ГОМОЛОГИЧЕСКАЯ АЛГЕБРА

Андрей Вячеславович Семёнов

КОНСПЕКТ ЗА АВТОРСТВОМ ПАВЛА ЦЫГАНЕНКО И ЛЬВА МУКОСЕЕВА

Содержание

1. Кольца и	модули	1
	овые алгебры	
	ал алгебры	
	ал модуля	
	·	
2. Проекти	вные модули	5
2.1. Свойс	тва	5

1. Кольца и модули

1.1. Групповые алгебры

Определение 1: Групповая алгебра группы G над полем k:

$$kG = \langle \left\{ e_g \mid g \in G \right\} \rangle_k$$

То есть её элементы – формальные комбинации вида $\sum_{g \in G} \alpha_g g$, где ненулевых α конечное число.

Сложение и умножение задаются следующим образом:

$$\sum_{g \in G} \alpha_g g + \sum_{g \in G} \beta_g g = \sum_{g \in G} \bigl(\alpha_g + \beta_g\bigr) g,$$

$$\left(\sum_{g \in G} \alpha_g g\right) \cdot \left(\sum_{g \in G} \beta_g g\right) = \sum_{g \in G} \left(\sum_{xy = g} \alpha_x \beta_y\right) g.$$

Определение 2: Модуль M_R называется простым, если он не содержит нетривиальных собственных подмодулей.

Определение 3: Модуль M_R называется полупростым, если любой его подмодуль выделяется прямым слагаемым.

To есть $\forall N \leqslant M : \exists P \leqslant M : M = M \oplus N$.

<u>Замечание</u>:

- 1. M полупрост $\Longleftrightarrow M = \bigoplus_{i \in I} M_i$, где все M_i простые.
- 2. Кольцо называется полупростым, если оно полупросто как левый модуль над собой. Без доказательства скажем, что это эквивалентно тому, что любой R-модуль полупрост.

Следующую теорему вам должны были доказать в школьном курсе по некоммутативным кольцам.

Теорема 1 (Веддерберна — Артина): Если R артиново, то

$$R$$
 – полупростое $\Longleftrightarrow R = \prod_{j \in I} M_{n_j} ig(D_j ig), \quad D_j$ – тела.

То есть полупростое артиново кольцо разлагается в прямое произведение матричных колец над телами, и в предположении артиновости обратное тоже верно.

Теорема 2 (Машке): Пусть k – поле, $|G| < \infty$, char k = 0 или char $k \nmid |G|$. Тогда kG – полупростая алгебра.

Доказательство: Покажем, что произвольный модуль M над kG полупрост. Рассмотрим $N\leqslant M$ и стандартные отображения

$$N \rightarrowtail M \stackrel{\tilde{\pi}}{\twoheadrightarrow} N.$$

Определим усреднение $\tilde{\pi}$:

$$\pi(x) = \frac{1}{|G|} \sum_{g \in G} g \tilde{\pi} (g^{-1}x).$$

• π – kG-линейный гомоморфизм. Действительно, для $h \in G$ проверим, что $\pi(hx)h\pi(x)$, а остальное и так понятно.

Обозначим $t = h^{-1}g$, тогда

$$\pi(hx) = \frac{1}{|G|}\sum_{g\in G}g\tilde{\pi}\big(g^{-1}hx\big) = \frac{1}{|G|}\sum_{t\in G}ht\tilde{\pi}\big(t^{-1}x\big) = h\pi(x).$$

• N неподвижен под действием π . Действительно, если $x\in N$, то $g^{-1}x\in N$ и $\tilde{\pi}(g^{-1}x)=g^{-1}x$, так что теперь всё ясно.

Тем самым, $M = N \oplus \operatorname{Ker} \pi$.

2

1.2. Радикал алгебры

Далее под A подразумевается конечномерная алгебра над полем k.

Определение 4: $Padukanom\ J(A)$ называется сумма всех двухсторонних нильпотентных идеалов.

Теорема 3:

- 1. J(A) нильпотентный идеал в A.
- 2. Любой нильпотентный идеал лежит в J(A).
- 3. J(A/J(A)) = 0

Доказательство:

1. Во-первых, сумма двух нильпотентных двухсторонних идеалов тоже нильпотентный двухсторонний идеал. Действительно, если $I_1^{n_1}=0$ и $I_2^{n_2}=0$, то $(I_1+I_2)^{n_1+n_2}$ порождается всеми произведениями длины n_1+n_2 элементов из I_1+I_2 , но раскрывая скобки получится либо не менее n_1 множителей из I_1 , либо не менее n_2 из I_1 , а значит $(I_1+I_2)^{n_1+n_2}=0$.

Понятно, что вместо $n_1 + n_2$ можно было взять $\max(n_1, n_2)$.

Во-вторых, можно считать, что в сумме из определения J(A) конечное число идеалов, потому что алгебра конечномерна.

2. Если идеал двухсторонний, то всё ясно. Допустим I – левый идеал и $I^k=0$. Тогда IA – двухсторонний. Покажем, что $IA\subseteq J(A)$ и так как алгебра с единицей, из этого будет следовать искомое.

$$(IA)^k = I\underbrace{(AI)...(AI)}_{k-1}A \subseteq I^kA = 0.$$

1. Рассмотрим двухсторонний нильпотентный идеал \overline{I} в A/J(A). Пусть $\overline{I}^k=0$. Тогда $I^k\subseteq J(A)$. По первому пункту теоремы J(A) нильпотентен, скажем, $J^n(A)=0$.

$$I^{kn} \subseteq J^n(A) = 0 \implies I^{kn} = 0.$$

По второму пункту I лежит в J(A), а значит $\overline{I}=0$.

 Φ акт: A полупроста $\iff J(A) = 0$.

1.3. Радикал модуля

Сейчас мы будем работать с модулями над конечномерной алгеброй над полем.

Определение 5: Paдикалом модуля M называется пересечение всех его максимальных подмодулей и обозначается как $\mathrm{Rad}\,M$.

Лемма 1: M полупрост $\Longrightarrow \operatorname{Rad} M = 0$.

Доказательство: Допустим существует $x\in \mathrm{Rad}\, M\setminus \{0\}$. Как и всякий подмодуль, Ax можно выделить в прямую сумму: $M=A\oplus U$. Если рассмотреть стандартный эпиморфизм $A\to Ax: 1\mapsto x$, то станет очевидно, что $Ax\cong A/\mathrm{Ann}\, x$. Вложение $\mathrm{Ann}\, x$ в максимальный идеал I, его содержащий, индуцирует эпиморфизм $A/\mathrm{Ann}\, x \twoheadrightarrow A/I$, причём S:=A/I – простая алгебра. Имеем

$$M \stackrel{\pi}{\twoheadrightarrow} M/U \cong Ax \cong A/\operatorname{Ann} x \stackrel{f}{\twoheadrightarrow} S,$$

так что будем считать, что $f\pi:M\to S$. Положим $N:=\mathrm{Ker}\ f\pi$, тогда так как $M/N\cong S$, то N- максимальный подмодуль. $U\subseteq N$ по построению и $x\in N$ по определению радикала. Тогда $M=Ax+U\subseteq N$. Противоречие.

<u>Замечание</u>: Мы не пользовались конечномерностью, так что на самом деле это верно для модулей над любым ассоциативным кольцом с единицей.

Перед тем как доказать следующую теорему, упомянем факт, который на лекции был дан как упражнение.

Предложение 1:
$$X \leqslant \operatorname{Rad} M \Longrightarrow \operatorname{Rad} \frac{M}{X} = \frac{\operatorname{Rad} M}{X}.$$

Доказательство: Просто факт о том, что максимальные подмодули фактора $\overline{\mathfrak{M}}\leqslant \frac{M}{X}$ соответствуют максимальным подмодулям $X\subseteq \mathfrak{M}\leqslant M$.

Доказательство: Допустим, что включение ${\rm Rad}\, M\supseteq J(A)M$ уже доказано. Обозначим за $\overline{A}:=A/J(A)$. Теорема 3 утверждает, что алгебра \overline{A} полупроста. Рассмотрим $\overline{M}:=M/J(A)M$, который в силу ${\rm Ann}\, M\supseteq J(A)$ является \overline{A} - модулем. По замечанию о полупростоте кольца, M является полупростым модулем, из чего по предложению 1 следует, что ${\rm Rad}\, M\subseteq J(A)M$.

Докажем включение в обратную сторону.

↑ SCAM ALERT ↑

В этом месте Семенов решил заскамить аудиторию! Ведуться работы по устранению скама, сохраняйте спокойствие!

Следствие: Rad ${}_AA={}_AJ(A), {\rm Rad}\, A_A=J(A)_A$ и Rad A=J(A) (в коммутативном случае).

Ниже под R понимается ассоциативное кольцо с единицей.

Определение 6: Подмодуль X модуля M_R называется малым, если для всякого $K \leqslant M$ из X + K = M следует K = M.

Лемма 2: Пусть A – конечномерная алгебра, M_R – правый A-модуль. Тогда

- 1. Любой малый подмодуль M лежит в ${\rm Rad}\ M$.
- $2. \operatorname{Rad} M$ есть сумма малых модулей.

Доказательство:

- 1. Пусть имеется малый подмодуль $N \nsubseteq \mathrm{Rad}\, M$. Тогда существует максимальный подмодуль U, не содержащий N. Из максимальности U следует N+U=M, а значит U=M. Противоречие с максимальностью U.
- 2. Rad $M = \sum_{x \in \operatorname{Rad} M} Ax$. Покажем, что каждый Ax мал. «Дело за малым» А. В. Семёнов.

Пусть Ax + K = M, проверим, что K = M.

$$M \overset{\pi_1}{\twoheadrightarrow} \frac{M}{K} = \frac{Ax}{Ax \cap K} =: D_A \overset{\pi_2}{\cong} \frac{A}{\operatorname{Ker}\left(A \underset{1 \mapsto x}{\longrightarrow} M\right)} \overset{\pi_3}{\twoheadrightarrow} \frac{A}{I} = S.$$

Первое равенство получено по второй теореме об изоморфизме. D_A – циклический модуль. I – некоторый максимальный подмодуль, в который вложено ядро. S – простой модуль.

Положим $f=\pi_3\pi_2\pi_1: M\to S$ – эпиморфизм в простой модуль. Значит $\operatorname{Ker} f$ – максимальный подмодуль M, тогда $x\in \operatorname{Ker} f$ так как он изначально брался из радикала.

 $K \subseteq \operatorname{Ker} f$ так как $K \subseteq \operatorname{Ker} \pi_1$. Получаем, что $\operatorname{Ker} f = M$. Противоречие.

Доказательство:

1. Пусть M конечнопорождён. Тогда Rad M конечнопорождён по (У МЕНЯ НАПИСАНО НЁТЕРОВОСТИ, НО НАДО ПРОВЕРИТЬ). Тогда можно считать, что радикал представляется конечной суммой малых модулей. Остаётся показать, что сумма двух малых мала. Действительно, $(N_1+N_2)+K=M\Longrightarrow N_2+K=M\Longrightarrow K=M$.

2.

SCAM ALERT

 $M=\lim_{\substack{n \ \to \ n}} M_n$, где M_n конечнопорождённые. Rad $M=\lim_{\substack{n \ \to \ n}} \mathrm{Rad}\, M_n$ так как радикал сохраняется при гомоморфизмах. Тогда $\mathrm{Rad}\, M$ мал так как

$$|\operatorname{Rad} M - \operatorname{Rad} M_n| < \varepsilon \Rightarrow \operatorname{Rad} M + K = M.$$

2. Проективные модули

2.1. Свойства

Определение 7: Модуль P_R называется проективным, если

$$\forall f: P \to N \quad \forall \sigma: M \twoheadrightarrow N \quad \exists g: P \to M: f = \sigma g.$$

Лемма 3: Любой свободный модуль проективен.

 $\ \ \, \mathcal{L}$ оказательство: Рассмотрим свободный модуль F и зафиксируем диаграмму

$$M \xrightarrow{\quad \sigma \quad \quad } N \xleftarrow{\quad f \quad \quad } F$$

Пусть $\left\{w_j\right\}_{j\in I}$ – базис $F, f\left(w_j\right)=y_j$. Так как σ сюръективно, $\forall j\in I: \exists x_j\in M: \sigma(x_j)=y_j$. Положив $g\left(w_j\right)=x_j$ замкнём диаграмму до коммутативной:

