Pruthak Joshi

▼ pruthakjoshi@gmail.com | ↑ pruthakjoshi.github.io | (+81)08039359874 | (+1)3106942856 | (+91)9106804947

Professional Summary

Mechanical Design Engineer with experience in robotic system design, CAD modeling, mechanical prototyping, and Design for Manufacturing (DFM). Proficient in SolidWorks, Fusion360, ANSYS, and CNC and sheet metal-based manufacturing processes. Successfully led end-to-end development of robotic arms focusing on cost efficiency, manufacturability, and performance. Demonstrated success in collaborative team environments and cross-functional R&D projects. Seeking to apply design expertise to innovative hardware development roles.

Education

University of California, Los Angeles (UCLA)

Los Angeles, U.S.A.

Master of Science in Mechanical Engineering, GPA: 3.97/4 Recipient of UCLA Division of Graduate Education Fellowship

Indian Institute of Technology (IIT) Bombay

Mumbai, India

B. Tech. + M. Tech. (Dual Degree) in Mechanical Engineering, GPA: 9.12/10 Specialization: Computer-Aided Design and Automation

Work Experience

Mechanical Engineer | Reazon Human Interaction Lab | Reazon Holdings January 2025 - Present Pioneer in researching and developing advanced human-computer interaction technologies and systems Tokyo, Japan

- Designed the mechanical hardware for OpenArm 01, an open-source 7DOF humanoid robotic arm designed for physical AI research and deployment in contact-rich environments
- Engineered the complete setup (2 arms + 1 Pedestal) at a **total BOM cost of US\$6,500**, achieving an exceptional price-performance ratio for real-world deployment
- Achieved a nominal payload of 4.1 kg and peak payload of 6.0 kg per arm, with a total arm weight of just
 5.5 kg, exceeding typical payload-to-weight ratios in its class
- Applied advanced robotic design and **Design for Manufacturing (DFM)** principles, achieving a **24**% **reduction in production cost** while maintaining structural performance
- Created URDFs from CAD models for integration with ROS-based control systems and robotic simulation stacks
- Optimized the hardware design through comparative analysis of cost, manufacturability, and functionality
- Designed and iteratively refined multi-version end-effectors compatible across robotic arm generations
- Generated detailed **Bills of Materials (BOMs)** for OpenArm assemblies specifying part numbers, material specifications, quantities, and supplier references to streamline procurement and fabrication
- Created comprehensive **mechanical assembly guides** using exploded-view diagrams and step-by-step instructions to support users during manufacturing and ensure consistency across hardware batches

Engineering Intern | Reazon Human Interaction Lab | Reazon Holdings June 2024 - Sept' 2024

Pioneer in researching and developing advanced human-computer interaction technologies and systems Tokyo, Japan

- Engineered the end-effector of a teleoperated robotic bartender using SolidWorks with optimized 110mm gripper span
- Designed TPU-based compliant gripping pads to safely handle fragile glassware; tested under dynamic teleoperation
- Integrated Force Sensitive Resistors (FSRs) for adaptive grip control and enhanced tactile feedback
- Implemented compact 4-bar mechanism driven by lead screw, reducing system footprint and increasing grip strength

Design of MR-compatible Robotic System for Abdominal Interventions

Advisor: Prof. Tsu-Chin Tsao, Mechanical and Aerospace Engineering Department, UCLA

Los Angeles, USA

- Developed a 3-DoF MR-compatible robot for abdominal procedures inside a 70cm bore MRI using RCM principles
- Used linear guides and non-metallic bushings to ensure smooth motion under MR constraints
- Developed a comprehensive testing setup to analyze force and motion transmission in low friction hydrostatic actuators, utilizing **precision linear motors**, **force sensors**, **and pressure sensors**
- Fabricated and programmed a respiratory liver motion phantom with Arduino, airflow systems, and IR sensors

Research Experience

Smart Machining: Data Collection, Sensing, and Monitoring

Dec 2022 - June 2024

Advisor: Prof. Tsu-Chin Tsao, Mechanical and Aerospace Engineering Department, UCLA

- Integrated multi-sensor setup (current, accelerometer, acoustic, camera) with Haas TM2P CNC to monitor power and vibration
- Programmed and executed G-code-based parametric machining tests by varying spindle speed, feed rate, and depth of cut to systematically gather performance data
- Analyzed datasets to identify energy-efficient machining conditions, informing predictive control strategies
- Co-authored poster on sensor-based diagnostics presented at UCLA Smart Manufacturing Symposium 2023

Modeling and Characterization of a Soft Robotic Finger | Master's Thesis May 2021 - June 2022 Guide: Prof. Abhishek Gupta, Department of Mechanical Engineering, IIT Bombay

- Perused existing literature about the different manufacturing & actuation methods and sensors used in soft robotics
- Examined two kinematic models for a 3-link, 3-joint tendon-actuated soft robotic finger
- Corroborated the trajectory of the finger through image processing and simulations in MATLAB and Simulink
- Experimentally verified the accuracy of the RRR model in predicting the fingertip position across various trajectories, resulting in a correlation of 0.9722 in the x-coordinate, and 0.9330 in the y-coordinate

Design and Development of Setup for Characterization of Liquid Bridge Separation

May 2019 - July 2019

- Guide: Prof. Prasanna Gandhi, Department of Mechanical Engineering, IIT Bombay Research Project • Performed iterative analysis to dimensionalize parallelogram compliant mechanism to satisfy given specifications
 - Analyzed the adaptive setup using ANSYS to get the tip displacement in the μ m range for a mN load
 - Modeled the design in SolidWorks and prepared drawings with Geometric Dimensioning & Tolerancing for fabrication

Leadership and Mentoring Roles

Team Leader and Lead Mechanical Engineer | IITB Mars Rover Team

April 2020 - April 2021

- Led the team to 4th position in IRDC-2020 among 28 international teams from 7 countries (best position to date)
- Raised funds and managed resources worth INR 1.38 Million+ acquired through the institute STP Committee
- Designed a 3-link, 6-DOF robotic arm capable of reaching heights upto 1.2m and lifting upto 5 kg weight
- Implemented ANSYS to perform structural and multibody dynamics analyses of the design and achieved a 30% weight reduction and 5% increase in strength by using carbon fiber links over Al and SS alloys
- Conducted safety-risk analysis of the rover for safe performance under extreme conditions during terrain traversal, autonomous equipment servicing, and extreme retrieval
- Coordinated the procurement of components and led the assembly of the mechanical, electrical, and biosciences subsystems thereby building the rover for student competitions

Scholastic Achievements and Accolades

• Recipient of UCLA Division of Graduate Education Fellowship

'22-'24

• Secured All India Ranks of 425 among 170k+ candidates in JEE Advanced

2017

• Achieved an All India Rank of 191 among 1.2 million candidates in JEE Main

2017

Technical Skills

CAD & CAE Tools: SolidWorks, Fusion 360, ANSYS, AutoCAD, OnShape

Programming: MATLAB, Simulink, Python, C++, Arduino

Manufacturing: CNC machining, 3D printing, Sheet metal fabrication, GD&T, BOM preparation

Simulation & Analysis: FEA (structural and dynamic), Multi-body dynamics, Motion simulation

Other Tools: ROS, URDF, G-code, LATEX