

Introduction

- Motivation
- Design and implementation
- Results
- Evaluation
- Future work
- Conclusion

Motivation

- Implementing quantum algorithms in classical computation framework
- Concretely, implementing and simulating Grover's Algorithm by extending the SML framework
- Motivation for choosing Grover's Algorithm
 - In an unstructured database containing N elements, find one specific element
 - Classical computer will need O(N) steps
 - Quantum computer will only need $O(\sqrt{N})$ steps

Design and implementation

- Extending SML framework with building blocks used for Grover's Algorithm
 - Oracle operation
 - Diffusion operation
 - Repetition of parts of circuits
 - Working with ancillary bits

The Oracle Operation

Algorithm 1: Oracle Function

Input: A target state, n qubits

Flip target bits to map the target to $|1...1\rangle$

Combine I for 0's and X for 1's with oo

Apply a controlled not on the ancilla, where all the other bits are controls

Reverse the bit flip

- 3 ways of providing the oracle
 - Gate with target
 - Function that creates circuit
 - Circuit

Future work: Implementing an Oracle for the SAT Problem

- Simple implementation 1 qubit per literal, 1 ancilla per clause
- Flip ancilla bit, if clause is unsatisfied
- Flip checker, if all clauses are satisfied
- Example: $(\neg x_0 \lor x_1) \land (x_0 \lor x_1 \lor \neg x_2) \land (\neg x_1 \lor \neg x_2)^{-1}$

Future work: Translate higher-level oracle functions to circuits

- Oracle functions written in higher-level languages
- Compile to quantum circuit

The Diffusion Operation

Algorithm 2: Diffusion Operator

Input: n qubits, an ancilla qubit

Apply Hadamard gates to all qubits to create a superposition

Flip all qubits using X gates

Apply a controlled X gate on the ancilla, controlled by all other qubits

Reverse the flips with X gates

Reverse the initial superposition by reapplying Hadamard gates

Implementing Grovers

- Initialise all qubits to $|0\rangle$ + ancillary bit
- Repeat Grover's iterations optimal number of times times

```
val iterations = Real.floor (Math.pi / 4.0 * Math.
sqrt (Real.fromInt (powInt 2 n)))
```

```
fun repeatCircuit t n =
    if n < 1 then
        raise Fail "Number of iterations must be
    greater than 0"
    else if n = 1 then
        t
    else
        t oo repeatCircuit t (n - 1)</pre>
```

Implementing Grovers

Combine all building blocks

```
fun groversNaive target n : t * ket =
      let
2
          val numQubits = n + 1
3
          val iterations = Real.floor (Math.pi / 4.0 *
4
     Math.sqrt (Real.fromInt (powInt 2 n)))
          val hadamardGates = hadamard numQubits
5
          val initAncilla = zAncilla numQubits
6
          val repetition = repeatCircuit (oracleNaive
     target numQubits oo diffusionNaive target
     numQubits) iterations
      in
8
          (hadamardGates oo initAncilla oo repetition,
     initKets n 1)
      end
10
```

Measuring the distribution with ancillary bits

```
fun measure_dist_ancilla_helper (d: real vector) (num_ancilla: int) : real vector =
2
       if num ancilla < 0 then
 3
            raise Fail "You cannot have a negative number of ancilla bits"
       else if num ancilla = 0 then
           d
6
       else
7
            let
8
                val len = Vector, length d
9
                val halflen = len div 2
10
                val v2 = Vector, tabulate (halflen, fn i => Vector, sub(d, 2 * i) + Vector, sub(
         d. 2 * i + 1)
11
           in
12
                measure dist ancilla helper v2 (num ancilla -1)
13
           end
14
15
   fun measure dist ancilla (s: state) (num ancilla: int) : dist =
16
       let
17
            val v = dist s
18
            val v2 = measure_dist_ancilla_helper v num_ancilla
19
            val len = log2 (Vector.length v2)
20
       in
21
           Vector.mapi (fn (i, p) \Rightarrow (toKet(len, i), p)) v2
22
       end
```

Future work: Extending Support for Multiple Ancilla Bits

- Generality
- Use for other algorithms
- Measure_dist_ancilla supports multiple
- Other functions supports one
- Printing the ancilla bits

Probability distribution

- Experiments on circuit with 1-16 qubits
- Gradual decline in correct probability

numQubits	ProbCorrect	ProbWrong	SumProbWrong	
1 0.5		0.5	0.5	
2	1	0	0	
3	0.9453125	0.0078125	0.0546875	
4	0.908447265625	0.006103515625	0.0915527344	
5	0.896936535835	0.00332462787628	0.1030634642	
6	0.816377019397	0.00291465048576	0.1836229806	
7	0.683735462787	0.00249027194656	0.31626453721	
8	0.650349994728	0.00137117649126	0.34965000527	
9	0.554456476626	0.000871905133804	0.44554352337	
10	0.558355923306	0.000431714639975	0.44164407669	
11	0.532238224051	0.000228510882242	0.46776177594	
12	0.542708431802	0.000111670712625	0.45729156819	
13	0.521155601617	5.84598215581E-05	0.47884439838	
14	0.519292732029	2.93418340945E-05	0.48070726797	
15	0.515622768257	1.47824711369E-05	0.48437723174	
16	0.507572313746	7.51396484708E-06	0.49242768625	

Graph of probabilities

- Individuel probabilities of wrong result declines
- but aggregate increases

Quantum Algorithms

Future work: Grovers Algorithm with zero theoretical failure rate

- Standard Grovers probability
- Phase inversion
- Two phase rotations through angle ϕ
- Obtain marked state with certainty ²

Comparison with QUIRK

Finds exact same probability

numQubits	ProbCorrect(SIVIL)	ProbCorrect(Quirk)	Probvvrong(SiviL)	Probvvrong(Quirk)
1	0.5	0.5	0.5	0.5
2	1	1	0	0
3	0.9453125	0.9453125	0.0078125	0.0078125
4	0.908447265625	0.908447265625	0.006103515625	0.006103515625
5	0.896936535835	0.896936535835	0.00332462787628	0.00332462787628

Eval vs. Interp

- Differences
- Strengths

numQubits	ProbCorrect(Interp)	ProbCorrect(Eval)	ProbWrong(Interp)	ProbWrong(Eval)
1	0.5	0.5	0.5	0.5
2	1	1	0	0
3	0.9453125	0.9453125	0.0078125	0.0078125
4	0.908447265625	0.908447265625	0.006103515625	0.006103515625
5	0.896936535835	0.896936535835	0.00332462787628	0.00332462787628
6	0.816377019397	0.816377019397	0.00291465048576	0.00291465048576
7	0.683735462787	0.683735462787	0.00249027194656	0.00249027194656

Evaluation

- Results
- Extension of SML framework
- Building blocks
- Generality

Future Work

- Implementing an Oracle for the SAT Problem
- Translate higher-order oracle functions to quantum circuits
- Extending Support for Multiple Ancilla Bits
- Grovers Algorithm with zero theoretical failure rate
- Optimisation of Algorithm Circuits
- Implementing Additional Quantum Algorithms
- Comparison with Other Simulations

Conclusion

- Successfully implemented and simulated Grover's algorithm in SML
- Validated results using theoretical expectations and tools like Quirk
- Achieved high accuracy in small-scale simulations, with scaling challenges noted
- Modular implementation allows extension to other quantum algorithms
- Demonstrates potential for advancing hybrid quantum-classical computing