Teste Melhor Impressão de Barcharts

José Elvano Moraes

4/15/2021

```
## Rows: 76,344
## Columns: 19
             <fct> "(73,109]", "(37,73]", "(37,73]", "(73,109]", "(37,73]", "(~
## $ IDADE
## $ FEBRE
             <fct> 2, 2, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 1, 2,~
## $ TOSSE
             <fct> 1, 2, 2, 2, 2, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 2, 1,~
             <fct> 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, ~
## $ GARGANTA
## $ DISPNEIA
             <fct> 1, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, ~
## $ DESC_RESP
            <fct> 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1,~
## $ SATURACAO
            <fct> 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1,~
## $ DIARREIA
             <fct> 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2,~
            <fct> 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 1, 2, 1, 2, 2,~
## $ OUTRO SIN
## $ EVOLUCAO
             <fct> 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 1, 1, 2, 1,~
## $ RENAL
             ## $ DIABETES
             <fct> 1, 2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, ~
## $ OBESIDADE
             <fct> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2,
## $ PERD_OLFT
             ## $ PERD PALA
             ## $ CARDIOPATI <fct> 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1,~
## $ SUPORT_VEN <fct> 2, 2, 2, 2, 9, 3, 3, 2, 2, 3, 2, 2, 3, 1, 1, 3, 3, 2, 1, 3,~
## $ ASMA
             ## White list:
##
      from
## [1,] "OBESIDADE"
                "DIABETES"
## [2,] "IDADE"
                "DIABETES"
## [3,] "IDADE"
                "CARDIOPATI"
## [4,] "IDADE"
                "SUPORT VEN"
## [5,] "DIABETES"
                "RENAL"
## [6,] "DIABETES"
                "CARDIOPATI"
## [7,] "RENAL"
                "CARDIOPATI"
```

. . .

Rede de probabilidasdes

Bootstraping

```
boots.trap
str.diff = suppressMessages(boot.strength(s1, R = boots.trap, algorithm = "mmhc"))
cat(paste('Threshold: ', attr(str.diff, "threshold")))
## Threshold: 0.5
avg.diff = averaged.network(str.diff)
strength.plot(avg.diff, str.diff, shape = "rectangle", main = paste("Iterações = ", boots.trap))
                              Iterações = 100
                                                    FEBRE
                                              GARGANTA
                                          DESC RESP
                                                                    PERD_OLFT
                                 TOSSE
       RENAL
                                                        DIARREIA
                                                                    PERD_PALA
               DIABETES
                                           DISPNEIA
                                                      OUTRO_SIN
 ASMA
              CARDIOPATI
                                 SATURACAO
                                 SUPORT_VEN
                       IDADE
```

How can we compare the averaged network (avg.diff) with the network we originally learned in from all the data? The most qualitative way is to plot the two networks side by side, with the nodes in the same positions, and highlight the arcs that appear in one network and not in the other, or that appear with different directions.

EVOLUCAO

OBESIDADE

```
par(mfrow = c(1, 2))
graphviz.compare(avg.diff, bn1, shape = "rectangle", main = c("DAG médio", "DAG único"))
```


It is also a good idea to look at the threshold with respect to the distribution of the arc strengths

```
plot(str.diff)
abline(v = 0.75, col = "tomato", lty = 2, lwd = 2)
abline(v = 0.85, col = "steelblue", lty = 2, lwd = 2)
```

threshold = 0.5

The simpler network we obtain by setting threshold = 0.8 in averaged.network() is shown below; it is certainly easier to reason with from a qualitative point of view.

```
par(mfrow = c(1, 2))
avg.simpler = averaged.network(str.diff, threshold = 0.75)
strength.plot(avg.diff, str.diff, shape = "rectangle", main = paste("Iterações = ", boots.trap, " Thr = strength.plot(avg.simpler, str.diff, shape = "rectangle", main = 'Iterações = 200. Simplificado. Thr = "
```

Iterações = 100 Thr = 0.5 Iterações = 200. Simplificado. Thr = 0.7

