คณะสถิติประยุกต์

สถาบันบัณฑิตพัฒนบริหารศาสตร์

Midterm Examination 2020/03 LM7204 Business Forecasting

2021-07-03

09:00-12:00

คำชี้แจงและคำสั่ง

- 1. การทุจริตถือเป็นความผิดทางวินัยอย่างร้ายแรง
 - (a) ห้ามปรึกษาหรือติดต่อสื่อสารกับบุคคลอื่น
 - (b) ห้าม search internet
- 2. ข้อสอบเป็น open book: อนุญาตให้เปิดเอกสาร และ/หรือตำราได้ สามารถใช้คอมพิวเตอร์หรือเครื่องคิดเลขได้
- 3. การทำข้อสอบ
 - a. สามารถเขียนใส่กระดาษแล้วถ่ายรูป หรือเขียนใน computer/tablet ก็ได้
 - b. หนึ่งไฟล์ต่อหนึ่งข้อเท่านั้น ส่งในรูปแบบ pdf (หากข้อนั้นมีหลายหน้าให้ save เป็น pdf ไฟล์เดียว)
 - c. ให้แสดงวิธีทำโดยละเอียด. คำตอบโดยไม่มีที่มาหรือวิธีทำอาจไม่ได้รับคะแนนเต็มสำหรับส่วนนั้น หากคำตอบ มาจากการ คำนวณโดยใช้โปรแกรม ระบุ function ที่ใช้ด้วย.
 - d. ให้วงกลมหรือใส่กรอบที่คำตอบสุดท้ายด้วย เพื่อให้ทราบว่าคำตอบอยู่ตรงไหนใน output ของ program

4. การส่งข้อสอบ

- ส่งใน assignment แต่ละข้อตามช่วงเวลาส่งในตาราง. (ใน MS Teams หลังจาก Turned in, วันที่และเวลาส่งจะถูกระบุไว้)
 หากในข้อใด, ส่ง late หรือส่งไม่ตรงตาม assignment, จะไม่ตรวจข้อนั้น และถือว่าคะแนนข้อนั้นเป็น 0 (ศูนย์)
- b. ตั้งชื่อตาม Filename สำหรับแต่ละข้อดังในตาราง

Problem	ช่วงเวลาส่ง	Filename
Problem1	09:00-09:35	Problem1-SID6XXXXXXXXX
Problem2	09:30-10:05	Problem2-SID6XXXXXXXXX
Problem3	10:00-10:35	Problem3-SID6XXXXXXXXX
Problem4	10:30-11:05	Problem4-SID6XXXXXXXXX
Problem5	11:00-11:35	Problem5-SID6XXXXXXXXX
Problem6	11:30-12:05	Problem6-SID6XXXXXXXXX

- ข้อสอบมีทั้งหมด 6 แผ่น ไม่รวมคำชี้แจง
- 6. ข้อสอบคะแนนเต็ม 100 คะแนน

ใช้ data set ต่อไปนี้สำหรับปัญหาข้อ 1-5 (ทุกข้อยกเว้นข้อสุดท้าย) (data file: LM7204Midterm2020.txt)

ข้อมูลราย quarter ของยอดขายสินค้าหลัก (Net Sales (NS) หน่วยเป็น million USD) ของบริษัท LMGoods ถูกแบ่งเป็น 2 ส่วนโดยมี train data คือช่วง 2005Q1—2007Q4

	Year	Quarter	NS
Train	2005	Q1	7014
Train	2005	Q2	6935
Train	2005	Q3	7224
Train	2005	Q4	8843
Train	2006	Q1	6773
Train	2006	Q2	7019
Train	2006	Q3	6874
Train	2006	Q4	8789
Train	2007	Q1	6625
Train	2007	Q2	6640
Train	2007	Q3	6939
Train	2007	Q4	9063

และมี test data คือ 2008Q1—2008Q4

	Year	Quarter	NS
Test	2008	Q1	7396
Test	2008	Q2	8059
Test	2008	Q3	8403
Test	2008	Q4	10333

Problem 1 (10 คะแนน)

จงสร้าง time plot ของ train และ test data ลงใน plot เดียวกัน

(ข้อนี้เป็น "warm up" เพื่อให้คุ้นเคยกับวิธีการสอบ เช่น ส่งแต่ละข้อใน pdf file เดียว และกด turn in ภายในเวลาที่กำหนด. หากทำข้อนี้เสร็จแล้ว, ทำข้อต่อไปได้เลย.)

Problem 2 (15 คะแนน)

2.1 คำนวณ point forecast โดยใช้วิธี naïve method และ seasonal naïve method ใส่ค่าในตาราง

			Naïve	Seasonal Naïve
Test	2008	Q1		
Test	2008	Q2		
Test	2008	Q3		
Test	2008	Q4		

2.2 เฉพาะ seasonal naïve method คำนวณ RMSE, MAE, MAPE, MASE ที่ได้ลงในตาราง

Seasonal Naïve	RMSE	MAE	MAPE	MASE
Training				
Test				

Problem 3 (20 คะแนน)

3.1 ให้ใช้ simple exponential smoothing

กำหนดให้ initial level $\,\ell_0$ = 7014 (ข้อมูลตัวแรกสุด) และให้ smoothing parameter = 0.1 จงแสดงวิธีคำนวณ level และ one-step ahead forecast ที่ได้ ณ เวลา t=1,2,3

- ullet ณ เวลา t=1 ค่า observed net sales คือ 7014 จะ update ค่า level ได้เป็นเท่าใด และ one-step ahead forecast $\widehat{y}_{2|1}$ เป็นเท่าใด
- ullet ณ เวลา t=2 ค่า observed net sales คือ 6935 จะ update ค่า level ได้เป็นเท่าใด และ one-step ahead forecast $\widehat{y}_{3|2}$ เป็นเท่าใด
- ullet ณ เวลา t=3 ค่า observed net sales คือ 7224 จะ update ค่า level ได้เป็นเท่าใด และ one-step ahead forecast $\widehat{y}_{4|3}$ เป็นเท่าใด

3.2 เฉพาะข้อ 3.2 ให้ใช้ R ทำ time series cross validation เพื่อเลือกระหว่าง Holt กับ Additive Holt-Winters โดยคำนวณ RMSE ของ multi-step errors ที่มี forecast horizon เป็น 1,2,3,4 (ใช้ R โดยไม่ต้องระบุ parameters ใดๆ เพิ่มเติมไม่ว่าจะ เป็น initial states หรือ damping parameters. ให้ใช้เป็นค่า default.)

RMSE (หน่วย: million USD)	h=1	h=2	h=3	h=4
Holt				
Additive Holt-Winters'				

ให้เหตุผลในการเลือก

Problem 4 (15 คะแนน)

จงทำ decomposition method ต่อไปนี้ (ไม่ต้องทำ transformation ใดๆ)

4.1 classical multiplicative decomposition

4.2 STL decomposition

ใส่ค่า seasonal components ที่ได้ของปีล่าสุดของ train data และใส่ผลรวม seasonal components ของ Q1-Q4 ด้วย. เพื่อประหยัดเวลา, แปลผลสำหรับ Q4 เท่านั้น (ของทั้งสองวิธี)

Seasonal		ผลรวมของ			
components	Q1	Q2	Q3	Q4	seasonal
					components
4.1					
4.2					

Problem 5 (20 คะแนน)

จงใช้ seasonally adjusted series ที่ได้จาก classical multiplicative decomposition method มาทำ ETS model ให้ R เลือก ETS model ให้เองอัตโนมัติ

5.1 ระบุ ETS(__ , __ , __) ที่ได้ว่าเป็นแบบใด ค่าตัวแรก ตัวที่สอง และตัวที่สามหมายถึงอะไร?

5.2 ETS model ที่ได้ในข้อ 5.1 ตรงกับวิธี exponential smoothing ใดหรือไม่? ถ้าตรง, ให้ระบุว่าตรงกับวิธีใด?

5.3 ระบุ assumptions ของ ETS model โดยเฉพาะข้อกำหนดสำหรับ error process $\{\epsilon_t: t=1,2,...\}$ พร้อมทั้ง ตรวจสอบว่า residuals ที่ได้ว่าสอดคล้องหรือขัดแย้งกับ assumptions หรือไม่อย่างไร? สามารถใส่รูปกราฟที่เกี่ยวข้องทั้งหมด. หากทำ hypothesis test, ให้ใช้ significance level 0.05.

5.4 ใส่ค่า point forecast ทั้งหมด 4 quarter ของ 2008 (test data)

	2008Q1	2008Q2	2008Q3	2008Q4
Point forecast				

Problem 6 (20 คะแนน)

- 6.1 เขียน ARIMA(0,1,1) โดยเขียนทั้งแบบที่ไม่ใช้ backshift notation และแบบที่ใช้ backshift notation
- 6.1.1 ไม่ใช่ backshift notation

6.1.2 ใช้ backshift notation

6.2 ข้อมูลเฉพาะข้อ 6.2 นี้มีทั้งหมด 65 observations โดยข้อมูลบางส่วนดังแสดงในตาราง (ข้อนี้ไม่มี data file ให้)

Time (t)	1	2	 61	62	62	63	65
Observation (y_t)	222.34	222.24	278.49	281.75	285.7	286.33	288.57

เมื่อทำ arima แล้วได้ผลลัพธ์จากโปรแกรม R ดังนี้

Call:

arima(x = y2, order = c(1, 1, 0))

Coefficients:

ar1

0.4383

s.e. 0.1117

 $sigma^2$ estimated as 3.861: log likelihood = -134.15, aic = 272.29

Training set error measures:

ME RMSE MAE MPE MAPE MASE ACF1
Training set 0.590983 1.949885 1.63542 0.2313389 0.6692787 0.9040933 -0.1456482

จงเขียน ARIMA model ที่ได้ พร้อมทั้งแสดงการคำนวณ point forecast สำหรับ t=66, 67 นั่นคือ $\widehat{y}_{66|65}$ และ $\widehat{y}_{67|65}$