Problem Set 1

ENGRD 2700

Cort Breuer 09/08/19

Question 1

```
quartet <- read.csv("Data/Quartet.csv")
```

Part A

```
X1 Sample Mean = \frac{10+8+13+9+11+14+6+4+12+7+5}{11} = 9

X1 Sample Median = 4,5,6,7,8,9,10,11,12,13,14=9

X1 Sample Standard Deviation = \sqrt{\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\bar{x})^2} = \sqrt{\frac{1}{10}[(4-9)^2+(5-9)^2+...(13-9)^2+(14-9)^2]} = \sqrt{11} = 3.32

colNames <- c("X1", "X2", "X3", "X4", "Y1", "Y2", "Y3", "Y4")

quartetMean <- apply(quartet, 2, mean)

quartetMedian <- apply(quartet, 2, median)

quartetSD <- apply(quartet, 2, sd)

d <- tibble(colNames, quartetMean, quartetMedian, quartetSD)

kable(d) %>% kable_styling(bootstrap_options = c("striped", "hover"))
```

colNames	quartetMean	quartetMedian	quartetSD
X1	9.000000	9.00	3.316625
X2	7.500909	7.58	2.031568
X3	9.000000	9.00	3.316625
X4	7.500909	8.14	2.031657
Y1	9.000000	9.00	3.316625
Y2	7.500000	7.11	2.030424
Y3	9.000000	8.00	3.316625
Y4	7.500909	7.04	2.030578

Part B

Part C

```
par(mfrow=c(2,2))

plot(quartet$x1, quartet$y1)
plot(quartet$x2, quartet$y2)
plot(quartet$x3, quartet$y3)
plot(quartet$x4, quartet$y4)
```


Part D

Part E

Question 2

```
countyData <- read.csv("Data/CountyData.csv")
countyData <- as_tibble(countyData)</pre>
```

Part A

```
ggplot(data = countyData) + geom_histogram(mapping = aes(foreign_spoken_at_home), binwidth = 5) + labs(
```


Part B

```
median(countyData$fed_spending, na.rm = TRUE)
## [1] 214994
```

Part C

```
ggplot(data = countyData) + geom_point(mapping = aes(x = bachelors, y = poverty)) + xlim(0, 80) + ylim(
```

Poverty vs. Bachelors

par(pty = "s")
plot(countyData\$pachelors, countyData\$poverty, xlim = c(0, 80), ylim = c(0, 80), main = "Poverty vs. Ba

Poverty vs. Bachelors

Percent of County with Bachelors Degrees

Part D

Question 3

Part A

Part B

Part C

Question 4

Part A

Part B

$$z_i = \frac{x_i - \overline{x}}{s_x}$$