FAKULTA INFORMAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

 $\begin{array}{c} MBA-2019/2020\\ \acute{U}kol~2 \end{array}$

Příklad číslo 1

Zeno běh:

Dle lemmatu 7: Časový automat A, kde pro každý řídící cyklus existují hodiny $x \in C$, takové že:

- $x \in R_i$ pro nějaké $0 < i \le n$ (hodiny x jsou alespoň jednou resetovány)
- Existuje konstanta $c \in N_+$ taková že $v(x) < c \rightarrow v(x) != g_i$ pro nějaké $0 < i \le n$ (alespoň jeden krok cyklu vyžaduje běh času).

neumožňuje zeno běhy.

Tyto podmínky nejsou splněny pro cyklus: $A \rightarrow B \rightarrow C$, jelikož neexistuje konstanta i splňující podmínky z lemmatu 7. Automat obsahuje zeno běh $(A, x=0, y=0)^{-a1} \rightarrow (B, x=0, y=0)^{-a2} \rightarrow (C, x=0, y=0)^{-a4} \rightarrow (A, x=0, y=0) \dots$

Timelock:

Automat obsahuje timelock, například konfigurace (B, x=10, y=10) je timelockem. Běh vedoucí do této konfigurace je: (A, x=0, y=0) $^{-al} \rightarrow$ (B, x=0, y=0) $^{-10} \rightarrow$ (B, x=10, y=10).

Příklad číslo 2

- Důkaz uzavřenosti jazyka časovaných automatů vůči operaci sjednocení lze provést následovně: Jestli-že jsou jazyky L₁ a L₂ jazyky časovaných automatů, pak existují časované automaty A₁ a A₂ takové, že A₁ přijímá L₁ a A₂ přijímá L₂. Pokud jsme schopni z těchto dvou automatů sestrojit automat A_M, který přijímá jazyk definovaný jako L₁U L₂, pak je třída jazyků časovaných automatů uzavřena vůči operaci sjednocení. Sestrojení automatu provedeme následovně:
 - Mějme automaty $A_1 = (Loc_1, Act_1, C_1, \rightarrow_1, Loc_0, Inv_1, AP_1, L_1, Loc_{acc_1})$, a $A_2 = (Loc_2, Act_2, C_2, \rightarrow_2, Loc_0, Inv_2, AP_2, L_2, Loc_{acc_2})$. Konstruujeme automat $A_M = (Loc_M, Act_M, C_M, \rightarrow_M, Loc_0, Inv_M, AP_M, L_M, Loc_{acc_M})$, kde:
 - \circ Loc_M = Loc₁ U Loc₂
 - \circ Act_M = Act₁U Act₂
 - \circ $C_M = C_1 \cup C_2$
 - \circ Loc0_M = Loc0₁ \cup Loc0₂
 - \circ Inv_M = Inv₁ \cup Inv₂
 - \circ AP_M = AP₁U AP₂
 - \circ $L_M = L_1 \cup L_2$
 - $\bigcirc \longrightarrow_{\mathbf{M}} = \longrightarrow_{1} \mathsf{U} \longrightarrow_{2}$
 - $o \quad Loc_{accM} = Loc_{acc1} \cup Loc_{acc2}$
- Jestli-že jsou jazyky L₁ a L₂ jazyky časovaných automatů, pak existují časované automaty A₁ a A₂ takové, že A₁ přijímá L₁ a A₂ přijímá L₂. Pokud jsme schopni z těchto dvou automatů sestrojit automat A_M, který přijímá jazyk definovaný jako L₁*L₂, pak je třída jazyků časovaných automatů uzavřena vůči operaci konkatenace. Sestrojení automatu provedeme následovně:
 - Mějme automaty $A_1 = (Loc_1, Act_1, C_1, \rightarrow_1, Loc_0, Inv_1, AP_1, L_1)$, a $A_2 = (Loc_2, Act_2, C_2, \rightarrow_2, Loc_0, Inv_2, AP_2, L_2)$. Konstruujeme automat $A_M = (Loc_M, Act_M, C_M, \rightarrow_M, Loc_0, Inv_M, AP_M, L_M)$, kde:

- \circ Loc_M = Loc₁ \cup Loc₂
- $\circ \quad Act_{M} = Act_{1} \cup Act_{2}$
- $\circ \quad C_M = C_1 \cup C_2$
- $\bigcirc \quad Loc0_M = Loc0_1 \cup Loc0_2$
- \circ Inv_M = Inv₁U Inv₂
- $\circ \quad AP_M = AP_1 \cup AP_2$
- $\circ \quad L_M = L_1 \cup L_2$
- \circ Loc_{accM} = Loc_{acc1} U Loc_{acc2}

Příklad číslo 3

- Je dostupný stav, ve kterém platí predikát *error*? Ano, predikát *error* je platný ve stavu D. Stav D je dostupný např. během: $(A, x=0, y=0) \xrightarrow{0.5, \text{ mince}} (B, x=0.5, y=0.5) \xrightarrow{0.2, \text{ volba_kava}} (C, x=0.7, y=0) \xrightarrow{1.5, \text{ chyba}} (D, x=2.2, y=1.5).$
- $A_2 = \exists (run \ U^{<2} \ error)$: ano, platí. $(A, x=0, y=0)^{-0.01, \, mince} \rightarrow (B, x=0, y=0.01)^{-0.01, \, volba_kava} \rightarrow (C, x=0.01, y=0)^{-1.01, \, chyba} \rightarrow (D, x=1.02, y=1.01)$.
- (B, x=y=0) |= \forall (run U^{<2} init): Ne. (B, x=0, y=0) $^{-3, \text{ timeout}} \rightarrow$ (A, x=3, y=3)