First, a random model is built and then it is improved by tweaking with the parameters and hyperparameters. We have a sequence of images (30) which represent a video. Though we have only considered only around half the images as it helps to reduce memory consumption. Below table represents every model built on the dataset with their results also what we infer from it as well as decision taken.

Experiment Number	Model	Result	Decision + Explanation
1	Conv3D	Training acc: 97.74%	Slight overfit. (Initial model) it is
		Val acc: 86%	because dropouts are not used.
			Checking with batch size = 128
			in the next model
2	Conv3D	Training acc: 65%	Heavy Overfitting obtained.
		Val acc: 25%	Batch size = 128 is not optimal
			for validation set. Using Batch
			Normalization and Dropouts to
			reduce overfitting and also
			reducing batch size
3	Conv3D	Training acc: 99.55%	Reduce batch size to 64
		Val acc: 85%	Reduce no of neurons in last
			hidden layer to reduce
			parameters. Overfitting is
			reduced. Further reducing batch
			size to see if there is any
			improvement in val accuracy
4	Conv3D	Training acc: 99.4%	Reduce batch size to 32
		Val acc: 92%	Rest same as model 3. Batch
			size = 32 is optimal for both
			train and validation data. We
			got very good validation
_			accuracy and least overfitting
5	Conv3D	Training acc: 99.7%	Adding one more hidden layer
		Val acc: 88%	at last to model 4 to increase
			accuracy. Using dropouts to
			tackle overfitting. But val
6	625	T	accuracy drops
6	Conv2D	Training acc: 64.86 %	Converting images to grayscale
		Val acc: 54%	format as parameters will be
			reduced and model size shrinks.
			This reduces large amount of
			information which makes it
			difficult to train though it has
7	Conv2D	Training 200, 92 11 0/	less memory consumption
′	CONVED	Training acc: 83.11 % Val acc: 65%	Using Dropouts to reduce
		vai acc. 03%	overfitting. Increase last hidden
			layer neurons to increase
			accuracy. But still overfit exists
			this might be due to loss of

			information in input. Next, we
			try CNN-RNN stack model
8	ResNet50 +	Training acc: 52.64 %	Model is not able to learn on
	GRU	Val acc: 56%	training dataset itself. It is
			because of less no of parameters
			and depth. Increase last hidden
			layer neurons to increase
			accuracy in the next model
	ResNet50 +	Training acc: 47.66 %	The model doesn't fit well on
	GRU	Val acc: 43%	our dataset after increasing
			complexity. So, we discard this
			model as ResNet50 pre-trained
			model doesn't seem to suit our
			dataset. In next model we will
			try ResNet50V2 pre-trained
			model and see if there is any
		-	improvement.
	ResNet50V2	Training acc: 100 %	Increased depth of ResNet50V2
-	+ GRU	Val acc: 87%	helped achieve higher accuracy
			than previous CNN-RNN
			models. But there is slight
			overfitting it may be because ResNet50V2 is too complex for
			our dataset and it is difficult to
11	ResNet50V2	Training acc: 95.48 %	generalize the data for it Trying LSTM instead of GRU to
	+ LSTM	Val acc: 84%	check if accuracy increases.
	LSTIVI	vai acc. 04/0	LSTM has surely helped
			reducing overfitting but
			validation accuracy is not that
			great like model 4.
			<u> </u>
Final Model	Model 4	Training acc: 99.4%	This model has the least overfit
		Val acc: 92%	with less parameters relatively
			(less than 1 million)