Задание 1 по курсу

«Суперкомпьютерное моделирование и технологии» для студентов первого и второго потоков.

Сентябрь 2024

Содержание

C	одержание	1
1	Введение	1
2	Математическая постановка задачи.	1
3	Метод фиктивных областей.	2
4	Разностная схема решения задачи.	3
5	Метод решения системы линейных алгебраических уравнений.	5
6	Задание практикума.	5
7	Литература.	7
8	Приложение.	8

1 Введение

Требуется приближенно решить двумерную задачу Дирихле для уравнения Пуассона в криволинейной области. Задание необходимо выполнить на ПВС Московского университета IBM Polus.

2 Математическая постановка задачи.

В области $D\subset \mathbf{R}^2$, ограниченной контуром γ , рассматривается дифференциальное уравнение Пуассона

$$-\Delta u = f(x, y),\tag{1}$$

в котором оператор Лапласа

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2},$$

функция f(x,y) считается известной. Для выделения единственного решения уравнение дополняется граничными условием Дирихле (см. [1]):

$$u(x,y) = 0, \quad (x,y) \in \gamma. \tag{2}$$

Требуется найти функцию u(x,y), удовлетворяющую уравнению (1) в области D и краевому условию (2) на ее границе.

3 Метод фиктивных областей.

Для приближенного решения задачи (1),(2) предлагается воспользоваться методом фиктивных областей [2].

Пусть область D принадлежит прямоугольнику $\Pi = \{(x,y): A_1 < x < B_1, A_2 < y < B_2\}$. Обозначим через \overline{D} , $\overline{\Pi}$ замыкание области D и прямоугольника Π соответственно, через Γ – границу прямоугольника. Разность множеств

$$\hat{D} = \Pi \setminus \overline{D}$$

называется фиктивной областью. Выберем и зафиксируем малое $\varepsilon > 0$.

В прямоугольнике П рассматривается задача Дирихле

$$-\frac{\partial}{\partial x}\left(k(x,y)\frac{\partial v}{\partial x}\right) - \frac{\partial}{\partial y}\left(k(x,y)\frac{\partial v}{\partial y}\right) = F(x,y),$$

$$v(x,y) = 0, \quad (x,y) \in \Gamma$$
(3)

с кусочно-постоянным коэффициентом

$$k(x,y) = \begin{bmatrix} 1, & (x,y) \in D, \\ 1/\varepsilon, & (x,y) \in \hat{D} \end{bmatrix}$$
 (4)

и правой частью

$$F(x,y) = \begin{bmatrix} f(x,y), & (x,y) \in D, \\ 0, & (x,y) \in \hat{D}. \end{bmatrix}$$
 (5)

Требуется найти непрерывную в $\overline{\Pi}$ функцию v(x,y), удовлетворяющую дифференциальному уравнению задачи (3) всюду в $\Pi \setminus \gamma$, равную нулю на границе Γ прямоугольника, и такую, чтобы вектор потока

$$W(x,y) = -k(x,y) \left(\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y} \right)$$

имел непрерывную нормальную компоненту на общей части криволинейной границы области D и прямоугольника Π . Последнее означает, что в каждой точке $(x_0, y_0) \in \gamma \cap \Pi$ должно выполняться равенство

$$\lim_{\substack{(x,y)\to(x_0,y_0),\\(x,y)\in D}} \left(W(x,y),n(x_0,y_0)\right) = \lim_{\substack{(x,y)\to(x_0,y_0),\\(x,y)\in\hat{D}}} \left(W(x,y),n(x_0,y_0)\right),\tag{6}$$

где n(x,y) – вектор единичной нормали к границе γ в точке (x,y), определенный всюду или почти всюду на кривой.

Известно [2], что функция v(x,y) равномерно приближает решение u(x,y) задачи (1),(2) в области D, а именно,

$$\max_{P \in \overline{D}} |v(x,y) - u(x,y)| < C\varepsilon, \quad C > 0.$$
 (7)

В частности, $|v(x,y)| < C\varepsilon$ во всех точках кривой γ . Этот результат позволяет получить искомую функцию u(x,y) с любой наперед заданной точночтью $\varepsilon > 0$, решая задачу (3),(6) вместо задачи (1),(2). Тем самым, задача Дирихле в криволинейной области приближенно заменяется задачей Дирихле в прямоугольнике с кусочно-постоянным коэффициентом k(x,y).

4 Разностная схема решения задачи.

Краевые задачу (3),(6) предлагается решать численно методом конечных разностей [3]. В замыкании прямоугольника $\overline{\Pi}$ определяется равномерная прямоугольная сетка $\bar{\omega}_h = \bar{\omega}_1 \times \bar{\omega}_2$, где

$$\bar{\omega}_1 = \{x_i = A_1 + ih_1, i = \overline{0, M}\}, \ \bar{\omega}_2 = \{y_j = A_2 + jh_2, j = \overline{0, N}\}.$$

Здесь $h_1 = (B_1 - A_1)/M$, $h_2 = (B_2 - A_2)/N$. Через ω_h обозначим множество внутренних узлов сетки $\bar{\omega}_h$, т.е. множество узлов сетки прямоугольника, не лежащих на границе Γ .

Рассмотрим линейное пространство H функций, заданных на сетке ω_h . Обозначим через w_{ij} значение сеточной функции $w \in H$ в узле сетки $(x_i, y_j) \in \omega_h$. Будем считать, что в пространстве H задано скалярное произведение и евклидова норма

$$(u,v) = \sum_{i=1}^{M-1} \sum_{j=1}^{N-1} h_1 h_2 u_{ij} v_{ij}, \quad ||u||_E = \sqrt{(u,u)}.$$
 (8)

В методе конечных разностей дифференциальная задача математической физики заменяется конечно-разностной операторной задачей вида

$$Aw = B, (9)$$

где $A: H \to H$ — оператор, действующий в пространстве сеточных функций, $B \in H$ — известная правая часть. Задача (9) называется разностной схемой. Решение этой задачи считается численным решением исходной дифференциальной задачи.

При построении разностной схемы следует аппроксимировать (приближенно заменить) все уравнения краевой задачи их разностными аналогами – сеточными уравнениями, связывающими значения искомой сеточной функции в узлах сетки. Полученные таким образом уравнения должны быть функционально независимыми, а их общее количество – совпадать с числом неизвестных, т.е. с количеством узлов сетки.

Дифференциальное уравнение задачи (3) во всех внутренних точках сетки аппроксимируется разностным уравнением

$$-\frac{1}{h_1} \left(a_{i+1j} \frac{w_{i+1j} - w_{ij}}{h_1} - a_{ij} \frac{w_{ij} - w_{i-1j}}{h_1} \right) - \frac{1}{h_2} \left(b_{ij+1} \frac{w_{ij+1} - w_{ij}}{h_2} - b_{ij} \frac{w_{ij} - w_{ij-1}}{h_2} \right) = F_{ij},$$

$$i = \overline{1, M-1}, \ j = \overline{1, N-1},$$

$$(10)$$

в котором коэффициенты

$$a_{ij} = \frac{1}{h_2} \int_{y_{j-1/2}}^{y_{j+1/2}} k(x_{i-1/2}, t) dt, \quad b_{ij} = \frac{1}{h_1} \int_{x_{i-1/2}}^{x_{i+1/2}} k(t, y_{j-1/2}) dt$$
(11)

при всех $i = \overline{1, M}, \ j = \overline{1, N}$. Здесь полуцелые узлы

$$x_{i\pm 1/2} = x_i \pm 0.5h_1, \quad y_{j\pm 1/2} = y_j \pm 0.5h_2.$$

Правая часть разностного уравнения

$$F_{ij} = \frac{1}{h_1 h_2} \iint_{\Pi_{ij}} F(x, y) dx dy, \quad \Pi_{ij} = \{(x, y) : x_{i-1/2} \leqslant x \leqslant x_{i+1/2}, y_{j-1/2} \leqslant y \leqslant y_{j+1/2}\}$$
 (12)

при всех $i = \overline{1, M-1}, j = \overline{1, N-1}.$

Введем обозначения правой и левой разностных производных по переменным $x,\,y$ соответственно:

$$w_{x,ij} = \frac{w_{i+1j} - w_{ij}}{h_1}, \quad w_{\overline{x},ij} = w_{x,i-1j} = \frac{w_{ij} - w_{i-1j}}{h_1},$$
$$w_{y,ij} = \frac{w_{ij+1} - w_{ij}}{h_2}, \quad w_{\overline{y},ij} = w_{y,ij-1} = \frac{w_{ij} - w_{ij-1}}{h_2}.$$

С учетом принятых обозначений разностное уравнение (10) можно представить в более компактном и удобном виде:

$$-\left(aw_{\overline{x}}\right)_{x,ij} - \left(bw_{\overline{y}}\right)_{y,ij} = F_{ij}, \quad i = \overline{1, M-1}, \ j = \overline{1, N-1}$$

$$\tag{13}$$

Краевые условия Дирихле задачи (3),(6) аппроксимируются точно равенством

$$w_{ij} = w(x_i, y_j) = 0, \quad (x_i, y_j) \in \Gamma.$$
 (14)

Переменные w_{ij} , заданные равенством (14), исключаются из системы уравнений (13). В результате остаются неизвестными значения w_{ij} при $i=\overline{1,M-1},\,j=\overline{1,N-1}$ и их количество совпадает с числом уравнений. Система является линейной относительно неизвестных величин и может быть представлена в виде (9) с самосопряженным и положительно определенным оператором

$$Aw = -\left(aw_{\overline{x}}\right)_x - \left(bw_{\overline{y}}\right)_y$$

и правой частью F, определенной равенством (12). Таким образом, построенная разностная схема (13),(14) линейна и имеет единственное решение при любой правой части (см. [5]).

Замечание. Интегралы (11) от кусочно-постоянной функции k(x,y) следует вычислять аналитически. Нетрудно видеть, что если отрезок, соединяющий точки $P_{ij} = (x_{i-1/2}, y_{j-1/2})$ и $P_{ij+1} = (x_{i-1/2}, y_{j+1/2})$, целиком расположен в области D, то $a_{ij} = 1$. Если же указанный отрезок находится в фиктивной области \hat{D} , то $a_{ij} = 1/\varepsilon$. В противном случае

$$a_{ij} = h_2^{-1} l_{ij} + (1 - h_2^{-1} l_{ij})/\varepsilon,$$

где l_{ij} – длина той части отрезка $[P_{ij}, P_{ij+1}]$, которая принадлежит области D. Аналогичным образом вычисляются коэффициенты b_{ij} .

Очевидно, правая часть схемы F_{ij} равна нулю при всех $(i,j):\Pi_{ij}\subset\hat{D}$. Если $\Pi_{ij}\subset D$, то правую часть предлагается приближенно заменить значением $f(x_i,y_j)$. В противном случае, когда прямоугольник Π_{ij} содержит точки оригинальной области D и фиктивной области \hat{D} , величина F_{ij} может быть вычислена приближенно как произведение

$$(h_1h_2)^{-1}S_{ij}f(x_i^*,y_j^*),$$

где (x_i^*, y_j^*) – любая точка пересечения $\Pi_{ij} \cap D$, $S_{ij} = \text{mes}(\Pi_{ij} \cap D)$ – площадь пересечения областей, при вычислении которой криволинейную часть границы можно заменить отрезком прямой.

5 Метод решения системы линейных алгебраических уравнений.

Приближенное решение разностной схемы (10),(14) может быть получено итерационным методом скорейшего спуска [4]. Этот метод позволяет получить последовательность сеточных функций $w^{(k)} \in H, k = 1, 2, \ldots$, сходящуюся по норме пространства H к решению разностной схемы, т.е.

$$||w - w^{(k)}||_E \to 0, \quad k \to +\infty.$$

Начальное приближение $w^{(0)}$ можно выбрать любым способом, например, равным нулю во всех точках расчетной сетки.

Метод является одношаговым. Итерация $w^{(k+1)}$ вычисляется по итерации $w^{(k)}$ согласно равенствам:

$$w_{ij}^{(k+1)} = w_{ij}^{(k)} - \tau_{k+1} r_{ij}^{(k)}, \tag{15}$$

где невязка $r^{(k)} = Aw^{(k)} - B$, итерационный параметр

$$\tau_{k+1} = \frac{\left(r^{(k)}, r^{(k)}\right)}{\left(Ar^{(k)}, r^{(k)}\right)}.$$

В качестве условия остановки итерационного процесса следует использовать неравенство

$$||w^{(k+1)} - w^{(k)}||_E < \delta,$$

где δ — положительное число, определяющее точность итерационного метода. Оценку точности приближенного решения можно проводить в других нормах пространства сеточных функций, например, в максимум норме

$$||w||_C = \max_{x \in \overline{\omega}_h} |w(x)|. \tag{16}$$

Константу δ для данной задачи предлагается выбрать так, чтобы итерационный процесс укладывался в отведенное для него время.

Замечание. По согласованию с преподавателем, принимающим задание, метод скорейшего спуска может быть заменен любым другим методом, пригодным для решения систем линейных алгебраических уравнений с симметричной положительно определенной матрицей, таких как метод сопряженных градиентов, метод Ричардсона с чебышевским набором итерационных параметров [4].

6 Задание практикума.

Требуется приближенно найти решение задачи (1),(2) для случая, когда f(x,y)=1 при всех $(x,y)\in D$. Конкретное задание определяется геометрией области D.

Предлагаются следующие варианты заданий:

- 1. прямоугольный треугольник с вершинами в точках C(0,0), A(3,0), B(0,4);
- 2. остроугольный треугольник с вершинами в точках C(-3,0), A(3,0), B(0,4);
- 3. тупоугольный треугольник с вершинами в точках C(-3,0), A(3,0), B(0,2);
- 4. трапеция с вершинами в точках A(0,0), B(3,0), C(2,3), D(0,3);

- 5. трапеция с вершинами в точках A(-3,0), B(3,0), C(2,3), D(-2,3);
- 6. квадрат с отсеченной вершиной (x, y) : |x| + |y| < 2, y < 1;
- 7. область-сапожок: $\{(x,y): -1 < x, y < 1\} \setminus \{(x,y): 0 < x, y < 1\};$
- 8. область, ограниченная дугой параболы и отрезком прямой: $\{(x,y): y^2 < x < 1\};$
- 9. внутренность эллипса $\{(x,y): x^2 + 4y^2 < 1\}$;
- 10. область, ограниченная дугой гиперболы и отрезком прямой: $\{(x,y): x^2-4y^2>1, 1< x<3\}.$

Для успешного выполнения задания требуется:

1. разработать последовательный код программы, вычисляющий приближенное решение разностной схемы методом скорейшего спуска, выполнить расчеты на сгущающихся сетках

$$(M, N) = (10, 10), (20, 20), (40, 40);$$

- 2. используя средства OpenMP, разработать параллельный код программы, вычисляющий приближенное решение разностной схемы, проверить качество работы алгоритма, выполнив расчеты на сетке (M,N)=(40,40) на одном, четырех и шестнадцати нитях, провести сравнение с последовательным вариантом алгоритма.
- 3. заполнить таблицу 1 с результатами расчетов ОрепМР-программы;
- 4. разработать и реализовать алгоритм **двумерного** разбиения прямоугольника Π на домены (подобласти) так, чтобы
 - отношение количества узлов по переменым x и y в каждом домене принадлежало диапазону [1/2,2],
 - количество узлов по переменым x и y любых двух доменов отличалось не более, чем на единицу.
- 5. используя средства библиотеки MPI, разработать параллельный код программы, проверить качество работы алгоритма, выполнив расчеты на сетке (M, N) = (40, 40) на одном, двух и четырех процессах, провести сравнение с последовательным вариантом алгоритма;
- 6. разработать гибридный код программы, добавив в MPI-код директивы OpenMP, проверить качество работы алгоритма, выполнив расчеты на сетке (M,N) = (40,40) на одном и двух процессах с четырьмя нитями, провести сравнение с последовательным вариантом алгоритма;
- 7. заполнить таблицу 2 с результатами расчетов гибридной программы;
- 8. предоставить отчет о проделанной работе.

Выполняя расчеты, считать константу ε метода фиктивных областей равной h^2 , где $h=\max(h_1,h_2)$ – наибольший шаг сетки $\bar{\omega}_h$.

Отчет о выполнении задания должен содержать

- математическую постановку задачи;
- численные метод ее решения;

- краткое описание проделанной работы по созданию OpenMP-программы, MPIпрограммы и гибридной реализации MPI/OpenMP;
- результаты расчетов для разных размеров задач и на разном числе процессов (см. таблицу 1 и таблицу 2).
- рисунок приближенного решения, полученного на сетке с наибольшим количеством узлов, графики ускорений.

7 Литература.

- 1. А.Н. Тихонов, А.А. Самарский. Уравнения математической физики. М. Изд. "Наука". 1977.
- 2. Г.И. Марчук. Методы вычислительной математики. М. Изд. "Наука". 1989.
- 3. А.А. Самарский. Теория разностных схем. М. Изд. "Наука". 1989.
- 4. А.А. Самарский, А.В. Гулин. Численные методы. М. Изд. "Наука". 1989.
- 5. В.А. Ильин, Г.Д. Ким. Линейная алгебра и аналитическая геометрия. Изд. Московского университета. 2002.
- 6. IBM Polus http://hpc.cmc.msu.ru

8 Приложение.

Таблица 1: Таблица с результатами расчетов на ПВС IBM Polus (OpenMP код).

Количество	Число точек	Число	Время	Ускорение
OpenMP-нитей	$ $ сетки $(M \times N)$	итераций	решения	
2	80×90			
4	80×90			
8	80×90			
16	80×90			
4	160×180			
8	160×180			
16	160×180			
32	160×180			

Таблица 2: Таблица с результатами расчетов на ПВС IBM Polus (MPI+OpenMP код).

Количество	Количество	Число точек	Число	Время	Ускорение
процессов	OpenMP-нитей	сетки $(M \times N)$	итераций	решения	
MPI	в процессе				
2	1	80×90			
2	2	80×90			
2	4	80×90			
2	8	80×90			
4	1	160×180			
4	2	160×180			
4	4	160×180			
4	8	160×180			