The Assignment Project Exam Help Model

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

2. The Relational Data Model

- use a simple and uniform data structure: the relation Assignment Project Exam Help
- https://eduassistpro.github.io/ has been im mmercial Add WeChat edu_assist_pro database systems
- has a solid theoretic foundation.

2.1 Structures

- In the relational model, everything is described using relations.
- A relation can be thought of as a named table.

 Assignment Project Exam Help
- Each column of t ed attribute. https://eduassistpro.github.io/
- The set of allowe domain.
- Add WeChat edu_assist_pro
 Each row of the table is called a tu
- N.B. There is no ordering of column or rows.

Example

PLAYER						
Name	Position	Goals	Age	Height	Weight	
Heady	Half-forward	17	24	183	83	
Sumich	Full-forward	59	26	191	92	
Langdon	ssignment Pi	ojęct l	Lxam	Help-	86	

https://eduassistpro.github.io/							
Name							
Sumich	2 6 C	d wec	hat ed	u_ass	SISFulPfoward		
Langdon	23	189	86	23	Utility		
Heady	24	183	83	17	Half-forward		

Above two tables are the same relation ---- Player

- Mathematically,
 - a domain D is a set of atomic values (having some fixed data type) which represent some semantic meaning.
 - an *attribute*, *A*, is the name of a role played by a *domain*, Assignment Project Exam Help dom(A).
 - a relation sc https://eduassistpro.github.io/ $R(A_1,A_2,...,A_n) \stackrel{\text{Aidd}}{\longrightarrow} We \text{Chatiedu}_{assist_pro}$ $R = \{A_1,A_2,...,A_n\}.$

Composite and multivalued attributes are disallowed!

• A tuple, $t(A_1, A_2, ..., A_n)$, is a point in $dom(A_1) \times ... \times dom(A_n)$ where each $dom(A_i)$ is the domain of A_i .

- A relation (opg selection in the project examples a subset of https://eduassistpro.github.io/
- Add WeChat edu_assist_pro
 A relation schema is used to descri
- A relation schema is used to descri
- The *degree* of a relation is the number of attributes of its relation schema.

Relational Data Model vs ER Model:

- Relation schema (intension) ≠ entity or relationship type schema (intension).
- attributes

 at

https://eduassistpro.github.io/

• tuple

instance of en

Add WeChat edu_assist_pro

- relation (instance, extension) ≠ entity/relationship extension
- composite and multivalued attributes are allowed in ER model, but not allowed in relational data model.

- *Keys* are used to identify tuples in a relation.
- A *superkey* is a set of attributes that uniquely determines a tuple.
- Note that this is a property of the relation that does not depend on the current relation instance.
- Assignment Project Exam Help
 A candidate key is a superkey, none of whose proper subsets is a superkey.
- Keys are determine https://eduassistpro.github.io/
- E.g. if {Name} is unAntethWittishate edu_assistPIpYOER; otherwise we need to use the whole tuple or create a candidate key, say PID.
- {Goals} usually cannot not be a candidate key since different players *might* have the same number of goals.
- {Name, Goals} is a superkey but not a candidate key if {Name} is a key.

• A primary key is a designated candidate key.

• In many applications it is necessary to invent a primary key if there is no natural one - often this would be a non-negative integer Assignment Project Exam Help

https://eduassistpro.github.io/e.g. Person numb

Add WeChat edu_assist_pro

• When a relation schema has several candidate keys, usually better to choose a primary key with a single attribute or a small number of attributes.

2.2 Integrity constraints

• There are several kinds of integrity constraints that are an integral part of the relational model:

Assignment Project Exam Help

• 2.2.1 Key constraint: https://eduassistpro.github.io/

Add WeChat edu_assist_pro

• 2.2.2 Entity integrity: an attribute that is part of a primary key cannot be NULL.

• **2.2.3 Referential integrity:** The third kind has to do with "foreign keys".

• Foreign keys are used to refer to a tuple in another relation.

- A set, FK, of attributes from a relation schema R1 may be a foreign key if
 - the attributes have the same demains at the attributes in the printage by of another relation schema R₂, and

https://eduassistpro.github.io/

- a value of FK in a tuple t_1 of R_2 either occurs a some tuple t_2 in R_2 or is null. Add WeChat edu_assist_pro
- Referential integrity: The value of FK must occur in the other relation or be entirely NULL.

2.2.4 Checking constraints on updates

- To maintain the integrity of the database, we need to check that integrity constraints will not be violated before proceeding with an update.

- Example: Suppose ve have the following schema with Preign keys as

shown:

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

<2, Dr. V. Ciesielski>

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

ENROLMENT					
Enrolment#	Supervisee	Supervisor	Department	Name	
1	1	2	Psychology	Ph.D.	
2	3	1	Comp.Sci.	Ph.D.	
3	4	1	Comp.Sci.	M.Sc.	
4	5	1	Comp.Sci.	M.Sc.	

<Comp.Sci., NULL>

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

ENROLMENT					
Enrolment#	Supervisee	Supervisor	Department	Name	
1	1	2	Psychology	Ph.D.	
2	3	1	Comp.Sci.	Ph.D.	
3	4	1	Comp.Sci.	M.Sc.	
4	5	1	Comp.Sci.	M.Sc.	

<5, 6, 2, Psychology, Ph.D>

	· <u>/</u>			
	RESEARCHER			
insert	Person#	Name		
	1	Dr.C.C.Chen		
	2.	Dr.R.G.Wilkinson am Help		
Assignment	Project Exa	am Help		
https://eduassistpro.github.io/				
Add W	eChat edu_assist_pro			

ENROLMENT						
Enrolment#	Supervisee	Supervisor	Department	Name		
1	1	2	Psychology	Ph.D.		
2	3	1	Comp.Sci.	Ph.D.		
3	4	1	Comp.Sci.	M.Sc.		
4	5	1	Comp.Sci.	M.Sc.		

RESEARCHER				
Person#	Name			
1	Dr.C.C.Chen			
2	Dr.R.G.Wilkinson			

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

ENROLMENT					
Enrolment#	Supervisee	Supervisor	Department	Name	
1	1	2	Psychology	Ph.D.	
2	3	1	Comp.Sci.	Ph.D.	
3	4	1	Comp.Sci.	M.Sc.	
4	5	1	Comp.Sci.	M.Sc.	

- *Insertions*: When inserting, we need to check
 - that the candidate keys are not already present,
 - that the value of each foreign key either
 - -is all null, or
 - is all non-Night and occurs in the Ferenced relation.

Examples:

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

1. Insert < 2, *Dr. V. Ciesielski* > into RESEARCHER

Allowed? No. Violates a key constraint.

Action? Reject or allow the user to correct.

2. Insert < *Comp.Sci.,NULL* > into COURSE

Allowed? No. Violates the entity integrity constraint.

Action: Reject or correct.

Assignment Project Exam Help

3. Insert < 5, 6, 2, *Psycho* https://eduassistpro.github.io/

ENROLMENT

Add WeChat edu_assist_pro

Allowed? No. Violates a referential integrity

constraint (There is no person number 6).

Action: Reject, correct or accept after insertion

of person number 6.

• *Deletions*: When deleting, we need to check referential integrity – check whether the primary key occurs in another relation.

Assignment Project Exam Help

https://eduassistpro.github.io/

Examples:

Add WeChat edu_assist_pro

1. Delete tuple with Person# = 2 f RCHER

Allowed? No. Violates the referential integrity.

Action: Reject, correct or modify the ENROLMENT tuple by

- deleting it (note that the this requires another integrity check, possibly causing a cascade of deletions) Assignment Project Exam Help
- setting the fohttps://eduassistpro.glthub.(a)ote this can't be done Aflik We Chatedu_assisty proy), or
- setting the foreign key value to another acceptable value.

Modifications:

If the modified attribute is a

- primary key; this is similar to deleting and then reinsert https://eduassistpro.github.io/
- foreign key: Add What hat edu_assistrates to an existing tuple.
- neither: no problems can arise.

2.2.5 Relational database definition

- A relational database schema, is a set of relation schema $\{R_1, \ldots, R_m\}$ and a set of integrity constraints. Project Exam Help

https://eduassistpro.github.io/

- A relational database instances $\{r_1, \ldots, r_m\}$ su $h r_i$ is an instance of R_i , and the integrity constraints are satisfied.

2.3 ER to Relational Data Model Mapping

- One technique for database design is to first design a conceptual schema using a high-level data model, and then map it to the DBMS data https://eduassistpro.github.io/model for the chosen DBMS Add WeChat edu_assist_pro
- Here we look at a way to do this mapping from the ER to the relational data model.
- It involves the following 7 steps.

• Example: ER→RDB

* *

• Step 1: For each regular (not weak) entity type E, Assignment Project Exam Help create a relatio

https://eduassistpro.github.io/

- Attributes : e components of composite attributes) of E.
- Key: Choose one of the keys of E as the primary key for the relation.

- Step 1a: For each specialised entity type E, with parent entity type P, create Helplation R https://eduassistpro.github.io/
 - Add WeChat edu_assist_pro
 - Attributes: The attribute
 y of P, plus the
 simple attributes of E.
 - Key: The key of P.

• Example: ER→RDB

SSN Fname Lname Birdate

Department

Name Location

Project Assignment Project Exam Help Pname Pnumber

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

28

- Step 2: For each weak entity type W, with owner entity type Eigencete Projection Rowithp
 - Attributes: https://eduassistpro.gd/subple/
 components Afterweeifat edu_assisf_Wrand include
 as a foreign key the prime attributes of the relation
 derived from E.
 - Key: The foreign key plus the partial key of W.

• Example: ER—RDB

• Step 3: For each 1:1 relationship type B. Let E and F be the participating entity types. Let S and T be the corresponding relations.

- Choose one of S and T (prefer one that participates totally), say S.
- Add the attribusing the attribusing the property of the attribusing the attr
- Add the simple at https://eduassistpro.github.io/as attributes of S.

Add WeChat edu_assist_pro

(Alternative: merge the two entity types and the relationship into a single relation, especially if both participate totally and do not participate in other relationships).

• Example: ER→RDB

• Step 4: For each regular 1:N relationship type B.

- Let E and F be the participating entity types.
- Let E by the conjunt the diedet Etha pre left N side.
- Let S and T be thttps://eduassistpro.github.io/
- Add the attributes of the primary k
 Add WeChat edu_assist_pro
 Add to T any simple attributes (
- Add to T any simple attributes (ponents of composite attributes) of the relationship.

(Notice that this doesn't add any new tuples, just attributes.)

• Example: ER—RDB

• Step 5: For each N:M relationship type B. Create

a new relation R. Let E and F be the participating entity types. Let S
Assignment Project Exam Help
and T be the corresponding relations.

https://eduassistpro.github.io/

- Attributes: The **Reddf WarCthalt edu_assist_n by:**, plus the simple attributes (and simple components of composite attributes) of B.

Key: The key of S and the key of T.

381/2/0

• Example: ER→RDB

• Step 6: For each multivalued attribute A. Create a new relation R. Let A be an attribute of E.

Assignment Project Exam Help

- Attributes :
 - https://eduassistpro.github.io/ 1. A (if A is a r wit the key of E as a foreightey. We Chat edu_assist_pro
 - 2. The simple components of A (if A is a composite attribute), together with the key of E as a foreign key.
- Key: All attributes.

• Example: ER→RDB

- Step 7: For each n-ary relationship type (n > 2). Create a new relation with Assignment Project Exam Help
 - Attributes: as https://eduassistpro.github.io/Add WeChat edu_assist_pro
 - Key: as for Step 5, except that if one of the participating entity types has participation ratio 1, its key can be used as a key for the new relation.