LECTURE ON INTERSECTION THEORY (VII)

ZHANG

ABSTRACT. This is a private note taken from the course 'Topics in Algebraic Geometry'. The note taker is responsible for any inaccuracies.

Instructor: Qizheng YIN [BICMR, Peking University]

Time: Thu 10:10–12:00, 2017–04–11

Place: Room 302, No.4 Science Building, Peking University

Contents

1.	Deformation to the normal cone	2
2.	Specialization to the normal cone	5
3.	Consequence: Intersection theory	6
References		7

Recall: let $X \hookrightarrow Y$ be a closed embedding with ideal sheaf \mathcal{I} . Last time we see there are two related constructions.

(1) the normal bundle to X in Y is given by

$$N_XY := \operatorname{Spec}\left(\operatorname{Sym}^{\bullet} \mathcal{I}/\mathcal{I}^2\right)$$

it's a vector bundle over X.

(2) the normal cone to X in Y is given by

$$C_XY := \operatorname{Spec}\left(\bigoplus_{n\geq 0} \mathcal{I}^n/\mathcal{I}^{n+1}\right)$$

If in addition, the embedding $X \hookrightarrow Y$ is regular, then $\mathcal{I}/\mathcal{I}^2$ is locally free and the normal cone

$$C_X Y = N_X Y$$

is in fact a vector bundle.

(3) the blow-up of Y along X is given by

$$\mathfrak{Bl}_XY := \operatorname{Proj}\left(\bigoplus_{n\geq 0}\mathcal{I}^n\right)$$

with exceptional divisor $E = \mathbb{P}(C_X Y)$.

²⁰¹⁰ Mathematics Subject Classification. 42B35; 46E30; 47B38; 30H25.

 $[\]it Key\ words\ and\ phrases.$ Deformation, Intersection product.

The author is supported by ERC Advanced Grant 226257.

2 ZHANG

1. Deformation to the normal cone

Let $X \hookrightarrow Y$ be a closed embedding.

Goal: construct a scheme $M:=M_XY$ together with an closed embedding $X\times \mathbb{P}^1\hookrightarrow M$ with $f:M\to \mathbb{P}^1$ flat so that

commutates and such that

(1) over $\mathbb{P}^1 - \{\infty\} \cong \mathbb{A}^1$

$$X \times \mathbb{A}^1 \hookrightarrow M|_{\mathbb{A}^1} \cong Y \times \mathbb{A}^1$$

is the trivial embedding induced from $X \hookrightarrow Y$.

(2) over ∞

$$X \cong X \times \{\infty\} \hookrightarrow M|_{\infty} = C_X Y$$

is the embedding of X into its normal cone.

Construction:

(1) Step-1: consider $X \times \{\infty\} \subset Y \times \mathbb{P}^1$ and the blow-up

$$\widetilde{M} := \mathfrak{Bl}_{X \times \{\infty\}} Y \times \mathbb{P}^1$$

$$(\dagger) \left(\begin{array}{c} \\ \\ Y \times \mathbb{P}^1 \\ \\ \\ \\ \mathbb{p}^1 \end{array} \right)$$

where (†) is flat¹. Consider the sequence of embedding

$$X \cong X \times \{\infty\} \subset X \times \mathbb{P}^1 \subset Y \times \mathbb{P}^1$$

notice that $X \times \{\infty\}$ is a Cartier divisor in $X \times \mathbb{P}^1$, the blow-up of $X \times \mathbb{P}^1$ along $X \times \{\infty\}$ may be identified with $X \times \mathbb{P}^1$ and it can be embedded as a closed subscheme of \widetilde{M} .

$$\mathfrak{Bl}_{X \times \{\infty\}} X \times \mathbb{P}^1 {\longrightarrow} \widetilde{M}$$

$$\qquad \qquad \|$$

$$\qquad \qquad X \times \mathbb{P}^1$$

In addition, it's easy to see that

• over $\mathbb{P}^1 - \{\infty\} \cong \mathbb{A}^1$

$$\widetilde{M}|_{\mathbb{A}^1} \cong Y \times \mathbb{A}^1$$

as desired.

• over ∞ , prior we know

$$\widetilde{M}|_{\infty}\supset E$$

where E is the exceptional divisor of this blow-up. Since

$$C_{X \times \{\infty\}}(Y \times \mathbb{P}^1) = C_X Y \oplus 1$$

¹ follows from the fact that (1) any blow-ups over curve is flat and (2) flatness is stable under composition.

then

$$E = \mathbb{P}(C_{X \times \{\infty\}}(Y \times \mathbb{P}^1)) = \mathbb{P}(C_X Y \oplus 1)$$

and there is an canonical open embedding

$$C_XY \hookrightarrow \mathbb{P}(C_XY \oplus 1) = E \subset \widetilde{M}|_{\infty}$$

(2) Step-2: keep $C_X Y$ part and remove the rest in $\widetilde{M}|_{\infty}$. Therefore get the desired M. Similarly from the embedding sequence

$$X\times\{\infty\}\hookrightarrow Y\times\{\infty\}\hookrightarrow Y\times\mathbb{P}^1$$

the blow-up of $Y \times \{\infty\}$ along $X \times \{\infty\}$ can be embedded as a closed subscheme of \widetilde{M}

$$\widetilde{Y} := \mathfrak{Bl}_{X \times \{\infty\}} Y \times \{\infty\} \subset \widetilde{M}|_{\infty}$$

Fact 1.1. In fact

$$\widetilde{M}|_{\infty} = E \bigcup_{\mathbb{P}(C_X Y)} \widetilde{Y}$$

In picture, we are facing

Proof. Since we have E and \widetilde{Y} globally embeds in \widetilde{M} , it suffices to examine their structure locally. So may assume that $Y = \operatorname{Spec}(A)$ and $X = \operatorname{Spec}(A/I)$.

To study \widetilde{M} around ∞ , identify $\mathbb{P}^1 - \{0\}$ with $\mathbb{A}^1 = \operatorname{Spec}(\mathbb{k}[t])$ (geometrically we take the open subset around ∞ and make it into 0), then

$$Y\times \mathbb{A}^1=\operatorname{Spec}(A[t])$$

and

$$\mathfrak{Bl}_{X\times\{0\}}Y\times\mathbb{A}^1=\operatorname{Proj}(S^{\bullet})$$

where

$$S^{n} = (I, t)^{n} = I^{n} \oplus I^{n-1}t \oplus \cdots \oplus It^{n-1} \oplus At^{n} \oplus At^{n+1} \oplus \cdots$$

The complements of \widetilde{Y} is $\operatorname{Spec}(S_{(t)})$ where

$$S_{(t)} = \cdots \oplus I^n t^{-n} \oplus \cdots \oplus I t^{-1} \oplus A \oplus A t \oplus A t^2 \oplus \cdots$$

The canonical homomorphism from A[t] to $S_{(t)}$ becomes an isomorphism after localization at t (i.e., after $-\otimes A[t]/tA[t]$), while

$$S_{(t)}/tS_{(t)} = \bigoplus_{n \geq 0} I^n/I^{n+1}$$

hence we get $\operatorname{Spec}(S_{(t)}/tS_{(t)})=C_XY$. As desired.

4 ZHANG

Remark 1.2. MarPherson's description of this deformation, as a special case of his graph construction, is particularly vivid. Let $X \hookrightarrow Y$ be a closed embedding and we can take a vector bundle² over Y of rank r

$$s \left(\begin{array}{c} E \\ \pi \\ 0 \end{array} \right)$$

such that there exists a section s of E whose zero-scheme is X, i.e.,

$$X = \{ x \in Y : s(x) = 0 \}$$

For each scalar λ , the graph of λs is a line in $E \oplus 1$, this gives an embedding

$$Y \times \mathbb{A}^1 \hookrightarrow \mathbb{P}(E \oplus 1) \times \mathbb{P}^1$$

 $(y, \lambda) \mapsto (\text{graph of } \lambda s(y), (1 : \lambda))$

the deformation space M_XY is in fact the closure of $Y \times \mathbb{A}^1$ in this embedding. Notice that $C_XY \subset E|_X$ and

$$[X]^{\operatorname{vir}} = 0^*[C_X Y] \in \operatorname{CH}_{n-r}(X).$$

FIGURE 1. Fulton's picture

Example 1.3. Let $i: X \hookrightarrow Y$ be a regular embedding of codimension d and $V \subset Y$ a closed subscheme of dimension k, by considering the following diagram

$$W := X \cap V \xrightarrow{i} Y$$

and we are led to

$$C_WV \longrightarrow N_XY|_W$$

and therefore one can define

$$X \cdot V := 0^*[C_W V] \in \mathrm{CH}_{k-d}(W)$$

A reminding remark: One can also get

$$[i^*(V) =] X \cdot V \in \mathrm{CH}_{k-d}(X)$$

²if Y is quasi-projective, then such E always exists, although its rank r may be larger the the codimension of X in Y.

or

$$X \cdot V \in \mathrm{CH}_{k-d}(Y)$$

the choice of intersection theory only depends on one's own interest.

Remark 1.4. In practice, there are many different ways to define intersection theory, but $X \cdot V \in \mathrm{CH}_{k-d}(X)$ is unique if naturally require

(1) Normalization: if

$$Y$$
 $\pi \downarrow \int_{X} 0$

is a vector bundle over X, then for any closed subscheme $Z\subset X$ and $V:=\pi^{-1}(Z)\subset Y,$ we have

$$X \cdot V = [Z]$$

(2) Continuity: if

is a family of regular embedding such that \mathcal{Y}, \mathcal{V} are flat over \mathbb{P}^1 , then we have

$$X \cdot \mathcal{V}_t \in \mathrm{CH}_{k-d}(X)$$
 stay same for all $t \in \mathbb{P}^1$

In our case

$$\mathcal{Y} = M_X Y$$
 and $\mathcal{Y}_{\infty} = C_X Y = N_X Y$
 $\mathcal{V} = M_W V$ and $\mathcal{V}_{\infty} = C_W V \subset C_X Y = N_X Y$

 $\underline{\text{In fact}}$: (1)+(2) not only give the uniqueness of intersection theory, but also give a way to construct intersection theory, just like the Grothendieck's relation for constructing Chern class.

2. Specialization to the normal cone

Let $X \hookrightarrow Y$ be a closed embedding and $C = C_X Y$ the normal cone to X in Y. One can define the *specialization* homomorphism

$$\sigma: Z_k(Y) \to Z_k(C)$$

by the formula

$$V \mapsto \text{cycle of } C_{X \cap V} V$$

for any k-dimensional subvariety V of Y, and extending linearly to all k-cycles. As $C_{X\cap V}V$ is a scheme of pure dimension k, it has fundamental cycle.

Proposition 2.1. $\alpha \sim_{\text{rat}} 0 \Rightarrow \sigma(\alpha) \sim_{\text{rat}} 0$.

Hence σ passes through the rational equivalence, defining $specialization\ homomorphism$

$$\sigma: \mathrm{CH}_k(Y) \to \mathrm{CH}_k(C)$$

Proof. Let $M = M_X Y$ be the deformation space and consider

$$C {\overset{i}{---}} M {\overset{}{\longleftarrow}} Y \times \mathbb{A}^1$$

6 ZHANG

so we have the localization sequence

$$CH_{k+1}(C) \xrightarrow{i_*} CH_{k+1}(M) \xrightarrow{j^*} CH_{k+1}(Y \times \mathbb{A}^1) \longrightarrow 0$$

$$\downarrow^{i^*} \qquad \qquad \downarrow^{r^*} \qquad \qquad$$

where

- (1) i^* is the Gysin pull-back of divisors, since C is a Cartier divisor of M.
- (2) pr* is isomorphism.

If we want to construct σ , it then suffices to construct τ . Claim: $i^*i_* = 0$, then by universal property of cokernel, there is an unique map from $\operatorname{CH}_{k+1}(Y \times \mathbb{A}^1)$ to $\operatorname{CH}_k(C)$, which is our τ . In fact

$$i^*i_* = c_1(N_CM) \cap -$$

whereas $N_C M$ is trivial³. Define

$$\sigma := \tau \circ \operatorname{pr}^* : \operatorname{CH}_k(Y) \to \operatorname{CH}_k(C)$$

To prove this proposition, it's remaining to show

$$\sigma([V]) = [C_{X \cap V}V]$$

In fact, $\operatorname{pr}^*([V]) = [V \times \mathbb{A}^1]$. The subvariety $M_{X \cap V}V$ is a closed subvariety of M which restricts to \mathbb{A}^1 is $V \times \mathbb{A}^1$, i.e.,

$$M_{X\cap V}V|_{\mathbb{A}^1}=V\times\mathbb{A}^1$$

then

$$j^*([M_{X \cap V}V]) = pr^*([V])$$

and now

$$\sigma([V]) = \tau \circ \text{pr}^*([V]) = \tau \circ j^*([M_{X \cap V}V]) = i^*([M_{X \cap V}V])$$

Notice that

$$M_{X\cap V}V|_{\infty} = C_{X\cap V}V$$

i.e., $i^*([M_{X\cap V}V]) = [C_{X\cap V}V]$, which completes the proof.

3. Consequence: Intersection theory

Let $i: X \hookrightarrow Y$ is a closed regular embedding of codimension d so the normal bundle $N:=N_XY=C_XY$. Define the Gysin pull-back

$$i^*: \mathrm{CH}_k(Y) \to \mathrm{CH}_{k-d}(X)$$

to be the composition

$$\operatorname{CH}_k(Y) \xrightarrow{\sigma} \operatorname{CH}_k(N) \xrightarrow{0^*} \operatorname{CH}_{k-d}(X)$$

- (1) If d = 1 (resp. i is the zero section of a vector bundle), this Gysin pull-back agrees with that defined before.
- (2) If Y is pure of dimension n, then $i^*([Y]) = [X]$.
- (3) For all $\alpha \in \mathrm{CH}_*(X), i^*i_*(\alpha) = c_d(N) \cap \alpha$.

 $^{^3}$ let \widetilde{M} be the blow-up as before, then $E = \mathbb{P}(C_X Y \oplus 1), N_E \widetilde{M} = \mathcal{O}_{C_X Y \oplus 1}(-1)$. Consider the support yields the triviality.

(4) If X is smooth of dimension n, the diagonal embedding

$$\Delta_X: X \hookrightarrow X \times X$$

is regular of codimension n, therefore

$$\operatorname{CH}_k(X) \times \operatorname{CH}_\ell(X) \xrightarrow{\times} \operatorname{CH}_{k+\ell}(X \times X) \xrightarrow{\Delta_X^*} \operatorname{CH}_{k+\ell-n}(X)$$

defines an intersection product on $\mathrm{CH}_*(X)$

$$\operatorname{CH}_k(X) \times \operatorname{CH}_\ell(X) \xrightarrow{\cdot} \operatorname{CH}_{k+\ell-n}(X)$$

or

$$\mathrm{CH}^k(X) \times \mathrm{CH}^\ell(X) \xrightarrow{\cdot} \mathrm{CH}^{k+\ell}(X)$$

References

Institute of Mathematica, Academy of Mathematics and System Sciences, Chinese Academy of Science, Beijing 100190, China

 $E\text{-}mail\ address: \verb| zhangxucheng15@mails.ucas.cn|$