

Normalização

Base de Dados - 2022/23 Carlos Costa

1

1

Introdução

- Já estudámos aspectos de desenho conceptual de base de dados e respectivo mapeamento para o modelo relacional.
- No entanto, nunca apresentámos um processo formal de analisar se determinado grupo de atributos de um esquema de relação é melhor do que outro.
- O desenho de uma base de dados relacional resulta num conjunto de relações. Existe um objectivo implícito nesse processo de desenho:
 - Preservação da informação
 - Todos os conceitos capturados pelo desenho conceptual que são mais tarde mapeados para o desenho lógico.
 - Minimizar a redundância dos dados
 - Minimizar o armazenamento duplicado de dados em relações distintas, reduzindo a necessidade de múltiplos updates e consequente problema 2 de consistência entre múltiplas cópias da mesma informação.

Desenho de BD - Esquemas de Relação

Análise de Qualidade:

- Critérios Informais
- Critérios Formais
 - Dependências Funcionais, Multivalor e Junção
- Processo de Normalização
 - Formas Normais
 - Baseadas em critérios formais

3

3

Critérios Informais

- Clareza da semântica dos atributos da relação
- Redundância de informação no tuplo
- Redução dos NULLs nos tuplos
- Junção de relações baseada em PK e FK

4

deti Semântica dos atributos da relação • O desenho de um esquema de relação deve ser fácil de explicar. Verificar se existe uma semântica clara entre os atributos de uma relação. • Evitar que uma relação corresponda a uma mistura de atributos de diferentes entidades e relacionamentos. Exemplos de mau desenho: **EMP_DEPT** Ename Ssn **B**date Address Dnumber Dmg ssn EMP_PROJ Ploeation Prame <u>Ssn</u> **Pnumber** Hours Ename

6

Redução dos NULLs nos tuplos

- Há situações em que temos uma grande quantidade de atributos numa relação:
 - Muitos dos atributos não se aplicam a todos os tuplos da relação.
- Consequência: existência de muitos NULLs nesses tuplos
 - Desperdício de espaço
 - Difícil interpretação do seu sentido desses atributos (Null pode ter vários significados)
- Recomendação: Criar outra relação para esses atributos.
 Exemplo:
 - Imaginando que queremos incluir o número do gabinete na relação Employee mas só 15% dos funcionários têm esse número.
 - Solução: criar uma nova relação EMP_OFFICES(Essn, Office_number) só com tuplos de funcionários com gabinete.

7

7

Junção de Relações baseada em PK e FK

 Devemos evitar esquemas de relação que estabeleçam relacionamentos entre duas relações baseados em atributos que não a chave primária e estrangeira.

Mau exemplo:

EMPL_LOCS ⋈ EMP_PROJ1

Litario	1 looution
Smith, John B.	Bellaire
Smith, John B.	Sugarland
Narayan, Ramesh K.	Houston
English, Joyce A.	Bellaire
English, Joyce A.	Sugarland
Wong, Franklin T.	Sugarland
Wong, Franklin T.	Houston
Wong, Franklin T.	Stafford
Zolova Aliaia I	Stafford

Ssn	Pnumber	Hours	Pname	Plocation
123456789	1	32.5	ProductX	Bellaire
123456789	2	7.5	ProductY	Sugarland
666884444	3	40.0	ProductZ	Houston
453453453	1	20.0	ProductX	Bellaire
453453453	2	20.0	ProductY	Sugarland
333445555	2	10.0	ProductY	Sugarland
333445555	3	10.0	ProductZ	Houston
333445555	10	10.0	Computerization	Stafford
222//5555	20	10.0	Penragnization	Houston

	osn	Phumber	Hours	Phame	Piocation	Ename
	123456789	1	32.5	ProductX	Bellaire	Smith, John B.
*	123456789	1	32.5	ProductX	Bellaire	English, Joyce A.
	123456789	2	7.5	ProductY	Sugarland	Smith, John B.
*	123456789	2	7.5	ProductY	Sugarland	English, Joyce A.
*	123456789	2	7.5	ProductY	Sugarland	Wong, Franklin T.
	666884444	3	40.0	ProductZ	Houston	Narayan, Ramesh K.
*	666884444	3	40.0	ProductZ	Houston	Wong, Franklin T.
*	453453453	1	20.0	ProductX	Bellaire	Smith, John B.
	453453453	1	20.0	ProductX	Bellaire	English, Joyce A.
*	453453453	2	20.0	ProductY	Sugarland	Smith, John B.
	453453453	2	20.0	ProductY	Sugarland	English, Joyce A.
•	100100100	_	20.0	B - L - W		MARKET FOR THE T

Temos situações de junção errada de tuplos:

* spurious tuples

8

Criterios formais

Dependências Funcionais

9

9

Dependências Funcionais (DP)

- Considerando a relação:
 - R(A1, A2, ..., An)
 - Subconjunto de atributos $X,Y \subseteq R$
- Dependência Funcional: X→Y
 - tuplos: $t1, t2 \in R$
 - $t1[X] = t2[X] \Rightarrow t1[Y] = t2[Y]$

Restrição

- Formalismo de análise de esquemas relacionais.
 - Permite <u>descrever restrições</u> dos atributos que os tuplos devem respeitar em todo o momento (invariantes).
 - Permite detectar e descrever problemas com precisão. 10

Dependências Funcionais

- X→Y ... por outras palavras:
 - Y é funcionalmente dependente de X.
 - Os valores da componente X do tuplo define de forma única a componente Y do respectivo tuplo.
- Uma DP é uma propriedade do esquema de relação R que não pode ser inferido de uma qualquer instância de R, i.e. r(R).
 - Deve ser definida por alguém que conhece a semântica dos atributos da relação.

11

11

Dependências Funcionais - Exemplo

- Pela semântica dos atributos da relação EMP_PROJ podemos inferir as seguintes DF:
 - Ssn → Ename
 - Pnumber → {Pname, Plocation}
 - {Ssn, Pnumber} → Hours

O Ssn determina de forma única o nome do funcionários.
O número do projecto determina de forma única o seu nome e localização.
O Ssn e o número do projecto determinam de forma única o

O Ssn e o número do projecto determinam de forma única o número de horas que um funcionário trabalha para o projecto.

FD: Functional Dependency

Tipos de Dependências Funcionais

deti

- Dependência Parcial
 - <u>atributo depende</u> de <u>parte</u> dos atributos que compõem a chave da relação.
- Dependência Transitiva
 - <u>atributo</u> que não faz parte da chave da relação <u>depende</u> de um <u>atributo</u> que também <u>não</u> faz parte da <u>chave</u> da relação.
- Dependência Total
 - atributo depende de toda a chave da relação.

14

14

Introdução

- Objectivo: Reduzir a Redundância
- DF especifica alguns aspectos semânticos do esquema da relação.
 - ...mas a redundância está associada a DF não desejadas!
- Vamos assumir que:
 - Existe um conjunto de DF associadas a cada esquema de relação;
 - Que cada relação tem uma chave primária definida;
- Processo de Normalização:
 - Formas Normais
 - · Conjunto de testes (condições) para validação de cada forma.
 - Cada forma superior tem menos DF que a anterior.

16

16

- O processo de normalização consiste em efetuar um conjunto de testes para certificar se um desenho de BD relacional satisfaz determinada Forma Normal (FN).
 - Relações que não satisfazem os testes de determinada forma normal são decompostas em relações menores.
- Codd propôs três FN baseadas em DF
 - Primeira (1FN), Segunda (2FN) e Terceira (3FN)
 - A 3FN satisfaz as condições da 2FN e esta as da 1FN
- Mais tarde Boyce e Codd propuseram uma definição mais restritiva da 3NF à qual se chamou:
 - Boyce-Codd Normal Form (BCNF)
- Foram ainda propostas a 4FN e 5FN baseadas respectivamente em dependências multivalor e de junção.

{ } significa que o atributo PROJS é multiva

18

EMP_PROJ(Ssn, Ename, {PROJS(Pnumber, Hours)})

- Usualmente, a 3FN é aquela que termina o processo de normalização.
 - No entanto, em algumas situações a 3FN ainda apresenta algumas anomalias.
- BCNF é mais restritiva que a 3FN
 - BCNF => 3FN
- Definição:

Todos os atributos são funcionalmente dependentes da chave da relação, de toda a chave e de nada mais.

- Exemplo:
 - está na 3FN
 - FD2 viola a BCNF

27

Normalização - Ponto de Equilíbrio

- Como verificámos no exemplo de BCNF, perdeu-se uma dependência funcional importante (deduzida da semântica dos atributos).
 - Que deverá ser tratada ao nível aplicacional.
- Assim, existe um ponto de equilíbrio no processo de Normalização que tipicamente fica entre a 3FN e a BCNF.

30

4FN e 5FN

deti

- <u>Usualmente uma relação na BCNF também se</u> encontra na 4FN e 5FN.
 - 4FN são raros e 5FN ainda mais raros
- Definição 4FN:
 - Está na BCNF
 - Não existem dependências multivalor
- Definição 5FN:
 - Está na 4FN
 - A relação não pode ser mais decomposta sem haver perda de informação
 - Não existem dependências de junção

31

Dependências Multivalor

- Dependência multivalor X -» Y em R(X,Y,Z)
- Garantir a seguinte restrição em qualquer instância r(R):
 - Se dois tuplos t1 e t2 existem em r(R) tal que t1[X]=t2[X]
 - Então também devem existir dois tuplos t3 e t4 em r(R) com as seguintes características:
 - t4[X] = t3[X] = t1[X] = t2[X] t3[Y] = t1[Y] e t4[Y] = t2[Y]

 - t3[Z] = t2[Z] e t4[Z] = t1[Z]
- **x**1 у1 z2 **x1** y2 **x**1 у1 z2 **x1** z1

mesn		
Х	Y	Z
x1	y1	z1
x1	y1	z2
x1	y2	z1
x1	y2	z2

deti

- Exemplo:
 - X -» Y
 - X -» Z
- Outras palavras...

X multidetermina Y se, para cada par de tuplos de R contendo os mesmo valores de X, 32 existe em R um par de tuplos correspondentes à troca dos valores de Y no par original.

32

4FN: Dependências Multivalor - Exemplo

EMP

Ename	<u>Pname</u>	<u>Dname</u>
Smith	X	John
Smith	Y	Anna
Smith	Х	Anna
Smith	Y	John

Dependências Multivalor: Ename -» Pname Ename -» Dname

• Solução: decomposição da relação EMP

EMP_PROJECTS

Ename	Pname
Smith	X \
Smith	((Y)

EMP_DEPENDENTS

<u>Ename</u>	<u>Dname</u>	
Smith	John	
Smith	Anna	

33

Dependências de Junção

- Existe uma dependência de junção em R se, dadas algumas projeções de R, apenas se reconstrói R através de algumas junções bem definidas, mas não de todas.
- Muito rara na prática
 difícil de detectar
- Exemplo:
 - Projetando R em (X,Y), (X,Z) e (Y,Z)
 - Verificamos que não é possível reconstruir R por junção de qualquer umas das projeções.
 - Só com a junção das 3 projeções é que conseguimos reconstruir R.

r(R)		
Х	Y	Z
x1	y1	z1
x1	y1	z2
x1	y2	z2
x2	у3	z2
x2	y4	z2
x2	y4	z4
x2	у5	z4
х3	y2	z5

34

deti

deti

34

5FN: Dependência Junção - Exemplo

SUPPLY

Sname	Part_name	Proj_name
Smith	Bolt	ProjX
Smith	Nut	ProjY
Adamsky	Bolt	ProjY
Walton	Nut	ProjZ
Adamsky	Nail	ProjX
Adamsky	Bolt	ProjX
Smith	Bolt	ProjY

Vamos Criar 3 Projecções de Supply:
R1(Sname, Part_name)
R2(Sname, Proj_name)
R3(Part_name, Proj_name)

 Sname
 Part_name

 Smith
 Bolt

 Smith
 Nut

 Adamsky
 Bolt

 Walton
 Nut

 Sname
 Proj_name

 Smith
 ProjX

 Smith
 ProjY

 Adamsky
 ProjZ

 Adamsky
 ProjZ

 Adamsky
 ProjX

- A relação SUPPLY, com dependência de junção, pode ser decomposta em 3 relações R1, R2 e R3 cada uma na 5FN.
 - Só reconstruímos Supply com a junção das 3 relações R1, R2 e R3.

Normalização - Caso de Estudo

Gestão de Encomendas

36

36

Esquema de Base de Dados - Início

- É notório que o designer não tem conhecimentos de desenho de base de dados...
- Problemas:
 - Mistura de grupos de atributos de entidades (claramente) distintas.
 - Redundância de informação nos tuplos
 - Temos de repetir num_encomenda, num_cliente, cliente, endereco_cliente e data_encomenda para registar várias linhas de uma encomenda!

Resumo

- deti
- Qualidade do Desenho de Base de Dados Relacionais
- Critérios Informais
- Dependências Funcionais
- Normalização (Formas Normais)

42