TEMA 4.

BÚSQUEDA DE PROTOTIPOS O CABEZA DE SERIE

QFUNO

Índice del Tema 4

1. MODIFICACIÓN ESTRUCTURAL

- a. Definición
- b. Finalidad
- c. Aproximaciones
 - 1.1. Aproximación Modulativa
 - 1.2. Aproximación Disyuntiva
 - 1.3. Aproximación Conjuntiva

2. PEPTIDOMIMÉTICOS

Tema 4 - Parte 1

1. MODIFICACIÓN ESTRUCTURAL

- a. Definición
- b. Finalidad
- c. Aproximaciones
 - 1.1. Aproximación Modulativa
 - a.Vinilogía
 - b.Isostería

1. Modificación Estructural

Más activos

Más selectivos

Menos tóxicos

Mejoras farmacocinéticas

1. Modificación Estructural O farmacomodulación.

DEFINICIÓN

- o <u>Modificación progresiva</u> de la estructura química de un prototipo o cabeza de serie con una determinada actividad biológica.
- Existe <u>mayor probabilidad</u> de que la molécula obtenida por modificación de un prototipo activo presente <u>mejores propiedades</u>, ya que es un método más productivo que el ensayo de compuestos naturales o sintéticos sin una base sólida.
- o Ofrece <u>ventajas económicas</u> ya que los métodos sintéticos y los ensayos farmacológicos de los análogos serán similares a los utilizados para el compuesto de referencia.

O Con esta modificación se pretenden conseguir fármacos más potentes DEG

1. Modificación Estructural. FINALIDAD

- 1. Mantenimiento o mejora de la actividad del prototipo.
- 2. Cambios en el espectro de acción del prototipo.
 - a. Eliminación de efectos secundarios.
 - b. Potenciación de un efecto secundario.
 - c. Diferenciación y separación de actividades de prototipos multiactivos.
 - d. Combinación en un solo compuesto de las actividades de varios prototipos.
 - e. Transformación de una actividad agonista en antagonista.
- 3. Modificación de las propiedades farmacocinéticas del prototipo.
 - a. Dirigidas a proteger la molécula de la acción degradativa de enzimas.
 - b. Dirigidas a modular la relación concentración/tiempo
- c. Dirigidas a modificar la distribución entre distintos compartimentos.

1.1. Aproximación Modulativa

Se realizan **transformaciones limitadas** en la estructura del modelo con objeto de **conservar su estructura fundamental.**

Las modificaciones estructurales <u>no</u> se realizan <u>al azar</u>, sino a través de <u>una serie de criterios</u> que tienen posibilidades de conducir a mejoras terapéuticas:

- a. Vinilogía
- b. Isostería
- c. Bioisostería
- d. Introducción o sustitución de grupos voluminosos no polares
- e. Apertura de anillos
- f. Formación de anillos
- g. Variación del tamaño del anillo
- h. Reorganización de anillos
- i. Homología
- i. Isomerización
- k. Ramificación, alquilación y desalquilación
- 1. Saturación de dobles enlaces

1.1. Aproximación Modulativa

a. <u>Vinilogía</u>

Ludwig Claisen formuló en 1926 el <u>principio de vinilogía</u>, al observar que la formil acetona presentaba propiedades ácidas similares al ácido acético. Explicó que el <u>grupo vinilo</u> jugaba el papel de un <u>canal conductor de electrones</u> entre el grupo carbonilo y el grupo hidroxilo.

Dos sustituyentes, X e Y, unidos por uno o varios grupos vinilo se comportan como si estuvieran unidos directamente desde el punto de vista de distribución electrónica, concretamente de resonancia.

1.1. Aproximación Modulativa

a. Vinilogía

Se ha demostrado que ciertas moléculas que difieren en uno o en varios grupos vinilos situado en la cadena lateral o incluido en un ciclo (arílogo) pueden presentar similitud en sus propiedades farmacológicas.

1.1. Aproximación Modulativa

a. Vinilogía

- La vinilogía sirve para demostrar si los efectos resonantes son importantes para la actividad.
- En la isoniazida la actividad radica en la distancia entre el anillo plano y la cadena, por lo que ésta desaparece al aumentar la distancia por introducción de un vinilo.

- La vinilogía se aplica también en sentido inverso. La eliminación del anillo bencénico del edulcorante dulcina da lugar a la etoxiurea que también es dulce.

OEt

1.1. Aproximación Modulativa

b. <u>Isomería clásica</u>

- Uno de los criterios más frecuentes que dirige el diseño por variación estructural modulativa es el de la **isostería** que, esencialmente, consiste en el hecho de <u>sustituir</u> entre sí, <u>átomos o grupos de átomos equivalentes</u> en tamaño y distribución electrónica. Es un concepto químico.

- Tres conceptos de isostería según:
 - o Langmuir, 1919
 - o Grimm, 1925 Ley de desplazamiento de hidruros
 - o Erlenmeyer, 1948 Isoelectricidad periférica

1.1. Aproximación Modulativa

b. Isomería clásica

- Langmuir_(1919): fue el primero en introducir el concepto de isostería y definió los isósteros como moléculas o grupos de átomos con el <u>mismo</u> <u>número de átomos</u> y <u>electrones de valencia</u>.

16 e de valencia

: N=N=O: :O=C=O:

Óxido nitroso

Dióxido de carbono

10 e de valencia

∶N≣N:

Nitrógeno

Monóxido de carbono

1.1. Aproximación Modulativa

b. Isomería clásica

- **Grimm** (1925): Formuló la *Ley del desplazamiento del hidruro*, y permitió ampliar el concepto de isostería a especies <u>con diferente número de átomos</u> e <u>igual número de electrones de valencia</u>.

Un átomo es isóstero de la especie que resulta al añadir un protón al átomo que le precede en el sistema periódico.

1.1. Aproximación Modulativa

b. Isomería clásica

- **Erlenmeyer** (1932): amplió el concepto de isósteros "como los átomos, iones o moléculas con una distribución electrónica similar en su capa de valencia". Se extendió así la isostería a:
 - a. Los <u>elementos de la misma columna del Sistema Periódico</u> (N, P y As; N+ y P+; O, S y Se)
- **b.** Los llamados <u>pseudoátomos</u> que son grupos estructuralmente no relacionados pero que poseen propiedades similares. Ejemplo los pseudohalógenos: Cl, CN, SCN, ...
- c. Los <u>equivalente anulares</u> son agrupaciones que pueden intercambiarse en un anillo sin dar lugar a un cambio sustancial de las propiedades físicas y químicas de éste.

Tipo de isosterismo	Ejemplo
o y s	о у s
O y NH	O y H N
S у —СН=СН—	S y

