Counting ∞

Are there more blue dots or red dots?

Did you count all of the dots?

How did you know the answer?

Today: We count to ∞ and beyond.

Countability

What does it mean for us to "count" the elements of a set?

Our model for counting: $\mathbb{N} = \{0, 1, 2, \dots\}$.

A set A is called **countable** if there exists a bijection between A and a subset of \mathbb{N} .

➤ Any finite set is countable. Consider the set Odin's notable children = {Hela, Thor, Loki}.

$$f(Hela) = 0,$$
 $f(Thor) = 1,$ $f(Loki) = 2.$

Then, f: Odin's notable children $\rightarrow \{0,1,2\}$ is a bijection.

- ▶ N itself is countable.
- If A is countable and infinite, then we say it is countably infinite.
- ▶ What else is countable?

Review: Bijections

A function $f: A \rightarrow B$ is:

- ▶ one-to-one (an injection) if f(x) = f(y) implies x = y. Or, $x \neq y$ implies $f(x) \neq f(y)$. Distinct inputs, distinct outputs.
- ▶ onto (a surjection) if for each $y \in B$, there is an $x \in A$ with f(x) = y. Every element in B is hit.

Then, *f* is a **bijection** if it is both an injection and a surjection.

A bijection "rearranges" the elements of A to form B.

Hilbert's Hotel I

Consider an infinite hotel, one room for each $n \in \mathbb{N}$. The rooms are all filled by guests.

A new guest arrives. Can we accommodate the new guest?

For each $n \in \mathbb{N}$, move the guest in room n to n+1. Then place the new guest in room 0.

In other words, we found a bijection $f : \mathbb{N} \cup \{-1\} \to \mathbb{N}$.

$$f(-1)=0,$$
 $f(n)=n+1$ for $n \in \mathbb{N}$.

Adding one more element to $\mathbb N$ does not change its size.

Counting Infinite Sets

How did we know that there were the same number of dots of each color, without counting?

You found a bijection between the blue dots and red dots!

To count infinities, we will take the definition of "same size" to be "there exists a bijection between the sets".

Hilbert's Hotel II

Now suppose that a new bus of passengers arrives. There is a new guest n for each positive integer n.

Can we still accommodate the guests?

For each $n \in \mathbb{N}$, move guest in room n to room 2n. Put the ith new guest into the ith odd-numbered room.

We found a bijection $f: \mathbb{Z} \to \mathbb{N}$.

$$f(n) = 2n$$
 for $n \in \mathbb{N}$, $f(-n) = 2n - 1$ for positive n .

Adding a countably infinite number of elements to $\ensuremath{\mathbb{N}}$ does not change its size.

Proving the Bijection Formally

Recall: If A and B are *finite* and have the same size, then if $f: A \rightarrow B$ is injective *or* surjective, then it is both.

This is not true for infinite sets, so we must check *both* injectivity and surjectivity.

$$f(n) = 2n$$
 for $n \in \mathbb{N}$, $f(-n) = 2n - 1$ for positive n .

Proof that f is bijective.

- ▶ One-to-one: Assume f(x) = f(y). Prove x = y.
- ▶ If f(x) = f(y) are odd, then -2x 1 = -2y 1. So, x = y.
- ▶ If f(x) = f(y) are even, then 2x = 2y. So, x = y.
- ▶ Onto: Consider any $n \in \mathbb{N}$. Either n is even or odd.
- ▶ If *n* is even, then n = 2k for some $k \in \mathbb{N}$. Then, f(k) = n.
- ▶ If n is odd, then n = 2k 1 for some positive k. Then f(-k) = n. \square

Hilbert's Hotel III

Now a countably infinite number of buses arrive, each bus containing a countably infinite number of passengers.

Can we accomodate the guests?

First, "make room for ∞ " (send guest n to room 2n as before).

Label each bus with a prime number p. Label each person in the bus with a positive integer.

Send the *i*th person in bus p to the p^{i} -th odd numbered room.

- ▶ Bus 2's passengers get sent to: $2 \cdot 2^1 1$, $2 \cdot 2^2 1$, $2 \cdot 2^3 1$...
- ▶ Bus 3's passengers get sent to: $2 \cdot 3^1 1$, $2 \cdot 3^2 1$, $2 \cdot 3^3 1$, ...

Adding a countably infinite number of countable infinities to $\ensuremath{\mathbb{N}}$ does not change its size.

Since for each bus, the passenger's number would not repeat (strictly increasing); considering any two bus, the prime factorization (neglecting the -1) would be different, and thus, resulting in a unique seat for every person of every bus.

Countably Infinite Sets

Here are some countably infinite sets.

- ▶ \mathbb{N} . $\mathbb{N} \cup \{-1\}$. \mathbb{Z} .
- ▶ The set of even numbers. The set of odd numbers.
- ▶ The set of prime numbers.

Why is the set of prime numbers countably infinite? It is infinite (we proved this). But we can *list* them.

The list is *exhaustive*. Every prime number shows up in the list.

An exhaustive list is equivalent to a bijection.

$$f(2) = 0$$
, $f(3) = 1$, $f(5) = 2$, $f(7) = 3$, $f(11) = 4$,...

A set whose elements can be listed is countable.

The Formal Injection

We found an injection

$$f: \{\text{prime numbers}\} \times \{1, 2, 3, \dots\} \rightarrow \{\text{odd numbers}\}$$

given by $f(p,i) = p^i$ -th odd number.

Since {prime numbers}, $\{1,2,3,\ldots\}$, and {odd numbers} all have the same size as \mathbb{N} , this is the same as finding an injection

$$a: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$
.

Why? There are bijections

$$f_1: \mathbb{N} \to \{\text{prime numbers}\},\$$

$$f_2: \mathbb{N} \to \{1, 2, 3, \dots\},\$$

 $f_3: \mathbb{N} \to \{\text{odd numbers}\},\$

so we get an injection $g(m, n) = f_3^{-1}(f(f_1(m), f_2(n))).$

Be Careful

Is the following a listing of \mathbb{Z} ?

$$0, 1, 2, 3, \ldots, -1, -2, -3, \ldots$$

Where does the element -1 show up in the list?

To give a listing of a set *A*, every element of *A* must show up at some *finite index* in the list.

▶ In the example above, we never "reach" the element -1.

Here is a valid listing of \mathbb{Z} :

$$0,1,-1,2,-2,3,-3,\ldots$$

Be careful with "..." in the middle of your listing.

Bijections Compose

Fact: If $f: A \rightarrow B$ and $g: B \rightarrow C$ are bijections, then so is $g \circ f$.

Proof.

- ▶ If g(f(x)) = g(f(y)), then g is one-to-one so f(x) = f(y).
- ▶ Since *f* is one-to-one, then x = y. So $g \circ f$ is one-to-one.
- ▶ If $c \in C$, then there is a $b \in B$ such that g(b) = c (since g is onto).
- ▶ There is an $a \in A$ such that f(a) = b (since f is onto).
- ▶ So, g(f(a)) = g(b) = c. So $g \circ f$ is onto. \Box

Bijections compose.

Exercise: If there are bijections $f: A \to A'$ and $g: B \to B'$, then h(a,b) = (f(a),g(b)) is a bijection $A \times B \to A' \times B'$.

Bijections Compose

Fact: If $f: A \to B$ is a bijection, and there are bijections $f_1: A \to A'$ and $f_2: B \to B'$, then there is a bijection $g: A' \to B'$.

Proof.

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow_{f_1} & & \downarrow_{f_2} \\
A' & \xrightarrow{g} & B'
\end{array}$$

Define $g = f_2 \circ f \circ f_1^{-1}$. The composition of bijections is a bijection. \square

To show that A has the same size as \mathbb{N} , we can show that A has the same size as A', where A' has the same size as \mathbb{N} .

Polynomials with Rational Coefficients

Consider the set of polynomials with rational coefficients. Is this set countable?

For a polynomial, e.g., $P(x) = (2/3)x^4 - 2x^2 + (1/10)x + 9$, think of it as a string: (2/3, 0, -2, 1/10, 9).

The alphabet is \mathbb{O} , countably infinite.

Each polynomial is a finite-length string from the alphabet.

The polynomials with rational coefficients are countable.

Combine the fact that we proved |Q is countable and the Interleaving Argument.

Is O Countable?

Is Q countable?

- ▶ We found an injection $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$. So, $\mathbb{N} \times \mathbb{N}$ is countable.
- ▶ Since \mathbb{Z} has the same size as \mathbb{N} , then $\mathbb{Z} \times \mathbb{Z}$ is countable.
- ▶ Every rational number $q \in \mathbb{Q}$ can be written as q = a/b, where $a, b \in \mathbb{Z}$, b > 0, and a/b is in lowest terms.
- ▶ This defines an *injection* $\mathbb{O} \to \mathbb{Z} \times \mathbb{Z}$.
- ▶ An injection implies that $\mathbb Q$ is "smaller" than $\mathbb N \times \mathbb N$, so $\mathbb Q$ is countable.
- ▶ On the other hand, ℚ is infinite, so ℚ is countably infinite.

Principle: To show that a set *A* is countable, we only need to find an injection from *A* into a countable set.

Is \mathbb{R} Countable?

Is \mathbb{R} countable? First, let us study the closed unit interval [0,1].

Each element of [0,1] can be represented as a infinite-length decimal string.

► For example, take the element 0.37. This can also be represented as 0.36999....

Suppose we had a list of all numbers in [0,1].

0 . 9 9 1 ... 0 . 0 2 3 ... 0 . 2 8 9 ... : : : : : : ...

If we change the numbers on the diagonal, 0.929..., we get a number which is *not* in the list.

▶ Change all 8s to 1s and change all other numbers to 8s.

Interleaving Argument

Suppose that *A* is a countable alphabet. Consider the set of all *finite* strings whose symbols come from *A*.

A is countable.

Proof.

- ▶ List the alphabet $A = \{a_1, a_2, a_3, ...\}$.
- Step 0: List the empty string.
- Step 1: List all strings of length ≤ 1 using symbols from {a₁}. a₁.
- ► Step 2: List all strings of length \leq 2 using symbols from $\{a_1, a_2\}$. $a_1, a_2, a_1a_1, a_1a_2, a_2a_1, a_2a_2$.
- ► Step 3: List all strings of length \leq 3 using symbols from $\{a_1, a_2, a_3\}$.
- Continue forever. This exhaustively lists the members of the set. □

Cantor's Diagonalization Argument

- ▶ Assume we could list all numbers in [0,1].
- ► Form a new number in [0,1] by changing each number in the diagonal.
- ➤ This number cannot be the *i*th element of the list because it differs in the *i*th digit.
- ▶ We found an element not in our original list!
- ► So, [0,1] is uncountable.

What happens when we try to apply the diagonalization argument to \mathbb{N} ?

- We get a number with infinitely many digits.
- ▶ This is not a natural number! Not a contradiction.

The Size of \mathbb{R} v.s. [0,1]

Are [0,1] and \mathbb{R} the same size? Bijection?

Cantor-Schröder-Bernstein Theorem: If there are injections $f: A \rightarrow B$ and $g: B \rightarrow A$, then there is a bijection $A \rightarrow B$.

It suffices to find an injection both ways.

▶ $[0,1] \rightarrow \mathbb{R}$: Map $x \mapsto x$.

▶ $\mathbb{R} \to [0,1]$: Try $x \mapsto (1 + \exp(-x))^{-1}$.

Why exp(-x)? exp(x) works as well.

Comparison with Interleaving Argument

 \mathbb{N} and $\mathscr{P}(\mathbb{N})$ are not the same size.

Interleaving argument: The set of finite-length strings with symbols from $\mathbb N$ is countable.

 $\mathscr{P}(\mathbb{N})$ can be thought of as the set of *infinite-length* strings with symbols from $\{0,1\}$.

- ▶ For $S \subseteq \mathbb{N}$, if $i \in S$, then the *i*th bit of the string is 1.
- \blacktriangleright Example: $\{2,3,4\} \equiv (0,0,1,1,1,0,0,0,...)$

In fact, since the numbers in [0,1] can be written as infinite-length bit strings (binary expansion), there is a bijection

$$f:[0,1]\to\mathscr{P}(\mathbb{N}).$$

Proof 1 that P(N) is not countable?

What Is Not Countable?

Recall: Given a set S, the **power set** $\mathscr{P}(S)$ of S is the set of all subsets of S.

If
$$|S| = n$$
, then $|\mathscr{P}(S)| = 2^n$.

Is the size (cardinality) of the power set of *S* larger than the size of *S* when *S* is infinite?

Example of a function $f: \{0,1,2\} \rightarrow \mathcal{P}(\{0,1,2\})$:

$$f(0) = \{1,2\}, \qquad f(1) = \{1\}, \qquad f(2) = \emptyset.$$

The Power Set Is Large, Again

Suppose \mathcal{S} is countable, $\mathcal{S} = \{s_0, s_1, s_2, s_3, \dots\}.$

Consider the table:

Χ	is s_0 in $f(x)$?	is s_1 in $f(x)$?	is s_2 in $f(x)$?	
s_0	N	N	N	• • •
s ₀ s ₁	Y	Y	N	
s_2	N	Y	N	
:	:	÷	:	٠.
	l			

Is every element of $\mathscr{P}(S)$ listed? Consider the set formed by "flipping the diagonal": $\{s_0, s_2, \ldots\} = \{x \in S : x \notin f(x)\}$. This set is not listed.

The previous proof is also a proof by diagonalization!

The Power Set Is Large

Theorem: There is no bijection $S \to \mathcal{P}(S)$.

Proof.

- ▶ Consider any $f: S \to \mathscr{P}(S)$. We will show that f is not a bijection.
- ▶ We will define a set $A \subseteq S$ so that nothing maps to A, i.e., $f(x) \neq A$ for all x.
- ▶ Consider the set $A \subseteq S$, defined by $A = \{x \in S : x \notin f(x)\}$.
- ▶ Case 1: If $x \in f(x)$, then $x \notin A$. So, $f(x) \neq A$.
- ▶ Case 2: If $x \notin f(x)$, then $x \in A$. So $f(x) \neq A$.
- Conclusion: No x gets mapped to A. So f cannot be surjective. □

Cardinal Numbers

The power set of a set S has strictly larger cardinality than S.

This means that $\mathscr{P}(\mathbb{R})$ has even larger cardinality than $\mathbb{R}!$ And then there is $\mathscr{P}(\mathscr{P}(\mathbb{R}))...$

The size of sets is measured by cardinal numbers.

- Each natural number is a cardinal number.
- ▶ The size of \mathbb{N} is a cardinal number (countably infinite).
- $ightharpoonup \mathbb{R}$ has the "cardinality of the continuum".
- ► There are even larger cardinal numbers!

Are there cardinalities between $\mathbb N$ and $\mathbb R$? (Continuum Hypothesis) Not provable/disprovable from our axioms!

Summary

- ightharpoonup A set is countable if there is an injection into $\mathbb N$.
- $\qquad \qquad \textbf{Countable sets:} \ \mathbb{N}, \ \mathbb{Z}, \ \mathbb{Q}, \ prime \ numbers, \ finite-length \\ strings \ from \ a \ countable \ alphabet.$
- ► Cantor introduced a diagonalization argument. We proved that [0,1] is uncountable.
- Cantor-Schröder-Bernstein Theorem: If there is an injection both ways, there is a bijection.
- ► The power set is strictly larger than the original set!