2.2 Rotations, Projections and Reflections

Rotations in \mathbb{R}^2

A Vector \vec{v} and $rot_{\theta}(\vec{v})$,

its Counterclockwise Rotation by θ

Theorem: The function $rot_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ that takes a vector \vec{v} and rotates \vec{v} counterclockwise by an angle of θ about the origin is a *linear transformation*, with:

$$[rot_{\theta}] = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}.$$

Basic Projections in \mathbb{R}^2

$$proj_x(\langle x,y\rangle) = \langle x,0\rangle.$$

$$proj_y(\langle x,y\rangle) = \langle 0,y\rangle.$$

Key Relationship:

$$\vec{v} = \langle x, y \rangle$$

$$= \langle x, 0 \rangle + \langle 0, y \rangle$$

$$= proj_x(\vec{v}) + proj_y(\vec{v})$$

$$proj_{x}(\vec{v}) = \begin{bmatrix} x \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \text{ and }$$

$$proj_{y}(\vec{v}) = \begin{bmatrix} 0 \\ y \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$[proj_x] = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
$$[proj_y] = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Basic Reflections in \mathbb{R}^2

A Vector \vec{v} and its Three Basic Reflections in \mathbb{R}^2 .

$$refl_{x}\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \\ -y \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix},$$

$$refl_{y}\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} -x \\ y \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}, \text{ and}$$

$$refl_{\vec{0}_{2}}\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} -x \\ -y \end{bmatrix}$$

$$= \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

The Geometric Relationships Among \vec{v} , $proj_x(\vec{v})$, $proj_y(\vec{v})$, $refl_x(\vec{v})$ and $refl_y(\vec{v})$

$$refl_x(\vec{v}) = proj_x(\vec{v}) - proj_y(\vec{v})$$
, and $refl_y(\vec{v}) = proj_y(\vec{v}) - proj_x(\vec{v})$.

General Projections and Reflections in \mathbb{R}^2

The Projections of \vec{v} Onto a Line L and its Orthogonal Complement L^{\perp} , and the Reflection of \vec{v} Across L.

Basic Projections in \mathbb{R}^3

$$proj_{x}(\langle x, y, z \rangle) = \langle x, 0, 0 \rangle$$

 $proj_{y}(\langle x, y, z \rangle) = \langle 0, y, 0 \rangle$
 $proj_{z}(\langle x, y, z \rangle) = \langle 0, 0, z \rangle$
 $proj_{xy}(\langle x, y, z \rangle) = \langle x, y, 0 \rangle$
 $proj_{xz}(\langle x, y, z \rangle) = \langle x, 0, z \rangle$
 $proj_{yz}(\langle x, y, z \rangle) = \langle 0, y, z \rangle$

$$\vec{v} = \langle x, y, z \rangle$$

$$= \langle x, 0, 0 \rangle + \langle 0, y, z \rangle$$

$$= proj_x(\langle x, y, z \rangle) + proj_{yz}(\langle x, y, z \rangle),$$

$$\vec{v} = \langle x, y, z \rangle$$

$$= \langle 0, y, 0 \rangle + \langle x, 0, z \rangle$$

$$= proj_y(\langle x, y, z \rangle) + proj_{xz}(\langle x, y, z \rangle), \text{ and}$$

$$\vec{v} = \langle x, y, z \rangle$$

$$= \langle 0, 0, z \rangle + \langle x, y, 0 \rangle$$

$$= proj_z(\langle x, y, z \rangle) + proj_{xy}(\langle x, y, z \rangle)$$

The Relationships Among \vec{v} , $proj_{xy}(\vec{v})$ and $proj_z(\vec{v})$.

$$refl_{xy}(\langle x, y, z \rangle) = \langle x, y, -z \rangle$$

$$= \langle x, y, 0 \rangle - \langle 0, 0, z \rangle$$

$$= proj_{xy}(\langle x, y, z \rangle) - proj_{z}(\langle x, y, z \rangle).$$

$$refl_{z}(\langle x, y, z \rangle) = proj_{z}(\langle x, y, z \rangle) - proj_{xy}(\langle x, y, z \rangle)$$

$$= \langle 0, 0, z \rangle - \langle x, y, 0 \rangle$$

$$= \langle -x, -y, z \rangle.$$

The Basic *Reflection Operators*:

$$refl_x(\langle x, y, z \rangle) = \langle x, -y, -z \rangle$$

 $refl_y(\langle x, y, z \rangle) = \langle -x, y, -z \rangle$
 $refl_z(\langle x, y, z \rangle) = \langle -x, -y, z \rangle$

$$refl_{xy}(\langle x, y, z \rangle) = \langle x, y, -z \rangle$$

 $refl_{xz}(\langle x, y, z \rangle) = \langle x, -y, z \rangle$
 $refl_{yz}(\langle x, y, z \rangle) = \langle -x, y, z \rangle$

$$refl_{\vec{0}_3}(\langle x, y, z \rangle) = \langle -x, -y, -z \rangle$$

General Projections and Reflections in \mathbb{R}^3

We need the decomposition:

$$\vec{v} = proj_{\Pi}(\vec{v}) + proj_{L}(\vec{v}),$$

where $proj_{\Pi}(\vec{v}) \in \Pi$ and $proj_{L}(\vec{v}) \in L$.

General Principle:

If
$$\vec{v} = proj_W(\vec{v}) + proj_{W^{\perp}}(\vec{v})$$
, then:

$$refl_{W}(\overrightarrow{v}) = proj_{W}(\overrightarrow{v}) - proj_{W^{\perp}}(\overrightarrow{v})$$

For planes Π and lines L through the origin:

$$refl_{\Pi}(\vec{v}) = proj_{\Pi}(\vec{v}) - proj_{L}(\vec{v})$$
, and

$$refl_L(\vec{v}) = proj_L(\vec{v}) - proj_\Pi(\vec{v}).$$