Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/018396

International filing date: 09 December 2004 (09.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2003-427557

Filing date: 24 December 2003 (24.12.2003)

Date of receipt at the International Bureau: 10 February 2005 (10.02.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年12月24日

出 願 番 号 Application Number:

特願2003-427557

[ST. 10/C]:

[JP2003-427557]

出 願 人 Applicant(s):

株式会社ブリヂストン

.

11)

1月28日

2005年

特許庁長官 Commissioner, Japan Patent Office

ページ:

1/E

【書類名】 特許願 【整理番号】 BS203032 平成15年12月24日 【提出日】 特許庁長官殿 【あて先】 B60K 7/00 【国際特許分類】 【発明者】 東京都小平市小川東町3-1-1 株式会社ブリヂストン 技術 【住所又は居所】 センター内 【氏名】 鈴木 康弘 【発明者】 東京都小平市小川東町3-1-1 株式会社ブリヂストン 技術 【住所又は居所】 センター内 田代 勝巳 【氏名】 【特許出願人】 【識別番号】 000005278 株式会社ブリヂストン 【氏名又は名称】 【代理人】 【識別番号】 100080296 【弁理士】 【氏名又は名称】 宮園 純一 【手数料の表示】 【予納台帳番号】 003241

21,000円

明細書 1

要約書 1

図面 1

特許請求の範囲 1

【納付金額】 【提出物件の目録】

> 【物件名】 【物件名】

【物件名】

【物件名】

【請求項1】

車輪部に設けられた中空形状のダイレクトドライブモータのステータ側が、車輌の足回り部品に対して、弾性体及び/または減衰機構を介して支持されたインホイールモータシステムにおいて、モータロータとホイールとを、ホイールに連結されたホイール側プレートと、モータの回転側ケースに連結されたモータ側プレートと、上記2つのプレート間に配置された中間プレートと、ホイール側プレートと中間プレート、及び、中間プレートとモータ側プレートとを剛性の低い方向に移動可能にそれぞれ連結する第1及び第2の連結部材とを備えるとともに、上記第1及び第2の連結部材を、剛性の低い方向同士が互いに直交するように配置して成るカップリング機構により連結したことを特徴とするインホイールモータシステム。

【請求項2】

上記連結部材として、上記連結する2つのプレートの連結方向の長さが長いゴムまたは 樹脂から成る連結部材を用いたことを特徴とする請求項1に記載のインホイールモータシ ステム。

【請求項3】

ホイール側プレートと中間プレート、及び、中間プレートとモータ側プレートにそれぞれピン部材を立設し、このピン部材同士をスチールコードまたはスチールワイヤを用いて連結したことを特徴とする請求項1に記載のインホイールモータシステム。

【書類名】明細書

【発明の名称】インホイールモータシステム

【技術分野】

[0001]

本発明は、ダイレクトドライブホイールを駆動輪とする車輌において用いられるインホイールモータシステムに関するものである。

【背景技術】

[0002]

一般に、足回りにバネ等のサスペンション機構を備えた車輌においては、ホイールやナックル、サスペンションアームといったバネ下に相当する部品の質量、いわゆるバネ下質量が大きい程、凹凸路を走行したときにタイヤ接地力の変動が増大し、ロードホールディング性が悪化することが知られている。

ところで、電気自動車などのモータによって駆動される車輌においては、モータを車輪に内蔵するインホイールモータシステムが採用されつつあるが、従来のインホイールモータでは、モータの非回転部が車輌の足回りを構成する部品の一つであるアップライトまたはナックルと呼ばれる部品に接続するスピンドル軸に固定され、回転部であるロータがホイールと一体に回転可能な構造となっているため、上記のバネ下質量がインホイールモータの分だけ増加し、その結果、タイヤ接地力変動が増大し、ロードホールディング性が悪化してしまうといった問題点があった(例えば、特許文献1~3参照)。

[0003]

そこで、上記のような問題を解決するため、図4に示すような、ステータ3Sを支持する非回転側ケース3aを、直動ガイド51を介して互いに車輌の上下方向に作動方向が限定され、かつ、車輌の上下方向に作動するバネ52及びダンパー53により結合された2枚のプレート54,55を備えた緩衝機構50を介して、車輌の足回り部品であるナックル5に対して弾性支持するとともに、ロータ3Rを支持する回転側ケース3bとホイール2とを、ホイール2のラジアル方向に互いに偏心可能な駆動力伝達機構であるフレキシブルカップリング60により結合する構成のインホイールモータシステムが提案されている(例えば、特許文献4参照)。

[0004]

上記フレキシブルカップリング60は、詳細には、図5に示すように、複数枚の中空円盤状のプレート61A~61Cと、隣接する上記プレート61A,61B、及び、プレート61B,61C間を結合するとともに、上記隣接するプレート61A,61B、及び、プレート61B,61Cを互いに円盤のラジアル方向に案内する直動ガイド62A,62Bとを備えたもので、上記直動ガイド62A,62Bとしては、例えば、図6に示すように、上記プレート61A~61Cのラジアル方向に延長する凸部を有するガイドレール62 x と、上記プレート61A~61Cのラジアル方向に延長する凹部を有し、上記ガイドレール62 x に係合するガイド部材62 y と、上記ガイドレール62 x の凸部とガイド部材62 y の凹部との間に配設された複数の鋼球62mとから構成される。

上記ガイドレール62 \times 及びガイド部材62 y は、上記隣接するプレート61 A, 61 B、及び、プレート61 B, 61 Cをそれぞれ互いに円盤のラジアル方向に案内するようにスライドするので、インホイールモータ3 は上記直動ガイド62 A, 62 Bの作動方向、すなわち、円盤のラジアル方向に沿っては動くことができるが、回転方向には動くことができない。したがって、モータ3 の回転側ケース3 bを、上記フレキシブルカップリング60を介して、ホイール2と結合させることにより、モータ3 からの駆動トルクをホイール2 に効率的に伝達することが可能となる。

[0005]

このように、上記構成のインホイールモータシステムでは、モータ3を車輌の足回り部品に対してフローティングマウントして、モータ3自身をダイナミックダンパーのウエイトとして作用させることができるので、悪路走行時における接地性能、及び、乗り心地性

能をともに向上させることができるとともに、上記フレキシブルカップリング60により、モータ軸とホイール軸とがどの方向にも偏心可能に結合されるので、モータ3からホイール2へのトルクを効率よく伝達させることが可能となる。

【特許文献1】特許第2676025号公報

【特許文献2】特表平9-506236号公報

【特許文献3】特開平10-305735号公報

【特許文献4】国際公開第02/83446号パンフレット

【発明の開示】

【発明が解決しようとする課題】

[0006]

しかしながら、上記フレキシブルカップリング 60 は、モータ 3 の駆動トルクをホイール 2 へ効率よく伝達させることはできるものの、連結部材として部品点数が多くかつ高い組立精度が要求される直動ガイド 62 A, 62 B を用いているため、プレート 61 A \sim 62 B は高価であるため装置がコスト高になるといった問題点があった。

[0007]

本発明は、従来の問題点に鑑みてなされたもので、簡単な構成でモータの駆動トルクをホイールへ効率よく伝達させることができるとともに、組立が容易なフレキシブルカップリングを備えたインホイールモータシステムを提供することを目的とする。

【課題を解決するための手段】

[0008]

本発明の請求項1に記載の発明は、車輪部に設けられた中空形状のダイレクトドライブモータのステータ側が、車輌の足回り部品に対して、弾性体及び/または減衰機構を介して支持されたインホイールモータシステムにおいて、モータロータとホイールとを、ホイールに連結されたホイール側プレートと、モータの回転側ケースに連結されたモータ側プレートと、上記2つのプレート間に配置された中間プレートと、ホイール側プレートと中間プレート、及び、中間プレートとモータ側プレートとを剛性の低い方向に移動可能にそれぞれ連結する第1及び第2の連結部材とを備えるとともに、上記第1及び第2の連結部材を、剛性の低い方向同士が互いに直交するように配置して成るカップリング機構により連結したことを特徴とするものである。

請求項2に記載の発明は、請求項1に記載のインホイールモータシステムにおいて、上 記連結部材として、上記連結する2つのプレートの連結方向の長さが長いゴムまたは樹脂 から成る連結部材を用いたものである。

請求項3に記載の発明は、請求項1に記載のインホイールモータシステムにおいて、ホイール側プレートと中間プレート、及び、中間プレートとモータ側プレートにそれぞれピン部材を立設し、このピン部材同士をスチールコードまたはスチールワイヤを用いて連結したものである。

【発明の効果】

[0009]

本発明によれば、モータロータとホイールとを、ホイール側プレートと中間プレート、及び、中間プレートとモータ側プレートとを剛性の低い方向に移動可能にそれぞれ連結する、例えば、ゴム材料などから成る第1及び第2の連結部材とを備えるとともに、上記第1及び第2の連結部材を、剛性の低い方向同士が互いに直交するように配置して成る、構成が簡単で部品数の少ないカップリング機構により連結して、モータの駆動トルクをホイールに伝達させるようにしたので、組立が容易となり、作業効率を向上させることができる。

【発明を実施するための最良の形態】

[0010]

以下、本発明の実施の形態について、図面に基づき説明する。

図1は、本最良の形態に係るインホイールモータシステムの構成を示す図で、同図にお

いて、1はタイヤ、2はリム2aとホイールディスク2bとから成るホイール、3は半径方向に対して内側に設けられた非回転側ケース3aに固定されたステータ3Sと、半径方向に対して外側に設けられ、軸受け3jを介して上記非回転側ケース3aに対して回転可能に接合された回転側ケース3bに固定されたロータ3Rとを備えたアウターロータ型のインホイールモータである。

[0011]

図2(a),(b)は、上記フレキシブルカップリング10の詳細を示す図で、モータ側プレート11Aに中間プレート11B方向に突出するピン部材13aを、中間プレート11Bにモータ側プレート11A方向に突出するピン部材13bをそれぞれ4本ずつ取付け、上記各ピン部材13a,13bのそれぞれに第1の連結部材である、平面形状が略長方形の第1のゴム部材12aの両端部を装着して、モータ側プレート11Aと中間プレート11Bとを連結する。このとき、上記4つのゴム部材12aは、その長さ方向を、同図のA方向に平行な方向としたときに、4つとも長さ方向が上記A方向に平行な方向になるように取付けられるように、上記ピン部材13a,13bの位置を設定する。

[0012]

ゴム部材12a, 12bを上記のように取付けることにより、ゴム部材12a, 12bはその長さ方向(A方向またはB方向)に固定されているので剛性が高く伸びにくいが、幅方向には固定されていないので剛性が低い。したがって、図2(b)に示すように、モータ側プレート11Aと中間プレート11Bとは図のB方向に移動可能となり、ホイール側プレート11Cと中間プレート11Bとは図のA方向に移動可能となる。一方、上記ゴム部材12a, 12bは上記プレート11A~11Cの回転方向では硬くなるので、モータ側プレート11Aとホイール側プレート11Cとは全方向に移動可能となり、モータ軸と車輪軸とが偏心した場合でも、モータ3の回転をスムーズにホイール2に伝達することができる。

[0013]

なお、上記プレート11A~11Cとしては、同一形状のものを用いてもよいが、図2 (a), (b) に示すように、中間プレート11Bの径を小さくするとともに、モータ側プレート11Aとホイール側プレート11Cのリング幅を狭くして、上記プレート11A,11Cの周縁部から、中間プレート11Bに取付けられたピン部材13bの方向へ突出する突出部11m,11nをそれぞれ設けて、この突出部11m,11nに上記ピン部材13a,14cをそれぞれ取付けるようにすれば、上記フレキシブルカップリング10を更に軽量化することができる。なお、上記突出部11mと突出部11nとは互いに直交する方向に突出していることはいうまでもない。

[0014]

このように、本最良の形態によれば、モータ側プレート11Aと中間プレート11Bとが、平面形状が略長方形の第1のゴム部材12aにより、所定の方向(A方向)に移動可能に連結され、上記中間プレート11Bとホイール側プレート11Cとが、上記第1のゴム部材12aと同様の第2のゴム部材12bにより、上記A方向とは直角な方向(B方向)に移動可能に連結された構成のフレキシブルカップリング10により、モータ3とホイール2とを連結するようにしたので、モータ軸と車輪軸が偏心した場合でも、モータ3の駆動トルクをホイール2に確実に伝達させことができる。また、このフレキシブルカップリング20は、構造が簡単で部品数が少ないので組立が容易なので、作業効率を高めることができ、生産性を向上させることができる。

[0015]

なお、上記最良の形態では、連結部材として、平面形状が略長方形のゴム部材12a, 12bを用いて、モータ側プレート11Aと中間プレート11B及び、中間プレート11Bとホイール側プレート11Cとを、それぞれが上記ゴム部材12a, 12bの幅方向に移動可能になるように連結したが、図3(a)に示すように、上記ゴム部材12a, 12bに代えて、金具21a, 21b間に、糸、ナイロンコード、スチールコードなどの線材22を巻付けた後、ゴムあるいは樹脂などのモールド材23によりモールドした弾性部材20を、図示しないモータ側プレート11A,中間プレート11B,ホイール側プレート11Cのピン部材24a, 24bに取付けるようにしても、上記弾性部材20は、図3(b),(c)に示すように、上記ピン部材24a, 24bを結ぶ方向(A方向)には剛性が高く、それと直角なB方向には軟らかいので、上記ゴム部材12a, 12bの場合と同様に、モータ軸と車輪軸が偏心した場合でも、モータ3の駆動トルクをホイール2に確実に伝達させことができる。なお、上記金具21a, 21bを省略して、ピン部材24a, 24bに線材22を巻き付けた後、ゴムあるいは樹脂によりモールドしてもよい。

また、上記ゴム部材12a, 12bに代えて樹脂部材を用いてもよいし、スチールコードやスチールワイヤなどの剛性のある線材を上記ピン部材13a, 13b間、及び、ピン部材14b, 14c間に巻き付けた構造としてもよい。

【産業上の利用可能性】

[0016]

以上説明したように、本発明によれば、モータロータとホイールとを、ゴム部材を用いた、部品数が少なく組立も容易なフレキシブルカップリングを用いて連結するようにしたので、生産性を向上させることができるとともに、インホイールモータを安価に製造することができる。

【図面の簡単な説明】

[0017]

- 【図1】本発明の最良の形態に係るインホイールモータシステムの構成を示す縦断面図である。
- 【図2】本最良の形態に係るフレキシブルカップリングの構成を示す図である。
- 【図3】本発明によるプレート連結部材の他の構成を示す図である。
- 【図4】従来のインホイールモータの構成を示す図である。
- 【図5】従来のフレキシブルカップリングの構成を示す図である。
- 【図6】直動ガイドの一構成例を示す図である。

【符号の説明】

[0018]

- 1 タイヤ、2 ホイール、2 a リム、2 b ホイールディスク、
- 3 インホイールモータ、3R ロータ、3S ステータ、
- 3 a 非回転側ケース、3 b 回転側ケース、3 j 軸受け、4 ハブ部、
- 5 ナックル、6 車軸、7 サスペンション部材、8 制動装置、
- 10 フレキシブルカップリング、11A モータ側プレート、
- 11B 中間プレート、11C ホイール側プレート、
- 12a 第1のゴム部材(第1の連結部材)、

12b 第2のゴム部材(第2の連結部材)、 13a, 13b, 14b, 14c ピン部材、 50 緩衝機構、51 直動ガイド、52 バネ、53 ダンパー、 54, 55 プレート。 【書類名】図面【図1】

【図2】

(a)

【図3】

(a)

【図4】

【図5】

【図6】

【書類名】要約書

【要約】

【課題】 簡単な構成でモータの駆動トルクをホイールへ効率よく伝達させることができるとともに、組立が容易なフレキシブルカップリングを備えたインホイールモータシステムを提供する。

【解決手段】 モータ側プレート11Aと中間プレート11Bとが、平面形状が略長方形の第1のゴム部材12aにより、A方向に移動可能に連結され、上記中間プレート11Bとホイール側プレート11Cとが、上記第1のゴム部材12aと同様の第2のゴム部材12bにより、上記A方向とは直角なB方向に移動可能に連結された構成のフレキシブルカップリング10により、モータとホイールとを連結するようにした。

【選択図】 図2

特願2003-427557

出願人履歴情報

識別番号

[000005278]

 変更年月日 [変更理由]

1990年 8月27日 新規登録

住 所

氏 名

東京都中央区京橋1丁目10番1号

株式会社ブリヂストン