MC558 — Análise de Algoritmos II

Cid C. de Souza Cândida N. da Silva Orlando Lee

25 de abril de 2023

Antes de mais nada...

- Uma versão anterior deste conjunto de slides foi preparada por Cid Carvalho de Souza e Cândida Nunes da Silva para uma instância anterior desta disciplina.
- O que vocês tem em mãos é uma versão modificada preparada para atender a meus gostos.
- Nunca é demais enfatizar que o material é apenas um guia e não deve ser usado como única fonte de estudo. Para isso consultem a bibliografia (em especial o CLR ou CLRS).

Orlando Lee

Agradecimentos (Cid e Cândida)

- Várias pessoas contribuíram direta ou indiretamente com a preparação deste material.
- Algumas destas pessoas cederam gentilmente seus arquivos digitais enquanto outras cederam gentilmente o seu tempo fazendo correções e dando sugestões.
- Uma lista destes "colaboradores" (em ordem alfabética) é dada abaixo:
 - Célia Picinin de Mello
 - ▶ José Coelho de Pina
 - Orlando Lee
 - ▶ Paulo Feofiloff
 - Pedro Rezende
 - Ricardo Dahab
 - Zanoni Dias

- Suponha que queremos resolver o seguinte problema: dado um conjunto de computadores, onde cada par de computadores pode ser ligado usando uma quantidade de fibra ótica, encontrar uma rede interconectando-os que use a menor quantidade de fibra ótica possível.
- Este problema pode ser modelado por um problema em grafos não orientados ponderados onde os vértices representam os computadores, as arestas representam as conexões que podem ser construídas e o peso/custo de uma aresta representa a quantidade de fibra ótica necessária.

- Nessa modelagem, o problema que queremos resolver é encontrar um subgrafo gerador (que contém todos os vértices do grafo original), conexo (para garantir a interligação de todas os computadores) e cuja soma dos custos de suas arestas seja a menor possível.
- Obviamente, o problema só tem solução se o grafo for conexo. Daqui pra frente vamos supor que o grafo de entrada é conexo.
- Além disso, o sugrafo gerador procurado é sempre uma árvore (supondo que os pesos são positivos).

Problema da Árvore Geradora Mínima

Entrada: grafo conexo G = (V, E) com pesos $\omega(u, v)$ para cada aresta (u, v).

Saída: subgrafo gerador conexo T de G cujo peso total

$$\omega(T) = \sum_{(u,v)\in T} \omega(u,v)$$

seja o menor possível.

Exemplo

- Aqui trataremos do caso em que $\omega \ge 0$, ou seja, **não há arestas de peso negativo**.
- Depois pense em como o problema poderia ser resolvido se houvesse arestas de peso negativo na entrada.

- Veremos dois algoritmos para resolver o problema de encontrar uma AGM:
 - algoritmo de Prim
 - ▶ algoritmo de Kruskal
- Ambos algoritmos usam estratégia gulosa. Eles são exemplos clássicos de algoritmos gulosos.

Algoritmo genérico

- A estratégia gulosa usada baseia-se em um algoritmo genérico que constrói uma AGM incrementalmente.
- O algoritmo mantém um conjunto de arestas A que satisfaz o seguinte invariante:

No início de cada iteração, A está contido em uma AGM.

- Em cada iteração, o algoritmo encontra uma aresta (u, v) tal que $A' = A \cup \{(u, v)\}$ também satisfaz o invariante.
 - Uma tal aresta é chamada aresta segura (para A).

Algoritmo genérico

```
AGM-GENÉRICO(G, \omega)

1 A \leftarrow \emptyset

2 enquanto A não é uma árvore geradora

3 Encontre uma aresta segura (u, v) para A

4 A \leftarrow A \cup \{(u, v)\}

5 devolva A
```

Obviamente o "algoritmo" está correto!

Note que nas linhas 2–4 A está propriamente contido em uma AGM, digamos T. Logo, existe uma aresta segura (u, v) em E[T] - A.

Naturalmente, para que isso seja um algoritmo de verdade, é preciso especificar como **encontrar** uma aresta segura.

Como encontrar arestas seguras

Considere um grafo G = (V, E) e seja $S \subset V$.

Denote por $\delta(S)$ o conjunto de arestas de G com um extremo em S e outro em V-S. Dizemos que um tal conjunto é um corte.

Um corte $\delta(S)$ **respeita** um conjunto A de arestas se não contém nenhuma aresta de A.

Como encontrar arestas seguras

Uma aresta de um corte $\delta(S)$ é leve se tem o menor peso entre as arestas do corte.

Teorema 23.1: (CLRS)

Seja (G, ω) um grafo com pesos nas arestas. Seja A um subconjunto de arestas contido em uma AGM. Seja $\delta(S)$ um corte que respeita A e (u, v) uma aresta leve desse corte. Então (u, v) é uma aresta segura.

Seja T uma AGM que contém A. Seja $\delta(S)$ um corte que respeita A e seja (u, v) uma aresta leve deste corte.

Suponha que (u, v) não é uma aresta de T.

Construiremos uma AGM T' que contém $A \cup \{(u, v)\}$ e daí segue que (u, v) é segura.

Existe um único caminho P de u a v em T. Como u a v estão em lados opostos do corte $\delta(S)$, pelo menos uma aresta de P pertence ao corte.

Seja (x, y) uma tal aresta. Note que (x, y) não pertence a A pois o corte $\delta(S)$ respeita A.

Temos que $T' := T - \{(x, y)\} \cup \{(u, v)\}$ é uma árvore geradora.

Mostraremos que T' é uma AGM.

Como (u, v) é uma aresta leve do corte $\delta(S)$ e (x, y) pertence ao corte, temos que $\omega(u, v) \leq \omega(x, y)$. Assim,

$$\omega(T') = \omega(T) - \omega(x, y) + \omega(u, v) \le \omega(T).$$

Como T é uma AGM, então $\omega(T) \leq \omega(T')$. Logo, T' é uma AGM. Além disso, T' contém $A \cup \{(u,v)\}$ e portanto, (u,v) é uma aresta segura. Isto termina a prova.

Como encontrar arestas seguras

Corolário 23.2 (CLRS)

Seja G um grafo com pesos nas arestas dado por ω . Seja A um subconjunto de arestas contido em uma AGM. Seja C um componente (árvore) de $G_A = (V, A)$. Se (u, v) é uma aresta leve de $\delta(C)$, então (u, v) é segura para A.

Os algoritmos de Prim e Kruskal são especializações do algoritmo genérico e fazem uso do Corolário 23.2.

- No algoritmo de Prim, A é o conjunto de arestas de uma árvore com raiz r (escolhido arbitrariamente no início). Inicialmente, A é vazio.
- Em cada iteração, o algoritmo considera o corte $\delta(S)$ onde S é o conjunto de vértices que são extremos de A. Se $A = \emptyset$ então $S = \{r\}$.
- Ele encontra uma aresta leve (u, v) neste corte, acrescenta-a ao conjunto A e começa outra iteração.
 Isto é repetido até que A seja uma árvore geradora.

Um detalhe de implementação importante é como encontrar eficientemente uma aresta leve no corte.

O algoritmo mantém durante sua execução as seguintes informações:

- Todos os vértices que não estão na árvore estão em uma fila de prioridade (de mínimo) Q.
- Cada vértice v em Q tem uma chave key[v] que indica o menor peso de qualquer aresta ligando v a algum vértice u da árvore neste caso, $\pi[v] = u$. Se não existir nenhuma aresta, então $\text{key}[v] = \infty$ e $\pi[v] = NIL$.

Logo, uma **aresta leve** do corte $\delta(S)$ corresponde a alguma aresta $(\pi[v], v)$ com key[v] mínimo.

• A variável $\pi[u]$ indica o pai de u na árvore. Então

$$A = \{(u, \pi[u]) : u \in V - \{r\} - Q, \pi[u] \neq \text{NIL}\}.$$

```
AGM-PRIM(G, \omega, r)
        para cada u \in V[G] faça
            \text{key}[u] \leftarrow \infty
            \pi[u] \leftarrow \text{NIL}
 4 \text{key}[r] \leftarrow 0
 5 Q \leftarrow V[G]
 6
        enquanto Q \neq \emptyset faça
             u \leftarrow \text{Extract-Min}(Q)
 8
             para cada \mathbf{v} \in \mathrm{Adj}[\mathbf{u}]
                 se v \in Q e w(u, v) < \text{key}[v] então
 9
10
                    \pi[v] \leftarrow u
11
                    \text{kev}[v] \leftarrow w(u, v)
```

Corretude do algoritmo de Prim

O algoritmo mantém os seguintes invariantes.

No início de cada iteração das linhas 6-11:

- $A = \{(u, \pi[u]) : u \in V \{r\} Q, \pi[u] \neq \text{NIL}\}.$
- O conjunto de vértices da árvore é V[G] Q.
- Para cada $v \in Q$, se $\pi[v] \neq \text{NIL}$, então key[v] é o peso de uma aresta $(v, \pi[v])$ de menor peso ligando v a um vértice $\pi[v]$ na árvore.

Esses invariantes garantem que o algoritmo sempre escolhe uma aresta segura para acrescentar a A e portanto, o algoritmo está correto.

Complexidade do algoritmo de Prim

Obviamente, a complexidade de $\overline{AGM-PRIM}$ depende de como a fila de prioridade Q é implementada.

As operações que precisamos são:

- INSERT (linhas 1-5)
- Extract-Min
- Decrease-Key

Observação: como G é conexo, temos que V=O(E) e portanto, O(V+E)=O(E).

Complexidade do algoritmo de Prim

- As linhas 1–5 correspondem a |V| chamadas a INSERT.
- O laço da linha 6 é executado O(V) vezes.
 Total: O(V) chamadas a EXTRACT-MIN.
- O laço das linhas 8–11 é executado O(V + E) = O(E) vezes no total.
 O teste de pertinência a Q pode ser feito em tempo constante com um vetor booleano.

Ao atualizar uma chave na linha 11 é feita uma *chamada implícita* a DECREASE-KEY.

Total: O(E) chamadas a Decrease-Key.

Tempo total:

$$O(V)$$
 Insert + $O(V)$ Extract-Min + $O(E)$ Decrease-Key

Complexidade do algoritmo de Prim

Tempo total

```
O(V) Insert + O(V) Extract-Min + O(E) Decrease-Key
```

Vejamos o que acontece se implementarmos Q como um min-heap.

- INSERT consome tempo $O(\lg V)$ resultando em tempo $O(V \lg V)$ no total. Na verdade, é possível inicializar o min-heap em tempo O(V);
- EXTRACT-MIN consome tempo $O(\lg V)$;
- Decrease-Key consome tempo $O(\lg V)$.
- O tempo total é $O(V + V \lg V + E \lg V) = O(E \lg V)$.

Custo amortizado

- Descreveremos superficialmente outra estrutura de dados que pode ser usada no lugar de min-heaps. Para tanto, apresentamos o conceito de custo amortizado de uma operação.
- Suponha que S é uma estrutura de dados abstrata e p(S) é uma operação que pode ser executada sobre S. Por exemplo, inserir ou remover um elemento de S (pode haver mais parâmetros).

Custo amortizado

- Suponha que durante a execução de um algoritmo foram feitas m chamadas a p(S). Se o tempo total de todas as operações p durante a execução do algoritmo é T(n) (n=|S|) então o custo (tempo) amortizado de p é T(n)/m.
- Por exemplo, se T(n) = 4n e m = 2n então o custo amortizado é 2.
 Note que isto não significa que a operação gasta tempo constante, mas apenas que em média o tempo gasto em cada execução de p é constante.

Complexidade do algoritmo de Prim

Pode-se fazer melhor usando uma estrutura de dados chamada $heap\ de$ Fibonacci que guarda |V| elementos e suporta as seguintes operações:

- EXTRACT-MIN $O(\lg V)$,
- Decrease-Key tempo amortizado O(1).
- INSERT tempo amortizado O(1).
- Outras operações eficientes que um min-heap não suporta. Por exemplo, UNION. Maiores detalhes no CLRS.

Usando um *heap de Fibonacci* para implementar Q melhoramos o tempo para $O(V + E + V \lg V) = O(E + V \lg V)$.

Este é um resultado interessante do ponto de vista teórico. Na prática, a implementação anterior comporta-se muito melhor.

- No algoritmo de Kruskal o subgrafo $G_A = (V, A)$ é uma floresta. Inicialmente, $A = \emptyset$.
- Em cada iteração, o algoritmo escolhe uma aresta (u, v) de menor peso que liga vértices de componentes (árvores) distintos C e C' de $G_A = (V, A)$.
 - Note que (u, v) é uma aresta leve do corte $\delta(C)$.
- Ele acrescenta (u, v) ao conjunto A e começa outra iteração até que A seja uma árvore geradora.

Um detalhe de implementação importante é como encontrar a aresta de menor peso ligando componentes distintos.

Eis uma versão preliminar do algoritmo de Kruskal.

```
AGM-KRUSKAL(G, w)
1 A \leftarrow \emptyset
2 Ordene as arestas em ordem não-decrescente de peso
3 para cada (u, v) \in E nessa ordem faça
4 se u e v estão em componentes distintos de (V, A)
5 então A \leftarrow A \cup \{(u, v)\}
6 devolva A
```

Problema: Como verificar eficientemente se u e v estão no mesmo componente da floresta $G_A = (V, A)$?

Inicialmente $A = \emptyset$ e $G_A = (V, A)$ corresponde à floresta onde cada componente é um vértice isolado.

Ao longo do algoritmo, esses componentes são modificados pela inclusão de arestas em A.

Uma estrutura de dados para representar $G_A = (V, A)$ deve ser capaz de executar eficientemente as seguintes operações:

- ullet dado um vértice u, determinar o componente de G_A que contém u e
- dados dois vértices u e v em componentes distintos C e C', fazer a união desses em um novo componente.

ED para conjuntos disjuntos

- Uma estrutura de dados para conjuntos disjuntos mantém uma coleção {S₁, S₂,..., S_k} de conjuntos disjuntos dinâmicos (isto é, eles mudam ao longo do tempo).
- Cada conjunto é identificado por um representante que é um elemento do conjunto.
 - Quem é o representante é irrelevante, mas se o conjunto não for modificado, então o representante não pode mudar.

ED para conjuntos disjuntos

Uma estrutura de dados para conjuntos disjuntos deve ser capaz de executar as seguintes operações:

- Make-Set(x): cria um novo conjunto {x}.
- UNION(x, y): une os conjuntos (disjuntos) que contém x e y, digamos S_x e S_y , em um novo conjunto $S_x \cup S_y$.
 - Os conjuntos S_x e S_y são descartados da coleção.
- FIND-SET(x) devolve um apontador para o representante do (único) conjunto que contém x.

Componentes conexos

Vamos ilustrar uma aplicação simples da estrutura de dados para conjuntos disjuntos para resolver o seguinte problema.

Dado um grafo não-orientado G determinar seus componentes conexos.

Após determinar seus componentes conexos, gostaríamos também de ser capazes de verificar eficientemente se quaisquer dois vértices dados pertencem ao mesmo componente.

Componentes conexos

```
CONNECTED-COMPONENTS (G)
   para cada v \in V[G] faça
      Make-Set(v)
3
   para cada (u, v) \in E[G] faça
4
      se FIND-SET(u) \neq FIND-SET(v)
        então UNION(u, v)
5
SAME-COMPONENT (u, v)
   se FIND-SET(u) = FIND-SET(v)
      então devolva VERDADEIRO
3
      senão devolva FALSO
```

Componentes conexos

"Complexidade" de CONNECTED-COMPONENTS

- \bullet |V| chamadas a MAKE-SET
- 2|E| chamadas a FIND-SET
- $\bullet \le |V| 1$ chamadas a UNION

Usando a ED para conjuntos disjuntos também é fácil listar os vértices de cada componente (Exercício).

Eis a versão completa do algoritmo de Kruskal.

```
AGM-KRUSKAL(G, \omega)

1 A \leftarrow \emptyset

2 para cada v \in V[G] faça

3 MAKE-SET(v)

4 Ordene as arestas em ordem não-decrescente de peso

5 para cada (u, v) \in E nessa ordem faça

6 se FIND-SET(u) \neq FIND-SET(v)

7 então A \leftarrow A \cup \{(u, v)\}

8 UNION(u, v)
```

"Complexidade" de AGM-KRUSKAL

- Ordenação: $O(E \lg E)$
- \bullet |V| chamadas a MAKE-SET
- 2|E| chamadas a FIND-SET
- |V| 1 chamadas a UNION

A complexidade depende de como essas operações são implementadas.

ED para conjuntos disjuntos

Sequência de operações MAKE-SET, UNION e FIND-SET

Vamos medir a complexidade das operações em termos de n e m.

Que estrutura de dados usar?

Ou seja, como representar os conjuntos?

Representação por listas ligadas

- Cada conjunto tem um representante (início da lista)
- Cada nó tem um campo que aponta para o representante
- Guarda-se um apontador para o fim da lista

Representação por listas ligadas

- Make-Set(x) O(1)
- FIND-SET(x) O(1)
- UNION(x, y) concatena a lista de y no final da lista de x

Complexidade: O(n)

É preciso atualizar os apontadores para o representante.

Um exemplo de pior caso

Operação	Atualizações	Listas
Make-Set (x_1)	1	<i>x</i> ₁
Make-Set (x_2)	1	x_2 x_1
Make-Set (x_3)	1	x_3 x_2 x_1
:	:	
Make-Set (x_n)	1	x_n x_{n-1} \cdots x_4 x_3 x_2 x_1
UNION (x_2, x_1)	1	X_n X_{n-1} \cdots X_4 X_3 X_2 X_1 X_n X_{n-1} \cdots X_4 X_3 X_2X_1
UNION (x_3, x_2)	2	x_n x_{n-1} \cdots x_4 $x_3x_2x_1$
Union (x_4, x_3)	3	x_n x_{n-1} \cdots $x_4x_3x_2x_1$
:	:	
Union (x_n, x_{n-1})	n-1	$x_n x_{n-1} \cdots x_4 x_3 x_2 x_1$

Número total de operações: 2n-1

Custo total:
$$n + \sum_{i=1}^{n-1} i = \Theta(n^2)$$

Custo amortizado de cada operação: $\frac{\Theta(n^2)}{2n-1} = \Theta(n)$

Uma heurística muito simples

No exemplo anterior, cada chamada de UNION requer em média tempo $\Theta(n)$ pois concatenamos a maior lista no final da menor.

Uma idéia simples para evitar esta situação é sempre concatenar a menor lista no final da maior (weighted-union heuristic.)

Para implementar isto basta guardar o tamanho de cada lista.

Uma única execução de UNION pode gastar tempo $\Theta(n)$, mas na média o tempo é bem menor (próximo slide).

Uma heurística muito simples

Teorema. Usando a representação por listas ligadas e *weighted-union heuristic*, uma seqüência de m operações MAKE-SET, UNION e FIND-SET gasta tempo $O(m+n\lg n)$.

Prova.

O tempo total em chamadas a MAKE-SET e FIND-SET é O(m).

Sempre que o apontador para o representante de um elemento x é atualizado, o tamanho da lista que contém x (pelo menos) dobra.

Após ser atualizado k vezes, a lista tem tamanho pelo menos 2^k . Como 2^k tem que ser menor que n, cada apontador é atualizado no máximo $O(\lg n)$ vezes.

Assim, o tempo total em chamadas a UNION é $O(n \lg n)$.

Um exemplo de pior caso

Em cada nível, a lista em azul é concatenada com a lista a sua esquerda e assim n/2 apontadores são atualizados.

Há $\Theta(\lg n)$ níveis.

O custo total de UNION é $\Theta(n \lg n)$ (como no MERGESORT!).

Complexidade do algoritmo de Kruskal

Complexidade de AGM-KRUSKAL usando a representação por listas ligadas de Union-Find com *weighted-union heuristic*:

- Ordenação: O(E lg E)
- \bullet |V| chamadas a MAKE-SET
- 2|E| chamadas a FIND-SET
- |V| 1 chamadas a UNION

Custo total: ordenação + $O(m + n \lg n)$

Custo total:

$$O(E \lg E) + O(2V + 2E - 1 + V \lg V) = O(E \lg E) = O(E \lg V)$$

Representação por disjoint-set forests

- Veremos agora a representação por disjoint-set forests.
- Implementações ingênuas não são melhores assintoticamente do que esta representação.
- Usando duas heurísticas union by rank e path compression obtemos a representação por disjoint-set forests mais eficiente que se conhece até hoje.

Observação: isto não diminui a complexidade de AGM-KRUSKAL pois esta é dominada pelo passo de ordenação.

Grafo com vários componentes.

Como é a representação dos componentes na estrutura de dados disjoint-set forests?

- Cada conjunto corresponde a uma árvore enraizada.
- Cada elemento aponta para seu pai.
- A raiz é o representante do conjunto e aponta para si mesma.


```
MAKE-SET(x)

1 pai[x] \leftarrow x

FIND-SET(x)

1 se x = \text{pai}[x]

2 então devolva x

3 senão devolva FIND-SET(pai[x])
```



```
UNION(x, y)

1 x' \leftarrow \text{FIND-SET}(x)

2 y' \leftarrow \text{FIND-SET}(y)

3 \text{pai}[y'] \leftarrow x'
```



```
UNION(x, y)

1 x' \leftarrow \text{FIND-SET}(x)

2 y' \leftarrow \text{FIND-SET}(y)

3 \text{pai}[y'] \leftarrow x'
```

Com a implementação descrita até agora, não há melhoria assintótica em relação à representação por listas ligadas.

- Make-Set(x) O(1)
- FIND-SET(x) O(n)
- UNION(x, y) O(n)

É fácil descrever uma seqüência de n-1 chamadas a UNION que resultam em uma cadeia linear com n nós. Isto torna FIND-SET custoso podendo levar a um custo total de $\Theta(n^2)$.

Pode-se melhorar (muito) isso usando duas heurísticas:

- union by rank
- path compression

Union by rank

- A idéia é emprestada do weighted-union heuristic.
- Cada nó x possui um "posto" rank[x] que é um limitante superior para a altura de x.
- Em union by rank a raiz com menor rank aponta para a raiz com maior rank.

Union by rank

```
Make-Set(x)
1 \operatorname{pai}[x] \leftarrow x
2 \operatorname{rank}[x] \leftarrow 0
Union(x, y)
    LINK(FIND-SET(x), FIND-SET(y))
LINK(x, y) > x e y são raízes
     se rank[x] > rank[y]
        então pai[y] \leftarrow x
3
        senão pai[x] \leftarrow y
                  se rank[x] = rank[y]
5
                     então rank[v] \leftarrow rank[v] + 1
```

Path compression

A idéia é muito simples: ao tentar determinar o representante (raiz da árvore) de um nó fazemos com que todos os nós no caminho apontem para a raiz.

Path compression

A idéia é muito simples: ao tentar determinar o representante (raiz da árvore) de um nó fazemos com que todos os nós no caminho apontem para a raiz.

FIND-SET(a)

Path compression


```
FIND-SET(x)

1 se x \neq \text{pai}[x]

2 então \text{pai}[x] \leftarrow \text{FIND-SET}(\text{pai}[x])

3 devolva \text{pai}[x]
```

Análise de union by rank e path compression separados

- Usando a ED disjoint-set forest somente com a heurística union by rank pode-se mostrar que o custo total é $O(m \lg n)$.
- Usando a ED disjoint-set forest somente com a heurística path compression e supondo que são feitas f chamadas a FIND-SET, pode-se mostrar que o custo total é $O(n+f\cdot(1+\log_{2+f/n}n))$.
- Quando combinamos as duas heurísticas juntas o custo total é $O(m\alpha(n))$ onde $\alpha(n)$ é uma função que cresce muito lentamente. Esta é a melhor implementação conhecida.

Vamos descrever (sem provar) a complexidade de uma sequência de operações MAKE-SET, UNION e FIND-SET quando union by rank e path compression são usados juntas.

Para $k \ge 0$ e $j \ge 1$ considere a função

$$A_{k}(j) = \begin{cases} j+1 & \text{se } k = 0, \\ A_{k-1}^{(j+1)}(j) & \text{se } k \geq 1, \end{cases}$$

onde $A_{k-1}^{(j+1)}(j)$ significa que $A_{k-1}(j)$ foi iterada j+1 vezes.

Ok. Você não entendeu o que esta função faz...

Tudo que você precisa saber é que ela cresce muito rápido.

$$A_0(1) = 2$$
 $A_1(1) = 3$
 $A_2(1) = 7$
 $A_3(1) = 2047$
 $A_4(1) = 16^{512}$

Em particular, $A_4(1)=16^{512}\gg 10^{80}$ que é número estimado de átomos do universo. . .

Considere agora inversa da função $A_k(n)$ definida como

$$\alpha(n) = \min\{k : A_k(1) \ge n\}.$$

Usando a tabela anterior temos

$$\alpha(n) = \begin{cases} 0 & \text{para } 0 \le n \le 2, \\ 1 & \text{para } n = 3, \\ 2 & \text{para } 4 \le n \le 7, \\ 3 & \text{para } 8 \le n \le 2047, \\ 4 & \text{para } 2048 \le n \le A_4(1). \end{cases}$$

Ou seja, do **ponto de vista prático**, para qualquer valor razoável de n, temos $\alpha(n) \le 4$, ou seja, $\alpha(n)$ é uma constante.

Teorema. (Tarjan) Uma seqüência de m operações MAKE-SET, UNION e FIND-SET pode ser executada em uma ED disjoint-set forest com union by rank e path compression em tempo $O(m\alpha(n))$ no pior caso.

Dizemos que a função $m\alpha(n)$ é superlinear.

Dada a afirmação anterior de que $\alpha(n)$ é constante para qualquer valor razoável de n, isto significa que na prática o tempo total é linear e que o custo amortizado por operação é uma constante.

Uma discussão mais detalhada da ED *disjoint-set forests* pode ser vista no Capítulo 21 do CLRS.

Voltaremos agora à implementação do algoritmo de Kruskal. Podemos supor que o grafo é conexo e assim V = O(E).

O algoritmo de Kruskal (de novo)

```
AGM-Kruskal(G, w)
    A \leftarrow \emptyset
    para cada v \in V[G] faça
       Make-Set(v)
4
    Ordene as arestas em ordem não-decrescente de peso
5
    para cada (u, v) \in E nessa ordem faça
6
      se FIND-SET(u) \neq FIND-SET(v)
         então A \leftarrow A \cup \{(u, v)\}
8
                 Union(u, v)
9
    devolva A
Complexidade:
  Ordenação: O(E lg E)
  \bullet |V| chamadas a MAKE-SET
  • 2|E| + |V| - 1 = O(E) chamadas a Union e Find-Set
```

O algoritmo de Kruskal (de novo)

- Ordenação: $O(E \lg E)$
- \bullet |V| chamadas a MAKE-SET
- O(E) chamadas a UNION e FIND-SET

Usando a ED *disjoint-set forest* com union by rank e path compression, o tempo gasto com as operações é $O((V+E)\alpha(V)) = O(E\alpha(V))$.

Como $\alpha(V) = O(\lg V) = O(\lg E)$ o passo que consome mais tempo no algoritmo de Kruskal é a ordenação.

Logo, a complexidade do algoritmo é $O(E \lg E) = O(E \lg V)$.