



# Нелинейная задача





# Нелинейная задача

$$a(x) = \theta_0 + \theta_1 x_1$$







$$a(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_1^2$$



$$a(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_1^2 + \theta_3 x_1^3$$

#### Для регрессии с двумя признаками

Линейная модель (полином степени 1)

$$a(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

Квадратичная модель (полином степени 2)

$$a(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2$$

Кубическая модель (полином степени 3)

$$a_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2 + \theta_6 x_1^3 + \theta_7 x_2^3 + \theta_8 x_1^2 x_2 + \theta_8 x_1 x_2^2$$

#### Для регрессии с двумя признаками

Линейная модель (полином степени 1)

$$a(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

Квадратичная модель (полином степени 2)

$$a(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2$$

Кубическая модель (полином степени 3)

$$a_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2 + \theta_6 x_1^3 + \theta_7 x_2^3 + \theta_8 x_1^2 x_2 + \theta_8 x_1 x_2^2$$

#### Для регрессии с двумя признаками

Линейная модель (полином степени 1)

$$a(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

Квадратичная модель (полином степени 2)

$$a(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2$$

Кубическая модель (полином степени 3)

$$a_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2 + \theta_5 x_1 x_2 + \theta_6 x_1^3 + \theta_7 x_2^3 + \theta_8 x_1^2 x_2 + \theta_8 x_1 x_2^2$$

$$\theta = [0.98]$$



$$\theta = [-1.28, 0.42]$$



$$\theta = [7.42, -27.13, 20.25]$$



$$\theta = [13.6, -63.74, 85.1, -35.26]$$



$$\theta = [45.78, -621.25, 3675.67, -11844.29, 21978.15, -23449.19, 13375.74, -3160.86]$$



$$\theta = [6.64e + 01, -1.43e + 03, 1.44e + 04, -8.18e + 04 \ 2.80e + 05, -5.99e + 05, 8.09e + 05, -6.69e + 05, 3.09e + 05, -6.10e + 04]$$



$$a(x) = 0.5x_0 + 2397432x_1 - 83292139x_2 + \cdots$$

Эмпирическое наблюдение

Большие коэффициенты

$$\theta = [0.98]$$

$$\theta = [-1.28, 0.42]$$

$$\theta = [7.42, -27.13, 20.25]$$

$$\theta = [13.6, -63.74, 85.1, -35.26]$$

$$\theta = [45.78, -621.25, 3675.67, -11844.29, 21978.15, -23449.19, 13375.74, -3160.86]$$

$$\theta = [6.64e + 01, -1.43e + 03, 1.44e + 04, -8.18e + 04 \ 2.80e + 05, -5.99e + 05, 8.09e + 05, -6.69e + 05, 3.09e + 05, -6.10e + 04]$$

**Интерполяция** — **С**пособ выбрать из семейства функций ту, которая проходит через заданные точки. предсказание поведения функции вне интервала



**Регрессия** — Способ выбрать из семейства функций ту, которая минимизирует функцию потерь. Последняя характеризует насколько сильно пробная функция отклоняется от значений в заданных точках.



https://habr.com/ru/articles/514818/



### Регуляризация

#### Симптом переобучения

Большие коэффициенты

### Как бороться с переобучением

Будем штрафовать за большие коэффиценты!



$$L: (a(x_i) - y_i)^2$$

$$Q(\mathbf{a}, \mathbb{X}) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 \to \min_{\theta}$$

$$\|\theta\|_{2}^{2} = \theta_{1}^{2} + \theta_{2}^{2} + \dots + \theta_{n}^{2}$$

$$L2 = \lambda \|\theta\|^{2}$$

$$Q(\mathbf{a}, \mathbb{X}) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 \to \min_{\theta}$$

$$L: (a(x_i) - y_i)^2$$

$$Q(a, \mathbb{X}) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 \to \min_{\theta}$$

$$\|\theta\|_{2}^{2} = \theta_{1}^{2} + \theta_{2}^{2} + \dots + \theta_{n}^{2}$$

$$L2 = \lambda \|\theta\|^{2}$$

$$Q(\mathbf{a}, \mathbb{X}) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + \frac{\lambda \|\theta\|_2}{\theta} \to \min_{\theta}$$

$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + \lambda \|\theta\|_2 \to \min_{\theta}$$



$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + \lambda \|\theta\|_2 \to \min_{\theta}$$

Если  $\lambda$  очень маленькая, то веса будут большими



$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + \lambda \|\theta\|_2 \to \min_{\theta}$$

Если  $\lambda$  очень большая, то веса будут маленькими



$$Q(\mathbf{a}, \mathbb{X}) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + \lambda \|\theta\|_2 \to \min_{\theta}$$



$$L : (a(x^{(i)}) - y^{(i)})^{2}$$

$$Q(a, \mathbb{X}) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_{i}) - y_{i})^{2} \to \min_{\theta}$$

$$\|\theta\|_{1} = |\theta_{1}| + |\theta_{2}| + \dots + |\theta_{n}|$$

$$L1 = \lambda \|\theta\|_{1}$$

$$Q(\mathbf{a}, \mathbb{X}) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + \lambda \|\theta\|_1 \to \min_{\theta}$$

$$Q(\mathbf{a}, \mathbb{X}) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + \lambda \|\theta\|_1 \to \min_{\theta}$$

Если  $\lambda$  маленькая, то веса будут большими



$$Q(\mathbf{a}, \mathbb{X}) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + \lambda \|\theta\|_1 \to \min_{\theta}$$

Если  $\lambda$  большая, то веса будут маленькие



$$Q(\mathbf{a}, \mathbb{X}) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + \lambda \|\theta\|_1 \to \min_{\theta}$$

Если  $\lambda$  большая, то веса будут маленькими, а могут быть нулевыми



$$Q(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + \lambda \|\theta\|_1 \to \min_{\theta}$$



## Регуляризация L1+L2 (Elastic Net)

$$L: (a_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$Q(\mathbf{a}, \mathbb{X}) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 \to \min_{\theta}$$



$$\|\theta\|_{2}^{2} = \theta_{1}^{2} + \theta_{2}^{2} + \dots + \theta_{n}^{2}$$

$$\|\theta\|_{1} = |\theta_{1}| + |\theta_{2}| + \dots + |\theta_{n}|$$

$$L1 = \lambda_{1} \|\theta\|_{1} \qquad L2 = \lambda_{2} \|\theta\|^{2}$$
Elastic Net= L1+L2

$$Q(\mathbf{a}, \mathbb{X}) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + \lambda_1 \|\theta\|_1 + \lambda_2 \|\theta\|_2 \to \min_{\theta}$$

# Регуляризация L1+L2 (Elastic Net)

$$Q(\mathbf{a}, \mathbb{X}) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + \lambda_1 \|\theta\|_1 + \lambda_2 \|\theta\|_2 \to \min_{\theta}$$



$$Q(\mathbf{a}, \mathbb{X}) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + \frac{0}{\|\theta\|_1} + \lambda_2 \|\theta\|_2 \to \min_{\theta}$$

Регуляризация L2 (Ridge)

$$Q(\mathbf{a}, \mathbb{X}) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + \lambda_1 \|\theta\|_1 + 0 \|\theta\|_2 \to \min_{\theta}$$

Регуляризация L1 (Lasso)

## Регуляризация L1+L2 (Elastic Net)

$$Q(\mathbf{a}, \mathbb{X}) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + \lambda_1 \|\theta\|_1 + \lambda_2 \|\theta\|_2 \to \min_{\theta}$$





# Разделение данных



|   | bedrooms | bathrooms | sqft_living | sqft_lot | floors   | price          |
|---|----------|-----------|-------------|----------|----------|----------------|
| 0 | 3        | 1.000000  | 1180        | 5650     | 1.000000 | 221900.000000  |
| 1 | 3        | 2.250000  | 2570        | 7242     | 2.000000 | 538000.000000  |
| 2 | 2        | 1.000000  | 770         | 10000    | 1.000000 | 180000.000000  |
| 3 | 4        | 3.000000  | 1960        | 5000     | 1.000000 | 604000.000000  |
| 4 | 3        | 2.000000  | 1680        | 8080     | 1.000000 | 510000.000000  |
| 5 | 4        | 4.500000  | 5420        | 101930   | 1.000000 | 1225000.000000 |
| 6 | 3        | 2.250000  | 1715        | 6819     | 2.000000 | 257500.000000  |
| 7 | 3        | 1.500000  | 1060        | 9711     | 1.000000 | 291850.000000  |
| 8 | 3        | 1.000000  | 1780        | 7470     | 1.000000 | 229500.000000  |
| 9 | 3        | 2.500000  | 1890        | 6560     | 2.000000 | 323000.000000  |



### Метрики качества в задачах регрессии

**Фунционал ошибки** — функция, которую минимизируют в процессе обучения модели для нахождения незвестных параметров

**Метрика качества** – функция, которую используют для оценки качества построенной модели.

# Метрики качества в задачах регрессии

Что такое метрики качества?



#### Среднеквадратичная ошибка (Mean Squared Error)

MSE рассчитывается по формуле:

$$MSE(a, \mathbb{X}) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2$$

 $\ell$  - количество наблюдений, по которым строится модель

 $y_{i-}$  фактическое значение

# Среднеквадратичная ошибка (Mean Squared Error)

MSE рассчитывается по формуле:

$$MSE(a, \mathbb{X}) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2$$

Минусы:

По величине метрики не понятно она хорошая или плохая

Единицы измерения не сохраняются

MSE очень чувствительна к выбросам

# Корень из среднеквадратичной ошибки (Root Mean Squared Error)

RMSE рассчитывается по формуле:

$$RMSE(a, \mathbb{X}) = \sqrt{\frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2}$$

 $\ell$  - количество наблюдений, по которым строится модель

 $y_{i-}$  фактическое значение

# Корень из среднеквадратичной ошибки (Root Mean Squared Error)

RMSE рассчитывается по формуле:

$$RMSE(a, \mathbb{X}) = \sqrt{\frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2}$$

Минусы:

По величине метрики не понятно она хорошая или плохая

# Коэффициент детерминации $\mathbb{R}^2$

 $R^2$  рассчитывается по формуле:

$$R^{2}(a, \mathbb{X}) = 1 - \frac{\frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_{i}) - y_{i})^{2}}{\frac{1}{\ell} \sum_{i=1}^{\ell} (y_{i} - \overline{y})^{2}}$$

 $\ell$  - количество наблюдений

 $y_{i-}$  фактическое значение

 $a(x_i)$  предсказания алгоритма

$$\overline{y} = \frac{1}{\ell} \sum_{i=1}^{\ell} y_i$$

# Коэффициент детерминации $\mathbb{R}^2$

 $R^2$  рассчитывается по формуле:

$$R^{2}(a, \mathbb{X}) = 1 - \frac{\frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_{i}) - y_{i})^{2}}{\frac{1}{\ell} \sum_{i=1}^{\ell} (y_{i} - \overline{y})^{2}}$$

Коэффициент детерминации это доля дисперсии целевой переменной, объясняемая моделью.

Чем ближе  $R^2$  к 1, тем лучше модель объясняет данные

Чем ближе  $R^2$  к 0, тем ближе модель к константному предсказанию

Отрицательный  $R^2$  говорит о том, что модель плохо решает задачу

# Средняя абсолютная ошибка (Mean Absolute Error)

MAE рассчитывается по формуле:

$$MAE(a, \mathbb{X}) = \frac{1}{\ell} \sum_{i=1}^{\ell} |a(x_i) - y_i|$$

 $\ell$  - количество наблюдений, по которым строится модель

 $y_{i-}$  фактическое значение

# Средняя абсолютная ошибка (Mean Absolute Error)

MAE рассчитывается по формуле:

$$MAE(a, \mathbb{X}) = \frac{1}{\ell} \sum_{i=1}^{\ell} |a(x_i) - y_i|$$

Минусы:

По величине метрики не понятно она хорошая или плохая

# Средняя абсолютная процентная ошибка (Mean Absolute Percentage Error)

MAEP рассчитывается по формуле:

$$MAEP(a, \mathbb{X}) = \frac{1}{\ell} \sum_{i=1}^{\ell} \frac{|a(x_i) - y_i|}{|y_i|}$$

 $\ell$  - количество наблюдений, по которым строится модель

 $y_{i-}$  фактическое значение

# Средняя абсолютная процентная ошибка (Mean Absolute Percentage Error)

MAEP рассчитывается по формуле:

$$MAEP(a, \mathbb{X}) = \frac{1}{\ell} \sum_{i=1}^{\ell} \frac{|a(x_i) - y_i|}{|y_i|}$$

Минусы:

Метрика не симметрична относительно ошибок

# Симметричная средняя абсолютная процентная ошибка (Symmetric Mean Absolute Percentage Error)

SMAEP рассчитывается по формуле:

$$SMAEP(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} \frac{|a(x_i) - y_i|}{\frac{|y_i| + |a(x_i)|}{2}}$$

 $\ell$  - количество наблюдений, по которым строится модель

 $y_{i-}$  фактическое значение

# Симметричная средняя абсолютная процентная ошибка (Symmetric Mean Absolute Percentage Error)

SMAEP рассчитывается по формуле:

$$SMAEP(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} \frac{|a(x_i) - y_i|}{\frac{|y_i| + |a(x_i)|}{2}}$$

Минусы:

не полностью симметрична