UNISA unversity of south africa

MAT1512

May/June 2018

Calculus A

Duration

2 Hours

100 Marks

EXAMINERS

FIRST SECOND MRS SB MUGISHA

DR ZI ALI

Closed book examination

This examination question paper remains the property of the University of South Africa and may not be removed from the examination venue

This paper consists of 4 pages

ANSWER ALL QUESTIONS ALL CALCULATIONS MUST BE SHOWN

Calculators may NOT be used

QUESTION 1

(a) Determine the following limits (if they exist)

(1)
$$\lim_{x \to -3^{-}} \frac{(x^2 - 9)}{|x - 3|} \tag{3}$$

$$\lim_{y \to 0} \frac{\sin 5y}{\sin 8y} \tag{3}$$

(iii)
$$\lim_{t \to 4} \frac{1 - \sqrt{t}}{1 - t}$$
 (3)

(iv)
$$\lim_{x \to -\infty} \frac{x^3 + 2x^2 - x + 10}{2x^2 - x + 3}$$
 (3)

(v)
$$\lim_{\tau \to -2} \frac{x+2}{x^2 - x - 6}$$
 (3)

(b) Use the Squeeze Theorem to evaluate

$$\lim_{k \to \infty} \frac{2 - \sin\left(e^{k}\right)}{\sqrt{k^2 + 3}} \tag{5}$$

(c) Given that

$$f(x) = \begin{cases} 2x + 3 & \text{if } x < 0 \\ x^2 & \text{if } 0 \le x \le 2 \\ 3x - 2 & \text{if } x > 2 \end{cases}$$

(1) Find
$$\lim_{x\to 2} f(x)$$
 Justify if it is continuous (3)

(n) Sketch the graph of
$$f(x)$$
 (2)

[25]

[TURN OVER]

QUESTION 2

- (a) Differentiate $g(t) = 3t^3 + 2t 1$ using the first principles of differentiation (5)
- (b) Use appropriate rules of differentiation to differentiate the following functions

(1)
$$f(x) = (x^5 - 3x^{-2} + 3)(x^{\frac{5}{2}} - 4x)$$

(i)
$$g(\theta) = \sin(5\theta)^{\cos\theta^2}$$
 (4)

(iii)
$$\int_{1}^{\sqrt{\tau}} \frac{3u^3}{u^4 + 1} du$$
 (4)

(iv)
$$y = \frac{\cos(\pi \, \varepsilon)}{\cot x + 1}$$
 (4)

(c) Given that sin(x + y) = 2x, find the equation of the tangent line at the point (0π) (5)

[25]

QUESTION 3

(a) Determine the following integrals making a direct substitution and change of limit where necessary

$$(1) \int x\sqrt{x^2+3}\,dx$$

(ii)
$$\int \frac{2\sin x}{\cos x \left(1 + 2\ln\cos x\right)} dx \tag{3}$$

$$(m) \int \frac{x^2 - 4}{x + 2} dr \tag{3}$$

(iv)
$$\int_0^{\frac{\pi}{3}} (1 + \cos^3 x) \sin x \, dx$$
 (5)

(v)
$$\int_0^1 \frac{u^3}{u^4 + 2} du$$
 (5)

[TURN OVER]

(b) Determine the area enclosed by the graph of f and g, where

$$f(s) = \begin{cases} 2 - s & \text{if} \quad s < 0\\ s + 2 & \text{if} \quad s \ge 0 \end{cases}$$

and

$$g\left(s\right)=s^{2}$$

(6)

[25]

QUESTION 4

(a) Solve the initial value problem

$$\frac{dx}{dt} = \frac{3t^2 + \sec^2 t}{3x^2} \quad x(0) = 5 \tag{6}$$

- (b) If $z = \cos(xy) + y \cos x$ where $x = u^2 + v^2$ and y = uv, use the Chain Rule for partial derivatives to find $\frac{\partial z}{\partial u}$ (5)
- (c) Let $F(x, y) = 2y 3ry + \cot(ry^2)$
 - (1) Find the partial derivatives F_x and F_y (4)

(11) Using
$$c(1)$$
 above find $\frac{dy}{dx}$ (4)

(iii) If $F(x \ y) = 0$ confirm your answer in c(u) above by finding $\frac{dy}{dx}$ using implicit differentia-(6)tion

[25]

Total [100]