조합논리회로

디코더, 인코더 멀티플렉서, 코드변환기

□ 디코더

• \square 코더(decoder) : 입력선에 나타나는 n비트의 2진 코드를 최대 2^n 개의 서로 다른 정보로 바꿔주는 조합논리회로

입	력		출	력	
В	A	Y_3	Y_2	Y_1	Y_0
0	0	0	0	0	1
0	1	0	0	1	0
1	0	0	1	0	0
1	1	1	0	0	0

$$Y_0=\overline{B}\overline{A},\ Y_1=\overline{B}A,\ Y_2=B\overline{A},\ Y_3=BA$$
 (a) 진리표와 논리식

그림 3-41 2×4 디코더

❖ 실제 디코더 회로

- 실제 IC들은 AND 게이트가 아닌 NAND 게이트로 구성되어 출력은 그림과 같이 반대로 된다.
- 또 대부분의 디코더 IC는 인에이블(enable) 입력이 있어 회로를 제어한다.

	입력			출	력	
\overline{E}	В	A	Y_3	Y_2	Y_1	Y_0
1	Х	х	1	1	1	1
0	0	0	1	1	1	0
Ο	0	1	1	1	0	1
Ο	1	0	1	0	1	1
0	1	1	0	1	1	1

$$Y_0 = \overline{E}\overline{B}\overline{A}$$
, $Y_1 = \overline{E}\overline{B}\overline{A}$, $Y_2 = \overline{E}B\overline{A}$, $Y_3 = \overline{E}B\overline{A}$

(a) 진리표와 논리식

그림 3-42 인에이블이 있는 2×4 NAND 디코더

❖ 3×8 디코더

• 3개의 입력에 따라서 8개의 출력 중 하나가 선택

	입력					출	력			
C	В	A	Y_7	Y_6	Y_5	Y_4	Y_3	Y_2	Y_1	Y_0
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0

$$Y_0 = \overline{CBA}$$
, $Y_1 = \overline{CBA}$, $Y_2 = \overline{CBA}$, $Y_3 = \overline{CBA}$ $Y_4 = C\overline{BA}$, $Y_5 = C\overline{BA}$, $Y_6 = CB\overline{A}$, $Y_7 = CBA$ (a) 진리표와 논리식

(b) 논리 회로

그림 3-43 3×8 디코더 회로

❖ 2개의 3×8 디코더로 4×16 디코더를 구성

D=0	상위 디코더만 enable되어 출력은 $Y_0 \sim Y_7$ 중의 하나가 1 로 되고, 하위 디코더 출력들은 모두 0 이 된다.
D=1	하위 디코더만 enable 되어 출력은 $Y_8 \sim Y_{15}$ 중의 하나가 1 로 되고, 상위 디코더 출력들은 모두 0 이 된다.

그림 3-44 3×8 디코더 2개를 이용한 4×16 디코더

□ 인코더

- 부호기라고도 하는 인코더(encoder)는 디코더의 반대 기능을 수행하는 조합 논리 회로로, 2^n 개를 입력받아 n개를 출력한다.
- 인코더는 2^n 개 중 활성화된 1비트 입력 신호를 받아 그 숫자에 해당하는 n비트 2진 정보를 출력한다.

	입	력		출	력
D_3	D_2	D_1	D_0	B_1	B_0
0	0	0	1	0	0
0	0	1	0	0	1
1	1	0	0	1	0
1	0	0	0	1	1

$$B_1 = D_2 + D_3$$
, $B_0 = D_1 + D_3$ (a) 진리표와 논리식

그림 3-45 4×2 인코더

❖ 8×3 인코더

• 8(=2³)개의 입력과 3개의 출력을 가지며, 입력의 신호에 따라 3개의 2진 조합으로 출력한다.

			입	력					출력	
D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	B_2	B_1	B_0
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

$$B_2 = D_4 + D_5 + D_6 + D_7$$
, $B_1 = D_2 + D_3 + D_6 + D_7$
 $B_0 = D_1 + D_3 + D_5 + D_7$

(a) 진리표와 논리식

그림 3-46 8×3 인코더

□ 멀티플렉서

- 멀티플렉서(multiplexer, MUX)는 여러 개의 입력선들 중에서 하나를 선택하여 출력선에 연결하는 조합논리회로이다. 선택선들의 값에 따라서 특별한 입력선이 선택된다.
- 멀티플렉서는 많은 입력들 중 하나를 선택하여 선택된 입력선의 2진 정보를 출력선에 넘겨주기 때문에 데이터 선택기(data selector)라 부르기도 한다.
- 디멀티플렉서(demultiplexer, DEMUX) 는 정보를 한 선으로 받아 2ⁿ 개의 가능한 출력 선들 중 하나를 선택하여, 받은 정보를 전송하는 회로다.

그림 3-47 멀티플렉서와 디멀티플렉서의 역할

❖ 2×1 멀티플렉서

• $2(=2^1)$ 개의 입력중의 하나를 선택선 S에 입력된 값에 따라서 출력으로 보내주는 조합회로

❖ 4×1 멀티플렉서

• $4(=2^2)$ 개의 입력중의 하나를 선택선 S_1 과 S_0 에 입력된 값에 따라서 출력으로 보내주는 조합회로

선택	백선	출력
S_1	S_0	F
0	0	D_0
0	1	$D_0 \ D_1$
1	0	D_2
1	1	D_3

 $F = \overline{S}_1 \overline{S}_0 D_0 + \overline{S}_1 S_0 D_1 + S_1 \overline{S}_0 D_2 + S_1 S_0 D_3$ (a) 진리표와 논리식

그림 3-49 4×1 멀티플렉서

❖ 4×1 멀티플렉서 응용

• 4×1 멀티플렉서를 이용하여 두 입력 A, B에 대해 AND, OR, XOR, NOT 논리 연산을 수행하는 하드 웨어 모듈

\mathcal{S}_1	S_0	출력	연산
0	0	F=AB	AND
0	1	F=A+B	OR
1	0	$F=A \oplus B$	XOR
1	1	$F = \overline{A}$	NOT

그림 3-50 4×1 멀티플렉서를 이용한 논리 연산 하드웨어 모듈

그림 3-51 8비트 논리 연산 장치 구성 예

❖ 멀티플렉서를 이용한 조합회로 구현

- $F(A,B,C) = \sum m(0,1,5,7)$ 를 8×1 멀티플렉서로 구현하는 경우
 - ☞ 3개의 선택선을 입력 *A, B, C* 로 사용

A	입력 <i>B</i>	C	출력 <i>F</i>
0	0	0	$1(D_0)$
0	0	1	$1(D_1)$
0	1	0	$O(D_2)$
0	1	1	O(D ₃)
1	0	0	$O(D_4)$
1	0	1	$1(D_5)$
1	1	0	$O(D_6)$
1	1	1	$1(D_7)$

 $F(A, B, C) = \Sigma m(0, 1, 5, 7)$

(a) 진리표와 논리식

그림 3-52 8×1 멀티플렉서를 이용한 회로

❖ 멀티플렉서를 이용한 조합회로 구현(계속)

• $F(A,B,C) = \sum m(0,1,5,7)$ 를 4×1 멀티플렉서로 구현하는 경우 A, B는 선택선으로 C는 D_0 , D_1 , D_2 , D_3 을 조합하여 사용

	입	력	출	력
A	B	C	Ì	F
0	0	0	$D_0 = 1$	1
U	O	1	D_0 -1	1
0	1	0	$D_1 = 0$	0
U	1	1	$D_1 = 0$	0
1	0	0	D = C	0
1	U	1	$D_2 = C$	1
1	1	0	D = C	0
I	ı	1	$D_3 = C$	1

$$F(A, B, C) = \Sigma m(0, 1, 5, 7)$$

(a) 진리표와 논리식

그림 3-53 4×1 멀티플렉서를 이용한 회로

□ 디멀티플렉서

- 디멀티플렉서(demultiplexer)는 하나의 입력선에 데이터를 입력하면 선택선 n개로 2n개 중 하나를 출력하는 조합 논리 회로다. 데이터 분배기라고도 한다.
- 1×4 디멀티플렉서는 선택선 $(S_{1,}S_{0})$ 2개로 출력 $(D_{3},D_{2},D_{1},D_{0})$ 4개 중 하나를 선택해 입력(I)을 연결한다.

선택	백선		출	력	
S_1	S_0	D_3	D_2	D_1	D_0
0	0	0	0	0	I
0	1	0	0	I	0
1	0	0	I	0	0
1	1	I	0	0	0

 $D_0=\overline{S}_1\overline{S}_0I$, $D_1=\overline{S}_1S_0I$, $D_2=S_1\overline{S}_0I$, $D_3=S_1S_0I$ (a) 진리표와 논리식

(a) 진리표

□ 코드 변환기 (2진 코드 → 그레이 코드 변환)

(b) 논리식의 간소화

 B_3 B_2 B_1 B_0 G_3 G_2 G_1 G_0 (c) 논리 회로

그림 3-55 2진 코드를 그레이 코드로 변환하는 회로

□ 코드 변환기 (그레이 코드 → 2진 코드 변환)

		$G_{1}G_{0} = G_{3}G_{2}$ 00	01	11	10	G_1G_2 G_3G_2	<i>i</i> ₀ 00	01	11	10
그레이 코드(입력)	2진 코드(출력)	00				$0_3 0_2$				
$G_3 G_2 G_1 G_0$	$B_3 B_2 B_1 B_0$									
0 0 0 0	0 0 0 0	01				01	1	1	1	1)
0 0 0 1	0 0 0 1	11 1	1	1	1	11				
0 0 1 0	0 0 1 1									
0 0 1 1	0 0 1 0	10 1	1	1	1	10	1	1	1	_1)
0 1 0 0	0 1 1 1		B ₃ =	$=G_3$			В	$_2 = \overline{G}_3G$	$G_2 + G_3 G_3$	$\overline{\vec{j}}_2$
0 1 0 1	0 1 1 0							$=G_3$		
0 1 1 0	0 1 0 0	G_1G_0				. G (2	-3	2	
0 1 1 1	0 1 0 1	G_3G_2 00	01	11	10	G_3G_2	7 0 00	01	11	10
1 0 0 0	1 1 1 1	00		1	1	00		1		1
1 0 0 1	1 1 1 0									
										١
1 0 1 0	1 1 0 0	01 1	1			01	1		1	
1 0 1 0	1 1 0 0 1 1 0 1	01 1	1)	1	1	01 11	1	1	1	1
1 0 1 0			1)	1	1		1	1	1	1
1 0 1 1	1 1 0 1		1	1	1		1	1	1	1
1 0 1 1 1 1 0 0	1 1 0 1	11 10 1	1	1 0G ₂ ⊕(11	$\boxed{1}$ $B_0 =$			
1 0 1 1 1 1 0 0 1 1 0 1	1 1 0 1 1 1 0 0 0 1 0 0 1	11 10 1	1	$G_2 \oplus G_2 \oplus G_3 \oplus G_4 \oplus G_4 \oplus G_5 \oplus G_5 \oplus G_6 $		11			$G_2 \oplus G_1$	

 B_2 B_1 (c) 논리 회로

그림 3-56 그레이 코드를 2진 코드로 변환하는 회로

□ 코드 변환기 (BCD 코드 → 3초과 코드 변환)

 E_3 E_2 E_2 E_1 E_0 E_0 E_1 회로

 B_3 B_2 B_1 B_0

그림 3-57 BCD 코드를 3초과 코드로 변환하는 회로

(b) 논리식의 간소화

패리티 발생기와 검사기

❖ 패리티 발생기

입력			출력		
A	В	C	$P_{\mathcal{O}}$ (홀수)	P_{E} (짝수)	
0	0	0	1	0	
0	0	1	0	1	
0	1	0	0	1	BC 00 01 11 10 BC 01 11
0	1	1	1	0	$A = \begin{array}{ccccccccccccccccccccccccccccccccccc$
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	0	1	$P_O = \overline{A \oplus B \oplus C} \qquad P_E = A \oplus B \oplus C$

(a) 진리표

(b) 논리식의 간소화

그림 3-58 패리티 발생기

10

(d) 짝수 패리티 발생기 논리 회로

❖ 패리티 검사기

		입력		출력	입력					출력
A	В	C	P_{O} (홀수)	$Y_{\mathcal{O}}$ (홀수)		A	В	C	P_{E} (짝수)	Y_E (짝수)
0	0	0	0	1		0	0	0	0	0
0	0	0	1	0		0	0	0	1	1
0	0	1	0	0		0	0	1	0	1
0	0	1	1	1		0	0	1	1	0
0	1	0	0	0		0	1	0	0	1
0	1	0	1	1		0	1	0	1	0
0	1	1	0	1		0	1	1	0	0
0	1	1	1	0		0	1	1	1	1
1	0	0	0	0		1	0	0	0	1
1	0	0	1	1		1	0	0	1	0
1	0	1	0	1		1	0	1	0	0
1	0	1	1	0		1	0	1	1	1
1	1	0	0	1		1	1	0	0	0
1	1	0	1	0		1	1	0	1	1
1	1	1	0	0		1	1	1	0	1
1	1	1	1	1		1	1	1	1	0

(a) 진리표

❖ 패리티 검사기(계속)

• 패리티 검사기 출력이 Y = 0이면 에러가 발생하지 않았다고 판단하고, Y = 1이면 에러가 발생했다고 판단한다.

❖ 데이터 전송 시스템

그림 3-60 데이터 전송 시스템에서 패리티 비트를 이용한 에러 검출

3 ROM을 사용한 조합 논리 회로의 설계

• 다음 불 함수를 ROM을 사용해 구현하는 예

$$F_1(A,B) = \sum m(1, 2, 3)$$
 $F_2(A,B) = \sum m(0, 2)$

그림 3-61 ROM을 사용해 구현한 조합 논리 회로

수고하셨습니다!