The effect of milk on LDL Cholesterol level

Huong Tran

11/26/2021

Objective:

- Low-density lipoprotein (LLD) cholesterol level is the main reason causing heart disease and heart attack.
- Consuming whole-fat dairy product can have unwanted health effect of increasing LDL cholesterol level
- This project identifies the affect of several types of milk on LDL cholesterol level.

Data Resource:

- From National Health and Nutrition Examination Survey (NHANES), year 2017 - 2018.
- Population: 320,842,721
- Sample size: 16,211
- The screener response rate: 90.9%
- 9,254 completed the interview and 8,704 were examined.

About Survey Design:

The following components are used:

- Questionnaire Data: we extract information about the choice of milk.
- Laboratory Data: the measure of LDL cholesterol (mg/dL) using the standard Fredewald equation.

Note: triglyceride less than 400mg/dL.

- Demographic: sample weight, PSUs, stratum information.
- Using "SEQN" to merge data.

About Survey Design:

- Selection of PSUs, which are counties: these PSUs were selected from strata defined by geography, metropolitan statistical area status, and various population demographics. Two PSUs were selected from most strata.
 - Note that if counties has the population of less than 5000, it will be combined with the adjacent counties to have the required number of population.
- Selection of segments within PSUs, that constitute a block/or group of blocks containing a cluster of households.
- Selection of specific households with segments, generally are city blocks.
- Selection of individual within household.

About Survey Design:

Demographics component:

- Demographics:
 - SDMVSTRA: masked variance unit pseudo-stratum.
 - SDMVPSU: massked variance unit psedo-PSU.
 - WTMEC2YR: sampling weight.

Questionnaire component:

- Questionnaire components:
 - DBQ223A: You drink whole or regular milk.
 - DBQ223B: You drink 2% fat milk.
 - DBQ223C: You drink 1% fat milk.
 - DBQ223D: You drink fat free/skim milk.
 - DBQ223E: You drink soy milk.
 - DBQ223U: You drink another type of milk.

Laboratory component:

• Laboratory Data: LBDLDL: measure of LDL cholesterol (mg/dL) using the standard Fredewald equation.

Restriction:

- We are ignoring the requirement for triglyceride less than 400mg/dL in this project.
- The cholesterol measure is valid for 12-year-older participants while the questionnaire for Diet and Behaviour are subjected for all participant.

•	SEQN ⁰	SDMVPSU ⁰	SDMVSTRA [‡]	WTMEC2YR [‡]	DBQ223A	DBQ223B [‡]	DBQ223C [‡]	DBQ223D [‡]	DBQ223E [‡]	DBQ223U [‡]	LBDLDL
1	93703	2	145	8539.731	NA	NA	12	N/A	NA	N/A	N/
2	93704	1	143	42566.615	NA.	NA	12	NA	NA	N/A	N/
3	93705	2	145	8338.420	NA.	NA	NA.	NA	NA	30	N/
4	93706	2	134	8723.440	NA	NA	NA.	NA	NA	NA	N/
5	93707	1	138	7064.610	NA	NA	NA.	NA	NA	NA	N
6	93708	2	138	14372.489	10	NA	NA	NA	NA	NA	109
7	93709	1	136	12277.557	NA	NA	NA.	NA	NA	NA	N.
8	93710	1	134	16848.020	NA	NA	NA.	NA	NA	NA	N
9	93711	2	134	12390.920	NA.	NA	NA.	NA	NA	30	156
10	93712	2	147	30336.654	NA.	11	NA.	NA	NA	NA	N/
11	93713	1	140	166841.661	NA	11	NA.	NA	NA	NA	N/
12	93714	1	147	15479.581	NA	11	NA	NA	NA	NA	N/

• Some observations give answer in at least 2 types of milk:

```
select(df, "DBQ223A", "DBQ223B", "DBQ223C", "LBDLDL")[21:23,]
     DBQ223A DBQ223B DBQ223C LBDLDL
##
## 21
          NΑ
                 NΑ
                        NA
                               NA
## 22
                 11
                        NA
                              NA
          10
## 23
          NΑ
                11
                        NΑ
                               NA
```

- Gather observations giving answer on at least 2 types of milk.
- Create new variable called "Category":

as.matrix(unique(df\$Category))

```
##
      [,1]
## [1,] "1% fat"
## [2,] "another"
   [3,] NA
##
   [4,] "whole milk"
##
##
   [5,] "2% fat"
   [6,] "2 types"
##
   [7.] "fat free"
##
## [8,] "soy milk"
    [9.] "don't know"
##
```

Delete the others columns:

```
df <- select(df, - starts_with("DBQ223"))
head(df)</pre>
```

```
SEQN SDMVPSU SDMVSTRA WTMEC2YR LBDLDL
##
                                            Category
##
  1 93703
                2
                      145 8539.731
                                       NA
                                              1% fat
  2 93704
                      143 42566.615
                                       NA
                                             1% fat
  3 93705
                2
                      145 8338.420
                                       NA
                                             another
  4 93706
                      134 8723.440
                                       NA
                                               <NA>
##
                      138 7064.610
## 5 93707
                                       NA
                                               <NA>
                2
## 6 93708
                      138 14372.489
                                      109 whole milk
```

Survey Design:

About LDL Cholesterol:

Population of LDL Cholesterol level

About LDL Cholesterol:

Scatterplot for sampling weights

Survey Design:

• Consider the survey on sub-population for observations having their answer on a specific type of milk:

Estimate of mean:

Boxplot of LDL Cholesterol level/each types of milk

Estimate of mean and confidence interval:

```
mean <- svyby(~LBDLDL,~Category, design = sub.sv, svymean, na.rm = T)

select(cbind(mean, confint(mean)), -"Category")

## LBDLDL se 2.5 % 97.5 %

## 1% fat 107.5708 2.078935 103.4961 111.6454

## 2% fat 107.8348 2.328826 103.2704 112.3993

## another 108.9764 3.470696 102.1739 115.7788

## fat free 108.1012 3.796844 100.6595 115.5428

## soy milk 107.5362 3.778740 100.1300 114.9424

## whole milk 106.5499 2.499380 101.6512 111.4486
```

Using Regression:

```
model <- svyglm(LBDLDL ~ Category, design = sub.sv )
s <- summary(model)$coefficients
print(s, digits = 2)</pre>
```

```
##
                   Estimate Std. Error t value Pr(>|t|)
  (Intercept)
                    107.571
                                 2.1 51.7432 1.8e-13
## Category2% fat
                     0.264
                                 3.0 0.0868 9.3e-01
                                4.5 0.3132 7.6e-01
  Categoryanother
                 1.406
## Categoryfat free 0.530 4.8 0.1113 9.1e-01
## Categorysoy milk -0.035
                              4.1 -0.0084 9.9e-01
## Categorywhole milk
                    -1.021
                             3.1 -0.3326 7.5e-01
```

Whole milk and non-fat milk:

Test the following hypothesis:

$$H_0: \bar{y}_{10} = \bar{y}_{13}$$

```
sub.sv2 <- subset(sv, df$Category == "whole milk" |</pre>
                    df$Category == "fat free")
svyttest(LBDLDL~Category, sub.sv2)
##
##
   Design-based t-test
##
## data: LBDLDL ~ Category
## t = -0.30554, df = 14, p-value = 0.7644
## alternative hypothesis: true difference in mean is not equal
## 95 percent confidence interval:
## -12.440791 9.338198
## sample estimates:
## difference in mean
##
           -1.551297
```

Whole milk and non-fat milk:

$$p - \text{value} = 0.7644 > 0.05$$

Since the computed p-value does not fall in the rejection region, we fail to reject H_0 . There is insufficient evidence (at $\alpha=0.05$) of a difference between the true mean LDL Cholesterol between people who drink whole milk and people who drink fat free milk.

Further question:

- The requirement of Fredewald equation?
- ② Considering the effect of observations who drink at least 2 types of milk at the same time.

Reference:

- Sampling: Design and Analysis, Second Edition Sharon Lohr.
- https://cran.r-project.org/web/packages/survey/survey.pdf
- https://wwwn.cdc.gov/nchs/nhanes/tutorials/default.aspx

Thank you!