AMENDMENTS TO THE CLAIMS

What is claimed is:

1-56. (Canceled)

57. (Withdrawn) A method for the prophylaxis or treatment of a disease state or condition mediated by a cyclin dependent kinase or glycogen synthase kinase-3 or an Aurora kinase, which method comprises administering to a subject in need of such administration a prophylactically or therapeutically effective amount of a compound having the formula (I):

or a salt, N-oxide or solvate thereof; wherein

X is CR⁵ or N;

A is a bond or $-(CH_2)_m$ - $(B)_n$ -;

B is C=O, NR^g (C=O) or O(C=O) wherein R^g is hydrogen or C_{1-4} hydrocarbyl optionally substituted by hydroxy or C_{1-4} alkoxy;

m is 0, 1 or 2;

n is 0 or 1;

 R^0 is hydrogen or, together with NR^g when present, forms a group -(CH₂)_p- wherein p is 2 to 4;

 R^1 is hydrogen, a carbocyclic or heterocyclic group having from 3 to 12 ring members, or an optionally substituted C_{1-8} hydrocarbyl group;

 R^2 is hydrogen, halogen, methoxy, or a C_{1-4} hydrocarbyl group optionally substituted by halogen, hydroxyl or methoxy;

R³ and R⁴ together with the carbon atoms to which they are attached form an optionally substituted fused carbocyclic or heterocyclic ring having from 5 to 7 ring members of which up to 3 can be heteroatoms selected from N, O and S; and

 R^5 is hydrogen, a group R^2 or a group R^{10} wherein R^{10} is selected from halogen, hydroxy, trifluoromethyl, cyano, nitro, carboxy, amino, mono- or di- C_{1-4} hydrocarbylamino, carbocyclic and heterocyclic groups having from 3 to 12 ring members; a group R^a - R^b wherein R^a is a bond, O, CO, $X^1C(X^2)$, $C(X^2)X^1$, $X^1C(X^2)X^1$, S, SO, SO₂, NR^c , SO₂ NR^c or NR^c SO₂; and R^b is selected from hydrogen, carbocyclic and heterocyclic groups having from 3 to 12 ring members, and a C_{1-8} hydrocarbyl group optionally substituted by one or more substituents selected from hydroxy, oxo, halogen, cyano, nitro, carboxy, amino, mono- or di- C_{1-4} hydrocarbylamino, carbocyclic and heterocyclic groups having from 3 to 12 ring members and wherein one or more carbon atoms of the C_{1-8} hydrocarbyl group may optionally be replaced by O, S, SO, SO₂, NR^c , $X^1C(X^2)$, $C(X^2)X^1$ or $X^1C(X^2)X^1$;

 R^{c} is selected from hydrogen and C_{1-4} hydrocarbyl; and X^{1} is O, S or NR^{c} and X^{2} is =O, =S or $=NR^{c}$.

- 58. (Withdrawn) A method according to claim 57 wherein X is N and \mathbb{R}^0 is hydrogen.
- 59. (Withdrawn) A method according to claim 57 wherein m is 0 or 1, n is 1 and B is C=O.
- 60. (Withdrawn) A method according to claim 57 wherein B is NR^g(C=O) and R^g is hydrogen.
- 61. (Withdrawn) A method according to claim 57 wherein R¹ is a monocyclic or bicyclic carbocyclic or heterocyclic group having from 3 to 12 ring members.
- 62. (Withdrawn) A method according to claim 61 wherein R¹ is a an aryl or heteroaryl group selected from substituted or unsubstituted phenyl, furanyl, indolyl, oxazolyl, isoxazolyl, pyridyl, quinolinyl, 2,3-dihydro-benzo[1,4]dioxine, benzo[1,3]dioxole, imidazolyl and thiophenyl groups.
- 63. (Withdrawn) A method according to claim 61 wherein R^1 is:
 - (a) a substituted or unsubstituted phenyl ring; or

- (b) a non-aromatic group selected from monocyclic cycloalkyl groups and azacycloalkyl groups.
- 64. (Withdrawn) A method according to claim 61 wherein the carbocyclic or heterocyclic group R^1 is (a) an unsubstituted group or (b) bears one or more substituents selected from the group R^{10} as defined in claim 57.
- 65. (Withdrawn) A method according to claim 64 wherein R^1 is a substituted group and the substituents on R^1 are selected from the group R^{10b} consisting of halogen, hydroxy, trifluoromethyl, cyano, nitro, carboxy, a group R^a - R^b wherein R^a is a bond, O, CO, $X^3C(X^4)$, $C(X^4)X^3$, $X^3C(X^4)X^3$, S, SO, or SO₂, and R^b is selected from hydrogen and a C_{1-8} hydrocarbyl group optionally substituted by one or more substituents selected from hydroxy, oxo, halogen, cyano, nitro, carboxy; wherein one or more carbon atoms of the C_{1-8} hydrocarbyl group may optionally be replaced by O, S, SO, SO₂, $X^3C(X^4)$, $C(X^4)X^3$ or $X^3C(X^4)X^3$; X^3 is O or S; and X^4 is =O or =S.
- 66. (Withdrawn) A method according to claim 65 wherein the substituents on R¹ are selected from halogen, hydroxy, trifluoromethyl, a group R^a-R^b wherein R^a is a bond or O, and R^b is selected from hydrogen and a C₁₋₄ hydrocarbyl group optionally substituted by one or more substituents selected from hydroxyl and halogen.
- 67. (Withdrawn) A method according to claim 65 wherein R¹ is a phenyl group which is 2,6-disubstituted, 2,3-disubstituted, 2,4-disubstituted 2,5-disubstituted, 2,3,6-trisubstituted or 2,4,6-trisubstituted.
- 68. (Withdrawn) A method according to claim 67 wherein R^1 is a phenyl group which is disubstituted at positions 2- and 6- with substituents selected from fluorine, chlorine and R^a - R^b , where R^a is O and R^b is C_{1-4} alkyl.
- 69. (Withdrawn) A method use according to claim 57 wherein the compound is represented by the formula (II):

$$R^{1}$$
 A
 NH
 X
 R^{2}
 N
 H
 R^{8}
 R^{8}
 R^{1}
 R^{1}
 R^{2}
 R^{2}
 R^{3}
 R^{4}
 R^{8}
 R^{8}
 R^{8}
 R^{8}
 R^{8}
 R^{8}

wherein R^1 , R^2 and X are as defined in claim 57;

Y is N or CR9 wherein R9 is hydrogen or a group R10; and

 R^6 , R^7 and R^8 are the same or different and each is hydrogen or a group R^{10} as defined in claim 57.

70. (Withdrawn) A method according to claim 69 wherein the compound is represented by the formula (III):

$$\begin{array}{c|cccc}
R^1 & R^6 & R^9 \\
\hline
N & N & R^7 \\
N & N & R^8 & R^7
\end{array}$$
(IIII)

wherein R^1 , R^2 and R^6 to R^9 are as defined in claim 57.

71. (Withdrawn) A method according to claim 69 wherein the compound is represented by the formula (IIIa):

wherein R^1 , R^2 and R^6 to R^9 are as defined in claim 57.

72. (Previously Presented) A compound of the formula (IV):

$$R^{1a} - A \qquad \qquad R^{6a} \qquad \qquad R^{9a} \qquad \qquad \\ N - N \qquad \qquad N \qquad \qquad R^{7a} \qquad \qquad \\ N - N \qquad \qquad H \qquad \qquad R^{8a} \qquad \qquad \\ (IV)$$

or a salt, N-oxide or solvate thereof;

wherein A is NH(C=O), O(C=O) or C=O;

 R^{6a} , R^{7a} , R^{8a} and R^{9a} are the same or different and each is selected from hydrogen, halogen, hydroxy, trifluoromethyl, cyano, nitro, carboxy, amino, mono- or di- $C_{1.4}$ hydrocarbylamino, carbocyclic and heterocyclic groups having from 3 to 12 ring members; a group R^a - R^b wherein R^a is a bond, O, CO, $X^1C(X^2)$, $C(X^2)X^1$, $X^1C(X^2)X^1$, S, SO, SO₂, NR°, SO₂NR° or NR°SO₂; and R^b is selected from hydrogen, carbocyclic and heterocyclic groups having from 3 to 12 ring members, and a $C_{1.8}$ hydrocarbyl group optionally substituted by one or more substituents selected from hydroxy, oxo, halogen, cyano, nitro, carboxy, amino, mono- or di- $C_{1.4}$ hydrocarbylamino, carbocyclic and heterocyclic groups having from 3 to 12 ring members and wherein one or more carbon atoms of the $C_{1.8}$ hydrocarbyl group may optionally be replaced by O, S, SO, SO₂, NR°, $X^1C(X^2)$, $C(X^2)X^1$ or $X^1C(X^2)X^1$; or two adjacent groups R^{6a} , R^{7a} , R^{8a} or R^{9a} together with the carbon atoms to which they are attached may form a 5-membered heteroaryl ring or a 5- or 6-membered non-aromatic heterocyclic ring, wherein the said heteroaryl and heterocyclic groups contain up to 3 heteroatom ring members selected from N, O and S;

 R^{c} is selected from hydrogen and $C_{1\text{--}4}$ hydrocarbyl; and

 X^1 is O, S or NR^c and X^2 is =O, =S or =NR^c;

or an adjacent pair of substituents selected from R^{6a} , R^{7a} , R^{8a} and R^{9a} together with the carbon atoms to which they are attached may form a non-aromatic five or six membered ring containing up to three heteroatoms selected from O, N and S;

R^{1a} is selected from:

6-membered monocyclic aryl groups substituted by one to three substituents R^{10c} provided that when the aryl group is substituted by a methyl group, at least one substituent other than methyl is present;

6-membered monocyclic heteroaryl groups containing a single heteroatom ring member which is nitrogen, the heteroaryl groups being substituted by one to three substituents R^{10c} ;

5-membered monocyclic heteroaryl groups containing up to three heteroatom ring members selected from nitrogen and sulphur, and being optionally substituted by one to three substituents R^{10c} ;

5-membered monocyclic heteroaryl groups containing a single oxygen heteroatom ring member and optionally a nitrogen heteroatom ring member, and being substituted by one to three substituents R^{10c} provided that when the heteroaryl group contains a nitrogen ring member and is substituted by a methyl group, at least one substituent other than methyl is present;

bicyclic aryl and heteroaryl groups having up to four heteroatom ring members and wherein either one ring is aromatic and the other ring is non-aromatic, or wherein both rings are aromatic, the bicyclic groups being optionally substituted by one to three substituents R^{10c} :

four-membered, six-membered and seven-membered monocyclic C-linked saturated heterocyclic groups containing up to three heteroatoms selected from nitrogen, oxygen and sulphur, the heterocyclic groups being optionally substituted by one to three substituents R^{10c} provided that when the heterocyclic group has six ring members and contains only one heteroatom which is oxygen, at least one substituent R^{10c} is present;

five membered monocyclic C-linked saturated heterocyclic groups containing up to three heteroatoms selected from nitrogen, oxygen and sulphur, the heterocyclic groups being optionally substituted by one to three substituents R^{10c} provided that when the heterocyclic group has five ring members and contains only one heteroatom which is nitrogen, at least one substituent R^{10c} other than hydroxy is present;

four and six membered cycloalkyl groups optionally substituted by one to three substituents R^{10c} :

three and five membered cycloalkyl groups substituted by one to three substituents R^{10c} ; and

a group Ph'CR¹⁷R¹⁸- where Ph' is a phenyl group substituted by one to three substituents R^{10c} ; R^{17} and R^{18} are the same or different and each is selected from hydrogen and methyl; or R^{17} and R^{18} together with the carbon atom to which they are attached form a cyclopropyl group; or one of R^{17} and R^{18} is hydrogen and the other is selected from amino, methylamino, C_{1-4} acylamino, and C_{1-4} alkoxycarbonylamino; and where one of R^{6a} , R^{7a} , R^{8a} and R^{9a} is a morpholinomethyl group, then R^{1a} is additionally selected from:

unsubstituted phenyl and phenyl substituted with one or more methyl groups; unsubstituted 6-membered monocyclic heteroaryl groups containing a single heteroatom ring member which is nitrogen; unsubstituted furyl;

5-membered monocyclic heteroaryl groups containing a single oxygen heteroatom ring member and a nitrogen heteroatom ring member, and being unsubstituted or substituted by one or more methyl groups;

unsubstituted six membered monocyclic C-linked saturated heterocyclic groups containing only one heteroatom which is oxygen; and

unsubstituted three and five membered cycloalkyl groups; and R^{10c} is selected from:

halogen;

hydroxyl;

C₁₋₄ hydrocarbyloxy optionally substituted by one or more substituents selected from hydroxyl and halogen;

C₁₋₄ hydrocarbyl substituted by one or more substituents selected from hydroxyl, halogen and five and six-membered saturated heterocyclic rings containing one or two heteroatom ring members selected from nitrogen, oxygen and sulphur;

S-C₁₋₄ hydrocarbyl;

phenyl optionally substituted with one to three substituents selected from C_{1-4} alkyl, trifluoromethyl, fluoro and chloro;

Via EFS-Web Date of Deposit: March 25, 2010

heteroaryl groups having 5 or 6 ring members and containing up to 3 heteroatoms selected from N, O and S, the heteroaryl groups being optionally substituted with one to three substituents selected from C_{1-4} alkyl, trifluoromethyl, fluoro and chloro;

5- and 6-membered non-aromatic heterocyclic groups containing up to 3 heteroatoms selected from N, O and S and being optionally substituted with one to three substituents selected from C_{1-4} alkyl, trifluoromethyl, fluoro and chloro;

cyano, nitro, amino, C_{1-4} alkylamino, di- C_{1-4} alkylamino, C_{1-4} acylamino, C_{1-4} alkoxycarbonylamino;

a group R^{19} -S(O)_n- where n is 0, 1 or 2 and R^{19} is selected from amino; C_{1-4} alkylamino; C_{1-4} hydrocarbyl; phenyl optionally substituted with one to three substituents selected from C_{1-4} alkyl, trifluoromethyl, fluoro and chloro; and 5- and 6-membered non-aromatic heterocyclic groups containing up to 3 heteroatoms selected from N, O and S and being optionally substituted with one to three C_{1-4} alkyl group substituents; and

a group R^{20} -Q- where R^{20} is phenyl optionally substituted with one to three substituents selected from C_{1-4} alkyl, trifluoromethyl, fluoro and chloro; and Q is a linker group selected from OCH₂, CH₂O, NH, CH₂NH, NCH₂, CH₂, NHCO and CONH.

73. (Previously Presented) A compound of the formula (V):

or a salt, N-oxide or solvate thereof;

A is NH(C=O) or C=O;

wherein

R^{1b} is a substituted phenyl group having from 1 to 4 substituents whereby:

(i) when R^{1b} bears a single substituent it is selected from halogen, hydroxyl, C_{1-4} hydrocarbyloxy optionally substituted by one or more substituents selected from hydroxyl and

halogen; C₁₋₄ hydrocarbyl substituted by one or more substituents selected from hydroxyl and halogen; heteroaryl groups having 5 ring members; and 5- and 6-membered non-aromatic heterocyclic groups, wherein the heteroaryl and heterocyclic groups contain up to 3 heteroatoms selected from N, O and S;

- (ii) when R^{1b} bears 2, 3 or 4 substituents, each is selected from halogen, hydroxyl, C₁₋₄ hydrocarbyloxy optionally substituted by one or more substituents selected from hydroxyl and halogen; C₁₋₄ hydrocarbyl optionally substituted by one or more substituents selected from hydroxyl and halogen; heteroaryl groups having 5 ring members; amino; and 5- and 6-membered non-aromatic heterocyclic groups; or two adjacent substituents together with the carbon atoms to which they are attached form a 5-membered heteroaryl ring or a 5- or 6-membered non-aromatic heterocyclic ring; wherein the said heteroaryl and heterocyclic groups contain up to 3 heteroatoms selected from N, O and S; and R^{6a}, R^{7a}, R^{8a} and R^{9a} are as defined in claim 72.
- 74. (Currently Amended) A compound according to claim 72 wherein the group R^{1a}-A-NH or R^{1b}-A-NH linked to the 4-position of the pyrazole ring is an amide R^{1a}[[^{/1b}]]-C(=O)NH or urea R^{1a}[[^{/1b}]]-NHC(=O).
- 75. (Previously Presented) A compound according to claim 73 wherein R^{1b} is 2,6-disubstituted, 2,3-disubstituted, 2,4-disubstituted 2,5-disubstituted, 2,3,6-trisubstituted or 2,4,6-trisubstituted.
- 76. (Previously Presented) A compound according to claim 75 wherein R^{1b} is disubstituted at positions 2- and 6- with substituents selected from fluorine, chlorine and R^a-R^b, where R^a is O and R^b is C₁₋₄ alkyl.
- 77. (Currently Amended) A compound according to claim 72 wherein R^{1a} is selected from unsubstituted three and five membered cycloalkyl groups. -a non-aromatic carbocyclic group having from 3 to 6 ring members.
- 78. (Currently Amended) A compound according to claim 72 wherein:
- (a) R^{6a}, R^{7a}, R^{8a} and R^{9a} are selected from hydrogen, halogen, hydroxy, trifluoromethyl, cyano, nitro, carboxy, amino, monocyclic carbocyclic and heterocyclic groups

having from 3 to 12 ring members; [[,]] a group R^a - R^b wherein R^a is a bond, O, CO, $X^1C(X^2)$, $C(X^2)X^1$, $X^1C(X^2)X^1$, S, SO, SO₂, NR°, SO₂NR° or NR°SO₂; and R^b is selected from hydrogen, [[a]] carbocyclic or heterocyclic group with 3-7 ring members and a C_{1-8} hydrocarbyl group optionally substituted by one or more substituents selected from hydroxy, C_{1-4} -acyloxy, oxo, halogen, cyano, nitro, carboxy, amino, mono- or di- C_{1-4} hydrocarbylamino, a carbocyclic or heterocyclic group with 3-7 ring members and wherein one or more carbon atoms of the C_{1-8} hydrocarbyl group may optionally be replaced by O, S, SO, SO₂, NR°, $X^1C(X^2)$, $C(X^2)X^1$ or $X^1C(X^2)X^1$; and R^e , X^1 -and X^2 ; or an adjacent pair of substituents selected from R^{6a} , R^{7a} , R^{8a} and R^{9a} together with the carbon atoms to which they are attached may form a non-aromatic five or six membered ring containing up to three heteroatoms selected from O, N and S; or

- (b) R^{6a} to R^{9a} are each hydrogen or are selected from halogen, cyano, hydroxy, trifluoromethyl, nitro, a group R^a - R^b wherein R^a is a bond, O, CO or $C(X^2)X^1$ and R^b is selected from hydrogen, heterocyclic groups having from 3 to 12 ring members, and a C_{1-8} hydrocarbyl group optionally substituted by one or more substituents selected from hydroxy, C_{1-4} acyloxy, mono- or di- C_{1-4} hydrocarbylamino and heterocyclic groups having from 3 to 12 ring members; where R^c is selected from hydrogen and C_{1-4} hydrocarbyl, X^1 is O or NR^c and X^2 is =O; or
- (c) R^{6a} , R^{7a} , R^{8a} and R^{9a} are selected from hydrogen, fluorine, chlorine, bromine, nitro, trifluoromethyl, carboxy, a group R^a - R^b wherein R^a is a bond, O, CO, $C(X^2)X^1$, and R^b is selected from hydrogen, heterocyclic groups having 3-7 ring members and a C_{1-4} hydrocarbyl group optionally substituted by one or more substituents selected from hydroxy, carboxy, C_{1-4} acyloxy, amino, mono- or di- C_{1-4} hydrocarbylamino, heterocyclic groups with 3-7 ring members; or an adjacent pair of substituents selected from R^{6a} , R^{7a} , R^{8a} and R^{9a} together with the carbon atoms to which they are attached may form a non-aromatic five or six membered ring containing one or two oxygen atoms as ring members; or
- (d) R^{6a} , R^{7a} , R^{8a} and R^{9a} are selected from hydrogen, fluorine, chlorine, trifluoromethyl, a group R^a - R^b wherein R^a is a bond, O, CO, $C(X^2)X^1$, and R^b is selected from hydrogen, saturated heterocyclic groups having 5-6 ring members and a C_{1-2} hydrocarbyl group optionally substituted by one or more substituents selected from hydroxy, carboxy, C_{1-2} acyloxy, amino, mono- or di- C_{1-4} hydrocarbylamino, heterocyclic groups with 5-6 ring members; or an

Via EFS-Web Date of Deposit: March 25, 2010

adjacent pair of substituents selected from R^{6a} , R^{7a} , R^{8a} and R^{9a} may form a methylenedioxy or ethylenedioxy group each optionally substituted by one or more fluorine atoms; or

- (e) R^{6a} to R^{9a} include halogen, nitro, carboxy, a group R^a - R^b wherein R^a is a bond, O, CO, $C(X^2)X^1$, and R^b is selected from hydrogen, heterocyclic group having 3-7 ring members and a C_{1-4} hydrocarbyl group optionally substituted by one or more substituents selected from hydroxy, carboxy, amino, mono- or di- C_{1-4} hydrocarbylamino, heterocyclic group with 3-7 ring members.
- 79. (Previously Presented) A compound according to claim 78 wherein one of R^{6a} to R^{9a} is a substituent other than hydrogen and the others each are hydrogen.
- 80. (Previously Presented) A compound according to claim 78 wherein

R^{6a} is selected from:

hydrogen;

halogen;

methyl optionally substituted by a substituent selected from hydroxy, halogen and $NR^{11}R^{12}$; and $C(=O)NR^{11}R^{12}$;

wherein R^{11} and R^{12} are the same or different and each is selected from hydrogen and C_{1-4} alkyl or R^{11} and R^{12} together with the nitrogen atom form a five or six membered heterocyclic ring having 1 or 2 heteroatom ring members selected from O, N and S; and/or

R^{9a} is selected from:

hydrogen;

halogen;

C₁₋₄ alkoxy;

methyl optionally substituted by a substituent selected from hydroxy, halogen and $NR^{11}R^{12}$; and $C(=O)NR^{11}R^{12}$;

wherein R^{11} and R^{12} are the same or different and each is selected from hydrogen and C_{1-4} alkyl or R^{11} and R^{12} together with the nitrogen atom form a five or six membered heterocyclic ring having 1 or 2 heteroatom ring members selected from O, N and S; and/or

R^{7a} is selected from:

hydrogen;

halogen;

 C_{1-4} alkoxy;

methyl optionally substituted by a substituent selected from hydroxy, halogen and $NR^{11}R^{12}$; and $C(=O)NR^{11}R^{12}$;

wherein R^{11} and R^{12} are the same or different and each is selected from hydrogen and C_{1-4} alkyl or R^{11} and R^{12} together with the nitrogen atom form a five or six membered heterocyclic ring having 1 or 2 heteroatom ring members selected from O, N and S; and/or

R^{8a} is selected from hydrogen, fluorine and methyl, most preferably hydrogen.

81. (Previously Presented) A compound of the formula (VI):

or a salt, N-oxide or solvate thereof;

wherein:

when A is NH(C=O) or C=O;

R^{1c} is selected from:

- (a) a mono-substituted phenyl group wherein the substituent is selected from *o*-amino, *o*-methoxy; *o*-chloro; *p*-chloro; *o*-difluoromethoxy; *o*-trifluoromethoxy; *o*-tert-butyloxy; *m*-methylsulphonyl and *p*-fluoro;
- (b) a 2,4- or 2,6-disubstituted phenyl group wherein one substituent is selected from o-methoxy, o-ethoxy, o-fluoro, p-morpholino and the other substituent is selected from o-fluoro, o-chloro, p-chloro, and p-amino;
- (c) a 2,5-disubstituted phenyl group wherein one substituent is selected from *o*-fluoro and *o*-methoxy and the other substituent is selected from *m*-methoxy, *m*-isopropyl; *m*-fluoro, *m*-trifluoromethoxy, *m*-trifluoromethyl, *m*-methylsulphanyl, *m*-pyrrolidinosulphonyl, *m*-(4-methylpiperazin-1-yl)sulphonyl, *m*-morpholinosulphonyl, *m*-methyl, *m*-chloro and *m*-aminosulphonyl;

- (d) a 2,4,6-tri-substituted phenyl group where the substituents are the same or different and are each selected from o-methoxy, o-fluoro, p-fluoro, p-methoxy provided that no more than one methoxy substituent is present;
- (e) a 2,4,5-tri-substituted phenyl group where the substituents are the same or different and are each selected from *o*-methoxy, *m*-chloro and *p*-amino;
- (f) unsubstituted benzyl; 2,6-difluorobenzyl; α , α -dimethylbenzyl; 1-phenylcycloprop-1-yl; and α -tert-butoxycarbonylaminobenzyl;
- (g) an unsubstituted 2-furyl group or a 2-furyl group bearing a single substituent selected from 4-(morpholin-4-ylmethyl), piperidinylmethyl; and optionally a further substituent selected from methyl;
- (h) an unsubstituted pyrazolo[1,5-a]pyridin-3-yl group;
- (i) isoxazolyl substituted by one or two C₁₋₄ alkyl groups;
- (j) 4,5,6,7-tetrahydro-benz[d]isoxazol-3-yl;
- (k) 3-tert-butyl-phenyl-1H-pyrazol-5-yl;
- (1) quinoxalinyl;
- (m) benz[c]isoxazol-3-yl;
- (n) 2-methyl-4-trifluoromethyl-thiazol-5-yl;
- (o) 3-phenylamino-2-pyridyl;
- (p) 1-toluenesulphonylpyrrol-3-yl;
- (q) 2,4-dimethoxy-3-pyridyl; and 6-chloro-2-methoxy-4-methyl-3-pyridyl;
- (r) imidazo[2,1-b]thiazol-6-yl;
- (s) 5-chloro-2-methylsulphanyl-pyrimidin-4-yl;
- (t) 3-methoxy-naphth-2-yl;
- (u) 2,3-dihydro-benz[1,4]dioxin-5-yl;
- (v) 2,3-dihydro-benzfuranyl group optionally substituted in the five membered ring by one or two methyl groups;
- (w) 2-methyl-benzoxazol-7-yl;
- (x) 4-aminocyclohex-1-yl;
- (y) 1,2,3,4-tetrahydro-quinolin-6-yl;
- (z) 2-methyl-4,5,6,7-tetrahydro-benzfuran3-yl;

(aa) 2-pyrimidinyl-1piperidin-4-yl; and 1-(5-trifluoromethyl-2-pyridyl)-piperidin-4-yl and 1-methylsulphonylpiperidin-4-yl;

- (ab) 1-cyanocyclopropyl;
- (ac) N-benzylmorpholin-2-yl;

and when A is NH(C=O), R^{1c} is additionally selected from:

(ad) unsubstituted phenyl;

 R^{9b} is selected from hydrogen; chlorine; methoxy; methylsulphonyl; 4-methyl-piperazin-1-ylcarbonyl; morpholinocarbonyl; morpholinomethyl; pyrrolidinylcarbonyl; N-methyl-piperidinyloxy; pyrrolidinylethoxy; morpholinopropylaminomethyl; 4-cyclopentyl-piperazin-1-ylmethyl; 4-ethylsulphonyl-piperazin-1-ylmethyl; morpholinosulphonyl; 4-(4-methylcyclohexyl)-piperazin-1-ylmethyl; and R^{7b} is selected from hydrogen; methyl; methoxy and ethoxy.

82. (Previously Presented) A compound according to claim 72 having the formula (VII):

$$R^{1d} - A$$

$$N + N$$

$$N - N$$

$$N + N$$

or a salt, N-oxide or solvate thereof; wherein R^{1d} is a group R^{1a} as defined in claim 72.

83. (Previously Presented) A compound according to claim 82 having the formula (VIIa):

84. (Previously Presented) A compound according to claim 72 wherein A is a bond or $-(CH_2)_m$ - $(B)_n$ -, m is 0 or 1, n is 1 and B is C=O or $NR^g(C=O)$.

- 85. (Previously Presented) A compound according to claim 84 wherein m is 0 and B is NR^g(C=O).
- 86. (Withdrawn) A method for treating a disease or condition comprising or arising from abnormal cell growth in a mammal, which method comprises administering to the mammal in an amount effective in inhibiting abnormal cell growth a compound of formula (I):

or a salt, N-oxide or solvate thereof; wherein

X is CR⁵ or N;

A is a bond or $-(CH_2)_m$ - $(B)_n$ -;

B is C=O, NR^g (C=O) or O(C=O) wherein R^g is hydrogen or C_{1-4} hydrocarbyl optionally substituted by hydroxy or C_{1-4} alkoxy;

m is 0, 1 or 2;

n is 0 or 1;

 R^0 is hydrogen or, together with NR^g when present, forms a group -(CH₂)_p- wherein p is 2 to 4;

 R^1 is hydrogen, a carbocyclic or heterocyclic group having from 3 to 12 ring members, or an optionally substituted C_{1-8} hydrocarbyl group;

 R^2 is hydrogen, halogen, methoxy, or a C_{1-4} hydrocarbyl group optionally substituted by halogen, hydroxyl or methoxy;

R³ and R⁴ together with the carbon atoms to which they are attached form an optionally substituted fused carbocyclic or heterocyclic ring having from 5 to 7 ring members of which up to 3 can be heteroatoms selected from N, O and S; and

 R^5 is hydrogen, a group R^2 or a group R^{10} wherein R^{10} is selected from halogen, hydroxy, trifluoromethyl, cyano, nitro, carboxy, amino, mono- or di- C_{1-4} hydrocarbylamino, carbocyclic and heterocyclic groups having from 3 to 12 ring members; a group R^a - R^b wherein R^a is a bond, O, CO, $X^1C(X^2)$, $C(X^2)X^1$, $X^1C(X^2)X^1$, S, SO, SO₂, NR^c , SO₂ NR^c or NR^c SO₂; and R^b is selected from hydrogen, carbocyclic and heterocyclic groups having from 3 to 12 ring members, and a C_{1-8} hydrocarbyl group optionally substituted by one or more substituents selected from hydroxy, oxo, halogen, cyano, nitro, carboxy, amino, mono- or di- C_{1-4} hydrocarbylamino, carbocyclic and heterocyclic groups having from 3 to 12 ring members and wherein one or more carbon atoms of the C_{1-8} hydrocarbyl group may optionally be replaced by O, S, SO, SO₂, NR^c , $X^1C(X^2)$, $C(X^2)X^1$ or $X^1C(X^2)X^1$;

 R^{c} is selected from hydrogen and C_{1-4} hydrocarbyl; and X^{1} is O, S or NR^{c} and X^{2} is =O, =S or $=NR^{c}$.

- 87. (Withdrawn) A method according to claim 57 for the prophylaxis or treatment of a disease state or condition mediated by an Aurora kinase.
- 88. (Withdrawn) A method according to claim 57 wherein the disease state is a proliferative disorder.
- 89. (Withdrawn) A method according to claim 88 wherein the proliferative disorder is a cancer.
- 90. (Withdrawn) A method according to claim 89 wherein the cancer is selected from breast cancer, ovarian cancer, colon cancer, prostate cancer, oesophageal cancer, squamous cancer, and non-small cell lung carcinomas.
- 91. (Withdrawn) A method for the prophylaxis or treatment of a disease or condition characterised by up-regulation of an Aurora kinase, the method comprising administering to a subject a prophylactically or therapeutically effective amount of a compound as defined in claim 57.

- 92. (Withdrawn) A method for the prophylaxis or treatment of cancer in a patient suffering from or suspected of suffering from cancer; which method comprises (i) subjecting a patient to a diagnostic test to determine whether the patient possesses the Ile31 variant of the Aurora A gene; and (ii) where the patient does possess the said variant, thereafter administering to the patient a prophylactically or therapeutically effective amount of a compound according to claim 57.
- 93. (Withdrawn) A method for the prophylaxis or treatment of a disease state or condition characterised by up-regulation of an Aurora kinase; which method comprises (i) subjecting a patient to a diagnostic test to detect a marker characteristic of up-regulation of the Aurora kinase and (ii) where the diagnostic test is indicative of up-regulation of Aurora kinase, thereafter administering to the patient a prophylactically or therapeutically effective amount of a compound of the formula (I) as defined in claim 57.
- 94. (Withdrawn) A method according to claim 86 wherein the disease or condition is a cancer.
- 95. (Withdrawn) A method according to claim 94 wherein the cancer is selected from breast cancer, ovarian cancer, colon cancer, prostate cancer, oesophageal cancer, squamous cancer, and non-small cell lung carcinomas.
- 96. (Previously Presented) A pharmaceutical composition comprising a compound as defined in claim 72 and a pharmaceutically acceptable carrier.
- 97. (Withdrawn) A process for the preparation of a compound as defined in claim 72, which process comprises:

reacting a compound of the formula:

with a compound of the formula R^{1a}-A' wherein A' is an isocyanate group N=C=O, or a group CO₂H or an activated derivative thereof;

and optionally thereafter converting one compound of the formula (IV) into another compound of the formula (IV).

98. (Withdrawn) A process for the preparation of a compound as defined in claim 72, which process comprises:

reacting a compound of the formula:

with a diamine compound of the formula:

$$H_2N$$
 R^3
 H_2N
 R^4

wherein R^{1a}, A, R³ and R⁴ are as defined in claim 72; and optionally thereafter converting one compound of the formula (IV) into another compound of the formula (IV).

99. (New) A compound according to claim 73 wherein the group R^{1b}-A-NH linked to the 4-position of the pyrazole ring is an amide R^{1b}-C(=O)NH or urea R^{1b}-NHC(=O).