Kabinet výuky obecné fyziky, UK MFF

Fyzikální praktikum ...

Úloha č					
Název úlohy:					
Jméno:		Obor:	FOF	FAF	FMUZV
Datum měření:	Datum o	devzdá	ní:		

Připomínky opravujícího:

	Možný počet bodů	Udělený počet bodů
Práce při měření	0 - 5	
Teoretická část	0 - 1	
Výsledky měření	0 - 8	
Diskuse výsledků	0 - 4	
Závěr	0 - 1	
Seznam použité literatury	0 - 1	
Celkem	max. 20	

Pracovní úkoly

- 1. Proveď te energetickou kalibraci gama-spektrometru pomocí alfa-zářiče $^{241}\mathrm{Am}.$
- 2. Určete materiál několika vzorků.
- 3. Stanovte závislost účinnosti výtěžku rentgenového záření na atomovém čísle elementu v daném experimentálním uspořádání.
- 4. Určete relativní zastoupení prvků v jednom ze vzorků.
- 5. Na základě rentgenového záření identifikujte radioaktivní vzorek a stanovte typ pozorovaného rozpadu.

Teoretická část

Výsledky měření

Nejprve jsme provedli energetickou kalibraci. Použili jsme tři známé peaky z gamma spektra 241 Am: 13,9 keV, 26,3 keV a 59,5 keV. Další známý peak 17,8 keV jsme s novou kalibrací změřili na 17,53 keV, což nám dává představu o nejistotě měření energie.

Měřili jsme rentgenové spektrum celkem 7 čistých prvků a 2 dvouprvkových slitin. V tabulce 1 jsou uvedené naměřené energie pozorovaných přechodů a jejich výtěžek. Prvky jsme identifikovali podle přiložené tabulky energií charakteristického rentgenového záření.

U Cu jsme naměřili pouze jeden peak mezi $K\alpha$ a $K\beta$, což odpovídá tomu, že jsou blízké a nedokážeme rozlišit. U všech ostatních prvků kromě Pb se nám podařilo rozlišit dva peaky, a to $K\alpha$ a $K\beta$. U Pb jsme pozorovali pouze $L\alpha$ a $L\beta$.

Graf závislosti výtěžku na protonovém čísle pro přechod K α jsou v grafu

Diskuze

Závěr

vzorek	energie (keV)	FWHM (keV)	net area	výtěžek (cps)	přechod	prvek	
1	8,17	1,16	24205(251)	30,3(3)	Κα α Κβ	₂₉ Cu	
2	25,25	1,10	66 467(331)	90,8(5)	Κα	$_{50}\mathrm{Sn}$	
	28,58	1,08	14171(190)	19,4(3)	Κβ		
3	20,24	1,04	15 116(171)	57,7(7)	Κα	Dh	
	22,84	0,96	3120(103)	10,9(4)	Κβ	$_{45}\mathrm{Rh}$	
4	10,61	0,83	3556(112)	14,5(5)	Lα	₈₂ Pb	
4	12,67	0,90	3823(123)	15,6(5)	Lβ		
23,16 26,18	23,16	1,02	17 017(178)	83,4(9)	Κα	₄₈ Cd	
	26,18	1,15	4489(111)	22,0(6)	Κβ		
h II '	15,81	0,85	18 116(249)	36,9(5)	Κα	$_{40}\mathrm{Zr}$	
	17,67	0,62	1639(126)	3,3(3)	Κβ		
9	17,49	1,07	35 230(274)	70,9(6)	Κα	₄₂ Mo	
	19,70	0,8	3881(143)	7,8(3)	Кβ		
	8,43	1,28	3716(147)	5,5(2)	Κα α Κβ	₂₉ Cu	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,02	23575(246)	34,7(4)	$K\alpha$	Λ σ		
	25,03	1,03	7557(161)	11,2(3)	Κβ	$_{47}\mathrm{Ag}$	
13 10,58 12,71 25,26 28,60	10,58	1,03	5293(129)	13,6(4)	Lα	Dh	
	12,71	0,91	4834(148)	12,5(4)	Lβ	$_{82}\mathrm{Pb}$	
	25,26	1,08	11483(158)	29,6(4)	$K\alpha$	C _n	
	28,60	1,12	2958(94)	7,6(3)	Кβ	$_{50}\mathrm{Sn}$	

Tabulka 1: Naměřené energetické přechody. V první části tabulky jsou čisté prvky, pod druhou tlustou čárou jsou slitiny.

Graf 1: Závislost výtěžku na protonovém čísle pro přechod K $\alpha.$