# Time Series Analysis Stationary ARMA Process

#### Binzhi Chen

Department of Economics University of Birmingham

March 4, 2020

#### White noise

The basic building block for all the processes considered in this handout is a sequence  $\{\epsilon_t\}_{t=-\infty}^{\infty}$  whose elements have mean zero and variance  $\sigma^2$ 

$$E(\epsilon_t) = 0$$

$$E(\epsilon_t^2) = \sigma^2$$

$$E(\epsilon_t \epsilon_T) = 0$$

Then we have the Gaussian white noise process

## Expectations

Suppose we have a sample size T of a random variable  $Y_t$ 

$$\{y_1, y_2, \ldots, y_T\}$$

with a Gaussian white noise process

$$\{\epsilon_1, \epsilon_2, \dots, \epsilon_T\}$$
  $\epsilon_t \sim N(0, \sigma^2)$ 

The *expectation* of the observation of a time series refers to the mean of the probability distribution:

$$E(Y_t) = \int_{-\infty}^{\infty} y_t f_{Y_t}(y_t) dy_t$$

#### **Variance**

The variance of the random variable  $Y_t$  is defined as:

$$Var(Y_t) = E[Y_t - E(Y_t)]^2 = \int_{-\infty}^{\infty} [Y_t - E(Y_t)]^2 f_{Y_t}(y_t) dy_t$$

Consider  $Y_t$  is a time trend plus a Gaussian white noise

$$Y_t = \beta t + \epsilon_t \tag{1}$$

The expected value of  $Y_t$  is  $\beta t$  and the variance of  $Y_t$  is  $\sigma^2$ 

#### Autocovariance

The j th autocovariance of  $Y_t$  is:

$$\gamma_{jt} = \iint_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} [Y_t - E(Y_t)][Y_{t-j} - E(Y_{t-j})] \times f_{Y_t, Y_{t-1}, \dots, Y_{t-j}}(y_t, y_{t-1}, \dots, y_{t-j}) dy_t dy_{t-1} \dots dy_{t-j}$$

$$= E[Y_t - E(Y_t)][Y_{t-j} - E(Y_{t-j})]$$
(2)

The autocovariance of equation (1) is:

$$\gamma_{jt} = E[Y_t - E(Y_t)][Y_{t-j} - E(Y_{t-j})] = E(\epsilon_t \epsilon_{t-j}) = 0$$

# Autocorrelation Function and Coefficient Significant Test

Thus, autocorrelation can be calculated as:

$$\rho_j = \frac{\gamma_j}{\gamma_0}$$

Where j = 1, 2, ...

Single autocorrelation coefficient is significant and we will reject the null hypothesis if the coefficient lies inside the confidence interval:

$$(-1.96 imes rac{1}{\sqrt{T}}, \, 1.96 imes rac{1}{\sqrt{T}})$$

Where T is the sample size.

## Autocorrelation Coefficient Significant Test

We can also test the joint hypothesis that all m of the  $\rho_k$  correlation coefficients are simultaneously equal to zero using the Q-statistic developed by Box and Pierce:

$$Q = T \sum_{k=1}^{m} \hat{\rho_k}^2$$

Where T is the sample size and m is the maximum lag length.

Another joint hypothesis test is Ljung-Box statistic:

$$Q^* = T(T+2) \sum_{k=1}^{m} \frac{\hat{\rho_k}^2}{T-K}$$

Both Q-statistic and Ljung-Box statistic are distributed as  $\chi^2_m$ , but Ljung-Box statistic is more general in terms of the number of samples.

# Autocorrelation Coefficient Significant Test

Suppose that a researcher had estimated the first 5 autocorrelation coefficients using a series of length 100 observations, and found them to be (from 1 to 5): 0.207, -0.013, 0.086, 0.005, -0.022.

Test each of the individual coefficient for significance.

Use both the Box-Pierce and Ljung-Box tests to establish whether the autocorrelation coefficients from previous slide are jointly significant. Compared with a tabulated  $\chi^2_{(5)}=11.1$  at the 5% level.

# Stationary Conditions

If neither the mean  $\mu$  nor the autocovariance  $\gamma_j$  depend on the date t then the process for  $Y_t$  is stationary

$$E(Y_t) = \mu$$
 for all t (3)

$$E[Y_t - \mu]^2 = \sigma^2 \qquad \text{for all t} \tag{4}$$

$$E[Y_t - \mu][Y_{t-j} - \mu] = \gamma_j \qquad \text{for all t and j}$$
 (5)

For example, equation (1) is not stationary because it is a function of time

Consider a q th-order moving average process:

$$Y_t = \mu + \epsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \dots + \theta_q \epsilon_{t-q}$$
 (6)

Where  $\{\epsilon_t\}$  is a white noise process

Then the expectation is:

$$E(Y_t) = \mu + E(\epsilon_t) + E(\theta_1 \epsilon_{t-1}) + E(\theta_2 \epsilon_{t-2}) + \dots + E(\theta_q \epsilon_{t-q}) = \mu$$

The variance is:

$$Var(Y_t) = E[Y_t - \mu]^2 = E(\epsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \dots + \theta_q \epsilon_{t-q})^2$$
  
=  $(1 + \theta_1^2 + \theta_2^2 + \dots + \theta_q^2)\sigma^2$ 

The j th covariance is:

$$\gamma_{j} = [E(\epsilon_{t}) + E(\theta_{1}\epsilon_{t-1}) + E(\theta_{2}\epsilon_{t-2}) + \dots + E(\theta_{q}\epsilon_{t-q})$$

$$\times (\epsilon_{t-j}) + E(\theta_{1}\epsilon_{t-j-1}) + E(\theta_{2}\epsilon_{t-j-2}) + \dots + E(\theta_{q}\epsilon_{t-j-q})]$$

$$= [\theta_{j} + \theta_{j+1}\theta_{1} + \theta_{j+2}\theta_{2} + \dots + \theta_{q}\theta_{q-j}]\sigma^{2}$$

Consider a MA(1) process:

$$Y_t - \mu = (1 + \theta L)\epsilon_t$$

If  $|\theta| < 1$ , multiply  $(1 + \theta L)^{-1}$  to obtain:

$$(1 - \theta L + \theta^2 L^2 - \theta^3 L^3 + \dots)(Y_t - \mu) = \epsilon_t \tag{7}$$

which could be viewed as an  $AR(\infty)$  representation.

If a moving average representation can be rewritten as an  $AR(\infty)$  representation simply by inverting the moving average lag operator, then the moving average representation is said to be *invertible* 

Consider a MA(q) process:

$$Y_t - \mu = (1 + \theta_1 L + \theta_2 L^2 + \theta_3 L^3 + \dots + \theta_q L^q)\epsilon_t$$

If the roots of

$$(1 + \theta_1 z + \theta_2 z^2 + \theta_3 z^3 + \dots + \theta_q z^q) = 0$$
 (8)

lie outside the unit circle, then the process can be viewed as a  $AR(\infty)$  representation:

$$(1 + \eta_1 L + \eta_2 L^2 + \eta_3 L^3 + \dots)(Y_t - \mu) = \epsilon_t$$
 (9)

Where

$$(1+\eta_1 L+\eta_2 L^2+\eta_3 L^3+\dots)=(1+\theta_1 z+\theta_2 z^2+\theta_3 z^3+\dots+\theta_q z^q)^{-1}$$

Consider a MA(2) process:

$$Y_t = \epsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2}$$

where  $\epsilon_t$  is white noise process.

- 1. Calculate the mean and variance of  $Y_t$
- 2. Derive the autocorrelation function for this process
- 3. If  $\theta_1 = 0.25$  and  $\theta_2 = 0.75$ , is it invertible?

Consider a *p* th-order autoregressive process:

$$Y_t = \mu + \phi Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + \epsilon_t$$
 (10)

Where  $\{\epsilon_t\}$  is a white noise process

We can rewrite as:

$$(1 - \phi L - \phi_2 L^2 - \dots - \phi_p L^p) Y_t = c + \epsilon_t$$

If the roots of:

$$(1 - \phi_1 z - \phi_2 z^2 - \phi_3 z^3 - \dots - \phi_q z^q) = 0$$

lie outside the unit circle, the series is weakly stationary.



The reason behind the absolute value of the coefficient in AR(1) less than unity, denoted  $|\phi| < 1$ , is the root of z.

Consider a first-order autoregressive process, denoted AR(1):

$$Y_t = c + \phi Y_{t-1} + \epsilon_t \tag{11}$$

Or:

$$(1 - \phi_1 L) Y_t = c + \epsilon_t$$

If AR(1) is stationary, the process must satisfy that the root of:

$$(1-\phi z)=0$$

lies outside the unit circle. Thus,

$$z=rac{1}{\phi}>\pm 1$$

Transforming equation (11) by recursive substitution approach we can get:

$$Y_t = \frac{c}{1 - \phi} + \epsilon_t + \phi \epsilon_{t-1} + \phi^2 \epsilon_{t-2} + \dots + \phi^T Y_0$$
 (12)

If  $\mu = \frac{c}{1-\phi}$ , we transform a AR(1) process into MA( $\infty$ ) process.

Another reason behind the absolute value of the coefficient in AR(1) less than unity, denoted  $|\phi|<1$ , is MA( $\infty$ ) process.

1.If 
$$|\phi|<1,\;\phi^T\to 0$$
 as  $T\to \infty$ 

So the shocks to the system gradually die away.

2.If 
$$|\phi|=1$$
,  $\phi^T=1$  for all  $T$ 

So shocks persist in the system and never die away. The current value of y is just an infinite sum of past shocks plus some starting value of  $Y_0$ . We will recall this scenario later in Unit Root.

3.If 
$$|\phi| > 1$$

It has an intuitively unappealing property: shocks to the system are not only persistent through time, they are propagated so that a given shock will have an increasingly large influence. It is also not reasonable in many data series in economics and finance.



Taking expectations in equation (12) we can get:

$$E(Y_t) = \mu + 0 + 0 + \cdots + 0 = \mu$$

The variance is:

$$Var(Y_t) = E[Y_t - E(Y_t)]^2$$

$$= E(\epsilon_t + \phi \epsilon_{t-1} + \phi^2 \epsilon_{t-2} + \dots)^2$$

$$= (1 + \phi^2 + \phi^4 + \dots +) \cdot \sigma^2$$

$$= \frac{\sigma^2}{1 - \phi^2}$$

The j th autocovariance is:

$$\gamma_{j} = E[Y_{t} - E(Y_{t})]E[Y_{t-j} - E(Y_{t-j})] 
= E[\epsilon_{t} + \phi \epsilon_{t-1} + \phi^{2} \epsilon_{t-2} + \dots] \times [\epsilon_{t-j} + \phi \epsilon_{t-j-1} + \phi^{2} \epsilon_{t-j-2}] 
= [\phi^{j} + \phi^{j+2} + \phi^{j+4} + \dots] \cdot \sigma^{2} 
= \frac{\phi^{j}}{1 - \phi^{2}} \cdot \sigma^{2}$$

What is the autocovariance for AR(1) process?

Now we can turn to ARMA process:

$$Y_{t} = c + \phi_{1} Y_{t-1} + \phi_{2} Y_{t-2} + \dots + \phi_{p} Y_{t-p} + \theta_{1} \epsilon_{t-1} + \theta_{2} \epsilon_{t-2} + \dots + \theta_{q} \epsilon_{t-q}$$
(13)

Or:

$$Y_t = c + \sum_{i=1}^{p} \phi_i Y_{t-i} + \sum_{i=1}^{q} \theta_q \epsilon_{t-q}$$

Or:

$$(1 - \phi_1 L - \phi_2 L^2 - \dots - \phi_p L^p) Y_t$$

$$= c + (1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_q L^q) \epsilon_t$$
(14)

Or:

$$\phi(L)Y_t = c + \theta(L)\epsilon_t$$

Both sides can be divided by  $(1-\phi_1L-\phi_2L^2-\cdots-\phi_pL^p)$  to obtain:

$$Y_t = \mu + \psi(L)\epsilon_t$$

Where

$$\psi(L) = \frac{(1 + \theta_1 L + \theta_2 L^2 + \dots + \theta_q L^q)}{(1 - \phi_1 L - \phi_2 L^2 - \dots - \phi_p L^p)}$$

and

$$\mu = c/(1-\phi_1-\phi_2-\cdots-\phi_p)$$

# Overparameterization Problem

Consider a simple white noise process:

$$Y_t = \epsilon_t \tag{15}$$

Multiple both sides by  $(1 - \psi L)$ :

$$(1 - \psi L)Y_t = (1 - \psi L)\epsilon_t \tag{16}$$

Clearly, if equation (15) a valid representation, then so is equation (16) for any value of  $\psi$ . Thus, equation (16) might be described as an ARMA(1, 1) process, with  $\phi_1 = \psi$  and  $\theta_1 = -\psi$ . It is important to avoid such a parameterization. Since any value of  $\psi$ in equation (16) describes the data equally well, we will obviously get into trouble trying to estimate the parameter  $\psi$  in equation (16) by maximum likelihood. Moreover, theoretical manipulations based on a representation such as equation (16) may overlook key cancellations. If we are using an ARMA(1, 1) model in which  $\phi_1$  is close to  $-\theta_1$  then the data might better be modeled as simple white noise. 4 D > 4 B > 4 B > 4 B > 9 Q P

# Overparameterization Problem

A related overparameterization can arise with an ARMA(p, q) model. Consider factoring the lag polynomial operators:

$$(1 - \lambda_1 L)(1 - \lambda_2 L) \dots (1 - \lambda_p L) Y_t$$

$$(1 - \eta_1 L)(1 - \eta_2 L) \dots (1 - \eta_p L) \epsilon_t$$
(17)

We assume that  $|\lambda_i| < 1$ , o that the process is stationary. If the autoregressive operator and the moving average operator have any roots in common, such as  $\lambda_i = \eta_j$ , then both sides can be divided by  $(1 - \lambda_i L)$ :

$$\prod_{k=1, k \neq i}^{p} (1 - \lambda_k L) Y_t = \prod_{k=1, k \neq j}^{q} (1 - \eta_k L) \epsilon_t$$
 (18)

# Overparameterization Problem

Or:

$$(1 - \phi_1^* L - \phi_2^* L^2 - \dots - \phi_{p-1}^* L^{p-1}) Y_t =$$

$$(1 + \theta_1^* L + \theta_2^* L^2 + \dots + \theta_{q-1}^* L^{q-1}) \epsilon_t$$

Where

$$(1-\phi_1^*L-\phi_2^*L^2-\cdots-\phi_{p-1}^*L^{p-1}) =$$

$$(1-\lambda_1L)(1-\lambda_2L)\dots(1-\lambda_{i-1}L)(1-\lambda_{i+1}L)\dots(1-\lambda_pL)$$

$$(1+\theta_1^*L+\theta_2^*L^2+\cdots+\theta_{q-1}^*L^{q-1}) =$$

$$(1-\eta_1L)(1-\eta_2L)\dots(1-\eta_{j-1}L)(1-\eta_{j+1}L)\dots(1-\eta_qL)$$

The stationary ARMA(p, q) process satisfying equation (14) is clearly identical to the stationary ARMA(p-1, q-1) process satisfying.