Public Opinion Warfare: Understanding Communities on Twitter and their Influence on the Web

What we did

- 1. Study a retweet network on Twitter
- This retweet network contains:5K hateful and normal users & 100K other users.
- 3. Compared different users' features and behaviors of different subsets
- **4.** Investigated the community structure of the network, used the Louvain method for community detection.
- **5.** Quantified the influence of certain communities.

Statistical - General Analysis - Likes

	Average likes received per follower	
Hateful	16.8	
Normal	10.5	
Other	6.8	

Motivations

Estimate the influence of a user.

- Hateful users
 - Higher follower 'loyalty'
 - received more likes per follower on average.

Statistical - General Analysis - Sentiment score

Results

- The mean sentiment score of the hateful users is 0.056.
- The mean sentiment scores are 0.118 and 0.135 for the normal users and other users.

- Hateful users
 - more negative or neutral.
- Normal & others
 - more positive or friendly.

Tweets & Retweets - Hashtag analysis

Common hashtags of hateful and normal users Common hashtags of normal and other users

Common hashtags of all users

0.16% PPP

0.11%

WhiteGenocide

0.46% 1

Observations

All three groups shared some conservative political topics

("MAGA"/"Brexit").

- The hateful group:
 less social life-related tags
 ("Halloween"/"WorldSeries").
- Further assume hateful users are conservatives.

Network Analysis - The HN-Network

- Hateful users, normal users, and their retweeters.
- 4,646 nodes and 9,575 edges
- Low density close to 0.
- Applied the Louvain method for community detection.
 Got a modularity value of 0.644.
 The detection is reliable.
- Some large communities were detected.

Network Analysis - The HN-Network

HN-Community - PageRank

Motivation

- Visualize
 - connectivity of each community
 - inter-connectivity between communities.

- The most important users are in the green community
- Majority of the green community are hateful users(71%).
- High degree of interaction in the green community (subgraph density 0.037).

Network Analysis - Removing Hateful Users

Motivation

To confirm previous observations.

- A much sparser network.
- Hateful users contribute significant interaction within the retweet network.
- Hateful Users community accounts for around 9% of the total nodes, but generates more than 30% of the interactions in the network.

Network Analysis - H-Network

Motivation

Study the network of hateful users.

- 347 hateful nodes, 2,900 edges with a network density close to 0.024.
 The network is fairly dense.
- Less dense than the green community (0.037). Hateful users are connected by some normal and other users.
- The blue community is a subgraph of the green community. (~75% of users overlap)

Network Analysis - N-Network

Normal user community & Authority Rank

Motivation

Study the network of normal users.

- 1946 normal nodes, 2327 edges
 Network density close to 0.001.
- The network is not nearly as dense compared to the hateful users.
- The red community nodes have high Authority and Hub centrality scores

Network Analysis - N-Network

Normal user community & PageRank

Motivation

Study the network of normal users.

- 1946 normal nodes, 2327 edges
 Network density close to 0.001.
- The network is not nearly as dense compared to the hateful users.
- The red community nodes have high Authority and Hub centrality scores
- High PageRank centrality nodes were more uniformly distributed across communities

What are these normal users posting on Twitter?

Hashtag	(%)	Hashtag	(%)
MAGA	3.68%	BoycottNFL	0.45%
UraniumOne	1.05%	FreeSpeech	0.45%
Brexit	1.00%	Iran	0.45%
Trump	0.78%	FakeNews	0.44%
JFKFiles	0.72%	LockHerUp	0.43%
cdnpoli	0.69%	bbcqt	0.41%
ThursdayThoughts	0.65%	DemocratLiesMatte	0.38%
DrainTheSwamp	0.65%	уус	0.36%
Israel	0.55%	MoggMentum	0.36%
AnOpenSecret	0.51%	VoteGOP	0.36%

conservative users are playing important roles in this retweet network,
 regardless of whether the users are hateful or normal.

Network Analysis - Conservative Network

Motivation

Study the structure of of conservative users network.

- 556 nodes and 3,907 edges
 Network density of approximately
 0.013.
- Conservative users are surprisingly well-connected.

Network Analysis - Influence Estimation

Motivation

- Examine influences, in terms of the dissemination of opinions.
- average retweeted number:
 average out-degrees of the non-conservative
 retweeters of that conservative community

- Seemingly quadratic relationship between the community's density and the estimated average retweeted number.
- Possible methods for maximizing the spread of conservative opinions
 - Through a tightly connected group
 - Through a fairly loosely connected one
 Not something in between

Conclusions & Takeaways

- Hateful users are
 - Closely connected conservative users
 - More efficient at spreading opinions.
 - Higher follower "loyalty" as compared to normal users.

Conservative users play important roles in this retweet network.

• In terms of conservative users, high impact on retweeters resulted from extreme cases of connection, but not intermediary cases.