Hilary M. Hurst, Ph.D.

Department of Physics & Astronomy San José State University One Washington Square San José, CA 95192 U.S.A.

Office Phone: 408-924-5284 Cell Phone: 970-371-9286 Email: hilary.hurst@sjsu.edu Website: hhurst.github.io

CURRENT POSITION

Assistant Professor, Department of Physics & Astronomy, San José State University, San José, California

AREAS OF SPECIALIZATION

Physics; quantum information science: many-body quantum systems, quantum feed-back control, weak measurement, cold atomic gases, spin-orbit coupling, solitons. Dissertation Title: Dynamics of Topological Defects in Hybrid Quantum Systems Dissertation Advisor: Professor Victor Galitski

APPOINTMENTS HELD

- 2023 *Program Director*, Master of Science in Quantum Technology, San José State University, San José, California
- 2020 Assistant Professor, San José State University, San José, California
- 2018-20 NRC Postdoctoral Fellow, National Institutes of Standards and Technology and Joint Quantum Institute, Gaithersburg, Maryland

EDUCATION

- 2018 PhD, Physics, University of Maryland
- MASt, Applied Mathematics and Theoretical Physics, University of Cambridge BSc, Engineering Physics, Minor: Public Affairs, Colorado School of Mines

GRANTS, HONORS, & AWARDS

- NSF Facilitating Research at Primarily Undergraduate Institutions "RUI: Quantum State Control for Ultracold Atoms", NSF Award No. 2309331 PI: **H. M. Hurst**, \$180,000.
- National Research Traineeship "Collaborative Research: NRT-QL: A Program for Training a Quantum Workforce", NSF Award No. 2125906 PI: **H. M. Hurst**, Co-PI: E.

- Khatami, H. Wong, \$739, 029
- Quantum Leap Challenge Institutes Conceptualization Grant, NSF Award No. 1936835, PI: L. D. Carr, Co-PI: **H. M. Hurst**, T. Lynn, S. Eley, M. Beck, \$150,000
- National Research Council Postdoctoral Fellowship, NIST
- 2017 Outstanding Graduate Assistant, University of Maryland
- National Physical Sciences Consortium Graduate Research Fellowship, NSA/NPSC
- 2012 Physics Faculty Distinguished Graduate Award, Colorado School of Mines
- 2012 President's Senior Scholar-Athlete Award, Colorado School of Mines
- 2012 Summa Cum Laude, Colorado School of Mines
- 2010 Division II All-American, Track and Field, NCAA

PUBLICATIONS & TALKS

Refereed Journal articles

- Yamaguchi, E. P, **Hurst, H. M.**, & Spielman, I. B. (2023). "Feedback cooled Bose-Einstein condensation: near and far from equilibrium." *Physical Review A*, 107, 063306. [4]
- Hurst, H. M. and Flebus, B. (2022). "Non-Hermitian Physics in magnetic systems." Journal of Applied Physics, 132, 220902. [32]
- Gunnink, P. M., Flebus, B., **Hurst, H. M.**, & Duine, R. A. (2022). "Nonlinear dynamics of the non-Hermitian Su-Schrieffer-Heeger model." *Physical Review B*, 105, 104433. [15]
- Asfaw, A., Blais, A., Brown, K. R., Candelaria, J., ...Ho, A. **Hurst, H. M.**, Jacob, Z. ...& Singh, C. (2022). "Building a quantum engineering undergraduate program". *IEEE Transactions on Education*, 65(2), 220-242. [59]
- Hurst, H. M., Guo, S., & Spielman, I. B. (2020). "Feedback Induced Magnetic Phases in Binary Bose-Einstein Condensates." *Physical Review Research*, 2, 043325. [15]
- Flebus, B., Duine, R. A. & **Hurst, H. M.** (2020). "Non-Hermitian topology of one-dimensional spin-torque oscillator arrays." *Physical Review B* 102, 180408(R). [28]
- Hurst, H. M., Galitski, V. & Heikkilä, T. T. (2020). "Electron Induced Massive Dynamics of Magnetic Domain Walls." *Physical Review B*, 101(5), 054407. [12]
- Hurst, H. M. & Spielman, I. B. (2019). "Measurement-induced dynamics and stabilization of spinor-condensate domain walls." *Physical Review A*, 99(5), 053612. [17]
- Shim, Y.-P., Ruskov, R., **Hurst, H. M.**, Tahan, C. (2019). "Induced quantum dot probe for material characterization." *Applied Physics Letters* 114, 152105. [12]
- Hurst, H. M., Efimkin, D. K., Spielman, I. B., & Galitski, V. (2017). "Kinetic theory of dark solitons with tunable friction." *Physical Review A*, 95(5), 053604. [15]
- Aycock, L. M., **Hurst, H. M.**, Efimkin, D. K., Genkina, D., Lu, H. I., Galitski, V., & Spielman, I. B. (2017). "Brownian motion of solitons in a Bose–Einstein condensate." *Proceedings of the National Academy of Sciences*, 114(10), 2503-2508. [58]
- Hurst, H. M., Wilson, J. H., Pixley, J. H., Spielman, I. B., & Natu, S. S. (2016). "Real-space mean-field theory of a spin-1 Bose gas in synthetic dimensions." *Physical Review A*, 94(6), 063613. [15]
- 2016 Hurst, H. M., Efimkin, D. K., & Galitski, V. (2016). "Transport of Dirac electrons

- in a random magnetic field in topological heterostructures." *Physical Review B*, 93(24), 245111. [4]
- Hurst, H. M., Efimkin, D. K., Zang, J., & Galitski, V. (2015). "Charged skyrmions on the surface of a topological insulator." *Physical Review B*, 91(6), 060401(R). [45]
 - *[-] Indicates number of citations on Google Scholar

Preprints

Shivam Kamboj, Rembert A. Duine, Benedetta Flebus, and **Hilary M. Hurst** (2023). "Oscillatory Edge Modes in Two Dimensional Spin-Torque Oscillator Arrays" arXiv:2307.13876

In press at Physical Review B.

Non-Refereed Articles

- Hurst, H. M. (2015). "Women in Physics Hosts Career Panel." APS Gazette, 34(2), 3.
- Hurst, H. M. (2013). "New Perspectives on the Aharonov-Bohm Effect." *Part III Essay*. University of Cambridge.

Invited Presentations (Selected)

- 2023 Quantum State Engineering through Weak Measurement, Louisiana State University Department of Physics Colloquium. Baton Rouge, LA.
- 2023 Quantum Education in the California State University: Launching a Master's Program at San José State University, NSF Workshop: Supporting Minority Serving Institutions in the Creation of a Diverse, Quantum-Ready Workforce. Washington, DC.
- 2023 Quantum State Engineering through Weak Measurement, ASME/Caltech Quantum Engineering Workshop (Virtual).
- 2023 Quantum State Engineering through Weak Measurement, Colorado School of Mines Physics Colloquium, Golden, CO.
- Exploring Non-Hermitian Topology with Spin Torque Oscillator Arrays, UC Santa Cruz Condensed Matter Seminar, Santa Cruz, CA.
- 2021 Quantum Control with Spinor Bose-Einstein Condensates, University of Oklahoma Center for Quantum Research & Technology Seminar. (Virtual)
- Transport signatures of Dirac states in topological insulator ferromagnet heterostructures, KITP Seminar, Santa Barbara, CA.
- What can weak measurements tell us about Bose-Einstein condensates?, APS Mid-Atlantic Section Meeting, College Park, MD.
- Understanding dissipative dynamics of dark solitons: results from experiment and theory, Gordon Research Seminar. Salve Regina University, Newport, RI.
- 2015 Charged skyrmions on the surface of a topological insulator, Workshop on Topological Spintronics and Skyrmionics. Institut Néel, Grenoble, France.

Contributed Presentations (Selected)

- Fermionic State Engineering Through Weak Measurement, APS DAMOP Division Meeting. Spokane, WA.
- Exploring Non-Hermitian Topology with Spin Torque Oscillator Arrays, APS March Meeting Chicago, IL.
- 2020 Quantum Control with Spinor Bose-Einstein Condensates, APS DAMOP (Online).
- Measurement induced dynamics and defect stabilization in spinor condensates, APS March Meeting. Boston, MA.
- Magnetic phases in a spinor Bose-Einstein condensate subject to weak measurement, APS DAMOP Division Meeting. Ft. Lauderdale, FL.
- 2017 Controllable friction of dark solitons in Bose-Fermi mixtures, APS March Meeting. New Orleans, LA.
- Transport signatures of Dirac electrons in a random magnetic field, APS March Meeting. Baltimore, MD.

CONFERENCE & WORKSHOP ATTENDANCE (Selected)

- 2023 June APS DAMOP Division Meeting, Spokane, WA.
- 2023 Feb Quantum Simulation with Quantum Hardware, Aspen Center for Physics, Aspen, CO.
- 2022 Jun Real-World Quantum Computing with QuDIT at LLNL (Organizer), Livermore, CA.
- 2022 Mar APS March Meeting, Chicago, IL.
- 2021 Jun Quantum Undergraduate Education & Scientific Training Workshop, Virtual, Hosted by CSU San Marcos.
- 2021 Feb NSF Workshop on Quantum Engineering Education, Virtual, NSF.
- 2021 Jan AIP TEAM-UP Implementation Workshop, Virtual, Hosted by AIP.
- 2020 Dec National Quantum Initiative Community Meeting, Virtual, Hosted by DOE, NSF, & NIST.
- 2020 Feb Open Quantum Frontiers Institute Workshop, Golden, CO.
- 2019 Nov KITP Program: Spin and Heat Transport in Quantum and Topological Materials, Santa Barbara, CA.
- 2019 Apr KITP Program: Open Quantum System Dynamics; Quantum Simulators and Simulations Far From Equilibrium, Santa Barbara, CA.
- 2018 May APS DAMOP Division Meeting, Ft. Lauderdale, FL.
- 2017 June NYU Center for Quantum Phenomena Inaugural Symposium, New York, NY.
- 2017 May SPICE Workshop: Non-Equilibrium Quantum Matter, Mainz, Germany.
- 2016 Oct KITP Program: Synthetic Quantum Matter, Santa Barbara, CA.
- 2015 Oct Workshop on Topological Spintronics and Skyrmionics, Grenoble, France.
- 2015 Aug Cargése Summer School: Strongly Correlated Materials with Spin-Orbit Coupling, Corsica, France.

TEACHING

	San José State University
2024 Sp	General Physics II: Electricity & Magnetism (PHYS 50) - Primary Instructor
2024 Sp 2023 Fall	Fundamentals of Quantum Information (PHYS 161) - Primary Instructor
2023 Fall	Invitation to Physics & Astronomy (PHYS 20) - Primary Instructor
=	
2023 Sp	General Physics II: Electricity & Magnetism (PHYS 50) - Primary Instructor
2023 Sp	Computational Physics (PHYS 240) - Primary Instructor
2022 Fall	Quantum Mechanics (PHYS 163) - Primary Instructor
2022 Fall	Invitation to Physics & Astronomy (PHYS 20) - Primary Instructor
2022 Fall	General Physics - Mechanics (PHYS 50) - Lab Instructor
2022 Sp	Topics in Physics & Astronomy (PHYS 155): Fundamentals of Quantum Information Primary Instructor
2021 Sp	Waves & Oscillations (PHYS 107) - Primary Instructor
2020 Fall	Quantum Mechanics (PHYS 163) - Primary Instructor
2020 Fall	General Physics - Mechanics (PHYS 50) - Lab Instructor
	University of Maryland, College Park
2017 Sp	Non-relativistic Quantum Field Theory (PHYS625) - Guest Lecturer (2 lectures)
2013 Fall	Physics for Biologists 1 (PHYS131) - Teaching Assistant
	Colorado School of Mines
2012 Sp	Physics II: Electromagnetism and Optics (PHGN200) - Lead Teaching Assistant
2009 Fall - 2011 Fall	Physics II: Electromagnetism and Optics (PHGN200) - Teaching Assistant
2009 Sp - 2009 Fall	Physics I: Mechanics (PHGN100) - Teaching Assistant
ŕ	RESEARCH
2020-	Principal Investigator, Quantum Control in Atomic, Molecular, & Optical and Con
	densed Matter Systems, SJSU
	Creation and manipulation of novel many-body phases using measurement and feed
	back control for ultracold atomic systems optical lattices. Theoretical modeling o
	quantum control and quantum sensing protocols in a variety of environments. Quan
	tum simulation with superconducting qubit arrays.
2018-20	Postdoctoral Researcher, Spielman Research Group, NIST/JQI
	Weak measurement of many-body systems including numerical modeling of phase con
	trast imaging in spinor Bose-Einstein condensates. Creation and manipulation of nove
	many-body phases using measurement and feedback control.
2014-17	Research Assistant, Galitski Group
2014 1/	Condensed matter theory including spin-orbit coupling in atomic gases, topological in
	sulators (TI) and interplay of TI surface states and unconventional magnetic textures
	such as skyrmions and magnetic vortices. Combination of analytical an numerical tech
	niques including scattering theory, non-relativistic quantum field theory and simula
	tions of Gross-Pitzevskii equations for Rose-Finstein condensates

2016 Su Research Intern, Laboratory for Physical Sciences

Noninvasive spectroscopy of Si/SiGe quantum wells. Development of new ways to measure valley splitting in Si/SiGe quantum wells using longitudinal coupling. Valley splitting determines the effectiveness of a Si/SiGe quantum well as a spin qubit.

Senior Design Project, Colorado School of Mines 2012 Sp

> Exploited the entanglement properties of quantum dots to perform simple logic functions. Computational quantum simulations in Mathematica were used to design a quantum dot molecule for uses in quantum computing.

Undergraduate Research Intern, Colorado Nanofabrication Lab 2011 Su

Fabrication and testing of GaAsBi/GaAs heterojunction bipolar transistors including photoresist spinning, etching, 4-point resistance measurements and e-beam lithography.

SERVICE

9 (() 17 . . .

	San José State University
2023-	Member, Curriculum Committee, SJSU College of Science
2023-	Program Director, SJSU Master of Science in Quantum Technology
2022-	Chair, Curriculum Committee, SJSU Physics & Astronomy Department
2022-	Member, Program Planning Committee, SJSU Physics & Astronomy Department
2020-	Reviewer: Physical Review A, Physical Review Letters, Physical Review Research
2020-	Member, Scholarship Committee, SJSU Physics & Astronomy Department
2020-23	Member, Anti-Racism Committee, SJSU Physics & Astronomy Department
2020-21	Member, Organizing Committee, NSF Quantum Education Workshop
	University of Maryland, College Park

Reviewer: Scientific Reports, Annals of Physics

Physics Department Representative, UMD Graduate Student Government 2015-17

Reviewer, New Journal of Physics 2016 -18

OTHER PROFESSIONAL QUALIFICATIONS

University Teaching and Learning Program Completion: Associate Level, Teaching and Learn-2017

ing Transformation Center, University of Maryland

2016-18 TS/SCI Cleared. Most recent polygraph: February 25, 2016.

Programming Experience

Most experience with Python, Mathematica, and Julia Some experience with MATLAB and Bash shell scripting

MEMBERSHIPS

2009-

American Physical Society

2010 Sigma Pi Sigma (Physics Honor Society), year inducted.

Tau Beta Pi Colorado Alpha Chapter (Engineering Honor Society), year inducted.

2008-12 Society of Women Engineers.

REFERENCES

Prof. Victor Galitski

Office 2270, Physical Sciences Complex Joint Quantum Institute University of Maryland College Park, MD 20742 USA

Email: galitski@umd.edu Phone: 301-405-6107

Dr. Ian B. Spielman

Office: Building 216, Room B131

National Institute of Standards and Technology and the University of Maryland

100 Bureau Drive, Stop 8424 Gaithersburg, MD 20899 USA Email: ian.spielman@nist.gov NIST Phone: 301-975-8664 NIST Fax: 301-975-8272