Autonomous Truck Deployment – Impact of Road Construction

July 2025

Presented by: Salah Uddin Momtaz

Presented to: Aurora

Journey Through the Data

Setting the Stage: AV Trucks Meets Reality

Uncovering the Hidden Patterns

Emerging City Construction Landscape

Cities to Routes: Tires on Pavement

Predicting Construction Chaos

Analysis to Action

Discussion: Path Forward

Setting the Stage: Where AV Trucks Meet Reality

Promise vs. Daily Roadblocks

\$168B

Annual Savings promised by autonomous trucks

8.8K

Construction causing daily disruptions in 2021

Autonomous fleet needs to navigate this maze of construction – minimizing costly delays, route failures, customer dissatisfaction

Data Sources Behind the Story

US Road Construction and Closures (2016 - 2021)

Route Line

Census Data

Road Network GIS

Uncovering the Hidden Patterns

What 6.2 Million Construction Projects Revealed

Summary

- Data: US road construction data (2016-2021)
- Critical insights for AV deployment strategy
- Identifying high-impact zones and routes
- Predict the impact of constructions

Connecting Construction - Route

First Discovery: Not All Disruptions Are Equal

Duration Histogram

Summary Steps

- Feature Extractions
 - Duration → From start and end time
 - Road/Lane Closure → From "Description"
- Distribution & Missing Values

The City Construction Landscape Emerges

Phoenix Paradox: Most Construction, Shortest Delays

Top Cities Over 6 years

Year	Top City	Million Hours	Sites	Avg. Distance (miles)
2016	Middletown, DE	10.4	299	0.9
2017	York, PA	10.3	841	1.8
2018	Winnfield, LA	9.8	461	1.9
2019	Cle Elum, WA	17.8	1,393	4.0
2020	Phoenix, AZ	11.9	34,240	0.2
2021	Phoenix, AZ	10.3	212,356	0.2

- Phoenix has higher number of construction sites with shorter length
- Cle Elum has long stretched sites

More Phoenix Paradox: Ranks #1 in Hours but #10 in Impact

March 2021: Construction Patterns Change

COVID's Gift: Shifting Construction Seasons

Phoenix & Chicago: The Construction Giants

Normalization Method Changes Everything

From Cities to Routes: Where Rubber Meets Road

Heat Map Reveals: One Route Stands Apart

Geospatial Analysis Summary

- 32K+ total construction events in Bay Area
- 20m radius threshold for spatial snapping to matching construction sites with Routes
- **6** 9K+ events directly impacting routes

SF → Pacifica shows visibly lower construction density

SF → San Rafael traverses high-intensity zones

Construction hotspots concentrate around urban core

SF-Pacifica: The Clear Winner for AV Testing

SF -> Pacifica shows lowest number of construction with higher severity

Quantifying Risk: From Best (1) to Worst (0)

Risk Scoring Methodology

Feature Weights (by Standard Deviation) Construction Duration: 96.5% Distance Impact: 1.3% Severity Weight: 1.4% Road Closure Events: 0.8%

Risk Score - Developed by Inverse Normalization

Route	Risk Score	Rank	Hours	Road Closure	Distance (mi)
SF → Pacifica	1.00	1	119K	1.1K	0.9K
SF → San Mateo	0.80	2	176K	1.6K	1.2K
SF → San Leandro	0.45	3	271K	3.1K	4.2K
SF → Berkeley	0.24	4	335K	3.2K	3.9K
SF → San Rafael	0.01	5	404K	2.9K	2.7K

Can We Predict Construction Chaos?

Random Forest Wins

Log Linear Regression Model

- Training, Test data split 80% 20%
- Performs poorly
 - MAE: 1.645
 - RMSE: 2.132
 - R²: 0.076

Random Forest Regressor

- Training, Test data split 80% 20%
- Good enough for strategic/sketch planning, needs improvement for daily operations
 - MAE: 1.2344
 - RMSE: 1.851
 - R²: 0.303

Feature Importance - Random Forest

The Path to Improve Predictability

Current Performance Benchmark: 30% R² - insights for strategic decisions

Target Enhancement: $50\% + R^2$ - could aid operational automations and dynamic deployments

Model Enhancement Roadmap

Outlier Treatment

- Remove top or bottom 5%
- Down-weight the outliers

Interaction Terms

Road closure, Severity,
 Quarters and distance
 interactions could work

Ensemble Methods

- Evaluate Geospatial Models
- Segmented model for different spatial levels

Models Helps to Quantify Actions

Predict Duration → Estimate Delay → Estimate Operating Cost → Score by Cost → Zore-cone – Minimal cost Route

Route	Avg Duration (Predicted)	Annual Events	Delay Factor	Exposure Factor	Est. Delay (hours)	Operating Cost	Rank by Cost	
SF → Pacifica	43.7	240	0.28	0.28	820	\$125K	1	←
SF → San Mateo	38.2	341	0.29	0.43	1,620	\$245K	2	
SF → San Leandro	47.0	603	0.22	0.44	2,640	\$410K	4	
SF → Berkeley	43.8	652	0.20	0.50	2,860	\$430K	5	←
SF → San Rafael	44.7	618	0.22	0.34	2,070	\$310K	3	

Delay Factor →

Construction type Factor * Proportion Construction type

Road Close: 1

Lane Close: 0.3

Others: 0.1

Exposure Factor →

Hour - Mile Normalization in [0 - 0.5]

Turning Analysis into Action

Findings & Actions: Roadmap Forward

Key Findings

- Phoenix, AZ emerges as highest risk city with 212K+ construction sites but shorter duration projects
- COVID-19 (/Election) caused a shift in construction patterns from Q3-Q4 to Q1-Q2, requiring adaptive route planning
- SF → Pacifica route shows minimal construction risk, ideal for initial deployment
- Random Forest model achieves over 30% accuracy with distance as the primary predictor

Recommendations

- Implement dynamic routing algorithms for high-impact cities like Phoenix and Chicago
- Develop seasonal deployment strategies accounting for Q1 construction peaks
- Prioritize low-risk & low-cost routes like SF-Pacifica for initial autonomous deployment
- Enhance model accuracy by incorporating road closure interaction variables, or using a geospatial modeling approach

Refference Weblinks

- Contain all the codes (*.py, *.ipynb)
- Python environment file
- Presentation slide deck

https://bit.ly/4eqIn7v

 Hosted the GitHub notebook online with binder

 Hosted the interactive python tools for assessing construction impact on Bay Area Routes

https://bit.ly/4l73xtV

Let's Discuss: Your Questions - Our Path Forward

