Homework 0

Due February 9 at 11 pm

- 1. (Projections) Are the following statements true or false? Prove that they are true or provide a counterexample.
 - (a) The projection of a vector on a subspace S is equal to

$$\mathcal{P}_{\mathcal{S}} x = \sum_{i=1}^{n} \langle x, b_i \rangle b_i$$

for any basis b_1, \ldots, b_d of \mathcal{S} .

- (b) The orthogonal complement of the orthogonal complement of a subspace $S \subseteq \mathbb{R}^n$ is S.
- (c) Replacing each entry of a vector in \mathbb{R}^n by the average of all its entries is equivalent to projecting the vector onto a subspace.
- 2. (Eigendecomposition) The populations of deer and wolfs in Yellowstone are well approximated by

$$d_{n+1} = \frac{5}{4}d_n - \frac{3}{4}w_n,\tag{1}$$

$$w_{n+1} = \frac{1}{4}d_n + \frac{1}{4}w_n, \qquad n = 0, 1, 2, \dots,$$
 (2)

where d_n and w_n denote the number of deer and wolfs in year n. Assuming that there are more deer than wolfs to start with $(w_0 < d_0)$, what is the proportion between the numbers of deer and wolfs as $n \to \infty$?

3. (Function approximation) In this problem we will work in the real inner product space $L^2[-1,1]$ given by

$$L^{2}[-1,1] = \left\{ f : [-1,1] \to \mathbb{R} \mid \int_{-1}^{1} f(x)^{2} dx < \infty \right\}.$$

On this space, the inner product is given by

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx.$$

In the following exercises, you may use a computer to perform the integral calculations.

(a) The functions $\{1, x, x^2\}$ form a basis for the 3-dimensional subspace P_2 of $L^2[-1, 1]$ consisting of the polynomials of degree at most 2. Give the orthonormal basis for P_2 obtained by applying Gram-Schmidt to this set of functions.

1

(b) Compute the orthogonal projection of $f(x) = \cos(\pi x/2)$ onto P_2 .

(c) Plot $f(x) = \cos(\pi x/2)$, $\mathcal{P}_{P_2}f$, and T_2f on the same axis. Here $\mathcal{P}_{P_2}f$ is the projection computed in the previous part, and T_2f is the quadratic Taylor polynomial for f centered at x = 0:

$$T_2 f(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2.$$

Include this plot in your submitted homework document.

- (d) The plot from the previous part shows that $\mathcal{P}_{P_2}f$ is a better approximation than T_2f over most of [-1,1]. Explain why this is the case.
- 4. (Scalar linear estimation)
 - (a) Let \tilde{x} be a random variable with mean $\mu_{\tilde{x}}$ and variance $\sigma_{\tilde{x}}^2$, and \tilde{y} a random variable with mean $\mu_{\tilde{y}}$ and variance $\sigma_{\tilde{y}}^2$. The correlation coefficient between them is $\rho_{\tilde{x},\tilde{y}}$. What values of $a, b \in \mathbb{R}$ minimize the mean square error $E[(a\tilde{x} + b \tilde{y})^2]$? Express your answer in terms of $\mu_{\tilde{x}}$, $\sigma_{\tilde{x}}$, $\mu_{\tilde{y}}$, $\sigma_{\tilde{y}}$, and $\rho_{\tilde{x},\tilde{y}}$.
 - (b) Let $\tilde{x} = \tilde{y}\tilde{z}$, where \tilde{y} has mean $\mu_{\tilde{y}}$ and variance $\sigma_{\tilde{y}}^2$, and \tilde{z} has mean zero and variance $\sigma_{\tilde{z}}^2$. If \tilde{y} and \tilde{z} are independent, what is the best linear estimate of \tilde{y} given \tilde{x} ?
 - (c) Assume \tilde{y} is positive with probability one. Can you think of a zero-mean random variable \tilde{z} such that \tilde{y} can be estimated perfectly from \tilde{x} in the previous question?
- 5. (Gradients) Recall that the entries of the gradient of a function are equal to its partial derivatives. Use this fact to:
 - (a) Compute the gradient of f(x) = bx where $b \in \mathbb{R}^d$ and $f : \mathbb{R}^d \to \mathbb{R}$.
 - (b) Compute the gradient of $f(x) = x^T A x$ where $A \in \mathbb{R}^{d \times d}$ and $f : \mathbb{R}^d \to \mathbb{R}$.