ANN

While the ANN model can be further fine-tuned to increase its accuracy, such as increasing the number of layers and dropout, it is time-consuming and inefficient. Therefore, we focused more on other ML models.

```
In [1]: import pandas as pd
        import numpy as np
         import math
         import tensorflow as tf
         import tensorflow.keras as keras
         from tensorflow.keras import layers
         \textbf{from} \ \texttt{tensorflow}. \texttt{keras}. \texttt{models} \ \textbf{import} \ \texttt{Sequential}
         from tensorflow.keras.layers import Dense, Activation
         from sklearn.model_selection import train_test_split
         \textbf{from} \  \, \textbf{sklearn.preprocessing} \  \, \textbf{import} \  \, \textbf{MinMaxScaler}
         from sklearn.inspection import permutation_importance
         \textbf{from} \  \, \textbf{sklearn.preprocessing} \  \, \textbf{import} \  \, \textbf{StandardScaler}
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.metrics import r2 score
         from collections import defaultdict
         from sklearn import metrics
         from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
In [2]: # Import dataset
         private_data = "../datasets/cleaned/cleaned_private.csv"
         df = pd.read_csv(private_data, quotechar='"', escapechar='\\', thousands=',')
         df['Sale Month-Year'] = pd.to datetime(df['Sale Date']).dt.to period('M').astype(str)
In [ ]: def remove_outliers_iqr(df, column):
             q1 = df[column].quantile(0.25)
             q3 = df[column].quantile(0.75)
             iqr = q3 - q1
             lower\_bound = q1 - 1.5 * iqr
             upper_bound = q3 + 1.5 * iqr
             return df[(df[column] >= lower_bound) & (df[column] <= upper_bound)]</pre>
         # Apply outlier removal to Price only
         for col in ['Price']:
            df = remove_outliers_iqr(df, col)
X = df[df_features]
         y = df['Price'].values
         categorical_cols = ['Property Type', 'Postal District', 'Type of Sale', 'Floor Level', 'Sale Month-Year', 'Lease_Cat
         numerical_cols = ['Area (SQFT)', 'Distance to MRT (km)']
         X_encoded = pd.get_dummies(X[categorical_cols], drop_first=True) # split all categorical data into several columns w
         # scaling numerical features
         scaler = StandardScaler()
         X_numerical_scaled = scaler.fit_transform(X[numerical_cols])
         X_numerical_df = pd.DataFrame(X_numerical_scaled, columns=numerical_cols)
         # combining all the features into 1 dataframe
         X_final = pd.concat([X_numerical_df, X_encoded], axis=1)
         X_final = pd.concat([X[numerical_cols], X_encoded], axis=1)
         x_train, x_test, y_train, y_test = train_test_split(X_final, y, test_size=0.25, random_state=40)
         x_train = x_train.values.astype(np.float32)
         x_test = x_test.values.astype(np.float32)
         x_test = x_test.astype('float32') if isinstance(x_test, pd.DataFrame) else x_test.astype('float32')
         y_test = y_test.astype('float32') if isinstance(y_test, pd.DataFrame) else y_test.astype('float32')
         print(x_train.shape)
         print(x_test.shape)
         print(y_train.shape)
         print(y_test.shape)
         (88744, 41)
         (29582, 41)
         (88744,)
         (29582,)
In [ ]: # Define model builder
         model=Sequential()
         model.add(Dense(64, activation='relu'))
```

```
model.add(Dense(64, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(1))
model.compile(optimizer='adam',loss='mse')
model_result = model.fit(x_train, y_train, epochs=200)
class KerasModelWrapper:
   def __init__(self, model):
        self.model = model
   def fit(self, X, y):
       pass # already trained outside
   def predict(self, X):
        return self.model.predict(X).flatten()
   def score(self, X, y):
       y_pred = self.predict(X)
        return r2_score(y, y_pred)
wrapped_model = KerasModelWrapper(model)
# Use sklearn's permutation importance
result = permutation_importance(wrapped_model, x_test, y_test, n_repeats=10, random_state=42)
# Sort and print feature importances
sorted_idx = result.importances_mean.argsort()[::-1]
print("Feature importances (descending):\n")
feature_names = X_final.columns
# Map each one-hot encoded column back to its base category
grouped_importances = defaultdict(float)
for i, col in enumerate(feature_names):
    # Split by underscore only if it's one-hot encoded
   if ' ' in col:
       base_feature = col.split('_')[0]
   else:
        base_feature = col # numerical feature (not one-hot encoded)
   grouped_importances[base_feature] += result.importances_mean[i]
# Sort and print the aggregated importances
sorted_importances = sorted(grouped_importances.items(), key=lambda x: x[1], reverse=True)
print("Aggregated Feature Importances:\n")
for feature, importance in sorted_importances:
   print(f"{feature}: {importance:.6f}")
features, importances = zip(*sorted_importances)
# PLot
plt.figure(figsize=(10, 6))
bars = plt.barh(features, importances, color='skyblue')
plt.xlabel("Importance")
plt.title("Aggregated Feature Importances")
plt.gca().invert_yaxis() # Highest importance on top
for bar in bars:
   width = bar.get_width()
   plt.text(width + 0.001,
        bar.get_y() + bar.get_height() / 2,
        f"{width:.4f}",
       va='center')
plt.tight_layout()
plt.show()
```

```
Epoch 1/200
2774/2774 [============== ] - 14s 4ms/step - loss: 7974306709504.0000
Epoch 2/200
2774/2774 [============ ] - 11s 4ms/step - loss: 3807742001152.0000
Epoch 3/200
2774/2774 [=============] - 11s 4ms/step - loss: 2851716726784.0000
Epoch 4/200
Epoch 5/200
Epoch 6/200
Epoch 7/200
2774/2774 [============] - 15s 5ms/step - loss: 2068711342080.0000
Epoch 8/200
2774/2774 [============= - 9s 3ms/step - loss: 1952607764480.0000
Epoch 9/200
2774/2774 [===========] - 11s 4ms/step - loss: 1543747796992.0000
Epoch 10/200
Epoch 11/200
Epoch 12/200
2774/2774 [===========] - 12s 4ms/step - loss: 1392954179584.0000
Epoch 13/200
Epoch 14/200
Epoch 15/200
2774/2774 [============] - 23s 8ms/step - loss: 1062859964416.0000
Epoch 16/200
Epoch 17/200
Epoch 18/200
Epoch 19/200
Enoch 20/200
Epoch 21/200
Epoch 22/200
Epoch 23/200
Epoch 24/200
2774/2774 [=============] - 26s 10ms/step - loss: 812631654400.0000
Epoch 25/200
2774/2774 [===========] - 27s 10ms/step - loss: 754191106048.0000
Epoch 26/200
2774/2774 [============] - 30s 11ms/step - loss: 906597236736.0000
Epoch 27/200
Epoch 28/200
2774/2774 [============] - 27s 10ms/step - loss: 867282452480.0000
Epoch 29/200
Epoch 30/200
2774/2774 [=============== ] - 27s 10ms/step - loss: 761216761856.0000
Epoch 31/200
Epoch 32/200
Epoch 33/200
Epoch 34/200
Epoch 35/200
2774/2774 [============== ] - 28s 10ms/step - loss: 773660868608.0000
Epoch 36/200
Epoch 37/200
Epoch 38/200
2774/2774 [============== ] - 31s 11ms/step - loss: 656524771328.0000
Epoch 39/200
Epoch 40/200
2774/2774 [============== ] - 31s 11ms/step - loss: 749900595200.0000
Enoch 41/200
Epoch 42/200
Epoch 43/200
```

·IVI	ANN
	- 32s 12ms/step - loss: 614677479424.0000
Epoch 44/200 2774/2774 [=========]	- 23s 8ms/step - loss: 583556464640.0000
Epoch 45/200	•
2774/2774 [========] Epoch 46/200	- 22s 8ms/step - 10ss: 599565533184.0000
2774/2774 [========] Epoch 47/200	- 23s 8ms/step - loss: 566696738816.0000
2774/2774 [=========]	- 21s 8ms/step - loss: 531952959488.0000
Epoch 48/200 2774/2774 [==========]	- 22s 8ms/step - loss: 582381207552.0000
Epoch 49/200 2774/2774 [=======]	
Epoch 50/200	·
2774/2774 [========] Epoch 51/200	- 20s 7ms/step - loss: 459484889088.0000
2774/2774 [=======] Epoch 52/200	- 20s 7ms/step - loss: 694397173760.0000
2774/2774 [=========]	- 16s 6ms/step - loss: 492908249088.0000
Epoch 53/200 2774/2774 [=========]	- 12s 4ms/step - loss: 501951201280.0000
Epoch 54/200	
2774/2774 [] Epoch 55/200	
2774/2774 [=========] Epoch 56/200	- 11s 4ms/step - loss: 559160360960.0000
2774/2774 [========]	- 12s 4ms/step - loss: 529933729792.0000
Epoch 57/200 2774/2774 []	- 14s 5ms/step - loss: 540411363328.0000
Epoch 58/200 2774/2774 [=========]	- 3s 1ms/step - loss: 464101736448.0000
Epoch 59/200 2774/2774 [=======]	
Epoch 60/200	
2774/2774 [=========] Epoch 61/200	- 3s 1ms/step - loss: 373112930304.0000
2774/2774 [========] Epoch 62/200	- 3s 945us/step - loss: 392152088576.0000
2774/2774 [========]	- 3s 955us/step - loss: 281001754624.0000
Epoch 63/200 2774/2774 [========]	- 3s 959us/step - loss: 257343389696.0000
Epoch 64/200 2774/2774 [===================================	- 2s 861us/step - loss: 178874580992.0000
Epoch 65/200	•
Epoch 66/200	- 2s 878us/step - loss: 140436094976.0000
2774/2774 [========] Epoch 67/200	- 3s 931us/step - loss: 123514929152.0000
	- 3s 937us/step - loss: 112464199680.0000
2774/2774 [=========]	- 2s 845us/step - loss: 109270581248.0000
Epoch 69/200 2774/2774 [===================================	- 3s 911us/step - loss: 108336922624.0000
Epoch 70/200 2774/2774 [=======]	
Epoch 71/200	
2774/2774 [===================================	- 2s 863us/step - loss: 101290688512.0000
2774/2774 [] Epoch 73/200	- 3s 911us/step - loss: 99421839360.0000
2774/2774 [========]	- 3s 1ms/step - loss: 96500793344.0000
Epoch 74/200 2774/2774 [==========]	- 3s 920us/step - loss: 95675981824.0000
Epoch 75/200 2774/2774 [========]	
Epoch 76/200	
2//4/2//4 [=========================== Epoch 77/200	- 3s 912us/step - loss: 113375141888.0000
2774/2774 [========] Epoch 78/200	- 3s 945us/step - loss: 93208854528.0000
2774/2774 [=========]	- 3s 924us/step - loss: 93370564608.0000
Epoch 79/200 2774/2774 [========]	- 3s 936us/step - loss: 91950956544.0000
Epoch 80/200 2774/2774 [===================================	- 3s 947us/step - loss: 91876663296.0000
Epoch 81/200	·
2774/2774 [] Epoch 82/200	- >> 901U5/Step - 1055: 903/1964928.0000
2774/2774 [=========] Epoch 83/200	- 2s 834us/step - loss: 89848324096.0000
2774/2774 [=========]	- 2s 861us/step - loss: 90039681024.0000
Epoch 84/200 2774/2774 [=======]	- 2s 829us/step - loss: 88182685696.0000
Epoch 85/200 2774/2774 [===================================	- 3s 937us/step - loss: 90209853440.0000
	. ,

```
Epoch 86/200
Epoch 87/200
Epoch 88/200
Enoch 89/200
Epoch 90/200
Epoch 91/200
Epoch 92/200
2774/2774 [============] - 2s 867us/step - loss: 86586417152.0000
Epoch 93/200
Epoch 94/200
Fnoch 95/200
Epoch 96/200
2774/2774 [============] - 3s 929us/step - loss: 81965572096.0000
Epoch 97/200
Epoch 98/200
Epoch 99/200
Epoch 100/200
2774/2774 [===========] - 3s 992us/step - loss: 82014003200.0000
Epoch 101/200
2774/2774 [============] - 3s 986us/step - loss: 81465311232.0000
Epoch 102/200
2774/2774 [==========] - 3s 967us/step - loss: 80316825600.0000
Epoch 103/200
Epoch 104/200
Epoch 105/200
Epoch 106/200
Epoch 107/200
2774/2774 [===========] - 3s 1ms/step - loss: 78383644672.0000
Epoch 108/200
2774/2774 [===============] - 3s 1ms/step - loss: 86744236032.0000
Epoch 109/200
2774/2774 [============] - 3s 1ms/step - loss: 79789842432.0000
Epoch 110/200
Epoch 111/200
Epoch 112/200
Epoch 113/200
2774/2774 [============] - 3s 1ms/step - loss: 76655804416.0000
Epoch 114/200
Epoch 115/200
Epoch 116/200
Epoch 117/200
2774/2774 [===========] - 3s 1ms/step - loss: 74711007232.0000
Epoch 118/200
Epoch 119/200
2774/2774 [============] - 3s 1ms/step - loss: 74739924992.0000
Epoch 120/200
Epoch 121/200
2774/2774 [=============== ] - 3s 1ms/step - loss: 74660651008.0000
Epoch 122/200
Epoch 123/200
2774/2774 [===========] - 3s 1ms/step - loss: 78635532288.0000
Epoch 124/200
Epoch 125/200
2774/2774 [===========] - 3s 1ms/step - loss: 74882031616.0000
Epoch 126/200
Epoch 127/200
2774/2774 [=============== ] - 3s 1ms/step - loss: 72227102720.0000
Epoch 128/200
```

```
2774/2774 [============] - 3s 1ms/step - loss: 72320679936.0000
Epoch 129/200
2774/2774 [============] - 3s 1ms/step - loss: 71961878528.0000
Epoch 130/200
Epoch 131/200
2774/2774 [===========] - 3s 1ms/step - loss: 71038246912.0000
Epoch 132/200
2774/2774 [===========] - 3s 1ms/step - loss: 71934099456.0000
Epoch 133/200
Epoch 134/200
2774/2774 [===========] - 3s 1ms/step - loss: 70033817600.0000
Epoch 135/200
Epoch 136/200
2774/2774 [=============== ] - 3s 1ms/step - loss: 69724602368.0000
Epoch 137/200
2774/2774 [============] - 3s 1ms/step - loss: 70325608448.0000
Epoch 138/200
2774/2774 [============= ] - 3s 1ms/step - loss: 72585248768.0000
Epoch 139/200
2774/2774 [=============] - 3s 1ms/step - loss: 68940660736.0000
Epoch 140/200
2774/2774 [===========] - 3s 1ms/step - loss: 70087958528.0000
Epoch 141/200
Epoch 142/200
Epoch 143/200
2774/2774 [===========] - 3s 1ms/step - loss: 69679620096.0000
Epoch 144/200
Epoch 145/200
2774/2774 [============] - 3s 1ms/step - loss: 68753776640.0000
Epoch 146/200
2774/2774 [============] - 3s 1ms/step - loss: 67786330112.0000
Epoch 147/200
Epoch 148/200
Epoch 149/200
Epoch 150/200
2774/2774 [===========] - 3s 1ms/step - loss: 67577925632.0000
Epoch 151/200
Epoch 152/200
2774/2774 [============== - - 5s 2ms/step - loss: 66899124224.0000
Enoch 153/200
Epoch 154/200
2774/2774 [============== ] - 5s 2ms/step - loss: 77018267648.0000
Epoch 155/200
Epoch 156/200
2774/2774 [============ - 4s 1ms/step - loss: 67904364544.0000
Epoch 157/200
Epoch 158/200
2774/2774 [===========] - 5s 2ms/step - loss: 67099860992.0000
Enoch 159/200
Epoch 160/200
2774/2774 [============= ] - 6s 2ms/step - loss: 65654599680.0000
Epoch 161/200
Epoch 162/200
Epoch 163/200
Epoch 164/200
Epoch 165/200
2774/2774 [===========] - 4s 2ms/step - loss: 65020084224.0000
Epoch 166/200
2774/2774 [============= ] - 6s 2ms/step - loss: 64681324544.0000
Epoch 167/200
Epoch 168/200
Epoch 169/200
Epoch 170/200
```

```
Epoch 171/200
2774/2774 [============] - 3s 1ms/step - loss: 67726401536.0000
Epoch 172/200
Epoch 173/200
2774/2774 [============] - 3s 1ms/step - loss: 63319158784.0000
Enoch 174/200
2774/2774 [============] - 3s 1ms/step - loss: 63415431168.0000
Epoch 175/200
Epoch 176/200
Epoch 177/200
2774/2774 [===========] - 3s 1ms/step - loss: 63053008896.0000
Epoch 178/200
Epoch 179/200
2774/2774 [============] - 3s 1ms/step - loss: 62971072512.0000
Fnoch 180/200
2774/2774 [============] - 3s 1ms/step - loss: 62928986112.0000
Epoch 181/200
2774/2774 [=============== ] - 3s 1ms/step - loss: 64751808512.0000
Enoch 182/200
Epoch 183/200
2774/2774 [============] - 3s 1ms/step - loss: 61849423872.0000
Epoch 184/200
Epoch 185/200
2774/2774 [===========] - 3s 1ms/step - loss: 61685399552.0000
Epoch 186/200
2774/2774 [============] - 3s 1ms/step - loss: 62243696640.0000
Epoch 187/200
2774/2774 [=============== ] - 3s 1ms/step - loss: 60905996288.0000
Epoch 188/200
2774/2774 [============] - 3s 1ms/step - loss: 60919500800.0000
Epoch 189/200
2774/2774 [============== ] - 3s 1ms/step - loss: 60728647680.0000
Epoch 190/200
Epoch 191/200
2774/2774 [============] - 3s 1ms/step - loss: 106604740608.0000
Epoch 192/200
2774/2774 [===========] - 3s 1ms/step - loss: 61991444480.0000
Epoch 193/200
2774/2774 [============== ] - 3s 1ms/step - loss: 59417665536.0000
Epoch 194/200
2774/2774 [============] - 3s 1ms/step - loss: 59146919936.0000
Epoch 195/200
Epoch 196/200
Epoch 197/200
Epoch 198/200
2774/2774 [============] - 3s 1ms/step - loss: 58364567552.0000
Epoch 199/200
Epoch 200/200
2774/2774 [===========] - 3s 1ms/step - loss: 95101140992.0000
925/925 [========] - 1s 816us/step
925/925 [========== ] - 1s 759us/step
925/925 [======] - 1s 761us/step
925/925 [=======] - 1s 651us/step
925/925 [=======] - 1s 721us/step
925/925 [==========] - 1s 816us/step
925/925 [=========] - 1s 741us/step
925/925 [========= ] - 1s 742us/step
925/925 [========= ] - 1s 761us/step
925/925 [========= ] - 1s 792us/step
925/925 [=========] - 1s 773us/step
925/925 [========] - 1s 763us/step
925/925 [========= ] - 1s 727us/step
925/925 [=========== ] - 1s 784us/step
925/925 [========= ] - 1s 807us/step
925/925 [========= ] - 1s 709us/step
925/925 [========] - 1s 726us/step
925/925 [=========] - 1s 732us/step
925/925 [=========] - 1s 740us/step
925/925 [=======] - 1s 746us/step
925/925 [========= ] - 1s 801us/step
925/925 [========= ] - 1s 854us/step
925/925 [=========] - 1s 759us/step
925/925 [=========] - 1s 724us/step
925/925 [========= ] - 1s 846us/step
```

IVI				
925/925	[======]	_	1 c	831uc/cton
	[======]			
925/925			1s	746us/step
925/925	[=======]	-	1s	729us/step
925/925	[======]	-	1s	838us/step
925/925	[========]	_		740us/step
925/925		_		738us/step
925/925	[======]	-	1s	
925/925		-	1s	953us/step
925/925	[]	-	1s	800us/step
925/925	[======]	-	1s	748us/step
925/925	[=======]	_	1s	758us/step
925/925	[=======]	_	1s	832us/step
925/925		_	1s	
- , -				
925/925		-		735us/step
925/925		-		779us/step
925/925	[======]	-	1s	910us/step
925/925	[======]	-	1s	753us/step
925/925	[======]	-	1s	752us/step
925/925	[=======]	_	1s	774us/step
925/925		_	1s	804us/step
	[======]	_	1s	753us/step
-, -				
925/925		-	1s	872us/step
925/925		-	1s	770us/step
925/925	[=======]	-	1s	791us/step
925/925	[=======]	-	1s	702us/step
925/925	[======]	_	1s	725us/step
925/925		_	1s	
925/925	[======]	_		792us/step
925/925		-		809us/step
925/925	[=======]	-	1s	748us/step
925/925	[=======]	-	1s	695us/step
925/925	[======]	-	1s	782us/step
925/925	[=======]	_	1s	763us/step
925/925	[======]	_	1s	743us/step
	[======]	_		
925/925			1s	727us/step
925/925		-	1s	
925/925	[]	-	1s	736us/step
925/925	[=======]	-	1s	722us/step
925/925	[======]	-	1s	767us/step
925/925	[=======]	-	1s	833us/step
925/925		_	1s	708us/step
925/925		_	1s	777us/step
	[======]			
925/925		-	1s	715us/step
925/925	[======]	-	1s	744us/step
925/925	[]	-	1s	727us/step
925/925	[======]	-		725us/step
925/925	[=======]	-	1s	712us/step
925/925	[=======]	-	1s	846us/step
	[=======]			
	[======]			
	[=======]			
	-			
	[=======]			-
	[=======]			
925/925	[======]	-	1s	733us/step
925/925	[======]	-	1s	726us/step
925/925	[======]	-	1s	704us/step
925/925	[======]	-	1s	744us/step
	[======]			
	[=======]			
	[=======]			
	[=======]			
	-			-
	[======]			
925/925	[]	-	1s	665us/step
925/925	[======]	-	1s	708us/step
925/925	[======]	-	1s	793us/step
925/925	[======]	-	1s	695us/step
925/925	[=======]	_	1s	759us/step
	[=======]			726us/step
	[======]			
	-			-
	[=======]			
	[=======]			
	[======]			
925/925	[======]	-	1s	864us/step
925/925	[=======]	-	1s	784us/step
	[]			
	[=======]			
	[=======]			740us/step 769us/step
	-			
	[=======]			
	[======]			
925/925	[======]	-	1s	770us/step
925/925	[======]	-	1s	978us/step
925/925	[======]	-	1s	796us/step
925/925	[=======]	-	1s	779us/step
	[]			
-,3	. ,		-	-,

```
925/925 [========= ] - 1s 844us/step
925/925 [========= ] - 1s 888us/step
925/925 [======== ] - 1s 966us/step
925/925 [========= ] - 1s 783us/step
925/925 [======== ] - 1s 1ms/step
925/925 [========= ] - 1s 968us/step
925/925 [============ ] - 1s 905us/step
925/925 [========= ] - 1s 768us/step
925/925 [========] - 1s 781us/step
925/925 [========] - 1s 1ms/step
925/925 [========== ] - 1s 787us/step
925/925 [=========== ] - 1s 755us/step
925/925 [========== ] - 1s 783us/step
925/925 [======== ] - 1s 802us/step
925/925 [======== ] - 1s 749us/sten
925/925 [========= ] - 1s 717us/step
925/925 [========= ] - 1s 785us/step
925/925 [========= ] - 1s 752us/step
925/925 [======== ] - 1s 755us/step
925/925 [======== ] - 1s 756us/sten
925/925 [=========] - 1s 688us/step
925/925 [========= ] - 1s 705us/step
925/925 [=========== ] - 1s 742us/step
925/925 [===========] - 1s 738us/step
925/925 [========] - 1s 706us/step
925/925 [=========== ] - 1s 783us/step
925/925 [========= ] - 1s 702us/step
925/925 [========= ] - 1s 797us/step
925/925 [==========] - 1s 710us/step
925/925 [========= ] - 1s 870us/step
925/925 [========= ] - 1s 700us/step
925/925 [=========] - 1s 727us/step
925/925 [======== ] - 1s 752us/sten
925/925 [========= ] - 1s 726us/step
925/925 [========= ] - 1s 911us/step
925/925 [======== ] - 1s 699us/sten
925/925 [=========] - 1s 701us/step
925/925 [======== ] - 1s 831us/step
925/925 [========= ] - 1s 1ms/step
925/925 [=========] - 1s 806us/step
925/925 [========== ] - 1s 794us/step
925/925 [======== ] - 1s 786us/step
925/925 [=========] - 1s 792us/step
925/925 [=======] - 1s 836us/step
925/925 [==========] - 1s 833us/step
925/925 [========= ] - 1s 849us/sten
925/925 [========== ] - 1s 936us/step
925/925 [==========] - 1s 775us/step
925/925 [=========] - 1s 733us/step
925/925 [============= ] - 1s 1ms/step
925/925 [========= ] - 1s 917us/step
925/925 [========= ] - 1s 1ms/step
925/925 [======== ] - 1s 1ms/step
925/925 [============ ] - 1s 1ms/sten
925/925 [========== ] - 1s 911us/step
925/925 [========] - 1s 943us/step
925/925 [========= ] - 1s 729us/step
925/925 [========== ] - 1s 793us/step
925/925 [========= ] - 1s 973us/step
925/925 [======== ] - 1s 797us/sten
925/925 [============ ] - 1s 803us/step
925/925 [=======] - 1s 763us/step
925/925 [========== ] - 1s 966us/step
925/925 [==========] - 1s 839us/step
925/925 [========= ] - 1s 954us/sten
925/925 [======== ] - 1s 821us/step
925/925 [=========] - 1s 864us/step
925/925 [========= ] - 1s 1ms/step
925/925 [========= ] - 1s 920us/step
925/925 [========= ] - 1s 768us/step
925/925 [=========== ] - 1s 911us/step
925/925 [=======] - 1s 784us/step
925/925 [=========] - 1s 808us/step
925/925 [========= ] - 1s 803us/step
925/925 [========== ] - 1s 770us/step
925/925 [=========== ] - 1s 811us/step
925/925 [=======] - 1s 1ms/step
925/925 [========= ] - 1s 944us/step
925/925 [========= ] - 1s 762us/step
925/925 [============ ] - 1s 895us/step
```

M				
925/925	[======]	_	1 c	800us/stan
	[=======]			
925/925		-	1s	944us/step
925/925	[======]	-	1s	938us/step
925/925	[]	-	1s	757us/step
925/925	[=======]	_	1s	886us/step
		_		856us/step
	[======]	-		836us/step
	[]	-	1s	801us/step
925/925	[======]	-	1s	979us/step
925/925	[]	-	1s	798us/step
925/925	[========]	_	1s	883us/step
925/925		_	1s	,
925/925	2	_		
				817us/step
925/925				858us/step
925/925	[]	-	1s	922us/step
925/925	[======]	-	1s	879us/step
925/925	[]	-	1s	962us/step
925/925	[=======]	_	15	903us/step
925/925		_		850us/step
	2			
925/925		-		782us/step
925/925	[======]	-		910us/step
925/925	[======]	-	1s	858us/step
925/925	[======]	-	1s	893us/step
925/925	[=======]	-	1s	773us/step
925/925	[========]	_		757us/step
925/925	•	_		
- , -	2			794us/step
925/925		-		832us/step
925/925	[======]	-	1s	752us/step
925/925	[=======]	-	1s	758us/step
925/925	[======]	_	1s	1ms/step
925/925		_		805us/step
925/925	2	_	1s	
925/925	[]	-	1s	861us/step
925/925	[======]	-	1s	801us/step
925/925	[======]	-	1s	851us/step
925/925	[=======]	_	1s	1ms/step
925/925	[=======]	_		962us/step
	[======]	_		
925/925				961us/step
925/925		-		818us/step
925/925	[======]	-	1s	847us/step
925/925	[=======]	-	1s	791us/step
925/925	[=======]	_	1s	871us/step
925/925	[======]			856us/step
925/925				
-, -		-		788us/step
925/925		-		891us/step
925/925		-	1s	874us/step
925/925	[=======]	-	1s	749us/step
925/925	[]	-	1s	807us/step
	[=======]			-
	[=======]			
	[======]			
	[======]			
925/925	[======]	-	1s	902us/step
925/925	[]	_	1s	756us/step
	[========]			
	[======]			
	-			
	[=======]			
	[======]			
925/925	[]	-	1s	816us/step
925/925	[======]	-	1s	672us/step
925/925	[]	-	1s	864us/step
	[======]			
	[======]			
	-			
	[======]			
	[======]			
925/925	[======]	-	1s	863us/step
925/925	[======]	-	1s	870us/step
925/925	[]	_	1s	756us/step
	[=======]			
	[======]			
	[]			
925/925	[======]	-	1s	900us/step
925/925	[=======]	-	1s	820us/step
	[======]			
	[======]			
	=			
	[======]			
	[======]			-
	[======]			
925/925	[=======]	-	1s	763us/step
	[========]			
	[======]			
	[======]			
	-			
	[=======]			
		-	TS	ŏbbus/step
923/923	[======]			

λM				
925/925	[=======]	_	1 c	921us/sten
	[=========]			
	[=========]			
	[========]			806us/step
	[]			755us/step
	[]			747us/step
	[]			688us/step
	[]			715us/step
	[]			737us/step
	[]			774us/step
	[=========]			754us/step
	[=========]			811us/step
	[========]			865us/step
925/925	[=========]	-	1s	771us/step
925/925	[==========]	-	1s	774us/step
925/925	[==========]	-	1s	790us/step
925/925	[=========]	-	1s	817us/step
925/925	[=========]	-	1s	790us/step
	[=========]			
	[==========]			857us/step
	[========]			
	[=========]			925us/step
	[========]			763us/step
	[=========]			712us/step
	[=========]			839us/step
	[=========]			
	-			818us/step
	[==========]			936us/step
	[]			1ms/step
	[=========]			944us/step
	[=========]			2ms/step
925/925	[========]	-	1s	861us/step
925/925	[==========]	-	1s	1ms/step
925/925	[========]	-	1s	1ms/step
925/925	[=========]	-	1s	863us/step
925/925	[=========]	-	1s	751us/step
925/925	[========]	_		771us/step
	[=========]			732us/step
	[=========]			774us/step
	[=========]			
	[=======]			
	[========]			727us/step
	[========]			776us/step
	[========]			975us/step
	[==========]			
	[==========]			
	= =			
	[=======]			-
	[========]			
	[========]			
	[========]			
	[]			764us/step
	[=========]			
	[=======]			
	[]			
	[]			
	[]			
	[]			
	[]			
	[]			
	[]			
	[========]			
925/925	[=========]	-	1s	715us/step
925/925	[=========]	-	1s	847us/step
925/925	[=========]	-	1s	758us/step
925/925	[========]	-	1s	742us/step
925/925	[=========]	-	1s	718us/step
925/925	[=========]	-	1s	803us/step
925/925	[=========]	-	1s	880us/step
	[=======]			
	[========]			
	[========]			
	[========]			804us/step
	[=========]			
	[=========]			748us/step
	[=========]			
	[=========]			
	[========]			
	[=========] [==========================			
	[=========] [==========================			
	[==========] [=========================			
	[=========] [==========================			
	[==========] [=========================			
	[==========] [=========================			
167/262	L	-	12	, + Jus/ step

```
925/925 [========= ] - 1s 757us/step
925/925 [========= ] - 1s 717us/step
925/925 [=========== ] - 1s 760us/step
925/925 [========== ] - 1s 797us/step
925/925 [=========] - 1s 729us/step
925/925 [======== ] - 1s 759us/step
925/925 [========== ] - 1s 719us/step
925/925 [========] - 1s 760us/step
925/925 [======== ] - 1s 736us/step
925/925 [======== ] - 1s 763us/step
925/925 [=======] - 1s 767us/step
925/925 [========== ] - 1s 816us/sten
925/925 [========] - 1s 725us/step
925/925 [========== ] - 1s 789us/step
925/925 [======== ] - 1s 705us/step
925/925 [========] - 1s 833us/step
925/925 [========] - 1s 711us/step
925/925 [========= ] - 1s 813us/step
925/925 [========= ] - 1s 741us/step
925/925 [========] - 1s 716us/step
925/925 [=========] - 1s 708us/step
925/925 [========= ] - 1s 833us/step
925/925 [========] - 1s 707us/step
925/925 [==========] - 1s 695us/step
925/925 [========] - 1s 762us/step
925/925 [==========] - 1s 747us/step
925/925 [========= ] - 1s 863us/step
925/925 [=========] - 1s 742us/step
925/925 [========= ] - 1s 759us/step
925/925 [========] - 1s 687us/step
925/925 [=========] - 1s 740us/step
925/925 [========= ] - 1s 796us/step
925/925 [========= ] - 1s 719us/step
925/925 [========= ] - 1s 762us/step
925/925 [========] - 1s 753us/step
925/925 [======== ] - 1s 734us/step
925/925 [========] - 1s 736us/step
925/925 [========] - 1s 796us/step
925/925 [========= ] - 1s 724us/step
925/925 [=======] - 1s 767us/step
925/925 [======== ] - 1s 847us/step
Feature importances (descending):
```

Aggregated Feature Importances:

Area (SQFT): 1.261851 Sale Month-Year: 0.384004

Lease: 0.326418 Type of Sale: 0.296333 Property Type: 0.189708 Postal District: 0.168648 Floor Level: 0.064866

Distance to MRT (km): 0.058170


```
In [ ]: # training Loss
             loss = model_result.history['loss']
             sns.lineplot(x=range(len(loss)),y=loss)
plt.title("Training Loss per Epoch")
plt.xlabel("Epoch")
             plt.ylabel("Loss")
plt.show()
```



```
In [17]:
    test_predictions = wrapped_model.predict(x_test)
    df_pred=pd.DataFrame({'test_actual': y_test})
    df_pred['test_pred']=test_predictions
                       df_pred.head()
```

925/925 [=========] - 1s 607us/step

```
In [19]: # Predict using the ANN model
    y_pred = model.predict(x_test).flatten()

# Scatter Plot: Actual vs Predicted Prices
    plt.figure(figsize=(8, 6))
    plt.scatter(y_test, y_pred, alpha=0.5, color='royalblue')
    plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--') # perfect prediction line
    plt.xlabel('Actual Price')
    plt.ylabel('Predicted Price')
    plt.title('Actual vs Predicted Prices (ANN)')
    plt.grid(True)
    plt.tight_layout()
    plt.show()
```

925/925 [========] - 1s 610us/step


```
In []: #find rmse score
    mse = mean_squared_error(df_pred['test_actual'], df_pred['test_pred'])
    rmse = math.sqrt(mse)
    print(f"RMSE: {rmse}")

    mse = mean_squared_error(df_pred['test_actual'], df_pred['test_pred'])
    mae = mean_absolute_error(df_pred['test_actual'], df_pred['test_pred'])
    r2 = r2_score(df_pred['test_actual'], df_pred['test_pred'])

    print(f"Mean Squared Error (MSE): {mse:.2f}")
    print(f"Mean Absolute Error (MAE): {mae:.2f}")
    print(f"R^2 Score: {r2:.4f}")

    RMSE: 249481.61294973223
    Mean Squared Error (MSE): 62241075200.00
    Mean Absolute Error (MAE): 173008.09
    R^2 Score: 0.8737
In []:
```