# 3-11 Matchings and Factors

(Part II: Perfect Matchings)

Hengfeng Wei

hfwei@nju.edu.cn

December 24, 2018



5.10 5.34 5.22 5.26

# Chinese Postman Problem (CPP)

(Postman Tour Problem, Route Inspection Problem)





管梅谷(1934-)

第10卷第3期

数 学 学 报 ACTA MATHEMATICA SINICA Vol. 10, No. 3 Dec., 1960

#### 奇偶点图上作业法\*

官 (附 合 (山东师范学院)

§ 1. 問題的提出

在邮局搞錢性規划时,发現了下述問題:"一个投递員每次上班,要走遍他負責途信的 段<sup>1</sup>,然后回到邮局。問应該怎样走才能使所走的路程最短。"

《奇偶点图上作业法》, 1960

Translated into English in 1962



Jack Edmonds (1934-)

#### MATCHING, EULER TOURS AND THE CHINESE POSTMAN

#### Jack EDMONDS

University of Waterloo, Waterloo, Ontario, Canada

and

#### Ellis L. JOHNSON

IBM Watson Research Center, Yorktown Heights, New York, U.S.A.

Received 20 May 1972 Revised manuscript received 3 April 1973

The solution of the Chinese postman problem using matching theory is given. The convex ull of integer solutions is described as a linear programming polyhedron. This polyhedron is used to show that a good algorithm gives an optimum solution. The algorithm is a specialization of the more general b-matching blossom algorithm. Algorithms for finding Euler tours and related problems are also discussed.

"Matching, Euler Tours and the Chinese Postman", 1973(1965)

Given an undirected weighted graph G with w(e) > 0, to find the shortest tour such that each edge is traversed at least once.

Given an undirected weighted graph G with w(e) > 0, to find the shortest tour such that each edge is traversed at least once.

# Q: What is the relation between Postman Tour and Eulerian Tour?





P contains every edge e at least once.

P contains every edge e at least once.

Let  $1 + x_e$   $(x_e \in \mathbb{N})$  be the number of times edge e is in P.

P contains every edge e at least once.

Let  $1 + x_e$   $(x_e \in \mathbb{N})$  be the number of times edge e is in P.

Construct 
$$G' = G + e \cdot x_e$$

P contains every edge e at least once.

Let  $1 + x_e$   $(x_e \in \mathbb{N})$  be the number of times edge e is in P.

Construct 
$$G' = G + e \cdot x_e$$

P is an Eulerian tour of G'.

P contains every edge e at least once.

Let  $1 + x_e$   $(x_e \in \mathbb{N})$  be the number of times edge e is in P.

Construct 
$$G' = G + e \cdot x_e$$

P is an Eulerian tour of G'.

# Definition (Chinese Postman Problem)

Given an undirected weighted graph G with w(e) > 0, to find  $x_e \in \mathbb{N}$  for each edge e of G

to minimize 
$$\sum_{e} w(e)x_e$$
,

such that  $G' = G + e \cdot x_e$  is an Eulerian graph.

Given an undirected weighted graph G with w(e) > 0, to find  $x_e \in \mathbb{N}$  for each edge e of G

to minimize 
$$\sum_{e} w(e)x_e$$
,

such that  $G' = G + e \cdot x_e$  is an Eulerian graph.

Given an undirected weighted graph G with w(e) > 0, to find  $x_e \in \mathbb{N}$  for each edge e of G

to minimize 
$$\sum_{e} w(e)x_e$$
,

such that  $G' = G + e \cdot x_e$  is an Eulerian graph.

Q: What are the possible values of each  $x_e$ ?

Given an undirected weighted graph G with w(e) > 0, to find  $x_e \in \mathbb{N}$  for each edge e of G

to minimize 
$$\sum_{e} w(e)x_e$$
,

such that  $G' = G + e \cdot x_e$  is an Eulerian graph.

Q: What are the possible values of each  $x_e$ ?

# Definition (Chinese Postman Problem)

Given an undirected weighted graph G with w(e) > 0, to find  $x_e \in \{0,1\}$  for each edge e of G

to minimize 
$$\sum_{e} w(e)x_e$$
,

such that  $G' = G + e \cdot x_e$  is an Eulerian graph.

1:  $V_o \leftarrow \{v \in V(G) : \deg(v) \text{ is odd}\}$ 

- 1:  $V_o \leftarrow \{v \in V(G) : \deg(v) \text{ is odd}\}$
- 2: Construct a complete weighted graph  $G_p$  with vertices  $V_o$ :
- 3: for  $u, v \in V_o$  do
- 4:  $w(u,v) \leftarrow$  the length of the shortest path between u and v

- 1:  $V_o \leftarrow \{v \in V(G) : \deg(v) \text{ is odd}\}$
- 2: Construct a complete weighted graph  $G_p$  with vertices  $V_o$ :
- 3: for  $u, v \in V_o$  do
- 4:  $w(u,v) \leftarrow$  the length of the shortest path between u and v
- 5: Find a minimum-weighted perfect matching M of  $G_p$

- 1:  $V_o \leftarrow \{v \in V(G) : \deg(v) \text{ is odd}\}$
- 2: Construct a complete weighted graph  $G_p$  with vertices  $V_o$ :
- 3: for  $u, v \in V_o$  do
- 4:  $w(u,v) \leftarrow$  the length of the shortest path between u and v
- 5: Find a minimum-weighted perfect matching M of  $G_p$
- 6: for  $(u,v) \in M$  do
- 7:  $p \leftarrow$  the shortest path between u and v
- 8:  $\forall e \in p : x_e \leftarrow 1$

- 1:  $V_o \leftarrow \{v \in V(G) : \deg(v) \text{ is odd}\}$
- 2: Construct a complete weighted graph  $G_p$  with vertices  $V_o$ :
- 3: for  $u, v \in V_o$  do
- 4:  $w(u,v) \leftarrow$  the length of the shortest path between u and v
- 5: Find a minimum-weighted perfect matching M of  $G_p$
- 6: for  $(u, v) \in M$  do
- 7:  $p \leftarrow$  the shortest path between u and v
- 8:  $\forall e \in p : x_e \leftarrow 1$ 
  - Q: What if some edge  $e \in E(G)$  is in two shortest paths corresponding to (two) matching edges of  $G_p$ ?

No edge  $e \in E(G)$  is in two shortest paths corresponding to (two) matching edges of  $G_p$ .

No edge  $e \in E(G)$  is in two shortest paths corresponding to (two) matching edges of  $G_p$ .

Proof.

No edge  $e \in E(G)$  is in two shortest paths corresponding to (two) matching edges of  $G_p$ .

Proof.

By Contradiction.

No edge  $e \in E(G)$  is in two shortest paths corresponding to (two) matching edges of  $G_p$ .

#### Proof.

By Contradiction.



Suppose that

 $\exists e \in E(G) : e \in u_1 \leadsto u_2 \land e \in v_1 \leadsto v_2$ 

No edge  $e \in E(G)$  is in two shortest paths corresponding to (two) matching edges of  $G_p$ .

#### Proof.

# By Contradiction.



#### Suppose that

$$\exists e \in E(G) : e \in u_1 \leadsto u_2 \land e \in v_1 \leadsto v_2$$

#### Contradiction:

 $u_1 \sim v_1, u_2 \sim v_2 \implies \text{smaller perfect matching}$ 

#### Theorem (Property of Chinese-Postman)

The edges with  $x_e = 1$  obtained by Chinese-Postman is a minimum collection of edge-disjoint paths connecting pairs of odd vertices.

#### Theorem (Property of Chinese-Postman)

The edges with  $x_e = 1$  obtained by Chinese-Postman is a minimum collection of edge-disjoint paths connecting pairs of odd vertices.



#### Theorem (Property of Chinese-Postman)

The edges with  $x_e = 1$  obtained by Chinese-Postman is a minimum collection of edge-disjoint paths connecting pairs of odd vertices.

To prove that these  $x_e = 1$  obtained by Chinese-Postman satisfies:

### Definition (Chinese Postman Problem)

Given an undirected weighted graph G with w(e) > 0, to find  $x_e \in \{0,1\}$  for each edge e of G

to minimize 
$$\sum_{e} w(e)x_e$$
,

such that  $G' = G + e \cdot x_e$  is an Eulerian graph.

 $G' = G + e \cdot x_e$  is an Eulerian graph.

$$G' = G + e \cdot x_e$$
 is an Eulerian graph.

Proof.

A collection of edge-disjoint paths connecting pairs of odd vertices.

$$\sum_{e} w(e)x_e \text{ is minimized.}$$

$$\sum_{e} w(e)x_e$$
 is minimized.

### Theorem (Property of Chinese-Postman)

The edges with  $x_e = 1$  obtained by Chinese-Postman is a minimum collection of edge-disjoint simple paths connecting pairs of odd vertices.

$$\sum_{e} w(e)x_e$$
 is minimized.

Theorem (Property of Chinese-Postman)

The edges with  $x_e = 1$  obtained by Chinese-Postman is a minimum collection of edge-disjoint simple paths connecting pairs of odd vertices.

P: An optimal postman tour of G

$$\sum_{e} w(e)x_e$$
 is minimized.

### Theorem (Property of Chinese-Postman)

The edges with  $x_e = 1$  obtained by Chinese-Postman is a minimum collection of edge-disjoint simple paths connecting pairs of odd vertices.

#### P: An optimal postman tour of G

Let  $1 + x_e$   $(x_e \in \mathbb{N})$  be the number of times edge e is in P.

$$\sum_{e} w(e)x_e$$
 is minimized.

#### Theorem (Property of Chinese-Postman)

The edges with  $x_e = 1$  obtained by Chinese-Postman is a minimum collection of edge-disjoint simple paths connecting pairs of odd vertices.

#### P: An optimal postman tour of G

Let  $1 + x_e$   $(x_e \in \mathbb{N})$  be the number of times edge e is in P.

We show that the edges with  $x_e = 1$  is a collection of edge-disjoint simple paths connecting pairs of odd vertices.

P: An optimal postman tour of G

Let  $1 + x_e$   $(x_e \in \mathbb{N})$  be the number of times edge e is in P.

The edges with  $x_e = 1$  is a collection of edge-disjoint simple paths connecting pairs of odd vertices.

P: An optimal postman tour of G

Let  $1 + x_e$   $(x_e \in \mathbb{N})$  be the number of times edge e is in P.

The edges with  $x_e = 1$  is a collection of edge-disjoint simple paths connecting pairs of odd vertices.

Proof.

By Construction.

# P: An optimal postman tour of G

Let  $1 + x_e$   $(x_e \in \mathbb{N})$  be the number of times edge e is in P.

The edges with  $x_e = 1$  is a collection of edge-disjoint simple paths connecting pairs of odd vertices.

### Proof.

# By Construction.

An odd number of edges e with  $x_e = 1$  meet odd nodes. An even number of edges e with  $x_e = 1$  meet even nodes.

# P: An optimal postman tour of G

Let  $1 + x_e$   $(x_e \in \mathbb{N})$  be the number of times edge e is in P.

The edges with  $x_e = 1$  is a collection of edge-disjoint simple paths connecting pairs of odd vertices.

# Proof.

# By Construction.

An odd number of edges e with  $x_e = 1$  meet odd nodes. An even number of edges e with  $x_e = 1$  meet even nodes.









Office 302

Mailbox: H016

hfwei@nju.edu.cn