Аппроксимация Фогеля

Материал из Викиучебника — открытых книг для открытого мира

При определении опорного плана транспортной задачи методом аппроксимации Фогеля на каждой итерации по всем столбцам и по всем строкам находят разность между двумя записанными в них минимальными тарифами. Эти разности записывают в специально отведенных для этого строке и столбце в таблице условий задачи. Среди указанных разностей выбирают максимальную. В строке (или в столбце), которой данная разность соответствует, определяют минимальный тариф. Клетку, в которой он записан, заполняют на данной итерации. Если минимальный тариф одинаков для нескольких клеток данной строки (столбца), то для заполнения выбирают ту клетку, которая расположена в столбце (строке), соответствующем наибольшей разности между двумя минимальными тарифами, находящимися в данном столбце (строке).

Содержание

Пример

Решение

См. также

Литература

Пример

Используя метод аппроксимации Фогеля, найти опорный план транспортной задачи, исходные данные которой приведены в таблице (опорный план этой задачи ранее был найден методом минимального элемента).

Пункты отправления	Пун	(ТЫ Н	Запасы		
	B1	B2	В3	B4	
A1	7	8	1	2	160
A2	4	5	9	8	140
A3	9	2	3	6	170
Потребности	120	50	190	110	470

Решение

Для каждой строки и столбца таблицы условий найдем разности между двумя минимальными тарифами, записанными в данной строке или столбце, и поместим их в соответствующем дополнительном столбце или дополнительной строке таблица ниже.

Пункты отправления	Пункты назначения			Запасы	Разности по строкам						
	В1	В2	В3	В4							
A1	7	8	1	2	160	1	6	-	-	-	-

A2	4	5	9	8	140	1	1	1	1	1	0
A3	9	2	3	6	170	1	1	1	7	-	-
Потребности	120	50	190	110	470						
Разности по столбцам	3	3	2	4		-					
	3	3	2	-							
	5	3	6	-							
	5	3	-	-							
	0	0	-	-							
	-	0	-	-							

Так, в строке А2 минимальный тариф равен 4, а следующий за ним равен 5, разность между ними 5-4=1. Точно так же разность между минимальными элементами в столбце В4 равна 6-2=4. Вычислив все эти разности, видим, что наибольшая из них соответствует столбцу В4. В этом столбце минимальный тариф записан в клетке, находящейся на пересечении строки А1 и столбца В4. Таким образом, эту клетку следует заполнить. Заполнив ее, тем самым мы удовлетворим потребности пункта В4. Поэтому исключим из рассмотрения столбец В4 и будем считать запасы пункта А1 равными 160—110=50 ед. После этого определим следующую клетку для заполнения. Снова найдем разности между оставшимися двумя минимальными тарифами в каждой из строк и столбцов и запишем их во втором дополнительном столбце и во второй дополнительной строке таблицы. Как видно из этой таблицы, наибольшая указанная разность соответствует строке A1. Минимальный тариф в этой строке записан в клетке, которая находится на пересечении ее с столбцом ВЗ. Следовательно, заполняем эту клетку. Поместив в нее число 50, тем самым предполагаем, что запасы в пункте А1 полностью исчерпаны, а потребности в пункте В3 стали равными 190-50=140 ед. Исключим из рассмотрения строку А1 и определим новую клетку для заполнения. Продолжая итерационный процесс, последовательно заполняем клетки, находящиеся на пересечении строки А3 и столбца В3, строки А3 и столбца В2, строки А2 и столбца В1, строки А2 и столбца В2. В результате получим опорный план:

$$X = \left(egin{array}{cccc} 0 & 0 & 50 & 110 \ 120 & 20 & 0 & 0 \ 0 & 30 & 140 & 0 \end{array}
ight)$$

При этом плане общая стоимость перевозок такова:

$$S = 1 \times 50 + 2 \times 110 + 4 \times 120 + 5 \times 20 + 2 \times 30 + 3 \times 140 = 1330$$
.

Как правило, применение метода аппроксимации Фогеля позволяет получить либо опорный план, близкий к оптимальному, либо сам оптимальный план. Кстати, найденный выше опорный план транспортной задачи является и оптимальным.

См. также

- Линейное программирование
- Транспортная задача

Литература

■ *Акулич И.Л.* Математическое программирование в примерах и задачах. — М.: <u>Высшая</u> школа, 1986. — 319 с. — ISBN 5-06-002663-9

Источник — https://ru.wikibooks.org/w/index.php?title=Аппроксимация_Фогеля&oldid=150307

Эта страница в последний раз была отредактирована 20 ноября 2018 в 07:01.

Текст доступен по лицензии Creative Commons Attribution-ShareAlike, в отдельных случаях могут действовать дополнительные условия. Подробнее см. Условия использования.