FOLLOW Sets

Dr. Mattox Beckman

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN DEPARTMENT OF COMPUTER SCIENCE

Objectives

▶ Compute the FOLLOW sets for the nonterminal symbols of a grammar.

FOLLOW Sets

► Given a non terminal symbol *S*, what terminal symbols could come after strings that are derived from *S*?

The algorithm:

- Put \$ in FOLLOW(S), where S is the start symbol.
 \$ represents the "end of input."
- 2. If there is a production $X \to \alpha Y \beta$, then add $FIRST(\beta)$ (but not ϵ) to FOLLOW(Y).
- 3. If there is a production $X \to \alpha Y$, or if there is a production $X \to \alpha Y \beta$, where $\epsilon \in \mathit{FIRST}(\beta)$ then add $\mathit{FOLLOW}(X)$ to $\mathit{FOLLOW}(Y)$.

Diagram

- 1. If there is a production $X \to \alpha Y \beta$, then add $FIRST(\beta)$ (but not ϵ) to FOLLOW(Y).
- 2. If there is a production $X \to \alpha Y$, or if there is a production $X \to \alpha Y \beta$, where $\epsilon \in FIRST(\beta)$ then add FOLLOW(X) to FOLLOW(Y).

Small Examples

Example 1

 $S \rightarrow x A y$ FOLLOW set of A is $\{y\}$.

Example 3

 $B \rightarrow CED$ $FIRST(D) = \{a, b\}$ FOLLOW set of D is $\{y\}$. FOLLOW set of E is $\{a,b\}$.

Example 2

 $A \rightarrow q B$ FOLLOW set of B is also $\{y\}$.

Example 4

 $B \rightarrow C E D$ $FIRST(D) = \{a, b, \epsilon\}$ FOLLOW set of D is $\{y\}$. FOLLOW set of E is $\{a,b,v\}$.

Grammar

```
S \rightarrow \text{if } E \text{ then } S;

S \rightarrow \text{print } E;

E \rightarrow E + E

E \rightarrow P \text{ id } P

P \rightarrow * P
```

Result

```
S={ $}
E={}
P={}
```

Action

 $P \rightarrow \epsilon$

Make a chart, add \$ to S.

Grammar

```
S \rightarrow \text{if } E \text{ then } S; \Leftarrow S \rightarrow \text{print } E; \\ E \rightarrow E + E \\ E \rightarrow P \text{ id } P \\ P \rightarrow * P \\ P \rightarrow \epsilon
```

Result

```
S={$, ;}
E={ then}
P={}
```

Action

Check productions: add then to FOLLOW(E), and; to FOLLOW(S).

Grammar

```
S \rightarrow \text{if } E \text{ then } S;

S \rightarrow \text{print } E; \Leftarrow

E \rightarrow E + E \Leftarrow

E \rightarrow P \text{ id } P

P \rightarrow *P

P \rightarrow \epsilon
```

Result

```
S={$,;}
E={then,;,+}
P={}
```

Action

Check productions: add; and + to FOLLOW(E).

Grammar

```
S \rightarrow \text{if } E \text{ then } S;

S \rightarrow \text{print } E;

E \rightarrow E + E

E \rightarrow P \text{ id } P \Leftarrow

P \rightarrow * P

P \rightarrow \epsilon
```

Result

```
S={$,;}
E={then,;,+}
P={ id}
```

Action

Check productions: add id to FOLLOW(P).

Grammar

```
S \rightarrow \text{if } E \text{ then } S;

S \rightarrow \text{print } E;

E \rightarrow E + E

E \rightarrow P \text{ id } P \Leftarrow

P \rightarrow *P

P \rightarrow \epsilon
```

Result

```
S={$,;}
E={then,;,+}
P={id, then,;,+}
```

Action

Check endings: P ends this rule, so add FOLLOW(E) to FOLLOW(P).

Grammar

```
S \rightarrow \text{if } E \text{ then } S;

S \rightarrow \text{print } E;

E \rightarrow E + E

E \rightarrow P \text{ id } P

P \rightarrow * P

P \rightarrow \epsilon
```

Result

```
S={$,;}
E={then,;,+}
P={id,then,;,+}
```

Action

Done.

Grammar

 $S \rightarrow Ax$

 $S \rightarrow By$ $S \rightarrow z$

 $A \rightarrow 1CB$

 $A \rightarrow 2B$

 $B \rightarrow 3B$

 $B \rightarrow C$

 $C \rightarrow 4$

 $C o \epsilon$

Result

S ={ **\$**}

A={}

B={}

C={}

Action

Create a table, and add \$ to FOLLOW(S).

Grammar

 $S \rightarrow Ax \Leftarrow$

 $S \rightarrow Bv$ $S \rightarrow z$

 $A \rightarrow 1CB$

 $A \rightarrow 2B$

 $B \rightarrow 3B$

 $B \rightarrow C$

 $C \rightarrow 4$

 $C
ightarrow \epsilon$

Result

 $S = \{ \$ \}$

 $A=\{x\}$

 $B = \{ \}$

C={}

Action

Add x to FOLLOW(A).

Grammar

 $S \rightarrow Ax$

 $S \to By \Leftarrow$

S o z

A
ightarrow 1CB

 $A \rightarrow 2B$

 $B \rightarrow 3B$ $B \rightarrow C$

 $C \rightarrow 4$

 $C
ightarrow \epsilon$

Result

S ={ \$}

 $A = \{x\}$ $B = \{y\}$

C={}

Action

Add y to FOLLOW(B).

Grammar

 $S \rightarrow Ax$

 $S \to B \mathtt{y}$

 $S \rightarrow z \Leftarrow$

A o 1CB

A
ightarrow 2B

 $B \rightarrow 3B \Leftarrow$

 $B \rightarrow C$

 $C \rightarrow 4 \Leftarrow$

 $C \rightarrow \epsilon \Leftarrow$

Result

S ={ \$}

FOLLOW Sets

 $A=\{x\}$

 $B = \{y\}$

C={}

Action

These productions add nothing.

Grammar

 $S \rightarrow Ax$

 $S \rightarrow By$ $S \rightarrow z$

 $A \rightarrow 1CB \Leftarrow$

 $A \rightarrow 2B$

 $B \rightarrow 3B$

 $B \rightarrow C$

C
ightarrow 4

 $\mathsf{C} \to \epsilon$

Result

 $S = { \$}$

 $A=\{x\}$ $B=\{y\}$

 $C = \{ \{ \} \}$

 $C=\{3, 4\}$

Action

Add FIRST(B) to FOLLOW(C).

Grammar

 $S \rightarrow Ax$

 $S \rightarrow By$ $S \rightarrow z$

 $A \rightarrow 1CB \Leftarrow$

 $A \rightarrow 2B \Leftarrow$

 $B \rightarrow 3B$

 $B \rightarrow C$ $C \rightarrow 4$

 $C \rightarrow \epsilon$

Result

S ={ \$}

 $A=\{x\}$ $B=\{x,y\}$

 $C = \{3, 4\}$

Action

Add FOLLOW(A) to FOLLOW(B).

Grammar

 $S \rightarrow Ax$

 $S \to By$

 $S \to \mathbf{z}$

 $A \rightarrow 1CB \Leftarrow$

 $A \rightarrow 2B$

B o 3B

 $B \rightarrow C$

C
ightarrow 4

 $C o \epsilon$

Result

S ={ \$}

 $A=\{x\}$ B= $\{x, y\}$

 $C = \{ x, 3, 4 \}$

Action

B can become ϵ , so add FOLLOW(A) to FOLLOW(C).

Grammar

 $S \rightarrow Ax$

 $\mathsf{S}\to \mathsf{B}\mathtt{y}$

 $S \rightarrow z$

 $A \rightarrow 1CB$

A o 2B

B o 3B

 $B \rightarrow C \Leftarrow$

 $C \rightarrow 4$

 $extstyle C
ightarrow \epsilon$

Result

S ={ \$}

 $A=\{x\}$ $B=\{x,y\}$

 $C=\{x, y, 3, 4\}$

Action

Add FOLLOW(B) to FOLLOW(C). Now we're done.