NFA with ε moves

- · Let ε denote the null string.
- Extend the transition function $f: Q \times (\Sigma \cup \{\epsilon\}) \rightarrow P(Q)$

- E.g.,
$$f(a) = \{q1, q2\}$$
; $f(\epsilon) = \{q2, q3\}$

• Are NFA with ϵ moves more powerful than NFA and DNA? No.

Lemma. Given an NFA M_{ϵ} with ϵ moves, we can construct another NFA M without ϵ moves accepting the same language.

Idea. M uses the same set of states as M_{ϵ} .

For every pair of states (q, q'), M has a transition from q to q' labeled with a in Σ if and only if in M_s , there is a path from q to q' labeled with all ϵ except one a.

Lemma. Given an NFA M_{ϵ} with ϵ moves, we can construct another NFA M without ϵ moves accepting the same language.

Idea. M uses the same set of states as M_{ϵ} .

For every pair of states (q, q'),

M has a transition from q to q' labeled with a in Σ

if and only if

in M_{ϵ} , there is a path from q to q' labeled with all ϵ except one a.

Week 1: finite automata

 Summary: Finite automata, deterministic versus nondeterministic computation, languages, limitation of finite automata, regular expressions.

Reading:

- Sipser, Chapter 1 (and Chapter 0 for those not confident in discrete math); or
- Hopcroft, Motwani & Ullman (1st edition or 2nd edition),
 Chapter 2 & 3.2

Non-computational models

Given a language (decision problem) L, we can reason whether there is a finite automaton (pda, or Turing machine) accepting L.

In fact, languages can be characterised by some noncomputation-based models.

- Regular expressions
 - Theorem. A language L is accepted by a DFA if and only if L = L(R) of some regular expression R.

Today's lecture

- Right (Left) Linear grammars Probably exercise
 - Theorem. A language L is accepted by a DFA if and only if L = L(G) of some right linear grammar R.

Equivalence

- · DFA
- · NFA
- · NFA with ε moves
- Regular expressions

Regular Expressions

- · A simple way to define a set of strings (a language).
- For example, (0 U 1)0* denotes the set { 0, 1, 00, 10, 000, 100, 0000, 1000, ...}
- A recursive definition: R is a regular expression over an alphabet Σ if R is
 - a for some a in Σ , ϵ , \emptyset ,
 - (R₁ U R₂), (R₁ o R₂), or R₁*, where R₁ and R₂ are regular expressions.
- More examples: 0*10*, (0U1)*1

Languages

A regular expression R defines a language L(R).

```
• R = a: L(R) = \{a\}.

• R = \epsilon: L(R) = \{\epsilon\} (i.e., the set of null string).

• R = \emptyset: L(R) is empty.

• R = (R_1 \cup R_2): L(R) = \{w \mid w \text{ is in } L(R_1) \text{ or } L(R_2)\}.

• R = (R_1 \cup R_2): L(R) = \{w \mid w = xy \text{ where } x \text{ is in } L(R_1) \text{ and } y \text{ is in } L(R_2)\}.

• R = R_1^*: L(R) = \{w \mid w \text{ is in } L(R_1)^*\}.
```

Def. $w = \varepsilon$ or $w_1 w_2 w_3 ... w_n$, where $n \ge 1$ and each w_i is in $L(R_1)$.

Examples

```
· (O1*)*:
```

For convenience: we let R+ be shorthand for RR*.

- · (O1⁺)*:
- 1* ∅ :
- e*

Regular Expressions & DFA

Theorem. Let L be a language accepted by a DFA M. Then there exists a regular expression R such that L(R) = L.

Implication: An NFA or DFA is no more powerful than a regular expression.

Regular Expressions & DFA

Theorem. If L is accepted by a DFA M, then L = L(R) for some regular expression R.

Suppose that $M = (Q, \Sigma, f, q_1, F)$ and $Q = \{q_1, q_2, ..., q_n\}$, where n denotes the number of states.

The transition function of M (i.e., f) defines a directed $\frac{\text{graph}}{\text{graph}}$, in which every vertex is a state and every edge is labeled with a symbol in Σ .

From State q_i to State q_j

Consider any k in [0, n], and i,j in [1,n].

Let $S_{i,j} = \{ x \mid x \text{ is the string on a path from } q_i \text{ to } q_j \text{ in } M \}$ Let $S_{i,j}(k) = \{ x \mid x \text{ is the string on a path from } q_i \text{ to } q_j \text{ in } M, \text{ and excluding the two ends, every state on this path has a label } q_b \text{ with } b \leq k. \}$

NB. $S_{i,i}(k)$ is a set, not a regular expression.

Question: What is $S_{i,i}(0)$?

A Technical Lemma

Lemma. $S_{i,j}(k) = S_{i,j}(k-1) \cup S_{ik}(k-1) (S_{kk}(k-1))^* S_{kj}(k-1)$.

$$S_{1,j}(n)$$

Suppose q_j is a state in F. What does $S_{1,j}(n) = S_{1,j}$ denote?

$S_{1,j}(\mathbf{n})$

Suppose q_j is a state in F.

What does $S_{1,j}(n) = S_{1,j}$ denote?

•The set of strings that M accepts using the final state $q_{\rm i}$.

Let L be the language accepted by M. Then L is equal to the *union* of all $S_{1,j}(n)$, where q_j is in F.

Converting DFA to regular expressions

Lemma For any i, j, k, there is a regular expression R such that $L(R) = S_{i,i}(k)$.

Proof. By induction on k.

Basis: k = 0.

Let a_1 , a_2 , ..., a_h be symbols in Σ such that $f(q_i, a_1) = q_j$, $f(q_i, a_2) = q_j$, ..., $f(q_i, a_h) = q_j$.

Let R be the regular expression a₁ U a₂ U ... U a_h

Then $L(R) = \{a_1, a_2, ..., a_h\} = S_{i,j}(0)$.

NB. If no such a exists, then $R = \emptyset$.

Induction Step

Assume that the lemma is true for k-1.

Recall that
$$S_{i,j}(k) = S_{i,j}(k-1) \cup S_{ik}(k-1) (S_{kk}(k-1))^* S_{kj}(k-1)$$
.

By <u>induction hypothesis</u>, there exist regular expressions R1, R2, R3, and R4 such that

- $L(R1) = S_{i,j}(k-1),$
- $L(R2) = S_{ik}(k-1)$,
- $L(R3) = S_{kk}(k-1)$,
- $L(R4) = S_{kj}(k-1)$.

Then $R = R1 \cup (R2 (R3)^* R4)$ is a regular expression such that $L(R) = S_{i,i}(k)$.

From regular Expressions to NFA

Theorem. Let r be a regular expression. Then there exists an NFA with ε moves M such that L(M) = L(R).

Proof. By induction on the structure of R.

• R = ∅:

Induction Step

Consider a regular expression R. Assume the theorem is true for all sub-expressions of R.

Case 1. R= S T

Combine the two NFA to make a bigger NFA for R.

- For each final state q of M_S , add an ϵ transition to the start state of M_T .
- New final states: All final states of M_{T} remain final states. What about the final states of M_{S} ?

Case 2. R = S U T

Create a new start state, which has a ϵ transition to the start states of M_S and M_T .

What are the new final states?

Final states of M_S and M_T .

Case 3. R = T*

Create a new start state, which is also a new final state, and has an ϵ move to the original start state.

Each original final state has an ϵ transition to the original start state.

Case 3. R = T*

Create a new start state, which is also a new final state, and has an ϵ move to the original start state.

Each original final state has an ϵ transition to the original start state.

