Homework 6

张海

3130000923

8.1

A decomposition {R1, R2} is a lossless-join decomposition if R1 \cap R2 \rightarrow R1 or R1 \cap R2 \rightarrow R2. Let R1 = (A, B, C), R2 = (A, D, E), and R1 \cap R2 = A. Since A is a candidate key, Therefore R1 \cap R2 \rightarrow R1.

8.13

The dependency $B \to D$ is not preserved. F1 contains no dependencies with D on the right side of the arrow. F2 contains no dependencies with B on the left side of the arrow. Therefore for B \to D to be preserved there must be an FD B \to a in F+1 and a \to D in F+2 (so B \to D would follow by transitivity). Since the intersection of the two schemes is A, a = A. Observe that B \to Ais not in F+1 since B+ = BD.

8.19

From Exercise 8.6, we know that $B \to D$ is nontrivial and the left hand side is not a superkey. By the algorithm of Figure 8.11 we

derive the relations {(A, B, C, E), (B, D)}. This is in BCNF.

8.20

First we note that the dependencies given in Practice Exercise 8.1 form a canonical cover. Generating the schema from the algorithm of Figure 8.12 we get $R' = \{(A, B, C), (C, D, E), (B, D), (E, A)\}$. Schema (A, B, C) contains a candidate key. Therefore R' is a 3NF dependency-preserving lossless-join decomposition. Note that the original schema R = (A, B, C, D, E) is already in 3NF. Thus, it was not necessary to apply the algorithm as we have done above. The single original schema is trivially a lossless join, dependency-preserving decomposition.

8.28

(A, B, C, D, E)

Α	В	С	D	Е
a1	b1	c1	d1	e1
a2	b2	c2	d2	e2
a3	b3	c3	d3	e3

(A, B, C)

Α	В	С
a1	b1	c 1

a2	b2	c2
a3	b3	c3
(C, D), E)	
С	D	Ε
c1	d1	e1
c2	d2	e2
c3	d3	e3

The decomposition is not a lossless-join decomposition.