

CSE 473/573-A L14: STEREO MATCHING

Chen Wang
Spatial AI & Robotics Lab
Department of Computer Science and Engineering

University at Buffalo The State University of New York

Many Slides from Lana Lazebnik

Assume Rectified Stereo Images

STEREO VISION

Essential / Fundamental Matrix

Coordinates in 2-D (Recap)

Cartesian / homogeneous coordinates of point p

$$\boldsymbol{p} = \begin{bmatrix} \boldsymbol{x} \\ \boldsymbol{y} \end{bmatrix} \qquad \begin{bmatrix} \boldsymbol{u} \\ \boldsymbol{v} \\ \boldsymbol{w} \end{bmatrix} \qquad \boldsymbol{x} = \boldsymbol{u} / \boldsymbol{w} \\ \boldsymbol{y} = \boldsymbol{v} / \boldsymbol{w}$$

 Homogeneous coordinate vector are equivalent if they are proportional to each other

$$\begin{bmatrix} u \\ v \\ w \end{bmatrix} \equiv \begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} \iff \begin{bmatrix} u \\ v \\ w \end{bmatrix} \equiv \lambda \begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} \quad \lambda \neq 0$$

Cross product (Recap)

• Cross product of two 3D vector $\mathbf{a} \times \mathbf{b} = \hat{n} |\mathbf{a}| |\mathbf{b}| \sin \theta$

$$\mathbf{a} \times \mathbf{b} = (a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}) \times (b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k})$$

$$= a_1 b_1 (\mathbf{i} \times \mathbf{i}) + a_1 b_2 (\mathbf{i} \times \mathbf{j}) + a_1 b_3 (\mathbf{i} \times \mathbf{k}) +$$

$$a_2 b_1 (\mathbf{j} \times \mathbf{i}) + a_2 b_2 (\mathbf{j} \times \mathbf{j}) + a_2 b_3 (\mathbf{j} \times \mathbf{k}) +$$

$$a_3 b_1 (\mathbf{k} \times \mathbf{i}) + a_3 b_2 (\mathbf{k} \times \mathbf{j}) + a_3 b_3 (\mathbf{k} \times \mathbf{k})$$

$$\mathbf{a} imes\mathbf{b}=egin{array}{cccc} \mathbf{i} & \mathbf{j} & \mathbf{k}\ a_1 & a_2 & a_3\ b_1 & b_2 & b_3 \ \end{array}$$

Skew-symmetric Matrix

$$\mathbf{a} imes \mathbf{b} = [\mathbf{a}]_ imes \mathbf{b} = egin{bmatrix} 0 & -a_3 & a_2 \ a_3 & 0 & -a_1 \ -a_2 & a_1 & 0 \end{bmatrix} egin{bmatrix} b_1 \ b_2 \ b_3 \end{bmatrix} & [\mathbf{a}]_ imes = egin{bmatrix} 0 & -a_3 & a_2 \ a_3 & 0 & -a_1 \ -a_2 & a_1 & 0 \end{bmatrix}$$

Properties:

$$a^{T}(a \times b) = b^{T}(a \times b) = 0$$

Essential Matrix

Due to cross product properties

$$\bullet \overrightarrow{OP} \cdot \left(\overrightarrow{OO'} \times \overrightarrow{O'P} \right) = 0$$

- In homogeneous coordinates:
 - transform O to align O'
- Then direction of \hat{p}' in O is $R\hat{p}'$

$$\bullet \, \widehat{\boldsymbol{p}}^T(\boldsymbol{t} \times R \, \widehat{\boldsymbol{p}}') = 0$$

$$\bullet \widehat{\boldsymbol{p}}^T([\boldsymbol{t}]_{\times}R)\widehat{\boldsymbol{p}}' = 0$$

$$\hat{\mathbf{p}}^T \mathbf{E} \hat{\mathbf{p}}' = 0$$

$$\mathbf{E} = [\mathbf{t}]_{\times} \mathbf{R}$$

Essential Matrix

Epipolar constraint: Calibrated case

$$x' \cdot [t \times (Rx)] = 0$$
 \longrightarrow $x'^T [t_{\times}] Rx = 0$ \longrightarrow $x'^T Ex = 0$

$$\mathbf{x}'^T[\mathbf{t}_{\times}]\mathbf{R}\mathbf{x} = 0$$

$$\mathbf{x}'^T E \mathbf{x} = 0$$

Essential Matrix

(Longuet-Higgins, 1981)

Epipolar constraint: Calibrated case

- Ex is the epipolar line associated with x' (l' = Ex)
- $E^T x'$ is the epipolar line associated with x ($l = E^T x'$)
- Ee = 0 and $E^Te' = 0$
- E is **singular** (rank two)
- $E = [t_{\times}]R$ has five degrees of freedom

2T + 3R

• Recall: a line is given by ax + by + c = 0 or

Epipolar constraint: Uncalibrated case

- The calibration matrices K and K' are unknown.
- We can write the epipolar constraint in terms of unknown normalized coordinates:

$$\hat{\boldsymbol{x}}'^T \boldsymbol{E} \, \hat{\boldsymbol{x}} = 0$$

$$\hat{\boldsymbol{x}} = \boldsymbol{K}^{-1}\boldsymbol{x}, \quad \hat{\boldsymbol{x}}' = \boldsymbol{K}'^{-1}\boldsymbol{x}'$$

Epipolar constraint: Uncalibrated case

$$\hat{\boldsymbol{x}}'^T \boldsymbol{E} \, \hat{\boldsymbol{x}} = 0$$

$$\mathbf{x}'^T \mathbf{F} \mathbf{x} = 0$$

$$\hat{\boldsymbol{x}}'^T \boldsymbol{E} \hat{\boldsymbol{x}} = 0$$
 $\longrightarrow \boldsymbol{x}'^T \boldsymbol{F} \boldsymbol{x} = 0$ with $\boldsymbol{F} = \boldsymbol{K}'^{-T} \boldsymbol{E} \boldsymbol{K}^{-1}$

$$\hat{\boldsymbol{x}} = \boldsymbol{K}^{-1} \boldsymbol{x}$$

$$\hat{\boldsymbol{x}}' = \boldsymbol{K}'^{-1} \boldsymbol{x}'$$

Fundamental Matrix

(Faugeras and Luong, 1992)

Epipolar constraint: Uncalibrated case

- Fx is the epipolar line associated with x' (l' = Fx)
- $F^T x'$ is the epipolar line associated with $x (l = F^T x')$
- Fe = 0 and $F^Te' = 0$
- F is singular (rank two)
- F has seven degrees of freedom (5E + 2K)

Estimating the Fundamental Matrix: 8-point algorithm

- Solve a system of homogeneous linear equations
 - a. Write down the system of equations

$$\mathbf{x}^T F \mathbf{x}' = 0$$

$$uu'f_{11} + uv'f_{12} + uf_{13} + vu'f_{21} + vv'f_{22} + vf_{23} + u'f_{31} + v'f_{32} + f_{33} = 0$$

$$\mathbf{A}\boldsymbol{f} = \begin{bmatrix} u_{1}u_{1}' & u_{1}v_{1}' & u_{1} & v_{1}u_{1}' & v_{1}v_{1}' & v_{1} & u_{1}' & v_{1}' & 1 \\ \vdots & \vdots \\ u_{n}u_{v}' & u_{n}v_{n}' & u_{n} & v_{n}u_{n}' & v_{n}v_{n}' & v_{n} & u_{n}' & v_{n}' & 1 \end{bmatrix} \begin{bmatrix} f_{11} \\ f_{12} \\ f_{13} \\ f_{21} \\ \vdots \\ f_{33} \end{bmatrix} = \mathbf{0}$$

• b. Solve f from Af = 0 using SVD (refer to Project 1).

Q & A

- Why do we need 4 points for homography but 7/8 points for fundamental matrix calculation?
 - In the case of fundamental matrix, each point relates to only one constraint, while in homograph, each point is related to two constraints.
- Can we use 7 points solve fundamental matrix?
 - In fact, the fundamental matrix only has 7 degrees of freedom. In this case, the rank-2 constraint must be enforced during the computations.

13

Estimating the Fundamental Matrix

- 8-point algorithm
 - Least squares solution using SVD on equations from 8 pairs of correspondences.
- 7-point algorithm
 - least squares to solve for null space (two vectors) using SVD and 7 pairs of correspondences.
 - Solve for linear combination of null space vectors that satisfies det(F) = 0
- Minimize reprojection error
 - Non-linear least squares
- Note: estimation of F (or E) is degenerate for a planar scene.

Correspondence Search

- Other "soft" constraints (To cover)
 - 1. Similarity
 - 2. Uniqueness
 - 3. Disparity gradient
 - 4. Ordering

- To find matches in the image pair, we will assume
 - Most scene points visible from both views
 - Matched regions are similar in appearance

Dense correspondence search

 Neighborhoods of corresponding points are similar in intensity patterns.

Intensity profiles

Intensity profiles

Clear correspondence between intensities, but also noise and ambiguity

Source: Andrew Zisserman

Dense correspondence search

- For each epipolar line
 - For each pixel / window in the left image
 - Compare with every pixel / window on same epipolar line
 - Pick position with minimum match cost
 - SSD, normalized correlation

Similarity constraints

- Slide a window along the right scanline and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized correlation

Similarity constraints: SSD

Similarity constraints: Norm. Corr.

Correlation-based window matching

left image band (x)

right image band (x/)

cross correlation

disparity = $x^{/}$ - x

Correlation-based window matching

Sub-pixel disparity estimation

Let S be the SSD

•
$$S(d) = ad^2 + bd + c$$

•
$$S(0) = c$$

•
$$S(1) = a + b + c$$

•
$$S(-1) = a - b + c$$

Solving this, we obtain:

•
$$a = (S(1) + S(-1) - 2S(0))/2$$

•
$$b = (S(1) - S(-1))/2$$

•
$$c = S(0)$$

$$\cdot S'(d) = 2ad + b = 0$$

$$d_{opt} = \frac{(S(-1) - S(1))}{2(S(1) + S(-1) - 2S(0))}$$

Effect of window size

Source: Andrew Zisserman

Effect of window size

- large enough to have sufficient intensity variation
- small enough to contain only pixels with about the same disparity.

$$W = 3$$

W = 20

Uniqueness constraint

Up to one match in right image for every point in left image

Problem: Occlusion

- Uniqueness says "up to one match" per pixel
- What if there is no match?

Disparity gradient constraint

 Assume piecewise continuous surface, so we want disparity estimates to be locally smooth

Right image

Given matches ● and ○, point ○ in the left image must match point 1 in the right image. Point 2 would exceed the disparity gradient limit.

Ordering constraint

 Points on same surface (opaque object) will be in same order in both views

Ordering constraint

 Won't always hold, e.g., consider transparent object, or an occluding surface

Results with window search

Ground truth

Better solutions

- Beyond individual correspondences estimation
- Optimize correspondence assignments jointly
 - Scanline at a time (DP)
 - Full 2D grid (graph cuts)

Stereo as energy minimization

- What defines a good stereo correspondence?
 - Match quality
 - Want each pixel to find a good match in the other image
 - Smoothness
 - Adjacent pixels often move about the same amount.

Stereo matching as energy minimization

 Energy functions of this form can be minimized using graph cuts

$$E = \alpha E_{\text{data}}(I_1, I_2, D) + \beta E_{\text{smooth}}(D)$$

$$E_{\text{data}} = \sum_{i} (W_1(i) - W_2(i + D(i)))^2$$

$$E_{\text{smooth}} = \sum_{\text{neighbors}i,j} \rho \left(D(i) - D(j) \right)$$

Better results...

Graph cut method

Ground truth

Challenges

- Low-contrast
 - Textureless image regions
- Occlusions
- Violations of brightness constancy
 - e.g., specular reflections
- Really large baselines
 - Foreshortening and appearance change
- Camera calibration errors

Data-driven Stereo Matching

- Data-driven estimated terms in energy minimization.
 - Disparity Proposal Network
 - Neural message passing

