Optimization Methods in Sparse Approximation With Applications to Basis Pursuit and Gaussian Graphical Models

Syed Rahman

Department of Statistics University of Florida

Basis Pursuit Denoising

The basis pursuit problem is as follows:

$$\min_{\beta} \|\beta\|_1 \text{ s.t. } y = X\beta$$

• In the presence of noise, we can reformulate this problem as

$$\min_{\beta} \frac{1}{2} \|y - X\beta\|_{2}^{2} + \lambda \|\beta\|_{1}$$

The focus of this talk will be to optimization methods for this problem

Gaussian Graphical Models: Sparsity in Ω

- Let Y be a p-dimensional random vector with a $N_p(0, \Sigma = \Omega^{-1})$ distibution
- $\Omega = ((\omega_{ij}))_{1 \leqslant i,j \leqslant p}$
- $\omega_{ij} = Cov(Y_i, Y_j \mid Y_{-(i,j)})$
- $\omega_{ij} = 0$ if and only if the i^{th} and j^{th} variables are conditionally independent given the other variables
- ullet Zeros in Ω encode conditional independence under Gaussianity

Concentration Graphical Models: Connections with graphs

ullet Obtain a sparse estimate for Ω by minimizing the constrained objective function:

$$\hat{\Omega} = \underset{\Omega \succ 0}{\operatorname{argmin}} \left(\underbrace{\operatorname{trace}(\Omega S) - \log |\Omega|}_{\text{log-likelihood}} + \underbrace{\lambda ||\Omega||_{1}}_{\text{penalty term to induce sparsity/zeros}} \right) \tag{1}$$

- The sparsity pattern in Ω can be represented by a graph, G = (V, E).
- $V = \{1, ..., p\}$ and set E of edges is such that $\omega_{ij} \neq 0 \Leftrightarrow (i, j) \in E$.

$$\Omega = \begin{pmatrix} A & B & C & D \\ 4.29 & 0.65 & 0 & 0.8 \\ 0.65 & 4.25 & 0.76 & 0 \\ 0 & 0.76 & 4.16 & 0.8 \\ 0.80 & 0 & 0.80 & 4 \end{pmatrix} \begin{pmatrix} B \\ B \\ C \\ D \end{pmatrix}$$

Subgradient Descent

• Hence the goal is to solve problems of the form:

$$\underset{\beta}{\operatorname{argmin}} \, F(\beta) = \underset{\beta}{\operatorname{argmin}} \, g(\beta) + h(\beta)$$

where $g(\beta)$ is convex and differentiable and $h(\beta)$ is convex, but non-differentiable.

• The basic update in a subgradient algorithm in such a case is

$$\beta^{k+1} = \beta^k - t_k \partial F(\beta^k)$$

where t_k is the step size and $\partial F(\beta)$ is the subgradient of $F(\beta)$

What is a subgradient?

• Recall that a gradient of **differentiable** $F : \mathbb{R}^n \to \mathbb{R}$ at β satisfies for all $\eta \in \mathbb{R}^n$

$$F(\eta) \geqslant F(\beta) + \nabla F(\beta)^t (\eta - \beta)$$

• A subgradient of convex $F: \mathbb{R}^n \to \mathbb{R}$ at β is any $g \in \mathbb{R}^k$ such that for all $\eta \in \mathbb{R}^n$ we have

$$F(\eta) \geqslant F(\beta) + g^{t}(\eta - \beta)$$

- If F is differentiable, $g = \nabla F$
- When $h(\beta) = ||\beta||_1$, the subgradient is equal to s, where

$$s_i = \begin{cases} sign(\beta_i) & \text{if } \beta_i \neq 0 \\ [-1, 1] & \text{if } \beta_i = 0 \end{cases}$$

Subgradient methods for BP:

• For the BP problem, the subgradient is $-X^t(y-X\beta) + \lambda s$ with

$$s_i = \begin{cases} sign(\beta_i) & \text{if } \beta_i \neq 0 \\ 0 & \text{if } \beta_i = 0 \end{cases}$$

Hence the basic update is:

$$\beta^{k} = \beta^{k-1} + t_{k}(X^{t}(y - X\beta^{k-1}) - \lambda s^{k-1})$$

• For back-tracking line search, fix $\eta \in (0,1)$. At each iteration, while

$$F(\beta - t\partial F(\beta)) > F(\beta) - \frac{t}{2} \|\partial F(\beta)\|^2$$

let $t = \eta t$.

Subgradient methods for Gaussian Graphical Models:

• For the *glasso* problem, the subgradient is $S - \Omega^{-1} + \lambda \Gamma$ with

$$\Gamma_{ij} = \begin{cases} \operatorname{sign}(\Omega_{ij}) & \text{if } \Omega_{ij,i \neq j} \neq 0 \\ 0 & \text{if } \Omega_{ij} = 0, \Omega_{ij,i=j} \end{cases}$$

Hence the basic update is:

$$\Omega^{k} = \Omega^{k-1} + t_{k}(S - (\Omega^{k-1})^{-1} + \lambda \Gamma^{k-1})$$

Convergence of subgradient methods:

Theorem

For fixed step sizes, the sudgradient method satisfies

$$\lim_{k \to \infty} F(\beta^k) \leqslant F(\beta^*) + \frac{L^2 t}{2}$$

with convergence rate of $O(\frac{1}{\sqrt{k}})$.

where
$$\left|F(\beta^1) - F(\beta^2)\right| \leqslant L\left|\left|\beta^1 - \beta^2\right|\right|$$

Theorem

For diminshing step sizes, the sudgradient method satisfies

$$\lim_{k\to\infty} F(\beta^k) = F(\beta^*)$$

with convergence rate of $O(\frac{1}{\sqrt{k}})$.

Proximal Gradient Methods:

• The prioximal operator for $h(\beta)$ is:

$$\operatorname{prox}_{t}(\beta) = \underset{\eta}{\operatorname{argmin}} \frac{1}{2t} \|\beta - \eta\|_{2}^{2} + h(\eta)$$

• The proximal gradient method to minimize $F(\beta) = g(\beta) + h(\beta)$ is:

$$\boldsymbol{\beta}^{(k)} = \mathsf{prox}_{t_k h}(\boldsymbol{\beta}^{(k-1)} - t_k \nabla g(\boldsymbol{\beta}^{(k-1)}))$$

To see why this works, note that

$$\begin{split} \beta^+ &= \underset{\eta}{\operatorname{argmin}} (h(\eta) + \frac{1}{2t} \left\| \eta - \beta + t \nabla g(\beta) \right\|_2^2) \\ &= \dots \\ &= \underset{\eta}{\operatorname{argmin}} (h(\eta) + g(\beta) + \nabla g(\beta)^t (\eta - \beta) + \frac{1}{2t} \left\| \eta - \beta \right\|_2^2) \end{split}$$

How Proximal Gradient methods work:

• Recall, the 2^{nd} order Taylor series approximation to $g(\eta)$ near β is

$$g(\eta) = g(\beta) + \nabla g(\beta)^{t}(\eta - \beta) + (\eta - \beta)^{t}\nabla^{2}g(\beta)(\eta - \beta)$$

$$\leq g(\beta) + \nabla g(\beta)^{t}(\eta - \beta) + L(\eta - \beta)^{t}(\eta - \beta)$$

where the function $\nabla g(\beta)$ has Lipschitz constant L.

• Hence, we are essentially minimizing $h(\eta)$ plus a simple local model of $g(\eta)$ around β .

ISTA for BP:

• The proximal operator for the ℓ_1 penalty, $h(\beta) = \lambda \|\beta\|_1$ is

$$\begin{split} \operatorname{prox}_t(\beta) &= \operatorname*{argmin} \frac{1}{2t} \left\| \beta - \eta \right\|_2^2 + \lambda \left\| \eta \right\|_1 \\ &= S_{\lambda t}(\beta) \end{split}$$

where
$$[S_{\lambda t}(\beta)]_i = \text{sign}(x_i) * \max\{|\beta_i| - \lambda t, 0\}$$

- In addition, $\nabla g(\beta) = -X^t(y X\beta)$
- Hence the ISTA update is:

$$\beta^k = S_{\lambda t_k}(\beta^{k-1} + t_k X^t (y - X \beta^{k-1}))$$

Choice of step-size:

• Note that for BP, we have that

$$\begin{aligned} \|\nabla g(\beta_{1}) - \nabla g(\beta_{2})\|_{2} &\leq L \|\beta_{1} - \beta_{2}\|_{2} \\ &= \lambda_{max}(X^{t}X) \|\beta_{1} - \beta_{2}\|_{2} \end{aligned}$$

- Hence set $t_k = 1/L$
- If L is difficult to attain, use back-tracking line-search

FISTA for BP:

• In 1983, Nesterov proposed the following Accelarated gradient descent algorithm for convex, differentiable functions $g(\beta)$:

$$\beta^{k+1} = \eta^k - t_k \nabla g(\eta^k)$$
$$\eta^{k+1} = (1 - \gamma_k) \beta^{k+1} + \gamma_k \beta^k$$

with convergence rate $O(\frac{1}{k^2})$.

FISTA is essentially this method combined with ISTA. The basic updates are as follows:

$$t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2}$$

$$\gamma = \beta^{k-1} + \frac{t_k - 1}{t_{k+1}} (\beta^{k-1} - \beta^{k-2})$$

$$\beta^k = S_{\lambda t_k} (\gamma + t_k X^t (y - X \gamma))$$

ISTA/FISTA for Gaussian Graphical Models:

Recall that we want to minimize

$$\hat{\Omega} = \operatorname*{argmin}_{\Omega \succ 0} (\operatorname{trace}(\Omega \mathcal{S}) - \log |\Omega| + \lambda \left\|\Omega\right\|_1)$$

- Now $\nabla(\operatorname{trace}(\Omega S) \log |\Omega|) = S \Omega^{-1}$
- Hence the basic graphical-ISTA update is:

$$\Omega^{k+1} = S_{\lambda t_k}(\Omega^k + t_k(S - (\Omega^k)^{-1}))$$

And the basic graphical-FISTA update is:

$$\begin{split} \Omega^{k+1} &= S_{\lambda t_k}(\zeta^k + t_k(S - (\zeta^k)^{-1})) \\ t_{k+1} &= \frac{1 + \sqrt{1 + 4t_k^2}}{2} \\ \zeta^k &= \Omega^{k+1} + \frac{t_k - 1}{t_{k+1}}(\Omega^{k+1} - \Omega^k) \end{split}$$

Convergence for ISTA/FISTA:

Theorem

Let β^k be a sequence generated by either of the ISTA algorithms as described above. Then for any $k \geqslant 1$

$$F(\beta_k) - F(\beta^*) \leqslant \frac{\alpha L(g) \|\beta_0 - \beta^*\|_2}{2k}$$

where $\alpha = 1$ for constant step size and $\alpha = \eta$ for back-tracking line search.

Theorem

Let β^k be a sequence generated by either of the FISTA algorithms as described above. Then for any $k \geqslant 1$

$$F(\beta_k) - F(\beta^*) \le \frac{\alpha L(g) \|\beta_0 - \beta^*\|_2}{(k+1)^2}$$

where $\alpha = 1$ for constant step size and $\alpha = \eta$ for back-tracking line search.

ADMM for BP:

- ADMM mixes the decomposability of the dual ascent method with the superior convergence properties of the method of multipliers.
- Recall the BP problem:

$$\frac{1}{2} \|y - X\beta\|_{2}^{2} + \lambda \|\beta\|_{1}$$

This is equivalent to:

$$\frac{1}{2}\left\|y-X\beta\right\|_{2}^{2}+\lambda\left\|\gamma\right\|_{1} \text{ s.t. } \beta=\gamma$$

• The augmented Lagrangian in this case is:

$$\frac{1}{2} \|y - X\beta\|_{2}^{2} + \lambda \|\gamma\|_{1} + \frac{\rho}{2} \|\beta - \gamma\|_{2}^{2} \text{ s.t. } \beta = \gamma$$

ADMM for BP continued:

• We can rewrite this as:

$$L(\beta, \gamma, \eta) = \frac{1}{2} \left\| y - X\beta \right\|_{2}^{2} + \lambda \left\| \gamma \right\|_{1} + \frac{\rho}{2} \left\| \beta - \gamma \right\|_{2}^{2} + \eta^{t} (\beta - \gamma)$$

• To minimize this we need to following updates:

$$\begin{split} \beta^k &= \underset{\beta}{\operatorname{argmin}} \ L(\beta^{k-1}, \gamma, \eta) \\ \gamma^k &= \underset{\gamma}{\operatorname{argmin}} \ L(\beta, \gamma^{k-1}, \eta) \\ \eta^k &= \eta^{k-1} + \rho(\beta - \gamma) \end{split}$$

where the last step is the dual ascent step

Convergence for ADMM:

- Define $r^k = \beta^k \eta^k$. Then $r^k \to 0$ as $k \to \infty$
- $\frac{1}{2}\left|\left|y-X\beta^k\right|\right|_2^2+\lambda\left|\left|\gamma^k\right|\right|_1\to p^*$ as $k\to\infty$ where p^* is the optimal value
- $\eta^k \to \eta^*$ as $k \to \infty$ where η^* is a dual optimal point

ADMM for Gaussian Graphical Models:

Recall that we want to solve:

$$\min_{\Omega \succ 0} \operatorname{trace}(S\Omega) - \log |\Omega| + \lambda \left\|\Omega\right\|_1$$

• This is equivalent to:

$$\min_{\Omega, Z} \operatorname{trace}(S\Omega) - \log |\Omega| + \lambda \, ||Z||_1 \ \, \operatorname{s.t} \, \Omega = Z$$

• The augmented Lagrangian in this case is:

$$\min_{\Omega,Z,Y} \operatorname{trace}(S\Omega) - \log \left|\Omega\right| + \lambda \left\|Z\right\|_1 + Y^t(\Omega-Z) + \frac{\rho}{2} \left\|\Omega-Z\right\|_F^2$$

ADMM for Gaussian Graphical Models:

• Solving this involves doing the following at each iteration:

$$\begin{split} \min_{\Omega} \operatorname{trace}(S\Omega) - \log |\Omega| + Y^t(\Omega - Z) + \frac{\rho}{2} \left\|\Omega - Z\right\|_F^2 \\ \min_{Z} \lambda \left\|Z\right\|_1 + Y^t(\Omega - Z) + \frac{\rho}{2} \left\|\Omega - Z\right\|_F^2 \\ \max_{Y} Y^t(\Omega - Z) \end{split}$$

Data for BP Experiments:

- We set p = 200 and $n = \{20, 50, 100, 500\}$.
- Number of non-zero elements of β^* was set equal to 20.
- $X_{ij} \stackrel{iid}{\sim} \mathcal{N}(0,1)$; i = 1, ..., n; j = 1, ..., p, $E_i \stackrel{iid}{\sim} \mathcal{N}(0,1)$; i = 1, ..., n and $y = X\beta^* + E$.
- λ was picked through 5-fold cross-validation
- We compared $||\beta^k \beta^{k-1}||_{\infty}$ at each step, timing and $\frac{||\hat{\beta} \beta^*||_2^2}{||\beta^*||_2^2}$ for all the methods
- In the above case, X had a condition number of 3.1677. We repeated the experiments
 with with X having a condition number of 101.9279. The performance of the subgradient
 method was very poor showing how this algorithm lacks stability. ISTA/FISTA's
 performance was pretty good, but inconsistent. The most reilable was the ADMM
 algorithm, whose performance hardly changed.

Convergence Plots for Basis Pursuit:

Timing plots for Basis Pursuit:

(a)
$$n = 20$$

(b)
$$n = 50$$

(c)
$$n = 100$$

(d)
$$n = 500$$

Relative Norm Error $(\frac{\|\hat{\beta} - \beta^*\|_2^2}{\|\beta^*\|_2^2})$:

		20		100	E00
	Method	n = 20	n = 50	n = 100	n = 500
1	SG	0.0184	0.0164	0.0095	0.0007
2	ISTA	0.0188	0.0146	0.0036	0.00008
3	FISTA	0.0197	0.0149	0.0038	0.00008
4	ADMM	0.0223	0.0174	0.0053	0.00008

Convergence Plots for Basis Pursuit for ill-conditioned X:

Timing plots for Basis Pursuit for ill-conditioned X:

Relative Norm Error $(\frac{\|\hat{\beta} - \beta^*\|_2^2}{\|\beta^*\|_2^2})$:

	Method	n = 20	n = 50	n = 100	n = 500
1	SG	1.473	∞	∞	∞
2	ISTA	0.015	0.013	0.0009	0.0011
3	FISTA	0.015	0.013	0.0008	0.0001
4	ADMM	0.023	0.016	0.0025	0.00001

Data for Covariance Esimation Experiments:

- We set p = 500 and n = 1000.
- Approximately 95% of the entries in Ω^* were set to 0.
- Generate $X_i \stackrel{iid}{\sim} \mathcal{N}_p(0, \Omega^{-1})$ for i = 1, ..., n. Let X_i be the i^{th} row of X.
- We compared $\frac{\|\hat{\Omega} \Omega^*\|_F}{\|\Omega^*\|_F}$ for all the methods: SG(0.463), ISTA(0.463), FISTA(0.463), ADMM(0.553). These were all inferior to glasso(0.346) discussed last week in class.

References

- [1] Beck, A. and Teboulle, M. (2009), "A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, Siam J. Imaging Sciences Vol. 2, No. 1, pp. 183-202
- [2] Boyd, S. and Parikh, N. and Chu, E. and Peleato, B. (2011), "Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers," *Foundations and Trends in Machine Learning*, Vol. 3, No. 1, 1-122
- [3] Boyd, S. and Vandenberghe, L. (2009), "Convex Optimization,"