1.2.16 空間の ∞ 圏

通常の圏論において、多くの圏は Set で豊穣された圏であった。 高次圏論におけるこのアナロジーは空間で豊穣された ∞ 圏である.

定義 1.2.16.1 (空間の ∞ 圏). 小 Kan 複体のなす $\operatorname{Set}_{\Delta}$ の充満部分圏を $\operatorname{\mathfrak{K}an}$ と表す. $\operatorname{\mathfrak{K}an}$ を単体的 圏とみなし, $\operatorname{\mathfrak{K}an}$ の単体的脈体 $\operatorname{\mathfrak{N}}(\operatorname{\mathfrak{K}an})$ を空間の ∞ 圏 (∞ -category of spaces) といい, $\operatorname{\mathfrak{S}}$ と表す.

注意 1.2.16.2. \mathfrak{X} an の任意の対象 X,Y に対して、単体的集合 $\mathrm{Map}_{\mathfrak{X}\mathrm{an}}(X,Y)=Y^X$ は Kan 複体である。 命題 1.1.5.10 より、 S は ∞ 圏である.

注意 1.2.16.3. 空間の ∞ 圏として, CW 複体のなす圏の位相的脈体なども考えられる. このようなものは全て S と等価であることが分かる. 定義 1.2.16.1 の定義は ∞ 圏における Yoneda の補題を示すときに扱いやすいからである. 詳しくは 5.1.3 節で議論する.

注意 1.2.16.4. \S は小 Kan 複体のなす圏に対して定義されていた.小とは限らないすべての Kan 複体に対して定義される空間の ∞ 圏を \S と表す. \S は大きい ∞ 圏であるが, \S はより大きな ∞ 圏であることを後で見る.