

Mapping Brain Signals to Agent Performance, A Step Towards Reinforcement Learning from Neural Feedback

Julia Santaniello

Matt Russell julia.santaniello@tufts.edu mrussell@cs.tufts.edu **Benson Jiang**

benson.jiang@tufts.edu

Donatello Sassaroli

donatello.sassaroli@tufts.edu

Robert Jacob

jacob@cs.tufts.edu

Jivko Sinapov jivko.sinapov@tufts.edu

Introduction

- Reinforcement Learning from Human Feedback (RLHF) enhances agent training through using feedback from human "teachers"
- Most algorithms rely on preference or demonstration data as evaluative feedback. Feedback acquisition often increases user workload due to sustained attention, decision making and/or active demonstration
- Passive Brain-Computer Interfaces (BCI) assess user cognitive states through various neuroimaging devices
- Functional Near-Infrared Spectroscopy (fNIRS) is one such device that measures the change in hemodynamic response in the brain

Questions:

- How can we communicate agent performance implicitly through neural data?
- 2. How much granularity can we derive with this signal?

Hemodynamic Response at Major Task Events

Flappy (Active): Crash

Oxygenated

50 100 150

Episode Steps

Robot (Passive): Crash

50 100 150 200

Episode Steps

Flappy (Active): Win

Oxygenated

100 150 200

Episode Steps

Robot (Passive): Win

Setup

Participant Set Up:

agent through a task

Participant sits at a computer

and **observes** or **guides** an

Domains

Robot Fetch and Place

Lunar Lander

Flappy Bird

Machine Learning

Time Series Classification: Preliminary work shows that windows of fNIRS data are distinguishable across major task events. We frame this as a time series classification problem to predict agent performance from neural feature vectors.

Agent Performance: As the user observes the agent, we force the agent to take optimal, sub-optimal or worst-case actions. These classes are used as labels to train a classifier that can predict agent performance from fNIRS signals alone.

50 100 150 200 **Episode Steps** Optimal Sub-Optimal

Multi-Policy Agreement: We apply **KL-Divergence** to calculate the error between the agent's action distribution and that of ten (10) near-optimal policies. Euclidean distance was applied to continuous action spaces. These scores are averaged and used as a continuous label for regression analyses.

Results and Future Work

Classification Results

fNIRS Device: fNIRS is used to

activity in the prefrontal cortex

estimate **hemodynamic**

- Binary and Multi-Class granularity is attainable for this framework
- Binary models slightly out-performed Multi-Class models

Regression Analysis: High granularity feedback is attainable for this framework

Future Work:

- Apply trained models to a real-time RLHF framework to implicitly align agent behavior with human goals and expectations
- Explore how user perceptions are affected when interacting with an agent trained on their neural data
- Multi-modal neural and biosignals for richer preference adaptation

NASA-TLX Results

As expected, participants reported passive tasks to be significantly less demanding than active tasks. Cognitive workload is reduced when interacting with an agent learning from this framework.

Participant Cross-Validation: Cross-participant analysis was difficult for most models, a common limitation in BCI. The Robot Passive condition showed some promise.

