- 1. Напишите регулярное выражение для языка над алфавитом $\{0, 1, \dots, 9\}$, слова которого представляют собой десятичную запись чисел, цифры которых расположены в порядке нестрогого убывания, если просматривать слово слева-направо.
- 2. Найдите язык следующего конечного автомата методом удаления состояний («способ 2»):

	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_2	q_0
q_2	q_2	q_3
q_3	q_3	q_3

- 3. Докажите с помощью леммы о накачке нерегулярность языка всех сбалансированных скобочных последовательностей со скобками одного типа («язык Дика»).
- 4. Пусть $NReg(\Sigma)$ множество всех нерегулярных языков над алфавитом Σ . Докажите, что

$$\bigcup_{L \in \mathrm{NReg}(\Sigma)} L = \Sigma^*.$$

Вариант 2

- 1. Напишите регулярное выражение для языка над алфавитом $\{a,b,c\}$, в словах которого на чётных позициях стоит a.
- 2. Найдите язык следующего конечного автомата с помощью системы линейных уравнений («способ 1»):

a	b
q_1	r_1
q_1	q_2
$ q_2 $	q_1
r_2	r_1
$\mid \mid r_2 \mid$	r_1
	$\begin{array}{c c} q_1 \\ q_1 \\ q_2 \\ r_2 \end{array}$

- 3. Докажите с помощью леммы о накачке нерегулярность языка $\{ww^r \mid w \in \{0,1\}^*\}$, где w^r означает слово w, записанное задом наперёд (reverse). Например, для $w = 0010 \ w^r = 0100$.
- 4. Пусть $NReg(\Sigma)$ множество всех нерегулярных языков над алфавитом Σ . Докажите, что

$$\bigcup_{L\in\operatorname{NReg}(\Sigma)}L=\Sigma^*.$$

- 1. Напишите регулярное выражение для языка над алфавитом $\{0, 1, \dots, 9\}$, слова которого представляют собой десятичную запись чисел, цифры которых расположены в порядке нестрогого убывания, если просматривать слово слева-направо.
- 2. Найдите язык следующего конечного автомата методом удаления состояний («способ 2»):

	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_2	q_0
q_2	q_2	q_3
q_3	q_3	q_3

- 3. Докажите с помощью леммы о накачке нерегулярность языка всех сбалансированных скобочных последовательностей со скобками одного типа («язык Дика»).
- 4. Пусть $NReg(\Sigma)$ множество всех нерегулярных языков над алфавитом Σ . Докажите, что

$$\bigcup_{L \in \mathrm{NReg}(\Sigma)} L = \Sigma^*.$$

Вариант 4

- 1. Напишите регулярное выражение для языка над алфавитом $\{a,b,c\}$, в словах которого на чётных позициях стоит a.
- 2. Найдите язык следующего конечного автомата с помощью системы линейных уравнений («способ 1»):

1		/
	$\mid a \mid$	b
$\longrightarrow s$	q_1	r_1
q_1	q_1	q_2
$\overline{q_2}$	q_2	q_1
r_1	r_2	r_1
r_2	r_2	r_1

- 3. Докажите с помощью леммы о накачке нерегулярность языка $\{ww^r \mid w \in \{0,1\}^*\}$, где w^r означает слово w, записанное задом наперёд (reverse). Например, для $w = 0010 \ w^r = 0100$.
- 4. Пусть $NReg(\Sigma)$ множество всех нерегулярных языков над алфавитом Σ . Докажите, что

$$\bigcup_{L\in\operatorname{NReg}(\Sigma)}L=\Sigma^*.$$

- 1. Напишите регулярное выражение для языка над алфавитом $\{0, 1, \dots, 9\}$, слова которого представляют собой десятичную запись чисел, цифры которых расположены в порядке нестрогого убывания, если просматривать слово слева-направо.
- 2. Найдите язык следующего конечного автомата методом удаления состояний («способ 2»):

	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_2	q_0
q_2	q_2	q_3
q_3	q_3	q_3

- 3. Докажите с помощью леммы о накачке нерегулярность языка всех сбалансированных скобочных последовательностей со скобками одного типа («язык Дика»).
- 4. Пусть $NReg(\Sigma)$ множество всех нерегулярных языков над алфавитом Σ . Докажите, что

$$\bigcup_{L \in \mathrm{NReg}(\Sigma)} L = \Sigma^*.$$

Вариант 6

- 1. Напишите регулярное выражение для языка над алфавитом $\{a,b,c\}$, в словах которого на чётных позициях стоит a.
- 2. Найдите язык следующего конечного автомата с помощью системы линейных уравнений («способ 1»):

a	b
q_1	r_1
q_1	q_2
q_2	q_1
r_2	r_1
r_2	r_1
	$\begin{array}{ c c }\hline q_1\\q_1\\q_2\\r_2\end{array}$

- 3. Докажите с помощью леммы о накачке нерегулярность языка $\{ww^r \mid w \in \{0,1\}^*\}$, где w^r означает слово w, записанное задом наперёд (reverse). Например, для $w = 0010 \ w^r = 0100$.
- 4. Пусть $NReg(\Sigma)$ множество всех нерегулярных языков над алфавитом Σ . Докажите, что

$$\bigcup_{L\in\operatorname{NReg}(\Sigma)}L=\Sigma^*.$$

- 1. Напишите регулярное выражение для языка над алфавитом $\{0, 1, ..., 9\}$, слова которого представляют собой десятичную запись чисел, цифры которых расположены в порядке нестрогого убывания, если просматривать слово слева-направо.
- 2. Найдите язык следующего конечного автомата методом удаления состояний («способ 2»):

	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_2	q_0
q_2	q_2	q_3
q_3	q_3	q_3

- 3. Докажите с помощью леммы о накачке нерегулярность языка всех сбалансированных скобочных последовательностей со скобками одного типа («язык Дика»).
- 4. Пусть $NReg(\Sigma)$ множество всех нерегулярных языков над алфавитом Σ . Докажите, что

$$\bigcup_{L \in \mathrm{NReg}(\Sigma)} L = \Sigma^*.$$

Вариант 8

- 1. Напишите регулярное выражение для языка над алфавитом $\{a,b,c\}$, в словах которого на чётных позициях стоит a.
- 2. Найдите язык следующего конечного автомата с помощью системы линейных уравнений («способ 1»):

1		/
	$\mid a \mid$	b
$\longrightarrow s$	q_1	r_1
q_1	q_1	q_2
$\overline{q_2}$	q_2	q_1
r_1	r_2	r_1
r_2	r_2	r_1

- 3. Докажите с помощью леммы о накачке нерегулярность языка $\{ww^r \mid w \in \{0,1\}^*\}$, где w^r означает слово w, записанное задом наперёд (reverse). Например, для $w = 0010 \ w^r = 0100$.
- 4. Пусть $NReg(\Sigma)$ множество всех нерегулярных языков над алфавитом Σ . Докажите, что

$$\bigcup_{L\in\operatorname{NReg}(\Sigma)}L=\Sigma^*.$$

- 1. Напишите регулярное выражение для языка над алфавитом $\{0, 1, \dots, 9\}$, слова которого представляют собой десятичную запись чисел, цифры которых расположены в порядке нестрогого убывания, если просматривать слово слева-направо.
- 2. Найдите язык следующего конечного автомата методом удаления состояний («способ 2»):

	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_2	q_0
q_2	q_2	q_3
q_3	q_3	q_3

- 3. Докажите с помощью леммы о накачке нерегулярность языка всех сбалансированных скобочных последовательностей со скобками одного типа («язык Дика»).
- 4. Пусть $NReg(\Sigma)$ множество всех нерегулярных языков над алфавитом Σ . Докажите, что

$$\bigcup_{L \in NReg(\Sigma)} L = \Sigma^*.$$

Вариант 10

- 1. Напишите регулярное выражение для языка над алфавитом $\{a,b,c\}$, в словах которого на чётных позициях стоит a.
- 2. Найдите язык следующего конечного автомата с помощью системы линейных уравнений («способ 1»):

` 1	I	, ,
	a	b
$\longrightarrow s$	q_1	r_1
q_1	q_1	q_2
q_2	q_2	q_1
r_1	r_2	r_1
r_2	r_2	r_1

- 3. Докажите с помощью леммы о накачке нерегулярность языка $\{ww^r \mid w \in \{0,1\}^*\}$, где w^r означает слово w, записанное задом наперёд (reverse). Например, для $w = 0010 \ w^r = 0100$.
- 4. Пусть $NReg(\Sigma)$ множество всех нерегулярных языков над алфавитом Σ . Докажите, что

$$\bigcup_{L\in\operatorname{NReg}(\Sigma)}L=\Sigma^*.$$

- 1. Напишите регулярное выражение для языка над алфавитом $\{0, 1, \dots, 9\}$, слова которого представляют собой десятичную запись чисел, цифры которых расположены в порядке нестрогого убывания, если просматривать слово слева-направо.
- 2. Найдите язык следующего конечного автомата методом удаления состояний («способ 2»):

	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_2	q_0
q_2	q_2	q_3
q_3	q_3	q_3

- 3. Докажите с помощью леммы о накачке нерегулярность языка всех сбалансированных скобочных последовательностей со скобками одного типа («язык Дика»).
- 4. Пусть $NReg(\Sigma)$ множество всех нерегулярных языков над алфавитом Σ . Докажите, что

$$\bigcup_{L\in\operatorname{NReg}(\Sigma)}L=\Sigma^*.$$

Вариант 12

- 1. Напишите регулярное выражение для языка над алфавитом $\{a,b,c\}$, в словах которого на чётных позициях стоит a.
- 2. Найдите язык следующего конечного автомата с помощью системы линейных уравнений («способ 1»):

a	b
q_1	r_1
q_1	q_2
$ q_2 $	q_1
r_2	r_1
$\mid \mid r_2 \mid$	r_1
	$\begin{array}{c c} q_1 \\ q_1 \\ q_2 \\ r_2 \end{array}$

- 3. Докажите с помощью леммы о накачке нерегулярность языка $\{ww^r \mid w \in \{0,1\}^*\}$, где w^r означает слово w, записанное задом наперёд (reverse). Например, для $w = 0010 \ w^r = 0100$.
- 4. Пусть $NReg(\Sigma)$ множество всех нерегулярных языков над алфавитом Σ . Докажите, что

$$\bigcup_{L\in\operatorname{NReg}(\Sigma)}L=\Sigma^*.$$

- 1. Напишите регулярное выражение для языка над алфавитом $\{0, 1, ..., 9\}$, слова которого представляют собой десятичную запись чисел, цифры которых расположены в порядке нестрогого убывания, если просматривать слово слева-направо.
- 2. Найдите язык следующего конечного автомата методом удаления состояний («способ 2»):

	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_2	q_0
q_2	q_2	q_3
q_3	q_3	q_3

- 3. Докажите с помощью леммы о накачке нерегулярность языка всех сбалансированных скобочных последовательностей со скобками одного типа («язык Дика»).
- 4. Пусть $NReg(\Sigma)$ множество всех нерегулярных языков над алфавитом Σ . Докажите, что

$$\bigcup_{L \in NReg(\Sigma)} L = \Sigma^*.$$

Вариант 14

- 1. Напишите регулярное выражение для языка над алфавитом $\{a,b,c\}$, в словах которого на чётных позициях стоит a.
- 2. Найдите язык следующего конечного автомата с помощью системы линейных уравнений («способ 1»):

$\mid a \mid$	b
q_1	r_1
q_1	q_2
q_2	q_1
r_2	r_1
$ r_2 $	$\mid r_1 \mid$
	$\begin{array}{ c c }\hline q_1\\q_1\\q_2\\r_2\end{array}$

- 3. Докажите с помощью леммы о накачке нерегулярность языка $\{ww^r \mid w \in \{0,1\}^*\}$, где w^r означает слово w, записанное задом наперёд (reverse). Например, для $w = 0010 \ w^r = 0100$.
- 4. Пусть $NReg(\Sigma)$ множество всех нерегулярных языков над алфавитом Σ . Докажите, что

$$\bigcup_{L\in\operatorname{NReg}(\Sigma)}L=\Sigma^*.$$

- 1. Напишите регулярное выражение для языка над алфавитом $\{0, 1, \dots, 9\}$, слова которого представляют собой десятичную запись чисел, цифры которых расположены в порядке нестрогого убывания, если просматривать слово слева-направо.
- 2. Найдите язык следующего конечного автомата методом удаления состояний («способ 2»):

	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_2	q_0
q_2	q_2	q_3
q_3	q_3	q_3

- 3. Докажите с помощью леммы о накачке нерегулярность языка всех сбалансированных скобочных последовательностей со скобками одного типа («язык Дика»).
- 4. Пусть $NReg(\Sigma)$ множество всех нерегулярных языков над алфавитом Σ . Докажите, что

$$\bigcup_{L \in \mathrm{NReg}(\Sigma)} L = \Sigma^*.$$

Вариант 16

- 1. Напишите регулярное выражение для языка над алфавитом $\{a,b,c\}$, в словах которого на чётных позициях стоит a.
- 2. Найдите язык следующего конечного автомата с помощью системы линейных уравнений («способ 1»):

	a	b
$\longrightarrow s$	q_1	r_1
q_1	q_1	q_2
q_2	q_2	q_1
r_1	r_2	r_1
r_2	r_2	$\mid r_1 \mid$

- 3. Докажите с помощью леммы о накачке нерегулярность языка $\{ww^r \mid w \in \{0,1\}^*\}$, где w^r означает слово w, записанное задом наперёд (reverse). Например, для $w = 0010 \ w^r = 0100$.
- 4. Пусть $NReg(\Sigma)$ множество всех нерегулярных языков над алфавитом Σ . Докажите, что

$$\bigcup_{L\in\operatorname{NReg}(\Sigma)}L=\Sigma^*.$$

- 1. Напишите регулярное выражение для языка над алфавитом $\{0, 1, ..., 9\}$, слова которого представляют собой десятичную запись чисел, цифры которых расположены в порядке нестрогого убывания, если просматривать слово слева-направо.
- 2. Найдите язык следующего конечного автомата методом удаления состояний («способ 2»):

	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_2	q_0
q_2	q_2	q_3
q_3	q_3	q_3

- 3. Докажите с помощью леммы о накачке нерегулярность языка всех сбалансированных скобочных последовательностей со скобками одного типа («язык Дика»).
- 4. Пусть $NReg(\Sigma)$ множество всех нерегулярных языков над алфавитом Σ . Докажите, что

$$\bigcup_{L\in\operatorname{NReg}(\Sigma)}L=\Sigma^*.$$

Вариант 18

- 1. Напишите регулярное выражение для языка над алфавитом $\{a,b,c\}$, в словах которого на чётных позициях стоит a.
- 2. Найдите язык следующего конечного автомата с помощью системы линейных уравнений («способ 1»):

	a	b
$\longrightarrow s$	q_1	r_1
q_1	q_1	q_2
q_2	q_2	q_1
r_1	r_2	r_1
r_2	r_2	$\mid r_1 \mid$

- 3. Докажите с помощью леммы о накачке нерегулярность языка $\{ww^r \mid w \in \{0,1\}^*\}$, где w^r означает слово w, записанное задом наперёд (reverse). Например, для $w = 0010 \ w^r = 0100$.
- 4. Пусть $NReg(\Sigma)$ множество всех нерегулярных языков над алфавитом Σ . Докажите, что

$$\bigcup_{L\in\operatorname{NReg}(\Sigma)}L=\Sigma^*.$$

- 1. Напишите регулярное выражение для языка над алфавитом $\{0, 1, ..., 9\}$, слова которого представляют собой десятичную запись чисел, цифры которых расположены в порядке нестрогого убывания, если просматривать слово слева-направо.
- 2. Найдите язык следующего конечного автомата методом удаления состояний («способ 2»):

	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_2	q_0
q_2	q_2	q_3
q_3	q_3	q_3

- 3. Докажите с помощью леммы о накачке нерегулярность языка всех сбалансированных скобочных последовательностей со скобками одного типа («язык Дика»).
- 4. Пусть $NReg(\Sigma)$ множество всех нерегулярных языков над алфавитом Σ . Докажите, что

$$\bigcup_{L \in NReg(\Sigma)} L = \Sigma^*.$$

Вариант 20

- 1. Напишите регулярное выражение для языка над алфавитом $\{a,b,c\}$, в словах которого на чётных позициях стоит a.
- 2. Найдите язык следующего конечного автомата с помощью системы линейных уравнений («способ 1»):

1		,
	a	b
$\longrightarrow s$	q_1	r_1
q_1	q_1	q_2
q_2	q_2	q_1
r_1	r_2	r_1
r_2	r_2	r_1

- 3. Докажите с помощью леммы о накачке нерегулярность языка $\{ww^r \mid w \in \{0,1\}^*\}$, где w^r означает слово w, записанное задом наперёд (reverse). Например, для $w = 0010 \ w^r = 0100$.
- 4. Пусть $NReg(\Sigma)$ множество всех нерегулярных языков над алфавитом Σ . Докажите, что

$$\bigcup_{L\in\operatorname{NReg}(\Sigma)}L=\Sigma^*.$$

- 1. Напишите регулярное выражение для языка над алфавитом $\{0, 1, \dots, 9\}$, слова которого представляют собой десятичную запись чисел, цифры которых расположены в порядке нестрогого убывания, если просматривать слово слева-направо.
- 2. Найдите язык следующего конечного автомата методом удаления состояний («способ 2»):

	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_2	q_0
q_2	q_2	q_3
q_3	q_3	q_3

- 3. Докажите с помощью леммы о накачке нерегулярность языка всех сбалансированных скобочных последовательностей со скобками одного типа («язык Дика»).
- 4. Пусть $NReg(\Sigma)$ множество всех нерегулярных языков над алфавитом Σ . Докажите, что

$$\bigcup_{L\in\operatorname{NReg}(\Sigma)}L=\Sigma^*.$$

Вариант 22

- 1. Напишите регулярное выражение для языка над алфавитом $\{a,b,c\}$, в словах которого на чётных позициях стоит a.
- 2. Найдите язык следующего конечного автомата с помощью системы линейных уравнений («способ 1»):

$\rightarrow s \parallel q_1 \mid r_1$	-
$\boxed{q_1} \parallel q_1 \mid q_2$	
$q_2 \parallel q_2 \mid q_1$	
$r_1 \parallel r_2 \mid r_1$	
$r_2 \parallel r_2 \mid r_1$	

- 3. Докажите с помощью леммы о накачке нерегулярность языка $\{ww^r \mid w \in \{0,1\}^*\}$, где w^r означает слово w, записанное задом наперёд (reverse). Например, для $w = 0010 \ w^r = 0100$.
- 4. Пусть $NReg(\Sigma)$ множество всех нерегулярных языков над алфавитом Σ . Докажите, что

$$\bigcup_{L\in\operatorname{NReg}(\Sigma)}L=\Sigma^*.$$

- 1. Напишите регулярное выражение для языка над алфавитом $\{0, 1, \dots, 9\}$, слова которого представляют собой десятичную запись чисел, цифры которых расположены в порядке нестрогого убывания, если просматривать слово слева-направо.
- 2. Найдите язык следующего конечного автомата методом удаления состояний («способ 2»):

	0	1
$\rightarrow q_0$	q_1	q_0
q_1	q_2	q_0
q_2	q_2	q_3
q_3	q_3	q_3

- 3. Докажите с помощью леммы о накачке нерегулярность языка всех сбалансированных скобочных последовательностей со скобками одного типа («язык Дика»).
- 4. Пусть $NReg(\Sigma)$ множество всех нерегулярных языков над алфавитом Σ . Докажите, что

$$\bigcup_{L\in\operatorname{NReg}(\Sigma)}L=\Sigma^*.$$

Вариант 24

- 1. Напишите регулярное выражение для языка над алфавитом $\{a,b,c\}$, в словах которого на чётных позициях стоит a.
- 2. Найдите язык следующего конечного автомата с помощью системы линейных уравнений («способ 1»):

	a	b
$\longrightarrow s$	q_1	r_1
q_1	q_1	q_2
$\overline{q_2}$	q_2	q_1
r_1	r_2	r_1
r_2	r_2	$\mid r_1 \mid$

- 3. Докажите с помощью леммы о накачке нерегулярность языка $\{ww^r \mid w \in \{0,1\}^*\}$, где w^r означает слово w, записанное задом наперёд (reverse). Например, для $w = 0010 \ w^r = 0100$.
- 4. Пусть $NReg(\Sigma)$ множество всех нерегулярных языков над алфавитом Σ . Докажите, что

$$\bigcup_{L\in\operatorname{NReg}(\Sigma)}L=\Sigma^*.$$