Chapitre 37

Fractions rationnelles

$$\frac{P'}{P} = \sum_{i=1}^{r} \frac{m_i}{(X - \alpha_i)}$$

Une décomposition en éléments simples classique

Dans ce chapitre, on introduit un nouvel objet : le corps $\mathbb{K}(X)$ des fractions rationnelles au-dessus de \mathbb{K} . Ce corps contient $\mathbb{K}[X]$; il est donc possible d'y considérer des objets comme

$$\frac{1}{X(X-1)}$$
, $\frac{X^2-1}{(X-3)^4}$, $\frac{1}{X}$, etc.

Sommaire

I. Corps des fractions rationnelles	3
1) Définition	3
2) Exemples	3
3) Forme irréductible	4
4) Zéros et pôles	5
5) Degré	6
6) Partie entière d'une fraction rationnelle	
7) Dérivation	8
II. Décomposition en éléments simples	10
1) Introduction	10
2) Notion d'élément simple	10
3) Décomposition en éléments simples générale	10
4) Exemples	11
5) Décomposition en éléments simples dans le cas de \mathbb{C}	12
6) Décomposition en éléments simples dans le cas de \mathbb{R}	12
III. Techniques de calcul des décompositions en éléments simples	13
1) Calculer la partie entière	13
2) Par identification	13
3) En évaluant la fraction rationnelle en un point	14
4) En allant voir en $+\infty$	14
5) En prenant la valeur au pôle	
6) Pour les éléments simples de degré non maximal	17
7) Pour les irréductibles de degré 2 de $\mathbb{R}[X]$	18
IV. Démonstration du théorème de décomposition en éléments simples	19
1) Un lemme de décomposition en base $P \dots $	19
2) Notations pour la démonstration	20
3) L'application linéaire Φ	20
4) Conclusion	22

Fractions rationnelles 2/22

Dans tout ce chapitre, \mathbb{K} est le corps \mathbb{R} ou \mathbb{C} .

Remarque

Néanmoins, tout ce qui suit vaut également pour un corps K quelconque.

I. Corps des fractions rationnelles

1) Définition

Proposition-définition FRA.1

- 1) Il existe un corps, noté $\mathbb{K}(X)$, tel que
 - (i) on a $\mathbb{K}[X] \subset \mathbb{K}(X)$;
 - (ii) $mieux : \mathbb{K}[X]$ est un sous-anneau de $\mathbb{K}(X)$;
 - (iii) tout élément $R \in \mathbb{K}(X)$ s'écrit $R = \frac{P}{Q}$ avec $P, Q \in \mathbb{K}[X]$ et $Q \neq 0$.
- 2) On fixe un tel corps qu'on appelle corps des fractions rationnelles à coefficients dans \mathbb{K} .

Démonstration. — La construction est admise.

Remarques

- Cette proposition admet une généralisation : tout anneau commutatif intègre A peut être plongé dans un plus petit corps appelé corps des fractions de A et noté Frac(A).
- On a $\operatorname{Frac}(\mathbb{R}[X]) = \mathbb{R}(X)$.
- On a $\operatorname{Frac}(\mathbb{Z}) = \mathbb{Q}$.

Exemples

Fractions rationnelles 3/22

3) Forme irréductible

Proposition-définition FRA. 2

Soit $R \in \mathbb{K}(X)$ une fraction rationnelle non nulle.

1) a) Il existe $P, Q \in \mathbb{K}[X]$ premiers entre eux tels que

$$R = \frac{P}{Q} \cdot$$

- b) Une telle écriture de R est appelée forme irréductible de R.
- 2) Considérons deux écriture de R sous forme irréductible

$$R = \frac{P_1}{Q_1} = \frac{P_2}{Q_2}.$$

Alors, il existe $\lambda \in \mathbb{K}^*$ tel que

$$\begin{cases} P_1 = \lambda P_2 \\ Q_1 = \lambda Q_2. \end{cases}$$

3) Il existe un unique couple $(P,Q) \in \mathbb{K}[X]^2$ de polynômes premiers entre eux, avec Q unitaire, tels que

$$R = \frac{P}{Q} \cdot$$

 $D\'{e}monstration.$ —

1) On écrit d'abord $R = \frac{A}{B}$. Puis, il suffit de considérer D un PGCD et A et B et d'écrire $A = D\widetilde{A}$ et $B = D\widetilde{B}$. Les polynômes \widetilde{A} et \widetilde{B} sont premiers entre eux et on a

$$R = \frac{D\widetilde{A}}{D\widetilde{B}} = \frac{\widetilde{A}}{\widetilde{B}}.$$

- 2) Comme $\frac{P_1}{Q_1} = \frac{P_2}{Q_2}$, on a $P_1Q_2 = P_2Q_1$ et donc on a $P_1 \mid P_2Q_1$. Comme $P_1 \land P_2 = 1$, d'après le lemme de Gauss, on a $P_1 \mid P_2$.
 - De même, on a $P_2 \mid P_1$.
 - Donc, P_1 et P_2 sont associés. Fixons donc $\lambda \in \mathbb{K}^*$ tel $P_1 = \lambda P_2$.
 - L'égalité $P_1Q_2 = P_2Q_1$ dévient ainsi $\lambda P_2Q_2 = P_2Q_1$. Comme $R \neq 0$, on a $P_2 \neq 0$. Dans le corps $\mathbb{K}(X)$, on peut simplifier par P_2 . On obtient $Q_1 = \lambda Q_2$.
- 3) Si on reprend les notations précédentes et qu'on suppose Q_1 et Q_2 unitaires, on doit avoir $\lambda = 1$.

Fractions rationnelles 4/22

Exemple

Par exemple, considérons la fraction rationnelle

$$R := \frac{X^5 - 1}{X^3 - 2X + 1} \cdot$$

• À l'aide de l'algorithme d'Euclide, on trouve que

$$(X^5-1) \wedge (X^3-2X+1) = X-1.$$

• De plus, on sait grâce à la formule de Bernoulli que

$$X^5 - 1 = (X - 1)(X^4 + X^3 + X^2 + X + 1)$$

• Enfin, à l'aide d'une division euclidienne, on trouve que

$$X^3 - 2X + 1 = (X - 1)(X^2 + X - 1).$$

Ainsi, une écriture sous forme irréductible de R est

$$R = \frac{X^4 + X^3 + X^2 + X + 1}{X^2 + X - 1}.$$

4) Zéros et pôles

a) définition

${\bf Proposition\text{-}d\acute{e}finition} \ \, {\tt FRA.3}$

Soit $R \in \mathbb{K}(X)$ une fraction rationnelle non nulle qu'on écrit sous forme irréductible

$$R = \frac{P}{Q}$$

et soit $\alpha \in \mathbb{K}$.

- 1) On dit que α est un zéro de R ssi $P(\alpha) = 0$.
- 2) On dit que α est un pôle de R ssi $Q(\alpha) = 0$.

Remarque

- Pour que cette définition ait un sens, il faut qu'elle ne dépende pas de l'écriture irréductible R = P/Q choisie.
- On laisse le lecteur le vérifier à l'aide de la proposition FRA.2.

Exemple

Par exemple, considérons la fraction rationnelle

$$R := \frac{X(X-1)^2(X+2)}{(X+5)^3(X-5)}.$$

Elle est déjà écrite sous forme irréductible. Alors,

- les zéros de R sont 0, 1 et -2;
- les pôles de R sont -5, 5.

b) multiplicité

Comme on l'a fait pour les racines des polynômes, on peut parler de multiplicité pour les zéros et les pôles d'une fraction rationnelle.

Exemple

Par exemple, considérons la fraction rationnelle

$$R := \frac{X(X-1)^2(X+2)}{(X+5)^3(X-5)}.$$

Elle est déjà écrite sous forme irréductible. Alors,

- les zéros de R sont 0, 1 et -2, de multiplicités respectives 1, 2 et 1;
- les pôles de R sont -5 et 5; -5 est un pôle de multiplicité 3; 5 est un pôle simple.

Degré 5)

a) définition

Définition FRA.4

• Soit R une fraction rationnelle non nulle qu'on écrit $R = \frac{A}{B}$ avec $A, B \in \mathbb{K}[X] \setminus \{0_{\mathbb{K}[X]}\}.$ Le degré de R, noté deg(R), est l'entier relatif défini par

$$\deg(R) \coloneqq \deg(A) - \deg(B)$$

• Le degré de la fraction rationnelle nulle est $-\infty$.

Remarque

- Soit $R \in \mathbb{K}(X)$ non nulle.
- Pour que la définition soit acceptable, il faut vérifier que si R s'écrit

$$R = \frac{A}{B} = \frac{C}{D}$$

alors on a bien deg(A) - deg(B) = deg(C) - deg(D).

• C'est bien le cas car comme $\frac{A}{B} = \frac{C}{D}$, on a AD = BC. Donc, en passant au degré, on a $\deg(A) + \deg(D) = \deg(B) + \deg(C)$.

Exemples

Fractions rationnelles 6/22

b) degré du produit

Proposition FRA.5

On a

$$\forall R, T \in \mathbb{K}(X), \ \deg(RT) = \deg(R) + \deg(T).$$

Démonstration. — On écrit

$$R = \frac{A}{B}$$
 et $T = \frac{C}{D}$,

avec $A,B,C,D\in\mathbb{K}[X]$ et $B,D\neq 0.$ On a $R=\frac{AC}{BD}.$ Donc,

$$\begin{split} \deg(RT) &= \deg(AC) - \deg(BD) \\ &= \left(\deg(A) - \deg(B)\right) + \left(\deg(C) - \deg(D)\right) \\ &= \deg(R) + \deg(T). \end{split}$$

c) degré de la somme

Proposition FRA.6

On a

$$\forall R, T \in \mathbb{K}(X), \ \deg(R+T) \leqslant \max(\deg(R), \deg(T)).$$

Démonstration. — Elle est laissée au lecteur à titre d'exercice.

Remarque

Soit $n \in \mathbb{Z}$. Ainsi, l'ensemble

$$\mathbb{K}_n(X) = \left\{ R \in \mathbb{K}(X) \mid \deg(R) \leqslant n \right\}$$

est un \mathbb{K} -espace vectoriel.

6) Partie entière d'une fraction rationnelle

- a) idée
- On a vu dans le chapitre d'arithmétique que $\mathbb{K}[X]$ et \mathbb{Z} sont objets analogues. De ce point de vue, $\mathbb{K}(X)$ est l'analogue pour $\mathbb{K}[X]$ de \mathbb{Q} : on a l'analogie.

$$\mathbb{Z} \longleftrightarrow \mathbb{K}[X]$$

$$\mathbb{Q} \longleftrightarrow \mathbb{K}(X)$$

• On dispose sur \mathbb{Q} (et en fait sur \mathbb{R}) d'une partie entière qui à tout x associe un entier $\lfloor x \rfloor \in \mathbb{Z}$ qui est le plus proche de x: il vérifie

$$|x - \lfloor x \rfloor| < 1.$$

- On a vu que dans $\mathbb{K}[X]$, l'analogue de la valeur absolue est le degré.
- Ainsi, un analogue de la partie entière d'une fraction rationnelle R, serait un polynôme $P \in \mathbb{K}[X]$ tel que $\deg(R-P)$ soit « petit ».

Fractions rationnelles 7/22

b) définition

Proposition-définition FRA. 7

Soit $R \in \mathbb{K}(X)$.

- 1) Il existe un unique polynôme $P \in \mathbb{K}[X]$ tel que $\deg(R P) < 0$.
- 2) On l'appelle partie entière de R.

$D\'{e}monstration.$ —

• Unicité.

Soient $P_1, P_2 \in \mathbb{K}[X]$ tels que $\deg(R-P_1) < 0$ et $\deg(R-P_2) < 0$. Autrement dit, on a $R-P_1 \in \mathbb{K}_{-1}(X)$ et $R-P_2 \in \mathbb{K}_{-1}(X)$. Donc, on a $(R-P_1)-(R-P_2) \in \mathbb{K}_{-1}(X)$, puisque $\mathbb{K}_{-1}(X)$ est un \mathbb{K} -espace vectoriel. Donc $P_1-P_2 \in \mathbb{K}_{-1}(X)$: autrement dit $\deg(P_1-P_2) < 0$. Donc, comme $P_1-P_2 \in \mathbb{K}[X]$, on a $\deg(P_1-P_2) < 0$, $ie\ P_1=P_2$.

• Existence.

Écrivons $R = \frac{A}{B}$ avec $A, B \in \mathbb{K}[X]$ et $B \neq 0$. Faisons la division euclienne de A par B et écrivons A = BQ + R avec $B, R \in \mathbb{K}[X]$ et $\deg(R) < \deg(B)$. On a alors,

$$R = \frac{A}{B} = \frac{BQ + R}{B} = Q + \frac{R}{B}.$$

Comme $\operatorname{\mathsf{deg}}\left(\frac{R}{R}\right) < 0$, le polynôme Q satisfait les conditions voulues.

Remarques

- On retiendra que la partie entière d'une fraction rationnelle $R = \frac{A}{B}$ est le quotient de la division euclidienne de A par B.
- Soit $R \in \mathbb{K}(X)$ dont la partie entière est $E \in \mathbb{K}[X]$. Alors, pour tout $P \in \mathbb{K}[X]$, la partie entière de R + P est E + P.

Exemple

Par exemple, la partie entière de $\frac{4X^4+3X^3-2X^2+X-100}{X^2+X+1}$ est $4X^2-X-5$.

Exercice FRA. 8

Vérifier le résultat ci-dessus.

7) Dérivation

a) définition

Définition FRA.9

Soit R une fraction rationnelle qu'on écrit $R = \frac{A}{B}$ avec $A, B \in \mathbb{K}[X]$ et $B \neq 0$.

La dérivée de R, noté R', est la fraction rationnelle définie par

$$R' \coloneqq \frac{A'B - B'A}{B^2}.$$

Fractions rationnelles 8/22

Exercice FRA. 10

Soient $A, B, C, D \in \mathbb{K}[X]$ tels que $C, D \neq 0$ et tels que

$$\frac{A}{B} = \frac{C}{D}.$$

Montrer que

$$\frac{A'B-B'A}{B^2} = \frac{C'D-D'C}{D^2}.$$

b) propriétés

Fait FRA.11

La dérivation

$$\begin{array}{ccc} \mathbb{K}(X) & \longrightarrow \mathbb{K}(X) \\ R & \longmapsto R' \end{array}$$

est une application linéaire.

Démonstration. — Elle est laissée au lecteur à titre d'entraînement.

Proposition FRA.12

Soient $R, T \in \mathbb{K}(X)$. Alors, on a

1)
$$(RT)' = R'T + RT'$$
.

2) Si
$$R \neq 0$$
, on a

a)
$$\left(\frac{1}{T}\right)' = -\frac{1}{T^2};$$

b)
$$\left(\frac{R}{T}\right)' = \frac{R'T - RT'}{T^2}$$
.

Démonstration. — Elle est laissée au lecteur à titre d'entraînement.

c) non-propriétés

A Attention

Fractions rationnelles

• Si $R \in \mathbb{K}(X)$, la formule

$$\deg(R') = \deg(R) - 1$$

est fausse en général!

• Par exemple, considérons la fraction rationnelle

$$\mathsf{R} \coloneqq \frac{X+1}{X} \cdot$$

C'est une fraction rationnelle de degré 0. De plus, on a $R = 1 + \frac{1}{X}$ et donc $R' = -\frac{1}{X^2}$. Ainsi, on a deg(R) = -2.

9/22

II. Décomposition en éléments simples

1) Introduction

a) une identité remarquable

Une identité qui est bien connue et qui est très utile est

$$\boxed{\frac{1}{X(X+1)} = \frac{1}{X} - \frac{1}{X+1}}.$$

b) premières généralisations

Cette inégalité se généralise un peu. On a par exemple

$$\frac{1}{X(X+2)} = \frac{1}{2} \left(\frac{1}{X} - \frac{1}{X+2} \right).$$

Mieux, on a

$$\forall a \in \mathbb{K}^*, \qquad \frac{1}{X(X+a)} = \frac{1}{a} \left(\frac{1}{X} - \frac{1}{X+a} \right).$$

2) Notion d'élément simple

Définition FRA. 13

Un élément simple dans $\mathbb{K}(X)$ est une fraction rationnelle du type $\frac{A}{P^n}$ où P est un polynôme irréductible, où $A \in \mathbb{K}[X]$ et où $\deg(A) < \deg(P)$.

3) Décomposition en éléments simples générale

En fait, les décompositions précédentes se généralisent beaucoup plus.

C'est l'objet du théorème suivant.

Théorème FRA.14

Soit $R \in \mathbb{K}(X)$ qu'on écrit

$$R = \frac{A}{\prod_{i=1}^{r} P_i^{m_i}}$$

avec $A \in \mathbb{K}[X]$, où les $P_i \in \mathbb{K}[X]$ sont des polynômes irréductibles deux à deux premiers entre eux et où les $m_i \in \mathbb{N}^*$ sont des entiers non nuls.

Alors

1) il existe $E\in\mathbb{K}[X]$ et il existe une famille $(A_k^{[i]})_{\substack{1\leqslant i\leqslant r\\1\leqslant k\leqslant m_i}}$ de polynômes tels que

$$R = E + \left(\frac{A_1^{[1]}}{P_1} + \frac{A_2^{[1]}}{P_1^2} + \dots + \frac{A_{m_1}^{[1]}}{P_1^{m_1}}\right) + \dots + \left(\frac{A_1^{[r]}}{P_r} + \frac{A_2^{[r]}}{P_r^2} + \dots + \frac{A_{m_r}^{[r]}}{P_r^{m_r}}\right) \tag{*}$$

et qui vérifient

$$\forall i \in \llbracket 1, r
rbracket, \ \forall k \in \llbracket 1, m_i
rbracket, \ \deg(A_k^{[i]}) < \deg(P_i).$$

2) Une telle famille est unique.

Fractions rationnelles 10/22

Remarque

- Le polynôme « E » de (*) est la partie entière de R.
- Pour le trouver, il suffit de faire la division euclidienne de A par $\prod_{i=1}^r P_i^{m_i}$.
- En pratique, on a souvent $\deg(A) < \deg\Bigl(\prod_{i=1}^r P_i^{m_i}\Bigr)$ et donc E=0.
- Ainsi, en pratique, il faut juste penser à vérifier que $\deg(A) < \deg\left(\prod_{i=1}^r P_i^{m_i}\right)$ et ne pas oublier de faire la division euclidienne dans le cas contraire.

4) Exemples

- a) explicitation du théorème
- Sous cette forme, le théorème peut paraître compliqué alors qu'en fait il ne l'est pas.
- Voyons un exemple en prenant pour dénominateur

$$Q := (X-1)^2(X^2 + X + 1)^2$$

Déjà, remarquons que les polynômes (X-1) et (X^2+X+1) sont bien irréductibles dans $\mathbb{R}[X]$.

• Dans ce cas, que dit le théorème? Il dit que pour tout $P \in \mathbb{R}[X]$, on peut écrire

$$\frac{P}{(X-1)^2(X^2+X+1)^2} = E + \frac{a}{(X-1)} + \frac{b}{(X-1)^2} + \frac{\alpha X + \beta}{(X^2+X+1)} + \frac{\gamma X + \delta}{(X^2+X+1)^2},$$

avec $E \in \mathbb{R}[X]$ et $a, b, \alpha, \beta, \gamma, \delta \in \mathbb{R}$.

- b) quelques exemples concrets
- On peut s'intéresser en particulier à la décomposition en éléments simples de

$$\frac{1}{(X-1)^2(X^2+X+1)^2}.$$

On peut montrer que

$$\boxed{\frac{1}{(X-1)^2(X^2+X+1)^2} = \frac{-\frac{2}{9}}{X-1} + \frac{\frac{1}{9}}{(X-1)^2} + \frac{\frac{1}{3} + \frac{2}{9}X}{1+X+X^2} + \frac{\frac{1}{3} + \frac{1}{3}X}{(1+X+X^2)^2}}.}$$

• Autre exemple, on peut s'intéresser à

$$\frac{2X^5 + 3X^4 + 6X^3 - X^2 + 7X + 1}{(X-1)^2(X^2 + X + 1)^2}.$$

On peut montrer que

$$\frac{2X^5 + 3X^4 + 6X^3 - X^2 + 7X + 1}{(X - 1)^2(X^2 + X + 1)^2} = \frac{1}{X - 1} + \frac{2}{(X - 1)^2} + \frac{X + 1}{X^2 + X + 1} + \frac{2X - 1}{(X^2 + X + 1)^2}.$$

Fractions rationnelles 11/22

5) Décomposition en éléments simples dans le cas de $\mathbb C$

Dans le cas où $\mathbb{K} = \mathbb{C}$, le théorème devient :

Théorème FRA.15

Soit $R \in \mathbb{C}(X)$ qu'on écrit

$$R = \frac{A}{\prod_{i=1}^{r} (X - \alpha_i)^{m_i}}$$

avec $A \in \mathbb{C}[X]$, où les $\alpha_i \in \mathbb{C}$ sont deux à deux distincts et où les $m_i \in \mathbb{N}^*$ sont des entiers non nuls. Alors,

1) il existe $E \in \mathbb{C}[X]$ et il existe une famille $(a_k^{[i]})_{\substack{1 \leqslant i \leqslant r \\ 1 \leqslant k \leqslant m_i}}$ de nombres complexes tels que

$$R = E + \left(\frac{a_1^{[1]}}{X - \alpha_1} + \frac{a_2^{[1]}}{(X - \alpha_1)^2} + \dots + \frac{a_{m_1}^{[1]}}{(X - \alpha_1)^{m_1}}\right) + \dots + \left(\frac{a_1^{[r]}}{X - \alpha_r} + \dots + \frac{A_{m_r}^{[r]}}{(a - \alpha_r)^{m_r}}\right).$$

2) Une telle famille est unique.

Exercice FRA. 16

Soit $P \in \mathbb{C}[X]$ qu'on écrit

$$P = \lambda \prod_{i=1}^{r} (X - \alpha_i)^{k_i}$$

avec $\lambda \in \mathbb{C}^*$, avec $\forall i \in [1, r]$, $k_i \in \mathbb{N}^*$ et où les α_i sont des complexes deux à deux distincts.

Donner la décomposition en éléments simples de $\frac{P'}{P}$.

6) Décomposition en éléments simples dans le cas de $\mathbb R$

On laisse le lecteur imaginer quelle forme pourrait prendre dans ce cas le théorème FRA.14.

Fractions rationnelles 12/22

III. Techniques de calcul des décompositions en éléments simples

Soit $R \in \mathbb{K}(X)$ dont on veut calculer la décomposition en éléments simples.

1) Calculer la partie entière

- \bullet Avant toute chose, on calcule la partie entière de R, qu'on note E.
- Rappelons que pour la calculer, il suffit de faire une division euclidienne.
- Alors, en considérant R E, on est ramené au cas où la fraction rationnelle est de degré < 0.

2) Par identification

La première méthode possible pour calculer la décomposition en éléments simples de R consiste à écrire les éléments simples cherchés avec des coefficients inconnus, à mettre la somme des éléments simples sous même dénominateur et à identifier les coefficients des numérateurs.

On obtient alors un système, qu'on résout.

Exemple

On considère

$$R = \frac{X^2 + 1}{(X - 1)^2 (X - 2)}.$$

On écrit la décomposition en éléments simples de R:

$$R = \frac{a}{(X-1)^2} + \frac{b}{(X-1)} + \frac{c}{(X-2)}.$$

On a donc

$$\frac{X^2+1}{(X-1)^2(X-2)} = \frac{a(X-2)+b(X-1)(X-2)+c(X-1)^2}{(X-1)^2(X-2)}$$

Donc, on a

$$X^{2} + 1 = a(X - 2) + b(X - 1)(X - 2) + c(X - 1)^{2}$$

= $(b + c)X^{2} + (a - 3b - 2c)X + (-2a + 2b + c)$.

Donc, on a

$$\begin{cases} b + c = 1 \\ a - 3b - 2c = 0 \\ -2a + 2b + c = 1. \end{cases}$$

Après calcul, on trouve

$$a = -2$$
, $b = -4$ et $c = 5$.

Quand utiliser cette méthode? Jamais.

Fractions rationnelles 13/22

3) En évaluant la fraction rationnelle en un point

Exemple

• On considère

$$R = \frac{X^2 + 1}{(X - 1)^2(X - 2)}.$$

On écrit la décomposition en éléments simples de R

$$R = \frac{a}{(X-1)^2} + \frac{b}{(X-1)} + \frac{c}{(X-2)}.$$

Si on l'évalue en -1 (par exemple), on obtient d'une part

$$R(-1) = \frac{(-1)^2 + 1}{(-1-1)^2(-1-2)} = -\frac{2}{12} = -\frac{1}{6}$$

et d'autre part

$$\frac{a}{(-1-1)^2} + \frac{b}{(-1-1)} + \frac{c}{(-1-2)} = \frac{a}{4} - \frac{b}{2} - \frac{c}{3}$$

On a donc

$$-\frac{1}{6} = \frac{a}{4} - \frac{b}{2} - \frac{c}{3}$$
 ie $2 = -3a + 6b + 4c$.

• En évaluant en deux autres points, on trouverait deux autres équations qui *a priori* permettraient de déterminer *a*, *b* et *c*.

Quand utiliser cette méthode? Jamais (ou presque).

4) En allant voir en $+\infty$

Cette méthode est simple : si R est un fraction rationnelle sans partie entière, ie si $\deg(R) < 0$, on multiplie par X et on va chercher la limite en $+\infty$. C'est une sorte d'évaluation en $+\infty$ mais elle est très rapide à mettre en œuvre.

Exemple

• On considère

$$R = \frac{X^2 + 1}{(X - 1)^2(X - 2)}$$

dont on écrit la décomposition en éléments simples de R :

$$R = \frac{a}{(X-1)^2} + \frac{b}{(X-1)} + \frac{c}{(X-2)}.$$

• En multipliant par X, en évaluant en $t \in \mathbb{R}$ suffisamment grand, on obtient S on l'évalue en -1 (par exemple), on obtient d'une part

$$\frac{t^3+t}{(t-1)^2(t-2)} = \frac{at}{(t-1)^2} + \frac{bt}{(t-1)} + \frac{c}{(t-2)}.$$

- En faisant tendre t vers $+\infty$, on obtient 1 = b + c.
- On obtient ainsi très facilement une relation entre b et c qui est très simple.

Quand utiliser cette méthode? Toujours.

Fractions rationnelles 14/22

5) En prenant la valeur au pôle

Considérons notre fraction rationnelle R et considérons a un pôle de R, de multiplicité n. On peut donc écrire

 $R = \frac{A}{(X-a)^n Q} \qquad \text{avec} \quad Q(a) \neq 0.$

Faisons la décomposition en éléments simples de R et écrivant

$$R = \frac{\alpha}{(X-a)^n} + \text{ autres \'el\'ements simples.}$$
 (*)

On va expliquer ici comme calculer α .

a) présentation de la méthode

On multiplie (*) par $(X-a)^n$. On obtient

$$\frac{A}{Q} = \alpha + (X - a)\widetilde{R}$$

où \widetilde{R} est une fraction rationnelle dont a n'est pas un pôle.

En évaluant en a, on trouve

$$\alpha = \frac{A(a)}{Q(a)}.$$

Exemple

Considérons

$$R = \frac{1+X}{(X-1)^2(X-2)}$$

qu'on écrit

$$R = \frac{a}{(X-1)^2} + \frac{b}{(X-1)} + \frac{c}{(X-2)}$$

avec $a, b, c \in \mathbb{R}$.

Alors, on a:

- pour le pôle 1 :

b) une variante à connaître

Imaginons que le pôle a soit simple de R. On écrit ainsi

$$R = \frac{A}{B} = \frac{A}{(X-a)Q}$$
 avec $Q(a) \neq 0$.

La décomposition en éléments simples de R s'écrit

$$R = \frac{\alpha}{X-a} \ + \ \text{autres \'el\'ements simples}.$$

On vient de voir que $\alpha = \frac{A(a)}{Q(a)}$.

On a B = (X - a)Q donc B' = Q + (X - a)Q'. Donc, B'(a) = Q(a).

Ainsi, on a

$$\alpha = \frac{A(a)}{B'(a)}.$$

Fractions rationnelles

c) généralisation

Exercice FRA.17

Généraliser cette méthode dans le cas où a est un pôle d'ordre n, pour déterminer le coefficient α de l'élément simple $\frac{\alpha}{(X-a)^n}$.

d) Application

Voici une formule très classique.

Fait FRA. 18

Soit $n \in \mathbb{N}^*$. Alors, on a

$$\frac{1}{X^n-1} = \frac{1}{n} \sum_{\omega \in \mathbb{U}_n} \frac{\omega}{X-\omega} \cdot$$

Démonstration. —	 	 	
	 •••••	 	

$\mathbf{Exercice}\,\,\mathsf{FRA}.\,\mathbf{19}$

Calculer la décomposition en éléments simples de $\frac{X}{X^n-1}$.

6) Pour les éléments simples de degré non maximal

a) notations

Considérons $R \in \mathbb{K}(X)$ et a un pôle de R, de multiplicité $n \geqslant 2$.

On écrit la décomposition en éléments simples de ${\cal R}$:

$$R = \frac{\alpha}{(X-a)^n} + \frac{\beta}{(X-a)^{n-1}} + \text{ autres \'el\'ements simples.} \tag{*}$$

On a expliqué ci-dessus comme calculer α .

b) calcul de β

Pour calculer β , il suffit de considérer la fraction rationnelle $R - \frac{\alpha}{(X-a)^n}$. Grâce à l'écriture ci-dessus, on saura qu'elle admet a comme pôle de multiplicité n-1.

K	Exemple
5	Considérons
R	$R = \frac{X^2 + 1}{(X - 1)^2(X - 2)}$
5	$N = \frac{1}{(X-1)^2(X-2)}$
Ď	qu'on écrit
R	$R = \frac{a}{(X-1)^2} + \frac{b}{(X-1)} + \frac{c}{(X-2)}$
5	$(X-1)^2 + (X-1) + (X-2)$
P	avec $a,b,c\in\mathbb{R}$.
K	Calculons d'abord a.
5	
R	
K	
þ	
K	Calculons maintenant b.
5	
R	
K	
þ	
R	
5	
R	T-f'
K	Enfin, pour c , allons voir en $+\infty$.
Ď	
R	
5	
P	
5	

Fractions rationnelles 17/22

7) Pour les irréductibles de degré 2 de $\mathbb{R}[X]$

Pour les irréductibles de degré 2 de $\mathbb{R}[X]$, comme par exemple X^2+1 ou X^2+X+1 , on a deux façons de faire.

- On peut faire les calculs dans $\mathbb C$ puis réunir les résultats dans $\mathbb R$. Pour cette technique, on pourra remarquer que pour $R \in \mathbb R(X)$, les éléments simples associés à des racines conjuguées sont conjugués. Cela est une conséquence de $\overline{R} = R$ et de l'unicité de la décomposition en éléments simples.
- \bullet On peut utiliser la technique de « la valeur au pôle » en une racine formelle.

4	
	Exemple
	Considérons
	$R = \frac{3X + 8}{(X^2 + 1)(X^2 + X + 1)}$
	$N = \frac{1}{(X^2 + 1)(X^2 + X + 1)}$
	qu'on écrit
	$R = \frac{aX + b}{(X^2 + 1)} + \frac{cX + d}{(X^2 + X + 1)}$
	(X^2+1) (X^2+X+1)
	avec $a,b,c,d\in\mathbb{R}$.
	Commençons par déterminer a et b .
	Déterminons maintenant c et d .

Fractions rationnelles 18/22

IV. Démonstration du théorème de décomposition en éléments simples

1) Un lemme de décomposition en base P

Lemme FRA. 20

Soit $P \in \mathbb{K}[X]$ un polynôme non-nul de degré $d \geqslant 1$. Alors,

$$\forall A \in \mathbb{K}[X], \ \exists N \in \mathbb{N}, \ \exists (A_0, \dots, A_N) \in \mathbb{K}_{d-1}[X]^{N+1} : \ A = \sum_{j=0}^{N} A_j P^j.$$

Remarque

- Ce lemme est l'analogue du théorème de décomposition des entiers en base b.
- Rappelons que si $b \ge 2$ alors, pour tout $n \in \mathbb{N}$,

$$\exists N \in \mathbb{N}, \ \exists (a_0, \ldots, a_N) \in [0, b-1]^{N+1}: \ \ n = \sum_{j=0}^N a_j \ b^j.$$

Démonstration. — Ce lemme peut se démontrer par récurrence sur le degré de A.

- Si $deg(A) \leq d 1$: c'est bon.
- On suppose que $\deg(A) \geqslant d$ et que le résultat est vrai pour tout polynôme de $\deg(A)$. On fait la division euclidienne de A par P qu'on écrit

$$A = PQ + R$$
,

avec $Q \in \mathbb{K}[X]$ et $R \in \mathbb{K}_{d-1}[X]$.

- ightharpoonup Comme $\deg(A) > \deg(R)$, on a $\deg(PQ) = \deg(A) = \deg(P) + \deg(Q)$.
- \triangleright Donc, on a $\deg(Q) = \deg(A) \deg(P) < \deg(A)$.
- \triangleright On peut appliquer l'hypothèse de récurrence à Q et l'écrire

$$Q = \sum_{j=0}^{N} Q_j P^j$$

avec $N \in \mathbb{N}$ et $(Q_0, \dots, Q_N) \in \mathbb{K}_{d-1}[X]^{N+1}$.

▷ On a donc, finalement,

$$A = PQ + R = P\left(\sum_{j=0}^{N} Q_j P^j\right) + R = \left(\sum_{j=0}^{N} Q_j P^{j+1}\right) + R P^0.$$

Fractions rationnelles 19/22

2) Notations pour la démonstration

- Soit $r \in \mathbb{N}^*$.
- Soient $P_1, \ldots, P_r \in \mathbb{K}[X]$ des polynômes irréductibles dans $\mathbb{K}[X]$) deux à deux premiers entre eux.
- Pour $i \in [1, r]$, on note $d_i := \deg(P_i)$.
- Soient $m_1, m_2, \ldots, m_r \in \mathbb{N}^*$
- On pose $P := \prod_{i=1}^{n} P_i^{m_i}$.
- On note N := deg(P). Remarquons que

$$N = \sum_{i=1}^{r} m_i \deg(P_i) = \sum_{i=1}^{r} m_i d_i.$$

• On considère l'ensemble

$$E := \left\{ \frac{A}{P} \; ; \; A \in \mathbb{K}_{N-1}[X] \right\}.$$

Fait FRA. 21

L'ensemble E est un \mathbb{K} -espace vectoriel de dimension N.

Démonstration. — Elle est laissée au lecteur à titre d'exercice.

3) L'application linéaire Φ

On considère l'application

$$\Phi: \left\{ \begin{array}{c} \prod_{i=1}^{r} \mathbb{K}_{d_{i}-1}[X]^{m_{i}} \longrightarrow E \\ \\ \left((A_{1}^{[i]}, A_{2}^{[i]}, \dots, A_{m_{i}}^{[i]}) \right)_{1 \leqslant i \leqslant r} \longmapsto \sum_{i=1}^{r} \left(\sum_{j=1}^{m_{i}} \frac{A_{j}^{[i]}}{P_{i}^{j}} \right). \end{array} \right.$$

a) elle est bien définie

Soit
$$\left((A_1^{[i]},A_2^{[i]},\ldots,A_{m_i}^{[i]})\right)_{1\leqslant i\leqslant r}\in\prod_{i=1}^r\mathbb{K}_{d_i-1}[X]^{m_i}$$
. On note

$$R := \sum_{i=1}^{r} \left(\sum_{j=1}^{m_i} \frac{A_j^{[i]}}{P_i^j} \right).$$

- On veut montrer que $R \in E$.
- Déjà, remarquons que R peut s'écrire $R = \frac{B}{P}$. En effet, en mettant toutes les fractions $\frac{A_j^{[i]}}{P_i^j}$ sous le même dénominateur, on obtiendra bien une fraction $\frac{B}{P}$.
- Ensuite, remarquons que tous les termes $\frac{A_j^{[i]}}{P_i^j}$ dans l'expression de R sont de degré < 0, puisque tous les $A_i^{[i]}$ sont de degré $< \deg(P_i)$.
- Ainsi, comme $\mathbb{K}_{-1}(X)$ est un \mathbb{K} -espace vectoriel, on a $R \in \mathbb{K}_{-1}(X)$. Donc, on a $\deg(B) < \deg(P)$.
- Autrement dit, on a bien $R \in E$.

b) elle est linéaire

Ce point est facile est vérifier. On laisse le lecteur s'en convaincre.

Fractions rationnelles 20/22

c) ses espaces de départ et d'arrivée ont même dimension

- En effet, pour tout $i \in [1, r]$, on a $\dim(\mathbb{K}_{d_i-1}[X]) = d_i$ et donc on a $\dim(\mathbb{K}_{d_i-1}[X]^{m_i}) = m_i d_i$.
- Donc, on a dim $\left(\prod_{i=1}^r \mathbb{K}_{d_i-1}[X]^{m_i}\right) = \sum_{i=1}^r m_i d_i$.
- Or, on a dim $(E) = N = \sum_{i=1}^{r} m_i d_i$.

d) elle est surjective

• Pour $i \in [1, r]$, on note

$$Q_i := \prod_{\substack{j=1\\j\neq i}}^n P_j^{m_j}.$$

• Remarquons que

$$\forall i \in [\![1,r]\!], \ \frac{P}{Q_i} = P_i^{m_i}$$

• Comme les P_i sont deux à deux premiers entre eux, les Q_i sont premiers entre eux dans leur ensemble. Fixons donc $U_1, \ldots, U_r \in \mathbb{K}[X]$ tels que

$$U_1Q_1 + \dots + U_rQ_r = 1.$$

• Maintenant, soit $A \in \mathbb{K}_{N-1}[X]$. On pose $R \coloneqq \frac{A}{P}$; on a $R \in E$. On écrit :

$$R = \frac{(U_1Q_1 + \dots + U_rQ_r)A}{P} = \sum_{i=1}^r \frac{U_iQ_iA}{P} = \sum_{i=1}^r \frac{AU_i}{P_i^{m_i}}.$$

- Soit $i \in [1, r]$.
 - \triangleright Grâce au lemme FRA. 20, en décomposant AU_i selon les puissances de P_i , on écrit

$$AU_i = \sum_{\ell=0}^{N_i} B_\ell^{[i]} P_i^\ell$$

avec $N_j \in \mathbb{N}$ et $\forall \ell, B_{\ell}^{[i]} \in \mathbb{K}_{d_i - 1[X]}$.

▷ On peut donc écrire

$$\frac{AU_i}{P_i^{m_i}} = C_i + \sum_{j=0}^{m_i} \frac{B_{m_i-j}^{[i]}}{P_i^j}$$

avec $C_i \in \mathbb{K}[X]$.

• Ainsi, on a

$$R = \left(\sum_{i=1}^{r} C_{i}\right) + \sum_{i=1}^{r} \left(\sum_{i=0}^{m_{i}} \frac{B_{m_{i}-j}^{[i]}}{P_{i}^{j}}\right).$$

• Or, deg(R) < 0. Donc, la partie entière de R est nulle. Comme on a aussi

$$\deg \left(\sum_{i=1}^r \left(\sum_{j=0}^{m_i} \frac{B_{m_i-j}^{[i]}}{P_i^j} \right) \right) < 0,$$

la partie de R est $\sum_{i=1}^{r} C_i$. Ainsi, on a $\sum_{i=1}^{r} C_i = 0$ et donc

$$R = \sum_{i=1}^{r} \left(\sum_{j=0}^{m_i} \frac{B_{m_i-j}^{[i]}}{P_i^j} \right).$$

• Ainsi, Φ est surjective.

e) c'est un isomorphisme Ainsi, Φ est un isomorphisme.

4) Conclusion

- Pour le théorème général, pour l'existence, on commence par dire que E est la partie entière de R. Puis, on considère R-E; on peut alors utiliser l'application Φ .
- Pour l'unicité, on considère deux écritures. Les « E » sont égaux car ils sont égaux à la partie entière de R. On peut les simplifier et on est ramené au cas où $\deg(R) < 0$. Dans ce cas, l'application Φ permet de conclure.

Fractions rationnelles 22/22