Image Colorization for Vintage Portraits

Team Members:

- Ahsan Jalil Mirza 7028849
- 2. Kai Wittenmayer 7005859
- . Patryk Dąbkowski 7028711

Motivation & Tasks

- Photos act as a visual memory for today's society which gives them immense historical and emotional value
- For this reason it is important to colorize and restore them to their original glory
- Traditionally colorization and restoration was done by hand, which is a very time consuming task and also requires a special artistic skill-set
- We propose to develop a convolutional neural network based model that performs two main tasks:
 - Image colorization of vintage portraits from grayscale to full color
 - Removal of salt and pepper noise and scratches as part of restoration
- The primary benefit of this technique over the conventional methods is that restoration and colorization of images can be done at scale with a very consistent level of quality.

Goals & Challenges

Challenges:

- Preprocessing of the dataset to simulate realistic vintage photography from available digital (RGB) images
- Implementation of preliminary DL-based model for baseline performance and proof of concept
- Literature available related to this task is scarce
- Implementation and training stabilization of a GAN configuration for this task in the improvement phase

Goals (for mid-term):

- Dataset Preprocessing
- ☐ Implementation and Training of the Baseline Model

Methods

Task	Methodology
Literature Review	Explore both conventional and deep-learning based techniques used for image coloration and restoration
Dataset Preprocessing	 Use low-level image processing to implement a filter that simulates the attributes of actual vintage images (greyscale, salt & pepper noise, scratches, etc) and generate a supervised dataset for training Python libraries like Scikit-Image, NumPy, SciPy and openCV will be used for this task
Preliminary Model Implementation	 Based on the literature review done earlier we will implement a DL-based model along with its training (using standard regression loss functions) and testing scripts We will use PyTorch Deep Learning framework for this step

Methods (contd.)

Task	Methodology
Evaluation	We will use both well-defined numerical metrics (like PSNR, SSIM etc) and visual fidelity (for Just-Noticeable Difference evaluation) in order to determine the model performance
Improvement	 Lastly, we will work on implementation of a GAN configuration for model improvement. The discriminator will be implemented using transfer learning (alexnet, resnet etc)

Dataset

UTKFace

- Available for non-commercial use
- Includes over 20k portrait images with both captured in the wild and controlled environments
- The dataset is evenly distributed in terms of age, gender and ethnicity
- We will need to preprocess the dataset to produce vintage like images for model training

Evaluation

Overall Performance Evaluation:

- We will use the following metrics for evaluating the overall performance of the model
 - Peak-Signal to Noise Ratio (or MSE)
 - Structural Similarity Index
 - Perceptual Loss

Visual Fidelity Evaluation:

- We will also perform a visual analysis to evaluate Just-Noticeable Difference (JND) in generated and ground-truth images
 - This is crucial to determine if any unwanted artifacts are produced by the model

References

- UTKFace | Large Scale Face Dataset
- Image Coloration Survey