CS-540: INTRO TO ARTIFICIAL INTELLIGENCE

BACK PROPAGATION

Erin Winter

March 27th, 2017

Midterm Exam Grades

cannot be distributed because 2 students haven't taken the midterm yet.

Neither can the answers for HW3 for the same reason.

"you should assign readings complementary to the lectures"

There have been readings this whole time on the Canvas Assignments page. Please do them.

"more examples of algorithms in lecture"

I can definitely try to do that, time and document camera permitting.

"faster grading"

I would enjoy that too, but that is dependent on the TA's, not me. I'm working with them to make turnaround time faster.

Pacing Pacing will be roughly the same, if a bit slower.

Short assignments vs. long assignments
About evenly split, so I'll keep them roughly the same

I'm comfortable going to office hours. Please come if you have questions. There's nothing to be afraid of.

How many hours per week do you spend on this class? About what I expected.

During weeks homework is NOT due

BACK-PROPAGATION ALGORITHM

Initialize the weights in the network (usually random values)

```
Repeat until stopping criterion is met {
 forall p,q in network, \Delta W_{p,q} = 0
 foreach example e in training set do {
     O = neural_net_output(network, e) // forward pass
     Calculate error (T - O) at the output units //T = teacher output
     Compute \Delta w_{i,k} for all weights from hidden to output layer
     Compute \Delta w_{i,j} for all weights from inputs to hidden layer
       for all p,q in network \Delta W_{p,q} = \Delta W_{p,q} + \Delta w_{p,q}
                                                                    backward pass
   for all p,q in network \Delta W_{p,q} = \Delta W_{p,q} / \text{num\_training\_examples}
   network = update\_weights(network, \Delta W_{p,q})
```

BACK-PROP USING STOCHASTIC GRADIENT DESCENT (SGD)

Most practitioners use SGD to update weights using the average gradient computed using a small batch of examples, and repeating this process for many small batches from the training set

In extreme case, update after each example

Called *stochastic* because each small set of examples gives a noisy estimate of the average gradient over *all* training examples

Back-Propagation performs a *gradient descent search* in "weight space" to learn the network weights

Given a network with *n* weights:

- each configuration of weights is a vector, W, of length
 n that defines an instance of the network
- W can be considered a point in an n-dimensional weight space, where each dimension is associated with one of the connections in the network

- •Given a training set of *m* examples:
 - -Each network defined by the vector \boldsymbol{W} has an associated total error, \boldsymbol{E} , on \boldsymbol{all} the training data
 - −E is the sum squared error (SSE) defined by

$$E = E_1 + E_2 + ... + E_m$$

where E_i is the squared error of the network on the ith training example

•Given *n* output units in the network:

$$E_i = (T_1 - O_1)^2 + (T_2 - O_2)^2 + ... + (T_n - O_n)^2$$

- $-T_i$ is the target value for the i^{th} example
- $-O_i$ is the network output value for the i^{th} example

Visualized as a 2D error surface in "weight space"

- Each point in w₁ w₂ plane
 is a weight configuration
- Each point has a total error E
- 2D surface represents errors for all weight configurations
- Goal is to find a lower point on the error surface (local minimum)
- Gradient descent follows the direction of steepest descent,
 i.e., where E decreases the most

The **gradient** is defined as

$$\nabla E = [\partial E / \partial w_1, \partial E / \partial w_2, ..., \partial E / \partial w_n]$$

Update the *i*th weight using

$$Dw_i = -\partial \partial E / \partial w_i$$

Can't use the Step function in LTU's because it's derivative is 0 everywhere

Instead, let's use (for now) the Sigmoid function

Sigmoid Activation Function

Solution: Replace with a smooth function such as Sigmoid function (aka Logistic Sigmoid function): $g_w(x) = 1 / (1 + e^{-wx})$

FIRST DERIVATIVE OF SIGMOID FUNCTION

g'(x) = g(x) (1 - g(x))

UPDATING WEIGHTS IN A 2-LAYER NEURAL NETWORK

For weights between hidden and output units, generalized PLR for sigmoid activation is

$$\begin{aligned} \mathsf{D} w_{j,k} &= -\partial \partial E / \partial w_{j,k} \\ &= -\alpha - a_j \left(T_k - O_k \right) g'(in_k) \\ &= \alpha \, a_j \left(T_k - O_k \right) O_k \left(1 - O_k \right) \\ &= \alpha \, a_j \, \Delta_k \end{aligned}$$

$$\underbrace{w_{j,k}}_{\text{weight on link from hidden unit } j \text{ to output unit } k}_{\text{constants}}$$

α learning rate parameter

 a_i activation (i.e. output) of hidden unit j

 T_k teacher output for output unit k

 O_k actual output of output unit k

g' derivative of the sigmoid activation function, which is g' = g(1 - g)

UPDATING WEIGHTS IN A 2-LAYER NEURAL NETWORK

For weights between inputs and hidden units:

$$\begin{aligned} \mathsf{D}w_{i,j} &= -\partial \partial E / \partial w_{i,j} \\ &= -\partial (-a_i) g'(in_j) \sum_k w_{j,k} (T_k - O_k) g'(in_k) \\ &= \partial a_i \ a_j (1 - a_j) \sum_k w_{j,k} (T_k - O_k) \ O_k (1 - O_k) \\ &= \partial a_i \ \mathsf{D}_j \quad \text{where} \quad \mathsf{D}_j &= g'(in_j) \sum_k w_{j,k} \mathsf{D}_k \end{aligned}$$

 $\begin{array}{c} \boldsymbol{w_{i,j}} & \text{weight on link from input } i \text{ to hidden unit } j \\ \boldsymbol{w_{j,k}} & \text{weight on link from hidden unit } j \text{ to output unit } k \end{array}$

- learning rate parameter
- activation (i.e. output) of hidden unit j
- teacher output for output unit k
- actual output of output unit k
- input value i a_i
- derivative of sigmoid activation function, which is g' = g(1-g)

BACK-PROPAGATION ALGORITHM

Initialize the weights in the network (usually random values)

Repeat until stopping criterion is met

foreach example, e, in training set do

forward pass

```
{ O = neural_net_output(network, e) T = desired output, i.e., Target or Teacher's output calculate error (T - O) at all the output units compute \alpha w_{j,k} = \alpha \ a_j \ \Delta_k = \alpha \ a_j \ (T_k - O_k) \ g'(in_k) compute \alpha w_{j,k} = \alpha \ a_i \ D_j = \alpha \ a_i \ g'(in_j) \sum w_{j,k} (T_k - O_k) g'(in_k) forall p, q in network w_{p,q} = w_{p,q} + \Delta^k w_{p,q}
```

Simplistic SGD: update all weights after each example

LEARNING HIDDEN LAYER REPRESENTATION

Input		Output
10000000	\rightarrow	10000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	00000001

Can this be learned?

LEARNING HIDDEN LAYER REPRESENTATION

The evolving sum of squared errors for each of the eight output units

LEARNING HIDDEN LAYER REPRESENTATION

Input		Hidden			Output			
Values								
10000000	\rightarrow	.89	.04	.08	\rightarrow	10000000		
01000000	\rightarrow	.01	.11	.88	\rightarrow	01000000		
00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000		
00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000		
00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000		
00000100	\rightarrow	.22	.99	.99	\rightarrow	00000100		
00000010	\rightarrow	.80	.01	.98	\rightarrow	00000010		
00000001	\rightarrow	.60	.94	.01	\rightarrow	00000001		

Learned hidden layer representation

FEATURE DETECTORS

Figure 1.2: Examples of handwritten digits from postal envelopes.

HIDDEN-LAYER UNITS LEARN TO BE FEATURE DETECTORS

AUTONOMOUS VEHICLES

Slides courtesy of UC Berkeley

GRAND CHALLENGE 2005: BARSTOW, CA, TO PRIMM, NV

GRAND CHALLENGE 2005

