PROYECTO FINAL – Investigación Forense con Herramientas Físicas

CASO 1. El cuerpo de la cueva

Escenario:

En una cueva se ha encontrado un esqueleto humano parcialmente momificado junto con algunos objetos metálicos oxidados. Se sospecha que la persona murió hace más de 100 años.

Objetivo del grupo:

Investigar el estado de conservación del cuerpo y objetos, y determinar posibles causas de muerte, usando herramientas físicas e imagen diagnóstica no invasiva.

Pistas técnicas a activar:

- Radiación ionizante: rayos X para huesos y metales.
- Radiación no ionizante: infrarrojos para tejidos blandos.
- Ultrasonidos: comprobar el estado de órganos momificados.
- Resonancia: ¿sería útil en este contexto?

CASO 2. El paciente sin diagnóstico

Escenario:

Paciente joven con síntomas abdominales persistentes. Las pruebas iniciales no revelan nada concluyente. Se sospecha de un cuerpo extraño introducido accidentalmente o una lesión interna oculta.

Objetivo del grupo:

Proponer un plan de imagen médica completo basado en los principios físicos estudiados, justificando cada técnica.

Pistas técnicas a activar:

- Diferenciar qué técnicas usar según el tipo de tejido.
- Comparar imagen por rayos X, TAC, ecografía y RM.
- Considerar si usar radiación ionizante o no.
- Hablar de dosis, energías y magnitudes.

CASO 3. La pintura oculta

Escenario:

Una antigua pintura parece tener otra imagen debajo, según sospechan los restauradores. No puede abrirse ni rasparse la capa superior.

Objetivo del grupo:

Diseñar un análisis físico no destructivo para descubrir qué hay bajo la pintura.

Fundamentos Físicos y Equipos

Pistas técnicas a activar:

- Radiación EM: rayos X o infrarrojos para capas ocultas.
- Ondas materiales: ultrasonidos para detectar relieves.
- Magnetismo: ¿algún uso de RMN para detectar pigmentos metálicos?

CASO 4. La tumba romana

Escenario:

En una excavación arqueológica se descubre una tumba cerrada con plomo. No puede abrirse sin destruirla. Se busca analizar su contenido.

Objetivo del grupo:

Investigar qué herramientas físicas podrían usarse para obtener información del interior.

Pistas técnicas a activar:

- Radiación de partículas: posibles aplicaciones.
- Imágenes gamma o de neutrones.
- Consideraciones sobre densidad, energía y penetración.
- Comparativa de técnicas según los materiales involucrados.

CASO 5. El atentado en el metro

Escenario:

Tras una explosión en una estación de metro, varios pacientes llegan con heridas y se sospecha que algunos tienen fragmentos metálicos internos.

Objetivo del grupo:

Diseñar un protocolo de imagen diagnóstica eficaz y seguro para estos pacientes.

Pistas técnicas a activar:

- Qué técnica usar primero (rayos X, TAC, ecografía).
- Justificar si es adecuado usar RM (riesgos si hay metal).
- Analizar qué magnitudes físicas deben controlarse (energía, dosis).
- Aplicar conceptos de imagen médica en urgencias.

Rúbrica de Evaluación

La siguiente rúbrica permite evaluar el trabajo de los grupos en base a criterios comunes para los 5 casos. Cada criterio se puntúa de 1 a 4, donde 1 es insuficiente y 4 es excelente.

Criterio	1 - Insuficiente	2 - Aceptable	3 - Notable	4 - Excelente
Comprensión de fundamentos físicos	No identifica los principios físicos implicados.	Identifica pocos principios físicos y con errores.	Identifica y explica la mayoría de principios físicos.	Identifica, explica y relaciona todos los principios físicos de forma rigurosa.
Selección de técnicas	Propone técnicas inadecuadas o sin justificación.	Propone algunas técnicas correctas con justificación limitada.	Propone técnicas adecuadas con buena justificación.	Propone técnicas óptimas con justificación sólida y comparativa crítica.
Justificación científica	No justifica con base física o lo hace de forma incorrecta.	Justificación limitada o poco fundamentada.	Justificación correcta con base física suficiente.	Justificación excelente con datos, ejemplos y referencias.
Creatividad y presentación	Presentación desorganizada y poco clara.	Presentación aceptable pero poco atractiva o clara.	Presentación clara, ordenada y atractiva.	Presentación excelente, innovadora y muy clara.
Trabajo en equipo	Poca colaboración y reparto desigual de tareas.	Colaboración parcial y reparto desigual.	Buena colaboración y reparto equilibrado.	Excelente colaboración, reparto justo y apoyo mutuo.

Guía de Organización del Trabajo en el Aula

Se propone el siguiente esquema para desarrollar el proyecto en 4 fases, con una duración total aproximada de 3-4 semanas.

Fase 1 – Introducción y reparto de casos (1 sesión)

- Presentación del contexto y objetivos del proyecto.
- Asignación de casos a los grupos.
- Breve repaso de los conceptos clave del índice que se usarán.
- Planificación inicial del trabajo en grupo.

Fase 2 – Investigación y desarrollo (4-5 sesiones)

- Búsqueda de información y revisión de los principios físicos relevantes.
- Selección de técnicas de imagen y justificación de su idoneidad.
- Elaboración de borradores con esquemas y comparativas.
- Registro de magnitudes físicas y parámetros técnicos.

Fase 3 – Preparación del producto final (2 sesiones)

- Elaboración del informe, póster, presentación o vídeo.
- Inclusión de esquemas, tablas, imágenes o simulaciones.
- Ensayo de la exposición oral si aplica.

Fase 4 – Presentación y evaluación (1-2 sesiones)

- Presentación de cada grupo ante la clase.
- Ronda de preguntas y comentarios entre grupos.
- Evaluación con la rúbrica y retroalimentación.