IN THE CLAIMS

Please amend the claims as follows:

1.(Currently Amended) A method comprising:

serializing an N-bit data to generate a digital voltage sequence;

converting the digital voltage sequence to a first current signal having an adjustable bias mode and a separately adjustable modulation mode, wherein said modulation mode is controlled by a modulation control circuit and said bias mode is controlled by a separate bias control circuit wherein said conversion of the digital voltage sequence comprises using a buffered level shifter circuit to shift an input voltage of a modulation circuit to a first voltage level to generate a current of the modulation mode, and to shift the input voltage of the modulation circuit to a second voltage level to generate a current of the bias mode;

driving a first laser using said first current signal to generate a first optical signal transmission;

converting a second optical signal reception into a first single-ended voltage signal;

complimentary coupling said first single-ended voltage signal with a second single-ended voltage signal to generated a differential data voltage signal; and

resistively coupling said first and second single-ended voltage signals to attenuate a common signal noise.

(Original) The method of Claim 1 further comprising:

generating a digital clock signal;

using the digital clock signal to generate the digital voltage sequence from the N-bit data; converting the digital clock signal to a second current signal having an adjustable bias mode and an adjustable modulation mode;

driving a second laser using said second current signal to generate a third optical signal transmission

- 3. (Original) The method of Claim 2 further comprising: adjusting said modulation mode of the second current signal.
- 4. (Original) The method of Claim 3 further comprising; adjusting said bias mode of the second current signal.
- 5. (Original) The method of Claim 2 further comprising:

converting the third optical signal reception into a third single-ended voltage signal;

complimentary coupling said third single-ended voltage signal with a fourth single-ended voltage signal to generate a differential clock signal; and

recovering the digital clock signal from the differential clock signal.

(Original) The method of Claim 5 further comprising:

generating a plurality of clock phases from the differential clock signal in a delay locked loop; and interpolating the plurality of clock phases to align a clock edge of the digital clock signal with respect to the differential data voltage signal.

AMENDMENT AND RESPONSE UNDER 37 CFR § 1.111

Serial Number: 10/816,026

Filing Date: March 31, 2004 Title: METHOD AND APPARATUS FOR OPTICAL SIGNALING Page 4 Dkt: P17342/0014 0260000

7. (Original) The method of Claim 1 further comprising: adjusting said modulation mode of

the first current signal by setting one or more modulation control inputs.

(Original) The method of Claim 1 further comprising:

adjusting said bias mode of the first current signal by setting one or more bias control inputs.

(Currently Amended) An optical transmitter comprising:

a phase locked loop circuit to generate a clock signal;

a serializer circuit to receive the clock signal and to convert an N-bit data to a digital

voltage sequence;

a laser driver having a bias control and a modulation control distinct from said bias control,

said laser driver to receive the digital voltage sequence and to generate a current signal having

a bias mode adjustable by a bias control circuit and a modulation mode separately adjustable

by a modulation control circuit that is distinct from said bias control circuit, $\underline{\text{wherein said laser}}$

driver comprises a buffered level shifter circuit configured to shift an input voltage of a modulation circuit to a first voltage level to generate a current of the modulation mode, and to

shift the input voltage of the modulation circuit to a second voltage level to generate a current

of the bias mode; and

a laser to generate an optical signal responsive to the current signal of the laser driver.

10. (Currently Amended) The optical transmitter of Claim 9 further comprising: a wherein

said buffered level shifter circuit is tunable through k+1 control signals to shift an input of the

laser driver to a controlled voltage level at a controlled rate and with adjustable impedance

responsive to a transition of said digital voltage sequence.

11. (Currently Amended) The optical transmitter of Claim 10, said laser driver further modulation circuit comprising:

a CMOS modulation circuit having a pMOSFET, a first nMOSFET and a second nMOSFET, the CMOS modulation circuit to cause the current signal of the modulation mode to flow from a laser power source through the first nMOSFET and second nMOSFET responsive to the input of the laser driver being shifted to a first voltage level, and to cause the current signal of the bias mode to flow from the laser power source through the bias control when another current flows from a second power source through the pMOSFET responsive to the input of the laser driver being shifted to a second voltage level.

- 12. (Original) The optical transmitter of Claim 11 wherein an input gate of the third nMOSFET is coupled with the second power source to reduce an overshoot of the current signal.
- 13. (Original) The optical transmitter of Claim 10 further comprising:
- a plurality of capacitors coupled with the bias control to reduce a frequency dependent component of impedance.
- 14. (Withdrawn) The optical transmitter of Claim 9 wherein the laser driver is a CMOS circuit.
- (Withdrawn) The optical transmitter of Claim 14 wherein the laser is a VCSEL diode.
- 16. (Withdrawn) The optical transmitter of Claim 9 wherein adjusting the modulation mode of the current signal is accomplished by setting one or more inputs of the modulation control.
- 17. (Withdrawn) The optical transmitter of Claim 9 wherein adjusting the bias mode of the current signal is accomplished by setting one or more inputs of the bias control.

(Currently Amended) An optical receiver comprising:

a first photo-detector to receive a first optical signal and to generate a first current signal;

a first transimpedance amplifier circuit to convert the first current signal to a first

differential voltage signal, wherein the first transimpedance amplifier circuit is configured to produce a differential voltage and is further configured to difference the components of the

differential voltage to produce said first differential voltage signal wherein the first

differential voltage to produce said first differential voltage signal wherein the first

transimpedance amplifier comprises three stage pairs, where each pair comprises two inverter amplifiers, and where the two inverter amplifiers of the second stage pair are resistively cross

coupled;

a clock recovery circuit having a phase interpolator to generate an aligned clock signal for

said first differential voltage signal;

a sampler circuit to receive the aligned clock signal and to receive the differential voltage

signal and to generate a digital voltage sequence; and

a descrializer circuit to receive the digital voltage sequence and to generate an N-bit data.

19. (Withdrawn) The optical receiver of Claim 18 wherein said first transimpedance

amplifier circuit complimentary couples a first single-ended voltage signal corresponding to the first current signal with a second single-ended voltage signal to generated said first

the first current signal with a second single-ended voltage signal to generated said first

differential voltage signal, and resistively couples said first and second single-ended voltage

signals to attenuate a common signal noise.

20. (Withdrawn) The optical receiver of Claim 19, said first transimpedance further

comprising:

a differential impedance matching capacitor to provide an input impedance for the second

single-ended voltage signal to match a package trace impedance corresponding to the first

photo-detector.

21. (Original) The optical receiver of Claim 18 further comprising:

a second photo-detector to receive a second optical signal and to generate a second current signal:

a second transimpedance amplifier circuit to convert the second current signal to a differential clock signal;

said clock recovery circuit having said phase interpolator to generate the aligned clock signal for said first differential voltage signal from the differential clock signal.

22. (Original) The optical receiver of Claim 21 further comprising:

a delay locked loop to generate a plurality of clock phases from the differential clock signal; and

said phase interpolator to generate the aligned clock signal from the plurality of clock phases.

23. (Currently Amended) An optical signaling system comprising:

a laser driver having a bias control and a modulation control separate from said bias control, said laser driver to receive a first digital voltage sequence and to generate a first current signal having a bias mode adjustable by a bias control circuit and a modulation mode adjustable by a modulation control circuit separate from said bias control circuit, wherein said laser driver comprises a buffered level shifter circuit configured to shift an input voltage of a modulation circuit to a first voltage level to generate a current of the modulation mode, and to shift the input voltage of the modulation circuit to a second voltage level to generate a current of the bias mode;

a laser to generate a first optical signal responsive to the first current signal of the laser driver:

Serial Number: 10/816,026 Filing Date: March 31, 2004

Title: METHOD AND APPARATUS FOR OPTICAL SIGNALING

Page 8

a first photo-detector to receive a second optical signal and to generate a second current signal;

a first transimpedance amplifier circuit to convert the second current signal to a first differential voltage signal:

a clock recovery circuit having a phase interpolator to generate an aligned clock signal for said first differential voltage signal; and

a sampler circuit to generate a second digital voltage sequence responsive at least in part to the aligned clock signal and the first differential voltage signal.

- 24. (Currently Amended) The optical signaling system of Claim 23 further comprising: wherein said buffered level shifter circuit is a tunable buffered level shifter to shift an input of the laser driver to a controlled voltage level responsive to a transition of said first digital voltage sequence.
- 25. (Withdrawn) The optical signaling system of Claim 23, said laser driver further comprising: a CMOS modulation circuit having a pMOSFET, a first nMOSFET and a second nMOSFET, the CMOS modulation circuit to cause the first current signal in the modulation mode to flow between the laser, the first nMOSFET and the second nMOSFET responsive to the input of the laser driver being shifted to a first voltage level, and to causes the first current signal in the bias mode to flow between the laser and the bias control when another current flows through the pMOSFET responsive to the input of the laser driver being shifted to a second voltage level.

26. (Withdrawn) The optical signaling system of Claim 25 wherein an input gate of the third nMOSFET is to reduce an overshoot of the first current signal.

The optical signaling system of Claim 23 wherein the laser is a VCSEL 27. (Withdrawn) diode

The optical signaling system of Claim 23 wherein adjusting the 28. (Withdrawn) modulation mode of the current signal is accomplished by setting one or more inputs of the modulation control.

29. (Withdrawn) The optical signaling system of Claim 23 wherein adjusting the bias mode of the current signal is accomplished by setting one or more inputs of the bias control.

30. (Withdrawn) The optical signaling system of Claim 23 wherein said first transimpedance amplifier circuit complimentary couples a first single-ended voltage signal corresponding to the first current signal with a second single-ended voltage signal to generated said first differential voltage signal, and resistively couples said first and second single-ended voltage signals to attenuate a common signal noise.

31. (Withdrawn) The optical signaling system of Claim 30, said first transimpedance amplifier further comprising: a differential impedance matching capacitor to provide an input impedance for the second single-ended voltage signal to match a package trace impedance corresponding to the first photo-detector.

32. (Original) The optical signaling system of Claim 23 further comprising:

a second photo-detector to receive a third optical signal and to generate a third current signal;

a second transimpedance amplifier circuit to convert the third current signal to a differential clock signal:

Filing Date: March 31, 2004
Title: METHOD AND APPARATUS FOR OPTICAL SIGNALING

Page 10 Dkt: P17342/0014.0260000

said clock recovery circuit having said phase interpolator to generate the aligned clock signal for said first differential voltage signal from the differential clock signal.

33. (Original) The optical signaling system of Claim 32 further comprising:

a delay locked loop to generate a plurality of clock phases from the differential clock signal; and

said phase interpolator to generate the aligned clock signal from the plurality of clock phases.