Перенос моделей в распределенную среду

Проблема

Распределенный подход:

- Стоковое дешевое железо
- Простая эксплуатация
- Ограниченный набор моделей в стандартных фреймворках

Time2Market

Массивно-параллельный подход:

- Популярные MLфреймворки работают из коробки
- Железо влетает в копеечку
- Эксплуатация еще больше

Quality

Cost

- Сначала делаем R&D по распределению алгоритма
- Тренируем модели быстро, дешево и качественно

Источники параллелизма в ML

- Параллелизм данных
 - Считаем части суммы градиента параллельно
- Параллелизм модели
 - Обновляем разные части модели параллельно
- Параллелизм задачи
 - Вычисляем модель для каждого «фолда» параллельно

ML на распределенных данных

Градиентный спуск на MapReduce

Градиентный спуск на MapReduce: проблемы

- Драйвер узкое место
 - Даем много памяти
 - Стараемся использовать treeReduce
- Финиш по самому медленному
 - Настроить locality.wait
 - Настроить speculation
- Время итерации >0.2s

Tree-reduce pattern

Пространство для оптимизации

Стохастический градиентный Спуск

- Итерация дешевая
- Итераций очень много

Полный градиентный спуск

- Дорогая итерация
- Итераций мало

Пакетный градиентный Спуск

- Больше пакет дороже итерация
- Меньше пакет больше итераций

Размер модели

Большим данным нужен распределенный стек

Итеративный MapReduce ограничивает размер модели

Небольшой модели не нужны большие данные

Устоявшаяся практика (не совсем правильная)

- 1. Берем большие данные
- 2. Применяем распределенный ETL
- 3. Получаем маленькие данные
- 4. Применяем централизованный ML
- 5. Получаем качественную модель

Сервер параметров увеличивает модель

Режим выставления барьера

- Обычный планировщик
 - Задачи стартуют независимо
 - Задачи завершаются независимо
 - Задачи рестартуют независимо
- Gang scheduler (Spark 2.4)
 - Задачи стартуют вместе
 - Задачи завершаются вместе
 - Рестартуют тоже всей командой
 - Идеально для Parameter Server

Parameter server

• Модели до нескольких гигабайт

• Добавляет проблем с синхронизацией

- Хорошо работает с «распределенными» моделями
 - Каждое обновление затрагивает только часть параметров

Факторизация матриц

Распределенный блочный SVD

Распределенный блочный SVD

- 1. Данные нарезаем на столбцы и колонки
- 2. Кешируем на экзекуторах блоки на пересечениях колонки/столбца с избыточностью
- 3. Факторами управляем через параметр сервер
- 4. Задачи раздаем оркестратором

LDA: join модели и данных

- Имеем большой корпус и небольшой словарь
- Ищем тематическую модель для слов и документов
- Комбинируем:
 - Топики документа обновляем независимо от остальных
 - Распределение слов по топикам храним на параметр сервере

Деревья принятия решений

Поиск сплита в узле

- Каждую колонку можно рассматривать независимо

Построение поддеревьев

- Поддеревья строим независимо друг от друга

Выращивание леса

- При бэгинге деревья независимы
- При бустинге деревья растут только последовательно

ML на распределенных задачах

- 1. Кросс-валидация
 - Нет коммуникации между фолдами при обучении
 - Нет разделяемого изменяемого состояния
 - Большое пересечение по данным для обучения
- 2. Отбор признаков
- 3. Мульти-классовая классификация
- 4. Ансамбли по принципу бэгинга
- 5. Подбор гиперпараметров

Ключевые выводы

- Избегать распределенного ML
 - Наращивать железо и уменьшать данные
 - Распределенный ETL и централизованный ML
- Небольшие модели тренировать Mapreduce
 - Улучшать качество отбором признаков и тюнингом параметров
- Модели крупнее резать на части
 - Параметр сервер
- Деревья распределяются лучше матриц

Жизненный цикл модели

- 1. Сбор данных
- 2. ETL
- 3. Обучение модели
- 4. Вывод в ПРОМ (Доход!!!)
- 5. Эксплуатация (Расходы!!!)