GRADIENT DESCENT AND MULTIPLE LINEAR REGRESSION

DR. FARHAD RAZAVI

OUTLINE

- Gradient Descent
- Linear regression for multiple features
- Gradient Descent for multiple features regression
- Feature engineering
- Polynomial regression

GRADIENT DESCENT INTUITION

- Gradient Descent Algorithm:
 - Start with some *w* and *b*.
 - Keep changing w, and b to reduce J(w, b).
 - Continue until we settle at or near a minimum.
- Drawbacks:
 - It could get stuck in a local minima.

GRADIENT DESCENT FOR LINEAR REGRESSION

- Linear Regression:
 - $f_{w,b}(x) = wx + b$
 - $J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) y^{(i)})^2$
- Gradient Descent
 - Repeat until convergence {

$$w \to w - \alpha \frac{\partial}{\partial w} J(w, b) ; \qquad \qquad \frac{\partial}{\partial w} J(w, b) = \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)}) x^{(i)}$$

$$b \to b - \alpha \frac{\partial}{\partial b} J(w, b) ; \qquad \qquad \frac{\partial}{\partial b} J(w, b) = \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})$$

$$\rbrace$$

 Cost function of Linear Regression is quadratic. This means it has only one minimum value, so we are guaranteed to reach global minimum.

MULTIPLE FEATURES

Index <i>i</i>	Size in feet 2	Number of bedrooms x_2	Number of floors x_3	Age of home in years	Price (\$) in \$1000's
I	2104	5	I	45	460
2	1416	3	2	40	232
3	1534	3	2	30	315
•••	•••	•••	•••	•••	•••

- $x_j = j^{th}$ feature
- = n number of features
- $\vec{x}^{(i)}$ = features of i^{th} training example
- $x_j^{(i)}$ value of feature j in i^{th} training example

MODEL

$$f_{w,b}(x) = w_1x_1 + w_2x_2 + w_3x_3 + w_4x_4 + b$$

$$f_{w,b}(x) = 0.1x_1 + 4x_2 + 10x_3 - 2x_4 + 80$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$
size #bedrooms #floors years base price

VECTOR REPRESENTATION

■
$$f_{w,b}(x) = w_1x_1 + w_2x_2 + \cdots + w_nx_n + b$$

 $\overrightarrow{w} = [w_1 \ w_2 \ w_3 \ \dots \ w_n]$ parameters of the model is a number $\overrightarrow{x} = [x_1 \ x_2 \ x_3 \ \dots \ x_n]$ feature vector $\overrightarrow{f}_{\overrightarrow{w},b}(\overrightarrow{x}) = \overrightarrow{w}.\overrightarrow{x} + b = w_1x_1 + w_2x_2 + \cdots + w_nx_n + b$ dot product Multiple Linear Regression (MLR)

VECTORIZATION

 $f_{\vec{w},b}(\vec{x}) = \vec{w}.\vec{x} + b = w_1x_1 + w_2x_2 + \dots + w_nx_n + b$

```
w = np.array([0.1, 4.0, 10, -2])
b = 4
w = np.array([1513, 3, 2, 30])
```

```
f_wb = w[0] * x [0] +
w[1] * x [1] +
w[2] * x [2] + b
```

```
n = 4
f_wb = 0
for j in range(0, n):
    f_wb = f_wb + w[j] * x [j]
f_wb = f_wb + b
```

$$f_wb = np.dot(w, x) + b$$

GRADIENT DESCENT FOR MLR

- Parameters: $w_1, w_2, w_3, \dots, w_n$
- Models: $f_{\vec{w},b}(\vec{x}) = \vec{w}.\vec{x} + b = w_1x_1 + w_2x_2 + \dots + w_nx_n + b$
- Cost function: $J(w_1, w_2, w_3, ..., w_n, b) = J(\overrightarrow{w}, b)$
- Gradient descent
 - Repeat {

$$w_{j} = w_{j} - \alpha \frac{\partial}{\partial w_{j}} J(w_{1}, w_{2}, w_{3}, ..., w_{n}, b) = w_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(\vec{x}^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

$$b = b - \alpha \frac{\partial}{\partial b} J(w_{1}, w_{2}, w_{3}, ..., w_{n}, b) = b - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})$$

$$\}$$

CLOSED FORM SOLUTION

■ There is a closed form solution for the "linear regression" parameters! It is called normal equation.

$$w = (XX^T)^{-1}Xy^T$$

- Disadvantages:
 - This is only available for Linear regression and does not generalize to other learning algorithms.
 - Slow when number of features are large (> 10,000)

FEATURE SCALING

$$\widehat{price} = w_1 x_1 + w_2 x_2$$

$$\uparrow \qquad \qquad \uparrow \qquad \qquad \qquad x_1: \text{size (feet}^2)$$

$$range: 300 - 2,000$$

$$size \qquad \#bedrooms$$

$$large$$

House: $x_1 = 2000, x_2 = 5, price = $500K$ one training example

 χ_2 : #bedrooms

range: 0 - 5

small

size of the parameters w_1, w_2 ?

$$w_1 = 50, w_2 = 0.1, b = 50$$
 $w_1 = 0.1, w_2 = 50, b = 50$ $\widehat{price} = 50 * 2000 + 0.1 * 5 + 50$ $\widehat{price} = 100,050.5K$ $\widehat{price} = 500K$

FEATURE SIZE AND PARAMETER SIZE

FEATURE SCALING (MAX NORMALIZATION)

$$300 \le x_1 \le 2000$$

$$0 \le x_1 \le 5$$

$$x_{1,rescaled} = \frac{x_1}{2000} \qquad x_{2,rescaled} = \frac{x_2}{5}$$

$$0.15 \le x_1 \le 1 \qquad \qquad 0 \le x_1 \le 1$$

$$x_{2,rescaled} = \frac{x_2}{5}$$

$$0 \le x_1 \le 1$$

FEATURE SCALING (MEAN NORMALIZATION)

$$300 \le x_1 \le 2000$$
 $0 \le x_1 \le 5$ $\mu_1 = 600$ $\mu_2 = 2.3$

#bedrooms
$$x_{1,rescaled} = \frac{x_1 - \mu_1}{2000 - 300}$$
 $x_{1,rescaled} = -0.18 \le x_1 \le 0.82$

$$x_{2,rescaled} = \frac{x_2 - \mu_2}{5 - 0}$$
$$-0.46 \le x_1 \le 0.54$$

FEATURE SCALING (Z-SCORE NORMALIZATION)

$$300 \le x_1 \le 2000$$

$$0 \le x_1 \le 5$$

$$\mu_1$$
, $\sigma_1 = 600$, 450 μ_2 , $\sigma_1 = 2.3$, 1.4

$$\mu_2$$
, $\sigma_1 = 2.3$, 1.4

$$x_{1,rescaled} = \frac{x_1 - \mu_1}{\sigma_1}$$

$$x_1$$
 size in feet² $-0.67 \le x_1 \le 3.1$

$$x_{2,rescaled} = \frac{x_2 - \mu_2}{\sigma_2}$$
$$-1.6 \le x_1 \le 1.9$$

FEATURE SCALING RULE OF THUMB

• Aim for about for $-1 \le x_i \le 1$ for each feature x_i

Acceptable ranges
$$\begin{cases} -3 \le x_j \le 3 \\ -0.3 \le x_j \le 0.3 \end{cases}$$

$$0 \le x_j \le 3$$

$$-2 \le x_j \le 0.5$$

■
$$-100 \le x_j \le 100$$

$$-0.001 \le x_j \le 0.001$$

■
$$98.6 \le x_j \le 105$$

Okay, no rescaling

Okay, no rescaling

Too large, rescale

Too small, rescale

Too large, rescale

CHECKING GRADIENT DESCENT

• Objective: $\min_{\overrightarrow{w},b} J(\overrightarrow{w},b)$

iterations (epoch)

- If $J(\vec{w}, b)$ is getting smaller on each iteration then GD is converging.
 - If you need to speed up the GD, try larger α to see if the GD is still converging or not
- If $J(\vec{w}, b)$ is getting bigger on each iteration then:
 - GD is diverging and your choice of α was too big.
 - Maybe there is a bug in your code!
- The number of iteration is dependent on the application
 - Maybe 50, 1000, 100000 iteration is needed

CHOOSING LEARNING RATE

• Values of α to try:

FEATURE ENGINEERING

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = w_1x_1 + w_2x_2 + b$$

frontage depth

 $area = frontage \times depth$
 $x_3 = x_1 \ x_2$ new feature

 $f_{\overrightarrow{w},b}(\overrightarrow{x}) = w_1x_1 + w_2x_2 + w_3x_3 + b$

- Feature engineering :
 - Using intuition or knowledge to design new features, by transforming or combining original features.
 - Needs human insight.

POLYNOMIAL REGRESSION

$$f_{\overrightarrow{w},b}(\mathbf{x}) = w_1\mathbf{x} + b$$

$$f_{\vec{w},b}(\mathbf{x}) = w_1 \mathbf{x} + w_2 \mathbf{x}^2 + b$$

$$f_{\overrightarrow{w},b}(x) = w_1 x + w_2 x^2 + w_2 x^3 + b$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$
size size² size³

Normalization becomes extremely important

ACKNOWLEDGEMENT

■ The material are based on Prof. Andrew Ng course on this subject.