23-24 MA327 Differential Geometry Midterm Examination

12th April, 2024, 10:20am-12:10pm

Questions

- 1. (20 marks) Let $\alpha: I \to \mathbb{R}^3$ be a regular parametrized curve.
 - (a) Write down the definition of the curvature κ and the torsion τ of α (in the latter case you may assume that κ is everywhere non-zero).
 - (b) Show that if the curvature κ is everywhere zero, then the trace of α is inside a straight line.
 - (c) Show that if the torsion τ is everywhere zero, then the trace of α lies inside a plane.
- 2. (15 marks) Let $\alpha: I \to \mathbb{R}^3$ be a regular parametrized curve in \mathbb{R}^3 (not necessarily by arc length) and let $\beta: J \to \mathbb{R}^3$ be an arc length reparametrization of $\alpha(I)$ by the arc length

$$s=s(t)=\int_{t_0}^t |\alpha(u)|du.$$

Let t = t(s) be the inverse function of s and set $d\alpha/dt = \alpha'$, $d^2\alpha/dt^2 = \alpha''$. Prove that

- (a) $dt/ds = 1/|\alpha'|$, $d^2t/ds^2 = -(\alpha' \cdot \alpha''/|\alpha'|^4)$.
- (b) The curvature κ at $t \in I$ is

$$\kappa(t) = \frac{|\alpha' \wedge \alpha''|}{|\alpha'|^3}.$$

3. (15 marks) State the definition of a regular surface in R³. Show that

$$W = \{(x, y, z) : z = |x|\}$$

is not a regular surface in R3.

- 4. (10 marks) Let S be a regular surface in \mathbb{R}^3 and p = (0,0,0) is in S. Assume that L is a plane which intersects S only at one point p. Show that $L = T_pS$.
- 5. (20 marks) Let $C = \{(x, y, z) : x^2 + y^2 = 1\}$ be the cylinder in \mathbb{R}^3 .
 - (a) Show that C is a regular surface.
 - (b) Find a parametrization \mathcal{X} of \mathcal{C} and calculate E, F, G (that is, the first fundamental form).
 - (c) Find the regular parametrized curve $\alpha : [0,1] \to \mathcal{C}$ such that $\alpha(0) = (0,1,0)$, $\alpha(1) = (1,0,1)$ and α is the shortest curve among all regular parametrized curves in \mathcal{C} joining (0,1,0) to (1,0,1).
- 6. (20 marks) Let S be a connected regular surface, such that it is covered by three connected open sets V_i , where i = 1, 2, 3 and for each i we have $V_i = X_i(U_i)$ and

$$X_i: U_i \to S, (u_i, v_i) \mapsto X_i(u_i, v_i),$$

is a parametrization of S. Assume also that

$$V_{12} = V_1 \cap V_2$$
, $V_{23} = V_2 \cap V_3$, $V_{31} = V_3 \cap V_1$

are nonempty and connected.

(a) Explain why the jacobian of the change of parameter

$$X_{j}^{-1} \circ X_{i} : X_{i}^{-1}(V_{ij}) \to X_{j}^{-1}(V_{ij}), (u_{i}, v_{i}) \mapsto (u_{j}(u_{i}, v_{i}), v_{j}(u_{i}, v_{i}))$$

has constant sign.

(b) Let s_{ij} be the sign of the jacobian J_{ij} of $X_j^{-1} \circ X_i$. That is,

$$s_{ij} = \begin{cases} 1 & \text{if } J_{ij} > 0, \\ -1 & \text{if } J_{ij} < 0 \end{cases}.$$

Show that S is orientable if and only if $s_{12}s_{23}s_{31} = 1$.