

Data sampling for surrogate modeling and optimization

Tyler Chang (and others)

Argonne National Laboratory

ICIAM 2023, Tokyo, Japan Aug 23, 2023

Outlines

Inference problems and high-dimensional modeling

Modeling for high-dimensional optimization

Want to predict unknown f(x) for observation x

- Want to predict unknown f(x) for observation x
- ▶ ML: Learn approximation $\hat{f} \sim f$ based on training data X
- **NA**: fit an interpolant (piecewise-linear) to f on \mathcal{X}

- Want to predict unknown f(x) for observation x
- ▶ ML: Learn approximation $\hat{f} \sim f$ based on training data X
- NA: fit an interpolant (piecewise-linear) to f on X
- ▶ Both cases: more data \Rightarrow better \hat{f}

- Want to predict unknown f(x) for observation x
- ▶ ML: Learn approximation $\hat{f} \sim f$ based on training data X
- NA: fit an interpolant (piecewise-linear) to f on X
- ▶ Both cases: more data \Rightarrow better \hat{f}
- ▶ Real data not perfectly balanced \Rightarrow $\hat{f} \rightarrow f$ non-uniformly

- Want to predict unknown f(x) for observation x
- ▶ ML: Learn approximation $\hat{f} \sim f$ based on training data X
- NA: fit an interpolant (piecewise-linear) to f on X
- ▶ Both cases: more data \Rightarrow better \hat{f}
- ▶ Real data not perfectly balanced \Rightarrow $\hat{f} \rightarrow f$ non-uniformly
- ▶ If we have enough data, it doesn't matter

Some basic numerical analysis results

When \hat{f} is a piecewise linear spline:

For h "small enough" – let q be the querry point

$$|f(q) - \hat{f}(q)| \sim \mathcal{O}(h^2)$$

- $lackbox{ iny} h$ is a "mesh fineness" parameter \sim distance between points in ${\mathcal X}$
- lacktriangle For irregular \mathcal{X} , h could be the distance from q to the nearest neighbor in \mathcal{X}
- lacktriangle Constants proportional to the Lip constant of ∇f

Some basic numerical analysis results

When \hat{f} is a piecewise linear spline:

For h "small enough" – let q be the querry point

$$|f(q) - \hat{f}(q)| \sim \mathcal{O}(h^2)$$

- lacktriangleq h is a "mesh fineness" parameter \sim distance between points in ${\mathcal X}$
- For irregular \mathcal{X} , h could be the distance from q to the nearest neighbor in \mathcal{X}
- lacktriangle Constants proportional to the Lip constant of ∇f

Some basic deep learning

- ▶ Train a fully-connected multi-layer perceptron (MLP) using X
- ► The most popular activation function is ReLU (piecewise linear)
- ► In modern ML, train as close to zero error as possible (interpolate)

Some basic deep learning

- ► Train a fully-connected multi-layer perceptron (MLP) using X
- ► The most popular activation function is ReLU (piecewise linear)
- ► In modern ML, train as close to zero error as possible (interpolate)

Real machine learning

"There's more to machine learning than function approximation"

Real machine learning

"There's more to machine learning than function approximation"

ightharpoonup f is often highly *structured* – MLPs with nothing else are from the 60s

 28×28 pixels $\neq 784$ dimensions...

The curse of dimensionality

10 training points in 1D

10 training points in 2D

The curse of dimensionality no data

Need data in all quadrants?

The curse of dimensionality no data

Need data in all quadrants?

- ▶ Inference in 2D : $2^2 = 4$
- ▶ Inference in 10D : $2^{10} \approx 1000$
- ▶ Inference in $100\text{D}:2^{100}\approx 10^{30}$ (orders of magnitude bigger than exascale)
- ► Many ML problems : inference in 1000+ dimensions

Measure collapse

Can we still make good predictions where we do have data?

Measure collapse

Can we still make good predictions where we do have data?

No, because we have no data anywhere

We measure where we *might* have enough data to make a prediction using the "convex hull" of the training data $CH(\mathcal{X})$

Measure collapse

Can we still make good predictions where we do have data?

No, because we have no data anywhere

We measure where we *might* have enough data to make a prediction using the "convex hull" of the training data $CH(\mathcal{X})$

If $\mathcal X$ are sampled from any distribution, $\mu(\mathit{CH}(\mathcal X)) o 0$ exponentially as d grows

This is called a concentration of measure

Gorban and Tyukin, Stochastic separation theorems. Neural Networks 94, pp. 255-259 (2017).

Example

Suppose that we uniformly sample $x = (x_1, x_2, ..., x_d)$ from $[0,1]^d$

$$\|x - \frac{1}{2}\|_2^2 = \sum_{i=1}^d (x_i - \frac{1}{2})^2.$$

$$\mathbb{E}\left[\left(x_i - \frac{1}{2}\right)^2\right] = \int_0^1 \left(u - \frac{1}{2}\right)^2 du = \frac{1}{12}$$

with finite variance v

By CLT for all $x \in \mathcal{X}$: $\mathbb{E}[\|x - \frac{1}{2}\|_2^2] = \frac{d}{12}$ with variance $\frac{v}{d} \to 0$ as $d \to \infty$.

Collapse of some common distributions

Garg, Chang, and Raghavan, Stochastic optimization of Fourier coefficiencts to generate space-filling designs. To appear in Winter Sim 2023.

Modern deep learning pipeline

Hope in context of optimization

Global modeling is harder than optimization

For optimization, only need model accuracy near the solution...

- Global modeling is significantly harder than optimizing
- ▶ To build a *globally accurate model* over *n* variables, need $\mathcal{O}(2^n)$ samples
- ▶ To build a *locally accurate model* over n variables, need O(n) samples

Global optimization

In global optimization literature...

- ▶ Balance exploration vs. exploitation
- ▶ Drive *global model error* to zero
- ▶ Need exponentially many samples to guarantee global convergence

Guarantees convergence for problems with thousands of local minima

