

I2G-CB-20130308

Application de mise à jour des voies

Architecture de l'application

8 mars 2013

1- Introduction

Cette documentation détaille l'architecture de l'application de « mise à jour de la base des voies » développée par I2G pour Lille Metropole.

Elle fait référence à la version 2.1.7 livrée le 6 février 2013.

Il s'agit d'une application développée en PHP et Javascript qui utilise en l'API de DynMap v8.

2- Le fichier de configuration

Emplacement du fichier : /conf/config.php

Les constantes à configurer :

EPSG_APP → code EPSG du système de projection de la Geobase DynMap

DEFAUT_ANNEE_FIN_VALIDITE → Année par défaut de fin de validité (ex : 2099)

LAYERID_PARCELLES → Layerid de la couche des parcelles

LAYERID_COMMUNES → Layerid de la couche des communes

LAYERID_SENS_TRONCONS → Layerid de la couche des sens des tronçons

PARCELLES SCHEMA → Schéma ORACLE contenant la table des parcelles

PARCELLES __TABLE → Nom de la table ORACLE contenant les parcelles

PARCELLES__COL_DYNID → Nom du champ de la table des parcelles contenant la clé primaire

DynMap

PARCELLES__COL_GEOM → Nom du champ de la table des parcelles contenant les données spatiales

PARCELLES__COL_NUMERO → Nom du champ de la table des parcelles contenant le numéro des

parcelles

COMMUNES__SCHEMA → Schéma ORACLE contenant la table des communes

COMMUNES_TABLE → Nom de la table ORACLE contenant les communes

COMMUNES__COL_DYNID → Nom du champ de la table des communes contenant la clé primaire

DynMap

COMMUNES__COL_GEOM → Nom du champ de la table des communes contenant les données

spatiales

COMMUNES__COL_NUMCOM → Nom du champ de la table des communes contenant les codes INSEE

DBTYPE → Type de driver pour accéder au SGBD contenant les données (oci8)

DBHOST → Host du SGBD contenant les données

DBUSER → User du SGBD autorisé à accéder aux données

DBPASS → Password du user du SGBD autorisé à accéder aux données

DBPORT → N° de port du SGBD contenant les données (ex : 1521)

BDINST → Instance Oracle contenant les données

BDONNEE → Schéma Oracle qui contient les données des couches Dynmap

(sb_data, sb_geom, sb_svg)

BDADMIN → Schéma ORACLE qui contient les tables d'administration

BGEO → Schéma ORACLE qui contient les données spatiales DynMap

(=BDONNEE)

BDMETIER → Schéma ORACLE qui contient les données métier de la base des voies

CARTE → Nom de la carte DynMap utilisée pour mettre à jour la base des voies

URLCARTE → URL complète de cette carte.

BASEURL → URL de base pour accéder à l'application de mise à jour des voies

SCHEMA_PKG_SDO_SVG → Le Schéma ORACLE qui contient le package SDO_SVG

ADMIN_DBHOST → Host du serveur MySQL

ADMIN_DBUSER → User MySQL

ADMIN_DBPASS → Password MySQL

ADMIN_DBTYPE → Type de SGBD contenant les paramètres DynMap (mysql)

BDPROJDYNMAP → Nom de la geobase DynMap contenant le projet de carte

3- Connexion à l'application

Lors d'une tentative de connexion automatique, le mécanisme est le suivant :

- Avec tentative d'identification SSO ou tentative d'identification LDAP :
 http://[SERVEUR]/maj_voies/index.php?cont=accueil
- Sans tentative d'identification SSO ou tentative d'identification LDAP :
 http://[SERVEUR]/maj_voies/index.php?cont=accueil&noldap=1

4- La Carte et les couches DynMap

4.1- La carte

Pour fonctionner, cette application a besoin d'une carte DynMap.

Son nom et son URL sont indiquées dans les variables **CARTE** et **URLCARTE** du fichier config.php

Il est conseillé d'utiliser le modèle de carte « *maj_voies* ».

4.2- Les couches

La carte doit contenir au minimum les couches suivantes :

- TRONCONS : couche des tronçons liée à la table ILTATRC
 - → Lien externe : javascript:parent.dynlink_troncon_voie([DYN_ROWID]);
 Cible : _parent
 - → Filtre avancé (SQL) : CDTFTRC>=sysdate (actif au chargement de la carte)
 - → Filtre de type « période » sur *CDTFTRC*
- NŒUDS : couche des nœuds de tronçons liée à la table ILTAPTZ
 - → Filtre avancé (SQL) : CDTFPTZ>=sysdate (actif au chargement de la carte)
 - → Filtre de type « période » sur *CDTFPTZ*
- POI : couche des POI liée à la table ILTALPU
 - → Lien externe : javascript:parent.dynlink_poi([DYN_ROWID]); Cible : _parent
 - → Filtre avancé (SQL) : CDTFLPU>=sysdate (actif au chargement de la carte)
 - → Filtre de type « période » sur CDTFLPU
- **SEUILS** : couche des tronçons liée à la table **ILTASEU**
 - → Lien externe : javascript:parent.dynlink_seuil([DYN_ROWID]);
 Cible : _parent

- **REMARQUES** : couche des remarques liée à la table **REMARQUES_VOIES**

→ Lien externe : javascript:parent.dynlink_remarque([DYN_ROWID]);
Cible : parent

→ Filtre avancé (SQL) : DATE_FIN_VALIDITE>=sysdate (actif au chargement de la carte)

→ Filtre de type « période » sur DATE_FIN_VALIDITE

- COMMUNES

→ Vérifier les variables PARCELLES__SCHEMA, PARCELLES__TABLE,

PARCELLES__COL_DYNID, PARCELLES__COL_GEOM et PARCELLES__COL_NUMERO dans
le fichier config.php

- PARCELLES CADASTRALES

→ Vérifier les variables COMMUNES__SCHEMA, COMMUNES__TABLE,
COMMUNES__COL_DYNID, COMMUNES__COL_GEOM et COMMUNES__COL_NUMCOM
dans le fichier config.php

Exemple de paramétrage

Options du tableau										
+	N°	Couche(s) recensée(s)	Seuil de zoom	Géométrie(s)	Style	③	6	Vue globale	WFS/WMS	
+	24	Tronçons de voie	Indéfini	5	=	0	\bigcirc	0	0	
+	23	Remarques voies	Indéfini	Ω	=	\bigcirc	\bigcirc	0	0	
+	19	POI	De 0 à 3000	F	=	\bigcirc	\bigcirc	0	0	
+	21	Seuils	De 0 à 1000	F	=	\bigcirc	\bigcirc	0	0	
+	20	Noeuds de tronçons	De 0 à 1000	F	=	0	\bigcirc	0	0	
+	6	Parcellaire	De 0 à 2000	Ω	=	\bigcirc	\bigcirc	0	0	
+	1	Communes LMCU	De 2000 à 9999999	Ω	#	0	0	0	0	

5- Le Modèle Conceptuel de la base de données

5.1- Les tables de données

Le modèle des tables de données reprend celui qui existait déjà auparavant chez Lille Metropole.

5.2- Les tables d'administration

Les tables sont situées dans le Schéma ORACLE pointée par la constante « BDADMIN ».

ADMIN_TABLES_VOIES :

- TYPE OBJET: TRONCONS, NOEUDS, VOIES, POI, SEUILS, REMARQUES
- LAYERID : Layerid de la couche DynMap
- SCHEMA : Schéma contenant la table de données
- NOM_SEQUENCE_PK: Nom de la séquence permettant de mettre à jour la Primary Key
- COL_DATE_SAISIE : Champ contenant l'information « date de saisie »
- COL_DATE_MAJ : Champ contenant l'information « date de mise à jour »
- COL DATE DEBUT VALIDITE: Champ contenant l'information « date début de validité »
- COL_DATE_FIN_VALIDITE: Champ contenant l'information « date fin de validité »
- COL VALIDITE: Champ contenant l'information « valide »
- COUCHE LIEE DYNMAP: 1 si c'est une couche liée dans DynMap (via package SDO SVG)
- NOM_TABLE_LIEE : Nom de la table Oracle liée (exemple : ILTATRC)
- VUE DYNMAP : Nom de la vue Dynmap (si ce n'est pas une couche liée)
- COL_PK: Champ contenant la Primay Key (exemple: IDSEUI)
- COL_GEOM : Champ contenant la données spatiales (exemple : G)

- ADMIN_COL_TABLES_VOIES

- TYPE_OBJET: TRONCONS, NOEUDS, VOIES, POI, SEUILS, REMARQUES
- NOM COL: Nom de chaque colonne de la table
- LIBELLE : Libellé (non utilisé)
- LAYERID_JOINTURE : Layerid d'une couche de jointure utilisée pour récupérer automatiquement cette info (le cas échéant)
- SCHEMA JOINTURE : Schéma ORACLE contenant la couche de jointure (le cas échéant)
- TABLE_JOINTURE : Nom de la table de la couche de jointure (le cas échéant)
- COL_GEOM_JOINTURE : Nom de la colonne de la couche de jointure contenant les données spatiales (le cas échéant)
- COL_JOINTURE_CLE : Nom du champ de la couche de jointure contenant la valeur à récupérer automatiquement (le cas échéant)

Exemple : CODE_INSEE

• COL_JOINTURE_LIB: Nom du champ de la couche de jointure contenant le libellé associé à la valeur à récupérer (le cas échéant)

Exemple: NOM_COMMUNE

- TYPE_JOINTURE: Type de jointure avec la couche de jointure: INTERSECTION ou PROXIMITE
- EDITABLE : Ce champ est-il modifiable dans le formulaire de saisie ? (pour les utilisateurs autorisés)
- FORM_TYPE: Type de champ de saisie dans le formulaire: LISTE ou TEXT
- REF_TABLE__SCHEMA : Schéma contenant la table de référence associée à ce champ (le cas échéant)
- REF_TABLE__TABLE : Nom de la table de référence associée à ce champ (le cas échéant)
- REF_TABLE__KEYCOL : Nom du champ de la table de référence contenant la valeur à récupérer. (le cas échéant)
- REF_TABLE__LIBCOL: Nom du champ de la table de référence contenant les libellés associés aux valeurs à récupérer.

(le cas échéant)

- DATA_TYPE : Type de données : TEXT ou DATE
- ADMIN_CONFIG_GESTION_VOIES: table contenant les paramètres configurables de l'application
 - RAYON_ACCROCHE_NOEUD: rayon de recherche en mètre pour s'accrocher à des nœuds existants lors de la création ou de la modification d'un tronçon.
- ADMIN_USERS_GESTION_VOIES: Liste des utilisateurs DynMap avec leurs droits d'utilisation de l'application.

Cette table est mise à jour via la fonction d'administration de l'application.

Les tables de référence :

- ADMIN_LISTE_COTE : table de référence contenant les données de la liste « côté » de la voie
- ADMIN_LISTE_FAMILLE_POI : table de référence contenant les données de la liste « Famille de POI »
- ADMIN_LISTE_ORIGINE_POI : table de référence contenant les données de la liste « Origine POI »
- ADMIN_LISTE_SYMBOLE : table de référence contenant les données de la liste « Symbole » du POI