

Visão geral

Aula 04

Hugo Silva

Gráfic

Dissecção

Falsa posição

Consideraçõe finais

Aula 04 - Métodos fechados para busca de raízes de funções

Hugo Vinícius Leão e Silva

hugovlsilva@gmail.com, hugo.vinicius.16@gmail.com, hugovinicius@ifg.edu.br

Instituto Federal de Educação, Ciência e Tecnologia de Goiás Campus Anápolis Curso de Bacharelado em Ciência da Computação

10 de setembro de 2021

Visão geral

Aula 04

Hugo Silva

Gráfic

Bissecçã

Falsa posiçã

Consideraçõe finais

1 Método gráfico

2 Método da bissecção

3 Método da falsa posição

4 Considerações finais

Método gráfico

Aula 04

Hugo Silva

Gráfico

Falsa posição Considerações

- É uma maneira simples para obter uma estimativa (imprecisa) da raiz de f(x)
- Exemplo: Deseja saber qual deve ser o coeficiente de arrasto c para que um paraquedista de massa m=68,1 kg alcance a velocidade v=40 m/s após t=10 s de queda livre e gravidade g=9,8 m/s². A equação é:

$$f(c, m, v, t, g) = \frac{gm}{c} \left(1 - e^{-\frac{c}{m}t} \right) - v$$

■ Mantendo *m*, *v*, *t* e *g* constantes, desejamos descobrir *c* que atende à solução acima;

$$f(c) = \frac{9,8 \times 68,1}{c} \left(1 - e^{-\frac{c}{68,1}10} \right) - 40$$

Método gráfico

Aula 04

Hugo Silva

Gráfico

Bissecç

Falsa posição

Considerações finais

■ Para isso, faz uma coarse search do intervalo de c que contenha f(c) = 0. Abaixo os valores de f(c) considerando $2 \le c \le 20$ (traço-ponto azul) em passos de 2 em 2.

- O intervalo que contém a raiz é $14 \le c \le 16$. Faz uma *fine search* neste intervalo em passos de 0,001 (linha vermelha);
- Resultado c = 14,867 e $f(14,867) \approx 0,000036$;
- Implementar no Octave $f(x) = \sin 10x \cos 3x$ para x = [0:0.01:5], x = [3:0.01:5], x = [4.2:0.001:4.3].

Método gráfico

Aula 04

Hugo Silva

Gráfico

3issecci

Falsa posição Consideraçõe finais

- O problema: impreciso;
- Mas os métodos gráficos podem ser úteis para ter calcular uma estimativa da raiz;
- Ajudam no entendimento do comportamento do sistema e no uso dos métodos numéricos;
- Exemplos de como raízes podem (ou não) ocorrer:

• Ou pior: pode haver raízes múltiplas, como em f(x) = (x-2)(x-2)(x-4) ou a função ser descontínua, não-derivável. Ambas dificultam a busca por raízes.

Aula 04

Hugo Silva

Gráfic

Bissecção

Falsa posiçã

Consideraçõe finais

- No gráfico do problema do paraquedista, f(c) mudou de sinal em cada lado da raiz;
- Se f(x) for real e contínuo no intervalo $[x_l, x_u]$ e $f(x_l)$ e $f(x_u)$ tiverem sinais opostos, $f(x_l)f(x_u) < 0$. Então existe pelo menos uma raiz real entre x_l e x_u ;
- Métodos incrementais usam isso e diminui o intervalo sistematicamente.

Aula 04

Hugo Silva

Gráfic

Bissecção

Falsa posição

Considerações

- O método da bissecção divide o intervalo iterativamente na metade da seguinte forma:
 - **1** Escolha o intervalo $[x_l, x_u]$ de forma que $f(x_l)f(x_u) < 0$;
 - 2 Estimativa da raiz é dada por:

$$x_r = \frac{x_l + x_u}{2}$$

- 3 Se $f(x_l)f(x_r) < 0$, a raiz está na primeira metade do intervalo. $x_{ll} = x_r$. Volte ao passo 2;
- 4 Se $f(x_l)f(x_r) > 0$, a raiz está na segunda metade do intervalo. $x_l = x_r$. Volte ao passo 2;
- 5 Se $f(x_l)f(x_r) = 0$, a raiz é x_r . Pare os cálculos. Obs.: ou pare quando atingir a tolerância, que será dito mais à frente.

Aula 04

Hugo Silva

Gráfic

Bissecção

Falsa posição

Considerações

Aula 04

Hugo Silva

Gráfic

Bissecção

Falsa posição

Consideraçõe finais

- Até quando o processo de busca de raiz deve iterar?
- Um conceito importante é o da tolerância;
- Especifica-se uma tolerância na variação de x_r . Usando a equação de erro relativo porcentual:

$$\epsilon_{\mathsf{a}} = \left| \frac{x_r^{\mathsf{novo}} - x_r^{\mathsf{velho}}}{x_r^{\mathsf{novo}}} \right| \times 100\%$$

onde x_r^{novo} é o valor da raiz na iteração atual e x_r^{velho} é o valor da raiz na iteração anterior.

■ Quando $\epsilon_a < 0, 1\%$, para o algoritmo.

Aula 04

Falsa posição

- O método da bissecção é um pouco ineficiente, visto que tem que fazer diversas buscas;
- Além disso, ele considera iguais as duas metades do intervalo $[x_l, x_{ll}]$:
- Enquanto isso, o método da falsa posição considera que se $f(x_l)$ estiver mais próximo de zero do que $f(x_u)$, provavelmente x_i está mais perto de zero do que x_{ij} ;
- Esse método faz uma interpolação linear → substitui a curva da função por uma reta e, por isso, produz uma falsa posição da raiz de f(x);

Aula 04

Hugo Silva

Gráfi

Bissecção

Falsa posição

Consideraçõe finais Semelhante ao método da falsa posição, porém, a fórmula que calcula a posição da raiz é:

$$x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

- Se $f(x_l)$ e $f(x_r)$ tiverem o mesmo sinal, a raiz está na primeira metade do intervalo. $x_l = x_r$. Recalcule x_r .
- Senão, a raiz está na segunda metade do intervalo. $x_u = x_r$. Recalcule x_r .
- Faça este procedimento até que se atinja a tolerância desejada.

Aula 04

Hugo Silva

Gráfic

Rissecci

Falsa posição

Considerações

Aula 04

Hugo Silva

Gráfic

Bissecca

Falsa posição

finais

■ Entretanto, há situações em que x_l ou x_u ficam presos:

■ O Método modificado da falsa posição detecta que x_u está preso nessa situação e faz $x_u = \frac{x_u}{2}$ para acelerar a convergência

Considerações finais

Aula 04 Hugo Silva

Bissecção

Falsa posição

Considerações finais

- Ressalta-se que pode haver mais de uma raiz em um intervalo fechado. Deve-se verificar isso;
- Uma solução algorítmica é varrer o intervalo em busca de raízes, mas qual o tamanho do passo?
- Se for pequeno demais → alto esforço computacional;
- lacktriangle Se for grande demais o pode-se perder raízes;
- Algoritmos de busca de força-bruta (como a bissecção) não são à prova de erros;
- O método gráfico e o entendimento do problema ajudam na localização de raízes.

Aula 04

Considerações finais

Lista 1: Bissecção e Falsa Posição.