DSE 2256 DESIGN & ANALYSIS OF ALGORITHMS

Lecture 10 & 11

Brute force Techniques:

Exhaustive Search

Recap of L10 & L11

- Brute Force techniques
 - Definition
 - Brute Force Sorting
 - o Algorithm : Selection sort
 - o Algorithm : Bubble sort
 - Brute Force Searching
 - o Sequential search
 - Brute Force Sting Matching

Exhaustive search

- > Exhaustive search is simply a brute-force approach to combinatorial problems.
- ➤ It suggests generating each and every element (combinatorial object) of the problem domain, selecting those of them that satisfy all the constraints, and then finding a desired element (object).

Exhaustive search

• A brute force solution to a problem involving search for an element with a special property, usually among combinatorial objects such as permutations, combinations, or subsets of a set.

Method:

- 1. Generate a list of all potential solutions to the problem in a systematic manner.
- 2. Evaluate potential solutions one by one, disqualifying infeasible ones and, for an optimization problem, keeping track of the best one found so far.
- 3. When the search ends, announce the solution(s) found.

DSE 2256 Design & Analysis of Algorithms

Traveling Salesman Problem using Exhaustive Search

The Travelling Salesman Problem:

- Given *n* cities with known distances between each pair, find the shortest tour that passes through all the cities exactly once before returning to the starting city.
- Alternatively: Find shortest Hamiltonian circuit in a weighted connected graph.

Example:

Which are the Hamiltonian Circuits?

- If the tour starts with "p"
- If the tour starts with "r"

Traveling Salesman Problem using Exhaustive Search

Example: Let the start city be "q"

Tour

$$q \rightarrow p \rightarrow s \rightarrow r \rightarrow q$$

$$q \rightarrow p \rightarrow r \rightarrow s \rightarrow q$$

$$q \rightarrow s \rightarrow p \rightarrow r \rightarrow q$$

$$q \rightarrow s \rightarrow r \rightarrow p \rightarrow q$$

$$q \rightarrow r \rightarrow p \rightarrow s \rightarrow q$$

$$q \rightarrow r \rightarrow s \rightarrow p \rightarrow q$$

Cost

$$2+3+7+5=17$$

$$2+4+7+8=21$$

$$8+7+4+2=21$$

Traveling Salesman Problem using Exhaustive Search

Class exercise:

Solve the TSP for the following graph, where start city = "a"

Tour
 Length

$$a \rightarrow b \rightarrow c \rightarrow c \rightarrow d \rightarrow a$$
 $l = 2 + 8 + 1 + 7 = 18$
 $a \rightarrow b \rightarrow c \rightarrow d \rightarrow c \rightarrow a$
 $l = 2 + 3 + 1 + 5 = 11$ optimal

 $a \rightarrow c \rightarrow b \rightarrow d \rightarrow a$
 $l = 5 + 8 + 3 + 7 = 23$
 $a \rightarrow c \rightarrow b \rightarrow b \rightarrow a$
 $l = 5 + 1 + 3 + 2 = 11$ optimal

 $a \rightarrow c \rightarrow b \rightarrow c \rightarrow a$
 $l = 7 + 3 + 8 + 5 = 23$
 $a \rightarrow c \rightarrow b \rightarrow c \rightarrow a$
 $l = 7 + 1 + 8 + 2 = 18$

Efficiency: O((n-1)!)

Knapsack Problem using Exhaustive Search

The Knapsack Problem:

Given *n* items:

weights: w_1 w_2 ... w_n

values: v_1 v_2 ... v_n

&

a Knapsack of capacity W

Find most valuable subset of the items that fit into the knapsack.

Knapsack Problem using Exhaustive Search

Subset	Total weight	Total value						
Ø	0	\$ O						
{1}	7	\$42			Knapsack	of capacity =	= 10	
{2}	3	\$12			•			
{3}	4	\$40						
<i>{</i> 4 <i>}</i>	5	\$25	4 I	I				
{1, 2}	10	\$54						
{1, 3}	11	not feasible						
{1, 4}	12	not feasible						
{2, 3}	7	\$52						
{2, 4}	8	\$37	10					
${3, 4}$	9	\$65						
{1, 2, 3}	14	not feasible						
$\{1, 2, 4\}$	15	not feasible			$w_1 = 7$	$w_2 = 3$	$w_3 = 4$	$w_4 = 5$
{1, 3, 4}	16	not feasible	ļ [v ₁ = \$42	<i>v</i> ₂ = \$12	$v_3 = 40	$v_4 = 2
$\{2, 3, 4\}$	12	not feasible	_	knapsack	item 1	item 2	item 3	item 4
$\{1, 2, 3, 4\}$	19	not feasible						

Knapsack Problem using Exhaustive Search

Class exercise:

Given a knapsack of capacity = 16,
 Solve the knapsack problem for the following set of items.

Item	Weight	Value
1	2	\$20
2	5	\$30
3	10	\$50
4	5	\$10

Efficiency: Θ(2ⁿ)

Subset	Total weight	Total value
{1}	2	\$20
{2}	5	\$30
{3}	10	\$50
{4}	5	\$10
{1,2}	7	\$50
{1,3}	12	\$70
{1,4}	7	\$30
{2,3}	15	\$80
{2,4}	10	\$40
{3,4}	15	\$60
{1,2,3}	17	Not feasible
{1,2,4}	12	\$60
{1,3,4}	17	Not feasible
{2,3,4}	20	Not feasible
{1,2,3,4}	22	Not feasible

Assignment Problem using Exhaustive Search

The Asignment Problem:

- There are n people who need to be assigned to n jobs,
 one person per job.
- The cost of assigning person i to job j is C[i, j].
- Find an assignment that minimizes the total cost.

	Job 1	Job2	Job3	Job 4
Person 1	9	2	7	8
Person 2	6	4	3	7
Person 3	5	8	1	8
Person 4	7	6	9	4

Algorithmic Plan: Generate all legitimate assignments, compute their costs, and select the cheapest one.

Assignment Problem using Exhaustive Search

Assignment (col.#s)	<u>Cost</u>	-	Total C	<u>Cost</u>					
<1, 2, 3, 4>	9+4+1+4	=	18						
<1, 2, 4, 3>	9+4+8+9	=	30			9	2	7	8]
<1, 3, 2, 4>	9+3+8+4	=	24		<i>C</i> =	6	4	3	7
<1, 3, 4, 2>	9+3+8+6	=	26		<i>C</i> =	7	6	9	4
<1, 4, 2, 3>	9+7+8+9	=	33						
<1, 4, 3, 2>	9+7+1+6	=	23	etc.					

For this particular instance, the optimal assignment can be found by exploiting the specific features of the number given. It is: <2,1,3,4>

DSE 2256 Design & Analysis of Algorithms

Final Comments on Exhaustive Search

 Exhaustive-search algorithms run in a realistic amount of time <u>only on very small</u> <u>instances</u>

- In some cases, there are much better alternatives!
 - shortest paths
 - minimum spanning tree
 - assignment problem

• In many cases, exhaustive search or its variation is the only known way to get exact solution.

DSE 2256 Design & Analysis of Algorithms

Thank you!

Any queries?