

REC'D 13 AUG 1999
WIPO PCT
AUS9/434

091701926

Patent Office Canberra

5

I, KIM MARSHALL, MANAGER EXAMINATION SUPPORT AND SALES, hereby certify that the annexed is a true copy of the Provisional specification in connection with Application No. PP 6169 for a patent by THE UNIVERSITY OF QUEENSLAND filed on 25 September 1998.

WITNESS my hand this First day of July 1999

KIM MARSHALL

MANAGER EXAMINATION SUPPORT AND SALES

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

THIS PAGE BLANK (USPTO)

Regulation 3.2

THE UNIVERSITY OF QUEENSLAND

A USTRALIA Patents Act 1990

PROVISIONAL SPECIFICATION

for the invention entitled:

"EXPRESSION MODULATING SEQUENCES - III"

The invention is described in the following statement:

EXPRESSION MODULATING SEQUENCES-III

FIELD OF THE INVENTION

5

The present invention relates generally to novel nucleic acid molecules capable of increasing expression of nucleotide sequences in eukaryotic cells. The novel nucleic acid molecules of the present invention may be used to increase and/or stabilise or otherwise facilitate expression of nucleotide sequences resulting in the presence of a translation product or may be used to down regulate expression by, for example, promoting transcript degradation *via* mechanisms such as co-suppression. The nucleotide sequence of the present invention is referred to herein as an "expression modulating sequence" and generally results in the acquisition of a phenotypic trait or loss of a phenotypic trait. The expression modulating sequence of the present invention is useful *inter alia* to increase and/or stabilise or otherwise facilitate expression of nucleotide sequences in eukaryotic cells and in particular the expression of therapeutically, agriculturally and economically important transgenes. The expression modulating sequence of the present invention may also be used to inhibit, reduce or otherwise down regulate expression of a nucleotide sequence such as a eukaryotic gene including a pathogen gene, the expression of which, results in an undesired phenotype.

20

BACKGROUND OF THE INVENTION

Recombinant DNA technology is now an integral part of strategies to generate genetically modified eukaryotic cells. For example, genetic engineering has been used to develop varieties of plants with commercially useful traits and to produce mammalian cells which express a therapeutically useful gene or to suppress expression of an unwanted gene. Transposons have played an important part in the genetic engineering of plant cells and some non-plant cells to provide *inter alia* tagged regions of genomes to facilitate the isolation of genes by recombinant DNA techniques.

The maize transposon Activator (Ac) and its derivative Dissociation (Ds) comprise one of the first transposon systems to be discovered (1,2) and was first used to clone genes by Fedoroff et al (3). The behaviour of Ac in maize has been studied extensively and excision occurs in both somatic and germline tissue. Studies have highlighted two important features of Ac/Ds for tagging. First, the transposition frequency and second, the preference of Ac/Ds for transposition in linked sites.

The use of the *Ac/Ds* system has been hampered by the difficulty of data interpretation due, for example, to the high activity of *Ac* in certain plants and insertions at unlinked sites arising from 10 multiple transpositions rather than by a single event from the T-DNA. This problem was addressed by Jones *et al* (4), Carroll *et al* (5) and others where a two component *Ac/Ds* system was developed. In this system, the *Ds* elements were made by replacing the *Ac* transposase gene with a marker gene thereby rendering it non-autonomous. T-DNA regions of binary vectors were constructed by Carroll *et al* (5) and Scofield *et al* (6) carrying either a *Ds* element or a stabilised Activator transposase gene (*sAc*). The *Ds* element contained a reporter gene (eg. *nos:BAR*) which was shown to be inactivated on crossing with plants carrying the *sAc* (5). This is referred to as transgene silencing. It has been shown that transgene silencing is a more general phenomenon in transgenic plants (7, 8, 9). Many different types of transgene silencing have now been reported in the literature and include: co-suppression of a transgene and a homologous endogenous plant gene (10), inactiviation of ectopically located homologous transgenes in transgenic plants (7), the silencing of transgenes leading to resistance to virus infection (11) and inactivation of transgenes inserted in maize transposons in transgenic tomato (5).

Gene silencing undoubtedly reflects mechanisms of great importance in the understanding of plant gene regulation. It is of particular importance because it represents a severe obstacle to stable and high level expression of economically important transgenes (7).

In work leading up to the present invention, the inventors sought to identify nucleotide sequences which might prevent or otherwise reduce gene silencing and to facilitate increased and/or stabilized gene expression in eukaryotic cells such as plant cells. In accordance with the present invention, the subject inventors have now identified and isolated novel nucleotide sequences

referred to herein as "expression modulating sequences" or "EMSs" which are useful in increasing or stabilizing nucleotide sequence expression in eukaryotic cells such as plant cells. Such increased and stabilised nucleotide sequence expression can also lead to the promotion or induction of transcript degradation *via* mechanisms such as co-suppression. Accordingly, the EMSs of the present invention may also be used to inhibit, reduce or otherwise down-regulate expression of target nucleotide sequences.

SUMMARY OF THE INVENTION

- 10 Throughout this specification, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element or integer or group of elements or integers but not the exclusion of any other element or integer or group of elements or integers.
- 15 Sequence Identity Numbers (SEQ ID NOs.) for the nucleotide sequences referred to in the specification are defined following the bibliography. A summary of the SEQ ID NOs is given in Table 1.
- One aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides which modulates expression of a second nucleotide sequence inserted proximal to said first mentioned nucleotide sequence.

More particularly, the present invention is directed to an isolated nucleic acid molecule comprising a sequence of nucleotides which increases or enhances expression of a second nucleotide sequence inserted within said first mentioned nucleotide sequence.

Another aspect of the present invention relates to an expression modulating sequence (EMS) comprising a sequence of nucleotides which increases or enhances expression of a nucleotide sequence inserted adjacent to, within or otherwise proximal to said EMS.

Still another aspect of the present invention contemplates a genetic construct comprising an EMS as herein defined and means to facilitate insertion of a nucleotide sequence within, adjacent to or otherwise proximal to said EMS.

5 Still yet another aspect of the present invention provides a genetic construct comprising an EMS as herein defined and means to facilitate insertion of a nucleotide sequence within, adjacent to or otherwise proximal with said EMS and operably linked to a promoter.

Another aspect of the present invention contemplates a method of increasing or stabilizing expression of a nucleotide sequence or otherwise preventing or reducing silencing of a nucleotide sequence in a eukaryotic cell said method comprising introducing into said eukaryotic cell the nucleotide sequence flanked by, adjacent to or otherwise proximal to an EMS.

More particularly, the present invention provides a method of increasing of stabilizing expression of a nucleotide sequence or otherwise preventing or reducing silencing of a nucleotide sequence in a plant or cells of a plant said method comprising introducing into said plant or plant cells the nucleotide sequence flanked by, adjacent to or otherwise proximal with an EMS.

In an alternative embodiment, the present invention provides a method of inhibiting, reducing or otherwise down-regulating expression of a nucleotide sequence in a eukaryotic cell, said method comprising introducing into said eukaryotic cell the nucleotide sequence flanked by, adjacent to or otherwise proximal with an EMS.

More particularly, the present invention is directed to a method of inhibiting, reducing or otherwise down-regulating expression of a nucleotide sequence in a plant or cells of a plant said method comprising introducing into said plant or plant cells the nucleotide sequence flanked by, adjacent to or otherwise proximal with an EMS.

Yet another aspect of the present invention provides a transgenic animal or plant carrying a nucleotide sequence flanked by, adjacent to or otherwise proximal with an EMS.

Still a further aspect of the present invention provides an improved transposon tagging system, said system comprising a transposable element carrying a nucleotide sequence flanked by, adjacent to or otherwise proximal with an EMS.

5

TABLE 1
SUMMARY OF SEQ ID NOs.

	SEQ ID NO.	DESCRIPTION
10	1	Nucleotide sequence of tomato α-amylase gene promoter
	2	Nucleotide sequence of α -amylase gene promoter
	3	Nucleotide sequence of genomic DNA upstream of Dem
		gene followed by Dem cDNA coding sequence.
	4	Nucleotide sequence upstream of Ds insertion (ie.
		upstream of the nos:BAR gene) in a putative patatin gene
		in tomato
	5	Nucleotide sequence downstream of Ds insertion (ie.
		downstream of the nos: BAR gene) in a putative patatin
		gene in tomato
15	6	Nucleotide sequence of portion of putative tomato
		homologue of potato patatin gene
	7	Nucleotide sequence of portion of potato patatin gene

BRIEF DESCRIPTION OF THE FIGURES

Figure 1 is a diagrammatic representation showing T-DNA regions of binary vectors carrying a Ds element (SLJ1561) of the transposable gene (SLJ10512)[5]. The Ds element carries a nos:BAR gene and is inserted into a nos:SPEC excision marker. The transposon gene sAc is linked to a 2':Gus reporter gene.

Figure 2 is a diagrammatic representation showing an experimental strategy for generating tomato lines carrying transposed *Ds* elements (5). F1 plants heterozygous for both the *Ds* and 10 sAc T-DNAs are test-crossed to produce TC₁ progeny. The TC₁ progeny are then screened for lines carrying a transposed *Ds* and a reactivated nos:BAR gene.

Figure 3 is a photographic representation showing expression and silencing of the *nos:BAR* gene in various tomato lines. Seedlings were germinated in the presence of phosphinothricin for several weeks and then photographed. A. 1561E, B. UQ406, C. Non-transformed (i.e. does not carry the *nos:BAR* gene), D-F. Three tomato lines that carry silent *nos:BAR* genes.

Figure 4 is a representation showing methylation of a genetically engineered *Ds* transposon in transgenic tomato. Two separate Southern analyses were conducted on 7 individual genotypes; genomic DNA was extracted from leaf tissue (5). The restriction enzymes and probes (shaded boxes) used are shown on the figure. Lanes: 1. Non transformed (i.e. no *Ds* or *nos:BAR* gene), 2. 1561E which carries an active *nos:BAR* gene (due to the fact that it has never been exposed to the transposase gene), 3-6. Four tomato lines that carry silent *nos:BAR* genes, 7. UQ406 which carries an active *nos:BAR* gene due to insertion of the *Ds* in the α-amylase promoter. The enzymes *Sst*II (abbreviated Ss) and *Not*I (abbreviated Nt) are methylation sensitive, whereas *Bst*YI (abbreviated Bs) and *Eco*RI (abbreviated RI) are not. The expected size fragment for unmethylated DNA is indicated by the arrow; larger fragments (as in the silent lines) indicate methylation of the DNA at the *Sst*II or *Not*I sites.

10

Figure 5 is a representation showing a sequence comparison between the potato α -amylase promoter (15) [SEQ ID NO:2] and the tomato α -amylase promoter [SEQ ID NO:1]. The location of the UQ406 insertion is shown.

5 Figure 6 is a representation of a nucleotide sequence [SEQ ID NO:3] of genomic DNA from 651 bp upstream of the *Ds* insertion in UQ406 to the beginning of the *Dem* coding sequence, followed by the *Dem* cDNA sequence from the ATG start site at base pair 4097. The target sequences of the *Ds* insertion in UQ406 and *Dem* ATG are underlined. The *Dem* cDNA sequence is shown in italics and underlined.

Figure 7 is a photographic representation showing a stable mutant and a somatic revertant of the *Dem* locus. The seedling at the right in the background is homozygous for the *Ds* insertion in the *Dem* gene. The stable mutant fails to develop beyond the stage shown in the figure. The somatic revertant in the foreground is homozygous for the *Ds* insertion at the zygotic stage of development, but it also inherited a transposase gene which causes *Ds* excision and reversion of the phenotype to wild-type. Somatic revertants are characterized by abnormal cotyledons but develop a functional shoot meristem due to *Ds* excision and restoration of *Dem* function. Each somatic revertant represents an independent transposition event.

20 **Figure 8** is a diagrammatic representation showing an improved transposon tagging strategy using *Dem* as excision marker. The *sAc* and *Ds* parent lines are represented by the upper left and right boxes, respectively. Because the *sAc* is linked to the *dem* mutant +7 allele, somatic revertants can theoretically occur at about the frequency of 1 out of 4 in the F1 progeny. Each somatic revertant represents an independent transposition event. Chr4, chromosome 4 of 25 tomato.

Figure 9 is a diagrammatic representation showing plant expression vector pZorz carrying Osa:Luc (12).

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention is predicated in part on the elucidation of the molecular basis of transposase-mediated silencing of genetic material located within a transposable element.

5 Although, in accordance with the present invention, the molecular basis of gene silencing has been determined with respect to plant selectable marker genes within the *Ds* element of the *Ds/Ac* maize transposon system, the present invention clearly extends to the silencing of any nucleotide sequence and in particular a transgene and to mechanisms for alleviating gene silencing. In accordance with the present invention, nucleotide sequences have been identified which alleviate gene silencing and which increase or stabilise expression of genetic material. Furthermore although the present invention is particularly exemplified in relation to plants, it extends to all eukaryotic cells such as cells from mammals, insects, yeasts, reptiles and birds.

Accordingly, one aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides which increases or stabilizes expression of a second nucleotide sequence inserted proximal to said first mentioned nucleotide sequence.

The term "proximal" is used in its most general sense to include the position of the second nucleotide sequence near, close to or in the genetic vicinity of the first mentioned nucleotide sequence. More particularly, the term "proximal" is taken herein to mean that the second nucleotide sequence precedes, follows or is flanked by the first mentioned nucleotide sequence. Preferably, the second nucleotide sequence is within the first mentioned nucleotide sequence and, hence, is flanked by portions of the first nucleotide sequence. Generally, the second nucleotide sequence is flanked by up to about 10 kb either side of first mentioned nucleotide sequence, more preferably up to about 5 kb, even more preferably up to about 4 kb either side of said first mentioned nucleotide sequence and even more preferably up to about 10 bp to about 1 kb.

Accordingly, another aspect of the present invention is directed to an isolated nucleic acid molecule comprising a sequence of nucleotides which stabilises, increases or enhances expression of a second nucleotide sequence inserted into, flanked by, adjacent to or otherwise proximal to the said first mentioned nucleotide sequence.

The term "expression" is conveniently determined in terms of desired phenotype. Accordingly, the expression of a nucleotide sequence may be determined by a measurable phenotypic change involving transcription and translation into a proteinaceous product which in turn has a phenotypic effect or at least contributes to a phenotypic effect. Alternatively, expression may involve induction or promotion of transcript degradation such as during co-suppression resulting in inhibition, reduction or otherwise down-regulation of translatable product of a gene. In the latter case, the nucleic acid molecules of the present invention may result in production of sufficient transcript to induce or promote transcript degradation. This is particularly useful if a target endogenous gene is to be silenced or if the target sequence is from a pathogen such as a 10 virus, bacterium, fungus or protozoan. In all instances "expression" is modulated but the result is conveniently measured as a phenotypic change resulting from increased or stabilised production of transcript, resulting in increased or stabilised translation product or increased or enhanced transcript production leading to transcript degradation such as in co-suppression resulting in loss of translation product.

15

The second mentioned nucleotide sequence is preferably an exogenous nucleotide sequence meaning that it is either not normally indigenous to the genome of the recipient cell or has been isolated from a cell's genome and then re-introduced into cells of the same plant or animal, same species of plant or animal or a different plant or animal. More preferably, the exogenous sequence is a transgene or a derivative thereof which includes parts, portions, fragments and homologues of the gene.

The first mentioned nucleotide sequence described above is referred to herein as an "expression modulating sequence" (EMS) since it functions to and is capable of increasing or stabilizing expression of an exogenous nucleotide sequence such as a transgene or its derivatives. This in turn may have the effect of alleviating silencing of an exogenous nucleotide sequence or may promote transcript degradation such as *via* co-suppression. The latter is particularly useful as a defence mechanism against pathogens such as but not limited to plant viruses and animal pathogens.

P:\OPER\EJH\EXPMOD-2.266 - 25/9/98

Accordingly, another aspect of the present invention relates to an expression modulating sequence (EMS) comprising a sequence of nucleotides which increases, enhances or stabilizes expression of a second nucleotide sequence inserted within, adjacent to or otherwise proximal to said EMS.

5

The term "modulating" is used to emphasise that although transcription may be increased or stabilised, this may have the effect of either permitting stabilised or enhanced translation of a product or inducing transcription degradation such as via co-suppression.

10 The EMSs of the present invention were identified, in accordance with the present invention, following transposon mutagenesis of plants with the Ds/Ac transposon system. The Ds element carries a reporter gene (nos:BAR) which is normally silenced upon exposure to the transposase gene. In a few cases, plants are detected in which nos:BAR expression is not silenced. In accordance with the present invention, it has been determined that the Ds element inserts within, 15 adjacent to or otherwise proximal with an EMS which results in increased or stabilized

expression of the nos:BAR. In other words, the EMS facilitates expression of a gene and preferably an exogenous gene or a transgene. This in turn may result in gene product being

produced or induction of transcript degradation such as via co-suppression.

20 The EMSs of the present invention are conveniently provided in a genetic construct.

Accordingly, another aspect of the present invention contemplates a genetic construct comprising an EMS as herein defined and means to facilitate insertion of a nucleotide sequence within, adjacent to or otherwise proximal with said EMS.

25

The term "genetic construct" is used in its broadest sense to include any recombinant nucleic acid molecule and includes a vector, binary vector, recombinant virus and gene construct.

The means to facilitate insertion of a nucleotide sequence include but are not limited to one or 30 more restriction endonuclease sites, homologous recombination, transposon insertion, random

insertion and primer and site-directed insertion mutagenesis. Preferably, however, the means is

10

one or more restriction endonuclease sites. In the case of the latter, the nucleic acid molecule is cleaved and another nucleotide sequence ligated into the cleaved nucleic acid molecule.

Preferably, the inserted nucleotide sequence is operably linked to a promoter in the genetic 5 construct.

According to this embodiment, there is provided a genetic construct comprising an EMS as herein defined and means to facilitate insertion of a nucleotide sequence within, adjacent to or otherwise proximal with said EMS and operably linked to a promoter.

Conveniently, the genetic construct may be a transposable element such as but not limited to a modified form of Ds. A modified form of Ds includes a Ds molecule comprising an EMS and a nucleotide sequence such as but not limited to a reporter gene, a gene conferring a particular trait on a plant cell or a plant regenerated from said cell or a gene which will promote co
15 suppression of an endogenous gene.

Another aspect of the present invention contemplates a method of increasing or stabilising expression of a nucleotide sequence or otherwise preventing or reducing silencing of a nucleotide sequence or promoting transcription degradation of an endogenous gene in a plant or animal or cells of a plant or animal, said method comprising introducing into said plant or animal or plant or animal cells said nucleotide sequence flanked by, adjacent to or otherwise proximal with an EMS.

In an alternative embodiment, there is provided a method of inhibiting, reducing or otherwise down-regulating expression of a nucleotide sequence in a plant or animal or cells of a plant or animal, said method comprising introducing into said plant or animal or plant or animal cells the nucleotide sequence flanked by, adjacent to or otherwise proximal with an EMS.

Yet another aspect of the present invention provides a transgenic plant or animal carrying a 30 nucleotide sequence flanked by, adjacent to or otherwise proximal to an EMS. As a consequence of the EMS, the expression of the exogenous nucleotide sequence is increased or

stabilised resulting in expression of a phenotype or loss of a phenotype.

Although not intending to limit the present invention to any one theory or mode of action, the EMS is proposed to comprise a methylation resistance sequence. A methylation resistance sequence is one which may de-methylate and/or prevent or reduce methylation of a nucleotide sequence such as a target nucleotide sequence.

According to this aspect, the DNA methylation resistant sequence may prevent inhibition of transcription or delay mRNA transcript turnover. This can enhance, increase or stabilise an transcript and translation into a gene product or may induce or promote transcript degradation such as *via* co-suppression.

The present invention further provides for an improved transposon tagging system.

15 One system employs a modified Ds element which now carries an EMS.

Accordingly, another aspect of the present invention is directed to an improved transposon tagging system, said system comprising a transposable element carrying a nucleotide sequence flanked by, adjacent to or otherwise proximal with an EMS.

20

Another new system employs the *Dem* gene or its derivatives as an excision marker. Reference to "derivatives" include reference to mutants, parts, fragments and homologues of *Dem* including functional equivalents. The *Dem* gene is required for cotyledon development and shoot and root meristem function. Stable *Ds* insertion mutants of *Dem* germinate but fail to develop any further.

25 However, unstable mutants in the *Dem* locus result in excision of the *Ds* element and reversion of the *Dem* locus to wild-type, thereby restoring function to the shoot meristem. In accordance with the present invention, the new system enables selection for transposition.

In accordance with the improved method, transposition is initiated by crossing a Ds line with a stabilized Ac (sAc) line. The Ds line is heterozygous for a Ds insertion in the Dem gene and the sAc line is heterozygous for a stable mutation in the Dem gene. A particularly useful mutant in

the *Dem* gene is a frameshift mutation. Both of the *Ds* and *sAc* containing plant lines are wild-type due to the recessive nature of the *Ds* insertion and mutant alleles. The F₁ progeny derived from crossing the *Ds* and *sAc* lines segregate at a ratio of 3 wild-types to 1 mutant. Because the *sAc* is linked to the frameshift *dem* allele, almost all of the F₁ mutants also inherit the transposase gene and can undergo somatic reversion. These revertant individuals have abnormal cotyledons, but *Ds* excision from the *Dem* gene restores function to the shoot apical meristem. Each somatic revertant represents an independent transposition event from the *Dem* locus. By screening for expression of a gene resident on the *Ds* element (e.g. nos: BAR), the identification of EMSs is readily determined.

10

The present invention also provides *in vivo* bioassays for expressed transgenes. The bioassays identify nucleotide sequences which prevent transgene silencing.

In one aspect, the plant expression vector pZorz (see Figure 5) carries a firefly luciferase reporter gene (luc), under the control of the Osa promoter (12). After bombardment, the gene is expressed in embryogenic sugarcane callus. However, it becomes completely silenced upon plant regeneration. The silencing appears to be correlated with methylation of the transgene. Genetic sequences flanking reactivated nos:BAR insertions are inserted in the pZorz vector at the HindIII site upstream from the Osa promoter. These modified pZorz constructs are then used with a transformation marker to transform sugarcane in order to test whether the plant sequences are capable of alleviating silencing of the luc gene upon plant regeneration. Restriction endonuclease fragments capable of alleviating silencing of the luc gene are subcloned by deletion analysis into smaller fragments to define the sequence more accurately.

25 In another aspect, a plant expression vector is constructed for testing the EMSs in Agrobacterium-transformed Arabidopsis. EMSs are placed upstream of the nos:luc or nos:gus gene linked to a transformation marker and used to test whether EMSs stabilise expression of the nos:luc or nos:gus gene in Arabidopsis.

These aspects of the present invention are clearly extendable to assays using other plants and the present invention contemplates the subject assay and plant expression vector for use in a range of plants in addition to sugar cane.

5 The present invention further described by the following non-limiting Examples.

EXAMPLE 1

Ds/sAc Transposon system

10 The inventors have previously developed a two component *Ds/sAc* transposon system in transgenic tomato for tagging and cloning important genes from plants (5, 13). The components of the system are shown in Figure 1 and comprise: i) a non-autonomous genetically-engineered *Ds* element (e.g. SLJ1561), and ii) an unlinked transposase gene *sAc* (SLJ10512), required for transposition of the *Ds* element. To activate transposition, the two components are combined by crossing transformants for each component. A plant selectable marker gene, e.g. *nos:BAR*, is inserted into the *Ds* element to enable selection for reinsertion of the elements following excision from the T-DNA (Figure 1). Surprisingly, the marker gene is irreversibly inactivated when the *Ds* line is crossed to a transformant expressing the transposase gene (5). Silencing occurred when the *Ds* element remained in the T-DNA, and also occurred in the great majority of cases when the *Ds* element transposed to a new location in the tomato genome. None of the other marker genes in the T-DNA is silenced. The silenced marker gene has been shown to be stably inherited, even after the transposase gene segregates away from the *Ds* element in subsequent generations.

EXAMPLE 2

Transposon tagging of a chromosomal region enabling full expression of the nos:BAR transgene

5 The experimental strategy for generating tomato lines carrying transposed Ds elements from T-DNA 1561E is shown in Figure 2. The Ds element in 1561E carries a nos:BAR marker gene. In construction of the Ds, the 5' end of the nos promoter is cloned into the Xho I site, 1100 bp from the 3' end of Ac. As a strategy to tag regions of the tomato genome associated with high level gene expression, hundreds of plants carrying transposed Ds elements are screened for 10 resistance to phosphinothricin (PPT), the selection agent for the BAR gene. Several lines are identified which show at least some level of resistance. One line, called UQ406, carries a single transposed Ds element (without the transposase gene which has segregated away) and is resistant to PPT (Figure 3). Stable inheritance of BAR gene expression in this line has been demonstrated through several generations. These results indicate that the strategy for tagging 15 active chromosomal regions by screening for PPT resistance is a successful approach. Southern hybridization analysis of the original Ds transformant 1561E, UQ406 and several lines carrying silenced nos: BAR transgenes indicates that silencing is correlated with methylation of the SstII site in the nos promoter (Figure 4). Total leaf tissue is used in this analysis, and the SstII site in the nos promoter in UQ406 is partially methylated. In silent nos:BAR genes, a NotI site 20 immediately downstream from the coding sequence is also methylated (Figure 4). In UQ406, the NotI site is unmethylated, as in 1561E (Figure 4).

EXAMPLE 3

Cloning sequences flanking active nos:BAR genes

25

GenomeWalker (14) is used to clone the tomato DNA sequences flanking the *Ds* element in UQ406. The DNA flanking the *Ds* element in line UQ406 is cloned and sequenced, and a search of the PROSITE database reveals that the *Ds* has inserted into the promoter region of an α-amylase gene. The promoter [SEQ ID NO:1] shows strong homology to an α-amylase promoter of potato (15; Figure 5) [SEQ ID NO:2] and the coding sequence of the gene has strong homology with one of 3 reported potato α-amylase cDNAs (16). The DNA from 651 bp

upstream of the UQ406 insertion to the end of the *Dem* coding sequence, has been sequenced (Figure 6) [SEQ ID NO:3].

EXAMPLE 4

An improved transposon tagging strategy for transgenic tomato

The inventors have used the transposon tagging system described in Example 1 (also see Figure 2) to tag and clone two important genes involved in shoot morphogenesis. The *DCL* gene is required for chloroplast development and palisade cell morphogenesis (13) and the *Dem* 10 (*Defective Embryo Mer stem*) gene is required for cotyledon development and shoot and root meristem function. Stable *Ds* insertion mutants of *Dem* germinate but fail to develop any further (Figure 7). Figure 7 also shows an example of an unstable mutant of the *Dem* locus. Upon germination, these variegated seedlings appear at first to be mutant. However, the transposase gene activates transposition of the *Ds* and reversion of the *Dem* locus to wild-type, thereby 15 restoring function to the shoot meristem.

While the transposon tagging system described in Figure 2 has been successful in tagging genes and a chromosomal region alleviating transgene silencing, it does have two associated inefficiencies. First, transposition cannot be selected in the shoot meristem of F_1 plants 20 heterozygous for Ds and sAc. As a consequence, many TC_1 progeny derived from test-crossing these F_1 plants still have the Ds located in the T-DNA. The other limitation of the system is that sibling TC_1 progeny derived from a single F_1 plant often carry the same clonal transposition and reinsertion event. The extent of clonal events amongst sibling TC_1 progeny can only be monitored by time consuming and expensive Southern hybridisation analysis.

25

5

These two inefficiencies in the transposon tagging strategy are overcome in accordance with the present invention by using the *Dem* gene as an excision marker. The new system enables selection for transposition in the shoot apical meristem and visual identification of plants carrying independent transposition events. Transposition is initiated by crossing a *Ds* line with a *sAc* line 30 (Figure 8). The *Ds* line is heterozygous for a *Ds* insertion in the *Dem* gene and the *sAc* line is heterozygous for a stable frameshift mutation in the *Dem* gene (Figure 8). The frameshift allele

25

is derived from a Ds excision event from the Dem locus. Both the Ds and sAc lines are wild-type due to the recessive nature of the Ds insertion and frameshift alleles. PCR tests on intact leaf tissue have been developed for the rapid identification of these Ds and sAc parental lines. The F₁ progeny derived from crossing the Ds and sAc lines segregate at the expected ratio of 3 wild-5 types to 1 mutant. Because the sAc is linked to the frameshift dem allele, almost all of the F₁ mutants also inherit the transposase gene (sAc) and can undergo somatic reversion. These revertant individuals have abnormal cotyledons, but Ds excision from the Dem gene restores function to the shoot apical meristem (see Figure 7). Each somatic revertant represents an independent transposition event from the Dem locus. A non-destructive test for nos:BAR 10 expression is used involving application of PPT (the selective agent for expression of BAR gene) to a small area of a leaf. Somatic revertants resistant to PPT are grown though to seed and the F₂ progeny are screened again for PPT resistance. Lines carrying transposed Ds elements expressing nos:BAR are selected for more detailed molecular analysis. Three independent insertions (UQ11, UQ12 and UQ14) carry active nos:BAR genes. The donor Ds was originally 15 located in the Dem gene (Figure 4) and in that location in the Dem gene the nos:BAR gene was silent.

The efficient saturation mutagenesis of this chromosomal region is dependent on the use of the *Dem* gene as a selectable marker for independent transposition events. A recombinant selectable marker for independent transpositions is produced and transformed into tomato for saturation mutagenesis in other chromosomal regions of tomato. This system may be introduced into any species possessing the *dem* mutation, in order to facilitate transposon tagging of genes.

EXAMPLE 5

Ds transposon tagging of a putative patatin gene

DNA sequences flanking the active *nos:BAR* in a line designated UQ12 have similarly been cloned and sequenced. The flanking DNA appears to correspond to an intron in a homologous potato patatin gene. Patatin is the major protein in the potato tuber and has many potentially30 important characteristics.

P:\OPER\EJH\EXPMOD-2.266 - 25/9/9

The sequence upstream of the Ds insertion (i.e. upstream of the nos:BAR gene) is as follows:

	AATCAAAGAG	GAATTNAATT	CCNCAAAATT	TCATCCATAG	ATTTTGNGTC	50
	TCTGAAAATT	AAAGTGACTT	TGTAATCTGA	AACCTAGAGT	CCTCAACCAT	100
5	ATCATTGACC	ATTAAGCCAT	ACCCTTAAAT	GTAGGGAATT	TGAAGTTTTA	150
	AAAACCACAC	TTTGTTATTT	ATTGGCCCAA	ATACTCGATA	ATCTTTACAT	200
	TATTGAAAAT	CAACATTCAA	AAGGAACGAA	CCTTCAATCA	CACCATCAAT	250
	GTCAACTTTC	TTTTATTTTG	GATAATCTAA	GTTTTTAAAT	TGCAGTAAAA	300
	TNAAATAAAA	CCCTAAACTT	CTTCTAGGTT	GAGACTTAGT	AAATATGAAT	350
10	TATATAAAGA	ATTCATGACA	AATGAGACAT	AAGAATAGTG	CCAGCAAATT	400
	ACTTTTTTGA	TATCTTATCT	GTGATATCGG	AATTTTAACT	ACCATAAATT	450
	TATGAATGAA	ATATCACTTA	TCTATTAGAG	AGGATTTAAT	CTCCCTTATA	500
	ATGACATTGA	TAAAAGCAAG	NACAAGTGCT	CTTTATTTCT	TAATTACAAA	550
	ТССТТАААТА	GATAAAAGCT	ACGAATAACA	TAATATCCTT	AAATAGATAA	600
15	AAGCTACGAA	ТААСАТААТА	GTATATTACT	CCNAATTATT	TTGATTTATT	650
	TAAAATGACT	CCACTAATCC	TGATGTGGTC	TAGG [SEQ	[D NO:4]	684

The tomato sequence immediately downstream of the Ds insertion (i.e. downstream of the nos:BAR gene) is as follows:

```
20
                                                                             50
         GGTCTAGGCC CTGGGTCTAG GAAACAAAAT AACTTATTTG ACTCCTAAAC
         AATAGCAACA TACAAACCAC TGATATTGTA CAAGTAAAAT TCAATAAAAT
                                                                            100
         TCTAGCTCTC TCAAACACTT TTAAAATTGT TATTTCTGTT TTGTCTGTGT
                                                                            150
         CATATTATGA CCTACACAAC AACAACAACA ACGAATTTAG TGAAACTCTA
                                                                            200
         CAAAGTGGAG CCTGAAGTCG AGAGTTTACG CGGGCCTTAT CACTATCTTT
25
                                                                            250
         TCGAGATAAA AAAATTATTT TTAAAAGATC ATCGACTTAA ACAAACCAAA
                                                                            300
         CAATAATTAA AAAAATATGA ATTAATAGCA AAGCAGTGTG GACCATATAT
                                                                            350
         ACAAAAATCT ATAACAACAA CAAGGTGCAG AGCATTATTC CAACTAAGAT
                                                                            400
         CGAAGTTGTG ATACTGTCAT AATAAAAATG ACACATATTT TGACAACATA
                                                                            450
30
         AAAAATAAAT AACCATAAAA TATATCATAG AAAAATGAAT ATATTAGAAC
                                                                            500
         AGCTCACTCC AATATTAAAA GAGAGAAAAA AAATATTTTC CCACCACAAT
                                                                            550
         GCCATAATCC TTGAGCTTAG CTATTTATAA GTAAAAAAA TGTTTTCTTG
                                                                            600
         GATAAATAGA AAAAGAAATA ATAATTAAAC ATAACCAATC ACTTCACAAA
                                                                            650
                                                                            662
         TAAGAGTGTA TT
                         [SEQ ID NO:5]
35
```

The level of homology between the potato and our tomato sequence is as follows:

```
Tomato: 307 ATTTATTTTTAGGAAAATTATCTAAATACACATCTTATTTTACCATATACTCTAAAAAT 248
```

Potato: 1914 AATTATATTTAGGAAAAATTACATAAATACACAACTTAATATATTATATTATCTCTAAAAATT 1973

247 TCC 245 [SEQ ID NO:6] ||| 1974 TCC 1976 [SEQ ID NO:7]

40

15

20

EXAMPLE 6

Tagging of additional genes

Selecting for transposition of a methylated *Ds* from the *Dem* locus and for expression of the nos:BAR gene (i.e.: demethylation of the *Ds*) efficiently identifies *Ds* insertions into genes, as opposed to so-called "junk DNA". The sequences adjacent to five of these *Ds* insertions have been cloned and sequenced, and in all cases the *Ds* insertion is in the vicinity of a known gene.

The five lines carrying active nos:BAR genes associated with genes are:

- Ds insertion in UQ406 associated with the promoter of an α-amylase gene (Example 3, above);
 - Ds insertion in UQ12 associated with a putative palatin gene (Example 5, above);
 - Ds insertion in UQ11 associated with the Right Border of the Agrobacterium T-DNA in 1516E (refer to Figure 2). This was the T-DNA carrying the Ds that was initially transformed into tomato. In other words, the Ds transposed from the Dem locus back into the T-DNA;
 - Ds insertion in UQ14 associated with or closely linked to a putative sucrose synthase gene; and
 - Ds insertion in UQ13 associated with or closely linked to a putative UDP-glucosepyrophosphorylase gene.

In four of these instances, the *Ds* has inserted into or near sequences homologous to carbon metabolism genes. These data indicate that many C metabolism genes and many so called house-keeping genes contain de-methylation sequences or sequences which prevent or reduce methylation.

EXAMPLE 7

A rapid bioassay for identification of tomato DNA sequences capable of alleviating transgene silencing in a heterologous plant species

- 5 An efficient transformation system has been developed for sugarcane, based on particle bombardment of embryogenic alleles, followed by plant regeneration (17). The bioassay is useful for identifying tomato sequences which prevent transgene silencing and employs the plant expression vector pZorz (Figure 9). This plasmid carries a firefly luciferase reporter gene (luc), under the control of the Osa promoter (12). After bombardment of embyrogenic callus of sugar cane, the luciferase gene is expressed as observed by visualisation of the chemiluminescence of the luciferase enzyme. However, it becomes completely silenced upon plant regeneration in normal sugar cane. This is used to test the system. The silencing appears to be correlated with methylation of the transgene. Tomato sequences flanking reactivated nos: BAR insertions are inserted in the pZorz vector at the HindIII site upstream from the Osa promoter (Figure 10).

 15 These modified pZorz constructs are then used with a transformation marker to transform sugarcane in order to test whether the tomato sequences are capable of alleviating silencing of the luc gene. They are then subcloned by deletion analysis into smaller fragments to more accurately define the sequences.
- 20 Tomato sequences flanking reactivated nos:BAR insertions are also introduced next to a nos:BAR, nos:LUC or nos:GUS recombinant gene in another plasmid vector. These modified recombinant BAR, LUC and GUS genes are inserted into binary vectors (4) for transformation into Arabidopsis thaliana (18) to test the ability to prevent silencing of the nos:BAR gene in Arabidopsis.

EXAMPLE 8

Analysis of sequences responsible for reactivating nos:BAR expression

The borders of DNA elements that prevent transgene silencing are initially defined by deletion analysis of clones that yield positive results in the bioassays. The smallest active clone for each chromosomal region is then sequenced and characterised in detail. Sequences from independent *Ds* insertions are compared for homologous DNA elements.

Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations of any two or more of said steps or features.

BIBLIOGRAPHY

- 1 McClintock, B. (1947) Carnegie Inst. Washington Year Book 46: 146-152.
- 2 McClintock, B. (1948) Carnegie Inst. Washington Year Book 47: 155-169.
- 3 Fedoroff, N. et al, (1984) Proc. Natl. Acad. Sci. USA 81: 3825-3829.
- 4 Jones, J. et al. (1992) Transgenic Res. 1: 285-297.
- 5 Carroll, B. J. et al, (1995) Genetics 139: 407-420.
- 6 Scofield, S. et al. (1992) Plant Cell 4: 573-582.
- Finnegan, J and McElroy, D (1994) Biotech 12: 883-888.
- 8 Spiker, S and Thompson, W F (1996) Plant Physiol 110: 15-21.
- 9 Matzke, M A and Matzke, A J M Plant Physiol 107: 679-685.
- 10 Jorgensen, R A (1995) Science 268: 686-691.
- 11 Smith, H A et al (1994) Plant Cell 6: 1441-1453.
- 12 Bower, R et al (1996) Mol. Breeding 2: 239-249.
- 13 Keddie, J S et al (1996) EMBO J 15: 4208-4217.
- 14 Siebert, P.D. et al. (1995) Nucleic Acids Res. 23: 1087-1088.
- 15 International Patent Publication No. WO 96/12813.
- 16 International Patent Publication No. WO 9012876-A.
- 17 Bower, R and Birch, R G (1992) *Plant J. 2:* 409-416.
- Bechtold, N. and Bouchez, D. (1995) In: I. Potrykus and G. Spangenberg (eds). Gene transfer to Plants. pp.19-23.

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT: THE UNIVERSITY OF QUEENSLAND
 - (ii) TITLE OF INVENTION: EXPRESSION MODULATING SEQUENCES-III
 - (iii) NUMBER OF SEQUENCES: 7
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: DAVIES COLLISON CAVE
 - (B) STREET: 1 LITTLE COLLINS STREET
 - (C) CITY: MELBOURNE
 - (D) STATE: VICTORIA
 - (E) COUNTRY: AUSTRALIA
 - (F) ZIP: 3000
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: AUSTRALIAN PROVISIONAL
 - (B) FILING DATE: 25-SEP-1998
 - (vii) PRIOR APPLICATION DATA
 - (A) APPLICATION NO. PP3901
 - (B) FILING DATE: 4-JUNE-1998
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: HUGHES, DR E JOHN L
 - (C) REFERENCE/DOCKET NUMBER: EJH/EK
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: +61 3 9254 2777
 - (B) TELEFAX: +61 3 9254 2770
 - (C) TELEX: AA 31787

(2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1217 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

TTTGAAATTT ATGTATTTAT	CTATAGCATT	AGAAACTATA	AGAGTTGTTA	GCTTCACTTG	60
GCTTACTGTT GTGCTCAAAG	CAACTTCATC	ATCATACAGT	ATGGTTTTGA	TATGCTCTTC	120
CATTATCACT GAGCCTTATG	ATTATGTTTT	ACGAGCTTAT	AATATCACTG	ATGGTGATTC	180
AGTATTGTGA TTATGTCCTT	CGTTGATTAT	TCTGTTTCAT	ACAAGTCGTG	TAATTTGCTG	240
TTTGTGACAG TACGATAGAT	CGACTCAACC	TTCTGAGGTA	TTAGTTGAAG	TTCATGTAAA	300
TTAGCTTTGT TTATCATAGT	AGCATTTGAT	TATTGATGCT	CTGTAGCTAA	TGATAAGCCA	360
TTGGAGGGAA GCAAGCTTTC	TAAATGAATC	TACGAATGGA	TGATAAAGTT	CATGAATATT	420
TTTGTTACTT CTGCAGTCAG	ATCATGAGTT	ATTGAGTCTA	TTGTTTTTT	AAGCCTGTTT	480
CAGATGATCC ATCATCAGTA	ACAACATACA	CGGTGTAGTC	CCAAATCCAT	CATATGCACC	540
TTCTTTCTT CAATTTGGTC	TTGTTTTTT	TTTTTCATGA	TGTCATTGAA	TTATTCAAGA	600
AGTCACTTCG AGCATAATGA	TTTTTCAAAA	TCCACCTTTG	TTCAAGCACT	ACCACGTCTT	660
TTCATCTAGC CCACAACCGT	GGTGGAGGAT	CTAGAATTTT	CATGAAAGGA	ТТСААААТТТ	720
ACAAACATAT ATATACACTA	TACACTATGA	ATCCACTAAT	ACTAGATGGT	GCACCTGTGC	780
CCCCACTCAT GTGAAAGCCT	ATTCTCAATT	TTTTATTTTC	CACAACTTAA	ATACAGACCG	840
CACAACTCCC GTGTCTTGTG	TGCTCGTCGC	TCAGCATGCA	AGTCGAGAAA	AGAAAGACCA	900
AAACAATGAA AACTTTACGA	ААААТСАААА	AGTTGAAGGA	CTTTAACGTC	GAGATCTCTC	960
GTAGAAAACC TCTTTTGTAA	GGTTGCATAC	AATACTTTTT	TTTCAGACTT	TACTTATGGT	1020
ATTATACTGA ATATGTTATT	GCTGTTATAG	TAGTTGAGTG	ACGTTTGAGG	GAATTTCTAG	1080
TCCGTTAATC TTGTACTCAG	TGTGTCTACT	TTTCAAAAAA	GTCAGTTTTT	CAGTCTCTAA	1140
AACACATTTA AATAAGAGTT	TCTTTGCCCA	TCTTTTGTTC	CTCATCCTAG	GCTTGGAGTC	1200
AACACAACAC AACAACA					1217

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 1114 base pairs

 (B) TYPE: nucleic acid

 (C) STRANDEDNESS: single

 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

TTTGAAATTT ATGTATATAT CTGTAGCATT AGAAACTATA AGAGTTGTTA GCTTCACTTG	60
TCTTATTGTT GTGCTCAAAG CAACTTCATC ATACAGTATG GTTTTTATAT GCTCTTCCAT	120
TATCACCGAA CCTTATGATT ATGTGTACGA GCTTATAATA TTACTGATGG TGATTCAGTA	180
TTATGATTAT GTCCTCCATT AATTATTCTG TTTCATACAA GTCGTGTAAT TTGCTGTTTG	240
TGATTGTACG ATAAATTGAT TCAACCTTCT GCGGTGTTGG TTGAAGTTCA AGTAAATTAG	300
CTTTATTTAT CATAGTAGCA TTTGATTATT GATGCTCTGT AGCTAATGAT AAGCCATTGA	360
AGGGAAGCAG AAATGGTAAA GCTTTCTAAA ATGAATCTAC GAATGGATGA TAAAGTTAAT	420
GAATATTGTT GATACTTCTG CAATCAGATT ATGAGTTACT GAGTCTACTG TTTTTTAAGC	480
CTGTTTCAGA TGATCGATCA TCAACAACAA CATATTCAGT GTAGTAGACA TGATCGATCA	540
CTTTCTAATT TTCGATTATG CACCCTCTTT TCTCCAATTT GGTCGTCTTC TTTTTTTCAT	600
GATGTCACTG AATTATTCTC TGGTCGTCCC CACCATTCAG GAAGTCACTT CGAGCATAAT	660
GTGAAAACAT CCACATTTTT CAAATCCAGC AGAATTTTCA TCAAACGGGG TTCAACATTT	720
ACTACATGTA TACACTCTGA AGTCTGAATC CACTAATTCT AGATGGTGCA TCTGTGCCCC	780
CACACTTGTG AAAGCTTATT CTCAATTTTT TATTTTCCAA CAACTTGAAT TCAGACCACA	840
CAACTCCCGT GTCTTGTACG GTCAGCATCT GAGTGGAGAA CTCAATTAAG TGACTTTAAC	900
GTCGAGTTCT ATAGTAAACA ACCCCTATAT CTTTTTTCAA GCATGTTAAG ATTGCGAACA	960
CACTGAAATT TCCAGGTCGT TAATCTTGTA CCCAGTGTGT GTACTTTTAA AAAAAAAAGT	1020
CAGTTTTTTA GTCTCTAAAA CACATTTAAA TAGAGTTTAT TTGCCATCTT TTGTTCCTCA	1080
TACTAGACTT CGGAGTCAAC ACAACACAAC AACA	1114

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6263 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CGACGGCCCG	GGCTGGTAAA	TGCGGAAGCT	TGTTACAGAT	TTGAAATTTA	TGTATTTATC	60
TATAGCATTA	GAAACTATAA	GAGTTGTTAG	CTTCACTTGG	CTTACTGTTG	TGCTCAAAGC	120
AACTTCATCA	TCATACAGTA	TGGTTTTGAT	ATGCTCTTCC	ATTATCACTG	AGCCTTATGA	180
TTATGTTTTA	CGAGCTTATA	ATATCACTGA	TGGTGATTCA	GTATTGTGAT	TATGTCCTTC	240
GTTGATTATT	CTGTTTCATA	CAAGTCGTGT	AATTTGCTGT	TTGTGACAGT	ACGATAGATC	300
GACTCAACCT	TCTGAGGTAT	TAGTTGAAGT	TCATGTAAAT	TAGCTTTGTT	TATCATAGTA	360
GCATTTGATT	ATTGATGCTC	TGTAGCTAAT	GATAAGCCAT	TGGAGGGAAG	CAAGCTTTCT	420
AAATGAATCT	ACGAATGGAT	GATAAAGTTC	ATGAATATTT	TTGTTACTTC	TGCAGTCAGA	480
TCATGAGTTA	TTGAGTCTAT	TGTTTTTTA	AGCCTGTTTC	AGATGATCCA	TCATCAGTAA	540
CAACATACAC	GGTGTAGTCC	CAAATCCATC	ATATGCACCT	TCTTTTCTTC	AATTTGGTCT	600
TGTTTTTTT	TTTTCATGAT	GTCATTGAAT	TATTCAAGAA	GTCACTTCGA	GCATAATGAT	660
ТТТТСААААТ	CCACCTTTGT	TCAAGCACTA	CCACGTCTTT	TCATCTAGCC	CACAACCGTG	720
GTGGAGGATC	TAGAATTTTC	ATGAAAGGAT	TCAAAATTTA	CAAACATATA	TATACACTAT	780
ACACTATGAA	тссастаата	CTAGATGGTG	CACCTGTGCC	CCCACTCATG	TGAAAGCCTA	840
TTCTCAATTT	TTTATTTTCC	ACAACTTAAA	TACAGACCGC	ACAACTCCCG	TGTCTTGTGT	900
GCTCGTCGCT	CAGCATGCAA	GTCGAGAAAA	GAAAGACCAA	AACAATGAAA	ACTTTACGAA	960
АААТСААААА	GTTGAAGGAC	TTTAACGTCG	AGATCTCTCG	TAGAAAACCT	CTTTTGTAAG	1020
GTTGCATACA	ATACTTTTTT	TTCAGACTTT	ACTTATGGTA	TTATACTGAA	TATGTTATTG	1080
CTGTTATAGT	AGTTGAGTGA	CGTTTGAGGG	AATTTCTAGT	CCGTTAATCT	TGTACTCAGT	1140
GTGTCTACTT	TTCAAAAAAG	TCAGTTTTTC	AGTCTCTAAA	ACACATTTAA	ATAAGAGTTT	1200
CTTTGCCCAT	CTTTTGTTCC	TCATCCTAGG	CTTGGAGTCA	ACACAACACA	ACAACAATGA	1260
ATTTCCATTT	ТТСТСТТТСТ	TTACTTCTCT	CTTTATCTCT	TCCTATGTTT	GCCTCTTCGA	1320
CGGTGTTATT	TCAGGTATCC	ATCTCCAAAG	AACCTTATTT	TTCTCTTAAC	TTTTCCTATG	1380
TATATGTATC	TCTATGTTTA	TGTAGTACTT	GCTCAAGTAT	ATAAAGAAAA	GTTAGTTTCT	1440
CTAGAATCTT	TGAATTCATT	TGTTAGGGGT	TCAATTGGGA	TTCGAGTAAT	AAGCAAGGCG	1500
GATGGTACAA	CTCTCTCATC	AACTTAGTTC	CGGACTTGGC	TAAAGCTGGA	GTTACTCATG	1560
TTTGGTTGCC	ACCATCATCT	CACTCCGTTT	CTCCTCAAGG	TAATTTTCGG	AGTGATTGTG	1620

ACCTAGTAAT CCAATGAAGT	CAAAATAACC	ACGGAAGATT	AGAGTCTAAA	TTTTAATGAA	1680
AATAGTTCAG ACAAGTTAAT	GACCAACTTA	TATATTAGTT	СААТССАТАА	AATTTGATGT	1740
AGTAGTTACA AAATGGAATT	GCTTGAAGGC	TTATGCCATG	TTTTATGCCA	GGTTATATGC	1800
CAGGAAGGTT GTATGACTAG	GATGCTTCCA	AGTTTGGAAA	TCAGCAACAA	CTGAAAACTC	1860
TTATTAAGGC TTTAACATGA	CCACGGGATC	AAATCGGTTG	CTGATATAGT	GATAAATCAT	1920
AGAACTGCTG ATAACAAAGA	TAGCAGGGGA	ATATACAGCA	TCTTTGAAGG	AGGAACATCT	1980
GATGACCGGC TTGATTGGGG	TCCATCTTTC	ATTTGCAGGA	ACGACACACA	ATATTCTGAT	2040
GGCACGGGGA ATCCAGACAC	GGGTTTGGAC	TTTGAACCTG	CACCTGATAT	CGATCATCTT	2100
AATACGAGAG TGCAGAAAGA	GTTATCAGAC	TGGATGAACT	GGCTGAAATC	TGAAATTGGA	2160
TTTGATGGTT GGCGTTTCGA	TTTTGTTAGG	GGATATGCAC	CTTGCATTAC	СААААТТТАТ	2220
ATGGGAAACA CGTCCCCGGA	TTTTGCTGTT	GGTGAATTGT	GGAACTCTCT	TGCTTATGGC	2280
CAGGACGGGA AACCGGAATA	TAACCAGGAC	AATCATAGAA	ATGAGCTAGT	TGGTTGGGTA	2340
AAAAATGCGG GGCGGGCTGT	AACAGCTTTT	GATTTTACAA	CAAAGGGAAT	TCTTCAAGCT	2400
GCAGTTCAAG AAGAGTTATG	GAGATTGAAG	GATCCCAATG	GAAAACCTCC	TGGGATGATC	2460
GGTGTTTTGC CTCGAAAAGC	TGTGACTTTT	ATCGATAATC	ATGATACTGG	ATCGACACAA	2520
AATATGTGGC CTTTCCCTTC	AGACAAAGTT	ATGCAAGGAT	ATGCATACAT	TCTTACTCAT	2580
CCAGGAATCC CATCCGTGGT	АААААААТА	ААТАААТТСТ	TTCTACATAT	CTCATTGTTT	2640
TCTATTTTAC AAGAAATTTA	TATTCTTTTC	CAGGGGATTT	GAGAAACTCG	GCCTGTGGGA	2700
GTTTGCTCAC ATTGCCAGTC	TCGTAATCCA	TAAACAAACA	CTCAAACTCT	GAGTGTGCAC	2760
ATCTAGACAC CTCAACTCGT	TTTTCACCGT	GTTAATTGAA	CACTTCAACT	TACAAAATGA	2820
TCGTGTAGCA CCTCCAAAAA	TTATGTGTCA	CAATTAGCCA	CGTGCGAGAT	ACACGAAAAT	2880
GAGTTGGAGT AGTTAGTTGC	САААТААААС	CAAGCTGAGG	TGTCTAAATG	TGCACNCTCA	2940
AAGTNGGATG TTTACTTGGC	AGCTGAGGCC	GAGGCCATGT	TTGANTGTTA	TGCTTATAGG	3000
ATATGACACA TTTGTTTCCG	ATTAGCTGAG	GANTTGATTA	AATCCTNGTT	TTNGTTNGCA	3060
GTTTNATNAC CATTNCTTTG	ATNGGGGCTN	CNAGGATGGA	ATTNCAGCAC	TAANCTCTAT	3120
TAGGAAAAGG AATAGGATTT	GTGCANCAAG	CAATGTGCAA	ATAATGGCTC	CTGATTCTGA	3180
ATCTTTATAT ANCAATGGAT	CATCACAAAA	TCATTGTCAA	GATTGGACCA	AAACTTGATC	3240
TTGGAAATCT TATTCCACCT	AATTATGAGG	TGGCAACTTC	TGGACAAGAC	TATGCTGTAT	3300
GGGAGCAAAA GGCATAATCA	TATTGTACCA	CACTAAAAGG	GACCATGGCC	ACAATGGTTC	3360
TCATTAGTGT TAATGTTATA	TGATTGAAAA	TGTAATTTAT	ATTGACATAA	TGAAGGCCAA	3420
AAATTCAAGA AATTATAAAC	AATTCAATAG	TCCTTGCTCA	ATTCACAATT	ACATTATGAC	3480
TTCTCTATTG CAAACTAGTT	TGGGTCCACA	TTATTGTCTC	CTAAAATTTT	ACAACATTTC	3540
TTAAGGGAAC TTAATTAGTT	ACAGTGAACA	TATGTTGAAA	TTACCCTTTA	TCCCCTTACA	3600
ATTGATTTAA TAAATATTTC	CCCTATCCCT	TTGGTAGTTG	GTTAGAGTTA	TAAGTAACGT	3660

AGAGATTAGT	TATAAGAGAA	TTTATGTATT	ATTATGCAGA	TGTTTAGTTA	TATCGATTTT	3720
AGTTATTTAT	ATGTTGATTA	TTTCACCTTC	AATAATGCAT	ATAAAGATGG	TAAATGATTG	3780
GATTGATCGA	ATTCGAATGA	GTTTGAATAT	GAACTAATCT	TCAAATTTAA	TTTTAAATTAT	3840
TTTTGTCAAC	ATCTATAGCC	AAACGGCTCC	AAAACAATAA	ATAATTTACA	TTTATTGTAG	3900
ТАТТТТАТТТ	AAAATGGGAT	NTTCCTCATC	CCACTTGTAC	CAGTTGAAAC	ССТААТААТА	3960
AGCCAATCCA	ACCGTCAAAA	TTACAAATTT	TGAAAATTGC	GCTCCTCACA	GTTCTCCCCT	4020
ATTCAGATTT	GATTCATTCT	CTTCATTTTT	TGTTTTCACA	TTTTACCTCT	AAATCAACTC	4080
GAGTCCCTTT	GTTCAAATGG	GTGCTAATCA	CAGCCGTGAA	GATCTGGAGC	TTTCTGATTC	4140
CGAGTCTGAA	TCCGAATATG	GGTCCGAGTC	TCGAACAAGG	GAGGAAGAGG	AAGACGAAGA	4200
ТААСТАСТСА	GATGCTAAAA	CGACGCCGTC	TTCCACTGAT	CGGAAACAGA	GCAAAACCCC	4260
GTCTTCTTTG	GATGATGTTG	AAGCAAAGCT	GAAAGCTTTA	AAGCTTAAGT	ATGGTACTCC	4320
TCATGCTAAA	ACCCCCACAG	CGAAAAACGC	TGTTAAACTT	TACCTTCATG	TTGGTGGGAA	4380
CACTGCGAAT	TCCAAATGGG	TAGTTTCTGA	TAAGGTGACA	GCTTATTCGT	TTGTTAAATC	4440
GGGTAGTGAG	GATGGATCGG	ATGATGATGA	AAATGAAGAA	ACTGAGGAGA	ATGCTTGGTG	4500
GGTTTTGAAA	ATTGGGTCGA	AGGTTCGGGC	TAAGATTGAT	GAGAATTTGC	AGCTCAAGGC	4560 [°]
ATTTAAGGAG	CAGAAAAGGG	TGGATTTTGT	GGCGAATGGG	GTTTGGGCTG	TGAGATTCTT	4620
TGGGGAGGAA	GAGTATAAGG	CGTTCATTGA	CTTATATCAG	AGCTGTTTGT	TTGAGAATAC	4680
TTATGGGTTT	GAGGCAAATG	ATGAGAATAG	AGTTAAGGTG	TATGGTAAAG	ACTTTATGGG	4740
GTGGGCAAAT	CCAGAAGCTG	CGGATGATTC	AATGTGGGAG	GATGCTGGGG	ATAGCTTCGC	4800
GAAGAGCCCT	GCGTCTGAAA	AGAAGACACC	TTTGAGGGTT	AACCATGATT	TGAGGGAGGA	4860
GTTTGAGGAG	GCAGCTAAAG	GAGGAGCTAT	TCAGAGCTTG	GCATTAGGTG	CGTTGGATAA	4920
TAGTTTTCTT	ATAAGTGATT	CTGGAATTCA	GGTTGTGAGG	AACTATACTC	ATGGAATAAG	4980
TGGAAAAGGT	GTTTGTGTCA	ATTTTGATAA	GGAAAGGTCT	GCTGTACCTA	ATTCCACTCC	5040
AAGGAAAGCT	CTACTTCTAA	GAGCTGAGAC	TAATATGCTT	CTCATGAGTC	CAGTGACTGA	5100
TAGAAAGCCT	CACTCTCGGG	GATTACATCA	GTTTGATATC	GAGACTGGGA	AGGTTGTTAG	5160
CGAGTGGAAG	TTTGAGAAAG	ATGGAACTGA	TATCACGATG	AGGGATATCA	CTAATGATAG	5220
CAAAGGAGCT	CAGATGGATC	CTTCGGGGTC	TACTTTCTTA	GGGCTAGATG	ATAACAGATT	5280
GTGTAGGTGG	GATATGCGTG	ATCGGCATGG	GATGGTCCAG	AATCTAGTTG	ATGAAAGTAC	5340
TCCTGTGCTG	AATTGGACTC	AAGGACATCA	ATTTTCGAGG	GGAACTAACT	TTCAGTGCTT	5400
TGCTACTACT	GGTGATGGAT	CAATTGTTGT	TGGTTCACTT	GATGGCAAGA	TTAGATTGTA	5460
CTCAAGCAGT	TCCATGAGAC	AGGCTAAAAC	TGCTTTTCCA	GGCCTTGGTT	CTCCTATCAC	5520
TCATGTGGAT	GTTACCTATG	ATGGGAAGTG	GATATTGGGG	ACAACTGATA	CTTACTTGAT	5580
ATTGATATGC	ACCTTGTTTA	TCGACAAGAA	TGGAACTACT	AAGACTGGTT	TTGCTGGTCG	5640
CATGGGAAAT	AAGATTTCCG	CTCCAAGATT	GTTAAAGCTA	AACCCTCTCG	ATTCACATAT	5700

GGCTGGAGCT	AACAAGTTCC	GCAGTGCTCA	ATTTTCATGG	GTCACCGAGA	ATGGGAAGCA	5760
AGAGCGCCAC	CTCGTTGCTA	CTGTTGGGAA	GTTTAGTGTG	ATCTGGAATT	TTCAACAGGT	5820
GAAGGATGGT	TCTCATGAGT	GTTACCAGAA	TCAGGTTGGG	TTGAAGAGCT	GCTATTGTTA	5880
CAAGATAGTC	CTAAGAGACG	ACTCTATTGT	AGAAAGTCGT	TTCATGCATG	ACAAGTACGC	5940
rgtttctgac	TCACCTGAAG	CACCACTGGC	GGTAGCAACC	CCCATGAAAG	TCAGCTCATT	6000
CAGCATCTCT	AGCAGGCGCT	TACAAATTTG	AACAATCATT	CTGTTCATAT	ACGCAACTTA	6060
rtagatttat	CTGTAGCAGA	ATTAGTGTCT	CTCACACTAA	GTAGCTTGAA	AAACTGCACA	6120
rctgcaaatc	ATTTCCAGTT	CAATGTATTA	CTACTTTAGT	ттааааасст	TAAAAGGCAC	6180
гсттссааат	TCTAGGTATC	CTCACCTGAC	ATTATTATTG	TTGTAATAGC	TAATTGTTGC	6240
TTGCTCTAAA	TCCCCGTTCA	ATG				6263

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 684 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

AATCAAAGAG GAATTNAATT CCNCAAAATT TCATCCATAG ATTTTGNGT	C 50
TCTGAAAATT AAAGTGACTT TGTAATCTGA AACCTAGAGT CCTCAACCA	r 100
ATCATTGACC ATTAAGCCAT ACCCTTAAAT GTAGGGAATT TGAAGTTTT	A 150
AAAACCACAC TTTGTTATTT ATTGGCCCAA ATACTCGATA ATCTTTACA	r 200
TATTGAAAAT CAACATTCAA AAGGAACGAA CCTTCAATCA CACCATCAA	r 250
GTCAACTTTC TTTTATTTTG GATAATCTAA GTTTTTAAAT TGCAGTAAA	A 300
TNAAATAAAA CCCTAAACTT CTTCTAGGTT GAGACTTAGT AAATATGAA	T 350
TATATAAAGA ATTCATGACA AATGAGACAT AAGAATAGTG CCAGCAAAT	T 400
ACTTTTTGA TATCTTATCT GTGATATCGG AATTTTAACT ACCATAAAT	T 450
TATGAATGAA ATATCACTTA TCTATTAGAG AGGATTTAAT CTCCCTTAT	A 500
ATGACATTGA TAAAAGCAAG NACAAGTGCT CTTTATTTCT TAATTACAA	A 550
TCCTTAAATA GATAAAAGCT ACGAATAACA TAATATCCTT AAATAGATA	A 600
AAGCTACGAA TAACATAATA GTATATTACT CCNAATTATT TTGATTTAT	T 650
TAAAATGACT CCACTAATCC TGATGTGGTC TAGG	684

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 662 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

GGTCTAGGCC (CTGGGTCTAG	GAAACAAAAT	AACTTATTTG	ACTCCTAAAC	50
AATAGCAACA	TACAAACCAC	TGATATTGTA	CAAGTAAAAT	TCAATAAAAT	100
TCTAGCTCTC	TCAAACACTT	TTAAAATTGT	TATTTCTGTT	TTGTCTGTGT	150
CATATTATGA (CCTACACAAC	AACAACAACA	ACGAATTTAG	TGAAACTCTA	200
CAAAGTGGAG	CCTGAAGTCG	AGAGTTTACG	CGGGCCTTAT	CACTATCTTT	250
TCGAGATAAA	ТТТАТТАААА	TTAAAAGATC	ATCGACTTAA	ACAAACCAAA	300
CAATAATTAA	AAAAATATGA	ATTAATAGCA	AAGCAGTGTG	GACCATATAT	350
ACAAAAATCT A	АТААСААСАА	CAAGGTGCAG	AGCATTATTC	CAACTAAGAT	400
CGAAGTTGTG	ATACTGTCAT	AATAAAAATG	ACACATATTT	TGACAACATA	450
TAAATAAAA	AACCATAAAA	TATATCATAG	AAAAATGAAT	ATATTAGAAC	500
AGCTCACTCC	AAAATTAAAA	GAGAGAAAA	AAATATTTTC	CCACCACAAT	550
GCCATAATCC '	TTGAGCTTAG	СТАТТТАТАА	GTAAAAAAAA	TGTTTTCTTG	600
GATAAATAGA	AAAAGAAATA	ATAATTAAAC	ATAACCAATC	ACTTCACAAA	650
TAAGAGTGTA '	TT				662

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 63 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

ATTTATTTTT AGGAAAAATT ATCTAAATAC ACATCTTATT TTACCATATA CTCTAAAAAT 60 63 TCC

(2)	INFORMATION FOR SEQ ID NO:7:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 63 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
	AATTATATTT AGGAAAAATT ACATAAATAC ACAACTTAAT ATATTATATT CTCTAAAATT	60
	TCC	63

DATED this 25th day of September 1998

THE UNIVERSITY OF QUEENSLAND

By DAVIES COLLISON CAVE

Patent Attorneys for the Applicants

FIGURE 3

FIGURE 4

	URE 5 (i)		
981	TTTGAAATTTATGTATATATCTGTAGCATTAGAAACTATAAGAGTTGTTA	1030	Potato
40	TTTGAAATTTATGTATTTATCTATAGCATTAGAAACTATAAGAGTTGTTA	89	Tomato
1031	GCTTCACTTGTCTTATTGTTGTGCTCAAAGCAACTTCATCATACAGT	1077	
	GCTTCACTTGGCTTACTGTTGTGCTCAAAGCAACTTCATCATCATCATCATCATCATCATCATCATCATC		
1078	ATGGTTTTTATATGCTCTTCCATTATCACCGAACCTTATGATTATG.TGT	1126	
140	ATGGTTTTGATATGCTCTTCCATTATCACTGAGCCTTATGATTATGTTTT	189	
1127	ACGAGCTTATAATATTACTGATGGTGATTCAGTATTATGATTATGTCCTC	1176	
190		239	
1177	CATTAATTATTCTGTTTCATACAAGTCGTGTAATTTGCTGTTTGTGATTG	1226	
240	CGTTGATTATTCTGTTTCATACAAGTCGTGTAATTTGCTGTTTGTGACAG	289	
1227	TACGATAAATTGATTCAACCTTCTGCGGTGTTGGTTGAAGTTCAAGTAAA	1276	
290		339	
1277	TTAGCTTTATTTATCATAGTAGCATTTGATTATTGATGCTCTGTAGCTAA	1326	
340	TTAGCTTTGTTTATCATAGTAGCATTTGATTATTGATGCTCTGTAGCTAA	389	
1327	TGATAAGCCATTGAAGGGAAGCAGAAATGGTAAAGCTTTCTAAAATGAAT	1376	
390	TGATAAGCCATTGAAGGGAAGCAAAATGAATTGATAAGCCATTGGAGGGAAGCAAGCTTTCT.AAATGAAT	428	
1377	CTACGAATGGATGATAAAGTTAATGAATATTGTTGATACTTCTGCAATCA	1426	
429	CTACGAATGGATAAAGTTCATGAATATTTTTGTTACTTCTGCAGTCA	478	
1427	GATTATGAGTTACTGAGTCTACTG.TTTTTTAAGCCTGTTTCAGATGATC	1475	
479	GATCATGAGTTATTGAGTCTATTGTTTTTTTTTTTTTTT	528	
1476	GATCATCAACAACATATTCAGTGTAGTAGACATGATCGATC	1525	
529	CATCATCAGTAACAACATACACGGTGTAGTCCCAAATCCATCA	571	
1526	TAATTTTCGATTATGCACCCTCTTTTCTCCAATTTGGTCGTCTTCTTT	1573	
572	TATGCACCTTCTTTTCTTCAATTTGGTCTTGTTTTTTT	610	
	TTTTCATGATGTCACTGAATTATTCTCTGGTCGTCCCCACCATTCAGGAA		
	TTTTCATGATGTCATTGAATTATTCAAGAA		
1624	GTCACTTCGAGCATAATGTGAAAACATCCACATTT.TTCAA	1	663
641		ACTA 6	90
	UQ406		
	insertion		

FIGURE 5 (ii)

1664	ATCCAGCAGAATTTTC	1679
	ATCAAACGGGGTTCAACATTTACTACATGTATACACTCTGAAGTCTG	
	ATGAAAGGATTCAAAATTTACAAACATATATATACACTATACACTATG	
	AATCCACTAATTCTAGATGGTGCATCTGTGCCCCCACACTTGTGAAAGCT	
	AATCCACTAATACTAGATGGTGCACCTGTGCCCCCACTCATGTGAAAGCC	
	TATTCTCAATTTTTTTTTTCCAACAACTTGAATTCAGACCACACACTC	
	TATTCTCAATTTTTTATTTTCC.ACAACTTAAATACAGACCGCACAACTC	
	CCGTGTCTTGT ACGGTCAGCATCTGAGTGGAGAACTCAA	
888	CCGTGTCTTGTGTGCTCGTCGCTCAGCATGCAAGTCGAGAAAAGAAAG	937
1866		1881
938	CAAAACAATGAAAACTTTACGAAAAATCAAAAACTTCILICOIICTTTTTTC	
	TCGAGTTCTATAGTAAACAACCCCTATATCTT	
988	TCGAGATCTCTCGTAGAAAACCTCTTTTTGTAAGGTTGCATACAATACTTT	1037
	TTTTCAAGCATGTTAAGATTGCGAACACACTGA	
	TTTTTCAG.ACTTTACTTATGGTATTATACTGAATATGTTATTGCTGTTA	
	AATTTCCAGGTCGTTAATCTTGTACC	
	TAGTAGTTGAGTGACGTTTGAGGGGAATTTCTAGTCCGTTAATCTTGTACT	
1973	CAGTGTGTGTACTTTTAAAAAAAAAGTCAGTTTTTTAGTCTCTAAAACA	2022
	CAGTGTGTCTACTTTTCAAAAAAGTCAGTTTTTCAGTCTCTAAAACA	
	CATTTAAAT.AGAGTTTATTTG.CCATCTTTTGTTCCTCATACTAGACTT	
1184	CATTTAAATAAGAGTTTCTTTGCCCATCTTTTGTTCCTCATCCTAGGCTT	1233
2071	CGGAGTCAACACAACACAACA 2094	
1234	.GGAGTCAACACAACAACAACA 1256	

FIGURE 6 (i)

11	, ,			TOTAL ACAT	TTTTA A A TTTA	
7	CGACGGCCCG	GGCTGGTAAA	Z@CGGYYGC.T.	TOT INCHOUSE	COULTACALAGE	
51	CGACGGCCCG TGTATTTATC	TATAGCATTA	GAAACTATAA	GWG11G11Wa	TGGTTTTGAT	
101	TGTATTTATC CTTACTGTTG	TGCTCAAAGC	AACTTCATCA	TCATACAGIA	CONCOMPATA	
101	CTTACTGTTG ATGCTCTTCC	ATTATCACTG	AGCCTTATGA	TTATGTTTTA	CGMCCIININ	
	ATGCTCTTCC ATATCACTGA	TGGTGATTCA	GTATTGTGAT	TATGTCCTTC	GTIGATIATI	
201	ATATCACTGA CTGTTTCATA	CALGTEGTET	AATTTGCTGT	TTGTGACAGT	ACGATAGATC	
251						
301	GACTCAACCT TATCATAGTA	1010MOOTH	ATTGATGCTC	TGTAGCTAAT	GATAAGCCAT	
351						
401	TGGAGGGAAG ATGAATATTT	CAAGCTTTCT	MACA CECAGA	TCATGAGTTA	TTGAGTCTAT	
451	ATGAATATTT	TTGTTACTIC	TGCWGI CKGK	MCATCAGTAA	CAACATACAC	
501						
551	GGTGTAGTCC	CAAATCCATC	ATATGCACCT	JCTTTTC11C	CUCACTTCGA	110406
601	TYPTTTTTT	TTTTCATGAT	GTCATTGAAT	TATTCAAGAA	GTCACTTCGA CCACGTCTTT	insertion
						TITE CT CTON
651						
701	TCATCTAGCC	CACAMCCOTO	TATACACTAT	ACACTATGAA	TCCACTAATA	
751						
801	CTAGATGGTG	CACCIGIGCC	TACAGACCGC	ACAACTCCCG	TGTCTTGTGT	
851	TTTATTTCC	ACAACTTAAA	GTCGAGAAAA	CAAAGACCAA	AACAATGAAA	
901	GCTCGTCGCT	CAGCATGCAA	GTCGAGAAAA	TOTA ACCTCG	AGATCTCTCG	
951						
1001						
1051						
1101	CGTTTGAGGG	AATTTCTAGT	CCGTTAATCT	TGTACTCAGT	GIGICIACI	
1151						
1201						
1251						
1301						
1351						
1401						
1451	TGAATTCATT	TGTTAGGGGT	1CANTIOOCA	COGACTTGGC	TAAAGCTGGA CTCCTCAAGG	
1501	GATGGTACAA GTTACTCATG	CICTCTCATC	AACTIAGIIC	CACACCCCAMA	CTCCTCAAGG	
1551	GTTACTCATG	TTTGGTTGCC	ACCATCATO	CACTOCOTES	CAAAATAACC	
1601	GITACTCATG TAATTTTCGG	AGTGATTGTG	ACCTAGTAAT	CONTOURS	ACAAGTTAA"	
1651						
1701						
1751						
7/27						
1801	CHCSAS SCTC	TTATTAAGGC	TTTAACATGA	CCACGGGATC	AAATCGGTTG TAGCAGGGGA	
1851						
1901	CIGAIMIAGI	MODULE STATES	AGGAACATCT	GATGACCGGC	TTGATTGGGG GGCACGGGGA	
1951	ATATACAGCA	* ICITIGNECS	ACGACACACA	ATATTCTGAT	GGCACGGGGA CGATCATCTT	
2001	TCCATCTTTC	Williac wood	TOTAL COTO	CACCTGATAT	CGATCATCTT	
2051						
2101	AATACGAGAG	TGCAGAAAGA	GI-IVICUOIO	TTAGG	GGATATGCAC TTTTGCTGTT	
2151	TGAAATTGGA	TTTGATGGTT	GGCGTTICGA	COMCCCCGG	TTTTGCTGTT	
2201	CTTGCATTAC	CAAAATTTAT	ATGGGAAACA	CACCACCOCA	AACCGGAATA	
2251	GGTGAATTGT	GGAACTCTCT	TGCTTATGGC		AACCGGAATA AAAAATGCGG	
2301	TAACCAGGAC	: AATCATAGAA	ATGAGCTAGI	7,0001100017	AAAAATGCGG TCTTCAAGCT	
2351	GGCGGGCTGT	· AACAGCTTTT	GATTTTACAR	CAAAGGGAA	TCTTCAAGCT	
2401						
	MOGGATGATO	GGTGTTTTGC	CICGAAAAGC	TGTGACTT	ATCGATAATC AGACAAAGTT	
2451						
2501	WIGHT VCC P	ATTCATACAT	TCTTACTCAT	CCAGGAATC	CATCCGTGGT T TCTATTTTAC	
2551	ATGURROS	አ አ ጥ አ አ ል ጥጥ ር ግ	TTCTACATAT	CTCATIGIT	TOTATTTAC G GCCTGTGGGA	
2601	AAAAAAAA	* ************************************	CAGGGGATT	GAGAAACTC	G GCCTGTGGGA A CTCAAACTCT	
2651	AAGAAATITY	- PARTICITIES	TCGTAATCC	TAAACAAAC	A CTCAAACTCT T GTTAATTGAA	
2701	GTTTGCTCAC	ATTOCCACT		TTTTCACCG	r GTTAATTGAA A TTATGTGTCA	
2751	GAGTGTGCA	ATCTAGACAC	* CICUMETOR	CCTCCAAAA	A TTATGTGTCA T AGTTAGTTGC	
2801	CACTTCAAC	TACAAAATG	TOTOTOTACE	CACTTGGAG	T AGTTAGTTGC A AAGTNGGATG	
2851	CAATTAGCC	A CGTGCGAGA	r ACACGAAAA		A AAGTNGGATG	
2901	CAAATAAAA	C CAAGCTGAG	J TOTOTAAAT	2 TACEPISCO	A AAGTNGGATG A TGCTTATAGG	,
2951						
3001						
3051	TINGTINGC	A GITTNATNA	C CATTNOTTY	G ATNOGGGCT	N CNAGGATGGA T CTGCANCAAG	
3101		C TAANCTCTA	T TAGGAAAAG	G AATAGGATT	T GTGCANCAAG	,
TOT		-				

FIGURE 6 (ii)

3151	CAATGTGCAA	ATAATGGCTC	CTGATTCTGA	ATCTTTATAT	ANCAATGGAT	
3201	CATCACAAAA	TCATTGTCAA	GATTGGACCA	AAACTTGATC	TEGGAAATCT	
3251		AATTATGAGG	TGGCAACTIC	TGGACAAGAC	TATGCTGTAT	
3301	GGGAGCAAAA	GGCATAATCA	TATTGTACCA		GACCATGGCC	
3351	ACAATGGTTC	TCATTAGTGT	TAATGTTATA	TGATTGAAAA	TGTAATTTAT	
3401	ATTGACATAA	TGAAGGCCAA	AAATTCAAGA	AATTATAAAC	AATTCAATAG	
3451	TCCTTGCTCA	ATTCACAATT	ACATTATGAC	TTCTCTATTG	CAAACTAGTT	
3501	TGGGTCCACA	TTATTGTCTC	CTAAAATTTT	ACAACATTTC	TTAAGGGAAC	
3551	TTAATTAGTT	ACAGTGAACA	TATGTTGAAA	TTACCCTTTA	TCCCCTTACA	
3601	ATTGATTTAA	TAAATATTTC	CCCTATCCCT	TTGGTAGTTG	GTTAGAGTTA	
3651	TAAGTAACGT	AGAGATTAGT	TATAAGAGAA	TTTATGTATT	ATTATGCAGA	
3701	TGTTTAGTTA	TATCGATTTT	AGTTATTTAT	ATGTTGATTA	TTTCACCTTC	
3751	AATAATGCAT	ATAAAGATGG	TAAATGATTG	GATTGATCGA	ATTCGAATGA	
3801	GTTTGAATAT	GAACTAATCT	TCAAATTTAA	TATAAATTTT	TTTTGTCAAC	
3851	ATCTATAGCC			ATAATTTACA	TTTATTGTAG	
3901	TATTTTATTT	AAAATGGGAT	NTTCCTCATC	CCACTTGTAC		
3951	CCTAATAATA	AGCCAATCCA	ACCGTCAAAA	TTACAAATTT	TGAAAATTGC	
4001	GCTCCTCACA		***	GATTCATTCT	CTTCATTTTT	,
4051	TGTTTTCACA	TTTTACCTCT	AAATCAACAA	AATTCCCTTT		L
4101	GTGCTAATCA	CAGCCGTGAA	GATCTGGAGC	TTTCTGATTC	CGAGTCTGAA	
4151	TOCCALTATE	GGTCCGAGTC	TOGANCANGG	GAGGAAGAGG	<u>AAGACGAAGA</u>	
4201	TAACTACTCA	GATGCTAAAA	CGACGCCGTC	TTCCACTGAT	CGGAAACAGA	
4251	CCBBBBBCCCC	Chambarana S.	GATGATGTTG_	AAGCAAAGCT	GARAGCTTTA	
4301	AACCOTTAACT	ATGGTACTCC	TCATGCTAAA	ACCCCCACAG	CGAAAAACGC	
		TACCTTCATC	TTGGTGGGAA	CACTGCGAAT	TCCAAATGGG	
4351	TGITAAAGAI	TRACCTCACA	GCTTATTCGT	TTGTTAAATC	GGGTAGTGAG	
4401	TAGITTUIGA	1000010000	AAATGAAGAA	ACTGAGGAGA	ATGCTTGGTG	
4451	GATGGATCGG	ATGATGATGA	AGGTTCGGGC	TARGATIGAT	GAGAATTTGC	
<u>4501</u>	GGTTTTGAAA	ATIGGGICGA	AGGITTEGGG	TOTAL TOTAL	GGCGAATGGG	
4551	AGCTCAAGGC	ATTTAAGGAG	CAGAAAAGGG	CACMAMARGE	CCTTCATTGA	
4601	GTTTGGGCTG	TGAGATTCTT	TGGGGAGGAA	GRIGITATA AGG	CACCCAAATG	
4651	CTTATATCAG	AGCTGTTTGT	TTGAGAATAC	174713330177	COCCCABAT	
4701	ATGAGAATAG	<u>AGTTAAGGTG</u>	TATGGTAAAG	ACTITATORS	1713 COMMCCC	
4751	CCAGAAGCTG	CGGATGATTC	AATGTGGGAG	GATGCTGGGG	ATAGCTTCGC	
4801	GAAGAGCCCT	GCGTCTGAAA	AGALGACACC	TTTGAGGGTT	AACCATGATT	
4851	TYCAGGGAGGA	GTTTGAGGAG	GCAGCTAAAG	GAGGAGCTAT	TLAGAGCTIG	
4901	GCATTAGGTG	CGTTGGATAA	TAGTITICAT	<u>ATAAGTGATT</u>	CIGGAATICA	
4951	GGTTGTGAGG	AACTATACTC	ATGGAATAAG	TGGAAAAGGT	GTTTGTGTGA	
5001	ልጥጥጥጥGA TAA	GGAAAGGTCT.	GCTGTACCTA	ATTCCACTCC	<u>AAGGAAAGCT</u>	
5051	CTACTTCTAA	GAGCTGAGAC	TAATATGCTT	CTCATGAGTC	<u>CAGTGACTGA</u>	
	TACABACCCT	CACTOTOGGG	GATTACATCA	GTTTGATATC	GAGACTOGGA	•
5101	ACCURCUTAGE	CGAGTGGAAG	TTTGAGAAAG	ATGGAACTGA	TATCACGATG	
5151	ACCCAMANCA	CTALTCATAG	CAAAGGAGCT	CAGATGGATC	CTTCGGGGTC	1
5201	AGGGATATA	COCCURAÇÃO	ATAACAGATT	GTGTAGGTGG	GATATGCGTG	i
5251	TACTITUTIA	O DECEMBER	AATCTAGTTG	ATGARAGTAC	TCCTGTGCTG	ł
5301	ATCGGCATGG	GATGGTCCAG	ATTTTCGAGG	GGAACTAACT	TTCAGTGCTT	
5351	AATTGGACTL	AAGGACAILA		<u>ምርርምምር እርጥ</u>	GATGGCAAGA	
5401	TGCTACTACT	GGTGATGGAT	CAATTGTTGT	ACCOMANA	TGCTTTTCCA	ĺ
5451	TTAGATTGTA	CTCAAGCAGT	TCCATGAGAC	AGGCTOOOGE	ATTCCCAACTC	
5501	GCCTTGGTT	CTCCTATCAC	TCATGTGGAT	GTTACCTATO	A COMPONENTE	1
_5551	GATATTGGGG	<u>ACAACTGATA</u>	CTTACTTGAT	AVIGATATOL	ACCIAGIATA	,
5601	TCGACAAGAA	TGGAACTACT	AAGACTGGTT	TTGCTGGTCG	CAUSGREAT	i.
5651	BAGATTTCCG	CTCCAAGATT	GTTAAAGCTA	AACCCTCTCG	ATTCACATAT	Ľ
5701	GGCTGGAGCT	AACAAGTTCC	GCAGTGCTCA	ATTTTCATGG	GICACCGAGA	ì
5751	ATTOCCAAGCA	AGAGCGCCAC	CTCGTTGCTA	<u>CTGTTGGGAA</u>	GPPTAGIGI	Z
5801	ATCTGGAATT	TTCAACAGGT	GAAGGATGGT	TCTCATGAGI	GITACCAGA	2
	TOMOGRAPHICA	TTGAAGAGCT	GCTATTGTTA	CAAGATAGTC	CIAAGAGACU	ı
<u> 5851</u>	A CONTRACTOR	AGAAAGTCGT	TTCATGCATG	ACAAGTACGC	TGTTTCTGAC	2
<u>5901</u>	MC1CAMATA	CACCACTOC	GGTAGCAACC	CCCATGAAAC	TCAGCTCAT	2
<u>5951</u>	TLACE TOWARD		TACABATTTC	AACAATCATT	CTGTTCATA	ľ
6001	CAGCATCTCT	MARCE COMME	CTGTAGCAGA	ATTACTGTCT	CTCACACTA	Ā
6051	ACCCAACTTA	TIAGATTIAT	CARAMORAGO			•

Dem ATG

FIGURE 6 (iii)

6101 GTAGCTTGAA AAACTGCACA TCTGCAAATC ATTTCCAGTT CAATGTATTA
6151 CTACTTTAGT TTAAAAACCT TAAAAGGCAG TCTTCCAAAT TCTAGGTATC
6201 CTCACCTGAC ATTATTATTG TTGTAATAGC TAATTGTTGC TTGCTCTAAA
6251 TCCCCGTTCA ATG

10/12

FIGURE 7

FIGURE 9 And the second of the second section of the

The state of the s