

FUNDAMENTOS DA COMPUTAÇÃO

PROF. JOSENALDE OLIVEIRA

josenalde.oliveira@ufrn.br

ANÁLISE E DESENVOLVIMENTO DE SISTEMAS - UFRN

COMPUTAÇÃO X ÁLGEBRA DE BOOLE

- A representação 1/0 tem sua origem na teoria e álgebra publicada por George Boole (matemático, filósofo) em 1854 a computação BINÁRIA e todo o desenvolvimento a partir daí utiliza esta base (simular circuito em http://www.falstad.com/circuit/)
- O sistema BCD (Binary Code Digit) foi criado inicialmente pela IBM, sendo de 06 bits, para representar no máximo 64 símbolos; como representava apenas letras maiúsculas, logo foi substituído pelo EBCDIC, de 08 bits, mas era restrito à máquinas IBM.
 Posteriormente foi realizada uma padronização no ASCII, de 08 bits.
- O método mais comum, portanto, pode ser estendido para 16 8 4 2 1; 128, 64, 32, 16, 8, 4, 2, 1 etc. Aos bits (LIGADOS, 1) somam-se os valores decimais equivalentes isto caracteriza o processo de CODIFICARxDECODIFICAR. Ambos lados da comunicação devem usar o mesmo algoritmo/esquema/técnica. Mesma ideia de sistema posicional!

COMPUTAÇÃO X ÁLGEBRA DE BOOLE

• Ex: suponha que o número 15 (d) foi codificado em grupos de nibbles:

<mark>0001</mark>1001

• Agora, desejamos que este número binário, ao chegar ao destino, seja decodificado de volta ao sistema decimal com o algoritmo das potências:

128 64 32
$$\begin{pmatrix} 16 \\ 1 \end{pmatrix}$$
 $\begin{pmatrix} 8 \\ 1 \end{pmatrix}$ 0 $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ = 25

COMPUTAÇÃO X ÁLGEBRA DE BOOLE

- Os circuitos eletrônicos podem implementar algoritmo de conversão decimal para binário de **números inteiros** por meio de divisões sucessivas pela base 2
- Ex: 25 (d) -> 11001 (b)
 25 / 2 = 12, RESTO 1
 12 / 2 = 6, RESTO 0
 6 / 2 = 3, RESTO 0
 3 / 2 = 1, RESTO 1

Resposta com 8 bits (1 byte)

ADS-UFRN: FUNDAMENTOS DA COMPUTAÇÃO, PROF. JOSENALDE OLIVEIRA

PALAVRA DA CPU

Número de bytes/bits que a CPU processa como uma unidade de dados. Na verdade define o tamanho de uma memória volátil interna à CPU denominado REGISTRADOR

• 64 bits (preenche com zeros à esquerda)

1001:

1982: 8086, 8088, 80186, 80188, INTEL 80286 bits, 134 kTransistores 1985: INTEL 80386 – 32 bits 2004 (19 anos depois): AMD ATHLON 64 bits (que compatível com Windows

4004 e 4040: 4 bits

8008, 8080, 8085, Z-80: 8 bits

000000000000000000000001001 (barramento)

Outros conceitos sobre dado binário

- Nibble: 4 bits
- Byte: 8 bits (octeto)
- Word: 16 bits, dword: 32 bits, qword: 64 bits

ARQUITETURAS E SOFTWARE

Software 32 bits (x86) são executados de modo compatível com processadores 64
 bits através da extensão x86-64

• Os processadores possuem internamente blocos ou componentes digitais para armazenamento temporário chamados REGISTRADORES (registers). A palavra do processador define então o "tamanho" destes registradores. Algumas arquiteturas, como PENTIUM, possuíam 64 bits de barramentos de dados (externo), mas os registradores internos eram de 32 bits. Normalmente, estes dois números são iguais.

REPRESENTAÇÃO EM PONTO FLUTUANTE

Binário – Decimal

$$10011,1101 = 2^4 + 2^1 + 2^0 + 2^{-1} + 2^{-2} + 2^{-4} = 19,8125$$

Decimal – Binário

19,8125 = 19 + 0,8125 19 = 10011 (div. sucessiva por 2 ou método da tabela) $0,8125 \times 2 = 1,625 - 1 = 0,625 = 1$ $0,625 \times 2 = 1,250 - 1 = 0,250 = 1$ $0,250 \times 2 = 0,5 = 0$

 $0.5 \times 2 = 1 (FIM DO ALGORITMO)$

19,8125 = 10011,1101

Representação MANTISSA, EXPOENTE padrão geral apenas como exemplo didático

$$10011,1101 = \frac{1}{1},001111101 \times 2^4$$
 NORMALIZAÇÃO

Sinal: (0: +), Mantissa: 00111101 00 Expoente (e): (4)

Logo, 0 10000011 001111010 00 8 bits 10 bits

A mantissa possui forma 1.F (1 implícito) Na representação, usar E = 127 + e = 131

Precisão simples (float), 32 bits (4 bytes): norma define convenções como 0 (+), 1 (-), o formato, campos e tamanho da representação, além de fórmula ou algoritmo para codificação e decodificação. Define também formatos para NaN e Infinito

Na história...

Konrad Zuze

s	Е	Mantissa (significado)
1	8	23

fração (f) — binário puro

expoente: E - 127

$$(-1)^{s} \times 1.f \times 2^{E-127}$$

Normalizado: primeiro bit da mantissa sempre 1

Com mantissa entre 1.0 e 2.0

Desnormalizado: 0

PADRÃO: IEEE 754-19

Z1: 1937

Z3: 1941

ADS-UFRN: FUNDAMENTOS DA COMPUTAÇÃO, PROF. JOSENALDE OLIVEIRA

Precisão simples (float), 32 bits (4 bytes): de 2⁽⁻¹²⁶⁾ a 2⁽¹²⁷⁾

Seja a representação 0 10000011 00111101000...0, obter o DEC fracionário equivalente

$$n = (-1)^s \times 1.f \times 2^e$$

e = E - 127

$$(-1)^{0} \times (1.00111101) \times 2^{4}$$

$$(-1)^{0} \times (1 + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{256}) \times 2$$

$$1 \times (1 + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{256}) \times 16$$

19,8125

Regra geral

Sinal (S)	Expoente (E)	Mantissa (M ou F)
	Normalizado	
+ ou -	0 <e<255< td=""><td>Qualquer padrão de bits</td></e<255<>	Qualquer padrão de bits
	Valor = 0 (Zero)	
+ ou -	0	0
	Valor = InF	
+ ou -	255	0
	NaN (not a number)	
+ ou -	255	Qualquer padrão de bits menos o 00

Um NaN é gerado quando e resultado de uma operação ponto flutuante não pode se representado no formato de ponto flutuante do IEEE-754 o tipo especificado.

REPRESENTAÇÃO EM PONTO FLUTUANTE (DOUBLE)

IEEE 754 Floating Point Standard

Single Precision - 32 bits

Double Precision - 64 bits

Testes em C++

testnan.cpp

```
#include <iostream>
using namespace std;
#include <cmath>
int main() {
    float a = NAN;
    if (isnan(a)) cout << a << ": a is nan" << endl;</pre>
    float b = INFINITY;
    if (isinf(b)) cout << b << ": b is infinite" << endl;</pre>
    float c = 0; // also -0
    if (iszero(c)) cout << c << ": c is zero" << endl;</pre>
    //here isnan does not work
    if (isinf(5.0/0)) cout << " division error " << endl;</pre>
    bool testNaN = (a != a);
    if (testNaN) cout << "a is indeed NaN" << endl;</pre>
    return 0;
```

Um NaN é gerado quando o resultado de uma operação de ponto flutuante não pode ser representado no formato de ponto flutuante do IEEE-754 pao tipo especificado.

REPRESENTAÇÃO DE NÚMEROS NEGATIVOS

- Uma representação típica é denominada COMPLEMENTO DE 2
 - Exemplo: -10 vamos supor palavra de 8 bits:

```
O sinal negativo pode ser o primeiro bit, ou seja, 0 para positivo, 1 para negativo
```

Converte-se o número para binário pelo método das potências: 10 = 0001010

A este número binário, inverte-se os bits (COMPLEMENTO DE 1)

```
0001010 -> 1110101
```

Soma-se 1 ao bit menos significativo (de menor peso, mais à direita), LOGO:

```
1110101
```

+

11110110 NO CALC WINDOWS: 64 BITS..., logo, 11111111....<mark>1110110</mark>

CPU: CÁLCULOS ARITMÉTICOS, RELACIONAIS, LÓGICOS

• Unidade Lógico Aritmética: componente da CPU com esta tarefa

Um comando condicional do tipo IF ou um comando de repetição como WHILE ou FOR envolve o TESTE lógico de condições, que retornam 0 (F) ou 1 (V): GEORGE BOOLE!

```
#include <iostream>
using namespace std;

int main() {
    int a, b, c;
    bool y;
    cin >> a;
    cin >> b;
    cin >> c;
    y = (((a < b) && (b > c)) || (a>b));
    // se usar and e or fora de condicional dá erro
    if (y) cout << "y=V " << a << " " << b << " " << c << endl;
    else cout << "y=F" << endl;
    return 0;
}</pre>
```

APLICAÇÕES/OUTROS SISTEMAS DE NUMERAÇÃO

• Um exemplo típico de uso do sistema binário é utilizado para identificar endereços de rede IP. Por exemplo, na versão IPv4, tem-se 4 OCTETOS (4 bytes), separados por ponto:

192.168.0.1 = 11000000.10101000.00000000.0000001

• A computação também utiliza sistema base 8 (OCTAL) e sistema base 16 (HEXADECIMAL). A base 16 é particularmente útil para representar endereços na memória e endereços IPv6, de 128 bits. Cada dígito hexadecimal equivale a 4 bits (0...9, A, B, C, D, E, F), e portanto simplifica a representação: 32 dígitos hexa ao invés de 128 dígitos binários

TABELA HEXADECIMAL

- 1 0001
- 2 0010
- 3 0011
- 4 0100
- 5 0101
- 6 0110
- *7* 0111
- 8 1000
- 9 1001
- A 1010
- B 1011
- C 1100
- D 1101
- E 1110
- F 1111

