2119116s 佐野海徳

1

 $u(x,t)=\phi(x)\varphi(t)$ が解である。変形して $\phi(x)\varphi''(x)=\phi''(t)\phi(x)$ ここから $\frac{\phi''}{\phi(x)}=\frac{\varphi''(t)}{\phi(t)}=\alpha($ 定数) となる。故に $\phi''(x)=\alpha\phi(x), \varphi''(t)=\alpha\varphi(t)$ 。 $\phi(0)=\phi(\pi)=0$ から $\alpha<0$, $\boxed{2}$ (1) f_a をフーリエ変換すると、 $\hat{f}_a=\frac{1}{2\pi}\int_{-\infty}^{infty}e^{-|a|x}e^{-i\xi x}dx=\frac{1}{\pi}\frac{1}{a^2+\xi^2}$ であり、 $g_a(\xi)=\frac{1}{\xi+a^2}$ 、

 $\hat{f}_a = \frac{1}{\pi} g_a(\xi)_{\bullet}$

(2) g_a をフーリエ変換すると、 $\hat{g}_a = rac{\sqrt{rac{\pi}{2}}e^a|\xi|}{a}$ である。