Branch: CSE & IT

WEEKLY TEST - 03

Subject : Operating System

Topic: Process Synchronization / Coordination

Maximum Marks 15

Batch: Hinglish

Q.1 to 5 Carry ONE Mark Each

[NAT]

1. At a particular time of computation, the value of a counting semaphore is 12. Then 12P operation and xV operations were performed on the semaphore. If the final value after all wait and signal operations is 8, then value of x is _____.

[MCQ]

2. Consider the following proposed solution to critical section problem for two process i and j. For process Pi j will be 1-i:

```
do{
    flag[i] = True;
    turn = j;
    while (flag[j] && turn = = j);
        <Critical Section>
    flag[i] = true;
        <remainder section>
    }
while(true);
```

The above solution satisfies

- (a) Mutual Exclusion and Progress.
- (b) Only Mutual Exclusion.
- (c) Mutual Exclusion and Bounded Waiting.
- (d) Mutual Exclusion, Progress and Bounded Waiting.

[MCQ]

3. Consider the definition of operation's performed on semaphore:

```
\label{eq:wait} \begin{aligned} & wait(S)\{ & Signal(S)\{ \\ & while(X); & Z; \\ & Y & \end{aligned}
```

Which of the following represents correct value of X, Y and Z respectively?

- (a) S < 0; S -; S + +
- (b) $S \ge 0$; S + +; S -
- (c) $S \le 0$; S = -; S + +
- (d) S > 0; S + +; S -

[NAT]

4. Assume that 'A' is counting semaphore. Consider the following program segment:

A = 12; P(A); V(A);

P(A); V(A);

V(A);

P(A);

P(A);

P(A);

P(A);

What is the value of 'A' at the end of the above program execution?

[MCQ]

- **5.** Which of the following is the guaranteed solution of avoidance of mutual exclusion?
 - (a) Semaphore.
 - (b) Monitors.
 - (c) Banker's algorithm.
 - (d) All of these.

Q.6 to 10 Carry TWO Mark Each

Common Data for Question 6 and 7

```
Semaphore mutex = 1;
Semaphore empty = N;
Semaphore full = 0;
void producer (void)
{
    int itemp;
    while(true)
     producer-item (itemp);
    down (empty);
    down (mutex);
    buffer[in] = itemp;
    in = (in + 1) \mod N;
    up(mutex);
    up(full);
}
void consumer (void)
{
    int itemc;
    while(true)
    down (full);
    down (mutex);
    itemc = buffer[out];
    out = (out + 1) \mod N;
    up(mutex);
    up(empty);
    process-item(itemc);
}
```

[MCQ]

- 6. What happens if we interchange down (empty), down (mutex) in the producer code ____
 - (a) No problem, the solution still work correct.
 - (b) Both consumer and producer will access the buffer at same time.
 - (c) Some of the item produced by the producer will be lost.
 - (d) It is possible for deadlock.

[MCQ]

- 7. What happens if we interchange down (full), down (mutex) in the consumer code ____
 - (a) No problem, the solution still work correct.
 - (b) Both consumer and producer will access the buffer at same time.
 - (c) Some of the item produced by the producer will be lost
 - (d) It is possible for deadlock.

[MCQ]

8. Consider two process P_1 and P_2 accessing the shared variable X=10 and Y=20 protected by two binary semaphore B_x and B_y respectively, both initialized to 1. P and V denote the usual semaphore operations

P ₁	P ₂
L_1 : $P(Bx)$	L_3 : $P(B_X)$
L_2 : $P(B_Y)$	L_4 : $P(B_Y)$
X = X + 1;	Y = Y + 1;
Y = Y - 1;	X = Y - 1;
$V(B_X)$	$V(B_Y)$
$V(B_Y)$	$V(B_X)$

What would be the maximum value of X and Y?

- (a) X = 21 and Y = 20
- (b) X = 20 and Y = 21
- (c) X = 11 and Y = 11
- (d) None of these

[MCQ]

9. Consider the following snippet for solution to critical section problem:

```
do{
    acquire lock
        critical section
    release lock
        remainder section
}
while(true);
```

Which of the following define acquire lock and release lock correctly?

(a) acquire () { release () {

[MCQ]

10. Let P and Q be processes and let S and t be semaphores. Initially, both S and t are 1. The two processes execute

the steps shown below. Show a sequence of steps that leads to deadlock

P:	Q:
Step P ₁ : Down (s)	Step Q ₁ : Down (s)
Step P ₂ : Down (t)	Step Q ₂ : Down (t)
Step P ₃ : CS – PA	Step Q ₃ : CS – QA
Step P ₄ : UP (s)	Step Q ₄ : UP(t)
Step P ₅ : Down (s)	Step Q ₅ : UP(s)
Step P ₆ : CS – PB	
Step P ₇ : UP(s)	
Step P ₈ : UP(t)	

- (a) P_1, P_2, Q_1, Q_2
- (b) $P_1, P_2, P_3, P_4, Q_1, Q_2, P_5$
- (c) Q_1, Q_2, Q_3, P_1, P_2
- (d) Q_1, Q_2, Q_3, Q_4, Q_5

Answer Key

(8) 1.

2. **(b)**

3. (c)

4. (9)

5. (b)

6. (d) 7. (d)

8. (b)

9. (a) 10. (b)

Hints and Solutions

1. (8)

Initial value of semaphore = 12.

Total wait operation = 12P

Total signal operation = xV

Final Value = 8

So.

$$8 = 12 - 12P + xV$$

$$8 = 12 - 12 + xV$$

x = 8

2. (b)

The given code is modified Peterson's solution for critical section problem and it satisfies only mutual exclusion.

3. (c)

The definition of wait() and signal() operation performed on semaphore are as follows:

wait (S) {

while
$$(S < = 0)$$
;

$$S - -$$
;

}

signal (S) {

$$S + +$$
;

}

Therefore, option (c) is correct.

4. (9)

$$A = 12$$

$$P(A) = 11$$

$$V(A) = 12$$

$$P(A) = 11$$

$$V(A) = 12$$

$$V(A) = 13$$

$$P(A) = 12$$

$$P(A) = 11$$

$$P(A) = 10$$

$$P(A) = 9$$

So, the final value of 'A' is 9.

5. (b)

Monitors allows one process to execute in critical section at a time. It always satisfies the mutual exclusion properties.

Improper use of semaphore does not lead to avoidance of mutual exclusion.

Banker's algorithm is not related to mutual exclusion.

6. (d)

Producer	Consumer
down(mutex)	down(full)
down(empty)	down(mutex)
C.S	C.S
up(mutex)	up(mutex)
up(full)	up(empty)

Buffer full:

$mutex = \cancel{X} 0$	mutex = 0	
empty = $\mathcal{N} - 1$	← consumer suspended	
← producer suspended	empty = -1	
full = 8	full = 8 7	
leads to deadlock		

7. (d)

The interchange will lead to deadlock.

8. (b)

I.
$$X = 10, Y = 20$$

For the maximum value of X, run P₁ first

$$P_1$$
: $X = X + 1$: $10 + 1 = 11$

Preempt P₁

$$P_2$$
: $Y = Y + 1$: $20 + 1 = 21$

$$X = 21 - 1 = 20$$

$$X = 20$$

Resume P₁

$$P_1$$
: $Y = Y - 1$: $21 - 1 = 20$

II. For the maximum value of Y

P₂: Read Y value [i.e. 20]

Preempt P₂

$$P_1$$
: $X = X + 1$: $10 + 1 = 11$

$$Y = Y - 1$$
: $20 - 1 = 19$

Resume P2

$$P_2$$
: Y + 1: 20 + 1= 21

$$Y = 21$$

$$\therefore Y = 21$$

$$X = Y - 1$$
: $21 - 1 = 20$

Hence, the maximum value of X is 20 and Y is 21

9. (a)

The given code is solution to the critical section problem using mutex locks.

A mutex lock has a Boolean variable 'avail' whose value indicates if the lock is available or not. If the lock is available, a call to acquire() succeeds and the lock is then considered unavailable. A process that attempts to acquire an unavoidable lock is blocked until the lock is released.

The definition of acquire() and release is as follows:

```
acquire () {
    while(! avail);    /*busy wait*/
    avail = false;
}
release () {
avail = true;
}
```

10. (b)

The order of execution P₁, P₂, P₃, P₄, Q₁, Q₂, P₅ leads to deadlock.

For more questions, kindly visit the library section: Link for web: $\underline{https://smart.link/sdfez8ejd80if}$

