



# 分布式控制系统 总线通信及诊断功能的开发与测试

Vector&恒润联合演示会•北京 2011-07-12





#### 内容目录

- □分布式控制总线系统概述
- □总线系统开发与测试流程
- □诊断功能开发及测试流程
- □应用案例及恒润服务





# 汽车的发展







## 汽车电子的发展

□ 乘用车: 高级车80多个ECU, 中级车30多个

□ 商用车: 5~30个ECU





#### 节点间通信方式-点对点

- □一个信号 = 一条导线 + 两个接口(I/0)
  - □简单直接的解决方式

#### □缺点明显

- □系统复杂,易于出错 → 降低了可靠性
- □线束增加 →空间、重量、成本上升
- □有限的1/0数量 → 需求受限
- □无法实现 标定、诊断等功能







## 节点间通信方式-总线

- □所有ECU共享总线信息
  - □广播发送
  - □可选择性接收
- 口优点明显
  - □降低了成本
  - □降低了空间需求和重量
  - □降低了复杂度,提高了可靠性
  - □可实现在线诊断、配置和重编程







# CAN总线在车辆领域的应用

## 口广泛应用于各种车辆

- □乘用车
- □商用车
- □特种车辆
- □工程机械

## □形成标准化的高层协议

- □商用车通信协议 J1939
- □诊断相关协议 ISO-15765/14229
- □网络管理协议 OSEK-NM
- □标定协议 CCP
- □...











#### CAN总线在其它领域的应用





## 车辆网络发展现状

- □当前的车用总线
  - □ CAN

  - **□** FlexRay
  - **MOST**
  - **■** Ethernet

带宽









成本





## 典型汽车网络拓扑结构







#### 内容目录

- □分布式控制总线系统概述
- □总线开发流程及工具平台
- □诊断功能开发及测试流程
- □应用案例及恒润服务





## 总线开发流程







# 总线开发流程







#### 网络协议制定

- □通信协议定义工具
  - **Network Designer**
  - □定义网络拓扑
  - □定义ECU属性
  - 口定义信号量
  - 口定义报文结构
  - □定义收发关系
  - □定义时序
  - 口一致性检测









#### 通信数据库的核心作用

#### □通信协议数据库,用于支持后续开发及测试工作







## 总线开发流程







#### 网络建模和仿真验证

- □全网络仿真验证
  - □ CANoe及各种插件
  - □建立仿真环境
  - □Simulink联合仿真
  - □报文记录、分析
  - □总线负载、时间特性
  - □节点功能特性
  - □网关功能确定
  - □系统验证、优化







#### 网络建模和仿真验证

- □总线系统开发三阶段
  - □建模+全软仿真
  - □残余总线仿真、测试
  - □真实总线验证











# 总线开发流程







#### 基础软件代码实现

- □ osCAN
  - □ 符合OSEK标准的嵌入式实时操作系统
- □ CANbedded
  - □ CAN/J1939/LIN/FlexRay通信协议栈代码
- **□** Flash Bootloader
  - □ 基于CAN/LIN/FR的节点在线编程服务程序
- **□ MICROSAR** 
  - □ AUTOSAR源代码
- **□ CANopen** Source Code
  - □ CANopen源代码











### 总线开发流程







- □物理层测试
  - □ 总线接口卡、总线示波器
- □基本通信测试
  - □ CANoe、CANalyzer
- □通信容错测试
  - □ 总线干扰仪
- □测试过程及数据记录
  - □ 总线记录仪
- □通信及I/O信号一致性测试
  - □ I/O接口板卡







- □总线接口卡
  - □ CAN/LIN接口卡
  - □ FlexRay接口卡
  - □ MOST接口卡
- □支持各种物理层接口
  - □ CAN(高速、低速容错、单线)
  - □ LIN (12V, 24V)
  - □ FlexRay (2.5M、5M、10M)
  - □ MOST (25M、150M)

















- □ CAN总线示波器(CANscope)
- ロ 灵活的触发方式
- □ 图形显示电平序列
- □ 评价物理电平品质
- □ 支持CANdb数据库
- □ CAN报文位场解析
- 口 位时间眼图分析









- □LIN总线示波器(LINscope)
- □ 图形显示窗口集成在CANoe/CANalyzer
- □ 时钟同步的跟踪和图形窗口
- □ 灵活的触发条件和协议解码











- □ CAN总线干扰仪(CANstress)
- □ FlexRay总线干扰仪(FRstress)
- □ 灵活的干扰触发方式
- □ 数字干扰与模拟干扰
- □ 支持CANdb/Fibex数据库











- □ CAN/LIN/FlexRay总线记录仪 (GL1000/GL1010/GL3000/GL3100/GL3200/GL4000/GL4200)
- □ 最高8路CAN, 2路LIN, 1路FlexRay
- □ 数字输入/出,模拟输入
- □ 可以通过USB/EtherNet/WLAN/3G跟上位机通信
- □ 图形化配置界面
- □ 支持通信数据库
- □ IP65防护等级(GL1010)





Logging CAN, LIN and FlexRay buses with the GL4000 (supplement function keys for external triggers)





# I/O测试接口

#### □硬件组成

- □ VT system
- □测量模块
- □激励模块
- □模拟负载
- □ 故障注入
- □电源管理模块
- □ 处理器模块

#### □软件环境

- □ 与CANoe无缝集成
- □ TAE开发测试用例
- □ 可软件配置端口功能
- □ 实现柔性测试接口环境























### 总线开发流程







#### 集成测试 - 测试环境

#### □节点功能闭环测试系统

- □I/O接口
- □总线接口
- □电源接口
- 口仿真模型
- □测试用例
- □执行环境







# 集成测试 - 测试流程

#### □测试工作流程







#### 集成测试 - 测试流程1

- □ 借助TAE, 轻松制定测试规范
- □创建、编辑测试程序
  - □ 自动生成测试规范
  - □自动生成测试报告
  - □ 图形化用户界面
  - □ 无需了解XML
- □与CANoe无缝集成
  - □ 支持CANdb数据库
  - □ 生成CANoe测试环境







#### □ 借助CANoe, 轻松完成测试(自动化测试)





# 集成测试 - 测试流程 3

# □自动生成测试报告

| 2.3.1     | T_type Test                                              |      |
|-----------|----------------------------------------------------------|------|
| 2.3.1.1   | With Two real Nodes                                      |      |
| 2.3.1.1.1 | Normal Mode                                              | fail |
| 2.3.1.1.2 | Single Wire mode                                         | pass |
| 2.3.1.2   | With all nodes of the Bus                                |      |
| 2.3.1.2.1 | Normal Mode                                              | pass |
| 2.3.1.2.2 | Single Wire mode                                         | pass |
| 2.3.2     | NM Parameter                                             |      |
| 2.3.2.1   | Time between alive message and ring message (Ttype)      | pass |
| 2.3.2.2   | Time between ring message and alive message (Tmax)       | pass |
| 2.3.2.3   | Time between alive message and limphome message (Terror) | pass |
| 2.3.2.4   | From Limphome to Bus Sleep                               | fail |
| 2.3.2.5   | Number of ring message Rnm                               | pass |
| 2.3.2.6   | During of wakeup to bus sleep                            | pass |
| 2.3.3     | Start of Sending After Wake-Up                           |      |
| 2.3.3.1   | Only under test ECU                                      |      |
| 2.3.3.1.1 | Wake up by Message 0x400                                 | pass |
| 2.3.3.1.2 | Wake up by Message 0x43f                                 | pass |
| 2.3.3.1.3 | Wake up by Message 0x01                                  | pass |
| 2.3.3.2   | With simulated Nodes                                     |      |
| 2.3.3.2.1 | Wake up by Message 0x400                                 | pass |





## 总线开发流程







## 内容目录

- □分布式控制总线系统概述
- □总线开发流程及工具平台
- □诊断功能开发及测试流程
- □应用案例及恒润服务





#### 诊断的架构







#### Vector诊断系统解决方案

- □以诊断数据库为导向
  - CANdelaStudio/ODXStudio 将诊断规范转化为诊断数 据库(CDD/ODX),该数 据库是整个流程的核心
  - □通过配置,由CANdesc将 诊断数据库文件转化为诊 断代码
  - ■使用CANoe, CANdito, CANape以及CANoe.DiVa 进行诊断功能测试







#### 制定诊断规范—CANdelaStudio







#### 制定诊断规范—CANdelaStudio





OEM specific diagnostic specifications



Diagnostic functions assigned to the protocol



General diagnostic data applicable to all ECUs



#### Diagnostic template OEM X (\*.cddt)

This template represents the diagnostic specification of the OEM and is valid for many ECUs



### ECU specific diagnostic description (\*.cdd)

This document is valid for just one ECU and all its variants.





#### 制定诊断规范—CANdelaStudio

- □ 交互式人机界面
- □ 模板的概念保证了 开发的效率
- □ 支持ODX标准的文 件格式转化
- □ 单源原则,避免二 义性







#### 制定诊断规范—ODXStudio



- □友好的用户界面
- □ 支持所有的ODX格式(ODX-D、ODX-C、ODX-V、ODX-F、ODX-E、ODX-FD)







#### 诊断代码实现一CANdesc

# CAN diagnostic embedded software component







#### 诊断代码实现—CANdesc

- □ 根据OEM需求准确快速生成诊断代码
- □ 给应用程序提供标准接口
- □ 与Vector嵌入式软件组件(CANbedded)完美集成
- □ 保证生成的代码与需求完全一致







#### 诊断功能验证及集成测试—CANoe. DiVa







#### 诊断功能验证及集成测试—CANoe. DiVa

- □ 根据诊断数据库规范(\*.cdd/\*.odx)自动生成CANoe诊断测试例程
- □ 方便配置,选择测试焦点(测试什么)
- □选择测试范围
- □ 生成测试规范
- □ 生成清楚详细的测试报告





#### ECU诊断测试仪—CANdito, CANape, CANoe





#### ECU诊断测试仪—CANdito, CANape, CANoe

- □ 通过诊断数据库 ( \*.cdd/\*.odx ) , 方便诊断测试参数化
- □直观的故障码显示
- □读取,显示ECU信息
- □ 操作简便





#### 内容目录

- □分布式控制总线系统概述
- □总线开发流程及工具平台
- □诊断功能开发及测试流程
- □应用案例及恒润服务





#### 应用案例-软件代码实现

#### 国内多家OEM及Supplier: 使用代码生成工具,进行ECU代码实现

任务 各个子节点的产品实现 硬件实现 应用程序 过程 嵌入式 总线通信及服务 通用IO驱动 **Boot Loader** 实时操作系统 **Vector** Vector SimuQuest Vector 工具 osCAN **CANbedded** QuantiPhi Flash Bootloader





#### 应用案例-网络集成测试服务

#### 国内多家OEM: 网络及车身控制系统测试

- □ 网络仿真及测试环境搭建
- □ 测试用例的设计与实现
- □ 自动执行测试过程
- □ 可根据测试对象不同,自 动化选择测试环境及测试 用例









#### 源代码集成一工程服务

数据库

1. 为客户检查数据库的完整性和正确性

配置工具

2. 为客户进行各个配置选项的指导

环境

3. 可以为客户定制相关编译器的最小运行环境

源代码

4. 各模块完整的代码集成流程以及API的编写

功能测试

5. 包括测试用例,测试环境和测试报告

培训

**6.** 包括协议培训,源代码培训,集成方法和测试方法培训

文档汇总

7. 集成流程笔记,问题记录,API列表,测试模板,培训教材





#### 集成测试 - 工程服务

- □搭建测试环境,完成测试任务
  - □ 提供适用的测试设备
  - □ 协助开发的测试规范
  - □ 实现测试流程及测试程序
  - □ 完成对于节点/系统的测试
  - □ 交付完整、系统的说明文档
  - □ 帮助客户具备相关技术能力











#### 内容目录

- 口分布式控制总线系统概述
- □总线系统开发与测试流程
- □诊断功能开发及测试流程
- □应用案例及恒润服务





## 谢谢

Q&A



