DESIGN OF PRE-ENGINEERED BUILDING

CE 332 Group Project

Course Instructor

Prof. Siddhartha Ghosh

Indian Institute of Technology Bombay
Spring 2022

By Group 2

Aditi Gupta	Aman	Jain	Ankita								
Arnaov Jamini	Chetan Kumar		Chetan Kumar		Chetan Kumar		Chetan Kumar		Chetan Kumar		Gaurvansh Yadav
Harshvardhan Siddharth	Kapil	Singh	Md. Anish								
Kushal Choudhary	Vaibhav Besekar		Vaibhav Besekar		Vaibhav Besekar		Yashwanth Gaddipati				
Vandana Chandu			Dipender Mina								

Table of Contents

ntroduction	. 3
eneral Arrangement	. 3
oad Summary	. 4
Dead Load	. 4
Weight of Roof and Side Sheeting	. 4
Weight of Structural Members	. 4
Live Load	. 4
Roof Live Load	. 4
Wind Load	. 4
Load Combinations	. 7
ectional Properties	. 7
nalysis and Design	. 7
STAAD Analysis	. 7
Connection Design	. 9
Baseplate Connection	. 9
Beam-to-Beam End Plate Connection	13
Autocad Drawings	16
Structural Drawings	16
Sectional Drawings	17
Connection drawings	18
ill of Quantities	10

Introduction

Pre-Engineered Buildings (PEB) are the buildings which are engineered at a factory and assembled at site. Usually, PEBs are steel structures. Built-up sections are fabricated at the factory to exact size, transported to site and assembled at site with bolted connections. This type of Structural Concept is generally used to build Industrial Buildings, Metro Stations, Warehouses etc.

A pre-engineered building is a system utilizing three distinct product categories:

- Built-up "I" to shape primary structural framing members (columns and rafters)
- Cold-formed "Z" and "C" to shape secondary structural members (roof purlins, wall girts, and eave struts)
- Roll-formed sheeting profiles (roof and wall cladding).

The adoptability of PEB in the place of Conventional Steel Building design concept resulted in many advantages, including economy & easier fabrication. This type of building structure can be finished internally to serve any functions that is actually helpful in low rise building design.

General Arrangement

- The plan dimension of the PEB: 16m (width) X 18m (length)
- Eaves height of the structure: 8m
- Slope of roof: 1 in 7.5Support at base: Hinged
- Longitudinal Bracing between frames along one span
- Side sheeting along the length (18 m span) and roof should be considered c during loading

Load Summary

Dead Load

Weight of Roof and Side Sheeting

Mass per unit area = $4kg/m^2$

Area = Area of roof + Area of side sheeting

$$Area = 2 \times 18 \times \sqrt{7.5^2 + 1^2} \times \frac{8}{7.5} + 2 \times 18 \times 8 = 578.54 \, m^2$$

 $Mass = Mass per unit area \times Area = 2314.19 kg$

Weight of Structural Members

Material Properties

• Material Used: E 250 (Fe 410W) A

• Density: 7550 kN/m³ (weight), 7700 kg/m³ (mass)

• Ultimate tensile stress (min): 410 MPa

Live Load

Roof Live Load

Code: IS 875 Part-II

Uniformly Distributed Imposed Load on Plan Area = 0.75 kN/m^2

$$Plan Area = 16 \times 18 = 288 m^2$$

$$Load = UDL \times Area = 216 kN$$

Wind Load

Site Conditions

• Site is at location in industrial areas.

- The topography of the site is such that the upwind slope is less than 3 deg.
- Site is at non cyclonic region in Mumbai.

Code: IS 875 Part-III

Parameters

- $k_1 = 1$ (Probability coefficient for general buildings and structure)
- $k_2 = 0.8$ (terrain roughness and height factor for terrain category 4)
- $k_3 = 1$ (Topography factor for upwind slope is less than 3°)
- $k_4 = 1.15$ (Importance factor for cyclonic region for industrial areas)
- $V_b = 44$ m/s (Basic wind speed for Mumbai region)
- $V_z = 40.48 \text{ m/s}$ (Design wind speed (Vz=Vb*k1*k2*k3*k4))
- $p_z = 983.18 \text{ N/m}^2$ (Wind pressure at any height above the mean ground ($p_z = 0.6 \text{ N/z}^2$))
- $k_d = 0.9$ (Wind Directionality factor for prismatic buildings)
- $k_a = 0.8$ (Area averaging factor for tributary area greater than 100 m²)

- $k_c = 1$ (Combination factor given)
- $p_d = p_z * k_d * k_a * k_c = 707.89 \text{ N/m}^2$
- Wind Direction to be considered 0° and 180°
- C_{pe} for wall (External Pressure Coefficient of walls)
 - \circ Windward = 0.7
 - \circ Leeward = -0.2
- C_{pe} for roof (External Pressure Coefficient of roof)
 - \circ Windward = -1.056
 - \circ Leeward = -0.4
- $C_{pi} = \pm 0.7$ (Internal Pressure Coefficient)

Results

- For Positive C_{pi}
 - o UDL acting on the walls
 - Windward = 0
 - Leeward = -637.10 N/m^2
 - o UDL acting on the roof
 - Windward = -1243.05 N/m^2
 - Leeward = -778.68 N/m^2
- For Negative C_{pi}
 - o UDL acting on the walls
 - Windward = 991.04 N/m^2
 - Leeward = 353.94 N/m^2
 - o UDL acting on the roof
 - Windward = -252.01 N/m^2
 - Leeward = 212.37 N/m^2

Load Combinations

- Limit State of Strength
 - o 1.2 DL + 1.2 LL
 - o 1.2 DL + 1.2 LL + 1.2 WL
- Limit State of Serviceability
 - o 1 DL + 1 LL

Sectional Properties

- Rafters WB 450 to WB 300 (taper)
- Columns WB 450 to WB 300 (taper)
- Ridge Board LB 300
- Purlin LB 300
- Bracings ISA 50x50x5

Analysis and Design

The above section properties were used to make the structure. Material used is structural steel. For the supports Mx, My, Mz were kept free. Bracings were taken as axial members.

STAAD Analysis

Live Load and Dead Load applied respectively

Wind Load applied on structure

Displacements for one of the load combinations

Shear Force (F_y) for various load combinations

Bending Moment along Z (Mz) for various load combinations

Support Reactions for various load combinations

Connection Design

Baseplate Connection

The Column Base Plate connection is a rectangular steel plate welded to the bottom of a steel column. The steel plate sits on the top of a concrete support (with or without a grout pad between). The plate is bolted to the concrete with headed bolts that are embedded in the concrete.

1 Input Parameters

Mair	n Module	Moment Connection			
Module			Base Plate Connection		
Connectivity			Welded Column Base		
End	Condition		Pinned		
Axial Cor	npression (kN)		33.22		
Axial Tens	ion/Uplift (kN)		0.0		
Shear	Force (kN)				
- Along n	najor axis (z-z)		0.67		
- Along m	inor axis (y-y)			34.02	
Bending 1	Moment (kNm)				
- Major	axis (M_{z-z})			0.0	
- Minor	axis (M_{y-y})			0.0	
	Column Section	- Mechanical	Properties		
	Column S	ection	WB 300		
	Mater	Material		E 250 (Fe 410 W)A	
	Ultimate Strengt	Ultimate Strength, F_u (MPa)		410.0	
T I	Yield Strength,	Yield Strength, Fy (MPa)		250.0	
	Mass, m (kg/m)	48.1	I_z (cm ⁴)	9820.0	
(B-t)/4 α	Area, A (cm ²)	61.3	$I_y(\text{cm}^4)$	990.0	
zz z	None	None	r_z (cm)	12.7	
-R1	D (mm)	300.0	r_y (cm)	4.02	
R2	B (mm)	200.0	Z_z (cm ³)	655.0	
	T (mm)	10	$Z_y \text{ (cm}^3\text{)}$	99.0	
- Y	t (mm)	7.4	Z_{pz} (cm ³)	628.39	
R	Flange Slope	96	Z_{py} (cm ³)	1551.3	
	R ₁ (mm)	11.0			
R ₂ (mm) 5.		5.5			
	Base Plat	e - Design Pr	eference		
Material			E 250 (Fe 410 W)A		
Ultimate Strength, F_u (MPa)			410		
Yield Strength, F_y (MPa)			250		

Stiffener/Shear Key - Design Preference						
Material	E 250 (Fe 410 W)A					
Anchor Bolt Outside Column Flange - Input and Design Preference						
Diameter (mm)	['M20', 'M24', 'M30', 'M36', 'M42', 'M48', 'M56', 'M64',					
Diameter (mm)	'M72']					
Property Class	['3.6', '4.6', '4.8', '5.6', '5.8', '6.8', '8.8', '9.8',					
Troperty Canada	'10.9', '12.9']					
Anchor Bolt Type	End Plate Type					
Anchor Bolt Galvanized?	Yes					
Designation	M20X344.5 IS5624 GALV					
Hole Type	Over-sized					
Total Length (mm)	344.5					
Material Grade, F_u (MPa)	1220.0					
Anchor Bolt Inside Column Flange - Input and Design	Prefereself.anchor_grade_list_outnce					
Diameter (mm)	N/A					
Property Class	N/A					
Anchor Bolt Type	N/A					
Anchor Bolt Galvanized?	N/A					
Designation	N/A					
Hole Type	N/A					
Total Length (mm)	N/A					
Material Grade, F_u (MPa)	N/A					
Friction Coefficient (between concrete and anchor bolt)	0.3					
Weld - Design Prefer	rence					
Type of Weld Fabrication	Shop Weld					
Material Grade Overwrite, F_u (MPa)	410.0					
Detailing - Design Preference						
Edge Preparation Method	a - Sheared or hand flame cut					
Are the Members Exposed to Corrosive Influences?	Yes					
Design - Design Preference						
Design Method	Limit State Design					
Base Plate Analysis	Effective Area Method					

Figure 1: Typical Base Plate Details

Figure 2: Typical Base Plate Detailing

Figure 3: Typical Weld Details

 l_1 = length above footing l_2 = length below footing $1 = t_n$, nut thickness $2 = t_w$, washer thickness $3 = t_p$, plate thickness $4 = t_g$, grout thickness 5 = end plate thickness

 $5 = {
m end}$ plate thickness

Figure 4: Typical Anchor Bolt Details

Beam-to-Beam End Plate Connection

A flexible end plate connection consists of a plate fastened to both sides of the web in metal beam structures by fillet welds. The connection should transmit vertical shear and allow beam end rotations to occur without the development of significant moments. They provide moment-resistant connections between beams and columns at the corner of frames or a moment resistant connection to elongate beams.

Typical flexible end plate connections may be partial depth or full-depth and are welded to the supported metal beam structures. The beam then bolts to the supporting beam or column on site.

This type of connection is relatively low-priced but has the disadvantage of little opportunity for site adjustment. The overall beam lengths need steel fabrication within tight limits, although packs are used to compensate for fabrication tolerances and erection tolerances.

End plates are used with skewed beams and tolerate moderate offsets in a beam to column joints. The end plate is connected to the metal beam structures through weld because its capacity and size are managed by the sheer magnitude of the beam adjoining the weld. The stress applied to the connection at the end of the member does not have eccentricities. There are various types of end plate connections including a flexible, semi-rigid, and rigid end plate connections.

1 Input Parameters

Main M	odule	Moment Connection			
Modu	ıle	Beam-to-Beam End Plate Connection			
Connect	tivity	Coplanar Tension-Compression Flange			
End Plate	е Туре	Flushed - Reversible Moment			
Bending Mon	ent (kNm)			15.506	
Shear Fore	ce (kN)		0.0		
Axial Fore	ce (kN)		12.634761		
	Beam Section -	Mechanical I	Properties		
	Beam Sec	tion		WB 450	
	Materia	al	E	250 (Fe 410 W)A	
T	Ultimate Strength	F_u (MPa)		410	
	Yield Strength,	F_y (MPa)		250	
$(B-t)$ α	Mass, $m \text{ (kg/m)}$	79.52	I_z (cm ⁴)	35100.0	
7 7 0	Area, A (cm ²)	10100.0	$I_y(\mathrm{cm}^4)$	1700.0	
ZZ D	D (mm)	450.0	r_z (cm)	18.6	
B.	B (mm)	200.0	r_y (cm)	4.1	
-R _z	t (mm)	9.2	Z_z (cm ³)	1560.0	
В	T (mm)	15.4	Z_y (cm ³)	170.0	
Ý	Flange Slope	96	Z_{pz} (cm ³)	1760.0	
	R ₁ (mm)	15.0	Z_{py} (cm ³)	284.0	
	R_2 (mm)	7.0			
	Plate Details - Inp	out and Desig	n Preference		
Thickness	(mm)		[8, 10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40, 45,		
	()		50, 56, 63, 75, 80, 90, 100, 110, 120]		
Mater	rial		E 250 (Fe 410 W)A		
Ultimate Streng	th, F_u (MPa)	410			
Yield Strength	, Fy (MPa)	250			
Bolt Details - Input and Design Preference					
Diameter (mm)			[8, 10, 12, 14, 16, 18, 20, 22, 24, 27, 30, 33, 36, 39,		
Diameter (mm)			42, 45, 48, 52, 56, 60, 64]		
Property Class			[3.6,4.6,4.8,5.6,5.8,6.8,8.8,9.8,10.9,12.9]		
Туре			Bearing Bolt		

Bolt Tension	Non pre-tensioned					
Hole Type	Standard					
Slip Factor, (μ_f)	0.3					
Weld Details - Input and Design Preference						
Type of Weld Fabrication	Shop Weld					
Material Grade Overwrite, F_u (MPa)	410.0					
Beam Flange to End Plate	Groove Weld					
Beam Web to End Plate	Fillet Weld					
Stiffener	Fillet Weld					
Detailing - Design Preference						
Edge Preparation Method	Sheared or hand flame cut					
Gap Between Beams (mm)	0.0					
Are the Members Exposed to Corrosive Influences?	False					

Figure 1: Typical Weld Details -- Beam to End Plate Connection

Figure 2: Typical Detailing

Figure 3: Typical Stiffener Details

Autocad Drawings

Structural Drawings

CENTRAL LINE OF I BEAM SHOWN TO AVOID CONFUSION

Side View

Top View SCALE 1:50

Sectional Drawings

Connection drawings

Baseplate Connection

Bill of Quantities

Serial Number	Particulars of Item/Work	Length (m)	Weight (N)	Weight (Kg)	Rate	Unit	Cost (Rs.)
1	Structural Steel						
	Sections						
a	Columns - Tapered I Beam WB 450 to WB 300	64.28	41160.503	4197.13649			209856.8245
1	Rafters - Tapered I Beam WB 450 to	(4.20	20205 077	2005 7717	50	Rs. per kg	104700 5051
b	WB 300	64.28	38205.077	3895.7717			194788.5851
С	Purlins - LB 300	162	58540.34	5969.35847			298467.9235
d	Bracings - ISA 50x50x5	120	4415.569	450.255571			22512.77855
	Total		142321.49	14512.5222			725626.1117
2	Additional Cost						
a	Connection Cost				10%	% of	72562.61117
b	Labour Cost				5%	Cost of	36281.30558
c	Foundation Cost				30%	Structural	217687.8335
d	Contingency Cost				5%	Steel	36281.30558
	Total cost of the structure						1088439.167