MSc Project Notes

Opale

April 6, 2024

Memory model constructor cheatsheet 1

In italic, "primitives", ie. types that aren't memory models. Note $X^?\stackrel{\mathrm{def}}{=} X \uplus \bot, \ X^\emptyset \stackrel{\mathrm{def}}{=} X \uplus \emptyset$

Language	Memory Model
WISL	PMap(Loc, OneShot(List(Exc(Val))))
JSIL	$\operatorname{PMap}(Loc, \operatorname{PMap}(\operatorname{Str},\operatorname{Exc}(\operatorname{Val}^{\emptyset})) \times \operatorname{PMap}(\operatorname{Loc},\operatorname{Ag}(\operatorname{Val}))$

Name	Purpose	Type	Actions	Predicates
Exc	Exclusive ownership of a specific resources	$ au^{?}$	load, store *1	PointsTo
Ag	Multiple parties agree on the same value for a resource	Τ		Agree
Frac	Allow partial (readonly) own- ership of an object	$\tau \times (0,1]$		Frac
List	Ensure continuous memory allocation	$(\mathbb{N} \stackrel{fin}{\rightharpoonup} \tau) \times \mathbb{N}^? *2$		
OneShot	The program only has one go at something (eg. freeing memory)	$\operatorname{Exc}(\tau) + \operatorname{Ag}(\{\emptyset\})$	free	
PMap	Define memory as a map of address (a sort I) to value	$(I \stackrel{fin}{\rightharpoonup} \tau) \times \mathcal{P}(I)^? *3$		lift with index in-param
Product (\times)	Two simultaneous states, each being updated sepa- rately (eg. List)	$ au_1 imes au_2$	lift with A1, A2	
Sum (+)	Either of two states existing (eg. OneShot)	$\tau_1 \uplus \tau_2$	lift with A1, A2	

^{*1} Would we define load and store at this level, or at a more primitive "Value" memory model level?
*2 Full definition: $\left\{(b,n^?)\in(\mathbb{N}\stackrel{fin}{\rightharpoonup}\tau)\times\mathbb{N}^?\mid \mathrm{dom}(b)\subseteq[0,n^?)\right\}$
*3 Full definition: $\left\{(h,d)\mid h\in(\mathrm{I}\stackrel{fin}{\rightharpoonup}\tau)\wedge d\in\mathcal{P}(I)^?\wedge\mathrm{dom}(h)^?\subseteq d\right\}$