

Évaluation FORMATIVE

Session S3

APP5 GEL345

Machines électriques tournantes

Département de génie électrique et de génie informatique Faculté de génie Université de Sherbrooke

NOTE

- La durée maximale pour effectuer cet examen est de 3h. Veuillez lire tous les problèmes dès le début pour pouvoir bien gérer votre emploi du temps.
- Documentation permise : une feuille aide-mémoire recto-verso. Photocopies refusées. Il est interdit de copier des exercices et des démarches d'exercices sur votre feuille de formules
- Il est important de faire apparaître toutes les démarches de calculs utilisées pour résoudre les problèmes sur votre copie.

Problème nº 1

 $(\underline{GEL\ 345:C1=20\ points})$

On considère un moteur à courant continu en excitation séparée, dont l'induit de résistance $Ra = 0.1 \Omega$, est alimenté par une source continue Va = 150V. Lorsqu'il tourne à 1000 RPM, il consomme un courant Ia = 40A, et la réaction magnétique vaut $\epsilon = 10 V$.

- a) Quel est le couple électromagnétique, en joules/radian?
- b) Quelle est la puissance électromagnétique en HP?

Un moteur CC à excitation parallèle 100 HP 250 V 1200 RPM à une résistance d'armature égale à $0.03~\Omega$ et une résistance de champ égale à $41.67~\Omega$. On néglige la réaction de l'armature ainsi que les pertes rotationnelles. Lorsque le moteur entraine une charge de couple constant, on mesure un courant de ligne de 126 A et une vitesse de 1103 RPM.

Quelle serait la nouvelle valeur de la vitesse du moteur si le courant de champ est réduit de 17 % pour un même couple.

Dans ce problème, l'alimentation de l'inducteur et de l'induit est gardée constante à V= 250 V. Le courant d'inducteur est varié en plaçant une résistance en série avec l'enroulement inducteur.

n= 1295,14 RPM

Problème n° 3 – 65 points

(GEL 345 : 55 points et GEL 362 : 10 points)

Un moteur asynchrone à rotor bobiné, 2 pôles, de tension de phase nominale 346 V, 60 Hz, avec un stator couplé en étoile et un rotor couplé en étoile, est soumis aux essais suivants.

- Essais à vide à tension nominale :
 - $I_{stator} = 34.7 A$
 - P_{stator totale} (3 phases) mesurée = 2 880 W
- Essais à rotor bloqué:
 - $E_{\text{stator}} = 100 \text{ V}$,
 - $I_{stator} = 54.3 A$
 - P_{stator totale} (3 phases) mesurée = 5 139 W
- Essai à rotor ouvert, à l'arrêt :
 - Tension stator ligne-neutre 346 V
 - Tension rotor ligne-neutre 48 V

Résistance r_1 du stator obtenue par mesure : 0.5Ω

Poser $x_1 = x_2$.

Si le moteur est alimenté avec sa tension nominale ligne-ligne de 600 V/60 Hz,

- 1) Déterminer la valeur du couple de décrochage et la valeur du glissement à la vitesse de décrochage.
- 2) Déterminer la puissance apparente et la puissance réactive lorsque le moteur opère à ce point de la caractéristique couple-vitesse correspondant au couple de décrochage et à la vitesse de décrochage.
- 3) Pour le même point d'opération, déterminer l'amplitude et la fréquence f_2 de la tension induite E_2 au rotor.
- 4) Ce moteur est refroidi par convection forcée et lorsque l'air circule à travers les enroulements, un échange de chaleur permet de refroidir le moteur. Le taux d'échange de la chaleur dissipée est de 0,01 deg C/W. Au couple de décrochage, déterminer la température intérieure du moteur lorsque la température ambiante est 25 degrés C.
- 5) Est-ce que vous recommanderiez d'opérer ce moteur à un couple dont la valeur serait près du couple de décrochage? Pourquoi?

Problème nº 4 – 50 points

(GEL 345 : C1 = 20 points et C2 = 30 points)

Un moteur asynchrone 460 V (ligne-ligne), 25 HP, 60 Hz, 4 pôles et bobinage couplé en étoile. Les pertes rotationnelles sont de 600 W et les pertes fer de 500 W. Pour un glissement au rotor de 2,2% à tension nominale et fréquence nominale, on mesure au stator un courant de 18,9 A et une puissance réelle totale de 12530W.

On donne : Rs=0,641 Ω

- 1) Calculer en RPM la valeur de la vitesse mesurée à l'arbre du rotor.
- 2) Calculer le facteur de puissance, la puissance transmise au rotor, la puissance mécanique développée ainsi que la puissance mécanique disponible à l'arbre du rotor.
- 3) Calculer la valeur du couple utile.

$$\frac{13530}{\frac{460}{13} \cdot 8.9 \cdot 3} = \frac{15058}{15058} = 0.832$$

T = 62.006 Nm

Problème nº 5 – 40 points

(GEL 345 : C1 = 20 points et C2 = 20 points)

Un moteur synchrone triphasé, connecté en étoile, 4600 V ligne-ligne, 60 Hz, 40 pôles (pôles lisses) a une réactance synchrone de 8Ω par phase et une résistance négligeable. Le courant d'excitation étant ajusté pour que le courant consommé soit minimal et la puissance électrique active consommée par le moteur vaut 800 kW.

- 1. Quel est le couple électromagnétique?
- 2. Quelle est la f.e.m. par phase?