An Introduction to Intuitionistic Propositional Logic CIS 670 Lecture

Pritam Choudhury

Department of Computer and Information Science
University of Pennsylvania

October 4, 2016

Me: So Mike, Josh and Harry, who are you voting for and why?

Me: So Mike, Josh and Harry, who are you voting for and why?

Mike: Trump. Because I think Hillary would make a bad president.

Me: So Mike, Josh and Harry, who are you voting for and why?

Mike: Trump. Because I think Hillary would make a bad president.

Josh: I think Trump would make a bad president. So yes, Hillary.

Me: So Mike, Josh and Harry, who are you voting for and why?

Mike: Trump. Because I think Hillary would make a bad president.

Josh: I think Trump would make a bad president. So yes, Hillary.

Harry: Hey guys, this doesn't make sense to me.

How does one's being bad make the other good?

Me: So Mike, Josh and Harry, who are you voting for and why?

Mike: Trump. Because I think Hillary would make a bad president.

Josh: I think Trump would make a bad president. So yes, Hillary.

Harry: Hey guys, this doesn't make sense to me.

How does one's being bad make the other good?

Me : So who are you voting for then Harry?

Me: So Mike, Josh and Harry, who are you voting for and why?

Mike: Trump. Because I think Hillary would make a bad president.

Josh: I think Trump would make a bad president. So yes, Hillary.

Harry: Hey guys, this doesn't make sense to me.

How does one's being bad make the other good?

Me : So who are you voting for then Harry?

Harry: I don't know.

I don't know

 ${\sf Source:} www.two roads marketing.com$

Can the middle be excluded?

P: There exists a consecutive sequence of 100 zeros somewhere in the decimal expansion of π .

Can the middle be excluded?

P: There exists a consecutive sequence of 100 zeros somewhere in the decimal expansion of π .

 $\neg P$: There does not exist a consecutive sequence of 100 zeros anywhere in the decimal expansion of π .

Can the middle be excluded?

P: There exists a consecutive sequence of 100 zeros somewhere in the decimal expansion of π .

 $\neg P$: There does not exist a consecutive sequence of 100 zeros anywhere in the decimal expansion of π .

Is $Q: P \vee \neg P$ true?

Truth is something that God knows.

Truth is something that I know.

Truth is something that I know.

Truth is something that I have seen.

Truth is something that I know.

Truth is something that I have seen.

Truth is something that I have evidence for.

 $\bullet \ \phi$ is a proposition.

- ullet ϕ is a proposition.
- ullet ϕ is true.

- ullet ϕ is a proposition.
- \bullet ϕ is true.
- ϕ_1 is true, ϕ_2 is true, ..., ϕ_n is true $\vdash \phi$ is a proposition.

- ullet ϕ is a proposition.
- \bullet ϕ is true.
- ϕ_1 is true, ϕ_2 is true, ..., ϕ_n is true $\vdash \phi$ is a proposition.
- ϕ_1 is true, ϕ_2 is true, ..., ϕ_n is true $\vdash \phi$ is true.

 ϕ_1 is true, ϕ_2 is true, ..., ϕ_i is true, ..., ϕ_n is true $\vdash \phi_i$ is true

$$\overline{\phi_1}$$
 is true, $\overline{\phi_2}$ is true, ..., $\overline{\phi_i}$ is true, ..., $\overline{\phi_n}$ is true $\overline{\phi_i}$ is true

$$\frac{\Gamma \vdash \phi_1 \text{ is true} \qquad \Gamma, \phi_1 \text{ is true} \vdash \phi_2 \text{ is true}}{\Gamma \vdash \phi_2 \text{ is true}}$$

$$\overline{\phi_1}$$
 is true, $\overline{\phi_2}$ is true, ..., $\overline{\phi_i}$ is true, ..., $\overline{\phi_n}$ is true $\vdash \overline{\phi_i}$ is true

$$\frac{\Gamma \vdash \phi_1 \text{ is true} \qquad \Gamma, \phi_1 \text{ is true} \vdash \phi_2 \text{ is true}}{\Gamma \vdash \phi_2 \text{ is true}}$$

$$\frac{\Gamma \vdash \phi_2 \text{ is true} \qquad \Gamma \vdash \phi_1 \text{ is a proposition}}{\Gamma, \phi_1 \text{ is true} \vdash \phi_2 \text{ is true}}$$

 \bullet \top is prop.

- \bullet \top is prop.
- $\Gamma \vdash \top$ is true

$$\frac{\Gamma \vdash \phi_1 \text{ is prop} \quad \Gamma \vdash \phi_2 \text{ is prop}}{\Gamma \vdash \phi_1 \land \phi_2 \text{ is prop}}$$

$$\frac{\Gamma \vdash \phi_1 \text{ is prop} \quad \Gamma \vdash \phi_2 \text{ is prop}}{\Gamma \vdash \phi_1 \land \phi_2 \text{ is prop}}$$

$$\frac{\Gamma \vdash \phi_1 \text{ is true} \quad \Gamma \vdash \phi_2 \text{ is true}}{\Gamma \vdash \phi_1 \land \phi_2 \text{ is true}}$$

$$\frac{\Gamma \vdash \phi_1 \text{ is prop} \quad \Gamma \vdash \phi_2 \text{ is prop}}{\Gamma \vdash \phi_1 \land \phi_2 \text{ is prop}}$$

$$\frac{\Gamma \vdash \phi_1 \text{ is true} \quad \Gamma \vdash \phi_2 \text{ is true}}{\Gamma \vdash \phi_1 \land \phi_2 \text{ is true}}$$

$$\frac{\Gamma \vdash \phi_1 \land \phi_2 \text{ is true}}{\Gamma \vdash \phi_1 \text{ is true}}$$

$$\frac{\Gamma \vdash \phi_1 \text{ is prop} \quad \Gamma \vdash \phi_2 \text{ is prop}}{\Gamma \vdash \phi_1 \land \phi_2 \text{ is prop}}$$

$$\frac{\Gamma \vdash \phi_1 \text{ is true} \quad \Gamma \vdash \phi_2 \text{ is true}}{\Gamma \vdash \phi_1 \land \phi_2 \text{ is true}}$$

$$\frac{\Gamma \vdash \phi_1 \land \phi_2 \text{ is true}}{\Gamma \vdash \phi_1 \text{ is true}}$$

$$\frac{\Gamma \vdash \phi_1 \land \phi_2 \text{ is true}}{\Gamma \vdash \phi_2 \text{ is true}}$$

•

$$\frac{\Gamma \vdash \phi_1 \text{ is prop} \quad \Gamma, \phi_1 \text{ is true} \vdash \phi_2 \text{ is prop}}{\Gamma \vdash \phi_1 \implies \phi_2 \text{ is prop}}$$

$$\frac{\Gamma \vdash \phi_1 \text{ is prop} \quad \Gamma, \phi_1 \text{ is true} \vdash \phi_2 \text{ is prop}}{\Gamma \vdash \phi_1 \implies \phi_2 \text{ is prop}}$$

$$\frac{\Gamma, \phi_1 \text{ is true} \vdash \phi_2 \text{ is true}}{\Gamma \vdash \phi_1 \implies \phi_2 \text{ is true}}$$

$$\frac{\Gamma \vdash \phi_1 \text{ is prop} \quad \Gamma, \phi_1 \text{ is true} \vdash \phi_2 \text{ is prop}}{\Gamma \vdash \phi_1 \implies \phi_2 \text{ is prop}}$$

$$\frac{\Gamma, \phi_1 \text{ is true} \vdash \phi_2 \text{ is true}}{\Gamma \vdash \phi_1 \implies \phi_2 \text{ is true}}$$

$$\frac{\Gamma \vdash \phi_1 \implies \phi_2 \text{ is true } \Gamma \vdash \phi_1 \text{ is true}}{\Gamma \vdash \phi_2 \text{ is true}}$$

•

$$\frac{\Gamma \vdash \phi_1 \text{ is prop} \quad \Gamma \vdash \phi_2 \text{ is prop}}{\Gamma \vdash \phi_1 \lor \phi_2 \text{ is prop}}$$

$$\frac{\Gamma \vdash \phi_1 \text{ is prop} \quad \Gamma \vdash \phi_2 \text{ is prop}}{\Gamma \vdash \phi_1 \lor \phi_2 \text{ is prop}}$$

$$\frac{\Gamma \vdash \phi_1 \text{ is true} \quad \Gamma \vdash \phi_2 \text{ is prop}}{\Gamma \vdash \phi_1 \lor \phi_2 \text{ is true}}$$

$$\frac{\Gamma \vdash \phi_1 \text{ is prop} \quad \Gamma \vdash \phi_2 \text{ is prop}}{\Gamma \vdash \phi_1 \lor \phi_2 \text{ is prop}}$$

$$\frac{\Gamma \vdash \phi_1 \text{ is true } \quad \Gamma \vdash \phi_2 \text{ is prop}}{\Gamma \vdash \phi_1 \lor \phi_2 \text{ is true}}$$

$$\frac{\Gamma \vdash \phi_2 \text{ is true} \quad \Gamma \vdash \phi_1 \text{ is prop}}{\Gamma \vdash \phi_1 \lor \phi_2 \text{ is true}}$$

•

$$\frac{\Gamma \vdash \phi_1 \text{ is prop} \quad \Gamma \vdash \phi_2 \text{ is prop}}{\Gamma \vdash \phi_1 \lor \phi_2 \text{ is prop}}$$

$$\frac{\Gamma \vdash \phi_1 \text{ is true} \quad \Gamma \vdash \phi_2 \text{ is prop}}{\Gamma \vdash \phi_1 \lor \phi_2 \text{ is true}}$$

•

$$\frac{\Gamma \vdash \phi_2 \text{ is true} \quad \Gamma \vdash \phi_1 \text{ is prop}}{\Gamma \vdash \phi_1 \lor \phi_2 \text{ is true}}$$

$$\frac{\Gamma \vdash \phi_1 \lor \phi_2 \text{ is true} \quad \Gamma, \phi_1 \text{ is true} \vdash \phi \text{ is true} \quad \Gamma, \phi_2 \text{ is true} \vdash \phi \text{ is true}}{\Gamma \vdash \phi \text{ is true}}$$

11 / 40

 \bullet \perp is prop.

 \bullet \perp is prop.

0

$$\frac{\Gamma \vdash \bot \text{ is true} \quad \Gamma, \bot \text{ is true} \vdash \phi \text{ is prop}}{\Gamma \vdash \phi \text{ is true}}$$

$$\phi \wedge (\psi_1 \vee \psi_2)$$
 is true $\equiv (\phi \wedge \psi_1) \vee (\phi \wedge \psi_2)$ is true

$$\begin{split} \phi \wedge \left(\psi_1 \vee \psi_2\right) \text{ is true} &\equiv \left(\phi \wedge \psi_1\right) \vee \left(\phi \wedge \psi_2\right) \text{ is true} \\ &\frac{\phi \wedge \left(\psi_1 \vee \psi_2\right) \text{ is true}}{\left(\phi \wedge \psi_1\right) \vee \left(\phi \wedge \psi_2\right) \text{ is true}} \\ &\frac{\left(\phi \wedge \psi_1\right) \vee \left(\phi \wedge \psi_2\right) \text{ is true}}{\phi \wedge \left(\psi_1 \vee \psi_2\right) \text{ is true}} \end{split}$$

$$\phi \wedge (\psi_1 \vee \psi_2)$$
 is true $\equiv (\phi \wedge \psi_1) \vee (\phi \wedge \psi_2)$ is true

$$\frac{\phi \wedge (\psi_1 \vee \psi_2) \text{ is true}}{(\phi \wedge \psi_1) \vee (\phi \wedge \psi_2) \text{ is true}}$$

$$\phi \wedge (\psi_1 \vee \psi_2)$$
 is true $\equiv (\phi \wedge \psi_1) \vee (\phi \wedge \psi_2)$ is true

$$\frac{\phi \wedge (\psi_1 \vee \psi_2) \text{ is true}}{(\phi \wedge \psi_1) \vee (\phi \wedge \psi_2) \text{ is true}}$$

	$\phi \wedge (\psi_1 \vee \psi_2)$ is true		$\phi \wedge (\psi_1 \vee \psi_2)$ is true			
	ϕ is true		ϕ is true			
	$\overline{\psi_1}$ is true $\vdash \phi$ is true	$\overline{\psi_1}$ is true $\vdash \psi_1$ is true	$\overline{\psi_2}$ is true $\vdash \phi$ is true	$\overline{\psi_2}$ is true $\vdash \psi_2$ is true		
$\phi \wedge (\psi_1 \vee \psi_2)$ is true	ψ_1 is true $\vdash \phi \land \psi_1$ is true		ψ_2 is true $\vdash \phi \land \psi_2$ is true			
$\psi_1 \lor \psi_2$ is true	$\overline{\psi_1}$ is true $\vdash (\phi \land \psi_1) \lor (\phi \land \psi_2)$ is true		ψ_2 is true \vdash $(\phi \land \psi_1) \lor (\phi \land \psi_2)$ is true			
$(\phi \wedge \psi_1) ee (\phi \wedge \psi_2)$ is true						

$$\phi \wedge (\psi_1 \vee \psi_2)$$
 is true $\equiv (\phi \wedge \psi_1) \vee (\phi \wedge \psi_2)$ is true
$$\frac{(\phi \wedge \psi_1) \vee (\phi \wedge \psi_2) \text{ is true}}{\phi \wedge (\psi_1 \vee \psi_2) \text{ is true}}$$

$$\phi \wedge (\psi_1 \vee \psi_2)$$
 is true $\equiv (\phi \wedge \psi_1) \vee (\phi \wedge \psi_2)$ is true

$$\frac{\left(\phi \wedge \psi_1\right) \vee \left(\phi \wedge \psi_2\right) \text{ is true}}{\phi \wedge \left(\psi_1 \vee \psi_2\right) \text{ is true}}$$

$$(\phi \land \psi_1) \lor (\phi \land \psi_2) \text{ tr } = \begin{pmatrix} \hline \phi \land \psi_1 \text{ tr } \vdash \phi \land \psi_1 \text{ tr} \\ \hline \phi \land \psi_1 \text{ tr } \vdash \phi \land \psi_1 \text{ tr} \\ \hline \phi \land \psi_1 \text{ tr } \vdash \phi \land \psi_1 \text{ tr} \\ \hline \phi \land \psi_1 \text{ tr } \vdash \psi \land \psi_2 \text{ tr} \\ \hline \phi \land \psi_1 \text{ tr } \vdash \psi \land \psi_2 \text{ tr} \\ \hline \phi \land \psi_1 \text{ tr } \vdash \psi \land \psi_2 \text{ tr} \\ \hline \phi \land \psi_1 \text{ tr } \vdash \phi \land (\psi_1 \lor \psi_2) \text{ tr} \\ \hline \phi \land (\psi_1 \lor \psi_2) \text{ tr} \\ \hline \phi \land (\psi_1 \lor \psi_2) \text{ tr} \\ \hline \end{pmatrix} \begin{pmatrix} \phi \land \psi_2 \text{ tr } \vdash \phi \land \psi_2 \text{ tr} \\ \phi \land \psi_2 \text{ tr } \vdash \psi_1 \lor \psi_2 \text{ tr} \\ \phi \land \psi_2 \text{ tr } \vdash \psi_1 \lor \psi_2 \text{ tr} \\ \phi \land (\psi_1 \lor \psi_2) \text{ tr} \\ \hline \end{pmatrix}$$

Time for an exercise!

$$\phi \lor (\psi_1 \land \psi_2)$$
 is true $\equiv (\phi \lor \psi_1) \land (\phi \lor \psi_2)$ is true

Sanity check

 $\phi \wedge \neg \phi$ is true $\equiv \bot$ is true

Sanity check

$$\phi \wedge \neg \phi$$
 is true $\equiv \bot$ is true

$$\frac{\phi \wedge \neg \phi \text{ is true}}{\bot \text{ is true}}$$

$$\frac{\bot \text{ is true}}{\phi \land \neg \phi \text{ is true}}$$

Sanity check

$$\phi \wedge \neg \phi$$
 is true $\equiv \bot$ is true

$$\frac{\phi \land \neg \phi \text{ is true}}{\bot \text{ is true}}$$

$$\frac{\bot \text{ is true}}{\phi \land \neg \phi \text{ is true}}$$

$$\frac{\phi \land \neg \phi \text{ is true}}{\neg \phi \text{ is true}} \quad \frac{\phi \land \neg \phi \text{ is true}}{\phi \text{ is true}}$$

$$\perp \text{ is true}$$

$$\neg(\phi \lor \psi)$$
 is true $\equiv \neg\phi \land \neg\psi$ is true

$$\neg (\phi \lor \psi)$$
 is true $\equiv \neg \phi \land \neg \psi$ is true

$$\frac{\neg(\phi \lor \psi) \text{ is true}}{\neg \phi \land \neg \psi \text{ is true}}$$

$$\frac{\neg \phi \wedge \neg \psi \text{ is true}}{\neg (\phi \vee \psi) \text{ is true}}$$

$$\neg(\phi\vee\psi) \text{ is true} \equiv \neg\phi\wedge\neg\psi \text{ is true}$$

$$\frac{\neg(\phi\vee\psi) \text{ is true}}{\neg\phi\wedge\neg\psi \text{ is true}}$$

$$\neg(\phi\lor\psi)$$
 is true $\equiv\neg\phi\land\neg\psi$ is true

$$\frac{\neg(\phi \lor \psi) \text{ is true}}{\neg \phi \land \neg \psi \text{ is true}}$$

$\frac{\neg(\phi \lor \psi) \text{ is true}}{\phi \text{ is true} \vdash \neg(\phi \lor \psi) \text{ is true}}$	$\frac{\overline{\phi \text{ is true} \vdash \phi \text{ is true}}}{\phi \text{ is true} \vdash \phi \lor \phi \text{ is true}}$	$\frac{\neg(\phi \lor \psi) \text{ is true}}{\psi \text{ is true} \vdash \neg(\phi \lor \psi) \text{ is true}}$	$\frac{\overline{\psi \text{ is true} \vdash \psi \text{ is true}}}{\overline{\psi \text{ is true}} \vdash \phi \lor \psi \text{ is true}}$		
ϕ is true $dash \perp$ is true		ψ is true $dash$ \perp is true			
$\neg \phi$ is t	rue	$ eg \psi$ is true			
$\neg \phi \wedge \neg \psi$ is true					

$$\neg(\phi\lor\psi)$$
 is true $\equiv\neg\phi\land\neg\psi$ is true

$$\frac{\neg \phi \wedge \neg \psi \text{ is true}}{\neg (\phi \vee \psi) \text{ is true}}$$

$$\neg (\phi \lor \psi)$$
 is true $\equiv \neg \phi \land \neg \psi$ is true

$$\frac{\neg \phi \land \neg \psi \text{ is true}}{\neg (\phi \lor \psi) \text{ is true}}$$

It's constructive!

$$\neg(\phi \land \psi)$$
 is true $\equiv \neg \phi \lor \neg \psi$ is true

It's constructive!

$$\neg(\phi\wedge\psi) \text{ is true} \equiv \neg\phi\vee\neg\psi \text{ is true}$$

$$\phi\vee\neg\phi \text{ is true}$$

$$\neg\neg(\phi\vee\neg\phi) \text{ is true}$$

Time for another exercise

$$\phi \implies \neg \neg \phi$$
 is true

Time for another exercise

$$\phi \implies \neg \neg \phi$$
 is true

Problem

Absurdity of absurdity of absurdity is equivalent to absurdity. [BD81]

Classical vs. constructive

• Boolean algebra semantics = complemented distributive lattice

 $\forall \phi, \ \exists \ \neg \phi \text{ such that } \phi \land \neg \phi = 0 \text{ and } \phi \lor \neg \phi = 1$

Classical vs. constructive

• Boolean algebra semantics = complemented distributive lattice

$$\forall \phi, \exists \neg \phi \text{ such that } \phi \land \neg \phi = 0 \text{ and } \phi \lor \neg \phi = 1$$

 Heyting algebra semantics = bounded distributive lattice with operation

 $\phi \implies \psi = \text{weakest}$ assumption which when adjoined with ϕ gives ψ

Classical vs. constructive

• Boolean algebra semantics = complemented distributive lattice

$$\forall \phi, \exists \neg \phi \text{ such that } \phi \land \neg \phi = 0 \text{ and } \phi \lor \neg \phi = 1$$

 Heyting algebra semantics = bounded distributive lattice with operation

 $\phi \implies \psi = \text{weakest}$ assumption which when adjoined with ϕ gives ψ

- \bullet ϕ is a proposition.
- ullet ϕ is true.
- ϕ_1 is true, ϕ_2 is true, ..., ϕ_n is true $\vdash \phi$ is a proposition.
- ϕ_1 is true, ϕ_2 is true, ..., ϕ_n is true $\vdash \phi$ is true.

- \bullet ? : ϕ
- \bullet ϕ is true.
- ϕ_1 is true, ϕ_2 is true, ..., ϕ_n is true $\vdash \phi$ is a proposition.
- ϕ_1 is true, ϕ_2 is true, ..., ϕ_n is true $\vdash \phi$ is true.

- ? : φ
- *x* : *φ*
- ϕ_1 is true, ϕ_2 is true, ..., ϕ_n is true $\vdash \phi$ is a proposition.
- ϕ_1 is true, ϕ_2 is true, ..., ϕ_n is true $\vdash \phi$ is true.

- ? : φ
- *x* : *φ*
- $x_1 : \phi_1, x_2 : \phi_2, \dots, x_n : \phi_n \vdash ? : \phi$
- ϕ_1 is true, ϕ_2 is true, ..., ϕ_n is true $\vdash \phi$ is true.

- ? : φ
- *x* : *φ*
- $x_1 : \phi_1, x_2 : \phi_2, \dots, x_n : \phi_n \vdash ? : \phi$
- $x_1 : \phi_1, x_2 : \phi_2, \dots, x_n : \phi_n \vdash x : \phi$.

- \bullet \top is prop.
- $\Gamma \vdash \top$ is true

- ?: ⊤
- $\Gamma \vdash \top$ is true

- ? : ⊤
- Γ ⊢<>: ⊤

$$\frac{\Gamma \vdash \phi_1 \text{ is prop} \quad \Gamma \vdash \phi_2 \text{ is prop}}{\Gamma \vdash \phi_1 \land \phi_2 \text{ is prop}}$$

$$\frac{\Gamma \vdash \phi_1 \text{ is true} \quad \Gamma \vdash \phi_2 \text{ is true}}{\Gamma \vdash \phi_1 \land \phi_2 \text{ is true}}$$

$$\frac{\Gamma \vdash \phi_1 \land \phi_2 \text{ is true}}{\Gamma \vdash \phi_1 \text{ is true}}$$

$$\frac{\Gamma \vdash \phi_1 \land \phi_2 \text{ is true}}{\Gamma \vdash \phi_2 \text{ is true}}$$

$$\frac{\Gamma \vdash ?: \phi_1 \quad \Gamma \vdash ?': \phi_2}{\Gamma \vdash (?, ?'): \phi_1 \land \phi_2}$$

$$\frac{\Gamma \vdash \phi_1 \text{ is true} \quad \Gamma \vdash \phi_2 \text{ is true}}{\Gamma \vdash \phi_1 \land \phi_2 \text{ is true}}$$

$$\frac{\Gamma \vdash \phi_1 \land \phi_2 \text{ is true}}{\Gamma \vdash \phi_1 \text{ is true}}$$

$$\frac{\Gamma \vdash \phi_1 \land \phi_2 \text{ is true}}{\Gamma \vdash \phi_2 \text{ is true}}$$

$$\frac{\Gamma \vdash ? : \phi_1 \quad \Gamma \vdash ?' : \phi_2}{\Gamma \vdash (?, ?') : \phi_1 \land \phi_2}$$

$$\frac{\Gamma \vdash p_1 : \phi_1 \quad \Gamma \vdash p_2 : \phi_2}{\Gamma \vdash (p_1, p_2) : \phi_1 \land \phi_2}$$

$$\frac{\Gamma \vdash \phi_1 \land \phi_2 \text{ is true}}{\Gamma \vdash \phi_1 \text{ is true}}$$

$$\frac{\Gamma \vdash \phi_1 \land \phi_2 \text{ is true}}{\Gamma \vdash \phi_2 \text{ is true}}$$

$$\frac{\Gamma \vdash ?: \phi_1 \quad \Gamma \vdash ?': \phi_2}{\Gamma \vdash (?, ?'): \phi_1 \land \phi_2}$$

$$\frac{\Gamma \vdash p_1 : \phi_1 \quad \Gamma \vdash p_2 : \phi_2}{\Gamma \vdash (p_1, p_2) : \phi_1 \land \phi_2}$$

$$\frac{\Gamma \vdash p : \phi_1 \land \phi_2}{\Gamma \vdash \pi_1(p) : \phi_1}$$

$$\frac{\Gamma \vdash \phi_1 \land \phi_2 \text{ is true}}{\Gamma \vdash \phi_2 \text{ is true}}$$

$$\frac{\Gamma \vdash ?: \phi_1 \quad \Gamma \vdash ?': \phi_2}{\Gamma \vdash (?, ?'): \phi_1 \land \phi_2}$$

$$\frac{\Gamma \vdash p_1 : \phi_1 \quad \Gamma \vdash p_2 : \phi_2}{\Gamma \vdash (p_1, p_2) : \phi_1 \land \phi_2}$$

$$\frac{\Gamma \vdash p : \phi_1 \land \phi_2}{\Gamma \vdash \pi_1(p) : \phi_1}$$

$$\frac{\Gamma \vdash p : \phi_1 \land \phi_2}{\Gamma \vdash \pi_2(p) : \phi_2}$$

$$\frac{\Gamma \vdash \phi_1 \text{ is prop} \quad \Gamma, \phi_1 \text{ is true} \vdash \phi_2 \text{ is prop}}{\Gamma \vdash \phi_1 \implies \phi_2 \text{ is prop}}$$

$$\frac{\Gamma, \phi_1 \text{ is true} \vdash \phi_2 \text{ is true}}{\Gamma \vdash \phi_1 \implies \phi_2 \text{ is true}}$$

$$\frac{\Gamma \vdash \phi_1 \implies \phi_2 \text{ is true } \Gamma \vdash \phi_1 \text{ is true}}{\Gamma \vdash \phi_2 \text{ is true}}$$

•

•

$$\frac{\Gamma \vdash ?' : \phi_1 \quad \Gamma, x : \phi_1 \vdash ? : \phi_2}{\Gamma \vdash \lambda x . ? : \phi_1 \implies \phi_2}$$

$$\frac{\Gamma,\phi_1 \text{ is true} \vdash \phi_2 \text{ is true}}{\Gamma \vdash \phi_1 \implies \phi_2 \text{ is true}}$$

$$\frac{\Gamma \vdash \phi_1 \implies \phi_2 \text{ is true } \quad \Gamma \vdash \phi_1 \text{ is true}}{\Gamma \vdash \phi_2 \text{ is true}}$$

$$\frac{\Gamma \vdash ?' : \phi_1 \quad \Gamma, x : \phi_1 \vdash ? : \phi_2}{\Gamma \vdash \lambda x.? : \phi_1 \implies \phi_2}$$

$$\frac{\Gamma, x : \phi_1 \vdash p_2 : \phi_2}{\Gamma \vdash \lambda x . p_2 : \phi_1 \implies \phi_2}$$

$$\frac{\Gamma \vdash \phi_1 \implies \phi_2 \text{ is true } \Gamma \vdash \phi_1 \text{ is true}}{\Gamma \vdash \phi_2 \text{ is true}}$$

$$\frac{\Gamma \vdash ?' : \phi_1 \quad \Gamma, x : \phi_1 \vdash ? : \phi_2}{\Gamma \vdash \lambda x.? : \phi_1 \implies \phi_2}$$

$$\frac{\Gamma, x : \phi_1 \vdash p_2 : \phi_2}{\Gamma \vdash \lambda x . p_2 : \phi_1 \implies \phi_2}$$

$$\frac{\Gamma \vdash p : \phi_1 \implies \phi_2 \quad \Gamma \vdash p_1 : \phi_1}{\Gamma \vdash p(p_1) : \phi_2}$$

$$\frac{\Gamma \vdash \phi_1 \text{ is prop} \quad \Gamma \vdash \phi_2 \text{ is prop}}{\Gamma \vdash \phi_1 \lor \phi_2 \text{ is prop}}$$

$$\frac{\Gamma \vdash \phi_1 \text{ is true} \quad \Gamma \vdash \phi_2 \text{ is prop}}{\Gamma \vdash \phi_1 \lor \phi_2 \text{ is true}}$$

$$\frac{\Gamma \vdash \phi_2 \text{ is true} \quad \Gamma \vdash \phi_1 \text{ is prop}}{\Gamma \vdash \phi_1 \lor \phi_2 \text{ is true}}$$

$$\frac{\Gamma \vdash \phi_1 \lor \phi_2 \text{ is true} \quad \Gamma, \phi_1 \text{ is true} \vdash \phi \text{ is true}}{\Gamma \vdash \phi \text{ is true}}$$

$$\frac{\Gamma \vdash ?: \phi_1 \quad \Gamma \vdash ?': \phi_2}{\Gamma \vdash \mathsf{ case (inl ? \hookrightarrow ?' | inr ?' \hookrightarrow ?')}: \phi_1 \lor \phi_2}$$

$$\frac{\Gamma \vdash \phi_1 \text{ is true} \quad \Gamma \vdash \phi_2 \text{ is prop}}{\Gamma \vdash \phi_1 \lor \phi_2 \text{ is true}}$$

$$\frac{\Gamma \vdash \phi_2 \text{ is true} \quad \Gamma \vdash \phi_1 \text{ is prop}}{\Gamma \vdash \phi_1 \lor \phi_2 \text{ is true}}$$

 $\frac{\Gamma \vdash \phi_1 \lor \phi_2 \text{ is true} \quad \Gamma, \phi_1 \text{ is true} \vdash \phi \text{ is true} \quad \Gamma, \phi_2 \text{ is true} \vdash \phi \text{ is true}}{\Gamma \vdash \phi \text{ is true}}$

$$\frac{\Gamma \vdash ?: \phi_1 \quad \Gamma \vdash ?': \phi_2}{\Gamma \vdash \mathsf{ case (inl ? \hookrightarrow ?') inr ?' \hookrightarrow ?')}: \phi_1 \lor \phi_2}$$

$$\frac{\Gamma \vdash p_1 : \phi_1 \quad \Gamma \vdash ?' : \phi_2}{\Gamma \vdash i_1(p_1) : \phi_1 \lor \phi_2}$$

$$\frac{\Gamma \vdash \phi_2 \text{ is true} \quad \Gamma \vdash \phi_1 \text{ is prop}}{\Gamma \vdash \phi_1 \lor \phi_2 \text{ is true}}$$

 $\frac{\Gamma \vdash \phi_1 \lor \phi_2 \text{ is true} \quad \Gamma, \phi_1 \text{ is true} \vdash \phi \text{ is true} \quad \Gamma, \phi_2 \text{ is true} \vdash \phi \text{ is true}}{\Gamma \vdash \phi \text{ is true}}$

$$\frac{\Gamma \vdash ?: \phi_1 \quad \Gamma \vdash ?': \phi_2}{\Gamma \vdash \mathsf{ case (inl ? \hookrightarrow ?') inr ?' \hookrightarrow ?')}: \phi_1 \lor \phi_2}$$

$$\frac{\Gamma \vdash p_1 : \phi_1 \quad \Gamma \vdash ?' : \phi_2}{\Gamma \vdash i_1(p_1) : \phi_1 \lor \phi_2}$$

$$\frac{\Gamma \vdash p_2 : \phi_2 \quad \Gamma \vdash ? : \phi_1}{\Gamma \vdash i_2(p_2) : \phi_1 \lor \phi_2}$$

 $\frac{\Gamma \vdash \phi_1 \lor \phi_2 \text{ is true} \quad \Gamma, \phi_1 \text{ is true} \vdash \phi \text{ is true} \quad \Gamma, \phi_2 \text{ is true} \vdash \phi \text{ is true}}{\Gamma \vdash \phi \text{ is true}}$

$$\frac{\Gamma \vdash ?: \phi_1 \quad \Gamma \vdash ?': \phi_2}{\Gamma \vdash \ \mathsf{case} \ \mathsf{(inl} \ ? \hookrightarrow ?| \ \mathsf{inr} \ ?' \hookrightarrow ?'): \phi_1 \lor \phi_2}$$

$$\frac{\Gamma \vdash \rho_1 : \phi_1 \quad \Gamma \vdash ?' : \phi_2}{\Gamma \vdash i_1(\rho_1) : \phi_1 \lor \phi_2}$$

$$\frac{\Gamma \vdash p_2 : \phi_2 \quad \Gamma \vdash ? : \phi_1}{\Gamma \vdash i_2(p_2) : \phi_1 \lor \phi_2}$$

$$\frac{\Gamma \vdash p : \phi_1 \lor \phi_2 \quad \Gamma, x_1 : \phi_1 \vdash p_1 : \phi \quad \Gamma, x_2 : \phi_2 \vdash p_2 : \phi}{\Gamma \vdash \mathsf{case} \ \mathsf{p} \ (\mathsf{inl} \ x_1 \hookrightarrow p_1 | \ \mathsf{inr} \ x_2 \hookrightarrow p_2) : \phi}$$

 \bullet \perp is prop.

0

$$\frac{\Gamma \vdash \bot \text{ is true} \quad \Gamma, \bot \text{ is true} \vdash \phi \text{ is prop}}{\Gamma \vdash \phi \text{ is true}}$$

• ?: ⊥

•

$$\frac{\Gamma \vdash \bot \text{ is true} \quad \Gamma, \bot \text{ is true} \vdash \phi \text{ is prop}}{\Gamma \vdash \phi \text{ is true}}$$

0

$$\frac{\Gamma \vdash p : \bot \quad \Gamma, p : \bot \vdash ? : \phi}{\Gamma \vdash \mathsf{wild} \ : \phi}$$

$$\begin{split} \phi \wedge \left(\psi_1 \vee \psi_2\right) \text{ is true} &\equiv \left(\phi \wedge \psi_1\right) \vee \left(\phi \wedge \psi_2\right) \text{ is true} \\ &\frac{\phi \wedge \left(\psi_1 \vee \psi_2\right) \text{ is true}}{\left(\phi \wedge \psi_1\right) \vee \left(\phi \wedge \psi_2\right) \text{ is true}} \\ &\frac{\left(\phi \wedge \psi_1\right) \vee \left(\phi \wedge \psi_2\right) \text{ is true}}{\phi \wedge \left(\psi_1 \vee \psi_2\right) \text{ is true}} \end{split}$$

$$\phi \wedge (\psi_1 \vee \psi_2)$$
 is true $\equiv (\phi \wedge \psi_1) \vee (\phi \wedge \psi_2)$ is true

$$\frac{\phi \wedge (\psi_1 \vee \psi_2) \text{ is true}}{(\phi \wedge \psi_1) \vee (\phi \wedge \psi_2) \text{ is true}}$$

	$\frac{\phi \wedge (\psi_1 \vee \psi_2) \text{ is true}}{\phi \text{ is true}}$		$\frac{\phi \wedge (\psi_1 \vee \psi_2) \text{ is true}}{\phi \text{ is true}}$	
	$\overline{\psi_1 \text{ is true} \vdash \phi \text{ is true}}$	$\overline{\psi_1 \text{ is true} \vdash \psi_1 \text{ is true}}$	$\overline{\psi_2}$ is true $\vdash \phi$ is true	$\overline{\psi_2}$ is true $\vdash \psi_2$ is true
$\phi \wedge (\psi_1 \vee \psi_2)$ is true	ψ_1 is true $\vdash \phi \land \psi_1$ is true		ψ_2 is true $\vdash \phi \land \psi_2$ is true	
$\psi_1 \lor \psi_2$ is true	ψ_1 is true \vdash $(\phi \land \psi_1) \lor (\phi \land \psi_2)$ is true		ψ_2 is true \vdash $(\phi \land \psi_1) \lor (\phi \land \psi_2)$ is true	

 $(\phi \wedge \psi_1) \vee (\phi \wedge \psi_2)$ is true

$$\phi \wedge (\psi_1 \vee \psi_2)$$
 is true $\equiv (\phi \wedge \psi_1) \vee (\phi \wedge \psi_2)$ is true
$$\frac{\phi \wedge (\psi_1 \vee \psi_2) \text{ is true}}{(\phi \wedge \psi_1) \vee (\phi \wedge \psi_2) \text{ is true}}$$
 $p: \phi \wedge (\psi_1 \vee \psi_2)$

case $(\pi_2 p)$ (inl $x_1 \hookrightarrow i_1(\pi_1 p, x_1) \mid \text{inr } x_2 \hookrightarrow i_2(\pi_1 p, x_2)$) : $(\phi \land \psi_1) \lor (\phi \land \psi_2)$

$$\phi \wedge (\psi_1 \vee \psi_2)$$
 is true $\equiv (\phi \wedge \psi_1) \vee (\phi \wedge \psi_2)$ is true

$$\frac{\phi \wedge (\psi_1 \vee \psi_2) \text{ is true}}{(\phi \wedge \psi_1) \vee (\phi \wedge \psi_2) \text{ is true}}$$

$$p: \phi \wedge (\psi_1 \vee \psi_2)$$

case
$$(\pi_2 p)$$
(inl $x_1 \hookrightarrow i_1(\pi_1 p, x_1) \mid \text{inr } x_2 \hookrightarrow i_2(\pi_1 p, x_2)$) : $(\phi \land \psi_1) \lor (\phi \land \psi_2)$

$$\frac{(\phi \wedge \psi_1) \vee (\phi \wedge \psi_2) \text{ is true}}{\phi \wedge (\psi_1 \vee \psi_2) \text{ is true}}$$

$$\frac{ \phi \wedge \psi_1 \text{ tr} \vdash \phi \wedge \psi_1 \text{ tr} }{ \phi \wedge \psi_1 \text{ tr} \vdash \phi \wedge \psi_1 \text{ tr} } \frac{ \phi \wedge \psi_1 \text{ tr} \vdash \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_1 \text{ tr} \vdash \phi \wedge \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} \vdash \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} \vdash \phi \wedge \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} \vdash \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} \vdash \phi \wedge \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} \vdash \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} \vdash \phi \wedge \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} \vdash \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} \vdash \phi \wedge \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} \vdash \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} \vdash \psi_1 \vee \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} \vdash \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} \vdash \psi_1 \vee \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} \vdash \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} \vdash \psi_1 \vee \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} \vdash \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} \vdash \psi_1 \vee \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} \vdash \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} \vdash \psi_1 \vee \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} \vdash \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} \vdash \psi_1 \vee \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} \vdash \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} \vdash \psi_1 \vee \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} \vdash \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} \vdash \psi_1 \vee \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} \vdash \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} \vdash \psi_1 \vee \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} \vdash \psi_1 \vee \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} \vdash \psi_1 \vee \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} \vdash \psi_1 \vee \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} \vdash \psi_1 \vee \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} \vdash \psi_1 \vee \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} \vdash \psi_1 \vee \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} \vdash \psi_1 \vee \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} \vdash \psi_1 \vee \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} \vdash \psi_1 \vee \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} \vdash \psi_1 \vee \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} } \frac{ \phi \wedge \psi_2 \text{ tr} }{ \phi \wedge \psi_2 \text{ tr} }$$

Pritam Choudhury Constructive Logic October 4, 2016 30 / 40

$$\phi \wedge (\psi_1 \vee \psi_2) \text{ is true} \equiv (\phi \wedge \psi_1) \vee (\phi \wedge \psi_2) \text{ is true}$$

$$\frac{\phi \wedge (\psi_1 \vee \psi_2) \text{ is true}}{(\phi \wedge \psi_1) \vee (\phi \wedge \psi_2) \text{ is true}}$$

$$p : \phi \wedge (\psi_1 \vee \psi_2)$$

$$\text{case } (\pi_2 p)(\text{inl } x_1 \hookrightarrow i_1(\pi_1 p, x_1) \mid \text{inr } x_2 \hookrightarrow i_2(\pi_1 p, x_2)) : (\phi \wedge \psi_1) \vee (\phi \wedge \psi_2)$$

$$\frac{(\phi \wedge \psi_1) \vee (\phi \wedge \psi_2) \text{ is true}}{\phi \wedge (\psi_1 \vee \psi_2) \text{ is true}}$$

$$p' : (\phi \wedge \psi_1) \vee (\phi \wedge \psi_2)$$

$$\text{case } p'(\text{inl } p_1 \hookrightarrow (\pi_1 p_1, i_1(\pi_2 p_1)) \mid \text{inr } p_2 \hookrightarrow (\pi_1 p_2, i_2(\pi_2 p_2))) :$$

 $\phi \wedge (\psi_1 \vee \psi_2)$

Exercise Revisited!

$$\phi \lor (\psi_1 \land \psi_2)$$
 is true $\equiv (\phi \lor \psi_1) \land (\phi \lor \psi_2)$ is true

"Nothing is lost ... Everything is transformed."

"Nothing is lost ... Everything is transformed."

• Principle of conservation of proof = introduction-elimination = β -rules

"Nothing is lost ... Everything is transformed."

- Principle of conservation of proof = introduction-elimination = β -rules
- Principle of reversibility of proof = elimination-introduction = η -rules

Progeny and ancestry of proofs \wedge

• β -rules

$$\frac{\Gamma \vdash p_1 : \phi_1 \quad \Gamma \vdash p_2 : \phi_2}{\Gamma \vdash (p_1, p_2) : \phi_1 \land \phi_2} \frac{\Gamma \vdash (p_1, p_2) : \phi_1 \land \phi_2}{\Gamma \vdash \pi_1(p_1, p_2) : \phi_1}$$

• β -rules

$$\frac{\Gamma \vdash p_1 : \phi_1 \quad \Gamma \vdash p_2 : \phi_2}{\Gamma \vdash (p_1, p_2) : \phi_1 \land \phi_2} \frac{\Gamma \vdash (p_1, p_2) : \phi_1 \land \phi_2}{\Gamma \vdash \pi_1(p_1, p_2) : \phi_1}$$

$$\Gamma \vdash p_1 \equiv \pi_1(p_1, p_2) : \phi_1 \qquad \Gamma \vdash p_2 \equiv \pi_2(p_1, p_2) : \phi_2$$

• β -rules

$$\frac{\Gamma \vdash p_1 : \phi_1 \quad \Gamma \vdash p_2 : \phi_2}{\frac{\Gamma \vdash (p_1, p_2) : \phi_1 \land \phi_2}{\Gamma \vdash \pi_1(p_1, p_2) : \phi_1}}$$

$$\Gamma \vdash p_1 \equiv \pi_1(p_1, p_2) : \phi_1 \qquad \Gamma \vdash p_2 \equiv \pi_2(p_1, p_2) : \phi_2$$

• η -rule

$$\frac{\Gamma \vdash p : \phi_1 \land \phi_2}{\Gamma \vdash \pi_1 p : \phi_1} \frac{\Gamma \vdash p : \phi_1 \land \phi_2}{\Gamma \vdash \pi_2 p : \phi_2}$$
$$\frac{\Gamma \vdash (\pi_1 p, \pi_2 p) : \phi_1 \land \phi_2}{\Gamma \vdash (\pi_1 p, \pi_2 p) : \phi_1 \land \phi_2}$$

• β -rules

$$\frac{\Gamma \vdash p_1 : \phi_1 \quad \Gamma \vdash p_2 : \phi_2}{\Gamma \vdash (p_1, p_2) : \phi_1 \land \phi_2}$$
$$\frac{\Gamma \vdash (p_1, p_2) : \phi_1 \land \phi_2}{\Gamma \vdash \pi_1(p_1, p_2) : \phi_1}$$

$$\Gamma \vdash p_1 \equiv \pi_1(p_1, p_2) : \phi_1 \qquad \Gamma \vdash p_2 \equiv \pi_2(p_1, p_2) : \phi_2$$

η-rule

$$\frac{\Gamma \vdash p : \phi_1 \land \phi_2}{\Gamma \vdash \pi_1 p : \phi_1} \quad \frac{\Gamma \vdash p : \phi_1 \land \phi_2}{\Gamma \vdash \pi_2 p : \phi_2}$$
$$\Gamma \vdash (\pi_1 p, \pi_2 p) : \phi_1 \land \phi_2$$

$$\Gamma \vdash p \equiv (\pi_1 p, \pi_2 p) : \phi_1 \land \phi_2$$

• β -rule

$$\frac{\Gamma, x : \phi_1 \vdash p_2 : \phi_2}{\Gamma \vdash \lambda x. p_2 : \phi_1 \implies \phi_2 \quad \Gamma \vdash p_1 : \phi_1}{\Gamma \vdash (\lambda x. p_2) p_1 : \phi_2}$$

• β -rule

$$\frac{\Gamma, x : \phi_1 \vdash p_2 : \phi_2}{\Gamma \vdash \lambda x . p_2 : \phi_1 \implies \phi_2} \quad \Gamma \vdash p_1 : \phi_1}{\Gamma \vdash (\lambda x . p_2) p_1 : \phi_2}$$

$$\Gamma \vdash [p_1/x]p_2 \equiv (\lambda x.p_2)p_1 : \phi_2$$

• β -rule

$$\frac{\Gamma, x : \phi_1 \vdash p_2 : \phi_2}{\Gamma \vdash \lambda x . p_2 : \phi_1 \implies \phi_2} \quad \Gamma \vdash p_1 : \phi_1}{\Gamma \vdash (\lambda x . p_2) p_1 : \phi_2}$$

$$\Gamma \vdash [p_1/x]p_2 \equiv (\lambda x.p_2)p_1 : \phi_2$$

• η -rule

$$\frac{\Gamma \vdash p : \phi_1 \implies \phi_2}{\Gamma, x : \phi_1 \vdash p : \phi_1 \implies \phi_2} \frac{\Gamma, x : \phi_1 \vdash p : \phi_1 \implies \phi_2}{\Gamma, x : \phi_1 \vdash p(x) : \phi_2} \frac{\Gamma, x : \phi_1 \vdash p(x) : \phi_2}{\Gamma \vdash \lambda x \cdot p(x) : \phi_1 \implies \phi_2}$$

• β -rule

$$\frac{\Gamma, x : \phi_1 \vdash p_2 : \phi_2}{\Gamma \vdash \lambda x. p_2 : \phi_1 \implies \phi_2} \quad \Gamma \vdash p_1 : \phi_1}{\Gamma \vdash (\lambda x. p_2) p_1 : \phi_2}$$

$$\Gamma \vdash [p_1/x]p_2 \equiv (\lambda x.p_2)p_1 : \phi_2$$

• η -rule

$$\frac{\Gamma \vdash \rho : \phi_1 \implies \phi_2}{\Gamma, x : \phi_1 \vdash \rho : \phi_1 \implies \phi_2} \frac{\Gamma, x : \phi_1 \vdash x : \phi_1}{\Gamma, x : \phi_1 \vdash \rho(x) : \phi_2} \frac{\Gamma, x : \phi_1 \vdash \rho(x) : \phi_2}{\Gamma \vdash \lambda x . \rho(x) : \phi_1 \implies \phi_2}$$

$$\Gamma \vdash p \equiv \lambda x.p(x) : \phi_1 \implies \phi_2$$

• β -rules

$$\frac{ \frac{\Gamma \vdash p : \phi_1}{\Gamma \vdash i_1 p : \phi_1 \lor \phi_2} \quad \Gamma, x_1 : \phi_1 \vdash p_1 : \psi \quad \Gamma, x_2 : \phi_2 \vdash p_2 : \psi}{\Gamma \vdash \mathsf{case} \; (i_1 p) (\mathsf{inl} \; x_1 \hookrightarrow p_1 \; | \; \mathsf{inr} \; x_2 \hookrightarrow p_2) : \psi}$$

• β -rules

$$\frac{\Gamma \vdash p : \phi_1}{\Gamma \vdash i_1 p : \phi_1 \lor \phi_2} \quad \Gamma, x_1 : \phi_1 \vdash p_1 : \psi \quad \Gamma, x_2 : \phi_2 \vdash p_2 : \psi}{\Gamma \vdash \mathsf{case}\ (i_1 p)(\mathsf{inl}\ x_1 \hookrightarrow p_1 \mid \mathsf{inr}\ x_2 \hookrightarrow p_2) : \psi}$$

$$\Gamma \vdash [p/x_1]p_1 \equiv \mathsf{case}\ (i_1 p)(\mathsf{inl}\ x_1 \hookrightarrow p_1 \mid \mathsf{inr}\ x_2 \hookrightarrow p_2) : \psi$$

$$\Gamma \vdash [p/x_2]p_2 \equiv \mathsf{case}\ (i_2 p)(\mathsf{inl}\ x_1 \hookrightarrow p_1 \mid \mathsf{inr}\ x_2 \hookrightarrow p_2) : \psi$$

• β -rules

$$\frac{ \frac{\Gamma \vdash \rho : \phi_1}{\Gamma \vdash i_1 \rho : \phi_1 \lor \phi_2} \quad \Gamma, x_1 : \phi_1 \vdash \rho_1 : \psi \quad \Gamma, x_2 : \phi_2 \vdash \rho_2 : \psi}{\Gamma \vdash \mathsf{case} \; (i_1 \rho) (\mathsf{inl} \; x_1 \hookrightarrow \rho_1 \; | \; \mathsf{inr} \; x_2 \hookrightarrow \rho_2) : \psi}$$

$$\Gamma \vdash [p/x_1]p_1 \equiv \operatorname{case}(i_1p)(\operatorname{inl} x_1 \hookrightarrow p_1 \mid \operatorname{inr} x_2 \hookrightarrow p_2) : \psi$$

 $\Gamma \vdash [p/x_2]p_2 \equiv \operatorname{case}(i_2p)(\operatorname{inl} x_1 \hookrightarrow p_1 \mid \operatorname{inr} x_2 \hookrightarrow p_2) : \psi$

• η -rule

$$\frac{\Gamma, x : \phi_1 \lor \phi_2 \vdash q : \psi}{\Gamma, x_1 : \phi_1 \vdash [i_1x_1/x]q : \psi} \quad \frac{\Gamma, x : \phi_1 \lor \phi_2 \vdash q : \psi}{\Gamma, x_2 : \phi_2 \vdash [i_2x_2/x]q : \psi}$$

$$\Gamma \vdash \text{ case } p(\text{inl } x_1 \hookrightarrow [i_1x_1/x]q \mid \text{inr } x_2 \hookrightarrow [i_2x_2/x]q) : \psi$$

• β -rules

$$\frac{ \frac{\Gamma \vdash p : \phi_1}{\Gamma \vdash i_1 p : \phi_1 \lor \phi_2} \quad \Gamma, x_1 : \phi_1 \vdash p_1 : \psi \quad \Gamma, x_2 : \phi_2 \vdash p_2 : \psi}{\Gamma \vdash \mathsf{case} \; (i_1 p) (\mathsf{inl} \; x_1 \hookrightarrow p_1 \; | \; \mathsf{inr} \; x_2 \hookrightarrow p_2) : \psi}$$

$$\Gamma \vdash [p/x_1]p_1 \equiv \mathsf{case}\;(i_1p)(\mathsf{inl}\;x_1 \hookrightarrow p_1 \mid \mathsf{inr}\;x_2 \hookrightarrow p_2) : \psi$$

$$\Gamma \vdash [p/x_2]p_2 \equiv \mathsf{case}\;(i_2p)(\mathsf{inl}\;x_1 \hookrightarrow p_1 \mid \mathsf{inr}\;x_2 \hookrightarrow p_2) : \psi$$

• η -rule

$$\frac{\Gamma, x : \phi_1 \lor \phi_2 \vdash q : \psi}{\Gamma, x_1 : \phi_1 \vdash [i_1 x_1 / x]q : \psi} \quad \frac{\Gamma, x : \phi_1 \lor \phi_2 \vdash q : \psi}{\Gamma, x_2 : \phi_2 \vdash [i_2 x_2 / x]q : \psi}$$

$$\Gamma \vdash \text{ case } p(\text{inl } x_1 \hookrightarrow [i_1 x_1 / x]q \mid \text{inr } x_2 \hookrightarrow [i_2 x_2 / x]q) : \psi$$

 $\Gamma \vdash [p/x]q \equiv \text{ case } p(\text{inl } x_1 \hookrightarrow [i_1x_1/x]q \mid \text{inr } x_2 \hookrightarrow [i_2x_2/x]q) : \psi$

Problem

How to drink water?

The takeaways

• The technical stuff

The takeaways

• The technical stuff

The takeaways

• The broader perspective of intuitionism

References

- L. E. J. Brouwer and D. van Dalen, Brouwer's cambridge lectures on intuitionism / edited by d. van dalen, Cambridge University Press Cambridge [Eng.]; New York, 1981.
- A. Heyting, Intuitionism an introduction, North-Holland, 1956.
- Per Martin-Löf, On the meanings of the logical constants and the justifications of the logical laws, Proceedings of the conference on mathematical logic, Vol. 2 (Siena, 1983/1984), Univ. Siena, Siena, 1985, pp. 203–281.
- ______, A path from logic to metaphysics, Nuovi problemi della logica e della filosofia della scienza, Vol. 2, CLUEB, Bologna, Italy, 1990, pp. 141–149.

Questions?

Thank you.