Scilab Textbook Companion for Mechanical Engineering Thermodynamics by D. A. Mooney¹

Created by
Potti Sai Chaitanya
Chemical Engineering
Chemical Engineering
IIT Bombay
College Teacher
Na
Cross-Checked by
Ganesh R

August 10, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Mechanical Engineering Thermodynamics

Author: D. A. Mooney

Publisher: Prentice Hall

Edition: 5

Year: 1980

ISBN: 1466511796

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	5
2	Work	8
3	Temperature and Heat	10
5	The first law of thermodynamics	14
6	Flow Procesess First law analysis	17
8	Basic applications of the second law	20
10	Tabulated properties Steam Tables	23
11	Properties of Gases	29
12	Properties of Gaseous Mixtures	33
13	process calculations for stationary systems	35
14	Vapor cycles rankine cycle	44
15	Vapor cycles More efficient cycles	48
16	Gas cycles	51
17	Fluid Flow Nozzles and Orifices	54
18	Turbines	59

19 Reciprocating expanders and compressors	61
21 Gas compression	63
22 Combustion Processes First law analysis	67
23 Internal combustion power plants	71
24 Refrigeration	77
25 Air water vapor mixtures	79

List of Scilab Codes

Exa 2.1	example 1	8
Exa 2.2	example 2	8
Exa 2.3	example 3	9
Exa 3.1	example 1	10
Exa 3.2	example 2	10
Exa 3.3	example 3	11
Exa 3.4	example 4	11
Exa 3.5	example 5	12
Exa 5.1	example 1	14
Exa 5.2	example 2	14
Exa 5.3	example 3	15
Exa 5.4.a	example 4	15
Exa 5.4.b	example 5	16
Exa 6.1	example 1	17
Exa 6.2	example 2	18
Exa 6.3	example 3	18
Exa 8.1	example 1	20
Exa 8.2	example 2	20
Exa 8.3	example 3	21
Exa 8.4	example 4	21
Exa 8.5	example 5	22
Exa 8.6	example 6	22
Exa 10.1	example 1	23
Exa 10.2	example 2	24
Exa 10.3	example 3	24
Exa 10.4	example 4	25
Exa 10.5	example 5	25
Exa 10.6	example 6	26

Exa	10.7	example 7	7.											26
Exa	10.8	example 8	3.											27
Exa	10.10	example 1	10											27
Exa	10.11	example 1												28
Exa	11.1	example 1	l .											29
Exa	11.2	example 2	2 .											29
Exa	11.4	example 4	1.											30
Exa	11.5.a	example 5	5 .											30
Exa	11.5.b	example 6	3 .											31
Exa	11.5.c	example 7	7.											32
	12.1	example 1												33
Exa	12.2	example 2	2 .											34
Exa	13.1.a	example 1	l .											35
Exa	13.1.b	example 2	2 .											36
Exa	13.2.a	example 2	2.											36
		example 4												37
Exa	13.3.a	example 5	5 .											38
Exa	13.3.b	example 6	3 .											38
Exa	13.4.a	example 7	7.											39
Exa	13.4.b	example 8	3.											40
		example 9												41
Exa	13.5.b	example 1	10											41
Exa	13.6.a	example 1	l1											42
Exa	13.6.b	example 1	12											42
Exa	14.1	example 1	l .											44
		example 2												45
Exa	14.3.a	example 3	3.											45
Exa	14.3.b	example 4	1.											46
Exa	15.1	example 1	L.											48
Exa	15.2.a	example 2	2 .											49
		example 3												49
Exa	16.1.a	example 1	l .											51
Exa	16.1.b	example 2	2 .											52
Exa	16.2	example 3	3.											53
Exa	17.1.a	example 1	l .											54
Exa	17.1.b	example 2	2 .											54
Exa	17.2	example 2	2 .											55
Eva	17 3 a	example 4	1											56

Exa 17.3.b	o example 5	57
Exa 18.1	example 1	59
Exa 18.2	example 2	60
Exa 19.1	example 1	61
Exa 19.2	example 2	62
Exa 21.1	example 1	63
Exa 21.2	example 2	64
Exa 21.3	example 3	64
Exa 21.4	example 4	65
Exa 21.5	example 5	66
Exa 22.5	example 1	67
Exa 22.6	example 2	68
Exa 22.7	example 3	68
Exa 22.8	example 4	69
Exa 22.9	example 5	69
Exa 22.10	example 6	70
Exa 23.1	example 1	71
Exa 23.2	example 2	72
Exa 23.3	example 3	73
Exa 23.4	example 4	74
Exa 24.1	example 1	77
Exa 25.1	example 1	79
Exa 25.2	example 2	79
Exa 25.3	example 3	80
Exa 25.4	example 4	81
Exa. 25.5	example 5	82

Work

Scilab code Exa 2.1 example 1

```
1 clc
2 //Initialization of variables
3 g=1.4
4 P=100 //psia
5 V1=3 //cu ft
6 Pf=20 //psia
7 //calculations
8 V2=V1*(P/Pf)^(1/g)
9 W=(Pf*V2-P*V1)*144/(1-g)
10 //results
11 printf("Net work done = %d ft", W)
```

Scilab code Exa 2.2 example 2

```
1 clc
2 //Initialization of variables
3 Wb=-33000 //ft-lb
4 V2=3 //cu ft
```

```
5 V1=1 //cu ft
6 P=69.4 //psia
7 //calculations
8 Wa=P*(V2-V1)*144
9 W=Wa+Wb
10 //results
11 printf("Net work done = %d ft-lb", W)
```

Scilab code Exa 2.3 example 3

```
1 clc
2 //Initialization of variables
3 b=11 //in
4 s=15 //in
5 l=2.4 //in
6 k=80 //psi per in
7 //calculations
8 a=%pi*b^2 /4
9 L=s/12
10 Pm=1.6/1 *k
11 W=Pm*a*L
12 //results
13 printf("Net work done = %d ft lb", W)
```

Temperature and Heat

Scilab code Exa 3.1 example 1

```
1 clc
2 //Initialization of variables
3 T1=500 //F
4 T2=100 //F
5 Tf=75 //F
6 cpi=0.120 //B/lb F
7 cpw=1.0 //B/lb F
8 //calculations
9 Qw=1*cpw*(T2-Tf)
10 Qi=-1*cpi*(T2-T1)
11 mw=Qi/Qw
12 //results
13 printf("Mass of water = %.2 f lb water/lb iron", mw)
```

Scilab code Exa 3.2 example 2

```
1 clc
2 //Initialization of variables
```

Scilab code Exa 3.3 example 3

```
1 clc
2 //Initialization of variables
3 \text{ Tm} = 235 / \text{F}
4 Tb=832 //F
5 T = 70 / F
6 cps=0.18 //B/lb F
7 cpl=0.235 //B/lb F
8 Lf = 15.8 //B/lb
9 Lv=120 //B/lb
10 m = 10 // lb
11 //calculations
12 Qa=m*cps*(Tm-T)
13 Qb=m*Lf
14 Qc=m*cpl*(Tb-Tm)
15 \quad Qd = m * Lv
16 \quad Q = Qa + Qb + Qc + Qd
17 //results
18 printf("Heat required = %d Btu",Q)
```

Scilab code Exa 3.4 example 4

```
1 clc
2 //Initialization of variables
3 \text{ T1=22 } //F
4 T2=32 //F
5 T3 = 40 //F
6 \text{ T4} = 70 \text{ //F}
7 cps=0.501 //B/lb F
8 cpw=1 //B/lb F
9 Lf = 143.3 / B/lb
10 \text{ m} = 40 \text{ // lb}
11 //calculations
12 Qa=cps*(T2-T1)
13 \quad Qb = Lf
14 Qc = cpw * (T3 - T2)
15 Qd=m*cpw*(T3-T4)
16 \text{ mi} = -Qd/(Qa+Qb+Qc)
17 //results
18 printf("Mass of ice required = \%.2 f lb ice", mi)
```

Scilab code Exa 3.5 example 5

```
1 clc
2 // Initialization of variables
3 T1=22 //F
4 T2=32 //F
5 T3=40 //F
6 T4=70 //F
7 cps=0.501 //B/lb F
8 cpw=1 //B/lb F
9 Lf=143.3 //B/lb
10 m=40 //lb
11 cp=0.092
12 mc=10
13 // calculations
14 Qa=cps*(T2-T1)
```

The first law of thermodynamics

Scilab code Exa 5.1 example 1

```
1 clc
2 //initialization of varaibles
3 V1=10 //cu ft
4 P1=15 //psia
5 V2=5 //cu ft
6 H=34.7 //Btu
7 //calculations
8 W=P1*(V2-V1)*144
9 dE=-H-W/778
10 //results
11 printf("Internal energy change = %.1 f Btu", dE)
```

Scilab code Exa 5.2 example 2

```
1 clc
2 //initialization of varaibles
```

```
3 dT=35 //F
4 H=34 //Btu
5 cv=1.2 //B/lb F
6 m= 2 //lb
7 //calculations
8 U=cv*dT*m
9 W=H-U
10 //results
11 printf("Work done = %d Btu",W)
12 printf("\n Internal energy change = %.1f Btu",U)
```

Scilab code Exa 5.3 example 3

```
1 clc
2 //initialization of varaibles
3 p=500 //psia
4 V2=0.9278 //cu ft
5 V1=0.0197 //cu ft
6 h2=1204.4 //B/lb
7 h1=449.4 //B/lb
8 //calculations
9 W=p*(V2-V1)*144
10 du=h2-h1-144*p*(V2-V1)/778
11 du2=h2-h1-W/778
12 //results
13 printf("Change in internal energy = %.1 f Btu",du)
14 printf("\n Method 2, Internal energy change = %.1 f Btu",du2)
```

Scilab code Exa 5.4.a example 4

```
1 clc
2 //initialization of varaibles
```

```
3 P1=75 //psia
4 P2=15 //psia
5 V1=6 //cu ft
6 g=1.2
7 m=3
8 //calculations
9 V2=V1*(P1/P2)^(1/g)
10 U=0.48*(P2*V2-P1*V1)
11 W=(P2*V2-P1*V1)*144/((1-g)*778)
12 Q=U+W
13 //results
14 printf("Heat = %.3 f Btu",Q)
15 //The answer given in textbook is wrong. please check using a calculator
```

Scilab code Exa 5.4.b example 5

```
1 clc
2 //initialization of varaibles
3 P1 = 75 // psia
4 P2=15 // psia
5 \text{ V1=6} //\text{cu} \text{ ft}
6 g = 1.2
7 m=3
8 //calculations
9 Q = 30 //Btu
10 V2=V1*(P1/P2)^(1/g)
11 U=0.48*(P2*V2-P1*V1)
12 W = Q - U
13 //results
14 printf("Work done = %.1 f Btu", W)
15 //The answer given in textbook is wrong. please
      check using a calculator
```

Flow Procesess First law analysis

Scilab code Exa 6.1 example 1

```
1 clc
2 //initialization of varaibles
3 u1=1111.9 //Btu/lb
4 P1=170 // psia
5 v1=2.675 //cu ft/lb
6 v2=100.9 //cu ft/lb
7 z1=10 //ft
8 V1 = 6000/60 //ft/sec
9 Q = -1000
10 u2=914.6 //B/lb
11 P2=3 //psia
12 V2 = 300 //ft/sec
13 rate=2500 //lb/hr
14 //calculations
15 Wx=rate*(u1-u2 + (P1*v1-P2*v2)*144/778 + (V1^2 -V2^2)
      /(2*32.2*778) + z1/778 + Q/rate
16 f = 3.92 * 10^{-4}
17 //results
18 printf("Power output of turbine = %d B/hr", Wx)
```

```
19 printf("\n Power output in hp = \%d hp", \wx*f+1)
```

Scilab code Exa 6.2 example 2

Scilab code Exa 6.3 example 3

```
1 clc
2 //initialization of varaibles
                     //cu ft/lb
3 v2=5.434
4 v1=4.937
                     //cu ft/lb
5 h1 = 1227.6
6 h2=1223.9
7 A1=%pi/144
8 //calculations
9 Vratio=v2/v1
10 V1=sqrt (64.4*(h1-h2)*778/(Vratio^2 -1))
11 V2=V1*Vratio
12 \quad w = A1 * V1 / v1
13 //results
14 printf("Average velocity at 1 = %d fps", V1)
15 printf("\n Average velocity at 2 = \%d fps", V2)
16 printf("\n Rate of flow = \%.2 \, \text{f lb/sec}", w)
```

Basic applications of the second law

Scilab code Exa 8.1 example 1

```
1 clc
2 //initialization of varaibles
3 T1=85+460 //R
4 T2=50+460 //R
5 //calculations
6 eta=(T1-T2)/T1
7 //results
8 printf("Max. efficiency = %.1f percent",eta*100)
```

Scilab code Exa 8.2 example 2

```
1 clc
2 //initialization of varaibles
3 T1=1050+460 //R
4 T2=90+460 //R
5 //calculations
```

```
6 eta=(T1-T2)/T1
7 //results
8 printf("Max. possible efficiency = %d percent",eta
    *100)
```

Scilab code Exa 8.3 example 3

```
1 clc
2 //initialization of varaibles
3 T1=50+460 //R
4 T2=150+460 //R
5 m=1
6 cp=0.240
7 //calculations
8 ds=m*cp*(log(T2) - log(T1))
9 //results
10 printf("Change in entropy = %.4 f B/ F abs", ds)
```

Scilab code Exa 8.4 example 4

```
1 clc
2 //initialization of varaibles
3 T1=50+460 //R
4 T2=150+460 //R
5 m=1
6 cp=0.240
7 //calculations
8 ds=m*cp*(log(T2) - log(T1))
9 //results
10 printf("Change in entropy = %.4 f B/ F abs",ds)
```

Scilab code Exa 8.5 example 5

```
1 clc
2 //initialization of varaibles
3 Q=826 //B/lb
4 T=860 //R
5 T1=2000+460 //R
6 T2=1000+460 //R
7 //calculations
8 ds=Q/T
9 dsgas=Q*(log(T2)-log(T1))/(T1-T2)
10 dst=ds+dsgas
11 //results
12 printf("Total entropy change = %.3 f B/R",dst)
```

Scilab code Exa 8.6 example 6

```
1 clc
2 //initialization of varaibles
3 T0=540 //R
4 Q=826 //B/lb
5 ds=0.534
6 ds2=0.431
7 //calculations
8 tds=T0*ds
9 tds2=T0*ds2
10 H=Q-tds2
11 Loss=tds/H
12 //results
13 printf("Loss = %d percent", Loss*100+1)
```

Tabulated properties Steam Tables

Scilab code Exa 10.1 example 1

```
1 clc
2 //initialization of varaibles
3 P = 100 //psia
4 hfg=888.8 //B/lb
5 //calculations
6 disp("From steam tables,")
7 vg = 4.432 //cu ft / lb
8 vf=0.001774 //cu ft/lb
9 \ W=P*(vg-vf)*144
10 ufg=807.1 //B/lb
11 W=hfg-ufg
12 \text{ sfg} = 1.1286
13 \ Q = 788 * sfg
14 //results
15 printf("Work done = \%.1 \, f \, B/lb", W)
16 printf("\n Heat of vaporization of water = \%d B/lb",
      Q)
```

Scilab code Exa 10.2 example 2

```
1 clc
2 //initialization of varaibles
3 s=1.6315 //B/lb R
4 //calculations
5 disp("From table 1 ")
6 h=1180.6 //B/lb
7 t=302.92 //F
8 p=70 //psia
9 //results
10 printf("Pressure = %d psia",p)
11 printf("\n Temperature = %.2 f F",t)
12 printf("\n Enthalpy = %.1 f B/lb",h)
```

Scilab code Exa 10.3 example 3

```
1 clc
2 //initialization of varaibles
3 T=250 //F
4 disp("From table 1,")
5 p=29.825 //psia
6 hg=1164 //B/lb
7 vg=13.821 //cu ft/lb
8 //calculations
9 ug=hg-(p)*144*vg/778
10 //results
11 printf("Internal energy of the gas = %.1f B/lb",ug)
```

Scilab code Exa 10.4 example 4

```
1 clc
 2 //initialization of varaibles
 3 x = 0.4
 4 P = 100 // psia
 5 //calculations
 6 y = 1 - x
 7 disp("From table 2,")
 8 \text{ vf} = 0.01774
 9 \text{ vg} = 4.432
10 \quad vx = x * vf + y * vg
11 hf=298.4
12 hfg=888.8
13 \text{ hx=hf+y*hfg}
14 \text{ sg} = 1.6026
15 \text{ sfg} = 1.1286
16 \text{ sx=sg-x*sfg}
17 //results
18 printf ("Specific volume = \%.3 \, \text{f} \, \text{cu} \, \text{ft/lb}", vx)
19 printf("\n Enthalpy = \%.1 \text{ f B/lb}", hx)
20 printf("\n Entropy = \%.4 \, f B/lb R",sx)
```

Scilab code Exa 10.5 example 5

```
1 clc
2 //initialization of varaibles
3 x=0.97
4 P=100 //psia
5 //calculations
6 disp("From table 2,")
7 hf=298.4
8 hfg=888.8
9 hx=hf+x*hfg
10 hg=1187.2
```

```
11 hx2=hg-(1-x)*hfg
12 //results
13 printf("Accurate Enthalpy = %.1 f B/lb",hx2)
14 printf("\n Enthalpy = %d B/lb")
```

Scilab code Exa 10.6 example 6

```
1 clc
2 //initialization of varaibles
3 \text{ s} = 1.7050 //B/lb R
4 //calculations
5 disp("From table 2,")
6 \text{ sx} = 1.7050
7 \text{ sg} = 1.7549
8 \text{ sfg} = 1.4415
9 dx = (sg - sx)/sfg
10 hg=1150.8
11 \text{ hfg} = 969.7
12 hx = hg - dx * hfg
13 \text{ vg} = 26.29
14 \text{ vfg} = 26.27
15 \quad vx = vg - dx * vfg
16 //results
17 printf("Specific volume = \%.3 f cu ft/lb", vx)
18 printf("\n Enthalpy = \%.1 \text{ f B/lb}", hx)
```

Scilab code Exa 10.7 example 7

```
1 clc
2 //initialization of varaibles
3 P=150 //psia
4 T=400 //F
5 //calculations
```

```
6 disp("From table 3,")
7 h=1219.4 //B/lb
8 //results
9 printf("Enthalpy = %.1f B/lb",h)
```

Scilab code Exa 10.8 example 8

Scilab code Exa 10.10 example 10

```
1 clc
2 //initialization of varaibles
3 T=100 //F
4 P=1000 // psia
5 // calculations
6 disp("From table 4")
7 dvf=-5.1*10^-5
8 dhf=2.7
9 vf=0.01613
10 hf=67.97
11 v=vf+dvf
12 h=hf+dhf
13 //results
```

```
14 printf("Enthalpy = \%.2 \, f \, B/lb",h)
15 printf("\n Volume = \%.5 \, f \, cu \, ft/lb",v)
```

Scilab code Exa 10.11 example 11

```
1 clc
2 //initialization of varaibles
3 h1=1183.2 //B/lb
4 hg=1198.4 //B/lb
5 hfg=843
6 //calculations
7 x=1- (hg-h1)/hfg
8 //results
9 printf("Quality = %.3f",x)
```

Properties of Gases

Scilab code Exa 11.1 example 1

```
1 clc
2 //initialization of varaibles
3 P1=15 //psia
4 T1=80+460 //R
5 dm=3 //lb
6 T2=75+460 //R
7 P2=25 //psia
8 //calculations
9 mratio=P1*T2/(P2*T1)
10 m2=dm/(1-mratio)
11 V2=m2*55.16*T2/(P2*144)
12 //results
13 printf("Volume of the apparatus = %.1 f cu ft", V2)
```

Scilab code Exa 11.2 example 2

```
1 clc
2 //initialization of varaibles
```

```
3 R=48.3 //ft lb/lb R
4 k=1.4
5 //calculations
6 dc=R/778
7 cp=k*dc/(k-1)
8 cv=cp/k
9 //results
10 printf("Specific heat at constant volume = %.3 f B/lb R",cv)
11 printf("Specific heat at constant pressure = %.3 f B/lb R",cp)
```

Scilab code Exa 11.4 example 4

```
1 clc
2 //initialization of varaibles
3 P1 = 100 // psia
4 P2=10 //psia
5 T1 = 140 + 460 / R
6 g = 1.4
7 \text{ cp} = 0.248
8 //calculations
9 dh=g*55.16*T1*((P2/P1)^{((g-1)/g)}-1)/(g-1)
10 T2=T1*(P2/P1)^{(g-1)/g}
11 dh2=cp*(T2-T1)
12 //results
13 printf("In method 1, Enthalpy = %d Btu/lb",dh
      *0.01286)
14 printf("\n In method 2, Enthalpy = \%.1 \, \text{f} ft lb/lb",
      dh2)
```

Scilab code Exa 11.5.a example 5

```
1 clc
2 //initialization of varaibles
3 P1 = 100 //psia
4 T1=2000+460 //R
5 P2=15 //psia
6 g = 1.4
7 \text{ cp} = 0.24
8 //calculations
9 v1=53.34*T1/(P1*144)
10 \text{ v2}=53.34*T1*(P1/P2)^(1/g) / (P1*144)
11 T2=T1*P2*v2/(P1*v1)
12 dh = cp * (T2 - T1)
13 \, dv = v2 - v1
14 //results
15 printf("Change in enthalpy = %d B/lb", dh)
16 printf("\n Specific volume change = \%.1 f cu ft/lb",
      dv)
```

Scilab code Exa 11.5.b example 6

```
1 clc
2 //initialization of varaibles
3 P1=100 //psia
4 T1=2000+460 //R
5 P2=15 //psia
6 g=1.4
7 cp=0.276
8 cv=0.207
9 T2=1520 //R
10 //calculations
11 k=cp/cv
12 v1=53.34*T1/(P1*144)
13 v2=v1*(P1/P2)^(1/k)
14 dh=cp*(T2-T1)
15 dv=v2-v1
```

```
16 // results
17 printf("Enthalpy change = %d B/lb",dh)
18 printf("\n Volume change = %.1 f cu t/lb",dv)
```

Scilab code Exa 11.5.c example 7

```
1 clc
2 //initialization of varaibles
3 P1 = 100 //psia
4 T1=2000+460 //R
5 \text{ P2=15} // \text{psia}
6 g = 1.4
7 \text{ cp} = 0.276
8 \text{ cv} = 0.207
9 T2=1520 //R
10 //calculations
11 h1=634.4
12 \text{ pr1} = 407.3
13 pr2=pr1*P2/P1
14 disp("From table 1,")
15 T2=1535 //R
16 h2=378.44
17 dh=h2-h1
18 \quad v2=53.34*T2/(P2*144)
19 dv = v2 - v1
20 //results
21 printf("Enthalpy change = \%.2 \, f B/lb", dh)
22 printf("\n Volume change = \%.1 f cu ft/lb", dv)
```

Properties of Gaseous Mixtures

Scilab code Exa 12.1 example 1

```
1 clc
2 //initialization of varaibles
3 P=15 //psia
4 T2=70+460 / R
5 \text{ T1} = 55 + 460 / \text{R}
6 //calculations
7 pw = 0.2141
8 pA = P - pw
9 mratio=pA*29/(pw*18)
10 mAbym=mratio/(1+mratio)
11 mwbym=1/(1+mratio)
12 pg=0.3631 //psia
13 phi=pw/pg
14 gamma=1/mratio
15 //results
16 printf("Partial pressure of water vapor = %.2f psia"
17 printf("\n Specific humidity = %.4f lb vapor/lb air"
      ,gamma)
```

Scilab code Exa 12.2 example 2

```
1 clc
2 //initialization of varaibles
3 rh=0.75
4 pg=0.5069
5 inc=10 //in
6 pA=29.50 //psia
7 //calculations
8 pw=rh*pg
9 p=(29.50+ inc/13.6)*0.491
10 pA=p-pw
11 mratio=pw*18/(pA*29)
12 //results
13 printf("Pounds of water vapor enter the surface per pound of dry air = %.4 f lb vapor/lb air", mratio)
```

process calculations for stationary systems

Scilab code Exa 13.1.a example 1

```
1 clc
2 //initialization of varaibles
3 P1 = 100 //psia
4 T1=500+460 //R
5 v=10 //cu ft
6 P2=50 // psia
7 \text{ cv} = 0.172
8 R=53.34
9 \text{ m} = 2.81 // \text{lb}
10 //calculations
11 T2=T1*P2/P1
12 Q1=P1*144*v*cv*(T2-T1)/(R*T1)
13 u1=165.26
14 u2=81.77
15 \, du = u2 - u1
16 \quad Q2=m*du
17 //results
18 printf("Case 1,")
19 printf("\n Final temperature of the steam = \%d R", T2
```

```
)
20 printf("\n Heat transferred = %d Btu",Q1+1)
21 printf("\n Heat transferred in case 2 = %d Btu",Q2
-1)
```

Scilab code Exa 13.1.b example 2

```
2 //initialization of varaibles
3 P1 = 100 //psia
4 T1=500+460 //R
5 V=10 //cu ft
 6 P2=50 //psia
7 \text{ cv} = 0.172
8 R=53.34
9 v=5.589 //cu ft/lb
10 //calculations
11 m = V/v
12 \quad x2 = (v-0.017)/8.498
13 disp("From table 2,")
14 T2=281.01//F
15 h1=1279.1
16 \quad u1=h1-144*P1*v/778
17 \text{ uf} = 249.93
18 \text{ ufg} = 845.4
19 \quad u2=uf+x2*ufg
20 \quad Q = m * (u2 - u1)
21 //results
22 printf("Final temperature = \%.2 \, \text{f} F", T2)
23 printf("\n Heat transferred = %d Btu",Q)
```

Scilab code Exa 13.2.a example 2

```
1 clc
2 //initialization of varaibles
3 T1 = 350 + 460 / R
4 v1=6 //cu ft/lb
5 \text{ m=1} // \text{lb}
6 R = 53.34
7 v2 = 2 * v1
8 \text{ cp} = 0.24
9 //calculations
10 P=R*T1/(v1*144)
11 W=P*144*(v2-v1)
12 T2 = T1 * v2 / v1
13 Q = cp * (T2 - T1)
14 h1=194.25
15 h2=401.09
16 \quad dh=h2-h1
17 //results
18 printf ("Final temperature = \%d F", T2-460)
19 printf("\n Enthalpy = \%.2 \text{ f B/lb}", dh)
20 printf("\n Heat = \%d B/lb",Q)
```

Scilab code Exa 13.2.b example 4

```
1 clc
2 //initialization of varaibles
3 T1=350+460 //R
4 v1=6 //cu ft/lb
5 m=1 //lb
6 R=53.34
7 v2=2*v1
8 cp=0.24
9 //calculations
10 disp("From steam tables,")
11 vg=3.342 //cu ft/lb
12 P1=77.5 //psia
```

```
13 P2=P1
14 h1=1204.8 //B/lb
15 v2=2*v1
16 T2=1106 //F
17 h2=1586.7 //B/lb
18 Q=h2-h1
19 W=P1*144*(v2-v1)
20 //results
21 printf("Final temperature = %d F",T2)
22 printf("\n Work = %d ft lb/lb",W)
23 printf("\n Heat = %.1 f B/lb",Q)
```

Scilab code Exa 13.3.a example 5

```
1 clc
2 //initialization of varaibles
3 T1=400+460 //R
4 P1=50 //psia
5 ratio=1/10
6 R=53.34
7 //calculations
8 P2=P1/ratio
9 W=R*T1*log(ratio)
10 du=0
11 //results
12 printf("Final pressure = %d psia",P2)
13 printf("\n Work done = %.1f B/lb",W)
14 printf("\n Change in Internal energy = %d ",du)
```

Scilab code Exa 13.3.b example 6

```
1 clc
2 //initialization of varaibles
```

```
3 T1 = 400 + 460 / R
4 P1=50 //psia
5 \text{ ratio} = 1/10
6 R = 53.34
7 v1=10.065 //cu ft/lb
8 vfg=1.8447 //cu ft/lb
9 vg=1.8633 //cu ft/lb
10 //calculations
11 v2=v1*ratio
12 dx = (v2 - vg) / vfg
13 P2 = 247.3 // psia
14 disp("From steam tables,")
15 u2=773 //B/lb
16 u1=1141.6 //B/lb
17 \, du = u2 - u1
18 s1=1.7349 //B/lb R
19 s2=1.082 //B/lb R
20 \ W=T1*(s2-s1) - du
21 //results
22 printf("Final pressure = %.1f psia",P2)
23 printf("\n Work done = \%d B/lb", W)
24 printf("\n Change in Internal energy = \%d B/lb ",du)
```

Scilab code Exa 13.4.a example 7

```
1 clc
2 //initialization of varaibles
3 P1=150 //psia
4 T1=400+460 //R
5 P2=15 //psia
6 g=1.4
7 R=53.34
8 //calculations
9 Tratio=(P2/P1)^((g-1)/g)
10 W=53.34*T1*(Tratio-1)/(1-g)
```

```
11 T2=T1*Tratio

12 v2=R*T2/(P2*144)

13 u1=147.50

14 Pr1=7.149

15 Pr2=Pr1*P2/P1

16 disp("From tables,")

17 Pr=0.7149

18 T2=447 //R

19 u2=76.13 //B/lb

20 W=-(u2-u1)

21 v2=R*T2/(P2*144)

22 //results

23 printf("Final specific volume = %.1 f cu ft/lb",v2)

24 printf("\n Work per pound of fluid = %.1 f B/lb",W)
```

Scilab code Exa 13.4.b example 8

```
1 clc
2 //initialization of varaibles
3 disp("From Steam tables,")
4 h1=1219.4
5 P1 = 150 //psia
6 v1=0.59733 //cu ft/lb
7 s1=1.5995 //B/lb R
8 //calculations
9 u1=h1-P1*v1
10 \text{ sg} = 1.7549
11 \text{ sfg} = 1.4415
12 s2=s1
13 dx = (sg - s2)/sfg
14 u2 = 981.3
15 \ W=u1-u2
16 \quad v2 = 23.48
17 //results
18 printf("Final specific volume = %.2 f cu ft/lb", v2)
```

Scilab code Exa 13.5.a example 9

```
1 clc
2 //initialization of varaibles
3 P1 = 150 //psia
4 T1=400+460 //R
5 P2 = 15 //psia
6 n=1.15
7 \text{ cv} = 0.172
8 R=53.34
9 //calculations
10 v2=R*T1*(P1/P2)^(1/n) / (P1*144)
11 v1=R*T1/(P1*144)
12 T2=T1*P2*v2/(P1*v1)
13 Q=(cv - 0.458)*(T2-T1)
14 //results
15 printf ("Final specific volume = \%.1 \, \text{f} \, \text{cu} \, \text{ft/lb}", v2)
16 printf("\n Final temperature = \%d R", T2)
17 printf("\n Heat transferred = \%.1 \, f B/lb",Q)
```

Scilab code Exa 13.5.b example 10

```
1 clc
2 //initialization of varaibles
3 disp("From table 3,")
4 v1=3.223 //cu ft/lb
5 P1=150 //psia
6 T1=400+460 //R
7 P2=15 //psia
8 n=1.15
9 //calculations
```

```
10 v2=v1*(P1/P2)^(1/n)
11 T2=213 //F
12 W=144*(P2*v2-P1*v1)*0.00129/(1-n)
13 u1=1129.8 //B/lb
14 v2=23.9
15 vg=26.29
16 vfg=26.27
17 dx=(vg-v2)/vfg
18 u2=996.1
19 Q=(u2-u1)+W
20 //results
21 printf("Final specific volume = %.1 f cu ft/lb",v2)
22 printf("\n Final temperature = %d F",T2)
23 printf("\n Heat transferred = %.1 f B/lb",Q)
```

Scilab code Exa 13.6.a example 11

```
1 clc
2 //initialization of varaibles
3 v2=15.7 //cu ft/lb
4 T2=640 //R
5 cv=0.172
6 T1=400+460 //R
7 //calculations
8 du=cv*(T2-T1)
9 W=-du
10 //results
11 printf("Final specific volume = %.1 f cu ft/lb",v2)
12 printf("\n Final temperature = %d ",T2)
13 printf("\n Work done = %.1 f B/lb",W)
```

Scilab code Exa 13.6.b example 12

```
1 clc
2 //initialization of varaibles
3 disp("From steam tables,")
4 T2=213 //F
5 v2=23.9 //cu ft/lb
6 W=133.7 //B/lb
7 //results
8 printf("Final specific volume = %.1 f cu ft/lb",v2)
9 printf("\n Final temperature = %d ",T2)
10 printf("\n Work done = %.1 f B/lb",W)
```

Vapor cycles rankine cycle

Scilab code Exa 14.1 example 1

```
1 clc
2 //initialization of varaibles
3 P1 = 200 //psia
4 T1=750+460 //R
5 P2=1 //psia
6 //calculations
7 disp("From steam tables,")
8 h1=1399.2
9 h2 = 976
10 h3=69.70
11 \quad v3 = 0.01614
12 \text{ dh3} = v3*(P1-P2)*144/778
13 h4 = dh3 + h3
14 Q1=h1-h4
15 Wt=h1-h2
16 \text{ Wp} = h4 - h3
17 eta=(Wt-Wp)/Q1
18 \ w = 2545 / Wt
19 //results
20 printf("Heat supplied = \%d B/lb",Q1+1)
21 printf("\n Turbine work = \%d B/lb", Wt)
```

```
22 printf("\n Pump work = \%.3 \, f B/lb", Wp)
23 printf("\n Efficiency = \%.3 \, f", eta)
24 printf("\n Steam rate = \%.2 \, f lb steam per hr", w)
```

Scilab code Exa 14.2 example 2

```
1 clc
2 //initialization of varaibles
3 h1=1399.2 //B/lb
4 h2s=976 //B/lb
5 wt=8 //lb /hp hr
6 //calculations
7 Wt=2545/wt
8 etaT=Wt/(h1-h2s)
9 h2=h1-Wt
10 //results
11 printf("Engine efficiency = %.3f", etaT)
```

Scilab code Exa 14.3.a example 3

```
1 clc
2 //initialization of varaibles
3 P1=200 //psia
4 P2=1 //psia
5 e=0.7
6 //calculations
7 h1=1198.4
8 h2s=863.5
9 h3r=69.7
10 h4r=70.3
11 h3c=300.7
12 h4c=355.4
13 disp("For Rankine cycle,")
```

```
14 \text{ Wtr=h1-h2s}
15 Q1r=h1-h4r
16 \text{ Wpr}=\text{h4r}-\text{h3r}
17 Wnetr=Wtr-Wpr
18 eta1 = (Wtr - Wpr)/Q1r
19 \text{ wr} = 2545 / \text{Wtr}
20 printf ("Back work = \%.1 \, \text{f B/lb}", Wnetr)
21 printf("\n Efficiency = \%.3 \, \text{f} ",eta1)
22 printf("\n Steam rate = \%.1 \text{ f lb/hp hr}", wr)
23 disp("For carnot cycle,")
24 Wtc=h1-h2s
25 Q1c=h1-h4c
26 \text{ Wpc=h4c-h3c}
27 Wnetc=Wtc-Wpc
28 \text{ eta2} = (Wtc - Wpc)/Q1c
29 \text{ wc} = 9.1
30 printf ("Back work = \%.1 \, \text{f B/lb}", Wnetc)
31 printf("\n Efficiency = \%.3 f", eta2)
32 printf("\n Steam rate = \%.1 \text{ f lb/hp hr}", wc)
```

Scilab code Exa 14.3.b example 4

```
1 clc
2 //initialization of varaibles
3 P1=200 //psia
4 P2=1 //psia
5 e=0.7
6 //calculations
7 h1=1198.4
8 h2s=863.5
9 h3r=69.7
10 h4r=70.3
11 h3c=300.7
12 h4c=355.4
13 disp("For Rankine cycle with actual machines,")
```

```
14 \text{ Wtr=e*(h1-h2s)}
15 Q1r = (h1 - h4r)
16 \text{ Wpr}=(h4r-h3r)/e
17 Wnetr=Wtr-Wpr
18 eta1=(Wtr-Wpr)/Q1r
19 \text{ wr} = 2545 / \text{Wtr}
20 printf("Back work = \%.1 \, f B/lb", Wnetr)
21 printf("\n Efficiency = \%.3 f", eta1)
22 printf("\n Steam rate = %.1 f lb/hp hr", wr)
23 disp("For carnot cycle,")
24 \text{ Wtc=e*(h1-h2s)}
25 Q1c=h1-h4c
26 \text{ Wpc}=(h4c-h3c)/e
27 Wnetc=Wtc-Wpc
28 \text{ eta2=(Wtc-Wpc)/Q1c}
29 \text{ wc} = 16.2
30 printf ("Back work = \%.1 \, f B/lb", Wnetc)
31 printf("\n Efficiency = \%.3 f",eta2)
32 printf("\n Steam rate = %.1 f lb/hp hr",wc)
```

Vapor cycles More efficient cycles

Scilab code Exa 15.1 example 1

```
1 clc
2 //initialization of varaibles
3 e=0.85
4 disp("From Mollier chart and table 3,")
5 h1 = 1474.5 //B/lb
6 \text{ s1=1.5603 } //B/lb R
7 h2s = 1277.5 //B/lb
8 //calculations
9 h2=h1-e*(h1-h2s)
10 h3 = 1522.4 //B/lb
11 h4s = 948 / B/lb
12 h4=h3-e*(h3-h4s)
13 h5 = 47.6 / B/lb
14 h6=53.5 //B/lb
15 h7s = 840 //B/lb
16 h7 = h1 - e * (h1 - h7s)
17 h8=1493.2 //B/lb
18 \text{ h9s} = 866 / B/lb
19 h9=h8-e*(h8-h9s)
```

Scilab code Exa 15.2.a example 2

```
1 clc
2 //initialization of varaibles
3 disp("From mollier chart and table 3,")
4 h1 = 1371 / B/lb
5 \text{ h2s} = 1149 \text{ } //\text{B/lb}
6 \text{ h3=118} / \text{B/lb}
7 e = 0.9
8 disp("Neglecting pump work,")
9 Q1=h1-h3
10 W = 156 / (B/1b)
11 eta1=W/Q1
12 Q=h1-W-h3
13 UE=W+e*Q
14 fraction = UE/Q1
15 //results
16 printf ("Fraction supplied = \%.2 \,\mathrm{f}", fraction)
```

Scilab code Exa 15.2.b example 3

```
1 clc
2 //initialization of varaibles
3 disp("From mollier chart and table 3,")
4 h1 = 1371 //B/lb
5 \text{ h2s} = 1149 / B/lb
6 h3=118 //B/lb
7 e=0.23
8 e2=0.9
9 disp("Neglecting pump work,")
10 Q1=h1-h3
11 W=156 //B/lb
12 \text{ eta1=W/Q1}
13 Q=h1-W-h3
14 \ \text{We=W/e}
15 \quad UE = We + Q
16 \text{ UE1=W+e2*Q}
17 \ Q2 = Q + We
18 fraction = UE1/UE
19 //results
20 printf("Fraction supplied = \%.2 \,\mathrm{f}", fraction)
```

Gas cycles

Scilab code Exa 16.1.a example 1

```
1 clc
 2 //initialization of varaibles
3 Pb=75 //psia
4 Pc=15 //psia
5 k = 1.4
6 \text{ Td=550} //R
7 \text{ Tb} = 1700
8 \text{ cp} = 0.24
9 //calculations
10 disp("Gas law solution")
11 Pratio=Pb/Pc
12 Ta=Td*(Pratio)^((k-1)/k)
13 Tc=Tb/(Pratio)^{(k-1)/k}
14 Q1=cp*(Tb-Ta)
15 Q2=cp*(Tc-Td)
16 \text{ Wnet=Q1-Q2}
17 eta=Wnet/Q1
18 \text{ eta} 2 = 1 - \text{Td} / \text{Ta}
19 //results
20 printf("Efficiency in 1 = \%.3 f", eta)
21 printf("\n Efficiency in 2 = \%.2 \,\mathrm{f}", eta2)
```

Scilab code Exa 16.1.b example 2

```
1 clc
2 //initialization of variables
3 \text{ Pb=75} // \text{psia}
4 Pc=15 //psia
5 k=1.4
 6 Td = 550 / R
7 \text{ Tb} = 1700
             //R
8 \text{ cp} = 0.24
9 //calculations
10 Prd=1.4779
11 hd=131.46 //B/lb
12 Prb=90.95
13 hb=422.59 //B/lb
14 Pratio=Pb/Pc
15 Pra=Pratio*(Prd)
16 \text{ Ta} = 868 / R
17 ha=208.41
18 Prc=Prb/Pratio
19 Tc = 1113 / R
20 \text{ hc} = 269.27
21 Q1=hb-ha
22 Q2=hc-hd
23 Wnet=Q1-Q2
24 eta=Wnet/Q1
25 //results
26 printf ("Efficiency = \%.3 \,\mathrm{f}", eta)
27 printf("\n Work per pound of fluid = \%.2 \, \text{f B/lb}", Wnet
       )
```

Scilab code Exa 16.2 example 3

```
1 clc
2 //initialization of varaibles
3 e=0.75
4 Ta=870 //R
5 \text{ Tc} = 1075 / / \text{R}
6 \text{ cp} = 0.24
7 Td = 550 / R
8 //calculations
9 Tadash=e*(Tc-Ta) +Ta
10 Tcdash=Tc+Ta-Tadash
11 Q1=cp*(Tb-Tadash)
12 Q2=cp*(Tcdash-Td)
13 \text{ Wnet} = Q1 - Q2
14 \text{ eta=Wnet/Q1}
15 //results
16 printf("Net work done = %d B/lb", Wnet)
17 printf("\n efficiency = \%.2 \, f", eta)
```

Fluid Flow Nozzles and Orifices

Scilab code Exa 17.1.a example 1

```
1 clc
2 //initialization of varaibles
3 w=1 //lb/sec
4 v2=36.4
5 h1=1279.1 //B/lb
6 h2=1091.7 //B/lb
7 V1=100 //fps
8 //calculations
9 a2=w*v2/(sqrt(2*32.2*778*(h1-h2) + V1^2)) //sq ft
10 a2=1.705 //sq in
11 //results
12 printf("Exit area = %.3 f sq. in",a2)
```

Scilab code Exa 17.1.b example 2

```
1 clc
2 //initialization of varaibles
3 k=1.3
```

```
4 P=100 //psia
5 //calculations
6 Pratio=(2/(k+1))^(k/(k-1))
7 Pt=Pratio*P
8 disp("From table 3,")
9 ht=1221.5 //B/lb
10 vt=8.841 //cu ft/lb
11 at=w*vt/1700
12 //results
13 printf("Throat area = %.4 f sq ft",at)
```

Scilab code Exa 17.2 example 2

```
1 clc
2 //initialization of varaibles
3 k=1.3
4 P = 250 // psia
5 h0 = 1263.4 //B/lb
6 w = 10000
7 \text{ cv} = 0.949
8 vts=3.415 //cu ft/lb
9 //calculations
10 Pratio = (2/(k+1))^{(k/(k-1))}
11 Pt=Pratio*P
12 hts=1208.2 //B/lb
13 h2s = 891 / B/lb
14 Vts=sqrt(2*32.2*778*(h0-hts))
15 \text{ w=w/3600 } // \text{lb/sec}
16 at=w*vts/(Vts)
17 V2=cv*sqrt(2*32.2*778*(h0-h2s))
18 etan=cv^2
19 h2 = 928 / B/lb
20 disp("From table 3,")
21 \text{ v2} = 276 //\text{cu} \text{ ft}/\text{lb}
22 \quad a2 = w * v2 / V2
```

```
23 a2s=0.17 //ft^2
24 Cw=0.98
25 at2=at/Cw
26 //results
27 printf("\n Throat area = %.5 f ft^2",at)
28 printf("\n Exit area = %.3 f ft^2",a2)
29 printf("\n For frictionless nozzle = %.3 f ft^2",a2s)
30 printf("\n Changed throat area = %.5 f ft^2 and exit area is unchanged",at2)
```

Scilab code Exa 17.3.a example 4

```
1 clc
2 //initialization of varaibles
3 \text{ w=1} // \text{lb/sec}
4 Pratio = 0.53
5 k=1.4
6 \text{ T0} = 800 / \text{R}
7 \text{ cp} = 0.24
8 \text{ PO=150} // \text{psia}
9 P2=15 // psia
10 //calculations
11 Pt=Pratio*P0
12 Tratio=(Pratio)^((k-1)/k)
13 Tts=T0*Tratio
14 Vts = sqrt(2*32.2*778*cp*(T0-Tts))
15 vts=53.34*Tts/(Pt*144)
16 at=w*vts/(Vts)
17 T2s=T0*(Pt/P0)^{(k-1)/k}
18 T2=460 //R
19 V2 = sqrt(2*32.2*cp*778*(T0-T2))
20 \text{ v2=53.34*T2/(144*P2)}
21 \quad a2 = w * v2 / V2
22 / results
23 printf("Exit velocity = \%d fps", Vts)
```

```
24 printf("\n Throat area = \%.5 \, f ft<sup>2</sup>",at)
25 printf("\n Exit area = \%.5 \, f ft<sup>2</sup>",a2)
```

Scilab code Exa 17.3.b example 5

```
1 clc
2 //initialization of varaibles
3 h0 = 191.81 //B/lb
4 \text{ Pr0} = 5.526
5 \text{ w=1} //\text{lb/sec}
6 \text{ Pratio} = 0.53
7 k = 1.4
8 \text{ T0} = 800 / \text{R}
9 \text{ cp} = 0.24
10 P0 = 150 // psia
11 P2=15 //psia
12 //calculations
13 Prt=Pratio*Pr0
14 disp("From keenan and kaye steam tables,")
15 \text{ Pr} = 2.929
16 Tts=668 //R
17 hts=159.9 //B/lb
18 Vts=sqrt(2*32.2*778*(h0-hts))
19 vts = 53.34 * Tts / (Pt * 144)
20 at=w*vts/(Vts)
21 Pr2=P2*Pr0/P0
22 \text{ T2s} = 415 / R
23 h2s=99.13 //B/lb
24 \text{ h}2=110.25 \text{ }/\text{B/lb}
25 \text{ T2} = 462 / \text{R}
26 \quad V2 = sqrt(2*32.2*778*(h0-h2))
27 \quad v2=53.34*T2/(144*P2)
28 \quad a2 = w * v2 / V2
29 //results
30 printf("Exit velocity = %d fps", Vts)
```

```
31 printf("\n Throat area = \%.5 \, f ft ^2",at) 32 printf("\n Exit area = \%.5 \, f ft ^2",a2)
```

Turbines

Scilab code Exa 18.1 example 1

```
1 clc
2 //initialization of varaibles
3 \text{ drop=50} //B/lb
4 \text{ cv} = 0.95
5 Vb=700 // fps
6 alpha=20 // degrees
7 beta=30 //degrees
8 \text{ Cb} = 0.95
9 //calculations
10 V1 = cv * sqrt (2*32.2*778*drop)
11 y1=V1*cosd(alpha)
12 z1=V1*sind(alpha)
13 y1R=y1-Vb
14 V1R = sqrt(y1R^2 + z1^2)
15 V2R=Cb*V1R
16 \text{ y2R=-V2R*cosd(beta)}
17 z2=V2R*sind(beta)
18 Wx = (y1R - y2R) * Vb/32.2
19 Fa=(z1-z2)/32.2
20 \text{ Vc} = 1582.77
21 \text{ etanb=Wx/(Vc^2/(2*32.2))}
```

```
//results
printf("Work per pound of fluid = %d ft lbf/lbm", Wx)
printf("\n Axial thrust = %.1f lbf/lbm/sec", Fa)
printf("\n Nozzle bucket efficiency = %.2f", etanb)
```

Scilab code Exa 18.2 example 2

```
2 //initialization of varaibles
3 ha=1187.2 //B/lb
4 sa=1.6026 //B/lb R
5 \text{ h3s} = 895 //B/1b
6 h1s=1090 //B/lb
7 p1 = 28 // psia
8 \text{ h2s} = 993 //B/1b
9 p2=6.2 // psia
10 n = 0.65
11 //calculations
12 disp("From
               Table 3,")
13 h1=ha-n*(ha-h1s)
14 s1=1.65 //B/lb R
15 h2dash=1024 //B/lb
16 h2=h1-n*(h1-h2dash)
17 s2=1.706 //B/lb R
18 h3dash=953 //B/lb
19 h3=h2-n*(h2-h3dash)
20 etaT=(ha-h3)/(ha-h3s)
21 reheat=etaT/n
22 //results
23 printf("Internal efficiency = \%.3 \, f", etaT)
24 printf("\n Reheat factor = \%.2 \, \text{f}", reheat)
```

Reciprocating expanders and compressors

Scilab code Exa 19.1 example 1

```
1 clc
 2 //initialization of varaibles
3 disp("From tables,")
4 h1=1185.3 //B/lb
5 \text{ v1} = 4.896 //\text{cu} \text{ ft/lb}
6 v2=23.66 //cu ft/lb
7 h2=1054.3 //B/lb
8 Pd1=1 //cu ft
9 Pd2=0.98 //cu ft
10 N = 300 / rpm
11 //calculations
12 \ \text{Wx} = \text{h}1 - \text{h}2
13 Pd=Pd1+Pd2
14 Cl=0.05
15 mf = Pd * (1 - Cl * (v2/v1 - 1))/v2
16 \text{ P=Wx*mf*N/(2545/60)}
17 mep=P*33000/(N*Pd)
18 //results
19 printf("Horsepower output = %.3 f hp",P)
```

```
20 printf("\n Mean effective pressure = %d psf",mep)
21 //The answers in the book are a bit different due to
    round off error.
```

Scilab code Exa 19.2 example 2

```
1 clc
2 //initialization of varaibles
3 R=53.34
4 T1=540 //R
5 P1=15 // psia
6 \text{ T2} = 720 / \text{R}
7 P2=60 // psia
8 PD=150 //cu ft/min
9 p1=0.03
10 p2=0.06
11 //calculations
12 v1=R*T1/(P1*144)
13 vratio=T1*P2/(P1*T2)
14 Nmf=PD*(1-p1*(vratio-1))/v1
15 Nmf2=PD*(1-p2*(vratio-1))/v1
16 //results
17 printf("For clearance of 3 percent, Mass per min =\%
      .1 f lb/min, Nmf)
18 printf("\n For clearance of 6 percent, Mass per min
      = \%.1 \, f \, lb / min, Nmf2)
```

Gas compression

Scilab code Exa 21.1 example 1

```
1 clc
2 //initialization of varaibles
3 R=53.34
4 T1=540 //R
5 n=1.4
6 \text{ g=n}
7 n2=1.3
8 P2 = 90 //psia
9 P1=15 // p sia
10 \text{ cv} = 0.171
11 //calculations
12 \text{ pv} = R * T1
13 Wk=n*R*T1*((P2/P1)^((g-1)/g) -1) /(n-1)
14 Wn=n2*R*T1*((P2/P1)^((n2-1)/n2) -1) /(n2-1)
15 Wt=R*T1*log(P2/P1)
16 Q=cv*(n-n2)*778*T1*((P2/P1)^((n2-1)/n2) -1) /(1-n2)
17 //results
18 printf("\n Work in case 1 = \%d ft lb/lb", Wk)
19 printf("\n Work in case 2 = \%d ft lb/lb", Wn)
20 printf("\n Work in case 3 = \%d ft lb/lb", Wt)
21 printf("\n Heat transferred = \%.1 \, f B/lb",Q*0.001305)
```

Scilab code Exa 21.2 example 2

```
1 clc
2 //initialization of varaibles
3 R=53.34
4 T1=540 //R
5 n = 1.4
6 \text{ g=n}
7 n2=1.3
8 P2=90 //psia
9 P1=15 // psia
10 \text{ cv} = 0.171
11 //calculations
12 pv = R * T1
13 Wk=n*R*T1*((P2/P1)^((g-1)/g) -1) /(n-1)
14 Wn=n2*R*T1*((P2/P1)^{((n2-1)/n2)} -1) /(n2-1)
15 Wt=R*T1*log(P2/P1)
16 \text{ eta1=Wt/Wn}
17 \text{ eta2=Wk/Wn}
18 //results
19 printf("Adiabatic efficiency = \%.2 \, f", eta2)
20 printf("\n Isothermal efficiency = \%.2 \, \text{f}", eta1)
```

Scilab code Exa 21.3 example 3

```
1 clc
2 //initialization of varaibles
3 R=53.34
4 T1=540 //R
5 n=1.4
6 g=n
```

Scilab code Exa 21.4 example 4

```
1 clc
2 //initialization of varaibles
3 n=1.3
4 P1=15 // psia
5 \text{ P2=75} // \text{psia}
6 \text{ eta} = 0.5
7 eta2=0
8 //calculations
9 Pr = (P2/P1)^{(1/n)}
10 Cl = (1-eta)/(Pr-1)
11 Cl2=(1-eta2)/(Pr-1)
12 //results
13 printf ("For volumetric efficiency to be 0.5,
      Clearance = \%.3 \, f",Cl)
14 printf("\n For volumetric efficiency to be 0,
      Clearance = \%.3 \,\mathrm{f}", Cl2)
```

Scilab code Exa 21.5 example 5

```
1 clc
2 //initialization of varaibles
3 P1=5 //psia
4 P2=83.5 //psia
5 n=1.25
6 per=0.03
7 //calculations
8 nv1=1- per*((P2/P1)^(1/n) -1)
9 nv2=1-per*((sqrt(P2/P1))^(1/n) -1)
10 //results
11 printf("For single stage machine = %.3f",nv1)
12 printf("\n For Two stage machine = %.3f",nv2)
```

Combustion Processes First law analysis

Scilab code Exa 22.5 example 1

```
1 clc
 2 //initialization of varaibles
 3 m0=1.33
 4 C0 = 0.155
 5 \text{ mC} = 3.67
 6 \text{ CC=0.165}
 7 t2=1000 / F
8 \text{ tb=68 } //F
 9 \text{ t1=300 } //\text{F}
10 \, \text{mC2} = 1
11 \quad CC2 = 0.17
12 \ mO2 = 4
13 CO2=0.155
14 \text{ H} = -14087 //B/lb
15 //calculations
16 dE2 = m0 * C0 * (t2 - tb) + mC * CC * (t2 - tb)
17 	ext{ dE1=m02*C02*(tb-t1)} + mC2*CC2*(tb-t1)
18 \ Q = dE2 + dE1 + H
19 //results
```

Scilab code Exa 22.6 example 2

```
1 clc
2 //initialization of varaibles
3 H1=17889 //Cal/g
4 H2=-94052 //Cal/g
5 H3=2* -68317 //Cal/g
6 //calculations
7 x=H1+H2+H3
8 //results
9 printf("Constant pressure heating value of methane = %d cal/gm formula wt.",x)
```

Scilab code Exa 22.7 example 3

```
1 clc
2 //initialization of varaibles
3 HV=4344 //B/lb
4 xC=56 //lb
5 R=1.986
6 T=530 //R
7 MC=56 //g/mol
8 //calculations
9 HR=xC*HV
10 Eb=-HR -R*T*(2-3)
11 HV=-Eb/MC
12 //results
13 printf("COnstant volume heating value = %d B/lb", HV
)
```

Scilab code Exa 22.8 example 4

```
1 clc
2 //initialization of varaibles
3 dH2=14087 //B/lb
4 xc=3.67 //lb
5 xN=8.78 //lb
6 tb=100 //F
7 //calculations
8 dt2=dH2/(xc*0.196 + xN*0.248)
9 t2=dt2+tb
10 //results
11 printf("products temperature = %d F",t2)
```

Scilab code Exa 22.9 example 5

```
1 clc
2 //initialization of varaibles
3 Heat=14087 //Btu/lb
4 x1=0.9 //lb
5 x2=0.05 //lb
6 x3=0.05 //lb
7 Heat2=3952 //Btu/lb
8 //calculations
9 h1=x1*Heat
10 h2=x2*Heat2
11 e=(h1+h2)/Heat
12 //results
13 printf("Efficiency = %.2f",e)
```

Scilab code Exa ${\bf 22.10}$ example 6

```
1 clc
2 //initialization of varaibles
3 disp("From data and steam tables,")
4 Q=10240000 //B/hr
5 w=700 //lb/hr
6 h=19500 //B/lb
7 //calculations
8 HV=w*h
9 e=Q/HV
10 //results
11 printf("Efficiency = %.2f",e)
```

Internal combustion power plants

Scilab code Exa 23.1 example 1

```
1 clc
2 //initialization of varaibles
3 disp("from chart")
4 T6 = 2600 / R
5 \text{ mratio} = 0.05
6 V6d=82 //cu ft
7 E6d=465 //Btu
8 H6d=655 //Btu
9 T6d=2480 //R
10 Hs=58 //Btu
11 LHV=19256
12 //calculations
13 H1=mratio*H6d + (1-mratio)*Hs
14 \, dV = 22 - 3.67
15 PD=0.12
16 \text{ Work} = 446 * PD/dV
17 pm=Work*778/(144*PD)
18 eta=446/((1-mratio)*(LHV*0.0665))
19 //results
```

```
20 printf("Efficiency = %.3f",eta)
21 printf("\n Mean effective pressure = %d psi",pm)
22 printf("\n Work per machine cycle = %.2f Btu",Work)
```

Scilab code Exa 23.2 example 2

```
1 clc
2 //initialization of varaibles
3 f = 0.03
4 T6 = 1500 / R
5 disp("from air tables,")
6 hi=131.46 //B/lb
7 h6 = 381 //B/lb
8 \text{ vratio} = 1/15
9 \text{ v1r} = 120.7
10 P1 = 15 / psi
11 T1=580 //R
12 x = 0.5
13 Tb=520 //R
14 \text{ H} = 18500 //B/lb
15 \text{ mh} = 0.0345
16 \text{ m} 3 = 1.065
17 //calculations
18 h1=f*h6+(1-f)*hi
19 v2r=v1r*vratio
20 T2 = 1615 / R
21 u2=289.05 //B/lb
22 P2=T2*1/vratio *P1/T1
23 theo=0.069 //lb/lb of air
24 \text{ m=theo*x}
25 \text{ h3B} = 0.242 * \text{Tb}
26 \quad m3 = 1 + 0.03 + 0.0345
27 h3 = (638 + 284) / 1.065 + h3B
28 \text{ T3} = 3520 //R
29 P3 = 626 / psi
```

```
30 \text{ v3} = 53.34 \times \text{T3}/(\text{P3} \times 144)
31 \text{ v3p=v3*m3}
32 \text{ v1=}53.35*\text{T1}/(144*\text{P1})
33 \text{ v} 2 = 14.7/P1
34 \text{ m1} = 1.03
35 h3=992
36 \text{ h4} = 531
37 T3 = 3520 //R
38 T4 = 2030 / R
39 \quad \text{W12=m1*(98.9-289.05)}
40 W23=P2*(v3p-v2)*144/778
41 W34=m3*(h3-h4-53.4*(T3-T4)/778)
42 \quad W = W12 + W23 + W34
43 eta=W/(mh*H)
44 // results
45 printf ("Efficiency = \%.3 \,\mathrm{f}", eta)
```

Scilab code Exa 23.3 example 3

```
1 clc
2 //initialization of varaibles
3 disp("Using air tables,")
4 h1=124.27
5 pr1=1.2147
6 p2byp1=6
7 p1 = 15
8 p4 = 15
9 \text{ eta} = 0.8
10 //calculations
11 pr2=p2byp1*pr1
12 \text{ h2s} = 197.5
13 h2=h1+(h2s-h1)/eta
14 h2B=124.3
15 dhB=-18500 //B/lb
16 dh2=h2B-h2
```

```
17 T3 = 1910 / R
18 h3=479.85
19 \text{ pr3} = 144.53
20 h3B=h2B
21 dh3=h3-h3B
22 wratio=(-dh3-dh2)/(dh3+dhB)
23 pr4=28.91
24 \text{ h4s} = 306.9
25 \text{ h4=h3-eta*(h3-h4s)}
26 \text{ Wt} = (1 + \text{wratio}) * (h3 - h4)
27 \text{ Wc} = (h2 - h2B)
28 \quad \text{Wnet=Wt-Wc}
29 E=Wnet/(wratio*-dhB)
30 \text{ rate} = 2545 / \text{Wnet}
31 BWratio=Wc/Wnet
32 //results
33 printf ("Efficiency = \%.3 \, \text{f}", E)
34 printf("\n Air rate = \%.1 f lb air/hp hr", rate)
35 printf("\n Back work ratio = \%.2 \, \text{f}", BWratio)
```

Scilab code Exa 23.4 example 4

```
1 clc
2 //initialization of varaibles
3 V1=587 //fps
4 etaD=0.9
5 etaC=0.8
6 h1=114.69
7 P1=10 //psia
8 P6=P1
9 dhB=-19100 //B/lb
10 T1=480 //R
11 //calculations
12 h2s=etaD*V1^2 /(778*2*32.2) +h1
13 disp("From tables,")
```

```
14 \text{ Pr2s} = 1.104
15 Pr1=0.9182
16 P2=P1*Pr2s/Pr1
17 h2=h1+(h2s-h1)/etaD
18 T2 = 509 / R
19 Pr2=1.127
20 Pr3s=Pr2*P3/P2
21 \text{ Pr3s} = 6.76
22 \text{ h3s} = 203.2
23 h3=(h3s-h2)/etaC +h2
24 \text{ T3} = 930 / \text{R}
25 P3=6*P2
26 \text{ T4} = 2160 / R
27 \quad h4 = 549.35
28 Pr4=238
29 \text{ h4B} = 126.66
30 \, dh4 = 422.7
31 h3B=h4B
32 dh3=h3-h3B
33 \text{ cp=0.5}
34 \text{ Ta} = 480 / R
35 \text{ Tb} = 530 / R
36 \quad dhf = cp * (Tb - Ta)
37 wratio=(-dh4+dh3)/(dh4+dhf+dhB)
38 \text{ h5s} = 425.3
39 Pr5s=93.1
40 P5 = 27.6
41 T5=1801 //R
42 Pr5=114.28
43 Pr6s=Pr5*P6/P5
44 h5 = 450
45 h6=351
46 V6 = sqrt(2*32.2*778*(h5-h6))
47 SI = ((1+wratio)*V6 -V1)/(32.2)
48 \text{ v1} = 53.34 * T1/(P1 * 144)
49 \text{ wa=V1/v1}
50 thrust = wa*SI
51 SC=wa*0.0174*3600/1840
```

```
52 eff=2545/(SC*-dhB)
53 //results
54 printf("Specific impulse = %.1 f lb/lb per sec of air
        ",SI)
55 printf("\n Thrust = %d lb",thrust)
56 printf("\n Efficiency = %.3 f",eff)
```

Chapter 24

Refrigeration

Scilab code Exa 24.1 example 1

```
1 clc
2 //initialization of varaibles
3 disp("From tables,")
4 h1 = 611.8 / B/lb
5 \text{ h2} = 704.4 \text{ } //\text{B}/\text{lb}
6 h3=127.4 //B/lb
7 h4 = h3
8 T2 = 460 / R
9 T1=76+460 //R
10 W = 10000 / B/hr
11 e=0.7
12 //calculations
13 \ Qe = h1 - h4
14 Wc=h2-h1
15 \text{ CP=Qe/Wc}
16 CP2=T2/(T1-T2)
17 \ w=W/(Qe*60)
18 v1=9.116 //cu ft/lb
19 PD = w * v1/(e)
20 / results
21 printf("Coefficient of performance in case 1 = \%.2 \, \mathrm{f}"
```

```
,CP)  
22  printf("\n Coefficient of performance in case 2=\% .2 f",CP2)  
23  printf("\n Piston displacement = \%.2 f cu ft/min",PD)
```

Chapter 25

Air water vapor mixtures

Scilab code Exa 25.1 example 1

```
1 clc
2 //initialization of varaibles
3 Pg=0.4298 //steam tables psi
4 phi=0.5
5 P=14.7 //psi
6 //calculations
7 pw=phi*Pg
8 Pa=P-pw
9 gamma=0.622*pw/Pa
10 T=55 //F from dew point tables
11 //results
12 printf("Specific humidity = %.5 f lb water/lb dry air ",gamma)
13 printf("\n Dew temperature = %d F",T)
```

Scilab code Exa 25.2 example 2

```
1 clc
```

```
2 //initialization of varaibles
3 disp("From psychrometric chart,")
4 hgdp=1061.8
5 \text{ cpw} = 0.44
6 \text{ tdb} = 72 //F
7 \text{ cp} = 0.24
8 g = 0.0071
9 //calculations
10 \text{ rh} = 0.42
11 sp=g
12 \text{ tdp=58} //F
13 hw=hgdp+cpw*tdb
14 h = cp*tdb+g*hw
15 //results
16 printf("Enthalpy = %.2 f B/lb dry air",h)
17 printf("\n relative humidity = \%.2 \, \text{f}",rh)
18 printf("\n specific humidity = \%.2 \,\mathrm{f}", sp)
19 printf("\n Dew point temperature = %d F",tdp)
```

Scilab code Exa 25.3 example 3

```
1 clc
2 //initialization of varaibles
3 disp("From the psychrometric chart,")
4 ha=12.9 //B/lb
5 g1=0.0032 //lb water/ lb dry air
6 g2=0.0078 //lb water/ lb dry air
7 hl=13 //B/lb
8 hd=25.33 //B/lb
9 p=14.7 //psia
10 phi=0.6
11 cp=0.24
12 t2=70 //F
13 //calculations
14 wl=g2-g1
```

```
15 \quad Q=hd-ha-wl*hl
16 \text{ pg} = 0.1217 // \text{psia}
17 pa=p-pg
18 G1=0.622*pg*phi/pa
19 G2=0.00788
20 \text{ wl} 2 = G2 - G1
21 \text{ t1=40} / \text{F}
22 \text{ hw1} = 1061.8 + 0.44*t1
23 hw2=1092.6 //B/lb
24 \quad Q2 = cp*(t2-t1) + G2*hw2 -G1*hw1 - w12*h1
25 //results
26 printf("Method 1")
27 printf("\n Water to be supplied = \%.4 \text{ f lb/lb} of dry
       air",wl)
28 printf("\n heat supplied = \%.1 \, f \, B/lb of dry air",Q)
29 printf("\n Method 2")
30 printf("\n Water to be supplied = \%.5 f lb/lb of dry
       air", w12)
31 printf("\n heat supplied = \%.1 f B/lb of dry air",Q2)
```

Scilab code Exa 25.4 example 4

```
1 clc
2 //initialization of varaibles
3 disp("From psychrometric charts,")
4 e=0.7
5 phi=0.5
6 g1=0.0131 //lb water/lb dry air
7 h1=32.36 //B/lb of dry air
8 g3=0.0073
9 h3=24.26
10 pg=0.3390
11 T3=528 //R
12 V3=1000
13 Rw=85.8
```

```
14  //calculations
15  pw3=phi*pg
16  ww3=pw3*144*V3/(Rw*T3)
17  wa3=ww3/g3
18  wa1=phi*wa3
19  wa2=phi*wa3
20  ww1=g1*wa1
21  ww2=ww3-ww1
22  g2=ww2/wa2
23  h2=(wa3*h3-wa1*h1)/wa2
24  tdb=61  //F
25  //results
26  printf("Air supplied = %.3 f lb/min",ww2)
27  printf("\n temperature = %d F",tdb)
28  printf("\n Humidity = %.5 f lb water/lb dry air",g2)
```

Scilab code Exa 25.5 example 5

```
1 clc
2 //initialization of varaibles
3 disp("From psychrometric charts,")
4 g1=0.0131 //lb water/lb dry air
5 g2=0.0093 //lb water/lb dry air
6 h1=32.36 //B/lb dry air
7 h2 = 27.03
8 hd2=23.4 //B/lb dry air
9 hf = 23.4 //B/lb dry air
10 \text{ hw} 1 = 1094.5
11 //calculations
12 tdp=55.3 //F
13 \text{ wratio} = g1 - g2
14 \quad Qc = hd2 - h1 + wratio * hf
15 \quad Qh=h2-hd2
16 Heat=wratio*(hw1-hf)
17 frac=-Heat/Qc
```

```
18 // results
19 printf("Cooling temperature = %.1 f F",tdp)
20 printf("\n heat transfer = %.2 f B/lb dry air", Heat)
21 printf("\n Fraction of heat removed = %.2 f", frac)
```