# SMAP Assimilation Impacts on Land Surface and Numerical Weather Prediction Models







Clay Blankenship (USRA)

Jonathan Case (ENSCO, Inc.)

William Crosson (USRA)

Christopher Hain (NASA-MSFC)

Bradley Zavodsky (NASA-MSFC)







# Short-term Prediction Research and Transition (SPoRT) Center

<u>Mission</u>: Transition unique NASA and NOAA observations and research capabilities to the operational weather community to improve short-term weather forecasts on a regional and local scale.

 Close collaboration with numerous WFOs and National Centers across the country

 SPoRT activities began in 2002, first products to AWIPS in 2003

- Co-funded by NOAA since 2009 through Proving Ground activities
- Proven paradigm for transition of research and experimental data to operations

#### **Benefit:**

- Demonstrate capability of NASA and NOAA experimental products to weather applications and societal benefit
- Take satellite instruments with climate missions and apply data to solve shorter-term weather problems





## Overview of Project

| Domain                                                                  | CONUS            | East Africa |
|-------------------------------------------------------------------------|------------------|-------------|
| Assimilate SMAP in LIS  Evaluate soil moisture vs. station measurements | ✓<br>In progress |             |
| Coupled NU-WRF Experiments (LIS+WRF) Evaluate 48-h weather forecasts    | Preliminary      |             |

### Refinement of methodology

- Vertical layers
- Bias correction methods
- Ensemble size, perturbations, weighting

### Land Information System (LIS)





SPoRT-LIS total column soil moisture displayed in AWIPS II

- Framework for running LSMs incorporating a wide variety of meteorological forcing data and land surface parameters
  - Developed by NASA-GSFC
  - Includes data assimilation capability.
  - Can be run coupled with Advanced Research WRF.
- Using Noah 3.3 Land Surface Model (LSM) within LIS
- SPoRT maintains near-real-time and experimental LIS runs
  - SE US (3-km), shared with WFO's
  - East Africa, shared with Kenya Meteorological Service (KMS)



East Africa LIS domain

## SPoRT LIS Unique Features

Full Continental U.S. (CONUS) domain with 0.03° (lat/lon) grid resolution Unique characteristics of SPoRT-LIS:

- Real-time S-NPP/VIIRS Green Vegetation Fraction
- Albedo scaled to input vegetation
- Restart simulation strategy to produce real-time output (timeline below)
- SPORT-LIS ingested and displayed in AWIPS II at select NOAA/NWS weather forecast offices
- Land surface variables available to initialize modeling applications (WRF and STRC/EMS/UEMS)



Current SPoRT-LIS CONUS domain, as displayed in AWIPS II

### **SPoRT LIS Web Interface**



https://weather.msfc.nasa.gov/sport/case\_studies/lissmapda\_CONUS.html or https://weather.msfc.nasa.gov/sport ->Real-Time Data

->Land Information System

-> SPORT LIS + SMAP DA

### LIS Web Products from SPoRT: SMAP LIS

Column-Integrated Relative Soil Moisture (%) valid 15z 18 Oct 2016



• 0-10 cm model soil moisture

https://weather.msfc.nasa.gov/sport/case\_studies/lissmapda\_CONUS.html

## Sampling Strategy

- Level 2 data are available on 36-km EASE grid
- To take advantage of high resolution geophysical properties (topography, vegetation, soils), running model at 3-km
- SMAP observations are assimilated at each model grid point in their FOV
- Downscaling to preserve background variability implemented

Some QC applied on LIS grid Depends on LSM/variable (e.g. Noah3.3+soil moisture)

- Precip (changed to 1 mm/hr)
- Frozen ground
- Snow on ground
- GVF>0.7
- Extreme values



SMAP and LIS grids are not aligned. Near boundaries, keep only one observation per cell (closest good ob)

Data flag-based QC applied at observation resolution

- Retrieval Quality Flag
- Vegetation Opacity

SMAP (passive)

36-km cell

- Vegetation Water
- Frozen Ground Fraction

Bias correction will be applied on LIS grid.

### Assimilation of SMAP Enhanced (9-km) Product

0-10 cm Volumetric Soil Moisture (%)

#### LIS with 36-km SMAP DA

#### LIS with 9-km SMAP DA



Note linear and square features (e.g., at arrows) on left resulting from the coarse 36-km resolution of the SMAP data. Reduced on right due to using 9-km Enhanced SMAP data.

# Impact of Enhanced SMAP (correlations)

#### Y2015 0-10 cm SM SMAPENHDA-SMAPDA RCORR Diff at SCAN+USCRN Stations



### **Bias Correction**

- Assimilation systems assume unbiased observations
- LIS can apply point-by-point correction curves.
   Many implementations generate climatologies of model and obs at each grid point.
- We have implemented CDF matching aggregated by soil type
  - Described for SMOS in Blankenship et al. 2016 (IEEE TGRS)
  - Idea is to let the observations influence the model climatology
- Other methods will be explored including using only nearby points
- Using a thinner soil moisture layer may reduce forward operator error and subsequently the magnitude of bias corrections



Correction Curves By Soil Type





### SMAP Assimilation Reduces Errors due to Poor QC in Forcing Data

- Land surface models such as SPoRT LIS are forced using precipitation inputs (NLDAS-2 in this case)
- In 2015, NLDAS-2 included data from a bad rain gauge (consistently near zero) in southern Arkansas causing an anomalously dry soil moisture "bullseye" (upper left, arrow).
- Through assimilation of SMAP L2 soil moisture fields, which do not exhibit this feature (lower left), this anomaly is greatly reduced over time (upper right) to provide a more representative soil moisture field.
  - Snapshot is 24 days after beginning of assimilation.
- This results in a more accurate depiction of local conditions.

0-2 m Column Integrated Relative Soil Moisture (%) 12Z 24 Apr 2015



**SMAP Retrieved Soil Moisture** 

0-5 cm, volumetric (m³/m³ x100) Non-localized CDF-matching bias correction applied

**LIS Difference** 

(SMAP DA Minus Baseline SPORT)
Column Integrated RSM (%)

Credit: Youlong Xia, Pingping Xie (NCEP/EMC); David Mocko (NASA/GSFC)

### Better Blending of Soil Moisture Across US-Canada Border

- Soil moisture discontinuities can occur in regions where different precipitation inputs are blended
  - NLDAS-2 uses radar-derived precipitation over U.S. and reanalysis outside of U.S.
  - Results in anomalous dry conditions in southern Ontario (upper left, oval)
  - SMAP retrieved soil moisture (lower left) does not have this feature.
- Through assimilation of SMAP L2 soil moisture fields, this anomaly disappears over time (upper right) to provide a more to representative soil moisture field
- This should help forecasters better assess current regional conditions and provide more accurate initialization of NWP models.

0-2 m Column Integrated Relative Soil Moisture (%)

12Z 4 Jun 2016



#### **SMAP Retrieved Soil Moisture**

0-5 cm, volumetric (m³/m³ x100) Non-localized CDF-matching bias correction applied LIS Difference (SMAP DA Minus Baseline SPORT)

Column Integrated RSM (%)

Credit: Youlong Xia, Pingping Xie (NCEP/EMC); David Mocko (NASA/GSFC)

## Previous Validation Results (SMOS DA)



|         | Near Surface (0-10 cm) |        | Root Zone (10-100 cm) |       |        |       |
|---------|------------------------|--------|-----------------------|-------|--------|-------|
|         | Bias                   | Err SD | Corr.                 | Bias  | Err SD | Corr. |
| Control | 3.6%                   | 23.5%  | 0.47                  | 4.0%  | 10.6%  | 0.61  |
| SMOS DA | -0.5%                  | 21.8%  | 0.57                  | 10.6% | 11.8%  | 0.67  |

## **Quantitative Validation Results**

#### Station Validation





# SMAP Correlation change 2015

#### Y2015 0-10 cm SM SMAPENHDA-SPORTLIS RCORR Diff at SCAN+USCRN Stations



#### Y2016 0-10 cm SM SMAPENHDA-SPORTLIS RCORR Diff at SCAN+USCRN Stations



### Possible Issues

- SMAP Data Accuracy
- Bias Correction
- AM/PM data
- Representativeness (point vs grid cell, also vertical) of validation data
- Depth discrepancies
  - (10 cm model layer, 5 cm or less SMAP measurement)
- Intial LIS is too hard to improve upon
  - 3-km resolution has more detail than 36 or 9-km observations
  - Forcing data (NLDAS-2) is high quality

# New Validation Results (SMAP DA)

- Corr increases from .79 to .84 (NOBC)
- ubRMSE decreases from .054 to .043





#### Year 2015 Sfc SM scatter plots for region: SCAN\_TN\_2075\_McAllisterFarm (a) SPORTLIS (b) SMAPENHOL Bias= 0.003 Bias=-0.006 RMSE= 0.054 RMSE= 0.052 ubRMSE= 0.054 ubRMSE= 0.052 0.4 RCorr= 0.739 RCorr= 0.759 ACorr= 0.794 E 0.3 0.3 Sfc (0-0.1m) Soil Moisture (m3 0.2 0.1 0.1 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 (c) NOBC (d) SMAPENHDA Bias=-0.007 RMSE= 0.043 Bias=-0.014 RMSE= 0.049 ubRMSE= 0.046 ubRMSE= 0.043 RCorr= 0.884 RCorr= 0.869 0.3 0.4 0.5 0.3 Station Sfc (0-0.1m) Soil Moisture (m<sup>3</sup> m<sup>-3</sup>)

# New Validation Results (SMAP DA)

- Corr increases from .78 to 85 (NOBC)
- ubRMSE decreases from .071 to .057

#### Sfc SM comparison for stat: MEAN region: USCRN OK 1005 Stillwater2W



#### Year 2015 Sfc SM scatter plots for region: USCRN\_OK\_1005\_Stillwater2W



# New Validation Results (SMAP DA)

- Corr decreases from .93 to .67 (NOBC)
- ubRMSE increases from .031 to .059

Sfc SM comparison for stat: MEAN region: SCAN\_UT\_2137\_Nephi



## Possible Issues (and findings)

- Bias Correction
  - NoBC run indicates BC has a minor effect on statistics
- AM/PM data
  - Validation of retrievals indicates small difference
- Representativeness (point vs grid cell, also vertical) of validation data
  - Previously got positive impact (correlations) with SMOS
  - Others getting good impact
- Depth discrepancies
  - (10 cm model layer, 5 cm or less SMAP measurement)
  - Experiment in progress
  - Previously got positive impact with SMOS
- Information content of 3-km LSM is too hard to match with 9-km obs
  - Previously got positive impact with SMOS

# 6-7 May 2015 Southern Plains tornado outbreak: *NASA Unified-WRF (NU-WRF) sensitivity simulations*





## NASA Unified-WRF (NU-WRF) model runs: Model configuration and experiment details

- Domain/grid set up (images at right)
  - Contiguous U.S. at 9-km horizontal grid spacing
  - Convection-allowing 3-km mesh nested grid
- Sixty-hour forecasts
  - 0000 UTC 6 May to 1200 UTC 8 May
  - Initialized at 0000 UTC 6 May 2015
  - Initial/boundary conditions from NCEP Global Forecast System model



- Model physics parameterization choices
  - Noah land surface model (same as in LIS runs)
  - Convection: Scale-aware Kain-Fritsch (9-km grid only)
  - Planetary Boundary Layer: Yonsei University scheme
  - Microphysics: NASA/Goddard 4-ice parameterization
  - Radiation: NASA/Goddard short- and long-wave radiation schemes
- Two land surface initialization simulations
  - "sportlis": 0-h land surface fields from SPoRT's "operational" LIS run; no DA
  - "smapenhda": 0-h land surface fields from SMAP-Enhanced DA LIS run



Domain d02 Terrain Height (m)

3-km nested grid

# NASA Unified-WRF (NU-WRF) model runs: Soil Moisture Initial Condition Differences on 3-km nest





**Sfc-based Convective Available Potential Energy** 



24-hour NU-WRF forecasts and observed radar imagery valid at 0000 UTC 7 May 2015



**Observed regional radar reflectivity (dBZ)** 



smapenhda-initialized NU-WRF run



25-hour NU-WRF forecasts and observed radar imagery valid at 0100 UTC 7 May 2015



**Observed regional radar reflectivity (dBZ)** 



smapenhda-initialized NU-WRF run



26-hour NU-WRF forecasts and observed radar imagery valid at 0200 UTC 7 May 2015



**Observed regional radar reflectivity (dBZ)** 



smapenhda-initialized NU-WRF run



27-hour NU-WRF forecasts and observed radar imagery valid at 0300 UTC 7 May 2015



**Observed regional radar reflectivity (dBZ)** 



smapenhda-initialized NU-WRF run



28-hour NU-WRF forecasts and observed radar imagery valid at 0400 UTC 7 May 2015



Observed regional radar reflectivity (dBZ)



smapenhda-initialized NU-WRF run



29-hour NU-WRF forecasts and observed radar imagery valid at 0500 UTC 7 May 2015



Observed regional radar reflectivity (dBZ)



smapenhda-initialized NU-WRF run



30-hour NU-WRF forecasts and observed radar imagery valid at 0600 UTC 7 May 2015



**Observed regional radar reflectivity (dBZ)** 



smapenhda-initialized NU-WRF run

### **Future Plans**

- Soil Moisture
  - Validation of soil moisture against ground probes
  - Investigation of bias correction methods
- Coupled NWP
  - Validation of 48-hr NWP forecasts
    - High-impact case studies
    - Comprehensive seasonal validation
- Africa domain
- Possible Alaska domain

https://weather.msfc.nasa.gov/sport

- ->Realtime Data
- ->SMAP Soil Moisture



## Acknowledgments

- Land Information System Team (NASA-GSFC)
- SMAP Science Team and Early Adopters Team
- Steven Quiring, Texas A&M University (now @Ohio State U.)
- Brent McRoberts, Texas A&M University
- Funding: NASA Earth Science Division
   (ROSES 2015 Science Utilization of SMAP Mission Program)

### **Questions and Comments?**

clay.blankenship@nasa.gov

http://weather.msfc.nasa.gov/sport/

Facebook: NASA.SPoRT

Twitter: @NASA\_SPoRT



