Linear algebra Exercises

Kristoffer Klokker 2022

Contents

1	Wee	ek 46
	1.1	Which equation are linear in x_1 , x_2 and x_3
		1.1.1 $x_1 + 5x_2 - \sqrt{2}x^3 = 1$
		1.1.2 $x_1 = -7x_2 + 3x_3$
		1.1.3 $x_1^{3/5} - 2x_2 + x_3 = 4$
	1.2	Convert from matrix form to equation form
	1.3	Convert from equations to matrix
	1.4	Determine if the solution hold in the following system
	1.5	Determine if the following matrices are in echoleon form or
		reduced echelon form

1 Week 46

1.1 Which equation are linear in x_1 , x_2 and x_3

1.1.1
$$x_1 + 5x_2 - \sqrt{2}x^3 = 1$$

This is a linear equation

1.1.2
$$x_1 = -7x_2 + 3x_3$$

This is a linear equation

1.1.3
$$x_1^{3/5} - 2x_2 + x_3 = 4$$

This is not a linear equation with x_1 having a power

1.2 Convert from matrix form to equation form

$$\begin{bmatrix} 2 & 0 & 0 \\ 3 & -4 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
$$2x_1 = 0$$
$$3x_1 - 4x_2 = 0$$
$$x_2 = 1$$

1.3 Convert from equations to matrix

$$-6x_1 - x_2 + 3x_3 = 4$$
$$5x_3 - x_2 - 1$$

$$5x_2 - x_3 = 1$$

$$\begin{bmatrix} -6 & -1 & 3 & 4 \\ 0 & 5 & -1 & 1 \end{bmatrix}$$

1.4 Determine if the solution hold in the following system

$$x + 2y - 2z = 3$$

$$3x - y + z = 1$$

$$-x + 5y - 5z = 5$$

$$5 + 2(8) - 2(1) = 3$$

$$19 = 3$$

By the first equation the solution does not hold

- Determine if the following matrices are in echoleon 1.5 form or reduced echelon form
- $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ 0 1 0

 $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ Reduced echelon form $\begin{bmatrix} 1 & -3 & 4 & 7 \\ 0 & 1 & 2 & 2 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 1 & 5 \end{bmatrix}$

Echelon form