Report15

胡琦浩 PB21000235

一、问题

设体系能量为 $H(x,y)=-(x^2+y^2)+\frac{1}{2}(x^4+y^4)+\frac{1}{3}(x-y)^4$,取 $\beta=0.2,1,5$,采用 Metrolopis抽样方法计算< $x^2>$, $< y^2>$, $< x^2+y^2>$ 。抽样时在二维平面上依次标出Markov链点分布,从而形象地理解Markov链。

二、方法

2.1 理论计算

该热力学系统满足Boltzmann分布:

$$p(x,y) = rac{1}{A} exp(-eta H(x,y))$$

式中:
$$A = \int \int_{-\infty}^{\infty} exp(-\beta H(x,y)) dxdy$$

则应该有:

$$< x^2 > = \int \int_{-\infty}^{\infty} x^2 p(x,y) \, dx dy$$
 $< y^2 > = \int \int_{-\infty}^{\infty} y^2 p(x,y) \, dx dy$ $< x^2 + y^2 > = \int \int_{-\infty}^{\infty} (x^2 + y^2) p(x,y) \, dx dy = < x^2 > + < y^2 >$

由Mathematica计算结果如下:

β	$< x^2 >$	$< y^2 >$	$< x^2+y^2>$
0.2	1.13138	1.13138	2.26277
1	0.75789	0.75789	1.51579
5	0.86552	0.86552	1.73105

2.2 抽样方法

由Metropolis方法:

$$W_{ij} = p_j W_{ij} \ W_{ij} = egin{cases} T_{ij} & if \ p_j > p_i \ T_{ij}(p_j/p_i) & if \ p_j < p_i \end{cases}$$

下标i和j是不同的, 当两者相同时, 满足转移概率的归一化:

$$W_{ii} = 1 - \sum_{j
eq i} W_{ij}$$

根据上述方法即可抽样出满足p(x,y)的样本

图1: 抽样流程图

在本题中,不妨取
$$r_0=(-5,-5),\;\Delta r=(0.5,0.5),\;N=10^6$$

则根据得到的样本值: $< x^2> = \frac{1}{N-m} \sum_{i=m+1}^N x_i^2$,舍去前m个热化的构型,在本题中取 m=1000

三、实验结果

由Metropolis抽样法得到结果如下:

β	$< x^2 >$	$< y^2 >$	$< x^2+y^2>$
0.2	1.13002	1.13862	2.26864
1	0.75627	0.76115	1.51742
5	0.86251	0.86682	1.72933

可以看出,与Mathematica得到结果相差很小,精度很高

图3: $\beta=1$ 时的Markov链

图4: $\beta=5$ 时的Markov链

由图可以看出,经过一段时间的热化过程,Markov链最后会交织在一起,达到平衡状态

四、总结

本题中再次运用了Metropolis抽样方法,更加深刻地认识了解了Markov链,以及运用Metropolis方法更加熟练