Intractability

Textbook: Chapter 9

Tractability vs. Intractability

Def: A language A is **tractable** ("realistically" solvable) if $A \in P$. It is **intractable** (theoretically solvable, but not in "realistic" time) if $A \notin P$.

▶ In reality, there are plenty of language $\in P$ that are infeasible to decide IRL: $O(n^{999999})$ is technically "tractable"

Exponential cost will eventually overtake any polynomial

Space Constructability

- Recall: A function runs with deterministic **space** complexity O(f(n)) if it uses space f(n) on input length n
- ▶ **Def:** A function f is **space-constructable** if a TM can map any string of length x to f(x) in space O(f(x))
- Space-constructable function examples
 - ightharpoonup $\lg(n)$
 - $ightharpoonup n \lg(n)$
 - ► n²

Space Hierarchy Theorems

- ► Clearly, $SPACE(n) \subseteq SPACE(n^2)$ since n is $O(n^2)$
- ► How can we prove that two space complexity classes are different, e.g. $SPACE(n) \subsetneq SPACE(n^2)$?

Thm: Space hierarchy theorem. For any space-constructable f, a language A exists that is decidable in O(f(n)) space but **not** in o(f(n)) space.

A is decidable with space bounded by f(n), but cannot be decided with space insignificant to f(n)

Corollary: For any nonnegative integers ϵ_1 , epsilon₂ where $0 \le \epsilon_1 < \epsilon_2$,

$$SPACE(n^{\epsilon_1}) \subsetneq SPACE(n^{\epsilon_2})$$

Finally, a proper hierarchy! This is very useful!

Space Hierarchy Proof

Time Constructability

- ▶ Time complexities give us a lot more trouble than space ones
- ▶ If we could prove that $P \subsetneq NP$ like we can prove PSPACE = NPSPACE, we could settle the P/NP debate
- ▶ Thus, we try to do the same with time

Def: A function t where t(n) is at least $O(n \log n)$ is called **time constructible** if a TM can map input of length n to t(n) in deterministic time O(t(n)).

Examples: $n \log n$, $n\sqrt{n}$, n^2 , 2^n

Time Hierarchy Theorems

Thm: Time hierarchy theorem. For any time constructible function t, a language A exists that is decidable in O(t(n)) time but not in time

$$o\left(\frac{t(n)}{\log t(n)}\right)$$

Subtly different, and therefore less strong!

Corollary: For functions t_1, t_2 where t_2 is time constructable and t_1 is $o\left(\frac{t_2(n)}{\log t_2(n)}\right)$,

$$TIME(t_1(n)) \subsetneq TIME(t_2(n))$$

Time Hierarchy Proof

EXPSPACE-Completeness

- ▶ Recall: EXPSPACE is the set of all problems solvable given exponential space
- \triangleright EXPSPACE = \bigcup_k SPACE(a^{n^k})

Relativization

Circuit Complexity

Next up: Advanced Complexity Analysis