NIREYX EDUCATIONAL CONSULTS

For more summary contact us via whatsapp or call

07069089254 / 09036598286

CHM 101 INTRODUCTORY INORGANIC CHEMISTRY SUMMARY

, from the very beginning have attempted to systematize the knowledge the	ey
gain through their observations and experiments.	
Scientists	
Scientists, from the very beginning have attempted to systematize the knowledge they gain	in
through their and experiments.	
Observations	
Scientists, from the very beginning have attempted to systematize the knowledge they gaithrough their observations and	in
Experiments	
By the mid century more than 60 elements were known 19th	
By the mid-19th century, more than elements were already discovered 60	
The elements are divided into and non metals Metals	

The elements are divided intoand
Metals and non metals
Metallic elements have the following properties which include
 lustrous malleability ductility conduct heat and electricity metallic elements form basic oxides
Non-metallic elements have no characteristic appearance. True
The following are the properties of non-metals
 They are brittle that is they break easily.
 They are poor conductors of electricity and heat. They form acidic oxides.
Those elements that possess properties intermediate between metals and non-metals are called metalloids
In, J W Dobereiner observed that there exist certain groups of three elements called TRIADS 1829
In 1829, J W Dobereiner observed certain groups of three elements called TRIADS
J W Dobereiner also observed that elements in triad not only had similar properties, but also

J W Dobereiner also observed that elements in triad not only had similar properties, but also the atomic weight of the middle element was approximately an average of the atomic weights of the other two elements of the triad.

A few examples cited by him were: Li, Na, K, Ca, Sr, Ba, S, Se, Te and Cl. Br, I Although, Doberieiner's relationship seems to work only for a few elements, He was the first to point out a systematic relationship among the elements.

In	, A. de Chanourtois arranged the elements in order of increasing atomic weight
on a line w	hich spiralled around a cylinder from bottom to top.
1862	
	arranged the elements in order of increasing atomic weight on a line which
spiralled a	round a cylinder from bottom to top.
A. de Char	nourtois
In	, John Newlands, an English Chemist reported his "Law of Octaves".
 1864	
	, an English Chemist reported his "Law of Octaves".
John New	
	reported his "Law of Octaves"
John New	
Joini New	anas
John Nowl	ands is an English
Chemist	alius is all Liigiisii

He suggested that if the elements were arranged in order of increasing atomic weight, every eighth element would have properties similar to the first element. For example, he arranged the elements in the following manner.

Table 1.1: Arrangement of Elements according to John Newlands

Element	Li	Be	В	C	N	0	F
At Wt	7	9	11	12	14	16	19
Element	Na	Mg	Al	Si	P	S	CI
At Wt	23	24	27	29	31	32	35.5
Element	K	Ca	Ti	Cr			
At Wt	39	40	48	32			

J. Newlands _____ was rejected for two reasons.

Newlands "Law of octaves" was rejected for reasons. Two
Newlands "Law of octaves" was rejected for two reasons. Firstly, it did not hold good for elements heavier than Ca. Secondly, he believed that there existed some mystical connection between music and chemistry.
Which of these scientists played key role in the development of the periodic law? Lothar Meyer and Dmitri Mendeleev
In, Lothar Meyer reported that when physical properties like atomic volume, boiling point 1869
obtained semi curve by plotting atomic volume versus atomic weight Lothar Meyer
The atomic volume behaviour is periodic. True
The atomic volume behaviour is Periodic

Law of octaves

It goes through circles, dropping from a sharp maximum to a minimum and then sharply rising again. Each of the cycles is called a period. The location of element on the peak or in the troughs has an important correlation with their chemical reactivity.

The elements of the peaks (example alkali metals) are the most reactive. Those in the troughs (example noble metals) are characteristically less reactive.

Fig. 1.1 Periodic Dependence of Atomic Volume on Atomic Number

used chemical properties like valence and formulae of hydrides, chloride, and oxides of the elements to illustrate the periodic law. Mendeleev
According to periodic law, if the elements are arranged sequentially in the order of increasing atomic weight, a periodic repetition that is periodicity in properties is observed. Mendeleev's
According to Mendeleev's periodic law, if the elements are arranged sequentially in the order of a periodic repetition that is periodicity in properties is observed. increasing atomic weight
According to Mendeleev'slaw, if the elements are arranged sequentially in the order of increasing atomic weight a periodic repetition that is periodicity in properties is observed. Periodic
arranged elements in horizontal rows and vertical columns in order of increasing atomic weight Mendeleev
The validity of Mendeleev periodic law was dramatically and conclusively proven by the of three out of the more than ten elements predicted by Mendeleev. Discovery

Lecoq de Boisbaudran called the element gallium and said its density was 4.7x103
discovered that Mendeleev was right that the density of gallium was 5.8 x103
kg
Lecoq de Biosbaudran
Who discovered scandium?
Lars Fredrick Nilson
The element germanium was discovered by who? Winkler
discovered that the properties of any element are an average of the properties of its neighbours in the periodic table. Mendeleev
Mendeleev arranged elements in order of atomic Increasing
The periodic table of today has many similarities with that formed by Mendeleev True
Between, Mendeleev improves the arrangement of elements in his periodic table. 1869 -1907
The concept of atomic number was discovered by Henry Moseley
The concept of atomic number in 1913
Mendeleev's Periodic Law states that: "the properties of elements are periodic functions of their atomic numbers".

The arrangement of the elements in order of their increasing atomic number removes most of

the anomalies of Mendeleev's periodic table.

The arrangement of the elements in order of their increasing atomic number removes most of
the of Mendeleev's periodic table.
Anomalies
of an element have the same atomic number
Isotopes
Today, elements (from 1 to 109) have been discovered 109
In the Mendeleev periodic table, elements are arranged in horizontal rows and eight vertical columns. Seven
In the modern form of Mendeleev periodic table, elements are arranged in seven horizontal rows and vertical columns. Eight
NB: Normal and transition elements belonging to A and B subgroup of a group were placed in one and the same column of the table.
IUPAC is an acronym for
International Union of Pure and Applied Chemistry
American and Soviet scientists claimed credit for discovering element 104
American and claimed credit for discovering element 104 Soviet scientists
The Americans named it and the Soviet scientist named it Kurchotovium. Rutherfordium
The Americans named it rutherfordium and the Soviet scientist named it Kurchotovium

Table 2.1: Numerical Root for Atomic Number of Element

0	1	2	3	4	5	6	7	8	9
nil	un	bi	tri	quad	pent	hex	Sept	oct	enn

Table 2.2: The Systematic Names and Symbols of Elements having Z = 101 to 106 Derived by Application of IUPAC Nomenclature Rules

Atomic Number	Systematic Names	Symbol	Trivial Name
101	Unnilunium	Unu	Mendelevium
102	Unnilbium	Unb	Nobelium
103	Unniltrium	Unt	Lawrencium
104	Unnilquadium	Unq	-
105	Unnilpentium	Unp	
106	Unnilhexium	Unh	

The _____ gave rise to the periodic arrangement of the element according to their atomic numbers periodic law

The periodic law gives rise to the periodic arrangement of the element according to their _____ atomic numbers

The electronic configuration of atoms can be predicted with the help of Aufbau or the building up process.

The electronic configuration of the atom in the ground state is then derived by adding electrons one at a time to the orbitals of the lowest energy in the sequence shown by arrows in Table 3.1.

Table 3.1: Order or Filling of Atomic Orbitals in Polyelectronic Atoms

Filling of electrons in orbitals is also governed by Pauli's Exclusion Principle and Hund's rule.

According to ______Principle, no two electrons in the same atom can have the same value of n, 1 and mi

Pauli Exclusion

______states that, as far as possible in a given atom in the ground state, electrons in the same sub shell will occupy different orbitals and will have parallel spins. Hund's rule

Carbon in the ground state has the configuration 1S2 2S2 2Px1 2Py1 rather than 1S2 2S2 2Px2.

Which period is the smallest of all the periods of the table?

Period 1

electronic configuration of hydrogen and helium are 1s1 and 1s2 Period 2contain elements from lithium (Z = 3) to neon (Z F 10). has the electronic configuration of [He] 2S2 2P6 Neon There are _____ period in the Periodic table Elements of the periodic table have been divided into four blocks s, p, d and f The elements of the periodic table have been divided into blocks Four Alkali and alkaline earth metals of groups (1A) and 2(11A) belong to the s-block The d-Block elements are also called ______ transition elements The f-block elements are collectively referred to as ______ elements Inner-transition Elements of 4f series which follow lanthanium in the periodic table are known as Lanthanides Elements of 5f series following actinium are called . **Actinides** f-block elements are also known as _____ elements. inner transition The Pauli Exclusion principles which states that no two electrons in the same atom can have the same value of all four quantum numbers

The Hund's rule which states that as far as possible in a given atom in the ground state, electrons in the same sub shell will occupy different orbitals and will have parallel spins

Hydrogen (Z = 1) and helium (Z = 2) are the two elements belonging to the period. The

The n+1 rule, which states that in building up electronic configuration of the elements the sub shell with the lowest value of n=1 fills first

The Aufbau principle which assumes that there exist a set of empty hydrogen like orbitals into which electrons can be added

_____ are the measure of the size of the atom.

Atomic radii

can be defined as one half of the distance between the nuclei of two like atoms bonded together by a single covalent bond.

Covalent radius

The bonding which exists within a non metal molecule is largely _____ Covalent

Fig 4.1 Covalent and van der Waals Radii of Solid Chlorine

_____ is defined as one-half of the distance between the nuclei of two adjacent metal atoms in the close packed crystal lattice.

Metallic radius

The types of metal lattices include the following

- Hexagonal
- Cubic close packed
- Body-centred cubic

The number of nearest neighbours of a metal atom in a lattice is known as the of the metal.

coordination number

nuclear charge Z*

Metallic radii are generally larger than the corresponding covalent radii. True

Fig. 4.2 Types of Metal Lattices: (a) Hexagonal;(b) Cubic close packed (c) Body-centred cubic

Metallic crystal lattices are stronger than the van der Waals forces.

True

_______ is defined as the distance between the nucleus of an ion and the point up to which the nucleus has influence on the electron cloud.

lonic radius

______ be defined as the distance of the closest approach from the centre of ion by anther ion.

lonic radius

lonic radii are of two types, cation radii and anion radii.

There are ______ types of ionic radii

Two

Factors affecting the atomic radii are Principal Quantum Number and Effective Nuclear Charge

_____ is the amount of positive charge felt by the outer electrons in an atom. Effective

The energy required to remove the least strongly bond electron from an isolated gaseous atom in its ground state is known as the .

ionisation energy

This process can be represented by the following equation:

$$M_{(g)} \longrightarrow M^{+(g)} + e$$

the factors that affect ionisation energies Periodicity in Ionisation Energy across Periods
Trends in Ionisation Energy down the Groups
Trends in Successive Ionisation Energies

_____ of an atom is a measure of its ability to accept an electron to form an anion.

Electron affinity

_____ is defined as the energy released or absorbed when an electron is added to the gaseous atom in its ground state.

Electron affinity

It can be represented by the following equation in which EA represents electron affinity of X.

$$X_{(g)} + e \longrightarrow X_{(g)} + E_A$$

Factors affecting electron affinities are

- Atomic Radius
- Effective Nuclear Charge
- Electronic Configuration

Mulliken defined electronegativity as the mean value of first ionisation energy and first electron affinity.

According to Alfred Rochow, electronegativity is equated to the force of attraction between
atom and the electron separated by a distance equal to the covalent radius of the atom.
is a measure of the attraction that an atom has for electrons in a bond it has
formed with another atom.
Electronegativity
Atoms of an element which have the same atomic number but different mass number are
called
sotopes
Hydrogen has different isotopes
Three
Hydrogen has three different isotopes having mass numbers 1, 2, and 3 called ordinary
nydrogen or Protium 1H, deuterium (D) or 2H and Tritium (T) or 3H

Ordinary hydrogen has no neutrons, deuterium has one and tritium has two neutrons in the nucleus

Fig. 3.1 Isotopes of Hydrogen

heavy hydrogen	.aiieu	
Naturally occurring 0.0156	s hydrogen contains	% deuterium.
is Deuterium oxide	used as a moderator in nucle	ear reactions
Naturally occurring 10-15	s hydrogen contains nearly _	% tritium.
Ortho and	are two different form	s of hydrogen molecule

_____ and Para are two different forms of hydrogen molecule.

Ortho

______ is an equilibrium mixture of Ortho and Para hydrogen.

Hydrogen gas

Fig. 3.3 Ortho-Para Equillibria for H2, D2 and T2

Para hydrogen is more stable at lower temperatures.

True

Physical properties Ortho and Para hydrogen are similar.

True

is a natural abundant source for the manufacture of hydrogen.

Water

Water can be reduced to hydrogen either chemically or______. Electrically

The mixture of CO and H2 is known as

Water gas

The mixture of CO and H2, known as water gas is also called _____ Synthesis gas

The properties of Hydrogen are the following

- Hydrogen is the lightest element known.
- It is colourless
- Odourless and tasteless gas.
- The hydrogen molecule is thermally stable
- · Atomic hydrogen is a powerful reducing agent
- It combines with alkali metals to form hydrides
- It reduces sulphur to hydrogen sulphide

The lightest known element is	
Hydrogen	

The uses of hydrogen include the following

- The largest single use of hydrogen is in the syntheses of ammonia
- Hydrogen is used in the hydrogenation of vegetable of oils and the manufacture of methanol.
- Hydrogen gas is used in fuel cells in space crafts

In a fuel cell, electrical energy is generated by the reaction of hydrogen leaf in a process called______

Cold combustion

hydrogen is used as a rocket fuel

Liquid

Decomposition of water by solar energy in presence of catalysis is known as photochemical decomposition of water.

The three classes of hydrides

- Ionic or salt like or salric hydrides
- Covalent or molecule hydrides
- Metallic or non-stoichiometric hydrides

Ionic hydrides are formed by heating metals in hydrogen at _____ K.

Fig. 4.2 A Hydrogen-Oxygen Fuel Cell with KOH Electrolyte and Porous Carbon Electrodes

when heated, hydrogen reacts with many transition metals (lantharinges and actinides) to
form
metallic hydrides
can be defined as the attractive force which binds hydrogen atom of one
molecule with electronegative atom of another molecule
Hydrogen bond
,
There are types of hydrogen bonding.
Two
The two types of hydrogen bonding are Intermolecular hydrogen bonding and Intra-molecular
hydrogen bonding
nyar ogen bonanig
The elements of Group 1 and 2 are called the S-block elements
The elements of Group 1 and 2 are called the 3 block elements
Group 1 elements consist of Li, Na, K, Rb, C and Fr are called Alkali
Metals
ivictais
is the most abundant metal in sea water
is the most abundant metal in sea water

Sodium chloride		
is obtained by the reduction of its chloride with sodium vapour.		
Potassium		
is used in liquid detergents.		
Potassium hydroxide		
is used in breathing apparatus		
Potassium superoxide		
is used along with charcoal and sulphur in gun powder. Potassiur nitrate	n	
Potassium is a major component of plant fertilizers, where it is used in form of chloritrate salts.	ride and	
can be defined as mass per unit volume. Density		
is the most abundant metallic element in sea water Sodium		
Lepidolite is an ore of Lithium		
Ionisation energy increases from lithium to francium		
Lithium is the highest of all the metallic elements		
Ionic character of alkali metal halides down the group. Decreases		
Solubility of alkali metal fluorides in water down the group Increase	S	
Melting and boiling points of alkali metals down the slope. Decrease		

Alkali metals reacts with sulphur to form two types of sulphides; simple sulphides of Na2S and polysulphides like Na2S, where n $-$ 2, 3, 4, or 6.
Lithium reacts with carbon to form ionic carbides
The alkali salt's stability is dependent upon the enthalpy of formation
When a metal is surrounded by solvent molecules, the phenomenon is calledof the metal ion. Solvation
When the solvent is water the phenomenon is now called Hydration
is solvation with water as the solvent. Hydration
All the alkali metals are highly soluble in liquid ammonia giving a colour. deep blue
Electrons associated with the solvent are known as Solvated Electrons
A complex compound can be defined as a compound with a central atom or ion surrounded by a group of ions of molecules called Ligands
Lithium carbonate decomposes at K 950
Decomposition of sodium carbonate takes place belowK. 1050
is the second most abundant metallic element next only sodium (chloride) in sea water. Magnesium

is found in the bones of ani	mals and human beir	igs.
Calcium		
is extremely scarce (10 -10 Radium	%) and it is a radioact	tive element.
is found in the green (chlor	ophyll) plants.	
Magnesium		
Magnesium is found in the green (chlorophy	/II) plants.	
Beryllium is obtained by the electrolysis of r chloride.	molten	beryllium
is extracted from fused calcicathode. Calcium	um chloride using a g	raphite anode and iron
Calcium is extracted from fused calcium chloron cathode	oride using a graphite	anode and
Beryllium is used for making atomic fuel cor absorbs very few neutrons and does not be		it
The first ionisation energy of alkaline earth metals. True	metals is more than t	hat of corresponding alkali
The ionization energy of alkaline earth meta Decreases	ilsc	on moving down the group.
Electropositive character and the reducing point moving down the group Increase	property (tendency to	lose elections)
Hydration and lattice energies decrease wit	h increase in size of m	netal ions.
Barium peroxide, BaO2 is formed by passing	g air over heated BaO	, at 800K.

Magnesium peroxide, MgO2 is obtained only in the crude form by using hydrogen peroxide but no peroxide of beryllium is known.

NIREYX EDUCATIONAL CONSULTS

For more summary contact us via whatsapp or call

07069089254 / 09036598286