PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-165272

(43) Date of publication of application: 16.06.2000

H04B 1/16 (51)Int.CI. H04B 7/08 **H04B** 7/26

(71)Applicant: MATSUSHITA ELECTRIC IND (21)Application number: 10-337171

CO LTD

(22)Date of filing:

27.11.1998

(72)Inventor: YONESU TOSHINORI

(54) RADIO BASE STATION UNIT

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a radio base station unit whose power consumption can be reduced in a synchronization detection system requiring an AGC circuit or a system where diversity reception is conducted through a configuration of a plurality of branches.

SOLUTION: A reception signal is given to an RF section 1, which amplifies the signal and where the frequency is converted into an IF frequency. An AGC circuit 2 amplifies signals with various levels at various gains and provide an output of a resulting signal with a prescribed output level. A gain control voltage of the AGC at that time can be decided by giving an RSSI signal detected by the AGC to a control section 5 depending on the level. The gain control voltage is controlled so that the gain of the AGC is smaller when the RSSI level is higher and the gain of the AGC is higher when the RSSI level is smaller. The gain control voltage is stored in the

control section 5 and it is outputted as a gain control voltage of the AGC of a reception slot of a succeeding frame.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

				•
				, ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
				į.

[Date of requesting appeal against examiner's decision of rejection] [Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

				,	•
	•				
÷					
		~.			
		:			

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2000—165272

(P2000-165272A)

(43)公開日 平成12年6月16日(2000.6.16)

	識別記号	F I 7-73-1 (参考)					
(51)Int.Cl. '	atty y D L で D I に C T I I I I I I I I I I I I I I I I I I	HO4B 1/16 R 5K059					
H04B 1/16		U 5K061					
- 100		7/08 D 5K067					
7/08		· 7/26 D					
7/26							
		審査請求 未請求 請求項の数5 OL (全7頁)					
 (21)出願番号	特願平10-337171	(71)出願人 000005821 松下電器産業株式会社					
		大阪府門真市大字門真1006番地					
(22)出願日	平成10年11月27日(1998.11.27)	(72)発明者 米須 利徳					
		大阪府門真市大字門真1006番地 松下電器					
		産業株式会社内					
		(74)代理人 100097445					
		弁理士 岩橋 文雄 (外2名)					
		Fターム(参考) 5K059 CC03 DD31					
		5K061 AA02 CC52 EF01					
		5K067 AA43 BB21 CC21 CC24 EE10					
		KK05					

(54)【発明の名称】無線基地局装置

(57)【要約】

【課題】 AGC回路を必要とする同期検波システムや 複数のブランチによる構成でダイバーシチ受信を行うシ ステムにおいて低消費電力化を図れる無線基地局装置を 提供することを目的とする。

【解決手段】 受信信号はRF部1に入力され、信号を増幅し、又IF周波数まで周波数変換される。AGC2ではさまざまなレベルの信号をさまざまなゲインで増幅し、一定の出力レベルで出力する。その時のAGCのゲインは、AGCで検出されるRSSI信号が制御部5に入力されそのレベルによりゲイン制御電圧が決定される。ゲイン制御電圧はRSSIレベルが大きければAGCのゲインは小さくなるように制御され、RSSIレベルが小さければAGCのゲインは大きくなるように制御される。そのゲイン制御電圧は制御部5に記憶され、次のフレームの受信スロットのAGCのゲイン制御電圧として出力されることになる。

【特許請求の範囲】

【請求項1】TDMA、TDD通信に用いるAGCを含 む受信系回路において、AGCループの電源は常にON 状態にし、AGCループの立ち上がりに影響しないその 他の回路の電源はON、OFFすることで消費電力の削 滅を行い、AGCのゲインを決めるゲイン制御電圧は、 受信するスロットの前のゲイン制御電圧を与えAGCの 立ち上がりを早くすることを特徴とする無線基地局装 置。

【請求項2】AGCまでの回路の電源は常にONにし、 AGC以降の回路の電源をON、OFFすることで低消 費電力化を行うことを特徴とする請求項1記載の無線基 地局装置。

【請求項3】入力部をアンプを通るパスとアッテネータ を通るパスに分け、RSSIレベルによりアンプを通る かアッテネータを通るかの判定を行い、アッテネータを 通るときはアンプの電源をOFFにして低消費電力化を 図ることを特徴とする請求項1記載の無線基地局装置。

【請求項4】1CnTのシステムで、且つ複数系統の受 信系回路を持つシステムであり、空きチャンネルが各系 20 統の受信系回路で発生すれば、それぞれの空きチャンネ ルを集め1系統分の受信系回路が全て空き状態になれば 受信系回路の電源をOFFにして残りの受信系回路で受 信を行い、ダイバーシチ合成等を行い、低消費電力化を 図ることを特徴とする請求項1記載の無線基地局装置。

【請求項5】複数ブランチでダイバーシチ受信を行う回 路で、RSSIレベルが高ければ、RSSIレベルの高 い方からある数のブランチを選択しダイバーシチ合成を 行い、その時は残りのブランチの受信系回路の電源はO FFにすることで低消費電力化を行うことを特徴とする 30 無線基地局装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はTDMA、TDDシ ステムにおける移動局と無線通信を行う無線基地局装置 に関するものである。

[0002]

【従来の技術】PHS等のTDMA (Time Div ision Multiple Access), TD D (Time Division Duplex) シス 40 FFすることで消費電力の削減を行い、AGCのゲイン テムでは受信時には送信側の電源をOFFにし、送信時 には受信側の電源をOFFにして通信を行うことで消費 電力の削減を行ってきた。

【0003】上記の技術は、PHS端末等の遅延検波を 行うシステムで主に採用されてきたが、基地局等で受信 感度を必要とする同期検波を採用しているシステムでは AGC (自動利得制御回路) を必要とするために採用さ れていない。TDMAシステムでのAGCは高速な立ち 上がり、立ち下がり特性が要求されるため、電源のO

からである。

【0004】例えば、AGCを含む受信回路全体の電源 を常にONにした状態であってもAGCが定常状態にな るには数十μsec程度の時間がかかる。もし、送信時 には受信側の電源をOFF、受信時には送信側の電源を OFFというように制御したならば、受信時にAGCが 定常状態に落ち着くまでにはかなりの時間がかかること になり、ユニークワード等の判定ができなくなる可能性 がでてくる。よって、同期検波のシステムでAGCを必 10 要とする場合は常にAGCを含む受信回路全体の電源を ONにして制御するのが従来のパターンである。

【0005】PHS基地局では受信感度を向上させるた め複数のダイバーシチブランチのある受信システムが用 いられている。このシステムでは複数のアンテナと複数 のRF受信回路、複数の復調回路部が必要となる。上記 の構成により、信号をダイバーシチ合成することで受信 感度を向上させることができた。しかし、回路規模、消 費電力が共に大きくなってしまうというデメリットがあ った。

[0006]

【発明が解決しようとする課題】近年では基地局装置に おいても小型化、小スペース化が要求されているため、 消費電力の削減は必須である。しかし、高感度を必要と するシステムでは同期検波回路およびAGC(自動利得 制御回路)回路が必要となり、回路規模が増大する傾向 である。また、PHS特有のフェージング対策のため、 複数のブランチによる構成でダイバーシチ受信を行う が、これも複数のアンテナ及び受信系が必要となるた め、回路規模、消費電力の増大は免れない。

【0007】本発明は上記従来の問題を解決するために AGC回路を必要とする同期検波システムや複数のブラ ンチによる構成でダイバーシチ受信を行うシステムにお いて低消費電力化を行う無線基地局装置を提供すること を目的としている。

[0008]

【課題を解決するための手段】本発明は、TDMA、T DD通信に用いるAGCを含む受信系回路において、A GCループの電源は常にON状態にし、AGCループの 立ち上がりに影響しないその他の回路の電源はON、O を決めるゲイン制御電圧は、受信するスロットの前のゲ イン制御電圧を与えAGCの立ち上がりを早くする。

【0009】この構成により、AGC回路を必要とする 同期検波システムや複数のブランチによる構成でダイバ ーシチ受信を行うシステムにおいて低消費電力化を行う 無線基地局装置を実現できる。

[0010]

【発明の実施の形態】請求項1に記載の発明は、TDM A、TDD通信に用いるAGCを含む受信系回路におい N、OFFを行うとその特性が満足されないことになる 50 て、AGCループの電源は常にON状態にし、AGCル

ープの立ち上がりに影響しないその他の回路の電源はON、OFFすることで消費電力の削減を行い、AGCのゲインを決めるゲイン制御電圧は、受信するスロットの前のゲイン制御電圧を与えAGCの立ち上がりを早くする。

【0011】請求項2に記載の発明は、AGCまでの回路の電源は常にONにし、AGCより後段の回路の電源をON、OFFする。

【0012】請求項3に記載の発明は、入力部をアンプを通るパスとアッテネータを通るパスにわけ、RSSIレベルによりアンプを通るかアッテネータを通るかの判定を行い、アッテネータを通るときはアンプの電源をOFFにして低消費電力化を図る。

【0013】請求項4に記載の発明は、1CnT(制御チャンネル1スロット、通話チャンネルnスロット)のシステムで、且つ複数系統の受信系回路を持つシステムであり、空きチャンネルが各系統の受信系回路で発生すれば、それぞれの空きチャンネルを集め1系統分の受信系回路が全て空き状態になれば電源をOFFにして、残りの受信系回路で受信を行い、ダイバーシチ合成等を行20い、低消費電力化を図る。

【0014】請求項5に記載の発明は、複数ブランチでダイバーシチ受信を行う回路で、RSSIレベルが高ければ、RSSIレベルの高い方からある数のブランチを選択しダイバーシチ合成を行い、その時は残りのブランチの受信系回路の電源はOFFにする。

【0015】上記構成の各発明によれば、低消費電力化 を図ることができる。

(実施の形態1)図1は本発明の実施の形態1における無線基地局装置のブロック図、図2は同AGC制御信号 30のタイミングチャートである。図1において、1はアンテナで受信した信号を増幅し、IF周波数まで周波数変換を行うRF部、2はあらゆるレベルの信号を増幅し出力レベルは一定レベルで出力するAGC(自動利得制御回路)、3はAGC出力を増幅し、さらにベースバンドまで周波数変換をおこなうIF部、4は搬送波に乗った変調信号を同期検波方式で復調する復調部、5はAGC2からのRSSI信号により、ゲイン制御電圧を決め、次のフレームのAGCゲイン制御電圧を返し、又RF部1、IF部3の電源をON、OFF制御する制御部である。

【0016】図2にAGCに関する各種制御電圧のタイミングチャートの一例を示す。この場合、受信スロットは4スロット、送信スロットは4スロットのTDMAシステムを仮定する。又、受信信号は1番目のスロットにのみ入力されているものとする。ON/OFF制御信号は受信スロット時は電源電圧がONし、送信スロット時には電源電圧がOFFするように制御される。更なる低消費電力化を図るために、受信時に受信スロット4スロット全てをONするのではなく、本当に受信しているス 50

ロットのみをONすることも可能である。RSSI信号はここでは第1スロットにのみ信号が入力されているため、各フレームの第1スロット分だけのRSSI信号が制御部5に入力される。制御部5に入力されたRSSI信号から次のフレームのAGCゲイン制御電圧を決定する。そして、次のフレームでは前のフレームの制御部4で記憶されたゲイン制御電圧によりAGCゲインを制御することになる。

【0017】以上のように構成された無線基地局装置について、以下にその動作を説明する。受信信号はRF部1に入力され、信号を増幅し、又IF周波数まで周波数変換される。AGC2ではさまざまなレベルの信号をさまざまなゲインで増幅し、一定の出力レベルで出力する。その時のAGC2のゲインは、AGC2で検出されるRSSI信号が制御部5に入力されそのレベルによりゲイン制御電圧が決定される。ゲイン制御電圧はRSSIレベルが大きければAGC2のゲインは小さくなるように制御され、RSSIレベルが小さければAGC2のゲインは大きくなるように制御される。そのゲイン制御電圧は制御部5に記憶され、次のフレームの受信スロットのAGC2のゲイン制御電圧として出力されることになる。

【0018】受信時には、RF部1とIF部3が電源ONで、送信時にはRF部1とIF部3が電源OFFに制御部5から制御される。AGC2及び復調部4,制御部5は常に電源ONである。復調部の構成次第でON/OFFしさらに低消費電力化することも可能である。IF部3はAGC2の出力信号を増幅し、ベースバンド周波数まで周波数変換をおこなう。復調部4はIF部3の出力信号を同期検波方式で復調する。上記の構成により、RF部1とIF部3の電源をスイッチングすることで、低消費電力化が行え、前のフレームのゲイン制御電圧を使うことでAGC2の立ち上がりを遅らすことなく、通信を行うことができる。

【0019】(実施の形態2)図3は本発明の実施の形態2における無線基地局装置のブロック図である。図3において、1はアンテナで受信した信号を増幅し、IF周波数まで周波数変換を行うRF部、2Aはあらゆるレベルの信号を増幅し出力レベルは一定レベルで出力するAGC(自動利得制御回路)、3はAGC出力を増幅し、さらにベースバンドまで周波数変換をおこなうIF部、4は搬送波に乗った変調信号を同期検波方式で復調する復調部、5AはIF部の電源をON、OFF制御する制御部である。

【0020】以上のように構成された無線基地局装置について、以下にその動作を説明する。受信信号はRF部1に入力され、信号を増幅し、又IF周波数まで周波数変換される。AGC2Aではさまざまなレベルの信号をさまざまなゲインで増幅し、一定の出力レベルで出力する。その時のAGC2Aのゲインは、AGC2A内でA

6

GC2Aに入力された信号の信号レベル検波を行いゲインを決定する。ここでは入力信号が入力されたスロット内でAGC2Aが立ち上がる。ゲインはAGC2Aへの入力信号レベルが大きければゲインは小さくなるように制御され、ゲインへの入力信号レベルが小さければゲインは大きくなるように制御される(制御部5Aとはやり取りを行わず、AGC2Aのみでゲイン制御電圧が決定される。)。

【0021】受信時には、IF部3が電源ONで、送信時にはIF部3が電源OFFに制御部5Aから制御される。RF部1、AGC2A及び復調部4,制御部5Aは常に電源ONである。復調部の構成次第でON/OFFしさらに低消費電力化することも可能である。IF部3はAGC2の出力信号を増幅し、ベースバンド周波数まで周波数変換をおこなう。復調部4はIF部3の出力信号を同期検波方式で復調する。上記の構成により、IF部3の電源をスイッチングすることで、低消費電力化が行える。

【0022】(実施の形態3)図4は本発明の実施の形態3における無線基地局装置のブロック図である。図4 20において、8はアンテナで受信した信号を高周波増幅回路10が減衰器11に切り替える第1のSW部(切り替え部)、9は高周波増幅回路10か減衰器11に切り替える第2のSW部(切り替え部)、10はアンテナから入力された微小信号を増幅する高周波増幅回路、11はアンテナから入力された高入力信号を減衰させる減衰器、12は入力された信号を増幅し、IF周波数に周波数変換する高周波増幅回路&ダウンコンバーターであり、上記全てRF部とする。

【0023】2日はあらゆるレベルの信号を増幅し出力 30

レベルは一定レベルで出力するAGC(自動利得制御回 路)、5BはAGC2BからのRSSIにより第1のS W部8と第2のSW部9の切り替え制御を行い、高周波 増幅回路10のON/OFF制御を行う制御部である。 【0024】以上のように構成された無線基地局装置に ついて、以下にその動作を説明する。最初は、受信信号 は高周波増幅回路10のパスを通るように制御部から制 御される。高周波増幅回路10の出力は高周波増幅回路 &ダウンコンパーター12を通りIF周波数まで周波数 変換される。そして、AGC2Bで一定レベルに増幅さ 40 れる。AGC2BもAGC2Aと同じく、AGC2Bの ゲインは、AGC2B内でAGC2Bに入力された信号 の信号レベル検波を行いゲインを決定する。ここでは入 力信号が入力されたスロット内でAGC2Bが立ち上が る。ゲインはAGC2Bへの入力信号レベルが大きけれ ばゲインは小さくなるように制御され、AGC2Bへの 入力信号レベルが小さければゲインは大きくなるように 制御される(制御部5BにはRSSIを渡すが、AGC 2 Bのみでゲイン制御電圧が決定される。)。AGC 2

ルが制御部で設定されるしきい値より大きければ減衰器 11のパスを通るように、RSSIレベルが制御部で設定されるしきい値より小さければ高周波増幅回路10のパスを通るように第1のSW部8と第2のSW部9が制御される。

【0025】ここで、RSSIレベルが制御部で設定さ れるしきい値より大きければアンテナから入力される信 号は減衰器11のパスを通り、その間の高周波増幅回路 10の電源がOFFになるように制御される。上記の制 御を行うことで、高入力時には高周波増幅回路10の消 費電力を削減することができ、低消費電力化が行える。 【0026】(実施の形態4)図5は本発明の実施の形 態4におけるスロット制御の一例を示すブロック図であ って、受信4スロット、送信4スロットのTDMAシス テムにおけるスロット使用構成を示すブロック図であ る。本例では1個の無線基地局装置で2個の周波数 (チ ャンネル)を使用し、Aチャンネルで1C3T (1個の 制御チャンネルと3個の通話チャンネル)を使用でき、 Bチャンネルでは4T (4個の通話チャンネル) が利用 できるシステム例を示す。Aチャンネルで送受信各々4 スロットずつあるが、Aチャンネルで少なくとも一つの 受信回路が必要となる。また同じく、Bチャンネルでも 少なくとも一つの受信回路が必要になる。図5 (a) に スロット構成を制御する前の状態の一例を示す。また図 5 (b) にスロット構成を制御した後の一例を示す。

【0027】図5(a)のAチャンネルでは受信第1スロットに移動局からの制御チャンネル(Cch)を受信し、受信の第2スロットでは移動局からの通話チャンネル(Tch)を受信している状態を示す。残りの受信第2、第3スロットは空きスロット状態である。送信第1スロットは制御チャンネルを送信し、送信第2スロットは通話チャンネルを送信しており、送信第3、第4スロットは空きスロットである。Bチャンネルでは受信第1スロットのみ通話チャンネルを受信状態であるが、残りの第2、第3、第4スロットは空き状態である。

【0028】送信も第1スロットのみ通話チャンネルを送信状態であるが、残りの第2、第3、第4スロットは空き状態である。上記のスロット使用状況ではA、Bの両方のチャンネルを使用しなければならず、又、少なくとも2個以上受信回路が必要となる(Achで1系統以上の受信系回路、Bchで1系統以上の受信系回路を持つのが通常のケースである。)。

【0029】図5(a)のようなスロット使用状況から、図5(b)のようにどちらか一方のチャンネルに使用スロットをまとめる方法をとれば、使用するチャンネル数も削減でき、又、使用する受信回路の電源もOFFにして低消費電力化を図ることができる。

制御される(制御部 5 BにはRSSIを渡すが、AGC 【0 0 0 3 0 】図5 (0) は図5 (0) のBチャンネルの 0 2 Bのみでゲイン制御電圧が決定される。)。AGC 2 受信第1 スロットの信号をAチャンネルの受信第0 3 スロ BではRSSI信号を制御部 0 5 Bの返し、RSSIレベ 0 9 トに移動させ、又、Bチャンネルの送信第0 1 スロット

の信号をAチャンネルの送信第3スロットに移動させる。そうすることで、Aチャンネルは受信第1、第2、第3スロットが使用状態で、受信第4スロットのみが空きスロットとなる。送信も第1、第2、第3スロットが使用状態で、送信第4スロットのみが空きスロットとなる。Bチャンネルは全てが空きとなり、チャンネル使用数が減り、Bチャンネルで受信していた受信回路の電源をOFFすることで、低消費電力化が行える。上記構成により、チャンネル数の削減および低消費電力化が行えることになる。

【0031】(実施の形態5)図6は本発明の実施の形 態5における無線基地局装置のブロック図であって、A GCを含む同期検波システムの無線基地局装置の構成を 示している。ブランチ数としてはnブランチの構成でも 当てはまるが、図6に示すようにここでは4ブランチの ダイバーシチ構成の場合について考える。図6におい て、1はアンテナで受信した信号を増幅し、IF周波数 まで周波数変換を行うRF部、2Cはあらゆるレベルの 信号を増幅し出力レベルは一定レベルで出力するAGC (自動利得制御回路)、3はAGC出力を増幅し、さら 20 **にベースバンドまで周波数変換をおこなうIF部、4は** 搬送波に乗った変調信号を同期検波方式で復調する復調 部、5CはAGC2CからのRSSIレベルにより各ブ ランチの電源をON/OFF制御する制御部であり、各 ブランチ全体の電源をON/OFFする。13はダイバ ーシチ合成部である。

【0032】以上のように構成された無線基地局装置について、以下にその動作を説明する。受信信号はRF部1に入力され、信号を増幅し、又IF周波数まで周波数変換される。AGC2Cではさまざまなレベルの信号を30変まざまなゲインで増幅し、一定の出力レベルで出力する。その時のAGC2Cのゲインは、AGC2C内で信号レベル検波を行いゲインを決定する。ゲインはAGC2Cへの入力信号レベルが大きければゲインは小さくなるように制御され、AGC2Cへの入力信号レベルが小さければゲインは大きくなるように制御される(制御部5CにはRSSIを渡すが、AGC2Cのみでゲイン制御電圧が決定される。)。IF部3はAGC2の出力信号を増幅し、ベースバンド周波数まで周波数変換をおこなう。復調部4は搬送波に乗った変調信号を同期検波方40式で復調する。

【0033】ダイバーシチ合成部13は各ブランチの復調部4の出力信号を適切な位相で足しあわせて、信号を合成し、SN比の向上した信号を作る。又、AGC2CからはRSSIを制御部5Cにわたす。そこで、各ブランチのRSSIレベルを比較し、制御部に記憶されているしきい値より大きければ、RSSIレベルの大きなブランチの信号をnブランチで受信し、ダイバーシチ合成を行う。nは各ブランチのRSSIレベルにより決定される。ダイバーシチ合成に用いない(4-n)ブランチ 50

は、ブランチ全体の電源をOFFにして低消費電力化を図る(ここでは4ブランチのダイバーシチを仮定しているので)。上記方法により、高入力時にダイバーシチブランチの数を減らし、ブランチ内の回路の電源をOFFすることで低消費電力化が行える。

[0034]

【発明の効果】本発明は、AGC及びそのループ周辺回路の電源は常にON状態としAGCループに関係無い回路ではON、OFFしスイッチングを行い、その時にAGCより前段の回路をON、OFFすることで多少AGCの立ち上がりは遅くなるが、前のスロットのAGCのゲイン制御電圧を次のスロットのAGCのゲイン制御電圧として与えることでAGCの立ち上がりを早くすることができ、低消費電力化が行える。

【0035】又、AGCより後段のみの回路の電源をON/OFFすることで、AGCの立ち上がりには関係なく消費電力を削減することができ、またRF部で信号が通らないバスの電源をOFFにすることでも低消費電力化が行える。又、使用されているスロットをまとめて、全てが空きスロットのみになればその受信系の電源をOFFすることでも低消費電力化が行える。又、複数のブランチで受信するダイバーシチブランチを有するシステムにおいて、RSSIレベルが高いときはダイバーシチブランチの数を減らし受信を行い、使用しないブランチの電源をOFFすることで低消費電力化が行える。

【図面の簡単な説明】

【図1】本発明の実施の形態1における無線基地局装置 のブロック図

【図2】本発明の実施の形態1におけるAGC制御信号 のタイミングチャート

【図3】本発明の実施の形態2における無線基地局装置のプロック図

【図4】本発明の実施の形態3における無線基地局装置のプロック図

【図5】本発明の実施の形態4におけるスロット制御の 一例を示すプロック図

【図6】本発明の実施の形態5における無線基地局装置 のブロック図

【符号の説明】

- 1 RF部
 - 2, 2A, 2B, 2C AGC
 - 3 IF部
 - 4 復調部
 - 5, 5A, 5B, 5C 制御部
 - 8 第1のSW部
 - 9 第2のSW部
 - 10 高周波增幅回路
 - 11 減衰器
 - 12 高周波増幅回路&ダウンコンバーター
- 0 13 ダイバーシチ合成部

【図1】

【図2】

【図3】

【図4】

8 第1のSW部 9 第2のSW部

【図5】

【図6】

			•	
		·	,	· .
				1. Ar
				3
				E _p s
			•	
			19	