Lecture 14

Part 3 Estimation and Hypothesis Test

ECON2843 1/39

Hypothesis Test

ECON2843 2 / 39

2. Test Statistic

- ▶ The test statistic is a sample statistic that we use as a criterion to determine whether or not to reject H_0 .
- ▶ It is usually based on an estimator of the population parameter that we are testing.
- Bowling example:
 - ullet $ar{X}=80$, i.e., sample mean bowling score from 10 games.

ECON2843 3 / 39

3. Decision Rule

- ▶ In order to make our decision about the hypotheses, we need to know the sampling distribution of the test statistic under H₀, called the **null distribution**.
- ightharpoonup Remember that we always start by assuming H_0 is true.
- If the observed value of the test statistic is extreme (i.e., very unlikely to occur under the null distribution), then that is evidence against H_0 .

4□ > 4□ > 4 = > 4 = > = 900

ECON2843 4 / 39

Rejection Region

- ▶ Whether or not an observed test statistic is extreme is determined by the *rejection region* or *p-value* (more on *p*-values later).
- ▶ The **rejection region** is a range of values such that, if the test statistic falls within this range, we reject H_0 .
- Bowling example:
 - ▶ The rejection region might be any sample mean less than 120, i.e., $\bar{X} < 120$.

ECON2843 5 / 39

Critical Values

- ▶ Related to the rejection region are the **critical values**, which are the values which represent the boundaries of the rejection region.
- ➤ That is, values of the test statistic *more extreme* than the critical values define the rejection region.
- Bowling example:
 - ▶ The critical value was c = 120 and any sample mean less than c lies in the rejection region.

ECON2843 6 / 39

4. Conclusion

- ▶ Final step of the hypothesis test.
- ▶ If the observed test statistic falls in the rejection region, we reject H_0 and conclude that H_1 is true.
- ▶ If the observed test statistic does not fall in the rejection region, we fail to reject H_0 and conclude that H_0 is true.
- ▶ Note that we do not "accept H_0 ".

ECON2843 7 / 39

Type I and Type II Errors

		Truth	
		H_0 is true	H_0 is false
Decision	Reject H_0	Type I error $P(Type\ I\ error) = \alpha$	Correct decision
	Fail to	Correct decision	Type II error
	reject H_0		$P(Type\ II\ error) = \beta$

- **Type I error**: Rejecting H_0 when it is actually true.
- **Type II error**: Failing to reject H_0 when it is actually not true.

Type I and Type II Errors

- ▶ For any hypothesis test, we would like both errors to be small.
- However, trying to make one small often causes the other to be large.
- ▶ Type I error considered more serious than type II error.
- ho $\alpha=P$ (Type I error) is also called the **significance level** of the test.

ECON2843 9 / 39

Type I Error

- ▶ The value of α is usually fixed beforehand and we try to keep it small.
- ▶ The value of α (together with H_1) determines the rejection region.
- ▶ The smaller the value of α , the more sure we can be of our decision if we end up rejecting H_0 .

ECON2843 10 / 39

Type I Error

 \blacktriangleright For the bowling example, the shaded area is equal to α .

- ◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @

ECON2843 11/39

Summary

- 1. Hypotheses:
 - \triangleright Establish H_0 and H_1 .
 - ightharpoonup Assume H_0 is true.
- 2. Test statistic:
 - Obtain a sample and calculate a test statistic.
- 3. Decision rule:
 - ▶ Determine the rejection region of the null distribution (based on H_1 and α).
- 4. Conclusion:
 - ▶ If the observed test statistic is extreme, i.e., falls in the rejection region, reject H_0 .
 - ▶ If not, fail to reject H_0 .

1 U P 1 UP P 1 E P 1 E P 2 V V (*

ECON2843 12 / 39

Hypothesis Test for μ when σ^2 is Known

► Hypotheses:

$$H_0: \mu = \mu_0$$

 $H_1: \mu(\neq, <, >)\mu_0$

► Test statistic:

$$Z = \frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}}$$

ECON2843 13 / 39

Hypothesis Test for μ when σ^2 is Known

- Decision rule:
 - ▶ Under H_0 , Z has a N(0,1) distribution.
 - \triangleright At significance level α , rejection regions are:
 - $ightharpoonup Z > z_{\frac{\alpha}{2}}$ or $Z < -z_{\frac{\alpha}{2}}$ $(H_1: \mu \neq \mu_0)$.
 - $ightharpoonup Z < -z_{\alpha} (H_1 : \mu < \mu_0).$
 - $ightharpoonup Z > z_{\alpha} (H_1 : \mu > \mu_0).$
 - \triangleright NB: z_{α} is the value which cuts off an area of α in the upper tail of the N(0,1) distribution.
- Conclusion:
 - ▶ If Z falls in the rejection region, reject H_0 , otherwise, fail to reject H_0 .

Solve the Bowling Example

- ▶ Your lecturer claims to have a bowling average of 150 or higher.
- ▶ You play 10 games with him, and he scores an average of 80.
- ➤ Suppose you know that the standard deviation for bowling scores is 50.
- ▶ Given a 5% significance level ($\alpha = 0.05$), do you reject your lecturer's claim?

ECON2843 15 / 39

1. Hypotheses

▶ Set up our hypotheses:

$$H_0: \mu = 150$$

 $H_1: \mu < 150$

- ▶ Assume that H_0 is true.
- ▶ Let's draw the null distribution.

ECON2843 16 / 39

Null Distribution

ECON2843 17 / 39

2. Test Statistic

Standardize $\bar{X} = 80$:

$$Z = \frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{80 - 150}{\frac{50}{\sqrt{10}}} = -4.43$$

- ◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @

ECON2843 18 / 39

3. Decision Rule

- Rejection region:
 - Since $\alpha = 0.05$ and $H_1: \mu < 150$, find critical value that cuts off 5% in the left tail of the N(0,1) distribution.
 - From the z-tables, we know P(Z < -1.645) = 0.05.
 - ▶ Rejection region is $Z < -z_{0.05} = -1.645$.

1 U P 1 UP P 1 E P

ECON2843 19 / 39

4. Conclusion

▶ Since -4.43 < -1.645, we reject H_0 at the 5% significance level, and we conclude that my true bowling average is less than 150.

- 4 日 ト 4 昼 ト 4 差 ト - 差 - かり()

ECON2843 20 / 39

One-Tailed Test

- ▶ In a one-tailed test, we only care about one extreme tail of the distribution of the test statistic and the alternative hypothesis usually consists of a ">" or "<" sign.
- For example:
 - $H_1: \mu < 150.$
 - ▶ We only care whether μ is smaller than 150.
 - ▶ We reject H_0 if the test statistic is too small.

ECON2843 21 / 39

Two-Tailed Test

- In a two-tailed test, we care about both extreme tails of the distribution of the test statistic and the alternative hypothesis usually consists of a "≠" sign.
- For example:
 - $H_1: \mu \neq 150.$
 - ▶ Now we care whether μ is smaller or larger than 150.
 - ▶ We reject H_0 if the test statistic is either too small or too large.

ECON2843 22 / 39

Example of a Two-Tailed Test

▶ Test the following hypothesis:

$$H_0: \mu = 100$$

$$H_1: \mu \neq 100$$

when $\bar{X}=85$, $\sigma=25$, n=15 and $\alpha=0.05$.

ECON2843 23 / 39

Null Distribution

ECON2843 24 / 39

2. Test Statistic

$$Z = \frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{85 - 100}{\frac{25}{\sqrt{15}}} = -2.32$$

ECON2843 25 / 39

3. Decision Rule

- ▶ There are two rejection regions for two-tailed tests!
- ▶ The critical values for the rejection regions are the values that cut off $100\left(\frac{\alpha}{2}\right)\%$ in each tail of the null distribution. Why?
- From the z-tables, we know that P(Z > 1.96) = 0.025.
- ▶ Therefore, by symmetry, the rejection regions are Z < -1.96 and Z > 1.96.

ECON2843 26 / 39

3. Decision Rule

ECON2843 27 / 39

4. Conclusion

▶ Since -2.32 < -1.96, we reject H_0 .

→□▶ →□▶ → □▶ → □▶ → □
→□▶ → □▶ → □▶ → □
→□ → □▶ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□ → □
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□
→□</p

ECON2843 28 / 39

Tips on Setting Up Hypotheses

- ▶ How we set up our hypotheses is very important.
- ▶ We need to choose H_0 and H_1 in a way that lets us decide between two distinct situations.
- ➤ The decision then has to help us answer the original question being asked.

ECON2843 29 / 39

Tips on Setting Up Hypotheses

- ▶ Remember that H_0 usually only includes an "=" sign.
- ▶ If the question has a claim that includes a "<", ">" or " \neq " sign, set that to be H_1 .
- ▶ If the question has a claim that includes a " \leq " or " \geq " sign, let that claim be represented by H_0 and set the opposite claim to be H_1 .

ECON2843 30 / 39

- ➤ A school teacher believes they are an excellent teacher and that the average exam score of students in their class is greater than 85. Test the school teacher's claim.
- ▶ Let μ be the population mean exam score.

ECON2843 31 / 39

▶ The question includes the claim $\mu > 85$. So we should set:

$$H_0: \mu = 85$$

 $H_1: \mu > 85$

▶ If we reject H_0 , we conclude the average exam score is greater than 85 and if we fail to reject H_0 , we conclude the average exam score is not greater than 85.

ECON2843 32 / 39

- ▶ A policeman believes that the average speed of motorists on a street that has a speed limit of 40 mph is at least 51 mph. Test the policeman's claim.
- Let μ denote the population mean speed.

ECON2843 33 / 39

▶ The question includes the claim $\mu \geq 51$, and the opposite claim is $\mu < 51$. So we should set:

$$H_0: \mu = 51$$

 $H_1: \mu < 51$

▶ If we reject H_0 , we conclude that the mean speed is less than 51 and if we fail to reject H_0 , we conclude that the mean speed is at least 51.

ECON2843 34 / 39

- ▶ An office manager believes that the average number of sick days his staff take in a year is at most 13 days. Test the office manager's claim.
- Let μ denote the population mean number of sick days taken.

ECON2843 35 / 39

▶ The question includes the claim $\mu \le 13$, and the opposite claim is $\mu > 13$. So we should set:

$$H_0: \mu = 13$$

 $H_1: \mu > 13$

▶ If we reject H_0 , we conclude that μ is greater than 13 and if we fail to reject H_0 , we conclude that μ is at most 13.

ECON2843 36 / 39

p-value

- ▶ There are two ways of conducting hypothesis tests:
 - 1. Using rejection regions.
 - 2. Using p-values.
- ▶ A p-value is the probability of observing a test statistic even more extreme than the one calculated from your sample, assuming that H_0 is true.

ECON2843 37 / 39

▶ Suppose we are testing the following hypotheses:

$$H_0: \mu = 140$$

$$H_1: \mu > 140$$

- ▶ Further, suppose our standardized Z-statistic turns out to be Z=1.10.
- ▶ What is the *p*-value?

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 900

ECON2843 38 / 39

- ▶ The p-value is the probability of observing something more extreme than Z = 1.10.
- ▶ Because of our one-tailed alternative hypothesis, more extreme means greater than 1.10.
- ▶ The *p*-value:

$$P(Z > 1.10) = 1 - P(Z < 1.10)$$
$$= 1 - 0.8643$$
$$= 0.1357$$

ECON2843 39 / 39