7 Déc.2015

Mathématiques(2pages)

1ière S:1

Exercice 1:4,5pts

Soient
$$x \in \left[-\frac{5}{2}, -\frac{3}{2} \right]$$
 et $y \in \left[0, 2 \right]$.

- 1. a) Encadrer (3-y) puis $(y-3)^2$.
 - b) En déduire un encadrement de $(y-3)^3$.
- 2. Trouver un encadrement de $\frac{-2}{x+1}$ puis $\frac{2x}{x+1}$.

Exercice2:7pts

1.Soit:
$$A = \sqrt{\frac{2 - \sqrt{2}}{2 + \sqrt{2}}}$$
 et $B = \sqrt{32} - \sqrt{72}$ et $C = \frac{1}{1 + \sqrt{2}} - \frac{2}{1 - \sqrt{2}}$.

- a) Vérifier que $A = \sqrt{2} 1$
- b) Simplifier B et C.
- c) En déduire que B+C-A=2.
- 2. Soit $E = x^3 8$ $F = x^3 6x^2 + 12x 8$, $H = 6x^2 24$ où x et y sont deux réels donnés.
 - a) Justifier que $F = (x-2)^3$
 - b) Factoriser les expressions E et H.
 - c) En déduire une factorisation de E+H.
 - d) Montrer que pour $x \ne 2$ on a : $\frac{E+H}{F} = \left(\frac{x+4}{x-2}\right)^2$

Exercice3:7pts

On considère deux segments [EC] et [FB] perpendiculaires en A (voir fig.1) tels que :

$$AB = 4$$
, $\widehat{BCA} = 30^{\circ}$ $EF = \frac{8}{3}$ $AF = \frac{4}{3}$.

- 1. a) Montrer que BC = 8 et $AC = 4\sqrt{3}$.
 - b) Montrer que $\widehat{EFA} = 60^{\circ}$.
 - c) En déduire que (EF) // (BC).
- 2. a) Donner une valeur approchée de \widehat{ACF} (à 0.1 degré près).
 - b) Calculer $\tan \widehat{BEA}$.
 - c) En déduire que $BE = \frac{8}{\sqrt{3}}$.
- 3. a) Construire le point G pour que CBFG soit un parallélogramme.
 - b) Evaluer $\frac{EF}{EG}$
- 4. a) Construire H sur [EB] tel que $\frac{EH}{EB} = \frac{1}{4}$.
 - b) En déduire que (FH) // (BG).
- 5. Calculer l'aire du parallélogramme CBFG.

Exercice4: 1,5pts

Cocher la bonne réponse :

1. Soit ABC un triangle tels que AB=3 , BC=6 et AC= $3\sqrt{5}$.

Alors
$$\tan \widehat{BAC} =$$

a)
$$\frac{1}{2}$$

b)
$$\sqrt{5}$$

2. Soit
$$a = \frac{10^5 - 5}{10^5 + 5}$$
. Alors on a: a) $a < \sqrt{a} < a^2$ b) $a^2 < a < \sqrt{a}$ c) $\sqrt{a} < a < a^2$

b)
$$a^2 < a < \sqrt{a}$$

c)
$$\sqrt{a} < a < a^2$$

3.
$$(1+\sqrt{8}-\sqrt{2})^2$$
 est égal à : a) 7

b)
$$(1+\sqrt{6})^2$$

b)
$$(1+\sqrt{6})^2$$
 c) $(1+\sqrt{2})^2$.

Exercice3:

