IIITDM KANCHEEPURAM

MA1000 Calculus Problem Set 1

1. Prove using the definition of convergence that the following sequences converge:

(a)
$$\left\{\frac{1}{n^2}\right\}$$
; (b) $\left\{\frac{(-1)^{n+1}}{n}\right\}$.

- $2. \text{ Prove: } \frac{2^n}{n!} \longrightarrow 0.$
 - 3. Find the limit of the sequence $\{a_n\}$ if (a) $a_n = \left(1 + \frac{1}{n}\right)^n$; (b) $a_n = \left(1 + \frac{3}{4n}\right)^{\frac{8}{3}n}$.
- 4. If α is a rational number, find $\lim_{n\to\infty} \sin(n!\alpha\pi)$.
 - 5. Calculate $\lim_{n\to\infty} (\sqrt{n^2+n}-n)$.
 - 6. Find the limit of the sequence $\{a_n\}$, where $a_1 = \sqrt{2}$, $a_n = \sqrt{2 + \sqrt{a_{n-1}}}$ for $n \ge 2$.
 - 7. Prove that the sequence $\{a_n\}$, where $a_1 = 10$ and $a_{n+1} = \frac{1}{2} \left(a_n + \frac{10}{a_n}\right)$ for $n \ge 1$, converges. Also find its limit.
- 8. Let $a_1 = 1$ and $a_2 = 1$. For $n \ge 3$, let $a_n = a_{n-2} + a_{n-1}$. Then the sequence $\{a_n\}$ is called the Fibonacci sequence. Find $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$.
- 9. Find the limit of the sequence $\{a_n\}$ if $a_n = \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{2n}$.
- 10. Find the limit of the sequence $\{a_n\}$ if $a_n = \frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \cdots + \frac{1}{(2n)^2}$.
- 11. Let $\epsilon > 0$ be given. Find a natural number N as required by the definition of convergence of a sequence for proving the following limits:

(a)
$$\lim_{n \to \infty} \frac{\sqrt{n-1}}{\sqrt{n+1}} = 1$$
; (b) $\lim_{n \to \infty} n^{1/n} = 1$

- 12. Let $a_n = \frac{1}{\ln(n+1)}$.
 - (a) Show that the sequence $\{a_n\}$ converges to zero.
 - (b) Find a natural number as required of the definition of convergence for (i) $\epsilon = 0.5$; (ii) $\epsilon = 0.1$.