AD-A058 820 NEW JERSEY STATE DEPT OF ENVIRONMENTAL PROTECTION TRENTON F/G 13/2
NATIONAL DAM SAFETY PROGRAM. INDIAN LAKE DAM (NJOO167), PASSAIC--ETC(U)
AUG 78 D J LEARY
DACW61-78-C-0124 UNCLASSIFIED N/L | OF 2 AD A058820

Approved for public release: distribution unlimited

PASSAIC RIVER BASIN

DEN BROOK, MORRIS COUNTY

NEW JERSEY

INDIAN LAKE DAM

PHASE I INSPECTION REPORT **PROGRAM** NATIONAL DAM SAFETY

NJ 00167

DEPARTMENT OF THE ARMY PHILADELPHIA DISTRICT, CORPS OF ENGINEERS CUSTOM HOUSE - 2D & CHESTNUT STREETS PHILADELPHIA, PENNSYLVANIA 19106 AUGUST 1978

SECURITY CLASSIFICATION OF THIS PAGE (When Da	ta Entered)	
REPORT DOCUMENTATION	N PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
NJ00167		
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
Phase I Inspection Report		(9)
National Dam Safety Program		FINAL rest
Indian Lake Dam		6. PERFORMING ORG. REPORT NUMBER
Morris County, N.J.		
7. AUTHOR(a)		8. CONTRACT OR GRANT NUMBER(8)
Dennis J./Leary P.E.	(15)	DACW61-78-C-0124
9. PERFORMING ORGANIZATION NAME AND ADDRE	ss	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Langan Engineering Associates, In	c. /	AREA & WORK UNIT NUMBERS
970 Clifton Ave.		
Clifton, N.J. 07013		
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
U.S. Army Engineer District, Phi	ladelphia (///	August 1978
Custom House, 2d & Chestnut Stree		13. NUMBER OF PAGES
Philadelphia, Pennsylvania 19106	205	86
14. MONITORING AGENCY NAME & ADDRESS(II differ	ent from Controlling Office)	15. SECURITY CLASS. (of this report)
(1) 11090), /	Unclassified
(10) 29/		15a. DECLASSIFICATION/DOWNGRADING
4		SCHEDULE
National Dam Safety Dam Land (NJW0167). Basin, Den Brook, Mos Jersey. Phase I Insp	, Passaic River rris County, New	ake SP 19 19 19 19 19 19 19 19 19 19 19 19 19
18. SUPPLEMENTARY NOTES Copies are obtainable from Nation Virginia, 22151.	nal Technical Info	rmation Service, Springfield,
19. KEY WORDS (Continue on reverse side if necessary Dams New Jersey National Dam Safety Program Phase Dam Safety Dam Inspection, Indian Lake Dam N	I	
This report cites results of a tequacy. The inspection and evaluational Dam Inspection Act, Publiculudes visual inspection, review and preliminary structural and hypaplicable. An assessment of the	echnical investiga ation of the dam i lic Law 92-367. The ew of available de ordraulic and hydro	s as prescribed by the he technical investigation sign and construction records, logic calculations, as

DD 1 JAN 73 1473

EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE BEST COPY FURNISHED US BY THE SPONSORING AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE.

78 09 11 011

DEPARTMENT OF THE ARMY
PHILADELPHIA DISTRICT, CORPS OF ENGINEERS
CUSTOM HOUSE - 2 D & CHESTNUT STREETS
PHILADELPHIA, PENNSYLVANIA 19106

Honorable Brendan T. Byrne Governor of New Jersey Trenton, New Jersey 08621

1 SEP 1978

Dear Governor Byrne:

Inclosed is the Phase I Inspection Report for Indian Lake Dam in Morris County, New Jersey which has been prepared under authorization of the Dam Inspection Act, Public Law 92-367. A brief assessment of the dam's condition is given on the first four pages of the report.

Based on visual inspection, available records, calculations and past operational performance, Indian Lake Dam, a high hazard potential structure, is judged to be in fair overall condition. However, the dam's spillway is considered seriously inadequate since 21 percent of the Probable Maximum Flood (PMF) would overtop the dam. To insure adequacy of the structure, the following actions, as a minimum are recommended:

- a. The spillway's adequacy should be determined by a qualified professional consultant engaged by the owner using more sophisticated methods, procedures and studies within six months from the date of approval of this report. Any remedial measures necessary to insure the adequacy of the spillway and to prevent overtopping should be initiated within calendar year 1979. In the interim, a detailed emergency operation plan warning system, should be promptly developed. Also, during periods of unusually heavy precipitation, around-the-clock surveillance should be provided.
- b. Within three months from the date of approval of this report engineering studies and analysis should be performed to determine the condition and effectiveness of the timber sheet pile cutoff along the upstream face of the spillway. This should include necessary borings, test pits, etc. as required to determine the nature of the spillway foundation materials and the condition of the connection between the cutoff wall and spillway. Piezometers should also be installed upstream and downstream of the spillway and monitored during a time when the lake is normally drawn down.

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COLY FURNISHED TO DDC

2

NAPEN-D Honorable Brendan T. Byrne

- c. Within three months from the date of approval of this report the owner of Lake Estling should make necessary repairs to its spillway to ensure its satisfactory performance during extreme floods as it effects the performance of Indian Lake Dam.
- d. The following remedial measures should be completed within the below listed times from the date of approval of this report:
- (1) Within three months provide erosion protection for the downstream abutments of the spillway.
- (2) Within one year repair the concrete support for the floor stand gate operator and the bulkhead.
- (3) Within three months evaluate alternative locations for the 12 inch diameter sewer pipe supported by a steel beam beneath the spillway bridge. Floating debris could catch on it and obstruct the spillway.

A copy of the report is being furnished to Mr. Dirk C. Hofman, New Jersey Department of Environmental Protection, the designated State Office contact for this program. Within five days of the date of this letter, a copy will also be sent to Congresswoman Helen S. Meyner of the Thirteenth District. Under the provisions of the Freedom of Information Act, the inspection report will be subject to release by this office, upon request, thirty days after the date of this letter.

Additional copies of this report may be obtained from the National Technical Information Services (NTIS), Springfield, Virginia, 22161 at a reasonable cost. Please allow four to six weeks from the date of this letter for NTIS to have copies of the report available.

An important aspect of the Dam Safety Program will be the implementation of the recommendations made as a result of the inspection. We accordingly request that we be advised of proposed actions taken by the State to implement our recommendations.

Sincerely yours,

1 Incl As stated JAMES G. TON

Colonel, Corps of Engineers

District Engineer

Cy furn: Mr. Dirk C. Hofman, P.E. Department of Environmental Protection

> THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

INDIAN LAKE DAM (NJ00167)

CORPS OF ENGINEERS ASSESSMENT OF GENERAL CONDITIONS

This dam was inspected on 27 June also 5, 12 and 19 July by Langan Engineering Associates, Inc. under contract to the State of New Jersey. The state, under agreement with the U. S. Army Engineer District, Philadelphia, had this inspection performed in accordance with the National Dam Inspection Act, Public Law 92-367.

The Indian Lake Daw, a high hazard potential structure, is judged to be in fair overall condition. However, the dam's spillway is considered seriously inadequate since 21 percent of the Probable Maximum Flood (PMF) would overtop the dam. To insure adequacy of the structure, the following actions, as a minimum are recommended:

- a. The spillway's adequacy should be determined by a qualified professional consultant engaged by the owner using more sophisticated methods, procedures and studies within six months from the date of approval of this report. Any remedial measures necessary to insure the adequacy of the spillway and to prevent overtopping should be initiated within calendar year 1979. In the interim, a detailed emergency operation plan warning system, should be promptly developed. Also, during periods of unusually heavy precipitation, around-the-clock surveillance should be provided.
- b. Within three months from the date of approval of this report engineering studies and analysis should be performed to determine the condition and effectiveness of the timber sheet pile cutoff along the upstream face of the spillway. This should include necessary borings, test pits, etc. as required to determine the nature of the spillway foundation materials and the condition of the connection between the cutoff wall and spillway. Piezometers should also be installed upstream and downstream of the spillway and monitored during a time when the lake is normally drawn down.
- c. Within three months from the date of approval of this report the owner of Lake Estling should make necessary repairs to its spillway to ensure its satisfactory performance during extreme floods as it effects the performance of Indian Lake Dam.
- d. The following remedial measures should be completed within the below listed times from the date of approval of this report:
- (1) Within three months provide erosion protection for the downstream abutments of the spillway.
- (2) Within one year repair the concrete support for the floor stand gate operator and the bulkhead.

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

(3) Within three months evaluate alternative locations for the 12 inch diameter sewer pipe supported by a steel beam beneath the spillway bridge. Floating debris could catch on it and obstruct the spillway.

APPROVED James Jon

Colonel, Corps of Engineers

District Engineer

DATE: 1540 78

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COLY FURNISHED TO DDC _

PHASE 1 REPORT

NATIONAL DAM SAFETY PROGRAM

Name of Dam: INDIAN LAKE DAM

ID Number: Fed ID No. NJ00167

State Located: New Jersey

County Located: Morris

Stream: Den Brook

River Basin: Passaic

Date of Inspections: 27 June and 5,12 and 19 July 1978

ASSESSMENT OF GENERAL CONDITIONS

Indian Lake Dam is in fair condition. There is a possibility of seepage under the spillway and erosion of the downstream toe of the spillway during an extreme flood. Because Indian Lake receives flow from Lake Estling, some maintenance work on the abutments of the arch spillway of Estling Lake Dam is necessary to ensure its satisfactory performance under extreme flood conditions. The condition and effectiveness of the timber sheet pile cutoff along the upstream face of the spillway should be determined. This will require at least one boring and possibly a test pit to determine the nature of the spillway foundation materials and the condition of the connection between the cutoff wall and spillway. Piezometers should be installed upstream and downstream at the spillway and monitored during a time when the lake is normally drawn

down. Erosion protection should be provided for the downstream abutments of the spillway to prevent loss of embankment in the event of overtopping of the dam. The concrete support to the floor stand gate operator and the bulkhead should be repaired. Aternative locations of the 12-in-dia sewer pipe between the spillway side walls should be evaluated.

The spillway capacity as determined by CE screening criteria is seriously inadequate. We estimate the dam can adequately pass only 20% of the PMF. The capacity of the spillway and the spillway design flood should be determined using more precise and sophisticated methods and procedures. The need for and type of mitigating measures should be determined. Around the clock surveillance during periods of unusually heavy precipitation should be provided, and a warning system established.

Dennis J. Lepty, P.E.

OVER VIEW

INDIAN LAKE DAM 21 June 1978

CONTENTS

PHASE 1 INSPECTION REPORT NATIONAL DAM SAFETY REPORT

INDIAN LAKE DAM N.J. NO. 34 FED. ID No. NJ00167

				Page
SECTION	1	PROJI	ECT INFORMATION	11
		1.2	General Project Description Pertinent Data	I1 I1 I2
SECTION	2	ENGI	NEERING DATA	13
			Regional Geology Site Geology	14 15
SECTION	3	VISUA	AL INSPECTION	15
SECTION	4	OPERA	ATIONAL PROCEDURES	16
SECTION	5	HYDRA	AULIC/HYDROLOGIC	16
SECTION	6	STRUC	CTURAL STABILITY	17
SECTION	7		SSMENT, RECOMMENDATIONS/ DIAL MEASURES	17
			Assessment Recommendations/Remedial Measures	17 18
FIGURES		1.	Regional Vicinity Map	
		2.	Essential Project Features	
		3.	Regional Geologic Features	
APPENDIC	ES	1.	Check List Visual Inspection Photographs	
		3.	Hydrologic Computations	
		4.	References	

SECTION 1 PROJECT INFORMATION

1.1 General

Authority to perform the Phase I safety inspection of Indian Lake Dam was received from the State of New Jersey, Department of Environmental Protection, Division of Water Resources by letter dated 26 May 1978. This Authority was given pursuant to the National Dam Inspection Act, Public Law 92-367.

The purpose of the Phase I investigation is to develop an assessment of the general conditions with respect to safety of Indian Lake Dam and appurtenances based upon available data and visual inspection, and, determine any need for emergency measures and conclude if additional studies, investigations and analyses are necessary and warranted. The assessment has been made using screening criteria established in Recommended Guidelines for Safety Inspection of Dams prepared by the Department of Army, Office of the Chief of Engineers. It is not the purpose of the inspection to imply that a dam meeting or failing to meet the screening criteria, is per se, certainly adequate or inadequate.

1.2 Description of Project

Indian Lake Dam was built in 1921. It is a 340-ft-long, 15-ft-high earth dam. The crest width varies from 27 ft to 52 ft. It is located along North Shore Road at the northeast end of Indian Lake in the Township of Denville, Morris County, N.J. The dam is at 40°53.5' lattitude and 74°28.9' longitude. The dam includes a free fall ogee shaped spillway. The length of the spillway is 40 ft. The spillway is covered downstream by a concrete bridge that is five feet above water level. Indian Lake is fed from above by Lake Estling which in turn is fed by Lake Shongum. The area of Indian Lake is 88 acres and the watershed area is 4740 acres which includes Lake Estling catchment area. A regional vicinity map is given in Fig. 1.

Indian Lake Dam is classified as being "Intermediate" on the basis of its reservoir storage volume, which is more than 1,000-acre feet, but less than 50,000-acre feet. It is classified as "Small" on the basis of its total height, which is less than 40 feet. The overall size classification is the larger of these two determinations, and accordingly the dam is classified as "Intermediate" in size.

In the National Inventory of Dams, Indian Lake Dam has been classified as having "High Hazard Potential" on the basis that failure of the dam would cause excessive property damage to residences downstream, and could potentially cause more than a few deaths. Visual inspection of the downstream area shows that breach of the dam would cause damage to residences and be hazardous to people utilizing Routes 80 and 46. Accordingly, It is proposed not to change the Hazard Classification.

The dam is owned by the Indian Lake Community Club and the lake is used for recreation.

At the time of our inspection the water level was approximately one inch above spillway crest and tailwater level was about seven feet below lake water level. The tail race water level is controlled by a pond between the dam and Interstate Route 80. The pond discharges into the Rockaway River.

1.3 Pertinent Data

The maximum length of Indian Lake is 3600 ft. The length of the pool and downstream channel between North Shore Road and Route 80 is approximately 800 ft. The spillway was designed for a 3 ft head and has a reported capacity of 1065 cfs. Two bottom outlets are located at the spillway side walls. The outlet pipes, 2-ft-dia. cast iron pipes, lead to 30-inch diameter control gates at the abutment walls and then into 2 ft by 2 ft culverts which run through the abutment walls. The crest of the dam is at elevation 513.5 and the crest of the spillway is at elevation 508.

The spillway is reported to be founded on medium sand. A timber sheet pile cutoff is reported to extend below the upstream face of the spillway to a depth of about 4.5 ft. This information should be checked. The references are difficult to decipher.

The upstream slope of the embankment is reported to have been constructed with a 2.5 hor to 1 vert. and the downstream slope at a 2 hor to 1 vert. The embankment is reported to have been constructed of sand and clay soil spread in shallow layers and compacted by rolling with a weighted down traction engine that gave a contact stress of approximately 30 1b/in. Presently, the upstream side of the dam has a concrete bulkhead and stone faced upper wall at the highway. The wall and bulkhead are separated by a 7-ft-wide walkway. The downstream side of the dam has been filled in and is used for parking.

Lake Estling feeds Indian Lake by way of a free fall arch spillway that is located at the southern end of Indian Lake. The developed length of the crest is approximately 30 ft.

The locations and elevations of the different parts of the dam and appurtenances have been obtained by means of surveyors transit and rod, USGS Maps, and reference documents. They are considered approximate. Essential Project Features are given in Fig 2.

SECTION 2 ENGINEERING DATA

Information on the design and construction is very limited and there is a lack of information concerning the nature of the foundation, which is very important particularly with respect to evaluation of the stability of the spillway section. What information is available indicates the dam and appurtenances were responsibly designed and constructed.

2.1 Regional Geology

Indian Dam is located in the New Jersey Highlands physiographic province. The New Jersey Highlands extend across the State in a northeast-southwest direction from the border of New York to the Delaware River and includes the northwest portions of Hunterdon, Passaic, and Morris Counties and the southeastern parts of Warren and Sussex Counties. This province is part of the New England Physiographic Province and lies between the Appalacian Ridge and Valley Province to the northwest and the Piedmont Province to the southeast. See Fig 3.

The Highlands are characterized by rounded and flattopped northeast-southwest ridges and mountainas up to 1,400 ft high separated by narrow valleys. The orientation of the valleys are usually, but not always controlled by the underlying geologic structure.

The regional geologic structure reflects the very old age of bedrock. A number of regional faults cross the area in a northeast southwest direction, including the Ramapo Fault; the more than 30 mile long fault scarp forms the eastern border of the province. Faults control many of the river valley orientations. The relatively uniform slope of the mountain elevations, from northwest to southeast, is a direct result of the faulting. The entire area is part of the now dissected Schooley Peneplain.

The Pleistocene Age Wisconsin glacier covered all of the dam site area.

The glacier stripped most of the existing overburden and weathered rock and uncovered the numerous hard bedrock knobs and ridges seen throughout the province. Most of the side-slopes in the area are covered with heavy boulder tills (ground moraine), whereas glacial outwash and recent alluvium cover the valleys.

2.2 Site Geology

Indian Lake Dam is located on a broad valley bottom near the terminal moraine. The dam area is urbanized with a number of commercial buildings, residences and roads. The terrain, particularly on the left abutment, has been extensively reworked and graded and little of the natural topography remains. On the right abutment, a commercial building has been constructed into the hillside. It is assumed that rock excavation would have been prohibitive and the excavation was made in overburden.

Although the foundation material on the left abutment could not be determined from surface exposures, natural slopes of up to 24° do exist on the right abutment. This lope appears to be composed primarily of glacial outwash material, a rounded cobbly, gravelly, silty sand. The Engineering Soil Survey of New Jersey (Report No. 9, Morris County) reports that residual soils may be possible on the right abutment and glacial outwash on the left abutment.

SECTION 3 VISUAL INSPECTION

The general conditions and maintenance of Indian Lake Dam and appurtenant structures appear good.

There is some concrete deterioration in the downstream spillway sidewalls and weathering at the spillway construction joints, otherwise the spillway section appears in adequate condition. The concrete bulkhead at the right side of the spillway has cracked and some of the stone facing has fallen out but this is not considered serious.

The bottom outlets are in functional condition and the gate valves seem to be in satisfactory condition. They can be easily operated by one man with a ratchet lever handle. The concrete support for the floor stand operator for the control valve at the left side of the spillway has broken up and should be repaired.

The masonry arch spillway at Lake Estling has had the mortar washed out from the rock blocks at the abutments and is in need of repair.

A 12-in-dia sewer pipe passes under the bridge between the sidewalls of the Indian Lake spillway. The pipe is supported by a steel beam and could cause obstruction of the spillway by floating debris during an extreme flood.

SECTION 4 OPERATIONAL PROCEDURES

Water levels are not being recorded. The lake is lowered approximately twice a year when the level rises during storms and every 3 or 4 years to allow maintenance and repair of docks. No flow measurements or systematic inspections are made.

SECTION 5 HYDRAULIC/HYDROLOGY

The hydraulic/hydrologic evaluation for Indian Lake Dam is based on a spillway design flood (SDF) equal to the probable maximum flood (PMF) in accordance with evaluation guidelines for dams classified as high hazard and intermediate in size. The PMF has been determined by developing a synthetic hydrograph based on the maximum probable precipitation of 22.5 inches (200 square mile - 24 hour). Hydrologic computations are given in Appendix 3. The PMF determined for the subject watershed is 16,448 cfs.

The spillway is essentially a broad crested weir with a length of 40 ft. After flowing over the spillway the water passes through the dam via a bridge opening with dimensions of 40-ft-wide by 11-ft-high to a small pond with its water surface elevation approximately 7 ft below Indian Lake.

The original design data indicates the spillway was designed to pass a flood of approximately 1100 cfs with a 3 ft head and with 1 ft of freeboard remaining to the crest of the dam. Our calculations indicate with the existing available head of 5.5 ft to the dam crest the maximum capacity of the spillway is 1702 cfs which is less than the required SDF.

Flood routing calculations indicate that Indian Lake Dam will overtop by approximately 4 ft under the PMF. We estimate that Indian Lake Dam can adequately pass approximately 20% of the PMF.

SECTION 6 EVALUATION OF STRUCTURAL STABILITY

From visual observations the general stability of the dam spillway appears to be adequate. However, two factors must be considered. The first is the nature of the clay and sand foundation of the spillway. The stability of the spillway depends on the efficiency of the timber cut off below the spillway. No previous operating record for a normal flood can ensure satisfactory performance during an extreme flood. The second is the maximum flood the structures can withstand. An extreme flood would pass over the crest of the dam, i.e. over the road. This could result in erosion of the downstream slope which could undermine the downstream portion of the spillway abutments.

Indian Lake Dam is located in Seismic Zone 1 of the Seismic Zone Map of Contiguous States. The degree of stability of the dam and appurtenances are assumed to be within conventional safety margins and to present no hazard from earthquakes. If, however, there is loose sand below the dam, or, the Seismic Zone rating is seriously increased in the future, or data becomes available to indicate it may be increased, further study with respect to seismic stability may be necessary.

SECTION 7 ASSESSMENT, RECOMMENDATION, REMEDIAL MEASURES

7.1 Assessment

The available information on Indian Lake Dam is not sufficient to draw a conclusion concerning the actual degree of stability. However, conditions appear satisfactory. We are concerned about the possibility of seepage under the spillway and erosion of the downstream toe of the spillway during an extreme flood.

Because Indian Lake receives the flow from Lake Estling, some maintenance work on the abutments of the arch spillway of Estling Lake Dam is necessary to ensure its satisfactory performance under extreme flood conditions.

7.2 Recommendations/Remedial Measures

We recommend the following remedial measures;

- Determine the condition and effectiveness of the timber sheet pipe cutoff along the upstream face of the spillway. This will require at least one boring and possibly a test pit to determine the nature of the spillway foundation materials and the condition of the connection between the cutoff wall and spillway. Piezometers could be installed upstream and downstream and the spillway and monitored during a time when the lake is normally drawn down. This should be done very soon.
- Provide erosion protection for the downstream abutments of the spillway to prevent loss of embankment in the event of overtopping of the dam. This should be done very soon.
- Make necessary repairs to the Lake Estling spillway to ensure its satisfactory performance during extreme floods. This should be done very soon.
- 4. Repair concrete support to the floor stand gate operator and the bulkhead. This should be done in the near future.
- 5. Evaluate alternative locations of the pipe between the spillway side walls. This should be done very soon.
- 6. The spillway capacity as determined by CE screening criteria is seriously inadequate. We estimate the dam can adequately pass only 20% of the PMF. The capacity of the spillway and SDF should be determined using more precise and sophisticated methods and procedures. A more extensive topographic survey of the dam and vicinity should be made. The need for and type of mitigating measures should be determined. Around the clock surveillance during periods of unusually heavy precipitation should be provided, and a warning system established. This should be done soon.

REGIONAL YICINITY MAP INDIAN LAKE DAM

Figl

Culvert Under Franklin Road Estling Lake Spillway from Lake Estling KEY MA 5/3.880 5 cale 3000 4000 509210 51330 fill to Grade for Parking B 0 509.17 513.79 Area gox Culert Concrete Headwall 6 505.50 12'd

SECTION OF SPILLWAY

HALF LONGIT. SECTION B

BRIDGE CROSS SECTION

NGIT. SECTION BRIDGE

ORIGINAL EARTH DAM CROSS SECTION

RIDGE CROSS SECTION

ARTH DAM CROSS SECTION

SPILLWAY FROM LAKE ESTLING INTO INDIAN LAKE

OUTLET OF STILLING BASIN Scale 1"= 20-0"

Note: The Elevations shown were obtained using a surveyor's transit and level and USGS map for BOONTON QUADRANGLE. The reference elevation of 520.0 at the N.E. Corner of the Bathhouse was used and later adjusted to the as built drawings of the spillway's recorded elevation of 508.0.

PHASE I
INSPECTION & EVALUATION

NEW JERSEY DAMS

DRAWING TITLE

INDIAN LAKE DAM
JULY 1978

FED. ID. No. NJ.00167 NJ. No. 34

JOB NO. J783	DRAWING NO.
DATE 5 July 1978	
SCALE as noted	FIG. 2
DRN. BY JC	
CHIKO. SY D.J. L.	OF SHEETS

Schematic Cross-Section of New Jersey Highlands Physiographic Province (Affer Wolfe, 1977)

APPENDIX 1

CHECK LIST

VISUAL INSPECTION

INDIAN LAKE DAM

Check List Visual Inspection Phase 1

State New Jersey Coordinators NJ DEP	Temperature 70-80° F	Tailwater at Time of Inspection 501.7 M.S.L.		Mr. Ray Mitchell - Denville	Total with midamical
is	*	508.1 M.S.L.		D. Lachel (12 July)	Bondy (19 July)
Name Dam Indian Lake Dam Co. 27 June 1978 5 July 1978	12 July 1978 Date(s) Inspection 19 July 1978 Weather Sunny	Pool Elevation at Time of Inspection	Inspection Personnel:	D. Leary (27 June & 5 July)	A. Puvo (27 June & 5 July)

Recorder

D. Leary

C. Campbell (12 July)

EMBANGMENT

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SURFACE CRACKS	Minor Cracks in Surface of Asphalt road paving	
UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE	None Observed	
SLOUGHING OR EROSION OF ENBANCHENT AND ABUTHENT SLOPES	None Observed	

RIPRAP FAILURES

None observed crack at top of upstream concrete bulkhead and stones have fallen from stone facing of upper retaining wall above concrete bulkhead at right side of spillway.

Good

VERTICAL AND WORIZOWIAL ALINEMENT OF THE CREST

EMBANKMENT

	VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
The second of the second wheels			
	JUNCTION OF ENBANGENT AND ABUTHENT, SPILLMAY AND DAN	Good at embankment abutments and at spillway sidewalls	
	ANY NOTICEABLE SEEPAGE	None observed	
	STAFF GAGE AND RECORDER	None observed	-
1-3	DRAINS	None observed	

1		OUTIET WORKS	
	VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMISHDATIONS
	CRACKING AND SPALLING OF CONCKETE SURFACES IN OUTLET CONDUIT	Spillway sidewalls have a 2 ft x 2 ft concrete outlet conduit located in each spillway sidewall. Left sidewall is deteriorated, outlet conduit could not be observed.	re te
	INTAKE STRUCTURE	Reported to be functional, could not be observed. Has two 30 inch gates, one at each spillway sidewall. Both gates appear to be in satisfactory working order.	
	OUTLET STRUCTURE	Reported to be functional, could not be observed.	
1-4	OUTLET CHANNEL	Stilling pond and Den Brook appeared satisfactory without obstructions.	
	EHERGENCY GATE	No emergency gate observed	

	UNGATED SPILLWAY	The second state of the second
VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE WEIR	Appears to be generally in satisfactory condition with weathering of vertical grooves of what appears to be construction joints.	
APPROACH CHANNEL	Appears satisfactory	
DISCHARGE CHANNEL	Appears satisfactory	
BRIDGE AND PIERS	Good condition, however, pipe is below bridge and across spillway and could cause obstruction	
	A CAN THE STATE OF	

	9	4
1	۲	4
1		2
1	7	2
	ŀ	
į	C	מ
Į	ļ	ż
1	۲	-

REMARKS OR RECOMMENDATIONS	
OBSERVATIONS	No signs of slope instability observed. Residential area surrounds Lake. Slopes vary from about 30 hor to 1 vert to 15 hor to 1 vert.
VISUAL EXAMINATION OF	SLOPES

SEDIMENTATION

There could be considerable sedimentation in Lake because Lake Estling and Shongum feed Indian Lake. However, no measurements were made.

ı		
۲	=	
۰	7	
1		
5	2	
•	7	
4	c	
٠	-	
	-	
ı	•	۰
٦	•	
٠		
-	2	
٠		,
6	ч	۱
1	•	
8	Ξ	
3	2	
í		
ŧ.	5	
1	T	
P	=	
	r	
•	-	
1	-	
1	_	
	NA PARTICION	į
ı		

REMARKS OR RECONMENDATIONS	
VISUAL EXAMINATION OF	

No obstructions or debris observed.

(OBSTRUCTIONS, DEBRIS, ETC.)

CONDITION

SLOPES

Appeared relatively flat and stable.

APPROXIMATE NO. OF HONES AND POPULATION

Nearest City reported to be Denville with population of 11,000. Routes 80 and 46 are located immediately downstream of dam.

APPENDIX 2

PHOTOGRAPHS

INDIAN LAKE DAM

Crest of dam looking Northwest

5 July 1978

Crest of dam looking Southeast

5 July 1978

Spillway looking Southeast

5 July 1978

Spillway looking downstream. Note steel beam pipe support across spillway.

5 July 1978

Right sidewall of spillway

5 July 1978

Deterioration of concrete at left downstream sidewall of spillway

5 July 1978

Left spillway sidewall and drawdown control valve

5 July 1978

Drawdown control valve of upstream 5 July 1978 end of right sidewall

INDIAN LAKE DAM

Upstream left embankment

5 July 1978

Upstream right embankment

5 July 1978

INDIAN LAKE DAM

Crack in concrete bulkhead of right 5 July 1978 upstream section of embankment

Deterioration of upstream facing of right embankment

5 July 1978

Spillway from Lake Estling into Indian Lake

5 July 1978

Steel sheet pile around right pier 5 July 1978 of Lake Estling discharge culvert under railroad

Left abutment of spillway from Lake Estling

5 July 1978

Deterioration of mortar and leakage 5 July 1978 at left abutment of spillway from Lake Estling

Right abutment of spillway from Lake Estling

5 July 1978

Deterioration of mortar and leakage 5 July 1978 of right abutment of spillway from Lake Estling

Culvert under Franklin Road

5 July 1978

Stilling basin downstream of Indian Lake spillway looking Southeast

5 July 1978

1-5

APPENDIX 3

HYDROLOGIC COMPUTATIONS

INDIAN LAKE DAM

HYDROLOGICAL COMPUTATIONS INDIAN LAKE DAM

Location Morris County

Drainage Area

Indian Lake Subbasin 617 acres or .96 sq mi
Lake Esting Subbasin 4120 are or 6.44 sq mi
Totals 4737 7.40 sq mi

Lake Area

Indian - 88 acres
Estling - 75 acres

Approach

catchment area multiple PMF and routing were performed. The effect of shongum Lake was not considered and PMF and routing was done for only lake Estling and Indian Lake

Evaluation Criteria Size - Intermediate Hogard - High

Spillway Design Flood PMF

1. Dum Located in Zone G PMP = 22.5"

2. Adjustment Factors

Duration (nr) %-f 24 hr 0-6 112 123 0-24 132 0-43 142 Reduction Factor * .

0.8 Idl ours

A 48 "Small Dams"

BY_C DATE 7/28 18 Inchan Lake JOB NO. J-783

CKD GED DATE _____ SHEET NO. _ OF 25

LANGAN ENGINEERING ASSOCIATES, INC.	(INDIAN LAKE)
DETERMINE	TIME OF CONCENTRATION
Since here is me	rone Divide Pond
defined main chan	nel for
the Indian Lake w	atter (9) N
shed we will take	overland It
flow to determine	Te
The overage slo	pe of the lake Estling
The average slo water basin = 3.6	70
average Length =	4700
From a site inst	ection The ground cover is
1 Fornest with Hear	ry Ground Litter & Headow
A. T. SCS	Johns Lucia 1 12000
From SCS	1ech 18-e1 # 55
tag 3-1 n	vel. = 0.46 ft/sec
Tc = length velocity	= 4100 0.46(3600) = 2.8 hours
Determine To	ly SCS #55 Fig3-3
Take 0 = G.	1 to t 10 0 +1
- 6 5	reatest flow longth 00 feet; CN = 60.
- 63	00 feet; CN = 60.
· Lag Tim	e = 1.35 HR
CKEED DATE 8/19 INC	JOB NO. J-783 SHEET NO. 2 OF 25
CKETED DATE 8 50	SHEET NO. 4 OF 25

Sales of

Take Tc = 2.3 HOURS

DETERMINE TO PEAK

Tp = D + 0.6 Tc

Take D = 30 Min

: Tp = = = + 0.6(2.3) = 1.63 HOURS

". Take Tp = 1.6 HOURS

UNIT HYDROGRAPH

Take GP from SCS formula

9p = 484 A = 484 (0.96) = 290 CHS

and To by using ratios tabulated in Take the time increment = D

DATE 8 30

LANGAN ENGIN	EERING ASSOCIATES, INC.		UNIT			
Hours	T/TP	8/g+	HYDROGRAPH 8 (C+S)			
10000000000000000000000000000000000000	00011128134578	000000000000000000000000000000000000000	4745460687265			
Area Under Duit Graph = 1227 (.5) (3600) (12) = 0.9914 Since the outflow from Lake Extling discharges directly into Indian Lake the hydrologic Characteristic of Lake Extling will be determined						
BY JC DATE 8/19 ± x dian JOB NO. J-783 CKSED DATE 8/30 SHEET NO. 4 OF 25						

S. Complete

LANGAN ENGINEERING ASSOCIATES, INC. (LAKE ESTLING)
DETERMINE TIME OF CONCENTRATION
E atting water shed
Lake
From inspection of air photos 5000 Divide
the ground cone is
"Forest with heavy Ground Litter & Meadow" CN = 60
and butter of the soft in the light with
Organisa and Alectical with
The stream has irrigal an side slopes and bottom & the section is field with large growth: Take Manning N = 0.06
The approximate cross section
Slope of the Stoam
= 800-516
24,000
= 0.0118.
The slope of the south portion of the
water shed is = 6.4%
From SCS Tech Rel #55
BY JC DATE 8/19 Indian JOB NO. J-783
CKOED DATE 8 30 SHEET NO. 5 OF 25

. Stream Flow

-

CKOGED DATE 8/30 JOB NO. J-783

SHEET NO. 6 OF 25

LANGAN ENGINEERING ASSOCIATES, INC. TAKE + TRO TIME 1. 1/1. 64 Determine To by Fig 3.3 Tech Rel #55 avg slogse = 3 % $\lambda = 20,000'$ i. Lag Time = 3.5 Ar : Tc = 3.5 = 5.8 Xr Take Tc = 3,2 Hours DETERMINE TIME OF PEAK Tp = = + 0.6Tc Take D = 0.2 Te & 0.3 Te 7 D = 18 hr Tp = 0.8 + 0.6 (3.2) = 2.32 m BY JC DATE \$19 Indian

LANGAN ENGIN	HEERING ASSOCIATES, INC.						
Tak	1 Tp = 2.5	HOURS					
	UNIT HYDROGRAPH						
1 at	se go from	2024	ormula				
7	-484A - 4	84 (6.44) -	1210 C+5				
	l D	2					
a cu	rivelinean hud	wonas. mai	, le				
Constru	SCE ratio	alues of 9 F	ato by				
using	SC & ratio	2.0 , 0 D,					
Hours		9/	0011				
D	T/TP	19P	HYDROGRAPH				
95,	-20	.08-	97				
1.0	. 40	32,	387_				
2.0	.20 1.0	,90	1210				
3.0	1.2	.92	1113				
4.0	1.6	160	726				
4.5 5.0	1.8	.42	508 387				
5.5	2.2	.24	290 205				
6.5	2.6	.14	169				
7.6	3.0	-07	85				
8.5	3.2 3.4	055	G7 48				
9.0 3.6 .03 36							
10.0 4.0 .018 22 0							
Z + 8205 cfs							

CKO DATE 8/15 Indian JOB

CKO DATE 8/30 SHE

JOB NO. <u>J-783</u> SHEET NO. <u>8</u> OF <u>25</u>

LANGAN ENGINEERING ASSOCIATES, INC.
The coefficients C will be delermined
The coefficients c will be determined from "Handbook of Hydraulies" King
& Brate, chapter 5
Spellway: Elev Crest 508.0
Cary = 3.3 pas 5.50 Table 5-12
L = 40 feet
Reservoir Cava = 3.0 pag 5-49, Table 5-9
Cava = 3.0 pa 5-49 1 avec 5-9

BY JC DATE 8/22 Indion JOB NO. J-783

CKEPED DATE 8/30 SHEET NO. 10 OF 25

(++) Elea	ST It	rillway (C+5)		P. ##	esev L ft	(C+5)	POTAL (Cfs) Qs+QR
508	0	0					O 47
508.5	.5	47					
509.0	1.0	132					132
509.5	1.5	242					242
510.0	2	373					373
511	3	686					686
512	4	1056					1056
513.5	5.5	1702		0			1702
514	6	1940		-		106	2046
515	7	2445		1.5	250	1378	3823
517	9	3 56 4		3.5	350	6875	10439
BY JC		830	Indian			NO. 11	of 25

LANGAN ENGINEERING ASSOCIATES, INC.					
	Rese	-40014	Sto	rage Capa	city (Indian)
assu	in the area with elevation. Startatazero storage at the creat of the spillway				
in the	area w	ith ele	vation	. Slortat	azero
storag	e at;	thecre	A of	thespille	roug
Lake	e area	_ = 8	7.6Acre	s, Elev 50	28
	in area in crease der foot of Elev.				
				7.6) = 7.4	
		5	20-5	08 = 1.7	Heres
Ε.	+	Area		Ana	Storage
Eleur	(++)	Cocres		(acres)	(acre-ft)
508.5	0.5	91.3		89.5	4.5
509	1.0	95.0		91.3	91
509.5	1.50	98.	*	93.2	190
511	3.0	109.	8	98.7	296
512	4.0	117.2		102.4	410
513	5.0	124.		106.1	531
514	6.0	139		109.8	659 795
517	9.0	154		120.9	1085
BY JC	DATE 8/2	2 Inc	lian	JOB NO	J-183
CKD DATE \$130 SHEET NO. 13 OF 25					

LANGAN ENGINEERING ASSOCIATES, INC.
SPILL WAY CAPACITY
Lake ESTLing
Culvert 5212
Section A'A Elev=508 Section A'A Elev=508 View
flow (lake) Elevision
Culvert 2 Culvert 2 Findian lake Elev 508 Plan View
Section B-B Elev 5272
221
Upsteam face of culvert connecting TElev 508 lake Estling To Indian lake
BY JC DATE 8/22 Ndian JOB NO. J-783 CKDCPED DATE 8/36 SHEET NO. 15 OF 25

Section C-C

Typical Cross Section of

Railroad Crossing Dividing

lake Estling from Indian lake

The flow will

- (1) run over the spellway section A-A,
- (2) Then overtop and run over section BB, and
- (3) Sinally run over the railroad

Use Eg For Weir flow Q = CLH3/2

C will be determined from

RY .\C	DATE 8/22_	Indian	JOB NO J-783
	DATE 830		SHEET NO. 16 OF 25

"Handbook of Hydraulics" King & Brath
for Scallway Section AA

pa 5-50, Table 5-13 Carg = 3.2

L = 34"

Section BB pg 5-46 Table 5-3

Carg = 2.7; L=TTR = T(12)=38"

Section CC pg 5-49, Table 5-9

Carg = 3.0

The culvest Capacity will be determined from "Open-Channel Hydraulics". Chow Page 498
Fig. 17.29. The culvest is flowing Partly full.
Top of calvert at Elev = 521
Bottom of culvert at Elev = 508

BY TC DATE 8/22 | 1 N d 1 K N JOB NO. J-783

CKDCFD DATE 8/30 SHEET NO. 17 OF 25

LANGAN ENGINEERING ASSOCIATES, INC.	
30 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 5 8 9	
38 65 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5
5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
1+	
14.7 1.38 14.7 1.5 1.28 1.75 1.5 23.7 1.5 23.7 1.5 23.7 1.5 23.7 1.75	7
1,0 g (£ 5) 7,0 g	controls of this
Reservoir (++) (++) (cfs 1.7 800 398 3.7 800 1708	- 0 0
0 tt 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
Spillway Scrtim B.B. H. (C45) 17.7 3.7 7.30 0.7 17.79 2.7 3.10 0.0 3.7	tion
tton the contraction of the cont	
11 108.8 108.8 108.8 1599 1599 2462 2462 2569 4523 5699	- × + *
2 = ±0 - 0 N 4 0 0 = 0 4	*
528.7 S S S S S S S S S S S S S S S S S S S	
CKD DATE 8/22 NdiaN	JOB NO. 1-787 SHEET NO. 18 OF 25

Reservoir			
assume a linear in the area with	distribut	tion for	the increase
in the area with	l elevation	. Starta	tazno
storage at the	crest of to	he speller	ary
Lake aux (Elev 516.7) = 75 ac	res
area Elect		= 90 on	co

O : Orea increase genfort of Elev - 90-75 = 4.5 ans

Eleu (f+)	(++) H	Anea (ances)	Ava (anco)	Storage (acre-ft)
516.7 517.7 519.7 520.7 524.7 527.7 526.7	0 - 234 68124	75 79.5 88.5 93.0 101.5 129.0 138.0	77 0 8 8 8 9 9 5 0 1 0 6 5	77 15 2 3 5 1 7 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
BY				

INDIAN LAKE SUMMARY

Elev	# 4	Qcfs	Horage
5095 5000 5000 5000 5000 5000 5000 5000	05052345077	0 47 132 242 373 686 1056 1702 2046 3823 10439	0 45 1 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

HYDROGRAPH AND FLOOD POUTING

- 1. Hydrograph and flood routing determined Using HEC 1
- 2. PMF for Indian Lake = 17400 cfc (routed to 16448)
- 3. Routing indicates dam will overtop by \$4.0 ft

CKOGED DATE JOHNO. J-783

CKOGED DATE 30449 SHEET NO. 22 OF 25

OVERTOPPING POTENTIAL

1. Various 1/2 PMF have been routed (HEC 1, attached)

2. Plot peak outflow vs % PMF

3. Dom overtops at approx el 513.5 with Q= 1702cfs

-: dam can pues 20% PMF

BY JC DATE | NDIAN JOB NO. J-783

CKD DED DATE \$ 30 SHEET NO. 23 OF 25

DRANDOWN ANALYSIS

- 1 outlet structures -2 z4" & CIP invert = 499.0 tailwater elevation = 501.7 spillway crest : 508.
- 2. Storage between spillway crest and invert is estimated to approximately 700 ac ft. Assume area varies linearly with height and area 9' = 88 acres

Elev	Acres	A Storage	Total Storage
508 507 506 505 504 503 502 501 500	88 85.67 83.34 81.01 78.68 76.35 74.02 71.69 69.36	86.84- 84.51 82.18 77.5 75.19 72.86 70.53	760

$$\left(\frac{88+x}{z}\right)9=700$$
 $x=67$ area changes by 2.33 excelft

-1	Head		9	
Elev	HEAG	1 pipe	2 pipes	
508	6.3	29	58	
507	5.3	15	50	
506	4.3	22	44	
505	3.3	19	38	
504	2.3	14	28	
503	1.3	6	12	
502	0.3	3	2	
501				

BYGED	DATE	INDIAN	JOB NO J-783
CKETED	DATE 8.30	•	SHEET NO. 24 OF 25

4. Assume inflow to be 2 cfs/sq mil 7.4 x 2 = 14.8 cfs

21.00	2.45		Pu d
€ 4t	58.89 92.09 149		ow Capacity pprox 505 and to 501.7, the
At hr	26.9 31.95 38,2 52,1		How Capaci approx 505 to 5017,
Serot-	86.84 82.77 27.5		in out
Aret *	255 5 a n		\$42.50 to \$
Ø sw	¥ 2 4 4 3 L	' 호	low becomes greater than our lake level would stability at theoretically could be lawered to take the taken.
A Table	8348874	Sorte	becontent to become
Elevation	508 507 508 508 503	* and = Goutous	** Inflow becomes greater than outflow capacity. Iske level would stabilize at approx 505 a theoretically could be lowered to 5017, the toleration.

CKOCKO DATE INTIAN

JOB NO. <u>J-783</u> SHEET NO. <u>25</u> of <u>25</u>

HEC-1 OUTPUT

INDIAN LAKE DAM

listof ind20 'breakdown'-

0

19:43 AUG 30,'78

AMDS09 JOB 5538 (LANG0876) IN BREAKDOWN CDC1B 5538

FT06F001

HEC-1 VERSION DATED JAN 1973 UPDATED AUG 74 CHANGE NO. 01

HEC-1 VERSION DATED JAN 1973 UPDATED AUG 74 CHANGE NO. 01

INDIAN LAKE DAM DETERMINE INFLOW HYDROGRAPH & PMF-INDIAN LAKE N.J. DAM INSPECTION

IPLT IPRT NSTAN JOB SPECIFICATION

NHR NMIN IDAY IHR IMIN METRC

0 30 0 0 0 TWN 0 JOPER

MULTI-PLAN ANALYSES TO BE PERFORMED NPLAN# 1 NRTIO# 6 LRT1:# 1 0.50 0.40 0.30 0.20 0.10

RTIOS

SUB-AREA RUNOFF COMPUTATION

INAME JPRT JPLT ITAPE 1 ECON COMPUTE HYDROGRAPH-ESTLING ISTAQ ICOMP 0

LOCAL ISAME MONSI RATIO 0.0 TRSDA TRSPC 6.44 0.80 SNAP 0.0 TAREA 6.44 IUHG -1 IHYDG

PRECIP DATA
PMS R6 R12 R24 R48
22.50 112.00 123.00 132.00 142.00 SPFE 0.0

GED

GED

16.48.56 30 AUG 78

4 C									1491.	:			LOCAL	
RTIMP 0.0									1224.					
ALSMX 0.0						INAME		STORA 0.				INAME	ISAME	R96
	00.1								1097.				MONSI	R72
CNSTL 0.20	RTIOR# 1.00					JPRT	ISAME	TSK 0.0				JPRT		0.0
STRTL 1.00		OM WOO	165335.		Ş	JPLT	IRES	× 0.0	744.		FATION	JPLT	RATIO 0.0	R48 137.00
DATA RTIOK 1.00	RECESSION DATA QRCSN# 0.0	END-OF-PERIOD FLOW RAIN EXCS CO	19,93		HYDROGRAPH ROUTING	ITAPE 0	ROUTING DATA SS AVG 0.0	AMSKK 0.0	531. 1826.	:	SUB-AREA RUNOFF COMPUTATION	ITAPE 0	HYDROGRAPH DATA TRSDA TRSPC 0.96 0.80	PRECIP DATA R12 R24 6.00 125.00
LOSS STRKS 0.0	RECESSION QRCSN#	END-OF-P	25.40	•	HYDROGRA	I ECON 0	CLOSS 0.0	LAG	336. 870.		REA RUNO	I ECON		PRECI R12 116.00
ERAIN 0.0	-2.00	TIME	SUM			ICOMP 1	0.0	NSTDL	245. 565.	:	SUB-A		SNAP 0.0	R6 106.00
RTIOL 1.00	STRTO					ISTAQ		NSTPS 1				COMPUTE HYDROGRAPH-INDIAN ISTAQ ICOMP 2 0	TAREA 0.96	PMS 24.00
DLTKR 0.0						ROUTING-ESTLING IST			159.			UTE HYDR	IUHG -1	SPFE 0.0
STRKR 0.0						ROUT			109.			COMP	IHYDG 1	
									STORAGE# OUTFLOW#					

..

												1088.	
				***								795. 3823.	
0.0												659.	
0.0	00			:		INAME	:		INAME		STORA 0.	600. 1702.	:
0.20	RTIOR# 1.00			* * * * * * * * * * * * * * * * * * * *		JPRT	***************************************		JPRT	I SAME 0	TSK 0.0		
1.00		OM COMP O	25592.		HS	JPLT		S.	JPLT	IRES	× 0.0	410.	
1.00	RECESSION DATA QRCSN# 0.0	END-OF-PERIOD FLOW RAIN EXCS CO	20.50		COMBINE HYDROGRAPHS	N OF INDIA	:	HYDROGRAPH ROUTING	ITAPE 0	SS AVG	AMSKK 0.0	296.	
0.0			26.54 20.50	i	OMBINE !	I ECON	i	HYDROGRA	IECON ITAPE 0 0	CLOSS 0.0	LAG	190. 373.	. !
0.0	-2.00	TIME	SUM		O	COMBINE OUTFLOW OF ESTLING TO INFLOW OF INDIAN ISTAQ ICOMP IECON ITAPE JI 2 0 0 0	:		ICOMP 1	0.0	NSTDL 0	140.	•
1.00	STRTO					ISTAQ			ISTAQ 3		NSTPS 1		
0.0						INE OUT			ROUTE INDIAN			91.	
0.0						COMB			ROUT			45.	•
				•			•					STORAGE# OUTFLOW#	

PEAK PLOW SUMMARY FOR MULTIPLE PLAN-RATIO ECONOMIC COMPUTATIONS

1 15319. 7659. 6128. 4596. 3064. 0.0	1532.	892.	291.	.696	640.	DAY	•••	AT AT	••	* * * * * * * * * * * * * * * * * * * *	ATE = 08/30/78		TIME STEP N) MRU	.084 .32	ERM JOB TOTAL (MRU)	.05 .32		2112
2 2 3 3 3 MCDO **** MCDO COMP CO CODE US CODE						ESSAGE OF THE DAY		NUE OPERATIONS			3.12 START DATE	•	CPU STEP TIME (MIN)		PE UNITS		******	a anen oanneoon
2 2 3 3 3 MCDO **** MCDO COMP CO CODE US CODE	459			379	312	- ST. LOUIS M	DAY SCHEDULE			- ST. LOUIS	T TIME = 16.45	•			CE UNIT SUMMAR UPANCY (MRU) - DISK UNITS TA	•0.	IETARY PACKAGE	PPAIIL
2 2 3 3 3 MCDO **** MCDO COMP CO CODE US CODE						ATION COMPANY -	LABOR HOLI	ASP/JES SYSTEM 3 SEPTEMBER. 5 SEPTEMBER.	OLIDAY.	ATION COMPANY -		TEP RESOURCES	TAPE	0	- - - - -		TILIZED A PROPE	RUN LIMITS
2 2 3 3 3 MCDO **** MCDO **** **** **** **** **** **** **** *	1531	1513	291	1740		LL DOUGLAS AUTOM		ST	HAVE A HAPPY H	LL DOUGLAS AUTOM	BNAME - LANGO876	:		194 K	:	.05	PS IN THIS JOB (
	HYDROGRAPH AT 1	1	HYDROGRAPH AT 2	. 2		MCDONNE	•••		••	HCDONNE 0S/I		•			AGE *	.158	******** ONE OR MORE STE	CLIENT CHARGE NO. 1560972

listcf indl0 'breakdown'-

IND10 19:12 AUG 30,'78

AMDS09 JOB 5529 (LANG0872) IN BREAKDOWN CDC1B LANG0872 5529 FT06F001

HEC-1 VERSION DATED JAN 1973 UPDATED AUG 74 CHANGE NO. 01

HEC-1 VERSION DATED JAN 1973 UPDATED AUG 74 CHANGE NO. 01

INDIAN LAKE DAM
DETERMINE INPLOW HYDROGRAPH FOR PMF- INDIAN LAKE DAM
N.J. DAM INSPECTION

SUB-AREA RUNOFF COMPUTATION

COMPUTE HYDROGRAPH-ESTLING

ISTAQ ICOMP IECON ITAPE JPLT JPRT INAME

1 0 0 0 1

HYDROGRAPH DATA

IHYDG IUHG TAREA SNAP TRSDA TRSPC RATIO ISNOW ISAME

1 -1 6.44 0.0 6.44 0.80 0.0 0

LOCAL RTIMP ISAME ALSMX 0.0 CNSTL RATIO 0.0 STRTL PRECIP DATA R12 R24 R48 123.00 132.00 142.00 LOSS DATA STRKS RTIOK 0.0 1.00 SNAP 0.0 ERAIN PMS R6 22.50 112.00 TAREA 6.44 RTIOL 1.00 IUHG -1 SPFE 0.0 DLTKR 0.0 IHYDG STRKR 0.0

GED

GED

16.46.39 30 AUG 78

387.																																										
508.																																										
NUHGQ# 20 1113. 944. 726. 67. 48. 36. 0.99 INCHES OVER THE AREA	TA 0.0 RTIOR# 1.00	FLOW	E		13.	13.	13.	13.	1.3	13.	13.	13.	13.	13.	13.	13.	13.	13.	13.	13.	13.	13.	13.	13.	13.	13.	13.	13.	13.	13.	13.	13.	16.	45.	113.	191.	261.	295.	274.	.03	135	
GIVEN UNIT GRAPH, NU 039. 1210. 1 121. 85. S 8204. CFS OR 0.9	RECESSION DATA QRCSN# 0.0	END-OF-PERIOD 1						0.00																																		
N UNIT 1 8204.	REC	END-C	RAIN	0.0	0.0	0.0		000		000	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	9			0.0	0.0			0	0	0.11		50	5 0	5			
GIVEN 726. 1039. 169. 121. GRAPH TOTALS 8	₽ -2.00		TIME	-	7		•	• 10	. 4		60	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	\$7	26	27	28	29	30	31	32	 	100	2 2	2 5	2 6	9 6		
TINO	STRTQ																																									
387.																																										

97.

41 0.01 0.00 105.
43 0.01 0.00 82.
44 0.01 0.00 82.
45 0.01 0.00 82.
46 0.01 0.00 82.
47 0.01 0.00 83.
48 0.01 0.00 83.
51 0.05 0.00 17.
52 0.05 0.00 17.
53 0.05 0.00 17.
54 0.05 0.00 17.
55 0.05 0.00 17.
56 0.05 0.00 17.
57 0.05 0.00 13.
58 0.05 0.00 13.
59 0.05 0.00 13.
50 0.05 0.00 13.
51 0.05 0.00 13.
52 0.05 0.00 13.
53 0.05 0.00 13.
54 0.05 0.00 13.
56 0.05 0.00 13.
57 0.05 0.00 13.
58 0.06 0.06 496.
77 1.21 1.11 1573.
77 1.21 1.11 1573.
78 1.21 1.11 1573.
79 1.81 1.31 10965.
81 1.41 1.31 10965.
82 0.08 0.00 11617.
83 0.08 0.00 11617.
84 0.08 0.00 11617.

		TOTAL VOLUME 165328. 19.90 6835.
2996. 1629. 1198. 883. 626. 290. 102. 103. 13. 13.	165335.	72-HOUR 1503. 19.90 6835.
	19.93	24-HOUR 3387. 19.57 6721.
000000000000000000000000000000000000000	25.40	6-HOUR 10825. 15.64 5371.
933 944 944 946 946 946 946 946 946 946 946	SUM	100
		PEAK 15319.
		CFS INCHES AC-FT

HYDROGRAPH ROUTING

			1491.	
			1224.	
INAME		STORA 0.	1097.	
JPRT	ISAME	TSK 0.0	744.	EOP OUT
JPLT	IRES	× 0.0	315	
ITAPE 0	ROUTING DATA CLOSS AVG	AMSKK 0.0	531. 1826.	AVG IN 13. 13.
		LAG	336. 870.	EOP STOR
ICOMP	0.0	NSTDL	245. 565.	TIME 1 2 3
ROUTING-ESTLING ISTAQ 1		NSTPS 1	159.	
ROUT			109.	
			STORAGE# OUTFLOW#	

..

5 3. 13. 0.
6 4. 13. 0.
110 6. 13. 0.
111 6. 13. 0.
112 7. 13. 0.
113 7. 13. 0.
114 7. 13. 0.
115 13. 0.
117 13. 0.
118 13. 0.
119 10. 13. 0.
119 10. 13. 0.
110 13. 0.
111 13. 0.
111 13. 0.
112 13. 0.
113 13. 0.
114 13. 0.
115 13. 0.
116 13. 0.
117 13. 0.
118 13. 0.
119 10. 13. 0.
119 10. 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.
110 13. 0.

 56
 49.
 13.
 41.

 57
 48.
 13.
 39.

 59
 46.
 13.
 36.

 60
 45.
 13.
 34.

 61
 45.
 13.
 32.

 62
 45.
 16.
 30.

 63
 46.
 13.
 32.

 64
 50.
 125.
 43.

 66
 46.
 198.
 31.

 67
 75.
 341.
 103.

 68
 86.
 345.
 110.

 70
 110.
 464.
 1189.

 71
 122.
 486.
 345.

 71
 122.
 486.
 435.

 74
 165.
 769.
 245.

 75
 201.
 125.
 245.

 74
 165.
 769.
 245.

 74
 165.
 769.
 245.

 74
 165.
 769.
 245.

 8
 133.
 140.

		OLUME 11490. 19.44 6677.
		TOTAL VOLUME 161490. 19.44 6677.
408. 327.	161490.	72-HOUR 1468. 19.44 6677.
: : : : : : : : : : : : : : : : : : :		24-HOUR 3329. 19.23 6605.
195. 179. 165.		6-HOUR 10075. 14.55 4999.
108	MI 3	PEAK 15135.
		CFS INCHES AC-FT

SUB-AREA RUNOFF COMPUTATION

	LOCAL		RTIMP 0.0	28.
NAME 1	ISNOW ISAME LOCAL	R96 0.0	ALSMX 0.0	46. AREA
JPRT INAME 0 1		872 0.0	CNSTL 0.20	GIVEN UNIT GRAPH, NUHGQ# 14 284. 255. 174. 116. 70. 46 5. 3. 3. GRAPH TOTALS 1239. CFS OR 1.00 INCHES OVER THE AREA
IECON ITAPE JPLT 0 0 0 0	RATIO 0.0	R48 137.00	STRTL 1.00	30# 14 16. INCHES (
TAPE	HYDROGRAPH DATA SNAP TRSDA TRSPC 0.0 0.96 0.80	PRECIP DATA R12 R24 116.00 125.00	LOSS DATA STRKS RTIOK 0.0 1.00	NPH, NUHG
IECON	HYDROGRA TRSDA 0.96	PRECI R12 116.00	LOSS STRKS 0.0	UNIT GR. 174. 239. CFS
TCOMP 0		R6 106.00	RTIOL ERAIN 1.00 0.0	GIVEN 255.
COMPUTE HYDROGRAPH-INDIAN ISTAQ ICOMP 2 0	IUHG TAREA -1 0.96	PMS 24.00	RTIOL 1.00	284. 5. GRAPH TOT
TE HYDRO		SPFE 0.0	DLTKR 0.0	177. 6. UNIT
COMPU	IHYDG 1		STRKR 0.0	1.1
				46.

RECESSION DATA
STRTQ# -2.00 QRCSN# 0.0 RTIOR# 1.00

17.

PLOW	COMP O	2.	2.	2.	2.	2.	2.	•
-PERIOD	EXCS	0.00	0.00	0.00	0.00	0.00	0.00	000
END-OF-	RAIN	0.01	0.01	0.01	0.01	0.01	0.01	0
	TIME	1	7	~	•	2	9	7

 59
 0.06
 0.00
 2

 61
 0.16
 0.06
 2

 63
 0.16
 0.06
 32

 64
 0.16
 0.06
 48

 65
 0.16
 0.06
 48

 66
 0.16
 0.06
 48

 67
 0.16
 0.06
 72

 69
 0.16
 0.06
 72

 70
 0.16
 0.06
 72

 71
 0.16
 0.06
 72

 72
 0.16
 0.06
 75

 73
 1.02
 0.92
 268

 74
 1.02
 0.92
 268

 74
 1.02
 0.92
 268

 74
 1.02
 0.92
 268

 74
 1.02
 0.92
 268

 81
 1.12
 1.13
 284

 1.12
 1.13
 284
 1.15

 82
 0.09
 0.00
 1464

 84
 1.12
 1.13

			SUM	26.54	20.50	25592.				
	CFS INCHES AC-FT	PEAK 2914.		6-HOUR 1784. 17.29 885.	24-HOUR 515. 19.96 1022.	72-HOUR 233. 20.66 1058.	TOTAL	VOLUME 25590. 20.66 1058.		
		•		:	•		•			:
				COMBINE	COMBINE HYDROGRAPHS	PHS				
COME	COMBINE OUTFLOW OF ESTLING ISTAQ ICOMP 2	ISTAQ I	STLING ICOMP	TO INFLA	TO INFLOW OF INDIAN IECON ITAPE J	PLT 0	JPRT	INAME		
			SUM OF	P 2 HYDE	2 HYDROGRAPHS AT	AT 2				
44.	44.	44.	446		22.5	22.5	444	44.	446	200
	59. 108.	123. 103.	151.	-	143. 92.	136. 86.	130.	126.	122.	118
	57.	53.	50.			143.	173.	38.	36.	34
. 12	٠.	390. 16853.	592. 17403.	16	-	-	1982.	2809.	4006.	5775
5704. 51 1097.	5123. 4	4460. 788.	3797. 689.	318	3184. 2 602.	2680. 2 530.	470.	1829.	1561. 370.	1315
	CFS INCHES AC-FT	PEAK 17403.		6-HOUR 11504. 14.46 5707.	24-HOUR 3843. 19.32 7626.	72-HOUR 1701. 19.60 7735.	TOTAL	TOTAL VOLUME 187080. 19.60 7735.		
				•	***************************************		**********	:		:
				HYDROGI	HYDROGRAPH ROUTING	ING				
ROU	ROUTE INDIAN	ISTAQ I	ICOMP	I ECON 0 ROU?	ON ITAPE 0 0 ROUTING DATA	JPLT	JPRT	INAME		
		a	0.0	0.0	0.0 0.0	IRES 1	ISAME 0			

5.

0.0

110 0.0

	10439.	
	795. 3823.	
	659.	
K STORA	600.	
0.0 X TSK	410.	808 OC
0.0 0	296.	AVG 1100000000000000000000000000000000000
CAG	190. 373.	E 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
NSTDL	140.	H I I I I I I I I I I I I I I I I I I I
NSTPS 1	91.	

45.

45 53. 95. 61.
46 54. 89. 65.
48 55. 48. 65.
51 55. 68. 66.
52 55. 68. 66.
53 55. 68. 66.
54 68. 66.
55 53. 68. 66.
55 54. 48. 66.
56 55 53. 42. 66.
57 52. 48. 66.
67 69. 37. 55. 61.
68 62. 48. 60.
71 68. 71.
72 89. 37. 55.
69 68. 51.
74 112. 491. 178.
75 135. 173. 231.
76 136. 1692. 478.
77 226. 1692. 100.
78 300. 2396. 700.
79 405. 3408. 1040.
81 1157. 1178. 1525.
84 11301. 17128. 1525.
85 1344. 16088. 16219.
86 1344. 16088. 16219.
87 1288. 1427. 14952.
88 1100. 7728. 16317.
99 859. 4792. 5273.

AD-A058 820 NEW JERSEY STATE DEPT OF ENVIRONMENTAL PROTECTION TRENTON F/G 13/2
NATIONAL DAM SAFETY PROGRAM. INDIAN LAKE DAM (NJ00167), PASSAIC--ETC(U)
AUG 78 D J LEARY
DACW61-78-C-0124 UNCLASSIFIED N/L

20F2 AD A058820

END

															TOTAL VOLUME	178678.	18.72	7387.
3457.	2604.	2217.	1965.	1802.	1658.	1552.	1445.	1340.	1239.	1142.	1050.	.896	.068	178678.	72-HOUR T			
2932.	2028.	1695.	1438.	1206.	1004.	849.	738.	645.	.995	200.	443.	394.	350.		24-HOUR	3692.	18.57	7327.
767.	702.	672.	645.	617.	587.	556.	524.	194.	464.	435.	408	383.	359.		6-HOUR	11156.	14.02	5535.
96	86	66	100	101	102	103	104	105	106	107	108	109	110	NOS	PEAK	10448.		
																CFS	INCHES	AC-FT

RUNOPP SUMMARY, AVERAGE PLOW

AREA	6.44	6.44	96.0	7.40	7.40
72-HOUR	1503.	1468.	233.	1701.	1624.
24-HOUR	3387.	3329.	515.	3843.	3692.
6-HOUR	10825.	10075.	1784.	11504.	11156.
PEAK	15319.	15135.	2914.	17403.	16448.
	-	-	7	7	m
	HYDROGRAPH AT	ROUTED TO	HYDROGRAPH AT	2 COMBINED	ROUTED TO

MCDONNELL DOUGLAS AUTOMATION COMPANY -- ST. LOUIS MESSAGE OF THE DAY

LABOR HOLIDAY SCHEDULE

THE ST. LOUIS ASP/JES SYSTEMS WILL DISCONTINUE OPERATIONS AT 0830, SUNDAY, 3 SEPTEMBER. NORMAL OPERATIONS WILL RESUME AT 0130, TUESDAY, 5 SEPTEMBER.

HAVE A HAPPY HOLIDAY.

APPENDIX 4

REFERENCES

INDIAN LAKE DAM

APPENDIX 4

REFERENCES

INDIAN LAKE DAM

Written Documents

- "Contract and Specifications covering Construction of Earth Dam, Concrete Spillway and Bridge at Denville, New Jersey for Joseph B. Righter, Esq." dated 2 August 1921.
- 2. Sheet 2 of Revised Spillway Capacity Calculations.
- 3. Memorandum on Changes in Plans for Proposed Lenapi Lake Dam for J.B. Righter, Denville, New Jersey, dated 19 August 1921.
- Monthly Construction Progress Reports dated 30 September and 31 October 1921.
- Inspection Report Letter dated 21 October 1921 to Mr. A.B. Cohen from Hydraulic Engineer Mr. H.T. Critchlow.
- 6. Letter to H.T. Critchlow from A.B. Cohen concerning gate valve., dated 26 October 1921.
- Memorandum regarding Construction Inspection of dam on 3 November 1921 from H.T. Critchlow.
- Memorandum regarding inspection of dam construction
 December 1921 from H.T. Critchlow.
- Letter concerning dam inspections from D.C. Hofmann, Chief Bureau of Water Control to Frank Vanone, Denville Twp. Administrator, dated 12 September 1972.

Drawings

- General Layout and Details of Proposed Lenapi Lake and Dam, dated 19 July 1921
- General Layout and Details of Proposed Lanapi Lake and Dam, Revised 18 August 1921.

APPENDIX 4 Cont'd

INDIAN LAKE DAM

Other

- Eby, C.F., 1976, Soil Survey of Morris County, New Jersey, U.S. Department of Agriculture, Soil Conservation Service, 111 pp.
- Lewis, J.V., and H.B. Kummel, 1924, <u>The Geology of New Jersey</u>, <u>Jersey</u>, <u>Bulletin 14</u>, Geological Survey of New Jersey, <u>Trenton</u>, <u>New Jersey</u>, 146 pp.
- Lucey, C.S., 1972, Geology of Morris County in Brief, State of New Jersey, Bureau of Geology and Topography, Trenton, New Jersey, 13 pp.
- 4. Minard, J.P., W.W. Holman, A.R. Jumikis, 1953, Engineering
 Soil Survey of New Jersey, Report No. 9, Morris
 County, Rutgers University, New Brunswick, New
 Jersey, 86 pp.
- 5. Rogers, F.C., D.R. Lueder, and G.H. Obear, 1951,

 Engineering Soil Survey of New Jersey, Report No.

 3, Passaic County, Rutgers University, New Brunswick,
 New Jersey, 45 pp.
- 6. Widmer, K., 1964, The GEology and GEography of New Jersey,
 Volume 19, The New Jersey Historical Series, D.
 Van Nostrand Co., Inc., Princeton, New Jersey,
 193 pp.
- Wolfe, P.E., 1977, <u>The Geology and Landscapes of New Jersey</u>, Crane, Russak & Company, Inc., New York, New York 351 pp.