GUJCET-MG-2023

પ્રશ્ન પુસ્તિકાનો નંબર:

1800571

પ્રક્ષ પુસ્તિકાનો સેટ નંબર:

18

આ પુસ્તિકાના કુલ 16 પાના છે.

જ્યાં સુધી આ પ્રશ્ન પુસ્તિકા ખોલવાની સૂચના ન મળે ત્યાં સુધી ખોલવી નહીં.

મહત્ત્વની સૂચનાઓ :

- 1) આ પ્રશ્નપુસ્તિકામાં ગણિતના કુલ 40 બહુવિકલ્પીય પ્રશ્નો આપેલા છે. પ્રત્યેક પ્રશ્નનો **1** ગુણ છે. **1** સાચા પ્રત્યુત્તરનો **1** ગુણ મળશે. પ્રત્યેક ખોટા પ્રત્યુત્તર માટે ¼ ગુણ કાપવામાં આવશે. વધુમાં વધુ **40** ગુણ પ્રાપ્ત થઇ શકશે.
- 2) આ કસોટી 1 ક્લાકની રહેશે.
- 3) પ્રશ્નના પ્રત્યુત્તર માટે આપવામાં આવેલ OMR ઉત્તર પત્રિકામાં પ્રત્યુત્તર માટેની નિયત જગ્યામાં કક્ત કાળી શાહીવાળી બોલપેન વડે '●' જ કરવું.
- 4) રફ કામ કરવા માટે પ્રશ્ન પુસ્તિકામાં દરેક પાના ઉપર નિયત જગ્યા આપવામાં આવેલી છે. તે જ જગ્યામાં રફ કામ કરવું.
- 5) આ વિષયની કસોટી પૂર્ણ થયા બાદ ઉમેદવારે તેમની ઉત્તર પત્રિકા ખંડ નિરીક્ષકને કરજીયાત સોંપવાની રહેશે. ઉમેદવાર કસોટી પૂર્ણ થયા બાદ પ્રશ્ન પુસ્તિકા તેમની સાથે લઈ જઈ શકાશે.
- 6) આ પ્રશ્નપુસ્તિકાનો સેટ નંબર 18 છે. પ્રશ્ન પુસ્તિકાનો પ્રકાર અને તમોને આપવામાં આવેલી ઉત્તર પત્રિકાનો પ્રકાર સરખા જ હોવા જોઈએ. આ અંગે કોઈ ફેરફાર હોય તો નિરીક્ષકનું તાત્કાલિક ધ્યાન દોરવું, જેથી પ્રશ્ન પુસ્તિકા અને ઉત્તર પત્રિકા સરખા પ્રકાર ધરાવતી આપી શકાય.
- 7) ઉમેદવારે ઉત્તર પત્રિકામાં ગળ ન પડે, લીટા ન પડે, તે રીતે સાચવીને ઉત્તરો આપવાં.
- 8) પ્રશ્ન પુસ્તિકા અને ઉત્તર પત્રિકામાં નિયત કરેલ જગ્યા સિવાય ઉમેદવારે તેમને ફાળવેલ બેઠક નંબર લખવો નહિ કે અન્ય કોઈ જગ્યાએ ઓળખ થાય તેવી નિશાની / ચિન્હો કરવા નહીં. આવું કરનાર ઉમેદવાર સામે ગેરરીતિનો કેસ નોંધવામાં આવશે.
- 9) વ્હાઈટ ઈંક લગાડવા માટે પરવાનગી <mark>નથી.</mark>
- 10) દરેક ઉમેદવારે પરીક્ષા ખંડમાં પ્રવેશ માટે ખંડ નિરીક્ષકને પ્રવેશપત્ર બતાવવું જરૂરી છે.
- 11) કોઈ પણ ઉમેદવારને અપવાદ રૂપ સંજોગો સિવાય પરીક્ષાખંડ છોડવાની પરવાનગી મળશે નહીં. આ અંગેની પરવાનગી ખંડ નિરીક્ષક–સ્થળ સંચાલક સંજોગો ધ્યાને લઈને આપશે.
- 12) ઉમેદવાર કક્ત સાદું ગણનયંત્ર વાપરી શકશે.
- 13) દરેક ઉમેદવારે પરીક્ષાખંડ છોડ્યા પહેલા ઉત્તર પત્રિકા ખંડ નિરીક્ષકને સોંપી ઉત્તર પત્રિકા પરત કર્યા બદલની સહી પત્રક-01 (હાજરી પત્રક) માં કરવાની રહેશે. જો ઉમેદવારે ઉત્તર પત્રિકા આપ્યા બદલની સહી પત્રક-01 માં કરેલ નહિ હોય, તો ઉત્તર પત્રિકા આપેલ નથી તેમ માનીને ગેર રીતિનો કેસ નોંધવામાં આવશે.
- 14) દરેક ઉમેદવારે પરીક્ષા માટેના બોર્ડ દ્વારા બહાર પાડેલ નિયમો અને બોર્ડના નીતિ નિયમોનું ચુસ્તપણે પાલન કરવાનું રહેશે. દરેક પ્રકારના ગેરરીતિના કેસોમાં બોર્ડના નિયમો લાગુ પડશે.
- 15) કોઈ પણ સંજોગોમાં પ્રશ્ન પુસ્તિકા-ઉત્તર પુસ્તિકાનો કોઈ ભાગ જુદો પાડવો નહીં.
- 16) ઉમેદવારે સહી પત્રક-01 (હાજરી પત્રક) અને પ્રવેશપત્રમાં પ્રશ્ન પુસ્તિકા અને ઉત્તર પુસ્તિકા ઉપર છાપેલ સેટ નંબર લખવાનો રહેશે.

ઉમેદવારનું નામ		
પરીક્ષા બેઠક નંબર:(અંકમાં)	(શબ્દોમાં) E. <i>દ</i>	
પરીક્ષા કેન્દ્રનું નામ :	્રપરીક્ષા કેન્દ્ર ક્રમાંક.:	
પશ્ચ પુસ્તિકાનો સેટ નંબર. :	પ્રશ્ન પુસ્તિકાનો નંબર. :	
3	<u> </u>	

Candidate's Sign. ...

. Block Supervisor Sign.

MATHEMATICS

1) જો
$$A = [1 \ 2]$$
 તથા $B = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ હોય તો, $(BA)' = -$

(B)
$$\begin{bmatrix} 3 & 6 \\ 4 & 8 \end{bmatrix}$$

(C)
$$\begin{bmatrix} 4 & 8 \\ 6 & 3 \end{bmatrix}$$

$$(D) \begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix}$$

(B)
$$-5 I$$

3)
$$\begin{vmatrix} \sin \frac{11\pi}{36} & \cos \frac{11\pi}{36} \\ \sin \frac{2\pi}{9} & \cos \frac{2\pi}{9} \end{vmatrix} = \underline{\hspace{1cm}}$$

(A)
$$\sin \frac{7\pi}{12}$$

(B)
$$\cos \frac{\pi}{12}$$

$$(e)$$
 $\cos \frac{5\pi}{12}$

(D)
$$\sin \frac{2\pi}{9}$$

(રફ કામ)

4) જો A(K, 1), B(2, 4), C(1, 1) શિરોબિંદુ વાળા ΔABC નું ક્ષેત્રફળ 6 એકમ હોય તો K =

(A) 5 અને 3

(B) -5 અને 3

(C) 3 અને -1

(D) 5 અને -3

5)
$$\left\{\frac{d}{dx}\left(x^{x}+x^{x+1}+x^{x+2}\right)\right\}_{x=\epsilon}=\underline{\qquad}.$$

(A) $e^{e} (1 + 4e + 2e^{2})$

(B) $e^{e} (1 + e^{2} + 2e)$

(C) $e^{e}(2e^{2}+4e+3)$

(D) $e^{e}(3e^{2}+2e+2)$

6) જો
$$x = a \cos \theta$$
, $y = a \sin \theta$ હોય તો, $\frac{d^2y}{dx^2} =$ (જ્યાં, $a \neq 0$, $\theta \neq k\pi$, $k \in \mathbb{Z}$)

(A) $-\frac{1}{a}\csc^3\theta$

(B) $-\frac{1}{a}\csc^2\theta\sec\theta$

(C) cosec²θ

 $\mathcal{D} \frac{1}{a} \cot^3 \theta$

(२६ डाभ)

(A)
$$\frac{1}{(2y+1)\sqrt{1-x^2}}$$

(B)
$$\frac{1}{(2y-1)\sqrt{1-x^2}}$$

(C)
$$\frac{1}{(2y-1)\sqrt{x^2-1}}$$

(D)
$$\frac{1}{(1-2y)\sqrt{1-x^2}}$$

8) જો $f(x) = x + x^{-1}$; $x \in [1, 3]$ તો મધ્યકમાન પ્રમેયની મદદથી C ની કિંમત _____ થાય.

(A)
$$\sqrt{5}$$

$$\sqrt{B}$$
) $\sqrt{3}$

(C)
$$\sqrt{2}$$

9) r ત્રિજયાવાળા ગોલકના ઘનફળનો તેના વ્યાસની સાપેક્ષ વૃધ્ધિદર

(A)
$$8\pi r^2$$

$$(B) 4\pi r^2$$

(C)
$$\frac{2}{3}\pi r^2$$

(D)
$$2\pi r^2$$

10) નીચેના પૈકી કયું વિધેય $\left(0,\frac{\pi}{8}\right)$ માં ઘટતું વિધેય છે?

(A) $\tan 4x$

(B) $\sin x$

 $(e) \cos 4x$

(D) $-\cos x$

(२६ ५१भ)

11) (81.5)^¼ નું આસન્ન મૂલ્ય _____ છે.

(A) 3.0465

(B) 3.0436

(C) 3.0046

(D) 3.0033

12) વક $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 2$ ના બિંદુ (1, 1) આગળ અભિલંબનું સમીકરણ ______ છે.

(A) x-y=0

(B) 2x-y-1=0

(C) x + y = 0

(D) x+y-2=0

13) $c_{i} \int \left\{ \cos^{-1} x - (1-x^{2})^{-\frac{1}{2}} \right\} K dx = K \cdot \cos^{-1} x + C \text{ fil } K = \underline{\hspace{1cm}}$

 $(A) e^{\cos^{-1}x}$

(B) e^x

(C) e^{-x}

(D) $-e^{x}$

14) $\int \frac{\tan x}{\cos x (\sec x - 1)(\sec x - 2)} dx = \underline{\qquad} + C$

- (A) $\log \frac{\cos x+1}{\cos x-2}$
- (B) $\log \frac{\sec x 2}{\sec x 1}$
- (C) $\log \frac{\csc x + 2}{\csc x 1}$
- (D) $\log \frac{\sec x + 2}{\sec x 1}$

(રફ કામ)

15)
$$\int x^{2019} \cdot e^{x^{2020}} dx = \underline{\qquad} + C.$$

(A)
$$\frac{1}{2020}e^{x^{2020}}$$

(B)
$$\frac{1}{2019}e^{x^{2019}}$$

(C)
$$e^{x^{2020}}$$

(B)
$$\frac{1}{2019}e^{x^{201}}$$
(D) $\frac{1}{2020}e^{x^{201}}$

16)
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{1}} \frac{1}{1+\tan^4 x} dx = \underline{\qquad}.$$

(A)
$$\pi/6$$

$$\mathbb{B}$$
 $\frac{\pi}{12}$

(C)
$$\pi/2$$

(D)
$$\pi/4$$

17)
$$\int_{0}^{1} (0.001)^{\frac{x}{3}} \cdot e^{x} dx = \underline{\hspace{1cm}}$$

(A)
$$\frac{e-10}{10(1+\log_{10}e)}$$

(B)
$$\frac{10-10e}{(1+\log_e 10)}$$

(C)
$$\frac{e-10}{10(1-\log_e 10)}$$

$$(D) \quad \frac{10-e}{e(1-\log_e 10)}$$

18)	ઉપવ	સય 9x² + '	4y² = 1 થી પ્રથમ ચ	_{રણમાં} આવૃત્ત પ્ર	ાદેશનું ક્ષેત્રફળ	١	થાય.	
	(A)			(B)	π/6			
	(C)	$3\pi/2$	e v	(D)	$\frac{\pi}{24}$			
19)	રેખા	y=3-x	X- અક્ષ અને રેખા ^અ	0 x = 2, x = 5	વડે આવૃત્ત પ્રં	દેશનું ક્ષેત્રફળ		_ છે.
	(A)	$\frac{3}{2}$		(B)	3			
	(C)	5/2		(D)	1/2	9		
20)	પરવ	તલય <i>y</i> = <i>x</i>	. ² અને રેખાં y = x +	2 વડે આવૃત્ત પ્ર	દેશનું ક્ષેત્રફળ		થાય.	
		1/2		L(B)			ï	
	(C)	5/2		(D)	11/2			
			3			2		
21	į	$\left(\frac{d^3y}{dx^3}\right)^5 =$	$=\sqrt[3]{\left(\frac{d^2y}{dx^2}\right)^4}$ વિકલ _ છે.	સમીકરણની કક્ષ ા	ા અને પરિમ	ાણ અનુક્રમે	· 2 · 1	_ અને
	(3" 2, 12		(B)	2, 16			

For More GUJCET Papers & Material Visit www.VisionPapers.in !!!

(રફ કામ)

22) વિકલ સમીકરણ $\frac{dy}{dx} + y \tan x = \sec x$ નો સંકલ્યકારક અવયવ (I.F.) = _____

(A) $\sec x$

(C) $\cos x$

23) જ્યારે x = 0 હોય ત્યારે y = 1 થાય તે પ્રારંભિક શરત અનુસાર વિકલ સમીકરણ $\frac{dy}{dx} = -4xy^2$ નો વિશિષ્ટ ઉકેલ _____ થાય.

(D) $x = \frac{1}{2v^2 + 1}$

24) કોઈ પણ $\vec{a} \in \mathbb{R}^3$ માટે, $\left| \vec{a} \times \hat{i} \right|^2 + \left| \vec{a} \times \hat{j} \right|^2 + \left| \vec{a} \times \hat{k} \right|^2 = \underline{\hspace{1cm}}$

- (A) $3|\bar{a}|^2$ (B) $2|\bar{a}|^2$
- (C) $|\bar{a}|^2$

25) જો $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ અને $\vec{b} = \hat{i} + 2\hat{j} + 3\hat{k}$ હોય તો $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) =$ _____

(A) -5

(B) 11

(C) 5

(D) -11

26) સિંદિશો \vec{a} અને \vec{b} માટે, $|\vec{a}|=3$, $|\vec{b}|=\frac{\sqrt{2}}{3}$ છે. તથા જો $\vec{a} \times \vec{b}$ એકમ સિંદેશ હોય, તો \vec{a} અને $ec{b}$ વચ્ચેનો ખૂણો _____ છે.

(C) $\frac{\pi}{6}$

27) બિંદુ (5, -2, 4) માંથી પસાર થતી સદિશ $3\hat{i} + 2\hat{j} - 8\hat{k}$ ને સમાંતર રેખાનું કાર્તેઝિય સમીકરણ ____ છે.

(A)
$$\frac{x-3}{5} = \frac{y+2}{-2} = \frac{z+8}{4}$$

(A)
$$\frac{x-3}{5} = \frac{y+2}{-2} = \frac{z+8}{4}$$
 (B) $\frac{x-5}{3} = \frac{y+2}{2} = \frac{z-4}{-8}$

(C)
$$\frac{x-3}{5} = \frac{y-2}{2} = \frac{z+8}{-4}$$

(C)
$$\frac{x-3}{5} = \frac{y-2}{2} = \frac{z+8}{-4}$$
 (D) $\frac{x-5}{3} = \frac{y-2}{2} = \frac{z+4}{-8}$

28) સમતલ x + 2y + 3z = 1 ના X-અક્ષ, Y-અક્ષ અને Z-અક્ષ સાથેના અંત: ખંડ અનુક્રમે a, b અને cહોય તો 2*a* + 4*b* + 3*c* =

(A) 17

(B)_19

(C) 6

(D) 5

1111 十八寸17、3) (25 51刊)

29)	રેખા ખૂણો	r = (−î	+ 3k̂) + છે.	$\lambda(2\hat{i}+3\hat{j}+$	6k̂),λ∈	_R અને સમતલ	10x + 2y - 11z	= 3 વચ્ચેને
	(A)	sin ⁻¹	$(\frac{1}{21})$,	(B)	$\frac{\pi}{2}$	· ·	
`	Let	' sin ⁻¹	(<mark>8/21</mark>)		(D)	$\cos^{-1}\left(\frac{8}{21}\right)$		
30)	સીમિ વિધેય	ાત શક્ય 4 Z = 1	ઉકેલ પ્રદેશ. 0x + 20y	ના શિરોબિંદુઓ (ની મહત્તમ કિંમ	(0, 10), (£	5, 5), (15, 15), (0, 20) હોય ત	ો હેતુલક્ષી
	_(A)	450			(B)	600		
	(C)	400			(D)	550		

31)
$$x+y \ge 8$$
 તથા $x+y \le 5, x \ge 0, y \ge 0$ શરતોને અધીન હેતુલક્ષી વિધેય $z=3x+2y$ નું ન્યૂનતમ મૂલ્ય _____ થાય.

- (A) 15
- (B) 6
- (C) 24
- (Đ) ઉકેલ પ્રદેશ શક્ય નથી. તેથી ઉકેલ ન મળે.

5 W C 5 (રફ કામ)

32)	નિરપેક્ષ ઘટનાઓ A અને B માટે,	$P(A) = P, P(B) = \frac{1}{2}$	અને $P(A \cup B) = \frac{3}{5}$ હોય તો
	P =		

(A)
$$\frac{2}{5}$$

$$(B) \frac{1}{10}$$

(C)
$$\frac{1}{2}$$

(D)
$$\frac{1}{5}$$

33) જો એક સમતોલ સિક્કાને 5 વાર ઉછાળવામાં આવે તો બરાબર ત્રણ વખત છાપ મળે તેની સંભાવના _____ છે.

(A)
$$\frac{5}{32}$$

(B)
$$\frac{5}{16}$$

(D)
$$\frac{3}{32}$$

34) યાદચ્છિક ચલ X નું સંભાવના વિતરણ નીચે મુજબ છે :

X	1	2	3	4	5	6
P(X)	1/6	1/6	1/6	1/6	1/6	1/6

(A)
$$\frac{35}{3}$$

(B)
$$91/6$$

(C)
$$\frac{35}{12}$$

(D)
$$\frac{21}{6}$$

(રફ કાય)

35) ગણ $\{\pi, \pi^2, \pi^3\}$ પર વ્યાખ્યાયિત સંબંધ $R = \{(\pi, \pi), (\pi^2, \pi^2), (\pi^3, \pi^3), (\pi, \pi^2), (\pi^2, \pi^3)\}$ એ

- (A) માત્ર સંમિત અને પરંપરિત સંબંધ છે.
- (B) સ્વવાચક છે, પરંતુ તે સંમિત કે પરંપરિત નથી.
- (C) પરંપરિત છે, પરંતુ તે સ્વવાચક કે સંમિત નથી.
- (D) સંમિત છે, પરંતુ તે સ્વવાચક કે પરંપરિત નથી.

36)
$$\Re m*n=\frac{mn}{2}$$
, $\forall m, n \in Q^+ \operatorname{rel} (4*3)^{-1} = \underline{\hspace{1cm}}$.

- (A) $\frac{2}{3}$
- (C) 2

(D) $\frac{3}{2}$

37)
$$\cos^{-1}\left\{\cot\left(\sum_{i=1}^{3}\cot^{-1}i\right)\right\} =$$

(A) $-\pi/2$

(B) 0

(C) π

1-1-1

(D) $\pi/2$

(રફ કામ

38)
$$\cos(\sec^{-1}2) + \tan(\cot^{-1}\sqrt{3}) + \sin(\csc^{-1}\frac{2}{\sqrt{3}}) =$$

(A)
$$\frac{7-\sqrt{3}}{2\sqrt{3}}$$

(B)
$$\frac{3+\sqrt{3}}{5\sqrt{3}}$$

(C)
$$\frac{5 \div \sqrt{3}}{2\sqrt{3}}$$

(D)
$$\frac{7+\sqrt{3}}{5\sqrt{3}}$$

39)
$$\Re \cos \left(\cos^{-1} \frac{\sqrt{3}}{2} + \sin^{-1} x \right) = 1$$
, $\Re x + \Re x + \Re x = 1$.

(B)
$$-\frac{1}{2}$$

(C)
$$-\sqrt{3}/2$$

$$\sqrt{3}/2$$

40) જો સમીકરણ
$$\begin{bmatrix} x+y & -2 \\ 7+z & x-y \end{bmatrix} = \begin{bmatrix} -7 & -2 \\ 5 & 0 \end{bmatrix}$$
 હોય, તો $2x + 4y + 2z =$ _____.

$$(A) - 14$$

$$(B) - 9$$