VE320 Intro to Semiconductor Devices Summer 2022 — Problem Set 9

JOINT INSTITUTE 交大密面根学院

July 31, 2022

Exercise 9.1

Assume that the subthreshold current of a MOSFET is given by

$$I_D = 10^{-15} \exp\left(\frac{V_{GS}}{(2.1)V_t}\right)$$

over the range $0 \le V_{GS} \le 1$ volt and where the factor 2.1 takes into account the effect of interface states. Assume that 10^6 identical transistors on a chip are all biased at the same V_{GS} and at $V_{DD} = 5$ V.

- (a) Calculate the total current that must be supplied to the chip at $V_{GS}=0.5,0.7,$ and 0.9 V
 - (b) Calculate the total power dissipated in the chip for the same V_{GS} values.

Answer:

(a)

$$I_D = 10^{-15} \exp\left(\frac{V_{GS}}{(2.1)V_t}\right)$$

For $V_{GS} = 0.5 \text{ V}$,

$$I_D = 10^{-15} \exp \left[\frac{0.5}{(2.1)(0.0259)} \right] \Rightarrow$$
 $I_D = 9.83 \times 10^{-12} \text{ A}$
For $V_{GS} = 0.7 \text{ V}$,
 $I_D = 3.88 \times 10^{-10} \text{ A}$
For $V_{GS} = 0.9 \text{ V}$,
 $I_D = 1.54 \times 10^{-8} \text{ A}$

Then the total current is:

$$I_T = I_D (10^6)$$

For $V_{GS} = 0.5 \text{ V}, I_T = 9.83 \mu\text{A}$
For $V_{GS} = 0.7 \text{ V}, I_T = 0.388 \text{ mA}$
For $V_{GS} = 0.9 \text{ V}, I_T = 15.4 \text{ mA}$
(b)
Power: $P = I_T \cdot V_{DD}$

Then

For
$$V_{GS} = 0.5 \text{ V}, P = 49.2 \mu\text{W}$$

For $V_{GS} = 0.7 \text{ V}, P = 1.94 \text{ mW}$

For
$$V_{GS} = 0.9 \text{ V}, P = 77 \text{ mW}$$

A silicon MOSFET has parameters $N_a=4\times 10^{16}~{\rm cm^{-3}}, t_{ox}=12~{\rm nm}=120 \mathring{A},~Q'_{ss}=4\times 10^{10}~{\rm cm^{-2}},$ and $\phi_{ms}=-0.5~{\rm V}.$ The transistor is biased at $V_{GS}=1.25~{\rm V}$ and $V_{SB}=0.$

- (a) Calculate ΔL for (i) $\Delta V_{DS} = 1$ V, (ii) $\Delta V_{DS} = 2$ V, and (iii) $\Delta V_{DS} = 4$ V.
- (b) Determine the minimum channel length L such that $\Delta L/L = 0.12$ for $V_{GS} = 1.25$ V and $\Delta V_{DS} = 4$ V.

Answer:

$$C_{ox} = \frac{\epsilon_{ox}}{t_{ox}} = \frac{(3.9) (8.85 \times 10^{-14})}{120 \times 10^{-8}}$$

$$= 2.876 \times 10^{-7} \text{ F/cm}^2$$

$$V_{FB} = \phi_{ms} - \frac{Q'_{ss}}{C_{ox}}$$

$$= -0.5 - \frac{(4 \times 10^{10}) (1.6 \times 10^{-19})}{2.876 \times 10^{-7}}$$

$$V_{FB} = -0.5223 \text{ V}$$

Now

$$V_T = \frac{|Q'_{SD}(\max)|}{C_{CT}} + V_{FB} + 2\phi_{fp}$$

We find

$$\phi_{fp} = (0.0259) \ln \left(\frac{4 \times 10^{16}}{1.5 \times 10^{10}} \right) = 0.3832 \text{ V}$$

$$x_{dT} = \left[\frac{4(11.7) (8.85 \times 10^{-14}) (0.3832)}{(1.6 \times 10^{-19}) (4 \times 10^{16})} \right]^{1/2}$$

$$= 1.575 \times 10^{-5} \text{ cm}$$

$$|Q'_{SD}(\text{max})|$$

$$= (1.6 \times 10^{-19}) (4 \times 10^{16}) (1.575 \times 10^{-5})$$

$$= 1.008 \times 10^{-7} \text{C/cm}^2$$

So

$$V_T = \frac{1.008 \times 10^{-7}}{2.876 \times 10^{-7}} - 0.5223 + 2(0.3832)$$

= 0.595 V

$$V_{DS}(\text{ sat }) = V_{GS} - V_T = 1.25 - 0.595 = 0.655 \text{ V}$$

$$\sqrt{\frac{2\epsilon_s}{eN_a}} = \sqrt{\frac{2(11.7)(8.85 \times 10^{-14})}{(1.6 \times 10^{-19})(4 \times 10^{16})}}$$
$$= 1.799 \times 10^{-5} \text{ cm/V}^{1/2}$$

(a)
$$\Delta L = \sqrt{\frac{2\epsilon_s}{eN_a}} \left[\sqrt{\phi_{fp} + V_{DS}(sat) + \Delta V_{DS}} \right]$$

$$-\sqrt{\phi_{fp} + V_{DS}(sat)}$$

(i)
$$\Delta L = (1.799 \times 10^{-5}) \times [\sqrt{0.3832 + 0.655 + 1} - \sqrt{0.3832 + 0.655}]$$
$$\Delta L = 7.35 \times 10^{-6} \text{ cm} = 0.0735 \mu\text{m}$$

(ii)
$$\Delta L = (1.799 \times 10^{-5}) \\ \times [\sqrt{0.3832 + 0.655 + 2} - \sqrt{0.3832 + 0.655}] \\ \Delta L = 1.303 \times 10^{-5} \text{ cm} = 0.1303 \mu\text{m}$$
(iii)
$$\Delta L = (1.799 \times 10^{-5}) \\ \times [\sqrt{0.3832 + 0.655 + 4} - \sqrt{0.3832 + 0.655}] \\ \Delta L = 2.205 \times 10^{-5} \text{ cm} = 0.2205 \mu\text{m}$$
(b)
$$\frac{\Delta L}{L} = 0.12 = \frac{0.2205}{L}$$

Consider an n-channel silicon MOSFET. The parameters are $k'_n = 75\mu A/V^2$, W/L = 10, and $V_T = 0.35$ V. The applied drain-to-source voltage is $V_{DS} = 1.5$ V.

 $L = 1.84 \mu m$

(a) For $V_{GS} = 0.8$ V, find (i) the ideal drain current, (ii) the drain current if $\lambda = 0.02$ V⁻¹, and (iii) the output resistance for $\lambda = 0.02$ V⁻¹.

(b) Repeat part (a) for $V_{GS} = 1.25 \text{ V}$.

Answer:

(a)

(i) $I_D = \frac{k'_n}{2} \cdot \frac{W}{L} (V_{GS} - V_T)^2$ $= \left(\frac{0.075}{2}\right) (10)(0.8 - 0.35)^2$ $= 0.07594 \text{ mA} = 75.94 \mu\text{A}$

(ii)
$$I'_D = I_D (1 + \lambda V_{DS})$$
$$= (75.9375)[1 + (0.02)(1.5)]$$
$$= 78.22 \mu A$$

(iii)
$$r_o = \frac{1}{\lambda I_D} = \frac{1}{(0.02)(75.94)} = 0.658 \text{M}\Omega = 658 \text{k}\Omega$$

(p)

(i)
$$I_D = \left(\frac{0.075}{2}\right) (10)(1.25 - 0.35)^2$$
$$= 0.30375 \text{ mA}$$

(ii)
$$I'_D = (0.30375)[1 + (0.02)(1.5)]$$

$$= 0.3129 \text{ mA}$$

(iii)
$$r_o = \frac{1}{(0.02)(0.30375)} = 165 \text{k}\Omega$$

- (a) What is subthreshold conduction? Sketch a drain current versus gate voltage plot that shows the subthreshold current for the transistor biased in the saturation region.
- (b) What is channel length modulation? Sketch an I–V curve that shows the channel length modulation effect.
 - (c) What is velocity saturation and what is its effect on the I–V relation of a MOSFET?
- (d) Sketch the space charge region in the channel of a short-channel MOSFET and show the charge-sharing effect. Why does the threshold voltage decrease in a short-channel NMOS device?

Answer:

(a)

Figure 1: Figure for Problem 9.4

(b)

Figure 2: Figure for Problem 9.4

(c)

Figure 3: Figure for Problem 9.4

(d)

Figure 4: Figure for Problem 9.4

Exercise 9.5

For a uniformly doped n⁺⁺p⁺n bipolar transistor in thermal equilibrium,

- (a) sketch the energy-band diagram
- (b) sketch the electric field through the device
- (c) repeat parts (a) and (b) for the transistor biased in the forward-active region.

Answer:

Figure 5: Figure for Problem 9.5

What is Early effect? How to minimize it?

Answer:

Early Effect: As V_c becomes larger, the base-collector is more reverse-biased, then the depletion region becomes larger and extends more into the base region. Hence electrons are more likely to be swept into the collector, resulting in a higher gain. To minimize it, we can make doping concentration in the base larger than that in the collector, so that the depletion region in the base s small.

Exercise 9.7

- (a) From fabrication point of view, why is Si the most commonly used material in semiconductor industry nowadays?
 - (b) After this course, what did you learn about semiconductors?

Answer

- (a)1. Si is easy to get (e.g. from sand) less expensive
- 2. Si has big bandgap, so that it could be operated in high temperature and has less leakage current.
 - 3. SiO₂ can protect Si
 - (b) Chapter 1: The Crystal Structure of Solids
 - Chapter 2: Introduction to Quantum Mechanics
 - Chapter 3: Introduction to the Quantum Theory of Solids
 - Chapter 4: The Semiconductor in Equilibrium
 - Chapter 5: Carrier Transport Phenomena
 - Chapter 6: Nonequilibrium Excess Carriers in Semiconductors
 - Chapter 7: The pn Junction
 - Chapter 8: The pn Junction Diode
 - Chapter 9: Metal-Semiconductor and Semiconductor Heterojunctions
 - Chapter 10: Fundamentals of the Metal-Oxide-Semiconductor Field-Effect Transistor
 - Chapter 11: Metal-Oxide-Semiconductor Field-Effect Transistor: Additional Concepts
 - Chapter 12: The Bipolar Transistor

Reference

1. Neamen, Donald A. Semiconductor physics and devices: basic principles. McGrawhill, 2003.