LongVLM: Efficient Long Video Understanding via Large Language Models(ECCV2024)

https://www.ecva.net/papers/eccv_2024/papers_ECCV/papers/04936.pdf

概要

- VideoLLMの問題点としてlocal featureを見落としていることがある
- そこでlocal feature, global featureをそれぞれ計算して最後にmergeするようなアーキテクチャを考えた

related work

- Video LLM
 - VideoChatGPT
 - Valley
 - VideoChat
 - Video-LLaMA
 - Video-ChatCaptioner
 - MovieChat
- long term video processing
 - A.: Temporal alignment networks for long-term video(CVPR2022)
 - Revisiting the video in video-language understanding (CVPR2022)

LongVLM

(元論文より)

- 全体図はVisual Encoder, projection layer, LLMの3層から構成
- 学習するのはProjecton Layerのみ
- Visual EncoderはCLIP-ViT-LのImage Encoderのこと
- 全体の流れは以下
 - 。 動画をフレームごとに分割してImage Encoderに入れて特徴量を2つ得る(詳しくは後述)
 - 。 得られた特徴量の片方(図の紫)を全フレーム間で足してglobal featureを得る
 - 。 得られた特徴量の他方(図の黄色)を数フレームから成るセグメント間で足してセグメントごと に特徴量を計算して、セグメントごとの特徴量をくっつけてlocal featureを得る
 - 。 global feature, local featureをprojection layerに入れて最終的なfeatureを得る
 - 。 LLMに入れる

visual encoderの詳細

- 入力動画: $\mathcal{V} \in \mathbb{R}^{T \times H \times W \times 3}$
- これをencoderに入れると $\{X^t, P^t\}_{t=1}^T$ を得る
- ullet ここで、 $P^t \in \mathbb{R}^{N imes d}$ は画像のパッチごとの特徴量でNがパッチトークンの個数
- $X^t \in \mathbb{R}^{E imes d}$ は[CLS]tokenでEは選択されたencoder layerの個数

local feature

- S個のsegmentに動画を分割して、各segmentはKフレームとする(つまりSK=T)
- ullet このときs番目のセグメントの特徴量はpatch featureを集めて $V^s=\{P^t\}_{t=(s-1)K}^{sK}$
- これからセグメントの特徴量 $Z^s=g(V^s)$ を得る

• Z^s をすべてconcatenateしてlocal feature Lを得る

global feature

- X^t ,図の紫部分
- これをすべて足して平均を取ることでglobal featureGを得る

英語

revolutionize: 革命を起こすcorpora: corpusの複数形