# Actuariat IARD - ACT2040 Partie 8 - provisions pour sinistres à payer, IBNR et triangles

#### Arthur Charpentier

charpentier.arthur@uqam.ca

http://freakonometrics.hypotheses.org/



AUTOMNE 2013

# Provisions pour sinistres à payer

**Références**: de Jong & Heller (2008), section 1.5 et 8.1, and Wüthrich & Merz (2006), chapitres 1 à 3.

"Les provisions techniques sont les provisions destinées à permettre le réglement intégral des engagements pris envers les assurés et bénéficaires de contrats. Elles sont liées à la technique même de l'assurance, et imposées par la réglementation."

"It is hoped that more casualty actuaries will involve themselves in this important area. IBNR reserves deserve more than just a clerical or cursory treatment and we believe, as did Mr. Tarbell Chat 'the problem of incurred but not reported claim reserves is essentially actuarial or statistical'. Perhaps in today's environment the quotation would be even more relevant if it stated that the problem '...is more actuarial than statistical'." Bornhuetter & Ferguson (1972)

# Le passif d'une compagnie d'assurance dommage

- les provisions techniques peuvent représenter 75% du bilan,
- le ratio de couverture (provision / chiffre d'affaire) peut dépasser 2,
- certaines branches sont à développement long, en montant

|                | n   | n+1 | n+2 | n+3 | n+4 |
|----------------|-----|-----|-----|-----|-----|
| habitation     | 55% | 90% | 94% | 95% | 96% |
| automobile     | 55% | 80% | 85% | 88% | 90% |
| dont corporels | 15% | 40% | 50% | 65% | 70% |
| R.C.           | 10% | 25% | 35% | 40% | 45% |

**Swiss Re** 





N° 2/2008

Provisionnement des sinistres en assurance de dommages: progresser sur un défi stratégique

Les provisions pour sinistres n'ayant pas été encore réglés peuvent avoir de fortes conséquences sur le bilan et le compte de résultats des assureurs de dommages. Les provisions pour sinistres sont des fonds constitués et inscrits au bilan d'un assureur, pour les sinistres n'ayant pas encore été réglés. Voici ce que l'on sait des provisions pour sinistres :

- Les provisions pour sinistres étant souvent supérieures au capital de l'assureur, toute modification de ces provisions peut avoir un impact important sur les bénéfices. Aux Etats-Unis, l'insuffisance des provisions pour sinistres a été la cause principale des cas de faillite de la période 1969 à 2002.
- Les provisions pour sinistres sont particulièrement importantes en assurance de responsabilité civile, où l'identification et le règlement des sinistres peuvent être longs. En RC, les provisions pour sinistres représentent en général de 300% à 450% des primes acquises, alors que les ratios de provisions techniques sont compris entre 60% et 100% en assurance de biens, et entre 10% et 30% seulement en assurance tous risques automobile.
- Les ratios de provisions techniques ont augmenté au fil du temps dans de nombreuses branches RC et accidents, et dans tout le secteur. Cette situation est due en partie à la part croissante des sinistres à développement lent.
- Ces derniers sont en effet particulièrement sujets aux ajustements de provisions. Aux Etats-Unis, par exemple, en assurance de RC médicale, les estimations initiales de sinistres pour l'année de survenance 2000 ont dû être augmentées de 25% (données 2006). Ce qui signifie qu'une activité semblant à l'origine plutôt lucrative peut finalement occasionner des pertes importantes.
- En réassurance les ratios de provisions pour sinistres sont plus élevés qu'en assurance directe, car les sinistres à développement lent sont lourdement réassurés.

Les méthodes de provisionnement ne permettent d'obtenir des résultats fiables que si les tendances et les cycles attendus sont intégrés dans les modèles. Les assureurs utilisent plusieurs méthodes de détermination des provisions techniques. Les plus communes sont les méthodes Chain-Ladder, Bornhuetter-Ferguson, Benktander et Bootstrap. Les sinistres futurs étant soumis à des événements inattendus, les erreurs de prévision et de provisionnement sont inévitables, quelle que soit la méthode choisie. Mais lorsque des erreurs de prévision évitables se produisent, elles sont souvent dues à l'application de la méthode ou aux données utilisées dans les modèles. Il arrive aussi que des erreurs soient provoquées par le manque de connaissance de l'activité ou des tendances qui caractérisent les sinistres.

Les évolutions juridiques, les progrès de la médecine, l'allongement de la durée de vie et les attitudes sociales influent tous sur les sinistres à développement lent. Mais les erreurs de provisionnement peuvent aussi être dues à des facteurs que ne peuvent contrôler les assureurs : des évolutions juridiques inattendues, l'allongement de l'espérance de vie, les progrès de la médecine et les changements dans les attitudes sociales. Les cycles de prix de l'assurance, qui sont la cause de révisions continuelles de provisions, posent cependant un autre défi.

Graphique 1 Cas de faillite enregistrés par les assureurs dommages, RC et accidents américains, par cause



Source: A.M. Best: Best's Insolvency Study, Property/Casualty U.S. Insurers 1969-2002, mai 2004, p.34

Graphique 3 Provisions pour sinistres, en % des primes acquises, 1980-2006



Sources: Autorités de surveillance des assurances, Best's Aggregates & Averages, Property/Casualty, édition 2007

|                                                      |                                                                                                       |                                                                          | Bayesian/BF                                                                                                      |                                                                              |                                                                                           |                                                                                                                                         |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|                                                      | ODP/Bootstrap                                                                                         | Mack                                                                     | Method                                                                                                           | Judgement                                                                    | Scenarios                                                                                 | Regression/Curve Fitting                                                                                                                |
| Description                                          | Most common<br>bootstrap model.<br>Potential to use<br>different<br>distribution for<br>the residuals | Calculation of<br>standard error<br>with and<br>without tail<br>factors. | Uses ODP model<br>with a series of prior<br>ULR estimates<br>defined by a<br>distribution                        | Based on<br>professional<br>experience                                       | Can include any variation<br>such as changing<br>development patterns or<br>single events | Fits Craighead curve to each origin<br>year to derive initial estimate of<br>ULR, then smoothes across origin<br>years using regression |
| Data required                                        | Cumulative<br>claims triangles<br>(paid or incurred)                                                  | Cumulative<br>claim triangles<br>(paid or<br>incurred)                   | Cumulative claim<br>triangles (paid or<br>incurred)                                                              | Any                                                                          | Any                                                                                       | Premium and claim amounts<br>triangles                                                                                                  |
| Is the method acceptable to the Profession?          | Yes                                                                                                   | Yes                                                                      | Yes                                                                                                              | Yes                                                                          | Yes                                                                                       | Depends on purpose                                                                                                                      |
| Is the method<br>easy to use and<br>is it practical? | Yes                                                                                                   | Yes                                                                      | No                                                                                                               | Yes                                                                          | Yes                                                                                       | Yes                                                                                                                                     |
| Can judgement or amendments be applied?              | Yes                                                                                                   | Amendments<br>needed where<br>gaps in<br>published<br>method             | Requires prior<br>distribution of<br>ultimate position of<br>each origin year                                    | Yes - essential                                                              | Yes via choice of<br>scenarios and manual<br>adjustments or tweaks                        | Yes, perhaps too easily                                                                                                                 |
| Is the method easy to explain?                       | Principles easy to explain                                                                            | No                                                                       | Very difficult                                                                                                   | Yes                                                                          | Yes                                                                                       | Yes                                                                                                                                     |
| When is method good? (Or not?)                       | Good if little negative development and residuals are iid and run-off pattern is same for all years.  | Good only if<br>run-off pattern<br>is same for all<br>years              | Good if little negative<br>development and<br>residuals are iid and<br>run-off pattern is<br>same for all years. | Good if actuary<br>has additional<br>knowledge; bad<br>if not<br>experienced | Not good if volatile<br>datasets or inexperienced<br>actuary                              | Good if run-off pattern varies<br>across origin years. Not good if<br>there is much negative<br>development                             |

http://www.actuaries.org.uk/system/files/documents/pdf/bhprizegibson.pdf

|                                                     | ODP/Bootstrap                                                                                  | Mack                                                                           | Bayesian/BF<br>Method                                                    | Judgement                                                                      | Scenarios                                                                                          | Regression/Curve Fitting                                                            |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Are extreme events included?                        | Only if in data                                                                                | Only if in data                                                                | Yes, if in data and/or in prior distributions                            | Yes if desired                                                                 | Yes if desired                                                                                     | Yes, if in data but can exclude if desired                                          |
| Produce<br>complete<br>distribution of<br>outcomes? | Yes if process<br>error is simulated<br>in addition to<br>bootstrapping for<br>parameter error | Produces mean<br>and standard<br>error only                                    | Yes                                                                      | Yes as any<br>required<br>percentile can<br>be estimated<br>using<br>judgement | No – produces a few<br>possible outcomes to<br>which probabilities can be<br>judgementally applied | No, just an approximate range                                                       |
| Type of uncertainty measured                        | Bootstrap method gives parameter uncertainty, process uncertainty can be simulated in addition | Process and parameter uncertainty                                              | Process and parameter uncertainty                                        | Potentially<br>model error as<br>well as<br>parameter and<br>process error     | Usually just parameter<br>uncertainty                                                              | Parameter uncertainty only<br>(dependent variable in regression is<br>expected ULR) |
| Time to program and complete                        | Easy to program<br>in Excel though<br>long time to run                                         | Easy to<br>program and<br>quick to run                                         | Specialist software<br>required and very<br>slow to run                  |                                                                                |                                                                                                    | Easy to do in Excel                                                                 |
| Comparison of class results to aggregated           | Automatic<br>consistency<br>between origin<br>year and<br>aggregate results                    | Automatic<br>consistency<br>between origin<br>year and<br>aggregate<br>results | Automatic<br>consistency between<br>origin year and<br>aggregate results | Should be<br>consistent<br>given enough<br>care, but this<br>not guaranteed    | Does not produce<br>separate assessment of<br>aggregate uncertainty                                | Does not produce separate<br>assessment of aggregate<br>uncertainty                 |

http://www.actuaries.org.uk/system/files/documents/pdf/bhprizegibson.pdf



http://www.actuaries.org.uk/system/files/documents/pdf/bhprizegibson.pdf





http://www.actuaries.org.uk/system/files/documents/pdf/bhprizegibson.pdf

# Assurance multirisques habitation



# Assurance risque incendies entreprises



# Assurance automobile (total)



## Assurance automobile matériel



## Assurance automobile corporel



# Assurance responsabilité civile entreprisee



# Assurance responabilité civile médicale



#### Assurance construction



# Les triangles : incréments de paiements

Noté  $Y_{i,j}$ , pour l'année de survenance i, et l'année de développement j,

|               | 0    | 1    | 2   | 3  | 4  | 5  |
|---------------|------|------|-----|----|----|----|
| 0             | 3209 | 1163 | 39  | 17 | 7  | 21 |
| 1             | 3367 | 1292 | 37  | 24 | 10 |    |
| 2             | 3871 | 1474 | 53  | 22 |    |    |
| 3             | 4239 | 1678 | 103 |    |    |    |
| $\mid 4 \mid$ | 4929 | 1865 |     | '  |    |    |
| 5             | 5217 |      |     |    |    |    |

## Les triangles : paiements cumulés

Noté  $C_{i,j} = Y_{i,0} + Y_{i,1} + \cdots + Y_{i,j}$ , pour l'année de survenance i, et l'année de développement j,

|   | 0    | 1    | 2    | 3    | 4    | 5    |
|---|------|------|------|------|------|------|
| 0 | 3209 | 4372 | 4411 | 4428 | 4435 | 4456 |
| 1 | 3367 | 4659 | 4696 | 4720 | 4730 |      |
| 2 | 3871 | 5345 | 5398 | 5420 |      |      |
| 3 | 4239 | 5917 | 6020 |      | •    |      |
| 4 | 4929 | 6794 |      | •    |      |      |
| 5 | 5217 |      | •    |      |      |      |

## Les triangles : nombres de sinistres

Noté  $N_{i,j}$  sinistres survenus l'année i connus (déclarés) au bout de j années,

|               | 0      | 1      | 2      | 3      | 4      | 5      |
|---------------|--------|--------|--------|--------|--------|--------|
| 0             | 1043.4 | 1045.5 | 1047.5 | 1047.7 | 1047.7 | 1047.7 |
| $\mid 1 \mid$ | 1043.0 | 1027.1 | 1028.7 | 1028.9 | 1028.7 |        |
| 2             | 965.1  | 967.9  | 967.8  | 970.1  |        |        |
| 3             | 977.0  | 984.7  | 986.8  |        |        |        |
| 4             | 1099.0 | 1118.5 |        |        |        |        |
| 5             | 1076.3 |        |        |        |        |        |

# La prime acquise

Notée  $\pi_i$ , prime acquise pour l'année i

| Year i | 0    | 1    | 2    | 3    | 4    | 5    |
|--------|------|------|------|------|------|------|
| $P_i$  | 4591 | 4672 | 4863 | 5175 | 5673 | 6431 |



# Diagramme de Lexis en assurance non-vie



# Triangles?

Actually, there might be two different cases in practice, the first one being when initial data are missing



In that case it is mainly an index-issue in calculation.

## Triangles?

Actually, there might be two different cases in practice, the first one being when final data are missing, i.e. some tail factor should be included



In that case it is necessary to extrapolate (with past information) the final loss

#### The Chain Ladder estimate

We assume here that

$$C_{i,j+1} = \lambda_j \cdot C_{i,j}$$
 for all  $i, j = 1, \dots, n$ .

A natural estimator for  $\lambda_j$  based on past history is

$$\widehat{\lambda}_j = \frac{\sum_{i=1}^{n-j} C_{i,j+1}}{\sum_{i=1}^{n-j} C_{i,j}} \text{ for all } j = 1, \dots, n-1.$$

Hence, it becomes possible to estimate future payments using

$$\widehat{C}_{i,j} = \left[\widehat{\lambda}_{n+1-i}...\widehat{\lambda}_{j-1}\right] C_{i,n+1-i}.$$



$$\lambda_0 = \frac{4372 + \dots + 6794}{3209 + \dots + 4929} \sim 1.38093$$

$$\lambda_0 = \frac{4372 + \dots + 6794}{3209 + \dots + 4929} \sim 1.38093$$

$$\lambda_1 = \frac{4411 + \dots + 6020}{4372 + \dots + 5917} \sim 1.01143$$

$$\lambda_1 = \frac{4411 + \dots + 6020}{4372 + \dots + 5917} \sim 1.01143$$

$$\lambda_2 = \frac{4428 + \dots + 5420}{4411 + \dots + 5398} \sim 1.00434$$

$$\lambda_2 = \frac{4428 + \dots + 5420}{4411 + \dots + 5398} \sim 1.00434$$

|               | 0    | 1      | 2      | 3      | 4      | 5    |
|---------------|------|--------|--------|--------|--------|------|
| 0             | 3209 | 4372   | 4411   | 4428   | 4435   | 4456 |
| 1             | 3367 | 4659   | 4696   | 4720   | 4730   |      |
| 2             | 3871 | 5345   | 5398   | 5420   | 5430.1 |      |
| 3             | 4239 | 5917   | 6020   | 6046.1 | 6057.4 |      |
| $\mid 4 \mid$ | 4929 | 6794   | 6871.7 | 6901.5 | 6914.3 |      |
| 5             | 5217 | 7204.3 | 7286.7 | 7318.3 | 7331.9 |      |

$$\lambda_3 = \frac{4435 + 4730}{4428 + 4720} \sim 1.00186$$

## La méthode Chain Ladder, en pratique

|   | 0    | 1      | 2      | 3      | 4      | 5      |
|---|------|--------|--------|--------|--------|--------|
| 0 | 3209 | 4372   | 4411   | 4428   | 4435   | 4456   |
| 1 | 3367 | 4659   | 4696   | 4720   | 4730   | 4752.4 |
| 2 | 3871 | 5345   | 5398   | 5420   | 5430.1 | 5455.8 |
| 3 | 4239 | 5917   | 6020   | 6046.1 | 6057.4 | 6086.1 |
| 4 | 4929 | 6794   | 6871.7 | 6901.5 | 6914.3 | 6947.1 |
| 5 | 5217 | 7204.3 | 7286.7 | 7318.3 | 7331.9 | 7366.7 |

$$\lambda_4 = \frac{4456}{4435} \sim 1.00474$$

#### La méthode Chain Ladder, en pratique

|               | 0    | 1      | 2      | 3       | 4      | 5      |
|---------------|------|--------|--------|---------|--------|--------|
| $\mid 0 \mid$ | 3209 | 4372   | 4411   | 4428    | 4435   | 4456   |
| 1             | 3367 | 4659   | 4696   | 4720    | 4730   | 4752.4 |
| 2             | 3871 | 5345   | 5398   | 5420    | 5430.1 | 5455.8 |
| 3             | 4239 | 5917   | 6020   | 6046.15 | 6057.4 | 6086.1 |
| $\mid 4 \mid$ | 4929 | 6794   | 6871.7 | 6901.5  | 6914.3 | 6947.1 |
| 5             | 5217 | 7204.3 | 7286.7 | 7318.3  | 7331.9 | 7366.7 |

One the triangle has been completed, we obtain the amount of reserves, with respectively 22, 36, 66, 153 and 2150 per accident year, i.e. the total is 2427.

#### Three ways to look at triangles

There are basically three kind of approaches to model development

• developments as percentages of total incured, i.e. consider  $\varphi_0, \varphi_1, \dots, \varphi_n$ , with  $\varphi_0 + \varphi_1 + \dots + \varphi_n = 1$ , such that

$$\mathbb{E}(Y_{i,j}) = \varphi_j \mathbb{E}(C_{i,n}), \text{ where } j = 0, 1, \dots, n.$$

• developments as rates of total incurred, i.e. consider  $\gamma_0, \gamma_1, \dots, \gamma_n$ , such that

$$\mathbb{E}(C_{i,j}) = \gamma_j \mathbb{E}(C_{i,n}), \text{ where } j = 0, 1, \dots, n.$$

• developments as factors of previous estimation, i.e. consider  $\lambda_0, \lambda_1, \dots, \lambda_n$ , such that

$$\mathbb{E}(C_{i,j+1}) = \lambda_j \mathbb{E}(C_{i,j}), \text{ where } j = 0, 1, \dots, n.$$

#### Three ways to look at triangles

From a mathematical point of view, it is strictly equivalent to study one of those. Hence,

$$\gamma_{j} = \varphi_{0} + \varphi_{1} + \dots + \varphi_{j} = \frac{1}{\lambda_{j}} \frac{1}{\lambda_{j+1}} \dots \frac{1}{\lambda_{n-1}},$$

$$\lambda_{j} = \frac{\gamma_{j+1}}{\gamma_{j}} = \frac{\varphi_{0} + \varphi_{1} + \dots + \varphi_{j} + \varphi_{j+1}}{\varphi_{0} + \varphi_{1} + \dots + \varphi_{j}}$$

$$\varphi_{j} = \begin{cases} \gamma_{0} \text{ if } j = 0\\ \gamma_{j} - \gamma_{j-1} \text{ if } j \geq 1 \end{cases} = \begin{cases} \frac{1}{\lambda_{0}} \frac{1}{\lambda_{1}} \cdots \frac{1}{\lambda_{n-1}}, & \text{if } j = 0\\ \frac{1}{\lambda_{j+1}} \frac{1}{\lambda_{j+2}} \cdots \frac{1}{\lambda_{n-1}} - \frac{1}{\lambda_{j}} \frac{1}{\lambda_{j+1}} \cdots \frac{1}{\lambda_{n-1}}, & \text{if } j \geq 1 \end{cases}$$

# Three ways to look at triangles

On the previous triangle,

|             | 0       | 1            | 2            | 3            | 4            | n        |
|-------------|---------|--------------|--------------|--------------|--------------|----------|
| $\lambda_j$ | 1,38093 | 1,01143      | 1,00434      | 1,00186      | 1,00474      | 1,0000   |
| $\gamma_j$  | 70,819% | $97{,}796\%$ | $98,\!914\%$ | $99,\!344\%$ | $99{,}529\%$ | 100,000% |
| $\varphi_j$ | 70,819% | $26,\!977\%$ | $1{,}118\%$  | $0,\!430\%$  | $0{,}185\%$  | 0,000%   |

#### d-triangles

It is possible to define the d-triangles, with empirical  $\lambda$ 's, i.e.  $\lambda_{i,j}$ 



#### The Chain-Ladder estimate

The Chain-Ladder estimate is probably the most popular technique to estimate claim reserves. Let  $\mathcal{F}_t$  denote the information available at time t, or more formally the filtration generated by  $\{C_{i,j}, i+j \leq t\}$  - or equivalently  $\{X_{i,j}, i+j \leq t\}$ 

Assume that incremental payments are independent by occurrence years, i.e.  $C_{i_1}$ ,  $C_{i_2}$ , are independent for any  $i_1$  and  $i_2$ .

Further, assume that  $(C_{i,j})_{j\geq 0}$  is Markov, and more precisely, there exist  $\lambda_j$ 's and  $\sigma_i^2$ 's such that

$$\begin{cases} (C_{i,j+1}|\mathcal{F}_{i+j}) = (C_{i,j+1}|C_{i,j}) = \lambda_j \cdot C_{i,j} \\ \operatorname{Var}(C_{i,j+1}|\mathcal{F}_{i+j}) = \operatorname{Var}(C_{i,j+1}|C_{i,j}) = \sigma_j^2 \cdot C_{i,j} \end{cases}$$

Under those assumption, one gets

$$\mathbb{E}(C_{i,j+k}|\mathcal{F}_{i+j}) = (C_{i,j+k}|C_{i,j}) = \lambda_j \cdot \lambda_{j+1} \cdots \lambda_{j+k-1}C_{i,j}$$

## Underlying assumptions in the Chain-Ladder estimate

Recall, see Mack (1993), properties of the Chain-Ladder estimate rely on the following assumptions

```
\begin{cases} H_1 & \mathbb{E}\left(C_{i,j+1}|C_{i,1},...,C_{i,j}\right) = \lambda_j.C_{ij} \text{ for all } i = 0,1,...,n \text{ and } j = 0,1,...,n-1 \\ H_2 & (C_{i,j})_{j=1,...,n} \text{ and } (C_{i',j})_{j=1,...,n} \text{ are independent for all } i \neq i'. \\ H_3 & \operatorname{Var}\left(C_{i,j+1}|C_{i,1},...,C_{i,j}\right) = C_{i,j}\sigma_j^2 \text{ for all } i = 0,1,...,n \text{ and } j = 0,1,...,n-1 \end{cases}
```

#### Testing assumptions

Assumption  $H_1$  can be interpreted as a linear regression model, i.e.

 $Y_i = \beta_0 + X_i \cdot \beta_1 + \varepsilon_i$ ,  $i = 1, \dots, n$ , where  $\varepsilon$  is some error term, such that  $\mathbb{E}(\varepsilon) = 0$ , where  $\beta_0 = 0$ ,  $Y_i = C_{i,j+1}$  for some j,  $X_i = C_{i,j}$ , and  $\beta_1 = \lambda_j$ .

Weighted least squares can be considered, i.e.  $\min \left\{ \sum_{i=1}^{n-j} \omega_i \left( Y_i - \beta_0 - \beta_1 X_i \right)^2 \right\}$ 

where the  $\omega_i$ 's are proportional to  $Var(Y_i)^{-1}$ . This leads to

$$\min \left\{ \sum_{i=1}^{n-j} \frac{1}{C_{i,j}} \left( C_{i,j+1} - \lambda_j C_{i,j} \right)^2 \right\}.$$

As in any linear regression model, it is possible to test assumptions  $H_1$  and  $H_2$ , the following graphs can be considered, given j

- plot  $C_{i,j+1}$ 's versus  $C_{i,j}$ 's. Points should be on the straight line with slope  $\widehat{\lambda}_j$ .
- plot (standardized) residuals  $\epsilon_{i,j} = \frac{C_{i,j+1} \lambda_j C_{i,j}}{\sqrt{C_{i,j}}}$  versus  $C_{i,j}$ 's.

#### Testing assumptions

 $H_2$  is the accident year independent assumption. More precisely, we assume there is no calendar effect.

Define the diagonal  $B_k = \{C_{k,0}, C_{k-1,1}, C_{k-2,2}, \cdots, C_{2,k-2}, C_{1,k-1}, C_{0,k}\}$ . If there is a calendar effect, it should affect adjacent factor lines,

$$A_k = \left\{ \frac{C_{k,1}}{C_{k,0}}, \frac{C_{k-1,2}}{C_{k-1,1}}, \frac{C_{k-2,3}}{C_{k-2,2}}, \cdots, \frac{C_{1,k}}{C_{1,k-1}}, \frac{C_{0,k+1}}{C_{0,k}} \right\} = \sqrt[n]{\frac{\delta_{k+1}}{\delta_k}},$$

and

$$A_{k-1} = \left\{ \frac{C_{k-1,1}}{C_{k-1,0}}, \frac{C_{k-2,2}}{C_{k-2,1}}, \frac{C_{k-3,3}}{C_{k-3,2}}, \cdots, \frac{C_{1,k-1}}{C_{1,k-2}}, \frac{C_{0,k}}{C_{0,k-1}} \right\} = \frac{\delta_k}{\delta_{k-1}}.$$

For each k, let  $N_k^+$  denote the number of elements exceeding the median, and  $N_k^-$  the number of elements lower than the mean. The two years are independent,  $N_k^+$  and  $N_k^-$  should be "closed", i.e.  $N_k = \min(N_k^+, N_k^-)$  should be "closed" to  $(N_k^+ + N_k^-)/2$ .

Since  $N_k^-$  and  $N_k^+$  are two binomial distributions  $\mathcal{B}\left(p=1/2,n=N_k^-+N_k^+\right)$ , then

$$\mathbb{E}(N_k) = \frac{n_k}{2} - \begin{pmatrix} n_k - 1 \\ m_k \end{pmatrix} \frac{n_k}{2^{n_k}} \text{ where } n_k = N_k^+ + N_k^- \text{ and } m_k = \left[\frac{n_k - 1}{2}\right]$$

and

$$V(N_k) = \frac{n_k (n_k - 1)}{2} - \begin{pmatrix} n_k - 1 \\ m_k \end{pmatrix} \frac{n_k (n_k - 1)}{2^{n_k}} + \mathbb{E}(N_k) - \mathbb{E}(N_k)^2.$$

Under some normality assumption on N, a 95% confidence interval can be derived, i.e.  $\mathbb{E}(Z) \pm 1.96\sqrt{V(Z)}$ .





#### From Chain-Ladder to Grossing-Up

The idea of the Chain-Ladder technique was to estimate the  $\lambda_j$ 's, so that we can derive estimates for  $C_{i,n}$ , since

$$\widehat{C}_{i,n} = \widehat{C}_{i,n-i} \cdot \prod_{k=n-i+1}^{n} \widehat{\lambda}_k$$

Based on the Chain-Ladder link ratios,  $\widehat{\lambda}$ , it is possible to define grossing-up coefficients

$$\widehat{\gamma}_j = \prod_{k=j}^n \frac{1}{\widehat{\lambda}_k}$$

and thus, the total loss incured for accident year i is then

$$\widehat{C}_{i,n} = \widehat{C}_{i,n-i} \cdot \frac{\widehat{\gamma}_n}{\widehat{\gamma}_{n-i}}$$

#### Variant of the Chain-Ladder Method (1)

Historically (see e.g.), the *natural* idea was to consider a (standard) average of individual link ratios.

Several techniques have been introduces to study individual link-ratios.

A first idea is to consider a simple linear model,  $\lambda_{i,j} = a_j i + b_j$ . Using OLS techniques, it is possible to estimate those coefficients simply. Then, we project those ratios using predicted one,  $\hat{\lambda}_{i,j} = \hat{a}_j i + \hat{b}_j$ .

## Variant of the Chain-Ladder Method (2)

A second idea is to assume that  $\lambda_j$  is the weighted sum of  $\lambda_{...,j}$ 's,

$$\widehat{\lambda}_j = \frac{\sum_{i=0}^{j-1} \omega_{i,j} \lambda_{i,j}}{\sum_{i=0}^{j-1} \omega_{i,j}}$$

If  $\omega_{i,j} = C_{i,j}$  we obtain the chain ladder estimate. An alternative is to assume that  $\omega_{i,j} = i + j + 1$  (in order to give more weight to recent years).

#### Variant of the Chain-Ladder Method (3)

Here, we assume that cumulated run-off triangles have an exponential trend, i.e.

$$C_{i,j} = \alpha_j \exp(i \cdot \beta_j).$$

In order to estimate the  $\alpha_j$ 's and  $\beta_j$ 's is to consider a linear model on  $\log C_{i,j}$ ,

$$\log C_{i,j} = \underbrace{a_j}_{\log(\alpha_j)} + \beta_j \cdot i + \varepsilon_{i,j}.$$

Once the  $\beta_j$ 's have been estimated, set  $\widehat{\gamma}_j = \exp(\widehat{\beta}_j)$ , and define

$$\Gamma_{i,j} = \widehat{\gamma}_j^{n-i-j} \cdot C_{i,j}.$$

#### The extended link ratio family of estimators

For convenient, link ratios are factors that give relation between cumulative payments of one development year (say j) and the next development year (j + 1). They are simply the ratios  $y_i/x_i$ , where  $x_i$ 's are cumulative payments year j (i.e.  $x_i = C_{i,j}$ ) and  $y_i$ 's are cumulative payments year j + 1 (i.e.  $y_i = C_{i,j+1}$ ).

For example, the Chain Ladder estimate is obtained as

$$\widehat{\lambda}_j = \frac{\sum_{i=0}^{n-j} y_i}{\sum_{i=0}^{n-j} x_i} = \sum_{i=0}^{n-j} \frac{x_i}{\sum_{k=1}^{n-j} x_k} \cdot \frac{y_i}{x_i}.$$

But several other link ratio techniques can be considered, e.g.

$$\widehat{\lambda}_j = \frac{1}{n-j+1} \sum_{i=0}^{n-j} \frac{y_i}{x_i}$$
, i.e. the simple arithmetic mean,

$$\widehat{\lambda}_j = \left(\prod_{i=0}^{n-j} \frac{y_i}{x_i}\right)^{n-j+1}$$
, i.e. the geometric mean,

$$\widehat{\lambda}_j = \sum_{i=0}^{n-j} \frac{x_i^2}{\sum_{k=1}^{n-j} x_k^2} \cdot \frac{y_i}{x_i}$$
, i.e. the weighted average "by volume squared",

Hence, this technique can be related to wieghted least squares, i.e.

$$y_i = \beta x_i + \varepsilon_i$$
, where  $\varepsilon_i \sim \mathcal{N}(0, \sigma^2 x_i^{\delta})$ , for some  $\delta > 0$ .

E.g. if  $\delta = 0$ , we obtain the arithmetic mean, if  $\delta = 1$ , we obtain the Chain Ladder estimate, and if  $\delta = 2$ , the weighted average "by volume squared".

The interest of this regression approach, is that standard error for predictions can be derived, under standard (and testable) assumptions. Hence

- standardized residuals  $(\sigma x_i^{\delta/2})^{-1} \varepsilon_i$  are  $\mathcal{N}(0,1)$ , i.e. QQ plot
- $\mathbb{E}(y_i|x_i) = \beta x_i$ , i.e. graph of  $x_i$  versus  $y_i$ .

#### Properties of the Chain-Ladder estimate

Further

$$\widehat{\lambda}_j = \frac{\sum_{i=0}^{n-j-1} C_{i,j+1}}{\sum_{i=0}^{n-j-1} C_{i,j}}$$

is an unbiased estimator for  $\lambda_j$ , given  $\mathcal{G}_j$ , and  $\widehat{\lambda}_j$  and  $\widehat{\lambda}_j + h$  are non-correlated, given  $\mathcal{F}_j$ . Hence, an unbiased estimator for  $\mathbb{E}(C_{i,j}|\mathcal{F}_i)$  is

$$\widehat{C}_{i,j} = \widehat{\lambda}_{n-i} \cdot \widehat{\lambda}_{n-i+1} \cdots \widehat{\lambda}_{j-2} \left( \widehat{\lambda}_{j-1} - 1 \right) \cdot C_{i,n-i}.$$

Recall that  $\widehat{\lambda}_j$  is the estimator with minimal variance among all linear estimators obtained from  $\lambda_{i,j} = C_{i,j+1}/C_{i,j}$ 's. Finally, recall that

$$\widehat{\sigma}_{j}^{2} = \frac{1}{n-j-1} \sum_{i=0}^{n-j-1} \left( \frac{C_{i,j+1}}{C_{i,j}} - \widehat{\lambda}_{j} \right)^{2} \cdot X_{i,j}$$

is an unbiased estimator of  $\sigma_j^2$ , given  $\mathcal{G}_j$  (see Mack (1993) or Denuit & Charpentier (2005)).

#### Prediction error of the Chain-Ladder estimate

We stress here that estimating reserves is a *prediction process*: based on past observations, we predict future amounts. Recall that prediction error can be explained as follows,

$$\mathbb{E}[(Y - \widehat{Y})^{2}] = \mathbb{E}[((Y - \mathbb{E}Y) + (\mathbb{E}(Y) - \widehat{Y}))^{2}]$$
prediction variance
$$\approx \mathbb{E}[(Y - \mathbb{E}Y)^{2}] + \mathbb{E}[(\mathbb{E}Y - \widehat{Y})^{2}].$$
process variance estimation variance

- the process variance reflects randomness of the random variable
- the *estimation variance* reflects uncertainty of statistical estimation

#### Process variance of reserves per occurrence year

The amount of reserves for accident year i is simply

$$\widehat{R}_i = \left(\widehat{\lambda}_{n-i} \cdot \widehat{\lambda}_{n-i+1} \cdots \widehat{\lambda}_{n-2} \widehat{\lambda}_{n-1} - 1\right) \cdot C_{i,n-i}.$$

Since

$$\operatorname{Var}(\widehat{R}_{i}|\mathcal{F}_{i}) = \operatorname{Var}(C_{i,n}|\mathcal{F}_{i}) = \operatorname{Var}(C_{i,n}|C_{i,i})$$
$$= \sum_{k=i+1}^{n} \prod_{l=k+1}^{n} \lambda_{l}^{2} \sigma_{k}^{2} \mathbb{E}[C_{i,k}|C_{i,i}]$$

and a natural estimator for this variance is then

$$\widehat{\operatorname{Var}}(\widehat{R}_{i}|\mathcal{F}_{i}) = \sum_{k=i+1}^{n} \prod_{l=k+1}^{n} \widehat{\lambda}_{l}^{2} \widehat{\sigma}_{k}^{2} \widehat{C}_{i,k}$$
$$= \widehat{C}_{i,n} \sum_{k=i+1}^{n} \frac{\widehat{\sigma}_{k}^{2}}{\lambda_{k}^{2} \widehat{C}_{i,k}}.$$

Note that it is possible to get not only the variance of the ultimate cumulate payments, but also the variance of any increment. Hence

$$Var(Y_{i,j}|\mathcal{F}_i) = Var(Y_{i,j}|C_{i,i})$$

$$= \mathbb{E}[Var(Y_{i,j}|C_{i,j-1})|C_{i,i}] + Var[\mathbb{E}(Y_{i,j}|C_{i,j-1})|C_{i,i}]$$

$$= \mathbb{E}[\sigma_i^2 C_{i,j-1}|C_{i,i}] + Var[(\lambda_{j-1} - 1)C_{i,j-1}|C_{i,i}]$$

and a natural estimator for this variance is then

$$\widehat{\operatorname{Var}}(Y_{i,j}|\mathcal{F}_i) = \widehat{\operatorname{Var}}(C_{i,j}|\mathcal{F}_i) + (1 - 2\widehat{\lambda}_{j-1})\widehat{\operatorname{Var}}(C_{i,j-1}|\mathcal{F}_i)$$

where, from the expressions given above,

$$\widehat{\operatorname{Var}}(C_{i,j}|\mathcal{F}_i) = \widehat{C}_{i,i} \sum_{k=i+1}^{j} -1 \frac{\sigma_k^2}{\lambda_k^2 \widehat{C}_{i,k}}.$$

# Parameter variance when estimating reserves per occurrence year

So far, we have obtained an estimate for the process error of technical risks (increments or cumulated payments). But since parameters  $\lambda_j$ 's and  $\sigma_j^2$  are estimated from past information, there is an additional potential error, also called parameter error (or estimation error). Hence, we have to quantify  $\mathbb{E}\left([R_i - \widehat{R}_i]^2\right)$ . In order to quantify that error, Murphy (1994) assume the following underlying model,

$$C_{i,j} = \lambda_{j-1} C_{i,j-1} + \eta_{i,j} \tag{1}$$

with independent variables  $\eta_{i,j}$ . From the structure of the conditional variance,

$$\operatorname{Var}(C_{i,j+1}|\mathcal{F}_{i+j}) = \operatorname{Var}(C_{i,j+1}|C_{i,j}) = \sigma_j^2 \cdot C_{i,j},$$

it is natural to write Equation (??) as

$$C_{i,j} = \lambda_{j-1} C_{i,j-1} + \sigma_{j-1} \sqrt{C_{i,j-1}} \varepsilon_{i,j}, \qquad (2)$$

with independent and centered variables with unit variance  $\varepsilon_{i,j}$ . Then

$$\mathbb{E}\left(\left[R_{i}-\widehat{R}_{i}\right]^{2}|\mathcal{F}_{i}\right) = \widehat{R}_{i}^{2} \left(\sum_{k=0}^{n-i-1} \frac{\widehat{\sigma}_{i+k}^{2}}{\widehat{\lambda}_{i+k}^{2} \sum C_{\cdot,i+k}} + \frac{\widehat{\sigma}_{n-1}^{2}}{\left[\widehat{\lambda}_{n-1}-1\right]^{2} \sum C_{\cdot,i+k}}\right)$$

Based on that estimator, it is possible to derive the following estimator for the conditional mean square error of reserve prediction for occurrence year i,

$$CMSE_i = \widehat{Var}(\widehat{R}_i|\mathcal{F}_i) + \mathbb{E}\left([R_i - \widehat{R}_i]^2|\mathcal{F}_i\right).$$

## Variance of global reserves (for all occurrence years)

The estimate total amount of reserves is  $\widehat{\operatorname{Var}}(\widehat{R}) = \widehat{\operatorname{Var}}(\widehat{R}_1) + \cdots + \widehat{\operatorname{Var}}(\widehat{R}_n)$ .

In order to derive the conditional mean square error of reserve prediction, define the covariance term, for i < j, as

$$CMSE_{i,j} = \widehat{R}_i \widehat{R}_j \left( \sum_{k=i}^n \frac{\widehat{\sigma}_{i+k}^2}{\widehat{\lambda}_{i+k}^2 \sum C_{\cdot,k}} + \frac{\widehat{\sigma}_j^2}{[\widehat{\lambda}_{j-1} - 1]\widehat{\lambda}_{j-1} \sum C_{\cdot,j+k}} \right),$$

then the conditional mean square error of overall reserves

$$CMSE = \sum_{i=1}^{n} CMSE_i + 2\sum_{j>i} CMSE_{i,j}.$$

#### Statistical estimation if uncertainty

Under assumptions  $A_1$  and  $A_2$ 

$$\widehat{\lambda}_k = \frac{\sum_{i=1}^{n-k} C_{i,k+1}}{\sum_{i=1}^{n-k} C_{i,k}} \text{ for all } k = 1, \dots, n-1.$$

is an unbiased estimator of  $\lambda_k$ .

Further, consider

$$\widehat{\sigma}_{k}^{2} = \frac{1}{n-k-1} \sum_{i=1}^{n-k} C_{i,k} \left( \frac{C_{i,k+1}}{C_{i,k}} - \widehat{\lambda}_{k} \right)^{2},$$

for all  $k = 1, \dots, n-2$ . The value of  $\widehat{\sigma}_{n-1}^2$  is simply extrapolated, so that

$$\frac{\widehat{\sigma}_{n-3}^2}{\widehat{\sigma}_{n-2}^2} = \frac{\widehat{\sigma}_{n-2}^2}{\widehat{\sigma}_{n-1}^2} \text{, i.e. } \widehat{\sigma}_{n-1}^2 = \min \left\{ \frac{\sigma_{n-2}^4}{\sigma_{n-3}^2}, \min \left\{ \sigma_{n-3}^2, \sigma_{n-2}^2 \right\} \right\}.$$

## Statistical estimation if uncertainty

Consider the initial triangles, then  $\widehat{\lambda}_j$ 's and  $\widehat{\sigma}_j$ 's are given by

| k                     | 0      | 1      | 2      | 3      | 4      |
|-----------------------|--------|--------|--------|--------|--------|
| $\widehat{\lambda}_k$ | 1.3809 | 1.0114 | 1.0043 | 1.0019 | 1.0047 |
|                       | 0.5254 |        |        |        |        |

#### A short word on Munich Chain Ladder

Munich chain ladder is an extension of Mack's technique based on paid (P) and incurred (I) losses.

Here we adjust the chain-ladder link-ratios  $\lambda_j$ 's depending if the momentary (P/I) ratio is above or below average. It integrated correlation of residuals between P vs. I/P and I vs. P/I chain-ladder link-ratio to estimate the correction factor.

Use standard Chain Ladder technique on the two triangles,

|               | 0    | 1      | 2      | 3       | 4      | 5      |
|---------------|------|--------|--------|---------|--------|--------|
| $\mid 0 \mid$ | 3209 | 4372   | 4411   | 4428    | 4435   | 4456   |
| 1             | 3367 | 4659   | 4696   | 4720    | 4730   | 4752.4 |
| 2             | 3871 | 5345   | 5398   | 5420    | 5430.1 | 5455.8 |
| 3             | 4239 | 5917   | 6020   | 6046.15 | 6057.4 | 6086.1 |
| $\mid 4 \mid$ | 4929 | 6794   | 6871.7 | 6901.5  | 6914.3 | 6947.1 |
| 5             | 5217 | 7204.3 | 7286.7 | 7318.3  | 7331.9 | 7366.7 |

|   | 0    | 1      | 2      | 3      | 4      | 5      |
|---|------|--------|--------|--------|--------|--------|
| 0 | 4795 | 4629   | 4497   | 4470   | 4456   | 4456   |
| 1 | 5135 | 4949   | 4783   | 4760   | 4750   | 4750.0 |
| 2 | 5681 | 5631   | 5492   | 5470   | 5455.8 | 5455.8 |
| 3 | 6272 | 6198   | 6131   | 6101.1 | 6085.3 | 6085.3 |
| 4 | 7326 | 7087   | 6920.1 | 6886.4 | 6868.5 | 6868.5 |
| 5 | 7353 | 7129.1 | 6991.2 | 6927.3 | 6909.3 | 6909.3 |

Hence, we get the following figures

|       | latest P | latest $I$ | latest $P/I$ | ult. P | ult. I | ult. $P/I$ |
|-------|----------|------------|--------------|--------|--------|------------|
| 0     | 4456     | 4456       | 1.000        | 4456   | 4456   | 1.000      |
| 1     | 4730     | 4750       | 0.995        | 4752   | 4750   | 1.000      |
| 2     | 5420     | 5470       | 0.990        | 5455   | 5455   | 1.000      |
| 3     | 6020     | 6131       | 0.981        | 6086   | 6085   | 1.000      |
| 4     | 6794     | 7087       | 0.958        | 6947   | 6868   | 1.011      |
| 5     | 5217     | 7353       | 0.709        | 7366   | 6909   | 1.066      |
| total | 32637    | 35247      | 0.923        | 35064  | 34525  | 1.015      |

#### Bornhuetter Ferguson

One of the difficulties with using the chain ladder method is that reserve forecasts can be quite unstable. The Bornhuetter-Ferguson (1972) method provides a procedure for stabilizing such estimates.

Recall that in the *standard* chain ladder model,

$$\widehat{C}_{i,n} = \widehat{F}_i C_{i,n-i}$$
, where  $\widehat{F}_i = \prod_{k=n-i}^{n-1} \widehat{\lambda}_k$ 

Hence, a change of  $\alpha\%$  in  $C_{i,n-i}$  (due to sampling volatility) will generate a change in the forecast of  $\alpha\%$ . If  $\widehat{R}_i$  denotes the estimated outstanding reserves,

$$\widehat{R}_i = \widehat{C}_{i,n} - C_{i,n-i} = \widehat{C}_{i,n} \cdot \frac{\widehat{F}_i - 1}{\widehat{F}_i}.$$

#### Bornhuetter Ferguson

Note that this model is a particular case of the family of estimators the the form

$$(1 - Z_i)\widehat{R}_i + Z_i R_i$$

which will be studied afterwards as using credibility theory.

For a bayesian interpretation of the Bornhutter-Ferguson model, England & Verrall (2002) considered the case where incremental paiments  $X_{i,j}$  are i.i.d. overdispersed Poisson variables. Here

$$\mathbb{E}(X_{i,j}) = a_i b_j \text{ and } Var(X_{i,j}) = \varphi a_i b_j,$$

where we assume that  $b_1 + \cdots + b_n = 1$ . Parameter  $a_i$  is assumed to be a drawing of a random variable  $A_i \sim \mathcal{G}(\alpha_i, \beta_i)$ , so that  $\mathbb{E}(A_i) = \alpha_i/\beta_i$ , so that

$$\mathbb{E}(C_{i,n}) = \frac{\alpha_i}{\beta_i} = C_i^* \text{ (say)},$$

which is simply a prior expectation of the final loss amount.

#### Bornhuetter Ferguson

The a posteriori distribution of  $X_{i,j+1}$  is then

$$\mathbb{E}(X_{i,j+1}|\text{past observation}) = \left(Z_{i,j+1}C_{i,j} + [1 - Z_{i,j+1}]\frac{C_i^*}{\widehat{F}_j}\right) \cdot (\lambda_j - 1)$$

where 
$$Z_{i,j+1} = \frac{\widehat{F}_j^{-1}}{\beta \varphi + \widehat{F}_j}$$
, where  $\widehat{F}_j = \lambda_{j+1} \cdots \lambda_n$ .

Hence, Bornhutter-Ferguson technique can be interpreted as a Bayesian method, and a credibility estimator (since bayesian with conjugated distributed leads to credibility).

- assume that accident years are independent
- assume that there exist parameters  $\mu_i$ 's and a pattern  $\beta_1, \beta_2, \dots, \beta_n$  with  $\beta_n = 1$  such that

$$\mathbb{E}(C_{i,1}) = \beta_1 \mu_i$$

$$\mathbb{E}(C_{i,j+k}|C_{i,1}, \cdots, C_{i,j}) = C_{i,j} + [\beta_{j+k} - \beta_j]\mu_i$$

Hence, one gets that  $\mathbb{E}(C_{i,j}) = \beta_j \mu_i$ .

The sequence  $(\beta_j)$  denotes the claims development pattern. The Bornhuetter-Ferguson estimator for  $\mathbb{E}(C_{i,n}|C_i,1,\cdots,C_{i,j})$  is

$$\widehat{C}_{i,n} = C_{i,j} + [1 - \widehat{\beta}_{j-i}]\widehat{\mu}_i$$

where  $\widehat{\mu}_i$  is an estimator for  $\mathbb{E}(C_{i,n})$ .

If we want to relate that model to the classical Chain Ladder one,

$$\beta_j$$
 is  $\prod_{k=j+1}^n \frac{1}{\lambda_k}$ 

Consider the classical triangle. Assume that the estimator  $\hat{\mu}_i$  is a plan value (obtain from some business plan). For instance, consider a 105% loss ratio per accident year.

| i                   | 0     | 1     | 2     | 3     | 4     | 5    |
|---------------------|-------|-------|-------|-------|-------|------|
| premium             | 4591  | 4692  | 4863  | 5175  | 5673  | 6431 |
| $\widehat{\mu}_i$   | 4821  | 4927  | 5106  | 5434  | 5957  | 6753 |
| $\lambda_i$         | 1,380 | 1,011 | 1,004 | 1,002 | 1,005 |      |
| $eta_i$             | 0,708 | 0,978 | 0,989 | 0,993 | 0,995 |      |
| $\widehat{C}_{i,n}$ | 4456  | 4753  | 5453  | 6079  | 6925  | 7187 |
| $\widehat{R}_i$     | 0     | 23    | 33    | 59    | 131   | 1970 |

#### Boni-Mali

As point out earlier, the (conditional) mean square error of prediction (MSE) is

$$\operatorname{mse}_{t}(\widehat{X}) = \mathbb{E}\left([X - \widehat{X}]^{2} | \mathcal{F}_{t}\right)$$

$$= \underbrace{Var(X | \mathcal{F}_{t})}_{\operatorname{process variance}} + \underbrace{\left(\mathbb{E}\left(X | \mathcal{F}_{t} - \widehat{X}\right)\right)^{2}}_{\operatorname{parameter estimation error}}$$

i.e 
$$\widehat{X}$$
 is 
$$\begin{cases} \text{a predictor for } X \\ \text{an estimator for } \mathbb{E}(X|\mathcal{F}_t). \end{cases}$$

But this is only a a long-term view, since we focus on the uncertainty over the whole runoff period. It is not a one-year solvency view, where we focus on changes over the next accounting year.

## Boni-Mali



From time t = n and time t = n + 1,

$$\widehat{\lambda_j}^{(n)} = \frac{\sum_{i=0}^{n-j-1} C_{i,j+1}}{\sum_{i=0}^{n-j-1} C_{i,j}} \text{ and } \widehat{\lambda_j}^{(n+1)} = \frac{\sum_{i=0}^{n-j} C_{i,j+1}}{\sum_{i=0}^{n-j} C_{i,j}}$$

and the ultimate loss predictions are then

$$\widehat{C}_{i}^{(n)} = C_{i,n-i} \cdot \prod_{j=n-i}^{n} \widehat{\lambda_{j}}^{(n)} \text{ and } \widehat{C}_{i}^{(n+1)} = C_{i,n-i+1} \cdot \prod_{j=n-i+1}^{n} \widehat{\lambda_{j}}^{(n+1)}$$

#### Boni-Mali

In order to study the one-year claims development, we have to focus on

$$\widehat{R}_{i}^{(n)}$$
 and  $X_{i,n-i+1} + \widehat{R}_{i}^{(n+1)}$ 

The boni-mali for accident year i, from year n to year n+1 is then

$$\widehat{BM}_{i}^{(n,n+1)} = \widehat{R}_{i}^{(n)} - \left[ X_{i,n-i+1} + \widehat{R}_{i}^{(n+1)} \right] = \widehat{C}_{i}^{(n)} - \widehat{C}_{i}^{(n+1)}.$$

Thus, the conditional one-year runoff uncertainty is

$$\widehat{mse}(\widehat{BM}_i^{(n,n+1)}) = \mathbb{E}\left(\left[\widehat{C}_i^{(n)} - \widehat{C}_i^{(n+1)}\right]^2 | \mathcal{F}_n\right)$$

#### Boni-Mali

Hence,

$$\widehat{mse}(\widehat{BM}_{i}^{(n,n+1)}) = [\widehat{C}_{i}^{(n)}]^{2} \left[ \frac{\widehat{\sigma}_{n-i}^{2} / [\widehat{\lambda}_{n-i}^{(n)}]^{2}}{C_{i,n-i}} + \frac{\widehat{\sigma}_{n-i}^{2} / [\widehat{\lambda}_{n-i}^{(n)}]^{2}}{\sum_{k=0}^{i-1} C_{k,n-i}} + \sum_{j=n-i+1}^{n-1} \frac{C_{n-j,j}}{\sum_{k=0}^{n-j} C_{k,j}} \cdot \frac{\widehat{\sigma}_{j}^{2} / [\widehat{\lambda}_{j}^{(n)}]^{2}}{\sum_{k=0}^{n-j-1} C_{k,j}} \right]$$

Further, it is possible to derive the MSEP for aggregated accident years (see Merz & Wüthrich (2008)).

La méthode dite London Chain a été introduite par Benjamin et Eagles, dans Reserves in Lloyd's and the London Market (1986). On suppose ici que la dynamique des  $(C_{ij})_{j=1,...,n}$  est donnée par un modèle de type AR (1) avec constante, de la forme

$$C_{i,k+1} = \lambda_k C_{ik} + \alpha_k$$
 pour tout  $i, k = 1, ..., n$ 

De façon pratique, on peut noter que la méthode standard de Chain Ladder, reposant sur un modèle de la forme  $C_{i,k+1} = \lambda_k C_{ik}$ , ne pouvait être appliqué que lorsque les points  $(C_{i,k}, C_{i,k+1})$  sont sensiblement alignés  $(\grave{a} \ k \ fix\acute{e})$  sur une droite passant par l'origine. La méthode London Chain suppose elle aussi que les points soient alignés sur une même droite, mais on ne suppose plus qu'elle passe par 0.

**Example**: On obtient la droite passant au mieux par le nuage de points et par 0, et la droite passant au mieux par le nuage de points.

Dans ce modèle, on a alors 2n paramètres à identifier :  $\lambda_k$  et  $\alpha_k$  pour k = 1, ..., n. La méthode la plus naturelle consiste à estimer ces paramètres à l'aide des moindres carrés, c'est à dire que l'on cherche, pour tout k,

$$(\widehat{\lambda}_k, \widehat{\alpha}_k) = \arg\min \left\{ \sum_{i=1}^{n-k} (C_{i,k+1} - \alpha_k - \lambda_k C_{i,k})^2 \right\}$$

ce qui donne, finallement

$$\widehat{\lambda}_{k} = \frac{\frac{1}{n-k} \sum_{i=1}^{n-k} C_{i,k} C_{i,k+1} - \overline{C}_{k}^{(k)} \overline{C}_{k+1}^{(k)}}{\frac{1}{n-k} \sum_{i=1}^{n-k} C_{i,k}^{2} - \overline{C}_{k}^{(k)2}}$$

où 
$$\overline{C}_k^{(k)} = \frac{1}{n-k} \sum_{i=1}^{n-k} C_{i,k}$$
 et  $\overline{C}_{k+1}^{(k)} = \frac{1}{n-k} \sum_{i=1}^{n-k} C_{i,k+1}$ 

et où la constante est donnée par  $\widehat{\alpha}_k = \overline{C}_{k+1}^{(k)} - \widehat{\lambda}_k \overline{C}_k^{(k)}$ .

Dans le cas particulier du triangle que nous étudions, on obtient

| k                     | 0       | 1       | 2      | 3       | 4      |
|-----------------------|---------|---------|--------|---------|--------|
| $\widehat{\lambda}_k$ | 1.404   | 1.405   | 1.0036 | 1.0103  | 1.0047 |
| $\widehat{\alpha}_k$  | -90.311 | -147.27 | 3.742  | -38.493 | 0      |

The completed (cumulated) triangle is then

|               | 0    | 1    | 2    | 3    | 4    | 5    |
|---------------|------|------|------|------|------|------|
| $\mid 0 \mid$ | 3209 | 4372 | 4411 | 4428 | 4435 | 4456 |
| 1             | 3367 | 4659 | 4696 | 4720 | 4730 |      |
| 2             | 3871 | 5345 | 5398 | 5420 |      |      |
| 3             | 4239 | 5917 | 6020 |      |      |      |
| 4             | 4929 | 6794 |      |      |      |      |
| 5             | 5217 |      |      |      |      |      |

|               | 0    | 1    | 2    | 3    | 4    | 5    |
|---------------|------|------|------|------|------|------|
| $\mid 0 \mid$ | 3209 | 4372 | 4411 | 4428 | 4435 | 4456 |
| 1             | 3367 | 4659 | 4696 | 4720 | 4730 | 4752 |
| 2             | 3871 | 5345 | 5398 | 5420 | 5437 | 5463 |
| 3             | 4239 | 5917 | 6020 | 6045 | 6069 | 6098 |
| $\mid 4 \mid$ | 4929 | 6794 | 6922 | 6950 | 6983 | 7016 |
| 5             | 5217 | 7234 | 7380 | 7410 | 7447 | 7483 |

One the triangle has been completed, we obtain the amount of reserves, with respectively 22, 43, 78, 222 and 2266 per accident year, i.e. the total is 2631 (to be compared with 2427, obtained with the Chain Ladder technique).

La méthode dite London Pivot a été introduite par Straub, dans *Nonlife* Insurance Mathematics (1989). On suppose ici que  $C_{i,k+1}$  et  $C_{i,k}$  sont liés par une relation de la forme

$$C_{i,k+1} + \alpha = \lambda_k \cdot (C_{i,k} + \alpha)$$

(de façon pratique, les points  $(C_{i,k}, C_{i,k+1})$  doivent être sensiblement alignés (à k  $fix\acute{e}$ ) sur une droite passant par le point dit pivot  $(-\alpha, -\alpha)$ ). Dans ce modèle, (n+1) paramètres sont alors a estimer, et une estimation par moindres carrés ordinaires donne des estimateurs de façon itérative.

This approach was studied in a paper entitled Separation of inflation and other effects from the distribution of non-life insurance claim delays

We assume the incremental payments are functions of two factors, one related to accident year i, and one to calendar year i + j. Hence, assume that

$$Y_{ij} = r_j \mu_{i+j-1}$$
 for all  $i, j$ 



Hence, incremental payments are functions of development factors,  $r_j$ , and a calendar factor,  $\mu_{i+j-1}$ , that might be related to some inflation index.

In order to identify factors  $r_1, r_2, ..., r_n$  and  $\mu_1, \mu_2, ..., \mu_n$ , i.e. 2n coefficients, an additional constraint is necessary, e.g. on the  $r_j$ 's,  $r_1 + r_2 + .... + r_n = 1$  (this will be called arithmetic separation method). Hence, the sum on the latest diagonal is

$$d_n = Y_{1,n} + Y_{2,n-1} + \dots + Y_{n,1} = \mu_n (r_1 + r_2 + \dots + r_k) = \mu_n$$

On the first sur-diagonal

$$d_{n-1} = Y_{1,n-1} + Y_{2,n-2} + \dots + Y_{n-1,1} = \mu_{n-1} (r_1 + r_2 + \dots + r_{n-1}) = \mu_{n-1} (1 - r_n)$$

and using the *n*th column, we get  $\gamma_n = Y_{1,n} = r_n \mu_n$ , so that

$$r_n = \frac{\gamma_n}{\mu_n} \text{ and } \mu_{n-1} = \frac{d_{n-1}}{1 - r_n}$$

More generally, it is possible to iterate this idea, and on the *i*th sur-diagonal,

$$d_{n-i} = Y_{1,n-i} + Y_{2,n-i-1} + \dots + Y_{n-i,1} = \mu_{n-i} (r_1 + r_2 + \dots + r_{n-i})$$
$$= \mu_{n-i} (1 - [r_n + r_{n-1} + \dots + r_{n-i+1}])$$

and finally, based on the n-i+1th column,

$$\begin{array}{lll} \gamma_{n-i+1} & = & Y_{1,n-i+1} + Y_{2,n-i+1} + \dots + Y_{i-1,n-i+1} \\ & = & r_{n-i+1}\mu_{n-i+1} + \dots + r_{n-i+1}\mu_{n-1} + r_{n-i+1}\mu_n \end{array}$$

$$r_{n-i+1} = \frac{\gamma_{n-i+1}}{\mu_n + \mu_{n-1} + \dots + \mu_{n-i+1}} \text{ and } \mu_{k-i} = \frac{d_{n-i}}{1 - [r_n + r_{n-1} + \dots + r_{n-i+1}]}$$

| k          | 1     | 2     | 3    | 4    | 5    | 6    |
|------------|-------|-------|------|------|------|------|
| $\mu_k$    | 4391  | 4606  | 5240 | 5791 | 6710 | 7238 |
| $r_k$ in % | 73.08 | 25.25 | 0.93 | 0.32 | 0.12 | 0.29 |

The challenge here is to forecast forecast values for the  $\mu_k$ 's. Either a linear model or an exponential model can be considered.



# Lemaire (1982) and autoregressive models

Instead of a *simple* Markov process, it is possible to assume that the  $C_{i,j}$ 's can be modeled with an autorgressive model in two directions, rows and columns,

$$C_{i,j} = \alpha C_{i-1,j} + \beta C_{i,j-1} + \gamma.$$

## Zehnwirth (1977)

Here, we consider the following model for the  $C_{i,j}$ 's

$$C_{i,j} = \exp(\alpha_i + \gamma_i \cdot j) (1+j)^{\beta_i},$$

which can be seen as an extended Gamma model.  $\alpha_i$  is a scale parameter, while  $\beta_i$  and  $\gamma_i$  are shape parameters. Note that

$$\log C_{i,j} = \alpha_i + \beta_i \log (1+j) + \gamma_i \cdot j.$$

For convenience, we usually assume that  $\beta_i = \beta$  et  $\gamma_i = \gamma$ .

Note that if  $\log C_{i,j}$  is assume to be Gaussian, then  $C_{i,j}$  will be lognormal. But then, estimators one the  $C_{i,j}$ 's while be overestimated.

## Zehnwirth (1977)

Assume that  $\log C_{i,j} \sim \mathcal{N}\left(X_{i,j}\beta, \sigma^2\right)$ , then, if parameters were obtained using maximum likelihood techniques

$$\mathbb{E}\left(\widehat{C}_{i,j}\right) = \mathbb{E}\left(\exp\left(X_{i,j}\widehat{\beta} + \frac{\widehat{\sigma}^2}{2}\right)\right)$$

$$= C_{i,j}\exp\left(-\frac{n-1}{n}\frac{\sigma^2}{2}\right)\left(1 - \frac{\sigma^2}{n}\right)^{-\frac{n-1}{2}} > C_{i,j},$$

Further, the homoscedastic assumption might not be relevant. Thus Zehnwirth suggested

$$\sigma_{i,j}^2 = Var(\log C_{i,j}) = \sigma^2 (1+j)^h.$$

## Regression and reserving

De Vylder (1978) proposed a least squares factor method, i.e. we need to find  $\boldsymbol{\alpha} = (\alpha_0, \dots, \alpha_n)$  and  $\boldsymbol{\beta} = (\beta_0, \dots, \beta_n)$  such

$$(\widehat{\boldsymbol{\alpha}}, \widehat{\boldsymbol{\beta}}) = \operatorname{argmin} \sum_{i,j=0}^{n} (X_{i,j} - \alpha_i \times \beta_j)^2,$$

or equivalently, assume that

$$X_{i,j} \sim \mathcal{N}(\alpha_i \times \beta_j, \sigma^2)$$
, independent.

A more general model proposed by De Vylder is the following

$$(\widehat{\boldsymbol{\alpha}}, \widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\gamma}}) = \operatorname{argmin} \sum_{i,j=0}^{n} (X_{i,j} - \alpha_i \times \beta_j \times \gamma_{i+j-1})^2.$$

In order to have an identifiable model, De Vylder suggested to assume  $\gamma_k = \gamma^k$  (so that this coefficient will be related to some inflation index).