元器件及测量基础

一、实验目的

- 1. 熟悉测量验证常用元器件参数、 并采用替代法(测量回路电流)测量其伏安特性的方法
- 2. 熟悉测量误差及减小测量误差注意事项

二、实验仪器设备和器材

- 1. 直流稳压电源型号:IT6302
- 2. 台式多用表型号:UT805A
- 3. 电路实验箱
- 4. 电阻(1/2W:100Ω、470Ω、1k、4.7k、10k1/4W: 470Ω)
- 5. 二极管(1N4148)
- 6. 电容(0.1μF、4.7μF、47μF)

三、 实验原理

1. 常用元器件的识别与简单测试

电子元器件根据封装和安装形式可分不同类:如分立器件与集成器件、直插式器件与表面安装器件;根据电气特性可分不同类:如有源器件与无源器件、线性器件与非线性器件。无源器件导指没有电压。由流或功率的大能力的元器件。如电阻、电容、电感、二级管

无源器件是指没有电压、电流或功率放大能力的元器件,如电阻、电容、电感、二级管 等。

有源器件是指有电压、电流或功率放大作用的器件,如三极管、场效应管、运算放大器等。有源器件正常工作的基本条件是必须向器件提供相应的电源,如果没有电源,器件将无法工作。

选用电子器件应熟悉其种类、特点、性能、指标、用途及使用方法。

常用种类:电阻器、电位器、电容器、电感器、二级管、三极管、场效应管、数码管和运算放大器等。

常用元器件的种类、规格、用途及参数:

种类	规格	参数	功能	检测
电阻	绕线电阻、薄 膜电阻、敏感 电阻	阻值额定功率	分压、限流 和充当负载	
电容	陶瓷、云母、 纸质、薄膜、 电解	容量 额定电压	隔直流、通 交流,滤 波、旁路	
电感器	空心、磁芯、铁心电感器	电感量、品质因 数、标称电流、 分布电容	隔离、滤波 变换电压电 流阻抗	
二极管	普通二极管 发光二极管 稳压管	最大允许电流和 最高反向工作电 压,正向压降	整流、检 波、稳压、 混频	
三极管	PNP型 NPN型	电流放大系数 B、ICM、 BVce o、PCM	放大作用和 开关作用	

标称在元器件上的值称为标称值,常用文字符号直接标注和色码标注,选用元器件根据标称 值及允许偏差范围选定参数,实际值可用仪表测得。

2. 元器件的伏安特性

加在元器件两端的电压 V 与元器件的电流 I 之间的关系曲线—伏安特性曲线。

测试伏安特性曲线:点测法,扫描法电流测量方法:直接测量,替代法间接测量

a. 线性电阻器件伏安特性曲线:

b. 二极管是非线性器件, 正向和反向伏安特性都是非线性的且是不对称的:

3. 测量方法测量误差

a. 测量内容

能量测量: 电压、电流、功率、电场强度

电路参数: 电阻、电容、电感、阻抗

信号特性参数:频率周期、相位、调制系数特性曲线:伏安特性、幅频特性、相频特性

性能特性: 放大倍数、通频带、灵敏度、信噪比

b.测量方法

直接测量法: 测量结果直接显示出数值

间接测量法: 先测量与被测量有一定关系的量, 再 推算出组合测量: 列出数个被测量方程式, 通过联立方程 组求解

c.测量及发生信号仪器

信号发生器: 函数信号发生器、任意波形发生器

电压测量:指针、数字电压(伏特、毫伏)表电流测量指针、数字电流(安倍、毫安)表信号波形及参数测量:模拟、数字示波器

信号分析: 频谱仪 、信号分析仪

电路参数测量: 扫频仪、网络分析仪

模拟电路特性分析测试:电桥、晶体管特性测试仪数字电路特性分析测试:逻辑分析仪

d.测量仪器技术指标

准确度、量程、分辨率、频率范围、输入阻抗等

f.测量误差

测量误差是测量值与真值(被测量的真实值)的差别。分系统误差,偶然误差和粗大误差,用绝对误差和相对误差表示。

绝对误差:

 $\Delta x = x - x_0$

绝对误差可由仪表的准确度等级及量程计算得到:

$$\Delta x = \beta_m \times x_m$$

相对误差:

$$\beta = \frac{\Delta x}{x_0} \times 100\%$$

容许误差:相对误差和绝对误差结合表示(电子测量仪器) 如准确度为 a%±n 的数字多用表测量值为 X:

测量误差 $\Delta x = x \times a\% + d \times n$

如测量电阻显示 99.002Ω (5 位半多用表准确度 0.02%±6, 用 200Ω档) 则:

 $\Delta x = 99.002 \times 0.02\% + 0.001 \times 6 = 0.0258\Omega$

 $\beta = \frac{0.0258}{99.002} \times 100\% = 0.026\%$

减小测量误差:测量方法,选用仪表,量程合适,校正,多次测量等

4. 多用表、直流稳压电源使用

a.多用表

多用表(万用表)的种类:指针式和数子表

多用表功能:测量电阻直流交流电压、电流、通断、电容、二极管、三极管,温度、频率等。 多用表测量的准确度:位数(3位半、5位半),误差等级。

多用表使用注意:功能旋转开关及量程选择、表笔位置:

测量电压、电阻、二极管、通断等: 红表笔插入 $V\Omega$ 端, 黑表笔插入公共端 COM。(数子表红表笔内部接+, 黑表笔接-)

注意: 元器件测量参数时不能外接电源电路。

测量电流:红表笔插入 A 或 mA 端口,黑表笔插入公共端口 COM (此时仪表内阻为 0),测量时要断开被测电路后将表笔串入断开的两点。

注意:不能并接被测电路,并正确选量程及端口。

b.直流稳压电源

工作原理:线性直流稳压源与开关稳压电源。

主要技术指标: 额定功率、输入电压、(几组)输出电压及输出电流等;特性指标: 稳压系数、输出电阻、纹波电压等质量指标。

使用注意:

输出几组电压,每组是否独立;每组最大电压及电流是多少;电压设定及调整方法、允许最大输出电流设定方法。

空载时输出端口电压等于设定电压,加负载时,由于输出电阻的影响,输出端口电压小于设定电压值。

c.实验台:

测定伏安特性曲线:点测法,用替代法间接测量电流电流。

从器件盒选被测器件(如 470Ω1/4W,设定为未知阻值及功率器件),再找到合适的取样电阻(如 100Ω1/2W),在试验箱试验区插接好并串联后接直流电源(如上图),设定不同的电源输出电压,用多用表测量对应的总电压(或被测器件电压)及取样电阻电压。列表记录并描绘出被测器件纵坐标为电流,横坐标为电压的电流与电压变化关系曲线。

四、实验内容和步骤

- 1. 先将挡位设置成欧姆档,根据要求调整挡位,得出数据
- 2. 将挡位设成电容档,根据要求调整挡位,得出数据
- 3. 先测量正向压降, 在测量反向电阻
- 4. 根据给出的电路图构造电路,在测量出电源输出电压 VO 和取样电压 Vr
- 5. 再将二极管反向, 重新测量

五、 实验数据

1. 读出实验箱器件库电阻器的标称值和偏差,用万用表测量出实际电阻值。

电阻标称值 R τ	100Ω	470Ω	1kΩ	1kΩ	10kΩ
允许偏差范围					±5%J-I 级
(测量档位)	200档	2k档	2k档	20k 档	20k 档
测量值 R	98.91 50	0.469(2)	6.77456 ks ks	20k档 0.9944kn	9.8452ks
偏差(实际值 与标称值)			-	-2.62	
绝对测量误差	1.0852	0.882	2,442	2.62	154.81
相对测量误差 β	1.097%	0.188%	0.547/2	0.563%	1.572%

2. 读出实验箱器件库电容器的标称值,用万用表检测电容器质量,估测电容值

电容标称值 Cτ	0.1µF (104)	4.7μF	4.7μF	47μF
允许偏差范围	独石	钽电容	钽电容	±20% 铝电解 M-III
测量值 C	600nF 档	6μF 档	60µF 档	60µF 档
	93.6 mF	4.999MF	J.00 MF	49.88 MT
偏差(实际值与 标称值)	-6.4nF	0.299MF	OBME	2.88MF
测量误差β	6.838%	5.981%	6/	T771101
	, , , , ,	-1-17	,	3.7/ 1/0

3. 用万用表判断实验箱器件库二极管的好坏; 检测二极管的阳阴极、正向压降

	1N4007	LED	LED	(共阴数码管)
正向压降	1.20986V	0.61395V		0.0/
反向电阻	2,0307Ms	142108Ms	١	0-1782

4. 假定被测器件 RX 的阻抗及阻抗特性未知,额定功率未知;已知取样标准电阻 r 为 100 欧姆,其电压电流为线性关系

5. 测量二极管伏安特性 DX(1N4148)

正向测量:

反向测量:

6. 在测量电阻 RX 伏安特性后,将电压 V 调大(可应用电源的连续调整钮),被测电阻的电压电流及功率增加,当电阻的工作功率不大于其额定功率,电阻工作正常,当电阻的工作功率超过其额定功率后,就会发热温度过高,当功率继续增加,电阻就会冒烟、烧毁

电压 Vs 0 0.5 1 1.5 2 3 6 10 11 20 31

VO - 0.0003 0 0.499 の 0.999 11.498 1.999 42.9992 5.9997 7.9946 (0.99第17.9939 30.998)
取样电压 V5 0000 の 0.001の の335450を31351 1.48872 2005 1.123 1.7437 1.7437 1.7438 3.5512 5.6806

VRX=VO-VE 0.0003 0 0.488 01 0.66446 0.6848 の75・2 0.7932 0.8708 8.2488 7.0659 16.4427 25.31]

IRX=Vr/r 0.00000 0.0001の 0.0001の 0.00334 0.0036 0.05128 0.01747 0.01948 0.035512 0.0568 6

VRXXIRX (0-12 (1.25)×10 (1.12×10 3 6.12×10 0.0156 0.048) 0.163 0.3058 20.2 (8364 0.3227 5.000)

过热冒烟烧毁

六、 实验结论

- 1. 测量的电阻值、电容值和二极管压与标称值或器件参数相符
- 2. 实际偏差在标称偏差范围
- 3. 未知器件伏安特性曲线 RX 是线性的,二极管是非线性
- 4. 电阻超过额定功率会发热,长时间可能会导致电阻短路,也可能开路