WHAT IS CLAIMED IS:

1	1. An antenna array system, comprising:
2	a plurality of antenna elements organized in an array and configured to form a
3	non-planar shaped antenna array surface; and
4	switching circuitry configured to switch each of the plurality of antenna
5	elements on or off based on control signals;
6	wherein the antenna beam direction can be steered in a first direction by
7	switching on a first set of antenna elements, and wherein the antenna beam direction can be
8	steered in a second direction by switching on a second set of antenna elements.
1	2. The antenna array system as recited in claim 1, wherein the antenna
2	beam direction can be steered in a plurality of directions by switching on a set of antenna
3	elements for each of the plurality of directions.
1	3. The antenna array system as recited in claim 1, wherein the horn
2	elements are selected from the group consisting of cylindrical horn antenna elements, conical
3	horn antenna elements, step-cylinder horn antenna elements, dipole antenna elements, helical
4	antenna elements and slot antenna elements.
1	4. The antenna array system as recited in claim 1, wherein the antenna
2	elements are symmetrically located within the antenna array.
1	5. The antenna array system as recited in claim 1, wherein the antenna
2	elements evenly spaced within the antenna array.
1	6. The antenna array system as recited in claim 1, wherein the antenna
2	elements are the same size.
1	7. The antenna array system as recited in claim 1, wherein the non-planar
2	shaped antenna array surface comprises a non-planar shape selected from the group
3	consisting of a spherical convex shape, a spherical concave shape, a parabolic convex shape,
4	a parabolic concave shape, an ellipsoidal convex shape, an ellipsoidal concave shape, a
5	saddle shape, or an airfoil shape.

The antenna array system as recited in claim 1, wherein the antenna 1 8. 2 array is a transmit antenna array, a receive antenna array, or a transmit and receive antenna 3 array. 9. The antenna array system as recited in claim 1, wherein the antenna 1 array comprises M-number of antenna elements, and wherein the switching circuitry is 2 configured to control N-number of the M-number of antenna elements at a given time, the 3 switching circuit comprising: 4 5 a signal splitter adapted to split a signal into N-number of signals; a switching matrix comprising NxM-number of switches; and 6 7 switch control circuitry adapted to control the switching matrix so that a 8 specified set of the N-number of the M-number of antenna elements are switched on. 10. The antenna array system as recited in claim 9, wherein the switching 1 2 matrix comprises MEMS switches. 1 11. The antenna array system as recited in claim 9, wherein the switching circuit further comprises a signal amplifier adapted to amplify the signal prior to the signal 2 3 entering the signal splitter. 1 12. The antenna array system as recited in claim 9, wherein the switching 2 circuit further comprises a filter/diplexer adapted to separate transmit and receive signals 3 to/from the antenna array. 1 13. The antenna array system as recited in claim 1, wherein the antenna array system is adapted for use on ground stations, air vehicles, water vehicles, ground 2 3 vehicles or space vehicles. 1 14. The antenna array system as recited in claim 1, wherein the antenna 2 array comprises a hexagonal array of antenna elements. 1 15. The antenna array system as recited in claim 14, wherein the hexagonal array comprises a plurality of hexagonal antenna element clusters abutted together to form 2 3 the hexagonal array, each hexagonal antenna element cluster comprising X-number of

antenna elements configured in a hexagonal arrangement.

4

1	16. The antenna array system as recited in claim 15, wherein the antenna
2	array comprises N-number of the hexagonal antenna element clusters, and wherein the
3	switching circuitry is configured to control X-number of antenna elements at a given time,
4	the switching circuit comprising:
5	a signal splitter adapted to split a signal into X-number of signals;
6	a switching matrix comprising X-number of 1xN switches; and
7	switch control circuitry adapted to control the switching matrix so that a
8	contiguous set of the X-number of the antenna elements are enabled.
1	17. The antenna array system as recited in claim 16, wherein the 1xN
2	switches comprise multiplexers.
1	18. The antenna array system as recited in claim 16, wherein the antenna
2	array comprises a total of M-number of antenna elements, and wherein the 1xN switches
3	comprise M-number of on/off switches.
1	19. A spacecraft, comprising:
2	an antenna array system, comprising:
3	a plurality of antenna elements organized in an array and configured to
4	form a non-planar shaped antenna array surface; and
5	switching circuitry configured to switch each of the plurality of
6	antenna elements on or off based on control signals;
7	wherein the antenna beam direction can be steered in a first direction
8	by switching on a first set of antenna elements, and wherein the antenna beam
9	direction can be steered in a second direction by switching on a second set of antenna
10	elements.
1	20. The spacecraft as recited in claim 19, wherein the antenna beam
2	direction can be steered in a plurality of directions by switching on a set of antenna elements
3	for each of the plurality of directions.
1	21. The spacecraft as recited in claim 19, wherein the horn elements are
2	selected from the group consisting of cylindrical horn antenna elements, conical horn antenna
3	elements, step-cylinder horn antenna elements, dipole antenna elements, helical antenna
4	elements and slot antenna elements

1 22. The spacecraft as recited in claim 19, wherein the antenna elements are 2 symmetrically located within the antenna array. 1 23. The spacecraft as recited in claim 19, wherein the antenna elements 2 evenly spaced within the antenna array. 1 24. The spacecraft as recited in claim 19, wherein the antenna elements are 2 the same size. 25. The spacecraft as recited in claim 19, wherein the non-planar shaped 1 2 antenna array surface comprises a non-planar shape selected from the group consisting of a spherical convex shape, a spherical concave shape, a parabolic convex shape, a parabolic 3 4 concave shape, an ellipsoidal convex shape, an ellipsoidal concave shape, a saddle shape, or 5 an airfoil shape. 26. 1 The spacecraft as recited in claim 19, wherein the antenna array is a 2 transmit antenna array, a receive antenna array, or a transmit and receive antenna array. 1 27. The spacecraft as recited in claim 19, wherein the antenna array 2 comprises M-number of antenna elements, and wherein the switching circuitry is configured 3 to control N-number of the M-number of antenna elements at a given time, the switching 4 circuit comprising: 5 a signal splitter adapted to split a signal into N-number of signals; a switching matrix comprising NxM-number of switches; and 6 7 switch control circuitry adapted to control the switching matrix so that a 8 specified set of the N-number of the M-number of antenna elements are switched on. 28. 1 The spacecraft as recited in claim 27, wherein the switching matrix 2 comprises MEMS switches. 1 29. The spacecraft as recited in claim 27, wherein the switching circuit 2 further comprises a signal amplifier. 1 30. The spacecraft as recited in claim 27, wherein the switching circuit 2 further comprises a filter/diplexer adapted to separate transmit and receive signals to/from the 3 antenna array.

31. The spacecraft as recited in claim 19, wherein the antenna array 1 2 comprises a hexagonal array of antenna elements. 32. 1 The spacecraft as recited in claim 31, wherein the hexagonal array 2 comprises a plurality of hexagonal antenna element clusters abutted together to form the 3 hexagonal array, each hexagonal antenna element cluster comprising X-number of antenna 4 elements configured in a hexagonal arrangement. 33. The spacecraft as recited in claim 32, wherein the antenna array 1 2 comprises N-number of the hexagonal antenna element clusters, and wherein the switching 3 circuitry is configured to control X-number of antenna elements at a given time, the switching circuit comprising: 4 5 a signal splitter adapted to split a signal into X-number of signals; 6 a switching matrix comprising X-number of 1xN switches; and 7 switch control circuitry adapted to control the switching matrix so that a 8 contiguous set of the X-number of the antenna elements are enabled. 34. 1 The spacecraft as recited in claim 33, wherein the 1xN switches 2 comprise multiplexers. 1 35. The spacecraft as recited in claim 33, wherein the antenna array

comprises a total of M-number of antenna elements, and wherein the 1xN switches comprise

2

3

M-number of on/off switches.