LEA 是微机 8086/8088 系列的一条指令,取自英语 Load effect address——取有效地址,也就是取偏移地址。在微机 8086/8088 中有 20 位物理地址,由 16 位段基址向左偏移 4 位再与偏移地址之和得到。

取偏移地址指令

指令格式如下:

LEA reg16,mem

LEA 指令将存储器操作数 mem 的 4 位 16 进制偏移地址送到指定的寄存器。这里,源操作数必须是存储器操作数,目标操作数必须是 16 位通用寄存器。因该寄存器常用来作为地址指针,故在此最好选用四个间址寄存器 BX,BP,SI,DI之一。

LEA 取有效地址指令 (Load Effective Address)

指令格式: LEA 目的,源

指令功能: 取源操作数地址的偏移量, 并把它传送到目的操作数所在的单元。

LEA 指令要求原操作数必须是 <u>存储单元</u>,而且目的操作数必须是一个除段寄存器之外的 16 位或 32 位寄存器。当目的操作数是 16 位通用寄存器时,那么只装入有效地址的低 16 位。使用时要注意它与 MOV 指令的区别,MOV 指令传送的一般是源操作数中的内容而不是地址。

例 1 假设: SI=1000H. DS=5000H. (51000H)=1234H

执行指令 LEA BX, [SI]后, BX=1000H

执行指令 MOV BX, [SI]后, BX=1234H

有时, LEA 指令也可用取偏移地址的 MOV 指令替代。

例 2 下面两条指令就是等价的,他们都取 TABLE 的偏移地址,然后送到 BX 中,即

LEA BX, TABLE

MOV BX, OFFSET TABLE

但有些时候,必须使用 LEA 指令来完成某些功能,不能用 MOV 指令来实现,必须使用下面指令:

LEA BX, 6[DI]

解释:某数组含20个元素,每个元素占一个字节,序号为0~19。设DI指向数组开头处,如果把序号为6的元素的偏移地址送到BX中

八进制	十六进制	十进制	字符	八进制	十六进制	十进制	字符
0	0	0	nul	100	40	64	@
1	1	1	soh	101	41	65	Α
2	2	2	stx	102	42	66	В
3	3	3	etx	103	43	67	С
4	4	4	eot	104	44	68	D
5	5	5	enq	105	45	69	E

6	6	6	ack	106	46	70	F
7	7	7	bel	107	47	71	G
10	8			110	48		Н
		8	bs			72	
11	9	9	ht	111	49	73	
12	0a	10	nl	112	4a	74	J
13	0b	11	vt	113	4b	75	K
14	0c	12	ff	114	4c	76	L
15	0d	13	cr	115	4d	77	М
16	0e	14	so	116	4e	78	N
17	Of	15	si	117	4f	79	0
20	10	16	dle	120	50	80	Р
21	11	17	dc1	121	51	81	Q
22	12	18	dc2	122	52	82	R
23	13	19	dc3	123	53	83	S
24	14	20	dc4	124	54	84	Т
25	15	21	nak	125	55	85	U
26	16	22	syn	126	56	86	V
27	17	23	etb	127	57	87	W
30	18	24	can	130	58	88	X
31	19	25	em	131	59	89	Υ
32	1a	26	sub	132	5a	90	Z
33	1b	27	esc	133	5b	91	[
34	1c	28	fs	134	5c	92	\
35	1d	29	gs	135	5d	93]
36	1e	30	re	136	5e	94	٨
37	1f	31	us	137	5f	95	_
40	20	32	sp	140	60	96	
41	21	33	!	141	61	97	а
42	22	34		142	62	98	b
43	23	35	#	143	63	99	С
44	24	36	\$	144	64	100	d
45	25	37	%	145	65	101	е

46	26	38	&	146	66	102	f
47	27	39		147	67	103	g
50	28	40	(150	68	104	h
51	29	41)	151	69	105	i
52	2a	42	*	152	6a	106	j
53	2b	43	+	153	6b	107	k
54	2c	44	,	154	6c	108	1
55	2d	45	-	155	6d	109	m
56	2e	46		156	6e	110	n
57	2f	47	/	157	6f	111	0
60	30	48	0	160	70	112	р
61	31	49	1	161	71	113	q
62	32	50	2	162	72	114	r
63	33	51	3	163	73	115	s
64	34	52	4	164	74	116	t
65	35	53	5	165	75	117	u
66	36	54	6	166	76	118	V
67	37	55	7	167	77	119	W
70	38	56	8	170	78	120	х
71	39	57	9	171	79	121	у
72	3a	58	:	172	7a	122	z
73	3b	59	,	173	7b	123	{
74	3c	60	<	174	7c	124	I
75	3d	61	=	175	7d	125	}
76	3e	62	>	176	7e	126	~
77	3f	63	?	177	7f	127	del

SHL、SHR、SAL、SAR: 移位指令

;SHL(Shift Left): 逻辑左移 ;SHR(Shift Right): 逻辑右移

;SAL(Shift Arithmetic Left): 算术左移 ;SAR(Shift Arithmetic Right): 算术右移 ;其中的 SHL 和 SAL 相同, 但 SHR 和 SAR 不同.

;SHL、SAL:每位左移,低位补 0,高位进 CF

;SHR:每位右移,低位进 CF,高位补 0;SAR:每位右移,低位进 CF,高位不变

;它们的结果影响 OF、SF、ZF、PF、CF

ROL、ROR、RCL、RCR: 循环移位指令

;ROL(Rotate Left): 循环左移 ;ROR(Rotate Right): 循环右移

;RCL(Rotate through Carry Left): 带进位循环左移;RCR(Rotate through Carry Right): 带进位循环右移

;ROL:循环左移,高位到低位并送 CF ;ROR:循环右移,低位到高位并送 CF

;RCL: 循环左移, 进位值(原 CF)到低位, 高位进 CF ;RCR: 循环右移, 进位值(原 CF)到高位, 低位进 CF

;它们的结果影响 OF、CF