Exercise

Exercise

- 1. What is the multivariate normal density $\mathcal{N}(x|\mu, C)$?
- 2. Suppose X,Y are two real-valued random variables.
 - (a) What is the formula for the covariance Cov(X, Y)?
 - (b) What is the formula for the correlation $\rho(X,Y)$?
- 3. Suppose you can generate $\mathcal{N}(0,1)$ random variables. Give an explicit formula for generating a sample from $\mathcal{N}(\mu,C)$ where $C=AA^{\mathsf{T}}$.

Solution

1.

$$\frac{1}{(2\pi)^{d/2}|C|^{1/2}}\exp\left(-\frac{1}{2}(x-\mu)^{\mathsf{T}}C^{-1}(x-\mu)\right)$$

- 2. (a) $Cov(X, Y) = \mathbb{E}(XY) \mathbb{E}(X)\mathbb{E}(Y) = \mathbb{E}((X \mathbb{E}X)(Y \mathbb{E}Y))$
 - (b) $\rho(X,Y) = \text{Cov}(X,Y)/(\sigma(X)\sigma(Y))$
- 3. If $Z_1, \dots, Z_d \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1)$ and $Z = (Z_1, \dots, Z_d)^{\mathsf{T}}$, then $AZ + \mu \sim \mathcal{N}(\mu, AA^{\mathsf{T}})$.