Aula anterior

Lab wireless

- uso espectral
- configuração de uma rede privada
- avaliação de performance

Nesta aula.... O Problema de Alocação de Canais

- Alocação Estática de Canal
- Alocação Dinâmica de Canal
- MAC wireless (802.11)

Alocação Dinâmica de Canais em LANs e MANs

- Modelo. N estações gerando frames a serem transmitidos. A probabilidade de um frame ser gerado num intervaldo de tempo Δτ é λΔτ onde λ é constante (a taxa de chegada de novos frames). Tendo gerado um frame, a estação fica bloqueada até que o frame seja transmitido.
- 2. Premissa de Canal Único.
- 3. Premissa de Colisão. Um frame destruido por colisão tem que ser retransmitido. Existem apenas erros gerados por colisões.
- 4. (a) Tempo Contínuo. Não exite relógio de sincronismo.
 - (b) Tempo Segmentado. Transmissão de frames começa sempre no inicio do slot. Um slot pode conter 0, 1 ou mais frames.
- 5. (a) Detecção de Portadora. Uma estação pode sentir o canal antes de tentar transmitir. Se ocupado, nenhuma estação vai tentar transmitir.
 (b) Sem Detecção de Portadora. A estação transmite qdo necessita, sem verificar atividade no meio.

Protocolos de Acesso Múltiplo

- ALOHA
- Protocolos CSMA (Carrier Sense Multiple Access)
- Protocolos Livres de Colisão
- Limited-Contention Protocols
- Protocolos WDMA (Wavelength Division Multiple Access)
- Protocolos de LAN sem Fio

ALOHA Puro

User		
Α		
В		
С		
D		
Ε		
	Time —	

No ALOHA puro, os quadros são transmitidos em tempos totalmente arbitrários.

ALOHA Puro (2)

Período de vulnerabilidade do quadro sombreado.

ALOHA Puro (3)

Throughput comparativo para sistemas ALOHA.

CSMA Persistente e Não-persistente

Comparação entre a utilização do canal e a carga de vários protocolos de acesso aleatório.

CSMA com Detecção de Colisões

O CSMA/CD pode estar em um dos seguintes estados: contenção, transmissão ou inatividade.

Ethernet

- Cabeamento Ethernet
- Codificação Manchester
- O Protocolo de Subcamada MAC Ethernet
- O Algoritmo de Recuo Binário Exponencial
- Desempenho do Ethernet
- Ethernet Comutada
- Fast Ethernet
- Gigabit Ethernet
- IEEE 802.2: Logical Link Control
- Retrospectiva da Ethernet

Desempenho do Ethernet

Eficiência do Ethernet a 10 Mbps com slots de tempo de 512 bits.

Protocolo de Subcamada MAC Ethernet

Formatos de quadro. (a) DIX Ethernet, (b) IEEE 802.3.

Campos do Cabeçalho

- Preamble: 7 bytes + Start of Frame garantindo compatibilidade com 802.4 e 802.5
- Destination e Source Address: O bit mais relevante é 0 para endereços comuns e 1 para endereços de grupo, permitindo multicast. O broadcast é feito com todos os bits setados para 1
- Length ou Type: como alguns hardwares usavam padrao DIX, aceitou-se as duas terminologias. Caso o campo fosse menor que 1500, seria Length, do contrario seria DIX.
- Data: dados do frame ethernet.
- Pad: frames validos devem ter pelo menos 64 bytes do endereço de destino até o checksum (inclusive). Utiliza-se este campo para que isso seja cumprido. Este limite garante que um frame termine de ser enviado antes do recebimento de uma detecçao de colisao, evitando o pressuposto errado de que a mensagem foi entregue.
- Checksum: é uma hash de 32-bits dos dados utilizando o algoritmo CRC.

Protocolos livres de Colisões (ex WDMA)

(alocação estática ou dinâmica?)

Cada estação tem 2 transmissores e 2 receptores

- Um receptor de frequencia fixa para ouvir seu canal de controle
- Um transmissor sintonizavel para enviar controles para outros canais
- Um transmissor fixo para transmitir seus dados
- Um receptor sintonizavel para selecionar o canal de um transmissor

Protocolos de LAN sem Fio

Uma LAN sem fio. (a) A transmitindo. (b) B transmitindo.

- (a) O problema da estação oculta.
- (b) O problema da estação exposta.

Protocolos de LAN sem Fio (2)

O protocolo MACA. (a) A enviando um RTS para B. (b) B respondendo com um CTS para A.

Problemas da estacao oculta/exposta

- Para lidar com esses problemas o padrao 802.11 suporta dois modos de operação:
 - Distributed Coordination Function DCF: nao utiliza nenhum controle central. Suporte obrigatorio
 - Point Coordination Function PCF: utiliza a estação base para controlar a atividade em suas celulas. Suporte Opcional
- Com o DCF, utiliza-se o protocolo CSMA/CA (CSMA with Collision Avoidance)
- O CSMA/CA tem dois metodos de operação:
 - Só inicia-se a transmissao se o canal estiver ocioso. Caso haja colisao utiliza-se o algoritmo Binary Exponencial Backoff e tenta novamente.
 - O outro metodo baseia-se no MACAW.

Problemas da estacao oculta/exposta

- Considere C uma estacao vista por A e D uma estacao vista por B mas nao por A.
- A envia RTS para B pedindo permissao para enviar
- Se B garantir permissao, envia CTS para A.
- Ao receber CTS, a inicia a transmissao e um timer ACK.
- B responde com um frame ACK ao terminar a troca.
- Se o timer finaliza antes de receber um ACK, o protocolo se repete.
- C tambem deseja transmitir mas recebe o RTS e desiste. Atraves do frame recebido ele estima o tempo da sequencia de transmissao a ser realizada por A e reserva um NAV (Network Allocation Vector) representando a rede ocupada.
- D nao escuta o RTS, mas escuta o CTS, entao tambem aloca um NAV.

Escuta de canal virtual usando CSMA/CA.

Uma rajada de fragmentos.

Espaçamento inter-quadros no 802.11.

- a) SIFS: Short InterFrame Spacing
 - Usado para garantir prioridade para uma conversa (fragmentos), inclusive para o receiver enviar CTS ou ACK (control)
- b) PIFS: PCF InterFrame Spacing
 - A Estacao Base pode enviar um beacon ou poll frame (convite para quem quiser usar o meio)
- c) DIFS: DCF InterFrame Spacing
 - Qualquer estacao pode tentar alocar o canal para transmitir
 - Pode haver colisao
- d) EIFS: Extended InterFrame Spacing
 - Usado para reportar recebimento de frames danificados

LANs sem Fio

- A Pilha de Protocolos 802.11
- A Camada Física 802.11
- O Protocolo de Subcamada MAC 802.11
- A Estrutura de Quadro 802.11
- Serviços

A Pilha de Protocolos 802.11

Parte da pilha de protocolos 802.11.

- FHSS Frequency Hopping Spread Spectrum (1 e 2 Mbps)
 - 79 canais de 1MHz
 - Um gerador aleatório cria a sequência de frequência a serem utilizadas em pares
 - A quantidade de tempo em cada frequência é de menos de 400 ms
 - É relativamente segura porque não ficam muito tempo numa mesma frequência
- DSSS Direct Sequence Spread Spectrum (1 ou 2 Mbps)
 - canais de 1 e 2 MHz
 - Similar ao CDMA

Såo de 1997

- OFDM e HR-DSSS lançados em 1999
- Operam em taxas de até 54 e 11 MBps, respectivamente
- Em 2001 uma segunda versao de OFDM foi lancada para funcionar em outra banda
- OFDM: Orthogonal Frequency Division Multiplexing
- HR-DSSS: High Rate Direct Sequence Spread Spectrum

- OFDM opera em 5 GHz
 - 52 frequencias sao utilizadas (4 para controle)
 - Bit rates de 54Mbps
- HR-DSSS opera em 2.4 GHz
 - Chegou ao mercado antes do 802.11a
 - Bit rates de 1, 2, 5.5 e 11 Mbps
- Versao melhorada é o 802.11g (2001)
 - Opera em 2.4 GHZ
 - Bit rates de 54 Mbps

A Estrutura de Quadro 802.11

O quadro de dados 802.11.

Serviços 802.11

Serviços de Distribuição

- Associação
- Desassociação
- Reassociação
- Distribuição
- Integração

Serviços 802.11

Serviços Intra-células

- Autenticação
- Desautenticação
- Privacidade
- Entrega de Dados

Banda Larga Sem Fio

- Comparação entre 802.11 e 802.16
- A Pilha de Protocolos 802.16
- A Camada Física 802.16
- O Protocolo da Subcamada MAC 802.16
- A Estrutura do Quadro 802.16

A Pilha de Protocolos 802.16

A Pilha de Protocolos 802.16.

A Camada Física 802.16

O ambiente de transmissão 802.16.

A Camada Física 802.16 (2)

Quadros e slots de tempo para duplexação por divisão de tempo.

Classes de Serviço

- Serviço de *bit rate* constante
- Serviço de *bit rate* variável em *real-time*
- Serviço de *bit rate* variável não *real-time*
- Serviço de melhor esforço

A Estrutura do Quadro 802.16

(a) A generic frame. (b) A bandwidth request frame.

a) SISO - Única entrada e única saída

Única antena para enviar e única antena para receber

a) SISO - Única entrada e única saída

Única antena para enviar e única antena para receber

a) SIMO - Única entrada e Múltiplas saídas

Única antena para transmitir e várias antena para receber

a) SIMO - Única entrada e Múltiplas saídas

Única antena para transmitir e várias antena para receber

a) MISO - Múltiplas entradas e única saída

Várias antenas para transmitir e única antena para receber

a) MISO - Múltiplas entradas e única saída

Várias antenas para transmitir e única antena para receber

a) MIMO - Múltiplas entradas e múltiplas saídas

Várias antenas para enviar e várias antenas para receber

a) Múltiplas entradas e múltiplas saídas

Várias antenas para enviar e várias antenas para receber

SiP: system-in-package

Provinha13Š05.05.208

Um pr'do com 3 andaresvai serocupa de por escit—rios de uma empresa. Cada andar tem 20 escit—rios, 10 de cada la do de um corre dor central, e medindo 10x10.

- Projete uma redeethemet para este pr'do. Coloque 10 pontos de acesso cabeados e um AP wirelesspor escit—rio. Opr'do possui um farm de 10 m‡quinas (8 frontend e 2 backend) paraservi" o de email e outro similar paraweb. Um storages erver e um backups erver est «o dispon'veis paraos backends e s«o acesados via um SAN (storage‡reanetwork).
- Quantas switches ser «o neces‡rias, supondo quecadauma tem 48 portas fast ethemet? Coloquegigabit onde voc adhar neces‡rio, justificando.
 - Onde voc localizaria as switches e um peque o data center para a empres a Quantos metros de cabo UTP seriam usa dos?

Banda Larga Sem Fio

- Comparação entre 802.11 e 802.16
- A Pilha de Protocolos 802.16
- A Camada Física 802.16
- O Protocolo da Subcamada MAC 802.16
- A Estrutura do Quadro 802.16

A Pilha de Protocolos 802.16

A Pilha de Protocolos 802.16.

A Camada Física 802.16

O ambiente de transmissão 802.16.

A Camada Física 802.16 (2)

Quadros e slots de tempo para duplexação por divisão de tempo.

O Protocolo da Subcamada MAC 802.16

Classes de Serviço

- Serviço de *bit rate* constante
- Serviço de *bit rate* variável em *real-time*
- Serviço de *bit rate* variável não *real-time*
- Serviço de melhor esforço

A Estrutura do Quadro 802.16

(a) A generic frame. (b) A bandwidth request frame.

Fundamentos - subsistemas

- 1 Área de trabalho
- 2 Rede Secundária
- 3 Armário/Sala de Telecomunicações
- 4 Rede Primária Nível 2
- 5 Sala de Equipamento
- 6 Sala de Entrada de Telecom

7 - Rede Primária Nível 1

TIA/EIA 568B

Provinha 14 – 08.05.2008

Projete a rede de um DataCenter nos moldes do apresentado na aula passada.

- Aloque redes fisicamente separadas para cada farm e para o SAN (as 3 redes devem ser integradas por uma switch extra. Se a separação fosse lógica, como seria implementada?
- Coloque redundância de acesso a cada um dos 3 sistemas.

Bluetooth

- Aquitetura Bluetooth
- Aplicações Bluetooth
- A Pilha de Protocolos Bluetooth
- A Camada de Rádio Bluetooth
- A Camada de Banda Base Bluetooth
- A Camada L2CAP Bluetooth Layer
- A Estrutura do Quadro Bluetooth

Arquitetura Bluetooth

Duas piconets podem ser conectadas para formar uma scatternet.

Aplicações Bluetooth

Name	Description
Generic access	Procedures for link management
Service discovery	Protocol for discovering offered services
Serial port	Replacement for a serial port cable
Generic object exchange	Defines client-server relationship for object movement
LAN access	Protocol between a mobile computer and a fixed LAN
Dial-up networking	Allows a notebook computer to call via a mobile phone
Fax	Allows a mobile fax machine to talk to a mobile phone
Cordless telephony	Connects a handset and its local base station
Intercom	Digital walkie-talkie
Headset	Intended for hands-free voice communication
Object push	Provides a way to exchange simple objects
File transfer	Provides a more general file transfer facility
Synchronization	Permits a PDA to synchronize with another computer

Os perfís Bluetooth.

A Pilha de Protocolos Bluetooth

A versão da 802.15 da arquitetura de protocolos Bluetooth.

- a) TDM com 79 canais, de 1 MHz e 1 bit/baud (1 Mbps)
- b) Frequency hopping a 1600 hops/s ou 625 uS (dwell time)
- c) Normalmente o master usa os slots pares e os slaves os impares
- d) Baseband controla framing e aloca slots para eles. Normalmente um frame ocupa 1, 3 ou 5 slots
- e) Settling time pode durar 260 uS (overhead de 260 bits!)
- f) Range de 10 metros
- g) Mesma faixa do WiFi, 2.4 GHz muita interferência

A Estrutura do Quadro Bluetooth

Um típico quadro de dados Bluetooth.

Quanto overhead tem num frame de 1 slot?

Comutação da Camada de Enlace de Dados

- Pontes (*bridges*) de 802.x para 802.y
- Internetworking local
- Pontes Spanning Tree
- Pontes Remotas
- Repetidores, Hubs, Bridges, Switches, Roteadores, Gateways
- LANs Virtuais

Comutação da Camada de Enlace de Dados

Diversas LANs conectadas por um *backbone* para tratar uma carga total maior do que a capacidade de uma única LAN.

Pontes (bridges) de 802.x para 802.y

Operação de uma ponte de LAN de um 802.3 para um 802.11.

Pontes (bridges) de 802.x para 802.y

Os formatos de quadro IEEE 802. O desenho não está em escala.

Internetworking Local

Uma configuração com quatro LANs e duas pontes.

Pontes Spanning Tree

Duas pontes paralelas transparentes.

Pontes Spanning Tree

(a) LANs Interconectadas. (b) Uma *spanning tree* cobrindo as LANs. As linhas pontilhadas não são parte da *spanning tree*.

Pontes Remotas

As pontes remotas podem ser usadas para conectar LANSs distantes uma das outras.

Repetidores, *Hubs*, *Bridges*, *Switches*, Roteadores e *Gateways*

- (a) Qual dispositivo está em cada camada.
- (b) Quadros, pacotes e cabeçalhos.

Repetidores, *Hubs*, *Bridges*, *Switches*, Roteadores e *Gateways*

(a) Um hub. (b) Um bridge. (c) Um switch.

LANs Virtuais

Um prédio com cabeamento centralizado usando hubs e um switch.

LANs Virtuais

(a) Quatro LANs físicas organizadas em duas VLANs, cinza e branco, por dois *bridges*. (b) As mesmas 15 máquinas organizadas em duas VLANs por *switches*.

O Padrão IEEE 802.1Q

Transição da Ethernet legada para a Ethernet ciente de VLAN. Os símbolos sombreados são cientes de VLAN. Os vazios não são.

O Padrão IEEE 802.1Q

Os formatos de quadro Ethernet 802.3 (legado) e 802.1Q.

Sumário

Method	Description
FDM	Dedicate a frequency band to each station
WDM	A dynamic FDM scheme for fiber
TDM	Dedicate a time slot to each station
Pure ALOHA	Unsynchronized transmission at any instant
Slotted ALOHA	Random transmission in well-defined time slots
1-persistent CSMA	Standard carrier sense multiple access
Nonpersistent CSMA	Random delay when channel is sensed busy
P-persistent CSMA	CSMA, but with a probability of p of persisting
CSMA/CD	CSMA, but abort on detecting a collision
Bit map	Round robin scheduling using a bit map
Binary countdown	Highest numbered ready station goes next
Tree walk	Reduced contention by selective enabling
MACA, MACAW	Wireless LAN protocols
Ethernet	CSMA/CD with binary exponential backoff
FHSS	Frequency hopping spread spectrum
DSSS	Direct sequence spread spectrum
CSMA/CA	Carrier sense multiple access with collision avoidance

Métodos e sistemas de alocação de canais para um meio comum.