A primer on generalized complex geometry

 $\begin{array}{c} {\rm Jack~Ceroni^*} \\ {\rm (Dated:~Saturday~28^{th}~October,~2023)} \end{array}$

The purpose of these notes is to introduce, with minimal assumed knowledge, the field of generalized complex geometry. These notes were written in the Fall of 2023.

Proposition .1. Let $\langle \cdot, \cdot \rangle$ denote a bilinear form on *n*-dimensional vector space *V*. Then, there exists a basis v_1, \ldots, v_n for *V* such that

$$\langle x_1 v_1 + \dots + x_n v_n, x_1 v_1 + \dots + x_n v_n \rangle = x_1^2 + \dots + x_p^2 - x_{p+1}^2 - \dots + x_{p+q}^2$$
(1)

where p + q = n. Moreover, the pair (p, q) is independent of choice of basis, and is called the *signature* of the bilinear form.

Definition .1. Given vector space V endowed with bilinear form $\langle \cdot, \cdot \rangle$, a subspace W is said to be isotropic if the form vanishes for pairs $w_1, w_2 \in W$.

Given n-dimensional vector space V, we take a double $\mathcal{D}V$ to be a 2n-dimensional vector space endowed with $\langle \cdot, \cdot \rangle$ and projection $\pi : \mathcal{D}V \to V$ such that $\operatorname{Ker}(\pi)$ is isotropic with respect to $\langle \cdot, \cdot \rangle$. Note that $\operatorname{Ker}(\pi)$ being isotropic implies that $\operatorname{Ker}(\pi) \subset \operatorname{Ker}(\pi)^{\perp}$.

^{*} jackceroni@gmail.com