Cognition

PSYC 2040

L6: Information Processing

Part 1

logistics: midterm + monthly quiz

practice assessment 1

- multiple-choice + short answers
- available on Canvas
- will post answer keys next week

monthly quiz

- available from Friday (Feb 23) to Tuesday (Feb 27) midnight
- open-book,
 Canvas
- 1 hour time limit

review sessions

- Monday (Feb 26), 7-9 pm
- Thursday (Feb 29), 8-10 pm
- Kanbar 200

midterm

- March 1
- in-person
- Canvas quiz + handwritten short answer
- closed-book

recap

- what we covered:
 - precursors to behaviorism
 - flavors of behaviorism (Watson, Tolman, Skinner, Hull)
 - associations and behaviorism today
- your to-dos were:
 - finish: L5 quiz + writing assignments
 - read: L6 (information processing) chapter

today's agenda

- the four R(evolution)s
- Donders' processing stages
- PRP effect

behaviorism's aftermath

- behaviorism emphasized the relationship between stimulus and response,
 with the goal of controlling and predicting behavior
- the emphasis was more on how different stimuli directly lead to specific responses and less on the internal processes that bridge that gap
- not all behaviorists thought the same way...Tolman argued that internal drives and representations were critical to understanding behavior
- the "radical" form of behaviorism slowly started to fall out of favor, and more and more scientists began to embrace "cognitive" aspects of behavior

cognition and the four Revolutions

- the study of cognition has a bidirectional relationship with the world and its events
- several important events shaped how we think/thought about cognition
 - industrial revolution
 - technological revolution
 - digital revolution
 - "cognitive" revolution

the timeline so far

introspectionism (1880s)

associationism (late 1890s)

behaviorism (around 1938)

cognitivism (1940 onwards)

the timeline so far

cognition and metaphors

- metaphors have been used as a tool to explain cognition
 - what are some metaphors we've already encountered?
- the revolutions brought along newer metaphors
 - industrial: cognition = assembly line
 - Donder's processing stages
 - technological: cognition = telephone network
 - Shannon's information theory
 - digital: cognition = computer
 - highly prevalent even today
 - broadly: cognition = machine
 - possibly reductive, but also extremely useful

the timeline so far

the timeline so far

Donders' processing stages

- key idea: there are individual stages of cognitive processing
- Donders attempted to identify these stages and estimate the time to complete each stage
- Donders used mental chronometry for this work:
 - where else have we seen this before?
- he conducted reaction-time experiments with various types of stimuli
- two main questions
 - do different sense organs have different "physiological times"?
 - do more complex tasks require additional "mental time"?

Donders: levels of complexity

- simple reaction time task
 - present stimulus (e.g., light) and record time taken to detect it
- go-no go task
 - present stimulus, ask to respond only for some trials (go) and not others (no go)
 - record time taken to respond on "go"
- alternative forced-choice task (AFC)
 - present many stimuli, respond with specific response (e.g., blue: left, red: right)
 - record time taken to respond

activity: classify the tasks!

- In groups, do the following tasks and classify them as simple reaction-time, go/no-go, or forced alternative choice
 - Group 1: Stroop task
 - Group 2: Impulsive response task
 - Group 3: Lexical decision task
 - Group 4: Sustained attention to response task
 - Group 5: Wisconsin Card Sorting task
 - Group 6: Self-paced reading
- debrief: describe the task to the class and how you classified it

 Donders assumed that mental operations occurred in successive stages, i.e., like an assembly line

- time taken to respond should depend on number of processing stages required to complete the task
 - simple tasks have fewer stages and are therefore performed quickly
 - complex tasks have more stages and therefore performed slower

- the problem: we do not know how long each processing stage takes
- solution: subtract the times from two different tasks!

- the problem: we do not know how long each processing stage takes
- solution: subtract the times from two different tasks!

subtractive logic: processing stages

 Sternberg (1969) describes a binary classification experiment where a digit (0 to 9) is presented visually and participants decide whether the digit belongs to a pre-decided positive set or negative set

positive set

7 9 1 8 5

negative set

02346

7

subtractive logic: processing stages

- factors varied in experiments
 - stimulus quality (intact vs. degraded)
 - size of the positive set
 - response type (positive / negative)
 - frequency of response type
- dependent variable
 - reaction time

positive set

7 9 1 8 5

negative set

02346

subtractive logic: predictions

- consider stimulus quality
 (intact/degraded) and size of
 positive set (s)
- if we assume that process of encoding the digit is independent and additive with the comparison process, what would we expect the plot of response times to look like?

subtractive logic: predictions

→ RESPONSE

subtractive logic: findings

stimulus quality is additive with stimulus set

subtractive logic: findings

several other additive patterns were also found

subtractive logic: inferences

 subtractive logic for processing stages in cognitive tasks can be verified using experimental manipulations that examine interactions between different factors

subtractive logic: neuroimaging

- Petersen et al. (1988) compared neural activity to a series of tasks with varying cognitive demands
- Positron Emission Tomography (PET) was used to generate images of blood flow in specific brain regions via subtractive logic to identify key brain areas
- assumptions? predictions?

subtractive logic: neuroimaging

subtractive logic: neuroimaging

- possible issues?
- "pure insertion" assumption
 - cognitive insertion: a single cognitive process is inserted
 - neural insertion: a single neural process is inserted
- neural pathways are highly nonlinear and interactive, so even if cognitive insertion can be verified, the leap to neural insertion may be difficult

subtractive logic: response modes

- Jennings et al. (1997)
- participants underwent six PET scans making semantic (would this be considering living?) or letter (does this word contain the letter "a"?) judgments in three modalities (mouse-clicking, spoken response, silent thought)
- compared semantic letter activations
- what would the additivity assumption predict in this situation?

Experimental Design: Processing Crossed with Response Mode (Six Scans Total)

Processing task	Response mode
Semantic task	Mouse-click
	Spoken response
	Silent thought
Letter task	Mouse-click
	Spoken response
	Silent thought

subtractive logic: response modes

- semantic >> letter
- if the same cognitive processes are involved across different response modes (i.e., they are independent and additive), then the same behavioral and neural pattern should be observed
- if semantic processing and mode interact, different patterns may be observed
- no behavioral differences were found for response modes, i.e., no interaction between task and mode was found

Experimental Design: Processing Crossed with Response Mode (Six Scans Total)

Processing task	Response mode		
Semantic task	Mouse-click		
	Spoken response		
	Silent thought		
Letter task	Mouse-click		
	Spoken response		
	Silent thought		

Probability of Responding "Old" to Old and New Items on the Recognition Test for Each Response Mode

	Mouse-click		Spoken response		Silent thought	
Item	Semantic	Letter	Semantic	Letter	Semantic	Letter
Old New	0.90 0.27	0.52 0.30	0.87 0.22	0.52 0.24	0.79 0.28	0.54 0.23

subtractive logic: interactions

 some common brain areas were found but importantly, there were some brain areas uniquely activated in specific response modes

TABLE 4 Areas of Increased rCBF Associated with Semantic Processing

X	\boldsymbol{y}	Z	areas	Mouse	Spoken	Silent		
Areas of increased rCBF common to all response modes								
-34	28	4	Left area 45	*	*	*		
-24	28	-8		*	*	*		
-16	-94	4	Left area 17	*	*	*		
6	22	36	Right area 32	*	*	*		
10	-76	-16	Right cerebellum	*	*	*		
	Areas o	of incre	ased rCBF common t	to two resp	onse mode	es		
10	-88	-28	Right cerebellum	*	*			
40	48	12	Right area 10/46	*		*		
42	30	28	Right area 9	*		*		
-8	16	40	Left area 6/8		*	*		
-28	-22	-20	Fusiform gyrus		*	*		
	Areas of	increa	sed rCBF unique to	a single re	esponse mo	de		
10	54	-4	Right area 10	*				
-62	-36	8	Left area 22	*				
26	-88	20	Right area 19	*				
-42	44	24		*				
0	-26	36	Area 31		*			
38	24	24	Right area 9/46			*		
44	10	40	Right area 6/8			*		
30	-14	0	Right NL			*		
46	-34	36	Right area 40			*		

 $\it Note.$ Asterisks indicate regions that were active for each response mode.

subtractive logic: reflections

- metaphors are attractive but can be misleading
- subtractive logic came out of the assembly line metaphor
- potential issues:
 - what if multiple stages occur in parallel?
 - what if the stages don't have constant times?
 - can we assume similar processes at cognitive and neural levels?
- alternatives/checks for subtractive interpretations
 - multiple baseline conditions with varying levels of difficulty
 - meta-analyses
 - computational modeling

PRP effect

- the psychological refractory period (PRP) effect was documented by A.T. Welford
- the idea was that if two identical stimuli (S1 and S2) are presented with a short delay, then the time taken to respond to S2 is longer (RT2 > RT1)

PRP effect: real-life examples

- groups of 2
- come up with a real-life example
- debrief

PRP effect: explanations

- properties of nerve fibers
- participant surprise: shorter delays produce more surprise which increases time
- limited-capacity single channel
 - inspired by the assembly line metaphor and how a bottleneck might be created if stimuli were presented quickly one after the other
 - also inspired by telecommunications...the idea of a "single channel"

try a PRP experiment

- https://www.psytoolkit.org/experiment-library/experiment_prp.html
- need headphones/speakers

big takeaways

- the study of cognition moved from introspectionism to associationism to behaviorism to "cognitivism"
- cognition was influenced by world events
- Donders' processing stages are an example of the assembly line metaphor, inspired from the industrial revolution
- other world events also influenced cognition and led to a greater emphasis on mechanisms that influence how individuals react to stimuli and what processes lead to responses

next class

- **before** class:
 - block out time: practice assessment 1 / reviewing material
 - explore: L6 assignments
- during class:
 - the telephone metaphor of cognition
 - the rise of cognitivism via information processing