CrystalGAN: Learning to Discover Crystallographic Structures with Generative Adversarial Networks

本模型使用如下的三个步骤来从已知的两个域(二元化合物AH和BH)生成新的域(三元化合物AHB或BHA)

- 使用和跨域GANs类型的方法生成混合域的伪二进制样本
- 转移过程从前一步生成的样本中构造更高阶的复杂度数据
- 第二步GAN合成,再几何约束下,生成新型的三元稳定化学结构

第一步

(a) First step of CrystalGAN.

模型分别将AH和BH(A是一种金属,B是另一种金属)经过编码后的向量数据作为输入。经过一个生成器生成一个潜在空间,第二个生成器作为翻译器,然后计算AH和 $AHBA_1$ 之间的损失,损失越小,说明两个生成器越好。

若将输入分别记为 $\{(x_{AH_i})\}_{i=1}^{N_{AH}}$ 以及 $\{(y_{BH_i})\}_{i=1}^{N_{BH}}$,则可得到如下等式:

$$x_{AHB_1} = G_{AHB_1}(x_{AH}) \qquad x_{AHBA_1} = G_{BHA_1}(x_{AHB_1}) = G_{BHA_1} \cdot G_{AHB_1}(x_{AH})$$

$$y_{BHA_1} = G_{BHA_1}(y_{BH}) \qquad y_{BHAB_1} = G_{AHB_1}(y_{BHA_1}) = G_{AHB_1} \cdot G_{BHA_1}(y_{BH})$$

重建的损失函数可定义(即计算原始数据和重建数据之间的距离)如下

$$L_{R_{AH}} = d(x_{AHBA_1}, x_{AH}) = d(G_{BHA_1} \cdot G_{AHB_1}(x_{AH}), x_{AH})$$

$$L_{R_{BH}} = d(y_{BHAB_1}, y_{BH}) = d(G_{AHB_1} \cdot G_{BHA_1}(y_{BH}), y_{BH})$$

在理想情况下, $L_{R_{AH}}=0, L_{R_{BH}}=0, x_{AHBA_1}=x_{AH}, y_{BHAB_1}=y_{BH}$

生成器的任务是保证原始数据尽可能精确地重建,故先定义如下损失

$$L_{GAN_{BH}} = -E_{x_{AH} \sim P_{AH}}[log(D_{BH}(G_{AHB_1}(x_{AH})))]$$

$$L_{GAN_{AH}} = -E_{y_{BH} \sim P_{BH}}[log(D_{AH}(G_{BHA_1}(x_{BH})))]$$

则生成器 G_{AHB_1} (左上和右下) 以及生成器 G_{BHA_1} (右上和左下) 的损失函数可定义如下:

$$L_{GAN_{AHB_1}} = L_{GAN_{BH}} + L_{R_{AH}} \qquad L_{GAN_{BHA_1}} = L_{GAN_{AH}} + L_{R_{BH}}$$

则生成器的总损失可定义为:

$$L_{G_1} = L_{G_{AHB_1}} + L_{G_{BHA_1}} = \lambda_1 L_{GAN_{BH}} + \lambda_2 L_{R_{AH}} + \lambda_3 L_{GAN_{AH}} + \lambda_4 L_{R_{BH}}$$

判别器AH和BH的损失函数可定义如下:

$$L_{D_{BH}} = -E_{y_{BH} \sim P_{BH}}[log(D_{BH}(y_{BH}))] - E_{x_{AH} \sim P_{AH}}[log(1 - D_{BH}(G_{AHB_1}(x_{AH})))]$$

$$L_{D_{AH}} = -E_{x_{AH} \sim P_{AH}}[log(D_{AH}(x_{AH}))] - E_{y_{BH} \sim P_{BH}}[log(1 - D_{AH}(G_{BHA_1}(y_{BH})))]$$

则判别器的总损失可定义为:

$$L_{D_1} = L_{D_{AH}} + L_{D_{BH}}$$

第二步 (特征转移)

在第一步中生成的 x_{ABH_1} 和 y_{BHA_1} 是融合A和B属性的新域,但域A和域B在这些样本中完全混合,没有办法推导出来自这些域的两个独立元素的特征。

Figure 2: Encoding of x_{AH} and y_{BH} with placeholders.

所以作者添加了一个占位符(对于AH域,第四个矩阵为空,对于BH域,第三个矩阵为空)。而后将当前域为空的位置替换为另一个域对应位置的矩阵元素,然后会生成如第一步的 ABH_g 和 BAH_g

第三步

(b) Second step of CrystalGAN

在这一步中,作者考虑了晶体结构的几何约束来控制生成数据的质量。具体原理是:晶体结构完全由局部分布来描述,这种分布是由给定晶体结构中每个原子到所有最近邻的距离决定的。

若假定 $S=\{s_i\}_{i=1}^m$ 分别是一个晶体结构中所有原子的最近邻, d_1 是两个最近邻点之间的最短距离, d_2 是两个最近邻点之间的最远距离,则可定义如下两个几何约束:

$$egin{aligned} L_{geo_1} &= f(d_1, s_1, \dots, s_m) = min_{s \in S} ||d_1 - s||_2^2 \ & L_{geo_2} &= f(d_2, s_1, \dots, s_m) = -min_{s \in S} ||d_2 - s||_2^2 \end{aligned}$$

总的几何约束可定义如下:

$$L_{geo} = L_{geo_1} + L_{geo_2} \\$$

剩余的损失函数定义同第一步类似,给定 x_{AHB_a} 以及 y_{BHA_a} ,则可得到如下等式:

$$egin{aligned} x_{AHB_2} &= G_{AHB_2}(x_{AHB_g}) & x_{AHBA_2} &= G_{BHA_2}(x_{AHB_2}) &= G_{BHA_2} \cdot G_{AHB_2}(x_{AHB_g}) \ & y_{BHA_2} &= G_{BHA_2}(y_{BHA_g}) & y_{BHAB_2} &= G_{AHB_2}(y_{BHA_2}) &= G_{AHB_2} \cdot G_{BHA_2}(y_{BHA_g}) \end{aligned}$$

重建的损失函数可定义 (即计算原始数据和重建数据之间的距离) 如下

$$egin{aligned} L_{R_{AHB}} &= d(x_{AHBA_2}, x_{AHB_g}) = d(G_{BHA_2} \cdot G_{AHB_2}(x_{AHB_g}), x_{AHB_g}) \ L_{R_{BHA}} &= d(y_{BHAB_2}, y_{BHA_g}) = d(G_{AHB_2} \cdot G_{BHA_2}(y_{BHA_g}), y_{BHA_g}) \end{aligned}$$

生成器的任务是保证原始数据尽可能精确地重建,故先定义如下损失

$$L_{GAN_{BHA_g}} = -E_{x_{AHB_g} \sim P_{AHB_g}}[log(D_{BHA}(G_{AHB_2}(x_{AHB_g})))]$$

$$L_{GAN_{AHB_q}} = -E_{y_{BHA_q} \sim P_{BHA_q}}[log(D_{AHB}(G_{BHA_2}(x_{BHA_q})))]$$

则生成器 G_{AHB_2} (左上和右下) 以及生成器 G_{BHA_2} (右上和左下) 的损失函数可定义如下:

$$L_{GAN_{AHB_2}} = L_{GAN_{BHA_2}} + L_{R_{AHB}} \qquad L_{GAN_{BHA_2}} = L_{GAN_{AHB_2}} + L_{R_{BHA_2}}$$

则生成器的总损失可定义为:

$$L_{G_2} = L_{G_{AHB_2}} + L_{G_{BHA_2}} + L_{geo} = \lambda_1 L_{GAN_{BHA_g}} + \lambda_2 L_{R_{AHB}} + \lambda_3 L_{GAN_{AHB_g}} + \lambda_4 L_{R_{BHA}} + \lambda_5 L_{geo_1} + \lambda_6 L_{geo_2}$$

判别器AHB和BHA的损失函数可定义如下:

$$egin{align*} L_{D_{BHA}} &= -E_{y_{BHA_g}\sim P_{BHA_g}}[log(D_{BHA}(y_{BHA_g}))] - E_{x_{AHB_g}\sim P_{AHB_g}}[log(1-D_{BHA}(G_{AHB_2}(x_{AHB_g})))] \ & \ L_{D_{AHA}} &= -E_{x_{AHB_g}\sim P_{AHB_g}}[log(D_{AHB}(x_{AHB_g}))] - E_{y_{BHA_g}\sim P_{BHA_g}}[log(1-D_{AHB}(G_{BHA_2}(y_{BHA_g})))] \ & \ L_{D_{AHA}} &= -E_{x_{AHB_g}\sim P_{AHB_g}}[log(D_{AHB}(x_{AHB_g}))] - E_{y_{BHA_g}\sim P_{BHA_g}}[log(1-D_{AHB}(G_{BHA_2}(y_{BHA_g})))] \ & \ L_{D_{AHA}} &= -E_{x_{AHB_g}\sim P_{AHB_g}}[log(D_{AHB}(x_{AHB_g}))] - E_{y_{BHA_g}\sim P_{BHA_g}}[log(1-D_{AHB}(G_{BHA_2}(y_{BHA_g})))] \ & \ L_{D_{AHA}} &= -E_{x_{AHB_g}\sim P_{AHB_g}}[log(D_{AHB}(x_{AHB_g}))] - E_{y_{BHA_g}\sim P_{BHA_g}}[log(1-D_{AHB}(G_{BHA_2}(y_{BHA_g})))] \ & \ L_{D_{AHA}} &= -E_{x_{AHB_g}\sim P_{AHB_g}}[log(D_{AHB}(x_{AHB_g}))] \ & \ L_{D_{AHB}} &= -E_{x_{AHB_g}\sim P_{AHB_g}}[log(D_{A$$

则判别器的总损失可定义为:

$$L_{D_2} = L_{D_{AHB}} + L_{D_{BHA}}$$

结构和结果

输入输出维度及结构

以生成器 G_{AHB_1} 为例,其输入输出为: $\mathbb{R}^{l imes m}_{AH}, \mathbb{R}^{l imes m}_{BH} o \mathbb{R}^{k imes m}_{AHB_1}$

以判别器 D_{AH} 为例,其输入输出为: $\mathbb{R}^{k imes m}_{AHB_1}
ightarrow [0,1]$

生成器和判別器的定义都类似,都是使用5到10层的全连接层,只不过判别器最后用了一个sigmoid层用来预测标签

特征构建和特征维度

根据晶体结构文件POSCAR提供的晶胞常数和原子坐标来构建特征如下图所示,并且从每个体系(域)中, 选择个晶体结构(稳定和亚稳态)

Figure 3: An example of a POSCAR file describing the composition of Palladium and Hydrogen, and the data representation in the CrystalGAN.

由此可得到如下的特征维度(18和3分别是每个在上面的每个矩阵中最大行数和最大列数)

Input dataset	Dimension
PdH	[35, 4, 18, 3]
NiH	[35, 4, 18, 3]

实现细节

在生成晶体结构时,规定的是A-B,A-A'和B-B'之间的距离,而A-H和B-H之间的距离不受限制。在这篇文章中, $d_1=1.8A^\circ$, $d_2=3A^\circ$,通过交叉验证设置超参数。使用AdamOptimizer作为优化器,并设置 $\alpha=0.0001,\beta_1=0.5$ 。将epochs设置为1000,并将min-batch设置为35(因为一个Input维度就是35)。每个生成器或判别器都是5层的多层神经网络,而且每层有100个单元,并且使用ReLU作为激活函数。

结果

GAN的潜在空间使用高斯噪声作为输入,无法生成可接受的化学结构。若使用DiscoGAN来生成新的伪二元结构,则它表现得非常好,但不适合生成三元结构。带约束的CrystalGAN优于所有其他结果

Composition	GAN	DiscoGAN	CrystalGAN	CrystalGAN
	(standard)		without constraints	with geometric constraints
Pd - Ni - H	0	0	4	9
Mg - Ti - H	0	0	2	8

Table 2: Number of ternary compositions of good quality generated by the tested methods.

下图是生成的Pd-Ni-H,作者想说明的是,所有原子之间的最短距离都满足要求,即生成的结构尊重几何结构

Atom 1	Atom 2	Distance	I			
H 1						
	Pd	0.8103				
	Ni	2.4366				
	Pd	2.4782	H Pd	Ni		
	H	2.6765	1.0			
***	Н	2.9976	1.0			
H 2	Pd	1.9035	0	.31783467	0.38348212	6.43965053
	Ni	2.2619	-0	. 14229795	4.61861133	-1.02656614
	Pd	2.2755	_	20040072	0.00470500	0.05500044
	H	2.6765 2.9976	5	.30012273	2.00472569	-0.25500044
Pd 3	11	2.9910	H Pd	Ni		
Pd 3	Н	0.8103				
	H	1.9035	2 2	2		
	Ni	2.9513	Cart	esian		
Pd 4			1	. 58695459	0.61697345	0.02452001
	Ni	1.9463	· ·	. 56095459	0.01097343	0.02432001
	H H	2.2755 2.4782	4	.09158802	1.54180848	-0.16272403
	Ni	2.4782	_	. 38770532	0.72835826	0.07921831
Ni 5	111	2.3002	l 2	.30110532	0.72035026	0.07921031
INI S	Н	2.2619	0	. 40653645	0.16036039	4.67786407
	Ni	2.3474	۱ ،	.04466104	2.44065856	-0.45760279
	Н	2.4366	ľ	.01100101	2.4400000	-0.40700273
	Pd	2.9513	-0	. 29513394	1.82811617	3.96068835
L NT: 0	Pd	2.9662	[
Ni 6	Pd	1.9463				
	Pa Ni	2.3474				

Figure 5: The list of the nearest neighbours (on the left); the corresponding generated POSCAR file (on the right).