon set (Modern filename prefix).
- Other value Custom icon set if supported by installed resources.

8.4 Debug Properties

1. AppleDebug

Type: plist boolean Failsafe: false

Description: Enable writing the boot.efi debug log to the OpenCore log.

Note: This option only applies to 10.15.4 and newer.

2. ApplePanic

Type: plist boolean Failsafe: false

Description: Save macOS kernel panic output to the OpenCore root partition.

The file is saved as panic-YYYY-MM-DD-HHMMSS.txt. It is strongly recommended to set the keepsyms=1 boot argument to see debug symbols in the panic log. In cases where it is not present, the kpdescribe.sh utility (bundled with OpenCore) may be used to partially recover the stacktrace.

Development and debug kernels produce more useful kernel panic logs. Consider downloading and installing the KernelDebugKit from developer.apple.com when debugging a problem. To activate a development kernel, the boot argument kcsuffix=development should be added. Use the uname -a command to ensure that the current loaded kernel is a development (or a debug) kernel.

In cases where the OpenCore kernel panic saving mechanism is not used, kernel panic logs may still be found in the /Library/Logs/DiagnosticReports directory.

Starting with macOS Catalina, kernel panics are stored in JSON format and thus need to be preprocessed before passing to kpdescribe.sh:

cat Kernel.panic | grep macOSProcessedStackshotData |

- OCBP OcAppleBootPolicyLib
- OCB OcBootManagementLib
- OCCL OcAppleChunkListLib
- OCCPU OcCpuLib
- OCC OcConsoleLib
- OCDC OcDriverConnectionLib
- OCDH OcDataHubLib
- OCDI OcAppleDiskImageLib
- OCDM OcDeviceMiscLib
- OCFS OcFileLib
- OCFV OcFirmwareVolumeLib
- OCHS OcHashServicesLib
- OCI4 OcAppleImg4Lib
- $\bullet \ \ \mathtt{OCIC} \\ \mathrm{OcImageConversionLib}$
- OCII OcInputLib
- OCJS OcApfsLib
- OCKM OcAppleKeyMapLib
- OCL OcDebugLogLib
- OCM OcMiscLib
- OCMCO OcMachoLib
- OCME OcHeciLib
- OCMM OcMemoryLib
- OCPE OcPeCoffLib, OcPeCoffExtLib
- OCPI OcFileLib, partition info
- OCPNG OcPngLib
- OCRAM OcAppleRamDiskLib
- OCRTC OcRtcLib
- OCSB OcAppleSecureBootLib
- OCSMB OcSmbiosLib
- OCSMC OcSmcLib
- OCST OcStorageLib
- OCS OcSerializedLib
- OCTPL OcTemplateLib
- OCUC OcUnicodeCollationLib
- OCUT OcAppleUserInterfaceThemeLib
- OCXML OcXmlLib

8.5 Security Properties

1. AllowNvramReset

Type: plist boolean

Failsafe: false

Description: Allow CMD+OPT+P+R handling and enable showing NVRAM Reset entry in OpenCore picker.

Note 1: It is known that some Lenovo laptops have a firmware bug, which makes them unbootable after performing NVRAM reset. See acidanthera/bugtracker#995 for more details.

Note~2: Resetting NVRAM will also erase any boot options not backed up using the bless command. For example, Linux installations to custom locations not specified in BlessOverride

2. AllowSetDefault

Type: plist boolean

Failsafe: false

Description: Allow CTRL+Enter and CTRL+Index handling to set the default boot option in the OpenCore picker.

Note 1: May be used in combination with Shift+Enter or Shift+Index when PollAppleHotKeys is enabled.

Note 2: In order to support systems with unresponsive modifiers during preboot (which includes V1 and V2 KeySupport mode on some firmware) OpenCore also allows holding the =/+ key in order to trigger 'set default'

9 NVRAM

9.1 Introduction

Has plist dict type and allows to set volatile. This section allows setting non-volatile UEFI variables commonly referred described as NVRAM variables. Refer to man nvram for more details. macOS. The macOS operating system extensively uses NVRAM variables for OS — Bootloader — Firmware intercommunication, and thus supplying several NVRAM. Hence, the supply of several NVRAM variables is required for proper macOS functioning the proper functioning of macOS.

Each NVRAM variable consists of its name, value, attributes (refer to UEFI specification), and its GUID, representing which 'section' the NVRAM variable belongs to. macOS uses—The macOS operating system makes use of several GUIDs, including but not limited to:

- 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14 (APPLE_VENDOR_VARIABLE_GUID)
- 7C436110-AB2A-4BBB-A880-FE41995C9F82 (APPLE_BOOT_VARIABLE_GUID)
- 8BE4DF61-93CA-11D2-AAOD-00E098032B8C (EFI_GLOBAL_VARIABLE_GUID)
- 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102 (OC_VENDOR_VARIABLE_GUID)

Note: Some of the variables may be added by the PlatformNVRAM or Generic subsections of the PlatformInfo section. Please ensure that variables of this section never collide with them, as set in this section do not conflict with items in those subsections as the implementation behaviour is undefined otherwise.

For proper macOS functioning it is often required to use The OC_FIRMWARE_RUNTIME protocol implementation, currently offered as a part of the OpenRuntime driver. While it brings any, is often required for macOS to function properly. While this brings many benefits, there are certain limitations which arise depending on the use some limitations that should be considered for certain use cases.

1. Not all tools may be aware of protected namespaces.

When RequestBootVarRouting is used, Boot-prefixed variable access is restricted and protected in a separate namespace. To access the original variables tools have to tools must be aware of the OC_FIRMWARE_RUNTIME logic.

9.2 Properties

1. Add

Type: plist dict

Description: Sets NVRAM variables from a map (plist dict) of GUIDs to a map (plist dict) of variable names and their values in plist multidata format. GUIDs must be provided in canonic string format in upper or lower case (e.g. 8BE4DF61-93CA-11D2-AAOD-00E098032B8C).

Created variables get The EFI_VARIABLE_BOOTSERVICE_ACCESS and EFI_VARIABLE_RUNTIME_ACCESS attributes of created variables are set. Variables will only be set if not present or deleted. I.e. That is, to overwrite an existing variable value, add the variable name to the Delete section. This approach enables to provide default values till the provision of default values until the operating system takes the lead.

Note: If The implementation behaviour is undefined when the plist key does not conform to GUID format, behaviour is undefined the GUID format.

2. Delete

Type: plist dict

Description: Removes NVRAM variables from a map (plist dict) of GUIDs to an array (plist array) of variable names in plist string format.

3. LegacyEnable

Type: plist boolean Failsafe: false

Description: Enables loading of a NVRAM variable file named nvram.plist from EFI volume root.

This file must have a root plist dictionary type and contain two fields:

- Version plist integer, file version, must be set to 1.
- Add plist dictionary, equivalent to Add from config.plist.

Variable loading happens prior to the Delete (and Add) phases. Unless LegacyOverwrite is enabled, it will not overwrite any existing variable. Variables allowed to be set must be specified in LegacySchema.

Third-party scripts may be used to create nvram.plist file. An example of such script can be found in Utilities. The use of third-party scripts may require ExposeSensitiveData set to 0x3 to provide boot-path variable with the OpenCore EFI partition UUID.

Warning: This feature is very dangerous can be dangerous, as it passes unprotected data to firmware variable services. Use it only Only use when no hardware NVRAM implementation is provided by the firmware or it when the NVRAM implementation is incompatible.

4. LegacyOverwrite

Type: plist boolean Failsafe: false

Description: Permits overwriting firmware variables from nvram.plist.

Note: Only variables accessible from the operating system will be overwritten.

5. LegacySchema

Type: plist dict

Description: Allows setting certain NVRAM variables from a map (plist dict) of GUIDs to an array (plist array) of variable names in plist string format.

* value can be used to accept all variables for certain GUID.

WARNING: Choose variables very carefully, as the nvram.plist file is not vaulted. For instance, do not put include boot-args or csr-active-config, as this can these can be used to bypass SIP.

6. WriteFlash

Type: plist boolean Failsafe: false

Description: Enables writing to flash memory for all added variables.

Note: It is recommended to have this value This value should be enabled on most types of firmware but it is left configurable to account for firmware that may have issues with NVRAM variable storage garbage collection or similar.

To The nvram command can be used to read NVRAM variable value from macOS, nvram could be used by concatenating values from macOS by concatenating the GUID and name variables separated by a : symbol. For example, nvram 7C436110-AB2A-4BBB-A880-FE41995C9F82:boot-args.

A continuously updated variable list can be found in a corresponding document: NVRAM Variables.

9.3 Mandatory Variables

Warning: These variables may be added by the PlatformNVRAM or Generic subsections of the PlatformInfo section. Using PlatformInfo is the recommended way of setting these variables.

The following variables are mandatory for macOS functioning:

- 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeatures
 32-bit FirmwareFeatures. Present on all Macs to avoid extra parsing of SMBIOS tables.
- 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeaturesMask 32-bit FirmwareFeaturesMask. Present on all Macs to avoid extra parsing of SMBIOS tables.
- 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:MLB

BoardSerialNumber. Present on newer Macs (2013+ at least) to avoid extra parsing of SMBIOS tables, especially in boot.efi.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ROM

Primary network adapter MAC address or replacement value. Present on newer Macs (2013+ at least) to avoid accessing special memory region, especially in boot.efi.

9.4 Recommended Variables

The following variables are recommended for faster startup or other improvements:

- log-level=VALUE log level bitmask.
 - * 0x01 enables trace logging (default).
- serial=VALUE enables serial logging.
 - * 0 disables serial logging (default).
 - * 1 enables serial logging for <code>EXITBS:END</code> onwards.
 - * 2 enables serial logging for EXITBS:START onwards.
 - * 3 enables serial logging when debug protocol is missing.
 - * 4 enables serial logging unconditionally.
- timestamps=VALUE enables timestamp logging.
 - * 0 disables timestamp logging.
 - * 1 enables timestamp logging (default).
- log=VALUE deprecated starting from 10.15.
 - * 1 AppleLoggingConOutOrErrSet/AppleLoggingConOutOrErrPrint (classical ConOut/StdErr)
 - $*~2 {\it AppleLoggingStdErrSet/AppleLoggingStdErrPrint~(StdErr~or~serial?)}$
 - $*~4 \\ -- \\ AppleLoggingFilePrint~(BOOTER.LOG/BOOTER.OLD~file~on~EFI~partition)$
- debug=VALUE deprecated starting from 10.15.
 - * 1 enables print something to BOOTER.LOG (stripped code implies there may be a crash)
 - \ast 2 enables perf logging to /efi/debug-log in the device three
 - * 4 enables timestamp printing for styled printf calls
- level=VALUE deprecated starting from 10.15. Verbosity level of DEBUG output. Everything but 0x80000000 is stripped from the binary, and this is the default value.

Note: To see Enable the AppleDebug option to display verbose output from boot.efi on modern macOS versions enable AppleDebug option. This will save the log to the general OpenCore log file. For versions before 10.15.4, set bootercfg to log=1. This will print verbose output onscreen.

- 7C436110-AB2A-4BBB-A880-FE41995C9F82:bootercfg-once
 - Booter arguments override removed after first launch. Otherwise equivalent to bootercfg.
- 7C436110-AB2A-4BBB-A880-FE41995C9F82:efiboot-perf-record
 - Enable performance log saving in boot.efi. Performance log is saved to physical memory and is pointed by to by the efiboot-perf-record-data and efiboot-perf-record-size variables. Starting from 10.15.4, it can also be saved to the OpenCore log by setting the AppleDebug option.
- 7C436110-AB2A-4BBB-A880-FE41995C9F82:fmm-computer-name
 - Current saved host name. ASCII string.
- 7C436110-AB2A-4BBB-A880-FE41995C9F82:nvda_drv
 - NVIDIA Web Driver control variable. Takes ASCII digit 1 or 0 to enable or disable installed driver.
- 7C436110-AB2A-4BBB-A880-FE41995C9F82:run-efi-updater
 - Override EFI firmware updating support in macOS (MultiUpdater, ThorUtil, and so on). Setting this to No or alternative boolean-castable value will prevent any firmware updates in macOS starting with 10.10 at least.
- 7C436110-AB2A-4BBB-A880-FE41995C9F82:StartupMute
 - Mute startup chime sound in firmware audio support. 8-bit integer. The value of 0x00 means unmuted. Missing variable or any other value means muted.
- 7C436110-AB2A-4BBB-A880-FE41995C9F82:SystemAudioVolume
 - System audio volume level for firmware audio support. 8-bit integer. The bit of 0x80 means muted. Lower bits are used to encode volume range specific to installed audio codec. The value is capped by MaximumBootBeepVolume AppleHDA layout value to avoid too loud audio playback in the firmware.

10 PlatformInfo

Platform information is comprised consists of several identification fields generated or filled manually to be compatible with macOS services. The base part of the configuration may be obtained from AppleModels, which itself generates a set of interfaces based on a database in YAML format. These fields are written to three destinations:

- SMBIOS
- Data Hub
- NVRAM

Most of the fields specify the overrides in SMBIOS, and their field names conform to EDK2 SmBios.h header file. However, several important fields reside in Data Hub and NVRAM. Some of the values can be found in more than one field and/or destination, so there are two ways to control their update process: manual, where all the values are specified (the default), and semi-automatic, where (Automatic) only certain values are specified, and later used for system configuration.

To inspect SMBIOS contents The dmidecode utility can be used . Version to inspect SMBIOS contents and a version with macOS specific enhancements can be downloaded from Acidanthera/dmidecode.

10.1 Properties

1. Automatic

Type: plist boolean Failsafe: false

Description: Generate PlatformInfo based on the Generic section instead of using values from the DataHub, NVRAM, and SMBIOS sections.

Enabling this option is useful when Generic section is flexible enough:

- When enabled SMBIOS, DataHub, and PlatformNVRAM data is unused.
- When disabled Generic section is unused.

Warning: It is strongly discouraged to set Setting this option to false is strongly discouraged when intending to update platform information. The only reason to do so is if making A false setting is typically only valid for minor corrections to SMBIOS values on legacy Apple hardware. In all other cases, setting Automatic to false may lead to hard to debug errors, due to hard to debug errors resulting from inconsistent or invalid settings.

2. CustomMemory

Type: plist boolean Failsafe: false

Description: Use custom memory configuration defined in the Memory section. This completely replaces any existing memory configuration in SMBIOS, and is only active when UpdateSMBIOS is set to true.

3. UpdateDataHub

Type: plist boolean

Failsafe: false

Description: Update Data Hub fields. These fields are read from the Generic or DataHub sections depending on the setting of the Automatic value property.

Note: The implementation of the Data Hub protocol in EFI firmware on essentially virtually all systems, including Apple hardware, means that existing Data Hub entries cannot be overridden, while new. New entries are added to the end of the Data Hub instead, with macOS ignoring themold entries. This can be worked around by reinstalling replacing the Data Hub protocol using the ProtocolOverrides section. Refer to the DataHub protocol override description for details.

4. UpdateNVRAM

Type: plist boolean Failsafe: false

Description: Update NVRAM fields related to platform information.

These fields are read from the Generic or PlatformNVRAM sections depending on the setting of the Automatic value property. All the other fields are to be specified with the NVRAM section.

If UpdateNVRAM is set to false, the aforementioned variables can be updated with the NVRAM section. If UpdateNVRAM is set to true, the behaviour is undefined when any of the fields are present in the NVRAM section.

5. UpdateSMBIOS

Type: plist boolean

Failsafe: false

Description: Update SMBIOS fields. These fields are read from the Generic or SMBIOS sections depending on the setting of the Automatic value property.

6. UpdateSMBIOSMode

Type: plist string Failsafe: Create

Description: Update SMBIOS fields approach:

- TryOverwrite Overwrite if new size is <= than the page-aligned original and there are no issues with legacy region unlock. Create otherwise. Has issues on some types of firmware.
- Create Replace the tables with newly allocated EfiReservedMemoryType at AllocateMaxAddress without any fallbacks.
- Overwrite Overwrite existing gEfiSmbiosTableGuid and gEfiSmbiosTable3Guid data if it fits new size. Abort with unspecified state otherwise.
- Custom Write SMBIOS tables (gEfiSmbios(3)TableGuid) to gOcCustomSmbios(3)TableGuid to workaround firmware overwriting SMBIOS contents at ExitBootServices. Otherwise equivalent to Create. Requires patching AppleSmbios.kext and AppleACPIPlatform.kext to read from another GUID: "EB9D2D31" "EB9D2D35" (in ASCII), done automatically by CustomSMBIOSGuid quirk.

Note: A side effect of using the Custom approach is making that it makes SMBIOS updates exclusive to macOS, avoiding a collision with existing Windows activation and custom OEM software but potentially obstructing the operation of Apple-specific tools.

7. UseRawUuidEncoding

Type: plist boolean

Failsafe: false

Description: Use raw encoding for SMBIOS UUIDs.

Each UUID AABBCCDD-EEFF-GGHH-IIJJ-KKLLMMNNOOPP is essentially a hexadecimal 16-byte number. It can be encoded in two ways:

- Big Endian by writing all the bytes as they are without making any order changes ({AA BB CC DD EE FF GG HH II JJ KK LL MM NN OO PP}). This method is also known as RFC 4122 encoding or Raw encoding.
- Little Endian by interpreting the bytes as numbers and using Little Endian byte representation ({DD CC BB AA FF EE HH GG II JJ KK LL MM NN 00 PP}).

The SMBIOS specification did not explicitly specify the encoding format for the UUID up to SMBIOS 2.6, where it stated that Little Endian encoding shall be used. This led to the confusion in both firmware implementations and system software as different vendors used different encodings prior to that.

- Apple uses the Big Endian format everywhere but it ignores SMBIOS UUID within macOS.
- dmidecode uses the Big Endian format for SMBIOS 2.5.x or lower and the Little Endian format for 2.6 and newer. Acidanthera dmidecode prints all the three.
- Windows uses the Little Endian format everywhere, but it this only affects the visual representation of the values.

OpenCore always sets a recent SMBIOS version (currently 3.2) when generating the modified DMI tables. If UseRawUuidEncoding is enabled, then the Big Endian format is used to store the SystemUUID data. Otherwise, the Little Endian format is used.

Note: Since This preference does not affect UUIDs used in DataHub and NVRAM as they are not standardised and are added by Apple, this preference does not affect them. Unlike SMBIOS, they are always stored in the Big Endian format.

8. Generic

Type: plist dictionary

Description: Update all fields in Automatic mode.

Note: This section is ignored but may not be removed when Automatic is false.

9. DataHub

Type: plist dictionary

Description: Update Data Hub fields in non-Automatic mode.

Note: This section is ignored and may be removed when Automatic is true.

10. Memory

Type: plist dictionary

Description: Define custom memory configuration.

Note: This section is ignored and may be removed when CustomMemory is false.

11. PlatformNVRAM

Type: plist dictionary

Description: Update platform NVRAM fields in non-Automatic mode.

Note: This section is ignored and may be removed when Automatic is true.

12. SMBIOS

Type: plist dictionary

Description: Update SMBIOS fields in non-Automatic mode.

Note: This section is ignored and may be removed when Automatic is true.

10.2 Generic Properties

1. SpoofVendor

Type: plist boolean Failsafe: false

Description: Sets SMBIOS vendor fields to Acidanthera.

It is can be dangerous to use Apple "Apple" in SMBIOS vendor fields for reasons given outlined in the SystemManufacturer description. However, certain firmware may not provide valid values otherwise, which could obstruct the operation of some software.

2. AdviseWindows

Type: plist boolean Failsafe: false

Description: Forces Windows support in FirmwareFeatures.

Added bits to FirmwareFeatures:

- FW_FEATURE_SUPPORTS_CSM_LEGACY_MODE (0x1) Without this bit, it is not possible to reboot to Windows installed on a drive with EFI partition being an EFI partition that is not the first partition on the disk.
- FW_FEATURE_SUPPORTS_UEFI_WINDOWS_BOOT (0x20000000) Without this bit, it is not possible to reboot to Windows installed on a drive with EFI partition being an EFI partition that is the first partition on the disk.

3. MaxBIOSVersion

Type: plist boolean

Failsafe: false

Description: Sets BIOSVersion to 9999.999.999.999, recommended for legacy Macs when using Automatic PlatformInfo, to avoid BIOS updates in unofficially supported macOS versions.

4. SystemMemoryStatus

Type: plist string

Failsafe: Auto

Description: Indicates whether system memory is upgradable in PlatformFeature. This controls the visibility of the Memory tab in "About This Mac".

Valid values:

• Auto — use the original PlatformFeature value.

Type: plist integer, 64-bit Failsafe: 0 (Automatic)

Description: Sets ARTFrequency in gEfiProcessorSubClassGuid.

This value contains CPU ART frequency, also known as crystal clock frequency. Its existence is exclusive to the Skylake generation and newer. The value is specified in Hz, and is normally 24 MHz for the client Intel segment, 25 MHz for the server Intel segment, and 19.2 MHz for Intel Atom CPUs. macOS till 10.15 inclusive assumes 24 MHz by default.

Note: On Intel Skylake X ART frequency may be a little less (approx. 0.25%) than 24 or 25 MHz due to special EMI-reduction circuit as described in Acidanthera Bugtracker.

11. DevicePathsSupported

Type: plist integer, 32-bit Failsafe: 0 (Not installed)

Description: Sets DevicePathsSupported in gEfiMiscSubClassGuid. Must be set to 1 for AppleACPIPlatform.kext to append SATA device paths to Boot#### and efi-boot-device-data variables. Set to 1 on all modern Macs.

12. SmcRevision

Type: plist data, 6 bytes
Failsafe: Empty (Not installed)

Description: Sets REV in gEfiMiscSubClassGuid. Custom property read by VirtualSMC or FakeSMC to generate SMC REV key.

13. SmcBranch

Type: plist data, 8 bytes Failsafe: Empty (Not installed)

Description: Sets RBr in gEfiMiscSubClassGuid. Custom property read by VirtualSMC or FakeSMC to generate SMC RBr key.

14. SmcPlatform

Type: plist data, 8 bytes Failsafe: Empty (Not installed)

Description: Sets RPlt in gEfiMiscSubClassGuid. Custom property read by VirtualSMC or FakeSMC to generate SMC RPlt key.

10.4 Memory Properties

1. DataWidth

Type: plist integer, 16-bit Failsafe: OxFFFF (unknown)

SMBIOS: Memory Device (Type 17) — Data Width

Description: Specifies the data width, in bits, of the memory. A DataWidth of 0 and a TotalWidth of 8 indicates that the device is being used solely to provide 8 error-correction bits.

2. Devices

Type: plist array Failsafe: Empty

Description: Specifies the custom memory devices to be added.

Designed to be filled with plist dictionary values, describing each memory device. See the Memory Devices Properties section below. This should include all memory slots, even if unpopulated.

3. ErrorCorrection

Type: plist integer, 8-bit

Failsafe: 0x03

SMBIOS: Physical Memory Array (Type 16) — Memory Error Correction

Description: Specifies the primary hardware error correction or detection method supported by the memory.

- 0x01 Other
- 0x02 Unknown
- 0x03 None

- 0x04 Parity
- 0x05 Single-bit ECC
- 0x06 Multi-bit ECC
- 0x07 CRC

4. FormFactor

Type: plist integer, 8-bit

Failsafe: 0x02

SMBIOS: Memory Device (Type 17) — Form Factor

Description: Specifies the form factor of the memory. On Macs, this should typically be DIMM or SODIMM. Commonly used form factors are listed below.

When CustomMemory is false, this value is automatically set based on Mac product name.

When Automatic is true, the original value from the the corresponding Mac model will be set if available. Otherwise, the value from OcMacInfoLib will be set. When Automatic is false, a user-specified value will be set if available. Otherwise, the original value from the firmware will be set. If no value is provided, the fallback value (zero) will be set.

- 0x01 Other
- 0x02 Unknown
- 0x09 DIMM
- 0x0D SODIMM
- 0x0F FB-DIMM

5. MaxCapacity

Type: plist integer, 64-bit

Failsafe: 0

SMBIOS: Physical Memory Array (Type 16) — Maximum Capacity

Description: Specifies the maximum amount of memory, in bytes, supported by the system.

6. TotalWidth

Type: plist integer, 16-bit Failsafe: 0xFFFF (unknown)

SMBIOS: Memory Device (Type 17) — Total Width

Description: Specifies the total width, in bits, of the memory, including any check or error-correction bits. If there are no error-correction bits, this value should be equal to DataWidth.

7. Type

Type: plist integer, 8-bit

Failsafe: 0x02

SMBIOS: Memory Device (Type 17) — Memory Type

Description: Specifies the memory type. Commonly used types are listed below.

- 0x01 Other
- 0x02 Unknown
- 0x0F SDRAM
- 0x12 DDR
- 0x13 DDR2
- 0x14 DDR2 FB-DIMM
- 0x18 DDR3
- 0x1A DDR4
- 0x1B LPDDR
- 0x1C LPDDR2
- 0x1D LPDDR3
- 0x1E LPDDR4

8. TypeDetail

Type: plist integer, 16-bit

Failsafe: 0x4

SMBIOS: Memory Device (Type 17) — Type Detail

Description: Specifies additional memory type information.

SMBIOS: System Enclosure or Chassis (Type 3) — Type

Description: Chassis type, refer to Table 17 — System Enclosure or Chassis Types for more details.

20. ChassisVersion

Type: plist string

Failsafe: Empty (OEM specified)

SMBIOS: System Enclosure or Chassis (Type 3) — Version

Description: Should match BoardProduct.

21. ChassisSerialNumber

Type: plist string

Failsafe: Empty (OEM specified)

SMBIOS: System Enclosure or Chassis (Type 3) — Version

Description: Should match SystemSerialNumber.

22. ChassisAssetTag

Type: plist string

Failsafe: Empty (OEM specified)

SMBIOS: System Enclosure or Chassis (Type 3) — Asset Tag Number

Description: Chassis type name. Varies, could be empty or MacBook-Aluminum.

23. PlatformFeature

Type: plist integer, 32-bit

Failsafe: 0xFFFFFFF (OEM specified on Apple hardware, do not provide the table otherwise)

SMBIOS: APPLE_SMBIOS_TABLE_TYPE133 - PlatformFeature

Description: Platform features bitmask. Refer to AppleFeatures.h for more details. Missing on older Macs.

24. SmcVersion

Type: plist data, 16 bytes

Failsafe: All zero (OEM specified on Apple hardware, do not provide the table otherwise)

SMBIOS: APPLE_SMBIOS_TABLE_TYPE134 - Version

Description: ASCII string containing SMC version in upper case. Missing on T2 based Macs.

25. FirmwareFeatures

Type: plist data, 8 bytes

Failsafe: 0 (OEM specified on Apple hardware, 0 otherwise)

SMBIOS: APPLE_SMBIOS_TABLE_TYPE128 - FirmwareFeatures and ExtendedFirmwareFeatures

Description: 64-bit firmware features bitmask. Refer to AppleFeatures.h for more details. Lower 32 bits match FirmwareFeatures. Upper 64 bits match ExtendedFirmwareFeatures.

26. FirmwareFeaturesMask

Type: plist data, 8 bytes

Failsafe: 0 (OEM specified on Apple hardware, 0 otherwise)

SMBIOS: APPLE_SMBIOS_TABLE_TYPE128 - FirmwareFeaturesMask and ExtendedFirmwareFeaturesMask Description: Supported bits of extended firmware features bitmask. Refer to AppleFeatures.h for more details.

Lower 32 bits match FirmwareFeaturesMask. Upper 64 bits match ExtendedFirmwareFeaturesMask.

27. ProcessorType

Type: plist integer, 16-bit Failsafe: 0 (Automatic)

SMBIOS: APPLE_SMBIOS_TABLE_TYPE131 - ProcessorType Description: Combined of Processor Major and Minor types.

Automatic value generation tries to provide attempts to provide the most accurate value for the currently installed CPU. When this failsplease make sure to create, please raise an issue and provide sysctl machdep.cpu and dmidecode output. For a full list of available values and their limitations (the value will only apply if the CPU core count matches) refer to the Apple SMBIOS definitions header here.

11 UEFI

11.1 Introduction

UEFI (Unified Extensible Firmware Interface) is a specification that defines a software interface between an operating system and platform firmware. This section allows to load loading additional UEFI modules and/or apply tweaks for as well as applying tweaks to the onboard firmware. To inspect firmware contents, apply modifications and perform upgrades UEFITool and supplementary utilities can be used.

11.2 Drivers

Depending on the firmware, a different set of drivers may be required. Loading an incompatible driver may lead the system to unbootable state or even cause permanent firmware damage. Some of the known drivers are listed below:

AudioDxe* HDA audio support driver in UEFI firmware for most Intel and some other analog audio controllers. Staging driver, refer to acidanthera/bugtracker#740 for known issues in AudioDxe. CrScreenshotDxe* Screenshot making driver saving images to the root of OpenCore partition (ESP) or any available writeable filesystem upon pressing F10. This is a modified version of CrScreenshotDxe driver by Nikolaj Schlej. Proprietary ExFAT file system driver for Bootcamp support commonly found in Apple ExFatDxe firmware. For Sandy Bridge and earlier CPUs, the ExFatDxeLegacy driver should be used due to the lack of RDRAND instruction support. Recommended. Proprietary HFS file system driver with bless support commonly found in HfsPlus Apple firmware. For Sandy Bridge and earlier CPUs, the HfsPlusLegacy driver should be used due to the lack of RDRAND instruction support. HiiDatabase* HII services support driver from MdeModulePkg. This driver is included in most types of firmware starting with the Ivy Bridge generation. Some applications with GUI, such as UEFI Shell, may need this driver to work properly. FAT filesystem driver from FatPkg. This driver is embedded in all UEFI firmware and cannot EnhancedFatDxe be used from OpenCore. Several types of firmware have defective FAT support implementation that may lead to corrupted filesystems on write attempts. Embedding this driver within the firmware may be required in case writing to the EFI partition is needed during the boot NvmExpressDxe* NVMe support driver from MdeModulePkg. This driver is included in most firmware starting with the Broadwell generation. For Haswell and earlier, embedding it within the firmware may be more favourable in case a NVMe SSD drive is installed. OpenCanopy* OpenCore plugin implementing graphical interface. OpenRuntime* OpenCore plugin implementing OC_FIRMWARE_RUNTIME protocol. OpenUsbKbDxe* USB keyboard driver adding support for AppleKeyMapAggregator protocols on top of a custom USB keyboard driver implementation. This is an alternative to builtin KeySupport, which may work better or worse depending on the firmware. OpenPartitionDxe* Partition management driver with Apple Partitioning Scheme support. This driver can be used to support loading older DMG recoveries such as macOS 10.9 using Apple Partitioning Scheme. OpenDuet already includes this driver. PS/2 keyboard driver from MdeModulePkg. OpenDuetPkg and some types of firmware may not Ps2KeyboardDxe* include this driver, but it is necessary for PS/2 keyboard to work. Note, unlike OpenUsbKbDxe this driver has no AppleKeyMapAggregator support and thus requires KeySupport to be enabled. Ps2MouseDxe* PS/2 mouse driver from MdeModulePkg. Some very old laptop firmware may not include this driver but it is necessary for the touchpad to work in UEFI graphical interfaces such as OpenCanopy. OpenHfsPlus* HFS file system driver with bless support. This driver is an alternative to a closed source HfsPlus driver commonly found in Apple firmware. While it is feature complete, it is approximately 3 times slower and is yet to undergo a security audit. UsbMouseDxe* USB mouse driver from MdeModulePkg. Some virtual machine firmware such as OVMF may not include this driver but it is necessary for the mouse to work in UEFI graphical interfaces such as OpenCanopy. XHCI USB controller support driver from MdeModulePkg. This driver is included in most XhciDxe* types of firmware starting with the Sandy Bridge generation. For earlier firmware or legacy systems, it may be used to support external USB 3.0 PCI cards.

Driver marked with * are bundled with OpenCore. To compile the drivers from UDK (EDK II) the same command used for OpenCore compilation can be taken, but choose a corresponding package:

git clone https://github.com/acidanthera/audk UDK
cd UDK
source edksetup.sh
make -C BaseTools
build -a X64 -b RELEASE -t XCODE5 -p FatPkg/FatPkg.dsc
build -a X64 -b RELEASE -t XCODE5 -p MdeModulePkg/MdeModulePkg.dsc

11.3 Tools and Applications

Standalone tools may help to debug firmware and hardware. Some of the known tools are listed below. While some tools can be launched from within OpenCore , see more details in (Refer to the Tools subsection of the configuration for more details), most should be run separately either directly or from Shell.

To boot into OpenShell or any other tool directly save OpenShell.efi under the name of EFI\BOOT\BOOTX64.EFI on a FAT32 partition. It is typically unimportant whether the partition scheme is GPT or MBR.

While the previous approach works both on Macs and other computers, an alternative Mac-only approach to bless the tool on an HFS+ or APFS volume:

```
sudo bless --verbose --file /Volumes/VOLNAME/DIR/OpenShell.efi \
    --folder /Volumes/VOLNAME/DIR/ --setBoot
```

Listing 3: Blessing tool

- Note 1: /System/Library/CoreServices/BridgeVersion.bin should be copied to /Volumes/VOLNAME/DIR.
- Note 2: To be able to use the bless command, disabling System Integrity Protection is necessary.
- Note 3: To be able to boot Secure Boot might be disabled if present.

Some of the known tools are listed below (builtin tools are marked with *):

BootKicker*	Enter Apple BootPicker menu (exclusive for Macs with compatible GPUs).		
ChipTune*	Test BeepGen protocol and generate audio signals of different style and length.		
CleanNvram*	Reset NVRAM alternative bundled as a standalone tool.		
GopStop*	Test GraphicsOutput protocol with a simple scenario.		
KeyTester*	Test keyboard input in SimpleText mode.		
MemTest86	Memory testing utility.		
OpenControl*	Unlock and lock back NVRAM protection for other tools to be able to get full NVRAM		
	access when launching from OpenCore.		
OpenShell*	OpenCore-configured UEFI Shell for compatibility with a broad range of firmware.		
PavpProvision	Perform EPID provisioning (requires certificate data configuration).		
ResetSystem*	Utility to perform system reset. Takes reset type as an argument: ColdReset, Firmware,		
	Shutdown, WarmReset. Defaults to ColdReset.		
RtcRw*	Utility to read and write RTC (CMOS) memory.		
ControlMsrE2*	Check CFG Lock (MSR 0xE2 write protection) consistency across all cores and change		
	hidden options on selected platforms.		

11.4 OpenCanopy

OpenCanopy is a graphical OpenCore user interface that runs in External PickerMode and relies on OpenCorePkg OcBootManagementLib similar to the builtin text interface.

OpenCanopy requires graphical resources located in Resources directory to run. Sample resources (fonts and images) can be found in OcBinaryData repository. Customised icons can be found over the internet (e.g. here or there).

OpenCanopy provides full support for PickerAttributes and offers a configurable builtin icon set. The default chosen icon set depends on the DefaultBackgroundColor variable value. For Light Gray Old icon set will be used, for other colours — the one without a prefix.

Predefined icons are saved in the \EFI\OC\Resources\Image directory. A full list of supported icons (in .icns format) is provided below. When optional icons are missing, the closest available icon will be used. External entries will use Ext-prefixed icon if available (e.g. OldExtHardDrive.icns).

Note: In the following all dimensions are normative for the 1x scaling level and shall be scaled accordingly for other levels.

- Cursor Mouse cursor (mandatory, up to 144x144).
- Selected Selected item (mandatory, 144x144).
- Selector Selecting item (mandatory, up to 144x40).
- Left Scrolling left (mandatory, 40x40).
- Right Scrolling right (mandatory, 40x40).

Failsafe: None

Description: Apply individual firmware quirks described in the Quirks Properties section below.

9. ReservedMemory

Type: plist array

Description: Designed to be filled with plist dict values, describing memory areas exquisite to particular exclusive to specific firmware and hardware functioning, which should not be used by the operating system. An example Examples of such memory region could be regions could be the second 256 MB corrupted by the Intel HD 3000 or an area with faulty RAM. See the ReservedMemory Properties section below.

11.7 APFS Properties

1. EnableJumpstart

Type: plist boolean Failsafe: false

Description: Load embedded APFS drivers from APFS containers.

An APFS EFI driver is bundled in all bootable APFS containers. This option performs the loading of signed APFS drivers with respect to (consistent with the ScanPolicy. See more details in). Refer to the "EFI Jumpstart" section of the Apple File System Reference for more details.

2. GlobalConnect

Type: plist boolean Failsafe: false

Description: Perform full device connection during APFS loading.

Instead of Every handle is connected recursively instead of the partition handle connection normally typically used for APFS driver loading every handle is connected recursively. This may take more time than usual but ean result in additional time being taken but can sometimes be the only way to access APFS partitions on some types of firmware certain firmware, such as those on older HP laptops.

3. HideVerbose

Type: plist boolean Failsafe: false

Description: Hide verbose output from APFS driver.

APFS verbose output can be useful for debugging.

4. JumpstartHotPlug

Type: plist boolean
Failsafe: false

Description: Load APFS drivers for newly connected devices.

Performs APFS driver loading not only Permits APFS USB hot plug which enables loading APFS drivers, both at OpenCore startup but also during the OpenCore picker. This permits APFS USB hot plug. and during OpenCore picker dusplay. Disable if not required.

5. MinDate

Type: plist integer

Failsafe: 0

Description: Minimal allowed APFS driver date.

The APFS driver date connects the APFS driver with the calendar release date. Older versions of APFS drivers may contain unpatched vulnerabilities, which Apple ultimately drops support for older macOS releases and APFS drivers from such releases may contain vulnerabilities that can be used to inflict harm to the computer compromise a computer if such drivers are used after support ends. This option permits restricting APFS drivers to only recent releases current macOS versions.

- 0 require the default supported release date of APFS in OpenCore. The default release date will increase with time and thus this setting is recommended. Currently set to 2018/06/21.
- -1 permit any release date to load (strongly discouraged).
- Other use custom minimal APFS release date, e.g. 20200401 for 2020/04/01. APFS release dates can be found in OpenCore boot log and OcApfsLib.

6. MinVersion

Type: plist integer

Failsafe: 0

Description: Minimal allowed APFS driver version.

The APFS driver version connects the APFS driver with the macOS release. APFS drivers from Apple ultimately drops support for older macOS releases will become unsupported and thus may contain unpatched vulnerabilities , which and APFS drivers from such releases may contain vulnerabilities that can be used to inflict harm to the computer compromise a computer if such drivers are used after support ends. This option permits restricting APFS drivers to only modern current macOS versions.

- 0 require the default supported version of APFS in OpenCore. The default version will increase with time and thus this setting is recommended. Currently set to the latest point release from High Sierra from App Store (748077008000000).
- -1 permit any version to load (strongly discouraged).
- Other use custom minimal APFS version, e.g. 1412101001000000 from macOS Catalina 10.15.4. APFS versions can be found in OpenCore boot log and OcApfsLib.

11.8 Audio Properties

1. AudioCodec

Type: plist integer

Failsafe: 0

Description: Codec address on the specified audio controller for audio support.

Normally this contains This typically contains the first audio codec address on the builtin analog audio controller (HDEF). Audio codec addresses, e.g. 2, can be found in the debug log (marked in bold-italic):

```
OCAU: 1/3 PciRoot(0x0)/Pci(0x1,0x0)/Pci(0x0,0x1)/VenMsg(<redacted>,00000000) (4 outputs)
```

OCAU: 2/3 PciRoot(0x0)/Pci(0x3,0x0)/VenMsg(<redacted>,00000000) (1 outputs)

OCAU: 3/3 PciRoot(0x0)/Pci(0x1B,0x0)/VenMsg(<redacted>,02000000) (7 outputs)

As an alternative, this value can be obtained from IOHDACodecDevice class in I/O Registry containing it in IOHDACodecAddress field.

2. AudioDevice

Type: plist string Failsafe: Empty

Description: Device path of the specified audio controller for audio support.

Normally this This typically contains builtin analog audio controller (HDEF) device path, e.g. PciRoot(0x0)/Pci(0x1b,0x0). The list of recognised audio controllers can be found in the debug log (marked in bold-italic):

```
OCAU: 1/3 PciRoot(0x0)/Pci(0x1,0x0)/Pci(0x0,0x1)/VenMsg(<redacted>,00000000) (4 outputs)
```

OCAU: 2/3 PciRoot(0x0)/Pci(0x3,0x0)/VenMsg(<redacted>,00000000) (1 outputs)
OCAU: 3/3 PciRoot(0x0)/Pci(0x1B,0x0)/VenMsg(<redacted>,02000000) (7 outputs)

As an alternative, gfxutil -f HDEF command can be used in macOS. Specifying an empty device path will

3. AudioOut

Type: plist integer

Failsafe: 0

Description: Index of the output port of the specified codec starting from 0.

result in the first available audio controller to be being used.

Normally this This typically contains the index of the green out of the builtin analog audio controller (HDEF). The number of output nodes (N) in the debug log (marked in bold-italic):

```
OCAU: 1/3 PciRoot(0x0)/Pci(0x1,0x0)/Pci(0x0,0x1)/VenMsg(<redacted>,00000000) (4 outputs)
```

OCAU: 2/3 PciRoot(0x0)/Pci(0x3,0x0)/VenMsg(<redacted>,00000000) (1 outputs)

OCAU: 3/3 PciRoot(0x0)/Pci(0x1B,0x0)/VenMsg(<redacted>,02000000) (7 outputs)

The quickest way to find the right port is to bruteforce the values from 0 to N-1.

4. AudioSupport

Type: plist boolean

Failsafe: false

Description: Activate audio support by connecting to a backend driver.

Enabling this setting routes audio playback from builtin protocols to a dedicated audio port (AudioOut) of the specified codec (AudioCodec) located on the audio controller (AudioDevice).

5. MinimumVolume

Type: plist integer

Failsafe: 0

Description: Minimal heard volume level from 0 to 100.

Screen—The screen reader will use this volume level —when the calculated volume level is less—lower than MinimumVolume —Boot chime sound and the boot chime will not play if the calculated volume level is less—lower than MinimumVolume.

6. PlayChime

Type: plist string

Failsafe: Auto

Description: Play chime sound at startup.

Enabling this setting plays boot chime through the boot chime using the builtin audio support. Volume The volume level is determined by the MinimumVolume and VolumeAmplifier settings and as well as the SystemAudioVolume NVRAM variable. Possible values include:

- Auto Enables chime when StartupMute NVRAM variable is not present or set to 00.
- Enabled Enables chime unconditionally.
- Disabled Disables chime unconditionally.

Note: Enabled can be used in separate from StartupMute NVRAM variable to avoid conflicts when the firmware is able to play the boot chime.

7. ResetTrafficClass

Type: plist boolean

Failsafe: false

Description: Set HDA Traffic Class Select Register to TCO.

AppleHDA kext will function correctly only if TCSEL register is configured to use TC0 traffic class. Refer to Intel I/O Controller Hub 9 (ICH9) Family Datasheet (or any other ICH datasheet) for more details about this register.

Note: This option is independent from AudioSupport. If AppleALC is used it is preferred to use AppleALC alctsel property instead.

8. SetupDelay

Type: plist integer

Failsafe: 0

Description: Audio codec reconfiguration delay in microseconds.

Some codecs require a vendor-specific delay after the reconfiguration (e.g. volume setting). This option makes it configurable. A typical delay can be up to 0.5 seconds.

9. VolumeAmplifier

Type: plist integer

Failsafe: 0

Description: Multiplication coefficient for system volume to raw volume linear translation from 0 to 1000.

Volume level range read from SystemAudioVolume varies depending on the codec. To transform read value in [0, 127] range into raw volume range [0, 100] the read value is scaled to VolumeAmplifier percents:

$$RawVolume = MIN(\frac{SystemAudioVolume*VolumeAmplifier}{100}, 100)$$

Note: the transformation used in macOS is not linear, but it is very close and this nuance is thus ignored.

11.9 Input Properties

1. KeyFiltering

Type: plist boolean Failsafe: false

Description: Enable keyboard input sanity checking.

Apparently some boards such as the GA Z77P-D3 may return uninitialised data in EFI_INPUT_KEY with all input protocols. This option discards keys that are neither ASCII, nor are defined in the UEFI specification (see tables 107 and 108 in version 2.8).

2. KeyForgetThreshold

Type: plist integer

Failsafe: 0

Description: Remove key unless it was submitted Treat duplicate key presses as held keys if they arrive during this timeoutin milliseconds., in 10 ms units. Only applies to systems using KeySupport.

AppleKeyMapAggregator protocol is supposed to contain a fixed length buffer of currently pressed keys. However, the majority of the drivers only which require KeySupport report key presses as interruptsand pressing and holding the key on the keyboard results in subsequent submissions of this key, with automatically generated key repeat behaviour with some defined time intervalinitial and subsequent delay. As a result, to emulate the raw key behaviour required by several Apple boot systems, we use a timeout to remove once pressed keys from the buffer once the timeout expires and no new submission of this key happenedmerge multiple repeated keys which are submitted within a small timeout window.

This option allows to set setting this timeout based on the platform. The recommended value that works on for the majority of the platforms is platforms is from 5 milliseconds (50 milliseconds) to 7 (70 milliseconds), although values up to 9 (90 milliseconds) have been observed to be required on some PS/2 systems. For reference, holding one a key on VMware will repeat it roughly every roughly every 220 milliseconds and the same equivalent value for APTIO V is 3-430-40 milliseconds. Thus KeyForgetThreshold should be configured to be longer than this. Thus, it is possible to set a slightly lower value on faster platforms and slightly configure a lower KeyForgetThreshold value on platforms with a faster native driver key repeat rate, for more responsive input, and it is required to set a higher value on slower platforms for more responsive input.

Pressing keys one after the other results in delays of at least 660 and 10100 milliseconds for the same platforms. Ideally, KeyForgetThreshold should remain lower than this value, to avoid merging real key presses.

Note: Some platforms may require different values, higher or lower. For example, when detecting key misses in OpenCanopy try increasing this value (e.g. to 10), and when detecting keystall, try decreasing this value. Since every platform is different it may be reasonable to check every value from 1 to 25If you wish to fine tune this value, a good heuristic is to use the 'set default' indicator within either OpenCanopy or the builtin picker. When KeyForgetThreshold is configured correctly, this indicator should flicker once, when first pressing and holding the CTRL or =/+ key, and then after a further very brief interval should go on and stay on. (The initial flicker is an unavoidable artefact of using KeySupport to emulate raw keyboard data.) If KeyForgetThreshold is configured too low for the system, then the 'set default' indicator will continue to flicker while CTRL or =/+ is held. Configure the lowest value which causes this indicator to go on and stay on after the first initial flicker.

3. KeySupport

Type: plist boolean Failsafe: false

Description: Enable internal keyboard input translation to AppleKeyMapAggregator protocol.

This option activates the internal keyboard interceptor driver, based on AppleGenericInput, also known as AptioInputFix, to fill the AppleKeyMapAggregator database for input functioning. In ease cases where a separate driver is used, such as OpenUsbKbDxe is used, this option should never be enabled.

4. KeySupportMode

Type: plist string Failsafe: Auto

Description: Set internal keyboard input translation to AppleKeyMapAggregator protocol mode.

- Auto Performs automatic choice as available with the following preference: AMI, V2, V1.
- V1 Uses UEFI standard legacy input protocol EFI_SIMPLE_TEXT_INPUT_PROTOCOL.

- V2 Uses UEFI standard modern input protocol EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.
- AMI Uses APTIO input protocol AMI EFIKEYCODE PROTOCOL.

Note: Currently V1, V2, and AMI unlike Auto only do filtering of the particular specified protocol. This may change in the future versions.

5. KeySwap

Type: plist boolean Failsafe: false

Description: Swap Command and Option keys during submission.

This option may be useful for keyboard layouts with Option key situated to the right of Command key.

6. PointerSupport

Type: plist boolean Failsafe: false

Description: Enable internal pointer driver.

This option implements standard UEFI pointer protocol (EFI_SIMPLE_POINTER_PROTOCOL) through certain OEM protocols. The option may be useful on Z87 ASUS boards, where EFI_SIMPLE_POINTER_PROTOCOL is defective.

7. PointerSupportMode

Type: plist string Failsafe: Empty

Description: Set OEM protocol used for internal pointer driver.

Currently the only supported variant is ASUS, using specialised protocol available on certain Z87 and Z97 ASUS boards. More details can be found in LongSoft/UefiTool#116. The value of this property cannot be empty if PointerSupport is enabled.

8. TimerResolution

Type: plist integer

Failsafe: 0

Description: Set architecture timer resolution.

This option allows to update updating the firmware architecture timer period with the specified value in 100 nanosecond units. Setting a lower value generally typically improves performance and responsiveness of the interface and input handling.

The recommended value is 50000 (5 milliseconds) or slightly higher. Select ASUS Z87 boards use 60000 for the interface. Apple boards use 100000. In case of issues, this option can be left as 0.

11.10 Output Properties

1. TextRenderer

Type: plist string Failsafe: BuiltinGraphics

Description: Chooses renderer for text going through standard console output.

Currently two renderers are supported: Builtin and System. System renderer uses firmware services for text rendering. Builtin bypassing firmware services and performs text rendering on its own. Different renderers support a different set of options. It is recommended to use Builtin renderer, as it supports HiDPI mode and uses full screen resolution.

UEFI firmware generally typically supports ConsoleControl with two rendering modes: Graphics and Text. Some types of firmware do not support ConsoleControl and rendering modes. OpenCore and macOS expect text to only be shown in Graphics mode and graphics to be drawn in any mode. Since this is not required by UEFI specification, exact behaviour varies.

Valid values are combinations of text renderer and rendering mode:

- BuiltinGraphics Switch to Graphics mode and use Builtin renderer with custom ConsoleControl.
- $\bullet \ \ {\tt BuiltinText} {\tt Switch} \ \ {\tt to} \ \ {\tt Text} \ \ {\tt mode} \ \ {\tt and} \ \ {\tt use} \ \ {\tt Builtin} \ \ {\tt renderer} \ \ {\tt with} \ \ {\tt custom} \ \ {\tt ConsoleControl}.$
- $\bullet \ \ System Graphics -- Switch \ to \ Graphics \ mode \ and \ use \ System \ renderer \ with \ custom \ {\tt ConsoleControl}.$
- SystemText Switch to Text mode and use System renderer with custom ConsoleControl.

• SystemGeneric — Use System renderer with system ConsoleControl assuming it behaves correctly.

The use of BuiltinGraphics is generally straightforward. For most platforms, it is necessary to enable ProvideConsoleGop, and set Resolution to Max. The BuiltinText variant is an alternative BuiltinGraphics for some very old and defective laptop firmware, which can only draw in Text mode.

The use of System protocols is more complicated. Typically, the preferred setting is SystemGraphics or SystemText. Enabling ProvideConsoleGop, setting Resolution to Max, enabling ReplaceTabWithSpace is useful on almost all platforms. SanitiseClearScreen, IgnoreTextInGraphics, and ClearScreenOnModeSwitch are more specific, and their use depends on the firmware.

Note: Some Macs, such as the MacPro5,1, may have incompatible console output when using modern GPUs, and thus only BuiltinGraphics may work for them in such cases. NVIDIA GPUs may require additional firmware upgrades.

2. ConsoleMode

Type: plist string

Failsafe: Empty (Maintain current console mode)

Description: Sets console output mode as specified with the WxH (e.g. 80x24) formatted string.

Set to Max to attempt using the largest available console mode. This option is currently ignored as the Builtin text renderer only supports one console mode.

Note: This field is best left empty on most types of firmware.

3. Resolution

Type: plist string

Failsafe: Empty (Maintain current screen resolution)

Description: Sets console output screen resolution.

- Set to WxH@Bpp (e.g. 1920x1080@32) or WxH (e.g. 1920x1080) formatted string to request custom resolution from GOP if available.
- Set to Max to attempt using the largest available screen resolution.

On HiDPI screens APPLE_VENDOR_VARIABLE_GUID UIScale NVRAM variable may need to be set to 02 to enable HiDPI scaling in Builtin text renderer, FileVault 2 UEFI password interface, and boot screen logo. Refer to the Recommended Variables section for more details.

Note: This will fail when console handle has no GOP protocol. When the firmware does not provide it, it can be added with ProvideConsoleGop set to true.

4. ForceResolution

Type: plist boolean

Failsafe: false

Description: Forces Resolution to be set in cases where the desired resolution is not available by default, such as on legacy Intel GMA and first generation Intel HD Graphics (Ironlake/Arrandale). Setting Resolution to Max will try to pull the largest available resolution from the connected display's EDID.

Note: This option depends on the OC_FORCE_RESOLUTION_PROTOCOL protocol being present. This protocol is currently only supported by OpenDuetPkg. The OpenDuetPkg implementation currently only supports Intel iGPUs.

5. ClearScreenOnModeSwitch

 $\mathbf{Type}:$ plist boolean

Failsafe: false

Description: Some types of firmware only clear part of the screen when switching from graphics to text mode, leaving a fragment of previously drawn images visible. This option fills the entire graphics screen with black colour before switching to text mode.

Note: This option only applies to System renderer.

6. DirectGopRendering

Type: plist boolean

Failsafe: false

Description: Use builtin graphics output protocol renderer for console.

13. UgaPassThrough

Type: plist boolean

Failsafe: false

Description: Provide UGA protocol instances on top of GOP protocol instances.

Some types of firmware do not implement the legacy UGA protocol but this may be required for screen output by older EFI applications such as EfiBoot from 10.4.

11.11 ProtocolOverrides Properties

1. AppleAudio

Type: plist boolean Failsafe: false

Description: Replaces Apple audio protocols with builtin versions.

Apple audio protocols allow macOS bootloader and OpenCore OpenCore and the macOS bootloader to play sounds and signals for screen reading or audible error reporting. Supported protocols are beep generation and VoiceOver. The VoiceOver protocol is specific to Gibraltar machines (T2) and is not supported before macOS High Sierra (10.13). Instead older Older macOS versions use AppleHDA protocol, which is currently not implemented the AppleHDA protocol (which is not currently implemented) instead.

Only one set of audio protocols can be available at a time, so this setting should be enabled in order to get enable audio playback in the OpenCore user interface on Mac systems implementing some of these protocolsthis setting should be enabled.

Note: Backend_The backend audio driver needs to be configured in UEFI Audio section for these protocols to be able to stream audio.

2. AppleBootPolicy

Type: plist boolean Failsafe: false

Description: Replaces the Apple Boot Policy protocol with a builtin version. This may be used to ensure APFS compatibility on VMs and legacy Macs.

Note: This option is advisable on certain Macs, such as the MacPro5,1, that are APFS compatible but on which the Apple Boot Policy protocol has recovery detection issues.

3. AppleDebugLog

Type: plist boolean Failsafe: false

Description: Replaces the Apple Debug Log protocol with a builtin version.

4. AppleEvent

Type: plist boolean Failsafe: false

Description: Replaces the Apple Event protocol with a builtin version. This may be used to ensure FileVault 2 compatibility on VMs and legacy Macs.

5. AppleFramebufferInfo

Type: plist boolean

Failsafe: false

Description: Replaces the Apple Framebuffer Info protocol with a builtin version. This may be used to override framebuffer information on VMs and legacy Macs to improve compatibility with legacy EfiBoot such as the one in macOS 10.4.

Note: The current implementation of this property results in it only being active when GOP is available (it is always equivalent to false otherwise).

6. AppleImageConversion

Type: plist boolean

Failsafe: false

Description: Replaces the Apple Image Conversion protocol with a builtin version.

7. AppleImg4Verification

Type: plist boolean

Failsafe: false

Description: Replaces the Apple IMG4 Verification protocol with a builtin version. This protocol is used to verify im4m manifest files used by Apple Secure Boot.

8. AppleKeyMap

Type: plist boolean Failsafe: false

Description: Replaces Apple Key Map protocols with builtin versions.

9. AppleRtcRam

Type: plist boolean Failsafe: false

Description: Replaces the Apple RTC RAM protocol with a builtin version.

Note: Builtin version of Apple RTC RAM protocol may filter out I/O attempts to certain RTC memory addresses. The list of addresses can be specified in 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:rtc-blacklist variable as a data array.

10. AppleSecureBoot

Type: plist boolean Failsafe: false

Description: Replaces the Apple Secure Boot protocol with a builtin version.

11. AppleSmcIo

Type: plist boolean Failsafe: false

Description: Replaces the Apple SMC I/O protocol with a builtin version.

This protocol replaces the legacy VirtualSmc UEFI driver, and is compatible with any SMC kernel extension. However, in case FakeSMC kernel extension is used, manual NVRAM key variable addition may be needed.

12. AppleUserInterfaceTheme

Type: plist boolean Failsafe: false

Description: Replaces the Apple User Interface Theme protocol with a builtin version.

13. DataHub

Type: plist boolean Failsafe: false

Description: Replaces the Data Hub protocol with a builtin version.

Note: This will discard all previous entries if the protocol was already installed, so all properties required for the safe operation of the system must be specified in your configuration the configuration file.

14. DeviceProperties

Type: plist boolean

Failsafe: false

Description: Replaces the Device Property protocol with a builtin version. This may be used to ensure full compatibility on VMs and legacy Macs.

Note: This will discard all previous entries if the protocol was already installed, so all properties required for safe operation of the system must be specified in your configuration the configuration file.

15. FirmwareVolume

Type: plist boolean

Failsafe: false

Description: Wraps Firmware Volume protocols, or installs a new version, to support custom cursor images for FileVault 2. Set to **true** to ensure FileVault 2 compatibility on anything other than on VMs and legacy Macs.

Note: Several virtual machinesincluding VMware, including VMware, may have corrupted cursor images in HiDPI mode and thus, may also require enabling this setting.

12 Troubleshooting

12.1 Legacy Apple OS

Older operating systems may be more complicated to install, but sometimes can be necessary to use for all kinds of are sometimes necessary for various reasons. While a compatible board identifier and CPUID are the obvious requirements for proper functioning of an older operating system, there are many other less obvious things to consider. This section tries to cover-covers a common set of issues relevant to installing older macOS operating systems.

While newer operating systems can be downloaded over the internet, older operating systems did not have installation media for every minor release. For compatible distributions of such, download a device-specific image and modify it if necessary. Visit this archived Apple Support article for a list of the bundled device-specific builds for legacy operating systems. However, as this may not always be accurate, the latest versions are listed below.

12.1.1 macOS 10.8 and 10.9

- Disk images on these systems use the Apple Partitioning Scheme and require the OpenPartitionDxe driver to run DMG recovery and installation (included in OpenDuet). It is possible to set DmgLoading to Disabled to run the recovery without DMG loading avoiding the need for OpenPartitionDxe.
- Cached kernel images often do not contain family drivers for networking (IONetworkingFamily) or audio (IOAudioFamily) requiring the use of Force loading in order to inject networking or audio drivers.

$12.1.2 \quad \text{macOS} \ 10.7$

- All previous issues apply.
- SSSE3 support (not to be confused with SSE3 support) is a hard requirement for macOS 10.7 kernel.
- Many kexts, including Lilu when 32-bit kernel is used and a lot of Lilu plugins, are unsupported on macOS 10.7 and older as they require newer kernel APIs, which are not part of the macOS 10.7 SDK.
- Prior to macOS 10.8 KASLR sliding is not supported, which will result in memory allocation failures on firmware that utilise lower memory for their own purposes. Refer to acidanthera/bugtracker#1125 for tracking.

12.1.3 macOS 10.6

- All previous issues apply.
- SSSE3 support is a requirement for macOS 10.6 kernel with 64-bit userspace enabled. This limitation can mostly be lifted by enabling the LegacyCommpage quirk.
- Last released installer images for macOS 10.6 are macOS 10.6.7 builds 10J3250 (for MacBookPro8,x) and 10J4139 (for iMac12,x), without Xcode). These images are limited to their target model identifiers and have no -no_compat_check boot argument support. Modified images (with ACDT suffix) without model restrictions can be found here (MEGA Mirror), assuming macOS 10.6 is legally owned. Read DIGEST.txt for more details. Note that these are the earliest tested versions of macOS 10.6 with OpenCore.

Model checking may also be erased by editing OSInstall.mpkg with e.g. Flat Package Editor by making Distribution script to always return true in hwbeModelCheck function. Since updating the only file in the image and not corrupting other files can be difficult and may cause slow booting due to kernel cache date changes, it is recommended to script image rebuilding as shown below:

```
#!/bin/bash
# Original.dmg is original image, OSInstall.mpkg is patched package
mkdir RO
hdiutil mount Original.dmg -noverify -noautoopen -noautoopenrw -noautofsck -mountpoint RO
cp RO/.DS_Store DS_STORE
hdiutil detach RO -force
rm -rf RO
hdiutil convert Original.dmg -format UDRW -o ReadWrite.dmg
mkdir RW
xattr -c OSInstall.mpkg
```

- 6. Sign all the installed drivers and tools with the private key. Do not sign tools that provide administrative access to the computer, such as UEFI Shell.
- 7. Vault the configuration as explained Vaulting section.
- 8. Sign all OpenCore binaries (BOOTX64.efi, BOOTIa32.efi, OpenCore.efi, custom launchers) used on this system with the same private key.
- 9. Sign all third-party operating system (not made by Microsoft or Apple) bootloaders if needed. For Linux there is an option to install Microsoft-signed Shim bootloader as explained on e.g. Debian Wiki.
- 10. Enable UEFI Secure Boot in firmware preferences and install the certificate with a private key. Details on how to generate a certificate can be found in various articles, such as this one, and are out of the scope of this document. If Windows is needed one will also need to add the Microsoft Windows Production CA 2011. To launch option ROMs or to use signed Linux drivers, Microsoft UEFI Driver Signing CA will also be needed.
- 11. Password-protect changing firmware settings to ensure that UEFI Secure Boot cannot be disabled without the user's knowledge.

12.3 Windows support

Can I install Windows?

While no official Windows support is provided, 64-bit UEFI Windows installations (Windows 8 and above) prepared with Boot Camp are supposed to work. Third-party UEFI installations as well as systems partially supporting UEFI boot, such as Windows 7, might work with some extra precautions. Things to consider:

- MBR (Master Boot Record) installations are legacy and will not be supported.
- All the modifications applied (to ACPI, NVRAM, SMBIOS, etc.) are supposed to be operating system agnostic, i.e. apply equally regardless of the OS booted. This enables Boot Camp software experience on Windows.
- macOS requires the first partition to be EFI System Partition, and does not support the default Windows layout. While OpenCore does have a workaround for this, it is highly recommend not to rely on it and install properly.
- Windows may need to be reactivated. To avoid it consider setting SystemUUID to the original firmware UUID. Be aware that it may be invalid on old firmware, i.e., not random. If there still are issues, consider using HWID or KMS38 license or making the use Custom UpdateSMBIOSMode. Other nuances of Windows activation are out of the scope of this document and can be found online.

What additional software do I need?

To enable operating system switching and install relevant drivers in the majority of cases Windows support software from Boot Camp is required. For simplicity of the download process or when configuring an already installed Windows version a third-party utility, Brigadier, can be used successfully. Note, that 7-Zip may be downloaded and installed prior to using Brigadier.

Remember to always use the latest version of Windows support software from Boot Camp, as versions prior to 6.1 do not support APFS, and thus will not function correctly. To download newest software pass most recent Mac model to Brigadier, for example ./brigadier.exe -m iMac19,1. To install Boot Camp on an unsupported Mac model afterwards run PowerShell as Administrator and enter msiexec /i BootCamp.msi. If there is a previous version of Boot Camp installed it should be removed first by running msiexec /x BootCamp.msi command. BootCamp.msi file is located in BootCamp/Drivers/Apple directory and can be reached through Windows Explorer.

While Windows support software from Boot Camp solves most of compatibility problems, the rest may still have to be addressed manually:

- To invert mouse wheel scroll direction FlipFlopWheel must be set to 1 as explained on SuperUser.
- RealTimeIsUniversal must be set to 1 to avoid time desync between Windows and macOS as explained on SuperUser (this is typically not required).
- To access Apple filesystems such as HFS+ and APFS, separate software may need to be installed. Some of the known utilities are: Apple HFS+ driver (workaround for Windows 10), HFSExplorer, MacDrive, Paragon APFS, Paragon HFS+, TransMac, etc. Remember to never ever attempt to modify Apple file systems from Windows as this often leads to irrecoverable data loss.

Why do I see Basic data partition in the Boot Camp Startup Disk control panel?

The Boot Camp control panel uses the GPT partition table to obtain each boot option name. After installing Windows separately the partition will have, the partition has to be relabelled manually. This can be done with many utilities including the open-source gdisk utility. Reference example:

```
PS C:\gdisk> .\gdisk64.exe \\.\physicaldrive0
GPT fdisk (gdisk) version 1.0.4
Command (? for help): p
Disk \\.\physicaldrive0: 419430400 sectors, 200.0 GiB
Sector size (logical): 512 bytes
Disk identifier (GUID): DEC57EB1-B3B5-49B2-95F5-3B8C4D3E4E12
Partition table holds up to 128 entries
Main partition table begins at sector 2 and ends at sector 33
First usable sector is 34, last usable sector is 419430366
Partitions will be aligned on 2048-sector boundaries
Total free space is 4029 sectors (2.0 MiB)
Number Start (sector)
                          End (sector) Size
                                                   Code
                                                         Name
                             1023999
                                       499.0 MiB
                                                   2700
   1
                2048
                                                         Basic data partition
   2
                                                   EF00 EFI system partition
             1024000
                             1226751
                                       99.0 MiB
   3
             1226752
                             1259519
                                       16.0 MiB
                                                   OC01 Microsoft reserved ...
             1259520
   4
                           419428351
                                       199.4 GiB
                                                   0700 Basic data partition
Command (? for help): c
Partition number (1-4): 4
Enter name: BOOTCAMP
Command (? for help): w
Final checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING PARTITIONS!!
Do you want to proceed? (Y/N): Y
OK; writing new GUID partition table (GPT) to \\.\physicaldriveO.
Disk synchronization succeeded! The computer should now use the new partition table.
The operation has completed successfully.
```

Listing 4: Relabeling Windows volume

How to do I choose Windows BOOTCAMP with custom NTFS drivers?

Third-party drivers providing NTFS support, such as NTFS-3G, Paragon NTFS, Tuxera NTFS or Seagate Paragon Driver disrupt certain macOS functionality, including the Startup Disk preference pane normally used for operating system selection. While the recommended option remains not to use such drivers as they commonly corrupt the filesystem, and prefer the driver bundled with macOS with optional write support (command or GUI), there still exist vendor-specific workarounds for their products: Tuxera, Paragon, etc.

12.4 Debugging

Similar to other projects working with hardware OpenCore supports auditing and debugging. The use of NOOPT or DEBUG build modes instead of RELEASE can produce a lot more debug output. With NOOPT source level debugging with GDB or IDA Pro is also available. For GDB check OpenCore Debug page. For IDA Pro, version 7.3 or newer is needed, and Debugging the XNU Kernel with IDA Pro may also help.

To obtain the log during boot serial port debugging can be used. Serial port debugging is enabled in Target, e.g. 0xB for onscreen with serial. To initialise serial within OpenCore use SerialInit configuration option. For macOS the best choice is CP2102-based UART devices. Connect motherboard TX to USB UART RX, and motherboard GND to USB UART GND. Use screen utility to get the output, or download GUI software, such as CoolTerm.

Note: On several motherboards (and possibly USB UART dongles) PIN naming may be incorrect. It is very common to have GND swapped with RX, thus, motherboard "TX" must be connected to USB UART GND, and motherboard "GND" to USB UART RX.

Remember to enable COM port in firmware settings, and never use USB cables longer than 1 meter to avoid output corruption. To additionally enable XNU kernel serial output debug=0x8 boot argument is needed.

12.5 Tips and Tricks

1. How to do I debug boot failure failures?

Normally it is enough to obtain Obtaining the actual error message is usually adequate. For this, ensure that:

- A DEBUG or NOOPT version of OpenCore is used.
- Logging is enabled (1) and shown onscreen (2): $Misc \rightarrow Debug \rightarrow Target = 3$.
- Logged messages from at least DEBUG_ERROR (0x80000000), DEBUG_WARN (0x00000002), and DEBUG_INFO (0x000000040) levels are visible onscreen: Misc → Debug → DisplayLevel = 0x80000042.
- Critical error messages, such as DEBUG_ERROR, stop booting: Misc → Security → HaltLevel = 0x80000000.
- Watch Dog is disabled to prevent automatic reboot: $\texttt{Misc} \to \texttt{Debug} \to \texttt{DisableWatchDog} = \texttt{true}$.
- Boot Picker (entry selector) is enabled: $Misc \rightarrow Boot \rightarrow ShowPicker = true$.

If there is no obvious error, check the available workarounds in the Quirks sections one by one. For early boot troubleshooting, for instance, when OpenCore menu does not appear, using UEFI Shell (bundled with OpenCore) may help to see early debug messages.

2. How to do I debug macOS boot failure failures?

- Refer to boot-args values such as debug=0x100, keepsyms=1, -v, and similar.
- Do not forget about AppleDebug and ApplePanic properties.
- Take care of Booter, Kernel, and UEFI quirks.
- Consider using serial port to inspect early kernel boot failures. For this debug=0x108, serial=5, and msgbuf=1048576 boot arguments are needed. Refer to the patches in Sample.plist when dying before serial init.
- Always read the logs carefully.

3. How to do I customise boot entries?

OpenCore follows standard Apple Bless model and extracts the entry name from .contentDetails and .disk_label.contentDetails files in the booter directory if present. These files contain an ASCII string with an entry title, which may then be customised by the user.

4. How to do I choose the default boot entry?

OpenCore uses the primary UEFI boot option to select the default entry. This choice can be altered from UEFI Setup, with the macOS Startup Disk preference, or the Windows Boot Camp Control Panel. Since choosing OpenCore's B00Tx64.EFI as a primary boot option limits this functionality in addition to several types of firmware deleting incompatible boot options, potentially including those created by macOS, users are strongly encouraged to use the RequestBootVarRouting quirk, which will preserve the selection made in the operating system within the OpenCore variable space. Note, that RequestBootVarRouting requires a separate driver for functioning.

5. What is the simplest way to install macOS?

Copy online recovery image (*.dmg and *.chunklist files) to com.apple.recovery.boot directory on a FAT32 partition with OpenCore. Load the OpenCore picker and choose the entry, it will have a (dmg) suffix. Custom name may be created by providing .contentDetails file.

To download recovery online macrecovery.py can be used.

For offline installation refer to How to create a bootable installer for macOS article. Apart from App Store and softwareupdate utility there also are third-party utilities to download an offline image.

6. Why do online recovery images (*.dmg) fail to load?

This may be caused by missing HFS+ driver, as all presently known recovery volumes have HFS+ filesystem.