Module-03, Python for Data Analysis Data Visualization (Geographical-Plotting)

Dostdar Ali Instructor

Data science and Artificial Intelligence 3-Months Course at Karakaroum international Univrsity

January 8, 2024

Table of Contents

Geographical Potting

Offline Plotly Usage

Choropleth Maps

World Choropleth Map

Geographical Potting

- Geographical plotting is usually challenging to due the verious formats the data can come in.
- We will focus on using plotly for plotting.
- Matplotlib also a basemap extension.

Geographical Potting

- Geographical plotting is usually challenging to due the verious formats the data can come in.
- We will focus on using plotly for plotting.
- Matplotlib also a basemap extension.

Geographical Potting

- Geographical plotting is usually challenging to due the verious formats the data can come in.
- We will focus on using plotly for plotting.
- Matplotlib also a basemap extension.

- Get imports and set everything up to be working offline.
- Now set up everything so that the figures show up in the notebook:
- More info on other options for Offline Plotly usage can be found lab section.
- So we made Choropleth Maps for nationally and globally.
- Now we need to begin to build our data dictionary. Easiest way to do this is to use the dict() function of the general form:

```
type = 'choropleth',
locations = list of states
locationmode = 'USA-states
colorscale=
Either a predefined string:
'pairs' 'Greys' 'Greens' 'Blue
'Blackbody' 'Earth' 'Electric
```

'pairs' 'Greys' 'Greens' 'Bluered' 'Hot' 'Picnic' 'Portland' 'Jet' 'RdBu'

'Blackbody' 'Earth' 'Electric' 'YIOrRd' 'YIGnBu

or create a custom colorscale

text= list or array of text to display per point

z= array of values on z axis (color of state)

- Get imports and set everything up to be working offline.
- Now set up everything so that the figures show up in the notebook:
- More info on other options for Offline Plotly usage can be found lab section.
- So we made Choropleth Maps for nationally and globally.
- Now we need to begin to build our data dictionary. Easiest way to do this is to use the dict() function of the general form:

```
locations = list of states
locationmode = 'USA-states'
colorscale=
Either a predefined string:
'pairs' 'Greys' 'Greens' 'Bluered' 'Hot' 'Picnic' 'P'
'Blackbody' 'Earth' 'Electric' 'YIOrRd' 'YIGnBu'
or create a custom colorscale
text= list or array of text to display per point
z= array of values on z axis (color of state)
```


- Get imports and set everything up to be working offline.
- Now set up everything so that the figures show up in the notebook:
- More info on other options for Offline Plotly usage can be found lab section.
- So we made Choropleth Maps for nationally and globally.
- Now we need to begin to build our data dictionary. Easiest way to do this is to use the dict() function of the general form:

```
type = 'choropleth',
locations = list of states
locationmode = 'USA-states
colorscale=
Either a predefined string:
'pairs' 'Greys' 'Greens' 'Blue
'Blackbody' 'Earth' 'Electric'
```

'pairs' 'Greys' 'Greens' 'Bluered' 'Hot' 'Picnic' 'Portland' 'Jet' 'RdBu

'Blackbody' 'Earth' 'Electric' 'YIOrRd' 'YIGnBu

or create a custom colorscale

text= list or array of text to display per point z= array of values on z axis (color of state)

- Get imports and set everything up to be working offline.
- Now set up everything so that the figures show up in the notebook:
- More info on other options for Offline Plotly usage can be found lab section.
- So we made Choropleth Maps for nationally and globally.
- Now we need to begin to build our data dictionary. Easiest way to do this is to use the dict() function of the general form:

```
type = 'choropleth',
```

locations = list of states

locationmode = 'USA-states'

colorscale=

Either a predefined string

'pairs' 'Greys' 'Greens' 'Bluered' 'Hot' 'Picnic' 'Portland' 'Jet' 'RdBu'

'Blackbody' 'Earth' 'Electric' 'YIOrRd' 'YIGnBu

or create a custom colorscale

text= list or array of text to display per point

z= array of values on z axis (color of state)

- Get imports and set everything up to be working offline.
- Now set up everything so that the figures show up in the notebook:
- More info on other options for Offline Plotly usage can be found lab section.
- So we made Choropleth Maps for nationally and globally.
- Now we need to begin to build our data dictionary. Easiest way to do this is to use the dict() function of the general form:

```
type = 'choropleth',
locations = list of states
locationmode = 'USA-states'
colorscale=
Either a predefined string:
'pairs' 'Greys' 'Greens' 'Bluered' 'Hot' 'Picnic' 'Portland' 'Jet' 'RdBu'
'Blackbody' 'Earth' 'Electric' 'YIOrRd' 'YIGnBu'
or create a custom colorscale
text= list or array of text to display per point
z= array of values on z axis (color of state)
colorbar = 'title':'Colorbar Title')
```

- Plotly's mapping can be a bit hard to get used to at first in real data.
- Real data of 2011 US Agriculture Exports by State.

code	state	category	total exports	beef	pork	poultry	dairy	fruits fresh	fruits proc	total fruits	veggies fresh	veggies proc	total veggies	corn	wheat	cotton	tex
AL	Alabama	state	1390.63	34.4	10.6	481.0	4.06	8.0	17.1	25.11	5.5	8.9	14.33	34.9	70.0	317.61	Alabama br>Bee 34.4 Dairy 4.06 br>Fruits 25.1
AK	Alaska	state	13.31	0.2	0.1	0.0	0.19	0.0	0.0	0.00	0.6	1.0	1.56	0.0	0.0	0.00	Alaska br>Bee 0.2 Dairy 0.19 br>Fruits 0.0 Ve
AZ	Arizona	state	1463.17	71.3	17.9	0.0	105.48	19.3	41.0	60.27	147.5	239.4	386.91	7.3	48.7	423.95	Arizona br>Bee 71.3 Dairy 105.48 br>Fruits 60
AR	Arkansas	state	3586.02	53.2	29.4	562.9	3.53	2.2	4.7	6.88	4.4	7.1	11.45	69.5	114.5	665.44	Arkansas br>Bee 53.2 Dairy 3.53 br>Fruits 6.8
CA	California	state	16472.88	228.7	11.1	225.4	929.95	2791.8	5944.6	8736.40	803.2	1303.5	2106.79	34.6	249.3	1064.95	California 228.7 Dairy 929.95 br>Frui

• We need to plot choropleth map.

- Plotly's mapping can be a bit hard to get used to at first in real data.
- Real data of 2011 US Agriculture Exports by State.

code	state	category	total exports	beef	pork	poultry	dairy	fruits fresh	fruits proc	total fruits	veggies fresh	veggies proc	total veggies	corn	wheat	cotton	tex
AL	Alabama	state	1390.63	34.4	10.6	481.0	4.06	8.0	17.1	25.11	5.5	8.9	14.33	34.9	70.0	317.61	Alabama br>Bee 34.4 Dairy 4.06 br>Fruits 25.1
AK	Alaska	state	13.31	0.2	0.1	0.0	0.19	0.0	0.0	0.00	0.6	1.0	1.56	0.0	0.0	0.00	Alaska br>Bee 0.2 Dairy 0.19 br>Fruits 0.0 Ve
AZ	Arizona	state	1463.17	71.3	17.9	0.0	105.48	19.3	41.0	60.27	147.5	239.4	386.91	7.3	48.7	423.95	Arizona br>Bee 71.3 Dairy 105.48 br>Fruits 60
AR	Arkansas	state	3586.02	53.2	29.4	562.9	3.53	2.2	4.7	6.88	4.4	7.1	11.45	69.5	114.5	665.44	Arkansas br>Bee 53.2 Dairy 3.53 br>Fruits 6.8
CA	California	state	16472.88	228.7	11.1	225.4	929.95	2791.8	5944.6	8736.40	803.2	1303.5	2106.79	34.6	249.3	1064.95	California br>Bee 228.7 Dairy 929.95 Prui

• We need to plot choropleth map.

- Plotly's mapping can be a bit hard to get used to at first in real data.
- Real data of 2011 US Agriculture Exports by State.

code	state	category	total exports	beef	pork	poultry	dairy	fruits fresh	fruits proc	total fruits	veggies fresh	veggies proc	total veggies	corn	wheat	cotton	tex
AL	Alabama	state	1390.63	34.4	10.6	481.0	4.06	8.0	17.1	25.11	5.5	8.9	14.33	34.9	70.0	317.61	Alabama br>Bee 34.4 Dairy 4.06 br>Fruits 25.1
AK	Alaska	state	13.31	0.2	0.1	0.0	0.19	0.0	0.0	0.00	0.6	1.0	1.56	0.0	0.0	0.00	Alaska br>Bee 0.2 Dairy 0.19 br>Fruits 0.0 Ve
AZ	Arizona	state	1463.17	71.3	17.9	0.0	105.48	19.3	41.0	60.27	147.5	239.4	386.91	7.3	48.7	423.95	Arizona br>Bee 71.3 Dairy 105.48 br>Fruits 60
AR	Arkansas	state	3586.02	53.2	29.4	562.9	3.53	2.2	4.7	6.88	4.4	7.1	11.45	69.5	114.5	665.44	Arkansas br>Bee 53.2 Dairy 3.53 br>Fruits 6.8
CA	California	state	16472.88	228.7	11.1	225.4	929.95	2791.8	5944.6	8736.40	803.2	1303.5	2106.79	34.6	249.3	1064.95	California 228.7 Dairy 929.95 br>Frui

• We need to plot choropleth map.

map

2011 US Agriculture Exports by State

- Now let's see an example with a World Map:
- The 2014 GDP data set

	COUNTRY	GDP (BILLIONS)	CODE
0	Afghanistan	21.71	AFG
1	Albania	13.40	ALB
2	Algeria	227.80	DZA
3	American Samoa	0.75	ASM
4	Andorra	4.80	AND

• This examle shown as world choropleth map.

- Now let's see an example with a World Map:
- The 2014 GDP data set

	COUNTRY	GDP (BILLIONS)	CODE
0	Afghanistan	21.71	AFG
1	Albania	13.40	ALB
2	Algeria	227.80	DZA
3	American Samoa	0.75	ASM
4	Andorra	4.80	AND

• This examle shown as world choropleth map.

- Now let's see an example with a World Map:
- The 2014 GDP data set

	COUNTRY	GDP (BILLIONS)	CODE
0	Afghanistan	21.71	AFG
1	Albania	13.40	ALB
2	Algeria	227.80	DZA
3	American Samoa	0.75	ASM
4	Andorra	4.80	AND

• This examle shown as world choropleth map.

map

2014 Global GDP

Great Job Thank yo

