In the claims:

Claims 1-15 cancelled.

- 16. (New) A power tool with at least one handle (10, 26, 50, 62, 104) that comprises at least one grip part (12, 72, 106) that is firmly connected to a mounting part (16, 70, 110) via at least one elastic, vibration-damping element (14, 24, 52, 108), via which the grip part (12, 72, 106) is affixable to a housing (60), wherein the connection between the grip part (12, 72, 106) and the mounting part (16, 70, 110) is secured by means of the elastic element (14, 24, 52, 108) v a at least one movable retaining element (20, 22, 28, 64, 112).
- 17. (New) The power tool according to Claim 16, wherein the retaining element (20, 28) is formed by a flexible component.
- 18. (New) The power tool according to Claim 17, wherein the retaining element (20) is formed by a rope.
 - 19. (New) The power tool according to claim 16,

wherein the retaining element (20) is located in the elastic element (14) along a centerline.

- 20. (New) The power tool according to claim 16, wherein the retairing element (20), in the installed state, is subjected to tensile stresses, and the elastic element (14) is subjected to compressive stresses.
- 21. [New) The power tool according to claim 16, wherein the retaining element (28) is formed by a band that encloses the elastic element (52).
- 22. (New) The power tool according to Claim 16, wherein the retaining element (22, 64, 112) is formed by a rigid component that is supported in movable fashion relative to the mounting part (16, 70) and/or the grip part (12, 72, 106).
- 23. (New) The power tool according to Claim 22, wherein the retaining element (112) is firmly supported in the mounting part (110) and movable relative to the grip part (106).
 - 24. (New) The power tool according to Claim 23,

wherein the retaining element (112) is firmly connected to a fastening screw (114) located in the mounting part (110).

- 25. (New) The power tool according to Claim 23, wherein the retaining element (112) is formed by a screw.
- 26. New) The power tool according to Claim 22, wherein the retaining element (22, 64) is connected to the grip part (12, 72) via the elastic element (24) and to the mounting part (16, 70) via the elastic element (24).
- 27. (New) The power tool according to claim 21, wherein a maximum displacement of the elastic element (24, 52, 108) from a normal position is determined by means of the retaining element (22, 28, 64, 112) in at least one tilting direction and/or in one sliding direction.
- 28. (New) The power tool according to claim 16, wherein the elastic element (108) comprises a non-circular cross-sectional area (116) at least closely before a seating surface (134, 146) with the mounting element (110) and/or with the grip part (106) that is smaller than the seating surface (143, 146).

element (108).

- 29. (New) A method for the production of a handle of a power tool according to claim 16, wherein heat is dissipated from an internal region of the elastic element (108) via at least one component (142) during production of the elastic
- 30. (New) The method according to Claim 29, wherein the component (142) is formed by a core that is removed after production of the elastic element (108).