# Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference

# Backgrounds

#### Few-Shot Learning

#### Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

```
Translate English to French: 

sea otter => loutre de mer 

peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => 

prompt
```

The vast number of languages, domains and tasks and the cost of annotating data

-> making few-shot learning a highly important research area

#### **Providing Task Description**



Simply appending task descriptions in natural language to an input

-> zero-shot scenarios where no training data is available at all

## Introduction



## PET

- 1. Train dataset(T) is transformed into a cloze question form to train PLM. (PLM is fine-tuned in each cloze question pattern)
- 2. Each PLM is ensembled to annotate the unlabeled data (D) as soft-label.
- Text Classifier is trained with soft-labeled datasets.

## Notation

- M: Masked Language Model(MLM)
- V: Vocabulary
- \_\_: Mask Token (∈ *V*)
- A: A specific Task
- £: A set of Labels for classification task
- $x = (s_1, ..., s_k)$ : a sequence of phrases  $(s_i \in V)$
- P: Pattern, where  $P(x) \in V^*$
- v: Verbalizer,  $\mathcal{L} \to V$  (mapping Label to a word belonging to V of M)
- (P, v): Pattern-Verbalizer-Pair (PVP)

# Examples

| Task ( <i>A</i> )            | Identifying whether two sentences contradict each other or agree with each other |  |  |  |  |
|------------------------------|----------------------------------------------------------------------------------|--|--|--|--|
| Sentence 1 ( $s_1$ )         | Mia likes pie                                                                    |  |  |  |  |
| Sentence 2 (s <sub>2</sub> ) | Mia hates pie                                                                    |  |  |  |  |
| Label (£)                    | $y_1$                                                                            |  |  |  |  |

```
x:[s_1.s_2] = [Mia\ likes\ pie, Mia\ hates\ pie]

v:y_0 \rightarrow Yes, \qquad y_1 \rightarrow No

P:[s_1?\_\_,s_2]
```

P(x): [Mia likes pie? \_\_\_, Mia hates pie]



#### Notation

- M: Masked Language Model(MLM)
- V: Vocabulary
- \_\_: Mask Token (∈ V)
- A: A specific Task
- £: A set of Labels for classification task
- $x = (s_1, ..., s_k)$ : a sequence of phrases  $(s_i \in V)$
- P: Pattern, where  $P(x) \in V^*$
- v: Verbalizer,  $\mathcal{L} \to V$
- (P, v): Pattern-Verbalizer-Pair (PVP)

# **PVP** training and inference



# **Combining PVPs**



PET: using New Labeled Data



- *PET* : (1)&(2)&(3)
  - No interaction between patterns
- *iPET*: (1)&(a)&(b)&(c)&(2)&(3)
  - Iterative PET for interaction between pattern

## **PET with Multiple Masks**

- *PET with Multiple Tasks* 
  - Because output may not be made up of a single token, multiple MASK tokens are placed to populate in order of high probability

$$q(t_1, \dots, t_k | \mathbf{z}) = \begin{cases} 1, & \text{if } k = 0 \\ q_M^j(t_j | \mathbf{z}) * (q(t' | \mathbf{z}'), & \text{if } k \ge 1 \end{cases}$$

- How to make patterns
  - So far, it's made in a manual way

#### for **WiC** task

" $s_1$ " / " $s_2$ ". Similar sense of "w"? \_\_\_.

 $s_1 \ s_2$  Does w have the same meaning in both sentences? \_\_

w. Sense (1) (a) " $s_1$ " (\_\_) " $s_2$ "

- A problem of determining whether one word used in the two sentences has the same meaning.

#### for **MultiRC** task

p. Question: q? Is it a? \_\_\_.

p. Question: q? Is the correct answer "a"? \_\_\_.

p. Based on the previous passage, q? Is "a" a correct answer? \_\_\_.

- As one of the QA tasks, it is a matter of determining whether an appropriate answer to the question is correct.

|      | Model                                                                                        | Params<br>(M)                                          | BoolQ<br>Acc.                                        | CB<br>Acc. / F1                                                                                       | COPA<br>Acc.                                         | RTE<br>Acc.                                          | WiC<br>Acc.                                          | WSC<br>Acc.                                          | MultiRC<br>EM / F1a                                                                                  | ReCoRD<br>Acc. / F1                                                                                   | Avg<br>-                                             |
|------|----------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| dev  | GPT-3 Small<br>GPT-3 Med<br>GPT-3 Large<br>GPT-3 XL<br>GPT-3 2.7B<br>GPT-3 6.7B<br>GPT-3 13B | 125<br>350<br>760<br>1,300<br>2,700<br>6,700<br>13,000 | 43.1<br>60.6<br>62.0<br>64.1<br>70.3<br>70.0<br>70.2 | 42.9 / 26.1<br>58.9 / 40.4<br>53.6 / 32.6<br>69.6 / 48.3<br>67.9 / 45.7<br>60.7 / 44.6<br>66.1 / 46.0 | 67.0<br>64.0<br>72.0<br>77.0<br>83.0<br>83.0<br>86.0 | 52.3<br>48.4<br>46.9<br>50.9<br>56.3<br>49.5<br>60.6 | 49.8<br>55.0<br>53.0<br>53.0<br>51.6<br>53.1<br>51.1 | 58.7<br>60.6<br>54.8<br>49.0<br>62.5<br>67.3<br>75.0 | 6.1 / 45.0<br>11.8 / 55.9<br>16.8 / 64.2<br>20.8 / 65.4<br>24.7 / 69.5<br>23.8 / 66.4<br>25.0 / 69.3 | 69.8 / 70.7<br>77.2 / 77.9<br>81.3 / 82.1<br>83.1 / 84.0<br>86.6 / 87.5<br>87.9 / 88.8<br>88.9 / 89.8 | 50.1<br>56.2<br>56.8<br>60.0<br>64.3<br>63.6<br>66.9 |
|      | РЕТ<br>iРЕТ                                                                                  | 223<br>223                                             | 79.4<br><b>80.6</b>                                  | 85.1 / 59.4<br><b>92.9</b> / <b>92.4</b>                                                              | 95.0<br>95.0                                         | 69.8<br><b>74.0</b>                                  | 52.4<br>52.2                                         | 80.1<br>80.1                                         | <b>37.9 / 77.3</b> 33.0 / 74.0                                                                       | 86.0 / 86.5<br>86.0 / 86.5                                                                            | 74.1<br><b>76.8</b>                                  |
| test | GPT-3 PET iPET SotA                                                                          | 175,000<br>223<br>223<br>11,000                        | 76.4<br>79.1<br><b>81.2</b><br>91.2                  | 75.6 / 52.0<br>87.2 / 60.2<br><b>88.8</b> / <b>79.9</b><br>93.9 / 96.8                                | 92.0<br>90.8<br>90.8<br>94.8                         | 69.0<br>67.2<br><b>70.8</b><br>92.5                  | 49.4<br><b>50.7</b><br>49.3<br>76.9                  | 80.1<br>88.4<br>88.4<br>93.8                         | 30.5 / 75.4<br><b>36.4 / 76.6</b><br>31.7 / 74.1<br>88.1 / 63.3                                      | 90.2 / 91.1<br>85.4 / 85.9<br>85.4 / 85.9<br>94.1 / 93.4                                              | 71.8<br>74.0<br><b>75.4</b><br>89.3                  |



• It shows that the performance of the GPT is overtaken using PET and iPET, even though there is a huge difference in the number of parameters.

## Conclusion

#### Contributions

- PET help leverage the knowledge contained within pretrained language models for downstream tasks.
- When the initial amount of training data is limited, PET gives large improvements over standard supervised training and strong semi-supervised approaches
- Achieve few-shot text classification performance similar to GPT-3 on SuperGLUE with LMs that have three orders of magnitude fewer parameters



- Exploiting Cloze Questions for Few Shot Text Classification and Natural Language Inference

https://arxiv.org/abs/2001.07676

- It's Not Just Size That Matters: Small Language Models Are Also Few-Shot Learners

https://arxiv.org/abs/2009.07118

- Zero-shot Text Classification With Generative Language Models

https://arxiv.org/abs/1912.10165