CORSO DI LAUREA IN INFORMATICA

FOGLIO DI ESERCIZI 1- GEOMETRIA E ALGEBRA LINEARE 2024/25

Esercizio 1.1 (2.1). Determinare l'equazione parametrica e cartesiana della retta del piano

- (a) Passante per i punti A(1,2) e B(-1,3).
- (b) Passante per il punto C(2,3) e parallela al vettore $\overrightarrow{OP} = (-1,2)$.
- (c) Di equazione cartesiana y = 2x + 5. Determinare inoltre un punto appartenente a tale retta.

SOLUZIONE:

(a) Poichè $\overrightarrow{AB} = (-2, 1)$ otteniamo

$$r: \begin{cases} x = 1 - 2t \\ y = 2 + t \end{cases} \quad \forall \ t \in \mathbb{R}$$

Per ottenere l'equazione Cartesiana basta ricavare t:

$$\begin{cases} x = 1 - 2t \\ y = 2 + t \end{cases} \Rightarrow \begin{cases} x = 1 - 2(y - 2) \\ t = y - 2 \end{cases} \Rightarrow x + 2y - 5 = 0$$

(b) Possiamo scrivere direttamente l'equazione parametrica:

$$r: \begin{cases} x = 2 - t \\ y = 3 + 2t \end{cases} \quad \forall \ t \in \mathbb{R}$$

Ricaviamo ora l'equazione Cartesiana:

$$\begin{cases} t = 2 - x \\ y = 3 + 2(2 - x) \end{cases} \Rightarrow 2x + y - 7 = 0$$

(c) La cosa più semplice è porre una variabile uguale al parametro t, ottenendo

$$r: \begin{cases} x = t \\ y = 5 + 2t \end{cases} \quad \forall \ t \in \mathbb{R}$$

Per determinare un punto P appartenente a r è sufficiente trovare un punto (x,y) che soddisfi l'equazione di r (parametrica o cartesiana). Assegnando per esempio il valore 0 al parametro t nell'equazione parametrica otteniamo il punto:

$$\begin{cases} x = 0 \\ y = 5 \end{cases} \Rightarrow P(0, 5).$$

Esercizio 1.2 (2.2). Determinare l'equazione parametrica e Cartesiana della retta dello spazio

- (a) Passante per i punti A(1,0,2) e B(3,-1,0).
- (b) Passante per il punto P(1,3,1) e parallela al vettore $\overrightarrow{OQ} = (2,0,0)$.
- (c) Di equazioni Cartesiane

$$\begin{cases} y = 3x + 1 \\ y - x + z = 0 \end{cases}$$

Determinare inoltre un punto appartenente a tale retta.

SOLUZIONE:

(a) Poichè $\overrightarrow{AB} = (2, -1, -2)$ otteniamo

$$r: \begin{cases} x = 1 + 2t \\ y = -t \\ z = 2 - 2t \end{cases} \quad \forall \ t \in \mathbb{R}$$

Ricaviamo ora l'equazione cartesiana:

$$\begin{cases} x = 1 + 2(-y) \\ t = -y \\ z = 2 - 2(-y) \end{cases} \Rightarrow \begin{cases} x + 2y - 1 = 0 \\ 2y - z + 2 = 0 \end{cases}$$

Notiamo che l'equazione cartesiana di una retta nello spazio è data mediante l'intersezione di due piani.

(b) Possiamo scrivere direttamente l'equazione parametrica:

$$r: \begin{cases} x = 1 + 2t \\ y = 3 \\ z = 1 \end{cases} \quad \forall \ t \in \mathbb{R}$$

Notiamo che l'equazione si può equivalentemente scrivere

$$r: \begin{cases} x = t \\ y = 3 \\ z = 1 \end{cases} \quad \forall \ t \in \mathbb{R}$$

E' immediato ricavare l'equazione cartesiana:

$$\begin{cases} y = 3 \\ z = 1 \end{cases}$$

(c) La cosa più semplice è porre la variabile x uguale al parametro t, ottenendo

$$\begin{cases} x = t \\ y = 1 + 3t \\ z = -(1 + 3t) + t \end{cases} \Rightarrow r : \begin{cases} x = t \\ y = 1 + 3t \\ z = -1 - 2t \end{cases} \forall t \in \mathbb{R}$$

Per determinare un punto P appartenente a r è sufficiente trovare un punto (x, y, z) che soddisfi l'equazione di r (parametrica o cartesiana). Assegnando per esempio il valore 0 al parametro t nell'equazione parametrica otteniamo il punto:

$$\begin{cases} x = 0 \\ y = 1 \\ z = -1 \end{cases} \Rightarrow P(0, 1, -1).$$

Esercizio 1.3 (2.3).

a) Determinare l'equazione parametrica e cartesiana del piano π passante per i punti A(1,3,1), B(2,0,0) e C(0,1,1). Il punto P(0,2,0) appartiene a tale piano?

П

b) Determinare una equazione della retta passante per A ortogonale a π .

SOLUZIONE:

a) Possiamo determinare prima l'equazione parametrica. Poichè

$$\overrightarrow{AB} = (1, -3, -1)$$

$$\overrightarrow{AC} = (-1, -2, 0)$$

otteniamo

$$\pi: \begin{cases} x = 1 + t - s \\ y = 3 - 3t - 2s \end{cases} \quad \forall t, s \in \mathbb{R}$$
$$z = 1 - t$$

Per ottenere l'equazione cartesiana da quella parametrica basta ricavare s e t e procedere per sostituzione:

$$\begin{cases} x = 1 + (1 - z) - s \\ y = 3 - 3(1 - z) - 2s \\ t = 1 - z \end{cases} \Rightarrow \begin{cases} s = -x - z + 2 \\ y = 3z - 2(-x - z + 2) \\ t = 1 - z \end{cases} \Rightarrow 2x - y + 5z - 4 = 0$$

In alternativa si può ricavare direttamente l'equazione cartesiana, considerando la generica equazione ax + by + cz + d = 0 e imponendo il passaggio per i tre punti A, B e C in modo da ricavare i valori di a, b, c e d. Notiamo che così come l'equazione cartesiana è determinata a meno di multipli, anche i valori di a, b, c e d non saranno univocamente determinati.

$$ax + by + cz + d = 0 \Rightarrow \begin{cases} A: & a + 3b + c + d = 0 \\ B: & 2a + d = 0 \\ C: & b + c + d = 0 \end{cases} \Rightarrow \begin{cases} \frac{-d}{2} + 3b + (-d - b) + d = 0 \\ a = \frac{-d}{2} \\ c = -d - b \end{cases} \Rightarrow \begin{cases} b = \frac{d}{4} \\ a = -\frac{d}{2} \\ c = -\frac{5}{4}d \end{cases}$$

Possiamo ora scegliere un valore di d. Ponendo d = -4 otteniamo

$$\begin{cases} a=2\\ b=-1\\ c=5\\ d=4 \end{cases} \Rightarrow 2x-y+5z-4=0$$

Un ulteriore modo è calcolare il prodotto vettoriale $\overrightarrow{AB} \times \overrightarrow{AC} = (-2, 1, -5)$ che è ortogonale al piano cercato, ottenendo l'equazione -2x + y - 5z + d = 0 ed imponendo il passaggio per B (o A o C) si ottiene d = 4 e cambiando i segni si ottiene la stessa equazione precedentemente trovata.

Infine P(0,2,0) appartiene al piano se le sue coordinate soddisfano l'equazione (Cartesiana o parametrica). Sostituendo nell'equazione Cartesiana otteniamo

$$-2 - 4 = 0$$
 no

Poichè le coordinate non soddisfano l'equazione P non appartiene al piano.

Analogamente potevamo sostituire nell'equazione parametrica ottenendo:

$$\begin{cases} 0 = 1 + t - s \\ 2 = 3 - 3t - 2s \\ 0 = 1 - t \end{cases} \Rightarrow \begin{cases} 0 = 2 - s \\ 2 = 3 - 3 - 2s \\ t = 1 \end{cases} \Rightarrow \begin{cases} s = 2 \\ s = -1 \\ t = 1 \end{cases}$$

Poichè la prima e seconda equazione si contraddicono il sistema non ammette soluzione e P non appartiene al piano.

b) Sappiamo che dato un generico piano ax + by + cz = k il vettore (a, b, c) è ortogonale al piano. Quindi dall'equazione cartesiana del piano ricaviamo che la retta cercata ha direzione (2, -1, 5). Sappiamo inoltre che tale retta passa per A = (1, 3, 1), quindi

$$\begin{cases} x = 1 + 2t \\ y = 3 - t \\ z = 1 + 5t \end{cases}$$

Esercizio 1.4 (2.4). Sia r la retta di \mathbb{R}^3 passante per i punti A(1,-1,2) e B(-2,0,1), e sia s la retta contenente C(1,3,-3) e parallela al vettore $\overrightarrow{OD}(2,-2,3)$.

- a) Determinare la posizione reciproca delle due rette (cioè se sono incidenti, parallele o sghembe).
- b) Se sono incidenti determinarne il punto di intersezione.

SOLUZIONE:

La retta r passante per B e parallela al vettore $\overrightarrow{BA}=(-3,1,-1)$ ha equazione parametrica:

$$r: \begin{cases} x = -2 - 3t \\ y = t \\ z = 1 - t \end{cases} \quad \forall t \in R$$

Analogamente

$$s: \begin{cases} x = 1 + 2h \\ y = 3 - 2h \\ z = -3 + 3h \end{cases} \forall h \in R$$

a) Osserviamo subito che r e s non sono parallele in quanto i vettori direzione \overrightarrow{BA} e \overrightarrow{OD} non hanno le componenti proporzionali uno rispetto all'altro.

Per stabilire se sono incidenti cerchiamo l'intersezione $r \cap s$ risolvendo il sistema di 3 equazioni nelle due incognite t, h:

$$\begin{cases}
-2 - 3t = 1 + 2h \\
t = 3 - 2h \\
1 - t = -3 + 3h
\end{cases} \Rightarrow \begin{cases}
-3(3 - 2h) - 2h = 3 \\
t = 3 - 2h \\
-(3 - 2h) - 3h = -4
\end{cases} \Rightarrow \begin{cases}
-9 + 6h - 2h = 3 \\
t = 3 - 2h \\
-3 + 2h - 3h = -4
\end{cases} \Rightarrow \begin{cases}
h = 3 \\
t = 3 - 2h \\
h = 1
\end{cases}$$

Poichè la prima e terza equazione si contraddicono il sistema non ammette soluzione e le rette non sono incidenti.

Infine le rette sono sghembe.

In alternativa potevamo per esempio ricavare l'equazione cartesiana di una delle due rette

$$r: \begin{cases} x = -2 - 3t \\ y = t \\ z = 1 - t \end{cases} \Rightarrow \begin{cases} x + 3y = -2 \\ y + z = 1 \end{cases}$$

e quindi risolvere il sistema

$$\begin{cases} x = 1 + 2h \\ y = 3 - 2h \\ z = -3 + 3h \\ x + 3y = -2 \\ y + z = 1 \end{cases} \Rightarrow \begin{cases} x = 1 + 2h \\ y = 3 - 2h \\ z = -3 + 3h \\ 1 + 2h + 9 - 6h = -2 \\ 3 - 2h - 3 + 3h = 1 \end{cases} \Rightarrow \begin{cases} x = 1 + 2h \\ y = 3 - 2h \\ z = -3 + 3h \\ -4h = -12 \\ h = 1 \end{cases}$$

Poichè le ultime due equazioni si contraddicono il sistema non ammette soluzione e le rette non sono incidenti.

Infine le rette sono sghembe.

Esercizio 1.5 (2.7).

- a) Determinare equazioni parametriche della retta r passante per i punti A=(2,3,1) e B=(0,0,1) e della retta s passante per i punti C=(0,0,0) e D=(4,6,0).
- b) Stabilire se r e s sono complanari. In caso affermativo, trovare un'equazione cartesiana del piano contenente r e s.

SOLUZIONE:

a) Il vettori direzione \overrightarrow{AB} e \overrightarrow{CD} hanno componenti:

$$\overrightarrow{AB} = (-2, -3, 0)$$
 $\overrightarrow{CD} = (4, 6, 0)$

Quindi:

$$r: \begin{cases} x = -2t \\ y = -3t \\ z = 1 \end{cases} \qquad s: \begin{cases} x = 4t \\ y = 6t \\ z = 0 \end{cases}$$

b) Poichè i due vettori direzione sono paralleli lo sono anche le due rette r e s e in particolare le rette sono complanari.

Per determinare il piano che li contiene abbiamo bisogno però di un vettore direzione differente, appartenente al piano. Possiamo per esempio determinare il vettore direzione \overrightarrow{AC} (in quanto A e C appartengono al piano cercato):

$$\overrightarrow{AC} = (2,3,1)$$

Infine il piano π che contiene r e s ha equazione parametrica:

$$\pi: \begin{cases} x = -2t + 2s \\ y = -3t + 3s \quad \forall s, t \in \mathbb{R} \\ z = s \end{cases}$$

Per ricavare l'equazione cartesiana basta eliminare i parametri s e t:

$$\begin{cases} x = -2t + 2z \\ y = -3t + 3z \Rightarrow 3x - 2y = 0 \\ z = s \end{cases}$$

In alternativa si può ricavare direttamente l'equazione cartesiana, considerando la generica equazione ax + by + cz = d e imponendo il passaggio per tre dei quattro punti, per esempio B, C e D in modo da ricavare i valori di a, b, c e d. Notiamo che così come l'equazione cartesiana è determinata a meno di multipli, anche i valori di a, b, c e d non saranno univocamente determinati.

$$ax + by + cz = d \Rightarrow B: c = d$$

$$D: 4a + 6b = d \Rightarrow \begin{cases} c = 0 \\ d = 0 \\ a = -\frac{3}{2}b \end{cases}$$

Possiamo ora scegliere un valore di b. Ponendo b=2 otteniamo

$$\begin{cases} a = -3 \\ b = 2 \\ c = d = 0 \end{cases} \Rightarrow -3x + 2y = 0$$

Esercizio 1.6 (2.9). Si considerino le rette di equazioni cartesiane

$$r: \begin{cases} x+2y=0\\ y-z=0 \end{cases} \qquad s: \begin{cases} 2x=0\\ x+y+z=0 \end{cases}$$

- a) Dopo avere verificato che le due rette sono incidenti, determinare l'equazione cartesiana della retta passante per P(1,1,1) e incidente r e s.
- b) Determinare l'equazione cartesiana del piano passante per C(1,2,-3) e perpendicolare a r.
- c) Determinare equazioni cartesiane della retta passante per il punto P=(1,1,1) e perpendicolare alle due rette r e s.

SOLUZIONE:

a) Cominciamo con il determinare se le rette r e s sono incidenti risolvendo il sistema

$$\begin{cases} x + 2y = 0 \\ y - z = 0 \\ 2x = 0 \\ x + y + z = 0. \end{cases} \Rightarrow \begin{cases} y = 0 \\ z = 0 \\ x = 0 \\ 0 = 0. \end{cases}$$

Quindi le rette sono incidenti nel punto O(0,0,0). E' allora sufficiente determinare l'equazione della retta passante per P(1,1,1) e O(0,0,0). In questo modo tale retta interseca r e s. La direzione è data dal vettore $\overrightarrow{OP}(1,1,1)$, quindi la retta cercata ha equazione parametrica:

$$\begin{cases} x = t \\ y = t \\ z = t \end{cases}$$

b) Il piano passante per C(1,2,-3) e perpendicolare a r ha equazione del tipo

$$ax + by + cz = k$$

dove a, b, c corrispondono alle componenti del vettore direzione di r (perpendicolare al piano), mentre il valore di k si determina imponendo il passaggio per C.

Determiniamo quindi l'equazione parametrica di r:

$$r: \begin{cases} x = -2t \\ y = t \\ z = t \end{cases}$$

Quindi r è parallela al vettore (-2,1,1), e il piano cercato è del tipo

$$-2x + y + z = k$$

Imponendo poi il passaggio per C(1,2,-3) otteniamo:

$$-2 \cdot 1 + 2 + (-3) = k$$
 \Rightarrow $k = -3$

Infine il piano cercato ha equazione:

$$-2x + y + z = -3$$

c) Scriviamo l'equazione di r e s in forma parametrica:

$$r: \begin{cases} x = -2t \\ y = t \\ z = t \end{cases} \qquad s: \begin{cases} x = 0 \\ y = -t \\ z = t \end{cases}$$

Il piano passante per P(1,1,1) e perpendicolare a r ha equazione

$$-2x + y + z = 0$$

Analogamente il piano passante per P(1,1,1) e perpendicolare a s ha equazione

$$-y + z = 0$$

La retta cercata è data dall'intersezione dei due piani appena determinati:

$$\begin{cases}
-2x + y + z = 0 \\
-y + z = 0
\end{cases} \Rightarrow \begin{cases}
x = t \\
y = t \\
z = t
\end{cases}$$

Notiamo che la retta coincide, casualmente, con quella determinata al punto precedente.

Un metodo alternativo consisteva nel calcolare il piano π contenente r e s. Tale piano ha direzione parallela ai due vettori direzione di r e s e contiene il punto O(0,0,0) di intersezione di r e s:

$$r: \begin{cases} x = -2t \\ y = t - s \Rightarrow x + y + z = 0 \\ z = t + s \end{cases}$$

La retta cercata è quindi la retta passante per P e perpendicolare a tale piano:

$$\begin{cases} x = 1 + t \\ y = 1 + t \\ z = 1 + t \end{cases}$$

Notiamo che si tratta, ovviamente, della stessa retta determinata con l'altro metodo, scritta in maniera differente.

Esercizio 1.7 (2.10). Sia r la retta nello spazio passante per i punti A = (0,0,1) e B = (-2,-1,0). Sia s la retta passante per i punti C = (1,1,1) e D = (-1,0,0).

- a) Mostrare che le due rette sono complanari e trovare un'equazione del piano π che le contiene.
- b) Trovare equazioni parametriche della retta per l'origine ortogonale al piano π del punto a).

SOLUZIONE:

a) Due rette sono complanari se sono parallele o incidenti.

Il vettori direzione \overrightarrow{AB} e \overrightarrow{CD} hanno componenti:

$$\overrightarrow{AB} = (-2, -1, -1)$$
 $\overrightarrow{CD} = (-2, -1, -1)$

Poichè i due vettori sono paralleli lo sono anche le due rette r e s e quindi in particolare sono complanari. Per determinare il piano che li contiene abbiamo bisogno però di un vettore direzione differente, appartenente al piano. Possiamo per esempio determinare il vettore direzione \overrightarrow{AC} (in quanto A e C appartengono al piano cercato):

$$\overrightarrow{AC} = (1, 1, 0)$$

Infine il piano π che contiene r e s ha equazione parametrica:

$$\pi: \begin{cases} x = -2t + s \\ y = -t + s \\ z = 1 - t \end{cases} \forall s, t \in \mathbb{R}$$

Per ricavare l'equazione cartesiana basta eliminare i parametri s e t:

$$\begin{cases} t = 1 - z \\ x = -2 + 2z + s \\ y = -1 + z + s \end{cases} \Rightarrow \begin{cases} t = 1 - z \\ s = x + 2 - 2z \\ y = -1 + z + x + 2 - 2z \end{cases} \Rightarrow x - y - z + 1 = 0$$

b) Un vettore perpendicolare al piano π ha componenti proporzionali ai cofficienti della x,y e z dell'equazione cartesiana di π , ovvero (1,-1,-1) (o un suo multiplo). Di conseguenza l'equazione della retta cercata è

$$\begin{cases} x = t \\ y = -t & \forall t \in \mathbb{R} \\ z = -t \end{cases}$$

Esercizio 1.8 (2.13). Si considerino i piani dello spazio

$$\pi : x - y + z = 0$$
 e $\pi' : 8x + y - z = 0.$

- a) Stabilire la posizione reciproca dei due piani.
- b) Trovare un'equazione cartesiana del piano passante per P=(1,1,1) e perpendicolare ai piani π e π' .

SOLUZIONE:

a) Due piani o sono paralleli o la loro intersezione è una retta. In questo caso il piano π è perpendicolare al vettore (1, -1, 1), mentre π' è perpendicolare al vettore (8, 1, -1), quindi i piani non sono paralleli tra loro. Determiniamo la loro intersezione mettendo a sistema le loro equazioni:

$$\begin{cases} x - y + z = 0 \\ 8x + y - z = 0 \end{cases} \Rightarrow \begin{cases} 9x = 0 \\ -y + z = 0 \end{cases} \Rightarrow \begin{cases} x = 0 \\ y = t \\ z = t \end{cases}$$

Quindi i piani si intersecano nella retta

$$\begin{cases} x = 0 \\ y = t \\ z = t \end{cases} \quad \forall t \in \mathbb{R}$$

b) La direzione perpendicolare al piano π è data dal vettore (1, -1, 1), mentre la direzione perpendicolare a π' è (8, 1, -1). Di conseguenza il piano perpendicolare a π e π' passante per il punto P(1, 1, 1) ha equazione parametrica:

$$\begin{cases} x = 1 + t + 8s \\ y = 1 - t + s \\ z = 1 + t - s \end{cases}$$

Ricavando i parametri s e t e sostituendo si ottiene una equazione cartesiana:

$$y + z = 2$$

In alternativa si può osservare che un piano perpendicolare a π e π' è anche perpendicolare alla retta loro intersezione. Di conseguenza il piano cercato è perpendicolare al vettore (0,1,1) (direzione della retta intersezione), ovvero ha equazione del tipo y+z=k. Imponendo il passaggio per P si ottiene direttamente l'equazione cartesiana:

$$y + z = 2$$

Esercizio 1.9 (2.18). Si considerino i piani π_1, π_2, π_3 di equazioni

$$\pi_1$$
: $z-3=0$
 π_2 : $x+y+2=0$
 π_3 : $3x+3y-z+9=0$

e la retta $r = \pi_1 \cap \pi_2$.

- a) Si stabilisca se il piano π_3 contiene r.
- b) Si trovi un'equazione cartesiana del piano π_4 passante per l'origine e contenente r.
- c) Si calcoli la proiezione ortogonale dell'origine sul piano π_1 .

SOLUZIONE:

Calcoliamo un'equazione parametrica di $r = \pi_1 \cap \pi_2$:

$$\begin{cases} z - 3 = 0 \\ x + y + 2 = 0 \end{cases} \Rightarrow r : \begin{cases} x = -t - 2 \\ y = t \\ z = 3 \end{cases}$$

a) Un modo per verificare se π_3 contiene r è di controllare se π_3 contiene due qualsiasi punti di r. Dall'equazione parametrica di r, assegnando per esempio i valori t=0 e t=1 otteniamo i punti A(-2,0,3) e B(-3,1,3) di r. Quindi π_3 contiene A e B se:

$$3 \cdot (-2) + 3 \cdot 0 - 3 + 9 = 0$$

 $3 \cdot (-3) + 3 \cdot 1 - 3 + 9 = 0$

Siccome le due condizioni sono verificate A e B, e di conseguenza r, sono contenuti in π_3 .

b) Un piano π_4 contenente r contiene i suoi due punti A e B. Si tratta quindi di trovare l'equazione del piano per A, B e l'origine. Poiché chiede l'equazione cartesiana la cosa più semplice è probabilmente considerare la generica equazione cartesiana e imporre il passaggio pre i tre punti:

$$ax + by + cz = d \quad \Rightarrow \begin{cases} -2a + 3c = d \\ -3a + b + 3c = d \end{cases} \Rightarrow \begin{cases} a = \frac{3}{2}c \\ b = \frac{3}{2}c \\ d = 0 \end{cases}$$

Possiamo ora scegliere un valore di c. Ponendo c=2 otteniamo

$$\begin{cases} a = 3 \\ b = 3 \\ c = 2 \\ d = 0 \end{cases} \Rightarrow 3x + 3y + 2z = 0$$

In alternativa potevamo ricavare l'equazione parametrica e da questa ricavare l'equazione cartesiana. Poichè $\overrightarrow{OA} = (-2,0,3)$ e $\overrightarrow{OB} = (-3,1,3)$, otteniamo le equazioni di π_4 :

$$\pi_4: \begin{cases} x = -2t - 3s \\ y = s \\ z = 3t + 3s \end{cases} \Rightarrow 3x + 3y + 2z = 0$$

c) Determiniamo la retta s per l'origine ortogonale a π_1 , cioè di direzione (0,0,1):

$$s: \begin{cases} x = 0 \\ y = 0 \\ z = t \end{cases}$$

La proiezione ortogonale dell'origine sul piano π_1 è quindi l'intersezione di s con π_1 :

$$\begin{cases} x = 0 \\ y = 0 \\ z = t \\ z = 3 \end{cases} \Rightarrow \begin{cases} x = 0 \\ y = 0 \\ z = 3 \end{cases}$$

Infine la proiezione cercata è il punto P(0,0,3)

Esercizio 1.10 (12.9). Si determini la distanza del punto P(3,1,2) dalla retta r di equazione parametrica

$$r: \begin{cases} x = 6 + t \\ y = 2 + 2t \\ z = -1 - 3t \end{cases}$$

SOLUZIONE:

La retta r è parallela al vettore u = (1, 2, -3).

Sia π il piano perpendicolare a r passante per P. La prima condizione implica che π sia del tipo

$$x + 2y - 3z = k$$

Imponendo il passaggio per P otteniamo 3+2-6=k, ovvero k=-1. Infine

$$\pi: \quad x+2y-3z=-1$$

Determiniamo ora il punto di intersezione A di r con π :

$$\begin{cases} x + 2y - 3z = -1 \\ x = 6 + t \\ y = 2 + 2t \\ z = -1 - 3t \end{cases} \Rightarrow \begin{cases} 6 + t + 4 + 4t + 3 + 9t = -1 \\ x = 6 + t \\ y = 2 + 2t \\ z = -1 - 3t \end{cases} \Rightarrow \begin{cases} t = -1 \\ x = 5 \\ y = 0 \\ z = 2 \end{cases}$$

Quindi A = (5, 0, 2).

Possiamo ora calcolare la distanza cercata:

$$d(r, P) = d(A, P) = ||AP|| = ||(2, -1, 0)|| = \sqrt{5}$$

Esercizio 1.11 (12.10). Si determini la distanza del punto P(-1,0,2) dal piano π di equazione π : x-2y+3z=-9.

SOLUZIONE:

Si può applicare la formula:
$$d(\Pi,P)=\frac{\mid ax_0+by_0+cz_0+d\mid}{\sqrt{a^2+b^2+c^2}}=\sqrt{14}.$$
 L'esercizio può essere svolto, in caso di oblio della formula, come è illustrato di seguito. Il piano π è

L'esercizio può essere svolto, in caso di oblio della formula, come è illustrato di seguito. Il piano π è perpendicolare al vettore u=(1,-2,3).

Sia r la retta perpendicolare a π passante per P:

$$r: \begin{cases} x = -1 + t \\ y = -2t \\ z = 2 + 3t \end{cases}$$

Determiniamo ora il punto di intersezione A di r con π :

$$\begin{cases} x - 2y + 3z = -9 \\ x = -1 + t \\ y = -2t \\ z = 2 + 3t \end{cases} \Rightarrow \begin{cases} -1 + t + 4t + 6 + 9t = -9 \\ x = -1 + t \\ y = -2t \\ z = 2 + 3t \end{cases} \Rightarrow \begin{cases} t = -1 \\ x = -2 \\ y = 2 \\ z = -1 \end{cases}$$

Quindi A = (-2, 2, -1).

Possiamo ora calcolare la distanza cercata:

$$d(\pi, P) = d(A, P) = ||AP|| = ||(1, -2, 3)|| = \sqrt{14}$$

Esercizio 1.12 (2.5).

a) Determinare la posizione reciproca (cioè se sono incidenti, parallele o sghembe) delle rette r e r' di equazioni parametriche:

$$r: \begin{cases} x = 2t \\ y = t+1 \\ z = t+3 \end{cases} \qquad r': \begin{cases} x = s \\ y = 2 \\ z = s+2 \end{cases}$$

b) Se le rette sono incidenti determinare l'ampiezza dell'angolo tra esse.

SOLUZIONE:

a) Osserviamo subito che r e r' non sono parallele in quanto r è parallela al vettore (2,1,1) mentre r' è parallela al vettore (1,0,1).

Per stabilire se sono incidenti cerchiamo l'intersezione $r \cap r'$ risolvendo il sistema di 3 equazioni nelle due incognite t, s:

$$\begin{cases} 2t = s \\ t+1=2 \\ t+3=s+2 \end{cases} \Rightarrow \begin{cases} s=2 \\ t=1 \\ 1+3=2+2 \end{cases} \Rightarrow \begin{cases} s=2 \\ t=1 \end{cases}$$

Sostituendo nell'equazione di r (o analogamente di r') il valore di t (o di s) determinato, troviamo che r e r' sono incidenti nel punto P(2,2,4).

b) L'angolo ϑ formato dalle rette r e r' corrisponde all'angolo formato dai rispettivi vettori direzione u=(2,1,1) e v=(1,0,1). Possiamo quindi sfruttare la formula

$$\cos(\vartheta) = \frac{u \cdot v}{|u| \cdot |v|}$$

dove

$$|u| = \sqrt{u \cdot u} = \sqrt{4 + 1 + 1} = \sqrt{6}$$

 $|v| = \sqrt{v \cdot v} = \sqrt{1 + 1} = \sqrt{2}$

Quindi

$$\cos(\vartheta) = \frac{2+1}{\sqrt{12}} = \frac{3}{2\sqrt{3}} = \frac{\sqrt{3}}{2} \implies \vartheta = 30^{\circ}.$$

Esercizio 1.13 (APPELLO 5 settembre 2018). Sia P il punto di coordinate P = (2, 1, 3) e sia r la retta di equazioni cartesiane

$$\begin{cases} x - y = 0 \\ y + z - 3 = 0 \end{cases}$$

- a) Si trovi la distanza di P da r.
- b) Si trovino le equazioni cartesiane dei piani ortogonali a r la cui distanza da P é uguale a $\sqrt{3}$.

SOLUZIONE:

a) Si osservi che $P \notin \mathbb{R}$ altrimenti d(P,r) = 0. Si puó procedere come nell'esercizio 1.10. Scrivendo la retta r in forma parametrica si ha

$$\begin{cases} x = t \\ y = t \\ z = -t + 3 \end{cases} \quad \forall t \in \mathbb{R}$$

e quindi un piano ortogonale ad r è della forma x+y-z+d=0. Imponendo il passaggio per P si ottiene 2+1-3+d=0 da cui d=0.

Il piano passante per P ed ortogonale ad r ha equazione $\pi: x+y-z=0$. Mettendo a sistema r e π si trova il punto A=(1,1,2) e si può concludere che $d(P,r)=d(P,A)=\sqrt{1^2+0+1^2}=\sqrt{2}$.

b) Si è giá osservato che i piani ortogonali ad r sono della forma

$$x + y - z + d = 0$$

La distanza di P da tali piani data da

$$\frac{|2+1-3+d|}{\sqrt{1+1+1}} = \frac{|d|}{\sqrt{3}}.$$

Tale distanza uguale a $\sqrt{3}$ quando |d| = 3, cio per $d = \pm 3$.

Esercizio 1.14 (2.21). Nel piano, si considerino le rette r_1, r_2, r_3 di equazioni

$$r_1$$
:
$$\begin{cases} x = 1 - 2t \\ y = 2t \end{cases}$$
 r_2 : $x - 2y + 1 = 0$, r_3 : $2x + y - 2 = 0$.

- a) Si trovi un'equazione cartesiana della retta r parallela a r_1 e passante per il punto $A = r_2 \cap r_3$.
- b) Si trovi un'equazione cartesiana della retta s perpendicolare a r_1 e passante per A.
- c) Si calcoli l'angolo tra le rette r_1 e r_2 e tra le rette r_2 e r_3 .

SOLUZIONE:

a) Determiniamo $A = r_2 \cap r_3$ risolvendo il sistema

$$\begin{cases} x - 2y + 1 = 0 \\ 2x + y - 2 = 0. \end{cases} \Rightarrow A\left(\frac{3}{5}, \frac{4}{5}\right)$$

La retta r è quindi la retta per A di direzione parallela al vettore (-2,2):

$$r: \begin{cases} x = \frac{3}{5} - 2t \\ y = \frac{4}{5} + 2t \end{cases} \Rightarrow x + y - \frac{7}{5} = 0$$

In alternativa potevamo ricavare l'equazione cartesiana di r_1 :

$$r_1: \begin{cases} x = 1 - 2t \\ y = 2t \end{cases} \Rightarrow x + y - 1 = 0 \Rightarrow y = -x + 1$$

Di conseguenza l'equazione cartesiana di r è:

$$y - \frac{4}{5} = -\left(x - \frac{3}{5}\right) \implies x + y - \frac{7}{5} = 0$$

b) Utilizzando l'equazione parametrica di s, una direzione perpendicolare a quella di r_1 è data dal vettore (2,2), quindi:

$$s: \begin{cases} x = \frac{3}{5} + 2t \\ y = \frac{4}{5} + 2t \end{cases} \Rightarrow x - y + \frac{1}{5} = 0$$

Utilizzando in alternativa l'equazione cartesiana di r_1 , la retta s ha coefficiente angolare opposto del reciproco del coefficiente angolare di r_1 , quindi 1:

$$s: y - \frac{4}{5} = \left(x - \frac{3}{5}\right) \Rightarrow x - y + \frac{1}{5} = 0$$

c) Ricaviamo le equazioni parametriche delle tre rette per avere dei vettori direzione. Sappiamo già che r_1 è parallela a $v_1 = (-2, 2)$, inoltre

$$r_2:$$

$$\begin{cases} x=-1+2t \\ y=t \end{cases}$$

$$r_3:$$

$$\begin{cases} x=t \\ y=2-2t \end{cases}$$

Quindi r_2 è parallela a $v_2(2,1)$ e r_3 è parallela a $v_3(1,-2)$. Infine

$$\cos(v_1 v_2) = \frac{-4+2}{\sqrt{8} \cdot \sqrt{5}} = \frac{-2}{2\sqrt{10}} = -\frac{1}{\sqrt{10}} \implies \vartheta = \arccos\left(-\frac{1}{\sqrt{10}}\right)$$

Notiamo che i vettori v_2 e v_3 sono ortogonali, quindi l'angolo tra r_2 e r_3 è $\frac{\pi}{2}$.

Esercizio 1.15 (2.27). Siano assegnati il punto A = (1,2,1) il piano π e la retta s di equazioni

$$\pi: x+z=4,$$
 $s: \begin{cases} x=1+t \\ y=2 \\ z=0 \end{cases}$

- a) Si determini il punto B, proiezione ortogonale di A su π e la retta r passante per A e per B.
- b) Indicato con C il punto di intersezione tra s e r e con D il punto di intersezione tra s e π , si determini un'equazione della retta CD.
- c) Si determini l'angolo tra r e la retta CD.

SOLUZIONE:

a) Per trovare B determiniamo l'equazione della retta r passante per A e ortogonale a π , cioè di direzione (1,0,1):

$$r: \begin{cases} x = 1 + s \\ y = 2 \\ z = 1 + s \end{cases}$$

Il punto B è dato dall'intersezione tra $r \in \pi$:

$$B: \begin{cases} x = 1 + s \\ y = 2 \\ z = 1 + s \\ x + z = 4 \end{cases} \Rightarrow \begin{cases} x = 1 + s \\ y = 2 \\ z = 1 + s \\ 1 + s + 1 + s = 4 \end{cases} \Rightarrow \begin{cases} s = 1 \\ x = 2 \\ y = 2 \\ z = 2 \end{cases} \Rightarrow B = (2, 2, 2)$$

Notiamo che la retta passante per A e B richiesta è la retta r precedentemente trovata.

b) Calcoliamo le intersezioni:

$$C = r \cap s: \begin{cases} x = 1+s \\ y = 2 \\ z = 1+s \\ x = 1+t \\ y = 2 \\ z = 0 \end{cases} \Rightarrow \begin{cases} x = 1+s \\ y = 2 \\ z = 1+s \\ 1+s = 1+t \\ 2 = 2 \\ 1+s = 0 \end{cases} \Rightarrow \begin{cases} s = -1 \\ t = -1 \\ x = 0 \\ y = 2 \\ z = 0 \end{cases} \Rightarrow C = (0, 2, 0)$$

$$D = s \cap \pi : \begin{cases} x = 1 + t \\ y = 2 \\ z = 0 \\ x + z = 4 \end{cases} \Rightarrow \begin{cases} x = 1 + t \\ y = 2 \\ z = 0 \\ 1 + t = 4 \end{cases} \Rightarrow \begin{cases} t = 3 \\ x = 4 \\ y = 2 \\ z = 0 \end{cases} \Rightarrow D = (4, 2, 0)$$

Il vettore CD è (4,0,0), quindi un'equazione della retta CD è

$$r_{CD}: \begin{cases} x = 4t \\ y = 2 \\ z = 0 \end{cases} \quad \forall \ t \in \mathbb{R}$$

c) La retta r è parallela al vettore u=(1,0,1) e la retta CD è parallela al vettore v=(4,0,0). Indicato con ϑ l'angolo tra le due rette si ottiene:

$$\cos(\vartheta) = \frac{u \cdot v}{|u| \cdot |v|} = \frac{4}{\sqrt{2} \cdot 4} = \frac{\sqrt{2}}{2} \quad \Rightarrow \ \vartheta = \arccos\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4} = 45^{\circ}.$$

Esercizio 1.16 (12.16). Determinare per quali valori di k il triangolo di vertici $A_1(0,0)$, $A_2(4,2)$ e $A_3(1,k)$ ha area 5.

SOLUZIONE:

L'area del triangolo di vertici $A_1,\ A_2$ e A_3 è metà dell'area del parallelogramma di lati

$$\overrightarrow{A_3A_1} = (1,k), \qquad \overrightarrow{A_2A_1} = (4,2)$$

Ricordando la formula per l'area di un parallelogramma in \mathbb{R}^2 otteniamo quindi

$$Area(\text{triangolo }A_1A_2A_3) = \frac{1}{2} \left| \det \begin{bmatrix} 1 & k \\ 4 & 2 \end{bmatrix} \right| = \left| \frac{1}{2}(2-4k) \right| = |1-2k|$$

Imponendo la condizione che l'area del triangolo sia 5 otteniamo $1-2k=\pm 5$, quindi k=-2 o k=3. Abbiamo quindi ottenuto due possibili soluzioni:

- k = -2 ovvero $A_3 = (1, -2)$.
- k = 3 ovvero $A_3 = (1, 3)$.

Esercizio 1.17 (v. 12.23). Siano A = (0, -1, 0), B = (-2, 0, -3), C = (-1, 0, -1) punti dello spazio.

- a) Calcolare l'area del triangolo di vertici A, B, C.
- b) Stabilire se il punto D = (2, 2, 2) appartiene al piano contenente A, B, C.

SOLUZIONE:

a) L'area del parallelogramma di lati AB e AC è data dalla lunghezza del vettore $AB \times AC$. Poiché AB = (-2, 1, -3) e AC = (-1, 1, -1), otteniamo

$$AB \times AC = \det \begin{bmatrix} i & j & k \\ -2 & 1 & -3 \\ -1 & 1 & -1 \end{bmatrix} = 2i + j - k = (2, 1, -1) \implies |AB \times AC| = \sqrt{6}.$$

Infine l'area del triangolo è metà dell'area del parallelogramma:

$$Area(ABC) = \frac{\sqrt{6}}{2}.$$

b) Un modo consiste nel determinare il piano passante per i tre punti A, B, C il quale ha equazione

$$\pi: \begin{cases} x = -2t - s \\ y = -1 + t + s \\ z = -3t - s \end{cases} \Rightarrow 2x + y - z = -1$$

Il punto D non soddisfa l'equazione di π : $4+2-2\neq -1$, quindi D non appartiene al piano contenente A,B,C.

Esercizio 1.18 (12.19). Calcolare il volume del parallelepipedo di lati u(1,0,0), v(-3,1,1) e w(-2,2,5).

SOLUZIONE:

Il volume del parallelepipedo è dato dal prodotto misto dei vettori che formano i lati del parallelepipedo. Cominciamo a calcolare il vettore prodotto vettoriale di v e w:

$$v \times w = (3, 13, -4)$$

Quindi

Volume(parallelepipedo) =
$$|u \cdot (v \times w)| = |u \cdot v \times w| = |((1,0,0), (3, 13, -4))| = |3| = 3$$

Analogamente

$$\text{Volume(parallelepipedo)} = \left| \det \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 1 \\ -2 & 2 & 5 \end{bmatrix} \right| = \left| 1 \cdot (5-2) \right| = 3$$

Esercizio 1.19 (12.20). Siano $P_1 = (1, -1, 0), P_2 = (1, 0, -1), P_3 = \left(1 + \frac{2}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -1 - \frac{1}{\sqrt{3}}\right), e P_4 = (1, 2, 1)$ quattro punti nello spazio.

- a) Calcolare l'angolo tra i vettori $\overrightarrow{P_1P_2}$ e $\overrightarrow{P_2P_3}$.
- b) Calcolare il volume del prisma con base il triangolo P₁P₂P₃ e lato il segmento P₁P₄.

SOLUZIONE:

a) Sia ϑ l'angolo cercato, usiamo la formula

$$\cos(\vartheta) = \frac{(\overrightarrow{P_1P_2}, \overrightarrow{P_2P_3})}{|\overrightarrow{P_1P_2}| \cdot |\overrightarrow{P_2P_3}|}$$

Poichè

$$\overrightarrow{P_2P_3} = \left(\frac{2}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right), \qquad \overrightarrow{P_1P_2} = (0, 1, -1),$$

si ha

$$(\overrightarrow{P_1P_3}, \overrightarrow{P_2P_3}) = 0 - \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}} = 0$$

Quindi $\cos(\vartheta) = 0$ e $\vartheta = \frac{\pi}{2}$.

b) Il volume del prisma é metà del volume del parallelepipedo di lati $\overrightarrow{P_1P_2}, \overrightarrow{P_1P_3}$ e $\overrightarrow{P_1P_4}$. Poichè

$$\overrightarrow{P_1P_3} = \left(\frac{2}{\sqrt{3}}, 1 - \frac{1}{\sqrt{3}}, -1 - \frac{1}{\sqrt{3}}\right), \qquad \overrightarrow{P_1P_4} = (0, 3, 1)$$

otteniamo

$$\begin{split} V &= \left| \left(\overrightarrow{P_1 P_2}, \ \overrightarrow{P_1 P_3} \times \overrightarrow{P_1 P_4} \right) \right| = \left| \overrightarrow{P_1 P_2} \cdot \left(\overrightarrow{P_1 P_3} \times \overrightarrow{P_1 P_4} \right) \right| \\ &= \frac{1}{2} \cdot \left| \left((0, 1, -1), \left(4 + \frac{2}{\sqrt{3}}, -\frac{2}{\sqrt{3}}, \frac{6}{\sqrt{3}} \right) \right) \right| = \frac{1}{2} \cdot \left| -\frac{8}{\sqrt{3}} \right| = \frac{4}{\sqrt{3}} = \frac{4\sqrt{3}}{3} \end{split}$$

Analogamente

$$V = \left| \left(\overrightarrow{P_1 P_2}, \ \overrightarrow{P_1 P_3} \times \overrightarrow{P_1 P_4} \right) \right| = \frac{1}{2} \cdot \left| \det \begin{bmatrix} 0 & 1 & -1 \\ \frac{2}{\sqrt{3}} & 1 - \frac{1}{\sqrt{3}} & -1 - \frac{1}{\sqrt{3}} \end{bmatrix} \right|$$
$$= \frac{1}{2} \cdot \left| -\frac{8}{\sqrt{3}} \right| = \frac{4}{\sqrt{3}}$$

Esercizio 1.20 (12.22). Si considerino i piani π_1 , π_2 , π_3 di equazioni:

$$\pi_1: 2x - y = 1, \qquad \pi_2: x + y + z = 0, \qquad \pi_3: x - 2z = 1.$$

- a) Si determini l'insieme intersezione dei tre piani.
- b) Si trovi il piano π_4 passante per l'origine e perpendicolare alla retta $r = \pi_1 \cap \pi_2$.
- c) Si determini l'area del triangolo di vertici A, B, C, con $A = \pi_1 \cap \pi_2 \cap \pi_3$, $B = \pi_1 \cap \pi_3 \cap \pi_4$, $C = \pi_2 \cap \pi_3 \cap \pi_4$.

SOLUZIONE:

a) Mettiamo a sistema i tre piani:

$$\begin{cases} 2x - y = 1 \\ x + y + z = 0 \\ x - 2z = 1 \end{cases} \Rightarrow \begin{cases} y = 2x - 1 \\ z = \frac{1}{2}x - \frac{1}{2} \\ x + 2x - 1 + \frac{1}{2}x - \frac{1}{2} = 0 \end{cases} \Rightarrow \begin{cases} x = \frac{3}{7} \\ y = -\frac{1}{7} \\ z = -\frac{2}{7} \end{cases} \Rightarrow$$

$$\pi_1 \cap \pi_2 \cap \pi_3 = A = \left(\frac{3}{7}, -\frac{1}{7}, -\frac{2}{7}\right).$$

b) Calcoliamo la retta $r = \pi_1 \cap \pi_2$:

$$\begin{cases} 2x - y = 1 \\ x + y + z = 0 \end{cases} \Rightarrow \begin{cases} y = 2x - 1 \\ z = 1 - 3x \end{cases} \Rightarrow r : \begin{cases} x = t \\ y = -1 + 2t \\ z = 1 - 3t \end{cases}$$

La retta ha direzione (1, 2, -3), quindi un piano ortogonale a r ha equazione del tipo x+2y-3z=d. Imponendo il pasaggio per l'origine otteniamo d=0. Infine il piano cercato è

$$\pi_4: x + 2y - 3z = 0$$

c) Abbiamo già trovato A nel punto a). Analogamente mettendo a sistema gli altri piani otteniamo:

$$\begin{cases} x = \frac{1}{7} \\ y = -\frac{5}{7} \\ z = -\frac{3}{7} \end{cases} \Rightarrow \pi_1 \cap \pi_3 \cap \pi_4 = B = \left(\frac{1}{7}, -\frac{5}{7}, -\frac{3}{7}\right)$$

$$\begin{cases} x = \frac{5}{7} \\ y = -\frac{4}{7} \\ z = -\frac{1}{7} \end{cases} \Rightarrow \pi_2 \cap \pi_3 \cap \pi_4 = C = \left(\frac{5}{7}, -\frac{4}{7}, -\frac{1}{7}\right).$$

Di conseguenza

$$\overrightarrow{AC} = \left(\frac{2}{7}, -\frac{3}{7}, \frac{1}{7}\right), \qquad \overrightarrow{BC} = \left(\frac{4}{7}, \frac{1}{7}, \frac{2}{7}\right). \quad \Rightarrow \quad \overrightarrow{AC} \times \overrightarrow{BC} = \left(-\frac{1}{7}, 0, -\frac{2}{7}\right)$$

Infine

Area
$$(ABC) = \frac{1}{2} |\left(-\frac{1}{7}, 0, -\frac{2}{7}\right)| = \frac{1}{14}\sqrt{5}$$

Esercizio 1.21. Nello spazio si considerino la due rette di equazioni:

$$r: \begin{cases} x = 1 + t \\ y = -t \\ z = 2t + 3 \end{cases}$$
 $s: x + y = 2x - z = 0$

- a) Mostrare che le due rette sono parallele.
- b) Determinare la distanza tra le due rette.

SOLUZIONE:

L'equazione parametrica di s è:

$$s: \begin{cases} x = h \\ y = -h \\ z = 2h \end{cases}$$

Il vettore direzione di r ed s è (1,-1,2), inoltre s passa per l'origine mentre r non ci passa, quindi le due rette sono parallele e non coincidenti. Per determinare la distanza tra le due rette basta, ad esempio, trovare il piano π ortogonale alle due rette e passante per l'origine e poi trovare in punto A d'intersezione di tale piano con r ed infine la distanza tra l'origine ed A. Il piano è $\pi: x-y+2z=0$.

$$A = r \cap \pi : \begin{cases} x = 1 + t \\ y = -t \\ z = 2t + 3 \\ x - y + 2z = 0 \end{cases} \Rightarrow \begin{cases} x = 1 + t \\ y = -t \\ z = 2t + 3 \\ 1 + t + t + 4t + 6 = 0 \end{cases} \Rightarrow \begin{cases} x = -\frac{1}{6} \\ y = \frac{7}{6} \\ z = \frac{4}{6} \\ t = -\frac{7}{6} \end{cases}$$

Quindi $d(r,s) = d(A,O) = \sqrt{\frac{1}{36} + \frac{49}{36} + \frac{16}{36}} = \frac{\sqrt{66}}{6}$

Esercizio 1.22. Nello spazio si considerino la due rette di equazioni:

$$r: \begin{cases} x = 1 + t \\ y = 1 - t \end{cases}$$
 $s: x + y - 1 = x - y + z = 0$

- a) Mostrare che le due rette sono sghembe.
- b) Determinare un'equazione del piano contenente la retta r e parallelo alla retta s.
- c) Determinare la distanza tra le due rette.
- d) Determinare un'equazione del piano parallelo alle due rette ed equidistante da esse.

SOLUZIONE:

a) Due rette del piano sono sghembe se non sono parallele e non si intersecano. L'equazione parametrica di s è:

$$s: \begin{cases} x = 1 - t \\ y = t \\ z = -1 + 2t \end{cases}$$

Quindi r ha direzione (1, -1, 0) mentre s ha direzione $\vec{v} = (-1, 1, 2)$ e le due rette non sono parallele. Inoltre se calcoliamo $r \cap s$:

$$\begin{cases} x = 1 + t \\ y = 1 - t \\ z = 3 \\ x + y - 1 = 0 \\ x - y + z = 0 \end{cases} \Rightarrow \begin{cases} x = 1 + t \\ y = 1 - t \\ z = 3 \\ 1 + t + 1 - t - 1 = 0 \\ 1 + t - 1 + t + 3 = 0 \end{cases} \Rightarrow \begin{cases} x = 1 + t \\ y = 1 - t \\ z = 3 \\ 1 = 0 \\ 3 + 2t = 0 \end{cases}$$

il sistema non ammette soluzione, quindi le due rette non si intersecano.

Di conseguenza r e s sono sghembe.

b) Sia π il piano cercato. Poiché π contiene r, deve essere parallelo a r e passare per un punto di r. Sia A=(1,1,3) il punto di r, imponendo inoltre le condizioni di parallelismo alle due rette, otteniamo:

$$\pi: \begin{cases} x = 1 + t - s \\ y = 1 - t + s \\ z = 3 + 2s \end{cases} \Rightarrow x + y = 2$$

Un altro modo di procedere per rispondere alla domanda è il seguente.

Il fascio di piano contenente r è $\lambda(x+y-2)+\mu(z-3)=0$, con $\lambda,\mu\in\mathbb{R}-\{0\}$. Svolgendo i calcoli di ha: $\lambda x+\lambda y-2\lambda+\mu z-3\lambda=0$.

Quindi il piano cercato ha vettore normale $\vec{v}=(\lambda,\lambda,\mu)$ e deve essere ortogonale al vettore $\vec{v}=(-1,1,2)$, ovvero $\vec{v}\cdot\vec{v}=0$. Quindi $-\lambda+\lambda+2\mu=0$ per $\mu=0$, da cui si ottiene che il piano cercato ha equazione $\pi:x+y-2=0$

c) Utilizzando il punto precedente essendo $d(r,s)=d(P,\pi)$ per ogni $P\in s$ e scelto P=(1,0,3) si ha $d(P,\pi)=\frac{\mid 1+0-2\mid}{\sqrt{2}}=\frac{\sqrt{2}}{2}.$

In alternativa, si puó costruire il segmento generico \overrightarrow{PQ} tra le due rette, dove $P \in r$ e $Q \in s$, ed imporre che sia ortogonale sia al vettore direzione $\overrightarrow{v} = (-1, 1, 2)$ sia al vettore direzione (1, -1, 0). Si ottiene cosí il seguente sistema:

$$\begin{cases} \overrightarrow{PQ} \cdot (-1,1,2) = (-s-t,s+t-1,2s-4) \cdot (-1,1,2) = 0 \\ \overrightarrow{PQ} \cdot (1,-1,0) = (-s-t,s+t-1,2s-4) \cdot (1,-1,0) = 0 \end{cases} \Rightarrow \begin{cases} 2t+6s-9=0 \\ -2t-2s+1=0 \end{cases} \Rightarrow \begin{cases} s=2 \\ t=-\frac{3}{2} \end{cases}$$

Si conclude quindi che Il segmento che realizza la distanza fra r ed s ha lunghezza

$$\left\| \left(2 + \frac{3}{2}, 2 - \frac{3}{2} - 1, 0\right) \right\| = \left\| \left(-\frac{1}{2}, -\frac{1}{2}, 0\right) \right\| = \frac{1}{\sqrt{2}}$$

d) Si può procedere in più modi. Forse il più semplice è calcolare il piano π' passante per s e parallelo a r in maniera analoga al punto precedente. Sia B = (1, 0, -1) il punto di s:

$$\pi': \begin{cases} x = 1 + t - s \\ y = -t + s \\ z = -1 + 2s \end{cases} \Rightarrow x + y = 1$$

Il piano cercato è parallelo a π e π' , quindi ha una equazione del tipo x+y=d. Inoltre essendo equidistante da r e da s è anche equidistante da π e π' , ovvero il valore di d è dato dalla media degli analoghi valori di π e π' :

$$d = \frac{2+1}{2} = \frac{3}{2}$$

Infine il piano cercato è

$$x + y = \frac{3}{2}$$