COSC 222 Data Structure

Graphs – Part 1

Exam Dates Reminder

- Midterm exam: Thursday March 13 (Previously March 11)
 - based on in-class poll taken before mid-semester break
- Final exam: TBD
 - examination period for W2024 T2 is April 12-April 27, 2025.

Graph: formal definition

- The words "node" and "vertex" are synonyms
- Vertices are the circle things (A), edges are the lines (A,B)

- A graph is a pair G = (V, E), where...
 - V is a set of vertices
 - E is a set of edges (pairs of vertices)

Graph: formal definition

- Path: sequence of edges that connect two vertices in a graph
 - Example: path from A to F: {A, D, F}
- The **length** of a path is the number of edges on the path, which is equal to N-1 where N is number of vertices

Two nodes in a graph are called adjacent or neighbor if there's

an edge between them

Vertex A is adjacent to vertex B

Vertex A is adjacent to vertex D

Graph: examples

$$V = \{a\}$$
$$E = \{\}$$

$$V = \{b, c, d\}$$

 $E = \{(b, c), (c, d)\}$

$$V = \{e, f, g, h\}$$
 $E = \{(e, f), (f, g), (g, h), (h, e), (e, g), (f, h)\}$

Applications of graphs

In a nutshell:

- Graphs let us model the "relationship" between items.
- If that seems like a very general definition, that's because graphs are a very general concept!

Core insight:

- Graphs are an abstract concept that appear in many different ways
- Many problems can be modeled as a graph problem.

Application: Airline flight graph

- Questions:
 - What is the cheapest/shortest/etc flight from A to B?
 - Is the route the airline offering me actually the cheapest route?

Application: Social Media Graph

- Social Network Graph
 - who knows whom, who communicates with whom
 - who influences whom, or other relationships

Application: Facebook Graph API

- Facebook's <u>Graph API</u>
 - Everything (e.g., users, photos) are vertices or nodes
 - Every connection or relationship is an edge

Undirected graphs

In a undirected graph, edges have no direction: are two-way

- This means that $(x, y) \in E$ implies that $(y, x) \in E$.
- Often, we treat these two pairs as equivalent and only include one of the two permutations.

Degree of a vertex

- The degree of some vertex v is the number of edges containing that vertex.
- So, the degree is the number of "ways out" of that vertex.
- The degree of a graph G is equal to it's largest vertex degree.

- What is the degree of vertex a?
- What is the degree of vertex *d*?
- What is the degree of the graph?

Degree of a vertex

Note that some graphs allow for parallel edges.

- deg(v1) =?
- deg(v2) =?
- deg(v3) =?
- deg(v4) =?

Handshaking Theorem

- The sum of degrees of the vertices of an undirected graph is twice the number of edges
- If G=(V,E) is a graph with E edges, then-

$$\Sigma \deg_G(V) = 2E$$

 Each edge contributes twice to the total degree count of all vertices. Thus, both sides of the equation equal to twice the number of edges.

Directed graph

• In a **directed graph**, edges *do* have a direction: are one-way

Now, (x, y) and (y, x) mean different things.

Degree of a vertex: Directed graph

- In-degree of a vertex
 - The **in-degree** of *v* is the number of edges that point to *v*.
- Out-degree of a vertex
 - The **out-degree** of *v* is the number of edges that start at *v*.

- In-degree vertex for c: 1
- Out-degree vertex for c: 1

Degree of a vertex

- Let G = (V, E) be a graph with directed edges.
- then $|E| = \Sigma \text{ in-deg(V)} = \Sigma \text{ out-deg(V)}$

Self-loops and parallel edges

• A **self-loop** is an edge that starts and ends at the same vertex.

• Simple graph: A graph with no self-loops and no parallel edges.

Complete Graphs

 A complete graph on n vertices, denoted by K_n, is the simple graph that contains exactly one edge between each pair of distinct vertices.

 A complete graph with n vertices is denoted K_n and has n(n-1)/2 undirected edges

Walks

- A walk in a graph is a sequence of vertices, each linked to the next vertex by a specified edge of the graph.
 - More intuitively, a walk is one continuous line following the edges.

■ In a walk, a Vertex can be repeated, Edges can be repeated Example: $a \rightarrow b \rightarrow d \rightarrow a \rightarrow c$

Paths

• A **path** is a walk that never visits the same vertex twice.

- Vertex not repeated, Edge not repeated
- Example: $a \rightarrow b \rightarrow d$

Cyclic and acyclic

- A graph with one or more cycles is called a cyclic graph.
- A graph having no cycles is an acyclic graph.

Cyclic graph

Acyclic graph

Cycles

- A cycle is a closed path.
- A cycle C_n for $n \ge 3$ consists of n vertices v_1, v_2, \dots, v_n , and edges $\{v_1, v_2\}, \{v_2, v_3\}, \dots, \{v_{n-1}, v_n\}, \{v_n, v_1\}.$

Wheels

■ A wheel W_n is obtained by adding an additional vertex to a cycle C_n for $n \ge 3$ and connecting this new vertex to each of the n vertices in C_n by new edges.

Circuits

 A circuit in a graph is a path that begins and ends at the same vertex.

- A Vertex may be repeated, but an Edge can not repeated
- Example: $a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \rightarrow c \rightarrow a$

Summary

- Walk: Vertices may repeat. Edges may repeat (Closed or Open)
- Circuit: Vertices may repeat. Edges cannot repeat (Closed)
- Path: Vertices cannot repeat. Edges cannot repeat (Open)
- Cycle: Vertices cannot repeat. Edges cannot repeat (Closed)

Connected graph

- Vertex a is reachable from b if a path exists from a to b.
- A graph is connected if every vertex is reachable from every other vertex via some path.
- E.g.: if we pick up the graph and shake it, nothing flies off.
- Strongly connected: Every vertex has an edge to every other vertex.
 - Same as complete but often associated with directed graphs or graph segments.

Weighted graphs

- weight: Cost associated with a given edge.
 - Some graphs have weighted edges, and some are unweighted.
 - Edges in an unweighted graph can be thought of as having equal weight (e.g. all 0, or all 1, etc.)
 - Most graphs do not allow negative weights.
- Example: graph of airline flights, weighted by miles between cities:

How do we represent graphs in code?

- Two common approaches:
 - Adjacency matrix
 - Adjacency list

Adjacency matrix

- Core idea:
 - Create a $|V| \times |V|$ matrix of booleans or ints
 - The entry A(i, j) is 1 if there is an edge from vertex i to vertex j , and 0 if there isn't.

	a	b	C	d
a	0	1	1	1
b	1	0	1	0
С	1	1	0	1
d	1	0	1	0

 Note that the adjacency matrix of an undirected graph is symmetric around the main diagonal.

Adjacency Matrix of a Directed Graph

Adjacency Matrix:

	0	1	2	3	4
0	0	1	0	0	0
1	0	0	1	0	0
2	1	0	0	1	0
3	0	0	0	0	1
4	0 0 0 1 0 1	0	1	0	0

 Note that the adjacency matrix of a digraph (i.e., directed graph) is not usually symmetric.

Adjacency Matrix of a Weighted Graph

- Weight graph: each edge of a graph has an associated value (i.e., weight).
- If the edges have weights, we can store the weight of edge <i , j> in A(i , j):

Adjacency Matrix:

	0	1	2	3
0	0	4	0	4
1	4	0	2	0
2	0	2	0	3
3	0 4 0 4	0	3	0

Adjacency Matrix

- Primary advantage:
 - Checking to see if there is an edge from vertex i to vertex j = checking entry A(i , j), which takes constant time. (Fast! Easy!)
- Major disadvantage:
 - Usually, a lot of space is wasted storing zeroes.
 - To check adjacent vertices of a given vertex i, we have to look at all entries in row i

Adjacency List of an Undirected Graph

Adjacency List:

Adjacency List of a Directed Graph

Adjacency List:

Adjacency List

- We aren't wasting space on edges that aren't there.
- Since vertex i can be connected to all the other vertices, that search can cost O(k), where k is the number of vertices.
- And we don't have to search through edges that aren't there to find all the edges out of a vertex.

Adjacency Matrix vs Adjacency List

Linked Lists, Trees, Graphs

- A binary tree is a graph with some restrictions:
 - The tree is an unweighted, acyclic graph
 - There is exactly one path from the root to every node.
- A linked list is also a graph:
 - Unweighted Directed Acyclic Graph.
 - In/out degree of at most 1 for all nodes.

Traversing in a Graph

- The most common operation is to visit all the vertices in a systematic way.
- Two types of traversals:
 - Depth-first traversal (or depth-first search)
 - Breadth-first traversal (or breadth-first search)
- A traversal starts at a vertex v and visits all the vertices u such that a path exists from v to u.

Breadth-first search (BFS)

- A breadth-first traversal visits all nearby vertices first before moving farther away.
- It is a queue-based, iterative traversal.

Pseudocode: Breadth-first search

```
search(s):
    visited = empty set
    queue.enqueue(s)
    visited.add(s)
   while (queue is not empty):
       v = queue.dequeue()
       for (w : v.neighbors()):
              if (w not in visited):
                  queue.enqueue(w)
                  visited.add(w)
```


Current node (v):

• Queue: a

Visited: a

- Current node (v): a
- Queue:
- Visited: a

Current node (v): a

• Queue: b, d

• Visited: a, b, d

Current node (v): b

• Queue: d

• Visited: a, b, d

Current node (v): b

• Queue: d, c, e

Visited: a, b, d, c, e

Current node (v): d

• Queue: c, e

Visited: a, b, d, c, e

• Current node (v): d

• Queue: c, e, f, g

Visited: a, b, d, c, e, f, g

• Current node (v): c

• Queue: e, f, g

Visited: a, b, d, c, e, f, g

• Current node (v): e

• Queue: f, g

Visited: a, b, d, c, e, f, g

• Current node (v): e

• Queue: f, g, h

Visited: a, b, d, c, e, f, g, h

• Current node (v): f

• Queue: g, h

Visited: a, b, d, c, e, f, g, h

Current node (v): g

• Queue: h

Visited: a, b, d, c, e, f, g, h

Current node (v): g

• Queue: h, i

Visited: a, b, d, c, e, f, g, h, i

Current node (v): h

• Queue: i

Visited: a, b, d, c, e, f, g, h, i

- Current node (v): i
- Queue:
- Visited: a, b, d, c, e, f, g, h, i

- Current node (v):
- Queue:
- Visited: a, b, d, c, e, f, g, h, i

An interesting property

 Note: We visited the nodes in "rings" – maintained a gradually growing "frontier" of nodes.

What does this look like for trees?

BFS observations

- Optimality:
 - always finds the shortest path (fewest edges).
 - in unweighted graphs, finds optimal cost path.
 - In weighted graphs, not always optimal cost.

Which is the correct definition of Big-Oh?

- Let f (n) and g(n) be functions mapping positive integers to positive real numbers.
- 1. We say that f(n) is O(g(n)) if there is a real constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \ge c \cdot g(n)$, for $n \ge n_0$.
- 2. We say that f(n) is O(g(n)) if there is a real constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \le c \cdot g(n)$, for $n \ge n_0$.
- 3. We say that f(n) is O(g(n)) if there are constants c' > 0 and c'' > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \le c \cdot g(n)$, for $n \ge n_0$.

```
n + log n^2 + n^3 = O()
    2 + \log n + \log^k n + n \log n = O(\underline{\phantom{a}})
3. for (int i = 1; i <= n * n; i++)
         System.out.println("i: " + i);
   = O()
4. for(int j = 1; j <= n; j = j * 2)
         System.out.println("j: " + j);
   = O()
5. for (int i = 1; i <= n; i++)
     for(int j = 1; j <= n; j = j++)
         for(int k = 1; k <= n; k = k + 2)
                   System.out.println("i: " + i + "j: " + j + "k: " + k);
    = O()
```

True or false?

- An nlogn function grows less rapidly (with the input size) than a quadratic function.
- 2. A Stack ADT can only be implemented using arrays.
- 3. ArrayList <Object> can store a list of any kind of data.
- 4. A linked list does not require shifting elements when adding a new element to the middle of the list.

- 1. Which method is used to return the element at the front of the queue without removing it?
 - a) enqueue
 - b) dequeue
 - c) first
 - d) top
- 2. Which of the following are good uses for a Stack ADT?
 - a) checking whether an expression contains evenly matched pairs of parenthesis.
 - b) evaluating a postfix expression
 - c) evaluating a prefix expression
 - d) implementing a ring buffer (a FIFO data structure that loops back to zero after is reaches the buffer length)
 - e) serving items in order of priority

Questions?