

Zawartość

Laboratorium 4	
F. aktywacji – tangens hiperboliczny	4
F. aktywacji – liniowa	18
F. aktywacji – sigmoidalna	20
Laboratorium 5	33
Feedforwardnet	33
RBF	38
Newgrnn	47
Laboratorium 6	56

Laboratorium 4

Podczas laboratorium 4 zajmowaliśmy się uczeniem i testowaniem sieci, umożliwiającej prawidłową aproksymację funkcji wyrażonych wzorem:

$$F(x) = A*sin(B*x + C)*cos(D*x+E)$$

Jako indywidualne wartości dla kolejnych parametrów przyjąłem:

- A = 1
- B = 2
- C = 30
- D = 8
- E = 60

W wykonanym programie sprawdziłem efekty nauczania sieci przy wykorzystaniu różnych funkcji aktywacji:

- f. tangens hiperboliczny('tansig')
- f. sigmoidalna ('logsig')
- f. liniowa ('purelin')

Podczas wykonywania badania sprawdzałem wartości błędu średniokwadratowego MSE oraz wartości współczynnika korelacji R względem 'wartościami oczekiwanymi danych wyjściowych zbioru testującego' i

'wartościami rzeczywistymi danych wyjściowych zbioru testującego wyuczoną sieć'. Sprawdzenie wartości MSE oraz R wykonałem dla struktury sieci od 1 do 15 neuronów w warstwie ukrytej.

Jako parametr learning rate zastosowałem stałą wartość dla całych obliczeń, tj. 0.000001. Taki dobór wartości sprawił, że szybkość nauczania sieci nie była "zbyt wolna".

Jako maksymalną liczbę epok (cykli) uczenia sieci danymi uczącymi przyjąłem 200. Zdecydowałem się na wykonanie iteracji od 1 do 200 epok ze skokiem 5 epok (czyli ostatecznie, maksymalna liczba epok to 196). Przyczyną takiego rozwiązania był stosunkowo długi czas wykonania całego programu, co było dla mnie niepożądanym efektem.

Podczas definiowania parametrów sieci ustawiłem dane wejściowe uczące jako w 100% uczące, ponieważ domyślnie w matlabie sieć MLP 'feedforwardnet' rozdziela dane na podzbiory uczące, walidujące i testujące. My sami zdefiniowaliśmy zbiory danych wejściowych uczących i testujących jako wektory:

- X_{UCZENIE} = 1:0.01:5
- X_{TRENING} = 1:0.001:5

Jak widać, zbiór danych testujących jest 10x większy od zbioru uczącego. Wobec tego możemy być spokojni podczas weryfikacji poprawności działania sieci zbiorem testującym. Większość wzorców par ze zbioru testującego nie była wykorzystywana w trakcie nauki sieci.

Tak dobrane wartość amplitudy (A=1) oraz innych współczynników sprawiły, że funkcja f(x) posiadała "z góry" dobrany zakres wartości wyjściowych, mieszczących się w granicy zakresu funkcji aktywacji (-1, 1). Zalecane jest, aby zakres wartości wyjściowych mieścił się w zakresie funkcji aktywacji.

Jako wartości wag początkowych połączeń przyjąłem wartości losowe z zakresu (-1,1), co jest zalecane, ponieważ zbyt duża wartość wag skutkuje nasyceniem sigmoidalnych f. aktywacji, czego skutkiem może być bardzo wolna zbieżność lub zatrzymanie w minimum lokalnym podczas procesu uczenia. Z drugiej strony wartości wag bliskie zerowych grożą tym, że proces uczenia może być bardzo wolno zbieżny lub wagi połączeń będą zbieżne do wartości zerowych.

Najlepszy przypadek (najmniejsza wartość błędu MSE) dla przypadku użycia każdej z f. aktywacji:

Najlepsze dopasowanie dla f. aktywacji: 'logsig' - f. sigmoidalna:

Błąd MSE danych testujących: 0.0000015770, liczba neuronów: 15, f. aktywacji: logsig, l. epok 61

Błąd MSE danych uczących: 0.0000015475 , liczba neuronów: 15 , f. aktywacji: logsig , l. epok 61

Najlepsze dopasowanie dla f. aktywacji: 'purelin' – f. liniowa:

Błąd MSE: 0.2579373242, liczba neuronów: 11, f. aktywacji: 'purelin', l. epok 41

(Dla każdej z epok i l. neuronów takie same wartości błędu)

Najlepsze dopasowanie dla f. aktywacji: 'tansig' – tangens hiperboliczny:

Błąd MSE danych testujących: 0.0000029713 , liczba neuronów: 15 , f. aktywacji: tansig , l. epok 161

Błąd MSE danych uczących: 0.0000029052 , liczba neuronów: 15 , f. aktywacji: tansig , l. epok 161

W tabeli poniżej przedstawiłem wyniki, porównujące czasy wykonania treningów w zależności od zastosowanej funkcji aktywacji i liczby neuronów w warstwie ukrytej sieci. Wszystkie wyniki są dla treningu z liczbą epok równą 196.

	Czas (w sekundach) wy	konania uczynienia sieci	
Liczba Epok = 196	logsig	purelin	tansig
Liczba neuronów			
1	2.4974	0.0828	0.6158
2	2.5409	0.0975	1.7508
3	2.5512	0.0856	2.5889
4	2.5940	0.0947	2.6072
5	2.6810	0.0876	2.7459
6	2.7090	0.0840	3.1535
7	3.4271	0.0858	2.7568
8	2.7372	0.0866	2.9660
9	2.7693	0.0882	2.8224
10	2.7804	0.0871	2.8043
11	2.8084	0.0863	3.1430
12	2.8249	0.0876	2.8467
13	2.8330	0.0860	3.5031
14	2.8614	0.0867	3.0140
15	2.8745	0.0879	2.9185

Tabela 1 Czas uczenia sieci zależny od liczby neuronów i f. aktywacji

F. aktywacji – tangens hiperboliczny W tabelach 2 i 3 poniżej, przedstawiono wyniki blędu MSE dla danych testujących.

1.N / Epoki	1	2	3	4	5	6	7	8
1	0.2338	0.2001	0.1738	0.1642	0.1090	0.0926	0.0819	0.0398
6	0.2338	0.2001	0.2048	0.1642	0.1595	0.1127	0.0860	0.0200
11	0.2338	0.2108	0.2045	0.1642	0.1457	0.0896	0.0998	0.0829
16	0.2338	0.2108	0.1738	0.1683	0.1485	0.0903	0.0894	0.0829
21	0.2338	0.2108	0.2046	0.1683	0.1332	0.0981	0.0926	0.0829
26	0.2338	0.2108	0.1914	0.1752	0.1332	0.1061	0.0837	0.0276
31	0.2338	0.2108	0.1981	0.1642	0.1143	0.1492	0.0445	0.0200
36	0.2338	0.2108	0.1738	0.2043	0.1332	0.0926	0.0784	0.0890
41	0.2338	0.2108	0.1738	0.1642	0.1457	0.1516	0.0885	0.0847
46	0.2338	0.2338	0.1738	0.1752	0.1379	0.1133	0.0784	0.0215
51	0.2338	0.2108	0.1738	0.1642	0.1576	0.0912	0.0962	0.0200
56	0.2338	0.2108	0.1981	0.1642	0.1463	0.1638	0.0837	0.0427
61	0.2338	0.2108	0.1738	0.1642	0.1595	0.1061	0.0894	0.1022
66	0.2338	0.2108	0.1981	0.1752	0.1595	0.0926	0.0819	0.0737
71	0.2338	0.2108	0.1738	0.1752	0.1457	0.0912	0.0892	0.0200
76	0.2338	0.2108	0.1738	0.1642	0.1564	0.0926	0.0864	0.0276
86	0.2338	0.2108	0.1738	0.1642	0.1510	0.0926	0.0837	0.0694
91	0.2338	0.2108	0.1738	0.1642	0.1332	0.0885	0.0364	0.0829
96	0.2338	0.2108	0.1738	0.1591	0.1506	0.1263	0.0892	0.0200
101	0.2338	0.2108	0.1738	0.1642	0.1594	0.0926	0.0846	0.0803
106	0.2338	0.2108	0.1738	0.1683	0.1359	0.0981	0.0771	0.0200
111	0.2338	0.2108	0.1738	0.1642	0.1557	0.1264	0.0446	0.0276
116	0.2338	0.2001	0.1981	0.1642	0.1510	0.0926	0.0789	0.0829
121	0.2338	0.2001	0.1738	0.1752	0.1143	0.0964	0.0839	0.0200
126	0.2338	0.2108	0.1981	0.1642	0.1379	0.1061	0.0847	0.0200
131	0.2338	0.2001	0.1738	0.1642	0.1143	0.0885	0.0819	0.0200
136	0.2338	0.2108	0.1738	0.1642	0.1332	0.0926	0.0819	0.0829
141	0.2338	0.2108	0.1738	0.1642	0.1624	0.0926	0.0789	0.0215
146	0.2338	0.2108	0.1738	0.1642	0.1709	0.0926	0.0364	0.0200
151	0.2338	0.2108	0.1738	0.1642	0.1465	0.0896	0.0892	0.0829
156	0.2338	0.2108	0.1981	0.1642	0.1379	0.1539	0.0784	0.0215
161	0.2338	0.2108	0.1738	0.1642	0.1433	0.1332	0.0962	0.0791
166	0.2338	0.2341	0.1920	0.1538	0.1411	0.1207	0.0839	0.0277
171	0.2338	0.2108	0.1738	0.1642	0.1642	0.1532	0.0643	0.0474
L	1	1	I	1	I		1	1

176	0.2338	0.2001	0.1738	0.1642	0.1557	0.0912	0.1500	0.0215
181	0.2338	0.2108	0.1738	0.1752	0.1411	0.1082	0.0258	0.0215
186	0.2338	0.2108	0.1738	0.1752	0.1332	0.0896	0.0258	0.0200
191	0.2338	0.2108	0.1738	0.1642	0.1143	0.0885	0.0819	0.0215
196	0.2338	0.2108	0.1738	0.1642	0.1291	0.0964	0.0258	0.0353

Tabela 2 Wartości błędów MSE danych testujących dla f. aktywacji - tangens hiberboliczny

1.N / Epoki	9	10	11	12	13	14	15
1	0.0402	0.0305	0.0006	0.0067	0.0033	0.0049	0.0000
6	0.0733	0.0662	0.0023	0.0001	0.0065	0.0000	0.0000
11	0.0306	0.0755	0.0004	0.0055	0.0033	0.0000	0.0000
16	0.0313	0.0006	0.0002	0.0003	0.0002	0.0000	0.0000
21	0.0550	0.0142	0.0005	0.0003	0.0031	0.0000	0.0000
26	0.0118	0.0778	0.0004	0.0034	0.0005	0.0000	0.0000
31	0.0175	0.0045	0.0005	0.0001	0.0001	0.0000	0.0000
36	0.0021	0.0715	0.0082	0.0003	0.0015	0.0000	0.0000
41	0.0138	0.0021	0.0004	0.0033	0.0000	0.0000	0.0000
46	0.0380	0.0004	0.0011	0.0033	0.0004	0.0000	0.0000
51	0.0118	0.0018	0.0025	0.0057	0.0044	0.0000	0.0000
56	0.0465	0.0724	0.0004	0.0008	0.0000	0.0000	0.0000
61	0.0721	0.0045	0.0005	0.0003	0.0033	0.0000	0.0000
66	0.0444	0.0023	0.0022	0.0001	0.0033	0.0000	0.0000
71	0.0222	0.0055	0.0021	0.0005	0.0002	0.0053	0.0000
76	0.0123	0.0092	0.0125	0.0002	0.0033	0.0000	0.0000
81	0.0118	0.0711	0.0065	0.0003	0.0015	0.0000	0.0000
86	0.1451	0.0070	0.0031	0.0003	0.0004	0.0000	0.0000
91	0.0774	0.0022	0.0004	0.0001	0.0004	0.0000	0.0000
96	0.0431	0.0054	0.0005	0.0034	0.0005	0.0051	0.0000
101	0.0676	0.0047	0.0004	0.0111	0.0005	0.0000	0.0000
106	0.0382	0.0142	0.0047	0.0001	0.0015	0.0000	0.0000
111	0.0192	0.0008	0.0004	0.0001	0.0004	0.0000	0.0000
116	0.0436	0.0731	0.0005	0.0001	0.0001	0.0000	0.0000
121	0.0281	0.0331	0.0004	0.0001	0.0007	0.0000	0.0000
126	0.0591	0.0715	0.0003	0.0003	0.0006	0.0020	0.0000
131	0.0384	0.0712	0.0005	0.0003	0.0001	0.0000	0.0000
136	0.0727	0.0175	0.0065	0.0033	0.0004	0.0004	0.0000
141	0.1240	0.0703	0.0003	0.0033	0.0033	0.0000	0.0000
146	0.0112	0.0113	0.0016	0.0072	0.0033	0.0000	0.0000
151	0.0775	0.0740	0.0075	0.0057	0.0003	0.0000	0.0000
156	0.0340	0.0790	0.0004	0.0034	0.0033	0.0032	0.0000
161	0.0417	0.0450	0.0004	0.0005	0.0003	0.0000	0.0051
166	0.0192	0.0050	0.0073	0.0003	0.0002	0.0000	0.0000
171	0.0438	0.0077	0.0022	0.0001	0.0004	0.0014	0.0004

176	0.0030	0.0712	0.0103	0.0054	0.0002	0.0000	0.0049
181	0.0735	0.0054	0.0004	0.0001	0.0003	0.0000	0.0000
186	0.0761	0.0023	0.0004	0.0033	0.0004	0.0052	0.0000
191	0.0192	0.0113	0.0008	0.0003	0.0002	0.0011	0.0000
196	0.0118	0.0132	0.0004	0.0003	0.0032	0.0000	0.0000

Tabela 3 Wartości błędów MSE dla danych testujących f. aktywacji - tangens hiperboliczny

W tabelach 4 i 5 poniżej, przedstawiono wyniki blędu MSE dla danych uczących

l.N / Epoki	1	2	3	4	5	6	7	8
1	0.2348	0.2111	0.1984	0.1640	0.1559	0.1458	0.0629	0.0896
6	0.2348	0.2111	0.1984	0.1542	0.1514	0.1607	0.0818	0.0219
11	0.2348	0.2006	0.1735	0.1756	0.1591	0.0894	0.0818	0.0827
16	0.2348	0.2111	0.1735	0.2046	0.1415	0.0924	0.0788	0.0339
21	0.2348	0.2111	0.1735	0.1756	0.1592	0.0911	0.0306	0.0200
26	0.2348	0.2111	0.1735	0.1542	0.1591	0.0951	0.0818	0.0214
31	0.2348	0.2006	0.2179	0.1542	0.1429	0.0904	0.0818	0.0827
36	0.2348	0.2111	0.1735	0.1544	0.1383	0.0894	0.0788	0.0427
41	0.2348	0.2111	0.1735	0.1640	0.1147	0.0883	0.0775	0.0200
46	0.2348	0.2111	0.1735	0.1640	0.1088	0.0924	0.0846	0.0200
51	0.2348	0.2111	0.1735	0.1640	0.1559	0.0894	0.0769	0.0200
56	0.2348	0.2111	0.1984	0.1640	0.1542	0.0911	0.0835	0.0427
61	0.2348	0.2111	0.1735	0.1640	0.1270	0.0883	0.0258	0.0200
66	0.2348	0.2111	0.1735	0.1640	0.1147	0.0885	0.0962	0.0252
71	0.2348	0.2006	0.1735	0.1984	0.1592	0.0883	0.0835	0.0427
76	0.2348	0.2111	0.1735	0.2050	0.1053	0.0901	0.0649	0.0214
81	0.2348	0.2111	0.1984	0.2044	0.1498	0.0883	0.0846	0.0200
86	0.2348	0.2111	0.1984	0.2046	0.1592	0.0911	0.0258	0.0827
91	0.2348	0.2111	0.1984	0.1640	0.1429	0.0894	0.0258	0.0200
96	0.2348	0.2111	0.1735	0.1756	0.1330	0.0928	0.0845	0.0427
101	0.2348	0.2111	0.1735	0.1640	0.1559	0.1013	0.0915	0.0836
106	0.2348	0.2111	0.1735	0.1756	0.1592	0.0980	0.0745	0.0867
111	0.2348	0.2111	0.1735	0.1544	0.1330	0.1094	0.0835	0.0280
116	0.2348	0.2111	0.1735	0.1756	0.1267	0.0894	0.0891	0.0827
121	0.2348	0.2111	0.1735	0.1756	0.1722	0.0924	0.1592	0.0285
126	0.2348	0.2111	0.1735	0.1984	0.1460	0.1318	0.0893	0.0214
131	0.2348	0.2111	0.1984	0.1687	0.1053	0.1457	0.0818	0.0828
136	0.2348	0.2111	0.1735	0.1756	0.1592	0.0894	0.0782	0.0827
141	0.2348	0.2111	0.1984	0.1687	0.2167	0.0911	0.0258	0.0200
146	0.2348	0.2111	0.1735	0.1595	0.1384	0.0901	0.0835	0.0827
151	0.2348	0.2111	0.1984	0.1640	0.1592	0.0924	0.0258	0.0427
156	0.2348	0.2111	0.1735	0.1640	0.1330	0.0894	0.0835	0.0214
161	0.2348	0.2111	0.1735	0.1640	0.1554	0.0951	0.0258	0.0399

166	0.2348	0.2111	0.1735	0.1687	0.1559	0.1465	0.0818	0.0762
171	0.2348	0.2111	0.1735	0.1595	0.1559	0.1087	0.0649	0.0200
176	0.2348	0.2111	0.1735	0.1687	0.1460	0.0911	0.0845	0.0827
181	0.2348	0.2111	0.1735	0.1640	0.1456	0.0886	0.0891	0.0427
186	0.2348	0.2111	0.1984	0.1640	0.2168	0.0925	0.0452	0.0657
191	0.2348	0.2111	0.1735	0.1640	0.1592	0.0883	0.0258	0.0773
196	0.2348	0.2111	0.1735	0.1640	0.1355	0.0924	0.1065	0.0284

Tabela 4 Wartości blędów MSE dla danych uczących f. aktywacji - tangens hiperboliczny

l.N / Epoki	9	10	11	12	13	14	15
1	0.0543	0.0707	0.0758	0.0003	0.0004	0.0000	0.0000
6	0.0674	0.1359	0.0006	0.0003	0.0000	0.0000	0.0000
11	0.0354	0.0141	0.0004	0.0003	0.0044	0.0000	0.0000
16	0.0265	0.0456	0.0065	0.0034	0.0032	0.0000	0.0000
21	0.0171	0.0189	0.0013	0.0003	0.0007	0.0000	0.0001
26	0.0192	0.0706	0.0009	0.0003	0.0015	0.0000	0.0000
31	0.0728	0.0328	0.0044	0.0110	0.0003	0.0000	0.0000
36	0.1545	0.0756	0.0596	0.0034	0.0001	0.0000	0.0000
41	0.0380	0.0405	0.0005	0.0004	0.0003	0.0000	0.0000
46	0.0341	0.0049	0.0013	0.0025	0.0032	0.0000	0.0000
51	0.0118	0.0050	0.0249	0.0109	0.0032	0.0000	0.0000
56	0.0208	0.0079	0.0003	0.0008	0.0003	0.0000	0.0000
61	0.0774	0.0673	0.0004	0.0008	0.0003	0.0000	0.0000
66	0.0732	0.0053	0.0015	0.0003	0.0003	0.0000	0.0000
71	0.0196	0.0713	0.0004	0.0003	0.0027	0.0000	0.0000
76	0.0754	0.1037	0.0005	0.0004	0.0032	0.0000	0.0000
81	0.0753	0.0058	0.0004	0.0003	0.0032	0.0000	0.0000
86	0.0440	0.0119	0.0004	0.0001	0.0003	0.0000	0.0000
91	0.0214	0.0710	0.0005	0.0079	0.0004	0.0000	0.0000
96	0.0753	0.0126	0.0023	0.0036	0.0015	0.0000	0.0000
101	0.0802	0.0426	0.0004	0.0743	0.0002	0.0053	0.0051
106	0.0777	0.0719	0.0085	0.0055	0.0001	0.0000	0.0000
111	0.0118	0.0768	0.0002	0.0745	0.0000	0.0051	0.0000
116	0.0760	0.0013	0.0004	0.0003	0.0004	0.0000	0.0000
121	0.0208	0.0141	0.0024	0.0033	0.0034	0.0000	0.0000
126	0.0532	0.0053	0.0004	0.0003	0.0073	0.0014	0.0000
131	0.0293	0.0023	0.0004	0.0001	0.0033	0.0051	0.0000
136	0.0208	0.0519	0.0004	0.0008	0.0001	0.0015	0.0000
141	0.0055	0.1374	0.0004	0.0054	0.0063	0.0000	0.0000
146	0.0296	0.0014	0.0005	0.0001	0.0001	0.0000	0.0000
151	0.0118	0.0047	0.0004	0.0034	0.0015	0.0003	0.0000
156	0.0118	0.0113	0.0005	0.0009	0.0015	0.0056	0.0000
161	0.0486	0.0138	0.0004	0.0007	0.0002	0.0000	0.0000

166	0.0296	0.0449	0.0004	0.0004	0.0005	0.0000	0.0000
171	0.0534	0.0462	0.0005	0.0055	0.0003	0.0035	0.0000
176	0.0733	0.0209	0.0006	0.0055	0.0015	0.0000	0.0000
181	0.0208	0.0249	0.0004	0.0034	0.0003	0.0000	0.0000
186	0.0118	0.0714	0.0036	0.0003	0.0015	0.0000	0.0000
191	0.0542	0.0051	0.0004	0.0003	0.0015	0.0000	0.0000
196	0.0300	0.0113	0.0003	0.0003	0.0005	0.0000	0.0000

Tabela 5 Wartości błędów MSE dla danych uczących, f. aktywacji - tangens hiperboliczny

W tabelach 6 i 7 poniżej, przedstawiono wyniki wartości współczynnika korelacji dla danych testujących:

l.N / Epoki	1	2	3	4	5	6	7	8
1	0.3194	0.4812	0.5767	0.6077	0.7626	0.8027	0.8279	0.9204
6	0.3194	0.4812	0.4620	0.6077	0.6225	0.7532	0.8184	0.9607
11	0.3194	0.4365	0.4632	0.6077	0.6636	0.8100	0.7853	0.8256
16	0.3194	0.4365	0.5767	0.5945	0.6554	0.8083	0.8103	0.8256
21	0.3194	0.4365	0.4627	0.5945	0.6988	0.7895	0.8028	0.8256
26	0.3194	0.4365	0.5146	0.5718	0.6988	0.7698	0.8238	0.9455
31	0.3194	0.4365	0.4890	0.6077	0.7491	0.6534	0.9105	0.9607
36	0.3194	0.4365	0.5767	0.4641	0.6988	0.8027	0.8361	0.8113
41	0.3194	0.4365	0.5767	0.6077	0.6636	0.6464	0.8125	0.8215
46	0.3194	0.3194	0.5767	0.5718	0.6858	0.7515	0.8361	0.9579
51	0.3194	0.4365	0.5767	0.6077	0.6284	0.8059	0.7940	0.9607
56	0.3194	0.4365	0.4890	0.6077	0.6620	0.6090	0.8238	0.9143
61	0.3194	0.4365	0.5767	0.6077	0.6225	0.7698	0.8103	0.7794
66	0.3194	0.4365	0.4890	0.5718	0.6225	0.8027	0.8279	0.8466
71	0.3194	0.4365	0.5767	0.5718	0.6636	0.8059	0.8108	0.9607
76	0.3194	0.4365	0.5767	0.6077	0.6318	0.8027	0.8175	0.9455
81	0.3194	0.4365	0.5767	0.6077	0.6620	0.7730	0.9491	0.8381
86	0.3194	0.4365	0.5767	0.6077	0.6482	0.8027	0.8238	0.8565
91	0.3194	0.4365	0.5767	0.6077	0.6988	0.8125	0.9274	0.8256
96	0.3194	0.4365	0.5767	0.6236	0.6491	0.7174	0.8108	0.9607
101	0.3194	0.4365	0.5767	0.6077	0.6226	0.8028	0.8215	0.8317
106	0.3194	0.4365	0.5767	0.5945	0.6914	0.7893	0.8391	0.9607
111	0.3194	0.4365	0.5767	0.6077	0.6340	0.7172	0.9104	0.9454
116	0.3194	0.4812	0.4890	0.6077	0.6482	0.8027	0.8348	0.8256
121	0.3194	0.4812	0.5767	0.5718	0.7490	0.7935	0.8233	0.9607
126	0.3194	0.4365	0.4890	0.6077	0.6858	0.7698	0.8214	0.9607
131	0.3194	0.4812	0.5767	0.6077	0.7490	0.8125	0.8279	0.9607
136	0.3194	0.4365	0.5767	0.6077	0.6988	0.8027	0.8279	0.8256
141	0.3194	0.4365	0.5767	0.6077	0.6134	0.8027	0.8348	0.9579
146	0.3194	0.4365	0.5767	0.6077	0.5863	0.8027	0.9275	0.9607
151	0.3194	0.4365	0.5767	0.6077	0.6613	0.8100	0.8108	0.8256

156	0.3194	0.4365	0.4890	0.6077	0.6858	0.6393	0.8360	0.9579
161	0.3194	0.4365	0.5767	0.6077	0.6705	0.6988	0.7940	0.8344
166	0.3194	0.3173	0.5126	0.6398	0.6768	0.7324	0.8233	0.9453
171	0.3194	0.4365	0.5767	0.6077	0.6078	0.6416	0.8677	0.9044
176	0.3194	0.4812	0.5767	0.6077	0.6340	0.8059	0.6511	0.9579
181	0.3194	0.4365	0.5767	0.5718	0.6768	0.7645	0.9491	0.9579
186	0.3194	0.4365	0.5767	0.5718	0.6988	0.8100	0.9491	0.9607
191	0.3194	0.4365	0.5767	0.6077	0.7491	0.8125	0.8279	0.9579
196	0.3194	0.4365	0.5767	0.6077	0.7099	0.7935	0.9491	0.9298

Tabela 6 Wartości współczynnika korelacji dla danych testujących, f. aktywacji - tangens hiperboliczny

1.N / Epoki	9	10	11	12	13	14	15
1	0.9195	0.9396	0.9988	0.9871	0.9937	0.9906	1.0000
6	0.8475	0.8636	0.9956	0.9997	0.9874	1.0000	1.0000
11	0.9394	0.8425	0.9992	0.9894	0.9937	1.0000	1.0000
16	0.9379	0.9988	0.9996	0.9994	0.9995	0.9999	1.0000
21	0.8882	0.9724	0.9990	0.9995	0.9941	1.0000	1.0000
26	0.9770	0.8374	0.9992	0.9935	0.9990	0.9999	1.0000
31	0.9657	0.9914	0.9991	0.9999	0.9998	1.0000	1.0000
36	0.9960	0.8517	0.9842	0.9995	0.9971	1.0000	1.0000
41	0.9732	0.9960	0.9992	0.9936	0.9999	1.0000	1.0000
46	0.9241	0.9993	0.9978	0.9936	0.9993	1.0000	1.0000
51	0.9770	0.9966	0.9952	0.9890	0.9914	0.9999	1.0000
56	0.9076	0.8496	0.9991	0.9985	1.0000	0.9999	1.0000
61	0.8504	0.9914	0.9991	0.9995	0.9937	0.9999	1.0000
66	0.9111	0.9955	0.9963	0.9997	0.9937	1.0000	1.0000
71	0.9565	0.9895	0.9960	0.9991	0.9995	0.9898	1.0000
76	0.9761	0.9828	0.9757	0.9995	0.9937	1.0000	1.0000
81	0.9771	0.8525	0.9874	0.9995	0.9971	0.9999	1.0000
86	0.6653	0.9864	0.9941	0.9994	0.9993	1.0000	1.0000
91	0.8382	0.9958	0.9992	0.9997	0.9993	0.9999	1.0000
96	0.9135	0.9896	0.9989	0.9934	0.9990	0.9901	1.0000
101	0.8608	0.9909	0.9992	0.9784	0.9990	1.0000	1.0000
106	0.9237	0.9724	0.9909	0.9998	0.9971	0.9999	1.0000
111	0.9624	0.9984	0.9992	0.9998	0.9993	1.0000	1.0000
116	0.9125	0.8481	0.9990	0.9997	0.9999	1.0000	1.0000
121	0.9445	0.9342	0.9992	0.9997	0.9987	1.0000	1.0000
126	0.8792	0.8518	0.9994	0.9994	0.9989	0.9962	1.0000
131	0.9234	0.8523	0.9991	0.9994	0.9998	1.0000	1.0000
136	0.8491	0.9657	0.9874	0.9936	0.9992	0.9992	1.0000
141	0.7256	0.8545	0.9994	0.9936	0.9937	1.0000	1.0000
146	0.9782	0.9781	0.9968	0.9861	0.9937	1.0000	1.0000
151	0.8380	0.8461	0.9856	0.9891	0.9995	1.0000	1.0000

0.9324	0.8346	0.9992	0.9934	0.9937	0.9939	1.0000
0.9168	0.9096	0.9992	0.9991	0.9994	1.0000	0.9901
0.9624	0.9903	0.9860	0.9995	0.9997	0.9999	1.0000
0.9121	0.9851	0.9957	0.9998	0.9992	0.9973	0.9992
0.9943	0.8523	0.9800	0.9895	0.9995	1.0000	0.9906
0.8472	0.9897	0.9992	0.9998	0.9994	0.9999	1.0000
0.8414	0.9955	0.9992	0.9936	0.9993	0.9899	1.0000
0.9624	0.9781	0.9985	0.9995	0.9995	0.9980	1.0000
0.9771	0.9743	0.9991	0.9994	0.9939	1.0000	1.0000
	0.9168 0.9624 0.9121 0.9943 0.8472 0.8414 0.9624	0.9168 0.9096 0.9624 0.9903 0.9121 0.9851 0.9943 0.8523 0.8472 0.9897 0.8414 0.9955 0.9624 0.9781	0.9168 0.9096 0.9992 0.9624 0.9903 0.9860 0.9121 0.9851 0.9957 0.9943 0.8523 0.9800 0.8472 0.9897 0.9992 0.8414 0.9955 0.9992 0.9624 0.9781 0.9985	0.9168 0.9096 0.9992 0.9991 0.9624 0.9903 0.9860 0.9995 0.9121 0.9851 0.9957 0.9998 0.9943 0.8523 0.9800 0.9895 0.8472 0.9897 0.9992 0.9998 0.8414 0.9955 0.9992 0.9936 0.9624 0.9781 0.9985 0.9995	0.9168 0.9096 0.9992 0.9991 0.9994 0.9624 0.9903 0.9860 0.9995 0.9997 0.9121 0.9851 0.9957 0.9998 0.9992 0.9943 0.8523 0.9800 0.9895 0.9995 0.8472 0.9897 0.9992 0.9998 0.9994 0.8414 0.9955 0.9992 0.9936 0.9993 0.9624 0.9781 0.9985 0.9995 0.9995	0.9168 0.9096 0.9992 0.9991 0.9994 1.0000 0.9624 0.9903 0.9860 0.9995 0.9997 0.9999 0.9121 0.9851 0.9957 0.9998 0.9992 0.9973 0.9943 0.8523 0.9800 0.9895 0.9995 1.0000 0.8472 0.9897 0.9992 0.9998 0.9994 0.9999 0.8414 0.9955 0.9992 0.9936 0.9993 0.9899 0.9624 0.9781 0.9985 0.9995 0.9995 0.9980

Tabela 7 Wartości współczynnika korelacji dla danych testujących, f. aktywacji - tangens hiperboliczny

W tabelach 8 i 9 poniżej, przedstawiono wyniki wartości współczynnika korelacji dla danych uczących:

l.N / Epoki	1	2	3	4	5	6	7	8
1	0.3158	0.4367	0.4890	0.6093	0.6342	0.6640	0.8712	0.8127
6	0.3158	0.4367	0.4890	0.6394	0.6477	0.6194	0.8285	0.9571
11	0.3158	0.4806	0.5786	0.5715	0.6244	0.8106	0.8286	0.8263
16	0.3158	0.4367	0.5786	0.4641	0.6763	0.8035	0.8354	0.9327
21	0.3158	0.4367	0.5786	0.5715	0.6241	0.8066	0.9395	0.9609
26	0.3158	0.4367	0.5786	0.6394	0.6243	0.7971	0.8285	0.9580
31	0.3158	0.4806	0.4056	0.6394	0.6723	0.8085	0.8285	0.8263
36	0.3158	0.4367	0.5786	0.6388	0.6852	0.8106	0.8354	0.9145
41	0.3158	0.4367	0.5786	0.6093	0.7483	0.8132	0.8384	0.9609
46	0.3158	0.4367	0.5786	0.6093	0.7634	0.8035	0.8219	0.9609
51	0.3158	0.4367	0.5786	0.6093	0.6342	0.8106	0.8397	0.9609
56	0.3158	0.4367	0.4890	0.6093	0.6392	0.8066	0.8246	0.9145
61	0.3158	0.4367	0.5786	0.6093	0.7161	0.8132	0.9493	0.9609
66	0.3158	0.4367	0.5786	0.6093	0.7484	0.8127	0.7944	0.9506
71	0.3158	0.4806	0.5786	0.4890	0.6242	0.8132	0.8245	0.9145
76	0.3158	0.4367	0.5786	0.4624	0.7721	0.8090	0.8668	0.9580
81	0.3158	0.4367	0.4890	0.4652	0.6524	0.8132	0.8220	0.9609
86	0.3158	0.4367	0.4890	0.4641	0.6242	0.8066	0.9493	0.8263
91	0.3158	0.4367	0.4890	0.6093	0.6723	0.8106	0.9493	0.9609
96	0.3158	0.4367	0.5786	0.5715	0.7000	0.8025	0.8221	0.9145
101	0.3158	0.4367	0.5786	0.6093	0.6342	0.7821	0.8057	0.8243
106	0.3158	0.4367	0.5786	0.5715	0.6241	0.7901	0.8453	0.8171
111	0.3158	0.4367	0.5786	0.6388	0.7000	0.7618	0.8245	0.9447
116	0.3158	0.4367	0.5786	0.5715	0.7170	0.8106	0.8115	0.8263
121	0.3158	0.4367	0.5786	0.5715	0.5827	0.8035	0.6240	0.9437
126	0.3158	0.4367	0.5786	0.4890	0.6634	0.7034	0.8110	0.9580
131	0.3158	0.4367	0.4890	0.5942	0.7721	0.6644	0.8286	0.8261
136	0.3158	0.4367	0.5786	0.5715	0.6241	0.8106	0.8367	0.8263
141	0.3158	0.4367	0.4890	0.5942	0.4113	0.8066	0.9493	0.9609
146	0.3158	0.4367	0.5786	0.6232	0.6852	0.8090	0.8244	0.8263
151	0.3158	0.4367	0.4890	0.6093	0.6241	0.8035	0.9493	0.9145

156	0.3158	0.4367	0.5786	0.6093	0.7000	0.8106	0.8245	0.9580
161	0.3158	0.4367	0.5786	0.6093	0.6356	0.7971	0.9493	0.9203
166	0.3158	0.4367	0.5786	0.5942	0.6342	0.6621	0.8286	0.8417
171	0.3158	0.4367	0.5786	0.6232	0.6342	0.7637	0.8667	0.9609
176	0.3158	0.4367	0.5786	0.5942	0.6634	0.8066	0.8222	0.8263
181	0.3158	0.4367	0.5786	0.6093	0.6647	0.8125	0.8115	0.9145
186	0.3158	0.4367	0.4890	0.6093	0.4107	0.8032	0.9092	0.8649
191	0.3158	0.4367	0.5786	0.6093	0.6241	0.8132	0.9493	0.8387
196	0.3158	0.4367	0.5786	0.6093	0.6931	0.8035	0.7692	0.9441

Tabela 8 Wartości współczynnika korelacji dla danych uczących, f. aktywacji - tangens hiperboliczny

1.N / Epoki	9	10	11	12	13	14	15
1	0.8898	0.8539	0.8423	0.9994	0.9992	0.9999	0.9999
6	0.8614	0.6920	0.9988	0.9994	1.0000	1.0000	1.0000
11	0.9297	0.9725	0.9991	0.9994	0.9914	0.9999	1.0000
16	0.9478	0.9101	0.9874	0.9934	0.9939	1.0000	0.9999
21	0.9666	0.9641	0.9976	0.9995	0.9987	1.0000	0.9998
26	0.9626	0.8540	0.9982	0.9994	0.9971	0.9999	1.0000
31	0.8490	0.9351	0.9916	0.9787	0.9995	0.9999	1.0000
36	0.6384	0.8428	0.8784	0.9935	0.9999	1.0000	0.9999
41	0.9243	0.9193	0.9991	0.9991	0.9995	0.9999	1.0000
46	0.9323	0.9905	0.9976	0.9952	0.9939	0.9999	1.0000
51	0.9771	0.9903	0.9512	0.9789	0.9939	0.9999	1.0000
56	0.9593	0.9848	0.9994	0.9985	0.9995	1.0000	0.9999
61	0.8386	0.8613	0.9992	0.9986	0.9995	0.9999	1.0000
66	0.8481	0.9897	0.9972	0.9995	0.9995	0.9999	1.0000
71	0.9617	0.8524	0.9992	0.9994	0.9948	0.9999	0.9999
76	0.8431	0.7762	0.9991	0.9992	0.9939	1.0000	1.0000
81	0.8434	0.9889	0.9992	0.9994	0.9939	0.9999	0.9999
86	0.9118	0.9769	0.9992	0.9998	0.9995	1.0000	1.0000
91	0.9582	0.8530	0.9990	0.9847	0.9992	0.9999	1.0000
96	0.8434	0.9756	0.9957	0.9931	0.9970	1.0000	0.9999
101	0.8321	0.9147	0.9992	0.8457	0.9997	0.9899	0.9901
106	0.8380	0.8510	0.9835	0.9894	0.9999	0.9999	1.0000
111	0.9771	0.8399	0.9996	0.8452	0.9999	0.9901	1.0000
116	0.8417	0.9975	0.9992	0.9994	0.9993	1.0000	1.0000
121	0.9593	0.9725	0.9955	0.9936	0.9934	1.0000	1.0000
126	0.8922	0.9898	0.9992	0.9995	0.9860	0.9973	1.0000
131	0.9422	0.9957	0.9992	0.9998	0.9937	0.9901	1.0000
136	0.9593	0.8963	0.9992	0.9985	0.9998	0.9972	1.0000
141	0.9894	0.6878	0.9992	0.9896	0.9878	1.0000	0.9999
146	0.9417	0.9974	0.9991	0.9999	0.9999	1.0000	1.0000
151	0.9771	0.9910	0.9992	0.9934	0.9971	0.9995	1.0000

156	0.9771	0.9782	0.9990	0.9983	0.9971	0.9893	0.9999
161	0.9020	0.9731	0.9992	0.9986	0.9997	1.0000	1.0000
166	0.9416	0.9100	0.9992	0.9993	0.9991	0.9999	1.0000
171	0.8935	0.9073	0.9991	0.9894	0.9994	0.9932	0.9999
176	0.8480	0.9590	0.9989	0.9894	0.9971	1.0000	1.0000
181	0.9593	0.9511	0.9992	0.9934	0.9995	1.0000	1.0000
186	0.9771	0.8521	0.9931	0.9995	0.9971	1.0000	1.0000
191	0.8903	0.9901	0.9992	0.9994	0.9971	1.0000	1.0000
196	0.9407	0.9782	0.9994	0.9994	0.9991	0.9999	1.0000

Tabela 9 Wartości współczynnika korelacji dla danych uczących, f. aktywacji - tangens hiperboliczny

Rysunek 1 Charakterystyka R danych testowych, f.aktywacji 'tansig'.

Rysunek 2 Aproksymacja funkcji f(x), f.aktywacji 'tansig'.

Rysunek 3 Charakterystyka R danych testowych, f.aktywacji 'tansig'.

Rysunek 4 Aproksymacja funkcji f(x), f.aktywacji 'tansig'.

Rysunek 5 Charakterystyka R danych testowych, f.aktywacji 'tansig'.

Rysunek 6 Aproksymacja funkcji f(x), f.aktywacji 'tansig'.

Rysunek 7 Charakterystyka R danych testowych, f.aktywacji 'tansig'.

Rysunek 8 Charakterystyka R od I. epok, dane uczące.

Rysunek 9 Charakterystyka R od I. epok, dane testujące.

Rysunek 10 Charakterystyka błędu MSE od I. epok, dane uczące.

Rysunek 11 Charakterystyka błędu MSE od I. epok, dane testujące.

Rysunek 12 Aproksymacja funkcji f(x), f.aktywacji 'tansig'.

F. aktywacji - liniowa

Dla funkcji aktywacji - liniowej próba aproksymacji funkcji f(x) zakończyła się niepowodzeniem. Nie zamieszczono tabel z wynikami dla tego przypadku, aby uniknąć objętościowego przerostu tego sprawozdania.

Rysunek 13 Charakterystyka R danych testowych, f.aktywacji 'purelin.

Rysunek 14 Charakterystyka R danych testujących w zależności od liczby epok, f.aktywacji 'purelin.

Rysunek 15 Charakterystyka R danych testowych, f.aktywacji 'purelin.

Rysunek 16 Aproksymacja funkcji f(x), f.aktywacji 'purelin'.

F. aktywacji - sigmoidalna

W tabelach 10 i 11 poniżej, przedstawiono wyniki błędu MSE dla danych uczących.

1.N / Epoki	1	2	3	4	5	6	7	8
1	0.2400	0.2194	0.1738	0.1702	0.1332	0.0896	0.0820	0.0829
6	0.2338	0.2198	0.1738	0.1684	0.1601	0.0926	0.0749	0.0304
11	0.2338	0.2200	0.1738	0.1700	0.1332	0.0926	0.0789	0.0200
16	0.2338	0.2108	0.1738	0.1684	0.1601	0.0903	0.0837	0.0830
21	0.2399	0.2201	0.1738	0.2022	0.1332	0.0926	0.0745	0.0305
26	0.2338	0.2210	0.1738	0.1642	0.1379	0.0912	0.0789	0.0200
31	0.2338	0.2195	0.1738	0.1580	0.1506	0.0896	0.0747	0.0829
36	0.2338	0.2203	0.1738	0.1396	0.1600	0.0926	0.0258	0.0829
41	0.2338	0.2108	0.1738	0.1642	0.1506	0.0981	0.0819	0.0200
46	0.2338	0.2195	0.1738	0.1642	0.1506	0.0926	0.0258	0.0200
51	0.2401	0.2206	0.1738	0.1546	0.1163	0.0926	0.0752	0.0215
56	0.2338	0.2108	0.1985	0.2028	0.1603	0.0926	0.0789	0.0340
61	0.2338	0.2187	0.2043	0.2032	0.1541	0.0926	0.0258	0.0200
66	0.2338	0.2188	0.1738	0.1644	0.1602	0.0903	0.0746	0.0200
71	0.2338	0.2200	0.1738	0.1642	0.1603	0.0926	0.0789	0.0200
76	0.2338	0.2108	0.1738	0.1642	0.1608	0.1163	0.0258	0.0837

86	0.2338	0.2194	0.1981	0.2034	0.1603	0.0926	0.0819	0.0829
91	0.2338	0.2194	0.1738	0.1642	0.1332	0.0926	0.0837	0.0215
96	0.2338	0.2108	0.1738	0.1642	0.1601	0.0926	0.0846	0.0215
101	0.2399	0.2165	0.1738	0.2035	0.1506	0.0926	0.0789	0.0200
106	0.2401	0.2198	0.2042	0.2031	0.1506	0.0926	0.0258	0.0305
111	0.2338	0.2190	0.2043	0.2049	0.1332	0.0926	0.0746	0.0215
116	0.2338	0.2108	0.1738	0.1642	0.1332	0.0926	0.0490	0.0200
121	0.2338	0.2108	0.1738	0.1642	0.1332	0.0926	0.0819	0.0200
126	0.2338	0.2206	0.1738	0.1683	0.1332	0.0896	0.0784	0.0782
131	0.2338	0.2207	0.1738	0.1684	0.1332	0.0926	0.0258	0.0837
136	0.2338	0.2110	0.1738	0.1396	0.1603	0.0912	0.0819	0.0200
141	0.2338	0.2183	0.2043	0.1684	0.1332	0.0926	0.0258	0.0215
146	0.2338	0.2195	0.2043	0.1396	0.1528	0.0912	0.0258	0.0200
151	0.2338	0.2199	0.1738	0.1642	0.1332	0.0926	0.0819	0.0829
156	0.2355	0.2108	0.1738	0.1642	0.1424	0.0926	0.0258	0.0838
161	0.2400	0.2108	0.2037	0.1642	0.1332	0.0903	0.0789	0.0829
166	0.2338	0.2199	0.1738	0.1716	0.1603	0.1351	0.0258	0.0200
171	0.2338	0.2194	0.2041	0.1547	0.1332	0.1061	0.0819	0.0215
176	0.2338	0.2192	0.1738	0.1642	0.1332	0.1506	0.0258	0.0219
181	0.2338	0.2201	0.1738	0.1642	0.1617	0.0926	0.0789	0.0219
186	0.2338	0.2181	0.1738	0.1642	0.1603	0.0926	0.0819	0.0829
191	0.2338	0.2108	0.1738	0.2020	0.1603	0.0926	0.0789	0.0215
196	0.2401	0.2196	0.1738	0.1644	0.1602	0.1351	0.0789	0.0828

Tabela 10 Wartości błędów MSE danych uczących, f. aktywacji - sigmoidalna

l.N / Epoki	9	10	11	12	13	14	15
1	0.0265	0.0018	0.0003	0.0005	0.0001	0.0000	0.0000
6	0.0118	0.0457	0.0003	0.0003	0.0002	0.0000	0.0000
11	0.0279	0.0142	0.0003	0.0055	0.0002	0.0000	0.0000
16	0.0118	0.0459	0.0003	0.0034	0.0008	0.0000	0.0000
21	0.0221	0.0048	0.0003	0.0001	0.0015	0.0000	0.0000
26	0.0192	0.0048	0.0003	0.0005	0.0002	0.0000	0.0000
31	0.0150	0.0321	0.0004	0.0001	0.0002	0.0000	0.0000
36	0.0247	0.0047	0.0003	0.0003	0.0001	0.0000	0.0000
41	0.0192	0.0668	0.0004	0.0005	0.0002	0.0000	0.0000
46	0.0118	0.0049	0.0004	0.0001	0.0002	0.0000	0.0000
51	0.0118	0.0037	0.0003	0.0001	0.0032	0.0000	0.0000
56	0.0291	0.0050	0.0003	0.0005	0.0002	0.0000	0.0000
61	0.0290	0.0068	0.0003	0.0001	0.0002	0.0000	0.0000
66	0.0265	0.0053	0.0003	0.0079	0.0002	0.0004	0.0000
71	0.0118	0.0020	0.0003	0.0033	0.0002	0.0000	0.0000
76	0.0171	0.0142	0.0003	0.0001	0.0002	0.0000	0.0000
81	0.0118	0.0049	0.0003	0.0001	0.0001	0.0000	0.0000

86	0.0338	0.0034	0.0003	0.0001	0.0002	0.0000	0.0000
91	0.0754	0.0046	0.0003	0.0001	0.0002	0.0015	0.0000
96	0.0121	0.0018	0.0003	0.0005	0.0002	0.0000	0.0000
101	0.0208	0.0771	0.0003	0.0001	0.0002	0.0000	0.0000
106	0.0118	0.0064	0.0003	0.0033	0.0002	0.0000	0.0000
111	0.0273	0.0438	0.0003	0.0002	0.0002	0.0000	0.0000
116	0.0192	0.0345	0.0004	0.0003	0.0002	0.0000	0.0000
121	0.0171	0.0181	0.0003	0.0003	0.0002	0.0000	0.0045
126	0.0804	0.0147	0.0003	0.0001	0.0004	0.0000	0.0000
131	0.0118	0.0771	0.0003	0.0033	0.0001	0.0000	0.0000
136	0.0192	0.0018	0.0003	0.0001	0.0033	0.0000	0.0000
141	0.0118	0.0045	0.0003	0.0082	0.0002	0.0001	0.0000
146	0.0163	0.0045	0.0003	0.0003	0.0002	0.0000	0.0000
151	0.0016	0.0291	0.0003	0.0033	0.0002	0.0000	0.0000
156	0.0118	0.0399	0.0003	0.0034	0.0002	0.0000	0.0000
161	0.0269	0.0007	0.0003	0.0005	0.0002	0.0000	0.0000
166	0.0118	0.0721	0.0003	0.0005	0.0002	0.0000	0.0000
171	0.0192	0.0049	0.0003	0.0003	0.0015	0.0000	0.0000
176	0.0209	0.0046	0.0003	0.0005	0.0002	0.0000	0.0000
181	0.0118	0.0377	0.0003	0.0033	0.0002	0.0000	0.0000
186	0.0729	0.0351	0.0003	0.0001	0.0000	0.0000	0.0000
191	0.0732	0.0043	0.0003	0.0003	0.0015	0.0000	0.0000
196	0.0309	0.0065	0.0003	0.0004	0.0002	0.0000	0.0000

Tabela 11 Wartości błędów MSE danych uczących, f. aktywacji - sigmoidalna

W tabelach 12 i 13 poniżej, przedstawiono wyniki błędu MSE dla danych testujących:

l.N / Epoki	1	2	3	4	5	6	7	8
1	0.2410	0.2197	0.1735	0.1699	0.1330	0.0894	0.0819	0.0827
6	0.2348	0.2200	0.1735	0.1687	0.1598	0.0924	0.0748	0.0303
11	0.2348	0.2203	0.1735	0.1698	0.1330	0.0924	0.0788	0.0200
16	0.2348	0.2111	0.1735	0.1687	0.1598	0.0901	0.0835	0.0828
21	0.2409	0.2204	0.1735	0.2025	0.1330	0.0924	0.0744	0.0304
26	0.2348	0.2214	0.1735	0.1640	0.1384	0.0911	0.0788	0.0200
31	0.2348	0.2199	0.1735	0.1579	0.1504	0.0894	0.0746	0.0827
36	0.2348	0.2206	0.1735	0.1400	0.1598	0.0924	0.0258	0.0827
41	0.2348	0.2111	0.1735	0.1640	0.1504	0.0980	0.0818	0.0200
46	0.2348	0.2198	0.1735	0.1640	0.1504	0.0924	0.0258	0.0200
51	0.2411	0.2210	0.1735	0.1544	0.1167	0.0924	0.0751	0.0214
56	0.2348	0.2111	0.1987	0.2031	0.1601	0.0924	0.0788	0.0340
61	0.2348	0.2190	0.2046	0.2036	0.1546	0.0924	0.0258	0.0200
66	0.2348	0.2191	0.1735	0.1641	0.1599	0.0901	0.0745	0.0200
71	0.2348	0.2203	0.1735	0.1640	0.1601	0.0924	0.0788	0.0200
76	0.2348	0.2111	0.1735	0.1640	0.1605	0.1167	0.0258	0.0836

81	0.2417	0.2191	0.1735	0.2035	0.1088	0.0924	0.0258	0.0277
86	0.2348	0.2196	0.1984	0.2037	0.1601	0.0924	0.0818	0.0827
91	0.2348	0.2197	0.1735	0.1640	0.1330	0.0924	0.0835	0.0214
96	0.2348	0.2111	0.1735	0.1640	0.1599	0.0924	0.0845	0.0214
101	0.2408	0.2168	0.1735	0.2039	0.1504	0.0924	0.0788	0.0200
106	0.2410	0.2200	0.2045	0.2034	0.1504	0.0924	0.0258	0.0305
111	0.2348	0.2194	0.2046	0.2052	0.1330	0.0924	0.0745	0.0214
116	0.2348	0.2111	0.1735	0.1640	0.1330	0.0924	0.0489	0.0200
121	0.2348	0.2111	0.1735	0.1640	0.1330	0.0924	0.0818	0.0200
126	0.2348	0.2209	0.1735	0.1687	0.1330	0.0894	0.0782	0.0781
131	0.2348	0.2210	0.1735	0.1687	0.1330	0.0924	0.0258	0.0836
136	0.2348	0.2113	0.1735	0.1400	0.1601	0.0911	0.0818	0.0200
141	0.2348	0.2186	0.2046	0.1687	0.1330	0.0924	0.0258	0.0214
146	0.2348	0.2198	0.2046	0.1400	0.1532	0.0911	0.0258	0.0200
151	0.2348	0.2202	0.1735	0.1640	0.1330	0.0924	0.0818	0.0827
156	0.2365	0.2111	0.1735	0.1640	0.1429	0.0924	0.0258	0.0837
161	0.2409	0.2111	0.2040	0.1640	0.1330	0.0901	0.0788	0.0827
166	0.2348	0.2202	0.1735	0.1720	0.1600	0.1349	0.0258	0.0200
171	0.2348	0.2197	0.2044	0.1544	0.1330	0.1066	0.0818	0.0214
176	0.2348	0.2194	0.1735	0.1640	0.1330	0.1504	0.0258	0.0219
181	0.2348	0.2204	0.1735	0.1640	0.1614	0.0924	0.0788	0.0219
186	0.2348	0.2185	0.1735	0.1640	0.1600	0.0924	0.0818	0.0827
191	0.2348	0.2111	0.1735	0.2024	0.1601	0.0924	0.0788	0.0214
196	0.2410	0.2199	0.1735	0.1641	0.1600	0.1349	0.0788	0.0827

Tabela 12 Wartości błędów MSE dla danych testujących, f. aktywacji - sigmoidalna

1.N / Epoki	9	10	11	12	13	14	15
1	0.0265	0.0018	0.0003	0.0005	0.0001	0.0000	0.0000
6	0.0118	0.0457	0.0003	0.0003	0.0003	0.0000	0.0000
11	0.0278	0.0141	0.0003	0.0055	0.0002	0.0000	0.0000
16	0.0118	0.0458	0.0003	0.0034	0.0008	0.0000	0.0000
21	0.0221	0.0048	0.0003	0.0002	0.0015	0.0000	0.0000
26	0.0192	0.0048	0.0003	0.0005	0.0003	0.0000	0.0000
31	0.0150	0.0321	0.0004	0.0001	0.0003	0.0000	0.0000
36	0.0247	0.0047	0.0003	0.0003	0.0001	0.0000	0.0000
41	0.0192	0.0667	0.0004	0.0005	0.0003	0.0000	0.0000
46	0.0118	0.0049	0.0004	0.0001	0.0003	0.0000	0.0000
51	0.0118	0.0038	0.0003	0.0001	0.0032	0.0000	0.0000
56	0.0290	0.0050	0.0003	0.0005	0.0002	0.0000	0.0000
61	0.0289	0.0069	0.0003	0.0001	0.0003	0.0000	0.0000
66	0.0265	0.0054	0.0003	0.0079	0.0003	0.0004	0.0000
71	0.0118	0.0020	0.0003	0.0033	0.0003	0.0000	0.0000
76	0.0171	0.0141	0.0003	0.0001	0.0003	0.0000	0.0000

81	0.0118	0.0049	0.0003	0.0001	0.0001	0.0000	0.0000
86	0.0338	0.0034	0.0003	0.0001	0.0003	0.0000	0.0000
91	0.0752	0.0046	0.0003	0.0001	0.0003	0.0015	0.0000
96	0.0121	0.0018	0.0003	0.0005	0.0003	0.0000	0.0000
101	0.0208	0.0770	0.0003	0.0001	0.0003	0.0000	0.0000
106	0.0118	0.0065	0.0003	0.0033	0.0002	0.0000	0.0000
111	0.0273	0.0437	0.0003	0.0002	0.0003	0.0000	0.0000
116	0.0192	0.0344	0.0004	0.0003	0.0003	0.0000	0.0000
121	0.0171	0.0181	0.0003	0.0003	0.0003	0.0000	0.0045
126	0.0803	0.0147	0.0003	0.0001	0.0004	0.0000	0.0000
131	0.0118	0.0769	0.0003	0.0033	0.0001	0.0000	0.0000
136	0.0192	0.0018	0.0003	0.0001	0.0033	0.0001	0.0000
141	0.0118	0.0045	0.0003	0.0082	0.0003	0.0001	0.0000
146	0.0163	0.0046	0.0003	0.0003	0.0003	0.0000	0.0000
151	0.0016	0.0291	0.0003	0.0033	0.0003	0.0000	0.0000
156	0.0118	0.0399	0.0003	0.0034	0.0003	0.0000	0.0000
161	0.0269	0.0007	0.0003	0.0005	0.0003	0.0000	0.0000
166	0.0118	0.0720	0.0003	0.0005	0.0003	0.0000	0.0000
171	0.0192	0.0049	0.0003	0.0003	0.0015	0.0000	0.0000
176	0.0209	0.0046	0.0003	0.0005	0.0002	0.0000	0.0000
181	0.0118	0.0376	0.0003	0.0033	0.0003	0.0000	0.0000
186	0.0729	0.0350	0.0003	0.0001	0.0000	0.0000	0.0000
191	0.0731	0.0043	0.0003	0.0003	0.0015	0.0000	0.0000
196	0.0309	0.0065	0.0003	0.0005	0.0003	0.0000	0.0000

Tabela 13 Wartości błędów MSE dla danych testujących, f. aktywacji - sigmoidalna

W tabelach 14 i 15 poniżej, przedstawiono wyniki wartości współczynnika korelacji dla danych testujących:

l.N / Epoki	1	2	3	4	5	6	7	8
1	0.2795	0.3969	0.5767	0.5884	0.6988	0.8100	0.8276	0.8256
6	0.3194	0.3949	0.5767	0.5945	0.6206	0.8027	0.8440	0.9398
11	0.3194	0.3938	0.5767	0.5890	0.6988	0.8027	0.8348	0.9607
16	0.3194	0.4365	0.5767	0.5944	0.6206	0.8083	0.8238	0.8254
21	0.2805	0.3934	0.5767	0.4727	0.6988	0.8027	0.8448	0.9397
26	0.3194	0.3888	0.5767	0.6077	0.6857	0.8059	0.8348	0.9607
31	0.3194	0.3960	0.5767	0.6271	0.6491	0.8100	0.8444	0.8256
36	0.3194	0.3922	0.5767	0.6810	0.6208	0.8027	0.9491	0.8256
41	0.3194	0.4365	0.5767	0.6077	0.6491	0.7893	0.8279	0.9607
46	0.3194	0.3962	0.5767	0.6077	0.6491	0.8027	0.9491	0.9607
51	0.2789	0.3906	0.5767	0.6372	0.7439	0.8027	0.8434	0.9579
56	0.3194	0.4365	0.4885	0.4702	0.6198	0.8027	0.8348	0.9323
61	0.3194	0.4002	0.4641	0.4685	0.6389	0.8027	0.9491	0.9607
66	0.3194	0.3995	0.5767	0.6072	0.6204	0.8083	0.8448	0.9607
71	0.3194	0.3937	0.5767	0.6077	0.6198	0.8027	0.8348	0.9607

	- T							
76	0.3194	0.4365	0.5767	0.6077	0.6184	0.7439	0.9491	0.8237
81	0.2748	0.3996	0.5767	0.4689	0.7626	0.8027	0.9491	0.9465
86	0.3194	0.3968	0.4890	0.4679	0.6199	0.8027	0.8279	0.8256
91	0.3194	0.3966	0.5767	0.6077	0.6988	0.8027	0.8238	0.9579
96	0.3194	0.4365	0.5767	0.6077	0.6205	0.8027	0.8215	0.9579
101	0.2803	0.4107	0.5767	0.4673	0.6491	0.8027	0.8348	0.9607
106	0.2791	0.3949	0.4644	0.4690	0.6491	0.8027	0.9491	0.9396
111	0.3194	0.3985	0.4640	0.4617	0.6988	0.8027	0.8447	0.9579
116	0.3194	0.4365	0.5767	0.6077	0.6988	0.8027	0.9010	0.9607
121	0.3194	0.4365	0.5767	0.6077	0.6988	0.8027	0.8279	0.9607
126	0.3194	0.3907	0.5767	0.5945	0.6988	0.8100	0.8361	0.8364
131	0.3194	0.3901	0.5767	0.5945	0.6988	0.8027	0.9491	0.8237
136	0.3194	0.4358	0.5767	0.6810	0.6199	0.8059	0.8279	0.9607
141	0.3194	0.4018	0.4639	0.5945	0.6988	0.8027	0.9491	0.9579
146	0.3194	0.3962	0.4643	0.6810	0.6428	0.8059	0.9491	0.9607
151	0.3194	0.3941	0.5767	0.6076	0.6988	0.8027	0.8279	0.8256
156	0.3089	0.4365	0.5767	0.6077	0.6730	0.8027	0.9491	0.8234
161	0.2797	0.4365	0.4664	0.6077	0.6988	0.8083	0.8348	0.8256
166	0.3194	0.3943	0.5767	0.5838	0.6200	0.6935	0.9491	0.9607
171	0.3194	0.3968	0.4650	0.6371	0.6988	0.7698	0.8279	0.9579
176	0.3194	0.3978	0.5767	0.6077	0.6988	0.6491	0.9491	0.9570
181	0.3194	0.3933	0.5767	0.6077	0.6156	0.8027	0.8348	0.9570
186	0.3194	0.4030	0.5767	0.6077	0.6200	0.8027	0.8279	0.8256
191	0.3194	0.4365	0.5767	0.4734	0.6199	0.8027	0.8348	0.9579
196	0.2791	0.3957	0.5767	0.6072	0.6201	0.6937	0.8348	0.8257

Tabela 14 Wartości współczynnika korelacji dla danych testujących, f. aktywacji - sigmoidalna

.N / Epoki	9	10	11	12	13	14	15
1	0.9476	0.9965	0.9994	0.9991	0.9999	0.9999	1.0000
6	0.9770	0.9079	0.9994	0.9995	0.9995	0.9999	1.0000
11	0.9449	0.9724	0.9993	0.9894	0.9995	1.0000	1.0000
16	0.9770	0.9076	0.9994	0.9934	0.9986	0.9999	1.0000
21	0.9566	0.9908	0.9994	0.9997	0.9971	0.9999	1.0000
26	0.9624	0.9908	0.9994	0.9991	0.9995	0.9999	0.9999
31	0.9707	0.9363	0.9992	0.9998	0.9995	0.9999	0.9999
36	0.9514	0.9910	0.9994	0.9995	0.9998	0.9999	0.9999
41	0.9624	0.8649	0.9993	0.9991	0.9995	1.0000	1.0000
46	0.9770	0.9906	0.9993	0.9998	0.9995	1.0000	1.0000
51	0.9770	0.9928	0.9994	0.9999	0.9939	0.9999	1.0000
56	0.9426	0.9905	0.9994	0.9991	0.9996	0.9999	0.9999
61	0.9430	0.9869	0.9994	0.9998	0.9995	0.9999	1.0000
66	0.9477	0.9897	0.9994	0.9847	0.9995	0.9992	0.9999
71	0.9770	0.9961	0.9994	0.9936	0.9995	0.9999	1.0000

76	0.9665	0.9724	0.9994	0.9998	0.9995	0.9999	0.9999
81	0.9770	0.9905	0.9994	0.9999	0.9999	1.0000	1.0000
86	0.9331	0.9935	0.9994	0.9998	0.9995	0.9999	0.9999
91	0.8429	0.9912	0.9994	0.9998	0.9995	0.9971	1.0000
96	0.9765	0.9965	0.9994	0.9991	0.9995	0.9999	0.9999
101	0.9592	0.8390	0.9994	0.9998	0.9995	0.9999	1.0000
106	0.9770	0.9876	0.9994	0.9936	0.9996	0.9999	1.0000
111	0.9461	0.9120	0.9994	0.9995	0.9995	0.9999	1.0000
116	0.9624	0.9315	0.9993	0.9995	0.9995	1.0000	1.0000
121	0.9666	0.9657	0.9994	0.9995	0.9995	1.0000	0.9913
126	0.8314	0.9719	0.9994	0.9998	0.9993	1.0000	0.9999
131	0.9770	0.8391	0.9994	0.9937	0.9998	0.9999	0.9999
136	0.9624	0.9964	0.9994	0.9999	0.9937	0.9999	1.0000
141	0.9770	0.9913	0.9994	0.9841	0.9995	0.9999	1.0000
146	0.9682	0.9913	0.9994	0.9995	0.9995	1.0000	1.0000
151	0.9970	0.9424	0.9994	0.9936	0.9995	1.0000	1.0000
156	0.9770	0.9201	0.9994	0.9934	0.9995	0.9999	1.0000
161	0.9470	0.9987	0.9994	0.9991	0.9995	0.9999	1.0000
166	0.9770	0.8503	0.9994	0.9990	0.9995	1.0000	0.9999
171	0.9624	0.9906	0.9994	0.9995	0.9971	1.0000	1.0000
176	0.9591	0.9912	0.9994	0.9990	0.9996	1.0000	1.0000
181	0.9770	0.9248	0.9994	0.9936	0.9995	1.0000	1.0000
186	0.8485	0.9302	0.9994	0.9998	0.9999	0.9999	0.9999
191	0.8478	0.9917	0.9994	0.9995	0.9971	0.9999	1.0000
196	0.9387	0.9875	0.9994	0.9992	0.9995	1.0000	1.0000

Tabela 15 Wartości współczynnika korelacji dla danych testujących, f. aktywacji - sigmoidalna

Rysunek 17Charakterystyka R danych testowych, f.aktywacji 'logsig'

Rysunek 18 Charakterystyka R od I. epok, dane testujące.

Rysunek 19 Aproksymacja funkcji f(x), f.aktywacji 'logsig'.

Rysunek 20 Charakterystyka R danych testowych, f.aktywacji 'logsig'

Rysunek 21Aproksymacja funkcji f(x), f.aktywacji 'logsig'.

Rysunek 22 Charakterystyka R danych testowych, f.aktywacji 'logsig'

Rysunek 23 Charakterystyka R od I. epok, dane testujące.

Rysunek 24 Charakterystyka błędu MSE od I. epok, dane uczące.

Rysunek 25 Charakterystyka błędu MSE od I. epok, dane testujące.

Rysunek 26 Aproksymacja funkcji f(x), f.aktywacji 'logsig'.

Sieć uczy się prawidłowo i szybko, gdy jako funkcji przejścia neuronów stosuje się funkcje nieparzyste (tj, takie że f(x) = -f(x)). W naszych przypadkach uczenia i testowania sieci z użyciem funkcji nieparzystej tanges hiperboliczny, otrzymane wyniki potwierdzają tę tezę.

Funkcja aktywacji jako f. liniowa nie sprawdza się w przypadku budowy sieci neuronowej służącej do aproksymacji funkcji sinusoidalnych.

Struktura sieci zawierająca tylko jeden lub kilka neuronów w warstwie ukrytej nie spełnia prawidłowo zadania aproksymacji. Wynika to z tak dobranych współczynników A, B, C, D i E, które definiują funkcję wzorcową i decydują o jej dynamice na całym zakresie danych.

Dobre wyniki aproksymacji otrzymaliśmy dla sieci posiadającej nieparzystą funkcję aktywacji tangens hiperboliczny. Dla tak zdefiniowanej strukturze, po wykonaniu analizy jest widoczne, że wpływ liczby epok podczas uczenia sieci nie był decydujący. Wartości błędów często utrzymują się na tym samym poziomie niezależnie od liczby epok. Wartość współczynnika learning rate była dość mała, co sprzyjało otrzymaniu takich rezultatów.

Najmniejszą wartość błędu średniokwadratowego otrzymano dla przypadku funkcji aktywacji sigmoidalnej, jednakże zarówno f. aktywacji tangens hiperboliczny oraz f. sigmoidalna są prawidłowymi f. aktywacji dla tego przypadku. Rezultaty dla zastosowań tych funkcji są zbliżone, również z uwzględniając czas trwania uczenia sieci.

Na podstawie tutaj zamieszonych wykresów błędu MSE, nie jest dobrze uwidocznione zjawisko przeuczenia sieci. Zamieszone wyniki wyniknęły z większego niezrozumienia przeze mnie tematu aniżeli w chwili ukończenia tego sprawozdania. Jednakże po douczaniu najlepszej sieci, z analizy wartości zamieszczonych w tabelach, zjawisko to zostało potwierdzone.

Laboratorium 5

Podczas laboratorium 5 testowaliśmy grupowanie znanych nam już zbiorów danych z laboratorium 3, tj. zbiorów *Iris, Wine* oraz *Inosphere*. Nasze zadanie polegało na zastosowaniu 3 rodzajów sieci neuronowych, najprostszego *feedforwardnet* z warstwą ukrytą, *newrb* o radialnych funkcjach bazowych oraz uogólnioną sieć neuronową regresji *newgrnn*, posiadającą radialną warstwę podstawową i specjalną warstwę liniową.

Wymienione zbiory danych zostały podzielone na podzbiory danych uczących i testujących. Zastosowana zmienna *D* oznacza zbiór danych uczących, natomiast jako *1-D* wyznaczono zbiór danych testujących. Wyniki dla każdych przypadków otrzymano w wyniku zastosowania 20 testów 'jednostkowych'. Na ich podstawie wyznaczyłem wartości średnie oraz odchylenie standardowe. Wyznaczyłem błędy MSE oraz ilościowe dla każdego przypadku zbioru danych.

Feedforwardnet

Dane IRIS

W tym przypadku 20 testów 'jednostkowych' otrzymano przez uczenie i testowanie sieci przez wykonanie powtórzeń testów w pętli 'for'. Dokonałem podziału na zmienną wartość współczynnika D (tj. od wartości 0.10 do wartości 0.9 ze skokiem 0.1). W topologii sieci feedrowardnet w warstwie ukrytej zastosowałem funkcję aktywację sigmoidalną, natomiast na wyjściu sieci funkcję liniową. W błędu średniokwadratowego ustawiłem na 'sztywno' jako wartość 0.001, po osiągnięciu którego uczenie jest przerywane. Wartość współczynnika szybkości learning rate był równy 10e-5 (zgodnie z zaleceniami). Zastosowałem losowe wartości wag połączeń na zakresie (0,1).

Poniżej przedstawiono topologię zastosowanej sieci:

Rysunek 27 Topologia zastosowana dla podziału danych IRIS

W celu podziału zbioru danych wyjściowych na 3 klasy, dokonałem rozkładu wartości oczekiwanych na wyjściu sieci na wartości -1, 0, 1. Jest to zgodne z zaleceniem, aby wartości wyjściowe mieściły się w zakresie wartości funkcji aktywacji, tutaj f. liniowej. Podziału dokonałem przez podzbiory wartości <u>zb.A < -0.33 < zb.B < 0.33 < zb.C</u> (podział liniowy). Dla danych mieszczących się w tych zakresach nadałem wcześniej wspomniane wartości -1 lub 0 lub 1. Funkcja liniowa tutaj się sprawdziła, podział nieliniowy, np. <u>zb.A < -0.25 < zb.B < 0.25 < zb.C</u> jest prawidłowy np. dla funkcji aktywacji typu tangens hiperboliczny. Testowanie różnych wariantów (tutaj nie opisane) potwierdziły tą tezę.

Optymalne wyniki:

- 1. Błąd MSE danych testujących: 0.0000340941, współczynnik D: 0.90, iteracja: 8, Błędnych dopasowań: 1.0
- 2. Błąd MSE danych uczących: 0.0000216682 , współczynnik D: 0.40 , iteracja: 8 , Błędnych dopasowań: 0.0

Poniżej przedstawiono wykresy błędów MSE jako średnich wartości z 20 testów jednostkowych:

Rysunek 28 Wykres średnich błędów MSE z 20 testów jednostkowych

Poniżej przedstawiłem wyniki błędów uczenia i trenowania, złożone jako średnia z 20 testów jednostkowych. Z otrzymanych rezultatów jestem względnie zadowolony. Dla wszystkich nauczeń sieci (dla współczynnika D od 0.1 do 0.9) sieć została tak wyuczona, że dla danych testowych w większości otrzymywano poprawność dopasowań powyżej 90%. Dla pierwszych serii pomiarów, gdy współczynnik D = 0.1 i D = 0.2, otrzymano największą liczbę błędnie dopasowanych elementów zbioru testowego, ponieważ liczba danych zbioru uczącego była niewystarczająca. W przypadku danych uczących, wytrenowanie sieci przebiegało prawidłowo. Zaobserwowano jedynie błędy dopasowania, gdy zbiór danych uczących był największy (zjawisko przeuczenia sieci).

D	MSE TEST	l. Błędnych	Wskaźnik	MSE TRAIN	I. Błędnych	Wskaźnik
0.10	0.3910	25	81.48 %	0.0004	0	100%
0.2	0.3128	17	85.83 %	0005	0	100%
0.3	0.0884	9	91.42 %	0.0009	0	100%
0.4	0.0762	6	93.33 %	0.0010	0	100%
0.5	0.1822	5	93.33 %	0.0014	0	100%
0.6	0.0760	5	91.66 %	0.0023	0	100%
0.7	0.1753	3	93.33%	0.0039	1	99.05%
0.8	0.0733	2	93.33%	0.0040	1	99.17%
0.9	0.1297	1	93.33%	0.0024	0	98.52%

Tabela 16 MSE danych testujących w zależności od wartości współczynnika D i wartości współczynnika Spread

W przypadku danych Wine, analogicznie jak w poprzednim przypadku wykonałem 20 testów 'jednostkowych' i uśredniłem wyniki błedów uczenia i testowania sieci. Również zbadałem zachowania zbiorów w zależności od zmienny wartość współczynnika D (również od 0.10 do 0.9). W topologii sieci feedrowardnet w warstwie ukrytej zastosowałem funkcję aktywację sigmoidalną, natomiast na wyjściu sieci funkcję liniową. Wartość dozwolonego granicznego błędu średniokwadratowego ustawiłem na wartość 0.001. Wartość współczynnika szybkości learning rate był równy 10e-5. Zastosowałem losowe wartości wag połączeń na zakresie (0,1). Wektor rzędów ukrytych warstw ustawiłem na wartość 27.

Poniżej przedstawiono topologię zastosowanej sieci:

Rysunek 29 Topologia zastosowana dla podziału danych Wine

W celu podziału zbioru danych wyjściowych na 3 klasy (tutaj podział na klasy jest analogiczny jak w przypadku IRIS), dokonałem rozkładu wartości oczekiwanych na wyjściu sieci na wartości -1, 0, 1. Podział na podzbiory wykonałem przez zastosowanie podziału: <u>zb.A < -0.25 < zb.B < 0.25 < zb.C.</u>

Wyniki najlepszych dopasowań prezentują się następująco:

- 1. Błąd MSE danych testujących: 0.0001758197, współczynnik D: 0.90, iteracja: 12, Błędnych dopasowań: 0.0
- 2. Błąd MSE danych uczących: 0.0000145386, współczynnik D: 0.80, iteracja: 12, Błędnych dopasowań: 0.0

Poniżej przedstawiono tabelę błędów MSE jako średnich wartości z 20 testów jednostkowych:

D	MSE TEST	I. Błędnych	Wskaźnik	MSE TRAIN	I. Błędnych	Wskaźnik
0.10	0.1967	32	80.02%	0.0001	0	100%
0.2	0.1099	16	88.76%	0.0002	0	100%
0.3	0.0895	11	91.17%	0.0003	0	100%
0.4	0.0643	7	93.44%	0.0004	0	100%
0.5	0.0538	5	94.38%	0.0003	0	100%
0.6	0.0479	4	97.19%	0.0004	0	100%
0.7	0.0574	3	97.59%	0.0005	0	100%
0.8	0.0319	1	99.29%	0.0006	0	100%
0.9	0.0239	0	100%	0. 0005	0	100%

Tabela 17 MSE danych testujących w zależności od wartości współczynnika D i wartości współczynnika Spread

Rysunek 30 Wykres średnich błędów MSE z 20 testów jednostkowych

Współczynnik D

0.5

0.4

Powyższe wyniki potwierdzają poprawnie zdefiniowaną topologię do podziału zbioru danych Wine. Otrzymane wyniki cechuje bardzo wysoki procent skutecznego dopasowania danych testujących. Dla 1 serii pomiarów, gdy współczynnik D = 0.1, otrzymano największą liczbę błędnie dopasowanych elementów zbioru testowego, ponieważ liczba danych zbioru uczącego była niewystarczająca. W przypadku danych uczących, wytrenowanie sieci przebiegało prawidłowo.

Dane IONOSPHERE

W przypadku danych Ionosphere, cechy zbioru danych są inne niż w danych Iris i Wine. Tutaj dokonujemy podziału danych na 2 klasy. Wartości danych wejściowych znajdują się w zakresie <-1, 1> natomiast dane wyjściowe, jako wartości 'prawda' i 'fałsz' zostały podzielone na wartości 0 lub 1. Analogicznie jak w poprzednim przypadku, wykonałem 20 testów 'jednostkowych' i na ich podstawie wyznaczyłem uśrednione wyniki uczenia i testowania sieci. Sprawdziłem zachowanie zbiorów w zależności od zmienny wartość współczynnika D (od wartości 0.10 do 0.9). W topologii sieci feedrowardnet w warstwie ukrytej zastosowałem funkcję aktywację sigmoidalną, natomiast na wyjściu sieci funkcję liniową. Podobnie jak w poprzednich przykładach, wartość dozwolonego granicznego błędu średniokwadratowego ustawiłem na wartość 0.001, a wartość współczynnika szybkości learning rate był równy 10e-5. Zastosowałem losowe wartości wag połączeń na zakresie (0,1). Wektor rzędów warstw ukrytych ustawiłem na wartość 7.

Rysunek 31 Rysunek 29 Topologia zastosowana dla podziału danych Ionosphere

W celu podziału zbioru danych wyjściowych na 2 klasy, dokonałem podziału wartości oczekiwanych na wyjściu sieci na wartości 0 lub 1. Podział na podzbiory wykonałem przez zastosowanie podziału liniowego: zb.A < 0.5 < zb.B

Wyniki najlepszych dopasowań prezentują się następująco:

- 1. Błąd MSE danych testujących: 0.0001758197 , współczynnik D: 0.90, iteracja: 12, Błędnych dopasowań: 0.0
- 2. Błąd MSE danych uczących: 0.0000145386, współczynnik D: 0.80, iteracja: 12, Błędnych dopasowań: 0.0

Poniżej przedstawiono wykresy błędów MSE jako średnich wartości z 20 testów jednostkowych:

Poniżej przedstawiono tabelę błędów MSE jako średnich wartości z 20 testów jednostkowych:

D	MSE TEST	I. Błędnych	Wskaźnik	MSE TRAIN	I. Błędnych	Wskaźnik
0.10	0.3191	62	80.37%	0.0003	0	100%
0.2	0.3042	42	85.04%	0.0003	0	100%
0.3	0.3319	38	84.53%	0.0002	0	100%
0.4	0.2806	29	86.22%	0.0005	0	100%
0.5	0.3262	26	85.18%	0.0004	0	100%
0.6	0.3059	19	86.46%	0.0006	0	100%
0.7	0.2958	16	84.80%	0.0006	0	100%
8.0	0.3151	9	87.17%	0.0008	0	100%
0.9	0.2882	5	85.75%	0.0008	0	100%

Tabela 18 MSE danych uczących w zależności od wartości współczynnika D i wartości współczynnika Spread

Otrzymane wartości procentowego wskaźnika przydziału danych do odpowiedniej klasy jest niższy niż w przypadku danych Iris i Wine. Nie udało mi się stworzyć lepszej topologii. Przypuszczam, że istnieje topologia sieci feedforward potrafiąca dokonać podziału z dokładnością ~90-95%, jak to miało miejsce dla danych Iris i Wine. Niestety brak mi dotychczas wiedzy, jaka czynność lub poprawka może polepszyć przydział danych do odpowiednich klas o wspomniane około 5-10%.

RBF

W przypadku sieci RBF, przypadki 'jednostkowe' uzyskano przez stosowanie (tak jak poprzednio) zmiennej wartości współczynnika *D* oraz wykonanie 20-krotnej iteracji. Dla sieci RBF wyznaczono charakterystykę wartości błędu w zależności od różnej wartości parametru 'spread' (sc), tj. odchylenia kwadratowego. Cechą charakterystyczną parametru 'sc' jest własność, że im wartość jest większa, tym bardziej gładka jest aproksymacja funkcji. Domyślnie wartość 'spread' jest ustawiona na 1. <u>Wartość parametru 'sc' należy dobierać większą od zera</u>. Wobec tego dobrałem różne wartości 'sc' na zakresie <1, 8> ze skokiem 1. Wartość zadawalającego błędu średniokwadratowego, podobnie jak dla sieci feedforwardnet, ustawiłem na wartość 0.001.

Dane IRIS

Przykładowa topologia sieci RBF została przedstawiona poniżej:

Rysunek 32 Przykładowa topologia zastosowanej sieci RBF

Rysunek 33 Charakterystyka błędu MSE w zależności od wartości D i Spread, widok 3D

Rysunek 34 Charakterystyka błędu MSE w zależności od wartości D i Spread, widok 2D

Rysunek 35 Charakterystyka błędu MSE w zależności od wartości D i Spread, widok 2D

Na podstawie wyników otrzymanych wynika, że najlepsze wyniki są dla Spread równego 1. Zakres parametru Spread dla danych Iris został dobrany niefortunnie. W celu znalezienia najlepszego podziału zbiorów na 3 klasy, należało iterować Spread w przedziale (0, 2). W tym przedziale znajduje się najlepsze rozwiązanie. Wniosek z otrzymanych wyników jest taki, że zbiór danych Iris cechuje to, że aproksymacja funkcji powinna być relatywnie ostra. Zbyt duża rozpiętość tej wartości skutkuje tym, że wiele neuronów jest wymaganych do dopasowania szybko zmieniającej się funkcji. Uruchomiając program ponownie, ze zmienionymi wartościami Spread na przedział od 0.1 do 0.9 znajdziemy lepsze rozwiązanie. Poniżej zamieściłem kilka wyników dla wartości D = 0,1 oraz 0,9. Pozostałe wyniki zostały zamieszone w pliku rbf iris.txt.

Najlepsze dopasowanie:

Błąd MSE danych testujących: 0.0386999573, współczynnik D: 0.10, iteracja: 15, Błędnych dopasowań: 1.0

Błąd MSE danych uczących: 0.0000000000, współczynnik D: 0.10, iteracja: 15, Błędnych dopasowań: 0.0

W tabeli poniżej przedstawiono obliczone błędy średniokwadratowe, rozróżniając wartości parametru 'Spread'. Wartości współczynnika 'D' jest równa 0.1 i 0.9.

			D = 0.1			
Spread	MSE TEST	I. Błędnych	Wskaźnik [%]	MSE TRAIN	I. Błędnych	Wskaźnik
1	0.1514	19	87.27	0.0005	0	100%
2	0.4562	27	82.23	0.0004	0	100%
3	31.6775	30	80.23	0.0004	0	100%
4	9.3989	35	76.90	0.0003	0	100%
5	2.4606	35	76.70	0.0002	0	100%
6	1.2324	41	72.80	0.0002	0	100%
7	2.8031	32	78.77	0.0002	0	100%
8	1.8089	37	75.27	0.0004	0	100%
	I		D = 0.9			
Spread	MSE TEST	I. Błędnych	Wskaźnik [%]	MSE TRAIN	I. Błędnych	Wskaźnik
1	0.1341	2	98.53	0.0008	0	100%
2	0.9005	3	97.90	0.0009	0	100%
3	3.8442	4	97.37	0.0008	0	100%
4	2.9821	4	97.10	0.0008	0	100%
5	39.9783	4	97.20	0.0008	0	100%
6	4.8982	4	97.40	0.0009	0	100%
7	5.8428	4	97.30	0.0008	0	100%
8	8.5364	4	97.47	0.0010	0	100%

Tabela 19 Tabela średniego MSE w zależności od D i Spread

Dane WINE

Przykładowa topologia sieci RBF została przedstawiona poniżej:

Rysunek 36 Przykładowa topologia zastosowanej sieci RBF

Rysunek 37 Charakterystyka błędu MSE w zależności od wartości D i Spread, widok 3D

Rysunek 38 Charakterystyka błędu MSE w zależności od wartości D i Spread, widok 2D

Rysunek 39 Charakterystyka błędu MSE w zależności od wartości D i Spread, widok 2D

W tabeli poniżej przedstawiono obliczone błędy średniokwadratowe, rozróżniając wartości parametru 'Spread'. Wartości współczynnika 'D' jest równa 0.9.

			D = 0.9			
Spread	MSE TEST	I. Błędnych	Wskaźnik [%]	MSE TRAIN	I. Błędnych	Wskaźnik
1	0.5609	10	94.33	0.0000	0	100%
2	0.6088	11	93.79	0.0000	0	100%
3	0.5566	10	94.27	0.0007	0	100%
4	0.4791	8	95.28	0.0007	0	100%
5	0.4633	8	95.53	0.0008	0	100%
6	0.4278	8	95.42	0.0008	0	100%
7	0.4146	8	95.73	0.0008	0	100%
8	0.3269	5	96.97	0.0008	0	100%

Tabela 20 Tabela średniego MSE w zależności od D i Spread

W przypadku danych Wine uzyskaliśmy relatywnie dobre dopasowanie danych do odpowiednich zbiorów. Jak wynika z otrzymanych danych, w tym przypadku sytuacja z doborem parametru Spread jest odwrotna niż dla danych Iris. W tym przypadku aproksymowana funkcja powinna być 'bardziej gładka'. Skutkiem zbyt małej wartości parametru Spread jest to, że zbyt wiele neuronów jest wymaganych do płynnego dopasowania funkcji.

Dane IONOSPHERE

Przykładowa topologia sieci RBF została przedstawiona poniżej:

Rysunek 40 Przykładowa topologia zastosowanej sieci RBF

Analogicznie jak w poprzednich przykładach, wykonano te same czynności i otrzymano następujące wyniki:

Najlepsze dopasowanie:

- 1. Błąd MSE danych testujących: 0.0880343538 , spread: 4.0 , współczynnik D: 0.20, iteracja: 13, Błędnych dopasowań: 1.0
- 2. Błąd MSE danych uczących: 0.0000404238, spread: 4.0, współczynnik D: 0.10, iteracja: 13, Błędnych dopasowań: 0.0

Rysunek 41 Charakterystyka błędu MSE w zależności od wartości D i Spread, widok 3D

Rysunek 42 Charakterystyka błędu MSE w zależności od wartości D i Spread, widok 2D

Rysunek 43 Charakterystyka błędu MSE w zależności od wartości D i Spread, widok 2D

W tabelach poniżej przedstawiono obliczone błędy średniokwadratowe, rozróżniając wartości parametru 'Spread'. Wartości współczynnika 'D' jest równa 0.8.

			D = 0.8			
Spread	MSE TEST	I. Błędnych	Wskaźnik [%]	MSE TRAIN	I. Błędnych	Wskaźnik
1	0.3260	12	96.57	0.0009	0	100%
2	0.2183	8	97.6	0.0009	0	100%
3	0.3231	7	98.12	0.0009	0	100%
4	0.6254	7	97.95	0.0009	0	100%
5	0.9706	7	97.96	0.0009	0	100%
6	1.4490	7	98.11	0.0009	0	100%
7	2.0881	8	97.85	0.0009	0	100%
8	2.9092	7	97.91	0.0008	0	100%

Tabela 21 Tabela średniego MSE w zależności od D i Spread

Jak wynika z otrzymanych rezultatów, są one na poziomie dopasowania z sukcesem powyżej 95%. Oznacza to, że w poprzednim punkcie dla sieci wielowarstwowej (feedforwardnet) można było spróbować otrzymać dokładniejsze dopasowania. Jak wynika z analizy dopasowania w zależności od wartości parametru Spread, jego optymalna wartość w tym przypadku znajduje się z dużym prawdopodobieństwem na przedziale

(4, 6). W celu uzyskania najlepszego wyniku, po zgrubnym poszukiwaniu rozwiązania, należałoby zagęścić poszukiwania optymalnie wyuczonej sieci w tym rejonie wartości parametru Spread. W porównaniu z danymi Iris i Wine, zbiór danych Ionosphere znajduje się pośrodku, gdy za kryterium przyjmiemy ostrość(gładkość) aproksymowanej funkcji.

Newgrnn

Dla przypadku sieci newgrnn, podobnie jak w poprzednich przypadkach zastosowano różną wartość parametru D. W tym przypadku, w odróżnieniu do *newrb*, nie mamy możliwości założenia wartości akceptowalnego błędu uczenia sieci. Uogólnione sieci neuronowe regresji *grnn* są rodzajem radialnej sieci bazowej. Omawiany typ sieci cechuje dwuwarstwowość sieć. Po wnioskach z przykładu sieci newrb, tutaj poszukiwałem rozwiązania dla mniejszego zakresu wartości parametru *Spread*.

Dane IRIS

Przykładowa topologia sieci GRNN została przedstawiona poniżej:

Rysunek 44 Przykładowa topologia zastosowanej sieci GRNN

Rysunek 45 Charakterystyka błędu MSE w zależności od wartości D i Spread, widok 3D

Rysunek 46 Charakterystyka błędu MSE w zależności od wartości D i Spread, widok 2D

Rysunek 47 Charakterystyka błędu MSE w zależności od wartości D i Spread, widok 2D

Na podstawie wyników otrzymanych wynika, że najlepsze wyniki są dla Spread równego 1. Zakres parametru Spread dla danych Iris został dobrany niefortunnie. W celu znalezienia najlepszego podziału zbiorów na 3 klasy, należało iterować Spread w przedziale (0, 2). W tym przedziale znajduje się najlepsze rozwiązanie. Wniosek z otrzymanych wyników jest taki, że zbiór danych Iris cechuje to, że aproksymacja funkcji powinna być relatywnie ostra. Zbyt duża rozpiętość tej wartości skutkuje tym, że wiele neuronów jest wymaganych do dopasowania szybko zmieniającej się funkcji. Uruchomiając program ponownie, ze zmienionymi wartościami Spread na przedział od 0.1 do 0.9 znajdziemy lepsze rozwiązanie. Poniżej zamieściłem kilka wyników dla wartości D = 0,1 oraz 0,9. Pozostałe wyniki zostały zamieszone w pliku rbf_iris.txt.

Najlepsze dopasowanie:

Błąd MSE danych testujących: 0.0001003309 , spread: 0.2 , współczynnik D: 0.90, iteracja: 4, Błędnych dopasowań: 1.0

Błąd MSE danych uczących: 0.0000000000, spread: 0.2 , współczynnik D: 0.10 , iteracja: 4 , Błędnych dopasowań: 0.0

W tabeli poniżej przedstawiono obliczone błędy średniokwadratowe, rozróżniając wartości parametru 'Spread'. Wartości współczynnika 'D' jest równa 0.1 i 0.9.

	D = 0.8							
Spread	MSE TEST	I. Błędnych	Wskaźnik[%]	MSE TRAIN	I. Błędnych	Wskaźnik[%]		
0.2	0.0336	1	99.27	0.0028	1	99.17		
0.3	0.0301	1	99.27	0.0110	3	98.13		
0.4	0.0275	1	99.27	0.0185	3	97.93		
0.5	0.0389	3	98.97	0.0258	2	97.70		
0.6	03858	1	99.33	0.0349	5	96.87		
0.7	0.0410	2	98.67	0.0445	7	95.37		
0.8	0.0534	3	97.93	0.0508	10	93.47		
0.9	0.0635	3	97.90	0.0565	11	92.63		
1	0.0595	3	97.83	0.0658	15	90.10		

Tabela 22 Tabela średniego MSE w zależności od D i Spread

Na podstawie przedstawionych wyników, należy stwierdzić, że ciężko o wyznaczenie ekstremum globalnego. Widoczna jest zmienność liczby błędnych dopasowana przedziale Spread (np. jako ekstremum globalne możemy podejrzewać okolicę wartości Spread równą 0.6 lub poniżej 0.5). Procentowy i ilościowy poziom dopasowania jest równie wysoki co we wcześniejszej metodzie RBF, jednakże czas wykonania obliczeń był znacznie szybszy, co jest niewątpliwie znaczącą zaletą w poróżnianiu ze wcześniejszą implementacją metody *newrb*.

Dane WINE

Analogicznie jak we wcześniejszym przykładzie, dokonano analizy i wysnuto zbieżne wnioski z poprzednimi.

Przykładowa topologia sieci RBF została przedstawiona poniżej:

Rysunek 48 Przykładowa topologia zastosowanej sieci RBF

Najlepsze dopasowanie:

- 1. Błąd MSE danych testujących: 0.0001003309, spread: 0.2, współczynnik D: 0.90, iteracja: 4, Błędnych dopasowań: 1.0
- 2. Błąd MSE danych uczących: 0.00000000000, spread: 8.6, współczynnik D: 0.10, iteracja: 4, Błędnych dopasowań: 0.0

Rysunek 49 Charakterystyka błędu MSE w zależności od wartości D i Spread, widok 3D

Rysunek 50 Charakterystyka błędu MSE w zależności od wartości D i Spread, widok 2D

Rysunek 51 Charakterystyka błędu MSE w zależności od wartości D i Spread, widok 2D

W tabeli poniżej przedstawiono obliczone błędy średniokwadratowe, rozróżniając wartości parametru 'Spread'. Wartości współczynnika 'D' jest równa 0.9.

	D = 0.9							
Spread	MSE TEST	I. Błędnych	Wskaźnik[%]	MSE TRAIN	I. Błędnych	Wskaźnik[%]		
8.2	0.3076	5	97.39	0.0474	12	93.51		
8.4	0.0474	5	97.28	0.0503	13	92.78		
8.6	0.3178	5	97.28	0.0530	12	93.01		
8.8	0.3210	5	97.11	0.0545	13	92.78		
9.0	0.2637	5	97.16	0.0589	14	91.99		
9.2	0.2848	5	97.25	0.0615	15	91.71		
9.4	0.3241	5	97.25	0.0641	16	91.26		
9.6	0.2692	5	97.16	0.0690	16	91.07		

Tabela 23 Tabela średniego MSE w zależności od D i Spread

W przypadku danych Wine uzyskaliśmy jak poprzednio, relatywnie dobre dopasowanie danych do odpowiednich zbiorów. Jak wskazuje najlepsze dopasowanie, dla danych testujących udało uzyskać się dopasowanie z tylko 1 błędem, jednak z wynków średnich nie odnotowałem takiego rezultatu. Podobnie jak w danych Irys, ciężko wskazać ekstremum globalne (optymalną wartość parametru Spread). W porównaniu z Irys, w uczeniu sieci zastosowano większą ilość neuronów do wyuczenia sieci.

Dane IONOSPHERE

Przykładowa topologia sieci RBF została przedstawiona poniżej:

Rysunek 52 Przykładowa topologia zastosowanej sieci RBF

Analogicznie jak w poprzednich przykładach, wykonano te same czynności i otrzymano następujące wyniki:

Najlepsze dopasowanie:

- 1. Błąd MSE danych testujących: 0.0001003309, spread: 0.2, współczynnik D: 0.90, iteracja: 4, Błędnych dopasowań: 1.0
- 2. Błąd MSE danych uczących: 0.0000000000 , spread: 8.6 , współczynnik D: 0.10 , iteracja: 4 , Błędnych dopasowań: 0.0

Rysunek 53 Charakterystyka błędu MSE w zależności od wartości D i Spread, widok 3D

Rysunek 54 Charakterystyka błędu MSE w zależności od wartości D i Spread, widok 2D

Rysunek 55 Charakterystyka błędu MSE w zależności od wartości D i Spread, widok 2D

W tabelach poniżej przedstawiono obliczone błędy średniokwadratowe, rozróżniając wartości parametru 'Spread'. Wartości współczynnika 'D' jest równa 0.9.

			D = 0.9			
Spread	MSE TEST	I. Błędnych	Wskaźnik [%]	MSE TRAIN	I. Błędnych	Wskaźnik
4.2	0.2239	13	96.17	0.2159	113	67.93
4.4	0.2362	14	95.88	0.2163	112	68.22
4.6	0.2316	14	96.07	0.2174	112	68.03
4.8	0.2224	13	96.30	0.2191	113	67.81
5.0	0.2204	13	96.38	0.2200	113	67.72
5.2	0.2254	13	96.23	0.2204	112	67.88
5.4	0.2313	14	96.08	0.2206	112	68.02
5.6	0.2267	13	96.25	0.2216	113	67.85

Tabela 24 Tabela średniego MSE w zależności od D i Spread

Dla powyższej tabeli, widoczne jest zjawisko przeuczenia sieci. Błędu uczenia sieci znacznie wzrosły dla D=0.9. Jak wynika z otrzymanych rezultatów, nie udało się prawić wyników uzyskanych metodą sieci RBF. Dobrane wartości parametru Spread dla danych lonosphere wyniknęły ze wcześniejszego dopasowania wspomnianej sieci typu newrb (na tym poziomie spodziewam się ekstremum globalnego). Widoczne jest to, że dla algorytmu sieci newgrnn występuje relatywnie znacznie większy błąd MSE i ilość błędnych dopasowań dla danych uczących – w porównaniu z *feedforwardnet* i *rbf*.

Podsumowując, zastosowane topologie w przykładzie sieci feedforwardnet zostały sprawdzone, jedynie nie udało mi się stworzyć lepszej topologii dla danych ionosphere.

Laboratorium 6

Podczas laboratorium 6 nasze zadanie polegało na sklasyfikowaniu danych medycznych z zastosowaniem różnych metod definiowania sztucznej sieci neuronowej. Zastosowane dane medyczne składają się ze zbiorów danych uczących i testujących.

- Xtest macierz wejściowych danych testujących o wielkości 100x31, o wartościach z przedziału (-3,7, 3,01).
- Xlearning macierz wejściowych danych uczących o wielkości 100x31, o wartościach z przedziału (-3,55, 2,85).
- Dtest wektor wyjściowych danych testujących o wielkości 1x31, o wartościach -1 lub 1.
- Dlearning wektor wyjściowych danych uczących o wielkości 1x31, o wartościach -1 lub 1.

Wyniki najlepszych nauczeń sieci , otrzymanych jako rezultat odpowiednich dopasowanych wartości parametrów poszczególnych typów sieci, przedstawiono w tabeli poniżej.

	SSN	RBF	NEWGRNN	PNN
MSE Uczenie	4.9781e-05	5.5546e-31	0.0944	0
Błędny przydział, Uczenie	0	0	0	0
MSE Test	0.2905	0.3610	0.3074	0.3871
Błędny przydział, Test	2	2	3	3
Szczegóły:	Relatywnie bardziej zmienne wyniki w porównaniu z pozostałymi metodami	Spread = 8.7	Spread = 4.92;	Spread = 3 Oczekiwane wartości wyjściowe uczenia muszą być większe od zera i całkowite

Tabela 25 Tabela porównująca otrzymane rezultaty uzyskane dla poszczególnych metod

Jak wynika z tabeli powyżej, poziom błędnego dopasowania elementów do należytych im podzbiorów wynosi 2 lub 3 błędne dopasowania, gdzie cały podzbiór stanowi 31 elementów. Wynika z tego, że poziom prawidłowego dopasowania elementów do oczekiwanych podzbiorów wynosi ok. 90 – 95%. Najlepszy rezultat otrzymano dla SSN, stosując jedną warstwę ukrytą. Jako funkcję aktywacji zastosowałem f. sigmoidalną. W warstwie wyjsiowej funkcją aktywacji jest f. liniowa.

W przypadku funkcji PNN, niezbędne było wykonanie operacji transpozycji wektorów danych wyjściowych. Cechą metody PNN jest niezbędne ustawienie wektora wartości wyjściowych zbioru danych uczących jako większe od zera i całkowite. W naszym przypadku wartości tegoż wektora to -1 i 1. W celu zachowania tego podziału oraz prawidłowego testowania , do wektorów wyjściowych z. danych uczących i testujących dodałem wartość +2, przeskalowując w ten sposób oba wektory.

Topologie zastosowanych sieci:

SSN, Feedforward 10.

Rysunek 56 Topologia sieci SSN jako feedforwardnet

Rysunek 57 Topologia sieci RBF

Rysunek 58 Topologia sieci GRNN

Rysunek 59 Topologia sieci PNN