

CLAIMS

1 1. (currently amended) Apparatus for applying equalization to a complex-valued received
2 signal, the received signal being single-axis (SA) modulated data, the apparatus comprising:

3 a linear predictive (LPR) filter characterized by a set of real-valued LPR parameters applied to
4 the received signal, wherein the set of LPR parameters are recursively updated based on one or more
5 error terms to minimize output power of the LPR-filtered signal;

6 an equalizer configured configurable as either a linear equalizer (LE) or a decision feedback
7 equalizer (DFE) and applying an estimate of the inverse channel characteristics to the received signal to
8 generate an equalized signal, wherein:

9 i) the equalizer comprises a forward (FW) filter characterized by a set of FW filter
10 parameters, a feedback (FB) filter characterized by a set of real-valued FB filter parameters, and a
11 decision circuit generating hard decisions for the data of the equalized signal, and

12 ii) the set of real-valued FB parameters are initialized by the set of real-valued LPR
13 parameters, the set of FW parameters are initialized with either values of a predetermined impulse
14 response or values based on a function of a channel response, [[;]] and the set of FW parameters and the
15 set of FB parameters are recursively updated based on one or more error terms; and

16 an error term calculator configured to generate the one or more error terms from one or more
17 blind cost criteria based on real-part extraction.

1 2. (currently amended) The invention as recited in claim 1, wherein, for the equalizer:
2 the FW filter applies a FW function to the received signal to generate the FW-filtered signal;
3 the FB filter applies a FB function to either soft decisions defined by the equalized signal or the
4 hard decisions to generate a filtered decision; and

5 a combiner combines the filtered decision with a real-part of the FW-filtered signal to generate a
6 new soft decision as the equalized signal.

1 3. (currently amended) The invention as recited in claim 2, wherein the decision device
2 circuit comprises:

3 a slicer configured to generate a symbol from the equalized signal as a hard decision; and
4 a carrier loop configured to detect and adjust a phase error of the received signal.

1 4. (original) The invention as recited in claim 3, wherein the carrier loop applies the phase
2 error to de-rotate the signal from the FW filter prior to real-part extraction.

1 5. (original) The invention as recited in claim 3, wherein the carrier loop applies the phase
2 error to de-rotate the signal applied to the equalizer.

1 6. (currently amended) The invention as recited in claim 3, wherein the equalized received
2 signal is adjusted, in gain, to generate an unbiased input signal to the slicer.

1 7. (currently amended) The invention as recited in claim 3, wherein the equalized received
2 signal is scaled with a first scalar prior to its input to the slicer and each hard decision is scaled with a
3 second scalar prior to its input to the FB filter.

1 8. (original) The invention as recited in claim 7, wherein the first scalar is the reciprocal of
2 the second scalar.

1 9. (currently amended) The invention as recited in claim 2, wherein the error term
2 generator calculator receives at least one of the equalized signal and the corresponding hard decision to
3 generate the one or more error terms.

1 10. (currently amended) The invention as recited in claim 9, wherein the error term
2 generator calculator also receives the LPR filtered signal.

1 11. (currently amended) The invention as recited in claim 10, wherein the error term
2 generator calculator generates a single-axis output power (SA-OP) error term.

1 12. (currently amended) The invention as recited in claim 9, wherein the error term
2 generator calculator generates at least one of a decision directed (DD) error term, a constant modulus
3 (CM) error term, and a single-axis CM (SA-CM) error term.

1 13. (currently amended) The invention as recited in claim 1, wherein, when operating, the
2 equalizer is configured in one of at least three modes:

3 a first mode, wherein the set of LPR parameters for the LPR filter are recursively updated based
4 on a single-axis output power (SA-OP) error term until the set of LPR parameters reach steady-state
5 values;

6 a second mode, wherein the FW filter, decision circuit, and feedback filter are configured as the
7 linear equalizer, and the set of FW parameters and the set of FB parameters are adapted based on one or
8 more error terms based on real-part extraction; and

9 a third mode, wherein the FW filter, decision circuit, and feedback filter are configured as the
10 DFE, and the set of FW parameters and FB parameters are adapted based on [[the]] a DD error term.

1 14. (original) The invention as recited in claim 13, further comprising an operation
2 controller, wherein the operation controller either selects the first mode, the second mode, or the third
3 mode based on a performance measure.

1 15. (original) The invention as recited in claim 14, wherein the performance measure is at
2 least one of a signal-to-noise ratio, a cluster variance, a frame lock-status, a bit error rate, or an output
3 power measure for the received signal.

1 16. (currently amended) The invention as recited in claim 13, wherein, in either of the
2 second mode or the third mode, the set of FW parameters and the set of FB parameters are adapted based
3 on a combination of [[the]] an SA-CM error term and a decision-directed (DD) error term.

1 17. (currently amended) The invention as recited in claim 1, wherein the FB filter comprises
2 a multiplexer (mux), a first feedback filter section, and a second feedback filter section, wherein:

3 the first FB filter section applies the set of FB parameters to soft decisions corresponding to the
4 equalized, received signal;

5 the second FB filter section applies the set of FB parameters to scaled hard decisions generated
6 by the decision circuit for the equalized, received signal, and

7 the mux either selects as the output of the feedback filter either 1) an output of the first FB filter
8 section when the equalizer is configured as the LE or 2) an output of the second FB filter section when
9 the equalizer is configured as the DFE.

1 18. (currently amended) The invention as recited in claim 1, wherein data of the received
2 signal includes a training sequence, and wherein the apparatus further comprises:

3 a training sequence correlator configured to correlate a conjugated signal from the LPR filter
4 with a local sequence i) to detect the training sequence and ii) to generate an estimate of the set of FW
5 filter parameters,

6 wherein the set of FW parameters is initialized based on the correlation.

1 19. (currently amended) The invention as recited in claim 1, wherein the received signal $r(n)$
2 is complex-valued, wherein the FW filter is adapted to operate[[s]] in [[the]] a passband and the FB filter
3 is adapted to operate[[s]] in the at baseband, and wherein the recursive update at time $n+1$ of at least one
4 of the sets of FW parameters ($f_j(n)$)[[.]] and FB parameters ($h_j(n)$) employs [[the]] a stochastic gradient
5 descent rule as follows:

$$f_j(n+1) = f_j(n) - \mu r^*(n-j)e_{pb}(n)$$
$$h_j(n+1) = h_j(n) + \mu \varphi(n-j)e_{bb}(n)$$

8 where μ , $0 < \mu < 1$, is a step size, j is a parameter index, $r(\cdot)$ is the received signal, $\varphi(\cdot)$ is feedback
9 regressor data, $e_{bb}(n)$ is a baseband error term, and $e_{pb}(n)$ is a passband error term.

1 20. (currently amended) The invention as recited in claim 1, wherein the FW filter is
2 adapted to operate[[s]] in the at baseband and the FB filter is adapted to operate[[s]] in the at baseband,
3 and the recursive update at time $n+1$ of at least one of the sets of FW parameters ($f_j(n)$)[[.]] and FB
4 parameters ($h_j(n)$) employs [[the]] a stochastic gradient descent rule as follows:

$$f_j(n+1) = f_j(n) - \mu r^*(n-j)e_{bb}(n)$$
$$h_j(n+1) = h_j(n) + \mu \varphi(n-j)e_{bb}(n)$$

7 where μ , $0 < \mu < 1$, is a step size, j is a parameter index, $r(\cdot)$ is the received signal, $\varphi(\cdot)$ is feedback
8 regressor data, and $e_{bb}(n)$ is a baseband error term.

1 21. (currently amended) The invention as recited in claim 1, wherein the received signal is
2 carrier modulated by data in accordance with a complex vestigial sideband (VSB) format.

1 22. (currently amended) The invention as recited in claim 1, wherein the received signal is a
2 digital television signal having its data encoded in accordance with an ATSC standard.

1 23. (currently amended) The invention as recited in claim 1, wherein the LPR filter operates
2 in parallel with the equalizer, wherein the forward filter, feedback filter, and decision circuit are
3 configured as [[a]] the decision feedback equalizer (DFE), the set of LPR parameters is adapted using an
4 SA-OPA update rule, and the set of LPR filter parameters $g_j(n)$ regularize the set of FB filter parameters
5 $h_j(n)$ by minimization of the criterion $J_{reg}(h)$ as:

$$J_{reg}(h) = J_{combo}(h) + \lambda \sum_{j=1}^{N_g} |g_j(n) - h_j(n)|^2$$

7 where $J_{combo}(h)$ is a linear combination of CM and DD cost criteria and the recursive update of the FB
8 parameters employs an LPR-regularized DFE update rule.

1 24. (currently amended) A method of applying equalization to a complex-valued received
2 signal, the received signal being single-axis (SA) modulated data, the method comprising the steps of:
3 (a) applying a linear predictive (LPR) filter characterized by a set of real-valued LPR
4 parameters to the received signal;
5 (b) recursively updating the set of LPR parameters based on one or more error terms to
6 minimize output power of the LPR-filtered signal;
7 (c) applying either linear equalization (LE) or decision feedback equalization (DFE) to the
8 received signal to generate an equalized signal, wherein step (c) filters with a forward (FW) filter
9 characterized by a set of FW filter parameters[[,]] and a feedback (FB) filter characterized by a set of
10 real-valued FB filter parameters;
11 (d) generating hard decisions for the data of the equalized signal;
12 (e) initializing (e1) the set of real-valued FB parameters by the set of real-valued LPR
13 parameters[[,]] and (e2) the set of FW parameters with either values of a predetermined impulse response
14 or values based on a function of a channel response;
15 (f) recursively updating the set of FW parameters and the set of FB parameters based on one
16 or more error terms; and
17 (g) generating the one or more error terms from one or more blind cost criteria based on
18 real-part extraction.

1 25. (original) The invention as recited in claim 24, wherein step (d) generates each hard
2 decision by the steps of:
3 (d1) combining i) the real part of the output of the FW filter and ii) the output of the FB filter
4 to form the equalized signal;
5 (d2) generating a symbol from the equalized signal as a hard decision; and
6 (d3) adjusting, by a carrier loop, a phase error of the received signal.

1 26. (original) The invention as recited in claim 25, wherein step (d3) applies the phase error
2 to de-rotate the signal from the FW filter prior to real-part extraction.

1 27. (original) The invention as recited in claim 25, wherein step (d3) applies the phase error
2 to de-rotate the signal applied to the equalizer.

1 28. (currently amended) The invention as recited in claim 25, further comprising the step of
2 adjusting, in gain, the equalized-received signal to generate an unbiased input signal to the slicer.

1 29. (currently amended) The invention as recited in claim 25, comprising the steps of
2 scaling with a first scalar the equalized received signal prior to its input to the slicer step (d2) and scaling
3 with a second scalar each hard decision prior to its input to the FB filter.

1 30. (original) The invention as recited in claim 29, wherein the first scalar is the reciprocal
2 of the second scalar.

1 31. (currently amended) The invention as recited in claim 24, wherein, for step (c),
2 equalization occurs in one of at least three modes:
3 a first mode, wherein the set of LPR parameters for the LPR filter are recursively updated based
4 on a single-axis output power (SA-OP) error term until the set of LPR parameters reach steady-state
5 values;
6 a second mode, wherein the FW filter, a decision circuit, and the feedback filter are configured as
7 the linear equalizer for LE, and the set of FW parameters and the set of FB parameters are adapted with
8 one or more error terms based on real-part extraction; and

9 a third mode, wherein the FW filter, decision circuit, and feedback filter are configured as the ~~for~~
10 DFE, and the set of FW parameters and the set of FB parameters are adapted based on a DD error term.

1 32. (currently amended) The invention as recited in claim 31, wherein, in either of the
2 second mode or the third mode, the set of FW parameters and the set of FB parameters are adapted based
3 on a combination of an SA-CM error term and [[the]] a decision-directed (DD) error term.

1 33. (currently amended) The invention as recited in claim 24, for step (f), recursive update
2 at time $n+1$ of at least one of the sets of FW parameters ($f_j(n)$)[[,]] and FB parameters ($h_j(n)$) employs
3 [[the]] a stochastic gradient descent rule as follows:

$$4 \quad f_j(n+1) = f_j(n) - \mu r^*(n-j)e_{pb}(n)$$
$$5 \quad h_j(n+1) = h_j(n) + \mu \varphi(n-j)e_{bb}(n)$$

6 where μ , $0 < \mu < 1$, is a step size, j is a parameter index, $r(\cdot)$ is the received signal, $\varphi(\cdot)$ is feedback
7 regressor data, $r(n)$ is the received signal, $e_{bb}(n)$ is a baseband error term, and $e_{pb}(n)$ is a passband error
8 term, wherein the FW filter operates in [[the]] a passband and the FB filter operates in the ~~at~~ baseband.

1 34. (currently amended) The invention as recited in claim 24 wherein, for step (f), recursive
2 update at time $n+1$ of at least one of the sets of FW parameters ($f_j(n)$)[[,]] and FB parameters ($h_j(n)$)
3 employs [[the]] a stochastic gradient descent rule as follows:

$$4 \quad f_j(n+1) = f_j(n) - \mu r^*(n-j)e_{bb}(n)$$
$$5 \quad h_j(n+1) = h_j(n) + \mu \varphi(n-j)e_{bb}(n)$$

6 where μ , $0 < \mu < 1$, is a step size, j is a parameter index, $r(\cdot)$ is the received signal, $\varphi(\cdot)$ is feedback
7 regressor data, $r(n)$ is the received signal, and $e_{bb}(n)$ is a baseband error term, wherein the FW filter
8 operates in the ~~at~~ baseband and the FB filter operates in the ~~at~~ baseband.

1 35. (currently amended) The invention as recited in claim 24, wherein, for step (f), recursive
2 update of the set of LPR filter parameters ($g(z)$) $g_j(n)$ uses an SA-OPA update rule and the set of FB filter
3 parameters ($h(z)$) $h_j(n)$ for the DFE employs an LPR-regularized DFE update rule for [[the]] minimization
4 of criterion $J_{reg}(h)$ as:

$$5 \quad J_{reg}(h) = J_{combo}(h) + \lambda \sum_{j=1}^{N_g} |g_j(n) - h_j(n)|^2$$

6 where $J_{combo}(h)$ is a linear combination of CM and DD cost criteria.

1 36. (currently amended) The invention as recited in claim 24, wherein, ~~for step a)~~,
2 single-axis modulated the received signal is [[the]] carrier modulated by [[the]] data in accordance with a
3 vestigial sideband (VSB) format.

1 37. (currently amended) The invention as recited in claim 24, wherein, ~~for step a)~~, the
2 single-axis modulated the received signal is a digital television signal having its data encoded in
3 accordance with an ATSC standard.

1 38. (currently amended) The invention as recited in claim 24, wherein data of the received
2 signal includes a training sequence, and wherein step (e2) comprises the steps of:
3 (e2i) correlating a conjugated signal from the LPR filter with a local sequence;
4 (e2ii) detecting the training sequence; and
5 (e2iii) generating an estimate for the set of FW ~~filter~~ parameters based on the correlation of step
6 (e2i).