Exercice 273:

Soit $M \in \mathcal{M}_2(\mathbb{R})$. Montrer que la classe de similitude de M est connexe par arcs si et seulement si M est diagonalisable.

 $\longleftarrow \big|$ On suppose que M est diagonalisable.

 $\overline{\text{Il existe donc } Q \in \text{GL}_2(\mathbb{R}) \text{ et } D \in \mathcal{M}_2(\mathbb{R}) \text{ diagonale tels que } M = Q^{-1}DQ.$ Soit $A = P^{-1}MP \in \mathcal{C}(M)$.

Dans un premier temps, on suppose que $\det PQ$ et $\det Q$ sont de même signe, tous deux positifs par symétrie. Par pivot de Gauss, il existe $T_1, \ldots, T_n \in \mathcal{GL}(\mathbb{R})$ telles que

$$P = T_1 \times \dots \times T_n \begin{pmatrix} 1 & 0 & 0 \\ & \ddots & & 0 \\ 0 & & 1 & \\ & 0 & & \det Q \end{pmatrix} = T_1 \times \dots \times T_n \times B$$

On pose alors $\gamma_1: t \in [0,1] \mapsto \prod_{i=1}^n (I_2 + t(T_i - I_2))B \in \mathcal{M}_n(\mathbb{R})$. Elle est continue, $\gamma_1(0) = I_2$ et $\gamma_1(1) = P$ $\forall t \in [0,1], \forall i \in \llbracket 1,n \rrbracket, \det(I_2 + t(T_i - I_2)) = 1 \text{ et } \det \gamma_1(t) > 0 \text{ donc } \gamma_1(t) \in \mathrm{GL}_n(\mathbb{R}) \text{ donc } \gamma_1([0,1]) \subset \mathrm{GL}_n(\mathbb{R}).$ De même, on trouve $\gamma_2: [0,1] \to \mathrm{GL}_n(\mathbb{R})$ continue telle que $\gamma_2(0) = PQ$ et $\gamma_2(1) = I_2$. Ainsi, $\gamma = \gamma_1 \gamma_2 : [0,1] \to \operatorname{GL}_n(\mathbb{R})$ est continue et $\gamma(0) = PQ$ et $\gamma(1) = Q$. Finalement, $\mu: t \in [0,1] \mapsto \gamma(t)\gamma(t)^{-1} \in \mathcal{C}(M)$ est continue car $A \mapsto A^{-1}$ est continue sur $\mathrm{GL}_n(\mathbb{R})$. On a $\mu(0) = PQD(PQ)^{-1} = A$ et $\mu(1) = QPQ^{-1} = M$

Si det PQ et det Q sont de signes opposés, $A = (PQ)D(PQ)^{-1} = (PQC)D(PQC)^{-1}$ où $C = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ dont le déterminant vaut -1.

Comme $\det PQC$ et $\det QC$ sont de même signe, on revient au premier cas.

Ainsi, la classe de similitude de M est connexe par arcs.

 \implies On suppose que la classe de similitude de M est connexe par arcs.

Soit
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. On pose $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ et $M' = P^{-1}MP = \begin{pmatrix} d & c \\ b & a \end{pmatrix}$.
La fonction $f: (a_{ij}) \in \mathcal{M}_2(\mathbb{R}) \mapsto a_{12} - a_{21} \in \mathbb{R}$ est continue et $f(M) = -f(M')$.

Comme $\mathcal{C}(M)$ est connexe par arcs, on peut y trouver N telle que f(N) = 0, c'est-à-dire que N est symétrique. Elle est donc diagonalisable.

Comme N et M sont semblables,

M est diagonalisable