CS 188: Artificial Intelligence

Slides by Dan Klein, Pieter Abbeel, Anca Dragan (ai.berkeley.edu)

Today

- Local Search
- Structure in CSP

Iterative Improvement

Iterative Algorithms for CSPs

 Local search methods typically work with "complete" states, i.e., all variables assigned

- To apply to CSPs:
 - o Take an assignment with unsatisfied constraints
 - o Operators *reassign* variable values
 - o No fringe! Live on the edge.
- Algorithm: While not solved,
 - o Variable selection: randomly select any conflicted variable
 - o Value selection: min-conflicts heuristic:
 - Choose a value that violates the fewest constraints
 - \circ I.e., hill climb with h(x) = total number of violated constraints

Example: 4-Queens

- States: 4 queens in 4 columns ($4^4 = 256$ states)
- Operators: move queen in column
- Goal test: no attacks
- \circ Evaluation: c(n) = number of attacks

[Demo: n-queens – iterative improvement (L5D1)]
[Demo: coloring – iterative improvement]

Video of Demo Iterative Improvement – n Queens

Video of Demo Iterative Improvement – Coloring

Performance of Min-Conflicts

- o Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)!
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$R = \frac{\text{number of constraints}}{\text{number of variables}}$$

Summary: CSPs

- CSPs are a special kind of search problem:
 - o States are partial assignments
 - o Goal test defined by constraints
- Basic solution: backtracking search
- Speed-ups:
 - o Ordering
 - o Filtering
 - Structure turns out trees are easy!
- Iterative min-conflicts is often effective in practice

Local Search

Local Search

- Tree search keeps unexplored alternatives on the fringe (ensures completeness)
- Local search: improve a single option until you can't make it better (no fringe!)
- New successor function: local changes

 Generally much faster and more memory efficient (but incomplete and suboptimal)

Hill Climbing

- o Start wherever
- o Repeat: move to the best neighboring state
- o If no neighbors better than current, quit
- What's bad about this approach?
- What's good about it?

Hill Climbing Diagram

Hill Climbing Quiz

Starting from X, where do you end up?

Starting from Y, where do you end up?

Starting from Z, where do you end up?

Simulated Annealing

- Idea: Escape local maxima by allowing downhill moves
 - o But make them rarer as time goes on

```
function SIMULATED-ANNEALING (problem, schedule) returns a solution state
   inputs: problem, a problem
             schedule, a mapping from time to "temperature"
   local variables: current, a node
                        next, a node
                        T, a "temperature" controlling prob. of downward steps
   current \leftarrow \text{Make-Node}(\text{Initial-State}[problem])
   for t \leftarrow 1 to \infty do
        T \leftarrow schedule[t]
        if T = 0 then return current
        next \leftarrow a randomly selected successor of current
        \Delta E \leftarrow \text{Value}[next] - \text{Value}[current]
        if \Delta E > 0 then current \leftarrow next
        else current \leftarrow next only with probability e^{\Delta E/T}
```


Simulated Annealing

- Theoretical guarantee:
 - o Stationary distribution: $p(x) \propto e^{\frac{E(x)}{kT}}$
 - o If T decreased slowly enough, will converge to optimal state!
- o Is this an interesting guarantee?
- Sounds like magic, but reality is reality:
 - o The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
 - o People think hard about *ridge operators* which let you jump around the space in better ways

Genetic Algorithms

- Genetic algorithms use a natural selection metaphor
 - o Keep best N hypotheses at each step (selection) based on a fitness function
 - o Also have pairwise crossover operators, with optional mutation to give variety
- Possibly the most misunderstood, misapplied (and even maligned) technique around

Example: N-Queens

- Why does crossover make sense here?
- When wouldn't it make sense?
- What would mutation be?
- What would a good fitness function be?

Bonus (time permitting): Structure

Problem Structure

- Extreme case: independent subproblems
 - o Example: Tasmania and mainland do not interact
- Independent subproblems are identifiable as connected components of constraint graph
- Suppose a graph of n variables can be broken into subproblems of only c variables:
 - o Worst-case solution cost is $O((n/c)(d^c))$, linear in n
 - o E.g., n = 80, d = 2, c = 20
 - o $2^{80} = 4$ billion years at 10 million nodes/sec
 - \circ (4)(2²⁰) = 0.4 seconds at 10 million nodes/sec

Tree-Structured CSPs

- Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d²) time
 - o Compare to general CSPs, where worst-case time is O(dn)
- o This property also applies to probabilistic reasoning (later): an example of the relation between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
 - o Order: Choose a root variable, order variables so that parents precede children

- \circ Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(X_i), X_i)
- o Assign forward: For i = 1 : n, assign X_i consistently with Parent(X_i)
- o Runtime: O(n d²) (why?)

Tree-Structured CSPs

- Claim 1: After backward pass, all root-to-leaf arcs are consistent
- Proof: Each X→Y was made consistent at one point and Y's domain could not have been reduced thereafter (because Y's children were processed before Y)

- Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
- Proof: Induction on position
- Why doesn't this algorithm work with cycles in the constraint graph?
- Note: we'll see this basic idea again with Bayes' nets

Improving Structure

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors' domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime O((d^c) (n-c) d²), very fast for small c

Cutset Conditioning

Choose a cutset

Instantiate the cutset (all possible ways)

Compute residual CSP for each assignment

Solve the residual CSPs (tree structured)

Tree Decomposition*

NT

NSW

WA

- Idea: create a tree-structured graph of mega-variables
- Each mega-variable encodes part of the original CSP
- Subproblems overlap to ensure consistent solutions

Next Time: Search when you're not the only agent!