A VECTOR ERROR CORRECTION ANALYSIS OF THE NUMBER OF HIV CASES IN THE PHILIPPINES USING SELECTED HEALTH AND SOCIO-ECONOMIC DETERMINANTS

Submitted by:
Domingo, Graciana Faye¹
Elio, Lara Karmela²
Rodriguez, Clarisse³

ABSTRACT

This study aims to investigate the short run and long run equilibrium between the number of HIV cases in the Philippines and selected health and socio-economic determinants namely: number of registered marriages, number of deployed OFW's, female population, number of barangay health stations, and number of private hospital beds in the Philippines. The data used for this study is from 1984-2014. After a series of preliminary procedures, the Vector Error Correction Model (VECM) was found to be the most appropriate. The final model consisted of three cointegrating equations showing the long run relationship between HIV and the above mentioned variables. The results of this study showed that in reducing the number of HIV cases, construction of policies will be deemed the most effective if the focus would be on marriages and OFW's.

Keywords: time series analysis, marriages, deployed Overseas Filipino Workers (OFW), female population, barangay health stations, private hospital beds

¹gtdomingo1@up.edu.ph

²lgelio@up.edu.ph

³ccrodriguez2@up.edu.ph

I. INTRODUCTION

Human Immunodeficiency Virus (HIV) and Acquired Immuno Deficiency Syndrome (AIDS) are among the most complex health problems of the 21st century. HIV is the virus that causes AIDS, which is the illness that damages a person's ability to fight off diseases. The first case of HIV/AIDS in the Philippines reported in 1984 afflicted a foreigner, not a Filipino. (DRDF, 2007)

The Philippine government has confronted the problem of HIV/AIDS with an action plan that included an emphasis on the response of the local government agencies, involvement and support of nongovernmental organizations (NGOs), incorporation of HIV/AIDS education into the school curriculum, and laws forbidding discrimination against persons with HIV/AIDS or belonging to risk groups. (Mateo, 2014)

Although HIV prevalence and incidence are low, the number of HIV infection is slowly increasing. There is mostly an increasing trend yearly according to the data of HIV/AIDS Registry, and even if the Philippines is currently experiencing low rates of HIV/AIDS, the country needs to be prepared for the possibility of an increase in the spread of the disease. Primary prevention of HIV infection for key populations has to start in adolescence mainly because infections now occur at a younger age: 20–29. (UNICEF, 2012)

The aim of this research is to determine dynamic interactions among HIV Cases on selected health and socio-economic indicators. It is of our best interest to come up with a good model but likewise, it is also our priority to obtain logical estimates. Other than that, this research also aims to assess the significant variables of the final model.

II. REVIEW OF RELATED LITERATURE

A. Health Indicators

Number of Barangay Health Stations

According to a study in rural Uganda, geographic distance from residence to health facility can be of a great hindrance in receiving adequate healthcare. People who live near a health facility are more likely to seek healthcare than those who live farther away. Furthermore, easier access to healthcare often have better health outcomes. (Akullian, 2016)

Number of Hospitals and Hospital Beds and medical practitioners

A study on hospital bed occupancy and HIV/AIDS in three major public hospitals in Addis Ababa, Ethiopia was conducted in 2010. The researchers concluded that the HIV epidemic will result in more and more people having health problems which will increase the burden and pressure on hospitals. (Haidar, 2010)

Number of Tuberculosis Cases

HIV and tuberculosis (TB) are so closely connected that their relationship is often described as a co-epidemic. In the last 15 years the number of new TB cases has more than doubled in countries where the number of HIV infections is also high. In Africa, TB is the leading cause of illness and death among HIV-positive people, killing almost half of all AIDS patients. (World Health Organization).

B. Socio-economic Indicators

Total Female Population (15-34 years old)

According to the Philippine Statistics Authority, youth is defined as the individuals belonging to the age group 15 to 30 years. In sub-Saharan Africa, three in four new HIV infections in young people are among girls. Globally, HIV is the third leading cause of death among young women aged 15–19. Young women are twice as likely to acquire HIV as their male counterparts. (UNAIDS, 2016)

Unemployment Rate

A study on unemployment and poverty mortality in countries of the Organisation for Economic Co-operation and Development (OECD) showed that between 1981 and 2009, a 1% increase in unemployment was associated with an increase in HIV mortality in the OECD.

Urban Population Growth

Other things equal, the higher the level of urbanization in a country, the higher the overall level of HIV prevalence is likely to be-both because the urban sector constitutes a larger fraction of the total population and because levels of rural infection are likely to be raised through greater migratory interaction between rural and urban population.

Explanations for this positive relationship include the fact that the urban sector usually serves as a conduit for new influences-as in the growth in use of injecting drugs, which has spread HIV in the countries of the former Soviet Union during the 1990s. Also, rates of social interaction are higher in urban areas, and fields of social interaction are wider too-phenomena that doubtless have implications for patterns of sexual interaction. (Dyson, 2003)

Number of Registered Marriages

Marriage would be protective if both partners were HIV negative at the time of marriage and maintain a monogamous relationship However, not all marriages are ideal. Many still face a substantial risk of contracting HIV from their partners, presumably through premarital and extramarital sexual behaviour. (Chirwa, 2011)

Researchers at the Johns Hopkins School of Public Health looked at 467 Thai couples, most of whom were married, in which the men were found to be HIV-positive when they donated blood. Wives were twice as likely to be infected by their husbands if either partner in the marriage had a history of sexually transmitted disease (STD). Further, the rate of heterosexual transmission to these women was 46.3 percent, substantially higher than the 12 to 24 percent transmission rates reported for heterosexual couples in the United States and Europe.

Heterosexual spread of HIV is the major route of infection in Asia and throughout most of the world. A better understanding of the epidemiology of heterosexual transmission is crucial to controlling the spread of HIV. Few careful studies of sexual transmission of HIV among married couples in developing countries have been reported. (Johns Hopkins School of Public Health, 1999)

Population Size

The population density is one of the major factors affecting the spread of diseases and infections. (Population Action International, 2011, p. 3) This is because diseases spread more quickly when people are in close proximity with each other. A study of the United Nations claims that there is a positive correlation between HIV/AIDS and the population density as evidenced by the cases of India and China. (PTI, 2011)

Number of OFW's deployed and Visitor Arrivals

In a fact sheet released by UNAIDS, migration was identified as an independent risk factor for HIV. It also heightened vulnerability of migrants to HIV because of their limited access to health services, either for HIV prevention for those who are HIV-negative or treatment for those who are HIV positive. (UNAIDS, 2014, p. 7) In addition, female migrants are also vulnerable to exploitation and/or physical/sexual violence, often by their employers. (UNAIDS, 2014, p.9)

III. METHODOLOGY

A. Description of Data

The data for this research is a compilation of selected statistical databases gathered from World Bank (data.worldbank.org), Department of Health (doh.gov.ph), Philippine Overseas Employment Association (poea.gov.ph), and the Philippine Statistics Authority yearbooks. All the variables in this study were collected annually from 1984-2014.

B. Definition of Variables

Variable Code	Variable Name	Description
brgy	number of barangay health stations	number of recorded barangay health stations from 1984-2014
govt_h	government hospitals	number of recorded government hospitals from 1984-2014
pvt_h	private hospitals	number of recorded private hospitals from 1984-2014
govt_b	government hospital beds	number of recorded government hospital beds from 1984-2014
pvt_b	private hospital beds	number of recorded private hospital beds from 1984-2014
tb	number of tuberculosis cases	number of recorded tuberculosis cases in the Philippines from 1984-2014
doc	doctors	number of government doctors from 1984-2014
nurses	nurses	number of government doctors from 1984-2014
visitor	visitor arrivals	the number of tourists who went to the Philippines and stayed at least one night in a collective or private accommodation in the country
<i>f_pop</i>	total female population	female population between the ages 15-19 from 1984-2014
unemp	unemployment rate	percentage of the total number of unemployed persons to the total number of persons in the labor force from 1984-2014
urban	urban population growth	refers to people living in urban areas as defined by national statistical offices from 1984-2014
marriages	number of registered marriages	number of registered marriages from 1984-2014
pop	population size	all registered Filipino citizens from 1984-2014
ofw	number of OFW's deployed	the number of Overseas Filipino Workers who worked abroad at any time between 1984-2014.

C. Model Specification

The Vector Error Correction (VEC) model is a restricted Variance Autoregressive (VAR) designed for use with nonstationary series that are known to be cointegrated. The cointegration relations restrict the long-run behavior of the endogenous variables to converge to their cointegrating relationship while allowing for short-run adjustment dynamics. The VEC Model is of the form:

$$\Delta y_t = \beta_0 + \sum_{i=1}^n \beta_i \Delta y_{t-1} + \sum_{i=0}^n \delta_i \Delta x_{t-i} + \varphi_i z_{t-1} + \varepsilon_t$$

where β_0 is the intercept

 β_i 's are the coefficients of the lagged values of y

 δ_i' sare the coefficients of the lagged values of all the other endogenous variables φ_i' sare the coefficients of the cointegrating equations

 ε_t is the error term

The cointegrating equations are of the form:

$$z_{t-i} = y_{t-1} - \sum_{i=0}^{n} \gamma_i x_{i_{t-1}}$$

where γ_i 's are the coefficient of the first lags of the endogeneous variables

D. Model Building Procedure: Overview

Individual unit root tests were performed to each of the 16 variables to test for stationarity and appropriate transformations were applied. Granger Causality was used to test for exogeneity of the variables with HIV. Since endogenous variables were present, the Vector Autoregression Model (VAR) was used. Only those variables that Granger caused HIV were utilized in the VAR model. In order to satisfy the I(1) assumption of the VAR, the variables that are I(2) were removed. The Lag Length Criteria was used to determine the optimal lag and the Johansen's Cointegration test was then used to check whether the variables are cointegrated. Since cointegration was present, the Vector Error Correction Model (VECM) was used. To check for the adequacy of the VECM, diagnostic procedures were carried out.

IV. RESULTS AND DISCUSSION

A. Preliminary Tests

Individual Unit Root tests were performed to each of the 16 variables. The variables hiv, brgy, and f_pop are trend stationary. They were detrended by obtaining their first difference. The variable pop is integrated of order 3 and all the other variables are integrated of order 1.

Table A.1. Summary of Individual Unit Root Tests

Variable		Integration			
variable	I(0)	I(1)	I(2)	I(3)	Order
hiv*	0.0226	0.0136			1
brgy*	0.0025	0.0000			1
doc	0.5615	0.0006			1
f_pop*	0.0085	0.0277			1
govt_b	0.1088	0.0000			1
govt_h	0.5928	0.0008			1
marriages	0.5555	0.0092			1
nurses	0.0976	0.0001			1
ofw	0.9989	0.0054			1
pop	0.0054	0.1874	0.1794	0.0013	3
pvt_b	0.9740	0.0004			1
pvt_h	0.0004	0.0168			1
tb	0.4097	0.0000			1
ипетр	0.4877	0.0001			1
urban	0.2528	0.0029			1
visitor	0.9996	0.0068			1

^{*}detrended variables

Pairwise Granger Causality was performed to test for the exogeneity of the variables with HIV. The test was done at lag 6 which is the minimum number of lags for annual data. The table below summarizes the results.

Table A.2. Summary of Results from Granger Causality

Y Granger Causes X	X Granger Causes Y	Bi-conditional	No Relationship
govt_h	brgy		doctors
pvt_h	f_pop		govt_b
	marriages		nurses

ofw	tb
pop	unemp
pvt_b	urban
	visitor

Govt_h and Pvt_h together with those variables that do not exhibit any relationship with HIV were removed from the analysis. In order to satisfy the I(1) assumption of the VAR, the variable pop that is I(3) was removed. The VAR model included the following I(1) variables: hiv, brgy, f_pop, marriages, ofw, pvt_b.

The Lag Length Criteria was used to determine the optimal number of lags. However, since the number of observations was insufficient, the maximum lag to include is only up to 3.

Table A.3. Lag Length Criteria

VAR Lag Order Selection Criteria

Endogenous variables: HIV_STAT BRGY_STAT F_POP_STAT MARRIAGES_STAT

OFW_STAT PVT_B_STAT Exogenous variables: C Date: 12/02/18 Time: 11:37

Sample: 1984 2014 Included observations: 27

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-1619.101	NA	7.67e+44	120.3778	120.6658	120.4635
1	-1541.516	114.9403*	3.79e+43	117.2975	119.3132*	117.8969
2	-1501.943	41.03924	4.55e+43	117.0328	120.7763	118.1459
3	-1425.824	45.10716	1.08e+43*	114.0611*	119.5324	115.6880*

Lag 3 was selected since the Final Prediction Error (FPE), Akaike Information Criterion (AIC), and Hannan-Quinn Information Criterion (HQ) are smallest at this lag.

The Johansen's Cointegration Test was used to check whether the variables are cointegrated. The results are as follows.

Table A.4. Johansen Cointegration Test Summary

Date: 12/02/18 Time: 11:39

Sample: 1984 2014 Included observations: 27

Series: HIV_STAT BRGY_STAT F_POP_STAT MARRIAGES_STAT OFW_STAT PVT_B_STAT

Lags interval: 1 to 2

Selected (0.05 level*) Number of Cointegrating Relations by Model

Data Trend:	None	None	Linear	Linear	Quadratic
Test Type	No Intercept	Intercept	Intercept	Intercept	Intercept
	No Trend	No Trend	No Trend	Trend	Trend
Trace	3	3	3	4	3
Max-Eig	3	2	2	2	2

^{*}Critical values based on MacKinnon-Haug-Michelis (1999)

Information Criteria by Rank and Model

Data Trend:	None	None	Linear	Linear	Quadratic
Rank or	No Intercept	Intercept	Intercept	Intercept	Intercept
No. of CEs	No Trend	No Trend	No Trend	Trend	Trend
	Log Likelihood by Rank (rows) and Model (columns)				
0	-1511.369	-1511.369	-1508.212	-1508.212	-1496.754
1	-1481.207	-1479.986	-1477.079	-1435.290	-1426.028
2	-1463.928	-1454.832	-1451.926	-1406.777	-1397.517
3	-1451.165	-1441.764	-1438.942	-1391.692	-1382.875
4	-1444.257	-1433.563	-1431.014	-1380.536	-1374.691
5	-1440.066	-1428.467	-1427.792	-1372.615	-1371.563
6	-1439.152	-1425.824	-1425.824	-1369.827	-1369.827

Since cointegration is present, VEC-M is used with 3 cointegrating equations. (See Section B of Appendix for the full VEC-M output). It should be noted that the series used for VEC-M are the non-stationary data series. Block Exogeneity Wald Tests were performed to be able to determine the Cholesky ordering. The network graph below contains information on which series Granger causes another series. An arrow coming from a series means that the series Granger causes the series when the arrow is pointing at a 0.05 level of significance.

Figure A.1.: Network Graph from the Granger Causality Test

Table A.5. VEC Granger Causality

VEC Granger Causality/Block Exogeneity Wald Tests

Date: 12/02/18 Time: 11:44

Sample: 1984 2014 Included observations: 28

Dependent variable: D(HIV)

Excluded	Chi-sq	df	Prob.
D(BRGY) D(MARRIAGES	0.021294	2	0.9894
)	9.417983	2	0.0090
D(PVT_B)	0.864352	2	0.6491
D(OFW)	7.455454	2	0.0240
D(F_POP)	5.562246	2	0.0620
All	26.68880	10	0.0029

The Cholesky ordering based on the results of the Granger Causality test would be: *hiv, marriages, ofw, f_pop, pvt_b, brgy.* This will be used in the VEC Model.

B. Model Building

The VEC Model is as follows:

$$\begin{split} \Delta HIV_t &= -0.0404323\Delta HIV_{t-1} + 0.047394\Delta \ HIV_{t-2} + 0.003515\Delta \ marriages_{t-1} \\ &+ 0.001690\Delta \ marriages_{t-2} + 0.00519\Delta \ ofw_{t-1} + 0.000858\Delta \ ofw_{t-2} \\ &+ 0.005483 \ \Delta fpop_{t-1} - 0.001390 \ \Delta fpop_{t-2} + 0.00702\Delta \ pvtb_{t-1} \\ &+ 0.016530\Delta pvtb_{t-2} - 0.000659\Delta \ brgy_{t-1} - 0.00266\Delta brgy_{t-2} \\ &+ 0.254916z_{t-1} - 0.002073z_{t-2} + 0.0000326z_{t-3} \end{split}$$

Cointegrating equations:

$$\begin{split} z_{t-1} &= 1.0000 \ HIV_{t-1} - 0.000121 fpop_{t-1} - 0.006382 pvtb_{t-1} - 0.073197 brgy_{t-1} \\ &- 940.0616 \\ z_{t-2} &= 1.0000 \ marriages_{t-1} - 0.030237 fpop_{t-1} - 9.747252 pvtb_{t-1} - 12.74312 \ brgy_{t-1} \\ &+ 576,071.5 \\ z_{t-3} &= 1.0000 \ ofw_{t-1} + 0.380574 \ fpop_{t-1} + 61.65330 \ pvtb_{t-1} - 122.2489 \ brgy_{t-1} \\ &- 3175989 \end{split}$$

From the Lag Length Criteria, the optimal lag obtained is lag 3. However, if lag 3 were to be used in the VEC model estimation won't run. With this, lag 2 was chosen instead and from the Lag Exclusion Test, lag 2 was found to be significant.

Table B.2. Lag Exclusion Criteria

VEC Lag Exclusion Wald Tests Date: 12/02/18 Time: 11:31

Sample: 1984 2014 Included observations: 28

Chi-squared test statistics for lag exclusion:

Numbers in [] are p-values

	D(HIV)	D(MARRIAGES)	D(OFW)	D(F_POP)	D(PVT_B)	D(BRGY)	Joint
0	16.18204 0.012810]	12.71522 [0.047788]		32.89480 [1.10e-05][
-	9.693174 0.138182]	8.268967 [0.219053]		21.27593 [0.001636][
df	6	6	6	6	6	6	36

Based on the results of the Lag Exclusion tests, all lags were found to be significant. Thus, we will retain the current model.

C. Diagnostic Checking

The Jarque-Bera test for normality of residuals was performed and since its p-value is 0.7276 (See appendix C.1.), we conclude that the residuals satisfy the normality assumption. The correlograms of the residuals were also inspected and no ACF's exceeded the bartlett band, hence the residuals are not autocorrelated (See appendix C.2.). The correlogram of the squared residuals was examined on all variables. Upon checking, only the ACF of pvt_b at lag 2 exceeded the Bartlett band. To test this formally, the homoskedasticity of the residuals was checked by the ARCH LM Test at lag 6. The residuals satisfy the homoskedasticty assumption since all the p-values based on the F-distribution are greater than 0.05.

Figure C.3.1: HIV Correlogram of Squared Residuals and ARCH LM Test

Autocorrelation Partial Correlation AC PAC Q-Stat Prob 0.105 0.105 0.3447 0.557 -0.266-0.2802.6274 0.269 3 0.088 0.168 2 8858 0.410 -0.098 -0.2393.2186 0.522 5 -0 156 -0 024 4 1026 0.535 6 -0.017 -0.1164.1135 0.661 -0.090 -0.108 4 4342 8 -0.180 -0.212 5.8010 0.670 -0.058 -0.1125 9487 0.745 0.206 7.9258 10 0.128 0.636 0.096 -0.0308.3822 0.679 0.056 8 5450 0.121 0.741

Heteroskedasticity Test: ARCH

F-statistic 2.612577 Prob. F(6,15) 0.0615 Obs*R-squared 11.24222 Prob. Chi-Square(6)0.0812

Figure C.3.2: Marriages Correlogram of Squared Residuals and ARCH LM Test

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		2 -0.074 3 -0.124 4 -0.082 5 0.074 6 -0.226 7 0.167 8 -0.042	-0.123 -0.087 0.057 -0.261 0.177 -0.097 0.046 -0.080 -0.100	0.9360 1.1349 3.0783 4.1968 4.2697 4.3817 4.4819	0.943 0.913 0.873 0.919 0.951 0.799 0.757 0.832 0.885 0.923 0.896

Heteroskedasticity Test: ARCH

F-statistic 0.432155 Prob. F(6,15) 0.8462 Obs*R-squared 3.242467 Prob. Chi-Square(6)0.7779

Figure C.3.3: OFW Correlogram of Squared Residuals and ARCH LM Test

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		2 3 4	-0.163 0.295 -0.075 -0.104	-0.187 -0.211 0.232	0.2961 1.2932 2.1819 5.2216 5.4246 5.8352 6.0309	0.586 0.524 0.536 0.265 0.366 0.442 0.536
		9 10 11	0.236	-0.080 -0.042 0.097	6.2873 6.6387 6.7905 9.5533 9.6650	0.615 0.675 0.745 0.571 0.645

Heteroskedasticity Test: ARCH

F-statistic 2.101184 Prob. F(6,15) 0.1141 Obs*R-squared 10.04656 Prob. Chi-Square(6)0.1227

Figure C.3.4: F_POP Correlogram of Squared Residuals and ARCH LM Test

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		5 -0.084 6 -0.175 7 0.057 8 -0.091	-0.128 -0.096 0.035 -0.085 -0.210 -0.033 -0.164	1.1377 1.2306 1.4191 1.6787 2.8547 2.9840	0.363 0.566 0.746 0.841 0.892 0.827 0.886 0.912 0.927
		10 -0.158 11 0.234 12 -0.081	-0.295 0.016	4.9115 7.6170	0.897 0.747

Heteroskedasticity Test: ARCH

F-statistic 0.429138 Prob. F(6,15) 0.8482 Obs*R-squared 3.223145 Prob. Chi-Square(6)0.7804

Figure C.3.5: PVT_B Correlogram of Squared Residuals and ARCH LM Test

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
ı b ı		1	0.059	0.059	0.1074	0.74
1		2	0.554	0.552	10.006	0.00
1 j 1 1		3	0.062	0.022	10.137	0.01
· 🗀 ·	' '	4	0.271	-0.052	12.715	0.01
· þ ·	1 1 1 1	5	0.039	-0.016	12.771	0.02
· 🖆 ·	1 1 1	6	0.121	-0.014	13.328	0.03
1 1	1 1 1	7	0.008	-0.019	13.330	0.06
1 j 1 1	1 1	8	0.047	-0.005	13.423	0.09
· 🗖 ·		9	-0.114	-0.158	14.003	0.12
· þ ·		10	0.115	0.152	14.617	0.14
' 🗖 '	1 1 1 1	11	-0.139	-0.014	15.566	0.15
1 j 1		12	0.035	-0.112	15.632	0.20

Heteroskedasticity	Test: ARCH
--------------------	------------

F-statistic	2.202834	Prob. F(6,15)	0.1006
Obs*R-squared	10.30493	Prob. Chi-Square(6	6)0.1124

Figure C.3.6: BRGY Correlogram of Squared Residuals and ARCH LM Test

Heteroskedasticity Test: ARCH

F-statistic	0.647910	Prob. F(6,15)	0.6915
Obs*R-squared	4.528088	Prob. Chi-Square(6)0.6056

D. Final VEC Model

The VEC Model is as follows:

$$\begin{split} \Delta HIV_t &= -0.0404323\Delta HIV_{t-1} + 0.047394\Delta \ HIV_{t-2} + 0.003515\Delta \ marriages_{t-1} \\ &+ 0.001690\Delta \ marriages_{t-2} + 0.00519\Delta \ of \ w_{t-1} + 0.000858\Delta \ of \ w_{t-2} \\ &+ 0.005483 \ \Delta f \ pop_{t-1} - 0.001390 \ \Delta f \ pop_{t-2} + 0.00702\Delta \ pvtb_{t-1} \\ &+ 0.016530\Delta pvtb_{t-2} - 0.000659\Delta \ brgy_{t-1} - 0.00266\Delta brgy_{t-2} \\ &+ 0.254916z_{t-1} - 0.002073z_{t-2} + 0.0000326z_{t-3} \end{split}$$

Cointegrating equations:

$$\begin{split} z_{t-1} &= 1.0000 \ HIV_{t-1} - 0.000121 fpop_{t-1} - 0.006382 pvtb_{t-1} - 0.073197 brgy_{t-1} \\ &- 940.0616 \end{split}$$

$$\begin{split} z_{t-2} &= 1.0000 \ marriages_{t-1} - 0.030237 fpop_{t-1} - 9.747252 pvtb_{t-1} - 12.74312 \ brgy_{t-1} \\ &+ 576,071.5 \end{split}$$

$$\begin{split} z_{t-3} &= 1.0000 \ of w_{t-1} + 0.380574 \ fpop_{t-1} + 61.65330 \ pvtb_{t-1} - 122.2489 \ brgy_{t-1} \\ &- 3175989 \end{split}$$

E. Interpretation

On the average, holding all other variables constant, a percent change in the number of registered marriages is associated with a 0.003515% increase in the number of HIV cases. A percent change in the number of deployed OFW's is associated with a 0.00519% increase in the number of HIV cases. A percent change in the number of female population is associated with a 0.005483% increase in the number of HIV cases. A percent change in the number of private hospital beds is associated with a 0.00702% increase in the number of HIV cases. A percent change in the number of barangay health stations is associated with a 0.000659% decrease in the number of HIV cases.

These findings are supported by previous studies which were presented in the review of related literature.

Impulse Response Functions

Figure C.4.1: Impulse Response Function
Response of HIV to HIV

It can be drawn from the graph that HIV had a slightly decreasing trend and it responded positively to a shock that occurred at the second period and this was carried over for four more periods. Another shock at the sixth period resulted to a negative response.

Figure C.4.2: Impulse Response Function
Response of HIV to MARRIAGES

It can be drawn from the graph that HIV responded negatively to a shock that occurred at the seventh period.

Figure C.4.3: Impulse Response Function
Response of HIV to OFW

It can be drawn from the graph that HIV had an increasing trend and it responded negatively to a shock that occurred at the eight period.

Figure C.4.4: Impulse Response Function

Response of HIV to F_POP

It can be drawn from the graph that HIV had an increasing trend and a shock that occurred at the second period resulted to a somewhat steady trend that was carried over for six more periods. Another shock at the eighth period resulted to a positive response.

Figure C.4.5: Impulse Response Function
Response of HIV to PVT_B

It can be drawn from the graph that HIV had an increasing trend and a shock that occurred at the second period resulted to a somewhat steady trend that was carried over for two more periods. Another shock at the fourth period resulted to a positive response.

Figure C.4.6: Impulse Response Function
Response of HIV to BRGY

It can be drawn from the graph that HIV had an increasing trend and it responded negatively to a shock that occurred at the sixth period.

V. CONCLUSION

From the final model, it can be concluded that the number of HIV cases in the Philippines has a positive relationship with number of registered marriages, number of OFWs deployed, female population, and number of private hospital beds and it has a negative relationship with the number of barangay health stations. These findings are supported by the review of related literature.

As seen in the impulse response function graphs, a policy intervention directed to marriages and OFWs will result to a decrease in the number of HIV cases in the Philippines. While a policy intervention directed to the female population, private hospital beds, and barangay health stations will not result to a significant decrease in the number of HIV cases. Thus construction of policies will be deemed the most effective if the focus would be on marriages and OFWs.

VI. RECOMMENDATION AND IMPLICATIONS

Recommendation and Implications on Policy Making

There should be a continuous practice of safe sex even among married couples. Family planning methods should be given more importance to help in having and maintaining healthier relationships.

OFWs should have more access to health services and be given more health benefits. There should also be a stricter health screening before leaving the country.

Sex education should be taught in schools since many HIV patients are among the youths. It is of great importance that they know basic knowledge about sex in order to avoid Sexually Transmitted Diseases (STDs) like HIV.

Hospitals, barangay health station medical practitioners, and health facilities should be made accessible to accommodate the increasing number of HIV cases. Every barangay should have a barangay health station wherein services like HIV testing is available.

Recommendation on Future Studies

The researchers wanted to study the more recent data on the number of HIV cases in the Philippines. However, the only available data were annual. Thus, a minimum of 30 years' worth of data were needed. The researchers worked with annual data from 1984 until 2014. As a result, fewer independent variables were considered. Other variables that were desired to be in the study were not included because there were no available data from 1984. If high frequency data (i.e. quarterly or monthly) were to be available and easily accessible, the model could be improved further. This study still needs additional references and review of related literature for the betterment of the analysis and conclusions.

VII. REFERENCES

Adetunji J., Cassell MM, & Shelton JD, et al. *Is poverty or wealth at the root of HIV*? Lancet 2005; 24-30;366(9491):1057-8. 366: 1057-8 doi: 10.1016/S0140-6736(05)67401-6 pmid: 16182881.

Retrieved from https://www.thelancet.com/journals/lancet/article/PIIS0140673605674016/fulltext

Akullian, A. N., Mukose, A., Levine, G. A., & Babigumira, J. B. (2016). *People living with HIV travel farther to access healthcare: a population-based geographic analysis from rural Uganda*. Journal of the International AIDS Society, 19(1), 20171. doi:10.7448/IAS.19.1.20171

Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4751409/

Atun, R., Zhou, C., Williams, C., Zeltner, T., & Maruthappu, M. (2017). *Unemployment and HIV mortality in the countries of the Organisation for Economic Co-operation and Development: 1981-2009*. JRSM open, 8(7), 2054270416685206. doi:10.1177/2054270416685206

Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5507389/

Chin J. (2007). The AIDS pandemic: the collision of epidemiology with political correctness. Oxford: Radcliffe Publishing.

Chirwa, E., Malata, A., & Norr, K. (2011). *HIV prevention awareness and practices among married couples in Malawi*. Malawi medical journal: the journal of Medical Association of Malawi, 23(2), 32-7. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3627691/#R2

De Neve, J. W., Fink, G., Subramanian, S. V., Moyo, S., & Bor, J. (2015). *Length of secondary schooling and risk of HIV infection in Botswana: evidence from a natural experiment.* The Lancet. Global health, 3(8), e470-e477.

Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4676715/

Dyson, T. (2003). *HIV/AIDS and Urbanization*. Population and Development Review Vol. 29, No. 3 (Sep., 2003), pp. 427-442.

Retrieved from https://www.jstor.org/stable/3115281?seq=1#metadata_info_tab_contents

Farr, A. C., & Wilson, D. P. (2010). *An HIV epidemic is ready to emerge in the Philippines*. Journal of the International AIDS Society, 13, 16. doi:10.1186/1758-2652-13-16

Retrieved from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2868805/

Haidar, H. and Tamiru M. (2010). *Hospital Bed Occupancy and HIV/AIDS in three Major Public Hospitals of Addis Ababa, Ethiopia*. International Journal of Biomedical Science 6(3):195-201. PMID: 23675193 PMCID: PMC3615262. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/23675193

Logan, T. and Sneeringer, S. (2009). A Closer Examination of the HIV/Fertility Linkage. USAID: From the American People, Demographic and Health Research. No. 63. Calverton, Maryland, USA: ICF Macro. Retrieved from https://dhsprogram.com/pubs/pdf/wp63/wp63.pdf

Maclachlan, M., Namangala, J.J. & Kabambe, S. (1995). Towards AIDS prevention and education at the University of Malawi. The Central African Journal of Medicine, 41(6), 174-178. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/7664319

Mateo, R., Sarol Jr, J., Poblete, R. (2004). *HIV/AIDS in the Philippines*. AIDS Education and Prevention: Official Publication of the International Society for AIDS Education, 16, 43-52. Retrieved from https://doi.org/10.1521/aeap.16.3.5.43.35519

Population Action International. (2011). Why Population matters to infectious diseases and HIV/AIDS. Population Action International Publication. 1300 19th Street, NW, Washington, DC 20036 USA Retrieved from https://pai.org/wp-content/uploads/2012/02/PAI-1293-DISEASE_compressed.pdf

Rates of Sexual Transmission of HIV Found in Married Couples. (1999). Johns Hopkins Bloomberg School of Public Health Online Publication.

Retrieved from https://www.jhsph.edu/news/news-releases/1999/hiv-married.html

Shelton JD, et al. *Is poverty or wealth at the root of HIV?* Lancet 2005; 366: 1057-8 doi: 10.1016/S0140-6736(05)67401-6pmid: 16182881.

UNAIDS. (2014, October) *The Gap Report* 2014 pp 1-3. ISBN 978-92-9253-062-4. Retrieved from http://www.unaids.org/en/resources/documents/2014/Migrants

UNAIDS. (2017). *When Women Lead Change Happens: Women advancing the end of AIDS*. pp 2-7 Retrieved from http://www.unaids.org/sites/default/files/media_asset/when-women-lead-change-happens_en.pdf

UNICEF Philippines. (2012). *HIV and AIDS*. Retrieved from https://www.unicef.org/philippines/hivaids.html

University of the Philippines Population Institute, Demographic Research and Development Foundation, Inc. (2007). *HIV/AIDS Situation in the Philippines*. pp 6-7.

Yaylali E, Farnham PG, Cohen S, Purcell DW, Hauck H, Sansom SL (2018). *Optimal allocation of HIV prevention funds for state health departments*. PLoS ONE 13(5): e0197421. Retrieved from https://doi.org/10.1371/journal.pone.0197421

APPENDIX

A.1. Individual Unit Root Tests

Variable		Integration			
Variable	I(0)	I(1)	I(2)	I(3)	Order
hiv*	0.0226	0.0136			1
brgy*	0.0025	0.0000			1
doc	0.5615	0.0006			1
f_pop*	0.0085	0.0277			1
govt_b	0.1088	0.0000			1
govt_h	0.5928	0.0008			1
marriages	0.5555	0.0092			1
nurses	0.0976	0.0001			1
ofw	0.9989	0.0054			1
pop	0.0054	0.1874	0.1794	0.0013	3
pvt_b	0.9740	0.0004			1
pvt_h	0.0004	0.0168			1
tb	0.4097	0.0000			1
ипетр	0.4877	0.0001			1
urban	0.2528	0.0029			1
visitor	0.9996	0.0068			1

^{*}detrended variables

A.2. Granger Causality Pairwise Granger Causality Test

Pairwise Granger Causality Tests Date: 12/02/18 Time: 00:53

Sample: 1984 2014

Lags: 6

Null Hypothesis:	Obs	F-Statistic	Prob.
BRGY does not Granger Cause HIV	25	5.887805073699275	0.004565111373995535
HIV does not Granger Cause BRGY		1.595847461669377	0.2308932478395778
DOCTORS does not Granger Cause HIV	25	0.1469283429695232	0.9861805411192748
HIV does not Granger Cause DOCTORS		0.1650201724181285	0.9814788607297942
F_POP does not Granger Cause HIV	25	13.50238468427173	0.0001021641564134776
HIV does not Granger Cause F_POP		1.933430325052487	0.155920616228397
GOVT_B does not Granger Cause HIV	25	0.4612701215737702	0.8239519123628056
HIV does not Granger Cause GOVT_B		0.7183544216774874	0.6427184963958241
GOVT_H does not Granger Cause HIV	25	1.639902343905377	0.2192159172457813
HIV does not Granger Cause GOVT_H		4.999413976174182	0.00870776097149314
INFLATION does not Granger Cause HIV	25	0.9906033541180859	0.4733784180329223
HIV does not Granger Cause INFLATION		1.728148937915634	0.1976783386294179
MARRIAGES does not Granger Cause HIV HIV does not Granger Cause MARRIAGES	25	3.28846255966262 1.039972668995051	0.0375950826528409 0.4468220215636251

NURSES does not Granger Cause HIV	25	0.07300496293706274	0.9978594127767502
HIV does not Granger Cause NURSES		0.170227540953362	0.9799897752189754
OFW does not Granger Cause HIV	25	5.54389067091184	0.005816140253988602
HIV does not Granger Cause OFW		1.611344751508396	0.2267118986063531
POP does not Granger Cause HIV	25	14.41843681179536	7.339837300611661e-05
HIV does not Granger Cause POP		1.288313885526412	0.3327963175259839
PVT_B does not Granger Cause HIV	25	4.010212303765958	0.01948819387091252
HIV does not Granger Cause PVT_B		1.194265634901848	0.3722667702514377
PVT_H does not Granger Cause HIV	25	2.154924583341368	0.1214173871725224
HIV does not Granger Cause PVT_H		5.584067845655069	0.005651130528954654
TB does not Granger Cause HIV	25	0.3814338119010399	0.8770963578604786
HIV does not Granger Cause TB		0.8888617423551092	0.5322843795686494
UNEMP does not Granger Cause HIV	25	0.199764815479628	0.9704190752123509
HIV does not Granger Cause UNEMP		0.6813027860294209	0.6683154978911402
URBAN does not Granger Cause HIV	25	0.07365713250900044	0.9978061518267696
HIV does not Granger Cause URBAN		0.358354622492043	0.8914910955207754
VISITOR does not Granger Cause HIV	25	2.716234292822664	0.06642355275782379
HIV does not Granger Cause VISITOR		0.3380212478711661	0.9036991540997225

A.3. Lag Length Criteria

VAR Lag Order Selection Criteria

Endogenous variables: HIV_STAT BRGY_STAT F_POP_STAT MARRIAGES_STAT OFW_STAT

PVT_B_STAT

Exogenous variables: C Date: 12/02/18 Time: 11:37 Sample: 1984 2014 Included observations: 27

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-1619.101	NA	7.67e+44	120.3778	120.6658	120.4635
1	-1541.516	114.9403*	3.79e+43	117.2975	119.3132*	117.8969
2	-1501.943	41.03924	4.55e+43	117.0328	120.7763	118.1459
3	-1425.824	45.10716	1.08e+43*	114.0611*	119.5324	115.6880*

A.4. Johansen Cointegration Summary Test

Date: 12/02/18 Time: 11:39

Sample: 1984 2014 Included observations: 27

Series: HIV_STAT BRGY_STAT F_POP_STAT MARRIAGES_STAT OFW_STAT PVT_B_STAT

Lags interval: 1 to 2

Selected (0.05 level*) Number of Cointegrating Relations by Model

Data Trend:	None	None	Linear	Linear	Quadratic
Test Type	No Intercept	Intercept	Intercept	Intercept	Intercept
	No Trend	No Trend	No Trend	Trend	Trend
Trace	3	3	3	4	3
Max-Eig	3	2	2	2	2

^{*}Critical values based on MacKinnon-Haug-Michelis (1999)

Information Criteria by Rank and Model

Data Trend:	None	None Linear Linear Quadratic
Rank or No. of CEs	No Intercept No Trend	Intercept Intercept Intercept No Trend No Trend Trend Trend
	Log Likelihood by Rank (rows) and Model (columns)	
0	-1511.369	1511.369 1508.212 1508.212 1496.754
1	-1481.207	1479.986 1477.079 1435.290 1426.028
2	-1463.928	1454.832 1451.926 1406.777 1397.517
3	-1451.165	1441.764 1438.942 1391.692 1382.875
4	-1444.257	1433.563 1431.014 1380.536 1374.691
5	-1440.066	1428.467 1427.792 1372.615 1371.563
6	-1439.152	1369.827 1369.827 1425.824 1425.824

A.5. VEC Granger Causality

VEC Granger Causality/Block Exogeneity Wald Tests

Date: 12/02/18 Time: 11:44

Sample: 1984 2014 Included observations: 28

Dependent variable: D(HIV)

Excluded	Chi-sq	df	Prob.
D(BRGY) D(MARRIAGES	0.021294	2	0.9894
`)	9.417983	2	0.0090
D(PVT_B)	0.864352	2	0.6491
D(OFW)	7.455454	2	0.0240
D(F_POP)	5.562246	2	0.0620

All	26.68880	10	0.0029

B.1. Vector Error Correlation Estimates

Vector Error Correction Estimates Date: 12/02/18 Time: 03:25 Sample (adjusted): 1987 2014

Included observations: 28 after adjustments Standard errors in () & t-statistics in []

	CointegratingEq:	CointEq1	CointEq2	CointEq3	
	HIV(-1)	1.000000	0.000000	0.000000	
	MARRIAGES(-1)	0.000000	1.000000	0.000000	
	OFW(-1)	0.000000	0.000000	1.000000	
	F_POP(-1)	-0.000121	-0.030237	0.380574	
		(4.5E-05)	(0.00781)	(0.08761)	
		[-2.68186]	[-3.87180]	[4.34406]	
	PVT_B(-1)	-0.006382	-9.747252	61.65330	
		(0.01329)	(2.31062)	(25.9205)	
		[-0.48008]	[-4.21846]	[2.37855]	
	BRGY(-1)	-0.073197	-12.74312	-122.2489	
		(0.02124)	(3.69237)	(41.4210)	
		[-3.44548]	[-3.45120]	[-2.95137]	
	С	-940.0616	576071.5	-3175989.	
		(622.768)	(108239.)	(1214230)	
_		[-1.50949]	[5.32220]	[-2.61564]	
_	Error Correction:	D(HIV)	D(MARRIAGES	S) D(OFW) I	D(F_POP)D(PVT_B) D(BRGY)
	CointEq1	0.254916	-84.35791	-24.50686	-39.69914 5.278537 5.167516
	•	(0.19237)	(40.1505)	(124.277)	(15.0922) (1.72862) (3.98811)
		[1.32513]	[-2.10104]	[-0.19719]	[-2.63044][3.05361][1.29573]
	CointEq2	-0.002073	0.035753	-0.781839	0.133539 0.009375 0.070877
		(0.00103)	(0.21456)		(0.08065) (0.00924) (0.02131)
		[-2.01630]	[0.16664]	[-1.17726]	[1.65579][1.01491][3.32571]
	CointEq3	3.26E-05	-0.047429		0.005058 0.004760 0.009195
		(0.00018)	(0.03660)		(0.01376) (0.00158) (0.00364)
		[0.18599]	[-1.29572]	[0.24148]	[0.36759][3.02053][2.52899]
	D(HIV(-1))	-0.404323	295.1628		89.27530-15.05689-8.167921
		(0.45993)	(95.9939)		(36.0832) (4.13288) (9.53498)
		[-0.87909]	[3.07481]	[0.40578]	[2.47415][-3.64320][-0.85663]
	D(HIV(-2))	0.047394	15.10362		59.12623-8.894098-2.572338
		(0.67502)	(140.886)		(52.9579) (6.06566) (13.9941)
		[0.07021]	[0.10720]	[-1.01602]	[1.11648][-1.46630][-0.18382]
	D(MARRIAGES(-1))	0.003515	-0.116851		0.090027-0.011131-0.018086
		(0.00116)	(0.24197)		$(0.09095)\ (0.01042)\ (0.02403)$
		[3.03194]	[-0.48291]	[1.77723]	[0.98981][-1.06847][-0.75250]

D(MARRIAGES(-2))	0.001690 (0.00139) [1.21989]	-0.364087 (0.28908) [-1.25946]	1.393601 0.013476 0.028232-0.017747 (0.89479) (0.10866) (0.01245) (0.02871) [1.55746] [0.12401] [2.26839] [-0.61807]
D(OFW(-1))	0.000519 (0.00038) [1.38202]	-0.069170 (0.07839) [-0.88234]	-0.140206 -0.014415 0.004923 -0.012026 (0.24265) (0.02947) (0.00338) (0.00779) [-0.57781] [-0.48918] [1.45872] [-1.54438]
D(OFW(-2))	0.000858 (0.00042) [2.05608]	0.053294 (0.08706) [0.61215]	0.037275 0.036928-0.006417 0.009448 (0.26948) (0.03273) (0.00375) (0.00865) [0.13832] [1.12841][-1.71191][1.09258]
D(F_POP(-1))	0.005483 (0.00275) [1.99081]	0.190950 (0.57485) [0.33217]	-0.122558
D(F_POP(-2))	-0.001390 (0.00196) [-0.70773]	-0.749998 (0.40991) [-1.82968]	-0.001306 -0.254247 0.013015 0.060686 (1.26878) (0.15408) (0.01765) (0.04072) [-0.00103] [-1.65009] [0.73746] [1.49048]
D(PVT_B(-1))	0.007027 (0.02281) [0.30806]	-1.040071 (4.76091) [-0.21846]	-14.58753 -3.310300 -0.337285 -0.213133 (14.7364) (1.78958) (0.20497) (0.47290) [-0.98990] [-1.84976] [-1.64551] [-0.45070]
D(PVT_B(-2))	0.016530 (0.01779) [0.92940]	-4.358934 (3.71207) [-1.17426]	-10.67799 -3.707745 0.125438 -0.210170 (11.4899) (1.39533) (0.15982) (0.36872) [-0.92934] [-2.65725][0.78488][-0.57001]
D(BRGY(-1))	-0.000659 (0.03717) [-0.01772]	-6.769047 (7.75823) [-0.87250]	11.09182 -0.565992 1.054162 1.028973 (24.0140) (2.91625) (0.33402) (0.77062) [0.46189] [-0.19408] [3.15599] [1.33526]
D(BRGY(-2))	-0.002666 (0.02943) [-0.09061]	1.740779 (6.14181) [0.28343]	15.19339 0.430522 0.319269 0.559488 (19.0107) (2.30865) (0.26443) (0.61006) [0.79920] [0.18648] [1.20740] [0.91710]
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood Akaike AIC Schwarz SC Mean dependent S.D. dependent	0.978781 0.955930 97790.16 86.73131 42.83316 -153.9475 12.06768 12.78136 213.6429 413.1476	0.667722 0.309885 4.26E+09 18102.03 1.865992 -303.4945 22.74961 23.46329 1437.179 21790.46	0.665267 0.936038 0.820790 0.740379 0.304785 0.867157 0.627794 0.460788 4.08E+10 6.02E+08 7896147. 42029061 56030.99 6804.380 779.3561 1798.056 1.845493 13.58907 4.252895 2.648075 -335.1312 -276.0977 -215.4258 -238.8336 25.00937 20.79269 16.45899 18.13097 25.72305 21.50638 17.17267 18.84465 51944.79 260992.5 367.6786 435.8571 67199.91 18668.90 1277.451 2448.631
Determinant resid covari Determinant resid covari Log likelihood Akaike information criteri Schwarz criterion	ance	3.27E+40 3.28E+38 -1479.988 113.6420 118.9232	

B.2. Lag Exclusion Criteria

VEC Lag Exclusion Wald Tests Date: 12/02/18 Time: 11:31

Sample: 1984 2014 Included observations: 28

Chi-squared test statistics for lag exclusion:

Numbers in [] are p-values

	D(HIV)	D(MARRIAGES)	D(OFW)	D(F_POP)	D(PVT_B)	D(BRGY)	Joint
DLag 1	16.18204	12.71522	6.388490	32.89480	20.14963	10.03367	441.9762
	[0.012810]	[0.047788]	[0.381106]	[1.10e-05]	[0.002605]	[0.123241]	[0.000000]
DLag 2	9.693174	8.268967	5.901713	21.27593	18.50137	5.866092	253.0685
	[0.138182]	[0.219053]	[0.434290]	[0.001636]	[0.005094]	[0.438357]	[0.000000]
df	6	6	6	6	6	6	36

C. Diagnostic Checking

C.1. Checking for Normality

Component	Jarque-Bera	df	Prob.
1	0.509436	2	0.7751
2	1.347947	2	0.5097
3	4.999941	2	0.0821
4	0.266029	2	0.8755
5	6.041198	2	0.0488
6	0.920734	2	0.6311
Joint	170.0495	182	0.7276

C.2. Checking the Correlograms

C.3. Checking for Heteroskedasticity

Figure C.3.1: HIV Correlogram of Squared Residuals and ARCH LM Test

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
· b ·		1	0.105	0.105	0.3447	0.557
· 🗖 ·	' '	2	-0.266	-0.280	2.6274	0.269
, j a ,		3	0.088	0.168	2.8858	0.410
, []	' '	4	-0.098	-0.239	3.2186	0.522
' 二 '		5	-0.156	-0.024	4.1026	0.535
1 1	🗖	6	-0.017	-0.116	4.1135	0.661
' ['	[7	-0.090	-0.108	4.4342	0.729
' 二 '		8	-0.180	-0.212	5.8010	0.670
· [·	[9	-0.058	-0.112	5.9487	0.745
· 🗀 ·		10	0.206	0.128	7.9258	0.636
· 🔁 ·	' ('	11	0.096	-0.030	8.3822	0.679
1 þ 1		12	0.056	0.121	8.5450	0.741

Heteroskedasticity Test: ARCH

F-statistic 2.612577 Prob. F(6,15) 0.0615 Obs*R-squared 11.24222 Prob. Chi-Square(6)0.0812

Figure C.3.3: OFW Correlogram of Squared Residuals and ARCH LM Test

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
ı d ı		1 -0.098	-0.098	0.2961	0.586
ı □ ı		2 -0.176	-0.187	1.2932	0.524
' '	' '	3 -0.163	-0.211	2.1819	0.536
· 🖃 ·		4 0.295	0.232	5.2216	0.265
1 [] 1	[5 -0.075	-0.090	5.4246	0.366
· 🗖 ·	'['	6 -0.104	-0.068	5.8352	0.442
· 10 ·		7 0.070	0.139	6.0309	0.536
1 [] 1	' '	8 -0.078	-0.219	6.2873	0.615
· Ц ·	'['	9 -0.089	-0.080	6.6387	0.675
, ()	' '	10 -0.057	-0.042	6.7905	0.745
' 	' '	11 0.236	0.097	9.5533	0.571
· ('		12 -0.046	0.023	9.6650	0.645

Heteroskedasticity Test: ARCH

Obs*R-squared

F-statistic 2.101184 Prob. F(6,15) 0.1141 Obs*R-squared 10.04656 Prob. Chi-Square(6)0.1227

Figure C.3.5: PVT_B Correlogram of Squared Residuals and ARCH LM Test

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		0.062 0.271 0.039 0.121 0.008 0.047	0.552	0.1074 10.006 10.137 12.715 12.771 13.328 13.330 13.423 14.003	0.743 0.007 0.017 0.013 0.026 0.038 0.064 0.098 0.122
	1 10 1 11	0.115	0.152 -0.014	14.617 15.566 15.632	0.147 0.158 0.209
Heteroskedasticit	y Test: ARCH				

F-statistic 2.202834 Prob. F(6,15) 0.1006

10.30493 Prob. Chi-Square(6)0.1124

Figure C.3.2: Marriages Correlogram of Squared Residuals and ARCH LM Test

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob			
1 1 1	1 1 1	1 0.013	0.013	0.0050	0.943			
· [·]	' ['	2 -0.074	-0.074	0.1816	0.913			
· 🗖 · 📗	' [] '	3 -0.124	-0.123	0.6997	0.873			
· 🗖 · 📗	' ['	4 -0.082	-0.087	0.9360	0.919			
· 10 · 1	<u> </u>	5 0.074	0.057	1.1349	0.951			
' =	' =	6 -0.226	-0.261	3.0783	0.799			
· 🗀 · 📗	· 🗀 ·	7 0.167	0.177	4.1968	0.757			
· (·)	' ['	8 -0.042	-0.097	4.2697	0.832			
· 1 1	<u> </u>	9 0.050	0.046	4.3817	0.885			
· (·)	' ['	10 -0.046	-0.080	4.4819	0.923			
' □ '	' E '	11 -0.154	-0.100	5.6517	0.896			
1 1	' 🖺 '	12 -0.008	-0.106	5.6549	0.932			
Heteroskedas	Heteroskedasticity Test: ARCH							
F-statistic Obs*R-square	0.432155 ed 3.242467		, ,) uare(6)(0.8462			
ODS IN-Square	Ju 3.242407	1 100. 0	ли оче	aarc(0)(5.1113			

Figure C.3.4: F_POP Correlogram of Squared Residuals and ARCH LM Test

	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob		
1									
1	' 🗐 '	' 🗖 '	1	-0.163	-0.163	0.8288	0.363		
1	· [·	' [] '	2	-0.098	-0.128	1.1377	0.566		
1	· [' ['	3	-0.053	-0.096	1.2306	0.746		
1	1 j i 1	ı j ı ı	4	0.073	0.035	1.4191	0.841		
1	' ['	' ['	5	-0.084	-0.085	1.6787	0.892		
1	' 🗐 '	' 🗐 '	6	-0.175	-0.210	2.8547	0.827		
1	1 j 1	· (·	7	0.057	-0.033	2.9840	0.886		
Heteroskedasticity Test: ARCH F-statistic 0.429138 Prob. F(6,15) 0.8482	' ['	' = '	8	-0.091	-0.164	3.3315	0.912		
Heteroskedasticity Test: ARCH F-statistic 0.429138 Prob. F(6,15) 0.8482	' 📮 '	' = '	9	-0.097	-0.193	3.7500	0.927		
Heteroskedasticity Test: ARCH F-statistic 0.429138 Prob. F(6,15) 0.8482	' 🗐 '	' -	10	-0.158	-0.295	4.9115	0.897		
Heteroskedasticity Test: ARCH F-statistic 0.429138 Prob. F(6,15) 0.8482	' 		11	0.234	0.016	7.6170	0.747		
F-statistic 0.429138 Prob. F(6,15) 0.8482	' ['	' 二 '	12	-0.081	-0.201	7.9602	0.788		
	Heteroskedas	Heteroskedasticity Test: ARCH							
Obs*R-squared 3.223145 Prob. Chi-Square(6)0.7804	F-statistic	0.429138	F	Prob. F	(6,15)	().8482		
	Obs*R-square	d 3.223145	F	Prob. C	hi-Squ	ıare(6)(.7804		

Figure C.3.6: BRGY Correlogram of Squared Residuals and ARCH LM Test

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob			
		4 0.107 5 0.194 6 -0.075	-0.235 0.108 0.061 -0.137	0.3576 2.4107 5.0150 5.4154 6.7934 7.0100	0.550 0.300 0.171 0.247 0.236 0.320			
		8 -0.106 9 0.190 10 0.025	-0.220 -0.059 0.046 -0.183 -0.092 -0.142	10.827 11.299 12.894 12.923 13.758 15.934	0.146 0.185 0.167 0.228 0.247 0.194			
Heteroskedas	Heteroskedasticity Test: ARCH							
F-statistic Obs*R-square	0.647910 ed 4.528088	Prob. F	,).6915).6056			

C.4. Impulse Response Functions

