Project report

Pollen's Profiling: Automated Classification of Pollen Grain

Team ID: LTVIP2025TMID36397

Name	Role	Responsibility
Bhaskar Ganisetti	Team Leader	End-to-end project development & documentation

Team Leader: Bhaskar Ganisetti

Role: Model development, dataset preparation, training, testing, web integration, and deployment.

1. Abstract

This project focuses on the automated classification of pollen grains using Convolutional Neural Networks (CNNs) integrated into a Flask-based web application. The system allows users to upload microscopic pollen grain images, which are processed by a trained deep learning model to predict their species.

The main objective is to assist in pollen research by providing a fast, automated, and accurate prediction tool.

2. Introduction

Pollen analysis plays a vital role in fields like:

• Allergology (study of allergies)

- Agriculture
- Forensic science
- Climate research

Traditional manual pollen classification is time-consuming and requires expert knowledge. This project leverages **Deep Learning** to automate the process.

3. Objectives

- Train a CNN model to classify multiple pollen grain species.
- Build a user-friendly **Flask web application** for real-time image classification.
- Provide instant prediction results with high accuracy.

4. System Architecture

Workflow:

- 1. Dataset Preparation Images organized into folders per class.
- 2. **Model Training** CNN model built using TensorFlow/Keras in Google Colab.
- 3. Model Export Saved as model.h5 along with class labels.txt.
- 4. Flask Web App Model integrated with HTML templates (index, prediction, logout).
- 5. User Interface Upload pollen grain image \rightarrow Get predicted label instantly.

5. Tools & Technologies

- **Programming Language:** Python 3
- Framework: Flask

- Deep Learning Library: TensorFlow/Keras
- Frontend: HTML, CSS (custom styling)
- IDE: Google Colab, VS Code
- Dataset: Custom pollen grain dataset (multiple species)

6. Implementation

6.1 Model Training (Google Colab)

- Used CNN architecture with Conv2D, MaxPooling2D, Dropout, and Dense layers.
- Data augmentation performed using ImageDataGenerator.
- Trained for 10 epochs with Adam optimizer.

6.2 Flask Web App

- app.py loads the trained model and class labels.
- Users can upload images via index.html.
- Predictions displayed on **prediction.html**.
- Custom CSS for styling with background image support.

7. Dataset

• Total Classes: 19 species of pollen grains.

• Example Classes: anadenanthera, arecaceae, croton, eucalipto, tridax

• **Image Size:** 224×224 pixels (resized for model).

8. Results

- **Model Accuracy:** ~95% on validation dataset.
- Real-time prediction latency: < 2 seconds.

• Successfully deployed Flask app locally on http://127.0.0.1:5000/.

9. Screenshots

(Replace with actual screenshots when you prepare final PDF)

1. Dataset Samples

(Insert image grid of different pollen grain types)

2. Model Architecture

(Diagram showing CNN layers)

3. Flask Homepage

(Screenshot of index.html)

4. Prediction Output

(Example uploaded image with predicted label)

5. Logout page

10. Conclusion

This project demonstrates the successful implementation of a deep learning-based pollen grain classifier integrated into a real-time Flask application. It can be further improved by:

- Expanding the dataset
- Deploying on cloud platforms (Heroku, AWS)
- Adding mobile compatibility

11. Contributions

As **Team Leader** and **sole contributor**, I personally:

- Collected and prepared the dataset.
- Designed and trained the CNN model in Google Colab.
- Saved the trained model as model.h5.
- Built and styled the Flask web app with HTML/CSS.
- Integrated real-time prediction feature.
- Tested and validated the system end-to-end.

Data set link: https://universe.roboflow.com/dataset-yolo-escp0/pollen-class

Project folder drive

link:https://drive.google.com/drive/folders/1KkcaOQf7x2aTn4LxpOX7NPEOMR3yEePq?usp=drive_link

Git hub link: https://github.com/bhaskarganesetti-prog/Pollen-s-Profiling-Automated-Classification-of-Pollen-Grains

Project demo video

link:https://drive.google.com/folderview?id=11OUqxKd_wgUPyH0Eul8Ko43IKY85Ounv