# 《数学建模》课程内容

- 模型绪论、初等模型
- 简单优化模型
- 数学规划模型
- 微分方程模型
- 差分方程模型
- 概率模型
- **> 马氏链模型**
- 离散事件模型
- 人群仿真模型
- 博弈模型
- > 层次分析模型



# 数学建模

- ●宋晓
- ●副教授,博导
- songxiao@buaa.edu.cn

#### 教材参考

- 1.姜启源.《数学模型》(第4版),高等教育出版社.2011.
- 2. 《Theory of Modeling and Simulation》 Second Edition, BERNARD P.ZEIGLER, ACADEMIC PRESS, 2000.

# 本课程群二维码



# 第一章 建模基础

- 1.1 从现实对象到数学模型
- 1.2 数学建模的重要意义
- 1.3 数学建模的基本方法
- 1.4 数学模型的特点和分类
- 1.5 怎样学习数学建模
- 1.6 初等数学模型

### 1.1 从现实对象到数学模型

#### 我们常见的模型

玩具、照片、飞机、火箭模型......



~ 实物模型

水箱中的舰艇、风洞中的飞机.......

~ 物理模型

地图、电路图、分子结构图.......

~ 符号模型

模型是为了一定目的,对客观事物的一部分进行简缩、抽象、提炼出来的原型的替代物

模型集中反映了原型中人们需要的那一部分特征

#### 你碰到过的数学模型——"航行问题"



甲乙两地相距750千米,船从甲到乙顺水航行需30小时, 从乙到甲逆水航行需50小时,问船的速度是多少?

用 x 表示船速, y表示水速, 列出方程:

$$(x + y) \times 30 = 750$$
  $\Rightarrow x=20$   
 $(x - y) \times 50 = 750$   $\Rightarrow y=5$ 

答:船速每小时20千米/小时.

#### 航行问题建立数学模型的基本步骤

- 作出简化假设(船速、水速为常数);
- •用符号表示有关量(x, y表示船速和水速);
- 用物理定律(匀速运动的距离等于速度乘以时间)列出数学式子(二元一次方程);
- 求解得到数学解答(*x*=20, *y*=5);
- •回答原问题(船速每小时20千米/小时)。

# 数学模型 (Mathematical Model)和数学建模 (Mathematical Modeling)

#### 数学模型

对于一个现实对象,为了一个特定目的,根据其内在 规律,作出必要的简化假设,运用适当的数学工具, 得到的一个数学结构。

数学 建模

建立数学模型的全过程(包括表述、求解、解释、检验等)



### 初等数学模型示例

•例1 某人'甲'平时下班总是按预定时间到达某处,然后他妻子开车接他回家。有一天,他比平时提早了三十分钟到达该处,于是此人就沿着妻子来接他的方向步行回去并在途中遇到了妻子,这一天,他比平时提前了十分钟到家,问此人共步行了多长时间?

#### 数学建模的具体应用



#### 例2 椅子能在不平的地面上放稳吗?

#### 问题分析

通常:三只脚着地 放稳:四只脚着地

模 脚连线呈正方形; 型

- 四条腿一样长,椅脚与地面是点接触,四 脚连线呈正方形;
- 地面高度连续变化,可视为数学上的连续曲面;
- 地面相对平坦,使椅子在任意位置至少三 只脚同时着地。

#### 模型构成

用数学语言把椅子位置和四只脚着地的关系表示出来

• 椅子位置 利用正方形(椅脚连线)的对称性

用 $\theta$ (对角线与x轴的夹角)表示椅子位置

· 四只脚着地 椅脚与地面距离为零

距离是的函数

四个距离(四只脚)

正方形对称性

两个距离



A,C 两脚与地面距离之和:  $f(\theta)$ 

B,D 两脚与地面距离之和:  $g(\theta)$ 

正方形ABCD 绕O点旋转

#### 模型构成

用数学语言把椅子位置和四只脚着地的关系表示出来

地面为连续曲面

 $\Rightarrow$   $f(\theta)$ ,  $g(\theta)$ 是连续函数.

椅子在任意位置 至少三只脚着地 对任意 $\theta$ ,  $f(\theta)$ ,  $g(\theta)$ 至少一个为0.

数学问题

已知:  $f(\theta)$ ,  $g(\theta)$ 是连续函数;

对任意 $\theta$ ,  $f(\theta) \cdot g(\theta) = 0$ ;

且 g(0)=0, f(0)>0.

证明: 存在 $\theta_0$ , 使 $f(\theta_0) = g(\theta_0) = 0$ .

#### 模型求解



#### 给出一种简单、粗糙的证明方法

将椅子旋转90°,对角线AC和BD互换。

由g(0)=0, f(0)>0, 知 $f(\pi/2)=0$ ,  $g(\pi/2)>0$ .

 $\diamondsuit h(\theta) = f(\theta) - g(\theta)$ , 则 h(0) > 0和  $h(\pi/2) < 0$ .

由 f, g的连续性知 h为连续函数,据连续函数的基本性质,必存在 $\theta_0$ ,使

 $h(\theta_0)=0, \ \mathbb{P}f(\theta_0)=g(\theta_0).$ 

因为 $f(\theta) \cdot g(\theta) = 0$ , 所以 $f(\theta_0) = g(\theta_0) = 0$ .

评注和思考: 建模的关键:  $\theta$ 和  $f(\theta)$ ,  $g(\theta)$ 的确定

假设条件的本质与非本质 考察四脚呈长方形的椅子

#### 1.3 数学建模的基本方法

•机理分析

根据对客观事物特性的认识,找出反映内部机理的数量规律.

•测试分析

将对象看作"黑箱",通过对量测数据的统计分析,找出与数据拟合最好的模型.

•二者结合

用机理分析建立模型结构,用测试分析确定模型参数.

机理分析没有统一的方法,主要通过实例研究 (Case Studies)来学习。以下建模主要指机理分析。

#### 数学建模的一般步骤

模型 求解

各种数学方法、软件和计算机技术

模型 分析 如结果的误差分析、统计分析、模型对数据的稳定性分析

模型 检验 与实际现象、数据比较, 检验模型的合理性、适用性

模型应用

### 数学模型的分类

| 分类标准               | 具体类别                            |
|--------------------|---------------------------------|
| 对某个实际问题<br>了解的深入程度 | 白箱模型、灰箱模型、黑箱模型                  |
| 模型中变量的特征           | 连续型模型、离散型模型或确定性 模型、随机型模型等       |
| 建模中所用的数 学方法        | 初等模型、微分方程模型、差分方<br>程模型、优化模型等    |
| 研究课题的实际<br>范畴      | 人口模型、生 态系统模型、交通流模型、经 济模型、 基因模型等 |

## 小结

- ▶ 模型的概念、分类
- > 数学建模的主要步骤
- 数学建模需要使用抽象的数学符号来表达思路
- 建模需要灵活的思维

#### 例4 商人们怎样安全过河

#### 问题(智力游戏)

随从们密约,在河的任一 岸,一旦随从的人数比商 人多,就杀人越货.

但是乘船渡河的方案由商人决定. 商人们怎样才能安全过河?

问题分析

多步决策过程

△△△ 3名商人

小船(至多2人)

泂

××× **3**名随 从

决策:每一步(此岸到彼岸或彼岸到此岸)船上的人员

要求: 在安全的前提下(两岸的随从数不比商人多), 经有

限步使全体人员过河.

#### 模型构成

 $X_k$ :第k次渡河前此岸的商人数

 $Y_k$ :第k次渡河前此岸的随从数

 $x_k, y_k=0,1,2,3;$ 

*k*=1,2,...

S:允许状态集合

 $S=\{(x, y)| x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2\}$ 

 $U_{k}$ :第k次渡船上的商人数

 $S_{k}=(X_{k},Y_{k})$ :过程的状态

 $u_k$ ,  $v_k$ =0,1,2;

 $V_{k}$ :第k次渡船上的随从数

*k*=1,2,...

**d<sub>k</sub>=(u<sub>k</sub>, v<sub>k</sub>):决策** D={(u, v)| u+v=1, 2}:允许决策集合

 $s_{k+1} = s_k + (-1)^k d_k$ 

:状态转移律

多步决策 问题

求 $d_k$ ∈D(k=1,2,...n), 使 $s_k$ ∈S, 并按 转移律由  $s_1=(3,3)$ 到达  $s_{n+1}=(0,0)$ .

#### 模型求解

- 穷举法:编程上机
- 图解法:

状态 s=(x,y):16个格点

允许状态:10个点

允许决策:移动1或2格;

k奇,左下移; k偶,右上移.

 $d_{1,...,}d_{11}$ 给出安全渡河方案

评注和思考

规格化方法, 易于推广

S={(x, y)| x=0, y=0,1,2,3;x=3, y=0,1,2,3; x=y=1,2}



考虑选择题,编程思路

#### 本讲作业

- 1. 怎样解决下面的实际问题。包括需要哪些数据 资料,要做些什么观察、试验以及建立什么样 的数学模型等:
  - (1) 估计一个人体内血液的总量;
  - (2) 估计一批日光灯管的寿命。
- 2. 在"椅子能在不平的地面上放稳吗"的假设条件中,将四脚的连线呈正方形改为长方形,其余不变。试构造模型并求解。
- 3. 选做:编程解决商人过河问题。