Graduation Project

Santiago Morales - 201913369

March 5, 2023

1 Introduction

2 Kahn-Kalai Conjecture

2.1 Thresholds

Let $n \in \mathbb{N}$ and $0 \le p \le 1$. The random graph G(n, p) is a probability space over the set of graphs on n labeled vertices determined by

$$\Pr[\{i,j\} \in G] = p$$

with these events mutually independent [1]. Given a graph theoretic property A, there is a probability that G(n, p) satisfies A, which we write as $\Pr[G(n, p) \models A]$.

Definition 2.1. r(n) is a threshold function for a graph theoretic property A if

- 1. When $p(n) \in o(r(n))$, $\lim_{n \to \infty} \Pr[G(n, p(n)) \models A] = 0$,
- **2.** When $r(n) \in o(p(n))$, $\lim_{n \to \infty} \Pr[G(n, p(n)) \models A] = 1$,

or vice versa. [1]

We give an example of a threshold function which illustrates a common method for proving that a function is a threshold.

2.1.1 Threshold function for having isolated vertices

Let G be a graph on n labeled vertices. An isolated vertex of G is a vertex which does not belong to any of the edges of G. Let A be the property that G contains an isolated vertex. We will prove that $r(n) = \frac{\ln n}{n}$ is a threshold for A.

For each vertex i in G define the variable

$$X_i = \begin{cases} 1 & \text{if } i \text{ is an isolated vertex,} \\ 0 & \text{if } i \text{ is not an isolated vertex.} \end{cases}$$

Now, the probability that a vertex i is isolated is $(1-p)^{n-1}$ since it is the probability that none of the other n-1 vertices is connected to i. Let $X = \sum_{i=1}^{n} X_i$, then the expected number of isolated vertices is thus

$$E[X] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} \Pr[X_i] = n(1-p)^{n-1}.$$

Let
$$p = k \frac{\ln n}{n}$$
 for $k \in \mathbb{R}_{>0}$. Then

$$\lim_{n \to \infty} E[X] = \lim_{n \to \infty} n \left(1 - k \frac{\ln n}{n} \right)^{n-1}$$
$$= n e^{-k \ln n} = n^{1-k}.$$

Therefore, $\lim_{n\to\infty} E[X] = 0$ if k > 1. Since $E[X] \ge \Pr[X > 0]$, we conclude that

$$\lim_{n \to \infty} \Pr[G(n, p) \models A] = \lim_{n \to \infty} \Pr[X > 0] = 0.$$

Now, for k < 1, the fact that $\lim_{n \to \infty} E[X] = \infty$ is not enough to conclude that $\lim_{n \to \infty} \Pr[G(n, p) \models A] = 1$. We have to use the second moment method.

Theorem. If $E[X] \to \infty$ and $Var[X] = o(E[X]^2)$, then $\lim_{n\to\infty} Pr[X>0] = 1$. [1]

We will prove that, in this case, $Var[X] = o(E[X]^2)$. First,

$$\sum_{i \neq j} E[X_i X_j] = \sum_{i \neq j} \Pr[X_i = X_j = 1]$$

$$= n(n-1)(1-p)^{n-1}(1-p)^{n-2}$$

$$= n(n-1)(1-p)^{2n-3},$$

for if i is an isolated vertex, then there is no edge between i and j so we only have to account for the remaining n-2 edges that contain j.

Thus, since $\sum_{i=1}^n E[X_i^2] = \sum_{i=1}^n E[X_i] = E[X]$ and $\lim_{n\to\infty} p = 0$,

$$\lim_{n \to \infty} \frac{\operatorname{Var}[X]}{E[X]^2} = \lim_{n \to \infty} \frac{E(X^2) - E[X]^2}{E[X]^2} = \lim_{n \to \infty} \frac{\sum_{i=1}^n E[X_i^2] + \sum_{i \neq j} E[X_i X_j]}{E[X]^2} - 1$$

$$= 0 + \lim_{n \to \infty} \frac{n(n-1)(1-p)^{2n-3}}{n^2(1-p)^{2n-2}} - 1 = \lim_{n \to \infty} \frac{1}{1-p} - 1 = 0.$$

We conclude that $Var[X] \in o(E[X]^2)$ and so, if k < 1,

$$\lim_{n\to\infty}\Pr[G(n,p)\vDash A]=\lim_{n\to\infty}\Pr[X>0]=1.$$

Therefore, $r(n) = \frac{\ln n}{n}$ is a threshold function for property A.

2.2 The expectation threshold

Let X be a set and $p \in [0,1]$. For $A \subset X$, let $P(A) = p^{|A|}(1-p)^{|X\setminus A|}$. A class \mathcal{F} of subsets of X is increasing if for $A \in \mathcal{F}$, $A \subset B$ implies $B \in \mathcal{F}$. If $\mathcal{F} \neq \emptyset$, 2^X , $P(\mathcal{F}) = \sum_{A \in \mathcal{F}} P(A)$

TODO Define increasing class and general definition of threshold [2] **TODO** Define expectation threshold and show inequalities. [3]

Example 2.1. H_1 example

Figure 1: H_1

Example 2.2. H_2 example

Theorem 2.1 (Park Theorem [2], originally Kahn-Kalai Conjecture). **TODO**

TODO How to prove something is p-small

Figure 2: H_2

2.2.1 An application of the Park Theorem

TODO Prove the threshold for perfect matchings for G(n, p)

- 3 Numerical Semigroups
- 4 Probability Spaces over Numerical Semigroups
- 5 Expected Frobenius Number

References

- [1] N. Alon and J. H. Spencer, The probabilistic method. John Wiley & Sons, 2016.
- [2] J. Park and H. T. Pham, "A proof of the kahn-kalai conjecture," arXiv e-prints, pp. arXiv-2203, 2022.
- [3] K. Frankston, J. Kahn, B. Narayanan, and J. Park, "Thresholds versus fractional expectation-thresholds," *Annals of Mathematics*, vol. 194, no. 2, pp. 475–495, 2021.