NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

Solar Array Subsystems Study FINAL REPORT

Prepared For NASA LEWIS RESEARCH CENTER CLEVELAND, OHIO 44135

CONTRACT NAS3-21926

(NASA-CR-159857) SOLAR ARRAY SUBSYSTEMS
STUDY Final Report, Mar. 1979 - May 1980
(PRC Systems Services Co.) 284 p
HC A 13/MF A01

CSCL 10A
G3/44
16918

Systems Services Company
A DIVISION OF PLANNING RESEARCH CORPORATION

June 6, 1980 ECA-PWR-80-171

NASA-Lewis Research Center/ 21000 Brookpark Road Cleveland, OH 44135

Attention: Mr. Louis Light, Contracting Officer, MS500-306

Subject: Submission of Final Report

Reference: Contract Number NAS3-21926, Solar Array Subsystem Study

Gentlemen:

In compliance with the referenced contract, the Solar Array Subsystem Study Final Report is hereby submitted.

Should you have any questions, please contact the undersigned at (205) 883-2900.

Very truly yours,

PRO SYSTEMS SERVICES COMPANY

Peter W. Richardson Project Manager

PWR/bjs

Enclosures: As Stated

Distribution: List as attached

2011 Commerce Delive Florida file additional sold?

Final Report

SOLAR ARRAY SUBSYSTEMS STUDY

by

Peter W. Richardson, Deputy Director, Systems Engineering
F. Q. Miller, Senior Associate
M. N. White, Research Associate
Michael S. Badgley, Research Associate

PRC SYSTEMS SERVICES COMPANY

Prepared For

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA-Lewis Research Center

Contract NAS3-21926

FOREWORD

This is the final report of a study entitled <u>Solar Array Subsystems</u>
Study performed for NASA Lewis Research Center under Contract NAS3-21926.
The technical effort extended from 20 March 1979 through 29 February 1980.

The LeRC Project Manager for the study was Julian F. Been. The PRC/SSc Project Manager was Peter W. Richardson. The study team for PRC consisted of Fred Q. Miller, lead engineer, Marti N. White, lead cost analyst, M. B. Badgley, research associate, and Ron Rosic, graphics. Final report coordinated by Brenda J. Speight.

TABLE OF CONTENTS

			PAGE
	LIST	OF EXHIBITS	V
	GLOS	SARY	vi
1.0	INTR	ODUCTION AND EXECUTIVE SUMMARY	1
	1.1	Objective and Purpose of Study	1
	1.2	Approach to the Study	2
		1.2.1 Task I-Determination of Characteristics of a 500 kW Solar	
5/ 5/		Array Subsystem	4
		1.2.2 Task II-Determination of Total Cost for Baseline Subsystem .	14
		1.2.3 Task III-Analysis of Cost-Technology Parameters	19
	1.3	Conclusions and Recommendations	22
		1.3.1 Conclusions of the Study	22
		1.3.2 Recommendations	28
2.0	BASE	LINE	30
	2.1	Space Services Platform System	30
		2.1.1 Solar Array Subsystem	30
		2.1.2 Energy Storage Distribution and Conditioning Subsystem	30
		2.1.3 Structural/Mechanical Subsystem	30
		2.1.4 Propulsion and Control Subsystem	33
		2.1.5 Command and Data Subsystem	33
	٠	2.1.6 Operations and Maintenance Crew Subsystem	33
		2.1.7 Thermal Control Subsystem	33
	2.2	Mission Scenario and System Requirements	33
	2.3	Work Breakdown Structure	34
	2.4	Solar Array Design	34
		2.4.1 Electrical/Mechanical	34
		2.4.2 Structural	45
	2.5	Array Summary	54
		2.5.1 Performance Summary	54
		2.5.2 Weight Statement	54
		2.5.3 Array Table	54
3.0	FUNC	TIONAL FLOWS	58
4.0	TOTA	L LIFE CYCLE COST	68
	4.1	Design, Development, Test and Evaluation	68
	4.2	Total Production Phase Cost	68
		4.2.1 Total Manufacturing Cost	68

		TABLE OF CONTENTS (CONTINUED)	Page
		4.2.2 NASA Cost	77
		4.2.3 Project Management	77
	1	4.2.4 Systems Engineering	78
	4.3	Total Operations and Maintenance Phase Cost	78
		4.3.1 Total Contractor's Cost	78
		4.3.2 NASA Incurred Cost	78
	4.4	Summary	79
5.0	SOLA	R ARRAY PERFORMANCE AND COST MODEL	81
	5.1	Basic Concept	81
	5.2	Description of Model	81
		5.2.1 Solar Array Performance Parameters	81
		5.2.2 Maintenance Requirements	104
		5.2.3 Array Performance Requirements	106
		5.2.4 Solar Cell Quantity	106
		5.2.5 Transportation Requirements	106
		5.2.6 Array Design	106
		5.2.7 Array Materials	106
		5.2.8 Material Costs	106
		5.2.9 Array Weight	109
		5.2.10 Array Maintenance	109
		5.2.ll Life Cycle Cost	109
	5.3	Summary	109
6.0	TECH	NOLOGY VS. LIFE CYCLE COST	111
	6.1	General	111
	6.2	Methodology	111
	6.3	Technology Areas	112
		6.3.1 Cell Thickness vs. LCC	112
		6.3.2 Cover Thickness vs.LCC	119
		6.3.3 Blanket Temperature vs. LCC	119
		6.3.4 Cell Efficiency vs. LCC	· 124
		6.3.5 Cover Degradation vs. LCC	124
		6.3.6 Cell Degradation vs. LCC	124
		6.3.7 Line Voltage vs. LCC	131
		6.3.8 Years Between Overhaul vs. LCC	131
		6.3.9 Mean Time Between Failures vs. LCC	136

TABLE OF CONTENTS (CONTINUED)

			PAGE
		6.3.10 Cell and Cover Assembly Unit Costs vs. LCC	136
	6.4	Summary	136
	6.5	Recommendations	142
		6.5.1 Specific Technology Recommendations	142
		6.5.2 Further Applications of the Model	143
7.0	REPO	RTING OF STUDY STATUS AND RESULTS	144
LIST	OF A	PPENDICES	
	A.	Baseline 500 kW Solar Array Subsystem Requirements	A-1
	в.	Life Cycle Cost Data	B-1
	c.	Solar Array Performance and Cost Model Program	C-1
	D.	Average Temperature Variations	D-1
	E.	SACPM Program Data Printout (Ti-59)	E-1

LIST OF EXHIBITS

Numb	er	<u>Title</u>	Page
1-1	•	Solar Array Subsystem Study	∶3
1-2	2	SAS Work Breakdown Structure	5
1-3	3	Space Services Platform System	7
1-4	ļ	SSPS Subsystem Interfaces and Functions	8
1-5	;	Baseline Solar Array Layout	11
1-6	•	SAS Hierarchy	12
1-7	,	Baseline Weight Statement	13
1-8	3	DDT&E Functional Flow	15
1-9): ''''	Production Functional Flow	16
1-1	.0	O&M Functional Flow	17
1-1	.1	Solar Array Subsystem Life Cycle Cost Model Structure	18
1-1	.2	Solar Array Performance and Cost Model	21
1-1	.3	Technology Parameters Versus LCC	23
1-1	.4	Technology Parameters Versus LCC	24
1-1	.5	Summary Results Of Study	25
2-1	•	Space Services Platform System	31
2-2	!	Space Services Platform System	32
2-3	}	System Requirements	35
2-4	f.,	SAS Work Breakdown Structure	36
2-5		SAS Hierarchy	37
2-6		Array Blanket	39
2-7	r	Array Panel	40
2-8	}	Module Cross Section	41
2-9)	Solar Cell Interconnects Basic Pattern, 3 Cells in Parallel,	
		5 Cells in Series	43
2-1		Cross Section Details, Mechanical Interconnects	44
2-1		Space Services Platform System	46
2-1		Outboard End Tip Arrangement	48
2-1		Compression Plate and Tension Plate Details	49
2-1	4	Outboard End Tip Price Detail	50
2-1	.5	Intermediate Stiffener Rib Collar Detail	51
2-1	6	Drive End Min Diogo	50

LIST OF EXHIBITS (Continued)

Number	<u>rit</u>	<u>:le</u>				Page
2-17	SAS Structure Weight Statement	:			•	53
2-18	Baseline Solar Array — Perform	nance	•		•	55
2-19	Baseline Weight Statement		;●.	į.	•	56
2-20	Solar Array Totals			•	•	57
3-1	DDT&E Functional Flow			•	•	59
3-2	Solar Array Subsystem Flow		•	•	•	60
3-3	O&M Functional Flow			•	•	61
3-4	Cell/Cover Assembly Flow, Prod	luction Phase	•	•	•	62
3-5	Module Substrate Assembly Flow	, Production Phase	•	•	•	63
3-6	Module Assembly Flow, Producti	on Phase	•	**	•	64
3-7	Panel Assembly Flow, Production	on Phase	. •		•	65
3-8	Blanket Assembly Flow, Product	ion Phase	•	.,	•	66
3-9	Space Assembly and Checkout		•	•	•	67
4-1	Solar Array Subsystem Life Cyc	cle Cost Model Structure .	•	•	•	69
4-2	Ground Rules and Assumptions			•	•	70
4-3	SAS Baseline Life Cycle Cost		•	•	•	72
4-4	Paseline Inputs to LCCM		•	•	•	73
4-5	SAS Manufacturing Process Fact	tors and Baseline Direct Lab			•	74
4-6	SAS Baseline Materials Cost		•	•		75
4-7	SAS Baseline Process Equipment	t Costs	•	•	•	76
5-1	Solar Array Performance and Co	ost Model	•	•	• 1	82
5-2	Solar Cell Performance Paramet	ters	•	•	•	83
5-3	Module Cross Section		•	•	•	86
5-4	Physical Parameters		•	•	•	89
5-5	Radiation Shielding			 •	•	90
5-6	Radiation Flux		•	•	•	91
5-7	Radiation Degradation		•	•	•	93
5-8	Solar Array Thermal Mass		. •	•	•	95
5-9	Thermal Parameters		. 3	•	•	97
5-10	Temperature Derating	• • • • • • • • • • • •	•	•	•	100
5-11	Blanket Power Distribution .			•	• • •	103

LIST OF EXHIBITS (Continued)

Number	<u>Title</u>	Page
5-12	Cell Performance Factors	105
5-13	Array Design	107
5-14	Baseline Inputs to LCCM	108
5-15	SAS Baseline Life Cycle Cost	110
6-1	LCC Vs Cell Thickness (Conventional Cell)	113
6-2	LCC Vs Cell Thickness (Back Surface Field)	115
6-3	LCC Vs Cell Thickness (Back Surface Field & Thin Diffused	
	Top Region	117
6-4	LCC Vs Composite Cell Thickness	119
6-5	LCC Vs Cover Thickness	120
6-6	LCC Vs Temperature	. 122
6-7	LCC Vs Cell Efficiency	. 125
6-8	LCC Vs Cover Degradation	127
6-9	LCC Vs Cell Degradation	129
6-10	LCC Vs Line Voltage	132
6-11	LCC Vs Years Between Overhaul	134
6-12	LCC Vs Meatime Between Failure	137
6-13	LCC Vs \$/Cell & Cover Assembly	139
6-14	Summary of Results of Study	. 141

GLOSSARY

Acronyms

AMO Air Mass Zero

BOL Beginning of Life

BSF Back Surface Field

CCA Cell Cover Assembly

CDS Command and Data Subsystem

DDT&E Design, Development, Test & Evaluation

EOL End of Life

ESDCS Energy Storage, Distribution and Conditioning Subsystem

I.C. Interconnect

LCC Life Cycle Cost

LCCM Life Cycle Cost Model

LEO Low Earth Orbit

mh Man-hour

MTBF Mean Time Between Failure

O&M Operations and Maintenance

OMCS Operations and Maintenance Crew Subsystem

PCS Propulsion and Control Subsystem

QA Quality Assurance

SA&CO Space Assembly and Checkout

SAPCM Solar Array Performance & Cost Model

SAS Solar Array Subsystem

SMS Structural Mechanical Subsystem

SSPS Space Services Platform System

TCS Thermal Control Subsystem

WBS Work Breakdown Structure

GLOSSARY (Continued)

Greek Symbols

- α Absorbitivity
- Bending moment factor В
- **Emissivity**
- Electron Flex (1 mev electrons/cm²)
- Cell beginning-of-life efficiency η_{BOL}
- Cell end-of-life efficiency η_{EOL}
- Г Angle of incidence, heat or solar energy
- Density (cubic)
- Bending angle (of boom)
- Natural frequency

English Symbols

A	Cross s	ection	area	of	boom	longeron	or	area	of	cell,	cover,	adhesiv	e,
	etc.												

- As Substrate area
- B/L Baseline
- C^{D} Conductor
- Specific heat Cp
- Density (of cell, cover, adhesive) D
- Bending stiffness EI
- f Boom cross section area factor
- Assembly factor FA
- $\mathbf{F}_{\mathbf{C}}$ Cover factor (= $F_C + F_T$)
- $\mathbf{F}_{\mathbf{G}}$ Glassing factor
- High voltage leakage loss factor Fleak
- $^{\mathtt{F}}_{\mathtt{p}_{\mathtt{i}}}$ Cell performance factors
- Cover performance factors
- FRAD Cell degradation factor

GLOSSARY (Continued)

English Symbols (Continued)

```
Temperature cycling factor
Ftc
F-TOP
          Temperature derating factor
          Cover degradation factor
T<sub>b</sub>
          Current
          Length of boom
          Blanket mass
mCp
          Thermal Mass
          Number of channels
N<sub>CH</sub>
P
          Tension load
Pcr
          Critical buckling load
PD
          Power density
Pmp
          Maximum power cell
          Quantity
Q
          Electrical energy
q_{E}
          effective boom radius
SI
          Effective illumination
          Thickness
t
Ŧ
          Average temperature
          Thickness of cell, cover or of substrate, module or panel
          Tantalum pentoxide
Ta<sub>2</sub>O<sub>5</sub>
          Diode voltage drop
\mathbf{q}^{\mathbf{V}}
          Interconnect voltage drop (=V<sub>SC</sub> + V<sub>mm</sub> + V<sub>PP</sub> + V<sub>mb</sub> + V<sub>sr</sub>)
VIC
V<sub>mb</sub>
          Main bus conductor voltage drop
          Module to module interconnect drop
V<sub>mm</sub>
v<sub>sr</sub>
          Slip ring voltage drop
V<sub>SC</sub>
          Cell connection voltage drop
W
          Weight
          Weight of boom
```

Weight of structure

Wstr

1.0 INTRODUCTION AND EXECUTIVE SUMMARY

NASA's proposed space programs for the 1980's and 1990's indicate increases in space power requirements in the multi-hundred kilowatt range. Some missions are projected to require as much as 100 to 250 kilowatts of power by the mid to late 1980's. These large space power systems requirements, within this time frame, present a technical and economic challenge to NASA. The projected costs of multi-hundred kilowatt systems based on present technology cost is considerable and becomes a constraint on a number and types of space programs NASA will be able to carry out.

Historically the solar array subsystem's costs have contributed a significant percent of total space power systems costs. This makes the solar array a logical candidate for potential cost reduction of the total space power systems. One of the most effective approaches to cost reduction in the past has been through technology advances, yet the relationships between total systems cost and the many solar array technologies have not been established.

While there is considerable commonality in the different mission requirements placed on the photovoltaic space power system there are also many unique requirements for each class of missions. This suggests that it would be productive to examine each class of missions separately. The class of missions which has the potential for providing considerable cost reduction through technology is the high-power low-earth-orbit Space Platform. This is one of several large earth spiting satellites proposed which can yet be impacted through advanced technology. This is the type of baseline mission which is to be analyzed in this study.

1.1 Objective and Purpose of Study

It is the purpose of this study to establish the cost-technology relationships of a 500 kW (250 kW continuous to load) silicon planar solar array subsystem for a low-earth-orbit Space Platform type of mission. The study is to identify areas of new technology which if the technology were incorporated, would reduce the cost of space power systems in the LEO, large space platform mission class.

Stated another way, the study is to establish the relative sensitivity of array life cycle costs (ICC) to variation in parameters such as cell thickness, blanket temperature, and cell/cover degradation. The cost of implementing specific technology solutions is, however, not quantified. For example, the effect of blanket temperature on life cycle costs was determined to be \$3.2 million per degree centigrade (in the vicinity of the baseline), however, the impact on array parameters and hence the cost of the means to achieve a particular blanket temperature was not quantified.

However, the capability exists within the model to determine these relationships, given the specific technology.

1.2 Approach to the Study

From the outset, the technique and model to be applied to the study objectives was developed with adaptability and versatility as key features. This would enable application of the solar array model to a large spectrum of mission classes and at the same time provide quantification of life cycle (LCC) costs versus technologies for the specific mission class of this study. Further, the technique was developed to accommodate any analog relationship; for examptable solar cell thickness versus cell efficiency or cell/cover degradation characteristics versus end-of-life array power output. The model, while used to quantify the influence of varied technology parameters versus LCC for a baseline design, can be used to optimize the baseline, and with modification, a broad spectrum of missions.

The study was performed in four phases, or tasks:

Task I - Determination of characteristics of a 500 kW Solar Array Subsystem (a baseline design)

Task II - Determination of Total Cost (LCC) for the Baseline Subsystem

Task III - Analysis of Cost-Technology Parameters (LCC vs. Technology)

Task IV - Reporting

The sequencing of these tasks is shown in Exhibit 1-1.

The approach and general results obtained within each task are summarized in the following paragraphs. Detailed discussion of results is provided in Sections 2.0 through 7.0 for each task/subtask, as specifically referenced in this section.

EXHIBIT 1-1. SOLAR ARRAY SUBSYSTEM STUDY

-

1.2.1 Task I - Determination of Characteristics of a 500 kW Solar Array Subsystem

The purpose/objective of this task was to develop a conceptual baseline solar array subsystem design. The design was developed to a level of detail considered necessary to support a variation of technology parameter values, for example, cell/cover assembly life degradation, bus voltage level, life/reliability and others. Further, the design included scenarios for manufacturing processes, space transportation, assembly and checkout, and operations and maintenance, again parametrically variable to support cost/technology analyses.

Ground rules for the design called for a silicon planar array, use of existing and proven technology, Shuttle transportation, and an operational date in the 1985-1995 time frame.

Task I consisted of four subtasks:

- Subtask I-1: Develop the Work Breakdown Structure (WBS)
- Subtask I-2: Establish the Data Base
- Subtask I-3: Define the Solar Array Baseline Configuration
- Subtask I-4: Specify (any) New Technology Required

1.2.1.1 Subtask I-1: Develop the Work Breakdown Structure (WBS)

The WBS was developed initially to accommodate any configuration and then made more specific to reflect the baseline array subsystem configuration. The resulting WBS is shown in Exhibit 1-2. The WBS served as the basis for the life cycle cost model (LCCM) developed in Task II, (Section 4.0) and for the manufacturing, space assembly and check-out, and operations and maintenance functional flows, (Section 3.0). The WBS is discussed in more detail in Section 2.3.

1.2.1.2 Subtask I-2: Establish the Data Base

A base was established to provide technical, cost and programmatic data for this study. The data base was researched and summary data sheets developed on approximately 50 historical and planned space solar arrays to provide fast access to technical and cost information as required.

EXHIBIT 1-2. SAS WORK BREAKDOWN STRUCTURE

1.2.1.3 Subtask I-3: Define the Solar Array Baseline Configuration

The definition of a baseline array configuration was preceded by development of system/subsystem requirements. These requirements were developed for the study and documented in a "Specification of Requirements, 500 kW Solar Array Subsystem," which is provided as Appendix A . The specification is summarized in the following paragraphs.

A Space Services Platform System (SSPS) was conceptualized to create a system structure within which a Solar Array Subsystem (SAS) could be defined to provide a baseline design for the study. The purpose of the Space Services Platform System (SSPS) is to provide services to varied User Systems. The User Systems may be engaged in materials processing, manufacturing, astronomy, solar system and earth observation, life sciences, communications, testing and other operations. The User Systems may be secured to the platform or docked for servicing or short-term operations. The general configuration of the SSPS is shown in Exhibit 1-3. The subsystems of the SSPS, their functions and major interfaces are summarized in Exhibit 1-4.

The major system requirements on the SSPS, and the subsystem requirements on the SAS, are:

- System operational 1985-1995
- State-of-art (1979) design
- Silicon solar cells; planar array (no concentration)
- Transportation to LEO: Shuttle
- LEO Orbit: 444 km. Inclination 55°
- 250 kW continuous to loads, provided in 48 individual power channels to the ESDCS subsystem at the slip ring interface
- Provide this output from BOL to EOL
- Varied angle to sun to maintain 250 kW to load
- Bus voltage for users to be:
 30 VDC = small, experimental projects (20% of power)
 100-250 VDC-intermediate power projects and other
 SSPS subsystems (30% of power)
 - 1000 VDC-manufacturing, processing, large ion engine testing (50% of power)
- 10 Year Life before SAS solar blanket replacement
- Folded blankets for space transport

EXHIBIT 1-4. SSPS SUBSYSTEM INTERFACES AND FUNCTIONS

- Astronaut assembly and check-out, assisted by maneuverable work platforms
- Panel level replacement by astronauts for maintenance (when power output degrades below design value)

The derived requirements on the SAS are:

• Orbit Parameters

87.3 minutes - period - illumination 53.7 minutes - eclipse 33.6 minutes 60,239 in ten years - # cycles

Array Electrical Requirements:

	ENERGY	POWER
Total Per Orbit - Array	429.60 kW HR	480 kW
- To User	223.75 kW HR	250 l.W
- To Energy Storage Subsystem (68%)	205.85 kW HR	230 kW

The conceptual design of the baseline SAS was developed to a level of detail required to support the cost/technology analyses of Task III. The design approach, generally, was to

- select the baseline cell, cover, substrate and circuitry
- determine the value of the factors which affect performance and apply to the baseline cell/cover assembly to determine EOL performance. This can be expressed as,

= per-cell array area

- determine number of cell/cover assemblies required for baseline orbit and load power/energy requirements
- determine total array area, dimensions and structural (a function of mass and dimensions) requirements
- determine array weight breakdown and totals.

The resulting baseline array conceptual design, covered in detail in Section 2.0, is summarized as follows:

The baseline SAS is a two-wing planar array, with dimensions as shown in Exhibit 1-5. A single boom structure (one for each wing) will hold the array blankets in tension using tip pieces as shown. On each wing at eleven equidistant positions along the length of each blanket will be intermediate stiffeners to aid in maintaining planarity. These extend across the boom through spreader rings. The hierarchy of the array is shown in Exhibit 1-6.

The electrical power will be bussed to the centrally located slip-ring assembly. The bus conductors will be supported by semi-circular (300°) light weight insulator segments attached to the booms. The slip ring assembly is double-gimballed to make independent the orientations and motions of the array and the SSPS platform. The EOL array output will be held constant over the array life by varying the sun-vector/array plane intersection angle.

The power generated by the array is provided at 198 VDC by 48 independent channels at the slip ring output. Each channel provides 10 kW of power. This power level is on the same order of magnitude as the Spacelab and Shuttle.

The use of 48 independent power circuits in the design, while requiring multiple slip rings, is considered compatible with a multi-user operation. Also, this configuration is closer to the space state-of-the-art for slip rings. The use of one or a few high power regulators versus the 48 relatively low power regulators suggested in this baseline design is subject to trade analyses.

The weight statement for the SAS baseline design concept is contained in Exhibit 1-7.

Definition of the baseline subsystem included the flow sequencing, timelining, manloading (numbers, manhours and skills) and the facilities and equipments required to perform DDT&E, Production, and Operations and Maintenance. This is covered in detail in Section 3.0. In summary, the SAS subsystem and system requirements (Appendix A) which drive the flows and the facility, equipment,

TIP DETAIL

EXHIBIT 1-5. BASELINE SOLAR ARRAY LAYOUT

ELEMENT

WEIGHT (KG)

PANEL LEVEL

BLANKET LEVEL

2075	3	128	31	TOTAL EACH BLANKET
PANELS (48/BLANKET)	MECHANICAL INTERCONNECTS	COMPRESSION PLATE CUSHIONS	ELECT. INTERCONNECTS	

ARRAY LEVEL

11,940	7778	656	20,374
			TOTAL FOR ARRAY
BLANKETS (4/ARRAY)	STRUCTURE (INCL. SLIP-RINGS	MAIN BUS CONDUCTORS	

EXHIBIT 1-7. BASELINE WEIGHT STATEMENT

manloading, scheduling, and transportation requirements are:

- System Operational 1985-1995
- State-of-art
- Transport by Shuttle
- Space assembly of SAS by equipment assisted crews
- Overhaul at 10 years
- Panel replacement at 90% Po (EOL)
- Spares availability in space
- On-station O&M crew
- Panel level replacement capability
- 24 man-hour panel replacement time
- Automated fault isolation

The top level DDT&E, Production and O&M functional flows are shown in Exhibits 1-8, 1-9, and 1-10 respectively.

1.2.2 Task II - Determination of Total Cost for Baseline Subsystem

The purpose/objective of this task was to develop a life cycle cost model (LCCM) for use in the Task III technology vs. cost analyses, and to determine the life cycle cost (LCC) of the baseline array (SAS).

Task II consisted of three subtasks:

- Subtask II-1: Formulate the LCCM Structure
- Subtask II-2: Develop Cost Estimating Techniques
- Subtask II-3: Exercise the LCCM

1.2.2.1 Subtask II-1 - Formulate the LCCM Structure

The LCCM structure was derived from the WBS (Exhibit 1-2) and the flow diagrams for the Production and O&M flow diagrams (Exhibits 1-8, 1-9). The top level LCCM structure is shown in Exhibit 1-11. The LCCM is discussed in detail in Section 4.0.

1.2.2.2 Subtask II-2 - Develop Cost Estimating Techniques

The purpose of this subtask was to develop the cost estimating relationships to be used to obtain cost estimates for each element of the LCCM. The sources and the relationships used are discussed in detail in Section 4.0.

EXHIBIT 1-8. DDT&E FUNCTIONAL FLOW

-

- 4. igh

EXHIBIT 1-9. PRODUCTION FUNCTIONAL FLOW

EXHIBIT 1-10. O&M FUNCTIONAL FLOW

EXHIBIT 1-11. SOLAR ARRAY SUBSYSTEM LIFE CYCLE COST MODEL STRUCTURE

1.2.2.3 Subtask II-3 - Exercise the LCCM

The purpose of this task was to determine the LCC of the SAS baseline using the LCCM, and to vary the inputs to the model to assure its validity over the range of input values expected in Task III.

The ICC for the baseline SAS is discussed in detail in Section 4.0. The top level baseline ICC costs are summarized as follows:

LCC PHASE	1980 DOLLARS IN MILLIONS
DDT&E	153.9
Production Phase	439.9
O&M	160.7
TOTAL LCC	754.5

For the purpose of comparison with other space array subsystems, the cost performance values of the baseline SAS are:

			\$/WATT(1980 \$)
Total LCC		BOL	792
	V	EOL	1,569
Production		BOL	462
	Ä	EOL	914
Manufacturing		BOL	394 (1)
		EOL	782

^{(1) \$303/}Watt in 1977 \$.

1.2.3 Task III - Analysis of Cost-Technology Parameters

The purpose/objective of this task was to determine the effect on the baseline LCC of varying technology parameters. Task III consisted of five subtasks:

- Subtask III-1: Establish Technology Parameters for Existing and New Programs
- Subtask III-2: Determine the Relationship of Weight and Volume to Technology Parameters
- Subtask III-3: Determine Sensitivity of Performance Parameters to Technology Parameters
- Subtask III-4: Determine Interdependencies of Physical, Performance and Technology Parameters

Subtask III-5: Determine Relationship of Technology Parameters to
 Total Life Cycle Cost

While these subtasks were required to obtain the study output, they were accomplished integrally as part of the development of a subsystem performance/cost model. Accordingly, the approach for Task III is the development of the model, and the results are the model outputs.

The performance model was developed from the design procedure followed in Task I to define the baseline SAS, with, however, variable quantitative relationships inserted to replace specific design values. The relationships which were developed include radiation flux, radiation degradation, and temperature derating. The relationships were derived from telemetry and laboratory test data, design values for historical and planned programs using regression analysis and theory. The output of the performance model consists, generally, of the weights (and masses), material quantity (number of cells, substrate area), and, where required, attrition losses, or numbers of spares (affected by reliability and maintenance). These, then, are inputs to the LCCM. The LCCM provides the LCC for the particular set of input values, which represent a specific set of parameter values defining a variation in the baseline SAS design.

The performance/cost model as applied to Task III is discussed in more detail in Section 5.0. Exhibit 1-12 is a top level block diagram of the performance/cost model.

The results of Task III are the relationships of LCC versus:

- cell thickness
- blanket temperature
- cover thickness
- cell efficiency
- cell degradation
- cover degradation
- line voltage (bus)
- years between overhaul
- meantime between failure
- cell/cover unit cost

These are shown in the graphs of Exhibit 1-13 and Exhibit 1-14.

EXHIBIT 1-12. SOLAR ARRAY PERFORMANCE AND COST MODEL

1.3 Conclusions and Recommendations

This section summarizes the analyses and results of the study and presents recommendations. More detailed discussions are provided in Section 5.0 of the performance/cost model which was applied to quantify technology vs LCC, and in Section 6.0 of the quantitative results obtained for specific technology vs LCC.

1.3.1 Conclusions of the Study

Conclusions to be drawn from the study results are valid in the vicinity of the baseline under the study requirements, and the assumptions and scenarios generated in Tasks I and II. Generally these are:

- Silicon cells, planar array
- Orbit of 444 km, 56° inclination
- Shuttle transportation
- Earth manufacturing scenario
- Manual assembly in space (equipment assisted)
- Space-based maintenance includes personnel for routine maintenance
- DDT&E, program management and SE&I are "wraparound" cost factors
- \$31M/14,000 kg space transportation costs
- Cell/cover assembly costs are historical, but adjusted to 70%, recognizing the large quantity required.

It is important to note that the performance/cost model and/or data base can be easily changed to reflect variations in the above requirements, scenarios and assumptions, in effect to perform trade studies to optimize the subsystem.

Exhibits 1-13 and 1-14 of Section 1.2.3 show the relationships of the various technology areas to LCC. The following sections discuss each technology area result. Exhibit 1-15 gives the results in tabular form.

1.3.1.1 Cell Thickness vs LCC

The relationships shown on Exhibit 1-13 (a) are for three types of silicon cells: (l) conventional/historical, (2) back surface field and (3) back surface field plus thin diffused top region. The data for all three types of cells were derived from "Semi-Conductors and Semi-Metals" Volume II, Hovel, 1975, Academic Press.

EXHIBIT 1-13. TECHNOLOGY PARAMETERS VS LCC

EXHIBIT 1-14. TECHNOLOGY PARAMETERS VS LCC

TECHNOLOGY AREA

INFLUENCE ON LCC

CELL THICKNESS

COVER THICKNESS

BLANKET TEMPERATURE

CELL EFFICIENCY

COVER DEGRADATION

CELL DEGRADATION

LINE VOLTAGE

YEARS BETWEEN OVERHAUL

MTBF

CELL COVER ASSEMBLY COSTS

MEDIUM/STRONG - 6 MILS OPTIMUM*

MEDIUM - LITTLE GAIN ABOVE 12 MILS

STRONG - \$3.2M/OC

STRONG - \$46M/1% CHANGE

MEDIUM/STRONG - \$10M/1% CHANGE

MEDIUM - \$5.4M/1% CHANGE

WEAK - LITTLE GAIN ABOVE 400 VOLTS

WEAK - LONGER LIFE BETTER

MEDIUM - KEEP MTBF UP, SPARES LOW

STRONG - \$22M/\$ CELL COVER ASSEMBLY UNIT COST

*RESULTS ARE GIVEN FOR THREE CLASSES OF CELLS (THIS APPLIES TO BSF + THIN DIFFUSED TOP REGION CELL ONLY).

The cell thickness relationships of 1-13 (a) all show a strong influence on LCC, and more importantly the advantages of the back field, thin diffused top region cell. For this type of cell, a thickness of 6 mils is optimum.

The deviation of the data points from a smooth curve fit are a result of the number of panels required per power channel which in turn is a result of the Shuttle payload bay dimensional constraints. The SAS baseline is plotted as a reference point (t = 8 mil, η_{ROT} = .122).

1.3.1.2 Cover Thickness vs LCC

The relationship shown in Exhibit 1-13 (b) for cover thickness displays a strong influence on LCC in the vicinity of four mils, a somewhat reduced influence near the baseline (eight mils), and with little gain above at 12 mils. An increasing cover thickness has three effects on LCC: (1) increased weight of array, (2) reduction of degradation rate of cell, and (3) decrease in blanket mean temperature.

1.3.1.3 Blanket Temperature vs LCC

The relationship shown in Exhibit 1-13 (c) shows a strong influence on LCC of the mean blanket temperature. This derives basically from the change in cell efficiency with temperature (\$3.2M per 1°C). The two curves (C1 & C2) reflect differences in the number of panels/channel due to shuttle transportation volume limitations.

1.3.1.4 Cell Efficiency vs LCC

The relationship shown in Exhibit 1-13 (d), as expected, shows a strong influence on LCC. In the vicinity of the baseline, the slope is \$46M per 1% change in cell efficiency (measured at BOL). The basic effect is on baseline quantities, weights, and cell unit costs. The two separate data points reflect differences in the number of panels/channel due to shuttle transportation volume limitations.

1.3.1.5 Cover Degradation vs LCC

The relationship shown in Exhibit 1-13 (e) displays a medium/strong influence on LCC. The slope in the vicinity of the baseline optical factor (.885) is about \$10M per 1% unit change of the factor. The cover unit cost variation is more than offset by the substantial reductions in weight, dimensions and number of cells in the baseline.

2.0 BASELINE

2.1 Space Services Platform System, SSPS

The SSPS has been hypothesized to create a system structure within which a Solar Array Subsystem (SAS) can be defined to provide a baseline design for cost-technology studies. The purpose of the SSPS is to provide services to varied User Systems. The User Systems may be engaged in materials processing, astronomy, solar systems and earth observation, life sciences, communications, or other operations. The User Systems may be secured to the platform or docked for servicing or short-term operations. The general configuration of the SSPS is shown in Exhibit 2-1. The subsystems of the SSPS, their functions and major interfaces are summarized in Exhibit 2-2.

2.1.1 Solar Array Subsystem, SAS

The SAS provides electrical power to the Energy Storage, Distribution and Conditioning Subsystem (ESDCS). The power is provided by a two-paddle solar array blanket assembly through a 2 axis drive/slip ring assembly. The power is fed to the ESDCS in 48 power channels at peak power levels of 10 kW and 197 volts.

2.1.2 Energy Storage Distribution and Conditioning Subsystem, ESDCS

The ESDCS, located on the Structural/Mechanical Subsystem (SMS) platform receives electrical energy from the SAS at the SAS 2-axis drive slip ring assembly output. The ESDCS provides energy storage, conditioning and distribution of power to the User Systems and to the subsystems of the SSPS.

2.1.3 Structural/Mechanical Subsystem, SMS

The SMS provides (1) the structural mounting platform for User Systems and for the SSPS subsystems, (2) drive power for the Solar Array Subsystem 2 axis/slip ring assembly, and (3) docking facilities for free flyers. The attitude of the platform is maintained by thrusters of the Propulsion & Control Subsystem (PCS), which are commanded by the Command and Data Subsystem (CDS). There are two

PRECEDING PAGE BLANK NOT FILMED

EXHIBIT 2-2 SPACE SERVICES PLATFORM SYSTEM

interfaces of the SMS with SAS:

- structural mounting for the SAS 2 axis drive/slip ring
- mechanical drive of the SAS attitude at the input shafts of the SAS 2 axis drive/slip-ring assembly.

2.1.4 Propulsion and Control Subsystems, PCS

The PCS provides attitude control and orbit adjust thrust for the SSPS. The thrusters are mounted on the SMS platform and at the end-booms of the SAS.

2.1.5 Command and Data Subsystem, CDS

The CDS provides (1) the required attitude commands for the SMS and the SAS, (2) analyses, status reports, and corrective action based on telemetry data sensors located as required on the SSPS, SSPS subsystems and User Systems, and guidance and navigation sensors, and (3) command & data relay communications from external systems to SSPS and User Systems.

2.1.6 Operations and Maintenance Crew Subsystem, OMCS

The OMCS provides operations services and maintenance for SSPS subsystems and User Systems. The OMCS is stationed on-board the SSPS SMS platform.

2.1.7 Thermal Control Subsystem, TCS

The TCS provides thermal control capability for SSPS subsystems and User Systems as required.

2.2 Mission Scenario and System Requirements

The mission scenario and the system requirements on the SSPS and the subsystem requirements on the SAS are contained in Appendix A. The mission scenario for the SAS is summarized as follows:

- Operational 1985-1995
- LEO Orbit: 444 KM, 56° incl
- Power Output: 250 kW Continuous to Load
- Varied Angle to Sun to Maintain 250 kW to Load
- Production of Array Hardware on Earth
- Folded Blankets for Space Transport
- Space Shuttle Transport to Leo
- Astronaut Assembly and Checkout Assisted by Maneuverable Work Platforms

- Panel Level Replacement by Astronauts
- Panel Replaced When Power Output Degrades Below Design Value
 The SAS system requirements are summarized in Exhibit 2-3.

2.3 Work Breakdown Structure

The baseline SAS Work Breakdown Structure (WBS) is shown in Exhibit 2-4. The WBS identifies the elements which are assembled to make up the solar array subsystem. From a project standpoint, each element represents a design package. The WBS has been developed to organize the functions and their sequencing, which include materials processing, manufacturing, integration, assembly and installation.

2.4 Solar Array Design

The baseline SAS is a two-wing planar array, with a single boom structure (one for each wing), which holds the array blankets in tension. The SAS is a fold-up array which will be shuttle transported and assembled in space.

The electrical power is bussed to the mentrally located slip-ring assembly. The bus conductors are supported by a semi-circular (300°) styrofoam segment attached to the bottom of the boom. The slip ring assembly is double-gimballed to make independent the orientations and motions of the array and the user platform. The array output is held constant over the array life by varying the sun-vector/angle.

2.4.1 Electrical/Mechanical

2.4.1.1 Array Hierarchy

The array hierarchy, which is shown in Exhibit 2-5, breaks down as follows:

l array = 2 wings

l wing = 2 blankets

1 blanket = 48 panels

1 panel = 15 modules

1 module = 3,150 cells $(2 \times 4 \text{ cm})$

ORBIT PARAMETERS

•	
\circ	
PERIOD:	
$\overline{\sim}$	
_	
111	
=	
_	
_	
$\mathbf{\alpha}$	
=	
ORBIT	
\sim	
$\mathbf{\mathcal{I}}$	

33.6 MINUTES

• TOTAL CYCLES: 60,239 - TEN YEARS (INCL 2 LEAP YEARS)

ARRAY ENERGY REQUIREMENT

POWER	478.3 kw	250 kw	228.3 kw
ENERGY	431.25 kw HR	225.4 kw HR	205.85 kw HR
N N N N N N N N N N N N N N N N N N N	TOTAL PER ORBIT - ARRAY	- USER	- ENERGY STORAGE (0.672)

2.4.1.2 Array Sizing

The sizing of the array hierarchy is summarized below.

Wing

Length = 152.1 mWidth = 31.4 m

• Blanket

Length = 137.1 mWidth = 15.2 m

• Panel

Length = 15.2 mWidth = 2.81 m

Module

Length = 3.08 mWidth = .97 m

Note: Panel dimensions include 5 cm overlap at module/module interfaces.

2.4.1.3 Array Blanket

The array blanket, as shown in Exhibit 2-6, consists of 12 electrical channels per blanket. Each channel provides 10 kW of power at 198.0 VDC and consists of 4 panels each providing 2.5 kW at 49.5 VDC. The main bus conductor for each blanket consists of 12 pairs of conductors (1 pair/channel) which provide the electrical distribution between the blanket and the slip-ring assembly.

2.4.1.4 Array Panel

The array panel, as shown in Exhibit 2-7, physically consists of 15 modules arranged in a 5 x 3 configuration. Electrically, the panel consists of one 2-module connected in parallel and thirty 2-modules connected in series. Each 2 module consists of 5 cells in series and 315 cells in parallel and provides 83.5W at 1.65 VDC. The total module consists of 3150 cells, with a minimum of three cells in parallel providing the basic electrical building block.

2.4.1.5 Module Assembly Cross Section and Layout

The module assembly cross section, defined in Exhibit 2-8, consists of the following:

12 CHANNELS/BLANKET 198V@10,017W/CHANNEL

4 PANELS/CHANNEL 49.5V@2504W/PANEL

EXHIBIT 2-6. ARRAY BLANKET

F. T. ..

EXHIBIT 2.7. ARRAY PANEL

EXHIBIT 2-8. MODULE CROSS SECTION

• Solar Cell

 2.022×4.000 cm, wraparound contact, 8 mil silicon, 2 ohm-cm AMO base resistivity, 12.2% glassed efficiency, 28° C ambient, TA_2° O anti-reflective coating

• Cell Cover

2.022 x 4.000 cm, 6 mil fused silicon, uv filter, 300 µm filter cut-on

Cover Adhesive

2 mil DC-93-500

• Substrate

Laminated printed circuit, 33% area, 1 mil copper rolled annealed interconnect. Insulation is two sheets of 0.5 mil kapton/0.5 mil hightemperature polyester adhesive.

The cells are welded to the copper interconnect circuitry through the tag layer of kapton, which together with the lower layer, form a kapton-copper-kapton sandwich. Exhibit 2-9 shows the copper interconnect network with one cell overlayed in dashed lines to give position relative to the copper circuitry. The per-cell module packing factor is 0.91 based on a space of 0.13 cm between cells.

As stated in 2.4.1.4, each panel consists of 15 modules. The module consists of 3,150 cells arranged in a 40 \times 81 pattern, with 90 blank cell spaces. The long dimension of the cell corresponds to the long direction of the module.

2.4.1.6 Electrical Interconnects

The basic pattern for the solar cell interconnects within the substrate is shown in Exhibit 2-9. The substrate pattern consists of 5 series connected groups of 3 cells connected in parallel. The electrical connection patterns for module/module and panel/panel interconnects as shown in Exhibits 2-7 and 2-6 respectively.

2.4.1.7 Mechanical Interconnects

The interconnects, module-to-module (which form the panels), panel-to-panel (which form the blankets), and blanket-to-tip piece assembly (to form the array), are shown in cross-section detail in Exhibit 2-10. The tip-piece assembly is part of the array structure and is discussed in Section 2.4.2.

EXHIBIT 2-9. SOLAR CELL INTERCONNECTS BASIC PATTERN, 3 CELLS IN PARALLEL, 5 CELLS IN SERIES

Module/Module Interconnect

Panel/Panel Hinge Interconnect

Blanket/Tip Piece Interconnect

(NOT TO SCALE)

EXHIBIT 2-10. CROSS SECTION DETAILS, MECHANICAL INTERCONNECTS

2.4.2 Structural

The structural design assumes an astromast boom and with tip-piece assemblies for tension, and a two-axis (pitch and roll) slip-ring/drive assembly. The general layout is shown in Exhibit 2-11.

2.4.2.1 Requirements and Assumptions

The requirements and assumptions which apply to the structure are:

- 2-axis drive
- maximum angular acceleration (in pitch and roll), $\alpha = 1.8 \times 10^{-5}$ radians/s²
- maximum bend angle, $\theta = 10^{\circ}$ under 0.01G force applied at outboard tip
- first natural frequency, $\omega_1 = 0.04$ radians/s
- rat: o of compressive preload to critical buckling load, P/Pcr = 0.3
 (NAS TN D-8376)
- ratio of blanket mass to boom mass, $\overline{M} = 6$
- aluminum booms, r = 51 cm
- mass of tip piece << mass of boom M_{tp} << M_b
- length of each boom, for baseline,

$$l_b$$
 = blanket length + 7 meters
= 144 m

2.4.2.2 Design

Using the relationship for bending stiffness in NAS TN D-8376

$$EI = \frac{M_b l^3 \omega^2}{\overline{8}^4} = 2.43 \text{ kg/cm}^2$$

The critical buckling load,

$$P_{cr} = \frac{\Pi^2 E \ I}{\ell^2} = 197.32 \text{ kg}$$

Therefore, for a $P/P_{cr} = 0.3$,

$$P = 65.8 \text{ kg}$$

For F = 0.01G load at the tip of the boom, the bend angle,

$$\theta = \frac{F\ell^2}{2EI} + \frac{M_b(0.01)^2}{6EI} = 0.2^\circ,$$

which is well within the 100 constraint.

Using an Astro Research Corporation document*, the boom longerons (aluminum, solid cross-section) will have a cross-section area,

$$A = \frac{EI}{1.5Er^2} = 0.90 \text{ cm}^2.$$

The weight of each boom,

$$W_{b} = 3f \rho Al = 535 kg.$$

The remaining structural components of the SAS were developed to the point of achieving a reasonable design concept. The structural details are shown in Exhibits 2-12 through 2-16.

To provide for varying the baseline array dimentions and weights, an analog relationship for the structure weight was derived:

$$W_{str} = \frac{W_b}{W_b (B/L)} \times 9465 \left(\frac{1}{150}\right)^3 + 154 \frac{N_{CH}}{48}$$

Where

W_{str} = structure weight, total

W_b = weight of boom

 W_b (B/L) = weight of baseline boom

length of boom

N_{CH} = number of power channels.

The detailed weight statement for the structure is shown in Exhibit 2-17.

[&]quot;Strength and Efficiency of Deployable Booms for Space Applications," R. F. Crawford, April, 1971.

EXHIBIT 2-12 OUTBOARD END TIP ARRANGEMENT

VIEW A-A

EXHIBIT 2-13. COMPRESSION PLATE AND TENSION PLATE DETAILS

Mik

EXHIBIT 2-14. OUTBOARD END TIP PIECE DETAIL

VIEW C-C

EXHIBIT 2-15. INTERMEDIATE STIFFENER RIB COLLAR DETAIL

STRUCTURAL ASSEMBLY ITEM	DESCRIPTION (BASELINE)	WEIGHT (BASELINE) kg
• Main Booms, Astromasts (2)	Alumin Longerons, 50.8 cm. Dia. (Circum Circle), 144 m. Long	1,070.00
• Main Boom Transport Cannisters (2)	Shuttle Compatible (assume 10% of boom weight)	107.00
• Slip Ring Drive Assembly (1)	Not Specified	7,046.00
Boom End Plates (4)	Alumin., Triangular shape, (1x46x40 \(\frac{1}{3}\) cm ; 2685 KG/m	9.89
• End Plate Tension Posts (4)	Steel, 1 m. long, 1.9 cm. Dia.; 7972 KG/m	9.08
• Compression Plates (16)	Alumin. (0.5x15x1600) cm ³	515.52
• Tension Plates (40)	Alumin. (1.0xllx10) cm ³	11.81
• Tension Cables W/Eyes and Tensioners (80)	Steel Piano Wire	20.00
• Tip Piece Compression Collar Assemblies (4)	Alumin. 1.0 cm x 75cm Dia. x 50 cm long.	130.44
• Intermediate Stiffener Ribs (44)	Steel Rods, 0.5 cm Dia. 16 M. Long	110.06
• Dynamic Load Cushions (78)	Plastic (Styrene), Nylon Straps	7.80
• Main Bus Conductor Stand-Offs (48)	Plastic (Styrene), Nylon Straps	20.00
Main Bus Conductors		525.00
Miscellaneous Hardware		20.00
TOTAL		9,602.60

2.5 Array Summary

2.5.1 Performance Summary

The performance of the baseline solar array is summarized in Exhibit 2-18. It should be noted that the array has been sized based upon a worst-case analysis of minimum power and voltage, which occur at minimum illumination, and maximum illumination respectively. For this reason, the minimum array current is not included in the summary.

2.5.2 Weight Statement

The baseline weight statement is shown in Exhibit 2-19. The panel level electrical interconnects consist of series interconnects between the ½ modules. The weight of the mechanical interconnects between modules (e.g., module overlap) is negligible. At the blanket level, the mechanical interconnects consist of the folding material between the panels. There are two compression plate cushions, one at each end of the blanket. The main bus at the array level consists of 12 pairs of conductors per blanket. The total structure weight includes the weight of the slip ring.

2.5.3 Array Table

The baseline array totals are summarized in Exhibit 2-20. All totals are for EOL performance. For BOL performance, (952.6kW and 210.6 VDC) the power density is 114.3 W/M^2 and the power/weight ratio is 52.3 W/Kg.

BASELINE SOLAR ARRAY PERFORMANCE

POWER (MIN)	W E90.	83.5 W	2,504 W	10,017 W	120.2 kW	240.4 kW	480.8 kW	480.0 kW
VOLTAGE (MIN)	.33 V	1.65 V	49.5 V	198.0 V	198.0 V/CHANNEL	198.0 V/CHANNEL	198.0 V/CHANNEL	180 V/CHANNEL (MIN)
	SOLAR CELL	1/2 MODULE	PANEL	CHANNEL	BLANKET	WING	ARRAY	ARRAY REQUIREMENTS

<u>(</u>)

EXHIBIT 2-18

ELEMENT

WEIGHT (KG)

_
ш
$\overline{}$
ш
_1
_
_
Ü
7
=
⋖
ے

MODULES (15/PANEL)		42.48
ELECT. INTERCONNECTS		0.75
	TOTAL EACH PANEL	43.23

BLANKET LEVEL

PANELS (48/BLANKET)	2075
MECHANICAL INTERCONNECTS	
COMPRESSION PLATE CUSHIONS	128
ELECT. INTERCONNECTS	31
TOTAL EACH BLANKET	2985

ARRAY LEVEL

BLANKETS (4/ARRAY)	manufacture and the same and th	t Bus	•	1	1,940
STRUCTURE (INCL. SLIP-RINGS	,				8777
MAIN BUS CONDUCTORS		7 · - 4			929

EXHIBIT 2-19. BASELINE WEIGHT STATEMENT

20,374

TOTAL FOR ARRAY

SOLAR ARRAY TOTALS

TOTAL CELLS	=	9.0720 × 10 ⁶
POWER	=	480.8 kW
AREA	= .	9350 M ²
POWER DENSITY		51.42 W/M ²
WEIGHT	=	20,374 KG
POWER/WEIGHT RATIO	8	23.60 W/KG

EXHIBIT 2-20. SOLAR ARRAY TOTALS

3.0 FUNCTIONAL FLOWS

The top flow diagrams for DDT&E, Production, and Operations and Maintenance are shown in Exhibits 3-1, 3-2 and 3-3. Although the DDT&E cost estimate was based on 35% of the production costs (derived from historical program costs), a breakdown of DDT&E functions is provided for completeness and for possible future analysis; for example, the achievement of various array reliabilities would affect the design and testing costs.

It should be noted that the production phase includes transportation to space and assembly and check-out in space. The rationale here was that "buy-off" as operationally ready of the SAS as a subsystem would not occur until a final check-out of the complete and functioning assembly was accomplished. However, as discussed in Section 4.0, the space transportation and assembly and check-out are assumed to be NASA incurred costs. More detailed functional flows in the production phase are provided in exhibits as follows:

FUNCTION .		EXHIBIT
Cell/Cover Assembly		3-4
Module Substrate Assembly		3-5
Module Assembly		3-6
Panel Assembly		3-7
Blanket Assembly		3-8
Space Assembly and Checkout	4.5 4.	3-9

In the O&M flow (Exhibit 3-3) for the baseline, the "produce spares" block is null since the required number of spares (panels) are assumed to be manufactured during production. However, this could be subject to trades analysis and therefore the function has been included for completeness.

EXHIBIT 3-1. DDT&E FUNCTIONAL FLOW

EXHIBIT 3-2. SOLAR ARRAY SUBSYSTEM FLOW.

 $c(n) \stackrel{\mathcal{C}^{(n)}}{\underset{i \in \mathbb{N}}{\longrightarrow}}$

EXHIBIT 3-3. O&M FUNCTIONAL FLOW

EXHIBIT 3-4. CELL/COVER ASSEMBLY FLOW, PRODUCTION PHASE

EXHIBIT 3-5. MODULE SUBSTRATE ASSEMBLY FLOW, PRODUCTION PHASE

EXHIBIT 3-6. MODULE ASSEMBLY FLOW, PRODUCTION PHASE

EXHIBIT 3-7. PANEL ASSEMBLY FLOW, PRODUCTION PHASE

EXHIBIT 3-8. BLANKET ASSEMBLY FLOW, PRODUCTION PHASE

EXHIBIT 3-9. SPACE ASSEMBLY AND CHECKOUT

4.0 TOTAL LIFE CYCLE COST

The purpose of the Solar Array Subsystem Life Cycle Cost Model is to estimate the LCC of the baseline SAS and the different LCC's resulting from variations in the configuration of the SAS.

The basis for the LCCM structure (Exhibit 4-1) is the WBS (Exhibit 1-2) and the functional flow diagrams (Exhibits 3-1, 3-2, and 3-3).

The LCCM structure and the functional flows which illustrate in detail the three phases of LCC are compatible with the WBS. The sources for the top level cost relationships (Page B-3) used in the LCCM consist of historical data from the SAS data base and cost and technical data from various vendors.

The Solar Array Subsystem Life Cycle Cost Model consists of three phases:
(1) Design, Development, Test and Evaluation; (2) Production and (3) Operations and Maintenance. The direct costs of the baseline are listed in Exhibit 4-3.
Refer to Page B-2 for a detailed breakout of cost including direct and indirect costs. The indirect expenses are discussed in Page B-6.

4.1 Design, Development, Test and Evaluation

The cost of the DDT&E phase of life cycle cost is estimated to be 35% of the production phase cost. The DDT&E phase includes the following functions:

(1) designing the array and the manufacturing facility and manufacturing the prototype solar array subsystem; (2) designing the development and qualification test requirements and plans and performing development and qualification tests;

(3) designing the assembly/integration procedures, designing operations and maintenance procedures, develop training requirements and (4) that and evaluate the solar array subsystem for production decision.

4.2 Total Production Phase Cost

The cost of the production phase is divided into two categories: (1) the manufacturing cost and (2) the cost incurred by NASA to transport the solar array subsystem and astronauts to LEO and the cost of space assembly and check-out.

4.2.1 Total Manufacturing Cost

It is assumed that a prime contractor will manufacture the solar array subsystem using raw stock and off-the-shelf hardware that is presently obtainable.

EXHIBIT 4-1. SOLAR ARRAY SUBSYSTEM LIFE CYCLE COST MODEL STRUCTURE

- ALL COSTS IN 1980\$ IN MILLIONS
- STOCK MATERIALS AND COMPONENTS REQUIRED FOR MANUFACTURE OF ARRAY
- DEDICATED FACTORY FACILITY REQUIRED FOR MANUFACTURE OF ARRAY
- COST OF TRANSPORTING SAS BLANKETS AND STRUCTURE TO LEO IS INCLUDED IN PRODUCTION PHASE OF LIFE CYCLE COST
- SHUTTLE FLIGHTS ASSUMED TO BE DEDICATED TO SPACE SERVICES PLATFORM SYSTEM
- OPERATIONS AND MAINTENANCE PHASE OF BASELINE LIFE CYCLE COST COVERS 10 YEAR LIFE OF SAS

EXHIBIT 4-2 GROUNDRULES AND ASSUMPTIONS

The total manufacturers cost consists of labor cost, non-labor cost, Project Management and Systems Engineering. The labor and non-labor costs for each WBS item were estimated. These estimates are dependent on the configuration of the SAS and require the inputs described in Exhibit 4-4.

4.2.1.1 Manufacturing Labor Cost

The total manufacturing labor cost consists of the labor cost associated with each manufacturing process.

This cost was estimated based on the number of components required. The number of components determined the number of labor hours. Refer to Exhibit 4-5 for the factors used to determine the labor hours required and the resulting direct labor cost for each manufacturing process.

The labor rate used was \$20/hr. The indirect rates, fringes, overhead and other direct charges, were applied to the direct labor base to obtain the total manufacturing labor cost.

4.2.1.2 Non-Labor Manufacturing Cost

The non-labor manufacturing cost consists of materials, equipment, special equipment and surface transportation. These costs are also dependent on the configuration of the array and require the inputs in Exhibit 4-4.

4.2.1.2.1 Materials

The cost of materials required for each manufacturing process was estimated based on the unit cost and amount required for the process. The unit cost is based on vendor quotes and the amounts required are dependent on the configuration of the SAS. A manufacturing burden to cover the expense of procuring and warehousing materials is applied to the total materials cost. The baseline materials cost for each manufacturing process is listed in Exhibit 4-6.

4.2.1.2.2 Process Equipment

The equipment costs for each manufacturing process for the baseline were estimated based on the production rates required to manufacture the number of components needed for the baseline SAS. Refer to Exhibit 4-7 for a list of the baseline equipment costs.

SAS BASELINE LIFE CYCLE COST (1980 \$ In Millions)

4.0	TOTAL I	IFE CYCLE	COST	754.5
4.1	DDT&E			153.9
4.2	TOTAL P	RODUCTION	PHASE COST:	439.9
	4.2.1	Total Ma	nufacturing Cost	376.1
		4.2.1.1	Manufacturing Labor Cost	34.0
		4.2.1.2	Manufacturing Non-Labor Cost	261.7
	4.2.2	NASA Cos	t:	63.9
		4.2.2.1	Shuttle Transportation	63.1
		4.2.2.2	Space Assembly and Check-Out	.8
4.3	TOTAL C	& M COST	:	160.7
	4.3.1	Total Co	ntractor's Cost	. 9
	4.3.2	NASA Cos	t:	159.8
		4.3.2.1	Train O & M Crew	2.5
		4.3.2.2	Perform Maintenance	11.0
		4.3.2.3	Transport Crew to LEO	146.3

BASELINE INPUTS TO LCCM (1980 \$)

•	Cost of Labor		
	ON EARTH	\$	20/manhour
	IN SPACE		250/manhour
•	Cost of Materials		
	Cell/Cover Assembly		7.75
	Module Substrate		142.29/M ²
	Module Assembly (welding materials)	74	0,000
	Mechanical and Electrical Interconnects	1	0,260/panel
	Mechanical and Electrical Interconnects	4	7,000/blanket
•	No. of Cell/Cover Assemblies	9,07	2,000
•	No. of modules		2,880
•	No. of panels		192
•	No. of blankets		4
•	Blanket Weight (4)	. 1	1,940 kg.
•	Structures Weight		7,778 kg.

SAS MANUFACTURING PROCESS FACTORS

AND

BASELINE DIRECT LABOR COSTS (1980 \$ In Millions)

MANUFACTURING PROCESS	FACTORS . BASEI	INE LABOR COSTS
Cell/Cover Assembly	4,250 assemblies/hour	2.77
Module Substrate (flexible circuit)	9 m ² /hour	.41
Module Assembly	2.75 modules/hour	3.70
Panel Assembly	.15 panels/hour	4.31
Blanket Assembly	.003 blankets/hour	1.47
Blanket Transport (Fold & containerize)	.003 blankets/hour	.06
Structure Transport (Fold & containerize)	Weight of structure x 1.25 (weight of container) x \$ 2.56	.03
er en		
Total Baseline Direct Labor Cost		12.75

EXHIBIT 4-5

SAS BASELINE MATERIALS COST (1980 \$ In Millions)

PROCESS	COST
Cell/Cover Assemblies	91.40
Module Substrate	1.78
Module Assembly (Welding Materials)	.74
Panel Assembly (Interconnects)	1.97
Blanket Assembly (Interconnects)	.31
Structures (1997)	3.07
· · · · · · · · · · · · · · · · · · ·	<u>.</u>
TOTAL	99.27

SAS BASELINE PROCESS EQUIPMENT COSTS (1980 \$ In Millions)

PROCESS	COST
	* - w
Cell/Cover Assembly	6.17
Module Substrate (flexible circuit)	9.83
Module Assembly	60.51
Panel Assembly	37.12
Blanket Assembly	25.71
Blanket Transport (Fold & containerize)	1.76
Structure Transport (Fold & containerize)	.44
TOTAL	141.54

4.2.1.2.3 Special Equipment

The special equipment consists of containers for packaging the SAS blankets and structures for shipment to the launch site and to LEO aboard the Space Shuttle.

4.2.1.2.4 Surface Transportation

Surface transportation costs consist of the cost of transporting the SAS blankets and structures to the launch site from the manufacturing facility. It was assumed the manufacturing facility would be located on the West Coast and the launch site would be Kennedy Space Center. The cost is dependent on the combined weight of the structure, blankets and the containers in which they are packaged.

4.2.2 NASA Cost

The NASA incurred cost portion of the total production phase cost consists of: (1) the cost of transporting the SAS blankets, structures and the SA & CO astronaut crew to LEO aboard the Space Shuttle and (2) the cost of the assembly and check-out in space.

4.2.2.1 Transportation to LEO

It is assumed that the SAS will be transported to LEO on Space Shuttle flights dedicated to the SSPS. Therefore, the transportation costs for the SAS are dependent on the weight of the SAS. The cost of transporting the astronauts and the equipment used for assembly and check-out is estimated to be 1/7 or 14% of the cost of one dedicated flight because the SAS is one of seven subsystems of the SSPS.

4.2.2.2 Space Assembly and Checkout

Space assembly and check-out includes the cost of the astronaut crew's labor to assemble and check-out the SAS in space and the cost of the equipment used. The labor cost is a function of the weight of the SAS.

4.2.3 Project Management

The cost of Project Management is estimated to be 5.8% of the sum of the manufacturing labor and non-labor costs. Project Management includes planning,

organizing, directing, coordinating and controlling the project to ensure that overall project objectives are accomplished.

4.2.4 Systems Engineering

The cost of the System Engineering is estimated to be 4.8% of the sum of the manufacturing labor and non-labor costs. This function includes the application of scientific engineering efforts to: (1) transform an operational need into a description of system performance parameters and a system configuration; (2) integrate related technical parameters and assure compatibility of all physical, functional and project interfaces in a manner which optimizes total system definition and design; and (3) integrate the efforts of all engineering disciplines and specialties into the total engineering effort.

4.3 Total Operations and Maintenance Phase Cost

The Operations and Maintenance Phase of the life cycle covers the ten year life span of the SAS. There are two categories of cost in this phase: (1) a contractor's cost for the sustaining engineering's function and (2) a cost incurred by NASA to train the operations and maintenance crew, transport the crew to LEO and perform maintenance on the SAS over a ten-year period.

4.3.1 Total Contractor's Cost

It is assumed that a contractor housed at the launch site will provide sustaining engineering for the SAS over a ten-year period. It is assumed that one engineer working 2,040 hours a year at \$20 an hour for ten years would constitute the labor cost. The total contractor cost for sustaining engineering is obtained by applying the fringes, overhead and other direct cost rates to the direct labor base. A general and administrative rate is also included in the total contractor's cost.

4.3.2 NASA Incurred Cost

The cost incurred by NASA in the O&M phase is the sum of the cost of training the crew, transporting them to the SSPS in LEO and performing the maintenance over a ten-year period.

4.3.2.1 Train O & M Crew

It is estimated that it will be necessary to train one astronaut crewman

per year for ten years. The cost for this training is estimated to be \$250,000 per year per crewman.

4.3.2.2 Perform Maintenance

The crew that performs the maintenance on the array is divided into two groups. One crew remains on the SSPS to perform scheduled maintenance.

The crew works for three month periods on the space platform and is sent back to earth to be replaced by another crew. The unscheduled maintenance is performed by an earth based crew that makes a number of unscheduled trips to the SSPS per year.

4.3.2.3 Transport Crew to LEO

Four trips a year for ten years are required for the crew that is housed on the SSPS. The cost is \$250K per trip. The unscheduled maintenance crew requires 1.75 trips per year @ \$100K per unscheduled maintenance.

4.4 Summary

(2)

The LCCM provides a means of estimating the LCC of a SAS. LCC can be determined as various technology parameters of the baseline are varied during Task III.

Specific technology parameters versus LCC were quantified based on the Mission scenario described in paragraph 2.1.

These were:

- Solar cell thickness/LCC
- Cover thickness/LCC
- Cell efficiency/LCC
- Cell degradation/LCC
- Cover degradation/LCC
- Cell and cover assembly costs/LCC
- Temperature (blanket assembly)/LCC
- Voltage (line)/LCC

In addition to the technology parameters listed above, two maintenance-related parameters versus LCC were quantified.

These were:

- Years between ove haul/LCC
- Mean time between failure/LCC

The O&M portion of the baseline mission scenario was altered in each case to accommodate the change in maintenance-related parameters. The specific changes in configuration and the resulting LCC's will be discussed in detail in Section 5.0.

5.0 SOLAR ARRAY PERFORMANCE AND COST MODEL

5.1 Basic Concept

The Solar Array Performance and Cost Model (SAPCM) was developed to a level of detail required to support the cost/technology analyses of Task III. The modeling approach, generally, was to

- define the solar cell, cover, substrate and cell interconnect circuitry (module cross section)
- determine the value of the solar array factors which affect performance and apply to the BOL cell/cover assembly to determine the EOL per cell array performance.
- determine number of cell/cover assemblies required for baseline orbit and load power/energy requirements
- determine total array area, dimensions and structural requirements
 (Array Configuration)
- determine array weight breakdown and totals
- determine life cycle cost.

5.2 Description of Model

A block diagram of the SAPCM is shown in Exhibit 5-1. A discussion of the various blocks or functions is contained in the following paragraphs. To facilitate discussion of the block diagram, the baseline SAS is used as an example of exercising the model.

5.2.1 Solar Array Performance Parameters

The heart of the SAPCM consists of various solar cell performance parameters which are used to determine the equivalent End-of-Life (EOL) per cell performance. The individual factors which are depicted in Exhibit 5-2 are as follows:

- Cover Factors $(F_c = F_G + F_\tau)$
 - 1. Glassing, F_G
 - 2. Cover Degradation, F

. .

EXHIBIT 5-1. SOLAR ARRAY PERFORMANCE AND COST MODEL

EXHIBIT 5-2 ARRAY PERFORMANCE PARAMETERS

• Cell Factors

- 1. Assembly, F_A
- 2. Cell Degradation, FRAD
- 3. Temperature Derating, FTOP
- 4. Diode, V_D
- 5. Solar Cell IC, V_{sc}
- 6. Module/Module IC, V
- 7. Panel/Panel IC, V pp
- 8. Main Bus Conductors, V mb
- 9. Slip Ring Conductors, V_{sr}
- 10. High Voltage Leakage Loss, Fleak
- 11. Temperature Cycling, Ftc

The basic interrelationship of the various parameters can be expressed as follows:

EOL
$$P_{mp}(W/m^2) = [(n_{BOL} \times \prod_{i=1}^{11} F_i) \times (S' \times \prod_{j=1}^{2} F_j) \times PF] \times A_s$$

Where P = per cell max power

F = cell performance factors

F = cover performance factors

S' = effective illumination

ⁿBOL = cell BOL efficiency

PF = per cell packing factor

A = per cell array area

As can be seen in Exhibit 5-2, feedback loops which affect the array average temperature and the main bus configuration lead to iterations in order to arrive at the final result. The above relationship is used to determine the average minimum power of the array at EOL for a unit area of 1 m², which is further scaled down on a per-cell module cross-section basis. The equivalent EOL

per-cell power is then used to size the array and thus determine the array configuration. The per cell voltage is similarly calculated and used for sizing.

The individual factors are discussed in subsequent paragraphs; however, for comparison with Exhibit 5-1, cell factors are further categorized as follows:

- Radiation Degradation
- Temperature Derating
- Array Loss Factors
 - Assembly
 - Distribution (Diode, V_{TC})
 - Leakage
 - Temperature Cycling

5.2.1.1 Module Assembly Cross Section

The module assembly is the solar array building block. For the SAS baseline, the module assembly cross section (Exhibit 5-3) consists of the following:

• Solar Cell

0.022 x 4.000 cm, wraparound contact, 8 mil silicon, 2 ohm-cm AMO base resistivity, 12.2% unglassed efficiency, 28 C ambient, Ta₂0₅ anti-reflective coating

• Cell Cover

 2.022×4.000 cm, 6 mil fused silica, uv filter, 300 μ m filter cut-on

Cover Adhesive

2 mil DC-93-500

• Substrate

Laminated printed circuit, 33% area, 1 mil copper rolled annealed interconnect. Insulation is two sheets of 0.5 mil kapton/0.5 mil high-temperature polyester adhesive.

5.2.1.2 Array Illumination

An illumination summary for the SAS baseline is shown below. The orbit maximums and minimums call for minimum and maximum distances from the sun

EXHIBIT 5-3. MODULE CROSS SECTION

respectively. The maximum albedo contribution is 36% of the solar illumination. The values for total orbit averages were obtained by averaging the calculated values of solar illumination plus albedo for each minute of illumination in orbit. The baseline total effective averages include the effects of cover glassing and cover degradation.

ILLUMINATION	MAX	AVG	MIN
Solar	1399	1353	1309
Albedo (36%)	504	487	471
Total Orbit Avg.	1478	1430	1383
Cover Glassing			
Factor	1.017	1.017	1.017
Cover Degradation			
Factor	.870	.870	.870
Baseline Total			
Effective Avg.	1308	1265	1224

5.2.1.2.1 Cover Glassing

The cover glassing factor is a measure of the optical impedance matching between the cell cover and the solar cell. Not only does the cover glass material and cover adhesive determine this factor, but also the antireflective coating applied to the solar cell itself. For the SAS baseline, the cover glassing factor is 1.017.

5.2.1.2.2 Cover Degradation

The cover degradation factor is a measure of how the transmissibility of the cover (and cover adhesive) degrades over the lifetime of the array. This effect is caused by a cumulation of the following effects:

- ultraviolet radiation dose
- particulate radiation dose
- micrometeorites

For the SAS baseline, the cover degradation factor is .870.

5.2.1,3 BOL Cell Performance

The assumed BOL Cell Performance for the SAS Baseline is 12.2% unglassed efficiency and $V_{mp} = .479V$. (S' = 1353 w/m 2 @ 28 $^{\circ}$ C).

5.2.1.4 Physical Parameters

This function consists of calculating the parameters indicated in Exhibit 5-4. These parameters are also used as inputs to radiation shielding, thermal mass, main bus calculations as described in subsequent paragraphs. The SAS baseline parameters are summarized in Exhibit 5-4.

5.2.1.5 Radiation Environment

The radiation degradation factor is a measure of the degradation in solar cell output due to high-energy charged particles, e.g., electrons and protons in the orbital environment. The degradation involved is a cumulative effect measured over the lifetime of the array in orbit. The amount of degradation is determined by the number of particles which have sufficient energy to penetrate the solar cell and cause permanent damage. Hence, the primary function of the solar cell cover is to reduce the quantity of particles which penetrate the solar cell. The substrate materials also assist in reducing radiation degradation. The methodology for determining this factor is summarized in the next three paragraphs.

5.2.1.5.1 Radiation Shielding

First, the effective radiation shielding provided by the various solar array module materials is determined. The results of this analysis for the baseline module are summarized in Exhibit 5-5. The analysis was accomplished by converting all materials to equivalent fused silica density shielding.

5.2.1.5.2 Radiation Flux

Next, the protection provided by the radiation shielding is determined. To accomplish this, Exhibit 5-6 was used to determine the equivalent fluence summary for 444 KM, 56 inclination. This table is based upon historical data for different thickness of fused silica in a radiation environment similar to that anticipated for the baseline solar array described herein. The output of this table is the cumulative fluence of charged particles which will have sufficient energy to cause degradation of the solar cell over the array lifetime. For the SAS baseline,

Cell Area = L x W = Ac = 4.000 cm x 2.022 cm = 8.088 cm²

Substrate Area = $\{L + d_L\} \times \{W + d_W\} = As = 4.000 \text{ cm} + 0.130 \text{ cm} \times 2.022 \text{ cm} \times 0.130 \text{ cm} = 8.888 \text{ cm}^2$ (per cell)

Packing Factor = Ac + As = PF = 8.088 cm² + 8.888 cm² = .910

-	(III)	16	,	m					19
Module	Assembly	Cell/Cover	Assembly	Assembly					TOTALS
_		89	9	T g		9	1 80	T	Ŋ.
3	(g)	.0158	.0160	0669		.0160	.0158		.1305
_	(cm^2)	8.688	9.888	8.388	8.888		8.888		.1468 8.888
I	(kg/m²)	8710.	.0180	.0753		.0180	.0178		.1468
۵	(kg/m^3) (kg/m^2) (cm^2)	1400	1420	9880	£ +	1420	1400		1927
۴	(mil)	2.	5.	1	1	5.	٠.		m
Substrate	Assembly	Kapton	Adhesive	Copper		Adhesive	Kapton		TOTALS
_		~	99	1 6					
3	(a)	.2712	.0444	.4273			a i		.7429
<	(cm ²)	8.088	860.8	3.088					8.088
I	g/m^3) (kg/m^2) (cm^2)	. 3353	.0549	. 5283					.9185
۵	(kg/m³)	2200	1080	2600					2260
F	(mf1)	9	2	60					16
Cell/Cover	Assembly	Cover	Adhesive	Ce11					TOTALS

.1305

8.88

.1468

1927

.7429

(1)

(1) .8358

2057

.8734

8.888

(1) 7589.

(1) 2036

(1) Includes packing factor (PF)

EXHIBIT 54, PHYSICAL PARAMETERS

۲	_
7	Z
C	⊃
è	Y
ř	_

			:
EQUIVALENT THICKNESS (mil)	98.98		96.98
MATERIAL DENSIIY (Kg/m ³)	2200	1080	1920
MATERIAL THICKNESS (mil)	9	9 2	
MATERIAL	Cover	Adhesive	TOTALS

MATERIAL	MATERIAL THICKNESS (mil)	MATERIAL DENSITY (Kg/m³)	EQUIVALENT THICKNESS (mil)
Cell	8	2600 × .375	3.55
Kapton	5.	1400	.32
Adhesive	s.	1420	.32
Copper	ř	8890 ÷ 3	1.35
Adhesive	5.	1420	.32
Kapton	ιū	1400	.32
TOTALS	11	1236	6.18

SHIELDING THICKNESS, Mils

EXHIBIT 5-6. RADIATION FLUX

the total flux for a 10-year period, was 40.89×10^{13} . This consisted of 19.01 x 10^{13} for the front shielding and 21.88 \times 10^{13} for the back shielding respectively.

5.2.1.5.3 Radiation Degradation

Finally, the predicted solar cell degradation caused by particles with sufficient energy to penetrate the radiation shielding and cause solar cell damage is determined. To accomplish this, the data in Exhibit 5-7 is used. Based upon the equivalent fluence, a predicted degradation is determined. For the SAS baseline, the power degradation factor is .854 for an array life of 10 years, while the voltage factor is .968.

5.2.1.6 Array Temperature

The temperature derating factor is a measure of the effect of the operating temperature upon cell performance. The methodology for determing this factor is summarized in the next three paragraphs.

5.2.1.6.1 Thermal Mass

This function consists of calculating the parameters indicated in Exhibit 5-8. Thermal mass is in turn used as a parameter in the temperature calculations described in paragraph 5.2.1.6.3. The thermal mass for the SAS baseline is also plotted as a function of temperature in Exhibit 5-8.

5.2.1.6.2 Thermal Properties

This function consists of calculating the parameters indicated in Exhibit 5-9. These properties are in turn used in the temperature calculations described in the subsequent paragraph. The thermal properties for the SAS baseline are summarized in Exhibit 5-9.

5.2.1.6.3 Temperature Derating

The most complex function of the SAPCM is determining the cell temperature derating factor. Using the array thermal mass profile and the thermal properties discussed in the preceding paragraphs, this factor is calculated using the following procedure:

• Determine array temperature vs time profile during period of minimum solar illumination (including effects of albedo, earth radiation, and heat from the space platform).

EXHIBIT 5-7, RADIATION DEGRADATION (POWER)

EXHIBIT 5-7. RADIATION DEGRADATION (VOLTAGE) (Continued)

EXHIBIT 5-8

SOLAR ARRAY

HASS	
THERMAL	

رں	anc p	259	51	361	20	20	37	20	20	788
100°C	сb	850	1015	750	1115	1115	495	1115	1115	
υ	dQu	244	20	353	20	20	33	20	20	760
75°C	ď	800	1000	735	1100	1100	440	1100	1100	
ွပ	шСр	233	49	349	19	20	31	20	19	740
50°C	Сp	765	985	725	1085	1085	415	1085	1085	•
ွပ	шСр	220	47	346	19	19	53	19	19	718
25°C	ď	720	945	720	1040	1040	380	1040	1040	
၁ _{,0} -	шCр	206	46	337	18	18	56	18	18	687
Ť	ď	675	910	700	1000	1000	350	1000	1000	
-25°C	шСр	161	43	313	17	17	25	17	17	640
-2	ď	625	865	650	950	950	335	950	950	
ွပ	ďЭш	175	40	296	16	16	25	16	16	009
-50°C	ď	575	795	615	875	875	330	875	875	
-75°C	Cp mCp	156	36	569	14	14	24	14	14	541
7-	å	510	725	260	800	800	320	800	800	
-100°c	щСр	145	33	240	13	13	24	13	13	494
-10	cp mcp	475	099	200	725	725	315	725	725	
ARRAY	MASS	(1),3051	(1)0500	(1)4808	.0178	.0180	.0753	.0180	.0178	
BASELINE	MATERIAL	Cover	Adhesive	Cell	Kapton	Adhesive	Copper	Adhesive	Kapton	TOTALS

EXHIBIT 5-8 SOLAR ARRAY THERMAL MASS (Continued)

= α_{cover} x PF + $\alpha_{substrate}$ x (1-PF) = .780 x .910 + .450 x .090 = .750

 $q_{\rm E}$ = $F_{\rm p}$ x EOL loss factor x $\eta_{\rm BOL}$ = .910 x .45 x .122 = .050

 $\alpha_{\rm B} = .450 \ \bar{\alpha}_{\rm SF} = \bar{\alpha}_{\rm F} - q_{\rm E} = .750 - .050 = .700$

= $.820 \times .910 + .800 \times .090 = .818$ = ε cover $x F_P + \varepsilon$ substrate $x 1-F_P$ Ē

 $\epsilon_{\rm B} = \epsilon_{\rm Substrate} \times {\rm adj\ factor} = \epsilon_{\rm B} \cdot 800 \times .75 = .600$

(Albedo) $q_{AL}(F) = \vec{\alpha}_{SF} \times .36 \times S' \times \cos \Gamma_2$

x cos F₂ $= \alpha_{\rm B} \times .36 \times {\rm S}^{\circ} \times \cos \Gamma_{\rm 2} = .450 \times .36 \times {\rm S}^{\perp}$ $q_{
m AL}$ (B) $q_{ER}(F) = \bar{\alpha}_F \times 208.2 \times \cos \Gamma_3 = .750 \times 209.2 \times \cos \Gamma_3 = 156.2 \times \cos \Gamma_3$

 $q_{ER}(B) = \alpha_B \times 208.2 \times \cos \Gamma_3 = .450 \times 208.2 \times \cos \Gamma_3 = 93.7 \times \cos \Gamma_3$

 $q_{SP} = \epsilon_{B} \times (s_{SP} \times cos \Gamma_{4} \times cos \Gamma_{4}) \times (\sigma) \times (\sigma_{4}) = .600 \times (.050 \times .7071 \times .7071) \times (5.6697 \times 10^{-8}) \times (0.059 \times .7071 \times .7071) \times (0.0697 \times .10^{-8}) \times (0.06$

 $(50 - 273)^4 = 9.3$

 $\epsilon_{\sigma} = (\epsilon_{F} + \epsilon_{B}) \times (1 + \alpha_{SP} \times \cos \Gamma_{4} \times \cos \Gamma_{4}) \times (\sigma) = (.818 + .600) \times (1 + .050 \times .7071 \times .7071) \times (\sigma)$

 $= 8.24 \times 10^{-8}$ (5.6697×10^{-8})

- Determine average array temperature during same period.
- Determine array illumination vs time profile during period of minimum solar illumination (including albedo = 36%).
- Determine average illumination during same period.
- Determine effect of cell cover glassing and degradation factors upon effective illumination "seen" by solar cell.
- Determine power derating factor by extrapolating the data summarized in Exhibit 5-10, using the average temperature and effective illumination determined above.
- Repeat same procedure for voltage derating factor for period of maximum solar illumination, using average temperature only.

(See Appendix C for the effect of various parameters upon average temperature during a period of average solar illumination).

5.2.1.7 Assembly Factor

The assembly factor is a measure of the reduction in solar cell output due to design and assembly processes. Based on a manufacturing estimate for the SAS baseline, this factor is assumed to be .965 for power and 1.000 for voltage.

5.2.1.8 Distribution Loss Factors

Distribution losses include voltage drops and power losses due to blocking diodes, various electrical interconnects on the array, the main bus conductor, and the slip ring assembly. These factors are discussed in the following paragraphs.

5.2.1.8.1 Blocking Diodes

This factor is a measure of the voltage drop and power loss due to blocking diodes (3 in parallel for each array panel). For the SAS baseline, this factor is assumed to be .993 for both power and voltage.

5.2.1.8.2 Solar Cell Interconnects

This factor is a measure of the voltage drop and power loss due to solar cell interconnects. For the SAS baseline, this factor is assumed to be .999 for both power and voltage.

5.2.1.8.3 Module-To-Module Interconnects

This factor is a measure of the voltage drop and power loss due to module-to-

EXHIBIT 5-10. TEMPERATURE DERATING

EXHIBIT 5-10. TEMPERATURE DERATING (CONTINUED)

module electrical interconnects. For the SAS baseline, this factor is assumed to be .999 for both power and voltage.

5.2.1.8.4 Panel-To-Panel Interconnects

This factor is a measure of the voltage drop and power loss due to panel-topanel electrical interconnects. For the SAS baseline, this factor is assumed to be .999 for both power and voltage.

5.2.1.8.5 Main Bus Conductor

This factor is a measure of the voltage drop and power loss due to the main bus conductor. The methodology for determing this factor is as follows:

- Determine sizes of conductors (optimized weight and volume).
- Determine conductor resistance @ 55°C (L/A = constant).
- Determine voltage drop and power loss.
- Determine percentage of total output.

For the SAS baseline, the electrical distribution system for each bloom is as shown in Exhibit 5-11. For an electrical configuration of 12 channels/blanket, there will be a total of 12 pairs of conductors/blanket. The conductor material is 37/36 aluminum/copper alloy.

The Length/Area ratios for the bus conductors are the same throughout the array and have been optimized for each blanket using the following parametric relationship (LSMC-D384250):

$$\frac{L}{A} = \sqrt{\frac{P_D \times C_D \times \Sigma L^2}{N \times I^2 \times \rho}}$$

where P_D = power density of module cross section

C_D = conductor density

 ΣL^2 = sum of conductor lengths

N = number of conductors

I = current

ρ = conductor resitivity

From the resultant L/A ratio, each conductor was sized using a constant cable thickness of .060 in = .15 cm. For insulation, 1 mil kapton + 1 mil high temperature polyester adhesive was used. The total weight of the insulation and adhesive is

EXHIBIT 5-11. BLANKET POWER DISTRIBUTION

assumed to be 2.5% of the total conductor weight. For the SAS baseline, the main bus factor is calculated to be .961 for power and .957 for voltage.

5.2.1.8.6 Slip Ring Assembly

This factor is a measure of the voltage drop and power loss due to the slip ring assembly. For the SAS baseline, this factor is assumed to be .988 for both power and voltage.

5.2.1.9 High Voltage Leakage

This factor is a measure of the voltage drop and power loss due to High Voltage leakage currents in a plasma radiation environment. For the SAS baseline, this factor is assumed to be 1.000 for both power and voltage.

5.2.1.10 Temperature Cycling

This factor is a measure of the voltage drop and power loss due to temperature cycling failures. For the SAS baseline, this factor is assumed to be .800 for power and 1.000 for voltage.

5.2.1.11 Equivalent EOL Per-Cell Performance

The equivalent EOL per-cell performance is determined by applying the solar array performance factors to the BOL cell/cover assembly. For the SAS baseline, the cell performance factors are summarized in Exhibit 5-12. This results in an equivalent EOL per-cell performance of .053 watts and .33 volts.

5.2.2 Maintenance Requirements

The maintenance requirements include the array life and also the paralleling of various electrical components to assure design reliability. For the SAS baseline, this results in the following:

- 10-year array life (greater cell and cover degradation factors and temperature cycling losses)
- minimum of 3 cells in parallel
- two sets of interconnects/solar cell
- minimum of 3 blocking diodes in parallel/panel.

CELL PERFORMANCE FACTORS

<u>i</u>	FACTOR	<u>Fv</u>	Fp
1	ASSEMBLY, F _a	1.000	.965
2	RADIATION, F _{rad}	.968	.854
3	TEMPERATURE, F _{top}	.759	.717
4	DIODE, V.d	.993	.993
5	SOLAR CELL IC, V _{sc}	.999	.999
6	MODULE/MODULE IC, V _{mm}	.999	.999
7	PANEL/PANEL IC, V _{pp}	.999	.999
8	MAIN BUS CONDUCTORS, V _{mb}	.957	.961
9	SLIP RING CONDUCTORS, V _{sr}	.988	.988
10	HIGH VOLTAGE LEAKAGE, Fleak	1.000	1.000
11	TEMPERATURE CYCLING, F _{tc}	1.000	.800
	TOTALS(m)	.688	.444

5.2.3 Array Performance Requirements

The array performance requirements determine the number of solar cells required, which in turn determine the size and panel/channel configuration of the array. For the SAS baseline, these requirements are:

- 480 kW Total EOL Power
- 10 kW/channel (48 channels)
- 180 V minimum/channel.

5.2.4 Solar Cell Quantity

The quantity of solar cells is determined by the interaction of the solar array performance requirements and the EOL equivalent per-cell performance. For the SAS baseline, 9,072,000 cells are required to meet the 480 kW array total power requirements EOL.

5.2.5 Transportation Requirements

The transportation requirements influence the array design in two ways:

- Fold-Up Array to fit in Shuttle (fold between panels)
- Size of Panel limited by size of shuttle bay.

For the SAS baseline, this resulted in a panel size of 2.81 m x 17.05 m.

5.2.6 Array Design

The basic array design is a fold-up blanket which fits in the shuttle bay. The resultant building block concept is depicted in Exhibit 5-13. The sizes and quantities of modules, panels, and blankets for the SAS baseline are also summarized in Exhibit 5-13.

5.2.7 Array Materials

Variations in the quantities of the various array materials very significantly affect the life cycle cost for a solar array, particularly one as large as 480 kW EOL (953 kW BOL). The array inputs to the life cycle cost model are summarized in Exhibit 5-14. The SAS baseline input values are also summarized in Exhibit 5-14.

5.2.8 Material Costs

Variations in the per unit material costs also significantly effect the array LCC. The costs of materials for the SAS baseline are also summarized in Exhibit 5-14.

BASELINE INPUTS TO LCCM (1980 \$ In Millions)

•	Cost of Labor		
	ON EARTH	\$	20/manhour
	IN SPACE		250/manhour
•	Cost of Materials		•
	Cell/Cover Assembly		7.75
	Module Substrate .	*	$142.29/M^2$
	Module Assembly (welding materials)	74	0,000
	Mechanical and Electrical Interconnects	1	0,260/panel
	Mechanical and Electrical Interconnects	4	7,000/blanket
•	No. of Cell/Cover Assemblies	9,07	2,000
•	No. of modules		2,880
•	No. of panels		192
•	No. of blankets		4
•	Blanket Weight (4)	1	1,940 kg.
•	Structures Weight		7,778 kg.
•	Main Bus Conductors (4)		656 kg.

5.2.9 Array Weight

The array weight determines the space transportation and space assembly/ checkout costs. For the SAS baseline, the total blanket weight is 11,940 Kg while the structure's weight is 7,778 Kg, and the weight of the main bus conductors is 656 kg

5.2.10 Array Maintenance

The array maintenance scenario affects the cost of the operations and maintenance phase of LCC, as well as the production phase costs. The primary cost contributions are number of spares required and number of maintenance trips and activities required. For the SAS baseline, 23 sparepanels (12% of total area) is required, and an average of 1.75 maintenance trips/year during the array life of 10 years.

5.2.11 Life Cycle Cost

The life cycle cost consists of three phases:

- DDT&E
- Production
- O&M

The total manufacturing cost during the production phase is basically a quantity related cost, while the NASA cost during the production phase is a weight driven cost. The Life Cycle Costs for the SAS baseline are summarized in Exhibit 5-15.

5.3 Summary

The SAPCM is a very versatile tool which can be used to derive various technology vs LCC relationships. Using assumed relationships, a basic model has been developed. In Section 6.0, the results of varying various parameters are discussed. It should also be noted, that the data bases indicated for radiation flux and radiation degradation, and for temperature derating can be changed, to analyze the effect of newly acquired data in these areas. In addition, the model can be further expanded to address other pertinent factors such as reliability, and other manufacturing and/or maintenance scenarios.

SAS BASELINE LIFE CYCLE COST (1980 \$ In Millions)

4.0	TOTAL L	IFE CYCLE	COST		754.5
4.1	DDT&E				153.9
4.2	TOTAL P	RODUCTION	PHASE COST:		439.9
	4.2.1	Total Man	ufacturing Cost		376.1
		4.2.1.1	Manufacturing Labor Cost		34.0
		4.2.1.2	Manufacturing Non-Labor Cost		261.7
	4.2.2	NASA Cost	::	e-	63.9
		4.2.2.1	Shuttle Transportation		63.1
		4.2.2.2	Space Assembly and Check-Out		.8.
4.3	TOTAL O	& M COST:	· •		160.7
	4.3.1	Total Cor	ntractor's Cost		.9
	4.3.2	NASA Cost	· •		159.8
		4.3.2.1	Train O & M Crew		2.5
		4.3.2.2	Perform Maintenance		11.0
		4.3.2.3	Transport Crew to LEO		146.3

6.0 TECHNOLOGY VS. LIFE CYCLE COST

6.1 General

This section summarizes the analysis and results of using the Solar Array Performance and Cost Model (SAPCM) described in Section 5.0 to quantify technology vs. LCC. Conclusions to be drawn from the study results are valid in the vicinity of the baseline under the assumptions, requirements and scenarios of the study and/or as generated previously in this report. Generally, these are:

- Silicon cells, planar array
- Orbit of 444 km, 56° inclination
- Shuttle transportation
- Earth manufacturing scenario
- Manual assembly in space (equipment assisted)
- Space-based maintenance includes personnel for routine maintenance
- DDT&E, program management and SE&I are "wraparound" cost factors
- \$31M/14,000 kg space transportation costs
- Cell/cover assembly costs are historical, but adjusted to 70%, recognizing the large quantity required.

6.2 Methodology

The study results were achieved by addressing each technology area separately and varying key independent parameters in the SACPM to determine resultant variations in life cycle cost. The variations in various intermediate parameters were also observed. The basic methodology consisted of the following:

- Selection and variation of one independent parameter as primary input to the SACPM (e.g., cell thickness, temperature, MTBF, etc.).
- Application of resultant variations in other key parameters as secondary inputs to SACPM (e.g., effects on efficiency, cell degradation, unit material costs, etc.).
- Determination of variations in key intermediate SACPM parameters (e.g., EOL Pmp, quantity of cells, # of panels, etc.)
- Determination of variations in LCC
- Determination of the characteristic equation which quantifies the relationship between the key independent technology parameter and LCC.

It is also important to note that the performance/cost model and/or data base can be easily changed to reflect variations in the array requirements, scenarios and/or assumptions, in effect to perform optimization trade studies.

6.3 Technology Areas

During the course of the study, ten technology areas were addressed using the general methodology discussed above and are discussed in the following paragraphs. These technology areas are listed below.

- Cell Thickness (6.3.1)
- Cover Thickness (6.3.2)
- Average Blanket Temperature (6.3.3)
- Cell Efficiency (6.3.4)
- Cover Degradation (6.3.5)
- Cell Degradation (6.3.6)
- Line Voltage (6.3.7)
- Years Between Overhaul (6.3.8)
- MTBF (6.3.9)
- Cell Cover Assembly Costs (6.3.9)

6.3.1 Cell Thickness vs LCC

The relationships shown in Exhibits 6-1 through 6-3 are for three types of silicon cells: (1) conventional/historical, (2) back surface field and (3) back surface field plus thin diffused top region. The data for all three types of cells were derived from "Semi-Conductors and Semi-Metals" Volume II, Hovel, 1975, Academic Press. The relationships to determine the variations in cell efficiency vs cell thickness and unit cell cost vs. cell thickness and efficiency are indicated for each type of cell. It should be noted that the conventional cells resulted in 5 or more panels/channel, which made a significant contribution to LCC due to the resultant increase in structures weight (e.g., longer booms required). In contrast, the other two categories resulted in only 4 panels/channel except for the 12 mil-12% efficiency cell in category II. One other factor which strongly affects the results is the wide variations in radiation degradation due to variations in cell thickness. Given smaller variations, the effect on life cycle cost would be less pronounced. A composite graph of all three types of cells is shown in Exhibit 6-4.

ICC		876.282	876.725	878.535	911.728	1014.032
S M		110.370	104.384	99.369	97.778	129.732
3		36,989	34,924	33,206	32.684	44.380
\$ 0		419.728	426.041	432,398	458.576	502.403
\$/Cell		3,51	3.46	3.40	3.33	3,24
a		10,4544	10,6848	10.9152	11,7216	12,64896
dw d		.046	.045	.044	.041	.038
$F_{ m p}(\overline{T})$.717	.715	.713	.710	.708
T min		340.2	340.6	341.1	341.7	347.7 342.3
T max		345.5	346.0	346.4	347.0	347.7
F (Rad)	,	.800	.828	.854	.878	906.
n BOL		.110	.105	660.	.092	.083
ц		12	10	8	9	4

$$$/\text{Cell} = 210.09 \text{ n}_{BOL}$$
 1.502 t -.313

TABLE 6-1. LCC vs CELLTHICKNESS (CONVENTIONAL CELL)

DOTI \$ M	103.660 848.290	70.870 771.042	65.872 769.341	
M	34.645	22.758	21.080	18 947
\$ 0	405,703	381.272	385.010	383,244
\$/Cell	4.00	4.18	4.42	4.72
0	9.8208	9.4176	9.4176	9.2448
dw	.049	.051	.051	.052
$\frac{F}{P}(\overline{T})$.719	.718	.716	.715
T min	339.8	340.0		
T wax	345.2	8 345,4 34	345.6	346.0
F (Rad) T wax	800	.82	.854	.878
BOL	.120	.119	118	.116
4.)	12	10	œ	9

$$n_{BOL} = .105 t^{-0.547}$$
, $4 \le t \le 12$
\$ Cell = 210.09 n_{BOL} 1.502 t -.313

Cell Thickness - II

TABLE 6-2. LCC vs CELL THICKNESS (BACK SURFACE FIELD)

201	717,301	709.641	704.511	711.158	792.763
\$	62,285	57.404	51.933	47.703	51.324
E	19,822	18.183	16.332	14.911	16.197
\$ 0	350,049	349.256	350,927	360.081	416.888
\$/Cell	5.19	5,53	5.99	6.65	5.89
a	8.1504	8,0064	7.8912	7.8912	9.6192
d m D	.059	090*	.061	.061	.050
F (T)	.721	.720	.718	.717	.711
T min	339,3	339.6	339.9	340.3	341.6
T max	344.7	344.9	345.1	345.5	347.0
$\frac{F}{P}$ (Rad) \overline{T} max	.828	.854	.878	.905	.937
BOL	.1375	.137	.136	.134	.107
μ	70	ထ	9	4	2

$$n_{BOL} = .1289 t.^{.0281}, t < t < 10$$

 $s/cell = 210.09 n_{Bool}$

 $$/\text{Cell} = 210.09 \text{ n}_{BOL}$

TABLE 6-3. LCC vs CELL THICKNESS (BACK SURFACE FIELD & THIN DIFFUSED TOP REGION)

118

EXHIBIT 6-3. LCC vs CELL THICKNESS

EXHIBIT 6-4. COMPOSITE CELL THICKNESS VS LCC

As seen in the composite, the cell thickness relationships all show a strong influence on LCC, and more importantly the advantages of the back field, thin diffused top region cell. For this type of cell, thickness of 6 mils is optimum.

The deviation of the data points from a smooth curve fit are a result of the number of panels required per power channel which in turn is a result of the Shuttle payload bay dimensional constraints. The SAS baseline is plotted as a reference point (t=8 mil, η_{ROL} = .122).

6.3.2 Cover Thickness vs LCC

The relationship shown in Exhibit 6-5 for cover thickness, displays a strong influence on LCC in the vicinity of four mils, a somewhat reduced influence near the baseline (eight mils), and with little gain above 12 mils. An increase in cover thickness has three effects on LCC: (1) increased weight of array, (2) reduction of degradation rate of cell, and (3) decrease in blanket mean temperature. The variations in radiation degradation are less pronounced due to cover thickness variations than for cell thickness variations. The relationship of unit cover cost versus cover thickness is as indicated. All configurations are based on 4 panels/channel which result in reasonably smooth curves for all parameters indicated.

6.3.3 Blanket Temperature vs LCC

The relationship shown in Exhibit 6-6 shows a strong influence on LCC due to changes in the mean blanket temperature. This derives basically from the change

ICC	743.591	745.370	746.061	745.305	746.516	754.526	762.751	787.108
Ø	79,520	77.005	73.578	69.939	66.376	63.808	60.344	58.021
Α	25.619	24.789	23.639	22.418	21.223	20.374	19.212	18.446
\$ 0	352.288	356,121	360.060	363.139	367.599	376.100	385.657	406,022
\$/Cover	2.58	2.63	2.70	2.78	2.88	3.02	3.23	3.61
Oi	8.5824	8.6688	8.7552	8.8128	8.8992	9.0720	9.2448	9.6192
dm	950.	.0555	.055	.0545	.054	.053	.052	.050
F (T)	.726	.723	.722	.719	.719	.717	.715	.713
T min	338,3	338.8	339.1		339.8	340.2	340.6	341.0
T max	343.8	344.1	344.5	344.7	345.1	345.4	346.0	346.5
F (Rad)	.877	.875	.872	.868	.862	.854	.839	.812
ا ب	16	14	12	10	æ	9	4	2

\$/Cover = 4.04 t -.162 cc = .945 se = .036

TABLE 6-5. LCC vs COVER THICKNESS

EXHIBIT 6-5. LCC vs COVER THICKNESS

TABLE 6-6. LCC vs TEMPERATURE

123

EXHIBIT 6.6. LCC vs TEMPERATURE

in cell efficiency with temperature (\$3.2M per 1°C). Of the technology areas addressed, temperature proved to have one of the greatest effects on LCC. As can be seen in the exhibit, the C₁ curve is for arrays with 4 panels/channel. The C₂ curve is for 3 panels/channel. The 89.2° point results in 5 panels/channel. It should be noted that the cost to achieve any reduction in temperature is not included in the LCC. Only the resultant effect of the reduction is included.

6.3.4 Cell Efficiency vs LCC

The relationship shown in Exhibit 6-7, as expected, shows a strong influence on LCC. In the vicinity of the baseline, the slope is \$46M per 1% change in cell efficiency (measured at BOL). The basic effect is on baseline quantities, weights, and cell unit costs. The relationship of unit cell cost vs. cell efficiency is as indicated. The study results also indicated the following relationship between EOL Pmp and the number of panels/channel.

EOL Pmp (w)	#Panels/Channel
.064093	3
.050063	4
.040049	5
.034039	6

6.3.5 Cover Degradation vs LCC

The relationship shown in Exhibit 6-8 displays a medium/strong influence on LCC. The slope in the vicinity of the baseline optical factor (.885) is about \$10M per 1% change of the factor. The cover unit cost variation as indicated is more than offset by the substantial reductions in weight, dimensions and number of cells in the baseline. The effect of cover degradation is two-fold: (1) the illumination reaching the solar cell is effected; (2) the illumination effect in turn effects the temperature derating. Hence, the effect of cover degradation on LCC is greater than the effect of cell degradation, which is discussed in paragraph 6.3.6. All array configurations have 4 panels/channel except the two extremes (.974 & .840), which have 4 and 5 respectively.

6.3.6 Cell Degradation vs LCC

The relationship shown in Exhibit 6-9 displays a medium influence on LCC. The slope is nearly constant at \$5.4M per one percent change for all values of the

BOL	du du	# Panels/ Channel	8	3	\$/Ce11	s o	W &	TCC
.183	.082	ю	5.85792	10.687	8.55	288.665	36.506	599.631
.171	920.	m	6.32448	11.520	7.72	299.741	39.010	617.964
.159	.071	m	6.76512	12.139	6.92	308.573	40.892	682.428
.146	• 065	ю	7.3872	13.308	60.9	323.117	44.400	656.798
.134	.059	4	8.1504	18,369	5.35	352,100	57.958	714.228
.122	.053	4	9.0720	20.374	4.65	376.100	63.808	754.526
.110	• 048	ις ····:	10.0224	30.740	3.98	411.437	92.307	840.704
.098	.043	ហ	11.1744	33.668	3.35	440.365	100.706	891.096
. 085	.037	. 9	12.99456	54.558	2.70	505.251	158,695	1056.977

TABLE 6-7. LCC vs CELL EFFICIENCY

126

EXHIBIT 6-7. LCC vs BOL EFFICIENCY

ICC	639.205	677.804	690.611	704.823	720.301	737.614	754.526	762,163	782.100	851.530
S M	44.400	55,152	56.107	57.958	59.793	61,820	63,808	64.477	66.621	92.307
\$ 0	310,085	327.925	336,457	345,133	354,763	365,561	376.100	381.088	393.712	419,456
\$/Cover	3.49	3.41	3,33	3.25	3.17	3.10	3.02	2.94	2.87	2.79
W	13,308	17.412	17.733	18,369	18,998	19.693	20.374	20.599	21.332	30.740
õ		7.6320	7,8912	8.1504	8,4384	8,7552	9.0720	9,2448	9,6192	10.0224
dw d	.065	.063	.061	650.	.057	.055	.053	.052	.052	.048
F. O	.974	096	945	.930	.914	006	885	.870	.855	.840

 $$/cover = 3.628 F_c$

TABLE 6-8. LCC vs COVER DEGRADATION

EXHIBIT 6-8. LCC vs COVER DEGRADATION

ICC	708.545	723.141	727.496	732,777	741.456	745.488	754.526	759.465	776.991
м	57,332	59.223	59.758	60.293	61.803	62,356	63,808	64.494	66.677
\$ 0	348.516	357,437	360,128	363,505	368,424	370,857	376,100	379.073	389.872
\$/ce11	5.48	5,33	5.15	. 5.02	4.91	4.73	4.65	4.45	4.28
×	18.157	18.806	18,986	19,165	19.687	19,873	20,374	20.605	21.352
õ	8.0064	8.2944	8,4384	8.5824	8,7552	8.8992	9.0720	9.2448	9.6192
dm	090		.057		.055	.054	.053	.052	.050
F (Rad)	. 953	.935	,914	668°	.885	.864	.854	.829	808

 $$/\text{Cell} = 5.894 \text{ F} \text{ (Rad)}^{1.502}$

TABLE 6-9. LCC vs CELL DEGRADATION

EXHIBIT 6-9. LCC vs CELL DEGRADATION

degradation factor. The basic effects, as the factor increases, are due to quantity, weight and dimensional reductions. The unit cell cost increases with degradation resistance but does not substantially offset the other basic effects. All array configurations have 4 panels/channel.

It should be noted that the basic methodology used to achieve the results indicated could be applied to any solar cell performance parameter with similar results. In addition, the results obtained here can be used in conjunction with the cell thickness results to determine the effect of a smaller variation cell degradation vs cell thickness over the array lifetime.

6.3.7 Line Voltage vs LCC

The relationship shown in Exhibit 6-10 displays a moderate influence on LCC in the low (40 to 100 volts) range, and very weak influence above 400 volts. For each data point, an array weight and size was calculated for an optimum selection of I²R losses versus blanket area. The variations in line voltage were achieved by simply increasing the number of panels/channel (e.g., connected in series) while decreasing the total number of channels. This means that the total array size and the total current through the main bus conductors does not significantly change. It should be noted that these curves do not include the effect of high voltage leakage which could prove to have a quite drastic effect on the results.

6.3.8 Years Between Overhaul vs LCC

The relationship shown in Exhibit 6-11 displays an optimum life (or time between blanket changeout) near the baseline 10 years. The transportation costs of earlier overhauls dominate the reduced blanket area required for the baseline design. The cost of achieving the longer life design was not quantified (effect on DDT&E and material costs, for example). It should be noted that although the array quantities and weights would be smaller for a shorter array lifetime, the totals required to be manufactured and sent into space would increase drastically as the lifetime decreases. (e.g., four times as much is required for 2.5 years between overhaul.) This leads to the conclusion that the array should be designed for a minimum of overhaul during its projected period of operation.

TABLE 6:10. LCC vs LINE VOLTAGE

ICC	1251.796	813.151	754.526
\$ M90	265,483	160.650	160,650
\$ M	115,764	67.716	63.808
S	614,838	483,334	376,100
Total W	43.096	24.300.	20.374
Total 2	23.74272	13,53024	9.0720
Array W	10.774	12,150	20.374
Array Q	5.93568	6.76512	9.0720
Yrs	2.5	ហ	10

TABLE 6-II. LCC vs YEARS BETWEEN OVERHAUL

EXHIBIT 6-11. LCC vs YBO

6.3.9 Mean Time Between Failures vs LCC

The relationship shown in Exhibit 6-12 displays a moderate influence on LCC near the baseline. For the baseline design, 23 panel failures over the 10 year life (MTBF = 5,000 Hrs.) were assumed for the purpose of determining spare panel quantities. A higher failure rate means more spares and increased space transportation costs. The primary result indicates a need to look at this area further by including a more rigorous study of the relationship between the MTBF and number of spares, and particularly the effect on DDT&E phase costs.

6.3.10 Cell and Cover Assembly Unit Costs vs LCC

The relationship shown in Exhibit 6-13 gives a slope of \$22M savings in LCC for each dollar reduction in cell and cover assembly unit costs. The results in this technology area indicate what benefits could be realized in LCC reduction, simply by reducing the unit cost of the cell and/or cover. In addition, the relationship between unit cost and LCC indicated here can be used to adjust the results of exercising the corresponding LCC relationship in any or all of the other technology areas.

6.4 Summary

The results of the various technology areas vs LCC are summarized in Exhibit 6-14. It should be emphasized that the slopes (e.g., \$/% change) apply only within the immediate region of the baseline SAS. It should also be noted that while the individual results were obtained by varying only one independent parameter at a time, it is possible to use the various relationships in various combinations. For example, given a solar cell which does not exactly fit one of the cell thickness vs LCC curves, it is possible to adjust the effect of a different efficiency, cell degradation, and/or unit cell cost on the LCC by applying the appropriate relationships in conjunction with one another. However, it should also be emphasized that this method will give only approximate results, and should be used in only relatively simple combinations. To obtain a better composite result, the Solar Array Performance

TABLE 6-12. LCC vs MEAN TIME BETWEEN FAILURES

EXHIBIT 6-12. LCC vs MTBF

\$/cca	\$ 0	DOI .
10.00	413,225	804.645
7.75	376,100	754.526
5.00	330,725	693.270
3.50	305,975	659,857
2,00	281.226	626.446
1.00	264.726	604.171
.50	256.476	593,033

| EQUATION | CORRELATION | 0.942 | CC=607.593\$/CCA^{0.099} | STANDARD ERROR | 0.036

EXHIBIT 6-13. LCC vs DOL/CELL & COVER ASSEMBLY

TECHNOLOGY AREA

INFLUENCE ON LCC

CELL THICKNESS

MEDIUM/STRONG - 6 MILS OPTIMUM*

COVER THICKNESS

MEDIUM - LITTLE GAIN ABOVE 12 MILS

BLANKET TEMPERATURE

STRONG - \$3.2M/OC

CELL EFFICIENCY

STRONG - \$46M/1% CHANGE

COVER DEGRADATION

MEDIUM/STRONG - \$10M/1% CHANGE

CELL DEGRADATION

MEDIUM - \$5.4M/1% CHANGE

LINE VOLTAGE

WEAK - LITTLE GAIN ABOVE 400 VOLTS

YEARS BETWEEN OVERHAUL

WEAK - LONGER LIFE BETTER

MTBF

MEDIUM - KEEP MTBF UP, SPARES LOW

CELL COVER ASSEMBLY COSTS

STRONG - \$22M/\$ CELL COVER ASSEMBLY

UNIT COST

*RESULTS ARE GIVEN FOR THREE CLASSES OF CELLS (THIS APPLIES TO BSF + THIN DIFFUSED TOP REGION CELL ONLY).

and Cost Model should be adjusted and/or exercised accordingly.

6.5 Recommendations

The recommendations to be made are in two categories: (1) those based on each technology area/LCC quantified (Section 6.5.1) and (2) general recommendations for further applications of the model and techniques developed for the study (Section 6.5.2).

6.5.1 Specific Technology Recommendations

<u>Cell Thickness</u> - Determine an optimum cell thickness and type of cell (back field, thin diffused top region, etc.) for various array designs, missions and manufacturing and maintenance scenarios.

Cover Thickness - Same as for cell thickness.

Blanket Temperature - Explore the feasibility of various thermal control methods/materials to optimize LCC (\$3.2M/ $^{\circ}$ C).

<u>Cell Efficiency</u> - Perform an in-depth study to model the optimum relationship of cell cost vs. cell efficiency involving various manufacturing scenarios (\$46M/1% change in Efficiency).

Cover Degradation - Explore methods to increase cell degradation resistance (\$10M/1% change in F_c).

Cell Degradation - Explore methods to increase cell degradation resistance (\$5.4M/1% change in F_p (rad)).

<u>Line Voltage</u> - Perform a LCC trade study on the benefits of higher line voltages versus high voltage losses.

Years Between Overhaul - Explore the benefits of an add-on concept to offset degradation.

Mean Time Between Failures - Perform an in-depth study of the effects of reliability and maintenance on LCC.

<u>Cell Costs</u> - Perform an indepth study to model the relationship of cell cost versus cell efficiency, involving various manufacturing/maintenance scenarios. (\$22M/\$ of Cell Unit Cost).

6.5.2 Further Applications of the Model

The performance/cost model and techniques developed for this study can be modified, without complication, to support not only the specific technology studies recommended in 6.5.1, but a number of other areas:

- A. To determine an optimized combination of solar array parameters;
- B. To compare various solar array technologies (different cell and cover materials, cell/cover/coating combinations, etc.);
- C. To study various manufacturing scenarios;
- D. To study various missions: differing power requirements, orbits (all, LEO through GEO) and interplanetary;
- E. To study various reliabilities and maintenance scenarios;
- F. With more modification, the model can be expanded to determine technology vs. LCC for a total system such as the SSPS or any other space station concept. Thus, the total effect of subsystem technology may be quantified to include interfacing subsystems and other system elements such as DDT&E, Production, O&M, tracking, command and control, transportation, safety, and so forth.

7.0 REPORTING OF STUDY STATUS AND RESULTS

The following output has been provided over the course of the study:

- Monthly Progress Narratives (April, 1979 through March, 1980)
- Oral Presentations at:
 - Lewis Research Center, October 19, 1979
 - Lewis Research Center, February 20, 1980
 - NASA Headquarters, March 4, 1980
- Document: "Specification of Requirements, 500 kW Solar Array Subsystem", PRC, July 30, 1979 (Appendix A)
- Document: "Baseline 500 kW Solar Array Subsystem Definition", PRC July 30, 1979
- Document: "Solar Array Subsystem Study Final Report", PRC, Preliminary,
 March 20, 1980.

APPENDIX A

BASELINE 500 kW SOLAR ARRAY SUBSYSTEMS REQUIREMENTS (SPECIFICATION)

SPECIFICATION BASELINE 500kW SOLAR ARRAY SUBSYSTEMS REQUIREMENTS

Prepared For NASA LEWIS RESEARCH CENTER CLEVELAND, OHIO 44135

MARCH 20, 1980 CONTRACT NAS3-21926

prc

PRC/SSC Solar Array Subsystems Project Office

7911 CHARLOTTE DRIVE · HUNTSVILLE, ALABAMA 35802

SPECIFICATION

BASELINE 500 kW SOLAR ARRAY SUBSYSTEMS REQUIREMENTS

CONTRACT NAS3-21926

JULY, 1979

MARCH, 1980 - UPDATE

TABLE OF CONTENTS

			Page
1.0	INTR	ODUCTIO	N AND SCOPE
2.0	APPL	ICABLE	DOCUMENTS2.0
3.0	REQU	IREMENT	s3.0
	3.1	System	Level Requirements3.0
		3.1.1	System Level Description3.0
		3.1.2	Mission Requirements3.3
	3.2		tem Performance and Interface Requirements and aints
		3.2.1	Electrical Performance and Interface Requirements3.4
		3.2.2	Structural/Mechanical/Thermal Performance and Interface Requirements and Constraints
		3.2.3	Transportation/Transportability3.7
		3.2.4	Life and Reliability3.8
		3.2.5	Safety3.8
		3.2.6	Maintenance/Maintainability3.9
		3.2.7	Environment
	3.3	Design	& Construction3.11
		3.3.1	Materials Properties3.11
	3.4	Verifi	cation Requirements3.12
	3.5	Person	nel & Training Requirements

1.0 INTRODUCTION AND SCOPE

Under contract to NASA LeRC, a baseline Solar Array Subsystem (SAS) conceptual design is being developed for the purpose of determining the influence of varied technology on the life cycle costs of the subsystem and its interfacing elements.

This specification defines the requirements on the 500 kW (250 kW average) Solar Array Subsystem (SAS), a subsystem of the Space Support Platform System (SSPS). This is a top level subsystem specification. The relationship of this specification to the SSPS hierarchy of specifications is contained in Section 2.0.

2.0 APPLICABLE DOCUMENTS

- 2.1 The SSPS System specification tree is shown in Exhibit 2-1.
- 2.2 JSC 07700 Volume XIV, Space Shuttle Payload Accommodations, September 22, 1978
- 2.3 The applicability of other specifications, standards and other documents is TBD.

EXHIBIT 2-1 SSPS SPECIFICATION TREE

3.0 REQUIREMENTS

3.1 System Level Requirements

These requirements apply to the system level (the Space Service Platform System, SSPS) directly. The requirements on the Solar Array Subsystem derive from the system level requirements and are specified in Sections 3.2 through 3.5.

3.1.1 System Level Description

The purpose of the Space Services Platform System (SSPS) is to provide services to varied User Systems. The User Systems may be engaged in materials processing, astronomy, solar system and earth observation, life sciences, communications, or other operations. The User Systems may be secured to the platform or docked for servicing or short term operations.

The general configuration of the SSPS is shown in Exhibit 3-1. The subsystems of the SSPS, their functions and major interfaces are identified in Exhibit 3-2. The User Systems will interface with the SSPS subsystems as follows:

•	Electrical power	-	ESDCS
•	Thermal control	-	TCS
•	Structure	_	SMS
•	Mechanical	-	SMS
•	Instrumentation	-	CDS

• Operations/Maint. - CASS

• Gross Pointing Stability - CDS (GUIDANCE)
PCS (SSPS ATTITUDE)

EXHIBIT 3-2 SSPS SUBSYSTEM FUNCTIONS AND INTERFACES

to a transmission to progression and the later

ente de production de la company de la c

3.1.2 Mission Requirements

The following characteristics shall be used in the system and subsystem design.

3.1.2.1 General

- System operational 1985-1995
- State-of-art (1979) design
- Silicon solar cells; planar array (no concentration)
- Transportation to LEO: Shuttle

3.1.2.2 Orbit and Mission Parameters

- LEO circular, 444 km. Inclination 56°.
 - Orbital period: 87.3 minutes
 - Time in sun: 53.7 minutes, minimum
 - Time in eclipse: 33.6 minutes, maximum
 - Number of eclipses: 60,239-Ten Years

3.1.2.3 Electrical

- 250 kW continuous to loads, provided in 48, 24 or 16 individual power channels to the ESDCS subsystem at the slip ring interface (See Section 3.2.2.1)
- Provide this output from BOL to EOL
- Bus voltage for Users Systems to be:
 30VDC small, experimental projects (20% of power)

100-250 VDC-intermediate power projects and other SSPS subsystems (30% of power)
1000 VDC - manufacturing, processes, large engine testing (50% of power)

3.2 Subsystem Performance and Interface Requirements and Constraints

These requirements apply to the Solar Array Subsystem (SAS) of the Space Services Platform System (SSPS); and have been derived from the system level requirements of Section 3.1.

3.2.1 Electrical Performance and Interface Requirements

3.2.1.1 SAS/ESDCS Electrical Interface

- The SAS shall provide electrical power to the ESDCS for energy storage, distribution and conditioning. The ESDCS will provide the electrical power/energy to the User Systems and other subsystems of the SSPS: SAS, CDS, SMS, TCS, PCS, and OMCS.
- The SAS shall provide electrical power to the ESDCS at the 2 axis drive/slip ring assembly output in accordance with the following table of options:

NUMBER OF	MINIMUM NUMBER OF POWER KW	
POWER CHANNELS	PER CHANNEL	SLIP RING OUTPUT
48	10.0	180

• Total power output to the ESDCS shall be 480 kW peak EOL.

3.2.1.2 SAS Power Losses

The total power losses of the array shall not exceed 10%. These losses include:

- assembly factor
- diode drop
- wiring (cell, module panel interconnections and main buses
- slip rings.

3.2.1.3 <u>Degradation Compensation</u>

The SAS shall be designed to achieve a constant electrical power output by varying the angle of incidence of the sun vector on the plane of the array over the 10 year period between overhauls.

3.2.1.4 Environmental Degradation

The SAS shall not exceed 50% degradation of BOL maximum power output (at slip-ring output) under the environment specified in Section 3.2.7.

3.2.2 Structural/Mechanical/Thermal Performance and Interface Requirements and Constraints

3.2.2.1 SAS Structural/Mechanical Performance

- The SAS shall be capable of withstanding orbit changes of altitude and inclination.
- Loads:
 - Perpendicular to plane of array: 0.01 G
 - Parallel to plane of array: 0.01 G
- The SAS array shall be held within ± 10 degrees
 of planar except during orbit maintanance thrusting.

3.2.2.2 SAS/SMS Interface

The SAS interfaces with the SMS shall be:

- Structural Attachment: The SMS shall provide the mounting assembly which secures the SAS to the SMS structure, at the SAS two axis drive/slip ring assembly.
- Attitude Control Drive Interface: The SMS shall provide the drive power required to implement SAS attitude commands received from the CDS. The interface shall be the two-axis drive assembly shaft at the SMS drive power source. Maximum angular velocity and acceleration required of the SMS drive power source shall be $\omega = 1$ $^{\circ}/\text{sec}$, and $\dot{\omega} = 1$ $^{\circ}/\text{sec}^2$ about the axes of pitch and roll, where pitch is motion about the SAS boom axis.

3.2.2.3 SAS/ESDCS Interface

• This mechanical interface shall be the electrical interconnects between the 2 axis drive/slip ring assembly output and the ESDCS.

3.2.2.4 SAS/PCS Interface

- Thruster induced loads shall be consistent with structural/mechanical requirements of Section 3.2.3.1
- Contaminant and charged particle constraints and tolerances shall be TBD.
- Thrusters will be located near the end-boom on the spar axis. These thrusters will be used for orbit maintenance thrusting.

3.2.2.5 SAS/TCS Interface

The SAS thermal control requirements and mechanical interfaces shall be: TBD

3.2.2.6 SAS/CDS Interface

- The SAS shall provide mechanical accommodations for command and data instruments which shall be components of the CDS. The CDS shall provide electrical power for command and data channels which interface with the SAS.
- ♠ The command and data channel list for SAS shall be: TBD.
- Communication requirements for space assembly, check-out, operations and maintenance activities will be (TBD).

3.2.2.7 SAS/OMCS Interface

• This interface is covered in Section 3.2.7

3.2.3 Transportation/Transportability

- 3.2.3.1 The SAS components shall be transportable to space by the Space Shuttle.
- 3.2.3.2 The SAS shall incorporate fold-up panels for space transportation.
- 3.2.3.3 The SAS design, as stowed for transportation shall meet the transportation environment specified in Section 3.2.7.
- 3.2.3.4 The maximum dimensions and total weight including containers, of a single-flight set of SAS components (blankets, structural components, electrical and mechanical interconnects, electrical buses, 2 axis drive/slip ring assembly) shall not exceed: 3.6 meters in diameter, 18 meters in cylindrical length, and 27,000 kg in weight. The CG limits shall be as specified in JSC 07700 Volume XIV.

3.2.4 Life and Reliability

- 3.2.4.1 The SAS shall be designed for a ten year operational period between blanket change-out with on-orbit scheduled and unscheduled maintenance performed by the OMCS. Over the ten year period, the electrical output shall not degrade due to the natural environment greater than 50% of BOL electrical power output.
- 3.2.4.2 The design shall be such that failures will be non-proliferating.
- 3.2.4.3 Reliability specifications shall be subject to life cycle cost trade analyses.
- 3.2.4.4 The design shall provide that the number of panels whose output is \leq 92% $P_{\rm O}$ (EOL) shall not exceed 5% of the array area at any one time over the 10 year blanket life.
- 3.2.4.5 The number of panels changed out for failure shall not exceed 12% of the array area over the 10 year blanket life.
- 3.2.4.6 Storage life is TBD.

3.2.5 Safety

The SAS design and procedures for all phases of production, earth and space integration, transportation and O&M, shall assure the chance of serious injury or death over a 10 year period is less than one in 10⁷ man-hours.

3.2.6 Maintenance/Maintainability

3.2.6.1 Logistics and Spares

The normal supply mode shall be a set of on-hand (in space) spares and materials sufficient for ten year's operation. The spares set shall be delivered by the Space Shuttle.

The OMCS personnel crew shall be changed out every three months. Transport mode shall be Space Shuttle.

3.2.6.2 Overhaul

The SAS shall be designed for array blanket change-out every 10 years.

3.2.6.3 Maintenance

- The SAS blanket shall be modularized for panel removal and replacement with a serviceable spare.
- In place (on-array) repair shall be limited to the panel level or higher.
- In-space, shop repair of panels at panel level or lower shall be: TBD
- Panels shall be considered failed at 90% of $P_O(EOL)$, and shall be changed out.
- The SAS design shall enable repair/replacement (and checkout) time of 24 manhours per modular panel.
- The SAS design shall permit automatic fault isolation to the failed panel(s).
- The Solar Array Subsystem (SAS) shall be capable of assembly and checkout in space. Assembly will include hook-up and attachment to the (SMS) and other subsystems of the SSPS system.

3.2.7 Environment

3.2.7.1 Natural Environment

The design shall meet the requirements of this specification within the natural environment (worst case 20 year prognosis) of the earth orbit range of: 300 to 1900 km, all inclinations. This environment shall include effects due to U.V. radiation, solar flares, trapped radiation and micrometeorites.

3.2.7.2 Transportation Induced

- Earth surface/air transport:
 TBD
- Launch and ascent to LEO
 - Axial acceleration of 5g
 - Lateral acceleration of 0.5g
 - Decaying sinusoidally of 7g at 16 Hz
 - Sinusoidal vibration (three mutually perpendicular directions) +1 g peak from 2 to 40 Hz
 - Random vibration (gaussian amplitude distribution)
 0.1 g²/Hz from 10 to 60 Hz, 0.4 g²/Hz from
 60 to 2,000 %z
 - Acoustic noise (decibels re 0.0002 microbar) up to 150 db (3 minutes duration) 45 to 11,200 Hz
- Ascent Venting Profile TBD

3.2.7.3 Operational Induced

- The induced operational environments shall be as specified in Section 3.2 interface requirements.
- Contaminants TBD

3.3 Design & Construction

3.3.1 Materials Properties

3.3.1.1 Materials Compatibility

TBD

3.3.1.2 Outgassing

TBD

3.3.1.3 Insulation Resistance

TBD

3.3.1.4 Voltage Breakdown

TBD

3.3.1.5 Contaminants Sources

TBD

3.4 <u>Verification Requirements</u>

The requirements of this specification shall be as specified in Section 4.0, verification. (Section 4.0 is TBD)

3.5 Personnel & Training Requirements

TBD

APPENDIX B

LIFE CYCLE COST DATA

INDIRECT EXPENSES

PRODUCTION PHASE

- Fringe Rate = 32% and includes all fringe benefits.
- Overhead Rate = 125% and includes:
 - Utilities and telephones
 - Depreciation of facilities and capital equipment
 - Maintenance and operations of facilities and equipment
 - Indirect Labor supervisors, foremen, clerks, typists, secretaries
 - Indirect Labor Fringe Benefits
- Other Direct Charges = 10% and includes computer supplies and expense,
 travel expense and direct rental equipment expense.
- General and Administrative Rate = 15% and includes: Finance, contracts, personnel, legal services, public relations, and a manager and their associated costs of doing business, taxes and insurance.

OPERATIONS AND MAINTENANCE PHASE

- Fringe Rate = 32% and includes all fringe benefits.
- Overhead Rate = 50% and includes program management, secretarial support and supervision, and use of a test facility as required.
- Other Direct Charges = 10% and includes computer supplies and expense,
 travel expense and direct rental equipment expense.
- General and Administrative Rate = 15% and includes finance, procurement, contract, legal services, public relations, and a general manager and their associated costs of doing business, taxes and insurance.

LIFE CYCLE COST - DDT&E PHASE (1980 DOLLARS IN MILLIONS)

CDDT&E = .35 CPROD = 153.9

LIFE CYCLE COST - PRODUCTION PHASE (1980 DOLLARS IN MILLIONS)

SAS MANUFACTURING COST

LABOR		NON-LABOR	
DIRECT LABOR	12.8	MATERIALS	99.3
FRINGES	4.0	MATERIALS BURDEN	9.9
OVERHEAD	16.0	EQUIPMENT	141.5
ODC	1.2	EQUIPMENT MAINTENANCE	9.9
SUBTOTAL	34.0	SPECIAL EQUIPMENT	1.0
		SURFACE TRANSPORTATION	0.1
		SUBTOTAL	261.7
TOTAL MANUFACTURI	NG COST		

LABOR	34.0
NON-LABOR	261.7
SUBTOTAL	295.7
PROJECT MANAGEMENT	17.2
SE	14.2
SUBTOTAL	327.1
G&A	49.0
TOTAL \$	376.1

NASA COST

SHUTTLE TRANSPORTATION	63 .0
SPACE ASSEMBLY & CHECKOUT	.8
TOTAL	63.8

TOTAL PRODUCTION PHASE COST

MANUFACIUNING	3/0.1
NASA	68.8
TOTAL	439.9

LIFE CYCLE COST - O&M PHASE (1980 DOLLARS IN MILLIONS)

CONTRACTOR COST

•	
DIRECT LABOR \$.4
FRINGES	.1
OVERHEAD	.2
ODC	1
SUBTOTAL	.8
G&A	
TOTAL CONTRACTOR'S COST	.9
NASA INCURRED COST	
TRAIN O&M CREW	25
TRANSPORT CREW	146.3
PERFORM MAINTENANCE	11.0
TOTAL NASA INCURRED COST	159.8
TOTAL COST OF O&M PHASE	
CONTRACTOR'S COST	.9
NASA COST	159.8
	160.7

TOTAL LIFE CYCLE COST SUMMARY (1980 DOLLARS IN MILLIONS)

DDT&E	153.9
PRODUCTION	439.9
O&M	160.7
TOTAL LIFE CYCLE COST	754.5

TCP LEVEL COST RELATIONSHIP SOURCES

- AEROSPACE CORPORATION ADVANCED SPACE POWER REQUIREMENTS & TECHNIQUES
 - HISTORICAL AND PROJECTED DATA
- MSFC COMMON SOLAR ARRAY COST ESTIMATE SUMMARY:
 - CELL, CELL/COVER ASSEMBLY, MODULE ASSEMBLY
- PRC COST ESTIMATING TECHNIQUES FOR MISSION SYSTEM INTEGRATION AND TEST ELEMENTS OF FUTURE SPACE MISSIONS
 - PROJECT MANAGEMENT AND SE
- NASA REPORT TO THE SPECIAL PANEL FOR SPACE EVALUATION:
 - \$300/WATT
 - DDT&E = 0.35 PRODUCTION COST
- JSC STS REIMBURSEMENT GUIDE:
 - \$31 M/DEDICATED FLIGHT TO 444 km 56° INCLINATION.
- MSFC/JSC TELECONS
 - ASTRONAUT LABOR OF \$250 PER MAN-HOUR INCLUDES:
 OVERHEAD, TRAINING, LIFE SUPPORT, DIRECT LABOR
 - SPACE MANEUVERING PLATFORM COST
- LABOR, MATERIALS, PROCESS AND EQUIPMENT SOURCES:
 - BOEING

- LOCKHEED

HUGHES

- TRW

- BALL BROTHERS

- SPECTROLAB

- OCLI

ASTRO RESEARCH

- HEWLETT-PACKARD

— 3M

- REYNOLDS

– UÂL

- OTHER

APPENDIX C

SOLAR ARRAY PERFORMANCE & COST MODEL PROGRAM

EXHIBIT C-1 BASIC INTERRELATIONSHIP OF SACPM PROGRAM SECTIONS

1.0 INTRODUCTION

The program for the Solar Array Performance and Cost Model (SACPM) is written for the TI-59 programmable calculator with a Master Library module. The total program consists of 4649 steps which are divided into 10 subroutines as indicated in the table below:

<u>s</u>	PROGRAM UBROUTINE	PROGRAM STEPS	DATA BASE REGISTERS	PROGRAM BANKS	DATA BASE BANKS	TOTAL BANKS	TOTAL # CARDS
1.	Physical	716		3		3	2
3.	Fluence, Φ	421	15	2	.1	3	2
3.	Radiation	344	21	2	1	3	2
4.	Thermal	478		2		2	1
5.	Temperature	636		3		3	2
6.	Main Bus	267		2		2 .	1
7.	Solar Cell	470	30	2	1	3	2
8.	Solar Array	478	16	2	1	3	2
9.	Weight	461		2		2	1
10.	LCCM	378	26	2	1	3	2
		46.40	100				
		4649	108	22	5	27	17

1.1 Program Description

The SACPM program models the cost-technology relationships of a silicon planar 500 kW (250 kW continuous) space solar array for a LEO Space Platform mission. The modeling approach, generally, is to

- define the solar cell, cover, substrate and cell interconnect circuitry (module cross section)
- determine the value of the solar array factors which affect performance and apply to the BOL cell/cover assembly to determine the EOL per cell array performance.
- determine number of cell/cover assemblies required for baseline orbit and load power/energy requirements

- determine total array area, dimensions and structural requirements (array configuration)
- determine array weight breakdown and totals
- determine life cycle cost.

Exhibit C-1 is a block diagram which shows the basic interrelationship of the SACPM program subroutines. The following paragraphs contain a description of the program subroutines.

1.1.1 Physical

Given the inputs listed below, the physical subroutine of the SACPM program provides the outputs indicated. The exhibit numbers refer to exhibits in the main body of this report which contain the information described.

. INPUTS	OUTPUT (S)	EXHIBIT(S)
All Length Cell Width L Distance Between Cells W Distance Between Cells	Cell Area Substrate Area Packing Factor	5.4
Material Thickness Material Density Material Area	Mass/Weight Shielding Thickness	. 5.4 5.5
Material Mass Material Heat Capacity	Thermal Mass	5.8

1.1.2 Fluence, Φ

The fluence subroutine of the SACPM program computes the equivalent radiation fluence that the solar cell "sees". The total back and front shielding thickness previously computed in the physical subroutine section (Exhibit 5.5) and the orbit altitude provide the inputs for this subroutine section. The fluence environment model is graphically depicted in Exhibit 5-6 of the main body of this report. The front and back fluences are summed to determine the total equivalent fluence.

1.1.3 Radiation

Given the fluence subroutine output described above and the solar cell thickness as inputs to the radiation subroutine, the solar cell radiation performance factors are calculated for power and voltage. The radiation factor modeling for power and voltage is graphically depicted in Exhibit 5-7 of the main body of this report.

1.1.4 Thermal

The thermal subroutine performs the calculations shown in Exhibit 5-9 of the main body of the report. The outputs of this subroutine are inputs to the temperature subroutine.

1.1.5 Temperature

The temperature subroutine uses as inputs the thermal mass profile in Exhibit 5.8 and the thermal calculations in Exhibit 5-9 of the main body of this report. The temperature subroutine calculates temperature profiles of array temperature versus time in orbit, and array average illumination and average temperature during the illuminated portion of the array orbit. Examples of these calculations are contained in Appendix D of this report.

1.1.6 Main Bus

The main bus subroutine provides the input parameters for the following equation:

$$\frac{L}{A} = \sqrt{\frac{P_D \times C_D \times \Sigma L^2}{N \times I^2 \times P}}$$

The equation and its parameters, together with its use in determining the performance factors for the main bus conductor, are described in paragraph 5.2.1.8.5 of the body of this main report.

1.1.7 Solar Cell

The solar cell subroutine performs four functions in conjunction with the solar array parameters as described in paragraph 5.2.1 of the main body of this report. The first function is computation of the EOL maximum power per cell

using the basic equation:

EUL P_{mp} (W/m²) = [
$$(n_{BOL} \times \prod_{i=1}^{II} F_{p_i}) \times (S' \times \prod_{j=1}^{II} F_{p_j}) \times PF$$
] x A_s

The equation and its parameters are discussed in the main body of this report (paragraph 5.2.1).

The second function is calculation of the temperature derating factor using the temperature curves in Exhibit 5-10 of the report's main body. It should be noted that because of the influence of the average illumination, the calculation for the temperature derating power factor is a "two-dimensional" process.

The third function is calculation of the main bus conductor performance factor. This is accomplished as described in paragraph 5.2.1.8.5 of the main body of this report.

The fourth function is calculation of the EOL maximum power and maximum voltage per cell, which are used for array sizing in the solar array subroutine.

1.1.8 Solar Array

The solar array subroutine uses the EOL maximum power and maximum voltage per cell to determine the array configuration and performance. The outputs are the information depicted in Exhibits 2-5, 2-6, 2-7 and 2-18 of the main body of this report.

1.1.9 Weight

The weight subroutine provides the information shown in Exhibits 2-19 and 2-20 of this report, with the exception of array area, which is calculated in the solar array subroutine above.

1.1.10 Life Cycle Cost Model (LCCM)

The block diagram of the LCCM subroutine is shown in Exhibit 4-1 of the main body of this report. The inputs and factors used are summarized in Exhibits 4-4 and 4-5. The output data is summarized in Exhibits 4-3, 4-5, 4-6, and 4-7. A discussion of the LCCM is included in Section 4 and Appendix B of this report.

1.2 Use of SACPM Program

The procedure for using the SACPM program subroutines is given in the following paragraphs. A sample output tape is described in Appendix E. (NOTE: Once the initial partition -- 729.19 -- is set, the program will automatically set the partition for the remaining subroutines if all ten subroutines are used in the sequence listed on the following pages.)

1.2.1 Physical Subroutine (729.19)

REMARKS								L = Cell length	$\Delta L = Distance in L direction$	W = Cell width	$\Delta W = Distance in W direction$	$A_{c} = Cell area$	A = Per-cell substrate area	PF = Packing factor					T = Material thickness	D = Material density	M = Material Mass	A = Material Area	<pre>W = Material Weight</pre>
PRINT								ы	ΔL	M	ΔW	A	Ą	PF					E	Q	ž	A	W
DISPLAY	H		VΓ	3		MΩ									Ħ	Ω			ï				
PRESS	A		B	ູ້ວ		D.		A							ပ	Ω			· 3/3		,		
ENTER	н		VΓ	3		МΔ		ı							Н	۵			#QI				
PROCEDURE	Enter cell length	Enter distance between	cells in L direction	Enter cell width	Enter distance between	cells in W direction	Calculate/print area	parameters							Enter material thickness	Enter material density	Enter material ID #	and calculate physical	parameters	(NOTE: Press E to insert	material; E' to delete material	from data base - card bank #4)	•
	٦.	2		m	4.		گ								9	7.	8						

PROCEDURE	ENTER	PRESS	DISPLAY	PRINT	REMARKS
				EH	T = Material thickness
				Q	D = Material density
				į.	<pre>T' = Shielding thickness</pre>
				×	M' = Per cell mass (includes
					packing factor)
Enter material heat					
capacity profile and					

The material ID #'s to be used are as follows: Steps 6-9 are repeated for each material.

 $\begin{array}{l} C & = \text{ Material heat capacity} \\ p & \\ \text{MCP} & = \text{ Thermal mass} \end{array}$

C - WCP

R/S

ပ္ရ

Repeat step 9 for

(NOTE:

- See

9 values of C Exhibit 5-8)

calculate thermal mass

· 6 MCP

- 0 Cover
- 0.1 Cell/cover adhesive
- 0.X Cover coating (if applicable)
- 1 Cell
- 1.X Cell coating (if applicable)
- 2 Cell laydown adhesive (if applicable)
- 3.X Substrate materials

REMARKS			Per cell area parameters							Parameters for array components	e.g., cell/cover assembly,	substrate, module				Parameters for radiation shielding	e.g., front and back			R_{21} - R_{59} are parameters for	Ж
PRINT		+ α	H	VΓ	3	МΔ	AC	AS	PF	#DI	H	D	¥	A	×	ID#	H	Q	Ţ	R_{21}	→
DISPLAY		1																			
PRESS		B											•								
ENTER		•												·			•	•			
PROCEDURE	10. Print summation of	array parameters	(NOTE: The array component	ID #'s are as follows:	<pre>1 - Cell/Cover assembly</pre>	2 - Cell/Substrate adhesive	(if applicable)	3 - Substrate	5 - Module assembly	(includes packing	factor)		(NOTE: The radiation shielding	ID #'s are as follows:	7 - Front shielding	8 - Back shielding					

1.2.2 Use of Fluence Subroutine (719.29)

REMARKS										KM = Altitude in KM	YRS = Array lifetime	T' = Shielding thickness	F = Fluence		(Prints fluence for both front	and back shielding thickness)	$\Sigma F = Total fluence$
PRINT										KW	YRS	H	Ē	Ē	<u>.</u>	Εij	ΣF
DISPLAY	KW			Yrs						i					•		
PRESS	A/A'	479.59	•	д						υ							
ENTER	Alt	19.29 to		Yrs						ı					•		
2 4 -		ion from 7			ot	etime =	me =				s the	ling	ğq	the			
PROCEDURE	<pre>1. Enter orbit altitude (NOTE: Enter KM at A; NM at A')</pre>	Step 1 changes partition from 719.29 to 479.59		array (2.5, 5 years)	(NOTE: This step is not	required if array lifetime =	baseline array lifetime =	10 years.)	. Calculate/print total	fluence	(NOTE: This step uses the	front and back shielding	thicknesses calculated	(and stored) during the	physical subroutine.)		
	-		2.						ຕໍ								

REMARKS				D' input does not print KM,	YRS (KM, YRS entered in	steps 1 and 2 respectively)						Entered in step 1	Entered in step 2	Repeats for $T' = 1, 2,$
PRINT				ΚM	YRS	T.	ĽΉ					KM	YRS	L
DISPLAY	•										•	i		
PRESS				p/p								ш		
ENTER				Ē								í		
PROCEDURE	3a. Calculate/print fluence	for manually entered	shielding thickness	parameter	(NOTE: This function	calculates fluence for any	input value of shielding	thickness (1 mil = $T' \le 18$ mils).	It is not intended for use in	conjunction with outputs from	the subroutine.)	Calculate/print	fluence profile	(T' = 1, 2, 318 mils)
	3a.											3b.		
											C.1	· 2		

1.2.3 Use of Radiation Subroutine (479.59)

fluence profile for values of T' (NOTE: This function provides a

from 1 mil to 18 mils in steps

of 1 mil)

B

if cell thickness = baseline cell (NOTE: This step is not required 1. Enter cell thickness thickness = 8 mil.)

ENOTEDURE 2. Calculate/print solar cell performance factors a. Enter fluence and calculate/ print solar cell performance factors Enter fluence and calculates factors Enter fluence and calculates factors (MOTE: This function calculates the solar cell power and voltage performance factors for any input value of fluence (1 ≤ F ≤ 1000) -	REMARKS		CT = Cell thickness	<pre>SF = Total fluence</pre>	FP = Power performance factor	FV = Voltage performance factor			D input does not print "RAD"	and CT (CT entered in step 1)									•	Entered in step l
Calculate/print solar Calculate/print solar Calculate/print solar Cell performance factors - C Enter fluence and calculate/ print solar cell performance factors (NOTE: This function calculates the solar cell power and voltage performance factors for any input value of fluence (1 < IF < 1000) - See Exhibit 5-7. The function is not intended use in conjunction with outputs from the fluence subroutine.) Calculate/print radiation performance factor profiles (EF = 1, 10, 20, 40, 100, 200, 400, 1000) - E	PRINT	"RAD"	CI	ΣF	FP	FV			"RAD"	Đ	ΣF	FP	FV						"RAD"	IJ
Calculate/print solar Calculate/print solar cell performance factors Enter fluence and calculate/ print solar cell performance factors (NOTE: This function calculates the solar cell power and voltage performance factors for any input value of fluence (1 < EF < 1000) - see Exhibit 5-7. The function is not intended use in conjunction with outputs from the fluence subroutine.) Calculate/print radiation performance factor profiles (EF = 1, 10, 20, 40, 100, 200, 400, 1000) -	DISPLAY	ı	•		•				ı										ı	
Calculate/print solar cell performance factors Enter fluence and calculate/ print solar cell performance factors (NOTE: This function calculates solar cell power and voltage performance factors for any inpuvalue of fluence (1 < EF < 1000) see Exhibit 5-7. The function intended use in conjunction outputs from the fluence subrout Calculate/print radiation performance factor profiles (EF = 1, 10, 20, 40, 100, 200, 400, 1000)	PRESS	ပ							D/D				,					•	Щ	
8	•	ors					2a. Enter fluence and calculate/	print solar cell performance		(NOTE: This function calculates the	solar cell power and voltage	performance factors for any input		not intended use in conjunction with	outputs from the fluence subroutine.)	2b. Calculate/print radiation	performance factor profiles	$(\Sigma F = 1, 10, 20, 40, 100, 200,$		

	PRESS DISFLAY PRINT REMARKS	ΣF Repeats for $\Sigma F = 1, 10, 20, 40,$	FP 100, 200, 400, 1000	FV						A = 0 "O" - A	KM KM = Orbit altitude	$\theta = Reference$ angle (used in	calculations)	اا عم د	l		В «1	
(NOTE: This function provided fluence profile for valuation of fluence from 1 to 1000 (10 ³ to 10 ¹⁶) in the steps indicated above.) 1.2.4 Use of Thermal Subrouting operation using only baseloperation using fluence subroutine, parameters (NOTE: To enter orbit altituence subroutine, enter alt. in NM and press SBR INV or in KM and press SBR X/T.) 2. Enter a cover	ENTER	des	es			ne (479.59)	ubroutine	ine	٠.	I	cude				70	•	α1	
	PROCEDURE	(NOTE: This function provide	a fluence profile for value	of fluence from 1 to 1000 $(10^3 \text{ to } 10^{16})$ in the steps	indicated above.)	1.2. 4 Use of Thermal Subroutir	(NOTE: To perform entire su	operation using only baseli	numbers, press SBR SUM.)	parameters	(NOTE: To enter orbit altit	if not entered previously	during fluence subroutine,	enter alt. in NM and press	SBR INV or in KM and press	SBR X/T.)		

	PROCEDURE	ENTER	PRESS	DISPLAY	PRINT	REMARKS
4.		ŧ	A.	· · ·		1 = ID #
	(NOTE: To enter packing factor				2 2	$a_1 = \alpha \text{ cover}$ PF = Packing factor
	if not entered previously				a 2	11
	enter PF and press SBR lnx.)			· •	(1-PF) a _F	$\frac{\alpha_{\rm F}}{\alpha_{\rm F}} = \text{Composite absorptivity for}$
					4	front of array
ហ	Enter estimated EOL solar cell			.		
	power loss factor	[편 ^요	m	lm ^{Ct}		
9	Enter solar ceil BOL					
 •	efficiency	n _{BOL}	ບ	товц		
7.	Calculate/print array					
	electrical power density	i.	B	1	"Z"	2 = ID #
					PF	PF = Packing factor
					l Pu ^C	$\frac{F}{D}$ = EOL loss factor
		•			n _{BOL}	$\eta_{\overline{\mathrm{BOL}}}$ BOL efficiency
			`		d E	$q_{\rm E}^{}=$ Array electrical power densi

REMARKS	3 = ID #	$ \alpha_{\rm B} = \alpha \text{ back} $ $ \alpha_{\rm SF} = \text{effective } \overline{\alpha} \text{ front} $			4 = ID #	$ \epsilon_1 = \epsilon \text{ cover} $ PF = Packing factor $ \epsilon_2 = \epsilon \text{ substrate} $ $ \epsilon_{\overline{r}} = \text{Composite emissivity} $ for front of array			
PRINT	# E	α α SF			"Ť"	ε ₁			
DISPLAY			٤٦	ε ₂	ı		$^{lpha_{ m SP}}$	cos r ₄	cos T ₅
PRESS	້ວ		æ	υ	, 0		SBR 1nx	m	υ
ENTER	ອ)	£1	ε2	. I		α_{SP}	cos I	cos l ₅
PROCEDURE	Enter α back and calculate/print $\frac{\pi}{\alpha_{SF}} = \frac{\pi}{\alpha} - q_{r}$		Enter & cover	Enter e substrate	Calculate/print $\overline{\epsilon}_{ extsf{F}}$ array front	(NOTE: To perform steps 12 thru 17 using only baseline numbers, enter $\varepsilon_{\mathrm{B}} = .8$ and press SBR RCL.)		Enter $\cos \Gamma_4$ (Γ_4 = "look angle" from array to space platform)	Enter $\cos \Gamma_5$ (Γ_5 = "look angle" from space platform to array)
	&	•	6	10.	11.	C-16	12.	13.	14.

REMARKS

PRINT

္ပပ

Ω

္ပပ

- 15. Enter space platform temperature

SBR

44

on array back emissivity.)
7. Enter £ array back material and calculate/print thermal parameters

e, B E

= Back emissivity adjustment energy from space platform = Composite emissivity for α_{Sp}^{-} Absorptivity of thermal = "look angle" from array = e array back material back of array factor "5" = ID #BB ω B cos r SP "5" l am 团

to space platform $\cos \Gamma_S \qquad \Gamma_S = \text{"look angle" from space}$ platform to array

REMARKS	$q_{\mathrm{SP}}^{=}$ Thermal energy absorbed from space platform	OC = Space platform temperature	R_8 thru R_{29} - Various parameters	used for calculation of array	temperature profile using	temperature subroutine.
PRINT	as _b	္ပ	R8	→	R29	
DISPLAY			•			
PRESS						
ENTER						
•						
PROCEDURE						

(Same as step 17 except α_{SP} ,

<u>国</u>

a B

 $\cos\,\Gamma_4$ and $\cos\,\Gamma_5$ are

omitted)

17 for $q_{SP} = .025$ and $^{\circ}C = 50$. performed prior to performing material and calculate/print alternate to steps 12 thru If the adjustment factor $f \neq .75$, step 16 must be (NOTE: Step 17a is an thermal parameters 17a. Enter e array back step 17a. 1.2.5 Use of Temperature Subroutine (639.39)

See Appendix D

(NOTE: Use of thermal subroutine prior to use of this subroutine will properly set partition for this subroutine.

REMARKS					(NOTE: t, S', T are printed	respectively for orbit period	of illumination. t, T only are	printed respectively for orbit	period of eclipse.)	t = time in Orbit period	S' = effective illumination	(includes albedo effect)	at time t in orbit	T = Array temperature at time	t in orbit	S' = Average effective illumination	for total orbit period of	illumination	\overline{T} = Average array temperature	for total orbit period of	
PRINT										ι	S	Ŧ	,			N I			le ₁		
DISPLAY	(p)				lω	I				ŧ											
PRESS	(A)				ф	c/c				E/E											
ENTER	(9)				lω	H								·		•					
PROCEDURE	(NOTE: To start temperature profile at beginning of	orbit eclipse period, enter period of illumination b at	A before performing the	following steps.)	1. Enter average illumination		(NOTE: Enter K at C;	C at C'.)	3. Calculate/print temperature	profile	(NOTE: Pressing E starts	profile at the beginning of the	orbit illumination period.	Pressing E' starts profile at	the end of the orbit illumina-	tion period (beginning of	orbit eclipse period.)				

illumination

REMARKS	$R_{\rm g}$ thru $R_{\rm g}$ is data base for temperature subroutine.							Changes partition to 479.59						Uses as inputs, area and weight	parameters calculated by physical	subroutine.	A = per-cell module area
PRINT	ж 8 8 8 8 8 8 8 8	:															
DISPLAY								0							ſ		A S
PRESS	Ω							A							æ,		A.
PROCEDURE	• Print data base	1.2.6 Use of Main Bus Subroutine (639.39)	(NOTE: To perform entire subroutine	operation using only baseline	numbers, press SBR SUM. This also	stores baselines values for solar	cell efficiency and maximum voltage.))	Change partition	(NOTE: Use step 2 if main bus	subroutine is used in conjunction	with parameters calculated by	physical subroutine. To enter new	new numbers, use steps 2a and 26.)	. Compute/store per-cell module	area and weight		. Store per-cell module area A
	4.													2.			2a.

REMARKS		$W_S = per-cell module weight$		$_{ m D}^{ m C}$ = conductor density		<pre>p = conductor resitivity</pre>							L = Length of one bus conductor	N = Number of conductor pairs/	blanket	$\Sigma L^2 = \text{Sum of squares of all bus}$	conductor lengths
PRINT													7	$(\mathbf{r_1})^2$	→	, L	$(L_N)^2$
DISPLAY		S M		္တ ^႐ 		വ							1 "				
PRESS		a M		ັນ		υ							$_{\mathrm{D}}^{\mathrm{1}}$				
ENTER		S M		ပ		Ωι											
PROCEDURE	2b. Store per-cell module	weight	3. Store density of	main bus conductor	4. Store resitivity of	main bus conductor	(NOTE: Use step 5 if main	bus subroutine is used in	conjunction with parameters	calculated by solar array sub-	routine. To enter new	numbers, use steps 5a - 5c.)	5. Compute/print $\Sigma_{\rm L}^2$				

- [2]

airs/ snq $n_c = \#$ channels/array SBR ຕຸນ Enter number of channels for total array

5a.

REMARKS	n = # of panels/channel	$\mathbf{w}_{\mathbf{p}} = \mathbf{width} \ \mathbf{of} \ \mathbf{panel}$			<pre>N = Number of conductor pairs/ blanket</pre>	
PRINT		(Same as for step 5)				
DISPLAY	u Ĉi	EL2			z	
PRESS	SBR	۵			м	
ENTER	g ^Q i	≥ Ω1			1	
PROCEDURE	o. Enter number of panels/ channel	<pre>5c. Enter length folded blanket and compute/ store EL (NOTE: Use only step 6</pre>	<pre>if main bus subroutine is used in conjunction with parameters calcu-</pre>	lated by solar array subroutine. To enter new number, use step 5a before step 6.)	6. Compute/store number of conductor pairs/blanket(NOTE: Use only step 7	<pre>if main bus subroutine is used in conjunction with parameters calcu- lated by solar array</pre>
	5b.	ĵ				

subroutine. To enter new number, use steps 5b and

7a before step 7.)

REMARKS		S_{M} = Number of cells in series/ 1 2-module	S_{C} = Number of cells in series/channel	$M_{\rm M}$ = # of panels/channel	$^{R}_{8}$ - $^{R}_{29}$ contain parameters for use as inputs to solar cell subroutine.	η _{BOL} BOL solar cell efficiency	<pre>Vmp(BOL)= BOL solar cell maximum voltage</pre>
PRINT					R + 8		
DISPLAY		°C .		N M		nBOL	V mp (BOL)
PRESS		្ឋា		SBR	SBR	^	ol) E'
ENTER		ν ^X		N	1	. (479.59)	V mp (BOL)
PROCEDURE	7. Enter number of cells in series per ½-module and compute/store total number of cells in	series per channel	7a. Enter number of	½ modules/panel	8. Print stored parameters	1.2.7 Use of Solar Cell Subroutine 1. Store solar cell BOL efficiency 2. Store solar cell BOL	maximum voltage

	FROCEDUKE	ENTER	PRESS	DISPLAY	PRINT	REMARKS
	3. Store average illumination					
	during orbit period from			•		
	temperature subroutines	۱۳۵	¥	l w		S' = average illumination
						during orbit period from
				•		temperature subroutine
	4. Store average temperature					
	during orbit period from					
	temperature subroutine	le	_) 5 ×		\overline{T} = average temperature during
	(NOTE: Step 5 must be performed					orbit period from temperat
	twice. Once for EOL cell					subroutine
	efficiency at minimum average					
	illumination/temperature and					
	once for EOL maximum voltage					
	at maximum average illumination/					
	temperature.)					
	5. Compute/print solar cell EOL	ı	υ	Fo(Vmb)*	۶	F. S.
,	efficiency/maximum voltage	Fp(V)	→ □		EOL.	'EOL FOL SOIAL CEAL EITICIENCY
	(NOTE: To initiate computation	•	or) <u>F</u>	li
	press C. Then compare		ম		ტ	Cibronting IIOm temperat
	displayed $Fp(V_{mh})^*$ with				F.	#
	printed $Fp(V_{mb})^*$. If \neq ,				N.	
					164	t = cell cover degradation fac
	entering the Fp(Vmb)* value				I FI QO	S' = EOL effective illumination
•	and pressing D.)				ı	

PROCEDURE	

REMARKS

PRINT

DISPLAY

PRESS

11	T = average temperature during
Fp (Top)	orbit period from temperature
Fp (A)	subroutine
${ m Fp}({ m V}_{ m D})$	T = EOL average operating
${ m Fp}({ m V}_{ m SC})$	temperature
$\mathrm{Fp}\left(\mathrm{V}_{\mathrm{MM}} ight)$	<pre>Fp()= solar cell power performance</pre>
${ m Fp}({ m V}_{ m pp})$	factors (see below for
Fp (V _{mb}) *	specific factor)
Fp(V)	Fv()= solar cell voltage performance
Fp (Leak)	factors (see below for
${ m Fp}({ m tc})$	specific factor)
Fp(Rad)	A = assembly factor
Fp (II)	v_D = blocking diode voltage factor
Fy (T)	$_{\rm SC}^{-}$ solar cell electrical
op Fv (A)	interconnect voltage factor
Fv (V_)	V = module/module electrical
D. Fv (V)	interconnect voltage factor
Fv (V)	$V_{\rm pp}$ = panel/panel electrical
Fv (V)	interconnect voltage factor
Fv (V ,)	V_{mb} = main bus conductor voltage
Ev (V)	factor
Fv (Leak)	V_{sr} = slip ring conductor voltage
Fv(tc)	factor
	Leak = High voltage leakage factor

REMARKS) tc = temperature cycling factor	Rad = radiation degradation	factor	\mathbf{L} I = product of all individual	L factors	P = EOL solar cell maximum power	$_{ m mp}^{ m V}$ = EOL solar cell maximum volta		Fp() = solar cell power performance	factor	$F_G = glassing factor$	$\mathbf{F_V}($) = solar ceil voltage	performance factor									
PRINT	Fy (Rad)	Fv (II)	Δ.	mp EOL	V mp eol				'n													
DISPLAY		•						$\int \mathbf{Fp}(\cdot)$	F. O			$\int \mathbf{F_V}(\cdot)$			•							
PRESS								,	A			•	<u>-</u>		້ວ							
ENTER							•	Fp()	F.			$\mathbf{F}_{\mathbf{V}}(\cdot)$	F _T		#=	sno		FACTOR	$F_{\rm G}/F_{ m T}$	II. do	K	V D
PROCEDURE					(NOTE: To change stored	factors, use steps 6-8.)		6. Enter Fp() or glassing	factor			7. Enter $F_{\mathbf{y}}($) or cover	degradation factor	8. Enter ID # and store	factors	(NOTE: ID #'s for the various	factors are as follows:)	# QI	0	• T	8	e
												, -		w								

REMARKS															Cell power	Cell voltage	# cells in series	# cells in parallel	# cells/½-module	4-module power	*-module voltage	# cells in L direction/module
PRINT .													•		3	>	တ		ပ	3	٥	×
PR	٠	•							*				•									
DISPLAY											P mp (EOL)	•	V mp (EOL)			•,						
PRESS									(6		A (В		ပ ·							
ENTER									ne (479.59)		P (EOL)	<u>;</u>	V mp (EOL)				•					
•	v SC	V MM	V PP	V	Vsr	Leak	ţ	Pad	Subrouti													
PROCEDURE	4	ស	9	7	ω ω	6	10	-21	Use of Solar Array Subroutine	Store EOL solar cell	maximum power	Store EOL solar cell	maximum voltage	Compute/print solar	array configuration						•	
PROC						•			1.2.8 UE	1. Store	maxir	2. Store	maxir	3. Compu	arra							

 \bigcirc

cells in W direction/module

cells/module

REMARKS	Module width	Module length	Module area	Weight of module solar cells	Weight of module substrate	Total module weight	Panel power	Panel voltage	Panel length	Panel width	Channel power	Channel voltage	Blanket power	Blanket voltage	Folded blanket length	Rlanket width	Unfolded blanket length
PRINT	M	Ħ	™	KG	KG	KG	<u> 35</u>	Δ	M	×	3	Δ	(3	Δ	Ħ	M	×
DISPLAY							•										
PRESS	•																
ENTER																	

PROCEDURE

1

1.2.9 Use of Weight Subroutine (479.59)

1. Compute/print array weights, W/m^2 and W/KG

"WEIGHT"

Weights as follows:

Total array power Array bus voltage Total array area

3

Wing power Wing Voltage

3

Ö

C-28

REMARKS
PRINT
DISPLAY
PRESS
ENTER
PROCEDURE

Electrical interconnects Module total/panel Total/panel EICL MOD PAN

Panel total/blanket PAN

Panel/panel mechanical interconnect MEIC

Blanket end pieces (2) END Panel/panel electrical interconnects EIC

Total blanket BLKT Blanket total/array BLKT Main bus conductors Structure total STR MB

Total array weight TOT

Total array W/m Total array W/KG W/m^2 W/KG Stored data base -- various array parameters

R₁₂ + R₅₉

R₁₂ + F₅₉

Ω

2 Print data base

1.2.10 Use of LCCM Subroutine (479.59)

assembly component costs # baseline numbers, (NOTE: If solar cell, cover or cell/cover use step la, lb, or lc as appropriate.)

C-29

PROCEDURE	ENTER	PRESS	DISPLAY	PRINT	REMARKS
Enter solar cell unit					
cost	s SC	щ	\$ SG		<pre>\$ = Solar cell unit cost sc</pre>
Enter cover unit cost	w _O	, m	w _o		$$\varsigma = Cover unit cost$
Enter cell/cover					
assembly unit cost	\$cca	SBR	\$ CCA		\$ _CCA cover assembly unit cost
Compute/print life cycle					
cost		·υ		R ₅₃	Total # solar cells
				R. 54	Total area of module substrate
				R ₅₅	Total # modules
				R. 56	Total # panels
				R ₅₇	Weight of structures & main bus
				R 58	Combined weight of blankets
				R ₅₉	Weight/panel
				R ₄	
				~ ^' →	LCCM cost factors
				R_{29}	
					Labor \$ in millions
				L,	L_1 = Blanket assembly
		,		\mathbf{r}_2	$L_2 = Cell/cover$ assembly
				L3	L_3 = Module substrate
				L ₄	L_4 = Module assembly
				$\mathbf{L_{5}}$	L_5 = Panel assembly
				, Li	L = Structure packaging

REMARKS	L_7 = Blanket packaging L_T = Total Labor \$	Material \$ in Millions	M_1 = Blanket assembly	$M_2 = Cell/cover$ assembly	$\frac{M}{3}$ = Module substrate	M_4 = Module assembly	M_5 = Panel assembly	M = Structure	$M_{ m T}$ = Total Material \$	LCC \$ in Millions	Manufacturing direct labor	Total Labor (w/burden)	Manufacturing materials	Materials burden	Manufacturing equipment	Equipment maintenance	Manufacturing special equipment	Surface transportation	Total manufacturing non-labor	Manufacturing subtotal	Total manufacturing (contractor)	Space transportation	Space assembly/checkout	Total NASA (production)	Total production phase
PRINT	r, T		X.	M 2	, K	M 4	Σ	Ξ,	Σ ^E	"LCCM"	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49
DISPLAY																									
PRESS																									

ENTER

PROCEDURE

G 1	Ì
\mathbf{z}	ı
5	Į
	I
ы	l
U	Į
Q	ł
8	ı
Ц	ı

PRESS

ENTER

REMARKS	Total DDT&E phase	Direct labor (OEM)	Labor subtotal (O&M)	Total contractor (O&M)	Crew training (O&M)	Crew Transport (0£M)	Perform Maintenance (0&M)	Total NASA (OEM)	Total O&M phase	Total LCC
PRINT	50	51	52	53	54	55	56	57	58	59
DISPLAY										

* * * * * * * * * * * * * * * * * * * *									· J · · ·	
LOC CODE	KEY	COMMENTS		ODE	KEY	COMMENTS	LCC (C00E	KEY	COMMENTS
000 76	LBL		055	\$7	IFF		110	04	4	
001 50	$I \times I$		056	04	04		1111	.03	4 3	
002 44	SUM		057	49	PRD		112	69	۵P	
003 18	18	{	058	94	+/-		113	04	04	
004 32	XIT		059	76	LBL		1114	43	RCL	
004 32 005 44	SUM		060	49	PRD		115	03	03	
1006 17	17		061	98	ADV		116	69	OP	
1007 61	GTO		1062	69 06	OF		117	69 06	06	
008 55	÷		063	06	06		iis	85	+	- "
009 76	LBL		064	92 76 16 42	RTN		119	85 07	+ 7	
010 57	ENG		065	76	LBL		120	05	5	
inii 44	SUM		066	16	A. STO		121	04	543	
1012 - 16	16		067	42	STO		122	ĎЗ	Ŕ	
1012 22	XIT		068	0.1	01		123	69	ΩP	
014 44	SUM.		069	92	RTN		124	04	04	
015 15	15	<u> </u>	069 070	92 76	LBL		125	43	RCL	1
016 61	GTO		071	17	B •		126	04	04	
014 44 015 15 016 61 017 53	(1072	42	ĒТО	 	127	69	ΩŘ	T
018 76	LBL		073	422682 7682	02	T	128	06	06	
1019 58	FIX		074	92	RTN		129	95	=	1
020 44	SUM		075	78	LEL		130	95 58	FIX	
021 14	14		076	18	LBL C		131	03	03	
022 32	XIT		077	42	šтш		132	50	EE	
023 44	SUM	 	078	0.3	03		133	52222 522 5426	INV	-
024 13	13		079	92 76 19 42	RTH	 	134	50	EE	
025 61	GTO		lõeó :	75	LBL	-	135	42	sto	
026 53	7,4		081	19	D.	<u> </u>	136	04	06	
026 53 027 76	LBL	<u></u>	lõŝ2	42	šτα	 	137	43	RCL	+
028 43	RCL		០ខិន	04	04	-	138	01	01	-
028 43 029 73	RC*		084	92	RŤŃ		139	្រីទី	×	-
(030 00	00		085	92 76	LBL		140	43	RCL	
031 87 032 00	IFF		086	11	Ĥ		141	03	03	
032 00	00		087	11	A 2 7		142	95	.5.5	
1033 30	TAN		088	07	7		143	50	EE	
034 53 035 43	(089	69	ΠP		144	52525252	ĬŇV	
035 43	RCL		090	04	Ö4		145	55	ÉE	
1036 12	12		091	43	RCL		146	90	INV	
037 85	+		1092	01	01		147	EQ.	FIX	
037 85 038 43	RCL		093	98	ADV		148	43	STO	
039 14	14		094	69	ΠP		149	05	05	
040 85	+		095	98 69 06	06		150	01	1	
041 43	RCL		096	85			151	03	ŝ	
042 16	16		097	85 07	Ż		152	01	ī	
043 54	5~		098	ñ5	Ś		153	05	5	
044 76	LBL		099	05 02	Ž		154	69	ΩP	
045 30	TAN		100	Ŏ7	+7527P		155	04	ur 94	
046 92	RTH '	,	101	69	ΠĖ		156	43	RCL	
047 76	LBL		102	04	04		157	05	05	
048 23	LNX		103	43	RČL		158		OP.	
049 03	3		104	02	02		159	06	ur 06	
loso or	ž		lios	69	ΩP		i	V I	ERGED CO	DES
1051 69	ΩÞ		106	06	06				72:316	83 655 65
052 04	04		107	95	=				73 TO 1	
053 43	RČL		108	65	×	1				
054 09	09		lios.	53	- 2				INSTR	LUMENTS
1977 "esse ingrumen			الوالية شيشت	٠.٠	3					71-24161

ORIGINAL PAGE IS OF POOR QUALITY

PAGE 2 OF 5 TI Programmable Coding Form

PROGRAMMER.

roc c	00E	KEY	COMMENTS	LOC C	ODE	KEY	COMMENTS	LOC C	ODE	KEY	COMMENTS
160	22	-		215 216	66	NOF		270	52	EE.	
161 162 163	01	1		216	22 76	INV		[271	325252 525254 4	ĬŇV	
162	03	3		[217]	76	LBL		272	52	EE	
[163	03	3		218	68	HOP		273	22	INV	~
164	06	6		219	86	STF		[274]	58	FIX	
165	69	ΒP		220	00	QQ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	275	42	STO	
166	114	04		221	32	XIT		276	08	08 3	-
1167	43 06 69 06	RCL	1	222	01	1		277	03	3	·
168 169	06	06	-	223	1792696 62768	ĒQ		278	00	Ð	-
169	69	OP		224	69	□P		279	69	ΩP	
170	06	06		225	22	INV		280	04	04	+
tiži	95	=	 	226	76	LBL	-	281	43	ROL	
1172	58	FIX	 	227	69	OP	·	282	ด้อ	ិព័ន	
172	0.3	03	-·	228	86	STF	·	283	69	OP	-
174	50	EE		229	Õĩ	01		284	Ŏ6	โดย	
175	2.0	ĪNV		230	0.5	2		285	65	×	
172	E-0	EE		231	02 67	Ēū		286	01	î	+
176	20	INV		232	70	Z G		287	03	3	·
178	50 50	FIX		202	(7 00	INV		1000	03 30	OF	
1170	50525252540	STO	h.,	233	72769	1 L4 A		288	69 04	ur.	
179	44	51U 07		234	10	LBL	-	289	U4	04	
180	0.0			235	(3)	<u> </u>		290	43	RCL	<u> </u>
181	03	3	<u></u>	236	86	STF		291	06	.06	1
182	03	3		237	02	02		292	87	IFF	.l
183	03 03 02	3 2		[238]	03	3		[293	03	03	<u></u>
184	- 17.1	1		239	67	ΕŪ		294	22 43	INV	
[185]	69 04	OP]		[240]	89 22 76	IJ,		[295	43	RCL	
136	04	04		241	22	INV		[296	05	05	
187	43 07	RCL		242	76	LBL		297	76	LBL	
188	07	07		243	- 89	'n		298	69 22	INV	
189	69	OP		244	86	STF		299	69	۵P	
190	06	06		245	0:3	0:3		[300	- 06	06	
191	92	RTH		246	71	SBR		301	55	÷	
192	92 76 13	LBL		247	23 65 32	LNX		302	01	· 1	
193	13	0 - 1		248	65	×		303	00	Ō	
194	42	sto i	1	249	32	XIT		304	95	=	
195	09	09		250	ΰī	1		305	58	FIX	<u> </u>
1196	42 09 92 76 14	RTN		251	06	6		306	04	04	· []
196 197	78	LBL		252	69	ΩP		307	52	EE	
198	13	D	† 	253	04	04	 	308	22	ĬŇV	
199	40	sīo j		254	43	RCL		309	50	ĒĒ	
200	42 10	10	——	255	10	10		310	22 52 22	INV	
201	90	RTN .	<u> </u>	256	69	OP.	 	311	58	FIX	·
202	76 76	LBL .							98 42		
203	92602265 15	E'	 	257	06	06		312	92 08	STO	
	20			258	65	X		313	0.5	08	
204	24	INV.	 -	259	02	2	 	314	87	IFF	
205	(5	LBL .	 	260	05	5 4 E 7		315	02	02	ļ
206	10	E.	<u> </u>	261	04	4		316	58	FIX	1
207	86	STF	ļ	262	52	EĒ		317	87	IFF	ļ
208	04	.04	·	263	07	7	 	318	03	_03	11
209	98	ADV.	 	264	94	+/*-		L 3 <u>19</u> .	57	ENG	
210.	98	ADV]		265	22 52	INV		20	ME	RGED CO	DES
211	99	PRT .		266	- 52	EE	ļ	82 mm		72.355 E	83 <u>655</u> 25
212	59	INT	<u> </u>	267	95	=		# E	2	74 100	
213	29 67	CP _		268	58	FIX					
214	67	EQ		269	04	04		1 11	EAAS	N I CORPORA	UMENTS

TITLE	PHYSICAL	· · · · · · · · · · · · · · · · · · ·	PAGE 3	OF 5	TI Programmable	رچکے کے و
PROGRAMI	MER		DATE		TI Programmable Coding Form	٦

LOC CC	106	VEV	COMMENTE	1100 0	COS	KEY	COMMENTS	LOC COL	(F)	KEY	COMMENTS
320	44	SUM	COMMENTS	LOC C	_		CCMMENTS	430		LBL	COMMENTS
321	12	12	· · · · · · · · · · · · · · · · · · ·	375	52	EE		431	76 34	TX :	
322	32	χįΤ		376	22	INV			20	-to mm	
323	44	SUM	1 (377	52	EE		432	69	OP.	
363				378	22	INV		433	04	04	
324	11	11	ļ [379	58	FIX	· 	434	43	RCL	
325	76	LEL		380	87	IFF		435	08	_08.	
326	53	(1	381	00	OO.		436	98	ADV	1
327	04	4		382	50	$I \times I$		437	69	OP .	
328	03	3.	.	383	44	SUM		438	-06	06.	ļ
329	69	OF .		384	20	20		439	92	RTN.	
330	04	04	1	385	32	XIT		440	76	LBL .	<u> </u>
331	43	ROL		386	44	SUM		441	35	1/8.	
332	08	08		387	19	19		442	32	XIT.	
333	69	DP		388	76	LĒĹ		443	Ōī	1	
334	06	06		389	55	÷		444	05	5	
335	71	SBR		390	03	•	 	445	03	3	
336	23	LNX		391	07	2	-	446	03	š	<u> </u>
337	65	X	 	. 971 . 900	W (*)	3 7 6	-	447	69	OP.	
338	32	XXT]	·	392	06	5	 	448	04	04	
339	01	1		393	05	_5			0.0	-×4T.	
340	06	6		394	69	OF.		449	32		
		□P		395	04	04		450	69	OP.	
341	69		 	396	32 69	XIT	+	451	06	06.	
342	04	04	-} <u></u> }	397	69	OP:		452	65	Х.	·
343	53	· · · · · ·	ļ	398	06	06		453	03	Э.	<u> </u>
344	43	RCL .	ļ	399	43	RCL		454	00		
345	10	10.		400	08	08		455	01	1 .	
346	22	INV.		401	55	÷		456	05	5 . 3 .	ļ
347	87	IFF		402	43	RCL	_	457	03	3.	
348	01	01		403	06	06		458	03	3 .	
349	33	X2		404	65	×		459	69	OP .	
350	65	Χ.	<u>i</u>	405	Õĩ	î		460	04	04	<u></u>
351	93	• .		406	ÕÕ	Ô		461	43		<u> </u>
352	03	3 7		407	95	=		462	ÓŠ	08	
353	07	Ž		408	58	FIX		463	95	=	L
354	05	5		409	04	04		464	58		
355	54	, Š		410	52	EE		465	ŐŐ	00	
356	58	FIX			22	ĪNV		466	52	EE .	
357	00	΄οδ.		411	22 52	TMA		467	22	INV	
358	52	EE .	T	412	0 <u>4</u>	EÈ		468	52	EE	
359	22	ĬŇV		413	22	INV			22	INV	
360 360	52	EE .		414	58	FIX		469	22	107	
	22	ĪÑV.		415	42	SŢŪ		470	58	FIX	·
361	20		 -	416	08	08		471	69		·
362	58	FIX -		417	02	2	-	472	06	_06	
363	76	LBL .		418	ĐĐ	Ŭ.		473	69	۵P	·
364	33	X2 .	 	419	42	STO:	· · 	474	20		
365	69	OP .	·	420	ijij	00	- 	475	74		·
366	06	06	 	421	03	3		476	00	00	
367	55	÷		422	00	Ō	+	477	92		
368	02	2 .		423	87	IFF .		478	61		ļ
369	02	2	 	424	ŨЗ	ាំ១១		479	35	مرازي المحادية	
370	00	2	<u> </u>	425	34	ŁX .	 -	62 000 2	MÉ:	72 <u>310</u> 2	0es 83 <u>655</u> ⊑
371	ÕÕ	Ō.	.	426	03	'3 ·	_	33 100 10	3	73 远 园	34 22 23
372	95	= .		427	U.S UO	0		40	3	74 🚟 🖥	92.78
373	58	FIX -				- 6 - 6	1				UMENTS
374.		กร		428	06 05	D .		1 2	·^3	CORPORAL	ED .
1977 - Table		02.		429	05	5 '					71-1419

PROGRAMMER _______ DATE _____ TI Programmable Coding Form

LOC CODE	E KEY	COMMENTS	LOC CC	DE	KEY	COMMENTS	LOC CC	DE	KEY	COMMENTS
480	76 LBL		535	5 2	EE		590	69	ΠP .	
481	45 YX		536	07	7		591	06	06	
482	42 ST□		537	94	+/-		592	65	×	
483	09 09		538	2.2	INV	-	593	0.2		
484	35 1/%		539	22 52	EE	••••	594	65 02 02	2200	
405	65 X	A	540	95	=	# · ~# **# × ***	595	00	ñ	
485	65 × 71 SBR			75 58	FIX		1 270	00	Ö,	·
486	71 SBR		541				596	00 95 32	=	
487	43 RCL		542	00	_00		597	70		·} ·
488	65 ×		543	25	EE		598	37	KIT.	
489	01 1		544	22	INV .		599	U1	1	
490	00 0		545	52	EE INV	<u> </u>	600	06	6	
491	95 =		546	525256 525256	INV		601	01 06 69 04	OF]	
492	58 FIX		547	58	FIX		602	04	04	
493	04 04		548	69	۵P		603	32 58	XIT	
494	52 EE		549	06	06	i	604	58	FIX	
495	22 INV		550	03	3	1	605	െയ	00	
496	52 EE		551	00	Ū		606	69	OF.	
497	22 INV	.	552	69	ΩŘ ¯		607	69 06		
498	22 INV 52 EE 22 INV 58 FIX	·	553	04	04	h	608	22	INV	
499	42 STD		554	43	RCL "		609	58	FIX:	
500	10 10		555	10	10	 	610	22 58 03	FIX:	·}
200	10 10			69	ַבּר י		210	07	7	ļ
501	55 ÷		556	06		ļ	611	07	- £ .	
502	03 3 07 7		557		06 "		612	06	6	
503	07 _7		558	01	1		613	05 69	_5	
504	69 OP		559	03	3 -		614	69	OP	
505	04 04		560	69	ΠΡ		[615	04	04	
506	69 O P		561	04	04 ~		616	69	ΠP	
507	69 DP 30 30		562	43	RCL		6123 614 615 617 618 619	20	20 '	
508	73 RC*		563	09	09 "	<u> </u>	618	73 00 69 06	RC*	
509	00 00		564	69	OΡ		619	00	. 00	-
510	87 IFF		565	- 06	06 ~		620	69	OΡ	
511	00 00		566	04	4		621	06	06	
512	48 EXC		567	03	3		622	92	RTH	<u> </u>
513	53 (568	69	OP '		623	92 76 12 86	LBL	·
514	43 RCL		569	69 04	04	ļ	624	10	B	
515	11 11	•	570	69	ΠP .		625	88	B STF	
1 212	85 +		571	69 20	20		626	ÕÕ	ັກກ	
516 517	43 RCL		572	71	รอิลิ		627	07	00 7	ļ
5:7	13 13		573	43	ŘČL ·	<u> </u>	628	07	7	
518	13 13	' ,	574	69	DP -		629	04	4	
519	85 +			06	06 -		200		7	
520	43 RCL	:	575	00	RTN		530	07262228 50228 98	7	
521	15 15	'	576	92	15 19 Di		631	52	EE	
522	54)		577	76	LBL		632	06	6	
523	76 LBL		578	70	RAD		633	22	INV	
524	48 EXC	; -	579	73	RC*		634	52	EE	1
525	69 OP		580	00	១០ -		635	98	ADV	
526	06 06	; +	581 582	55	÷ "		F 636	- 98	ΑDΛ	
527	55 ÷		582	03	3 -	 	637	69	OP	
	Õi i		583	07	7 -	 	638	00		
529	06 6		584	69		 	F 639		ΠP	
530	69 OF		585	04	04 -	·				1
531	04 04		586	69		ļ	62		RGED CO 72 頭面	
532	02 2	·	587	30	30 -		63	103 207	73 100	
533	05 5		588	73			64 6		74	
534	00 2		589	οō						UMENTS
J.34	1		_أا	i_			' '	.AA3	CORPORA	TED TO TO SAID

LOC CODE	KEY	COMMENTS	LOC COL	E KEY	Y	COMMENTS	LOC	CODE	KEY	COMMENTS
640 03	03		695 696 697 698 699 700	08 8	3 L					
641 69 642 05	ΩP		696	42 81	ro 1					
642 05	05		697	00 0	שנ [
643 11	A		698	07 7)0 7					
644 01	1		699	98 AI) VC		,			
645 98 646 99	AĎV PRT		700	98 AI 99 PR 71 SE	₹7			·		
646 99	PRT		701	71 SE	3R [
647 01 648 02 649 42 650 00	1 2 STO.		701 702 703	-70 RE	ו עו					
648 02	2_		703	02 2	3.		<u>.</u>			
649 42	STO.		704	44 SL	JM					ļ
650 00	00	L	705	00 0	10					ļ
651 43 652 05	RCL		705 706 707 708 709	08 8 98 AI	3					ļ
652 05	05		707	38 HI	Ψ.Ψ.					
653 71	38R 1	<u></u>	1 708	99 PR					- 49 (100)	ļ
554 4D	YX :		707	71 SE	5 PK					ļ
_ 500 27 252 40	CP		710	70 RA 98 AI	74 70		<u> </u>			
9511189122203511593377028914203515 6011099122203511593377028914203515 1234456789040742415609900404074 4444444445555555566666666666666666666	RCL 13		711	08 8 98 AI 99 PR 71 8B 70 RP 98 AI 02 2	;" - - -		<u> </u>	<u> </u>		<u> </u>
- ಧಾರ್ಗ - 1ನ್ - ವಹಾರ - ನಶ	E0.		712 713	01 1	-	······································				
. 550 O. 10 O. O.	BEG :		714	22 IN	F					ļ
- 44U - 60	200	 	715	90 LS	7 4					
- 221 92 - 221 92	ADV:	<u> </u>	716	90 LS 92 RT	rii I					
- 660 99	PRT		717	οδ οδ	\՛՝ +					
443 ni	1	L	718	ÖÖ Ö	î -					ļ
664 04	4 -		718 719	ŏŏ ŏ	1	~				-
665 42	st⊡ "			- 	<u></u>					·
665 42 666 00 667 43	00.		 							
667 43	80L-									
668 05	05		┝╼┷┝╼╍							
669 71	05 SBR		 				 			<u> </u>
670 45	⊢Y× ·		 				 			·
671 76	LBL									·
672 60	DEG			-f						ļ
673 03	3	 							ar in the same of	
674 98	ADV-	l	 							
דד כום	PRT						+			†
676 01	1 6									1
677 06	-6-								A 2017	·
678 42	sī <u>o</u>	t		-			-			
679 00 680 43	00									1
680 43	RCL									
681 06	06 SBR				<u> </u> -			i		
682 71 480 4 5	YX YX					•				
683 45	T (*)									
683 45 684 22 685 86	INV									
685 86 686 00	00									
	_						:			
1687 05 1688 98	5 ADV									
1689 70 689 99	PRT.									
- 607 - 77 - 690 - 43	RCL									
. 691 - 06 - 691 - 06									MERGED CO	
692 71									72 (570) (62) 73 (62) (62)	
· 693 45									74 900 E	
694 01										
U / T U A	•				T		1	LEXA	S INSTR	UMENIS

LOC CODE		COMMENTS	LOC	CODE	KEY	COMMENTS		CCDE	KEY	COMMENTS
000 7	6 LBL 9 PRT 2 2 6 6 3 3 0 0		055 056	\$4000000054 0\$240000000	09		110	73	RC*	
001 9	9 PRT		056	92	RTN		111	09	09	
002 0	Z		057	19 A.	LBL NOP		112	85	+	\
003 0	5 5		058	1.3	NUF	****	113	69	OP	
004 0	3 3		059	23	LNX X:T		114	29	- 29 RC#	
005 0	n an		061	32 42	RCL	special A 11 de marco 11	115	73	KU*	
006 6	9 OP 4 04		1050	90	70E	The company	116 117	09	09	
1007 0°	3 RCI.		062 063	20	32 INV		1 1 0	100 100	X RCL	
1008 4	3 13 .	j	064	50	INT		1110	10	KUL 10	
1010	S AĪV	i	065	45	X 111 /		100	20	13 LNX	
	S ADV		065	ភ័រ	1		121	23	= -	
lois &	9 0P		067	ŭń	ñ	***************************************	100	22	LNX	
1013 0	6 06	 	068	00 00 00	ň		100	78	Σ+	
nia n	4 4		068 069 070	οñ	Õ	 	1004	20	ŘŤN	ļ
កែរិទី កំ	ទំ ទំ		lozo.	ōō.	Õ	<u> </u>	105	75	LEL	
lois o	š š		071	95	=		126	33	X2	
007 0008 0009 0010 0011 0011 0011 0011 0011	453536P4		071 072 073	0052295 40055	x 1 0 0 0 0 0 = sto	<u> </u>	118 119 120 121 1223 1234 1226 1227 128	95993953335382633620 08627064129279734440	ROL	
018 0	3 3		073	32	32 INT		128	46	46	
019 0	6 6		1074	59	INT		129	42	ទាំប	
1020 6	9 OP		1075	55	1 0 = XTN		129 130 131	00	00	
021 0	4 04		076	01 00	1		131	76	LBL	
022 4	3 RCL		077	00	0		132	24	CE	
023 4	5 45		077 078 079	95	=		132 133 134	03	CE 3	
024 6	9 OP		079	78	Σ+ ,		134	03	3	
025 0	6 06		1080	92	RIN		135	42	ST0 09	
[026 <u>9</u>	2 RTN		081	76	LBL		135 136 137	09	09	
[027 7	6 LBL		082	95826766111537 07207	ΕÚ		137	. 69	□P	
028 6	9 OP		083	36	PĞM		138 139	20	20	
1059 (3 RC*		084	n i	01 SBR		139	71	SBR	
ໄກ່ຊີກ ກໍ	0 00		085	0.5	CLR		140	64	QP.	
031 4	2 STD		086 087	20	ULK :		141	골프	INV GE	
032 3 033 5 034 5 035 0	2 32 9 INT		088	03	3		142	* (Y	CE	
000	5 ÷		089		b		144	: 24 71	SBR	
1035 0	1 1	i	nan	00 71 68 05 05	000		145	(1 년 2 구	EQ	
1036 0	1 1		090 091	68	NOP		146	40	OP"	
1037 9	5 =		092 093	05	5		147	30	30	
1038 6	9 OP	·	093	05	5		148	61	GTO	
039 2	9 29	·	1094	06	6		149	35	178	
035 0 036 0 037 9 038 6 039 2	9 29 2 ST*		095	71	55 6 BI		150	.76	LBL	
041 0	9 09		1096	68	NUP		151 152	7200406276274179015674	LBL ENG	
042 9	2 RTN		097	71	SBR		152	04	4	
043 7	6 LBL		1098	60	DEG		1153	08 42 46	8	
044 6	O DEG		100	92	RTH		154 155 156	42	STO	· · · · · · · · · · · · · · · · · · ·
045 6	9 08		100	76	ĽBĽ Σ÷		155	46	46	
046 1	2 12		101	78	Σ+		156	05	46 5 1	
047 6	9 OP 9 29 2 ST*		102	69	ПР		1157	01	1 -	
048 2	9 29		103	29	29 RC#		158	61	GTO	
049 7	2 51*		104	73	RU#		159	50	I×I	
050 0	9 09		105	0.0	09 LNX		200	M	ERGED CO	DES
90000000000000000000000000000000000000	2 X:T		106	181026899393299 76762702399	LNX		62		72 550 E	83 (55)
052 6 053 2	9 0 P		108	తడ ఉంద	X:T OP		63 64	# ## # 60	74 500	92 114 35
1054 7	9 29 2 ST#		108	90	29 ur		<u></u>		INSTR	
054 1	그 31호		1,02	<u> </u>	<u>47</u>	<u> </u>		EAAS	INCORPORA	UMENTS

C-38

LOC CODE	KEY	COMMENTS	LOC CO	DDE	KEY	CC	OMMENTS	LOC C	ODE	KEY	COMMENTS
140 7	6 LBL		215	58	FIX			270	69	OF.	Ī
161 5 162 0 163 0 164 4 165 4 166 0	8 FIX		216 217 218	01	1			271	71	SBR	
162 0	55		[217	00	្ជា			272	67	ΕØ	
163 0 164 4 165 4 166 0	22		218	67	Ēŭ			273	03	3	
164 4	2 STO	L	219	59	INT			274	03	3	
165 4	6 46		220	59 29 76	CP	_		275	42 09 36	STO	
166 0	5 5		221	76	LBL			276	09	09	
() b/ U	5 5		222	50	IXI			277	36	PGM	
168 6	i GTO		223	2722526	STO			278	01	01	ļ
1169 5	O IXI		224 225	97	47			279	71	SBR	ļ
1170 /	6 LBL 9 INT		220	34 40	X:T STO	ļ		280 281	25 71	CLR SBR	
171 5 172 0 173 0 174 4	2 E		226 227	45	45	-		282	78	36K 2+	
172 0	5 5 6 6		228	90	RTN			283	71	SBR	<u> </u>
170 0	ខ្ទុំ	- ·	229	74	I DI			284	70	2+	
175 4	2 3 1 U 6 4 6		230	14	T)	-		285	78 69	ÔΡ	
168 6 169 5 170 7 171 5 172 0 173 0 174 4 175 4 176 0	5 5		231	32	LBL D X:T			286	10	12	
176 U	9 9		232	71	SBR			287	22	INV	
177 0 178 6 179 5 180 7 181 1 182 3	í GŤO		232 233	37-9-2-6-9-2-3-6 37-9-2-6-9-2-3-6	PRT			288	1225528 122525	LNX	
179 5	O IXI	ļ	1234	32	X:T	-		289	65	×	
180 7	6 LBL		235	76	LBL	1-		290	22	INV	
lisi i	6 A.	-	1236	19	n•	1		291	58	FIX	
181 1 182 3	6 PGM		237	42	STO			1292	03	3	f
[183 2	4 24		1238	3:3	33			293	07	3 7	
184 1	0 E'		239	76	LBL	-		294	06	6	
183 2 184 1 185 3 186 2	6 PGM		240	89	fl.			295	05	5 0P	
186 2	4 24		241	43	RCL			296	69	ΩP	
187 1 188 5 189 0	4 D		242	89 43 33 32 06	33			297	04	04	
188 5	8 FIX		243	32	XIT			298 299	43	RCL	
189 0 190 5 191 2 192 5 193 7	0 00		244	96	6_			599	33	33	
190 5	2 EE		245	77	ĞE			300	98 69	ADV	
191 2	2 INV		246	33 43	X2 RCL	<u> </u>		301	69	OF	
191 2 192 5 193 7	2 EE		247	47	47			302	06	.06	
1193 (6 FBF		248 249	42	STO	<u> </u>		303	45	YX X : T	
194 1	1 A 2 STO		250	00	00			304 305	32 95	^ + I	
102	2 01U 3 13	<u></u>	251	74	LBL			305	70	XIT	ļ
195 4 196 1 197 2	2 INV		252	76 28 03	LOG			307	32 02	2'	
1100 5	8 FIX	ļ	253	กล	3	-		308	01	ī	
198 5 199 0	6 6		254	03	3			309	69	ΠP	
194 1 195 4 196 1 197 2 198 5 199 0 200 6 201 1	9 OP		255	03 42 09 69	STO	-		310	04	04	
201 i	7 17		1256	09	09	-		311	32 58	XIT	
1202 4	3 RCL		257 .	69	OP.	1		312	58	FIX	
203 1	3 13		258	30	30	1		∫313	02	02	
204 9	2 RTN		259	71 69	SBR	<u></u>		314	52	EE	
203 1 204 9 205 7	6 LBL		260	69	OP_			315	52 22	INV	
206 1	28		261	77	GE			316	52	EE	
207 3	2 XIT		262	28	LDG			317		OF	
208 0	2 2		263	$\frac{71}{27}$	\$8R			318	06	06	
209 9			264	67 20	EQ			319	55	INV	
210 0			265 266	69 20	OP 20			62 55		ERGED CO	
211 6		ļ	267		LBL			63		72 (sto) (a)	
212 5 213 0		\ <u></u>	268	76 35	1/%	ļ		64		74 300	
213 0 214 6			269	71	SBR	}		T	EXAS	INSTR	UMENTS
		<u> </u>	1203	1	QUE.			<u> </u>		NCORPORAT	TI-14181
O 1977 Texas Instru	ments incorporated										TI-84181

OF POOR CUALITY

372 08 08 08 84 85 87 88 87 92	LOC CODE		COMMENTS	LOC C	ODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS
223 15 E	320 5	8 FIX		375	85	+					
223 15 E	321 9	2 RTN		376	43						
223 15 E	200 2	ā i ģi		377	14	14					1
331 71 SBR 386 16 16 16 332 99 PRT 387 65 × 388 01 1 334 45 Y × 389 52 EE 335 01 1 390 04 4 336 44 SUM 391 22 INV 337 33 33 392 52 EE 338 71 SBR 394 42 STD 340 97 DSZ 395 11 11 341 07 07 396 43 RCL 397 13 13 341 22 INV 398 42 STD 344 76 LBL 399 12 12 2 345 13 C 400 43 RCL 394 42 STD 344 76 LBL 399 12 12 2 345 13 C 400 43 RCL 346 25 CLR 401 18 18 347 43 RCL 402 14 D 348 01 01 403 42 STD 353 65 × 408 44 SUM 351 02 02 406 20 20 352 95 = 407 19 D 353 65 × 408 44 SUM 354 01 1 409 10 10 2 355 00 0 410 07 7 357 00 0 412 02 2 358 85 + 413 01 1 355 00 0 412 02 2 358 85 + 413 01 1 355 365 × 413 301 1 365 365 × 413 301 1 365 365 × 413 301 1 365 365 × 413 301 1 365 365 × 413 301 1 365 365 × 413 301 365 365 × 413 301 365 365 × 413 301 365 36	222	5 5		270	45		·	-			
331 71 SBR 386 16 16 16 332 99 PRT 387 65 × 388 01 1 334 45 Y × 389 52 EE 335 01 1 390 04 4 336 44 SUM 391 22 INV 337 33 33 392 52 EE 338 71 SBR 394 42 STD 340 97 DSZ 395 11 11 341 07 07 396 43 RCL 397 13 13 341 22 INV 398 42 STD 344 76 LBL 399 12 12 2 345 13 C 400 43 RCL 394 42 STD 344 76 LBL 399 12 12 2 345 13 C 400 43 RCL 346 25 CLR 401 18 18 347 43 RCL 402 14 D 348 01 01 403 42 STD 353 65 × 408 44 SUM 351 02 02 406 20 20 352 95 = 407 19 D 353 65 × 408 44 SUM 354 01 1 409 10 10 2 355 00 0 410 07 7 357 00 0 412 02 2 358 85 + 413 01 1 355 00 0 412 02 2 358 85 + 413 01 1 355 365 × 413 301 1 365 365 × 413 301 1 365 365 × 413 301 1 365 365 × 413 301 1 365 365 × 413 301 1 365 365 × 413 301 365 365 × 413 301 365 365 × 413 301 365 36	004 0			270	55	-			 		
S31	004 4	O CER		000	0.3	7				ļ	
331 71 SBR 386 16 16 16 332 99 PRT 387 65 × 388 01 1 334 45 Y × 389 52 EE 335 01 1 390 04 4 336 44 SUM 391 22 INV 337 33 33 392 52 EE 338 71 SBR 394 42 STD 340 97 DSZ 395 11 11 341 07 07 396 43 RCL 397 13 13 341 22 INV 398 42 STD 344 76 LBL 399 12 12 2 345 13 C 400 43 RCL 394 42 STD 344 76 LBL 399 12 12 2 345 13 C 400 43 RCL 346 25 CLR 401 18 18 347 43 RCL 402 14 D 348 01 01 403 42 STD 353 65 × 408 44 SUM 351 02 02 406 20 20 352 95 = 407 19 D 353 65 × 408 44 SUM 354 01 1 409 10 10 2 355 00 0 410 07 7 357 00 0 412 02 2 358 85 + 413 01 1 355 00 0 412 02 2 358 85 + 413 01 1 355 365 × 413 301 1 365 365 × 413 301 1 365 365 × 413 301 1 365 365 × 413 301 1 365 365 × 413 301 1 365 365 × 413 301 365 365 × 413 301 365 365 × 413 301 365 36	325 4	2 3 LU	***************************************	1320	01	1			ļ. <u></u>		
S31	326 3	ষ্ ষ্ট		1381	UU	U			·	L	
331 71 SBR 386 16 16 16 332 99 PRT 387 65 × 388 01 1 334 45 Y × 389 52 EE 335 01 1 390 04 4 336 44 SUM 391 22 INV 337 33 33 392 52 EE 338 71 SBR 394 42 STD 340 97 DSZ 395 11 11 341 07 07 396 43 RCL 397 13 13 341 22 INV 398 42 STD 344 76 LBL 399 12 12 2 345 13 C 400 43 RCL 394 42 STD 344 76 LBL 399 12 12 2 345 13 C 400 43 RCL 346 25 CLR 401 18 18 347 43 RCL 402 14 D 348 01 01 403 42 STD 353 65 × 408 44 SUM 351 02 02 406 20 20 352 95 = 407 19 D 353 65 × 408 44 SUM 354 01 1 409 10 10 2 355 00 0 410 07 7 357 00 0 412 02 2 358 85 + 413 01 1 355 00 0 412 02 2 358 85 + 413 01 1 355 365 × 413 301 1 365 365 × 413 301 1 365 365 × 413 301 1 365 365 × 413 301 1 365 365 × 413 301 1 365 365 × 413 301 365 365 × 413 301 365 365 × 413 301 365 36	327 0	1 1		382	00	Ū					ļ
331 71 SBR 386 16 16 16 332 99 PRT 387 65 × 388 01 1 334 45 Y × 389 52 EE 335 01 1 390 04 4 336 44 SUM 391 22 INV 337 33 33 392 52 EE 338 71 SBR 394 42 STD 340 97 DSZ 395 11 11 341 07 07 396 43 RCL 397 13 13 341 22 INV 398 42 STD 344 76 LBL 399 12 12 2 345 13 C 400 43 RCL 394 42 STD 344 76 LBL 399 12 12 2 345 13 C 400 43 RCL 346 25 CLR 401 18 18 347 43 RCL 402 14 D 348 01 01 403 42 STD 353 65 × 408 44 SUM 351 02 02 406 20 20 352 95 = 407 19 D 353 65 × 408 44 SUM 354 01 1 409 10 10 2 355 00 0 410 07 7 357 00 0 412 02 2 358 85 + 413 01 1 355 00 0 412 02 2 358 85 + 413 01 1 355 365 × 413 301 1 365 365 × 413 301 1 365 365 × 413 301 1 365 365 × 413 301 1 365 365 × 413 301 1 365 365 × 413 301 365 365 × 413 301 365 365 × 413 301 365 36	328 O	8 8		383	ÜÜ	ij			ļ		
331 71 SBR 386 16 16 16 332 99 PRT 387 65 × 388 01 1 334 45 Y × 389 52 EE 335 01 1 390 04 4 336 44 SUM 391 22 INV 337 33 33 392 52 EE 338 71 SBR 394 42 STD 340 97 DSZ 395 11 11 341 07 07 396 43 RCL 397 13 13 341 22 INV 398 42 STD 344 76 LBL 399 12 12 2 345 13 C 400 43 RCL 394 42 STD 344 76 LBL 399 12 12 2 345 13 C 400 43 RCL 346 25 CLR 401 18 18 347 43 RCL 402 14 D 348 01 01 403 42 STD 353 65 × 408 44 SUM 351 02 02 406 20 20 352 95 = 407 19 D 353 65 × 408 44 SUM 354 01 1 409 10 10 2 355 00 0 410 07 7 357 00 0 412 02 2 358 85 + 413 01 1 355 00 0 412 02 2 358 85 + 413 01 1 355 365 × 413 301 1 365 365 × 413 301 1 365 365 × 413 301 1 365 365 × 413 301 1 365 365 × 413 301 1 365 365 × 413 301 365 365 × 413 301 365 365 × 413 301 365 36	329 4	2 STO		384	85	+			<u></u>		
333 76 LBL 388 01 1 334 45 7× 389 52 EE 335 01 1 390 04 4 4 336 44 SUM 391 22 INV 337 33 33 392 52 EE 338 71 SBR 393 95 EE 339 89 1 394 42 STD 341 07 07 396 43 RCL 341 07 07 396 43 RCL 342 45 7× 397 13 13 341 07 07 396 43 RCL 344 76 LBL 399 12 12 344 76 LBL 399 12 12 344 76 LBL 399 12 12 345 36 25 CLR 401 18 18 347 43 RCL 402 14 D 348 01 403 42 STD 348 01 403 42 STD 348 01 404 404 10 10 350 43 RCL 405 43 RCL 351 02 02 406 20 20 352 95 E 407 19 D 355 00 0 410 07 7 357 00 0 410 07 7 357 00 0 411 07 7 357 00 0 412 02 2 358 85 + 413 01 1 363 43 RCL 364 418 49 RCL 365 43 RCL 366 55 44 419 69 GP 360 43 RCL 364 04 04 441 69 GP 366 55 441 419 69 GP 366 55 441 419 69 GP 366 55 441 419 69 GP 366 55 54 54 54 54 54 54	330 0	7 07	I	[385]	43	RCL			L	l	
333 76 LBL 388 01 1 334 45 YX 389 52 EE 335 01 1 390 04 4 4 336 44 SUM 391 22 INV 337 33 33 392 52 EE 338 71 SBR 393 95 EE 339 89 1 394 42 STD 341 07 07 396 43 RCL 341 07 07 396 43 RCL 342 45 YX 397 13 13 343 32 RTN 398 42 STD 344 76 LBL 399 12 12 345 13 C 346 25 CLR 401 18 18 347 43 RCL 348 10 1 403 42 STD 348 10 1 403 42 STD 348 10 1 403 42 STD 350 43 RCL 351 02 02 406 20 20 352 95 E 407 19 D 355 00 0 410 07 7 357 00 0 410 07 7 357 00 0 411 07 7 357 00 0 412 02 2 358 85 F 413 01 1 363 43 RCL 364 361 03 03 346 418	331 7	1 SBR		386	16	16	[l		
333 76 LBL 388 01 1 334 45 7× 389 52 EE 335 01 1 390 04 4 4 336 44 SUM 391 22 INV 337 33 33 392 52 EE 338 71 SBR 393 95 EE 339 89 1 394 42 STD 341 07 07 396 43 RCL 341 07 07 396 43 RCL 342 45 7× 397 13 13 341 07 07 396 43 RCL 344 76 LBL 399 12 12 344 76 LBL 399 12 12 344 76 LBL 399 12 12 345 36 25 CLR 401 18 18 347 43 RCL 402 14 D 348 01 403 42 STD 348 01 403 42 STD 348 01 404 404 10 10 350 43 RCL 405 43 RCL 351 02 02 406 20 20 352 95 E 407 19 D 355 00 0 410 07 7 357 00 0 410 07 7 357 00 0 411 07 7 357 00 0 412 02 2 358 85 + 413 01 1 363 43 RCL 364 418 49 RCL 365 43 RCL 366 55 44 419 69 GP 360 43 RCL 364 04 04 441 69 GP 366 55 441 419 69 GP 366 55 441 419 69 GP 366 55 441 419 69 GP 366 55 54 54 54 54 54 54	[332 9	9 PRT		1387	65	- ×					
341 07 07 396 43 RCL 397 13 13 3 343 92 RTN 398 42 STD 344 76 LBL 399 12 12 345 13 C 400 43 RCL 345 13 C 400 43 RCL 346 25 CLR 401 18 18 3 347 43 RCL 402 14 D 348 01 01 403 42 STD 348 01 01 403 42 STD 349 85 + 404 10 10 351 02 02 406 20 20 351 02 02 406 20 20 353 65 × 408 44 SUM 355 40 1 1 409 10 10 10 10 10 10 10 10 10 10 10 10 10	333 7	6 LBL		1388	01	1					
341 07 07 396 43 RCL 397 13 13 3 343 92 RTN 398 42 STD 344 76 LBL 399 12 12 345 13 C 400 43 RCL 345 13 C 400 43 RCL 346 25 CLR 401 18 18 3 347 43 RCL 402 14 D 348 01 01 403 42 STD 348 01 01 403 42 STD 349 85 + 404 10 10 351 02 02 406 20 20 351 02 02 406 20 20 353 65 × 408 44 SUM 355 40 1 1 409 10 10 10 10 10 10 10 10 10 10 10 10 10	334 4	5 YX	***************************************	1389	52	ΕĒ			†		
341 07 07 396 43 RCL 397 13 13 3 343 92 RTN 398 42 STD 398 42 STD 345 13 C 400 43 RCL 345 13 C 400 43 RCL 345 13 C 401 18 18 3 347 43 RCL 402 14 D 348 01 01 403 42 STD 348 01 01 403 42 STD 349 85 + 404 10 10 355 02 02 406 20 20 355 95 = 407 19 D' 355 00 0 410 07 7 357 00 0 410 07 7 357 00 0 411 07 7 357 00 0 411 07 7 358 00 0 411 07 7 359 53 (414 69 UP 359 53 (414 69 UP 360 43 RCL 360 43 RCL 361 03 03 361 03 361 03 03 36	335 0	1 1		390	nā	-4			 	· · · · · · · · · · · · · · · · · · ·	1
341 07 07 396 43 RCL 397 13 13 3 343 92 RTN 398 42 STD 398 42 STD 345 13 C 400 43 RCL 345 13 C 400 43 RCL 345 13 C 401 18 18 3 347 43 RCL 402 14 D 348 01 01 403 42 STD 348 01 01 403 42 STD 349 85 + 404 10 10 355 02 02 406 20 20 355 95 = 407 19 D' 355 00 0 410 07 7 357 00 0 410 07 7 357 00 0 411 07 7 357 00 0 411 07 7 358 00 0 411 07 7 359 53 (414 69 UP 359 53 (414 69 UP 360 43 RCL 360 43 RCL 361 03 03 361 03 361 03 03 36	1002 4	बें देशील		301	30	TNV	<u> </u>	 	 		
341 07 07 396 43 RCL 397 13 13 3 343 92 RTN 398 42 STD 398 42 STD 345 13 C 400 43 RCL 345 13 C 400 43 RCL 345 13 C 401 18 18 3 347 43 RCL 402 14 D 348 01 01 403 42 STD 348 01 01 403 42 STD 349 85 + 404 10 10 355 02 02 406 20 20 355 95 = 407 19 D' 355 00 0 410 07 7 357 00 0 410 07 7 357 00 0 411 07 7 357 00 0 411 07 7 358 00 0 411 07 7 359 53 (414 69 UP 359 53 (414 69 UP 360 43 RCL 360 43 RCL 361 03 03 361 03 361 03 03 36	222 0	7 00N		202	E-0	E E	h		+	 	
341 07 07 396 43 RCL 397 13 13 3 343 92 RTN 398 42 STD 398 42 STD 345 13 C 400 43 RCL 345 13 C 400 43 RCL 345 13 C 401 18 18 3 347 43 RCL 402 14 D 348 01 01 403 42 STD 348 01 01 403 42 STD 349 85 + 404 10 10 355 02 02 406 20 20 355 95 = 407 19 D' 355 00 0 410 07 7 357 00 0 410 07 7 357 00 0 411 07 7 357 00 0 411 07 7 358 00 0 411 07 7 359 53 (414 69 UP 359 53 (414 69 UP 360 43 RCL 360 43 RCL 361 03 03 361 03 361 03 03 36	337 3 330 3	3 33 4 666	ļ	000	⊕ <u></u>	<u>-</u>					
341 07 07 396 43 RCL 397 13 13 3 343 92 RTN 398 42 STD 398 42 STD 344 76 LBL 399 12 12 345 13 C 400 43 RCL 346 25 CLR 401 18 13 343 92 RTN 348 01 01 403 42 STD 348 01 01 403 42 STD 348 01 01 403 42 STD 349 85 + 404 10 10 35 35 65 85 401 1 409 10 10 355 00 0 410 07 7 357 00 0 410 07 7 357 00 0 411 07 7 357 00 0 411 07 7 358 85 + 413 01 1 359 53 (414 69 UP 360 43 RCL 360 65 54 360 43 RCL 360 65 55 + 413 01 1 360 65 55 + 417 10 10 360 66 55 + 417 10 10 360 66 55 + 421 92 RTN 366 55 + 421 92 RTN 366 55 + 421 92 RTN 368 00 0 370 95 = 371 42 STD 372 08 08 373 43 RCL 374 00 0 0 370 95 = 371 42 STD 372 08 08 373 43 RCL 374 00 0 0 370 95 = 371 42 STD 372 08 08 373 43 RCL 374 00 0 0 370 95 = 371 42 STD 372 08 08 373 43 RCL 374 00 0 0 370 95 = 371 42 STD 372 08 08 373 43 RCL 374 00 0 0 370 95 = 371 42 STD 372 08 08 373 43 RCL 374 00 0 0 370 95 = 371 42 STD 372 08 08 373 43 RCL 374 00 0 0 370 95 = 371 42 STD 372 08 08 373 43 RCL 374 00 0 0 374 00 0 374 00 0 375 0 0 0 0 375 0 0 0 0 375 0 0 0 375 0 0 0 0 375 0 0 0 0 375 0 0 0 0 375 0 0 0 0 375 0 0 0 0 375 0 0 0 0 375 0 0 0 0 0 375 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	330	. ೨೮೯		1000	70		 	-			
341 07 07 396 43 RCL 397 13 13 3 343 92 RTN 398 42 STD 398 42 STD 344 76 LBL 399 12 12 345 13 C 400 43 RCL 346 25 CLR 401 18 13 343 92 RTN 348 01 01 403 42 STD 348 01 01 403 42 STD 348 01 01 403 42 STD 349 85 + 404 10 10 35 35 65 85 401 1 409 10 10 355 00 0 410 07 7 357 00 0 410 07 7 357 00 0 411 07 7 357 00 0 411 07 7 358 85 + 413 01 1 359 53 (414 69 UP 360 43 RCL 360 65 54 360 43 RCL 360 65 55 + 413 01 1 360 65 55 + 417 10 10 360 66 55 + 417 10 10 360 66 55 + 421 92 RTN 366 55 + 421 92 RTN 366 55 + 421 92 RTN 368 00 0 370 95 = 371 42 STD 372 08 08 373 43 RCL 374 00 0 0 370 95 = 371 42 STD 372 08 08 373 43 RCL 374 00 0 0 370 95 = 371 42 STD 372 08 08 373 43 RCL 374 00 0 0 370 95 = 371 42 STD 372 08 08 373 43 RCL 374 00 0 0 370 95 = 371 42 STD 372 08 08 373 43 RCL 374 00 0 0 370 95 = 371 42 STD 372 08 08 373 43 RCL 374 00 0 0 370 95 = 371 42 STD 372 08 08 373 43 RCL 374 00 0 0 370 95 = 371 42 STD 372 08 08 373 43 RCL 374 00 0 0 374 00 0 374 00 0 375 0 0 0 0 375 0 0 0 0 375 0 0 0 375 0 0 0 0 375 0 0 0 0 375 0 0 0 0 375 0 0 0 0 375 0 0 0 0 375 0 0 0 0 375 0 0 0 0 0 375 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	339 8	7 7	h	394	42	ខាដ		<u> </u>			ļ
343 92 RTN	340 9	Y BSZ	L	395	11	11			L		
343 92 RTN	341 0	7 07		396	43	RCL					ļ
344 76 LBL 399 12 12	[342] 4	5 YX		397	13	13		<u></u>	<u></u>		
344 76 LBL 399 12 12	343 9	2 RTN		398	42	STO					
348	344 7	6 LBL	1	399	12	12					
348	345 1	3 6		400	43	RCL		:	T		
348	346 2	ទីល់ខ			18	18					
348	347 4	S POI .		402	14	ñ					
349 85 +	240 0	1 01		403	40	STO	·	<u> </u>			
352 95	240	. T		404	10	10					
352 95	047 0	iji t			40	PCI		-	 		
352 95	350 4	3 KUL			90	ROL		-	<u> </u>		
355 00 0 411 07 7 357 00 0 412 02 2 358 85 + 413 01 1 359 53 (414 69 UP 360 43 RCL 415 04 04 361 03 03 416 43 RCL 362 85 + 417 10 10 363 43 RCL 418 98 ADV 364 04 04 419 69 UP 365 54) 420 06 06 365 55 + 421 92 RTN 366 55 + 421 92 RTN 366 55 + 421 92 RTN 368 00 0 422 00 0 369 00 0 424 00 0 370 95 = 371 42 STU 372 08 08 373 43 RCL 373 43 RCL 374 80	1321 0	2 02		405	20	20			ļ <u> </u>		
355 00 0 411 07 7 357 00 0 412 02 2 358 85 + 413 01 1 359 53 (414 69 UP 360 43 RCL 415 04 04 361 03 03 416 43 RCL 362 85 + 417 10 10 363 43 RCL 418 98 ADV 364 04 04 419 69 UP 365 54) 420 06 06 365 55 + 421 92 RTN 366 55 + 421 92 RTN 366 55 + 421 92 RTN 368 00 0 422 00 0 369 00 0 424 00 0 370 95 = 371 42 STU 372 08 08 373 43 RCL 373 43 RCL 374 80	352 9			407	19	n .					ļ
355 00 0 411 07 7 357 00 0 412 02 2 358 85 + 413 01 1 359 53 (414 69 UP 360 43 RCL 415 04 04 361 03 03 416 43 RCL 362 85 + 417 10 10 363 43 RCL 418 98 ADV 364 04 04 419 69 UP 365 54) 420 06 06 365 55 + 421 92 RTN 366 55 + 421 92 RTN 366 55 + 421 92 RTN 368 00 0 422 00 0 369 00 0 424 00 0 370 95 = 371 42 STU 372 08 08 373 43 RCL 373 43 RCL 374 80	353 6	5 ×		408	44	sum					
355 00 0 411 07 7 357 00 0 412 02 2 358 85 + 413 01 1 359 53 (414 69 UP 360 43 RCL 415 04 04 361 03 03 416 43 RCL 362 85 + 417 10 10 363 43 RCL 418 98 ADV 364 04 04 419 69 UP 365 54) 420 06 06 365 55 + 421 92 RTN 366 55 + 421 92 RTN 366 55 + 421 92 RTN 368 00 0 422 00 0 369 00 0 424 00 0 370 95 = 371 42 STU 372 08 08 373 43 RCL 373 43 RCL 374 80	[354] 0	1 1		409	10	10			<u> </u>	<u> </u>	<u> </u>
360 43 RCL 415 04 04 361 03 03 416 43 RCL 361 03 03 416 43 RCL 362 85 + 417 10 10 363 43 RCL 418 98 ADV 364 04 04 04 419 69 DP 365 54) 420 06 06 366 55 ÷ 421 92 RTN 367 01 1 422 00 0 369 00 0 369 00 0 424 00 0 370 95 = 371 42 STD 373 63 84 63 63 64 74 63 63 64 74 63 63 64 74 63 63 64 74 64 63 67 74 65 63 64 63 67 74 65 63 64 65 74 65 64 65 74 65 74 65 74	1355 L	וס סו		410	07	7		-			
360 43 RCL 415 04 04 361 03 03 416 43 RCL 361 03 03 416 43 RCL 362 85 + 417 10 10 363 43 RCL 418 98 ADV 364 04 04 04 419 69 DP 365 54) 420 06 06 366 55 ÷ 421 92 RTN 367 01 1 422 00 0 369 00 0 369 00 0 424 00 0 370 95 = 371 42 STD 373 63 84 63 63 64 74 63 63 64 74 63 63 64 74 63 63 64 74 64 63 67 74 65 63 64 63 67 74 65 63 64 65 74 65 64 65 74 65 74 65 74	356 0	0 0		411	07	7		:	Ì		
360 43 RCL 415 04 04 361 03 03 416 43 RCL 361 03 03 416 43 RCL 362 85 + 417 10 10 363 43 RCL 418 98 ADV 364 04 04 04 419 69 DP 365 54) 420 06 06 366 55 ÷ 421 92 RTN 367 01 1 422 00 0 369 00 0 369 00 0 424 00 0 370 95 = 371 42 STD 373 63 84 63 63 64 74 63 63 64 74 63 63 64 74 63 63 64 74 64 63 67 74 65 63 64 63 67 74 65 63 64 65 74 65 64 65 74 65 74 65 74	357 0	iO O		412	02	2		-			
360 43 RCL 415 04 04 361 03 03 416 43 RCL 361 03 03 416 43 RCL 362 85 + 417 10 10 363 43 RCL 418 98 ADV 364 04 04 04 419 69 DP 365 54) 420 06 06 366 55 ÷ 421 92 RTN 367 01 1 422 00 0 369 00 0 369 00 0 424 00 0 370 95 = 371 42 STD 373 63 84 63 63 64 74 63 63 64 74 63 63 64 74 63 63 64 74 64 63 67 74 65 63 64 63 67 74 65 63 64 65 74 65 64 65 74 65 74 65 74	[358 8	(5 +		413	01	1		· .			T
360 43 RCL 415 04 04 361 03 03 416 43 RCL 361 03 03 416 43 RCL 362 85 + 417 10 10 363 43 RCL 418 98 ADV 364 04 04 04 419 69 DP 365 54) 420 06 06 366 55 ÷ 421 92 RTN 367 01 1 422 00 0 369 00 0 369 00 0 424 00 0 370 95 = 371 42 STD 373 63 84 63 63 64 74 63 63 64 74 63 63 64 74 63 63 64 74 64 63 67 74 65 63 64 63 67 74 65 63 64 65 74 65 64 65 74 65 74 65 74	359 5	i3 (414	69	ΩP	[1		<u> </u>
362 85 + 417 10 10	360 4	នៃ គល់		415	114	04			-		
362 85 + 417 10 10	1327 7	13 U.S		414	4.3	RO			-		
363 43 RCL 418 98 ADV 419 69 OF 365 54) 420 06 06 366 55 ÷ 421 92 RTN 367 01 1 422 00 0 368 00 0 423 00 0 369 00 0 424 00 0 370 95 = 371 42 STO 372 08 08 373 43 RCL 373 43 RCL 374 374 375 12	262	J		1417	10	10	I	·	 		
366 55 ÷ 421 92 RTN 367 01 1 422 00 0 368 00 0 423 00 0 369 00 0 424 00 0 370 95 =	004 0	io poi	 	410	4U 00	טעם			 		
366 55 ÷ 421 92 RTN 367 01 1 422 00 0 368 00 0 423 00 0 369 00 0 424 00 0 370 95 =	353 4	O KUL		715	70 20	un.		<u> </u>		<u> </u>	
366 55 ÷ 421 92 RTN 367 01 1 422 00 0 368 00 0 423 00 0 369 00 0 424 00 0 370 95 =	364 0	i 4 U4		400	07	UP.		<u>.</u>			
366 55 ÷ 421 92 RTN 367 01 1 422 00 0 368 00 0 423 00 0 369 00 0 424 00 0 370 95 =	365 5	(4)		420	U6	U6					
368 00 0 423 00 0 369 00 0 424 00 0 370 95 = 371 42 STD 372 08 08 360 50 74 50 50 84 50 50 50 60 60 60 60 60 60 60 60 60 60 60 60 60	[366 5						<u> </u>	L	L		
368 00 0 423 00 0 369 00 0 424 00 0 370 95 =	[367 0			422							
369 00 0 424 00 0	[368 Q					-					
370 95 = MERGED CODES 371 42 STU 372 08 08	1369 0			424	00	0		, ;	<u> </u>		1
371 42 STD 62 72 72 75 83 65 85 85 85 85 85 85 85 85 85 85 85 85 85										MERGED CO	DES
372 08 08 08 63 64 65 64 65 67 68 67 68 67 68 67 68 67 68 67 68 68 68 68 68 68 68 68 68 68 68 68 68				 	— -		t	62		72 510	83 ලැබු 23
373 43 RCL TEXAS INSTRUMENTS							 	63		73 🚾 💼	84 (2) (2)
[12 12 IEXAS INSTRUMENTS				 			 	64	21	74 500	92 W 🖼
1379 14 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							ļ		TEXA	SINSTR	UMENTS
The second secon			1			,	<u> </u>			INCORPORAT	E0 TI-84181

DATA BASE

FOR

FLUENCE, Φ

PROGRAM

0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	01234567890123456789012345 33333333344444444455555555555
60.0140021	53

RADIATION TITLE

PAGE 1 OF 3 TI Programmable Light

TEXAS INSTRUMENTS

C-42

INT

55 ÷ 43 RCL

PROGRAMMER

PAGE 2 OF 3

DATE

TI Programmable Light Coding Form

LOC CODE KEY KEY LOC CODE COMMENTS LOC CODE KEY COMMENTS COMMENTS # 00 B L 3 R 04 $\frac{1}{2} \frac{1}{2} \frac{1}$ 537* LSVL2T T21* T 0E |-361-51515151-601-381414-385611-58093858-580988894877-8 GΕ 000433425330925926428243222380330359092431 001739433000013007527530008090079437094375747352803 PGM O1 SBR CLR SBR SBR YX SBR SBR GTO STO 10 SBR STO SER SUM SER SUM SER ENG INV LBL ENG STF 05 2 1FF 0SZ 0SZ 9 ΧZ STO STO PGM OI SBR CLR RC* 30 INT 19994591-89 LBL DSZ STD 30 303 304 305 306 307 309 309 Ö2 LNX XIT RCL 35 X+ SBR YX 1316000000pgpv AADA 1 82 1 06 00 00 STO 31 LBL 3010 3112 3113 314 315 316 316 RC# 30 INT 200 201 202 203 204 205 207 208 209 210 0004388958393 SBR SUM LNX XIT RC* 30 INT INV IFF RCL 34 2+ 36R GTO 317 OS ADV RCL 39 X:T MERGED GODES SIN INV LBL SIN 211 212 213 83 (M) (M) 84 (C) (M) 85 (M) 8 22 76 38 74 TEXAS INSTRUMENTS 214 01

OC CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS	FOC	CODE	KEY	COMMENT
201033653336022142265100 2212345644533022142265100 22232256739012336573990	XIT									
321 02	~ 21433. A									
322 01	ī	-								
\$22 01 \$23 03 \$24 03 \$25 16 \$26 65 \$27 43 \$29 85 \$30 43	3									
324 03	3			i -						
125 IA	A				1 100 Ag					
26 65	×						-			
27 43	RCL	· - · · · · · · · · · · · · · ·			,, . .	- (*******		* •
20 40	43	***** ********************************		1	****	*******	**** tame :- 1)		-	
29 85	+									
ទី៣ 43	RCL		***	-					The same of the same of the same of	,
31 10	10		-						~ ~~~~~~~	
ବିନି ସିନି	XIT]									
32 05	5				a rame/passer					
34 N1	ī ·						-	***		-
25 na	4				* 100		·	 	******	
36 B2		<u> </u>	- distractor				-			·
31 10 32 32 33 02 34 01 35 04 36 02 37 16 38 55	2 1 4 2 A	 -	-				1			-
୍ଦା <u>ଅନ</u>	□ .	-	·							<u> </u>
39 Ol	÷ 1									
40 00	å j		-				-	-		
41: 95	=	<u></u>	—							
41 95 42 42	sīo .									-
42 42 43 10	10	ļ	-				}			
43 10 44 92	RTN 1	ļ	1							
44 72 45 00				}			-		ļ ·	
40 UU 40 OO	U T	 			 					
46 00 47 00	0 0 0 0 0 0 0 0		 				 			
47 00	U	 ,								
48 00 49 00	Ų.,		<u> </u>				ļ			_
49 00	<u>. u</u>	ļ	<u> </u>	 -						
နှင့် ဝဝ	Ů.									·
	4 fr ite de marte : 4 144 mar	<u> </u>								
			<u> </u>		ļ					
							<u>-</u>	ļ	ļ	
			-							
										. }
			<u></u>]			
		ļ,								
				<u> </u>						
_								<u> </u>		
					ļ					
		<u> </u>						ļ		_
		L					L			
				<u> </u>			 			
				L	<u></u>		<u> </u>	<u></u>		
		<u> </u>			<u> </u>		I			_
								L _		
										_
]		MERGED CO	DDES
							62		72 316	
				[l	2		73 <u>[6]</u> 74 <u>338</u>	
							-			UMENTS
						·	1 3	IFYA	C INCTE	

DATA BASE FOR

RATIATION

PROGRAM

LOC CODE KEY	COMMENTS	LOC CO	DE K	EY	COMMENTS	LOC CC	DE	KEY	COMMENTS
000 76 LBL		055	43 R	QL.		110	92	RTH	1
001 34 FX		056	06	06			76	LBL	
002 58 FIX		057	99 P	RT		112	24	CE	
003 01 01		058	65	×		113	42	STO	
[004 69 ⊡P		059	43 R	CL		114	03	ÛЗ	
005 22 22		060	05	05		115	92 76	RTN .	
006 73 RC*		061	99 P	RT		116	76	LBL	
007 02 02		062	95	=		117	11	Ĥ	
008 52 EE 009 22 INV		063	58 F	IX		118	69	ΩP	
009 22 INV		064	03	03]		119	00	00.	
010 52 EE 011 22 INV		065	52 E 22 I	E	···	120	03	3 .	<u> </u>
011 22 INV		066	22 I	NV T		121	07	- 7 .	
012 58 FIX		067	52 E	Ε		122	02 03	23	
013 72 ST# 014 02 02 015 92 RTN		068	22 I	NV		123	03	3	
014 02 02		069	58 F 92 R	IX		124	01	<u>1</u> .	
015 92 RTN		070	92 R	ETH (125	07	_7 :	<u> </u>
016 76 LBL 017 88 DMS		071	76 L 22 I	BL.		126	69	OF	<u> </u>
017 88 DMS		072	22 I	NV [-,	127	02	_ 02]	
Ols 98 ADV		073	36 P	'GM		128	03	_ <u>3</u> _ (<u> </u>
019 99 PRT		074	24	24		129	05	_ 5_ `	
020 43 RCL		075	10 E 36 P	T T		130	03	3	ļ
021 06 06		076	- ಚರ್ ಗ - ೧४	'GM		131	00	0	
022 99 PRT		077	24	24		132	.01	1327	
023 65 × 7		[078 079	14 58 F	D IX		133	03	ু পু	ļ
			00 F	00 1		134	02	<u> </u>	
025 07 07 026 99 PRT		080	52 E	E		135	07	<u> </u>	ļ
027 85 +		082	92 E	NV -		136	00	Ŏ.	ļ
028 43 RCL		083	22 Î 52 E	E		137	00	0	<u> </u>
029 05 05		084	22 I	ÑV -		138	69 03	OP.	
030 99 PRT		085	50 E	ix -		139	98	03) ADV	ļ
031 65 ×		086		BL			70 98	ADV	\-
032 53 7		087	32 X	7:5		141	59 69	OP .	ļ
033 01 1) ០៩៩	45 6	To	- }	143	05	05	
034 75 -		089	12	12		144	90	Ö	
035 43 RCL	L	090	92 R	NTS		145	98	ADV)	
036 07 07		091		BL		146	99	PRT	
037 54)		092	23 L	NX -		147	Ó9	ˈèˈ	
038 99 PRT		} 093	42 8	TO		148	ÕÕ	Ó.	
039 95 =		094	07	07		149	75		
040 58 FIX		095	92 R	NTS		150	53	(
041 03 03	<u></u>	096	92 R 76 L	.BL		151	06	6	ļ ——-
042 52 EE		097	12	В		152	03	Š	
1 043 22 INV 1		098		TO :		153	03 07	372÷	
1 044 52 EE		099	06	06		154	02	2	
045 99 PRT		100		TN -		155	55	÷	
046 22 INV		101		.BL -		156	53	(
1 047 58 FIXT	<u> </u>	102	13	C		157		CE	
048 92 RTN		103		TI :		158	85	+	1
049 76 LBL		104	05	05		159		RCL	
050 86 STF		105		NTN				RGED CO	DES
† 051 43 RCL		106		BL 1		62	te (72 50	83 <u>(170</u> 👛
052 07 07		107	14	D 7		63 00		73 🙉 🗷	
053 99 PRT		108		STO H		64		74 300	
1 054 65 X		109	04	04 7		TE	XAS	INSTR	JMENTS

LOC CO		COMMENTS		CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS
160	12 12		215 216 217 218 219 220	95	=		270 271 272 273	99	PRT	
161	99 PRT		214	52	EE		271	42	STO	
162	54)		217	99	INV		11272	16	16	
163	42 STO		1010	9999999999 59599597-	ĒĒ		1073	65	×	
163 164 165 1667 1689 170	14 14		210	3 <u>4</u>	PRT		274	02	9	
125	54)		1217	77	PRI		275	ŰŰ	2 0 8	
1 :52	00 700		1220	25	INV		1513	00	Ü	
100	22 INV 38 SIN		221 222	58	FIX		276 277	ŭs		
150	38 SIN		222	92	RTH		1277	93	•	
168	42 STO		223 224	76	LBL		278 279	02 49	2	
169	04 04		1224	16	A •		1279	49	PRD	
170	95 =	1	225	n t	1		280	17	17	
171	99 PRT 42 STO		2002	71	SBR		281	95	= '	<u> </u>
172	42 STO	·	226 227	00	DMS		282	42	STO	
172	13 13	·	1666	88 42		·	283	18	18	
1 :53	43 RCL		228	42	STO		200	10		
174	43 RUL		229	15	15	ļ	284	43	RCL	<u> </u>
175	14 14		230	42	STO		285	15	15	ļ
[176	52 EE 03 3		231	15 42 17	17		[286	99	PRT	
[177	03 3		232	92	RTN		[287	22	INV	
178 179	45 YX.		232	92 76 17	LBL		288	92825 927 928 928	FIX	
179	03 3	·	234	17	B.		289	92	RTN	
130	65 ×		235	02	2		290	72	LBL	
1 101	08 8	 	200	02	050		291	10	D.	
181 182			236	98 99	ADV		271	19 25	ČLR	
102	73		237	49	PRT		292 293	20	CLK	····
183 184 185 186	06 6 05 5 03 3 52 EE		238	43	RCL		293	42 19	STO	
[184	05 5	1	239	07	07		294	19	19	
185	03 3 52 EE		240	42	STO	1	295	93	•	
186	52 EE		241	09	09		296	07	ż	
187	01 .1	-	242	71	SBR		297	05	5	
188	01 .1 04 4		243	. 24	STF	····	298	42	ST□	
100	94 +/-		244	86 99 65	PRT		299	03	03	<u> </u>
189 190	22 INV	 	0.45	77			300		4	
150	52 EE	<u> </u>	245	50	×_		300	74		
131	52 EE		246	32	XIT		301	71	SBR	.,
192	95 =		247	01	1		302	88	DMS	
193	34 FX		248	00	0		303	42	STO	
194	55 ÷		249	00	Ũ		304	20	20	
195	06 6		250	00	0		305	92 76	RTH	
196	00 0	-	251	95	=		306	76	LBL	
191 192 193 194 195 196	95 =	ļ	252	44	SUM		307	15	LBL E	
199	58 FIX	 	250	09	30M 09		308	90	νЙι	
198 199	02 02	·	253	32	XIT				LBL	
177	02 UZ		254	32			309	(0)	E.	
200	52 EE 22 INV		255	22	INV		310	10	C	
201	SS INA		256	58	FIX		311	86	STF	
202	52 EE		257	. 22	INV		[312	0.0	00	
203	99 PRT	T 1	258	44	SUM		313	32	XIT	
204	42 STO	<u> </u>	259	15	15	 	314	05	5	
205	14 14	+	260	9,5	RTN		315	98	ADV	
206	75 -	+	261	92 76	LBL	 	316		PRT	
207	24 CE						317		XIT	
	2 4 02		262		U.	 	1316	. an		ļ
208	65 X	1	263		XIT		318		PRT	
209	43 RCL		264	03	3.		319	65	×	
210	04 04		265		ADV.				ERGED C	
211	55 ÷		266	99	PRT			8 99	72 550	
212	01 1	T	267	32	XIT			0	73 📆	
213	08 8)	268		FİX		64	×	74-934	92 (144) 548
214	00 0	· 	269	03	03		1	TEXAS	INSTR	RUMENTS
		L		,_, ,_,			1		NCORPORA	TI-14181
	numents Incorporated	<u> </u>	೭೮೯	. 00	0.3		<u></u>		NCOR FOR	ATED

PROGRAMMER.

LOC C	ODE	KEY	COMMENTS		ODE	KEY	COMMENTS	LOC C	ODE	KEY	COMMENTS
320	4:3	RCL		375	98	ADV		430	12	8	
[321	03	03		376	99	PRT		[431	93	•	
1322	99	PRT		377	85	+		[432	04	4 5 0	
323	95	=		378	02	2 7 3 =		433	05	5	
324	58	FIX		379	07	7		434	13	Ċ	
325	03	03		380	03	3		435	16	A'	
326	99	PRT		381	95	=		436	93 04	•	
327	98	ADV		382	33	ΧZ		437	114	4	
328	22	INV		383	33 33	Χz		438	05	4 5	
329	58	FIX		384	49	PRD		439	12	B	
330	58 42	STO		385	19	19		440	93		
331	19	19		386	Ōí	i		441	őĭ	1 .	
332	44	รม์ต์		387	Ŭ6	ė		442	Ő2	1 2 2 0	
333	20	20		388	42	STO		443	02	5	
334	93		}	389	02	02		444	13	ō	
335	00	ò		390	71	SBR		445	17	₿*	
000	02			370	34	1X		446	1.0	Φ.	
336	05	5		391	71	SBR			93 04	À	
337	03	2 5 IFF	<u> </u>	392	34	00K		447		4	
[338	87	177		393		tx.		448	05	_5	
339	00	00		394	71 04	SBR		449	18 93	C*	
340	03	ឲ្ន		395	34	£Χ		450	73	•	
341	44	44		396	52 58	EE		451	08) ***	
342	71	SBR		397	58	FIX		452	. 02	8 2 .B	
343	86	STF		398	02	02		453	12	.B	
344	99	PRT		399	71	SBR		454	93	•	
345	49	PRD		400	00	00	İ	455	08	8 C	
346	19	19		401	04	04		456	13	_C	
347	85	+		402	98	ADV		457	1.9	D.	
348	01	1		403	98	ADV		458	93 08	•	
349	95	=		404	03	3		459	08	8	
350	49	PRD		405	69 17	ΠP		460	76	LBL	
351	20	20		406	17	17		461	43	RCL	
352	05	5		407	08	8		462	32 93	X: T	
353	93	•		408	22	INV		463	93	•	
354	06	6		409	90	LST		464	00	0	
355	06	6		410	04	4		465	05	5	
356	09	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		411	69	OF'		466	42	STO	
357	07	7		412	17	17		467	07	07	
1358	52	EE		413	92	RTN		468	04	4	
359	08	8		414	76	LBL		469	05	5 `	
360	94	+/-		415	44	SUM		470	38	SIN	
361	22	INV		416	04	4		471	12	В	
362	52	EE		417	04	4		472	13	C T	
363	49	PRD		418	04	4		1473	05	5	
364	19	19		419	71	SBR	}	474	00	Ō	i
365	49	PŘĎ		420	32	XIT		475	14	Ď	
366	20	20	I	421	11	À		476	32	អ≨្	
367	05	5		422	93	•	<u> </u>	477	15	Ē	
368	ÕÕ	ŏ	1	423	óğ	9	<u></u>	478		RTH	
369	87	IFF	 	424	Ŏí	i		479	οō		<u> </u>
370	ũο	00		425	42	ទាំ⊡		71.		RGED COD)EC
371	83	03		426	07	07		62 00		72 370	
372	75	75		427	93			63 🔼		73.70	84 200 200
373	43			428	07	ż	ļ <u>.</u>	64	20	74 100	92(114) 346
374	04	04	 	429	08	Ś		Υ	EXAS	INSTRU	MENTS
10017	97		1	767	00			1		HEORPORAT	to

TEMPERATURE

PAGE 1 OF 4 TI Programmable Coding Form

PROGRAMMER.

LOC CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS	LOC C	ODE	KEY	COMMENTS
000 76	LEL		055	43	RIL		110	02	02	
001 43	RCL		056	32 58	32		111	75	-	
002 85	+		057	58	FIX		112	ŊЭ	٠	
002 85	RCL		058	01	732 FIX C1		113	00	e C	
1004 13	13		059	99 92 87	PRT RTN		114	95	=	
005 95	=		060	92	RTN		115	50 42	I×I	
006 65	X		061	87	1FF 08 00 79		116	42	STO 35 IFF	
007 43	RCL		062	06	Cs		117	35 87	35	
008 14	14		063	00	0.0		118	87	IFF	
009 55	÷		064	79 43	79		119	04	04 01	
010 03	3		065	43	RUL		it 20	01	01	
011 06	900		066	30	80		121 122 123 124	51	5 1	
1012 00	Ĺ		067	71	SER		122	87	IFF	
1013 95	=		068	00	00		123	.06	06	
014 58	FIX		069	89	89		124	01	61	
1015 n2	183		[070]	39 65	CES		125	51	51	
016 52	EE		071	- 65	>		126	06	E	
016 52	EE INV		072	93			127	03 07	51 6 7	
018 52	EE		073	- 03	3		128	0.7	7	
016 52 017 22 018 52 019 76 020 89	EE		074	06	96 +		129	02	2	
1020 89	ı n		075	85			130	42 01	STO	
1021 42	STD		076	01	1		131	01	0.1	
022 37 023 71	97		077	95	=		132	85	+	
023 71	SER		078	65	>		133	43	RCL	
024 03	03		079	43	RCL 81		134	12	12	
025 94	. 54		080	31	3.1		135	95	=	
026 43	RCL		081	95	=		136	42 06	STO	
1027 07	' 12 Y		082	-58	FIX		137	06	06	
028 32	: XIT		083	.00	00		138	36	PGM	
029 43	RCL 37		084	52	EE ,		139	1.1	_ 11	
030 37	57		085	22 52 99	INV		140	10	E.	
031 77	' GE		086	52	EE		141	36	PGM	
032 89 033 42	เ		087	99	PRT		142	11	<u>1</u> 1	
033 42	810 67		088	92 65	RTH		143	15	Elde Co	
034 07	17.		089	- 65	×		144	09	•	
035 71	SER		0.30	03	3		145	00	Ü	
036 03	03		091	06	6		146	75		,
037 95	95		092	00	3 6 0 ÷	<u></u>	147	43	ROL	
038 92	RTH	ļ	093	55	÷		148	05	05	
039 43	RCL		094	43	RCL		149	95	=	
040 30	្រូវ		095	14	14		150	50	I×I	
041 22	INV	ļ	096	75	501		151	42	SŢŪ	
042 58	FIX AIV	<u> </u>	097	. 43	RCL		152	34	24	
043 98	HIV		098	13	13		153	92	RTN	
044 98	HIV		099	87	IFF C5	ļ	154	43	RCL .	
045 99	PRT		100	95	U.D		155	30	30	
046 87		<u> </u>	101	01	01		156	85	+ pcl	
047 04		 	102	07	07		157		RCL	
048 00			103	75	-		158	07	07	
049 55			104	01	1		159	<u>.95</u>	= MERGED COL)
050 71		 	105	08	8		62		72 (\$10) E	
051 00			106	00	Ç.		65 🚾		73 65 60	84 (23 (23
052 61			107	95 80	== T 4. T		64		74 100	92 100 350
053 42			108	50	I>I STO		T	EXAS	INSTRU	MENTS
054 36	3.6	L	109	44	3 I U		1 .		INCORPORAT	E O

TEMPERATURE TITLE

PAGE 2 OF 4

TI Programmable Coding Form

TEXAS INSTRUMENTS

PROGRAMMER

RUL DATE

C-50

OO

ÛŪ

PAGE 3 OF 4 TI Programmable 13

74 200 20

TEXAS INSTRUMENTS

92 100

Coding Form PROGRAMMER DATE KEY COMMENTS LOC CODE COMMENTS LOC CODE KEY COMMENTS LOC CODE KEY 376 377 378 87 95 32 43 IFF 321 322 323 432 RCL 33 = X:T RCL C7 GE C3 03 1.4 63 75 325 380 77 03 435 RCL S2 +/-327 328 329 330 4325 382 383 437 ÷ = RCL 32 71 04 52 05 - 1 $I \times I$ SBC45 8435 439 440 XXT 385 386 387 388 389 390 33 STO STF C7 IÑV 07 71 GE 03 444 GTO CO 20 XTO STO INV STO C7 SER C 1 E 4 54 35 65 53 RCL 59 392 INT 339 340 341 342 394 133 - L12 R13 - L12 R13 - L12 R13 - L12 R13 - L12 R14 - L12 R15 - L12 R15 - L12 R16 - L12 R17 - L12 451 48 . = 397 EXC SBR 01 54 453 FIX 344 345 346 347 348 EE INV × 457 453 Ć, EE INV FIX HIV PRT RCL 07 403 350 351 353 353 354 355 45% RCL 407) 1FF 07 + RCL 32 €3 27 75 + OF 413 414 415 417 MAT RCL SS 470 471 EXC .0000 005 X:T = 87 ŌŌ ÷ 2 473 474 475 476 477 478 IFF 419 48 = EXC Ů4 75 X4T 71 367 = 77 IXI GE GB 423 00 SER ŌŌ €1 RCL RCL SO INT 371 372 373 43 95 MERGED GODES 72 頭面 73 底面 XIT **(1)** (1) 83 **(1)** (2) 84 **(2)** (3) 83 <u>655</u> 21 84 **63** 11 =

C-51

428 429

77

 $I \times I$

GÉ C3

PROGRAMMER_

LOC	CODE	KEY	COMMENTS	LOC C	ODE	KEY	COMMENTS	LOC C	ODE	KEY	COMMENTS
480	85	+		535	42	STO		590	42	STO .	
481	48	EVC	1	536	39	3.9		591	38	38	<u> </u>
482	36	36		537	22	INV	**** ********	592	43	RČĒ	
483	95	=		538	22 86	STF		593	39	RCL 39	
484	55	÷	1	539	04	04		594	55	÷	
485	02	2		540	86	STF		595	43 37	RCL	
486	95	=		541	05	05		596	37	37	
487	32	MIT		542	22 86	INV		597	95	=	
488	65)s		543	86	STF		598	58	FIX	
489	32	X:T]	544	06	06		599	01	01	
490	95	=		545	71	SER		600	52	EE	
491	44	sum		546	00			601	22	INV	
492	38	_38]	547	39	_39		602	52 99 42	EE	
493	43	RCL		548	25	CLR		603	99	PRT	
494	33	_33		549	71	SER		604	42	STO	
495	58	FIX		550	43	RCL		605	39 86	29	
496	01	្ន		551	86	STF	ļ ————	606	86	SIF	
497	52	EE	ļ	552	06	06		607	04	04	
498	52 22 52	I MV		553	09	e C		608	71	SER	
499	99	EE PFT	<u> </u>	554	00			609	00	00	
500	85		<u> </u>	555	71 43	SER RCL	ļ	610	39	39 2	
501 502	48	+ EXC	<u> </u>	556 557	01				02 07	<u> </u>	
503	32	32		558	08	1 8		612	00	7	
504	95			559	00	Ö.		614	71	SBR	
505	90 87	IFF		560	71	SBR		615	43	RCL	
506	04	04		561	43	RCL		616	43	ROL	
507	05	05	 	562	22	INV		617	14	14	
508	16	16	 	563	22 86	STF		618	71	SBR	<u> </u>
509	55	÷		564	ŎS	ប្រ		619	89	fi fi	
510	55 02	٤		565	22	INV		620	76	LËL	
511	65	×	l	566	86	STF		621	14	D	
512	32	XIT		567	06	06		622	22	INV	
513	95	=		568	01	1		623	22 58	FΙΧ	
514	44	SUM		569	08	8		624	03	3	
515	39	39		570	00	O		625	69	□F`	
516	92 76	RTN		571	85	+		626	17	17	
517	76	LEL		572	43	ROL		627	98	ADV	
518	10	E '		573	13	13		628	98	ADV	
519	25	CLR		574	71	SER		629	98	ADV	
520	22 86	INV		575	43	RCL		630	08	ε	
521	86	STF		576	43	ROL		631	22	INV	
522	05	.05	L	577 -	38	38		632	90	LST	
523	22	INV		578	55	÷		633	04	4	
524	86	STF	 	579	43	ROL		634	69	OF	
525	06	06	ļ	580	37	37		635	17	17	
526	71	SER		581	95	=		636	92	RTH	ļ
527	06	06 84	 	582		FIX	 	637	00	Ç	ļ
528	06	06 (5)	 	583	00	_00	J	638	00	ē	
529	76	LBL	 	584	52			639	00	ERGED CO	DEC
530	15	E		585		INV	 	62 2		ERGED CO 72 556 📧	
531	25	CLR B	 	586	52	ADV	}	63	900	73 RG	84 11 12 1
532	11 42	STO		587 588		ADV		64		74 500	92 👾 🖼
533 534	44 38	58 510	 				 	T	EXAS	INSTR	UMENTS
19:04	313		<u> </u>	589	_ 77	PRT	L	<u> </u>		NCORPORAL	ED

MAIN BUS

PROGRAMMER

LOC C	ODE	KEY	COMMENTS		CODE	KEY	COMMENTS		CODE	KEY	COMMENTS
000	76	LBL		055	55	2 2 3 3 3 28 28 RTN		110	43	RCL	
1001	16 42 23 92	A'		056	02 95	2		111	11 59 55	11 INT	
Lone	42	SID		057	95	=		112	59	INT	
lons	23	23		058	42	STO		113	55	÷	
003 004 005	92	23 RTN		059	428260 976 648 48	28		114	ñī	÷	
005	74	I 😅 I		060	92	RTN		115	50	FF	,
006	76 17	LBL B' STO		1021	72	1 21		115 116	01 52 07 22 52	EĒ 7	
007	4.0	er ern		061 062 063	10	E.		117	22	TAIL	
1007	<u>ت</u>	O A		1000	10 25	Ε.,		117 118	22 50	INV EE	
008	24	24		1000	40	X RCL		110	05		
00.5	72	RTN .		064	4,3	KUL		119	85 43	T∓ RCL	
010	76	LBL C* STD		065	46	48		120	43	RUL	
1011	18	Ç		1066	65	×		121	11	11	ļ
012	42	STO		067	43	RCL		122	22	IÑŸ INT	
013	25	25		068	49	49		123	59	INT	
011 012 013 014 015	92	25 RTN		067 068 069	95	=		121 122 123 124 125 126	95	=	
015	76	LBL		[070]	42	STO		125	17	₿'	
016	25	CLR		1071	29	29		126	92	RTN	
1017	42	CLR STO		1072	92	RTN		127	122957295726	B. RTH LBL	
016 017 018 019	24268252652626327 42971429724297142	26 RTN		073	4495292633953 449429734463	LBL		127 128 129 130	44	SUM	
019	92	RTN		074	33	X2		129	93	•	
020	78	I RI		075	43	₩2 RCL		130	ŌĨ	i	
021	13	LBL		076	4.0	49		131	ก็จ	å	
1000	40	STO :		077	55	×	ļ	122	0.2	2	
022	72	27		078	40	RĈL		132 133	02 02 76 45 42 16 93	2 2 LBL	
023	<u> 4</u> 1	61 670	·	079	30	30		100	(©	YX	
024	25	RIN		077	3U	30	 	134 135	40) (C	
1025	76	LBL		080	85	+		135	42	STO	
026	22	INV		lna i	33	PRT		136	16	16	<u></u>
021 022 023 024 025 026 027 028 029 030 031	92 76 22 48	STO		082	99 33 99 44	X2 PRT	.,	137	93	•.	
028	48	48		083	99	PRT		138	04 07	4 7	
029	92632926 4926	RTN		084	44	SUM 26 RTN LBL BCL		139 140	07	7	
030	76	LBL		085	26	26		140	09 42 18 12 05	9 STO	
031	23	LNX		086	92 76 12 43	RTN		141	42	STO	
032	42	STO		087	76	LBL		142	18	18	
033	49	49		088 089	12	В		143	12	85753	
034	92	RTH		089	43	RCL		144	05	5	
035	76	LBL		1090	08	08		145	07	7	
036	24 42	CE		091 092	59 65	INT		146	0.5	5	
037	$\overline{4}\hat{\phi}$	sto	·	โกลล	65	×		147	0.3	3	
038	50	50		093	43	RCL		148	03 42 25 01	ราบ 25	
039	50 92 76	RTN		094	08	OS		149	25	25	•
040	76	LBL		095	22	IÑŸ		150	0.1	1 .	
041	11	A		096	22 59 55	ÍNŤ		151	06	ż	
041	11	INV		097	27			152	ą9	0	
042 043	22 22 22 28 25 28	1144		000	다.	÷ 1	Va - Venezusky amplyomickain, Spirkeamy	1153	10 t	₽* #	
043	52	EE		098	01	- -		1150	01	ž.	
044	. <u>ZZ</u>	INV	· · · · · · · · · · · · · · · · · · ·	099	04	EE		154 155	Õį		
045	58	FIX		1100	ប្រ	0		155	05 42 25	69 1 1 1 2 7 0 6 7 7 0 6 7 7 0 6 7 7 0 6 7 7 0 6 7 7 0 6 7 7 0 6 7 7 0 6	
046	06	_6		101	95	=	management specification of the proper	156	43	57U	
047	69			102	58	EÉ 5 ≡ FIX		157	26	∠ ⊎	
048		. 17	<u> </u>	103	U.S	មួន		158	03	2	
049		CLR		104		EE		159			
050		RTN		105		INV				MERGED CO	DES
051	76	LBL		106		EE				72 310	
052	15	Ξ		107	22	INV				73 <u>no.</u> 200	84 (1) (1) 92 (1) (2)
053		RCL		108	58	FIX					
054	50	50		109		A.		1	I EXA:	S INSTRI	JMENTS
i, 1977 Texas I			<u></u>					·	-		T1-24191

LOC (CODE	KEY	COMMENTS	LOC	ODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS
160	06	6		215	55	÷					
161	ŌŌ	Ō		216	04	4					
161 162	03	Š		217	75			:			
163	52	ΕĒ		218	Οi	1					
1 6.4	08	-8		219	95	<u> </u>					
164 165	94	+7-		220	42	STO					••
166	49	STO		221	71.1	Ōī					
166 167	42 27	37		222	01 06	E			t		-
160	ก็ว	27 2 4		223	85	+		<u> </u>			
168 169	02 04	4		224	98	ADV			 		
170	40	sīo	,	225	9.3	HDV					-
171	42 28	28		226	22	PRT		 			
170	06	6	h	227	-	V2		 	 -		
172 173 174	00	Ü		228	99	X2 PRT			 	 -	_
レアジ	0.0	Ü		229	4.9	STO			 		
175	4.0	sīo		230	94	26	 	3	 	 	 -
176	20	29		231	20	CP		-	ļ		
177	27	LBL		232	00000000000000000000000000000000000000	RCL		 	 -	 	
170 170	42 29 76 43	RCL		233	01	01				·	
178	4.4			234	67	EQ			 		
179	11	A ST⊡		235	34	1X		j		 	
180	40	3111		1233	34	LBL		-			+
181	12	12	·	236	(0			ļ	├	ļ	
182	42	STO		237	32	TIX	ļ	<u> </u>		 -	
183	11 42 12 42 13 42	13.		238	76 32 71 33	SBR		<u> </u>		 	
184	42	SŢO.		239	33	ΧZ		-	} .	ļ	
185	14 42 15 42	14		240	44	sum		;			
186	42	STO		241	26	26	ļ		 		
187	15	15		242	97	DSZ		ļ	<u> </u>	ļ	
188	42	sto		243	01	01		-			
189	17	17		244	32 76 34	XIT	ļ		ļ	ļ	
190	42	STO		245	76	LBL		ļ	↓	ļ	
190 191 192 193	19	19		246	34	£X.			↓	<u> </u>	
192	429 421 422 697 67	STO		247	71 33 25 43 43 58	SBR		<u> </u>	<u> </u>	ļ	
193	21	21		[248	33	Χz		-	1		
194	42	STO .		249	25	CLR			}		
195	22	22		250	43	RCL		*	ļ		
196	DЭ	22 3		251	26	26			1		
197	69	ΩP		252		FIX					
198	17	17		253	ÜÜ	ŨŪ		1			
199	98 98	ADV		254	52	EE		II	ļ		
200	98	ADV		255	22	INV		·	L		l
201	08	8		256	52 22	EE		l		<u></u>	
202	22	INV		[257]	22	INV			L		
203	90	LST		258	- 58	FIX		:			
204	1 1	Ĥ		259	98	ADV					
205	92	RTH		Hean.	99	PRT					
206	75	LBL		{261	42	STO		[
207	19	D.		262	26	26		-	<u> </u>		
208	43	što		263	92	RĪÑ			T	<u> </u>	
209	30	30		111	7			1	1	 	
210	78	LBL								MERGED C	ODES
211	14	D						62	9 8	72 <u>stoj</u> [න 83 <u>ල</u> න
213	11	Ã									
213	43			11				041	3 0		
213	50 50	59		11				11	TEX.	S INSTI	RUMENTS
		is incorporated	1	ш				Ц.,		INCURPUR	71-241

SOLAR CELL PROGRAMMER.

LOC CO	DDE	KEY	COMMENTS	LOC K	ODE	KEY	COMMENTS	LOC COD	E KEY	COMMENTS
500	. 5 22	LEL		055	ijij	0		110 2	2 INV	
001	22	INV		056	95 72	= 8T*		111 5	4) 8 FIX	
002	Ω_{*}	1		(057	72	ST#		112 5	4) 8 FIX	
003	90	O		058	03	03		li 13 o	3 03	
004	00	0		059	92	RTN		114 9	9 PRT	
005	00	Ü		060	92 76	LBL		114 9 115 6 116 5 117 4	5 ×	
006	92 76	RTH		061	14	D 8'		116 5	i3 (
997	76	LBL R		062	16 17 76 15	Ĥ'		117 4	3 801	
008	11 42 12 92 76	H_		063	17	₽'		118 3	1 31	
009	42	STO		064	76	1 (2)		119 2	2 INV	
010	12	12 RTN		065	1.5	Ε		120 5	9 INT	
1111	32	RIN		066	07	E 7		120 5 121 6 122 0	5 8	
012	76	LEL		067	18 76	C.		/122 0	11 1	
013	12 42 14	8 STD		068	76	LEL		H23 O	0 0	
1014	42	510		069	13	C		124 5	(4) 19 PRT	
1015	14	14		070	13 98 43	ADV		124 5 125 9 126 5	9 PRT	
011 012 013 014 015 015	72	RTH		071	43	RCL		126 5	i4)	
1017	92662	LBL A'		072	14	14	ļ	H27 5	8 FIX	ļ
018	10	6 T G		073	33 33	Xs Xs		128 0 129 5	0 00	
019	44	STO		074	33	Χz		129 5	2 EE	
020	01	O1 RTN		075	75 53	- (130 2	2 INV	
021	72	KIM		076	53			131 5	2 EE	
022	92 76 17	LBL B· STO		077	53 71	(132 9	2 INV 2 EE 9 PRT 2 STO 3 13	
023	40	5 ⊝7Ħ		078	1 1	SBR		[133 4	ភ្នៃព្រ	
024	42 02	02		079	03	03		134 1	3 13	
025	92	RTN		080 081	26 65	26 ×	ļ	135 7	5 - 2 ST⊡	<u> </u>
027	76 76	LBL		085	. 43	RCL		136 4 137 1	្នែក	
1029	76 19 42 16	D.	<u> </u>	083	16	16	<u> </u>	liar i	7 17	
020	4.5	ទ័ក០		084	E 4	10	 	138 4	3 RCL	
028 029 030	16	16		085	54 52) EE	 	139 0 140 5	19 09 19 INT 15 ÷	
031	90	RTN		086	22	INV		1140 5	E 7	
032	92 76	LBL		087	228895	EE		141 5 142 7	5 ÷ 1 SBR 2 INV	
033	10	E		088	92	ADV		143 2	2 INV	
033	10 42	E. STO		089	98	ATO		144 6	.5 X	
035	18	18		090	99	ADV PRT		145 4	.a p∩.	
1036	92	RTN		091	65	33		146 1	2 12	
037	76	LBL C		092	43	RCL		147 5	3 RCL 2 12 34)	
038	18	0'		093	09	09		148 5	5 ÷	
039	85	. +		094	22	INV		149 4	2 12 ;4) ;5 ÷	
040	03	3 .		095	09 22 59 65	INT		[150 i	4 14	
041	01	1		096	65	×		[151 5	8 FIX	
042	95	 ST□		097	- 53	(152 0	01	
043	42	STO		098	43	RCL		153 9	9 PRT	
044	03	Ŭ3		099	12	12 FIN		154 4	3 RCL	
045	43	RCL		100	58	FIX		[155 2	0 20	
046	01	01		101	00	00		156 9	5 =	
047	65	X		102	99	PRT		157 3	14 FX	
048	71	SBR		103	65	×		[158] 3	14 FM	
049	22	INV		104	53	<		ļ159 S	2 EE	
050	85	+ + -	ļ	105	43			82	MERGED CO	
051		RCL	ļ	106	31	31		62 200 20	72 (55)	
052	02	02		107	59	INT		64 CE		92 碱 👺
053	55	÷	ļ	108	55	÷		TEY	AS INSTR	
054	01	1		109	71	SBR			INCORPORAL	ED

A STAL PARK IN " I'COR QUALITY PROGRAMMER.

PAGE 2 OF 3 TI Programmable Coding Form

LOC CODE	KEY	COMMENTS	LOC C	ODE	KEY	COMMENTS		CODE	KEY	COMMENTS
150 2	E INV		215	08	9		270	54	<u> </u>	
1161 5	2 EE		216	44	SUM		271	65	23	
163 4	PRT	1	[217]	00	00		272	43	RCL	
1125 2	2 370		218	73	RO+		273	25	25	
163 1	5 15		219	00	00		274	65	38	
1125	 5 +		220	42	STO		275	4:3	RCL	
165 091	 2 2		221		21	(N	276	26	26	
100	å <u>.</u>	• • • • • •	222	20	OP	[377	55	10	f
167 9 168 5 169 0	5 = = =		223	21 69 20 73	20	ł l	278	43	ROL	h
168 5	5 - 2 2		224	20	RC*		279	27	27	
169 0	2 2		225				280	55	÷	}
170 0 171 4 172 0	5 5	ļ	1220	00 71	00	l	281	43	RCL	
1121 4	ខ្ទុំប្		326		SBR		282	94.2 300	20	
172 0	7 07	<u></u>	227	04	04				28	
173 8	5 ÷		228	32	32	l	283	24	2)	
174 5	9 INT		229	55	÷	 	284	34	13	
175 4	9 PRD	ļ. —————	230	01	1	ļ	285	55	-	
175 4 176 0	7 07	1	231	00	O		286	4:3	ROL	
-1177 - 0	3 3		232	85	÷		287	19	19	
1178 0	5 5		233	43	RCL		288		FRT	
1179 9	5 =		234	32	32		[289	55	÷	
180 4	ខែទី២		235	59	IHT		290	43	RCL	
181 0			236	95	=		291	29	29	
181 0 182 7			237	42	STO		[292	95	=	
183 0			238	32	32		293	52	EE	
184 5			239	32 71	SBR		294	. 22	INV	
185 4	2 STO		240	úЗ	03		295		EE.	
186 2	1 21 .		241	27	27		296	22	INV	
1100 4	i ei.		242	65	X		297		FIX	
187 6	9 OP ' 0 20		243	43	RĈL		298		ล่ำ	
188 2	0 20						299	17	8*	<u> </u>
189 7		ļ	244	18	18	<u></u>	300			
190 0	3 03		245	95	=		301		OP	
191 5	8 58		246	52	EE			, Dir	UP.	
	1 SBR		247	22 52	IHV		302		21	
193 0	4 04		248	52	EE		303		<u>(</u>	ļ
194 3	2 32		249	42	STO		304		RO÷	
195 6	5 K		250	19	19		305	01	0.1	ļ
196 7	1 SBR		(1251	01	1		(306	22	INV	
1197 2	2 INV		[[252	75			307	59	INT	
198 3	5 +		253	53	Ç		308	65		
199 3	5 + 2 XIT		254	53	(309		1	
	3 ROL		255	43	ROL][310		Ö]]
201 3	2 32		256	17	17		[[311	. 54)	
202 2	2 INV		257	65	×.		[[312		IFF	
203 5	2 INV 9 INT		258	43	RCL		[[313		្រាញ	
204 9		1	259	23	23	1	1314			
	S EXC .		260	54	5		315		24	
205 3	10 EAC . 12 32		261	52	ΕÉ		llaie	5.3		1
207 5			262	22	IHV		[[317	73	RC+	
1000 0	B INT .	 	263	52 52	EE		Sia	01		
208 2	2 INV 7 EQ	<u></u>	264	92 42	STO		313			
209 8					17		1		MERGED CO	DES
	10 00		265	17		 	621	83 63 ^	72 510	83 📾 🕝
211 7	1 71		266	98	ADV		1 63	Dr. 100	73 🚾 🛣	3 4 CD 65
212 7	1 588		11267	99	PRT	<u> </u>	64		74風離 🗖	92 쨰 🖼
	13 03		268	55	÷	ļ	1	TEXAS	SINSTR	UMENTS
1214 3	6 26	L	269	43	RC.I	<u> </u>	Ц		INCORPORA	rto

SOLAR CELL TITLE

PAGE 3 OF 3 TI Programmable Coding Form

STF

DATA BASE

FOR

SOLAR CELL

PROGRAM

10000. 1017.087 717.0759 965.1 993.0999 999.0999 999.0999 961.0957 988.0988 1000.1 23100935.1\$290 22900930.1\$280 22900930.1\$280 22900930.1\$280 21400865.1\$2196 20050812.1120 17900725.100 15650635.0\$750 10900442.0610 1.455 1.395 1.32 1.23 1.125 1.0.88	444567890123456 444444555555555

PAGE 1 OF 3 TI Programmable Coding Form

PROGRAMMER.

LOC C	ODE	KEY	COMMENTS	LOC C	ODE	KEY	COMMENTS	LOC C	BOC	KEY	COMMENTS
000	76	LBL		055	30	TAN		110	05	5	
001	11	A STO		056	69	ΠP		iii	54	ζ.	
002	42	sto		057	21	21		112	10	n'	
003	11272622926623 7141976239	17	-	058	21 64	21 PD* 01		113	54 19 16 26 76	D.	
004	9.2	RTN		059	Ďί	01	***************************************	114	7.0	RTN	
005	76	LBL		060	01 97	DŠŽ			74	K 1 M	
006	10	E		061	02	02		115 116	10	LBL	
007	42	B STO		061 062	30	TÄÑ		117	13898 983 172 04	ည်းမ	ļ
joos	19	719		063	30 92 76 38 71	RTN		118	20	AĎV ADV	
กกัจ	90	19 RTN		ine4	75	LBL SIN SBR COS		119	70 40	RČĽ	
010	ŹĀ	i Ri	·	064 065	38	SIN		100	73	17	ļ
1011	16	LBL A		066	71	SBR		120	10	xit	<u> </u>
1012	30	Wat		066 067	29	ons		1121	<u>ತ್ತ</u>	N+1	
011 012 013	0.2	Ж : т З О		něs	93	ADV	·	121 122 123 124	00	4 3	
1014	00	ň		068 069	กก	0		123	03 18 43	್ಷತ	
1015	10	c.		070	76	LBL		124	18	C' RCL	
1812	40	ŘTH	··· 	071	22	INV		125 126	43	RUL	
012	76 76	15 1 17t	<u> </u>	1072	42	STO		126	19	19	ļ
014 015 016 017 018 019 020	18 92 76 19 50 40	LBL D		072 073	398062220 98072220	00	 	127	19 34 02 13 43 1	XIT	
010	17 E0	ETW.		074	4.3	RČĽ		128	04	4	
0.20	୍ଟ୍ର ଏଠ	FIX IND		075	1.7	17		129	02	_2	
1020	00	00		076	4153359243 000000000000000000000000000000000000	¥,		129 130 131 132 133 134 135 136 137	18	4 2 C. RCL 51 ÷	
1021	E0	EE		077	42	X RCL		131	43	RCL	
021 022 023 024 025	52222672	ĪÑV		078	5 0	20 E		132	51	51	
023	E2	EE		079	35	53 p. X:T		[133	55	÷	
024	02 02	RTH		080	10	n.		134	43 49	RCL 49	
020	72	E I DI		081	22	υ V⊁T		135	49	49	
020	17	D.		082	04	A .		136	55 43	RCL.	
027 028 029	2.0	LBL B· X:T		083	07	4		137	43	RCL	
020	00	0.4.1		084	10	C 1		138	47	47 ÷	
030	04	2		085	40	000		139	55	÷	
031	02 06 02 02	5		086	20	RCL 29		140	43 19	RCL 19	
000	00	<u> </u>		087	25			141	19	19	
002	7/			088	40	RĈL		142	85	.+	
033 033 035 035 036	76 182 58 64	26 22 LBL C		089	40	19		143	Ü1	i INT	
005	10	T. 1111		090	12	17		144	95	=	T
030	22	INV FIX		004	70	X:T		145	59	INT	
035	ଅକ୍ ଅବ	OP		091	3 <u>2</u>	A L		145	98	abv	
000	07	04		093	0.0	4		147	32	XIT	
038	04	X:T		094	10	2 C*		148	59 98 32 03	3	
040	32 69 06	Ail.		005	1439533952428267 4193001973	RTN		149	ne	ີ່3່ 6 C•	
040	07	ΠΡ 06		095 096	74	LBL		150	18 42 29 32	C.	
040	92	DTU.		097	(0	P/R		151	42	STO	
042 043	74 76	RTN . LBL		098	3r 85			152	29	29	
043	70	COC		000	3 0	+ RCL		153	32	29 X∤T	
044 045	কল কল	しせの ソトボ		099 100	43 43	KUL.		154	05	5	
1040 044	39 32 05	C⊡S X∤T 5		100	43 65	43		155	77	GE	
046	00	2		101	60	×		156	28	LOG	
047	02	· ·		102	02	2		157		INA	
048	42			103	85	+		158		LBL	
049	01	01	-	104	02	2		159	28	LOG	ļ
050	05	5 075		105	42	STO		 		RGED COD	NEC .
051	42		r	106	00	00		62 003	70 70	72 370	
052		.02 ·		107	93			63		73 🙉 🕝	84 🛤 🗱
053	32			108	00	-		64 888		74 300 10	
054	76	LDL -		109,	οņ	ŋ		TE	XAS	INSTRU	MENTS
C 1977 Terret			<u> </u>					l <u>. </u>		NCORPORATI	t D

LOC CO	DE KEY	COMMENTS	LOC CC	DE	KEY	COMMENTS	LOC C	CODE	KEY	COMMENTS
	86 STF		215 216 217 218	65				22	INV	
161	00 00		216	02	x 2 ÷		270 271 272	52	EE	
162	43 RCL		217	55	÷		272	71	SBR	1
163 164	52 52		218	43	RCL		273 274	37	P/R	
164	55 ÷		1219	44	44		274	42	STO	
165	43 RCL		[220]	85	+		275	13	13	
165 166	5 ÷ C5 ÷ C4 ÷ C4 ÷ C7 5 ÷ C5 ÷ C4 ÷ C4 ÷ C17 25 3 C5 3 9 5 3 8 5 3 7 25 4 5 5 4 4		1221	01	1		1276	42 13 65 53	×	
167 168 169 170	55 ÷		222 223	95 55 63 44	=		L277	53	(
168	43 RCL		223	59	INT		1278	43 14	RCL	
169	49 49		224 225 226	65	X RCL		279	14	14	
170	55 ÷		1225	43	RCL	ļ	280	65	X RCL	
171	43 RCL		226	44	44		281	43	RCL	
172	48 48		227 228 229	95 98 32 04	=		282	08 22	្សន	
173	55 ÷		228	98	ADV X:T		283	22	INV	
174 175	43 RCL		553	32	X i I		284	59 71	INT	
11/0	17 17		230	04	4		285	71	SBR	
176 177	55 ÷ 32 X:T		231	04	4 4 0 •		286	37	PZR	
1170	95 T		232	10	C' STO		287	37 42 14	STO	
178 179	55 ÷ 32 X;T 85 + 01 1		231 232 233 234	18 42 13	13		288	14	14	
180	01 1 95 =		204	40	RCL		289	95	= D *	ļ
181	95 = 59 INT 32 X:T 06 6		235 236	43 14	14		290	19 32 03	D* X:T	
192	32 X:T		237	32	XIT		291 292	34 02	A C	
182	oe n ne e		238	04	4		293	00	3	
184	U3 3		239	05	5		294	07	7	
185	00 0 NA A		240	18	4 5 C'		295	00	0 7 0	ļ
186	กัล ลิ		241	43	RCL		296	10	C.	
186 187	06 363 630 000 000 000 000 000 000 000 0		242	18 43 53 65 02	53		297	18 42 54	š⊤⊔	
188	65 X		243	65	X 2 X X:T		298	54	54	
189	43 RCL		244	02	2		299	65	×	
190	29 29		245 246	65	×	·····	300	53	(
191	95 =		246	32	XIT		301	43	RCL	
192	32 X:T		247 248	01	1		302	11	11	
193	01 i		248	05	5 C'		303	59	INT	
193 194	05 5 18 C' 42 STO 53 5 3		249	18			304	55	÷	
195	18 C'		250	42	STO		305	53	(
196	42 STO		251	53	53		306	43	RCL	
197	53 53		252	43	RÇĻ		307	08	08	
[198	01 1		253	11	11		308	59	INT	***************************************
199	71 SBR		254	22 59	INV		309	65	×	
200 :	22 INV		255	05	IHT		310	43	RÇL	
201	43 RCL 53 53 55 ÷		256	95 42 12 53	= STB		311	08	្ឋ	4
202	53 53 55 -		257 . 258	42	12		312	22 59	INV	
203	55 ÷ 04 4		259	1.C	(313	59	INT	
	00 0		260	73	RCL		314	54	p.	
206	00 0 87 IFF		261	43 13	13		315	19		
I = _	00 1FF		262	65	X		316	54	"	
	00 00 29 CP		263	43	RCL		317	19	D.	
	04 4		264	08	08		318	55	÷ 3	
	02 2		265	59	INT		212	០ខ្		<u> </u>
	76 LBL	<u> </u>	266	55	÷		£2		ERGED CC	
212	29 CP	ļ	267	Õī	1	ļ	62		72 (570) E	
	42 STO		268	52	EE	-	64		74 900	
	14 14		269	05	-5	ļ				
	<u> </u>		نـــــــــــــــــــــــــــــــــــ	<u> </u>					NCORPORA	UMENTS

M Joseph Colombia

LOC C	ODE	KEY	COMMENTS	LOC	CODE	KEY	7	COMMENTS	LOC	CODE	KEY	COMMENTS
320	42	STO		375	43	43	-		430	56	56	
321	00	00		376		=	Ì		431	75		
322	01			377	70	STO	- (432	01	1	
322		1	·	378	4.4	14	1	·	433	54	,	
323	00	Ů.		070	1 T	+	1		434	24 4E		
324	00	0	·	379	95 42 14 85 43 34	T	- {			65	X	
325 326	95 19	_ =	·	380	শুক	RCL	- {		435	43	RCL	
.326	19	D.		381	34	34	- {		436	34	34	
327	85 48 12 19	_+		382	95 42 30	=	l		437	85	+	
328	48	EXC	l	383	42	STO	- {		438	02	2 X	
329	12	12.		384	30	30	- {		439	65	×	
330	19	D.	l	385	00	0			440	01	1_	
331	17	ខ•	l	386	98	ADV	ì		441	42	STO	
332	95	=		387	71	SBR	ı		442	00	0.0	
333	48	EXC		388	22	INV	ı		[443	43 33	RCL	
334	12	12		389	43	RCL	Ì		444	33	33	
335	95 48 12 17	8'		390	13	13	1		445	54	>	
334 333 333 333 333 333	43	RCL		391	71 22 43 13 16 43	ñ'	I		446	19	D *	
337	12	12		392	43	RCL	}		447	16	Ĥ°	
338 339 340	43 12 17 43	в.	[1393	14 16	14	1		448	54 19 16 42 14	STO	
339	43	ŘCL	h	394	16	А'	- 1		449	14	14	
340	47	47		1395	43 49	RCL	- 1		450	95 42 57	=	
341	49	PRD		396	4.9	49	- 1		451	42	STO	
342	20	29	l	397	4.9	PRD			452	57	57	ļ
343	29 43	RČL	·	398	က်ရှိ	29			453	ก็ล	2	
344	13	13	<u> </u>	399	71	SBR			454	02 71 38	SBR	·
345	75	-		400	3.4	č⊡s	- 1		455	3.3	SIN	
343	10	RCL		401	4.5	STO			456	02	3	
346	43 43 95	40		402	49 21 39 42 56	56			457	02 71	2 SBR	<u> </u>
347	9-3 0-5	43		403	00	0			458	20	SIN	
348	72	## LV		404	98	ADV			459	38 00	0	
349	65	×		405	71	SBR			460	42	SŤO	
350	43	RCL		406	71 22	INV			461	00	00	
351 352	46	46		407	40	RCL			462	43	RCL	
352	71	SBR	i	408	43 50	50			1463	54	54	
353	39 42	cos	L	409	55	÷	i		464	10	. D	
(354	42	SIO			04	4			1404	19 42	. ŠTO	
353 354 355 356	55	55		410	95				465	42	0 1 Li	
356	85	+		411	20	= SBR			466	54 43	54 RCL	
1357	43	RCL		412	71 38	30K			467	43 ==	KUL EZ	
358	43	43		413	38 40	SIN	- 1		468	57	57 D'	
359	95	=		414	43	RCL	,		469	19 42	D	
360	42	STO		415	30	30	1		470	42	STD	
361 362	13 43	13		416	16	Ĥ.	1		471	15 32	15	
(362	43	ROL		417	43	ROL			472	32	XXT	
363	14	14		418	13 16	13			473	03	3	
364	75	-	 	419	16	A.			474		Ō	
365	43	RCL		420	65	×	.	 	475		7	
366	43	43		421	53	<u> </u>			476			
367	95	=		422					477		C •	
368	65	×	 	423					473		RTH	
369	43	RCL		424					479	, oò	Ü	
370	45	45		425			Ì		 	'	MERGED	CODES
371	71	SBR	 	426		56	ļ		62 1	2 2 **	72 510	
372	39	COS		427			į		63 (73 AC	84 (2) (2)
373	85			428			. 1		64 [74 904	92 🙀 🙀
374		RCL	 	429	43	RCL				TEXAS	s INST	RUMENTS
ننتا		· · · - -	1						<u> </u>		INCORPO	RATED

C-61

DATA BASE FOR SOLAR ARRAY PROGRAM

0. 154. .7927135678 0.5 0.025 0.86	30 31 32 33 34 35
0. 0. 0. 0. 0.026 0.05	37 38 39 40 41 42 43
3. 3. 5. 30. 4. 48.	44 45 46 47 48 49 50
180. 480000. 0. 0. 0. 0. 0.	51 52 55 55 55 55 55 55 55

DATE

PROGRAMMER

052

۵P

02

62 🙃 🗷

63 100

MERGED CODES
72 550 2

74 300 10

TEXAS INSTRUMENTS

83 <u>656</u> 67

92 mv 5m

:08

PROGRAMMER.

PAGE 2 OF 3 TI Programmable Coding Form

	LOC	CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS
	160	33	KIT		215 216 217	02	3		270 271 272	43	ROL	
	161	ŊΟ	Ð		[216]	95	=		271	50	50	
	162	42	STO		217	32	TIM	-	5-5	65	.8	
- [1.3	οō	00		218	61			575	43	RCL	
- 1	163 164 165 167 168 169 170	32	XIT		219	01 07	1 7 3 1 1 6		273 274	4.0	KUL	
		00			217	01	-		1274	17	17	<u> </u>
- ł:	100	95	=		220	03	್ರ		275	55	÷	
- [166	98	ADV		221	01	1		276	43	RCL	
	167	15	A.		222	01	1		277	19	19	
- 1	68	98 16 42	STO	l	223	06	6		276 277 278	55	_	
	169	58 43	58		224	18 44	0.		日クアラ	43	RCL 29	
	170	43	ROL		225	<u> व</u> े व	SUM		280	29	30	
	7.1	9.9	22		226	5,0	58	\	280 281	54	77	
1	7.0	22 75	-		227	56 43 49	RCL		282	-0.50	N≟	
- 1:	170	0.1		 	228	70 70	49		1202	33		
- 1:		01	1	<u></u>	240	4.2			283 284	65	×	
	4	95 85 53	=		229	75	-		284	4:3	RCL 27 2X	
- [:	75	85	×		230	U 1	1		285	27	27	
	76	53	<		231	01 95	=		286	65	34	
- [:	17234567	43	RCL		232	65	20		287	43	RCL 25 X	
- 1:	178	34	34		233	43	RCL		288	25	25	
	179	85	+		234	50	50		289	65	7	
- [:	ian.	ก็จ	-71		235	50 55	÷		290	43	RĈL	1
	180 181	34 85 02 65	2 X	·	235 236	04	4		001	90	MUL.	
	100	40	RĈL		200	65		 -	291	25 55	26 ÷	
- 1:	182 183	43 43	MUL.	<u></u>	237 238 239	50	X		292	. నివ	<u>+</u>	
- 1	183	43	43		238	43	RCL		293	43	RCL 17	
- 1:	184	54	>		239	35	35		294	17	17	
	185 186	65 43	×		240 241	95	=		295	65	×	
	186	43	ROL		241	32	XIT		296	43	RCL	
١.	187	13 65 07	13		1242	01	1		297	24	24	
[:	188 189 190	65	X		243 244 245	07	7 2 4 1 5		298	95	24 =	
1	189	ĎŽ.	7		244	02	•		299	34	18	
- 1	an.	93	•		545	04	4		300	97 E0	FIX	
	101	05	5	 	242		7		1200	58	PIA	
- 1:	191 192	05			246 247	01	1		301	00	00	h
- 1:	125	95	<u>=</u>		24(05	_5		302	52	EE	
- -	193	32	TIX		248	18	C*		303	- 22	INV	
- :	194 195	03	3		249	44	SUM		304	22 52	EE .	
	195	00	ij		250	58	58		1305	65	X	
- 1:	196	01	1		1251	43 58	RCL		306		4	
- 1:	197	07	7		252	58	58		307	93		
Ŀ	198	ñ2	1 2 4		252 253	17	В		308	őí	1	
- [:	133	02 04	ā		254	65	×		309	95	=	
	200	Õi	1		255	04	4		130.7	32		
	201	05	1 5		255 256		-		310	_ 3 <u>_</u>	XIT	
- 1	101	U ()			000	95			311	03	3	
- 15	202	18	01		257	* 98 17	ADA		312	0.0	D	h
- 13	203	44	SUM		258	17	8		313	OI	1 4	
2	204	58	58		259	42	STO		314	- 04	4	
1	205	43	RCL		260	58	58		1315	18	01	
- 12	206	33	33	<u> </u>	261	42	STO		316	44	SUM	
- 12	207	65	X		1262	42 22 43	22		317	22	22	
	208	43	RCL		263	45	RCL		318	22 42 57	รรับ	
- 15	209	13	13		264	28	28		319	. + <u>.</u>	914	
16	210	65	X		265	65	20 X		1312	J M	57 ERGED CO	DES
		୍ଧ ଅକ	7		100				62	B 53 "	72 510	83 <u>6</u>
1	211	07	v.	 	266	53	(63 #	10 10	72 550 E	84 🖭 🖾
	212	93 - 05	<u>.</u>	 	267	43	RCL		64		74 500 1	92 NV 386
12	213	: 05	5	 	268	53	53			TEXAS	INSTR	UMENTS
	214	65	X	<u> </u>	269	55,	÷		<u></u>		NCORPORAL	ED

C-64

	CODE	KEY	COMMENTS		CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS
320		RCL	1	375	03	3		430	22	INV	
321	14	14		376	02	2 3 7		431	58	FIX	
322	55	÷		377	03	3		432	01	1	
323	01	1		378	07	7		433	DE	6	
324	05	Ş	ļ	379	18	0.		434	01	1	
325	00	Ü		380	43	RCL		435	03	3	
326	95	=		381	53	53		436	69	ΩP	
327	45	γ×	}	382	65	×		437	00	00	
328	03	3	·	383	43 17	RCL		438	69	OP'	
329	65	X.		384	17	17		439	02	02	
330	43	ROL		385	95 52	=		440	03	3 7	
331	32 65	32		386	52	EE		441	07	7	<u> </u>
332	<u> 50</u>	N.		387	22	INV		442	01	1	
333	53	(388	52	EE		443	03	SE 8	
334	43 57	RCL		389	42	SIO		444	52 06	EΕ	
335	27	57		390	21	21		445	06	6	
336	85	+		391	55	÷		446	22	INV	
337 338	43	RCL		392	02	2_	ļ	447	52 69	EE	
339	58 95	58		393	42	STO	ļ	448	69	OF:	
340	70	=	·	394	00	00		449	03	03	
341	52 22	EE INV		395	43	RCL .		450	98	ADV	
342	22 52			396	15	15		451	98	ADV ·	
343	85	EE		397	95	=		452	98	ADV	ļ
344	53	+		398	98	ADV		453	98	ADV	ļ
345	43	RCL		399	32	XIT		454	69	□P	
346	50 50	KUL :		400	04	4		455	05	05	ļ
347	55	50 ÷		401	03	<u>ु</u>		456	98	ADV	ļi
348	04	4		402	06	8688070		457	01	1 .	
349	08	8		403	03	3		.458	02	2	
350	65	×		404	03	3		459	22	INV	
351	43	ROL		405	00 07	ñ		460	90	LST	
352	31	31		406				461	92	RŢN .	
353	54	"		408	00	ٽ. م		462	00	Ď	
354	52	ΕÉ		409	18 48	500		463	00	Ō	
355	32	INV		410	21	EXC 21	·	464	00	Q.	
356	52	ĒĒ		411	55 55	÷		465	00	Ŭ	
357	95	=		412	43	ROL		466	00	0 .	
358	32	XIT		413	22	22		467	00	0 ,	
359	03	∵3' I		414	95	=		468	00	0	
360	06	ă		415	98	ADV		469 470	0.0	0	
361	οŝ	637		416	32	XXX			00	0	
362	ŎŽ	ž		417	04	4		.471 .472	00 00	0	
363	ĎЗ	3		418	03			473	00.	0	
364	05	5		419	06			474		0	
365	18	c.		420	03	3632			00	0	
366	44	รับท [421	02	- 5 h		.475 .476	00	0 1	
367	57	57		422	06	6				- T- 1	
368	44	SUM [423	02	2		.477 .478	00 00	0	
369	22	22		424	03.	2		479 479	00 00	0	
370		RŌĒ [425	18	င်		Γ	ME	RGED COD	ES
371	22	~22 [426		š⊤⊓ [62 000	43	72 510 111	83 📻 😘
372	32	XIT [427	22	22		63 2		73 🚾 📠	84 🖾 🗂
373	03	::3' [428		LEL		84 65		74 500 0	92 INV 1989
374	07	- F - [429	15	E		l T	EXAS	INSTRU	MENTS
	s instruments							<u></u>			71(2.5181

PROGRAMMER_		_ FAGE OF	TI Programmable Coding Form	₹ <i>(\$</i>)
TITLE	LCCM	PAGE 1 OF 3	TI Programmable	٦٠٠

LOC COD	E KEY	COMMENTS	LOC C	ODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS
	76 LBL	COMMENTS	055	23	CP	COMMITTER	110	5:3	EE	-
001 5	52 EE		056	69	ŌF'	1	111	95	=	· · · · · · · · · · · · · · · · · · ·
002 5	54)		057	23	23		112	42	STO	
	8 FIX		058	73	RC+	1	113	1:3	13	
004 0	03 03		059	0:3	0:3	1	114	33	XIT	
005 5	52 EE		060	65	26		115	92 76	RTH	
006 3	22 INV		061	6.9	OP'		116	76	LBL	
007 5	22 INV 52 EE		062	69 22	22		117	1:3	C	
008 3	22 INV		063	73	RDA		118	25 23	CLR	
009 5	58 FIX		064	02	02	l	119	23	INV	
010 9	92 RTN		065	7 t	SBR		120	58	FIX	
011 7	92 RTN 76 LBL 87 P/R		066	52 99	Œ_		121	98	ADV	
012 3	37 PZR		067	27	PRT		122	93	ADV	
013 5	3 (068	74	SM÷		123	98	ADV	ļ
014 5	13 (069	00	00	ļ	124	05	5	ļ
015 4	13 RCL 57 57	\	070	97	DSZ		1120	03	3	
016 S 017 S			071 072	01	01 CP	 	126	2:2 90	inv Lst	
018 4	85 + 43 RCL		073	29 92		ļ	128	98 98	ADV	ļ
019 5	13 RCL 18 59		074	76	RTN	ļ	129	98	ADV	
020 8)0 J) 35 +		075	17	LBL B'		130	03	3	**************************************
	3 RCL		076	85	+		131	69	ΩĒ	
022 5	10 NOL 19 59		ŎŹŹ	04	4	 	132	17	17	
	5 ×		078	93			133	05	ŝ'	ļ
024	3 RCL		079	Ú7	7		134	42	sīo	
	25	· · · · · · · · · · · · · · · · · · ·	080	Õ:3	ġ		135	0:3-	03 -	
1026 5	54)		081	61	GŤO		136	04	4	
027 6	5 X		082	22 76	INV		137	22	INV	
028 6	9 OP		083	76	LBL		138	90	LST ·	
029 2	21 21		084	12	В		139	06	Ė	
	73 RC*		085	85	÷ 3		140	69 17	OF .	
	01 01		086	0.3	3		141		17	
032 7	71 SBR		087	93			142	0.3	3	<u></u>
033 5	52 EE		088	0.1	1 .		143	05	5_	
034 9	92 RTH	ļ	089	00	0		144	42	STO	
035 7	6 LBL		090	76	LBL	 	145	00	00	
036 2	28 LOG		091	2.2	IMM	ļ	146	06 71	6	
037 4	\$2 STO		092	95 43	= 5TO	ļ	147	28	SBR LOG	
);)5 5	 	093 094	04	014		149	43	RCL	
	 02 2	<u> </u>	095	65	X		150	35	35	
041	.2 STO	 	096	33	XIT	<u> </u>	151	99	PRT	·
042 (02 02	÷	097	01	1		152	65	X	
043	73 RC+		098	93			153	02	2	
	03 03		099	02	2 9		154	93		
	55 ×		100	09	9		155	06	6	
	14 4		ioi	0.9	ģ	1	156	07	7	
	71 SBR		102	Õ9	ė		157	$\frac{1}{7}$ 1	SBR	
048 5	52 EE		103	015	6		158	53	EE	
	98 ADY] 104	03	9 632		159		STO	
	es adv] 105	02	2		60 -		ERGED CO	DES
	99 PRT		106	52	EE				72 550 74 73 (EG) 77	
	72 9T÷	1.	107	DБ	÷				74 500	
	00 00		108	34	+/·-	-			INSTRI	
554	76 LBL		109	2.3	INV	L	u'		INCORPORAT	ED TIVALS

ORIGINAL PAGE IS OF POOR QUALITY

5, 1977 Texas instruments incorporated

LOC	CODE	KEY	COMMENTS	LOC C	ODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS
160	36	36		215	09	9		270 271	53	ζ	
161	Öί	1]	216	42	STO		271	4.3	RCL	
162	02	Ž		217	01	01		272	24	24	1
163	40	sī⊡	}	218	71	SBR		273	24 65	×	
164	42 03	03		219	37	PZR.		274	93		
165	0.3	3		220	42	STO		275	0.0	O	
166	07	7		221	42	42		276	Õž	ž	
167	4.5	sto		222	95	=		577	71	SBR	
168	42 00	00	} ····:	223	20 mg	STO		277 278	50	EE	
1160	05	5		224	42 43	43		279	58 44	รับท	
169 170	71	SBR		225	85	+	·	280	47	47	
171	28	LOG	 	226	43	RČL		281	5.4)	
172	43	RCL	<u> </u>	227	36	MUL OC	· · · · · · · · · · · · · · · · · · ·	282	42	sío.	
17.0		代した	<u> </u>	1 7 Z 1	ನಾಣ ನಾಣ	36		283	4.3		
173	37	37	 	228	95	=		284	90 00	48 =	
174	99	PRT		229	42	SŢŪ		204	95		
175	85	÷.		230	44	44		285	42	STO	
176	53	_ (231	65	×		286	49	49	
177	24	ÇE X		232	01	1		287	65	×	
178	65	×	l	233	93	•		288	93 03 05	3 5	
179	93	•		234	01	1 0 6 %	ļ	289	0.3	3	
180	01	1	<u> </u>	235	OO	Ð	l	290	0.5	5	
181	71	SBR		236	DЬ	6		291	-71	SBR	
[182	52	EE		237	65			292	5.3	ĒΕ	
181 182 183	42	EE STO		238	01	1		293	4.3	STO	
1184	38	38.		239	9:3			294	50	50	
185	85	38. +		240	01	1		295	4.3	RCL	
186	53	(241	05	5		296	26	26	
187	43	RCL		242	71	SBR		297	26 43	STO	
188	18	18		243	52	EE		298	51	51	
189	65	X		244	42	STO		299	65	×	
190	4:3	RCL		245	45	45		300	Ül	1	
191	53	53		246	85	+		301			
192	71	SBR		247	53	Ċ		302	9.0	9	
193	52	EE		248	71	ន្ទិន		303	0.3	Ž	
194	52 43	STO		249	37	PZR		304		SBR	
195	39	39		250	42	STO		305	5.5	EE.	
195 196	85	+)	251	46	46		306		STO	
197	53	Ġ	f	252	85	+		307	53	52	
198	4.3	RĈL		253	43	RĊL	<u> </u>	308	65	×	
199	24	39	ļ	254	22	22		309	οί	1	
200	- 39 65	X		255	44	รบัท		310			
201	93		<u> </u>	256	46	30M 46		311	Ol	. 1	f
202	00			257	85			312	. 05	5	
203	07	0		(ವರ್ಷ (೧೯೧	_ ⊝ ⊡	+		313	71	SBR	·
1004	97. 197.		<u></u>	258	69	OF		010	r fi	00K	
204	7 l 52	SBR	<u></u>	259	21 71	21		314	52 43	EE	
205	2.5	EE	}	260	$\mathcal{L}_{\mathbf{L}}$	SBR		315) 	STO	J
206	4.2	STO	ļ	261	37	P/R	 	316		53	
207	40	40	 	262	42	STO	ļ	317			ļ
208	85	+	<u></u>	263	47	47		318			
209	43			264	85	+ .		319		P.C.L	
210	1.9	19		265	4 3	RCL		621		4ERGED CC 72 (화)	
211	43			266	24	24				73 163	
212	41	41		267	44	SUM		64		74 500	
213	85	+	1	268	4 ?	47			TEXA	NETP	UMENTS
214	0 i	1		269	85	<u>+</u>	<u> </u>			INCORPORA	TED

TITLE	LCCM	PAGE 3 OF 3	TI Programmable	رو في ا
PROGRAMMER_		DATE	TI Programmable Coding Form	٦

LOC	CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS	LOC	CODE	KEY	COMMENTS
320	27	27		375	D.	5 5					
321	42 54	STO		1376	22 90	TNU					
322	54	54		1377	90	LST RTN					
34567890	85	+		378	92	RTH		1			
324	853825 4245	RCL		_	i. I				1		
325	28	28							1		
326	40	STO									
327	55	55		1 -							
328	85	+									·
323	53334 84245	RCL									
330	20	29		{							1
331	45	29 STO							 		
332	5,5	56							t		
333	54	ì							1		·
334	54 42 57	ទីគឺ) ទុក្ចា									
1005	57	57			h				<u> </u>		
202	95	=									
200	40	STO	h		·			 ;	 		
3333456769 3333353333333333333333333333333333333	95285 4285 58	58		 -			·				
300	-145 (2) E	J0 +		-					 	ļ <u>-</u>	
340	00 30	FCL						-	 		
341	40	49							 		
342	47						<u> </u>		 		
343	49 49 85 41	+							ļi		
344 345 346	43	RCL						ļ			
344	50	50		-					 		ļ
345	95 42 59 76						-				
346	42	STO							}		
347 348 349	59	59 LBL		ļ:				l	ļ		
348	76	LEL						+			
349	14	ľ						<u></u> :	 		ļ
350	98	ADV							ļ		<u></u>
351	98 98	ADV)					<u> </u>		
352	98	ADV			ļ ļ						
353	02 07	2 7		L					ļ:		
354	07	7			ļ ļ						
355	01	1 5 OP					_	- 5	ļ		
356	05 69	_5							ļ		<u> </u>
357	69	OP	ļ. <u></u>								ļ
358	οĎ	00				L					ļ
359	69	ΩP						:	L		
3523355789 3554556785560 35560 3601	69 02	02		<u> </u>	<u> </u>						ļ
361	01	· 1 .			L						
362	05 03	5									
363	03	3	L	1	l l						
364	0.0	5 3 0 EE	L				-				
365	52	EE	<u> </u>						L		
366	06	€,	l						ļ		
367	22	INV			ļ <u>.</u>			<u></u>	<u> </u>		
368	52	EE	L								
369	69	OF .									
370	03	03								MERGED CO	DES
371	69	OP						62		72 500 12 73 5 0	83 <u>(170</u> 23 84 27 e-
372	05	05								73 MG. 12	
373		ABV									
374	0.5	3						1	IEXA	S INSTRI	ED
		ts incornerated									T1+24181

C-68

DATA BASE

FOR

LCCM

PROGRAM

0. 0. 0. 0. 7.75 0.3665 .0000003058 .0000433167 .0012857639 0.022421875 .0000031583 .0000049925 .0000049925 .000100747 .0001848798 .0002572917 .0102604167 .0003639953 .0000156013	00 01 02 03 04 05 09 10 11 13 14 15 17 18 19 20
0.18 23. 0.408 2.5 146.25	1456789 122222

APPENDIX D

AVERAGE TEMPERATURE VARIATIONS

The data in Appendix D consists of

- Sample temperature profiles plotted from data points calculated by temperature subroutine of SACPM program (D-3)
- Average temperature curves showing the effect of various parameters on solar array average operating temperature (D-4 thru D-12)

D-3

Average Temperature

oc

y D-6

Average Temperature

٥٥

D-7

m cp

Average Temperature

در

Average Temperature

Average Temperature

٥ر D-11

Average Temperature CC D-12

APPENDIX E

SACPM PROGRAM DATA PRINTOUT (TI-59)

Appendix E consists of a sample TI-59 SACPM program printout for the solar array baseline described in Section 2.0 of this report. The program used to generate the printout is described in Appendix C of this report. A plot of the temperature profile calculated by the temperature subroutine is shown on page D-3 in Appendix D.

T.		
**		-
		0.00 0.00
Ì	·	1
	:	
		0.0000 0.000000 0.0000 0.00000 0.00000 0.00000 0.00000 0.0000 0.0000
1		" o
		0.000.00 0.000.00 0.000.00 0.000.00 0.000.00
	SUBROUTINE	
	i i	2. 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 0
39667 1386	PHYSICAL	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

ORIGINAL PROF 10

	ۍ در		0.0158 0.0158 0.0158	0.5 T 1400. D 0.32 T	0.0178 725. 800. 13. 14. 16. 16. 16. 100
				⊢	- -
		0.5 1420.	. 0,010 0,088 0,016	0.5 1420. 0.32	0.7 0.7 0.7 0.7 0.0 0.0 0.0 0.0
		⊢a:			
(UED)	67		0.000 0.0000 0.0000	2963. 1.35	ဝ ဝ ဝ ၂၀ လ လ လ လ လ 4 ၂၀ ရ တွေ့ လ လ လ ၁၈ ၂၀ ရ ရ ရ ရ ရ ရ ရ ရ ရ ရ ရ ရ ရ ရ ရ ၂၀ ရ ရ ရ ရ ရ ရ ရ ရ ရ ရ ရ ရ ရ ရ ရ ၂၀ ရ ရ ရ ရ ရ ရ ရ ရ ရ ရ ရ ရ ရ ရ ရ ၂၀ ရ ရ ရ ရ ရ ရ ရ ရ ရ ရ ရ ရ ရ ရ ရ ရ ရ ရ ရ
INE (CONTINUED)		⊢	E CE 39	⊢¤ •	-35050505050505055555555555555555555555
CAL SUBROUTI	01 00	0.5 1420.	0.000	0.5 1420. 0.32	0.01 125.8 200.9 200.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
PHYSICAL					

SUBROUTINE	C B			4100 00160	41.50, 06106				-		106.22		7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7																		
THERMAL SUBRC	THERMAL	0		20.79459764	(0) 1 (0) 1 (1) 1	n/ %n	•	. cc		j 0	0.750		01 i			0.03	!	co 1	0.450)		0 0 0		00.0	0.818	6 7		0.75)	<u>.</u>	
	21,	ณ์ ผู้	n e	r in	90	N)	8 8 8 8				E 4	0 E	- -	<u>L</u>	•	- '	 LL		M M			•	•		CT.		ы. М й	F ir	•		
(CONTINUED)	ਾਰਨਾਰ	(1) (1) (1) (1)	. 600.	- 1- - 00 - 00 - 00 - 00 - 00 - 00 - 00	718.	740.	789. 788.		FLUENCE SUBROUTINE		चित्र चित्र च		4	19.61		vi.	O .		40,00	RADIATION	SUBROUTINE		000	un.	್		დ. ეტი დაცი დაცი	0.004			
			-1	<u>۔</u> *	3 1	ĐC	(O)	<u>.</u>		-	FIE	Œ	3	-	ŀ	- =	Ξ	Œ	3		<u> </u> -	A:	E (==	:	ļ-	- 🛱	- -		F	_
PHYSICAL SUBROUTINE	М +		4	0.00	Z20 ZZ 0. 13	, 00 , 00 , 00 , 00	88 8 88 8 89 8		<u>'</u>	16.	2260.	00 TO TO TO TO TO TO TO TO TO TO TO TO TO	0.7429		က်စ	0 / CO	0,1468	တ တ တ	0, 1305	1	က် <u>တ</u>	2000	1-000 000 000 000 000	0.00 0.00734		r . o	1920.	6.98	(× =	

	James - ar otherway my house									
	25,	26.	26.85	27.	28.	29.	30.	31.	32.	33.
	1309,	1309.	1309.	1309.	1309.	1309.	1309.	1309.	1309.	1309.
	349, 2	349.4	349.5	349.5	349.6	349.5	349.3	349.0	348. 6	348.1
NC)	15.	16.	. 17.	18.	19.	20.	21.	22.	23.	24.
	1309.	1309.	1309.	1309.	1309.	1309.	1309.	1309.	1309.	1309.
	340. 7	342. 0	343.2	344.3	345.3	346.2	347.0	347.7	348.3	348.8
NE (MINIMUM ILLUMINATION)	5,04	6.	7.	8.	9.	10.	11.	12.	13.	14.
	1309.	1309.	1309.	1309.	1309.	1309.	1309.	1309.	1309.	1309.
	342.1	332.2	329. 7	330. 0	331.3	332. 9	334.5	336. 2	337.8	339.3
TEMPERATÜRE SUBROUTI	0,	0,191	0.418	0.687	1.	1,452	2.	3.	4.	5.
	1780,	1780.	1780.	1780.	1779.	1777.	1772.	1751.	1671.	1329.
	185, 6	210.6	235.6	260.6	283. 9	308.9	328. 5	345.3	348. 5	342. 7

	232.2	220.8 220.8 59.	60. 208.8	206.1	204.7	204.3 64. 204.5	65. 205.2	66. 206.1 67.	207.1 68. 208.0	69. 208.9
N) (CONTINUED)	53. 1780. 353.4	53.7 1780. . 354.2	1383.	53.7 354.2	53,998	54. 329.0	54.973	55. 278.0	55.858 253.0	56. 249.8
E (MINIMUM ILLUMINATION)	44. 1309. 335. 7	45. 1309. 334.1	46. 1309. 332.4	47. 1309. 330.6	48. 1309. 328.8	48.66 1309. 327.6	49. 1476. 328.5	50. 1708. 339.5	51. 1760. 347.6	52. 1775. 351. 5
TEMPERATURE SUBROUTINE	1309. 347.4	35. 1309. 346. 7	36. 1309. 345.8	37. 1309. 344. 9	38. 1309. 343.9	39. 1309. 342. 7	40. 1309. 341.5	41. 1309. 340. 2	42. 1309. 338.8	43. 1309. 337.3

SUBROUTINE LEUMINATION)	5. 1421. 348.3	5.04 1399. 347.6	6. 1399. 337. 4	7. 1399. 335.0	8. 1399. 335. 4	13999. 336.7	10. 1399. 338.3	11. 1399. 340.0	12. 1399. 341.6	13. 1399. 343. 2
TEMPERATURE SUBROUTINE (MAXIMUM ILLUMINATION)	0. 1903. 185.6	0,178 1903. 210.6	0,388 1902. 235.6	0.635 1902. 260.6	0.943 1901. 285.6	1901. 289.6	1, 432 1899. 314. 6	1894. 335. 5	3, 1871, 351, 9	4. 1786. 354.6
TINE (MINIMUM (CONTINUED)	82. 201.3	83. 198.9	84. 196.3 85.	86. 190.1	87. 196.5	87.24 185.6				
TEMPERATURE SUBROUTIN ILLUMINATION) (C	70. 209. 6	70.47 209.9 71.	210.2 72. 210.6	73. 210.7	74. 210.7 75.	210.4 76. 209.9	209.1	78. 208.1	206.8 206.8 80. 205.2	81. 203.4

·			
		· ·	
MAIN BUS SUBROUTINE	4130, 07152 08 50, 41 19 854, 6953 10 0. 0. 000743 11 0. 122 15 0. 479 18 0. 479 18 0. 479 18 0. 22 0. 225 0. 00008888 23 0. 00008888 23 0. 0008888 23 0. 255 0. 255 0. 2660. 25		

I		
		აკიენენენენე — იქენენენენე — იქ გაგიტიტი ემენენენენენე — იქ გაგიტიტი გაგი — გაგინენენე — იქ გაგინენები — გაგინენენები — იქ გაგინენები — გაგინენენები — გაგინენები — გაგინენენები — გაგინენები — გაგინენენენები — გაგინენენენენენები — გაგინენენენები — გაგინენენები — გაგინენენები — გაგინენენენენენენენენენენენები — გაგინე
The second secon		0.000000000000000000000000000000000000
Management Matternation Matternation	(EOL)	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Acceptance of Constitution of	CELL SUBROUTINE P	ე ე ე ე ე ე ე ე ე ე ე ე ე ე ე ე ე ე ე
THE STATE OF THE S	SOLAR	

		න ය ලෙද (- එ								ው የ መደረ መደረ መደረ							######################################	→ 000000									
							0, 00,000 0, 60,01	0.000	,									0,000 0,000 0,000			В С	1470.	1.017	0.840 108.	हा । जिल्ला हा ।	# .0 # .0	
V mr (EOL)	•	1.017	00 00 00 00 00 00 00 00 00 00 00 00 00	345.4			თ თ თ თ თ ლ						000	1478.	1,017		০০ কিল	4.040	0 734			5000 5000 5000 5000	000 000 000 000	1 00 00 °C	1, 000 0, 800	ლე და გიგ გიგ	
SOLAR CELL SUBROUTINE							0.00 0.004		0.034	**************************************	0.870	1000.	កម្ម វេទ	-	0.738	2000 C	0.000	ეიიი იიიი დ	0.961	0.988	0.800	0.00 404 704		•			

PART PARE

		្មស្រុលស្ត្រ ស្រួសស្ត្រស្ត្
		1190.000.000.000.000.000.000.000.000.000
	вятн	17.00 17.00 18.7.0 18.7.0 18.7.0 18.8888 19.000000000 18.4.0 18.4.0 18.4.0 18.1.6.0 18.6.0 19.00 19.00 19.00 18.0
SUBROUTINE		EICI PAN MEIC EIC BLKT BLKT TOT U/KG
WEIGHT SUBR	WEIGHT	46.48 20.73 20.73 11940. 20.775 20.774. 31. 42 23. 60
		w/ns> x-nzzñaña s>zz s> s>zzz s> s>ñ
SOLAR ARRAY SUBROUTINE	0.053 0.33	215. 1575. 83.5. 1.65 1.65 3.350. 3.350. 3.350. 2.835 17.05 17.05 17.05 17.05 17.05 17.05 17.05 198. 480815. 9350.

·	
•	
ಸಲಾಬಬಟಕಕ್ಷಿತಕಕ್ಷಕ್ಷಕ್ಷಾಣಣಣಣಣಣಣಣಣ - ಶಾರ್ಣಯಲ್⊐ ಈಗಟಕಾಣಿಗೆ ಮಾತ್ತಾ ಈಗಟಕಾಣಿಗೆ ಮತ್ತು	
त्त्वत्त्वच्चचचचचचचचचचचचचा	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
ా బాచలు ఈ దాలు దాలు అందు దాలు దాలు దాలు దాలు దాలు దాలు దాలు దా	
÷ (0(0) 0 ↔ (-	
	-
	-
444 4888 4444 4444 4444 4444	
$\frac{1}{2}$	
→ ¢, 9;	
	N S
SUBROUTINE 8 1920 1 2000 1 2000 1 2000 1 3000 1	
2CM SUBROT 907200. 2880. 2880. 2880. 11940. 11940. 1000003058 1000003058 10000030 1000030 1000030 10000030 100000000	• - -
8	
10000 128790. 9072000. 9072000. 2880. 1192. 8434. 11940. 10000433167. 00012857659 0.002857859 0.0001848798 0.0001848798 0.0001848798 0.000186167. 0000188789 0.000188789 0.000188789 0.000188789 0.000188789 0.000188789 0.000188789 0.000188789 0.000188789 0.000188789 0.000188789 0.000188789 0.000188789 0.000188789 0.000188789 0.000188789 0.000188789 0.000188789 0.000188789	
777877 77777 77	