Lecture 16: Rigid body kinematics – Kinematic differential equations

- Brief recap of representations of rotation
 - Rotation matrices (6.4)
 - Euler angles (6.5)
 - 3-parameter representation of rotations
 - Roll-pitch-yaw
 - Angle-axis, Euler-parameters (6.6, 6.7)
 - 4-parameter representation of rotations
 - Angular velocity (6.8)
- Today:
 - Kinematic differential equations
 - Rigid body kinematics: Configuration

Book: Ch. 6.9, 6.12, 6.13

Rotation matrices

The rotation matrix from a to b \mathbf{R}_b^a is used to

Transform a coordinate vector from b to a

$$\mathbf{v}^a = \mathbf{R}^a_b \mathbf{v}^b$$

• Rotate a vector \vec{p} to vector \vec{q} . If decomposed in a,

$$\mathbf{q}^a = \mathbf{R}^a_b \mathbf{p}^a$$

such that $q^b = p^a$.

Simple rotations

- Simple rotation = rotation about an axis
- Example: Rotation matrix for rotation about x-axis:

$$\mathbf{R}_{x,\phi} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & -\sin\phi \\ 0 & \sin\phi & \cos\phi \end{pmatrix}$$

Representations of rotations

Rotation matrix

Easy to use, but not to visualize (also over-parameterized, 9 parameters)

Euler's Theorem:

"Any two independent orthonormal coordinate frames can be related by a sequence of rotations (not more than three) about coordinate axes, where no two successive rotations may be about the same axis."

- Three rotations about axes are enough to specify any rotation
 - These representations are called Euler angles
 - 12 different combinations possible
 - Most common(?): Roll-pitch-yaw
 - Natural and (in many cases) simple to use, very much used
 - Problem: Singularity (more on this today)

Source: Wikipedia

- Angle-axis, Euler-parameters
 - 4-parameter representations of rotations
 - No singularity problems

Euler-angles: Roll-pitch-yaw

• Rotation ψ about z-axis, θ about (rotated) y-axis, ϕ about (rotated) x-axis

$$\mathbf{R}_b^a = \mathbf{R}_{z,\psi} \mathbf{R}_{y,\theta} \mathbf{R}_{x,\phi}$$

$$\mathbf{R}_b^a = \begin{pmatrix} \cos \psi & -\sin \psi & 0\\ \sin \psi & \cos \psi & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \cos \theta & 0 & \sin \theta\\ 0 & 1 & 0\\ -\sin \theta & 0 & \cos \theta \end{pmatrix} \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos \phi & -\sin \phi\\ 0 & \sin \phi & \cos \phi \end{pmatrix}$$

Euler angles

Angle-axis representation of rotations

All rotations can be represented as a simple rotation around an axis

- Angle-axis parameters:
 - Coordinate free: \vec{k}, θ

$$\vec{q} = \left(\underbrace{\cos\theta \ \vec{I} + \sin\theta \ \vec{k}^{\times} + (1 - \cos\theta) \ \vec{k}\vec{k}}_{\vec{R}_{\vec{k}} \ \theta}\right) \cdot \vec{p}$$

- With coordinates: \mathbf{k}^a , θ

$$\mathbf{R}_b^a = \mathbf{R}_{\mathbf{k},\theta} = \cos\theta \,\mathbf{I} + \sin\theta \,(\mathbf{k}^a)^{\times} + (1 - \cos\theta) \,\mathbf{k}^a(\mathbf{k}^a)^{\mathsf{T}}$$

Euler parameters

- Euler parameters are closely related to angle-axis:
 - Coordinate-free:

$$\eta = \cos\frac{\theta}{2}$$

$$\vec{\epsilon} = \vec{k}\sin\frac{\theta}{2}$$

With coordinates:

$$\eta = \cos\frac{\theta}{2}$$

$$\epsilon = \mathbf{k}\sin\frac{\theta}{2}$$

Rotation matrix (on coordinate form):

$$\mathbf{R}(\eta, \boldsymbol{\epsilon}) = \mathbf{I} + 2\eta \boldsymbol{\epsilon}^{\times} + 2\boldsymbol{\epsilon}^{\times} \boldsymbol{\epsilon}^{\times}$$

- Much used, since:
 - Compact, singularity-free representation of orientation
 - No trigonometric terms in expression for rotation matrix
 - $-\eta^2 + \vec{\epsilon} \cdot \vec{\epsilon} = 1$: Easy to normalize (avoid roundoff errors)
 - Rotation matrices may tend to become non-orthogonal when simulated
 - Euler parameters are (unit) quaternions:
 - Quaternions are generalized complex numbers
 - Can use algebra of quaternions for calculations and analysis

Derivatives of rotations

- Derivative of position ${f r}$ is velocity, ${f \dot r}={f v}$.
- Derivative of rotation matrix \mathbf{R}^a_b is $\dot{\mathbf{R}}^a_b$. What is this?
- Seems natural that a concept of angular velocity should be involved, but how?
 - (Tuesday, repeated next slide)
- What are derivatives of representations of rotations?
 - Derivatives of Euler angles? Euler parameters?
 - These are the kinematic differential equations (today's main topic)

Angular velocity

The rotation matrix is orthogonal:

$$\mathbf{R}_b^a \left(\mathbf{R}_b^a \right)^\mathsf{T} = \mathbf{I}$$

Differentiate:

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\mathbf{R}_b^a \left(\mathbf{R}_b^a \right)^\mathsf{T} \right] = \dot{\mathbf{R}}_b^a \left(\mathbf{R}_b^a \right)^\mathsf{T} + \mathbf{R}_b^a \left(\dot{\mathbf{R}}_b^a \right)^\mathsf{T} = \mathbf{0}$$

• If we define $\mathbf{S} = \dot{\mathbf{R}}_b^a (\mathbf{R}_b^a)^\mathsf{T}$, this says that $\mathbf{S} + \mathbf{S}^\mathsf{T} = \mathbf{0}$ which means that \mathbf{S} is skew symmetric.

$$\mathbf{S} = \begin{pmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{pmatrix} = (\boldsymbol{\omega}_{ab}^a)^{\times}$$

- The vector $\boldsymbol{\omega}_{ab}^a$ defined by $(\boldsymbol{\omega}_{ab}^a)^{\times} = \dot{\mathbf{R}}_b^a (\mathbf{R}_b^a)^{\mathsf{T}}$ is the angular velocity of frame b relative to frame a (decomposed in a)
- The equation $\dot{\mathbf{R}}_b^a = (\boldsymbol{\omega}_{ab}^a)^{\times} \mathbf{R}_b^a$ is the kinematic differential equation for rotation matrices

Angular velocity of simple rotations

Rotation about x-axis:

$$\mathbf{R}_{x,\phi} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & -\sin\phi \\ 0 & \sin\phi & \cos\phi \end{pmatrix}$$

• We calculate $(\boldsymbol{\omega}_{ab}^a)^{\times} = \dot{\mathbf{R}}_b^a (\mathbf{R}_b^a)^{\mathsf{T}}$:

$$\dot{\mathbf{R}}_{x,\phi} (\mathbf{R}_{x,\phi})^{\mathsf{T}} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -\sin\phi & -\cos\phi \\ 0 & \cos\phi & -\sin\phi \end{pmatrix} \dot{\phi} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & \sin\phi \\ 0 & -\sin\phi & \cos\phi \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -\dot{\phi} \\ 0 & \dot{\phi} & 0 \end{pmatrix}$$

That is:

$$oldsymbol{\omega}_x = egin{pmatrix} \dot{\phi} \ 0 \ 0 \end{pmatrix}$$

- Similar for rotations around *y* and *z*-axis: $\omega_y = \begin{pmatrix} 0 \\ \dot{\theta} \\ 0 \end{pmatrix}$, $\omega_z = \begin{pmatrix} 0 \\ 0 \\ \dot{\psi} \end{pmatrix}$
- Angle-axis representations (constant axis):

$$\boldsymbol{\omega}_{ab}^a = \dot{ heta} \mathbf{k}^a$$

Composite rotations

- Given
 - composite rotation $\mathbf{R}_d^a = \mathbf{R}_b^a \mathbf{R}_c^b \mathbf{R}_d^c$, and
 - individual angular velocities ω^a_{ab} , ω^b_{bc} , and ω^c_{cd}

How to calculate the composite angular velocity ω_{ad}^a ?

• It can be shown (easy, see book p. 241) that

$$\vec{\omega}_{ad} = \vec{\omega}_{ab} + \vec{\omega}_{bc} + \vec{\omega}_{cd}$$

On coordinate form:

$$oldsymbol{\omega}^a_{ad} = oldsymbol{\omega}^a_{ab} + oldsymbol{\omega}^a_{bc} + oldsymbol{\omega}^a_{cd}$$

So:

$$oldsymbol{\omega}^a_{ad} = oldsymbol{\omega}^a_{ab} + \mathbf{R}^a_b oldsymbol{\omega}^b_{bc} + \mathbf{R}^a_b \mathbf{R}^b_c oldsymbol{\omega}^c_{cd}$$

Differentiation of vectors (6.8.5, 6.8.6)

 \vec{a}_2

 \vec{a}_3

 \vec{u}

Coordinate representation:

$$\mathbf{u}^a = \mathbf{R}^a_b \mathbf{u}^b$$

Differentiation:

$$\mathbf{\dot{u}}^a = \mathbf{R}^a_b \left[\mathbf{\dot{u}}^b + \left(oldsymbol{\omega}^b_{ab}
ight)^ imes \mathbf{u}^b
ight]$$

On vector form:

$$\frac{^{a}d}{dt}\vec{u} = \frac{^{b}d}{dt}\vec{u} + \vec{\omega}_{ab} \times \vec{u}$$

Note! Generally,

$$\dot{\mathbf{u}}^a
eq \mathbf{R}^a_b \dot{\mathbf{u}}^b$$

Kahoot

 https://play.kahoot.it/#/k/4152faff-75ee-49ea-bb9eb4c79dd85785