Active DC Bus Signaling Control Method for Coordinating Multiple Energy Storage Devices in DC Microgrids

Fulong Li lif12@aston.ac.uk

This work has received funding from the European Union's Horizon 2020 research and innovation Programme under grant agreement No. 734769.

Contents

- Introductions
- Explanations of Proposed Method
- Experimental Evaluation
- Conclusions

Introductions

Control strategies

- Centralized
- Decentralized
 - Droop control
 - DC bus signaling
 - Power line communication
- Distributed

Control methods in DC microgrids

Explanations of Proposed Method

- Proposed method
 - Master-Slave based
- Battery1 → master
- Battery2 → slave1
- Battery3 → slave2

The DC bus voltage is actively controlled by the master controller for information collection

Configuration of proposed method

$$\mp I_{b1} = I_{PV} - I_{l} \pm I_{b2} \pm I_{b3}$$

Explanations of Proposed Method

- Master module
 - Voltage mode
 - Active period: 1-4
 - Decision-making:
- 46V, 44V for slave 1 charging /discharging
- 47V, 43V for slave 2 charging/discharging
- 48V, 42V for both

Analysis and control block of master module

Explanations of Proposed Method

- Slave module
 - Current mode control
- SoC7, Icharge \(\sigma\), Idischarge \(\tag{7}\)
- SoC \(\sigma\), | charge \(\sigma\), | discharge \(\sigma\)
- Charging and discharging ability
- $PV \rightarrow MPPT mode$

Analysis and control block of slave module

Experimental Evaluation

Experimental setup

	Specifications					
	Туре	Quantity				
PV emulator	62050H-600S	1				
Battery	YPC33-12	4				
Battery	NP12-12	2				
DC load	EA-EL 3400-25	1				
Boost converter	200W*1	4				

Experimental setup

	Discharging				Charging		
Bus voltage	44V	43V	42V	45V	46V	47V	48V
SoC	S1>S2	S1 <s2< td=""><td></td><td></td><td>S1<s2< td=""><td>S1>S2</td><td></td></s2<></td></s2<>			S1 <s2< td=""><td>S1>S2</td><td></td></s2<>	S1>S2	
State	S1 ON S2 OFF	S2 ON S1 OFF	Both	S1 OFF S2 OFF	S1 ON S2 OFF	S2 ON S1 OFF	Both
Active current	S1 1A S2 0A	S1 1A S2 2A	S1 1A S2 1A		S1 1A S2 0A	S1 1A S2 2A	S1 1A S2 0A
Working current	S1 1A	S2 2A	S1 1A S2 1A	S1 0A S2 0A	S1 1A	S2 2A	S1 1A S2 0A

Note: Slave1=S1; Slave2=S2

- SoC1>SoC2
 - SoC1: 5%~50%
 - SoC2: low \rightarrow off
- Discharging
 - Slave1 ON
 - 44V

- SoC2 < SoC1
 - SoC1:50%~95%
 - SoC2:<50%
- Charging
 - Slave2 ON
 - 47V

- Master
 - Low SoC
 - 45V

Conclusions

- Conclusions
 - An active DC bus signalling method was proposed for DC microgrid
 - The proposed method has been experimentally validated
 - Accurate current sharing and power distribution

Thanks!

Fulong Li lif12@aston.ac.uk

This work has received funding from the European Union's Horizon 2020 research and innovation Programme under grant agreement No. 734769.