NN HW 1: 2.2, 2.3 (2.2) Show that $C = \sigma(C)$ if and only if C is a sigma algebra. We are prooring $e = 6(e) \iff e$ is a 6-alg.: 1) =>: if I is its own 5-alg. Hun el is a 5-algebra 2) = is e its smallest if e is a p 5-algebra? 6-algebra YES :a) 6(e) must contain ALL elements of e, so [5(e) 2 e/. b) if e is a po 6-algebra, then any other 5(e) could only be bigger than e 1/ so we must take le as its (le), i.e. e=6(e)

1

(1) 0 2 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

(i) Let
$$C$$
 and D in D collections of rubrets on D p.t. $C \in D$. Prove that

$$S(C) \subseteq S(D)!$$

Fin S -alg if:

1) $p \in F$

2) $A \in F \Rightarrow A \in F$

3) $[A_i]_{i=1}^{n} \in F \Rightarrow (A_i) \in F$

(i) $S(C)$ and $S(D)$ are both G -algebra.

(citing lobs, problem 2.1)

(ii) $A_i = A_i = A_i$

(iii) any $A_i = A_i$

(iv) A

Scanned by TapScanner