METHODS FOR FIRST ORDER EQUATIONS

Name	Normal Form	Solution Method	Special cases/Remarks
Autonomous	$\frac{dy}{dx} = h(y)$	$\int \frac{1}{h(y)} dy = \int 1 \ dx$	Common in physical laws
Separable	$\frac{dy}{dx} = g(x)h(y)$	$\int \frac{1}{h(y)} dy = \int g(x) dx$	Autonomous when $g(x) = 1$
Linear	$\frac{dy}{dx} + P(x)y = g(x)$ OR $(P(x)y - g(x)) dx + dy = 0$	Integrating factor: $\mu(x) = e^{\int P(x)dx}$ $\implies \frac{d}{dx} \Big(y\mu(x) \Big) = g(x)\mu(x)$	Autonomous when $P(x) = 0$ Separable when $g(x) = 0$ (homogeneous)
Bernoulli	$\frac{dy}{dx} + P(x)y = g(x)y^{n}$ OR $(P(x)y - g(x)y^{n}x) dx + dy = 0$	Substitution: $u = y^{1-n}$ Reduce to linear	Linear when $n=0$
Exact	$M(x,y) dx + N(x,y) dy = 0$ $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$	$f(x,y) = \int M(x,y)dx + h(y)$ $OR \ f(x,y) = \int N(x,y)dy + g(x)$ $\implies d(f(x,y)) = 0$	
α -Homogeneous	$M(x,y) dx + N(x,y) dy = 0$ $M(tx,ty) = t^{\alpha}M(x,y)$ $N(tx,ty) = t^{\alpha}N(x,y)$	Substitution: $u = y/x, dy = udx + xdu$ or $v = x/y, dx = vdy + ydv$ Reduce to separable	Intuition: M and N have the same 'degree'
'Almost' Exact (But not anything else)	$M(x,y) dx + N(x,y) dy = 0$ $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$	Integrating factor is either: I. $\mu(x) = e^{\int \frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}} dx$ II. $\mu(y) = e^{\int \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}} dx$ Reduce to Exact	If neither integration factor works then check again if it is Homogeneous/Bernoulli/Linear/etc
Other Nonseparable (special)	$\frac{dy}{dx} = f(Ax + By + C)$ $B \neq 0$	Substitution: $u = Ax + By + C \text{Separable}$	A and C can be zero.