TD 1 — Seconde : Notion de fonction

Partie I — Notion de fonction

Exercice 1 — Lectures graphique (c)

On considère la fonction h dont on donne la courbe représentative C_h (voir énoncé d'origine).

Courbe de h(x) — Exercice 1

- 1. Lire l'ensemble de définition $\mathbf{D_h}$ de la fonction h.
- 2. Donner les images par la fonction h de -3 et 0.
- 3. Donner les antécédents par h de 2.
- 4. Donner les antécédents par h de **0**.
- 5. Déterminer l'ensemble des réels qui ont une image positive ou nulle par la fonction h. On note **E** cet ensemble.
- 6. Quels sont le maximum et le minimum de h sur son ensemble de définition ? Pour quelles valeurs de x sont-ils atteints?

Exercice 2 — Lectures graphiques (c)

On considère la fonction g dont on donne la courbe représentative $\mathbf{C_g}$ (voir énoncé d'origine).

Courbe de g(x) — Exercice 2

- 1. Lire l'ensemble de définition $\mathbf{D_q}$ de la fonction g.
- 2. Donner les images par la fonction g de -4 et 4.
- 3. Donner l'antécédent par g de ${\bf 4}$.
- 4. Donner les antécédents par g de $\mathbf{0}$.
- 5. Déterminer l'ensemble des réels qui ont une image positive ou nulle par la fonction *g*. On note **E** cet ensemble.
- 6. Quels sont le maximum et le minimum de g sur son ensemble de définition ? Pour quelles valeurs de x sont-ils atteints ?
- 7. Déterminer l'ensemble des réels qui ont exactement un antécédent par la fonction g.

🐈 Partie II — Parité

Exercice 3 — Étude de parité (c)

Méthode. 1) Vérifier si l'ensemble de définition est bien centré en 0. 2) Un contre-exemple suffit pour montrer qu'une fonction n'est ni paire ni impaire. 3) Sinon, montrer que pour tout x de I: f(-x)=f(x) (paire) ou f(-x)=-f(x) (impaire).

- 1. f_1 définie sur $I = \mathbb{R}$ par $f_1(x) = x^2 + 1$.
- 2. f_2 définie sur $I = \mathbb{R}$ par $f_2(x) = x^3 + x$.
- 3. f_3 définie sur $I_3 = [-5; 5]$ par $f_3(x) = x^2 + x$.
- 4. f_4 définie sur $I_4 = [-4; 5]$ par $f_4(x) = 5x^3$.
- 5. f_5 définie sur $I = \mathbb{R}$ par $f_5(x) = \sqrt{|x| + 2}$.

Exercice 4 — Parité et représentation graphique (c)

Compléter la courbe pour obtenir une fonction paire (Exercice 4)

Compléter la courbe pour obtenir une fonction impaire (Exercice 4)

- 1. Dans un repère (O; I; J), on a tracé C_g sur [0 ; 6]. Compléter la courbe sur [-6 ; 0] pour définir une fonction h paire sur [-6 ; 6].
- 2. Dans le même repère, compléter la courbe sur [-6; 0] pour définir une fonction i **impaire** sur [-6; 6].

Correction de l'exercice 1

- 1. $D_h = [-9; 9]$.
- 2. h(-3) = 9 et h(0) = 2.
- 3. Antécédents de 2 par h : -6 ; 4 ; 0.
- 4. Antécédents de 0 par h : −7 ; 1 ; 5.
- 5. $E = [-7; 1] \cup \{5\}.$
- 6. Maximum 9 atteint pour x = -3; Minimum -8 atteint pour x = 9.

Corrigé — Exercice 2

- 1. $D_q = [-5; 5]$
- 2. g(-4) = -2; g(4) = 2
- 3. Antécédents de 4: x = -1
- 4. Antécédents de 0 : x = -4, x = 1, x = 3, x = 5
- 5. $E = [-4; 3] \cup [5; 6]$
- 6. Maximum : 4 atteint en x = -1; Minimum : -5 atteint en x = -5
- 7. Les réels ayant exactement un antécédent sont ceux compris entre -5 et -2 (exclu) et pour la valeur 4 ([−5; -2[U {4}).

Correction de l'exercice 3

- 1. f_1 : définie sur \mathbb{R} (centré en 0). $f_1(-x) = x^2 + 1 = f_1(x) \Rightarrow \mathbf{paire}$.
- 2. f_2 : définie sur \mathbb{R} . $f_2(-x) = -(x^3 + x) = -f_2(x) \Rightarrow impaire$.
- 3. $f_3: I_3 = [-5; 5]$ est centré en 0. Contre-exemple : $f_3(-1)=0$, $f_3(1)=2 \Rightarrow$ ni paire ni impaire.
- 4. f_4 : $I_4 = [-4; 5]$ n'est pas centré en $0 \Rightarrow$ ni paire ni impaire.
- 5. f_5 : définie sur \mathbb{R} (centré). $f_5(-x) = \sqrt{(|x|+2)} = f_5(x) \Rightarrow \mathbf{paire}$.

Correction de l'exercice 4

- 1. Compléter par symétrie axiale par rapport à (Oy) pour obtenir la fonction *paire* sur [−6 ; 6].
- 2. Compléter par symétrie centrale par rapport à O pour obtenir la fonction *impaire* sur [-6; 6].

Correction Exercice 4 — fonction paire

Correction Exercice 4 — fonction impaire