Capstone Project-2

Supervised ML (Regression) - Capstone Project

Bike Sharing Demand Prediction

Team Members:

Email id	Name
chetanjadhav2341@gmail.com	Chetan Jadhav
meghanars70@gmail.com	Meghana Rs
regorobin5@gmail.com_	Robin Rego
poojaparsana158@gmail.com	Pooja Parsana

Project Details

Currently Rental bikes are introduced in many urban cities for the enhancement of mobility comfort. It is important to make the rental bike available and accessible to the public at the right time as it lessens the waiting time. Eventually, providing the city with a stable supply of rental bikes becomes a major concern. The crucial part is the prediction of bike count required at each hour for the stable supply of rental bikes.

Steps performed

- Data cleaning
- Data visualizations
- Data preprocessing
- Model Implementation
- Evaluation metrics

Feature Summary

- Date: year-month-day
- Rented Bike Count -Count of bikes rented at each hour
- Hour: Hour of the day
- Temperature: (in Celsius)
- Humidity: (in %)
- Windspeed: m/s
- Visibility: 10m
- Dew Point Temperature (in celsius)
- Solar Radiation: MJ/m2
- Rainfall: mm
- Snowfall: cm
- Seasons: Winter, Spring, Summer,
- Autumn
- Holiday No Holiday/ Holiday
- Functional Day Yes/No

Analysis Of Rented Bike Column

 After applying square root transformation there is no outliers present in rented bike count column

Exploratory Data Analysis

Month vs Rental Bike Count

 From above graph it is clear that the from the month 5 to 10 demand was increases compared to the other month. or this is the summer season.

Hour vs Rental Bike Count

 From above graph we can say that people use rented bikes during their working hour from7am to 9am and 5pm to 7pm.

Weekdays and weekend vs Rental Bike Count

- From the above point plot we can say that in the weekdays which represent in blue colour show that the demand of the bike higher because of the office.
- The orange colour represent the weekend days, and it show that the demand of rented bikes are very low especially in the morning hour but when the evening start from 4 pm to 8 pm the demand slightly increases.

Functioning Day vs Rented bike count

Above graph clearly shows that the, people don't use rented bike in no functioning day.

Analysis Of Season Variable

- In above graph we can see that the during summer season demand of rented bike was increase.
- And during the winter demand is very low.

Analysis of Holiday Variable

 From above graph it is clear that the during a holiday demand of rented bike was decrease compared to the no holidays.

Snowfall vs Rented Bike Count

• Graph shows increase in snowfall demand was decreases.

Rainfall vs Rented Bike Count

 just like snowfall, when rainfall is increases demand of rented bike is decreases.

Windspeed vs Rented Bike Count

 In wind speed plot that the demand of rented bike is uniformly distribute despite of wind speed but when the speed of wind was 7 m/s then the demand of bike also increase that clearly means peoples love to ride bikes when its little windy.

Regression plots for numerical variable

Analysis from regression plot of numerical variable

- From the above regression plot of all numerical features we see that the columns 'Temperature', 'Wind_speed','Visibility', 'Dew_point_temperature', 'Solar_Radiation' are positively relation to the target variable.
- which means the rented bike count increases with increase of these features.
- 'Rainfall', 'Snowfall', 'Humidity' these features are negatively related with the target variable which means the rented bike count decreases when these features increase.

Heatmap

-0.8

-0.6

-0.4

-0.2

-0.0

--0.2

-0.4

Model Building

- LINEAR REGRESSION
- LASSO REGRESSION
- RIDGE REGRESSION
- DECISION TREES REGRESSOR
- RANDOM FOREST REGRESSOR
- GRADIENT BOOSTED REGRESSOR
- GRADIENT BOOSTING REGRESSOR WITH GRIDSEARCHCV

Linear Regression

Training Dataset Result

MSE : 53.39656510174565

RMSE: 7.307295334235893

MAE : 5.608650235369007

R2 : 0.656848445414216

Adjusted R2:0.65432178877667

Test Dataset Result

MSE : 51.969197542857664

RMSE: 7.208966468423727

MAE : 5.5449337368940235

R2: 0.660738066202897

Lasso Regression

Training Dataset Result

MSE: 81.67121948733921

RMSE: 9.037213037620571

MAE : 6.714463134100375

R2 : 0.47514215795350834

Adjusted R2: 0.47127758111377

Test Dataset Result

MSE: 82.83241723530892

RMSE: 9.101231632878537

MAE : 6.695468179147453

R2: 0.4592588036564451

Ridge Regression

Training Dataset Result

MSE: 53.39657222149276

RMSE: 7.307295821402933

MAE : 5.608667022744986

R2: 0.6568483996593574

Adjusted R2: 0.654321742684921

Test Dataset Result

MSE : 51.97020619182089

RMSE: 7.209036426029549

MAE : 5.545003364375157

R2: 0.6607314816063674

Decision Tree

Training Dataset Result

Model Score: 0.8478993907609244

MSE : 23.66782249625263

RMSE: 4.864958632532514

MAE : 3.5017577609055177

R2: 0.8478993907609244

Adjusted R2: 0.8467794599059657

Test Dataset Result

MSE : 27.205370800338237

RMSE : 5.21587680072471

MAE: 3.7209495415918017

R2: 0.8223996685771711

Elastic net Regression

Training Dataset Result

MSE: 64.43270985216326

RMSE: 8.026998807285526

MAE : 6.095440247072635

R2 : 0.5859249652142559

Adjusted R2:0.5828760924316

Test Dataset Result

MSE: 64.58120546973048

RMSE: 8.03624324356415

MAE: 6.0790049362968945

R2: 0.5784051767099109

Gradient Boosting

Training Dataset Result

Model Score: 0.9001355144

MSE: 15.539549310552909

RMSE: 3.9420235045662664

MAE : 2.821389156564207

R2: 0.9001355144601924

Adjusted R2: 0.8994002030

Test Dataset Result

MSE: 17.070899205089862

RMSE: 4.1316944714111985

MAE : 2.945146990371217

R2: 0.8885588666017383

Model Conclusion

level_0	level_1	Model	MAE	MSE	RMSE	R2_score	Adjusted R2
Training set	0	Linear regression	5.609	53.397	7.307	0.657	0.65
Training set	1	Lasso regression	6.714	81.671	9.037	0.475	0.47
Training set	2	Ridge regression	5.609	53.397	7.307	0.657	0.65
Training set	3	Decision tree regression	3.502	23.668	4.865	0.848	0.85
Training set	4	Elastic net regression	6.095	64.433	8.027	0.586	0.58
Training set	5	Gradient boosting regression	2.821	15.54	3.942	0.9	0.9
Training set	6	Gradient Boosting grid search cv	1.452	4.687	2.165	0.97	0.97
Test set	0	Linear regression	5.545	51.969	7.209	0.661	0.66
Test set	1	Lasso regression	6.695	82.832	9.101	0.459	0.46
Test set	2	Ridge regression	5.545	51.97	7.209	0.661	0.66
Test set	3	Decision tree regression	3.721	27.205	5.216	0.822	0.82
Test set	4	Elastic net regression Test	6.079	64.581	8.036	0.578	0.58
Test set	5	Gradient boosting regression	2.945	17.071	4.132	0.889	0.89
Test set	6	Gradient Boosting grid search cv	1.872	9.003	3.0	0.941	0.94

Conclusion

- We analysis that Hour is the most important feature.
- Rented bike count is mostly related with the time of the day as it is peak at 10 am and 8pm.
- Also we observed that rented bike count is high during working days compared to nonworking days.
- We see that people generally prefer to bike at moderate to high temperatures, and when little windy.
- It is observed that highest number bike rentals counts in Autumn & Summer seasons & the lowest in winter season. We observed that the highest number of bike rentals on a clear day and the lowest on a snowy or rainy day. We observed that with increasing humidity, the number of bike rental counts decreases.

- All metrics were evaluated for each model, MSE(Mean Squared Error), MAE (Mean Absolute Error), RMSE(Root Mean squared Error),R2 Score, Adjusted R2 Score.
- At the end, comparison of models stated that some models showed improvement or were able to handle the overfitting issues when hyperparameter tuning was performed.
- Adjusted R2 score was used to compare models as it is a special form of R2 score. Adjusted R2 indicates how well terms fit a curve or line, and also adjusts for the number of terms in a model.