MA 571: Note on quotient spaces.

You may use anything in this note on all future homework.

DEFINITION OF THE QUOTIENT TOPOLOGY.

Given a set S with an equivalence relation \sim , we define the *quotient set* S/\sim to be the set of equivalence classes. The function $q: S \to S/\sim$ that takes a point of S to its equivalence class is called the *quotient map*.

Now suppose X is a topological space with an equivalence relation \sim (we don't assume any relationship between the topology and \sim). What topology should we put on the set X/\sim ?

As a hint, we recall that the subspace topology is designed to make the inclusion map continuous: it has exactly the open sets needed to make this happen. Similarly, the product topology has exactly the open sets needed to make the projection maps continuous.

For X/\sim we want the quotient map $q:X\to X/\sim$ to be continuous.

So we define the *quotient topology* to consist of the sets U in X/\sim whose inverse image $q^{-1}(U)$ is open in X. You can check that this is really a topology.

For later use we record an elementary fact:

Lemma Q.1. The quotient map $q: X \to X/\sim$ is continuous.

THE MOST IMPORTANT PROPERTY OF THE QUOTIENT TOPOLOGY.

Theorem Q.2. A function $f: X/\sim \to Y$ is continuous if and only if the composite $X \xrightarrow{q} X/\sim \xrightarrow{f} Y$ is continuous.

The proof is a homework problem.

It may be helpful to think about the relationship between Theorem Q.2 and Theorem 18.4. Theorem 18.4 says that a map *into* a product is continuous if and only if its composite with each of the projections is continuous. Theorem Q.2 says that a map *out of* a quotient space is continuous if and only if its composite with the quotient map is continuous.

FACTORING A MAP THROUGH A QUOTIENT SPACE.

Suppose that we are given a space X with an equivalence relation \sim and a continuous function $g: X \to Y$ that preserves the equivalence relation; that is, if $x \sim x'$ then g(x) = g(x'). Then we get a well-defined map

$$\bar{g}: X/\sim \to Y$$

taking [x] to g(x) (where [x] denotes the equivalence class).

Theorem Q.3. \bar{g} is continuous.

Proof. This is an immediate consequence of Theorem Q.2, because $\bar{g} \circ q = g$. QED

MUNKRES QUOTIENT MAPS.

Next observe that, for any function $p: X \to Y$, we can define an equivalence relation \sim_p on X by $x \sim_p x' \Leftrightarrow p(x) = p(x')$. This is obviously reflexive, symmetric and transitive.

Clearly, p preserves the equivalence relation \sim_p , so by Theorem Q.3 we get a continuous function $\bar{p}: X/\sim_p \to Y$.

Definition Q.4. Let X and Y be topological spaces. A map $p: X \to Y$ is a Munkres quotient map if

$$\bar{p}: X/\sim_p \to Y$$

is a homeomorphism.

Proposition Q.5. A map $p: X \to Y$ satisfies Definition Q.4 if and only if it satisfies the definition at the top of page 137 in Munkres.

The proof is a homework problem.

Next we observe that Theorem Q.2 generalizes to Munkres quotient maps.

Proposition Q.6. Let $p: X \to Y$ be a Munkres quotient map. A function $f: Y \to Z$ is continuous if and only if the composite $X \xrightarrow{p} Y \xrightarrow{f} Z$ is continuous.

The proof is a homework problem

EQUIVALENCE RELATIONS AND PARTITIONS.

You know that an equivalence relation on a set S gives a partition of S into disjoint sets (the equivalence classes).

In the other direction, if we are given a partition of S into disjoint sets, we can define an equivalence relation \sim by letting $x \sim y$ if and only if x and y are in the same set of the partition. Munkres does this in Examples 4 and 5 on page 139.

Also, Munkres uses the notation X^* instead of X/\sim (see the top of page 139). You may use either notation on the homework.