Advanced Software Security

12. Hoare Logic

Kihong Heo

Program Verification

- Specifying and proving properties of programs
- Specification: precise statement of properties that a program should exhibit in FOL
- Partial correctness properties: certain states cannot ever occur during the execution
 - "Bad things never happen" (e.g., integer overflow, buffer overflow, deadlock, etc)
 - Proof by inductive assertion method
- Total correctness properties: certain states are eventually reached during the execution
 - "Good things will eventually happen" (e.g., termination, fairness)
 - Proof by ranking function method

Overview

Specification

- Typically embedded into program text as program annotations
- An annotation is a FOL formula F
- ullet An annotation F at location L asserts that F is true whenever program control reaches L
- Tree types of annotations:
 - Function specification
 - Loop invariant
 - Assertion

Function Specification

- A pair of annotations: precondition and postcondition
- Precondition: a formula whose free variables include only the formal parameters
 - "What should be true upon entering the function?"
- Postcondition: a formula whose free variables include only the formal parameters and the return value
 - "What is the relationship between the input and output?"

Example: Linear Search

What would be the pre and post conditions?

```
@pre: 0 \le l \land u < |a|
@post: rv \leftrightarrow \exists i.l \le i \le u \land a[i] = e
bool LinearSearch(int[] a, int l, int u, int e) {
   for (int i := l; i <= u; i := i + 1) {
      if (a[i] = e) return true;
   }
   return false;
}</pre>
```

- BTW, is this nontrivial precondition (a formula other than T) is always acceptable?
 - In terms of the software engineering practice (e.g., public API)

Example: More Robust Linear Search

What would be the pre and post conditions?

```
@pre: T
@post: rv ↔ ∃i.l ≤ i ≤ u < |a| ∧ a[i] = e
bool LinearSearch(int[] a, int l, int u, int e) {
   if (l < 0 \/ u >= |a|) return false;
   for (int i := l; i <= u; i := i + 1) {
     if (a[i] = e) return true;
   }
   return false;
}</pre>
```

Example: Binary Search

What would be the pre and post conditions?

```
@pre: 0 \le l \land u < |a| \land sorted(a, l, u)
@post: rv \leftrightarrow \exists i . l \le i \le u \land a[i] = e
bool BinarySearch(int[] a, int l, int u, int e) {
   if (l > u) return false;
   int m := (l + u) / 2;
   if (a[m] = e) return true;
   else if (a[m] < e) return BinarySearch(a, m + 1, u, e)
   else return BinarySearch(a, l, m - 1, e)
}</pre>
```

The sorted predicate is defined in the combined theory of integers and arrays:

$$sorted(a, l, u) \iff \forall i, j . l \le i \le j \le u \rightarrow a[i] \le a[j]$$

Example: Bubble Sort

What would be the pre and post conditions?

```
@pre: ⊤
@post: sorted(rv, 0, |rv| - 1)
bool BubbleSort(int[] a0) {
  int a[] = a0;
  for (int i := |a| - 1; i > 0; i := i - 1) {
    for (int j := 0; j < i; j := j + 1) {</pre>
      if (a[j] > a[j + 1]) {
        int t := a[j];
        a[j] := a[j + 1];
        a[j + 1] := t;
                                                                 Enough?
  return a;
```

Loop Invariants

Each loop has an annotation called loop invariant

```
while @F (\langle condition \rangle) \{ \langle body \rangle \}
```

- ullet The assertion F must hold at the beginning of every iteration
 - $F \land \langle condition \rangle$ holds on entering the body
 - $F \land \neg \langle condition \rangle$ holds when exiting the loop
- Why are loop invariants needed?

Example: Linear Search

What would be the loop invariant?

```
@pre: 0 \le l \land u < |a|
@post: rv \leftrightarrow \exists i.l \le i \le u \land a[i] = e

bool LinearSearch(int[] a, int l, int u, int e) {
   int i := l;
   while
     @L: l \le i \land (\forall j.l \le j < i \rightarrow a[j] \ne e)
     (i <= u) {
     if (a[i] = e) return true;
     i := i + 1;
   }
   return false;
}</pre>
```

Assertions

- Allows programmers to provide a formal comment
- Runtime assertions: a special class of assertions
 - E.g., division by 0, null dereference, etc
- Example: linear search with runtime assertions

```
bool LinearSearch(int[] a, int l, int u, int e) {
   int i := l;
   while (i <= u) {
     @ 0 \leq i < |a|
        if (a[i] = e) return true;
        i := i + 1;
     }
     return false;
}</pre>
```

Inductive Assertion Method

- Proof technique for partial correctness of programs
- Idea: derive verification conditions from a function given annotations
- Example:

Hoare Triple

- Partial correctness specified using Hoare triple: $\{P\}$ S $\{Q\}$
 - S: program fragment
 - P: precondition
 - Q: postcondition
- Meaning of Hoare triple:
 - If S is executed in a state satisfying P and if the execution of S terminates
 - ullet Then, the program state after S terminates satisfies Q

Example

What conditions should be proven?

```
{@pre} S1 {@L} S4; S5; S6 {@post} {@L} S4; S5; S7 {@L} {@L} S4; S9 {@post}
```

What about {@L} S4; S5; S7; S4; S5; S6 {@post} ? Why?

Hoare Logic

- A logic to prove the validity of Hoare triple
- A set of logical rules for reasoning about the partial correctness of programs
- In this lecture, we assume the following simple imperative language

```
S 	o 	ext{skip} \mid x := E \mid S; S \mid 	ext{if $E$ then $S$ else $S$} \mid 	ext{while $E$ do $S$}
```

Example

- Which one is valid?
 - $\{x = 0\} \ x := x + 1 \{x = 1\}$
 - $\{x = 0 \land y = 1\} \ x := x + 1 \ \{x = 1 \land y = 2\}$
 - $\{x = 0\} \ x := x + 1 \ \{x = 1 \lor y = 2\}$
 - $\{x = 0\}$ while true do x := 0 $\{x = 1\}$

Hoare Rules (1)

- Rule for skip $\overline{\{P\} \text{ skip } \{P\}}$
- Rule for assignment $\frac{}{\{Q[E/x]\}\ x := E\ \{Q\}\}}$
 - Intuition: revert to the state before the assignment
 - Example:

$$\{ \text{true} \} \ x := 1 \ \{ x = 1 \} \qquad \qquad \{ x + 1 > 0 \} \ x := x + 1 \ \{ x > 0 \}$$

$$\{y=1\}\ x:=y\ \{x=1\}$$
 {false} $x:=y+3\ \{y=0 \land x=12\}$

Hoare Rules (2)

- Rule for precondition strengthening $\frac{\{P'\}\ S\ \{Q\}\quad P\implies P'}{\{P\}\ S\ \{Q\}}$
 - Example:

$$\frac{\{y=x[x/y]\}\ y:=x\ \{y=x\}}{\{\mathsf{true}\}\ y:=x\ \{y=x\}} \quad z=2 \implies \mathsf{true}}$$

$$\{z=2\}\ y:=x\ \{y=x\}$$

- Rule for postcondition weakening $\frac{\{P\}\;S\;\{Q'\}\;\;Q'\;\Longrightarrow\;Q}{\{P\}\;S\;\{Q\}}$
 - Example:

$$\frac{\dots}{\{\mathsf{true}\}\; S\; \{x=y \land z=2\}} \quad x=y \land z=2 \implies x=y} \\ \{\mathsf{true}\}\; S\; \{x=y\}$$

Hoare Rules (3)

Rule for composition

$$\frac{\{P\}\ S_1\ \{Q\}\ \{Q\}\ S_2\ \{R\}}{\{P\}\ S_1; S_2\ \{R\}}$$

$$\frac{\{x=2[2/x]\}\ x:=2\ \{x=2\}}{\{\mathsf{true}\}\ x:=2\ \{x=2\}} \quad \frac{\{x=2\land y=2[x/y]\}\ y:=x\ \{x=2\land y=2\}}{\{x=2\}\ y:=x\ \{x=2\land y=2\}}$$

$$\{\mathsf{true}\}\ x:=2;\ y:=x\ \{x=2\land y=2\}$$

• Rule for if statement
$$\frac{\{P\wedge E\}\;S_1\;\{Q\}\quad\{P\wedge\neg E\}\;S_2\;\{Q\}}{\{P\}\;\text{if}\;E\;\text{then}\;S_1\;\text{else}\;S_2\;\{Q\}}$$

$$\frac{\{y \ge 0[x/y]\} \ y := x \ \{y \ge 0\} \quad x \ge 0 \implies x > 0}{\{x > 0\} \ y := x \ \{y \ge 0\}} \quad \frac{\{y \ge 0[-x/y]\} \ y := -x \ \{y \ge 0\}}{\{x \le 0\} \ y := -x \ \{y \ge 0\}}$$

$$\{\text{true}\} \ \text{if} \ x > 0 \ \text{then} \ y := x \ \text{else} \ y := -x \ \{y \ge 0\}$$

Hoare Rules (4)

• Rule for loop $\frac{\{P \wedge E\} \; S \; \{P\}}{\{P\} \; \text{while} \; E \; \text{do} \; S \; \{P \wedge \neg E\}}$

$$\frac{\{x \leq n \wedge x < n\} \ x := x+1 \ \{x \leq n\}}{\{x \leq n\} \text{ while } x < n \text{ do } x := x+1 \ \{x \geq n\}}$$

Loop Invariant

- Challenge: impossible to know how many times a given loop iterates
- How to prove the partial correctness of a loop within finite time?
- Analogy: mathematical induction
- Loop invariant I satisfies the following properties:
 - \bullet I holds initially before the loop
 - I holds after each iteration of the loop
- Example

```
i := 0; j := 0; n := 10;
while (i < n) { // loop invariants?
  i := i + 1;
  j := i + j;
}</pre>
```

Inductive Invariant

- Not all invariants are provable
- Example:

```
 \begin{array}{l} \textbf{i} := 5;\\ \textbf{while (i > 1) \{ // \text{ invariant: i > 0} \\ \textbf{i} := \textbf{i} - \textbf{2};\\ \textbf{}\\ \textbf{assert(i = 1);} \end{array}
```

- Inductive invariant: invariant we can prove using induction
- Challenge: finding inductive loop invariants
 - Practice: human, static analysis, machine learning, etc

Automatically Proving Partial Correctness

- $\{P\}$ S $\{Q\}$: Given the precondition satisfied, the postcondition is satisfied after the execution (if it terminates)
- Assumption: loop invariants are given by an oracle
 - Oracle: human, static analysis, machine learning, etc
- How to automatically prove correctness?
- Idea: deriving verification conditions (VCs) and check the validity

Verification Condition

- ullet A FOL formula F such that the program is correct iff F is valid
- Automatically proving partial correctness
 - Generating VCs from a program + checking the validity of VCs by a theorem prover
- Two ways to generate verification conditions
 - Forward: starting from prediction, generate formulas to prove postcondition (strongest postconditions)
 - Backward: starting from postcondition, generate formulas to prove precondition (weakest preconditions)

Weakest Liberal Preconditions

- Goal: verify Hoar triple $\{P\}$ S $\{Q\}$
- Weakest liberal precondition wlp(S, Q) [Dijkstra75]
 - Weakest: most general condition that guarantees ${\it Q}$ will hold after ${\it S}$ in any execution
 - Liberal: we do not care about termination
- Proof of the Hoar triple $\{P\}$ S $\{Q\}$: $P \implies wlp(S,Q)$
- Example: $\{y \ge 10\} \ x := y + 1 \ \{x \ge 0\}$

Weakest Precondition Calculus

- Inductively define wlp following Hoare rules
- wlp(x := E, Q) = Q[E/x]
- $wlp(s_1; s_2, Q) = wlp(s_1, wlp(s_2, Q))$
- $wlp(if E then s_1 else s_2, Q) = E \rightarrow wlp(s_1, Q) \land \neg E \rightarrow wlp(s_2, Q)$
- $wlp(\text{while } E \text{ do } S, Q) = I \land (E \land I \implies wlp(S, I)) \land (\neg E \land I \implies Q)$
 - Assumption: an inductive invariant I is provided

Example

- S: x := y + 1; if x > 0 then z := 1 else z := -1
- wlp(S, z > 0)?
- $wlp(S, z \leq 0)$?
- $\{y \ge -1\}$ S $\{z = 1\}$?
- $\{y > -1\}$ S $\{z = 1\}$?

Verification of Hoare Triple

- Validity of $\{P\}$ S $\{Q\}$
- Verification condition: $P \implies wlp(S,Q)$

Summary

- Hoare triple: specifications for partial correctness $\{P\}$ S
- Hoare logic: a logic to prove the validity of Hoare triple
 - Proof rules for each program command
- Verification condition is valid iff the Hoare triple is valid
- Automated program verification: check whether the VC is valid using theorem provers