Show all work clearly and in order.

1. 1) (8 points) Find an equation of the tangent line to the given curve

$$x = t^2 + 3t, \quad y = t^3$$

at t = -1.

2) (8 points) Find the value of $\frac{d^2y}{dx^2}$ at t = -1.

 $2.\ (14\ \mathrm{points})$ Find the length of the curves

$$x = \ln t - \frac{t^2}{2}, \quad y = 1 - 2t$$
 $1 \le t \le 3$

3. (18 points) 1) (5 points) Find the Cartesian equation of the polar curve $r = 2\cos\theta$.

2) (5 points) Sketch the region bounded by this polar curve $r=2\cos\theta$ and $-\frac{\pi}{4}\leq\theta\leq\frac{\pi}{4}$.

2) (8 points) Find the area of the above region.

- 4. (16 points) Give $\vec{u}=\langle 3,-2,1\rangle,\, \vec{v}=\langle -2,-1,-3\rangle,\, \vec{w}=\langle -1,2,a\rangle$
- (1) (6 points) Find the magnitude of $\vec{u} + \vec{v}$;

(2) (4 points) Find a unit vector parallel to the sum of $\vec{u} + \vec{v}$;

(3) (6 points) Find a parametric equation of a line passing through (1, 1, -1) and parallel to \vec{v} .

- 5. Given three points P(0,2,1), Q(2,0,-1) and R(1,-1,2).
- 1) (16 points) Find the area of the triangle with vertices $P,\,Q$ and R.

2) (4 points) Find an equation for plane passing through P,Q and R.

6.	Let $\vec{r}(t) =$	$\langle \cos 2t, \sin t, \sin t \rangle$	(t^2) be the	position of	f a particle	in space.
----	--------------------	---	----------------	-------------	--------------	-----------

1) (12 points) Find the particle's velocity $\vec{v}(t)$ and acceleration vector $\vec{a}(t)$ at t=0.

2) (4 points) Determine if the above two vectors $\vec{v}(0)$ and $\vec{a}(0)$ are parallel to each other.

Blank Page	Name:	
Diamir i ago	Titaliio.	