Program of The 126th Conference of Japan Institute of Light Metals (May 17-18, 2014, Hiroshima University)

1. Surface modification of aluminium alloy by shotlining heat treatment
2. Improvement of coating properties by rapid cooling effect in Aluminum Magnesium alloy thermal spray Y. Harada, A. Nagao Y. Harada, A. Nagao Y. Morimoto
3. Self-healing corrosion protection using nanopores of anodized aluminum oxide film
4. Electropolish of aluminum alloys and surface microstructure K.Murakami, N.Nagata, T.Kanadani, M.Hino
5. Composition and microstructure of oxide films formed by anodizing of AZX Mg alloys
6. Polarization curve and its analysis of aluminum in AlCl ₃ solution D.Murakami, O.Seri, Y.Niida
7. Measurements of corrosion potential for aluminum alloys 1 Influence of measurement condition on corrosion potential and pitting potential
 Y.Oya, S.Iwao, K.Kobori, T.Koyama, A.Tajiri, D.Nagasawa, K.Matsukado, K.Minami, Y.Kojima Measurements of corrosion potential for aluminum alloys 2 Analysis of measurement condition with round robin test S.Iwao, Y.Oya, K.Kobori, T.Koyama, A.Tajiri, D.Nagasawa, K.Matsukado, K.Minami, Y.Kojima Effects of cations on corrosion behavior for aluminum alloy under thin water film
T.Shimada, Y.Oya, T.Koyama, Y.Kojima 10. Corrosion behavior of aluminum in chloride solution containing organic compounds
11. Effect of anodizing on galvanic corrosion between aluminum alloy 7075 and CFRP
12. Galvanic corrosion tests for pure aluminum 1050 using carbon fiber prepreg
[Cancellation] 13. [Keynote] Metal forming technology to improve bending properties of aluminum extrusions and sheets M.Takahashi
14. Finite element analysis of aluminum alloy sheet metal by using complex step time derivative method
15. Texture control for aluminum alloy sheets by using CO ₂ laser apparatus
Y.Matayoshi, T.Sakai, Y.Jin, J.Koyama 16. Upsetting property of microstructure refined Al-Fe alloy treated by compressive torsion process
17. Improvement of deep drawability in tailor-welded blanks by controlling of plastic flow T.Tanaka, T.Hirata, N.Shinomiya, N.Shirakawa
18. [Keynote] Light sheet metals with high specific strength and excellent formability
19. Warm temperature forming limit diagram for aluminum alloy sheet
20. Description of anisotropy of aluminium alloy sheets by 6th-order yield function
21. Material modeling of 6000 series aluminum alloy sheet based on biaxial tensile test and hydraulic bulge forming simulation T.Mori, J.Kawaguchi, M.Asano, N.Uema, T.Kuwabara
22. Effects of additional elements on fatigue properties in 7000 series aluminum alloys
23. Fatigue crack growth behavior of some aluminum alloys for aircrafts affected by impurity and addition elements S.Ishizawa, R.Yamada, G.Itoh, A.Kurumada, M.Nakai
24. Micro-analyses of small fatigue crack in Al-Mg-Si system
25. Transition of Low-Temperature Creep Mechanism due to Grain Refinement of Pure Aluminum Y.Sato, Y.Komiyama, K.Kitazono, T.Matsunaga, E.Sato
26. Effect of low-temperature heat treatment on hardening for aluminum foil
27. Effect of low temperature annealing on the formability of cold-rolled 3104 aluminum alloy sheet on the secondary forming

28.	High temperature and short time solution treatment of age-hardenable Mg-Al-Zn alloy using high-frequency induction heating apparatus
•	T.Tokuhara, T.Kaji, N.Saruwatari, Y.Nakayama, H.Wakao, K.Sakamoto
29.	Effect of Mg and Si diffusion on post braze strength of aluminum clad alloy S.Kimura, Y.Shibuya, A.Tsuruno
30.	Assessment of mechanical properties of Al-4%Cu alloy via Diffraction-Amalgamated Grain Boundary Tracking Technique
31.	····· T.Shimoji, H.Toda, K.Tanaka, K.Uesugi, A.Takeuchi, Y.Suzuki, M.Kobayashi, Y.Tanabe Effects of hydrogen micropores on fracture in 7xxx aluminum alloys
22	Y.Tada, H.Toda, N.Sakaguchi, Y.Watanabe, K.Uesugi, A.Takeuchi, Y.Suzuki
32.	Hydrogen generation characteristics and structures of Al-Sn alloy OCC ingots
33.	Behavior of Hydrogen in Plasma Charged Aluminum
34.	Hydrogen evolution behavior subjected to various loading in 7075 aluminum alloys
35	H.Yamada, M.Tsurudome, S.Kawasaki, S.Tsuji, N.Ogasawara, K.Horikawa Relationship between hydrogen and second-phases in some aluminum alloys
	······ A.Mizuniwa, G.Itoh, T.Manaka
36.	Behavior of hydrogen in Al-Cu-Mg series aluminum alloys T.Nakano, K.Kodzuka, G.Itoh, M.Nakai
37.	Behavior of hydrogen invading Al-Zn-Mg alloys and Al-Cu-Mg alloys
38.	K.Kodzuka, G.Itoh, T.Nakano, T.Watakabe, M.Nakai, Y.Hatano Resistance to hydrogen embrittlement of magnesium alloys having high volume fraction of LPSO phase
20	TEM observation of age-precipitates in excess Mg-type Al-Mg-Si alloys aged at 473K after deformation
39.	••••••••••••••••••••••••••••••••••••••
40.	Age-hardening behavior in HPT processed Cu-added excess Mg-type Al-Mg ₂ Si alloys
41.	Mechanical properties of severely deformed Al-Zn-Mg-(Cu) alloys
42.	Age-hardening behavior of a 6061 aluminum alloy impact-compressed before pre-aging treatment at room temperature
	T.Ogura, Y.Kitani, K.Horikawa, A.Hirose, H.Kobayashi
43.	Effects of coloration on melting time of aluminum. Y.Nagakura, K.Masada
44.	Grain Refinement of Aluminum Alloy Casting by Heterogeneous Nucleation Sites with Smaller Lattice Disregistry
45.	Cavitation characteristics of large-sized ceramic ultrasonic sonotrode and its application for DC casting of
	Al-Si hypereutectic alloys S.Komarov, Y.Ishiwata
46.	The effects of solute elements on the fir tree structure in 5005 alloy
47.	New PoDFA method using image processing
	····· K.Fukaya, H.Horikawa, Y.Kuramasu, T.Isobe, H.Matsushima, H.Okada, T.Nagao
48.	Effect of fine inclusions in molten metal on the quality of casting
49.	Automatically measuring PoDFA process for TiB2 in Aluminum alloys
50.	Automatically measuring PoDFA process for inclusions in Aluminum alloys
51.	H.Jin, T.Isobe, K.Oda, H.Okada, T.Nagao Effects of cooling rate on hardness after T5 heat treatment of Al-Si-Mg alloy Die Castings
	····· T.Shindo, T.Suzuki, T.Kitsunai
52.	Thermal conductivity of the Die Cast aluminum alloy T.Suzuki, T.Kitsunai
53.	Hot tearing and microstructure change for Al-Mg-Si system alloy castings addition of Sr S.Saikawa, N.Hattori, H.Niwa, K.Terayama, S.Ikeno, E.Yanagihara, S.Orii, S.Takeda
54.	Investigation for solidification process in Mn and Fe addition Al-10%Si-0.3%Mg system alloy
55.	T.Sugimori, G.Aoshima, S.Saikawa, K.Terayama, S.Ikeno, E.Yanagihara, S.Orii, S.Takeda Effective utilization of aluminum dross residue by simple screening technique
	······ T.Hiraki, T.Nagasaka
36.	Casting of aluminum alloy ingots with holes
57.	Casting of strip using a single roll caster equipped with a scraper
	1:11454

58. Semisolid die casting of Al-25%Si
59. Microstructure characterization of Al-Si casting alloy with image processing K.Sugio, S.Furukawa, G.Sasaki, J.Tabata
60. Effect of Cu content on the structure and aging behavior in high-strength Al-Zn-Mg system alloy T.Furuta, G.Aoshima, S.Koumura, S.Saikawa, K.Terayama, S.Ikeno, K.Fujii, K.Komai
61. Two-step aging behavior of T6 treated Al-7%Si-0.3%Mg alloy
62. Observation of large precipitates for Al-Mg-Si alloy addition of noble metals aged at 673K
63. Hot tearing and solidification structures in Sr added Mg-Al-Ca alloys
65. Influence of external stress on discontinuous precipitation behavior in a Mg-Al system alloy
66. TEM observation of microstructure in the early stage of Mg-Gd-Y alloys aged at 473K Y.Matsuoka, K.Watanabe, J.Nakamura, W.Lefebvre, S.Saikawa, S.Ikeno, K.Matsuda
67. Development of heat treatable Mg-Sn based alloy
68. Microstructure and Mechanical Properties of AZ80Mg Alloys Multi-Directionally Forged With Using Dies
69. The texture change by hot-rolling and static recrystallization of Mg-0.6at.%Y alloy T.Suzuki, D.Ando, Y.Suto, J.Koike
70. Microstructures and mechanical properties of rolled sheets of Ca-added Mg-Al alloys
71. Creep deformation mechanism of die-cast AZ91 alloys containing Ca K.Adachi, K.Ohta, T.Homma, T.Yamahata, K.Sasaki, E.Yanagihara, S.Orii, S.Takeda, S.Kamado
72. Creep deformation mechanism and dislocation substructures in an Mg-Y-Zn dilute solid solution alloys
73. Internal stress evaluation of Mg_{88} - Zn_5 - Y_7 extruded alloy with kink bands by load jump tests
74. Mechanical properties and microstructure of Mg-Sc alloy with BCC/HCP dual phase D.Ando, T.Suzuki, Y.Suto, J.Koike
75. Mechanical property and microstructures of cast AZ91 alloy plate after hot pressing and solution heat treatment K.Mitsuishi, K.Kitazono, N.Kitazono
76. Strength property of injection molded AZ91D by addition of carbon black
77. Relationship between Mg-Al LDH contents in the film formed on Mg Alloy by steam coating and corrosion resistance
78. Composite coating with Al-Si alloy powder for cast Mg alloy Y.Kanamori, K.Hio
79. Microstructure and strength of sintered magnesium containing low melting point metal powders T.Iwaoka, M.Aonuma, M.Nakamura
80. Bonding and its microstructures of TiO ₂ /Ti6Al4V alloy by spark plasma sintering technique
81. Properties of Titanium based photoluminescence clad materials produced by MM-SPS process
82. Effect of strain on properties of Al-Fe based magnetic materials produced by powder metallurgy process T.Watanabe, M.Kubota
83. Microstructures and mechanical properties of Al-10%Si-0.3%Mg alloy fabricated by selective laser melting T.Kimura, T.Nakamoto
84. The effect of the aluminum addition in the titanium porous-ized process using the spacer method
85. Thermal conductivity improvement of heat storage material by porous aluminum
86. Effect of porosity of porous surface layer on Al/resin bonding strength Y.Arai, M.Kobashi, N.Kanetake
87. Effect of elastic coating on high-speed compressive properties of ADC12 porous aluminum T. Utsunomiya, N.Kubota, Y.Hangai, O.Kuwazuru, N.Yoshikawa

88. Production and property evaluation of metal porous reinforced metal matrix composite Y.B.Choi, T.Motoyama, X.F.Xu, K.Matsugi, G.Sasaki
89. Effect of B4C concentration on recrystallization behavior of Al-B4C metal matrix composites Y.Kamimura, D.Nagasawa, S.Koizumi, T.Anami
90. Thermal and electrical conductivity of titanium boride particle reinforced aluminum composites G.Sasaki, T.Hirose, O.Lee, Y.Choi, K.Sugio, K.Mastugi
91. Microstructure observation of high volume fraction MgB ₂ /Mg alloy composite materials
••••••••••••••••••••••••••••••••••••••
93. Friction stir welding in dissmilar materials of aluminum alloy and thermoplastic plastic sheets
N.Shimizu, Y.Takayama, T.Kimura, T.Yamamoto, H.Watanabe
94. Effect of LFW welding conditions on mechanical strength
95. Adaptation of the short time friction welding method for the deformed material by ECAP
96. Effect of bobbin FSW conditions on weld qualitu
97. Interface microstructure observation of aluminum/copper sheet prepared by magnetic pulse welding
98. Numerical analysis on formation manner of wavy interface in explosive welded Al/Cu joints.
99. Bonding mechanism of Al/Cu clad sheet by cold rolling K.Fujioka, M.Asano, Y.Funato
100. Strength and interfacial microstructure of SS400 stud/5052 aluminum alloy plate joints fabricated by high-speed solid-state joining method
H.Yamada, Y.Harada, S.Kumai 101. Creep behavior after brazing of Mg-added automotive heat exchanger materials
S.Yomogida, K.Atsuta, Y.Suzuki 103. Melting and flow behavior of Al-Si filler metal in aluminum brazing sheet
104. Simulation of melting and flow behavior of Al-Si filler metal in aluminum brazing sheet H.Saito, M.Edo, M.Yoshino
105. Drilling of CFRP by using Al-Ti based metal-bond functionally graded grinding wheel containing composite particles
106. Heat treatment behavior and mechanical properties of Ti-8 ~ 10Mn-1Fe-3Al alloys
107. Alloy design of β-Ti alloys for sustainable society and their characteristics
108. Characteristics of ubiquitously Ti-Fe-Mn system alloys
109. Mechanical properties and microstructures of low-cost beta-type Ti-Mn alloys produced by both cold crucible levitation melting and metal injection molding
K.Cho, M.Niinomi, M.Nakai, J.Hieda, P.F.Santos, Y.Itoh, M.Ikeda 110. Phase stability of beta phase in Ti-X alloys from first-principles calculations
T.Uesugi, S.Miyamae, K.Higashi 111. Self-tuning of elastic modulus in β-type Ti-Nb-Ta-Zr alloys by Cr addition
M.Nakai, M.Niinomi, J.Hieda, K.Cho, K.Narita, Q.Li
112. Deep drawability of titanium / resin laminated sheets
113. Effect of Nb on property of TiO ₂ layer formed on Ti by thermal oxidation
114. Morphology change of cluster during a paint-bake treatment in an Al-Mg-Si alloy
Y.Aruga, M.Kozuka, Y.Takaki, T.Sato 115. 3DAP analyses of clusters formed during pre-aging and the subsequent natural aging in an Al-Mg-Si alloy
M.Kozuka, Y.Aruga, Y.Takaki, T.Sato 116. Effects of heating rate during pre-aging and natural aging time on cluster morphology in an Al-Mg-Si alloy H.Shishido, Y.Aruga, K.Matsumoto

117. Effects of Si content and pre-aging on behavior of clusters in an Al-Mg-Si alloy
118. TEM observation for precipitates structure in 7000 series Al alloys addition of Cu/Ag
119. Mechanical properties and TEM observation for precipitates structure in 7000 series Al alloys with different Zn/Mg ratio
120. Crystallographic Orientation on intergranular fracture in peak aged 7000 series Al Alloy
121. Effect of chemical compositions and age-precipitates on tensile properties in 7000 series aluminum alloys
122. Effect of Ag/Cu addition on the age-hardening structure in Al-1.0mass%Mg ₂ Ge alloys K.Matsuura, A.Kawai, K.Watanabe, S.Ikeno, K.Matsuda
123. The microstructure observation using transmission electron microscopy of Al-1.0mass%Mg ₂ Ge alloys aged at 473K
124. TEM observation of age precipitation organization of Al-Mg-Si alloys with a small amount of transition metals addition
125. Effect of the precipitates distribution on the bendability of an Al-Mg-Si alloy
126. Relationship between strain stored by compressive deformation and crystallographic orientation in a pure aluminum Y.Takayama, T.Yoshimura, H.Watanabe
127. Surface texture in 1050 aluminum A. Yamamoto
128. Simulation of deformation texture evolution considering with local strain obtained by synchrotron 3D measurement
129. Texture evolution of 5052 aluminum alloy during tensile tests
130. Bulk Texture Measurement of AZ31 Magnesium Alloy with iMATERIA P.G.Xu, A.Hoshikawa
131. Effect of heat treatment conditions on the elongation of H1n-tempered Al-Mn alloy
132. Recrystallization behavior after hot working of 3004 aluminum alloy Y.Tamada, M.Asano, H.Yoshida
133. Effects of Mn containing intermetallic compounds and Mn solute atoms on the recrystallization behavior of an Al-Mn alloy
134. Influence of homogenization treatment conditions on recrystallization behavior of 3004 aluminum alloy
P1. Compressive properties of porous A2024 alloy fabricated by foaming semi-solid slurry M.Saito, T.Fukui, S.Suzuki
P2. Formability of pure titanium sheet by square cup deep drawing
P3. Fabrication of aluminum electrodeposited from a dimethylsulfone bath I.Matsui, S.Ono, Y.Hanaoka, Y.Takigawa, T.Uesugi, K.Higashi
P4. Influence of Mg/Si ratio and step-quenching on nanocluster formation in Al-Mg-Si alloys S.N.Kim, E.Kobayashi, T.Sato
P5. Effect of zincate sollution on adhesion of electroless Ni-P plated films in aluminum alloys
P6. Mechanical properties of lap friction stir welded joints of acrylic resin to 3003 aluminum alloy T.Ozawa, K.Katoh, M.Nomoto
P7. Effect of electrolysis hydrogen charging on tensile properties of A6061-T6 aluminum alloy K.Kawashima, H.Suzuki, K.Takai
P8. Effect of bound water on corrodion resistance of anodic oxide film on Al
P9. Effects of Mn and Cr addition concerning hot ductility of Al-Mg solid solution K.Kawasaki, T.Ito
P10. Effect of initial conditions of friction stir welding on the mechanical properties and dynamics properties of 3003 aluminium alloy joint
P11. Texture control by application of thermomechanical treatment to extruded Mg-Al-Ca-Mn alloy sheets Y.Tanaka, S.Kamado, Y.Matsumoto, K.Shimizu, S.Hanaki
P12. Mechanical properties of micro friction welded joints of 1070 aluminum to SUS304 stainless steel A.Irie, M.Nomoto, K.Katoh, N.Seo
P13. Crack propagation behavior during sustained-load cracking test in 6061 and 7075 aluminum alloys
M. Ierada, G.Iton, A.Kurumada

P14. Effect of α-Mg phase on hydrogen embrittlement in a synchronized LPSO magnesium alloy
P15. Casting of wire rod by casting wheel T.Kunii, R.Hisa, G.Iton, M. Falnasaki, F.Kawahura T.Kawakubo, T.Haga
P16. Twin roll casting of Al-30vol%SiCp strip S.Wada, T.Haga
P17. Corrosion behavior of AZ31 magnesium alloy sheet in flow field of 0.9wt% NaCl sodium chloride solutions Y.Soya, S.Yoshihara, Y.Ohmura, BryanMacDonald
P18. Effect of alloying elements on microstructures and mechanical properties of extruded dilute Mg-Al-Ca-Mn alloys
P20. Ammonia production process utilizing aluminum dross residue
P21. Effect of surface oxide layer of Al-Mg alloy during aluminum dross generation process
P22. Fabrication of ADC12 porous aluminum / A1050 thin-walled pipe composite materials by applying friction welding
P23. Fabrication of die casting aluminum alloys ADC6 porous aluminum by friction powder sintering process
P24. Effects of environment on fatigue crack growth behavior of aluminum alloys for aircraft components
P25. Unique mechanical behavior of Ti-29Nb-13Ta-4.6Zr alloy containing oxygen
P26. Influence of hydrogen micropores on mechanical properties in 7150 aluminum alloy
P27. Influence of bonding conditions on friction stir diffusion bonding of 5052 aluminum alloy and dissimilar metal foils
P29. Microstructural evolution of cast AZ91 alloy plate after hot pressing, solution treatment and aging treatment
······ N.Kitazono, K.Kitazono, K.Mitsuishi
P30. Effect of Zr contents on recrystallization behavior of Ti-Zr alloys Y.Matayoshi, T.Homma
P31. TEM observation for precipitates in two step aging Cu/Ag addition Al-Mg-Si alloys. Y.Oe, M.Nishikubo, K.Matsuda, J.Nakamura, S.Ikeno
P32. Friction welding of 2024 aluminum alloy small diameter rod Y.Asano, J.Arafuka, M.Nomoto, K.Katoh
P33. Analysis of ductile fracture in aluminum alloy via 3D image-based simulation
P34. Interfacial microstructure of Al/Mg/Al clad strip produced by horizontal tandem twin roll casting process Y.Akaike, H.Li, H.Harada, M.Suzuki, S.Nishida, H.Watari

一般社団法人 軽金属学会 第126回春期大会プログラム

期:2014年5月17日(土)~18日(日)

大 会 会 場:広島大学東広島キャンパス(〒739-8511 東広島市鏡山一丁目3番2号 Tel(082)422-7111(代表))

懇親会会場:生協食堂

講演セッション・行事一覧

講演会場、ポスター会場での発表者の 許可を得ない撮影はご遠慮下さい。

第1日目:2014年5月17日(土)

会場	第1会場	第2会場	第3会場	第4会場	第5会場	第6会場	第7会場
時間	117講義室	116講義室	115講義室	114講義室	112講義室	111講義室	220講義室
9:00~10:20	腐食&表面改 質(表面処理)	カ学特性 (疲労, クリープ)	溶解•凝固•鋳造 (溶解, DC鋳造材)	マグネシウム (組織制御)	ポーラス材料	チタン・ 生体材料1	組織制御(クラスタ)
	座長 島田隆登志	座長 鈴木貴史	座長 原田陽平	座長 安藤大輔	座長 鈴木進補	座長 上田恭介	座長 箕田 正
	講演 1 ~ 4	講演 22 ~ 25	講演 43 ~ 46	講演 63 ~ 66	講演 84 ~ 87	講演 106 ~ 109	講演 114 ~ 117
				休憩			
	腐食&表面改 質 (表面処理,	力学特性 (熱処理, 拡散)	溶解·凝固·鋳造 (介在物評価法)	マグネシウム (展伸材)	複合材料	チタン・ 生体材料2	組織制御 (7000系合金)
10:30~12:10	評価法) (~11:50)	(~ 11:50)	(~ 11:50)	(~ 11:50)	(~12:10)	(~ 11:50)	(~ 11:50)
	座長 境 昌宏	座長 中川惠友	座長 高橋功一	座長 尾崎智道	座長 小橋 眞	座長 上田正人	座長 小椋 智
	講演 5 ~ 8	講演 26 ~ 29	講演 47 ~ 50	講演 67 ~ 70	講演 88 ~ 92	講演 110 ~ 113	講演 118 ~ 121
					義室, 12:00~14:30)		
13:00~14:30			ポスター・	セッション(大学会館	官 大集会室)		
				休憩			
14:40~15:30			定時総会,		Eリアルホール)		
				休憩			
15:40~16:30	軽金属学会賞受賞講演「生体用チタン合金の開発と高力学的生体適合化」 東北大学金属材料研究所 教授・所長 新家 光雄 君 (サタケメモリアルホール)						
	休憩						
16:40~17:40	市民フォーラム「海軍のものづくりについて」 呉市海事歴史科学館 大和ミュージアム 館長 戸髙 一成 氏 (サタケメモリアルホール)						
	移動						
18:00~20:00	懇親会						

第2日目:2014年5月18日(日)

会 場	第1会場	第2会場	第3会場	第4会場	第5会場	第6会場	第7会場
4					22		
時間	117講義室	116講義室	115講義室	114講義室	112講義室	111講義室	220講義室
9:00~10:20	腐食&表面改 質(腐食挙動)	力学特性 (評価, 水素)	溶解・凝固・鋳造 (鋳物・ ダイカスト材料)	マグネシウム (力学的性質)	形状付与加工 (摩擦利用接合)		組織制御 (時効析出, TEM)
	座長 阿相英孝	座長 山田浩之	座長 織田和宏	座長 三浦博己	座長 柴柳敏哉	技術懇談会「フォ	座長 池田賢一
	講演 9 ~ 12	講演 30 ~ 33	講演 51 ~ 54	講演 71 ~ 74	講演 93 ~ 96	トニクスを用いた	講演 122 ~ 125
		T	休憩			高性能マグネシウ ム製品のクローズ	休憩
	テーマセッション 「軽金属材料の 材料特性および 塑性加工技術」	力学特性 (水素脆化)	溶解・凝固・鋳造 (リサイクル, 新技術)	マグネシウム (高機能化)	形状付与加工 (圧接)	「製造プロセス」	組織制御(集合組織)
10:30~12:10	(~12:10)	(~ 12:10)	(~ 11:50)	(~ 12:10)	(~ 11:50)		(~ 12:10)
	齊長 濱崎 洋 鳥飼 岳	座長 安藤 誠	座長 西田進一	座長 清水和紀	座長 吉野路英		座長 浅野峰生
	講演 13 ~ 17	講演 34 ~ 38	講演 55 ~ 58	講演 75 ~ 79	講演 97 ~ 100		講演 126 ~ 130
		昼食 / 若手の	0会(工学部109講義	室, 11:50~13:00)			昼食
13:00~14:40	テーマセッション 「軽金属材料の 材料特性および 塑性加工技術」	組織制御 (加工, 時効析出)	組織制御 (鋳造合金, 測定,時効析出)	粉末冶金 (粉末·焼結)	形状付与加工 (熱利用・ 穴あけ)		組織制御(再結晶)
10.00	(~14:20)	(~ 14:20)	(~14:20)	(~14:20)	(~ 14:40)		(~ 14:20)
	座長 中 哲夫 上森 武	座長 小林郁夫	座長 高木康夫	座長 松木一弘	座長 高山善匡		座長 鈴木健太
	講演 18 ~ 21	講演 39 ~ 42	講演 59 ~ 62	講演 75 ~ 79	講演 101 ~ 105		講演 131 ~ 134

見 学 会 : 5月16日(金) 13:00~18:30 (㈱日本製鋼所 広島製作所, 呉市海事歴史科学館企業交流会: 5月17日(土) 10:00~15:00, 18日(日) 9:00~15:00 機器・カタログ展示: 5月17日(土), 18日(日)

第1日目 2014年5月17日(土)

	第1会場(117講義室)	第1日日 2014· 第2会場(116講義室)	第3会場(115講義室)	第4会場(114講義室)
	腐食&表面改質(表面処理)	カ学特性(疲労, クリープ)	溶解·凝固·鋳造(溶解, DC鋳造材)	マグネシウム(組織制御)
	島田降登志(UACJ)	鈴木貴史(三菱アルミ)	原田陽平(東京工大)	安藤大輔(東北大)
	1 ショットライニング熱処理法によるアルミニウム		43 アルミニウム材の溶解時間に及ぼす色調等	63 Sr添加したMg-Al-Ca系合金の鋳造割れおよ
	合金の表面改質/ 兵庫県立大 ○原田泰	す微量添加元素の影響/ 岡山理科大 〇	の影響/ 神戸製鋼 ○永倉 豊, 正田良	び凝固組織/ 富山大 ○(院)永野義人,
	典,(学)長尾 篤	中川惠友, 茨城大 伊藤吾朗, 神戸製鋼	治	(院)丹羽浩成, 才川清二, 寺山清志, 北
		中井 学, 岡山理科大 金谷輝人, 松浦洋		陸職能開大 池野 進, 三協立山 岩川博
		司		昭,清水和紀
	2 Al-Mg合金溶射における急冷効果による皮	23 航空機用アルミニウム合金の疲労き裂進展	44 小さい不整合度を有する異質核によるアルミ	
	膜特性の向上/吉川工業 〇大森康弘,	特性に及ぼす不純物・添加元素の影響/	ニウム鋳造材の結晶粒微細化/ 名古屋工	凝固組織および機械的性質/ 富山大 〇
	熊井 隆, 西浦祐輔, 中山アモルファス	茨城大 (学)石澤真悟, 〇(院)山田隆一,	大 ○渡辺義見, 佐藤 尚	(院)池谷拓哉,(院)佐々木涼太, 才川清
0.00 40.00	森本敬治	伊藤吾朗, 車田 亮, 神戸製鋼 中井 学		二, 寺山清志, 北陸職能開大 池野 進, アーレスティ 柳原恵美, 折井 晋, 武田
9:00~10:20				プログライ 柳原忠美、 折井 日、 氏田
	3 アルミニウム陽極酸化皮膜のナノポアを用い	24 Al-Mg-Si系合金の疲労き裂進展挙動解析/	45 大型セラミック超音波ホーンのキャビテーショ	65 Mg-Al系合金の不連続析出への外力の影響
	た自己修復性防食処理/ 広島大 〇(院)	神戸製鋼 ○志鎌隆広, 吉原伸二, 関西	ン特性及びAl-Si過共晶合金のDC鋳造への	
	矢吹彰広,(院)永山裕起	大 高橋可昌, 九州大 野口博司	応用/ 日本軽金属 〇コマロフセルゲイ,	門前亮一
	, (a) (b) (b) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		石渡保生	, ,,,,,,
	4 アルミニウム合金の電解研磨と表面微細構	25 純アルミニウムの結晶粒微細化に伴う低温ク	46 5005合金の樅の木組織に及ぼす固溶元素	66 473Kで時効したMg-Gd-Y合金の焼入れ直
	造/ 岡山工技セ 〇村上浩二, サーテッ	リープ機構の遷移/ 首都大学東京 〇	の影響/ UACJ 〇坂口信人, UACJ押出	
	ク永田 永田教人, 岡山理科大 金谷輝	(院)佐藤義光, (院)小宮山雄斗, 北薗幸	中村拓郎, UACJ 浅野峰生	察/ 富山大 ○(院)松岡祐輝, (院)渡邊
	人, 広島工大 日野 実	一, 東北大 松永哲也, 宇宙研 佐藤英		克己, 東北大 中村純也, Universite de
		_		Rouen Williams Lefebvre, 富山大 才川清 二, 北陸職能開大 池野 進, 富山大 松
				一, 化壁橄胞阴穴 他野 连, 苗田八 位 田健二
		休憩(10:2	•	
	第1会場(117講義室)	第2会場(116講義室)	第3会場(115講義室)	第4会場(114講義室)
	腐食&表面改質(表面処理,評価法)	第2会場(116講義室) 力学特性(熱処理, 拡散)	第3会場(115講義室) 溶解·凝固·鋳造(介在物評価法)	第4会場(114講義室) マグネシウム(展伸材)
	腐食&表面改質(表面処理, 評価法) 境 昌宏(室蘭工大)	第2会場(116講義室) 力学特性(熱処理, 拡散) 中川惠友(岡山理科大)	第3会場(115講義室) 溶解·凝固·鋳造(介在物評価法) 高橋功一(UACJ)	第4会場(114講義室) マグネシウム(展伸材) 尾崎智道(IHI)
	腐食&表面改質(表面処理, 評価法) 境 昌宏(室蘭エ大) 5 AZXマグネシウム合金のアノード酸化皮膜の	第2会場(116講義室) 力学特性(熱処理, 拡散) 中川惠友(岡山理科大) 26 アルミニウム箔の硬化現象に及ぼす低温熱	第3会場(115講義室) 溶解・凝固・鋳造(介在物評価法) 高橋功一(UACJ) 47 画像処理を用いた新PoDFA法/ 日軽MC	第4会場(114講義室) マグネシウム(展伸材) 尾崎智道(IHI) 67 熱処理型Mg-Sn基展伸合金の開発/物材
	腐食&表面改質(表面処理, 評価法) 境 昌宏(室蘭エ大) 5 AZXマグネシウム合金のアノード酸化皮膜の 組成と構造/ 工学院大 ○阿相英孝,	第2会場(116講義室) 力学特性(熱処理, 拡散) 中川惠友(岡山理科大) 26 アルミニウム箔の硬化現象に及ぼす低温熱 処理の影響/ 三菱アルミ ○鈴木貴史,	第3会場(115講義室) 溶解・凝固・鋳造(介在物評価法) 高橋功一(UACJ) 47 画像処理を用いた新PoDFA法/ 日軽MC アルミ ○深谷勝己, 堀川 宏, 倉増幸	第4会場(114講義室) マグネシウム(展伸材) 尾崎智道(IHI) 67 熱処理型Mg-Sn基展伸合金の開発/ 物材 機構 ○佐々木泰祐, 長岡技科大(院)中
	腐食&表面改質(表面処理, 評価法) 境 昌宏(室蘭エ大) 5 AZXマグネシウム合金のアノード酸化皮膜の	第2会場(116講義室) 力学特性(熱処理, 拡散) 中川惠友(岡山理科大) 26 アルミニウム箔の硬化現象に及ぼす低温熱	第3会場(115講義室) 溶解・凝固・鋳造(介在物評価法) 高橋功一(UACJ) 47 画像処理を用いた新PoDFA法/ 日軽MC	第4会場(114講義室) マグネシウム(展伸材) 尾崎智道(IHI) 67 熱処理型Mg-Sn基展伸合金の開発/物材
	腐食&表面改質(表面処理, 評価法) 境 昌宏(室蘭エ大) 5 AZXマグネシウム合金のアノード酸化皮膜の 組成と構造/ 工学院大 ○阿相英孝,	第2会場(116講義室) 力学特性(熱処理, 拡散) 中川惠友(岡山理科大) 26 アルミニウム箔の硬化現象に及ぼす低温熱 処理の影響/ 三菱アルミ ○鈴木貴史, 中西茂紀, 西田寛明, 遠藤昌也	第3会場(115講義室) 溶解・凝固・鋳造(介在物評価法) 高橋功一(UACJ) 47 画像処理を用いた新PoDFA法/ 日軽MC アルミ ○深谷勝己, 堀川 宏, 倉増幸 雄, 日本軽金属 磯部智洋, 松島博実, 岡田 浩, 横浜国立大 長尾智晴	第4会場(114講義室) マグネシウム(展伸材) 尾崎智道(IHI) 67 熱処理型Mg-Sn基展伸合金の開発/ 物材 機構 ○佐々木泰祐, 長岡技科大 (院)中 田大貴, 物材機構 大久保忠勝, 宝野和
	腐食&表面改質(表面処理, 評価法) 境 昌宏(室蘭工大) 5 AZXマグネシウム合金のアノード酸化皮膜の 組成と構造/ 工学院大 ○阿相英孝, (学)齊藤 潤, 小野幸子 6 塩化アルミニウム水溶液中におけるアルミニ	第2会場(116講義室) 力学特性(熱処理, 拡散) 中川惠友(岡山理科大) 26 アルミニウム箔の硬化現象に及ぼす低温熱 処理の影響/ 三菱アルミ ○鈴木貴史, 中西茂紀, 西田寛明, 遠藤昌也 27 3104冷間圧延板の二次加工での変形能に	第3会場(115講義室) 溶解・凝固・鋳造(介在物評価法) 高橋功一(UACJ) 47 画像処理を用いた新PoDFA法/ 日軽MC アルミ ○深谷勝己, 堀川 宏, 倉増幸 雄, 日本軽金属 磯部智洋, 松島博実, 岡田 浩, 横浜国立大 長尾智晴 48 溶湯中に含まれる微細介在物が鋳物品質に	第4会場(114講義室) マグネシウム(展伸材) 尾崎智道(IHI) 67 熱処理型Mg-Sn基展伸合金の開発/ 物材機構 ○佐々木泰祐, 長岡技科大 (院)中田大貴, 物材機構 大久保忠勝, 宝野和博, 長岡技科大 鎌土重晴 68 型鍛造降温MDF-AZ80Mg合金の組織と機
	腐食&表面改質(表面処理,評価法) 境 昌宏(室蘭工大) 5 AZXマグネシウム合金のアノード酸化皮膜の 組成と構造/ 工学院大 ○阿相英孝, (学)齊藤 潤, 小野幸子 6 塩化アルミニウム水溶液中におけるアルミニ ウムの分極曲線とその解析/ 室蘭工大 ○	第2会場(116講義室) 力学特性(熱処理, 拡散) 中川惠友(岡山理科大) 26 アルミニウム箔の硬化現象に及ぼす低温熱 処理の影響/ 三菱アルミ ○鈴木貴史, 中西茂紀, 西田寛明, 遠藤昌也 27 3104冷間圧延板の二次加工での変形能に 及ぼす低温焼鈍の影響/ 神戸製鋼 ○正	第3会場(115講義室) 溶解・凝固・鋳造(介在物評価法) 高橋功一(UACJ) 47 画像処理を用いた新PoDFA法/ 日軽MC アルミ ○深谷勝己, 堀川 宏, 倉増幸 雄, 日本軽金属 磯部智洋, 松島博実, 岡田 浩, 横浜国立大 長尾智晴 48 溶湯中に含まれる微細介在物が鋳物品質に 与える影響/ 日軽MCアルミ ○多田大介,	第4会場(114講義室) マグネシウム(展伸材) 尾崎智道(IHI) 67 熱処理型Mg-Sn基展伸合金の開発/ 物材機構 ○佐々木泰祐, 長岡技科大(院)中田大貴, 物材機構 大久保忠勝, 宝野和博, 長岡技科大 鎌土重晴 68 型鍛造降温MDF-AZ80Mg合金の組織と機械的性質/ 豊橋技科大 ○三浦博己, 電
	腐食&表面改質(表面処理, 評価法) 境 昌宏(室蘭工大) 5 AZXマグネシウム合金のアノード酸化皮膜の 組成と構造/ 工学院大 ○阿相英孝, (学)齊藤 潤, 小野幸子 6 塩化アルミニウム水溶液中におけるアルミニ	第2会場(116講義室) カ学特性(熱処理, 拡散) 中川惠友(岡山理科大) 26 アルミニウム箔の硬化現象に及ぼす低温熱 処理の影響/ 三菱アルミ ○鈴木貴史, 中西茂紀, 西田寛明, 遠藤昌也 27 3104冷間圧延板の二次加工での変形能に 及ぼす低温焼鈍の影響/ 神戸製鋼 ○正田良治, 井上祐志, 山口正浩, 鶴田淳	第3会場(115講義室) 溶解・凝固・鋳造(介在物評価法) 高橋功一(UACJ) 47 画像処理を用いた新PoDFA法/ 日軽MC アルミ ○深谷勝己, 堀川 宏, 倉増幸 雄, 日本軽金属 磯部智洋, 松島博実, 岡田 浩, 横浜国立大 長尾智晴 48 溶湯中に含まれる微細介在物が鋳物品質に	第4会場(114講義室) マグネシウム(展伸材) 尾崎智道(IHI) 67 熱処理型Mg-Sn基展伸合金の開発/ 物材機構 ○佐々木泰祐, 長岡技科大(院)中田大貴, 物材機構 大久保忠勝, 宝野和博, 長岡技科大 鎌土重晴 68 型鍛造降温MDF-AZ80Mg合金の組織と機械的性質/ 豊橋技科大 ○三浦博己, 電気通信大(院)渡辺 竜, 豊橋技科大 小
10:30~12:10	腐食&表面改質(表面処理,評価法) 境 昌宏(室蘭工大) 5 AZXマグネシウム合金のアノード酸化皮膜の 組成と構造/ 工学院大 ○阿相英孝, (学)齊藤 潤, 小野幸子 6 塩化アルミニウム水溶液中におけるアルミニ ウムの分極曲線とその解析/ 室蘭工大 ○ (院)村上 大, 世利修美, 新井田要一	第2会場(116講義室) カ学特性(熱処理, 拡散) 中川惠友(岡山理科大) 26 アルミニウム箔の硬化現象に及ぼす低温熱 処理の影響/ 三菱アルミ ○鈴木貴史, 中西茂紀, 西田寛明, 遠藤昌也 27 3104冷間圧延板の二次加工での変形能に 及ぼす低温焼鈍の影響/ 神戸製鋼 ○正 田良治, 井上祐志, 山口正浩, 鶴田淳 人, 有賀康博	第3会場(115講義室) 溶解・凝固・鋳造(介在物評価法) 高橋功一(UACJ) 47 画像処理を用いた新PoDFA法/ 日軽MC アルミ ○深谷勝己, 堀川 宏, 倉増幸 雄, 日本軽金属 磯部智洋, 松島博実, 岡田 浩, 横浜国立大 長尾智晴 48 溶湯中に含まれる微細介在物が鋳物品質に 与える影響/ 日軽MCアルミ ○多田大介, 堀川 宏, 倉増幸雄, 深谷勝己	第4会場(114講義室) マグネシウム(展伸材) 尾崎智道(IHI) 67 熱処理型Mg-Sn基展伸合金の開発/ 物材機構 ○佐々木泰祐, 長岡技科大 (院)中田大貴, 物材機構 大久保忠勝, 宝野和博, 長岡技科大 鎌土重晴 68 型鍛造降温MDF-AZ80Mg合金の組織と機械的性質/ 豊橋技科大 ○三浦博己, 電気通信大 (院)渡辺 竜, 豊橋技科大 小林正和
10:30~12:10	腐食&表面改質(表面処理,評価法) 境 昌宏(室蘭工大) 5 AZXマグネシウム合金のアノード酸化皮膜の 組成と構造/ 工学院大 ○阿相英孝, (学)齊藤 潤, 小野幸子 6 塩化アルミニウム水溶液中におけるアルミニ ウムの分極曲線とその解析/ 室蘭工大 ○ (院)村上 大, 世利修美, 新井田要一 7 アルミニウム合金の自然電位測定1 自然電	第2会場(116講義室) カ学特性(熱処理,拡散) 中川惠友(岡山理科大) 26 アルミニウム箔の硬化現象に及ぼす低温熱 処理の影響/ 三菱アルミ ○鈴木貴史, 中西茂紀, 西田寛明, 遠藤昌也 27 3104冷間圧延板の二次加工での変形能に 及ぼす低温焼鈍の影響/ 神戸製鋼 ○正 田良治, 井上祐志, 山口正浩, 鶴田淳 人, 有賀康博 28 高周波誘導加熱装置を用いた時効析出型	第3会場(115講義室) 溶解・凝固・鋳造(介在物評価法) 高橋功一(UACJ) 47 画像処理を用いた新PoDFA法/ 日軽MC アルミ ○深谷勝己, 堀川 宏, 倉増幸 雄, 日本軽金属 磯部智洋, 松島博実, 岡田 浩, 横浜国立大 長尾智晴 48 溶湯中に含まれる微細介在物が鋳物品質に 与える影響/ 日軽MCアルミ ○多田大介, 堀川 宏, 倉増幸雄, 深谷勝己 49 PoDFA法によるアルミニウム溶湯中のTiB₂化	第4会場(114講義室) マグネシウム(展伸材) 尾崎智道(IHI) 67 熱処理型Mg-Sn基展伸合金の開発/ 物材機構 ○佐々木泰祐, 長岡技科大(院)中田大貴, 物材機構 大久保忠勝, 宝野和博, 長岡技科大 鎌土重晴 68 型鍛造降温MDF-AZ80Mg合金の組織と機械的性質/ 豊橋技科大 ○三浦博己, 電気通信大(院)渡辺 竜, 豊橋技科大 小林正和 69 Mg-0.6at.%Y合金における熱間圧延及び静
10:30~12:10	腐食&表面改質(表面処理,評価法) 境 昌宏(室蘭工大) 5 AZXマグネシウム合金のアノード酸化皮膜の 組成と構造/ 工学院大 ○阿相英孝, (学)齊藤 潤, 小野幸子 6 塩化アルミニウム水溶液中におけるアルミニ ウムの分極曲線とその解析/ 室蘭工大 ○ (院)村上 大, 世利修美, 新井田要一 7 アルミニウム合金の自然電位測定1 自然電 位および孔食電位に与える測定条件の影響	第2会場(116講義室) カ学特性(熱処理, 拡散) 中川惠友(岡山理科大) 26 アルミニウム箔の硬化現象に及ぼす低温熱 処理の影響/ 三菱アルミ ○鈴木貴史, 中西茂紀, 西田寛明, 遠藤昌也 27 3104冷間圧延板の二次加工での変形能に 及ぼす低温焼鈍の影響/ 神戸製鋼 ○正田良治, 井上祐志, 山口正浩, 鶴田淳人,有賀康博 28 高周波誘導加熱装置を用いた時効析出型 Mg-Al-Zn系合金の高温・短時間溶体化処	第3会場(115講義室) 溶解・凝固・鋳造(介在物評価法) 高橋功一(UACJ) 47 画像処理を用いた新PoDFA法/ 日軽MC アルミ ○深谷勝己, 堀川 宏, 倉増幸雄, 日本軽金属 磯部智洋, 松島博実, 岡田 浩, 横浜国立大 長尾智晴 48 溶湯中に含まれる微細介在物が鋳物品質に与える影響/ 日軽MCアルミ ○多田大介, 堀川 宏, 倉増幸雄, 深谷勝己 49 PoDFA法によるアルミニウム溶湯中のTiB₂化合物の自動計測/ 日本軽金属 ○磯部智	第4会場(114講義室) マグネシウム(展伸材) 尾崎智道(IHI) 67 熱処理型Mg-Sn基展伸合金の開発/ 物材機構 ○佐々木泰祐, 長岡技科大(院)中田大貴, 物材機構 大久保忠勝, 宝野和博, 長岡技科大 鎌土重晴 68 型鍛造降温MDF-AZ80Mg合金の組織と機械的性質/ 豊橋技科大 ○三浦博己, 電気通信大(院)渡辺 竜, 豊橋技科大 小林正和 69 Mg-0.6at.%Y合金における熱間圧延及び静的再結晶による集合組織変化の観察/ 東
10:30~12:10	腐食&表面改質(表面処理,評価法) 境 昌宏(室蘭工大) 5 AZXマグネシウム合金のアノード酸化皮膜の 組成と構造/ 工学院大 ○阿相英孝, (学)齊藤 潤, 小野幸子 6 塩化アルミニウム水溶液中におけるアルミニ ウムの分極曲線とその解析/ 室蘭工大 ○ (院)村上 大, 世利修美, 新井田要一 7 アルミニウム合金の自然電位測定1 自然電	第2会場(116講義室) カ学特性(熱処理,拡散) 中川惠友(岡山理科大) 26 アルミニウム箔の硬化現象に及ぼす低温熱 処理の影響/ 三菱アルミ ○鈴木貴史, 中西茂紀, 西田寛明, 遠藤昌也 27 3104冷間圧延板の二次加工での変形能に 及ぼす低温焼鈍の影響/ 神戸製鋼 ○正 田良治, 井上祐志, 山口正浩, 鶴田淳 人, 有賀康博 28 高周波誘導加熱装置を用いた時効析出型	第3会場(115講義室) 溶解・凝固・鋳造(介在物評価法) 高橋功一(UACJ) 47 画像処理を用いた新PoDFA法/ 日軽MC アルミ ○深谷勝己, 堀川 宏, 倉増幸 雄, 日本軽金属 磯部智洋, 松島博実, 岡田 浩, 横浜国立大 長尾智晴 48 溶湯中に含まれる微細介在物が鋳物品質に 与える影響/ 日軽MCアルミ ○多田大介, 堀川 宏, 倉増幸雄, 深谷勝己 49 PoDFA法によるアルミニウム溶湯中のTiB₂化 合物の自動計測/ 日本軽金属 ○磯部智 洋, 金 暉, 織田和宏, 岡田 浩, 横浜	第4会場(114講義室) マグネシウム(展伸材) 尾崎智道(IHI) 67 熱処理型Mg-Sn基展伸合金の開発/ 物材機構 ○佐々木泰祐, 長岡技科大(院)中田大貴, 物材機構 大久保忠勝, 宝野和博, 長岡技科大 鎌土重晴 68 型鍛造降温MDF-AZ80Mg合金の組織と機械的性質/ 豊橋技科大 ○三浦博己, 電気通信大(院)渡辺 竜, 豊橋技科大 小林正和 69 Mg-0.6at.%Y合金における熱間圧延及び静的再結晶による集合組織変化の観察/ 東
10:30~12:10	腐食&表面改質(表面処理,評価法) 境 昌宏(室蘭工大) 5 AZXマグネシウム合金のアノード酸化皮膜の 組成と構造/ 工学院大 ○阿相英孝, (学)齊藤 潤, 小野幸子 6 塩化アルミニウム水溶液中におけるアルミニ ウムの分極曲線とその解析/ 室蘭工大 ○ (院)村上 大, 世利修美, 新井田要一 7 アルミニウム合金の自然電位測定1 自然電 位および孔食電位に与える測定条件の影響 / Al協会耐食性評価試験委 ○大谷良 行, 岩尾祥平, 小堀一博, 小山高弘, 田尻 彰, 長澤大介, 松門克浩, 南 和	第2会場(116講義室) カ学特性(熱処理, 拡散) 中川惠友(岡山理科大) 26 アルミニウム箔の硬化現象に及ぼす低温熱 処理の影響/ 三菱アルミ ○鈴木貴史, 中西茂紀, 西田寛明, 遠藤昌也 27 3104冷間圧延板の二次加工での変形能に 及ぼす低温焼鈍の影響/ 神戸製鋼 ○正田良治, 井上祐志, 山口正浩, 鶴田淳人, 有賀康博 28 高周波誘導加熱装置を用いた時効析出型 Mg-Al-Zn系合金の高温・短時間溶体化処理/ 山梨大 ○(院)徳原智彦, (院)加治	第3会場(115講義室) 溶解・凝固・鋳造(介在物評価法) 高橋功一(UACJ) 47 画像処理を用いた新PoDFA法/ 日軽MC アルミ ○深谷勝己, 堀川 宏, 倉増幸 雄, 日本軽金属 磯部智洋, 松島博実, 岡田 浩, 横浜国立大 長尾智晴 48 溶湯中に含まれる微細介在物が鋳物品質に 与える影響/ 日軽MCアルミ ○多田大介, 堀川 宏, 倉増幸雄, 深谷勝己 49 PoDFA法によるアルミニウム溶湯中のTiB₂化 合物の自動計測/ 日本軽金属 ○磯部智 洋, 金 暉, 織田和宏, 岡田 浩, 横浜	第4会場(114講義室) マグネシウム(展伸材) 尾崎智道(IHI) 67 熱処理型Mg-Sn基展伸合金の開発/ 物材機構 ○佐々木泰祐, 長岡技科大(院)中田大貴, 物材機構 大久保忠勝, 宝野和博, 長岡技科大 鎌土重晴 68 型鍛造降温MDF-AZ80Mg合金の組織と機械的性質/ 豊橋技科大 ○三浦博己, 電気通信大(院)渡辺 竜, 豊橋技科大 小林正和 69 Mg-0.6at.%Y合金における熱間圧延及び静的再結晶による集合組織変化の観察/ 東北大 ○(院)鈴木 哲, 安藤大輔, 須藤
10:30~12:10	腐食&表面改質(表面処理,評価法) 境 昌宏(室蘭工大) 5 AZXマグネシウム合金のアノード酸化皮膜の 組成と構造/ 工学院大 ○阿相英孝, (学)齊藤 潤, 小野幸子 6 塩化アルミニウム水溶液中におけるアルミニ ウムの分極曲線とその解析/ 室蘭工大 ○ (院)村上 大, 世利修美, 新井田要一 7 アルミニウム合金の自然電位測定1 自然電 位および孔食電位に与える測定条件の影響 / Al協会耐食性評価試験委 ○大谷良 行, 岩尾祥平, 小堀一博, 小山高弘, 田尻 彰, 長澤大介, 松門克浩, 南 和 彦, 兒島洋一	第2会場(116講義室) カ学特性(熱処理, 拡散) 中川惠友(岡山理科大) 26 アルミニウム箔の硬化現象に及ぼす低温熱 処理の影響/ 三菱アルミ ○鈴木貴史, 中西茂紀, 西田寛明, 遠藤昌也 27 3104冷間圧延板の二次加工での変形能に 及ぼす低温焼鈍の影響/ 神戸製鋼 ○正田良治, 井上祐志, 山口正浩, 鶴田淳人, 有賀康博 28 高周波誘導加熱装置を用いた時効析出型 Mg-Al-Zn系合金の高温・短時間溶体化処理/ 山梨大 ○(院)徳原智彦, (院)加治 辰也, (院)猿渡直洋, 中山栄浩, 丸眞熱 処理工業 若尾博明, 坂本潔大	第3会場(115講義室) 溶解・凝固・鋳造(介在物評価法) 高橋功一(UACJ) 47 画像処理を用いた新PoDFA法/ 日軽MC アルミ ○深谷勝己, 堀川 宏, 倉増幸 雄, 日本軽金属 磯部智洋, 松島博実, 岡田 浩, 横浜国立大 長尾智晴 48 溶湯中に含まれる微細介在物が鋳物品質に 与える影響/ 日軽MCアルミ ○多田大介, 堀川 宏, 倉増幸雄, 深谷勝己 49 PoDFA法によるアルミニウム溶湯中のTiB₂化 合物の自動計測/ 日本軽金属 ○磯部智 洋, 金 暉, 織田和宏, 岡田 浩, 横浜 国立大 長尾智晴	第4会場(114講義室) マグネシウム(展伸材) 尾崎智道(IHI) 67 熱処理型Mg-Sn基展伸合金の開発/ 物材機構 ○佐々木泰祐,長岡技科大(院)中田大貴,物材機構 大久保忠勝,宝野和博,長岡技科大鎌土重晴 68 型鍛造降温MDF-AZ80Mg合金の組織と機械的性質/豊橋技科大○三浦博己,電気通信大(院)渡辺竜,豊橋技科大小林正和 69 Mg-0.6at.%Y合金における熱間圧延及び静的再結晶による集合組織変化の観察/東北大○(院)鈴木哲,安藤大輔,須藤祐司,小池淳一
10:30~12:10	腐食&表面改質(表面処理,評価法) 境 昌宏(室蘭工大) 5 AZXマグネシウム合金のアノード酸化皮膜の 組成と構造/ 工学院大 ○阿相英孝, (学)齊藤 潤, 小野幸子 6 塩化アルミニウム水溶液中におけるアルミニ ウムの分極曲線とその解析/ 室蘭工大 ○ (院)村上 大, 世利修美, 新井田要一 7 アルミニウム合金の自然電位測定1 自然電 位および孔食電位に与える測定条件の影響 / Al協会耐食性評価試験委 ○大谷良 行, 岩尾祥平, 小堀一博, 小山高弘, 田尻 彰, 長澤大介, 松門克浩, 南 和 彦, 兒島洋一 8 アルミニウム合金の自然電位測定2 ラウンド	第2会場(116講義室) カ学特性(熱処理, 拡散) 中川惠友(岡山理科大) 26 アルミニウム箔の硬化現象に及ぼす低温熱 処理の影響/ 三菱アルミ 〇鈴木貴史, 中西茂紀, 西田寛明, 遠藤昌也 27 3104冷間圧延板の二次加工での変形能に 及ぼす低温焼鈍の影響/ 神戸製鋼 〇正田良治, 井上祐志, 山口正浩, 鶴田淳人, 有賀康博 28 高周波誘導加熱装置を用いた時効析出型 Mg-Al-Zn系合金の高温・短時間溶体化処理/ 山梨大 〇(院)徳原智彦, (院)加治 辰也, (院)猿渡直洋, 中山栄浩, 丸眞熱 処理工業 若尾博明, 坂本潔大 29 アルミニウム合金ブレージングシートのろう付	第3会場(115講義室) 溶解・凝固・鋳造(介在物評価法) 高橋功一(UACJ) 47 画像処理を用いた新PoDFA法/ 日軽MC アルミ ○深谷勝己, 堀川 宏, 倉増幸 雄, 日本軽金属 磯部智洋, 松島博実, 岡田 浩, 横浜国立大 長尾智晴 48 溶湯中に含まれる微細介在物が鋳物品質に 与える影響/ 日軽MCアルミ ○多田大介, 堀川 宏, 倉増幸雄, 深谷勝己 49 PoDFA法によるアルミニウム溶湯中のTiB₂化 合物の自動計測/ 日本軽金属 ○磯部智 洋, 金 暉, 織田和宏, 岡田 浩, 横浜 国立大 長尾智晴 50 PoDFA法によるアルミニウム溶湯中の介在物	第4会場(114講義室) マグネシウム(展伸材) 尾崎智道(IHI) 67 熱処理型Mg-Sn基展伸合金の開発/ 物材機構 ○佐々木泰祐, 長岡技科大 (院)中田大貴, 物材機構 大久保忠勝, 宝野和博, 長岡技科大 鎌土重晴 68 型鍛造降温MDF-AZ80Mg合金の組織と機械的性質/ 豊橋技科大 ○三浦博己, 電気通信大 (院)渡辺 竜, 豊橋技科大 小林正和 69 Mg-0.6at.%Y合金における熱間圧延及び静的再結晶による集合組織変化の観察/ 東北大 ○(院)鈴木 哲, 安藤大輔, 須藤祐司, 小池淳一
10:30~12:10	腐食&表面改質(表面処理,評価法) 境 昌宏(室蘭工大) 5 AZXマグネシウム合金のアノード酸化皮膜の 組成と構造/ 工学院大 ○阿相英孝, (学)齊藤 潤, 小野幸子 6 塩化アルミニウム水溶液中におけるアルミニ ウムの分極曲線とその解析/ 室蘭工大 ○ (院)村上 大, 世利修美, 新井田要一 7 アルミニウム合金の自然電位測定1 自然電 位および孔食電位に与える測定条件の影響 / Al協会耐食性評価試験委 ○大谷良 行, 岩尾祥平, 小堀一博, 小山高弘, 田尻 彰, 長澤大介, 松門克浩, 南 和 彦, 兒島洋一 8 アルミニウム合金の自然電位測定2 ラウンド ロビンテストによる測定条件の検討/Al協会	第2会場(116講義室) カ学特性(熱処理, 拡散) 中川惠友(岡山理科大) 26 アルミニウム箔の硬化現象に及ぼす低温熱 処理の影響/ 三菱アルミ 〇鈴木貴史, 中西茂紀, 西田寛明, 遠藤昌也 27 3104冷間圧延板の二次加工での変形能に 及ぼす低温焼鈍の影響/ 神戸製鋼 〇正田良治, 井上祐志, 山口正浩, 鶴田淳人, 有賀康博 28 高周波誘導加熱装置を用いた時効析出型 Mg-Al-Zn系合金の高温・短時間溶体化処理/ 山梨大 〇(院)徳原智彦, (院)加治辰也, (院)猿渡直洋, 中山栄浩, 丸眞熱処理工業 若尾博明, 坂本潔大 29 アルミニウム合金ブレージングシートのろう付後強度に及ぼす犠材Mg拡散と心材Si拡散の	第3会場(115講義室) 溶解・凝固・鋳造(介在物評価法) 高橋功一(UACJ) 47 画像処理を用いた新PoDFA法/ 日軽MC アルミ ○深谷勝己, 堀川 宏, 倉増幸 雄, 日本軽金属 磯部智洋, 松島博実, 岡田 浩, 横浜国立大 長尾智晴 48 溶湯中に含まれる微細介在物が鋳物品質に 与える影響/ 日軽MCアルミ ○多田大介, 堀川 宏, 倉増幸雄, 深谷勝己 49 PoDFA法によるアルミニウム溶湯中のTiB₂化 合物の自動計測/ 日本軽金属 ○磯部智 洋, 金 暉, 織田和宏, 岡田 浩, 横浜 国立大 長尾智晴 50 PoDFA法によるアルミニウム溶湯中の介在物 の自動計測/ 日本軽金属 ○金 暉, 磯	第4会場(114講義室) マグネシウム(展伸材) 尾崎智道(IHI) 67 熱処理型Mg-Sn基展伸合金の開発/物材機構 ○佐々木泰祐,長岡技科大(院)中田大貴,物材機構 大久保忠勝,宝野和博,長岡技科大鎌土重晴 68 型鍛造降温MDF-AZ80Mg合金の組織と機械的性質/豊橋技科大○三浦博己,電気通信大(院)渡辺竜,豊橋技科大小林正和 69 Mg-0.6at.%Y合金における熱間圧延及び静的再結晶による集合組織変化の観察/東北大○(院)鈴木哲,安藤大輔,須藤祐司,小池淳一 70 Ca添加Mg-Al系合金圧延材のミクロ組織と機械的性質/長岡技科大○(院)笹野晃
10:30~12:10	腐食&表面改質(表面処理,評価法) 境 昌宏(室蘭工大) 5 AZXマグネシウム合金のアノード酸化皮膜の 組成と構造/ 工学院大 ○阿相英孝, (学)齊藤 潤, 小野幸子 6 塩化アルミニウム水溶液中におけるアルミニ ウムの分極曲線とその解析/ 室蘭工大 ○ (院)村上 大, 世利修美, 新井田要一 7 アルミニウム合金の自然電位測定1 自然電 位および孔食電位に与える測定条件の影響 / Al協会耐食性評価試験委 ○大谷良 行, 岩尾祥平, 小堀一博, 小山高弘, 田尻 彰, 長澤大介, 松門克浩, 南 和 彦, 兒島洋一 8 アルミニウム合金の自然電位測定2 ラウンド ロビンテストによる測定条件の検討/Al協会 耐食性評価試験委 ○岩尾祥平, 大谷良	第2会場(116講義室) カ学特性(熱処理, 拡散) 中川惠友(岡山理科大) 26 アルミニウム箔の硬化現象に及ぼす低温熱 処理の影響/ 三菱アルミ ○鈴木貴史, 中西茂紀, 西田寛明, 遠藤昌也 27 3104冷間圧延板の二次加工での変形能に 及ぼす低温焼鈍の影響/ 神戸製鋼 ○正田良治, 井上祐志, 山口正浩, 鶴田淳人,有賀康博 28 高周波誘導加熱装置を用いた時効析出型 Mg-Al-Zn系合金の高温・短時間溶体化処理/ 山梨大 ○(院)徳原智彦,(院)加治辰也,(院)猿渡直洋,中山栄浩,丸真熱処理工業 若尾博明,坂本潔大 29 アルミニウム合金ブレージングシートのろう付後強度に及ぼす犠材Mg拡散と心材Si拡散の影響/神戸製鋼 ○木村申平,渋谷雄	第3会場(115講義室) 溶解・凝固・鋳造(介在物評価法) 高橋功一(UACJ) 47 画像処理を用いた新PoDFA法/ 日軽MC アルミ ○深谷勝己, 堀川 宏, 倉増幸 雄, 日本軽金属 磯部智洋, 松島博実, 岡田 浩, 横浜国立大 長尾智晴 48 溶湯中に含まれる微細介在物が鋳物品質に 与える影響/ 日軽MCアルミ ○多田大介, 堀川 宏, 倉増幸雄, 深谷勝己 49 PoDFA法によるアルミニウム溶湯中のTiB₂化 合物の自動計測/ 日本軽金属 ○磯部智洋, 金 暉, 織田和宏, 岡田 浩, 横浜 国立大 長尾智晴 50 PoDFA法によるアルミニウム溶湯中の介在物 の自動計測/ 日本軽金属 ○金 暉, 磯 部智洋, 織田和宏, 岡田 浩, 横浜国立	第4会場(114講義室) マグネシウム(展伸材) 尾崎智道(IHI) 67 熱処理型Mg-Sn基展伸合金の開発/物材機構 ○佐々木泰祐,長岡技科大(院)中田大貴,物材機構 大久保忠勝,宝野和博,長岡技科大鎌土重晴 68 型鍛造降温MDF-AZ80Mg合金の組織と機械的性質/豊橋技科大○三浦博己,電気通信大(院)渡辺竜,豊橋技科大小林正和 69 Mg-0.6at.%Y合金における熱間圧延及び静的再結晶による集合組織変化の観察/東北大○(院)鈴木哲,安藤大輔,須藤祐司,小池淳一 70 Ca添加Mg-Al系合金圧延材のミクロ組織と機械的性質/長岡技科大○(院)笹野晃
10:30~12:10	腐食&表面改質(表面処理,評価法) 境 昌宏(室蘭工大) 5 AZXマグネシウム合金のアノード酸化皮膜の 組成と構造/ 工学院大 ○阿相英孝, (学)齊藤 潤, 小野幸子 6 塩化アルミニウム水溶液中におけるアルミニ ウムの分極曲線とその解析/ 室蘭工大 ○ (院)村上 大, 世利修美, 新井田要一 7 アルミニウム合金の自然電位測定1 自然電 位および孔食電位に与える測定条件の影響 / AI協会耐食性評価試験委 ○大谷良 行, 岩尾祥平, 小堀一博, 小山高弘, 田尻 彰, 長澤大介, 松門克浩, 南 和 彦, 兒島洋一 8 アルミニウム合金の自然電位測定2 ラウンド ロビンテストによる測定条件の検討/AI協会 耐食性評価試験委 ○岩尾祥平, 大谷良 行, 小堀一博, 小山高弘, 田尻 彰,	第2会場(116講義室) カ学特性(熱処理, 拡散) 中川惠友(岡山理科大) 26 アルミニウム箔の硬化現象に及ぼす低温熱 処理の影響/ 三菱アルミ 〇鈴木貴史, 中西茂紀, 西田寛明, 遠藤昌也 27 3104冷間圧延板の二次加工での変形能に 及ぼす低温焼鈍の影響/ 神戸製鋼 〇正田良治, 井上祐志, 山口正浩, 鶴田淳人,有賀康博 28 高周波誘導加熱装置を用いた時効析出型 Mg-Al-Zn系合金の高温・短時間溶体化処理/ 山梨大 〇(院)徳原智彦, (院)加治辰也, (院)猿渡直洋, 中山栄浩, 丸眞熱処理工業 若尾博明, 坂本潔大 29 アルミニウム合金ブレージングシートのろう付後強度に及ぼす犠材Mg拡散と心材Si拡散の影響/ 神戸製鋼 〇木村申平, 渋谷雄二, 鶴野招弘	第3会場(115講義室) 溶解・凝固・鋳造(介在物評価法) 高橋功一(UACJ) 47 画像処理を用いた新PoDFA法/ 日軽MC アルミ ○深谷勝己, 堀川 宏, 倉増幸 雄, 日本軽金属 磯部智洋, 松島博実, 岡田 浩, 横浜国立大 長尾智晴 48 溶湯中に含まれる微細介在物が鋳物品質に 与える影響/ 日軽MCアルミ ○多田大介, 堀川 宏, 倉増幸雄, 深谷勝己 49 PoDFA法によるアルミニウム溶湯中のTiB₂化 合物の自動計測/ 日本軽金属 ○磯部智 洋, 金 暉, 織田和宏, 岡田 浩, 横浜 国立大 長尾智晴 50 PoDFA法によるアルミニウム溶湯中の介在物 の自動計測/ 日本軽金属 ○金 暉, 磯	第4会場(114講義室) マグネシウム(展伸材) 尾崎智道(IHI) 67 熱処理型Mg-Sn基展伸合金の開発/物材機構 ○佐々木泰祐,長岡技科大(院)中田大貴,物材機構 大久保忠勝,宝野和博,長岡技科大鎌土重晴 68 型鍛造降温MDF-AZ80Mg合金の組織と機械的性質/豊橋技科大○三浦博己,電気通信大(院)渡辺竜,豊橋技科大小林正和 69 Mg-0.6at.%Y合金における熱間圧延及び静的再結晶による集合組織変化の観察/東北大○(院)鈴木哲,安藤大輔,須藤祐司,小池淳一 70 Ca添加Mg-Al系合金圧延材のミクロ組織と機械的性質/長岡技科大○(院)笹野晃
10:30~12:10	腐食&表面改質(表面処理,評価法) 境 昌宏(室蘭工大) 5 AZXマグネシウム合金のアノード酸化皮膜の 組成と構造/ 工学院大 ○阿相英孝, (学)齊藤 潤, 小野幸子 6 塩化アルミニウム水溶液中におけるアルミニ ウムの分極曲線とその解析/ 室蘭工大 ○ (院)村上 大, 世利修美, 新井田要一 7 アルミニウム合金の自然電位測定1 自然電 位および孔食電位に与える測定条件の影響 / Al協会耐食性評価試験委 ○大谷良 行, 岩尾祥平, 小堀一博, 小山高弘, 田尻 彰, 長澤大介, 松門克浩, 南 和 彦, 兒島洋一 8 アルミニウム合金の自然電位測定2 ラウンド ロビンテストによる測定条件の検討/Al協会 耐食性評価試験委 ○岩尾祥平, 大谷良	第2会場(116講義室) カ学特性(熱処理, 拡散) 中川惠友(岡山理科大) 26 アルミニウム箔の硬化現象に及ぼす低温熱 処理の影響/ 三菱アルミ 〇鈴木貴史, 中西茂紀, 西田寛明, 遠藤昌也 27 3104冷間圧延板の二次加工での変形能に 及ぼす低温焼鈍の影響/ 神戸製鋼 〇正田良治, 井上祐志, 山口正浩, 鶴田淳人,有賀康博 28 高周波誘導加熱装置を用いた時効析出型 Mg-Al-Zn系合金の高温・短時間溶体化処理/ 山梨大 〇(院)徳原智彦, (院)加治辰也, (院)猿渡直洋, 中山栄浩, 丸眞熱処理工業 若尾博明, 坂本潔大 29 アルミニウム合金ブレージングシートのろう付後強度に及ぼす犠材Mg拡散と心材Si拡散の影響/ 神戸製鋼 〇木村申平, 渋谷雄二, 鶴野招弘	第3会場(115講義室) 溶解・凝固・鋳造(介在物評価法) 高橋功一(UACJ) 47 画像処理を用いた新PoDFA法/ 日軽MC アルミ ○深谷勝己, 堀川 宏, 倉増幸 雄, 日本軽金属 磯部智洋, 松島博実, 岡田 浩, 横浜国立大 長尾智晴 48 溶湯中に含まれる微細介在物が鋳物品質に 与える影響/ 日軽MCアルミ ○多田大介, 堀川 宏, 倉増幸雄, 深谷勝己 49 PoDFA法によるアルミニウム溶湯中のTiB₂化 合物の自動計測/ 日本軽金属 ○磯部智洋, 金 暉, 織田和宏, 岡田 浩, 横浜 国立大 長尾智晴 50 PoDFA法によるアルミニウム溶湯中の介在物 の自動計測/ 日本軽金属 ○金 暉, 磯 部智洋, 織田和宏, 岡田 浩, 横浜国立	第4会場(114講義室) マグネシウム(展伸材) 尾崎智道(IHI) 67 熱処理型Mg-Sn基展伸合金の開発/物材機構○佐々木泰祐,長岡技科大(院)中田大貴,物材機構大久保忠勝,宝野和博,長岡技科大鎌土重晴 68 型鍛造降温MDF-AZ80Mg合金の組織と機械的性質/豊橋技科大○三浦博己,電気通信大(院)渡辺竜,豊橋技科大小林正和 69 Mg-0.6at.%Y合金における熱間圧延及び静的再結晶による集合組織変化の観察/東北大○(院)鈴木哲,安藤大輔,須藤祐司,小池淳一

第1日目 2014年5月17日(土)

	第5会場(112講義室)	第6会場(111講義室)	第7会場(220講義室)
	ポーラス材料	チタン・生体材料1	組織制御(クラスタ)
	鈴木進補(早稲田大)	上田恭介(東北大)	箕田 正(UACJ押出)
	84 スペーサー法を用いたチタン多孔質化プロ	106 Ti-8~10Mn-1Fe-3Al合金の熱処理挙動と	
	セスにおけるアルミニウム添加の効果/名	機械的性質/ 関西大 〇池田勝彦, 上田	
	古屋大 ○(院)上松敬右, 小橋 眞, 金	正人, 大同特殊鋼 鷲見芳紀	雅也, 高木康夫, 東京工大 里 達雄
	武直幸		
	85 ポーラスアルミニウムを用いた蓄熱材料の高	107 持続社会実現型 β-Ti合金の設計とその特	115 Al-Mg-Si合金の予備時効とその後の自然時
	熱伝導率化/ 名古屋大 ○(院)成瀬 亘,	性/広島大 〇(院)山川大貴, 崔龍範,	効で生じるクラスタの3DAP解析/ 神戸製鋼
9:00~10:20	小橋 眞, 金武直幸	許哲峰, 松木一弘	○小塚雅也, 有賀康博, 高木康夫, 東 京工大 里 達雄
9.00* 10.20	86 ポーラス表面層を利用したAl/樹脂接合の強	108 Ti-Fo-Mn 玄コビキタス会会の蛙性証価 /	アエス 至 達雄 116 Al-Mg-Si系合金の予備時効の昇温速度と自
	度に及ぼす気孔率の影響/ 名古屋大 〇	広島大 ○(院)武田栄樹, 許哲峰, 崔龍	然時効時間がクラスタ形態に及ぼす影響/
	(院)新井勇太, 小橋 眞, 金武直幸	範, 佐々木元, 松木一弘	神戸製鋼 〇宍戸久郎, 有賀康博, 松本
		1 10, 12 (7)(7)(1, 127)	克史
	87 ADC12ポーラスアルミニウムの高速圧縮特性	109 浮揚溶解法および金属粉末射出成型法を用	117 Al-Mg-Si系合金中のクラスタ挙動に及ぼす
	に及ぼす弾性塗料の影響/ 芝浦工大 〇	いて作製した低コストβ型Ti-Mn合金の力学	予備時効とSi量の影響/UACJ ○澤 裕
	宇都宮登雄, 群馬大 (院)久保田直之,	的特性と微細組織/ 東北大 〇趙 研,	也, 一谷幸司, 日比野旭
	半谷禎彦, 福井大 桑水流理, 東京大生	新家光雄, 仲井正昭, 稗田純子, (院)	
	研 吉川暢宏	Pedro Fernandes Santos,静岡県工業技術	
		研 伊藤芳典, 関西大 池田勝彦 休憩(10:20~10:30)	
	第5会場(112講義室)	第6会場(111講義室)	第7会場(220講義室)
	複合材料	チタン・生体材料2	組織制御(7000系合金)
	小橋 眞(名古屋大)	上田正人(関西大)	小椋 智(大阪大)
	88 金属多孔体強化金属基複合材料の作製及	110 Ti-X合金におけるβ相安定性の第一原理計	
	び特性評価/ 広島大 〇崔龍範, (院)本	算/ 大阪府大 ○上杉徳照, (院)宮前	出組織のTEM観察/ 富山大 〇(院)渡邊
	山貴啓, 許哲峰, 松木一弘, 佐々木元	将, 東 健司	克己, アイシン軽金属 吉田朋夫, 村上
			哲, 北陸職能開大 池野 進, 富山大 松 田健二
	89 Al-B ₄ C複合材料の再結晶挙動に及ぼすB ₄ C	111 Cr添加によるβ型Ti-Nb-Ta-Zr合金の弾性	119 Zn/Mg比の異なる7000系Al合金の析出組織
	濃度の影響/ 日本軽金属 ○上村雄介,	率自己調整機能化/ 東北大 〇仲井正	のTEM観察と機械的性質/ 富山大 〇(院)
	長澤大介, 小泉慎吾, 穴見敏也	昭, 新家光雄, 稗田純子, 趙 研, 成	西 将伴,(院)三浦直也,(院)渡邊克己,
		田健吾, 李 強	アイシン軽金属 吉田朋夫, 村上 哲, 北
			陸職能開大 池野 進, 富山大 松田健二
10:30~12:10		112 チタン/樹脂積層板の深絞り成形性/ 兵庫	
10.00 12.10		県立大 ○原田泰典, (学)上山 穣	対する結晶方位/ 富山大 〇(院)三浦直 中 (院)亜 原体 (院)渡邉古ヨ アバハ
	(学)廣瀬貴昭, (院)李オギョン, 崔龍範, 杉尾健次郎, 松木一弘		也, (院)西 将伴, (院)渡邊克己, アイシン 軽金属 吉田朋夫, 村上 哲, 富山県立
	少足医队员, 位外 五		大 上谷保裕, 北陸職能開大 池野 進,
			富山大 松田健二
	91 高体積率MgB ₂ /Mg合金基複合材料の組織	113 熱酸化法によりTi上に形成されるTiO₂皮膜特	
	観察/ 富山大 〇(院)福田 温, (院)川本		
	幸弥, 西村克彦, NIFS 菱沼良光, 北	介,(学)徳田洋介,(院)佐渡翔太,(学)	イシン軽金属 〇西川知志, 吉田朋夫,
	陸職能開大 池野 進, 富山大 松田健二	近藤なつ美, 成島尚之	村上 哲
	OO)) III dI did to the or to the first of the or to the original and the		
	92 ホウ化物粒子/Al-Mg-Si基複合材料の時効		
	挙動と組織観察/ 富山大 (院)川本幸 弥, ○(院)福田 温, 西村克彦, NIFS		
	が、 ○(阮) 福田 価, 四代兄彦, NIFS 菱沼良光, 北陸職能開大 池野 進, 富		
	山大 松田健二		
		 ·10~13·00) / 女性会員の会(工学部108講義室 12:0	0 1400

第2日目 2014年5月18日(日)

	第1会場(117講義室)	第2日目 2014 第2会場(116講義室)	第3会場(115講義室)	第4会場(114講義室)
	腐食&表面改質(腐食挙動)	力学特性(評価, 水素)	溶解・凝固・鋳造(鋳物・ダイカスト材料)	マグネシウム(力学的性質)
	阿相英孝(工学院大)	山田浩之(防衛大)	織田和宏(日本軽金属)	三浦博己(電気通信大)
	9 水膜環境下におけるアルミニウム合金の腐食	30 X線回折援用結晶粒界追跡法によるAl-	51 Al-Si-Mg系ダイカスト合金のT5熱処理後の	71 Ca含有AZ91マグネシウムダイカスト材のク
	挙動におけるカチオンの影響∕ UACJ ○	4%Cu合金の力学特性評価/ 九州大 ○	硬さに及ぼす冷却速度の影響/ ヤマハ発	リープ変形機構/ 長岡技科大 ○(院)足
	島田隆登志, 大谷良行, 小山高弘, 兒	(院)下地輝昭, 戸田裕之,(学)田中洸太	動機 ○進藤孝明, 鈴木貴晴, 橘内 透	立一馬,(院)太田宗貴, 本間智之,
	島洋一	郎, JASRI 上杉健太朗, 竹内晃久, 鈴		アーレスティ 山端達也、 佐々木一樹、 柳
		木芳生, 豊橋技科大 小林正和, (院)田		原恵美, 折井 晋, 武田 秀, 長岡技科
		辺靖人		大鎌土重晴
	10 有機化合物含有塩化物水溶液におけるアル	31 7000系アルミニウム合金の破壊における水素 ミクロポアの影響/ 九州大 ○(院)多田雄	52 ダイカスト合金の熱伝導に及ぼす組成、熱処理の影響(よった系動機、〇分大馬馬	
	ミニウムの腐食挙動/ UACJ ○大谷良行, 小山高弘, 兒島洋一	貴, 戸田裕之, UACJ 坂口信人, 渡辺	理の影響/ ヤマハ発動機 ○鈴木貴晴, 橘内 透	下部組織/ 富山県立大 ○鈴木真由美, (学)近藤史樹
	71'四间功,元两千	良夫, JASRI 上杉健太郎, 竹内晃久,	有關下了 文 章	(子) 近脉义何
9:00~10:20		鈴木芳生		
	11 アルミニウム合金7075とCFRPとのガルバニッ	32 Al-Sn合金OCC鋳造棒の組織と水素発生性	53 Sr添加したAl-Mg-Si系合金鋳物の鋳造割れ	73 キンクバンドを有するMg ₈₈ -Zn ₅ -Y ₇ 合金押出
	ク腐食に及ぼす陽極酸化処理の影響/ 室	/ 千葉工大 ○本保元次郎, (院)佐藤良		材の荷重急変試験による内部応力評価/
	蘭工大 ○境 昌宏,(学)楢田将吾,(院)	輔	二, (学)服部成孝, (院)丹羽浩成, (院)	
	坂本千波		寺山清志, 北陸職能開大 池野 進,	板橋怜史, 藤原雅美
			アーレスティ 柳原恵美, 折井 晋, 武田	
			旁	
	12 炭素繊維プリプレグを用いた純アルミニウム 1050のガルバニック腐食試験/ 室蘭工大	33 プラズマチャージしたアルミニウム中の水素 挙動/ 茨城大 ○(学)青木雅弥, 伊藤吾	54 MnおよびFeを添加したAl-10%Si-0.3%Mg系 合金の凝固過程検討/ 富山大 (学)杉森	74 BCC/HCP二相組織を有するMg-Sc合金の 機械破廃が無機 (東北大 〇字藤大輔
	1030のカルハーツク腐良試験/ 至順工人 ○(院)坂本千波, 境 昌宏	等動/ 次級人 ○(子) 同个症外, 伊藤音 朗, (院) 小山僚人, (院)真中俊明	太一, ○(院)青島剛士, 才川清二, 寺	機械強度と組織/ 東北大 ○安藤大輔, (院)鈴木 哲, 須藤祐司, 小池淳一
	○(院)	切,(阮/小田原八,(阮/共下区引	山清志、北陸職能開大 池野 進、アー	(死)如小 台, 須藤和 司, 万里子
			レスティ 柳原恵美、 折井 晋、 武田 秀	
		休憩(10:2		
	第1会場(117講義室)	第2会場(116講義室)	第3会場(115講義室)	第4会場(114講義室)
	テーマセッション	カ学特性(水素脆化)	第3会場(115講義室) 溶解・凝固・鋳造(リサイクル、新技術)	第4会場(114講義室) マグネシウム(高機能化)
	テーマセッション 「軽金属材料の材料特性および塑性加工技術」			
	テーマセッション 「軽金属材料の材料特性および塑性加工技術」 濱崎 洋(広島大), 鳥飼 岳(UACJ) 13 【基調講演】曲げ加工性を向上するアルミニ	カ学特性(水素脆化) 安藤 誠(UACJ) 34 負荷条件を変化させた7075アルミニウム合金	溶解・凝固・鋳造(リサイクル, 新技術) 西田進一(群馬大)	マグネシウム(高機能化) 清水和紀(三協立山) 75 高温プレス及び溶体化処理したAZ91鋳造板
	テーマセッション 「軽金属材料の材料特性および塑性加工技術」 濱崎 洋(広島大), 鳥飼 岳(UACJ)	カ学特性(水素脆化) 安藤 誠(UACJ) 34 負荷条件を変化させた7075アルミニウム合金 の水素放出挙動/ 防衛大 ○山田浩之,	溶解・凝固・鋳造(リサイクル, 新技術) 西田進一(群馬大)	マグネシウム(高機能化) 清水和紀(三協立山) 75 高温プレス及び溶体化処理したAZ91鋳造板 材の機械的特性と微細組織/ 首都大学東
	テーマセッション 「軽金属材料の材料特性および塑性加工技術」 濱崎 洋(広島大), 鳥飼 岳(UACJ) 13 【基調講演】曲げ加工性を向上するアルミニ	カ学特性(水素脆化) 安藤 誠(UACJ) 34 負荷条件を変化させた7075アルミニウム合金 の水素放出挙動/ 防衛大 ○山田浩之, (院) 鶴留正樹,(学)川﨑將司,(学)辻	溶解・凝固・鋳造(リサイクル、新技術) 西田進一(群馬大) 55 簡易選別によるアルミニウムドロス残灰の有	マグネシウム(高機能化) 清水和紀(三協立山) 75 高温プレス及び溶体化処理したAZ91鋳造板 材の機械的特性と微細組織/ 首都大学東 京 ○(院)三ツ石圭佑, 北薗幸一, (院)
	テーマセッション 「軽金属材料の材料特性および塑性加工技術」 濱崎 洋(広島大), 鳥飼 岳(UACJ) 13 【基調講演】曲げ加工性を向上するアルミニ	カ学特性(水素脆化) 安藤 誠(UACJ) 34 負荷条件を変化させた7075アルミニウム合金 の水素放出挙動/ 防衛大 ○山田浩之,	溶解・凝固・鋳造(リサイクル、新技術) 西田進一(群馬大) 55 簡易選別によるアルミニウムドロス残灰の有	マグネシウム(高機能化) 清水和紀(三協立山) 75 高温プレス及び溶体化処理したAZ91鋳造板 材の機械的特性と微細組織/ 首都大学東
	テーマセッション 「軽金属材料の材料特性および塑性加工技術」 濱崎 洋(広島大), 鳥飼 岳(UACJ) 13 【基調講演】曲げ加工性を向上するアルミニ 欠 ウム材の塑性加工技術/ UACJ ○高橋昌 講 也	カ学特性(水素脆化) 安藤 誠(UACJ) 34 負荷条件を変化させた7075アルミニウム合金の水素放出挙動/ 防衛大 ○山田浩之,(院) 鶴留正樹,(学)川﨑將司,(学)辻誠心,小笠原永久,大阪大 堀川敬太郎	溶解・凝固・鋳造(リサイクル, 新技術) 西田進一(群馬大) 55 簡易選別によるアルミニウムドロス残灰の有 効利用/ 東北大 ○平木岳人, 長坂徹也	マグネシウム(高機能化) 清水和紀(三協立山) 75 高温プレス及び溶体化処理したAZ91鋳造板 材の機械的特性と微細組織/ 首都大学東 京 ○(院)三ツ石圭佑, 北薗幸一, (院) 北園直樹
	テーマセッション 「軽金属材料の材料特性および塑性加工技術」 濱崎 洋(広島大), 鳥飼 岳(UACJ) 13 【基調講演】曲げ加工性を向上するアルミニ 欠 ウム材の塑性加工技術/ UACJ ○高橋昌 講 也	カ学特性(水素脆化) 安藤 誠(UACJ) 34 負荷条件を変化させた7075アルミニウム合金の水素放出挙動/ 防衛大 ○山田浩之,(院) 鶴留正樹,(学)川﨑將司,(学)辻誠心,小笠原永久,大阪大 堀川敬太郎 35 アルミニウム合金中の第二相と水素との関係	 溶解・凝固・鋳造(リサイクル, 新技術) 西田進一(群馬大) 55 簡易選別によるアルミニウムドロス残灰の有効利用/東北大 ○平木岳人,長坂徹也 56 アルミニウム合金の通孔材の作製/大阪工 	マグネシウム(高機能化) 清水和紀(三協立山) 75 高温プレス及び溶体化処理したAZ91鋳造板 材の機械的特性と微細組織/ 首都大学東 京 ○(院)三ツ石圭佑, 北薗幸一, (院) 北園直樹 76 カーボンブラック添加による AZ91D 射出成
	テーマセッション 「軽金属材料の材料特性および塑性加工技術」 濱崎 洋(広島大), 鳥飼 岳(UACJ) 13 【基調講演】曲げ加工性を向上するアルミニ 欠 ウム材の塑性加工技術/ UACJ ○高橋昌 講 也 14 複素数階微分法によるアルミニウム合金板材 の有限要素解析/ 近畿大 ○上森 武, 広	カ学特性(水素脆化) 安藤 誠(UACJ) 34 負荷条件を変化させた7075アルミニウム合金の水素放出挙動/ 防衛大 ○山田浩之,(院) 鶴留正樹,(学)川﨑將司,(学)辻誠心,小笠原永久,大阪大 堀川敬太郎 35 アルミニウム合金中の第二相と水素との関係/ 茨城大 ○(院)水庭彰,伊藤吾朗,	溶解・凝固・鋳造(リサイクル, 新技術) 西田進一(群馬大) 55 簡易選別によるアルミニウムドロス残灰の有 効利用/ 東北大 ○平木岳人, 長坂徹也	マグネシウム(高機能化) 清水和紀(三協立山) 75 高温プレス及び溶体化処理したAZ91鋳造板 材の機械的特性と微細組織/ 首都大学東 京 ○(院)三ツ石圭佑, 北薗幸一, (院) 北園直樹 76 カーボンブラック添加による AZ91D 射出成 形品の強度向上/ 岡山県立大 ○福田忠
	テーマセッション 「軽金属材料の材料特性および塑性加工技術」 濱崎 洋(広島大), 鳥飼 岳(UACJ) 13 【基調講演】曲げ加工性を向上するアルミニ 欠 ウム材の塑性加工技術/ UACJ ○高橋昌 講 也	カ学特性(水素脆化) 安藤 誠(UACJ) 34 負荷条件を変化させた7075アルミニウム合金の水素放出挙動/ 防衛大 ○山田浩之,(院) 鶴留正樹,(学)川﨑將司,(学)辻誠心,小笠原永久,大阪大 堀川敬太郎 35 アルミニウム合金中の第二相と水素との関係	 溶解・凝固・鋳造(リサイクル, 新技術) 西田進一(群馬大) 55 簡易選別によるアルミニウムドロス残灰の有効利用/東北大 ○平木岳人,長坂徹也 56 アルミニウム合金の通孔材の作製/大阪工 	マグネシウム(高機能化) 清水和紀(三協立山) 75 高温プレス及び溶体化処理したAZ91鋳造板材の機械的特性と微細組織/ 首都大学東京 ○(院)三ツ石圭佑, 北薗幸一, (院)北園直樹 76 カーボンブラック添加による AZ91D 射出成形品の強度向上/ 岡山県立大 ○福田忠生, 小武内清貴, (院)赤澤誠一, 尾崎
10:30~12:10	テーマセッション 「軽金属材料の材料特性および塑性加工技術」 濱崎 洋(広島大), 鳥飼 岳(UACJ) 13 【基調講演】曲げ加工性を向上するアルミニ 欠 ウム材の塑性加工技術/ UACJ ○高橋昌 講 也 14 複素数階微分法によるアルミニウム合金板材 の有限要素解析/ 近畿大 ○上森 武, 広 島商船高専 瀧口三千弘	カ学特性(水素脆化) 安藤 誠(UACJ) 34 負荷条件を変化させた7075アルミニウム合金の水素放出挙動/ 防衛大 ○山田浩之,(院) 鶴留正樹,(学)川﨑將司,(学)辻誠心,小笠原永久,大阪大 堀川敬太郎 35 アルミニウム合金中の第二相と水素との関係/茨城大 ○(院)水庭彰,伊藤吾朗,(院)真中俊明	溶解・凝固・鋳造(リサイクル, 新技術) 西田進一(群馬大) 55 簡易選別によるアルミニウムドロス残灰の有効利用/東北大○平木岳人,長坂徹也 56 アルミニウム合金の通孔材の作製/大阪工大 ○羽賀俊雄,(院)豊田健吾	マグネシウム(高機能化) 清水和紀(三協立山) 75 高温プレス及び溶体化処理したAZ91鋳造板材の機械的特性と微細組織/ 首都大学東京 ○(院)三ツ石圭佑, 北薗幸一, (院)北園直樹 76 カーボンブラック添加による AZ91D 射出成形品の強度向上/ 岡山県立大 ○福田忠生, 小武内清貴, (院)赤澤誠一, 尾崎公一
10:30~12:10	テーマセッション 「軽金属材料の材料特性および塑性加工技術」 濱崎 洋(広島大), 鳥飼 岳(UACJ) 13 【基調講演】曲げ加工性を向上するアルミニ 欠 ウム材の塑性加工技術/ UACJ ○高橋昌 講 也 14 複素数階微分法によるアルミニウム合金板材 の有限要素解析/ 近畿大 ○上森 武, 広 島商船高専 瀧口三千弘	カ学特性(水素脆化) 安藤 誠(UACJ) 34 負荷条件を変化させた7075アルミニウム合金の水素放出挙動/ 防衛大 ○山田浩之,(院) 鶴留正樹,(学)川﨑將司,(学)辻誠心,小笠原永久,大阪大 堀川敬太郎 35 アルミニウム合金中の第二相と水素との関係/茨城大 ○(院)水庭彰,伊藤吾朗,(院)真中俊明 36 Al-Cu-Mg系合金の水素挙動/ 茨城大 ○	溶解・凝固・鋳造(リサイクル, 新技術) 西田進一(群馬大) 55 簡易選別によるアルミニウムドロス残灰の有効利用/東北大○平木岳人,長坂徹也 56 アルミニウム合金の通孔材の作製/大阪工大 ○羽賀俊雄,(院)豊田健吾	マグネシウム(高機能化) 清水和紀(三協立山) 75 高温プレス及び溶体化処理したAZ91鋳造板材の機械的特性と微細組織/ 首都大学東京 ○(院)三ツ石圭佑, 北薗幸一, (院)北園直樹 76 カーボンブラック添加による AZ91D 射出成形品の強度向上/ 岡山県立大 ○福田忠生, 小武内清貴, (院)赤澤誠一, 尾崎
10:30~12:10	テーマセッション 「軽金属材料の材料特性および塑性加工技術」 濱崎 洋(広島大), 鳥飼 岳(UACJ) 13 【基調講演】曲げ加工性を向上するアルミニ 欠 ウム材の塑性加工技術/ UACJ ○高橋昌 講 也 14 複素数階微分法によるアルミニウム合金板材 の有限要素解析/ 近畿大 ○上森 武, 広 島商船高専 瀧口三千弘	カ学特性(水素脆化) 安藤 誠(UACJ) 34 負荷条件を変化させた7075アルミニウム合金の水素放出挙動/ 防衛大 ○山田浩之,(院) 鶴留正樹,(学)川﨑將司,(学)辻誠心,小笠原永久,大阪大 堀川敬太郎 35 アルミニウム合金中の第二相と水素との関係/茨城大 ○(院)水庭彰,伊藤吾朗,(院)真中俊明	溶解・凝固・鋳造(リサイクル, 新技術) 西田進一(群馬大) 55 簡易選別によるアルミニウムドロス残灰の有効利用/東北大○平木岳人,長坂徹也 56 アルミニウム合金の通孔材の作製/大阪工大 ○羽賀俊雄,(院)豊田健吾 57 スクレイパーを装着した単ロール法による薄	マグネシウム(高機能化) 清水和紀(三協立山) 75 高温プレス及び溶体化処理したAZ91鋳造板材の機械的特性と微細組織/ 首都大学東京 ○(院)三ツ石圭佑, 北薗幸一, (院)北園直樹 76 カーボンブラック添加による AZ91D 射出成形品の強度向上/ 岡山県立大 ○福田忠生, 小武内清貴, (院)赤澤誠一, 尾崎公一 77 蒸気コーティング法によりMg合金上に形成した皮膜中のMg-AI系LDH含有量と耐食性の関係/ 芝浦工大 ○(院)神山直澄, (学)
10:30~12:10	テーマセッション 「軽金属材料の材料特性および塑性加工技術」 濱崎 洋(広島大), 鳥飼 岳(UACJ) 13 【基調講演】曲げ加工性を向上するアルミニ 欠 ウム材の塑性加工技術/ UACJ ○高橋昌 地 14 複素数階微分法によるアルミニウム合金板材 の有限要素解析/ 近畿大 ○上森 武, 広 島商船高専 瀧口三千弘 15 CO₂レーザマシンを用いたアルミニウム合金 板の集合組織制御/ 成蹊大 ○(院)又吉	カ学特性(水素脆化) 安藤 誠(UACJ) 34 負荷条件を変化させた7075アルミニウム合金の水素放出挙動/ 防衛大 ○山田浩之,(院) 鶴留正樹,(学)川﨑將司,(学)辻誠心,小笠原永久,大阪大 堀川敬太郎 35 アルミニウム合金中の第二相と水素との関係/茨城大 ○(院)水庭彰,伊藤吾朗,(院)真中俊明 36 Al-Cu-Mg系合金の水素挙動/ 茨城大 ○(院)中野貴史,(院)小塚健司,伊藤吾朗,	溶解・凝固・鋳造(リサイクル, 新技術) 西田進一(群馬大) 55 簡易選別によるアルミニウムドロス残灰の有効利用/東北大○平木岳人,長坂徹也 56 アルミニウム合金の通孔材の作製/大阪工大 ○羽賀俊雄,(院)豊田健吾 57 スクレイパーを装着した単ロール法による薄	マグネシウム(高機能化) 清水和紀(三協立山) 75 高温プレス及び溶体化処理したAZ91鋳造板材の機械的特性と微細組織/ 首都大学東京 ○(院)三ツ石圭佑, 北薗幸一, (院)北園直樹 76 カーボンブラック添加による AZ91D 射出成形品の強度向上/ 岡山県立大 ○福田忠生, 小武内清貴, (院)赤澤誠一, 尾崎公一 77 蒸気コーティング法によりMg合金上に形成した皮膜中のMg-AI系LDH含有量と耐食性の関係/ 芝浦工大 ○(院)神山直澄, (学)石崎貴裕
10:30~12:10	テーマセッション 「軽金属材料の材料特性および塑性加工技術」 濱崎 洋(広島大), 鳥飼 岳(UACJ) 13 【基調講演】曲げ加工性を向上するアルミニ 欠 ウム材の塑性加工技術/ UACJ ○高橋昌 也 14 複素数階微分法によるアルミニウム合金板材 の有限要素解析/ 近畿大 ○上森 武, 広 島商船高専 瀧口三千弘 15 CO₂レーザマシンを用いたアルミニウム合金 板の集合組織制御/ 成蹊大 ○(院)又吉 祐子, 酒井 孝, アマダ 金英俊, 小山 純一 16 圧縮ねじり加工により組織微細化したAl-Fe	カ学特性(水素脆化) 安藤 誠(UACJ) 34 負荷条件を変化させた7075アルミニウム合金の水素放出挙動/ 防衛大 ○山田浩之,(院) 鶴留正樹,(学)川﨑將司,(学)辻誠心,小笠原永久,大阪大 堀川敬太郎 35 アルミニウム合金中の第二相と水素との関係/ 茨城大 ○(院)水庭彰,伊藤吾朗,(院)真中俊明 36 Al-Cu-Mg系合金の水素挙動/ 茨城大 ○(院)中野貴史,(院)小塚健司,伊藤吾朗,神戸製鋼 中井 学 37 Al-Zn-Mg合金およびAl-Cu-Mg合金におけ	溶解・凝固・鋳造(リサイクル, 新技術) 西田進一(群馬大) 55 簡易選別によるアルミニウムドロス残灰の有効利用/東北大○平木岳人,長坂徹也 56 アルミニウム合金の通孔材の作製/大阪工大 ○羽賀俊雄,(院)豊田健吾 57 スクレイパーを装着した単ロール法による薄板の鋳造/大阪工大 ○羽賀俊雄 58 Al-25%Si合金の半凝固ダイカスト/大阪工	マグネシウム(高機能化) 清水和紀(三協立山) 75 高温プレス及び溶体化処理したAZ91鋳造板材の機械的特性と微細組織/ 首都大学東京 ○(院)三ツ石圭佑, 北薗幸一, (院)北園直樹 76 カーボンブラック添加による AZ91D 射出成形品の強度向上/ 岡山県立大 ○福田忠生, 小武内清貴, (院)赤澤誠一, 尾崎公一 77 蒸気コーティング法によりMg合金上に形成した皮膜中のMg-AI系LDH含有量と耐食性の関係/ 芝浦工大 ○(院)神山直澄, (学)石崎貴裕 78 Al-Si合金粉末によるMg合金鋳造材の表面
10:30~12:10	テーマセッション 「軽金属材料の材料特性および塑性加工技術」 濱崎 洋(広島大), 鳥飼 岳(UACJ) 13 【基調講演】曲げ加工性を向上するアルミニ 欠 ウム材の塑性加工技術/ UACJ ○高橋昌 講 也 14 複素数階微分法によるアルミニウム合金板材 の有限要素解析/ 近畿大 ○上森 武, 広 島商船高専 瀧口三千弘 15 CO₂レーザマシンを用いたアルミニウム合金 板の集合組織制御/ 成蹊大 ○(院)又吉 祐子, 酒井 孝, アマダ 金英俊, 小山 純一 16 圧縮ねじり加工により組織微細化したAl-Fe 系合金の据込み性/ 名古屋大 ○久米裕	カ学特性(水素脆化) 安藤 誠(UACJ) 34 負荷条件を変化させた7075アルミニウム合金の水素放出挙動/ 防衛大 ○山田浩之,(院) 鶴留正樹,(学)川﨑將司,(学)辻誠心,小笠原永久,大阪大 堀川敬太郎 35 アルミニウム合金中の第二相と水素との関係/茨城大 ○(院)水庭彰,伊藤吾朗,(院)真中俊明 36 Al-Cu-Mg系合金の水素挙動/ 茨城大 ○(院)中野貴史,(院)小塚健司,伊藤吾朗,神戸製鋼 中井 学 37 Al-Zn-Mg合金およびAl-Cu-Mg合金における水素侵入挙動/ 茨城大 ○(院)小塚健	 溶解・凝固・鋳造(リサイクル,新技術) 西田進一(群馬大) 55 簡易選別によるアルミニウムドロス残灰の有効利用/東北大○平木岳人,長坂徹也 56 アルミニウム合金の通孔材の作製/大阪工大 ○羽賀俊雄,(院)豊田健吾 57 スクレイパーを装着した単ロール法による薄板の鋳造/大阪工大 ○羽賀俊雄 	マグネシウム(高機能化) 清水和紀(三協立山) 75 高温プレス及び溶体化処理したAZ91鋳造板材の機械的特性と微細組織/ 首都大学東京 ○(院)三ツ石圭佑, 北薗幸一, (院)北園直樹 76 カーボンブラック添加による AZ91D 射出成形品の強度向上/ 岡山県立大 ○福田忠生, 小武内清貴, (院)赤澤誠一, 尾崎公一 77 蒸気コーティング法によりMg合金上に形成した皮膜中のMg-AI系LDH含有量と耐食性の関係/ 芝浦工大 ○(院)神山直澄, (学)石崎貴裕 78 Al-Si合金粉末によるMg合金鋳造材の表面複合化/ 三重工研 ○金森陽一, 樋尾勝
10:30~12:10	テーマセッション 「軽金属材料の材料特性および塑性加工技術」 濱崎 洋(広島大), 鳥飼 岳(UACJ) 13 【基調講演】曲げ加工性を向上するアルミニ 欠 ウム材の塑性加工技術/ UACJ ○高橋昌 也 14 複素数階微分法によるアルミニウム合金板材 の有限要素解析/ 近畿大 ○上森 武, 広 島商船高専 瀧口三千弘 15 CO₂レーザマシンを用いたアルミニウム合金 板の集合組織制御/ 成蹊大 ○(院)又吉 祐子, 酒井 孝, アマダ 金英俊, 小山 純一 16 圧縮ねじり加工により組織微細化したAl-Fe	カ学特性(水素脆化) 安藤 誠(UACJ) 34 負荷条件を変化させた7075アルミニウム合金の水素放出挙動/ 防衛大 ○山田浩之,(院) 鶴留正樹,(学)川﨑將司,(学)辻誠心,小笠原永久,大阪大 堀川敬太郎 35 アルミニウム合金中の第二相と水素との関係/茨城大 ○(院)水庭彰,伊藤吾朗,(院)真中俊明 36 Al-Cu-Mg系合金の水素挙動/ 茨城大 ○(院)中野貴史,(院)小塚健司,伊藤吾朗,神戸製鋼 中井 学 37 Al-Zn-Mg合金およびAl-Cu-Mg合金における水素侵入挙動/ 茨城大 ○(院)小塚健司,伊藤吾朗,(学)中野貴史,(院)波	溶解・凝固・鋳造(リサイクル, 新技術) 西田進一(群馬大) 55 簡易選別によるアルミニウムドロス残灰の有効利用/東北大○平木岳人,長坂徹也 56 アルミニウム合金の通孔材の作製/大阪工大 ○羽賀俊雄,(院)豊田健吾 57 スクレイパーを装着した単ロール法による薄板の鋳造/大阪工大 ○羽賀俊雄 58 Al-25%Si合金の半凝固ダイカスト/大阪工	マグネシウム(高機能化) 清水和紀(三協立山) 75 高温プレス及び溶体化処理したAZ91鋳造板材の機械的特性と微細組織/ 首都大学東京 ○(院)三ツ石圭佑, 北薗幸一, (院)北園直樹 76 カーボンブラック添加による AZ91D 射出成形品の強度向上/ 岡山県立大 ○福田忠生, 小武内清貴, (院)赤澤誠一, 尾崎公一 77 蒸気コーティング法によりMg合金上に形成した皮膜中のMg-AI系LDH含有量と耐食性の関係/ 芝浦工大 ○(院)神山直澄, (学)石崎貴裕 78 Al-Si合金粉末によるMg合金鋳造材の表面
10:30~12:10	テーマセッション 「軽金属材料の材料特性および塑性加工技術」 濱崎 洋(広島大), 鳥飼 岳(UACJ) 13 【基調講演】曲げ加工性を向上するアルミニ 欠 ウム材の塑性加工技術/ UACJ ○高橋昌 講 也 14 複素数階微分法によるアルミニウム合金板材 の有限要素解析/ 近畿大 ○上森 武, 広 島商船高専 瀧口三千弘 15 CO₂レーザマシンを用いたアルミニウム合金 板の集合組織制御/ 成蹊大 ○(院)又吉 祐子, 酒井 孝, アマダ 金英俊, 小山 純一 16 圧縮ねじり加工により組織微細化したAl-Fe 系合金の据込み性/ 名古屋大 ○久米裕	カ学特性(水素脆化) 安藤 誠(UACJ) 34 負荷条件を変化させた7075アルミニウム合金の水素放出挙動/ 防衛大 ○山田浩之, (院) 鶴留正樹, (学)川﨑將司, (学)辻誠心, 小笠原永久, 大阪大 堀川敬太郎 35 アルミニウム合金中の第二相と水素との関係/茨城大 ○(院)水庭彰, 伊藤吾朗, (院)真中俊明 36 Al-Cu-Mg系合金の水素挙動/ 茨城大 ○(院)中野貴史, (院)小塚健司, 伊藤吾朗, 神戸製鋼 中井 学 37 Al-Zn-Mg合金およびAl-Cu-Mg合金における水素侵入挙動/ 茨城大 ○(院)小塚健司, 伊藤吾朗, (学)中野貴史, (院)渡壁尚仁, 神戸製鋼 中井 学, 富山大 波	溶解・凝固・鋳造(リサイクル, 新技術) 西田進一(群馬大) 55 簡易選別によるアルミニウムドロス残灰の有効利用/東北大○平木岳人,長坂徹也 56 アルミニウム合金の通孔材の作製/大阪工大 ○羽賀俊雄,(院)豊田健吾 57 スクレイパーを装着した単ロール法による薄板の鋳造/大阪工大 ○羽賀俊雄 58 Al-25%Si合金の半凝固ダイカスト/大阪工	マグネシウム(高機能化) 清水和紀(三協立山) 75 高温プレス及び溶体化処理したAZ91鋳造板材の機械的特性と微細組織/ 首都大学東京 ○(院)三ツ石圭佑, 北薗幸一, (院)北園直樹 76 カーボンブラック添加による AZ91D 射出成形品の強度向上/ 岡山県立大 ○福田忠生, 小武内清貴, (院)赤澤誠一, 尾崎公一 77 蒸気コーティング法によりMg合金上に形成した皮膜中のMg-AI系LDH含有量と耐食性の関係/ 芝浦工大 ○(院)神山直澄, (学)石崎貴裕 78 Al-Si合金粉末によるMg合金鋳造材の表面複合化/ 三重工研 ○金森陽一, 樋尾勝
10:30~12:10	テーマセッション 「軽金属材料の材料特性および塑性加工技術」 演崎 洋(広島大), 鳥飼 岳(UACJ) 13 【基調講演】曲げ加工性を向上するアルミニケ ウム材の塑性加工技術/ UACJ ○高橋昌 也 14 複素数階微分法によるアルミニウム合金板材の有限要素解析/ 近畿大 ○上森 武,広島商船高専 瀧口三千弘 15 CO₂レーザマシンを用いたアルミニウム合金板の集合組織制御/ 成蹊大 ○(院)又吉祐子, 酒井 孝, アマダ 金英俊, 小山純一 16 圧縮ねじり加工により組織微細化したAl-Fe系合金の据込み性/ 名古屋大 ○久米裕二, (院)内田 圭, 小橋 眞, 金武直幸	カ学特性(水素脆化) 安藤 誠(UACJ) 34 負荷条件を変化させた7075アルミニウム合金の水素放出挙動/ 防衛大 ○山田浩之,(院) 鶴留正樹,(学)川﨑將司,(学)辻誠心,小笠原永久,大阪大 堀川敬太郎 35 アルミニウム合金中の第二相と水素との関係/茨城大 ○(院)水庭彰,伊藤吾朗,(院)真中俊明 36 Al-Cu-Mg系合金の水素挙動/ 茨城大 ○(院)中野貴史,(院)小塚健司,伊藤吾朗,神戸製鋼 中井 学 37 Al-Zn-Mg合金およびAl-Cu-Mg合金における水素侵入挙動/ 茨城大 ○(院)小塚健司,伊藤吾朗,(学)中野貴史,(院)渡壁尚仁,神戸製鋼 中井 学,富山大波多野雄治	溶解・凝固・鋳造(リサイクル, 新技術) 西田進一(群馬大) 55 簡易選別によるアルミニウムドロス残灰の有効利用/東北大○平木岳人,長坂徹也 56 アルミニウム合金の通孔材の作製/大阪工大 ○羽賀俊雄,(院)豊田健吾 57 スクレイパーを装着した単ロール法による薄板の鋳造/大阪工大 ○羽賀俊雄 58 Al-25%Si合金の半凝固ダイカスト/大阪工	マグネシウム(高機能化) 清水和紀(三協立山) 75 高温プレス及び溶体化処理したAZ91鋳造板材の機械的特性と微細組織/ 首都大学東京 ○(院)三ツ石圭佑, 北薗幸一, (院)北園直樹 76 カーボンブラック添加による AZ91D 射出成形品の強度向上/ 岡山県立大 ○福田忠生, 小武内清貴, (院)赤澤誠一, 尾崎公一 77 蒸気コーティング法によりMg合金上に形成した皮膜中のMg-AI系LDH含有量と耐食性の関係/ 芝浦工大 ○(院)神山直澄, (学)石崎貴裕 78 Al-Si合金粉末によるMg合金鋳造材の表面複合化/ 三重工研 ○金森陽一, 樋尾勝也
10:30~12:10	テーマセッション 「軽金属材料の材料特性および塑性加工技術」 演崎 洋(広島大), 鳥飼 岳(UACJ) 13 【基調講演】曲げ加工性を向上するアルミニ 欠 ウム材の塑性加工技術 / UACJ ○高橋昌 也 14 複素数階微分法によるアルミニウム合金板材の有限要素解析 / 近畿大 ○上森 武, 広島商船高専 瀧口三千弘 15 CO₂レーザマシンを用いたアルミニウム合金板の集合組織制御 / 成蹊大 ○(院)又吉祐子, 酒井 孝, アマダ 金英俊, 小山純一 16 圧縮ねじり加工により組織微細化したAl-Fe系合金の据込み性 / 名古屋大 ○久米裕二, (院)内田 圭, 小橋 眞, 金武直幸 17 塑性流動制御によるテーラードブランクの深	カ学特性(水素脆化) 安藤 誠(UACJ) 34 負荷条件を変化させた7075アルミニウム合金の水素放出挙動/ 防衛大 ○山田浩之,(院) 鶴留正樹,(学)川﨑將司,(学)辻誠心,小笠原永久,大阪大 堀川敬太郎 35 アルミニウム合金中の第二相と水素との関係/ 茨城大 ○(院)水庭彰,伊藤吾朗,(院)真中俊明 36 Al-Cu-Mg系合金の水素挙動/ 茨城大 ○(院)中野貴史,(院)小塚健司,伊藤吾朗,神戸製鋼 中井 学 37 Al-Zn-Mg合金およびAl-Cu-Mg合金における水素侵入挙動/ 茨城大 ○(院)小塚健司,伊藤吾朗,(学)中野貴史,(院)渡壁尚仁,神戸製鋼 中井 学,富山大波多野雄治 38 LPSO相の割合が高いマグネシウム合金の耐	溶解・凝固・鋳造(リサイクル, 新技術) 西田進一(群馬大) 55 簡易選別によるアルミニウムドロス残灰の有効利用/東北大○平木岳人,長坂徹也 56 アルミニウム合金の通孔材の作製/大阪工大 ○羽賀俊雄,(院)豊田健吾 57 スクレイパーを装着した単ロール法による薄板の鋳造/大阪工大 ○羽賀俊雄 58 Al-25%Si合金の半凝固ダイカスト/大阪工	マグネシウム(高機能化) 清水和紀(三協立山) 75 高温プレス及び溶体化処理したAZ91鋳造板材の機械的特性と微細組織/ 首都大学東京 ○(院)三ツ石圭佑, 北薗幸一, (院)北園直樹 76 カーボンブラック添加による AZ91D 射出成形品の強度向上/ 岡山県立大 ○福田忠生, 小武内清貴, (院)赤澤誠一, 尾崎公一 77 蒸気コーティング法によりMg合金上に形成した皮膜中のMg-AI系LDH含有量と耐食性の関係/ 芝浦工大 ○(院)神山直澄, (学)石崎貴裕 78 AI-Si合金粉末によるMg合金鋳造材の表面複合化/ 三重工研 ○金森陽一, 樋尾勝也
10:30~12:10	テーマセッション 「軽金属材料の材料特性および塑性加工技術」 演崎 洋(広島大), 鳥飼 岳(UACJ) 13 【基調講演】曲げ加工性を向上するアルミニ 欠 ウム材の塑性加工技術 / UACJ ○高橋昌 也 14 複素数階微分法によるアルミニウム合金板材の有限要素解析 / 近畿大 ○上森 武, 広島商船高専 瀧口三千弘 15 CO₂レーザマシンを用いたアルミニウム合金板の集合組織制御 / 成蹊大 ○(院)又吉祐子, 酒井孝, アマダ 金英俊, 小山純一 16 圧縮ねじり加工により組織微細化したAl-Fe系合金の据込み性 / 名古屋大 ○久米裕二, (院)内田 圭, 小橋 眞, 金武直幸 17 塑性流動制御によるテーラードブランクの深 絞り性の改善 / 大阪府立産技研 ○田中	カ学特性(水素脆化) 安藤 誠(UACJ) 34 負荷条件を変化させた7075アルミニウム合金の水素放出挙動/ 防衛大 ○山田浩之,(院) 鶴留正樹,(学)川﨑將司,(学) 辻誠心,小笠原永久,大阪大 堀川敬太郎 35 アルミニウム合金中の第二相と水素との関係/茨城大 ○(院)水庭彰,伊藤吾朗,(院)真中俊明 36 Al-Cu-Mg系合金の水素挙動/ 茨城大 ○(院)中野貴史,(院)小塚健司,伊藤吾朗,神戸製鋼中井学 37 Al-Zn-Mg合金およびAl-Cu-Mg合金における水素侵入挙動/ 茨城大 ○(院)小塚健司,伊藤吾朗,(学)中野貴史,(院)渡壁尚仁,神戸製鋼中井学,富山大波多野雄治 38 LPSO相の割合が高いマグネシウム合金の耐水素脆化特性/ 茨城大 ○(院)比佐遼太,	溶解・凝固・鋳造(リサイクル, 新技術) 西田進一(群馬大) 55 簡易選別によるアルミニウムドロス残灰の有効利用/東北大○平木岳人,長坂徹也 56 アルミニウム合金の通孔材の作製/大阪工大 ○羽賀俊雄,(院)豊田健吾 57 スクレイパーを装着した単ロール法による薄板の鋳造/大阪工大 ○羽賀俊雄 58 Al-25%Si合金の半凝固ダイカスト/大阪工	マグネシウム(高機能化) 清水和紀(三協立山) 75 高温プレス及び溶体化処理したAZ91鋳造板材の機械的特性と微細組織/ 首都大学東京 ○(院)三ツ石圭佑, 北薗幸一, (院)北園直樹 76 カーボンブラック添加による AZ91D 射出成形品の強度向上/ 岡山県立大 ○福田忠生, 小武内清貴, (院)赤澤誠一, 尾崎公一 77 蒸気コーティング法によりMg合金上に形成した皮膜中のMg-AI系LDH含有量と耐食性の関係/ 芝浦工大 ○(院)神山直澄, (学)石崎貴裕 78 Al-Si合金粉末によるMg合金鋳造材の表面複合化/ 三重工研 ○金森陽一, 樋尾勝也
10:30~12:10	テーマセッション 「軽金属材料の材料特性および塑性加工技術」 演崎 洋(広島大), 鳥飼 岳(UACJ) 13 【基調講演】曲げ加工性を向上するアルミニ 欠 ウム材の塑性加工技術 / UACJ ○高橋昌 也 14 複素数階微分法によるアルミニウム合金板材の有限要素解析 / 近畿大 ○上森 武, 広島商船高専 瀧口三千弘 15 CO₂レーザマシンを用いたアルミニウム合金板の集合組織制御 / 成蹊大 ○(院)又吉祐子, 酒井 孝, アマダ 金英俊, 小山純一 16 圧縮ねじり加工により組織微細化したAl-Fe系合金の据込み性 / 名古屋大 ○久米裕二, (院)内田 圭, 小橋 眞, 金武直幸 17 塑性流動制御によるテーラードブランクの深	カ学特性(水素脆化) 安藤 誠(UACJ) 34 負荷条件を変化させた7075アルミニウム合金の水素放出挙動/ 防衛大 ○山田浩之,(院) 鶴留正樹,(学)川﨑將司,(学)辻誠心,小笠原永久,大阪大 堀川敬太郎 35 アルミニウム合金中の第二相と水素との関係/ 茨城大 ○(院)水庭彰,伊藤吾朗,(院)真中俊明 36 Al-Cu-Mg系合金の水素挙動/ 茨城大 ○(院)中野貴史,(院)小塚健司,伊藤吾朗,神戸製鋼 中井 学 37 Al-Zn-Mg合金およびAl-Cu-Mg合金における水素侵入挙動/ 茨城大 ○(院)小塚健司,伊藤吾朗,(学)中野貴史,(院)渡壁尚仁,神戸製鋼 中井 学,富山大波多野雄治 38 LPSO相の割合が高いマグネシウム合金の耐	溶解・凝固・鋳造(リサイクル, 新技術) 西田進一(群馬大) 55 簡易選別によるアルミニウムドロス残灰の有効利用/東北大○平木岳人,長坂徹也 56 アルミニウム合金の通孔材の作製/大阪工大 ○羽賀俊雄,(院)豊田健吾 57 スクレイパーを装着した単ロール法による薄板の鋳造/大阪工大 ○羽賀俊雄 58 Al-25%Si合金の半凝固ダイカスト/大阪工	マグネシウム(高機能化) 清水和紀(三協立山) 75 高温プレス及び溶体化処理したAZ91鋳造板材の機械的特性と微細組織/ 首都大学東京 ○(院)三ツ石圭佑, 北薗幸一, (院)北園直樹 76 カーボンブラック添加による AZ91D 射出成形品の強度向上/ 岡山県立大 ○福田忠生, 小武内清貴, (院)赤澤誠一, 尾崎公一 77 蒸気コーティング法によりMg合金上に形成した皮膜中のMg-AI系LDH含有量と耐食性の関係/ 芝浦工大 ○(院)神山直澄, (学)石崎貴裕 78 AI-Si合金粉末によるMg合金鋳造材の表面複合化/ 三重工研 ○金森陽一, 樋尾勝也
10:30~12:10	テーマセッション 「軽金属材料の材料特性および塑性加工技術」 演崎 洋(広島大), 鳥飼 岳(UACJ) 13 【基調講演】曲げ加工性を向上するアルミニ 欠 ウム材の塑性加工技術 / UACJ ○高橋昌 也 14 複素数階微分法によるアルミニウム合金板材の有限要素解析 / 近畿大 ○上森 武, 広島商船高専 瀧口三千弘 15 CO₂レーザマシンを用いたアルミニウム合金板の集合組織制御 / 成蹊大 ○(院)又吉祐子, 酒井孝, アマダ 金英俊, 小山純一 16 圧縮ねじり加工により組織微細化したAl-Fe系合金の据込み性 / 名古屋大 ○久米裕二, (院)内田 圭, 小橋 眞, 金武直幸 17 塑性流動制御によるテーラードブランクの深 絞り性の改善 / 大阪府立産技研 ○田中	カ学特性(水素脆化) 安藤 誠(UACJ) 34 負荷条件を変化させた7075アルミニウム合金の水素放出挙動/ 防衛大 ○山田浩之,(院) 鶴留正樹,(学)川﨑將司,(学) 辻誠心,小笠原永久,大阪大 堀川敬太郎 35 アルミニウム合金中の第二相と水素との関係/茨城大 ○(院)水庭彰,伊藤吾朗,(院)真中俊明 36 Al-Cu-Mg系合金の水素挙動/ 茨城大 ○(院)中野貴史,(院)小塚健司,伊藤吾朗,神戸製鋼中井学 37 Al-Zn-Mg合金およびAl-Cu-Mg合金における水素侵入挙動/ 茨城大 ○(院)小塚健司,伊藤吾朗,(学)中野貴史,(院)渡壁尚仁,神戸製鋼中井学,富山大波多野雄治 38 LPSO相の割合が高いマグネシウム合金の耐水素脆化特性/ 茨城大 ○(院)比佐遼太,(院)國井健生,伊藤吾朗,熊本大山崎	 溶解・凝固・鋳造(リサイクル,新技術) 西田進一(群馬大) 55 簡易選別によるアルミニウムドロス残灰の有効利用/東北大○平木岳人,長坂徹也 56 アルミニウム合金の通孔材の作製/大阪工大 ○羽賀俊雄,(院)豊田健吾 57 スクレイパーを装着した単ロール法による薄板の鋳造/大阪工大 ○羽賀俊雄 58 Al-25%Si合金の半凝固ダイカスト/大阪工大 布施 宏,○羽賀俊雄 	マグネシウム(高機能化) 清水和紀(三協立山) 75 高温プレス及び溶体化処理したAZ91鋳造板材の機械的特性と微細組織/ 首都大学東京 ○(院)三ツ石圭佑, 北薗幸一, (院)北園直樹 76 カーボンブラック添加による AZ91D 射出成形品の強度向上/ 岡山県立大 ○福田忠生, 小武内清貴, (院)赤澤誠一, 尾崎公一 77 蒸気コーティング法によりMg合金上に形成した皮膜中のMg-AI系LDH含有量と耐食性の関係/ 芝浦工大 ○(院)神山直澄, (学)石崎貴裕 78 Al-Si合金粉末によるMg合金鋳造材の表面複合化/ 三重工研 ○金森陽一, 樋尾勝也

第2日目 2014年5月18日(日)

		第2日目 2014年5月18日(日)	
	第5会場(112講義室)	第6会場(111講義室)	第7会場(220講義室)
	形状付与加工(摩擦利用接合)	技術懇談会「フォトニクスを用いた高性能マグネシ	組織制御(時効析出, TEM)
	柴柳敏哉(富山大)	ウム製品のクローズド製造プロセス」	池田賢一(九州大)
	93 アルミニウム合金/熱可塑性プラスチック板材 の異材摩擦撹拌接合/ 宇都宮大 (院)清 水奈緒美, ○高山善匡, 木村隆夫, 山 本篤史郎, 渡部英男	開会の挨拶(9:00~9:05) 堀金属表面処理工業(株) 相良伸幸 司会 広島工業大学 日野 実	122 Al-1.0mass%Mg ₂ Ge合金の時効組織に対するCu、Ag添加の影響/ 富山大 ○(院)松浦圭祐, (院)河合晃弘, (院)渡邊克己, 北陸能開大 池野 進, 富山大 松田健二
	94 継手強度に及ぼすLFW条件の影響/ 日本 軽金属 ○吉田 諒, 堀 久司	「岡山県で実施した高性能マグネサポインプロジェクトの概要」(9:05~9:20) 堀金属表面処理工業(株) 相良伸幸	123 473K時効したAl-1.0mass%Mg ₂ Ge合金の透 過型電子顕微鏡を用いた組織観察/ 富山 大 ○(院)河合晃弘, (院)松浦圭祐, (院)
9:00~10:20		「カーボン強化マグネシウム合金(UH合金) の開発とその特性」(9:20~10:00) (株)STU ○橋本 嘉昭,内山 光,	渡邊克己, 北陸職能開大 池野 進, 富山大 松田健二
	95 ECAP加工材に対する短時間摩擦圧接法の 適応/ 芝浦工大 ○青木孝史朗, (院)肥 澤拓也, 神岡英介, 日本大 加藤数良, (院)菅谷 樹	岡山県工業技術センター 水戸岡豊,村上 浩二 広島工業大学 日野 実 岡山理科大学 金谷輝人	124 遷移金属を微量添加したAl-Mg-Si合金の時 効析出組織のTEM観察/ 富山大 ○(院) 西窪真也, (院)大江喜久, (院)丸野 瞬, (院) 肥田慎太郎, (院)渡邊克己, 松田 健二, 東北大 中村純也, 北陸職能開大
	96 溶接部の品質に及ぼすボビンFSW条件の影響/ 日本軽金属 ○瀬尾伸城, 堀 久司	「レーザ光を利用した市中スクラップのリサイクル」(10:00~10:20) 岡山県工業技術センター 水戸岡 豊 (株)STU ○橋本 嘉昭、内山 光 広島工業大学 日野 実	池野 進 125 Al-Mg-Si系合金の曲げ加工性に及ぼす時 効析出物分布状態の影響/UACJ ○中西 英貴, 浅野峰生, 吉田英雄
		11.75 (10.00)	
	た F 人相 (4.4.0 = サギウ)	休憩(10:20~10:30)	**** **** **** *** **
	第5会場(112講義室) 形状付与加工(圧接)	第6会場(111講義室) 技術懇談会「フォトニクスを用いた高性能マグネシ	第7会場(220講義室) 組織制御(集合組織)
	が低い子加工(圧接) 吉野路英(三菱アルミ)	ウム製品のクローズド製造プロセス」	粗概前脚(集百粗概) 浅野峰生(UACJ)
	97 電磁圧接により作製したAl/Cu接合板の界面 組織観察/ 千葉大 〇糸井貴臣, (院)森 本啓太, 都立産業技術高専 岡川啓吾		126 純アルミニウムの圧縮変形による蓄積ひずみ と結晶方位の関係/ 宇都宮大 ○高山善 匡, (院)吉村俊彦, 渡部英男
	98 爆発圧接したAl/Cu接合材の波状界面形成 挙動の数値解析/ 東京工大 ○(院)西脇 淳人, (院)相澤祐輔, 原田陽平, 熊井真 次	広島工業大学 日野 実 岡山理科大学 金谷輝人	127 1050アルミニウムにおける表面集合組織/ 兵庫県立大 〇山本厚之
10:30~12:10	99 冷間圧延によって接合したAl/Cuクラッド材の 接合メカニズム/ UACJ ○藤岡和宏, 浅 野峰生, 船戸 寧	「マグネシウム製電子機器筐体のレーザハイブリッド処理」(11:00~11:30) (株)藤岡エンジニアリング 西本克治 岡山県工業技術センター 水戸岡 豊、村 上浩二 広島工業大学 ○日野 実	128 放射光三次元計測による局所ひずみを考慮 した変形集合組織形成シミュレーション/ 豊橋技科大 〇小林正和, (学)河野亜耶, 三浦博己
	100 高速固相接合したSS400スタッドと5052アルミニウム合金板の接合強度と界面組織/ 東京工大 ○(院)山田洋希, 原田陽平, 熊井真次	「マグネシウム合金のトライボコーティングなら びに着色技術, 難燃マグネシウム合金への 表面処理」(11:30~12:10) 広島工業大学 ○日野 実	129 5052アルミニウム合金の引張試験による集合 組織の変化/ 日本軽金属 〇白井孝太, 岡田 浩, 穴見敏也, 土田孝之
		堀金属表面処理工業(株) 相良伸幸 岡山県工業技術センター 村上浩二 岡山理科大学 金谷輝人	130 Bulk Texture Measurement of AZ31 Magnesium Alloy with iMATERIA / 原子力機構 ○徐平光, 茨城大 星川晃範
	昼食(12:10~13:00) / 若手の会(工学部109講義室, 11:50~13:00)	総合討論(12:10~12:30) 司会 岡山理科大学 金谷輝人	昼食(12:10~13:00) / 若手の会(工学部109講義室, 11:50~13:00)

第2日目 2014年5月18日(日)

	第1会場(117講義室)	第2会場(116講義室)	第3会場(115講義室)	第4会場(114講義室)		
	テーマセッション	組織制御(加工, 時効析出)	組織制御(鋳造合金, 測定, 時効析出)	粉末冶金(粉末•焼結)		
	「軽金属材料の材料特性および塑性加工技術」					
	中 哲夫(弓削商船高専), 上森 武(近畿大)	小林郁夫(東京工大)	高木康夫(神戸製鋼)	松木一弘(広島大)		
13:00~14:40	18【基調講演】高比強度·高成形性軽金属板材 / 大阪府大 〇井上博史	39 加工後に473Kで時効した過剰Mg型Al-Mg-Si合金の時効析出物に対するTEM観察/富山大 ○(院)小川友里恵, (院)丸野 瞬,松田健二, 北陸職能開大 池野 進,YKK 吉村泰治,喜多和彦	59 画像処理によるAl-Si鋳造合金の組織評価/ 広島大 ○杉尾健次郎, (院)古川章太, 佐々木元, 広島アルミ 田畑潤二	80 放電プラズマ焼結法によるTiO ₂ /Ti6Al4V合金焼結接合材の製造と組織/ 長岡高専○青柳成俊, (学)高野紘彰		
	19 張出し試験によるアルミニウム合金板の温間 成形限界線図の取得/ 広島大 ○濱崎 洋, 吉田総仁, マツダ 西口勝也, UACJ 鳥飼 岳	40 HPT加工を施したCu添加した過剰Mg型Al-Mg ₂ Si合金の時効硬化挙動/ 富山大 ○ (院)丸野 瞬, (院)渡邊克己, 松田健二, 才川清二, 横浜国立大 廣澤渉一, 九州 大 堀田善治, 李昇原, 京都大 寺田大 将	60 Al-Zn-Mg系高力合金鋳物の組織と時効硬化特性におよぼすCu含有量の影響/ 富山大 (院)古田貴哉, (院)青島剛士, (院)香村祥太, ○才川清二, 寺山清志, 北陸職能開大 池野 進, 石川県工試 藤井要, 谷田合金 駒井公一	81 MM-SPSプロセスで作製したチタン基蓄光ク ラッド材の特性/ 日本大 ○(院)池谷 洵, 久保田正広, 内田 暁		
	20 6次降伏関数によるアルミニウム合金板の異 方性の表現/ 広島大 〇(院)長谷川博生, 濱崎 洋, 吉田総仁	41 HPT加工を施したAl-Zn-Mg-(Cu)合金の機械的特性/ 筑波大 ○(院)宮脇 崇, NIMS 土谷浩一, 井誠一郎	61 T6熱処理したAl-7%Si-0.3%Mg系合金の二段 時効挙動/ 富山大 ○(院)香村祥太, オ 川清二, 松田健二, 寺山清志, 北陸職 能開大 池野 進, アーレスティ 柳原恵 美, 折井 晋, 武田 秀			
	21 二軸応力試験による6000系アルミニウム合金 板の材料モデリングと液圧バルジ成形シミュ レーション/ 東京農工大 〇(学)森 崇 裕, (院) 川口順平, UACJ 浅野峰生, 上間直幸, 東京農工大 桑原利彦	42 衝撃圧縮後に室温予備時効を施した6061アルミニウム合金の時効硬化挙動/ 大阪大 ○小椋 智, (院)木谷祐貴, 堀川敬太郎, 廣瀬明夫, 小林秀敏	62 673Kで時効した貴金属添加Al-Mg-Si合金の粗大な析出物の形態観察/ ○(院)肥田慎太郎, 北陸職能開大 池野 進, 富山大 松田健二,	83 金属粉末レーザ積層造形により作製したAl- 10%Si-0.3%Mg合金の組織と機械的性質/ 大阪府立産技研 ○木村貴広, 中本貴之		

	第5会場(112講義室)	第6会場(111講義室)	第7会場(第7会場)
	形状付与加工(熱利用・穴あけ) 高山善匡(宇都宮大)		組織制御(時効析出, TEM) 鈴木健太(日本軽金属)
	101 Mg添加した自動車熱交換器用材料のろう付加熱後のクリープ挙動/ UACJ ○安藤誠, 鈴木義和, 茨城大 伊藤吾朗		131 Al-Mn系合金H1n材の伸びに及ぼす熱処理 条件の影響/ 三菱アルミ ○吉野路英, 岩尾祥平, 江戸正和
	102 Al-Fe合金のレーザ溶接部金属組織に及ぼ す溶接条件の影響/ UACJ ○蓬田翔平, 熱田 賢, 鈴木義和		132 3004合金の熱間加工後の再結晶挙動/ UACJ ○玉田裕子, 浅野峰生, 吉田英 雄
13:00~14:40	103 ブレージングシートのろう溶融・流動挙動/ 三菱アルミ ○江戸正和, 齊藤 洋, 吉野 路英		133 Effects of Mn containing intermetallic compounds and Mn solute atoms on the recrystallization behavior of an Al-Mn alloy / 東京工大 ○(院)李 瑢哲,東京工大小林郁夫,里 達雄
	104 ブレージングシートのろう溶融・流動シミュ レーション/ 三菱アルミ ○齊藤 洋, 江 戸正和, 吉野路英		134 3004アルミニウム合金の再結晶挙動に及ぼ す均質化処理条件の影響/ 東京工大 ○ (院)中安広樹, 小林郁夫, 里 達雄
	105 複合砥粒を用いたAl-Ti系メタルボンド傾斜機能砥石によるCFRP穴あけ加工/ 名古屋工大 (院)谷口和也, ○佐藤 尚, 渡辺義見, 岐阜県セラ研 倉知一正, 岐阜県工技研 柘植英明		

第1日目 2014年5月17日(土)

ポスターセッション(大学会館 大集会室) (13:00~14:30)									
P1	セミソリッドスラリーの発泡を用いて作製したポーラスA2024合金の圧縮特性/早稲田大 〇(学)齊藤瑞樹,(院)福井貴明,鈴木進補	P8	AI陽極酸化皮膜の健全性に及ぼ す結合水量の影響/ 関西大 ○(院)池田貴勇, 春名 匠		大阪工大 〇(院)川窪俊行, 羽 賀俊雄		摩擦圧接によるADC12ポーラスアルミニウム/A1050薄肉パイプ複合部材の作製/ 群馬大 ○中野ゆき子, (院) 齋藤雅樹, 半谷禎彦, 芝浦工大 宇都宮登雄,福井大 桑水流理, 東京大生研吉川暢宏, ホクダイ 北原総一郎		理したAZ91鋳造板材の微細組織 変化/ 首都大学東京 ○(院)北 園直樹, 北薗幸一, (院)三ツ 石圭佑
P2	角筒深絞りによる純チタン薄板の 成形性/ 兵庫県立大 ○(学)上 山 穣, 原田泰典	P9	Al-Mg固溶体の熱間延性に関するMn, Crの添加効果/ 香川高専 ○(専)川崎健太郎, 伊藤勉	P16	Al-30vol%SiCp板の双ロールキャスティング/ 大阪工大 ○(院)和田翔太, 羽賀俊雄		摩擦粉末焼結法によるダイカスト 用アルミニウム合金ADC6ポーラス Alの作製/ 群馬大 ○石原綾 乃, (院)圖子田幸佑, 半谷禎 彦, 芝浦工大 宇都宮登雄, 福井大 桑水流理, 東京大生研 吉川暢宏, ホクダイ 北原総一郎	P30	Ti-Zr合金の再結晶挙動に及ぼす Zr添加量の影響/ 長岡技科大 ○(院)又吉勇介, 本間智之
P3	アルミニウムの作製/ 大阪府大 ○(院)松井 功, (院)小野 聡, (院)花岡雄大, 瀧川順庸, 上 杉徳照, 東 健司	P10	合継手の機械的性質および力学 的特性に及ぼす初期条件の影響 / 日本大 ○(院)谷 亮輔, (院)荒深純一, 加藤数良, 野 本光輝		AZ31マグネシウム合金板材の腐食挙動/ 山梨大 ○(院)征矢裕貴, 吉原正一郎, (院)大村優輝, DCU BryanMacDonald		航空機用アルミニウム合金の疲労 き裂進展挙動に及ぼす環境の影響/ 茨城大 〇(院)山田隆一, (学)石澤真悟, 伊藤吾朗, 車 田 亮, 神戸製鋼 中井 学		二段時効を施したAl-Mg-Si- (Cu/Ag)合金における時効組織の TEM観察/ 富山大 ○(院)大江 喜久,(院)西窪真也, 松田健 二,東北大学 中村純也,北 陸職能力大 池野 進
P4	Influence of Mg/Si ratio and step- quenching on nanocluster formation in Al-Mg-Si alloys/ 東京工大 ○(院)金聖寧,小林 郁夫,里達雄	P11	加工熱処理によるMg-Al-Ca-Mn 合金押出し板材の集合組織制御 / 長岡技科大 ○(院)田中祐 輔, 鎌土重晴, 三協立山 松 本泰誠, 清水和紀, 花木 悟	P18	Mg-Al-Ca-Mn系希薄合金押出し 材の機械的性質に及ぼす合金元 素の影響/ 長岡技科大 ○(院) 中田大貴, (院)山中宏介, (学) 安嶋龍太, 鎌土重晴, 三協立 山 花木 悟, 清水和紀, 松本 泰誠	P25	Unique mechanical behavior of Ti-29Nb-13Ta-4.6Zr alloy containing oxygen/ 東北大 ○ (院)叢 欣, 新家光雄, 稗田純 子, 仲井正昭, 趙 研	P32	2024アルミニウム合金小径丸棒を 用いた摩擦圧接/ 日本大 ○ (院)浅野裕紀, (院)荒深純一, 野本光輝, 加藤数良
P5	アルミニウム合金における無電解 Ni-Pめっき皮膜の密着性に及ぼす亜鉛置換液の影響/ 岡山理 科大 〇(院)永田教人, 金谷輝 人, サーテック永田 山西琢磨, 井端千恵, 岡山工技セ 村上浩 二, 広島工業大 日野 実	P12	1070アルミニウムとSUS304ステンレス鋼のマイクロ摩擦圧接継手の機械的性質/ 日本大 ○(院)入江彬裕, 野本光輝, 加藤数良, 日東制機 背尾直彦	P19	Mg-Al-Ca-Mn系合金押出材の組織および機械的性質に及ぼすRE置換の影響/ 長岡技科大 ○ (院)山中宏介, 徐 超, 神戸製鋼 浅川亮史, 長岡技科大 鎌土重晴		7150アルミニウム合金の力学的特性におよぼす水素ミクロポアの影響/ 九州大 ○(学)佐々木勝郎, 戸田裕之, UACJ 坂口信人, 渡辺良夫, JASRI 上杉健太朗, 竹内晃久, 鈴木芳生	P33	3Dイメージベースシミュレーションよるアルミニウム合金の延性破壊解析/ 九州大 ○(学)栗野貴輝, 戸田裕之, 細川明秀, JASRI 上杉健太郎, 鈴木芳生, 竹内晃久
P6	3003アルミニウム合金とアクリルの 重ね摩擦攪拌接合継手の機械的 性質/ 日本大 〇(院)小澤崇 将, 加藤数良, 野本光輝		における長期負荷割れ試験時の き裂進展挙動/ 茨城大 ○(院) 寺田将也, 伊藤吾朗, 車田 亮		アンモニア製造プロセス/ 東北 大 ○(院)金森 毅, 平木岳人, 長坂徹也		箔材の摩擦撹拌拡散接合に及ぼ す接合条件の影響/ 宇都宮大 ○(院)澤田明典, 高山善匡, 山本篤史郎, 渡部英男	P34	横型タンデム双ロールキャスター で製造したAl/Mg/Alクラッド材の 接合界面と微細組織/群馬大 ○(学)赤池勇樹, (院)李華君, 原田英人, 富山県立大 鈴木真 由美, 群馬大 西田進一, 渡 利久規
P7	電解水素チャージによるA6061- T6材への水素吸蔵が引張り特性 に及ぼす影響/ 上智大 ○ (学)川島 健, 鈴木啓史, 高 井健一	P14	シンクロLPSO型マグネシウム合金 の水素脆化に及ぼす α-Mg相の 影響/ 茨城大 ○(院)國井健 生, (院)比佐遼太, 伊藤吾 朗, 熊本大 山崎倫昭, 河村 能人	P21	アルミニウムドロスの生成過程に おけるAl-Mg合金表面酸化物層 の影響/ 東北大 〇(院)田代峻 也, 平木岳人, 長坂徹也		Mg-La-Zr合金の変形組織/ 千 葉工業大 ○橘木順二, 田村洋 介		