1 Solutions

Solution 1.1

- **1.1.1** Computer used to run large problems and usually accessed via a network: 5 supercomputers
- **1.1.2** 10^{15} or 2^{50} bytes: 7 petabyte
- **1.1.3** Computer composed of hundreds to thousands of processors and terabytes of memory: 3 servers
- **1.1.4** Today's science fiction application that probably will be available in near future: 1 virtual worlds
- **1.1.5** A kind of memory called random access memory: 12 RAM
- **1.1.6** Part of a computer called central processor unit: 13 CPU
- **1.1.7** Thousands of processors forming a large cluster: 8 datacenters
- **1.1.8** A microprocessor containing several processors in the same chip: 10 multicore processors
- **1.1.9** Desktop computer without screen or keyboard usually accessed via a network: 4 low-end servers
- **1.1.10** Currently the largest class of computer that runs one application or one set of related applications: 9 embedded computers
- **1.1.11** Special language used to describe hardware components: 11 VHDL
- **1.1.12** Personal computer delivering good performance to single users at low cost: 2 desktop computers
- **1.1.13** Program that translates statements in high-level language to assembly language: 15 compiler

- **1.1.14** Program that translates symbolic instructions to binary instructions: 21 assembler
- **1.1.15** High-level language for business data processing: 25 cobol
- **1.1.16** Binary language that the processor can understand: 19 machine language
- **1.1.17** Commands that the processors understand: 17 instruction
- **1.1.18** High-level language for scientific computation: 26 fortran
- **1.1.19** Symbolic representation of machine instructions: 18 assembly language
- **1.1.20** Interface between user's program and hardware providing a variety of services and supervision functions: 14 operating system
- **1.1.21** Software/programs developed by the users: 24 application software
- **1.1.22** Binary digit (value 0 or 1): 16 bit
- **1.1.23** Software layer between the application software and the hardware that includes the operating system and the compilers: 23 system software
- **1.1.24** High-level language used to write application and system software: 20 C
- **1.1.25** Portable language composed of words and algebraic expressions that must be translated into assembly language before run in a computer: 22 high-level language
- **1.1.26** 10^{12} or 2^{40} bytes: 6 terabyte

- **1.2.1** 8 bits \times 3 colors = 24 bits/pixel = 4 bytes/pixel. 1280 \times 800 pixels = 1,024,000 pixels. 1,024,000 pixels \times 4 bytes/pixel = 4,096,000 bytes (approx 4 Mbytes).
- **1.2.2** 2 GB = 2000 Mbytes. No. frames = 2000 Mbytes/4 Mbytes = 500 frames.
- **1.2.3** Network speed: 1 gigabit network ==> 1 gigabit/per second = 125 Mbytes/ second. File size: 256 Kbytes = 0.256 Mbytes. Time for 0.256 Mbytes = 0.256/125 = 2.048 ms.

1.2.4 2 microseconds from cache ==> 20 microseconds from DRAM. 20 microseconds from DRAM ==> 2 seconds from magnetic disk. 20 microseconds from DRAM ==> 2 ms from flash memory.

Solution 1.3

1.3.1 P2 has the highest performance

```
performance of P1 (instructions/sec) = 2 \times 10^9/1.5 = 1.33 \times 10^9
performance of P2 (instructions/sec) = 1.5 \times 10^9/1.0 = 1.5 \times 10^9
performance of P3 (instructions/sec) = 3 \times 10^9/2.5 = 1.2 \times 10^9
```

1.3.2 No. cycles = time \times clock rate

cycles(P1) =
$$10 \times 2 \times 10^9 = 20 \times 10^9$$
 s
cycles(P2) = $10 \times 1.5 \times 10^9 = 15 \times 10^9$ s
cycles(P3) = $10 \times 3 \times 10^9 = 30 \times 10^9$ s

time = (No. instr. × CPI)/clock rate, then No. instructions = No. cycles/CPI

instructions(P1) =
$$20 \times 10^9/1.5 = 13.33 \times 10^9$$

instructions(P2) = $15 \times 10^9/1 = 15 \times 10^9$
instructions(P3) = $30 \times 10^9/2.5 = 12 \times 10^9$

1.3.3 time_{new} = time_{old} \times 0.7 = 7 s

$$CPI = CPI \times 1.2$$
, then $CPI(P1) = 1.8$, $CPI(P2) = 1.2$, $CPI(P3) = 3$

 $f = \text{No. instr.} \times \text{CPI/time, then}$

$$f(P1) = 13.33 \times 10^9 \times 1.8/7 = 3.42 \text{ GHz}$$

 $f(P2) = 15 \times 10^9 \times 1.2/7 = 2.57 \text{ GHz}$
 $f(P3) = 12 \times 10^9 \times 3/7 = 5.14 \text{ GHz}$

1.3.4 IPC = $1/\text{CPI} = \text{No. instr./(time} \times \text{clock rate)}$

$$IPC(P1) = 1.42$$

 $IPC(P2) = 2$
 $IPC(P3) = 3.33$

- **1.3.5** Time_{new}/Time_{old} = 7/10 = 0.7. So $f_{new} = f_{old}/0.7 = 1.5$ GHz/0.7 = 2.14 GHz.
- **1.3.6** Time_{new}/Time_{old} = 9/10 = 0.9. So Instructions_{new} = Instructions_{old} × $0.9 = 30 \times 10^9 \times 0.9 = 27 \times 10^9$.

1.4.1 P2

Class A: 10^5 instr.

Class B: 2×10^5 instr.

Class C: 5×10^5 instr.

Class D: 2×10^5 instr.

Time = No. instr. \times CPI/clock rate

P1: Time class A = 0.66×10^{-4}

Time class B = 2.66×10^{-4}

Time class $C = 10 \times 10^{-4}$

Time class D = 5.33×10^{-4}

Total time P1 = 18.65×10^{-4}

P2: Time class $A = 10^{-4}$

Time class $B = 2 \times 10^{-4}$

Time class $C = 5 \times 10^{-4}$

Time class D = 3×10^{-4}

Total time $P2 = 11 \times 10^{-4}$

1.4.2 CPI = time \times clock rate/No. instr.

CPI(P1) =
$$18.65 \times 10^{-4} \times 1.5 \times 10^{9}/10^{6} = 2.79$$

CPI(P2) = $11 \times 10^{-4} \times 2 \times 10^{9}/10^{6} = 2.2$

1.4.3

clock cycles(P1) =
$$10^5 \times 1 + 2 \times 10^5 \times 2 + 5 \times 10^5 \times 3 + 2 \times 10^5 \times 4 = 28 \times 10^5$$

clock cycles(P2) = $10^5 \times 2 + 2 \times 10^5 \times 2 + 5 \times 10^5 \times 2 + 2 \times 10^5 \times 3 = 22 \times 10^5$

1.4.4

$$(500 \times 1 + 50 \times 5 + 100 \times 5 + 50 \times 2) \times 0.5 \times 10^{-9} = 675 \text{ ns}$$

1.4.5 CPI = time \times clock rate/No. instr.

$$CPI = 675 \times 10^{-9} \times 2 \times 10^{9} / 700 = 1.92$$

1.4.6

Time =
$$(500 \times 1 + 50 \times 5 + 50 \times 5 + 50 \times 2) \times 0.5 \times 10^{-9} = 550$$
 ns
Speed-up = 675 ns/550 ns = 1.22
CPI = $550 \times 10^{-9} \times 2 \times 10^{9}/700 = 1.57$

1.5.1

a.	1G, 0.75G inst/s
b.	1G, 1.5G inst/s

1.5.2

a.	P2 is 1.33 times faster than P1	
b.	P1 is 1.03 times faster than P2	

1.5.3

a.	P2 is 1.31 times faster than P1
b.	P1 is 1.00 times faster than P2

1.5.4

a.	2.05 μs
b.	1.93 μs

1.5.5

a.	0.71 μs
b.	0.86 μs

1.5.6

a.	1.30 times faster
b.	1.40 times faster

Solution 1.6

1.6.1

	Compiler A CPI	Compiler B CPI
a.	1.00	1.17
b.	0.80	0.58

1.6.2

a.	0.86
b.	1.37

1.6.3

	Compiler A speed-up	Compiler B speed-up
a.	1.52	1.77
b.	1.21	0.88

1.6.4

	P1 peak	P2 peak
a.	4G Inst/s	3G Inst/s
b.	4G Inst/s	3G Inst/s

1.6.5 Speed-up, P1 versus P2:

a.	0.967105263
b.	0.730263158

1.6.6

a.	6.204081633
b.	8.216216216

Solution 1.7

1.7.1

Geometric mean clock rate ratio = $(1.28 \times 1.56 \times 2.64 \times 3.03 \times 10.00 \times 1.80 \times 0.74)^{1/7} = 2.15$

Geometric mean power ratio = $(1.24 \times 1.20 \times 2.06 \times 2.88 \times 2.59 \times 1.37 \times 0.92)^{1/7} = 1.62$

1.7.2

Largest clock rate ratio = 2000 MHz/200 MHz = 10 (Pentium Pro to Pentium 4 Willamette)

Largest power ratio = 29.1 W/10.1 W = 2.88 (Pentium to Pentium Pro)

1.7.3

Clock rate: $2.667 \times 10^9 / 12.5 \times 10^6 = 212.8$

Power: 95 W/3.3 W = 28.78

1.7.4 $C = P/V^2 \times clockrate$

80286: $C = 0.0105 \times 10^{-6}$

80386: $C = 0.01025 \times 10^{-6}$

80486: C = 0.00784×10^{-6}

Pentium: $C = 0.00612 \times 10^{-6}$ Pentium Pro: $C = 0.0133 \times 10^{-6}$

Pentium 4 Willamette: $C = 0.0122 \times 10^{-6}$ Pentium 4 Prescott: $C = 0.00183 \times 10^{-6}$

Core 2: $C = 0.0294 \times 10^{-6}$

1.7.5 3.3/1.75 = 1.78 (Pentium Pro to Pentium 4 Willamette)

1.7.6

Pentium to Pentium Pro: 3.3/5 = 0.66

Pentium Pro to Pentium 4 Willamette: 1.75/3.3 = 0.53

Pentium 4 Willamette to Pentium 4 Prescott: 1.25/1.75 = 0.71

Pentium 4 Prescott to Core 2: 1.1/1.25 = 0.88

Geometric mean = 0.68

Solution 1.8

1.8.1 Power₁ = $V^2 \times \text{clock rate} \times C$. Power₂ = 0.9 Power₁

$$C_2/C_1 = 0.9 \times 5^2 \times 0.5 \times 10^9/3.3^2 \times 1 \times 10^9 = 1.03$$

1.8.2 Power₂/Power₁ = $V_2^2 \times \text{clock rate}_2/V_1^2 \times \text{clock rate}_1$

Power₂/Power₁ = 0.87 => Reduction of 13%

1.8.3

 $Power_2 = V_2^2 \times 1 \times 10^9 \times 0.8 \times C_1 = 0.6 \times Power_1$

 $Power_1 = 5^2 \times 0.5 \times 10^9 \times C_1$

 $V_2^2 \times 1 \times 10^9 \times 0.8 \times C_1 = 0.6 \times 5^2 \times 0.5 \times 10^9 \times C_1$

 $V_2 = ((0.6 \times 5^2 \times 0.5 \times 10^9)/(1 \times 10^9 \times 0.8))^{1/2} = 3.06 \text{ V}$

1.8.4 Power_{new} = $1 \times C_{old} \times V_{old}^2/(2^{-1/4})^2 \times clock$ rate $\times 2^{1/2}$ = Power_{old}. Thus, power scales by 1.

1.8.5
$$1/2^{-1/2} = 2^{1/2}$$

1.8.6 Voltage = $1.1 \times 1/2^{-1/4} = 0.92$ V. Clock rate = $2.667 \times 2^{1/2} = 3.771$ GHz

Solution 1.9

1.9.1

a.	$1/49 \times 100 = 2\%$
b.	45/120 × 100 = 37.5%

1.9.2

a.
$$I_{leak} = 1/3.3 = 0.3$$
 b. $I_{leak} = 45/1.1 = 40.9$

1.9.3

1.9.4 Power_{st}/Power_{dyn} = 0.6 = Power_{st} = $0.6 \times$ Power_{dyn}

1.9.5

1.9.6

	Power _{st} at 1.0 V	I _{lk} at 1.0 V	Power _{st} at 1.2 V	I _{lk} at 1.2 V	Larger
a.	119 W	119 A	136 W	113.3 A	I _{lk} at 1.0 V
b.	93.5 W	93.5 A	110.5 W	92.1 A	I _{Ik} at 1.0 V

Solution 1.10

1.10.1

a.	Processors	Instructions per processor	Total instructions
	1	4096	4096
	2	2048	4096
	4	1024	4096
	8	512	4096
b.	Processors	Instructions per processor	Total instructions
	1	4096	4096

W.	110003013	matructions per processor	Total Instructions
	1	4096	4096
	2	2278	4556
	4	1464	5856
	8	1132	9056

1.10.2

a.	Processors	Execution time (µs)
	1	4.096
	2	2.048
	4	1.024
	8	0.512
b.	Processors	Execution time (μs)
b.	Processors 1	Execution time (μs) 4.096
b.	Processors 1 2	
b.	1	4.096

1.10.3

a.	Processors	Execution time (μs)
	1	5.376
	2	2.688
	4	1.344
	8	0.672
b.	Processors	Execution time (µs)
b.	Processors 1	Execution time (μs) 5.376
b.	Processors 1 2	
b.	1	5.376

1.10.4

a.	Cores	Execution time (s) @ 3 GHz
	1	4.00
	2	2.17
	4	1.25
	8	0.75
b.	Cores	Execution time (s) @ 3 GHz
b.	Cores 1	Execution time (s) @ 3 GHz 4.00
b.		
b.	1	4.00

1.10.5

a.	Cores	Power (W) per core @ 3 GHz	Power (W) per core @ 500 MHz	Power (W) @ 3 GHz	Power (W) @ 500 MHz
	1	15	0.625	15	0.625
	2	15	0.625	30	1.25
	4	15	0.625	60	2.5
	8	15	0.625	120	5
b.		Power (W) per core	Power (W) per core	Power (W)	Power (W)
b.	Cores	Power (W) per core @ 3 GHz	Power (W) per core @ 500 MHz	Power (W) @ 3 GHz	Power (W) @ 500 MHz
b.	Cores				
b.		@ 3 GHz	@ 500 MHz	@ 3 GHz	@ 500 MHz
b.	1	@ 3 GHz 15	@ 500 MHz 0.625	@ 3 GHz 15	@ 500 MHz 0.625

1.10.6

a.	Processors	Energy (J) @ 3 GHz	Energy (J) @ 500 MHz
	1	60	15
	2	65	16.25
	4	75	18.75
	8	90	22.5
_		I .	
b.	Processors	Energy (J) @ 3 GHz	Energy (J) @ 500 MHz
b.	Processors	Energy (J) @ 3 GHz	Energy (J) @ 500 MHz
b.			
b.	1	60	15

1.11.1 Wafer area = $\pi \times (d/2)^2$

```
a. Wafer area = \pi \times 7.5^2 = 176.7 \text{ cm}^2
```

b. Wafer area =
$$\pi \times 12.5^2 = 490.9 \text{ cm}^2$$

Die area = wafer area/dies per wafer

a. Die area =
$$176.7/90 = 1.96 \text{ cm}^2$$

b. Die area =
$$490.9/140 = 3.51 \text{ cm}^2$$

Yield = $1/(1 + (defect per area \times die area)/2)^2$

1.11.2 Cost per die = cost per wafer/(dies per wafer \times yield)

1.11.3

a. Dies per wafer =
$$1.1 \times 90 = 99$$

Defects per area = $1.15 \times 0.018 = 0.021 \text{ defects/cm}^2$

Die area = wafer area/Dies per wafer = $176.7/99 = 1.78 \text{ cm}^2$

Yield = 0.97

b. Dies per wafer = $1.1 \times 140 = 154$

Defects per area = $1.15 \times 0.024 = 0.028 \text{ defects/cm}^2$

Die area = wafer area/Dies per wafer = $490.9/154 = 3.19 \text{ cm}^2$

Yield = 0.93

1.11.4 Yield = $1/(1 + (\text{defect per area} \times \text{die area})/2)^2$

Then defect per area = $(2/\text{die area})(y^{-1/2} - 1)$

Replacing values for T1 and T2 we get

T1: defects per area = 0.00085 defects/mm² = 0.085 defects/cm²

T2: defects per area = $0.00060 \text{ defects/mm}^2 = 0.060 \text{ defects/cm}^2$

T3: defects per area = 0.00043 defects/mm² = 0.043 defects/cm²

T4: defects per area = 0.00026 defects/mm² = 0.026 defects/cm²

1.11.5 no solution provided

1.12.1 CPI = clock rate \times CPU time/instr. count

clock rate = 1/cycle time = 3 GHz

a.	CPI(pearl) = $3 \times 10^9 \times 500/2118 \times 10^9 = 0$	7
b.	CPI(mcf) = $3 \times 10^9 \times 1200/336 \times 10^9 = 10$	7

1.12.2 SPECratio = ref. time/execution time.

```
    a. SPECratio(pearl) = 9770/500 = 19.54
    b. SPECratio(mcf) = 9120/1200 = 7.6
```

1.12.3

$$(19.54 \times 7.6)^{1/2} = 12.19$$

1.12.4 CPU time = No. instr. \times CPI/clock rate

If CPI and clock rate do not change, the CPU time increase is equal to the increase in the number of instructions, that is, 10%.

1.12.5 CPU time(before) = No. instr. \times CPI/clock rate

CPU time(after) = $1.1 \times$ No. instr. \times $1.05 \times$ CPI/clock rate CPU times(after)/CPU time(before) = $1.1 \times 1.05 = 1.155$. Thus, CPU time is increased by 15.5%

1.12.6 SPECratio = reference time/CPU time

SPECratio(after)/SPECratio(before) = CPU time(before)/CPU time(after) = 1/1.1555 = 0.86. That, the SPECratio is decreased by 14%.

Solution 1.13

1.13.1 CPI = (CPU time \times clock rate)/No. instr.

a.
$$CPI = 450 \times 4 \times 10^9/(0.85 \times 2118 \times 10^9) = 0.99$$

b. $CPI = 1150 \times 4 \times 10^9/(0.85 \times 336 \times 10^9) = 16.10$

1.13.2 Clock rate ratio = 4 GHz/3 GHz = 1.33.

a.	CPI @ 4 GHz = 0.99, CPI @ 3 GHz = 0.7, ratio = 1.41
b.	CPI @ 4 GHz = 16.1, CPI @ 3 GHz = 10.7, ratio = 1.50

They are different because although the number of instructions has been reduced by 15%, the CPU time has been reduced by a lower percentage.

1.13.3

a.	450/500 = 0.90. CPU time reduction: 10%.
b.	1150/1200 = 0.958. CPU time reduction: 4.2%.

1.13.4 No. instr. = CPU time \times clock rate/CPI.

a. No. instr. =
$$820 \times 0.9 \times 4 \times 10^9/0.96 = 3075 \times 10^9$$

b. No. instr. = $580 \times 0.9 \times 4 \times 10^9/2.94 = 710 \times 10^9$

1.13.5 Clock rate = No. instr. \times CPI/CPU time.

Clock rate_{new} = No. instr. \times CPI/0.9 \times CPU time = 1/0.9 clock rate_{old} = 3.33 GHz.

1.13.6 Clock rate = No. instr. \times CPI/CPU time.

Clock rate_{new} = No. instr. \times 0.85 \times CPI/0.80 CPU time = 0.85/0.80 clock rate_{old} = 3.18 GHz.

Solution 1.14

1.14.1 No. instr. = 10^6

$$\begin{split} T_{cpu}(P1) &= 10^6 \times 1.25/4 \times 10^9 = 0.315 \times 10^{-3} \text{ s} \\ T_{cpu}(P2) &= 10^6 \times 0.75/3 \times 10^9 = 0.25 \times 10^{-3} \text{ s} \\ \text{clock rate(P1)} &> \text{clock rate(P2)}, \text{ but performance(P1)} < \text{performance(P2)} \end{split}$$

1.14.2

P1:
$$10^6$$
 instructions, $T_{cpu}(P1) = 0.315 \times 10^{-3}$ s
P2: $T_{cpu}(P2) = N \times 0.75/3 \times 10^9$ then $N = 1.26 \times 10^6$

1.14.3 MIPS = Clock rate $\times 10^{-6}$ /CPI

MIPS(P1) =
$$4 \times 10^9 \times 10^{-6}/1.25 = 3200$$

MIPS(P2) = $3 \times 10^9 \times 10^{-6}/0.75 = 4000$
MIPS(P1) < MIPS(P2), performance(P1) < performance(P2) in this case (from 1.14.1)

1.14.4

No. instr. (Branch)

a. FP op =
$$10^6 \times 0.4 = 4 \times 10^5$$
, clock cyles_{fp} = CPI × No. FP instr. = 4×10^5
 $T_{fp} = 4 \times 10^5 \times 0.33 \times 10^{-9} = 1.32 \times 10^{-4}$ then MFLOPS = 3.03×10^3
b. FP op = $3 \times 10^6 \times 0.4 = 1.2 \times 10^6$, clock cyles_{fp} = CPI × No. FP instr. = $0.70 \times 1.2 \times 10^6$

1.14.5 CPU clock cycles = FP cycles + CPI(L/S) \times No. instr. (L/S) + CPI(Branch) \times

a.
$$5 \times 10^5$$
 L/S instr., 4×10^5 FP instr. and 10^5 Branch instr.
CPU clock cycles = $4 \times 10^5 + 0.75 \times 5 \times 10^5 + 1.5 \times 10^5 = 9.25 \times 10^5$ $T_{cpu} = 9.25 \times 10^5 \times 0.33 \times 10^{-9} = 3.05 \times 10^{-4}$ MIPS = $10^6/(3.05 \times 10^{-4} \times 10^6) = 3.2 \times 10^3$

 $T_{fo} = 0.84 \times 10^6 \times 0.33 \times 10^{-9} = 2.77 \times 10^{-4} \text{ then MFLOPS} = 4.33 \times 10^3$

b. 1.2 × 10⁶ L/S instr., 1.2 × 10⁶ FP instr. and 0.6 × 10⁶ Branch instr. CPU clock cycles = $0.84 \times 10^6 + 1.25 \times 1.2 \times 10^6 + 1.25 \times 0.6 \times 10^6 = 3.09 \times 10^6$ $T_{cpu} = 3.09 \times 10^6 \times 0.33 \times 10^{-9} = 1.01 \times 10^{-3}$ MIPS = $3 \times 10^6/(1.01 \times 10^{-3} \times 10^6) = 2.97 \times 10^3$

1.14.6

a. performance =
$$1/T_{cpu} = 3.2 \times 10^3$$

b. performance = $1/T_{cpu} = 9.9 \times 10^2$

The second program has the higher performance and the higher MFLOPS figure, but the first program has the higher MIPS figure.

Solution 1.15

1.15.1

a.
$$T_{fp} = 35 \times 0.8 = 28 \text{ s}, T_{p1} = 28 + 85 + 50 + 30 = 193 \text{ s}. \text{ Reduction: } 3.5\%$$
b. $T_{fp} = 50 \times 0.8 = 40 \text{ s}, T_{p4} = 40 + 80 + 50 + 30 = 200 \text{ s}. \text{ Reduction: } 4.7\%$

1.15.2

a.
$$T_{p1} = 200 \times 0.8 = 160 \text{ s}, T_{fp} + T_{l/s} + T_{branch} = 115 \text{ s}, T_{int} = 45 \text{ s}.$$
 Reduction time INT: 47%

b.
$$T_{p4} = 210 \times 0.8 = 168 \text{ s}, T_{fp} + T_{l/s} + T_{branch} = 130 \text{ s}, T_{int} = 38 \text{ s}.$$
 Reduction time INT: 52.4%

1.15.3

a.
$$T_{p1} = 200 \times 0.8 = 160 \text{ s}, T_{fp} + T_{int} + T_{l/s} = 170 \text{ s}. \text{ NO}$$

b.
$$T_{p4} = 210 \times 0.8 = 168 \text{ s}, T_{fp} + T_{int} + T_{l/s} = 180 \text{ s}. \text{ NO}$$

1.15.4

Clock cyles = $\text{CPI}_{\text{fp}} \times \text{No. FP instr.} + \text{CPI}_{\text{int}} \times \text{No. INT instr.} + \text{CPI}_{\text{l/s}} \times \text{No. L/S}$ instr. + $\text{CPI}_{\text{branch}} \times \text{No. branch instr.}$

 T_{cpu} = clock cycles/clock rate = clock cycles/2 × 10⁹

a.	1 processor: clock cycles = 8192; T _{cpu} = 4.096 s
----	--

b. 8 processors: clock cycles =
$$1024$$
; $T_{cou} = 0.512$ s

To half the number of clock cycles by improving the CPI of FP instructions:

 $\text{CPI}_{\text{improved fp}} \times \text{No. FP instr.} + \text{CPI}_{\text{int}} \times \text{No. INT instr.} + \text{CPI}_{\text{l/s}} \times \text{No. L/S instr.} + \text{CPI}_{\text{branch}} \times \text{No. branch instr.} = \text{clock cycles/2}$

 $\text{CPI}_{\text{improved fp}} = (\text{clock cycles/2} - (\text{CPI}_{\text{int}} \times \text{No. INT instr.} + \text{CPI}_{\text{l/s}} \times \text{No. L/S instr.} + \text{CPI}_{\text{branch}} \times \text{No. branch instr.}))/\text{No. FP instr.}$

a. 1 processor:
$$CPI_{improved\ fp} = (4096 - 7632)/560 < 0 ==> not\ possible$$

b. 8 processors:
$$CPI_{improved fp} = (512 - 944)/80 < 0 ==> not possible$$

1.15.5 Using the clock cycle data from 1.15.4:

To half the number of clock cycles improving the CPI of L/S instructions:

 $\text{CPI}_{\text{fp}} \times \text{No. FP instr.} + \text{CPI}_{\text{int}} \times \text{No. INT instr.} + \text{CPI}_{\text{improved l/s}} \times \text{No. L/S instr.} + \text{CPI}_{\text{branch}} \times \text{No. branch instr.} = \text{clock cycles/2}$

 $\text{CPI}_{\text{improved I/s}} = (\text{clock cycles/2} - (\text{CPI}_{\text{fp}} \times \text{No. FP instr.} + \text{CPI}_{\text{int}} \times \text{No. INT instr.} + \text{CPI}_{\text{branch}} \times \text{No. branch instr.}))/\text{No. L/S instr.}$

- **a.** 1 processor: $CPI_{improved \ I/s} = (4096 3072)/1280 = 0.8$
- **b.** 8 processors: $CPI_{improved \ I/s} = (512 384)/160 = 0.8$

1.15.6

 $\label{eq:clock} \begin{aligned} &\operatorname{Clock} \, \operatorname{cyles} = \operatorname{CPI}_{\operatorname{fp}} \times \operatorname{No.} \, \operatorname{FP} \, \operatorname{instr.} + \operatorname{CPI}_{\operatorname{int}} \times \operatorname{No.} \, \operatorname{INT} \, \operatorname{instr.} + \operatorname{CPI}_{\operatorname{l/s}} \times \operatorname{No.} \, \operatorname{L/S} \, \operatorname{instr.} + \\ &\operatorname{CPI}_{\operatorname{branch}} \times \operatorname{No.} \, \operatorname{branch} \, \operatorname{instr.} \end{aligned}$

 $T_{cpu} = clock cycles/clock rate = clock cycles/2 \times 10^9$

 ${\rm CPI}_{\rm int} = 0.6 \times 1 = 0.6; \\ {\rm CPI}_{\rm fp} = 0.6 \times 1 = 0.6; \\ {\rm CPI}_{\rm l/s} = 0.7 \times 4 = 2.8; \\ {\rm CPI}_{\rm branch} = 0.7 \times 2 = 1.4$

- **a.** 1 processor: T_{cpu} (before improv.) = 4.096 s; T_{cpu} (after improv.) = 2.739 s
- **b.** 8 processors: T_{cpu} (before improv.) = 0.512 s; T_{cpu} (after improv.) = 0.342 s

Solution 1.16

1.16.1 Without reduction in any routine:

- a. total time 2 proc = 185 ns
- **b.** total time 16 proc = 34 ns

Reducing time in routines A, C and E:

- **a.** 2 proc: T(A) = 17 ns, T(C) = 8.5 ns, T(E) = 4.1 ns, total time = 179.6 ns ==> reduction = 2.9%
- **b.** 16 proc: T(A) = 3.4 ns, T(C) = 1.7 ns, T(E) = 1.7 ns, total time = 32.8 ns ==> reduction = 3.5%

1.16.2

- **a.** 2 proc: T(B) = 72 ns, total time = 177 ns ==> reduction = 4.3%
- **b.** 16 proc: T(B) = 12.6 ns, total time = 32.6 ns ==> reduction = 4.1%

1.16.3

- **a.** 2 proc: T(D) = 63 ns, total time = 178 ns ==> reduction = 3.7%
- **b.** 16 proc: T(D) = 10.8 ns, total time = 32.8 ns ==> reduction = 3.5%

1.16.4

# Processors	Computing time	Computing time ratio	Routing time ratio
2	176		
4	96	0.55	1.18
8	49	0.51	1.31
16	30	0.61	1.29
32	14	0.47	1.05
64	6.5	0.46	1.13

1.16.5 Geometric mean of computing time ratios = 0.52. Multiply this by the computing time for a 64-processor system gives a computing time for a 128-processor system of 3.4 ms.

Geometric mean of routing time ratios = 1.19. Multiply this by the routing time for a 64-processor system gives a routing time for a 128-processor system of 30.9 ms.

1.16.6 Computing time = 176/0.52 = 338 ms. Routing time = 0, since no communication is required.