Machine Learning

Assignment 11.3

Submitted By: Ranji Raj

January 23, 2021

a) Value-Iteration, Q-table, Optimal policy, $\gamma=0.8$

Algorithm

- $\bullet \text{ Start with } V(s) \leftarrow \max_{a} \quad r(s,a), \forall s$
- Until V changes, perform for all states s,

$$V(s) \leftarrow \max_{a} \{ r(s, a) + \gamma V(\delta(s, a)) \}$$

• Choose the optimal policy:

$$\pi(s) = \underset{a}{\arg\max} \{r(s, a) + \gamma V(\delta(s, a))\}$$

$$V^*(s) = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \dots \equiv \sum_{i=0}^{\infty} \gamma^i r_t + i$$

Figure 1: Deterministic grid world

S1 0	S2 0		
S3 2	S4 0	S5 10	\$6 2
	S7	S8	S9
	10	0	10

Figure 2: Initialization

state	calculation	V^*
S_6	2+(0.8)(10)	10
S_4	0+(0.8)(10)	8

Table 1: Iteration-1

S1 0	S2 0		
S 3	S4	S 5	S6
2	8	10	10
	S7	S8	S9
	5,	50	37

Table 2: Grid-1

state	calculation	V^*
S_3	$2+(0.8)(0)+(0.8)^2(10)$	8.4
S_2	$0+(0.8)(0)+(0.8)^2(10)$	6.4

Table 3: Iteration-2

S1 0	S2 6.4		
S 3	S4	S 5	S6
8.4	8	10	10
	S7	S 8	S9

Table 4: Grid-2

state	calculation	V^*
S_1	$0+(0.8)(2)+(0.8)^2(0)+$ $(0.8)^3(10)$	6.72

Table 5: Iteration-3

S1 6.72	S2 6.4		
S 3	S4	S 5	S6
8.4	8	10	10
	S7	S8	S9
	37	50	0,

Table 6: Grid-3

S_{start}	S_{stop}	calculation	Q(s,a)
		$r + \gamma V^*(S_{stop})$	Φ (0, ω)
S_1	S_2	0 + 0.8(6.4)	5.12
S_1	S_3	0 + 0.8(8.4)	6.72
S_2	S_1	0 + 0.8(6.72)	5.37
S_2	S_4	0 + 0.8(8)	6.4
S_3	S_1	0 + 0.8(6.72)	5.37
S_3	S_4	2 + 0.8(8)	8.4
S_4	S_2	0 + 0.8(6.4)	5.12
S_4	S_3	0 + 0.8(8.4)	6.72
S_4	S_5	0 + 0.8(10)	8.00
S_4	S_7	0 + 0.8(10)	8.00
S_5	S_5	0 + 0.8(8)	6.4
S_5	S_6	0 + 0.8(10)	8.00
S_5	S_8	10 + 0.8(0)	10.00
S_6	S_5	0 + 0.8(10)	8.00
S_6	S_9	2 + 0.8(10)	10.00
S_7	S_4	0 + 0.8(8)	6.4
S_7	S_8	10 + 0.8(0)	10.00
S_9	S_6	0 + 0.8(10)	8.00
S_9	S_8	10 + 0.8(0)	10.00

Table 7: Q-table

Table 8: Optimal policy

b) Modifying reward function r(s,a)

Alters Q(s,a) but not optimal policy

Multiply every reward with a constant value (say, 10). Rewards will change which in turn changes Q(s,a) but optimal policy won't be affected.

Alters Q(s,a) but not V^*

Choose a reward $r(S_5, S_6) = 1$ Direction $\to : V^* = 1 + (0.8)2 + (0.8)^2 10 = 9$ Direction $\downarrow : V^* = 10 + (0.8)0 = 10 \Rightarrow$ still the best V^*