Ch7, p.22

Theorem 6 (variance of population total estimator)

- Under simple random sampling with replacement, $\underline{Var}(\underline{T}) = \underline{N^2} \left(\frac{\sigma^2}{\underline{n}}\right)$.
- Under simple random sampling without replacement,

ightharpoonup Note. The precision of the estimator T does depend on population size N.

• Estimation of population variance $o^2 = \sum_{i=1}^{m} \frac{n_i}{N} (\zeta_i - u)^2 = \frac{1}{N} \sum_{i=1}^{M} (\chi_i - \underline{u})^2$

Recall. When $\underline{F_0}$ is unknown, the $\underline{\sigma}$ in the standard error of \overline{X} is a parameter, i.e., it is unknown.

Q: how to estimate σ or σ^2 ?

Definition 10 (sample variance)

The <u>sample variance</u> of X_1, X_2, \dots, X_n is defined as $\frac{\hat{\sigma}^2}{n} = \frac{1}{n} \sum_{k=1}^{n} (X_k - \overline{X})^2$.

Theorem 7 (expectation of sample variance, s.r.s. with replacement)

Under <u>s.r.s.</u> with replacement, we have $\underline{E(\hat{\sigma}^2)} = \underline{\sigma^2} \left(\frac{n-1}{n} \right)$ not unbiased

Proof. From the identity
$$(X_k - \overline{X})$$
 $(X_k - \overline{X})$ $(X_k - \overline{$

by taking expectation on the both sides of (\triangle) , we have

by taking expectation on the both sides of
$$(\triangle)$$
, we have
$$\sum_{k=1}^{n} \underline{E}\left[(X_{k}) = \mu\right] = \underline{E}\left[\sum_{k=1}^{n} (X_{k} - \overline{X})^{2}\right] + \underline{n}\,\underline{E}\left[(\overline{X} - \mu)^{2}\right], \quad (\nabla)$$
which leads to $(\nabla a_{r}(X_{k}))$ which leads to $(\nabla a_{r}(X_{k}))$ and $(\nabla a_{r}$

Thus, we have $E(\hat{\sigma}^2) = ((n-1)\sigma^2)/\underline{n}$.

Theorem 8 (expectation of sample variance, s.r.s. without replacement) not unbiased-

Under s.r.s. without replacement, we have
$$\underline{E(\hat{\underline{\sigma}^2})} = \underline{\sigma^2} \left(\frac{n-1}{n} \right) \left(\frac{N}{N-1} \right)$$

Proof: The identities (\triangle) and (∇) in the above proof still hold, and (∇) leads to

leads to
$$\frac{n}{\sqrt{N}} = E(n\hat{\sigma}^2) + n \left[\frac{\sigma^2}{n} \left(1 - \frac{n-1}{N-1} \right) \right] \cdot \sqrt{N-1}$$
After some algebra, this gives the desired result.

After some algebra, this gives the desired result

in the sample.

