PROBLEMA DOS MÚLTIPLOS CONTÊINERES (PCMCDC)

Marco Antônio Chitolina da Silva - 00308226

PCMCDC - INSTÂNCIAS

TEMOS M CONTÊINERES COM VOLUME CK, $K \in [M]$ E N ITENS COM VOLUME VI E VALOR VI, $I \in [N]$.

ALÉM DISSO, CADA PAR DE ITENS TEM UM VALOR

ADICIONAL VIJ, $I, J \in [N]$. VOCÊ PODE ASSUMIR

QUE VIJ = VJI.

PCMCDC - SOLUÇÃO

UMA SELEÇÃO DE ITENS $S \subseteq [N]$ É UMA ATRIBUIÇÃO (DISTRIBUIÇÃO) DESSES ITENS AOS M CONTÊINERES A: $S \to [M]$, respeitando a capacidade de cada um dos contêineres.

PCMCDC - OBJETIVO

MAXIMIZAR O VALOR TOTAL. CADA ITEM SELECIONADO I \subseteq 5 CONTRIBUI COM O SEU VALOR VI. ALÉM DISSO, TODOS PARES DE ITENS I, $J \subseteq$ 5 NO MESMO CONTÊINER (I.E. A(I) = A(J)) CONTRIBUEM COM O VALOR VIJ.

Formulação Matemática: PCMCDC $aik = \begin{cases} 1, \text{ se o item i foi atribuído ao contêiner } k. \\ 0, \text{ caso contrário.} \end{cases}$ FORMULAÇÃO MATEMÁTICA: n = número de itens. m = número de contêineres, ci = volume (capacidade) do item i, Ck = volume (capacidade) do contêiner k, vi = valor do item i. (O) OBJETIVO: SELECIONAR OS vij = valor do par de itens (i,j) no mesmo contêiner, ITENS MAIS VALIOSOS, AVALIANDO (0)valorItens + valorPares max TANTO O VALOR INDIVIDUAL DE s.a. CADA ITEM (1), QUANTO O VALOR $valorItens = \sum a_{ik} * v_i$ DE CADA UMA DAS DUPLAS DE (1) ITENS (Z). (3), (4) RESTRIÇÕES DA VARIÁVEL $valorPares = \sum and_{ijk} * v_{ij}$ (2) AND. (5) NÃO POSSO ALOCAR ITENS 2* and $a_{iik} \leq a_{ik} + a_{ik}, \forall i \in [n], j \in [n], k \in [m]$ (3) $a_{ik} + a_{jk} \leq and_{ijK}, \forall i \in [n], j \in [n], k \in [m]$ (4)QUE PASSEM DA CAPACIDADE DO MEU CONTÊINER. $\sum a_{ik} * c_i \leq C_k, \forall_k \in [m]$ (5)(6) UM ITEM SÓ PODE SER $\sum \ a_{ik} \leqslant \ 1, \ \forall_i \in [n]$ (6)ALOCADO A NO MÁXIMO UM $a_{ik} \in \{0, 1\}, \forall i \in [n], k \in [m]$ CONTÊINER (7) $and_{ijk} \in \{0,1\}, \forall i \in [n], j \in [n], k \in [m]$ (8)

PCMCDC - FORMULAÇÃO MATEMÁTICA - RESULTADOS

Inst.	01	02	03	04	05	06	07	08	09	10	
BKV	7992	5985	7604	8610	7132	8935	10984	8154	10385	11958	
Obtido	6649	5585	6544	7222	6380	7922	8734	6972	8905	10095	
D.P.	0,1680	0,0668	0,1394	0,1612	0,1054	0,1133	0,2048	0,1449	0,1425	0,1557	

BKV é o melhor valor conhecido para tal instância.

Obtido é o valor obtido por rodar a instância utilizando o solver CPLEX por 4 horas. Desvio Percentual (D.P.) = (BKV - Obtido)/ BKV indica quanto a solução obtida se distancia da melhor solução conhecida.

```
1 Heurística:
2 P = gera população()
                                            PCMCDC -
 3 while not critério_parada_satisfeito():
                                            HEURÍSTICA -
   Q = \{\}
                                            ALGORITMOME
   while |Q| < |P|:
                                            MÉTICO
   s1 = torneio(P)
   s2 = torneio(P)
8
   recombinação(s1, s2)
    mutação(s1)
10
    mutação(s2)
    busca local(s1)
11
12 busca local(s2)
13 Q = Q \cup \{s1, s2\}
   P = seleção(P, 0)
14
15 return melhores indivíduos(P)
16
```

PCMCDC -HEURÍSTICA - CRITÉRIO_PARADA_SATISFEITO()

CRITÉRIO ESCOLHIDO FOI O TEMPO. CADA EXECUÇÃO LEVOU I HORA. EXECUTEI IÓ VEZES CADA PROBLEMA, E, PARA CADA UMA DAS QUAIS, VARIAVA O NÚMERO DE INDIVÍDUOS NA POPULAÇÃO ORIGINAL.

PCMCDC - HEURÍSTICA - GERA_POPULAÇÃO()

CRIA UM NÚMERO PRÉ-ESTABELECIDO DE SOLUÇÕES
INICIAIS ALEATÓRIAS (INDIVÍDUOS), TAL QUE CADA
SOLUÇÃO REPRESENTA ATRIBUIÇÕES DE ITENS EM
CONTÊINERES, RESPEITANDO OBVIAMENTE A CAPACIDADE
DE CADA UM DOS RESPECTIVOS CONTÊINERES.

PCMCDC - HEURÍSTICA - TONERNEIO()

SELECIONA ALEATORIAMENTE UM NÚMERO DE CANDIDATOS A PARTICIPAREM DESSE TORNEIO, CUJO VENCEDOR É O CANDIDATO COM O MAIOR VALOR NA FUNÇÃO OBJETIVO. NESSA IMPLEMENTAÇÃO, O NÚMERO DE PARTICIPANTES É SEMPRE 10% DO NÚMERO DE INDIVÍDUOS DA POPULAÇÃO.

PCMCDC - HEURÍSTICA - RECOMBINAÇÃO()

COMO CADA INDIVÍDUO (CADA SOLUÇÃO) É UMA COLEÇÃO DE ATRIBUIÇÃO DE ITENS EM DIVERSOS CONTÊINERES, E COMO TRIVIALMENTE, PARA TODOS OS INDIVÍDUOS, OS ITENS E OS CONTÊINERES SERÃO OS MESMOS (MUDANDO SOMENTE AS ATRIBUIÇÕES), UMA SIMPLES IDEIA DE RECOMBINAÇÃO É: TROCAR UM CERTO NÚMERO (DEFINIDO ALEATORIAMENTE) DE CONTÊINERES DE UMA SOLUÇÃO COM A OUTRA.

PCMCDC - HEURÍSTICA - RECOMBINAÇÃO()

VALE SALIENTAR QUE É NECESSÁRIO VERIFICAR SE, DENTRE TODAS AS VARIÁVEIS DOS CONTÊINERES TROCADOS, ELAS JÁ NÃO ESTAVAM PREVIAMENTE ATRIBUÍDAS NA SOLUÇÃO.

PCMCDC - HEURÍSTICA - MUTAÇÃO()

PARA CADA UM DOS CONTÊINERES, ALEATORIAMENTE ESCOLHE SE ELE DEVE SER OU NÃO ALTERADO. SE FOR PARA ALTERÁ-LO, PASSAR POR TODOS OS ITENS DESTE CONTÊINER E SELECIONAR ALEATORIAMENTE SE DETERMINADO ITEM DEVE SER ALTERADO (ALTERAR O VALOR DE SUA ATRIBUIÇÃO PARA AQUELE CONTÊINER) OU NÃO.

PCMCDC - HEURÍSTICA - BUSCA_LOCAL()

PARA CADA UM DOS CONTÊINERES, IR PASSANDO PELA LISTA DE ITENS E, CASO POSSA ATRIBUIR TAL ITEM, ATRIBUÍ-LO AO CONTÊINER. DESSA FORMA, CHEGAREMOS NUM MÍNIMO LOCAL, ONDE NÃO CONSEGUIMOS MAIS ATRIBUIR ITENS AOS CONTÊINERES.

PCMCDC - HEURÍSTICA - SELEÇÃO()

SELECIONAR ALEATORIAMENTE UMA PARCELA DE INDIVÍDUOS TANTO DA NOVA POPULAÇÃO, QUANTO DA POPULAÇÃO ORIGINAL, E JUNTAR ESSES INDIVÍDUOS EM UMA ÚNICA POPULAÇÃO.

PCMCDC - HEURÍSTICA - MELHORES_INDIVÍDUOS()

SELECIONA OS INDIVÍDUOS MAIS ADAPTADOS (MAIOR VALOR NA FUNÇÃO OBJETIVO) DA POPULAÇÃO FINAL.

Melhor valor obtido: 4575

Melhor valor conhecido: 8610

D.P.: 0.46

PCMCDC - FORMULAÇÃO MATEMÁTICA - RESULTADOS

Inst.	01	02	03	04	05	06	07	08	09	10
BKV	7992	5985	7604	8610	7132	8935	10984	8154	10385	11958
O.F.M	6649	5585	6544	7222	6380	7922	8734	6972	8905	10095
D.P. F.M.	0,1680	0,0668	0,1394	0,1612	0,1054	0,1133	0,2048	0,1449	0,1425	0,1557
M.O.H	4243	2315	3030	4575	2419	4288	5750	2861	4600	7454
D.P. H.	0.46	0.61	0.6	0.46	0.66	0.52	0.47	0.64	0.55	0.37

Instância (Inst.). Melhor valor conhecido (BKV). Valor obtido pela formulação matemática (O.F.M.). Diferença percentual da formulação matemática (D.P.F.M). Melhor valor obtido pela heurística (M.O.H). Diferença percentual da heurística (D.P.H).

PCMCDC - CONCLUSÃO

A IMPLEMENTAÇÃO DA FORMULAÇÃO MATEMÁTICA
APRESENTOU RESULTADOS SATISFATÓRIOS, COM
RESULTADOS DE ATÉ 6% DA OTIMALIDADE EM APENAS
Y HORAS DE EXECUÇÃO. POR OUTRO LADO, A
HEURÍSTICA APRESENTOU RESULTADOS
CONSIDERAVELMENTE RUINS, COM O VALOR MAIS
PRÓXIMO DA OTIMALIDADE SENDO APENAS 37%.