Εξισορρόπηση και Αντιστοίχιση Ιστόγραμματος

Βογιατζής Χαρίσιος ΑΕΜ: 9192 April 29, 2025

Abstract

Σε αυτήν την εργασία υλοποιούμε και εξετάζουμε τρεις αλγορίθμους για εξισορρόπιση ιστογράμματος σε grayscale εικόνες: greedy, non-greedy και post-disturbance, καθώς και μια μέθοδο histogram matching. Παρουσιάζονται τα βοηθητικά utilities, οι βασικές συναρτήσεις, ένα demo script για οπτικοποίηση και ανάλυση, και συζητούνται οι περιορισμοί των μεθόδων.

1 Εισαγωγή

Στόχος μας είναι:

- Histogram Equalization: Να μετατρέψουμε μια εικόνα ώστε οι έντασεις να κατανέμονται ομοιόμορφα.
- Histogram Matching: Να ταιριάξουμε την κατανομή μιας εικόνας με αυτή μιας reference εικόνας.

2 Υλοποίηση

2.1 Βοηθητικές Συναρτήσεις (hist_utils.py)

Περιλαμβάνει:

- calculate_hist_of_img(img_array, return_normalized): Υπολογίζει το ιστόγραμμα και μπορεί να επιστρέψει raw counts ή normalized frequencies.
- apply_hist_modification_transform(img_array, transform): Εφαρμόζει mapping από κάθε στάθμη εισόδου f_i σε μία στάθμη εξόδου g_j με χρήση ενός lookup table.

2.2 Κύριοι Αλγόριθμοι (hist_modif.py)

Η συνάρτηση perform_histogram_modification(img, hist_ref, mode) υλοποιεί τρεις αλγορίθμους εξισορρόπησης ιστογράμματος:

- 1. **greedy**: Αθροίζει counts μέχρι το N/L_g (target_bin) και μεταβαίνει στην επόμενη στάθμη εξόδου.
- 2. **non-greedy**: Υπολογίζει το έλειμμα deficiency = $N/L_g \sum_{i=0}^{j-1} count(f_i)$ και εισάγει την επόμενη στάθημη εισόδου μόνο αν $deficiency_j \geq count(f_j)/2$ αλλιώς μεταβαίνει σε νέο bin.
- 3. **post-disturbance**: Προσθέτει ομοιόμορφηο θόρυβο σε κάθε pixel (διάστημα [-d/2, d/2]) πριν εφαρμόσει τον greedy αλγόριθμο.

Οι τρεις παραλλαγές μοιάζουν στη λειτουργία τους, με κύριες τις διαφορές που παραθέσαμε μόλις.

```
#greedy algorithm code
input_levels = sorted(hist_input.keys())
for f_val in input_levels:
    if current_output_idx >= Lg:
        # If we've exhausted output levels, assign to last bin
        modification_transform[f_val] = output_levels[-1]
        continue
```

```
# Greedy assignment
accumulated_count += hist_input[f_val]
modification_transform[f_val] = output_levels[current_output_idx]

# If we exceed the target bin count, move to a new bin
if accumulated_count >= target_bin_count:
    current_output_idx += 1
    accumulated_count = 0

# Apply the transformation
modified_img = apply_hist_modification_transform(img_array,
    modification_transform)
```

Οι υπόλοιπες υλοποιήσεις είναι σχολιασμένες και μπορούν να βρεθούν στο hist_modif.py

2.3 Equalization And Matching Wrappers

Έχουν δημιουργηθεί οι ακόλουθες "wrapper" συναρτήσεις:
perform_hist_eq(img, mode) καλεί τον βασικό αλγόριθμο με uniform hist_ref 256 επιπέδων.

porform hist_matching(img__img_ref__mode) μπολοχίζει πούτα το hist_ref από μια reform

perform_hist_matching(img, img_ref, mode) υπολογίζει πρώτα το hist_ref από μια reference ειχόνα και έπειτα καλεί την ίδια συνάρτηση.

2.4 Demo Script (demo.py)

Έχει δημιουργηθεί ένα script επίδειξης demo.py:

- Φορτώνει input_img.jpg, ref_img.jpg.
- Τρέχει κάθε mode για equalization και matching.
- Δημιουργεί και Αποθηκεύει τις εξισορροπημένες εικόνες σε ένα φάκελο /output που δημιουργεί.
- Δημιουργεί 2 summary figures με τις εικόνες και τα ιστογράμματα σε αντιπαραβολή για ευκολότερη εποπτεία των αποτελεσμάτων.
- Υποστηρίζει -v/--verbose λειτουργία: εκτυπώνει στατιστικές ιστογράμματος (εύρος f_i g_i , percentiles, κ.α.) για περισσότερη ανάλυση αν είναι επιθυμητή από το χρήστη.

3 Αποτελέσματα

Figure 1: Equalization: greedy, non-greedy, post-disturbance.

Histogram Matching

Figure 2: Matching: greedy, non-greedy, post-disturbance.

Όπως διαπιστώνουμε από τα αποτελέσματα οι αλγόριθμοι αντιμετωπίζουν προβλήματα:

• Αξιοποίηση πλήρους φάσματος: Σε ιστογράμματα που παρουσιάζουν κυρτότητα ή έχουν πολλές τιμές pixel/δείγματα συγκεντρομένες σε μία/λίγες συχνότητες ο greedy αλγόριθμος αδυνατεί να χρησιμοποιήσει το πλήρες εύρος και να πετύχει καλή εξισορρόπηση ιστογράμματος

- Non-greedy: Η non-greedy εκδοχή του αλγορίθμου βελτιώνει την κατανομή αλλά δεν διασφαλίζει και πάλι πλήρες εύρος. Ούτε σε αυτήν την περίπτωση η εξισορρόπηση είναι καλή.
- **Post-disturbance**: Ο αλγόριθμος που χρησιμοποιεί θόρυβο περιορισμένης έκτασης από ομοιόμορφη κατανομή δεν καταφέρνει να επεκτείνει αρκετά τις απομακρυσμένες τιμές ώστε να λύσει το πρόβλημα της greedy εκδοχής και έχει παρόμοια αποτελέσματα.
- Reference Matching: Παρόμοια αποτελέσματα διαπιστώνουμε και στην περίπτωση της αντιστοίχισης ιστογράμματος σε μία εικόνα αναφοράς.

4 Επιπρόσθετα Αποτελέσματα

Figure 3: Equalization: greedy, non-greedy, post-disturbance.

Histogram Matching

Figure 4: Matching: greedy, non-greedy, post-disturbance.

5 Κώδικας

Μπορείτε να βρείτε τον κώδικα και τα αποτελέσματα στο Github.