Algèbre abstraite

Loi binaire

Soit A un ensemble, une **loi binaire sur** A est une fonction $A \times A \to A$. Les lois binaires sont souvent écrites avec une *notation infixe*: si * est le symbole de la loi, on écrira a * b plutôt que *(a,b).

On dit qu'une loi $*: A \times A \rightarrow A$ est

- Associative: si pour tout $a, b, c \in A$ on a (a * b) * c = a * (b * c);
- Commutative: si pour tout $a, b \in A$ on a a * b = b * a.

Exemples

• L'addition et la multiplication (d'entiers, de réels, ...) sont des lois binaires.

Groupes

Un **groupe** est un ensemble G muni d'une loi binaire * tels que :

- * est associative;
- il existe un élément $e \in G$, dit **élément neutre**, tel que pour tout $a \in G$ on a e * a = a * e = a;
- pour tout $a \in G$ il existe un $b \in G$, dit l'**inverse de** a, tel que a * b = b * a = e.

Si en plus * est commutative, le groupe G est dit commutatif, ou abélien.

Notation

Souvent on se dispense de noter le symbole de la loi, on écrit alors ab pour a*b. Dans ce cas on dit que la loi de groupe est *notée* multiplicativement. On peut parfois noter $a \cdot b$ lorsque la lecture serait ambiguë.

Pour une loi multiplicative, on note a^{-1} , ou parfois 1/a, l'inverse de a; on note a^n l'élément

$$a^n = \underbrace{aa\cdots a}_{n \text{ fois}}.$$

Lorsque la loi de groupe est notée +, on dit qu'elle *notée additivement*. L'usage veut qu'on utilise la notation additive *uniquement pour les lois commutatives*. On note alors -a l'inverse de a (et on l'appelle parfois opposé); on note na, ou $n \cdot a$, ou encore [n]a l'élément

$$na = \underbrace{a + a + \cdots + a}_{n \text{ fois}}.$$

Exemples

- $(\mathbb{Z},+), (\mathbb{Q},+), (\mathbb{R},+)$ et $(\mathbb{C},+)$ sont tous des groupes abéliens.
- $(\mathbb{N}, +)$ n'est pas un groupe : tous les éléments n'ont pas d'opposé.
- (\mathbb{Z}, \times) n'est pas un groupe : tous les éléments n'ont pas d'inverse.
- \circ $(\mathbb{Q}, \times), (\mathbb{R}, \times)$ et (\mathbb{C}, \times) ne sont pas des groupes, mais si on leur enlève le 0 ils deviennent des groupes abéliens.
- (S_n, \circ) , l'ensemble des permutations sur n éléments muni de l'opération de composition, est un groupe **non-abélien**.

Anneaux, corps

Un anneau est un ensemble A muni de deux lois binaires, notées + et \cdot , telles que :

- (A, +) est un **groupe abélien**, dont on notera 0 l'élément neutre;
- est associative;
- il existe un élément de A, noté 1, tel que pour tout $a \in A$ on a $1 \cdot a = a \cdot 1 = a$;
- distribue sur +, c'est à dire que pour tout $a, b, c \in A$ on a $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$.

Un anneau tel que · est commutative est dit un anneau commutatif.

Un **corps** est un anneau commutatif dont tous les éléments, à l'exception de 0, ont un inverse multiplicatif.

Exemples

 $\circ \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ et \mathbb{C} sont des anneaux commutatifs. Parmi eux, \mathbb{Z} est le seul qui ne soit pas aussi un corps.

• L'ensemble $\mathcal{M}_n(\mathbb{Z})$ des matrices carrées $n \times n$ à coefficients dans \mathbb{Z} est un anneau **non-commutatif**. Les matrices carrées à coefficients dans \mathbb{Q} , \mathbb{R} , ou \mathbb{C} forment aussi des anneaux non-commutatifs.

Anneaux d'entiers modulaires

Soit n>0, l'anneau des **entiers modulo** n est la classe d'équivalence de $\mathbb Z$ par la relation

$$a \equiv b \bmod n \iff n \text{ divise } (a-b).$$

Les lois + et \cdot sont héritées des lois de $\mathbb Z$ après réduction par n (voir exercice en TD).

On note $\mathbb{Z}/n\mathbb{Z}$ cet anneau (commutatif). Il est un corps si et seulement si n est premier.

2011-2020 Mélanie Boudard http://christina-boura.info/en/content/home, Luca De Feo http://creativecommons.org/licenses/by-sa/4.0/.