much of Chapters 2 and 3 and concentrate their attention on later chapters, although Sections 2.3, 2.4, 3.3, 3.4, 3.8, and to a lesser extent 3.5, are likely to be of interest to most readers.

To derive the form of the PCs, consider first $\alpha'_1\mathbf{x}$; the vector α_1 maximizes $\operatorname{var}[\alpha'_1\mathbf{x}] = \alpha'_1\mathbf{\Sigma}\alpha_1$. It is clear that, as it stands, the maximum will not be achieved for finite α_1 so a normalization constraint must be imposed. The constraint used in the derivation is $\alpha'_1\alpha_1 = 1$, that is, the sum of squares of elements of α_1 equals 1. Other constraints, for example $\operatorname{Max}_j|\alpha_{1j}|=1$, may more useful in other circumstances, and can easily be substituted later on. However, the use of constraints other than $\alpha'_1\alpha_1 = \operatorname{constant}$ in the derivation leads to a more difficult optimization problem, and it will produce a set of derived variables different from the PCs.

To maximize $\alpha'_1 \Sigma \alpha_1$ subject to $\alpha'_1 \alpha_1 = 1$, the standard approach is to use the technique of Lagrange multipliers. Maximize

$$\alpha_1' \Sigma \alpha_1 - \lambda (\alpha_1' \alpha_1 - 1),$$

where λ is a Lagrange multiplier. Differentiation with respect to α_1 gives

$$\Sigma \alpha_1 - \lambda \alpha_1 = 0$$

or

$$(\mathbf{\Sigma} - \lambda \mathbf{I}_p) \boldsymbol{\alpha}_1 = \mathbf{0},$$

where \mathbf{I}_p is the $(p \times p)$ identity matrix. Thus, λ is an eigenvalue of Σ and α_1 is the corresponding eigenvector. To decide which of the p eigenvectors gives $\alpha'_1 \mathbf{x}$ with maximum variance, note that the quantity to be maximized is

$$\alpha_1' \Sigma \alpha_1 = \alpha_1' \lambda \alpha_1 = \lambda \alpha_1' \alpha_1 = \lambda,$$

so λ must be as large as possible. Thus, α_1 is the eigenvector corresponding to the largest eigenvalue of Σ , and $\text{var}(\alpha'_1\mathbf{x}) = \alpha'_1\Sigma\alpha_1 = \lambda_1$, the largest eigenvalue.

In general, the kth PC of \mathbf{x} is $\alpha'_k \mathbf{x}$ and $\operatorname{var}(\alpha'_k \mathbf{x}) = \lambda_k$, where λ_k is the kth largest eigenvalue of Σ , and α_k is the corresponding eigenvector. This will now be proved for k = 2; the proof for $k \geq 3$ is slightly more complicated, but very similar.

The second PC, $\alpha_2'\mathbf{x}$, maximizes $\alpha_2'\mathbf{\Sigma}\alpha_2$ subject to being uncorrelated with $\alpha_1'\mathbf{x}$, or equivalently subject to $\text{cov}[\alpha_1'\mathbf{x},\alpha_2'\mathbf{x}]=0$, where cov(x,y) denotes the covariance between the random variables x and y. But

$$\operatorname{cov}\left[\alpha_1'\mathbf{x},\alpha_2'\mathbf{x}\right] = \alpha_1'\boldsymbol{\Sigma}\boldsymbol{\alpha}_2 = \alpha_2'\boldsymbol{\Sigma}\boldsymbol{\alpha}_1 = \alpha_2'\lambda_1\alpha_1' = \lambda_1\alpha_2'\boldsymbol{\alpha}_1 = \lambda_1\alpha_1'\boldsymbol{\alpha}_2.$$

Thus, any of the equations

$$\begin{aligned} & \boldsymbol{\alpha}_1' \boldsymbol{\Sigma} \boldsymbol{\alpha}_2 = 0, & \boldsymbol{\alpha}_2' \boldsymbol{\Sigma} \boldsymbol{\alpha}_1 = 0, \\ & \boldsymbol{\alpha}_1' \boldsymbol{\alpha}_2 = 0, & \boldsymbol{\alpha}_2' \boldsymbol{\alpha}_1 = 0 \end{aligned}$$