Exploratory Analysis of Global Earthquake-Tsunami Events (2001–2022)


```
In [1]: # import libraries.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

```
In [37]: # Load the dataset.
    data=pd.read_csv('earthquake_data_tsunami.csv')
    data
```

Out[37]:		magnitude	cdi	mmi	sig	nst	dmin	gap	deptl	n latitude	longitud	e Yea	ar
	0	7.0	8	7	768	117	0.509	17.0	14.000	9.7963	3 159.59	6 202	22
	1	6.9	4	4	735	99	2.229	34.0	25.000	-4.9559	100.73	8 202	22
	2	7.0	3	3	755	147	3.125	18.0	579.000	-20.0508	3 -178.34	6 202	22
	3	7.3	5	5	833	149	1.865	21.0	37.000	-19.2918	3 -172.12	9 202	22
	4	6.6	0	2	670	131	4.998	3 27.0	624.464	4 -25.5948	3 178.27	8 202	22
	•••						••		••				
	777	7.7	0	8	912	427	0.000	0.0	60.000	13.0490	-88.66	0 200)1
	778	6.9	5	7	745	0	0.000	0.0	36.400	56.7744	-153.28	1 200)1
	779	7.1	0	7	776	372	0.000	0.0	103.000	-14.9280	167.17	0 200)1
	780	6.8	0	5	711	64	0.000	0.0	33.000	6.6310	126.89	9 200)1
	781	7.5	0	7	865	324	0.000	0.0	33.000	6.8980	126.57	9 200)1
	782 rd	ows × 13 colu	umns										
	4								-			[
In [60]:	data	.head()											
Out[60]:	n	nagnitude c	di n	nmi s	sig i	nst d	lmin	gap	depth	latitude	longitude	Year	M
	0	7.0	8					17.0	14.000	-9.7963	159.596	2022	
	1	6.9	4	4 7	35	99 2	.229	34.0	25.000	-4.9559	100.738	2022	
	2	7.0	3	3 7	55 1	47 3	3.125	18.0	579.000	-20.0508	-178.346	2022	
	3	7.3	5	5 8	33 1	49 1	.865	21.0	37.000	-19.2918	-172.129	2022	
	4	6.6	0	2 6	70 1	31 4	.998	27.0	624.464	-25.5948	178.278	2022	
	4								_	_		1	
In [61]:	data	.tail()											
Out[61]:	0.0.00	magnitude	cdi	mmi	sig	nst	dmin	gap	depth	latitude	longitude	Year	R/
oucloi].	777	7.7	0	8	912		0.0			13.0490	-88.660	2001	
	778	6.9	5		745	0	0.0			56.7744	-153.281	2001	
	779	7.1	0	7		372	0.0			-14.9280	167.170	2001	
	780	6.8	0		711	64	0.0		33.0	6.6310	126.899	2001	
	781	7.5	0	7		324	0.0			6.8980	126.579	2001	
	4												
In [62]:	data	.sample(5)											

```
Out[62]:
               magnitude cdi mmi
                                       sig nst dmin gap
                                                             depth
                                                                     latitude longitude
                                                                                         Year
          141
                      6.8
                             3
                                   3
                                       715
                                              0
                                                 1.181 16.0
                                                             570.41
                                                                      -8.1440
                                                                               -71.5870 2019
          694
                       6.7
                             0
                                   7
                                       691
                                            256
                                                0.000 33.3
                                                              25.70
                                                                      -3.6650
                                                                               135.3390 2004
          425
                      6.5
                             6
                                   6
                                       745
                                           691
                                                 0.000 34.4
                                                              17.00
                                                                     10.0860
                                                                               -85.2980 2012
                                     1297
                                                 2.360
                                                      15.0
                                                              29.00
                                                                    -22.6784
                                                                                25.1558 2017
          212
                       6.5
                                              0
          554
                      6.6
                             0
                                   6
                                       670 463 0.000 14.1
                                                              96.00
                                                                      1.8850
                                                                               127.3630 2008
          data.columns
In [63]:
Out[63]: Index(['magnitude', 'cdi', 'mmi', 'sig', 'nst', 'dmin', 'gap', 'depth',
                  'latitude', 'longitude', 'Year', 'Month', 'tsunami'],
                dtype='object')
In [64]: print(type(data))
        <class 'pandas.core.frame.DataFrame'>
In [65]: data.shape
Out[65]: (782, 13)
In [66]: data.info
Out[66]:
          <bound method DataFrame.info of</pre>
                                                 magnitude cdi mmi sig nst
                                                                                   dmin
                                                                                           gap
          depth latitude longitude \
          0
                      7.0
                             8
                                  7 768
                                          117
                                                0.509 17.0
                                                               14.000
                                                                         -9.7963
                                                                                    159.596
          1
                                            99
                      6.9
                             4
                                  4
                                     735
                                                2.229
                                                        34.0
                                                               25.000
                                                                         -4.9559
                                                                                    100.738
          2
                      7.0
                             3
                                     755
                                  3
                                           147
                                                3.125
                                                        18.0
                                                              579.000
                                                                        -20.0508
                                                                                   -178.346
                      7.3
                             5
                                  5
                                                1.865
          3
                                     833
                                           149
                                                        21.0
                                                               37.000
                                                                        -19.2918
                                                                                   -172.129
          4
                      6.6
                                  2
                                      670
                                           131
                                                4.998
                                                        27.0
                                                              624.464
                                                                        -25.5948
                                                                                    178.278
                                                         . . .
                           . . .
          777
                      7.7
                             0
                                  8
                                     912
                                           427
                                                0.000
                                                         0.0
                                                               60.000
                                                                        13.0490
                                                                                    -88.660
                             5
                                  7
          778
                      6.9
                                     745
                                             0
                                                0.000
                                                         0.0
                                                               36.400
                                                                         56.7744
                                                                                   -153.281
          779
                      7.1
                             0
                                  7
                                     776
                                           372
                                                0.000
                                                         0.0
                                                              103.000
                                                                        -14.9280
                                                                                    167.170
          780
                                                0.000
                      6.8
                             0
                                  5
                                     711
                                            64
                                                         0.0
                                                               33.000
                                                                          6.6310
                                                                                    126.899
          781
                      7.5
                                  7
                                     865
                                           324
                                                0.000
                                                         0.0
                                                               33.000
                                                                          6.8980
                                                                                    126.579
                     Month tsunami
               Year
          0
               2022
                         11
                                    1
               2022
                         11
          1
                                    0
          2
               2022
                         11
                                    1
          3
                         11
               2022
                                    1
          4
               2022
                         11
                                    1
          777
               2001
                          1
                                   0
          778
                          1
                                   0
               2001
          779
               2001
                          1
                                   0
                          1
                                   0
          780
               2001
          781
               2001
                          1
                                   0
```

[782 rows x 13 columns]>

Dealing With Duplicate Values.

```
In [67]: data.duplicated()
Out[67]: 0
                False
         1
                False
         2
               False
              False
               False
                . . .
         777
              False
         778
              False
         779
               False
         780
               False
         781 False
         Length: 782, dtype: bool
In [68]: data.duplicated().sum()
Out[68]: np.int64(0)
In [69]: # particular columns duplicted data
         data['magnitude'].duplicated()
Out[69]: 0
                False
         1
                False
         2
                True
         3
              False
              False
                . . .
         777
                True
         778
                True
         779
                 True
                 True
         780
         781
         Name: magnitude, Length: 782, dtype: bool
```

Dealing with Null Values.

```
In [70]: data.isnull()
```

:		magnitude	cdi	mmi	sig	nst	dmin	gap	depth	latitude	longitude	Yea
	0	False	False	False	False	False	False	False	False	False	False	False
	1	False	False	False	False	False	False	False	False	False	False	False
	2	False	False	False	False	False	False	False	False	False	False	False
	3	False	False	False	False	False	False	False	False	False	False	False
	4	False	False	False	False	False	False	False	False	False	False	False
	•••								•••			
	777	False	False	False	False	False	False	False	False	False	False	False
	778	False	False	False	False	False	False	False	False	False	False	False
	779	False	False	False	False	False	False	False	False	False	False	False
	780	False	False	False	False	False	False	False	False	False	False	False
	781	False	False	False	False	False	False	False	False	False	False	False

782 rows × 13 columns

Out[70]

1. Time-Based Analysis:

1) Explore how earthquake occurrences and tsunami events have changed over the 22-year period (2001–2022).

```
In [46]: # Group earthquake counts per year
    earthquake_count = data.groupby('Year').size()

# Group tsunami events per year (sum of 1s and 0s)
    tsunami_count = data.groupby('Year')['tsunami'].sum()

# Plot directly using those grouped results
    plt.figure(figsize=(10,5))
    plt.plot(earthquake_count.index, earthquake_count.values,
```


2) Identify any trends in the frequency or magnitude of earthquakes over time.

Average Earthquake Magnitude (2001-2022)

2. Magnitude and Depth Analysis:

2005

6.90

6.85

6.80 - 2000

1) Analyze the distribution of earthquake magnitudes and depths.

2010

Year

```
In [51]:
         # Plot the distribution of Magnitude and Depth
         plt.figure(figsize=(12,5))
         # Magnitude distribution
         plt.subplot(1,2,1)
         sns.histplot(data['magnitude'], bins=20, kde=True, color='green')
         plt.title('Distribution of Earthquake Magnitudes')
         plt.xlabel('Magnitude')
         plt.ylabel('Frequency')
         # Depth distribution
         plt.subplot(1,2,2)
         sns.histplot(data['depth'], bins=20, kde=True, color='pink')
         plt.title('Distribution of Earthquake Depths')
         plt.xlabel('Depth (km)')
         plt.ylabel('Frequency')
         plt.show()
```


2) Compare the average magnitude and depth of tsunami vs. non-tsunami events.

```
In [58]:
         import matplotlib.pyplot as plt
         import pandas as pd
         # Group by tsunami (0 = No, 1 = Yes) and calculate mean
         avg_stats = data.groupby('tsunami')[['magnitude','depth']].mean().reset_index()
         avg_stats['Tsunami'] = avg_stats['tsunami'].map({0:'No', 1:'Yes'})
         # Plotting
         plt.figure(figsize=(8,4))
         bar_width = 0.35
         x = range(len(avg_stats))
         # Average Magnitude
         plt.bar(x, avg_stats['magnitude'], width=bar_width, label='Average Magnitude', c
         # Average Depth
         plt.bar([i + bar_width for i in x], avg_stats['depth'], width=bar_width, label='
         # X-axis labels
         plt.xticks([i + bar_width/2 for i in x], avg_stats['Tsunami'])
         plt.ylabel('Value')
         plt.title('Average Magnitude and Depth: Tsunami vs Non-Tsunami')
         plt.legend()
         plt.show()
```

Average Magnitude and Depth: Tsunami vs Non-Tsunami

3) Highlight major earthquakes (≥8.0) and their characteristics.

```
In [73]: # Convert time column to datetime and extract year if not already present
         if "Year" not in df.columns:
             df["time"] = pd.to_datetime(df["time"], errors="coerce")
             df["Year"] = df["time"].dt.year
         # Filter major earthquakes (magnitude ≥ 8.0)
         major_eq = df[df["magnitude"] >= 8.0]
         print(f"Total Major Earthquakes (≥8.0): {len(major_eq)}\n")
         # Summary Statistics
         print("Summary Statistics for Major Earthquakes:\n")
         summary = major_eq[["magnitude", "depth", "latitude", "longitude", "Year", "tsun
         print(summary)
         # Geographic Distribution Plot
         plt.figure(figsize=(10,6))
         sns.scatterplot(
             data=major_eq,
             x="longitude", y="latitude",
             size="magnitude", hue="tsunami",
             sizes=(100,300), palette="coolwarm", alpha=0.7
         plt.title("Geographic Distribution of Major Earthquakes (≥8.0)", fontsize=13)
         plt.xlabel("Longitude")
         plt.ylabel("Latitude")
         plt.legend(title="Tsunami (1=Yes, 0=No)")
         plt.grid(True, linestyle="--", alpha=0.5)
         plt.show()
         # Yearly Frequency Trend
         plt.figure(figsize=(10,6))
         sns.countplot(x="Year", data=major_eq, color="orange")
         plt.title("Number of Major Earthquakes (≥8.0) by Year (2001-2022)", fontsize=13)
         plt.xlabel("Year")
         plt.ylabel("Count")
         plt.xticks(rotation=45)
         plt.grid(True, linestyle="--", alpha=0.5)
```

```
plt.show()

# Magnitude vs Depth Visualization
plt.figure(figsize=(8,6))
sns.scatterplot(
    data=major_eq,
    x="magnitude", y="depth",
    hue="tsunami", palette="coolwarm", s=100, alpha=0.8
)
plt.title("Magnitude vs Depth of Major Earthquakes (≥8.0)", fontsize=13)
plt.xlabel("Magnitude")
plt.ylabel("Depth (km)")
plt.legend(title="Tsunami (1=Yes, 0=No)")
plt.grid(True, linestyle="--", alpha=0.5)
plt.show()
```

Total Major Earthquakes (≥8.0): 28

Summary Statistics for Major Earthquakes:

```
magnitude
                       depth
                              latitude
                                         longitude
                                                                   tsunami
                                                           Year
       28.000000
                  28.000000 28.000000
                                         28.000000
                                                      28.000000
                                                                 28.000000
count
       8.280714
                  73.227857
                              0.158446
                                         -1.448004
                                                    2011.071429
                                                                  0.357143
mean
       0.303631
                 150.047721 32.430338 133.458224
                                                       6.163985
                                                                  0.487950
std
min
       8.000000
                  10.000000 -58.415700 -178.153000 2001.000000
                                                                  0.000000
25%
       8.100000
                  22.872500 -19.704775 -109.881725
                                                                  0.000000
                                                    2006.000000
50%
       8.200000
                  28.965000
                             -7.138950
                                        -48.044850
                                                    2010.500000
                                                                  0.000000
75%
       8.325000
                  40.915000 20.840900 142.757250
                                                    2015.500000
                                                                  1.000000
       9.100000
                 600.000000 55.474200 165.114000
                                                    2021.000000
                                                                  1.000000
max
```


3. Geographic Distribution Using 2D Plotting:

1) Plot earthquake locations using latitude and longitude on a 2D scatter plot.

```
In [80]: plt.figure(figsize=(10, 6))
    plt.scatter(data['longitude'], data['latitude'], c=df['magnitude'],cmap='Reds',e
    plt.title('Geographic Distribution of Earthquakes')
    plt.xlabel('Longitude')
    plt.ylabel('Latitude')
    plt.colorbar(label='Magnitude')
    plt.grid(True)
    plt.show()
```


2) Compare the average magnitude and depth of tsunami vs. non-tsunami events.

```
In [82]: plt.figure(figsize=(10,6))
    sns.scatterplot(x='longitude',y='latitude',hue='tsunami',data=df,palette=['green
    plt.title('Earthquake Locations: Tsunami vs Non-Tsunami Events')
    plt.xlabel('Longitude')
    plt.ylabel('Latitude')
    plt.legend(title='Tsunami Event', labels=['No', 'Yes'])
    plt.grid(True)
    plt.show()
```


3) Identify clusters or regions with higher concentration of tsunami events (without using map tiles or interactive maps).

```
In [34]: plt.figure(figsize=(10,6))
sns.scatterplot(
    x=df['longitude'],
    y=df['latitude'],
    color='brown',s=30, alpha=0.9, label='Tsunami Events' ,edgecolor='k')

plt.title('Density of Tsunami Events (Hotspot Visualization)')
plt.xlabel('Longitude')
plt.ylabel('Latitude')
plt.legend()
plt.grid(True)
plt.show()
```


4. Statistical and Comparative Analysis:

-50

-40

-60

-150

-100

1) Use box plots, histograms, and bar charts to compare seismic features between tsunami and non-tsunami events.

Longitude

50

100

150

```
In [43]:
         plt.figure(figsize=(10, 5))
         sns.boxplot(data=df, x='tsunami',y='magnitude',hue='tsunami',palette=['brown',
         plt.xticks([0, 1], ['Non-Tsunami', 'Tsunami'])
         plt.title('Magnitude Comparison between Tsunami and Non-Tsunami Events')
         plt.xlabel('')
         plt.ylabel('Magnitude')
         plt.grid(True, alpha=0.3)
         plt.show()
         plt.figure(figsize=(10,6))
         sns.histplot(df[df['tsunami']==0]['magnitude'], bins=10, color='pink', label='No
         sns.histplot(df[df['tsunami']==1]['magnitude'], bins=10, color='yellow', label='
         plt.title('Magnitude Distribution: Tsunami vs Non-Tsunami')
         plt.xlabel('Magnitude')
         plt.ylabel('Frequency')
         plt.show()
         avg_values = df.groupby('tsunami')[['magnitude','depth','sig']].mean().reset_ind
         avg_values['tsunami'] = avg_values['tsunami'].map({0: 'Non-Tsunami', 1: 'Tsunami'
         avg_values.plot(x='tsunami', kind='bar', figsize=(8,5), colormap='rainbow')
         plt.title('Average Seismic Feature Comparison')
         plt.ylabel('Average Value')
         plt.xlabel('')
```


Out[43]: Text(0.5, 0, '')

Average Seismic Feature Comparison

2) Analyze correlations between variables using heatmaps.

```
In [86]: plt.figure(figsize=(5,5))
    corr = data[['magnitude','depth','sig','tsunami']].corr()
    sns.heatmap(corr, annot=True, cmap='rainbow')
    plt.title('Correlation Heatmap of Seismic Features')
    plt.show()
```


5.Insights and Observations:

Tsunami vs non-tsunami characteristics

Geographic earthquake distribution