#### PHYS 2321

Week5: Exam I / Capacitance

#### Day 1 Outline

- 1) Hwk: Study for Exam I on Ch. 23-25 Ch. 26 P. 1,2,3,5,7,13,17,21,22,32 Due Monday Read Ch. 26.1-26.5 (skip sec 6,7)
- 2) Electric Potential (Ch. 25)
  - a. Finding E from V(x,y,z)
  - b. V near continuous charge distributions
- 3) Prep for Exam
  - a. See Review1.html

Notes: Exam I is Wednesday on Ch. 23-25. See "review1.html"

#### PHYS 2321

Week5: Exam I / Capacitance

#### Day 3 Outline

- 1) Hwk: Ch. 26 P. 1,2,3,5,7,13,17,21,22,32 Due Monday Read Ch. 26.1-26.5 (skip sec 6,7)
- 2) Capacitance & Dielectrics (Ch. 26)
  - a. Capacitors
    - Examples
    - What's inside?
  - b. Capacitance *charge per volt* across a capacitor
    - $-C \equiv Q/\Delta V$
  - c. Calculating capacitance

Notes: Exam I returned Monday.

# Types of capacitors



By Eric Schrader from San Francisco, CA, United States - 12739s, CC BY-SA 2.0, https://commons.wikimedia.org/w/index.php?curid=37625896

Capacitors

Charge separation stores energy

- Parallel Plates
  - Uniform E field
  - V= $\Delta$ V between plates

• Capacitance: the "charge per volt" on a capacitor



(a) Parallel-plate capacitor

$$C \equiv \frac{Q}{V}$$

Capacitance governs ...

How much charge is required to produce 1 volt "on" the capacitor (Q=CV),

What the potential difference will be if +-Q of charge is on the plates. (V=Q/C)

Units: 1 Farad = 1 Coulomb/Volt

#### PHYS 2321

Week 6: Capacitance / Current and resistance

```
Day 1 Outline
```

- 1) Hwk: Ch. 26 P. 1,2,3,5,7,13,17,21,22,32 Due Today Read Ch. 26.1-26.5 (skip sec 6,7)
  - Ch. 27 P. 5,7,9,14,16,20,25,39,45,56 Due
  - Ch. 28 P. 1,3,9

next Mon

- 2) Return Exam I, mean=16/31
  - a. Questions?
- 3) Capacitance & Dielectrics (Ch. 26)
  - a. Calculating capacitance examples
  - b. Combining Capacitors parallel and series
  - c. Energy of a capacitor

#### Notes:

# Calculating Capacitance

- 1) Determine E inside capacitor. (May need Gauss' law.)
- 2) Determine  $\Delta V$  between the plates.  $\Delta V = -\int_{a}^{b} \vec{E} \cdot d\vec{s}$
- 3) Insert  $\Delta V$  into  $C = Q/\Delta V$ .
- 4) Cancel the Q's.
- 5) Consider the dielectric filler. ( $C = \kappa C_0$ )

Example: concentric spheres

$$C_{spheres} = \frac{ab}{k_e(b-a)}$$



# Compute Capacitance of P.Plate Capacitor

1) Determine E-field between plates.

$$E = \frac{\sigma}{2\epsilon_0} + \frac{\sigma}{2\epsilon_0} = \frac{\sigma}{\epsilon_0}$$

2) Find  $|\Delta V|$ .

$$\Delta V = Ed \equiv \frac{\sigma d}{\epsilon_0} = \frac{Qd}{A\epsilon_0}$$

- 3) Insert into C=Q/ $\Delta$ V, and
- 4) Eliminate Q:

$$C = \frac{QA \epsilon_0}{Qd} = \frac{A \epsilon_0}{d}$$

5) Add k for dielectric:



(a) Parallel-plate capacitor

$$C = \kappa \frac{A \epsilon_0}{d}$$

For Parallel Plates only

$$\varepsilon_o = 8.85 \times 10^{-12} \frac{C^2}{N \cdot m^2}$$

# Calculating Capacitance

### Other examples:

1) Parallel plates

 $C = \frac{A \epsilon_0}{d}$ 

2) Concentric cylinders

 $\frac{d}{2k_{e}\ln(b/a)} = \frac{2\pi l \epsilon_{0}}{\ln(b/a)}$ 

3) single sphere

 $C = 4 \pi \epsilon_0 R$ 

Example: concentric cylinders



# **Combining Capacitors**

- Two fundamental arrangements: parallel and series.
- Characteristics of a <u>parallel</u> connection:

- 1) The same  $\Delta V$  is across each capacitor.
- 2) If C1≠C2, than Q1≠Q2. (In general, the charges are unequal.)
- 3) Since the total area of the plates is greater for 2 capacitors than 1, the equivalent capacitance goes up.
- 4) For N capacitors in parallel:

$$Ceq = C_1 + C_2 + C_3 + ... + C_N$$



# **Combining Capacitors**

• Characteristics of a series connection:

- 1) The same charge Q exists on each plate!
- 2) If  $C_1 \neq C_2$ , than  $\Delta V_1 \neq \Delta V_2$ . (In general, voltages are different on each cap..)
- 3) The sum of the  $\Delta V$ 's is the  $\Delta V$  across the battery.
- 4) The equivalent capacitance is less than even the smallest capacitor in series.
- 5) For N capacitors in series:



$$\frac{1}{C_{ea}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_N}$$

# **Combining Capacitors**

• Goal: combine them into one *equivalent capacitance* 



## Capacitors in Series

Equivalent capacitor

Charge in each plate is the same



(a) Capacitors in series

$$C_1 = \frac{Q}{V_1}, C_2 = \frac{Q}{V_2}, C_3 = \frac{Q}{V_3}$$
  $V_1 = \frac{Q}{C_1}, V_2 = \frac{Q}{C_2}, V_3 = \frac{Q}{C_3}$   $V = V_1 + V_2 + V_3, V = \frac{Q}{C_5}$ 

## Capacitors in Series

Usually get C<sub>s</sub> to get Q, then figure out the V's



Now expand the circuit back out

$$V_1 = \frac{Q}{C_1} V_2 = \frac{Q}{C_2} V_3 = \frac{Q}{C_3}$$

# Capacitors in Parallel

Voltage on each plate is the same

$$V=V_1=V_2=V_3$$

Equivalent capacitor



#### (b) Capacitors in parallel

$$Q = Q_1 + Q_2 + Q_3$$

$$Q_1 = C_1 V Q_2 = C_2 V Q_3 = C_3 V$$

## Combinations of Series and Parallel

Get to one equivalent capacitor



First combine  $C_1$  and  $C_2$  that are in parallel Second combine  $C_{12}$  ( $C_p$  in diagram) and  $C_3$  in series

#### CANNOT DO THE FOLLOWING:

 $C_3$  and  $C_1$  in series, then  $C_2$  in parallel or series  $C_3$  and  $C_2$  in series, then  $C_1$ 

#### PHYS 2321

Week 6: Capacitance / Current and resistance

#### Day 2 Outline

- 1) Hwk: Ch. 27 P. 5,7,9,14,16,20,25,39,45,56 Due Ch. 28 P. 1,3,9 next Mon Read 27.1-4, 27.6, 28.1-3
- 2) Capacitance & Dielectrics (Ch. 26)
  - a. Energy of a capacitor
  - b. Dielectrics
- 3) Current and resistance (Ch. 27)
  - a. Current,  $I = \Delta Q/\Delta t$ , I = dq/dt
  - b. Current density
  - c. Current in terms of drift speed of e-

Notes: Quiz next Wednesday on Ch. 26 & 27.

## Equivalent Capacitance, Example



The 1.0- $\mu F$  and 3.0- $\mu F$  capacitors are in parallel as are the 6.0- $\mu F$  and 2.0- $\mu F$  capacitors

These parallel combinations are in series with the capacitors next to them The series combinations are in parallel and the final equivalent capacitance can be found

# Energy in a capacitor

- It takes energy to separate charge (& create E-field)
- The battery provides it, but that involves chemistry.
- Instead imagine charging plates "by hand"
  - Work by hand to move charge dq:  $dW = dq \Delta V = dq q/C$
  - Total work to move all charge:



$$W = \int_{0}^{Q} \frac{q}{C} dq = \frac{1}{C} \int_{0}^{Q} q dq = \frac{Q^{2}}{2C}$$

OR ... area under V vs Q is energy!

$$U_c = \frac{1}{2}QV = \frac{Q^2}{2C} = \frac{1}{2}CV^2$$

**Energy of a charged capacitor** 

### **Dielectrics**

- Capacitor charged and <u>battery disconnected</u>
  - Q is constant nowhere to go!





#### **TABLE 26.1**

#### Approximate Dielectric Constants and Dielectric Strengths of Various Materials at Room Temperature

| Material                   | Dielectric<br>Constant <i>K</i> | Dielectric Strength <sup>a</sup> $(10^6  { m V/m})$ |
|----------------------------|---------------------------------|-----------------------------------------------------|
| Air (dry)                  | 1.000 59                        | 3                                                   |
| Bakelite                   | 4.9                             | 24                                                  |
| Fused quartz               | 3.78                            | 8                                                   |
| Mylar                      | 3.2                             | 7                                                   |
| Neoprene rubber            | 6.7                             | 12                                                  |
| Nylon                      | 3.4                             | 14                                                  |
| Paper                      | 3.7                             | 16                                                  |
| Paraffin-impregnated paper | 3.5                             | 11                                                  |
| Polystyrene                | 2.56                            | 24                                                  |
| Polyvinyl chloride         | 3.4                             | 40                                                  |
| Porcelain                  | 6                               | 12                                                  |
| Pyrex glass                | 5.6                             | 14                                                  |
| Silicone oil               | 2.5                             | 15                                                  |
| Strontium titanate         | 233                             | 8                                                   |
| Teflon                     | 2.1                             | 60                                                  |
| Vacuum                     | $1.000\ 00$                     | _                                                   |
| Water                      | 80                              | (i)                                                 |

<sup>&</sup>lt;sup>a</sup> The dielectric strength equals the maximum electric field that can exist in a dielectric without electrical breakdown. These values depend strongly on the presence of impurities and flaws in the materials.

## **Dielectrics**

- Determine whether  $\kappa$  is greater than or less than 1:
  - 1) Molecules in dielectric get polarized
  - 2) Electric field between plates is reduced (Q is constant)
  - 3)  $\Delta V$  across plates is reduced (remember  $\Delta V = -Ed$ )
  - 4) U=1/2 Q $\Delta$ V is reduced, so must be U=1/2 Q/C
  - 5) Q is constant, so C must have increased.
  - 6) C =  $\kappa$  C<sub>0</sub> so  $\kappa > 1$





### **Dielectrics**

Parallel Plates

$$C_o = \varepsilon_o \frac{A}{d}$$

$$C = \varepsilon \frac{A}{d} = K\varepsilon_o \frac{A}{d}$$

Dielectric **permittivity** 

$$\varepsilon = K\varepsilon_o$$



