Lecture 9 Floating Point

School of Computer Science and Engineering Soongsil University

3. Arithmetic for Computers

- 3.1 Introduction
- 3.2 Addition and Subtraction
- 3.3 Multiplication
- 3.4 Division
- 3.5 Floating Point
- 3.6 Parallelism and Computer Arithmetic: Subword Parallelism
- 3.7 Real Stuff: x86 Streaming SIMD Extensions and Advanced Vector Extensions
- 3.8 Going Faster: Subword Parallelism and Matrix Multiply
- 3.9 Fallacies and Pitfalls
- 3.10 Concluding Remarks
- 3.11 Historical Perspective and Further Reading
- 3.12 Exercises

3.5 Floating Point

Real numbers

```
3.14159265..._{ten} (pi), 2.71828..._{ten} (e), 0.000000001_{ten}, 0.1_{ten} \times 10^{-8} or 1.0_{ten} \times 10^{-9}, 3.155,760,000_{ten}, 0.00315576 \times 10^{12} or 3.15576 \times 10^{9}
```

Scientific notation

- * $a \times 10^{b}$ (a times ten raised to the power of b)
 - where the exponent b is an integer, and the significand (or mantissa) a is any real number
 - $1.0_{\text{ten}} \times 10^{-9}$, 315.576×10^{7}
- A notation that renders numbers with a single digit to the left of the decimal point (in our text)

Normalized number

* A number in scientific notation that has no leading 0s (i.e. $1 \le |a| < 10$).

Floating-Point Representation

Floating point numbers in binary form

$$\pm 1.xxxxxxxxx$$
 _{two} $\times 2^{yyyy}$

- Sign
 - 1 bit
- Exponent
 - 8 bits (including the sign of the exponent)
- Fraction (=significand=mantissa)
 - 23 bits, fraction
 - sign and magnitude representation

1 bit 8 bits 23 bits

Floating Point Numbers

General form of floating-point numbers

$$(-1)^S \times F \times 2^E$$

- Tradeoff between accuracy and range
 - Large significand ... increased accuracy
 - Large exponent ... increased range of numbers
- Range of floating-point numbers in MIPS

$$2.0_{\text{ten}} \times 10^{-38} \sim 2.0_{\text{ten}} \times 10^{38}$$

ANSI/IEEE Std 754-1985

- IEEE standard for binary floating-point arithmetic
- Hidden-bit scheme

$$(-1)^s \times (1 + fraction) \times 2^E$$

= $(-1)^s \times (1 + (s1 \times 2^{-1}) + (s2 \times 2^{-2}) + (s3 \times 2^{-3}) + (s4 \times 2^{-4}) + ...) \times 2^E$

- In this book,
 - significand ... represent the 24/53-bit number that is 1 plus the fraction
 - fraction ... represent the 23/52-bit number
- 32-bit single format
 - 1-bit sign, 8-bit exponent, 23-bit fraction
- 64-bit double format
 - 1-bit sign, 11-bit exponent, 52-bit fraction

Double and Quad Precision

Double precision floating-point number

- 11 exponent bits
- 52 fraction bits

$$2.0_{\text{ten}} \times 10^{-308} \sim 2.0_{\text{ten}} \times 10^{308}$$

32 bits

Quad precision floating-point number

- ❖ IEEE 754-2008 binary128 standard
- 15 exponent bits
- 112 significand bits

IEEE 754 Encoding

Single precision		Double p	orecision		
Exponent	Fraction	Exponent	Fraction	Object represented	
0	0	0	0	0.0	
0	Nonzero	0	Nonzero	± denormalized number	
1~254	Anything	1~2046	Anything	± floating point number	
255	0	2047	0	±infinity	
255	Nonzero	2047	Nonzero	NAN (Not A Number)	

Figure 3.13

Sorting Floating Point Numbers

- Keep encoding that is somewhat compatible with 2's complement
 - e.g., 0.0 in FP is 0 in two's complement
 - Can compare two FP numbers in the same way as comparing 2's complement integers

- Placing the sign in the most significant bit
- Placing exponent before the significand
- But what with the negative exponents?

Example: 2's complement exponents

- $1.0_{\text{two}} \times 2^{-1}$
- $1.0_{\text{two}} \times 2^{+1}$
- 1.0 $_{\rm two}$ × 2⁻¹ looks like a bigger one than 1.0 $_{\rm two}$ × 2⁺¹

Undesirable!

Biased Notation

- Can reuse integer comparison hardware
 - ❖ If the most negative exponent = 00...000
 - and the most positive exponent = 11...111
- $(-1)^{Sign} \times (1 + Fraction) \times 2^{(Exponent Bias)}$
- Exponent biases in IEEE 754
 - 127 for single precision
 -126 ≤ exponent ≤ +127
 - 1023 for double precision
 - $-1022 \le exponent \le +1023$

Biased Exponent with Bias=127

How it is interpreted

How it is encoded

	Decimal	signed 2's	Biased Notation	Decimal Value of
	Exponent	complement		Biased Notation
∞, NaN	For infinities		111111111	255
1	127	01111111	111111110	254
	2	00000010	10000001	129
Getting closer to	1	00000001	10000000	128
	0	00000000	01111111	127
zero	-1	111111111	011111110	126
	-2	111111110	01111101	125
V	-126	10000010	00000001	1
Zero	For Denorms	10000001	00000000	0

Example: Floating-Point Representation

 Show the IEEE 754 single and double precision representations of -0.75_{ten}.

[Answer]

```
\bullet -0.75<sub>ten</sub> = -0.11<sub>two</sub> = -1.1<sub>two</sub> x 2<sup>-1</sup>
• Single: exponent = -1 + bias = -1 + 127 = 126
   (-1)^1 \times (1 + .1000...00) \times 2^{(126-127)}
     = 1011 \ 1111 \ 0100 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000
     = BF400000_{hex}
• Double: exponent = -1 + \text{bias} = -1 + 1023 = 1022
   (-1)^1 \times (1 + .1000...00) \times 2^{(1022-1023)}
     = BFE8000000000000_{hex}
```

Example: Converting Binary to Decimal Floating Point

- What decimal number is represented by

[Answer]

```
(-1)^{S} \times (1 + Significand) \times 2^{(Exponent - Bias)}
= (-1)^{1} \times (1 + 0.25) \times 2^{(129-127)}
= -1 \times 1.25 \times 2^{2}
= -1.25 \times 4
= -5.0
```

Floating-Point Addition

Figure 3.14

Floating Point Addition

Addition (and subtraction)

$$(\pm F1 \times 2^{E1}) + (\pm F2 \times 2^{E2}) = \pm F3 \times 2^{E3}$$

- Step 0: Restore the hidden bit in F1 and in F2
- Step 1: Align fractions by right shifting F2 by E1 E2 positions
 (assuming E1 ≥ E2) keeping track of (three of) the bits shifted out in G
 R and S
- Step 2: Add the resulting F2 to F1 to form F3
- Step 3: Normalize F3 (so it is in the form 1.XXXXX ...)
 - If F1 and F2 have the same sign → F3 ∈[1,4) → 1 bit right shift F3 and increment E3 (check for overflow)
 - If F1 and F2 have different signs → F3 may require many left shifts each time decrementing E3 (check for underflow)
- Step 4: Round F3 and possibly normalize F3 again
- Step 5: Rehide the most significant bit of F3 before storing the result

Example: Floating Point Addition

Add

$$(0.5 = 1.0000 \times 2^{-1}) + (-0.4375 = -1.1100 \times 2^{-2})$$

- Step 0:
- Step 1:
- Step 2:

- Step 3:
- Step 4:
- Step 5:

Example: Floating Point Addition

Add

$$(0.5 = 1.0000 \times 2^{-1}) + (-0.4375 = -1.1100 \times 2^{-2})$$

- Step 0: Hidden bits restored in the representation above
- Step 1: Shift significand with the smaller exponent (1.1100) right until its exponent matches the larger exponent (so once)
- Step 2: Add significands
 1.0000 + (-0.111) = 1.0000 0.111 = 0.001
- Step 3: Normalize the sum, checking for exponent over/underflow $0.001 \times 2^{-1} = 0.010 \times 2^{-2} = .. = 1.000 \times 2^{-4}$
- Step 4: The sum is already rounded, so we're done
- Step 5: Rehide the hidden bit before storing
 0 01111011 00000000000000000000000

Floating-Point Adder

Floating-Point Multiplication

Figure 3.16

Floating Point Multiplication

Multiplication

$$(\pm F1 \times 2^{E1}) \times (\pm F2 \times 2^{E2}) = \pm F3 \times 2^{E3}$$

- Step 0: Restore the hidden bit in F1 and in F2
- Step 1: Add the two (biased) exponents and subtract the bias from the sum, so E1 + E2 – 127 = E3
 - also determine the sign of the product (which depends on the sign of the operands (most significant bits))
- Step 2: Multiply F1 by F2 to form a double precision F3
- Step 3: Normalize F3 (so it is in the form 1.XXXXX ...)
 - Since F1 and F2 come in normalized → F3 ∈[1,4) → 1 bit right shift F3 and increment E3
 - Check for overflow/underflow
- Step 4: Round F3 and possibly normalize F3 again
- Step 5: Rehide the most significant bit of F3 before storing the result

Example: Floating Point Multiplication

Multiply

$$(0.5 = 1.0000 \times 2^{-1}) \times (-0.4375 = -1.1100 \times 2^{-2})$$

- Step 0:
- Step 1:

- Step 2:
- Step 3:
- Step 4:
- Step 5:

Example: Floating Point Multiplication

Multiply

$$(0.5 = 1.0000 \times 2^{-1}) \times (-0.4375 = -1.1100 \times 2^{-2})$$

- Step 0: Hidden bits restored in the representation above
- Step 1: Add the exponents (not in bias would be -1 + (-2) = -3 and in bias would be (-1+127) + (-2+127) 127 = (-1 -2) + (127+127-127) = -3 + 127 = 124
- Step 2: Multiply the significands
 1.0000 x 1.110 = 1.110000
- Step 3: Normalized the product, checking for exp over/underflow
 1.110000 x 2⁻³ is already normalized
- Step 4: The product is already rounded, so we're done
- Step 5: Rehide the hidden bit before storing
 1 01111100 11000000000000000000000

Floating-Point Instructions

Category	Instruction	Example	Meaning	Comments
	FP add single	add.s \$f2,\$f4,\$f6	\$f2 = \$f4 + \$f6	FP add (single precision)
	FP subtract single	sub.s \$f2,\$f4,\$f6	\$f2 = \$f4 - \$f6	FP sub (single precision)
	FP multiply single	mul.s \$f2,\$f4,\$f6	$f2 = f4 \times f6$	FP multiply (single precision)
	FP divide single	div.s \$f2,\$f4,\$f6	\$f2 = \$f4 / \$f6	FP divide (single precision)
Arithmetic	FP add double	add.d \$f2,\$f4,\$f6	\$f2 = \$f4 + \$f6	FP add (double precision)
	FP subtract double	sub.d \$f2,\$f4,\$f6	\$f2 = \$f4 - \$f6	FP sub (double precision)
	FP multiply double	mul.d \$f2,\$f4,\$f6	\$f2 = \$f4 × \$f6	FP multiply (double precision)
	FP divide double	div.d \$f2,\$f4,\$f6	\$f2 = \$f4 / \$f6	FP divide (double precision)
Data	load word copr. 1	lwc1 \$f1,100(\$s2)	f1 = Memory[\$s2 + 100]	32-bit data to FP register
transfer	store word copr. 1	swc1 \$f1,100(\$s2)	Memory[\$s2 + 100] = \$f1	32-bit data to memory
Condi- tional branch	branch on FP true	bclt 25	if (cond == 1) go to PC + 4 + 100	PC-relative branch if FP cond.
	branch on FP false	bc1f 25	if (cond == 0) go to PC + 4 + 100	PC-relative branch if not cond.
	FP compare single (eq,ne,lt,le,gt,ge)	c.lt.s \$f2,\$f4	if (\$f2 < \$f4) cond = 1; else cond = 0	FP compare less than single precision
	FP compare double (eq,ne,lt,le,gt,ge)	c.lt.d \$f2,\$f4	if (\$f2 < \$f4) cond = 1; else cond = 0	FP compare less than double precision

Figure 3.17

3.10 Concluding Remarks

Core MIPS	Name	Integer	eger Fl. pt. Arithmetic core + MIPS-32		Name	Integer	Fl. pt.
add	add	0.0%	0.0%	FP add double	add.d	0.0%	10.6%
add immediate	addi	0.0%	0.0%	FP subtract double	sub.d	0.0%	4.9%
add unsigned	addu	5.2%	3.5%	FP multiply double	mul.d	0.0%	15.0%
add immediate unsigned	addiu	9.0%	7.2%	FP divide double	div.d	0.0%	0.2%
subtract unsigned	subu	2.2%	0.6%	FP add single	add.s	0.0%	1.5%
AND	AND	0.2%	0.1%	FP subtract single	sub.s	0.0%	1.8%
AND immediate	ANDi	0.7%	0.2%	FP multiply single	mul.s	0.0%	2.4%
OR	OR	4.0%	1.2%	FP divide single	div.s	0.0%	0.2%
OR immediate	ORi	1.0%	0.2%	load word to FP double	1.d	0.0%	17.5%
NOR	NOR	0.4%	0.2%	store word to FP double	s.d	0.0%	4.9%
shift left logical	s11	4.4%	1.9%	load word to FP single	1.s	0.0%	4.2%
shift right logical	sr1	1.1%	0.5%	store word to FP single	s.s	0.0%	1.1%
load upper immediate	lui	3.3%	0.5%	branch on floating-point true	bc1t	0.0%	0.2%
load word	1w	18.6%	5.8%	branch on floating-point false	bc1f	0.0%	0.2%
store word	SW	7.6%	2.0%	floating-point compare double	c.x.d	0.0%	0.6%
load byte	1bu	3.7%	0.1%	multiply	mu1	0.0%	0.2%
store byte	sb	0.6%	0.0%	shift right arithmetic	sra	0.5%	0.3%
branch on equal (zero)	beq	8.6%	2.2%	load half	1hu	1.3%	0.0%
branch on not equal (zero)	bne	8.4%	1.4%	store half	sh	0.1%	0.0%
jump and link	jal	0.7%	0.2%		No.	\$9. V	
jump register	jr	1.1%	0.2%	1			

Figure 3.28

set less than

set less than immediate

set less than unsigned

set less than imm. uns.

slt

slti

sltu

sltiu

9.9%

3.1%

3.4%

1.1%

2.3%

0.3%

0.8%

0.1%

Supplement

Accurate Arithmetic

Guard bit

- Used to provide one fraction bit when shifting left to normalize a result
- e.g., when normalizing fraction after division or subtraction

Round bit

Used to improve rounding accuracy

Sticky bit

- Used to support Round to nearest even
- 0.50...00_{ten} vs. 0.50...01_{ten}
- Is set to a 1 whenever a 1 bit shifts (right) through it
- e.g., when aligning fraction during addition/subtraction

F = 1. xxxxxxxxxxxxxxxxxx GRS

Example: Rounding with Guard Digits

- Add $2.56_{\text{ten}} \times 10^{0}$ to $2.34_{\text{ten}} \times 10^{2}$.
- Significant digit = 3 decimal digits
- Round to the nearest number with and without guard and round digits.

[Answer]

1) Without guard and round digits

$$2.34 \times 10^2 + 0.02 \times 10^2 = 2.36 \times 10^2$$

2) With guard and round digits

$$2.56 \times 10^{0}$$
 -> 0.0256×10^{2} (guard = 5, round = 6)
 $2.3400 \times 10^{2} + 0.0256 \times 10^{2} = 2.3656 \times 10^{2}$
=> rounded to 2.37×10^{2}

Elaboration

Rounding modes in IEEE 754

- 1) Always round up
 - Toward +∞
- 2) Always round down (toward $-\infty$)
 - Toward -∞
- 3) Truncate
 - Toward 0
 - Round down if positive, up if negative
- 4) Round to nearest even
 - When the Guard | Round | Sticky are 100
 - Always creates a 0 in the least significant bit of fraction

Examples

	7.3	7.5	8.5	7.7	-7.3	-7.5	-8.5	-7.7
Round up	8	8	9	8	-7	-7	-8	-7
Round down	7	7	8	7	-8	-8	-9	-8
Truncate	7	7	8	7	-7	-7	-8	-7
Round to nearest even	7	8	8	8	-7	-8	-8	-8

	+0001.01	-0001.01	+0101.10	+0100.10	-0011.10
Round up	+0010	-0001	+0110	+0101	-0011
Round down	+0001	-0010	+0101	+0100	-0100
Truncate	+0001	-0001	+0101	+0100	-0011
Round to nearest even	+0001	-0010	+0110	+0100	-0100