

# Laboratório 5: (resolução)

## Exercício 16: Realização de funções utilizando Multiplexers

PARTE I — Projete um multiplexer de 4 entradas de seleção utilizando um descodificador e 4 multiplexers de 2 entradas de seleção com entrada de habilitação, e lógica combinatória elementar adicional.

|        | _ | F   | S0 | <b>S</b> 1 | S2 | S3 |
|--------|---|-----|----|------------|----|----|
|        |   | 10  | 0  | 0          | 0  | 0  |
| NAMO   |   | 11  | 1  | 0          | 0  | 0  |
| Mux0   |   | 12  | 0  | 1          | 0  | 0  |
|        |   | 13  | 1  | 1          | 0  | 0  |
|        |   | 14  | 0  | 0          | 1  | 0  |
| Mux1   |   | 15  | 1  | 0          | 1  | 0  |
| IVIUXI |   | 16  | 0  | 1          | 1  | 0  |
|        |   | 17  | 1  | 1          | 1  | 0  |
|        |   | 18  | 0  | 0          | 0  | 1  |
| Mux2   |   | 19  | 1  | 0          | 0  | 1  |
| IVIUAZ |   | 110 | 0  | 1          | 0  | 1  |
|        |   | 111 | 1  | 1          | 0  | 1  |
|        |   | 112 | 0  | 0          | 1  | 1  |
| Mux3   |   | 113 | 1  | 0          | 1  | 1  |
| IVIUND |   | 114 | 0  | 1          | 1  | 1  |
|        |   | 115 | 1  | 1          | 1  | 1  |



Utilizámos S3 e S2 como entradas de seleção do descodificador que servirão para selecionar qual o multiplexer que está ativo, atuando na entrada de habilitação (enable) de cada multiplexer.

Na implementação apresentada estamos a considerar um descodificador com saídas ativas a um e um multiplexer com enable ativo a um (Multiplexer "trabalha" quando Enable=1).

PARTE II – Considere a seguinte função de 4 variáveis:  $F(A,B,C,D) = \Sigma(1,4,5,6,7,12,14)$  a) Realize a função usando o multiplexer projetado na primeira parte.

| Α | В | С | D | F |
|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 1 |
| 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 0 |



b) Realize a função apresentada com base em multiplexers de **2 bits** de seleção.

|      | _ | F | D | С | В | Α |
|------|---|---|---|---|---|---|
|      |   | 0 | 0 | 0 | 0 | 0 |
|      |   | 1 | 1 | 0 | 0 | 0 |
| Mux0 | - | 0 | 0 | 1 | 0 | 0 |
|      |   | 0 | 1 | 1 | 0 | 0 |
|      | 7 | 1 | 0 | 0 | 1 | 0 |
|      |   | 1 | 1 | 0 | 1 | 0 |
| Mux1 |   | 1 | 0 | 1 | 1 | 0 |
|      |   | 1 | 1 | 1 | 1 | 0 |
|      | 7 | 0 | 0 | 0 | 0 | 1 |
|      |   | 0 | 1 | 0 | 0 | 1 |
| Mux2 | - | 0 | 0 | 1 | 0 | 1 |
|      |   | 0 | 1 | 1 | 0 | 1 |
|      | 7 | 1 | 0 | 0 | 1 | 1 |
|      |   | 0 | 1 | 0 | 1 | 1 |
| Mux3 | _ | 1 | 0 | 1 | 1 | 1 |
|      |   | 0 | 1 | 1 | 1 | 1 |
|      |   |   |   |   |   |   |

| Α | В | F    |
|---|---|------|
| 0 | 0 | Mux0 |
| 0 | 1 | Mux1 |
| 1 | 0 | Mux2 |
| 1 | 1 | Mux3 |



c) Realize a função utilizando **unicamente um** multiplexer de 2 bits de seleção e lógica adicional.



d) Realize a função utilizando **pelo menos** um multiplexer de 1 bit de seleção.



## **Exercício 17: Comparadores**

Pretende-se realizar um comparador de dois números X e Y. O resultado deve ser apresentado através de três saídas: Z(ero) que é activada quando X=Y, m(enor) que é ativada quando X<Y, e M(aior) que é ativada quando X>Y.

a) Projete o circuito comparador para números X e Y de dois bits cada, simplificando as expressões através de mapas de Karnaugh.

## Hipótese 1

| X1 | X0 | Y1 | Y0 | Z (X=Y) | M(X>Y) | m(X <y)< th=""></y)<> |
|----|----|----|----|---------|--------|-----------------------|
| 0  | 0  | 0  | 0  | 1       | 0      | 0                     |
| 0  | 0  | 0  | 1  | 0       | 0      | 1                     |
| 0  | 0  | 1  | 0  | 0       | 0      | 1                     |
| 0  | 0  | 1  | 1  | 0       | 0      | 1                     |
| 0  | 1  | 0  | 0  | 0       | 1      | 0                     |
| 0  | 1  | 0  | 1  | 1       | 0      | 0                     |
| 0  | 1  | 1  | 0  | 0       | 0      | 1                     |
| 0  | 1  | 1  | 1  | 0       | 0      | 1                     |
| 1  | 0  | 0  | 0  | 0       | 1      | 0                     |
| 1  | 0  | 0  | 1  | 0       | 1      | 0                     |
| 1  | 0  | 1  | 0  | 1       | 0      | 0                     |
| 1  | 0  | 1  | 1  | 0       | 0      | 1                     |
| 1  | 1  | 0  | 0  | 0       | 1      | 0                     |
| 1  | 1  | 0  | 1  | 0       | 1      | 0                     |
| 1  | 1  | 1  | 0  | 0       | 1      | 0                     |
| 1  | 1  | 1  | 1  | 1       | 0      | 0                     |

Funcão transferência para Z

| X1 X | 0 0 | 0<br>1 | 1<br>1 | 1 0 |
|------|-----|--------|--------|-----|
| 0 0  | 1   | 0      | 0      | 0   |
| 0 1  | 0   | 1      | 0      | 9 0 |
| 1 1  | 0   | 0      | 1 1    | 0   |
| 1 0  | 0   | 6      | 0      | 1   |

 $Z(X1,X0,Y1,Y0) = \overline{X1}.\overline{X0}.\overline{Y1}.\overline{Y0} + \overline{X1}.X0.\overline{Y1}.Y0 + X1.X0.Y1.Y0 + X1.\overline{X0}.Y1.\overline{Y0}$ 

 $<sup>=\</sup>overline{X1}.\overline{Y1}.(\overline{X0}.\overline{Y0}+X0.Y0)+X1.Y1(X0.Y0+\overline{X0}.\overline{Y0})$ 

 $<sup>= (</sup>X0.Y0 + \overline{X0}.\overline{Y0}).(\overline{X1}.\overline{Y1} + X1.Y1)$ 

 $<sup>=(</sup>X0\bigcirc Y0).(X1\bigcirc Y1)$ 

# Esquemático para Z



# Função transferência para M



 $M(X1, X0, Y1, Y0) = X1.\overline{Y1} + X0.\overline{Y1}.\overline{Y0} + X1.X0.\overline{Y0}$ 

# Esquemático para M



# Função transferência para m



 $m(X1, X0, Y1, Y0) = \overline{X1}.Y1 + \overline{X0}.Y1.Y0 + \overline{X1}.\overline{X0}.Y0$ 

# Esquemático para m



O aspeto do comparador será o seguinte:



## Hipótese 2

Na hipótese 2 é importante perceber que podemos obter cada uma das saídas em função das outras duas, faremos o mesmo exercício obtendo m em função de Z e M.

Fazendo a tabela de verdade para Z(X=Y) e M(X>Y):

| X1 | Х0 | Y1 | Y0 | Z (X=Y) | M(X>Y) |
|----|----|----|----|---------|--------|
| 0  | 0  | 0  | 0  | 1       | 0      |
| 0  | 0  | 0  | 1  | 0       | 0      |
| 0  | 0  | 1  | 0  | 0       | 0      |
| 0  | 0  | 1  | 1  | 0       | 0      |
| 0  | 1  | 0  | 0  | 0       | 1      |
| 0  | 1  | 0  | 1  | 1       | 0      |
| 0  | 1  | 1  | 0  | 0       | 0      |
| 0  | 1  | 1  | 1  | 0       | 0      |
| 1  | 0  | 0  | 0  | 0       | 1      |
| 1  | 0  | 0  | 1  | 0       | 1      |
| 1  | 0  | 1  | 0  | 1       | 0      |
| 1  | 0  | 1  | 1  | 0       | 0      |
| 1  | 1  | 0  | 0  | 0       | 1      |
| 1  | 1  | 0  | 1  | 0       | 1      |
| 1  | 1  | 1  | 0  | 0       | 1      |
| 1  | 1  | 1  | 1  | 1       | 0      |

As funções transferência para Z e M foram calculadas na hipótese 1, para m(X<Y) faremos em função de Z e M:

| Z(X=Y) | M(X>Y) | m(X <y)< th=""></y)<> |
|--------|--------|-----------------------|
| 0      | 0      | 1                     |
| 0      | 1      | 0                     |
| 1      | 0      | 0                     |
| Χ      | Χ      | -                     |

$$m(X < Y) = \overline{Z + M}$$



Ficando o projeto do comparador com o seguinte aspeto:



b) Utilizando blocos comparadores (do tipo projetado na alínea anterior), projete um comparador de dois números X e Y de quatro bits cada. Como resultado deverá apresentar o esquemático associado.

O comparador projetado na alínea anterior tem o seguinte aspeto:



#### Hipótese 1

Como queremos projetar um comparador de numéros de 4 bits, poderemos usar dois comparadores deste tipo, ficando o esquemático da seguinte maneira:



## Hipótese 2

Utilizando comparadores em cascata:



- c) Com base nos resultados anteriores, projete agora um comparador de dois números X e Y de 8 bits cada. Como resultado deverá apresentar o esquemático associado.
- O Comparador projetado na alínea anterior tem o seguinte aspeto:



Como queremos projetar um comparador de numéros de 8 bits, teremos de usar dois comparadores de 4 bits, ficando o esquemático da seguinte maneira:

