Simple missing functionalities

Anton Antonov MathematicaForPrediction at GitHub MathematicaVsR project at GitHub November, 2016

Introduction

This notebook belongs to the Mathematica-part of MathematicaVsR at GitHub project DataWrangling.

This notebook illustrates commands that are (in my opinion) are missing from Mathematica but are present and used often in R. See these corresponding R-part HTML file or RMarkdown file.

In this notebook functionalities of those missing commands are obtained by the functions RecordsSummary, VariableDependenceGrid, CrossTabulate, and MosaicPlot.

Load packages

The following commands load the packages used in this notebook.

```
Import[
```

"https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/master/
MathematicaForPredictionUtilities.m"]

Import[

"https://raw.githubusercontent.com/antononcube/MathematicaForPrediction/master/
MosaicPlot.m"]

Data load and rudimentary analysis

Titanic data

Here is the summary of the Titanic data used below:

titanicData = (Flatten@*List) @@@ExampleData[{"MachineLearning", "Titanic"}, "Data"]; columnNames = (Flatten@*List) @@ ExampleData[{"MachineLearning", "Titanic"}, "VariableDescriptions"]; titanicData = DeleteCases[titanicData, {___, _Missing, ___}]; RecordsSummary[titanicData, columnNames] 2 passenger age Min 0.1667 1 passenger class 1st Qu 21. 3 passenger sex 4 passenger survival 3rd 501 , Median 28. , male 658 , died 619 1st 284 Mean 29.8811 female 388 survived 427 2nd 261 3rd Qu 39. Max 80.

This variable dependence grid shows the relationships between the variables.

Magnify[#, 0.7] &@VariableDependenceGrid[titanicData, columnNames]

Employee attitude dataset

Here is the summary of the Titanic data used below:

```
eaData = ExampleData[{"Statistics", "EmployeeAttitude"}];
eaColumnNames = (Flatten@*List) @@
   ExampleData[{"Statistics", "EmployeeAttitude"}, "ColumnHeadings"];
Multicolumn[RecordsSummary[N@eaData, eaColumnNames], 3, Dividers → All]
```

1 Rating		4 Learning		7 Advancement	
Min	40.	Min	34.	Min	25.
1st Qu	58.	1st Qu	47.	1st Qu	35.
Mean	64.6333	Mean	56.3667	Median	41.
Median	65.5	Median	56.5	Mean	42.9333
3rd Qu	72.	3rd Qu	67.	3rd Qu	48.
Max	85.	Max	75.	Max	72.
2 Compla	ints	5 Raises			
Min	37.	Min	43.		
1st Qu	58.	1st Qu	58.		
Median	65.	Median	63.5		
Mean	66.6	Mean	64.6333		
3rd Qu	77.	3rd Qu	71.		
Max	90.	Max	88.		
3 Privileg	es	6 Critical			
Min	30.	Min	49.		
1st Qu	45.	1st Qu	68.		
Median	51.5	Mean	74.7667		
Mean	53.1333	Median	77.5		
3rd Qu	64.	3rd Qu	80.		
Max	83.	Max	92.		

It is a good idea to get an impression of the numerical variables distributions in a given dataset.

There are several approaches for doing this (in Mathematica and in general.)

Box-and-whisker diagrams

DistributionChart[Transpose[eaData], ChartElementFunction → "BoxWhisker", ChartLabels \rightarrow Map[Rotate[#, π / 12] &, eaColumnNames], PlotTheme -> "Detailed"]

Panel of histograms

Multicolumn[

MapThread[Histogram[#1, PlotLabel → #2, PlotRange → All, PlotTheme -> "Detailed"] &, {Transpose[eaData], eaColumnNames}], 3]

Cross tabulation and mosaic plots

Cross tabulation

In statistics contingency tables are matrices used to show the co-occurrence of variable values of multidimensional data. They are fundamental in many types of research. Below are some examples of crosstabulation. For a detailed discussion see the Markdown file "Contingency-tables-creation-examples.md" of this project or the corresponding PDF file.

CrossTabulate[titanicData[All, {1, 3}]] // MatrixForm

(female	male	,
1st	133	151	
2nd	103	158	
3rd	152	349	

A generalization of CrossTabulate is the function CrossTensorate implemented in Mathematica-ForPredictionUtilities.m that takes a "formula" argument similar to R's xtabs.

CrossTensorate[Count == "passenger class" + "passenger sex" + "passenger survival", titanicData, columnNames] // MatrixForm

(female	male	
1st	(died 5)	(died 98)	
130	survived 128	survived 53	
2nd	(died 11)	died 135	
ZIIU	survived 92	survived 23	
3rd	(died 80)	(died 290)	
Jiu	survived 72	survived 59	

CrossTensorate["passenger age" == "passenger class" + "passenger sex", titanicData, columnNames] // MatrixForm

(female	male
	4926.	
2nd	2832.42	4868.83
3rd	3372.17	9060.83

Mosaic plots

Mosaic plots can illustrate fairly well the (conditional) dependencies between the values of the categorical variables in a dataset.

MosaicPlot[titanicData[All, {1, 3, 4}]]

In contrast with R (and RStudio) in Mathematica's FrontEnd we can have tooltips showing the exact conditional values. (Hover with the mouse pointer over the rectangles in the plot above.)

