Analysis of the Heuristics

Following heuristics were chosen and implemented

- **H1** (AB_Custom): # of player's moves 2 x # of opponent's moves
- **H2** (AB_Custom_2): The square of the distance between the player and the opponent, calculated as

```
y_i, x_i = game.get_player_location(i) , where i is either the player or the opponent score = (y_p - y_p)^2 + (x_p - x_p)^2
```

• **H3** (AB_Custom_3): Center score of the player (Square of the distance of the player's location from the center of the board.

```
w, h = game.width / 2., game.height / 2.
y, x = game.get_player_location(player)
score = (h - y)2 + (w - x)2
```

The results of the tournament with these heuristics are as follows:

Table 1 Results of the Tournament

Match #	Opponent	AB_Improved			AB_Custom			AB_Custom_2			AB_Custom_3		
		Won		Lost	Won		Lost	Won	1 1	Lost	Won		Lost
1	Random	10		0	10		0	8	- 1	2	10		0
2	MM_Open	7		3	7		3	10	- [0	8		2
3	MM_Center	7		3	10		0	8	- [2	10		0
4	MM_Improved	6		4	7		3	8	- [2	6		4
5	AB_Open	5		5	6		4	6	- [4	5		5
6	AB_Center	7		3	4		6	3	- [7	6		4
7	AB_Improved	4	I	6	5	I	5	8	I	2	4	I	6
	Win Rate:	 65.7%			 70.0%			72.9%			70.0%		

As it can be seen **H1** performed quite well, as it aggressively tries to minimize opponent's available moves (hence the factor 2). In fact, **H1** is very similar to AB_Improved, but is more aggressive because of the factor 2. Hence compared to AB_Improved, **H1** has been slightly yet not significantly more successful against the other opponents.

On the other hand, **H1** vs. AB_Improved provided mixed results. In certain cases, both were equally successful (5-5), in certain cases **H1** had more wins, in certain cases, AB_Improved.

One can also observe that **H2** performs quite well against AB_Improved. This is probably due to the fact that it is actually a simpler heuristic than AB_Improved (and **H1**), which allows the search to go deeper.

Table 1 shows **H3** does not perform well against AB_Improved. As it is same heuristic with AB_Center, the expectation would have been 50%-50% with AB_Center. Although they are close, **H3** is slightly better.

Overall, H2 seems to be the best heuristic, as it

- 1) performs better on average and
- 2) performs better against AB_Improved, as it allows a deeper search