

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès Ecole Nationale d'Ingénieurs de Gabès EPREUVE D'EVALUATION Date: 10/03/2022 Page: 1/5 Indice: 3 Réf : DE-EX-01

Matière : Fondamentaux des Réseaux III	Section: GCP GCV G GLA année Documents Autorisés: GOni	Diplôme: Mastère Mingemeur	NO	1	
Remarque : Calculative Survivos	Documents Autorisés : II Oui El Non	Enseignant (e): Mohamed ABID	Nombre de pages :	Date de l'Examen : 04/05/15/27 2h 3h	0.4/02/DD4

Vous avez la tâche de hien configurer le réseau pour bien faire le routage et la commutation des Soit le réseau de la figure 2 dans le page 5, il est composé de 7 routeurs, 3 commutateurs.

paquets IPv4 en faisant les choses dans la bonne mantière.

Voici les données du Problème:

sont mentionnés dans la topologie)

Les @IP des interfaces de tous les équipements (les préfixes des loopback L1, L2, L3 et L4

Equipement/Int Routeur	@IP	Masque
R1.G0	192.168.145.1	255.255.255.240
RLGI	192.168.123.1	255.255.255.248
D1 60	192.168.12.1	255.255.255.252
Miso		0.550.550.550
R1.L0	1.1.1.1	255.255.255.0
R2.C0	192.168, 123.2	255.255.255.248
D2 50	192.168.12.2	255.255.255.252
R2.L0	2.2.2.2	255.255.255.0
R3.G0	192.168. 123.3	255.255.255. 248
R3.L0	3,3,3,3	255.255.255.0
R4.G0	192.168.145.4	255.255.255.240
R4.L0	4.4.4.4	255.255.255.0
R5.G0	192.168.145.5	255.255.255.240
R5.S0	192.168.56.5	255.255.255.252
R5.L0	5.5.5.5	255.255.255.0

		1 2 2 2 2 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2
R6.S0	192.168.56.6	255.255.255.252
R6.G0	172.16.67.6	255.255.255.128
R6.L0	6.6.6.6	255.255.255.0
R7.G0	172.16.67.7	255.255.255.128
R7.L0	7.7.7.7	255.255.255.0
		1. I

- OSPF est préconfiguré avec les zones (aires) spécifiées dans la topologie (par exemple, L0 de R1 appartient à l'aire 0). Nous allons annoncer tous les réseaux (même les interfaces loopbacks)
- Les couts OSPFv2 de tous les types de liens valent 1 sauf pour le lien correspondant à un câble série (cout 64)
- Voici les priorités des 5 routeurs de la topologie

Routeur	Priorité
R1	100
R2	150
R3	100
R4	100
R5	100

• Nous allons annoncer les réseaux dans RIPv2 (même les réseaux des interfaces loopback)

Partie I: (9,75 points)

Soit la topologie de la figure 1

Figure 1: Aires 0 et 1

- 1) Comment on va choisir le RID des routeurs R1, R2, R3, R4, R5 et R6? (0,25p)
- 2) Quels sont les DR, BDR du réseau entre R1, R2 et R3 ? (0,5p)
- 3) C'est quoi la solution qu'on doit faire au niveau de l'area 1 pour rendre R1 et R4 voisin dans l'aire 0 ? Que sera alors le rôle OSPF de R4 dans l'aire 0 ? (0,5p)
- 4) Après avoir configuré la solution (de la question 3), écrire le contenu de la table de Router Link State du routeur R1 dans l'aire 0 (4,5p)

Adv router	Link state ID	Link Count	Link Type	Link ID	Link Data	Cost

5) Completer la table Network Link State de l'aire 0 (1p)

Adv router	Link state ID	Mask	Attached router
	for the state of		

6) Ecrire les routes, avec les codes OSPF uniquement, de la table de routage de R1 (attention, une route non OSPF écrite va engendrer une diminution de la note) (3 p)

Code	DA	Prefixe	Int sortie	@IP Next hop	Cout

Partie II: (2,75 points)

Dans cette partie, nous ajoutons l'aire 2 à la topologie de la Partie I

- 1) Comment corriger cette topologie pour permettre le routage OSPF entre l'aire 0 et l'aire 2 ? Quel sera alors le rôle OSPF de R5 ? (0,5 p)
- 2) Combien le routeur R1 aura de lien au total?

 Ecrire juste le ou les nouveaux liens que vous n'avez pas écrits dans la question I.5 (0,75p)

Link Type	Link ID	Link Data	Cost

3) Ecrire le ou les nouvelles routes OSPF que vous allez ajouter au niveau de la table de routage de R1 (1,5 p)

Code	DA	Préfixe	Int sortie	@IP Next hop	Cout

Figure 2: Topologie OSPV2, RIPv2 et NSSA