COSC 341 - Tutorial 2

- 1. Let $A = \{a, b, c\}$ be a sets.
 - (a) Define a relation R on A that is irreflexive, asymmetric, and not transitive
 - (b) Extend R to a relation R' that is reflexive
 - (c) Extend R' to a relation R'' that is symmetric
 - (d) Extend R'' to a relation R''' that is transitive
- 2. Are the following relations reflexive, symmetric, transitive? If they are: How many equivalence classes do they have?
 - (a) \sim on $\mathbb N$ with: $a \sim b \iff a \text{ devides } b \ (\frac{b}{a} \in \mathbb N)$
 - (b) \sim on $\mathcal{P}(\mathbb{N})$ with: $A \sim B \iff A \cap B = \emptyset$
 - (c) \sim on $\mathbb N$ with: $a \sim b \iff a$ and b have the same last digit
- 3. Show that the set of even natural numbers is countable.

Homework

- 1. Are the following relations reflexive, symmetric, transitive? If they are: How many equivalence classes do they have?
 - (a) \sim on $\mathcal{P}(\mathbb{N})$ with: $A \sim B \iff A \subseteq B$
 - (b) \sim on $\mathbb N$ with: $a \sim b \iff a b$ is a multiple of 8
 - (c) \sim on $\mathcal{P}(\mathbb{N})$ with: $A \sim B \iff A \cap B \neq \emptyset$
- 2. Show that the set of even integers is countable.