Beweis \iff von

$$G$$
 frei $\iff G \curvearrowright_{\mathsf{frei}} Baum$

$$S' := \{g_e \in G \mid e \text{ wesentlich für } T_0\}$$

wesentlich heißt

$$e = \{u, v\}, u \in T_0, v \notin T_0$$

 g_e so, dass $g_e^{-1}v \in V(T_0)$

2.Schritt Zeige S' erzeugt G:

 $g \in G$, Ziel: finde Elemente in S' so, dass g Produkt dieser ist.

Wähle Ecke $u \in T_0$, weil T zusammenhängend, existiert Kantenpfad p in T von u nach g.u.

Weil $V(T) = \bigcup_{g \in G} V(g.T_0)$, weil T_0 aus jedem G-Orbit eine Ecke enthält.

 $\implies p$ durchläuft verschiedene Kopien $g_0T_0,...,g_nT_0$ von T_0 mit $g_0=1,g_n=g$.

Es ist $g_{j+1} \neq g_j$ für $\forall j : k_0 \leq j \leq k_1$, wenn p reduziert.

 $\Rightarrow g_j T_0$ und $g_{j+1} T_0$ sind für alle j wie oben verbunden.

 $g_j^{-1}e_j$ ist wesentliche Kante für T_0 ; $p=e_0...e_{n-1}$

Setze
$$s_j := g_j^{-1} g_{j+1} \in S'$$
.
Dann $g = g_0 \cdots g_{k_0}^{-1} g_{k_0+1} g_{k_0+1}^{-1} \cdots g_n = s_0 \cdots s_n \in \langle S' \mid \rangle$

3.Schritt $\exists S \subset S'$, das G frei erzeugt.

aus 1. Schritt folgt, dass S' in Paare aufspaltet $\{s, s^{-1}; \text{ für S wähle ein Element pro Paar aus.} \}$

Es reicht zu zeigen: Cay(G,S) enthält keine Kreise.

Annahme: Sei $g_0, \ldots, g_{n-1}, g_n = g_0$ Kreis in Cay(G,S)

Setze $s_j := g_j^{-1} g_{j+1} \forall j = 0, \dots, n-1$ Es sei $s_j \in S \forall j$ (OE: S so wählbar)

Sei e_j wesentliche Kante zw. T_0 und $s_i T_0$

Jede Kopie von T_0 ist zusammenhängender Teilbaum, daher können wir die Ecken der Kanten $g_i e_i$ und $g_i s_i e_{i+1} = g_{i+1} e_{i+1}$, die in $g_{i+1} T_0$ liegen durch einen eindeutigen, reduzierten Weg in $g_{j+1}T_0$ verbinden.

Weil $g_n = g_0$, ist der erhaltene Weg geschlossen.

Starten und Enden in selber Kopie vom Baum T_0 . Widerspruch zu T ist Baum.

Korollar 3.15 (Satz von Nielsen-Schreier)

Untergruppen freier Gruppen sind frei.

Beweis Eine Untergruppe wirkt frei auf den Cayleygraphen seiner Obergruppe.

Korollar 3.16

F freie Gruppe, Rang(F) = n, G < F UG vom Index k. Dann ist G frei und vom Rang k(n-1) + 11. Insbesondere sind Untergruppen vom endlichen Index in freien Gruppen vom endlichen Index endlich erzeugt.

Beweis S freies EZS von F, $\Gamma := Cay(G, S)$, G, $F \curvearrowright_{frei} \Gamma$ durch Linksmult.

Bew 3.11: Rang(G) = $\frac{1}{2}E$, E = # wesentlicher Kanten für Fund.-Baum T_0 von $G \curvearrowright T$

Weil |F:G|=k hat T_0 genau k Ecken.

Es gilt $d_T(v) = 2n$ für alle v in T.

Dann: (1) $\sum_{v \in V(T_0)} d_T(v) = k2n$, andererseits ist T_0 endlicher Baum mit k Ecken, also hat T_0 k-1 Kanten.

In (1) werden Kanten doppelt gezählt, d.h.

$$\sum_{v \in V(T_0)} d_T(v) = 2(k-1) + E$$

$$1/2E = k(n-1) + 1 = RangG$$

Korollar 3.17

F frei vom Rang $m \geq 2$, und $n \in \mathbb{N}$, Dann gibt es UG von F, die frei und vom Rang n ist.

3.18 Ping-Pong Lemma (Felix Klein)

G Gruppe, erzeugt von $S = \{a, b\}$, wobei a, b unendliche Ordnung. $G \curvearrowright X$, X Menge, so dass für $\emptyset \neq A, B \subset X$ mit $B \not\subset A$ gilt:

$$a^n B \subset A \text{ und } b^n A \subset B, \forall n \in \mathbb{Z} \setminus \{0\}$$

dann ist G frei von S erzeugt.

Beweis Zu zeigen $G \cong F_{red}(a,b)$ via Isom, der S festhält.

UAE: $\phi: F_{red}(a,b) \longrightarrow G$ mit $\phi|S=id$, dann ist ϕ surjektiv.

Zu zeigen: ϕ injektiv.

Annahme: ϕ nicht injektiv, dann existiert $w \in F_{red}(S)$ mit $\phi(w) = 1$ 4 Fälle:

1.Fall w beginnt mit nichttriv. Potenz von a und endet mit einer solchen:

$$w = a^{n_0} b^{m_0} ... b^{m_k} a^{n_{k+1}}, n_i, m_i \in \mathbb{Z} - 0$$

Nun ist $B = 1.B = \phi(w)B = a^{n_0}b^{m_0}...b^{m_k}a^{n_{k+1}}.B \subset A$. Widerspruch!

- **2.Fall** w beginnt mit b und endet mit b. konjugiere mit a: 1.Fall
- **3.Fall** w beginnt mit a und endet mit b. Konjugiere mit a^k für k groß genug

3.19 Beispiel

freie UG von SL(2,Z)

$$SL(2,\mathbb{Z}) = \left\{ \begin{matrix} a & b \\ c & d \end{matrix} \mid det = 1 \right\}$$

Dann ist $G := \langle M_1, M_2 \mid \rangle$ frei vom Rang 2, wobei

$$M_1 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, M_1 = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$$

Beweis Betrachte lineare Wirkung von $SL(2,\mathbb{R}) \curvearrowright \mathbb{R}^2$ definiert durch

$$(M,(x,y)) \longmapsto M.(x,y)$$

 $\forall n \in \mathbb{Z} - 0 \text{ und } (x,y) \in \mathbb{R}^2 \colon M_1^n.(x,y) = (x+2ny,y)$ Sei $A = \{(x,y) \mid |x| > |y|\}, \ B = \{(x,y) \mid |y| > |x|\}, \ B \not\subset A$ Dann $|x+2ny| \geq |2ny| - |x| > |2y| - |y| = |y|,$ also $M_1^nB \subset A$, analog für M_2 . 3.18 zeigt: G frei.

Motivation Gruppe -> Geometrie Ziel: Konzept finden, welches Cayleygraphen einer festgelegten Gruppe als gleich (äquivalent) auffasst

0.0.1 Ein paar Definitionen

Seien (X,d),(Y,d) metrische Räume, $f:X\to Y$ eine stetige Abbildung.

• f heißt eine **isometrische Einbettung**, falls für alle $x,y\in X$ gilt

$$d(f(x), f(y) = d(x, y)$$

- f heißt eine **Isometrie**, falls f eine surjektive isometrische Einbettung ist.
- X und Y heißen isometrisch, falls eine Isometrie $X \to Y$ existiert.
- f heißt eine **Bilipschitz-Einbettung**, falls eine reelle Konstante $c \ge 1$ existiert, sodass für alle $x, y \in X$ gilt

$$\frac{1}{c}d(x,y) \le d(f(x), f(y) \le cd(x,y)$$

• f heißt eine Bilipschitz-Äquivalenz, falls f eine surjektive Bilipschitz-Einbettung ist.

0.0.2 Bemerkung 4.4

- Isometrie -> Bil.Äqu -> QI
- Umkehrung i.A. nicht richtig
- Quasi-Isometrisch sind (R, d) und (Z, d) und (Z, d) mit den euklidischen Metriken. Die Inklusionen sind quasi-isom. Einbettungen, aber keine Bilipschitzäqu., weiter sind

$$f: \mathbb{R} \longrightarrow \mathbb{Z}$$

$$g: \mathbb{Z} \longrightarrow 2\mathbb{Z}$$

$$x \longmapsto \{x, x-1\} \cap 2\mathbb{Z}$$

0.0.3 Quiz 4.5

• Sind \mathbb{Z} und $2\mathbb{Z}$ bilipschitz-äquivalent?

0.0.4 4.6 Durchmesser metrischer Räume

Jeder nichtleere, metrische Raum (X, d) mit endlichen Durchmessern

$$diam(X) := \sup_{x,y \in X} (d(x,y))$$

ist quasi-isometrisch zu einem Punkt.

Beweis Setze D := diam(X), sei $* \in X$ beliebig. definiere die Abbildung

$$f: X \longrightarrow X, x \longmapsto *$$

Dann gilt

$$d(f(x), f(y)) - D \le d(f(x), f(y)) \le d(f(x), f(y)) + D$$

Daraus folgt auch, dass $d(f^2(x), id(x)) \leq D$, ergo sind X und * quasi-isometrisch. \square

0.0.5 Korollar

Ist X beschränkt und Y quasi-isom. zu X, so ist auch Y beschränkt.

0.0.6 4.17 Satz

X, Y metrische Räume, $f: X \to Y$ eine quasi-isometrische Einbettung. Dann gilt:

f Quasi-Isometrie \iff f hat quasi-dichtes Bild in Y

d.h. $f(X) \subset Y$ ist δ -dicht für $\delta \geq 0$, d.h.

$$\forall y \in Y, \exists x \in X : d(y, f(x)) \le \delta$$

Beweis f Quasi-Isometrie, dann existiert quasi-Inverse $g: Y \to X$ und somit $\delta > 0$, s.d. $\forall y \in Y$ gilt

$$d((f \circ g)(y), y) \le \delta$$

ergo quasi-Dichtes Bild.

Andere Richtung: f sei (C,D)-q.i. Einbettung mit δ -dichtem Bild, wir konstruieren quasi-Inverse via Auswahlaxiom

Setze $\lambda := \max\{C, D, \delta\} \ge 1$, dann gilt

- $\forall x, y \in X : \frac{1}{\lambda} d(x, y) \lambda \le d(f(x), f(y) \le \lambda d(x, y) + \lambda$
- $\forall y \in Y \exists x \in X : d(f(x), y) \leq \lambda$

Setze $g: Y \to X, y \longmapsto x_{\lambda}$; wähle x_{λ} so, dass $d(f(x_{\lambda}), y) \leq \lambda$.

Zu Zeigen: g ist quasi-invers zu f.

$$\forall y \in Y : d(f(g(y)), id(y)) = d(f(x_{\lambda}), y) \le \lambda$$

$$\forall x \in X: d(g(f(x)), id(x)) = d(x_{f(x)}, x) \leq \lambda \cdot d(f(x_{f(x)}), f(x)) + \lambda^2 \leq 2\lambda^2$$

Noch zu zeigen: g ist quasi-isometrische Einbettung

Seien dazu $y, y' \in Y$

$$d(g(y), g(y')) = d(x_y, x_{y'}) \le \lambda d(f(x_y), f(x_{y'})) + \lambda^2$$

$$\le \lambda (d(f(x_y), y) + d(y, y') + d(y', f(x_{y'}))) + \lambda^2$$

$$\le \lambda^2 + \lambda d(y, y') + \lambda^2 + \lambda^2$$

Setze $C = \lambda, D = 3\lambda^2$

Für $y, y' \in Y$ ist noch zu zeigen

$$d(g(y), g(y') \ge \frac{1}{C}d(y, y') - D$$

4.18 Definition: Geodäten

Eine **Geodäte** ist ein eine isometrische Einbettung $\gamma:[0,L]\to X$ eines Intervalls in einen metrischen Raum.

4.20 Definition Quasigeodäte

Eine (C, D)-Quasigeodäte für $C \ge 1, D \ge 0$ ist eine (C, D)-Quasiisometrische Einbettung von [0, L] nach X.

X heißt (C, D)-quasigeodätisch, falls $\forall x, y \in X$ eine verbindende Quasigeodäte

$$\gamma: [0, d(x, y)] \to X$$

existiert.

4.22 Satz von Schwarz-Milner

G Gruppe, X metr. Raum, $G \cap X$ durch Isometrien. Weiter gelte: X quasi-geod. für (C,D) mit D>0 $\exists B\subset X$ beschränkt mit $\bigcup_{g\in G}gB=X$ $S:=\{g\in G\mid gB'\cap B'\neq\emptyset\}$ ist endlich mit $B':=\{x\in X\mid\exists y\in B:d(x,y)\leq 2D\}$

Dann gilt: G wird von S erzeugt $\forall x \in X$ ist $(G, d_S) \to (X, d)$; $g \mapsto g.x$ eine quasi-Isometrie.

Beweis ZZ: S erzeugt G

Sei $g \in G$, $x \in B$. Dann existiert (C, D)-Quasigeodäte von x nach g.x, $\gamma : [0, d(x, g.x)] \to X$. Setze $n := \lceil \frac{CL}{D} \rceil$ und für alle $j = 0, \ldots, n-1$ Setzte $t_j = \frac{jD}{C}$ und $t_n := L$ $x_j := \gamma(t_j)$ für $j = 0, \ldots, n$

Die Translate von B unter G überdecken X, also existiert für alle x_j ein g_j , s.d. $x_j \in g_j.B$, $g_0 = 1, g_n \in g$

Beh.: $\forall j=1,\ldots,n$ ist $s_j:=g_{j-1}^{-1}g_j\in S$ Bew.: γ Quasi-Geodäte $d(x_{j-1},x_j)\leq C|t_{j-1}-t_j|+D\leq C\frac{D}{C}+D=2D$ also $x_j\in B_{2D}(g_{j-1}.B)\stackrel{G\curvearrowright Xisom.}{=}g_{j-1}.B_{2D}(B)=g_{j-1}.B'$ andererseits ist $x_j\in g_j.B\subset g_j.B'$ also $g_j.B\cap g_{j-1}.B'\neq\emptyset$ also $g_{j-1}^{-1}g_j\in S$ \square

Also $g = g_n = g_{n-1}(g_{n-1}^{-1}g_n) = g_{n-1}s_n = g_{n-2}(g_{n-2}^{-1}g_{n-1})s_n = s_1...s_n \in \langle S \mid \rangle_G$ ZZ. $G \sim_{OI} X$:

Wir zeigen $\forall x \in X : \phi : G \to X, g \mapsto g.x$ quasi-isom. Einbettung mit quasi-dichtem Bild.

OE: $x \in B$, weil $\bigcup_{g \in G} g.B = X$ und $G \curvearrowright X$ isom., sonst ersetze B durch passendes Translat. Sei $x' \in X$. Dann gibt es $g \in G$ mit $x' \in g.B$ $d(x', \phi(g)) = d(x', gx) \le diam(gB) = diam(B) = \delta$ $\Longrightarrow \delta$ -dichtes Bild

Noch ZZ: qi. Einbettung

Betrachte (C,D)-quasi-geodäte $\gamma:[0,L]\to X$ von x nach g.x Dann gilt $d(\phi(e),\phi(g))=d(x,g.x)=d(\gamma(0),\gamma(L))\geq \frac{L}{C}-D\geq \frac{1}{C}(\frac{D(n-1)}{C}D)=\frac{D}{C^2}n-\frac{D}{C^2}-D\geq \frac{D}{C^2}d_S(e,g)-(\frac{D}{C^2}+D)$ Abschätzung nach oben: Setze $n=d_S(e,g)$

$$d(\phi(e),\phi(g)) = d(x,g.x) \leq d(x,s_1.x) + d(s_1.x,s_1s_2.x) + \ldots + d(s_1...s_{n-1}.x,g.x) \stackrel{Gwirktisom.}{=} d(x,s_1.x) + d(x,s_2.x) + \ldots + s(s_1...s_{n-1}.x,g.x) \stackrel{Gwirktisom.}{=} d(x,s_1.x) + d(x,s_2.x) + d(x,s_2.x$$

wähle für (C_0, D_0) -qi Einbettung die Konstanten $C_0 = \max\{C^2/D, 2(...) \mid \}$ $D_0 = D/C^2 + D$ allgemeiner Fall folgt aus der Linksinvarianz von d und d_S . \square

0.0.7 4.23 Definition

Ein metrischer Raum X heißt **eigentlich**, falls alle abgeschlossene Bälle von endlichem Radius kompakt sind.

Eine Wirkung $G \cap X$ ist **eigentlich**, wenn für alle kompakten Teilmengen $K \subset X$, die Menge

$$\{q \in G \mid q.K \cap K \neq \emptyset\}$$

endlich ist.

Manchmal sagt man auch eigentlich diskontinuierlich.

0.0.8 Bemerkung

f eigentlich, wenn Urbilder kompakter Mengen wieder kompakt sind. Hier $G \curvearrowright X$ eigentlich

$$\iff G \times X \longrightarrow X$$

$$(g,x) \longmapsto g.x$$

ist eigentliche Abbildung. (Wobei man auf G die diskrete Topologie betrachtet.)

0.0.9 4.24 Beispiel

- $\mathbb{Z} \curvearrowright \mathbb{R}$ via Translation ist eigentlich.
- $G \curvearrowright X$ eigentlich $\Longrightarrow Stab_G(x)$ ist endlich für $x \in X$, d.h. G-Bahnen haben keinen Häufungspunkt
- $\mathbb{Z} \curvearrowright \mathbb{R}^2$ Rotation um Ursprung um Winkel mal z (0,0) ist Fixpunkt, also kann diese Wirkung nicht eigentlich sein.
- $\mathbb{Z} \curvearrowright S^1$ via Rotation um α ist nicht eigentlich, da S^1 kompakt.
- $unendlicheGruppe \land kompakterRaum$ ist nicht eigentlich
- G erzeugt von S, $|S| < \infty$, dann ist $G \cap Cay(G, S) =: \Gamma$ eigentlich.

Beweis $K \subset \Gamma$ kompakt $\Longrightarrow diam(K) < \infty \Longrightarrow \forall g \in G \text{ mit } d_S(e,g) = |g|_S > diam(K) \text{ gilt: } K \cap g.K = \emptyset, \text{ sonst } \exists x \in K \cap g.K \Longrightarrow x \in K \text{ und } g^{-1}.x \in K \text{ mit } d_S(x,g^{-1}.x) = |g^{-1}|_S = |g|_S \text{ ein Widerspruch}$

Insbesondere nur endlich viele g mit $|g|_S \leq D$. \square

0.0.10 4.25 Erinnerung

X topologischer Raum

• X hausdorffsch, g.d.w.

$$\forall x \in X \exists U_x \subset_O, x \in U_x, U_y \subset_O, y \in U_y : U_x \cap U_y = \emptyset$$

- X lokal kompakt, g.d.w. Für alle $x \in X$ enthält jede offene Umgebung von x eine kompakte Umgebung von x.
- \bullet X metrischer Raum \Longrightarrow hausdorffsch
- eigentliche metrische Räume \Longrightarrow lokal kompakt

0.0.11 4.26 Bemerkung/Lemma: Quotientenräume

(X,d) metrischer Raum, eigentlich

$$\alpha: G \to Isom(X)$$
 Wirkung von G auf X

 $p:X\to X/G$ natürliche Projektion auf Quotienten

Setze $f(x,y) := \inf\{d(x,y)|p(x) = x, p(y) = y\}$ für $x,y \in X/G$ Dann gilt:

- 1. inf = min, d.h. $\exists x, y \in X : f(x, y) = d(x, y) \forall x, y \in X/G$
- 2. f ist Metrik auf X/G

```
Beweis Seien z,w\in X/G,\ x=p^{-1}(w); setze R=f(z,w)
Annahme: \inf\neq\min Dann existieren unendliche Folgen (x_n,y_n) mit d(x_n,y_n)\to R und p(x_n)=w,p(y_n)=z.
Weil p(x_n)=p(x) gilt: \exists h_n\in G mit h_nx_n=x \Longrightarrow d(h_nx_n,h_ny_n)=d(x_n,y_n), da \alpha isom. daraus folgt x_n kann durch konstante Folge x und y_n durch y_nh_n ersetzt werden. Daraus folgt y_n\in B_{R+\epsilon}(x_n),\ p(y_n)=z
Weil B_{R+\epsilon}(x) kompakt ist, hat (y_n)_n einen HP in B_{R+\epsilon}(x). Widerspruch zu 4.24
```

```
f nichtneg. und symmetrisch, da d so. f(z,w) = 0 \Longrightarrow \exists x,y: d(x,y) = 0 \Longrightarrow x = y \Longrightarrow z = w
Dreiecksungleichung: u,v,w \in X/G, wähle x,y \in X, s.d. d(x,y) = f(u,v), p(x) = u,p(y) = v. Wähle y_1 mit d(x,y_1) = f(u,v), p(y_1) = v; y_2, p(y_2) = v und d(z,y_2) = f(v,w) weil y_1,y_2 \in p^{-1}(v) existiert g mit g.y_2 = y_1 \Longrightarrow f(u,v) + f(v,w) = d(x,y_1) + d(y_2,z) = d(x,g.y_2) + d(g.y_2,g.z) \ge d(x,g.z) \ge f(u,w) \square
```

0.0.12 4.27 Definition

Eine Gruppenwirkung $G \curvearrowright X$ heißt kokompakt, wenn X/G kompakt.

Betrachte auf X/G Topologie, die durch Quotientenmetrik f induziert wird, wenn wir mit metrischen Raum gestartet sind.

0.0.13 4.28 Beispiele

- $\mathbb{Z} \curvearrowright \mathbb{R}^2$ durch Translation längs x-Achse. $\mathbb{R}^2/\mathbb{Z} = \text{Zylinder}$ ist nicht kompakt, also keien kokompakte Wirkung.
- X kompakt, wegzusammenhängend top. Raum, \widetilde{X} universelle Überlagerung. $\pi_1(X) \curvearrowright \widetilde{X}$ durch Decktransformationen ist kokompakt und eigentlich $X = \widetilde{X}/\pi_1(X)$
- $G \curvearrowright Cay(G, S) =: X$ mit kombinatorischer Metrik $n := |S|, X/G = R_n$, Rose mit n Blättern, kompakt

0.0.14 4.29 (topologischer) Satz von Schwarz-Milner

G wirke eigentlich, kokompakt, durch Isometrien auf einen nichtleeren, eigentlichen, geodätischen metrischen Raum (X, d), dann gilt G endlich erzeugt und für alle $x \in X$ ist

$$G \longrightarrow X, q \longmapsto q.x$$

eine Quasi-Isometrie.

Wenn $G \curvearrowright X$ eigentlich, kokompakt und durch Isometrien, so sagt man auch G wirkt **geometrisch**.

Beweis Suche B.

- nach Vorr. ist $X \forall \epsilon > 0$, $(1, \epsilon)$ -quasi-geodätisch.
- Sei für bel. $x_0 \in X$: $B := \{x \in X \mid d(x, x_0) \leq D\}$; $D := diam(X/G) < \infty$, da $G \curvearrowright X$ kokompakt.

Dann gilt: $\bigcup_{g \in G} g.B = X$, $B' := B_{2\epsilon}(B)$ endlicher Radius, also kompakt, da X eigentlich. $G \curvearrowright X$ eigentlich, also $\{g \in G \mid g.B' \cap B' \neq \emptyset\}$ endlich. 4.22 zeigt Beh. \square

0.0.15 Korollar

Sei H < G, G endlich erzeugt mit $(G:H) < \infty$. Dann ist H endlich erzeugt und quasi-isom. zu G.

Bew: S sei endl. EZS von G

 $\Longrightarrow H \curvearrowright Cay(G,S) =: \Gamma$ mit Wortmetrik d_S isom., eigentlich, kokompakt.

Sei B endliches Vertretersystem von G/H, existiert, weil Anzahl Nebenklassen von H in G endlich ist

Dann ist HB = G

 $B':=B_2(B)$ endlich, $\{h\in H\mid h.B'\cap B'\neq\emptyset\}$ endlich. Schwarz-Milner: Hendlich erzeugt und $H\sim_{qi}\gamma\sim_{qi}G\square$

0.0.16 4.31 Definition

- 1. Zwei Gruppen G, H heißen **kommensurabel**, wenn es Untergruppen G' < G, H < H' mit endlichem Index gibt, s.d. $G' \cong H'$.
- 2. Zwei Gruppen G, H heißen schwach kommensurabel, wenn es Untergruppen G' < G, H < H' mit endlichem Index gibt, s.d. normale Untergruppen $N \triangleleft H', M \triangleleft G'$ mit

$$H'/N \cong G'/M$$

0.0.17 Bemerkung

 \sim_C, \sim_{WC} sind ÄQ (kommensurabel, schwach ...) $G \sim_C H \Longrightarrow G \sim_{OI} H(fallsGendlicherzeugt)$

0.0.18 Korollar

Sei G eine Gruppe und

1. G' < G eine UG mit endlichem Index. Dann gilt:

G' endlich erzeugt \iff G endlich erzeugt

Falls G, G' endlich erzeugt, dann $G \sim_{OI} G'$

2. $N \triangleleft G$ ein endliche normale Untergruppe. Dann gilt:

$$G/N$$
 endlich erzeugt \iff G endlich erzeugt

Falls G, N endlich erzeugt, dann $G/N \sim_{QI} G$

Insbesondere: Ist G endl. erz. und $H \sim_W CG$, dann ist H endlich erzeugt und $G \sim_Q IH$

0.0.19 Bemerkung

Man kann zeigen, dass nicht alle qi Gruppen kommensurabel sind. Z.Bsp.: $(F_3 \times F_3) * F_3 \sim_Q I(F_3 \times F_3) * F_4$, aber die Gruppen sind nicht kommensurabel (Eulercharakteristik)

0.0.20 4.33 Korollar

Sei M eine kompakte Mannigfaltigkeit ohne Rand mit Riemannscher Metrik und M' die Riem. universelle Überlagerung. Dann gilt:

- 1. $\pi_1(M)$ endl. erz.
- 2. $\forall c \in M' \text{ ist } \pi_1(M) \to M', g \longmapsto g.x \text{ eine QI}$

Beweis Zeige mit Standard-Argumenten der Geometrie und alg. Topo, dass M' eig. und geod. $\pi(M) \curvearrowright M'$ eig., kokompakt und durch Isom.

0.1 Quasi-Isometrie-Invarianten

0.1.1 Definition

Sei V eine menge. Eine **QI-Invariante** mit Werten in V ist eine Abb.

$$I: X \longrightarrow V$$

 $X \subset \{G : Gruppe \mid Gendl.erz\}, \text{ s.d. gilt}$

$$G \sim_O IH \Longrightarrow I(G) = I(H)$$

0.1.2 Bemerkung

- 1. QI-Invarianten sind hilfreich, um $G \not\sim_Q IH$ zu zeigen
- 2. i.A. ist es nicht möglich zu entscheiden, ob $G \sim_Q IH$ gilt

0.1.3 Beispiel

- 1. $V = \{1\}$, dann keine Infos
- 2. $V = \{0, 1\}, I(G) = 1, Gunendl., sonst0 \text{ ist QIInv.}$
- 3. $V=\mathbb{N},\ I(F)=rangF,\ F$ endl. erz. freie Gruppe, ist keine QIInv., weil $F_n\sim_Q IF_m$ für $n,m\geq 2$

11

0.1.4 Definition

Eine Eigenschaft P von endl. erz. Gruppen heißt **geometrisch**, wenn gilt: G hat P und H qi G, dann H hat P

0.1.5 Beispiel

- 1. $\forall n \in \mathbb{N}$ ist die Eigenschaft **virtuell** \mathbb{Z}^n zu sein eine geom. ES.
- 2. endlich sein ist geometrisch.
- 3. endlich erzeugt und virtuell frei ist geometrisch ES.
- 4. abelsch ist kein geom. ES.

1 bis 3 ist schwer zu beweisen, wir zeigen:

- 1. endlich präsentiert ist geom. ES.
- 2. Wachstum von Gruppen liefert geom. ES.
- 3. einige Ränder/Enden von einigen Gruppen liefert geom. ES.

0.1.6 Einschub: Simplizialkomplexe und CW-Komplexe

Definition Ein (abstrakter) **Simplizialkomplex** Δ ist eine Menge von Teilmengen einer Menge V, s.d. gilt:

- 1. $\{v\} \in \Delta$ für alle $v \in V$
- 2. $\emptyset \neq A \subset B \in \Delta \Longrightarrow A \in \Delta$

Dimension von $a \in \Delta$ ist dim(a) := |a| - 1 Dimension von Δ ist $dim(\Delta) = \sup_{a \in A} dim(a)$ Schreibe: a ist K-Simplex, falls dim(a) = K

Beispiel

- 1. $V = \{1, 2, 3\}, \Delta = \{\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}\}$ ist Simplizialkomplex für V
- 2. $V = \{1, 2, 3\}, \Delta = \{\{1\}, \{2\}, \{1, 2\}\}$ ist kein Simplizialkomplex für V
- $3.\,$ ungerichtete, einfache Graphen sind Simplizialkomplexe
- 4. V Menge, $\Delta = P(V) \{\emptyset\} =: \langle V \mid \rangle$ ist Simplizialkomplex;

Allgemeiner: CW-Komplexe Ein CW-Komplex ist ein top. Raum, der schrittweise aus sog. Zellen zusammengeklebt worden ist.

Definition Sei $X^{(0)} \subset \mathbb{R}^n$ eine diskrete Menge, diese Menge besteht aus den sogenannten **0-Zellen**.

Das n-Skelett $X^{(n)}$ entsteht aus den $X^{(n-1)}$ durch Ankleben von n-Zellen D^n_i durch stetige Abb.

$$\phi_i: S^{n-1} = \partial D_n \longrightarrow X^{(n-1)}$$

Formal:

$$X^{(n)} = X^{(n-1)} \cup \bigcup_{i \in I} D_i^n / \sim$$

wobei $x \sim \phi_i(x)$ für $x \in \partial D_i^n$

Definiere den CW-Komplex durch $X = \bigcup_{n>0} X^{(n)}$.

Beispiele

1. Graphen mit Doppelkanten sind CW-Komplexe

Definition

G, H schwach kommensurabel, falls \exists

$$N \lhd G' \leq G$$

$$M \lhd H' \leq H$$

wobei N, M, (G':G), (H':H) endlich sind.

Satz 5.5

G endlich erzeugt von S mit Relationen R, R endlich. Sei H endlich erzeugte Gruppe von S' und $H \sim_{QI} G$, dann gilt: H ist endlich präsentiert und es existiert eine endliche Menge R' von Relationen, s.d.

$$H = \langle S' \mid R' \rangle$$

Idee Baue 2-dim. CW-Komplex, der die Darstellung kodiert (aufbauend auf Cayleygraphen).

$$\begin{array}{ll} \mathbf{Erinnerung} & G = \left\langle S \mid R \right\rangle = F(S)/\left\langle R \mid \right\rangle_G \vartriangleleft \\ \exists \pi : F(S) \to > \left\langle S \mid R \right\rangle, kern\pi = \left\langle R \mid \right\rangle_G \vartriangleleft \end{array}$$

0.1.7 Definition 5.6: Präsentationskomplex

OE: $1 \in S, G \cong \langle S \mid R \rangle$ endlich präsentiert.

$$\Gamma := Cay(G, S) / \sim$$

wobei zwei Kanten e, e' verklebt werden (äquiv. sind), wenn gilt $\delta(e) = \delta(e')$

Der **Präsentations(zwei)komplex** K = K(S, R) von G ist der Quotient K'/G von folgendem 2-Komplex K':

1-Skelett von K' ist Γ

 \forall Kreise γ in Γ der Form $\gamma = g^{-1}.(1, s_1, s_1 s_2, \dots, s_1 \cdots s_n)$ wobei $g \in G, s_1 \cdots s_n \in R$; klebe 2-Zelle an γ um K' zu erhalten.

K' heißt Cayley-Komplex von $\langle S \mid R \rangle$

Bemerkung Man kann mittels Seifert-Van Kampen zeigen, dass K' einfach zusammenhängend. K' ist univ. Überlagerung und $G = \pi(K) = \pi(K'/G)$

0.1.8 Beispiel 5.8

- 1. $G = \mathbb{Z}^2 = \langle a, b \mid aba^{-1}b^{-1} \rangle$ $K' = \mathbb{R}^2, K = T^2$
- 2. Flächengruppen: $G:=\left\langle a,b,c,d\mid a^{-1}b^{-1}abc^{-1}d^{-1}cd\right\rangle K'$ kann aufgefasst werden als Parkettierung von H^2

K ist Torus mit 2 Löchern, S^2 -Fläche von Geschlecht 2

0.1.9 Bemerkung 5.9: alternative Definition von K(S,R)

hier K_G , K_G enthält

- 1. eine 0-Zelle v
- 2. eine 1-Zelle für jedes $s \in S$, die von v nach v führt, orientiere diese 1-Zellen
- 3. eine 2-Zelle $d_r \forall r \in R$ verklebt so, dass Kanten $g \to gs$ orientierungserhaltend verklebt werden über $1 \to s_1 \to s_1 s_2 \to \ldots \to s_1 \cdots s_n$, wobei $r = s_1 \cdots s_n, s_i \in S \cup S^{-1}$

Man kann zeigen $K_G \cong K(S,R)$ und K' ist univ. Überlagerung von K_G

Beweis von 5.5 Setze $G_1 := G, G_2 := H, S_1 := S, S_2 := S', \Gamma = Cay(G_i, S_i) / \sim$ wie in 5.6.

Sei ρ die Länge der längsten Relation in R

- \bullet Cayleykomplex K_1' ist einfach zusammenhängend
- Seien $f: \Gamma_2 \to \Gamma_1, f': \Gamma_1 \to \Gamma_2$ (C, D)-quasi Isometrien (existieren, da $G \sim_{QI} H$)

Sei $\mu > 0$, s.d. $d(f'(f(v)), v) \leq \mu \forall v \in \Gamma_2$

Setze $m:=\max\left\{ \rho,\mu,C,D\mid\right\} ,M:=3(3m^{2}+5m+1).$

Sei K_2' 2-Komplex, den man durch Ankleben von 2-Zellen an jeden Kreis der Länge $\leq M$ in Γ_2 erhält.

Sei l Kantenkreis in Γ_2 , d.h. $l = (g_1, \ldots, g_n, g_1)$ Betrachte l als Abb. $\partial D \to \Gamma_2$, D ist hier eine 2-Zelle.

Zwischenlemma (Formalisierung der Bemerkung 5.7.2) G erzeugt von $S, R \leq Kern\pi$, $\pi: F(S) \to G$; X Komplex den man, durch Ankleben von 2-Zellen an Kantenkreisen geg. durch Wörtern in R an $Cay(G, S)/\sim$ erhält. Dann gilt:

X einfach zusammenhängend $\iff \langle R \mid \rangle_G^{\triangleleft} = kern(\pi)$

Beweis von Zwischenlemma: Lemma 8.9 in Bridson-Haefliger, S.135

Wir sind fertig, wenn wir zeigen können:

lbesitzt stetige Fortsetzung $l':D\to K_2',$ d.h. K_2' einfach zusammenhängend.

Seien v_i Urbilder der g_i unter l

Sei $\phi: \partial D \to \Gamma_1$ eine Abb., die v_i auf $f(g_i)$ in Γ_1 und die Kante $\{v_i, v_{i+1}\}$ auf ∂D auf Geodäten von $f(g_i)$ nach $f(g_{i+1})$.

 K_1' ist einfach zusammenhängend $\Longrightarrow \phi$ erweitert zu $\phi':D\to K_1'$

- $\forall x \in D$ definiere Elemente h_x in $V(\Gamma_1) = G$ wie folgt:
 - ist $\phi'(x)$ Ecke, so ist $h_x = \phi'(x)$
 - ist $\phi'(x)$ in einer offenen Kante oder offenen 2-Zelle enthalten, so wähle nächste Ecke der Kante / 2-Zelle als h_x

Weil ϕ' stetig ist, ist $d(h_x, h_y) \leq \rho \forall x, y$, wenn x, y nah genug aneinander sind in D. Es gilt $d(\phi(x), h_x) \leq \frac{1}{2} \forall x \in \partial D$ (alle Kanten in ∂D haben Länge 1).

• Trianguliere D so, dass $v_i \in \partial D$ wieder Ecken von T sind und \forall benachbarten $t, t' \in T$ gilt:

$$d(h_t, h_{t'}) \leq \rho$$

Metrik auf D dazu so gewählt, dass D reguläres M-Polygon in \mathbb{R}^2 ist

• Setze $l'_{|\partial D} = l$ und $l'(x) = f'(h_x) \forall x \in D^o$

Behauptung Für alle benachbarten Ecken t, t' in der Triangulierung T gilt:

Gilt diese Behauptung, so erweitert l' auf D so, dass Kanten in T auf Geodäten in Γ_2 geschickt werden und nach Konstruktion Kreise der Länge $\leq M$ eine 2-Zelle beranden. Daraus würde folgen, dass l' eine stetige Fortsetzung wäre.

Bew. Beh.: einziger interessanter Fall: $t \in D^o, t' \in \partial D$. Sei t' zwischen v_i und v_{i+1} . Es gilt:

$$d(l'(t), l'(t')) = d(f'(h_t), l(t')) \overset{ganzviele \triangle - Ugl.en}{\leq} d(f'(h_t), f'(h_t)) + d(f'(h_{t'}), f'(\phi(t'))) + d(f'(\phi(t')) + f'(\phi(v_i))) + d(f'(h_t), h'(h_t)) + d(f'(h_t),$$

0.2 Hyperbolische Gruppen

0.2.1 Oberes Halbebenenmodell von \mathbb{H}^2

$$\mathbb{H}^2 := \{ z \in \mathbb{C} \mid Imz > 0 \}$$

Riemannsche Struktur:

$$ds^2 = \frac{dx^2 + dy^2}{y^2}$$

hyberbolische Norm für Tangentenvektoren $v \in \mathcal{T}_z \mathbb{H}^2 = \mathbb{R}^2$

$$||v||_{hyp} := \frac{||v||_{eukl}}{imz}$$

direkte Definition einer Metrik auf \mathbb{H}^2 :

Sei $\gamma:[0,1]\to\mathbb{H}^2$ glatte Kurve, $\gamma(t)=x(t)+iy(t)$, dann ist die **Länge** von γ definiert durch

$$L_{hyp}(\gamma) := \int_0^1 \frac{||\gamma'(t)||_{eukl}}{y(t)} dt$$

wir definieren die **hyperbolische Metrik** auf \mathbb{H}^2

$$d(z,w) := \inf_{\gamma: z \to w, glatt} L_{\mathbb{H}}(\gamma)$$

0.2.2 Beispiel

1.
$$c:[0,1]\to \mathbb{H}^2, c(t)=i+(a-1)it, a\in\mathbb{R}$$

$$L_{\mathbb{H}}(c) = \ln(a)$$

Außerdem gilt für beliebiges $\gamma:[0,1]\to\mathbb{R}^2$ von i nach a

$$L_{\mathbb{H}} = \int_0^1 \frac{\sqrt{x'(t)^2 + y'(t)^2}}{y(t)} dt \ge \int_0^1 \frac{y'(t)}{y(t)} = \ln a$$

$$\Longrightarrow d(i, a) = \ln a$$

2.
$$\gamma(t)=ai+t, a>0, \gamma'(t)=1, y(t)=a, x(t)=t$$

$$\Longrightarrow L^{\mathbb{H}}(\gamma)=\frac{1}{a}$$

$$L(\gamma)\to 0, a\to \infty$$

$$L(\gamma)\to \infty, a\to 1$$

Insbesondere ist γ keine Geodäte.

0.2.3 Isometrien

Isometrien von \mathbb{H}^2 sind die Möbiustransformationen. Eine **Möbiustransformation** (MT) ist eine Abbildung $\pi : \overline{\mathbb{C}} := \mathbb{C} \cup \{\infty\} \to \overline{\mathbb{C}}$ definiert durch

$$z \longmapsto \frac{az+b}{cz+d}, a, b, c, d \in \mathbb{C}$$

0.2.4 Eigenschaften

- 1. MT sind dreifach transitiv auf $\overline{\mathbb{C}}$, d.h. sind $(z_1, z_2, z_3), (w_1, w_2, w_3) \in \overline{\mathbb{C}}^3$, dann existiert genau eine MT T mit $T(z_i) = w_i$.
- 2. MT bilden Kreise bzw. Geraden auf Kreise bzw. Geraden ab.
- 3. $PSL(2,\mathbb{R}) = SL(2,\mathbb{R})/\pm I$ operiert auf \mathbb{H}^2 durch Möbiustransformationen:

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto \frac{az+b}{cz+d} =: A.z$$

$$Im(A.z) = \frac{Imz}{\left|cz + d\right|^2} > 0$$

0.2.5 Satz

Die Wirkung von $PSL(2,\mathbb{R}) \curvearrowright \mathbb{H}^2$ durch MT ist isometrisch und

$$PSL(2,\mathbb{R}) \hookrightarrow Isom(\mathbb{H}^2)$$

Beweisskizze:

• Bestimme Erzeuger von $PSL(2,\mathbb{R})$ (Gaußverfahren)

$$\left\{ \begin{pmatrix} 1 & r \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} arg1 & arg2 \\ arg3 & arg4 \end{pmatrix} \mid r \in \mathbb{R}, \right\}$$

für Injektivität:

- betrachte:
$$\begin{pmatrix} -1 \\ -1 \end{pmatrix} = id_{\mathbb{H}^2}$$

- $\{I, -I\} \triangleleft SL(\mathbb{R}^2)$
- $T_A(z) = z \iff A = \pm I$