

Exercícios Variáveis aleatórias

Os exercícios foram extraídos dos livros:

Bussab, WO; Morettin, PA. Estatística Básica. São Paulo: Editora Saraiva, 2006 (5ª Edição).

Magalhães, MN; Lima, ACP. Noções de Probabilidade e Estatística. São Paulo: EDUSP, 2008.

1. Sendo Y uma variável aleatória com função de probabilidade dada a seguir, obtenha as medidas de posição média (μ) , mediana (Md) e moda (Mo).

$$\begin{array}{c|cccc} Y & -2 & 0 & 2 \\ \hline p_i & 1/3 & 1/3 & 1/3 \end{array}$$

2. Um atacadista recebe de vários fornecedores uma certa peça para revenda. A peça é produzida com material de qualidade diferente e, portanto, possui custo diferenciado. Levando em conta a proporção fornecida e o preço apresentado por cada fabricante, pode-se admitir que o custo de uma peça qualquer (em reais), escolhida ao acaso, é uma variável aleatória (C). Admita a seguinte função de probabilidade para C:

- a) Determine as medidas de posição da variável C.
- b) Suponha que o atacadista revenda cada uma dessas peças acrescentado 50% sobre o custo da peça, além de um adicional de R\$ 0,10 pelo frete. Calcule as medidas de posição da variável V: preço de revenda da peça.
- 3. Num certo bairro da cidade de São Paulo, as companhias de seguro estabeleceram o seguinte modelo para número de veículos furtados por semana:

Furtos
$$(F)$$
 0 1 2 3 4
 p_i 1/4 1/2 1/8 1/16 1/16

Calcule a média e a variância do número de furtos semanais do bairro.

- 4. Num jogo de dados, um jogador paga R\$ 5 para lançar um dado equilibrado e ganha R\$ 10 se resultar na face 6, ganha R\$ 5 se resultar na face 5 e não ganha nada com as outras faces. Defina a variável L: lucro por jogada como sendo o saldo que o jogador ganhou menos o pagamento inicial (prejuízo é lucro negativo). Construa a função de probabilidade e determine média, moda, mediana e variância dessa variável.
- 5. Num teste de digitação, o tempo em minutos (T) que os candidatos levaram para digitar um texto é modelado, de forma aproximada, pela seguinte função de probabilidade:

O candidato recebe 4 pontos se terminar a digitação em 9 minutos, 5 se terminar em 8 minutos e assim por diante. Determine a média e a variância da variável N: número de pontos obtidos no teste.

- 6. Um caminho para chegar a uma festa pode ser divido em três etapas. Sem enganos o trajeto é feito em 1 hora. Se enganos acontecerem na primeira etapa, acrescente 10 minutos ao tempo do trajeto. Para enganos na segunda etapa, o acréscimo é 20 e, para terceira, 30 minutos. Admita que a probabilidade de engano é 0.1, 0.2 e 0.3 para a primeira, segunda e terceira etapas, respectivamente. É provável haver atraso na chegada à festa? Determine a probabilidade de haver atraso, e o atraso não passar de 40 minutos.
- 7. Um pai leva o filho ao cinema e vai gastar nas duas entradas R\$ 15. O filho vai pedir para comer pipoca com probabilidade 0.7 e, além disso, pode pedir bala com probabilidade 0.5, independentemente um do outro. Se a pipoca custa R\$ 2 e a bala R\$ 3, estude o gasto (G) efetuado com o passeio ao cinema.
- 8. Uma variável aleatória Y tem a seguinte função de distribuição:

$$F(Y) = \begin{cases} 0 & se \ y < 10 \\ 0.2 & se \ 10 \le y < 12; \\ 0.5 & se \ 12 \le y < 13; \\ 0.9 & se \ 13 \le y < 25; \\ 1 & se \ y \ge 25. \end{cases}$$

Determine:

- a) A função de probabilidade de Y.
- b) $P(Y \le 12)$.
- c) P(Y < 12).
- d) $P(12 \le Y \le 20)$.
- e) P(Y > 18).
- 9. Um agricultor cultiva laranjas e também produz mudas para vender. Após alguns meses, a muda pode ser atacada por fungos com probabilidade 0.05 e, nesse caso, ela é escolhida para ser recuperada com probabilidade 0.5. Admita que o processo de recuperação é infalível. O custo de cada muda produzida é R\$ 1.00, mas acrescido de mais 50 centavos se precisar ser recuperada. Cada muda é vendida a R\$ 3.00 e são descartadas as mudas não recuperadas de ataque de fungos. Estude como se comporta o ganho por muda produzida.
- 10. Num certo restaurante, paga-se pelo almoço uma quantia fixa dependendo da escolha feita de prato e bebida. A carne de peixe tem 10% de preferência, enquanto o frango tem 40% e carne bovina 50%. As três escolhas de bebida estão condicionadas à opção do prato, segundo a tabela abaixo:

Opção: Peixe	Cerveja	Água	Vinho
P(Bebida Peixe)	0.4	0.3	0.3

Opção: Frango	Cerveja	Água	Vinho
P(Bebida Frango)	0.3	0.5	0.2

Opção: Bovina		Cerveja	Água	Vinho
P(Bebida Bovina	ι)	0.6	0.3	0.1

Admita os seguintes preços:

Pedido	Peixe	Frango	Bovina	Cerveja	Água	Vinho
Preço	12	15	18	6	3	9

- a) Dado que alguém escolhe peixe, qual a probabilidade de que escolha cerveja?
- b) Se escolhe carne bovina, qual a probabilidade de tomar vinho?
- c) Sabendo que tomou água, qual a chance de ter escolhido frango?
- d) Determine a função de probabilidade para cada uma das variáveis X: preço do almoço e Y: preço do almoço para aqueles que preferem cerveja.

11. A resistência (em toneladas) de vigas de concreto produzidas por uma empresa, comporta-se conforme a função de probabilidade abaixo:

Admita que essas vigas são aprovadas para uso em construções se suportarem pelo menos 3 toneladas. De um grande lote fabricado pela empresa, escolhemos 15 vigas ao acaso. Qual será a probabilidade de:

- a) Todas serem aptas para construções?
- b) No mínimo 13 serem aptas?
- 12. Verifique se as expressões a seguir são funções densidade de probabilidade (assuma que elas se anulam fora dos intervalos especificados).
 - a) f(y) = 3y, se $0 \le y \le 1$. b) $f(y) = y^2/2$, se $y \ge 0$.

 - c) f(y) = (y-3)/2, se $3 \le y \le 5$.

 - d) f(y) = 2, se $0 \le y \le 2$. e) $f(y) = \begin{cases} (2+y)/4, & se \ -2 \le y < 0; \\ (2-y)/4, & se \ 0 \le y \le 2. \end{cases}$
- 13. O tempo, em minutos, de digitação de um texto por secretárias experientes é uma variável aleatória contínua Y. Sua densidade é apresentada a seguir.

$$f(y) = \begin{cases} 1/4, & se \ 0 \le y < 2; \\ 1/8, & se \ 2 \le y \le 6; \\ 0, & caso \ contrário. \end{cases}$$

Determine:

- a) P(Y > 3).
- b) $P(1 < Y \le 4)$.
- c) $P(Y < 3|Y \ge 1)$.
- d) Um número b tal que P(Y > b) = 0.6.
- e) O valor esperado, a variância e a moda de Y.
- 14. A quantia gasta anualmente, em milhões de reais, na manutenção do asfalto em uma cidade do interior é representada pela variável Y com densidade dada por:

$$f(y) = \begin{cases} \frac{8}{9}y - \frac{4}{9}, & \text{se } 0.5 \le y < 2; \\ 0, & \text{caso contrário.} \end{cases}$$

Obtenha:

- a) P(Y < 0.8).
- b) P(Y > 1.5|Y > 1).
- c) O valor esperado e a variância de Y.
- d) A mediana de Y.
- 15. O gráfico abaixo representa a densidade de uma variável aleatória Y.

- a) Obtenha o valor de a.
- b) Determine P(Y > 0|Y < 3).
- c) Calcule $Md(Y), E(Y) \in Var(Y)$.
- 16. Numa certa região, fósseis de pequenos animais são frequentemente encontrados e um arqueólogo estabeleceu o seguinte modelo de probabilidade para o comprimento, em centímetros, desses fósseis:

$$f(y) = \begin{cases} \frac{1}{40}y, & 4 \le y \le 8; \\ -\frac{1}{20}y + \frac{3}{5}, & 8 \le y \le 10; \\ \frac{1}{10}, & 10 \le y \le 11; \\ 0, & \text{caso contrário.} \end{cases}$$

- a) Faça um gráfico da função densidade.
- b) Para um fóssil encontrado nessa região, determine a probabilidade do comprimento ser inferior a 6 centímetros. Determine também a probabilidade de ser superior a 5 mas inferior a 10.5 cm.
- c) Encontre o valor esperado para o comprimento dos fósseis da região.

Respostas

1. Sendo Y uma variável aleatória, então

$$E(Y) = -2 \cdot 1/3 + 0 \cdot 1/3 + 2 \cdot 1/3 = 0$$

$$Md(Y) = 0$$
 pois $P(Y \ge 0) = 2/3 \ge 0.5$ e $P(Y \le 0) = 2/3 \ge 0.5$.

Quanto à moda, todos os valores da variável podem ser usados, uma vez que eles são equiprováveis.

- 2. Considerando os dados:
- a) Medidas de posição da variável custo (C):

$$E(C) = 1.00 \cdot 0.2 + 1.10 \cdot 0.3 + 1.20 \cdot 0.2 + 1.30 \cdot 0.2 + 1.40 \cdot 0.1 = 1.17$$

$$Md(C) = 1.15$$
 pois $P(C < 1.10) = 0.50$ e $P(C > 1.20) = 0.50$

Mo(C) = 1.10 pois é o valor que aparece com maior probabilidade.

b) Preço de revenda é dado pela função: $V=0.1+1.5\cdot C$. Então, a variável pode ser representada em forma de tabela:

\overline{V}	1.6	1.75	1.9	2.05	2.2
$\overline{p_i}$	0,2	0,3	0,2	0,2	0,1

As medidas de posição de V:

$$E(V) = 1.86, Md(V) = 1.83 e Mo(V) = 1.75.$$

3. Num certo bairro da cidade de São Paulo, as companhias de seguro estabeleceram o seguinte modelo para número de veículos furtados por semana:

Furtos
$$(F)$$
 0 1 2 3 4
 p_i 1/4 1/2 1/8 1/16 1/16

$$E(F) = 0 \cdot 1/4 + 1 \cdot 1/2 + 2 \cdot 1/8 + 3 \cdot 1/16 + 4 \cdot 1/16 = 1.19.$$

$$V(F) = (0 - E(F))^2 \cdot 1/4 + (1 - E(F))^2 \cdot 1/2 + (2 - E(F))^2 \cdot 1/8 + (3 - E(F))^2 \cdot 1/16 + (4 - E(F))^2 \cdot 1/16 = 1.15.$$

4. Para a variável lucro temos:

$$E(L) = -2.5$$
; $Mo(L) = -5$; $V(L) = 14.6$ e $Md(L) = -5$ porque $P(L \le -5) = 4/6 \ge 0.5$.

5. O candidato recebe 4 pontos se terminar a digitação em 9 minutos, 5 se terminar em 8 minutos e assim por diante. Então, temos que a variável N é dada por:

N	10	9	8	7	6	5	4
$\overline{p_i}$	0,1	0,1	0,2	0,2	0,2	0,1	0,1

O número médio de pontos será:

$$E(N) = 10 \cdot 0.1 + 9 \cdot 0.1 + \dots + 4 \cdot 0.1 = 7.$$

e a variância será:

$$V(N) = (10^2 \cdot 0.1 + 9^2 \cdot 0.1 + \dots + 4^2 \cdot 0.1) - 7^2 = 3.$$

6. Sejam os eventos E: engano na etapa. O espaço amostral será:

$$\Omega = \{(E, E, E), (E, E, E^c), (E, E^c, E), (E, E^c, E^c), (E^c, E, E), (E^c, E, E^c), (E^c, E^c, E), (E^c, E^c, E^c)\}$$

Seja a variável aleatória T: tempo total gasto no trajeto. Cada elemento de Ω leva a um tempo total gasto no trajeto T.

Ω	(E, E, E)	(E, E, E^c)	(E, E^c, E)	(E, E^c, E^c)	(E^c, E, E)	(E^c, E, E^c)	(E^c, E^c, E)	(E^c, E^c, E^c)
\overline{T}	120	90	100	70	110	80	90	60
p_i	0.006	0.014	0.024	0.056	0.054	0.126	0.216	0.504

A distribuição de probabilidade de T é dada por:

Т	60	70	80	90	100	110	120
p(T)	0.504	0.056	0.126	0.230	0.024	0.054	0.006

$$P(atraso) = P(T > 60) = 1 - P(T \le 60) = 1 - 0.504 = 0.496.$$

 $P(\text{atraso ser de até } 40 \text{ min}) = P(60 < T \le 100) = 0.056 + 0.126 + 0.230 + 0.024 = 0.436.$

7. Suponha que o pai não irá comer guloseimas e defina os eventos: P: o filho pede pipoca; B: o filho pede bala. Defina a variável aleatória G: Gasto efetuado.

O espaço amostral deste exercício e a distribuição de probabilidade do gasto são:

Ω	(P,B)	(P^c, B)	(P, B^c)	(P^c, B^c)
$g \\ p(g)$	$ 20 \\ 0.7 \cdot 0.5 = 0.35 $	$ 18 \\ 0.3 \cdot 0.5 = 0.15 $	$ 17 \\ 0.7 \cdot 0.5 = 0.35 $	$ 15 \\ 0.3 \cdot 0.5 = 0.15 $

a) Baseado-se na definição de função de distribuição, temos que a função de probabilidades de Y é dada por:

Y	10	12	13	25
P(Y=y)	0.2	0.3	0.4	0.1

- b) $P(Y \le 12) = F(12) = 0.5$.
- c) P(Y < 12) = F(10) = 0.2.
- d) $P(12 \le Y \le 20) = P(Y \le 20) P(Y < 12) = F(13) F(10) = 0.7$
- e) $P(Y > 18) = 1 P(Y \le 18) = 1 F(18) = 1 F(13) = 0.1$.

9.

Seja o evento A: muda atacada por fungos, então P(A) = 0.05.

Seja E: muda é escolhida para ser recuperada, então P(E|A) = 0.5.

Defina a variável aleatória G: ganho de cada muda produzida.

G=2 se não precisar ser recuperada e $P(G=2)=P(A^c)=0.95$.

G=1.5 se precisar ser recuperada e $P(G=1.5)=P(A\cap E)=P(A)P(E|A)=0.025.$

G=-1 se for descartada e $P(G=-1)=P(A\cap E^c)=P(A)P(E^c|A)=0.025.$

$\overline{\text{Ganho}(G)}$	-1	1.5	2
p_i	0.025	0.025	0.95

10.

- a) P(Cerveja|Peixe) = 0.4.
- b) P(Vinho|Carne Bovina) = 0.1.
- c) $P(\text{Frango}|\hat{A}\text{gua}) = \frac{P(\hat{A}\text{gua}|\text{Frango})P(\text{Frango})}{P(\hat{A}\text{gua})} = \frac{0.5 \cdot 0.4}{P(\hat{A}\text{gua})} = 0.53$ $P(\hat{A}\text{gua}) = P(\hat{A}\text{gua} \cap \text{Peixe}) + P(\hat{A}\text{gua} \cap \text{Frango}) + P(\hat{A}\text{gua} \cap \text{Carne Bovina}) = 0.03 + 0.20 + 0.15 = 0.38.$ $\text{Logo, } P(\text{Frango}|\hat{A}\text{gua}) = \frac{0.2}{0.38} = 0.53$
- d) Sejam os eventos P: a escolha é peixe; F: a escolha é frango e B: para escolha por carne bovina.

Sejam os eventos C: a bebida é cerveja; A: a bebida é água e V: a bebida é vinho.

Ω	(P,C)	(P,A)	(P, V)	(F,C)	(F,A)	(F, V)	(B,C)	(B,A)	(B,V)
p	18	15	21	21	18	24	24	21	27
	0.04	0.03	0.03	0.12	0.2	0.08	0.3	0.15	0.05

Função de probabilidade de X: preço do almoço.

\overline{x}	15	18	21	24	27
$\overline{p(x)}$	0.03	0.24	0.30	0.38	0.05

e função de probabilidade de Y: preço do almoço para aqueles que preferem cerveja. y = (18, 21, 24) e p(y) = ?

A probabilidade de uma pessoa escolher cerveja é: $P(C) = P(C \cap P) + P(C \cap F) + P(C \cap B) = 0.04 + 0.12 + 0.30 = 0.46$

$$P(P|C) = P(P \cap C)/P(C) = 0.04/0.46 = 0.09 = P(Y = 18)$$

$$P(F|C) = P(F \cap C)/P(C) = 0.12/0.46 = 0.26 = P(Y = 21)$$

$$P(B|C) = P(B \cap C)/P(C) = 0.30/0.46 = 0.65 = P(Y = 24)$$

\overline{y}	18	21	24
$\overline{p(y)}$	0.09	0.26	0.65

11.

a) Uma viga está apta para construção se suportar pelo menos 3 toneladas. Logo, a probabilidade de qualquer viga estar apta é dada por p = P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6) = 0.1 + 0.4 + 0.2 + 0.2 = 0.9.

Há n=15 vigas selecionadas de forma aleatória na amostra. A probabilidade de todas as 15 (x=15) vigas estarem aptas é dada pelo produto de estar apta e não estar apta. Note que queremos 15 aptas, então $p \cdot p \dots p = p^x = 0.9^{15} = 0.206$. A probabilidade de não estar apta é o número total de vigas menos a quantidade de vigas que estão aptas, então $(1-p)^{n-x} = (1-0.1)^{15-15} = 1$. Portanto. $P(X=15) = p^x(1-p)^{n-x} = 0.9^{15}(1-0.9)^{15-15} = 0.206 \cdot 1 = 0.206$.

b) Para que no mínimo 13 vigas estejam aptas, então temos que calcular a $P(X \ge 13) = P(X = 13) + P(X = 14) + P(X = 15)$. Devemos lembrar que a probabilidade de uma única viga qualquer estar apta é p = 0.9 e não estar apta é q = 1 - p = 1 - 0.9 = 0.1. Note que, se queremos 13, 14 ou 15 vigas aptas, elas estarem ou não aptas pode ocorrer por meio de diversas combinações. Logo, devemos levar em consideração a combinação de p = n0 vigas tomadas de p = n1 maneiras. A fórmula da combinação é dada por n2 minima n3 minima n4 maneiras.

A fórmula genérica para o cálculo é $P(X=x)=\frac{n!}{x!(n-x)!}p^x(1-p)^{n-x}$. Então,

$$P(X \ge 13) = P(X = 13) + P(X = 14) + P(X = 15)$$

$$P(X \ge 13) = \frac{15!}{13!(15-13)!}p^{13}(1-0.9)^{15-13} + \frac{15!}{14!(15-14)!}p^{14}(1-0.9)^{15-14} + \frac{15!}{15!(15-15)!}p^{15}(1-0.9)^{15-15}$$

$$P(X \ge 13) = 0.267 + 0.343 + 0.206$$

$$P(X \ge 13) = 0.816.$$

12. Para ser uma função de densidade de probabilidade é necessário satisfazer duas propriedades:

I)
$$f(y) \ge 0$$

II)
$$\int_{-\infty}^{+\infty} f(y)dy = 1$$
.

a)
$$f(y) \ge 0 \quad \forall y$$
.

$$\int_0^1 3y dy = \frac{3}{2}$$
.

b)
$$f(y) > 0 \quad \forall y$$
.

$$\int_0^\infty \frac{y^2}{2} dy = \text{diverge.}$$

c)
$$f(y) \ge 0 \quad \forall y$$
.

$$\int_{3}^{5} \frac{y-3}{3} dy = 1.$$

d)
$$f(y) \ge 0 \quad \forall y$$
.

$$\int_0^2 2dy = 4.$$

e)
$$f(y) \ge 0 \quad \forall y$$
.

$$\int_{-2}^{0} \frac{2+y}{4} dy + \int_{0}^{2} \frac{2-y}{4} dy = \frac{1}{2} + \frac{1}{2} = 1.$$

Portanto, temos uma fdp apenas nas letras c) e e).

13.
$$f(y) \ge 0 \quad \forall y$$
.

$$\int_0^2 \frac{1}{4} dy + \int_2^6 \frac{1}{8} dy = \frac{1}{2} + \frac{1}{2} = 1.$$

É uma função de densidade de probabilidade.

a)
$$P(Y \ge 3) = \int_3^6 \frac{1}{8} dy = \frac{3}{8}$$
.

b)
$$P(1 < Y \le 4) = \int_{1}^{2} \frac{1}{4} dy + \int_{2}^{4} \frac{1}{8} dy = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$
.

c)
$$P(Y < 3|Y \ge 1) = (\int_{1}^{2} \frac{1}{4} dy + \int_{2}^{3} \frac{1}{8} dy) / (\int_{1}^{2} \frac{1}{4} dy + \int_{2}^{6} \frac{1}{8} dy) = (\frac{1}{4} + \frac{1}{8}) / (\frac{1}{4} + \frac{1}{2}) = \frac{1}{2}.$$

d)
$$\int_0^b \frac{1}{4} dy = 0.4.$$
 Então, $\frac{y}{4}|_0^b = 0.4$ e $\frac{b}{4} = 0.4.$ Logo, $b = 1.6.$

e)
$$E(Y) = \int_0^2 y \frac{1}{4} dy + \int_2^6 y \frac{1}{8} dy = \frac{5}{2} = 2.5.$$

$$V(Y) = E(Y^2) - E(Y)^2$$
.

$$E(Y^2) = \int_0^2 y^2 \frac{1}{4} dy + \int_2^6 y^2 \frac{1}{8} dy = \frac{28}{3} = 9.33.$$

$$V(Y) = \frac{28}{3} - (\frac{5}{2})^2 = 3.08.$$

Há um intervalo modal dado em [0, 2], sendo Mo(Y) = 1.

14.
$$f(y) \ge 0 \quad \forall y$$
.

$$\int_{0.5}^{2} \left(\frac{8}{9}y - \frac{4}{9}\right) dy = 1.$$

É uma função de densidade de probabilidade.

a)
$$P(Y < 0.8) = \int_{0.5}^{0.8} (\frac{8}{9}y - \frac{4}{9})dy = 0.04.$$

b)
$$P(Y > 1.5 | Y \ge 1) = (\int_{1.5}^{2} (\frac{8}{9}y - \frac{4}{9})dy) / (\int_{1}^{2} (\frac{8}{9}y - \frac{4}{9})dy) = \frac{0.5556}{0.8889} = 0.625.$$

c)
$$E(Y) = \int_{0.5}^{2} y(\frac{8}{9}y - \frac{4}{9})dy = 1.50.$$

$$V(Y) = E(X^2) - E(X)^2$$

$$E(Y^2) = \int_{0.5}^2 y^2 (\frac{8}{9}y - \frac{4}{9}) dy = 2.375.$$

$$V(Y) = 2.375 - (1.5)^2 = 0.125.$$

d)
$$\int_{0.5}^{m} (\frac{8}{9}y - \frac{4}{9})dy = 0.5$$
.

$$(\tfrac{8y^2}{18}-\tfrac{4y}{9})|_{0.5}^m=(\tfrac{8m^2}{18}-\tfrac{4m}{9})-(\tfrac{2}{18}-\tfrac{2}{9})=0.5.$$

$$\left(\frac{8m^2}{18} - \frac{4m}{9}\right) = 0.5 - \frac{2}{18}$$
.

$$\frac{8m^2 - 8m}{18} = \frac{7}{18}.$$

$$8m^2 - 8m = 7.$$

$$m^2 - m = \frac{7}{8}.$$

$$m^2 - m - \frac{7}{8} = 0.$$

As raízes do polinômio são $r_1 = -0.56$ e $r_2 = 1.56$. Note que r_1 está fora do suporte da variável aleatória. Portanto, a mediana é $r_2 = Md(Y) = 1.56$.

15.

a)
$$f(x) = \begin{cases} a & \text{se } -2 \le x \le 2; \\ 2a & \text{se } 2 \le x \le 4; \\ 0 & \text{caso contrário.} \end{cases}$$

Por meio de integral, temos que

$$\int_{-2}^{2} a dx + \int_{2}^{4} 2a dx = 1$$

$$|ax|_{-2}^2 + 2ax|_2^4 = 1$$

$$2a + 2a + 8a - 4a = 1$$

$$a = \frac{1}{8}$$
.

b)
$$P(X > 0 | X < 3) = (\int_0^2 \frac{1}{8} dx + \int_2^3 \frac{2}{8} dx) / (\int_{-2}^2 \frac{1}{8} dx + \int_2^3 \frac{2}{8} dx) = (\frac{1}{4} + \frac{1}{4}) / (\frac{1}{2} + \frac{1}{4}) = \frac{2}{3}.$$

c)
$$E(X) = \int_{-2}^{2} x \frac{1}{8} dx + \int_{2}^{4} x \frac{2}{8} dx = 1.5.$$

$$V(X) = E(X^2) - E(X)^2$$
.

$$E(X^2) = \int_{-2}^2 x^2 \frac{1}{8} dx + \int_2^4 x^2 \frac{2}{8} dx = \frac{16}{3}$$

$$V(X) = \frac{16}{3} - (1.5)^2 = 3.08.$$

$$Md(X) = \int_{-2}^{m} \frac{1}{8} dx = 0.5$$

$$Md(X) = \frac{x}{8}|_{m}^{-2} = 0.5$$

$$Md(X) = \frac{m}{8} + \frac{2}{8} = 0.5$$

$$Md(X) = \frac{m}{8} + \frac{2}{8} = 0.5$$

$$Md(X) = \frac{m}{8} = 0.5 - \frac{2}{8}$$

$$Md(X) = \frac{m}{8} = \frac{1}{4}$$

$$Md(X) = m = 2.$$

16.

a)

b)
$$P(Y \le 6) = \int_4^6 \frac{1}{40} y dy = \frac{x^2}{80} \Big|_6^4 = \frac{6^2}{80} - \frac{4^2}{80} = \frac{36}{80} - \frac{16}{80} = \frac{20}{80} = \frac{1}{4}$$

$$\begin{split} &P(5 \leq Y \leq 10.5) = \int_5^{10.5} f(y) dy \\ &P(5 \leq Y \leq 10.5) = (\int_5^8 \tfrac{1}{40} y dy) + (\int_8^{10} (-\tfrac{1}{20} y + \tfrac{3}{5}) dy) + (\int_{10}^{10.5} \tfrac{1}{10} dy) \\ &P(5 \leq Y \leq 10.5) = \tfrac{39}{80} + \tfrac{3}{10} + 0.05 = 0.84. \end{split}$$

c)
$$E[Y] = (\int_4^8 y \frac{1}{40} y dy) + (\int_8^{10} y (-\frac{1}{20} y + \frac{3}{5}) dy) + (\int_{10}^{11} y \frac{1}{10} dy) = (\frac{56}{15}) + (\frac{8}{3}) + (\frac{21}{20}) = 7.45.$$