Федеральное государственное автономное образовательное учереждение высшего образования

«Национальный исследователький университет ИТМО» Факультет Программной Инженерии и Компьютерной Техники

Лабораторная работа №6. «Работа с системой компьтерной вёрстки Т_ЕХ по дисциплине "Информатика" Вариант 57

> Выполнил: Студент группы № Р3114 Эйдельман Виктор Аркадьевич Преподаватель: Машина Екатерина Алексеевна

г.Санкт-Петербург 2022 личина штрафа делилась на 9. Тогда должно было 777= =9 а+х, но единственной купюрой, удовлетворяющей этому условию, является х=3. Итак утеряно 3 рубля. Заметим, что действие происходило до 1994 года, когда такие купюры ещё принимались.

10. Покажем, что указанная сумма может равняться только нулю. Для этого раскрасим клетками таблицы в шахматном порядке и посчитаем сумму чисел в чёрных клетках двумя способами. Обозначим сумму чисел на одной диагонали через S. С одной стороны, эта сумма равна 5S, если взять сумму по диагоналям, идущим справа вниз налево, а по остальным диагоналям она равна 6S. Итак, 5S=6S, отсюда S=0 (рис. 1).

Рис. 1:

Заметим, что для таблиц с нечетным числом строк возможны и другие суммы. В таблице 1 приведена таблица 5×5, у которой S=1.

1	1	1	1	1
0	0	0	0	0
0	0	-1	0	0
0	0	0	0	0
1	1	1	1	1

Таблица 1:

Геометрическая страничка

2. Можно воспользоватьс утверждением предыдущей задачи. Обозначим через M_0 точку пересечения мередиан, выходящих

вершин A и B. Тогда треугольники AM_0B , AM_0C и BM_0C оказываются равновеликими. Это означает, что M_0 лежит и на третьей медиане. Дальнейшее ясно.

- 5. Искомое геометрическое место состоит из двух прямых, проходящих через A: одна из них делит попоам BC, а другая параллельна BC.
- 6. Искомое геометрическое место состоит из четырех точек: M_1 – точка пересечения медиан треугольника $ABC, M_2, M_3,$ M_4 – таковы, что $ABCM_2$, ABM_3C AM_4BC являются параллелограммами.
- 7. Рассмотрим треугольник ABC, в котором A_1 середина BC, M — точка пересечения медиан, K — середина MB. Тогда стороны треугольника KMA_1 равны $\frac{1}{3}$ соответствующих медиан, т.е. треугольник KMA_1 можно построить, а затем построить и сам треугольник ABC.

- 8. СМ. решение предыдущей задачи. Любой треугольник имеет площадь в $\frac{4}{3}$ раза большую, чем площадь треугольника, составленного из его медиан.
- 9. Пусть медиана m_1 составляет со стороной a углы φ и $180^{\circ} - \varphi$ (угол φ противолежит стороне b). Запишем две теоремы косинусов и сложим: $b^2=m_a^2+\frac{a^2}{4}-m_a\cdot a\cos(\varphi),$ $c^2=m_a^2+\frac{a^2}{4}+m_a\cdot a\cos(\varphi).$ Получим $b^2+^2=2m_a^2+\frac{a^2}{2}$ и т.д. 10. Воспользуйтесь формулой, доказанной в предыдущей зада-

- че. Указанное отношение равно $\frac{3}{4}$.
- 11. Искомое геометрическое место есть окружность с центром в середине AB (или точка или пустое множество). Это следует, в частности, из того, что в треугольнике АМВ медиана к стороне AB имеет постоянную длину (см. формулу задачи 9).
- 12. Пусть для определенности диагональ m образует со сторонами четырехугольника два треугольника a, b, m и c, d, m. Обозначим через х и у медианы в этих треугольниках к стороне m. Тогда в треугольнике со стороной x, y, n медиана к стороне n равна l. По формуле задачи 9 имеем $l^2=\frac{1}{4}(2x^2+2y^2-n^2),$ $x^2=\frac{1}{4}(2a^2+2b^2-m^2),$ $y^2=\frac{1}{4}(2c^2+2d^2-m^2).$ Из этих равенств сразу следует искомое
- равенство. 13. Утверждение задачи следует из формулы, доказанной в за-

Пусть A_1 – середина BC. Положим $\angle MGA_1 = \varphi$

 $(\angle MGA_1 = 180^{\circ} - \varphi)$. По теореме косинусов $MA_1^2 = MG^2 + GA_1^2 - 2MG \cdot GA_1 \cos(\varphi)$,

 $MA^2 = MG^2 + GA^2 - 2MG \cdot GA_1 \cos(\varphi)$. Умножим первое равен-

ство на 2 и сложим со вторым $(GA = 2GA_1)$. Получим

 $2MA_1^2 + MA^2 = 3MG^2 + 2GA_1^2 + GA^2$ или $(GA_1 = \frac{1}{3}AA_1)$ $2MA_1^2 + MA^2 = 3MG^2 + \frac{2}{3}AA_1.$ (*)

Далее по формуле задачи 9 имеем $2MA_1^2=MB^2+MC^2-Bc^2,\\ \frac{2}{3}2AA_1^2=\frac{1}{6}(2AB^2+2AC^2-BC^2).$ Заменив теперь в равенстве (*) $2MA_1^2$ и $\frac{2}{3}AA_1^2$, получим требуемое.

15. Воспользуйтесь теоремой Лейбница (задача 14):

 $AM^2 + BM^2 + CM^2 \ge \frac{1}{3}(AB^2 + BC^2 + CA^2)$. Но сумма квадратов сторон треугольника призаданном периметре будет наименьшей для правильного треугольника: $\frac{1}{3}(AB^2+BC^2+CA^2)\geq (\frac{AB+BC+CA}{3})^2=\frac{4}{9}p^2.$

16. Обозначим через A_1 середину $BC(2\overrightarrow{MA_1} = -\overrightarrow{MA})$. Тогда $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{MA} + 2\overrightarrow{MA_1} = 0$. Обратно, пусть M_1 – такая точка, что $\overrightarrow{M_1A} + \overrightarrow{M_1B} + \overrightarrow{M_1C} = 0, M$ – точка пересечения медиан. Имеем

 $0 = \overrightarrow{M_1 A} + \overrightarrow{M_1 B} + \overrightarrow{M_1 C} = (\overrightarrow{M_1 M} + \overrightarrow{M A}) +$ $+(\overrightarrow{M_1M}+\overrightarrow{MB})+(\overrightarrow{M_1M}+\overrightarrow{MC})=3\overrightarrow{M_1M}(\overrightarrow{M_1A}+\overrightarrow{MB}+\overrightarrow{MC}).$

17. Воспользуемся утверждением предыдущей задачи. Рассмотрим треугольник ABC. Пусть A_0, B_0, C_0 – центры квадратов, построенных соответственно на сторонах BC, $CA\ u\ AB$, M – точка пересечения медиан ABC. Нам достаточно доказать, что $\overline{MA_0} + \overline{MB_0} + \overline{MC_0} = 0$. Но $\overline{MA_0} + \overline{MB_0} + \overline{MC_0} = 0$. $\overline{MA_0} + \overline{MB_0} + \overline{MC_0} = 0$. $\overline{MA_0} + \overline{MA_0} + \overline{MC_0} = 0$. $\overline{MB_0} + \overline{MC_0} + \overline{MC_0} + \overline{MC_0} = 0$. $\overline{MB_0} + \overline{MC_0} = 0$. Далее имеем

 $\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MA}=0$. Также нулю равна и вторая сумма. Это следует из того, что вектора $\overrightarrow{BA_0}$, $\overrightarrow{CB_0}$ u $\overrightarrow{AC_0}$ получаются соответственно из \overrightarrow{BC} , \overrightarrow{CA} и \overrightarrow{AB} поворотом на 45° в одном и том же направлении и умножением на $\frac{\sqrt{2}}{2}$.