OPTIMAL HOMOLOGOUS CYCLES JOTAL UNIMODULARITY, AND LINEAR PROGRAMMING

BALA KRISHNAMOORTHY

WASHINGTON STATE UNIVERSITY

joint work with

TAMAL DEY OHIO STATE U.

AND AND HIRANI

U. ILLINOIS

(TO APPEAR IN STOC '10)

SIMPLICIAL COMPLEX

h collection of such that of a simplex in K simplices in

(2) intersection of two simplices of K is a trace of each of them. I

IOTIVATING

te in the middle

MOTIVATING

EXAMPLI

OTIVATING ယ :XAMPLE (v)

IOTIVATING (v) S S

OUR RESULT

X Problem is NP-hard with addition Over \mathbb{Z}_2

OUR RESULT

X Problem is NP-hard with addition Over Z2

With addition over Z, can solve the problem in polynomial time for a large najority of Kusing linear programming

ABSTRACT SIMPLICIAL COMPLEX

A collection of finite, non-empty sets S, such that if $A \in S$, then $B \in S$, $F \in A$ {1,4}, {2,3}, {3,4}, {0,1,2}, {1,3,4}}

ABSTRACT SIMPLICIAL COMPLEX

A collection of finite non-empty sets S, such that if $A \in S$, then $B \in S$, $F \in A$

$$S = \{ \{0\}, \{1\}, \{2\}, \{3\}, \{4\}, \{0,1\}, \{0,2\}, \{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{3,4\}, \{0,1,2\}, \{1,3,4\} \} \}$$

4 -> a germetric realization

B 9 5 B Möbius band 6

(D

1-chain:
collection of edges

CHAINS

collection of collection of

Uniontation of a simplex [vv] or [vv] [vv] [vv] or [vvv] · HAINS

1-chain:

collection of

Orientation of a simplex

 $[v_1] \circ [v_1] = [v_1v_2] \circ [v_1v_2]$

b-Chain: b-simplices of K to Z s.b.: function c from a set of oriented

(1) $C(\sigma) = -C(\sigma')$ & σ' are opposite

(2) $C(\sigma') = 0$ for all but finitely namy
oriented pramy

CHAIN GROUPS

Add p-chains by adding their values over 1/2 => Cp(K): group of (oriented) p-chains.

Elementary chain of of EK:

 $C(\sigma') = 1$, if σ' opposite orientation of σ $C(\tau') = 0$ $\tau \neq \tau \neq \sigma'$.

Kesult: $C_p(K)$ is free abelian; the elementary chains form a basis for Cp(K).

DOUNDARY OPERATOR

The homomorphism 3: Cp(K)-> Cp., (K). $\partial_{\rho}\sigma = \partial_{\rho}[v_{0},...,v_{0}] = \sum_{i=0}^{r} (-1)^{i}[v_{0},...,v_{0}]$ 5 = [v,..., v,]: oriented simplex, p-0.

DOUNDAR UPERATOR

 $\partial_2[v_0,v_1,v_2] = [v_1,v_2] - [v_0,v_2]$ $|v_{i}|_{0} = |v_{i}|_{0} = |v_{i}|_{0} = |v_{i}|_{0}$ = 10,..., 0 : oriented 。(大) -

HOMOLOGY (JROUPS

> th homology group of K Ker 8/2 = Z/2 (K) group of p-ydes Im $\partial_{ph} = B_p(K)$ group of p-boundaries $H_p(K) = Z_p(K)/B_p(K)$ $B_{b}(K) \subset Z_{b}(K) \subset C_{b}(K)$ group of p-cycles that are NOT p-boundaries 9 = 46 1-46 boundary of boundary

EXAMPLE

c is a y de <⇒ n,=n=n=n=n+ C(K): free abelian of rank 4 general 1-chain: c=

> Zz(K) is infinite cyclic, generated e,+e,+e3+e4

 $\Rightarrow H_1(K) = Z_1(K)/B_1(K) \cong \mathbb{Z}$ No 2-simplices in $K \Rightarrow B_1(K)$ is trivial

RANK OF Ho(K) = B(K)

Betti numbers of K: Intuitively, $\beta_o = 4$

 $\beta_2 = # tunnels / voids$ # connected components holes

RANK OF

Betti numbers of K

Intuitively,

connected components

holes

tunnels /voids

 $\beta_0 = 1, \beta_1 = 2, \beta_2 = 1$

KANK

Betti numbers

Intuitively,

$$\beta_0 = 1, \beta_1 = 2, \beta_2 = 1.$$

tield, simple, intutive

BOUNDARY MATRIX La

[2p] is an min $\partial_{\flat}:C_{\flat}(K)\to C_{\flat-i}(K)$ If $\{\sigma_i\}_{i=0}^{m-1}$ and $\{\tau_j\}_{j=0}^{n-1}$ are elementa: chain bases for $C_{p-1}(K)$ of $C_p(K)$, then matrix, [2p], E \{-1,0,1\}. are elementary

SOUNTAR

)_b(K)bases 22 0=1 メ× ス× 406-409 then

10MOLOGOUS CYCLE5

represents hole in middle, but has 5 edges.

UTOR1 10MOLOGOUS CYCLES

epresents hole in iddle, but has

horter (has only 3 edges) cycle around

Ť O R J 10MOLOGOUS CYCLES

001

$$x=c+[\partial_{z}][-1]$$

 $x = c+[\partial_{z}][-1]$

6

0000HTH

400-4000

chains/cycles t1 weights) weig formed sui <u>ডি</u>

OPTIMAL HOMOLOGIOUS (YCLE PROBLEM

among all eycles homologous to c. OHCP: Given a p-cycle c in K, find a W = chag([w,...,wm]), where w. ERzo is the weight of p-simplex 5; EK.

OPTIMAL HOMOLOGOUS (YCLE PROBLEM

OHCP: Given a p-cycle c in K, find a cycle c* with smallest value of llwc*lly among all cycles homologous to c. W = chag([w,,-.,wm]), where W. ERzo is the weight of p-simplex v; EK.

With homology defined over 12, OHCP is NP-hard (Chen & Freedman, 2010)

OPTIMAL HOMOLOGOUS (HAIN PROBLEM

OHCP: Given a p-chain c in K, find a among all chains homologous to c. W = chag([w,...,wm]), where W. ERzo is the weight of p-simplex v; EK.

With homology defined over Z, OHCP is NP-hard (Chen & Freedman, 2010)

OHCP AS AN LNTEGER PROGRAM

min
$$\|Wx\|_{1}$$
 such that
 x, y
 $x = c + [\partial_{p+1}]y$, $x \in \mathbb{Z}^{m}$, $Y \in \mathbb{Z}^{n}$

OHCP AS AN LNTEGER PROGRAM

min IIWxII ×,× $x = c + [\partial_{p_+}] Y$, $x \in \mathbb{Z}^m$, $Y \in \mathbb{Z}^n$ such that \\ \[\mathref{w}_{i} \] \[\pi_{i} \] piecewise linear

min
$$\sum_{x,y} |w_{x}|(x_{x}^{+}+x_{y}^{-})$$

 $x_{y}^{+} \times |w_{y}| = c + [3^{++}]$ $(\pm b)$
 $x_{y}^{+} \times |w_{y}| = c + [3^{++}]$ $(\pm b)$

OHCP AS AN INTEGER PROGRAM

min IIWxII ×,× $x = c + [\partial_{p_+}] Y$, $x \in \mathbb{Z}^m$, $Y \in \mathbb{Z}^n$ such that $= \sum_{i=1}^{\infty} |w_i||x_i|$ piecewise linear

min
$$\leq |w_i|(x_i^+ + x_i^-)$$

 $s.t.$ $x^+ - x^- = c + [a_{ph}]$ $(\pm p)$
 $x^+ \times - x^- = c + [a_{ph}]$ $(\pm p)$

ignore to get LP relaxation<

min {c'x | Ax=6, x>0} (LB) $A \times = b, \times 70, \times EZ^{n}$ (IP) TOTAL UNIMODULARITY

min { c x | Ax=b, x 70, x 6 Z 1 (IP)] A 6. min {c'x | Ax=b, x>0} (LB) Kesult: (IP) can always be solved in polynomial time by solving (LP) iff A is totally unimodular. TAND IOTAL UNIMODULARITY 1 beZ

min $\{c^T \times | A \times = b, \times 70, \times \in \mathbb{Z}^n\}$ $(\pm P)$ $A \in$ min {c'x | Ax=b, x>0} (LB) TAND TOTAL UNIMODULARITY

Kesult: (IP) can always be solved in polynomial time by solving (LP) iff A is totally unimodular. LP in polynomial time - interior point algos (Ye (1991) - 'O(n3L)")

-PAND TOTAL UNMODULARITY

min $\{c^{T}x \mid Ax=b, x\neq0, x\in\mathbb{Z}^{n}\}$ $(\pm P)$ $\{A\in\mathbb{Z}^{m\times n}\}$ $\{c^{T}x \mid Ax=b, x\neq0\}$ $(\pm P)$ $\{b\in\mathbb{Z}^{m\times n}\}$ min {c'x | Ax=6, x>0} (LP) Result: (IP) can always be solved in polynomial time by solving (LP) iff A is totally unimodular.

LP in polynomial time - interior point algos

(Ye (1991) - O(n3L))

A is TU if every square submatrix has determinant -1,0, or 1. In particular, Aij E \{ -1,0,1\} #ij.

IPAND TOTAL UNMODULARITY

min $\{c^{T}x \mid Ax=b, x\neq 0, x\in \mathbb{Z}^{n}\}\ (\pm P)\}$ $A\in \mathbb{Z}^{m\times n}$ min $\{c^{T}x \mid Ax=b, x\neq 0\}$ (LP) $\{c^{T}x \mid A\in \mathbb{Z}^{m\times n}\}$ Result: (IP) can always be solved in polynomial time by solving (LP) iff A is totally unimodular.

LP in polynomial time - interior point algos

(Ye (1991) - O(n3L))

A is TU if every square submatrix has determinant

OHCP AND 100F 18

min
$$\underset{:}{\overset{\sim}{\sim}} |w_{:}|(x_{:}^{*}+x_{:}^{*})$$

s.t. $x_{-}^{*}x_{-}=c+[\partial_{p_{1}}]Y$ (LP)
The constraint matrix of above LP is
 TU iff $[\partial_{p_{1}}]$ is TU .

OHCP AND TU OF LOBAL

The constraint matrix of above LP is s.t. $x^{+}_{-}x^{-}=c+[\partial_{\mu}]\gamma$ (LP) ×, ×, W 0 $M = M \cdot (x_1 + x_1)$

TU iff [3pm] is Tu is solvable in polynomial time iff [april is TU >OHCP (with homology defined over Z)

OHCP in Zz as an IP: With c & {0,1} PFOR OHCP IN Z,?

min ||Wxll S C $X = C + [a_{p+1}]Y + 2u$ $X = C + [a_{p+1}]Y + 2u$ >deshays 74.

Constraint matrix NOTTU even if [2pm] is.

VARIANTS OF OHCP LP

Minimizing number of simplices:

min $\|x\|_1 \le t$. $x = c + la_{p+1} \}$, $x \in \{-1,0,1\}$, $y \in \mathbb{Z}$.

S.b. $x_i^* - x_i^- = c + [\partial_{\mu}] Y$ X, X, W 0

Constraint matrix is TU (>> [Opt] is TU.

Consistent orientation of (pm-namifold M: Orient (pm)-simplices s.t. (pm)-boundary is carried by JM.

essibly empty

Consistent orientation of (pm)-manifold M: Crient (pm)-simplices s.t. (pm)-boundary is conied by DM.

essibly empty

triangulating a compact orientable manifold Theorem 1. For a finite simplicial complex

Proof. Each p-simplex T is a face of one or two (pt)-simplices. So, the now-of [3pt] for 7 has at most two non-zeros, and if there are two, they are +1 and -1. ORIENTABLE MANIFOLDS

=> [294] satisfies sufficient condition for TU. Proof. Each p-simplex T is a face of one or two (pt)-simplices. So, the now-of [3pt] for 7 has at most two non-zeros, and if there we two, they are +1 and -1. (Heller & Tompkins, 1956) => [2pm] is TU.

Proof. Each p-simplex T is a face of one or two (pt)-simplices. So, the now-of [3pt] for Thas at most two non-zeros, and if there are two, they are +1 and -1.

=> [2pm] satisfies sufficient condition for TU. (Heller & Tompkins, 1956) => [2pm] is TU

Arbitrary orientations = scale rows/columns of $[\partial p_n]$ by $-1 \Rightarrow preserves TU$.

Proof. Each p-simplex T is a face of one or two (pt)-simplices. So, the now-of [3pt] for 7 has at most two non-zeros, and if there are two, they are +1 and -1.

=> [294] satisfies sufficient condition for TU. (Heller & Tompkins, 1956) => [2pm] is TU

Arbitrary Orientations = scale rows/columns of [3ph] by -1 => preserves TU. Also observed by John Sullivan (1992)

MANIFOLD

 $[\partial_2]$ for Möbius strip :


```
0: 1: 2: 3: 4: 5:

0: 1 0 0 0 0 0 1

1: 0 0 0 0 0 -1 0

2: -1 1 0 0 0 0 0 1

4: 0 -1 0 0 0 0 1

6: 0 0 0 0 0 1 -1

7: 0 0 -1 0 0 0 0

8: 0 0 0 1 -1 0 0

9: 0 0 1 -1 0 0 0

11: 0 0 1 0 0
```

MANIFOLDS

Möbius strip:

$$\begin{bmatrix} 5 & 4 & 3 & 2 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \circ \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 \\ -1 & 1 & 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & -1 & 1 & 0 & 0 & 0 & 0 & 8 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 & 9 \\ 0 & 0 & 0 & -1 & 1 & 0 & 10 & 10 \\ 0 & 0 & 0 & 0 & 1 & -1 & 2 & 2 \end{bmatrix}$$

S

det

is not TU.

ELATIVE HOMOLOGY

Ko: Subcomplex of K.

Cp(K,K)=Cp(K)/Cp(Ko)
is group of relative chains of
$$K$$
 modulo K

In or is a 2-chain, but NOT a 2-cycle of

RELATIVE BOUNDARY

$$\partial_{\rho}(K,K_{\bullet}):C_{\rho}(K,K_{\bullet})\rightarrow C_{\rho-1}(K,K_{\bullet})$$

induced by $\partial_{\mu}:C_{\rho}(K)\rightarrow C_{\rho-1}(K,K_{\bullet})$

$$Z_{p}(K,K_{o}) = \ker \partial_{p}$$
 relative cycles $B_{p}(K,K_{o}) = \operatorname{im} \partial_{p+1}$ relative boundaries $H_{p}(K,K_{o}) = Z_{p}(K,K_{o})/B_{p}(K,K_{o})$

RELATIVE BOUNDARY MATRIX

3pt (K, K): Cpt, (K, K) - 4 Cp(K, K)

From original [2pm], * include columns corresponding to (PH)-simplices in K; and from this Submatrix,

* exclude hows corresponding to p-simplices in Ko.

RELATIVE BOUNDARY MATRIX

3pt (K, K): Cpt, (K, K) - V Cp(K, K)

From original [2pm], * include columns corresponding to (PH)-simplices in K; and from this submatrix,

人十一、人。一一、がおし。つして人 * exclude hours corresponding to p-sumplices in Ko.

 $[\partial_2]$ for Möbius strip :

1				↓	1	1	J			J		0
11:	10:	9:	<u>«</u>	7:	6:	5	4:	3:	2:	::	0:	
0	0	0	0	0	0	_	0	0	1	0	1	0:
0	_	0	0	0	0	0	_1	0	1	0	0	:-
0	_1	_	0	1	0	0	0	0	0	0	0	2:
1	0	1	1	0	0	0	0	0	0	0	0	<u>د</u>
0	0	0		0	0	0	0	_	0	Ļ	0	4:
0	0	0	0	0	1	0	0	-1	0	0	1	5

MAIN RESULT

Theorem 2: Theorem 2: [3pt] is TU iff Hp(L,L) is torsion-free for all pure subcomplexes L,L, of K of dimensions (pt) and p, respectively, where L, CL.

MAIN RESULT

Theorem 2: $[\partial_{\mu}]$ is TU iff $H_{\rho}(L,L_{o})$ is tossion-free for all pure subcomplexes L, L, of K of dimensions (pt) and p, respectively, where L, CL. Coefficients of abelian groups and Smith Normal Form (SNF) of [3pt]. Proof: Uses connections of torsion

G(K), Zp(K), Hp(K): finitely generated abelian groups

Fundamental theorem of fin. gen. obelian groups $G = H \oplus T$ where $H \cong (Z \oplus ... \oplus Z)$, and $T \cong (Z/t, \oplus ... \oplus Z/t_k)^B$ s.t.

T: torsion of Gr. IT = 0, Gr is torsion-free.

ti>1 and ti/tin (integers)

ref.: Munkres - Algobraic Topology)

UMITH NORMAL TORX

has the relative to these Romandhism. 3 Result: G, G, are free abelian groups of ranks n & m, resp.; let f: G-G, be a 4orm bases for Gi, Gi s.t. bases, the moutrix

where b= >1 and

UMITH NORMAL FORM (SNF)

Result: G, G, are free abelian groups of ranks n & m, resp.; let f: G-G, be a homomorphism. I bases for G, G, s.t. relative to these bases, the matrix of has the *orn

where b=71 and b=/b=/---/b=.

For [2px], if b; >1 for some i, K has torsion.

SNF AND TU OF [94]

If K has torsion, then in SNF([2p+1]) b. > 1 for some 1 \le i \le \ell. → b.b. -1.

Result (Smith, 1861): 4.2. b; is the ged of all ixi determinants of [3pm]. > (quoted in Schrijver, 1986) $\Rightarrow [\partial_{\mu}]$ is not Tu.

lesting Relative lorsion in K

Wuestions:

Tell Hp (L, L.) torsion-free for ALL subcomplexes L, L, of K with Loc L? -> Does Hp(L,L,) have torsion for SOME subcomplexes L, L, of K with Loc L?

LESTING RELATIVE TORSION IN K

Wuestions:

- Is $H_p(L,L_o)$ torsion-free for ALL subcomplexes L,L_o of K with $L_o \subset L$? - Does $H_p(L,L_o)$ have torsion for SOME subcomplexes L, L, of K with Loc L?

Seymour (1980) - Decomposition of regular matroids Can answer in polynomial time - check it [ap] is Tu

PROJECTIVE LANE

PROJECTIVE LANE

PROJECTIVE L A N M

Möbius CYCLE MATRICES

boundary natrix of a Möbius band modulo its Palge, up to row/column scalings by -1, and interchanges.

Möbius Cycle Matrices

boundary matrix of a Mibius band matrix of a Mibius band modulo its edge, up to row/column scalings by -1, and interchanges.

det C = 2.

I [Ipm] has such a submatrix, it is not TU

 $[3p_{H}]$ has no $MCMs \stackrel{?}{\Rightarrow} [3p_{H}]$ is TU.

LXPERIMENTS

UPEN QUESTIONS

- * General M, in place of W=diag[w,...,wm]?
- * Can we still get integral solution in the presence of relative torsion?
- * Faster algas to solve the OHCP LP?
- * LP for Optimal homology basis?