# Wireless data networks Introduction

Martin Heusse

# History — what are we talking about?





#### We will talk about wireless LANs, mobile networks, satellite

- Very high data rates compare with baseband transmission media! (Except optical fiber)
- 2. RFC I: "Host Software" by Steve Crocker, 1969
- 3. The big arrows refer to digital technologies
- 4. Point to point (in blue): high data rate wireless links for data and/or telephony, e.g. running SDH note the earlier conversion to digital...
- 5. In red: Widely deployed consumer oriented technologies
- 6. 2 trends: higher and higher carrier freq., wider channels (the vertical axis has a log scale!)

# Many different use of the wireless channel





- I. Both "scales" are "logarithmic"...
- 2. Trunked radio: firefighters, police...
- 3. Mobile networking
  - Cellular 2G, 3G...: much more than just radio links:
     ...accounting, mobility management...
- ★ Wireless LAN (802.11)
- ★ WLL = Wireless local loop (802.11, 802.16 (a.k.a. WiMAX))
- ★ Wireless personal area network (802.15.1—Bluetooth)
  - High rate, short range, low power consumption
- ★ Sensor networks (802.15.4—Zigbee)
  - Low power consumption
- \* Ad hoc networks (Mobile multihop network)
  - Routing
  - Performance issues
- 4. SigFox, LoRa: "long" range (tens of km) for IoT

#### Radio waves

- Radio propagation modes:
  - √ Line of sight
  - ✓ Sky wave (Reflection on the ionosphere  $70 \rightarrow 300$ km)(for HF and bellow)
  - √ Ground wave

```
f < 2MHz — ex.: AM radio
```

- Diffraction, reflections, refraction, absorption, scattering
  - ✓ Diffraction:  $\lambda$  @ 2.4GHz is 12.5cm
  - √ Scattering
    - ► The phenomenon behind the blue color of the sky
    - Radio waves: mostly on pointed or sharp metal edges
- $\Rightarrow$  Multi-paths, fading

Radio waves

Fladio varies

- Rulio propagain melas

- Indio propagain propagain melas

- Indio propagain propagain melas

- National melas melas propagain propagain

- Malan propagain, fueling

- We are talking mostly about line of sight and/or reflected/scattered/diffracted waves in the context of this course
- Light illustrates well how EM waves are reflected, but radio waves a more often diffracted and/or scattered – This causes some amount of retro-propagation that radars use for instance...
- Multipath propagation cause randomly constructive or destructive interference; obstacles may attenuate the signal. We speak of a "Fading channel"
- 4. (On the att. figure) Microwave ovens **do not** work at a special frequency w.r.t. water
- 5. The 2 peaks of dry air are due to absorption by  $0_2$

# Radio waves (cont.)



#### The wireless channel

- Free space propagation
  - ✓ Typical attenuation:  $\lambda = 0.1 \text{m}$ ,  $d = 1 \text{m} \rightarrow \text{-40dB}$
  - ✓ Attenuation  $\#\frac{1}{d^n}$  with  $2 \le n$  (often, n=4 **why?**) At best, the radiated power is projected on (a part of) a sphere whose surface grows in the order of  $4\pi d^2$ .
- The atmosphere is (mostly) transparent
  - $\checkmark$   $10^{-2} \mathrm{dB/km}$  attenuation for radio waves in the air
  - √ Twisted pair: > IdB/I00m
  - √ Attenuation is exponential!

    (and so it makes sense to measure attenuation in dB)
  - ✓ Strong attenuation in concrete, metal; depends on  $\lambda$
  - $\rightarrow \ \mbox{Good for long distance communications}$

(if only the world was flat...)

- → Strong attenuation, even over short distances
- No confinement
  - → Security (authentification, obfuscation), Multiplexing (channel access), Association (no physical cable/plug), Interferences (→ coding, ARQ, spread spectrum), Channels, Competition with other devices (ovens), Regulation



#### Radio transmissions have **very favorable** properties! And unavoidable

I. 
$$X_{dB} = 10 \log_{10}(X)$$
  
-40dB  $\leftrightarrow \frac{1}{10000}$ 

- Almost no signal absorption, but unavoidable dispersion
   → a large fraction of the signal is often lost as it radiates in "all directions"
- Fading+No confinement are the 2 reasons why there is a wireless networks class!
- 4. Directional antennas allow to concentrate the power in one (or more... See antenna patterns) direction

# Digital transmission Channel capacity

- Channel characteristics
  - √ Bandwidth
  - √ Signal to Noise power ratio (Signal power limited by regulation, amplifier performance, distance, antenna…)
- Nyquist bandwidth
  - ✓ Channel width B (Hz)  $\rightarrow$  2B max. symbol rate
  - √ (bauds ⇔ symbols/s)
  - ✓ POTS modems had a capacity of 56kb/s on a channel several kHz wide... ← multilevel signaling
- Shannon capacity (How many levels can I use, how fast?)
  - √ The signal is subject to noise. If levels are too close from each
    other, there is a risk of error!

$$\mathbf{C} = \mathbf{B} \log_2(1 + \mathbf{SNR})$$

where SNR is the ratio between signal power and noise power.



#### The **fundamentals**: how much information can be conveyed?

- The Nyquist formula tells **how quickly** symbols can follow each other on the channel
- What **really** matters is the channel capacity, which tells **at most** how many bits/s can/could be carried, theoretically
- 3. The Shannon capacity is easy to remember:
  - \* If the band is twice as large, the capacity should double (C # B)
  - \* For many levels, if the signal to noise ratio is doubled, twice as many levels can be used ( $C \approx \# \log_2(\mathsf{SNR})$ )
  - \* If SNR=0  $\rightarrow$  C=0
- 4. Important: the Shannon formula also applies to cases where SNR ≪ 1, i.e. C ≪ B Generally means a spread spectrum technique is used!

## Physical layer for wireless

- Antennas
  - √ Why does an antenna radiate power?



os point toward the ground

Example: cellular net. antennas point toward the ground

- √ Polarization
- √ Antenna diversity



#### Wait? How does it work?

- I. Any movement of electric charges will create an EM field that is going to attract/repulse charges further away it's that simple...
- 2. Charges move in a wire in which a standing wave is present
- There are no perfect omnidirectional antennas, nor perfect directional antennas...
- 4. Polarization: that gives us 2 channels to play with!
- Antenna diversity: as interferences go from constructive to destructive over
  - Short distances
  - Various time scales

Having several antennas allows to choose the one with the best signal (on receiver side)

And there is more (MIMO...)

### Physical layer for wireless

- Not baseband transmission! (→ modulation)
- Synchronisation (→ preamble, pilot signal...)
   (Ex.: for AM, to which level does a logical "1" correspond?)
- Scrambling (if not done for spread spectrum)
- Spread spectrum
  - √ Used to reduce impact of noise or interference
  - ✓ Invented by 2 hollywood stars (see www.hedylamarr.at)
  - √ Used for Multiplexing ⇒ CDMA
- Error detection (ex.: CRC), correction (ex.: Convolution codes, turbo codes), Interleaving



#### No, but I mean, how does it work, really?

- I. A standing wave... That means there is a carrier frequency
- Synchro: When and what are the transitions coding the information
- Scrambling: mix with a pseudo random sequence so that is looks like noise.

#### Why?

- To make sure there are transitions for clock recovery (or make sure all levels are used evenly... So that the power is not too low/high, for instance...)
- To avoid radiating in a narrow band
- Not for obfuscation!!
- 4. Spread spectrum: use more bandwidth than would be necessary at first... Spread the information over a wide freq. band. A simple example is **frequency hopping** 
  - \* Multiplexing and interference mitigation may be combined
- 5. And as things still go wrong often, error detection and correction (combined with interleaving) are often used

## Link layer for wireless

- ARQ...
- Association information
  - √ Which network am I connecting to?
  - $\rightarrow$  Beacons / discovery
- Multiplexing / channel sharing
  - √ (Sub-) Channel selection
  - √ Channel access
    - Centralized
    - ▶ Localized (⊊ distributed)
- Addressing (may include a relay address...)
- Fragmentation/reassembly
- Power management
  - √ Idle listening is also power consuming
    - $\Rightarrow$  Paging of the mobiles

Link layer for wireless



OK, we know how to transmit (streams of) **bits**, now we need to send **frames**, to the **intended recipient**, **share** the medium with other people etc.

- ARQ: Automatic Repeat reQuest. Data networks generally use L2 ACKs (802.11, UMTS acknowledged RLC) to combat
  - Collisions
  - Interferences
  - Fading
- There are beacons in almost all wireless networks: tells the "user" that a link is available
- 3. Multiplexing: see next slide...
- 4. Addressing is generally more complex in wireless networks than wired network where the medium identifies the immediate source/destination (think about PPP links: they do not have L2 addresses!)
- 5. Radios are often battery powered  $\rightarrow$  it's good to shut down the radio as much as possible. Then, it does not allow to communicate!

# **Multiplexing**

Multiplexing: several **entities** or flows share the same transmission channel

- In time
  - √ CSMA
  - ✓ TDMA (GSM: 8 uni-directional connection/freq. band)
- Frequency

FDMA: GSM, DECT

- Code
  - ✓ CDMA (3G–UMTS, or 2G cdmaOne (a.k.a. IS-95))
  - √ Frequency hopping (Bluetooth)
- Spatial



- 2. TDMA: Time division MA, senders own the channel periodically
- 3. CDMA: Code Division MA: Combined MUX and spread spectrum
- 4. Spatial MUX: directional antennas, many "relays" (access points, base stations...)

# **Network layer**

- The mobile stations access the network through one or more base stations/access points which are networked together
- · One address identifies the mobile
- Authentication, Authorization and Accounting
- Problematics: signaling, ressource reservation, interconnection





We just talked about spatial re-use. That means the "relays" need to be networked. Mobiles (more generally wireless devices) need to be accessible wherever they are.

This is a network of wires (mostly) but it's an important part to build a wide(r) scale wireless **network**! (Out of a bunch of wireless **links**)...

 This is not only a telecom network problematic, this kind of infrastructure also exists for wireless LANs – and DECT networks too!

## An example: DECT

#### **Digital Enhanced Cordless Telecommunications**

- 1880–1900 MHz (EU) or 1920–1930 MHz (US); (G)FSK
- FDMA + TDMA
- 32kb/s full duplex basic voice call
- The base station beacons in one slot (→ discovery)
- Intra- and inter-cell handover (change freq and/or base station)
  - √ Initiated by handheld device
- Encryption
- Several data profiles (e.g. HDLC framing etc.)



- Typical of system designed with voice calls as the main application: TDMA also used in
  - GSM
  - Iridium
- 2. Does not use any spread spectrum technique

# An example: DECT Digital Enhanced Cordless Telecommunications (cont.)



http://www.dect.org/userfiles/file/General%5CDECT%20Background/DECT\_Technical%20Document\_1997.pdf

## Radio spectrum—FCC Freq. alloc.



http://www.ntia.doc.gov/osmhome/allochrt.pdf
http://www.fcc.gov/oet/spectrum/table/fcctable.pdf
http://www.itu.int/ITU-D/study\_groups/SGP\_2002-2006/
JGRES09/CEPT2.pdf

# Radio spectrum—FCC Freq. alloc. (cont.)



### Radio spectrum UHF — France



(**Linear** Frequency axis)

What is this antenna over there?

⇒ http://www.cartoradio.fr

What is the spectrum used for?

⇒ http://www.anfr.fr/fr/planification-international/ tnrbf/tableau-derive.html



- I. Avalanche beacons operate in MF band (457kHz)
- 2. Globalstar is a mobile satellite telecom operator, the LEO satellite reflects the signal to a base station located not too far away.
- GPS L2 was added to the GPS system, used to remove ionosphere distorsions

#### Microwave transmissions

Example of a tower for long distance wireless transmissions



© Pline, creative commons

# Wireless data networks "Data Networks" perspective

| Application  | НТТЕ   | SMTP              | DNS     | FTP              | SSH                                                | XMMP                    | X11     |  |
|--------------|--------|-------------------|---------|------------------|----------------------------------------------------|-------------------------|---------|--|
| Presentation | M      | 1<br>1<br>1<br>1  |         |                  |                                                    |                         | XDR SSL |  |
| Session      | HTTF   | <br>              | socks   |                  |                                                    |                         |         |  |
| Transport    |        | TCP               | UDP     | SCTP             |                                                    |                         |         |  |
| Network      |        | IP                |         |                  |                                                    |                         |         |  |
| Link         | SLIP . | OPP<br>C framing) | thernet | 802.11<br>11a 11 | lb                                                 | MAC (adresses, security |         |  |
| Physical     | RS-232 | 100baseTX         | s/qW6/s |                  | Phy. Layer Converg. Protocol Phy. medium dependent |                         |         |  |



#### The focus in this course will be quite a bit on L2, a pinch of L1, a grain of L3

- BT appears as a byte-carrying PHY layer here, but it obviously has a L2, and even data profiles, so there is more to it than that...
- 802.11 has more sublayers than just PHY/link... As all IEEE-defined standards, it does not care mentioning what type of PDU is carried, so LLC is needed!
- SCTP is a transport protocol mostly used today to carry telecom signaling (call setup...) in IP packets. It could be used for other things.
- 4. This is a "data network"-centric picture. Telecom networks are not build around IP, except for the latest generation!

# Wireless data networks "Information Theory" perspective





- Source coding ⇔ sampling, digitization, compression (remove/trim information)
- Encryption ⇔ ensure integrity, confidentiality, authentication (add some data)
- Channel coding 
   ⇔ Data protection through redundancy (add –a lot of– data)

Hamming error correcting code: max. rate ECC.

Otherwise typically rate is 3/4, 1/2, 1/3 ( $\leftarrow$  this the ratio of the actual data to the amount of bits transmitted)... Interleaving

- 4. Modulation ⇔ attach the data to a physical carrier
- N.B.: In wireless networks there can be more than one link. In cellular networks, source coding often happens in other places than just the end points