09/15/00 15:35 FAX 1 619 2

MNFRAME.005A4

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant	:	Johnson, et al.) Group Art Unit 2785
Appl. No.	:	08/942,214)
Filed	:	October 1, 1997)
For	:	METHOD FOR MAPPING ENVIRONMENTAL RESOURCES TO MEMORY FOR PROGRAM ACCESS))))
Examiner	:	Norman Wright)

DECLARATION UNDER 37 C.F.R. § 1.131 TO OVERCOME TAYALLAEI

- 1. This declaration is to establish the status of the invention in the above-captioned U.S. patent application in the United States on December 31, 1996, which is the effective date of U.S. Patent No. 5,864,653 entitled PCI HOT SPARE CAPABILITY FOR FAILED COMPONENTS, to Tavallaei et al., which was cited by the Examiner against the abovecaptioned application.
- 2. We are the named joint inventors of the described subject matter and all claims in the above-referenced regular patent application, filed October 1, 1997.
- 3. We have read the Office Actions mailed September 15, 1999, (Paper No. 13) and March 26, 2000 (Paper No. 18) regarding the patent application.
- 4. We reduced to practice the invention described and claimed in the pending application by at least December 19, 1996, as evidenced by the following events:
 - By at least December 19, 1996, NetFRAME (the assignee of the subject a. application) was manufacturing and selling a fully functional product (the NF9000 family of network servers) that reduced to practice the claimed subject matter. The

09/15/00 15:35 FAX 1 619 23

Appl. No. Filed

08/942,214

October 1, 1997

commercial product was described as being commercially available in a document entitled "Novell IntranetWare supports hot pluggable PCI from NetFRAME," which was published on December 19, 1996, as evidenced by the document date. A copy of page 1 is attached as Exhibit A.

Reduction to practice of Claim 1. A document entitled "Raptor Wire Service b. Architecture, Version 1.3" (hereinafter RWSA), dated October 3, 1996, and a software source code document entitled "Module CS9000WS.SDL" (hereinafter CS9000WS), bearing a revision date of October 25, 1996, together show the invention as set out in Claim 1, and as incorporated in the product sold by NetFRAME. Copies of the cover and page 1 of RWSA are attached as Exhibit B, and copies of pages 1 and 5-11 of CS900WS are attached as Exhibit C.

For reference, Claim 1 of the pending patent application recites a "method of mapping environmental resources to memory, comprising:

providing a computer, the computer comprising a processor and a memory; providing a microcontroller network, wherein the microcontrollers provide monitoring and control functions associated with the environmental conditions internal to the computer;

storing in the memory a unique identifier for each of the functions; and executing commands on the microcontroller network by accessing any one of the unique identifiers.

Page 1 of RWSA depicts a "Wire Service Hardware Diagram" (a more readable version of the same diagram is presented as Fig. 5A and Fig. 5B of the patent application). RWSA shows a computer (e.g., the ISA Bus to communicate with the CPU, a PCI card, and dual CPUs on a Motherboard) and a microcontroller network (e.g., Canister Controller, CPU A Controller, Chassis Controller, etc.). RWSA illustrates that the microcontroller network is connected to the computer (e.g., the microcontroller network connects to the CPU through the System Interface and the ISA Bus), to several sensors (e.g., Chassis Controller is connected to Temperature Detector on Backplane and Temperature Detector on Motherboard; CPU B Controller is connected to CPU Thermal Fault Detector), and to environmental control components (e.g., CPU A Controller controls the speed of a fan). microcontroller network is capable of providing functions associated with the monitoring and controlling of the environmental conditions internal to the computer.

08/942,214

October 1, 1997

CS9000WS shows the claimed element of storing in memory a unique identifier for each of the functions. CS900WS is a header file containing data which is stored in memory at run-time, and that provides the network address, i.e., unique identifier, for each function. For example, on page 5 CS9000WS shows a section entitled "This is [sic] the Wire Service addresses for named items" where the function for the system board fan fault (WS_SB_FANFAULT) has been assigned the unique identifier 03020300h (page 9). Hence, once a unique identifier is accessed by a CPU, it causes the execution of a command, e.g., "get fan fault", on the microcontroller network. Therefore, Exhibit B and Exhibit C together depict all of the elements of Claim 1.

Furthermore, the intended purpose of one embodiment of the invention was to provide an agent external to the microcontroller network (e.g., a remote monitoring and control program) access to the functionality of the microcontroller network without the external agent having complete knowledge of the layout and functionality of each controller in the network. The claimed subject matter as depicted in RWSA and CS9000WS, and as incorporated into the commercial product sold by NetFRAME, worked for its intended purpose.

- Reduction to practice of Claim 2. As with Claim 1, RWSA and CS900WS show C. the computer, microcontroller network, and a plurality of sensors, all interconnected for the purposes of monitoring and controlling the environmental conditions internal to the computer. The claim elements of assigning a unique identifier to each sensor and of providing a model of the microcontroller network in the computer memory were reduced to practice by at least October of 1996. The subject matter of Claim 2, as reduced to practice, worked for its intended purpose.
- đ. Reduction to practice of Claim 20. For reference, Claim 20 recites a "method of monitoring environmental conditions in a computerized environment, the method comprising:

creating a request message which identifies one or more environmental conditions internal to the computerized environment;

sending the request message from a requestor to a microcontroller network which manages the environmental conditions;

08/942.214

October 1, 1997

obtaining status of the conditions identified by the request message; creating a response message which reports the status; and sending the response message from the microcontroller network to the requestor.

The microcontroller network described in reference to Claims 1 and 2, is capable of obtaining status of the environmental conditions identified by a request message, of creating a response to the request, and of sending the response to the requestor. By at least December 19, 1996, we reduced to practice the additional claimed elements of creating a request message identifying one or more environmental conditions, and of sending the request message from the requestor to the microcontroller network. The subject matter of Claim 20, as reduced to practice, worked for its intended purpose.

- 5. L, Karl S. Johnson, am listed as an inventor on a provisional Patent Application No. 60/046,397, filed May 13, 1997, which is a priority application for the subject application.
- All acts leading to the reduction of practice were performed in the United States.

We declare that all statements made herein of our own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful, false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful, false statements may jeopardize the validity of the application or any patent resulting therefrom.

Dated:	By:	
	1	Karl Johnson
Dated:	By: <u>.</u>	Walter Wallach
Dated: 8-11-070	Ву: _	Carlton Amdahl
Dated:	Ву: _	Ken Nguyen

21

08/942,214

October 1, 1997

obtaining status of the conditions identified by the request message; creating a response message which reports the status; and sending the response message from the microcontroller network to the requestor.

The microcontroller network described in reference to Claims 1 and 2, is capable of obtaining status of the environmental conditions identified by a request message, of creating a response to the request, and of sending the response to the requestor. By at least December 19, 1996, we reduced to practice the additional claimed elements of creating a request message identifying one or more environmental conditions, and of sending the request message from the requestor to the microcontroller network. The subject matter of Claim 20, as reduced to practice, worked for its intended purpose.

- 5. I, Karl S. Johnson, am listed as an inventor on a provisional Patent Application No. 60/046,397, filed May 13, 1997, which is a priority application for the subject application.
- All acts leading to the reduction of practice were performed in the United States.

We declare that all statements made herein of our own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful, false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful, false statements may jeopardize the validity of the application or any patent resulting therefrom. 1. 11.

Dated: August 14, 2008	By: Karl Johnson
Dated:	By: Walter Wallach
Dated:	By:Carlton Amdahl
Dated: \$:\DOCS\JFK\JFK-1023.DOC 062800	By: Ken Nguyen

08/942,214

October 1, 1997

obtaining status of the conditions identified by the request message; creating a response message which reports the status; and sending the response message from the microcontroller network to the requestor.

The microcontroller network described in reference to Claims 1 and 2, is capable of obtaining status of the environmental conditions identified by a request message, of creating a response to the request, and of sending the response to the requestor. By at least December 19, 1996, we reduced to practice the additional claimed elements of creating a request message identifying one or more environmental conditions, and of sending the request message from the requestor to the microcontroller network. The subject matter of Claim 20, as reduced to practice, worked for its intended purpose.

- 5. I, Karl S. Johnson, am listed as an inventor on a provisional Patent Application No. 60/046,397, filed May 13, 1997, which is a priority application for the subject application.
- 6. All acts leading to the reduction of practice were performed in the United States.

We declare that all statements made herein of our own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful, false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful, false statements may jeopardize the validity of the application or any patent resulting therefrom.

Dated:	By: Karl Johnson
Dated: \(\frac{\frac{1}{1}\ 00}{}	By: Malter Wallach
Dated:	By:Carlton Amdahl
Dated: S:\DOCS\IFK\IFK-1023.DOC 062800	By: Ken Nguyen

09/15/00 15:36 FAX 1 619 23

EXHIBIT A

03393902/9 DIALOG(R) File 636: Gale Group Newsletter DB(TM) (c) 1999 The Gale Group. All rts. reserv.

Supplier Number: 46983928 (THIS IS THE FULLTEXT) NOVELL: Novell IntranetWare supports hot pluggable PCI from NetFRAME M2 Presswire, pN/A

Dec 19, 1996

Language: English Record Type: Fulltext

Document Type: Newswire; Trade

Word Count: 495

TEXT:

M2 PRESSWIRE-19 December 1996-NOVELL: Novell IntranetWare supports hot pluggable PCI from NetFRAME (C)1994-96 M2 COMMUNICATIONS LTD RDATE:181296 * IntranetWare customers can add and swap PCI cards in on-line systems with minimal server downtime Novell, Inc. today announced that customers using IntranetWare, Novell's full-service Internet/intranet access platform, can take advantage of both Hot Add and Hot Swap PCI with today's NetFRAME enterprise-class network servers. The companies will continue to work closely in the future to ensure that the recently proposed PCI Hot Plug standard will deliver the level of functionality that IntranetWare and NetFRAME customers depend on.

"Hot Pluggable PCI is a key technology for continual Internet and intranet availability," said William Donahoo, senior director of product marketing at Novell. "With today's requirement for 24-hour information access, server downtime resulting from server component failure, system maintenance or hardware expansion is unacceptable. Supporting this new technology brings a new level of flexibility and fault tolerance that helps customers build business-critical intranets."

Hot Pluggable PCI technology from NetFRAME, introduced October, 1996, enables IntranetWare customers to add and swap industry standard PCI boards and device drivers, while users remain on-line greatly reducing server downtime and service disruption. The technology supports PCI-based SCSI, Ethernet, FDDI and Token Ring interface cards and device drivers. System administrators can use this functionality to both repair and expand server storage and network connectivity without having to bring down either IntranetWare or the server.

"Novell is a leader in the network operating system market," said Steve Huey, vice president of marketing at NetFRAME. "We believe Novell is well positioned to shape the future of continuous intranet computing as organizations evolve their LANs into intranets. By shipping Hot Pluggable PCI technology today, NetFRAME makes it possible for IntranetWare users to deploy continuously available server environments."

By combining IntranetWare's unique ability to load and unload device drivers without downing the server with NetFRAME's Hot Pluggable PCI technology, system administrators can add new PCI devices to a server with no user downtime. For example, if a server's network adapter fails, it can be replaced without requiring an administrator to take IntranetWare off-line or re-booting the server. When a component is replaced, the card and driver are automatically identified and configured, and the card is

instantly made available as a system resource.
Founded in 1983, Novell (NASDAQ: NOVL) is the world's leading provider of network software. The company offers a wide range of network solutions for distributed network, Internet, intranet and small-business markets. Novell education and technical support programs are the most comprehensive in the network computing industry. Information about Novell's complete range of products and services can be accessed on the World Wide Web at http://www.novell.com.

Novell is a registered trademark and IntranetWare is a trademark of Novell, Inc. All other registered trademarks and trademarks are the

property of their respective holders.
M2 COMMUNICATIONS DISCLAIMS ALL LIABILITY FOR INFORMATION PROVIDED WITHIN M2 PRESSWIRE. DATA SUPPLIED BY NAMED PARTY/PARTIES.

COPYRIGHT 1996 M2 Communications

THIS IS THE FULL TEXT: COPYRIGHT 1996 M2 Communications Subscription: \$ unavailable. Published 260 times per year. Contact M2 Communications, PO Box 505, Coventry, England CV2 5YA. Phone 44-1203-634700. COPYRIGHT 1999 Gale Group

EXHIBIT B

Raptor Wire Service Architecture

Version 1.3

October 3, 1996

Prepared for NetFrame Raptor Implementation Group

by Karl Johnson (KJ)

Raptor Wire Service Architecture

Introduction

"Wire Service" is the code name for the Raptor project system control, diagnostic and maintenance bus (forn.erly known as the CDM bus). Raptor is a completely "fly by wire" system - no switch, indicator or other control is directly connected to the function it monitors or controls. Instead, all the control and monitoring connections are made by the network of processors that comprise the "Wire Service" for the system. The processors are Microchip PIC processors and the network is a 400 kbps I²C serial bus. A limited understanding of I²C protocol is a prerequisite for understanding Wire Service protocols (See "The I²C-bus and how to use it" - Philips Semiconductor, Jan 1992). Control on this bus is distributed, each processor can be either a master or a slave and can control resources on itself or any other processor on the bus.

NetFRAME CONFIDENTIAL DOCUMENT

Page 1

EXHIBIT C

```
;$Module C59000WS.SDL$
;Copyright 1996
By NetFRAME Systems Inc.
   Milpitas, California U.S.A.
; $Author:
          Ken Nguyen $
        25 Oct 1996 16:48:18 $
;$Date:
;$Revision
:$Description$
; This file contains the NetFRAME Wire Service message and interface def
inition.
; for the C$9000
; $EndDescription$
  Revision History
       P:/inc/cs9000ws.sdl $
;$Log:
      Rev 1.13
                 25 Oct 1996 16:48:18
                                        Ken Nguyen
   Fixed a Problem of Canister Fan Fault Status.
      Rev 1.10
                 10 Oct 1996 16:33:04
                                        Ken Nguyen
  Added a command to count Log entry.
      Rev 1.9
                30 Sep 1996 18:42:50
                                       Ken Nguyen
  Added Canister Fault Commands
                30 Sep 1996 17:34:16
                                       Karl Johnson
      Rev 1.8
   Added definitions for remote interface serial protocol
   Added NVRAM error counter
      Rev 1.7
                13 Sep 1996 11:22:22
                                       Ken Nguyen
   Corrected Temperature data length
      Rev 1.6
                09 Sep 1996 17:24:48
                                       Karl Johnson
   Added WS_SYSLOG_CLOCK - the clock used by the log recorder to time s
tamp
      Rev 1.5
                20 Aug 1996 01:08:36
                                       Karl Johnson
  Added screen event and corrected BOOTDEVS name.
                01 Aug 1996 15:32:50
      Rev 1.4
                                       Karl Johnson
   Cleanup and added new status values.
      Rev 1.3
                26 Jul 1996 17:14:38
                                       Karl Johnson
   Reduced maximum number of event types.
   Added a Success Status.
                08 Jul 1996 15:57:32
      Rev 1.2
                                       Karl Johnson
   Changed read write bit in datatype definition.
```

Page 1

```
**********
  ; Wire Service Log Message Constants
  ; First byte of log message data: Severity Level Byte
 WSLOG_LEVEL UNKNOWN
                         CONSTANT 00h
                                        ; Unknown
 WSLOG_LEVEL_INFO
                         CONSTANT 10h
                                       ; Informational
 WSLOG_LEVEL_WARN
                        CONSTANT 20h
                                        ; Warning
 WSLOG_LEVEL_ERROR
                        CONSTANT 30h
                                        ; Error
 WSLOG_LEVEL_FATAL
                        CONSTANT 40h
                                        ; Severe/Fatal Error
 ; Second byte of log message data: Source/Encoding Byte
 ; - which entity logged the entry in the 4 high bits
 ; - which type of encoding of the message is used in the 4 low bits of
 the byte.
 wslog_src_internal
                        CONSTANT 00h
                                        ; Wire Service Internal
 WSLOG_SRC_OBDIAG
                        CONSTANT 10h
                                        ; Onboard Diagnostics
 WSLOG_SRC_EXDIAG
                        CONSTANT 20h
                                       ; External Diagnostics
 WSLOG_SRC_BIOS
                        CONSTANT 30h
                                       ; BIOS
 WSLOG_SRC DOS
                        CONSTANT 40h
                                       ; DOS
 WSLOG SRC WIN
                        CONSTANT 50h
                                       ; Windows, Win95
 WSLOG SRC WINNT
                        CONSTANT 60h
                                       : Windows/NT
 WSLOG_SRC_NETWARE
                        CONSTANT 70h
                                       ; NetWare
 WSLOG_TYPE_BINARY
                        CONSTANT OOh
                                       ; Message data is Binary
 WSLOG TYPE ASCII
                        CONSTANT 01h
                                       ; Message data is ASCII
 WSLOG_TYPE_UNICODE
                        CONSTANT 02h
                                       ; Message data is Unicode
***********
; This is the Wire Service addresses for named items.
; Addresses are composed of three parts: Processor ID, Data Type and Su
baddress
; In this table the address is encoded as a 4 bytes in hexadecimal nota
; PPTTAAAAh where PP is the processor ID, TT is the data type and AL AH
; 2 byte subaddress. Processor ID's 00 and 20 are special, 00 applies t
o all
; processors and 20 applies to all canister processors.
                                PPTTALAH
WS DESCRIPTION
                       CONSTANT 00030100h
                                              ;(S) Wire Service Proce
ssor Type/Description
WS_REVISION
                       CONSTANT 00030200h
                                              ;(S) Wire Service Softw
are Revision/Date Info
WS_POWERUP_HOLD
                       CONSTANT 01010100h
action of system on A/C power available
                                              ; (L) The mode controls
WS_WDOG CALLOUT
                       CONSTANT 01010200h
                                              ; (L) This is a bit cont
```

Page 5

rolling callout on a wa	<u> </u>			
WS WDOG RESET	covernment	meout.		
	CONSTANT	01010300h	; (L)	This is a bit cont
rolling system on a wat	ncoog tim	eout.		
VRAM Data	CONSTANT	01020100h	; (B)	Trigger to reset N
WS_SYS_BOOTFLAG1	CONCERNO	0100000		
WS_SYS_BOOTFLAG2	CONSTANT	01020200h	; (B)	
		01020300h	;(B)	System Boot Flag 2
WS_SYS_BOOTFLAG3	CONSTANT	01020400h	; (B)	System Boot Flag 3
WS_SYS_BOOTFLAG4	CONSTANT	01020500h	; (B)	System Boot Flag 4
WS_SYS_XDATA_KBYTES	CONSTANT	01020600h	; (B)	Size of the WS SYS
XDATA in kilobytes				- ·
WS_NVRAM_FAULTS	CONSTANT	01020700h	; (B)	Faults detected in
NVRAM Data				
ws_screen_scroll	CONSTANT	01020800h	; (B)	Number of lines to
scroll screen				112 02 2205 25
WS_NVRAM_RES_B1	CONSTANT	01020900h	; (B)	Reserved Byte (cha
nge name to use)			, ,-,	Tibelet tax byte (cha
WS_NVRAM_RES B2	CONSTANT	01020a00h	; (B)	Reserved Byte (cha
nge name to use)			, , – ,	moderica byte (tha
WS_NVRAM RES B3	CONSTANT	01020b00h	- (B)	Reserved Byte (cha
nge name to use)			, (-)	Reserved byte (Cha
WS NVRAM RES B4	CONSTANT	01020c00h	. /B1	Bosomed Desta /-b-
nge name to use)		0102000011	, (0)	Reserved Byte (cha
WS NVRAM RES B5	CONSTANT	01020d00h	- /D)	D
nge name to use)	00110111111	0102000011	; (B)	Reserved Byte (cha
WS_NVRAM RES B6	CONSTANT	01020e00h	- (D)	D
nge name to use)	COMPINIT	0102060011	; (B)	Reserved Byte (cha
WS_NVRAM RES B7	CONCEDING	01020f00h	- (5)	
nge name to use)	COMPLYMI	01020100N	; (B)	Reserved Byte (cha
WS_NVRAM RES B8	CONCRANT	01021000h	. (5)	
nge name to use)	CONSTANT	01021000h	; (B)	Reserved Byte (cha
WS NVRAM RES B9	CONCURNIT	03.004.4.005		
nge name to use)	CONSTANT	01021100h	; (B)	Reserved Byte (cha
WS_NVRAM RES B10	CONOMINA	01001000		
	CONSTANT	01021200h	;(B)	Reserved Byte (cha
nge name to use)				
WS_NVRAM_RES_B11	CONSTANT	01021300h	; (B)	Reserved Byte (cha
nge name to use) WS NVRAM RES B12	^^-	07.005.4001		
	CONSTANT	01021400h	; (B)	Reserved Byte (cha
nge name to use)	~~~~~			
WS_NVRAM_RES_B13	CONSTANT	01021500h	;(B)	Reserved Byte (cha
nge name to use)				
WS_NVRAM_RES_B14	CONSTANT	01021600h	;(B)	Reserved Byte (cha
nge name to use)		•		
WS_NVRAM_RES_B15	CONSTANT	01021700h	; (B)	Reserved Byte (cha
nge name to use)				
WS_NVRAM_RES_B16	CONSTANT	01021800h	;(B)	Reserved Byte (cha
nge name to use)				-
WS_SYS_XDATA	CONSTANT	01070000h	; Byt	e Array for storag
e of arbitrary external			_	
WS_SYS_LOG		01040000h	; Sys	stem Log
WS_RI_QUEUE	CONSTANT	01060100h		Queue of data goin
g to Remote Interface			•	- 3

Page 6

WS_SI_QUEUE g to System Interface	CONSTAN	T 01060200h	;(Q) Queue of data goin
WS SYS SCREEN	CONSTAN	r 01090000h	
WS_CALLOUT_SCRIPT	CONSTANT	r 01030300h	; System Screen
for remote notificati	on.	010000011	;(S) The callout script
WS_PASSWORD		r 01030400h	. (C) m)
d for Wire Service		- 4200040011	;(S) The access passwor
WS_SYS_BP_SERIAL	CONSTANT	01030500h	. (0) 7
ane serial data		- 010000011	;(S) Last known Back Pl
WS_SYS_CAN SERIAL1	CONSTANT	01030600h	. (0)
r 🗍 Serial data		01000001	;(S) Last known Caniste
WS_SYS_CAN SERIAL2	CONSTANT	01030700h	- (A) T
r 2 Serial data		. 01030/0011	;(S) Last known Caniste
WS SYS CAN SERIAL3	CONSTANT	01030800h	/ m >
r 3 Serial data	OUID IM	0103060011	;(S) Last known Caniste
WS_SYS_CAN_SERIAL4	CONSTANT	01030900h	4-1 -
r 4 Serial data	COMPTANT	010303000	;(S) Last known Caniste
WS_SYS_CAN_SERIAL5	СОМСТАМТ	01030a00h	.
r 5 Serial data	CONSTRAI	01020900U	;(S) Last known Caniste
WS_SYS_CAN_SERIAL6	<u></u>	01030b00h	
r 6 Serial data	CONSTANT	στοσφουσ	;(\$) Last known Caniste
WS_SYS_CAN_SERIAL7	COMORANM	01000 000	
r 7 Serial data	CONSTANT	01030c00h	;(S) Last known Caniste
WS_SYS_CAN_SERIAL8	CONCRAN	01000 1001	
r 8 Serial data	CONSTANT	01030d00h	;(S) Last known Caniste
WS_SYS_IOP_SERIAL1	CONOMAN	07.000 000	
Canister 1 Serial data	CONSTANT	01030e00h	;(S) Last known IOP in
WS_SYS_IOP SERIAL2	COMORANT	0100000	
Canister 2 Serial data	CONSTANT	01030f00h	;(S) Last known IOP in
WS_SYS_IOP_SERIAL3	COMORANA	02.004.44	
Canister 3 Serial data	CONSTANT	01031000h	;(S) Last known IOP in
WS_SYS IOP SERIAL4	^^********	0.000.000	
Canister 4 Serial data	CONSTANT	0103 1 100h	<pre>;(S) Last known IOP in</pre>
WS_SYS_IOP_SERIAL5	20\\an\\.		
Canister 5 Serial data	CONSTANT	01031200h	;(S) Last known IOP in
WS_SYS_IOP SERIAL6			
Canister 6 Serial data	CONSTANT	01031300h	;(S) Last known IOP in
WS_SYS IOP SERIAL7			
Canister 7 Serial data	CONSTANT	01031400h	;(S) Last known IOP in
WS_SYS_IOP SERIAL8			
Canister 8 Serial data	CONSTANT	01031500h	;(S) Last known IOP in
WS_SYS_RI_SERIAL			
Totorfore series deter	CONSTANT	01031600h	;(S) Last known Remote
Interface serial data			
WS_SYS_SB_SERIAL	CONSTANT	01031700h	;(S) Last known System
Board serial data			
WS_SYS_PS_SERIAL1	CONSTANT	01031800h	;(S) Last known Power S
upply I serial data			
WS_SYS_PS_SERIAL2	CONSTANT	01031900h	;(S) Last known Power S
upply 2 serial data		• • • • •	
WS_SYS_PS_SERIAL3 upply 3 serial data	CONSTANT	01031a00h	;(S) Last known Power S
WS_NAME			
"O"HVIII	CONSTANT	01031b00h	<pre>;(S) System Identifying</pre>

Page 7

Name	•	
WS_BOOTDEVS	CONSTANT 01031c00h	. (8)
formation		;(S) BIOS Boot drive in
ws_sys_log_clock	CONSTANT 01031d00h	
	(seconda)	;(S) Current time from
WS_SYS_LOG_COUNT	CONOCTANT	
ies	CONSTANT 01031e00H	;(S) Number of Log Entr
		tie, mander of hog Ener
WS_SCREEN_CURSOR_TYPE	CONSTANT 01031f00h	·/6) C
bytes (2)		;(S) Screen cursor type
WS_SCREEN_CURSOR_AT	CONSTANT 01032000h	
ess bytes (2)		;(S) Screen cursor addr
WS_SCREEN_CHANGE_INFO	CONCERNIO AL CALL	
, Read/Only, Zero on	CONSTANT 01032100h	;(S) Screen change info
WS_MODEM INIT	read	the strange time
on string	CONSTANT 01032200h	:(S) Mode- d-day
4. CLIM		;(S) Modem initializati
WS_NVRAM_RES_S1	CONSTANT 01032300h	. (0) -
hange name to use)	02230811	;(S) Reserved String (C
WS_NVRAM_RES S2	CONSTANT 01032400h	
hange name to use)	CONDIANT 01032400N	;(S) Reserved String (c
WS_NVRAM_RES \$3	G011gman	
hange name to use)	CONSTANT 01032500h	;(S) Reserved String (c
Mc Minary Dag to fige)		(C
WS_NVRAM_RES_S4	CONSTANT 01032600h	+/51 P
hange name to use)		;(S) Reserved String (c
WS_NVRAM_RES_S5	CONSTANT 01032700h	
hange name to use)	-44011141 01032/00N	;(S) Reserved String (c
WS_NVRAM_RES_S6	CONCERNO	
hange name to use)	CONSTANT 01032800h	;(S) Reserved String (c
WS_NVRAM_RES_S7		betting (6
hange many t	CONSTANT 01032900h	:(S) Posomiad at
hange name to use)		;(S) Reserved String (c
WS_NVRAM_RES_S8	CONSTANT 01032a00h	. (0) =
hange name to use)	1111 01002d0011	;(S) Reserved String (c
WS_NVRAM_RES S9	CONSTANT 01032b00h	
hange name to use)	COMPLEME OTO35DOOM	;(S) Reserved String (c
WS_NVRAM_RES_S10	00	
hange name to use)	CONSTANT 01032c00h	;(S) Reserved String (c
Mc MANAM Dad of a		tive industried Scriing (C
WS_NVRAM_RES_S11	CONSTANT 01032d00h	· (C) Danas
hange name to use)		;(S) Reserved String (c
WS_NVRAM_RES_S12	CONSTANT 01032e00h	
hange name to use)	01052600N	;(S) Reserved String (c
WS_NVRAM_RES_\$13	CONSTANT ALABAS	
hange name to use)	CONSTANT 01032f00h	;(S) Reserved String (c
WS_NVRAM_RES_S14		Jorang (C
hande name + '	CONSTANT 01033000h	;(S) Reserved String (c
hange name to use)		, (=) reserved affind (G
WS_NVRAM_RES_S15	CONSTANT 01033100h	• (C) D====
hange name to use)		;(S) Reserved String (c
WS_NVRAM_RES S16	CONSTANT 01033200h	
hange name to use)	11m1 01033200N	;(S) Reserved String (c
WS_SYS_POWER	CONCERNO OFFICE	10
ster power \$4 POWER ON	CONSTANT 02010100h	;(L) Controls system ma
WS SYS DEC DOMER ON	•	, ayacem ma
WS_SYS_REQ_POWER	CONSTANT 02010200h	:(Tu) Set to
n power on		;(L) Set to request mai
WS_BP_P12V	CONSTANT 02020100h	·/D) h
		;(B) Analog Measure of

Page 8

+12 volt main supply				
WS BP P3V	CONSTANT	02020200h	: (B)	Analog Measure of
+3.3 volt main supply			, , , ,	Analog Measure of
WS BP_N12V	CONSTANT	02020300h	; (B)	Analog Measure of
-12 volt main supply			,	imered incapate of
WS BP P5V	CONSTANT	02020400h	; (B)	Analog Measure of
+5 volt main supply			• •-•	
WS_BP_VREF	CONSTANT	02020500h	; (B)	Analog Measure of
VREF		-		_
WS_SYS_BP_TYPE	CONSTANT	02020600h	; (B)	Type of system bac
kplane currently only to	wo types !	Type 0= 4 canis	ter (small) and Type 1=
8 canister (large)		_	·	
WS_SYS_CAN_PRES		02020700h	; (B)	Presence bits for
canisters (LSB=1, MSB=8				
WS_SYS_PS_ACOK	CONSTANT	02020800h	; (B)	Power supply ACOK
status (LSB=1, MSB=3)				
ws_sys_ps_dcok	CONSTANT	02020900h	; (B)	Power supply DCOK
status (LSB=1, MSB=3)	•			
WS_SYS_PS_PRES		02020a00h	; (B)	Presence bits for
power supplies (LSB=1,				
WS_SYS_RSTIMER	CONSTANT	02020b00h	; (B)	Used to delay rese
t/run until power stabi	lized			
WS_SYS_TEMP_SHUT	CONSTANT	02020c00h	; (B)	Shutdown temperatu
re. Initialized to ???				
WS_SYS_TEMP_WARN	CONSTANT	02020d00h	; (B)	Warning temperatur
e. Initialized to ???				
WS_SYS_WDOG	CONSTANT	02020e00h	;(B)	System watchdog ti
mer		00000000		_
WS_SYS_TEMP_DATA			; (S)	Temperatures of a
11 sensors on temperatu			4	
WS_SB_FAN_HI	CONSTANT	03010100h	; (L)	System Board Fans
	CONCERNE	070100005	/- >	
WS_SB_FAN_LED ault LED	CONSTANT	03010200h	; (L)	System Board Fan F
	CONCERNE	020102005		
	CONSTANT	03010300h	; (L)	Controls the syste
m halt/run line \$1_OK_TO WS_SB_BUSCORE	COMETANT	03020200h	. (5)	n
ORE speed ratio to use	CONSTANT	030202001	; (B)	System Board BUS/C
WS_SB_FANFAULT	CONGLAND Out reser	U3U3U3UUP	. (B)	Sustan Doord Et - f
ault bits	CONDIANT	0302030011	; (B)	System Board Fan f
WS_SB_FAN LOLIM	CONSTANT	03020400h	- (B)	For coord law area
d fault limit	CONSTANT	0302040011	, (B)	Fan speed low spee
WS_SB_LCD_COMMAND	CONSTANT	03020500h	- (B)	Low level LCD Cont
roller Command	001.01111.1	530 2 030011	, (5)	HOW TEAST HOD COULT
	CONSTANT	03020600h	- (B)	Low level LCD Cont
roller Data	00110111111	030200011	, (5)	#Ow level DCD COUL
WS_SB DIMM TYPE	CONSTANT	03030300h	: (5)	The type of DIMM i
n each DIMM socket as a			, (0)	THE CAPE OF DIMM I
WS_SB_FAN DATA	CONSTANT	03030400h	: (S)	System Board Fan s
peed data in fan number			, , , , ,	-1 PANTA LEW 3
WS_SYS_LCD1		03030500h	; (S)	Value to display o
n LCD Top line				~= ~= ~= ~= ~ ~= ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Page 9

WS_SYS_LCD2 n LCD Bottom line	CONSTANT	03030600h	; (S)	Value to display o
WS_SB_LCD_STRING	****			
MS_SD_LCD_SIKING	CONSTANT	03030700h	; (S)	Low Level LCD Disp
lay string at current				-
WS_NMI_REQ	CONSTANT	04010100h	;(L)	NMI Request bit
WS_SB_CPU_FAULT	CONSTANT	04010200h	; (L)	CPU Fault Summary
ws_sb_flash_ena	CONSTANT	04010300h	; (L)	Indicates FLASH RO
W write enabled				
ws_sb_fru_fault	CONSTANT	04010400h	; (L)	Indicates the FRU
status				
WS_SB_JTAG	CONSTANT	04010500h	; (L)	Enables JTAG chain
on system board				
WS_\$YSFAULT	CONSTANT	04010600h	; (L)	System Fault Summa
ry				-3 reare banking
WS_SYS_OVERTEMP	CONSTANT	04010700h	: (L)	Indicates Overtemp
fault			, (,	THE TOUBLE OVER CEMP
WS_CAN1_FAN_SYSFLT	CONSTANT	04010800H	: (T.)	Indicates Canister
#1 Fan System Fault			, (-,	*** Cantaces
WS CAN2 FAN SYSFLT	CONSTANT	04010900H	• (T.)	Indicates Canister
#2 Fan System Fault		01010000	, (11)	indicates canister
WS CAN3 FAN SYSFLT	CONSTANT	04010A00H	4 / 7 \	Indiant - Contata
#3 Fan System Fault	GOUD TIM(1	OAOIONOUN	; (L)	Indicates Canister
WS_CAN4_FAN SYSFLT	CONGTANT	04010В00Н		T-44
#4 Fan System Fault	CONDIMI	NUUDUUN	} (1)	Indicates Canister
WS CANS FAN SYSFLT	CONSTANT	04010C00H	. /+ >	
#5 Fan System Fault	CONSTANT	DAOTOCOON	٤ (٣)	Indicates Canister
WS_CAN6_FAN_SYSFLT	CONCERNIE	0.4.0.1.0.0.0		- M
#6 Fan System Fault	CONSTANT	04010D00H	; (L)	Indicates Canister
WS_CAN7 FAN SYSFLT	∂ ∆voma vm	04070500**		
#7 Fan System Fault	CONSTANT	04010E00H	; (L)	Indicates Canister
	********	A		_
WS_CAN8_FAN_SYSFLT	CONSTANT	04010F00H	;(L)	Indicates Canister
#8 Fan System Fault	~~!!			
WS_NMI_MASK	CONSTANT	04020100h	; (B)	CPU NMI processor
mask (LSB=CPU1)				
WS_SB_CPU_ERR	CONSTANT	04020200h	; (B)	CPU Error bits (LS
B = CPU1)				
WS_SB_CPU_POK	CONSTANT	04020300h	; (B)	CPU Power OK (L\$B
= CPU1)				
WS_SB_CPU_PRES	CONSTANT	04020400h	; (B)	CPU Presence bits
$(L\overline{SB} = CP\overline{U1})$				
WS_SB_CPU_TEMP	CONSTANT	04020500h	; (B)	CPU Thermal fault
bits (LSB = $CPU1$)				
WS_SI_EVENTS	CONSTANT	10050100h	;(E)	System Interface E
vent Queue				
WS_RI_CD	CONSTANT	11010100h	; (L)	Status of Remote P
ort Modem CD				1 1011000
WS RI CTS	CONSTANT	11010200h	: (L)	Status of Remote P
ort Modem CTS			, ,,	TWO OI WENOLE P
WS RI DSR	CONSTANT	11010300h	: (7.)	Status of Remote P
ort Modem DSR			, , , , ,	
WS RI DTR	CONSTANT	11010400h	: (T.)	State of Remote Po
rt Modem DTR	-		, (2)	COME OF VEHICLE BO

Page 10

176

Att13517

```
WS RI RTS
                        CONSTANT 11010500h
                                                 ; (L) Status of Remote P .
ort Modem RTS
WS RI CALLOUT
                        CONSTANT 11020100h
                                                 ; (B) Controls Call out
Script activation
WS RI EVENTS
                        CONSTANT 11050100h
                                                 ;(E) Remote Interface E
vent Queue
WS CAN FAN HI
                        CONSTANT 20010100h
                                                 ;(L) Canister Fans HI
WS CAN FAN LED
                        CONSTANT 20010200h
                                                ;(L) Canister Fan Fault
 LED
WS CAN JTAG ENA
                        CONSTANT 20010300h
                                                ; (L) Enable JTAG TMS ch
ain for canister
WS_CAN NMI S5
                        CONSTANT 20010400h
                                                 ; (L) NMI card in slot 5
WS_CAN_POWER
                        CONSTANT 20010500h
                                                ; (L) Controls canister
PCI slot power
WS CAN S5 PRESENT
                        CONSTANT 20010600h
                                                ;(L) Indicates the pres
ence of something in slot 5
WS_CAN_S5 SMART
                        CONSTANT 20010700h
                                                ; (L) Indicates somethin
g other than a passive board in slot 5
WS_CAN_FAN LOLIM
                        CONSTANT 20020100h
                                                ; (B) Fan low speed faul
t limit
WS_CAN_PCI_PRESENT
                        CONSTANT 20020200h
                                                ; (B) Reflects PCI card
slot[1..4] presence indicator pins ( MSB to LSB) 4B,4A,3B,3A,2B,2A,1B,1
WS CAN FANFAULT
                        CONSTANT 20020300h
                                                ; (B) Canister Fan Fault
 Bits
WS_CAN FAN DATA
                        CONSTANT 20030300h
                                                ;(S) Canister Fan speed
 data
*******************************
; This is the Wire Service Attributes for named items.
; The attribute information is stored in a symbolic constant named the
same
; as the named item then followed by two underscores
; Attributes consist of:
        R/W access for internal WS (I), BIOS/OS (O), administrator (A),
 and general (G)
        groups. ( 0 = NoAccess 1 = Read Only, 2 = Write Only, 3 = Read/
Write )
        maximum possible reques/response length of item in bytes (LL)
        Group Name ID (ID)
                                 IOAGLLID
WS DESCRIPTION
                        CONSTANT 11114000h
                                                ;(S) Wire Service Proce
ssor Type/Description
WS REVISION
                        CONSTANT 11112000h
                                                ;(S) Wire Service Softw
are Revision/Date Info
WS POWERUP_HOLD_
                        CONSTANT 33310100h
                                                ; (L) The mode controls
```

Page 11

action of system on A/C power available