Core OS #WWDC14

What's New in the Accelerate Framework

Session 703
Geoff Belter
Engineer, Vector and Numerics Group

What is Available?

Image processing (vimage)

Digital signal processing (vDSP)

Math functions (vForce, vMathLib, vBigNum)

Linear algebra (LAPACK, BLAS)

What is the Accelerate Framework?

High performance

- Fast
- Energy efficient

OS X and iOS

All generations of hardware

Session Goals

New features in vlmage

Introduce

- LinearAlgebra
- <simd/simd.h>

vlmage

High performance image processing

vlmage Some things you can do

vlmage Some things you can do

Getting Data into vlmage CGlmageRef

Getting Data into vlmage CGlmageRef

Getting Data into vlmage CGlmageRef

```
// 1) Make converter: srcFormat --> destFormat
vImage_CGImageFormat srcFormat = { .bitsPerComponent = 8, ... };
vImage_CGImageFormat destFormat = { .bitsPerComponent = 16, ... };
vImageConverterRef c = vImageConverter_CreateWithCGImageFormat(
         &srcFormat, &destFormat, NULL, kvImageNoFlags, &err);

// 2) Convert
vImage_Buffer srcBuf = {...}, destBuf = {...};
err = vImageConvert_AnyToAny(c, &srcBuf, &destBuf, NULL, flags);
```

```
// 1) Make converter: srcFormat --> destFormat
vImage_CGImageFormat srcFormat = { .bitsPerComponent = 8, ... };
vImage_CGImageFormat destFormat = { .bitsPerComponent = 16, ... };

vImageConverterRef c = vImageConverter_CreateWithCGImageFormat(
    &srcFormat, &destFormat, NULL, kvImageNoFlags, &err);

// 2) Convert
vImage_Buffer srcBuf = {...}, destBuf = {...};
err = vImageConvert_AnyToAny(c, &srcBuf, &destBuf, NULL, flags);
```

```
// 1) Make converter: srcFormat --> destFormat
vImage_CGImageFormat srcFormat = { .bitsPerComponent = 8, ... };
vImage_CGImageFormat destFormat = { .bitsPerComponent = 16, ... };

vImageConverterRef c = vImageConverter_CreateWithCGImageFormat(
         &srcFormat, &destFormat, NULL, kvImageNoFlags, &err);

// 2) Convert
vImage_Buffer srcBuf = {...}, destBuf = {...};
err = vImageConvert_AnyToAny(c, &srcBuf, &destBuf, NULL, flags);
```

```
// 1) Make converter: srcFormat --> destFormat
vImage_CGImageFormat srcFormat = { .bitsPerComponent = 8, ... };
vImage_CGImageFormat destFormat = { .bitsPerComponent = 16, ... };
vImageConverterRef c = vImageConverter_CreateWithCGImageFormat(
    &srcFormat, &destFormat, NULL, kvImageNoFlags, &err);

// 2) Convert
vImage_Buffer srcBuf = {...}, destBuf = {...};
err = vImageConvert_AnyToAny(c, &srcBuf, &destBuf, NULL, flags);
```

What You Had to Say

"functions that convert vlmage_Buffer objects to CGImageRef objects and back

Twitter user

What You Had to Say

"functions that convert vlmage_Buffer objects to CGImageRef objects and back

"vlmageConvert_AnyToAny is magical. Threaded and vectorized conversion between nearly any two pixel formats."

Twitter user

Twitter user

Video—RGB, Grayscale, and Y'CbCr

CVPixelBufferRef (a video frame)

Video—RGB, Grayscale, and Y'CbCr

CVPixelBufferRef (a video frame)

Video—RGB, Grayscale, and Y'CbCr

CVPixelBufferRef (a video frame)

Getting video into vlmage

Lower level interfaces

- 41 video conversions
- Manage chroma siting, transfer function, conversion matrix, etc.
- RGB colorspaces for video formats

vlmageConvert_AnyToAny() for video

- vImageConverter_CreateForCGtoCVImageFormat
- vImageConverter_CreateForCVtoCGImageFormat

VideoToolbox Performance

Higher is better

Linear Algebra (LA)

Simple to use high performance

Solving System of Linear Equations With LAPACK

Solving System of Linear Equations With LAPACK

```
__CLPK_integer n = matrix_size;
__CLPK_integer nrhs = number_right_hand_sides;
__CLPK_integer lda = column_stride_A;
__CLPK_integer ldb = column_stride_B;
__CLPK_integer *ipiv = malloc(sizeof(__CLPK_integer)*n);
__CLPK_integer info;
sgesv_(&n, &nrhs, A, &lda, ipiv, B, &ldb, &info);
free(ipiv);
```

Solving System of Linear Equations With LA

Solving System of Linear Equations With LA

```
la_object_t X = la_solve(A,B);
```


New in iOS 8.0 and OS X Yosemite

New in iOS 8.0 and OS X Yosemite Simple with good performance

New in iOS 8.0 and OS X Yosemite Simple with good performance Single and double precision

New in iOS 8.0 and OS X Yosemite
Simple with good performance
Single and double precision
Native Objective-C Object

What's Available?

Element-wise arithmetic

Matrix product

Transpose

Norms / normalization

Linear systems

Slice

Splat

LA Objects

LA Objects

Reference counted opaque objects

Objective-C objects when appropriate

LA Objects

Reference counted opaque objects

- Objective-C objects when appropriate
- Managed for you
- Data buffer/memory
- Dimension details
- Errors and warnings
- Scalar data type (float/double)

Memory Management

Memory Management

```
la_release()
la_retain()
la_object_t A, B, C;
// create A and B
C = la_sum(A,B);
la_release(A);
la_release(B);
// use C
la_release(C);
```

Memory Management

```
Objective-C no ARC
la_release()
                               -[release]
la_retain()
                               -[retain]
                              la_object_t A, B, C;
la_object_t A, B, C;
                              // create A and B
// create A and B
                              C = la_sum(A,B);
C = la_sum(A,B);
la_release(A);
                               [A release];
la_release(B);
                               [B release];
// use C
                               // use C
la_release(C);
                               [C release];
```

Memory Management

```
Objective-C no ARC
                                                            Objective-C with ARC
la_release()
                              -[release]
la_retain()
                              -[retain]
la_object_t A, B, C;
                              la_object_t A, B, C;
                                                             la_object_t A, B, C;
                                                            // create A and B
// create A and B
                              // create A and B
C = la_sum(A,B);
                                                            C = la_sum(A,B);
                              C = la_sum(A,B);
la_release(A);
                              [A release];
la_release(B);
                              [B release];
// use C
                              // use C
                                                             // use C
                              [C release];
la_release(C);
```

Buffer to LA Object With copy

```
double *A = malloc(sizeof(double) * num_rows * row_stride);
// Fill A as row major matrix

// Data copied into object, user still responsible for A
la_object_t Aobj = la_matrix_from_double_buffer(A, num_rows, num_cols, row_stride, LA_NO_HINT, LA_DEFAULT_ATTRIBUTES);

// User retains all rights to A. User must clean up A
free(A);
```

Buffer to LA Object With copy

```
double *A = malloc(sizeof(double) * num_rows * row_stride);
// Fill A as row major matrix

// Data copied into object, user still responsible for A
la_object_t Aobj = la_matrix_from_double_buffer(A, num_rows, num_cols, row_stride, LA_NO_HINT, LA_DEFAULT_ATTRIBUTES);

// User retains all rights to A. User must clean up A
free(A);
```

Buffer to LA Object With copy

free(A);

Buffer to LA Object With copy

```
double *A = malloc(sizeof(double) * num_rows * row_stride);
// Fill A as row major matrix

// Data copied into object, user still responsible for A
la_object_t Aobj = la_matrix_from_double_buffer(A, num_rows, num_cols, row_stride, LA_NO_HINT, LA_DEFAULT_ATTRIBUTES);
```

```
// User retains all rights to A. User must clean up A
free(A);
```

Hints

Hints

Allow for better performance

Hints

Allow for better performance Insight about the data buffer

- Diagonal
- Triangular
- Symmetric
- Positive Definite

```
la_object_t foo(la_object_t A, la_object_t x) {
   // At = A'
   la_object_t At = la_transpose(A);
   // sum odd elements of x to even elements of x
   la_object_t x2 = la_sum(la_vector_slice(x,0,2,la_vector_length(x)/2),
                            la_vector_slice(x,1,2,la_vector_length(x)/2));
   // Atx2 = A' * x2 * 3.2
   la_object_t Atx2 = la_scale_with_float(la_matrix_product(At,x2), 3.2f);
   if (la_status(Atx2) < 0) { // error }
   return Atx2
```



```
la_object_t foo(la_object_t A, la_object_t x) {
   // At = A'
   la_object_t At = la_transpose(A);
   // sum odd elements of x to even elements of x
   la_object_t x2 = la_sum(la_vector_slice(x,0,2,la_vector_length(x)/2),
                            la_vector_slice(x,1,2,la_vector_length(x)/2));
   // Atx2 = A' * x2 * 3.2
   la_object_t Atx2 = la_scale_with_float(la_matrix_product(At,x2), 3.2f);
   if (la_status(Atx2) < 0) { // error }</pre>
   return Atx2
```



```
la_object_t foo(la_object_t A, la_object_t x) {
  // At = A'
   la_object_t At = la_transpose(A);
   // sum odd elements of x to even elements of x
   la_object_t x2 = la_sum(la_vector_slice(x,0,2,la_vector_length(x)/2),
                            la_vector_slice(x,1,2,la_vector_length(x)/2));
   // Atx2 = A' * x2 * 3.2
   la_object_t Atx2 = la_scale_with_float(la_matrix_product(At,x2), 3.2f);
   if (la_status(Atx2) < 0) { // error }</pre>
   return Atx2
```

```
A x x At x.odd x.even
```

```
la_object_t foo(la_object_t A, la_object_t x) {
   // At = A'
   la_object_t At = la_transpose(A);
  // sum odd elements of x to even elements of x
   la_object_t x2 = la_sum(la_vector_slice(x,0,2,la_vector_length(x)/2),
                            la_vector_slice(x,1,2,la_vector_length(x)/2));
   // Atx2 = A' * x2 * 3.2
   la_object_t Atx2 = la_scale_with_float(la_matrix_product(At,x2), 3.2f);
   if (la_status(Atx2) < 0) { // error }</pre>
   return Atx2
```

```
la_object_t foo(la_object_t A, la_object_t x) {
                                                    3.2
   // At = A'
   la_object_t At = la_transpose(A);
                                                            Atx2
   // sum odd elements of x to even elements of x
   la_object_t x^2 = la_sum(la_vector_slice(x,0,2,la_vector_length(x)/2),
                             la_vector_slice(x,1,2,la_vector_length(x)/2));
   // Atx2 = A' * x2 * 3.2
   la_object_t Atx2 = la_scale_with_float(la_matrix_product(At,x2), 3.2f);
   if (la_status(Atx2) < 0) { // error }</pre>
   return Atx2
```

x.odd

x.even

At

Lazy Evaluation Details

No computation

No data buffer allocation

Triggered by

- la_matrix_to_float_buffer
- la_matrix_to_double_buffer
- la_vector_to_float_buffer
- la_vector_to_double_buffer

Netlib BLAS

Open source

Error Handling

```
la_object_t AB = la_matrix_product( A, la_transpose(B) );
if (la_status(AB) < 0) { // handle error }

la_object_t result = la_sum( AB, la_scale_with_float( C, 3.2f ) );
if (la_status(result) < 0) { // handle error }

la_status_t status = la_matrix_to_float_buffer(buffer, leading_dim, result);</pre>
```

Error Handling


```
la_object_t AB = la_matrix_product( A, la_transpose(B) );
if (la_status(AB) < 0) { // handle error }

la_object_t result = la_sum( AB, la_scale_with_float( C, 3.2f ) );
if (la_status(result) < 0) { // handle error }

la_status_t status = la_matrix_to_float_buffer(buffer, leading_dim, result);</pre>
```

Error Handling


```
la_object_t AB = la_matrix_product( A, la_transpose(B) );
la_object_t result = la_sum( AB, la_scale_with_float( C, 3.2f ) );
la_status_t status = la_matrix_to_float_buffer(buffer, leading_dim, result);
if (status == LA_SUCCESS) {
   // No errors, buffer is filled with good data.
} else if (status > 0) {
    // No errors occurred, but result does not have full accuracy.
} else {
   // An error occurred.
   assert(0);
```

Debugging

Enable logging

LA_ATTRIBUTE_ENABLE_LOGGING

Debugging

Enable logging

• LA_ATTRIBUTE_ENABLE_LOGGING

Error log

```
la_object_t la_sum(la_object_t, la_object_t):
    LA_DIMENSION_MISMATCH_ERROR: Encountered a dimension mismatch
    obj_left rows must be equal to obj_right rows; failed comparison: 8 == 9
```

Solve

```
la_object_t x = la_solve(A,b);
```

- If A is square and non-singular, compute the solution x to Ax = b
- If A is square and singular, produce an error

Slicing What is slicing

Light weight access to partial object

- No buffer allocations
- No buffer copies

Slicing What is slicing

Light weight access to partial object

- No buffer allocations
- No buffer copies

Three pieces of information

- Offset
- Stride
- Dimension

```
la_vector_slice (vector, [0123456789]

7, // offset
-2, // stride
3); // dimension [7]
```

```
la_vector_slice (vector, [0123456789]
7, // offset
-2, // stride
3); // dimension [75]
```



```
la_object_t A,B,C;
// A and B are matrices of dimension MxN

for (int i = 0; i < 2; ++i) {
    for (int j = 0; j < 2; ++j) {
        la_object_t Atile = la_matrix_slice(A,i*M/2,j*N/2,1,1,M/2,N/2);
        la_object_t Btile = la_matrix_slice(B,i*M/2,j*N/2,1,1,M/2,N/2);
        C = la_sum(Atile, Btile);
        // use of C tile
    }
}</pre>
```

```
la_object_t A,B,C;
// A and B are matrices of dimension MxN
for (int i = 0; i < 2; ++i) {
   for (int j = 0; j < 2; ++j) {
      la_object_t Atile = la_matrix_slice(A,i*M/2,j*N/2,1,1,M/2,N/2);
      la_object_t Btile = la_matrix_slice(B,i*M/2,j*N/2,1,1,M/2,N/2);
      C = la_sum(Atile, Btile);
      // use of C tile
```



```
la_object_t A,B,C;
// A and B are matrices of dimension MxN
for (int i = 0; i < 2; ++i) {
   for (int j = 0; j < 2; ++j) {
      la_object_t Atile = la_matrix_slice(A,i*M/2,j*N/2,1,1,M/2,N/2);
      la_object_t Btile = la_matrix_slice(B,i*M/2,j*N/2,1,1,M/2,N/2);
      C = la_sum(Atile, Btile);
      // use of C tile
```



```
la_object_t A,B,C;
// A and B are matrices of dimension MxN

la_object_t sum = la_sum(A,B);

for (int i = 0; i < 2; ++i) {
    for (int j = 0; j < 2; ++j) {
        C = la_matrix_slice(sum,i*M/2,j*N/2,1,1,M/2,N/2);
        // use of C tile
    }
}</pre>
```

Slice Example Tiling


```
la_object_t A,B,C;
// A and B are matrices of dimension MxN

la_object_t sum = la_sum(A,B);

for (int i = 0; i < 2; ++i) {
    for (int j = 0; j < 2; ++j) {
        C = la_matrix_slice(sum,i*M/2,j*N/2,1,1,M/2,N/2);
        // use of C tile
    }
}</pre>
```

Slice Example Tiling


```
la_object_t A,B,C;
// A and B are matrices of dimension MxN
la_object_t sum = la_sum(A,B);
for (int i = 0; i < 2; ++i) {
   for (int j = 0; j < 2; ++j) {
      C = la_matrix_slice(sum, i*M/2, j*N/2, 1, 1, M/2, N/2);
      // use of C tile
                                     sum
```

Slice Example Tiling


```
la_object_t A,B,C;
// A and B are matrices of dimension MxN
la_object_t sum = la_sum(A,B);
for (int i = 0; i < 2; ++i) {
   for (int j = 0; j < 2; ++j) {
      C = la_matrix_slice(sum, i*M/2, j*N/2, 1, 1, M/2, N/2);
      // use of C tile
                                                                B
                                                   A
                                     sum
```

Splat

What is splat

la_splat_from_float(5.0f);

Splat

What is splat

la_splat_from_float(5.0f);

Splat

What is splat

```
la_splat_from_float(5.0f);
```

Add 2 to every element of a vector

la_sum(vector, la_splat_from_double(2.0));

Linear Algebra Summary

Simple API

Modern language and run-time features

Good performance

LINPACK The joy of benchmarking

Stephen Canon Engineer, Vector and Numerics Group

How fast can you solve a system of linear equations?

LINPACK tests both hardware and software

Accelerate vs. "Brand A"

2013
LINPACK performance in GFLOPS (bigger is better)

2014
LINPACK performance in GFLOPS (bigger is better)

Let's find some new competition

Let's find some new competition Ourselves

2014
LINPACK performance in GFLOPS (bigger is better)

Short vector and matrix math

New (iOS 8 and OS X Yosemite) library with three purposes:

New (iOS 8 and OS X Yosemite) library with three purposes:

• 2D, 3D, and 4D vector math and geometry

New (iOS 8 and OS X Yosemite) library with three purposes:

- 2D, 3D, and 4D vector math and geometry
- Features of Metal in C, Objective-C, and C++ on the CPU

New (iOS 8 and OS X Yosemite) library with three purposes:

- 2D, 3D, and 4D vector math and geometry
- Features of Metal in C, Objective-C, and C++ on the CPU
- Abstraction over architecture-specific SIMD types and intrinsics

Inline implementations

Inline implementations

Inline implementations

```
float a = cblas_sdot(3, 1.0f, x, 1, y, 1);
```


Inline implementations

```
float a = GLKVector3DotProduct(x, y);
```


Inline implementations

```
float a = vector_dot(x, y);
```


Inline implementations

```
using namespace simd;
float a = dot(x, y);
```

Inline implementations

Inline implementations

Concise functions without extra parameters

Arithmetic should use operators

Inline implementations

Concise functions without extra parameters

Arithmetic should use operators

z = GLKVector4MultiplyScalar(GLKVector4Add(x,y),0.5);

Inline implementations

Concise functions without extra parameters

Arithmetic should use operators

```
z = 0.5*(x + y);
```


Inline implementations

Concise functions without extra parameters

Arithmetic should use operators

$$z = 0.5*(x + y);$$

In C and Objective-C, the primary type is vector_floatN, where N is 2, 3, or 4 In C++ you can use simd::floatN

Based on clang "extended vectors"

Arithmetic

Your favorite arithmetic operators (+,-,*,/) work with both vectors and scalars

```
Your favorite arithmetic operators (+,-,*,/) work with both vectors and scalars vector_float3 vector_reflect(vector_float3 x, vector_float3 n) {
}
```

```
Your favorite arithmetic operators (+,-,*,/) work with both vectors and scalars vector_float3 vector_reflect(vector_float3 x, vector_float3 n) {
```



```
Your favorite arithmetic operators (+,-,*,/) work with both vectors and scalars vector_float3 vector_reflect(vector_float3 x, vector_float3 n) {
```



```
Your favorite arithmetic operators (+,-,*,/) work with both vectors and scalars vector_float3 vector_reflect(vector_float3 x, vector_float3 n) {
```



```
Your favorite arithmetic operators (+,-,*,/) work with both vectors and scalars vector_float3 vector_reflect(vector_float3 x, vector_float3 n) {
```



```
Your favorite arithmetic operators (+,-,*,/) work with both vectors and scalars
vector_float3 vector_reflect(vector_float3 x, vector_float3 n) {
    return x - 2*vector_dot(x,n)*n;
}
```


Elements and subvectors

```
Array subscripting
```

Elements and subvectors

Named subvectors

<simd/math.h>
<simd/common.h>
<simd/geometry.h>

	C/Objective-C
<simd math.h=""></simd>	<pre>fabs(x) sqrt(x) floor(x) sin(x)</pre>
<simd common.h=""></simd>	<pre>vector_clamp(x,min,max) vector_mix(x,y,t) vector_recip(x) vector_step(x,edge)</pre>
<simd geometry.h=""></simd>	<pre>vector_dot(x,y) vector_length(x) vector_normalize(x) vector_reflect(x,n)</pre>

	C/Objective-C	C++ (and Metal)
<simd math.h=""></simd>	<pre>fabs(x) sqrt(x) floor(x) sin(x)</pre>	<pre>fabs(x) sqrt(x) floor(x) sin(x)</pre>
<simd common.h=""></simd>	<pre>vector_clamp(x,min,max) vector_mix(x,y,t) vector_recip(x) vector_step(x,edge)</pre>	<pre>clamp(x,min,max) mix(x,y,t) recip(x) step(x,edge)</pre>
<pre><simd geometry.h=""></simd></pre>	<pre>vector_dot(x,y) vector_length(x) vector_normalize(x) vector_reflect(x,n)</pre>	<pre>dot(x,y) length(x) normalize(x) reflect(x,n)</pre>

Some functions have two flavors: "precise" and "fast"

Some functions have two flavors: "precise" and "fast"

"precise" is the default...

Some functions have two flavors: "precise" and "fast"

- "precise" is the default...
- ... but if you compile with -ffast-math, you get the "fast" versions

Even with -ffast-math, you can call the precise functions by name:

```
float len = vector_precise_length(x);
```

You can call the fast versions by name too:

```
x = fast::normalize(x);
```

Matrices C and Objective-C

"matrix_floatNxM", where N and M are 2, 3, or 4

• N is number of columns, M is number of rows.

Matrices

C and Objective-C

```
Create matrices
matrix_from_diagonal(vector)
matrix_from_columns(vector, vector, ...)
matrix_from_rows(vector, vector, ...)
Arithmetic
matrix_scale(matrix, scalar)
matrix_linear_combination(matrix, scalar, matrix, scalar)
matrix_transpose(matrix)
matrix_invert(matrix)
matrix_multiply(matrix/vector, matrix/vector)
```

Matrices

C++ (and Metal)

```
Create matrices
float4x4()
float2x2(diagonal)
float3x4(column0, column1, ...)
Arithmetic
float3x4 A, B;
A -= 2.f * B;
float4x3 C = transpose(A)
vector3 x;
vector4 y = A*x;
```

Abstract SIMD Additional types

Doubles, signed and unsigned integers Longer vectors (8, 16, and 32 elements) Unaligned vectors

Integer operators and conversions

Integer operators and conversions

Arithmetic operators: +, -, *, /, %

Integer operators and conversions

Arithmetic operators: +, -, *, /, %

Bitwise operators: >>, <<, &, |, ^, ~

Integer operators and conversions

```
Arithmetic operators: +, -, *, /, %

Bitwise operators: >>, <<, &, |, ^, ~

Conversions:

vector_float x;

vector_ushort y = vector_ushort(x);

vector_char z = vector_char_sat(x);
```

Vector comparisons: ==, !=, >, <, >=, <=

Vector comparisons: ==, !=, >, <, >=, <=

• Result is a vector of integers; each lane is -1 if comparison is true, 0 if false

X 0.0 1.0 2.0 3.0

Vector comparisons: ==, !=, >, <, >=, <=

X	0.0	1.0	2.0	3.0
у	0.0	3.14159	-infinity	42.0

Vector comparisons: ==, !=, >, <, >=, <=

• Result is a vector of integers; each lane is -1 if comparison is true, 0 if false

Χ	0.0	1.0	2.0	3.0
У	0.0	3.14159	-infinity	42.0

x < y

Vector comparisons: ==, !=, >, <, >=, <=

• Result is a vector of integers; each lane is -1 if comparison is true, 0 if false

X	0.0	1.0	2.0	3.0
У	0.0	3.14159	-infinity	42.0

x < y 0x00000000

Vector comparisons: ==, !=, >, <, >=, <=

X	0.0	1.0	2.0	3.0
У	0.0	3.14159	-infinity	42.0
x < y	0×0000000	0xffffffff		

Vector comparisons: ==, !=, >, <, >=, <=

X	0.0	1.0	2.0	3.0
У	0.0	3.14159	-infinity	42.0
x < y	0×0000000	0xfffffff	0×00000000	

Vector comparisons: ==, !=, >, <, >=, <=

X	0.0	1.0	2.0	3.0
У	0.0	3.14159	-infinity	42.0
x < y	0×0000000	0xfffffff	0x0000000	0xfffffff

Comparisons

Vector comparisons: ==, !=, >, <, >=, <=

- Result is a vector of integers; each lane is -1 if comparison is true, 0 if false
- Type of result usually isn't important, because you'll use one of the following:

```
if (vector_any(x < 0)) { /* executed if any lane of x is negative */ } if (vector_all(y != 0)) { /* executed if every lane of y is non-zero */ } z = vector_bitselect(x, y, x > y); /* minimum of x and y */
```

String Copy

Scalar implementation

String Copy Scalar implementation

```
void string_copy(char *dst, const char *src) {
    while ((*dst++ = *src++));
}
```

SSE intrinsic implementation

```
void vector_string_copy(char *dst, const char *src) {
   while ((uintptr_t)src % 16)
        if ((*dst++ = *src++) == 0) return;
   while (1) {
       __m128i data = _mm_load_si128((const __m128i *)src);
       __m128i contains_zero = _mm_cmpeq_epi8(data, _mm_set1_epi8(0));
       if (_mm_movemask_epi8(contains_zero))
            break;
       _mm_storeu_si128((__m128i *)dst, data);
        src += 16;
        dst += 16;
   string_copy((char *)vec_dst, (const char *)vec_src);
```

```
void vector_string_copy(char *dst, const char *src) {
   while ((uintptr_t)src % 16)
        if ((*dst++ = *src++) == 0) return;
   const vector_char16 *vec_src = (const vector_char16 *)src;
   packed_char16 *vec_dst = (packed_char16 *)dst;
   while (!vector_any(*vec_src == 0))
        *vec_dst++ = *vec_src++;
   string_copy((char *)vec_dst, (const char *)vec_src);
}
```

```
void vector_string_copy(char *dst, const char *src) {
   while ((uintptr_t)src % 16)
        if ((*dst++ = *src++) == 0) return;
   const vector_char16 *vec_src = (const vector_char16 *)src;
   packed_char16 *vec_dst = (packed_char16 *)dst;
   while (!vector_any(*vec_src == 0))
        *vec_dst++ = *vec_src++;
   string_copy((char *)vec_dst, (const char *)vec_src);
}
```

```
void vector_string_copy(char *dst, const char *src) {
   while ((uintptr_t)src % 16)
      if ((*dst++ = *src++) == 0) return;

   const vector_char16 *vec_src = (const vector_char16 *)src;
   packed_char16 *vec_dst = (packed_char16 *)dst;

   while (!vector_any(*vec_src == 0))
      *vec_dst++ = *vec_src++;
   string_copy((char *)vec_dst, (const char *)vec_src);
}
```

```
void vector_string_copy(char *dst, const char *src) {
   while ((uintptr_t)src % 16)
       if ((*dst++ = *src++) == 0) return;
   const vector_char16 *vec_src = (const vector_char16 *)src;
   packed_char16 *vec_dst = (packed_char16 *)dst;
   while (!vector_any(*vec_src == 0))
       *vec_dst++ = *vec_src++;
   string_copy((char *)vec_dst, (const char *)vec_src);
}
```

```
void vector_string_copy(char *dst, const char *src) {
   while ((uintptr_t)src % 16)
        if ((*dst++ = *src++) == 0) return;
   const vector_char16 *vec_src = (const vector_char16 *)src;
   packed_char16 *vec_dst = (packed_char16 *)dst;
   while (!vector_any(*vec_src == 0))
        *vec_dst++ = *vec_src++;
   string_copy((char *)vec_dst, (const char *)vec_src);
}
```


Summary

Simple interfaces for complex operations

New libraries still have a few rough edges

Let us know what use cases matter to you, and what additional features you need

More Information

Paul Danbold Core OS Technology Evangelist danbold@apple.com

George Warner DTS Sr. Support Scientist geowar@apple.com

Documentation vlmage Programming Guide http://developer.apple.com/library/mac/#documentation/Performance/Conceptual/vlmage/Introduction/Introduction.html

More Information

Documentation

vDSP Programming Guide

http://developer.apple.com/library/mac/#documentation/Performance/Conceptual/vDSP_Programming_Guide/Introduction/Introduction.html

vlmage Headers

/System/Library/Frameworks/Accelerate.framework/Frameworks/vlmage.framework/Headers/vlmage.h

vDSP Headers

/System/Library/Frameworks/Accelerate.framework/Frameworks/vecLib.framework/Headers/vDSP.h

More Information

Documentation

Linear Algebra Headers

/System/Library/Frameworks/Accelerate.framework/Frameworks/vecLib.framework/Headers/LinearAlgebra/LinearAlgebra.h

<simd/simd.h>
/usr/include/simd/simd.h

Apple Developer Forums http://devforums.apple.com

Bug Report

http://bugreport.apple.com

Related Sessions

 Working with Metal: Overview 	Pacific Heights	Wednesday 9:00AM
 Working with Metal: Fundamentals 	Pacific Heights	Wednesday 10:15AM
 Working with Metal: Advanced 	Pacific Heights	Wednesday 11:30AM

Labs

 Accelerate Lab 	Core OS Lab B	Tuesday 11:30AM
 Metal Lab 	Graphics and Games Lab A	Wednesday 2:00PM

WWDC14