Алгебра. Глава б. Теория групп

Д.В.Карпов

2022-2023

Пусть G — множество, и определена $\cdot: G \times G \to G$, удовлетворяющая следующим условиям.

- 1) Ассоциативность $\forall a, b, c \in G$ (ab)c = a(bc).
- 2) Нейтральный элемент. $\exists e \in G$ такой, что $\forall a \in G$ ае = ea = a.
- 3) Oбратный элемент. $\forall a \in G \ \exists a^{-1} \in G$ такой, что $a \cdot a^{-1} = a^{-1} \cdot a = e$.
- 4) Коммутативность $\forall a, b \in G$ ab = ba.
- ullet Если выполнены условия 1 и 2, то G- полугруппа.
- ullet Если выполнены условия 1, 2 и 3, то $G-{\it группа}$.
- Если выполнены условия 1, 2, 3 и 4, то G абелева группа (или, что то же самое, коммутативная группа).
- Операцию в группе можно обозначать как угодно, как правило, используется символ \cdot , но это не обязательно.

Определение

Если G и H — группы с одинаковой операцией \cdot и $H \subset G$, то H — подгруппа G. Обозначение: H < G.

Нейтральный элемент единственен

Доказательство. Пусть их два: e_1 и e_2 . Тогда $e_1 = e_1 e_2 = e_2$.

Свойство 2

Для любого $a\in {\sf G}$, обратный элемент a^{-1} единственен.

Доказательство. Пусть a_1 и a_2 — два обратных элемента к $a \in G$. Тогда $a_1a = aa_2 = e$, откуда $a_1 = a_1(aa_2) = (a_1a)a_2 = a_2$.

Свойство 3

Для любого $a \in G$, $(a^{-1})^{-1} = a$.

Доказательство. Так как $aa^{-1}=a^{-1}a=e$, значит, a является обратным к a^{-1} . По Свойству 2, обратный элемент единственен.

Свойство 4

Для любых $a,b \in G$ выполнено $(ab)^{-1} = b^{-1}a^{-1}$.

Лемма 1

Пусть G — группа, $H \subset G$, причем H замкнуто по умножению и взятию обратного элемента (то есть, $\forall a,b \in H$ выполнено $ab \in H$ и $a^{-1} \in H$). Тогда H < G.

Доказательство. • При выполнении этих условий, $\cdot : H \times H \to H$ — ассоциативная операция и для любого элемента существует обратный.

- ullet Пусть $a\in H$. Тогда $a^{-1}\in H\Rightarrow e=aa^{-1}\in H$.
- ullet Значит, H- группа с операцией \cdot , то есть, H< G.

Лемма 2

Пусть $\{H_i\}_{i\in I}$ — множество подгрупп группы G . Тогда $H=\bigcap\limits_{i\in I}H_i$ — тоже подгруппа группы G .

Доказательство. • Достаточно проверить замкнутость по умножению и взятию обратного элемента.

- ullet Пусть $a,b\in H$. Тогда для всех $i\in I$ мы имеем $a,b\in H_i$.
- ullet Следовательно, для всех $i \in I$ мы имеем $ab \in H_i$, откуда следует, что $ab \in H$.
- Кроме того, для всех $i \in I$ мы имеем $a^{-1} \in H_i$, откуда следует, что $a^{-1} \in H$.

Пусть G — группа, $M \subset G$. Тогда

$$\langle M \rangle := \{ t_1 \dots t_n : \forall i \in \{1, \dots, n\} \ t_i \in M \$$
или $t_i^{-1} \in M. \}$ (n не фиксировано, может быть любым натуральным числом)

— подгруппа, порожденная M.

Лемма 3

Пусть G — группа, $M \subset G$. Тогда $\langle M \rangle < G$.

Доказательство. • Поскольку группа G замкнута по умножению и взятию обратных элементов, $\langle M \rangle \subset G$. (Из $t_i^{-1} \in M \subset G$ следует $t_i = (t_i^{-1})^{-1} \in G$. Из $t_1, \ldots, t_n \in G$ следует $t = t_1 \ldots t_n \in G$.

- Пусть $t,s\in\langle M\rangle$. Тогда $t=t_1\dots t_n$ (где $t_i\in M$ или $t_i^{-1}\in M$ для всех i) и $s=s_1\dots s_m$ (где $s_i\in M$ или $s_i^{-1}\in M$ для всех i).
- ullet Тогда $ts=t_1\dots t_n s_1\dots s_m\in\langle M
 angle.$
- ullet $t_{i}^{-1}=t_{n}^{-1}\cdot\dots\cdot t_{1}^{-1}\in\langle M
 angle$, так как для любого i либо $t_{i}^{-1}\in M$, либо $(t_{i}^{-1})^{-1}=t_{i}\in M$.
- По Лемме 1, $\langle M \rangle < G$.

Пусть G — группа.

- 1) Если $M\subset G$ таково, что $\langle M\rangle=G$, то M система образующих группы G.
- 2) Если $a\in G$ таково, что $\{a\}$ система образующих G (то есть, $\langle a\rangle=G$), то G циклическая группа.

Определение

- 1) Пусть G группа, $a \in G$. Порядок элемента a (обозначение: $\operatorname{ord}(a)$) это наименьшее такое $k \in \mathbb{N}$, что $a^k = e$. Если такого k нет, то $\operatorname{ord}(a) = \infty$.
- 2) Порядок группы G это количество ее элементов (то есть, |G|).

- \bullet Если $\operatorname{ord}(a) = 1$, то очевидно, что a = e.
- ullet Положим $a^0 = e$. Пусть $k \in \mathbb{N}$, $a \in G$. Тогда положим $a^{-k} := (a^{-1})^k$.

Свойство 1

Для любых $k, n \in \mathbb{Z}$ выполнено $a^{k+n} = a^k a^n$.

Доказательство. • При $k, n \in \mathbb{N}$ утверждение очевидно. как и при $0 \in \{k, n\}$.

- Если k, n < 0, то $a^{k+n} = (a^{-1})^{|k|+|n|} = (a^{-1})^{|k|} (a^{-1})^{|n|} = a^k a^n.$
- ullet Пусть k<0, n>0. Тогда $a^ka^n=\underbrace{a^{-1}\ldots a^{-1}}\cdot \underbrace{a\ldots a}$.
- ullet При |k|>n после сокращения получится $(a^{-1})^{|k|-n} = a^{k+n}$. При $|k| \le n$ после сокращения получится $a^{n-|k|} = a^{k+n}$.
- Случай k > 0, n < 0 аналогичен.

Свойство 2

Для любых $k,n\in\mathbb{Z}$ выполнено $(a^k)^n=a^{kn}$.

Доказательство. • При k=0 или n=0 утверждение понятно. При $n\in\mathbb{N}$ утверждение немедленно следует из определения степени.

- При k > 0 $(a^k)^{-1} = (\underbrace{a \dots a}_k)^{-1} = \underbrace{a^{-1} \dots a^{-1}}_k = (a^{-1})^k$.
- ullet Следовательно, при k>0 и n<0 имеем $(a^k)^n=(a^k)^{-|n|}=\left((a^k)^{-1}\right)^{|n|}=(a^{-1})^{k|n|}=a^{kn}.$
- ullet Так как $a^{-k}=(a^{-1})^k$ по определению степени, при k<0 аналогично.

Лемма 4

Пусть $G = \langle a \rangle$ — циклическая группа.

- 1) Если $\operatorname{ord}(a) = k \in \mathbb{N}$, то $G = \{a^0 = e, a, \dots, a^{k-1}\}$ и все эти элементы различны.
- 2) Если $\operatorname{ord}(a)=\infty$, то $G=\{a^s:s\in\mathbb{Z}\}$ и все эти элементы различны.

Доказательство. • В любом случае, по определению $G = \{a^s : s \in \mathbb{Z}\}.$

- 1) Докажем, что $\forall n \in \mathbb{N}$ мы имеем $a^n \in \{e = a^0, a, a^2, \dots, a^{k-1}\}.$
- ullet Поделим n на k с остатком: n=qk+r, где $0\leq r\leq k-1$. Тогда $a^n=(a^k)^q\cdot a^r=a^r$, что нам и нужно.
- ullet Пусть $i,j\in\{1,\dots,k-1\}$. Если $a^i=a^j$ и, скажем, i>j, то $e=a^i(a^j)^{-1}=a^{i-j}$. Но i-j< k, противоречие.
- 2) Если $i,j\in\mathbb{Z},\ i>j$ и $a^i=a^j$, то аналогично $a^{i-j}=e$, а значит, $\operatorname{ord}(a)\neq\infty$, противоречие.

Следствие 1

Для любого $a \in G$ выполнено $\operatorname{ord}(a) = |\langle a \rangle|$.

• Утверждение напрямую следует из Деммы 4.

Лемма 5

Любая подгруппа циклической группы — циклическая.

Доказательство. \bullet Пусть $G=\langle a \rangle,\ H < G$. Если $H=\{e\},$ утверждение очевидно. Далее $H \neq \{e\}.$

- ullet Если $a^m \in H$, то и $a^{-m} = (a^m)^{-1} \in H$. Значит, множество $I = \{m \in \mathbb{N} \ : \ a^m \in H\}$ непусто.
- ullet Рассмотрим минимальное такое $d \in I$ и докажем, что $H = \langle a^d
 angle.$
- ullet Предположим противное, пусть $a^n \in H$ и $n \not \mid d$.
- ullet Поделим n на d с остатком: n = dq + r, 0 < r < d. Тогда $a^n = a^{dq+r} = a^{dq} \cdot a^r \in H$.
- ullet Из $a^d \in H$ следует, что $a^{-dq} \in H$, а значит, и $a^r = a^n \cdot a^{-dq} \in H$. Но 0 < r < d противоречит выбору d.

Пусть G — группа, H < G, $a \in G$.

Левый смежный класс — это $aH := \{ah : h \in H\}$.

Правый смежный класс — это $Ha:=\{ha: h\in H\}.$

Свойство 1

|H| = |aH| = |Ha|.

Доказательство. Существует биекция $\varphi: H \to aH$, заданная формулой $\varphi(h):=ah$. Значит, |H|=|aH|. Аналогично, |H|=|Ha|.

Свойство 2

 $b\in aH\Rightarrow a^{-1}b\in H.$

Доказательство. $b \in aH \Rightarrow b = ah$, где $h \in H$. Тогда $a^{-1}b = h \in H$.

Свойство 3

 $aH = bH \iff a^{-1}b \in H.$

Доказательство. \Leftarrow . • Из $a^{-1}b \in H$ следует, что $\forall h \in H \ a^{-1}b \cdot h \in H \Rightarrow bh = a(a^{-1}bh) \in aH$. Таким образом, $bH \subset aH$.

- ullet Так как $a^{-1}b \in H \Rightarrow b^{-1}a = (a^{-1}b)^{-1} \in H$, аналогично получаем $aH \subset bH$.
- \Rightarrow . $aH=bH\Rightarrow b\in aH\Rightarrow a^{-1}b\in H$ по Свойству 2.

Свойство 4

Если $aH \cap bH \neq \emptyset$, то aH = bH.

Доказательство. • Пусть $z \in aH \cap bH$. Тогда $z = ah_1 = bh_2$, где $h_1, h_2 \in H$.

- Следовательно,
- $b = ah_1(h_2)^{-1} \Rightarrow a^{-1}b = a^{-1}ah_1(h_2)^{-1} = h_1(h_2)^{-1} \in H.$
- По Свойствам 2 и 3 имеем aH = bH.

Пусть G — группа, H < G. Тогда индекс G по H(обозначение: (G:H)) — это количество различных смежных классов аН.

• Если множество смежных классов бесконечно. то $(G:H)=\infty.$

Теорема 1

Пусть G — группа, H < G. Тогда:

- 1) $|G| = |H| \cdot (G : H)$;
- 2) если G конечна и $a \in G$, то $|G| : \operatorname{ord}(a)$.

Доказательство. 1) • Очевидно, $x \in G \Rightarrow x \in xH$.

- По свойству 4 группа *G* является объединением различных непересекающихся смежных классов по подгруппе H
- Если $|H| = \infty$ или $(G : H) = \infty$, то очевидно, и $|G|=\infty$. 4D > 4P > 4E > 4E > 900

- ullet Пусть $|H|\in \mathbb{N},\ k:=(G:H)\in \mathbb{N}$ и $G=igcup_{i=1}^k a_iH$, где $a_i\in G$, причем $a_iH\cap a_jH=\varnothing$ при $i\neq j$.
- ullet По Свойству 1 мы имеем $|a_iH|=|H|$ для всех $i\in\{1,\dots,k\}$, следовательно, |G|=k|H|=(G:H)|H|.
- 2) Если $a \in G$, то G имеет циклическую подгруппу $\langle a \rangle$.
- ullet По пункту 1, $|G| \ \dot{} \ |\langle a \rangle| = \operatorname{ord}(a)$ (последнее равенство по Следствию 1).

Симметрическая группа

Определение

Пусть $n \in \mathbb{N}$, $I_n = \{1, \ldots, n\}$.

- 1) Подстановка это биекция $\sigma:I_n\to I_n$. Как правило, мы будем записывать σ как строчку из n чисел: $\sigma(1),\sigma(2),\ldots\sigma(n)$ (на k позиции записывается то число, в которое σ переводит k).
- 2) Симметрическая группа S_n состоит из всех подстановок (в I_n), групповая операция композиция.
- Как нам известно, композиция ассоциативна.
- Единичным элементом в S_n будет тождественная подстановка id (такая, что $\mathrm{id}(i)=i$ для всех $i\in I_n$.
- ullet Так как $\sigma \in S_n$ биекция, существует обратная биекция $\sigma^{-1}:I_n \to I_n$).
- \bullet Таким образом, S_n группа.
- ullet Из курса ДМ нам известно, что $|S_n|=n!$.
- Если $k,n\in\mathbb{N},\ k< n,$ мы будем считать, что $S_k< S_n$ (каждую подстановку из S_k отождествим с подстановкой из S_n , так же переставляющей $1,\dots,k$ и оставляющей на месте $k+1,\dots,n$).

Д.В.Карпов

- ullet Пусть $\sigma \in \mathcal{S}_n$. По теореме Лагранжа, $n! = |\mathcal{S}_n| \ | \operatorname{ord}(\sigma)$.
- Значит, существует такое $k \in \mathbb{N}$, что $\sigma^k = \mathrm{id} \iff \forall i \in I_n \, \sigma^k(i) = i$.
- ullet Тогда для каждого $i\in I_n$ существует такое минимальное $k_i\in\mathbb{N}$, что $\sigma^{k_i}(i)=i$.
- Таким образом, σ разбивается на независимые циклы вида $i, \sigma(i), \dots \sigma^{k_i-1}(i)$. (каждый элемент под воздействием σ переходит в следующий, последний переходит в первый).
- В записи каждого цикла главное циклический порядок, начало не имеет значения.
- \bullet Пример. n=9, $\sigma=643297185$ стандартная запись.
- Разложение на независимые циклы: $\sigma = (167)(24)(3)(59)(8)$.
- Часто циклы длины 1 в этой записи опускают. Можно записать просто $\sigma = (167)(24)(59)$.

- ullet Так, подстановка σ^ℓ прокручивает каждый цикл σ ровно ℓ раз (нужно передвинуться на ℓ ходов по циклу). При этом, цикл может распадаться на несколько меньших.
- ullet Подстановка σ^{-1} прокручивает каждый цикл σ в обратном порядке.
- Пример. Пусть $\sigma=(1678)(243)(59)$. Тогда $\sigma^2=(17)(68)(234)(5)(9), \quad \sigma^3=(1876)(2)(3)(4)(59), \text{ а}$ $\sigma^{-1}=(1876)(234)(59).$

Лемма 6 Пусть $\sigma \in S_n$ раскладывается на независимые циклы длин m_1, \ldots, m_k . Тогда $\operatorname{ord}(\sigma) = [m_1, \ldots, m_k]$.

Доказательство. • $\sigma^{\ell}=\mathrm{id}$, если и только если каждый элемент I_n остается на своем месте.

- Это означает, что каждый цикл длины m_i должен прокрутиться кратное m_i число раз, то есть, $\forall j \in \{1, \dots, k\} \ \ell \cdot m_i$.
- ullet ord (σ) по определению наименьшее такое число ℓ , а это, очевидно, $[m_1,\ldots,m_k]$.

- 2) Транспозиция это цикл длины 2.
- \bullet Транспозиция меняет местами два элемента I_n , а все остальные оставляет на месте.

Теорема 2

При $n \geq 2$, транспозиции — система образующих S_n .

Доказательство. • Индукцией по $2 \le k \le n$ докажем, что транспозиции порождают подгруппу $S_k' < S_n$ (все подстановки, оставляющие на местах числа $k+1,\ldots,n$). База k=2 очевидна.

Переход $k \to k+1$. • Пусть доказано, что каждая подстановка из S_k' — произведение нескольких транспозиций.

ullet Рассмотрим $\sigma \in S'_{k+1}$. Если $\sigma(k+1)=k+1$, то $\sigma \in S'_k$ и утверждение для σ доказано.

Д. В. Карпов

- Рассмотрим транспозицию $\tau = (k+1, i)$ и $\sigma' = \sigma \tau$.
- \bullet Тогда $\sigma'(k+1) = \sigma(\tau(k+1)) = \sigma(i) = k+1$.
- \bullet Так как и τ , и σ оставляют на местах $\{k+2,\ldots,n\}$, σ' тоже эти числа оставляет на местах.
- Значит, $\sigma' \in S'_{\nu}$ и по индукционному предположению $\sigma' = \tau_1 \dots \tau_\ell$, где τ_1, \dots, τ_ℓ — транспозиции.
- \bullet Тогда $\sigma = \sigma \tau^2 = \sigma' \tau = \tau_1 \dots \tau_\ell \tau$.

Лемма 7

Пусть $\sigma_m \in S_n$ — цикл длины m > 2: $\sigma_m = (a_1 a_2 \dots a_m)$. Тогда $\sigma_m = (a_1 a_2)(a_2 a_3) \dots (a_{m-1} a_m).$

Доказательство. • Индукция по m. База m=2 очевидна.

Переход $k \to k+1$. • По индукционному предположению, $(a_1 a_2)(a_2 a_3) \dots (a_{k-1} a_k)(a_k a_{k+1}) = (a_1 a_2 \dots a_k)(a_k a_{k+1}).$

- ullet Цикл $\sigma_k = (a_1 a_2 \dots a_k)$ действует так: $\sigma_k(a_i) = a_{i+1}$ при $1 < i < k - 1, \ \sigma_k(a_k) = a_1.$
- При домножении на транспозицию $(a_k a_{k+1})$ мы меняем местами эти два числа, значит, если $\sigma' = \sigma_k \cdot (a_k a_{k+1})$, то $\sigma'(a_i) = a_{i+1}$ при $1 \le i \le k$ и $\sigma'(a_{k+1}) = a_1$.
- Значит, $\sigma' = \sigma_{k+1}$.

Пусть $\sigma \in S_n$.

- ullet Инверсия это такая пара чисел (i,j), что $1 \leq i < j \leq n$ и $\sigma(i) > \sigma(j)$.
- Через $I(\sigma)$ обозначается количество инверсий в подстановке σ .
- ullet Подстановка σ называется чётной, если $I(\sigma)$ $\dot{}$ 2 и нечетной, если $I(\sigma)$ $\dot{}$ 2

Доказательство. • Пусть τ меняет местами $\sigma(i)$ и $\sigma(j)$, где i < j.

- Подсчитаем четность числа пар, образующих инверсию ровно в одной из подстановок σ и σ' . Очевидно, в такой паре должно быть хотя бы одно из чисел i и j.
- Пусть $\ell \notin \{i, j\}$.
- Если $\ell < i$, то пара (ℓ, i) инверсия в $\sigma \iff (\ell, i)$ инверсия в σ' . Аналогично для пары (ℓ, j) .
- Если $\ell > j$, то пара (ℓ,j) инверсия в $\sigma \iff (\ell,j)$ инверсия в σ' . Аналогично для пары (ℓ,i) .
- ullet Пусть $i<\ell< j$. Тогда в каждой из пар (ℓ,i) и (ℓ,j) есть инверсия ровно в одной из подстановок σ и σ' .
- Количества посчитанных выше инверсий в σ и σ' имеет одинаковую четность. Осталась только пара (i,j), которая образует инверсию ровно в одной из подстановок σ и σ' и делает общее число инверсий в них разной четности.

Свойство 1

Пусть $\sigma = \tau_1 \dots \tau_k$ — разложение $\sigma \in S_n$ в произведение транспозиций. Тогда $I(\sigma) \equiv k \pmod{2}$.

Доказательство. • Отметим, что id — четная подстановка.

• Так как σ получена домножением id на транспозицию k раз, четность подстановки меняется в точности k раз по Лемме 8.

Свойство 2

Произведение подстановок одной четности четно, а произведение подстановок разных четностей нечетно.

Доказательство. • Пусть $\sigma, \sigma' \in S_n$, причем σ представляется как произведение k транспозиций, а σ' — как произведение m транспозиций.

ullet Тогда $I(\sigma) \equiv k \pmod 2$, $I(\sigma') \equiv m \pmod 2$ и $I(\sigma\sigma') \equiv k+m \pmod 2$, откуда следует доказываемое утверждение.

Свойство 3

Цикл длины k — четная подстановка, если и только если k нечетно.

Доказательство. По Лемме 7, цикл длины k представляется в виде произведения k-1 транспозиций. Далее применяем Свойство 1.

Свойство 4

Пусть в разложении на независимые циклы подстановки $\sigma \in S_n - k$ циклов, имеющих длины m_1, \ldots, m_k (не обязательно различные). Тогда σ — четная, если и только если среди чисел m_1, \ldots, m_k — четное количество четных.

Доказательство. Следует из Свойств 2 и 3

Свойство 5

 $I(\sigma) \equiv I(\sigma^{-1}) \pmod{2}$ для любой $\sigma \in S_n$.

Доказательство. • Рассмотрим разложение на транспозиции $\sigma = \tau_1 \tau_2 \dots \tau_k$.

- Так как $\tau_i^{-1} = \tau_i$, мы имеем $\sigma^{-1} = \tau_k \dots \tau_2 \tau_1$.
- По Свойству 1, $I(\sigma) \equiv k \equiv I(\sigma^{-1}) \pmod{2}$.

• A_n — множество всех четных подстановок.

Теорема 3

При $n \ge 2$ выполняется:

- 1) $A_n < S_n$;
- 2) $|A_n| = \frac{n!}{2}$.

Доказательство. 1) • По Свойству 5, если $\sigma \in A_n$, то и $\sigma^{-1} \in A_n$.

- Пусть $\sigma, \sigma' \in A_n$. По Свойству 2, $\sigma \sigma' \in A_n$.
- По Лемме 1, $A_n < S_n$.

- 2) Докажем, что четных и нечетных подстановок в S_n поровну.
- ullet Определим отображение $f:S_n o S_n$ формулой $f(\sigma):=\sigma\cdot (12).$
- Отметим, что $f(f(\sigma)) = \sigma \cdot (12)^2 = \sigma$.
- ullet По Лемме 8, подстановки σ и $f(\sigma)$ всегда разной четности.
- ullet Пусть $A_n = \{\sigma_1, \dots, \sigma_k\}$ и $f(\sigma) = \sigma'$. Тогда все подстановки $\sigma'_1, \dots, \sigma'_k$ различны и нечетны.
- ullet Если $\sigma' \in S_n$ нечетная подстановка, то $f(\sigma')$ четная и $f(f(\sigma')) = \sigma'$.
- ullet Следовательно, $S_n \setminus A_n = \{\sigma'_1, \dots, \sigma'_k\}.$
- ullet Таким образом, $|A_n|=|S_n\setminus A_n|$, откуда следует, что $|A_n|=rac{n!}{2}.$

ullet Пусть G,H — группы. Отображение f:G o H называется гомоморфизмом, если $\forall\ a,b\in G$ f(ab)=f(a)f(b).

Ядро гомоморфизма f — это $\operatorname{Ker}(f) = \{x \in G : f(x) = e_H\}.$

Образ гомоморфизма f — это $Im(f) = \{ y \in H : \exists x \in G : f(x) = y \}.$

Свойство 1

Если f:G o H гомоморфизм, то $f(e_G)=e_H$.

Доказательство. $f(e_G) = f(e_G \cdot e_G) = f(e_G) \cdot f(e_G)$. Умножая левую и правую части $(f(e_G))^{-1}$, получаем $f(e_G) = e_H$.

Свойство 2

Если $f:G \to H$ гомоморфизм, то $f(a^{-1}) = (f(a))^{-1}$.

Доказательство. • $e_H = f(e_G) = f(a \cdot a^{-1}) = f(a) \cdot f(a^{-1})$.

ullet Аналогично, $f(a^{-1}) \cdot f(a) = e_H$. Значит, $f(a^{-1}) = (f(a))^{-1}$. \square

- 1) $\operatorname{Ker}(f) < G$.
- $2) \operatorname{Im}(f) < H.$
- Доказательство. Достаточно проверить условия из Леммы 1.
- 1) Пусть $a, b \in \text{Ker}(f)$. Тогда $f(ab) = f(a)f(b) = e_H \cdot e_H = e_H$, следовательно, $ab \in \text{Ker}(f)$.
- $f(a^{-1}) = (f(a))^{-1} = e_{\mu}^{-1} = e_{H}$, следовательно, $a^{-1} \in \operatorname{Ker}(f)$.
- 2) ullet Пусть $y,y'\in \mathrm{Im}(f)$, а $x,x'\in G$ таковы, что f(x)=y и f(x')=y'.
- Тогда $yy' = f(x)f(x') = f(xx') \in Im(f)$.
- $y^{-1} = (f(x))^{-1} = f(x^{-1}) \in \text{Im}(f).$
- Если f: G o H гомоморфизм, а N < G, то

Следствие 2

- $f(N) = \{f(x) : x \in N\} < H.$ Description
 Ought
 Ought
- Доказательство. Очевидно, f индуцирует гомоморфизм $f|_N: N \to H$.
- ullet По Лемме 9 мы имеем $f(N) = \operatorname{Im}(f|_N) \leqslant_{\mathbb{P}} H.$

- \bullet Если f инъекция, то f мономорфизм.
- ullet Если f сюръекция (то есть, $\mathrm{Im}(f)=H$), то f —эпиморфизм.
- \bullet Если f биекция, то f изоморфизм.
- Изоморфизм = мономорфизм + эпиморфизм.

Лемма 10

Пусть f:G o H — гомоморфизм групп. Тогда f — мономорфизм, если и только если $\mathrm{Ker}(f)=\{e_G\}.$

Доказательство. \Rightarrow \bullet Если f — мономорфизм, то f — инъекция.

- ullet Пусть $a\in \mathrm{Ker}(f)$. Из $f(a)=e_H=f(e_G)$ следует, что $a=e_G$ (так как f инъекция).
- \leftarrow Пусть f(a) = f(b). Тогда $f(a \cdot b^{-1}) = f(a) \cdot f(b^{-1}) = f(a) \cdot (f(b))^{-1} = f(b) \cdot (f(b))^{-1} = e_H$.
- Значит, $a \cdot b^{-1} \in \text{Ker}(f) = \{e_G\}$, откуда $a \cdot b^{-1} = e_G$ и a = b. Таким образом, f инъекция, а значит, мономорфизм.

Лемма 11

Пусть f:G o H — изоморфизм групп. Тогда и $f^{-1}:H o G$ — изоморфизм групп.

Доказательство. • Достаточно доказать, что f^{-1} — гомоморфизм (так как отображение, обратное к биекции — биекция).

- ullet Рассмотрим любые $a,b\in H.$
- ullet Так как f гомоморфизм,

$$f(f^{-1}(ab)) = ab = f(f^{-1}(a)) \cdot f(f^{-1}(b)) = f(f^{-1}(a) \cdot f^{-1}(b)).$$

ullet Из того, что f — биекция, следует, что $f^{-1}(ab)=f^{-1}(a)\cdot f^{-1}(b).$ А это и значит, что f^{-1} — гомоморфизм групп.

Если существует изоморфизм групп $f: G \to H$, то говорят, что эти группы изоморфны. Обозначение: $G \simeq H$.

Теорема 4

 \simeq — отношение эквивалентности на множестве всех групп.

Доказательство. • Рефлексивность очевидна: тождественное отображение $\mathrm{id}: G \to G$ (заданное формулой $\mathrm{id}(x) = x$ для всех $x \in G$), очевидно, является изоморфизмом.

- Симметричность доказана в Лемме 11.
- ullet Докажем транзитивность. Пусть F,G,H группы, $F\simeq G$ и $G\simeq H.$
- Тогда существуют изоморфизмы $\varphi: F \to G$ и $\psi: G \to H$. Докажем, что их композиция $\psi \varphi: F \to H$ (заданная правилом $(\psi \varphi)(a) := \psi(\varphi(a))$) также является изоморфизмом.
- ullet Композиция биекций ψ и arphi, очевидно, является биекцией.
- ullet Проверим, что $\psi arphi$ гомоморфизм групп:

$$\psi\varphi(\mathsf{a}\mathsf{b}) = \psi(\varphi(\mathsf{a}\mathsf{b})) = \psi(\varphi(\mathsf{a})\cdot\varphi(\mathsf{b})) = \psi(\varphi(\mathsf{a}))\cdot\psi(\varphi(\mathsf{b})) = (\psi\varphi)(\mathsf{a})\cdot(\psi\varphi)(\mathsf{b}).$$