实验一 四位二进制数与格雷码的互换和七段数码管 的静态显示

姓名 侯少森 学号 18340055

- 一、四位二进制数转格雷码电路设计
 - 1. 实验内容
- (1) 构建出四位二进制数与格雷码对应的真值表,通过真值表来得出四位二进制数转格雷码的函数表达式(下图中 Q_3 , Q_2 , Q_1 , Q_0 代表四位二进制数从左到右所在位上的值, G_3 , G_2 , G_1 , G_0 代表相对应格雷码的从左到右所在位上的值):

Q_3	Q_2	\mathbf{Q}_1	Q_0	G ₃	G ₂	G ₁	G ₀
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1

1	1	1	1	1	0	0	0

(2)根据上图的真值表,可以得到格雷码的各个位与四位二进制数的各个位对应的表达式(其中 ⊕表示异或):

$$G_3=Q_3$$
 $G_2=Q_3 \oplus Q_2$
 $G_1=Q_2 \oplus Q_1$
 $G_0=Q_1 \oplus Q_0$

(3)通过下面的仿真电路以及实验箱操作来验证该表达式的正确与否.

2. 仿真电路与结果

(1) 根据上面的表达式. 在 proteus 上设计出仿真电路图(其中 A₀、A₁、A₂、A₃代表四位二进制数的 Q₃、Q₂、Q₁、Q₀, A₄、A₅、A₆、A₇代表格雷码的 G₃、G₂、G₁、G₀):

(2)点击运行,开始运行仿真电路图,得到的结果图如下:

(3)分析仿真结果图:

真值表中的"1"表示高电平,"0"表示低电平.

任意找几列来进行验证:

四位二进制数为 1000, 格雷码为 1100, 与真值表对比, 正确!

四位二进制数为0111,格雷码为0100,与真值表对比,正确!

经过多次与真值表对比验证,得到四位二进制数转格雷码的表达式是正确的.

- 3. 实验结果与分析
 - (1)实验电路连接图如下:

(2)实验结果图(即示波器上的波形图)如下:

(其中 D_0 、 D_1 、 D_2 、 D_3 代表四位二进制数的 Q_3 、 Q_2 、 Q_1 、 Q_0 , D_4 、 D_5 、 D_6 、 D_7 代表格雷码的 G_3 、 G_2 、 G_1 、 G_0)

根据示波器显示的波形图,和仿真电路结果一样,同样可以验证四位二进制数转格雷码的表达式是正确的.

二、格雷码转四位二进制数电路设计

1. 实验内容

(1)构建出格雷码与四位二进制数对应的真值表,通过真值表来得出格雷码转四位二进制数的函数表达式(下图中 G₃, G₂, G₁, G₀代表相对应格雷码的从左到右所在位上的值, Q₃, Q₂, Q₁, Q₀代表四位二进制数从左到右所在位上的值):

G ₃	G ₂	G_1	G _o	Q_3	Q_2	Q_1	Q_0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	1

0	1	0	1	0	1	1	0
0	1	1	0	0	1	0	0
0	1	1	1	0	1	0	1
1	0	0	0	1	1	1	1
1	0	0	1	1	1	1	0
1	0	1	0	1	1	0	0
1	0	1	1	1	1	0	1
1	1	0	0	1	0	0	0
1	1	0	1	1	0	0	1
1	1	1	0	1	0	1	1
1	1	1	1	1	0	1	0

(2)根据上图的真值表,可以得到四位二进制数的各个位与格雷码的各个位对应的表达式(其中 ⊕表示异或):

$$Q_3=G_3$$

$$Q_2=Q_3 \oplus G_2$$

$$Q_1=Q_2 \oplus G_1$$

$$Q_0=Q_1 \oplus G_0$$

(3)通过下面的仿真电路以及实验箱操作来验证该表达式的正确与否.

2. 仿真电路与结果

(1)根据上面的表达式. 在 proteus 上设计出仿真电路图(其中 A_0 、 A_1 、 A_2 、 A_3 代表四位二进制数的 G_0 、 G_1 、 G_2 、 G_3 , A_4 、 A_5 、 A_6 、 A_7 代表格雷码的 Q_0 、 Q_1 、 Q_2 、 Q_3):

注:此处因为实验箱上的异或门(即 74LS86 芯片数量不够, 无法实现真正的格雷码转四位二进制数, 故仍使用 74LS197 来产生 16 进制计数器的输出, 并将其当作格雷码来进行实验.

(2)点击运行,开始运行仿真电路图,得到的结果图如下:

(3)分析仿真结果图:

真值表中的"1"表示高电平,"0"表示低电平.

任意找几列来进行验证:

格雷码为 1010, 四位二进制数为 1100, 与真值表对比, 正确!

格雷码为1101,四位二进制数为1001,与真值表对比,正确!

经过多次与真值表对比验证, 得到格雷码转四位二进制数的表达式是正确的.

3. 实验结果与分析

(1)实验电路连接图如下:

(2)实验结果图(即示波器上的波形图)如下:

(其中 D_0 、 D_1 、 D_2 、 D_3 代表四位二进制数的 Q_0 、 Q_1 、 Q_2 、 Q_3 , D_4 、 D_5 、 D_6 、 D_7 代表格雷码的 G_0 、 G_1 、 G_2 、 G_3)

根据示波器显示的波形图,和仿真电路结果一样,同样可以验证格雷码转四位二进制数的表达式是正确的.

三、七段数码管的静态显示(显示学号的最后两位)设计

1. 实验内容

- (1)该实验须知:实验箱上的七段数码管部分,是低电平选通的,通过BCD码的输入来显示出七段码.
- (2) 所以只需将静态 BCD 码作为输入, 低电平选通, 即可在指定位置显示出 BCD 码所对应的数字(七段码)

2. 仿真电路与结果

(1)根据上文的设计思路的分析,本人的学号后两位是 55, 所以将 BCD 码 0101(即 5)接入七段数码管,如下图所示:

(2)点击运行,则可看到学号后两位(55),如下图所示:

3. 实验结果

(1) 按照仿真电路的设计接线,即可得到实验结果,如下图:

四、实验总结(不限但包括实验中遇到的问题、如何解决、收获等)实验中遇到的问题:

- (1) 示波器的使用: 示波器上显示的波形图闪的飞快, 按下 STOP 按钮无法清晰地看见各个波形. 解决: 通过向 TA 请教, 旋转水平 SCALE 旋钮, 来修改水平时基
- (2) 有毛刺现象:示波器的波形上出现一些不正确的尖峰信号. 解决:在系统中尽可能采用同步电路

实验收获:对四位二进制数与格雷码有了更深的理解, 更为熟练的掌握了二者

的互相转换方法,并可以通过实验来验证. 对数码管和七段码的使用也变得熟练. 有任何不理解或不懂的问题都会先思考再请教 TA, 而不是搁置不管.