無窮小量與無窮大量

在高等數學,對於無窮的討論,一般從無窮小量開始。何爲無窮小量?即一個非常接近0的變量不斷向零靠近,而永遠無法到達0,即爲無窮小量。

我們可以考慮數列 $\{a_n\}$, 其中對於任意整數n, $a_n = \frac{1}{10^n}$ 。則當n越大時, a_n 越靠近0。對此,記

$$a_n \to 0$$

考慮對任意n,均有 $\varepsilon > 0$ 使得 $0 < \varepsilon < a_n$,則稱變量 ε 為無窮小量。記 $\varepsilon \to 0$ 。

相對的,考慮數列 $\{A_n\}$, 其中對於任意整數n, $A_n=10^n$ 。則當n越大時, A_n 越靠近 ∞ 。對此,記

$$A_n \to \infty$$

考慮對任意n,均有N > 0使得 $A_n < N$,則稱變量N為無窮大量。記 $N \to \infty$ 。

極限的幾何概念

 $\varepsilon - \delta$ 定義-於無窮小的極限

極限的性質

特殊的極限

於無窮大的極限

連續函數

連續函數的性質

介值定理

單調函數與逆函數