) the Steinberg Variety. Def. Z : = N XN (mz) TXT \mathcal{N} $\mathfrak{g} \times \mathfrak{g}$ Sign onvertion: T*(X,xXz) ~ T*X,xT*X. change sign in the T*X2 factor. Hence $T_{\Delta X}^*(X \times X) = \Delta(T^*X)$

 $\Delta X \leq X_{x} \times \Delta d_{x}$ diagonal $\overline{N} \times \widetilde{N} \simeq T^{*} \otimes X T^{*} \otimes \widetilde{T}^{*} \times \mathbb{R} \times \mathbb{R}.$ $(\chi_{1}, b_{1}, \chi_{2}, b_{2}) \longrightarrow (\chi_{1}, b_{1}, -\chi_{2}, b_{2})$

Prop: 1)
$$Z = \bigcup_{u \in W} T_{W}(B \times B)$$
, where

 $Y_{u} = G_{\cdot}(b_{\cdot}, w.b_{\cdot}) \leq B \times B_{\cdot}$.

2) | meducible components of Z are $T_{Y_{u}}(B \times B)$.

 $d_{th} Z = 2d_{th}B = d_{th}N$.

 $pf: 1) (b_{t}, b_{s}) \in Y(w) \leq B \times B_{\cdot}$.

 $T_{(b_{t},b_{s})} \cdot ((w) = \sum_{u \in W} (x_{t} \text{ mod } b_{t}, x_{t} \text{ mod } b_{t}) | x \in y \} \leq T_{b_{t}}B \times T_{b_{t}}B$

Hence, if $d_{t} = (x_{t}, b_{t}, x_{t}, b_{t}) \in T^{*}B \times T^{*}B \leq J^{*} \times B \times J^{*} \times D_{\cdot}$.

is annihilated by T(b,b,) ((w), then

$$(X', X) + (X', X) = 0 \quad \forall \quad x \in \mathcal{A}.$$

→ K, ニメz

$$=) \ \ \, \lambda \, \geq \, (\, \P_1\,,\, b_1\,,\, -\, \Upsilon_1\,,\, b_2\,) \, \in \, \mathbb{Z} \, \, .$$

2) follows from 1)

Record of is semisouple, $g = g^*$ coadjoint orbits in $g^* \sim$ adjoint orbit in g^* .

Thun (337) for any G-orbit $O \subseteq g$, and any $g \in O \cap b$, the set $O \cap (g + n)$ is a Lagrangian

Subvariety in O.

 $\mu_{\tilde{z}}: Z \rightarrow \mathcal{J} \qquad Z_0: z_{\mu_{\tilde{z}}}(0)$

Gr each m. (our, of Zo has dim = dim Z. Pf: $G = \mu^{-1}(0) \leq T^*B$.

 $\frac{1}{20} = \frac{1}{20} = \frac{1}{20} = \frac{1}{20} \times \frac{1}{20} = \frac{1}{20}$

Q = G×B(ΩΛΠ). =) M. Coup. of To has dim

= dimB + dimONN = dimB + 2 dim O (use the above theorem when XENNO).

 $Z_0 = \widehat{G} \times_{\widehat{G}} \widehat{G} = G \times_{\widehat{G}_{\mathcal{R}}} (\mathcal{B}_{\mathcal{R}} \times \mathcal{B}_{\mathcal{X}}).$ therefore, each W cump of Z_0 is of the form $G \times_{\widehat{G}} (\mathcal{B}_1 \times \mathcal{B}_2)$,

B, Bz iw, comp. of Bx.

=> dm0+dim0x+dlmBz=dm20=2dlmB.

(or (Spaltaustein).

1) All m. comps of Bx have the same dim,

and \(\frac{1}{2} \) dim\(0 + \) dim\(0 \) = \(\frac{1}{2} \).

2) Br is connected.

Pf: 2) follows from Zariski man theorem t

W is normal (Kostant)

() for is connected & REX.

Let C(X) = Gx/Gx be the group of Connected Components.

G(x) & bx => C(x) & Bx = iw. comps of Bx.

(or: in comps of Zo is in bijection with the C(x)-profits on pairs of comps of Bx.

Gr: # G-orbots on W is finite.

Pf: Z= UZO,

Zo have the same demansion =) closure of an W. comp of Zo is an W. comp of Z.

IM. COMPS of Z = #W.

> #{0} is fivite.

2) Bord - Moore housely X complex or real alg variety. the Berel-Moore hourdogy can be defined in the forlowy equivalent ways: @ X-XU(x) one-point compactification of X $H_{A}^{BM}(X) := H_{A}(\tilde{X}, \infty)$ relative houselegy. D X an arbitrary Compactification of X, such that (x, xx) is a cw-pair. $H_{\beta N}^{*}(X) = H^{*}(X, X/X)$ (C) Let C*(X) = chain complex of infinite singular chains Iaibi, Grasingular simplex, aiea, the Sum is locally finite: for any compact set DSX, there are only finitely many non-zero coefficients ai,

Such that DN Supp 6; 7 \$.

HBM(X) = Hx (C & (x), 2)

We wal boundary was (2) Poincare Luckity. M Swooth, oriented wantfold, m=dm 1RM. $X \leq M$ closed, has a closed neighborhood U.S.M. Such that X is a proper deformation retract of U. $H_{i}^{i}(x) = H_{i}^{m-i}(w, w, x)$ in particular, $H_i^{BM}(M) \simeq H^{M-i}(M)$ Rule: 3 sheaf-theoretic definition. Notation: H:= Him Hord = ordinary homology Hisiq (M) = H = 1 (W) Proper purharward: (inverse image of compact is compact) f: X-> | proper

Jestending f to a f: X=XU[x] → J=YU[x].

F(x)=x, which is a continuous map.

Long exact sequence.

F → X ← U:=x/F

-- $\rightarrow H_p(F) \rightarrow H_p(X) \rightarrow H_p(U) \rightarrow H_p(F) \rightarrow --$

Fundamental class.

if X is smooth, priented manifold,

I fundamental class [x] \in Hm(x), m=dm_{12}X.

For an arbitrary (not necessarily smooth or compact)

complex alg. variety X, I fundamental class. It's

construction is as follows:

of X is m. of real dim m, Xrey = Zariski open deuse subset consisty of non-singular points of X.

 $=) \quad \exists \quad \exists \quad \exists \quad \forall \text{reg} \] \in H^m(X_{\text{reg}}).$

Since delige(XXXred) < m-2 H_k(XXxred) > o for any k>m-2.

The long exact Sequence for $X \mid X^{eg} \hookrightarrow X \subset X^{reg}$ Shows $H_m(X) \xrightarrow{\sim} H_m(X^{reg})$

define $(x) := preinage of (xres) \in H_m(xres)$

(b) If X has M. comps. X,, X2,--, Xu, define (X): = [[Xi]

Prop: Let X be a complex variety of duniex=m.

Let X,-, Xn be the n-dm'l m. comps of X, then

[XI], CX2), -- CXn] is a basis for Hop(X) = Hm(X)

intersection parmy.

Closed

M. Smooth Oriented manifold, Z, 22 5 M

 $n: H_i(2_1) \times H_j(2_2) \longrightarrow H_{inj-m}(2_1 n 2_2), \quad m = d m_{in} M$

 $U: \vdash^{\mathsf{M}-\mathsf{i}}(M,\mathsf{M}\mathsf{Z}_1) \times \mathsf{H}^{\mathsf{M}-\mathsf{j}}(M,\mathsf{M}\mathsf{Z}_2) \to \mathsf{H}^{2\mathsf{M}-\mathsf{i}-\mathsf{j}}(M,(\mathsf{M}\mathsf{X}_2)) \cup (\mathsf{M}\mathsf{X}_2)$

Künneth formula

(M: H* (M1) & H* (M2) ~ H* (M, XM2)

Smooth pulback. For a trivial fibration P: XxF > X, is Smooth and priented, dily [F=d.] p*: Hi(x) -> Hitd (XxF), CH CALF] In general, P= x-> X locally trivial fibration with fiber [(Smooth and oriented) 3 p*: Hi(X) -> Hitd(X), and it has the above form whom we restrict to any open usx, s.t. pis a trivor fibration. i: X => X a conthuous section of P. can define Gysh pulback ix: Hz(x) -> Hi-a(x).

Such that it = p* = Id. P: XxF 7X In the trivial fibration case $H_{\star}(\hat{x}) \simeq H_{\star}(x) \otimes H_{\star}(F),$ i*(ca[F])= c, 1*(CBY)=0 if & EHZJ(F). Specialization map in Borel-Moore homology (S,0) a Smooth manifold with base point DES. 2 = 2/20) 4 s's \ Z(s'): = K-1(s') た: Zos 、 Zo= たつ(o), Assume T: Z(s*) -> s* is a leasly trivial fibration with possibly singular fiber. (Note Tic not a Sumed to be locally trivial near o).

he Want to define a specialization map (m: H*(Z(S*)) -> H*-9(So), d=dim S. Construction: choose an open abd (B,0) of o in S, diffeomorphic to (IRd, o) IR, d:= IR> × IRdd, B> 0 SB the correspondy space Books contractible, Shrink B of necessarily, such that T: 2(B=0) -> B=0 is a trivial fibration with fiber [, I >> (resp. I) = B the inverponenty space of R>0 (very R>0) in IR 5 IRXIRd = IRd. ven restriction Kinneth

H*(5(2)) -> H*(5) -> H*(5) -> H*(5) H*(6) -> H*(6) (E) (E) (E) then Lasses

The long exact sequence from Zo \(\sigma \) Z(\(\sigma_2 \)) \(\sigma \) Z(\(\sigma_2 \)).