주체106(2017)년 제63권 제1호

경험결수교정법에 의한 모나즈석속의 몇가지 희로류정량

리영인, 전광일

희토류자원의 탐사와 개발리용에서는 희토류원소들을 신속정확히 정량하여야 한다. 형 광X선분석(XRF)법으로는 각이한 대상들에서 여러 원소들을 동시정량할수 있다.[1] 그러나 XRF법은 시료겉면의 영향을 많이 받으므로 분말시료의 경우 용융법, 분말압착성형법 등을 리용하여야 한다.[2-4] 희토류원소정량에는 용융법을 리용[5]하였다.

우리는 분말압착성형 - 경험곁수교정법을 리용하여 희토류원소의 정량방법을 확립하였다.

실 험 방 법

기구로는 X선형광분석기(《ZSX Primus III+》), 40t프레스(《MP-50》), 마뇌절구를, 시약으 로는 붕산(분석순)을 리용하였다.

표 1. X선형광분석기의 측정조건

원소	분석선	2 <i>θ</i> /(°)	분광결정	시준기	검출기	PHA
La	L_{α}	82.88	LiF(200)	S2	SC	100 - 300
Ce	L_{α}	78.98	LiF(200)	S2	SC	100 - 300
Pr	$L_{\beta 1}$	68.22	LiF(200)	S2	SC	100 - 320
Nd	$L_{\beta 1}$	65.09	LiF(200)	S2	SC	100 - 320
Sm	$L_{\beta 1}$	59.48	LiF(200)	S2	SC	120 - 280
Y	K_{α}	23.78	LiF(200)	S2	SC	130 - 300
Gd	$L_{\beta 1}$	54.58	LiF(200)	S2	SC	120 - 290
Dy	$L_{\beta 1}$	50.26	LiF(200)	S2	SC	100 - 300

충분히 건조시킨 시료를 적당 한 량의 붕산과 함께 마뇌절구에서 0.074mm의 크기로 분쇄하였다.

희토류시료에 점결제를 섞어 골고루 혼합한 다음 직경 25mm의 가락지모양형타에 넣고 5t/cm²의 압 력으로 20s정도 압착성형하여 XRF 분석하였다

측정조건은 표 1과 같다.

실험결과 및 해석

점결제종류와 함량의 영향 점 결제는 시료의 점착성을 높이고 진공분위기에서 시료의 파괴를 막는다. 모나즈석에서 점결제의 종류와 함량에 따르는 형광X선 의 세기변화를 측정한 결과는 그 림과 같다.

그림에서 보는바와 같이 La 의 L_{α} Ce의 L_{α} 선의 세기는 점 결제의 종류에 따라 약간 차이 나지만 모두 점결제함량이 10% 이상일 때 급격히 감소한다.

그림, 점결제의 종류와 합량에 따르는 형광X선세기변화 ¬) La의 La, L) Ce의 La 1-붕산, 2-스테아린산, 3-농마

정량분석에서 오차를 줄이기 위하여 점결제로는 붕산을 10% 리용하였다.

스펙트르중첩과 바탕교정 XRF법에서는 스펙트르중첩과 바탕교정에 따라 정확도와 정밀 도가 차이나게 된다.

모나즈석을 분석할 때 희토류원소들과 비희토류원소들사이의 봉우리중첩관계는 표 2와 같다.

측정선				중첩선	중첩선 측정선		중첩선				
원소	분석선	2θ/(°)	원소	분석선	2θ/(°)	원소	분석선	2θ/(°)	원소	분석선	2θ/(°)
Ce	K_{α}	10.154	La	K_{α}	10.551	Y	$K_{\beta l}$	21.158	Nb	K_{α}	21.158
Ce	L_{α}	78.981	_			Y	$K_{\alpha 2}$	48.630	Ni	K_{α}	48.630
La	L_{α}	82.900	_			Th	$L_{\beta 2}$	22.592	Zr	K_{α}	22.592
La	$L_{\beta 1}$	75.316	Pr	L_{α}	75.316	Pr	$L_{\beta 1}$	68.22	_		
Ce	L_{β}	71.609	Nd	L_{α}	72.121	Nd	$L_{\beta 1}$	65.09	_		
Ce	$L_{\beta 2}$	66.500	Sm	L_{α}	66.500	Sm	$L_{\beta 1}$	59.48	_		
La	$K_{\beta 1}$	9.351	Nd	K_{α}	9.351	Y	K_{α}	23.78	_		
Nd	$L_{\beta 2}$	60.764	_			Gd	$L_{\beta 1}$	54.58	_		
Th	L _{α2}	56.644	Dy	L_{α}	56.644	Dy	$L_{\beta 1}$	50.26	_		

표 2. 희토류원소들의 봉우리중첩관계

표 2에서 보는바와 같이 La, Ce, Pr, Nd, Sm, Gd, Dy의 K_{α} 선들은 부분적으로 또는 완전히 겹치므로 측정선으로 리용할수 없다. 또한 La의 L_{β} 선은 Pr의 L_{α} , Nd의 K_{α} 선과 완전히 겹치며 Ce의 L_{β} 선은 Nd의 L_{α} , Sm의 L_{α} 선과 부분적으로 또는 완전히 겹친다.

La의 L_{α} , Ce의 L_{α} , Pr의 $L_{\beta l}$, Nd의 L_{β} , Sm의 $L_{\beta l}$, Y의 K_{α} , Gd의 $L_{\beta l}$, Dy의 $L_{\beta l}$ 선들은 다른 원소들에 의한 봉우리중첩이 없으므로 분석선으로 선택하였다.

바탕교정은 장치에 표준으로 설치된 X선관의 콤프톤산란선을 내부표준선으로 하는 경험결수교정법으로 하였다.

검량선작성 바탕원소들의 조성이 각각 SiO₂ 95.42~54.20%, Al₂O₃ 1.31~13.10%, TiO₂ 1.18~11.80%, Fe₂O₃ 0.643~6.430%이고 희토류원소들의 조성이 각각 La₂O₃ 0.122~1.220%, Ce₂O₃ 0.267~2.670%, Pr₂O₃ 0.030 7~0.307 0%, Nd₂O₃ 0.091 7~0.917 0%, Sm₂O₃ 0.006 7~0.067 0%, Y₂O₃ 0.003 7~0.037 0%, Gd₂O₃ 0.002 3~0.023 0%, Dy₂O₃ 0.000 9~0.009 0%인 표준시료 계렬을 제조하고 희토류조성과 형광X선사이의 선형성을 검토하였다.(표 3)

표 3. 희토류조성과 형광X선세기사이의 선형성

분석성분	선형식	상관곁수
La ₂ O ₃	y=0.329 7x+0.007 24	0.999 4
Ce_2O_3	y=0.301 1x+0.037 0	0.999 6
Pr_2O_3	y=0.397 14x-0.003 96	0.999 9
Nd_2O_3	$y = 0.278 \ 37x - 0.066 \ 02$	0.999 7
Sm_2O_3	$y = 0.177 \ 33x - 0.001 \ 99$	0.998 3
Y_2O_3	$y = 0.004 \ 29x - 0.012 \ 99$	0.975 8
Gd_2O_3	y=0.113 1x-0.001 644	0.997 4
Dy ₂ O ₃	$y=0.149 \ 27x-0.001 \ 191$	0.997 6

표 3에서 보는바와 같이 희토류조성과 형 광X선세기사이에 선형성이 비교적 잘 만족되 였다.

정확도와 정밀도검정 방법의 정밀도측정을 위하여 대상시료를 10번 반복측정한 결과는 표 4와 같다.

분말압착성형 — 경험곁수교정법으로 대 상시료를 분석하고 AAS와 비교한 결과는 표 - 5와 같다.

표 4, 5에서 보는바와 같이 우리가 설정한 측정조건에서 XRF분석결과는 0.94~5.4%의 상대표준편차를 가지며 AAS분석결과와의 상대오차는 0.5~4.1%이다.

표	4.	시료의	분석결과
---	----	-----	------

분석성분	평균값	표준편차	RSD/%	분석성분	평균값	표준편차	RSD/%
La ₂ O ₃	1.182	0.021 2	1.8	Sm_2O_3	0.060	0.001 2	2.0
Ce_2O_3	2.697	0.025 3	0.94	Gd_2O_3	0.024	0.001 3	5.4
Pr_2O_3	0.297	0.003 28	1.1	Y_2O_3	0.039	0.000 6	1.5
Nd_2O_3	0.810	0.008 17	1.0	$\mathrm{Dy_2O_3}$	0.067	0.001 6	2.4

표 5. 분석결과의 대비평가

분석성분	AAS	XRF	상대오차/%	분석성분	AAS	XRF	상대오차/%
La ₂ O ₃	1.212	1.182	2.76	Sm_2O_3	0.059	0.060	1.7
Ce_2O_3	2.711	2.697	0.52	Gd_2O_3	0.023	0.024	4.1
Pr_2O_3	0.299	0.297	0.67	Y_2O_3	0.040	0.039	2.4
Nd_2O_3	0.821	0.810	1.33	$\mathrm{Dy_2O_3}$	0.068	0.067	1.47

맺 는 말

희토류정량에 영향을 미치는 점결제의 종류와 량을 결정하고 최적조건에서 분말압착 성형-경험곁수교정법으로 대상시료를 정량하였다.

X선관전압 50kV, 전류 50mA, 시료크기 25mm, 시료립도 0.074mm이하, 성형압력 5t/cm², 점결제 붕산 10%의 조건에서 분말압착성형-경험결수교정법의 상대표준편차는 0.94~5.4% 이며 AAS분석결과와의 상대오차는 0.5~4.1%이다.

참 고 문 헌

- [1] W. Wenqi et al.; J. Rare Earths, 28, 30, 2010.
- [2] S. Nayak et al.; J. Appl. Geochem., 14, 3, 2012.
- [3] V. Zagorodniy et al.; X-Ray Spectrom., 32, 40, 2003.
- [4] J. Alguacil et al.; X-Ray Spectrom., 31, 424, 2002.
- [5] K. Nakayama et al.; Analytical Science, 21, 815, 2005.

주체105(2016)년 9월 5일 원고접수

Determination of Rare Erath in Monazite by Empirical Calibration Method

Ri Yong In, Jon Kwang Il

We determined rare earth elements in monazite by X-ray fluorecesence analysis.

Analytical result using binder(boric acid, 10%) by EC method showed that the relative standard deviation was $0.94 \sim 5.4\%$ and the relative error was $0.5 \sim 4.1\%$ compared with AAS.

Key words: X-ray fluorescent analysis, empirical calibration method, rare earth