

PS Lineare Algebra, Lösungshinweise zu Aufgabenblatt 5

Aufgabe 17

Sei M eine nichtleere Menge. Für $A,B\subseteq M$ definieren wir $A\Delta B$ wie in Aufgabe 4.

(b) Sind $(\mathcal{P}(M), \Delta, \cap)$ und/oder $(\mathcal{P}(M), \Delta, \cup)$ Ringe?

Lösung.

(b) Dass $(\mathcal{P}(M), \Delta)$ eine abelsche Gruppe ist, wurde schon bewiesen.

Das Assoziativgesetz für den Mengenschnitt lässt sich leicht zeigen, z.B. mit einer Wahrheitstabelle.

Es gibt ein neutrales Element bzgl. \cap , nämlich die Menge M selbst, denn für alle $A\subseteq M$ gilt: $M\cap A=A\cap M=A$. Falls $M\neq\emptyset$, ist das neutrale Element bzgl. \cap verschieden von dem bzgl. Δ .

Wir zeigen, dass das Distributivgesetz für Δ und \cap gilt: Seien A,B,C Teilmengen von M. Dann haben wir:

$$x \in (A\Delta B) \cap C$$

 \iff x ist in genau einer von den Mengen A und B und x ist in C

 \iff x ist in genau einer von den Mengen $A \cap C$ und $B \cap C$

$$\iff x \in (A\Delta C) \cap (B\Delta C),$$

also gilt $(A\Delta B) \cap C = (A\Delta C) \cap (B\Delta C)$. Weil beide Operationen kommutativ sind, folgt dann auch $A \cap (B\Delta C) = (A\Delta B) \cap (A\Delta C)$ folgt dann.

Es folgt, dass $(\mathcal{P}(M), \Delta, \cap)$ ein Ring ist.

Hingegen ist $(\mathcal{P}(M), \Delta, \cup)$ kein Ring. Das neutrale Element bzgl. \cup ist \emptyset , also gleich mit dem neutralen Element bzgl. Δ . Hier ist also 0 = 1.

Aufgabe 18

Sei R ein Ring. Zeigen Sie, dass für alle $a,b,c\in R$ gilt:

- $(i) \ 0 \cdot a = a \cdot 0 = 0.$
- $(ii) -(a \cdot b) = (-a) \cdot b = a \cdot (-b).$
- $(iii) \ (-a) \cdot (-b) = a \cdot b.$

Gilt für $a \neq 0$ auch immer $a \cdot b = a \cdot c \Rightarrow b = c$?

Lösung.

- (i) Sei $a \in R$. Es gilt $0 \cdot a = (0+0) \cdot a = 0 \cdot a + 0 \cdot a$, also $0 \cdot a = 0 \cdot a + 0 \cdot a$. Durch Addieren von $-(0 \cdot a)$ auf beiden Seiten der letzten Gleichung, erhalten wir $0 = 0 \cdot a$. Analog zeigt man $a \cdot 0 = 0$.
- (ii) Seien $a, b \in R$. Es gilt $(-a) \cdot b + a \cdot b = ((-a) + a) \cdot b = 0 \cdot b = 0$ und, da (R, +) kommutativ ist, auch $a \cdot b + (-a) \cdot b = 0$. Also ist $(-a) \cdot b$ das additive Inverse zu $a \cdot b$, nämlich $-(a \cdot b)$.

Analog zeigt man, dass $-(a \cdot b) = a \cdot (-b)$ gilt.

(iii) Seien $a, b \in R$. Wir verwenden (ii) zweimal und erhalten: $(-a) \cdot (-b) = -((-a) \cdot b) = -(-(a \cdot b)) = a \cdot b$.

 $\textit{Gilt auch immer } a \cdot b = a \cdot c \Rightarrow b = c?$

Es kann auch für $a \neq 0$ der Fall sein, dass ab = ac gilt, b = c aber nicht. Z.B.: $R = \mathbb{Z}/4\mathbb{Z}, \ a = b = \hat{2}$ und $c = \hat{0}$. In $\mathbb{Z}/4\mathbb{Z}$ ist $\hat{2} \cdot \hat{2} = \hat{0}$, obwohl $\hat{2} \neq \hat{0}$. Wenn es in einem Ring Elemente $\alpha \neq 0$ und $\beta \neq 0$ gibt, für die $\alpha \cdot \beta = 0$ gilt, dann nennt man α und β Nullteiler.