In [1]:

```
import pandas as pd
import numpy as np
from datetime import date
import matplotlib.pyplot as plt
import seaborn as sns

data = pd.read_csv("marketing_data.csv")
data.drop("ID",axis=1,inplace = True)
```

In [2]:

data.columns

Out[2]:

In [3]:

```
#Calculating age
def age(born):
    PDate=date.today()
    PYear= PDate.year
    return PYear - born
data['Age'] = data['Year_Birth'].apply(age)
data
```

Out[3]:

	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer	Re
0	1970	Graduation	Divorced	\$84,835.00	0	0	6/16/14	
1	1961	Graduation	Single	\$57,091.00	0	0	6/15/14	
2	1958	Graduation	Married	\$67,267.00	0	1	5/13/14	
3	1967	Graduation	Together	\$32,474.00	1	1	5/11/14	
4	1989	Graduation	Single	\$21,474.00	1	0	4/8/14	
2235	1976	PhD	Divorced	\$66,476.00	0	1	3/7/13	
2236	1977	2n Cycle	Married	\$31,056.00	1	0	1/22/13	
2237	1976	Graduation	Divorced	\$46,310.00	1	0	12/3/12	
2238	1978	Graduation	Married	\$65,819.00	0	0	11/29/12	
2239	1969	PhD	Married	\$94,871.00	0	2	9/1/12	

2240 rows × 28 columns

4

In [4]:

```
# Isolate the column titles into a list
column_titles = []
for i in data.columns:
    column_titles.append(i)
print(column_titles)
# Rename the 'Income' title
data = data.rename(columns={column_titles[3]:'Income'})
# Change the Income field data type to Float
data["Income"] = data["Income"].str.replace("$","").str.replace(",","")
data["Income"] = data["Income"].astype(float)
data
```

['Year_Birth', 'Education', 'Marital_Status', 'Income ', 'Kidhome', 'Teenho me', 'Dt_Customer', 'Recency', 'MntWines', 'MntFruits', 'MntMeatProducts', 'MntFishProducts', 'MntSweetProducts', 'MntGoldProds', 'NumDealsPurchases', 'NumWebPurchases', 'NumCatalogPurchases', 'NumStorePurchases', 'NumWebVisits Month', 'AcceptedCmp3', 'AcceptedCmp4', 'AcceptedCmp5', 'AcceptedCmp1', 'AcceptedCmp2', 'Response', 'Complain', 'Country', 'Age']

Out[4]:

	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer	Recer
0	1970	Graduation	Divorced	84835.0	0	0	6/16/14	
1	1961	Graduation	Single	57091.0	0	0	6/15/14	
2	1958	Graduation	Married	67267.0	0	1	5/13/14	
3	1967	Graduation	Together	32474.0	1	1	5/11/14	
4	1989	Graduation	Single	21474.0	1	0	4/8/14	
2235	1976	PhD	Divorced	66476.0	0	1	3/7/13	
2236	1977	2n Cycle	Married	31056.0	1	0	1/22/13	
2237	1976	Graduation	Divorced	46310.0	1	0	12/3/12	
2238	1978	Graduation	Married	65819.0	0	0	11/29/12	
2239	1969	PhD	Married	94871.0	0	2	9/1/12	

2240 rows × 28 columns

In [5]:

data.dtypes #df.describe()

Out[5]:

Year_Birth int64 Education object Marital_Status object Income float64 Kidhome int64 int64 Teenhome object Dt_Customer Recency int64 MntWines int64 MntFruits int64 MntMeatProducts int64 MntFishProducts int64 MntSweetProducts int64 MntGoldProds int64 NumDealsPurchases int64 NumWebPurchases int64 NumCatalogPurchases int64 NumStorePurchases int64

In [6]:

```
# Count null values for each field
data.isnull().sum()
#df.describe()
```

Out[6]:

Year_Birth 0 Education 0 Marital_Status 0 Income 24 Kidhome 0 Teenhome 0 Dt Customer 0 Recency 0 0 MntWines **MntFruits** 0 MntMeatProducts 0 MntFishProducts a MntSweetProducts **MntGoldProds** a NumDealsPurchases NumWebPurchases 0 NumCatalogPurchases a NumStorePurchases 0 NumWebVisitsMonth 0 AcceptedCmp3 0 AcceptedCmp4 0 AcceptedCmp5 0 AcceptedCmp1 a AcceptedCmp2 0 Response 0 Complain 0 Country 0 Age 0 dtype: int64

----> There are 24 records with missing "Income" values

In [7]:

```
# Impute missing income values using the median income
data["Income"] = data["Income"].fillna(value=data["Income"].median())
```

In [8]:

```
# Make list of categorical variables
cat_var = ["Education", "Marital_Status", "Country"]
# Obtain all unique values for each categorical variable to identify errors
for i in cat_var:
    print(f"{i} Unique Values: {data[i].unique()}")

Education Unique Values: ['Graduation' 'PhD' '2n Cycle' 'Master' 'Basic']
Marital_Status Unique Values: ['Divorced' 'Single' 'Married' 'Together' 'Wid
ow' 'YOLO' 'Alone' 'Absurd']
```

Country Unique Values: ['SP' 'CA' 'US' 'AUS' 'GER' 'IND' 'SA' 'ME']

Categorical variables

- 1. The variables '2n cycle' and 'Master' have the same meaning. The '2n cycle' values should be merged to equal 'Master'.
- 2.The values 'YOLO', 'Alone', and 'Absurd' all mean 'Single', so these values shou ld be merged to equal 'Single'.
- 3. The 'Marital_Status' variable does not require changes

In [9]:

```
# Convert '2n Cycle' values to 'Master'
data["Education"] = data["Education"].replace(["2n Cycle"], value="Master")
# Convert 'YOLO', 'Alone', and 'Absurd' values to 'Single'
data["Marital_Status"] = data["Marital_Status"].replace(["YOLO", "Alone", "Absurd", 'Divorce data["Marital_Status"] = data["Marital_Status"].replace(['Together'], value="Married")
```

In [10]:

data

Out[10]:

	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer	Recer	
0	1970	Graduation	Single	84835.0	0	0	6/16/14		
1	1961	Graduation	Single	57091.0	0	0	6/15/14		
2	1958	Graduation	Married	67267.0	0	1	5/13/14		
3	1967	Graduation	Married	32474.0	1	1	5/11/14		
4	1989	Graduation	Single	21474.0	1	0	4/8/14		
2235	1976	PhD	Single	66476.0	0	1	3/7/13		
2236	1977	Master	Married	31056.0	1	0	1/22/13		
2237	1976	Graduation	Single	46310.0	1	0	12/3/12		
2238	1978	Graduation	Married	65819.0	0	0	11/29/12		
2239	1969	PhD	Married	94871.0	0	2	9/1/12		
2240 rows × 28 columns									

In [11]:

In [12]:

```
# View basic stats of the numerical variables
data_num.describe()
```

Out[12]:

	Year_Birth	Income	Recency	MntWines	MntFruits	MntMeatProducts	M
count	2240.000000	2240.000000	2240.000000	2240.000000	2240.000000	2240.000000	
mean	1968.805804	52237.975446	49.109375	303.935714	26.302232	166.950000	
std	11.984069	25037.955891	28.962453	336.597393	39.773434	225.715373	
min	1893.000000	1730.000000	0.000000	0.000000	0.000000	0.000000	
25%	1959.000000	35538.750000	24.000000	23.750000	1.000000	16.000000	
50%	1970.000000	51381.500000	49.000000	173.500000	8.000000	67.000000	
75%	1977.000000	68289.750000	74.000000	504.250000	33.000000	232.000000	
max	1996.000000	66666.000000	99.000000	1493.000000	199.000000	1725.000000	
4						l	•

In [13]:

```
# Obtaining outliers using boxplot
for col in data_num.columns:
    plt.figure()
    data_num.boxplot([col])
    plt.title(f'{col} Box Plot')
```


----> # Removing Outliers

In [14]:

```
data.columns
```

Out[14]:

In [16]:

Out[16]: