

UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" Campus de Botucatu

Rendimento da madeira serrada

Prof. Hernando Alfonso Lara Palma

Aula 03

DEPARTAMENTO DE CIÊNCIA FLORESTAL PROCESSAMENTO MECÂNICO DA MADEIRA

BOTUCATU / SP 2020

1. PRODUTOS OBTIDOS NO DESDOBRO PRIMÁRIO DAS TORAS

Rendimento de madeira serrada (seca e sem aplainar)

(dimensões da tora: \emptyset = 20 cm; comprimento = 4,2 m)

Madeira ———	55 %
Cavacos —	25 %
Serragem ———	- 15 %
Contração + perdas	- 5%
-	100 %

1. OPERAÇÃO DE DESDOBRO

É a transformação primária da tora, e consiste em dar à madeira uma bitola determinada (forma) por meio de serras manuais ou mecânicas, em um mínimo de tempo e com o menor consumo de potência.

No processo de desdobro e corte da madeira procuram-se os seguintes objetivos:

- Obter superfícies de qualidade e cortes com precisão
- Obter eficiência na operação
- Limitar o desgaste das ferramentas de corte
- Limitar o consumo de energia
- Limitar as perdas de matéria-prima

3. EXIGÊNCIAS DOS PROCESSOS DE CORTE ATUAIS

Atualmente as indústrias de madeira serrada devem levar ao mercado internacional madeira de alta qualidade, para conseguir melhores preços. Isto, só é possível com a utilização de tecnologias modernas de corte, que respondam aos requerimentos do mercado. Só assim é possível competir, ainda mais se considerarmos as exigências ambientais, sob os produtos a base de madeira, principalmente impostas pelos países desenvolvidos.

Exigências dos processos de corte em relação à produção de madeira serrada:

- Exatidão dimensional da madeira serrada
- Paralelismo em todas as faces e bordas da madeira serrada
- Superfícies de corte de alta qualidade
- Máximo aproveitamento da matéria prima
- Baixo custo de produção

4. RENDIMENTO E ESTIMATIVA VOLUMÉTRICA DE MADEIRA SERRADA

4.1 Rendimento e produtos de uma tora – conversão primária

4.2 Rendimento e produtos de uma tora – conversão secundária

Processamento Mecânico da Madeira Hernando Alfonso Lara Palma unesp♣

4.3 Rendimento de uma tora

A quantidade de madeira serrada, cavacos e serragem obtida de uma tora são influenciadas pelos seguintes fatores:

- Tamanho e classificação das toras
- Largura de corte da serra
- Exatidão dimensional
- Quantidade das diferentes dimensões da madeira serrada
- Habilidade técnica dos funcionários envolvidos no processo produtivo
- Grau de tecnologia ou acessórios técnicos utilizados no desdobro (medição eletrônica de toras, sistemas centralizadores de toras, etc.)

O rendimento de madeira serrada (relação entre o volume de madeira serrada e o volume de toras desdobradas) depende em grande parte do diâmetro das toras.

A Figura 1 apresenta a quantidade de madeira necessária (matéria-prima roliça) para se obter um metro cúbico de madeira serrada, em função do diâmetro da tora. Observa-se que as toras pequenas são claramente menos vantajosas para serrar que as toras de maior diâmetro.

O máximo rendimento em madeira serrada é obtido quando todas as toras são serradas em forma separada, classificadas por classes diamétricas, comprimento e forma principalmente.

Figura 1 – Relação matéria-prima / madeira serrada.

4.4 Planejamentos de corte

Refere-se a todas as etapas necessárias à organização dos trabalhos, para se obter bitolas comerciais com maior benefício na unidade de tempo.

• O planejamento tem importância fundamental na utilização das toras. As perdas de madeira (serragem, costaneiras, refugos, refilos, etc.) dependem diretamente do planejamento.

- O planejamento de corte das "bitolas comerciais" que serão produzidas na serraria, inicia-se na projeção de um esquema ou diagrama de corte na seção transversal da tora (na ponta fina), e dependerá do processo tecnológico, das máquinas utilizadas no desdobro além dos defeitos que apresente a matéria prima.
- Cada serraria deve estudar a melhor forma de estabelecer o "planejamento de corte" em função dos objetivos da produção. Não existe uma regra fixa para o desdobro de toras, mas algumas recomendações podem induzir em aumentos significativos no aproveitamento.

Como exemplo cita-se algumas generalidades que podem levar a um aumento no rendimento de madeira serrada:

- 1. Estabelecer um sistema de classificação por diâmetro das toras no pátio;
- 2. Estabelecer um "planejamento de corte" prévio em função dos diâmetros disponíveis e as bitolas a serem produzidas
- 3. Desdobrar de preferência toras uniformes e sem curvaturas
- 4. Descascar as toras
- 5. Produzir as peças de maior dimensão da parte central da tora
- 6. Produzir as peças de menor dimensão da periferia da tora
- 7. Se a tora apresenta algum defeito (central ou periférico), incluir este em uma peça
- 8. Para obter blocos, tábuas ou pranchas laterais com máximo rendimento volumétrico (utilizando-se de forma eficiente a superfície transversal da madeira), desdobrar a tora segundo as dimensões máximas da seção do diâmetro fino.

4.5 Diagramas ou esquemas de corte

São esquemas (desenhos) que apresentam bitolas prescritas no plano transversal da tora (no diâmetro fino), considerando todas as dimensões possíveis.

- Nestes esquemas otimiza-se a relação entre as dimensões solicitadas pelo "mercado" e o diâmetro menor da tora. Para cada diâmetro, requer-se um esquema de corte onde estejam considerados todos os fatores que afetam o maior valor (preço) dos produtos.
- Para otimizar os diferentes pedidos (comerciais) de madeira existem hoje programas computadorizados que trabalham em tempo real nas serrarias.

a) Exemplos de esquemas de corte:

a) Bloco central

b) Bloco central mais quatro peças laterais

c) Bloco central mais duas peças laterais

d) Corte único: cortes uniformes para obtenção de tábuas

b) Exemplos de esquemas de corte para o desdobro de coníferas:

Diâmetro menor de 113 mm – <i>Pinus spp</i> .		
Peças	Quantidade	Dimensões (e x l x c)
1	1 bloco central	80 x 80 x 4,00

Dimensões da tora		
φ maior	153 mm	
φ médio	133 mm	
φ menor	113 mm	
Comprimento	4,00 m	
Conicidade	1 %	
Volume	0,0256	

$$(V_{tora} = [\pi \times (D_{1}^{2} + D_{2}^{2})/8] \times c = [\pi \times (0.113^{2} + 0.153^{2})/8] \times 4.0m = 0.056828 \ m^{3})$$

 $Rend = (V_{bloco}/V_{tora}) \times 100 = (0.025600/0.056828) \times 100 = 45\%$

Diâmetro menor de 290 mm - <i>Pinus spp</i> .		
Peças	Quantidade	Dimensões (e x l)
1-2	4 pranchas	50 x 200
3	2 tábuas	15 x 150
4	2 tábuas	15 x 80
5	2 tábuas	15 x 90
6	2 tábuas	15 x 170

Dimensões da tora		
φ maior	330 mm	
φ médio	310 mm	
φ menor	290 mm	
Comprimento	4,00 m	
Conicidade	1 %	
Volume	0,219	

c) Exemplo de esquema de corte para o desdobro de toras on-line

(Heinola Sawmill Machinery Inc., Finlândia)

(Sistema otimizador de toras USNR's, USA)

(Interpretação on-line da leitura geométrica das toras)

5. RENDIMENTO VOLUMÉTRICO MÁXIMO DE MADEIRA SERRADA

5.1 Seção retangular de menor perda inscrita na circunferência de diâmetro "d"

A seção retangular de maior área inscrita em um círculo equivale ao quadrado de aresta "a" (a = D $/\sqrt{2}$). Relação obtida pela aplicação de derivadas na determinação de máximos de uma função. Esta secção equivale a aproximadamente 64 % da área do círculo, e no caso de uma tora cilíndrica a 64 % do volume da tora.

5.2 Volume e rendimento máximo de um bloco de madeira - tora cilíndrica

O volume máximo do bloco que se pode obter de uma tora cilíndrica é função das dimensões da seção retangular de maior área inscrita num círculo (secção transversal da tora), uma vez que o comprimento é constante.

a) Volume do bloco máximo (V_{bloco max.})

$$V_{blocom\acute{a}x.} = a^2 \cdot c$$

O bloco inscrito no cilindro vale 64% do volume do cilindro.

b) Rendimento (Rbloco máx)

$$R_{bloco.m\acute{a}x} = \frac{V_{bloco}}{V_{tora}} \cdot 100 \qquad \left(\%\right)$$

Exemplo 1 - Calcular o volume do bloco máximo e o rendimento em madeira de uma tora cilíndrica com as seguintes dimensões: D = 20 cm e c = 2,50 m.

Solução:

- $V_{bloco\ m\acute{a}x.} = a^2\ x\ c \rightarrow a = (D/\sqrt{2}\) = (20/\sqrt{2}\) = 14,14\ cm \rightarrow a^2 = (14,14cm)^2 = (0,1414m)^2$
- $V_{bloco\ m\'{a}x}$ = $(0.1414m)^2$ x 2.50m = 0.049985 m³
- $V_{tora} = (\pi \times D^2)/4 \times c = {\pi \times (0,2)^2/4} \times 2,50m = 0,078540 \text{ m}^3$
- **Rend** = $(V_{bloco m\acute{a}x}/V_{tora}) \times 100 = (0.049985 \text{ m}^3/0.078540\text{m}^3) \times 100 = 63.64\% \sim 64\%$

5.3 Volume e rendimento máximo de um bloco de madeira - tora cônica

Exemplo 2 - Calcular o volume do bloco máximo e o rendimento em madeira serrada de uma tora cônica com as seguintes dimensões: $D_1 = 25$ cm; $D_2 = 20$ cm; $C_2 = 20$ cm.

Solução:

-
$$\mathbf{a} = (D_2/\sqrt{2}) = 20/\sqrt{2} = 14,14 \text{ cm} = 0,1414\text{m}$$

-
$$V_{\text{bloco máx.}} = a^2 \ x \ c = (0,1414 \ m)^2 \ x \ 2,50 \ m = \textbf{0,049985} \ \textbf{m}^3$$

-
$$V_{tora}$$
 = { π ($D^2_1 + D^2_2$) / 8}x c = { π (0,25 2 + 0,2 2)/8}x 2,50m = 0,100629 m^3

- Rend = (
$$V_{bloco\ m\acute{a}x}$$
 / V_{tora}) x 100 = (0,049985 m³/0,100629 m³) x 100 = 49,68% ~ 50%

5.3 Exercícios para resolver

- 1) Calcular o volume do bloco máximo de uma tora cilíndrica sem casca com as seguintes dimensões: D = 14cm e c = 1,80m.
- 2) Calcular o volume do bloco máximo de uma tora cônica sem casca com as seguintes dimensões: $D_1 = 20$ cm; $D_2 = 16$ cm; c = 2,20 m.
- 3) Calcular o volume do bloco máximo e o rendimento em madeira de uma tora cilíndrica sem casca com as seguintes dimensões: D = 14cm e c = 2,40m.
- 4) Calcular o volume do bloco máximo e o rendimento em madeira de uma tora cônica sem casca com as seguintes dimensões: $D_1 = 25$ cm; $D_2 = 20$ cm; c = 2,50 m.

