```
In [1]:
         #Experment No.:11
 In [2]:
         #Aim :To perform and Analysis of Decision Tree Algorithm
         #Name: Sakshi Rambhau Wankhade
 In [3]:
          #Roll no: 72
          #Sec: A
          #Subject: ET-1
          #Date:29-09-2025
 In [4]: #importing the basic library
          import pandas as pd
          import numpy as np
 In [5]:
         import os
 In [6]: os.getcwd()
 Out[6]: 'C:\\Users\\ADMIN\\DSS_practical'
         os.chdir('C:\\Users\\ADMIN\\DSS_practical')
         data=pd.read_csv("heart.csv")
 In [9]:
          data.head()
 Out[9]:
             age sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal to
                                    212
                                                          168
                                                                   0
                                                                                       2
                                                                                            3
          0
              52
                    1
                        0
                               125
                                           0
                                                    1
                                                                           1.0
                                                                                   2
              53
                        0
                               140
                                    203
                                           1
                                                    0
                                                          155
                                                                           3.1
          1
                    1
                                                                   1
                                                                                   0
                                                                                       0
                                                                                            3
          2
              70
                                                    1
                                                          125
                                                                   1
                                                                           2.6
                                                                                            3
                    1
                        0
                               145
                                    174
                                           0
                                                                                   0
                               148
                                    203
                                                                           0.0
                                                                                            3
          3
              61
                    1
                        0
                                           0
                                                    1
                                                          161
                                                                   0
                                                                                   2
                                                                                       1
                                                    1
                                                                   0
                                                                                       3
                                                                                            2
              62
                    0
                        0
                               138
                                    294
                                           1
                                                          106
                                                                           1.9
                                                                                   1
In [10]: data.tail()
```

Out[10]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	tha
	1020	59	1	1	140	221	0	1	164	1	0.0	2	0	2
	1021	60	1	0	125	258	0	0	141	1	2.8	1	1	3
	1022	47	1	0	110	275	0	0	118	1	1.0	1	1	2
	1023	50	0	0	110	254	0	0	159	0	0.0	2	0	2
	1024	54	1	0	120	188	0	1	113	0	1.4	1	1	3
	4													Þ

In [11]: data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1025 entries, 0 to 1024 Data columns (total 14 columns):

Ducu	coramis (cocar in coramis).								
#	Column	Non-N	Null	Count	Dtype				
0	age	1025	non-	-null	int64				
1	sex	1025	non-	-null	int64				
2	ср	1025	non-	-null	int64				
3	trestbps	1025	non-	-null	int64				
4	chol	1025	non-	-null	int64				
5	fbs	1025	non-	-null	int64				
6	restecg	1025	non-	-null	int64				
7	thalach	1025	non-	-null	int64				
8	exang	1025	non-	-null	int64				
9	oldpeak	1025	non-	-null	float64				
10	slope	1025	non-	-null	int64				
11	ca	1025	non-	-null	int64				
12	thal	1025	non-	-null	int64				
13	target	1025	non-	-null	int64				
dtype	es: float64	4(1),	inte	54(13)					

memory usage: 112.2 KB

In [12]: data.describe()

Out[12]:		age	sex	ср	trestbps	chol	fbs	r			
	count	1025.000000	1025.000000	1025.000000	1025.000000	1025.00000	1025.000000	1025.0			
	mean	54.434146	0.695610	0.942439	131.611707	246.00000	0.149268	0.5			
	std	9.072290	0.460373	1.029641	17.516718	51.59251	0.356527	0.5			
	min	29.000000	0.000000	0.000000	94.000000	126.00000	0.000000	0.0			
	25%	48.000000	0.000000	0.000000	120.000000	211.00000	0.000000	0.0			
	50%	56.000000	1.000000	1.000000	130.000000	240.00000	0.000000	1.0			
	75%	61.000000	1.000000	2.000000	140.000000	275.00000	0.000000	1.0			
	max	77.000000	1.000000	3.000000	200.000000	564.00000	1.000000	2.0			
	4							•			
In [13]:	data.s	hape									
Out[13]:	(1025,	14)									
In [14]:	data.s	ize									
Out[14]:	14350	14350									
In [15]:	data.n	dim									
Out[15]:	2										

Data preprocessing _ data cleaning _ missing value treatment

In [16]: # check Missing Value by record
data.isna()

ut[16]:		age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	
	0	False	False	False	False	False	False	False	False	False	False	False	Fá
	1	False	False	False	False	False	False	False	False	False	False	False	Fá
	2	False	False	False	False	False	False	False	False	False	False	False	Fá
	3	False	False	False	False	False	False	False	False	False	False	False	Fá
	4	False	False	False	False	False	False	False	False	False	False	False	Fá
	•••	•••							•••				
	1020	False	False	False	False	False	False	False	False	False	False	False	Fá
	1021	False	False	False	False	False	False	False	False	False	False	False	Fá
	1022	False	False	False	False	False	False	False	False	False	False	False	Fá
	1023	False	False	False	False	False	False	False	False	False	False	False	Fá
	1024	False	False	False	False	False	False	False	False	False	False	False	Fá
	1025 rd	ows × ′	14 colu	mns									
	4												
n [17]:	data.	isna()	.any()										
ut[17]:	age sex cp trestbps chol fbs restecg		False False False False False False	e e e e									

```
Ir
Οι
          restecg
          thalach
                      False
                      False
          exang
          oldpeak
                      False
          slope
                      False
                      False
          ca
          thal
                      False
          target
                      False
          dtype: bool
In [18]: data.isna().sum()
```

Independent and Dependent Variables

```
In [19]: x=data.drop("target", axis=1)
    y=data["target"]
```

Splitting the data into training and testing data sets

```
In [20]: from sklearn.model selection import train test split
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.metrics import accuracy_score
In [21]: # Split the dataset (80% training, 20% testing)
         x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_sta
In [22]: # Create Decision Tree model
         dt = DecisionTreeClassifier()
In [23]: # Train the model
         dt.fit(x_train, y_train)
Out[23]: • DecisionTreeClassifier
         DecisionTreeClassifier()
In [24]: # Predict on test data
         y_pred4 = dt.predict(x_test)
In [25]: # Calculate accuracy
         accuracy = accuracy_score(y_test, y_pred4)
In [26]: print("Decision Tree Accuracy:", accuracy)
```

Decision Tree Accuracy: 0.9853658536585366

In []: