ETLYAKSound and Acoustics

${\bf Indholds for tegnelse}$

1	Karakterisering af lyd						
	1.1 Lektion 01-02-2018	5					
	1.1.1 Lyd i et medium	5					
	1.1.2 Hørelsen	7					
	1.1.3 Ohms lov analogi	10					
	1.1.4 Vægtning	11					
	1.1.5 Lydens udbredelse	12					
	1.1.6 Opgaver	14					
2	Lydens udbredelse i frit felt						
3	Måling/opsamling af lyd						
4	Gengivelse af lyd						
5	Højttalerdesign						
6	Lyddæmpning og lyddiffusion	23					
7	Lydens opførsel i lukkede rum						
8	Menneskets opfattelse af lyd						

Karakterisering af lyd

1.1 Lektion 01-02-2018

- 1. Lyd i et medium
- 2. Hørelsen (opfattet lydniveau)
- 3. Ohms lov analogi
- 4. Vægtning (filtrering)
- 5. Lydens udbredelse (afstandsregel)

• Pensum:

- 1. Master Handbook Of Acoustics, ch. 1-3
- 2. Audio Meetering, sec. 1-6, 11, 13
- 3. Elektroakustik, TAS, p. 6

• Opgaver:

1. Lyd og Akustik - Lektion 1 - opgaver og øvelser

1.1.1 Lyd i et medium

Sound can be viewed as a wave motion in air or other elastic media. In this case, sound is a stimulus. Sound can also be viewed as an excitation of the hearing mechanism that results in the perception of sound. In this case, sound is a sensation.

• Lyd er svingning i et medium omkring ligevægt. Uden et medium kan lyd ikke blive udbredt.

• Lyd kan udbredes i medier såsom luft, væsker og materialer af fast form. Lyd kan ikke udbredes i rummet, da mediet her er et vakuum.

• Hvis en luftpartikel bliver forskudt fra dens oprindelig position, vil elastiske krafter forsøge at tilbagevende luftpartiklen til dens oprindelige position.

Figur 1.1: En luftpartikel der vibrerer rundt om dens medie som er i ligevægt (elastiske krafter).

- Fluktationerne i trykket omkring det atmosfæriske tryk er meget små.
 - Normal tale ses som små ripples i det atmosfæriske tryk.
 - Den mindste ændring i trykket et øre kan opfatte er således 20 μPa. Dette svarer til et tryk der er 5 millioner gange mindre end det atmosfæriske tryk.
- Lydens hastighed er $c = 344 \,\mathrm{m \, s^{-1}}$
 - Lydens udbredelse (hastighed) afhænger af mediets densitet.
 - * Jo større densistet, jo nemmere er det for partiklerne at overføre energi. Lyd udbredes derfor hurtigere i væsker og materialer i fast form end i luft.
 - Lydens udbredelse afhænger også af temperatur og luftfugtighed.
 - * Jo højere temperatur, jo hurtigere udbredes lyden.
 - * Jo højere luftfugtighed, jo hurtigere udbredes lyden.

Figur 1.2: (A) Variationer af luftryk komprimerer luftpartiklerne. (B) Variationerne ligger lige over og lige under det atmosfæriske tryk.

- Bølgelængde og frekvens
 - Frekvens (waveform repitions per unit of time)

$$f = \frac{c}{T} \tag{1.1}$$

• - Wavelength (to complete one cycle)

$$T = \frac{c}{f} \tag{1.2}$$

1.1.2 Hørelsen

- Tonehøjden (pitch) af en frekvens høres forskelligt af øret.
- Tonehøjden for en lav frekvens dæmpes når intensiteten øges mens tonehøjden for en høj frekvens øges når intensiteten øges.
- Harmonisk er en lineær skala.
- Oktaver er en logaritmisk skala ofte anvendt i musik fordi den skalerer bedre til ørets opfattelse af lyd.
 - En oktav er defineret ved en 2:1 ratio af to frekvenser.
 - Intervallet fra 100 Hz til 200 Hz opfattes som værende større end intervallet fra 200 Hz til 300 Hz.

Figur 1.3: Sammenligning mellem harmoniske og oktaver.

$$\frac{f_2}{f_1} = 2^n \tag{1.3}$$

 f_2 = frequency of the upper edge of the octave interval, Hz

 f_1 = frequency of the lower edge of the octave interval, Hz

n = number of octaves

- Scopet af det hørbare spektrum er 20 Hz til 20 kHz.
 - Der er lyde der ikke kan høres af øret. Det er frekvenser der er lavere end det hørbare spektrum (infrasound) og frekvenser der er højere end det hørbare spektrum (ultrasound).
- Intensiteten af lyden I_L kan opgives i decibel [dB] ved at anvende reference $I_{ref} = 20 \,\mu\text{Pa}$ som er den mindste ændring i trykket et øre kan opfatte.
- Lydeffekten kan ligeledes opgives i dBved at anvende reference effekt $L_p = 1 \,\mathrm{pW} = 10^{-12} \mathrm{W}.$

$$PW_L = 10\log_{10}\frac{W}{W_{ref}}\tag{1.4}$$

 $PW_L = \text{sound-power level, dB}$

W =sound power, watts

 W_{ref} = a reference power, 10^{-12} W

Figur 1.4: Det menneskelige øres opfattelse af subjektivt konstant lydtryk.

- Lydintensitet er svært at måle. Men lydtryk (sound pressure level SP_L) er derimod det nemmeste at måle. Derfor anvendes lydtryk ofte.
 - $-SP_L$ er tæt på at være ens med I_L , hvor begge ofte bliver referet til som lydniveauet (sound level).

$$SP_L = 20 \log_{10} \frac{p}{p_{ref}}$$
 (1.5)

 $SP_L =$ sound-pressure level, dB

 $p = \text{acoustic pressure}, \mu \text{Pa or other}$

 p_{ref} = acoustic reference pressure, μ Pa or other

	Equation (1.4)	Equation (1.5)
Parameter	$10\log_{10}\frac{a_1}{a_2}$	$20\log_{10}\frac{b_1}{b_2}$
Acoustic		
Intensity	X	
Power	X	
Air particle velocity		X
Pressure		X
Electric		
Power	X	
Current		X
Voltage		X
Distance		Х
(From source-SPL; inverse square)		

Figur 1.5: Om der skal bruges 10 log og 20 log.

• Når effekten fordobles svarer det til en 3dB forøgelse uanset om effekten fordobles fra 1W til 2W eller fra 100W til 200W.

1.1.3 Ohms lov analogi

• Et akustisk system som en højtaler kan blive repræsenteret i termer der er ækvivalente med et elektrisk eller mekanisk system.

Figur 1.6: De 3 basale elementer af elektriske systemer og deres analogier i mekaniske og akustiske systemer.

System	Variable		Komponenter		
	\bigcup_{\top}	$\bigoplus \!$	+	þ	-₩-
Elektrisk	Spænding	Strøm	Kapacitet	Modstand	Selvinduktion
Impedans:	V	Α	F = As/V	$\Omega = V/A$	H = Vs/A
V/A = Ω	u(t)	i(t)	$u = \frac{1}{C} \int i dt$	u = Ri	$u = L \frac{di}{dt}$
Mekanisk	Kraft	Hastighed	Fjeder	Modstand	Masse
Impedans:	N	m/s	m/N	Ns/m	kg
N/ms ⁻¹ = kg/s	F(t)	v(t)	$F = \frac{1}{C} \int v dt$	F = Rv	$F = M \frac{dv}{dt}$
Akustisk	Tryk	Vol.hast.	Fjeder	Modstand	Masse
Impedans:	Pa = N/m²	m³/s	1/m³N	Ns/m⁵	kg/m⁴
Nm ⁻² /m ³ s ⁻¹ = kg/m ⁴ s	p(t)	q(t)	$p = \frac{1}{C} \int q dt$	p = Rq	$p = M \frac{dq}{dt}$
Termisk	Temperatur	Effekt	Kapacitet	Modstand	(Ingen)
Impedans:	K	W	J/K	K/W	(ingen)
K/W	T(t)	P(t)	$T = \frac{1}{C} \int P dt$	T = RP	(ingen)

Figur 1.7: Analogier for komponenter i et elektrik, mekanisk og akustisk system.

1.1.4 Vægtning

- Ved måling af lydtryk benyttes ikke blot en mikrofon og en forstærker. Hørelsen er kompleks og for at efterligne hjernens opfattelse af et lydniveau benyttes nogle elektriske filtre
- Filtrene A, B og C modificerer frekvensresponsen så den efterligner hørekurven ved lavt, middel og højt lydniveau.
 - A-vejning korrelere godt til nedslidningen af hørelsen ved kraftige signaler og benyttes derfor ved støjmåling.
 - B-vejning benyttes ikke mere.
 - C-vejning bruges til specifikation af kortvarige spidser for måling af støjens skadevirkning ved klassifikation af en arbejdsplads for påbudt brug af høreværn.

Figur 1.8: A, B, and C weighting response characteristics for sound-level meters.

For sound-pressure levels of 20 to 55 dB, use network A.

For sound-pressure levels of 55 to 85 dB, use network B.

For sound-pressure levels of 85 to 140 dB, use network C.

1.1.5 Lydens udbredelse

- Punktlydkilde: Lyden udbredes ligeligt i alle retninger.
 - Lyden fra en punktlydkilde ændrer ikke udseende ved stigende afstand.
 - En plan lydbølge er en matematisk abstraktion og følgende tilnærmelser anvendes:
 - * Lydens udbredelse i smalle rør (musikinstrumenter, fjernvarme).
 - * Lydens udbredelse i stor afstand fra lydkilden.
 - * Højttalerens nærfelt.

Figur 1.9: Lyden fra en punktkilde udbredes fra kildens centrum og lydtrykket aftager ved stigende afstand.

- Lydtrykket aftager med stigende afstand idet effekten i den kugleformede bølgefront fordeles over et areal, der vokser kvadratisk med afstanden.
 - Nærfelt: Lydtrykket varierer ikke plane bølger.
 - Fjernfelt: 6 dB/fordobling sfæriske bølger.

Figur 1.10: Afstandsregel.

1.1.6 Opgaver

- 1. Beregn dB værdien af det maksimalt mulige lydtryk.
- 2. Beregn det A-vægtede lydtryk af 76 dB ved 125 Hz.
- 3. Et lydtryk reduceres 8 dB, hvor mange gange er det?
- 4. Hvor meget lydtryk skal der til, for at vi opfatter lyden ved 63 Hz og ved 2 kHz?

```
1 %% LYAK L1 01-02-2018
2 % 1. Beregn dB vaerdien af det maksimalt mulige lydtryk.
_3 L = 20*log10(10^5/(20*10^-6));
 disp(['Det maksimalt mulige lydtryk er ', num2str(L), ...
      ' dB'])
  \mbox{\ensuremath{\$}} 2. Beregn det A-vaegtede lydtryk af 76 dB ved 125 Hz.
  f = 125;
  R_A = (12194^2 * f^4) / ((f^2 + 20.6^2) * ...
  sqrt((f^2+107.7^2)*(f^2+737.9^2))*(f^2+12194^2));
11 A = 20 * log10(R_A) + 2;
  disp(['Det A-vaegtede lydtryk af 76 dB (125 Hz) er ', ...
      num2str(76+A), ' dB'])
 % 3. Et lydtryk reduceres 8 dB, hvor mange gange er det?
16 \text{ gg} = \text{db2mag(8)};
17 disp(['Lydtrykket reduceres 8 dB, hvilket svarer til ...
      ', num2str(gg), ' ganges reducering'])
```

Lydens udbredelse i frit felt

Måling/opsamling af lyd

Gengivelse af lyd

Højttalerdesign

Lyddæmpning og lyddiffusion

Lydens opførsel i lukkede rum

Menneskets opfattelse af lyd