ECON408: Assignment 0

Jesse Perla, UBC

Setup

- 1. Install Julia (with Jupyter and/or VS Code as you wish) and git.
 - See here for very instructions and links.
 - VS Code is optional but recommended.
 - Installing Conda with Jupyter is also optional if you use VS Code, but recommended
- 2. Clone the repository for the lecture notes
 - Either in VS Code with the > Git: Clone or using git directly: git clone https://github.com/quantecon/lecture-julia.notebooks

Q1

Create a new Jupyter notebook in Julia with the following:

- 1. A markup cell with some math text with the Pythagorean theorem (e.g. $x^2 + y^2 = z^2$)
- 2. A function which which takes the sides of the rectangle and calculates the hypotenuse (i.e., code up $z(x,y) = \sqrt{x^2 + y^2}$)
- 3. Calculate z(3,4)

Q2

Plot $f(x) = x^2$ for a grid of 20 points of $x \in [0,1]$. You can make a grid with range(0, 1, 20)

Q3

Write a function that draws a 100 random normal variables (use randn(100)) and manually calculates the mean and variance. By manually I mean using sums/etc. to implement the standard formulas for mean and variance of your choosing.

Q4

Take the following stochastic process

$$x_{t+1} = \mu x_t + \sigma w_{t+1}$$

where $w_{t+1} \in N(0,1), \sigma = 0.1$, and $\mu = 1$.

Let $x_0=0$ and T=20. Use a for loop to simulate $\{x_0,\dots x_T\}$ drawing a random normal with randn() for each time step.

Plot $\{x_0, \dots x_T\}$ adding on a legend, title, xlabel, and ylabel. For the x-axis you can just use 0:T or something like that (careful to align the length of your simulation) or feel free to skip the labeling of the first point at t=0 (e.g. plot(x) it will plot with a 1, 2, ...N on its axis if x is a vector of length N)