Tarea Series

Facultad de Ingeniería- Universidad de Cundinamarca

April 5, 2025

1 Objetivo

Este taller tiene como objetivo ayudar a los estudiantes a interpretar el concepto de serie, mediante ejemplos apropiar los criterios de convergencia clásicos y si considera necesario, usar la herramienta de geogebra para el desarrollo de limites de sucesiones que concluyan los criterios de convergencia Se abordan los siguientes temas:

- 1. Definición y clasificación de series.
- 2. Convergencia y divergencia de series.
- 3. Criterios de convergencia.
- 4. Análisis numérico utilizando Python

2 Análisis, repaso y ejercicios

- 1. Defina qué es una serie infinita y explique brevemente cómo valor se relaciona con las sumas parciales.
- 2. Recordar el procedimiento hecho por el joven Gauss para la resolución de la serie finita $\Sigma_1^n i$. De una fórmula explícita para la serie $\Sigma_1^n 2i$.
- 3. Serie telescópica Se
a $\{a_i\}_{i=1}^\infty$ una sucesión. La serie telescópica asociada se define como

$$\sum_{i=1}^{\infty} (a_i - a_{i+1})$$

Donde las sumas parciales tienen por construcción la siguiente propiedad.

$$S_n = \sum_{i=1}^n (a_i - a_{i+1}) = a_1 - a_{n+1}.$$

Con esto, haciendo S_n tender a infinito, se tiene que

$$\sum_{i=1}^{\infty} (a_i - a_{i+1}) = a_1 - \lim_{a \to \infty} a_i$$

Diga si las siguientes series convergen o divergen, en caso de que converjan de el valor exacto.

- (a) $\sum_{i=1}^{\infty} \frac{1}{n} \frac{1}{n+1}$
- (b) $\sum_{i=1}^{\infty} log(\frac{n}{n+1})$
- 4. Serie geométrica Sea $x \in \mathbb{R}$, la serie geométrica asociada es

$$\sum_{i=1}^{\infty} x^i$$
.

1

Es claro que si $|x| \ge 1$ la serie diverge, en caso contrario la serie es $\frac{1}{1-x}$

- (a) De solución matemática a la paradoja de los griegos sobre la serie $\Sigma_{i=1}^{\infty}\frac{1}{2^i}.$
- (b) De el valor exacto de la serie $\sum_{i=1}^{\infty} \frac{2}{3^{n-1}}$

- 5. Criterio de comparación Para saber si una serie $\sum_{i=1}^{\infty} a_i$ converge o diverge, el criterio de comparación es el más fundamental de todos y la herramienta que permite demostrar todos los siguientes criterios, siendo el mas importante o ÚTIL. Su poca practicidad, hace que aplicarlo directamente no sea fácil y no sea útil a la practica, siendo no apreciado a pesar de todo.
 - Sean dos sucesiones $\{a_i\}_{i=0}^{\infty}$ y $\{b_i\}_{i=0}^{\infty}$ tales que sus términos son mayores o iguales a cero, si existe c>0 tal que para todo $i\in I$ se tiene $a_i\leq cb_i$. La convergencia de $\sum_{i=1}^{\infty}b_i$ implica la convergencia de $\sum_{i=1}^{\infty}a_i$, también la divergencia de $\sum_{i=1}^{\infty}a_i$ implica la divergencia de $\sum_{i=1}^{\infty}b_i$.
 - (a) Suponiendo que $\sum_{i=1}^{\infty} 1/i$ diverge, use el criterio de comparación para demostrar la divergencia de $\sum_{i=1}^{\infty} i^n$ con $n \geq 0$.
 - (b) Usando la serie del ejercicio 3(a), demostrar que la serie $\sum_{i=1}^{\infty} \frac{1}{i^2}$ converge.
 - (c) Ya que $\sum_{i=1}^{\infty} \frac{1}{i^2}$ converge, demuestre que $\sum_{i=1}^{\infty} \frac{1}{i^n}$ converge si $n \geq 2$.
- 6. Criterio de comparación paso al limite Sean dos sucesiones $\{a_i\}_{i=0}^{\infty}$ y $\{b_i\}_{i=0}^{\infty}$ tales que sus términos son mayores estrictos a cero. Sea

$$\lim_{i \to \infty} \frac{a_i}{b_i}$$

Si este límite converge a un número c tal que c > 0, entonces $\sum_{i=1}^{\infty} a_i$ converge si y solo si $\sum_{i=1}^{\infty} b_i$, análogamente $\sum_{i=1}^{\infty} a_i$ diverge si y solo si $\sum_{i=1}^{\infty} b_i$.

7. Criterio de la integral Sea f una función positiva decreciente definida para $x \ge 0$. Analizando el dibujo de las sumas de Riemann por derecha e izquierda, se llegan a las siguientes desigualdades.

$$\sum_{i=2}^{n} f(i) \le \int_{1}^{n} f(x)dx \quad \sum_{i=1}^{n-1} f(i) \ge \int_{1}^{n} f(x)dx$$

El criterio de la integral establece que si

$$S_n = \sum_{i=1}^n f(i)$$
 $I_n = \int_1^n f(x)dx$

Entonces, S_n converge si y solo si I_n converge.

- (a) Sea $n \in \mathbb{Z}$, dar los casos en que $\sum_{i=2}^{\infty} i^n$ converge, y los casos en que diverge.
- (b) Sean $n \in \mathbf{Z}$ y $\sum_{i=1}^{\infty} \frac{1}{i(\log(i))^n}$. Dar los casos en que la serie converge (use sustitución).
- 8. Criterio de la Raíz y del Cociente Sea $\{a_i\}_{i=1}^{\infty}$ una sucesión de términos mayores o iguales a cero. Sean los limites

$$\lim_{i\to\infty} \frac{a_{i+1}}{a_i} \quad \lim_{i\to\infty} (a_i)^{\frac{1}{i}}.$$

Si alguno de estos limites existen, y su valor es es L.

- (a) Si L < 1 la serie $\sum_{i=1}^{\infty} i$ converge.
- (b) Si L > 1 la serie $\sum_{i=1}^{\infty} i$ diverge.
- (c) Si L=1 no se puede decir si la serie $\sum_{i=1}^{\infty} i$ converge o diverge.

Ejercicios. Decir si las siguientes series convergen o divergen.

(a) Aplique el criterio del cociente para las series

$$\sum_{i=1}^{\infty} x^n$$

con $n \in \mathbf{Z}$.

- (b) $\sum_{i=1}^{\infty} (log(i))^i$
- (c) $\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^{n^2}$
- (d) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$
- (e) $\sum_{i=1}^{\infty} \frac{(n!)^2}{(2n)!}$
- (f) $\sum_{i=1}^{\infty} \frac{3^n (n!)}{n^n}$

3 Análisis numérico

- 1. Escriba un código en Python para calcular la suma de la serie geométrica $\sum_{i=0}^n \frac{1}{2^i}$ para $n \in \{10, 50, 100\}$
- 2. Compara la convergencia de las series $\sum_{i=0}^{\infty} \frac{1}{i^2}$ y $\sum_{i=0}^{\infty} \frac{1}{i^5}$ mediante la comparación de sus sumar parciales en $n \in \{10, 50, 100\}$
- 3. Programe la n-esima suma parcial de la serie armónica $\sum_{i=0}^{\infty} \frac{1}{i}$. De el N lo suficientemente grande para que S_N sobre pase el valor de 10.