Лабараторна робота з аналогової електроніки №4 ДОСЛІЖЕННЯ ТРАНЗИСТОРІВ

Київ

2021

Виконавець: Белицький Дмитро Олександрович, студент Київськиого національного університетуімені Тараса Шевченка, Фізичний факультет, 2курс, 5-А група.

Дата написаня: 06.02.2021

РЕФЕРАТ

Звіт складається з 1 частини, сумарним об'ємом 8 сторінок, у кожній частині наведено такі скриншоти: принципову схему, скриншот сигналу.

В звіті подається описання властивостей біполярних транзисторів, та польових транзисторів

Мета роботи ознайомитися з основними характеристиками транзисторів

Метод дослідження: компьютерна симуляція в програмі Multisim 14.0

Значимість роботи- Виключно в цілях освіти.

3MICT

Основна частина	
ВАХ біполярного транзистора	
ВАХ мосфета(польового транзистора)	
Дослідження коефіцієнта підсилення	
Спроба дослідити Диференційний опір	
Висновок	
Список використаної літератури	

ОСНОВНА ЧАСТИНА

Принципова схема

Виміряємо ВАХ для Біполярного транзистора, Канал А осцилографа вимірює напругу на транзисторі, а канал Б напругу на резисторі, яка, згідно закону ома, пропорційна до струму, тому на осцилографі в режимі А-Б ми отримаємо графік, де по осі У струм через транзистор множений на опір резистора **10 Ом** в цій схемі,а по осі Х відкладено падіння напруги на транзисторі.

На генераторі синусоіда 15 вольт амплітудою і частотою 10Hz

Як бачимо максимальний струм, що протікає через транзистор дорівнює приблизно 1,5*5/10=0,75A=750мА При напрузі Колектор-Емітер в 4 вольти.

На базу через дільник напруги подано через обмежувальний резистор постійну напругу

Далі отримаємо ВАХ для мосфета, База тут називається затвором, і вона ϵ ізольованою, тому струм через затвор майже не тече, обмежувальний резистор(R2 в попередній схемі) уде не потрібен, все інше в схемі залишаємо без змін.

Схема досліду з мосфетом

Нижче наведено ВАХ

На затвор через дільник подається напруга в 12 вольт, змінюючи цю напругу ми керуємо опором між колектором і емітером. Максимальна напруга на транзисторі, близько 7 В, струм (піковий) виміряний віртуальним цифровим амперметром 642мА, при максимальній амплітудній напрузі в 15 вольт, з цього можно зробити висновок, що за такої напруги на затворі та такої напруги source-drain опір мосфета складає 4,50ма.

<u>Виміряємо коефіцієнт підсилення за струмом</u> для різних значень Ік, для цього заміним генератор змінного струму **20В** на джерело постійного струму.

І виміряємо Ік:

Ib(A)	Ik(A)
0	0
0,000024	0,08
0,000075	0,216
0,000143	0,347
0,00023	0,473
0,000343	0,594
0,00049	0,711
0,000684	0,827
0,000953	0,943
0,00135	1,07
0,00204	1,21
0,00451	1,45
0,0128	1,7
0,05	1,89

Залежність струму колектора від струму бази

Зележність коефіцієнту підсилення від струму колектора

Як бачимо при струмі бази близько одного міліампера, біполярний транзистор досягає насичення,

А коефіцієнт підсилення струму швидко падає при збільшені струму колектора

Нижче наведено Графік залежності струму колектора від прикладеної напруги, для відповідної напруги, щоподається на базу, графік побудовано з даних віртуального осцилографа multisim.

Значеня в процентах відповідає положенню потенціометра. 0% на виході потенціометра -напруга дорівнюєнапрузі на вході, тобто 15вольт, а 10% відповідає 4.5 вольтам.

Як видно з цього графіка при збільшені струму бази напруга насичення зменшується.

Щоб визначити вхідний дифференціальний опір за формулоюпохідну напруги колектор емітер по струму,

Порахуємо це для кривої 10%

Графік dU/dI в залежності від напруги колектор-емітер

Щоб визначити вхідний дифференціальний опір за формулою $R_{eux}=rac{dU}{dI_k}; U_{\delta e}=const\,$ треба знайти похідну напруги колектор емітер по струму, Порахуємо це для кривої 10%

Графік dU/dl в залежності від напруги колектор-емітер

Цей графік відрізняється від реальної картини, оскільки під напругою коллектор-емітер мається на увазі, танапруга що ϵ на виводі подільника напруги, слід враховувати, що струм через базу не ϵ сталим і міняється залежності від напруги колектор емітер, томі і напруга бази не ϵ сталою, програма Multisim не дозволяэ подати на базу напругу безпосередньо з джерела, тим самим виконавши умову Uб=const

 $\underline{\textit{Buchobok:}}$ В даній лабораторній роботі, я ознайомився з характеристиками транзисторів, отримав діаграмуВАХ біполярного транзистора та мосфета(різновид польового транзистора), для різної напруги на базі визначив як змінюється струм насичення в залежності від напруги на базі. А також намагався дослідити вхідний диференціальний опір транзистора, але одержані результати не ϵ точними через деякі обмеження симуляції.

Список використаної літератури:

- 1) Методичні вказівки до практикуму «Основи радіоелектроніки» для студентів фізичного факультету / Упоряд. О.В.Слободянюк, Ю.О.Мягченко, В.М.Кравченко.- К.: Поліграфічний центр «Принт лайн», 2007.- 120 с.
- **2**) **Ю.О. Мягченко, Ю.М. Дулич, А.В.Хачатрян** "Вивчення радіоелектронних схем методом комп'ютерного моделювання" : Методичне видання. К.: 2006.- с.