МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Университет ИТМО

ФАКУЛЬТЕТ СИСТЕМ УПРАВЛЕНИЯ И РОБОТОТЕХНИКИ

Курсовая работа по дисциплине «Дискретные системы управления»

Вариант №7

Выполнил: Студент группы R34403 Смирнов Данил Преподаватель: Чепинский С. А. к.т.н., доцент факультета СУиР, мегафакультет КТиУ

ЗАДАНИЕ ДЛЯ РАСЧЕТНОЙ РАБОТЫ

На рисунке 1 представлена структура объекта управления (ОУ). Задан вид передаточных функций структурных динамических блоков непрерывной линейной части (НЛЧ) – апериодических звеньев

$$W_i(p) = \frac{K_i}{T_i p + 1}$$

где K_i — коэффициент передачи i-того элемента; T — интервал дискретности работы импульсного элемента (ИЭ).

Рисунок 1 – Структура объекта управления.

Требуемся: спроектировать регулятор заданного типа, обеспечивающий в замкнутой системе требуемое время переходного процесса и заданное значение перерегулирования. Исходные данные представлены в таблице 1.

Параметры объекта Параметры системы T, c. Тип t_p , c. σ T_2 , c. K_1 T_1 , c. K_2 K_3 T_3 , c. регулятора 80.00 0.08 100.00 0.004 0.12 0.01 И П 0.132 10.00

Таблица 1 – Исходные данные

СОДЕРЖАНИЕ

ЗАДАНИЕ ДЛЯ РАСЧЕТНОЙ РАБОТЫ	2
СОДЕРЖАНИЕ	3
ХОД РАБОТЫ	4
Синтез П-регулятора	<i>6</i>
ВЫВОДЫ	9
ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА	10

ХОД РАБОТЫ

По исходным данным составим передаточные функции для каждого из звеньев

$$W_1 = \frac{80}{0.08p + 1}$$

$$W_2 = \frac{100}{0.12p + 1}$$

И интегрирующее звено

$$W_3 = \frac{0.01}{p}$$

Интервал дискретности T=0.004 с. Требуемые показатели качества системы $t_p=0.132$ с.; $\sigma=10\%$. Требуется построить Π -регулятор.

Передаточной функции интегрирующего звена соответствует дифференциальное уравнение

$$\dot{x_1} = 0.01x_2$$

Передаточной функции звена W_2 соответствует дифференциальное уравнение

$$0.12\dot{x_2} = -x_2 + 100x_3$$

или

$$\dot{x_2} = -8.33x_2 + 833.33x_3$$

Передаточной функции звена W_3 соответствует дифференциальное уравнение

$$0.08\dot{x_3} = -x_3 + 80u$$

или

$$\dot{x_3} = -12.5x_3 + 1000u$$

Объединяя уравнения модели в единую систему, получим описание объекта в непрерывном времени в форме BCB. В результате получаем:

$$\dot{X} = A_H X + B_H U,$$

$$Y = CX.$$

где:
$$X = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
, $A_H = \begin{bmatrix} 0 & 0.01 & 0 \\ 0 & -8.33 & -833.33 \\ 0 & 0 & -12.5 \end{bmatrix}$, $B_H = \begin{bmatrix} 0 \\ 0 \\ 1000 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$.

Перейдем к дискретному описанию объекта, используя формулы

$$A = e^{TA_H}; B = \left(\sum_{i=1}^{\infty} \frac{T^i A_H^{i-1}}{i!}\right) B_H,$$

получим:

$$\begin{bmatrix} x_1(m+1) \\ x_2(m+2) \\ x_3(m+3) \end{bmatrix} = A \begin{bmatrix} x_1(m) \\ x_2(m) \\ x_3(m) \end{bmatrix} + BU(m)$$

$$Y(m) = C \begin{bmatrix} x_1(m) \\ x_2(m) \\ x_3(m) \end{bmatrix}$$

Причем матрица C осталась неизменной, а матрицы дискретной модели равны:

$$A = \begin{bmatrix} 1 & 0 & 0.0001 \\ 0 & 0.9672 & 3.1973 \\ 0 & 0 & 0.9512 \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0.0256 \\ 4.0076 \end{bmatrix}.$$

По полученным матрицам вычислим дискретную передаточную функцию объекта управления. Вычисления параметров модели объекта управления выполним в пакете MatLab. Произведем вычисление дискретной передаточной функции объекта управления по выражению W(z) = C(zI - A)B. Для этого воспользуемся функцией «ss2tf». Получаем:

$$W(z) = \frac{5.12 * 10^{-7}z^2 + 2.59 * 10^{-4}z + 2.52 * 10^{-4}}{z^3 - 2.918z^2 + 2.839z - 0.9201}$$

Схема моделирования, позволяющая сравнить реакции на единичное ступенчатое воздействие непрерывной и дискретной моделей объекта управления представлена на рисунке 2, а график переходной функции – на рисунке 3.

Рисунок 2 – Схема моделирования

Рисунок 3 – Результаты моделирования

Из графика видно, что реакции моделей совпадают, т. е. переход от непрерывного времени к дискретному выполнен корректно.

Синтез П-регулятора

Сведем задачу синтеза к выбору матриц эталонной модели Γ , H, решению уравнения типа Сильвестра:

$$M\Gamma - AM = -BH$$

и вычислению матрицы обратных связей $K = HM^{-1}$ системы управления.

Исходя из заданных показателей качества, выберем корни характеристического полинома непрерывной системы. С учетом наличия в регуляторе интегрирующего звена, повышающего порядок уравнения системы на единицу, выберем стандартный биномиальный полином третьей степени $p^3+2\omega_0p^2+2\omega_0^2p+\omega_0^3$, для которого $t_{\rm n}=6.0$ с. По заданию время переходного процесса равно 0.132 с, далее мы определяем

желаемые собственные числа характеристического полинома. Для этого найдем ω_0 по формуле:

$$\omega_0 = \frac{t_{\pi}^*}{t_{\pi}} = \frac{6}{0.132} = 45.45$$
$$\lambda_{1,2} = -22.72 \pm 39.3648$$
$$\lambda_3 = -45.45$$

Сформируем матрицу Γ_H эталонной модели замкнутой системы (непрерывное время):

$$\Gamma_H = \begin{bmatrix} -22.72 & 39.3648 & 0 \\ -39.3648 & -22.72 & 0 \\ 0 & 0 & -45.45 \end{bmatrix}$$

и матрицу выходов H из условия полной наблюдаемости пары H, Γ :

$$H = [1 \ 0 \ 1]$$

Произведем вычисление матрицы Г эталонной модели для дискретного времени:

$$\Gamma = expm(\Gamma_H T) = \begin{bmatrix} 0.9018 & 0.1432 & 0 \\ -0.1432 & 0.9018 & 0 \\ 0 & 0 & 0.8338 \end{bmatrix}$$

Решая уравнение типа Сильвестра в пакете MatLab с использованием функции «lyap»:

$$M = lyap(-A, G, BH),$$

получаем

$$M = \begin{bmatrix} -0.1132 & -0.0332 & 0.18 \\ 389.211 & -370.4415 & -816.9947 \\ 8.633 & 25.0096 & 34.1142 \end{bmatrix}$$

Используя равенство $K = HM^{-1}$, находим матрицу коэффициентов обратных связей:

$$K = [9.77 \quad 0.0039 \quad 0.0701],$$

которая с учетом отрицательной обратной связи по выходной переменной определяем настройку регулятора: $k_1 = 9.77, k_2 = 0.0039, k_3 = 0.0701$.

Полученное решение проверим, вычислив собственные числа характеристических полиномов для эталонной и синтезированной систем:

$$eigs(\Gamma) = eigs(A - BK) = \begin{bmatrix} 0.9018 - 0.1432i \\ 0.9018 + 0.1432i \\ 0.8338 \end{bmatrix}$$

Они равны, что подтверждает корректность выполненных расчетов.

Итоговая схема моделирования системы управления непрерывным объектом с использованием дискретного аналога ПИ регулятора представлена на рисунке 4.

Рисунок 4 — Схема моделирования системы с П-регулятором Переходная характеристика синтезированной системы показана на рисунке 5.

Рисунок 5 — Переходная характеристика замкнутой системы В результате получили время переходного процесса 0.13 с при учете $(|h_{\text{уст}}-h(t)|<5\%)$ и перерегулирование 6.7%<10%.

ВЫВОДЫ

В ходе выполнения лабораторной работы был синтезирован дискретный П-регулятор, работающий с заданным периодом квантования времени 0.004 с. В качестве эталона, исходя из требуемых критериев качества, был выбран полином Ньютона 3-й степени. Коэффициенты дискретного П-регулятора были вычислены через решение уравнения Сильвестра, все были операции проведены В среде MATLAB. Моделирование работы системы в непрерывном времени показало, что время реакции системы на единичное ступенчатое воздействие не превосходит 0.132 с, а перерегулирование не превышает 10%, что соответствует техническому заданию. Следовательно, спроектированный дискретный регулятор отвечает требованиям технического задания.

ИСПОЛЬЗОВАННАЯ ЛИТЕРАТУРА

 Григорьев В. В., Быстров С. В., Бойков В. И., Болтунов Г. И., Мансурова О.К. Цифровые системы управления: Учебное пособие. – СПб: Университет ИТМО, 2019. – 133 с.