SymPy generated orbital functions

Orbitals are constructed in the following fashion:

$$\phi(\vec{r})_{n,l,m} = L_{n-l-1}^{2l+1} \left(\frac{2r}{n}k\right) S_l^m(\vec{r}) e^{-\frac{r}{n}k}$$

where n is the principal quantum number, $k=\alpha Z$ with Z being the nucleus charge and α being the variational parameter.

$$l = 0, 1, ..., (n-1)$$

$$m = -l, (-l+1), ..., (l-1), l$$

$\phi_0 \to \phi_{1,0,0}$	
$\phi(\vec{r})$	1
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-\frac{kx}{r}$
$\vec{j} \cdot \nabla \phi(\vec{r})$	$-\frac{\dot{k}y}{r}$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$-\frac{kz}{r}$
$ abla^2 \phi(\vec{r})$	$\frac{k}{r}(kr-2)$

Table 1: Orbital expressions hydrogenic Orbitals: 1, 0, 0. Factor e^{-kr} is omitted.

$\phi_1 \to \phi_{2,0,0}$	
$\phi(\vec{r})$	-kr+2
$\vec{i} \cdot \nabla \phi(\vec{r})$	$\frac{kx}{2r}(kr-4)$
$\vec{j}\cdot abla\phi(\vec{r})$	$\frac{\overline{k}y}{2r}(kr-4)$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$\frac{\overline{k}z}{2r}(kr-4)$
$\nabla^2 \phi(\vec{r})$	$-\frac{k}{4r}\left(kr-8\right)\left(kr-2\right)$

Table 2: Orbital expressions hydrogenic Orbitals : 2, 0, 0. Factor $e^{-\frac{kr}{2}}$ is omitted.

$$\begin{array}{c|ccc} \phi_2 \rightarrow \phi_{2,1,0} & & & \\ \hline \phi(\vec{r}) & z & & \\ \hline \vec{i} \cdot \nabla \phi(\vec{r}) & -\frac{kxz}{2r} & & \\ \vec{j} \cdot \nabla \phi(\vec{r}) & -\frac{kyz}{2r} & & \\ \vec{k} \cdot \nabla \phi(\vec{r}) & \frac{1}{2r} \left(-kz^2 + 2r\right) & & \\ \hline \nabla^2 \phi(\vec{r}) & \frac{kz}{4r} \left(kr - 8\right) & & \\ \hline \end{array}$$

Table 3: Orbital expressions hydrogenic Orbitals : 2, 1, 0. Factor $e^{-\frac{kr}{2}}$ is omitted.

$\phi_3 \to \phi_{2,1,1}$	
$\phi(\vec{r})$	-x
$\vec{i} \cdot \nabla \phi(\vec{r})$	$\frac{\frac{1}{2r}\left(kx^2 - 2r\right)}{\frac{kxy}{}}$
$\vec{j} \cdot abla \phi(\vec{r})$	2r
$\vec{k}\cdot abla\phi(\vec{r})$	$\frac{kxz}{2r}$
$\nabla^2 \phi(\vec{r})$	$-\frac{kx}{4r}(kr-8)$

Table 4: Orbital expressions hydrogenic Orbitals : 2, 1, 1. Factor $e^{-\frac{kr}{2}}$ is omitted.

$\phi_4 \to \phi_{2,1,-1}$	
$\phi(\vec{r})$	-y
$\vec{i} \cdot \nabla \phi(\vec{r})$	$\frac{kxy}{2r}$
$\vec{j}\cdot abla\phi(\vec{r})$	$\frac{\frac{1}{2r}}{\frac{kyz}{kyz}}(ky^2 - 2r)$
$\vec{k}\cdot abla\phi(\vec{r})$	$\frac{kyz}{2r}$
$\nabla^2 \phi(\vec{r})$	$-\frac{ky}{4r}(kr-8)$

Table 5: Orbital expressions hydrogenic Orbitals : 2, 1, -1. Factor $e^{-\frac{kr}{2}}$ is omitted.

$\phi_5 \rightarrow \phi_{3,0,0}$	
$\phi(\vec{r})$	$2k^2r^2 - 18kr + 27$
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-\frac{kx}{3r}\left(2k^2r^2-30kr+81\right)$
$\vec{j}\cdot abla\phi(\vec{r})$	$-\frac{ky}{3r}(2k^2r^2-30kr+81)$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$-\frac{kz}{3r}\left(2k^2r^2-30kr+81\right)$
$ abla^2 \phi(\vec{r})$	$\frac{k}{9r}(kr-18)(2k^2r^2-18kr+27)$

Table 6: Orbital expressions hydrogenic Orbitals : 3, 0, 0. Factor $e^{-\frac{kr}{3}}$ is omitted.

$\phi_6 \to \phi_{3,1,0}$	
$\phi(\vec{r})$	-z(kr-6)
$\vec{i} \cdot \nabla \phi(\vec{r})$	$\frac{kxz}{3r}(kr-9)$
$ec{j}\cdot abla\phi(ec{r})$	$\frac{kyz}{3r}(kr-9)$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$\frac{3}{3r}(k^2rz^2 - 3k(r^2 + 3z^2) + 18r)$
$\nabla^2 \phi(\vec{r})$	$-\frac{kz}{9r}\left(kr-18\right)\left(kr-6\right)$

Table 7: Orbital expressions hydrogenic Orbitals : 3, 1, 0. Factor $e^{-\frac{kr}{3}}$ is omitted

$\phi_7 \to \phi_{3,1,1}$	
$\phi(\vec{r})$	x(kr-6)
$\vec{i} \cdot \nabla \phi(\vec{r})$	$\frac{1}{3r} \left(3kr^2 - kx^2 \left(kr - 9 \right) - 18r \right)$
$ec{j}\cdot abla\phi(ec{r})$	$-\frac{kxy}{3r}(kr-9)$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$-\frac{kxz}{3r}(kr-9)$
$\nabla^2 \phi(\vec{r})$	$\frac{kx}{9r}(kr-18)(kr-6)$

Table 8: Orbital expressions hydrogenic Orbitals : 3, 1, 1. Factor $e^{-\frac{kr}{3}}$ is omitted.

$\phi_8 \to \phi_{3,1,-1}$	
$\phi(ec{r})$	y(kr-6)
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-\frac{kxy}{3r}(kr-9)$
$\vec{j}\cdot abla\phi(\vec{r})$	$\frac{1}{3r}(3kr^2 - ky^2(kr - 9) - 18r)$
$\vec{k}\cdot abla\phi(\vec{r})$	$-\frac{kyz}{3r}(kr-9)$
$\nabla^2 \phi(\vec{r})$	$\frac{ky}{9r}(kr-18)(kr-6)$

Table 9: Orbital expressions hydrogenic Orbitals : 3, 1, -1. Factor $e^{-\frac{kr}{3}}$ is omitted.

$\phi_9 \to \phi_{3,2,0}$	
$\phi(\vec{r})$	$-r^2 + 3z^2$
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-\frac{x}{3r}\left(k\left(-r^2+3z^2\right)+6r\right)$
$\vec{j}\cdot abla\phi(\vec{r})$	$-\frac{y}{3r}\left(k\left(-r^2+3z^2\right)+6r\right)$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$-\frac{z}{3r}\left(k\left(-r^2+3z^2\right)-12r\right)$
$\nabla^2 \phi(\vec{r})$	$\frac{k}{9r} \left(-r^2 + 3z^2\right) (kr - 18)$

Table 10: Orbital expressions hydrogenic Orbitals : 3, 2, 0. Factor $e^{-\frac{kr}{3}}$ is omitted.

$\phi_{10} \to \phi_{3,2,1}$	
$\phi(\vec{r})$	-xz
$\vec{i} \cdot \nabla \phi(\vec{r})$	$\frac{z}{\frac{3r}{3r}}(kx^2 - 3r)$
$ec{j}\cdot abla\phi(ec{r})$	$\frac{\kappa xyz}{3r}$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$\frac{x}{3r}\left(kz^2-3r\right)$
$\nabla^2 \phi(\vec{r})$	$-\frac{kxz}{9r}(kr-18)$

Table 11: Orbital expressions hydrogenic Orbitals : 3, 2, 1. Factor $e^{-\frac{kr}{3}}$ is omitted.

$\phi_{11} \to \phi_{3,2,-1}$	
$\phi(\vec{r})$	-yz
$\vec{i} \cdot \nabla \phi(\vec{r})$	$\frac{kxyz}{3r}$
$ec{j}\cdot abla\phi(ec{r})$	$\frac{z}{3r}(ky^2-3r)$
$\vec{k} \cdot abla \phi(\vec{r})$	$\frac{y}{3r}\left(kz^2-3r\right)$
$ abla^2 \phi(\vec{r})$	$-\frac{kyz}{9r}\left(kr-18\right)$

Table 12: Orbital expressions hydrogenic Orbitals : 3, 2, -1. Factor $e^{-\frac{kr}{3}}$ is omitted.

$\phi_{12} \to \phi_{3,2,2}$	
$\phi(\vec{r})$	$x^2 - y^2$
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-\frac{x}{3r}\left(k\left(x^2-y^2\right)-6r\right)$
$ec{j}\cdot abla\phi(ec{r})$	$-\frac{y}{3r}(k(x^2-y^2)+6r)$
$\vec{k}\cdot abla\phi(\vec{r})$	$-\frac{kz}{3r}(x^2-y^2)$
$\nabla^2 \phi(\vec{r})$	$\frac{k}{9r}(x^2-y^2)(kr-18)$

Table 13: Orbital expressions hydrogenic Orbitals : 3, 2, 2. Factor $e^{-\frac{kr}{3}}$ is omitted.

$\phi_{13} \to \phi_{3,2,-2}$	
$\phi(ec{r})$	xy
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-\frac{y}{3r}\left(kx^2-3r\right)$
$ec{j}\cdot abla\phi(ec{r})$	$-\frac{y}{3r}\left(kx^2 - 3r\right) -\frac{x}{3r}\left(ky^2 - 3r\right)$
$\vec{k}\cdot abla\phi(\vec{r})$	$-\frac{kxyz}{3r}$
$\nabla^2 \phi(\vec{r})$	$\frac{kxy}{9r}(kr-18)$

Table 14: Orbital expressions hydrogenic Orbitals : 3, 2, -2. Factor $e^{-\frac{kr}{3}}$ is omitted.

$\phi_{14} \to \phi_{4,0,0}$	
$\phi(\vec{r})$	$-k^3r^3 + 24k^2r^2 - 144kr + 192$
$\vec{i} \cdot \nabla \phi(\vec{r})$	$\frac{kx}{4r}\left(k^3r^3 - 36k^2r^2 + 336kr - 768\right)$
$\vec{j} \cdot abla \phi(\vec{r})$	$\left(\frac{\vec{k}y}{4r}\left(k^3r^3 - 36k^2r^2 + 336kr - 768\right)\right)$
$\vec{k} \cdot \nabla \phi(\vec{r})$	$\frac{kz}{4r}\left(k^3r^3 - 36k^2r^2 + 336kr - 768\right)$
$\nabla^2 \phi(\vec{r})$	$-\frac{k}{16r}(kr-32)\left(k^3r^3-24k^2r^2+144kr-192\right)$

Table 15: Orbital expressions hydrogenic Orbitals : 4, 0, 0. Factor $e^{-\frac{kr}{4}}$ is omitted.

$\phi_{15} \to \phi_{4,1,0}$	
$\phi(\vec{r})$	$z\left(k^2r^2 - 20kr + 80\right)$
$\vec{i} \cdot \nabla \phi(\vec{r})$	$-\frac{kxz}{4r}\left(kr-20\right)\left(kr-8\right)$
$ec{j}\cdot abla\phi(ec{r})$	$-\frac{k\overline{y}z}{4r}(kr-20)(kr-8)$
$\vec{k}\cdot abla\phi(\vec{r})$	$\frac{1}{4r}\left(4k^2r^3 - 80kr^2 - kz^2\left(kr - 20\right)\left(kr - 8\right) + 320r\right)$
$\nabla^2 \phi(\vec{r})$	$\frac{kz}{16r}(kr-32)(k^2r^2-20kr+80)$

Table 16: Orbital expressions hydrogenic Orbitals : 4, 1, 0. Factor $e^{-\frac{kr}{4}}$ is omitted.

$\phi_{16} \to \phi_{4,1,1}$	
$\phi(\vec{r})$	$-x\left(k^2r^2 - 20kr + 80\right)$
$\vec{i} \cdot \nabla \phi(\vec{r})$	$\frac{1}{4r} \left(k^3 r^2 x^2 - 4k^2 r \left(r^2 + 7x^2 \right) + 80k \left(r^2 + 2x^2 \right) - 320r \right)$
$\vec{j}\cdot abla\phi(\vec{r})$	$\frac{kxy}{4r}(kr-20)(kr-8)$
$\vec{k}\cdot abla\phi(\vec{r})$	$\frac{kxz}{4r}\left(kr-20\right)\left(kr-8\right)$
$\nabla^2 \phi(\vec{r})$	$-\frac{kx}{16r}(kr-32)(k^2r^2-20kr+80)$

Table 17: Orbital expressions hydrogenic Orbitals : 4, 1, 1. Factor $e^{-\frac{kr}{4}}$ is omitted.

$\phi_{17} \to \phi_{4,1,-1}$	
$\phi(ec{r})$	$-y\left(k^2r^2-20kr+80\right)$
$\vec{i} \cdot \nabla \phi(\vec{r})$	$\frac{kxy}{4r}(kr-20)(kr-8)$
$\vec{j} \cdot abla \phi(\vec{r})$	$\frac{1}{4r} \left(k^3 r^2 y^2 - 4k^2 r \left(r^2 + 7y^2 \right) + 80k \left(r^2 + 2y^2 \right) - 320r \right)$
$\vec{k} \cdot abla \phi(\vec{r})$	$\frac{kyz}{4r}\left(kr-20\right)\left(kr-8\right)$
$\nabla^2 \phi(\vec{r})$	$-\frac{ky}{16r}(kr - 32)(k^2r^2 - 20kr + 80)$

Table 18: Orbital expressions hydrogenic Orbitals : 4, 1, -1. Factor $e^{-\frac{kr}{4}}$ is omitted.