BME Gépészmérnöki Kar	SZILÁRDSÁGTAN	Név: Vári Gergő		
Műszaki Mechanikai Tanszék	1. HÁZI FELADAT	Neptun kód: MQHJ0H		
2024/25 II.	Határidő: lásd Moodle	Késedelmes beadás: □ Javítás: □		
Nyilatkozat: Aláírásommal igazolom, hogy szítettem el, az abban leírtak saját megértése	Aláírás: Vári Gergő			

Csak a formai követelményeknek megfelelő feladatokat értékeljük! http://www.mm.bme.hu/targyak/bsc/sziltan

Feladatkitűzés

Az ábrán vázolt szerkezet mindhárom rúdja csuklósan kapcsolódik, anyaguk homogén, izotrop, lineárisan rugalmas. Az (1)-es rúd keresztmetszete az ábrán látható táglalap alakú zárt szelvény, a negyedkörív alakú (2)-es rúdé kör, míg a (3)-as rúdé háromszög. Az (1)-es rúd anyagára megengedett feszültség $\sigma_{\rm meg}$.

Adatok

R [m]	L [m]	d [mm]	c [mm]	F_1 [kN]	F_2 [kN]	p [kN/m]	$\sigma_{ m meg}$ [MPa]
0.3	0.35	50	30	3	3	4.50	100

(Rész)eredmények

A [kN]	B [kN]	$M_{ m h,max}^{(1)}$ [kNm]	$K_{y, \min}$ [cm ³]	b [mm]	Szelv.sorszám
6.1	1.85	0.35	3.5	24	166
$\sigma_{ m max}^{(1)}$ [MPa]	$V_{\mathrm{max}}^{(1)} [\mathrm{kN}]$	$ au_{ m max}^{(1)} $ [MPa]	$\sigma_{K,\mathrm{max}}^{(2)}$ [MPa]	$\sigma_{C,\max}^{(3)}$ [MPa]	β_{zerus} [°]
-94.66	1.576	5.4	-21.331	33.333	-18.435

Pontozás

Minimumfeladat	Feladatok					Dokumentáció	Összesen	
Williamumreladat	4.	5.	6.	7.	8.	9.	Bokumentaeio	OSSZESEII
	/4	/2	/3	/4	/3	/4	/5	/25

Szilárdságtan HF1

Vári Gergő

2025. március 29.

- 1 Reakció komponensek
- 1.1 Léptékhelyes ábra
- 1.2 SZTÁ

1.3 Egyensúlyi képletek

$$\sum F_x := 0 = A_x - F_1 - F_2 \tag{1}$$

$$\sum F_y := 0 = A_y + B_y - p(L+R) \tag{2}$$

$$\sum M^A := 0 = B_y(2L + R) + F_1 \frac{R}{2} - F_2(R + \frac{R}{2}) - p \frac{(L+R)^2}{2}$$
 (3)

$$(1) \Rightarrow A_x = F_1 + F_2 = 6 \text{ [kN]}$$
 (4)

(3)
$$\Rightarrow B_y = F_2(R + \frac{R}{2}) - F_1 \frac{R}{2} + p \frac{(L+R)^2}{2} = 1.85 \,[\text{kN}]$$
 (5)

$$(2) \Rightarrow A_y = p(L+R) - B_y = 1.074 \,[\text{kN}]$$
 (6)

$$(1) \wedge (2) \Rightarrow |\mathbf{A}| = \left| \begin{bmatrix} 6\\1.074 \end{bmatrix} \right| = 6.1 \,[\text{kN}] \tag{7}$$

2 Csuklók és rudak

- 2.1
- 2.1.1 SZTÁ
- 2.1.2 Egyensúlyi képletek

- 2.2
- 2.2.1 SZTÁ
- 2.2.2 Egyensúlyi képletek

- 2.3
- 2.3.1 SZTÁ
- 2.3.2 Egyensúlyi képletek

- 2.4 B pont
- 2.4.1 SZTÁ
- 2.4.2 Egyensúlyi képletek

2.5 Összegzés

- 3 1-es rúd igénybevételei
- 3.1 SZTÁ

3.2 Függvények

3.3 Ábrázolás

- 4 Méretezés
- 4.1 Veszélyes keresztmetszet
- 4.2 Keresztmetszeti tényező

5 Helyettesítés U-szelvénnyel

- 6 U-szelvény ellenőrzése normálerő hatására
- 6.1 Ellenőrzés
- 6.2 Normálerő ábrázolása
- 6.3 Maximális feszültség

- 7 Nyírásból adódó csúsztató feszültség
- 7.1 Függvény
- 7.2 Ábrázolás

- 8 2-es rúd igénybevételei
- 8.1 SZTÁ

8.2 Függvények

- 8.3 Normálfeszültség ábrázolása
- 8.4 Maximális normálfeszültség

- 9 3-as rúd hajlítása
- 9.1 Zérus és y_3 tengely szöge
- 9.2 Maximális normálfeszültség