Abhijat Vatsyayan ¹

October 12, 2020

Summary

- 1 Introduction and plan
- 2 Image processing
- 3 Recurrent networks and sequences
- 4 References

- Part I
 - Problem definition (rely on supervised learning)
 - Compute graph and gradients
 - A little about deep learning libraries.
- Part II
 - Need for different architectures
 - Convolution networks
 - Recurrent networks
- Not covered
 - Diagram of neurons
 - History
 - Recent advances and business context
 - Tutorial on pytorch or keras
- Expectation and whats next

Need for different kind of functions

Discussed previously

- Simple, linear layers can be connected together to form deep networks.
- Linear layers should be separated using non-linear functions (layers) also referred to as activations, e.g., RelU(x), $\sigma(x)$.
- Mathematically, learning is possible. In reality, people struggled to make deep networks learn.
 - Vanishing gradients
 - Compute capacity
 - Availability of data

Activation functions

- Regularization techniques (drop off, batch normalization)
- Data (Google, Facebook, ...), standard datasets and competitions
 - Data collected by internet and social media companies, digital consumer products like Cameras and Phones.
 - Dataset and benchmarks created by research labs and universities ¹
 - Competitions and conferences organized around some of the datasets and benchmarks
- CPUs, GPUs, nVidia
- "New" functions

¹See Russakovsky et al. 2015 for an example

Datasets

- Modified National Institute of Standards and Technology -MNIST (60k/10k)
- Canadian Institute For Advanced Research CIFAR-10 (50k/10k) and CIFAR-100 (2 level, 500/100)
- Pascal Visual Object Classes (VOC) 22k images, 20 classes
- **.** . . .
- ImageNet

ImageNet Large Scale Visual Recognition Challenge

- Publicly available dataset -ImageNet (14M+, 22k categories)
- Annual competition
 - Image classification
 - Object detection and localization
- Increasing depth
 - 7 layers AlexNet
 - 19 layers GoogLeNet
 - 152 layers ResNet

Using linear layer

Image as 2D Tensor(Matrix)

1	2	3	4	5
6	7	8	9	10
5	4	3	2	1
10	9	8	7	6

1	2	3	4	5
6	7	8	9	10
5	4	3	2	1
10	9	8	7	6

1	0	-1
0	1	-1
2	0	1

$$(1 \times 1) + (2 \times 0) + (3 \times -1) +$$

$$(6 \times 0) + (7 \times 1) + (8 \times -1) +$$

$$(5 \times 2) + (4 \times 0) + (3 \times 1)$$

1	0	-1
0	1	-1
2	0	1
10	7	

10 7 4

12 / 17

1	0	-1
0	1	-1
2	0	1

10	7	4
27		

2D Convolution

- Bias
- Stride
- Padding
- Layers or channels

- Natural language tasks
- Event processing
- Statefull systems in general

- Entire sequence is known ahead of time.
- Constant length sequences.
- Variable length sequences revealed one element at a time.

Recurrent function

$$y^t = f(y^{t-1}, x^t; \theta) \tag{1}$$

Hello

Recurrent networks and sequences

References

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," *Proceedings of the IEEE*, vol. 86, pp. 2278–2324, Nov 1998.