CHAPTER 1 事件与概率

ZEYU XIE^1

1. 概率空间

1.1. **代数**、 σ **代数**、**单调类**、 π **类**、 λ **类**. 设 φ 为空间 Ω 的子集组成的非空类

Definition 1 (代数和 σ 代数). 对有限交、取余封闭,则称 φ 为 Ω 上的代数 若 φ 对无限交、取余封闭,则称 φ 为 Ω 上的 σ 代数

Definition 2 (单调类). 若 φ 对单调极限封闭,则称 φ 为 Ω 上的单调类

Definition 3 (π 类). 若 φ 对有限交封闭,则称 φ 为 Ω 上的 π 类

Definition 4 $(\lambda \, \not)$. 若 φ 对真差运算、上极限封闭,则称 φ 为 Ω 上的 $\lambda \, \not\in$ 代数、 σ 代数、单调类、 π 类、 λ 类之间有如下性质

Proposition 1. (a) σ 代数 \Rightarrow 代数 \Rightarrow 单调类

- (b) 代数 and 单调类 $\Rightarrow \sigma$ 代数
- (c) π 类 and λ 类 \Rightarrow σ 代数

以及如下的单调类定理

Proposition 2 (单调类定理). ¹

- (a) 若 φ 为一代数,则 $m(\varphi) = \sigma(\varphi)$
- (b) 若 φ 为一 π 类,则 $\lambda(\varphi) = \sigma(\varphi)$

以及如下的另一个定理

Proposition 3. 设 φ 和 \mathcal{F} 为 ω 中的两个集类, $\varphi \subset \mathcal{F}$

- (a) 若 φ 为代数而 F 为单调类 \Rightarrow $\sigma(\varphi) ⊆ F$
- (b) 若 φ 为 π 类而 \mathcal{F} 为 λ 类 ⇒ $\sigma(\varphi)$ ⊆ \mathcal{F}

E-mail address: xie.zeyu20@gmail.com.

Date: 2024 年 4 月 6 日.

¹ Department of Mathematics, Tsinghua University, Beijing, China.

 $^{^1}m(\varphi)$ 、 $\sigma(\varphi)$ 、 $\lambda(\varphi)$ 分别表示 φ 生成的最小单调类、最小 σ 代数、最小 λ 类

1.2. 概率空间.

Definition 5 (概率空间). 设 Ω 为样本空间, F 为 Ω 上的 σ 代数, P 为定义在 F 上的函数, 若满足

- (a) $P(A) \ge 0, \forall A \in \mathcal{F}$
- (b) $P(\Omega) = 1$
- (c) 若 $A_1, A_2, \ldots \in \mathcal{F}$ 两两互斥,则 $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$

则称 (Ω, \mathcal{F}, P) 为概率空间

1.3. 条件概率.

Definition 6 (条件概率). 设 (Ω, \mathcal{F}, P) 为概率空间, $B \in \mathcal{F}$ 且 P(B) > 0,则对任意 $A \in \mathcal{F}$,定义

$$P(A|B) = \frac{P(AB)}{P(B)}$$

为在事件 B 发生的条件下事件 A 发生的条件概率

条件概率有以下基本性质

Proposition 4. 设 (Ω, \mathcal{F}, P) 为概率空间, $B \in \mathcal{F}$ 且 P(B) > 0, 则

- (a) 乘法定理: $P(A_1A_2\cdots A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1A_2)\cdots P(A_n|A_1A_2\cdots A_{n-1})$
- (b) 全概率公式: $P(A) = \sum_{i} P(A|B_i)P(B_i)$, 其中 $\{B_i\}$ 为 Ω 的一个分割
- (c) 贝叶斯公式: $P(B_k|A) = \frac{P(A|B_k)P(B_k)}{\sum_i P(A|B_i)P(B_i)}$, 其中 $\{B_i\}$ 为 Ω 的一个分割

可通过如下的例子来理解条件概率

Example 1: 某病误诊率为 5%, 记 $A = \{ \text{验血为阳性} \}, B = \{ \text{患病} \}, \text{则 } P(\overline{A}|B) = 0.95, \ P(A|\overline{B}) = 5\%, \text{ 若患病率 } 0.5\%, \ \text{即 } P(B) = 0.005, \ \text{求 } P(B|A)$

Solution 1: 由贝叶斯公式

$$P(B|A) = \frac{P(A|B)P(B)}{P(A|B)P(B) + P(A|\overline{B})P(\overline{B})} = \frac{0.95 \times 0.005}{0.95 \times 0.005 + 0.05 \times 0.995} \approx 0.087$$

也就是说,验血为阳性的人中,患病的概率为8.7%

1.4. 独立性.

Definition 7 (独立性). 两个事件: $A \to B$ 独立可用下式表示

(1) 独立
$$\Leftrightarrow P(AB) = P(A)P(B) \Leftrightarrow P(A|B) = P(A) \Leftrightarrow P(B|A) = P(B)$$

有限多个事件: n 个事件 A_1, A_2, \ldots, A_n 独立可用下式表示² (2)

独立
$$\Leftrightarrow \forall i_1, i_2, \dots, i_k \in \{1, 2, \dots, n\}, P(A_{i_1}A_{i_2}\cdots A_{i_k}) = P(A_{i_1})P(A_{i_2})\cdots P(A_{i_k})$$

无限多个事件: 设 $\{A_t\} \subseteq \mathcal{F}$, 其中 $t \in T$, 则定义 $\{A_t\}$ 独立为

(3) 独立
$$\Leftrightarrow \forall n \in \mathbb{N}, \forall t_1, t_2, \dots, t_n \in T, A_{t_1}A_{t_2} \cdots A_{t_n}$$
 独立

独立事件有如下性质

Proposition 5. 设 n 个事件 $A_1, A_2, ..., A_n$ 独立,则

$$(4) P(A_1 A_2 \cdots A_n) = P(A_1) P(A_2) \cdots P(A_n)$$

从而进一步有

(5)
$$P(\bigcup_{i=1}^{n} A_i) = 1 - \prod_{i=1}^{n} (1 - P(A_i))$$

References

 $[\]frac{1}{2}$ 共有 $2^n - n - 1$ 个式子