

SEQUENCE LISTING

<110> Sakowicz, Roman
Goldstein, Lawrence

<120> Identification and Expression of Novel Kinesin Motor Protein

<130> UCSD-04871

<140> 09/724,586
<141> 2000-11-28

<160> 9

<170> PatentIn version 3.2

<210> 1
<211> 784
<212> PRT
<213> Thermomyces lanuginosus

<220>
<221> MISC_FEATURE
<223> TL-gamma ATP-dependent plus end-directed microtubule motor protein

<220>
<221> DOMAIN
<222> (1)..(357)
<223> kinesin-like microtubule motor domain

<220>
<221> DOMAIN
<222> (358)..(442)
<223> neck domain links motor domain to stalk domain

<220>
<221> DOMAIN
<222> (602)..(784)
<223> tail domain

<400> 1

Met Ser Gly Gly Asn Ile Lys Val Val Val Arg Val Arg Pro Phe
1 5 10 15

Asn Ala Arg Glu Ile Asp Arg Gly Ala Lys Cys Ile Val Arg Met Glu
20 25 30

Gly Asn Gln Thr Ile Leu Thr Pro Pro Pro Gly Ala Glu Glu Lys Ala
35 40 45

Arg Lys Ser Gly Lys Thr Ile Met Asp Gly Pro Lys Ala Phe Ala Phe
50 55 60

Asp Arg Ser Tyr Trp Ser Phe Asp Lys Asn Ala Pro Asn Tyr Ala Arg
65 70 75 80

Gln Glu Asp Leu Phe Gln Asp Leu Gly Val Pro Leu Leu Asp Asn Ala
85 90 95

Phe Lys Gly Tyr Asn Asn Cys Ile Phe Ala Tyr Gly Gln Thr Gly Ser
100 105 110

Gly Lys Ser Tyr Ser Met Met Gly Tyr Gly Lys Glu His Gly Val Ile
115 120 125

Pro Arg Ile Cys Gln Asp Met Phe Arg Arg Ile Asn Glu Leu Gln Lys
130 135 140

Asp Lys Asn Leu Thr Cys Thr Val Glu Val Ser Tyr Leu Glu Ile Tyr
145 150 155 160

Asn Glu Arg Val Arg Asp Leu Leu Asn Pro Ser Thr Lys Gly Asn Leu
165 170 175

Lys Val Arg Glu His Pro Ser Thr Gly Pro Tyr Val Glu Asp Leu Ala
180 185 190

Lys Leu Val Val Arg Ser Phe Gln Glu Ile Glu Asn Leu Met Asp Glu
195 200 205

Gly Asn Lys Ala Arg Thr Val Ala Ala Thr Asn Met Asn Glu Thr Ser
210 215 220

Ser Arg Ser His Ala Val Phe Thr Leu Thr Leu Thr Gln Lys Trp His
225 230 235 240

Asp Glu Glu Thr Lys Met Asp Thr Glu Lys Val Ala Lys Ile Ser Leu
245 250 255

Val Asp Leu Ala Gly Ser Glu Arg Ala Thr Ser Thr Gly Ala Thr Gly
260 265 270

Ala Arg Leu Lys Glu Gly Ala Glu Ile Asn Arg Ser Leu Ser Thr Leu
275 280 285

Gly Arg Val Ile Ala Ala Leu Ala Asp Met Ser Ser Gly Lys Gln Lys
290 295 300

Lys Asn Gln Leu Val Pro Tyr Arg Asp Ser Val Leu Thr Trp Leu Leu
305 310 315 320

Lys Asp Ser Leu Gly Gly Asn Ser Met Thr Ala Met Ile Ala Ala Ile
325 330 335

Ser Pro Ala Asp Ile Asn Phe Glu Glu Thr Leu Ser Thr Leu Arg Tyr
340 345 350

Ala Asp Ser Ala Lys Arg Ile Lys Asn His Ala Val Val Asn Glu Asp
355 360 365

Pro Asn Ala Arg Met Ile Arg Glu Leu Lys Glu Glu Leu Ala Gln Leu
370 375 380

Arg Ser Lys Leu Gln Ser Ser Gly Gly Gly Gly Ala Gly Gly
385 390 395 400

Ser Gly Gly Pro Val Glu Glu Ser Tyr Pro Pro Asp Thr Pro Leu Glu
405 410 415

Lys Gln Ile Val Ser Ile Gln Gln Pro Asp Ala Thr Val Lys Lys Met
420 425 430

Ser Lys Ala Glu Ile Val Glu Gln Leu Asn Gln Ser Glu Lys Leu Tyr
435 440 445

Arg Asp Leu Asn Gln Thr Trp Glu Glu Lys Leu Ala Lys Thr Glu Glu
450 455 460

Ile His Lys Glu Arg Glu Ala Ala Leu Glu Glu Leu Gly Ile Ser Ile
465 470 475 480

Glu Lys Gly Phe Val Gly Pro Tyr His Ser Lys Glu Met Pro His Leu
485 490 495

Val Asn Leu Ser Asp Asp Pro Leu Leu Ala Glu Cys Leu Val Tyr Asn
500 505 510

Ile Lys Pro Gly Gln Thr Arg Val Gly Asn Val Asn Gln Asp Thr Gln
515 520 525

Ala Glu Ile Arg Leu Asn Gly Ser Lys Ile Leu Lys Glu His Cys Thr
530 535 540

Phe Glu Asn Val Asp Asn Val Val Thr Ile Val Pro Asn Glu Lys Ala
545 550 555 560

Ala Val Met Val Asn Gly Val Arg Ile Asp Lys Pro Thr Arg Leu Arg
565 570 575

Ser Gly Tyr Arg Ile Ile Leu Gly Asp Phe His Ile Phe Arg Phe Asn
580 585 590

His Pro Glu Glu Ala Arg Ala Glu Arg Gln Glu Gln Ser Leu Leu Arg
595 600 605

His Ser Val Thr Asn Ser Gln Leu Gly Ser Pro Ala Pro Gly Arg His
610 615 620

Asp Arg Thr Leu Ser Lys Ala Gly Ser Asp Ala Asp Gly Asp Ser Arg
625 630 635 640

Ser Asp Ser Pro Leu Pro His Phe Arg Gly Lys Asp Ser Asp Trp Phe
645 650 655

Tyr Ala Arg Arg Glu Ala Ala Ser Ala Ile Leu Gly Leu Asp Gln Lys
660 665 670

Ile Ser His Leu Thr Asp Asp Glu Leu Asp Ala Leu Phe Asp Asp Val
675 680 685

Gln Lys Ala Arg Ala Val Arg Arg Gly Leu Val Glu Asp Asn Glu Asp
690 695 700

Ser Asp Ser Gln Ser Ser Phe Pro Val Arg Asp Lys Tyr Met Ser Asn
705 710 715 720

Gly Thr Ile Asp Asn Phe Ser Leu Asp Thr Ala Ile Thr Met Pro Gly
725 730 735

Thr Pro Arg Ser Asp Asp Gly Asp Ala Leu Phe Phe Gly Asp Lys
740 745 750

Lys Ser Lys Gln Asp Ala Ser Asn Val Asp Val Glu Glu Leu Arg Gln
755 760 765

Gln Gln Ala Gln Met Glu Glu Ala Leu Lys Thr Ala Lys Gln Glu Phe
770 775 780

<210> 2
 <211> 2352
 <212> DNA
 <213> Thermomyces lanuginosus

<220>
 <221> misc_feature
 <223> TL-gamma ATP-dependent plus end-directed microtubule motor protein

<400> 2						
atgtcgggcg	gtggaaatat caaggtggtg	gtgcgggtac	gcccggtcaa	cgcggagaa	60	
atcgaccgtg	gcgaaaatg	tattgtgcgg	atggaaaggaa	atcaaaccat	cctcacccct	120
cctccgggtg	ccgaagagaa	ggcgcgtaaa	agtggcaaaa	ctattatgga	tggcccgaag	180
gcatttgcgt	tcgatcggtc	gtattggtcc	tttgacaaga	atgctccaa	ctatgcgaga	240
caggaagacc	tattccaaga	tctcggagtc	ccgcttctgg	ataatgcatt	caagggttat	300
aacaattgta	tcttcgccta	cggtcagacc	ggttcggca	agtccatttc	aatgatgggc	360
tatggcaagg	agcatggcgt	gatccgcgg	atttgccagg	acatgttccg	gcgtattaat	420
gaactgcaga	aggacaagaa	cctcacttgc	accgtcgaag	tttcgtactt	ggaaatttac	480
aatgaacgag	tgcgagactt	gctgaatccg	tcgacaaaagg	ggaatctcaa	ggtccgagaa	540
cacccgtcga	ccggccctta	cgtggaggac	ttggcgaagc	tggcgtgcg	atcattccaa	600
gaaatcgaaa	atctcatgga	tgagggcaac	aaagccagaa	cgttgccgc	cacaaacatg	660
aacgagacat	ccagtcgatc	ccacgcccgc	ttcactttga	ccttgacgc	aaagtggcat	720
gatgaagaga	ccaaaatgga	cacagagaag	gttgcgaaga	tcagtctgg	agatttggcg	780
ggttctgagc	gagcaacgatc	caccggagct	actggagcgc	gactgaagga	gggtgcagag	840
atcaaccgct	cactttcgac	cctaggtcgt	gtgattgcag	cgctagcgga	tatgtcgtcg	900
ggaaaacaga	agaagaatca	gttagtacct	taccgagatt	cggtaactgac	gtggcttctg	960
aaggactcct	tgggaggcaa	ctcgatgacc	gccatgatttgc	ccgcccatttc	gcctgctgat	1020
attaaacttg	aagagactct	cagtaccctt	cgtatgcgg	actctgcgaa	gcgaatcaag	1080
aaccacgcag	tggtaatga	agacccgaac	gcgcggatga	tccgcgagtt	gaaggaggaa	1140
ctcgccgcagc	tgaggagcaa	actccagagc	agtggtgag	gtggaggtgg	tgcaggaggt	1200
tctggcgggc	cagtggagga	atcgatcccc	ccgcacacgc	cgctcgagaa	gcaaatcgtg	1260
tcgattcagc	agccggatgc	gacagtcaag	aaaatgagca	aggcagaaat	cgtggagcaa	1320
ctgaaccaga	gtgagaagct	ctatcggtat	ctcaatcaga	cctggaaaga	gaagctggcc	1380
aagaccgagg	aaatccacaa	ggaacgagaa	gcggcgctcg	aggagctggg	tatcagcatc	1440
aaaaagggt	ttgttggccc	ttaccactcc	aaagaaatgc	cacatctagt	caacttgagc	1500

gatgatcctc ttctggctga gtgtcttgc tacaacatca agccccggca gacaagggtt	1560
ggaaacgtca accaagatac acaagcggaa attcgctctga acggttcgaa gatcctgaaa	1620
gaacactgta cgtttgaaaa tgtggacaac gttgtgacca tcgtgccaaa cgagaaggct	1680
gctgtcatgg tgaacggcgt gcgaatcgac aagcctactc gcctccgcag cggctacagg	1740
atcatcctgg gcgatttcca cattttcga ttcaaccatc cggaagaagc tcgtgcggaa	1800
cggcaagaac aatccttgct tcgccattct gtcaccaaca gtcagttggg ttgcctgct	1860
ccaggccgtc acgaccggac actgagcaag gcgggttcgg atgcggacgg cgattctcgc	1920
ttagattctc ctttgcgcga ctttcgtgga aaggatagcg actggttcta tgctcgcagg	1980
gaagctgcta gcgcgatcct agggttggat cagaagatct ctcatctgac agatgacgag	2040
ttggatgcat tatttgcga tgttcagaaa gcgcggcag ttgcgtgtgg gctggtcgaa	2100
gacaacgaag atagcgattc gcagagttcg tttccggtcc gtgacaaata catgtccaat	2160
ggaaccattg ataatttctc gctcgatacc gccattacta tgccgggtac ccctcgtagt	2220
gatgacgacg gtgacgcgct gtttttgggt gataagaagt cgaaacagga tgcgtctaatt	2280
gttgcgttg aggagttgcg tcaacagcag gctcagatgg aagaagccct gaaaacagcg	2340
aagcaggaat tc	2352

<210> 3
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 3
atgtcggcgt gttggaaatat c

21

<210> 4
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 4
gaattcctgc ttgcgtgttt tca

23

<210> 5
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

```

<220>
<221> misc_feature
<222> (25)..(25)
<223> n is a, c, g, or t

<400> 5
gcgcggatcc atytygcht ayggncarac 30

<210> 6
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<220>
<221> misc_feature
<222> (16)..(16)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (28)..(28)
<223> n is a, c, g, or t

<400> 6
gcgcgaattc tcdganccdg cvarrtcnac 30

<210> 7
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<220>
<221> misc_feature
<222> (16)..(16)
<223> n is a, c, g, or t

<220>
<221> misc_feature
<222> (28)..(28)
<223> n is a, c, g, or t

<400> 7
gcgcgaattc tcdctnccdg cvarrtcnac 30

```

<210> 8
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 8
gatatttcca ccgccccaca t

21

<210> 9
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic

<400> 9
tgaaaaacagc gaagcaggaa ttc

23