Non-Native Arithmetic via CRT Codes Devcon 7

Liam Eagen Alpen Labs

November 14, 2024

Succinct Non-interactive ARgument of Knowledge

- Succinct Non-interactive ARgument of Knowledge
- Allow a Prover to convince a Verifier they *know* some witness

- Succinct Non-interactive ARgument of Knowledge
- Allow a Prover to convince a Verifier they know some witness
- Witness satisfies some relation C(x, w) = 1

- Succinct Non-interactive ARgument of Knowledge
- Allow a Prover to convince a Verifier they know some witness
- Witness satisfies some relation C(x, w) = 1
 - For example, x chain state, w transaction, C(x, w) = 1 iff valid

- Succinct Non-interactive ARgument of Knowledge
- Allow a Prover to convince a Verifier they know some witness
- Witness satisfies some relation C(x, w) = 1
- For example, x chain state, w transaction, C(x, w) = 1 iff valid
 - Relation defined via a circuit over some finite field F_p

- Succinct Non-interactive ARgument of Knowledge
- Allow a Prover to convince a Verifier they know some witness
- Witness satisfies some relation C(x, w) = 1
- For example, x chain state, w transaction, C(x, w) = 1 iff valid
- Relation defined via a circuit over some finite field F_p
 - Field is sometimes a "free" parameter (e.g. FRI), sometimes fixed (e.g. KZG)

What if the relation is over the wrong field?

- What if the relation is over the wrong field?
- For example, w is a secp256k1 signature, but F_p is BN254?

- What if the relation is over the wrong field?
- For example, w is a secp256k1 signature, but F_p is BN254?
- Secp signatures defined over $F_r = F_p$

- What if the relation is over the wrong field?
- For example, w is a secp256k1 signature, but F_p is BN254?
- Secp signatures defined over $F_r = / F_p$
 - Need to simulate F_r arithmetic in F_p

- What if the relation is over the wrong field?
- For example, w is a secp256k1 signature, but F_p is BN254?
- Secp signatures defined over $F_r = F_p$
- Need to simulate F_r arithmetic in F_p Very simple example: let p = 5 and r = 7

- What if the relation is over the wrong field?
- For example, w is a secp256k1 signature, but F_p is BN254?
- Secp signatures defined over $F_r = F_p$
- Need to simulate F_r arithmetic in F_p Very simple example: let p = 5 and r = 7
 - ► Want to check $4 \times 5 = 20 \equiv 6 \mod 7$ in F_r

- What if the relation is over the wrong field?
- For example, w is a secp256k1 signature, but F_p is BN254?
- Secp signatures defined over $F_r = F_p$
- Need to simulate F_r arithmetic in F_p Very simple example: let p = 5 and r = 7
 - ► Want to check $4 \times 5 = 20 \equiv 6 \mod 7$ in F_r
 - Naive approach fails $4 \times 5 = 20 \equiv 0 \not\equiv 6 \mod 5$

Is it possible?

What can we do?

- What can we do?
- Arithmetic circuits are NP-complete, so it is possible

- What can we do?
- Arithmetic circuits are NP-complete, so it is possible
- For example, encode as binary digits

- What can we do?
- Arithmetic circuits are NP-complete, so it is possible
- For example, encode as binary digits
 - In any field we can check x = 0, 1 via $x^2 x = 0$

- What can we do?
- Arithmetic circuits are NP-complete, so it is possible
- For example, encode as binary digits
 - In any field we can check x = 0, 1 via $x^2 x = 0$
 - Can check bitwise operations

- What can we do?
- Arithmetic circuits are NP-complete, so it is possible
- For example, encode as binary digits
 - In any field we can check x = 0, 1 via $x^2 x = 0$
 - Can check bitwise operations
 - Can we do this more efficiently?

If we can check (bounded) integer relations, can check modular relations

- If we can check (bounded) integer relations, can check modular relations
- ab ≡ c mod $r \iff \exists q \in \mathbb{Z}$: ab c = rq

- If we can check (bounded) integer relations, can check modular relations
- $ab \equiv c \mod r \iff \exists q \in Z : ab c = rq$
 - Thus, sufficient to check integer relations

- If we can check (bounded) integer relations, can check modular relations
- $ab \equiv c \mod r \iff \exists q \in Z : ab c = rq$
- Thus, sufficient to check integer relations
 - In some cases, this is sufficient to simulate F directly

- If we can check (bounded) integer relations, can check modular relations
- $ab \equiv c \mod r \iff \exists q \in \mathbb{Z} : ab c = rq$
- Thus, sufficient to check integer relations
- In some cases, this is sufficient to simulate F'directly
 - "Small" elements of F behave like Z

- If we can check (bounded) integer relations, can check modular relations
- $ab \equiv c \mod r \iff \exists q \in Z : ab c = rq$
- Thus, sufficient to check integer relations
- In some cases, this is sufficient to simulate F'directly
- "Small" elements of F behave like Z

If |ab - c - rq| < p and $ab - c - rq = 0 \mod p$ then $ab = c \mod r$

- If we can check (bounded) integer relations, can check modular relations
- $ab \equiv c \mod r \iff \exists q \in Z : ab c = rq$
- Thus, sufficient to check integer relations
- In some cases, this is sufficient to simulate F'directly
- "Small" elements of F behave like Z
- If |ab c rq| < p and $ab c rq = 0 \mod p$ then $ab = c \mod r$ If $r < \sqrt{p/2}$, sufficient for |a|, |b|, |c|, $|q| < \sqrt{p/2}$

What if $r > \sqrt{p?}$ Or even r > p?

6/7

What if $r > \sqrt{p?}$ Or even r > p?

Encodings of "mod r" values into F_p no longer behave like Z

- What if $r > \sqrt{p?}$ Or even r > p?
- Encodings of "mod r" values into F_p no longer behave like Z Might not even be possible at all (when r > p)

- What if $r > \sqrt[4]{p}$? Or even r > p?
- Encodings of "mod r" values into F_p no longer behave like Z Might not even be possible at all (when r > p)
- - Solution: use the Chinese Remainder Theorem (CRT)

- What if $r > \sqrt[4]{p}$? Or even r > p?
- Encodings of "mod r" values into F_p no longer behave like Z Might not even be possible at all (when r > p)
- Solution: use the Chinese Remainder Theorem (CRT) Says $Z/(ab)Z \approx Z/aZ \times Z/bZ$ if gcd(a, b) = 1

- What if $r > \sqrt[4]{p}$? Or even r > p?
- Encodings of "mod r" values into F_p no longer behave like Z Might not even be possible at all (when r > p)
- Solution: use the Chinese Remainder Theorem (CRT)
- Says $Z/(ab)Z \approx Z/aZ \times Z/bZ$ if gcd(a, b) = 1

Can represent a number via a set of residues $x = x_i \mod p_i$

- What if $r > \sqrt[4]{p}$? Or even r > p?
- Encodings of "mod r" values into F_p no longer behave like Z Might not even be possible at all (when r > p)
- Solution: use the Chinese Remainder Theorem (CRT)
- Says $Z/(ab)Z \approx Z/aZ \times Z/bZ$ if gcd(a, b) = 1
 - Can represent a number via a set of residues $x = x_i \mod p_i$ Use CRT to uniquely recover x

- What if $r > \sqrt{p?}$ Or even r > p?
- Encodings of "mod r" values into F_p no longer behave like ZMight not even be possible at all (when r > p)
- Solution: use the Chinese Remainder Theorem (CRT)
- Says $Z/(ab)Z \approx Z/aZ \times Z/bZ$ if gcd(a, b) = 1
- Can represent a number via a set of residues $x = x_i \mod p_i$ Use CRT to uniquely recover x
 - Now, just need x small compared to $M = {}^{\mathbf{Q}}_{i} p_{i}$

Reed-Solomon Codes

Recall Reed-Solomon (RS) codes

- Recall Reed-Solomon (RS) codes
- Treat k vector as a degree k-1 polynomial f(X)

- Recall Reed-Solomon (RS) codes
- Treat k vector as a degree k-1 polynomial f(X)
- Encode by evaluating at n > k distinct points

- Recall Reed-Solomon (RS) codes
- Treat k vector as a degree k-1 polynomial f(X)
- Encode by evaluating at n > k distinct points
- Given these n points, can recover f(X)

- Recall Reed-Solomon (RS) codes
- Treat k vector as a degree k-1 polynomial f(X)
- Encode by evaluating at n > k distinct points Given
- these n points, can recover f(X)
 - Can even recover f(X) if some of the points are wrong

Evaluating a polynomial $f(r_i)$ is equivalent to reducing $f(X) = f(r_i)$ mod $X - r_i$

- Evaluating a polynomial $f(r_i)$ is equivalent to reducing $f(X) = f(r_i)$ mod $X - r_i$
 - This lets us generalize RS codes to other ideal domains

- Evaluating a polynomial $f(r_i)$ is equivalent to reducing $f(X) = f(r_i)$ mod $X - r_i$
- This lets us generalize RS codes to other ideal domains
- For example, Algebraic Geometry codes

- Evaluating a polynomial $f(r_i)$ is equivalent to reducing $f(X) = f(r_i)$ mod $X - r_i$
- This lets us generalize RS codes to other ideal domains
- For example, Algebraic Geometry codes

Also CRT codes

- Evaluating a polynomial $f(r_i)$ is equivalent to reducing $f(X) = f(r_i)$ mod $X - r_i$
- This lets us generalize RS codes to other ideal domains
- For example, Algebraic Geometry codes
- Also CRT codesTreat our message as a bounded integer x < M

- Evaluating a polynomial $f(r_i)$ is equivalent to reducing $f(X) = f(r_i)$ mod $X - r_i$
- This lets us generalize RS codes to other ideal domains
- For example, Algebraic Geometry codes
- Also CRT codes
- Treat our message as a bounded integer x < MEncode by reducing modulo many small p_i

- Suppose we want to verify some non-native arithmetic
- That is $f(x_1,...,x_k)=0$ over $\mathbb Z$ where $\max_i f_i=d$ and $|x_j|< B$
 - ① Fix some $p_1, ..., p_\ell$ where $M = \prod_a p_a > B^d$
 - 2 Commit to $x_j = y_{j,a} mod p_a$
 - **3** Commit to $q_{i,a}$ such that $f_i(y_{1,a},...,y_{k,a}) = p_a q_{i,a}$
 - O Prove each $(y_{i,a})_{a=1}^{\ell}$ corresponds to $|x_i| < B$
 - Ohoose a random subset of primes and test
- Assuming the primes similar size, easy to compute success probability of dishonest prover
- Spiritually similar to STARKs like FRI, Ligero, etc.

- Suppose we want to verify some non-native arithmetic
- That is $f(x_1, ..., x_k) = 0$ over Z where $\max_i f_i = d$ and $|x_j| < B$ Fix some $p_1, ..., p_a$ where $M = \sum_i p_i > B^{id^i}$

 - Commit to $x_i = y_i \mod p$ Commit to $q_i = y_i \mod p$ Commit to $q_i = y_i \mod p$ Prove each $(y_{i,a})^i \in Q_i$ responds to $|x_i| < B$

- Suppose we want to verify some non-native arithmetic
- That is $f(x_1, ..., x_k) = 0$ over Z where $\max_i f_i = d$ and $|x_j| < B$ Fix some $p_1, ..., p_a$ where $M = \sum_a p_a > B^{id}$

 - Commit to $x = y_i \mod p$ Commit to $q_i = y_i \mod p$ Commit to $q_i = y_i \mod p$ Prove each $(y_i)^l$ corresponds to $|x_i| < B$ Choose a random subset of primes and test

- Suppose we want to verify some non-native arithmetic
- That is $f(x_1, ..., x_k) = 0$ over Z where $\max_i f_i = d$ and $|x_j| < B$ That is $f(x_1, ..., x_k) = 0$ over Z where $M = \sum_{a} p > B^{id}$

 - Commit to $x_i = y_i \mod p$ Commit to q_i such that $f_i(y_1, ..., y_k) = p_a q_{i,a}$ Prove each $(y_i)^l$ subset of primes and test
- Assuming the primes similar size, easy to compute success probability of dishonest prover

- Suppose we want to verify some non-native arithmetic
- That is $f(x_1, ..., x_k) = 0$ over Z where $\max_i f_i = d$ and $|x_j| < B$ Fix some $p_1, ..., p_a$ where $M = \sum_i p_i > B^{id^i}$

 - Commit to $x = y_i \mod p$ Commit to q_i such that $f_i(y_1, ..., y_k) = p_a q_{i,a}$ Prove each $(y_i)^l$ corresponds to $|x_i| < B$ Choose a random subset of primes and test
- Assuming the primes similar size, easy to compute success probability of dishonest prover
- Spiritually similar to STARKs like FRI, Ligero, etc.

Step 4 of the protocol tests each $(y_{i,a})$ is a valid codeword

- Step 4 of the protocol tests each $(y_{i,a})$ is a valid codeword
- STARKs used to do this, now use a batched proximity test

- Step 4 of the protocol tests each $(y_{i,a})$ is a valid codeword
- STARKs used to do this, now use a batched proximity test
- Remarkably, if a random linear combination (RLC) of codewords is close to a code word, all the combined codewords are also close

- Step 4 of the protocol tests each $(y_{i,a})$ is a valid codeword
- STARKs used to do this, now use a batched proximity test
- Remarkably, if a random linear combination (RLC) of codewords is
 - close to a code word, all the combined codewords are also close
 - Idea: can we take a RLC of the x_i ?

- Step 4 of the protocol tests each $(y_{i,a})$ is a valid codeword
- STARKs used to do this, now use a batched proximity test
- Remarkably, if a random linear combination (RLC) of codewords is
 - close to a code word, all the combined codewords are also close
- Idea: can we take a RLC of the x_i ?
 - Yes! but more complex

Subtleties of CRT code distance since p_i different sizes

- Subtleties of CRT code distance since p_i different sizes
- Decoding to rationals of bounded height rather than integers

- Subtleties of CRT code distance since p_i different sizes
- Decoding to rationals of bounded height rather than integers
- Using number fields instead of rationals

- Subtleties of CRT code distance since p_i different sizes
- Decoding to rationals of bounded height rather than integers
- Using number fields instead of rationals
 - Technicalities related to this like size, etc.

- Subtleties of CRT code distance since p_i different sizes
- Decoding to rationals of bounded height rather than integers
- Using number fields instead of rationals
- Technicalities related to this like size, etc.
 Applications of techniques to STARKs over small fields (i.e. without extensions)

Thanks!