Una mirada correlativa a los nichos ecológicos

Ecología Teórica II

condiciones más favorables para la especie.

Hipervolumen n-dimensional en cuyo centro están las

Hutchinson (1957)

Representación geométrica de concepto de nicho

Interpretación demográfica

¿Qué estima un MNE?

- Desempeño fisiológico
- Límites de tolerancia fisiológica

% de ATP activo en cuatro spp. de lagartijas a diferentes temperaturas (Angiletta 2009).

Supuesto de unimodalidad puede aproximar curvas de desempeño

Desempeño térmico tiende a ser unimodal en la mayoría de organismos

Centralidad de nicho

Distancia al centroide

Mayor tasa de crecimiento poblacional tiende a resultar en mayor densidad poblacional

Problemática común, modelación corelativa

Procesos de puntos

Colección de objetos distribuidos en plano bidimensional con unidades discretas de tamaño regular

¿Cómo describirías el patrón de puntos? ¿Qué propiedades le atribuyes?

Propiedades de los PPs

Relación entre elipsoides y PPs

Definidos únicamente en espacio ambiental

Distribución → distancia

Distribución de la frecuencia de presencia en dos variables ambientales

Distancia ambiental al centroide con coordenadas representadas con las medias de x₁ y x₂

Intensidad de puntos en relación a covariables

En procesos de puntos construimos funciones que explican la variación de la intensidad de puntos.

$$\log \lambda(x_{1}, x_{2}, ..., x_{n}) = \alpha, +\beta_{1}x_{1}$$
$$+\beta'_{1}x_{1}^{2} + ... +\beta'_{n}x_{n} + \beta'_{n}x_{n}^{2}$$

Críticas a la modelación correlativa de nichos ecológicos

Ecología de poblaciones

Datos

Predicciones del

modelo

No. individuos, densidad poblacional, índice de

No. individuos, densidad poblacional

abundancia

Ecología de nichos

Coordenadas x, y

Favorabilidad ambiental

En MNE hay una desconexión conceptual completa entre lo que se modela y lo que nos "escupe" el modelo

Los procesos de puntos **resuelven** parcialmente la **desconexión** conceptual:

- I) Puntos están definidos en conjunto de unidades espaciales
- 2) Existe el concepto de densidad de puntos
- 3) Se puede definir claramente la densidad de puntos como variable de respuesta

Modelación correlativa de nichos con PPMs

¿De dónde viene y qué es el concepto de

"Favorabilidad/idoneidad ambiental"?

La modelación de nichos y áreas de distribución como procesos de puntos

¿Qué diferencias hay entre estos patrones de puntos?

Conceptos básicos y supuestos de procesos de puntos

Puntos definidos en espacio con unidades discretas

Distancias entre pares de puntos

Segregado

Aleatorio

Agregado

¿Qué fenómenos ecológicos podrían dar origen a estos patrones?

Propiedades estadísticas

Puntos se alejan de otros

Puntos son independientes

Puntos se atraen entre sí

Interpretación ecológica (ejemplo)

Competencia

Distribución aleatoria

Cooperación, organismo crea condiciones propicias para sí mismo

Medición directa de agregación

Conteo de vecinos como función de distancia para cada punto

Mayoría de métodos asumen independencia

TAMAÑO DE RADIO ALREDEDOR DE PUNTOS

¿Qué se estima en un proceso de puntos?

Patrón de puntos

Variación en la intensidad (λ)

$$\log \lambda = \alpha + \beta_{\scriptscriptstyle I} x_{\scriptscriptstyle I} + \beta'_{\scriptscriptstyle I} x_{\scriptscriptstyle I}^2 + \dots$$
$$\beta_n x_n + \beta'_n x_n^2$$

Función log-lineal de covariables que representa la variación espacial de intensidad de puntos

Intensidad de puntos son conteos, así que λ es modelada como una variable con distribución Poisson

Si la función log-lineal que estimamos es polinomial de 20 grado:

$$\log \lambda = \alpha + \beta_{\scriptscriptstyle I} x_{\scriptscriptstyle I} + \beta'_{\scriptscriptstyle I} x_{\scriptscriptstyle I}^2 + \dots$$
$$\beta_n x_n + \beta'_n x_n^2$$

Y todas las β '<0 \rightarrow podemos estimar centroides

Aplicación

Densidad pob 0.56 (MPP) vs 0.52 (Elipsoide)

Dist entre centroides 0.28

Correlación entre *predicciones* 0.94

Aplicación

Densidad pob o.o4 (MPP) vs o.oo6 (Elipsoide)

Dist entre centroides 405.8

Correlación entre favorabilidades 0.87

Brevísimo tutorial a continuación