<u>User Callable Kernal Routines</u>

Name Address		Function
Hex Decimal		
ACPTR \$FF	5 65445	Input byte from serial port.
CHKIN \$FF	6 65478	Open channel for input.
CHKOUT \$FF	9 65481	Open channel for output.
CHRIN \$FF	F 65487	Input character from channel.
CHROUT \$FFI	2 65490	Output character to channel.
CIOUT \$FF	B 65448	Output byte to serial port.
LINT \$FF	31 65409	Initialize screen editor.
CLALL \$FF	7 65511	Close all channels and files.
CLOSE \$FF	3 65475	Close a specified logical file.
CLRCHN \$FF	C 65484	Close input and output channels.
GETIN \$FF	4 65508	Get character from keyboard buffer.
IOBASE \$FF	3 65523	Return base address of I/O devices.
IOINIT \$FF	4 65412	Initialize input/output.
LISTEN \$FF	31 65457	Command devices on serial bus to LISTEN.
LOAD \$FFI	5 65493	Load RAM from a device.
MEMBOT \$FF	C 65436	Read/set bottom of memory.
MEMTOP \$FF	9 65433	Read/set top of memory.
OPEN \$FF	0 65472	Open a logical file.
PLOT \$FF	65520	Read/set X,Y cursor position.
RAMTAS \$FF	7 65415	Initialize RAM, reset tape buffer.
RDTIM \$FFI	E 65502	Read realtime clock.
READST \$FFI	7 65463	Read I/O status word.
RESTOR \$FF	A 65418	Restore I/O default vectors.
SAVE \$FFI	E 65496	Save RAM to device.
SCNKEY \$FF	F 65439	Scan keyboard.
SCREEN \$FFI	D 65517	Return X,Y organization of screen.
SECOND \$FF	3 65427	Send secondary address after LISTEN.
SETLFS \$FFI	SA 65466	Set logical, first, and second address.
SETMSG \$FF		Control Kernal messages.
SETNAM \$FFI		Set filename.
SETTIM \$FF		Set realtime clock.
SETTMO \$FF		Set time-out on serial bus.
· ·	1 65505	Check for STOP key.
· ·	34 65460	Command serial bus device to TALK.
•	6 65430	Send secondary address after TALK.
UDTIM \$FF		Increment realtime clock.
UNLSN \$FF		Command serial bus to UNLISTEN.
UNTLK \$FF		Command serial bus to UNTALK.
VECTOR \$FF	D 65421	Read/set vectored I/O.

Here is a brief summary of each routine with examples:

ACPTR is used to get data off the serial bus. TALK and TKSA must be called first.

;Get a byte from the serial bus.

JSR ACPTR

STA \$0800

;This example only shows the end result; call TALK and TKSA first.

CHKIN is used to define any OPENed file as an input file. OPEN must be called first.

;Define logical file #2 as an input channel. LDX #2 JSR CHKIN ;The X register designates which file #.

CHKOUT. Just like CHKIN, but it defines the file for output. OPEN must be called first.

;Define logical file #4 as an output file. LDX #4 JSR CHKOUT ;Once again the X register defines the file #.

CHRIN will get a character from the current input device. Calling OPEN and CHKIN can change the input device.

;Store a typed string to the screen.

LDY #\$00

LOOP JSR CHKIN

STA \$0800,Y

INY

CMP #\$0D

BNE LOOP

RTS

;This example is like an INPUT statement. Try running it.

CHROUT. Load the accumulator with your number and call. OPEN and CHKOUT will change the output device.

;Duplicate the command of CMD 4:PRINT "A";
LDX #4
JSR CHKOUT
LDA #'A
JSR CHROUT
RTS
;The letter A is printed to the screen; call OPEN first for the printer.

CIOUT will send data to the serial bus. LISTEN and SECOND must be called first. Call UNLSN to finish up neatly.

;Send the letter X to the serial bus. LDA #X

JSR CIOUT RTS

The accumulator is used to transfer the data.

CINT resets the 6567 video controller chip and the screen editor.

;Reset the 6567 chip and the 6566 VIC chip.

JSR CINT

RTS

;Basically, just like pressing the STOP and RESTORE keys.

CLALL really does what its name implies-it closes all files and resets all channels.

:Close all files.

JSR CLALL

RTS

;The CLRCHN routine is called automatically.

CLOSE. This routine will CLOSE any logical file that has been OPENed.

Close logical file #2.

LDA #2

JSR CLOSE

;The accumulator designates the file #.

CLRCHN resets all channels and I/O registers - the input to keyboard and the output to screen.

:Restore default values to I/O devices.

JSR CLRCHN

RTS

;The accumulator and the X register are altered.

GETIN will get one piece of data from the input device. OPEN and CHKIN can be used to change the input device.

;Wait for a key to be pressed.

WAIT JSR GETIN

CMP#0

BEO WAIT

;If the serial bus is used, then all registers are altered.

IOBASE returns the low and high bytes of the starting address of the I/O devices in the X and Y registers.

;Set the Data Direction Register of the user port to 0 (input).

JSR IOBASE

STX POINT

STY POINT+1

LDY #2
LDA #0
STA (POINT),Y
;POINT is a zero-page address used to access the DDR indirectly.

IOINIT initializes all I/O devices and routines. It is part of the system's powering-up routine.

;Initialize all I/O devices. JSR IOINIT RTS ;All registers are altered.

LISTEN will command any device on the serial bus to receive data.

;Command device #8 to listen. LDA #8 JSR LISTEN ;The accumulator designates the device #.

LOAD. The computer will perform either the LOAD or the VERIFY command. If the ac cumulator is a 1, then LOAD; if 0, then verify.

;Load a program into memory.

LDA #\$08

LDX #\$02

LDY #\$00

JSR SETLFS

LDA #\$04

LDX #L,NAME

LDY #H,NAME

JSR SETNAM

LDA #\$00

LDY #\$20

JSR LOAD

RTS

NAME .BY 'FILE'

;Program 'FILE' will be loaded into memory starting at 8192 decimal, X being the low byte and Y being the high byte for the load.

MEMBOT. If the carry bit is set, then the low byte and the high byte of RAM are returned in the X and Y registers. If the carry bit is clear, the bottom of RAM is set to the X and Y registers.

;Move bottom of memory up one page.

SEC

JSR MEMBOT

INY

CLC

JSR MEMBOT RTS :The accumulator is left alone.

MEMTOP. Same principle as MEMBOT, except the top of RAM is affected.

;Protect 1K of memory from BASIC. SEC
JSR MEMTOP
DEY
CLC
JSR MEMTOP
;The accumulator is left alone.

OPEN. After SETLFS and SETNAM have been called, you can OPEN a logical file.

;Duplicate the command OPEN 15,8,15,'I/O'
LDA #3
LDX #L,NAME
LDY #H,NAME
JSR SETNAM
LDA #15
LDX #8
LDY #15
JSR SETLFS
JSR OPEN
RTS
NAME .BY 'I/O'
;OPEN opens the current name file with the current LFS.

PLOT. If the carry bit of the accumulator is set, then the cursor X,Y is returned in the Y and X registers. If the carry bit is clear, then the cursor is moved to X,Y as determined by the Y and X registers.

;Move cursor to row 12, column 20 (12,20). LDX #12 LDY #20 CLC JSR PLOT ;The cursor is now in the middle of the screen.

RAMTAS is used to test RAM, reset the top and bottom of memory pointers, clear \$0000 to \$0101 and \$0200 to \$03FF, and set the screen memory to \$0400.

;Do RAM test.
JSR RAMTAS
RTS
;All registers are altered.

RDTIM. Locations 160-162 are transferred, in order, to the Y and X registers and the accumulator.

;Store system clock to screen.

JSR RDTIM

STA 1026

STX 1025

STY 1024

;The system clock can be translated as hours/minutes/ seconds.

READST. When called, READST returns the status of the I/O devices. Any error code can be translated as operator error.

;Check for read error.

JSR READST

CMP #16

BEQ ERROR

;In this case, if the accumulator is 16, a read error occurred.

SCREEN returns the number of columns and rows the screen has in the X and Y registers.

;Determine the screen size.

JSR SCREEN

STX MAXCOL

STY MAXROW

RTS

;SCREEN allows further compatibility between the 64, the VIC-20, and future versions of the 64.

SECOND. After LISTEN has been called, a SECONDary address may be sent.

;Address device #8 with secondary address #15.

LDA #8

JSR LISTEN

LDA #15

JSR SECOND

;The accumulator designates the address number.

SETLFS stands for SET Logical address, File address, and Secondary address. After SETLFS is called, OPEN may be called.

;Set logical file #1, device #8, secondary address of 15.

LDA#1

LDX #8

LDY #15

JSR SETLFS

;If OPEN is called, the command will be OPEN 1,8,15.

SETMSG. Depending on the accumulator, either error messages, control messages, or neither is printed.

;Turn on control messages.

LDA #\$40

JSR SETMSG

RTS

;A 128 is for error messages; a zero, for turning both off.

SETNAM. In order to access the OPEN, LOAD, or SAVE routines, SETNAM must be called first.

;SETNAM will prepare the disk drive for'FILE#1'.

LDA#6

LDX #L,NAME

LDY #H,NAME

JSR SETNAM

NAME.BY 'FILE#1'

;Accumulator is file length, X is low byte, and Y is high byte.

SETTIM is the opposite of RDTIM: it SETs the system clock instead of ReaDing it.

;Set system clock to 10 minutes = 3600 jiffies.

LDA#0

LDX #L.3600

LDY #H,3600

JSR SETTIM

This allows very accurate timing for many things.

SETTMO is used only with an IEEE add-on card to access the serial bus.

:Disable time-outs on serial bus.

LDA#0

JSR SETTMO

;To enable time-outs, set the accumulator to a 128 and call SETTMO.

STOP will set the Z flag of the accumulator if the STOP key was pressed.

;Check for STOP key being pressed.

WAIT JSR STOP

BNE WAIT

RTS

;STOP must be called if the STOP key is to remain functional.

TALK. This routine will command a device on the serial bus to send data.

Command device #8 to TALK.

LDA #8

JSR TALK

RTS

The accumulator designates the file number.

TKSA is used to send a secondary address for a TALK device. TALK must be called first.

;Signal device #4 to talk with command #7.

LDA #4

JSR TALK

LDA #7

JSR TKSA

RTS

;This example will tell the printer to print in uppercase.

UDTIM. If you are using your own interrupt system, you can update the system clock by calling UDTIM.

;Update the system clock.

JSR UDTIM

RTS

;It is useful to call UDTIM before calling STOP.

UNLSN commands all devices on the serial bus to stop receiving data.

:Command the serial bus to UNLiSteN.

JSR UNLSN

RTS

The serial bus can now be used for other things.

UNTLK. All devices previously set to TALK will stop sending data.

;Command serial bus to stop sending data.

JSR UNTLK

RTS

;Sending UNTLK commands all talking devices to get off the serial bus.

VECTOR. If the carry bit of the accumulator is set, the start of a list of the current contents of the RAM vectors is returned in the X and Y registers. If the carry bit is clear, there the user list pointed to by the X and Y registers is transferred to the system RAM vectors.

;Change the input routines to new system.

SEC

JSR VECTOR

LDA #L, MYINP

STA USER+10

LDA #H, MYINP

STA USER+11

LDX #L,USER

LDY #H,USER CLC JSR VECTOR RTS USER .DE 26

;The new input list can start anywhere. USER is the location for temporary strings, and 35-36 is the utility pointer area.

Error Codes

If an error occurs during a Kernal routine, then the carry bit of the accumulator is set and the error code is returned in the accumulator.

Number	Meaning		
0	Routine ended by the STOP key.		
1	Too many files open.		
2	File already open.		
3	File not open.		
4	File not found.		
5	Device not present.		
6	File is not an input file.		
7	File is not an output file.		
8	File name is missing.		
9	Illegal device number		
240	Top-of-memory change RS-232 buffer allocation		