ФЕДЕРАЛЬНАЯ СЛУЖБА ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ, ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

ФЕДЕРАЛЬНЫЙ ИНСТИТУТ ПРОМЫШЛЕННОЙ СОБСТВЕННОСТИ

Бережковская наб., 30, корп. 1, Москва, Г-59, ГСП-5, 123995 Телефон 240 60 15. Телекс 114818 ПДЧ. Факс 243 33 37

Наш № 20/12-453

"12" августа 2004 г.

СПРАВКА

Федеральный институт промышленной собственности (далее – Институт) настоящим удостоверяет, что приложенные материалы являются точным воспроизведением первоначального описания, формулы, реферата и чертежей (если имеются) заявки № 2003122564 на выдачу патента на изобретение, поданной в Институт в июле месяце 10 дня 2003 года (10.07.2003).

Название изобретения:

Способ получения палладийсодержащего катализа-

тора гидрирования

Заявитель:

УКРАИНЦЕВ Валерий Борисович

ХОХРЯКОВ Константин Анатольевич

СОБОЛЕВ Николай Захарович ДЮЖЕВ Георгий Андреевич

ПРОКОФЬЕВ Владимир Михайлович

Действительные авторы:

УКРАИНЦЕВ Валерий Борисович

ХОХРЯКОВ Константин Анатольевич

СОБОЛЕВ Николай Захарович ДЮЖЕВ Георгий Андреевич

ПРОКОФЬЕВ Владимир Михайлович

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

Зам.директора Института

В.Ю.Джермакян

СПОСОБ ПОЛУЧЕНИЯ ПАЛЛАДИЙСОДЕРЖАЩЕГО КАТАЛИЗАТОРА ГИДРИРОВАНИЯ

Изобретение относится к области физической химии и может быть использовано для регулирования скорости автокаталитических реакций гидрирования.

Реакции гидрирования относятся к основным промышленным процессам, реализуемым, как правило, в присутствии катализатора, в частности, для синтеза алициклических и циклических насыщенных органических соединений, высококачественного бензина и т.д.

По литературным данным {Grove D.E. Plat. Met., 2002, 46, (2) 92}, около 75% промышленных процессов гидрирования проводится на катализаторе Pd/C, содержащем 5% металлического палладия. Богатая каталитическая химия палладия охватывает, практически, весь спектр реакций, необходимый для органического синтеза. Таким образом , Pd/C является в настоящее время наиболее удачной системой для осуществления процессов каталитического органического синтеза.

Известен способ получения палладийсодержащего катализатора гидрирования путем восстановления двухвалентного палладия из исходного соединения и осаждения восстановленного палладия на углеродный материал. где исходными соединениями являются комплексы Pd (II), Tsuji J. Palladium reagents and catalysts-innovations in organic syntheses. John Wiley & sons, Chichester. 1995. 595p.; Grove D.E. Plat. Met., 2002, 46, (1) 48.

Известен также способ получения палладийсодержащего катализатора гидрирования путем восстановления двухвалентного палладия из исходного соединения и осаждения восстановленного палладия на углеродный материал, при этом в качестве исходного соединения используют хлорид палладия (II), см. H.M.Colquhoun, Y.Holton, et all, "New Pathways for Organic Synthesis" («Новые пути органического синтеза»), перевод с английского, М.С.Ермоленко и В.Г.Киселева, М., «Химия», 1989, с.361, 2 абзац сверху [11] (ссылка прилагается).

Раствор хлогида палладия $(8,2\,$ г) в хлороводородной кислоте $(20\,$ мл концентрированной кислоты в $50\,$ мл воды) нагревают в течение $2\,$ ч., добавляют при перемешивании к горячей $(80^{0}\mathrm{C})$ суспензии угля в воде $(93\,$ г. в $1,2\,$ л. воды), предварительно промытого азотной кислотой.

Можно использовать практически любой уголь с достаточно большой удельной поверхностью, обработанный азотной кислотой (10%) в течение 2-3 ч, с последующей промывкой водой для удаления кислоты и высушенный при 100 °C. Затем последовательно прибавляют формальдегид (8мл 37% раствора) и раствор гидроксида натрия до сильнощелочной реакции. Через 10

мин. полученный катализатор отфильтровывают, промывают водой (10х250мл) и сушат в вакууме над хлоридом кальция. Выход палладия 5% на угле 93-98%.

Данный способ принят в качестве прототипа настоящего изобретения.

Его недостатком является небольшая активность получаемого согласно данному способу катализатора, необходимость создания для осуществления процесса катализа повышенной (свыше 60°С) температур и давления (свыше 5 ати). Это объясняется сложностью активации реакционных центров катализатора, получаемого по способу-прототипу.

В основу настоящего изобретения положено решение задачи создания способа получения палладийсодержащего катализатора гидрирования, который обладал бы большей каталитической активностью и работал в более мягких условиях (при комнатной температуре и нормальном (атмосферном) давлении).

Согласно изобретению эта задача решается за счет того, что в способе получения палладийсодержащего катализатора гидрирования путем восстановления двухвалентного палладия из исходного соединения и осаждения восстановленного палладия на углеродный материал в качестве исходного соединения используют тетрааквапалладий (II)перхлорат, a восстановленный палладий осаждают на углеродный наноматериал; в качестве углеродного наноматериала могут использовать фуллерен С60; в качестве углеродного наноматериала

:

могут использовать углеродные нанотрубки; в качестве углеродного наноматериала могут использовать катодный депозит; в качестве углеродного наноматериала могут использовать смесь фуллеренов C_{60} и C_{70} при следующем соотношении, мас.%:

фуллерен C_{60} - 60 - 80

фуллерен C_{70} - 20-40

Заявителем не выявлены источники, содержащие информацию о технических решениях, идентичных настоящему изобретению, что позволяет сделать вывод о его соответствии критерию «новизна».

Реализация отличительных признаков изобретения обусловливает важный технический результат: в результате использования в качестве исходного соединения тетрааквапалладия (II) перхлората достигается большая дисперсность восстановленного материала (палладия); осаждение его на углеродном наноматериале обусловливает сохранение палладия в нанокластерной форме.

Указанные обстоятельства существенно повышают каталитическую активность продукта, получаемого в результате реализации способа, обусловливают возможность осуществления процесса катализа при комнатной температуре и нормальном атмосферном давлении.

Заявителем не обнаружены какие-либо источники информации, содержащие сведения о влиянии заявленных отличительных признаков на достигаемый вследствие их реализации технический результат. Это, по

4

5

мнению заявителя, свидетельствует о соответствии данного технического решения критерию «изобретательский уровень».

На фиг.1 приведена схема установки для реализации заявленного способа получения палладийсодержащего катализатора гидрирования.

На фиг.2 – график, иллюстрирующий зависимость объема поглощения газовой смеси от времени в присутствии катализатора, полученного согласно способу по п.2 формулы изобретения в различных реакциях гидрирования:

- $(1) C_2H_4 + H_4 \longrightarrow C_2H_6;$
- (2) $CH_2 = CHCH_2OH + H_2 \longrightarrow CH_3CH_2CH_2OH$;
- (3) $2Fe_{aq}^{+3} + H_2 \longrightarrow 2Fe_{aq}^{+2} + 2H^+$.

на фиг. 3 — то же, что и на фиг.2 в присутствии катализатора, полученного согласно п.3 формулы изобретения;

на фиг. 4 – то же, что на фиг. 2 в присутствии катализатора, полученного согласно п.4 формулы изобретения;

на фиг. 5 — то же, что на фиг. 2 в присутствии катализатора, полученного согласно п.5 формулы изобретения;

Установка для реализации способа включает реактор 1 с перемешивающим устройством 2. Водород находится в баллоне 3. Реактор 1 соединен с манометрической установкой 4.

В первом конкретном примере способ реализуют следующим образом.

В реактор 1 помещают 2,0 л. дистиллированной воды, вносят 600 мг углеродного наноматериала, в частности, фуллерена C_{60} , добавляют 5,22 мл 5,7 · 10^{-2} м раствора $[Pd(H_2O)_4(ClO_4)_2$, содержащего 0,7 м хлорной кислоты и перемешивают в течение 0,5 часа. Затем осуществляют восстановление двухвалентного палладия путем пропускания через приготовленный раствор водорода в течение 2 часов.

Осадок отфильтровывают на фильтре Шотта, промывают многократно дистиллированной водой и высушивают в вакуумном эксикаторе над P_2O_5 в течение двух суток. Выход катализатора составил 98 – 99% (катализатор I).

Второй пример (катализатор II) отличается от первого только тем, что в качестве углеродного наноматериала использовали углеродные нанотрубки; в третьем примере (катализатор III) использовали катодный депозит; в четвертом примере (катализатор IV) в качестве углеродного наноматериала использовали смесь фуллеренов С₆₀ и С₇₀ при следующем соотношении, мас.%:

фуллерен С₆₀ - 60 - 80

фуллерен C_{70} - 20-40

Каждый катализатор испытывали в трех указанных выше реакциях гидрирования. Для этого катализатор в количестве 10 мг. помещали в

реактор и добавляли в случае реакции (1) — 10 мл. дистиллированной воды, реакции (2) — 10 мл. водного раствора 0,01 сульфата железа, реакции (3) — 10 мл 0,002 м водного раствора аллилового спирта. В случае реакции (1) реактор заполняли этиленводородной смесью с объемным соотношением 1:1, в случае реакций (2), (3) — водородом. Реакции проводили при температуре 18 — 25°С и нормальном атмосферном давлении. Скорости реакций (1), (2), (3) регистрировали по изменению объема поглощаемых газов во времени в присутствии катализаторов I, II, III, IV (фиг. 2, 3, 4, 5 соответственно).

Для сравнения в аналогичных условиях определяли скорости гидрирования в присутствии промышленного катализатора Рd/С. В реакции (1) эта скорость не превышала 10 – 12% от скоростей гидрирования в присутствии катализаторов I, II, III, IV, в реакции (2) гидрирование, практически, не происходило, в реакции (3) различия в скорости гидрирования не наблюдалось.

Формула изобретения

- 1. Способ получения палладийсодержащего катализатора гидрирования путем восстановления двухвалентного палладия из исходного соединения и осаждения восстановленного палладия на углеродный материал, о т л и ч а ю щ и й с я т е м, что в качестве исходного соединения используют тетрааквапалладий (II) перхлорат, а восстановленный палладий осаждают на углеродный наноматериал.
- 2. Способ по п.1, о т л и ч а ю щ и й с я т е м , что в качестве углеродного наноматериала используют фуллерен C_{60} .
- 3. Способ по п.1, о т л и ч а ю щ и й с я т е м, что в качестве углеродного наноматериала используют углеродные нанотрубки.
- 4. Способ по п.1, о т л и ч а ю щ и й с я т е м, что в качестве углеродного наноматериала используют катодный депозит.
- 5. Способ по п.1, о т л и ч а ю щ и й с я т е м , что в качестве углеродного наноматериала используют смесь фуллеренов C_{60} и C_{70} при следующем соотношении, мас.%:

фуллерен C_{60} - 60 - 80

фуллерен C_{70} - 20-40

Способ получения палладийсодержащего катализатора гидрирования

Фиг.1

→ Реакция 1

- Реакция 1

- Реакция 3

реакция 3

Фиг. 3

Фиг. 4

Фиг. 5

РЕФЕРАТ

Изобретение относится к области физической химии и может быть использовано для регулирования скорости автокаталитических реакций гидрирования.

В способе получения палладийсодержащего катализатора гидрирования путем восстановления двухвалентного палладия исходного соединения и осаждения восстановленного палладия на углеродный материал в качестве исходного соединения используют тетрааквапалладий (II) перхлорат, а восстановленный палладий осаждают на углеродный наноматериал; в качестве углеродного наноматериала могут использовать фуллерен С60, углеродные нанотрубки, катодный депозит; в качестве углеродного наноматериала могут использовать смесь фуллеренов С60 и С70 при следующем соотношении, мас.%:

фуллерен C_{60} - 60 - 80

фуллерен C_{70} - 20-40

Таки образом решается задача создания способа получения палладийсодержащего катализатора гидрирования, который обладает большей каталитической активностью и работает в более мягких условиях (при комнатной температуре и нормальном (атмосферном) давлении).