TD 3 – Wavelets and Approximation

Notes: We will be playing with different wavelet bases and Fast Wavelet Transform (FWT). Multiresolution approximations of $L^2(\mathbb{R})$ are families $(V_j)_{j\in\mathbb{Z}}$ of nested closed subspaces of $L^2(\mathbb{R})$, s.t.

$$L^2(\mathbb{R}) \supset \ldots \supset V_{j-1} \supset V_j \supset V_{j+1} \supset \ldots \supset \{0\}.$$

$$f \in V_j \iff f\left(\frac{\cdot}{2}\right) \in V_{j+1} \quad \text{and} \quad f \in V_j \iff \forall n \in \mathbb{Z}, f(\cdot + n2^j) \in V_j$$

and $\exists \varphi \in L^2(\mathbb{R})$ so that $\{\varphi(\cdot - n)\}_n$ is a Hilbertian orthonormal basis of V_0 . This implies that $\varphi_{j,n}$ form an orthonormal basis of $L^2(\mathbb{R})$:

$$\left\{\varphi_{j,n}(t) = \frac{1}{\sqrt{2^j}}\varphi\left(\frac{t-2^jn}{2^j}\right)\right\}_{(j,n)\in\mathbb{Z}^2}$$

Exercises

Multi-resolution Approximation Spaces

Show that these families $(V_j)_j$ are multiresolution approximations of $L^2(\mathbb{R})$, with scaling functions φ .

- 1. (Piecewise constant functions) $V_j = \{ f \in L^2(\mathbb{R}); \forall n, f \text{ is constant on } [2^j n, 2^j (n+1)) \} \text{ and } \varphi(t) = 1_{[0,1)}.$
- 2. (Shannon approximations) $V_j = \{ f \in L^2(\mathbb{R}); \forall n, \hat{f} \text{ is zero outside of } [-2^{-j}\pi, 2^{-j}\pi] \} \text{ and } \varphi(t) = \frac{\sin \pi t}{\pi t}.$

Haar Wavelets

For $j \in \mathbb{Z}$, we define the space $V_j \subset L^2(\mathbb{R})$ of functions which are constant on each interval $I_{j,k}$, where $\forall k \in \mathbb{Z}, I_{j,k} := [2^j k, 2^j (k+1))$. We also define the functions

$$\forall x \in \mathbb{R}, \varphi(x) := \begin{cases} 1 & \text{if } x \in [0, 1) \\ 0 & \text{otherwise} \end{cases} \text{ and } \psi(x) := \begin{cases} 1 & \text{if } x \in [0, 1/2) \\ -1 & \text{if } x \in [1/2, 1) \\ 0 & \text{otherwise} \end{cases}$$

Their dilated and translated versions are defined as

$$\forall (j,k) \in \mathbb{Z}, \psi_{j,k}(t) := \frac{1}{\sqrt{2^j}} \psi\left(2^{-j}t - k\right) \text{ and } \varphi_{j,k}(t) := \frac{1}{\sqrt{2^j}} \varphi\left(2^{-j}t - k\right)$$

The functions $\psi_{j,k}$ are the so-called "Haar wavelets".

- 1. Draw the graphs of the functions $\varphi_{0,0}$, $\varphi_{1,0}$ and $\varphi_{2,2}$. Do the same for $\psi_{0,0}$, $\psi_{1,0}$ and $\psi_{2,2}$.
- 2. Find and show an explicit characterization of W_j where W_j satisfies $W_j \subset L^2(\mathbb{R})$ such that $W_j \perp V_j$ and $V_{j-1} = V_j \oplus W_j$.
- 3. Show that $\mathcal{B}_{\varphi_j} := \{ \varphi_{j,k}; k \in \mathbb{Z} \}$ and $\mathcal{B}_{\psi_j} := \{ \psi_{j,k}; k \in \mathbb{Z} \}$ are ortho-bases of respectively V_j and W_j .

Up and down sampling (from exam 2020)

We consider $\ell_2(\mathbb{Z})$ the set of sequences $(x_i)_{i\in\mathbb{Z}}$ with $\sum_i x_i^2 < +\infty$ with the inner product $\langle x,y\rangle = \sum_i x_i y_i$. The down and up-sampling operators are $x\downarrow_2:=(x_{2i})_{i\in\mathbb{Z}}$ and $(x\uparrow^2)_i:=\begin{cases} x_{i/2} & \text{if i is even} \\ 0 & \text{otherwise} \end{cases}$

- 1. Prove that \downarrow_2 and \uparrow^2 are adjoints i.e. $\langle x \downarrow_2, y \rangle = \langle x, y \uparrow^2 \rangle$.
- 2. What is the adjoint of the linear operator $x \mapsto x \star h$, where $(x \star h)_i := \sum_{j \in \mathbb{Z}} x_j h_{i-j}$?
- 3. Prove that $(x \downarrow_2) \star h = (x \star (h \uparrow^2)) \downarrow_2$. Then use this recursively to show $f^k(x) = (x \star H^k) \downarrow_{2^k}$ where $H^k := h^0 \star h^1 \star \ldots \star h^{k-1}$ with $h^s = h \uparrow^{2^s} (\uparrow^{2^s}$ is defined similarly to \uparrow^2 by inserting $2^s 1$ zeros), and $f: x \mapsto (x \star h) \downarrow_2$.
- 4. What is H^k in the case of a box filter $[h_0, h_1] = [1, 1]/2$ (the other entries of the vector being 0)?

Heisenberg inequality

A wavelet is a filter with mean 0, localized both in the spatial and Fourier domains. How localized can it be? For a function $f \in L^2(\mathbb{R})$ such that the following quantities exist, we define:

- Time mean $u = \frac{1}{\|f\|_2^2} \int_{-\infty}^{+\infty} t |f(t)|^2 dt$
- Time Variance $\sigma_t^2 = \frac{1}{\|f\|_2^2} \int_{-\infty}^{+\infty} (t-u)^2 |f(t)|^2 dt$
- Fourier Mean $\xi = \frac{1}{2\pi \|f\|_2^2} \int_{-\infty}^{+\infty} \omega |\hat{f}(\omega)|^2 d\omega$
- Fourier Variance $\sigma_{\omega}^2 = \frac{1}{2\pi \|f\|_2^2} \int_{-\infty}^{+\infty} (\omega \xi)^2 |\hat{f}(\omega)|^2 d\omega$
- 1. Let $s \in \mathbb{R}_+^*$ and $f_s(t) = \frac{1}{\sqrt{s}} f(\frac{t}{s})$.
 - (a) Show that $||f_s||_2^2 = ||f||_2^2$
 - (b) Derive the time mean and variance of f_s as a function of those of f.
 - (c) Derive the Fourier mean and variance of f_s as a function of those of f.
 - (d) How does scaling affect time and Fourier resolution?
- 2. In the following we assume u=0 and $\xi=0$. This amounts to replacing f with $g:t\mapsto f(t-u)e^{i\xi t}$. Assuming $\lim_{|t|\to+\infty}\sqrt{t}f(t)=0$, show that the spatial and Fourier variances verify the Heisenberg inequality:

$$\sigma_t^2 \sigma_\omega^2 \ge 1/4$$

3. In which case is this an egality?

Linear and non-linear approximation (from exam 2019)

For a fixed $y \in [0,1]$, we consider $f \stackrel{\text{def.}}{=} 1_{[y,1]} - 1_{[0,y[}$. We denote $\langle f,g \rangle \stackrel{\text{def.}}{=} \int_0^1 fg$ the inner product and $||f||^2 \stackrel{\text{def.}}{=} \langle f,f \rangle$.

1. For $M \in \mathbb{N}^*$, we denote $\theta_k \stackrel{\text{def.}}{=} \sqrt{M} 1_{\left[\frac{k}{M}, \frac{k+1}{M}\right[}$ for $0 \leq k < M$. Show that $(\theta_k)_k$ is an orthonormal family and give the expression for the linear approximation

$$f_M \stackrel{\text{def.}}{=} \sum_k \langle f, \theta_k \rangle \theta_k.$$

2. Bound $||f - f_M||$ as a function of M, independently of y, using a bound which is as sharp as possible.

2

- 3. We denote $\theta \stackrel{\text{\tiny def.}}{=} 1_{[0,1]}$ and $\psi = 1_{[0,1/2[} 1_{[1/2,1[}$ the Haar wavelet. We denote, for $j \leq 0$, and $0 \leq n < 2^{-j}$ the wavelet functions as $\psi_{j,n} \stackrel{\text{\tiny def.}}{=} \frac{1}{2^{j/2}} \psi(2^{-j}x n)$. Draw the wavelets $\psi_{-1,1}$ and $\psi_{-2,3}$.
- 4. For some $j_{\min} < 0$, show that

$$\{\theta\} \cup \{\psi_{j,n} ; 0 \ge j \ge j_{\min} \text{ and } 0 \le n < 2^{-j}\}$$

is an orthogonal family. What is the space spanned by this family?

- 5. For each j, what is the set Σ_j of index n where $\langle f, \psi_{j,n} \rangle$ is non-zero? For these $n \in \Sigma_j$, bound $|\langle f, \psi_{j,n} \rangle|$ as a function of j.
- 6. For T > 0 we define the non-linear approximation of f as

$$\hat{f} \stackrel{\text{\tiny def.}}{=} \langle f, \theta \rangle \theta + \sum_{|\langle f, \psi_{j,n} \rangle| > T} \langle f, \psi_{j,n} \rangle \psi_{j,n}.$$

Bound as a function of T the number M of non-zero coefficients

$$M \stackrel{\text{def.}}{=} |\{(j,n) ; |\langle f, \psi_{j,n} \rangle| > T\}|.$$

7. Defining $j_0 \stackrel{\text{def.}}{=} \lfloor \log_2(T^2) \rfloor$ a cutoff scale, we define an approximation using

$$\tilde{f}_T \stackrel{\text{\tiny def.}}{=} \langle f, \theta \rangle \theta + \sum_{j \geq j_0, n \in \Sigma_j} \langle f, \psi_{j,n} \rangle \psi_{j,n}.$$

Show that $||f - \hat{f}_T|| \le ||f - \tilde{f}_T||$.

8. Bound $||f - \tilde{f}_T||$ as a function of j_0 and then as a function of M. Compare the decay with M of $||f - f_M||$ and $||f - \hat{f}_T||$.

Solutions

Multi-resolution Approximation Spaces

1. The $(V_i)_{i\in\mathbb{Z}}$ are clearly nested closed subspaces of $L^2(\mathbb{R})$ that satisfy

$$f \in V_j \iff f\left(\frac{\cdot}{2}\right) \in V_{j+1} \iff \forall n \in \mathbb{Z}, f(\cdot + n2^j) \in V_j.$$

Let us show that $\overline{\bigcup_j V_j} = L^2(\mathbb{R})$. Let $f \in L^2(\mathbb{R})$. Let $\epsilon > 0$. As $\mathcal{C}_c(\mathbb{R})$ is dense in $(L^2(\mathbb{R}), \|\cdot\|_2)$, there exists $g \in \mathcal{C}_c(\mathbb{R})$ such that $\|g - f\|_2 \le \epsilon$. Finally using Heine theorem, there exists $j \in \mathbb{Z}$ and $h \in V_j \subseteq \bigcup_k V_k$ such that $\|g - h\|_2 \le \epsilon$.

One has $\bigcap_i V_i = \{0\}$ because non-zero constant functions of \mathbb{R} are not in $L^2(\mathbb{R})$.

Finally, $\{\varphi(\cdot - n) = 1_{[n,n+1]}\}_n$ is clearly an orthonormal family of V_0 . Moreover let $f \in V_0$ then

$$||f - \sum_{k=-N}^{N} f(k) \mathbf{1}_{[k,k+1[}||_{2} \underset{N \to +\infty}{\longrightarrow} 0.$$

2. The $(V_j)_{j\in\mathbb{Z}}$ are clearly nested closed subspaces of $L^2(\mathbb{R})$ that satisfy

$$f \in V_j \iff f\left(\frac{\cdot}{2}\right) \in V_{j+1} \iff \forall n \in \mathbb{Z}, f(\cdot + n2^j) \in V_j.$$

Let us show that $\overline{\bigcup_j V_j} = L^2(\mathbb{R})$. Let $f \in L^2(\mathbb{R})$. Let $\epsilon > 0$. Again as $\mathcal{C}_c(\mathbb{R})$ is dense in $(L^2(\mathbb{R}), \|\cdot\|_2)$, there exists $g \in \mathcal{C}_c(\mathbb{R})$ such that $\|g - \hat{f}\|_2 \le \epsilon$. In particular there exists $j \in \mathbb{Z}$ such that supp $g \subseteq [-2^{-j}\pi, 2^{-j}\pi]$. Considering $h = \mathcal{F}^{-1}(g) \in V_j$ and using Plancherel equality one has $2\pi \|h - f\|_2^2 = \|g - \hat{f}\|_2^2 \le \epsilon^2$. Thus $\overline{\bigcup_j V_j} = L^2(\mathbb{R})$.

One has $\bigcap_i V_j = \{0\}$ as $\|\hat{f}\|^2 = 0$ implies $\|f\|^2 = 0$ by Plancherel equality.

Finally, Nyquist-Shannon theorem yields that $\{\varphi(\cdot - n)\}_n$ is an orthonormal basis of V_0 .

Haar wavelets

- 1. Drawing
- 2. Let $j \in \mathbb{Z}$. As V_{j-1} is a Hilbert space (closed subspace in a Hilbert space) and as $V_j \subset V_{j-1}$ is a closed subspace of V_{j-1} , one has $V_{j-1} = V_j \oplus^{\perp} V_j^{\perp}$. Denote

 $W_j := \left\{ f \in L^2(\mathbb{R}), \forall k, f \text{ is constant on } I_{j-1,k} \text{ and has zero mean on the interval } I_{j,k} \right\}.$

Let us show that $V_j^{\perp} = W_j$. Let $f \in V_j, g \in W_j$, then:

$$\langle f, g \rangle = \sum_{k} \int_{I_{j,k}} fg \stackrel{f \in V_j}{=} \sum_{k} f_k \underbrace{\int_{I_{j,k}} g}_{=0 \text{ as } g \in W_j} = 0.$$

Thus $V_j \perp W_j$. Moreover $V_j \oplus^{\perp} W_j$ as $\langle \cdot, \cdot \rangle$ is positive-definite. Finally let h be in V_{j-1} . Denote h_k the value of h on $I_{j-1,k}$. Consider $f \in V_j$ defined by $f(x) = (h_{2k} + h_{2k+1})/2$ for $x \in I_{j,k}$. Then $h - f =: g \in W_j$.

3. cf Q1 from the previous exercise.

Up and down sampling

1. One has

$$\langle x \downarrow_2, y \rangle = \sum_i x_{2i} y_i = \sum_i \left(x_{2i} \underbrace{(y \uparrow^2)_{2i}}_{=y_i} + x_{2i+1} \underbrace{(y \uparrow^2)_{2i+1}}_{=0} \right) = \sum_i x_i y \uparrow^2_i = \langle x, y \uparrow^2 \rangle.$$

- 2. By Fubini, it is the convolution against \tilde{h} where $\tilde{h}_n = h_{-n}$.
- 3. One has

$$[(x \star h \uparrow^2) \downarrow_2]_i = [(x \star h \uparrow^2)]_{2i} = \sum_k \left(x_{2k} \underbrace{(h \uparrow^2)_{2(i-k)}}_{=h_{i-k}} + x_{2k+1} \underbrace{(h \uparrow^2)_{2(i-k)-1}}_{=0} \right) = [(x \downarrow_2) \star h]_i.$$

One thus has

$$f^{k+1}(x) = f(f^k(x)) = (f^k(x) \star h) \downarrow_2 = [(x \star H^k) \downarrow_{2^k} \star h] \downarrow_2 = [x \star H^k \star (h \uparrow^{2^k})] \underbrace{\downarrow_{2^k} \downarrow_2}_{\downarrow_{2^k+1}} = [x \star H^{k+1}] \downarrow_{2^{k+1}}.$$

4. One has $H^2 = [1,1]/2 \star [1,0,1,0]/2 = [1,1,1,1]/4$ and more generally $H^s = 1_{[0,\dots,2^s-1]}/2^s$.

Heisenberg inequality

- 1. (a) Change of variables
 - (b) By change of variables, $u(s) = s \times u$ and $\sigma_t(s) = s \times \sigma_t$
 - (c) Since $\hat{f}_s(\omega) = \sqrt{s}\hat{f}(\omega s)$, by change of variables, $\xi(s) = \xi/s$ and $\sigma_{\omega}(s) = \sigma_{\omega}/s$
 - (d) Reducing variance in one domain makes it bigger in the other.
- 2. The product reads

$$\sigma_t^2 \sigma_\omega^2 = \frac{1}{2\pi \|f\|^4} \int_{-\infty}^{+\infty} |tf(t)|^2 dt \int_{-\infty}^{+\infty} |\omega \hat{f}(\omega)|^2 d\omega.$$

We notice that since $i\omega \hat{f}(\omega)$ is the Fourier transform of $f'(\omega)$, the Plancherel equality gives

$$\sigma_t^2 \sigma_\omega^2 = \frac{1}{\|f\|^4} \int_{-\infty}^{+\infty} |tf(t)|^2 dt \int_{-\infty}^{+\infty} |f'(t)|^2 dt.$$

By appyling Cauchy-Schwarz,

$$\sigma_t^2 \sigma_\omega^2 \ge \frac{1}{\|f\|^4} \left(\int_{-\infty}^{+\infty} t f'(t) f^*(t) dt \right)^2.$$

We can rewrite this as

$$\sigma_t^2 \sigma_\omega^2 \ge \frac{1}{\|f\|^4} \left(\int_{-\infty}^{+\infty} \frac{t}{2} (f'(t)f^*(t) + f'^*(t)f(t)) dt \right)^2$$

then

$$\sigma_t^2 \sigma_\omega^2 \ge \frac{1}{4\|f\|^4} \left(\int_{-\infty}^{+\infty} t(|f(t)^2|)' \mathrm{d}t \right)^2$$

Finally, integration by parts (since $\lim_{|t|\to+\infty} \sqrt{t} f(t) = 0$) gives

$$\left(\int_{-\infty}^{+\infty} t(|f(t)^2|)' \mathrm{d}t\right)^2 = \left(\int_{-\infty}^{+\infty} |f(t)|^2 \mathrm{d}t\right)^2,$$

hence

$$\sigma_t^2 \sigma_\omega^2 \ge \frac{1}{4}.$$

3. Equality case of Cauchy-Schwarz, f(t) = -2btf(t). So $f(t) = ae^{-bt^2}$

Linear and non-linear approximation See Exam 2019