Supply and Demand Factors Affecting Housing Prices in US

Introduction:

I have used quarterly data from 1st January 2000 till date.

We are considering the following national factors for finding out how much the affect the housing prices in US.

- NASDAQ 100 Index
- Producer Price Index by Commodity: Special Indexes: Construction Materials
- Interest Rates and Price Indexes; Commercial Real Estate Price Index, Level
- Producer Price Index by Commodity: Special Indexes: Construction Materials
- Population
- Unemployment Rate
- Per Capita Income
- Mortgage
- Housing units

Analysis Description:

All the data was imported in python. Correlation of the features with housing index was calculated. A random forest regression model was trained with housing index as the independent variable and the above features as dependent variables

The model was then used to find out the feature importance.

Analysis:

```
In [94]: import numpy as np
          import pandas as pd
          from functools import reduce
In [96]: | df_index=pd.read_excel('data/CSUSHPINSA wb.xlsx')
          df market=pd.read excel('data/NASDAQ100 wb.xlsx')
          df pop=pd.read excel('data/POPTHM wb.xlsx')
          df_construction=pd.read_excel('data/WPUSI012011 wb.xlsx')
          df unemp=pd.read excel('data/UNRATE wb.xlsx')
          df_interest=pd.read_excel('data/BOGZ1FL075035503Q wb.xlsx')
          df mortgage=pd.read excel('data/MORTGAGE30US wb.xlsx')
          df_percapinc=pd.read_excel('data/percapinc.xls')
          df hunits=pd.read excel('data/houseunits.xls')
In [107]: data=[df_market,df_pop,df_construction,df_unemp,df_interest,df_mortgage,df_percapinc,df
In [108]: for dataset in data:
              print(dataset.shape)
          (90, 2)
          (90, 2)
```

In [116]:	df.head()										
Out[116]:		Quarter	CSUSHPINSA	NASDAQ100	Interest_rate	WPUSI012011	MORTGAGE30US	POPTH	M UNR		
	0	2000 Q1	100.679000	4046.825397	127696	144.733333	8.256923	281304.33333	33 4.033		
	1	2000 Q2	103.698667	3629.497460	126924	145.166667	7 8.316154	282002.00000	00 3.933		
	2	2000 Q3	106.459000	3779.890000	139947	143.833333	8.020000	282768.66666	67 4.000		
	3	2000 Q4	108.270000	2941.222857	144433	142.833333	3 7.620769	283518.66666	3.900		
	4	2001 Q1	109.749333	2168.620952	143811	142.266667	7.006923	284168.66666	67 4.233		
	4)		
In [131]:	df.	rename(columns={'C	SUSHPINSA':	Index','WPL	JSI012011':'	cons_mat'})				
Out[131]:		Quarter	Index	NASDAQ100	Interest_rate	cons_mat M	MORTGAGE30US	POPTHM	UNRATE		
	0	2000	100.679000	4046.825397	127696	144.733333	8.256923 2	81304.333333	4.033333		

	4								•		
In [131]:	<pre>df.rename(columns={'CSUSHPINSA':'Index','WPUSI012011':'cons_mat'})</pre>										
Out[131]:		Quarter	Index	NASDAQ100	Interest_rate	cons_mat	MORTGAGE30US	РОРТНМ	UNRATE		
	0	2000 Q1	100.679000	4046.825397	127696	144.733333	8.256923	281304.333333	4.033333		
		2000									

	Quarter	Index	NASDAQ100	Interest_rate	cons_mat	MORTGAGE30US	POPTHM	UNRAIL
	o 2000 Q1	100.679000	4046.825397	127696	144.733333	8.256923	281304.333333	4.033333
	1 2000 Q2	103.698667	3629.497460	126924	145.166667	8.316154	282002.000000	3.933333
į	2000 Q3	106.459000	3779.890000	139947	143.833333	8.020000	282768.666667	4.000000
;	3 2000 Q4	108.270000	2941.222857	144433	142.833333	7.620769	283518.666667	3.900000
	2001 Q1	109.749333	2168.620952	143811	142.266667	7.006923	284168.666667	4.233333
8	5 2021 Q2	255.562000	13797.364762	320999	304.466667	3.003846	332021.000000	5.900000
8	6 2021 Q3	268.652333	15113.542812	337230	314.587000	2.872143	332296.666667	5.100000
8	7 2021 Q4	276.157000	15843.419219	351927	328.697333	3.079231	332583.666667	4.233333
8	3 2022 Q1	288.006000	14576.935968	355629	345.059000	3.822308	332748.666667	3.800000
8	9 2022 Q2	305.348000	12733.244839	360001	348.737333	5.266154	332939.666667	3.600000

90 rows × 10 columns

In [117]: df.shape

Out[117]: (90, 10)

In [118]: df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 90 entries, 0 to 89
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Quarter	90 non-null	object
1	CSUSHPINSA	90 non-null	float64
2	NASDAQ100	90 non-null	float64
3	Interest_rate	90 non-null	int64
4	WPUSI012011	90 non-null	float64
5	MORTGAGE30US	90 non-null	float64
6	POPTHM	90 non-null	float64
7	UNRATE	90 non-null	float64
8	percapinc	90 non-null	int64
9	housunits	90 non-null	int64

dtypes: float64(6), int64(3), object(1)

memory usage: 7.7+ KB

In [119]: | df.describe(include="all")

Out[119]:

	Quarter	CSUSHPINSA	NASDAQ100	Interest_rate	WPUSI012011	MORTGAGE30US	POPTH
count	90	90.000000	90.000000	90.000000	90.000000	90.000000	90.00000
unique	90	NaN	NaN	NaN	NaN	NaN	Na
top	2000 Q1	NaN	NaN	NaN	NaN	NaN	Na
freq	1	NaN	NaN	NaN	NaN	NaN	Na
mean	NaN	169.041648	4100.429369	216455.144444	200.884230	4.985707	310426.67407
std	NaN	41.061039	3610.055121	58960.683183	43.961087	1.359509	16100.87705
min	NaN	100.679000	945.332813	126924.000000	142.033333	2.760714	281304.33333
25%	NaN	141.962583	1633.297222	169301.500000	170.400000	3.887349	296526.66666
50%	NaN	165.653000	2588.831357	212705.500000	201.950000	4.717692	311658.33333
75%	NaN	184.360417	4814.456295	254024.000000	215.683333	6.084038	325399.33333
max	NaN	305.348000	15843.419219	360001.000000	348.737333	8.316154	332939.66666
4)

In [120]: #Finding correlation

df.corr()['CSUSHPINSA'].sort_values(ascending=False)

Out[120]: CSUSHPINSA 1.000000 Interest_rate 0.956532

Name: CSUSHPINSA, dtype: float64

```
In [121]: #No missing values
           df.isnull().sum()
Out[121]: Quarter
                            0
           CSUSHPINSA
                            0
           NASDAQ100
                            0
           Interest_rate
                            0
           WPUSI012011
                            0
           MORTGAGE30US
                            0
           POPTHM
                            0
           UNRATE
                            0
           percapinc
                            0
           housunits
                            0
           dtype: int64
In [122]: |df.to_excel('data/data.xlsx',index=False)
In [123]: x=df.drop(["CSUSHPINSA","Quarter"],axis=True)
           y=df["CSUSHPINSA"]
In [141]: from sklearn.linear model import LinearRegression
           from sklearn.ensemble import RandomForestRegressor
           import matplotlib.pyplot as plt
In [128]: #training random forest model
           reg = RandomForestRegressor(n_estimators=100)
           reg.fit(x,y)
Out[128]: RandomForestRegressor()
In [129]: #feature importance
           df_feature_importance = pd.DataFrame(reg.feature_importances_, index=x.columns, columns
           df_feature_importance
Out[129]:
                           feature importance
               Interest_rate
                                   0.341093
                  POPTHM
                                   0.140881
              WPUSI012011
                                   0.134077
                                   0.114712
                  housunits
               NASDAQ100
                                   0.111757
                                   0.107653
                  percapinc
                  UNRATE
                                   0.038619
            MORTGAGE30US
                                   0.011209
```

In [130]: df_feature_importance.plot(kind='bar');

Results:

To find the most important supply and demand factors that affect the housing prices in the US, I created a decision tree regression model in Python. That model is used to find out the importance of all the features in the model.

A few Important Demand Factors are: Population, economic growth, per capita income

A few Important Supply Factors are: Interest Rates, Construction Materials, Housing units

Further Scope of Improvement:

For improvement we can consider more features like housing affordability and inflation etc. We can also try using more models like linear regression, XGBregressor and then find feature importance for those models.

References:

Data: https://fred.stlouisfed.org/