# CS & IT

### ENGINEERING

IPv4 Addressing COMPUTER NETWORKS

Introduction to IP Addressing

**Lecture No-02** 



By- Ankit Doyla Sir







Introduction to IPv4



$$2^{1} = 2$$
 $2^{2} = 4$ 
 $2^{3} = 8$ 
 $2^{4} = 16$ 
 $\vdots$ 
 $2^{9} = 512$ 
 $2^{10} = 1024 = 1K (Kilo)$ 
 $2^{20} = 1024 \times 1024 = 1M (Mega)$ 
 $2^{30} = 1024 \times 1024 \times 1024 = 1G (Giga)$ 

$$2^{40} = 1 \text{ T (Tera)}$$
  
 $2^{50} = 1 \text{ P (Peta)}$   
 $2^{60} = 1 \text{ E (Exa)}$   
 $2^{70} = 1 \text{ Z (Zetta)}$   
 $2^{80} = 1 \text{ Y (Yotta)}$ 

### Data

$$1 \text{ Byte} = 8 \text{ bits}$$

$$1 \text{ KB} = 1024 \text{ Bytes}$$

$$1 \text{ ZB} = 1024 \text{ EB (Exa Byte)}$$

$$1 \text{ YB} = 1024 \text{ ZB} (Zetta Byte)$$



Bit 
$$\rightarrow$$
 b

Byte  $\rightarrow$  B



#### **Decimal Value**



## Binary Number 1884 3₹ 16 8 4 2 1 1 0 0 0 0 0 0 0 0 → | 28

$$11110000 \rightarrow 240 (255-15)$$

$$111111000 \rightarrow 248(255-7)$$

$$11111100 \rightarrow 27$$

$$\frac{111111100}{11111100} \rightarrow \frac{378}{258} (355-7)$$

$$\frac{11111110}{258} \rightarrow \frac{378}{258} (355-3)$$

### **Decimal Value**











### Introduction to IP Addressing



Total number of IP addresses =  $2^{32}$  = 4,294,967,296

Initially in 1980's IP Addresses was divided into two Fixed Parts i.e.,

NID = 8 bit, and HID = 24 bit.





| -     |                       |
|-------|-----------------------|
| (     | $N_1 = 2^{24} IP Add$ |
|       | No = 234 IP Add       |
| 1     | N3 = 224 IP Add       |
| 281   | N4 = 224 IP Add       |
| Parts | Ns = 224 IP Add       |
| 356   |                       |
| Parts | •                     |
| #     | •                     |
| 256   |                       |
| Nota  | *                     |
| ox Ks | N256 = 274 IP Add     |

### Introduction to IP Addressing



### Disadvantage

There are only 256 Network's, and even a small organization must buy 16M computer (HOST) to purchase one network.

Soll: classful Addlessing

### Telephone Networks



11 digit Number

2. Two Parts



3. Unique

### Telephone Networks



| City |          |  |  |
|------|----------|--|--|
| 3    | 8        |  |  |
| STD  | TID      |  |  |
| OL1  | 24161315 |  |  |







10 CT

```
city
STD = 3 digit
                     TID = 8 digit
                        0000000
     000
     001
     002
     003
             1000
     004
                       9,99,9999
     999,
```

### Computer Networks



- 1. 32 bit Number 8 · 8 · 8
- 2. Two Parts HID
- Unique

### Computer Networks



| Class A           |                            |          |
|-------------------|----------------------------|----------|
| 8 bit             | 24 bit                     |          |
| NID               | HID                        |          |
| 28=256<br>Network | 2 <sup>4</sup> x=<br>= 16M | Host Net |
| Note: De          | signed =                   | of Big   |
| organ             | ization F                  | or ex:   |







Wastage= 
$$2^{16}$$
 - 500  
=  $65,536-500=65,036$ 

$$\begin{array}{c} classA \\ = 2^{16} IP \\ = 2^{16} IP \\ = 2^{16} IP \\ = 2^{16} IP \\ \end{array}$$











