Rui Li

September 28, 2018

Contents

3.2 Proving existentially quantified statements

1

3.3 Proving implications

 $\mathbf{2}$

3.2 Proving existentially quantified statements

 $\exists x \in S, P(x)$

Prove that there exists $m \in \mathbb{Z}$ such that,

$$\frac{m-7}{2m+4} = 5$$

Let m = -3 then $m \in \mathbb{Z}$, and,

$$\frac{m-7}{2m+4} = \frac{-3-7}{2(-3)+4}$$
$$= \frac{-10}{-2}$$
$$= 5$$

Essentially, for proving existentially quantified statements, give one example.

Disproving existentially quantified statements

For disproving existentially quantified statements, prove the universally quantified statement, $\forall x \in S, \neg P(x)$.

Disprove: There exists $x \in \mathbb{R}$ such that cos(2x) + sin(2x) = 3. Proof: Let $x \in \mathbb{R}$ then,

$$-1 \le cos(2x) \le 1$$
 and $-1 \le sin(2x) \le 1$

Hence,

$$\cos(2x) + \sin(2x) \le 1 + 1 = 2 < 3$$

There exists no x such that the statement could be true.

3.3 Proving implications

Assume hypothesis is true, and try and get to conclusion.

DO NOT ASSUME CONCLUSION

Example: