चुम्बकत्व एवं चुम्बकीय पदार्थों के गुण

पाठ्य पुस्तक के प्रश्न एवं उत्तर

बहुचयनात्मक प्रश्न

प्रश्न 1. यदि दो एकांक प्रबलता के चुम्बकीय धुवों के मध्य की दूरी 1 m है तो इनके मध्य लगने वाले बल का मान होगा

- (अ) 4π × 10⁻⁷N
- (ৰ) 4πΝ
- (स) 10⁻⁷ N
- $(4)^{\frac{4\pi}{10^{-7}}}N$

उत्तर: (स) 10⁻⁷ N

$$F = \frac{\mu_0}{4\pi} \frac{m_1 m_2}{r^2}$$

$$F = \frac{\mu_0}{4\pi} \frac{1 \times 1}{1}$$

$$\Rightarrow F = \frac{\mu_0}{4\pi} = \frac{4\pi \times 10^{-7}}{4\pi} = 10^{-7} \text{ N}$$

प्रश्न 2. अतिचालक पदार्थों के लिए चुम्बकीय प्रवृत्ति का मान है

- (अ) +1
- (ৰ) -1
- (स) शून्य
- (द) अनन्त

उत्तर: (ब) -1

प्रश्न 3. मुक्त आकाश की चुम्बकीय प्रवृत्ति होती है

- (अ) + 1
- (ৰ) 1

- (स) शून्य
- (द) अनन्त

उत्तर: (स) शून्य

प्रश्न 4. चुम्बकीय प्रवृत्ति का मान ऋणात्मक एवं अल्प होता है

- (अ) लौहचुम्बकीय पदार्थों के लिए
- (ब) अनुचुम्बकीय पदार्थीं के लिए
- (स) प्रतिचुम्बकीय पदार्थीं के लिए
- (द) उपर्युक्त सभी

उत्तर: (स) प्रतिचुम्बकीय पदार्थों के लिए

प्रश्न 5. किसी पदार्थ की आपेक्षिक पारगम्यता 1.00001 है वो पदार्थ होगा

- (अ) लौहचुम्बकीय
- (ब) अनुचुम्बकीय
- (स) प्रतिचुम्बकीय
- (द) कोई नहीं

उत्तर: (ब) अनुचुम्बकीय

प्रश्न 6. चुम्बकीय आघूर्ण का मात्रक है

- (अ) Wb
- (ৰ) Wb/m²
- (₹) A/m
- (द) Am²

उत्तर: **(द)** Am²

प्रश्न 7. Wb × A/m बराबर होता है

- (왕) J
- (ৰ) N
- (स) H
- (द) W

उत्तर: (ब) N

प्रश्न 8. चुम्बकीय क्षेत्र निम्न में से किसमें अन्योन्य क्रिया नहीं करता

- (अ) चुम्बक से
- (ब) त्वरित चुम्बक से
- (स) स्थिर आवेश से
- (द) चल विद्युत आवेश से

उत्तर: (स) स्थिर आवेश से

प्रश्न 9. प्रतिचुम्बकत्व का कारण है

- (अ) इलेक्ट्रॉनों की कक्षीय गति
- (ब) इलेक्ट्रॉनों की चक्रण गति
- (स) युग्मित इलेक्ट्रॉन
- (द) इनमें से कोई नहीं

उत्तर: (अ) इलेक्ट्रॉनों की कक्षीय गति

प्रश्न 10. प्रतिचुम्बकीय पदार्थों का चुम्बकीय आघूर्ण होता है

- (अ) अनन्त
- (ब) शून्य
- (स) 100 Am
- (द) कोई नहीं

उत्तर: (ब) शून्य

प्रश्न 11. लौहचुम्बकीय पदार्थों की आपेक्षिक पारगम्यता µ, का मान होता है

- (अ) µ_r > 1
- (ৰ) $\mu_r > > 1$
- (स) $\mu_r = 1$
- (द) µ_r = 0

उत्तर: (ब) µr > > 1

प्रश्न 12. पृथ्वी के चुम्बकीय क्षेत्र का ऊर्ध्वाधर घटक शून्य होता है

- (अ) चुम्बकीय ध्रुव पर
- (ब) भौगोलिक ध्रुव पर
- (स) चुम्बकीय याम्योत्तर पर
- (द) कोई नहीं

उत्तर: (द) कोई नहीं

प्रश्न 13. किसी पदार्थ के शैथिल्य पाश का क्षेत्रफल प्रदर्शित करता है

- (अ) पदार्थ को इकाई चक्र में चुम्बिकत करने पर ऊर्जा हानि
- (ब) पदार्थ के इकाई आयतन को इकाई चक्र में चुम्बकित करने पर ऊर्जा हानि
- (स) पदार्थ के इकाई आयतन को चुम्बकित करने पर ऊर्जा हानि
- (द) पदार्थ को चुम्बकित करने पर ऊर्जा हानि

उत्तर: (द) पदार्थ को चुम्बिकत करने पर ऊर्जा हानि

प्रश्न 14. स्थाई चुम्बक बनाने के लिए स्टील का उपयोग करते हैं, क्यों कि

- (अ) ऊर्जा का हास कम होता है
- (ब) स्टील का घनत्व अधिक है
- (स) स्टील के लिए अवशेष चुम्बकत्व अधिक है
- (द) साधारण बाह्य चुम्बकीय क्षेत्र से चुम्बकत्व नष्ट नहीं होता

उत्तर: (द) साधारण बाह्य चुम्बकीय क्षेत्र से चुम्बकत्व नष्ट नहीं होता

प्रश्न 15. क्यूरी ताप पर लौह चुम्बकीय पदार्थ हो जाता है

- (अ) अचुम्बकीय
- (ब) प्रतिचुम्बकीय
- (स) अनुचुम्बकीय
- (द) अधिक लौह चुम्बकीय

उत्तर: (स) अनुचुम्बकीय

अति लघूत्तरात्मक प्रश्न

प्रश्न 1. एक चुम्बकीय सुई जो ऊध्र्वाधर तल में घूमने के लिए स्वतंत्र है, यदि भू-चुम्बकीय उत्तर या दक्षिण ध्रुव पर रखी है तो यह किस दिशा में संकेत करेगी ?

उत्तर: ऊध्वाधर तल में घूमने के लिए स्वतंत्र चुम्बकीय सुई ऊध्वाधर नीचे या ऊपर की ओर संकेत करेगी क्योंकि पृथ्वी पर चुम्बकीय क्षेत्र ऊर्ध्व दिशा में ही होता है।

प्रश्न 2. चुम्बकीय पदार्थ के प्रकार का नाम लिखो, जिसका व्यवहार साधारण ताप में परिवर्तन पर निर्भर नहीं करता।

उत्तर: प्रतिचुम्बकीय पदार्थों का चुम्बकीय व्यवहार साधारण तोप में परिवर्तन पर निर्भर नहीं करता।

प्रश्न 3. चुम्बकीय विषुवत रेखा से धुवों की ओर जाने पर नित कोण में किस प्रकार परिवर्तन होता है

उत्तर: चुम्बकीय विषुवत रेखा से ध्रुवों की ओर जाने पर नित कोण का मान 0° से 90° के मध्य बढ़ता है। चुम्बकीय विषुवत रेखा पर नित कोण का मान 0° तथा ध्रुवों पर 90° होता है।

प्रश्न 4. एक पदार्थ की चुम्बकीय प्रवृत्ति - 0.085 है, यह किस प्रकार का चुम्बकीय पदार्थ है ?

उत्तर: प्रतिचुम्बकीय पदार्थ, क्योंकि इन पदार्थों की चुम्बकीय प्रवृत्ति ऋणात्मक तथा 1 से कम होती है।

प्रश्न 5. धारणशीलता किसे कहते हैं ?

उत्तर: चुम्बकन क्षेत्र H का मान शून्य करने पर भी पदार्थ में चुम्बकत्व शेष बने रहने के गुण को धारणशीलता कहते हैं।

प्रश्न ६. अनुचुम्बकीय पदार्थों के दो उदाहरण लिखिए।

उत्तर:

- 1. कॉपर क्लोराइड (CuCl₂)
- 2. ऑक्सीजन (O₂)

प्रश्न 7. चुम्बकीय याम्योत्तर किसे कहते हैं ?

उत्तर: छड़ चुम्बक के चुम्बकीय अक्ष के लम्बवत् गुजरने वाले ऊध्वाधर तल को चुम्बकीय याम्योत्तर कहते हैं।

प्रश्न 8. पृथ्वी पर नित कोण के मान 0° और 90° कहाँ होते हैं ?

उत्तर: चुम्बकीय विषुवत रेखा (निरक्ष) पर नित कोण 0° तथा ध्रुवों पर 90° होता है।

प्रश्न 9. माध्यम की चुम्बकीय पारगम्यता तथा चुम्बकीय प्रवृत्ति में सम्बन्ध लिखो।

उत्तर: µr = (1 + Xm)

यहाँ $\mu_r \to चुम्बकीय पारगम्यता तथा <math>X_m$ चुम्बकीय प्रवृत्ति है।

प्रश्न 10. ध्रुव सामर्थ्य का मात्रक लिखो।

उत्तर: ध्रुव सामर्थ्य का मात्रक ऐम्पियर-मी. (A-m) है।

प्रश्न 11. उस स्थान पर नित कोण कितना होगा जहाँ पृथ्वी के चुम्बकीय क्षेत्र का ऊर्ध्वाधर घटक तथा क्षैतिज घटक का $\frac{1}{\sqrt{3}}$ अनुपात है ?

उत्तर: दिया है :

$$\frac{B_V}{B_H} = \frac{1}{\sqrt{3}}$$

জৰদি
$$\frac{B_V}{B_H} = \tan \theta$$

$$\therefore \qquad \tan \theta = \frac{1}{\sqrt{3}}$$

$$\tan \theta = \tan 30^\circ$$

$$\theta = 30^\circ$$

अतः नति कोण का मान 30° होगा।

प्रश्न 12. चुम्बकीय शैथिल्य क्या हैं ?

उत्तर: चुम्बकीय शैथिल्य (Magnetic Hysteresis)- पदार्थों में चुम्बकन के चुम्बकन क्षेत्र (H) से पीछे रहे जाने की प्रक्रिया को शैथिल्य कहते हैं। इसका कारण डोमेनों का चुम्बकीय क्षेत्र की दिशा में संरक्षित होना है।

प्रश्न 13. छड़ चुम्बक के मध्य बिन्दु से अक्षीय तथा निरक्षीय स्थिति में समान दूरी होने पर स्थित बिन्दुओं पर चुम्बकीय क्षेत्र के मानों में क्या अनुपात होता है ?

उत्तर: अक्षीय स्थिति में चुम्बकीय क्षेत्र

$$B_1 = \frac{\mu_0}{4\pi} \frac{2M}{r^3}$$

निरक्षीय स्थिति में चुम्बकीय क्षेत्र

$$B_2 = \frac{\mu_0}{4\pi} \frac{M}{r^3}$$

$$\frac{B_1}{B_2} = \frac{2}{1}$$

 $B_1: B_2 = 2: 1$

प्रश्न 14. उस स्थान पर नित कोण का मान क्या होगा जहाँ पर पृथ्वी के क्षैतिज तथा ऊध्र्वाधर घटक समान हैं ?

उत्तर: जैसा कि B_H = B_V

$$\tan \theta = \frac{B_V}{B_H} = 1$$

अत: tan θ = tan 45°

प्रश्न 15. किसी दण्ड चुम्बक को उसकी लम्बाई के अनुदिश दो भागों में काट दिया जाए तो उसके चुम्बकीय आघूर्ण में क्या परिवर्तन होगा ?

उत्तर: दण्ड चुम्बक का चुम्बकीय आघूर्ण

 $M = m \times IA - m^2$

यदि दण्ड चुम्बक को लम्बाई के अनुदिश दो भागों में काट दिया जाए तो

$$m' = \frac{m}{2}$$
 तथा $l = l'$

तब नया चुम्बकीय आधूर्ण

$$M' = m' \times l'$$

$$M' = \frac{M \times I}{2}$$

$$M' = \frac{M}{2}$$

अर्थात् चुम्बकीय आघूर्ण आधा हो जाएगा।

लघूत्तरात्मक प्रश्न

प्रश्न 1. एक दण्ड चुम्बक किसी एक समान चुम्बकीय क्षेत्र में इस प्रकार रखी है कि इसका चुम्बकीय आघूर्ण, 🛱 की दिशा से 8 कोण बनाता है तो स्थितिज ऊर्जा का व्यंजक ज्ञात करो।

उत्तर: एक दण्ड चुम्बक का चुम्बकीय आघूर्ण जब चुम्बकीय क्षेत्र के साथ 90° को कोण बनता है तथा स्थितिज ऊर्जा शून्य होती है। अतः लम्बवत् स्थिति से ७ कोण विक्षेप की स्थिति तक द्विध्रुव को घुमाने में किया गया कार्य ही 8 विक्षेप की स्थिति में द्विध्रुव की स्थितिज ऊर्जा है।

ः α विक्षेप की स्थिति में चुम्बकीय क्षेत्र में द्विध्रुव पर लगने वाला । बल आघूर्ण ।

 $\tau = MB \sin \alpha$

इस स्थिति से dα विस्थापित करने में किया गया कार्य

 $dW = \tau d\alpha$

.: θ विक्षेप की स्थिति में द्विध्रुव की स्थितिज ऊर्जा

$$U = \int_{90^{\circ}}^{\theta} dW$$

$$U = \int_{90^{\circ}}^{\theta} \tau d\alpha$$

$$= \int_{90^{\circ}}^{\theta} MB \sin \alpha d\alpha$$

$$U = MB \int_{90^{\circ}}^{\theta} \sin \alpha d\alpha = MB \left[-\cos \alpha \right]_{90^{\circ}}^{\theta}$$

$$U = MB \left[-\cos \theta - (-\cos 90^{\circ}) \right]$$

$$U = MB \left[-\cos \theta + 0 \right]$$

$$U = MB \cos \theta$$

प्रश्न 2. अनुचुम्बकीय तथा प्रतिचुम्बकीय पदार्थों की छड़ों की । किस प्रकार पहचान करेंगे ?

उत्तर: अनुचुम्बकीय पदार्थ की छड़ को असमान चुम्बकीय क्षेत्र में रखने पर छड़ दुर्बल क्षेत्र से प्रबल क्षेत्र की ओर अल्प आकर्षित होती है। जबिक प्रतिचुम्बकीय पदार्थ की छड़ असमान चुम्बकीय क्षेत्र में लाने पर प्रबल क्षेत्र से दुर्बल क्षेत्र की ओर अल्प प्रतिकर्षित होती है। इस प्रकार अनुचुम्बकीय तथा प्रतिचुम्बकीय पदार्थों की छड़ों की पहचान की जा सकती है।

प्रश्न 3. किसी दण्ड चुम्बक के लिए दो उदासीन बिन्दु क्यों प्राप्त होते हैं ? क्या एक उदासीन बिन्दु भी प्राप्त हो सकता है ? क्यों ?

उत्तर: किसी दण्ड चुम्बक के लिए चुम्बक की ओर चुम्बकीय क्षेत्र दूरी के साथ समान रूप से परिवर्तित होता है। इसीलिए दण्ड चुम्बक की अक्ष के उत्तर-दक्षिण में होने पर दो बिन्दु ऐसे प्राप्त होते हैं जहाँ दण्ड चुम्लक का चुम्बकीय क्षेत्र पृथ्वी के चुम्बकीय क्षेत्र के क्षैतिज घटक के बराबर एवं विपरीत होता है। इस प्रकार दण्ड चुम्बक के लिए दो उदासीन बिन्दु प्राप्त होते हैं।

दण्ड चुम्बक के उत्तरी ध्रुव या दक्षिणी ध्रुव को नीचे रखकर ऊर्ध्वाधर स्थिति में रखने पर केवल एक उदासीन बिन्दु प्राप्त होता है जिसकी स्थिति उत्तरी ध्रुव से ठीक दक्षिण की ओर या दक्षिणी ध्रुव से ठीक उत्तर की ओर होती है।

प्रश्न 4. विद्युत चुम्बक बनाने में नर्म लोहे का उपयोग क्यों किया जाता है ?

उत्तर: नर्म लोहे की चुम्बकीय प्रवृत्ति अधिक तथा धारणशीलता कम होती है। चुम्बकीय प्रवृत्ति अधिक होने से अल्प बाह्य चुम्बकीय क्षेत्र से भी चुम्बिकत हो जाती है। वहीं धारणशीलता कम होने से बाह्य चुम्बकन क्षेत्र हटाने पर आसानी से चुम्बकत्व समाप्त हो जाता है।

प्रश्न 5. एक दण्ड चुम्बक एक समान चुम्बकीय क्षेत्र \overrightarrow{B} के समान्तर स्थित है। इसका चुम्बकीय आघूर्ण \overrightarrow{M} है। इसके चुम्बकीय आघूर्ण की चुम्बकीय क्षेत्र के लम्बवत करने में कितना कार्य करना पड़ेगा?

उत्तर:

दिया है : $\theta_1 = 0^\circ$

बाद में θ2 =90°

W = MB ($\cos \theta_1 - \cos \theta_2$)

 $W = MB (\cos 0^{\circ} - \cos 90^{\circ})$

W = MB (1 - 0)

W = MB (अधिकतम अस्थायी अवस्था)

प्रश्न 6. दिपात कोण तथा नित कोण को परिभाषित करो।

उत्तर: दिक्पात कोण (Angle of Declination)- किसी स्थान पर चुम्बकीय याम्योत्तर तथा भौगोलिक याम्योत्तर के मध्य के न्यून कोण को दिक्पात कोण कहते हैं।

नित कोण (Angle of Dip)- पृथ्वी पर किसी स्थान पर स्वतन्त्रतापूर्वक लटकायी हुई चुम्बकीय सुई की अक्ष क्षैतिज दिशा के साथ जो कोण बनाती है उसे नित कोण कहते हैं।

प्रश्न 7. क्यूरी-वाइस नियम लिखो तथा लोहे के लिए क्यूरी ताप का मान लिखो।

उत्तर: क्यूरी वाइस नियम-लौहचुम्बकीय पदार्थों की चुम्बकीय प्रवृत्ति की ताप पर निर्भरता के लिए क्यूरी और वाइस ने नियम दिया जिसे क्यूरी-वाइस नियम कहते हैं। जिसके अनुसार किसी परमताप T पर लौहचुम्बकीय पदार्थों की चुम्बकीय प्रवृत्ति का मान मिम्न होता है

$$X_m = \frac{C}{T - T_C}$$

यहाँ Tc लौहचुम्बकीय पदार्थों का क्यूरी ताप है।

लोहे के क्यूरी ताप का मान 1043 K होता है।

प्रश्न 8. चुम्बकीय क्षेत्र रेखाओं की चार विशेषताएँ लिखो।

उत्तर: चुम्बकीय क्षेत्र रेखाओं के गुण-धर्म

- 1. क्षेत्र रेखाओं के किसी बिन्दु पर खींची गई स्पर्श रेखा उस बिन्दु पर चुम्बकीय क्षेत्र की दिशा दर्शाती है।
- 2. दो क्षेत्र रेखाएँ कभी एक-दूसरे को नहीं काटती हैं। क्योंकि यदि ऐसा होगा तो एक ही बिन्दु पर चुम्बकीय बल की दो दिशाएँ होंगी जो कि असम्भव है।

- 3. चुम्बक क्षेत्र रेखाएँ चुम्बक के बाहर चुम्बक के उत्तरी ध्रुव N से चलकर दक्षिणी ध्रुव S से उत्तरी ध्रुव N की ओर होती है। इस प्रकार ये बन्द वक्र बनाती हैं।
- 4. चुम्बकीय क्षेत्र में जिस स्थान पर बल रेखाएँ सघन होती हैं उतना ही चुम्बकीय क्षेत्र प्रबल होता है।

प्रश्न 9. असमान चुम्बकीय क्षेत्र में प्रतिचुम्बकीय, अनुचुम्बकीय तथा लौहचुम्बकीय पदार्थों का व्यवहार कैसा होता है ?

उत्तर: असमान चुम्बकीय क्षेत्र में प्रतिचुम्बकीय, अनुचुम्बकीय तथा लौहचुम्बकीय पदार्थों का व्यवहार निम्न होता है

- 1. प्रति चुम्बकीय पदार्थ प्रबल चुम्बकीय क्षेत्र से दुर्बल चुम्बकीय क्षेत्र की ओर अल्प प्रतिकर्षित होते हैं।
- 2. अनुचुम्बकीय पदार्थ दुर्बल चुम्बकीय क्षेत्र से प्रबल चुम्बकीय क्षेत्र। की ओर अल्प आकर्षित होते हैं।
- 3. लौहर्चुम्बकीय पदार्थ दुर्बल चुम्बकीय क्षेत्र से प्रबल चुम्बकीय क्षेत्र की ओर प्रबलता से आकर्षित होते हैं।

प्रश्न 10. चुम्बकत्व में गाउस का नियम क्या है ? यह क्या प्रदर्शित करता है ?

उत्तर: चुम्बकत्व में गाउस का नियम (Gauss's Law in Magnetism)- इस नियम के अनुसार, "किसी भी बन्द पृष्ठ से गुजरने वाला नेट चुम्बकीय फ्लक्स का मान शून्य होता है।"

अर्थात्
$$\oint_s \overrightarrow{\mathbf{B}} \cdot \vec{a} \mathbf{S} = 0$$

अत: स्पष्ट है कि बन्द पृष्ठ से जितनी चुम्बकीय क्षेत्र रेखाएँ बाहर निकलती हैं उतनी ही इसमें प्रवेश करती हैं। अत: नैट क्षेत्र रेखाओं की संख्या शून्य होती है।

चुम्बकत्व सम्बन्धी गाँउस का नियम यह दर्शाता है कि एकल चुम्बकीय ध्रुव का कोई अस्तित्व नहीं होता। चुम्बकत्व की उत्पत्ति का सूक्ष्मतम स्रोत धारावाही लूप या चुम्बकीय द्विध्रुव ही है अत: चुम्बकीय क्षेत्र रेखाएँ सतत् तथा बन्द वक्र के रूप में होती हैं।

प्रश्न 11. चुम्बकीय रेखाएँ बन्द वक्र बनाती हैं। क्यों ?

उत्तर: चुम्बक के बाहर इनकी दिशा उत्तरी ध्रुव (N) से दक्षिणी ध्रुव की ओर जबिक चुम्बक के अन्दर S से N की ओर होती है। इस प्रकार चुम्बकीय क्षेत्र रेखाएँ बन्द वक्र बनाती हैं। इस तथ्य को चुम्बकत्व का गाउस का नियम भी प्रमाणित करता है जिसके अनुसार किसी भी वन्द पृष्ठ से गुजरने वाला नेट चुम्बकीय फ्लक्स शून्य होता है।

प्रश्न 12. दण्ड चुम्बक और धारावाही परिनालिका के चुम्बकीय क्षेत्रों की तुलना करो।

उत्तर: दण्ड चुम्बक और धारावाही परिनालिका की तुलनासमानता

- 1. दोनों को ही स्वतन्त्रतापूर्वक लटकाने पर वे उत्तर-दक्षिण में ठहरते
- 2. दोनों ही चुम्बकीय पदार्थीं को अपनी ओर आकर्षित करते हैं।
- 3. दोनों में हीं दो ध्रुव होते हैं-उत्तरी ध्रुव तथा दक्षिणी ध्रुव।
- 4. दोनों के ही सजातीय ध्रुवों में प्रतिकर्षण तथा विजातीय ध्रुवों में आकर्षण होता है।
- 5. दोनों ही प्रेरण की क्रिया प्रदर्शित करते हैं।

असमानता —

दण्ड चुम्बक	धारावाही परिनालिका
(i) इसके सिरों पर चुम्बकत्व	(i) इसके भीतर प्रत्येक बिन्दु पर
अधिकतम तथा मध्य में न्यूनतम	चुम्बकत्त्र एक समान होता है,
होता है।	केवल सिरों के समीप
	थोड़ा-सा कम होता है।
(ii) इसके सिरों की ध्रुवता नियत	(ii) इसके सिरों की ध्रुवता धारा
रहती है।	प्रवाह की दिशा पर निर्भर
	करती है।
(iii) इसका चुम्बकत्व स्थायी होता	(iii) इसका चुम्बकत्व प्रवाहित धारा
है।	के मान पर निर्भर करता है।

प्रश्न 14. शैथिल्य वक्र के क्या उपयोग हैं?

उत्तर: शैथिल्य वक्र के अध्ययन से विभिन्न उपकरणों व मशीनों में प्रयुक्त विद्युत चुम्बकों के क्रोड के लिए उपयोग में लाने वाले पदार्थों का चयन करते हैं। विद्युत चुम्बक के क्रोड के लिए ऐसा लौहचुम्बकीय पदार्थ उपयुक्त हैं जिसमें अल्पे बाह्य धारा या चुम्बकीय तीव्रता से अधिक चुम्बकीय क्षेत्र उत्पन्न हो तथा चुम्बकीय तीव्रता हटाने पर चुम्बकीय क्षेत्र न्यूनतम हो जाए। इसमें शैथिल्य हास भी न्यून होना चाहिए। अत: विद्युत चुम्बक बनाने के लिए उच्च चुम्बकीय क्षेत्र, अधिक धारणशीलता, कम निग्राहिता, कम शैथिल्य हास, अधिक चुम्बकीय पारगम्यता का पदार्थ उपयुक्त है।

स्थायी चुम्बकत्व बनाने के लिए उच्च धारणशीलता तथा उच्च निग्राहिता के पदार्थ का चयन किया जाता है। गैल्वेनोमीटर, अमीटर, वोल्टमीटर, लाउडस्पीकर में ऐसे पदार्थों के क्रोडों का उपयोग किया जाता है जिनमें बार-बार चुम्बकन-विचुम्बकन होने पर ऊर्जा हानि नगण्य हो। इसीलिए कम शैथिल्य हानि वाले पदार्थों का चयन किया जाता है। ट्रांसफॉर्मर की क्रोड बनाने के लिए अधिक पारगम्यता, कम शैथिल्य हास, अधिक चुम्बकशीलता की मिश्रधातु ट्रांसफार्मर स्टील का प्रयोग किया जाता है।

प्रश्न 15. एक समान चुम्बकीय क्षेत्र में से कोण पर स्थित दण्ड चुम्बक पर बल आघूर्ण का व्यंजक ज्ञात करो। यह कब अधिकतम होता है ?

उत्तर: एक समान चुम्बकीय क्षेत्र में दण्ड चुम्बुक पर बुलु आघूर्ण (Torque on a bar Magnet in a Uniform Magnetic Field) माना m ध्रुव प्रबलता, 21 प्रभावी लम्बाई का छोटा दण्ड चुम्बक NS समरूप चुम्बकीय क्षेत्र \overrightarrow{B} में क्षेत्र के साथ θ कोण केविक्षेप (deflection) की स्थिति में रखा है।

चुम्बक के उत्तरी ध्रुव पर एक बल m चुम्बकीय क्षेत्र की दिशा में एक दक्षिणी ध्रुव पर इतना ही बल mB चुम्बकीय क्षेत्र की विपरीत दिशा में लगेगा। ये दोनों बल बलयुग्म (couple) बना रहे हैं। इस बलयुग्म का आघूर्ण τ = बल × दोनों बलों की क्रिया रेखाओं (line of reaction) के मध्य लम्बवत् दूरी

या τ = mB × NP

चित्र 8.18 से,

 $\frac{NP}{SN}$ = $\sin \theta \Rightarrow NP$ = $SN \sin \theta = 2I \sin \theta$

 \therefore τ = nB × 2l sin θ

 τ = m2l B sin θ(1)

सदिश रूप में,

$$\vec{\tau} = (\vec{M} \times \vec{B})$$

बल आधूर्ण के मात्रक

- न्यूटन मीटर टेस्ला
- जूल टेस्ला
- ऐम्पियर मीटर
- जूल मीटर वेबर-1

चित्र 8.19 से स्पष्ट है कि यदि $\overrightarrow{\mathrm{M}}$ व $\overrightarrow{\mathrm{B}}$ कागज के तल में हैं तो $\overrightarrow{\tau}$ अर्थात् $(\overrightarrow{M} \times \overrightarrow{\mathrm{B}})$ की दिशा कागज के तल के लम्बवत् नीचे की ओर होगी।

विशेष स्थितियाँ-

- (i) जब θ = 0, तो sin θ = 0∴ τ = 0अत: यही स्थायी सन्तुलन की अवस्था है।
- (ii) जब θ = 90° तो sinθ = 1 ∴ τ_{max} = MB
- (iii) जब θ = 90° अर्थात् $\sin \theta = 1$; B = 1 T तो $\tau = M$

चित्र 8.19—चम्बुकीय आधूर्ण की दिशा

अर्थात् चुम्बकीय द्विध्रुव का चुम्बकीय द्विध्रुव आघूर्ण उस बलयुग्म के आघूर्ण के तुल्य है जो द्विध्रुव पर तब कार्य करता है जब वह एकांक तीव्रता के समरूप (uniform) चुम्बकीय क्षेत्र में क्षेत्र के लम्बवत् -रेखा होता है।

चुम्बकीय क्षेत्र B का मान- B का मान ज्ञात करने के लिए हम पतली चुम्बकीय सुई (magnetic needle), जिसका चुम्बकीय आघूर्ण M एवं जड़त्व आघूर्ण। ज्ञात हो, लेते हैं। इसकी एकसमान चुम्बकीय क्षेत्र में दोलन (oscillation) कराते हैं।

चुम्बकीय सुई पर बलाघूर्ण

$$\tau = \vec{M} \times \vec{B}$$

इसको परिमाण

 τ = MB sin θ

τ-प्रत्यानयन आघूर्ण है जो सुई को वापस लाने का प्रयत्न करता है।

साम्यावस्था में, = τ = $I \times \frac{d^2\theta}{dt^2}$ = - MB sin θ

ऋणात्मक (-ve) चिह्न यह दर्शाता है कि प्रत्यानयन आघूर्ण विस्थापन के विपरीत है।

∵ कोण θ से बहुत छोटा है अत: हम sin θ ≈ θ मान लेते हैं।

अतः $I \frac{d^2 \theta}{dt^2}$ = -MB θ

या
$$\frac{d^2\theta}{dt^2} = -\frac{M3\theta}{1} \qquad ...(1)$$

समीकरण (1) सरल आवर्त गति को दर्शाती है, जिसकी कोणीय

आवृत्ति
$$\omega = \sqrt{\frac{mB}{1}}$$
 है।

अत: चुम्बकीय सुई का दोलनकाल

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{1}{mB}}$$

$$B = \frac{4\pi^2 I}{mT^2}$$

निबधात्मक प्रश्न

प्रश्न 1. भू-चुम्बकत्व के अवयव कौन-कौन से हैं ? इनकी परिभाषा दीजिए। इनको एक नामांकित आरेख में दर्शाइए।

उत्तर:

भू-चुम्बकत्व के अवयव (Elements of Earth's Magnetism)

किसी स्थान पर पृथ्वी के चुम्बकत्व का विधिपूर्वक अध्ययन करने। के लिए जिन राशियों की आवश्यकता होती है, उन्हें उस स्थान पर पृथ्वी के चुम्बकीय क्षेत्र के अवयव (elements of magnetic field) कहते हैं। पृथ्वी के चुम्बकीय क्षेत्र के तीन अवयव हैं-

- (i) दिक्पात कोण
- (ii) नित कोण
- (iii) पृथ्वी के चुम्बकीय क्षेत्र का क्षैतिज घटक।
- (i) दिक्पात कोण (Angle of Declination)- किसी स्थान पर स्वतन्त्रतापूर्वक लटके हुए चुम्बक की अक्ष से गुजरने वाले ऊर्ध्वाधर तल (vertical) को चुम्बकीय याम्योत्तर (magnetic meridian) कहते हैं। इसी प्रकार किसी स्थान पर पृथ्वी के भौगोलिक अक्ष से गुजरने वाले ऊध्वाधर तल को भौगोलिक याम्योत्तर (geographical meridian) कहते हैं।

किसी स्थान पर चुम्बकीय याम्योत्तर एवं भौगोलिक याम्योत्तर के मध्य जो न्यूनकोण (acute angle) बनता है, उसे उस स्थान पर दिक्पात कोण कहते हैं। इसे क से व्यक्त करते हैं।

दिक्पात कोण उच्चतर अक्षांशों पर अधिक एवं विषुवत् रेखा के पास कम होता है, भारत में दिक्पति का मान कम है, यह दिल्ली में 0°41'E एवं मुम्बई में 0°58'W है।

(ii) नमन कोण अथवा नित कोण, (Angle of Dip)- यदि किसी चुम्बकीय सुई को उसके गुरुत्व केन्द्र (centre of gravity) से स्वतन्त्रतापूर्वक इस प्रकार लटकाया जाये कि वह उड़्वाधर तल (vertical plane) में स्वतन्त्रतापूर्वक घूर्णन गित (rotational motion) कर सके तो स्थिर होने पर सुई की अक्ष क्षैतिज दिशा से कुछ झुकी हुई रहती है। इस दशा में सुई की चुम्बकीय अक्ष पृथ्वी के परिणामी चुम्बकीय क्षेत्र की दिशा व्यक्त करती है। चुम्बकीय सुई की अक्ष जिस कोण से क्षैतिज (horizontally) के साथ झुकी रहती है उसे ही नमन कोण कहते हैं।

चित्र 8.23--चुम्बकत्व के अवयव

इस प्रकार "स्वतन्त्रतापूर्वक लटकायी हुई चुम्बकीय सुई की अक्ष (axis of magnetic needle) क्षैतिज दिशा के साथ जो कोण बनाती है उसे नित कोण या नमन कोण कहते हैं।" चित्र 8.23 में नित कोण को 8 से व्यक्त किया गया है। दूसरे शब्दों में, हम कह सकते हैं कि पृथ्वी का परिणामी चुम्बकीय क्षेत्र क्षैतिज रेखा के साथ जो कोण बनाता है उसे ही नमन कोण कहते हैं।

ध्रुवों पर नमन कोण (angle of dip) का मान 90° एवं भूमध्य रेखा पर 0° (शून्य) होगा । अन्य स्थानों पर नमन कोण का मान 0° से 90° के मध्य होगा।

(iii) पृथ्वी के चुम्बकीय क्षेत्र का क्षैतिज घटक (Horizontal Component of Earth's Magnetic Field)-

 $V = B \sin \theta$ (2)

समी. (1) व (2) से,

$$\frac{V}{H} = \frac{B \sin \theta}{B \cos \theta} = \frac{\sin \theta}{\cos \theta} = \tan \theta$$
या
$$V = H \tan \theta \qquad ...(3)$$
या
$$\tan \theta = \frac{V}{H}$$

$$\therefore \qquad \theta = \tan^{-1} \left(\frac{V}{H}\right)$$
समी. (1) व (2) के वर्गों को जोड़ने पर,
$$H^2 + V^2 = B^2 \cos^2 \theta + B^2 \sin^2 \theta$$

$$= B^2 (\cos^2 \theta + \sin^2 \theta) = B^2$$
या
$$B^2 = H^2 + V^2$$

$$\therefore \qquad B = \sqrt{H^2 + V^2} \qquad ...(4)$$

यदि किसी स्थान पर नमन कोण (angle of dip) θ एवं दिक्पात कोण (angle of declination) φ के ज्ञात हो तो उस स्थान पर पृथ्वी के चुम्बकीय क्षेत्र B की दिशा निर्धारित की जा सकती है। यदि क्षैतिज घटक H ज्ञात हो और 8 ज्ञात हो तो समी. (1) से B का मान ज्ञात किया जा सकता है।

स्पष्ट है कि 0, ϕ तथा H ज्ञात होने पर किसी स्थान पर पृथ्वी के चुम्बकीय क्षेत्र का पूर्ण ज्ञान हो जाता है, इसीलिए इन तीनों को भू-चुम्बकत्व के अवयव (elements of earth's magnetism) कहते हैं। ध्यान रखने योग्य तथ्य यह है कि नित कोण एवं दिक्पात कोण का मान न केवल एक स्थान से दूसरे स्थान पर बदलता रहता है बिल्क एक ही स्थान पर समय के साथ अनियमित (irregular) रूप से बदलता रहता है।

θ, φ एवं Η पदों में कुछ परिभाषाएँ।

- 1. समदिक्पाती रेखाएँ (Isogonic lines)- ऐसे स्थानों को मिलाने | वाली रेखाएँ, जहाँ दिक्पात कोण का मान समान (equal angle of declination) होता है, समदिकपाती रेखाएँ कहलाती हैं।
- 2. शून्य दिक्पाती रेखाएँ (Agonic lines)- शून्य दिक्पात कोण (zero angle of declination) वाले स्थानों को मिलाने वाली रेखाएँ शून्य दिक्पाती रेखाएँ कहलाती हैं।
- 3. समनमन रेखाएँ (Isoclinic lines)-समान नमन कोण (angle of dip) वाले स्थानों को मिलाने वाली रेखाएँ समनमन रेखाएँ कहलाती
- 4. अनत या चुम्बकीय निरक्ष रेखाएँ (Aclinic or magnetic equatorial lines)- शून्य नमन कोण (zero angle of dip) वाले स्थानों को मिलाने वाली रेखाएँ अनत या चुम्बकीय निरक्ष रेखाएँ कहलाती
- 5. समबल रेखाएँ (Isodynamic lines)- ऐसे स्थानों को मिलाने वाली, रेखाएँ, जहाँ चुम्बकीय क्षेत्र के क्षैतिज घटक (horizontal component) H का मान समान होता है, समबल रेखाएँ कहलाती हैं।

चुम्बकीय सुई का ध्रुवों पर प्रभाव-जब दिक्सूचक (compass) को किसी समतल में रखा जाता है तो इसकी चुम्बकीय सुई उस स्थान पर पृथ्वी के चुम्बकीय क्षेत्र के क्षैतिज

चित्र 8.24

अवयव (horizontal element) की दिशा में ठहरती है। चूंकि पृथ्वी का गर्भ चुम्बकीय खनिजों से भरा हुआ होता है। अत: यह दिक्सूचक सुई चुम्बकीय याम्योत्तर (magnetic meridian) से हट जाती है। हमें किसी स्थान पर दिक्सूचक कोण (angle of declination) का मान उस स्थान पर दिक्सूचक सुई के मान में संशोधन (correction) कर यथार्थ उत्तर दिशा (exact north direction) ज्ञात करने में सहायता करता है। ध्रुवों पर नमनदर्शी सुई कार्य करती है। यह एक ऐसी दिक्सूचक है जो पृथ्वी के चुम्बकीय क्षेत्र से युक्त ऊर्ध्वाधर तल में घूमने के लिए धुरी पर रखी गयी है। दिक्सूचक की सुई वह कोण बनाती है जो चुम्बकीय क्षेत्र ऊध्वाधर से बनाता है। चुम्बकीय ध्रुवों पर यह सुई सीधे नीचे (exact lower) की ओर इंगित करती है।

प्रश्न 2. चुम्बकीय शैथिल्य वक्र से क्या आशय है ? शैथिल्य वक्र बनाकर इसकी मुख्य विशेषताओं को परिभाषित कीजिए।

उत्तर: चुम्बकीय शैथिल्य वक्र (Magnetic Hysteresis Curve)

जब किसी लौहचुम्बकीय पदार्थ को किसी B चुम्बकीय तीव्रता वाले क्षेत्र में रखते हैं तो पदार्थ प्रेरण द्वारा चुम्बकित हो जाता है। यदि H के मान को धीरे-धीरे बढ़ाये तो चुम्बकीय प्रेरण B का मान रेखीय रूप से परिवर्तित नहीं होता है। चुम्बकीय पारगम्यता (µ = B/H) नियत नहीं रहती बल्कि वह H के साथ परिवर्तित होती है इसके अतिरिक्त $\overrightarrow{\mathrm{B}}$ व $\overrightarrow{\mathrm{H}}$ में सम्बन्ध पदार्थ के अतीत पर भी निर्भर करता है। $\overrightarrow{\mathrm{B}}$ व

चित्र 8.44—शैथिल्य वक्र

में धारा का मान बढ़ायें तो H में वृद्धि के साथ B का मान भी बढ़ता है। यद्यपि B का मान रेखीय रूप से नहीं बढ़ता है। B का मान बढ़कर अन्त में संतृप्त (saturated) हो जाता है। यह स्थिति चित्र में Oa वक्र द्वारा दिखायी गयी। है। यह स्थिति दर्शाती है डोमेन तब तक पंक्तिबद्ध (in lines) और एक दूसरे में विलीन होते रहते हैं, जब तक कि आगे वृद्धि असम्भव न हो जाए। अब H को घटाकर वापस शून्य पर ले आते हैं तो B का मान अपने पुराने मार्ग के अनुसार न घटकर नए मार्ग ab के अनुसार घटता है। यहाँ H = 0 पर B ≠ 0 है। H = 0 पर B का मान पदार्थ की चुम्बकीय धारणशीलता या चुम्बकत्वावशेष कहलाता है।

बाह्य चुम्बनकारी क्षेत्र को यदि हटा लें तो भी डोमेन पूर्णत: पूर्वत्। विन्यास ग्रहण नहीं करते हैं। यदि परिनालिका में धारा की दिशा उलट दें फिर इसको धीरे-धीरे बढ़ाएँ तो कुछ डोमेन विपरीत होकर अपना विन्यास बदल लेते हैं जब तक कि परिणामी क्षेत्र शून्य न हो जाए।

यह वक्र में bc द्वारा दर्शाया गया है। अत: c बिन्दु पर H ≠ 0, B = 0 है। c पर H का मान पदार्थ की निग्नाहिता कहलाता है। यदि विपरीत दिशा की धारा का परिमाण बढ़ाते चले जाएँ तो फिर संतृप्त अवस्था प्राप्त होती है। वक्र cl द्वारा संतृप्त अवस्था दर्शायी गयी है। विपरीत दिशा की धारा को यदि फिर कम किया जाए (वक्र de) फिर उलट दिया जाए (वक्र ea) तो यह चक्र (cycle) बार-बार चलता रहता है। इस परिघटना को चुम्बकीय शैथिल्य कहते हैं।

धारणशीलता (Retentivity)- बाह्य चुम्बकीय क्षेत्र को शून्य कर देने पर भी छड़ में जो चुम्बकत्व शेष रह जाता है, उसे अवशेष चुम्बकत्व (residual magnetism) कहते हैं। "पदार्थ द्वारा चुम्बकत्व को बनाये रखने की क्षमता को धारणशीलता (retentivity) कहते हैं। अत: धारणशीलता को बाह्य चुम्बकीय क्षेत्र हटाने पर पदार्थ में अवशेष चुम्बकत्व की माप या सीमा (limit) के रूप में जाना जाता है। ग्राफ (चित्र 8.44) में इसे Ob भाग द्वारा व्यक्त किया गया है।

निग्नाहिता (Coercivity)- यदि चुम्बकन क्षेत्र H को विपरीत दिशा में बढ़ाया (reverse magnetising field) जाये तो पदार्थ का चुम्बकत्व घटता है और H के एक निश्चित मान पर शून्य हो जाता है। H के इसी मान। को निग्नाहिता कहते हैं। इस प्रकार "बाह्य चुम्बकन क्षेत्र H का वह मान। जिस पर पदार्थ का

चुम्बकत्व (residual magnetism) समाप्त हो | जाता है, निग्राहिता कहलाता है।" वक्र में इसे Oc से प्रदर्शित किया गया है। इस प्रकार निग्राहिता विपरीत दिशा में आरोपित वह चुम्बकीय क्षेत्र है जिससे पदार्थ का अवशेष चुम्बकत्व समाप्त हो जाता है।

प्रश्न 3. प्रतिचुम्बकीय पदार्थों की व्याख्या करते हुए इनके गुणों की विवेचना करो तथा प्रतिचुम्बकीय तथा अनुचुम्बकीय पदार्थों के गुणों में पाँच अन्तर लिखो।

उत्तर:

प्रतिचुम्बकीय पदार्थ (Diamagnetic Substance)

ऐसे पदार्थ जो असमान चुम्बकीय क्षेत्र में रखे जाने पर अधिक तीव्रता से कम तीव्रता वाले भाग की ओर विस्थापित होते हैं अर्थात् चुम्बकीय क्षेत्र में प्रतिकर्षित होते हैं। अथवा जो चुम्बकीय क्षेत्र में रखने पर चुम्बकीय क्षेत्र की विपरीत दिशा में कुछ चुम्बकित हो जाते हैं, प्रतिचुम्बकीय पदार्थ कहलाते हैं। पदार्थों के इस गुण को प्रतिचुम्बकत्व कहते हैं।

उदाहरण के लिए सोना (Au), चाँदी (Ag), ताँबा (Cu), पारा (Hg), बिस्मिथ (Bi), नाइट्रोजन (N₂), हाइड्रोजन (H₂), पानी (H₂O), नमक (NaCl), हीरा (C), वायु, एन्टीमनी (Sb), जस्ता (Zn) आदि प्रतिचुम्बकीय पदार्थ हैं।

प्रतिचुम्बकत्व की व्याख्या (Explanation of Diamagnetism)

हम जानते हैं कि किसी परमाणु का चुम्बकीय आघूर्ण (magnetic moment) उसके सभी इलेक्ट्रॉनों के चुम्बकीय आघूर्णों के सदिश योग के बराबर होता है।

प्रतिचुम्बकीय पदार्थों के परमाणुओं का परिणामी चुम्बकीय आघूर्ण शून्य होता है। इनके परमाणुओं में इलेक्ट्रॉनों की संख्या सम (even) होती है और विपरीत दिशा में चक्रण करने वाले इलेक्ट्रॉनों के पूरे-पूरे जोड़े (pairs) बन जाते हैं। प्रत्येक युग्म के दोनों इलेक्ट्रॉन एक-दूसरे के चुम्बकीय आघूर्ण को निरस्त कर देते हैं, फलस्वरूप, पूरे परमाणु का परिणामी चुम्बकीय आघूर्ण शून्य मिलता है। इसीलिए इन पदार्थों के परमाणु चुम्बक की भाँति व्यवहार नहीं करते हैं।

जब इन पदार्थों को बाह्य चुम्बकीय क्षेत्र (external magnetic field) में रखा जाता है तो प्रत्येक युग्म के इलेक्ट्रॉनों पर लारेंन्ज बल लगने लगता है जिसकी दिशा युग्म के दोनों इलेक्ट्रॉनों के लिए एक-दूसरे के विपरीत होती है क्योंिक जोड़े के दोनों इलेक्ट्रॉन परस्पर विपरीत दिशा में चक्रण (spin) करते हैं, अतः प्रत्येक युग्म एक इलेक्ट्रॉन का कोणीय वेग (angular velocity) कम हो जाता है और दूसरे इलेक्ट्रॉन का बढ़ जाता है अर्थात् एक इलेक्ट्रॉन अवमंदित (decelerate) एवं दूसरा इलेक्ट्रॉन त्वरित (accelerate) हो जाता है।

अवमंदित होने वाले इलेक्ट्रॉन के लिए तुल्य धारा (i) का मान कम हो जाता है, फलस्वरूप इसका चुम्बकीय आघूर्ण (m = iA) कम हो जाता है। इस प्रकार त्वरित होने वाले इलेक्ट्रॉन के लिए तुल्य धारा (i) का मान बढ़ जाता है फलस्वरूप, चुम्बकीय आघूर्ण का मान बढ़ जाता है। इस प्रकार युग्म के दोनों इलेक्ट्रॉन एक-दूसरे के चुम्बकत्व को निरस्त (cancel) नहीं कर पाते हैं, फलस्वरूप प्रत्येक युग्म में बाह्य चुम्बकीय क्षेत्र में एक । परिणामी आघूर्ण (resultant moment) प्रेरित हो जाता है तथा इस प्रकार पूरे परमाणु में एक परिणामी चुम्बकीय आघूर्ण प्रेरित (induced) हो जाता है जिसकी दिशा बाह्य क्षेत्र की दिशा के विपरीत होती है। इसीलिए "प्रतिचुम्बकीय पदार्थों की उपस्थिति से बाह्य चुम्बकीय क्षेत्र का मान घट (reduce) जाता है। ऐसे पदार्थों के चुम्बकत्व पर ताप का कोई प्रभाव नहीं पड़ता है।"

चित्र 8.29. परमाणु में चक्रण करता इलेक्ट्रॉन एक आधूर्ण उत्पन्न करता है

प्रतिचुम्बकीय पदार्थों के गुण (Properties of Diamagnetic Substances)- इन पदार्थों में निम्नलिखित गुण पाये जाते हैं

(i) चित्र 8.30, बाह्य चुम्बकीय क्षेत्र में रखी प्रतिचुम्बकीय पदार्थ की एक छड़ दर्शाता है। क्षेत्र रेखाएँ विकर्णित होती हैं या दूर हटती हैं इसलिए पदार्थ के अन्दर क्षेत्र कम हो जाता है।

(ii) जब किसी प्रतिचुम्बकीय पदार्थ की छड़ को चुम्बकीय ध्रुवों के मध्य स्वतन्त्रतापूर्वक लटकाया जाता है तो छड़ की अक्ष घूमकर चुम्बकीय क्षेत्र के लम्बवत् हो जाती है। छड़ के सिरों पर उत्पन्न ध्रुव चुम्बकीय ध्रुवों के समान होते हैं (चित्र 8.31)

(iii) यदि किसी प्रति चुम्बकित घोल को U-नली (U-tube) में भरकर नली की एक भुजा को प्रबल चुम्बकीय ध्रुवों (strong magnetic poles) के बीच रख दिया जाये तो उस भुजा में घोल का तल गिर जाता है (level of solution falls down) (चित्र 8.32)

चित्र 8.32

(iv) जब प्रतिचुम्बकीय पदार्थ को असमान (non-uniform) चुम्बकीय क्षेत्र में रखा जाता है तो वह अधिक तीव्रता वाले भाग से कम तीव्रता वाले भाग ओर (stronger to weaker parts of field) आकर्षित होता है। यदि काँच की प्याली में प्रति चुम्बकीय द्रव लेकर उसे दो पास-पास रखे चुम्बकीय ध्रुवों पर रख दें तो द्रव बीच में अवसाद (depression in the middle) हो जाता है [चित्र 8.33(a)], क्योंकि ध्रुवों के मध्य चुम्बकीय क्षेत्र सबसे प्रबल है। यदि ध्रुवों के बीच की दूरी बढ़ा दी जाये तो द्रव बीच में ऊपर उठ जाता (accumulates in the middle) है [चित्र 8.33(b)], क्योंकि अब बीच की अपेक्षा ध्रुवों के समीप चुम्बकीय

(v) इन पदार्थों की चुम्बिकत होने की प्रवृत्ति अर्थात् चुम्बिकीय प्रवृत्ति (magnetic susceptibility) ऋणात्मक होती है। चुम्बिकीय प्रवृत्ति ताप पर निर्भर (independent of temperature) नहीं करती है। बिस्मथ के लिए Xm का मान – 0.00015 होता है।

चিत्र 8.34

(vi) इन पदार्थों की आपेक्षिक चुम्बकशीलता (relative permeability) μ_r निर्वात की अपेक्षा कम होती है अर्थात् इन पदार्थों से चुम्बकीय बल रेखाएँ निर्वात (vacuum) की अपेक्षा कम गुजरती हैं। निर्वात के लिए μ_r = 1 तथा इन पदार्थों के लिए μ_r < 1 होती है।

इससे यह पता चलता है कि पदार्थ के अन्दर चुम्बकीय क्षेत्र B, निर्वात के अन्दर चुम्बकीय क्षेत्र Bo से कम होगा अर्थात् प्रतिचुम्बकित पदार्थ किसी चुम्बकीय क्षेत्र में रखे जाने पर बल रेखाओं को बाहर की ओर। मोड़ (expel) देते हैं (चित्र 8.35)

अनुचुम्बकीय पदार्थ (Paramagnetic Substances)

ऐसे पदार्थ जो असमान चुम्बकीय क्षेत्र में रखे जाने पर कम तीव्रता से अधिक तीव्रता वाले भाग की ओर अल्प विस्थापित होते हैं, अर्थात् चुम्बकीय क्षेत्र से अल्प आकर्षित होते हैं, अनुचुम्बकीय पदार्थ कहलाते हैं। ऐसे पदार्थ चुम्बकीय क्षेत्र में रखे जाने पर चुम्बकीय क्षेत्र की दिशा में कुछ चुम्बकित हो जाते हैं।

उदाहरण के लिए ऐलुमिनियम (AI), सोडियम (Na), प्लेटिनम (Pt), कॉपर क्लोराइड (CuCl₂), ऑक्सीजन (O₂), मैंगनीज (Mn) क्राउन काँच, निकिल व आयरन के लवणों के घोल आदि अनुचुम्बकीय पदार्थों के उदाहरण हैं।

अनुचुम्बकत्व की व्याख्या (Explanation of Paramagnetism)

ये वे पदार्थ होते हैं जिनके परमाणुओं का परिणामी चुम्बकीय आघूर्ण शुन्य नहीं होता है। इनके परमाणुओं में इलेक्ट्रॉनों की संख्या सम (even) नहीं होती है और इनमें विपरीत दिशा में चक्रण (spin) करने वाले इलेक्ट्रॉनों के पूरे-पूरे जोड़े (pairs) बनने के बाद कुछ इलेक्ट्रॉन शेष रह जाते हैं जो एक ही दिशा में चक्रण करते हैं। इस प्रकार इनके परमाणुओं में एक परिणामी स्थायी चुम्बकीय आघूर्ण (resultant stable magnetic moment) होता है। इस प्रकार अनुचुम्बकीय पदार्थों का प्रत्येक परमाणु एक चुम्बकीय द्विध्रुव अथवा एक निर्बल नन्हें दण्ड चुम्बक (weak tiny bar magnet) की भाँति व्यवहार करता है जिसे परमाण्वीय चुम्बक (atomic magnet) कहते हैं। सामान्यतः बाह्य क्षेत्र की अनुपस्थिति में ये परमाणु अनियमित रूप से अभिविन्यस्त (randomly oriented) रहते हैं (चित्र 8.36) जिससे पूरे पदार्थ का नैट (net) चुम्बकीय आघूर्ण शून्य रहता है। इसलिए अनुचुम्बकीय पदार्थ बाह्य चुम्बकीय क्षेत्र की अनुपस्थिति (absence) में चुम्बकत्व प्रदर्शित नहीं करते हैं।

चित्र 8.36. बाह्य क्षेत्र की अनुपस्थिति में

जब अनुचुम्बकीय पदार्थ को किसी बाह्य चुम्बकीय क्षेत्र (external magnetic field) में रखा जाता है तो प्रत्येक परमाण्वीय चुम्बक पर बल आघूर्ण लगता है जो चुम्बक को घुमाकर बाह्य क्षेत्र की दिशा में लाने का प्रयत्न करता है, फलस्वरूप अनुचुम्बकीय पदार्थ का प्रत्येक परमाणु बाह्य क्षेत्र की दिशा में संरेखित (aligned) होने का प्रयास करता है। परिणामस्वरूप पदार्थ के बहुत से परमाणु बाह्य चुम्बकीय क्षेत्र की दिशा में सरेखित हो जाते हैं और पदार्थ चुम्बिकत (magnetised) हो जाता है। चुम्बिकत पदार्थ का चुम्बकीय क्षेत्र बाह्य क्षेत्र के साथ संयुक्त होकर परिणामी क्षेत्र को बढ़ा देता है। यदि बाह्य क्षेत्र की तीव्रता बढ़ाते जायें तो एक स्थिति ऐसी आती है जब पदार्थ के सभी परमाणु बाह्य चुम्बकीय क्षेत्र के साथ सरेखित हो जाते हैं और परिणामी चुम्बकत्व अधिकतम (maximum) हो जाता है (चित्र 8.37)।

चित्र 8.37.बाह्य क्षेत्र की उपस्थिति

पदार्थ के परमाणुओं में ऊष्मीय विक्षोभ (thermal agitation) भी होता है। यदि पदार्थ कोई गैस है तो इसके परमाणु अनियमित गित करते रहते हैं और यदि ठोस है तो परमाणु कम्पन (vibration) करते रहते हैं। यह विक्षोभ परमाणुओं के चुम्बकीय संरेखण को अव्यवस्थित (disturb) करता है, अत: साधारणत: अनुचुम्बकीय पदार्थों में चुम्बकन बहुत कम हो जाता है। बाह्य क्षेत्र बढ़ाने तथा ताप घटाने पर चुम्बकन बढ़ जाता है।

अनुचुम्बकीय पदाथों के गुण (Properties of Diamagnetic Substances) इन पदार्थों में निम्नलिखित गुण पाये जाते हैं

(i) जब किसी अनुचुम्बकीय पदार्थ की छड़ को दो चुम्बकीय ध्रुवों के। बीच लटकाते हैं तो छड़ की अक्ष घूमकर चुम्बकीय क्षेत्र के समान्तर हो जाती है। छड़ के सिरों पर उत्पन्न ध्रुव चुम्बकीय ध्रुवों से विपरीत होते हैं। [(चित्र 8.38]

বিস 8.38

(ii) यदि किसी अनुचुम्बकीय घोल को U-नली (U-tube) में भरकर | इसकी एक भुजा को प्रबल चुम्बकीय ध्रुवों के बीच रख दें, तो उस भुजा के घोल का तल ऊपर उठ जाता है (चित्र 8.39)।

चित्र 8.39

(iii) ये पदार्थ असमान तीव्रता के चुम्बकीय क्षेत्र (non-uniform Imagnetic field) में अधिक तीव्रता वाले भाग की ओर आकर्षित होते हैं। यदि एक काँच की प्याली में किसी अनुचुम्बकीय द्रव को लेकर पास-पास रखे दो चुम्बकीय ध्रुवों पर रखा जाये तो द्रव बीच में ऊपर को उठ जाता है (accumulate and elevates in the middle) [चित्र 8.40 (a)] क्योंकि ध्रुवों के मध्य चुम्बकीय क्षेत्र की तीव्रता अधिक होती है। इसके विपरीत

यदि ध्रुवों के मध्य दूरी बढ़ा दी जाये, तो द्रव बीच में दबकर किनारों पर उठ जाता है क्योंकि इस स्थिति में ध्रुवों के मध्य चुम्बकीय क्षेत्र की तीव्रता कम होती है।

(iv) इन पदार्थों की चुम्बकीय प्रवृत्ति धनात्मक (positive) परन्तु बहुत कम होती है। इनकी चुम्बकीय प्रवृत्ति परम ताप के व्युत्क्रमानुपाती होती है (क्युरी का नियम)

$$\chi_m \approx \frac{1}{T}$$

जहाँ

$$\chi_m = \frac{C}{T}$$

जहाँ C एक नियतांक है जिसको क्यूरी नियतांक कहते हैं। उपरोक्त समीकरण को क्यूरी का नियम कहते हैं।

(v) इनकी आपेक्षिक चुम्बकशीलता (relative per-meability) μ_r निर्वात की अपेक्षा कुछ अधिक होती है अर्थात् इन पदार्थों के लिए

 $\mu_r > 1$

अतः इनके लिए B का मान B₀ से कुछ अधिक होता है। इसी कारण अनुचुम्बकीय पदार्थों को चुम्बकीय क्षेत्र में रखने पर ये बल रेखाओं को पास-पास कर देते हैं।

प्रश्न 4. क्यूरी ताप किसे कहते हैं ? प्रतिचुम्बकीय, अनुचुम्बकीय तथा लौहचुम्बकीय पदार्थों की चुम्बकीय प्रवृत्ति ताप पर किस प्रकार निर्भर करती है ? समझाइये तथा आवश्यक नियम भी लिखिए।

उत्तर: क्यूरी ताप (Curie Temperature)- लौह चुम्बकीय पदार्थों को गर्म करने पर ऊष्मीय विक्षोभ के कारण डोमेन संरचनाएँ नष्ट होने लगती हैं और ताप बढ़ने पर चुम्बकन का गुण धीरे-धीरे कम होता जाता है। और वह अनुचुम्बकीय पदार्थ में बदल जाता है। जब पदार्थ को ठण्डा किया जाता है तो पुन: लौह चुम्बकीय हो जाता है।

अत: क्यूरी ताप वह ताप है जिस पर लौह चुम्बकीय पदार्थ अनुचुम्बकीय पदार्थ में बदल जाता है।

चुम्बकीय प्रवृत्ति की ताप पर निर्भरता-

- (a) प्रतिचुम्बकीय पदार्थों की चुम्बकीय प्रवृत्ति ताप पर निर्भर नहीं करती।
- (b) अनुचुम्बकीय पदार्थों की चुम्बकीय प्रवृत्ति (Xm) उसके परम ताप (T) के व्युत्क्रमानुपाती होती है।

अर्थात्
$$\chi_m \propto \frac{1}{T}$$
 या
$$\chi_m = \frac{C}{T}$$

इस नियम को क्यूरी का नियम कहते हैं।

(c) लौहचुम्बकीय पदार्थों की चुम्बकीय प्रवृत्ति की ताप पर निर्भरता के लिए क्यूरी और वाइस ने नियम दिया जिसे क्यूरी-वाइस नियम कहते हैं। इसके अनुसार किसी परमताप T पर लौहचुम्बकीय पदार्थों की चुम्बकीय प्रवृत्ति का मान निम्न है

$$\chi_m = \frac{\mathrm{C}}{\mathrm{T} - \mathrm{T}_\mathrm{C}}$$

हाँ TC लौहचुम्बकीय पदार्थों का क्युरी ताप है।

क्यूरी-वाइस के नियम के अनुसार चुम्बकीय प्रवृत्ति तथा परमताप के मध्य ग्राफ (X – T ग्राफ) चित्र में दर्शाया गया है

प्रश्न 5. विद्युत चुम्बक तथा स्थायी चुम्बक बनाने के लिए आवश्यक लौहचुम्बकीय पदार्थों की विशेषताएँ लिखिए, इनके उपयोग भी लिखिए।

उत्तर: विद्युत चुम्बक (Electromagnet)

ऐसा चुम्बक जो विद्युत धारा बहने पर चुम्बकत्व प्रदर्शित करे और धारा को प्रवाह बन्द होते ही चुम्बकत्व समाप्त हो जाये, विद्युत चुम्बक कहलाता है। हम जानते हैं कि जब किसी परिनालिका (solenoid) में धारा प्रवाहित की जाती है तो इसकी अक्ष पर उत्पन्न चुम्बकीय क्षेत्र B = μ_0 nI होता है, जहाँ n = $\frac{N}{l}$ अर्थात् परिनालिका की एकांक लम्बाई में फेरों की संख्या (number of turns per unit length) और I उसमें प्रवाहित धारा है। परिनालिका के चुम्बकीय क्षेत्र की बल रेखाएँ (चित्र 8.47) में प्रदर्शित की गई हैं। यदि परिनालिका के अन्दर कोई लौह-चुम्बकीय पदार्थ क्रोड (core) के रूप में रख दें तो परिनालिका के

चुम्बकीय क्षेत्र की तीव्रता बढ़ जाती है (चित्र 8.48) और लौहचुम्बकीय पदार्थ स्वयं भी चुम्बकित (magnetised) हो जाता है।

चूँिक नर्म लोहे की चुम्बक प्रवृत्ति (magnetic susceptibility) अधिक होती है और धारणशीलता (retentivity) कम होती है, अत: नर्म लोहे की छड़ यदि परिनालिका के अन्दर रखी जाये और परिनालिका में धारा प्रवाहित की जाये तो नर्म लोहे की छड़ दण्ड चुम्बक की भाँति व्यवहार करेगी। यदि परिनालिका में धारा प्रवाह बन्द कर दें तो परिनालिका के कारण चुम्बकीय क्षेत्र समाप्त हो जायेगा, फलस्वरूप नर्म लोहे की छड़ भी अपना चुम्बकत्व लगभग खो देगी क्योंकि उसकी धारणशीलता बहुत कम होती है। स्पष्ट है कि

नर्म लौह से क्रोड (core) युक्त परिनालिको दण्ड विद्युत चुम्बक की तरह व्यवहार करेगी (चित्र 8.49)।

यदि नाल विद्युत चुम्बक (horse shoe magnet) बनाना है तो नाल के रूप में नर्म लोहे की क्रोड पर चित्र 8.49 की भाँति ताँबे के तार के फेरे लपेटते हैं।।

विद्युत चुम्बकों के उपयोग-

- (i) बड़े-बड़े विद्युत चुम्बक फैक्टरियों में चलनशील क्रेनों (movable cranes) के द्वारा लोहे तथा फौलाद के बड़े-बड़े यन्त्रों व गट्ठों को एक स्थान से दूसरे स्थान तक ले जाने के काम आते हैं।
- (ii) ये अस्पतालों, आँख या शरीर के किसी भाग से लोहे अथवा फौलाद के छरें निकालने के काम आते हैं।
- (iii) ये विद्युत-घण्टी, स्वचालित स्विचों (automatic switches) आदि में प्रयुक्त होते हैं।

आंकिक प्रश्न

प्रश्न 1. एक दण्ड चुम्बक का चुम्बकीय आघूर्ण 200 A-m² है, इसे 0.86 T वाले एक समान चुम्बकीय क्षेत्र में लटकाया गया है, इसे क्षेत्र में 60° कोण से विक्षेपित करने के लिए आवश्यक बल आघूर्ण ज्ञात करो।

हल: दिया है : चुम्बकीय आघूर्ण M =200A-m²

चुम्बकाय क्षेत्र B = 0.86T

तथा कोण θ = 60°

अतः आवश्यक बल आघूर्ण

 $\tau = MB \sin\theta$

$$\tau = 200 \times 0.86 \times \sin 60^{\circ}$$

$$\tau = 200 \times 0.86 \times \frac{\sqrt{3}}{2}$$

$$\tau = 86\sqrt{3}$$
N-m

प्रश्न 2. किसी स्थान पर पृथ्वी के चुम्बकत्व का क्षैतिज घटक B = 0.5 × 10⁻⁴Wb/m² है तथा नित कोण 450 है तो ऊर्ध्व घटक का मान क्या होगा ?

हल: दिया है : पृथ्वी के चुम्बकत्व का क्षैतिज घटक

$$B_H = 0.5 \times 10^{-4} \text{ wb/m}^2$$

तथा नित कोण θ = 45°

$$tan \; \theta = \frac{\mathrm{B_V}}{\mathrm{B_H}}$$

 $B_V = B_H \tan \theta$

ऊर्ध्व घटक B_V = B_H tan 45°

$$B_V = B_H(\because \tan 45^\circ = 1)$$

$$B_V = 0.5 \times 10^{-4} Wb/m$$

प्रश्न 3. 1 cm² अनुप्रस्थ काट क्षेत्रफल की एक लौह चुम्बकीय पदार्थ की छडू 200 ओरस्टेड के चुम्बकीय क्षेत्र में रखने पर 3000 G का चुम्बकीय क्षेत्र उत्पन्न होता है। पदार्थ की चुम्बकशीलता एवं चुम्बकीय प्रवृत्ति का मान ज्ञात करो।

हल: दिया है : अनुप्रस्थ काट क्षेत्रफल A = 1 cm²

चुम्बकन क्षेत्र H = 200 ऑरस्टेड

उत्पन्न चुम्बकीय क्षेत्र B = 3000G

अतः चुम्बकशीलता
$$\mu = \frac{B}{H}$$

$$= \frac{3000}{200} = 15$$

तथा

$$\mu = (1 + \chi_m)$$

$$15 = 1 + \chi_m$$

अत: चुम्बकीय प्रवृत्ति $\chi_m = 15 - 1 = 14$

प्रश्न 4. लोहे के किसी नमूने के लिए निम्न सम्बन्ध है

$$\mu = [\frac{0.4}{H} + 12 \times 10^{-4}] \text{ H/m}$$

H का वह मान ज्ञात करो जो 1T का चुम्बकीय क्षेत्र उत्पन्न करे।

हल: हम जानते हैं।

$$\mu = \frac{B}{H}$$
3Id: $\frac{0.4}{H} + 12 \times 10^{-4} = \frac{1}{H}$ $\therefore B = 1T$

$$\frac{1}{H} - \frac{0.4}{H} = 12 \times 10^{-4}$$

$$\frac{0.6}{H} = 12 \times 10^{-4}$$

$$H = \frac{0.6}{12 \times 10^{-4}}$$

$$H = 500 \text{ H/m}$$

प्रश्न 5. 2 × 10³ A/m का चुम्बकीय क्षेत्र एक लोहे की छड़ में 8πT का चुम्बकीय क्षेत्र उत्पन्न करता है तो छड़ की आपेक्षिक पारगम्यता ज्ञात करो।

हल: प्रश्नानुसार चुम्बकीय क्षेत्र H = 2 × 10³A/m

उत्पन्न चुम्बकीय क्षेत्र B = 8πT

∴ B =
$$\mu_0\mu_rH$$

अतः आपेक्षिक पारगम्यता

$$\mu_r = \frac{B}{\mu_0 H}$$

$$\mu_r = \frac{8\pi}{4\pi \times 10^{-7} \times 2 \times 10^3}$$

$$\mu_r = 10^4$$

प्रश्न 6. 30 cm³ आयतन के चुम्बकीय पदार्थ को 5 orested चुम्बकीय क्षेत्र में रखा गया है। इससे उत्पन्न चुम्बकीय आघूर्ण 6 A/m² हो तो चुम्बकीय प्रेरण का मान ज्ञात करो।

हल: दिया है : चुम्बकीय पदार्थ का आयतन V = 30 cm³ = 30 × 10⁻⁶m³

चुम्बकन क्षेत्र H = 5 ऑरस्टेड

तथा चुम्बकीय आघूर्ण M = 6A/m²

$$\begin{split} B &= \mu_0 \left(H + I \right) \\ B &= \mu_0 \left[H + \frac{M}{V} \right] \\ B &= 4\pi \times 10^{-7} \left[5 \times 10^3 + \frac{6}{30 \times 10^{-6}} \right] \\ B &= 4 \times 3.14 \times 10^{-7} \left[5 \times 10^3 + 200 \times 10^3 \right] \\ B &= 4 \times 3.14 \times 10^{-7} \times 205 \times 10^3 \\ B &= 2574.8 \times 10^{-4} \\ B &= 0.257 \ T \end{split}$$

प्रश्न 7. लौहचुम्बकीय पदार्थ के नमूने का द्रव्यमान 0.6 kg तथा घनत्व 7.8 × 10³ kg/m³ है। यदि 50 Hz आवृत्ति वाले प्रत्यावर्ती चुम्बकन क्षेत्र में शैथिल्य लूप का क्षेत्रफल 0.722 m³ हो तो प्रति सेकण्ड शैथिल्य हानि ज्ञात करो।

हल: दिया है : लौह चुम्बकीय पदार्थ के नमूने का द्रव्यमान m = 0.6 kg तथा

घनत्व d = 7.8 × 10³ kg/m³

आवृत्ति N = 50 Hz

शैथिल्य लूप का क्षेत्रफल A =0.722 m²

प्रति सेकण्ड शैथिल्य हानि = VAN

$$=\frac{m}{d}AN$$

या

$$= \frac{0.6}{7.8 \times 10^3} \times 0722 \times 50$$

$$= 2.77 \times 10^{-4} J$$

प्रश्न 8. एक लौहचुम्बकीय पदार्थ के लिए क्यूरी ताप 300 K है। यदि 450 K ताप पर पदार्थ की चुम्बकीय प्रवृत्ति 0.6 हो तो इसके लिए क्यूरी नियतांक ज्ञात करो।

हल: दिया है : क्यूरी ताप Tc = 300K

ताप T = 450K

चुम्बकीय प्रवृत्ति
$$\chi_m = 0.6$$

$$\chi = \frac{C}{T - T_C}$$

$$0.6 = \frac{C}{450 - 300}$$

$$C = 0.6 \times 150$$

अत: क्यूरी नियतांक C = 90 K

प्रश्न 9. एक अनुचुम्बकीय पदार्थ के लिए 120 K पर चुम्बकीय प्रवृत्ति 0.60 है। तो इस पदार्थ के लिए 27°C पर चुम्बकीय प्रवृत्ति का मान ज्ञात करो।

हल: क्यूरी नियम से,

$$\chi_m = \frac{C}{T}$$

जहाँ C क्यूरी नियतांक हैं।

٠.

$$\frac{\chi_{m_1}}{\chi_{m_2}} = \frac{T_2}{T_1}$$

दिया है : $\chi_{m_1} = 0.60$, $T_1 = 120$ K, $T_2 = 27 + 273 = 300$ K

$$\chi_{m_2} = \frac{T_1}{T_2} \times \chi_{m_1}$$

$$= \frac{120}{300} \times 0.60$$

$$= 0.24$$

प्रश्न 10. 4 cm² अनुप्रस्थ काट क्षेत्रफल की लोहे की छड़ 10³ A/m के चुम्बकन क्षेत्र के समान्तर है। यदि इसमें से गुजरने वाला चुम्बकीय फ्लक्स 4 × 10⁻⁴Wb है तो पदार्थ की पारगम्यता, आपेक्षिक पारगम्यता तथा चुम्बकीय प्रवृत्ति ज्ञात करो। उत्तर: प्रश्नानुसार, लोहे की छड़ की अनुप्रस्थ काट क्षेत्रफल $A = 4 \text{ cm}^2 = 4 \times 10^{-4} \text{m}^2$

चुम्बकन क्षेत्र H = 10³ A/m

तथा चुम्बकीय फ्लक्स $\phi = 4 \times 10^{-4}$ Wb

φ = BA से

चुम्बकीय प्रेरण B = $\frac{\phi}{A} = \frac{4 \times 10^{-4}}{4 \times 10^{-4}}$

= 1 T

B = µH से

चुम्बकीय पारगम्यता
$$\mu = \frac{B}{H} = \frac{1}{10^{-3}} = 10^{-3} \text{ Wb / A - m}$$

आपेक्षिक पारगम्यता
$$\mu = \frac{\mu}{\mu_0} = \frac{10^{-3}}{4\pi \times 10^{-7}}$$
$$= 796.17$$

प्रश्न 11. एक वृत्ताकार कुंडली की त्रिज्या 0.05 m तथा फेरों की संख्या 100 है। इसमें 0.1 A धारा बह रही है तो इसे 1.5 T वाले बाह्य चुम्बकीय क्षेत्र के लम्बवत इसकी अक्ष के सापेक्ष 180° घुसने में कितना कार्य करना पड़ेगा ? कुण्डली का तल प्रारम्भ में क्षेत्र के लम्बवत है।

हल: दिया है, r = 0.05 m, M = 100, J = 0.1 a, B = 1.5 T,

$$heta_1 = 0^\circ, \, heta_2 = 180^\circ$$
कृत कार्य $W = -MB \, (\cos \theta_2 - \cos \theta_1)$
 $= -NIAB \, (\cos \theta_2 - \cos \theta_1)$
 $= -NI\pi r^2 \, (\cos \theta_2 - \cos \theta_1)$
 $= -100 \times 0.1 \times 3.14 \times (0.05)^2 \times 1.5$
 $\times \, (\cos 180^\circ - \cos 0^\circ)$
 $= 2 \times 100 \times 0.1 \times 3.14 \times (0.05)^2 \times 1.5$
 $= 0.236 \, J$

प्रश्न 12. एक कुण्डली । भुजा के एक समबाहु त्रिभुज के रूप में है तथा B चुम्बकीय क्षेत्र में लटकी है। \overrightarrow{B} कुण्डली के तल में है। । यदि कुण्डली में । धारा प्रवाहित करने पर बल आघूर्ण τ लगे तो त्रिभुज की भुजा ज्ञात करो।

हल: चूँकि θ = 90°

$$\tau = 1 \times I\left(\frac{\sqrt{3}}{4}I^2\right)B$$

$$\therefore \qquad l^2 = \frac{4\tau}{\sqrt{3}lB}$$

$$I = \left(\frac{4\tau}{\sqrt{3}1B}\right)^{1/2}$$