Representation Theory I

Jendrik Stelzner April 10, 2015

Contents

1 Basic Definitions 2

1 Basic Definitions

Definition. A k-Lie algebra is a vector space $\mathfrak g$ (over some field k) together with a k-bilinear map

$$[\cdot,\cdot]\colon \mathfrak{g} imes \mathfrak{g} o \mathfrak{g}$$

satisfying the following:

- 1. $[\cdot,\cdot]$ is alternating, i.e. [x,x]=0 for every $x\in\mathfrak{g}$.
- 2. The Jacobi identity

$$[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$$
 for all $x, y, z \in \mathfrak{g}$.

 $[\cdot,\cdot]$ is called a *Lie bracket*.

Remark. $[\cdot,\cdot]$ is antisymmetric, i.e. [y,x]=-[x,y] for all $x,y\in\mathfrak{g}$, because

$$0 = [x + y, x + y] = [x, x] + [x, y] + [y, x] + [y, y] = [x, y] + [y, x].$$

Definition. Let A be a k-algebra. A derivation of A is a k-linear map $d\colon A\to A$ such that

$$d(ab) = d(a)b + ad(b)$$
 for all $a, b \in A$.

We set

$$Der(A) := \{d : A \to A \mid d \text{ is a derivation of } A\}.$$

Remark. Der(A) is clearly a k-vector space.

Examples. 1. Any vector space V becomes a Lie algebra via

$$[x,y] = 0$$
 for all $x, y \in V$.

2. Any associative k-algebra A becomes a Lie algebra via

$$[a, b] = ab - ba$$
 for all $a, b \in A$.

It is clear that $[\cdot,\cdot]$ is alternating and the Jacobi identity can be verified by some easy calculation.

In particular $M_n(k)$ is a Lie algebra via

$$[A, B] = AB - BA$$
 for all $A, B \in M_n(k)$.

This is called the *general linear Lie algebra* and is denoted by $\mathfrak{gl}_n(k)$ or $\mathfrak{gl}(n,k)$.

More generally for any k-vector space the space $\mathrm{End}_k(V)$ becomes a Lie algebra via

$$[\varphi_1, \varphi_2] := \varphi_1 \circ \varphi_2 - \varphi_2 \circ \varphi_1 \quad \text{for all } \varphi_1, \varphi_2 \in \text{End}_k.$$

This is called the $\mathit{general\ linear\ Lie\ algebra\ for\ }V$ and is denoted by $\mathfrak{gl}(V).$

3. Let A be a k-algebra. Der(A) is a Lie algebra via

$$[d,d'] := d \circ d' - d' \circ d \quad \text{for all } d,d' \in \operatorname{Der}(A).$$

Is is an easy calculation to show that [d,d'] is again a derivation. Notice that the Jacobi identity for $\mathrm{Der}(A)$ follows from the Jacobi identity for $\mathfrak{gl}(A)$.

We will now look at how to construct new Lie algebras from old ones.

Definition. Let \mathfrak{g}_1 and \mathfrak{g}_2 be Lie algebras over the same field k. Then the *product* of \mathfrak{g}_1 and \mathfrak{g}_2 is defined as the k-vector space $\mathfrak{g}_1 \times \mathfrak{g}_2$ together with the Lie bracket

$$[(x_1, y_1), (x_2, y_2)] = ([x_1, x_2], [y_1, y_2])$$
 for all $(x_1, y_1), (x_2, y_2) \in \mathfrak{g}_1 \times \mathfrak{g}_2$.

Let $\mathfrak g$ be a Lie algebra over k and A an associative, commutative k-algebra. Then $\mathfrak g \otimes_k A$ is a Lie algebra via

$$[x \otimes a, y \otimes b] = [x, y] \otimes (ab)$$
 for all $x, y \in \mathfrak{g}$ and $a, b \in A$.

Definition. Let $\mathfrak g$ be a Lie algebra and $A=k[t,t^{-1}]$ be the algebra of Laurent polynomials over k. Then

$$\mathcal{L}(\mathfrak{g}) := \mathfrak{g} \otimes_k A$$

with the Lie bracket as above is called the *loop (Lie) algebra* of g.

Another example of construction new Lie algebras from old ones are *central extensions*: Let \mathfrak{g} be any k-Lie algebra.

$$\tilde{\mathfrak{g}} := \mathfrak{g} \otimes k = \{ x + \lambda c \mid x \in \mathfrak{g}, \lambda \in k \},\$$

where we understand c as a formal variable. Suppose that $\kappa \colon \mathfrak{g} \times \mathfrak{g} \to k$ is a k-bilinear map satisfying the following properties:

- 1. κ is antisymmetric, i.e. $\kappa(x,y) = -\kappa(y,x)$ for all $x,y \in \mathfrak{g}$.
- 2. The 2-cocycle condition

$$\kappa([x,y],z) + \kappa([y,z],x) + \kappa([z,x],y) = 0$$
 for all $x,y,z \in \mathfrak{g}$.

Then $\tilde{\mathfrak{g}}$ becomes a Lie algebra via

$$[x + \lambda c, y + \mu c] := [x, y] + \kappa(x, y)\lambda\mu c.$$

Note that c is central in $\tilde{\mathfrak{g}}$ in the sense that [x,c]=0 for all $x\in\mathfrak{g}$.

Example. Let $\mathfrak{g} = \mathfrak{gl}_n(k)$. We define a symmetric bilinear form on \mathfrak{g} via

$$(A, B)_{tr} = tr(AB).$$

We define a bilinear form

$$\mathcal{L}(\mathfrak{g}) \times \mathcal{L}(\mathfrak{g}) \to k[t, t^{-1}], (x \otimes p, y \otimes q) \mapsto (x, y)_{tr} pq$$

We now get a 2-cocycle $\kappa \colon \mathcal{L}(\mathfrak{g}) \times \mathcal{L}(\mathfrak{g}) \to k$ via

$$\kappa(a,b) \coloneqq \operatorname{Res}\left(\frac{\partial a}{\partial t},b\right).$$

 κ is also antisymmetric: Let $a=x\otimes t^i$ and $b=y\otimes t^j$ with $x,y\in\mathfrak{g}$ and $i,j\in\mathbb{Z}$. Then

$$\begin{split} \kappa(x\otimes t^i,y\otimes t^j) &= \operatorname{Res}(ix\otimes t^{i-1},y\otimes t^j) = \operatorname{Res}(it^{i+j-1}(x,y)_{\operatorname{tr}}) \\ &= \begin{cases} i(x,y)_{\operatorname{tr}} & \text{if } i+j=0,\\ 0 & \text{otherwise.} \end{cases} \end{split}$$

In the same way we find that

$$\kappa(y \otimes t^j, x \otimes t^i) = \begin{cases} j(x, y)_{\mathrm{tr}} & \text{if } i + j = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Since $(\cdot, \cdot)_{tr}$ is symmetric we find that

$$\begin{split} \kappa(x \otimes t^i, y \otimes t^j) &= \begin{cases} i(x,y)_{\mathrm{tr}} & \text{if } i+j=0, \\ 0 & \text{otherwise,} \end{cases} \\ &= \begin{cases} -j(x,y)_{\mathrm{tr}} & \text{if } i+j=0, \\ 0 & \text{otherwise,} \end{cases} \\ &= -\kappa(y \otimes t^j, x \otimes t^i). \end{split}$$

As for all algebraic structures morphisms are of interest.

Definition. Given k-Lie algebras \mathfrak{g}_1 and \mathfrak{g}_2 a homomorphism of Lie algebras $\mathfrak{g}_1 \to \mathfrak{g}_2$ is a k-linear map $f : \mathfrak{g}_1 \to \mathfrak{g}_2$ such that

$$f([x,y]) = [f(x), f(y)]$$
 for all $x, y \in \mathfrak{g}_1$.

Examples. 1. For any Lie algebra $\mathfrak g$ the identity $\mathrm{id}_{\mathfrak g}\colon \mathfrak g\to \mathfrak g$ is a Lie algebra homomorphism.

2. Given Lie algebras \mathfrak{g}_1 , \mathfrak{g}_2 and \mathfrak{g}_3 and Lie algebra homomorphisms $f_1 \colon \mathfrak{g}_1 \to \mathfrak{g}_2$ and $f_2 \colon \mathfrak{g}_2 \to \mathfrak{g}_3$ the composition $f_2 \circ f_1 \colon \mathfrak{g}_1 \to \mathfrak{g}_3$ is also a homomorphism of Lie algebras.

Remark. We find that we have a category of k-Lie algebras.

Definition. Let \mathfrak{g} be a k-Lie algebra. A representation of \mathfrak{g} is a k-vector space V together with a homomorphism of Lie algebras $\rho \colon \mathfrak{g} \to \mathfrak{gl}(V)$.

Remark. Equivalently a representation of $\mathfrak g$ is a k-vector space V together with a k-bilinear map $\mathfrak g \times V \to V, (x,v) \mapsto x.v$ such that

$$x.y.v - y.x.v = [x, y].v$$
 for all $x, y \in \mathfrak{g}$ and $v \in V$.

Definition. Let \mathfrak{g} be a Lie algebra. Then

ad:
$$\mathfrak{g} \to \mathfrak{gl}(\mathfrak{g}), x \mapsto [x, \cdot]$$

is called the adjoint representation of g.

Remark. That ad is a homomorphism of Lie algebras is equivalent to

$$\mathrm{ad}([x,y])(z) = [\mathrm{ad}(x),\mathrm{ad}(y)](z) \quad \text{for all } x,y,z \in \mathfrak{g}.$$

Because

$$ad([x,y])(z) = [[x,y],z] = -[z,[x,y]]$$

and

$$[ad(x), ad(y)](z) = (ad(x) \circ ad(y))(z) - (ad(y) \circ ad(x))(z)$$
$$= [x, [y, z]] - [y, [x, z]] = [x, [y, z]] + [y, [z, x]]$$

this is equivalent to the Jacobi identity.

Definition. Let $\mathfrak g$ be a k-Lie algebra. A Lie subalgebra of a $\mathfrak g$ is a k-linear subspace $L\subseteq \mathfrak g$ such that

$$[x, y] \in L$$
 for all $x, y \in L$.

An ideal inside $\mathfrak g$ is a k-linear subspace $I\subseteq \mathfrak g$ such that

$$[x,y] \in I \quad \text{for all } x \in \mathfrak{g} \text{ and } y \in I.$$

We denote ideals by $I \lhd \mathfrak{g}$.

Notice that any ideal is also a Lie subalgebra.

Remark. If $\mathfrak g$ is a Lie algebra and $I \lhd \mathfrak g$ then the quotient vector space $\mathfrak g/I$ is also a Lie algebra via

$$[x + I, y + I] = [x, y] + I.$$

It is easy to see that this bilinear map is well-defined. The properties for the Lie bracket on \mathfrak{g}/I follow from the ones for the Lie bracket on \mathfrak{g} .

From the definition of the Lie bracket on \mathfrak{g}/I it is clear that the canonical projection $\pi\colon \mathfrak{g}\to \mathfrak{g}/I$ is a homomorphism of Lie algebras.

We have the usual theorems about homomorphisms and ideals.

Proposition 1. Let \mathfrak{g}_1 and \mathfrak{g}_2 be Lie algebras and $f \colon \mathfrak{g}_1 \to \mathfrak{g}_2$ a homomorphism of Lie algebras.

- 1. $\ker f \lhd \mathfrak{g}_1$ is an ideal.
- 2. im $f \subseteq \mathfrak{g}_2$ is a Lie subalgebra.
- 3. If $I \lhd \mathfrak{g}_1$ is an ideal with $\ker f \subseteq I$ then there exists a unique homomorphism of Lie algebras $\tilde{f} \colon \mathfrak{g}_1/I \to \mathfrak{g}_2$ with $f = \tilde{f} \circ \pi$ where $\pi \colon \mathfrak{g}_1 \to \mathfrak{g}_1/I$ is the canonical projection.

