Algebraic Topology II - Assignment 7

Matteo Durante, s2303760, Leiden University

4th June 2019

Exercise 2

Proof. (a) It is sufficient to notice that, for any element $[f] \in \pi_n(S^n) \cong \mathbb{Z}$, we have by definition that $h_{S^n}([f]) = f_*[S^n] = \deg(f) \cdot [S^n]$. Since $[\mathrm{Id}_{S^n}] \in \pi_n(S^n)$ is s.t. Id_{S^n} has degree 1 because it induces the identity isomorphism on $H_n(S^n) \cong \mathbb{Z}$, we have then the surjectivity.

Proof. (b) We shall make use of the fact that, given a pointed map $X \xrightarrow{f} Y$, the induced natural map $(\Omega f, Pf, f)$ among the fibration sequences $\Omega X \to PX \to X$, $\Omega Y \to PY \to Y$ gives natural maps $E_X^r \xrightarrow{f_*} E_Y^r$ s.t. the following diagram is commutative for every $r \in \mathbb{N}_{>0}$, $i, j \in \mathbb{N}$.

$$E_{X,i,j}^r \xrightarrow{d_X^r} E_{X,i-r,i+1-r}^r$$

$$\downarrow^{f_*} \qquad \qquad \downarrow^{f_*}$$

$$E_{Y,i,j}^r \xrightarrow{d_Y^r} E_{Y,i-r,i+1-r}^r$$

We already have the naturality of the isomorphism $\pi_1(X)^{ab} \cong H_1(X)$.

We know that the isomorphism $\pi_{n-1}(\Omega X) \cong \pi_n(X)$ given by the connecting homomorphism in the long exact sequence of the fibration sequence $\Omega X \to PX \to X$ is natural.

Let's suppose n=2.

Notice that, since $\pi_n(X)$ is abelian for n > 1, we have a natural isomorphism $H_1(\Omega X) \cong \pi_1(\Omega X)^{ab} \cong \pi_2(X)^{ab} = \pi_2(X)$.

Also, by what we stated earlier the differential $E_{20}^2 = H_2(X) \xrightarrow{d_2} E_{01}^2 = H_1(\Omega X)$ of the Serre spectral sequence associated to the previously mentioned fibration sequence of X is natural. By the arguments provided in [1, thm. 11.6], it is also an isomorphism.

Reversing the natural isomorphism $H_2(X) \to H_1(\Omega X)$ and composing it with $\pi_2(X) \to H_1(\Omega X)$ we get then the desired natural isomorphism $\pi_2(X) \to H_2(X)$.

Supposing now the result true for some m > 1, we will prove it for m + 1. Notice that virtually nothing changes.

Let X be a space satisfying the hypothesis of [1, thm. 11.6] for n = m + 1. We know that $\pi_n(X) \cong \pi_{n-1}(\Omega X) \cong H_{n-1}(\Omega X)$ naturally by inductive hypothesis since $\pi_k(\Omega X) = \pi_{k+1}(X) = 0$ for k < n - 1.

Again, by what we stated earlier the differential $E_{n0}^2 = H_n(X) \xrightarrow{d_n} E_{0,n-1}^2 = H_{n-1}(\Omega X)$ of the Serre spectral sequence associated to the previously mentioned fibration sequence of X is natural. By the arguments provided in [1, thm. 11.6], it is also an isomorphism.

Reversing the natural isomorphism $H_n(X) \to H_{n-1}(\Omega X)$ and composing it with $\pi_n(X) \to H_{n-1}(\Omega X)$ we get then the desired natural isomorphism $\pi_n(X) \to H_n(X)$ mentioned in [1, thm. 11.6].

Proof. (c) The two maps g_{S^n} , h_{S^n} trivially agree up to sign, for they are isomorphisms from $\pi_n(S^n) \cong \mathbb{Z}$ to $H_n(S^n) \cong \mathbb{Z}$.

Observe that the isomorphism induced by h_X is natural, for given a pointed map $X \xrightarrow{f} Y$ we have that $h_Y(f_*[\alpha]) = h_Y([f \circ \alpha]) = (f \circ \alpha)_*[S^n] = f_*(\alpha_*[S^n]) = f_*(h_X([\alpha]))$.

Let's assume $g_{S^n} = h_{S^n}$.

Now, given any element $[f] \in \pi_n(X)$, considering the map given by a representative $S^n \xrightarrow{f} X$ and making use of the naturality of the maps g_{S^n} , g_X , h_{S^n} , h_X , we have the following commutative diagrams:

$$\pi_n(S^n) \xrightarrow{g_{S^n}} H_n(S^n) \qquad \pi_n(S^n) \xrightarrow{h_{S^n}} H_n(S^n)$$

$$\downarrow f_* \qquad \qquad \downarrow f_* \qquad \qquad \downarrow f_*$$

$$\pi_n(X) \xrightarrow{g_X} H_n(X) \qquad \pi_n(X) \xrightarrow{h_X} H_n(X)$$

We have then that:

$$g_X([f]) = g_X(f_*[Id_{S^n}])$$

$$= f_*(g_{S^n}([Id_{S^n}]))$$

$$= f_*(h_{S^n}([Id_{S^n}]))$$

$$= h_X(f_*[Id_{S^n}])$$

$$= h_X([f])$$

The discussion of the case $g_{S^n} = -h_{S^n}$ is essentially analogous and leads to $g_X = -h_X$.

Now, since $g_X = \pm h_X$ on every n-1 connected pointed space for n > 1 and h_X is an isomorphism by [1, thm. 11.6], we have that g_X is also an isomorphism, hence the thesis.

Exercise 3

Proof. By the usual argument about cellular maps, $\pi_t(X) = 0$ for t < n.

Since X is pointed and simply connected, by [1, thm. 12.1] and the computation of $H_*(X)$ we will provide, all of the homotopy groups of X are abelian and finitely generated, hence they can be described as $\pi_t(X) = \mathbb{Z}^r \oplus \pi_t(X)^{tors}$ for some $r \in \mathbb{N}$. Also, $\pi_t(X) \otimes \mathbb{Q} = \mathbb{Q}^r$. We will then work with the Hurewicz theorem mod \mathcal{C} , where \mathcal{C} is the class of torsion abelian groups.

Let's compute $H_t(X)$ for all t, n, k.

Using the description of X as a finite CW-complex, we see that its homology corresponds to the homology of the cellular chain complex (C_{\bullet}, ∂) , where $C_0 = C_n = C_{n+1} = \mathbb{Z}$, $C_t = 0$ for $t \neq 0, n, n+1$ and $C_{n+1} \xrightarrow{\partial_n} C_n$ is given by $m \mapsto km$. It follows that $H_n(X) = \mathbb{Z}/k\mathbb{Z} \in \mathcal{C}$, $H_0(X) = \mathbb{Z}$, $H_t(X) = 0$ for $t \neq 0, n$.

By Hurewicz, $\pi_n(X) = H_n(X) = \mathbb{Z}/k\mathbb{Z}$.

We also have that P_nX is a $K(\mathbb{Z}/k\mathbb{Z}, n)$. We may then consider the fibration sequence $X\langle n\rangle \to X \to K(\mathbb{Z}/k\mathbb{Z}, n)$, which gives us the following one: $\Omega K(\mathbb{Z}/k\mathbb{Z}, n) = K(\mathbb{Z}/k\mathbb{Z}, n-1) \to X\langle n\rangle \to X$.

By [1, lemma 13.16], $H_t(K(\mathbb{Z}/k\mathbb{Z}, m)) \in \mathcal{C}$ for all $t \in \mathbb{N}$, $m \in \mathbb{N}_{>0}$ and by [1, lemma 13.15] the same goes for $H_t(X\langle n \rangle)$, which in particular gives $H_{n+1}(X\langle n \rangle) = \pi_{n+1}(X\langle n \rangle) = \pi_{n+1}(X) \in \mathcal{C}$.

Assume now that $H_t(X\langle i-1\rangle) \in \mathcal{C}$ for all $t \in \mathbb{N}_{>0}$ for some i > n and therefore $\pi_i(X) = \pi_i(X\langle i-1\rangle) = H_i(X\langle i-1\rangle) \in \mathcal{C}$. We will show that $H_t(X\langle i\rangle) \in \mathcal{C}$ for all $t \in \mathbb{N}_{>0}$ as well.

Consider the fibration sequence $F \to X\langle i \rangle \to X\langle i-1 \rangle$, where F is the homotopy fiber. By looking at the long exact sequence of the homotopy groups, we see that F is a $K(\pi_i(X), i-1)$, hence $H_t(F) \in \mathcal{C}$ for all $t \in \mathbb{N}_{>0}$ by [1, lemma 13.16]. Again, by [1, lemma 13.15], this implies that $H_t(X\langle i \rangle) \in \mathcal{C}$ for all $t \in \mathbb{N}_{>0}$.

It follows that $H_{i+1}(X\langle i\rangle) = \pi_{i+1}(X\langle i\rangle) = \pi_{i+1}(X) \in \mathcal{C}$, thus we can conclude that $\pi_i(X) \otimes \mathbb{Q} = 0$ for all i > 0.

BEWARE: after computing $H_*(X)$ we could have just said that, since $H_i(X) \in \mathcal{C}$ for all $i \in \mathbb{N}$, $\pi_i(X) \in \mathcal{C}$ for all 0 < i < t for every $t \in \mathbb{N}$ by [1, thm. 13.17], which implies that $\pi_i(X) \in \mathcal{C}$ for all $i \in \mathbb{N}$.

References

[1] Heuts Gijs and Meier Lennart. Algebraic Topology II. 2019.