



### Grundlagen von DatenBanken

#### Norbert Ritter

MIN-Fakultät, Fachbereich Informatik Datenbanken und Informationssysteme









### Ziele der Vorlesung (1)

- Vermittlung von Grundlagen- und Methodenwissen sowie Erwerb von Fähigkeiten und Fertigkeiten im Bereich Datenbanken und Informationssysteme
  - Entwurf, Aufbau und Wartung von Datenbanken, insbesondere auf der Basis:
    - Entity/Relationship-Modell und Erweiterungen
    - relationales Datenmodell und SQL (Standards)
  - Sicherung der Abläufe auf Datenbanken (Transaktionsprogramme)
    - Mehrbenutzerbetrieb, Fehlerbehandlung
    - Semantische Integrität, Datenschutz/Zugriffskontrolle
  - Verwaltung und Handhabung semi-strukturierter Daten/Dokumente (XML)



## Ziele der Vorlesung (2)

### Voraussetzungen für Übernahme von Tätigkeiten:

- Entwicklung von (betrieblichen) Anwendungs- und Informationssystemen, insbes. datenbankgestützter Anwendungen
- Nutzung (semi-) strukturierter Datenquellen unter Verwendung spezifischer Sprachansätze
- Systemverantwortlicher für Informations- und Datenbanksysteme, insbesondere Unternehmens-, Datenbank-, Anwendungs- und Datensicherungsadministrator



### Gliederung der Vorlesung (1)

#### Übersicht

### 1. Motivation, Einführung und Grundbegriffe

- Miniwelt modellhafte Abbildung
- Information was ist das?
- Aufgaben eines Informationssystems (IS)
- Daten in Informationssystemen
- Beispiele für Informationssysteme

### 2. Anforderungen und (Schichten-)Modelle

- Anforderungen an DBS
- Aufbau von DBS
- Beschreibungsmodelle (einfaches Schichten-Modell, Drei-Schema-Architektur)

#### 3. Informationsmodellierung

- Vorgehensweise bei DB-Entwurf und -Modellierung
- Entity-Relationship-Modell (ERM) und Erweiterungen

# Gliederung der Vorlesung (2)

#### 4. Grundlagen des Relationenmodells

- Konzepte des Relationenmodells (RM)
- Relationenalgebra und Algebraische Optimierung
- Abbildung ERM → RM

### 5. Die Standardsprache SQL

- Überblick
- Anfragesprache, Datenmanipulation, Datendefinition
- Abbildung und Wartung von Beziehungen (Referentielle Integrität/Aktionen)
- Indexstrukturen
- Sicht-Konzept
- Anwendungsprogrammierschnittstelle

#### 6. Logischer DB-Entwurf

- Konzeptioneller DB-Entwurf
- Normalformenlehre



# 7. Transaktionsverwaltung, Integritätssicherung und Zugriffskontrolle

- Transaktionskonzept (ACID-Eigenschaften)
- Kontrolle der Atomarität
- Sicherung der Datenintegrität
- Kontrolle des Mehrbenutzerbetriebs
- Fehlerbehandlung

### 8. DB-Zugriffsverfahren

- Übersicht
- B/B\*- Bäume

#### 9. Semistrukturierte Daten und XML

- Übersicht
- Schemadefinition (DTD, XML-Schema)
- Anfragesprachen (XPath/XQuery)



### Literatur



- Kemper, A., Eickler, A.: Datenbanksysteme Eine Einführung,
  Oldenbourg
- Lausen, G.: Datenbanken Grundlagen und XML-Technologien,
  Elsvier
- Elmasri, R., Navathe, S.B.: Grundlagen von Datenbanksystemen,
  Addison-Wesley, Pearson (neue Kapitel zu XML, Internet-Datenbanken und Data Mining online verfügbar)
- Date, C.J.: An Introduction to Database Systems,
  Addison-Wesley
- Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems The Complete Book, Prentice Hall
- Ullmann, J.D., Widom, J.: A First Course in Database Systems,
  Prentice Hall



### Organisatorisches

- Arbeitsmaterial
  - insbesondere Folien und Übungsblätter: GDB-Web-Seite

http://vsis-www.informatik.uni-hamburg.de/teaching/ws-16.17/gdb/

- Weitere Infos in den ersten Übungen
  - Anwesenheitspflicht!!!



| Zeit          | MI                                                                                        | DO                                                                              | FR                                                                                       |
|---------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| 08:00 - 10:00 |                                                                                           | G09 F-534: Simon Bott<br>G10 G-102: Lukas Bittner<br>G11 F-334: Malte Hamann    |                                                                                          |
| 10:00 – 12:00 |                                                                                           | G12 F-334: Malte Hamann<br>G13 G-102: Oliver Pola<br>G14 F-235: Sebastian Mader | G15 G-102: Till Heinrich<br>G16 F-334: Wolfram Wingerath<br>G17 F-635: Steffen Friedrich |
| 12:00 – 14:00 | G01 F-635: Mareike Schmidt<br>G02 F-534: Philipp Heidenreich                              |                                                                                 | G18 F-635: Steffen Friedrich<br>G19 G-102: Till Heinrich<br>G20 F-334: Wolfram Wingerath |
| 14:00 – 16:00 | G03 F-534: Philipp Heidenreich<br>G04 C-221: Mareike Schmidt<br>G05 F-334: Evelyn Fischer |                                                                                 |                                                                                          |
| 16:00 – 18:00 | G06 F-534: ???<br>G07 G-102: Sebastian Mader<br>G08 F-334: Evelyn Fischer                 |                                                                                 |                                                                                          |



### Organisatorisches

- Klausur 1: 09.02.2017, 12:30-14:30 Uhr, Audi 1,2
- Klausur 2: 14.03.2017, 09:30-11:30 Uhr, Audi 2
- Teilnehmer, für die bei den Klausuren besondere Vorkehrungen zu treffen sind (längere Bearbeitungszeit, barrierefreier Zugang, etc.), mögen sich bitte im Vorfeld beim Veranstalter oder den Übungsgruppenleitern melden
- Kontakt: wingerath@informatik.uni-hamburg.de