Backtracking Programación dinámica

## Algoritmos y Estructuras de Datos II

Programación dinámica

### Clase de hoy

Backtracking

- Programación dinámica
  - Problema de la moneda
  - Problema de la mochila

## Backtracking

#### Problema de la moneda

- Sean  $0 \le i \le n$  y  $0 \le j \le k$ ,
- definimos cambio(i, j) = "menor número de monedas necesarias para pagar exactamente el monto j con denominaciones d<sub>1</sub>, d<sub>2</sub>,..., d<sub>i</sub>."

•

$$\textit{cambio}(i,j) = \left\{ \begin{array}{ll} 0 & \textit{j} = 0 \\ \infty & \textit{j} > 0 \land i = 0 \\ \textit{cambio}(i-1,j) & \textit{d}_i > \textit{j} > 0 \land i > 0 \\ \min(\textit{cambio}(i-1,j), 1 + \textit{cambio}(i,j-d_i)) & \textit{j} \geq d_i > 0 \land i > 0 \end{array} \right.$$

Es exponencial.

## Backtracking Problema de la mochila

- Sean  $0 \le i \le n$  y  $0 \le j \le W$ ,
- definimos mochila(i, j) = "mayor valor alcanzable sin exceder la capacidad j con objetos 1, 2, ..., i."

•

$$\textit{mochila}(i,j) = \begin{cases} 0 & j = 0 \\ 0 & j > 0 \land i = 0 \\ \textit{mochila}(i-1,j) & w_i > j > 0 \land i > 0 \\ \textit{max}(\textit{mochila}(i-1,j), v_i + \textit{mochila}(i-1,j-w_i)) & j \ge w_i > 0 \land i > 0 \end{cases}$$

Es exponencial.

## Backtracking

Problema de los caminos de costo mínimo entre cada par de vértices

- Sean  $1 \le i, j \le n$  y  $0 \le k \le n$ ,
- definimos camino(k, i, j) = "menor costo posible para caminos de i a j cuyos vértices intermedios se encuentran en el conjunto {1,...,k}."

•

$$camino(k, i, j) = \begin{cases} L[i, j] \\ \min(camino(k-1, i, j), camino(k-1, i, k) + camino(k-1, k, j) \end{cases}$$

• Es exponencial (3<sup>n</sup>).

## Programación dinámica

- Método para transformar una definición recursiva en iterativa
- a través de la confección de una tabla de valores.
- Objetivo: evitar la reiteración de cómputos.
- Ejemplo: definición recursiva de la secuencia de Fibonacci.

#### Secuencia de Fibonacci

0

$$f_n = \begin{cases} n & n \le 1 \\ f_{n-1} + f_{n-2} & n > 1 \end{cases}$$

- Esta función recursiva es exponencial.
- La razón, el cálculo de f<sub>n</sub> lleva a calcular
  - 2 veces  $f_{n-2}$ ,
  - 3 veces  $f_{n-3}$ ,
  - 5 veces  $f_{n-4}$ ,
  - etc.

### Secuencia de Fibonacci



## ¿Cómo podemos evitar tantos recálculos?

- Llevando una tabla de valores calculados.
- Comenzando desde los casos bases.
- Sea f un arreglo de 0 a n.
  - f[0] := 0
  - f[1]:= 1
  - f[2]:= f[1]+f[0]
  - f[3]:= f[2]+f[1]
  - etc

#### Fibonacci a través de una tabla

```
\{PRE: n > 1\}
fun fib(n: nat) ret r: nat
    var f: array[0..n] of nat
    f[0] := 0
    f[1]:=1
    for i := 2 to n do f[i] := f[i-1] + f[i-2] od
    r := f[n]
end fun
¡Este algoritmo es lineal!
```

## Problema de la moneda Backtracking

Vimos la definición

$$\textit{cambio}(i,j) = \left\{ \begin{array}{ll} 0 & \textit{j} = 0 \\ \infty & \textit{j} > 0 \land i = 0 \\ \textit{cambio}(i-1,j) & \textit{d}_i > \textit{j} > 0 \land i > 0 \\ \min(\textit{cambio}(i-1,j), 1 + \textit{cambio}(i,j-d_i)) & \textit{j} \geq \textit{d}_i > 0 \land i > 0 \end{array} \right.$$

que puede ser exponencial debido a que tiene dos llamadas recursivas en el último caso.

Confección de una tabla

- Habiendo dos parámetros, la tabla será una matriz en vez de un vector como en el caso de Fibonacci.
- Los casos base corresponden al llenado de la primera columna y primera fila de la matriz.
- Como todas las llamadas recursivas se realizan decrementando el "parámetro i" o manteniendolo igual pero en ese caso decrementando el "parámetro j", se propone el siguiente método de llenado de la matriz:
  - fila por fila, desde la primera a la última, de modo de que el valor correspondiente a cambio(i - 1, j) ya esté computado al calcular el valor correspondiente a cambio(i, j)
  - dentro de cada fila, desde la primer columna hasta la última, de modo de que el valor correspondiente a cambio(i, j - d<sub>i</sub>) ya esté computado al calcular cambio(i, j)

Programación dinámica

```
fun cambio(d:array[1..n] of nat, k: nat) ret r: nat
   var cam: array[0..n,0..k] of nat
   for i:= 0 to n do cam[i,0]:= 0 od
   for j:= 1 to k do cam[0,j]:= \infty od
   for i = 1 to n do
       for i = 1 to k do
          if d[i] > i then cam[i,j]:= cam[i-1,j]
          else cam[i,i]:= min(cam[i-1,i],1+cam[i,i-d[i]])
          fi
       od
   od
   r:= cam[n,k]
end fun
```

Ejemplo con denominaciones  $d_1 = 4$ ,  $d_2 = 2$  y  $d_3 = 7$ 

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| 0 |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 1 |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 2 |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 3 |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |

for i := 0 to n do cam[i,0] := 0 od

Ejemplo con denominaciones  $d_1 = 4$ ,  $d_2 = 2$  y  $d_3 = 7$ 

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| 0 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 1 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 2 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 3 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |

**for** i := 0 **to** n **do** cam[i,0] := 0 **od** 

Ejemplo con denominaciones  $d_1 = 4$ ,  $d_2 = 2$  y  $d_3 = 7$ 

|   | 0 | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       | 11       | 12       | 13       | 14       | 15       | 16       |
|---|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 | 0 | $\infty$ |
| 1 | 0 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| 2 | 0 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| 3 | 0 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |

for j:=1 to k do  $cam[0,j]:=\infty$  od

|   | 0 | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       | 11       | 12       | 13       | 14       | 15       | 16       |
|---|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 | 0 | $\infty$ |
| 1 | 0 | $\infty$ | $\infty$ | $\infty$ |          |          |          |          |          |          |          |          |          |          |          |          |          |
| 2 | 0 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| 3 | 0 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |

```
i = 1
for i:= 1 to n do
    for j:= 1 to k do
        if d[i] > j then cam[i,j]:= cam[i-1,j]
        else cam[i,j]:= min(cam[i-1,j],1+cam[i,j-d[i]])
        fi
        od
od
```

|   | 0 | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       | 11       | 12       | 13       | 14       | 15       | 16       |
|---|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 | 0 | $\infty$ |
| 1 | 0 | $\infty$ | $\infty$ | $\infty$ |          |          |          |          |          |          |          |          |          |          |          |          |          |
| 2 | 0 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| 3 | 0 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |

```
i = 1
for i:= 1 to n do
    for j:= 1 to k do
        if d[i] > j then cam[i,j]:= cam[i-1,j]
        else cam[i,j]:= min(cam[i-1,j],1+cam[i,j-d[i]])
        fi
        od
od
```

|   | 0 | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       | 11       | 12       | 13       | 14       | 15       | 16       |
|---|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 | 0 | $\infty$ |
| 1 | 0 | $\infty$ | $\infty$ | $\infty$ | 1        |          |          |          |          |          |          |          |          |          |          |          |          |
| 2 | 0 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| 3 | 0 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |

```
i = 1
for i:= 1 to n do
    for j:= 1 to k do
        if d[i] > j then cam[i,j]:= cam[i-1,j]
        else cam[i,j]:= min(cam[i-1,j],1+cam[i,j-d[i]])
        fi
        od
od
```

|   | 0 | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       | 11       | 12       | 13       | 14       | 15       | 16       |
|---|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 | 0 | $\infty$ |
| 1 | 0 | $\infty$ | $\infty$ | $\infty$ | 1        | $\infty$ |          |          |          |          |          |          |          |          |          |          |          |
| 2 | 0 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| 3 | 0 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |

```
i = 1
for i:= 1 to n do
    for j:= 1 to k do
        if d[i] > j then cam[i,j]:= cam[i-1,j]
        else cam[i,j]:= min(cam[i-1,j],1+cam[i,j-d[i]])
        fi
        od
od
```

|   | 0 | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       | 11       | 12       | 13       | 14       | 15       | 16       |
|---|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 | 0 | $\infty$ |
| 1 | 0 | $\infty$ | $\infty$ | $\infty$ | 1        | $\infty$ | $\infty$ |          |          |          |          |          |          |          |          |          |          |
| 2 | 0 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| 3 | 0 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |

```
i = 1
for i:= 1 to n do
    for j:= 1 to k do
        if d[i] > j then cam[i,j]:= cam[i-1,j]
        else cam[i,j]:= min(cam[i-1,j],1+cam[i,j-d[i]])
        fi
        od
od
```

|   | 0 | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       | 11       | 12       | 13       | 14       | 15       | 16       |
|---|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 | 0 | $\infty$ |
| 1 | 0 | $\infty$ | $\infty$ | $\infty$ | 1        | $\infty$ | $\infty$ | $\infty$ |          |          |          |          |          |          |          |          |          |
| 2 | 0 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| 3 | 0 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |

```
i = 1
for i:= 1 to n do
    for j:= 1 to k do
        if d[i] > j then cam[i,j]:= cam[i-1,j]
        else cam[i,j]:= min(cam[i-1,j],1+cam[i,j-d[i]])
        fi
        od
od
```

|   | 0 | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       | 11       | 12       | 13       | 14       | 15       | 16       |
|---|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 | 0 | $\infty$ |
| 1 | 0 | $\infty$ | $\infty$ | $\infty$ | 1        | $\infty$ | $\infty$ | $\infty$ | 2        |          |          |          |          |          |          |          |          |
| 2 | 0 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| 3 | 0 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |

```
i = 1
for i:= 1 to n do
    for j:= 1 to k do
        if d[i] > j then cam[i,j]:= cam[i-1,j]
        else cam[i,j]:= min(cam[i-1,j],1+cam[i,j-d[i]])
        fi
        od
od
```

|   | 0 | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       | 11       | 12       | 13       | 14       | 15       | 16       |
|---|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 | 0 | $\infty$ |
| 1 | 0 | $\infty$ | $\infty$ | $\infty$ | 1        | $\infty$ | $\infty$ | $\infty$ | 2        | $\infty$ | $\infty$ | $\infty$ | 3        | $\infty$ | $\infty$ | $\infty$ | 4        |
| 2 | 0 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| 3 | 0 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |

```
i = 1
for i:= 1 to n do
    for j:= 1 to k do
        if d[i] > j then cam[i,j]:= cam[i-1,j]
        else cam[i,j]:= min(cam[i-1,j],1+cam[i,j-d[i]])
        fi
        od
od
```

|   | 0 | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       | 11       | 12       | 13       | 14       | 15       | 16       |
|---|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 | 0 | $\infty$ |
| 1 | 0 | $\infty$ | $\infty$ | $\infty$ | 1        | $\infty$ | $\infty$ | $\infty$ | 2        | $\infty$ | $\infty$ | $\infty$ | 3        | $\infty$ | $\infty$ | $\infty$ | 4        |
| 2 | 0 | $\infty$ |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| 3 | 0 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |

```
i = 2
for i:= 1 to n do
    for j:= 1 to k do
        if d[i] > j then cam[i,j]:= cam[i-1,j]
        else cam[i,j]:= min(cam[i-1,j],1+cam[i,j-d[i]])
        fi
        od
od
```

|   | 0 | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       | 11       | 12       | 13       | 14       | 15       | 16       |
|---|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 | 0 | $\infty$ |
| 1 | 0 | $\infty$ | $\infty$ | $\infty$ | 1        | $\infty$ | $\infty$ | $\infty$ | 2        | $\infty$ | $\infty$ | $\infty$ | 3        | $\infty$ | $\infty$ | $\infty$ | 4        |
| 2 | 0 | $\infty$ |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| 3 | 0 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |

```
i = 2
for i:= 1 to n do
    for j:= 1 to k do
        if d[i] > j then cam[i,j]:= cam[i-1,j]
        else cam[i,j]:= min(cam[i-1,j],1+cam[i,j-d[i]])
        fi
        od
od
```

|   | 0 | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       | 11       | 12       | 13       | 14       | 15       | 16       |
|---|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 | 0 | $\infty$ |
| 1 | 0 | $\infty$ | $\infty$ | $\infty$ | 1        | $\infty$ | $\infty$ | $\infty$ | 2        | $\infty$ | $\infty$ | $\infty$ | 3        | $\infty$ | $\infty$ | $\infty$ | 4        |
| 2 | 0 | $\infty$ | 1        |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| 3 | 0 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |

```
i = 2
for i:= 1 to n do
    for j:= 1 to k do
        if d[i] > j then cam[i,j]:= cam[i-1,j]
        else cam[i,j]:= min(cam[i-1,j],1+cam[i,j-d[i]])
        fi
        od
od
```

|   | 0 | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       | 11       | 12       | 13       | 14       | 15       | 16       |
|---|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 | 0 | $\infty$ |
| 1 | 0 | $\infty$ | $\infty$ | $\infty$ | 1        | $\infty$ | $\infty$ | $\infty$ | 2        | $\infty$ | $\infty$ | $\infty$ | 3        | $\infty$ | $\infty$ | $\infty$ | 4        |
| 2 | 0 | $\infty$ | 1        | $\infty$ | 1        | $\infty$ | 2        | $\infty$ | 2        | $\infty$ | 3        | $\infty$ | 3        | $\infty$ | 4        | $\infty$ | 4        |
| 3 | 0 |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |

```
i = 2
for i:= 1 to n do
    for j:= 1 to k do
        if d[i] > j then cam[i,j]:= cam[i-1,j]
        else cam[i,j]:= min(cam[i-1,j],1+cam[i,j-d[i]])
        fi
        od
od
```

|   | 0 | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       | 11       | 12       | 13       | 14       | 15       | 16       |
|---|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 | 0 | $\infty$ |
| 1 | 0 | $\infty$ | $\infty$ | $\infty$ | 1        | $\infty$ | $\infty$ | $\infty$ | 2        | $\infty$ | $\infty$ | $\infty$ | 3        | $\infty$ | $\infty$ | $\infty$ | 4        |
| 2 | 0 | $\infty$ | 1        | $\infty$ | 1        | $\infty$ | 2        | $\infty$ | 2        | $\infty$ | 3        | $\infty$ | 3        | $\infty$ | 4        | $\infty$ | 4        |
| 3 | 0 | $\infty$ | 1        | $\infty$ | 1        | $\infty$ | 2        |          |          |          |          |          |          |          |          |          |          |

```
i = 3
for i:= 1 to n do
    for j:= 1 to k do
        if d[i] > j then cam[i,j]:= cam[i-1,j]
        else cam[i,j]:= min(cam[i-1,j],1+cam[i,j-d[i]])
        fi
        od
od
```

|   | 0 | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       | 11       | 12       | 13       | 14       | 15       | 16       |
|---|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 | 0 | $\infty$ |
| 1 | 0 | $\infty$ | $\infty$ | $\infty$ | 1        | $\infty$ | $\infty$ | $\infty$ | 2        | $\infty$ | $\infty$ | $\infty$ | 3        | $\infty$ | $\infty$ | $\infty$ | 4        |
| 2 | 0 | $\infty$ | 1        | $\infty$ | 1        | $\infty$ | 2        | $\infty$ | 2        | $\infty$ | 3        | $\infty$ | 3        | $\infty$ | 4        | $\infty$ | 4        |
| 3 | 0 | $\infty$ | 1        | $\infty$ | 1        | $\infty$ | 2        |          |          |          |          |          |          |          |          |          |          |

```
i = 3
for i:= 1 to n do
    for j:= 1 to k do
        if d[i] > j then cam[i,j]:= cam[i-1,j]
        else cam[i,j]:= min(cam[i-1,j],1+cam[i,j-d[i]])
        fi
        od
od
```

|   | 0 | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       | 11       | 12       | 13       | 14       | 15       | 16       |
|---|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 | 0 | $\infty$ |
| 1 | 0 | $\infty$ | $\infty$ | $\infty$ | 1        | $\infty$ | $\infty$ | $\infty$ | 2        | $\infty$ | $\infty$ | $\infty$ | 3        | $\infty$ | $\infty$ | $\infty$ | 4        |
| 2 | 0 | $\infty$ | 1        | $\infty$ | 1        | $\infty$ | 2        | $\infty$ | 2        | $\infty$ | 3        | $\infty$ | 3        | $\infty$ | 4        | $\infty$ | 4        |
| 3 | 0 | $\infty$ | 1        | $\infty$ | 1        | $\infty$ | 2        | 1        |          |          |          |          |          |          |          |          |          |

```
i = 3
for i:= 1 to n do
    for j:= 1 to k do
        if d[i] > j then cam[i,j]:= cam[i-1,j]
        else cam[i,j]:= min(cam[i-1,j],1+cam[i,j-d[i]])
        fi
        od
od
```

|   | 0 | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       | 11       | 12       | 13       | 14       | 15       | 16       |
|---|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 | 0 | $\infty$ |
| 1 | 0 | $\infty$ | $\infty$ | $\infty$ | 1        | $\infty$ | $\infty$ | $\infty$ | 2        | $\infty$ | $\infty$ | $\infty$ | 3        | $\infty$ | $\infty$ | $\infty$ | 4        |
| 2 | 0 | $\infty$ | 1        | $\infty$ | 1        | $\infty$ | 2        | $\infty$ | 2        | $\infty$ | 3        | $\infty$ | 3        | $\infty$ | 4        | $\infty$ | 4        |
| 3 | 0 | $\infty$ | 1        | $\infty$ | 1        | $\infty$ | 2        | 1        | 2        |          |          |          |          |          |          |          |          |

```
i = 3
for i:= 1 to n do
    for j:= 1 to k do
        if d[i] > j then cam[i,j]:= cam[i-1,j]
        else cam[i,j]:= min(cam[i-1,j],1+cam[i,j-d[i]])
        fi
        od
od
```

|   | 0 | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       | 11       | 12       | 13       | 14       | 15       | 16       |
|---|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 | 0 | $\infty$ |
| 1 | 0 | $\infty$ | $\infty$ | $\infty$ | 1        | $\infty$ | $\infty$ | $\infty$ | 2        | $\infty$ | $\infty$ | $\infty$ | 3        | $\infty$ | $\infty$ | $\infty$ | 4        |
| 2 | 0 | $\infty$ | 1        | $\infty$ | 1        | $\infty$ | 2        | $\infty$ | 2        | $\infty$ | 3        | $\infty$ | 3        | $\infty$ | 4        | $\infty$ | 4        |
| 3 | 0 | $\infty$ | 1        | $\infty$ | 1        | $\infty$ | 2        | 1        | 2        | 2        |          |          |          |          |          |          |          |

```
i = 3
for i:= 1 to n do
    for j:= 1 to k do
        if d[i] > j then cam[i,j]:= cam[i-1,j]
        else cam[i,j]:= min(cam[i-1,j],1+cam[i,j-d[i]])
        fi
        od
od
```

|   | 0 | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       | 11       | 12       | 13       | 14       | 15       | 16       |
|---|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 | 0 | $\infty$ |
| 1 | 0 | $\infty$ | $\infty$ | $\infty$ | 1        | $\infty$ | $\infty$ | $\infty$ | 2        | $\infty$ | $\infty$ | $\infty$ | 3        | $\infty$ | $\infty$ | $\infty$ | 4        |
| 2 | 0 | $\infty$ | 1        | $\infty$ | 1        | $\infty$ | 2        | $\infty$ | 2        | $\infty$ | 3        | $\infty$ | 3        | $\infty$ | 4        | $\infty$ | 4        |
| 3 | 0 | $\infty$ | 1        | $\infty$ | 1        | $\infty$ | 2        | 1        | 2        | 2        | 3        | 2        | 3        | 3        |          |          |          |

```
for i:= 1 to n do
    for j:= 1 to k do
        if d[i] > j then cam[i,j]:= cam[i-1,j]
        else cam[i,j]:= min(cam[i-1,j],1+cam[i,j-d[i]])
        fi
        od
od
```

|   | 0 | 1        | 2        | 3        | 4        | 5        | 6        | 7        | 8        | 9        | 10       | 11       | 12       | 13       | 14       | 15       | 16       |
|---|---|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 | 0 | $\infty$ |
| 1 | 0 | $\infty$ | $\infty$ | $\infty$ | 1        | $\infty$ | $\infty$ | $\infty$ | 2        | $\infty$ | $\infty$ | $\infty$ | 3        | $\infty$ | $\infty$ | $\infty$ | 4        |
| 2 | 0 | $\infty$ | 1        | $\infty$ | 1        | $\infty$ | 2        | $\infty$ | 2        | $\infty$ | 3        | $\infty$ | 3        | $\infty$ | 4        | $\infty$ | 4        |
| 3 | 0 | $\infty$ | 1        | $\infty$ | 1        | $\infty$ | 2        | 1        | 2        | 2        | 3        | 2        | 3        | 3        | 2        | 3        | 3        |

```
for i:= 1 to n do
    for j:= 1 to k do
        if d[i] > j then cam[i,j]:= cam[i-1,j]
        else cam[i,j]:= min(cam[i-1,j],1+cam[i,j-d[i]])
        fi
        od
od
```

# Problema de la mochila Backtracking

Vimos la definición

$$\textit{mochila}(i,j) = \left\{ \begin{array}{ll} 0 & \textit{j} = 0 \\ 0 & \textit{j} > 0 \land \textit{i} = 0 \\ \textit{mochila}(i-1,j) & \textit{w}_i > \textit{j} > 0 \land \textit{i} > 0 \\ \textit{max}(\textit{mochila}(i-1,j), \textit{v}_i + \textit{mochila}(i-1,j-\textit{w}_i)) & \textit{j} \geq \textit{w}_i > 0 \land \textit{i} > 0 \end{array} \right.$$

que puede ser exponencial debido a que tiene dos llamadas recursivas en el último caso.

Confección de una tabla

- Habiendo dos parámetros, la tabla será nuevamente una matriz.
- Los casos base corresponden al llenado de la primera columna y primera fila de la matriz.
- Como todas las llamadas recursivas se realizan decrementando el "parámetro i", la única condición necesaria para el llenado de la tabla es proceder fila por fila, no importa el orden de llenado dentro de cada fila.

Programación dinámica

```
fun mochila(v:array[1..n] of valor, w:array[1..n] of nat, W: nat)
                                                        ret r: valor
   var moch: array[0..n,0..W] of valor
   for i:= 0 to n do moch[i,0]:= 0 od
   for j:= 1 to W do moch[0,j]:= 0 od
   for i = 1 to n do
       for j := 1 to W do
          if w[i] > i then moch[i,i]:= moch[i-1,i]
          else moch[i,i] := max(moch[i-1,i],v[i]+moch[i-1,j-w[i]])
          fi
       od
   od
   r:= moch[n,W]
end fun
```

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| 0 |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 1 |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 2 |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 3 |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 4 |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 2 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 3 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 4 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |   |   |    |    |    |    |    |    |    |
| 2 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 3 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 4 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |   |    |    |    |    |    |    |    |
| 2 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 3 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 4 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 |    |    |    |    |    |    |    |
| 2 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 3 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 4 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 3  | 3  | 3  | 3  | 3  | 3  | 3  |
| 2 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 3 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 4 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 3  | 3  | 3  | 3  | 3  | 3  | 3  |
| 2 | 0 | 0 | 0 | 0 | 0 |   |   |   |   |   |    |    |    |    |    |    |    |
| 3 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 4 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 3  | 3  | 3  | 3  | 3  | 3  | 3  |
| 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 |   |   |    |    |    |    |    |    |    |
| 3 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 4 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 3  | 3  | 3  | 3  | 3  | 3  | 3  |
| 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 3 |   |    |    |    |    |    |    |    |
| 3 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 4 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 3  | 3  | 3  | 3  | 3  | 3  | 3  |
| 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 3 | 3 | 3  | 3  | 3  |    |    |    |    |
| 3 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 4 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 3  | 3  | 3  | 3  | 3  | 3  | 3  |
| 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 3 | 3 | 3  | 3  | 3  | 5  |    |    |    |
| 3 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 4 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 3  | 3  | 3  | 3  | 3  | 3  | 3  |
| 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 3 | 3 | 3  | 3  | 3  | 5  | 5  | 5  | 5  |
| 3 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |
| 4 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 3  | 3  | 3  | 3  | 3  | 3  | 3  |
| 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 3 | 3 | 3  | 3  | 3  | 5  | 5  | 5  | 5  |
| 3 | 0 | 0 | 0 | 0 | 0 | 2 | 2 |   |   |   |    |    |    |    |    |    |    |
| 4 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 3  | 3  | 3  | 3  | 3  | 3  | 3  |
| 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 3 | 3 | 3  | 3  | 3  | 5  | 5  | 5  | 5  |
| 3 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 3 |   |   |    |    |    |    |    |    |    |
| 4 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 3  | 3  | 3  | 3  | 3  | 3  | 3  |
| 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 3 | 3 | 3  | 3  | 3  | 5  | 5  | 5  | 5  |
| 3 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 3 | 3 | 3 | 3  | 3  |    |    |    |    |    |
| 4 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 3  | 3  | 3  | 3  | 3  | 3  | 3  |
| 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 3 | 3 | 3  | 3  | 3  | 5  | 5  | 5  | 5  |
| 3 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 3 | 3 | 3 | 3  | 3  | 5  | 5  | 5  |    |    |
| 4 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 3  | 3  | 3  | 3  | 3  | 3  | 3  |
| 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 3 | 3 | 3  | 3  | 3  | 5  | 5  | 5  | 5  |
| 3 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 3 | 3 | 3 | 3  | 3  | 5  | 5  | 5  | 6  |    |
| 4 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 3  | 3  | 3  | 3  | 3  | 3  | 3  |
| 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 3 | 3 | 3  | 3  | 3  | 5  | 5  | 5  | 5  |
| 3 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 3 | 3 | 3 | 3  | 3  | 5  | 5  | 5  | 6  | 6  |
| 4 | 0 |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 3  | 3  | 3  | 3  | 3  | 3  | 3  |
| 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 3 | 3 | 3  | 3  | 3  | 5  | 5  | 5  | 5  |
| 3 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 3 | 3 | 3 | 3  | 3  | 5  | 5  | 5  | 6  | 6  |
| 4 | 0 | 0 | 0 |   |   |   |   |   |   |   |    |    |    |    |    |    |    |

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 3  | 3  | 3  | 3  | 3  | 3  | 3  |
| 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 3 | 3 | 3  | 3  | 3  | 5  | 5  | 5  | 5  |
| 3 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 3 | 3 | 3 | 3  | 3  | 5  | 5  | 5  | 6  | 6  |
| 4 | 0 | 0 | 0 | 2 | 2 | 2 | 2 |   |   |   |    |    |    |    |    |    |    |

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 3  | 3  | 3  | 3  | 3  | 3  | 3  |
| 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 3 | 3 | 3  | 3  | 3  | 5  | 5  | 5  | 5  |
| 3 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 3 | 3 | 3 | 3  | 3  | 5  | 5  | 5  | 6  | 6  |
| 4 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 3 | 4 | 4 |    |    |    |    |    |    |    |

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 3  | 3  | 3  | 3  | 3  | 3  | 3  |
| 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 3 | 3 | 3  | 3  | 3  | 5  | 5  | 5  | 5  |
| 3 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 3 | 3 | 3 | 3  | 3  | 5  | 5  | 5  | 6  | 6  |
| 4 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 5  | 5  | 5  | 5  | 5  |    |    |

|   | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 3 | 3  | 3  | 3  | 3  | 3  | 3  | 3  |
| 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 3 | 3 | 3  | 3  | 3  | 5  | 5  | 5  | 5  |
| 3 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 3 | 3 | 3 | 3  | 3  | 5  | 5  | 5  | 6  | 6  |
| 4 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 5  | 5  | 5  | 5  | 5  | 7  | 7  |