

UNIVERSIDAD MARIANA FACULTAD DE INGENIERIA PROGRAMA: INGENIERÍA DE SISTEMAS

Asignatura		Semestre	Corte	Docente		
ELECTRÓNICA DIGITAL		6	2	José Javier Villalba Romero		nero
No. Lab	Nombre laborate	Lugar		Fecha	Duración	
	Control de Servomotor con	Laboratorio Electrónica Alvernia			3 horas	
Tema	Manejo de señales digital de Servomotor con Arduin		Sub tema	Seña	ales de control	

Objetivo general		Competencias esperadas		
Implementar un sistema de Control a un servomotor mediante		Identifica la forma como se controlan los servomotores con señales digitales		
señales digitales con Arduino		Construye un circuito electrónico que controla un servomotor con Arduino		
	3	Varía los ángulos de giro de los servomotores en Arduino con señales digitales.		

Procedimiento 1. El estudiante identifica previamente la distribución de pines del Servomotor y lo simula con Frittzing. Figura No. 1 Circuito simulado en Frittzing

2. Se elabora el código Wiring que implementa el Sketch en Arduino

Figura No. 2. Programa que controla el Servomotor en Arduino

3. Montaje del circuito en protoboard. Usando un potenciómetro de 100 KΩ se hace el montaje en la protoboard teniendo en cuenta que los dos pines laterales uno va al negativo y el otro al positivo y el pin central se conecta a la entrada analógica Ao. De igual manera en el servomotor se conecta el cable rojo a Positivo y el Negro a negativo y el Amarillo a la salida 2 digital de Arduino, ver Figura No.3.

Figura No. 3 Circuito en protoboard

4. Una vez puesta en marcha se deben modificar ángulos de giro y tomar datos que le permitan ajustar punto de inicio y grados de giro cambiando el código.

Para 45°

Para 90°

Para 135°

Cambiar puntos de inicio y tabular datos.

5. Construir informe mostrando evidencia de los diferentes pasos para la construcción del circuito y el código.

```
// Programa para sensor de temperatura
// Octubre 10 de 2014
// Elaboró: José Javier Villalba Romero
int pin =0; // Pin de entrada analógica Ao
int tempc = 0; // Variable de temperatura Celsius
int tempf =0; // variable de temperatura Farenheit
int maxi = -100; // Limite de temperatura
int mini = 100: // Limites de temperatura
int i: // Número de Iteraciones
int mediciones[5]; // Vector que guarda las mediciones para
            // Meiorar la medición
void setup()
Serial.begin(9600); // Conexión Serial
}
void loop()
 for (i=0; i<=4; i++)
    mediciones[i] = (5.0 * analogRead(pin)*100.0)/1024.0;
    tempc = tempc + mediciones[i];
    delay(100); // Retardo para nuevo muestreo
   tempc = tempc/5.0;
   tempf = (tempc * 9)/5 + 32; // Convierte a Fernheih
   if (tempc > maxi)
      maxi = tempc;
   if (tempc < mini)
      mini = tempc;
     Serial.print(tempc, DEC); //Variable de temperatura
     Serial.print(" Grados Celsius->"); // en Celsius
     Serial.print(tempf, DEC); //Variable de temperatura
     Serial.print(" Grados Farenheih "); // en farenheih
     Serial.print(maxi, DEC); //
     Serial.print(" Grados es la temperatura Maxima, "); //
     Serial.print(mini, DEC); //
     Serial.println(" Grados es la temperatura Minima"); //
     tempc = 0:
     delay(500); // Retardo
}
```

Materiales		Instrumental	Maquinaria	Forma de evaluación.	Fecha de entrega
Nombre	Cant.	Multímetro			
ARDUINO UNO	1	1		 Revisión 	
RESISTENCIA (220 Ω)	1			montaje	
PROTOBOARD	1			 Funcionamiento 	
ALAMBRE CONEXIÓN	1 mt			montaje	
LED	1				