CS331 (Spring 2021): Introduction to Artificial Intelligence Written Assignment #2

Date handed out: April 21, 2021 Date due: April 28, 2021 at 10:00am

Total: 25 points

The written portion of this assignment is to be done individually. Please hand in a pdf on Canvas. Assignments done on a word processor are preferred but not mandatory. For hand written assignments, if we cannot read your writing, we cannot mark your assignment.

- 1. Prove the following entailment in three different ways.
- a) Prove that $(A \Leftrightarrow B) \vDash (A \lor \neg B)$ with truth tables. [2 points]
- b) Prove that $(A \Leftrightarrow B) \models (A \lor \neg B)$ with logical equivalences. [2 points]
- c) Prove that $(A \Leftrightarrow B) \vDash (A \lor \neg B)$ with the resolution algorithm. [3 points]
- 2. Decide whether each of the following sentences is valid, unsatisfiable or neither. Verify your decisions using truth tables or equivalence rules.
- a) $(Study \Leftrightarrow Pass) \land \neg (\neg Study \Leftrightarrow \neg Pass)$ [2 points]
- b) $((Study \land Rest) \Rightarrow Pass) \land (Study \Rightarrow \neg Rest) \land (Rest \Rightarrow \neg Study) \land Pass$ [2 points]
- 3. Convert the following sentences to CNF. [4 points]

S1.
$$P \Rightarrow (Q \lor R)$$

S2. $\neg (P \land Q) \Leftrightarrow S$

4. Consider the following KB:

S1.
$$A \lor B$$

S2. $\neg B \lor \neg C$
S3. $\neg C \lor D$
S4. $B \lor \neg E$
S5. $\neg D \lor E$

- a) Use the resolution algorithm to determine whether the following KB entails $\neg E$. [5 points]
- b) Use the resolution algorithm to determine whether the following KB entails $\neg C$. [5 points]

E (AMB) V (BMA) VA) VB assoc
E (AMB) V (BVA) VB) distrand
and
assoc
E (AMB) V (BVA) VB) A assoc
True
(C) KB:
$$\neg$$
 (A (=> B) (= (AV7B))
 $= \neg$ (\neg (\neg AVB) M(\neg BVA)) V (AV1B))
 $= \neg$ (\neg (\neg AVB) V \neg C \neg BVA)) V (AV1B))
 $= \neg$ (\neg (\neg AVB) V \neg C \neg BVA) M \neg AMB)
 $= (\neg$ AVB) M (\neg BVA) M \neg AMB)
CNF = \neg AVB) M (\neg BVA) M \neg AMB

$$S_1 = 7AVB$$

 $S_2 = 7BVA$
 $S_3 = 7A$
 $S_4 = B$
 $S_5 = A$ ($S_2 + S_4$)
 $S_6 = {}$ ($S_3 + S_5$)
 $S_6 = {}$ ($S_3 + S_5$)
 $S_6 = {}$ ($S_4 + S_5$)

Study (3)
$$Pass(7)$$
 | Study => $Pass$ | $Pass =$ | $Pass =$ | $Pass =$ | $Pass =$ | $Pass =$ | $Pass =$ | $Pass =$ | P

 $A \equiv 7 \text{ (Study } N \text{ Rest)} V \text{ Pass} \equiv 7 \text{ Study } V 7 \text{ Rest} V \text{ Pass}$ $B \equiv 7 \text{ Study } V 7 \text{ Rest}$

C = 7 Rest V 7 study

(7 study V 7 Rest V Pass) 1 (7 Study V 7 Rest) 1 (Rest V7 study) 1 Pass

= (7 Study V7 Rest VPass) / (7 study V7 Rest) / Pass

= (7 (study 1 Rest) V Pass) 1 7 (study 1 Rest) 1 Pass

= 7 (Study / Rest) / 7 Pass / 7 (study / Rest) / Pass

= 7(Study / Rest) / 7 Pass / Pass
is unsatistiable

3.

 $S_1: p \Rightarrow (QVR)$

Sz: 7(PAQ) (=> S

SI = 7P V (QVR) = 7P VQ VR

 $S_2 \equiv (7(PNQ) \Rightarrow) \land (S \Rightarrow) 7(PNQ))$

 $\equiv \left(\left(PAQ \right) V S \right) A \left(75 V \left(7P V 7Q \right) \right)$

= ((SVP) ACSVQ) A (75 V7PV1Q)

=(SVP) 1 (SV2) 1 (15 V7P V1Q)