

Prognozowanie parametrów zdrowotnych pacjentów

Sprawozdanie z Ćwiczeń Nauka o Danych II

Data wykonania: 28.06.2025

Autor:

Bartosz Bieniek 058085

1. Cel Ćwiczenia

12.1 Prognozowanie parametrów zdrowotnych pacjentów

Dane treningowe:

- wiek, BMI, aktywność fizyczna, spożycie kalorii, liczba godzin snu Zmienne wyjściowe:
- poziom cukru we krwi, ciśnienie skurczowe, ciśnienie rozkurczowe

Zadanie:

Stwórz model przewidujący parametry zdrowotne pacjentów.

import numpy as np

np.random.seed(42)

X = np.random.rand(1000, 5) * [80, 40, 2, 3000, 10] # wiek, BMI, aktywność, kalorie, sen

y = np.random.rand(1000, 3) * [200, 180, 120] # cukier, ciśnienie skurczowe, ciśnienie rozkurczowe

Zadania umieścić na Github.

2. Przebieg Ćwiczenia

Sprawozdanie z regresji wielowymiarowej: Prognozowanie parametrów zdrowotnych pacjentów

1. Import bibliotek

Zaimportowano niezbędne biblioteki, które umożliwiły manipulację danymi (NumPy, pandas), wizualizację (matplotlib) oraz budowę i ocenę modelu regresji (scikit-learn).

```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
import matplotlib.pyplot as plt
[1]  \squared 1.4s
```

Rys. 1. Import bibliotek

2. Generacja danych

W celu zapewnienia powtarzalności wyników ustawiono ziarno generatora liczb losowych. Następnie wygenerowano 1000 próbek danych wejściowych o pięciu wymiarach: wiek, wskaźnik BMI, poziom aktywności fizycznej, dzienne spożycie kalorii oraz liczba godzin snu. Równocześnie wygenerowano odpowiadające dane wyjściowe, czyli trzy zmienne zdrowotne: poziom cukru we krwi, ciśnienie skurczowe i ciśnienie rozkurczowe.

Rys. 2. Generacja danych

3. Podział zbioru danych

Zbiór danych podzielono na część treningową (80%) i testową (20%) z wykorzystaniem funkcji train_test_split. Użyto tego samego ziarna losowości, co wcześniej, aby zapewnić spójność w replikowaniu wyników.

Rys. 3. Podział zbioru danych

4. Trenowanie modelu

Utworzono model regresji liniowej i dokonano jego treningu na danych treningowych. Model został dopasowany do danych wejściowych w celu odwzorowania zależności pomiędzy nimi a trzema zmiennymi wyjściowymi.

```
model = LinearRegression()
model.fit(X_train, y_train)

[4] ✓ 0.0s
```

Rys. 4. Trenowanie modelu

5. Predykcja

Po zakończeniu procesu uczenia, wykorzystano model do przewidzenia wyników (cukru, ciśnienia skurczowego i rozkurczowego) dla danych testowych.

Rys. 5. Predykcja

6. Obliczenie błędu MSE

W celu oceny dokładności modelu obliczono średni błąd kwadratowy (MSE) dla każdej zmiennej wyjściowej. Otrzymano wartości: 3352,41 dla poziomu cukru, 2482,28 dla ciśnienia skurczowego oraz 1236,10 dla ciśnienia rozkurczowego.

```
mse = mean_squared_error(y_test, y_pred, multioutput='raw_values')
    r2 = r2_score(y_test, y_pred, multioutput='raw_values')

print("Mean Squared Error (cukier, skurczowe, rozkurczowe):", mse)
print("R^2 Score (cukier, skurczowe, rozkurczowe):", r2)

/ 0.0s

Mean Squared Error (cukier, skurczowe, rozkurczowe): [3352.40938387 2482.28127583 1236.10357925]
R^2 Score (cukier, skurczowe, rozkurczowe): [-0.00895378 -0.00739375 -0.02209181]
```

Rys. 6. Obliczenie błędu MSE

7. Obliczenie współczynnika R²

Dodatkowo obliczono współczynniki determinacji R². Otrzymane wartości: -0,009, -0,007 oraz -0,022 wskazują, że model nie wyjaśnia zmienności danych lepiej niż przewidywanie średniej — skuteczność była bardzo niska.

8. Porównanie wyników

Porównano wartości rzeczywiste i przewidywane dla pierwszych dziesięciu obserwacji z danych testowych. Zauważono wyraźne rozbieżności między prognozowanymi a faktycznymi wartościami.

```
print("Rzeczywiste wartości:\n", y_test[:10])
    print("Przewidywane wartości:\n", y_pred[:10])
Rzeczywiste wartości:
 [[115.38722467 27.87145104 42.74327322]
  [189.21512361 44.04880746 15.7878368 ]
  [ 38.82575409 96.58935167 112.17864485]
 [ 34.8969728 68.166604 101.1773838 ]
[ 89.14596418 159.5013508 31.79604739]
[ 153.75283614 47.8057677 92.0680073 ]
[ 121.39462325 33.9299735 96.59602007]
[ 142.87751241 164.99575848 84.65959823]
 [ 64.19940913 94.69692239 82.53230476]]
Przewidywane wartości:
 [[100.57359063 89.22104702 62.65150398]
 [102.263723 87.49461266 60.3270513 ]
[ 92.6587479 91.75116989 53.22685562]
[ 99.08376285 86.62942943 60.47844493]
[ 96.74246001 91.36821944 56.57134357]
  [ 94.40975983 88.65106883 57.24190241]
  [ 98.09898255 89.86724033 58.58506873]
  [ 93.90693479 90.32692639 57.40890739]
   98.49166898 89.65707746 59.7225709 ]
95.0701386 94.98254489 51.82526185]]
```

Rys. 8. Porównanie wyników

9. Wizualizacja

Przedstawiono wykres porównujący rzeczywiste i przewidywane wartości poziomu cukru we krwi. Obserwacje wizualne potwierdziły niską zgodność wyników, co jeszcze bardziej uwidoczniło niedopasowanie modelu do danych.

Rys. 9. Wizualizacja

3. Wnioski

Zastosowany model regresji liniowej nie poradził sobie z przewidywaniem parametrów zdrowotnych pacjentów, na co wskazują bardzo niskie, ujemne wartości współczynnika determinacji R² oraz wysokie błędy średniokwadratowe dla wszystkich zmiennych wyjściowych. Brak skuteczności modelu wynikał stuprocentowo z faktu, że dane zostały wygenerowane losowo i nie zawierały rzeczywistych zależności między zmiennymi wejściowymi a wyjściowymi.