Lecture 4

Topics:

- 1. Universal and Existential Quantification
- 2. De Morgan's Law
- 3. Nested Quantifiers
- 4. Applying De Morgan's Law in Nested Quantifier

1.4.3 Quantifiers

Definition 1

The *universal quantification* of P(x) is the statement

"P(x) for all values of x in the domain."

The notation $\forall x P(x)$ denotes the universal quantification of P(x). Here \forall is called the **universal quantifier**. We read $\forall x P(x)$ as "for all x P(x)" or "for every x P(x)." An element for which P(x) is false is called a **counterexample** to $\forall x P(x)$.

TABLE 1 Quantifiers.			
Statement	When True?	When False?	
$\forall x P(x)$ $\exists x P(x)$	P(x) is true for every x . There is an x for which $P(x)$ is true.	There is an x for which $P(x)$ is false. $P(x)$ is false for every x .	

Definition 2

The *existential quantification* of P(x) is the proposition

"There exists an element x in the domain such that P(x)."

We use the notation $\exists x P(x)$ for the existential quantification of P(x). Here \exists is called the *existential quantifier*.

1.4.9 Negating Quantified Expressions

We will often want to consider the negation of a quantified expression. For instance, consider the negation of the statement

"Every student in your class has taken a course in calculus."

This statement is a universal quantification, namely,

$$\forall x P(x)$$
,

where P(x) is the statement "x has taken a course in calculus" and the domain consists of the students in your class. The negation of this statement is "It is not the case that every student in your class has taken a course in calculus." This is equivalent to "There is a student in your class who has not taken a course in calculus." And this is simply the existential quantification of the negation of the original propositional function, namely,

$$\exists x \, \neg P(x).$$

This example illustrates the following logical equivalence:

$$\neg \forall x P(x) \equiv \exists x \, \neg P(x).$$

Suppose we wish to negate an existential quantification. For instance, consider the proposition "There is a student in this class who has taken a course in calculus." This is the existential quantification

$$\exists x Q(x)$$
,

where Q(x) is the statement "x has taken a course in calculus." The negation of this statement is the proposition "It is not the case that there is a student in this class who has taken a course in calculus." This is equivalent to "Every student in this class has not taken calculus," which is just the universal quantification of the negation of the original propositional function, or, phrased in the language of quantifiers,

$$\forall x \neg Q(x).$$

This example illustrates the equivalence

$$\neg \exists x Q(x) \equiv \forall x \, \neg Q(x).$$

TABLE 2 De Morgan's Laws for Quantifiers.				
Negation	Equivalent Statement	When Is Negation True?	When False?	
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every x , $P(x)$ is false.	There is an x for which $P(x)$ is true.	
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false.	P(x) is true for every x .	

EXAMPLE 24 Express the statements "Some student in this class has visited Mexico" and "Every student in this class has visited either Canada or Mexico" using predicates and quantifiers.

We introduce M(x), which is the statement "x has visited Mexico." If the domain for x consists of the students in this class, we can translate this first statement as $\exists x M(x)$.

(Note that we are assuming the inclusive, rather than the exclusive, or here.) We let C(x) be "x has visited Canada." Following our earlier reasoning, we see that if the domain for x consists of the students in this class, this second statement can be expressed as $\forall x (C(x) \lor M(x))$.

Note that everything within the scope of a quantifier can be thought of as a propositional function. For example,

$$\forall x \exists y (x + y = 0)$$

is the same thing as $\forall x Q(x)$, where Q(x) is $\exists y P(x, y)$, where P(x, y) is x + y = 0.

EXAMPLE 1

Assume that the domain for the variables x and y consists of all real numbers. The statement

$$\forall x \forall y (x + y = y + x)$$

says that x + y = y + x for all real numbers x and y. This is the commutative law for addition of real numbers. Likewise, the statement

$$\forall x \exists y (x + y = 0)$$

says that for every real number x there is a real number y such that x + y = 0. This states that every real number has an additive inverse. Similarly, the statement

$$\forall x \forall y \forall z (x + (y + z) = (x + y) + z)$$

is the associative law for addition of real numbers.

EXAMPLE 2 Translate into English the statement

$$\forall x \forall y ((x > 0) \land (y < 0) \rightarrow (xy < 0)),$$

where the domain for both variables consists of all real numbers.

- **EXAMPLE 4** Let Q(x, y) denote "x + y = 0." What are the truth values of the quantifications $\exists y \forall x Q(x, y)$ and $\forall x \exists y Q(x, y)$, where the domain for all variables consists of all real numbers?
- **EXAMPLE 5** Let Q(x, y, z) be the statement "x + y = z." What are the truth values of the statements $\forall x \forall y \exists z Q(x, y, z)$ and $\exists z \forall x \forall y Q(x, y, z)$, where the domain of all variables consists of all real numbers?

Translate the statement "The sum of two positive integers is always positive" into a logical expression.

$$\forall x \forall y ((x > 0) \land (y > 0) \rightarrow (x + y > 0)),$$

where the domain for both variables consists of all integers.

$$\forall x \forall y (x + y > 0),$$

where the domain for both variables consists of all positive integers.

Translate the statement "Every real number except zero has a multiplicative inverse." (A multiplicative inverse of a real number x is a real number y such that xy = 1.)

Solution: We first rewrite this as "For every real number x except zero, x has a multiplicative inverse." We can rewrite this as "For every real number x, if $x \ne 0$, then there exists a real number y such that xy = 1." This can be rewritten as

$$\forall x ((x \neq 0) \to \exists y (xy = 1)).$$

EXAMPLE 8

(Requires calculus) Use quantifiers to express the definition of the limit of a real-valued function f(x) of a real variable x at a point a in its domain.

Solution: Recall that the definition of the statement

$$\lim_{x \to a} f(x) = L$$

is: For every real number $\epsilon > 0$ there exists a real number $\delta > 0$ such that $|f(x) - L| < \epsilon$ whenever $0 < |x - a| < \delta$. This definition of a limit can be phrased in terms of quantifiers by

$$\forall \epsilon \exists \delta \forall x (0 < |x - a| < \delta \rightarrow |f(x) - L| < \epsilon),$$

where the domain for the variables δ and ϵ consists of all positive real numbers and for x consists of all real numbers.

This definition can also be expressed as

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x (0 < |x - a| < \delta \rightarrow |f(x) - L| < \epsilon)$$

when the domain for the variables ϵ and δ consists of all real numbers, rather than just the positive real numbers. [Here, restricted quantifiers have been used. Recall that $\forall x > 0$ P(x) means that for all x with x > 0, P(x) is true.]

1.5.5 Translating from Nested Quantifiers into English

EXAMPLE 9 Translate the statement

$$\forall x (C(x) \lor \exists y (C(y) \land F(x, y)))$$

into English, where C(x) is "x has a computer," F(x, y) is "x and y are friends," and the domain for both x and y consists of all students in your school.

Solution: The statement says that for every student *x* in your school, *x* has a computer or there is a student *y* such that *y* has a computer and *x* and *y* are friends. In other words, every student in your school has a computer or has a friend who has a computer.

EXAMPLE 10 Translate the statement

$$\exists x \forall y \forall z ((F(x, y) \land F(x, z) \land (y \neq z)) \rightarrow \neg F(y, z))$$

into English, where F(a, b) means a and b are friends and the domain for x, y, and z consists of all students in your school.

Solution: We first examine the expression $(F(x, y) \land F(x, z) \land (y \neq z)) \rightarrow \neg F(y, z)$. This expression says that if students x and y are friends, and students x and z are friends, and furthermore, if y and z are not the same student, then y and z are not friends. It follows that the original statement, which is triply quantified, says that there is a student x such that for all students y and all students z other than y, if x and y are friends and x and z are friends, then y and z are not friends. In other words, there is a student none of whose friends are also friends with each other.

1.5.6 Translating English Sentences into Logical Expressions

EXAMPLE 11 Express the statement "If a person is female and is a parent, then this person is someone's mother" as a logical expression involving predicates, quantifiers with a domain consisting of all people, and logical connectives.

Solution: The statement "If a person is female and is a parent, then this person is someone's mother" can be expressed as "For every person x, if person x is female and person x is a parent, then there exists a person y such that person x is the mother of person y." We introduce the propositional functions F(x) to represent "x is female," P(x) to represent "x is a parent," and M(x, y) to represent "x is the mother of y." The original statement can be represented as

$$\forall x((F(x) \land P(x)) \rightarrow \exists y M(x, y)).$$

EXAMPLE 12 Express the statement "Everyone has exactly one best friend" as a logical expression involving predicates, quantifiers with a domain consisting of all people, and logical connectives.

Solution: The statement "Everyone has exactly one best friend" can be expressed as "For every person x, person x has exactly one best friend." Introducing the universal quantifier, we see that this statement is the same as " $\forall x$ (person x has exactly one best friend)," where the domain consists of all people.

To say that x has exactly one best friend means that there is a person y who is the best friend of x, and furthermore, that for every person z, if person z is not person y, then z is not the best friend of x. When we introduce the predicate B(x, y) to be the statement "y is the best friend of x," the statement that x has exactly one best friend can be represented as

$$\exists y (B(x, y) \land \forall z ((z \neq y) \to \neg B(x, z))).$$

EXAMPLE 13 Use quantifiers to express the statement "There is a woman who has taken a flight on every airline in the world."

Solution: Let P(w, f) be "w has taken f" and Q(f, a) be "f is a flight on a." We can express the statement as

$$\exists w \forall a \exists f (P(w,f) \land Q(f,a)),$$

1.5.7 Negating Nested Quantifiers

EXAMPLE 14

Extra Examples Express the negation of the statement $\forall x \exists y (xy = 1)$ so that no negation precedes a quantifier.

Solution: By successively applying De Morgan's laws for quantifiers in Table 2 of Section 1.4, we can move the negation in $\neg \forall x \exists y (xy = 1)$ inside all the quantifiers. We find that $\neg \forall x \exists y (xy = 1)$ is equivalent to $\exists x \neg \exists y (xy = 1)$, which is equivalent to $\exists x \forall y \neg (xy = 1)$. Because $\neg (xy = 1)$ can be expressed more simply as $xy \ne 1$, we conclude that our negated statement can be expressed as $\exists x \forall y (xy \ne 1)$.

EXAMPLE 15

Use quantifiers to express the statement that "There does not exist a woman who has taken a flight on every airline in the world."

Solution: This statement is the negation of the statement "There is a woman who has taken a flight on every airline in the world" from Example 13. By Example 13, our statement can be expressed as $\neg \exists w \forall a \exists f (P(w, f) \land Q(f, a))$, where P(w, f) is "w has taken f" and Q(f, a) is "f is a flight on a." By successively applying De Morgan's laws for quantifiers in Table 2 of Section 1.4 to move the negation inside successive quantifiers and by applying De Morgan's law for negating a conjunction in the last step, we find that our statement is equivalent to each of this sequence of statements:

$$\forall w \neg \forall a \exists f (P(w, f) \land Q(f, a)) \equiv \forall w \exists a \neg \exists f (P(w, f) \land Q(f, a))$$
$$\equiv \forall w \exists a \forall f \neg (P(w, f) \land Q(f, a))$$
$$\equiv \forall w \exists a \forall f (\neg P(w, f) \lor \neg Q(f, a)).$$

This last statement states "For every woman there is an airline such that for all flights, this woman has not taken that flight or that flight is not on this airline."

EXAMPLE 16 (Requires calculus) Use quantifiers and predicates to express the fact that $\lim_{x\to a} f(x)$ does not

exist where f(x) is a real-valued function of a real variable x and a belongs to the domain of f *Solution:* To say that $\lim_{x\to a} f(x)$ does not exist means that for all real numbers L,

 $\lim_{x\to a} f(x) \neq L$. By using Example 8, the statement $\lim_{x\to a} f(x) \neq L$ can be expressed as

$$\neg \forall \epsilon > 0 \ \exists \delta > 0 \ \forall x (0 < |x - a| < \delta \rightarrow |f(x) - L| < \epsilon).$$

Successively applying the rules for negating quantified expressions, we construct this sequence of equivalent statements:

$$\neg \forall \epsilon > 0 \; \exists \delta > 0 \; \forall x (0 < |x - a| < \delta \to |f(x) - L| < \epsilon)$$

$$\equiv \exists \epsilon > 0 \; \neg \exists \delta > 0 \; \forall x (0 < |x - a| < \delta \to |f(x) - L| < \epsilon)$$

$$\equiv \exists \epsilon > 0 \; \forall \delta > 0 \; \neg \forall x (0 < |x - a| < \delta \to |f(x) - L| < \epsilon)$$

$$\equiv \exists \epsilon > 0 \; \forall \delta > 0 \; \exists x \; \neg (0 < |x - a| < \delta \to |f(x) - L| < \epsilon)$$

$$\equiv \exists \epsilon > 0 \; \forall \delta > 0 \; \exists x \; \neg (0 < |x - a| < \delta \to |f(x) - L| < \epsilon)$$

$$\equiv \exists \epsilon > 0 \; \forall \delta > 0 \; \exists x \; \neg (0 < |x - a| < \delta \to |f(x) - L| < \epsilon).$$

In the last step we used the equivalence $\neg(p \to q) \equiv p \land \neg q$,