1. Prérequis mathématiques

Définition : ensemble ordonné

• Une relation binaire sur un ensemble E est un sous ensemble de $E \times E$.

1. Prérequis mathématiques

- Une relation binaire sur un ensemble E est un sous ensemble de $E \times E$.
- Une relation d'ordre ${\cal R}$ sur un ensemble E est une relation binaire sur E ayant les 3 propriétés suivantes :

- Une relation binaire sur un ensemble E est un sous ensemble de $E \times E$.
- Une relation d'ordre $\mathcal R$ sur un ensemble E est une relation binaire sur E ayant les 3 propriétés suivantes :
 - **1** réfléxive : pour tout $x \in E, x \mathcal{R} x$.

- Une relation binaire sur un ensemble E est un sous ensemble de $E \times E$.
- Une relation d'ordre $\mathcal R$ sur un ensemble E est une relation binaire sur E ayant les 3 propriétés suivantes :
 - **1** réfléxive : pour tout $x \in E, x \mathcal{R} x$.
 - **4** antisymétrique : pour tout $(x,y) \in E^2$, si ERxy et $y \mathcal{R} z$ alors $y \mathcal{R} z$

- Une relation binaire sur un ensemble E est un sous ensemble de $E \times E$.
- Une relation d'ordre $\mathcal R$ sur un ensemble E est une relation binaire sur E ayant les 3 propriétés suivantes :
 - **1** réfléxive : pour tout $x \in E, x \mathcal{R} x$.
 - **2** antisymétrique : pour tout $(x,y) \in E^2$, si ERxy et $y \mathcal{R} z$ alors $y \mathcal{R} z$
 - **3** transitive: pour tout $(x, y, z) \in E^3$, si $x \mathcal{R} y$ et $y \mathcal{R} z$ alors $x \mathcal{R} z$.

- Une relation binaire sur un ensemble E est un sous ensemble de $E \times E$.
- Une relation d'ordre $\mathcal R$ sur un ensemble E est une relation binaire sur E ayant les 3 propriétés suivantes :
 - **1** réfléxive : pour tout $x \in E, x \mathcal{R} x$.
 - **2** antisymétrique : pour tout $(x,y) \in E^2$, si ERxy et $y \mathcal{R} z$ alors $y \mathcal{R} z$
 - **1** *transitive*: pour tout $(x, y, z) \in E^3$, si $x \mathcal{R} y$ et $y \mathcal{R} z$ alors $x \mathcal{R} z$.

On dit alors que (E, \mathcal{R}) est un ensemble ordonné.

- Une relation binaire sur un ensemble E est un sous ensemble de $E \times E$.
- Une relation d'ordre $\mathcal R$ sur un ensemble E est une relation binaire sur E ayant les 3 propriétés suivantes :
 - **1** réfléxive : pour tout $x \in E, x \mathcal{R} x$.
 - **2** antisymétrique : pour tout $(x,y) \in E^2$, si ERxy et $y \mathcal{R} z$ alors $y \mathcal{R} z$
 - **1** *transitive*: pour tout $(x, y, z) \in E^3$, si $x \mathcal{R} y$ et $y \mathcal{R} z$ alors $x \mathcal{R} z$.

On dit alors que (E, \mathcal{R}) est un ensemble ordonné.

• Soit (E, \mathcal{R}) , un ensemble ordonné, On dit que \mathcal{R} est un ordre total si pour tout $x, y \in E^2$, $x \mathcal{R} y$ ou $y \mathcal{R} x$, sinon \mathcal{R} est un ordre partiel.

Définition : ensemble ordonné

- Une relation binaire sur un ensemble E est un sous ensemble de $E \times E$.
- Une relation d'ordre $\mathcal R$ sur un ensemble E est une relation binaire sur E ayant les 3 propriétés suivantes :
 - réfléxive : pour tout $x \in E, x \mathcal{R} x$.
 - **a** antisymétrique: pour tout $(x,y) \in E^2$, si ERxy et $y \mathcal{R} z$ alors $y \mathcal{R} z$
 - **3** transitive: pour tout $(x, y, z) \in E^3$, si $x \mathcal{R} y$ et $y \mathcal{R} z$ alors $x \mathcal{R} z$.

On dit alors que (E, \mathcal{R}) est un ensemble ordonné.

• Soit (E, \mathcal{R}) , un ensemble ordonné, On dit que \mathcal{R} est un ordre total si pour tout $x, y \in E^2$, $x \mathcal{R} y$ ou $y \mathcal{R} x$, sinon \mathcal{R} est un ordre partiel.

Exemples

• (\mathbb{N}, \leq) est un ensemble ordonné.

Définition : ensemble ordonné

- Une relation binaire sur un ensemble E est un sous ensemble de $E \times E$.
- Une relation d'ordre \mathcal{R} sur un ensemble E est une relation binaire sur E ayant les 3 propriétés suivantes :
 - réfléxive : pour tout $x \in E, x \mathcal{R} x$.
 - **a** antisymétrique : pour tout $(x,y) \in E^2$, si ERxy et $y \mathcal{R} z$ alors $y \mathcal{R} z$
 - **1** *transitive*: pour tout $(x, y, z) \in E^3$, si $x \mathcal{R} y$ et $y \mathcal{R} z$ alors $x \mathcal{R} z$.
 - On dit alors que (E, \mathcal{R}) est un ensemble ordonné.
- Soit (E, \mathcal{R}) , un ensemble ordonné, On dit que \mathcal{R} est un ordre total si pour tout $x, y \in E^2$, $x \mathcal{R} y$ ou $y \mathcal{R} x$, sinon \mathcal{R} est un ordre partiel.

Exemples

- (\mathbb{N}, \leq) est un ensemble ordonné.
- En notant $\mathcal P$ l'ensemble des parties d'un ensemble E, $(\mathcal P(E),\subset)$ est un ensemble ordonné.

1. Prérequis mathématiques

Remarques

Remarques

- A toute relation d'ordre \preccurlyeq est associé l'*ordre strict* correspondant défini par $x \prec y$ si et seulement si $x \preccurlyeq y$ et $x \neq y$.

Remarques

- A toute relation d'ordre \preccurlyeq est associé l'*ordre strict* correspondant défini par $x \prec y$ si et seulement si $x \preccurlyeq y$ et $x \neq y$.

Définitions: prédécesseur, successeur

Soit (E, \preceq) un ensemble ordonné et x, y deux éléments de E

Remarques

- A toute relation d'ordre \preccurlyeq est associé l'*ordre strict* correspondant défini par $x \prec y$ si et seulement si $x \preccurlyeq y$ et $x \neq y$.

Définitions: prédécesseur, successeur

Soit (E, \preceq) un ensemble ordonné et x, y deux éléments de E

• Si $x \leq y$, x est un prédécesseur de y et y est un successeur de x.

Remarques

- A toute relation d'ordre \preccurlyeq est associé l'*ordre strict* correspondant défini par $x \prec y$ si et seulement si $x \preccurlyeq y$ et $x \neq y$.

Définitions: prédécesseur, successeur

Soit (E, \preccurlyeq) un ensemble ordonné et x, y deux éléments de E

- Si $x \leq y$, x est un prédécesseur de y et y est un successeur de x.
- Si $x \prec y$ et s'il n'existe pas d'éléments $z \in E$ tel que $x \prec z \prec y$, on dit que y est un successeur immédiat de x (ou que x est un prédécesseur immédiat de y).

Exemple

Déterminer, lorsqu'ils existent les successeurs et prédécesseur immédiat de \boldsymbol{x} dans les cas suivants

• (\mathbb{N}, \leqslant) et $x \in \mathbb{N}$

Exemple

Déterminer, lorsqu'ils existent les successeurs et prédécesseur immédiat de \boldsymbol{x} dans les cas suivants

- (\mathbb{N}, \leqslant) et $x \in \mathbb{N}$
- (\mathbb{Q}, \leqslant) et $x \in \mathbb{Q}$

Exemple

Déterminer, lorsqu'ils existent les successeurs et prédécesseur immédiat de \boldsymbol{x} dans les cas suivants

- (\mathbb{N}, \leqslant) et $x \in \mathbb{N}$
- (\mathbb{Q}, \leqslant) et $x \in \mathbb{Q}$
- (E, \subset) avec $E = \{a, b, c, d\}$ et $x = \{a\}$.

1. Prérequis mathématiques

Définition : élément minimal

Soit (E, \preccurlyeq) un ensemble ordonné et F une partie de E, on dit que $m \in F$, est minimal dans F s'il n'existe pas d'éléments x dans F tel que $x \prec m$.

Définition : élément minimal

Soit (E, \preccurlyeq) un ensemble ordonné et F une partie de E, on dit que $m \in F$, est minimal dans F s'il n'existe pas d'éléments x dans F tel que $x \prec m$.

Exercices

Déterminer le (ou les éléments minimaux lorsqu'ils existent) dans les cas suivants :

•
$$E = (\mathbb{N}, \leqslant)$$
, et $F = \mathbb{N}$.

Définition : élément minimal

Soit (E, \preccurlyeq) un ensemble ordonné et F une partie de E, on dit que $m \in F$, est minimal dans F s'il n'existe pas d'éléments x dans F tel que $x \prec m$.

Exercices

Déterminer le (ou les éléments minimaux lorsqu'ils existent) dans les cas suivants :

- $E = (\mathbb{N}, \leqslant)$, et $F = \mathbb{N}$.
- $F = (\mathbb{Z}, \leqslant)$ et $F = \mathbb{Z}$.

Définition : élément minimal

Soit (E, \preccurlyeq) un ensemble ordonné et F une partie de E, on dit que $m \in F$, est minimal dans F s'il n'existe pas d'éléments x dans F tel que $x \prec m$.

Exercices

Déterminer le (ou les éléments minimaux lorsqu'ils existent) dans les cas suivants :

- $E = (\mathbb{N}, \leqslant)$, et $F = \mathbb{N}$.
- $F = (\mathbb{Z}, \leqslant)$ et $F = \mathbb{Z}$.
- $(P(E), \subset)$ et $F = \mathcal{P}(E) \setminus \{\varnothing\}$ où $E = \{a, b, c, d\}$.

1. Prérequis mathématiques

Ordre sur un produit cartésien

Etant deux ensembles ordonnés (E, \preccurlyeq_E) et (F, \preccurlyeq_F) , on définit sur $E \times F$:

Ces définitions se généralisent à un produit cartésien de n ensembles.

Ordre sur un produit cartésien

Etant deux ensembles ordonnés (E, \preceq_E) et (F, \preceq_F) , on définit sur $E \times F$:

• La relation \preccurlyeq_p par $(e,f) \preccurlyeq_p (e',f')$ si et seulement si $e \preccurlyeq_E e'$ et $f \preccurlyeq_F f'$, \preccurlyeq_p est une relation d'ordre sur $E \times F$ appelé ordre produit.

Ces définitions se généralisent à un produit cartésien de n ensembles.

Ordre sur un produit cartésien

Etant deux ensembles ordonnés (E, \preceq_E) et (F, \preceq_F) , on définit sur $E \times F$:

- La relation \preccurlyeq_p par $(e,f) \preccurlyeq_p (e',f')$ si et seulement si $e \preccurlyeq_E e'$ et $f \preccurlyeq_F f'$, \preccurlyeq_p est une relation d'ordre sur $E \times F$ appelé ordre produit.
- La relation \preccurlyeq_l par $(e,f) \preccurlyeq_l (e',f')$ si et seulement si $e \preccurlyeq_E e'$ ou (e=e') et $f \preccurlyeq_f f'$, $f \preccurlyeq_l$ est une relation d'ordre sur $E \times F$ appelé ordre lexicographique.

Ces définitions se généralisent à un produit cartésien de n ensembles.

Ordre sur un produit cartésien

Etant deux ensembles ordonnés (E, \preceq_E) et (F, \preceq_F) , on définit sur $E \times F$:

- La relation \preccurlyeq_p par $(e,f) \preccurlyeq_p (e',f')$ si et seulement si $e \preccurlyeq_E e'$ et $f \preccurlyeq_F f'$, \preccurlyeq_p est une relation d'ordre sur $E \times F$ appelé ordre produit.
- La relation \preccurlyeq_l par $(e, f) \preccurlyeq_l (e', f')$ si et seulement si $e \preccurlyeq_E e'$ ou (e = e') et $f \preccurlyeq_f f'$, $f \preccurlyeq_l$ est une relation d'ordre sur $E \times F$ appelé ordre lexicographique.

Ces définitions se généralisent à un produit cartésien de n ensembles.

Exemple

Comparer (lorsque cela est possible) les couples suivants pour l'ordre produit et l'ordre lexicographique sur $(\mathbb{N},\leqslant)\times(\mathbb{N},\leqslant)$:

Ordre sur un produit cartésien

Etant deux ensembles ordonnés (E, \preceq_E) et (F, \preceq_F) , on définit sur $E \times F$:

- La relation \preccurlyeq_p par $(e,f) \preccurlyeq_p (e',f')$ si et seulement si $e \preccurlyeq_E e'$ et $f \preccurlyeq_F f'$, \preccurlyeq_p est une relation d'ordre sur $E \times F$ appelé ordre produit.
- La relation \leq_l par $(e, f) \leq_l (e', f')$ si et seulement si $e \leq_E e'$ ou (e = e') et $f \leq_f f'$, $f' \leq_l$ est une relation d'ordre sur $E \times F$ appelé ordre lexicographique.

Ces définitions se généralisent à un produit cartésien de n ensembles.

Exemple

Comparer (lorsque cela est possible) les couples suivants pour l'ordre produit et l'ordre lexicographique sur $(\mathbb{N}, \leqslant) \times (\mathbb{N}, \leqslant)$:

- \bullet (3,5) et (7,6)
- (3,5) et (7,4)
- (2,1) et (2,4)

2. Ordres bien fondés

Définition

Soit (E, \preccurlyeq) un ensemble ordonné, on dit que \preccurlyeq est un ordre bien fondé lorsqu'il n'existe pas de suites d'éléments strictement décroissantes d'éléments de E.

2. Ordres bien fondés

Définition

Soit (E, \preccurlyeq) un ensemble ordonné, on dit que \preccurlyeq est un ordre bien fondé lorsqu'il n'existe pas de suites d'éléments strictement décroissantes d'éléments de E.

Exemple

L'ordre usuel sur N est bien fondé.

2. Ordres bien fondés

Définition

Soit (E, \preccurlyeq) un ensemble ordonné, on dit que \preccurlyeq est un ordre bien fondé lorsqu'il n'existe pas de suites d'éléments strictement décroissantes d'éléments de E.

Exemple

- L'ordre usuel sur N est bien fondé.
- ullet L'ordre usuel sur $\mathbb Z$ n'est pas bien fondé.

2. Ordres bien fondés

Caractérisation d'un ordre bien fondé

Soit (E, \preccurlyeq) un ensemble ordonné, l'ordre \preccurlyeq est bien fondé si et seulement si tout partie non vide de E admet un plus petit élément.

Variant

La notion d'ordre bien fondé permet d'étendre la définition d'un variant. En effet, pour prouver la terminaison d'une boucle, on peut exhiber une quantité à valeur dans ensemble E muni d'un ordre bien fondé \preccurlyeq et strictement décroissante à chaque passage dans la boucle.