АФІННІ ФУНКЦІЇ ТА РІВНЯННЯ

I визначення

Définition n°1. Лінійна функція

Нехай m і p — два дійсні числа, а f — функція. Якщо для будь-якого числа можна записати f(x)=mx+p тоді f ϵ афінною функцією

Remarque n°1. Постійна функція, лінійна функція

Якщо m=0, ми говоримо про постійну функцію Якщо p=0, афінна функція також є лінійною.

Exemple n°1.

$$f:\begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto 3,2 \, x - 5 \end{cases} \quad \epsilon \text{ афінною функцією: } m = 3,2 \quad \text{i} \quad p = -5$$

$$g:\begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto -4,3 \end{cases} \quad \epsilon \text{ постійною функцією.}$$

$$h:\begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto -2,5 \, x \end{cases} \quad \epsilon \text{ афінною та лінійною функцією.}$$

Définition n°2. Графічне зображення, рівняння кривої

Нехай $f : \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto f(x) \end{cases}$ будь-яка функція. Назвемо графічним зображенням f і позначимо C_f множину точок площини, що мають координати $(x \; ; \; y = f(x))$ Тоді ми говоримо, що C_f є кривою з рівнянням y = f(x)

Propriété n°1. (наразі дозволено)

Нехай $f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto mx + p \end{cases}$ з m і p дійсними числами ϵ афінною функцією, тоді її графічне представлення C_f ϵ прямою лінією з рівнянням y = mx + p

Définition n°3.

m — нахил лінії, а *p* — її точка перетину.

Propriété n°2.

I $A(x_A; y_A = f(x_A))$ і $B(x_B; y_B = f(x_B))$ дві різні точки C_f тоді:

$$m = \frac{f(x_B) - f(x_A)}{x_B - x_A} = \frac{y_B - y_A}{x_B - x_A}$$

функціональна сторона для будь-якого дійсного x $f(x)=\frac{1}{2}x+1$ на стороні графічного представлення крива C_f має рівняння $car\ f(-4)=-1$ $y=\frac{1}{2}x+1$

II Розв'язати рівняння з одним невідомим

II.1 Інструменти

Propriété n°3.

Нехай a,b,c — три дійсні числа, а d — ненульове дійсне число. $a=b \Leftrightarrow a+c=b+c$ і $a=b \Leftrightarrow a-c=b-c$ і $a=b \Leftrightarrow a \times d=b \times d$ і $a=b \Leftrightarrow \frac{a}{d}=\frac{b}{d}$

Propriété n°4.

Добуток множників дорівнює нулю тоді і тільки тоді, коли хоча б один із його множників дорівнює нулю.

II.2 Методи

Définition n°4.

Розв'язати рівняння означає знайти всі розв'язки цього рівняння.

Méthode n°1. Tun рівняння ax + b = 0 $(a \neq 0)$

вирішити в \mathbb{R} : (x+2)(2x-3)+3=(2x-1)(x-5) Відповідь

Наступні рівняння еквівалентні:

$$(x+2)(2x-3)+3=(2x-1)(x-5)$$

$$2x^{2}-3x+4x-6+3=2x^{2}-10x-x+5$$

$$2x^{2}+x-3=2x^{2}-11x+5$$

$$2x^{2}+x-3-(2x^{2}-11x+5)=0$$

$$2x^{2}+x-3-2x^{2}+11x-5=0$$

$$12x-8=0$$

$$12x=8$$

$$x=\frac{8}{12}=\frac{2}{3}$$

Це рівняння має єдиний розв'язок : $\frac{2}{3}$

Méthode n°2. Рівняння добутку

Résoudre dans \mathbb{R} : (3x+2)(5-2x)(2x-7)=0 Відповідь

- (3x+2)(5-2x)(2x-7)=0
- Добуток множників дорівнює нулю тоді і тільки тоді, коли хоча б один із його множників дорівнює нулю.

$$3x+2 =$$
 Де $5-2x = 0$ Де $2x-7 = 0$
 $x = -\frac{2}{3}$ $x = \frac{-5}{-2} = 2,5$ $x = \frac{7}{2} = 3,5$

• Це рівняння має три розв'язки : $-\frac{2}{3}$; 2,5 et 3,5