TABLE 5.1. Z-transform pairs

TABLE 3.1. Z-transform pairs		
No.	x(n) for $n = 0, 1, 2, 3,$	$\tilde{x}(z) = \sum_{n=0}^{\infty} x(n)z^{-n}$
	x(n) = 0 for $n = -1, -2, -3,$	
1.	1	$z/z - 1$ $z/z - a$ $\frac{1}{z-a}$ $z/(z-1)^2$
2.	a^n	z/z-a
3.	a^{n-1}	<u> </u>
4.	п	$z/(z-1)^2$
5.	n^2	$\frac{z(z+1)/(z-1)^3}{z(z^2+4z+1)/(z-1)^4}$
6.	n^3	$z(z^2+4z+1)/(z-1)^4$
7.	n^k	$\frac{(-1)^k D^k \left(\frac{z}{z-1}\right); D = z \frac{d}{dx}}{az/(z-a)^2}$
8.	na ⁿ	$az/(z-a)^2$
9.	n^2a^n	$az(z+a)/(z-a)^3$
10.	n^3a^n	$az(z^2 + 4az + a^2)/(z - a)^4$
11.	$n^k a^n$	$(-1)^k D^k \left(\frac{z}{z-a}\right); D = z \frac{d}{dz}$
12.	$\sin n\omega$	$z \sin \omega /$
		$(z^2-2z\cos\omega+1)$
13.	$\cos n\omega$	$z(z-\cos\omega)/$
		$(z^2-2z\cos\omega+1)$
14.	$a^n \sin n\omega$	$az \sin n\omega /$
1.5		$(z^2 - 2az \cos \omega + a^2)$
15.	$a^n \cos n\omega$	$z(z-a\cos\omega)/$
16	6 ($(z^2 - 2az \cos \omega + a^2)$
16.	$\delta_0(n)$	
17.	$\delta_m(n)$	z ^{-m}
18.	$a^n/n!$	$e^{a/z}$
19.	$\cosh n\omega$	$z(z-\cosh \omega)/$
20		$(z^2 - 2z \cosh \omega + 1)$
20.	$\sinh n \omega$	$z \sinh \omega /$
21		$(z^2 - 2z \cosh \omega + 1)$
21.	$\frac{1}{n}$, $n > 0$	$\ln\left(z/z-1\right)$
22.	$e^{-\omega n}x(n)$	$\tilde{x}(e^{\omega}z)$
23.	$n^{(2)} = n(n-1)$	$\frac{2z/(z-1)^3}{2}$
24.	$n^{(3)} = n(n-1)(n-2)$	$3!z/(z-1)^4$
25.	$n^{(k)} = n(n-1)\cdots(n-k+1)$	$k!z/(z-1)^{k+1}$
26.	x(n-k)	$\frac{z^{-k}\tilde{x}(z)}{z^{-k}}$
27.	x(n+k)	$z^{k}\tilde{x}(z) - \sum_{r=0}^{k-1} x(r)z^{k-r}$

We now can apply the Routh stability criterion [77] to Q(s) to check whether all the zeros of Q(s) are in the left half-plane. If this is the case, then we know for