A. Giovanidis 2019

Feature Selection / Regularization

Data Analysis for Networks - DataNets'19 Anastasios Giovanidis

Sorbonne-LIP6

February 13, 2019

Bibliography

A. Giovanidis 2019

B.1 Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. "An introduction to statistical learning: with applications in R". Springer Texts in Statistics. ISBN 978-1-4614-7137-0 Chapter 6 DOI 10.1007/978-1-4614-7138-7

Intro

A. Giovanidis 2019

In the multiple-regression setting, we assumed that the linear model with additive noise:

$$Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \epsilon$$

describes the relationship between a response Y and a set of $p \ge 1$ predictor variables X_1, X_2, \dots, X_p .

- The model fit uses least squares (LSs) to estimate the $\hat{\beta}_i$'s.

But, is it always a good fit? Are there any ways to improve this fit?

Feature Selection, Regularization, and Dimension Reduction.

Main idea

A. Giovanidis 2019

Either shrink the coefficients for some feature variables or remove them completely!

Why?

- ▶ Prediction Accuracy: If n >> p then LSs do have low variance. But when e.g. $n \leq p$ the model is highly variable!
- Model Interpretability: Some variables used as predictors may not be relevant with the response. Better remove them to reduce model complexity.

Methods

A. Giovanidis 2019

We will present three main methods that modify the LSs:

- ▶ Subset Selection: Identify a subset of the original p predictors to be relevant (say $p_s < p$). Then apply LSs fit.
- Shrinkage: Fit the model with all p features, but shrink some coefficients even to zero.
 - \rightarrow This method reduces variance.
- ▶ Dimension Reduction: This method projects the p predictors to an M

Best subset selection

A. Giovanidis 2019

To find the best set one needs to perform LSs for all possible combinations fo the p predictors:

- ▶ All models with 1 predictor: p.
- ► All models with 2 predictors: $\begin{pmatrix} p \\ 2 \end{pmatrix} = \frac{p(p-1)}{2}$.
- etc.

In total 2^p possibilities.

1

A. Giovanidis 2019

Algorithm 6.1 Best subset selection

- 1. Let \mathcal{M}_0 denote the *null model*, which contains no predictors. This model simply predicts the sample mean for each observation.
- 2. For $k = 1, 2, \dots p$:
 - (a) Fit all $\binom{p}{k}$ models that contain exactly k predictors.
 - (b) Pick the best among these $\binom{p}{k}$ models, and call it \mathcal{M}_k . Here best is defined as having the smallest RSS, or equivalently largest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \dots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

Pick models with smallest Train RSS, Select with smallest Test RSS.

¹ Source [B.1]

Many possibilities to test...

A. Giovanidis 2019

The method needs to test too many feature combinations:

- for p = 10, approx 1,000 models,
- for p = 20, over 1,000,000 possibilities!
- etc.

The Best subset selection becomes computationally infeasible for large sets of features.

We need to find other ways to select good subsets stepwise.

Forward Stepwise Selection

A. Giovanidis 2019

The method:

- Begins with a model without predictors,
- adds predictors to the model one-at-a-time,
- until all predictors are in the model.

At each step the variable that gives the greatest additional improvement to the fit is added.

A. Giovanidis 2019

2

Algorithm 6.2 Forward stepwise selection

- 1. Let \mathcal{M}_0 denote the *null* model, which contains no predictors.
- 2. For $k = 0, \ldots, p 1$:
 - (a) Consider all p-k models that augment the predictors in \mathcal{M}_k with one additional predictor.
 - (b) Choose the *best* among these p k models, and call it \mathcal{M}_{k+1} . Here *best* is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

Pick models with smallest Train RSS, Select with smallest Test RSS.

²Source [B.1]

Advantages

A. Giovanidis 2019

The method is computationally advantageous compared to Best selection:

- Instead of 2^p fitting models, it needs to compute only $1 + \sum_{k=0}^{p-1} (p-k) = 1 + p(p+1)/2$ models.
- e.g. for p = 20, fit 211 models instead of 1,048,576!
- ▶ Can be used also when n < p (stops at n features)

It is not guaranteed to find the best possible model out of the 2^{p} .

A. Giovanidis 2019

3

# Variables	Best subset	Forward stepwise
One	rating	rating
Two	rating, income	rating, income
Three	rating, income, student	rating, income, student
Four	cards, income,	rating, income,
	student, limit	student, limit

Source [B.1]

•

Algorithm 6.3 Backward stepwise selection

- 1. Let \mathcal{M}_p denote the full model, which contains all p predictors.
- 2. For $k = p, p 1, \dots, 1$:
 - (a) Consider all k models that contain all but one of the predictors in \mathcal{M}_k , for a total of k-1 predictors.
 - (b) Choose the *best* among these k models, and call it \mathcal{M}_{k-1} . Here best is defined as having smallest RSS or highest R^2 .
- 3. Select a single best model from among $\mathcal{M}_0, \ldots, \mathcal{M}_p$ using cross-validated prediction error, C_p (AIC), BIC, or adjusted R^2 .

⁴Source [B.1]

Choosing the Optimal Model

A. Giovanidis 2019

All methods hand-pick a small number of models based on a small value of Test RSS or high value of R^2 .

To choose exactly one model among these, we need to find the one with smallest Test error. To do so we can:

- Estimate the Test Error, by adjusting the Train Error to account for Bias.
- Directly estimate the Test Error using a validation set or cross-validation.

Adjustment of the Train Error

A. Giovanidis 2019

We already know the Cross-Validation concept.

We can also adjust the Train error to select the model with best Test prediction:

- C_{ρ} -estimate: $C_{\rho} = \frac{1}{n} \left(RSS + 2d\hat{\sigma}^2 \right)$.
- ► Akaike Information Criterion: $AIC = \frac{1}{n\hat{\sigma}^2}(RSS + 2d\hat{\sigma}^2)$.
- ▶ Bayesian Information Criterion: $BIC = \frac{1}{n\hat{\sigma}^2}(RSS + \log(n)d\hat{\sigma}^2)$.
- Adjusted $R^2 = 1 \frac{RSS/(n-d-1)}{TSS/(n-1)}$, where $TSS = \sum (y_i \bar{y})^2$.

Shrinkage

A. Giovanidis 2019

We have seen methods to optimally select a subset of appropriate features, leaving the rest out.

As an alternative, we can keep all p features, but use a technique that constraints or regularizes the coefficient estimates.

Estimates can be shrunk towards zero! This technique can significantly reduce variance.

Ridge Regression and the Lasso.

Ridge Regression

A. Giovanidis 2019

Similar to LSs fit, the Ridge Regression solves

$$\min_{\beta} \qquad \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

where the lefthand side is just the RSS, and $\lambda \ge 0$ is a tuning parameter, to be determined.

The second term is called shrinkage penalty.

Properties

A. Giovanidis 2019

- ▶ When $\lambda = 0$: it is just the Least-Squares fit.
- ▶ When $\lambda \to \infty$ β 's will approach zero.
- ▶ Find the "best" set of parameters β .

 \blacksquare Each choice of λ produces a different set of estimates $\hat{\beta}_{\lambda}$.

Note 1: The shrinkage penalty is **not** applied to the intercept β_0 . **Note 2:** Best apply ridge-regression after standardizing the predictors (all on the same scale / standard deviation 1)

$$\tilde{x}_{ij} = \frac{x_{ij}}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_{ij} - \bar{x}_j)^2}}.$$

A. Giovanidis 2019

Figure: Change of Ridge Regression coefficients vs λ .⁵

⁵Source [B.1]

Improvement over LSs

A. Giovanidis 2019

 \square As λ increases, the flexibility of the ridge regression fit decreases: decreased variance but increased Bias.

Figure: Bias vs Variance tradeoff and Test MSE.⁶

⁶Source [B.1]

The Lasso

A. Giovanidis 2019

Similar to Ridge Regression, the Lasso solves a different problem

$$\min_{\beta} \qquad \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

where the lefthand side is just the RSS, and $\lambda \geq 0$ is again a tuning parameter, to be determined.

The second term is the lasso penalty (uses ℓ_1 -norm instead of ℓ_2).

Advantages

A. Giovanidis 2019

As formulation, the Lasso is similar to Ridge Regression, with a penalty that uses a different norm.

What is new here?

- ► The Lasso penalty can force some estimates to be exactly zero
 → performs Variable Selection.
- Lasso's models are sparse involving a subset of variables.
- Simple, more interpretable models.

Example Lasso

A. Giovanidis 2019

Figure: Change of Lasso coefficients vs λ .⁷

⁷Source [B.1]

Equivalent Problems

A. Giovanidis 2019

The Ridge, Lasso, and Best subset selection are each equivalent to:

$$\begin{split} &\min_{\beta} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \quad \textit{s.t.} \quad \sum_{j=1}^{p} \beta_j^2 \leq \textit{s} \quad (\textit{Ridge}) \\ &\min_{\beta} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \quad \textit{s.t.} \quad \sum_{j=1}^{p} |\beta_j| \leq \textit{s} \quad (\textit{Lasso}) \\ &\min_{\beta} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \quad \textit{s.t.} \quad \sum_{j=1}^{p} \mathbf{1} \left(\beta_j \neq 0 \right) \leq \textit{s} \quad (\textit{Best}). \end{split}$$

Illustrative Explanation

A. Giovanidis 2019

Figure: Why does Lasso lead to estimates equal to 0?8

⁸Source [B.1]

Ridge > Lasso

A. Giovanidis 2019

Here: Ridge needs all 45 coefficients \neq 0. Lasso chose 2-out-of-45 features.⁹

⁹Source [B.1]

Ridge < Lasso

A. Giovanidis 2019

Here: True response is a function of only 2 predictors and the rest are irrelevant. Ridge needs again all 45 coefficients \neq 0. Lasso chose 2-out-of-45 features. ¹⁰

¹⁰Source [B.1]

Special Case n = p

A. Giovanidis 2019

 \square Data centred around \bar{x} , no need for intercept.

▶ Least Squares: min $\sum_{j=1}^{p} (y_j - \beta_j)^2$. Solution:

$$\hat{\beta}_j = y_j.$$

► Ridge Regression: min $\sum_{j=1}^{\rho} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{\rho} \beta_j^2$. Solution:

$$\hat{\beta}_j^{(R)} = y_j/(1+\lambda).$$

▶ Lasso: min $\sum_{j=1}^{p} (y_j - \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$. Solution:

$$\hat{\beta}_{j}^{(L)} = \begin{cases} y_{j} - \lambda/2, & \text{if } y_{j} > \lambda/2 \\ y_{j} + \lambda/2, & \text{if } y_{j} < -\lambda/2 \\ 0, & \text{if } |y_{j}| \leq \lambda/2 \end{cases}$$

A. Giovanidis 2019

Figure: Ridge and Lasso coefficients over λ , compared to LSs. 11

¹¹Source [B.1]

How to select parameter λ ?

A. Giovanidis 2019

For both Ridge and Lasso the tuning parameter λ (equivalently s) needs to be determined.

Again find the minimum Test MSE using Cross-Validation!

- ▶ Choose a grid of λ values.
- ▶ Compute the cross-validation error for each value of λ .
- Select the tuning parameter value with minimum CV error.
- ▶ Finally, re-fit the model using all observations and the chosen λ .

A. Giovanidis 2019

Figure: Ridge parameter tuning and comparison with LSs. 12

¹² Source [B.1]

A. Giovanidis 2019

Figure: Lasso parameter tuning and comparison with LSs. 13

¹³Source [B.1]

Dimension Reduction

A. Giovanidis 2019

Until here, methods control variance in 2 ways. From the original X_1, \ldots, X_p predictors,

- either choose a subset of the original variables, or
- shrink some of their coefficients to zero.

A new method!

- 1. first, Transform the predictors to a lower dimension Z_1, \ldots, Z_M , with M < p,
- 2. then Fit the LS model using the M predictors.

Dimension Reduction cont'd

A. Giovanidis 2019

 Z_1, Z_2, \ldots, Z_M : linear combinations $(M \leq p)$ of our original p predictors.

$$Z_m = \sum_{j=1}^p \phi_{j,m} X_j.$$

Unknowns: $\phi_{1,m}, \ldots, \phi_{p,m}$, for $m = 1, \ldots, M$

Then we can fit the linear regression model:

$$y_i = \theta_0 + \sum_{m=1}^M \theta_m z_{i,m} + \epsilon_i, \quad i = 1, \dots, n$$

using the Least Squares. The method can outperform simple LSs!

Dimension Reduction cont'd II

A. Giovanidis 2019

We need not estimate the p+1 coefficients: $\beta_0, \beta_1, \ldots, \beta_p$, but rather the less M+1 coefficients: $\theta_0, \theta_1, \ldots, \theta_M$.

$$\sum_{m=1}^{M} \theta_{m} z_{i,m} = \sum_{m=1}^{M} \theta_{m} \sum_{j=1}^{p} \phi_{j,m} x_{i,j}$$
$$= \sum_{j=1}^{p} \sum_{m=1}^{M} \theta_{m} \phi_{j,m} x_{i,j} = \sum_{j=1}^{p} \beta_{j} x_{i,j}.$$

so that, the β_i 's need to take the form:

$$\beta_j := \sum_{m=1}^M \theta_m \phi_{j,m}.$$

Works well when p is large compared to n data available.

Partial Least Squares (PLS)

A. Giovanidis 2019

PLS is a dimension reduction method:

- 1. First, identifies a new set of features $Z_1, \ldots, Z_M, M < p$ in a supervised way,
- 2. then fits a linear model via LSs using the M features.

Supervised way: means uses the response Y to identify new features, related to the response.

PLS cont'd

A. Giovanidis 2019

PLS steps:

- Standardise and centre the p predictors.
- ▶ Z_1 : Do LSs for all pairs $(X_j, Y) \to \text{use } \phi_{j,1} := \beta_{j,1}, \ i = 1, \dots, p$. In $Z_1 = \sum_{j=1}^p \phi_{j,1} X_1$, PLS places the highest weight on the variables most strongly related to the response Y.
- ▶ Z_2 : Do LSs for all pairs (X_j, Z_1) and find new $X_j^{(2)} = X_j \gamma_{j,1} Z_1$. Then do LSs for all pairs $(X_j^{(2)}, Y) \rightarrow \text{use } \phi_{j,1} := \beta_{j,1}^{(2)}, \ i = 1, \dots, p$.
- ► Z₃: ...

The PLS seeks directions that have high variance and high correlation with the response.

Principal Components Regression (PCR)

A. Giovanidis 2019

Steps of the PCR Method:

- 1. Standardise $X_j/\sqrt{Var(X_j)}$ and then centre $(X_j \bar{X}_j)$ all p features.
- 2. Choose a number $M \leq p$ for the components.
- 3. Using Principal Component Analysis (PCA) define Z_1, \ldots, Z_M using the coefficients $\phi_{j,m}$, $j=1,\ldots,p$.
- 4. Use Z_1, \ldots, Z_M as the predictors in a linear regression model that is fit using LSs.
- Using different number of components M choose the model which minimises the Test MSE.

The PCR is not a feature selection method! (uses linear combinations of all *p* original features)

PCR example

A. Giovanidis 2019

Figure: PCR direction Z_1 for p = 2.14

¹⁴Source [B.1]

What is Principal Components Analysis?

A. Giovanidis 2019

PCA is a technique to reduce the dimension of a $(n \times p)$ data matrix **X**:

$$X = UDV^T$$

where **U** is $(n \times p)$, **V** is $(p \times p)$ and **D** is a $p \times p$ diagonal matrix, with diagonal entries $d_1 \geq d_2 \geq \ldots \geq d_p \geq 0$, called the singular values of **X**.

Intuition: the right matrix V and the square of the singular value matrix D^2 also determine the eigen-decomposition of the sample covariance matrix $S = X^T X/n$,

$$\mathbf{X}^{T}\mathbf{X} = (\mathbf{U}\mathbf{D}\mathbf{V}^{T})^{T}(\mathbf{U}\mathbf{D}\mathbf{V}^{T})$$

$$= \mathbf{V}\mathbf{D}\mathbf{U}^{T}\mathbf{U}\mathbf{D}\mathbf{V}^{T}$$

$$= \mathbf{V}\mathbf{D}^{2}\mathbf{V}^{T}$$

PCA cont'd

A. Giovanidis 2019

The principal components directions of X are the columns of V.

The first principal component direction has the property that $\mathbf{Z}_1 = \mathbf{X} \mathbf{v}_1$ has the largest sample variance, equal to d_1^2/n .

- ▶ This practically means that along the direction v_1 , the data vary the most (if projected).
- ▶ Also, this direction defines the line which is as close as possible to the data!

PCA Example

A. Giovanidis 2019

Figure: Principal components directions for p = 2.¹⁵

¹⁵Source [B.1]

PCA Example cont'd

A. Giovanidis 2019

The two PCA directions are:

$$Z_1 = 0.839 \times (pop - \overline{pop}) + 0.544 \times (ad - \overline{ad})$$

$$Z_2 = 0.544 \times (pop - \overline{pop}) - 0.839 \times (ad - \overline{ad})$$

- ▶ With p = 2, we can construct at most M = 2 linear combinations.
- ▶ The directions (0.839, 0.544) and (0.544, -0.839) are orthogonal!
- ▶ For the Regression using PCA, we need to choose the sets $\{Z_1\}$ and $\{Z_1, Z_2\}$ and find which one leads to smallest Test MSE.

PCR vs Ridge and Lasso

A. Giovanidis 2019

Ridge Regression and Lasso

Figure: p = 45 features: PCR vs Lasso (solid) and Ridge (dotted). ¹⁶

¹⁶Source [B.1]

Data Networks DataNets 2019

Dimension Reduction
Principal Components

A. Giovanidis 2019

END