ARGOMENTO 12

Piani di esecuzione di query

Esecuzione di query SQL

- Per ogni query, esistono almeno due livelli di pianificazione:
 - Pianificazione logica: decidere COSA fare per produrre il risultato
 - Es. selezione, proiezione, join, unione, ...
 - Pianificazione fisica: decidere COME eseguire i singoli passi del piano logico
 - file scan, nested loop join, hash join, ...
- Ogni piano può avere costi MOLTO differenti
- Domanda: come si fa a calcolare (stimare) il costo dell'esecuzione di un piano?

Esecuzione di query SQL

- Per stimare il costo dell'esecuzione di un piano, noi qui ci limiteremo a discutere due aspetti:
 - La stima della cardinalità di ogni passo intermedio dell'esecuzione della query
 - Il costo di ogni singolo passo in termini di I/O (come visto nelle lezioni precedenti)
- Argomenti più avanzati (che non toccheremo) sono:
 - Lo spazio di ricerca (quali diversi piani considerare)
 - Gli algoritmi di ricerca (come esplorare lo spazio di ricerca)

Cosa dobbiamo sapere per il calcolo

- Come premessa, è necessario conoscere almeno quanto segue:
 - La cardinalità delle relazioni coinvolte
 - La presenza o meno di indici (e di che tipo) e il numero di chiavi nell'indice
 - Il numero di pagine utilizzate per memorizzare ogni relazione
 - Informazione statistica sugli attributi (es. il valore minimo, il valore massimo, il numero di valori diversi, ...)

Albero di esecuzione della query

- Per rappresentare i passi di esecuzione di una query, spesso si una rappresentazione ad albero
 - Le foglie sono le relazioni di partenza
 - I nodi intermedi corrispondono a operazioni algebriche sulla/e relazioni coinvolte
 - A ogni nodo intermedio viene associato un costo
 - La radice corrisponde all'output della query (che a sua volta è una relazione

La base di dati «sailors»

Sailors (<u>sid</u>, sname, srating, age) Boats(<u>bid</u>, bname, color) Reserves(<u>sid</u>, <u>bid</u>, <u>date</u>, rname)

Q1: What are the names of the sailors who have reserved boat with name "100"?

Q2: What are the names of the sailors who have reserved a red boat?

Q3: What are the names of the sailors who have reserved a green <u>or</u> red boat?

Q4: What are the names of the sailors who have reserved a green <u>and</u> red boat?

■ |S| = 90■ |B| = 30■ |R| = 3000■ f(color) = 1/3■ $f(\underline{B}.bid = \underline{R}.bid) = 1/4$ ■ $f(\underline{S}.sid = \underline{R}.sid) = 1/12$ ■ $\underline{t}_S = \underline{t}_B = \underline{t}_R = 40 \text{ byte}$ ■ P = 400 byte■ P = 9■ $P_B = 3$ ■ $P_B = 3000$

Q1: What are the names of the sailors who have reserved boat with name "100"?

CS 564 [Spring 2018] - Paris Koutris

Piano fisico (esempio)

■ |S| = 90■ |B| = 30■ |R| = 3000■ |C| = 1/3■ |C| = 1/4■ |C

Q1: What are the names of the sailors who have reserved boat with name "100"?

■ |S| = 90■ |B| = 30■ |R| = 3000■ f(color) = 1/3■ f(B.bid = R.bid) = 1/4■ f(S.sid = R.sid) = 1/12■ $t_S = t_B = t_R = 40 \text{ byte}$ ■ P = 400 byte■ P = 9■ P = 9■ P = 3■ P = 300

Q2: What are the names of the sailors who have reserved a red boat?

CS 564 [Spring 2018] - Paris Koutris

■ |S| = 90■ |B| = 30■ |R| = 3000■ |C| = 1/3■ |C| = 1/4■ |C| = 1/4

Q3: What are the names of the sailors who have reserved a green <u>or</u> red boat?

CS 564 [Spring 2018] - Paris Koutris

■ |S| = 90■ |B| = 30■ |R| = 3000■ f(color) = 1/3■ f(B.bid = R.bid) = 1/4■ f(S.sid = R.sid) = 1/12■ $t_S = t_B = t_R = 40 \text{ byte}$ ■ P = 400 byte■ $P / t_X = 10$ ■ $P_S = 9$ ■ $P_B = 3$ ■ $P_B = 3$

Esempio

```
Sailors (<u>sid</u>, sname, srating, age)
Boats(<u>bid</u>, bname, color)
Reserves(<u>sid</u>, <u>bid</u>, <u>date</u>, rname)
```

Query:

SELECT S.sid, R.rname
FROM Sailors S, Boats B, Reserves R
WHERE S.sid = R.sid
AND B.bid = R.bid
AND B.color = red

Assunzioni di partenza

Sailors (<u>sid</u>, sname, srating, age) Boats(<u>bid</u>, bname, color) Reserves(<u>sid</u>, <u>bid</u>, <u>date</u>, rname)

$$|S| = 12$$

$$|R| = 10$$

•
$$f(color) = 1/3$$

•
$$f(B.bid = R.bid) = 1/4$$

•
$$f(S.sid = R.sid) = 1/12$$

•
$$t_S = t_B = t_R = 25$$
 byte

•
$$P/t_x = 2$$

$$P_{S} = 6$$

$$P_{R} = 2$$

$$P_R = 5$$

Esempio

SELECT S.sid, R.rname

- |S| = 12
- |B| = 4
- |R| = 10

- f(color) = 1/3
- f(B.bid = R.bid) = 1/4
- f(S.sid = R.sid) = 1/12
- $t_S = t_B = t_R = 25$ byte ■ P = 50 byte ■ $P/t_x = 2$
- $P_S = 6$ $P_B = 2$
- $P_R = 5$

FROM Sailors S, Boats B, Reserves R WHERE S.sid = R.sid AND B.bid = R.bid AND B.color = red

Output

 $\sigma_{\text{color=red}}$

M

B.bid=R.bid

S.sid=R.sid

M

Boats

Calcolo della cardinalità dell'output

```
      • |S| = 12
      • t_S = t_B = t_R = 25 byte

      • |B| = 4
      • P = 50 byte

      • |R| = 10
      • P / t_X = 2

      • f(color) = 1/3
      • P_S = 6

      • f(B.bid = R.bid) = 1/4
      • P_B = 2

      • f(S.sid = R.sid) = 1/12
      • P_R = 5
```

- La cardinalità delle varie operazioni viene approssimata bottom-up nell'albero di esecuzione
- Osservazione: la cardinalità dell'output sarà:
 |Res| <= |R| x |S| x |B| <= 10 x 12 x 4 <= 480
- Questo valore viene ridotto da ognuna delle condizioni usando il concetto di selectivity factor f (vedi lezione sui costi delle query)
- Come sappiamo, f può solo essere stimato

•
$$|S| = 12$$
 • $t_S = t_B = t_R = 25$ byte

 • $|B| = 4$
 • $P = 50$ byte

 • $|R| = 10$
 • $P / t_X = 2$

 • $f(color) = 1/3$
 • $P_S = 6$

 • $f(B.bid = R.bid) = 1/4$
 • $P_B = 2$

 • $f(S.sid = R.sid) = 1/12$
 • $P_R = 5$

Stima della cardinalità dell'output:

- S.sid=R.sid □ 12 * 10 * 1/12 = 10
- B.bid=R.bid \Box 4 * 10 * 1/4 = 10
- color = 'red' \square 10 * 1/3 = 3,4

Esempio: costo (I/O)

•
$$|S| = 12$$
 • $t_S = t_B = t_R = 25$ byte

 • $|B| = 4$
 • $P = 50$ byte

 • $|R| = 10$
 • $P/t_x = 2$

 • $f(color) = 1/3$
 • $P_S = 6$

 • $f(B.bid = R.bid) = 1/4$
 • $P_B = 2$

 • $f(S.sid = R.sid) = 1/12$
 • $P_R = 5$

- Costo del primo JOIN: P_R + P_S* P_R
 - 5 + 6 * 5 = 35
- Costo del secondo JOIN: P_B
 - 2 (leggo le due pagine che contengono le tuple di B)
 - NB: l'output del primo JOIN è già in memoria, quindi basta caricare Boats e verificare (al volo) quali tuple soddisfano la condizione del JOIN
- Il costo della selezione 'color = red' è nullo (nessuna operazione di I/O)
 - Viene eseguita in memoria sull'output delle operazioni precedenti
- Costo totale: 37

■ S = 12	• $\underline{t}_{\underline{S}} = \underline{t}_{\underline{B}} = \underline{t}_{\underline{R}} = 25$ byte
■ B = 4	■ P = 50 byte
■ R = 10	$P/t_{x}=2$
■ f(color) = 1/3	■ P _S = 6
	■ P _B = 2
• $f(S.sid = R.sid) = 1/12$	■ P _R = 5

- Cosa cambierebbe se avessimo a disposizione degli indici?
- Per esempio, supponiamo di avere un hash index sull'attributo Sailors.sid
- Il costo del primo JOIN sarebbe:

$$P_R + |R|^*(L_h + |S_{s.sid} = r.sid|)$$

ovvero:

$$5 + 10*(1 + 1) = 25$$

Esercizio

Assumiamo di avere le relazioni $R(\underline{A},B)$, $S(\underline{B},C)$, U(G,H), dove gli insiemi di attributi sottolineati in ciascuna relazione indicano la chiave primaria.

Supponiamo anche che sull'attributo S.B sia stato creato un B⁺-tree, con un costo di lookup pari a $L_b=3$. Infine, si assuma di avere una query, il cui piano di esecuzione è il seguente

Soluzione:

Calcolare il costo di eseguire la query seguendo il piano sopra descritto.