Contents

1	\mathbf{Intr}	oducti	ion	1
	1.1	Cance	r Research in the Post-Genomic Era	1
		1.1.1	Cancer as a Global Health Concern	2
			1.1.1.1 Genetics and Molecular Biology in Cancers	3
		1.1.2	The Human Genome Revolution	5
			1.1.2.1 The First Human Genome Sequence	5
			1.1.2.2 Impact of Genomics	6
		1.1.3	Technologies to Enable Genetics Research	7
			1.1.3.1 DNA Sequencing and Genotyping Technologies	7
			1.1.3.2 Microarrays and Quantitative Technologies	8
			1.1.3.3 Massively Parallel "Next Generation" Sequencing	9
			1.1.3.3.1 Molecular Profiling with Genomics Technology .	10
			1.1.3.3.2 Established Sequencing Technologies	11
			1.1.3.3.3 Emerging Sequencing Technologies	12
			1.1.3.4 Bioinformatics as Interdisciplinary Genomic Analysis .	14
		1.1.4	Follow-up Large-Scale Genomics Projects	14
		1.1.5	Cancer Genomes	15
			1.1.5.1 The Cancer Genome Atlas Project	16
			1.1.5.2 The International Cancer Genome Consortium	17
			1.1.5.2.1 Findings from Cancer Genomes	17
			1.1.5.2.2 Genomic Comparisons Across Cancer Tissues .	19
			1.1.5.2.3 Cancer Genomic Data Resouces	20
		1.1.6	Genomic Cancer Medicine	20
			1.1.6.1 Cancer Genes and Driver Mutations	21
			1.1.6.2 Personalised or Precision Cancer Medicine	22
			1.1.6.2.1 Molecular Diagnostics and Pan-Cancer Medicine	22
			1.1.6.3 Targeted Therapeutics and Pharmacogenomics	23
			1.1.6.3.1 Targeting Oncogenic Driver Mutations	23
			1.1.6.4 Systems and Network Biology	24
			1.1.6.4.1 Network Medicine, and Polypharmacology	27
	1.2	A Syn	thetic Lethal Approach to Cancer Medicine	28
		1.2.1	Synthetic Lethal Genetic Interactions	28
		1.2.2	Synthetic Lethal Concepts in Genetics	29
		1.2.3	Studies of Synthetic Lethality	30
			1.2.3.1 Synthetic Lethal Pathways and Networks	30

			1.2.3.1.1 Evolution of Synthetic Lethality
		1.2.4	Synthetic Lethal Concepts in Cancer
		1.2.5	Clinical Impact of Synthetic Lethality in Cancer
		1.2.6	High-throughput Screening for Synthetic Lethality
			1.2.6.1 Synthetic Lethal Screens
		1.2.7	Computational Prediction of Synthetic Lethality
			1.2.7.1 Bioinformatics Approaches to Genetic Interactions 40
			1.2.7.2 Comparative Genomics
			1.2.7.3 Analysis and Modelling of Protein Data
			1.2.7.4 Differential Gene Expression
			1.2.7.5 Data Mining and Machine Learning
			1.2.7.6 Bimodality
			1.2.7.7 Rationale for Further Development
	1.3	E-cadl	herin as a Synthetic Lethal Target
		1.3.1	The CDH1 gene and it's Biological Functions
			1.3.1.1 Cytoskeleton
			1.3.1.2 Extracellular and Tumour Micro-Environment 52
			1.3.1.3 Cell-Cell Adhesion and Signalling
		1.3.2	CDH1 as a Tumour (and Invasion) Suppressor
			1.3.2.1 Breast Cancers and Invasion
		1.3.3	Hereditary Diffuse Gastric Cancer and Lobular Breast Cancer . 53
		1.3.4	Somatic Mutations
			1.3.4.1 Mutation Rate
			1.3.4.2 Co-occuring Mutations
		1.3.5	Models of <i>CDH1</i> loss in cell lines
	1.4	Summ	ary and Research Direction of Thesis
2	Mad	thoda (and Resources
4	2.1		ormatics Resources for Genomics Research
	2.1	2.1.1	
		2.1.1	2.1.1.1 Cancer Genome Atlas Data
			2.1.1.1 Cancel Genome Arias Data
	2.2	Data 1	Handling
	2.2	2.2.1	Normalisation
		2.2.1 $2.2.2$	Sample Triage
		2.2.2	Metagenes and the Singular Value Decomposition
		2.2.9	2.2.3.1 Candidate Triage and Integration with Screen Data 10
	2.3	Techn	iques
	2.0	2.3.1	Statistical Procedures and Tests
		2.3.2	Gene Set Over-representation Analysis
		2.3.3	Clustering
		2.3.4	Heatmap
		2.3.5	Modeling and Simulations
			2.3.5.1 Receiver Operating Characteristic (Performance) 14
		2.3.6	Resampling Analysis
	2.4		ray Structure Methods
			v ·

		2.4.1 2.4.2	Network and Graph Analysis	16 17
		2.4.3	Constructing Pathway Subgraphs	17
		2.4.4	Network Analysis Metrics	17
	2.5	Imple	mentation	18
		2.5.1	Computational Resources and Linux Utilities	18
		2.5.2	R Language and Packages	19
		2.5.3	High Performance and Parallel Computing	22
3	Met	thods l	Developed During Thesis	24
	3.1		thetic Lethal Detection Methodology	25
	3.2		etic Lethal Simulation and Modelling	27
		3.2.1	A Model of Synthetic Lethality in Expression Data	27
		3.2.2	Simulation Procedure	31
	3.3	Detect	ting Simulated Synthetic Lethal Partners	34
		3.3.1	Binomial Simulation of Synthetic lethality	34
		3.3.2	Multivariate Normal Simulation of Synthetic lethality	36
			3.3.2.1 Multivariate Normal Simulation with Correlated Genes	39
			3.3.2.2 Specificity with Query-Correlated Pathways	46
			3.3.2.2.1 Importance of Directional Testing	46
	3.4	Graph	Structure Methods	47
		3.4.1	Upstream and Downstream Gene Detection	47
			3.4.1.1 Permutation Analysis for Statistical Significance	49
			3.4.1.2 Ranking Based on Biological Context	50
		3.4.2	Simulating Gene Expression from Graph Structures	51
	3.5	Custo	mised Functions and Packages Developed	54
		3.5.1	Synthetic Lethal Interaction Prediction Tool	54
		3.5.2	Data Visualisation	56
		3.5.3	Extensions to the iGraph Package	58
			3.5.3.1 Sampling Simulated Data from Graph Structures	58
			3.5.3.2 Plotting Directed Graph Structures	59
			3.5.3.3 Computing Information Centrality	60
			3.5.3.4 Testing Pathway Structure with Permutation Testing.	60
			3.5.3.5 Metapackage to Install iGraph Functions	60
4	Syn	thetic	Lethal Analysis of Gene Expression Data	6
	4.1	Synthe	etic lethal genes in breast cancer	8
		4.1.1	Synthetic lethal pathways in breast cancer	10
		4.1.2	Expression profiles of synthetic lethal partners	10
			4.1.2.1 Subgroup pathway analysis	11
	4.2	Comp	arison of synthetic lethal gene candidates	13
		4.2.1	Comparison with differential expression	13
		4.2.2	Comparison with correlation	13
		4.2.3	Comparison with primary siRNA screen candidates	13
			4.2.3.1 Comparison of screen at pathway level	16
			4.2.3.1.1 Resampling of genes for pathway enrichment	16

		4.2.4 Comparison with secondary screen siRNA screen candidates	20
		4.2.4.1 Comparison of candidate SL Pathways	20
	4.3	Mutation, Copy Number, and Methylation	20
		4.3.1 Synthetic lethality by DNA copy number	22
		4.3.2 Synthetic lethality by somatic mutation	22
		4.3.2.1 Mutation analysis	22
		4.3.3 ANOVA of Expression Predictors	22
	4.4	Global Synthetic Lethality	23
		4.4.1 Hub Genes	23
	4.5	Metagene Analysis	23
	1.0	4.5.1 Pathway expression	$\frac{23}{23}$
		4.5.2 Somatic mutation	23
		4.5.3 Synthetic lethal metagenes	$\frac{23}{23}$
	4.6	Replication in stomach cancer	$\frac{23}{23}$
	4.0	Replication in cell line encyclopaedia	$\frac{23}{24}$
	4.7	Summary	$\frac{24}{26}$
	4.0	Summary	20
5	Syn	thetic Lethal Pathway Structure	142
•	5.1	Reactome Network structure and Information Centrality as a measure	
	0.1	of gene essentiality	143
	5.2	Synthetic lethal genes in synthetic lethal pathways	143
	5.3	Centrality and connectivity of synthetic lethal genes	143
	5.4	Upstream or downstream synthetic lethal candidates	143
	5.5	Hierachical approach	143
	5.6	Discussion	143
	5.7	Conclusion	143
	0.1	Conclusion	140
6	Sim	ulation and Modeling of Synthetic Lethal Pathways	144
	6.1	Simulations and Modelling Synthetic Lethality in Expression Data	146
	6.2	Simulations over simple graph structures	147
		6.2.1 Performance	147
		6.2.2 Synthetic lethality across graph stuctures	147
		6.2.3 Performance with inhibition links	147
		6.2.4 Performance with 20,000 genes	147
	6.3	Simulations over pathway-based graphs	147
	6.4	Comparing methods	147
	0.1	6.4.1 SLIPT and Chi-Squared	147
		6.4.1.1 Correlated query genes	147
		6.4.2 Correlation	147 147
		6.4.3 Bimodality with BiSEp	147
		0.4.0 Dimodality with DioDp	141
7	Disc	cussion	148
	7.1	Significance	150
	7.2	Future Directions	151
	-	Conclusion	152

8	Conclusion	153
\mathbf{A}	Sample Correlation	15 4
В	Replicate Samples in TCGA Breast	156
\mathbf{C}	Software Used for Thesis	160
D	Secondary Screen Data	169
\mathbf{E}	Mutation Analysis in Breast Cancer	171
\mathbf{F}	Expression Analysis in Stomach Cancer	179
\mathbf{G}	Mutation Analysis in Stomach Cancer	180

List of Figures

1.1 1.2	Synthetic genetic interactions
2.1 2.2	Read count density
3.1	Framework for synthetic lethal prediction
3.2	Synthetic lethal prediction adapted for mutation
3.3	A model of synthetic lethal gene expression
3.4	Modeling synthetic lethal gene expression
3.5	Synthetic lethality with multiple genes
3.6	Simulating gene function
3.7	Simulating synthetic lethal gene function
3.8	Simulating synthetic lethal gene expression
3.9	Performance of binomial simulations
3.10	Comparison of statistical performance
3.11	Performance of multivariate normal simulations
3.12	Simulating expression with correlated gene blocks
3.13	Simulating expression with correlated gene blocks
3.14	Synthetic lethal prediction across simulations
3.15	Performance with correlations
3.16	Comparison of statistical performance with correlation structure 44
3.17	Performance with query correlations
3.18	Statistical evaluation of directional criteria
3.19	Performance of directional criteria
	Simulated graph structures
	Simulating expression from a graph structure
3.22	Simulating expression from graph structure with inhibitions
	Demonstration of violin plots with custom features
3.24	Demonstration of annotated heatmap
3.25	Simulating graph structures
4.1	Synthetic lethal expression profiles of analysed samples
4.2	Comparison of SLIPT to siRNA
4.3	Resampled intersection of SLIPT and siRNA candidates
4.4	Synthetic lethal expression profiles of stomach samples
4.5	Comparison of SLIPT in stomach to siRNA

A.1	Correlation profiles of removed samples	154
A.2	Correlation analysis and sample removal	155
B.1	Replicate excluded samples	156
B.2	Replicate samples with all remaining	157
В.3	Replicate samples with some excluded	158
В.3	Replicate samples with some excluded	159
E.1	Synthetic lethal expression profiles of analysed samples	177
	Comparison of mtSLIPT to siRNA	
G.1	Synthetic lethal expression profiles of stomach samples	183
G.2	Comparison of mtSLIPT in stomach to siRNA	185

List of Tables

1.1	Methods for Predicting Genetic Interactions	40
1.2	Methods for Predicting Synthetic Lethality in Cancer	41
1.3	Methods used by ?	43
2.1	Excluded Samples by Batch and Clinical Characteristics	9
2.2	Computers used during Thesis	19
2.3	Linux Utilities and Applications used during Thesis	20
2.4	R Installations used during Thesis	20
2.6	R Packages used during Thesis	20
2.5	R Packages Developed during Thesis	23
4.1	Candidate synthetic lethal genes against E-cadherin from SLIPT	9
4.2	Pathways for <i>CDH1</i> partners from SLIPT	10
4.3	Pathway composition for clusters of $\mathit{CDH1}$ partners from SLIPT	14
4.4	Pathway composition for <i>CDH1</i> partners from SLIPT and siRNA screen-	
	ing	17
4.5	Pathways for <i>CDH1</i> partners from SLIPT	19
4.6	Pathways for $CDH1$ partners from SLIPT and siRNA primary screen .	21
4.7	Candidate synthetic lethal metagenes against $\mathit{CDH1}$ from SLIPT	24
4.8	Candidate synthetic lethal genes against E-cadherin from SLIPT in	
	stomach cancer	25
4.9	Pathways for <i>CDH1</i> partners from SLIPT in stomach cancer	26
	Pathway composition for clusters of <i>CDH1</i> partners in stomach SLIPT	27
4.11	Pathway composition for <i>CDH1</i> partners from SLIPT and siRNA screen-	
	ing	28
	Pathways for <i>CDH1</i> partners from SLIPT in stomach cancer	29
	Pathways for <i>CDH1</i> partners from SLIPT in stomach and siRNA screen	30
4.14	Candidate synthetic lethal metagenes against <i>CDH1</i> from SLIPT in	
	stomach cancer	33
	Candidate synthetic lethal genes against E-cadherin from SLIPT in CCLE	34
	Pathways for <i>CDH1</i> partners from SLIPT in CCLE	35
4.17	Candidate synthetic lethal genes against E-cadherin from SLIPT in	
	breast CCLE	36
	Pathways for <i>CDH1</i> partners from SLIPT in breast CCLE	37
4.19	Candidate synthetic lethal genes against E-cadherin from SLIPT in	
	stomach CCLE	38
4.20	Pathways for <i>CDH1</i> partners from SLIPT in stomach CCLE	39

C.1	R Packages used during Thesis	160
D.1 D.2	Comparing SLIPT genes against Secondary siRNA Screen in breast cancer Comparing mtSLIPT genes against Secondary siRNA Screen in breast	169
D.3	- •	170
D.3		170
E.1	Candidate synthetic lethal genes against E-cadherin from mtSLIPT	171
E.2	Pathways for <i>CDH1</i> partners from mtSLIPT	172
E.3	Pathway composition for clusters of CDH1 partners from mtSLIPT	173
E.4	Pathway composition for <i>CDH1</i> partners from mtSLIPT and siRNA	174
E.5	Pathways for <i>CDH1</i> partners from mtSLIPT	175
E.6	Pathways for <i>CDH1</i> partners from mtSLIPT and siRNA primary screen	176
E.7	Candidate synthetic lethal metagenes against $\mathit{CDH1}$ from mtSLIPT	178
G.1	$\sqrt{}$	101
C_{2}		181
	· ·	182
G.3	Pathway composition for clusters of <i>CDH1</i> partners in stomach mtSLIPT	
G.4	Pathway composition for <i>CDH1</i> partners from mtSLIPT and siRNA	
G.5	V	187
G.6	Pathways for <i>CDH1</i> partners from mtSLIPT in stomach and siRNA screen	188
G.7	Candidate synthetic lethal metagenes against <i>CDH1</i> from mtSLIPT in	
	stomach cancer	189