Implementation of finite state machine using vaman

Lakkireddy Veerasiva Reddy lakkireddy
veerasivareddy@gmail.com - FWC22122 IIT Hyderabad-Future Wireless Communication

Contents

1	Problem	2
2	Introduction	2
3	Components	2
4	State Table 4.1 Truth Table	3
5	Karnaugh Map	4
6	Connections	6
7	Software	6

1 Problem

(GATE EC-2020)

Q.No.39. The state diagram of a sequence detector is shown below. State S_0 is the initial state of the sequence detector. If the output is 1,then

Figure 1: State diagram

- 1. the sequence 01010 is detected
- 2. the sequence 01011 is detected
- 3. the sequence 01110 is detected
- 4. the sequence 01001 is detected

2 Introduction

A sequence detector accepts as input a string of bits: either 0 or 1. Its output goes to 1 when a target sequence has been detected. There are two basic types: overlap and non-overlap. In a sequence detector that allows overlap, the final bits of one sequence can be the start of another sequence.

3 Components

Components	Value	Quantity
Vaman		1
Resistor	220 Ohm	1
Seven Segment Display		1
Decoder	7447	1
Flip Flop	7474	2
Bread Board		1
Jumper Wires		30

4 State Table

From state diagram, state table can be generated in Table 1.

Present State	Input	Next state	Output
S_0	0	S_1	0
$S_0 \\ S_1$	1	S_0	0
S_1	0	S_1	0
S_1	1	S_2	0
S_2	0	$S_2 \ S_3 \ S_0 \ S_1$	0
S_2	1	S_0	0
S_3	0	S_1	0
S_3	1	S_4	0
$egin{array}{c} S_1 & & & & & \\ S_2 & & & & & \\ S_2 & & & & & \\ S_3 & & & & & \\ S_3 & & & & & \\ S_4 & & & & & \\ S_4 & & & & \\ S_4 & & & & \\ \end{array}$	0	S_3	1
S_4	1	$S_4 \ S_3 \ S_0$	0

Table 1: State Table

4.1 Truth Table

Present State	Input	Next state	Output
A B C	X	PQR	Y
0 0 0	0	0 0 1	0
0 0 0	1	0 0 0	0
0 0 1	0	0 0 1	0
0 0 1	1	0 1 0	0
0 1 0	0	0 1 1	0
0 1 0	1	0 0 0	0
0 1 1	0	0 0 1	0
0 1 1	1	100	0
100	0	0 1 1	1
1 0 0	1	0 0 0	0

Table 2: Truth Table

5 Karnaugh Map

The karnaugh maps for the above truth table are given below

		CX							
		00	01	11	10				
	00	0	0	0	0				
AB	01	0	0	1	0				
AD	11	X	X	X	X				
	10	0	0	X	X				

$$CX \\ 00 & 01 & 11 & 10 \\ 00 & 0 & 0 & 1 & 0 \\ 01 & 1 & 0 & 0 & 0 \\ AB & 11 & X & X & X & X \\ 10 & 1 & 0 & X & X \\ \end{array}$$

$$Q = BC'X' + B'CX + AX' \tag{2}$$

$$CX$$

$$00 \quad 01 \quad 11 \quad 10$$

$$00 \quad 0 \quad 0 \quad 0$$

$$01 \quad 0 \quad 0 \quad 0$$

$$01 \quad 0 \quad 0 \quad 0$$

$$AB$$

$$11 \quad X \quad X \quad X \quad X$$

$$10 \quad 1 \quad 0 \quad X \quad X$$

$$Y = AX' \tag{4}$$

6 Connections

Connect the Arduino, 7447, two 7474 ICs and seven segment according to table 3.

	INPU'	JT			OUTPUT				5V					
	A	В	С	X	Р	Q	R	Y	CLOCE] 5 v				
Vaman	IO16	IO17	IO18	IO19	IO12	IO13	IO14	IO15	IO22					
7474	5	9			2	12			CLK1	CLK2	1	4	10	13
7474			5				2		CLK1	CLK2	1	4	10	13
7447					7	1	2	6			16			

Table 3: Connection Table

7 Software

The arduino code for the given sequence detector is given below

https://github.com/SivaLakkireddy/FWC/blob/main/Vaman/IoT/codes/src/main.cpp