Universidade de Brasília Instituto de Física

Disciplina: Física 2 Experimental

2º semestre 2019

Data de realização do experimento: 20/09/2019

Grupo 13:

Gustavo Pereira Chaves – 19/0014113 Luigi Paschoal Westphal de Oliveira – 19/0062894 David Gonçalves Mendes – 19/0056967

Relatório do Experimento 4 - Pêndulo Simples

Introdução:

Nesse experimento foi utilizado um modelo de pêndulo simples, composto por um fio, com uma massa suspensa. Dessa forma, o conjunto estando livre para oscilar verticalmente.

Já com relação ao diagrama de forças, este é composto pela força gravitacional (F_g) e pela tração exercida no fio (T). Dessa forma, a componente tangencial da F_g produz um torque restaurador, que faz com que o peso seja sempre levado ao ponto central. Esse torque é representado como:

$$\tau = -(F_q sen \theta)L \quad (1)$$

Subtituindo ($\tau=l\alpha$) e ($F_g=mg$), temos que $I\alpha=-mgsen\theta\,L$. Isolando α e levando em cosideração que para ângulos pequenos a igualdade sen $\theta=\theta$ possui um erro percentual quase nulo, obtém-se:

$$\alpha = \frac{-mg\theta L}{I}$$
 (2)

Através dessa fórmula, é possível verificar que a aceleração angular é diretamente proporcional ao ângulo, no caso da amplitude ser pequena. Já com relação ao sinal neagitivo, esse indica que a aceleração é sempre contrária ao movimento, provocando o deslocamento da massa sempre em direção ao centro, gerando um MHS.

Ademais, dado que pode-se determinar a frequência ângular como

, substituindo em $\ \omega = \frac{2\pi}{T}$, vemos que o período pode ser descrito

como:

$$T = 2\pi \sqrt{\frac{I}{mgL}}$$
 (3)

Turma J

E levando em consideração que toda a massa está concentrada na extremidade, consideraremos o momento de inércia como $I=mL^2$. Ao substituir na fórmula do perído, encontra-se:

$$T = 2\pi\sqrt{\frac{L}{g}} \quad (4)$$

Objetivos:

Observar as oscilações de um pêndulo real, caracterizá-las e verificar as condições em que ele pode ser caracterizado como um pêndulo simples. Assim como, por meio dos dados adiquiridos, descrever as variáveis relevantes de um sistema oscilante.

Materiais utilizados:

- Pêndulo fisico com um peso acoplado;
- Placa de aquisição de dados DrDag (Pico Technology);
- Software de aquisição de dados DrDag;
- Balança de precisão (0.1 g);
- · Régua milimetrada;

Procedimentos:

Inicialmente, foi colocado um peso ao final da haste, em seguida, o pêndulo, posto para oscilar a partir uma amplitude próxima de 45 o , registrando o valor da amplitude e do período ajustado até o ângulo ficar menor que 5 o . Esse processo visa demonstrar que a amplitude de oscilação aumento em conjunto com o período do pêndulo.

Em segunda instância, é medido o período de oscilação, quando a amplitude

do pêndulo estiver em torno de 10 o , durante 10 segundos, posteriormente, o peso será elevado 5 cm em relação a haste e repetindo novamente esse procedimento até que o peso fique o mais próximo possível do eixo de rotação do pêndulo. Dessa forma, é possível verificar o efeito que a posição do peso causa em relação ao eixo de giro.

Dados Experimentais:

Inicialmente, tratando-se da primeira parte do experimento, após a coleta dos dados pelo software DrDaq foi utilizado a regressão não-linear do Grace para determinar os parâmetros que definiam cada gráfico gerado. Assim, registrou-se o período para cada amplitude medida na tabela a seguir:

Tabela 1 - Período e Amplitude

Т	θ
1,97606	49,0719
1,93808	37,6404
1,91957	30,7193
1,90032	21,1396
1,89435	17,0650
1,89290	15,1160
1,88895	11,5297
1,88572	8,28555
1,88496	4,59132

Já com relação a segunda parte do experimento, com a distância do eixo do pêndulo ao centro de massa do peso variável (aumentando gradualmente de 5 em 5 cm), foi medido o perído, também através do software DrDaq. Assim, obteve-se a seguinte tabela:

Tabela 2 - Distância e Período

L	T
87,05	1,88897
82,05	1,84843
77,05	1,80715
72,05	1,73905
67,05	1,69103
62,05	1,59942
57,05	1,55344
52,05	1,50390
47,05	1,43410
42,05	1,36926
37,05	1,29949
32,05	1,21753
27,05	1,14917
22,05	1,08766
17,05	1,04918
12,05	1,04659
7,05	1,04403

Análise de dados:

Através da tabela 1, é possível contruir o seguinte gráfico:

Este por sua vez, apresenta um coeficiente angular de 0.53623, que dentro das incertezas, representa aproximadamente ¼ do período de oscilação incial, comprovando que a aproximação do mesmo pela Série de Taylor é válida.

Destarte, utilizando os dados da tabela 2, constroe-se também o gráfico:

Assim, observando a disposição dos dados experimentais, vê-se que o período (T) não é necessariamente diretamente proporcional a \sqrt{L} . Concluise, portanto, que para distâncias pequenas do centro de massa do peso ao eixo do pêndulo a variação do período é mínima. Logo, o resultado não obedece a expressão 4.

Conclusão:

Ao utilizar um pêndulo simples, foi possível verificar e tirar conclusões sobre as aproximações realizadas sobre as fórmulas desse movimento, e o impacto causado por elas. Percebeu-se então, a proporcionalidade entre a amplitude e o período, e a influência da posição do peso no período.

Bibliografia:

Young, H. D.; Freedman, R. A.; Física 2 Termodinâmica e Ondas, 12ª ed., Pearson, 2008.

Halliday, Walker e Resnick, Fundamentos de Física - 2, Editora LTC.