

云原生开放日:上海站

Cloud Native Open Day Shanghai

新一代开源 HCI (HARVESTER 底层原理剖析

Kai Hu

SUSE Solution Architect

VM & Container

容器化应用的总体占比仍然较低

Gartner - Forecast Analysis: Container Management (Software and Services), Worldwide 29 May 2020

- 随着云原生应用和基础设施的不断普及,到2024年,容器管理软件在成熟经济体中大型企业中的使用率将超过75%(2020年**不到**35%)。
- 到2024年,多达15%的企业应用程序将在容器环境中运行,而 2020年这一比例还**不到5%**,这一比例受到应用程序积累、技术 债和预算限制的阻碍。
- 在2024年之前,对更高层次的创新、敏捷性和弹性的需求将导致 公有和分布式云容器管理服务成为75%的新自研企业应用程序的 默认选择(2020年这一比例为**45%**)。

虚拟化仍然是相当多场景的首选方案

Spiceworks - The 2020 State of Virtualization Technology

- 虚拟化技术是云计算发展的基石
- 服务器虚拟化技术经过多年的发展已经非常成熟,被广 为采纳
- 企业中采用服务器虚拟化技术的比例超过90%

虚拟机 + 容器: 企业用户必然面临的场景

- 多套平台的统一管理、授权、监控。
- 跨平台之间的网络互连、网络隔离、访问控制。
- 微服务架构之间的服务注册、服务发现、如果是一个 overlay网络,随之引入相当多的问题。
- 如果是分支或者边缘场景,额外的资源消耗。

社区基于k8s的虚拟化探索

- 社区对将虚拟机管理引入容器平台做过多种尝试:
 - RancherVM (started at 2015, archived at 2019)
 - Virtlet from Mirantis (started at 2017, inactive since 2019)
 - KubeVirt from RedHat (active since 2017, become CNCF sandbox in 2019)
- 这些尝试与vSphere和Nutanix的普及流行比起来相差甚远。
 - 虚拟机管理者并不了解和关心Kubernetes
 - 虚拟机管理: ISO镜像, VLANs, 磁盘
 - Kubernetes: Pods, PVCs, CRDs

Mirantis/virtlet

HARVESTER 容器与虚拟化的融合

从HCI 1.0到HCI 2.0

• 使用开放统一的 Kubernetes API 替代厂商专有 API

Kubevirt: 统一编排VM和Container

Kubevirt: 基于CRD/Operator管理VM

Kubernetes基础之上的原生虚拟化体验

云原生的分布式块存储解决方案

- 100%开源的企业级分布式块存储
- 2019年捐献给CNCF, 目前已孵化
- 直观的UI,开箱即用,易于使用和运维
- 丰富的企业级存储功能,支持快照及备份,确保RTO与RPO
- 由Rancher官方提供商业支持

Longhorn: 基于微服务的分布式存储

取代Containerized Data Importer

- 虚拟机创建(基于镜像)
 - 不依赖CDI组件,基于Longhorn Backing Image特性,由镜像的Backing Image快速创建
 - A QCOW2 or RAW image can be set as the backing/base image of a Longhorn volume
- 虚拟机备份与恢复
 - 基于存储CSI组件提供VolumeSnapshot等特性实现,支持备份到外部存储中心如 MinIO
- 虚拟机热迁移
 - 基于后端存储RWX特性(同时迁移数据卷和快照)
- 定期备份与磁盘快照
 - 基于Longhorn CSI默认提供的备份与磁盘快照功能
- 磁盘扩容
 - Longhorn下不依赖CDI组件,支持磁盘(PVC)扩容
- 虚拟机克隆
 - · Longhorn下不依赖CDI,基于Longhorn高级特性可支持虚拟机克隆虚拟机、虚拟机克隆为镜像

充分利用已有的成熟网络生态

• This is accomplished by Multus acting as a "meta-plugin", a CNI plugin that can call multiple other CNI plugins.

Harvester VLAN Network

· Backend,指明关联到pod的哪个网络,默认CNI或通过multus提供的第二种CNI甚至第三种CNI

Pod/VM With Multus CNI

Harvester VLAN Network

• Fronted,定义虚机的网卡interface用那种方式实现,目前主要有bridge、slirp、sriov、masquerade等方式

站在Kubernetes巨人的肩膀上

虚拟化&计算

KVM, Qemu, SR-IOV......

监控/日志/其他

Prometheus, Grafana, Fluentd, Filebeat.....

CNI网络接口

Multus, flannel, Calico, Cilium, Bridged-VLAN, MAC-VLAN, Weave, OVN

CSI存储接口

Longhorn, Ceph, PortWorx, GlusterFS, NetApp, EMC

将开源HCI扩展到云端和边缘场景

Kubernetes API

Proprietary Cloud Services

Project Harvester

Project Harvester

Cloud

Datacenter

基于Rancher实现混合云基础设施统一管理 Cloud Native Community

Community

Name	Repo Address
Harvester UI	https://github.com/harvester/harvester-ui
Harvester Installer	https://github.com/harvester/harvester-installer
Harvester Network Controller	https://github.com/harvester/harvester-network-controller
Harvester Node Driver	https://github.com/harvester/docker-machine-driver-harvester

- Slack https://slack.rancher.io/ #harvester
- Documentation https://harvesterhci.io/
- Github https://github.com/harvester/harvester
- Wiki https://github.com/harvester/wiki

Thank You

Kai Hu

SUSE Solution Architect