Example: Shortest Path for Messaging

The mobile social network among students in MGT 40750 is provided in the following diagram, where ● represents Female and ■ represents Male.

Question: Find the shortest path from Node _____ to Node ____ through this mobile social network.

Shortest Path for Messaging

Set up the Shorted Path for Messaging model in Excel: (Start = ___ End = ___)

4	Α	В	С	D	E	F	G	H	1	J	K	L
1	Shorted Pa	th for Mess	aging									
2												
	Network St											
4		To		Flow	_		ce constraint				Objective to minimize	
5	1	36				Node	Net outflow (Outflow - Inflow)	_	Required net outflow	-	Total distance	
	1	39				1		-		-		
	1	41				2		-		-		
3	2	13				3		-		-		
)	2	17				4		-		-		
0	2	18				3				-		
1	2	27				6				-		
2	2	30 34				,		-		-		
3 4	2	36				9		-		-		
5	4	12				10		-		-		
6	4	15				11				1		
7	4	25				12						
8	4	45				13						
9	5	15				14						
0	5	17				15						
1	5	34				16	5					
2	5	39				17	7			1		
3	5	42				18						
4	6	15				19						
5	6	26				20						
6	6	27				21						
7	6	29				22	,					
8	6	41				23						
9	6	45				24	ı					
0	6	48				25	5					
1	6	49				25 26	5					
2	7	14				27	7					
3	7	16				28	В					
4	7	36				29						
5	10	3				30						
6	11	47				31						
7	12	4				32	2					
8	12	15				33	8					
9	12	45				34						
0	13	30				35	5			_		
1	14	7				36	5					
2	14	25				37						
3	14	37				38				1		
4	14	38			-	39		-				
5	15	2			_	40	<u>'</u>	-				
6 7	15	4				41				1		
8	15 15	6				42		-				
9	15	12			-			+		1		
0	15	18				44		-				
1	15	34				4.5						
2	15	39				46	,					
3	15	40				48	8					
4	16	7				49						
_	10	- '			-	43		_				
1	49	27			1							
)2	49	29										
92	49	36			1							
93 94	49	41								-		
		41										

Specify Solver:
Set Objective:
To: O Max O Min O Value of:
By Changing Variable Cells:
Subject to the Constraints:
☐ Make Unconstrained Variables Non-Negative
Select a Solving Method:
Solver Results:
The optimal total distance =