

Experiment No: 1 Date:01-03-2021

Experimental verification of Newton's Second Law, $\Sigma F = Ma$.

Equipment:

A wooden Planck with scale and frictionless surface, trolley of known weight. Cotton threads, stop watch, and slotted weights

Theory:

Newton's 2nd law simply states that

"A nonzero net force ΣF acting on mass M generates an acceleration a in that mass such that ΣF = Ma."

In Fig. 1, assuming no friction, the hanging mass m can cause motion for both m and M. The force of gravity on m is F = mg. This force has to move a total mass of m + M. In the absence of friction, F = mg is the **only force** causing motion. In this case mg is the ΣF .

Using Newton's 2nd Law:

 $\Sigma F = (Mass)(Accel.)$, we may write:

$$mg = (m + M) a$$
 or,

$$a = mg / (m + M).$$

Fig. 1

Using Newton's 2nd Law:

 $\Sigma F = (Mass)(Accel.)$, we may write:

$$mg - \mu Mg = (m + M) a$$
 or,

$$a = (mg - \mu Mg) / (m + M).$$

Fig. 2

In Fig. 2, assume friction is present for M only because it has to slide on the top of the horizontal table. Since N = w in magnitude for M, we may write or N = Mg.

Name: Fiza Siddiqui

Registration No:20BCE10077

Class No:0337(B11+B12+B13)

Experiment No: 1 Date:01-03-2021

The force of kinetic friction is $F_k = \mu N$, or $F_k = \mu Mg$.

Procedure:

- 1. Fix the trolley on one side of wooden Planck and note its position by scale provided on it
- 2. Tied the hook of Planck with thread and pass over pulley and tied the slotted weight.
- 3. When the Planck moves due to weight start stop watch and when it moves other end of Planck stop the stop watch.
- 4. Note the time taken by wooden trolley to move.

OBSERVATION TABLE

Given and Measured $g = 9.81 \text{ m/s}^2$. S = length of the wooden bench

S.NO	m (g)	M (g)	$\mu_{\mathbf{k}}$	Time (t) (ms)	Distanc e (cm)	ΣF=mg – μM (N)	Total mass M+m (g)	Measured $a = \frac{\sum F/(M+m)}{(m/s^2)}$	Calculated $a = 2S / t^2$ (m/s^2)
1.	10	20	0.002	78	100	0.0977	30	3.2567	3.2873
2.	15	10	0.003	58	100	0.1468	25	5.8720	5.9453
3.	5	30	0.002	120	100	0.0485	35	1.3857	1.3889
4.	30	30	0.004	64	100	0.2931	60	4.8850	4.8828
5.	40	50	0.004	68	100	0.3904	90	4.3378	4.3252

Class No:0337(B11+B12+B13)

Experiment No: 1 Date:01-03-2021

Calculation(s):

$$\Sigma F = mg - \mu Mg$$

$$= g(m - \mu M)$$

Measured $a = \Sigma F/(M+m)$

Measured a1 =
$$0.0977 / (30x10^{(-3)})$$

= 3.2567 m/s^2
Measured a2 = $0.1468 / (25x10^{(-3)})$
= 5.8720 m/s^2
Measured a3 = $0.0485 / (35x10^{(-3)})$
= 1.3857 m/s^2
Measured a4 = $0.2931 / (60x10^{(-3)})$
= 4.8850 m/s^2
Measured a5 = $0.3904 / (90x10^{(-3)})$
= 4.3378 m/s^2

Class No:0337(B11+B12+B13)

Experiment No: 1 Date:01-03-2021

Calculated a =2S $/t^2$

Calculated a1 =
$$2x(100 \times 10^{(-2)})/(0.78 \times 0.78)$$

= 3.2873 m/s^2
Calculated a2 = $2x(100 \times 10^{(-2)})/(0.58 \times 0.58)$
= 5.9453 m/s^2
Calculated a3 = $2x(100 \times 10^{(-2)})/(1.2 \times 1.2)$
= 1.3889 m/s^2
Calculated a4 = $2x(100 \times 10^{(-2)})/(0.64 \times 0.64)$
= 4.8828 m/s^2
Calculated a5 = $2x(100 \times 10^{(-2)})/(0.68 \times 0.68)$
= 4.3252 m/s^2

Error calculation.

4

Error = $|measured\ a - calculated\ a|/calculated\ x\ 100$

Registration No:20BCE10077

Class No:0337(B11+B12+B13)

Experiment No: 1 Date:01-03-2021

Average error =0.9308+1.2329+0.2304+ 0.04506+0.2913/5

= 0.5461%

Conclusion:

The calculated and the measured acceleration values are almost equal with an error of **0.5461%**.

Hence it verifies the **NEWTON'S SECOND LAW OF MOTION**

Precaution.

- 1. The pulley should be frictionless.
- 2. There shouldn't be any twist in the string.
- 3. Mass of pulley should be negligible.
- 4. Surface should be horizontal.