

Группа Р32111 К работе допущен

Студент Назирджанов Некруз Фаходович Работа выполнена

Преподаватель Крылов Василий Александрович Отчёт принят

Рабочий протокол и отчёт по лабораторной работе №3.07"Изучение свойств ферромагнетика"

Цель работы

- 1. Измерение зависимости магнитной индукции в ферромагнетике отнапряженности магнитного поля B=B(H)
- 2. Определение по предельной петле гистерезиса индукциинасыщения, остаточной индукции и коэрцитивной силы
- 3. Получение зависимости магнитной проницаемости от напряженности магнитного поля $\mu = \mu(H)$ и оценка максимальногозначения величины магнитной проницаемости
- 4. Расчет мощности потерь энергии в ферромагнетике в процессе егоперемагничивания

Схема установки

Исходные данные

 $N_1 = 1665$

 $C_1 = 0.47 \text{ MK}\Phi \pm 10\%$

 $N_2 = 970$

 $S = (0.64 \pm 0.05) \text{ cm}^2$

 $I = (7.8 \pm 0.1)$ cm

 $f = 30 \Gamma$ ц

 $R_1 = 68 \text{ Om } \pm 10\%$

 K_{x} для таблиц 1, 2 = 100

мВ/дел

 $R_2 = 740 \text{ kOm} \pm 10\%$

 K_y для таблиц 1, 2 = 50

мВ/дел

 $\alpha = 313.91 \text{ m}^{-1} \text{ Om}^{-1}$ $\beta = 5.53 \text{ c/m}^2$

Таблица 1.

X_c , м B	<i>Y</i> _r , мВ	H_c , А/м	Вг, Тл
73.5	55	2.31	0.30

Таблица 2.

<i>Х</i> _m , мВ	Y_m , мВ	H_m , A/M	Вг, Тл	μ_m
351	135	11.3	0.76	54914

Начальная петля гистерезиса.

Аппроксимируем петлю как невыпуклый многоугольник, площадь которого посчитаем через площади трапеций со знаком. Примемотносительную погрешность такого подхода за 10%

$$\chi$$
 = 1.32 мВт/дел $^2 S_{nem,nu}$ = 10.34 дел $^2 P$ = 13.65 мВт $\delta P = \delta S_{nem,nu} + \delta \chi = \delta S_{nem,nu} + \delta R_1 + \delta R_2 + \delta C_1 = 40\%$

Таблица 3.

U, B	Х, В	<i>K</i> _x , В/дел	<i>H</i> , А/м	<i>Y</i> , B	<i>K</i> _y , В/дел	<i>В</i> , Тл	μ
19.500	0.336	0.100	105.474	0.132	0.050	0.730	5507
19.000	0.316	0.100	99.196	0.127	0.050	0.702	5634
18.500	0.303	0.100	95.115	0.123	0.050	0.680	5691
18.000	0.293	0.100	91.976	0.120	0.050	0.664	5741
17.500	0.268	0.100	84.128	0.115	0.050	0.636	6016
17.000	0.261	0.100	81.931	0.111	0.050	0.614	5962
16.500	0.251	0.100	78.791	0.108	0.050	0.597	6032
16.000	0.236	0.100	74.083	0.106	0.050	0.586	6297
15.500	0.221	0.100	69.374	0.101	0.050	0.559	6407
15.000	0.208	0.100	65.293	0.098	0.050	0.539	6571
14.500	0.193	0.100	60.585	0.094	0.050	0.518	6806
14.000	0.186	0.100	58.387	0.091	0.050	0.504	6874
13.500	0.183	0.050	57.446	0.090	0.050	0.498	6894
13.000	0.175	0.050	54.934	0.085	0.050	0.470	6809
12.500	0.164	0.050	51.481	0.081	0.050	0.449	6941
12.000	0.158	0.050	49.598	0.078	0.050	0.429	6876

График зависимости B = B(H)

График зависимости $\mu = \mu(H)$

 $\mu = \mu(H)$ принимает максимальное значение $\mu_{max} = 6941$ при H = 51.481 А/м. Это не минимальное значение H: хотя на большей части графика наблюдается падение μ при росте H, для низких H зависимость принимает выпуклый вид и имеет локальныймаксимум.

Вывод.

Левая часть графика $\mu = \mu(H)$ показывает, что магнитная проницаемость, принимает свой максимум при низких, но не близких к нулю, значениях H. Это соотносится с наиболее круто возрастающей частью петли гистерезиса.

При увеличении H магнитная проницаемость μ уменьшается, что соотносится с более пологим ростом B(H), и сходится к константе, что соотносится с приближением B(H) к линейной зависимости