### **Department of Computer Science**

### Final exam for data structures and algorithms

**Course Code: SENG2032** 

Academic Year: 2020

**Exam Date:** \_\_\_\_\_

**Maximum Score: 50%** 

Time Allowed: 01:45

| Name:                       | _ ID No:   |           |
|-----------------------------|------------|-----------|
| Department:                 | Section:   | Year:     |
| Program: Admission: Regular | Extension: | Semester: |

#### **General Instructions**

- Write your name Id, Department and section both on the cover page and on the answer sheet
- Please make sure the exam has 4 parts and 8 pages including the cover page and the answer sheet.
- Provide your answer only on the separate answer sheet.
- Any material shall not be taken to the exam room unless permitted by the course instructor.
- Cheating is strictly forbidden and it will lead you academic dismissal.
- Please switch off your mobile until the end of the exam.

PLEASE DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO!!

### Part I: True/False Items (8 points)

## Instruction: Write TRUE if the statement is true and FALSE if the statement is false. (1 point each)

- 1. Hash tables use the array data structure as a data storage medium.
- 2. Hashing cannot be used for applications where multiple records with the same key value are permitted.
- 3. Data searching can be optimized to a very high level if the data is sorted.
- 4. Bubble sort is a better sorting algorithm than the selection sort algorithm because it makes the minimum amount of swapping values.
- 5. A balanced binary tree is a binary tree in which each node has either 0 or 2 children.
- 6. The depth first traversal/search graph traversal algorithm uses the queue data structure to maintain visited nodes and continue searching.
- 7. Big-O notation is used to measure the lower bound growth rate of an algorithm.
- 8. For binary search to work properly the dataset should be stored in a sorted format.

### Part II: Multiple choice Items (8 points)

# Instruction: Choose the correct answer among the given alternatives and write the letter of your choice on the space provided on the separate answer sheet. (1 point each.)

| 1. | Which of the | following | algorithms is | guaranteed to rui | n in O(NlogN) time? |
|----|--------------|-----------|---------------|-------------------|---------------------|
|----|--------------|-----------|---------------|-------------------|---------------------|

A. Selection Sort

C. Merge Sort

B. Bubble Sort

D. Quick Sort

- 2. Which of the following tree traversing algorithms traverse a binary search tree in a sorted format?
  - A. Pre Order Traversal

C. Post Order Traversal.

B. In Order Traversal

- D. Breadth first Traversal
- 3. Which of the following statements is false about the binary tree data structure?
  - A. A binary tree is a tree data structure in which the maximum number of children for a node is 2.
  - B. A binary tree is called a balanced binary tree if each node in a tree has exactly either 0 or 2 number of children.
  - C. A binary tree is called complete binary tree if the length from the root node to any leaf node is either h or h-1.
  - D. In a binary search tree all nodes which are smaller than the root node are stored to the left of the root node.
- 4. Which of the following statements is false about the graph data structure?
  - A. Graphs without cycles are called acyclic graphs.
  - B. Two nodes are adjacent if there is a path between them.
  - C. Directed graphs with cycles are called DAG's.
  - D. None.
- 5. Which of the following algorithms has the worst case running time of O(logN)?
  - A. Binary Search

C. Accessing an array element at some index.

B. Linear Search

D. Inserting a node at the end of a linked list.

- 6. Which one of the following asymptotic notations are used to express both lower bound and upper bound growth rates of an algorithm?
  - A. Big-O Notation
- C. Omega Notation
- B. Theta Notation
- D. None of them can describe both lower and upper bounds
- 7. Which one of the following statements is false about recursive and iterative solutions?
  - A. Recursive functions terminate when the base case is reached.
  - B. Iterative statements terminates when a condition is proven to be false.
  - C. Recursive functions are generally more efficient compared to iterative statements.
  - D. Solutions to some problems are easier to formulate recursively.
- 8. Which one of the following statements is false about the hash table data structure?
  - A. Hash tables can be used for applications where multiple records with the same key value are permitted.
  - B. Collisions are generally unavoidable in hash tables.
  - C. Hash tables has an efficient searching and inserting capabilities.
  - D. The records in a hash table are not ordered by value or frequency.

### **Part III: Explanation (8 points)**

### Instruction: Explain the following questions neatly and write the answer on the answer sheet.

- 1. Discuss both hash table collision resolution strategies. (2pts)
- 2. Discuss the 2 properties of recursive functions, and define the common mistakes that can occur in recursive functions. (1pt)
- 3. List at least 3 applications of the graph data structure. (2pts)
- 4. Discuss the two graph data structure representation techniques and what their advantages and disadvantages are. (2pts)
- 5. Define the divide and conquer algorithm design technique and give some examples of algorithms that use the divide and conquer technique. (1pt)

### Part IV: Workouts (26 points)

# Instruction: Read the following questions carefully and solve the following questions, write your answer on the space provided.

1. Sort the following array using the selection sort algorithm, [8, 4, 3, 1, 6, 2]. (3pts)

2. Create a binary search tree using the following values, [8, 3, 6, 5, 4, 13, 9, 10, 15, 1]. (4pts)

3. Traverse the following binary search tree using all the tree traversing algorithms. (4pts)



- 4. Determine the following terms for the following tree: (4pts)
  - Find the root node (vertex) of the tree:
  - Determine the descendants of D:
  - Determine the ancestors of J:
  - Determine the degree of the tree:
  - Determine the height of the tree:
  - Determine the path length of the tree:



5. Traverse the following graph using both Breadth first and Depth first search algorithms: (4pts)



6. Draw the graph using the following adjacency list of a graph. (2pts)

| A | C,D,E |
|---|-------|
| В | A,E   |
| С | A,B   |
| D | F,E,C |
| Е | A,B   |
| F | D,E   |

7. What is the worst case running time complexity of the following code snippet? (2pts)

```
for(inti=1; i<=n; i++){
    for(int j=1; j<=n; j*=2){
    cout<<j<<endl;
    }
}</pre>
```

8. Write an algorithm and its implementation to find the largest element in a given array. (3pts)

### Microlink Information Technology and Business Collage

### **Department of computer science**

# Mid exam for data structures and algorithms 2020/ Academic Year

### Answer sheet

| Department:                                       |
|---------------------------------------------------|
| Year: Program:                                    |
|                                                   |
| YYYY                                              |
| Part II: Multiple Choice Questions (1 point each) |
| 1                                                 |
|                                                   |

**Part III: Explanation (8 points)** 

1.

3.

4.

5.