

FEATURIZED PROBABILISTIC LINEAR MODELS

Why

It is natural to embed a dataset.

Definition

Let $(x : \Omega \to \mathbb{R}^d, A \in \mathbb{R}^{n \times d}, e : \Omega \to \mathbb{R}^n)$ be a probabilistic linear model over the probability space $(\Omega, \mathcal{A}, \mathbf{P})$. Let $\phi : \mathbb{R}^d \to \mathbb{R}^{d'}$ be a feature map. Then (x, A, e, ϕ) is an featurized probabilistic linear model (also embedded probabilistic linear model). We are modeling the function $h : \Omega \to (\mathbb{R}^d \to \mathbb{R})$ as linear in the features

$$h_{\omega}(a) = \phi(a)^{\top} x(\omega).$$

Correspondence to linear model

Denote the data matrix of the embedded feature vectors by $\phi(A)$. Then, of course, the embedded linear model (x, A, e, ϕ) corresponds to the linear model $(x, \phi(A), e)$.

Normal case

In the normal (Gaussian) case, the parameter posterior $g_{x|y}(\cdot, \gamma)$ is a normal density with mean

$$\Sigma_x \phi(A)^{\top} \left(\phi(A) \Sigma_x \phi(A)^{\top} + \Sigma_e \right)^{-1} \gamma$$

and covariance

$$\left(\Sigma_x^{-1} + \phi(A)^{\top} \Sigma_e^{-1} \phi(A)\right)^{-1}$$
.

The predictive density for a point $a \in \mathbb{R}^d$ is normal with mean

$$(\phi(a)^{\top}\Sigma_x\phi(A)^{\top} + \Sigma_{fe})\left(\phi(A)\Sigma_x\phi(A)^{\top} + \Sigma_e\right)^{-1}\gamma.$$

