

User Manual

PAT

PowerPC controlled Analog and Timing I/O Intelligence

The PATI is a highly integrated I/O board in PC/104 form factor. Build around the MPC555 Motorola PowerPC™ Processor and the PLX9056 PCI Bridge it brings the superb MPC555 peripherals to a standard PCI interface.

With the possibilities for firmware update over the PCI bus, parameter passing via the on-board SDRAM, allowing the PATI to access the host memory via PCI busmaster access and various configurations options it is well suited for fast prototyping application.

A stand-alone mode allows the PATI to work without the host. Application developed and tested in a host environment can be executed on the PATI in the stand-alone mode without any code modification.

The MPC555 peripherals are available on 2 standard 50 pin 2.54mm header, which offers easy connections. It features 8 differential 10bit Analog/Digital channels, 32Bit TPU channels, 2 serial Interfaces and 2 CAN interfaces.

• Features:

- Motorola MPC555 PowerPC™ Processor
- 40MHz Processor Clock
- 16MByte SDRAM on-board
- up to 8MByte on-board Flash
- 32Bit 33MHz PCI Agent Interface
- Bus Master capable

- Low power consumption
- 5V only Power Supply
- 8 differentials 10bit Analog/Digital converter channels
- 32Bit TPU channels
- 2 Serial Interface
- 2 CAN Interface

User Manual

TABLE OF CONTENTS

1 INTRODUCTION	5
1.1 ABOUT THIS MANUAL	5
1.2 SAFTY PRECAUTIONS AND HANDLING	5
1.3 ELECTROSTATIC DISCHARGE (ESD) PROTECTION	
1.4 EQUIPMENT SAFETY	
1.5 MANUAL REVISIONS	
1.5.1 RELATED PRODUCTS	
1.5.2 REVISION HISTORY	
1.6 RELATED DOCUMENTATION	7
1.7 ORDERING INFORMATION	
2 SPECIFICATIONS	8
3 PARTS LOCATION	9
3.1 Connectors	10
3.1.1 J1 Analog Input and CAN Connector	
3.1.2 J2 JTAG Connector	
3.1.3 J3 - PC104+ Interface pin numbers	
3.1.4 J4 TPU and Serial Connector	
3.1.5 J5 - Power Connector	
3.1.6 J6 - Debug Connector	
3.1.7 J7/8 - PC104 interface pin numbers	
3.2 Switch	
3.2.1 DIP switch S1 –Configuration switch	14
4 OPERATION	15
4.1 Block Schematic	15
4.1 Block Schematic4.2 Mapping Overview	15 16
4.1 Block Schematic	15 16 17
4.1 Block Schematic	15 16 17
4.1 Block Schematic	15 16 17 17
4.1 Block Schematic	15 16 17 18 18
4.1 Block Schematic	15 17 17 18 18
4.1 Block Schematic	15 17 17 18 18 18
4.1 Block Schematic	
4.1 Block Schematic. 4.2 Mapping Overview	
4.1 Block Schematic 4.2 Mapping Overview 4.3 Used Environment 4.4 Local Memory Map 4.5 PCI Memory Map 4.5.1 PCI Bridge Local Bus Memory Mapping 4.5.2 PCI Bridge PCI Memory Map 4.5.3 Direct Slave Space 0 Mapping 4.5.4 Direct Slave Space 1 Mapping 4.5.5 Direct Master Mapping 4.6.1 Writing the Hardware Configuration Word 4.6.2 Hardware Configuration Word description 4.7 EPLD Configuration Register 4.7.1 Configuration Registers Mapping 4.7.2 EPLD Registers 4.7.3 PLD Register Map 4.7.3.1 EPLD ID Register 4.7.3.2 Board Revision & Timing / SDRAM Controller Register 4.7.3.3 Hardware Word Config Register and Population Option Register 4.7.3.4 Misc Config Register	
4.1 Block Schematic 4.2 Mapping Overview 4.3 Used Environment 4.4 Local Memory Map 4.5 PCI Memory Map 4.5.1 PCI Bridge Local Bus Memory Mapping 4.5.2 PCI Bridge PCI Memory Map 4.5.3 Direct Slave Space 0 Mapping 4.5.4 Direct Slave Space 1 Mapping 4.5.5 Direct Master Mapping 4.6 Hardware Configuration Word 4.6.1 Writing the Hardware Configuration Word 4.6.2 Hardware Configuration Word description 4.7 EPLD Configuration Register 4.7.1 Configuration Registers Mapping 4.7.2 EPLD Registers 4.7.3 PLD Register Map 4.7.3.1 EPLD ID Register 4.7.3.2 Board Revision & Timing / SDRAM Controller Register 4.7.3.3 Hardware Word Config Register and Population Option Register 4.7.3.4 Misc Config Register 4.7.3.5 Reset Register	
4.1 Block Schematic 4.2 Mapping Overview 4.3 Used Environment 4.4 Local Memory Map 4.5 PCI Memory Map 4.5.1 PCI Bridge Local Bus Memory Mapping 4.5.2 PCI Bridge PCI Memory Map 4.5.3 Direct Slave Space 0 Mapping 4.5.4 Direct Slave Space 1 Mapping 4.5.5 Direct Master Mapping 4.6 Hardware Configuration Word 4.6.1 Writing the Hardware Configuration Word 4.6.2 Hardware Configuration Word description 4.7 EPLD Configuration Register 4.7.1 Configuration Registers Mapping 4.7.2 EPLD Registers Map 4.7.3 PLD Register Map 4.7.3.1 EPLD ID Register 4.7.3.2 Board Revision & Timing / SDRAM Controller Register 4.7.3.3 Hardware Word Config Register and Population Option Register 4.7.3.4 Misc Config Register	

User Manual

5 OPERATION VIA THE PCI BUS	27
5.1 Normal Set-Up	27
5.2 Set-Up without programmed EEPROM	27
5.3 Set-Up the PATI via PCI Bridge	27
5.4 Program the Flash	27
5.5 Set-Up the SDRAM	28
5.6 Start-Up the PATI	28
6 OPEN ISSUES	29
6.1 Flash access problem while programming the MPC555 PLL	29
6.2 MPC555 does not allows access to the internal Peripheries	
6.3 MPC555 asserts resets if using PATI in PCI only mode or sla	
6.4 PLX Bridge hangs if an access doesn't terminate (missing T	
7 DEBUG CABLE WIRING	30
8 GENERAL INFORMATION	31
8.1 STANDARDS COMPLIANCE	31
8.1.1 EMC	
8.1.2 Environmental	
8.1.3 Safety	
8.1.4 Type Approval	31
9 COPYRIGHT	32
10 DISCLAIMER	
	32
11 TRADEMARKS	
11 TRADEMARKS	32
	32

3

User Manual

TABLE OF FIGURES

Figure 3.1: PATI Parts Location	9
Figure 4.1: PATI Block Schematic	
Figure 4.2: PATI Mapping Overview	16
Figure 12.1: PATI Label	
9	

User Manual

1 INTRODUCTION

1.1 ABOUT THIS MANUAL

This document describes the integration of the MPC555, SDRAM, Flash and PCI Bridge on the PATI. For detailed description of the MPC555 refer to the User Manual on www.mot.com and for a detailed description of the PCI Bridge PLX9056 refer to the User Manual on www.plxtech.com.

The manual is written for technical personnel responsible for integrating the PATI into their systems.

It is strongly recommended to read this manual before the PATI is switched on.

1.2 SAFTY PRECAUTIONS AND HANDLING

For personal safety and safe operation of the PATI, follow all safety procedures described here and in other sections of the miscellaneous manual.

- Remove power from the system before installing (or removing) the PATI, to prevent the possibility of personal injury (electrical shock) and / or damage to the product.
- Handle the product carefully; i.e. dropping or mishandling the PATI can cause damage to assemblies and components.
- Do not expose the equipment to moisture.

WARNING

There are no user-serviceable components on the PATI.

1.3 ELECTROSTATIC DISCHARGE (ESD) PROTECTION

Various electrical components within the product are sensitive to static and electrostatic discharge (ESD). Even a small static discharge can be sufficient to destroy or degrade a component's operation!

With an open housing, do not touch any electronic components. Handle or touch only the unit chassis.

1.4 EQUIPMENT SAFETY

Great care is taken by MPL AG that all its products are thoroughly and rigorously tested before leaving the factory to ensure that they are fully operational and conform to specification. However, no matter how reliable a product, there is always the remote possibility that a defect may occur. The occurrence of a defect on this device may, under certain conditions, cause a defect to occur in adjoining and/or connected equipment. It is your responsibility to protect such equipment when installing this device. MPL accepts no responsibility whatsoever for such defects, however caused.

©2009 by MPL AG 5 MEH-10102-001 Rev. D

User Manual

1.5 MANUAL REVISIONS

1.5.1 RELATED PRODUCTS

Manual Revisions	Related To
Α	PATI-1 Rev. A
В	PATI-1 Rev. A
С	PATI-1 Rev. A
D	PATI-1 Rev. A

1.5.2 REVISION HISTORY

Manual Revisions	Date	Description
Α	2004-01-05	Initial release of this document.
В	2007-03-14	Reformated
С	2008-09-01	Added Analog Input Specification.
D	2009-10-01	Corrected Write Configuration Word Code.

User Manual

1.6 RELATED DOCUMENTATION

The following documents are related to this manual. For detailed Information about a specific PATI feature or setting please refer to this additional manuals.

Reference	Description	Available from		
[1]	PATI Datasheet	MPL AG: www.mpl.ch		

1.7 ORDERING INFORMATION

The table below gives you an overview of the different PATI variants and its features.

Product Name	Product Features			
[1] PATI-1	PATI-1 Board Revision A			

User Manual

2 General information and specifications

This chapter provides a general overview over the PATI and its features. It outlines the electrical and physical specifications of the product, its power requirements and a list of related publications.

2.1 Specifications

2.1.1 Electrical

Processor:	Freescale MPC555 PowerPC™ 32Bit RISC Processor Clock frequency 40 Mhz Very low power consumption
Bootloader ROM	Up to 8MB Flash EEPROM 512kB U-Boot (open source) boot loader
Memory:	16MByte SDRAM on board
PC/104 /Plus Interface:	32Bit / 33MHz Master/Slave Target only
Analog:	8 x differential Input Signal Input voltage range 0 V to +5 V Common mode range -5 V to +10 V 25kHz Samplingrate (each) 10Bit Converter Resolution
TPU:	32 Channel (TTL Level)
CAN:	2 x CAN2.0B Interface (TTL Level)

2.1.2 Physical / Power

Form factor:	PC/104-Plus compliant Module Length: 95.9 mm (3.775 inches) Width: 90.2 mm (3.550 inches)
Weight:	Typical 90g
Power supply:	Over PC/104 bus interface or through separate 3-pin Mini-Combicon power connector.
Input Power requirement:	+5VDC ± 5%
Power consumption:	Typical 2.5W

2.1.3 Environment

Storage temperature range:	-45°C to +85°C
Operating temperature range:	-20°C to +60°C (-4°F to +140°F) without heat sink extended temperature range available
Relative humidity:	5% 95% non condensing

User Manual

2.2 STANDARDS COMPLIANCE

The PATI is designed to meet or exceed the most common industry and military standards. Particular references are:

2.2.1 EMC

- EN 55022 Class B (Information technology equipment Radio disturbance characteristics Limits and methods of measurement)
- EN 55024 (Information technology equipment Immunity characteristics Limits and methods of measurement)
- EN 61000-4-1 (Electromagnetic compatibility (EMC) -- Part 4-1: Testing and measurement techniques Overview of IEC 61000-4 series)
- EN 61000-4-2 Level 3, Criterion B (Electromagnetic compatibility (EMC) -- Part 4-2: Testing and measurement techniques - Electrostatic discharge immunity test)
- EN 61000-4-3 Level 3, Criterion A (Electromagnetic compatibility (EMC) -- Part 4-3: Testing and
 measurement techniques Radiated, radio-frequency, electromagnetic field immunity
 test)
- EN 61000-4-4 Class 3 (Electromagnetic compatibility (EMC) -- Part 4-4: Testing and measurement techniques Electrical fast transient/burst immunity test)
- EN 61000-4-5 Class 3 (Electromagnetic compatibility (EMC) -- Part 4-5: Testing and measurement techniques - Surge immunity test)
- EN 61000-4-6 Class 3 (Electromagnetic compatibility (EMC) -- Part 4-6: Testing and measurement techniques - Immunity to conducted disturbances, induced by radio-frequency fields)
- EN 61000-6-1 (Electromagnetic compatibility (EMC) -- Part 6-1: Generic standards Immunity for residential, commercial and light-industrial environments)
- EN 61000-6-2 (Electromagnetic compatibility (EMC) -- Part 6-2: Generic standards Immunity for industrial environments)
- EN 61000-6-3 (Electromagnetic compatibility (EMC) -- Part 6-3: Generic standards Emission standard for residential, commercial and light-industrial environments)
- EN 61000-6-4 (Electromagnetic compatibility (EMC) -- Part 6-4: Generic standards Emission standard for industrial environments)
- MIL-STD-461E (REQUIREMENTS FOR THE CONTROL OF ELECTROMAGNETIC INTERFERENCE CHARACTERISTICS OF SUBSYSTEMS AND EQUIPMENT)

2.2.2 Environmental

- EN 50155 (Railway applications Electronic equipment used on rolling stock)
- MIL-STD-810-F (ENVIRONMENTAL ENGINEERING CONSIDERATIONS AND LABORATORY TESTS)

2.2.3 Safety

- EN 60601-1 (Medical electrical equipment -- Part 1: General requirements for safety)
- EN 60950 Class III (Information technology equipment Safety)

2.2.4 Type Approval

- EN 60945 Protected Equipment (Maritime navigation and radiocommunication equipment and systems General requirements Methods of testing and required test results)
- IACS E10 (Test Specification for Type Approval)

User Manual

3 Parts Location

Figure 3.1: PATI Parts Location

User Manual

3.1 Connectors

3.1.1 J1 Analog Input and CAN Connector

Pin Number	Signal Name	I/O Function	Signal Name	Pin Number	Pinout
1	rfu	reserved	rfu	2	
3	rfu	reserved	rfu	4	1 0 0 2
5	GND	CAN2	CAN2 High	6	
7	CAN2 Low	CANZ	GND	8	
9	rfu	rocomicad	rfu	10	
11	rfu	reserved	rfu	12	
13	GND	CANIA	CAN1 High	14	• •
15	CAN1 Low	CAN1	GND	16	
17	rfu		rfu	18	
19	rfu	reserved	rfu	20	
21	rfu		rfu	22	
23	GND		EXT_TRG2	24	
25	EXT_TRG1		GND	26	
27	CH8-		CH8+	28	• •
29	GND		CH7-	30	
31	CH7+		GND	32	
33	CH6-	Analog Input	CH6+	34	
35	GND		CH5-	36	• •
37	CH5+		GND	38	
39	CH4-		CH4+	40	
41	GND		CH3-	42	
43	CH3+		GND	44	40 - 50
45	CH2-		CH2+	46	49 🗖 50
47	GND		CH1-	48	
49	CH1+		GND	50	

Tabelle 3.1: Analog Input and CAN connector

3.1.2 J2 JTAG Connector

The JTAG connector is used for manufacturing only and is not intended to be used by the customer. It is connected to the 2 EPLDs only. The CPU is available on the Debug connector

Pin Number	Signal Name	Signal Name	Pin Number	Pinout
1	TDO	TCK	8	1 🗰 8
2	TDI	TMS	7	2 6 7
3	GND	VCC5	6	3 - 6
4	GND	PORST#	5	4 😐 5

Tabelle 3.2: JTAG connector

User Manual

3.1.3 J3 - PC104+ Interface pin numbers

Number	Row A	Row B	Row C	Row D	Pinout
1	GND	NC	+5V	AD0	
2	+5V	AD2	AD1	+5V	
3	AD5	GND	AD4	AD3	
4	C/BE0	AD7	GND	AD6	
5	GND	AD9	AD8	GND	
6	AD11	+5V	AD10	(M66EN) ¹	
7	AD14	AD13	GND	AD12	ABCD
8	$(+3.3V)^2$	C/BE1	AD15	$(+3.3V)^2$	1
9	SERR	GND	(SBO) ¹	PAR	
10	GND	PERR	(+3.3V) ²	(SDONE)1	
11	STOP	$(+3.3V)^2$	(LOCK) ¹	GND	
12	$(+3.3V)^{2}$	TRDY	GND	DEVSEL	
13	FRAME	GND	IRDY	$(+3.3V)^2$	
14	GND	AD16	$(+3.3V)^{2}$	C/BE2	****
15	AD18	$(+3.3V)^{2}$	AD17	GND	****
16	AD21	AD20	GND	AD19	
17	(+3.3V) ²	AD23	AD22	$(+3.3V)^2$	
18	IDSEL0	GND	IDSEL1	IDSEL2	
19	AD24	C/BE3	+5V	IDSEL3	
20	GND	AD26	AD25	GND	
21	AD29	+5V	AD28	AD27	
22	+5V	AD30	GND	AD31	
23	REQ0	GND	REQ1	+5V	30
24	GND	REQ2	+5V	GNT0	
25	GNT1	+5V	GNT2	GND	
26	+5V	CLK0	GND	CLK1	
27	CLK2	+5V	CLK3	GND	
28	GND	INTD	+5V	RST	
29	(+12V) ¹	INTA	INTB	INTC	
30	(-12V) <u>-</u> 1	NC	NC	GND	

Tabelle 3.3: J10 PC/104 Plus connector

Notes:

Signal not available. (SBO, SDONE and LOCK are pull-up to 5V, M66EN is connected to GND and +12V and -12V are not connected).

3.3V pins are connected to a plane, but not connected to the 3.3V Power Supply.

User Manual

3.1.4 J4 TPU and Serial Connector

Pin Number	Signal Name	I/O Function	Signal Name	Pin Number	Pinout
1	CH1		CH2	2	
3	CH3		CH4	4	1 🗆 🗆 2
5	CH5		CH6	6	
7	CH7		CH8	8	
9	CH9		CH10	10	• •
11	CH11		CH12	12	
13	CH13		CH14	14	
15	CH15		CH16	16	
17	GND		GND	18	
19	CH17	TPU	CH18	20	
21	CH19		CH20	22	
23	CH21		CH22	24	
25	CH23		CH24	26	
27	CH25		CH26	28	
29	CH27		CH28	30	
31	CH29		CH30	32	
33	CH31		CH32	34	
35	GND		GND	36	
37	TPU_T2CLKA		TPU_T2CLKB	38	
39	GND		SPI_SDO	40	
41	SPI_SDI	SPI	SPI_CLK	42	
43	SPI_CS0#		VCC5	44	40 5 50
45	GND		RXD1	46	49 🗖 50
47	TXD1	1st & 2nd RS232	RXD2	48	
49	TXD2		GND	50	

Tabelle 3.4: TPU and Serial connector

3.1.5 J5 - Power Connector

This connector is needed for stand alone operation only.

3-pin power connector Phoenix Contact AG type MC1,5/3-G-3.81. Counterpart is the Phoenix Contact AG connector type MC1,5/3-ST-3.81 (5-10A).

Pin number	Signal	Description	Pinout
1	V _{IN}	Input voltage (+5 V _{DC})	
2	GND	Ground	
3	SRESET#	System Reset Input (active low)	1 2 3

Tabelle 3.5: J9 Power connector

User Manual

3.1.6 J6 - Debug Connector

The Debug Signals of the MPC555 is available on a 10Pin 2mm Header.

Pin Number	Signal Name	Signal Name	Pin Number	Pinout
1	VFLS0	SRESET#	2	1 600 2
3	GND	DSCK	4	1 2
5	GND	VFLS1	6	
7	HRESET#	DSDI	8	0 - 10
9	VCC3	DSDO	10	9 💶 10

Tabelle 3.6: J6 Debug connector

3.1.7 J7/8 - PC104 interface pin numbers

The PC104 (ISA) connector is not used on the PATI, only the power supply (+5V and GND Pins) are connected.

Number		Row B	Row C	Row D	Pinout
0			GND	GND	
1	/IOCHCK	GND	/SBHE	/MEMCS16	
2	SD7	RSTDRV	LA23	/IOCS16	
3	SD6	+5V	LA22	IRQ10	
4	SD5	IRQ9	LA21	IRQ11	
5	SD4	(-5V)	LA20	IRQ12	
6	SD3	DRQ2	LA19	IRQ15	AB
7	SD2	(-12V)	LA18	IRQ14	1
8	SD1	/ENDXFR	LA17	/DACK0	
9	SD0	(+12V)	/MEMR	DRQ0	
10	IOCHRDY	NC	/MEMW	/DACK5	
11	AEN	/SMEMW	SD8	DRQ5	DC
12	SA19	/SMEMR	SD9	/DACK6	0
13	SA18	/IOW	SD10	DRQ6	
14	SA17	/IOR	SD11	/DACK7	
15	SA16	/DACK3	SD12	DRQ7	
16	SA15	DRQ3	SD13	+5V	
17	SA14	/DACK1	SD14	(/MASTER)	
18	SA13	DRQ1	SD15	GND	
19	SA12	/REFRESH	NC	GND	
20	SA11	SYSCLK			
21	SA10	IRQ7			
22	SA9	IRQ6			
23	SA8	IRQ5			
24	SA7	IRQ4			40
25	SA6	IRQ3			19
26	SA5	/DACK2			88
27	SA4	TC			
28	SA3	BALE			32
29	SA2	+5V]
30	SA1	OSC			
31	SA0	GND			
32	GND	GND			

Tabelle 3.7: PC/104 connector

User Manual

3.2 Switch

Default switch settings are bold.

3.2.1 DIP switch S1 -Configuration switch

Switch	On	Off	S1
S1-1	DCI Clat Calcation and halo		
S1-2	PCI Slot Selection see belo	W	1 💷
S1-3	PCI Disabled	Normal Operation	3
S1-4	Enable Boot	Disable Boot	4
S1-5	IP = 0 after reset	IP = 1 after reset	6
S1-6	Boot from internal Flash	Boot from external Flash	1
S1-7	Use internal config word	Use config word from PLD	
S1-8	not yet defined	not yet defined	

Tabelle 3.8: S1: Software Configuration Switch

S1-1& S1-2: sets the PC104+ Slots. The Slot 1 is if the PATI is mounted direct on the host. Slot 2 is if there is another card between the PATI and the host.

S1-2	S1-1	PCI Mux
Off	Off	Slot 1
Off	On	Slot 2
On	Off	Slot 3
On	On	Slot 4

- **S1-3:** PCI Disabled. If this switch is on, the PATI act in stand alone mode.
 - Do not switch on if using the PATI in PCI Agent mode! It will assert the PCI Reset Signal and your host system will become inoperable!
- S1-4: If switched on, the PATI will boot regardless if it is initiated by the PCI host. If switched on the host has to issue the Hardware configuration word to start-up the PATI.
- **S1-4..8:** These switches are not defined in the PCI Agent-mode. They are readable via the Software. In Stand-alone Mode, these switches decide over different boot modes.

User Manual

4 Operation

The following chapters describes the operation of the PATI in the PCI Agent mode. The information are based on the environment used for the first power-up and may not be valid for other environments.

4.1 Block Schematic

Figure 4.1: PATI Block Schematic

User Manual

4.2 Mapping Overview

Figure 4.2: PATI Mapping Overview

Note:

 Accessing the CPU is only possible if taking the MPC555 in slave mode and change the IMMR Address below the first 16MByte.

User Manual

4.3 Used Environment

To have full access to the PCI resources the environment used to test the PATI consist of a PCI Host (MIP405) without a operating system. Instead a special version of the bootloader "U-Boot" has been used.

The bootloader on the PATI is also a special version of the "U-Boot"

4.4 Local Memory Map

Although the PATI supports different boot modes, only the boot from external flash is used so far, and therefore discussed in this document.

The "U-Boot" requires to have the SDRAM started from address 0, but with other software other mapping is also possible.

Local Address	CS	Area	Size	Bus Size
0x0000000-0x00FFFFF	CS1	SDRAM	16MByte	32Bit
0x01C00000-0x01FFFFFF	none	MPC Internal Registers and Memory	4MByte	32Bit
0x03000000-0x03FFFFFF	CS2	PCI Master Area (Mapped to PCI)	16MByte	32Bit
0x0400000-0x04000FFF	CS3	PCI Bridge Configuration Area	4KByte	32Bit
0x04001000-0x0400101F	CS3	EPLD Config Address	32Byte	32Bit-only
0xFFC00000-0xFFFFFFF	CS0	External Flash	4MByte	16Bit-only

Tabelle 4.1: Local Memory Map

Notes:

- The EPLD Config Area and the External Flash are accessible only in their bus size. The byte enable signals on these areas are ignored.
- Access to all areas are self-timed, which means, the MPC555 memory controller has to be programmed with the SETA bit.
- Since the IP Bit is set on start-up the MPC555 fetches its first instruction from the flash at address 0xFFF00100.
- The PCI Master area is seen on the address 0x01000000 on the local bus of the PCI Bridge, not on address 0x03000000. This is because the CS2 issues 0x01XXXXXXX to the PCI Bridge

This mapping leads to the following MPC555 memory controller definition:

/* CS0 (Flash): Bank Valid, Burst Inhibit, Port Size 16Bit External TA */

#define BR0 0xFFC00807

#define BR1 0x00000007

#define BR2 0x03000007

#define OR2 0xFF000000 /* SCY is not used if external TA is set */

/* CS3 (Config registers): Bank Valid, Burst Inhibit, Port Size 32Bit, External TA */

#define BR3 0x04000007

The internal Memory mapping is mapped via the Hardware Configuration word to 0x01C00000, set the Bits ISB[0..3] to 0x7.

#define IMMR 0x01C00000 /* Physical start address of internal memory map */

The "U-Boot" bootloader fetches the first instruction from 0xFFF00100 and reprograms the IP bit to 0 during initialization, in order to set-up its exceptions in the SDRAM. So set the IP bit to 1 in the hardware configuration word.

User Manual

4.5 PCI Memory Map

4.5.1 PCI Bridge Local Bus Memory Mapping

Since the PCI Bridge don't have a chipselect logic, the local mapping of the PCI bridge is fixed:

Local Area	Range	Descriptor
SDRAM	0x06000000-0x06FFFFF	TA enable, no burst, prefetch, 32Bit port size
External Flash	0x03000000-0x03FFFFF	TA enable, no burst, no prefetch, 16Bit port size
EPLD Registers	0x07000000-0x07FFFFF	TA enable, no burst, no prefetch, 32Bit port size
CPU	0x01000000-0x01FFFFFF	TA enable, no burst, no prefetch, 32Bit port size

Tabelle 4.2: PCI Bridge Local Bus Memory Map

Notes:

- Areas smaller than 16MByte are mirrored over the entire 16MByte range.
- The CPU access is only possible if taking the MPC555 in slave mode and change the IMMR Address below the first 16MByte.

4.5.2 PCI Bridge PCI Memory Map

The PCI addresses are full configurable on the PCI side. In a PC environment the configuration space must be mapped to the IO Space, all others areas are mapped to the memory space.

The term "Direct Slave" denotes an area whereas the PCI host can access local memory. The term "Direct Master" denotes an area whereas the MPC555 can access PCI host memory.

To save PCI resources the direct slave space 0 is assigned to the PLD configuration area and its size has been restricted to 256bytes. The size of the direct slave space 1 is 1MByte and this space can be used for all other areas, by reprogram the LAS1BA (base address) and LBRD1 (Bus descriptor) registers.

PCI Area	Base Register	Size	Default local Area
Configuration Space	PCIBAR0 @ PCI Config Cycle + 0x10	512Bytes	PCI Bridge configurations Registers
Configuration Space I/O	PCIBAR1 @ PCI Config Cycle + 0x14	256Bytes	PCI Bridge configurations Registers
Direct Slave Space 0	PCIBAR2 @ PCI Config Cycle + 0x18	256Bytes	EPLD configuration Registers
Direct Slave Space 1	PCIBAR3 @PCI Config Cycle + 0x1C	1MBytes	SDRAM (@ 0x00000000)
Direct Master Space	DMPBAM @PCIBAR0 + 0x28	1MBytes	PCI Area (@ 0x03000000)

Tabelle 4.3: PCI Bridge PCI Memory Map

The EEPROM on the PATI sets all local addresses, and sizes on start-up. The host BIOS should set the PCI addresses where these areas are accessible from the PCI bus.

4.5.3 Direct Slave Space 0 Mapping

The Direct Slave Space 0 is mapped by the EEPROM to the EPLD area. This leads to following register contents:

Register	Contents	Description
LAS0RR	0xFFFFF60	Pango Pogistor (256P)
(PCIBAR0+0x00)	UXFFFFFUU	Range Register (256B)
LAS0BA	0x07000001	Local address of the EPLD and enabled
(PCIBAR0+0x04)	000001	Local address of the EPLD and enabled
LBRD0	0x42430143	Bus Descriptor: clear [24] (no burst), set [8] (no prefetch), set [6]
(PCIBAR0+0x18)	0842430143	(TA enable), set [10] to 0x3 (bussize 32bit)

Tabelle 4.4: Direct Slave Space 0 Register for EPLD access

User Manual

4.5.4 Direct Slave Space 1 Mapping

The Direct Slave Space 1 can be used to access the SDRAM, Flash and CPU. It's size is 1MByte. To access an address which lies over the size of the Direct Slave Space 1, the higher part of the address has to be added to the local base address and written to the LAS1BA register. For example, an access to the SDRAM address 0x0089ABCD takes place when the LAS1BA register is programmed to 0x06800001 and an access at "pci_address_of_direct_space1" (contents of PCIBAR3) + 0x0009ABCD is performed.

The SDRAM area is the default mapping of the Direct Slave Space 1. This leads to following register contents:

Register	Contents	Description
LAS1RR (PCIBAR0+0xF0)	0xFFF00000	Range Register (1MByte)
LAS1BA (PCIBAR0+0xF4)	0x06000001	Local address of the SDRAM and enabled
LBRD1 (PCIBAR0+0xF8)	0x00000043	Bus Descriptor: clear [8] (no burst), clear [9] (prefetch), set [6] (TA enable), set bit[10] to 0x3 (bussize 32bit)

Tabelle 4.5: Direct Slave Space 1 Register for SDRAM access

To map the Direct Slave Space to other areas the registers "Direct Slave Space 1 Local Base Address (Remap)" and "Local Address Space Local 1 Bus Descriptor" must be set accordingly. The range register should not be touched because the PCI mapping done by the BIOS relies on the size of the initial configuration. Following contents is used to access the flash:

Register	Contents	Description
LAS1BA (PCIBAR0+0xF4)	0x03000001	Local address of the Flash and enabled
LBRD1 (PCIBAR0+0xF8)	0x00000241	Bus Descriptor: clear [8] (no burst), set [9] (no prefetch), set [6] (TA enable), set [10] to 0x1 (bussize 16bit)

Tabelle 4.6: Direct Slave Space 1 Register for Flash access

Following contents is used to access the CPU:

Register	Contents	Description
LAS1BA (PCIBAR0+0xF4)	0x01000001	Local address of the CPU and enabled
LBRD1 (PCIBAR0+0xF8)	0x00000243	Bus Descriptor: clear [8] (no burst), set [9] (no prefetch), set [6] (TA enable), set [10] to 0x3 (bussize 32bit)

Tabelle 4.7: Direct Slave Space 1 Register for CPU access

Note:

 The CPU access is only possible if taking the MPC555 in slave mode and change the IMMR Address below the first 16MByte.

4.5.5 Direct Master Mapping

The CS2 signal is used to select the direct master area on the PCI Bridge. The EPLD converts the CS2 signal to the local address 0x01XXXXXX. So the PCI Bridge sees the access to the direct master area on the local address 0x01000000.

Register	Description	Access
DMRR	Local Range for Direct Master-to-PCI	PCIBAR0+0x1C
DMLBAM	Local Base Address for Direct Master-to-PCI Memory	PCIBAR0+0x20
DMPBAM	PCI Base Address (Remap) for Direct Master-to-PCI Memory	PCIBAR0+0x28

Tabelle 4.8: Register used to configure direct master access

Note:

 The base address in the register DMPBAM will be set from the PCI host, when enabling the master access.

User Manual

The default mapping of the direct master access leads to following register contents:

Register	Contents	Description
DMRR (PCIBAR0+0x1C)	0xFFF00000	Range Register (1MByte)
DMLBAM (PCIBAR0+0x20)	0x01000000	Local master address
DMPBAM (PCIBAR0+0x28)	0xXXXX0001	bit[3116] PCI Address, bit[150] 0x0001, Enabled

Tabelle 4.9: Default register contents for master access

4.6 Hardware Configuration Word

To have this flexibility on the PAT, it is necessary to control the start-up behavior of the MPC555. Therefore Parts of the Hardware configuration word for the MPC555 is writable via the PCI Bridge.

4.6.1 Writing the Hardware Configuration Word

This is done via the USERo Signal and the EEPROM channel:

- 1. Assert LRESET# => asserts Power-On Reset / System Reset
- 2. Deassert USERo USERo=0 = reset
- Deassert LRESET# => PLL of CPU Starts but since the USERo is deasserted, HRESET# is asserted.
- 4. Write the configuration via the EEPROM Channel into the PLD. Data is latched with the rising edge of the clock
- 5. Assert USERo => HRESET# is released and the Hardware Configuration Word is latched in. Following code is used for this purpose:

```
* set the EECLK High, wait some time, set EECLK low again
void clock_eeprom(void)
       unsigned long reg;
       /* clock is low, data is valid */
       reg = read32cfg (pci_cfg_mem_base + PCI9056_EEPROM_CTRL_STAT);
       udelav(1);
       /* set clock high */
       req |= (1 << 24);
       write32cfg (pci cfg mem base + PCI9056 EEPROM CTRL STAT, reg);
       /* wait some time */
       udelay(1);
       /* set clock low */
       req &= \sim (1 << 24);
       write32cfg(pci_cfg_mem_base + PCI9056_EEPROM CTRL STAT,reg);
       /* wait some time */
       udelay(1);
 * Write HW config word. Bit 11 in config is Bit 11 of Hardware config word
void write hw config(unsigned long config)
       /st we write the config via the BARO register into the configuration st/
       unsigned long reg;
       int i:
       reg=read32cfg(pci cfg mem base + PCI9056 EEPROM CTRL STAT);
       /* first assert LRESET */
       reg |= 1<<19; /* assert reset set usero as usero */
       write32cfg(pci_cfg_mem_base + PCI9056_EEPROM_CTRL_STAT,reg);
       udelay(100); /* wait some time */
       reg &= \sim ((1 << 16) + (1 << 24)); /* clear usero and clock */
       write32cfg(pci cfg mem base + PCI9056 EEPROM CTRL STAT, reg);
       udelay(100); /* wait some time */
reg |= (1<<25); /* set EECS */
       write32cfg(pci_cfg_mem_base + PCI9056_EEPROM_CTRL_STAT,reg);
       udelay(100); /* wait some time */
       /* write data bits (D11 first, D0 last) */
       for(i=11;i>=0;i--)
               /* clock is low */
               if((config & (1 << i)) == 0)
                       reg &= ~(1<<26); /* clear bit */
                       reg |= (1<<26); /* set bit */
               write32cfg(pci cfg mem base + PCI9056 EEPROM CTRL STAT, reg);
               clock eeprom();
```


User Manual

```
/* written, take it out from reset */
reg &= ~(0xF << 24); /* clear all EEPROM bits */
/* set usero */
udelay(100);
write32cfg(pci_cfg_mem_base + PCI9056_EEPROM_CTRL_STAT,reg | (1<<16));
/* clear usero */
write32cfg(pci_cfg_mem_base + PCI9056_EEPROM_CTRL_STAT,reg & ~(1<<16));
udelay(100);
/* set usero */
write32cfg(pci_cfg_mem_base + PCI9056_EEPROM_CTRL_STAT,reg | (1<<16));
udelay(100);
/* set usero */
write32cfg(pci_cfg_mem_base + PCI9056_EEPROM_CTRL_STAT,reg | (1<<16));
udelay(100);
</pre>
```

4.6.2 Hardware Configuration Word description

The first programmed date is D11, the last is D0.

Bit	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
Desc	PCIM	BDIS	PRPM	CONF	ISB0	ISB1	ISB2	ΙP	FLAG	Вс	ot Index	(

Tabelle 4.10: Hardware configuration Bits

PCIM:

PCIM	Desc
0	Normal Operation (CPU and PCI Bridge can access the local bus)
1	PCI Only Mode (Only PCI Bridge can access the local bus)

BDIS:

Ī	BDIS	Desc
I	0	Memory bank 0 is active and matches all addresses immediately after reset (default)
I	1	Memory controller is not activated after reset

PRPM:

I	PRPM	Desc
	0	RCPU starts up normal (default)
	1	RCPU starts up in Slave Mode

CONF:

CONF	Desc
0	Hardreset Config is sampled from PLD (default if SW1-7 = Off)
1	Hardreset Config is sampled from internal Flash (default if SW1-7 = On)

ISB:

ISB[20]	Base address of the internal memory space.
000	0x0000 0000
001	0x0040 0000
010	0x0080 0000
011	0x00C0 0000
100	0x0100 0000
101	0x0140 0000
110	0x0180 0000
111	0x01C0 0000 (default)

IP:

l	IP	Desc
	0	Exception vector table starts at 0x0000 0000 (default if SW1-5 = On)
	1	Exception vector table starts at 0xFFF0 0000 (default if SW1-5 = Off)

FLAG:

This Bit can be set or cleared when writing the Hardware configuration word and can be read back by the local CPU. May be used for deciding the start-up mode

Boot Index:

D2	D1	D0	
0	0	0	Boot from External Flash (default if SW1-4 = Off)
0	0	1	Boot from Internal Flash (default if SW1-4 = On)
0	1	1	Boot from PCI
1	0	1	Boot from SDRAM

User Manual

4.7 EPLD Configuration Register

4.7.1 Configuration Registers Mapping

Area	Size	CPU	PCI
PCIBridge Registers	4KByte	CS3# +0x00000000 0x00000FFF	Access via base address in PCIBAR0
PLD Registers	4KByte	CS3# +0x00001000 0x00001FFF	0x07000000 0x07001FFF

Tabelle 4.11: EPLD Configuration Register Mapping

4.7.2 EPLD Registers

The EPLD Register are located in a 32Bit wide area but not all bits are useable. Since 2 EPLDs are using the same config area, the registers are fragmented:

Bits	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
SYS	Χ	Х		Х	Х	Х										
SDRAM										Х	Х	Х	Х	Х	Х	

Bits	D16	D17	D18	D19	D20	D21	D22	D23	D24	D25	D26	D27	D28	D29	D30	D31
SYS	Х				Х								Х	Х	Χ	
SDRAM				Χ												Χ

Tabelle 4.12: EPLD Configuration Register Bits

Whereas SYS denotes the Source from the System Controller, and SDRAM the SDRAM Controller.

Notes:

- Access to the EPLD register must be done as 32bit access only, the byte enable lines are ignored in this
 area.
- To reset these register a Power-On or LRESET (from the PCI Bridge) is used. So it is possible for the local CPU to write a new Hardware config word and performs a HRESET to start-up in the new configuration.

4.7.3 PLD Register Map

Address Offset	Description
0x00	PLD ID Register
0x04	Board Revision, Timing and SDRAM Controller Register
0x08	Hardware Word Config Register and Population Option Register
0x0C	Misc Config Register
0x10	Reset Register (a write to this Register asserts the HRESET#)

Tabelle 4.13: EPLD Configuration Register Address

4.7.3.1 EPLD ID Register

The EPLD ID Register is used to identify the EPLD Part and Version. Depending on these ID's the Registers may differ. This Document describes the initial Version (V00, P00 and V00, P01) of the EPLD's.

System Controller

Bits	D0	D1	D3	D4	D5	D16	D20	D28	D29	D30	
Read			Part ID		Version						
Default			0			0					

SDRAM Controller:

Bits	D9	D10	D11	D12	D13	D14	D19	D31		
Read		Part	: ID		Version					
Default		1			0					

Tabelle 4.14: EPLD Part ID Register

User Manual

4.7.3.2 Board Revision & Timing / SDRAM Controller Register

System Controller

Bits	D0	D1	D3	D4	D5	D16	D20	D28	D29	D30
Read		Board R	evision		Res	Res	Res	Wait0	Wait1	\\/oit2
Write	0				0	0	0	vvallu	vvaiti	Wait2
Default		0			Χ	Χ	Х	1	1	1

SDRAM Controller:

Bits	D9	D10	D11	D12	D13	D14	D19	D31
Read	CAL	DCD.	WREQ	DD	DC.	LMR	IIP	0
Write	CAL	RCD	WKEQ	PR	RC	LIVIK	IIP	Res
Default	0	0	0	0	0	0	0	0

Tabelle 4.15: Board Revision & Timing Register

Board Revision:

Binary value of the PCB Revision (D0 is MSB) currently 0000.

Waitx:

Waitstates for Flash access: Access = waitx + 3 clocks. Default 7

CAL:

CAL	Desc
0	CAS Latency 2
1	CAS Latency 3

RCD:

RCD	Desc
0	ACTIVE to READ or WRITE Delay (RAS to CAS Delay) <= 25ns
1	ACTIVE to READ or WRITE Delay (RAS to CAS Delay) <= 50ns

WREQ:

WREQ	Desc
0	Write Recovery tWR <= 25ns
1	Write Recovery tWR <= 50ns

PR:

PR	Desc
0	Precharge Command Time tPR <= 25ns
1	Precharge Command Time tPR <= 50ns

RC:

RC	Desc
0	Auto Refresh to Active Time <= 75ns
1	Auto Refresh to Active Time <= 100ns

LMR:

Set this bit to write the Mode Register of the SDRAM. If set, the next access to the SDRAM is the Load Mode Register Command.

IIP:

Set this bit to initialize the SDRAM. Setting this bit issues a PRECHARGE_ALL command to the SDRAM, if read back as 0, the PRECHARGE_ALL command has been issued.

To set-up the SDRAM follow these steps:

• If set-up via the PCI Bridge, set the direct slave space 1 to the SDRAM start.

- Set the bits CAL, RCD, WREQ, PR and RC in the Register.
- Set the bit IIP to issue a PRECHARGE ALL command.
- After the IIP is read back 0 wait at least for 9 refresh cycles (ca. 200usec)
- calculate the contents of the mode register, set the LMR bit and read from the address MODE REGISTER + SDRAM START.

CAS Latency	MODE_REGISTER	Description
CAL = 2	0x00000088	Sequential burst 4 data, CAL 2 => 0x00000022 << 2
CAL = 3	0x000000C8	Sequential burst 4 data, CAL 3 => 0x00000032 << 2

User Manual

4.7.3.3 Hardware Word Config Register and Population Option Register

The Hardware Word Config Register and Population Option Register is used to set the Hardware Reset word. Since this doesn't make sense if the CPU is up and running, this Register should only be read by the CPU. Some of these bits are settable via the EEPROM channel, please refer to 4.6 Hardware Configuration Word.

System Controller

Bits	D0	D1	D3	D4	D5	D16	D20	D28	D29	D30	
Read Write	FLAG	IP	Boot Config Index			PRPM	CONF	ISB			
Default	0	0	0	0	0	0	0	0	0	0	

SDRAM Controller:

Bits	D9	D10	D11	D12	D13	D14	D19	D31
Read	CFG0	CFG1	CFG2	CFG3	CFG4	CFG5	CFG6	Res
Default	0	0	0	0	0	0	0	0

Tabelle 4.16: Hardware Word Config Register and Population Option Register

FLAG:

This Bit can be set or cleared when writing the Hardware configuration word and can be read back by the local CPU. May be used for deciding the start-up mode

IP:

IP	Desc
0	After reset Exception vector table starts at the physical address 0x0000 0000 (default)
1	After reset Exception vector table starts at the physical address 0xFFF0 0000

Boot Index:

D3	D4	D5	
0	0	0	Boot from External Flash (default)
0	0	1	Boot from Internal Flash
0	1	1	Boot from PCI
1	0	1	Boot from SDRAM

PRPM:

I	PRPM	Desc
(0	RCPU starts up normal (default)
ŀ	1	RCPU starts up in Slave Mode

CONF:

CONF	Desc
0	Hardreset Config is sampled from PLD (default)
1	Hardreset Config is sampled from internal Flash

ISB:

ISB	Base address of the internal memory space.
000	0x0000 0000 (default)
001	0x0040 0000
010	0x0080 0000
011	0x00C0 0000
100	0x0100 0000
101	0x0140 0000
110	0x0180 0000
111	0x01C0 0000

CFGx:

Used for various Configurations (SDRAM Type) TBD.

User Manual

4.7.3.4 Misc Config Register

The Misc Config Register is used to set the Hardware Reset word. Since this doesn't make sense if the CPU is up and running, this Register should only be read by the CPU. Some of these bits are settable via the EEPROM channel, please refer to 4.6 Hardware Configuration Word.

System Controller:

Bits	D0	D1	D3	D4	D5	D16	D20	D28	D29	D30
Read	BDIS	PCIM		Config	Inputs		BEN	CPU	EXT	EXT
Write	סוטם	POIM						VPP	VPP	WP
Default	0	0	Х	Χ	Χ	Х	Χ	0	0	0

SDRAM Controller:

Bits	D9	D10	D11	D12	D13	D14	D19	D31
	MUX0	MUX1	Res	Res	Res	Res	Res	Res
Default	Х	Χ	0	0	0	0	0	0

Tabelle 4.17: Misc Config Register

BDIS:

BDIS	Desc
0	Memory bank 0 is active and matches all addresses immediately after reset (default)
1	Memory controller is not activated after reset

PCIM:

PCIM	Desc
0	Normal Operation (default)
1	PCI is the only Master on the Local Bus. Bus Request from CPU is ignored.

Config Inputs:

These Bits are set if the corresponding DIP switch is on. CFG0 is D3 and CFG4 is D20.

Normal Mode:

S4S8	Description
Off	CFGx = 0
On	CFGx = 1.

Standalone Mode:

S4	CFG0	Description			
Off	0	IP = 0			
On	1	IP = 1.			
S5	CFG1	Description			
Off	0	Boot from external Flash			
On	1	Boot from internal Flash			
S6	CFG2	Description			
Off	0	Hardreset Config is sampled from PLD (default)			
On	1	Hardreset Config is sampled from internal Flash			

BEN:

BEN	Desc
0	Boot disabled (no auto startup on power on) SW1-4 is Off
1	Boot enabled SW1-4 is On.

CPU_VPP:

CPU_VPP	Description				
0	VPP for the internal Flash is switched off (default)				
1	VPP for the internal Flash is switched on				

EXT_VPP:

EXT_VPP	Description				
0	VPP for the external Flash is switched off (default)				
1	VPP for the external Flash is switched on				

EXT_WP:

CPU_VPP	PU_VPP Description				
0	External Flash is not write protected (default)				
1	External Flash is write protected				

User Manual

MUX[0..1]:

Signals from PCI Muxers:

Switch		Bits		PCICLK	PCIIRQ#	REQ#/GNT#	Description	
S5	S6	MUX1	MUX0	PCICLK	PCIIRQ#	REQ#/GNT#	Description	
Off	Off	0	0	CLK0	IRQA#	REQ0#/GNT0#	Slot 0	
Off	On	0	1	CLK1	IRQB#	REQ1#/GNT1#	Slot 1	
On	Off	1	0	CLK2	IRQC#	REQ2#/GNT2#	Slot 2	
On	On	1	1	CLK3	IRQD#	REQ2#/GNT2#	Slot 3	

4.7.3.5 Reset Register

A write to the Reset Register (offset = 0x010) causes the assertion of the HRESET#.

4.8 Resets

The various reset sources of the PATI are assigned to following 3 reset states:

Deast States		EPLD		
Reset States	PORST#	HRESET#	SRESET#	Registers
Power-On Reset	asserted	asserted	asserted	reset
HRESET#	deasserted	asserted	asserted	not reset
SRESET#	deasserted	deasserted	asserted	not reset

Table .4.18 Reset States

Reset source	Reset State	Remarks		
PCI RST#	Power-On Reset	Resets also the entire PCI Bridge		
PCI Software Reset (CNTRL[30]=1) (asserts	Power-On Reset	Resets parts of the PCI Bridge		
LRESET#)				
PCI Bridge USERO = 0 (CNTRL[19]=1,	HRESET#	State to write the HW Config		
CNTRL[16]=0)		Word		
Local Power-On Reset	Power-On Reset			
CPU HRESET#	HRESET#			
CPU SRESET#	SRESET#			
EPLD write to the Reset Register (offset = 0x010)	HRESET#			

Table .4.19 Reset Sources

4.9 Interrupts and I/Os

Several different states of the PCI Bridge may cause the assertion of the LINTo of the PCI Bridge. This allows the host to interrupt the local CPU.

The local CPU may interrupt the host by setting certain register bits in the PCI Bridge, which causes the assertion of the PCI INT# signal. Additional the LINTi# signal of the PCI Bridge is connected to the CPU, with which the local CPU may also issue a PCI interrupt.

Two CPU I/O signals are connected to user LED's, with which the local CPU can signal different states to the

Following table shows the assigning of the interrupt and I/O Signals:

CPU	ļ	Connected to		
Signal	Configured	Direction	Device	Remarks
IRQ1#/RSV#/GPIO1	IRQ1#	Input	PCI Bridge INTO#	Host interrupts local CPU
GPIO7/IRQOUT#/LWP0	GPIO7	Output	PCI Bridge INTI#	Local CPU interrupts Host
IRQ2#/CR#/GPIO2/MTS#	GPIO2	Output	PCI Bridge USERi#	Not yet used
IRQ5#/GPIO5/MODCK1	GPIO5	Output	User LED0	If set LED is on
GPIO6/FRZ/PTR#	GPIO6	Output	User LED1	If set LED is on

Table .4.20 Interrupts and I/O routing

User Manual

5 Operation via the PCI bus

5.1 Normal Set-Up

This chapter describes how to set-up the PCI Bridge if the EEPROM is programmed.

- 1. Find the PCI Device with the Vendor ID 0x18E6 Device ID 0x00DA.
- 2. The bits Memory Space access, IO Space access and Master enable in the PCI Command register should be already set by the BIOS
- 3. Get the four Base Address for:
 - PCI Bridge config access in I/O space (PCIBAR1)
 - PCI Bridge config access in Memory space (PCIBAR0)
 - Direct Slave Space 0 (EPLD Config Registers) (PCIBAR2)
 - Direct Slave Space 1 (SDRAM Access) (PCIBAR3)
- 4. Depending on your host system you may set the endian register (BIGEND @ PCIBAR0 + 0x0C)
- 5. If the PATI is not in the Boot direct mode, clear USERO and set it again, to start the PATI up.
- 6. You could now reprogram the direct slave space 1 Registers to access another area than the SDRAM.
- 7. If using the direct master mode, program the Direct Master Registers accordingly.

5.2 Set-Up without programmed EEPROM

Setting up the PCI Bridge without programmed EEPROM is only needed, if the EEPROM has been erased or wrongly programmed before.

Note:

Be careful if you assign PCI addresses to the different PATI address spaces. The host BIOS may have already assigned the PCI address you like to assign. It is recommended, only to reprogram the EEPROM in this state and reboot the system.

- 1. Find the PCI Device with the Vendor ID 0x10B5 Device ID 0x9056. (default PLX IDs)
- 2. Set the bits Memory Space access and IO Space access in the PCI Command register
- 3. Get the Config Base Address by reading the PCIBAR0.
- 4. Set registers LAS0RR, LAS0BA, LBRD0 and LAS1RR, LAS1BA, LBRD1 to a valid value.
- 5. Write 0xFFFFFF0 to the registers PCIBAR2 and PCIBAR3.
- 6. Read the registers PCIBAR2 and PCIBAR3 back to determinate the size value.
- 7. Set the registers PCIBAR2 and PCIBAR3 to a valid value.
- Read the register PCIBAR2 and PCIBAR3 to get the base address of the direct slave space0 and space1 area.

5.3 Set-Up the PATI via PCI Bridge

After the PCI Bridge is set up, you may want to program the flash or set-up the SDRAM without the local CPU intervention. This can be done by writing the Hardware Configuration word accordingly.

To disable the CPU set the bit PCIM and the PRPM bit in the hardware configuration word. You may set also the ISP bits to an address below 16MByte to have access to the CPU peripheries. After the Hardware configuration word is written you have access via the PCI Bridge to the area you have programmed in the LAS0RR, LAS0BA, LBRD0 and the LAS1R, LAS1A, LBRD1 Registers.

5.4 Program the Flash

To erase/program the external flash, you have to configure to have access to the EPLD configuration Registers and to the Flash area.

- 1. Set the external Flash VPP, by setting the Bit EXT_VPP and clearing the Bit EXT_WP in the Misc Config Register. **Note: Access to the EPLD area MUST be done 32 bit wide.** So read the register first, set/clear the bits and write it back.
- Determinate the flash type by reading its ID, and erase/program it according the specified algorithm. Refer
 to the datasheet of the respective flash manufacturer for details. Note: Access to the Flash MUST be
 done in 16Bit mode only. Please calculate the flash address via the various mapping register to get the
 physical starting address from the PATI.

User Manual

5.5 Set-Up the SDRAM

In normal operation, the SDRAM is set-up by the firmware on the PATI itself. So set-up the SDRAM from the PCI Bridge is only necessary in special cases, such as booting directly from SDRAM. To set-up the SDRAM, you have to configure to have access to the EPLD configuration Registers and to the SDRAM area.

1. Set the bits CAL, RCD, WREQ, PR and RC in the Board Revision & Timing / SDRAM Controller Register according to the populated SDRAM Chips. (currently: CAL=1, RCD=0, WREQ=0, PR=0, RC=0).

Note:

Access to the EPLD area MUST be done 32 bit wide. So read the register first, set/clear the bits and write it back.

- Set the bit IIP in the Board Revision & Timing / SDRAM Controller Register. This issues a precharge all command to the SDRAM.
- 3. Poll the IIP Bit and if it is cleared wait for at least 8 refresh (200usec) before proceeding (8 refresh a 17usec = 136usec).
- 4. Set the bit LMR in the Board Revision & Timing / SDRAM Controller Register. This causes the next access is a set mode register command to the SDRAM.
- 5. The Mode register address is 0x0C8 if the CAL bit is 1 and 0x88 if CAL is 0.
- 6. Read from the SDRAM Start + Mode Register Address, to load the value into the SDRAM.

The SDRAM should now be accessible normal.

5.6 Start-Up the PATI

To start-up the local CPU write the hardware configuration word with the PCIM and the PRPM cleared. The default hardware configuration word is 0x00F0. If using in the default configuration, it is sufficient to clear the USERo bit and set it again.

If the S1-4 is On, the PATI starts with the default configuration word after power-up.

User Manual

6 Open issues

6.1 Flash access problem while programming the MPC555 PLL

When programming the MPC555 PLL to 40MHz, the access to the external flash fails. The reason is that the CLOCK Out Signal of the MPC555 is unstable in this state. To solve this problem the part which programs the PLL is copied into the internal SRAM and executed from there.

6.2 MPC555 does not allows access to the internal Peripheries.

The MPC555 does not allow access to it's internal peripheries while running in normal mode. In Slave Mode (Bit PRPM set), this access works. This problem has not yet been solved, since the U-Boot mapping doesn't allow the access to the internal peripheries anyway. This is because the internal peripheral must be mapped below the first 16MByte to allow external master access, and this entire area is assigned to the SDRAM.

6.3 MPC555 asserts resets if using PATI in PCI only mode or slave mode.

Since the MPC555 watchdog is enabled after a power-on reset, the MPC555 asserts HRESET if the CPU does not get the local bus (PCI-only mode) or/and it is configured in slave mode. This may lead to erroneous access which may even cause a system hang.

Workaround:

- configure the PATI in PCI only mode, CPU slave and IMMR below 16MBytes
- disable the watchdog (write 0xFFFFFF01 to the SYPCR Register

6.4 PLX Bridge hangs if an access doesn't terminate (missing TA).

If a direct slave access is disturbed by a HRESET (happens only, if the MPC555 is not running), the PLX Bridge waits forever for a TA. To reset the PLX Bridge a Power-on reset is needed.

Workaround:

Program the PLX Register "(LMISC2; PCI:0Fh, LOC:8Fh) Local Miscellaneous Control 2" to 0x0330. This
causes a PCI Target Abort if the TA is not sampled within 1024 local bus clocks after TS. Please note, that
on the PLX Bridge no method exists to detect this failure. The register should only be modified, on debug
purposes.

User Manual

7 Debug Cable wiring

To connect the PATI to an ABATRON BDI2000 (or similar Debuging Tools) an atapter cable is necessary. Please use the following wiring:

PATI J6 10pin 2mm Header female. Pin Number	Signal	BDI2000 TARGET A 10pin 2.54mm Header female Pin Number
1	VFLS0	1
2	SRESET#	2
3	GND	3
4	DSCK	4
5	GND	5
6	VFLS1	6
7	HRESET#	7
8	DSDI	8
9	VCC3	9
10	DSDO	10

Tabelle 7.1: Debug Cable wiring

Notes:

Please consult the documentation of your debug tool details.

User Manual

8 COPYRIGHT

Copyright © 2009 by MPL AG Elektronikunternehmen. All rights are reserved. Reproduction of this document in part or whole, by any means is prohibited, without written permission from MPL AG Elektronikunternehmen.

9 DISCLAIMER

MPL AG has fully tested the PATI and reviewed the documentation. However, MPL AG makes no warranty or representation, either expressed, or implied, with respect to this product, its quality, performance, merchantability, or fitness for a particular purpose.

In no event will MPL AG be liable for direct, indirect, special, incidental, or consequential damages resulting from any defect in the product or its documentation, even if advised of the possibility of such damages. In particular MPL AG shall have no liability for any parts connected to this product.

MPL AG reserves the right to make changes to any product herein to improve reliability, function or design.

10 TRADEMARKS

Brand or product names are trademarks and registered trademarks of their respective holders.

11 SUPPORT

11.1 SERIAL NUMBER AND REVISION

For support it is needed that you know the product name, the product variant and the serial number of your PATI. Please have a look at the label on the PATI for this.

Figure 11.1: PATI Label

11.2 CONTACT MPL AG

In case of general information questions please feel free to contact us at our homepage (www.mpl.ch) or per email (info@mpl.ch).

In case of sales information questions please send an email to sales@mpl.ch.

If you have a technical problem with a PATI, first please read the BIOS User Manual, the Technical Reference Manual and also this manual carefully. If you can't solve the problem on your own you can contact us for technical support per email at support@mpl.ch.

Our local Distributor: