Noise-Based Regularizers for Recurrent Neural Networks

Adji Bousso Dieng

COLUMBIA UNIVERSITY
IN THE CITY OF NEW YORK

Recurrent Neural Networks Are Awesome!

 \rightarrow Yes, they are.

$$\mathbf{s}_t = f_{\Psi}(\mathbf{x}_t, \mathbf{s}_{t-1}) \text{ and } \mathbf{o}_t = V^{\top} \mathbf{s}_t \text{ where } \Psi = \{U, W\}$$

- ightarrow Recurrence + Parameter sharing \implies $\mathbf{s}_t = r(\mathbf{x}_t, ..., \mathbf{x}_1; \Psi)$
- ightarrow Very powerful model class for sequences

Hold On... RNNs Overfit Easily Though

 \rightarrow Yes, unfortunately.

→ But we know what happens when they overfit:

"When a neural network overfits badly during training, its hidden states depend very heavily on each other."

- Hinton, 2012

So We Can Just Inject Noise And... Boom!

→ Absolutely. Noise injection helps the RNN learn better.

Hold On... How Do I Inject The Noise?

→ Simple. Just follow this generative process:

$$\epsilon_t \sim \varphi(\cdot; \mu, \gamma)$$
; $\mathbf{z}_t = g_{\Psi}(\mathbf{x}_t, \mathbf{z}_{t-1}, \epsilon_t)$; and $\mathbf{o}_t = V^{\top} \mathbf{z}_t$

ightarrow Make sure you choose g_{Ψ} such that \mathbf{z}_t is *unbiased*,

$$\begin{split} &\mathbb{E}_{p(\mathbf{z}_{t}(\epsilon_{1:t}) \mid \mathbf{z}_{t-1})}\left[\mathbf{z}_{t}(\epsilon_{1:t})\right] = f_{\Psi}(\mathbf{x}_{t}, \mathbf{z}_{t-1}) \text{ (weak unbiasedness)} \\ &\mathbb{E}_{p(\mathbf{z}_{t}(\epsilon_{1:t}) \mid \mathbf{z}_{t-1})}\left[\mathbf{z}_{t}(\epsilon_{1:t})\right] = \mathbf{s}_{t} \text{ (strong unbiasedness)} \end{split}$$

- → This ensures that the underlying RNN is preserved.
- \rightarrow For example you can use:

$$\mathbf{z}_t = f_{\Psi}(\mathbf{x}_t, \mathbf{z}_{t-1}) \odot \epsilon_t$$

→ Dropout is also noise injection. However, Dropout is *biased*.

Ok. Tell Me More...

- → Alright. This procedure is called NOISIN.
- \rightarrow Uses backpropagation through time on a lower bound to the log marginal likelihood of the data

$$\mathcal{L} = \sum_{t=1}^{T} E_{p(\epsilon_{1:t})} \left[\log p(\mathbf{x}_{t+1} | \mathbf{z}_{t}(\epsilon_{1:t})) \right]$$

- ightarrow This averages the predictions of infinitely many RNNs (a.k.a ensemble method)
- \rightarrow It also has ties to Empirical Bayes.
- \rightarrow Using NOISIN is as easy as fitting the original RNN.
- \rightarrow You can use any noise distribution as long as you scale it to have unbounded variance.

Ok Well... Any Results?

 \rightarrow On language modeling benchmarks, NOISIN improves over Dropout by as much as 12.2% on the Penn Treebank and 9.4% on the Wikitext-2 dataset.

 \rightarrow See below for the Penn Treebank.

	I	Medium	1	Large		
Method	γ	Dev	Test	γ	Dev	Test
None		115	109		123	123
Gaussian	1.10	76.2	71.8	1.37	73.2	69.1
Gamma	1.06	78.2	74.5	1.39	73.6	69.5
Bernoulli	0.41	75.7	71.4	0.33	72.8	68.3
Beta	1.07	76.0	71.4	1.50	74.4	70.2

		Mediun	1	Large		
Method	γ	Dev	Test	γ	Dev	Test
Dropout (D) D + Gaussian D + Gamma D + Bernoulli D + Beta	0.53 0.38 0.80 0.20	80.2 73.4 73.5 73.3 73.0	77.0 70.4 70.3 70.1 69.2	 0.92 0.92 0.50 0.70	78.6 70.0 71.1 70.0 70.0	75.3 66.1 68.2 66.1 66.2

RNNs + NOISIN Are Awesome!

Collaborators

- + Rajesh Ranganath
- + Jaan Altosaar
- + David Blei