华东理工大学

概率论与数理统计

作业簿 (第五册)

学	院	专	业	
学	号		名	任课教师

第8次作业

- 一. 填空题:
- 1. 设随机变量 (X,Y) 的概率密度为 $f(x,y) = \begin{cases} ae^{-(x+y)}, & 0 < x,y < +\infty \\ 0, & \text{其他} \end{cases}$,则 $a = \underline{\qquad}, \quad P(X \le 2, Y \le 1) = \underline{\qquad}.$
- 2. 若二维随机变量(X,Y)的联合分布列为

X	0	1
0	1	1
	6	4
1	1	1
	3	4

则随机变量(X,Y)的联合分布函数为______

3. 设随机变量
$$X_i \sim \begin{pmatrix} -1 & 0 & 1 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{pmatrix}$$
, $i = 1, 2$, 且满足 $P(X_1 X_2 = 0) = 1$, 则 $P(X_1 = X_2) = \underline{\qquad}$.

二. 选择题

(1)设(X,Y)服从二维均匀的分布,联合密度函数为

$$f(x,y) = \begin{cases} A, & 0 < x < 1, |y| < x \\ 0, & \sharp : \exists \end{cases}$$

则常数A=().

C. $f_1(x)F_2(x)$

A. $f_1(x)f_2(x)$

D. $f_1(x)F_2(x) + f_2(x)F_1(x)$

B. $2f_1(x)F_2(x)$

三. 计算题

- 1. 设二维随机向量(ξ , η) 仅取(1,1),(2,3),(4,5)三个点,且取它们的概率相同,求 (ξ , η) 的联合分布列。

试求随机变量 X_1 和 X_2 的联合概率分布。

- 3. 将一硬币抛掷 3 次,X 表示 3 次中出现正面的次数,Y 表示 3 次中出现正面 次数与反面次数之差的绝对值,求X 和Y 的联合分布率。
- 4. 设随机向量(X,Y)的联合概率密度函数为

$$p(x,y) = \begin{cases} A(6-x-y), & 0 < x < 2, 2 < y < 4 \\ 0, & \text{ 其他} \end{cases}$$

(1) 确定常数 A; (2) 求 $P{X < 1, Y < 3}, P{X + Y < 4}$

5. 若随机变量 X, Y 的概率分布分别为

X	0	1
	1_	2
P	3	3

Y	-1	0	1
P	1	1	1
	3	3	3

且满足 $P(X^2 = Y^2) = 1$ 。求二维随机变量(X, Y)的联合概率分布。

第9次作业

- 一. 填空题:
- 1. 如果随机向量 (ξ,η) 的联合分布列为

η	0	1
0	0. 1	b
1	a	0.4

2. (ξ,η) 的联合分布列为

η	0	1	2
ξ			
-1	1		1_
	15	t	5
		1	3
1	S	5	10

若 ξ , η 相互独立,则(s,t)=____。

3. 设(X,Y)在以原点为中心,r为半径的圆域R上服从均匀分布,求X的边缘概

率密度为______.

二. 选择题

(1) 设随机变量 X 服从正态分布 $N(\mu,4^2)$, 随机变量 Y 服从正态分布 $N(\mu,5^2)$,

记 $p_1 = P\{X \le \mu - 4\}$, $p_2 = P\{Y \ge \mu + 5\}$, 则______

- (A) 对任何实数 μ , 都有 $p_1 = p_2$
- (B) 对任何实数 μ , 都有 $p_1 < p_2$
- (C) 仅对 μ 的个别值, 有 $p_1 = p_2$
- (D) 对任何实数 μ , 都有 $p_1 > p_2$
- (2) 设随机变量 X 的可能取值为 x_1, x_2 , Y 的可能取值为 y_1, y_2, y_3 , 若

$$P(X = x_1, Y = y_1) = P(X = x_1)P(Y = y_1)$$
,则随机变量 X 和 Y (

- A. 一定独立 B. 一定不独立 C. 不一定独立 D. 以上答案都不对
- (3). 设随机变量 X, Y 相互独立,服从相同的两点分布 $\begin{bmatrix} -1 & 1 \\ 1/2 & 1/2 \end{bmatrix}$,则(

A.
$$P\{X=Y\}=\frac{1}{2}$$
 B. $P\{X=Y\}=\frac{1}{3}$ C. $P\{X=Y\}=0$ D. $P\{X=Y\}=\frac{1}{4}$

三. 计算题

1. 设随机变量 ξ , η 的联合分布列为

ξη	0	1	2	
0	<u>1</u> 6	$\frac{2}{9}$	$\frac{1}{36}$	
1	$\frac{1}{3}$	$\frac{1}{6}$	0	
2	$\frac{1}{12}$	0	0	

- (1) 求边缘分布列;
- (2) 在 $\eta=1$ 的条件下, ξ 的条件分布列;
- (3) 问 ξ 和 η 是否独立?

2. 设二维连续型随机变量(X,Y)的联合概率密度函数为

$$f(x,y) = \begin{cases} Axy & (x,y) \in G \\ 0 & 其他 \end{cases}$$

其中 $G = \{(x, y) \mid 0 \le x \le 2, 0 < y \le x\}$,

- (1) 求系数 A;
- (2) X和Y的边缘密度函数;
- (3) $f_{X|Y}(x|y)$;
- (4) X和Y是否独立,为什么?
- 3. 设随机变量 (X, Y) 的联合密度为: $\phi(x, y) = \begin{cases} C & |x| < 1, |y| < 1 \\ 0 & 其它 \end{cases}$

试求: ①常数C; ② $P\{X+Y>\frac{1}{2}\}$ 及 $P\{X^2+Y^2\leq 1\}$; ③X和Y的边缘密度函数

第10次作业

- 一. 选择题:
- 1. 设随机变量 ξ 和 η 相互独立,且 ξ ~ N(-2,4) , η ~N(1,8) ,则 ξ + 2η 的密度函数 p(z) 为 ()。

A,
$$\frac{1}{6\sqrt{2\pi}}e^{\frac{-(z-4)^2}{72}}$$
 B, $\frac{1}{2\sqrt{6\pi}}e^{\frac{-z^2}{24}}$ C, $\frac{1}{6\sqrt{2\pi}}e^{\frac{-z^2}{72}}$ D, $\frac{1}{2\sqrt{6\pi}}e^{\frac{-(z-4)^2}{24}}$

2. 设随机变量(ξ,η)的联合密度函数为 p(x,y) ,则 $\xi+\eta$ 的分布函数 F(z)=(

A.
$$F(z) = \int_{-\infty}^{+\infty} dy \int_{-\infty}^{y} p(z-x, y) dx$$
 B. $F(z) = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{+\infty} p(z-x, y) dy$

C,
$$F(z) = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{x} p(z-x, y) dy$$
 D, $F(z) = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{z-x} p(x, y) dy$

3. 设随机变量 ξ 和 η 相互独立,其密度函数分别为 $p_1(x)$ 与 $p_2(y)$,则 $\frac{\eta}{\xi}$ 的密度函数p(z)为()。

A,
$$p(z) = \int_{-\infty}^{+\infty} |x| p_1(x) p_2(zx) dx$$
 B, $p(z) = \int_{-\infty}^{+\infty} p_1(x) p_2(z-x) dx$

C,
$$p(z) = \int_{-\infty}^{+\infty} |x| p_1(zx) p_2(x) dx$$
 D, $p(z) = \int_{-\infty}^{+\infty} p_1(z-x) p_2(x) dx$

4. 设随机变量 ξ 和 η 相互独立, 其分布函数分别为 $F_{\varepsilon}(x)$ 与 $F_{\eta}(y)$, 则

 ζ =max(ξ , η) 的分布函数 $F_{\zeta}(z)$ 等于 ()

- A. $\max\{F_{\xi}(z), F_{\eta}(z)\}$ B. $F_{\xi}(z)F_{\eta}(z)$
- C. $\frac{1}{2}[F_{\xi}(z) + F_{\eta}(z)]$ D. $F_{\xi}(z) + F_{\eta}(z) F_{\xi}(z)F_{\eta}(z)$

5. 设随机变量 ξ 和 η 相互独立,且 $\xi \sim P(\lambda)$, $\eta \sim P(\lambda)$,则下列()不成立。

- A. $P\{\xi + \eta = 1\} = 2\lambda e^{-2\lambda}$ B. $P\{\xi + \eta = 0\} = e^{-\lambda}$

 - C. $E(\xi + \eta) = 2\lambda$ D. $D(\xi + \eta) = 2\lambda$

二. 填空题:

- 1. 设随机变量 ξ 和 η 相互独立,且 ξ ~N(-2,4) η ~N(-2,12) ,则 ξ - η 的密度函 数 p(z) =
- 2. 设随机变量 ξ 和 η 独立同分布,均服从 (0,1) 上的均匀分布,则 $\max(\xi,\eta)$ 的密 度函数 p(z) =
- 设随机变量 ξ 和 η 相互独立,且 $\xi \sim E(1)$, $\eta \sim E(2)$,则 $P\{\min(\xi,\eta) \leq 1\} =$ ____
- 4. 设随机变量 ξ 和 η 相互独立,且 $\xi \sim B(2,0.4)$, $\eta \sim B(3,0.4)$,则 $\xi + \eta$ 服从参 数为___和__的二项分布。
- 三. 计算题
- 1. 设随机变量 ξ 、 η 相互独立,其密度函数分别为

$$p_{\xi}(x) = \begin{cases} 1 & 0 < x < 1 \\ 0 & \not\exists \text{th} \end{cases}, \quad p_{\eta}(y) = \begin{cases} e^{-y} & y > 0 \\ 0 & y \le 0 \end{cases}$$

 $求\xi + \eta$ 的概率密度函数。

2. 设随机变量 (ξ,η) 的联合概率密度函数为

$$p(x,y) = \begin{cases} 2 - x - y, & 0 < x < 1, 0 < y < 1 \\ 0, & \text{ 其他} \end{cases}$$

 $求\xi + \eta$ 的概率密度函数。

- 4. 已知随机变量 ξ 、 η 的概率分布分别为

ξ	-1	0	1	η	0	1
$P\{\xi=x_i\}$	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	$P\{\eta=y_{j}\}$	$\frac{1}{2}$	$\frac{1}{2}$

而且 $P\{\xi\eta=0\}=1$ 。

- (1)求 ξ 、 η 的联合概率分布; (2)问 ξ 、 η 是否独立?
- (3)求 $\zeta = \max(\xi, \eta)$ 的概率分布。
- 5. 电子仪器由 4 个相互独立的部件 L_i (i=1,2,3,4)组成,连接方式如图所示。设各个部件的使用寿命 ξ_i 服从指数分布 E(1),求仪器使用寿命 ζ 的概率密度。

6. 上题中的电子部件 L_i (i=1,2,3,4) 组成,按下列方式联接,求仪器使用寿命 ζ 的

概率密度。

7. 将上题中的串联部分加上一个开关,先用上面部分,如果坏了,合上开关再用下面部分,求仪器使用寿命 ζ 的概率密度。

