Rechnerarchitektur

SS 22

Übungsblatt 8

Aufgabe 54: Zahlendarstellung im Rechner

	EK	ZK
0	0000 0000 oder 1111 1111	0000 0000
-57	1100 0110	1100 0111
127	0111 1111	0111 1111

b)

i)		ii)		iii)	
1er-Komp.	2er-Komp.	1er-Komp.	2er-Komp.	1er-Komp.	2er-Komp.
0010 1100	0010 1100	0100 0000	0100 0000	1101 0010	1101 0011
+1101 1010	+1101 1011	+1101 1111	+1110 0000	+1010 1100	+1010 1101
(1)0000 0110	0000 0111	(1)0001 1111	0010 0000	(1)0111 1110	(1)1000 0000
+0000 0001		+0000 0001		⇒ overflow	⇒ kein
0000 0111		0010 0000			overflow

- Eindeutige Darstellung der Null: Es wird kein Bitmuster "verschwendet"
- Subtraktion kann mittels eines Addierweks durchgeführt werden. Ein eigenes Bauteil ist nicht nötig.

d) 100 110 +101 111 (1)010 101 ⇒ overflow

Aufgabe 55: Gleitkommazahlen nach IEEE 754

$$(10,5) = (1010,1) = (1,0101) * 2^3$$

	Sign	Exponent	Signifikant
Single	0	1000 0010	0101 0000
Double	0	1000 0000 010	0101 0000

b)
$$(0,1) = (0,\overline{00011}) = 1,\overline{10011} * 2^{-4}$$

	Sign	Exponent	Signifikant
Single	0	0111 1011	1001 1001100
Double	0	0111 1111 011	1001 10011001

c)
$$(-2/3) = (-0,\overline{10}) = (-1,\overline{01}) * 2^{(-1)}$$

	Sign	Exponent	Signifikant
Single	1	0111 1110	0101 01010101 010
Double	0	0111 1111 110	0101 01010101

Aufgabe 56: Cäsar-Verschlüsselung unter SPIM

caesar:

add \$t4, \$t4, \$s1 # addiere die eigengegebene Zahl auf den aktuellen Buchstaben

save:

sb \$t4, result (\$t0) # speichere den verschl. Buchstaben an der Stelle \$t0 in result addi \$t0, \$t0, 1 # Counter++

cadd:

sub \$t4, \$t4, \$t3 # ziehe von Ergebnis den Wert von Z ab addi \$t4, \$t4, -1 # ziehe 1 vom Ergebnis ab add \$t4, \$t4, \$t2 # addiere Wert von A zum Ergebnis

Aufgabe 57: Einfachauswahlaufgabe

- a) (i)
- b) (ii)
- c) (iv)
- d) (i)
- e) (iv)