Undergraduate Complexity Theory Lecture 5: The Time Hierarchy Theorem

Marcythm

July 10, 2022

1 Lecture Notes

- 1. A language not in P? HALTING.
- 2. A <u>decidable</u> language not in P? idea: task. simulate a TM for 2^n steps
 - (a) should be doable in $poly(2^n)$ time
 - (b) shouldn't be doable in poly(n) time
- 3. extended task: not doable in $O(n^2)$ time, but doable in ...say $O(n^8)$ time. idea: simulating a TM for n^3 steps

Definition 1.1. Define a TM D: on input $\langle M, w \rangle$, use a universal TM to simulate $M(\langle M, w \rangle)$ for n^3 steps. If it accepts, then D rejects. Conversely, if it rejects or times out, D accepts.

Fact 1.2. D is a decider, therefore D defines a language.

Fact 1.3. D runs in poly time. (depends on efficiency of UTM, maybe $O(|\langle M \rangle|^4 \cdot n^3 \cdot \log n) \leq O(n^8)$.)

Fact 1.4. Let L be the language decided by D, therefore $L \in \mathsf{TIME}(n^8)$.

Claim 1.5. $L \notin \mathsf{TIME}(n^2)$.

Proof. AFSOC (Assume for the sake of contradiction) that S is a decider TM for L with time t(n), which is $O(n^2)$. Consider running S on inputs of form $\langle S, 0^l \rangle$. Let $c = \langle S \rangle$. S halts on such inputs in $\leq t(l+c)$ time, which is $O((l+c)^2)$, strictly less than $(l+c)^3$ for large enough l, say $l \geq l^*$. Since S decides L, $S(\langle S, 0^{l^*} \rangle) = D(\langle S, 0^{l^*} \rangle)$, where the things D does is using UTM to simulate $S(\langle S, 0^{l^*} \rangle)$ for $(l^* + c)^3$ steps, then it does the opposite. Here S doesn't timeout, then $S(\langle S, 0^{l^*} \rangle) = D(\langle S, 0^{l^*} \rangle) = \neg S(\langle S, 0^{l^*} \rangle)$.

Definition 1.6. Bounded Halt/Accepts problem:

$$BA_{n^3} = \{ \langle M, w \rangle : M(w) \text{ accepts } w/i \le |w|^3 \text{ steps} \}$$

Claim 1.7. $BA_{n^3} \in \mathsf{TIME}(n^8)$.

Claim 1.8. $BA_{n^3} \notin \mathsf{TIME}(n^2)$.

Proof. AFSOC, B is a TM deciding BA_{n^3} in $O(n^2)$ time, we'll show $L \in \mathsf{TIME}(n^2)$. To decide L on input $\langle M, w \rangle$, we need to check if $M(\langle M, w \rangle)$ accs w/i n^3 steps. Run B on the string $\langle M, \langle M, w \rangle \rangle$ (which can be prepared in $O(n^2)$), and do opposite, which also takes $O(|\langle M, \langle M, w \rangle \rangle|^2) = O(n^2)$ time.

UTM with a clock: given $\langle M, w \rangle$, simulate M(w) for t(|w|) steps. For $U_t(\langle M, w \rangle)$:

- 1. Count |w|: i.e. get n = |w| written on tape.
- 2. Compute T = t(n) and write it on tape.

3. Sim M(w), decrement T at each step till finishes or T=0.

Time analysis:

- 1. Doable in $O(n^2)$ time, also in fact in $O(n \log n)$ time. (Bring the counter together with the pointer, n moves with each time $\log n$ symbols to shift, and n symbols to shift when the length increments, but only $\log n$ times).
- 2. Depends on t(n)! t(n) could be uncomputable. If t(n) is simple, maybe polylog(n) time.

Definition 1.9. A function $t: \mathbb{N} \to \mathbb{N}$ is "time constructible" if:

- 1. $t(n) \ge n \log n$
- 2. given a length-n string, can compute t(n) in time O(t(n)).
- 3. Per 1 step of sim, takes $O(|\langle M \rangle|^3)$ time.

Remark 1.10. All "normal" functions $\geq n \log n$ are "time-constructible". e.g. $n \log n, n^2, n^{3.5}, 2^n, \dots$

Deficiency:

- 1. Gotta handle the clock: keep the clock with M's state, thus additional $\log t(n)$ bits slowdown per sim step.
- 2. Only handles alphabets $\{0,1,b\}$: encode with $\log |\Sigma|$ bits, thus a constant factor slowdown.

Theorem 1.11. If t(n) is time-constructible, exists $TM T_t$ s.t. given $\langle M, w \rangle$, U_t sims M(w) for t(|w|) steps in time $O(|\langle M \rangle|^4 t(n) \log t(n))$.

2 Reading

2.1 Sipser 9.1 (Hierarchy Theorems)

- 1. space constructible
- 2. space hierarchy theorem and corollaries
- 3. time constructible
- 4. time hierarchy theorem and corollaries
- 5. EQ_{REX} is EXPSPACE-complete (TODO)