10. L'aire comprise entre les paraboles $y^2 = 4x$ et $x^2 = 4y$ vaut : 1. 22/3 2. 32/3 3. 2(4 $\sqrt{3}$ - 1) 4. 80/3 5. 16/3

11. La primitive $\int \frac{1}{2v^2 + v + 1} dx$ peut être directement ramenée à l'arc tangente par changement de variable :

1.
$$2x = t$$
 3. $x + 1/4 = \frac{\sqrt{7}}{4}t$ 5. $x - 1/2 = \frac{\sqrt{3}}{2}t$

2.
$$x + 1/2 = \frac{\sqrt{3}}{2}t$$
 4. $2x + 1 = t$ (MB.-78)

12. La surface comprise entre la parabole d'équation $y = -x^2 + 4x + 6$ et la droite y = -x + 10 vaut:

droite
$$y = -x + 10$$
 vaut:
1. $-3/2$ 2. $-5/2$ 3. $5/32$ 4. 9 5. $9/2$ (MB.-76)
13. On donne $y = e^{-\frac{x}{y}}$. $\frac{dx}{dy}$ www.ecoles-rdc.net

1.
$$\frac{y}{x-y}$$
 2. $\frac{y}{1-y^2}$ 3. $\frac{e^{-\frac{x}{y}}}{x-y^2}$ 4. $\frac{e^{-\frac{x}{y}}}{y}$ 5. $\frac{e^{-\frac{x}{y}}}{x-y}$ (MB. 78)

14. La valeur moyenne de la fonction
$$y = 3x^2$$
 dans l'intervalle [0, 2] est;

1.
$$\frac{4}{3}$$
 2. 8 3. 6 4. 4 5. $\frac{5}{3}$ (MB. 76)

15.
$$\int_0^{\pi} \sin 2x \, dx =$$
1. $-1/2$ 2. 0 3. 1 4. $1/2$ 5. -1 (MB.-78)

16. On donne
$$y = x^{2x}$$
.
$$\frac{dy}{dx} = \frac{1.2x^{2x}}{x^{2x}} = \frac{2.2x \ln x}{2.2x \ln x} = \frac{3.2 - x^{2x}}{4.x^{2x}} = \frac{3.2 + x^{2x}}{4.x^{2x}}$$