Data Mining: Concepts and Techniques

Slides for Textbook —Chapter 4 —

© Jiawei Han and Micheline Kamber
Intelligent Database Systems Research Lab
School of Computing Science
Simon Fraser University, Canada
http://www.cs.sfu.ca

Chapter 4: Characterization and Comparison

- Analytical characterization
- Analysis of attribute relevance
- Attribute Generalization
- Relevance Measures
- Discussion
- Summary

Analytical Characterization

Consider the situation

- We want to characterize or compare classes
- Which attribute should be included?
- Specifying too many attributes could slow down the system considerably
- Too few attributes in the analysis could cause incomplete mining results

What?

- Class characterization that includes the analysis of attribute/dimension relevance
- Using measures of attribute relevance analysis to identify and exclude irrelevant attributes from concept description process
- Provides a concise and succinct summarization of the given data collection

Attribute Relevance Analysis

- Why?
 - Which dimensions should be included?
 - How high level of generalization?
 - Automatic vs. interactive
 - Reduce # attributes; easy to understand patterns
- What?
 - statistical method for preprocessing data
 - filter out irrelevant or weakly relevant attributes
 - retain or rank the relevant attributes
 - relevance related to dimensions and levels
 - analytical characterization, analytical comparison

Attribute relevance analysis (cont'd)

- How?
 - Data Collection
 - Analytical Generalization
 - Use information gain analysis (e.g., entropy or other measures) to identify highly relevant dimensions and levels.
 - Relevance Analysis
 - Sort and select the most relevant dimensions and levels.
 - Attribute-oriented Induction (AOI) for class description
 - On selected dimension/level
 - OLAP operations (e.g. drilling, slicing) on relevance rules

Attribute Generalization

- Perform generalization based on the examination of the number of each attribute's distinct values in the relevant data set
- Rule: If there is a large set of distinct values for an attribute in the initial working relation, and there exists a set of generalization operators on the attribute, then a generalization operator should be selected and applied to the attribute.
- Will make the rule cover more of the original data tuples, thus generalizing the concept it represents

Attribute Generalization (cont'd)

- Attribute generalization control:
 - If the attribute is generalized "too high," it may lead to overgeneralization, and the resulting rules may not be very informative
 - if the attribute is not generalized to a "sufficiently high level," then undergeneralization may result, where the rules obtained may not be informative either
 - balance should be attained in attribute-oriented generalization

Attribute Generalization (cont'd)

- Attribute generalization threshold control
 - sets one generalization threshold for all of the attributes, or
 - sets one threshold for each attribute
 - If the number of distinct values in an attribute is greater than the attribute threshold, further attribute removal or attribute generalization should be performed (generally ranging from 2 to 8)

Attribute Generalization (cont'd)

- Generalized relation threshold control
 - If the number of (distinct) tuples in the generalized relation is greater than the threshold, further generalization should be performed
 - Such a threshold may be preset in the data mining system (usually within a range of 10 to 30), or set by an expert or user, and should be adjustable

Relevance Measures

- Quantitative relevance measure determines the classifying power of an attribute within a set of data.
- Methods
 - information gain (ID3)
 - gain ratio (C4.5)
 - gini index
 - χ^2 contingency table statistics
 - uncertainty coefficient

Information-Theoretic Approach

- Decision tree
 - each internal node tests an attribute
 - each branch corresponds to attribute value
 - each leaf node assigns a classification
- ID3 algorithm
 - build decision tree based on training objects with known class labels to classify testing objects
 - rank attributes with information gain measure
 - minimal height
 - the least number of tests to classify an object

Top-Down Induction of Decision Tree

Attributes = {Outlook, Temperature, Humidity, Wind} PlayTennis = {yes, no}

-

Entropy and Information Gain

- S contains s_i tuples of class C_i for i = {1, ..., m}
- Information measures info required to classify any arbitrary tuple

$$I(s_1, s_2,...,s_m) = -\sum_{i=1}^m \frac{s_i}{s} log \ 2 \frac{s_i}{s}$$

Entropy of attribute A with values {a₁,a₂,...,a_v}

$$E(A) = \sum_{j=1}^{\nu} \frac{S_{1j} + ... + S_{mj}}{S} I(S_{1j},...,S_{mj})$$

Information gained by branching on attribute A

$$Gain(A) = I(s_1, s_2,...,s_m) - E(A)$$

Entropy and Information Gain

S contains s_i tuples of class C_i for $i = \{1, ..., m\}$

Dataset

Data subset split based on classes

Class category

Number of

classes

 Information measures info required to classify any arbitrary tuple
 Number of records

$$I(s_1, s_2,...,s_m) = -\sum_{i=1}^{m} \int_{S_i}^{S_i} log \, 2 \frac{S_i}{S}$$

Calculate for each class and sum all together

Number of records in whole dataset

Entropy and Information Gain

Entropy of attribute A with values {a₁,a₂,...,a_v}
 "Column" Each value for that column A

Number of records with each class for attribute value (subset) j

$$E(A) = \sum_{j=1}^{v} \underbrace{S_{1j} + ... + S_{mj}}_{S} \underbrace{I(S_{1j},...,S_{mj})}_{S}$$
Information of each class for attribute value (subset) j

Calculate for each attribute value j and sum all together

Entropy and Information Gain

Information gained by branching on attribute A

Example: Analytical Characterization

Task

 Mine general characteristics describing graduate students using analytical characterization

Given

- attributes name, gender, major, birth_place, birth_date, phone#, and gpa
- $Gen(a_i)$ = concept hierarchies on a_i
- U_i = attribute analytical thresholds for a_i
- T_i = attribute generalization thresholds for a_i
- R = attribute relevance threshold

Example: Analytical Characterization (cont'd)

- 1. Data collection
 - target class: graduate student
 - contrasting class: undergraduate student
- 2. Analytical generalization using U_i
 - attribute removal
 - remove name and phone#
 - attribute generalization
 - generalize major, birth_place, birth_date and gpa
 - accumulate counts
 - candidate relation : gender, major, birth_country, age_range and gpa

gender	major	birth_country	age_range	gpa	count
M	Science	Canada	20-25	Very_good	16
F	Science	Foreign	25-30	Excellent	22
M	Engineering	Foreign	25-30	Excellent	18
F	Science	Foreign	25-30	Excellent	25
M	Science	Canada	20-25	Excellent	21
F	Engineering	Canada	20-25	Excellent	18

Candidate relation for Target class: Graduate students (Σ =120)

gender	major	birth_country	age_range	gpa	count
M	Science	Foreign	<20	Very_good	18
F	Business	Canada	<20	Fair	20
M	Business	Canada	<20	Fair	22
F	Science	Canada	20-25	Fair	24
M	Engineering	Foreign	20-25	Very_good	22
F	Engineering	Canada	<20	Excellent	24

Candidate relation for Contrasting class: Undergraduate students (Σ =130)

Example: Analytical characterization (3)

- 3. Relevance analysis
 - Calculate expected info required to classify an arbitrary tuple

$$I(s_1, s_2) = I(120,130) = -\frac{120}{250} log_2 \frac{120}{250} - \frac{130}{250} log_2 \frac{130}{250} = 0.9988$$

Calculate entropy of each attribute: e.g. major

For major="Science":
$$S_{11}=84$$
 — $S_{21}=42$ — $I(s_{11},s_{21})=0.9183$
For major="Engineering": $S_{12}=36$ — $S_{22}=46$ — $I(s_{12},s_{22})=0.9892$
For major="Business": $S_{13}=0$ — $S_{23}=42$ — $I(s_{13},s_{23})=0$
Number of grad students in "Science" — Number of undergrad students in "Science"

Example: Analytical Characterization (4)

 Calculate expected info required to classify a given sample if S is partitioned according to the attribute

$$E(major) = \frac{126}{250}I(s_{11}, s_{21}) + \frac{82}{250}I(s_{12}, s_{22}) + \frac{42}{250}I(s_{13}, s_{23}) = 0.7873$$

Calculate information gain for each attribute

$$Gain(major) = I(s_1, s_2) - E(major) = 0.2115$$

Information gain for all attributes

$$Gain(gender) = 0.0003$$

$$Gain(birth_country) = 0.0407$$

$$Gain(major) = 0.2115$$

$$Gain(gpa) = 0.4490$$

$$Gain(age_range) = 0.5971$$

Example: Analytical characterization (5)

- 4. Initial working relation (W₀) derivation
 - R = 0.1
 - remove irrelevant/weakly relevant attributes from candidate relation => drop gender, birth_country
 - remove contrasting class candidate relation

major	age_range	gpa	count
Science	20-25	Very_good	16
Science	25-30	Excellent	47
Science	20-25	Excellent	21
Engineering	20-25	Excellent	18
Engineering	25-30	Excellent	18

Initial target class working relation W_0 : Graduate students

5. Perform attribute-oriented induction on W₀ using T_i

References

- Y. Cai, N. Cercone, and J. Han. Attribute-oriented induction in relational databases. In G. Piatetsky-Shapiro and W. J. Frawley, editors, Knowledge Discovery in Databases, pages 213-228. AAAI/MIT Press, 1991.
- S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology.
 ACM SIGMOD Record, 26:65-74, 1997
- C. Carter and H. Hamilton. Efficient attribute-oriented generalization for knowledge discovery from large databases. IEEE Trans. Knowledge and Data Engineering, 10:193-208, 1998.
- W. Cleveland. Visualizing Data. Hobart Press, Summit NJ, 1993.
- J. L. Devore. Probability and Statistics for Engineering and the Science, 4th ed. Duxbury Press, 1995.
- T. G. Dietterich and R. S. Michalski. A comparative review of selected methods for learning from examples. In Michalski et al., editor, Machine Learning: An Artificial Intelligence Approach, Vol. 1, pages 41-82. Morgan Kaufmann, 1983.
- J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and H. Pirahesh. Data cube: A relational aggregation operator generalizing group-by, cross-tab and sub-totals. Data Mining and Knowledge Discovery, 1:29-54, 1997.
- J. Han, Y. Cai, and N. Cercone. Data-driven discovery of quantitative rules in relational databases. IEEE Trans. Knowledge and Data Engineering, 5:29-40, 1993.

References (cont.)

- J. Han and Y. Fu. Exploration of the power of attribute-oriented induction in data mining. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, pages 399-421. AAAI/MIT Press, 1996.
- R. A. Johnson and D. A. Wichern. Applied Multivariate Statistical Analysis, 3rd ed. Prentice Hall, 1992.
- E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large datasets. VLDB'98, New York, NY, Aug. 1998.
- H. Liu and H. Motoda. Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, 1998.
- R. S. Michalski. A theory and methodology of inductive learning. In Michalski et al., editor, Machine Learning: An Artificial Intelligence Approach, Vol. 1, Morgan Kaufmann, 1983.
- T. M. Mitchell. Version spaces: A candidate elimination approach to rule learning.
 IJCAI'97, Cambridge, MA.
- T. M. Mitchell. Generalization as search. Artificial Intelligence, 18:203-226, 1982.
- T. M. Mitchell. Machine Learning. McGraw Hill, 1997.
- J. R. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.
- D. Subramanian and J. Feigenbaum. Factorization in experiment generation. AAAI'86, Philadelphia, PA, Aug. 1986.

