Diode Cheat Sheet

Rafael Marinho

General Constants

$$q = 1.6 \times 10^{-19}$$
 $\mu_n \approx 1350 \, cm^2 / (V \cdot s)$
 $k = 1.38 \times 10^{-23}$ $\mu_p \approx 480 \, cm^2 / (V \cdot s)$

$$D_n \approx 34 \, cm^2/s$$

 $D_p \approx 12 \, cm^2/s$

PN Junction

General semiconductor equations

Polarization	
Direct	Inverse
+•	<u> </u>

Semiconductor type		
	p-type	n-type
electron density	$n \approx N_D$	$n \approx \frac{n_i^2}{N_A}$
hole density	$p \approx \frac{n_i^2}{N_D}$	$p \approx N_A$

	General values
e^- density (Si)	$n_i = 5.2 \times 10^{15} \cdot T^{3/2} \exp\left[\frac{-Eg}{2kT}\right]$
e^- density @ 300K	$n_i \approx 10^{10}$
thermal voltage	$V_T = \frac{kT}{q}$
internal voltage	$ V_0 = -\frac{kT}{q} \ln \left[\frac{N_A N_D}{n_i^2} \right]$
Saturation Current	$ I_S = Aqn_i^2 \left[\frac{D_n}{N_A L_n} + \frac{D_p}{N_D L_p} \right]$
Forward Current	$I_S = \exp\left[\left(\frac{V_D}{V_T}\right) - 1\right]$

Diode Modeling

Exponential model

$$I_D = I_S \exp\left(\frac{V_D}{\eta V_T}\right)$$

Small-signal model

$$r_D = \frac{1}{g_D} = \frac{\eta V_T}{I_D}$$