

Features

- Input Voltage Range: 2.5 V to 5.5V
- Power-Up and Power-Down Sequence Control
- Single Enable Control Signal Input Channel
- Three Power Sequence Channels:
 - Open-Drain Output
 - ◆ Selectable Timing Options
 - ♦ Selectable Power-Down Sequence Options
- Support Cascaded Device Output
- Low Power Consumption
- Junction Temperature: –40°C to +125°C
- Small SOT23-6 Package

Applications

- Video Surveillance
- Network Equipment and Servers
- Industrial Control
- FPGA/ASIC/CPLD Power Sequence Control
- Power Supply Sequence Control

Description

The TPK1032 series products are simple power sequencers, which provide power-up and power-down sequence control of multi-channel power supplies. Furthermore, the TPK1032 series support maximum three devices cascaded to control sequence of nine-channel power rails in one system.

The TPK1032 series products have three open-drain output channels, and all the channels can be pulled up to any required voltage level equal or lower than Vcc. When the TPK1032 series are enabled with EN pin goes high, the three output channels turn to high with the sequence of FLAG1-FLAG2-FLAG3 after the selected delay period individually; When the TPK1032 series are disabled with EN pin goes low, the three output channels turn low one by one with the selected sequence after the selected delay period individually.

The TPK1032 series products provide SOT23-6 package with guaranteed junction temperature range (T_J) from -40° C to +125°C.

Typical Application Schematic

Product Family Table

Part Number	Orderable Number	Package	Transport Media, Quantity	MSL	Marking information
TPK1032	TPK1032AAL1-S6TR	SOT23-6	3,000	MSL1	KAA
TPK1032	TPK1032ABL1-S6TR	SOT23-6	3,000	MSL1	KAB
TPK1032	TPK1032ACL1-S6TR	SOT23-6	3,000	MSL1	KAC
TPK1032	TPK1032ADL1-S6TR	SOT23-6	3,000	MSL1	KAD
TPK1032	TPK1032AEL1-S6TR	SOT23-6	3,000	MSL1	KAE
TPK1032	TPK1032AFL1-S6TR	SOT23-6	3,000	MSL1	KAF

TPK1032 <u>X Y</u> L1-S6TR

X: Sequence Designator

Designator	Power-Up Sequence	Power-Down Sequence
А	FLAG1 – FLAG2 – FLAG3	FLAG3 – FLAG2 – FLAG1
В	FLAG1 – FLAG2 – FLAG3	FLAG3 – FLAG1 – FLAG2
С	FLAG1 – FLAG2 – FLAG3	FLAG2 – FLAG3 – FLAG1
D	FLAG1 – FLAG2 – FLAG3	FLAG2 – FLAG1 – FLAG3
E	FLAG1 – FLAG2 – FLAG3	FLAG1 – FLAG3 – FLAG2
F	FLAG1 – FLAG2 – FLAG3	FLAG1 – FLAG2 – FLAG3

Y: Delay Designator

Designator	t _{D1} (ms)	t _{D2} (ms)	t _{D3} (ms)	t _{D4} (ms)	t _{D5} (ms)	t _{D6} (ms)
А	11	11	11	11	11	11
В	30	30	30	30	30	30
С	60	60	60	60	60	60
D	120	120	120	120	120	120
E	2	2	2	2	2	2
F	16	16	16	16	16	16

Table of Contents

Features	1
Applications	1
Description	1
Typical Application Schematic	1
Product Family Table	2
Table of Contents	3
Revision History	4
Pin Configuration and Functions	5
Specifications	6
Absolute Maximum Ratings	6
ESD Ratings	6
Recommended Operating Conditions	6
Thermal Information	6
Electrical Characteristics	7
Typical Performance Characteristics	8
Detailed Description	9
Overview	9
Functional Block Diagram	9
Feature Description	9
Application and Implementation	12
Application Information	12
Typical Application	12
Layout Requirements	12
Package Outline Dimensions	13
SOT23-6	13

Revision History

Date	Revision	Notes
2019/05/31	Rev. Pre	Preliminary Version
2019/08/31	Rev. A	Initial Release

Pin Configuration and Functions

TPk1032 Series

6-Pin SOT23

Top View

Pin Functions

NAME	PIN NUMBER	TYPE	DESCRIPTION
EN	3	1	Device enable pin.
FLAG1	6	0	Open-drain output pin.
FLAG2	5	0	Open-drain output pin.
FLAG3	4	0	Open-drain output pin.
GND	2	_	Ground reference pin.
VCC	1	I	Input power supply.

Specifications

Absolute Maximum Ratings

		MIN	MAX	UNIT
VCC, EN		-0.3	6	V
FLAG1, FLAG2, FLAG3		-0.3	6	V
TJ	Junction Temperature Range	-40	150	°C
T _{STG}	Storage Temperature Range	– 65	150	°C
T _L	Lead Temperature (Soldering 10 sec)		260	°C

⁽¹⁾ Stresses beyond the Absolute Maximum Ratings may permanently damage the device.

ESD Ratings

		Condition		UNIT
НВМ	Human Body Model ESD	ANSI/ESDA/JEDEC JS-001	±1500	V
CDM	Charged Device Model ESD	ANSI/ESDA/JEDEC JS-002	±500	V

Recommended Operating Conditions

		MIN	MAX	UNIT
vcc		2.7	5.5	V
EN		0	VCC + 0.3	V
FLAG1, FLAG2, FLAG3		0	VCC + 0.3	V
TJ	Junction Temperature Range	-40	125	°C

Thermal Information

PACKAGE	θ_{JA}	θ _{JC}	UNIT
SOT23-6	206	140	°C/W

www.3peakic.com.cn 6 / 13 Rev. A

⁽²⁾ All voltage values are with respect to GND.

Electrical Characteristics

 T_J = -40°C to +125°C (typical value at T_J = +25°C), V_{CC} = 3.3 V, unless otherwise noted.

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Power Supp	ly						
VCC	Input supply voltage		2.7		5.5	V	
ICC	Operating quiescent current			55	100	μA	
Enable	Enable						
V _{EN_TH}	EN pin threshold voltage		1	1.23	1.5	V	
I _{EN}	EN pin pull-up current	V _{EN} = 0 V	5	6.5	8	μA	
Open-Drain	Output						
V _{OL}	FLAGx pin output low level	I _{FLAGX} = 1.2 mA	0		0.4	V	
I _{FLAGx}	FLAGx pin leakage current	V _{FLAGx} = 3.3 V		0.3	1	μA	
Power-Up Se	equence						
	Tours deless Adelessons	All other timing options	-15%		15%		
t _{d1}	Timer delay 1 tolerance	2-ms timing option	-20%		20%		
	Time and delice O federation	All other timing options	-15%		15%		
t_{d2}	Timer delay 2 tolerance	2-ms timing option	-20%		20%		
	T	All other timing options	-15%		15%		
t_{d3}	Timer delay 3 tolerance	2-ms timing option	-20%		20%		
Power-Down	n Sequence						
	T	All other timing options	-15%		15%		
t_{d4}	Timing delay 4 tolerance	2-ms timing option	-20%		20%		
	Time in a delete 5 delete and	All other timing options	-15%		15%		
t _{d5}	Timing delay 5 tolerance	2-ms timing option	-20%		20%		
	T	All other timing options	-15%		15%		
t _{d6} Timing delay 6 tolerance	2-ms timing option	-20%		20%			
Timing Delay	y Tolerance						
$\frac{t_{\rm dx} - 400 \mu \rm s}{t_{\rm dx+1}}$	Ratio of timing delays	For x = 1 or 4	95%		105%		
$\frac{t_{dx}}{t_{dx+1}}$	Ratio of timing delays	For x = 2 or 5	95%		105%		

Typical Performance Characteristics

Figure 5 EN Input Current vs EN Voltage

 $T_J = -40^{\circ}\text{C}$ to +125°C (typical value at $T_J = +25^{\circ}\text{C}$), $V_{CC} = 3.3 \text{ V}$, Delay = 10 ms, unless otherwise noted.

Figure 6 Timing Delay vs Temperature

Detailed Description

Overview

The TPK1032 series products are simple power sequencers, which provide power-up and power-down sequence control of multichannel power supplies. Furthermore, the TPK1032 series support maximum three devices cascaded to control sequence of ninechannel power rails in one system.

The TPK1032 series products have three open-drain output channels, and all the channels can be pulled up to any required voltage level equal or lower than V_{CC}. When the TPK1032 series are enabled with EN pin goes high, the three output channels turn to high with the sequence of FLAG1-FLAG2-FLAG3 after the selected delay period individually; When the TPK1032 series are disabled with EN pin goes low, the three output channels turn low one by one with the selected sequence after the selected delay period individually.

Functional Block Diagram

Feature Description

Enable (EN)

The timing sequence of TPK1032 series is controlled by the enable (EN) signal. When device powered up, all the flags keep low until the EN pin is pulled high. An internal comparator, with reference voltage connected at negative terminal, set the enable threshold precisely at 1.22 V. When the EN pin voltage is higher than the threshold, the power-up sequence starts.

With the precision enable threshold, the TPK1032 series can be enabled after a certain delay period set by external capacitor or a certain voltage value determined by external resistor divider.

Figure 7 Using Capacitor at EN

Note: It is not recommended to connected EN to VCC directly. EN should be kept low before VCC is ready.

When using a capacitor at the EN pin (Figure 7), the enable delay period can be calculated by Equation 1:

$$t_{\text{EN}_DLY} = \frac{1.23 \text{V} \times \text{C}_{\text{EN}}}{6.5 \mu \text{A}} \tag{1}$$

Figure 8 Using Resistor Divider at EN

When using the resistor divider at the EN pin (Figure 8), the resistor divider ratio can be calculated by Equation 2:

$$V_{EN} = V_{EN_TH} \times \frac{R_{EN1} + R_{EN2}}{R_{EN2}} - 6.5\mu A \times R_{EN1}$$
 (2)

The TPK1032 series also implement the EN pin de-glitch function. When there are ripple across the enable threshold at the EN pin, the device will always reset if the EN pin falls below the threshold. The timing delay only start counting at the last EN rising threshold (Figure 9).

Figure 9 Enable De-glitch

Power Sequence (FLAGx)

When the TPK1032 series devices are enabled, all the output flags will be released sequentially. The timing delay period between two adjacent flags is determined by the device internal delay periods.

Figure 10 show the power sequences of the output flags.

Figure 10 Power Up and Power Down Sequence

Power Sequence Interruption

When the enable signal keeps constant during the entire power up or power down sequence, the TPK1032 series devices will operate the whole sequence as shown in Figure 10. However, if the enable signal falling or rising edge comes during the power up or power down sequence, the device will enter the interrupt status and initialize a new power down or power up sequence.

www.3peakic.com.cn 10 / 13 Rev. A

Figure 11 show the power up sequence with EN interruption.

Figure 11 Interrupt of Power Up Sequence

Figure 12 show the power down sequence with EN interruption.

Figure 12 Interrupt of Power Down Sequence

Application and Implementation

NOTE

Information in the following applications sections is not part of the 3PEAK's component specification and 3PEAK does not warrant its accuracy or completeness. 3PEAK's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

Application Information

The TPK1032 series products are 3-channel simple power sequencers, which provide power-up and power-down sequence control of multi-channel power supplies. The following application schematic shows a typical usage of the TPK1032 series.

Typical Application

Figure 13 and Figure 14 shows the typical application schematic of the TPK1032 series.

Figure 13 VCC and FLAGx with Same Power Rail

Figure 14 VCC and FLAGx with Different Power Rails

Layout Requirements

FLAGx pull-up resistors, recommended 100 kΩ, should be placed closely to the flag output pins and the pull-up power supply.
The traces should be equal to each other, and the trace length should be as short as possible.

www.3peakic.com.cn 12 / 13 Rev. A

Package Outline Dimensions

SOT23-6

SYMBOL	MILLIMETER				
S I MBUL	MIN	NOM	MAX		
A	_	_	1.25		
A1	0.04	_	0.10		
A2	1.00	1.10	1.20		
A3	0.60	0.65	0.70		
b	0.33	_	0.41		
b1	0.32	0.35	0.38		
c	0.15	_	0.19		
c1	0.14	0.15	0.16		
D	2.82	2.92	3.02		
E	2.60	2.80	3.00		
E1	1.50	1.60	1.70		
e	0.95BSC				
e1	1.90BSC				
L	0.30	_	0.60		
θ	0	_	8°		

3PEAK and the 3PEAK logo are registered trademarks of 3PEAK INCORPORATED. All other trademarks are the property of their respective owners.