Introduction to Cryptography Midterm Exam

Topics

- 1. Everything we did in class until Thursday, March 11 (closed interval Thursday included)
- 2. Homeworks 1-5.
- 3. In particular:
 - Basics of symmetric cryptography
 - Key space, key size, security level
 - Substitution Ciphers (Shift Cipher, Affine Cipher and Vigenere Cipher)
 - Classical Permutation Ciphers (Transposition cipher and Permutation cipher)
 - The Greatest Common Divisor (gcd)
 - Euclidean algorithm
 - Modular arithmetic
 - Hill cipher
 - Intro to stream ciphers
 - Random number generators (RNGs) (Linear Congruential Generator, Blum Blum Shub)
 - One-Time Pad (OTP)
 - Linear feedback shift registers (LFSRs)
 - Trivium
 - RC4
 - Block Ciphers, Block Cipher Primitives: Confusion and Diffusion
 - Feistel Cipher (Feistel network)
 - DES, 3DES, Meet in the middle attack, S-boxes, permutations
 - Finite fields (polynomial arithmetic over finite fields modulo polynomials, Finite fields of the form $GF(p^m)$, inverse elements)
 - AES
 - Brute-Force Attack against Symmetric Ciphers
 - Block Cipher modes of operations (ECB, CBC, OFB, CFB, CTR)
 - Expected number of false keys
 - Key Whitening