- 1. 设X,Y为赋范空间,T:X → Y为闭线性算子,求证:
 - (1) N(T)为X的闭线性子空间;
 - (2) 若T为一一映射,则 T^{-1} : $Y \to X$ 也为闭线性算子;
 - (3) T将X的紧集映射到Y的闭集:
 - (4) Y中的紧集通过T的逆像为X的闭集.
 - 解: (1) 任意 $x_1, x_2 \in N(T), \lambda_1, \lambda_2 \in \mathbb{K}$, $T(\lambda_1 x_1 + \lambda_2 x_2) = \lambda_1 T x_1 + \lambda_2 T x_2 = 0$,故 $\lambda_1 x_1 + \lambda_2 x_2 \in N(T)$,从而N(T)为X的线性子空间.任取 $\{x_n\}_{n=1}^{\infty} \subset N(T), x_n \to x \in X$,由于 $Tx_n = 0 \to 0$,故 $(x_n, Tx_n) \to (x, 0)$.由于T为闭算子,故Tx = 0,即 $x \in N(T)$,因此N(T)为闭集.
 - (2) 任意 $y_1, y_2 \in Y, \lambda_1, \lambda_2 \in \mathbb{K}$,由于 $T(\lambda_1 T^{-1} y_1 + \lambda_2 T^{-1} y_2) = \lambda_1 T T^{-1} y_1 + \lambda_2 T T^{-1} y_2 = \lambda_1 y_1 + \lambda_2 y_2$,故 $\lambda_1 T^{-1} y_1 + \lambda_2 T^{-1} y_2 = T^{-1} (\lambda_1 y_1 + \lambda_2 y_2)$. 因此 T^{-1} 为线性算子. 任取 $\{(y_n, T^{-1} y_n)\}_{n=1}^{\infty} \subset Y \times X, y_n \to y \in Y, T^{-1} y_n \to x \in Y$, 有 $(T^{-1} y_n, T T^{-1} y_n) = (T^{-1} y_n, y_n) \to (x, y)$,由于T为闭算子,故 $y = T x, x = T^{-1} y$,因此 $(y_n, T^{-1} y_n) \to (y, x) = (y, T^{-1} y)$. 从而 T^{-1} 为闭算子.
 - (3) 任取X的紧集 $C \subset X$. 任取 $y_n \in T(C), y_n \to y \in Y$,存在 $x_n \in C, Tx_n = y_n$. 由于C为 紧集,故存在收敛子列 $x_{n_k} \to x \in C(k \to \infty)$,此时 $(x_{n_k}, Tx_{n_k}) \to (x, y)$. 由于T为闭算子,故 $y = Tx \in T(C)$. 故T(C)为闭集.
 - (4) 任取Y的紧集 $D \subset Y$. 任取 $x_n \in T^{-1}(D), x_n \to x \in X$,存在 $y_n \in D, y_n = Tx_n$. 由于D为紧集,故存在收敛子列 $y_{n_k} \to y \in D(k \to \infty)$,此时 $(x_{n_k}, Tx_{n_k}) \to (x, y)$. 由于T为闭算子,故y = Tx,故 $x \in T^{-1}(D)$. 故 $T^{-1}(D)$ 为闭集.
 - 注意(1)(2)(3)(4)小问为并列关系,第(4)小问不能用第(2)小问中T为一一映射的前提. 另外,(3)小问很多同学假定C中的序列 $x_n \to x \in X$,然后用 $Tx_n \to Tx \in T(C)$ 说明T(C)闭,这是不对的,因为说明T(C)闭需要说明任意满足 $y_n \in T(C)$,,由于已经假定了 x_n 收敛,所以 Tx_n 只能代表一类特殊的序列,不能代表T(C)中的任意收敛列. 第(4)小问也有同学犯类似的错误. 有的同学在(3)小问中使用闭图像定理,注意闭图像定理的应用前提是X,Y为 Banach 空间. 有的同学在(3)小问中通过 $T|_C$ 的图像为闭集说明T(C)为闭集,这是不对的,注意闭集的投影不一定是闭集.
- 2. 设X为 Banach 空间, $f_n \in X'$. 假设任取 $x \in X$,都有 $\sum_{n=1}^{\infty} |f_n(x)| < \infty$. 求证: 存在 $C \ge 0$,使得任取 $F \in X''$,有

$$\sum_{n=1}^{\infty} |F(f_n)| \le C||F||.$$

解:由于任取 $x \in X$,都有 $\sum_{n=1}^{\infty} |f_n(x)| < \infty$,故任取 $N \ge 1$ 及 $\lambda_1, \dots, \lambda_N$ 满足 $|\lambda_n| = 1, n = 1, \dots N$,任取 $x \in X$,有 $|\sum_{n=1}^{N} \lambda_n f_n(x)| \le \sum_{n=1}^{N} |f_n(x)| < \infty$.根据一致有界性原理,存在常数 $C \ge 0$,使得任取 $N \ge 1$ 及 $\lambda_1, \dots, \lambda_N$ 满足 $|\lambda_n| = 1, n = 1, \dots N$,有 $|\sum_{n=1}^{N} \lambda_n f_n| \le C$.记

$$\mu_n = \begin{cases} |F(f_n)|/F(f_n) &, F(f_n) \neq 0 \\ 1 &, F(f_n) = 0 \end{cases}$$

则 $|\mu_n| = 1$. 任 意 $N \ge 1$, 有 $\sum_{n=1}^N |F(f_n)| = \sum_{n=1}^N \mu_n F(f_n) = F(\sum_{n=1}^N \mu_n f_n) \le \|\sum_{n=1}^N \mu_n f_n\| \|F\| \le C \|F\|$. 故 $\sum_{n=1}^\infty |F(f_n)| \le C \|F\|$.

部分同学认为任取 $F \in X''$,存在 $x \in X$,使得F(f) = f(x),这是不对的,这一性质只对 X是自反空间的情况成立,Banach 空间不一定是自反空间. 一般情况下只能得到典范映射 $c: X \to X''$ 为单射,不能得到其为满射. 另外,部分同学令 $\mu_n = \pm 1$,这是不够严谨的,

因为题目中没有说X为实空间,X可能为复空间, μ_n 可能为复平面单位圆上任意一点.