

Aqueous pigmented inks for ink jet printers.

Patent Number: EP0509109, B1

Publication date: 1992-10-21

Inventor(s): SHEPARD MICHELE ELISE (US); SHOR ARTHUR CHARLES (US); SPINELLI HARRY JOSEPH (US); MA SHEAU-HWA (US); MATRICK HOWARD (US)

Applicant(s): DU PONT (US)

Requested Patent: JP4227668

Application Number: EP19910106007 19910416

Priority Number (s): US19900508145 19900411

IPC Classification: C09D11/00

EC Classification: C09D11/00C2B4

Equivalents: AU7424991, CA2039206, JP2635235B2, US5085698

Cited patent(s): US4597794; JP2103274

Abstract

A pigmented ink for ink jet printers which comprises an aqueous carrier medium, and pigment particles dispersed in an AB or BAB block copolymer having a hydrophilic segment and a segment that links to the pigment. The A block and the B block(s) have molecular weights of at least 300. These inks give images having good print quality, water and smear resistance, lightfastness, and storage stability.

Data supplied from the esp@cenet database - I2

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平4-227668

(43)公開日 平成4年(1992)8月17日

(51)Int.Cl. ⁵	識別記号	序内整理番号	F I	技術表示箇所
C 0 9 D 11/00	P S Z	6939-4 J		
11/10	P T N	6939-4 J		

審査請求 未請求 請求項の数22(全 19 頁)

(21)出願番号	特願平3-103581	(71)出願人	390023674 イー・アイ・デュポン・ドウ・ヌムール・ アンド・カンパニー E. I. DU PONT DE NEMO URS AND COMPANY アメリカ合衆国、デラウェア州、ウイルミ ントン、マーケット・ストリート 1007
(22)出願日	平成3年(1991)4月10日	(72)発明者	シーウーファ・マー アメリカ合衆国ペンシルベニア州19317. チャツズフォード、コンステイテューショ ンドライブ29
(31)優先権主張番号	5 0 8 1 4 5	(74)代理人	弁理士 高木 千嘉 (外2名)
(32)優先日	1990年4月11日		
(33)優先権主張国	米国(US)		

最終頁に続く

(54)【発明の名称】 インクジェットプリンター用水性顔料インク

(57)【要約】

【構成】 水性キャリヤ媒体および親水性セグメントを有するA B またはB A B ブロックコポリマー中に分散した顔料粒子、および顔料を結合するセグメントからなるインクジェットプリンター用水性顔料インクで、A ブロックおよびB ブロックは少なくとも3 0 0 の分子量を有する。

【効果】 これらのインクは良好な印刷性、耐水性、耐じみ性、耐光堅牢性および貯蔵安定性を有する画像を生じる。

【特許請求の範囲】

【請求項1】 ABまたはB A B ブロックポリマーであつて：

(a) Aセグメントは式 $\text{CH}_2=\text{C}(\text{X})(\text{Y})$ を有するアクリル系モノマーの疎水性ホモポリマーまたはコポリマー〔式中、Xは水素または CH_3 であり、そしてYは $\text{C}(\text{O})\text{OR}_1$ 、 $\text{C}(\text{O})\text{NR}_2\text{R}_3$ またはCNであり、ここで R_1 は炭素原子1~20個を有するアルキル、アリールまたはアルキルアリール基であり、そして R_2 および R_3 は水素または炭素原子1~9個を有するアルキル、アリールまたはアルキルアリール基である〕であり、該Aセグメントは少なくともほぼ300の平均分子量を有しして水に不溶であり；そして

(b) Bセグメントは親水性ポリマーまたはその塩であつて：

(1) 式 $\text{CH}_2=\text{C}(\text{X})(\text{Y}')$ を有するアクリル系モノマー〔式中、Xは水素または CH_3 であり、Y'は $\text{C}(\text{O})\text{OH}$ 、 $\text{C}(\text{O})\text{NR}_2\text{R}_3$ 、 $\text{C}(\text{O})\text{OR}_4\text{NR}_2\text{R}_3$ または $\text{C}(\text{O})\text{OR}_5$ であり、ここで R_2 および R_3 は水素または炭素原子の1~9個を有するアルキル、アリールまたはアルキルアリール基であり、 R_4 は炭素原子の1~5個を有するアルキルジラジカルであり、 R_5 は炭素原子の1~20個を有するアルキルジラジカルであって、場合により1個またはそれ以上のヒドロキシルまたはエーテル基を含むものである〕からのものであるか；または

(2) (1)のアクリル系モノマーと式 $\text{CH}_2=\text{C}(\text{X})(\text{Y})$ を有するアクリル系モノマー〔式中、XおよびYはAセグメントで定義した置換基である〕とのコポリマーであり；該Bセグメントは少なくとも約300の平均分子量を有し、水に可溶であるが、但し、該Bセグメントは該ブロックコポリマーの約10~90重量%を構成するものである、ブロックコポリマーによって安定化された顔料の粒子と、水溶性のキャリヤ媒体からなることを特徴とする顔料インク。

【請求項2】 該ブロックコポリマーのAセグメントが、メチルメタクリレート、エチルメタクリレート、ブロビルメタクリレート、ブチルメタクリレート、ヘキシルメタクリレート、2-エチルヘキシルメタクリレート、オクチルメタクリレート、ラウリルメタクリレート、ステアリルメタクリレート、フェニルメタクリレート、ヒドロキシルエチルメタクリレート、ヒドロキシプロビルメタクリレート、2-エトキシエチルメタクリレート、メタクリロニトリル、2-トリメチルシリコキシエチルメタクリレート、グリジルメタクリレート、p-トリルメタクリレート、ソルビルメタクリレート、メチルアクリレート、エチルアクリレート、ブロビルアクリレート、ブチルアクリレート、ヘキシルアクリレート、2-エチルヘキシルアクリレート、オクチルアクリレート、ラウリルアクリレート、ステアリルアクリレート、フェニルアクリレート、ヒドロキシエチルアクリレ-

ト、ヒドロキシプロビルアクリレート、アクリロニトリル、2-トリメチルシリコキシエチルアクリレート、グリジルアクリレート、p-トリルアクリレートおよびソルビルアクリレートからなる群から選ばれた少なくとも1つのモノマーから製造されるホモポリマーまたはコポリマーである請求項1記載の顔料インク。

【請求項3】 該ブロックコポリマーのAセグメントが、メチルメタクリレート、n-ブチルメタクリレートまたは2-エチルヘキシルメタクリレートのポリマーである請求項2記載の顔料インク。

【請求項4】 Aセグメントがメチルメタクリレートとn-ブチルメタクリレートのコポリマーである請求項3記載の顔料インク。

【請求項5】 該ブロックコポリマーのBセグメントが、メタクリル酸、アクリル酸、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、t-ブチルアミノエチルメタクリレート、ジメチルアミノエチルアクリレート、ジエチルアミノエチルアクリレート、ジメチルアミノプロビルメタクリルアミド、メタクリルアミド、アクリルアミドおよびジメチルアクリルアミドからなる群から選ばれた少なくとも1つのモノマーから製造されるホモポリマーまたはコポリマーである請求項1または3記載の顔料インク。

【請求項6】 該ブロックコポリマーのBセグメントが、メタクリル酸またはジメチルアミノエチルメタクリレートのポリマーである請求項1または3記載の顔料インク。

【請求項7】 該インクがほぼ0.1~10%の顔料、0.1~20%のブロックコポリマーおよび70~99.8%の水性のキャリヤ媒体を含有する請求項1記載の顔料インク。

【請求項8】 該インクがほぼ0.1~5%の顔料、0.1~5%のブロックコポリマーおよび90~99.8%の水性のキャリヤ媒体を含有する請求項7記載の顔料インク。

【請求項9】 該ブロックコポリマーのAセグメントがメチルメタクリレート、ブチルメタクリレートまたは2-エチルヘキシルメタクリレートのポリマーであり、Bセグメントがメタクリル酸またはジメチルアミノエチルメタクリレートのポリマーである請求項7記載の顔料インク。

【請求項10】 Bセグメントが該ブロックコポリマーのほぼ25~65重量%を構成している請求項1または7記載の顔料インク。

【請求項11】 Aセグメントモノマーがメチルメタクリレートであり、Bセグメントは2-エチルヘキシルメタクリレートとメタクリル酸のコポリマーである請求項1または7記載の顔料インク。

【請求項12】 Aセグメントモノマーは2-エチルヘキシルメタクリレートであり、Bセグメントが2-エチ

ルヘキシルメタクリレートとメタクリル酸のコポリマーである請求項1または7記載の顔料インク。

【請求項13】 Aセグメントモノマーがn-ブチルメタクリレートであり、Bセグメントがn-ブチルメタクリレートとメタクリル酸のコポリマーである請求項1または7記載の顔料インク。

【請求項14】 Aセグメントモノマーがエチルヘキシルメタクリレートであり、Bセグメントが2-ヒドロキシエチルメタクリレートとメタクリル酸のコポリマーである請求項1または7記載の顔料インク。

【請求項15】 Aセグメントモノマーがn-ブチルメタクリレートであり、Bセグメントが2-ヒドロキシエチルメタクリレートとメタクリル酸のコポリマーである請求項1または7記載の顔料インク。

【請求項16】 Aセグメントモノマーがメチルメタクリレートであり、Bセグメントはエチルヘキシルメタクリレートとメタクリル酸のコポリマーである請求項1または7記載の顔料インク。

【請求項17】 Aセグメントモノマーがブチルメタクリレートであり、Bセグメントはブチルメタクリレートとジメチルアミノエチルメタクリレートのコポリマーである請求項1または7記載の顔料インク。

【請求項18】 水性のキャリヤ媒体が水と多価アルコールとの混合物である請求項1記載の顔料インク。

【請求項19】 顔料粒子がほぼ0.01~5ミクロンの大きさを有する請求項1記載の顔料インク。

【請求項20】 表面張力がほぼ30~70ダイン/センチの範囲にあり、粘度がほぼ1.0~10.0 cP.の範囲にある請求項1記載の顔料インク。

【請求項21】 Bセグメントに対する中和剤が有機塩基、アルカノールアミン、アルカリ金属ヒドロオキサイドおよびそれらの混合物である請求項1記載の顔料インク。

【請求項22】 Aセグメントモノマーがn-ブチルメタクリレートであり、Bセグメントはメチルメタクリレートとメタクリル酸のコポリマーである請求項1または7記載の顔料インク。

【発明の詳細な説明】

【0001】

【発明の分野】 本発明はインクジェットプリンター用水性顔料インクに関し、さらに詳しくは顔料分散剤がアクリル系プロックポリマーである水性顔料インクに関する。

【0002】

【発明の背景】 インクジェット印刷はコンピューターによって発生したような電子信号に応ずる情報の記録のための非衝撃方法である。このプリンターでは電子信号はインク小滴を作り出し、これは紙のような基体に付着させられる。インクジェットプリンターは迅速な印刷速度、比較的静かな動作、図式能力および低価格により広

く商業的に受け入れられてきた。

【0003】 インクジェットプリンターによって作られる印刷画像はたいていの印刷工程におけるように離散ドットから構成されている。従来の染料をベースとしたインクは多くの用途に対して満足すべきものであるとはいっても、色素が紙の繊維中を吸い上げ作用で昇るのでそぎ端を生じて高品質の画像を記録するには好適していない。従って特殊紙が使用されない限り画像のドットは高分解能画像を生じるに必要な鮮明な境界を有していない。また、色素の水溶性によって印刷操作後、色素がにじみ出す傾向がある。

【0004】 染料をベースとするインクの限界は高品質の多色画像を記録することが所望される時に特に明白となる。色素の選択は容易に利用可能な色素の多くが耐変色性（すなわち、色素が紫外線の照射で薄れていく傾向がある）を欠くかまたは所望の彩度を生ずるに十分な溶解度を有していないので制限される。その上、吸い上げるかまたはにじむという印刷した画像のドットの傾向は高画質の印刷が各印刷色の小さくて、鮮明な輪郭を示す点の形成に依存するものであるが故に頭を悩ます問題である。染料をベースとするインクに関連した問題のいくつかはコーテッド紙のような特殊な支持体を使用することによってある程度克服したりまたは軽減できることではあるが、なおインクジェット印刷用の進歩したインクが求められるところである。

【0005】 水性顔料分散体は当該技術分野でよく知られており、塗膜、例えば塗料を種々の基体に適用することによって商業的に使用してきた。顔料分散体は一般に非イオン的なまたはイオン的な技法のいずれかによつて安定化される。非イオン的技法を使用する時、顔料粒子は水溶性で親水性部分を有し、水中に拡散し、エントロピー的にまたは立体的に安定化させるポリマーによつて安定化される。この目的に有用な代表的なポリマーにはポリビニルアルコール、セルロース系誘導体、エチレンオキシド変性フェノールおよびエチレンオキシド/ブロビレンオキシドポリマーが挙げられる。非イオン的技法はpH変化またはイオン性汚染に対して敏感ではないが、最終製品が水に敏感であるという多くの応用における主な不利益を有している。従つて、インクの用途または同種のものに使用されるならば顔料は水分にさらされるとにじみが出る傾向となろう。

【0006】 イオン的技法では、顔料粒子はイオンを含有するモノマーのポリマー、例えば中和したアクリル酸、マレイン酸またはビニルスルホン酸のポリマーによつて安定化される。ポリマーは、電荷二重層メカニズムを通して安定化を与えており、それによってイオンの反発が粒子の凝集を阻止する。中和する成分は適用後蒸発する傾向にあるので、ついでポリマーは水溶性を低下し最終製品は水に感受性がなくなる。

【0007】 キャノン社へのU.S.特許4,597,794は顔料

がイオン的親水性を有するポリマーおよび顔料表面に付着する芳香族疎水性セグメントに含有されるインクジェットプリンター用水性インク分散体を提案している。そこで提案されたランダムポリマーフ分散媒は分散顔料に対して改良された安定性を与えるものであるが、商業用インクジェットプリンターの増大するニーズに合致すべく更なる改良が望まれている。

【0008】

【発明の要約】本発明は、インクジェットプリンターの増大する要求に合致すべく特に適合した水性顔料インクを提供するものであり、このインクは水性のキャリヤ媒体 (aqueous carrier medium) およびABまたはBABブロックポリマーによって安定化された顔料粒子からなることを特徴とするものである。ここでこのブロックコポリマーにおいて

(a) Aセグメントは式 $\text{CH}_2=\text{C}(\text{X})(\text{Y})$ を有するアクリル系モノマーの疎水性ホモポリマーまたはコポリマー〔式中、Xは水素または CH_3 であり、そしてYは $\text{C}(\text{O})\text{OR}_1$ 、 $\text{C}(\text{O})\text{NR}_2\text{R}_3$ または CN であり、ここで R_1 は炭素原子1~20個を有するアルキル、アリー¹⁰ルまたはアルキルアリール基であり、そして R_2 および R_3 は水素または炭素原子1~9個を有するアルキル、アリールまたはアルキルアリール基である〕であり、該Aセグメントは少なくともほぼ300の平均分子量を有しそして水に不溶であり；そして

(b) Bセグメントは親水性ポリマーまたはその塩であって：

(1) 式 $\text{CH}_2=\text{C}(\text{X})(\text{Y}')$ を有するアクリル系モノマー〔式中、Xは水素または CH_3 であり、Y'は $\text{C}(\text{O})\text{OH}$ 、 $\text{C}(\text{O})\text{NR}_2\text{R}_3$ 、 $\text{C}(\text{O})\text{OR}_4\text{NR}_2\text{R}_3$ または $\text{C}(\text{O})\text{OR}_5$ であり、ここで R_2 および R_3 は水素または炭素原子の1~9個を有するアルキル、アリールまたはアルキルアリール基であり、 R_4 は炭素原子の1~5個を有するアルキルジラジカルであり、 R_5 は炭素原子の1~20個を有するアルキルジラジカルであって、場合により1個またはそれ以上のヒドロキシルまたはエーテル基を含むものである〕からのものであるか；または

(2) (1)のアクリル系モノマーと式 $\text{CH}_2=\text{C}(\text{X})(\text{Y})$ を有するアクリル系モノマー〔式中、XおよびYはAセグメントで定義した置換基である〕とのコポリマーであり；該Bセグメントは少なくとも約300の平均分子量を有し、水に可溶であるものとする。

【0009】好ましいAセグメントは、メチルメタクリレート、ブチルメタクリレートまたは2-エチルヘキシリメタクリレートのポリマーとコポリマーである。メタクリル酸またはジアルキルアミノエチルメタクリレート（ここでアルキルはメチルからブチルである）のポリマーまたはコポリマーはBセグメントとして好ましい。Bブロックは全ポリマーの10~90重量%、好ましくは25~65重量%からなるであろう。顔料インクは一般

にほぼ0.1~10重量%の顔料を含有しているが選択された顔料、ブロックポリマーおよびインクジェットプリンタ第一次第でより多い量の、例えば30重量%を含有することができる。

【0010】このインクは非常に安定であり、低い粘度を有し、優れた印刷性、長いクラスチング（外皮形成）時間有し、そして乾燥後の耐にじみ性を提供する。これらは種々のインクジェットプリンターと共に使用され、特に熱インクジェットプリンターでの使用に特に適合している。

【0011】

【発明の詳述】本発明は、一般にインクジェットプリンターおよび特に熱インクジェットプリンターにおける使用に特に適した組み合せの特性を有するインクを提供する。インクは貯蔵に印刷に長期にわたって安定であるポリマーによって安定化された顔料粒子の水性分散体である。インクは特殊なインクジェットプリンターの要求条件に適合しており、釣合った光安定性、耐にじみ性、粘度、表面張力、高光学濃度および耐外皮形成性を提供する。

【0012】得られた印刷画像は高度の品質であり、個々のドットは鮮明な端を有してまるく、ほとんど表面にじみ、けば立ち、滲み出し (strike through) がないのである。

【0013】〔アクリル系ブロックコポリマー〕ポリマーは、ABまたはBABコポリマーであってそこでAブロックは疎水性で顔料を結合するのに役立ち、Bブロックは親水性で水性媒体に顔料を分散するのに都合がよい。特定の用途のためにポリマーの選択は選んだ顔料と水性媒体に依存して決められる。一般にポリマーはABまたはBABブロックコポリマーであり、そこで

(a) Aセグメントは式 $\text{CH}_2=\text{C}(\text{X})(\text{Y})$ を有するアクリル系モノマーの疎水性ホモポリマーまたはコポリマー〔式中、Xは水素または CH_3 であり、そしてYは $\text{C}(\text{O})\text{OR}_1$ 、 $\text{C}(\text{O})\text{NR}_2\text{R}_3$ または CN であり、ここで R_1 は炭素原子1~20個を有するアルキル、アリー²⁰ルまたはアルキルアリール基であり、そして R_2 および R_3 は水素または炭素原子1~9個を有するアルキル、アリールまたはアルキルアリール基である〕であり、該Aセグメントは少なくともほぼ300の平均分子量を有し、水に不溶であるものと；そして

(b) Bセグメントは親水性ポリマーまたはその塩であって：

(1) 式 $\text{CH}_2=\text{C}(\text{X})(\text{Y}')$ を有するアクリル系モノマー〔式中、Xは水素または CH_3 であり、Y'は $\text{C}(\text{O})\text{OH}$ 、 $\text{C}(\text{O})\text{NR}_2\text{R}_3$ 、 $\text{C}(\text{O})\text{OR}_4\text{NR}_2\text{R}_3$ または $\text{C}(\text{O})\text{OR}_5$ であり、ここで R_2 および R_3 は水素または炭素原子の1~9個を有するアルキル、アリールまたはアルキルアリール基であり、 R_4 は炭素原子の1~5個を有するアルキルジラジカルであり、 R_5 は炭素原子の1~20個を有するアルキルジラジカルであり、 R_5 は炭素原子の1~

～20個を有するアルキルジラジカルであって、場合により1個またはそれ以上のヒドロキシルまたはエーテル基を含むものである】からのものであるか；または

(2) (1)のアクリル系モノマーと式 $\text{CH}_2 = \text{C}(\text{X})(\text{Y})$ を有するアクリル系モノマー【式中、XおよびYはAセグメントで定義した置換基である】とのコポリマーであり；該Bセグメントは少なくともほぼ300の平均分子量を有し、水に可溶であるものとする。

【0014】Bブロック(s)は一般に重量で全ブロックポリマーの10～90重量%、好ましくは25～65重量%を構成している。

【0015】Aブロックは上記した式を有する少なくとも1つのアクリル系モノマーから製造されたポリマーまたはコポリマーである。R₁、R₂およびR₃基は場合によりヒドロキシル、エーテル、OSi(CH₃)₃基および類似の置換基を含有してもよい。選択されることのできる代表的なモノマーは、次のモノマーを包含するがこれに限定されるものではない：メチルメタクリレート(MMA)、エチルメタクリレート(EMA)、プロピルメタクリレート、n-ブチルメタクリレート(BMA)またはNBMA)、ヘキシルメタクリレート、2-エチルヘキシルメタクリレート(EHMA)、オクチルメタクリレート、ラウリルメタクリレート(LMA)、ステアリルメタクリレート、フェニルメタクリレート、ヒドロキシルエチルメタクリレート(HEMA)、ヒドロキシプロピルメタクリレート、2-エトキシエチルメタクリレート、メタクリロニトリル、2-トリメチルシロキシエチルメタクリレート、グリシジルメタクリレート(GMA)、p-トリルメタクリレート、ソルビルメタクリレート、メチルアクリレート、エチルアクリレート、プロピルアクリレート、ブチルアクリレート、ヘキシルアクリレート、2-エチルヘキシルアクリレート、オクチルアクリレート、ラウリルアクリレート、ステアリルアクリレート、フェニルアクリレート、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、アクリロニトリル、2-トリメチルシロキシエチルアクリレート、グリシジルアクリレート、p-トリルアクリレートおよびソルビルアクリレートのモノマーである。好ましいAブロックはメチルメタクリレート、ブチルメタクリレート、2-エチルヘキシルメタクリレートから製造されたホモポリマーおよびコポリマーまたはメチルメタクリレートとブチルメタクリレートとのコポリマーである。

【0016】またAブロックは親水性モノマー、例えば $\text{CH}_2 = \text{C}(\text{X})(\text{Y})$ のようなモノマーを包含してもよい。【式中、Xは水素またはメチルであり、Y¹はC(O)OH、C(O)NR₂R₃、C(O)OR₄NR₂R₃、C(O)R₅】またはそれらの塩であり、ここでR₂およびR₃は水素またはC₁～C₅アルキル、アリールまたはアルキルアリールであり、R₄はC₁～C₅アルキルジラジカルであり、R₅はC₁～C₂₀アルキルジラジカルでありこれ

は溶解度にいくらかの変化を与えるようにヒドロキシルまたはエーテル基を含有することができる。しかしながら、Aブロックを完全に水溶性にするのに十分な親水性モノマーまたはその塩はAブロック中に存在してはならない。

【0017】Bブロックは上記の式を有する少なくとも1個のアクリル系モノマーから製造したポリマーである。代表的モノマーとしてはメタアクリル酸(MAA)、アクリル酸、ジメチルアミノエチルメタクリレート(DMAEMA)、ジエチルアミノエチルメタクリレート、t-ブチルアミノエチルメタクリレート、ジメチルアミノエチルアクリレート、ジエチルアミノエチルアクリレート、ジメチルアミノプロピルメタクリルアミド、メタクリルアミド、アクリルアミドおよびジメチルアクリルアミドが挙げられる。メタクリル酸またはジメチルアミノエチルメタクリレートのホモポリマーまたはコポリマーが好ましい。

【0018】ポリマーを含有する酸は直接製造されるかまたは重合後除去されるブロッキング基を有するブロックされたモノマーから製造される。ブロッキング基の除去後、アクリル酸またはメタクリル酸を生ずるブロックされたモノマーの例としては、トリメチルシリルメタクリレート(TMS-MAA)、トリメチルシリルアクリレート、1-ブトキシエチルメタクリレート、1-エトキシエチルメタクリレート、1-ブトキシエチルアクリレート、1-エトキシエチルアクリレート、2-テトラヒドロビラニルアクリレートおよび2-テトラヒドロビラニルメタクリレートが挙げられる。

【0019】Bブロックは他のモノマー、例えばAブロックに使用されたようなモノマーと共にモノマーを含有する酸またはアミノ基を含有するモノマーのコポリマーであることができる。酸またはアミノモノマーはBブロック組成の10～100%の範囲で、好ましくは20～60%の範囲で使用することができる。一般にBブロック(s)は重量で全ブロックポリマーの10～90重量%、好ましくは25～65重量%を構成する。

【0020】本発明を実施するに選択されるブロックコポリマーは、数平均分子量20,000以下、好ましくは15,000以下、そして典型的には1,000～3,000の範囲の分子量を有している。好ましいブロックコポリマーは各AおよびBブロックに対して数平均分子量500～1,500の範囲の分子量を有している。

【0021】選択されうる代表的ABおよびBABブロックポリマーは次の列挙された数値が各モノマーの重合の程度を示すことを包含している。2本の斜線はブロック間の分離を示し、1本の斜線はランダムコポリマーを示している。例えば、MMA//MMA/MAA 10//5/7.5は10モノマー単位長一分子量1000であるMMAのAブロックとMMAの5モノマー単位とMA

Aの7.5単位を有するMMAとMAAのコポリマーであるBブロックとを有するABブロックポリマーであり、Bブロックの分子量は1145である。

【0022】

【表1】

<u>ABブロックポリマー</u>	<u>分子量</u>
EHMA//EHMA/MAA	
3//3/5	1618
5//2.5//2.5	1700
5//5/10	2840
20//10//10	6800
15//11//22	7040
EHMA//LMA/MAA	
10//10//12	5552
EHMA//MMA//EHMA/MAA	
15//5//5//12	4502
EHMA//MMA/MAA	
5//5/10	2350
5//10//10	2850
EHMA//MAA	20
15//5	3400
BMA//BMA/MAA	
5//2.5//2.5	1280
10//5//10	3000
20//10//20	6000
15//7.5//3	3450
5//5//10	2300
5//10//5	2560
BMA//MMA/MAA	
15//15//5	4060
15//7.5//3	3140
10//5//10	2780
MMA//MMA/MAA	
10//5//10	2360
10//5//5	1930
10//5//7.5	2150
20//5//7.5	3150
15//7.5//3	2770

11

12

<u>ABブロックポリマー</u>	<u>分子量</u>
MMA//EHMA//MAA	
5//5//10	2350
10//5//10	2850
BMA//MMA//BMA//MAA	
5//5//5//10	2780
BMA//HEMA//MAA	
15//7.5//3	3360
7.5//7.5//3	2300
15//7.5//7.5	3750
BMA//BMA//DMAEMA	
10//5//10	3700
BMA//BMA//DMAEMA//MAA	
10//5//5//5	2635
<u>BABブロックポリマー</u>	
BMA//MAA//BMA//BMA//MAA	
5//10//10//5//10	4560
MMA//MAA//MMA//MMA//MAA	
5//7.5//10//5//7.5	3290

【0024】好ましいブロックポリマーは、メチルメタクリレート//メチルメタクリレート//メタクリル酸(1//5//7.5)、2-エチルヘキシルメタクリレート//2-エチルヘキシルメタクリレート//メタクリル酸(5//5//10)、n-ブチルメタクリレート//n-ブチルメタクリレート//メタクリル酸(10//5//10)、エチルヘキシルメタクリレート//メチルメタクリレート//メタクリル酸(5//10//10)、n-ブチルメタクリレート//2-ヒドロキシエチルメタクリレート//メタクリル酸(5//10//10)、n-ブチルメタクリレート//2-ヒドロキシエチルメタクリレート//メタクリル酸(15//7.5//3)、メチルメタクリレート//エチルヘキシルメタクリレート//メタクリル酸(5//5//10)およびブチルメタクリレート//ブチルメタクリレート//ジメチルアミノエチルメタクリレート(10//5//10)ポリマーである。

【0025】Bブロックを水性媒体に可溶性にするためにBブロック中に含有された酸またはアミノ基のいずれかの塩を調製することが必要である。酸のモノマーの塩は有機塩基、例えばモノ、ジ、トリメチルアミン、モルホリン、n-メチルモルホリン；アルコールアミン例えばジメチルエタノールアミン(DMEA)、メチルジエタノールアミン、モノ、ジおよびトリエタノールアミン；ビリジン；アンモニウムオキシド；テトラーアルキルアンモニウム塩例えばテトラメチルアンモニウムヒドロオキシド、テトラエチルアンモニウムヒドロオキシド；アルカリ金属例えばリチウム、ナトリウムおよびカリウム等から選ばれる対応成分で調製することができる。好ましい中和剤には、ジメチルエタノールアミンお

よびナトリウムとカリウムのヒドロオキシド、特に感熱ジェットプリンターで使用されてインクとして好ましくされたカリウムヒドロオキシドが挙げられる。アミノモノマーの塩は、有機酸、例えば酢酸、ギ酸、藤酸、ジメチロールプロピオン酸、ハロゲン例えば塩化物、弗化物および臭化物、そして無機酸、例えば硫酸、硝酸等から選ばれる対応成分で調製することができる。また、アミノ基をテトラアルキルアンモニウム塩に変えることも可能である。酢酸およびギ酸は好ましい中和剤である。酸基およびアミノ基両方を含有するポリマーである両性ポリマーはそのままで使用するのがよいのかまたは酸または塩基の添加のいずれかで中和することもできる。

【0026】ABおよびBABポリマーは段階的重合法、例えばウエブスターのU.S.特許4,508,880に記載され、引用するためここにも組み入れられているようなアニオンまたはグループ移動重合法によって有利に製造することができる。このように製造されたポリマーは的確に制御された分子量、ブロックサイズおよび大変狭い分子量分布を有している。このポリマーは典型的に2以下の分散度、一般に1.0~1.4の範囲内の分散度を有している。分散度はポリマーの重量平均分子量をその数平均分子量で割ったものである。数平均分子量はゲル透過クロマトグラフィー(GPC)で測定することができる。また、ABまたはBABブロックポリマーはフリーラジカル重合により生成させることができ、そこで開始単位は2つの異なる温度で重合を開始する2つの異なる部分から構成されている。しかしながら、この方法はホモポリマーと結合生成物と共にブロックコポリマーの混入を引き起こすかもしれない。

13

【0027】また、A B ブロックポリマーは慣用のアニオン重合技術を用いて製造することができ、そこでコポリマーの第1ブロックが生成し、第1ブロックが完成すると第2のモノマーの流れが開始され次のポリマーのブロックを生成する。低い反応温度（例えば、0～-70℃）は副反応を最小にし、所望の分子量のブロックを生成するようにこの場合維持される。

【0028】これらの技術の多く、特にグループ移動重合方法を用いて、開始剤は非官能基であってよく、酸グループ（そのままでまたはブロックの形で使用された）を含有しているかまたはアミノグループを含有することができる。まず初めに疎水性のAブロックまたは親水性のBブロックのいずれかが生成される。また、B A B ブロックポリマーはアニオン重合またはグループ移動重合技術によっても製造できる。まずBブロックの1つを重合させ、次いで疎水性のAブロックを重合させ、次いで第2のBブロックを重合させる。

【0029】〔顔料〕広くさまざまな有機系および無機系の顔料は、単独または組合せてインクを作るのに選択される。ここで使用される“顔料”という用語は不溶性の着色剤を意味する。顔料粒子は十分に小さくてインク

14

ジェットプリンター装置を通過するインクの自由な流れを特に通常10～50ミクロンの範囲にある直径を有する突出ノズルにおいて可能にしている。また、粒子のサイズは顔料の分散安定性に影響を有しており、これはインクの寿命の全体を通して重要である。微小粒子のブラウン運動は粒子の凝集を防ぐのを助けるであろう。また、最大の色の濃さと光沢のために小さい粒子を使用するのが望ましい。有用な粒子サイズの範囲は約0.005ミクロン～15ミクロンである。好ましくは、粒子サイズは0.005～5ミクロンの範囲に、好ましくは0.005～1ミクロンの範囲にあるべきである。

【0030】選択された顔料は乾いたかまたは湿った形態で使用してよい。例えば、顔料は通常水性媒体中で製造され、生成した顔料は水で湿ったプレスケーキとして得られる。プレスケーキの形態では、乾燥形態における程度まで凝集しない。従って、水で湿ったプレスケーキの形態では乾燥顔料のようなインクを調製する工程で凝集の操作など必要としない。有利に選択しうる代表的で商業的な乾燥顔料は次に示す通りである。

10

20

【0031】

【表3】

顔料商品名	製造業者	カラーインデックス 顔料
バーマネントイエロー DHG	ヘキスト	イエロー 12
バーマネントイエロー GR	ヘキスト	イエロー 13
バーマネントイエロー G	ヘキスト	イエロー 14
バーマネントイエロー NCG-71	ヘキスト	イエロー 16
バーマネントイエロー GG	ヘキスト	イエロー 17
ハンザイエロー RA	ヘキスト	イエロー 73
ハンザブリリアントイエロー 5GX-02	ヘキスト	イエロー 74
グラマール® イエロー YT-858-D	ホイパッハ	イエロー 74
ハンザイエロー X	ヘキスト	イエロー 75
ノボバーム® イエロー RR	ヘキスト	イエロー 83
クロモフタール® イエロー 3G	チバーガイギー	イエロー 83
クロモフタール® イエロー GR	チバーガイギー	イエロー 95
ノボバーム® イエロー GR	ヘキスト	イエロー 97
ハンザブリリアントイエロー 10GX	ヘキスト	イエロー 98
バーマネントイエロー C3R-01	ヘキスト	イエロー 114
クロモフタール® イエロー 8G	チバーガイギー	イエロー 128
イルガジン® イエロー 5GT	チバーガイギー	イエロー 129
ホスタバーム® イエロー H4G	ヘキスト	イエロー 151
ホスタバーム® イエロー H3G	ヘキスト	イエロー 154
L74 1357 イエロー	サンケミカル	
L75 1331 イエロー	サンケミカル	
L75 2377 イエロー	サンケミカル	
ホスタバーム® オレンジ GR	ヘキスト	オレンジ 43
バリオゲン® オレンジ	ビーエイスエフ	オレンジ 51
イルガリット® ルーピン 4BL	チバーガイギー	レッド 57:1
クインド® マジエンタ	モベイ	レッド 122
インドファースト® ブリリアント スカーレット	モベイ	レッド 123
ホスタバーム® スカーレット GO	ヘキスト	レッド 168
バーマネントルーピン P6B	ヘキスト	レッド 184
モナストラール® マジエンタ	チバーガイギー	レッド 202
モナストラール® スカーレット	チバーガイギー	レッド 207
ヘリオゲン® ブルー L 6901F	ビーエイスエフ	ブルー 15:2

【0032】

【表4】

顔料商品名	製造業者	カラーインデックス 顔料
ヘリオゲン ^R ブルー RBD 7010	ピーエイスエフ	
ヘリオゲン ^R ブルー K 7090	ピーエイスエフ	ブルー 15:3
ヘリオゲン ^R ブルー L 7101F	ピーエイスエフ	ブルー 15:4
バリオゲン ^R ブルー L 6470	ピーエイスエフ	ブルー 60
ホイコフタール ^R ブルー G、XBT-583D	ホイバッハ	ブルー 15:3
ヘリオゲン ^R グリーン K 8683	ピーエイスエフ	グリーン 7
ヘリオゲン ^R グリーン L 9140	ピーエイスエフ	グリーン 36
モナストラール ^R バイオレット R	チバーガイギー	バイオレット 19
モナストラール ^R レッド B	チバーガイギー	バイオレット 19
クインド ^R レッド R6700	モベイ	
クインド ^R レッド R6713	モベイ	
インドファースト ^R バイオレット	モベイ	バイオレット 23
モナストラール ^R バイオレット	チバーガイギー	バイオレット 42
マローン B		
レエイベン ^R 1170	コル. ケミカル	ブラック 7
スペシャルブラック 4A	デグサ	ブラック 7
スターリング ^R NS ブラック	カボット	ブラック 7
スターリング ^R NSX 76	カボット	ブラック 7
チュア ^R R-101	デュポン	***
モグル L	カボット	ブラック 7
ビケイ 8200	パウルウーリッヒ	ブラック 7

*** 注: チュア^R に対するカラーインデックス顔料表示なし

【0033】水で湿ったプレスケーキの形態で使用することができる代表的な商業的な顔料には、ホーコフター^R ブルー-B F-585-P、トルイジンレッドY (C.I. ピグメントレッド3)、クインド^R マジエンタ (ピグメントレッド122)、マジエンタRV-6831プレスケーキ (モベイケミカル社、ハーモンデビジョン、ハレドン、N.J.)、サンファースト^R マジエンタ122 (サンケミカルコーポ社、シンシナチ、OH)、インド^R プリリアントスカーレット (ピグメントレッド123、C.I. No. 71145)、トルイジンレッドB (C.I. ピグメントレッド3)、ウォッシュチュング^R レッドB (C.I. ピグメントレッド48)、パーマネントルーピンF 6 B 13-1731 (ピグメントレッド184)、ハンザ^R イエロー (ピグメントイエロー98)、ダラマール^R イエロー-YT-839-P (ピグメントイエロー74、C.I. No. 11741)、サンライト^R イエロー17 (サンケミカルコーポ社、シンシナチ、OH)、トルイジンイエロー-G (C.I. ピグメントイエロー1)、ピグメントスカーレット (C.I. ピグメントレッド60)、オーリックブラウン (C.I. ピグメントブラウン6)、等がある。ブラック顔料、例えばカーボンブラックは一般に水性プレスケーキの形では利用されない。

【0034】また、金属または金属酸化物の細かい粒子は本発明を実施するのに使用することができる。例えば、金属および金属酸化物は磁気インクジェットの製造に適している。また、微細な粒子サイズの酸化物、例え

ばシリカ、アルミナ、チタニア等が選択される。さらに、微細な金属粒子、例えば銅、鉄、鋼、アルミニウムおよび合金が適切な用途のために選択することができる。

【0035】〔水性分散媒〕水性キャリヤ媒体は水または水と少なくとも1個の水溶性有機溶媒との混合物である。適当な混合物の選択は特定の作用、例えば所望の表面張力および粘度、選択した顔料、インクジェット顔料インクの乾燥時間およびインクが印刷される紙のタイプの要求条件に依存する。選ばれる水溶性有機溶媒の代表例としては、(1) アルコール、例えばメチルアルコール、エチルアルコール、n-ブロピルアルコール、イソブロピルアルコール、n-ブチルアルコール、sec-ブチルアルコール、第三ブチルアルコール、イソ-ブチルアルコール、フルフリルアルコールおよびテトラヒドロフルフリルアルコール、(2) ケトンまたはケタルコール、例えばアセトン、メチルエチルケトンおよびシアセトンアルコール、(3) エーテル、例えばテトラヒドロフランおよびジオキサン、(4) エステル、例えばエチルアセテート、エチルラクテート、エチレンカーボネットおよびプロピレンカーボネット、(5) 多価アルコール、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、テトラエチレングリコール、ポリエチレングリコール、グリセロール、2-メチル-2,4-ペンタンジオール、1,2,6-ヘキサントリオールおよびチオジグリ

コール、(6) アルキレングリコールから誘導された低級アルキルモノーまたはジーエーテル、例えばエチレングリコールモノーメチル(または-エチル)エーテル、ジエチレングリコールモノーメチル(または-エチル)エーテル、プロピレングリコールモノーメチル(または-エチル)エーテル、トリエチレングリコールモノーメチル(または-エチル)エーテルおよびジエチレングリコールジーメチル(または-エチル)エーテル、(7) 窒素を含有する環式化合物、例えばピロリドン、N-メチル-2-ピロリドンおよび1,3-ジメチル-2-イミダソリジノン、および(8) 硫黄含有化合物、例えばジメチルスルホキシドおよびテトラメチレンスルホンが挙げられる。

【0036】水と多価アルコール、例えばジエチレングリコールとの混合物が水性キャリヤ媒体として好ましい。水とジエチレングリコールの混合物の場合には、水性キャリヤ媒体として通常約30%水/70%ジエチレングリコール~約95%水/5%ジエチレングリコールを含有している。好ましい比はほぼ60%水/40%ジエチレングリコールから約95%水/5%ジエチレングリコールである。パーセントは水性キャリヤ媒体の全重量に基づいたものである。

【0037】【インク製造】インクは、選択された顔料とアクリル系ブロックコポリマーを水、水溶性溶媒または水性キャリヤ媒体中でプレミックスし、ついで顔料を解膠(デフロキュレート)して製造される。場合により分散剤を存在させることができる。アニオン性/非イオン性界面活性剤、例えばダニエルのDispense-Ayd W-22とW-28および/または重合系顔料分散剤、例えばロームアンドハース社により製造されたTamolsNおよびサートマー社により製造されたSMA 1000樹脂がこの目的のために使用することができる。解膠(すなわち、分散)工程は水平型ミニミル、ボールミル、アトリッター中で、または少なくとも1000psiの液体圧で混合物を液体ジェット相互作用チャンバー内の多数のノズルを通過させて水性分散媒中に顔料粒子の均一な分散液を生成させて実施される。

【0038】一般に顔料インクのジェットインクは濃縮した形態で製造し、統いて適当な濃度に希釈しインクジェット印刷システムに使用するのが望ましい。この方法は設備からの顔料インクのより大量の製造を可能にする。もし顔料分散液が溶媒中で調製されるならば、水でまたは、場合により他の溶媒で適切な濃度に希釈する。もし水中で調製されるならば、追加する水または水溶性溶媒で希釈して所望の濃度の顔料分散液をつくる。希釈することによって特定な用途のための所望の粘度、着色、色調、飽和密度(濃度)および印刷被覆面積に合わせよう。

【0039】有機顔料の場合においては、インクは大部分の熱インクジェット印刷用途として全インク組成物の

重量ではほぼ30重量%まで含有しうるが、一般にはほぼ0.1~10重量%、好ましくはほぼ0.1~5重量%である。もし無機の顔料が選択されるならば、インクは有機顔料を使用する対応したインクよりもより多い重量%の顔料を含有するのに役立ち、ある場合にはほぼ75重量%位も含有することができるが、これは一般に無機顔料が有機顔料より大きい比重を有するからである。アクリル系ブロックポリマーは全インク組成物の重量でおおよそ0.1~20重量%の範囲で、好ましくはほぼ0.1~5重量%の範囲で存在する。もしポリマーの量があまり多くなるとインクの色濃度は許容できない程低くなり、所望のインク粘度を維持するのが困難となるであろう。もしアクリル系ブロックコポリマー量が不十分に存在しているとすると、顔料粒子の分散液安定性が悪くなるように作用する。水性キャリヤ媒体の量は、有機顔料が選ばれる時インクの全重量に基づいてほぼ77~99.8重量%、好ましくはほぼ90~99.8重量%の範囲であり、無機顔料が選ばれる時ほぼ25~99.8重量%、好ましくはほぼ70~99.8重量%の範囲内にある。他の添加剤、例えば殺生物剤、保湿剤、キレート剤および粘度調節剤を慣用的目的のためにインクに加えてよい。添加剤の選択または添加剤の組み合わせは選択した添加剤の界面の挙動に支配される。場合によっては、他のアクリル系および非アクリル系ポリマーを加えて特性、例えば耐水性および耐にじみ性を改良することができる。これらは基礎となる溶媒、乳濁液または水溶性ポリマーにより可能である。

【0040】ジェット速度、小滴の分離長さ、小滴のサイズおよび流れの安定性は大いにインクの表面張力および粘度によって影響される。インクジェット印刷システムを用いる用途に適した顔料インクのジェットインクは、約20dyne/cm~約70dyne/cm、さらに好ましくは30dyne/cm~約70dyne/cmの範囲にある表面張力を有すべきである。許容しうる粘度は20cPよりは大きくなく、好ましくは約1.0~約10.0cPの範囲にあるのがよい。インクは広範囲の射出条件、すなわち駆動電圧および熱インクジェット印刷装置に対するパルス幅と適合性のある物理的特性を有し、要求に応じる装置または連続的な装置のいずれか、およびノズルの形とサイズのための圧電気要素の振動数で駆動している。インクは長期間の優秀な貯蔵安定性を有し、インクジェット装置をつまらせない。画像記録物質、例えば紙、織物、フィルムヘインクの固定化は速やかに行われ、その縁取部分での印刷はぎざぎざが確実に出て、インクの拡がりが僅かである。印刷したインク画像は鮮明な色調、高密度、優れた耐水性、耐光性を有している。さらにインクはそれが接触しているインクジェット印刷装置の部品を腐食せず、本質的に無臭であり、無毒性で不燃性である。

【0041】本発明を実施例により更に説明するが、限定されるものではない。

【0042】

【実施例】ブロックポリマーは次の手順を用いて製造された。

【0043】〔製法1〕EHMA//EHMA/MAA、5//5/10酸開始剤、酸ブロック第1ポリマーは次の手順を用いて製造された。

【0044】11フラスコにメカニカル攪拌機、温度計、窒素導入口、乾燥管付出口および添加漏斗を備えつけた。800gのテトラヒドロフラン(THF)および10gのp-キシレンをフラスコに仕込んだ。ついで、触媒のテトラブチルアンモニウムm-クロロベンゾエートのアセトニトリル中の1.0モル溶液700mlが加えられた。開始剤の1,1-ビス(トリメチルシリコシン)-2-メチルプロパン73.0g(0.315モル)が注入された。第1のフィード(フィードI)〔テトラブチルアンモニウムm-クロロベンゾエートのアセトニトリル中の1.0モル溶液700ml〕をスタートさせ、150分にわたって加えられた。第2のフィード(フィードII)〔2-エチルヘキシルメタクリレート312.4g(1.58モル)とトリメチルシリルメタクリレート500.0g(3.16モル)〕を0分でスタートさせ、50分にわたって加えられた。フィードIIが終了(モノ*

10

20

*マーの99%以上が反応した)した後80分経って、第3のフィード(フィードIII)〔2-エチルヘキシルメタクリレート312.0g(1.58モル)〕をスタートさせ、30分かかって加えられた。

【0045】180分経って、メタノール200gと水250gが上記溶液に加えられた。120分還流された。ついで溶媒の1470gとヘキサメチルジシロキサンをストリップして取出しながら一方で1-ブロバノールの670gを加えた。これによりEHMA//EHMA/MAA、5//5/10ポリマーが55%固体で製造された。

【0046】上述のブロックポリマーは次の手順を用いて中和された。

手順A:N,N-ジメチルエタノールアミン

上記のように製造したEHMA//EHMA/MAAブロックポリマーは、このブロックコポリマー溶液にアミンを加え、均一な溶液が得られるまで通常2~3時間攪拌して中和(100%)された。中和後、脱イオン水でほぼ25%固体に希釈した。

【0047】

〔表5〕

成 分	量(グラム)
ブロックポリマー	102.5
N,N-ジメチルエタノールアミン	18.7
脱イオン水	102.5
合 計	223.7

固体重量% 25

pH 8.4

【0048】手順B:水酸化カリウム

上記のように製造したEHMA//EHMA/MAAブロックポリマーは、このブロックコポリマー溶液に15%水酸化カリウム水溶液を加え、均一溶液が得られるま

※で攪拌して中和(100%)された。中和後、脱イオン水でほぼ25%固体に希釈した。

【0049】

〔表6〕

成 分	量(グラム)
ブロックポリマー	102.5
水酸化カリウム (15%脱イオン水溶液)	78.6
脱イオン水	42.6
合 計	223.7

固体重量% 25

pH 8.0

【0050】〔製法2〕MMA//MMA/MAA、10//5/5.7のブロックポリマー、分子量2150は次の手順を用いて製造された。

【0051】31フラスコにメカニカル攪拌機、温度計、窒素導入口および添加漏斗を備えつけた。845gのテトラヒドロフラン(THF)および2.4gのp-

キシレンをフラスコに仕込んだ。ついで触媒のテトラブチルアンモニウムm-クロロベンゾエートのアセトニトリル中の1.0モル溶液0.9mlが加えられた。開始剤の1,1-ビス(トリメチルシリコシン)-2-メチルプロパン75.6g(0.326モル)が注入された。第1のフィード(フィードI)〔テトラブチルアンモニウムm-クロロベンゾエートのアセトニトリル中の1.0モル溶液0.9ml〕をスタートさせ、150分にわたって

加えられた。第2のフィード(フィードII)【メチルメタクリレート 164 g (1.64モル) とトリメチルシリルメタクリレート 387 g (2.45モル)】を0分でスタートさせ、38分にわたって加えられた。フィードIIが終了(モノマーの99%以上が反応した)した後55分経って、第3のフィード(フィードIII)【メチルメタクリレート 326.7 g (3.27モル)】をスタートさせ、30分にわたって加えられた。

【0052】400分経って、乾燥メタノールの155 gが上記溶液に加えられ、蒸留が始まられた。蒸留の第1段階の間に、55℃以下の沸点を有する物質320 gがフラスコから除かれた。除去されるべきメトキシトリメチルシラン(沸点=54℃)の理論量は280.0 gである。蒸留は第2段階の間に続けられ、沸点は76℃に上昇した。蒸留の第2段階の間にi-ブロバノール904 gの全量が加えられた。合計で溶媒の1161 gが除去された。

【0053】ブロックポリマーは、上記の如くN,N-ジメチルエタノールアミン(手順A)および水酸化カリウム(手順B)を用いて中和された。

【0054】【製法3】NBMA//NBMA//MAA (10//5//10)のブロックポリマーは次の手順を用いて製造された。

【0055】11フラスコにメカニカル搅拌機、温度計、空素導入口、乾燥管付出口および添加漏斗を備えつけた。350 gのテトラヒドロフラン(THF)および1.0 gのp-キシレンをフラスコに仕込んだ。ついで、触媒のテトラブチルアンモニウムm-クロロベンゾエートのアセトニトリル中の1.0モル溶液3.2 mlが加えられた。開始剤の1,1-ビス(トリメチルシロキシ)-2-メチルプロパン 144.0 g (0.62モル)が注入された。第1のフィード(フィードI)【テトラブチルアンモニウムm-クロロベンゾエートのアセトニトリル中の1.0モル溶液3.2 ml】をスタートさせ、130分にわたって加えられた。第2のフィード(フィードII)【n-ブチルメタクリレート 220 g (1.55モル) とトリメチルシリルメタクリレート 490 g (3.1モル)】を0分でスタートさせ、40分にわたって加えられた。フィードIIが終了(モノマーの99%以上が反応した)した後、30分経って、第3のフィード(フィードIII)【n-ブチルメタクリレート 440 g (3.1モル)】をスタートさせ、30分にわたって加えられた。

【0060】240分経って、乾燥メタノール216 gが上記溶液に加えられ、蒸留が始まられた。蒸留の第1段階の間に、55℃以下の沸点を有する物質210 gがフラスコから除かれた。蒸留は第2段階の間続けられ、沸点は76℃に上昇した。i-ブロバノールが全量で900 g加えられ、蒸留は溶媒の1438 g全量が除去されてしまうまで続けられた。このようにしてBMA//BMA//MAA 5//2.5//5 ポリマーが57.7%固体に調製された。

【0061】ブロックポリマーは、N,N-ジメチルアミノエタノール(手順A)および水酸化カリウム(手順B)を用いて製法1に記載したように中和された。

【0062】【製法5】EHMA//MMA//MAA、5//10//10のブロックコポリマーは次の手順を用いて製造された。

【0063】121フラスコにメカニカル搅拌機、温度計、空素導入口、乾燥管付出口および添加漏斗を備え付けた。3255 gのテトラヒドロフラン(THF)および7.9 gのp-キシレンをフラスコに仕込んだ。ついで、触媒のテトラブチルアンモニウムm-クロロベンゾエートのアセトニトリル中の1.0モル溶液4.0 mlが加えられた。開始剤の1-メトキシ-1-トリメチルシロ

20 g加えられた。全量で508 gの溶媒が除去された。

【0057】ブロックポリマーは、上記の如くN,N-ジメチルエタノールアミン(手順A)および水酸化カリウム(手順B)を用いて中和された。

【0058】【製法4】BMA//BMA//MAA、5//2.5//5、分子量1500のブロックコポリマーは次の手順を用いて製造された。

【0059】31フラスコにメカニカル搅拌機、温度計、空素導入口、乾燥管付出口および添加漏斗を備えつけた。780 gのテトラヒドロフラン(THF)および3.6 gのp-キシレンをフラスコに仕込んだ。ついで、触媒のテトラブチルアンモニウムm-クロロベンゾエートのアセトニトリル中の1.0モル溶液3.2 mlが加えられた。開始剤の1,1-ビス(トリメチルシロキシ)-2-メチルプロパン 144.0 g (0.62モル)が注入された。第1のフィード(フィードI)【テトラブチルアンモニウムm-クロロベンゾエートのアセトニトリル中の1.0モル溶液3.2 ml】をスタートさせ、130分にわたって加えられた。第2のフィード(フィードII)【n-ブチルメタクリレート 220 g (1.55モル) とトリメチルシリルメタクリレート 490 g (3.1モル)】を0分でスタートさせ、40分にわたって加えられた。フィードIIが終了(モノマーの99%以上が反応した)した後、30分経って、第3のフィード(フィードIII)【n-ブチルメタクリレート 440 g (3.1モル)】をスタートさせ、30分にわたって加えられた。

【0060】240分経って、乾燥メタノール216 gが上記溶液に加えられ、蒸留が始まられた。蒸留の第1段階の間に、55℃以下の沸点を有する物質210 gがフラスコから除かれた。蒸留は第2段階の間続けられ、沸点は76℃に上昇した。i-ブロバノールが全量で900 g加えられ、蒸留は溶媒の1438 g全量が除去されてしまうまで続けられた。このようにしてBMA//BMA//MAA 5//2.5//5 ポリマーが57.7%固体に調製された。

【0061】ブロックポリマーは、N,N-ジメチルアミノエタノール(手順A)および水酸化カリウム(手順B)を用いて製法1に記載したように中和された。

【0062】【製法5】EHMA//MMA//MAA、5//10//10のブロックコポリマーは次の手順を用いて製造された。

【0063】121フラスコにメカニカル搅拌機、温度計、空素導入口、乾燥管付出口および添加漏斗を備え付けた。3255 gのテトラヒドロフラン(THF)および7.9 gのp-キシレンをフラスコに仕込んだ。ついで、触媒のテトラブチルアンモニウムm-クロロベンゾエートのアセトニトリル中の1.0モル溶液4.0 mlが加えられた。開始剤の1-メトキシ-1-トリメチルシロ

25

キシ-2-メチルプロパン 195.1 g (1.12モル) が注入された。第1のフィード(フィードI) [テトラブチルアンモニウムm-クロロベンゾエートのアセトニトリル中の1.0モル溶液4.0ml] をスタートさせ、150分にわたって加えられた。第2のフィード(フィードII) [エチルヘキシリメタクリレート 107.9 g (5.54モル)] を0分でスタートさせ、30分にわたって加えられた。フィードIIが終了(モノマーの99%以上が反応した)した後、40分経って、第3のフィード(フィードIII) [メチルメタクリレート 108.6 g (10.9モル) とトリメチルシリルメタクリレート 177.4 g (11.2モル)] をスタートさせ、30分にわたって加えられた。

【0064】240分経って、乾燥メタノール675gが上記溶液に加えられ、蒸留が始められた。蒸留の第1*

成 分	量(重量部)
スペシャルブラック 4A、カーボン 黒色顔料(デグサ社、アレンダール、NJ)	40.0
製法2で得たポリマー (手順Aで中和した25%溶液)	32.0
ジエチレングリコール	30.4
脱イオン水	97.6

【0068】搅拌は顔料の凝集塊やかたまりが見えなくなるまで10~15分間続けられた。混合物はミニモーターミル100(アイガーマシナリー社、ベンゼンビル、IL 60106)に加えられた。微粉碎は4500rpmで行われた。5分後、約1mlのジメチルアミノエタノール(ベンウォルト社、フィラデルフィア、PA 19102)を用いてpH7.5~8.5に調節された。微粉碎は5分間続けられ、その時点で粒子サイズはブルックヘブンB1-90バーチカルサイザー(ブルックヘブンインスツルーメント社、ホルツビル、NY 11742)で測定すると167μmであった。分散液を真空下、3M 114A液体フィルター(3M社、セントポール、MN 55144)で濾過された。

【0069】上記の分散液160gを25%の中和したポリマー溶液の38.4部(上記)、脱イオン91.5部およびジエチレングリコール30.1部を用いて希釈した。

【0070】完成品の黒色インクは上記分散液の75部

成 分	量(重量部)
ラーベン® 1170、カーボンブラック顔料 (コロンビアンケミカル社、 ジェイムズバーグ、NJ 08831)	5
製法2で得られたポリマー (手順Aで中和した25%溶液)	10
ジエチレングリコール	3.5
脱イオン水	6.5

*段階の間に、55℃以下の沸点を有する物質1050.0gがフラスコから除かれた。蒸留は第2段階の間続けられ、沸点は76℃に上昇した。1-ブロパノールが全量で402.5g加えられ、蒸留は全量で503.5gの溶媒が除去されてしまうまで続けられた。このようにしてEHMA//MMA//MAA 5//10//10 ポリマーが48%固体で調製された。

【0065】ブロックポリマーはN,N'-ジメチルアミノエタノール(手順A)および水酸化カリウム(手順B)を用いて製法1に記載したように中和された。

【0066】【実施例1(黒)】次の成分がピーカー中に磁気攪拌を行なながら順番に徐々に加えられた。

【0067】

【表7】

【0068】搅拌は顔料の凝集塊やかたまりが見えなくなるまで10~15分間続けられた。混合物はミニモーターミル100(アイガーマシナリー社、ベンゼンビル、IL 60106)に加えられた。微粉碎は4500rpmで行われた。5分後、約1mlのジメチルアミノエタノール(ベンウォルト社、フィラデルフィア、PA 19102)を用いてpH7.5~8.5に調節された。微粉碎は5分間続けられ、その時点で粒子サイズはブルックヘブンB1-90バーチカルサイザー(ブルックヘブンインスツルーメント社、ホルツビル、NY 11742)で測定すると167μmであった。分散液を真空下、3M 114A液体フィルター(3M社、セントポール、MN 55144)で濾過された。

【0069】このインクは次のような物理的特性を有していた。

【0070】

表面張力: 38.0 dynes/cm

粘度: 4.3 cps

pH: 8.1

黒色インクは良好な熱安定性を有し、目視により判断して優れた印刷性を備えていて、これはヒューレットパッカードデスクジェットプリンター(ヒューレットパッカード社、パロアルト、CA、購入)においてきれいで鮮明な黒色特性を示した(表18、19および20参照)。

【0071】【実施例2】黒色ジェットインクは次の手順を用いて製造された。

【0072】

【表8】

成 分	量(重量部)
ラーベン® 1170、カーボンブラック顔料 (コロンビアンケミカル社、 ジェイムズバーグ、NJ 08831)	5
製法2で得られたポリマー (手順Aで中和した25%溶液)	10
ジエチレングリコール	3.5

27

【0075】上述の成分は実施例1に記載したようにビーカー中でブレミックスされ、約2時間水平ミニミルで分散され、ついで60部の水と15部のジエチレングリコールで希釈された。ついで仕上りのインクは未分散粒子を除去するため2ミクロンフィルターフェルトで濾過された。インクは次の物理的特性を有していた。

【0076】

粘度: 3.3 cps

表面張力: 50.8 dynes/cm

pH : 8.5

粒子サイズ: 110 nm (107 nm, 所定時間、サイクル*

*後)

【0077】インクはヒューレットパッカードデスクジェットプリンター(ヒューレットパッカード社、パロアルト、CA)上できれいにしかも均一な密度で印刷された。-20°C(4時間)/70°C(4時間)での4サイクル後の分散安定性は非常に良好であった(3ナノメートル変化)。(表18、19および20参照)。

【0078】[実施例3(黒色)] 黒色のジェットインクは次の手順で製造された。

10 【0079】

【表9】

成 分	量(重量部)
ラーベン® 1170、カーボンブラック顔料 (コロンビアンケミカル社、 ジェイムスバーグ、NJ 08831)	5
製法1で得られたポリマー (手順Bで中和した25%溶液)	10
ジエチレングリコール	3.5
脱イオン水	6.5

【0080】上述の成分は実施例1に記載したようにビーカー中でブレミックスされ、約2時間水平ミニミルで分散され、ついで60部の水と15部のジエチレングリコールで希釈された。ついで仕上りのインクは未分散粒子を除去するため2ミクロンフィルターフェルトで濾過された。インクは次の物理的特性を有していた。

【0081】

粘度: 3.2 cps

表面張力: 45.5 dynes/cm

pH : 8.9

粒子サイズ: 107 nm (106 nm, 所定時間、サイクル※

※後)

【0082】このインクは優れた熱安定性を有し、ヒューレットパッカードデスクジェットプリンター(ヒューレットパッカード社、パロアルト、CA)上できれいにしかも均一な密度で印刷される。(表18、19および20参照)。

【0083】[実施例4(黒色)] 黒色のジェットインクは次の手順で製造された。

30 【0084】

【表10】

成 分	量(重量部)
スペシャルブラック 4A、カーボンブラック 顔料(デグサ社、アレンダール NJ 07401)	5
製法3で得られたポリマー (手順Bで中和した25%溶液)	10
ジエチレングリコール	8.9
脱イオン水	4.1

【0085】上述の成分は実施例1に記載したようにビーカー中でブレミックスされ、約2時間、水平ミニミルで分散され、ついで57.6部の水と14.4部のジエチレングリコールで希釈された。ついで仕上りのインクは未分散粒子を除去するため2ミクロンフィルターフェルトで濾過された。インクは次の物理的特性を有していた。

【0086】

粘度: 3.8 cps

表面張力: 45.1 dynes/cm

pH : 7.7

40 粒子サイズ: 165 nm (162 nm, 所定時間、サイクル後)

【0087】このインクは優れた熱安定性を有し、ヒューレットパッカードデスクジェットプリンター(ヒューレットパッカード社、パロアルト、CA)上できれいにしかも均一な密度で印刷される。(表18、19および20参照)。

【0088】[対照例1(ランダムポリマー)] 同一の化学組成と類似の分子量を有するランダムポリマーが対照例としてラジカル重合で製造された。

50 【0089】メカニカル混合機、還流冷却器、窒素導入

29

□、温度計および加熱マントルを備えた4つロフラスコに2-ブロバノールの166gと2-ブタノンの82gが仕込まれ、還流するように加熱された。これにメチルメタクリレートの1081g、メタクリル酸の463gおよびn-ドデシルメルカプタンの46gからなる溶液が180分にわたって加えられた。2,2-アゾビス-(2,4-ジメチルバレロニトリル) (VAZO 52、デュポン社製造) の93g、2-ブロバノールの463gおよび2-ブタノンの232gからなる第2フィード*

成 分	量(重量部)
ポリマー	25.7
脱イオン水	67.1
N,N-ジメチルエタノールアミン	7.2

【0092】ついで、分散液とインクは次のように製造された。
※【0093】
※ 【表12】

成 分	量(重量部)
ラーベン [®] 1170、カーボンブラック顔料 (コロンビアンケミカル社、 ジェイムズバーグ、NJ 08831)	5
対照例1で得られたポリマー (25.7%溶液)	10
ジエチレングリコール	3.5
脱イオン水	6.5

【0094】上述の成分は実施例1に記載したようにビーカー中でブレミックスされ、約2時間、水平ミニミルで分散され、ついで60部の水と15部のジエチレングリコールで希釈された。ついで仕上りのインクは未分散粒子を除去するため2ミクロンフィルターフェルトで濾過された。インクは次の物理的特性を有していた。

【0095】

粘度: 3.8 cps

表面張力: 48.9 dynes/cm

pH : 8.7

★粒子サイズ: 9.8 nm (10.3 nm、所定時間、サイクル後)

【0096】このインクはプロックコポリマー分散液を用いる実施例において製造されたインクに関連して熱インクジェットプリンター上で不塗いで印刷された(表18、19および20参照)。

【0097】[実施例5(シアン色)] シアン色インクは次の手順を用いて製造された。

【0098】

【表13】

成 分	量(重量部)
ハウコフタール [®] ブルー G、XBT-583D (ハウパク社、ニューヨーク、N J)	30
製法2で得られたポリマー (手順Aで中和した2.5%溶液)	60
ジエチレングリコール	51
脱イオン水	159

【0099】上述の成分は実施例1に記載したようにビーカー中でブレミックスされ、ついでミニモーターミル100(エイガーマシナリー社、ベンゼンビル、IL 606)中で0.75mmガラスピースを用い4500rpmのモータースピードで24分分散された。得られた10%の細かな顔料分散液は真空下、1ミクロンフィルター

クロスで濾過された。仕上りの分散液は次の物理的特性を有する。

【0100】

粘度: 5.76 cps

表面張力: 46.9 dynes/cm

pH : 7.8

31

32

粒子サイズ：121nm

【0101】この分散液は印刷テストのためにジエチレングリコールと水での10/90ジエチレングリコール/水の混合物中に2%インクに希釈された。印刷テストはヒューレットパッカードデスクジェットプリンター(ヒューレットパッカード社、パロアルト、CA)で行*

成 分	量(重量部)
サンブライド®イエロー17、プレスケーキ (21.5%固体、サンケミカル社、シンシナチ、 OH 45232)	20.9
製法3で得られたポリマー (手順Aで中和した25%溶液)	3.6
SMA®1000樹脂、DMBAで加水分解 (20%溶液、サートマー社、ウエスト チェスター、PA 19382)	22.5
脱イオン水	32.2

【0104】上述の成分は実施例1に記載したようにピーカー中でブレミックスされ、4500rpmのモータースピードで0.75mmビーズを用いてミニモーターミル100中で90分、分散された。ついでその物質はさらに粒子のサイズを小さくするために7000~9000psi(493~634kg/cm²)の圧力下40分、ミクロ流動化装置(モデル110F、ミクロフルイディクス社、ニュートン、MA 02164)に通過させた。得られた細かい分散液を製法3に記載したように調製した30部の25%ポリマー溶液と95部の水で希釈し、ついで僅かの減圧下、1ミクロンフィルタークロスで濾過した。仕上りの10%分散液は次の物理的特性を有する。

【0105】

※粘度：6.25cps
表面張力：49.8dynes/cm

20 pH : 8.92

粒子サイズ：205nm

【0106】この分散液は印刷テストのためにジエチレングリコールと水での10/90ジエチレングリコール/水の混合物中に2%インクに希釈された。印刷テストはヒューレットパッカードデスクジェットプリンター(ヒューレットパッカード社、パロアルト、CA)で行われた(表18、19および20参照)。

【0107】【実施例7(マゼンタ色)】マゼンタインクは次の手順を用いて製造された。

30 【0108】

※ 【表15】

成 分	量(重量部)
サンファースト®マゼンタ122、プレスケーキ (52.8%固体、サンケミカル社、シンシナチ、 OH 45232)	3.8
製法4で得られたポリマー (手順Aで中和された25%溶液)	4.0
ジエチレングリコール	3.4
脱イオン水	8.8

【0109】上述の成分は実施例1に記載したようにピーカー中でブレミックスされ、ついで4500rpmのモータースピードで0.75mmガラスピーズを用いて24分ミニモーターミル100で分散された。得られた細かい顔料分散液は僅かな減圧下、1ミクロンフィルタークロスで濾過された。仕上りの分散液は次の物理的特性を有している。

【0110】

粘度：6.53cps

表面張力：41.1dynes/cm

pH : 9.07

粒子サイズ：153nm

【0111】この分散液は印刷テストのためにジエチレングリコールと水での10/90ジエチレングリコール/水の混合物中に2%インクに希釈された。印刷テストはヒューレットパッカードデスクジェットプリンター(ヒューレットパッカード社、パロアルト、CA)で行われた(表18、19および20参照)。

【0112】【実施例8(マゼンタ色)】マゼンタインクは次の手順を用いて製造された。

【0113】

【表16】

成 分	量(重量部)
サンファースト [®] マゼンタ 122、プレスケーキ (52.8%固体、サンケミカル社、シンシナチ、 OH 45232)	38
製法5で得られたポリマー (手順Aで中和した25%溶液)	40
ジエチレングリコール	34
脱イオン水	88

【0114】上述の成分は実施例1に記載したようにビーカー中にブレミックスされ、ついで4500 rpmのモータースピードで0.75 mmガラスピーブを用いて42分、ミニモーターミル100で分散された。得られた10%の細かい顔料分散液を減圧下、1ミクロンフィルタークロスで濾過した。仕上りの分散液は次の物理的特性を有している。

【0115】

粘度: 13.2 cps (30 rpmで測定)

表面張力: 45.8 dynes/cm

pH : 7.6

粒子サイズ: 16.4 nm

【0116】この分散液は印刷テストのためにジエチレ*

成 分	量(重量部)
サンファースト [®] マゼンタ 122、プレスケーキ (52.8%固体、サンケミカル社、シンシナチ、 OH 45232)	38
製法1で得られたポリマー (手順Aで中和した25%溶液)	40
ジエチレングリコール	34
脱イオン水	88

【0119】上述の成分は実施例1に記載されたようにビーカー中にブレミックスされ、ついで4500 rpmのモータースピードで0.75 mmガラスピーブを用いて24分ミニモーターミル100で分散された。得られた細かな10%顔料分散液は僅かの減圧下、1ミクロンのフィルタークロスで濾過された。仕上りの分散液は次の物理的特性を有している。

【0120】

40

粘度: 27.4 cps (測定、12 rpm)

表面張力: 53.5 dynes/cm

pH : 8.89

粒子サイズ: 15.8 nm

【0121】この分散液は印刷テストのためにジエチレングリコールと水の混合物で10/90ジエチレングリコール/水の混合物中に2%インクになるように希釈された。印刷テストはインク小滴が圧電気変換器の振動によって発生するゼロックス[®] 4020カラーインクジェットプリンター (ゼロックス社、フレモント、CA 9

*ングリコールと水の混合物での10/90ジエチレングリコール/水の混合物中に2%および4%インクになるように希釈された。印刷テストはインク小滴が感熱メカニズムで発生するヒューレットパッカードデスクジェットプリンター (ヒューレットパッカード社、パロアルト、CA) およびインク小滴が圧電気変換器の振動で発生するゼロックス4020カラーインクジェットプリンター (ゼロックス社、フレモント、CA 94538) によって行われた (表18、19および20参照)。

20 【0117】【実施例9 (マゼンタ色)】マゼンタインクは次の手順で製造された。

【0118】

【表17】

成 分	量(重量部)
サンファースト [®] マゼンタ 122、プレスケーキ (52.8%固体、サンケミカル社、シンシナチ、 OH 45232)	38
製法1で得られたポリマー (手順Aで中和した25%溶液)	40
ジエチレングリコール	34
脱イオン水	88

538) で行われた (表18、19および20参照)。

【0122】

【表18】

【分散安定性】

サンプル	前 (nm)	後 (nm)
対照例1	98	103
実施例1	167	198
実施例2	110	107
実施例3	107	106
実施例4	165	162
実施例5	125	118
実施例6	205	211
実施例7	153	163
実施例8	164	148
実施例9	158	151

50 【0123】注: 分散液を4回70°C (4時間) / - 2

0°C (4時間) の温度サイクルに付した。粒子サイズは
ブルックヘンブリ - 90 パーチクルサイザー (ブルッ
クヘンブリインスツルメント社、ホルツビル、NY 11
742) で測定された。

【0124】

【表19】

〔印刷性-実施例印刷性〕

と均一な高密度を有する非常に小さいドットを意味す
る。

(c) 全てのサンプルは優れた耐光性と良好な耐水性
および耐にじみ性を有していた。

【0126】

【表20】

〔外皮形成時間 (Crust Time) 〕

対照例1 実施例1 実施例2 実施例3 実施例4 実施例5 実施例6 実施例7 実施例8 実施例9	不良 良好	10	サンプル	短期	長期	相対湿度/温度
			(a)	(b)	(c)	
対照例1	60	70	54/23			
実施例1	60		71/22			
実施例2	60	90	54/23			
実施例3	60	90	54/23			
実施例4	60	80	54/23			
実施例5	70	180	30/26			
実施例6	120	300	30/26			
実施例7	60	300	30/26			
実施例8	60	180	30/26			
実施例9	90	300	26/25			

【0125】 (a) 印刷性はヒューレットパッカード
デスクジェット (ヒューレットパッカード社、パロアル
ト、CA) および/またはゼロックス 4020 カラーイ
ンクジェットプリンター (ゼロックス社、フレモント、
CA 94538) で種々のタイプの紙とフィルムを用
い測定した。

(b) 「不良」はしばしばドット (点) なしと噴射
によるむらのある印刷を意味する。「良好」は鮮明な縁

【0127】 (a) 最初の置き違えたドット。

(b) 第5回の置き違えたドット。

(c) 外皮形成時間は印刷カートリッジが印刷の前に
排出 (真空で排出) したりまたは吐出したりできぬよ
うに改造したデスクジェットプリンターで測定した。

フロントページの続き

(72)発明者 ハワード・マトリック
アメリカ合衆国ニュージャージー州07732.
ハイランズ、トワインライツテラス 5デ
イー
(72)発明者 アーサー・チャールズ・ショール
アメリカ合衆国ペンシルベニア州19331.
コンコードビル、ピー・オー・ボックス
789

(72)発明者 ハリー・ジョゼフ・スピネット
アメリカ合衆国デラウェア州19802. ウィ
ルミントン、ロツクウッドウツズ、ピッグ
ロツクドライブ4604
(72)発明者 ミッチエル・エリーゼ・シエバード
アメリカ合衆国カリフォルニア州92029.
エスコンディド、フェリシタイン1351