

Data Exploration in Python USING

NumPy

NumPy stands for Numerical Python. This library contains basic linear algebra functions Fourier transforms, advanced random number capabilities.

Pandas

Pandas for structured data operations and manipulations. It is extensively used for data munging and preparation.

Matplotlib

Python based plotting library offers matplotlib with a complete 2D support along with limited 3D graphic support.

- CHEATSHEET

Contents Data Exploration

- 1. How to load data file(s)?
- 2. How to convert a variable to different data type?
- 3. How to transpose a table?
- 4. How to sort Data?
- 5. How to create plots (Histogram, Scatter, Box Plot)?
- 6. How to generate frequency tables?
- 7. How to do sampling of Data set?
- 8. How to remove duplicate values of a variable?
- 9. How to group variables to calculate count, average, sum?
- 10. How to recognize and treat missing values and outliers?
- 11. How to merge / join data set effectively?

How to load data file(s)?

Here are some common functions used to read data

Function	Description
read_csv	Read delimited data from a file. Use Comma as default delimiter
read_table	Read delimited data from a file. Use tab ('\t') as default delimiter
read_excel	Read data from excel file
read_fwf	Read data in fixed width column format
read clipboard	Read data from clipboard. Useful for converting tables from web pages

Loading data from CSV file(s):

CODE

import pandas as pd

#Import Library Pandas

df = pd.read_csv("E:/train.csv") #I am working in Windows environment #Reading the dataset in a dataframe using Pandas print df.head(3) #Print first three observations

Output

	da	atetime	season	holiday	worki	ngday	weather	temp	atemp	1
0	01-01-2011	00:00	1	0		0	1	9.84	14.395	
1	01-01-2011	01:00	1	0		0	1	9.02	13.635	
2	01-01-2011	L 02:00	1	0		0	1	9.02	13.635	
	humidity	windspe	ed casu	al regis	tered	count				
0	81		0	3	13	16				
1	80		0	8	32	40				
2	80		0	5	27	32				

Loading data from excel file(s):

CODE

df=pd.read_excel("E:/EMP.xlsx", "Data") # Load Data sheet of excel file EMP

Loading data from txt file(s):

CODE

How to convert a variable to different data type?

- Convert numeric variables to string variables and vice versa

srting_outcome = str(numeric_input) #Converts numeric_input to string_outcome
integer_outcome = int(string_input) #Converts string_input to integer_outcome
float_outcome = float(string_input) #Converts string_input to integer_outcome

- Convert character date to Date

from datetime import datetime char_date = 'Apr 1 2015 1:20 PM' #creating example character date date_obj = datetime.strptime(char_date, '% b % d % Y % I : % M % p') print date_obj

How to transpose a Data set?

- Data set used

	Table A					
ID	Product	Sales				
1	AAA	50				
1	BBB	45				
2	AAA	52				
2	BBB	46				

	Table B	
ID	AAA	BBB
1	50	45
2	52	46

Code

#Transposing dataframe by a variable

df=pd.read_excel("E:/transpose.xlsx", "Sheet1") # Load Data sheet of excel file EMP print df
result= df.pivot(index= 'ID', columns='Product', values='Sales')
result

Output

	ID	Product	Sales
0	1	AAA	50
1	1	RRR	45

_	+	DDD	10
2	2	AAA	52
3	2	BBB	46

Out[35]:

Product	AAA	ввв
ID		
1	50	45
2	52	46

How to sort DataFrame?

CODE

#Sorting Dataframe df=pd.read_excel("E:/transpose.xlsx", "Sheet1") #Add by variable name(s) to sort

print df.sort(['Product', 'Sales'], ascending=[True, False])

	ID	Product	Sales
1	1	AAA	50
2	1	BBB	45
3	2	AAA	52
4	2	BBB	46

	ID	Product	Sales
1	2	AAA	52
2	1	AAA	50
3	2	BBB	46
4	1	BBB	45

Orginal Table

Sorted Table

How to create plots (Histogram, Scatter, Box Plot)?

EmpID	Gender	Age	Sales
E001	M	34	123
E002	F	40	114
E003	F	37	135
E004	М	30	139
E005	F	44	117
E006	M	36	121
E007	M	32	133
E008	F	26	140
E009	М	32	133
E010	M	36	133

Histogram

Code

OutPut

#Plot Histogram

import matplotlib.pyplot as plt import pandas as pd

df=pd.read_excel("E:/First.xlsx", "Sheet1")

#Plots in matplotlib reside within a figure object, use plt.figure to create new figure fig=plt.figure()

#Create one or more subplots using add_subplot, because you can't create blank figure ax = fig.add_subplot(1,1,1)

#Variable ax.hist(df['Age'],bins = 5)

#Labels and Tit plt.title('Age distribution') plt.xlabel('Age') plt.ylabel('#Employee') plt.show()

Scatter plot

Code

#Plots in matplotlib reside within a figure
 object, use plt.figure to create new figure
fig=plt.figure()

#Create one or more subplots using add_subplot, because you can't create blank figure ax = fig.add_subplot(1,1,1)

#Variable ax.scatter(df['Age'],df['Sales'])

#Labels and Tit plt.title('Sales and Age distribution') plt.xlabel('Age') plt.ylabel('Sales') plt.show()

OutPut

Box-plot:

Code

import seaborn as sns sns.boxplot(df['Age']) sns.despine() **OutPut**

44

4

How to generate frequency tables with pandas?

Code

:.....:

import pandas as pd df=pd.read_excel("E:/First.xlsx", "Sheet1") print df test= df.groupby(['Gender','BMI']) test.size()

OutPut

N.						
			Gender	Age	Sales	BMI
	0	E001	M	34	123	Normal
	1	E002	F	40	114	Overweight
	2	E003	F	37	135	Obesity
	3	E004	M	30	139	Underweight
	4	E005	F	44	117	Underweight
	5	E006	M	36	121	Normal
	6	E007	M	32	133	Obesity
	7	E008	F	26	140	Normal
	8	E009	М	32	133	Normal
	9	E010	М	36	133	Underweight
Out[84]:	G	ender	BMI			
	F		Normal		1	
			Obesity	7	1	
			Overwei	ght	1	
			Underwe	eight	1	
	M		Normal	7	3	
			Obesity	7	1	
			Underwe	•	2	
	d	type:	int64	200	\$758	

How to do sample Data set in Python?

Code

#Create Sample dataframe

import numpy as np import pandas as pd from random import sample

create random index

rindex = np.array(sample(xrange(len(df)), 5))

get 5 random rows from df

dfr = df.ix[rindex] print dfr

OutPut

	EMPID	Gender	Age	Sales	BMI
4	E005	F	44	117	Underweight
2	E003	F	37	135	Obesity
7	E008	F	26	140	Normal
8	E009	M	32	133	Normal
5	E006	M	36	121	Normal

How to remove duplicate values of a variable?

Code

#Remove Duplicate Values based on values of variables "Gender" and "BMI"

rem_dup=df.drop_duplicates(['Gender', 'BMI'])
print rem_dup

Output

BMI	Sales	Age	Gender	EMPID	
Normal	123	34	M	E001	0
Overweight	114	40	F	E002	1
Obesity	135	37	F	E003	2
Underweight	139	30	M	E004	3
Underweight	117	44	F	E005	4
Obesity	133	32	M	E007	6
Normal	140	26	F	E008	7

How to group variables in Python to calculate count, average, sum?

Code

test= df.groupby(['Gender'])
test.describe()

Output

		Age	Sales
Gender	t. 6	,	
F	count	4.000000	4.000000
	mean	36.750000	126.500000
	std	7.719024	12.922848
	min	26.000000	114.000000
	25%	34.250000	116.250000
	50%	38.500000	126.000000
	75%	41.000000	136.250000
	max	44.000000	140.000000
м	count	6.000000	6.000000
	mean	33.333333	130.333333
	std	2.422120	6.889606
	min	30.000000	121.000000
	25%	32.000000	125.500000
	50%	33.000000	133.000000
	75%	35.500000	133.000000
	max	36.000000	139.000000

How to recognize and Treat missing values and outliers?

Code

Output

Identify missing values of dataframe df.isnull()

df.isnull() Out[116]: Sales BMI EMPID Gender Age 0 False Code False #Example to impute missing values in Age by the mean False False False import numpy as np False False False False False #Using numpy mean function to calculate the mean value False False False False False meanAge = np.mean(df.Age) #replacing missing values in the DataFrame df.Age = df.Age.fillna(meanAge) How to merge / join data sets? Code df_new = pd.merge(df1, df2, how = 'inner', left_index = True, right_index = True) # merges df1 and df2 on index # By changing how = 'outer', you can do outer join. # Similarly how = 'left' will do a left join # You can also specify the columns to join instead of indexes, which are used by default.

To view the complete guide on Data Exploration in Python

visit here - http://bit.ly/1KWhaHH

(https://www.analyticsvidhya.com/wp-content/uploads/2015/06/infographics-final.jpg)

You can easily copy / paste these code and keep them handy by downloading the PDF version of this infographic here: Data Exploration in Python.pdf (http://discuss.analyticsvidhya.com/t/download-pdf-version-of-cheat-sheet-on-data-exploration-in-python/1403)

If you like what you just read & want to continue your analytics learning, subscribe to our emails (http://feedburner.google.com/fb/a/mailverify?uri=analyticsvidhya), follow us on twitter (http://twitter.com/analyticsvidhya) or like our facebook page (http://facebook.com/analyticsvidhya).

You can also read this article on Analytics Vidhya's Android APP

