A:
$$a_{ij} = P(X_{t+1} = j | X_t = i)$$

X _t X _{t+1}	A	В	Н	s
Α	0.6	0.1	0.1	0.2
В	0.0	0.3	0.2	0.5
Н	0.8	0.1	0.0	0.1
S	0.2	0.0	0.1	0.7

B:
$$b_{ik} = P(O_t = k | X_t = i)$$

X _t O _t	р	е	b	I
Α	0.6	0.2	0.1	0.1
В	0.1	0.4	0.1	0.4
Н	0.0	0.0	0.7	0.3
S	0.0	0.0	0.1	0.9

Step 1: Initialize $\delta_1(i)$

 \odot

$$\pi = P(X_1 = i)$$
:

Α	В	Н	S
0.5	0.0	0.0	0.5

Observations:

$$O_{1:4} = \{b,p,l,e\}$$

Find:

Most likely hidden state sequence:

$$O_2 = \underline{\hspace{1cm}}$$
 $\delta_2(i) =$

max (0.05 x 0.6	x 0.6 ,	x x	,x 0.8	x ,	x x 0.6)	
max (0.05 x	X ,	x x 0.1	, 0 x	x , 0.05	xx)	
max (x	x , 0	x x	, x	x , 0.05	xx)	
max (x	X ,	xx	, 0 x	. X ,	x 0.7 x)	

argmax state
()
()
()

=

$$O_3 = \underline{}$$

 $\delta_3(i) = \underline{}$

max. probability	argmax state ()
	()
	(A)
	(A)

$$O_4 = \underline{}$$

 $\delta_4 (i) =$

 max (0.00108 x ___ x __ , ____ x __ x __ , ____ x __ , ____ x __ , ____ x __ , ____ x __)

 max (____ x __ x __ , ____ x ___)

 max (____ x __ x __ , ____ x ___ , ____ x ___ , ____ x ___ , ____ x ___)

 max (____ x __ x __ , ____ x ___ , ____ x ___ , ____ x ___)

 max (____ x __ x ___ , ____ x ___ , ____ x ___ , ____ x ___)

 max (____ x __ x ___ , ____ x ___ , ____ x ___ , ____ x ___)

 max (____ x __ x ___ , ____ x ___ , ____ x ___)

	max. probability	argmax state (_,_)
:		()
		()
		()

States and deltas over time:

δ ₁ (i)	state

state

δ ₃ (i)	state
	

δ ₄ (i)	state

Backtracking gives two answers: $X^*_{1:4} = \{ _, _, _, _ \}$ and $X^*_{1:4} = \{ _, _, _, _ \}$