Programação Dinâmica - Parte 1 Projeto e Análise de Algoritmos II

Antonio Luiz Basile

Faculdade de Computação e Informática Universidade Presbiteriana Mackenzie

August 15, 2018

Programação Dinâmica

- Algoritmos baseados em Divisão e Conquista:
 - particionam o problema em subproblemas disjuntos,
 - resolvem recursivamente os subproblemas e
 - combinam as soluções para resolver o problema original.
- Programação Dinâmica se aplica quando:
 - há sobreposição entre os subproblemas, ou seja,
 - quando subproblemas compartilham subsubproblemas.
 - ► Tipicamente se aplicam a problemas de otimização:
 - ★ Problemas que tem várias soluções possíveis e
 - ★ cada solução tem um valor e
 - devemos encontrar a solução com valor ótimo (mínimo ou máximo).

Programação Dinâmica

Quando desenvolvemos um algoritmo de programação-dinâmica, seguimos uma sequência de 4 passos:

- Caracterize a estrutura de uma solução ótima.
- Recursivamente defina o valor de uma solução ótima.
- Compute o valor de uma solução ótima.
- Construa uma solução ótima a partir da informação computada.

Exemplo 1: Fibonacci

Os números de Fibonacci são assim definidos:

$$\begin{cases} F(0) = 0 \\ F(1) = 1 \\ F(N) = F(N-1) + F(N-2) \end{cases}$$

Uma implementação recursiva direta da recorrência que define os números de Fibonacci é espetacularmente ineficiente.

```
int F(int n)
{
   if (n < 1) return 0;
   if (n == 1) return 1;
   else return F(n-1) + F(n-2);
}</pre>
```


Figure: Árvore do Fibonacci de 7

Figure: Árvore calculada do Fibonacci de 8

```
8 F(6)
  5 F(5)
    3 F(4)
       2 F(3)
         1 F(2)
            1 F(1)
            0 F(0)
         1 F(1)
       1 F(2)
         1 F(1)
            0 F(0)
    2 F(3)
       1 F(2)
         1 F(1)
         0 F(0)
       1 F(1)
  3 F(4)
    2 F(3)
       1 F(2)
         1 F(1)
         0 F(0)
       1 F(1)
     1 F(2)
       1 F(1)
         0 F(0)
```

A fórmula fechada aproximada para

$$\begin{cases}
F(0) = 0 \\
F(1) = 1 \\
F(N) = F(N-1) + F(N-2)
\end{cases}$$

é

$$F(N) = O(1,62^N)$$

ou seja, crescimento exponencial!

Será que há um modo de tornar este problema tratável?

- Para resolver o problema podemos usar uma técnica chamada memoização.
- Memoização é uma forma de programação dinâmica top-down.
- Consiste do seguinte:
 - instrumentamos o programa recursivo para salvar cada valor computado e
 - antes de efetuar uma chamada recursiva, verificamos se seu valor já foi salvo anteriormente.

Tarefa:

Escreva uma função para o fibonacci que utiliza memoization, ou seja, aplique programação-dinâmica ao fibo.

```
int F(int n)
    int t;
    if (vfib[n] != -1) return vfib[n];
    if (n == 0) t = 0:
    if (n == 1) t = 1;
    if (n > 1) t = F(n-1) + F(n-2);
    return vfib[n] = t;
```


Fig: Fibonacci Number Recursive Implemention

Figure: Fibonacci: memoization