MATH 232 Section 4.1 pre-lecture comments

Lecture Outline

We will learn how to compute **determinants** for general $n \times n$ matrices. This section gives the definition of determinants in terms of its *cofactor expansions*.

Important: *A* is invertible if and only if $det(A) \neq 0$.

All matrices in this chapter are square matrices.

New terminology

- 1. determinant
- 2. minor
- 3. cofactor

Recall the inverse of the 2×2 matrix. Given

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \text{then} \quad A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

In particular, A has an inverse if and only if $\frac{1}{ab-bc}$ $\frac{4}{5}$. O

This quantity is called the determinant. (2×2 m/x)

Determinant of a
$$2 \times 2$$
 matrix

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = det \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} = ad - bc.$$

Leterminant

Is there a similar "number test" for 3×3 or larger matrices?

Determinant of a 3×3 matrix

Paij & ith row jth column

If
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

then det(A) is the following:

$$a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32}$$

$$a_{11}$$
 a_{12} a_{13} a_{11} a_{12}
 a_{21} a_{22} a_{23} a_{21} a_{22}
 a_{31} a_{32} a_{33} a_{31} a_{32}

Ex:
$$A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 2 & -1 \\ 1 & 0 & -1 \end{bmatrix}$$
 $(-2) + (-2) + (0) - (2) - (0)$ $(-2) + ($

Note: This idea only works for 2×2 and 3×3 , not 4×4 or larger!

4x4 has 24 terms

There is another way to express the determinant, in terms of *smaller-sized determinants*:

$$\det(A) = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31})$$

$$= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} = a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{12}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32}\end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32}\end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32}\end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32}\end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32}\end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32}\end{vmatrix} + a_{13}\begin{vmatrix} a$$

Examples
$$A = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 2 & -1 \\ 1 & 0 & -1 \end{bmatrix}$$

$$det(A) = \begin{bmatrix} 2 & -1 \\ 0 & -1 \end{bmatrix} - 2 \begin{bmatrix} -1 & -1 \\ 1 & -1 \end{bmatrix} + \begin{bmatrix} -1 & 2 \\ 1 & 0 \end{bmatrix}$$

$$= -8$$

$$A = \begin{bmatrix} 1 & -1 & 3 \\ -1 & 0 & 1 \\ 2 & 0 & -1 \end{bmatrix}$$

$$det(A) = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} - (-1) \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix} + (3) \begin{bmatrix} -1 & 0 \\ 2 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} + \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix} + \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix}$$

Definition: Minor (4.1.4) For any $n \times n$ matrix M_{ij} is the determinant of the submatrix formed by deleting i—th row and j—th column of A. This determinant is called the (i,j)-minor of A or M_{ij} .

$$\begin{bmatrix} 1 & -1 & 3 \\ + & 0 & 1 \\ 2 & 0 & -1 \end{bmatrix} \qquad M_{23} = \begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix} = 2$$

Examples
$$A = \begin{bmatrix} 1 & -1 & 3 \\ -1 & 0 & 1 \\ 2 & 0 & -1 \end{bmatrix}$$

$$M_{11} = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} = 0$$

$$M_{32} = \begin{bmatrix} 1 & 3 \\ -1 & 1 \end{bmatrix} = 1$$

$$M_{32} = \begin{bmatrix} 1 & 3 \\ -1 & 1 \end{bmatrix} = 1$$

$$M_{32} = \begin{bmatrix} 1 & 3 \\ -1 & 1 \end{bmatrix} = 1$$

Definition: Cofactor (4.1.4) The (i,j)-cofactor (C_{ij}) of A is $C_{ij} = (-1)^{i+j}M_{ij}$.

Theorem 4.1.5

The determinant of an $n \times n$ matrix is given by:

$$\det(A) = a_{11} M_{11} - a_{12} M_{12} + a_{13} M_{13} - \dots - (-1)^{n+1} a_{1n} M_{1n}$$

$$= a_{11} C_{11} + a_{12} C_{12} + \dots + a_{1n} C_{1n}$$

Note that this is not the only formula. For 3×3 , there are 5 others:

$$\det(A) = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} \qquad (\text{lst row})$$

$$= a_{21}C_{21} + a_{22}C_{22} + a_{23}C_{23} \qquad (\text{Inl row})$$

$$= a_{31}C_{31} + a_{32}C_{32} + a_{33}C_{33} \qquad (\text{3rd row})$$

$$= a_{11}C_{11} + a_{21}C_{21} + a_{31}C_{31} \qquad (\text{lst column})$$

$$= a_{12}C_{12} + a_{22}C_{22} + a_{32}C_{32} \qquad (\text{Inl column})$$

$$= a_{13}C_{13} + a_{23}C_{23} + a_{33}C_{33} \qquad (\text{3rd column})$$

We can expand on any row or column! (See Theorem 4.1.5)

Ex:
$$A = \begin{bmatrix} 1 & -1 & 3 \\ -1 & 0 & 1 \\ 2 & 0 & -1 \end{bmatrix}$$

$$\det(A) = a_{12}C_{12} + a_{22}C_{22} + a_{32}C_{32}$$

$$= -a_{12}M_{12} + a_{22}M_{22} - a_{32}M_{32}$$

$$= -(-1)M_{12} + 0M_{22} - 0M_{32}$$

$$= M_{12} = \begin{bmatrix} -1 & 1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

This suggests a strategy: do the row or column with the most zeros.

Special cases

What about special cases like diagonal, upper triangular, lower trian-

$$A = \begin{bmatrix} 3 & -4 & 7 \\ 0 & -1 & 2 & 3 \\ 0 & 0 & 2 & -5 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$

$$|s+col$$

$$det(A) = a_{11} M_{11} = (1) \begin{vmatrix} -1 & 2 & 3 \\ 0 & 2 & -5 \\ 0 & 0 & -2 \end{vmatrix} = (1) (-1) \begin{vmatrix} 2 & -5 \\ 0 & -2 \end{vmatrix}$$

then det (A) is product of Liagonal entries