

Informatica Industriale Esercitazione

Arduino IDE setup

"Tool \rightarrow Board: ... \rightarrow Boards Manager...

Arduino IDE setup (cont'd)

Ricerca "due"

Installa il pacchetto di supporto a Arduino Due

Arduino IDE progetto

```
sketch_may29a | Arduino 1.8.19 (Windows Store 1.8.57.0)

File Edit Sketch Tools Help

sketch_may29a

void setup() {
    // put your setup code here, to run once:
}

void loop() {
    // put your main code here, to run repeatedly:
}
```

Salvate lo sketch (progetto Arduino) e scrivete il codice del progetto:

- setup: funzione di inizializzazione, chiamata una volta alla partenza
- loop: funzione di mainloop, chiamata in modo ciclico da framework Arduino

Arduino IDE compilazione e caricamento

Tools → Board: "<BOARD>" → Arduino ARM (32-bits) Boards → Arduino Due (Programming Port)

Arduino IDE compilazione e caricamento

(2) Per lanciare la compilazione e l'upload del binario è sufficiente premere questo bottone. La barra in basso mostra l'output del compilatore (gcc) e del caricamento, se non c'è nessun problema di compilazione o di configurazione porte il caricamento termina con successo (riportato nell'output in fondo)

 $New \rightarrow Project...$

Conferma scelta di scheda SKO

- 1) Create new board
- 2) Assegnare i nomi alle variabili di ingresso dal tab Inputs (e controllare che siano correttamente con il tag Used)
- Assegnare i nomi alle variabili di uscita dal tab Outputs (e controllare che siano correttamente con il tag Used)
- 4) Next >
- 5) Finish (finestra successiva)

Modifiche da fare ai due file logic (Machine) e logic_i (Implementation):

- Aggiungere (se necessario) variabili astratte, variabili concrete, inizializzazioni, invarianti
- Definire l'operazione user_logic (logica definita dalla macchina e, successivamente, realizzata dall'implementazione)
- Verifica (Type Check, B0 check, POG, F0) da fare sui moduli modificati

ClearSy Atelier B compilazione e caricamento

CSSP Runner

NOTA: non confondersi con "CSSP Runner SK1", ovvero il runner fatto per le schede SK1!

ClearSy Atelier B compilazione e caricamento

Cominciare compilazione e caricamento

Se tutto va bene tutti i tondi blu vengono sostituiti con una V verde, altrimenti il primo step fallito viene sostituito con una X rossa

NOTA: quando l'operazione va a buon fine, è necessario resettare la scheda (tramite l'apposito interruttore) quando compare la richiesta di reset sull'interfaccia grafica