Artificial Intelligence and Machine Learning Barbara Caputo

Perceptron: Non-linearity and preprocessing

Perceptron

- Perceptron
 - Map data into feature space $x \to \phi(x)$

- Perceptron
 - Map data into feature space $x \to \phi(x)$
 - Solve problem in this space

- Perceptron
 - Map data into feature space $x \to \phi(x)$
 - Solve problem in this space
 - Query replace $\langle x, x' \rangle$ by $\langle \phi(x), \phi(x') \rangle$ for code

- Perceptron
 - Map data into feature space $x \to \phi(x)$
 - Solve problem in this space
 - Query replace $\langle x, x' \rangle$ by $\langle \phi(x), \phi(x') \rangle$ for code
- Feature Perceptron
 - Solution in span of $\phi(x_i)$

 Separating surfaces are Circles, hyperbolae, parabolae

Constructing Features (very naive OCR system)

	Ι	2	3	4	5	6	7	8	9	0
Loops	0	0	0	_	0	_	0	2	_	_
3 Joints	0	0	0	0	0	I	0	0	I	0
4 Joints	0	0	0	ı	0	0	0	I	0	0
Angles	0	ı	ı	ı	ı	0	ı	0	0	0
Ink	ı	2	2	2	2	2	ı	3	2	2

```
Delivered-To: alex.smola@amail.com
Received: by 10.216.47.73 with SMTP id s51cs361171web;
        Tue, 3 Jan 2012 14:17:53 -0800 (PST)
Received: by 10.213.17.145 with SMTP id s17mr2519891eba.147.1325629071725;
        Tue, 03 Jan 2012 14:17:51 -0800 (PST)
Return-Path: <alex+caf_=alex.smola=amail.com@smola.org>
Received: from mail-ey0-f175.google.com (mail-ey0-f175.google.com [209.85.215.175])
        by mx.google.com with ESMTPS id n4si29264232eef.57.2012.01.03.14.17.51
        (version=TLSv1/SSLv3 cipher=OTHER);
        Tue. 03 Jan 2012 14:17:51 -0800 (PST)
Received-SPF: neutral (google.com: 209.85.215.175 is neither permitted nor denied by best
guess record for domain of alex+caf_-alex.smola-amail.com@smola.org) client-
Authentication-Results: mx.google.com; spf=neutral (google.com: 209.85.215.175 is neither
permitted nor denied by best guess record for domain of alex
+caf_-alex.smola-gmail.com@smola.org) smtp.mail-alex+caf_-alex.smola-gmail.com@smola.org;
dkim-pass (test mode) header.i-@googlemail.com
Received: by eaal1 with SMTP id l1so15092746eaa.6
        for <alex.smola@gmail.com>; Tue, 03 Jan 2012 14:17:51 -0800 (PST)
Received: by 10.205.135.18 with SMTP id ie18mr5325064bkc.72.1325629071362;
        Tue, 03 Jan 2012 14:17:51 -0800 (PST)
X-Forwarded-To: alex.smola@gmail.com
X-Forwarded-For: alex@smola.org alex.smola@gmail.com
Delivered-To: alex@smola.org
Received: by 10.204.65.198 with SMTP id k6cs206093bki;
        Tue, 3 Jan 2012 14:17:50 -0800 (PST)
Received: by 10.52.88.179 with SMTP id bh19mr10729402vdb.38.1325629068795;
        Tue, 03 Jan 2012 14:17:48 -0800 (PST)
Return-Path: <althoff.tim@aooalemail.com>
Received: from mail-vx0-f179.google.com (mail-vx0-f179.google.com [209.85.220.179])
        by mx.google.com with ESMTPS id dt4si11767074vdb.93.2012.01.03.14.17.48
        (version=TLSv1/SSLv3 cipher=OTHER);
        Tue, 03 Jan 2012 14:17:48 -0800 (PST)
Received-SPF: pass (google.com: domain of althoff.tim@googlemail.com designates
209.85.220.179 as permitted sender) client-ip=209.85.220.179;
Received: by vcbf13 with SMTP id f13so11295098vcb.10
        for <alex@smola.org>; Tue, 03 Jan 2012 14:17:48 -0800 (PST)
DKIM-Signature: v=1; a=rsa-sha256; c=relaxed/relaxed;
        d-googlemail.com; s-gamma;
        h-mime-version:sender:date:x-google-sender-auth:message-id:subject
        :from:to:content-type;
        bh=WCbdZ5sXac25dpH02XcRyD0dts993hKwsAVXpGrFh0w=;
        b=WK2B2+ExWnf/gvTkw6uUvKuP4XeoKnlJq3USYTm0RARK8dSFjy0QsIHeAP9Yssxp60
        7ngGoTzYgd+ZsyJfvQcLAWp1PCJhG8AMcngWkx@NMeoFvIp2HQooZwxS0Cx5ZRgY+7gX
        uIbbdna41UDXj6UFe16SpLDCkptd80Z3gr7+o=
MIME-Version: 1.0
Received: by 10.220.108.81 with SMTP id e17mr24104004vcp.67.1325629067787;
Tue, 03 Jan 2012 14:17:47 -0800 (PST)
Sender: althoff.tim@googlemail.com
Received: by 10.220.17.129 with HTTP; Tue, 3 Jan 2012 14:17:47 -0800 (PST)
Date: Tue, 3 Jan 2012 14:17:47 -0800
X-Google-Sender-Auth: 6bwi6D17HjZIkx0Eol38NZzyeHs
Message-ID: <CAFJJHDGPBW+SdZq8MdAABiAKvdDk9tpeMoDiiYGioGO-WC7osq@mqil.com>
Subject: CS 281B. Advanced Topics in Learning and Decision Making
From: Tim Althoff <althoff@eecs.berkelev.edu>
Content-Type: multipart/alternative; boundary=f46d043c7af4b07e8d04b5a7113a
--f46d043c7af4b07e8d04b5a7113a
Content-Type: text/plain; charset=ISO-8859-1
```

Feature Engineering for Spam Filtering

- bag of words
- pairs of words
- date & time
- recipient path
- IP number
- sender
- encoding
- links
- ... secret sauce ...

More feature engineering

Two Interlocking Spirals
 Transform the data into a radial and angular part

$$(x_1, x_2) = (r \sin \phi, r \cos \phi)$$

- Handwritten Japanese Character Recognition
 - Break down the images into strokes and recognize it
 - Lookup based on stroke order
- Medical Diagnosis
 - Physician's comments
 - Blood status / ECG / height / weight / temperature ...
 - Medical knowledge

initialize w, b = 0 repeat

```
initialize w, b = 0
repeat
Pick (x_i, y_i) from data
```

```
initialize w,b=0 repeat  \begin{array}{c} \text{Pick } (x_i,y_i) \text{ from data} \\ \text{if } y_i(w\cdot \Phi(x_i)+b) \leq 0 \text{ then} \\ w'=w+y_i\Phi(x_i) \\ b'=b+y_i \\ \text{until } y_i(w\cdot \Phi(x_i)+b)>0 \text{ for all } i \end{array}
```

```
initialize w,b=0 repeat  \begin{array}{c} \text{Pick } (x_i,y_i) \text{ from data} \\ \text{if } y_i(w\cdot \Phi(x_i)+b) \leq 0 \text{ then} \\ w'=w+y_i\Phi(x_i) \\ b'=b+y_i \\ \text{until } y_i(w\cdot \Phi(x_i)+b)>0 \text{ for all } i \end{array}
```

- Nothing happens if classified correctly
- Weight vector is linear combination $w = \sum y_i \phi(x_i)$

```
initialize w,b=0 repeat  \begin{array}{c} \text{Pick } (x_i,y_i) \text{ from data} \\ \text{if } y_i(w\cdot \Phi(x_i)+b) \leq 0 \text{ then} \\ w'=w+y_i\Phi(x_i) \\ b'=b+y_i \\ \text{until } y_i(w\cdot \Phi(x_i)+b)>0 \text{ for all } i \end{array}
```

- Nothing happens if classified correctly
- Weight vector is linear combination $w = \sum_{i \in I} y_i \phi(x_i)$
- Classifier is linear combination of inner products $f(x) = \sum_{i \in I} y_i \langle \phi(x_i), \phi(x) \rangle + b$

Problems

- Problems
 - Need domain expert (e.g. Chinese OCR)
 - Often expensive to compute
 - Difficult to transfer engineering knowledge
- Shotgun Solution
 - Compute many features
 - Hope that this contains good ones
 - Do this efficiently

Solving XOR

- XOR not linearly separable
- Mapping into 3 dimensions makes it easily solvable

Quadratic Features in \mathbb{R}^2

$$\Phi(x) := \left(x_1^2, \sqrt{2}x_1x_2, x_2^2\right)$$

Quadratic Features in \mathbb{R}^2

$$\Phi(x) := \left(x_1^2, \sqrt{2}x_1x_2, x_2^2\right)$$

Dot Product

$$\langle \Phi(x), \Phi(x') \rangle = \left\langle \left(x_1^2, \sqrt{2}x_1 x_2, x_2^2 \right), \left(x_1'^2, \sqrt{2}x_1' x_2', x_2'^2 \right) \right\rangle$$
$$= \langle x, x' \rangle^2.$$

Quadratic Features in \mathbb{R}^2

$$\Phi(x) := \left(x_1^2, \sqrt{2}x_1x_2, x_2^2\right)$$

Dot Product

$$\langle \Phi(x), \Phi(x') \rangle = \left\langle \left(x_1^2, \sqrt{2}x_1 x_2, x_2^2 \right), \left(x_1'^2, \sqrt{2}x_1' x_2', x_2'^2 \right) \right\rangle$$
$$= \langle x, x' \rangle^2.$$

Insight

Trick works for any polynomials of order d via $\langle x, x' \rangle^d$.

Computational Efficiency

Problem

- Extracting features can sometimes be very costly.
- Example: second order features in 1000 dimensions. This leads to 5 · 10⁵ numbers. For higher order polynomial features much worse.

Computational Efficiency

Problem

- Extracting features can sometimes be very costly.
- Example: second order features in 1000 dimensions. This leads to 5 · 10⁵ numbers. For higher order polynomial features much worse.

Solution

Don't compute the features, try to compute dot products implicitly. For some features this works . . .

Computational Efficiency

Problem

- Extracting features can sometimes be very costly.
- Example: second order features in 1000 dimensions. This leads to 5 · 10⁵ numbers. For higher order polynomial features much worse.

Solution

Don't compute the features, try to compute dot products implicitly. For some features this works . . .

Definition

A kernel function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a symmetric function in its arguments for which the following property holds

$$k(x, x') = \langle \Phi(x), \Phi(x') \rangle$$
 for some feature map Φ .

If k(x, x') is much cheaper to compute than $\Phi(x)$...

```
\begin{aligned} &\text{repeat} \\ &\text{Pick } (x_i,y_i) \text{ from data} \\ &\text{if } y_i f(x_i) \leq 0 \text{ then} \\ &f(\cdot) \leftarrow f(\cdot) + y_i k(x_i,\cdot) + y_i \\ &\text{until } y_i f(x_i) > 0 \text{ for all } i \end{aligned}
```

```
initialize f=0 repeat  \begin{array}{c} \text{Pick } (x_i,y_i) \text{ from data} \\ \text{if } y_i f(x_i) \leq 0 \text{ then} \\ f(\cdot) \leftarrow f(\cdot) + y_i k(x_i,\cdot) + y_i \\ \text{until } y_i f(x_i) > 0 \text{ for all } i \end{array}
```

Nothing happens if classified correctly

```
initialize f=0 repeat  \begin{array}{c} \text{Pick } (x_i,y_i) \text{ from data} \\ \text{if } y_i f(x_i) \leq 0 \text{ then} \\ f(\cdot) \leftarrow f(\cdot) + y_i k(x_i,\cdot) + y_i \\ \text{until } y_i f(x_i) > 0 \text{ for all } i \end{array}
```

- Nothing happens if classified correctly
- Weight vector is linear combination $w = \sum_{i \in I} y_i \phi(x_i)$

```
initialize f=0 repeat  \begin{array}{c} \text{Pick } (x_i,y_i) \text{ from data} \\ \text{if } y_i f(x_i) \leq 0 \text{ then} \\ f(\cdot) \leftarrow f(\cdot) + y_i k(x_i,\cdot) + y_i \\ \text{until } y_i f(x_i) > 0 \text{ for all } i \end{array}
```

- Nothing happens if classified correctly
- Weight vector is linear combination $w = \sum_{i \in I} y_i \phi(x_i)$
- Classifier is linear combination of inner products

$$f(x) = \sum_{i \in I} y_i \langle \phi(x_i), \phi(x) \rangle + b = \sum_{i \in I} y_i k(x_i, x) + b$$

Polynomial Kernels

Idea

Polynomial Kernels

Idea

- We want to extend $k(x,x')=\langle x,x'\rangle^2$ to $k(x,x')=(\langle x,x'\rangle+c)^d$ where c>0 and $d\in\mathbb{N}$.
- Prove that such a kernel corresponds to a dot product.

Polynomial Kernels

Idea

Solution We want to extend $k(x, x') = \langle x, x' \rangle^2$ to

$$k(x, x') = (\langle x, x' \rangle + c)^d$$
 where $c > 0$ and $d \in \mathbb{N}$.

Prove that such a kernel corresponds to a dot product.

Proof strategy

Simple and straightforward: compute the explicit sum given by the kernel, i.e.

$$k(x, x') = (\langle x, x' \rangle + c)^d = \sum_{i=0}^m \binom{d}{i} (\langle x, x' \rangle)^i c^{d-i}$$

Individual terms $(\langle x, x' \rangle)^i$ are dot products for some $\Phi_i(x)$.

Computability

We have to be able to compute k(x, x') efficiently (much cheaper than dot products themselves).

Computability

We have to be able to compute k(x, x') efficiently (much cheaper than dot products themselves).

"Nice and Useful" Functions

The features themselves have to be useful for the learning problem at hand. Quite often this means smooth functions.

Computability

We have to be able to compute k(x, x') efficiently (much cheaper than dot products themselves).

"Nice and Useful" Functions

The features themselves have to be useful for the learning problem at hand. Quite often this means smooth functions.

Symmetry

Obviously k(x,x')=k(x',x) due to the symmetry of the dot product $\langle \Phi(x), \Phi(x') \rangle = \langle \Phi(x'), \Phi(x) \rangle$.

Computability

We have to be able to compute k(x, x') efficiently (much cheaper than dot products themselves).

"Nice and Useful" Functions

The features themselves have to be useful for the learning problem at hand. Quite often this means smooth functions.

Symmetry

Obviously k(x,x')=k(x',x) due to the symmetry of the dot product $\langle \Phi(x), \Phi(x') \rangle = \langle \Phi(x'), \Phi(x) \rangle$.

Dot Product in Feature Space

Is there always a Φ such that k really is a dot product?

Mercer's Theorem

Mercer's Theorem

The Theorem

For any symmetric function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ which is square integrable in $\mathcal{X} \times \mathcal{X}$ and which satisfies

$$\int_{\mathcal{X} \times \mathcal{X}} k(x, x') f(x) f(x') dx dx' \ge 0 \text{ for all } f \in L_2(\mathcal{X})$$

there exist $\phi_i: \mathfrak{X} \to \mathbb{R}$ and numbers $\lambda_i \geq 0$ where

$$k(x, x') = \sum_{i} \lambda_i \phi_i(x) \phi_i(x')$$
 for all $x, x' \in \mathcal{X}$.

Mercer's Theorem

The Theorem

For any symmetric function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ which is square integrable in $\mathcal{X} \times \mathcal{X}$ and which satisfies

$$\int_{\mathcal{X} \times \mathcal{X}} k(x, x') f(x) f(x') dx dx' \ge 0 \text{ for all } f \in L_2(\mathcal{X})$$

there exist $\phi_i: \mathfrak{X} \to \mathbb{R}$ and numbers $\lambda_i \geq 0$ where

$$k(x, x') = \sum_{i} \lambda_{i} \phi_{i}(x) \phi_{i}(x')$$
 for all $x, x' \in \mathfrak{X}$.

Interpretation

Double integral is the continuous version of a vectormatrix-vector multiplication. For positive semidefinite matrices we have

$$\sum \sum k(x_i, x_j)\alpha_i\alpha_j \ge 0$$

Distance in Feature Space

Distance between points in feature space via

$$d(x, x')^{2} := ||\Phi(x) - \Phi(x')||^{2}$$

$$= \langle \Phi(x), \Phi(x) \rangle - 2\langle \Phi(x), \Phi(x') \rangle + \langle \Phi(x'), \Phi(x') \rangle$$

$$= k(x, x) + k(x', x') - 2k(x, x)$$

Distance in Feature Space

Distance between points in feature space via

$$d(x, x')^{2} := ||\Phi(x) - \Phi(x')||^{2}$$

$$= \langle \Phi(x), \Phi(x) \rangle - 2\langle \Phi(x), \Phi(x') \rangle + \langle \Phi(x'), \Phi(x') \rangle$$

$$= k(x, x) + k(x', x') - 2k(x, x)$$

Kernel Matrix

To compare observations we compute dot products, so we study the matrix K given by

$$K_{ij} = \langle \Phi(x_i), \Phi(x_j) \rangle = k(x_i, x_j)$$

where x_i are the training patterns.

Distance in Feature Space

Distance between points in feature space via

$$d(x, x')^{2} := ||\Phi(x) - \Phi(x')||^{2}$$

$$= \langle \Phi(x), \Phi(x) \rangle - 2\langle \Phi(x), \Phi(x') \rangle + \langle \Phi(x'), \Phi(x') \rangle$$

$$= k(x, x) + k(x', x') - 2k(x, x)$$

Kernel Matrix

To compare observations we compute dot products, so we study the matrix K given by

$$K_{ij} = \langle \Phi(x_i), \Phi(x_j) \rangle = k(x_i, x_j)$$

where x_i are the training patterns.

Similarity Measure

The entries K_{ij} tell us the overlap between $\Phi(x_i)$ and $\Phi(x_j)$, so $k(x_i, x_j)$ is a similarity measure.

K is Positive Semidefinite

Claim: $\alpha^{\top}K\alpha \geq 0$ for all $\alpha \in \mathbb{R}^m$ and all kernel matrices $K \in \mathbb{R}^{m \times m}$. Proof:

K is Positive Semidefinite

Claim: $\alpha^{\top}K\alpha \geq 0$ for all $\alpha \in \mathbb{R}^m$ and all kernel matrices $K \in \mathbb{R}^{m \times m}$. Proof:

$$\sum_{i,j}^{m} \alpha_{i} \alpha_{j} K_{ij} = \sum_{i,j}^{m} \alpha_{i} \alpha_{j} \langle \Phi(x_{i}), \Phi(x_{j}) \rangle$$

$$= \left\langle \sum_{i}^{m} \alpha_{i} \Phi(x_{i}), \sum_{j}^{m} \alpha_{j} \Phi(x_{j}) \right\rangle = \left\| \sum_{i=1}^{m} \alpha_{i} \Phi(x_{i}) \right\|^{2}$$

K is Positive Semidefinite

Claim: $\alpha^{\top}K\alpha \geq 0$ for all $\alpha \in \mathbb{R}^m$ and all kernel matrices $K \in \mathbb{R}^{m \times m}$. Proof:

$$\sum_{i,j}^{m} \alpha_{i} \alpha_{j} K_{ij} = \sum_{i,j}^{m} \alpha_{i} \alpha_{j} \langle \Phi(x_{i}), \Phi(x_{j}) \rangle$$

$$= \left\langle \sum_{i}^{m} \alpha_{i} \Phi(x_{i}), \sum_{j}^{m} \alpha_{j} \Phi(x_{j}) \right\rangle = \left\| \sum_{i=1}^{m} \alpha_{i} \Phi(x_{i}) \right\|^{2}$$

Kernel Expansion

If w is given by a linear combination of $\Phi(x_i)$ we get

$$\langle w, \Phi(x) \rangle = \left\langle \sum_{i=1}^{m} \alpha_i \Phi(x_i), \Phi(x) \right\rangle = \sum_{i=1}^{m} \alpha_i k(x_i, x).$$

A Candidate for a Kernel

$$k(x, x') = \begin{cases} 1 & \text{if } ||x - x'|| \le 1 \\ 0 & \text{otherwise} \end{cases}$$

This is symmetric and gives us some information about the proximity of points, yet it is not a proper kernel . . .

A Candidate for a Kernel

$$k(x, x') = \begin{cases} 1 & \text{if } ||x - x'|| \le 1 \\ 0 & \text{otherwise} \end{cases}$$

This is symmetric and gives us some information about the proximity of points, yet it is not a proper kernel . . .

Kernel Matrix

We use three points, $x_1 = 1, x_2 = 2, x_3 = 3$ and compute the resulting "kernelmatrix" K. This yields

$$K = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \text{ and eigenvalues } (\sqrt{2} - 1)^{-1}, 1 \text{ and } (1 - \sqrt{2}).$$

as eigensystem. Hence k is not a kernel.

Examples

Examples of kernels k(x, x')

	near
	HPAI
	ncai
_	

$$\langle x, x' \rangle$$

$$\exp\left(-\lambda \|x - x'\|\right)$$

$$\exp\left(-\lambda \|x - x'\|^2\right)$$

$$(\langle x, x' \rangle + c \rangle)^d, c \ge 0, d \in \mathbb{N}$$

$$B_{2n+1}(x-x')$$

$$\mathbf{E}_c[p(x|c)p(x'|c)]$$

Examples

Examples of kernels k(x, x')

Linear $\langle x, x' \rangle$

Laplacian RBF $\exp(-\lambda ||x - x'||)$

Gaussian RBF $\exp(-\lambda ||x - x'||^2)$

Polynomial $(\langle x, x' \rangle + c \rangle)^d, c \geq 0, d \in \mathbb{N}$

B-Spline $B_{2n+1}(x-x')$

Cond. Expectation $\mathbf{E}_c[p(x|c)p(x'|c)]$

Simple trick for checking Mercer's condition

Compute the Fourier transform of the kernel and check that it is nonnegative.

Linear Kernel

Laplacian Kernel

Gaussian Kernel

Polynomial of order 3

B₃ Spline Kernel

5 minutes break!

Density Estimation

- Observe some data xi
- Want to estimate p(x)

Density Estimation

- Observe some data xi
- Want to estimate p(x)
 - Find unusual observations (e.g. security)
 - Find typical observations (e.g. prototypes)

Density Estimation

- Observe some data xi
- Want to estimate p(x)
 - Find unusual observations (e.g. security)
 - Find typical observations (e.g. prototypes)
 - Classifier via Bayes Rule

$$p(y|x) = \frac{p(x,y)}{p(x)} = \frac{p(x|y)p(y)}{\sum_{y'} p(x|y')p(y')}$$

Need tool for computing p(x) easily

Bin Counting

- Discrete random variables, e.g.
 - English, Chinese, German, French, ...
 - Male, Female
- Bin counting (record # of occurrences)

25	English	Chinese	German	French	Spanish
male	5	2	3	1	0
female	6	3	2	2	1

Bin Counting

- Discrete random variables, e.g.
 - English, Chinese, German, French, ...
 - Male, Female
- Bin counting (record # of occurrences)

25	English	Chinese	German	French	Spanish
male	0.2	0.08	0.12	0.04	0
female	0.24	0.12	0.08	0.08	0.04

- Discrete random variables, e.g.
 - English, Chinese, German, French, ...
 - Male, Female
- Bin counting (record # of occurrences)

25	English	Chinese	German	French	Spanish
male	0.2	0.08	0.12	0.04	0
female	0.24	0.12	0.08	0.08	0.04

- Discrete random variables, e.g.
 - English, Chinese, German, French, ...
 - Male, Female

not enough data

Bin counting (record # of occurrences)

25	English	Chinese	German	French	Spanish
male	0.2	0.08	0.12	0.04	0
female	0.24	0.12	0.08	0.08	0.04

Curse of dimensionality (lite)

- Discrete random variables, e.g.
 - English, Chinese, German, French, ...
 - Male, Female
 - ZIP code
 - Day of the week
 - Operating system
 - ...

#bins grows exponentially

Curse of dimensionality (lite)

- Discrete random variables, e.g.
 - English, Chinese, German, French, ...
 - Male, Female
 - ZIP code
 - Day of the week
 - Operating system
 - ...
- Continuous random variables
 - Income
 - Bandwidth
 - Time

need many bins per dimension

#bins grows exponentially

Density Estimation

- Continuous domain = infinite number of bins
- Curse of dimensionality
 - 10 bins on [0, 1] is probably good
 - 10¹⁰ bins on [0, 1]¹⁰ requires high accuracy in estimate: probability mass per cell also decreases by 10¹⁰

Naive approach
 Use empirical density (delta distributions)

$$p_{\rm emp}(x) = \frac{1}{m} \sum_{i=1}^{m} \delta_{x_i}(x)$$

Naive approach
 Use empirical density (delta distributions)

$$p_{\rm emp}(x) = \frac{1}{m} \sum_{i=1}^{m} \delta_{x_i}(x)$$

- This breaks if we see slightly different instances
- Kernel density estimate

Naive approach
 Use empirical density (delta distributions)

$$p_{\rm emp}(x) = \frac{1}{m} \sum_{i=1}^{m} \delta_{x_i}(x)$$

- This breaks if we see slightly different instances
- Kernel density estimate
 Smear out empirical density with a nonnegative smoothing kernel k_x(x') satisfying

$$\int_{\mathcal{X}} k_x(x')dx' = 1 \text{ for all } x$$

Density estimate

$$p_{\text{emp}}(x) = \frac{1}{m} \sum_{i=1}^{m} \delta_{x_i}(x)$$

$$\hat{p}(x) = \frac{1}{m} \sum_{i=1}^{m} k_{x_i}(x)$$

Smoothing kernels

$$(2\pi)^{-\frac{1}{2}}e^{-\frac{1}{2}x^2} \qquad \frac{1}{2}e^{-|x|} \qquad \frac{3}{4}\max(0, 1 - x^2) \quad \frac{1}{2}\chi_{[-1,1]}(x)$$

Nearest Neighbor

Nearest Neighbors

Table lookup
 For previously seen instance remember label

Nearest Neighbors

- Table lookup
 For previously seen instance remember label
- Nearest neighbor
 - Pick label of most similar neighbor
 - Slight improvement use k-nearest neighbors

Nearest Neighbors

- Table lookup
 For previously seen instance remember label
- Nearest neighbor
 - Pick label of most similar neighbor
 - Slight improvement use k-nearest neighbors
 - Really useful baseline!
 - Easy to implement for small amounts of data.

1-Nearest Neighbor

4-Nearest Neighbors Sign

If we get more data

- 1 Nearest Neighbor
 - Converges to perfect solution if separation
 - Twice the minimal error rate 2p(1-p) for noisy problems

If we get more data

- 1 Nearest Neighbor
 - Converges to perfect solution if separation
 - Twice the minimal error rate 2p(1-p) for noisy problems
- k-Nearest Neighbor
 - Converges to perfect solution if separation (but needs more data)
 - Converges to minimal error min(p,1-p) for noisy problems (use increasing k)

That's all