Applied Linear Algebra in Data Analaysis SVD & Dimensionality Reduction Assignment

Marks: 14

1. For a square $\mathbf{A} \in \mathbb{R}^{n \times n}$, the SVD tells us how a unit sphere in \mathbb{R}^n is distorted by the linear transformation performed by \mathbf{A} . This degree of distortion can be quantified using the singular values of \mathbf{A} , which is the 2-norm *condition number*,

$$\kappa = \frac{\sigma_1}{\sigma_n}$$

- (a) Explain why $\kappa \geq 1$? [Marks: 1]
- (b) What is condition number of a singular matrix? [Marks: 1]
- (c) If **A** is non-singular, show that $\kappa = \|\mathbf{A}\|_2 \|\mathbf{A}^{-1}\|_2$ [Marks: 1]
- (d) Condition numbers can also be defined based on other p-norms. The general p-norm condition number is given by, $\kappa_p = \|\mathbf{A}\|_p \|\mathbf{A}^{-1}\|_p$. Evaluate the 1-norm, 2-norm and ∞ -norm condition numbers for the following matrices. How do these number compare with each other? [Marks: 3] (i) $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$;

(ii)
$$\mathbf{A} = \begin{bmatrix} 1 & -1 \\ 10 & -9 \end{bmatrix}$$
; (iii) $\mathbf{A} = \begin{bmatrix} 1 & 5 \\ -1 & 1 \end{bmatrix}$.

(e) Conditions numbers play an important role in practice. We had earlier an example of an ill-conditioned system $\mathbf{A}\mathbf{x} = \mathbf{b}$. Consider the following systems, where: [Marks: 2] (i) $\mathbf{A}_1 = \begin{bmatrix} 1 & -1 \\ 10 & -9 \end{bmatrix}$; and (ii) $\mathbf{A}_2 = \begin{bmatrix} 1 & -10 \\ 1 & 10 \end{bmatrix}$.

For
$$\mathbf{b} = \begin{bmatrix} 10 \\ 0 \end{bmatrix}$$
, what are the solutions $\mathbf{x}_1 (= \mathbf{A}_1^{-1} \mathbf{b})$ and $\mathbf{x}_2 (= \mathbf{A}_2^{-1} \mathbf{b})$? [Marks: 2]

Suppose there is an error in the measurement of **b**, and we have $\tilde{\mathbf{b}} = \begin{bmatrix} 9 \\ 1 \end{bmatrix}$. The

relative error in **b** is given by $\delta b = \frac{\|\mathbf{b} - \tilde{\mathbf{b}}\|_2}{\|\mathbf{b}\|_2}$. What are the new solutions $\tilde{\mathbf{x}}_1$ and $\tilde{\mathbf{x}}_2$? [Marks: 2]

Calculate δx_1 and δx_2 , the relative errors in \mathbf{x}_1 and \mathbf{x}_2 , respectively? How do these compare to δb ? [Marks: 2]

Note: Through this problem, you should be able to see that an ill-conditioned system has a large condition number, which can amplify error and thus lead to large uncertainty in the solutions.

1