Эконометрика, 2020-2021, 3 модуль

Семинары 3-4 25.01.21, 1.02.21

Для Группы Э_Б2018_Э_3

Семинарист О.А.Демидова

Метод максимального правдоподобия Проверка гипотез

Материал задачника Борзых Д. И Демешева Б.

Метод максимального правдоподобия

Пусть

 $X = (X_1, \dots, X_n)$ — случайная выборка

 $x = (x_1, \dots, x_n)$ — реализация данной случайной выборки

 $f_{X_i}(x_i, \theta)$ — плотность распределения случайной величины $X_i, i = 1, \dots, n$

 $\theta = (\theta_1, \dots, \theta_k)$ — вектор неизвестных параметров

 $\Theta \subseteq \mathbb{R}^k$ — множество допустимых значений вектора неизвестных параметров

 $L(\theta) = \prod_{i=1}^{n} f_{X_i}(x_i, \theta)$ — функция правдоподобия

 $\ell(\theta) := \ln \mathrm{L}(\theta) -$ логарифмическая функция правдоподобия

Пусть требуется протестировать систему (нелинейных) ограничений относительно вектора неизвестных параметров

$$H_0: \begin{cases} g_1(\theta) = 0 \\ g_2(\theta) = 0 \\ \dots \\ g_r(\theta) = 0 \end{cases}$$

где $g_i(\theta)$ — функция, которая задаёт i-ое ограничение на вектор параметров $\theta, i=1,\ldots,r$.

$$\frac{\partial g}{\partial \theta'} = \begin{pmatrix} \partial g_1 / \partial \theta' \\ \partial g_2 / \partial \theta' \\ \vdots \\ \partial g_r / \partial \theta' \end{pmatrix} = \begin{pmatrix} \frac{\partial g_1}{\partial \theta_1} & \frac{\partial g_1}{\partial \theta_2} & \dots & \frac{\partial g_1}{\partial \theta_k} \\ \frac{\partial g_2}{\partial \theta_1} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_2}{\partial \theta_k} \\ \vdots \\ \frac{\partial g_r}{\partial \theta_1} & \frac{\partial g_r}{\partial \theta_2} & \dots & \frac{\partial g_r}{\partial \theta_k} \end{pmatrix}$$

$$I(\theta) = -\mathbb{E}\left(\frac{\partial g_1'}{\partial \theta} \ \frac{\partial g_2'}{\partial \theta} \ \dots \ \frac{\partial g_r'}{\partial \theta}\right) = \begin{pmatrix} \frac{\partial g_1}{\partial \theta_1} & \frac{\partial g_2}{\partial \theta_1} & \dots & \frac{\partial g_r}{\partial \theta_1} \\ \frac{\partial g_1}{\partial \theta_2} & \frac{\partial g_2}{\partial \theta_2} & \dots & \frac{\partial g_r}{\partial \theta_2} \\ \dots & \dots & \dots & \dots \\ \frac{\partial g_1}{\partial \theta_k} & \frac{\partial g_2}{\partial \theta_k} & \dots & \frac{\partial g_r}{\partial \theta_k} \end{pmatrix}$$

$$I(\theta) = -\mathbb{E}\left(\frac{\partial^2 \ell}{\partial \theta \partial \theta^l}\right) = -\mathbb{E}\begin{pmatrix} \frac{\partial^2 \ell}{\partial \theta_1 \partial \theta_1} & \frac{\partial^2 \ell}{\partial \theta_1 \partial \theta_2} & \dots & \frac{\partial^2 \ell}{\partial \theta_1 \partial \theta_k} \\ \frac{\partial^2 \ell}{\partial \theta_2 \partial \theta_1} & \frac{\partial^2 \ell}{\partial \theta_2 \partial \theta_2} & \dots & \frac{\partial^2 \ell}{\partial \theta_2 \partial \theta_k} \\ \dots & \dots & \dots & \dots \\ \frac{\partial^2 \ell}{\partial \theta_k \partial \theta_1} & \frac{\partial^2 \ell}{\partial \theta_k \partial \theta_2} & \dots & \frac{\partial^2 \ell}{\partial \theta_k \partial \theta_k} \end{pmatrix} - \text{информаци-}$$

онная матрица Фишера

$$\frac{\frac{\partial \ell}{\partial \theta}}{\frac{\partial \theta}{\partial \theta}} = \begin{pmatrix} \frac{\partial \ell}{\partial \theta_1} \\ \frac{\partial \ell}{\partial \theta_2} \\ \vdots \\ \frac{\partial \ell}{\partial \theta_k} \end{pmatrix}$$

 $\Theta_{UR} := \Theta$ — множество допустимых значений вектора неизвестных параметров без учёта ограничений

 $\Theta_R := \{\theta \in \Theta : g(\theta) = 0\}$ — множество допустимых значений вектора неизвестных параметров с учётом ограничений

 $\hat{ heta}_{UR} \in \Theta_{UR}$ — точка максимума функции ℓ на множестве Θ_{UR}

 $\hat{\theta}_R \in \Theta_R$ — точка максимума функции ℓ на множестве Θ_R

Тогда для тестирования гипотезы H_0 можно воспользоваться одной из следующих ниже статистик.

 $LR:=-2(\ell(\hat{\theta}_R)-\ell(\hat{\theta}_{UR}))\stackrel{a}{\sim}\chi^2_r$ — статистика отношения правдоподобия

 $W:=g'(\hat{\theta}_{UR})\cdot\left[\frac{\partial g}{\partial \theta'}(\hat{\theta}_{UR})\cdot I^{-1}(\hat{\theta}_{UR})\cdot \frac{\partial g'}{\partial \theta}(\hat{\theta}_{UR})\right]^{-1}g(\hat{\theta}_{UR})\overset{a}{\sim}\chi_r^2-$ статистика Вальда

 $LM:=\left[\frac{\partial\ell}{\partial\theta}(\hat{\theta}_R)\right]'\cdot I^{-1}(\hat{\theta}_R)\cdot \left[\frac{\partial\ell}{\partial\theta}(\hat{\theta}_R)\right]\overset{a}{\sim}\chi_r^2$ — статистика множителей Лагранжа

Задачи на нахождение оценок ММП

- 1) Из задачника Демешев-Борзых
 - 5.4 Совместное распределение величин X и Y задано функцией

$$f(x,y) = \frac{\theta(\beta y)^x e^{-(\theta+\beta)y}}{x!}.$$

Величина X принимает целые неотрицательные значения, а величина Y — действительные неотрицательные. Имеется случайная выборка $(X_1,Y_1),...(X_n,Y_n)$.

С помощью метода максимального правдоподобия оцените

1. θ u β:

2.
$$a = \theta/(\beta + \theta)$$
.

2)									
Оценки коэффициентов линейной регрессии, полученные методом максимального правдоподобия и методом наименьших квадратов в случае нормально распределенной случайной составляющей, будут совпадать									
А всегда									
В никогда									
С если ковариационная матрица случайной составляющей нулевая									
D если ковариационная матрица случайной составляющей диагональна									
если ковариационная матрица случайной составляющей пропорциональна единичной									
F Нет верного ответа.									
3)									
Оценки коэффициентов линейной регрессии, полученные методом максималь-									
ного правдоподобия и методом наименьших квадратов в случае нормально распределенной случайной составляющей, будут совпадать									
А всегда									
В никогда									
С если ковариационная матрица случайной составляющей нулевая									
 D если ковариационная матрица случайной составляющей диагональна 									
если ковариационная матрица случайной составляющей пропорциональна единичной									
F Нет верного ответа.									
4)									
Методом максимального правдоподобия Гоша оценил модель									
$Y_i = \beta_1 + \beta_2 X_{i2} + \ldots + \beta_6 X_{i6} + \varepsilon_i,$									
где $\varepsilon \sim \mathcal{N}(0, \sigma_\varepsilon^2 I)$, по 12 наблюдениям. Оказалось, что $RSS=24$. Оценка дисперсии случайной составляющей равна									
A 0.5 C 2.4									
В 24/7 D 0.48 F Нет верного ответа.									
5) Учебник Магнус, Катышев, Пересецкий									
10.3. Пусть y_1, \dots, y_n — выборка из распределения с плотностью $h(y, \theta) = 1/\theta$,									
10.3. Пусть y_1, \ldots, y_n — выборка из распределения с плотностью $h(y, \theta) = 1/\theta$, если $0 < x \le \theta$, и $h(y, \theta) = 0$ — в остальных случаях $(0 < \theta < \infty)$.									
если $0 < x < 0$, и $n(y,v)$ Покажите, что $\hat{\theta} = \max y_i$ является оценкой максимального правдоподобия, и найдите ее смещение.									
6) Учебник Магнус, Катышев, Пересецкий									

- **10.6.** Пусть y_1, \ldots, y_n независимые, одинаково распределенные случайные величины, равномерно распределенные на интервале $(\theta, 2\theta)$. Покажите, что:
 - а) оценка максимального правдоподобия есть $\widehat{\theta} = \max y_i/2;$
 - б) $\widehat{\theta}$ является смещенной, но асимптотически несмещенной;
 - в) $V(\widehat{\theta})$ асимптотически равна $\theta^2/(4n^2)$.

Задачи на проверку гипотез

- 7) Учебник Магнус, Катышев, Пересецкий
- **10.12.** Пусть p вероятность выпадения орла при бросании монеты. Из n=100 испытаний x=42 раза выпал орел и 58 решка. Тестируйте на 5%-ном уровне значимости гипотезу $H_0: p=0.5$:
 - а) при помощи теста Вальда (W);
 - б) при помощи теста множителей Лагранжа (LM);
 - в) при помощи теста отношения правдоподобия (LR).
- 10.13. Имеется 80 наблюдений пуассоновской случайной величины X. Их среднее значение равно $\overline{x}=1.7$. Тестируйте на 5%-ном уровне значимости гипотезу $H_0: \lambda=2.0$:
 - а) при помощи теста Вальда (W);
 - б) при помощи теста множителей Лагранжа (LM);
 - в) при помощи теста отношения правдоподобия (LR).
- 8) Из задачника Демешев-Борзых

Задача 5.1.

Дядя Вова (Владимир Николаевич) и Скрипач (Гедеван) зарабатывают на Плюке чатлы, чтобы купить гравицапу. Число заработанных за i-ый день чатлов имеет пуассоновское распределение, заработки за разные дни независимы. За прошедшие 100 дней они заработали 250 чатлов.

1. Оцените параметр λ пуассоновского распределения методом максимального правдоподобия.

Постройте 95% доверительный интервал для λ .

Проверьте гипотезу о том, что средний дневной заработок равен 2 чатла с помощью теста отношения правдоподобия, теста Вальда, теста множителей Лагранжа.

9) A.C.Cameron, P.K.Trivedy, Microeconometrics, p.235.

Дана выборка п независимых одинаково распределенных случайных величин $Y \sim N(\mu,1)$. Проверьте гипотезу $H_0: \mu = \mu^*$ с помощью теста отношения правдоподобия, теста Вальда и теста множителей Лагранжа.

10) Магнус, Катышев, Пересецкий, № 10.10

Известно, что в модели $Y = X\beta + \varepsilon$

Имеется гетероскедастичность, причем

$$\operatorname{var}(\varepsilon_i) = \sigma_1^2, i = 1, \dots, n_1, \operatorname{var}(\varepsilon_i) = \sigma_2^2, i = n_1 + 1, \dots, n = n_1 + n_2$$
$$\operatorname{cov}(\varepsilon_i, \varepsilon_i) = 0, i \neq j.$$

В предположении нормальности вектора ошибок постройте тест отношения правдоподобия (LR-test) для проверки гипотезы $H_0: \sigma_1^2 = \sigma_2^2$.

- 11) Борзых, Демешев, № 5.19, 5.20
- 5.19 Исследователь Вениамин пытается понять, как логарифм количества решённых им по эконометрике задач зависит от количества съеденных им пирожков. Для этого он собрал 100 наблюдений. Первые 50 наблюдений относятся к пирожкам с мясом, а последние 50 наблюдений к пирожкам с повидлом. Вениамин считает, что ожидаемое количество решённых задач не зависит от начинки пирожков, а только от их количества, т.е. $y_i = \beta x_i + u_i$. Однако он полагает, что для пирожков с мясом $u_i \sim \mathcal{N}(0; \sigma_I^2)$.
 - 1. Выпишите логарифмическую функцию правдоподобия.
 - 2. Выпишите условия первого порядка для оценки $\beta, \, \sigma_M^2, \, \sigma_J^2.$
- 5.20 После долгих изысканий Вениамин пришёл к выводу, что $\beta=0$, т.е. что логарифм количества решенных им по эконометрике за вечер задач имеет нормальное распределение y_i с математическим ожиданием ноль. Однако он по прежнему уверен, что дисперсия y_i зависит от того, какие пирожки он ел в этом вечер. Для пирожков с повидлом $y_i \sim \mathcal{N}(0; \sigma_J^2)$, а для пирожков с мясом $y_i \sim \mathcal{N}(0; \sigma_M^2)$. Всего 100 наблюдений. Первые 50 вечеров относятся к пирожкам с мясом, последние 50 вечеров к пирожкам с повидлом:

$$\sum_{i=1}^{50} y_i = 10, \ \sum_{i=1}^{50} y_i^2 = 100, \ \sum_{i=51}^{100} y_i = -10, \ \sum_{i=51}^{100} y_i^2 = 300$$

- 1. Найдите оценки σ_{M}^{2} , σ_{J}^{2} , которые получит Вениамин.
- 2. Помогите Вениамину проверить гипотезу $\sigma_M^2 = \sigma_J^2$ с помощью тестов отношения правдоподобия, множителей Лагранжа и Вальда.

Упражнение для работы с реальными данными

- 12) По данным файла rlms14.dta
 - 1) Оцените зависимость заработной платы от возраста (квадратичная зависимость), пола, продолжительности рабочей недели в часах, количества подчиненных.
 - 2) Проверьте, что максимальная заработная плата достигается в 40 лет с помощью
 - А) теста Вальда (использовав линейное и нелинейное ограничение),
 - Б) с помощью теста отношения правдоподобия.
 - 3) Проверьте, что максимальная заработная плата достигается в 40 лет, а продолжительность рабочей недели не влияет на заработную плату с помощью
 - А) теста Вальда (использовав линейное и нелинейное ограничение),
 - Б) с помощью теста отношения правдоподобия.

Решение.

- . gen age = 2005- birth_year
- . reg wage age agesq gender duration_weekh subordinates

	Source	SS	df	MS	Number of obs = 1014
_					F(5, 1008) = 25.02
	Model	6.7651e+09	5	1.3530e+09	Prob > F = 0.0000
	Residual	5.4510e+10	1008	54077771.4	R-squared = 0.1104
_					Adj R-squared = 0.1060
	Total	6.1275e+10	1013	60489099.1	Root MSE = 7353.8

wage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	253.9315	133.9959	1.90	0.058	-9.011409	516.8743
agesq	-3.436652	1.557422	-2.21	0.028	-6.492812	3804918
gender	-3105.083	475.3481	-6.53	0.000	-4037.868	-2172.298
duration_weekh	9.796951	20.996	0.47	0.641	-31.40392	50.99783
subordinates	9.623287	1.218617	7.90	0.000	7.231969	12.0146
_cons	8279.367	2915.344	2.84	0.005	2558.529	14000.21

```
. est store reg1
```

```
. test age = -80*agesq
```

```
(1) age + 80*agesq = 0
```

```
F(1, 1008) = 0.91

Prob > F = 0.3414
```

. testnl $_b[age]/(2*_b[agesq])=-40$

```
(1) _{b[age]/(2*_b[agesq])} = -40
```

F(1, 1008) = 0.61Prob > F = 0.4359

- . gen x=-80*age+agesq
- . reg wage \boldsymbol{x} gender duration_weekh subordinates

Source	SS	df	MS	Number of obs = 1014
			· · · · · · · · · · · · · · · · · · ·	F(4, 1009) = 31.05
Model	6.7161e+09	4	1.6790e+09	Prob > F = 0.0000
Residual	5.4559e+10	1009	54072740.8	R-squared = 0.1096
				Adj R-squared = 0.1061
Total	6.1275e+10	1013	60489099.1	Root MSE = 7353.4

wage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
х	-3.961059	1.456666	-2.72	0.007	-6.819501	-1.102618
gender	-3124.049	474.9082	-6.58	0.000	-4055.97	-2192.129
duration_weekh	11.30611	20.93508	0.54	0.589	-29.77518	52.3874
subordinates	9.550631	1.216168	7.85	0.000	7.164122	11.93714
_cons	6605.916	2325.554	2.84	0.005	2042.44	11169.39

- . est store reg2
- . 1rtest reg1 reg2

LR chi2(1) = 0.91 Prob > chi2 = 0.3398 Likelihood-ratio test (Assumption: $\underline{\text{reg2}}$ nested in $\underline{\text{reg1}}$)

. reg wage age agesq gender duration_weekh subordinates

Source	SS	df	MS	Number of obs = 1014
				F(5, 1008) = 25.02
Model	6.7651e+09	5	1.3530e+09	Prob > F = 0.0000
Residual	5.4510e+10	1008	54077771.4	R-squared = 0.1104
				Adj R-squared = 0.1060
Total	6.1275e+10	1013	60489099.1	Root MSE = 7353.8

wage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age	253.9315	133.9959	1.90	0.058	-9.011409	516.8743
agesq	-3.436652	1.557422	-2.21	0.028	-6.492812	3804918
gender	-3105.083	475.3481	-6.53	0.000	-4037.868	-2172.298
duration_weekh	9.796951	20.996	0.47	0.641	-31.40392	50.99783
subordinates	9.623287	1.218617	7.90	0.000	7.231969	12.0146
_cons	8279.367	2915.344	2.84	0.005	2558.529	14000.21

- . est store reg3
- . test (age = -80*agesq) (duration_weekh=0)
- (1) age + 80*agesq = 0
 (2) duration_weekh = 0

$$F(2, 1008) = 0.60$$

 $Prob > F = 0.5496$

- . testnl (_b[age]/(2*_b[agesq])=-40) (_b[duration_weekh]=0)
 - (1) _b[age]/(2*_b[agesq]) = -40
 (2) _b[duration_weekh] = 0

0.42 0.6567 F(2, 1008) = Prob > F =

. reg wage x gender subordinates if duration_weekh !=.

	Source	SS	df	MS	Number of obs = 1014
-					F(3, 1010) = 41.33
	Model	6.7003e+09	3	2.2334e+09	Prob > F = 0.0000
	Residual	5.4575e+10	1010	54034818.1	R-squared = 0.1093
_					Adj R-squared = 0.1067
	Total	6.1275e+10	1013	60489099.1	Root MSE = 7350.8

wage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
x	-4.079917	1.439439	-2.83	0.005	-6.90455	-1.255284
gender	-3178.134	464.0662	-6.85	0.000	-4088.778	-2267.489
subordinates	9.582901	1.214273	7.89	0.000	7.200114	11.96569
_cons	7022.075	2193.404	3.20	0.001	2717.926	11326.23

. est store reg4

. lrtest reg3 reg4

Likelihood-ratio test LR chi2(2) = 1.20 (Assumption: $\underline{\text{reg4}}$ nested in $\underline{\text{reg3}}$) Prob > chi2 = 0.5477