DATA 621—Assignment no. 1

Critical Thinking Group 2: All of our names, Ben H.
September XX, 2019

Contents

Executive Overview	1
Data Exploration Response Variable: Yearly wins	2 2 4
Data Preparation	9
Modeling Model 1 Model 2 Model 3	10 10 11 12
Evaluation Model 1 Model 2 Model 3	13 13 16 17
Predictions	18
Introduction	
Load libraries:	
<pre>library(corrplot) library(dplyr) library(ggplot2) library(knitr)</pre>	
<pre>library(kableExtra) # library(psych) library(reshape2) library(gridExtra)</pre>	
<pre>#library(psychometric) #library(ggpubr) #library(matlib) #library(matrixcalc)</pre>	
<pre># library(psych) # library(MASS) # library(forecast)</pre>	

Executive Overview

We present three multiple regression models to predict a professional baseball teams' performance.

Data Exploration

The training data has 17 columns and 2,276 rows.

The explanatory columns are broken down into four categories:

- Batting
- Base run
- Pitching
- Fielding

Below you will see a preview of the columns and the first few observations broken down into these four categories.

##		INDEX TARGET_WIN	S TEAM_BATTING_H	TEAM_BATTING_2B	TEAM_BATTING_3B
##	1	1 3	1445	194	39
##	2	2 7	0 1339	219	22
##	3	3 8	36 1377	232	35
##	4	4 7	70 1387	209	38
##	5	5 8	1297	186	27
##	6	6 7	75 1279	200	36
##		TEAM_BATTING_HR	TEAM_BATTING_BB '	TEAM_BATTING_SO	ΓEAM_BASERUN_SB
##	1	13	143	842	NA
##	2	190	685	1075	37
##	3	137	602	917	46
##	4	96	451	922	43
##	5	102	472	920	49
##	6	92	443	973	107
##		TEAM_BASERUN_CS	TEAM_BATTING_HBP	TEAM_PITCHING_H	TEAM_PITCHING_HR
## ##	1	TEAM_BASERUN_CS NA	TEAM_BATTING_HBP NA	TEAM_PITCHING_H 9364	TEAM_PITCHING_HR 84
	_				
##	2	NA NA	NA NA	9364	84
## ##	2	NA 28	NA NA	9364 1347	84 191
## ## ##	2 3 4	NA 28 27	NA NA NA	9364 1347 1377	84 191 137
## ## ## ##	2 3 4 5	NA 28 27 30	NA NA NA NA	9364 1347 1377 1396	84 191 137 97
## ## ## ##	2 3 4 5	NA 28 27 30 39 59	NA NA NA NA NA	9364 1347 1377 1396 1297 1279	84 191 137 97 102
## ## ## ## ##	2 3 4 5 6	NA 28 27 30 39 59	NA NA NA NA NA NA TEAM_PITCHING_S	9364 1347 1377 1396 1297 1279 TEAM_FIELDING_I	84 191 137 97 102 92 E TEAM_FIELDING_DP
## ## ## ## ## ##	2 3 4 5 6	NA 28 27 30 39 59 TEAM_PITCHING_BE	NA NA NA NA NA S TEAM_PITCHING_S	9364 1347 1377 1396 1297 1279 D TEAM_FIELDING_I	84 191 137 97 102 92 E TEAM_FIELDING_DP
## ## ## ## ## ##	2 3 4 5 6	NA 28 27 30 39 59 TEAM_PITCHING_BE 927	NA NA NA NA NA NA S TEAM_PITCHING_S 108:	9364 1347 1377 1396 1297 1279 D TEAM_FIELDING_I 5 101:	84 191 137 97 102 92 E TEAM_FIELDING_DP 1 NA 3 155
## ## ## ## ## ##	2 3 4 5 6 1 2 3	NA 28 27 30 39 59 TEAM_PITCHING_BE 927 688	NA NA NA NA NA NA S TEAM_PITCHING_S(S 545) 108:	9364 1347 1377 1396 1297 1279 D TEAM_FIELDING_I 5 101: 2 193	84 191 137 97 102 92 E TEAM_FIELDING_DP 1 NA 3 155 5 153
## ## ## ## ## ##	2 3 4 5 6 1 2 3 4	NA 28 27 30 39 59 TEAM_PITCHING_BE 927 689	NA NA NA NA NA NA S TEAM_PITCHING_S(108: 9: 9: 9: 9: 9: 9:	9364 1347 1377 1396 1297 1279 1 TEAM_FIELDING_I 5 101: 2 193 7 175	84 191 137 97 102 92 E TEAM_FIELDING_DP 1 NA 3 155 5 153 4 156
## ## ## ## ## ## ##	2 3 4 5 6 1 2 3 4 5	NA 28 27 30 39 59 TEAM_PITCHING_BE 927 689 602	NA NA NA NA NA S TEAM_PITCHING_S(108: 91: 92:	9364 1347 1377 1396 1297 1279 0 TEAM_FIELDING_I 5 101: 2 193 7 175 3 164	84 191 137 97 102 92 E TEAM_FIELDING_DP 1 NA 3 155 5 153 4 156 8 168

Response Variable: Yearly wins

The variable TARGET_WINS is the number of wins of a professional baseball team for a given year. The year is not part of the data set.

This is the dependent variable that our models will attempt to predict. It is characterized by:

TARGET_WINS
Min.: 0.00
1st Qu.: 71.00
Median: 82.00
Mean: 80.79
3rd Qu.: 92.00
Max. :146.00

	n	sd	se
TARGET_WINS	2276	15.75215	0.3301823

the distribution of the number of wins is unimodal and skewed to the left with some outliers towards the tail. It looks approximately normal, though the boxplot shows there are quite a few outliers. The minimum number of wins for a team is 0 and the maximum is 146. The mean is 80.79.

TARGET_WINS

Explanatory Variables

Batting variables

Below are our batting variables and their hypothesized effect on TARGET_WINS:

DESCRIPTION AND THEORETICAL EFFECT

VARIABLE NAME DEFINITION	THEORETICAL EFFECT
TEAM_BATTING_HBase Hits by batters (1B,2B,3B,HR)	Positive Impact on Wins
TEAM_BATTING_2Boubles by batters (2B)	Positive Impact on Wins
TEAM_BATTING_3Briples by batters (3B)	Positive Impact on Wins
TEAM_BATTING_HRomeruns by batters (4B)	Positive Impact on Wins
TEAM_BATTING_B\data{B}\data{B}\data alks by batters	Positive Impact on Wins
TEAM_BATTING_HBatters hit by pitch (get a free base)	Positive Impact on Wins
TEAM_BATTING_S © trikeouts by batters	Negative Impact on Wins

The boxplots hint that some of these variables are quite skewed, especially ${\tt TEAM_BATTING_BB}$ and ${\tt TEAM_BATTING_H}$.

Since all of these variables relate to the same thing, batting, we expect at least some of them to be correlated. This has implications on later modeling:

							_
TARGET <u>T</u> EVAINSE	BATEANG_BE	ATHEAM_28B	ATTIFIAM_BB	ATTIENM_BI	ATHENM_BE	ATHEAM_S	XATTING_HBP
TARGET_W100000000.4699467	0.3129840	-	0.4224168	0.4686879	-	0.0735042	2
		0.1243459			0.2288927		
TEAM_BATOT4699946F1.0000000	0.5617729	0.2139188	0.3962759	0.1973523	-		-
					0.3417433	0.0291122	2
TEAM_BATOT 31N2O 84 20 B5617729	1.0000000	0.0420344	0.2509905	0.1974926	-	0.0460848	3
					0.0641512		

TARGET <u>TEMINS</u> B	ATEANG BH			ATTELANG_BE	ATTELANA_BE	ATTENIA SOATTING_H
TEAM_BATTING_30B2139188	0.0420344	1.0000000	-	-	=	-
0.1243459			0.2187993	0.2058439	0.1929184	0.1742472
TEAM_BAT074220416H0R3962759	0.2509905	-	1.0000000	0.4563816	0.2104544	0.1061812
		0.2187993				
TEAM_BATOTAI6\$687B0B1973523	0.1974926	-	0.4563816	1.0000000	0.2183387	0.0474601
		0.2058439				
TEAM_BATTING_SO -	-	-	0.2104544	0.2183387	1.0000000	0.2209422
0.22889270.3417433	0.0641512	0.1929184				
TEAM_BAT0707360421BP -	0.0460848	-	0.1061812	0.0474601	0.2209422	1.0000000
0.0291122		0.1742472				

Baserun Variables

Description and theoretical effects:

VARIABLE NAME	DEFINITION	THEORETICAL EFFECT
TEAM_BASERUN_SB TEAM_BASERUN_CS		Positive Impact on Wins Negative Impact on Wins

As you can see, both variables have some missing values:

TEAM_BASERUN_SB	TEAM_BASERUN_CS
Min.: 0.0	Min.: 0.0
1st Qu.: 66.0	1st Qu.: 38.0
Median:101.0	Median: 49.0
Mean : 124.8	Mean: 52.8
3rd Qu.:156.0	3rd Qu.: 62.0
Max. :697.0	Max. :201.0
NA's :131	NA's :772
Mean :124.8 3rd Qu.:156.0 Max. :697.0	Mean: 52.8 3rd Qu.: 62.0 Max.:201.0

TEAM_BASERUN_SB

TEAM_BASERUN_CS

	TARGET_WINS	TEAM_BASERUN_SB	TEAM_BASERUN_CS
TARGET_WINS	1.0000000	0.1539213	0.0224041
TEAM_BASERUN_SB	0.1539213	1.0000000	0.6552448
TEAM_BASERUN_CS	0.0224041	0.6552448	1.0000000

Pitching Variables

Description:

VARIABLE NAME	DEFINITION	THEORETICAL EFFECT
TEAM_PITCHING_BB	Walks allowed	Negative Impact on Wins
TEAM_PITCHING_H	Hits allowed	Negative Impact on Wins
TEAM_PITCHING_HR	Homeruns allowed	Negative Impact on Wins
TEAM_PITCHING_SO	Strikeouts by pitchers	Positive Impact on Wins

kable(head(data[c(12:15)]), format='markdown')

TEAM_PITCHING_H	TEAM_PITCHING_HR	TEAM_PITCHING_BB	TEAM_PITCHING_SO
9364	84	927	5456
1347	191	689	1082
1377	137	602	917
1396	97	454	928
1297	102	472	920
1279	92	443	973

kable(summary(data[c(12:15)]), format='markdown')

TEAM_PITCHING_F	TEAM_PITCHING_HR	TEAM_PITCHING_BB	TEAM_PITCHING_SO
Min · 1137	Min : 0.0	Min : 0.0	Min : 0.0

TEAM_PITCHING_H	TEAM_PITCHING_HR	TEAM_PITCHING_BB	TEAM_PITCHING_SO
1st Qu.: 1419	1st Qu.: 50.0	1st Qu.: 476.0	1st Qu.: 615.0
Median: 1518	Median: 107.0	Median: 536.5	Median: 813.5
Mean: 1779	Mean $:105.7$	Mean: 553.0	Mean: 817.7
3rd Qu.: 1682	3rd Qu.:150.0	3rd Qu.: 611.0	3rd Qu.: 968.0
Max. :30132	Max. :343.0	Max. $:3645.0$	Max. $:19278.0$
NA	NA	NA	NA's :102

TEAM_PITCHING_H

TEAM_PITCHING_HR TEAM_PITCHING_BB

kable(cor(data[c(2, 12:15)]), format='markdown')

TARGET_	W INES AM_PITCHIN I	Œ <u>Æ</u> M_PITCHINŒ <u>I</u>	EMM_PITCHINGE	ABM_PITCHING_SO
TARGET_WINS 1.0000000	-0.1099371	0.1890137	0.1241745	NA
TEAM_PITCHING <u>0.</u> H099371	1.0000000	-0.1416128	0.3206762	NA
TEAM_PITCHING <u>0.</u> H90137	-0.1416128	1.0000000	0.2219375	NA
TEAM_PITCHING <u>0.</u> BP41745	0.3206762	0.2219375	1.0000000	NA
TEAM_PITCHING_SO NA	NA	NA	NA	1

Fielding Variables

Description:

VARIABLE NAME	DEFINITION	THEORETICAL EFFECT	
TEAM_FIELDING_E	Errors	Negative Impact on Wins	
TEAM_FIELDING_DP	Double Plays	Positive Impact on Wins	

kable(summary(data[c(16:17)]), format='markdown')

TEAM_FIELDING_E TEAM_FIELDING_DP

Min.: 65.0 Min.: 52.0

TEAM_FIELDING_E	TEAM_FIELDING_DP
1st Qu.: 127.0	1st Qu.:131.0
Median: 159.0	Median :149.0
Mean: 246.5	Mean : 146.4
3rd Qu.: 249.2	3rd Qu.:164.0
Max. :1898.0	Max. $:228.0$
NA	NA's :286

TEAM_FIELDING_E

TEAM_FIELDING_DP

kable(cor(data[c(2, 16:17)]))

	TARGET_WINS	TEAM_FIELDING_E	TEAM_FIELDING_DP
TARGET_WINS	1.0000000	-0.1764848	NA
TEAM_FIELDING_E	-0.1764848	1.0000000	NA
TEAM_FIELDING_DP	NA	NA	1

Data Preparation

There are missing data in this dataset:

```
sort(sapply(data, FUN=function(x) mean(is.na(x))), decreasing=TRUE)
```

```
## TEAM_BATTING_HBP
                     TEAM_BASERUN_CS TEAM_FIELDING_DP
                                                        TEAM_BASERUN_SB
##
         0.91608084
                           0.33919156
                                            0.12565905
                                                              0.05755712
##
    TEAM_BATTING_SO TEAM_PITCHING_SO
                                                 INDEX
                                                             TARGET_WINS
##
         0.04481547
                           0.04481547
                                            0.00000000
                                                              0.00000000
##
     TEAM_BATTING_H
                     TEAM_BATTING_2B
                                       TEAM_BATTING_3B
                                                        TEAM_BATTING_HR
##
         0.0000000
                           0.0000000
                                            0.0000000
                                                              0.0000000
##
    TEAM_BATTING_BB
                     TEAM_PITCHING_H TEAM_PITCHING_HR TEAM_PITCHING_BB
##
         0.0000000
                           0.00000000
                                            0.00000000
                                                              0.00000000
##
    TEAM_FIELDING_E
         0.0000000
##
```

The TEAM_BATTING_HBP variable is almost entirely missing. We chose to omit it from the rest of the analysis.

As for the other variables, we are simply dropping them, further analyzing only the complete cases.

```
data$TEAM_BATTING_HBP <- NULL
data2 <- data[complete.cases(data), ]</pre>
```

Some variables can be transformed to appromximately normal distribution by logging them. We will test this below:

```
train <- data
train.df <- data
train.trans <- train.df
# cols.nomiss = names(train.df)[!names(train.df)%in%(cols.miss)]
train.trans$TEAM_PITCHING_HR = apply(train.trans['TEAM_PITCHING_HR'], 1, function(x) if(x==0){return(0)}
train.trans$TEAM_PITCHING_BB = apply(train.trans['TEAM_PITCHING_BB'], 1, function(x) if(x==0){return(0)}
train.trans$TEAM_FIELDING_E = apply(train.trans['TEAM_FIELDING_E'], 1, function(x) if(x==0){return(0)}}</pre>
```

Modeling

```
# SAMRITA's prep ?
train.trans$TEAM_BATTING_H = train.trans$TEAM_BATTING_H + train.trans$TEAM_BATTING_2B + train.trans$TEAM_FIELDING_E = train.trans$TEAM_FIELDING_E + train.trans$TEAM_PITCHING_H
train.trans = train.trans%>%dplyr::select(-TEAM_BATTING_2B, -TEAM_BATTING_3B, -TEAM_BATTING_HR, -TEAM_P
```

Model 1

The first model model regresses target_wins on the five variables identified above:

```
## lm(formula = TARGET_WINS ~ TEAM_BATTING_H + TEAM_BATTING_BB +
##
       TEAM_PITCHING_HR + TEAM_PITCHING_BB + TEAM_FIELDING_E, data = train.trans)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -50.087
           -9.176
                    0.455
                            9.110
                                   59.641
##
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    2.8223840 8.3128468
                                          0.340
                                                    0.734
## TEAM_BATTING_H
                    0.0383705  0.0017159  22.362  < 2e-16 ***
## TEAM_BATTING_BB
                                          4.085 4.55e-05 ***
                    0.0167647 0.0041036
## TEAM_PITCHING_HR -1.9009586 0.4477722
                                          -4.245 2.27e-05 ***
## TEAM PITCHING BB 1.5483525 1.5160674
                                           1.021
                                                    0.307
## TEAM FIELDING E -0.0018848 0.0002602
                                         -7.244 5.95e-13 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 13.77 on 2270 degrees of freedom
## Multiple R-squared: 0.2377, Adjusted R-squared: 0.236
```

```
## F-statistic: 141.6 on 5 and 2270 DF, p-value: < 2.2e-16
```

All but one of the variables are extremely significant, including the intercept parameter. The F-statistic suggests the model is not just picking up random noise.

It estimates that base hits and walks by batters are positively related to team wins, and that walks allowed and errors and homeruns allowed are negatively related. Curiously, it finds TEAM_PITCHING_BB is positively related, although it was theorized to be negatively related.

Mean squared error, as a baseline for evaluation:

```
mean(resid(model1)^2)
## [1] 189.0616
```

Model 2

The second model uses the same varibles, but some of them have been log-transformed, and we use squared functions of some of them, rather than the variable itself.

```
train.trans = train.df
train.trans$TEAM_BATTING_H = train.trans$TEAM_BATTING_H + train.trans$TEAM_BATTING_2B + train.trans$TEAM_FIELDING_E = train.trans$TEAM_FIELDING_E + train.trans$TEAM_PITCHING_H
train.trans = train.trans%>%dplyr::select(-TEAM_BATTING_2B, -TEAM_BATTING_3B, -TEAM_BATTING_HR, -TEAM_P
summary(train.trans)
```

```
##
        INDEX
                      TARGET_WINS
                                       TEAM_BATTING_H TEAM_BATTING_BB
##
   Min.
          :
               1.0
                     \mathtt{Min}.
                            : 0.00
                                       Min.
                                              :1026
                                                      Min.
                                       1st Qu.:1739
##
   1st Qu.: 630.8
                     1st Qu.: 71.00
                                                      1st Qu.:451.0
##
  Median :1270.5
                     Median: 82.00
                                       Median:1862
                                                      Median :512.0
  Mean
           :1268.5
                     Mean
                            : 80.79
                                       Mean
                                              :1865
                                                      Mean
                                                              :501.6
                     3rd Qu.: 92.00
##
    3rd Qu.:1915.5
                                       3rd Qu.:1978
                                                      3rd Qu.:580.0
##
  Max.
           :2535.0
                            :146.00
                                       Max.
                                              :3092
                                                      Max.
                                                              :878.0
                     Max.
##
##
  TEAM_BATTING_SO
                     TEAM_BASERUN_SB TEAM_BASERUN_CS TEAM_PITCHING_HR
## Min.
          :
               0.0
                     Min.
                            : 0.0
                                      Min.
                                             : 0.0
                                                      Min.
                                                              : 0.0
##
   1st Qu.: 548.0
                     1st Qu.: 66.0
                                      1st Qu.: 38.0
                                                      1st Qu.: 50.0
##
  Median : 750.0
                     Median :101.0
                                      Median: 49.0
                                                      Median :107.0
##
  Mean
           : 735.6
                     Mean
                            :124.8
                                      Mean
                                             : 52.8
                                                      Mean
                                                              :105.7
##
    3rd Qu.: 930.0
                     3rd Qu.:156.0
                                      3rd Qu.: 62.0
                                                      3rd Qu.:150.0
                                             :201.0
## Max.
           :1399.0
                            :697.0
                                                              :343.0
                     Max.
                                      Max.
                                                      Max.
## NA's
           :102
                     NA's
                             :131
                                      NA's
                                             :772
## TEAM_PITCHING_BB TEAM_PITCHING_SO
                                       TEAM_FIELDING_E TEAM_FIELDING_DP
##
   \mathtt{Min}.
           :
               0.0
                     Min.
                            :
                                  0.0
                                        Min.
                                               : 1276
                                                        Min.
                                                                : 52.0
##
  1st Qu.: 476.0
                     1st Qu.:
                               615.0
                                        1st Qu.: 1566
                                                        1st Qu.:131.0
## Median: 536.5
                     Median :
                               813.5
                                        Median: 1679
                                                        Median :149.0
## Mean
           : 553.0
                               817.7
                                               : 2026
                     Mean
                                        Mean
                                                        Mean
                                                                :146.4
##
   3rd Qu.: 611.0
                     3rd Qu.:
                               968.0
                                        3rd Qu.: 1922
                                                        3rd Qu.:164.0
## Max.
           :3645.0
                     Max.
                             :19278.0
                                        Max.
                                               :31860
                                                        Max.
                                                                :228.0
##
                     NA's
                             :102
                                                        NA's
                                                                :286
train.trans$TEAM_PITCHING_HR = apply(train.trans['TEAM_PITCHING_HR'], 1, function(x) if(x==0){return(0)}
train.trans$TEAM_PITCHING_BB = apply(train.trans['TEAM_PITCHING_BB'], 1, function(x) if(x==0){return(0)}
train.trans$TEAM_FIELDING_E = apply(train.trans['TEAM_FIELDING_E'], 1, function(x) if(x==0){return(0)}
model2 = lm(TARGET_WINS ~ TEAM_BATTING_H + poly(TEAM_BATTING_BB,2) +
                TEAM_PITCHING_HR + poly(TEAM_PITCHING_BB,2) +
```

```
poly(TEAM_FIELDING_E,2), data=train.trans)
summary(model2)
##
## Call:
## lm(formula = TARGET_WINS ~ TEAM_BATTING_H + poly(TEAM_BATTING_BB,
##
       2) + TEAM_PITCHING_HR + poly(TEAM_PITCHING_BB, 2) + poly(TEAM_FIELDING_E,
##
       2), data = train.trans)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -52.787 -8.938
                    0.192
                             9.165 49.336
##
## Coefficients:
##
                                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                               2.848e+00 3.764e+00 0.757
                                                                0.449
## TEAM_BATTING_H
                               4.945e-02 2.586e-03 19.122 < 2e-16 ***
## poly(TEAM_BATTING_BB, 2)1 -3.781e+02 6.711e+01 -5.634 1.98e-08 ***
## poly(TEAM_BATTING_BB, 2)2
                              2.057e+02 2.629e+01
                                                     7.826 7.65e-15 ***
## TEAM_PITCHING_HR
                              -3.246e+00 5.333e-01 -6.088 1.34e-09 ***
## poly(TEAM_PITCHING_BB, 2)1 2.847e+02 4.062e+01
                                                      7.009 3.16e-12 ***
## poly(TEAM_PITCHING_BB, 2)2 1.759e+02 2.884e+01
                                                      6.100 1.24e-09 ***
## poly(TEAM_FIELDING_E, 2)1 -5.730e+02 6.423e+01 -8.920 < 2e-16 ***
## poly(TEAM_FIELDING_E, 2)2 -1.043e+02 1.606e+01 -6.496 1.01e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 13.58 on 2267 degrees of freedom
## Multiple R-squared: 0.259, Adjusted R-squared: 0.2563
## F-statistic: 99.02 on 8 and 2267 DF, p-value: < 2.2e-16
All of our parameters are significant at p < 0.001 level, although the intercept term is no longer as significant
as it was. Adjusted R^2 has improved, as has MSE:
mean(resid(model1)^2)
## [1] 189.0616
Model 3
model3 attempts to more precisely model TEAM_FIELDING_E by cubing it.
model3 = lm(TARGET_WINS ~ TEAM_BATTING_H + poly(TEAM_BATTING_BB,2) +
                TEAM_PITCHING_HR + poly(TEAM_PITCHING_BB,2) +
                poly(TEAM_FIELDING_E,3), data=train.trans)
summary(model3)
##
## Call:
## lm(formula = TARGET_WINS ~ TEAM_BATTING_H + poly(TEAM_BATTING_BB,
       2) + TEAM_PITCHING_HR + poly(TEAM_PITCHING_BB, 2) + poly(TEAM_FIELDING_E,
##
       3), data = train.trans)
##
##
## Residuals:
```

Max

##

Min

1Q Median

3Q

```
## -51.800 -8.957
                    0.291
                            9.101 49.593
##
## Coefficients:
##
                               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                              2.836e+00 3.756e+00
                                                    0.755 0.45028
## TEAM BATTING H
                              5.083e-02 2.614e-03 19.443 < 2e-16 ***
## poly(TEAM BATTING BB, 2)1 -3.519e+02 6.744e+01 -5.218 1.97e-07 ***
## poly(TEAM_BATTING_BB, 2)2
                              1.826e+02
                                        2.716e+01
                                                    6.722 2.26e-11 ***
## TEAM PITCHING HR
                             -3.827e+00
                                        5.607e-01 -6.826 1.12e-11 ***
## poly(TEAM_PITCHING_BB, 2)1 2.781e+02
                                        4.058e+01
                                                    6.855 9.19e-12 ***
## poly(TEAM_PITCHING_BB, 2)2 1.952e+02
                                        2.937e+01
                                                    6.646 3.77e-11 ***
## poly(TEAM_FIELDING_E, 3)1 -5.658e+02
                                        6.413e+01 -8.823 < 2e-16 ***
## poly(TEAM_FIELDING_E, 3)2 -1.051e+02 1.602e+01 -6.561 6.61e-11 ***
## poly(TEAM_FIELDING_E, 3)3 -5.528e+01 1.682e+01 -3.286 0.00103 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 13.55 on 2266 degrees of freedom
## Multiple R-squared: 0.2625, Adjusted R-squared: 0.2595
## F-statistic: 89.6 on 9 and 2266 DF, p-value: < 2.2e-16
```

All the model parameters are highly significant, although the intercept is no longer significant. This is fine, however; arguably, a team with scores of 0 across all variables could expect to have zero wins on average.

Adjusted R^2 and MSE tick up slightly compared to previous models:

```
mean(resid(model3)^2)
## [1] 182.9232
```

Evaluation

This section evaluates the above models, particularly focusing on residuals analysis.

Model 1

```
par(mfrow=c(2,2))
plot(model1)
```


Although the Q-Q and histogram plots show the residuals aren't too bad, there does appear to be some systematic bias. Lower fitted values from approximately 20-60 are systematically negative.

There's a strange point in the residuals plot, around $\hat{y} = 15$. Examining this point more closely, we don't see any obvious cause for it:

```
train[which.min(resid(model1)), ]
```

```
INDEX TARGET_WINS TEAM_BATTING_H TEAM_BATTING_2B TEAM_BATTING_3B
##
## 859
                                    1402
         950
                       21
                                                      149
                                                                        53
##
       TEAM_BATTING_HR TEAM_BATTING_BB TEAM_BATTING_SO TEAM_BASERUN_SB
## 859
                                    304
                                                     295
       TEAM_BASERUN_CS TEAM_PITCHING_H TEAM_PITCHING_HR TEAM_PITCHING_BB
##
##
  859
                    NA
                                   1475
##
       TEAM_PITCHING_SO TEAM_FIELDING_E TEAM_FIELDING_DP
## 859
                    310
```

This point has extremely high leverage:

```
train[1211, ]
```

```
INDEX TARGET_WINS TEAM_BATTING_H TEAM_BATTING_2B TEAM_BATTING_3B
##
## 1211
         1347
        TEAM_BATTING_HR TEAM_BATTING_BB TEAM_BATTING_SO TEAM_BASERUN_SB
##
## 1211
        TEAM_BASERUN_CS TEAM_PITCHING_H TEAM_PITCHING_HR TEAM_PITCHING_BB
##
##
                                   24057
##
        TEAM_PITCHING_SO
                         TEAM_FIELDING_E TEAM_FIELDING_DP
## 1211
                       0
                                     1890
```

It is the only team with 0 wins in the entire dataset, and naturally the model could not accurately estimate wins for this data point. Future modeling should consider excluding this unusual case.

Look at each variable plotted against the model's residuals to see if we can understand the source of some of this bias:

```
par(mfrow=c(3,1))
plot(train$TEAM_BATTING_H, resid(model1))
abline(lm( resid(model1) ~ train$TEAM_BATTING_H))

plot(train$TEAM_BATTING_BB, resid(model1))
abline(lm( resid(model1) ~ train$TEAM_BATTING_BB))

plot(train$TEAM_PITCHING_HR, resid(model1))
abline(lm( resid(model1) ~ train$TEAM_PITCHING_HR))
```



```
par(mfrow=c(2,1))
plot(train$TEAM_PITCHING_BB, resid(model1))
abline(lm( resid(model1) ~ train$TEAM_PITCHING_BB))

plot(train$TEAM_FIELDING_E, resid(model1))
abline(lm( resid(model1) ~ train$TEAM_FIELDING_E))
```


The trend lines all look fairly level, the least squares' assumption of constant variance is violated in most of these plots. Additionally, the mode consistently underestimates when TEAM_FIELDING_E is around or greater than 1500.

Model 2

From above, we know that this model performs better than model1. Examine its residuals:

par(mfrow=c(2,2))
plot(model2)

Thanks to the transformations, the Q-Q plot indicates these residuals are somewhat more normal than before. However, despite the transformations, data point 1211 is still an issue.

Systematic bias in the model remains, although it appears to be on the other side: as the predicted TARGET_WINS increases, the residuals are more strongly negative. I.e., this model is under-predicting better performing teams.

Model 3

Finally, model three:

par(mfrow=c(2,2))
plot(model3)

Although this model had the best adjusted R^2 and MSE, it appears even more biased than the previous model, but in the same way.

The plots of each variable against the model residual suggests the same problems plague model3 as the others: Unusual outlying points and lack of constant variance.

Predictions

```
df.test = read.table("moneyball-evaluation-data.csv", sep=',', header = TRUE, stringsAsFactors = FALSE)
#2] SELECT Non Null columns
df.test = df.test%>%dplyr::select(-INDEX)
\#cols.nomiss = names(train.df)[!names(train.df)%in%(cols.miss)]
#df.test = df.test%>%dplyr::select(cols.nomiss)
#3] Transform Data
test.trans = df.test
test.trans$TEAM_BATTING_H = test.trans$TEAM_BATTING_H + test.trans$TEAM_BATTING_2B + test.trans$TEAM_B
test.trans$TEAM_FIELDING_E = test.trans$TEAM_FIELDING_E + test.trans$TEAM_PITCHING_H
test.trans = test.trans%>%dplyr::select(-TEAM_BATTING_2B, -TEAM_BATTING_3B, -TEAM_BATTING_HR, -TEAM_PIT
test.trans$TEAM_PITCHING_HR = apply(test.trans['TEAM_PITCHING_HR'], 1, function(x) if(x==0){return(0)}
test.trans$TEAM_PITCHING_BB = apply(test.trans['TEAM_PITCHING_BB'], 1, function(x) if(x==0){return(0)}
test.trans$TEAM_FIELDING_E = apply(test.trans['TEAM_FIELDING_E'], 1, function(x) if(x==0){return(0)} el
Target_Wins = predict(model3, newdata = test.trans)
test.trans$TARGET_WINS = Target_Wins
df.test1 = read.table("moneyball-evaluation-data.csv", sep=',', header = TRUE, stringsAsFactors = FALSE
df.test1$TARGET_WINS = Target_Wins
write.csv(df.test1, "Target_Prediction.csv", row.names = FALSE)
```