Paradoxes in Analysis:

The Strangeness of Infinity and Wonders of the Axiom of Choice

Sudhir Murthy

University of California, Riverside Spring, 151c Project

Banach-Tarski's Paradox

June 8, 2023

Overview

- 1 Axiom of Choice Schools
- 2 Vitali's Set Combs Brushes
- Banach-Tarski Paradox Hotels Cake Bouquets

Induction vs Choice

Recall Induction

Theorem

Let " $\forall n, \ \psi(n) \implies \psi(n+1)$ " and " $\psi(0)$ " be true in PA. " $\psi(100)$ " is true.

Proof.

- 1 ψ (0) (context)
- $\mathbf{2} \ \psi(\mathbf{0}) \implies \psi(\mathbf{1})$ (forall elim)
- 3 ψ (1) (modus ponens)
- $4 \psi(1) \implies \psi(2)$ (forall elim)
- $\mathbf{0}$ ψ (100) (modus ponens)
 - To prove " $\forall n, \ \psi(n)$ " we generally need induction.
 - Induction chains infinitely many modus ponens (imp elims).

Induction vs Choice

Another perspective of choice

Theorem

Let " $\forall n \in \mathbb{N} \exists x, \ \psi(n, x)$ " be true in ZFC. Then "there exists a finite sequence $\{x_i\}_{i=1}^{100}$ s.t. $\psi(i, x_i)$ for all $i \leq 100$ " is true.

Proof.

- \bullet $\exists x, \ \psi(1,x)$ (forall elim)
- $2 \psi(1, x_1)$ (exists elim)
- 3 $\exists x, \ \psi(2,x)$ (forall elim)
- **1** ψ (100, x_{100}) (exists elim)
- **36** ∃ $\{x_i\}_{i=1}^{100} \forall i \le 100, \ \psi(i, x_i)$ (easy but long)
 - To prove "there exists a sequence $\{x_n\}$ s.t. $\psi(n, x_n)$ for all n" we generally need choice.
 - Choice chains *infinitely many* exists elims.

Function vs Oracle

Yet another perspective of choice

Axiom of Choice (ZFC)

Let A be a collection of nonempty sets. There exists a choice function $f: A \to \bigcup A$ s.t. $f(A) \in A$ for all A.

Axiom of Choice (2nd Order)

There exists a choice oracle $\psi : \mathsf{Set} \to \mathsf{Set}$, i.e. a class function, s.t. $\psi(X) \in X$ for all nonempty sets X.

Figure: choice oracle + replacement = choice function

How is Choice Used?

Finding sets of representatives.

- **1** We'll define an equivalence relation \sim on a set X.
- 2 The set of equivalence classes,

$$X/\sim := \{[x] : x \in X\},$$

partitions *X*.

3 We'll pick a choice function

$$f: X/\sim \to X$$

s.t. $f([x]) \in [x]$ for all $x \in X$.

4 It's image is what we care about.

How is Choice Used?

A picture!

Figure: Equivalence classes...literally!

Vitali's Set in ℝ¹

Immeasurable subset of [0, 1].

Definition (Equivalence Relation on ℝ)

Two points are *related* iff they are rational translates. The set of equivalence classes is denoted by \mathbb{R}/\mathbb{Q} .

- 1 There is a choice function $f: \mathbb{R}/\mathbb{Q} \to \mathbb{R}$ which picks out exactly one representative from each class.
- 2 A precision: we force f to pick representatives from [0, 1].

Definition (Vitali's Set)

The image of *f* is called *Vitali's set*.

Combs!

Visualization of Vitali's set

- 1 Imagine \mathbb{R}/\mathbb{Q} as a set of 2-d *combs* distinguished by color.
- 2 Elements of a comb are its teeth which bite the line.
- 3 Vitali's set is a rainbow comb, all its teeth have different colors.

Vitali's Set is Immeasurable

Visualized by combs

Theorem (Vitali)

There is no set function $\mu: \mathcal{P}(\mathbb{R}) \to [0, +\infty]$ which is translation invariant, assigns intervals their usual lengths, and is σ -additive.

Sketch of Proof:

$$[0,1]\subset igcup_{q\in\mathbb{Q}\cap[-1,1]}(f(\mathbb{R}/\mathbb{Q})+q)\subset[-1,2]$$

Figure: Rational translates of rainbow combs

Immeasurable set in R^d

Visualized as Brushes, or higher dimensional combs

Theorem (Extended Vitali)

There is no set function $\mu : \mathbb{R}^d \to [0, \infty]$ which is translation invariant, assigns rectangles their usual volume, and is σ -additive. (all $d \in \mathbb{N}$)

Sketch of Proof: For $d \ge 2$,

$$[0,1]^d \subset \bigcup_{q \in \mathbb{Q} \cap [-1,1]} (f(\mathbb{R}/\mathbb{Q}) + q) \times [0,1]^{d-1} \subset [-1,2] \times [0,1]^{d-1}.$$

Figure: Rational translates of rainbow brushes

Intro to Banach-Tarski Paradox

Overview

Theorem (Extended Vitali)

There is no set function $\mu: \mathcal{P}(\mathbb{R}^d) \to [0,\infty]$ which is translation invariant, assigns rectangles their usual volume, and is σ -additive.

Theorem (Corollary of Paradox)

There is no set function $\mu : \mathcal{P}(\mathbb{R}^3) \to [0, \infty]$ which is **rotation** invariant, assigns rectangles their usual volume, and is **finitely** additive.

Theorem (Banach-Tarski's Paradox)

 D^3 is equidecomposable with two identical copies of D^3 .

Definitions and Set-up

Preparation

Definition (Equidecomposable)

Two subsets of \mathbb{R}^3 are *equidecomposable* if we can partition one into finitely many pieces and then reassemble them, by rigid transformations, into the other. No overlaps or unused pieces.

Definition (Elementary Rotations)

Fix θ as an irrational multiple of π . Define $x, z : \mathbb{R}^3 \to \mathbb{R}^3$ as clockwise rotations of the +x and +z axes, resp., by θ .

Definition (Paths)

A *path* is a finite sequence of rotations x, x^{-1} , z, and z^{-1} without consecutive occurrences of xx^{-1} , $x^{-1}x$, zz^{-1} , or $z^{-1}z$. A path $\{p_i\}$ connects $a \in \mathbb{R}^3$ to $b \in \mathbb{R}^3$ only when $(p_n \circ \dots p_2 \circ p_1)(a) = b$.

Some Examples

- 1 Are (3,4,5) and (1,2,6) connected? (Hint: x,z preserve radius!)
- 2 Consider points (0,0,1), x(0,0,1), $x^2(0,0,1)$, ..., etc. Are they all different? (Hint: θ is an irrational multiple of π)
- 3 Remarkably, if we compose along a nonempty path, then we'll never get the identity map. (Important!)

Hilbert's Hotel Trick

Proof.

- 1 We show D^3 equidecomposes to D^3 w/o the north pole N := (0,0,1).
- 2 Partition into two pieces $\{D^3 E, E\}$, where $E := \{N, xN, x^2N, \dots\}$.

Hilbert's Hotel Trick

Proof.

- 1 We show D^3 equidecomposes to D^3 w/o the north pole N := (0,0,1).
- 2 Partition into two pieces $\{D^3 E, E\}$, where $E := \{N, xN, x^2N, \dots\}$.

Hilbert's Hotel Trick

Proof.

- 1 We show D^3 equidecomposes to D^3 w/o the north pole N := (0,0,1).
- 2 Partition into two pieces $\{D^3 E, E\}$, where $E := \{N, xN, x^2N, \dots\}$.

Hilbert's Hotel Trick

Proof.

- 1 We show D^3 equidecomposes to D^3 w/o the north pole N := (0,0,1).
- 2 Partition into two pieces $\{D^3 E, E\}$, where $E := \{N, xN, x^2N, \dots\}$.
- \bigcirc Rotate E by x.

Hilbert's Hotel Trick

Proof.

- 1 We show D^3 equidecomposes to D^3 w/o the north pole N := (0,0,1).
- 2 Partition into two pieces $\{D^3 E, E\}$, where $E := \{N, xN, x^2N, \dots\}$.
- 3 Rotate E by x. By design $xE = \{xN, x^2N, \dots\} = E N$.

Hilbert's Hotel Trick

Proof.

- 1 We show D^3 equidecomposes to D^3 w/o the north pole N := (0,0,1).
- 2 Partition into two pieces $\{D^3 E, E\}$, where $E := \{N, xN, x^2N, \dots\}$.
- 3 Rotate E by x. By design $xE = \{xN, x^2N, ...\} = E N$.
- 4 The two pieces $\{D^3 E, xE\}$ partition $D^3 N$.

Hilbert's Hotel Trick

Proof.

- 1 We show D^3 equidecomposes to D^3 w/o the north pole N := (0,0,1).
- 2 Partition into two pieces $\{D^3 E, E\}$, where $E := \{N, xN, x^2N, \dots\}$.
- 3 Rotate E by x. By design $xE = \{xN, x^2N, \dots\} = E N$.
- 4 The two pieces $\{D^3 E, xE\}$ partition $D^3 N$.

Doubling $S^2 \implies$ Doubling Centerless D^3

Visualized as Cutting Cake

- 1 It's enough to equidecompose S^2 into two identical copies.
- 2 Imagine D^3 , without the center, as a spherical cake.
- 3 Using a knife, cut radially along the partition of S^2 .
- 4 Apply the same reassembly process on these volume pieces.

22/28

Initial Strategy to Double S²

Definition (Equivalence Relation \sim on \mathcal{S}^2)

Given by $a \sim b$ iff there exists a path which connects a to b. The equivalence class at a point $a \in S^2$, is called the *orbit* of a.

Attempt breaking into 5 pieces!

1 *M* of representatives, one from each orbit, called *initial points*.

All points correspond to a unique word! (Precision: except for so called *fixed points*.)

- 2 S(x) of points connected by a path, from an initial point, that ends with x, called x-endpoints.
- 3 $S(x^{-1})$ of x^{-1} -endpoints.
- **4** S(z) of z-endpoints.
- **5** $S(z^{-1})$ of z^{-1} -endpoints.

Lemma

Rotations of $S(x^{-1})$ by x and $S(z^{-1})$ by z, satisfy:

$$xS(x^{-1}) = \{x(a) : a \in S(x^{-1})\} = M \cup S(x^{-1}) \cup S(z) \cup S(z^{-1}),$$

 $zS(z^{-1}) = \{z(a) : a \in S(z^{-1})\} = M \cup S(x) \cup S(x^{-1}) \cup S(z^{-1}).$

Sketch of Proof of $xS(x^{-1}) \subset M \cup S(x^{-1}) \cup S(z) \cup S(z^{-1})$:

- 1 Let a be an x^{-1} -endpoint.
- 2 Then $(x^{-1} \circ p_{n-1} \circ \cdots \circ p_1)(m) = a$ for some initial point m.
- 3 $(p_{n-1} \circ \cdots \circ p_1)(m) = x(a)$
- 4 Is p_1, \ldots, p_{n-1} a bonafide path? Can $p_{n-1} = x$? What if n = 1?

What's so Magical?

Visualized As Bouquets

- 1 View S^2 as a spherical bouquet of flowers.
- 2 There are five varieties corresponding to the decomposition.
- **3** Twirl the $S(x^{-1})$ variety of flowers by x.
- 4 Morphs into four varieties (all except S(x))!

Identifying the Problem!

Figure: Here's how we'd want to decompose S^2

Problems:

- **1** $\{M, S(x), S(x^{-1}), S(z), S(z^{-1})\}$ isn't a partition.
- 2 $\{M, xS(x^{-1}), S(x)\}$ forms one sphere but isn't disjoint.
- 3 $\{zS(z^{-1}), S(z)\}$ forms the other, but also isn't disjoint.

The problematic set D consists of all *fixed points* in S^2 and elements of their orbits. E.g. the north pole is a fixed point of z^{-1} .

Sudhir (151c) Banach-Tarski's Paradox June 8, 2023 26/28

Resolution And Strategy for the Entire Paradox

We prove three equidecompositions (numbers signify *importance*):

References and Questions?

Thanks!

Daniel de Rauglaudre (2017)

Formal Proof of Banach-Tarski Paradox

Journal of Formalized Reasoning 10(1), 37 – 49.

Nelson, G. S. (2015)

A User-Friendly Introduction to Lebesgue Measure and Integration, Chapter 1: Lebesgue Measure

Student Mathematical Library, Vol. 59, pp. 48. American Mathematical Society.

Palais, R.S. (2009)

The Visualization of Mathematics: Towards a Mathematical Exploratorium *The American Mathematical Monthly* 116:10, pp. 892.

Wagon, S. (1985)

The Banach-Tarski Paradox, Chapter 8: Paradoxical Decompositions in \mathbb{R}^n Cambridge University Press.