

实验 - 使用 Windows 计算器转换网络地址

目标

第1部分:访问Windows计算器

第2部分:转换数制系统

第3部分: 将主机 IPv4 地址和子网掩码转换为二进制

第 4 部分: 使用幂 2 确定网络中的主机数

第 5 部分:将 MAC 地址和 IPv6 地址转换为二进制

背景/场景

网络技术人员在使用计算机和网络设备时会使用二进制、十进制和十六进制数。Microsoft 的操作系统内置有计算器应用程序。Windows 7 版本的计算器包括可用于执行基本算术运算(例如,加减乘除)的"标准型"视图。而且该计算器应用程序还包括高级编程、科学和统计功能。

在本实验中,您将使用 Windows 7 计算器应用程序在二进制、十进制和十六进制数制系统之间进行转换。此外,您还要根据可用的主机位数,使用"科学型"视图幂函数算出可以进行寻址的主机数量。

所需资源

• 1台PC (Windows 7或8)

注意:如果使用的操作系统不是 Windows 7, 计算器应用程序视图和可用功能可能与本实验中显示的不同。但是, 您应该能够执行这些计算。

第1部分:访问 Windows 计算器

在第 1 部分, 您将熟悉 Microsoft Windows 内置计算器应用程序并查看可用、模式。

第 1 步: 单击 Windows 的"开始"按钮并选择"所有程序"。

第 2 步: 单击"附件"文件夹并选择"计算器"。

第 3 步: 在计算器打开后,单击"查看"菜单。

四种可用模式分别是什么?

注意:本实验使用"程序员型"和"科学型"模式。

第2部分: 在数制系统间转换

在 Windows 计算器的"程序员型"视图中,有多个数制系统模式可用:十六进制(以 16 为基数)、十进制(以 10 为基数)、八进制(以 8 为基数)和二进制(以 2 为基数)。

我们习惯使用数字 0 到 9.的十进制数制系统。日常生活中使用十进制数制系统来进行所有计数、资金和金融交易。计算机和其他电子设备使用仅包含数字 0 和 1 的二进制数制系统来进行数据存储、数据传输和数字计算。 所有计算机的计算在内部最终都以二进制(数字)形式执行,无论它们显示方式如何。

二进制数字的一个缺点是:与一个较大的十进制数字相等的二进制数字可能会很长。这使它们难以阅读和书写。解决这个问题的一种方式是将二进制数每四个分为一组,并表示为十六进制数。十六进制数的基数是 16,它组合使用数字 0 到 9 和字母 A 到 F,用于表示相等的二进制或十进制数。当书写或显示 IPv6 和 MAC 地址时,使用十六进制字符。

八进制数制系统的原理非常类似于十六进制。八进制数表示每三个分为一组的二进制数。此数制系统使用数字 0 到 7。八进制数还可以方便地以较小的组表示一个大二进制数,但是此数制系统使用不广泛。

在本实验中, Windows 7 计算器使用"程序员型"模式, 用来在不同的数制系统之间进行转换。

a. 单击**查看**菜单并选择**程序员型**,切换到"程序员型"模式。

注意:对于 Windows XP 和 Vista,只有两种模式:标准型和科学型。如果您使用的是这两个操作系统,可以使用"科学型"模式来执行本实验。

	目前处于活动状态的是哪个数制系统?
	在十进制模式下,数字键区中有哪些数字处于活动状态?
٥.	单击 二进制 单选按钮。数字键区有哪些数字处于活动状态?
	您认为其他数字灰显的原因是什么?
٥.	单击 十六进制 单选按钮。数字键区有哪些字符处于活动状态?

d. 单击十进制单选按钮。用鼠标单击数字键区上的数字 1,然后单击数字 5。这样就输入了十进制数 15。

注意:键盘上的数字和字母也可用于输入值。如果使用数字键盘,请键入数字 **15**。如果数字没有输入到计算器中,请按 **Num Lock**键启用数字键盘。

单击二进制单选按钮。数字 15 会发生什么变化?

- e. 通过选择所需的数制模式,数字从一个数制系统转换为另一种数制系统。再次单击**十进制**单选按钮。数字 将转换回十进制数。
- f. 单击 **Hex** radio button to **十六进制**单选按钮后,将变为十六进制模式。哪一个十六进制字符(0 到 9 或 A 到 F)代表十进制 15? ______
- g. 当您在各个数制系统之间切换时,您可能已注意到:在转换期间会显示二进制数 1111。这有助于您将二进制数与其他数制系统值进行关联。每组 4 位表示一个十六进制字符或可能多个十进制字符。

							15
0000 63	0000	0000	0000	0000 47	0000	0000	0000 32
0000 31	0000	0000	0000	0000 15	0000	0000	1111

h. 通过单击计算器键盘中 9 上面的 **C**,清除窗口中的值。在二进制、十进制和十六进制数制系统之间转换以下数字。

十进制	二进制	十六进制
86		
175		
204		
	0001 0011	
	0100 1101	
	0010 1010	
		38
		93
		E4

i. 当您在上表中记录值时,是否看到二进制和十六进制数之间的模式?

第 3 部分: 将主机 IPv4 地址和子网掩码转换为二进制

Internet 协议第 4 版 (IPv4) 地址和子网掩码分别以点分十进制格式(四个二进制八位数)表示,例如 192.168.1.10 和 255.255.255.0。这使人们更容易读懂这些地址。地址或掩码中的每个十进制数都可转换为 8 个二进制位。二进制八位数始终为 8 个二进制位。如果 4 个十进制数全部转换为二进制,共有多少位?

a. 使用 Windows 计算器应用程序将 IP 地址 192.168.1.10 转换为二进制,并在下表中记录这些二进制数:

十进制	二进制
192	
168	
1	
10	

b. 子网掩码(如 255.255.255.0)也以点分十进制格式表示。子网掩码始终包含四组二进制八位数,每组二进制八位数均以一个十进制数表示。使用 Windows 计算器,将 8 个可能的十进制子网掩码二进制八位数值转换为二进制数,并在下表中记录这些二进制数:

十进制	二进制
0	
128	
192	
224	
240	
248	
252	
254	
255	

c. 组合使用 IPv4 地址和子网掩码,可以确定网络部分,也可以计算出给定 IPv4 子网中可用的主机数量。该过程将在第 4 部分中详述。

第 4 部分: 使用幂 2 确定网络中的主机数

给定 IPv4 网络地址和子网掩码,网络部分可以通过网络中的可用主机数进行确定。

a. 要计算网络中的主机数量, 您必须确定地址的网络部分和主机部分。

以子网 255.255.248.0 中的 192.168.1.10 为例, 地址和子网掩码转换为二进制数。当您记录到二进制数的转换时,请将各个位对齐。

十进制 IP 地址和子网掩码	二进制 IP 地址和子网掩码
192.168.1.10	
255.255.248.0	

由于子网掩码的前 21 位是连续的数字 1, 因此相应的 IP 地址的前 21 位二进制数为 110000001010100000000; 它们表示地址的网络部分。其余 11 位是 00100001010, 它们表示地址的主机部分。

该地址的十进制和二进制网络数字是多少?

该地址的十进制和二进制主机部分是什么?

由于网络数字和广播地址使用子网的两个地址,因此确定 IPv4 子网中可用主机数量的公式是 2 的 n 次幂减去 2 (其中 n 是可用主机位数)。

可用主机数量 = 2 (主机位数) - 2

- b. 使用 Windows 计算器应用程序,通过单击查看菜单,然后选择科学型转换到"科学型"模式。
- c. 输入 2。单击 x^y 键。此键会将数字提升为幂。
- d. 输入 11。单击 =, 或按下键盘上的 Enter 键。
- e. 使用计算器从答案减去 2 (如果需要)。
- f. 在本示例中,此网络中有 2046 台主机 (2¹¹-2)。
- g. 根据给定的主机位数,确定可用主机数量并将其记录在下表中。

可用主机位数	可用主机数量
5	
14	
24	
10	

h. 根据给定的子网掩码,确定可用主机数量并将答案记录在下表中。

子网掩码	二进制子网掩码	可用主机位数	可用主机数量
255.255.255.0	11111111.111111111.11111111.00000000		
255.255.240.0	11111111.11111111.11110000.00000000		
255.255.255.128	11111111.11111111.11111111.10000000		
255.255.255.252	11111111.11111111.11111111.11111100		
255.255.0.0	11111111.111111111.00000000.00000000		

第 5 部分: 将 MAC 地址和 IPv6 地址转换为二进制

介质访问控制 (MAC) 和 Internet 协议版本 6 (IPv6) 地址为便于阅读一般表示为十六进制数字。但是,计算机只能理解二进制数和使用这些二进制数进行计算。在此部分中,您要将这些十六进制地址转换为二进制地址。

第 1 步: 将 MAC 地址转换为二进制数。

a. MAC 地址(即物理地址)通常表示为 12 个十六进制字符,它们成对出现并以连字符 (-) 分隔。在基于 Windows 的计算机上,物理地址显示为 xx-xx-xx-xx 的格式,每个 x 均为从 0 到 9 的数字或从 A 到 F 的字母。地址中的每个十六进制字符可以转换为计算机可以理解的 4 个二进制位。如果 12 个十六进制字符全部转换为二进制,共有多少位?

b. 请记录您的 PC 的 MAC 地址。

c. 使用 Windows 计算器应用程序,将 MAC 地址转换为二进制数。

第 2 步: 将 IPv6 地址转换为二进制数。

IPv6 地址以十六进制字符书写,以便于人类使用。这些 IPv6 地址可以转换为计算机使用的二进制数。

- a. IPv6 地址是以人类易读的符号表示的二进制数: 2001:0DB8:ACAD:0001:0000:0000:0000:0001 或较短的格式: 2001:DB8:ACAD:1::1。
- b. IPv6 地址的长度为 128 位。使用 Windows 计算器应用程序,将示例 IPv6 地址转换为二进制数并将其记录 在下表中。

十六进制	二进制
2001	
0DB8	
ACAD	
0001	
0000	
0000	
0000	
0001	

思考

1. 您	了以在没有计算器的帮助下执行所有转换吗?	如何做到呢?

2. 对于大多数 IPv6 地址,该地址的网络部分通常是 64 位。前 64 位表示网络的子网中有多少个主机?提示:所有主机地址在主机的子网中都可用。