WEEK ASSIGNMENT 5

Fatemeh Jafari (10663637)

Task 1

Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absolute humidity, the wet-bulb temperature and the mass of water vapor in the air in Classroom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Umidità: Relative humidity, Pressione atmosferica: Air total pressure (1 hPa: 0.1 kPa), Temperatura effettiva: temperature to be utilized.

Il tempo oggi in Piacenza Lunedi, 02 Dicembre 2019											
	13:00	14:00	16:00	18:00	20:00	21:00	22:00				
	*	*	*	*							
	PartlyCloud	PartlyCloud	LightCloud	LightCloud	PartlyCloud	Cloud	PartlyCloud				
Temperatura effettiva	10°C	10°C	9°C	6°C	7°C	7°C	8°C				
Temperatura percepita	10°C	10°C	8°C	5°C	7°C	6°C	7°C				
Precipitazioni	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm				
Umidità	79 %	77 %	89 %	90 %	90 %	92 %	91 %				
Pressione atmosferica	1016 hPa	1015 hPa	1016 hPa	1017 hPa	1019 hPa	1019 hPa	1020 hPa				

umidità: 90%, i.e., the relative humidity $\phi = 90\%$;

pressione atmosferica: 1019 hPa, i.e., the total air pressure P = 101.9 kPa;

temperatura effttiva: 7 °C, i.e., the temperature in Kelvin temperature scale T =230 K

the humidity ratio, i.e., the absolute humidity $\omega = 0.0055$

the web-bulb temperature Twb= 6 °C

 $\omega = 0.622P_v/P_a = 0.622P_v/P - P_v = 0.0055$, introduce P=101.9 kPa into this equation, and solve it,

 $P_v \approx 0.893 \text{ kPa}$

autem,
$$\phi=m_v/m_g=90\%.....(1)$$
 for any ideal gas,

m=PV/ R_{sp} .T , during the class we were told that for water vapour, R_{sp} .=0.4615 introduce the pressure of water vapor Pv=0.893 kPa, and define the volume of aula A is V, here we have:

$$\begin{split} m_v &= 0.893 V/0.4615*230 \approx &8.41\times 10^{-3} V \\ subodinate this value to equotion (1), calculate the maximum water vapour <math display="inline">m_g, \\ m_g &= m_v/90\% \approx &9.34\times 10^{-3} V \end{split}$$

Task 2

Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry (height of 2.5 m, considering two occupants and one bed room calculate, and a conditioned floor area of 200 m²and wall area is 144 m², calculate the internal gains, infiltration, and ventilation loads) as that of the example which is located in Brindisi, Italy.

	BRINDISI, Italy												WMO#:	163200			
	Lat	40.65N	Long:	17.95E	Ele	r: 10	StdP:	101.2		Time Zone:	1.00 (EU	W)	Period:	86-10	WBAN:	99999	
	Annual He	eating and H	lumidificat	ion Design C	onditions												
					Hu	midification D	P/MCDB and	HR		Coldest month WS/MCDB MCWS					/PCWD	1	
	Coldest Heating DB Month			99.6%			99%	0.4%			1	1% to 99		9.6% DB			
		99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD]	
	(a)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(1)	(j)	(k)	(1)	(m)	(n)	(0)		
(1)	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		(1)
	Annual Co	ooling, Dehu	ımidificatio	on, and Enth	alpy Desig	n Condition	\$										
	Hottest	Hottest			Cooling	DB/MCWB		Evaporation WB/MCDB						MCWS/PCWD			
Hottest Month											2% to 0.4% DB						
		DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	
	(a)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
(2)	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180	(2)
				Dehumidific		MCDB and Hi	R			Enthalpy/MCDB						Hours	
	DP	0.4%	MCDB	0.0	1%	MCDB	DP	2%	MCDB		4% MCDB		%		%	8 to 4 &	
		HR		DP	HR			HR		Enth		Enth	MCDB	Enth	MCDB	12.8/20.6	
(3)	(a) 26.3	(b) 21.8	(c) 29.2	(d) 25.4	(e) 20.7	28.5	(g) 24.7	(h) 19.7	(i) 27.9	(j) 86.0	(k) 30.1	82.2	(m) 29.1	(n) 78.5	(o) 28.3	(p) 1236	(3)
	Extreme A	Annual Desig	an Conditi	ons													
	Extr	Extreme Annual WS Extreme Extreme Annual DB						n-Year Return Period Values of Extreme DB									
		Max		Mean	Standard			years	n=10 Min	years	n=20 Min	years Max	n=50 Min				
	1%	2.5% (b)	5% (c)	WB (d)	Min (e)	Max (f)	Min (g)	Max (h)	Min (i)	Max (j)	(k)	Max (1)	(m)	(n)	(o)	Max (p)	
(4)	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	(4)

Internal gains,

Calculate the sensibile cooling load from internal gains,

$$q_{ig. s} = 136 + 2.2 A_{cf} + 22 Noc = 136 + 2.2 \times 200 + 22 \times 2 = 620 W$$

Calculate the latent cooling load from internal gains,

$$q_{ig,\,l}\!\!=\!\!20\!+\!0.22A_{cf}\!+\!12Noc\!\!=\!\!20\!+\!0.22\!*\!200\!+\!12\!*\!2\!\!=\!\!88\;W$$

Infiltration

for a house with a good construction quality, unit leakage area $A_{ul}=1.4cm^2/m^2$ and the exposed surface $A_{es}=A_{wall}+A_{roof}=200+144=344~m^2$ thus, $AL=A_{es}*A_{ul}=344*1.4=481.6~cm^2$

Define the cooling temperature T_{cooling} =24 °C, and heating temperature T_{heating} =20 °C

$$\Delta$$
 T_{cooling}=31.1 °C -24 °C=7.1 °C=7.1 K

$$DR = 7.1 \, ^{\circ}C = 7.1 \, K$$

Given that IDF_{heating}=0.073L/s*cm²,

$$IDF_{cooling}=0.033L/s*cm^2$$
,

Calculate infiltration airflow rate,

$$Q_{i, heating} = A_L * IDF_{heating} = 481.6 * 0.073 \approx 35.157 L/s$$

$$Q_{i, cooling} = A_L * IDF_{cooling} = 481.6 * 0.033 \approx 15.893 L/s$$

The required miminum whole-building vetilation rate is

$$Q_v = 0.05A_{cf} + 3.5(N_{br} + 1) = 0.05*200 + 3.5*(1+1) = 17L/s$$

So we have,

$$Q_{i-v,heating} = Q_{i, heating} + Q_v \approx 35.157 + 17 = 52.157 L/s$$

$$Q_{i-v,\;cooling}\!\!=\!\!Q_{i,\;cooling}\!\!+\!Q_v\!\!\approx\!\!15.893\!+\!17\!\!=\!\!32.893L/s$$

Given that $C_{\text{sensible}}=1.23$, $C_{\text{latent}}=3010$, $\Delta\omega_{\text{Cooling}}=0.0039$

$$q_{inf-ventilation\ cooling\ sensible} = C_{sensible} Q_{i-v}, \\ cooling\ \Delta T_{Cooling} \approx 1.23\ *32.893*7.1 \approx 287.25\ W$$

$$qinf -_{ventilation\ cooling\ latent} = C_{latent}Q_{i-v,\ cooling} \quad \Delta\omega_{Cooling} \approx 3010\ *32.893\ *\ 0.0039 \approx 386.13\ W$$

$$qinf -_{ventilation\ heating\ sensible} = C_{sensible}Q_{i-v,\ heating} \quad \Delta T_{heating} \approx 1.23\ *52.157*24.1 \approx 1546.09\ W$$