Permit Number 5665A

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

AIR CONTAMINANTS

DATA

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	<u>Emissio</u> lb/hr	n Rates * TPY**
COM-7	667-hp Superior 8G825 Inlet Compressor Engine, w/NSCR Catalyst	NO_x CO VOC SO_2 PM_{10}	2.21 4.41 0.44 0.01 0.10	9.66 19.32 1.93 0.01 0.44
COM-8RA	467-hp Superior 6G825 Refrigeration Compresso Engine w/NSCR Catalyst	NO_x CO VOC SO_2 PM_{10}	2.06 3.09 1.03 0.01 0.07	9.02 13.53 4.51 0.01 0.32
COM-9RA	467-hp Superior 6G825 Refrigeration Compressor Engine w/NSCR Catalyst	NO_x CO VOC SO_2 PM_{10}	2.06 3.09 1.03 0.01 0.07	9.02 13.53 4.51 0.01 0.32
COM-10RA	800-hp Superior 8G825 Inlet Compressor Engine w/NSCR Catalyst	NO_x CO VOC SO_2 PM_{10}	3.53 5.29 1.76 0.01 0.12	15.45 23.18 7.73 0.02 0.53
COM-11RA	800-hp Superior 8G825 Inlet Compressor Engine w/NSCR Catalyst	NO_x CO VOC SO_2 PM_{10}	3.53 5.29 1.76 0.01 0.12	15.45 23.18 7.73 0.02 0.53

COM-12R	800-hp Superior 8G825 Inlet Compressor Engine w/NSCR Catalyst	NO_x CO VOC SO_2 PM_{10}	3.53 5.29 1.76 0.01 0.12	15.45 23.18 7.73 0.02 0.53
COM-13R	667-hp Superior 8G825 Inlet Compressor Engine, w/NSCR Catalyst	NO_x CO VOC SO_2 PM_{10}	2.94 4.41 1.47 0.01 0.10	12.88 19.32 6.44 0.01 0.44
COM-22R	800-hp Sperior 8G825 Inlet Compressor Engine w/NSCR Catalyst	NO_x CO VOC SO_2 PM_{10}	3.53 5.29 1.76 0.01 0.12	15.45 23.18 7.73 0.02 0.53
COM-23R	467-hp Superior 6G825 Refrigeration Compressor Engine w/NSCR Catalyst	NO_x CO VOC SO_2 PM_{10}	2.06 3.09 1.03 0.01 0.07	9.02 13.53 4.51 0.01 0.32
COM-28R	800-hp Superior 8G825 Inlet Compressor Engine w/NSCR Catalyst	NO _x CO VOC SO ₂ PM ₁₀	3.53 5.29 1.76 0.01 0.12	15.45 23.18 7.73 0.02 0.53
COM-29R	1,085-hp Caterpillar G-3516LE Compressor Engine w/Lean Operation	NO_x CO VOC SO_2 PM_{10}	4.78 4.78 1.20 0.01 0.08	20.95 20.95 5.24 0.02 0.35
	1,085-hp Caterpillar	NO _x	4.78	20.95

COM-30R	G-3516LE Compressor Engine w/Lean Operation	CO VOC SO ₂ PM ₁₀	4.78 1.20 0.01 0.08	20.95 5.24 0.02 0.35
COM-31	1,085-hp Caterpillar G-3516LE Compressor Engine w/Lean Operation	NO_x CO VOC SO_2 PM_{10}	4.78 4.71 1.20 0.01 0.08	20.95 20.64 5.24 0.02 0.35
COM-32R	1,085-hp Caterpillar G-3516LE Compressor Engine w/Lean Operation	NO_x CO VOC SO_2 PM_{10}	4.78 4.78 1.20 0.01 0.08	20.95 20.95 5.24 0.02 0.35
BLR-1	13.0 MMBtu/hr Steam Boiler	NO_x CO VOC SO_2 PM_{10}	1.30 1.09 0.07 0.01 0.10	5.69 4.78 0.31 0.03 0.43
HOHHTR-1	22.0 MMBtu/hr Hot Oil Heater (5)	NO_x CO VOC SO_2 PM_{10}	2.20 1.85 0.12 0.01 0.17	9.64 8.09 0.53 0.06 0.73
HTR-1	7.0 MMBtu/hr Mole Sieve Regeneration Heater (5)	NO_x CO VOC SO_2 PM_{10}	0.70 0.59 0.04 0.01 0.05	3.07 2.58 0.17 0.02 0.23
HTR-14	1.8 MMBtu/hr Mole Sieve Regeneration Heater	NO_x CO VOC SO_2 PM_{10}	0.18 0.15 0.01 0.01 0.01	0.79 0.66 0.04 0.01 0.06

FLARE-HP	High Pressure Acid Gas Flare	NO _x CO VOC SO ₂ H ₂ S	2.40 20.60 0.56 8.33 0.09	10.52 90.21 2.46 36.47 0.39
TK-18	Methanol Storage Tank (5)	VOC	0.09	0.41
FUG	Sitewide Fugitives	VOC (4)	3.52	15.40

- (1) Emission point identification either specific equipment designation or emission point number from a plot plan.
- (2) Specific point source names. For fugitive sources, use an area name or fugitive source name.
- (3) VOC volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1
 - NO_x total oxides of nitrogen
 - SO₂ sulfur dioxide
 - PM₁₀ particulate matter equal to or less than 10 microns in diameter
 - CO carbon monoxide H₂S - hydrogen sulfide
- (4) Fugitive emissions are an estimate only and should not be considered as a maximum allowable emission rate.

(5) These emissions are authorized under permits by rule (PBR) and incorporated by reference only into this permit. The PBRs utilized are listed below:

EPN No.	PBR Registration Number.	PBR Claimed
HOHHTR-1	44696	106.183
HTR-1	35535	106.183
TK-18	Unregistered	106.352

* Emission rates are based on and the facilities are limited by the following maximum operating schedule:

24 Hrs/day 7 Days/week 52 Weeks/year or ___Hrs/year

** Compliance with annual emission limits is based on a rolling 12-month period.

Date: May 11 2009