

Mobile Roboter WS 2022/23

6. Sensorik

Globale Positionsbestimmung

Globale Navigationssatellitensystem (GNSS)

- Bestimmung der eigenen Position auf der Erdoberfläche z.B. WGS84
- Laufzeitmessung der Radiowellen von Satelliten zu Empfänger
- Für die Laufzeitmessung muss die Uhrzeit auf dem Satellit und dem Receiver bekannt sein
- Es sind immer mindestens 4 Satelliten notwendig um eine Position zu bestimmen da der Uhrenfehler ausgeglichen werden muss

GNNS Receiver

- klein und günstig z.B. Handy
 - geringe Genauigkeit im Bereich von mehreren Meter
- präzise Receiver z.B. Vermessung, Landwirtschaft
 - erreichen bei perfekten Bedingungen bis zu Zentimeter Genauigkeit

Globale Positionsbestimmung

Globale Navigationssatellitensystem (GNSS)

- nur im Outdoor-Bereich einsetzbar
- Abschattung ist ein Problem
- Reflektionen sind ein Problem (Multipath)

GPS Amerikanisches System

- Seit Mitte der 1990er im Betrieb
- 24 Satelliten im Einsatz + Reserve

Galileo Europäisches System

- Seit 2016 für Allgemeinheit zugänglich
- 30 Satelliten vorgesehenen (aktuell 26 im Einsatz, Stand 11.5.2020)

GLONASS Russisches System Beidou Chinesisches System

Laufbahnen der GPS Satelliten

Quelle: http://www.gs-enduro.de/html/navigation/gps.htm

Galileo Satellit https://www.dlr.de/content/de/missionen/galileo.html

Globale Positionsbestimmung

Differential GPS (DGPS, RTK-GPS)

- Einflüsse auf benachbarte Empfänger lassen sich eliminieren
- Fehler durch Tropo- und Ionosphäre
- Bahnen und Uhrenfehler der Satelliten

Satellitenbasiertes Ergänzungssystem (SBAS)

Satellite Based Augmentation System

- Basisstationen empfangen GPS Signale und berechnen Korrekturdaten
- Geosynchronen Verbreitung der Korrekturdaten (meistens über geostationären) Satelliten
- Unterstützung für z.B. GPS, Galileo, ...
- Zuverlässigkeit, Genauigkeit und Verfügbarkeit der Positionsbestimmung erhöhen
- EGNOS für Europa (40 Basisstationen, 3 geostationäre Satelliten)
- WAAS für Nordamerika

Servicegebiete der SBAS https://de.wikipedia.org/wiki/Satellite_Based_Augmentation_System

6. Sensorik

Wahrnehmung der Umgebung und des eigenen Zustandes

- Sensoren dienen der Analyse von Situation und Umwelt
- Sensoren messen physikalische Eigenschaften
 - Temperatur
 - Helligkeit
 - Gewicht
 - Größe
 - Abstände
 - Position des Roboters
 - **—** ..
- Messdaten der Sensoren sind nie perfekt und beinhalten Rauschen

Klassifikation von Sensoren

Passive Sensoren

messen Energie die von der Umgebung abgegeben wird

- Temperatur
- Licht
- Schallwellen
- ...

Aktive Sensoren

senden Energie aus und messen die Reflektion der Umgebung

- Ultraschall
- Infrarot (Licht)
- Laser (Licht)
- Radar (Radiowellen GHz)
- . . .

Interne (propriozeptive) Sensoren

messen innere Zustandsgrößen des Roboters

- Temperatur im Inneren
- Batterieladung
- Motorstrom
- Motorumdrehungen
- Gelenkwinkel
- Kräfte an Gelenken
- ...

Externe (exterozeptive) Sensoren

erfassen Eigenschaften der Umwelt

- Licht
- Schall
- Hindernisse
- Konturen von Objekten
- ..

Sensor Eigenschaften

Empfindlichkeit

 Zusammenhang zwischen Ausgangssignal und der gemessenen physikalischen Größe (Eingangssignal)

Linearität

 Beschreibt wie konstant das Verhältnis zwischen Eingangs- und Ausgangssignal am Sensor ist

Messbereich

Gibt die kleinste und größte zu messende Größe an

Auflösung

 Was ist die kleinste einstellbare Schrittgröße am Eingangssignal

Dynamik

 Die Dynamik ist der Quotient der größten zur kleinsten Signalstärke und wird oft in dB angegeben

Reaktionszeit

 Wie schnell kommen Änderungen vom Eingangssignal am Ausgang an

Genauigkeit

• Relativer Fehler zum tatsächlichen Wert (acc=1-|m-v|/v)

Messfrequenz

Anzahl Messungen in einem bestimmten Zeitintervall

Messfehler

- Differenz zwischen tatsächlichem Wert v und gemessenem Wert m (err=m-v)
- Systematische Messfehler
 - Deterministische Abweichung vom tatsächlichen Wert (z.B. Temperaturtrifft bei Ultraschallsensoren)
- Zufällige Messfehler
 - Zufällige Streuung der Messungen

Drehgeber

Absolutdrehgeber

- Eindeutiges Signal für Achsstellung durch Binärecodierte Scheiben
- Greycode Impulsgeber wechseln immer nur ein Bit
- Messverfahren
 - Elektrische
 - Optisch
 - Magnetisch

28 29 30 31 0 1 2 3 4 11.25° 26 25 6 8 BIT4 BIT3 BIT2 BIT1 BIT0 22 9 9 10 10 11 12 12 11 1

Inkrementaldrehgeber

- Lochschiebe zur Detektion der Achsbewegung
- Ein-Kanal-Inkrementalgeber nur Achsbewegung keine Richtung
- Quadraturencoder zusätzlich noch Richtung
- Messverfahren
 - Elektrische
 - Optisch
 - Magnetisch

Beschleunigungsmessung

Linearbeschleunigung

- Messung der Massenträgheit entlang einer Achsen (X / Y / Z)
- Messung sind Driftbehaftet und besitzen einen Temperaturabhängigen Bias
- Messverfahren
 - MEMS

- Messung der Rotationsbeschleunigung um eine Achse (Roll / Pitch / Yaw)
- Geringer Drift als bei Linearbeschleunigung aber auch Temperaturabhängiger Bias
- Messverfahren
 - MEMS
 - Piezo-elektrisch
 - Faseroptisch(oft in der Unterwasserrobotik eingesetzt)

Acceleration sensor Working principle

Combined inertial sensor for Vehicle Dynamics Control applications

Beschleunigungsmessung

Inertiale Messeinheit (IMU) - Inertial Measurement Unit (IMU)

- Kombiniert Linear- und Rotationsbeschleunigungssensoren
- Meist 3 Linear- und 3 Rotationsbeschleunigungssensoren um 6 DOF Pose zu bestimmen
- Oft wird auch noch ein Kompass mit integriert um einer Absolute Nordausrichtung zu erhalten
- In der Robotik werden hauptsächlich *Micro-Electro-Mechanical* Systems (MEMS) eingesetzt

XSens IMU Sensoren

Bosch MM5.10

Bosch BNO055

Ausrichtungsmessung

Kompass

- Ausrichtung im Bezug auf den magnetischen Nordpol (Arktischer Magnetpol)
- Messung des Erdmagnetfeldes
- Empfindlich gegenüber magnetischen Störungen

Inklinometer (Neigungsmesser)

- Messung der Lage im Raum
- Meist mittels leitenden Flüssigkeiten (Quecksilber) die einen Kontakt herstellen
- Werden in der Robotik selten eingesetzt

Infrarot

- Aussenden von Infrarotlicht
- Messung der Intensität des zurückgestrahlten Lichtes
- Fehlerquelle sind unterschiedlich farbige Flächen (schwarz Flächen absorbieren Licht stärker als helle Flächen)
- Eindimensionaler Sensor
- Reichweite bis zu wenigen Metern
- Besonders günstig

Sharp GP2Y...

https://global.sharp/products/device/lineup/selection/opto/haca/diagram.html

Ultraschall

- Ausstoß eines kurzen Ultraschallimpuls
- Messen der Zeit bis das Signal wieder am Sensor ankommt d = vt/2 (bei 20° C für Schall v = 343m/s)
- typische Frequenzen sind zwischen 40 und 180 kHz
- Keulenförmige Ausbreitung

typische Reichweite zwischen 10cm und 5m

Bosch Automotiv

https://www.microsonic.de/de/abstandssensoren/zylindrisch/micplus.htm

2D LiDAR (Laserscanner)

- Sind die meist verwendeten Sensoren in der Robotik
- Große Reichweite einfache Handhabung
- Robust gegenüber Störeinflüssen
- Erprobt in der Anwendung

Funktionsweise

- Laserdiode sendet Laser aus
- Rotierender Spiegel lenkt Laserstrahl um
- Photodiode empfängt Reflektion

Beispiele für 2D LiDAR

- Terabee SAS TeraRanger
 - -0.2 7m (+/-10 cm)
 - ca. 500€
- Scanse Sweep
 - 0.1 40m (2% of distance)
 - ca. 250€
- Hokuyo
 - verschiedene Scanner
 - 0.1 30m
 - ab 1000€
- Sick
 - verschiedene Scanner
 - -0.1 150m
 - ab ca. 1000€

Hokuyo UTM-30LX und URG-04LX-UG01

Beispiele für 3D LiDARs mit rotierenden Spiegeln

- Velodyne
 - Erster Hersteller von 360° 3D LiDAR
 - -0.5 120m (+/- 1cm)
 - 360° Field of View
- Valeo
- Quanergy
- Robosense

Solid State LiDARs

- LeddarTech
- Benewake CE30
- Hitachi FX8 / FX10

Flash LiDARs

LeddarTech

Quanergy

Beispiele für 3D LiDARs mit rotierenden Spiegeln

- Velodyne
 - Erster Hersteller von 360° 3D LiDAR
 - -0.5 120m (+/- 1cm)
 - 360° Field of View
- Valeo
- Quanergy
- Robosense

Solid State LiDARs

- LeddarTech
- Benewake CE30
- Hitachi FX8 / FX10

Flash LiDARs

LeddarTech

Valeo Scala

Quanergy

Hitachi FX10

Leddariech

Beispiele für 3D LiDARs mit rotierenden Spiegeln

- Velodyne
 - Erster Hersteller von 360° 3D LiDAR
 - -0.5 120m (+/- 1cm)
 - 360° Field of View
- Valeo
- Quanergy
- Robosense

Leddar Pixell

Flash LiDARs

LeddarTech

Solid State LiDARs

LeddarTech

- Benewake CE30

Hitachi FX8 / FX10

Quanergy

LeddarTech

3D Kameras

Structured Light

- Es wird ein (infrarot) Muster in die Scene projiziert
- Ein IR-Kamera erfasst diese Muster und errechnet daraus die Tiefeninformationen
- Ein normale RGB Kamera erfasst ein Farbbild der selben Scene
- Tiefen- und Farbinformation für jeden Pixel RGB-D
- Typische Auflösung 640x480 bei 30Hz (Kinect)
- 57° x 43° Field of View FoV (Kinect)

Beispiele

- Kinect
- Asus Xtion2
- Primesence Carmine
- Intel RealSense

• ...

