Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

1. (Currently amended): A compound of the formulae:

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_4
 R_5
 R_4
 R_5

wherein:

 R_1 is selected from H, halogen, $-CF_3$, -OH, $-C_4$ - $-C_6$ alkyl, C_4 - $-C_6$ alkoxy, $-NO_2$, $-NH_2$, $-HN(C_4$ - $-C_6$), $-N(C_4$ - $-C_6$)₂, phonyl, -O-phonyl, benzyl, -O-benzyl, the phonyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_4 - $-C_6$ alkoxy, $-NH_2$, $-NO_2$, -CN, $-CF_3$, or -OH; or a moiety of the formulae:

$$R_7$$
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7
 R_7

 R_6 is selected from H, C_4 - C_6 alkyl, C_4 - C_6 alkoxy, phonyl, -O-phonyl, benzyl, -O-benzyl, the phonyl and benzyl rings of these groups being optionally substituted by from 1-to 3 substituents selected from halogen, C_4 - C_6 alkyl, C_4 - C_6 alkoxy, -NH₂, -NO₂, CN, -CF₃, or OH;

R₇ is selected from -(CH₂)_n-COOH, -(CH₂)_n-N-(C₁-C₆ alkyl)₂, -(CH₂)_n-NH-(C₁-C₆ alkyl), -CF₃, C₁-C₆ alkyl, C₃-C₅ cycloalkyl, C₄-C₆ alkoxy, -NH-(C₄-C₆ alkyl), -N-(C₁-C₆

alkyl)₂, pyridinyl, thionyl, furyl, pyrrolyl, quinolyl, (CH₂)_nphonyl, and phonyl, -O-phonyl, benzyl, -O-benzyl, adamantyl, or morpholinyl, -(CH₂)_n-phonyl-O-phonyl, -(CH₂)_n-phonyl, -Phonyl, -(CH₂)_n-phonyl, -(CH₂)_n-phonyl

 $(CH_2)_n$ -O-phenyl-CH₂-phenyl, $-(CH_2)_n$ -phenyl- $(O-CH_2$ -phenyl)₂, the rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, $-NH_2$, $-NO_2$, $-CF_3$, CO_2H , or -OH;

n is an integer from 0 to 3;

 R_2 is selected from H, halogen, -CF₃, -OH, -C₁-C₁₀ alkyl, preferably -C₄-C₆ alkyl, C₁-C₁₀ alkoxy, preferably C₄-C₆ alkoxy, -CHO, -CN, -NO₂, -NH₂, -NH-C₁-C₆ alkyl, -N(C₁-C₆ alkyl)₂, -N-SO₂-C₁-C₆ alkyl, or -SO₂-C₁-C₆ alkyl;

 R_3 is selected from H, -CF₃, -COOH, C_1 -C₆ lower alkyl, C_1 -C₆ lower alkoxy, C_3 -C₁₀ cycloalkyl, -C₁-C₆ alkyl-C₃-C₁₀ cycloalkyl, -CHO, halogen, or a moiety of the formulae:

$$(CH_2)_n$$
 $(CH_2)_n$ $(CH_2)_n$

wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1, Y is C_1 - C_6 alkyl, C_3 - C_5 cycloalkyl, phenyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thienyl, morpholinyl, pyrrolidinyl, or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C_1 - C_6 alkoxy, -NH₂, -NO₂ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, preferably S or O;

 R_4 is selected from the group of C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, -(CH_2)_n- C_3 - C_6 cycloalkyl, -(CH_2)_n- C_3 - C_5 cycloalkyl, -(CH_2)_n- C_3 - C_5 cycloalkyl, or the groups of:

Docket No: GI 005324 C1

Patent

a) $-(CH_2)_n$ -phenyl-O-phenyl, $-(CH_2)_n$ -phenyl- $-(CH_2)_n$ -O-phenyl- $-(CH_2)_n$ -phenyl, $-(CH_2)_n$ -phenyl- $-(CH_2)_n$ -phe

$$(CH_2)_n$$
 $(CH_2)_n$ $(CH_2)_n$

wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1,-Y is C_3 - C_5 cycloalkyl, phenyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thienyl or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, -NO₂ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O₇ preferably S or O; or

b) a moiety of the formulae - $(CH_2)_n$ -A, - $(CH_2)_n$ -S-A, or - $(CH_2)_n$ -O-A, wherein A is the moiety:

wherein

D is H, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, or -CF₃;

B and C are independently selected from phenyl, pyridinyl, furyl, thionyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, preferably 1 to 2, substituents selected from H, halogen, $-CF_3$, -OH, $-C_4-C_6$ alkyl, C_4-C_6 alkeyy, or $-NO_2$; or

c) a moiety of the formulae:

wherein Z is O or S and the phenyl and pyrimidinyl rings of each moiety are optionally and independently substituted by from 1 to 3 substituents selected from halogen, -CF₃, -OH, -C₄-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, or -NO₂; or

d) a moiety of the formula -L2-M2, wherein:

 $-L^2 - L^2 - L^2$

 $m M^2$ is selected from the group of $\rm C_4$ - $\rm C_6$ -lower alkyl, $\rm C_4$ - $\rm C_6$ -lower alkoxy, $\rm C_3$ - $\rm C_{10}$ cycloalkyl, phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being optionally substituted by from 1 to 3 substituents selected from halogen, $\rm C_4$ - $\rm C_{10}$ -alkyl, preferably $\rm C_4$ - $\rm C_6$

alkyl, C_4 - C_{10} -alkoxy, preferably C_4 - C_6 -alkoxy, -NO₂, -NH₂, -CN, or -CF₃; or

i) a five-membered-heterocyclic ring containing one or two ring heteroatoms selected from N, S or O including, but not limited to, furan, pyrrole, thiophene, imidazole, pyrazole, pyrrolidine, or tetrazole, the five-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C_4 - C_{40} alkyl, preferably C_4 - C_6 alkyl, C_4 - C_{40} alkoxy, preferably C_4 - C_6 alkoxy, -NO₂, -NH₂, -CN, or -CF₃; or

———iii) — a bicyclic ring moiety containing from 8 to 10 ring atoms and optionally containing from 1 to 3 ring heteroatoms selected from N, S or O including, but not limited to benzofuran, indole, indoline, napthalene, purine, or quinoline, the bicyclic ring moiety being optionally substituted by from 1 to 3 substituents selected from halogen, C_4 – C_{40} alkoxy, preferably C_4 – C_6 alkoxy, —CHO, —NO₂, —NH₂, —CN, —CF₃ or —OH;

n is an integer from 0 to 3;

 R_5 is selected from -COOH, -C(O)-COOH, -(CH₂)_n-C(O)-COOH, -(CH₂)_n-COOH, -(CH₂)_n-COOH,

$$R_{10}$$
 R_{10}
 R_{10}
 R_{10}
 R_{10}

$$R_{10}$$
 R_{10}
 R_{10}
 R_{10}

$$R_{8}$$

ζ.

n is an integer from 0 to 3;

R₈ is selected from H₁ -COOH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, tetrazole, -C(O)-NH₂, -(CH₂)_n-C(O)-NH₂,

n is an integer from 0 to 3;

 R_9 is selected from H, halogen, $-CF_3$, -OH, $-(CH_2)_n$ --COOH, $-(CH_2)_n$ --C(O)--COOH, $-C_4$ - $-C_6$ alkyl, -O- $-C_4$ - $-C_6$ alkyl, $-NH(C_4$ - $-C_6$ alkyl), $-N(C_4$ - $-C_6$ alkyl)₂; n is an integer from 0 to 3;

 R_{10} is selected from the group of H, halogen, $-CF_3$, -OH, $-(CH_2)_n$ --COOH, $-C_4$ - $-C_6$ alkyl, $-OC_4$ - $-C_6$ -

n is an integer from 0 to 3;

 R_{11} is selected from H, C_1 - C_6 lower alkyl, - CF_3 , -COOH, - $(CH_2)_a$ -COOH, - $(CH_2)_a$ -COOH, or

with a provise that the complete moiety at the indole or indeline 1-position created by any combination of R_5 , R_8 , R_9 , R_{10} , and/or R_{11} -shall contain at least one acidic moiety selected from or containing a carboxylic acid, a tetrazole, or a moiety of the formulae: -C(O)-NH₂₁, $-(CH_2)_n$ --C(O)-NH₂₁,

Docket No: GI 005324 C1

Patent

n is an integer from 0 to 3;

or a pharmaceutically acceptable salt thereof.

- 2. (Canceled).
- 3. (Currently amended): A compound of Claim 2 $\underline{1}$ wherein R₃ is H and R₁, R₂, R₄, R₅, R₆, R₂, R₈, R₉, R₁₀, R₁₁, n, X, L², M², Z, A, B, C, D, and Y are as defined in Claim 2, or a pharmaceutically acceptable salt thereof.
- 4. (Currently amended) A compound of Claim 2 1 having the formula:

$$R_1$$
 R_2
 R_3
 R_4

wherein R_4 is benzyloxy, optionally substituted by from 1 to 3 substituents selected from halogen, C_4 - C_6 -alkyl, C_4 - C_6 -alkoxy, -NH₂, -NO₂, CN, -CF₃, or -OH; and R₂, R₃, R₄, R₅, R₆, R₇, R₈, R₈, R₁₀, R₁₄, n, X, L², M², Z, A, B, C, D, and Y are as defined in Claim 2, or a pharmaceutically acceptable salt thereof.

5. (Currently amended): A compound of Claim 42

wherein:

———R₁ is selected from halogen, -NH₂, -O-phenyl, benzyl, -O-benzyl, -N-benzyl, -N-benzyl, -N-benzyl, -N-benzyl, -N-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_4 - C_6 alkyl, C_4 - C_6 alkoxy, -NO₂, -NH₂, -CN, -CF₃, or -OH; or R₁ is or a moiety of the formulae:

 R_6 is selected from H, C_4 - C_6 alkyl, C_4 - C_6 alkoxy, phonyl, -O-phonyl, benzyl, -O-benzyl, the phonyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_4 - C_6 alkyl, C_4 - C_6 alkoxy, -NO₂, -CF₃, or -OH;

 $R_{7} \text{ is selected from -(CH_{2})_{n}-COOH, -(CH_{2})_{n}-N-(C_{4}-C_{6} \text{ alkyl})_{2}, -(CH_{2})_{n}-NH-(C_{4}-C_{6} \text{ alkyl})_{7}}-CF_{3}, C_{4}-C_{6} \text{ alkyl}, C_{3}-C_{5} \text{ cycloalkyl, } C_{4}-C_{6} \text{ alkoxy, -NH-(} C_{4}-C_{6} \text{ alkyl})_{7}, -N-(C_{4}-C_{6} \text{ alkyl})_{2}, -N-(C_{4}-C_{6} \text{ alkyl})_{7}, -N-(C_{4}-C_{6} \text{ alkyl})_{7$

- n is an integer from 0 to 3;

 R_3 is selected from-H,--CF₃, -COOH, C_4 -C₆ lower alkyl, C_4 -C₆ lower alkoxy, C_3 -C₄₀ cycloalkyl, -C₄-C₅ alkyl-C₃-C₁₀ cycloalkyl, -CHO, halogen, or a moiety of the formulae:

$$(CH_2)_n$$
 $(CH_2)_n$ $(CH_2)_n$

wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1, Y is C_4 - C_6 -alkyl, C_3 - C_5 -cycloalkyl, phonyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thionyl, morpholinyl, pyrrolidinyl, or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, -C₄- C_6 alkoxy, -NH₂, -NO₂ or a five membered heterocyclic ring containing one heteroatem selected from N, S, or O, preferably S or O;

 R_4 -is-selected from the group of C_4 - C_6 -lower alkyl, C_4 - C_6 -lower alkoxy, -(CH₂)_n- C_3 - C_6 -cycloalkyl, -(CH₂)_n- C_3 - C_5 -cycloalkyl, -(CH₂)_n- C_3 - C_5 -cycloalkyl, or the groups of:

a) ——(CH₂)_a-phenyl-O-phenyl, -(CH₂)_a-phenyl-CH₂-phenyl, -(CH₂)_a-O-phenyl-CH₂-phenyl, -(CH₂)_a-phenyl-(O-CH₂-phenyl)₂, -CH₂-phenyl-C(O)-benzothiazole or a moiety of the formulae:

$$(CH_2)_n$$
 $(CH_2)_n$ $(CH_2)_n$

wherein n is independently selected in each appearance as an integer from 0 to 3, preferably 0 to 2, more preferably 0 to 1, Y is C_3 - C_5 -cycloalkyl, phenyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thienyl or pyrrolyl; rings of these groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, -C₄-C₆ alkyl, C₄-C₆ alkoxy, -NH₂, -NO₂ or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O, preferably S or O; or

b) a moiety of the formulae -(CH₂)_n-A, -(CH₂)_n-S-A, or -(CH₂)_n-O-A, wherein A is the moiety:

wherein

— D is H, C₄-C₆ lower alkyl, C₄-C₆ lower alkoxy, or -CF₃;

B and C are independently selected from phonyl, pyridinyl, furyl, thionyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, preferably 1 to 2, substituents selected from H, halogen, -CF₃, -OH, -C₄-C₆ alkyl, C₄-C₆ alkoxy, or -NO₂; or

____c) ___a moiety of the formulae:

wherein Z is O or S and the phenyl and pyrimidinyl rings of each moiety are optionally and independently substituted by from 1 to 3 substituents selected from halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH₂, or -NO₂; or

d) a moiety of the formula -L ² -M ² , wherein:
L ² indicates a linking or heidaing group of the formulae (CUI) C
L ² indicates a linking or bridging group of the formulae -(CH ₂) _n -, -S-, -O-,
-SO ₂ -,C(O)-,(CH ₂) ₀ C(O)-,(CH ₂) ₀ C(O)-(CH ₂) ₀ -,(CH ₂) ₀ -O-(CH ₂) ₀ -,(CH ₂) ₀ -,(CH ₂) ₀ -,(CH ₂) ₀ -,
C(O)C(O)X;
where X = O,N
— M ² is selected from the group of C₁-C ₆ lower alkyl, C₁-C ₆ lower alkoxy, C₃-C₁₀
cycloalkyl, phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being optionally
substituted by from 1 to 3 substituents selected from halogen, C_4 - C_{40} alkyl, preferably C_4 - C_6
alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₅ alkoxy, -NO₂, -NH₂, -CN, or -CF₃; or
i) a five-membered heterocyclic ring containing one or two ring heteroatoms
selected from N, S or O including, but not limited to, furan, pyrrole, thiophene, imidazole,
pyrazole, pyrrolidine, or tetrazole, the five-membered heterocyclic ring being optionally
substituted by from 1 to 3 substituents selected from halogen, C_4 - C_{40} alkyl, preferably C_4 - C_6
alkyl, C ₄ -C ₄₀ alkoxy, preferably C ₄ -C ₆ alkoxy, -NO ₂ , -NH ₂ , -CN, or -CF ₃ ; or
ii)a six-membered heterocyclic-ring containing one, two or three ring
heteroatoms selected from N, S or O including, but not limited to pyridine, pyrimidine,
piperidine, piperazine, or morpholine, the six-membered heterocyclic ring being optionally
substituted by from 1 to 3 substituents selected from halogen, C ₄ -C ₄₀ -alkyl, preferably C ₄ -C ₆
alkyl, C₁-C₁₀ alkoxy, preferably C₁-C₅ alkoxy, -CHO, -NO₂, -NH₂, -CN, -CF₃ or -OH; or
iii) a bicyclic ring moiety containing from 8 to 10 ring atoms and optionally
containing from 1 to 3 ring heteroatoms selected from N, S or O including, but not limited to
benzofuran, indole, indoline, napthalene, purine, or quinoline, the bicyclic ring moiety being
optionally substituted by from 1 to 3 substituents selected from halogen, C ₁ -C ₁₀ alkyl,
preferably C ₄ -C ₆ alkyl, C ₄ -C ₄₀ alkoxy, preferably C ₄ -C ₆ alkoxy, -CHO, -NO ₂ , -NH ₂ , -CN, -CF ₃
o r -OH;
R _s is selected from COOH, C(O) COOH, (CH ₂), C(O) COOH, (CH ₂), COOH,
CH₂-phenyl-C(O)-benzothiazole,
(CH ₂) _n -CH=CH-COOH,

$$R_{10}$$
 R_{10}
 R_{10}

n is an integer from 0-to-3;

 R_8 is selected from H, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, tetrazole, -C(O)-NH₂, -(CH₂)_n-C(O)-NH₂,

n is an integer from 0 to 3;

 R_{10} is selected from the group of H, halogen, $-CF_3$, -OH, $-(CH_2)_n$ -COOH, $-(CH_2)_n$ -CO-COOH, $-C_4$ - C_6 alkyl, -O- C_4 - C_6 alkyl, $-NH(C_4$ - C_6 alkyl), $-N(C_4$ - C_6 - $C_$

n is an integer from 0 to 3;

 R_{44} is selected from H, C_4 - C_6 -lower alkyl, -CF₃, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-COOH, or

with a provise that the complete moiety at the indole or indeline 1-position created by any combination of R_5 , R_8 , R_9 , R_{10} , and/or R_{14} -shall contain at least one acidic moiety selected from or containing a carboxylic acid, a tetrazole, or a moiety of the formulae: $-C(O)-NH_2$, $-C(O)-NH_{21}$

n is an integer from 0 to 3;

or a pharmaceutically acceptable salt thereof.

- 6-9. (Canceled).
- 10. (Original) A compound of Claim 1 which is 4-({3-chloro-5-[(cyclopentylcarbonyl)amino]-2-[(phenethylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
- 11. (Original) A compound of Claim 1 which is 4-[(3-chloro-5-[(cyclopentylcarbonyl)amino]-2-{[(2-furylmethyl)sulfanyl]methyl}-1H-indol-1-yl)methyl]benzoic acid or a pharmaceutically acceptable salt thereof.

12. (Original) A compound of Claim 1 which is 4-[(3-chloro-5-[(cyclopentylcarbonyl)amino]-2-{[(4-hydroxy-6-phenyl-2-pyrimidinyl)sulfanyl]methyl}-1H-indol-1-yl)methyl]benzoic acid or a pharmaceutically acceptable salt thereof.

- 13. (Original) A compound of Claim 1 which is 4-{[3-chloro-5-[(cyclopentylcarbonyl)amino]-2-({[4-(2-thienyl)-2-pyrimidinyl]sulfanyl}methyl)-1H-indol-1-yl]methyl}benzoic acid or a pharmaceutically acceptable salt thereof.
- 14. (Original) A compound of Claim 1 which is 4-({3-chloro-5-[(cyclopentylcarbonyl)amino]-2-[(2,4-dibromophenoxy)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
- 15. (Original) A compound of Claim 1 which is 4-({3-chloro-5-[(cyclopentylcarbonyl)amino]-2-[(cyclopentylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
- 16. (Original) A compound of Claim 1 which is 4-({3-chloro-5-[(cyclopentylcarbonyl)amino]-2-[(propylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
- 17. (Original) A compound of Claim 1 which is 4-({2-{[4-(tert-butyl)phenoxy]methyl}-3-chloro-5-[(cyclopentylcarbonyl)amino]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
- 18. (Original) A compound of Claim 1 which is 4-({3-chloro-5-[(cyclopentylcarbonyl)amino]-2-[(2-quinolinylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
- 19. (Original) A compound of Claim 1 which is 4-[(3-chloro-5-[(cyclopentylcarbonyl)amino]-2-{[(cyclopropylmethyl)sulfanyl]methyl}-1H-indol-1-yl)methyl]benzoic acid or a pharmaceutically acceptable salt thereof.
- 20. (Canceled).
- 21. (Original) A compound of Claim 1 which is 4-({5-[(3-carboxypropanoyl)amino]-3-chloro-2-[(phenethylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

22. (Original) A compound of Claim 1 which is 4-[(5-[(3-carboxypropanoyl)amino]-3-chloro-2-{[(3-methylbenzyl)sulfanyl]methyl}-1H-indol-1-yl)methyl]benzoic acid or a pharmaceutically acceptable salt thereof.

23. (Original) A compound of Claim 1 which is 4-({2-({[4-(tert-butyl)benzyl]sulfanyl}methyl)-5-[(3-carboxypropanoyl)amino]-3-chloro-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

24-27. (Canceled).

28. (Original) A compound of Claim 1 which is 4-({5-{[(benzylamino)carbonyl]amino}-3-chloro-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

29-34. (Canceled).

35. (Original) A compound of Claim 1 which is 4-({3-chloro-5-[(cyclopentylcarbonyl)amino]-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

36-37. (Canceled).

- 38. (Original) A compound of Claim 1 which is 4-({5-{[(benzyloxy)carbonyl]amino}-3-chloro-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
- 39. (Original) A compound of Claim 1 which is 4-({3-chloro-5-{[(cyclopentyloxy)carbonyl] amino}-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

40-43. (Canceled).

44. (Original) A compound of Claim 1 which is 4-({5-(benzylamino)-3-chloro-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

45. (Original) A compound of Claim 1 which is 4-({3-chloro-2-[(2-naphthylsulfanyl)methyl]-5-[(3-phenoxybenzyl)amino]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

- 46. (Original) A compound of Claim 1 which is 4-({3-chloro-5-[(cyclopentylcarbonyl) (methyl)amino]-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.
- 47. (Original) A compound of Claim 1 which is 4-({5-[acetyl(benzyl)amino]-3-chloro-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

48-51. (Canceled).

52. (Original) A compound of Claim 1 which is 4-({3-chloro-2-[(2-naphthylsulfanyl)methyl]-5-[(3-phenylpropanoyl)amino]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

53-66. (Canceled).

67. (Original) A compound of Claim 1 which is 4-({3-benzoyl-5-(benzyloxy)-2-[(2-naphthylsulfanyl)methyl]-1H-indol-1-yl}methyl)benzoic acid or a pharmaceutically acceptable salt thereof.

68-94. (Canceled).

- 95. (Currently amended): A method of inhibiting the phospholipase activity of an enzyme in a mammalian subject in need thereof comprising administering to said subject a therapeutically effective amount of a pharmaceutical composition compound of claim 1.
- 96. (Currently amended): A method of treating an inflammatory response in a mammalian subject in need thereof comprising administering to said subject a therapeutically effective amount of a pharmaceutical composition compound of Claim 1.
- 97. (Original): A pharmaceutical composition comprising a pharmaceutically effective amount of a compound of Claim 1, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.