

Human Activity Recognition Predictive Model

Topic: Internet of Things

Sponsor: Deloitte

Jorge Del Pino | Luke La Violet | John Yoo

GW MSBA Practicum Project - Spring 2016

What is the Internet of Things?

Internet of Things

Sensors

Applications

"Wearables and the Internet of Things (IoT) may give the impression that it's all about the sensors, hardware, communication middleware, network and data but the real value (and company valuation) is in insights"

- Scott Amyx, Wired, December 2014

What are you actually doing?

Human Activity Recognition

Methodology

overview clean-up exploratory analysis windows statistical features structural features gaussian NB
SVM
KNN
logit regression
random forests
bagging classifier
ADA boosting
gradient boosting

predictive classifier prediction score

model insights applications

- **Source**: University of California Irvine Machine Learning Repository http://archive.ics.uci.edu/ml/datasets/PAMAP2+Physical+Activity+Monitoring
- 18 activities, 9 individuals, 3 sensors (IMUs)
- 3.85 million observations x 54 attributes:

207,900,000 data points

Variables: The following 54 attributes are present in the dataset:

Variables not IMU-specific

• (I var) Timestamp (s)
• (I var) Activity ID
• (I var) Heart Rate (bpm)

IMU-specific variables:

Hand Chest Ankle

- (I var) Temperature (°C)
- (3 var) 3D-acceleration data (ms-2), scale: ± 16g
- (3 var) 3D-acceleration data (ms-2), scale: ±6g
- (3 var) 3D-gyroscope data (rad/s)
- (3 var) 3D-magnetometer data (µT)
- (4 var) Orientation

Activities:

and transient activities (actions in between activities)

What does this data look like?

What do features look like?

Logistic Regression

K-Nearest Neighbors

Gaussian Naive Bayes

Support Vector Machines

Bagging Classifier

Random Forest

ADA Boosting

Gradient Boosting

Tune Parameters: use default or best guess values for all parameters but one; alter one parameter per model to see changes in predictive accuracy

Different Sensors: hand sensors only, chest sensors only, ankle sensors only

Vary Window Sizes: 3 seconds, 5 seconds, 10 seconds

Validation: Stratified cross-validation (5-fold)

Scoring Metric: accuracy (proportion of true predictions among total predictions, average of 5 accuracy scores)

Modeling Technique	Tuning Parameter	Ankle (3s)	Ankle (5s)	Ankle (10s)	Chest (3s)	Chest (5s)	Chest (10s)	Hand (3s)	Hand (5s)	Hand (10s)
Logistic Regression	C (1/reg. strength) = 0.5									
	C (1/reg. strength) = 1 (default)									
	C (1/reg. strengh) = 2									
Gaussian Naïve Bayes	Feature Set = All									
	Feature Set = Acceleration									
	Feature Set = Means									
Support Vector Machines	C (error term) = 0.5									
	C (error term) = 1									
	C (error term) = 2									
K-Nearest Neighbor	K = 3									
	K = 5 (default)									
	K = 7									
Random Forest	Max n_features = sqrt(n_feat) ≈ 13 (default)									
	Max n_features = 10% of n_feat = 16									
	Max n_features = 25% of n_feat = 40									
Bagging Classifier	N Est = 10 (default)									
	N Est = 50									
	N Est = 100									
ADA Boosting	N Est = 50 (default)									
	N Est = 200									
	N Est = 400									
Gradient Boosting	Max Depth = 2									
	Max Depth = 3 (default)									
	Max Depth = 4									

Modeling Technique	Tuning Parameter	Ankle (3s)	Ankle (5s)	Ankle (10s)	Chest (3s)	Chest (5s)	Chest (10s)	Hand (3s)	Hand (5s)	Hand (10s)
Logistic Regression	C (1/reg. strength) = 0.5	58%	60%	63%	63%	65%	68%	66%	68%	70%
	C (1/reg. strength) = 1 (default)	58%	61%	63%	64%	66%	68%	67%	68%	70%
	C (1/reg. strengh) = 2	58%	61%	63%	64%	67%	69%	67%	69%	70%
Gaussian Naïve Bayes	Feature Set = All	53%	56%	60%	63%	65%	69%	55%	58%	64%
	Feature Set = Acceleration	46%	50%	54%	54%	56%	59%	45%	46%	50%
	Feature Set = Means	52%	53%	54%	51%	54%	57%	48%	51%	55%
Support Vector Machines	C (error term) = 0.5	58%	60%	63%	66%	69%	72%	66%	70%	72%
	C (error term) = 1	58%	59%	62%	65%	68%	72%	65%	70%	72%
	C (error term) = 2	58%	58%	62%	65%	68%	71%	65%	69%	72%
K-Nearest Neighbor	K = 3	58%	61%	63%	62%	66%	68%	63%	67%	69%
	K = 5 (default)	58%	60%	63%	62%	65%	68%	62%	67%	70%
	K = 7	59%	60%	63%	61%	66%	67%	62%	67%	70%
Random Forest	Max n_features = sqrt(n_feat) ≈ 13 (default)	72%	74%	76%	77%	78%	82%	72%	74%	77%
	Max n_features = 10% of n_feat = 16	72%	72%	76%	77%	79%	81%	73%	75%	77%
	Max n_features = 25% of n_feat = 40	73%	74%	77%	76%	78%	82%	70%	74%	77%
Bagging Classifier	N Est = 10 (default)	58%	60%	61%	55%	61%	64%	52%	53%	55%
	N Est = 50	65%	68%	69%	68%	71%	74%	62%	65%	70%
	N Est = 100	66%	68%	72%	71%	74%	78%	65%	68%	73%
ADA Boosting	N Est = 50 (default)	29%	25%	20%	29%	29%	29%	27%	26%	25%
	N Est = 200	29%	24%	20%	29%	29%	29%	27%	26%	25%
	N Est = 400	29%	27%	20%	29%	29%	31%	27%	25%	25%
Gradient Boosting	Max Depth = 2	70%	73%	74%	70%	73%	76%	66%	70%	72%
	Max Depth = 3 (default)	70%	73%	74%	69%	73%	76%	65%	69%	71%
	Max Depth = 4	70%	72%	73%	69%	73%	75%	65%	68%	72%

• Best Model: Random Forest

- Hand sensor
- 25 second intervals
- 300 decision trees
- 10% of features randomly chosen at split

Prediction Accuracy:

- -Training (60%) v. Testing (40%) = 91% chest, 89% hand, 84% ankle
- Max one-subject-out = 96% hand, 90% chest, 83% ankle

What do predictions look like?

- Activity recognition is possible!
- Chest and hand sensors are good (better than ankle)
- Bigger windows of time are better, but limits your observations
- Misclassification can be improved through other sensors (eg. GPS)
- Activity aggregation for similar activities: ironing vs. folding laundry, house cleaning vs. vacuuming
- Get a diverse sample (poor prediction for female chest sensor)

What is the big picture?

Internet of Things

Human Activity Recognition

Smart Parking

Forest Fire Detection

Home Energy Efficiency

Crop Yield Management

Internet of Things

Thank You