

CS 247 – Scientific Visualization Lecture 25: Vector / Flow Visualization, Pt. 4 [preview]

Markus Hadwiger, KAUST

Reading Assignment #13 (until Apr 25)

Read (required):

- Data Visualization book
 - Chapter 6.1 (Divergence and Vorticity)
- Diffeomorphisms / smooth deformations

```
https://en.wikipedia.org/wiki/Diffeomorphism
```

Integral curves: Stream lines, path lines, streak lines

```
https://en.wikipedia.org/wiki/Integral_curve
https://en.wikipedia.org/wiki/Streamlines,_streaklines,_and_pathlines
```

Paper:

Bruno Jobard and Wilfrid Lefer Creating Evenly-Spaced Streamlines of Arbitrary Density,

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.29.9498

Quiz #3: Apr 25

Organization

- First 30 min of lecture
- No material (book, notes, ...) allowed

Content of questions

- Lectures (both actual lectures and slides)
- Reading assignments (except optional ones)
- Programming assignments (algorithms, methods)
- Solve short practical examples

Vector fields

A static vector field $\mathbf{v}(\mathbf{x})$ is a vector-valued function of space.

A time-dependent vector field $\mathbf{v}(\mathbf{x},t)$ depends also on time.

In the case of velocity fields, the terms steady and unsteady flow are used.

The dimensions of **x** and **v** are equal, often 2 or 3, and we denote components by x,y,z and u,v,w:

$$\mathbf{x} = (x, y, z), \ \mathbf{v} = (u, v, w)$$

Sometimes a vector field is defined on a surface $\mathbf{x}(i,j)$. The vector field is then a function of parameters and time:

$$\mathbf{v}(i,j,t)$$

Steady vs. Unsteady Flow

- Steady flow: time-independent
 - Flow itself is static over time: $\mathbf{v}(\mathbf{x})$
 - Example: laminar flows

- $\mathbf{v}(\mathbf{x}) \qquad \mathbf{v} \colon \mathbb{R}^n \to \mathbb{R}^n,$
 - $x \mapsto \mathbf{v}(x)$.

- Unsteady flow: time-dependent
 - Flow itself changes over time: $\mathbf{v}(\mathbf{x},t)$ $\mathbf{v}: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$,
 - Example: turbulent flows

$$\mathbf{v} \colon \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n,$$

 $(x,t) \mapsto \mathbf{v}(x,t).$

(here just for Euclidean domain; analogous on general manifolds)

Steady vs. Unsteady Flow

- Steady flow: time-independent
 - Flow itself is static over time:
 - Example: laminar flows

- $\mathbf{v}(\mathbf{x}) \qquad \mathbf{v} \colon M \to \mathbb{R}^n,$
 - $x \mapsto \mathbf{v}(x)$.

- Unsteady flow: time-dependent
 - Flow itself changes over time: $\mathbf{v}(\mathbf{x},t)$ $\mathbf{v} \colon M \times \mathbb{R} \to \mathbb{R}^n$,
 - Example: turbulent flows

- - $(x,t) \mapsto \mathbf{v}(x,t).$

(here just for Euclidean domain; analogous on general manifolds)

Vector fields as ODEs

For simplicity, the vector field is now interpreted as a velocity field.

Then the field $\mathbf{v}(\mathbf{x},t)$ describes the connection between location and velocity of a (massless) particle.

It can equivalently be expressed as an ordinary differential equation

$$\dot{\mathbf{x}}(t) = \mathbf{v}\big(\mathbf{x}(t),t\big)$$

This ODE, together with an initial condition

$$\mathbf{x}(t_0) = \mathbf{x}_0$$
,

is a so-called initial value problem (IVP).

Its solution is the integral curve (or trajectory)

$$\mathbf{x}(t) = \mathbf{x}_0 + \int_{t_0}^t \mathbf{v}(\mathbf{x}(\tau), \tau) d\tau$$

Vector fields as ODEs

The integral curve is a pathline, describing the path of a massless particle which was released at time t_0 at position x_0 .

Remark: $t < t_0$ is allowed.

For static fields, the ODE is autonomous:

$$\dot{\mathbf{x}}(t) = \mathbf{v}(\mathbf{x}(t))$$

and its integral curves

$$\mathbf{x}(t) = \mathbf{x}_0 + \int_{t_0}^t \mathbf{v}(\mathbf{x}(\tau)) d\tau$$

are called field lines, or (in the case of velocity fields) streamlines.

Vector fields as ODEs

In static vector fields, pathlines and streamlines are identical.

In time-dependent vector fields, instantaneous streamlines can be computed from a "snapshot" at a fixed time *T* (which is a static vector field)

$$\mathbf{v}_{T}(\mathbf{x}) = \mathbf{v}(\mathbf{x}, T)$$

In practice, time-dependent fields are often given as a dataset per time step. Each dataset is then a snapshot.

Outline of algorithm for numerical streamline integration (with obvious extension to pathlines):

Inputs:

- static vector field v(x)
- seed points with time of release (\mathbf{x}_0, t_0)
- control parameters:
 - step size (temporal, spatial, or in local coordinates)
 - step count limit, time limit, etc.
 - order of integration scheme

Output:

streamlines as "polylines", with possible attributes
 (interpolated field values, time, speed, arc length, etc.)

Preprocessing:

- set up search structure for point location
- for each seed point:
 - global point location: Given a point \mathbf{x} , find the cell containing \mathbf{x} and the local coordinates (ξ, η, ζ) or ir the grid is structured: find the computational space coordinates $(i + \xi, j + \eta, k + \zeta)$
 - If x is not found in a cell, remove seed point

Integration loop, for each seed point x:

- interpolate $m{v}$ trilinearly to local coordinates (ξ,η,ζ)
- do an integration step, producing a new point x'
- incremental point location: For position $\mathbf{x'}$ find cell and local coordinates (ξ', η', ζ') making use of information (coordinates, local coordinates, cell) of old point \mathbf{x}

Termination criteria:

- grid boundary reached
- step count limit reached
- optional: velocity close to zero
- optional: time limit reached
- optional: arc length limit reached

Integration step: widely used integration methods:

 Euler (used only in special speed-optimized techniques, e.g. GPU-based texture advection)

$$\mathbf{x}_{new} = \mathbf{x} + \mathbf{v}(\mathbf{x}, t) \cdot \Delta t$$

Runge-Kutta, 2nd or 4th order

Higher order than 4th?

- often too slow for visualization
- study (Yeung/Pope 1987) shows that, when using standard trilinear interpolation, interpolation errors dominate integration errors.

Numerical Integration

- Numerical integration of stream lines:
- approximate streamline by polygon x_i
- Testing example:
 - $\mathbf{v}(x,y) = (-y, x/2)^{\Lambda}T$
 - exact solution: ellipses
 - starting integration from (0,-1)

Streamlines - Practice

- Basic approach:
 - theory: $\mathbf{s}(t) = \mathbf{s}_0 + \int_{0 \le u \le t} \mathbf{v}(\mathbf{s}(u)) du$
 - practice: numerical integration
 - idea: (very) locally, the solution is (approx.) linear
 - Euler integration: follow the current flow vector v(s_i) from the current streamline point s_i for a very small time (dt) and therefore distance
 - Euler integration: $\mathbf{s}_{i+1} = \mathbf{s}_i + \mathrm{d}t \cdot \mathbf{v}(\mathbf{s}_i)$, integration of small steps (dt very small)

2D model data:

$$\mathbf{v}_x = \frac{\mathrm{d}x}{\mathrm{d}t} = -y$$

 $\mathbf{v}_y = \frac{\mathrm{d}y}{\mathrm{d}t} = x/2$

Sample arrows:

Seed point $\mathbf{s}_0 = (0|-1)^T$; current flow vector $\mathbf{v}(\mathbf{s}_0) = (1|0)^T$; dt = 1/2

New point $\mathbf{s}_1 = \mathbf{s}_0 + \mathbf{v}(\mathbf{s}_0) \cdot dt = (1/2|-1)^T$; current flow vector $\mathbf{v}(\mathbf{s}_1) = (1|1/4)^T$;

Helwig Hauser

■ New point $\mathbf{s}_2 = \mathbf{s}_1 + \mathbf{v}(\mathbf{s}_1) \cdot dt = (1|-7/8)^T$; current flow vector $\mathbf{v}(\mathbf{s}_2) = (7/8|1/2)^T$;

10

Helwig Hauser

■
$$\mathbf{s}_3$$
 = $(23/16|-5/8)^T$ $\approx (1.44|-0.63)^T$; $\mathbf{v}(\mathbf{s}_3)$ = $(5/8|23/32)^T$ $\approx (0.63|0.72)^T$;

■
$$\mathbf{s}_4$$
 = $(7/4 | -17/64)^{\mathsf{T}}$ $\approx (1.75 | -0.27)^{\mathsf{T}};$ $\mathbf{v}(\mathbf{s}_4)$ = $(17/64 | 7/8)^{\mathsf{T}}$ $\approx (0.27 | 0.88)^{\mathsf{T}};$

■
$$\mathbf{s}_9$$
 $\approx (0.20|1.69)^T$; $\mathbf{v}(\mathbf{s}_9)$ $\approx (-1.69|0.10)^T$;

■
$$\mathbf{s}_{14}$$
 $\approx (-3.22 | -0.10)^{\mathsf{T}};$ $\mathbf{v}(\mathbf{s}_{14})$ $\approx (0.10 | -1.61)^{\mathsf{T}};$

■ $\mathbf{s}_{19} \approx (0.75 | -3.02)^{\mathsf{T}}$; $\mathbf{v}(\mathbf{s}_{19}) \approx (3.02 | 0.37)^{\mathsf{T}}$; clearly: large integration error, dt too large! 19 steps

Helwig Hauser

- dt smaller (1/4): more steps, more exact! $\mathbf{s}_{36} \approx (0.04 | -1.74)^{\mathsf{T}}; \ \mathbf{v}(\mathbf{s}_{36}) \approx (1.74 | 0.02)^{\mathsf{T}};$
- 36 steps

Helwig Hauser

16

Comparison Euler, Step Sizes

Euler is getting better proportionally to dt

Better than Euler Integr.: RK

Runge-Kutta Approach:

• theory:
$$\mathbf{s}(t) = \mathbf{s}_0 + \int_{0 \le u \le t} \mathbf{v}(\mathbf{s}(u)) \, du$$

■ Euler:
$$\mathbf{s}_i = \mathbf{s}_0 + \sum_{0 \le u \le i} \mathbf{v}(\mathbf{s}_u) \cdot dt$$

- Runge-Kutta integration:
 - idea: cut short the curve arc
 - RK-2 (second order RK):
 - 1.: do half a Euler step
 - 2.: evaluate flow vector there
 - 3.: use it in the origin
 - RK-2 (two evaluations of v per step):

$$\mathbf{s}_{i+1} = \mathbf{s}_i + \mathbf{v}(\mathbf{s}_i + \mathbf{v}(\mathbf{s}_i) \cdot dt/2) \cdot dt$$

RK-2 Integration – One Step

Seed point $\mathbf{s}_0 = (0|-2)^T$; current flow vector $\mathbf{v}(\mathbf{s}_0) = (2|0)^T$; preview vector $\mathbf{v}(\mathbf{s}_0+\mathbf{v}(\mathbf{s}_0)\cdot dt/2) = (2|0.5)^T$; dt = 1

Helwig Hauser 20

RK-2 – One more step

Seed point $\mathbf{s}_1 = (2|-1.5)^T$; current flow vector $\mathbf{v}(\mathbf{s}_1) = (1.5|1)^T$; preview vector $\mathbf{v}(\mathbf{s}_1+\mathbf{v}(\mathbf{s}_1)\cdot dt/2) \approx (1|1.4)^T$; dt = 1

Helwig Hauser

RK-2 – A Quick Round

■ RK-2: even with dt=1 (9 steps)

better than Euler with dt=1/8(72 steps)

RK-4 vs. Euler, RK-2

Even better: fourth order RK:

- four vectors a, b, c, d
- one step is a convex combination: $\mathbf{s}_{i+1} = \mathbf{s}_i + (\mathbf{a} + 2 \cdot \mathbf{b} + 2 \cdot \mathbf{c} + \mathbf{d})/6$

vectors:

$$\mathbf{a} = dt \cdot \mathbf{v}(\mathbf{s}_i)$$
 ... original vector

■ b =
$$dt \cdot v(s_i + a/2)$$
 ... RK-2 vector

$$\mathbf{c} = dt \cdot \mathbf{v}(\mathbf{s}_i + \mathbf{b}/2)$$
 ... use RK-2 ...

$$\mathbf{d} = dt \cdot \mathbf{v}(\mathbf{s}_i + \mathbf{c})$$
 ... and again!

Euler vs. Runge-Kutta

- RK-4: pays off only with complex flows
- Here approx. like RK-2

Integration, Conclusions

Summary:

- analytic determination of streamlines usually not possible
- hence: numerical integration
- several methods available (Euler, Runge-Kutta, etc.)
- Euler: simple, imprecise, esp. with small dt
- RK: more accurate in higher orders
- furthermore: adaptive methods, implicit methods, etc.

Integral Curves, Pt. 2

Particle Trajectories

Courtesy Jens Krüger

Integral Curves

Streamline

Curve parallel to the vector field in each point for a fixed time

Pathline

Describes motion of a massless particle over time

Streakline

Location of all particles released at a fixed position over time

Timeline

Location of all particles released along a line at a fixed time

Streamlines Over Time

Defined only for steady flow or for a fixed time step (of unsteady flow)

Different tangent curves in every time step for time-dependent vector

fields (unsteady flow)

Stream Lines vs. Path Lines Viewed Over Time

Plotted with time as third dimension

• Tangent curves to a (n + 1)-dimensional vector field

Stream Lines

Path Lines

Markus Hadwiger, KAUST 43

Time

streak line location of all particles set out at a fixed point at different times

Particle visualization

2D time-dependent flow around a cylinder time line location of all particles set out on a certain line at a fixed time

Flow of a steady (time-independent) vector field

Map source position x "forward" (t>0) or "backward" (t<0) by time t

$$\begin{array}{c|cccc}
\phi(x,t) & \phi_t(x) & \text{with} & \phi_0(x) = x \\
\phi: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n, & \phi_t: \mathbb{R}^n \to \mathbb{R}^n, & \phi_s(\phi_t(x)) = \phi_{s+t}(x) \\
(x,t) \mapsto \phi(x,t). & x \mapsto \phi_t(x).
\end{array}$$

Flow of a steady (time-independent) vector field

Map source position x "forward" (t>0) or "backward" (t<0) by time t

$$\phi(x,t)$$
 $\phi_t(x)$ with $\phi_0(x) = x$ $\phi: M \times \mathbb{R} \to M, \qquad \phi_t: M \to M, \qquad \phi_s(\phi_t(x)) = \phi_{s+t}(x)$ $(x,t) \mapsto \phi(x,t). \qquad x \mapsto \phi_t(x).$

Flow of a steady (time-independent) vector field

Map source position x "forward" (t>0) or "backward" (t<0) by time t

$$egin{aligned} egin{aligned} \phi(x,t) & egin{aligned} \phi_t(x) & ext{with} & \phi_0(x) = x \ \phi: M imes \mathbb{R} o M, & \phi_t: M o M, \ (x,t) \mapsto \phi(x,t). & x \mapsto \phi_t(x). \end{aligned}$$

$$\phi(x,t) = x + \int_0^t \mathbf{v}(\phi(x,\tau)) d\tau$$

(on a general manifold *M*, integration is performed in coordinate charts)

Flow of a steady (time-independent) vector field

Map source position x "forward" (t>0) or "backward" (t<0) by time t

$$\begin{array}{|c|c|c|c|}\hline \phi(x,t) & \hline \phi_t(x) & \text{with} & \phi_0(x) = x \\ \hline \phi: M \times \mathbb{R} \to M, & \phi_t: M \to M, \\ (x,t) \mapsto \phi(x,t). & x \mapsto \phi_t(x). \end{array}$$

Unsteady flow? Just fix arbitrary time T

$$\phi(x,t) = x + \int_0^t \mathbf{v}(\phi(x,\tau), \mathbf{T}) d\tau$$

(on a general manifold *M*, integration is performed in coordinate charts)

Flow of a steady (time-independent) vector field

Map source position x "forward" (t>0) or "backward" (t<0) by time t

$$egin{aligned} egin{aligned} oldsymbol{\phi}(x,t) & oldsymbol{\phi}_t(x) & ext{with} & oldsymbol{\phi}_0(x) = x \ oldsymbol{\phi} : M imes \mathbb{R} o M, & oldsymbol{\phi}_t : M o M, \ (x,t) \mapsto oldsymbol{\phi}(x,t). & x \mapsto oldsymbol{\phi}_t(x). \end{aligned}$$

Can write explicitly as function of independent variable *t*, with *position x fixed*

$$t \mapsto \phi(x,t)$$
 $t \mapsto \phi_t(x)$

= stream line going through point *x*

Flow of an unsteady (time-dependent) vector field

Map source position x from time s to destination position at time t
 (t < s is allowed: map forward or backward in time)

$$\psi_{t,s}(x)$$

$$\psi_{t,s}(x) = x + \int_{s}^{t} \mathbf{v}(\psi_{\tau,s}(x), \tau) d\tau$$

$$\psi_{s,s}(x) = x$$

$$\psi_{t,r}(\psi_{r,s}(x)) = \psi_{t,s}(x)$$

Flow of an unsteady (time-dependent) vector field

Map source position x from time s to destination position at time t
 (t < s is allowed: map forward or backward in time)

$$\psi_{t,s}(x)$$
 $\psi_{t,s}(x) = x + \int_{s}^{t} \mathbf{v}(\psi_{\tau,s}(x), \tau) d\tau$

Can write explicitly as function of t, with s and x fixed

$$t\mapsto \psi_{t,s}(x)$$
 \longrightarrow path line

Can write explicitly as function of s, with t and x fixed

$$s \mapsto \psi_{t,s}(x) \longrightarrow \text{streak line}$$

 $\psi_{t,s}(x)$ is also often written as **flow map** $\phi_t^{\tau}(x)$ (with t:=s and either τ :=t or τ :=t-s)

Can map a whole set of points (or the entire domain) through the flow map (this map is a *diffeomorphism*): $t \mapsto \psi_{t,s}(U)$

 $\psi_{t,s}(U)$

(this is a time surface!)

Time line: Map a whole curve from one fixed time (s) to another time (t)

$$t\mapsto \psi_{t,s}(c(\lambda))$$

Time line: Map a whole curve from one fixed time (s) to another time (t)

$$t\mapsto \psi_{t,s}(c(\lambda))$$

Streamline

Curve parallel to the vector field in each point for a fixed time

Pathline

Describes motion of a massless particle over time

Streakline

Location of all particles released at a fixed position over time

Timeline

Location of all particles released along a line at a fixed time

Streamlines, pathlines, streaklines, timelines

Comparison of techniques:

(1) Pathlines:

- are physically meaningful
- allow comparison with experiment (observe marked particles)
- are well suited for dynamic visualization (of particles)

(2) Streamlines:

- are only geometrically, not physically meaningful
- are easiest to compute (no temporal interpolation, single IVP)
- are better suited for static visualization (prints)
- don't intersect (under reasonable assumptions)

Streamlines, pathlines, streaklines, timelines

(3) Streaklines:

- are physically meaningful
- allow comparison with experiment (dye injection)
- are well suited for static and dynamic visualization
- good choice for fast moving vortices
- can be approximated by set of disconnected particles

(4) Timelines:

- are physically meaningful
- are well suited for static and dynamic visualization
- can be approximated by set of disconnected particles

Thank you.

Thanks for material

- Helwig Hauser
- Eduard Gröller
- Daniel Weiskopf
- Torsten Möller
- Ronny Peikert
- Philipp Muigg
- Christof Rezk-Salama