Universidad Autónoma de Madrid

Curso Avanzado de Análisis

Convexidad y Desigualdades en Espacios Normados

2024-2025.

Autor: Gonzalo Ortega Carpintero

Resumen

Palabras clave

Índice

1.	Espacios convexos	2
2.	Desigualdades de Clarkson	3
3.	Desigualdades de Hanner	8

1. Espacios convexos

La principal herramienta para trabajar en espacios métricos, y en particular en los espacios normados [1], es la desigualdad triangular

$$||x + y|| \le ||x|| + ||y||.$$

Definition 1.1 (Conjunto convexo). Un conjunto $C \subseteq X$ es **convexo** si para todo par de puntos $x, y \in C$, $t \in [0, 1]$, se tiene $tx + (1 - t)y \in C$.

Dado un espacio normado $(X, \|\cdot\|)$, por conveniencia a veces denotado simplemente X, definimos la bola cerrada y la esfera unidad en X, B(X) y S(X) respectivamente como

$$B(X) := \{ x \in X : ||x|| \le 1 \},\$$

$$S(X) := \{ x \in X : ||x|| = 1 \}.$$

Definition 1.2 (Espacio estrictamente convexo). Un espacio normado $(X, \| \cdot \|)$ es **estrictamente convexo** si para todo par de puntos x e y en la esfera unidad S(X) tales que el punto medio del segmento que los une esta también en la esfera unidad, i.e. $\|\frac{x+y}{2}\|$, se tiene x = y.

Definition 1.3 (Espacio uniformemente convexo). Un espacio normado $(X, \| \cdot \|)$ es uniformemente convexo si para todo $\varepsilon \in (0, 2]$, existe un $\delta \in (0, 1)$ tal que para todo par $x, y \in B(X)$ con $\|x - y\| < \varepsilon$ se tiene $\|\frac{x+y}{2}\| < \delta$.

Proposición 1.4. Sea $(X, \langle \cdot, \cdot \rangle)$ un espacio dotado de un producto escalar con norma $||x|| := \sqrt{\langle x, x \rangle}$. Entonces el espacio $(X, ||\cdot||)$ es un espacio uniformemente, y por tanto también estrictamente, convexo.

Example 1.5 (Norma estrictamente convexa, pero no uniformemente convexa). Consideremos la norma en el espacio de sucesiones convergentes ℓ^1 dada por la suma de las normas ℓ^1 y ℓ^2 , es decir, dada una sucesión $x \in \ell^1$,

$$||x|| \coloneqq ||x||_{\ell^1} + ||x||_{\ell^2}.$$

Gracias a la Proposición 1.4 sabemos que para todo $x \neq y \in S(\ell^2)$, $||x + y||_{\ell^2} < ||x||_{\ell^2} + ||y||_{\ell^2}$. Por tanto, haciendo también uso de la desigualdad triangular estándar en ℓ^1 tenemos

$$||x+y|| = ||x+y||_{\ell^1} + ||x+y||_{\ell^2} < (||x||_{\ell^1} + ||y||_{\ell^1}) + (||x||_{\ell^2} + ||y||_{\ell^2}) = ||x|| + ||y|| = 2.$$

Por tanto, ℓ_1 es estrictamente convexo. Sin embargo, definamos ahora las sucesiones

$$x_{N,k} = \begin{cases} 1 & \text{si } k \le N, \\ 0 & \text{en caso contrario,} \end{cases} \qquad y_{N,k} = \begin{cases} 1 & \text{si } N < k \le 2N, \\ 0 & \text{en caso contrario.} \end{cases}$$

Por un lado tenemos que $||x|| = ||y|| = N + \sqrt{N}$ y que $||x_N - y_N|| = 2N + \sqrt{2N}$, ya que

$$x_{N,k} - y_N = \begin{cases} 1 & \text{si } k \le N, \\ -1 & \text{si } N < k \le 2N, \\ 0 & \text{si } k \ge 2N. \end{cases}$$

Pero tenemos también que

$$\left\| \frac{x_N + y_N}{2} \right\| = \frac{2N}{2} + \frac{\sqrt{2N}}{2}.$$

Dividiendo entre $N+\sqrt{N}$ podemos hacer $\left\|\frac{x_N+y_N}{2(N+\sqrt{N})}\right\|$ tan cercano como queramos a 1, mientras que siempre tendremos $\left\|\frac{x_N+y_N}{(N+\sqrt{N})}\right\| \geq \sqrt{2}$. Por tanto, $(\ell^1, \|\cdot\|)$ no es uniformemente convexo.

2. Desigualdades de Clarkson

Los espacios de funciones L^p no son por lo general espacios de Hilbert ya que, salvo para p=2, no cumplen la regla del paralelogramo

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$

En 1936, el matemático americano James A. Clarkson generalizó la regla del paralelogramo para hacerla válida para todo $p \geq 1$ en forma de dos nuevas desigualdades, una para $p \geq 2$ y otra para $1 \leq p \leq 2$, [2]. Si bien esto no permite definir un producto escalar sobre cualquier L^p , si que permite comprobar que, como veremos, L^p es uniformemente convexo para $p \geq 1$.

Teorema 2.1 (Primera desigualdad de Clarkson). Para $p \geq 2$, dadas $f, g \in L^p$, se verifica la desigualdad

$$||f+g||_p^p + ||f-g||_p^p \le 2^{p-1} \left(||f||_p^p + ||g||_p^p \right).$$
 (1)

Teorema 2.2 (Segunda desigualdad de Clarkson). Sea 1 , <math>y sea $q = \frac{p}{p-1}$. Para $f, g \in L^p$ se tiene

$$||f + g||_p^q + ||f - g||_p^q \le 2\left(||f||_p^p + ||g||_p^p\right)^{\frac{q}{p}}.$$
 (2)

Para desarrollar la demostración de ambas desigualdades hemos seguido la estructura de [4]. Empecemos probando un par de lemas auxiliares.

Lema 2.3. Sea $x \in [0,1]$ y $p \ge 2$. Se verifica la designaldad

$$\left(\frac{1+x}{2}\right)^p + \left(\frac{1-x}{2}\right)^p \le \frac{1}{2}(1+x^p).$$

Demostración. Definiendo la función

$$F(x) := \left(\frac{1+x}{2}\right)^p + \left(\frac{1-x}{2}\right)^p - \frac{1}{2}(1+x^p),$$

sería suficiente probar que $F(x) \geq 0$ para todo $x \in [0,1]$. Para x=0, como $p \geq 2$, se tiene

$$F(0) = \frac{1}{2^p} + \frac{1}{2^p} - \frac{1}{2} \le 0.$$

Para $0 < x \le 1$ definimos

$$\Phi(x) := \frac{2^p}{x^p} F(x) = \left(\frac{1}{x} + 1\right)^p + \left(\frac{1}{x} - 1\right)^p - 2^{p-1} \left(\frac{1}{x^p} + 1\right).$$

Para $x=1, \ \phi(1)=0,$ luego veamos que ϕ es creciente en el intervalo (0,1). La derivada de ϕ es

$$\Phi'(x) = -\frac{p}{x^{p+1}} \left((1+x)^{p-1} + (1-x)^{p-1} - 2^{p-1} \right).$$

Definiendo ahora la función $\Psi(x)$ como la parte entre paréntesis de Phi, y calculando su derivada tenemos

$$\Psi(x) := \left((1+x)^{p-1} + (1-x)^{p-1} - 2^{p-1} \right),$$

$$\Psi'(x) = (p-1)(1+x)^{p-2} - (p-1)(1-x)^{p-2}.$$

Luego $\Psi'(x) \geq 0$ para $x \in (0, 1)$. Como $\Psi(1) = 0$, por el teorema del valor medio $\Psi(x) \leq 0$ para $x \in (0, 1)$. Por tanto $\Phi'(x) \geq 0$ para $x \in (0, 1)$ y como $\Phi(1) = 0$, $\Phi(x)$ es no positiva para $x \in (0, 1)$. Esto implica finalmente que $F(x) \leq 0$ para todo $x \in (0, 1)$.

Lema 2.4. Sean $z, w \in \mathbb{C}$ dos números complejos, donde si z = a + bi, denotamos su módulo complejo como $|z| = \sqrt{a^2 + b^2}$. Dado $p \ge 2$ se verifica la desigualdad

$$\left| \frac{1}{2}(z+w) \right|^p + \left| \frac{1}{2}(z-w) \right|^p \le \frac{1}{2}|z|^p + \frac{1}{2}|w|^p.$$

Demostración. Para el caso w=0 es inmediato que se verifica la desigualdad ya que se tendría

$$\left|\frac{z}{2}\right|^p + \left|\frac{z}{2}\right|^p = 2\left|\frac{z}{2}\right|^p = \frac{2}{2^p}|z|^p = \frac{1}{2^{p-1}}|z|^p \le \frac{1}{2}|z|^p.$$

Por tanto, y gracias a la simetría de los dos sumandos del lado derecho, podemos asumir sin pérdida de generalidad $|z| \ge |w| > 0$. Es decir, la desigualdad que queremos probar equivale, al dividir a ambos lados entre $|z|^p$, a

$$\left| \frac{1}{2} (1 + \frac{w}{z}) \right|^p + \left| \frac{1}{2} (1 - \frac{w}{z}) \right|^p \le \frac{1}{2} \left(1 + \left| \frac{w}{z} \right|^p \right).$$

Por tanto, tomando exponenciales, para $0 < r \le 1$ y $0 \le \theta \le 2\pi$ tenemos

$$\left|\frac{1+r\exp(i\theta)}{2}\right|^p + \left|\frac{1-r\exp(i\theta)}{2}\right|^p \le \frac{1}{2}\left(1+\frac{1+r\exp(i\theta)}{2}^p\right).$$

Para $\theta = 0$ la desigualdad se reduce a la probada en el Lema 2.3. Veamos por tanto que dado un r fijo, se tiene un máximo en $\theta = 0$. Por la simetría del lado derecho de nuevo, podemos asumir que $0 \le \theta \le \frac{\pi}{2}$. Queremos por tanto probar que la función g definida por

$$g(\theta) = |1 + re^{i\theta}|^p + |1 - re^{i\theta}|^p$$

tiene un máximo en el intervalo $[0, \frac{\pi}{2}]$ en el punto $\theta = 0$. Desarrollando la fórmula de Euler, $e^{i\theta} = \cos(\theta) + i \sin(\theta)$, y los módulos complejos tenemos

$$g(\theta) = \left| \sqrt{(1 + r\cos(\theta))^2 + (r\sin(\theta))^2} \right|^p + \left| \sqrt{(1 - r\cos(\theta))^2 + (-r\sin(\theta))^2} \right|^p$$
$$= (1 + r^2 + 2r\cos(\theta))^{\frac{p}{2}} + (1 + r^2 - 2r\cos(\theta))^{\frac{p}{2}}$$

Tomamos ahora la derivada g' de g respecto a θ y observamos

$$g'(\theta) = \frac{p}{2} (1 + r^2 + 2r\cos(\theta))^{\frac{p}{2} - 1} (-2r\sin(\theta)) + \frac{p}{2} (1 + r^2 - 2r\cos(\theta))^{\frac{p}{2} - 1} (2r\sin(\theta))$$
$$= -pr\sin(\theta) \left((1 + r^2 + 2r\cos(\theta))^{\frac{p}{2} - 1} - (1 + r^2 - 2r\cos(\theta))^{\frac{p}{2} - 1} \right).$$

Como $p \geq 2$ entonces $g'(\theta) \leq 0$. Es decir, la derivada de g no es creciente en todo $\theta \in \left[0, \frac{\pi}{2}\right]$ y por tanto tiene un máximo en $\theta = 0$.

Demostración del Teorema 2.1. Podemos asumir que f y g toman valores complejos y que están definidas en casi todo punto. Por tanto, para todo $x \in X$, tal que f(x) y g(x) estén definidas, por el Lemma 2.4 tenemos

$$|z+w|^p + |z-w|^p \le 2^{p-1} (|z|^p + |w|^p).$$

Basta con integrar a ambos lados respecto a X para la designaldad (1).

Lema 2.5. Sean $x \in [0,1]$, $1 <math>y = \frac{p}{p-1}$. Se verifica la designal dad

$$(1+x)^{q} + (1-x)^{q} \le 2(1+x^{p})^{\frac{1}{p-1}}.$$
(3)

Demostración. Si p=2, entonces q=2 y basta desarrollar los cuadrados para comprobar que la desigualdad es cierta. Podemos limitarnos por tanto al caso 1 . Para <math>x=0 y para x=1, (3) se convierte en una igualdad. Podemos, por tanto, considerar solo $x \in (0,1)$. Definiendo la función $F(u) = \frac{1-u}{1+u}$, tenemos que cuando u va de 0 a 1, F(u) decrece estrictamente de 1 a 0. Por tanto, (3) equivale a

$$\left(1 + \frac{1-u}{1+u}\right)^q + \left(1 - \frac{1-u}{1+u}\right)^q \le 2\left(1 + \left(\frac{1-u}{1+u}\right)^p\right)^{\frac{1}{p-1}}$$

para 0 < u < 1. Multiplicando ambos lados por $(1 + u)^q$, obtenemos

$$2^{q}(1+u^{q}) \le 2\left((1+u)^{p} + (1-u)^{p}\right)^{\frac{1}{p-1}}$$

Elevando ahora ambos lados a (p-1), obtenemos

$$(1+u^q)^{p-1} \le \frac{1}{2} ((1+u)^p + (1-u)^p),$$

para 0 < u < 1. Como estos pasos son fácilmente reversibles, es suficiente probar esta última desigualdad. Expandiendo en series de potencias, tenemos

$$\begin{split} &\frac{1}{2} \left((1+u)^p + (1-u)^p \right) - (1+u^q)^{p-1} \\ &= \frac{1}{2} \left(\sum_{k=0}^{\infty} \binom{p}{k} u^k + \sum_{k=0}^{\infty} \binom{p}{k} (-1)^k u^k \right) \sum_{k=0}^{\infty} \binom{p-1}{k} u^{qk} \\ &= \sum_{k=0}^{\infty} \left(\binom{p}{2k} u^{2k} - \binom{p-1}{k} u^{qk} \right) \\ &= \sum_{k=0}^{\infty} \left(\binom{p}{2k} u^{2k} - \binom{p-1}{2k-1} u^{q(2k-1)} - \binom{p-1}{2k} u^{q2k} \right). \end{split}$$

Se puede probar que esta última serie converge absoluta y uniformemente para $u \in [0, 1]$. La prueba de ello, sin embargo, conlleva lo que en [4] denomina análisis duro. Las cuentas no conllevan demasiada complejidad, pero debido a su extensión, vamos a omitirlas en este trabajo. La prueba detallada se puede consultar en [4][Teorema 7.25].

Demostraremos que cada término $[\cdots]$ en esta serie es no negativo. Claramente, esto

probará (3). El k-ésimo término es

$$\begin{split} &\frac{p\left(p-1\right)\left(p-2\right)\cdots\left(p-\left(2\,k-1\right)\right)}{\left(2\,k\right)!}\,u^{2\,k} \\ &-\frac{\left(p-1\right)\left(p-2\right)\cdots\left(p-\left(2\,k-1\right)\right)}{\left(2\,k-1\right)!}\,u^{q\left(2\,k-1\right)} \\ &-\frac{\left(p-1\right)\left(p-2\right)\cdots\left(p-2\,k\right)}{\left(2\,k\right)!}\,u^{q^{\,2}\,k} \\ &=\frac{p\left(p-1\right)\left(2-p\right)\cdots\left(2\,k-1-p\right)}{\left(2\,k\right)!}\,u^{2\,k} \\ &-\frac{\left(p-1\right)\left(2-p\right)\left(3-p\right)\cdots\left(2\,k-1-p\right)}{\left(2\,k-1\right)!}\,u^{q\left(2\,k-1\right)} \\ &+\frac{\left(p-1\right)\left(2-p\right)\cdots\left(2\,k-p\right)}{\left(2\,k\right)!}\,u^{q^{\,2}\,k} \\ &=u^{2\,k}\frac{\left(2-p\right)\left(3-p\right)\cdots\left(2\,k-p\right)}{\left(2\,k-1\right)!} \\ &\times\left(\frac{p\left(p-1\right)}{\left(2\,k\right)\left(2\,k-p\right)}-\frac{\left(p-1\right)}{\left(2\,k-p\right)}u^{q\left(2\,k-1\right)-2\,k}+\frac{\left(p-1\right)}{\left(2\,k\right)}u^{q^{\,2}\,k-2\,k}\right). \end{split}$$

El primer factor aquí es obviamente positivo. Reescribimos la expresión entre corchetes como

$$\left[\frac{1}{\frac{2k-p}{p-1}} - \frac{1}{\frac{2k}{p-1}} - \frac{1}{\frac{2k-p}{p-1}} u^{\frac{2k-p}{p-1}} + \frac{1}{\frac{2k}{p-1}} u^{\frac{2k}{p-1}}\right] = \left[\frac{1 - u^{\frac{2k-p}{p-1}}}{\frac{2k-p}{p-1}} - \frac{1 - u^{\frac{2k}{p-1}}}{\frac{2k}{p-1}}\right].$$

Un argumento elemental [que el lector deberá realizar] muestra que para cualquier u > 0 la función con valores $\frac{1-u^t}{t}$, $0 < t < \infty$, es decreciente como función de t. Como $\frac{2k-p}{p-1} < \frac{2k}{p-1}$, se sigue que (5) es positivo.

Corolario 2.6. Para p > 1, el espacio L_p es uniformemente convexo.

Demostración. Sean $f, g \in L^p$ con ||f|| = ||g|| = 1. Para $p \ge 2$, haciendo uso de (1) tenemos

$$||f + g||_p^p + ||f - g||_p^p \le 2^{p-1}(1+1) = 2^p.$$

Ahora, si se tiene $||f - g|| < \varepsilon \in (0, 2]$, dividiendo entre 2^p a ambos lados y despejando adecuadamente se sigue

$$\left\| \frac{f+g}{2} \right\|_p \le \left(1 - \left\| \frac{f-g}{2} \right\|_p^p \right)^{\frac{1}{p}} \le \left(1 - \left(\frac{\varepsilon}{2} \right)^p \right)^{\frac{1}{p}} =: \delta,$$

donde $\delta \in (0,1)$ y se verifica la convexidad uniforme para $p \geq 2$. Para 1 usamos la desigualdad (2) para obtener

$$||f + g||_p^q + ||f - g||_p^q \le 2(1+1)^{\frac{q}{p}} = 2^{\frac{q}{p}+1} = 2^q.$$

Análogamente al procedimiento anterior, ahora con $\delta := \left(1 - \left(\frac{\varepsilon}{2}\right)^q\right)^{\frac{1}{q}}$ vemos que se verifica la convexidad uniforme también para 1 .

3. Desigualdades de Hanner

En 1955, el matemático sueco Olof Hanner simplificó la prueba de la convexidad uniforme dada por Clarkson años antes [3]. Para ello, introdujo dos nuevas desigualdades que también generalizan la regla del paralelogramo.

Teorema 3.1 (Desigualdades de Hanner). Sean f y g dos funciones en L^p . Para $p \ge 2$, se verifica

$$||f + g||_p^p + ||f - g||_p^p \le (||f||_p + ||g||_p)^p + ||f||_p - ||g||_p|^p.$$
(4)

Para 1 , la designaldad se invierte.

Antes de nada, notar que para p=2, el lado de la derecha de (4) es

$$(\|f\|_{2} + \|g\|_{2})^{2} + \|f\|_{2} - \|g\|_{2}|^{2} = \|f\|_{2}^{2} + \|g\|_{2}^{2} + 2\|f\|_{2}\|g\|_{2} + \|f\|_{2}^{2} + \|g\|_{2}^{2} - 2\|f\|_{2}\|g\|_{2}$$
$$= 2\left(\|f\|_{2}^{2} + \|g\|_{2}^{2}\right),$$

luego efectivamente se convierte en la ley del paralelogramo, la cual se verifica para p=2.

Referencias

- [1] BABB, R. L. A. Exploring convexity in normed spaces. American Mathematical Monthly (2014).
- [2] Clarkson, J. A. Uniformly convex spaces. Transactions of the American Mathematical Society (1936).
- [3] HANNER, O. On the uniform convexity of l^p and ℓ^p . Arkiv for Matematik (1955).
- [4] HEWITT, E., AND STROMBERG, K. Real and Abstract Analysis. Springer-Verlag, 1965.