Gradient Descent

2020/11/25

Review: Gradient Descent

• In step 3, we have to solve the following optimization problem:

$$\theta^* = \arg\min_{\theta} L(\theta)$$
 L: loss function θ : parameters

suppose that θ has two variables $\{\theta_1, \theta_2\}$

Randomly start at
$$\theta^0 = \begin{bmatrix} \theta_1^0 \\ \theta_2^0 \end{bmatrix}$$

$$\nabla L(\theta) = \begin{bmatrix} \frac{\partial L(\theta_1)}{\partial \theta_1} \\ \frac{\partial L(\theta_2)}{\partial \theta_2} \end{bmatrix}$$

$$\theta^1 = \theta^0 - \eta \nabla L(\theta^0)$$

$$\begin{bmatrix} \theta_1^2 \\ \theta_2^2 \end{bmatrix} = \begin{bmatrix} \theta_1^1 \\ \theta_2^1 \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial L(\theta_1^1)}{\partial \theta_1} \\ \frac{\partial L(\theta_2^1)}{\partial \theta_2} \end{bmatrix} \qquad \Rightarrow \qquad \theta^2 = \theta^1 - \eta \nabla L(\theta^1)$$

$$\theta^2 = \theta^1 - \eta \nabla \theta$$

Review: Gradient Descent

Gradient Descent Tip 1: Tuning your learning rates

Learning Rate

$$\theta^i = \theta^{i-1} - \eta \nabla L(\theta^{i-1})$$

Set the learning rate η carefully

But you can always visualize this.

Adaptive Learning Rates

- Popular & Simple Idea: Reduce the learning rate by some factor every few epochs.
 - At the beginning we are far from the destination, so we use larger learning rate.
 - After several epochs, we are close to the destination, so we reduce the learning rate.
 - e.g. 1/t decay: $\eta^t = \eta/\sqrt{t+1}$
- Learning rate cannot be one-size-fits-all
 - Giving different parameters different learning rates.

Adagrad

$$\eta^t = \frac{\eta}{\sqrt{t+1}} \quad g^t = \frac{\partial L(\theta^t)}{\partial w}$$

• Divide the learning rate of each parameter by the root mean square of its previous derivatives

Vanilla Gradient descent

$$w^{t+1} \leftarrow w^t - \eta^t g^t$$

w is one parameters

Adagrad

$$w^{t+1} \leftarrow w^t - \frac{\eta^t}{\sigma^t} g^t$$

 σ^t : **root mean square** of the previous derivatives of parameter w

parameter dependent

Adagrad

$$w^1 \leftarrow w^0 - \frac{\eta^0}{\sigma^0} g^0$$

$$w^2 \leftarrow w^1 - \frac{\eta^1}{\sigma^1} g^1$$

$$w^3 \leftarrow w^2 - \frac{\eta^2}{\sigma^2} g^2$$

•

$$w^{t+1} \leftarrow w^t - \frac{\eta^t}{\sigma^t} g^t$$

 σ^t : root mean square of the previous derivatives of parameter w

$$\sigma^0 = \sqrt{(g^0)^2}$$

$$\sigma^1 = \sqrt{\frac{1}{2}[(g^0)^2 + (g^1)^2]}$$

$$\sigma^2 = \sqrt{\frac{1}{3}[(g^0)^2 + (g^1)^2 + (g^2)^2]}$$

$$\sigma^t = \sqrt{\frac{1}{t+1} \sum_{i=0}^t (g^i)^2}$$

Adagrad

• Divide the learning rate of each parameter by the root mean square of its previous derivatives

Contradiction?

$$\eta^t = \frac{\eta}{\sqrt{t+1}} \quad g^t = \frac{\partial L(\theta^t)}{\partial w}$$

Vanilla Gradient descent

$$w^{t+1} \leftarrow w^t - \eta^t g^t$$
 larger gradient, larger step

Adagrad

Intuitive Reason

$$\eta^t = \frac{\eta}{\sqrt{t+1}} \quad g^t = \frac{\partial L(\theta^t)}{\partial w}$$

How surprise it is.

反差

特別大

\mathbf{g}^0	g^1	\mathbf{g}^2	g^3	g^4	•••••
0.001	0.001	0.003	0.002	0.1	
\mathbf{g}^0	\mathbf{g}^{1}	\mathbf{g}^2	\mathbf{g}^3	\mathbf{g}^4	•••••
10.8	20.9	31.7	12.1	0.1	

特別小

$$w^{t+1} \leftarrow w^t - \frac{\eta}{\sqrt{\sum_{i=0}^t (g^i)^2}} g^t$$
 造成反差的效果

larger gradient, larger step?

larger 1st order derivative means far from the minima

$$y = ax^2 + bx + c$$

 $\frac{|2ax_0+b|}{|ax_0+b|}$

$$|2ax + b|$$

$$|2ax + b|$$

comparison between different parameters

larger 1st order derivative means far from the minima

Do not cross parameters

second derivative

comparison between different parameters

Use first derivative to estimate second derivative

Gradient Descent Tip 2: Stochastic Gradient Descent

Make the training faster

Stochastic Gradient Descent

$$L = \sum_{n} \left(\hat{y}^{n} - \left(b + \sum_{i} w_{i} x_{i}^{n} \right) \right)^{2}$$
 Loss is the summation over all training examples

- Gradient Descent $\theta^i = \theta^{i-1} \eta \nabla L(\theta^{i-1})$
- ◆ <u>Stochastic Gradient Descent</u> Faster!

 pick an example xⁿ

$$L^{n} = \sum_{n} \left(\hat{y}^{n} - \left(b + \sum_{i} w_{i} x_{i}^{n} \right) \right)^{2} \qquad \theta^{i} = \theta^{i-1} - \eta \nabla L^{n}(\theta^{i-1})$$

loss for only one example

Stochastic Gradient Descent

Gradient Descent

update after seeing all examples

Stochastic Gradient Descent

Update for each example. If there are 20 examples, 20 times faster

Gradient Descent Tip 3: Feature Scaling

Feature Scaling

$$y = b + w_1 x_1 + w_2 x_2$$

make different features have the same scaling

$$y = b + w_1 x_1 + w_2 x_2$$

Feature Scaling

Feature Scaling

$$x_i^r \leftarrow \frac{x_i^r - m_i}{\sigma_i}$$

The means of all dimensions are 0, and the variances are all 1.

Gradient Descent Theory

Question

• When solving:

$$\theta^* = \arg\min_{\theta} L(\theta)$$
 by gradient descent

• Each time we update the parameters, we obtain θ that makes $L(\theta)$ smaller.

$$L(\theta^0) > L(\theta^1) > L(\theta^2) > \cdots$$

is this statement correct?

Warning of Math

Formal Derivation

suppose that θ has two variable $\{\theta_1, \theta_2\}$

Given a point, we can easily find the point with the smallest value nearby.

how?

Taylor Series

• **Taylor series**: Let h(x) be any function infinitely differentiable around $x = x_0$.

$$h(x) = \sum_{k=0}^{\infty} \frac{h^{(k)}(x_0)}{k!} (x = x_0)^k$$

$$= h(x_0) + h'(x_0)(x - x_0) + \frac{h''(x_0)}{2!} (x - x_0)^2 + \cdots$$

when x is close to $x_0 \Rightarrow h(x) \approx h(x_0) + h'(x_0)(x - x_0)$

e.g. Taylor series for $h(x) = \sin(x)$ around $x_0 = \pi/4$

$$\sin(x) = \frac{1}{\sqrt{2}} + \frac{x - \frac{\pi}{4}}{\sqrt{2}} - \frac{\left(x - \frac{\pi}{4}\right)^2}{2\sqrt{2}} - \frac{\left(x - \frac{\pi}{4}\right)^3}{6\sqrt{2}} + \frac{\left(x - \frac{\pi}{4}\right)^4}{24\sqrt{2}} + \frac{\left(x - \frac{\pi}{4}\right)^5}{120\sqrt{2}} - \frac{\left(x - \frac{\pi}{4}\right)^6}{720\sqrt{2}} - \frac{\left(x - \frac{\pi}{4}\right)^8}{40320\sqrt{2}} + \frac{\left(x - \frac{\pi}{4}\right)^9}{362880\sqrt{2}} - \frac{\left(x - \frac{\pi}{4}\right)^{10}}{3628800\sqrt{2}} + \cdots$$

Multivariable Taylor Series

$$h(x,y) = h(x_0, y_0) + \frac{\partial h(x_0, y_0)}{\partial x} (x - x_0) + \frac{\partial h(x_0, y_0)}{\partial y} (y - y_0) + \frac{\partial h(x_0, y_0)}{\partial y} (y - y_0) + \frac{\partial h(x_0, y_0)}{\partial y} (y - y_0)^2 + \cdots$$

When x and y is close to x_0 and y_0

$$h(x,y) \approx h(x_0, y_0) + \frac{\partial h(x_0, y_0)}{\partial x}(x - x_0) + \frac{\partial h(x_0, y_0)}{\partial y}(y - y_0)$$

back to formal derivation

based on Taylor Series

if the red circle is *small enough*, in the red circle:

$$L(\theta) \approx L(a,b) + \frac{\partial L(a,b)}{\partial \theta_1} (\theta_1 - a) + \frac{\partial L(a,b)}{\partial \theta_2} (\theta_2 - b)$$

$$s = L(a,b)$$

$$u = \frac{\partial L(a,b)}{\partial \theta_1}$$
 $v = \frac{\partial L(a,b)}{\partial \theta_2}$

$$L(\theta) \approx s + u(\theta_1 - a) + v(\theta_2 - b)$$

back to formal derivation

based on Taylor Series

if the red circle is *small enough*, in the red circle:

$$L(\theta) \approx s + u(\theta_1 - a) + v(\theta_2 - b)$$

s = L(a,b) $u = \frac{\partial L(a,b)}{\partial \theta_1} \quad v = \frac{\partial L(a,b)}{\partial \theta_2}$

find θ_1 and θ_2 in the red circle minimizing $L(\theta)$

$$(\theta_1 - a)^2 + (\theta_2 - b)^2 \le d^2$$

Gradient descent – two variables

Red circle: (if the radius is small)

$$L(\theta) \approx 3 + u(\theta_1 - a) + v(\theta_2 - b)$$

$$\Lambda \theta_1 \qquad \Lambda \theta_2$$

 $\Delta\theta_1$ $\Delta\theta_2$ find θ_1 and θ_2 in the red circle **minimizing** $L(\theta)$

$$(\theta_1 - a)^2 + (\theta_2 - b)^2 \le d^2$$

$$\Delta \theta_1 \qquad \Delta \theta_2$$

to minimize $L(\theta)$

$$\begin{bmatrix} \Delta \theta_1 \\ \Delta \theta_2 \end{bmatrix} = -\eta \begin{bmatrix} u \\ v \end{bmatrix} \longrightarrow \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} - \eta \begin{bmatrix} u \\ v \end{bmatrix}$$

back to formal derivation

based on Taylor Series

if the red circle is **small enough**, in the red circle:

$$L(\theta) \approx s + u(\theta_1 - a) + v(\theta_2 - b)$$

$$s = L(a,b)$$

$$u = \frac{\partial L(a,b)}{\partial \theta_1} \quad v = \frac{\partial L(a,b)}{\partial \theta_2}$$

find θ_1 and θ_2 yielding the smallest value of $L(\theta)$ in the circle

$$\begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} - \eta \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix} - \eta \begin{bmatrix} \frac{\partial L(a,b)}{\partial \theta_1} \\ \frac{\partial L(a,b)}{\partial \theta_2} \end{bmatrix}$$
 this is gradient descent

not satisfied if the red circle (learning rate) is not small enough you can consider the second order term, e.g. Newton's method

