Devoir à la maison n° 18

À rendre le 28 avril

Dans tout ce problème \mathbb{K} désigne le corps \mathbb{R} ou \mathbb{C} , $\mathbb{K}^{\mathbb{N}}$ désigne donc l'ensemble des suites à termes dans \mathbb{K} . Étant donné $u \in \mathbb{K}^{\mathbb{N}}$ et $n \in \mathbb{N}$, l'image par u de n est notée, comme d'habitude, u_n . Pour tout $N \in \mathbb{N}$, on définit

$$T_N: \mathbb{K} \to \mathbb{K}$$

$$(u_n)_{n \in \mathbb{N}} \mapsto (u_0, u_1, \dots, u_N)$$

Étant donné $u \in \mathbb{K}^{\mathbb{N}}$, on pose $S(u) \in \mathbb{K}^{\mathbb{N}}$ la suite vérifiant :

$$\forall n \in \mathbb{N}, S(u)_n = u_{n+1}.$$

On définit ainsi une application S de $\mathbb{K}^{\mathbb{N}}$ dans lui-même.

On rappelle enfin qu'un sous-espace vectoriel F de $\mathbb{K}^{\mathbb{N}}$ est dit stable par S lorsque $S(F) \subset F$.

Partie 1. Questions préliminaires

- 1) a) Montrer que, pour tout $N \in \mathbb{N}$, T_N est une application linéaire, surjective, et non injective.
 - b) En déduire que $\mathbb{K}^{\mathbb{N}}$ est de dimension infinie.
- 2) a) Montrer que S est un endomorphisme de $\mathbb{K}^{\mathbb{N}}$.
 - b) Déterminer une base de $\operatorname{Ker} S$ ainsi que la dimension de $\operatorname{Ker} S$.
 - c) Montrer que S est surjectif.

Partie 2. Sous-espaces vectoriels de suites récurrentes linéaires

Étant donné N un entier naturel non nul, et $a = (a_0, \ldots, a_{N-1}) \in \mathbb{K}^N$, on pose

$$W_a = \left\{ u \in \mathbb{K}^{\mathbb{N}} \mid \forall n \in \mathbb{N}, \ u_{n+N} = \sum_{k=0}^{N-1} a_k u_{n+k} \right\}.$$

- 3) Dans cette question, on fixe un entier naturel non nul N et un N-uplet $(a_0, \ldots, a_{N-1}) \in \mathbb{K}^N$.
 - a) Montrer que W_a est un sous-espace vectoriel de $\mathbb{K}^{\mathbb{N}}$.
 - b) En considérant la restriction de T_{N-1} à W_a , montrer que W_a est de dimension finie, et préciser sa dimension.
 - c) Montrer que W_a est stable par S.

- **4)** Dans cette question, on fixe un entier naturel non nul N, et deux N-uplets distincts $a = (a_0, \ldots, a_{N-1})$ et $b = (b_0, \ldots, b_{N-1})$ d'éléments de \mathbb{K} .
 - a) Montrer que l'une au moins des assertions suivantes est vraie :
 - i. $W_a \cap W_b = \{0\}$
 - ii. il existe un entier naturel non nul N' < N et un N'-uplet $c = (c_0, \ldots, c_{N'-1})$ tel que $W_a \cap W_b \subset W_c$.

Indication: il pourra être utile d'introduire $p = \max \{ k \in \{0, ..., N-1\} \mid a_k \neq b_k \}$.

- **b)** En déduire que $W_a \neq W_b$.
- 5) Étant données deux familles $a=(a_0,\ldots,a_{N-1})$ et $b=(b_0,\ldots,b_{M-1})$ d'éléments de \mathbb{K} , montrer que si $W_a=W_b$, alors a=b.

Partie 3. Sous-espaces vectoriels stables par ${\cal S}$

Dans toute cette partie, on fixe un sous-espace vectoriel F de $\mathbb{K}^{\mathbb{N}}$ différent de $\{0\}$. On suppose que F est de dimension finie n et qu'il est stable par S. On fixe enfin une base $(u^{(1)}, \ldots, u^{(k)}, \ldots, u^{(n)})$ de F.

Pour $N \in \mathbb{N}$, on note $v_N = \left(u_N^{(1)}, \dots, u_N^{(k)}, \dots, u_N^{(n)}\right) \in \mathbb{K}^n$.

- **6)** Que peut-on dire de la famille (v_0, \ldots, v_n) ?
- 7) On suppose, dans un premier temps, que $v_0 \neq (0, \dots, 0)$.
 - a) Montrer qu'il existe un $m \in \{1, ..., n\}$ tel que $v_m \in \text{Vect}\{v_0, ..., v_{m-1}\}$. En déduire qu'il existe un m-uplet $a = (a_0, ..., a_{m-1})$ tel que

$$\forall k \in \{1, \dots, n\}, \ u_m^{(k)} = \sum_{i=0}^{m-1} a_i u_i^{(k)}.$$

b) Montrer que pour tout $u \in F$,

$$u_m = \sum_{i=0}^{m-1} a_i u_i.$$

c) En raisonnant par récurrence, et en exploitant la stabilité de F par S, déduire que pour tout $u \in F$ et tout $N \in \mathbb{N}$,

$$u_{N+m} = \sum_{i=0}^{m-1} a_i u_{N+i}.$$

- d) Montrer que $F = W_a$ et que m = n.
- 8) On suppose maintenant que $v_0 = (0, \dots, 0)$.
 - a) Montrer que pour tout u dans F, $u_0 = 0$.
 - b) En déduire que $F = \{0\}$, et conclure.
- 9) Déterminer l'ensemble des sous-espaces vectoriels de dimension finie de $\mathbb{K}^{\mathbb{N}}$ qui sont stables par S.
- 10) Soit a et b deux familles finies d'éléments de \mathbb{K} . Montrer que si $W_a \cap W_b \neq \{0\}$, alors il existe une famille finie c d'éléments de \mathbb{K} telle que $W_a \cap W_b = W_c$.