优化方法作业

计试 61 张翀 2140506063

Week 1

9.4 周二

作业 1

证明: $\forall x_1, x_2 \in P, \theta \in [0,1]$,记 $x_\theta = \theta x_1 + (1-\theta)x_2$,因为 $x_1, x_2 \in \mathbb{R}^n$,有 $x_\theta \in \mathbb{R}^n$.

此时

$$Ax_{\theta} = A(\theta x_1 + (1 - \theta)x_2) = \theta Ax_1 + (1 - \theta)Ax_2 \le \theta b + (1 - \theta)b = b$$

且有

$$Bx_{\theta} = B(\theta x_1 + (1-\theta)x_2) = \theta Bx_1 + (1-\theta)Bx_2 = \theta d + (1-\theta)d = d$$

因此 $x_{\theta} \in P$. 所以 P 为凸集。

作业 2-1

证明:
$$\forall x, y \in \mathbb{R}^n, \theta \in [0,1]$$
, 记 $x_{\theta} = \theta x + (1-\theta)y$.

此时

$$f(x_{\theta}) = \max_{1 \le k \le n} (\theta x_k + (1 - \theta) y_k)$$

$$= \sup_{1 \le k \le n} (\theta x_k + (1 - \theta) y_k)$$

$$\le \sup_{1 \le k \le n} (\theta x_i) + \sup_{1 \le j \le n} ((1 - \theta) y_j)$$

$$= \theta \max_{1 \le i \le n} (x_i) + (1 - \theta) \max_{1 \le j \le n} (y_j)$$

$$= \theta f(x) + (1 - \theta) f(y)$$

f(x) 符合凸函数的定义。

作业 2-2

证明: 当且仅当 P 为半正定矩阵时, $f(x) = \frac{1}{2}x^TPx + q^Tx + r$ 为凸函数; P 为正定矩阵时, f(x) 为严格凸函数。此处只给出第一条结论的证明,第二条结论的证明是类似的。

固定 x, 并记 $\Delta f(\delta x) = f(x + \delta x) - f(x)$; 根据定义,f(x) 为凸函数当 且仅当 $\forall \theta \in [0,1], \delta x, \theta \delta x \in \{\delta x : x + \delta x \in domx\}, \theta \Delta f(\delta x) - \Delta(\theta \delta x) \geq 0.$ 考虑到

$$\begin{split} \Delta(\delta x) &= f(x+\delta x) - f(x) \\ &= (\frac{1}{2}(x+\delta x)^T P(x+\delta x) + q^T(x+\delta x) + r) - (\frac{1}{2}x^T Px + q^Tx + r) \\ &= \frac{1}{2}(\delta x^T Px + x^T P\delta x + \delta x^T P\delta x) + q^T\delta x \\ &= \frac{1}{2}\delta x^T P\delta x + \frac{1}{2}(\delta x^T Px + x^T P\delta x) + q^T\delta x \end{split}$$

有

$$\theta \Delta f(\delta x) - \Delta(\theta \delta x) = \frac{1}{2}\theta(1-\theta)\delta x^T P \delta x$$

因为 $\theta \in [0,1]$, 所以

$$\theta \Delta f(\delta x) - \Delta(\theta \delta x) \ge 0 \Leftrightarrow \delta x^T P \delta x \ge 0, \forall \delta x \in \{\delta x : x + \delta x \in domx\}$$

考虑到 $dom x = \mathbb{R}^n$,所以 f(x) 为凸函数等价于 $\delta x^T P \delta x \geq 0$, $\forall \delta x \in \mathbb{R}^n$. 右侧的叙述即为 P 为半正定矩阵的定义。

类似地,也可证明 P 为半负定时二次函数为凹函数,P 为负定时二次函数严格凹。

9.6 周四

作业 1

证明:二阶可微的 f(x) 为凸函数,当且仅当 Hessian 矩阵为半正定矩阵。

在以下的证明过程中,我们讨论一种比较简单的情况: f(x) 在 C 上二阶连续可微,其中 C 是开集(任一元素为内点)且为凸集。此时, $\forall x \in C, \exists \delta x > 0, B(x, \delta x) \subset C$,且有

$$f(x + \Delta x) = f(x) + \nabla^T f(x) \Delta x + \frac{1}{2} \Delta x^T \nabla^2 f(\xi) \Delta x, 0 \le |\xi - x| \le \Delta x \le \delta x(*)$$

必要性:

若 f(x) 为凸函数,则固定 x 和 $\delta x. \forall |\Delta x| < \delta x$,利用 (*) 式有

$$\theta f(x + \Delta x) + (1 - \theta)f(x) - f(x + \theta \Delta x) = \frac{\theta}{2} \Delta x^T \nabla^2 f(\xi) \Delta x - \frac{\theta^2}{2} \Delta x^T \nabla^2 f(\xi_\theta) \Delta x \ge 0$$
$$\forall \theta \in [0, 1], \xi \in B(x, \Delta x), \xi_\theta \in B(x, \theta \Delta x)$$

取 $\theta = 1$ 可知 $\Delta x^T \nabla^2 f(\xi) \Delta x - \Delta x^T \nabla^2 f(\xi_\theta) \Delta x \geq 0$,而 $\lim_{\Delta x \to 0} \Delta x^T \nabla^2 f(\xi) \Delta x - \Delta x^T \nabla^2 f(\xi_\theta) \Delta x = 0$. 因此,固定 θ 并取 $(\frac{\theta}{2} - \frac{\theta^2}{2}) \Delta x^T \nabla^2 f(\xi_\theta) \Delta x$,此式恒取 非负值;因为 $\lim_{\Delta x \to 0} \Delta x^T \nabla^2 f(\xi_\theta) \Delta x = \Delta x^T \nabla^2 f(x) \Delta x$,所以由 θ 的任意性 知 $\exists B(0, \delta x), \forall |\Delta x| \leq \delta x, \Delta x^T \nabla^2 f(x) \Delta x \geq 0$,即每个点都存在使 Hessian 矩阵半正定的邻域。由 C 是开集知 Hessian 矩阵在 C 上是半正定的。

充分性:

Hessian 的半正定可以保证 (*) 式右侧最后一项非负,因此 $f(x+\Delta x) \ge f(x) + \nabla^T f(x) \Delta x$,满足凸函数的一阶判定条件,所以 f(x) 为凸函数。

作业 2

通过计算特征值易知 P 的正定性,所以优化函数是凸函数,且在可行解集连续可导。另外有 $\nabla f(x) = Px + q$. 对于最优解 $x^* = [1,1/2,-1]^T$, $\nabla f(x^*) = [-1,0,2]^T$,有 $\forall y \in [-1,1]^3$, $\nabla^T f(x^*)(y-x^*) = y_1 + 2y_3 + 3 \geq 0$,因此 $f(y) \geq f(x), y \in [-1,1]^3$,所以 x^* 是此问题的最优解。