BILGISAYAR MIMARISI

İkili Kodlama ve Mantık Devreleri

Özer Çelik Matematik-Bilgisayar Bölümü

Kodlama

- Kodlama, iki küme elemanları arasında karşılıklığı kesin olarak belirtilen kurallar bütünüdür diye tanımlanabilir.
- Diğer bir deyişle, görünebilen, okunabilen yazı, sayı ve işaretlerin değiştirilmesi işlemine **'kodlama'** denir.

• Örneğin:

Bilgisayarın çevresel birimleri ile merkezi işlem ünitesi arasındaki bilgi iletişimidir. Bilgisayarlarda, bir alfabetik-sayısal kaynak olan klavyeden gönderilen bilgi, 7 veya 8 bitlik ikili sayılar seklinde kodlandıktan sonra ilgili birime gönderilir.

Kodlama

Kodlama işlemi aşağıdaki avantajları sağlar:

- 1. Aritmetik işlemlerde kolaylık sağlar.
- 2. Hataların bulunmasını kolaylaştırır.
- 3. Hataların düzeltilmesi işlemlerini basitleştirir.
- 4. Bellek islemlerinde verimliliği artırır.
- 5. Bilgilerin islenmesi işleminin insanlarca kolayca anlaşılmasını sağlar.

Yalnızca sayısal karakterlerin kodlanmasıyla ortaya çıkan kodlara 'sayısal kodlar' (BCD kodları) denilirken, alfabetik ve sayısal karakterlerin kodlanmasını içeren kodlama yöntemlerine 'alfasayısal kodlar' denir.

Sayısal Kodlama

Yalnızca sayısal karakterlerin kullanıldığı sayısal kodlama sistemlerinin çok geniş uygulama alanı olması nedeni ile, çok farklı sayısal kodlama yöntemleri kullanılmaktadır. Sayısal kodlama yöntemlerine örnek olarak;

```
i- BCD kodu,
ii- Gray kodu,
iii- +3kodu,
iv- Aiken kodu,
v- 5'te 2 kodu,
vi- Bar kodu,
kodlama yöntemleri verilebilir.
```

Sayısal Kodlama

Onluk sistemdeki bir sayının, her bir basamağının ikilik sayı sistemindeki karşılığının dört bit seklinde yazılması ile ortaya çıkan kodlama yöntemine, 'İkili Kodlanmış Onlu Sayı Kodu - BCD kodu' (Binary Coded Decimal Code) ismi verilir. Onluk sayı sistemi 0 ile 9 arasındaki sayıları içerdiğinden, her basamaktaki sayının ikili sistemde kodlanması için 4 bite ihtiyaç vardır.

Örnek 1: (263)10 sayısını BCD kodu ile kodlayalım. Her bir basamaktaki sayının ikili karşılığı 4 bit olarak yazılırsa;

2 6 3

0010 0110 0011 sayıları bulunur.

Sayıların birleştirilmesiyle; (263)10 = (001001100011)BCD eşitliği elde edilir.

Bilgisayarlarda sayılarla birlikte alfabedeki harfler, noktalama işaretleri ve diğer özel karakterler kullanılmaktadır.

Tüm bu bilgileri kodlamak için kullanılan yöntemler, 'Alfasayısal kodlama yöntemleri' olarak isimlendirilir.

- Alfasayısal kodlar;
 - tüm büyük ve küçük harfleri,
 - 7 tane noktalama işaretini,
 - O'dan 9'a kadar 10 sayıyı
 - ve +, /, #, %, *, vb. karakterleri içerir.

Yaygın olarak kullanılan iki türlü alfasayısal kodlama yöntemi bulunmaktadır. Bunlar, ASCII (Amerikan Standart Code For Information Interchance) ve EBCDIC (Extended BCD Interchance Code) kodlarıdır. Bu kodlardan daha yaygın olarak kullanılan ASCII kodudur.

Her bir karakter bir bit dizgisi ile temsil edilir.

ASCII

Karakterler 7-bit olarak kodlanmıştır.

- 128 karakter içerir :
- Büyük ve küçük harfler
- Sayılar
- Noktalama İş aretleri
- Kontrol Karakterleri
- 94 yazma karakteri ve 34 yazılamayan karakter(kontrol fonksiyonları için)
- a, P,7, %, &, + (yazma karakterleri)
- NULL, backspace, escape, delete (kontrol karakterleri)

Decimal Hex Char			Decimal Hex Char			Decimal Hex Char			Decimal Hex Char		
0	0	[NULL]	32	20	[SPACE]	64	40	@	96	60	
1	1	[START OF HEADING]	33	21	1	65	41	Α	97	61	a
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	C
4	4	[END OF TRANSMISSION]	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	[ACKNOWLEDGE]	38	26	&	70	46	F	102	66	f
7	7	[BELL]	39	27		71	47	G	103	67	g
8	8	[BACKSPACE]	40	28	(72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29)	73	49	. 1	105	69	1
10	A	[LINE FEED]	42	2A	*	74	4A	J	106	6A	j
11	В	[VERTICAL TAB]	43	2B	+	75	4B	K	107	6B	k
12	C	[FORM FEED]	44	2C		76	4C	L	108	6C	- 1
13	D	[CARRIAGE RETURN]	45	2D		77	4D	M	109	6D	m
14	E	[SHIFT OUT]	46	2E		78	4E	N	110	6E	n
15	F	[SHIFT IN]	47	2F	1	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	р
17	11	[DEVICE CONTROL 1]	49	31	1	81	51	Q	113	71	q
18	12	[DEVICE CONTROL 2]	50	32	2	82	52	R	114	72	r
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	[DEVICE CONTROL 4]	52	34	4	84	54	T	116	74	t
21	15	[NEGATIVE ACKNOWLEDGE]	53	35	5	85	55	U	117	75	u
22	16	[SYNCHRONOUS IDLE]	54	36	6	86	56	V	118	76	v
23	17	[ENG OF TRANS. BLOCK]	55	37	7	87	57	W	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	X
25	19	[END OF MEDIUM]	57	39	9	89	59	Y	121	79	V
26	1A	[SUBSTITUTE]	58	3A	1	90	5A	Z	122	7A	z
27	18	[ESCAPE]	59	3B	;	91	5B	[123	7B	{
28	1C	[FILE SEPARATOR]	60	3C	<	92	5C	1	124	7C	1
29	1D	[GROUP SEPARATOR]	61	3D	=	93	5D	1	125	7D	}
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~
31	1F	JUNIT SEPARATORI	63	3F	2	95	5F		127	7F	(DEL1

Örnek :İkili sayı sistemindeki aşağıdaki mesaj ASCII kodunda kodlanmıştır. Bu mesajın anlamı nedir? 1001000 1000101 100110 1010000

Her 7 bitlik kodun onaltılık sistemdeki karşılığı bulunup yazılırsa,

48 45 4C 50 değerleri elde edilir. Bu değerlerin temsil ettikleri bilgiler tablodan bulunup eklenirse; 48=H, 45=E, 4C=L, 50=P esitlikleri bulunur ve sonuç olarak, HELP bilgisine ulasılır.

Örnek: 'BASIC' programlama dilinde program yazan bir programcı 'NEXT' boşluk 'I' yazmış olsun. Bu durumda ASCII kodunda bellekte saklanacak bilgi nedir?

Karakter	Onaltılı	İkili
N —	→ 4E	0100 0110
Е —	→ 45	0100 0101
X	→ 58	0101 1000
Т —	→ 54	0101 0100
Space —	2 0	0010 0000
I	→ 49	0100 1001

Karakter	7-Bit ASCII	Sekizli	Onaltılı	Karakter	7-Bit ASCII	Sekizli	Onaltılı
A	100 0001	101	41	Y	101 1001	131	59
B C	100 0010 100 0011	102 103	42 43	Z 0	101 1010 011 0000	132 060	5A 30
D	100 0011	103	44	1	011 0000	061	31
E	100 0100	105	45	2	011 0001	062	32
F	100 0110	106	46	3	011 0011	063	33
G	100 0111	107	47				
H	100 1000	110	48	4	011 0100	064	34
I	100 1001	111	49	5	011 0101	065	35
J	100 1010	112	4A	6	011 0110	066	36
K	100 1011	113	4B	7	011 0111	067	37
L	100 1100	114	4C	8	011 1000	070	38
			475	9	011 1001	071	39
M	100 1101	115	4D	boşluk	010 0000	040	20
N	100 1110	116	4E		010 1110	056	2E
O	100 1111	117	4F	(010 1000	050	28
P	101 0000	120	50	+	010 1011	053	2 B
Q	101 0001	121	51	\$	010 0100	044	24
R	101 0010	122	52	*	010 1010	052	2A
S	101 0011	123	53	`	010 1001	051	20
T	101 0100	124	54)	010 1001	051	29
U	101 0101	125	55	-	010 1101	055	2D
V	101 0110	126	56	/	010 1111	057	2F
W	101 0111	127	57	•	010 1100	054	2C
X	101 1000	130	58	= RETURN	011 1101	075	3D 0D
				LINEFEED	000 1101 000 1010	015 012	0D 0A
					000 1010	012	VA

Tablo 3.6. ASCII kodlu karakterlerin gösterilişi.

'DIGITAL' kelimesinin elde edilebilmesi için yazılması gerekli ASCII kodlu bilgiyi yazalım.

Her bir karakterin karşılığı olan bilgilerin yazılması ile;

 $D = 100 \ 0100$

 $I = 100 \ 1001$

G = 100 0111

I = 100 1001

 $T = 100 \ 0100$

A = 100 0001

L = 100 1100

EBCDIC

EBCDIC;

8 Bit,

256 karakter

IBM tarafından bulunmuş ve mainframe'lerde kullanılmıştır.

UniCode;

16 Bit

65,536 karakter

Farklı dillerde yazılmış olan metinlerin değişimi, işlenmesi ve gösterilmesini desteklemek amacıyla geliştirilmiştir. Dünya üzerindeki tüm diller desteklenir.

İkili Mantık

İkili mantık, iki ayrık değer alabilen değişkenleri ve mantıksal anlam taşıyan işlemleri ele alır. Değişkenlerin alabileceği iki değer farklı şekillerde adlandırılabilir:

- Doğru/Yanlış
- Evet/hayır
- Sıcak/soğuk
- Açık/kapalı
- 1/0

Boole Cebri, ikili değişkenler ve mantıksal işlemlerden oluşur. Değişkenler A, B, C, x, y, z vb. harflerle gösterilir; burada her değişken ancak ve ancak olası iki ayrı değerden birini alabilir: 1 ve 0. Üç temel mantık işlemi vardır: VE (AND), VEYA (OR) ve DEĞİL (NOT)

İkili Mantık

x ve y değerlerinin her birleşimi için, mantık işleminin tanımıyla belirlenen bir z değeri vardır. Bu tanımlar, doğruluk tabloları (truth table) kullanılarak özet şeklinde verilebilir.

Doğruluk tablosu, değişkenlerin alabileceği olası bütün bileşimleri içeren ve değişkenlerin alabileceği değerlerle işlem sonucu arasındaki ilişkiyi gösteren bir tablodur.

	AND	*	OR	NOT			
X	у	x.y	X	у	х+у	X	X
0	0	0	0	0	0	0	1
0	1	0	0	1	1	1	0
1	0	0	1	0	1		1
1	1	1	1	1	1		

Lojik devrelerin en basit ve temel elemanı lojik kapılardır (logic gates).

Lojik değişkenlerin değerlerini (gerilimleri) giriş olarak kullanan, girişten aldığı değerler üzerinde işlemler yaparak lojik eşitliğin değerine uygun değerler (gerilim) üreten elektronik devre, 'lojik kapı' olarak isimlendirilir.

Temel olarak beş farklı yapıda bulunan kapılar, basit bir sayısal elektronik devreden bilgisayara kadar cihazların temel yapı tasıdır. Flip-Flop, kaydedici, sayıcı, vb. lojik devreleri oluşturmakta kullanılan kapılar; direnç, diyot, transistor, FET,MOSFET, vb elektronik devre elemanları kullanılarak yapılırlar.

Bu kapılardan yaygın olarak kullanılanlar:

- VE (AND),
- VEYA (OR),
- DEĞİL (NOT),
- VEDEĞİL (NAND),
- VEYADEĞİL (NOR) kapılarıdır ve bu kapılar 'temel lojik kapılar' olarak isimlendirilir.

Lojik kapıların kullanılması ile oluşturulan devreler, 'lojik devreler' olarak adlandırılır.

'VEYA' İşlemi ve 'VEYA' Kapısı

'VEYA' kapısı sembolü, doğruluk tablosu, elektriksel eşdeğeri ve 'VEYA' kapısının entegre içerisindeki durumu.

'VE' İŞlemi ve 'VE' Kapısı

'VE' kapısı sembolü, doğruluk tablosu, elektriksel eşdeğeri ve 'VE' kapısının entegre içerisindeki durumu.

'Değil' işlemi ve 'değil' Kapısı

'DEĞİL' kapısı sembolü, doğruluk tablosu, elektriksel eşdeğeri ve 'DEĞİL' kapısının entegre içerisindeki durumu.

Devre Çizimi

P = X'Y + XZ Devresini Çizelim

P=X'Y + XY'+(WZ)' devresini çiziniz?

Zamanlama Diyagramları

Fig. 1-5 Input-output signals for gates

Kodlama İle İlgili Lojik Devreler

Kodlayıcı Devreler (Encoders)

'n' bit girişli bir sistemde, girişindeki bilgiyi ikili sayı sisteminde kodlanmış olarak çıkısında veren bileşik devreye, 'kodlayıcı devre' (encoder) denir.

Farklı bir bakış açısı ile, insanlar tarafından kolayca anlaşılabilen rakam ve karakterlerin farklı bilgiler sekline dönüştürülmesini sağlayan devreler, 'kodlayıcı devreler' olarak isimlendirilir.

Kod Çözücüler (Decoders)

Dijital sistemlerde bilgiler ikili sayılar olarak temsil edilir ve yapılan işlemler ikili sayılarla gerçekleştirilir. '**Kod çözücü**' (decoder) devresi; kodlayıcı devresinin tersini yaparak, 'n' sayıdaki giriş hattından gelen ikili bilgileri maksimum 2n sayıda çıkış hattına dönüştüren bileşik bir devredir.

Diğer bir deyişle; değişik formlarda ifade edilen bilgilerin insanların kolayca anlayabileceği sekle dönüştürülmesini sağlayan devreler, 'kod çözücü devreler' olarak isimlendirilir.

Kod Çeviriciler (Code Converters)

'**Kod çevirici**', bir kodlama yönteminde ifade edilen bilgiyi, başka bir kodlama yöntemine çeviren lojik bir devredir. Kod çevirici devrelere örnek olarak,

- BCD'den yedi parçalı göstergeye,
- ikili 'den BCG'ye,
- ikili 'den gray koda,
- giray koddan ikili 'ye,
- BCG'den ASCII ve E
- BCDIC'ye veya tersine kod çevirmeleri verilebilir.

Kod Çeviriciler (Code Converters)

Hesap makinelerinde veya bilgisayarlarda kullanılan tuş takımı / gösterge sistemi, kod çevirme işlemlerinin bir kaçının bir arada yapıldığı bir düzenektir. Tuş takımı / gösterge sisteminde, tuş takımıyla gösterge arasında kodlama ve kod çevirme işlemleri yapılır

Tuş takımındaki tuşlara basılmak suretiyle elde edilen değerler, onlu sistemden BCD'ye dönüştürülür (kodlayıcı). BCD olarak elde edilen bilgiler, BCD'den 7 parçalı göstergeye kod çevirme işleminden geçirilir ve göstergede onlu olarak okunur

Çoklayıcılar - Veri Seçiciler (Multiplexers - Data Selectors)

Bir çok giriş hattından gelen bilgilerden birisini seçerek uygun çıkış hattına yönlendirilmesini sağlayan bileşik devrelere 'çoklayıcı / veri seçici devreler' (multiplexer) denir ve ÇOĞ (MUX) sembolü ile gösterilir.

Birçok veri transferi, zaman paylaşım tekniği kullanılarak mültiplekse devreleri yardımıyla gerçekleştirilir.

