Perlombongan Data Graf

Asas teori graf

Definisi penting:

- 1. Graf : terdiri daripada 2 set (verteks[V] dan sisi[E])
- 2. Sisi : Pasangan tidak tertib bagi dua verteks (v_1, v_2)
- 3. Darjah (degree) : bilangan kali verteks berlaku sebagai titik akhir untuk sisi
- 4. Gelung (Loop) : Sisi yang menghubungkan verteks yang sama
- 5. Sisi berganda (Multiple edge) : Sisi yang menghubungkan dua verteks yang sama
- 6. Graf Mudah (Simple graph): Graf yang tidak mempunyai gelung dan sisi berganda
- 7. Subgraf: Graf yang terdiri daripada sebahagian verteks dan sisi graf asal
- 8. Klik : Subgraf yang mana setiap verteks berhubung dengan setiap verteks yang lain
- 9. Laluan (Path): Sisipan verteks yang berlainan
- 10. Graf Isomorfik : Graf yang boleh wujud dalam bentuk yang berbeza tetapi mempunyai bilangan verteks, sisi dan juga ciri ketersambungan sisi yang sama
- 11. Graf Automorfik : Graf yang mempunyai struktur yang sama, tetapi mempunyai tingkahlaku hubungan yang berbeza. Oleh itu, ianya bukanlah graf yang sama secara tepat.

Jenis jenis data graf

Graf terarah dan tak terarah

Graf tak terarah

input hubungan nod-nod

```
g <- graph_from_literal(1-2,1-3,1-7,3-4,2-3,2-4,3-5,4-5,
4-6,4-7,5-6,5-8,6-7,7-8)
```

Labelkan nod-nod

Graf terarah

```
dg<- graph_from_literal(KL-+CHINA,KL-+London,CHINA++London)
plot(dg)</pre>
```


Graf berwajaran

Graf berkitar dan tak berkitar

Grad berkitar

plot(ig, edge.label=E(ig)\$weight)

Graf tak berkitar

plot(dg)

Graf Pokok

```
tr <- make_tree(40, children=3, mode='undirected')
plot(tr)</pre>
```


Graf Bipartit

```
gb <- sample_bipartite(10,5,p=0.4)
colo<- c('blue','red')
shape <- c('circle','square')

plot(gb, vertex.color=colo[as.numeric(V(gb)$type)+1],
    vertex.shape=shape[as.numeric(V(gb)$type)+1])</pre>
```


Hiper Graf

Perwakilan Data Graf

Senarai Bersebelahan

Adj.list1 <- as_adj_list(g) plot(g)

Adj.list1

```
## $Adam
## + 3/8 vertices, named, from 35d901e:
## [1] Judy Bobby Sam
##
## $Judy
## + 3/8 vertices, named, from 35d901e:
## [1] Adam Bobby Frank
## $Bobby
## + 4/8 vertices, named, from 35d901e:
## [1] Adam Judy Frank Tom
##
## $Sam
## + 4/8 vertices, named, from 35d901e:
## [1] Adam Frank Jerry Jay
##
## $Frank
## + 5/8 vertices, named, from 35d901e:
## [1] Judy Bobby Sam
                        Tom
                               Jerry
##
## $Tom
## + 4/8 vertices, named, from 35d901e:
## [1] Bobby Frank Jerry Jay
##
```

```
## $Jerry
## + 3/8 vertices, named, from 35d901e:
## [1] Sam Frank Tom
##
## $Jay
## + 2/8 vertices, named, from 35d901e:
## [1] Sam Tom

Adj.list2 <- as_adj_list(dg)
plot(dg)</pre>
```


Adj.list2

```
## $KL
## + 2/3 vertices, named, from 3758e89:
## [1] CHINA London
##
## $CHINA
## + 3/3 vertices, named, from 3758e89:
## [1] KL London London
##
## $London
##
## $London
## + 3/3 vertices, named, from 3758e89:
## [1] KL CHINA CHINA
```

```
Adj.list3 <- as_adj_list(tr)
plot(tr)</pre>
```


head(Adj.list3,5)

```
## [[1]]
## + 3/40 vertices, from 38ffc94:
## [1] 2 3 4
##
## [[2]]
## + 4/40 vertices, from 38ffc94:
## [1] 1 5 6 7
##
## [[3]]
## + 4/40 vertices, from 38ffc94:
## [1] 1 8 9 10
##
## [[4]]
## + 4/40 vertices, from 38ffc94:
## [1] 1 11 12 13
##
## [[5]]
## + 4/40 vertices, from 38ffc94:
## [1] 2 14 15 16
```

Seanari Sisi

```
Ed.list1<- as.data.frame(as_edgelist(g))</pre>
Ed.list2<- as.data.frame(as_edgelist(dg))</pre>
Ed.list3<- as.data.frame(as_edgelist(gb))</pre>
Ed.list1
##
        V1
               ٧2
## 1 Adam Judy
## 2 Adam Bobby
## 3 Adam
              Sam
## 4 Judy Bobby
## 5 Judy Frank
## 6 Bobby Frank
## 7 Bobby
              Tom
## 8
       Sam Frank
## 9
        Sam Jerry
## 10
        \mathtt{Sam}
              Jay
## 11 Frank
              Tom
## 12 Frank Jerry
## 13
        Tom Jerry
```

Matriks Bersebelahan

Jay

Tom

14

```
Adj.M1<- as_adjacency_matrix(g)</pre>
Adj.M2<- as_adjacency_matrix(dg)
Adj.M3<- as_adjacency_matrix(ig)
Adj.M1
## 8 x 8 sparse Matrix of class "dgCMatrix"
       Adam Judy Bobby Sam Frank Tom Jerry Jay
## Adam
       . 1
                 1
                      1
## Judy
        1 .
                   1 .
                           1
## Bobby 1 1
## Sam 1 . . . . . ## Frank . 1 1 1
                 ## Tom . .
## Jerry . .
## Jay
```

Teknik Manipulasi Graf

Keluarkan verteks tertentu

```
h <- g-vertices(c("Jerry", "Bobby"))
plot(h)</pre>
```


Menjana Subgraf

Gabungkan graf

h3 <- union(h2,g)
plot(h3)

Mengubah suai sisi data

E(h3)

```
## + 17/17 edges from 3d60871 (vertex names):
## [1] Sam --Jay
                      Sam --Jerry Frank --Jerry Frank --Sam
                                                                 Frank --Bobby
                                    Tom --Jerry Tom --Bobby
## [6] Aminah--Frank Tom
                           --Jay
                                                                 Tom --Frank
## [11] Judy --Bobby Judy --Frank Judy --Aminah Adam --Sam
                                                                 Adam --Bobby
## [16] Adam --Tom
                      Adam --Judy
E(h3)$type<- c("email", "phone", "FB", "email", "class",</pre>
           "Twitter", "neighbour", "phone", "FB", "email",
           "class", "neighbour", "phone", "email", "email",
           "FB", "neighbour")
E(h3)$weight<- c(10, 1, 3, 2, 2, 2, 1, 5, 9, 8,1, 6, 2, 9,
                3, 10, 7)
edge_attr(h3)
## $type
## [1] "email"
                                                                 "Twitter"
                   "phone"
                              "FB"
                                          "email"
                                                      "class"
  [7] "neighbour" "phone"
                              "FB"
                                          "email"
                                                      "class"
                                                                 "neighbour"
## [13] "phone"
                   "email"
                               "email"
                                          "FB"
                                                      "neighbour"
## $weight
## [1] 10 1 3 2 2 2 1 5 9 8 1 6 2 9 3 10 7
```

Pengvisualan Graf

plot(h3)

plot(h3, vertex.label=V(h3)\$gender)

plot(h3, vertex.label=V(h3)\$gender, edge.label=E(h3)\$type)

plot(h3, vertex.label=V(h3)\$name, edge.label=E(h3)\$type)

plot(h3, vertex.label=V(h3)\$name, edge.label=E(h3)\$weight)

Analisis prominen nod

library(statnet)

```
## Loading required package: tergm

## Loading required package: network

##

## 'network' 1.19.0 (2024-12-08), part of the Statnet Project

## * 'news(package="network")' for changes since last version

## * 'citation("network")' for citation information

## * 'https://statnet.org' for help, support, and other information

##

## Attaching package: 'network'

## The following object is masked from 'package:HyperG':

##

## has.loops
```

```
## The following objects are masked from 'package:igraph':
##
       %c%, %s%, add.edges, add.vertices, delete.edges, delete.vertices,
##
       get.edge.attribute, get.edges, get.vertex.attribute, is.bipartite,
##
##
       is.directed, list.edge.attributes, list.vertex.attributes,
##
       set.edge.attribute, set.vertex.attribute
##
## 'ergm' 4.8.1 (2025-01-20), part of the Statnet Project
## * 'news(package="ergm")' for changes since last version
## * 'citation("ergm")' for citation information
## * 'https://statnet.org' for help, support, and other information
## 'ergm' 4 is a major update that introduces some backwards-incompatible
## changes. Please type 'news(package="ergm")' for a list of major
## changes.
## Loading required package: networkDynamic
##
## 'networkDynamic' 0.11.5 (2024-11-21), part of the Statnet Project
## * 'news(package="networkDynamic")' for changes since last version
## * 'citation("networkDynamic")' for citation information
## * 'https://statnet.org' for help, support, and other information
## Registered S3 method overwritten by 'tergm':
##
     method
     simulate formula.network ergm
##
##
## 'tergm' 4.2.1 (2024-10-08), part of the Statnet Project
## * 'news(package="tergm")' for changes since last version
## * 'citation("tergm")' for citation information
## * 'https://statnet.org' for help, support, and other information
## Attaching package: 'tergm'
## The following object is masked from 'package:ergm':
##
##
       snctrl
## Loading required package: ergm.count
##
## 'ergm.count' 4.1.2 (2024-06-15), part of the Statnet Project
## * 'news(package="ergm.count")' for changes since last version
## * 'citation("ergm.count")' for citation information
## * 'https://statnet.org' for help, support, and other information
## Loading required package: sna
```

```
## Loading required package: statnet.common
##
## Attaching package: 'statnet.common'
## The following object is masked from 'package:ergm':
##
##
       snctrl
## The following objects are masked from 'package:base':
##
##
       attr, order
## sna: Tools for Social Network Analysis
## Version 2.8 created on 2024-09-07.
## copyright (c) 2005, Carter T. Butts, University of California-Irvine
## For citation information, type citation("sna").
## Type help(package="sna") to get started.
##
## Attaching package: 'sna'
## The following objects are masked from 'package:igraph':
##
       betweenness, bonpow, closeness, components, degree, dyad.census,
       evcent, hierarchy, is.connected, neighborhood, triad.census
## Loading required package: tsna
##
## 'statnet' 2019.6 (2019-06-13), part of the Statnet Project
## * 'news(package="statnet")' for changes since last version
## * 'citation("statnet")' for citation information
## * 'https://statnet.org' for help, support, and other information
## unable to reach CRAN
#import pakej daripada platfom github
library(devtools)
## Loading required package: usethis
#install_github("DougLuke/UserNetR")
library(UserNetR)
data(Bali)
par(mar=c(1,1,1,1))
plot(Bali, displaylabels=T)
```


Nama nod

Name<- Bali%v%"vertex.names"

Role nod

Role<- Bali%v%"role"

Atribut Sisi

Attr<- Bali%e%"IC"

Ukuran Nod Prominen

Kepusatan Darjah

```
deg<- degree(Bali)</pre>
```

Kepusatan Kedekatan

```
cls<- closeness(Bali)</pre>
```

Kepusatan Antara

```
btw<- betweenness(Bali)</pre>
```

Pemusatan

```
library(statnet)
library(UserNetR)
data(Bali)
plot(Bali, displaylabels=T)
```


####Ukuran Pemusatan Graf

```
centralization(Bali, degree)
```

```
## [1] 0.5375
```

```
centralization(Bali, closeness)
```

```
## [1] 0.3343513
```

Analisis titik potong

```
net <-Bali
cpnet <- cutpoints(net, return.indicator = T)
# cpnet = 4 "TRUE"
name[4]</pre>
```

[1] "Samudra"

Analisis Sub Kumpulan

```
data(Facebook)
plot(Facebook)

## This graph was created by an old(er) igraph version.
## i Call 'igraph::upgrade_graph()' on it to use with the current igraph version.
## For now we convert it on the fly...
```


Clique

clique <- cliques(Facebook)</pre>

Clique Terbesar

max_clique <- max_cliques(Facebook)</pre>

K-teras

```
k_core <- coreness(Facebook)</pre>
```

plot teras yang sama

sub=kumpulan mengikut k-teras

Pengesanan komuniti & ukuran modulariti

Komuniti_D <- cluster_louvain(Facebook)
plot(Komuniti_D, Facebook)</pre>

skor_modulariti <- modularity(Komuniti_D)
skor_modulariti</pre>

[1] 0.6321301