# Reinforcement Learning Lecture 2

Georg Martius

Distributed Intelligence / Autonomous Learning Group, Uni Tübingen, Germany

October 22, 2024





# Organization

#### Tutor sessions:

- ► Hörsaal N11 (next door) (change in room in 3 weeks)
- ► Hörsaal N03 (Hörsaalzentrum Morgenstelle) (change in room in 3 weeks)
- Hörsaal TTR2 (Obere Viehweide, Maria-von-Linden-Str. 6, Tübingen Al center)

#### Lectures:

- Today's lecture will go over-time (would like to cover until Value-Iteration for homeworks)
- Next week: I am on a scientific Conference (EWRL). Dr. René Geist will substitute me

# Machine Learning Overview (Reminder)

#### Three different classes of tasks:



RL is special, because: interaction with a system, generation of own data, sequential

# Agent and Environment (Reminder)



# The Reinforcement Learning Problem (Reminder)

Behave such that maximal expected (discounted) future return is achieved

- Behave: find Policy that determines actions
- ▶ Optimal w.r.t. expected return: Value function
- ► Maybe Model the environment

### **Learning and Planning**

#### Two fundamental problems in sequential decision making

- Reinforcement Learning:
  - The environment is initially unknown
  - The agent interacts with the environment
  - ► The agent improves its policy
  - a.k.a. learning by doing, trail and error learning
- Planning:
  - A model of the environment is known
  - The agent performs computations with its model (without any external interaction)
  - The agent improves its policy
  - a.k.a. deliberation, reasoning, introspection, pondering, thought, search

[Slide adapted from David Silver]

# Atari Example: Reinforcement Learning



- Rules of the game are unknown
- Learn directly from interactive game-play
- Pick actions on joystick, see pixels and scores

[Slide adapted from David Silver]

# **Atari Example: Planning**

- Rules of the game are known
- Can query emulator perfect model inside agent's brain
- ▶ If I take action a from state s:
  - what would the next state be?
  - what would the score be?
- ▶ Plan ahead to find optimal policy e.g. tree search



[Slide adapted from David Silver]

# Relationship between Planning and Reinforcement Learning

- ▶ Planning: on-the-fly computation of best action
  - typically short-horizon optimization only
- RL: learns (for a long time) to find the best policy
  - solves the global optimization problem
  - ▶ amortizes previous interactions into a policy → fast at runtime
- Is planning and RL mutually exclusive?
  - No, but traditionally treated by different communities
  - can be combined (model-based RL, AlphaGo, etc)

#### **Prediction and Control**

### Subproblems within Reinforcement Learning:

- ► Prediction: evaluate the future

  Given a policy: How good is the agent?
- ► Control: optimize the future

  Find the best policy with respect to current knowledge

# **Markov Decision Processes**

Formally describe environments for reinforcement learning

#### Markov Process

A Markov process is a memoryless random process, i.e. a sequence of random states  $S_1, S_2, \ldots$  with the Markov property.

### Reminder: Markov property

A state  $S_t$  is Markov if and only if

$$P(S_{t+1} \mid S_t) = P(S_{t+1} \mid S_1, \dots, S_t)$$

### Definition (Markov Process/ Markov Chain)

A Markov Process (or Markov Chain) is a tuple (S, P)

- $\triangleright$  S is a (finite) set of states
- $\triangleright \mathcal{P}$  is a state transition probability matrix,

$$\mathcal{P}_{ss'} = P(S_{t+1} = s' \mid S_t = s)$$

### **Example: Student Markov Chain**

Let's consider the evening of a student in this class ;-)



### **Example: Student Markov Chain Episodes**



Sample episodes for starting from  $s_1 = FN$ 

$$s_1, s_2, \ldots, s_T$$

- ► FN P1 P2 S Sleep
- ► FN GO FN FN P1 Sleep
- ► FN P1 P2 NF P1 P2 S Sleep
- ► FN GO FN P1 P2 NF P1 P2 NF P1 Sleep

# **Example: Student Markov Chain Episodes Transition Matrix:**

$$\mathcal{P}_{ss'} = P(S_{t+1} = s' \mid S_t = s)$$



# Transition Matrix:

#### **Markov Reward Process**

A Markov reward process is a Markov chain with values.

### **Definition (MRP)**

A Markov Reward Process is a tuple  $(S, P, R, \gamma)$ 

- $\triangleright$  S is a finite set of states
- $ightharpoonup \mathcal{P}$  is a state transition probability matrix,

$$P(S_{t+1} \mid S_t) = P(S_{t+1} \mid S_1, \dots, S_t)$$

- $ightharpoonup \mathcal{R}$  is a reward function,  $\mathcal{R}_s = \mathbb{E}[R_{t+1} \mid S_t = s]$
- $ightharpoonup \gamma$  is a discount factor,  $\gamma \in [0,1]$

# **Example: Student MRP**



#### Return

#### **Definition**

The return  $G_t$  is the total discounted reward from time-step t.

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- ▶ The discount  $\gamma \in [0,1]$  is the present value of future rewards
- The value of receiving reward R after k+1 time-steps is  $\gamma^k R$ .
- This values immediate reward above delayed reward.
  - $ightharpoonup \gamma$  close to 0 leads to "myopic" evaluation
  - $ightharpoonup \gamma$  close to 1 leads to "far-sighted" evaluation

# Discussion on discounting

Return:

$$G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

Why is discouting often used?

- ► Mathematically convenient to discount rewards (keeps returns finite)
- ► A way to model the uncertainty about the future (since the model may not be exact)
- ► Animal/human behaviour shows preference for immediate rewards

In some cases *undiscounted* Markov reward processes (i.e.  $\gamma=1$ ), are considered, e.g. if all sequences terminate.

#### **Value Function**

The value function describes the value of a state (in the stationary state)

#### **Definition**

The state  $\it value \ function \ v(s)$  of an MRP is the expected return starting from state s

$$v(s) = \mathbb{E}[G_t \mid S_t = s]$$

# **Example: Value Function for Student MRP**

Extremely myopic  $\gamma = 0$ : v(s)



# **Example: Value Function for Student MRP**

Now more farsighted  $\gamma = 0.9$ : v(s)



# **Example: Value Function for Student MRP**

Now fully farsighted  $\gamma = 1.0$ : v(s)



# Bellman Equation (MRP) I

Idea: Make value computation recursive by tearing apart contributions from:

- immediate reward
- and from discounted future rewards

$$v(s) = \mathbb{E}[G_t \mid S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma G_{t+1} \mid S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma v(S_{t+1}) \mid S_t = s]$$

Mh... need Expectation over  $S_{t+1}$ Use transition matrix to get probabilities of succeeding state:

$$v(s) = \mathcal{R}_s + \gamma \sum_{s' \in S} \mathcal{P}_{ss'} v(s')$$

### **Example: Bellman Equation for Student MRP**



$$v(P2) = 3.64 = -2 + 0.4 \cdot (-0.91) + 0.6 \cdot 10$$

# Bellman Equation (MRP) II

Bellman equations in matrix form:

$$v = \mathcal{R} + \gamma \mathcal{P}v$$

where  $v \in \mathbb{R}^{|S|}$  and  $\mathcal{R}$  are vectors

The Bellman equation can be solved explicitly (in closed form):

$$v = (\mathbb{I} - \gamma \mathcal{P})^{-1} \mathcal{R}$$

ightharpoonup computational complexity is  $O(|S|^3)$ 

#### **Markov Decision Process**

A Markov reward process has no agent, there is no influence on the system. An MRP with an active agent forms a Markov Decision Process.

- Agent takes decision by executing actions
- State is Markovian

### **Definition (MDP)**

A Markov Decision Process is a tuple  $(S, A, P, R, \gamma)$ 

- $\triangleright$  S is a finite set of states
- $\triangleright$  A is a finite set of actions
- $ightharpoonup \mathcal{P}$  is a state transition probability matrix,

$$\mathcal{P}_{ss'}^{a} = P(S_{t+1} \mid S_t, A_t = a)$$

- $\triangleright$   $\mathcal{R}$  is a reward function,  $\mathcal{R}_s^a = \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a]$
- $ightharpoonup \gamma$  is a discount factor,  $\gamma \in [0,1]$

### **Example: Student MDP**



### How to model decision taking?

The agent has an action function called policy.

#### **Definition**

A policy  $\pi$  is a distribution over actions given states,

$$\pi(a \mid s) = P(A_t = a \mid S_t = s)$$

- ▶ Since it is a Markov process the policy only depends on the current state
- ▶ Implication: policies are stationary (independent of time)

An MDP with a given policy turns into a MRP:

$$\mathcal{P}_{ss'}^{\pi} = \sum_{a \in \mathcal{A}} \pi(a \mid s) \mathcal{P}_{ss'}^{a}$$

$$\mathcal{R}_s^{\pi} = \sum_{a \in A} \pi(a \mid s) \mathcal{R}_s^a$$

### Modelling expected returns in MDP

How good is each state when we follow the policy  $\pi$ ?

#### **Definition**

The state-value function  $v_{\pi}(s)$  of an MDP is the expected return when starting from state s and following policy  $\pi$ .

$$v_{\pi}(s) = \mathbb{E}[G_t \mid S_t = s]$$

Should we change the policy?

How much does choosing a different action change the value?

#### **Definition**

The action-value function  $q_{\pi}(s,a)$  of an MDP is the expected return when starting from state s, taking action a, and then following policy  $\pi$ .

$$q_{\pi}(s, \mathbf{a}) = \mathbb{E}[G_t \mid S_t = s, A_t = \mathbf{a}]$$

### **Example: State-Value function for Student MDP**



# **Bellman Expectation Equation**

### Recall: Bellman Equation: decompose expected reward into immediate reward plus discounted value of successor state:

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s]$$

$$v_{\pi}(P2) = \frac{3.71}{0.5 \cdot (-2 - 0.57) + 0.5 \cdot (10 + 0)}$$



$$\pi(\boldsymbol{a} \mid s) = 1/|\mathcal{A}(s)|$$
 and  $\gamma = 1$ 

# **Bellman Expectation Equation**

#### Recall:

Bellman Equation: decompose expected reward into immediate reward plus discounted value of successor state:

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s]$$

The action-value function can be similarly decomposed,

$$q_{\pi}(s, \mathbf{a}) = \mathbb{E}_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) \mid S_t = s, A_t = \mathbf{a}]$$



$$\pi(a \mid s) = 1/|\mathcal{A}(s)|$$
 and  $\gamma = 1$ 

# Bellman Equation: update of $v_{\pi}$

Value function can be derived from  $q_{\pi}$ :

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) q_{\pi}(s, a)$$

 $\ldots$  and q can be computed from transition model

$$q_{\pi}(s, \mathbf{a}) = \mathcal{R}_{s}^{\mathbf{a}} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{\mathbf{a}} v_{\pi}(s')$$



Substituting q in v:

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) \left( \mathcal{R}_{s}^{a} + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^{a} v_{\pi}(s') \right)$$

### Explicit solution for $v_{\pi}$

Since a policy induces an MRP  $v_\pi$  can be directly computed (as before)

$$v = (\mathbb{I} - \gamma \mathcal{P}^{\pi})^{-1} \mathcal{R}^{\pi}$$

But do we want  $v_{\pi}$ ?

We want to find the optimal policy and its value function!

# **Optimal Value Function**

#### **Definition**

The optimal state-value function  $v_{st}(s)$  is the maximum value function over all policies

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

#### **Definition**

The optimal action-value function  $q_*(s,a)$  is the maximum action-value function over all policies

$$q_*(s, \mathbf{a}) = \max_{\pi} q_{\pi}(s, \mathbf{a})$$

What does it mean?

- $ightharpoonup v_*$  specifies the best possible performance in an MDP
- ▶ Knowing  $v_*$  solves the MDP (how? we will see...)

#### Example: Optimal Value Function $v_*$ in Student MDP



### Example: Optimal State Function $q_*$ in Student MDP



### Solving an MDP

To solve an MDP, we need to obtain the optimal policy. Define a partial ordering over policies

$$\pi \geq \pi'$$
 if  $v_{\pi}(s) \geq v_{\pi'}(s), \forall s$ 

#### **Theorem**

For any Markov Decision Process

- ► There exists an optimal policy  $\pi_*$  that is better than or equal to all other policies,  $\pi_* \geq \pi, \forall \pi$
- ▶ All optimal policies achieve the optimal state-value function,  $v_{\pi_*}(s) = v_*(s)$
- All optimal policies achieve the optimal action-value function,  $q_{\pi_*}(s, \underline{a}) = q_*(s, \underline{a})$

## Finding an Optimal Policy

Given the optimal action-value function  $q_*$ : How do we get the optimal policy?

Discuss with your peers ...

The optimal policy is given by maximizing  $q_*$ 

$$\pi_*(a \mid s) = [a = \underset{a \in \mathcal{A}}{\operatorname{arg\,max}} q_*(s, a)]$$

- $[\cdot]$  is Iverson bracket: 1 if *true*, otherwise 0.
  - ▶ There is always a deterministic optimal policy for any MDP
  - If we know  $q_*(s, a)$ , we immediately have the optimal policy (greedy)

## Bellman Equation for optimal value functions

Also for the optimal value functions we can use Bellmans optimality equations: Exercise!

Remember:

$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) \, q_{\pi}(s, \underline{a})$$

$$\pi_*(a \mid s) = \llbracket a = \arg\max_{a \in A} q_*(s, a) \rrbracket$$

## **Solving the Bellman Optimality Equation**

Bellman Optimality Equation is non-linear (because of max operation)

- ► No closed form solution (in general)
- ► Many iterative solution methods
  - Value Iteration
  - Policy Iteration
  - Q-learning
  - SARSA

## Questions?



[Image: globalrobots.com]

## Break



## **Dynamic Programming**

## **Dynamic Programming?**

Dynamic: sequential or temporal component of the problem

```
Programming: optimizing a "program", i.e. a policy name like in linear programming (mathematical programming = optimization)
```

- A method for solving complex problems
- By breaking them down into subproblems
  - Solve the subproblems
  - Combine solutions to subproblems

## When can we use Dynamic Programming?

#### When problems have two properties:

- Optimal substructure
  - Principle of optimality applies
  - Optimal solution can be decomposed into subproblems
- Overlapping subproblems
  - Subproblems recur many times
  - Solutions can be cached and reused



## When can we use Dynamic Programming?

#### When problems have two properties:

- Optimal substructure
  - Principle of optimality applies
  - Optimal solution can be decomposed into subproblems
- Overlapping subproblems
  - Subproblems recur many times
  - Solutions can be cached and reused

#### Markov decision processes? ◆ Satisfy both properties!

- Bellman equation gives recursive decomposition
- Value function stores and reuses solutions

## **Dynamic Programming to solve MDPs**

#### Dynamic programming assumes full knowledge of the MDP!

#### Example MDP:





- $R_t = -1 \\ \text{on all transitions}$
- ▶ Undiscounted episodic MDP  $(\gamma = 1)$
- One terminal state (shown twice as shaded squares)
- Actions leading out of the grid leave state unchanged
- ▶ Reward is −1 until the terminal state is reached

Can be used for planning in an MDP.

Input: MDP  $(S, A, P, R, \gamma)$  and policy  $\pi$ 

#### For prediction

Yields value function  $v_{\pi}$ 



| N    |      |      |      |  |
|------|------|------|------|--|
| 0.0  | -14. | -20. | -22. |  |
| -14. | -18. | -20. | -20. |  |
| -20. | -20. | -18. | -14. |  |
| -22. | -20. | -14. | 0.0  |  |
|      |      |      |      |  |

#### For control

Yields optimal value function  $v_*$  and  $\pi_*$ 



## **Prediction: Policy Evaluation**

Problem: evaluate policy (find its value function)





$$R_t = -1 \\ \text{on all transitions}$$



| 0.0  | -14. | -20. | -22. |
|------|------|------|------|
| -14. | -18. | -20. | -20. |
| -20. | -20. | -18. | -14. |
| -22. | -20. | -14. | 0.0  |

Solution: Dynamic Programming to compute value function

Iterative algorithm to obtain:  $v_1 
ightarrow v_2 
ightarrow v_3 
ightarrow v_\pi$ 

#### **Iterative Policy Evaluation**

- At each iteration k+1
- ▶ For all states  $s \in S$
- ▶ Update  $v_{k+1}(s)$  from  $v_k(s')$  for all s'
- $\blacktriangleright$  where s' is a successor state of s

## **Iterative Policy Evaluation**

#### Bellmann Expectation Equation:

$$v_{k+1}(s) = \sum_{a \in \mathcal{A}} \pi(a|s) \left( \mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a v_k(s') \right)$$
$$v_{k+1}(s) = \mathcal{R}^{\pi} + \gamma \mathcal{P}^{\pi} v^k$$

#### "Backup" diagram:





 $R_t = -1 \\ \text{on all transitions}$ 

## **Iterative Policy Evaluation: Small Gridworld**

 $v_k$  for the Random Policy

$$k = 1$$

$$k = 10$$

$$k = 2$$

| 0.0  | -14. | -20. | -22. |  |
|------|------|------|------|--|
| -14. | -18. | -20. | -20. |  |
| -20. | -20. | -18. | -14. |  |
| -22. | -20. | -14. | 0.0  |  |

#### What to do with the value function?

## Improve the Policy!

#### **Policy Iteration**

Given a policy  $\pi$ 

1. Evaluate the policy  $\pi$  (Policy Evaluation)

$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \dots \mid S_t = s]$$

2. Improve the policy by acting greedily with respect to  $v_{\pi}$  (Policy Improvement)

$$\pi' = \operatorname{greedy}(v_{\pi})$$



▶ Policy iteration always converges to  $\pi^*$ 



## Policy Iteration in Small Gridworld (one iteration)



## Policy Iteration in Small Gridworld (one iteration)



▶ In Small Gridworld: Policy improvement converges after one iteration  $(\pi' = \pi^*)$ 

- Consider a deterministic policy,  $a = \pi(s)$
- Policy improvement step by acting greedily

$$\pi'(s) = \operatorname*{arg\,max}_{a \in \mathcal{A}} q_{\pi}(s, \underline{a})$$

▶ This improves the value from any state s over one step,

$$q_{\pi}(s, \pi'(s)) = \max_{a \in \mathcal{A}} q_{\pi}(s, a) \ge q_{\pi}(s, \pi(s)) = v_{\pi}(s)$$

▶ It therefore improves the value function:  $v_{\pi'}(s) \ge v_{\pi}(s)$ 

$$v_{\pi}(s) \leq q_{\pi}(s, \pi'(s)) = \mathbb{E}_{\pi'} [R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_{t} = s]$$

$$\leq \mathbb{E}_{\pi'} [R_{t+1} + \gamma q_{\pi}(S_{t+1}, \pi'(S_{t+1})) \mid S_{t} = s]$$

$$\leq \mathbb{E}_{\pi'} [R_{t+1} + \gamma R_{t+2} + \gamma^{2} q_{\pi}(S_{t+2}, \pi'(S_{t+2})) \mid S_{t} = s]$$

$$\leq \mathbb{E}_{\pi'} [R_{t+1} + \gamma R_{t+2} + \dots \mid S_{t} = s] = v_{\pi'}(s)$$

If improvements stop,

$$q_{\pi}(s, \pi'(s)) = \max_{a \in A} q_{\pi}(s, a) = q_{\pi}(s, \pi(s)) = v_{\pi}(s)$$

▶ Then the Bellman optimality equation has been satisfied

$$v_{\pi}(s) = \max_{a \in \mathcal{A}} q_{\pi}(s, a)$$

- ► Therefore  $v_{\pi}(s) = v_{*}(s)$  for all  $s \in \mathcal{S}$ 
  - $ightharpoonup \pi$  is an optimal policy

1

#### Value Iteration

Goal: compute optimal value function and optimal policy

Algorithm: Like Policy Iteration, but with 1-step policy evaluation

- 1. Policy Evaluation: estimate  $v_{\pi}$  (not to congergence)
- 2. Policy Improvement: generate  $\pi'$  with  $v_{\pi'} \leq v_{\pi}$
- 3. iterate until value function does not change
- Intuition: start with final rewards and work backwards
- $\triangleright$  given an optimal solution for some states, e.g.  $v_*(s)$ 
  - $\Rightarrow$  solution  $v_*(s)$  can be found by one-step lookahead



#### Value Iteration

Improve subproblem solution  $v_k(s')$ 

based on current best estimates of  $v_*(s)$ 

#### Value Iteration

- **1.** For all states  $s \in \mathcal{S}$
- 2. Update  $v_{k+1}(s)$  from  $v_k(s')$

$$v_{k+1}(s) \leftarrow \max_{a \in \mathcal{A}} \left( \mathcal{R}^a_s + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}^a_{ss'} v_k\left(s'\right) \right) \qquad \text{Bellmann Optimality Eq.}$$

- **3.** if value function changes goto (1): next iteration with  $k \leftarrow k+1$
- ► There is not explicit policy here
- Intermediate value functions might not correspond to any policy
- lacktriangle Convergences to  $v_*$
- Is the same as Policy Iteration, but with 1-step Policy evaluation

## Value Iteration: Example Shortest Path



# Sychronous Dynamic Programming Algorithms

Bellmann Expectation and Optimality Eq:

$$v_{k+1}(s) = \underset{a \sim \pi}{\mathbb{E}} \left( \mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a v_k(s') \right)$$
$$v_{k+1}(s) = \max_{a} \left( \mathcal{R}_s^a + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}^a v_k(s') \right)$$

So far we looked at synchronous Methods: all states are updated at once.

| Problem    | Bellman Equation             | Algorithm                   |
|------------|------------------------------|-----------------------------|
| Prediction | Bellman Expectation Equation | Iterative Policy Evaluation |
| Control    | Bellman Expectation Equation | Policy Iteration            |
|            | + Greedy Policy Improvement  |                             |
| Control    | Bellman Optimality Equation  | Value Iteration             |

Complexity: (m actions, n states)

- ▶ Using state-value function v(s):  $O(mn^2)$  per iteration
- ▶ Using state-action-value function  $q(s, \mathbf{a})$ :  $O(m^2n^2)$  per iteration

#### Next time

► Model-free Prediction and Control