Содержание

1	$\mathbf{A}\mathbf{B}\mathbf{T}$	Автоматы и регулярные выражение	
	1.1	Про НКА	2
	1.2	Про ДКА	4
	1.3	Про автоматные языки	6
	1.4	Про регулярные выражения	7
	1.5	Про эквивалентные состояния ПДКА	8
	1.6	Критерий минимальности количества состояний в ПДКА	Ĝ
	1.7	Про канонический ПДКА	10
	1.8	Алгоритмы проверок	11
	1.9	Лемма о разрастании	12
2	KC-	-грамматики и MП-автоматы	13
	2.1	Про порождающие грамматики	13
	2.2	Про праволинейные грамматики	13
	2.3	Построение конечного автомата по праволинейной грамматике	15
	2.4	Про КС-грамматики	16
	2.5	Удаление непорождающих и недостижимых символов в алгоритме примеде-	
		ния к нормальной форме Хомского. Асимптотика приведённых шагов	16
	2.6	Удаление длинных, смешанных правил и eps-порождающих символов. Асимп-	
		тотика приведённых шагов	17
	2.7	Обработка стартового состояния и удаление цепных правил. Асимптотика	
		приведённых шагов	19
	2.8	Алгоритм Кока-Янгера-Касами синтаксического разбора для КС-грамматик	20
	2.9	Лемма о разрастании для КС-языков	20
	2.10	МП-автомат	21
	2.11	Построение МП-автомата по КС-грамматике	22
3	Построение КС-грамматики по МП-автомату		23
	3.1	Нормальная форма ГРейбах для КС-грамматик	24
4	Парсеры		26
	4.1	Корректность алгоритма Эрли	26
	4.2	Полнота алгоритма Эрли	27
	4.3	Оптимальный алгоритм и обоснование сложности	28

1 Автоматы и регулярные выражение

1.1 Про НКА

Недетерминированные конечные автоматы.

Определение 1.1.1. Алфавит - непустое конечное множество, элементы которого называются символами. Обозначение: Σ .

Замечание. Дополнительные обозначения.

- Σ^* множество слов, состоящее из всех символов алфавита Σ .
- ullet Формальный язык $L\subset \Sigma^*$.
- Пустое слово $\varepsilon \subset \Sigma^*$.

Определение 1.1.2. Конкатенацией языков L_1 и L_2 называется язык:

$$L_1L_2 := L_1 \cdot L_2 := \{uv \mid u \in L_1, v \in L_2\}$$

Определение 1.1.3. Недетерминированный конечный автомат – кортеж $M = \langle Q, \Sigma, \Delta, q_0, F \rangle,$ где:

- Q множество состояний, $|Q| < +\infty$.
- Σ алфавит.
- $\Delta \subset Q \times \Sigma^* \times Q$ множество переходов.
- $q_0 \in Q$ стартовое состояние.
- $F \subset Q$ множество завершающих состояний.

Определение 1.1.4. Конфигурация в автомате $M = \langle Q, \Sigma, \Delta, q_0, F \rangle$ – элемент $\langle q, w \rangle \in Q \times \Sigma^*$.

Определение 1.1.5. \vdash – наименьшее рефлексивное транзитивное отношение над $Q \times \Sigma^*$, такое, что:

$$\forall w \in \Sigma^* : (\langle q_1, w \rangle \to q_2) \in \Delta \Rightarrow \forall u \in \Sigma^* : \langle q_1, wu \rangle \vdash \langle q_2, u \rangle$$

Автоматные языки: примеры автоматных языков

Определение 1.1.6. Для автомата $M = \langle Q, \Sigma, \Delta, q_0, F \rangle$ языком, задаваемым автоматом, называется:

$$L(M) = \{ w \in \Sigma^* \mid \exists q \in F : \ \langle q_0, w \rangle \vdash \langle q, \varepsilon \rangle \}$$

Определение 1.1.7. Язык L называется **автоматным**, если существует такой НКА M, что L = L(M)

Пример. Постройте какой-нибудь простой автомат и докажите включение в обе стороны.

Различные варианты определений (упрощения НКА)

Утверждение 1.1.1. В определении автомата можно считать: $M = \langle Q, \Sigma, \Delta, q_0, F \rangle$, где |F| = 1.

Доказательство. Пусть $M = \langle Q, \Sigma, \Delta, q_0, F \rangle$ – исходный НКА.

Построим $M' = \langle Q \cup \{q_f\}, \Sigma, \Delta', q_0, \{q_f\} \rangle$, где:

$$\Delta' = \Delta \cup \{\langle q, \varepsilon \rangle \to q_f \mid q \in F\}$$

Покажем, что L(M) = L(M').

В начале покажем, что $L(M) \subset L(M')$:

- $w \in L(M) \Rightarrow \exists q \in F : \langle q_0, w \rangle \vdash \langle q, \varepsilon \rangle$
- $(\langle q, \varepsilon \rangle \to q_f) \in \Delta' \Rightarrow \langle q, \varepsilon \rangle \vdash_{M'} \langle q_f, \varepsilon \rangle$
- Значит $\langle q_0, w \rangle \vdash_{M'} \langle q, \varepsilon \rangle \vdash_{M'} \langle q_f, \varepsilon \rangle \Rightarrow w \in L(M')$

Теперь докажем обратное включение $L(M') \subset L(M)$:

- $w \in L(M') \Rightarrow \langle q_0, w \rangle \vdash_{M'} \langle q_f, \varepsilon \rangle$
- Рассмотрим цепь $\langle q_0, w \rangle \vdash_{M'} \langle q, u \rangle \vdash_{M', 1} \langle q_f, \varepsilon \rangle$
- Тогда $u = \varepsilon$, а $q \in F$ из того, как мы определили Δ' (других переходов в q_f не существует).
- Получили $\langle q_0, w \rangle \to q \Rightarrow w \in L(M)$.

Утверждение 1.1.2. Для любого автоматного языка L существует $HKA\ M = \langle Q, \Sigma, \Delta, q_0, F \rangle$, такой что $L = L(M)\ u$:

$$\forall (\langle q_1, w \rangle \to q_2) \in \Delta : |w| \leqslant 1$$

Доказательство. Разобьём все n-буквенные переходы на n однобуквенных переходов. \square

Утверждение 1.1.3. Для любого НКА $M = \langle Q, \Sigma, \Delta, q_0, F \rangle$ существует НКА $M' = \langle Q, \Sigma, \Delta', q_0, F' \rangle$, такой, что L(M) = L(M') и:

$$\forall (\langle q_1, w \rangle \to q_2) \in \Delta' : |w| = 1$$

Доказательство. Обозначим $\Delta(q,w)=\{q'|\langle q,w\rangle\vdash\langle q',\varepsilon\rangle\}$, то есть вершины, достижимые по слову w.

Тогда новое множество переходов определим, как:

$$\Delta' = \{ \langle q_1, a \rangle \to q_2 \mid \exists q_3 \in \Delta(q_1, \varepsilon) : (\langle q_3, a \rangle \to q_2) \in \Delta \}$$

Новым же множеством завершающих состояний будет:

$$F' = \{q' \mid \Delta(q', \varepsilon) \cap F \neq \varnothing\}$$

Покажем же теперь, что L(M) = L(M').

В начале докажем $L(M) \subset L(M')$. Тогда $\exists q \in F : \langle q_0, w \rangle \vdash \langle q, \varepsilon \rangle$. Б.О.О. будем считать, что $w = w_1 w_2, w_i \in \Sigma$. Тогда существует цепь:

- $\langle q_0, w_1 w_2 \rangle \vdash_M \langle q_1', w_1 w_2 \rangle$ перешли по цепочке эпсилонов, где q_1' альтер-эго q_3 из определения Δ' .
- $\langle q'_1, w_1 w_2 \rangle \vdash_{M, 1} \langle q_1, w_2 \rangle$ читаем символ w_1 .
- $\langle q_1, w_2 \rangle \vdash_M \langle q_2', w_2 \rangle$ аналогично проходимся по цепочке ε .
- $\langle q_2', w_2 \rangle \vdash_{M, 1} \langle q_2, \varepsilon \rangle$ читаем символ w_2 .
- $\langle q_2, \varepsilon \rangle \vdash_M \langle q, \varepsilon \rangle$

Теперь соберём из этих переходов из Δ переходы из Δ' :

$$\Delta(q_0, \varepsilon) = q_1', \langle q_1', w_1 \rangle \to q_1 \Rightarrow (\langle q_0, w_1 \rangle \to q_1) \in \Delta'$$

$$\Delta(q_1, \varepsilon) = q_2', \langle q_2', w_2 \rangle \to q_2 \Rightarrow (\langle q_1, w_2 \rangle \to q_2) \in \Delta'$$

$$F \ni q \in \Delta(q_2, \varepsilon) \Rightarrow q_2 \in F'$$

В итоге получим, что

$$\langle q_0, w_1 w_2 \rangle \vdash_{M'} \langle q_1, w_2 \rangle \vdash_{M'} \langle q_2, \varepsilon \rangle \Rightarrow w = w_1 w_2 \in L(M')$$

Покажем включение в обратную сторону $L(M') \subset L(M)$:

Пусть $w \in L(M') \Rightarrow \exists q' \in F': \langle q_0, w \rangle \vdash_{M'} \langle q', \varepsilon \rangle$. Из определения F' получим:

$$\exists q \in F : \ \Delta(q', \varepsilon) \ni q \Rightarrow \langle q', \varepsilon \rangle \vdash_M \langle q, \varepsilon \rangle$$

Рассмотрим $w=w_1\cdots w_k$. Тогда

$$\forall m \in \overline{1,k} \; \exists q_m : \; (\langle q_{m-1}, w_m \rangle \to q_m) \in \Delta' \quad (q_k := q')$$

Значит

$$\exists q'_{m-1} \in \Delta_M(q_{m-1}, \varepsilon), \langle q'_{m-1}, w_m \rangle \to q_m \Rightarrow \langle q_{m-1}, w_m \rangle \vdash_M \langle q_m, \varepsilon \rangle$$

Также найдём финальное состояние:

$$\exists q \in F : \langle q', \varepsilon \rangle \vdash_M \langle q, \varepsilon \rangle \Rightarrow \langle q_{k-1}, w_k \rangle \vdash_M \langle q, \varepsilon \rangle$$

Итоговая цепочка отношений имеет вид:

$$\langle q_0, w_1 \cdots w_k \rangle \vdash_M \langle q_1, w_2 \cdots w_k \rangle \vdash_M \langle q_2, w_3 \cdots w_k \rangle \cdots \langle q_k, \varepsilon \rangle \vdash_M \langle q, \varepsilon \rangle$$

Что даёт нам требуемое: $w \in L(M)$.

1.2 Про ДКА.

Детерминированные конечные автоматы (ДКА)

Определение 1.2.1. НКА $M = \langle Q, \Sigma, \Delta, q_0, F \rangle$ – детерминированный, если выполнено:

- $\forall (\langle q_1, w \rangle \to q_2) \in \Delta : |w| = 1$
- $\forall a \in \Sigma, q \in Q : |\Delta(q, a)| \leq 1$

Эквивалентность ДКА и НКА

Теорема 1.2.1. Для любого НКА $M = \langle Q, \Sigma, \Delta, q_0, F \rangle$ существует ДКА M' : L(M) = L(M').

Доказательство. Обозначим $\Delta(S, w) = \bigcup_{q \in S} \Delta(q, w), w \in \Sigma^*, S \subset Q$. Построим ДКА $M' = \langle 2^Q, \Sigma, \Delta', \{q_0\}, F' \rangle$, где:

- $F' = \{ S \subset Q \mid S \cap F \neq \emptyset \}$
- $\Delta' = \{ \langle S, a \rangle \to \Delta(S, a) \mid S \subset Q \}$

Лемма 1.2.1.

$$\Delta'(\{q_0\}, w) = \Delta(\{q_0\}, w)$$

Доказательство. Докажем индукцией по |w| с базой $w=\varepsilon$

- База:
 - $w = \varepsilon$
 - $\Delta(\{q_0\}, \varepsilon) = \{q_0\}$
 - $\Delta'(\{q_0\}, \varepsilon) = \{q_0\}$
- Переход:
 - $-w:=w'a, a\in\Sigma$
 - Рассмотрим тривиальную цепочку равенств:

$$\Delta(q_0, w'a) = \{q' \mid \langle q_0, w'a \rangle \vdash_M \langle q', \varepsilon \rangle\} = \{q' \mid \exists q'' : \langle q_0, w'a \rangle \vdash_M \langle q'', a \rangle \vdash_{M, 1} \langle q', \varepsilon \rangle\} =$$
$$= \{q' \mid \exists q'' \in \Delta(q_0, w') : \langle q'', a \rangle \vdash_{M, 1} \langle q', \varepsilon \rangle\} = \Delta(\Delta(q_0, w'), a)$$

— Воспользовавшись предположением индукции для слов длины 1 и n-1, а также свойством аддитивности множеств Δ , получим:

$$\Delta(\Delta(\{q_0\}, w'), a) = \Delta(\Delta'(\{q_0\}, w'), a) = \Delta'(\Delta'(\{q_0\}, w'), a) = \Delta'(\{q_0\}, w'a)$$

Теперь напомним, что $F' = \{S \subset Q \mid S \cap F \neq \varnothing\}$. Тогда, используя результат предыдущей леммы, очевидно, что следующие утверждения эквивалентны:

- $w \in L(M)$
- $\exists q \in F : \langle q_0, w \rangle \vdash_M \langle q, \varepsilon \rangle$
- $\Delta(q_0, w) \cap F \neq \emptyset$
- $\Delta'(\{q_0\}, w) \cap F \neq \emptyset$
- $\Delta'(\{q_0\}, w) \in F'$
- $w \in L(M')$

1.3 Про автоматные языки

Свойства класса автоматных языков. Замкнутость относительно булевых операций.

Определение 1.3.1. Итерацией Клини для языка L называется операция:

$$L^* = \bigcup_{k=0}^{\infty} L^k$$

Определение 1.3.2. Полный ДКА – ДКА, для которого выполнено:

$$\forall a \in \Sigma, q \in Q : |\Delta(q, a)| = 1$$

Теорема 1.3.1. Автоматные языки замкнуты относительно:

- Конкатенации
- Объединения
- Пересечения
- Итерации Клини
- Дополнения

Доказательство. В доказательстве используем определение автоматов с ровно одним завершающим состоянием.

Доказывается рукомаханиям с рисуночками автоматов:

- Конкатенация последовательным соединением
- Объединение параллельным соединением
- Строим декартово произведение автоматов с 1-буквенными переходами, объявляя завершающими состояниями те, которые являются завершающими по обеим координатам.
- Для итерации Клини замыкаем вход автомата с выходом, а также пробрасываем переход по ε из входа в выход.
- Для дополнения строим ПДКА и меняем завершающие состояние и незавершающие между собой!

1.4 Про регулярные выражения

Регулярные выражения

Определение 1.4.1. Определение рекурсивное:

$$egin{array}{c|c} \operatorname{RegExp} (\mathbf{R}) & \operatorname{Язык} \ L_i = L(R_i) \\ 0 & \varnothing \\ 1 & \varepsilon \\ a, a \in \Sigma & \{a\} \\ R_1 + R_2 & L_1 \cup L_2 \\ R_1 R_2 & L_1 L_2 \\ R^* & L^* \\ \end{array}$$

Приоритет операций: $* \rightarrow \cdot \rightarrow +$

Регулярный автомат, выводимость в регулярном автомате

Определение 1.4.2. Регулярный автомат – НКА, в котором на рёбрах записаны регулярные выражения. Докажем утверждение для регулярных автоматов.

Замечание. Всякий НКА задаётся регулярным автоматом с 1 завершающим состоянием.

Теорема Клини о совпадении классов регулярных и автоматных языков.

Теорема 1.4.1. *Множество регулярных языков совпадает с множеством автоматных языков.*

Доказательство. Регулярные ⊆ Автоматные.

Доказываем индукцией по построению выражения. База очевидна, переход также очевидно следует из замкнутости автоматных языков относительно операций, доказанной ранее.

Автоматные ⊆ Регулярные.

Доказываем индукцией по |Q| в регулярном автомате.

Алгоритм построения регулярного выражения по регулярному автомату.

• База:

• Для перехода будем удалять нестартовые и незавешающие состояния:

1.5 Про эквивалентные состояния ПДКА

Эквивалентность состояний в ПДКА

Определение 1.5.1. Пусть $L \subset \Sigma^*$ – автоматный язык, M – ПДКА для L. Тогда определим отношение \sim_L на Σ^* :

$$u \sim_L v \Leftrightarrow \forall w \in \Sigma^* : uw \in L \Leftrightarrow vw \in L$$

Доказательство. Проверим, что \sim_L – отношение эквивалентности:

- Рефлексивность: $uw \in L \Leftrightarrow uw \in L$
- Симметричность: $v \sim_L u$: $uw \in L \Leftrightarrow vw \in L$
- Транзитивность:

 $-u \sim_L v: uw \in L \Leftrightarrow vw \in L$

 $-v \sim_L s: vw \in L \Leftrightarrow sw \in L$

 $-uw \in L \Leftrightarrow sw \in L \Rightarrow u \sim_L s$

Определение 1.5.2. Определим \sim_M над ПДКА:

$$q_1 \sim_M q_2 \Leftrightarrow \forall w \in \Sigma^* : \Delta(q_1, w) \in F \Leftrightarrow \Delta(q_2, w) \in F$$

Эквивалентность слов по языку

Определение 1.5.3. Мы можем разбить язык Σ^* на классы эквивалентности по отношению \sim_L :

$$\Sigma^*/\sim_L:=\{\{u\mid u\sim_L v\}\mid v\in\Sigma^*\}$$

Оценка на минимальное количество состояний в ПДКА.

Лемма 1.5.1. Пусть $L_q := \{w \mid \Delta(q_0, w) = q\}$. Тогда каждый класс эквивалентности в Σ^*/\sim_L – объединение классов в L_q .

Доказательство. Пусть $u, v \in L_q \Rightarrow \Delta(q_0, u) = \Delta(q_0, v) = q$. Попробуем преобразовать множество достижимых вершин по произвольному слову w, используя это свойство:

$$\Delta(q_0, uw) = \Delta(\Delta(q_0, u), w) = \Delta(q, w) = \Delta(q_0, vw)$$

Рассмотрим цепочку эквивалентностей:

$$uw \in L \Leftrightarrow \Delta(q_0, uw) \in F \Leftrightarrow \Delta(q_0, vw) \in F \Leftrightarrow vw \in L$$

Что по определению даёт нам $u \sim_L v$.

Следствие. Получаем оценку снизу на количество вершин в автомате:

$$|\Sigma^*/\sim_L| \leqslant |Q|$$

1.6 Критерий минимальности количества состояний в ПДКА

Лемма 1.6.1. Для любого автоматного языка L существует ПДКА M', такой, что все состояния в M' попарно неэквивалентны

Доказательство. Построим автомат над классами $[q] \in Q/\sim_M$:

$$M' = \langle Q/\sim_M, \Sigma, \Delta', [q_0], F' \rangle$$

где:

- $\Delta' = \{\langle [q], a \rangle \to [\Delta(q, a)]\}$
- $\bullet \ F' = \{[q] \mid q \in F\}$

Необходимо доказать:

- Переходы согласованы
- Завершающие состояния согласованы
- Распознаваемые языки согласованы
- Состояния попарно неэквивалентны

Итак, приступим к доказательству каждого из пунктов:

Переходы согласованы, т.е. $q_1 \in [q] \Rightarrow \Delta(q_1, a) \in [\Delta(q, a)]$:

$$q_1 \in [q] \Rightarrow \forall w: \Delta(q_1,w) \in F \Leftrightarrow \Delta(q,w) \in F$$
 в том числе:
$$\forall w = au: \Delta(q_1,au) \in F \Leftrightarrow \Delta(q,au) \in F \Rightarrow \forall u: \Delta(\Delta(q_1,a),u) \in F \Leftrightarrow \Delta(\Delta(q,a),u) \in F \Rightarrow \Delta(q_1,a) \sim_M \Delta(q,a)$$

Завершающие состояния согласованы, т.е. $q_1 \in [q], q \in F \Rightarrow q_1 \in F$:

$$q_1 \in [q] \Rightarrow \forall w: \ \Delta(q_1,w) \in F \Leftrightarrow \Delta(q,w) \in F$$
 в том числе:
$$(\Delta(q_1,\varepsilon) = q_1) \in F \Leftrightarrow (\Delta(q,\varepsilon) = q) \in F$$

Совпадение языков, т.е. $\forall w: \ \Delta([q_0],w) = [\Delta(q_0,w)]$ индукцией по |w|:

- База уже доказана в предыдущих пунктах
- Пусть w = ua:

$$\Delta([q_0], ua) = \Delta(\Delta([q_0], u), a) = \Delta([\Delta(q_0, u)], a) = [\Delta(\Delta(q_0, u), a)] = [\Delta(q_0, ua)]$$

Тогда:

$$w \in L(M) \Leftrightarrow \Delta(q_0, w) \in F \Leftrightarrow \Delta([q_0], w) \in F' \Leftrightarrow w \in L(M')$$

Осталось показать, что все все состояния в получившемся автомате попарно неэквивалентны: пусть $[q_1] \sim_{M'} [q_2]$, тогда

$$\forall w: \ \Delta([q_1], w) \in F' \Leftrightarrow \Delta([q_2], w) \in F' \Rightarrow \forall w: \ [\Delta(q_1, w)] \in F' \Leftrightarrow [\Delta(q_2, w)] \in F' \Rightarrow \\ \forall w: \ \Delta(q_1, w) \in F \Leftrightarrow \Delta(q_2, w) \in F \Rightarrow \\ q_1 \sim_M q_2 \Rightarrow [q_1] = [q_2]$$

Теорема 1.6.1. M – минимальный $\Pi \not \perp KA$: $L(M) = L \Leftrightarrow \mathcal{I}$ нобые два состояния попарно неэквивалентны и все состояния достижимы из стартового

Доказательство. (\Rightarrow) Пусть M — минимальный ПДКА. Строим автомат Q/\sim_M : уменьшаем число состояний. Если в M есть недостижимое состояние, то удаляем его.

 (\Leftarrow) Из того, что в M нет эквивалентных состояний:

$$\forall w_1, w_2 \in \Sigma^* : \ \Delta(q_0, w_1) \not\sim \Delta(q_0, w_2) \Rightarrow \exists u : \ \Delta(\Delta(q_0, w_1), u) \not\in F, \Delta(\Delta(q_0, w_2), u) \in F \Rightarrow \exists u : \ \omega_1 u \not\in L, w_2 u \in L \Rightarrow w_1 \not\sim_L w_2$$

Тогда $|\Sigma^*/\sim_L|\geqslant |Q|$, но \forall ПДКА $M':|\Sigma^*/\sim_L|\leqslant |Q'|\Rightarrow |Q|\leqslant |Q'|\Rightarrow M$ — минимальный.

1.7 Про канонический ПДКА

Определение 1.7.1. M_1 и M_2 изоморфны, если существует биекция $\psi:\ Q_1 \to Q_2$:

- $\psi(q_0^1) = q_0^2$
- $\psi(F_1) = F_2$
- Если $\Delta(q_1, a) = q_2$, то $\Delta(\psi(q_1), a) = \psi(q_2)$

Канонический ПДКА - корректность построения

Канонический ПДКА для языка L определим, как Σ^*/\sim_L :

$$M_0 = \langle \Sigma^* / \sim_L, \Sigma, \Delta, [\varepsilon], \{ [w] \mid w \in L \} \rangle; \quad \Delta([u], a) = [ua], u \in \Sigma^*, a \in \Sigma$$

Для корректности необходимо показать:

- $u \sim_L v, u \in L \Rightarrow v \in L$
- $u \sim_L v \Rightarrow va \in [ua]$

--

Единственность минимального ПДКА

Лемма 1.7.1. Пусть M – минимальный ПДКА, тогда отображение ψ :

- $\psi: Q_M \to \Sigma^*/\sim_L$
- $\psi(q) = \{ w \mid \Delta_M(q_0, w) = q \}$

является изоморфизмом.

Доказательство. Необходимо доказать:

- $\psi(q_0) = [\varepsilon]$
- $\psi(F) = \{ [w] \mid w \in L \}$
- Если $\Delta(q_1, a) = q_2$, то $\Delta(\psi(q_1), a) = \psi(q_2)$

Докажем биективность ψ : $|\Sigma^*/\sim_L| = |Q_M| \Rightarrow$ достаточно доказать инъективность:

$$\psi(q_1) = \psi(q_2) \Rightarrow \exists w : \Delta(q_0, w) = q_1, \Delta(q_0, w) = q_2 \Rightarrow q_1 = q_2$$

Докажем согласованность стартовых состояний:

$$w\in \psi(q_0)\Rightarrow \Delta_M(q_0,w)=q_0$$
 но мы знаем, что:
$$\Delta_M(q_0,\varepsilon)=q_0\Rightarrow w\sim_L \varepsilon$$

Согласованность завершающих состояний:

$$w \in \psi(q), q \in F \Rightarrow \Delta_M(q_0, w) = q \Rightarrow w \in L \Rightarrow [w] \in F'$$

Осталось доказать согласованность переходов:

$$w \in \psi(q_1), \Delta(q_1, a) = q_2 \Rightarrow \Delta(q_0, w) = q_1 \Rightarrow \psi(q_1) = [w], \Delta([w], a) = [wa] \Rightarrow \Delta(q_0, wa) = \Delta(q_1, a) = q_2 \Rightarrow \psi(q_2) = [wa]$$

Теорема 1.7.1. МПДКА единственен с точностью до изоморфизма.

Доказательство. Пусть $M_1, M_2 - \Pi$ ДКА. Построим канонические изоморфизмы ψ_1, ψ_2 . Тогда $\psi_2^{-1} \circ \psi_1$ – изоморфизм M_1 в M_2 .

1.8 Алгоритмы проверок

Алгоритм проверки МПДКА на эквивалентность

Необходимо получить неэквивалентные состояния, но у нас есть только слова. Как по ним понять, какие состояния попарно неэвивалентны? Ввести эквивалентность по словам малой длины.

Определение 1.8.1. $q_1 \sim q_2$, если для любого слова $|w| \leqslant n$:

$$\Delta(q_1, w) \in F \Leftrightarrow \Delta(q_2, w) \in F$$

Лемма 1.8.1.

$$q_1 \sim q_2 \Leftrightarrow q_1 \underset{|Q|-2}{\sim} q_2$$

Доказательство. Покажем, если $|Q/\sim |=|Q/\sim |$, то $|Q/\sim |=|Q/\sim |$. Очевидно, что $|Q/\sim |\leqslant |Q/\sim |$. По определению эквивалентности $q_1\sim q_2$:

$$\forall w = au, |w| \leqslant i + 2 : \Delta(q_1, au) \in F \Leftrightarrow \Delta(q_2, au) \in F \Rightarrow$$

$$\forall a \in \Sigma : \Delta(q_1, a) \underset{i+1}{\sim} \Delta(q_2, a) \overset{|Q/\sim_i| = |Q/\sim_{i+1}|}{\Rightarrow}$$

$$\forall a \in \Sigma : \Delta(q_1, a) \underset{i}{\sim} \Delta(q_2, a) \Rightarrow q_1 \underset{i+1}{\sim} q_2$$

Теперь понятно, что, если $|Q/\underset{i}{\sim}|=|Q/\underset{i+1}{\sim}|,$ то $|Q/\underset{i}{\sim}|=|Q/\sim|$

Заметим, что $|Q/\sim_0|=|\{F,Q\setminus F\}|=2$, но $|Q/\sim_i|$ неубывает и стабилизируется \Rightarrow

$$|Q/\sim_i| \leqslant |Q/\sim| \leqslant |Q|$$

Теорема Майхилла-Нероуда

Теорема 1.8.1. L – автоматный $\Leftrightarrow L$ содержит конечное количество классов эквивалентности Σ^*/\sim_L

Доказательство. $\bullet \Rightarrow L$ – автоматный, тогда $|\Sigma^*/\sim_L|\leqslant |Q|<+\infty$

• \Leftarrow построим канонический МПДКА.

1.9 Лемма о разрастании

Лемма о разрастании для автоматных языков

Лемма 1.9.1. Пусть L – автоматный язык. Тогда

$$\exists P \ \forall w \in L: \ |w| \geqslant P \ \exists x,y,z: \ w = xyz, |xy| \leqslant P, |y| \neq 0: \ \forall k \geqslant 0: \ xy^kz \in L$$

Доказательство. Построим M – HKA с 1-буквенными переходами: L(M) = L. Тогда P := |Q|. Если $|w| \geqslant P \Rightarrow$ посетили $\geqslant P + 1$ состояние.

Значит $\exists q \in Q$, которую посетили дважды, значит мы можем ходить по этому циклу любое k число раз. \square

Пример неавтоматных языков

Пример.

$$L = \{a^n b^n \mid n \in \mathbb{N}\}$$

Доказательство. Неавтоматность доказывается отрицанием леммы о разрастании.

2 КС-грамматики и МП-автоматы

2.1 Про порождающие грамматики

Порождающие грамматики

Определение 2.1.1. Порождающая грамматика $G = \langle N, \Sigma, P, S \rangle$, где:

- N множество вспомогательных символов, $|N|<+\infty$
- Σ алфавит множество терминальных символов, $|\Sigma| < +\infty, N \cap \Sigma = \varnothing$
- $S \in N$ стартовый нетерминал
- $P \subset ((N \cup \Sigma)^+ \setminus \Sigma^*) \times (N \cup \Sigma)^*$

Язык, задаваемый грамматикой

Определение 2.1.2. Отношением выводимости \vdash_G называется наименьшее рефлексивное транзитивное отношение:

$$\forall (\alpha \to \beta) \in P, \forall \varphi, \psi \in (N \cup \Sigma)^* : \varphi \alpha \psi \vdash_G \varphi \beta \psi$$

Определение 2.1.3. w выводимо в грамматике $G = \langle N, \Sigma, P, S \rangle$, если $S \vdash_G w$

Определение 2.1.4. Языком L, порождённым грамматикой G называется:

$$L(G) = L = \{ w \mid S \vdash_G w \}$$

Иерархия Хомского порождающих грамматик

Разграничим грамматики по виду правил:

- 1. Порождающие грамматики: любые правила
- 2. Контекстно-зависимые грамматики: $\varphi A \psi \to \varphi \alpha \psi, \alpha \neq \varepsilon$
- 3. Контекстно-свободные грамматики: $A \to \alpha$
- 4. Праволинейные грамматики: $A \to wB, A \to w$

При этом:

- $A \in N, B \in N$ нетерминальные символы
- $\alpha, \varphi, \psi \in (N \cup \Sigma)^*$

2.2 Про праволинейные грамматики

Праволинейные языки

Теорема 2.2.1. Множество автоматных языков равно множеству языков, задаваемых праволинейными грамматиками.

Доказательство. Состояние в автомате – нетерминалы в грамматике + сток

Построение праволинейной грамматики по конечному автомату

Пусть $M = \langle Q, \Sigma, \Delta, q_0, F \rangle$. Построим $G = \langle Q, \Sigma, P, q_0 \rangle$, где:

$$P = \{q_1 \to wq_2 \mid (\langle q_1, w \rangle \to q_2) \in \Delta\} \bigcup \{q \to \varepsilon \mid q \in F\}$$

Доказательство. Надо доказать два утверждения:

1.
$$\langle q_1, w \rangle \vdash_M \langle q_2, \varepsilon \rangle \Leftrightarrow q_1 \vdash_G wq_2$$

2.
$$\langle q_1, w \rangle \vdash_M \langle q, \varepsilon \rangle, q \in F \Leftrightarrow q_1 \vdash_G w$$

В начале докажем \Rightarrow для обоих пунктов.

Первый пункт доказывается индукцией по длине вывода в M.

• База индукции – 0 шагов:

$$\langle q_1, w \rangle \vdash_M \langle q_2, \varepsilon \rangle \Rightarrow q_1 = q_2, w = \varepsilon \Rightarrow q_1 \vdash_G \varepsilon q_2$$

• Для перехода представим произвольное слово $w=vu,u\in\Sigma$:

$$\langle q_1, w \rangle \vdash_M \langle q_3, v \rangle \vdash_{M, 1} \langle q_2, \varepsilon \rangle \Rightarrow q_1 \vdash_G uq_3, q_3 \vdash_G vq_2 \Rightarrow q_1 \vdash_G uvq_2 = wq_2$$

Теперь второй пункт:

$$\langle q_1, w \rangle \vdash_M \langle q, \varepsilon \rangle, q \in F \Rightarrow q_1 \vdash_G wq, (q \to \varepsilon) \in P \Rightarrow q_1 \vdash_G w$$

Теперь ← для обоих пунктов:

Первый тоже докажем индукцией по длине вывода в GЖ

• База индукции 0 шагов:

$$q_1 \vdash_{G,0} wq_2 \Rightarrow q_1 = q_2, w = \varepsilon \Rightarrow \langle q_1, \varepsilon \rangle \vdash_M \langle q_2, \varepsilon \rangle$$

• Для перехода опять разложим $w = vu, u \in \Sigma$:

$$q_1 \vdash_G vq_3 \vdash_G wq_2 \Rightarrow \langle q_1, v \rangle \vdash_M \langle q_3, \varepsilon \rangle, \langle q_3, u \rangle \vdash_M \langle q_2, \varepsilon \rangle \Rightarrow \langle q_1, vu \rangle \vdash_M \langle q_3, u \rangle \vdash_{M, 1} \langle q_2, \varepsilon \rangle$$

Второй пункт:

$$q_1 \vdash_G wq \vdash_{G,1} w \Rightarrow \langle q_1, w \rangle \vdash_M \langle q, \varepsilon \rangle, q \vdash_{G,1} \varepsilon \Rightarrow q \in F$$

После доказательства двух пунктов нам становится очевидно, что следующие утверждения эквивалентны:

- $w \in L(M)$
- $\exists q \in F : \langle q_0, w \rangle \vdash \langle q, \varepsilon \rangle$
- $q_0 \vdash_G w$
- $w \in L_G$

2.3 Построение конечного автомата по праволинейной граммати-

Строим автомат:

$$M = \langle S \cup \{q_f\}, \Sigma, \Delta, S, \{q_f\} \rangle$$

Переходы:

1.
$$\langle A, w \rangle \to B$$
, если $(A \to wB) \in P$

2.
$$\langle A, w \rangle \to q_f$$
, если $(A \to w) \in P$

Доказательство. Надо доказать два утверждения:

1.
$$\langle A, w \rangle \vdash_M \langle M, \varepsilon \rangle \Leftrightarrow A \vdash_G wB; A, B \in N$$

2.
$$\langle A, w \rangle \vdash_M \langle q_f, \varepsilon \rangle \Leftrightarrow A \vdash_G w$$

В начале докажем \Rightarrow для обоих пунктов:

Первый будем доказывать по индукции:

• База индукции – 0 шагов:

$$\langle A, w \rangle \vdash_{M,0} \langle B, \varepsilon \rangle \Rightarrow A = B, w = \varepsilon \Rightarrow A \vdash_G \varepsilon B$$

• Для перехода представим произвольное слово $w=vu,u\in\Sigma$:

$$\langle A, w \rangle \vdash_M \langle C, u \rangle \vdash_{M,0} \langle B, \varepsilon \rangle \Rightarrow A \vdash_G vC, C \vdash_G uB \Rightarrow A \vdash_G vuB = wB$$

Теперь второй пункт для произвольного w = vu:

$$\langle A, v \rangle \vdash_M \langle C, u \rangle \vdash_{M, 1} \langle q_f, \varepsilon \rangle \Rightarrow A \vdash_G vC, C \vdash_G u \Rightarrow A \vdash_G vu = w$$

Перейдём к доказательству ← для обоих пунктов:

Первый пункт также будет доказан по индукции:

• База – 0 шагов:

$$A \vdash_{G \cap W} B \Rightarrow w = \varepsilon, A = B \Rightarrow \langle A, \varepsilon \rangle \vdash_{M} \langle B, \varepsilon \rangle$$

• Переход для произвольного w = uv:

$$A \vdash_G uC \vdash_{G,1} uvB \Rightarrow \langle A, u \rangle \vdash_M \langle C, \varepsilon \rangle, \langle C, v \rangle \vdash_M \langle B, \varepsilon \rangle \Rightarrow \langle A, uv \rangle \vdash_M \langle B, \varepsilon \rangle$$

Второй пункт для w = uv:

$$A \vdash_G uC \vdash_{G,1} uv \Rightarrow \langle A, u \rangle \vdash_M \langle C, \varepsilon \rangle, \langle C, v \rangle \vdash \langle q_f, \varepsilon \rangle \Rightarrow \langle A, uv \rangle \vdash_M \langle q_f, \varepsilon \rangle$$

После доказанных двух пунктов становится очевидным эквивалентность данных утверждений:

- $w \in L(M)$
- $\langle S, w \rangle \vdash_M \langle q_f, \varepsilon \rangle$
- $S \vdash_G w$
- $w \in L(G)$

2.4 Про КС-грамматики

Примеры контекстно-свободных языков

Пример.

$$S \to aSb$$
$$S \to \varepsilon$$

Задаёт неавтоматный язык $\{a^nb^n \mid n \in \mathbb{N}\}$

Замкнутость КС-языков относительно простейших операций

Утверждение 2.4.1. $L_1 \cup L_2$ является KC-языком

Доказательство. Построим КС-грамматику для языка $L_1 \cup L_2$. Для этого рассмотрим соответствующие грамматики для L_1, L_2 . Пусть стартовые символы в них имеют имена S и T. Тогда стартовый символ для $L_1 \cup L_2$ обозначим за S' и добавим правило $S' \to S \mid T$. Покажем, что $S' \vdash_G w \Leftrightarrow S \vdash_G w \lor T \vdash_G w$.

- \Leftarrow : Поскольку $S \vdash_G$ и есть правило $S' \vdash_G S$, то по транзитивности выводимости получаем, что $S' \vdash_G w$. Аналогично и для T.
- \Rightarrow : Пусть $S' \vdash_G w$. Поскольку $S' \vdash S \mid T$ единственные правила, в которых нетерминал S' присутствует в левой части, то это означает, что либо $S' \vdash_G S \vdash_G w$, либо $S' \vdash_G T \vdash_G w$.

Утверждение 2.4.2. L_1L_2 – *КС-язык*

Доказательство. Аналогично предыдущему случаю построим КС-грамматику для языка L_1L_2 . Для этого добавим правило $S' \vdash_G ST$, где S и T – стартовые символы языков L_1 и L_2 соответственно.

Утверждение 2.4.3. $L^* = \bigcup_{i=0}^{\infty} L^i - KC$ -язык.

Доказательство. Если S – стартовый символ КС-грамматики для языка L, то добавим в КС-грамматику для языка L^* новый стартовый символ S' и правила S' ⊢ $_G$ SS' | ε

2.5 Удаление непорождающих и недостижимых символов в алгоритме примедения к нормальной форме Хомского. Асимптотика приведённых шагов.

Удаление непорождающих символов

Определение 2.5.1. Символ $Y \in N$ называется **порождающим**, если:

$$\exists w \in \Sigma^*: \ Y \vdash w$$

Удаляем непорождающие символы Z и все правила, содержащие символы Z – получаем G_1 .

Утверждение 2.5.1.

$$L(G) = L(G_1)$$

Доказательство. Включение $L(G_1) \subset L(G)$ очевидно, так как мы удалили нетерминалы, которые никак не влияли на вывод слов, поэтому язык не уменьшился.

Докажем $L(G) \subset L(G_1)$. Пусть $w \in L(G) \setminus L(G_1)$.

Тогда существует непорождающий $Z: S \vdash \alpha Z\beta \vdash w$. Тогда если $w = w_1 u w_2 : \alpha \vdash w_1, Z \vdash u, \beta \vdash w_2 \Rightarrow Z$ – порождающий, противоречие.

Удаление недостижимых символов

Определение 2.5.2. Символ $D \in N$ называется **достижимым**, если существуют некоторые $\varphi, \psi \in (N \cup \Sigma)^*$, такие, что:

$$S \vdash \varphi D \psi$$

Удаляем все недостижимые символы и все содержащие их правила – получаем G_2 .

Утверждение 2.5.2.

$$L(G_1) = L(G_2)$$

Доказательство. Включение $L(G_2) \subset L(G_1)$ очевидно, так как удалили все нетерминалы, которые не участвовали в выводе, поэтому язык не уменьшился.

Теперь докажем
$$L(G_1) \subset L(G_2) \Rightarrow \exists w \in L(G_1) \setminus L(G_2) \Rightarrow$$
 существует недостижимый $U: S \vdash \alpha U\beta \vdash w \Rightarrow U$ – достижимый. Противоречие.

Утверждение 2.5.3. $B G_2$ не появилось непорождающих символов.

Доказательство. Пусть B стал новым непорождающим в G_2 . Тогда:

- B был достижимым в G_1 .
- B был порождающим в $G: B \vdash_G u$

На пути вывода $B \vdash u$ был недостижимый символ C. Но, тогда строим пусть $S \to B \to C$ – противоречие!

Асимптотика приведённых шагов (в терминах изначальной грамматики)

- 1. Для поиска непорождающих нетерминалов требуется запустить |N| BFS-ов. Сложность O(|N|(|N|+|E|))
- 2. Для поиска недостижимых нетерминалов требуется запустить один BFS из S. Сложность O(|N|+|E|)

2.6 Удаление длинных, смешанных правил и eps-порождающих символов. Асимптотика приведённых шагов.

Удаление длинных правил

Сделаем замену:

$$B \to A_1 A_2 \cdots A_n$$

на:

$$B \to A_1 B_1$$

$$B_1 \to A_2 B_2$$

$$\cdots$$

$$B_{n-2} \to A_{n-1} A_n$$

Получим грамматику G_3 .

Замечание. Если в дереве вывода G_3 появился B_k , то в нём появятся все правила, в левых и правых частях которых есть B_1, \cdots, B_{n-2} .

Удаление смешанных правил

Сделаем замену:

$$A \rightarrow A_1 b A_2 d$$

на

$$A \to A_1 B A_2 D$$
$$B \to b$$
$$D \to d$$

Получим грамматику G_4 .

Удаление eps-порождающих

Определение 2.6.1. Символ E называется ε -порождающим, если $E \vdash \varepsilon$.

Сделаем замену:

- Добавим правило $A \to B$, если $A \to BC$, $C \vdash \varepsilon$.
- Добавим правило $A \to C$, если $A \to BC, B \vdash \varepsilon$.
- Удалим правила $A \to \varepsilon$.

Получим грамматику G_5 .

Утверждение 2.6.1.

$$L(G_4) = L(G_5)$$

Доказательство. $L(G_4) \subset L(G_5)$ докажем индукцией по длине вывода:

- База 1 шаг: $w = a, (A \to a) \in P_{G_5}$
- Переход $A \vdash_{G_4, 1} \alpha \vdash_{G_4} w$

$$-\alpha = B \Rightarrow (A \rightarrow B) \in P_{G_5}$$
.

$$-\alpha = BC \Rightarrow B \vdash_{G_4} w_1, C \vdash_{G_4} w_2.$$

— Если $w_1 \neq \varepsilon, w_2 \neq \varepsilon$ — применяем переход для B, C.

– Если
$$w_1 = \varepsilon$$
: $A \vdash_{G_5, 1} C \vdash_{G_5} w_2 = w$

 $L(G_5) \subset L(G_4)$ также докажем индукцией по длине вывода:

- База 1 шаг: $w = a, (A \to a) \in P_{G_4}$
- Переход $A \vdash_{G_5, 1} B \vdash_{G_5} w$:

$$- (A \to B) \in P_{G_4} \Rightarrow A \vdash_{G_4, 1} B \vdash_{G_4} w$$

$$- (A \to BC) \in P_{G_4}, C \vdash_{G_4} \varepsilon \Rightarrow A \vdash_{G_4, 1} BC \vdash w\varepsilon = w$$

Асимптотика приведённых шагов (в терминах изначальной грамматики)

- 1. Сложность удаления длинных правил $O(|P| \max_{p \in P} |p|)$.
- 2. Сложность удаления смешанных правил можно оценить также.
- 3. Сложность удаления ε -порождающих нетерминалов можно оценить, как O(|P|h), где h максимальная глубина вывода ε для изначальной грамматики.

2.7 Обработка стартового состояния и удаление цепных правил. Асимптотика приведённых шагов.

Обработка стартового состояния

Мы доказали $L(G_5) = L(G_4) \setminus \{\varepsilon\}$:

- \bullet Заводим новый нетерминал S', делаем его стартовым
- Добавляем правило $S' \to S$
- Если $S \vdash \varepsilon$, то добавляем $S' \to \varepsilon$

Получили грамматику $L(G_6)$.

Удаление цепных правил

Сделаем транзитивное замыкание:

$$B \to B_1 \to B_2 \to \cdots \to B_n \to CD \mid a$$

заменим на:

$$B \to CD \mid a$$

Дополнительно удалим правила вида $A \to B$.

Получили грамматику $L(G_7)$.

Утверждение 2.7.1.

$$L(G_6) = L(G_7)$$

Доказательство. Полностью аналогично доказательству после удаления ε -порождающих.

Асимптотики

- 1. Для обработки стартового состояния нужно понять, было ли оно ε -порождающим, то есть достаточно запустить BFS и проверить, дошли ли мы до правила, содержащего ε в правой части O(|N|+|P|)
- 2. Для удаления цепных правил требуется транзитивное замыкание, которое можно построить, используя алгоритм Флойда-Фалкерсона: $O(h^3)$, где h максимальная глубина вывода.

2.8 Алгоритм Кока-Янгера-Касами синтаксического разбора для КС-грамматик

Алгоритм построен на динамике по подотрезкам: заведём массив $d[A][i,j] = \mathbb{I}(A \vdash w[i:j])$, очевидно, что $w \in L(G) \Leftrightarrow d[S][0,|w|] = \text{True}$ Индукция по длине слова:

- $A \vdash w[i:j]$. Тогда существуют $B,C:A \vdash_1 BC, B \vdash w[i:k], C \vdash w[k:j] \Rightarrow d[B][i:k] =$ True, d[C][k:j] = True
- d[A][i:j] = True. Тогда для некоторого midPosition сработал переключатель (см. код алгоритма). Делаем индукционный переход.

Асимптотика алгоритма – $O(|N|^3 \cdot |P|)$

2.9 Лемма о разрастании для КС-языков

Лемма о разрастании для КС-языков

Лемма 2.9.1. Пусть L - KC-язык. Тогда

$$\exists p: \ \forall w \in L: \ |w| \geqslant p: \ \exists x, u, y, v, z \in \Sigma^*: \ w = xuyvz: \\ |uv| > 0, |uyv| \leqslant p: \ \forall k \geqslant 0: \ xu^k yv^k z \in L$$

Доказательство. Рассмотрим грамматику G в нормальном форме Хомского: L=L(G). Каждый уровень дерева вывода увеличивает длину слова не более, чем вдвое. Если $p=2^{|N|}$, то $|w|\geqslant p\geqslant 2^{|N|}$. Тогда глубина дерева разбора более |N| – воспользуемся принципом Дирихле.

Найдётся такой нетерминал A:

$$S \vdash xAz \vdash xuAvz \vdash xuyvz; \quad A \vdash uAv$$

Среди таких A рассмотрим такое, что его глубина относительно корня наибольшая. Тогда $|uyv| \leq 2^{|N|} = p$ (иначе были бы повторения)

Пример не КС-языка

Пример. Язык

$$\{a^n b^n c^n \mid n \in \mathbb{Z}^+\}$$

не является КС-языком.

Доказательство. Воспользуемся отрицанием леммы о разрастании.

2.10 МП-автомат

Определение 2.10.1. Автомат с магазинной памятью – МП-автомат:

- ullet Q множество состояний, $|Q|<+\infty$
- Σ алфавит, $|\Sigma| < +\infty$
- Γ стековый алфавит, $|\Gamma| < +\infty, \Gamma \cap \Sigma = \varnothing$
- $\bullet \ \ \Delta \subset (Q \times \Sigma^* \times \Gamma^*) \times (Q \times \Gamma^*), |\Delta| < +\infty$
- $q_0 \in Q$ стартовое состояние.
- $F \subset Q$ множество завершающих состояний.

Определение 2.10.2. Конфигурацией в МП-автомате называется тройка $\langle q, u, \gamma \rangle \in Q \times \Sigma^* \times \Gamma^*$.

Определение 2.10.3. ⊢ – наименьшее рефлексивное транзитивное отношение, что

$$\forall \langle q_1, u, \theta \rangle \to \langle q_2, \beta \rangle \in \Delta : \forall v \in \Sigma^*, \eta \in \Gamma^* \langle q_1, uv, \eta \alpha \rangle \vdash \langle q_2, v, \eta \beta \rangle$$

Определение 2.10.4. Языком, распознаваемым МП-автоматом, называется

$$L(M) = \{ w \in \Sigma^* \mid \exists q \in F : \langle q_0, w, \varepsilon \rangle \vdash \langle q, \varepsilon, \varepsilon \rangle \}$$

Утверждение 2.10.1. Для любого $M\Pi$ -автомата существует эквивалентный $M\Pi$ -автомат, для которого выполнено соотношение:

$$\forall \langle q_1, u, \alpha \rangle \to \langle q_2, \beta \rangle \in \Delta : |u| \leqslant 1, |\alpha| + |\beta| \leqslant 1$$

Доказательство. Действие "считать n букв со входа "растягиваем в "считать n раз 1 букву со входа".

Действие "снять со стека n букв и положить на него m букв "растягиваем в "снять n раз со стека 1 букву, положить m раз на стек 1 букву".

Утверждение 2.10.2. Для любого $M\Pi$ -автомата существует эквивалентный $M\Pi$ -автомат, для которого выполнено соотношение:

$$\forall \langle q_1, u, \alpha \rangle \to \langle q_2, \beta \rangle \in \Delta : |u| \leq 1, |\alpha| + |\beta| = 1$$

Доказательство. Аналогично предыдущему утверждению, однако останутся переходы

$$\langle q_1, w, \varepsilon \rangle \to \langle q_2, \varepsilon \rangle \in \Delta$$

Вводим dummy стековый элемент T и превращаем переход выше в два последовательных перехода

$$\langle q_1, w, \varepsilon \rangle \to \langle q', T \rangle, \langle q', \varepsilon, T \rangle \to \langle q_2, \varepsilon \rangle$$

2.11 Построение МП-автомата по КС-грамматике

Теорема 2.11.1. Для любой KC-грамматики G существует $M\Pi$ -автомат M:

$$L(M) = L(G)$$

Доказательство. Пусть $G = \langle N, \Sigma, P, S \rangle$, определим автомат

$$M = \langle \{q_0, q_1\}, \Sigma, N \cup \Sigma, \Delta, q_0, \{q_1\} \rangle$$

причём Δ состоит из правил:

- $\langle q_0, \varepsilon, S \rangle \to \langle q_1, \varepsilon \rangle$
- $\langle q_0, \varepsilon, \alpha \rangle \to \langle q_0, A \rangle$, если $A \to \alpha \in P$
- $\langle q_0, a, \varepsilon \rangle \to \langle q_1, a \rangle, a \in \Sigma$

Хотим доказать, что

$$\alpha \vdash w \Leftrightarrow \langle q_0, w, \varepsilon \rangle \vdash_M \langle q_0, \varepsilon, \alpha \rangle$$

Вначале для ⇒:

Индукция по длине вывода:

- База $\alpha \vdash_0 w$. Тогда $\alpha = a = w \Rightarrow \langle q_0, a, \varepsilon \rangle \vdash \langle q_0, \varepsilon, a \rangle$ по третьему типу правил.
- Для перехода рассмотрим $A \vdash_1 \alpha_1 \cdots \alpha_k \vdash w_1 \cdots w_k = w$, где α_i нетерминалы, а w_i ерминалы
- По предположению, $\langle q_0, w_i, \varepsilon \rangle \vdash \langle q_0, \varepsilon, \alpha_i \rangle$
- Тогда

$$\langle q_0, w_1 \cdots w_k, \varepsilon \rangle \vdash \langle q_0, w_2 \cdots w_k, \alpha_1 \rangle \vdash \cdots \vdash \langle q_0, \varepsilon, \alpha_1 \cdots \alpha_k \rangle \vdash \langle q_0, \varepsilon, A \rangle$$

Теперь ⇐:

Индукция по длине вывода:

- База: 1 шаг
 - $-\langle q_0, a, \varepsilon \rangle \vdash \langle q_0, \varepsilon, a \rangle \Rightarrow a \vdash a$
 - $-\langle q_0, \varepsilon, \varepsilon \rangle \vdash \langle q_0, \varepsilon, A \rangle \Rightarrow A \rightarrow \varepsilon \in P$
- Переход: $\langle q_0, w, \varepsilon \rangle \vdash \langle q_0, \varepsilon, \alpha_1 \cdots \alpha_k \rangle \vdash_1 \langle q_0, \varepsilon, A \rangle$
 - При этом $A \to \alpha_1 \cdots \alpha_k \in P$
 - Найдём момент, когда на стеке появится α_1 : $\langle q_0, w, \varepsilon \rangle \vdash \langle q_0, w', \alpha_1 \rangle$
 - Тогда $w=u_1w'$, причём $\langle q_0,u_1,\varepsilon\rangle\vdash\langle q_0,\varepsilon,\alpha_1\rangle$. Тогда $\alpha_1\vdash u_1$.
 - Аналогично, $\alpha_j \vdash u_j$ и $A \vdash \alpha_1 \cdots \alpha_k \vdash w$

Для доказательства совпадения языков остаётся заметить эквивалентность следующих фактов:

- $w \in L(M)$
- $\langle q_0, w, \varepsilon \rangle \vdash \langle q_1, \varepsilon, \varepsilon \rangle$
- $\langle q_0, w, \varepsilon \rangle \vdash \langle q_0, \varepsilon, S \rangle \vdash \langle q_1, \varepsilon, \varepsilon \rangle$
- $S \vdash w$
- $w \in L(G)$

3 Построение КС-грамматики по МП-автомату

Теорема 3.0.1. Каждому МП-автомату M соответствует KC-грамматика G:

$$L(M) = L(G)$$

Доказательство. Определим множество нетерминалов N, как

$$N = \{A_{ij} \mid q_i, q_j \in Q\} \cup S$$

Правила будем строить так:

- $A_{ij} \to u A_{st} v A_{rj}$, если $\langle q_i, u, \varepsilon \rangle \to \langle q_s, A \rangle$ $\langle q_t, v, A \rangle \to \langle q_r, \varepsilon \rangle$
- $A_{ij} \to \varepsilon$
- $S \to A_{0j}$, если $q_j \in F$

Хотим показать, что

$$A_{ij} \vdash w \Leftrightarrow \langle q_i, w, \varepsilon \rangle \vdash \langle q_i, \varepsilon, \varepsilon \rangle$$

В начале ⇒:

- База: $A_{ij} \vdash_1 w$. Тогда $w = \varepsilon, i = j$. Значит, $\langle q_i, w, \varepsilon \rangle \vdash \langle q_j, \varepsilon, \varepsilon \rangle$
- Переход: $A_{ij} \vdash_1 uA_{st}vA_{rj} \vdash uzvy$
 - По построению $\langle q_i, u, \varepsilon \rangle \to \langle q_s, A \rangle$, $\langle q_t, v, A \rangle \to \langle q_r, \varepsilon \rangle$
 - По предположению: $A_{st} \vdash z \Rightarrow \langle q_s, z, \varepsilon \rangle \vdash \langle q_t, \varepsilon, \varepsilon \rangle$ и $A_{rj} \vdash y \Rightarrow \langle q_r, y, \varepsilon \rangle \vdash \langle q_j, \varepsilon, \varepsilon \rangle$
 - Тогда в итоге

$$\langle q_i, w, \varepsilon \rangle \vdash \langle q_i, uzvy, \varepsilon \rangle \vdash \langle q_s, zvy, A \rangle \vdash \langle q_t, vy, A \rangle \vdash \langle q_r, y, \varepsilon \rangle \vdash \langle q_j, \varepsilon, \varepsilon \rangle$$

Теперь для ⇐:

- База: $\langle q_i, w, \varepsilon \rangle \vdash_0 \langle q_j, \varepsilon, \varepsilon \rangle$. Тогда $i = j, w = \varepsilon, A_{ii} \to \varepsilon$
- Переход: $\langle q_i, w, \varepsilon \rangle \vdash \langle q_j, \varepsilon, \varepsilon \rangle$

- Идя по цепочке вывода, $\exists w = uzvy$, причём

$$\langle q_i, w, \varepsilon \rangle \vdash \langle q_i, uzvy, \varepsilon \rangle \vdash \langle q_s, zvy, A \rangle \vdash \langle q_t, vy, A \rangle \vdash \langle q_r, y, \varepsilon \rangle \vdash \langle q_j, \varepsilon, \varepsilon \rangle$$

- По предположению: $A_{st} \vdash z \Leftarrow \langle q_s, z, \varepsilon \rangle \vdash \langle q_t, \varepsilon, \varepsilon \rangle$ и $A_{rj} \vdash y \Leftarrow \langle q_r, y, \varepsilon \rangle \vdash \langle q_j, \varepsilon, \varepsilon \rangle$
- Тогда

$$A_{ij} \vdash uA_{st}vA_{rj} \vdash uzvy = w$$

Для доказательства теоремы заметим эквивалентность следующих утверждений:

- $w \in L(G)$
- \bullet $S \vdash w$
- $\exists q_j \in F : S \vdash A_{0j} \vdash w$
- $\exists q_i \in F : \langle q_0, w, \varepsilon \rangle \vdash \langle q_i, \varepsilon, \varepsilon \rangle$
- $w \in L(M)$

3.1 Нормальная форма ГРейбах для КС-грамматик

Определение 3.1.1. КС-грамматика находится в нормальной форме Грейбах, если все правила имеют такой и только такой вид:

- $A \to a, a \in \Sigma$
- $A \rightarrow aB, A \in \Sigma; B \in N; B \neq S$
- $A \to aBC, A \in \Sigma; B, C \in N; B, C \neq S$
- $S \to \varepsilon$

Теорема 3.1.1. Любая KC-грамматика может быть представима в $H\Phi$ Грейбах

Доказательство. Определим оператор левого деления

$$B \setminus A := \{ w \in \Sigma^* \mid \exists x \in B : xw \in A \}$$

По исходной грамматике $G = \langle N, \Sigma, P, S \rangle$ построим

$$G_q = \langle \{S\} \cup \{B \setminus A \mid A, B \in N\}, \Sigma, P_q, S \rangle$$

Как будут выглядеть правила новой грамматики?

- $S \to a(A \setminus S)$, если $A \to a$
- $A \setminus A \to \varepsilon, A \in N$
- $B \setminus A \to e(E \setminus D)(C \setminus A)$, если $C \to BD$ и $E \to e$

По сути, должны доказать

$$B \setminus A \vdash w \Leftrightarrow A \vdash Bw$$

В начале ⇒:

Индукция по длине вывода

- База: $B \setminus A \vdash_1 w$. Тогда $A = B, w = \varepsilon$. Значит, $A \vdash A\varepsilon$.
- Переход: $B \setminus A \vdash_1 e(E \setminus D)(C \setminus A) \vdash euv$.
 - По предположению: $E \setminus D \vdash u \Rightarrow D \vdash Eu, C \setminus A \vdash v \Rightarrow A \vdash Cv$
 - По условию $C \vdash BD$
 - $-A \vdash Cv \vdash BDv \vdash BEuv \vdash Beuv \vdash Bw$

Теперь ⇐:

Индукция по длине вывода:

- База: $A \vdash_0 Bw$. Тогда $A = B, w = \varepsilon$. Значит, $A \setminus A \vdash \varepsilon$.
- Переход: смотри картинку

Тогда $B \setminus A \vdash exz$.

Добавим правило:

 $B \setminus A \rightarrow e(E \setminus D)(C \setminus A)$, если $C \rightarrow BD$ и $E \rightarrow e$.

Осталось доказать равенство языков, для этого приведём изначальную грамматику к нормальной форме Хомского G_h .

Если $\varepsilon \in L(G_h)$, то $\varepsilon \in L(G_g)$ по правилу $S \to \varepsilon$.

Пусть $w=au, a\in \Sigma$. Следующие утверждения эквивалентны:

- $au \in L(G_h)$
- $\exists A \to a : S \vdash Au \vdash_1 au$
- $\bullet \ \exists A \to a: \ S \vdash a(A \setminus S) \vdash au$
- $au \in L(G_q)$

Осталось убрать правила $A \setminus A \to \varepsilon$: аналогично удалению ε -порождающих.

Замечание. Аналогично можем определить обратную нормальную форму Грейбах с правилами вида:

- \bullet $A \rightarrow a$
- $A \rightarrow Ba$
- $A \rightarrow CBa$
- $S \to \varepsilon$

4 Парсеры

4.1 Корректность алгоритма Эрли

Определение 4.1.1. Для каждого правила $A \to \alpha \beta$ определим ситуацию:

$$(A \to \alpha \cdot \beta, i) \in D_j, i \in [0 : |w|], j \in [0 : |w|]$$

где i отвечает за то, сколько букв было прочитано до "захода"в это правила, а j за то, сколько букв прочитано на момент символа \cdot .

На протяжении всего алгоритма используем 3 операции:

- Scan читаем букву
- Predict спускаемся вниз
- Complete поднимаемся вверх

Добавим правило $S' \to S$, тогда стартовой ситуацией определим

$$(S' \to \cdot S, 0) \in D_0$$

а финальной будет

$$(S' \to S \cdot , 0) \in D_{|w|}$$

Корректность вывода при наличии ситуации гарантируется леммой:

Лемма 4.1.1. Каждой ситуации соответствует вывод:

$$(A \to \alpha \cdot \beta, i) \in D_j \Leftrightarrow \exists \psi \in (N \cup \Sigma)^* : \alpha \vdash w[i : j]$$
$$S' \vdash w[0 : i]A\psi \vdash_1 w[0 : i]\alpha\beta\psi$$

Доказательство. Докажем индукцией по количеству эффективных шагов в алгоритме:

- База
 - Появилась ситуация $(S' \rightarrow \cdot S, 0) \in D_0$
 - $-S' \vdash \varepsilon w[0:0]S'\varepsilon = w[0:0]S\varepsilon, \alpha = \varepsilon = w[0:0]$
- Переход при Scan

$$- (A \to \alpha \cdot a\beta, i) \in D_j, w[j] = a \Rightarrow (A \to \alpha a \cdot \beta, i) \in D_{j+1}$$

— Предположение:
$$S' \vdash w[0:i]A\psi \vdash_1 w[0:i]\alpha a\beta \psi$$

$$-\alpha \vdash w[i:j], \alpha a \vdash w[i:j+1]$$

• Переход при Predict

$$(B \to \cdot \gamma, j) \in D_j$$
 появилась при Predict после ситуации $(A \to \alpha \cdot B\beta, i) \in D_j$

— Предположение
$$S' \vdash w[0:i]A\psi \vdash_1 w[0:i]\alpha B\beta\psi$$

$$-\alpha \vdash w[i:j] \Rightarrow w[0:i]\alpha \vdash w[0:j]$$

$$-S' \vdash w[0:i]\alpha B\beta \psi \vdash w[0:j]B\beta \psi \vdash_1 w[0:j]\gamma \beta \psi$$

• Переход при Complete

$$-(A\to\alpha B\cdot\beta,i)\in D_j$$
 появилась после ситуаций: $\exists k:(A\to\alpha\cdot B\beta,i)\in D_k;\ \exists (B\to\gamma\cdot,k)\in D_j$

— Предположение
$$S' \vdash w[0:i]A\psi \vdash_1 w[0:i]\alpha B\beta\psi, \alpha \vdash w[i:k]$$

- Предположение 2: $B \vdash_1 \gamma \vdash w[k:j]$
- Итого $\alpha B \vdash w[i:k]w[k:j] = w[i:j]$

4.2 Полнота алгоритма Эрли

Каждому выводу соответствует ситуация:

$$S' \vdash_k w[0:i]A\psi \vdash_1 w[0:i]\alpha\beta\psi, \alpha \vdash_l w[i:j]$$

идукцией по (j, l+k, l)

• База j = 0, k + l = 0

$$-l=0 \Rightarrow \alpha=\varepsilon$$

$$-k=0 \Rightarrow w[0:i]=\varepsilon, A=S'$$

$$-S' \to S \Rightarrow (S' \to S, 0) \in D_0$$

• Переход: рассмотрим последний символ α . Возможны 3 случая:

1.
$$\alpha = \alpha' b$$
:

$$-\alpha' \vdash_l w[i:j-1], w[j] = b$$

$$-S' \vdash w[0:i]\alpha'b\beta\psi$$

– Предположение
$$(j-1, k+l, k): (A \to \alpha' \cdot bB, i) \in D_{i-1}$$

–
$$(A \to \alpha' b \cdot B, i) \in D_j$$
 по Scan

 $2. \ \alpha = \alpha' B$

3. $\alpha = \varepsilon$

4.3 Оптимальный алгоритм и обоснование сложности

Оптимальный алгоритм

- В D_j надо быстро обращаться к правилам с $\cdot B$
- Храним в виде $D_j[B]$
- Правая часть в виде связного списка
- Быстрее вычислить id для каждой ситуации
- Меньше памяти вычислить hash для каждой ситуации

Обоснование сложности

Пусть |G| – суммарное количество символов в правых частях правил.

• Сложность Scan Правила из $D_k[w[j]] \Rightarrow O(|D_i[w[j]]|) = O(|D_i|) = O(|w||G|)$

• Сложность Predict

Перебираем правила $B \to \gamma - O(|P|)$. Рассматриваем $D_j[B]$ и помечаем, рассмотрена ли была ситуация с этим B.

Сложность для $D_j: O(|D_j||P|) = O(|w||G|^2)$

• Сложность Complete

Рассматриваем правила $(B \to \gamma \cdot , k) \in D_j$. Делаем перебор по $D_k[B] \Rightarrow$ количество обращений к $D_k: O(|D_0| + |D_1| + \cdots + |D_j|) = O(|w|^2|G|)$.

Количество правил $B \to \gamma$: $O(|G|) \Rightarrow$ асимптотика шага – $O(|w|^2|G|^2)$

Количество шагов: O(|w|) Итого на Scan: $O(|w|^2|G|)$ Итого на Predict: $O(|w|^2|G|^2)$ Итого на Complete: $O(|w|^3|G|^2)$