

Оглавление

Описание верхнего уровня	1
Программная модель	2
2.1. Служебный регистр	2
2.2. Регистр полученных данных	3
Описание работы	3
Алгоритмы работы	6

Данный проект подразумевает реализацию RTL-описания на языке Verilog одноканального приемника SL-канала. Приемник принимает SL-сообщения. Сообщения могут содержать информацию четной разрядности от 8 до 32 бит. Бит четности проверется автоматически. Приемник способен принимать сообщения с частотой импульсов может меняться от 500кГц до 2МГц (при частоте тактового сигнала = 16МГц).

1. Описание верхнего уровня

Таблица 1. Порты цифрового модуля SlReciever

Название	Тип	Разрядност	Значение после сброса	Описание
rst_n	In	1	-	Асинхронный общий сигнал сброса
clk	In	1	-	Сигнал тактовой частоты
addr	In	1	-	Сигнал выбора регистра
wr_en	In	1	-	Сигнал разрешения записи
D_in	In	32	-	Данные для записи в регистры
SL0	In	1	b1	Сигнал нулей SL канала
SL1	in	1	b1	Сигнал единиц SL канала
irq	Out	1	b0	Сигнал запроса на прерывание
D_out	Out	32	h0000_0000	Данные для чтения регистров

2. Программная модель

Пользователю для работы доступно несколько регистров:

- Служебный (config_status_r)
- Данных к отправке (txdata_r)

2.1. Служебный регистр

Служебный регистр состоит из двух частей - конфигурации и состояния. Части отвечающей за конфигурацию соответствуют младшие 16 разрядов, части состояния старшие.

Таблица 2. Назначение разрядов конфигурационной части служебного регистра (**config_status_r** [15:0])

Bit	15-14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Name	1		IRQN	1[4:0]		PCE			BC[6:0]			SR	Mode	R
	R/	W		R/W	R/W			R/W	Initial	0	0	0			

Описание разрядов регистра конфигурационной части служебного регистра (config_status_r [15:0])

- 1. **SR** (soft reset) включает (**SR** = 0) и выключает (**SR** = 1) приемник
- 2. **BC** (bit count) количество разрядов данных в отправляемом сообщении
- 3. **IRQM** (interrupt request mask) маска разрядов причин прерываний. Задает, какие именно разряды причин прерываний вызывают запрос на прерывание. Описание разрядов причин прерываний можно посмотреть в таблице назначения разрядов части состояния служебного регистра. Соответствие разрядов поля IRQM и разрядов причин прерываний можно посмотреть в соответствующей таблице
- 4. **PCE** (parity check enable) разрешение контроля четности(**PCE** = 1), или запрещение(**PCE** = 0)

Таблица 3. Назначение разрядов части состояния служебного регистра (config_status_r [31:16])

16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
WRP	PEF	Res*	IRQR M	IRQP EM	IRQW LC	IRQL EF	IRQW CC	IRQIC C	Res*						

Bit	31-30	29	28	27	26	25	24
23-17	16	Name	-	IRQICC	IRQWCC	IRQLE	IRQWLC
IRQPEM	IRQRM	-	SIP	Mode	R	R/W0	R/W0
R/W0	R/W0	R/W0	R/W0	R	R	Initial	0
0	0	0	0	0	0	0	0

Описание разрядов части состояния служебного регистра (config_status_r [31:16])

- 1. WRP (word receiving process) флаг идущего процесса приема слова по SL-каналу
- 2. **PEF** (parity error flag) флаг присутствия ошибки четности в хранящемся в буфере сообщении

- 3. IRQRM (interrupt request of recieved message) прерывание успешно принятого сообщения
- 4. **IRQPEM** (interrupt request of parity error message) принято слово не прошедшее проверку четности
- 5. **IRQWLC** (interrupt request of word length check) принято слово не прошедшее проверку длины полученного слова на равенство значению BC регистра config_r
- 6. **IRQLE** (interrupt request of level error on line) прерывание ошибки уровня напряжения на линии SL-канала
- 7. **IRQWCC** (interrupt request of wrong configuration change) разряд запроса на прерывание попытки сменить конфигурацию во время отправки сообщения.
- 8. **IRQICC** (interrupt request of incorrect configuration change) разряд запроса на прерывание попытки установить некорректную конфигурацию.

Таблица 4. Соответствие разрядов IROM [4:0] и маскирования разрядов причин прерываний

Разряд поля IRQM	Маскируемый разряд
IRQM0	IRQRM
IRQM1	IRQPEM
IRQM2	IRQWLC
IRQM3	IRQLE
IRQM4	IRQWCC
IRQM5	IRQICC

2.2. Регистр полученных данных

buffered_data_r[31:0]

Таблица 5. Назначение разрядов регистра полученных данных (buffered_data_r)

0 - 31
Data

Data - данные к отправке.

3. Описание работы

Модуль принимает SL-сообщения. Сообщения могут иметь четную длинну от 8 до 32 бит. Бит четности проверяется автоматически. Частота импульсов принимаемых сообщений может меняться от 500кГц до 2МГц (при частоте тактового сигнала = 16МГц).

Запись и чтение регистров

Управление модулем осуществляется путем записи/чтения регистров.

Для считывания текущего значения одного из регистров блока необходимо сформировать на шине addr соответствующее ему значение, указанное в таблице, длительностью не меньше такта

опорной тактовой частоты. Значение регистра будет сформировано на шине d_out через такт опорной после фронта сигнала на шине addr.

Для записи значения в один из регистров блока необходимо сформировать:

- на шине addr значение соответствующее регистру
- на шине d_in записываемую информацию,
- на порт wr_en значение "1".

Также на на шине d_out через такт опорной после фронта сигнала на шине addr будет сформировано значение записанного регистра. Значение шины d_out будет соответствовать значению последнего опрошенного или записанного регистра до формирования следующего запроса.

Таблица 6. Адреса регистров

Значение шины addr	Выбранный регистр
1'b0	регистр данных
1'b1	регистр конфигурации и состояния

Смена конфигурации

Для изменения конфигурации приемника необходимо перезаписать регистр конфигурации и состояния. В конфигурационной части может быть установлена длинна слова, маскировка причин запроса прерывания или осуществлен сброс модуля к исходным настройкам. Неверной считается конфигурация с нечетными длинами слова или длинной слова лежащей вне промежутка от 8 до 32 бит.

Прием сообщений

Если на вход модуля начинают поступать импульсы, модуль переходит в режим приема сообщения, выставляется бит WRP = 1.

Модуль переходит в режим ожидания нового сообщения в ситуациях:

- Успешного приема сообщения
- Приема сообщения с ошибкой
- Завершившейся ошибки уровня на линии
- Попытки изменить конфигурацию модуля во время приема сообщения

Успешным приемом сообщения называется прием сообщения с совпадающим со значением поля ВС количеством информационных бит и, если включен контроль четности, верной четностью.

В случае, если успешно принято слово с правильной четностью выставляются биты IRQRM = 1 и WRP = 0. Если контроль четности отключен и принято слово с неправильной четностью, выставляются биты IRQPEM = 1, PEF = 1 и WRP = 0.

В случае приема сообщения с ошибкой выставляются биты:

- Контроль четности включен и принято сообщение с ошибкой четности IRQPEM = 1 и WRP = 0
- Принято сообщение с несовпадающим с конфигурацией количеством бит IRQWLC = 1 и WRP = 0

В случае, если во время приема произошла ошибка уровня, выставляется флаг IRQLEF = 1. Модуль вернется в режим ожидания сообщения только когда уровень на линиях будет восстановлен. До этого момента будет флаг WRP = 1, а бит причины прерывания IRQLEF будет невозможно сбросить.

В случае, если во время приема произошла попытка изменить поля РСЕ и ВС регистра конфигурации, выставляются биты IRQWCC = 1 и WRP = 0. Если новая конфигурация верна, она записывается в регистр. Если новая конфигурация неверна, выставляется бит IRQICC, поля РСЕ и ВС остаются неизменными.

В регистре данных всегда хранится последнее успешно принятое сообщение. А в поле PEF регистра состояния - наличие ошибки четности последнего успешно принятого сообщения.

После считывания сообщения необходимо сбросить возникшие биты причин прерываний, и ожидать приема следующего сообщения.

Прерывания

Запрос прерывания происходит произошло одно из событий и бит этого события не замаскирован:

- Успешно принято сообщение (IRQRM)
- Принято сообщение с ошибкой четности (IRQPEM)
- Принято сообщение неверной длинны (IRQWLC)
- Произошла ошибка уровня на линии (IRQLE)
- Была предпринята попытка записать некорректные данные в конфигурационный регистр (IRQICC)
- Изменение конфигурации в процессе отправки сообщения (IRQWCC)

Причину возникновения можно посмотреть в соответствующих полях регистра состояния. Для сбрасывания прерываний, вам необходимо считать регистр конфигурации и состояния и записать считанное снова, занулив биты прерываний. Более подробно работа прерываний рассмотрена в разделе Алгоритм работы.

Выключение модуля

Чтобы выключить модуль необходимо выставить поле регистра конфигурации SR = "1". Если сделать это во время отправки сообщения, прием сообщения прекращается. Регистры конфигурации и состояния возвращаются в начальное состояние. Когда приемник выключен, он не реагирует на сигналы на входах SL0 и SL1.

4. Алгоритмы работы

Рисунок 1. Алгоритм работы регистра состояния модуля SlReciever

Модуль может находиться в двух режимах: режим приема и режим ожидания. После включения модуля, все биты регистра состояния устанавливаются в 0, модуль находится в режиме ожидания.

Смена конфигурации и сброс прерываний в режиме ожидания

Чтобы сменить конфигурацию, необходимо записать новую конфигурацию в регистр конфигурации и состояния. При записи регистра конфигурации и состояния в режиме ожидания происходит проверка битов причин прерываний: если значения соответствующих записываемых битов прерываний равны 0, то они сбрасываются.

Если конфигурация некорректна, выставляется IRQICC = 1, конфигурация не изменяется. Если бит IRQICC не замаскирован формируется запрос на прерывание.

Если конфигурация корректна она записывается в регистр. Модуль остается в режиме ожидания.

Прием сообщения

Если на одной из линий возникает импульс. модуль переходит в режим приема, устанавливается поле регистра состояний WRP = 1. Если импульс слишком короткий или слишком длинный, возникает ошибка уровня, выставляется бит IRQLE = 1. Бит выставляется каждый такт, пока уровень на линии не будет восстановлен. После этого модуль возвращается в режим отправки сообщения, выставляется бит WRP = 0.

Если импульс является синхроимпульсом модуль выставляет соответствующие принятому сообщению биты статусного регистра и, если сообщение принято успешно, запоминает сообщение в регистр данных, выставляется бит WRP = 0.

Анализ принятого сообщения

При приеме синхроимпульса (условие END_OF_MSG на рис. 1) сначала проверяется длинна принятого сообщения, если длинна не совпадает с конфигурацией (значение поля BC + 1 за счет бита четности) выставляется IRQWLC = 1. Если бит IRQWLC не замаскирован, формируется запрос на прерывание.

Если длинна совпадает с выставленной в конфигурации, проверяется четность полученного сообщения. Если четность верна, сообщение считается успешно принятым, выставляется IRQRM = 1, содержимое сдвигового регистра с удаленным битом четности записывается в регистр данных. Если бит IRQRM не замаскирован, формируется запрос на прерывание.

Если четность неверна, выставляется бит IRQPEM = 1. Однако, если контроль четности отключен, сообщение все равно считается успешно принятым, данные сдвигового регистра с удаленным битом четности переписываются в регистр данных. Выставляется бит PEF = 1. Если бит IRQPEM не замаскирован, формируется запрос на прерывание.

Дублирование битов проверки честности

Бит причины прерывания IRQPEM и бит четности PEF дублируют функции друг друга. Тем не менее эта система необходима для разрешения следующего конфликта: Допустим с приемником с отключенным контролем четности, и за время, прошедшее с последнего опроса пришло 2 сообщения, одно с верной четностью, а другое с ошибкой. Тогда флаг PEF - единственный способ определить, верна ли честность сообщения, лежащего в регистре данных.

Изменение конфигурации и сброс прерываний во время приема сообщения

Когда модуль находится в режиме приема сообщения, то без отмены приема возможно только изменение полей маскирования прерываний, и сброс битов причин прерываний. Если изменить длину сообщения в середине приема сообщения, прием сообщения будет отменен, а остаток сообщения будет воспринят как новое сообщение неправильной длинны.

Если в режиме отправки происходит запись регистра конфигурации и состояния, сначала проверяются биты прерываний: если значения соответствующих записываемых битов прерываний равны 0, то они сбрасываются. После этого, проверяется изменяются ли биты конфигурации (поля РСЕ, ВС). Если они не изменяются, модуль остается в режиме приема сообщения. Если они изменяются то прием завершается, выставляются биты WRP = 0 и IRQWCC = 1. Если бит IRQDWCC не замаскирован формируется запрос на прерывание. Если конфигурация корректна, она записывается в регистр, если же нет, выставляется бит IRQICC = 1. Модуль переходит в режим ожидания сообщения.

Формирование запроса на прерывание

Запрос на прерывание формируется на выходе irq, через один такт после возникновения причины прерывания, если причина этого прерывания не замаскирована в поле IRQM.

Рисунок 2. Алгоритм работы приема сообщения модуля SlReciever

После включения приемника сдвиговый регистр приема сообщения shift_r заполняется нулями,

Сдвиговых регистры sl_0 -tmp и sl_1 -tmp - единицами, счетчик количества бит bit_i устанавливается в 0, счетчик циклов cycle_i устанавливается в 0, регистры контроля четности par_0 и par_1 устанавливаются в 0 и 1 соотвественно.

Каждый такт значение с асинхронных входов serial_line_zeroes_a и serial_line_ones_a помещаются в нулевые разряды сдвиговых регистров sl_0_tmp и sl_1_tmp. Остальные разряды при этом сдвигаются. Условия bit_started, и bit_ended получаются при сравнении содержимого sl_0_tmp и sl_1_tmp с масками.

Таблица 7. Условия переходов

Обозначение	Выражение
bit_started	(sl0_tmp_r == 12'hF??0) (sl1_tmp_r == 12'hF??0)
bit_ended	(sl0_tmp_r = =12'h0??F) (sl1_tmp_r == 12'h0??F)

Таблица 8. Значения костант счетчика cycle_i

Обозначение	Значение
const_1	3
const_2	32

Состояние BIT_WAIT_FLUSH

В начале приема машина состояний находится в состоянии BIT_WAIT_FLUSH. В этом состоянии счетчик циклов приравнивается к константе const1. Если выполняется условие bit_started, происходит переход в состояние BIT_DETECTED.

Состояние BIT DETECTED

В состоянии BIT_DETECTED работает счетчик циклов cycle_i. Как только этот счетчик становится равным до 0, производится анализ, какой именно бит принят, и в зависимости от значения первых разрядов сдвиговых регистров sl_0_tmp и sl_1_tmp определяется, на какую из линий поступил импульс и происходит переход в состояние обработки бита BIT_PROCESSING. При этом, если импульс отсутствует, происходит переход в состояние LEV_ERR.

COCTOЯНИЕ BIT_PROCESSING

В состоянии BIT_PROCESSING проверяется, на какую из линий пришел импульс.

Если импульс на линии нулей или на линии единиц соответствующее значение 0 или 1 загружаются в бит с номером ВС сдвигового регистра shift_r. Сам сдвиговый регистр при этом сдвигается вправо. В состоянии если импульс на линии единиц инвертируется значение бита четности единиц par_1, а если на линии нулей - значение par_0. В регистр cycle_i помещается значение const2. Счетчик принятых bit_i инкрементируется.

Если же импульсы на обоих линиях, то модуль считает, что это синхроимпульс. Сравнивается количество принятых бит с установленным в конфигурации, Проверяется четность. Если количество бит и четность верны, или, если верно количество бит, контроль честности отключен и не верна четность, значение из сдвигового регистра shift_r переписывается в регистр данных с

обнулением бита четности shift_r[BC].

В случае синхро импульса для приема следующего сообщения регистры shift_r и bit_i устанавливаются в нулевые значения. В регистры подсчета четности загружаются значения par_0 = 1. par_1 = 0. В регистр cycle_i помещается значение const_2.

Особенности контроля честности

Считая бит честности, количество импульсов на линии единиц с учетом разряда четности должно быть нечетным, а на линии нулей - четным.

Для проверки этого, до приема сообщения в регистры подсчета четности загружаются значения par_0 = 0. par_1 = 1. При принятии единицы меняет значение на противоположное регистр par_1, а при принятии нуля — par_0.

Таким образом, после принятия всех бит корректного сообщения (считая бит четности), регистр par_0 должен поменять свое значение четное количество раз, т.е. сохранить значение par_0 = 0, а регистр par_1 свое значение нечетное количество раз, т.е. приобрести значение par_1 = 0.

При обработке стоп бита считается, что четность нарушена, если хотя бы один из регистров par_0 и par_1 не равен нулю.

Состояние WAIT_BIT_END

После обработки импульса в состояниях ONE_BIT, ZERO_BIT или STOP_BIT, схема переходит в состояние WAIT_BIT_END. Модуль находится в этом состоянии, пока счетчик cycle_i не достиг нулевого значения, или не выполниться условие bit_ended.

Если выполнилось условие bit_ended, модуль возвращается в состояние BIT_WAIT_FLUSH. Если же счетчик досчитал до нулевого значения, это значит, что импульс не закончился вовремя, и произошла ошибка уровня на линии - модуль переходит в состояние LEV_ERR.

Состояние LEV_ERR

Модуль оказывается в состоянии LEV_ERR в случаях, когда длинна имульса оказалось слишком большой или слишком маленькой, т.е. произошла ошибка уровня на линии. Когда уровень на обоих линиях восстановлен, модуль переходит в состояние BIT_WAIT_FLUSH. Для приема следующего сообщения регистры shift_r и bit_i устанавливаются в нулевые значения. В регистры подсчета четности загружаются значения par_0 = 0 и par_1 = 1.