TOSHIBA Photocoupler GaAs Ired & Photo-Transistor

TLP124

Office Machine
Programmable Controllers
AC / DC-Input Module
Telecommunication

The TOSHIBA mini flat coupler TLP124 is a small outline coupler, suitable for surface mount assembly.

 ${
m TLP}124$ consists of a photo transistor optically coupled to a gallium arsenide infrared emitting diode.

- Collector-emitter voltage: 80 V min.
- Current transfer ratio: 100% min. Rank BV: 200% min.
- Isolation voltage: 3750Vrms min.
- UL recognized: UL1577, file No. E67349

Weight: 0.09g

Pin Configurations (top view)

- 1: Anode
- 3: Cathode
- 4 : Emitter
- 6 : Collector

Current Transfer Ratio

Classification	Curr			
	Ta =	25°C	Ta = -25~75°C	Marking Of
Classification	$I_F = 1mA$	$I_F = 0.5 mA$	$I_F = 1mA$	Classification
	$V_{CE} = 0.5V$	$V_{CE} = 1.5V$	$V_{CE} = 0.5V$	
Rank BV	200%	100%	100%	BV
Standard	100%	50%	50%	BV, Blank

(Note) Application type name for certification test, please use standard product type name, i. e. TLP124 (BV): TLP124

Maximum Rations (Ta = 25°C)

	Characteristic	Symbol	Rating	Unit
	Forward current	lF	50	mA
	Forward current derating	ΔI _F / °C	–0.7 (Ta ≥ 53°C)	mA / °C
LED	Peak forward current (100µs pulse, 100pps)	I _{FP}	1	А
	Reverse voltage	V _R	5	V
	Junction temperature	Tj	125	°C
	Collector-emitter voltage	V _{CEO}	80	V
	Emitter-collector valtage	V _{ECO}	7	V
	Collector current	I _C	50	mA
Detector	Peak collector current (10ms pulse, 100pps)	I _{CP}	100	mA
Ğ	Power dissipation	PC	150	mW
	Power dissipation derating (Ta ≥ 25°C)	ΔP _C / °C	-1.5	mA / °C
	Junction temperature	Tj	125	°C
Stor	age temperature range	T _{stg}	-55~125	°C
Оре	erating temperature range	T _{opr}	−55 ~ 100	°C
Lea	d soldering temperature (10s)	T _{sol}	260	°C
Tota	al package power dissipation	P _T	200	mW
	al package power dissipation ating (Ta ≥ 25°C)	ΔP _T / °C	-2.0	mW / °C
	ation voltage , 1min., R.H. ≤ 60%) (Note 1)	BVS	3750	Vrms

(Note 1) Device considered a two terminal device: Pins1, 3 shorted together and pins 4, 6 shorted together.

Recommended Operating Conditions

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	V _{CC}	_	5	48	V
Forward current	l _F	_	1.6	20	mA
Collector current	IC	_	1	10	mA
Operating temperature	T _{opr}	-25	_	75	°C

Individual Electrical Characteristics (Ta = 25°C)

	Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
	Forward voltage	V_{F}	I _F = 10 mA	1.0	1.15	1.3	V
LED	Reverse Current	I _R	V _R = 5 V	_	_	10	μA
	Capacitance	C _T	V = 0, f = 1 MHz	_	30	_	pF
	Collector–emitter breakdown voltage	V _(BR) CEO	I _C = 0.5 mA	80	_	_	V
Detector	Emitter-collector breakdown voltage	V _(BR) ECO	I _E = 0.1 mA	7	_	_	V
Dete	Collector dark current	ID	V _{CE} = 48 V	_	10	100	nA
			V _{CE} = 48 V, Ta = 85°C	_	2	50	μA
	Capacitance collector to emitter	C _{CE}	V = 0, f = 1 MHz	_	12	_	pF

Coupled Electrical Characteristics (Ta = 25°C)

Characteristic	Symbol	Test Condition	MIn.	Тур.	Max.	Unit
Current transfer ratio	I _C / I _F	I _F = 1mA, V _{CE} = 0.5 V Rank BV	100	-	1200	%
	10 / IF		200	ı	1200	
Low input CTR	I _C / I _{F (low)}	I _F = 0.5 mA, V _{CE} = 1.5 V Rank BV	50	١	_	%
			100	_		
	VCE (sat)	I _C = 0.5 mA, I _F = 1 mA	_	_	0.4	
Collector–emitter saturation voltage		I _C = 1 mA, I _F = 1 mA Rank BV	_	0.2	_	V
			_	_	0.4	
Off-state collector current	I _{C(off)}	V _F = 0.7V, V _{CE} = 48 V	_	_	10	μA

Coupled Electrical Characteristics ($Ta = -25 \sim 75$ °C)

Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Current transfer ratio	I _C / I _F	I _F = 1mA, V _{CE} = 0.5 V Rank BV	50	_	_	%
			100	_	_	%
Low input CTR	I _C / I _{F (low)}	I _F = 0.5 mA, V _{CE} = 1.5 V Rank BV	_	50	_	%
			_	100	_	%

3

Isolation Characteristics (Ta = 25°C)

Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Capacitance (input to output)	CS	V _S = 0, f = 1 MHz	_	0.8	-	pF
Isolation resistance	R _S	V _S = 500 V, R.H. ≤ 60%	5×10 ¹⁰	10 ¹⁴	_	Ω
Isolation voltage	BV _S	AC, 1 minute	3750	-	1	V
		AC, 1 s, in oil	_	10000	_	V _{rms}
		DC, 1 minute, in oil	_	10000	_	V_{dc}

Switching Characteristics (Ta = 25°C)

Characteristic	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Rise time	t _r		_	8	_	
Fall time	t _f	$V_{CC} = 10 \text{ V}, I_{C} = 2 \text{ mA}$ $R_{L} = 100\Omega$	_	8	_	116
Turn-on time	t _{ON}		_	10	_	μs
Turn-off time	t _{OFF}		_	8	_	
Turn-on time	t _{ON}		_	10	_	
Storage time	ts	$R_L = 4.7 \text{ k}\Omega$ (Fig.1) $V_{CC} = 5 \text{ V}, I_F = 1.6 \text{ mA}$	_	50	_	μs
Turn-off time	t _{OFF}		_	300	_	

Fig. 1 Switching time test circuit

Collector current I_C (mA)

I_C – I_F

Collector current I_C (mA)

Collector current IC (mA)

6

2002-09-25

7

RESTRICTIONS ON PRODUCT USE

000707EBC

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes
 are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the
 products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with
 domestic garbage.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.

8

The information contained herein is subject to change without notice.