RADC-TR-85-194 Interim Report October 1985

RADC NONELECTRONIC RELIABILITY NOTEBOOK

Hughes Aircraft Company

Ray E. Schafer, John E. S. 303, Jack M. Finkelstein, Mal Yerasi/ Hughes Aircraft Compan, and Donald W. Fulton/Reliability Analysis Center (IITRI)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

TELEPITOR STATEMENT A

power for public release;

contain Malaches, and

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
The Air Force Paso. NY 18441-5770

Best Available Copy

This report has been reviewed by the RADC Public Afficient is releasable to the National Technical Information Service (1996) it will be releasable to the general public, including foreign actions

RADC-TR-85-194 has been reviewed and is approved for publication.

APPROVED:

JAMES A. COLLINS
Project Engineer

APPROVED:

W. S. TUTHILL, Colonel, USAF Chief, Reliability & Compatibility Division

FOR THE COMMANDER:

JOHN A. RING Acting Chief, Phone Officer

If your address has changed or if you wish to be removed from the RADC mailing list, or if the addressee is no longer employed by your organization, please notify RADC (RBES) Griffiss AFB NY 13441-5700. This will assist us in maintaining a current mailing list.

To not return copies of this report unless contractual obligations or notices to a superific document requires that it be returned.

Ut	NCLASSIFIED	
SECURITY	CLASSIFICATION OF THIS PAG	GE

SECURITY CLASSIFICATION OF THIS PAGE					
	REPORT DOCU	MENTATION	PAGE		
1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		16. RESTRICTIVE N/A	MARKINGS		
2a. SECURITY CLASSIFICATION AUTHORITY N/A		3. DISTRIBUTION			
2b. DECLASSIFICATION / DOWNGRADING SCHEDU N/A	LE		or public r on unlimite		
4. PERFORMING ORGANIZATION REPORT NUMBE	R(S)	5. MONITORING	ORGANIZATION F	REPORT NUMBE	R(S)
FR84-16-446 REV B		RADC-TR-85	-194		
6a. NAME OF PERFORMING ORGANIZATION Hughes Aircraft Company Ground Systems Group	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MONITORING ORGANIZATION Rome Air Development Center (RBES)			
6c. ADDRESS (City, State, and ZIP Code)	<u> </u>	7b. ADDRESS (Cit	y, State, and ZIP	Code)	
PO Box 3310 Fullerton CA 92634		Griffiss A	FB NY 13441	-5700	
8a. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT	INSTRUMENT ID	ENTIFICATION	NUMBER •
Rome Air Development Center	RBES	F30602-82-	C-0127		
8c. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF F			
Griffiss AFB NY 13441-5700		PROGRAM ELEMENT NO. 62702F	PROJECT NO. 2338	TASK NO. 02	WORK UNIT ACCESSION NO. 76
11. TITLE (Include Security Classification)			L		
RADC NONELECTRONIC RELIABILITY	NOTEBOOK				
12 PERSONAL AUTHOR(S) Ray E. Schafer Aircraft Co.; Donald W. Fulton	, John E. Angus /Reliability An	, Jack M. Fi alysis Cente	nkelstein, r (IITRI)	Mal Yerasi	./Hugnes
13a. TYPE OF REPORT 13b. TIME CO Interim FROM Ju	OVERED 1 82 TO Aug 85	14. DATE OF REPO Octob	RT (Year, Month, er 1985	<i>Day)</i> 15. PAG	SE COUNT 588
16. SUPPLEMENTARY NOTATION N/A					
17. COSATI CODES	(10.6)2025 222				
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block num FIELD GROUP SUB-GROUP Mechanical Reliability; Statistical Methods; MTBF, Fa			lock number) PBF > Failure		
14 04	∕Kate•∧Reliabil	ity Demonstration, Nonelectronic Reliability, ediction, Reliability Specification, Components			
19. ABSTRACT (Continue on reverse if necessary			liability S	pecificati	ion, Components
The objective of this Notebook	was the collec	tion, analys	is, and pre	sentation	of
nonelectronic component failur		•	•		
form the state-of-the-art in me the former Nonelectronic Relia				pics incli	
					A Second Second
This notebook is divided into for Nonelectronic Reliability;	Reliability Sp	ecifications	; Special A	pplication	Methods
for Reliability Prediction; Part Failure Characteristics; and Reliability Demonstration					
Tests. Kyunita Kran time beforen tollures; -					
20 DISTRIBUTION / AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION					
EJUNCLASSIFIED/UNLIMITED SAME AS R	CJUNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS UNCLASSIFIED			ļ	
223 NAME OF RESPONSIBLE INDIVIDUAL JAMES A. COLLINS					
DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. All other editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED					

Best Available Copy

PREFACE

This Notebook is the result of research conducted at Hughes Aircraft Company, Ground Systems Group, Fullerton, California, for Rome Air Development Center under contract number F30602-82-C-0127, covering the period July 1982 through August 1985. The RADC project engineer for this effort was Mr. James A. Collins (RADC/RBES). This research was undertaken within the Systems Projects Section of the Systems Effectiveness Department of Hughes under the direction and supervision of Dr. Ray E. Schafer until his untimely death in September 1983. At that time, direction of the research was taken over by Dr. John E. Angus with support and assistance from Mr. Tom F. Pliska, Systems Effectiveness Department Assistant Manager, and Mr. Larry E. James, Systems Projects Section Head.

Several individuals made significant technical contributions to this research. Dr. Mal Yerasi, working closely with Dr. Schafer, collected and compiled the entire database of nonelectronic part failure data. The statistical analyses and report generation for the Part Failure Characteristics Section of the Notebook was undertaken by Dr. Angus with extensive computer programming support from Mr. Shick P. Jue. Under a subcontract, Mr. Donald W. Fulton of RAC/IITRI (and past Rome project engineer on a previous edition of this Notebook) wrote the section on Special Application Methods for Reliability Prediction. Pinally, the sections on Reliability Demonstration and Specification were written by Dr. Angus with assistance from Mr. Jack M. Finkelstein who also reviewed the entire Notebook. The Hughes report number for this document is FR84-16-446 Rev B.

This document replaces RADC-TR-75-22, Nonelectronic Reliability Notebook. Although RADC's interest in nonelectronic/mechanical components is limited to those used in electronic systems, this revised Notebook contains failure data and reliability methods pertaining to a variety of applications.

TABLE OF CONTENTS

	Page
SECTION 1.0 - INTRODUCTION	1-1
SECTION 2.0 - APPLICABLE STATISTICAL METHODS FOR NONELECTRONIC	
RELIABILITY	2-1
2.1 Statistical Failure Models	2-1
2.1.1 The Hazard Rate Concept	2-1
2.1.2 The Poisson Process and the Exponential Distribution	2-2
2.1.2.1 The Poisson Process	2-3
2.1.2.2 The Exponential Distribution	2-3
2.1.3 The Weibull Distribution	2-4
2.1.4 The Normal Distribution	2-5
2.1.5 The Log-Normal Distribution	2-6
2.1.6 Extreme Value Distribution	2-6
2.1.7 Summary	2-7
2.2 Design of Statistical Experiments	2-8
2.2.1 Introduction	2-8
2.2.2 Determination of Stresses and Stress Levels	2-9
2.2.3 Statistical and Physical Test Design	2-10
2.3 Fitting Failure Distributions	2-13
2.3.1 Introduction	2-13
2.3.2 Small Sample Sizes (Kolmogorov-Smirnov)	2-13
2.3.3 Large Sample Sizes (χ^2 Test)	2-16
2.4 Estimation Methods	2-21
2.4.1 The Exponential Distribution	2-21
2.4.1.1 Analytical Point Estimation	2-21
2.4.1.2 Interval Estimation	2-22
2.4.1.2.1 Two-Sided Confidence Limits	2-22
2.4.1.2.2 One-Sided Confidence Limits	2-23
2.4.2 The Weibull Distribution	2-25
2.4.2.1 Analytical Point Estimation	2-25
2.4.2.1.1 The Method of Least Squares	2-25
2.4.2.1.2 Maximum Likelihood Method	2-27
2.4.2.2 Graphical Point Estimation	2-29
2.4.2.3 Interval Estimation	2-33
2.4.2.3.1 Weibull Parameters	2-33
2.4.2.3.2 Reliability	2-34
2.4.2.3.2.1 Uncensored Samples	2-34
2.4.2.3.2 Reliability	2-38
2.4.2.3.2.2 Censored Samples	2-38
2.4.3 The Normal Distribution	2-41
2.4.3.1 Analytical Point Estimation	2-41
2.4.3.2 Graphical Point Estimation	2-43
2.4.3.3 Interval Estimation	2-45
2.4.3.3.1 Small Sample Sizes (o unknown)	2-45
2.4.3.3.2 Large Sample Sizes (o unknown)	2-46
2.4.4 The Log-Normal Distribution	2-48

TABLE OF CONTENTS (Continued)

2.4.5 The Extreme Value Distribution	2-49
2.4.5.1 Analytical Point Estimation	2-49
2.4.5.2 Graphical Point Estimation	2-51
2.4.5.3 Interval Estimation	2-53
2.4.6 Test for Increasing Pailure Rate	2~55
2.4.6.1 Distribution Free Test	2-55
2.4.6.2 Test Based on Probability Limits and Weibull Assumptions	2-58
2.4.7 Outlier Tests	2-59
2.4.7.1 Early Pailures	2-59
2.4.7.2 Late Failures	2-61
SECTION 3.0 - RELIABILITY SPECIFICATIONS	
3.1 Introduction	3-1
3.2 Reliability Specification for the Exponential Distribution	3-2
3.3 Reliability Specification for the Weibull Distribution	3-3
3.4 Reliability Specification Without Respect to a Particular	
Underlying Life Distribution	3-4
SECTION 4.0 - SPECIAL APPLICATION METHODS FOR RELIABILITY PREDICTION	4-1.
4.1 Introduction	4-1
4.2 Background for Reliability Prediction Model Development	
4.3 Graphical Approaches to Reliability Prediction	
4.4 General Theory of Interference	
4.5 Applications of Interference Theory to Reliability Prediction	
Methodology	4-10
4.5.1 Purpose	
4.5.2 Description of Method	
4.6 Application of Interference Theory for Normally Distributed	
Strength and Normally Distributed Stress	4-13
4.6.1 Purpose of the Method	
4.6.2 Description of the Method	
4.6.3 Examples	
4.6.3.1 Shaft and Bushing Reliability	
	4-16

TABLE OF CONTENTS (Continued)

4.6	6.3.3 Diaphragm Reliability	4-17
4.	7 Application of the Average Failure Rate Method for Grease	
	Lubricated Rolling Element Bearings	4-18
4.	7.1 Purpose of Method	4~18
4.	7.2 Description of the Method	4-18
4.	7.3 Examples	4-20
4.	8 Reliability Prediction Method - Rolling Bearings Oil	
	Lubricated	4-21
4.	8.1 Purpose of the Method	4-21
4.	8.2 Description of the Method	4-21
4.	9 Reliability Prediction Method - Spur Gear Systems	4-23
4.	9.1 Purpose of the Method	4-24
4.	9.2 Description of the Method and Example	4-24
4.	10 Reliability Prediction Method - Minimum Information	4-37
4.	10.1 Examples	4-37
SECTIO	N 5.0 - PART FAILURE CHARACTERISTICS	5-1
5.	l Introduction	5-1
5.	1.1 Use of Constant Failure Rate Analyses	5-2
5.	1.2 Use of Weibull Analyses	5-2
5.	2 Constant Failure Rate Analysis	5-4
5.	2.1 Index to Section 5.2	5-4
5.	3 Weibull Analyses - Project l	5-202
5.	3.1 Weibull Analyses Summaries	5-203
5.	4 Weibull Analyses - Project 2	5-232
5.	4.1 Weibull Analyses Summaries	5-232
5.	5 Weibull Analyses - Project 3	5-270
5.	5.1 Weibull Analyses Summaries	5-270
5.	6 Part Malfunction Data	5-284
SECTIO	on 6.0 - RELIABILITY DEMONSTRATION TESTS	6-1
6.	1 Introduction	6-1

	6.1.1	Statistical Characteristics of a Reliability Demonstration	
		Test	1
	6.1.2	Cost of Demonstration 6-	2
	6.1.3	Sample Size Limitations 6-	2
	6.1.4	Summary	3
	6.2 A	ttributes Demonstration Tests 6-	3
	6.2.1	Attributes Plans for Small Lots 6-	3
	6.2.2	Attributes Plans for Large Lots 6-	6
	6.2.3	Attributes Demonstration Test Plans for Large Lots	
		(The Poisson Approximation Method) 6-	9
	6.2.4	Attributes Sampling Using MIL-STD-105D 6-	11
	6.2.5	Sequential Binomial Test Plans 6-	1.3
	6.3 V	Variables Demonstration Tests 6-	15
	6.3.1	Introduction	15
	6.3.2	Time Truncated Demonstration Test Plans 6-	16
	6.3.2.	1 Nonparametric Reliability Demonstration Test 6-	16
APP	endix i	- REFERENCES AND BIBLIOGRAPHY	1
* DD	DAID TV T	T - CMAMICMICAL MADIFC	_1

LIST OF ILLUSTRATIONS

Figure		Page
2.4.2.2	Graphical Point Estimation for the Weibull Distribution	2-32
2.4.2.3.2.1	Graphical Method for Interval Estimation of Reliability for the Weibull Distribution	2-35
2.4.3.2	Graphical Point Estimation for the Normal Distribution	2-44
2.4.5	Plot of Fitted Straight Line for Use With the Extreme Value Distribution	2-54
4.4-1	Illustration of the Concept of Interference	4-7
4.4-2(A)	Time Varying Strength Density	4-8
4.4-2(B)	Time Varying Strength Density	4-9
4.6.2-1	Normalized Density Function for Excess Strength Overload	4-14
4.9-1	Planetary Gear Reduction	4- 25
4.9-2	Planet Gear Forces	4-28
6.3.2.1A	Operating Characteristic Curve for Test Plan 1A	6-20
6.3.2.2A	Operating Characteristic Curve for Test Plan 2A	6-20
6.3.2.3A	Operating Characteristic Curve for Test Plan 3A	5-21
6.3.2.4A	Operating Characteristic Curve for Test Plan 4A	6-21
6.3.2.5A	Operating Characteristic Curve for Test Plan 5A	6-22
6.3.2.6A	Operating Characteristic Curve for Test Plan 6A	6-22
6.3.2.7A	Operating Characteristic Curve for Test Plan 7A	6-23
6.3.2.8A	Operating Characteristic Curve for Test Plan 8A	6-23
6.3.2.9A	Operating Characteristic Curve for Test Plan 9A	6-24
6.3.2.10A	Operating Characteristic Curve for Test Plan 10A	6-24
6.3.2.11A	Operating Characteristic Curve for Test Plan 11A	6-25
6.3.2.124	Operating Characteristic Curve for Test Plan 12A	6-25

LIST OF ILLUSTRATIONS (Continued)

Figure		Lage
٥.3.2.13A	Operating Characteristic Curve for Test Plan 13A	6-26
o.j.2.lb	Operating Characteristic Curve for Test Plan 15	6-27
6.3.2.28	Operating Characteristic Curve for Test Plan 2B	6-27
6.3.2.38	Operating Characteristic Curve for Test Plan 3B	5-28
0.3.2.46	Operating Characteristic Curve for Test Plan 4B	6-28
0.0.2.05	Operating Characteristic Curve for Test Plan 50	6-29
0.3.2.00	operating Characteristic Curve for Test Plan 68	6-29
p.3.2.7b	Operating Characteristic Curve for Test Plan 78	6-30
0.3.2.86	operating Characteristic ourve for Test Plan &B	6-30
5.3.2.96	Operating Characteristic Curve for Test Plan 95	6-31
0.3.2.1Ub	Operating Unaracteristic Curve for Test Plan 10b	6-31
5.3.2.115	Operating Characteristic Curve for Test Plan 11b	6-32
0.3.2.128	Operating characteristic curve for Test Plan 12s	6- 32
ກ.J.2.1JB	Operating Characteristic Curve for Test Plan 138	3 د • 6

LIST OF TABLES

<u>Table</u>		Page
1.1	Beginning Page Index for Part Class Location in Section 5	1-3
4.5.1	Parameters of Tabulated Probability Distributions as Used in RALC-TR-68-403 (Lipson, et.al, 1968)	4-11
4.7.1	Quality Factors	4-19
4.7.2	K Grease Constant	4-19
4.8-1	Life Adjustment Factor of Reliability, a ₁ , (From Source 1)	4-23
5.6.1	Part Malfunction Data	5-285
6.3.2.1	Nonparametric Reliability Demonstration Test Plans	6-19

1.0 INTRODUCTION

The purpose of the RADC Nonelectronic Reliability Notebook is twofold. First, it serves as a reference document for the reliability characteristics of the most commonly used, nonelectronic parts based on industry supplied failure data; and secondly, to present the most useful reliability and life data analysis methods applicable to nonelectronic parts. These analysis methods are presented without regard to rigorous mathematical derivation and with an emphasis on making them accessible to reliability practitioners possessing moderate statistical/mathematical training.

The suggested use of this Notebook is described by the table below where each reliability task is associated with a section of this Notebook. The use of section 5.0, Part Failure Characteristics, requires some claboration. In the majority of cases, the nonelectronic parts covered in this Notebook are adequately described in the reliability sense by a constant failure rate. Thus, mainly, section 5.0 will be used to look up a failure rate for a particular device. Sometimes, however, either the part will exhibit nonconstant failure rate, or the analyst will simply wish to use a Weibull analysis of the part's reliability characteristics. For these purposes, section 5.0 also presents Weibull analyses for selected nonelectronic parts based on the availability of actual failure times in the database. These Weibull analyses are based on data from three different projects, two in the ground mobile application environment, and one in the ground fixed environment. In many cases, the same part type occurs in more than one Weibull analysis. In these cases, if it is desired to use the Weibull analysis for modeling, the analysis in which the most failures were recorded should be used. In some instances, the estimated parameters in the Weibull analyses of the same part type will differ greatly. These differences are explained by differences between project applications (even though the projects have the same use environment) of the parts, and differences between parts of the same name and type due to lack of data which would better characterize the parts (i.e., two parts of the same generic part name and type can be, nevertheless, different). As the results of these analyses indicate the vast majority of the time, the constant failure rate tables will be adequate. In spite of this result, the Weibull analyses have been included for reference.

Reliability Task	Nonelectronic Reliability Notebook Sections(s)	
Specification	Section 3.0	
Prediction	Section 5.0, if part is represented there; Section 2.0, if failure data is available; Section 4.0, if no failure data is available.	
Demonstration	Section 6.0	

Section 2.0 of this Notebook describes the selection and application of several failure distributions which are used for describing the life characteristics of nonelectronic parts, given part failure data. The remainder of this section is devoted to methods of operating on failure data once a failure distribution has been found to, or is assumed to, describe nonelectronic part failure times. The general format used includes methods of point and interval estimation for the reliability parameters of the proven or assumed failure distribution based on empirical data.

Section 3.0 of this notebook presents guidelines and criteria for specifying reliability for nonelectronic parts and equipments. Specifications appropriate for the nonparametric reliability demonstration test plans presented in section 6.0 are included.

The next section of the notebook, section 4.0, addresses reliability prediction, and is intended to supplement section 5.0. It gives rules for using specific prediction models which are known to have application to certain nonelectronic parts. This section is oriented towards strength of alloys, grease and oil lubricated rolling bearings, and spur gear systems. It explains and gives examples on the use of stress-strength interference theory. A new subsection addressing reliability prediction based on minimal vendor information and no life data is also included.

Section 5.0 is Part Pailure Characteristics. This section describes the results of the statistical analyses of failure data from more than 250 distinct nonelectronic parts collected from recent commercial and military projects. This data was collected in-house (from operations and maintenance reports) and from industry wide sources, all of whom are aware of the importance of this Notebook. Tables, alphabetized by part class/part type, are presented for easy reference to part failure rates assuming that the part lives are exponentially distributed (as in previous editions of this notebook, the majority of data available included total operating time, and total number of failures only). For parts for which the actual life times for each part under test were included in the database, further tables are presented which describe the results of testing the fit of the exponential and Weibull distributions. A quick reference index for locating the beginning page of the Tables for each part class is presented in Table 1.1 in this introduction. The results show that the exponential distribution is adequate for a large majority of the nonelectronic parts for which its fit was tested. A small number of nonelectronic parts exhibited life times which were better described by the Weibull distribution. Recommendations for approximating these cases by the exponential distribution are presented. Part malfunction data which was available when the part failure data was collected is presented in Table 5.6.1. See the contract Final Technical Report describing the study and investigation for more details on data and data analysis (RADC-TR-85-66 dated April 1985, AD A157242).

Section 6.0 presents reliabilty demonstration test plans applicable to nonelectronic parts. Both attributes and variables types of demonstration plans are described. Attributes plans are used to demonstate whether

or not a finite population of items possesses an acceptable fraction of items which have a particular attribute, while variables plans are used to demonstrate whether or not a particular type of item possesses an acceptable level of some pre-specified reliability quantity. Whenever the exponential distribution is judged appropriate for the life distribution of an item of interest, test plans are documented in Mil-STD-781C and Mil-HDBK-108 and are not reproduced in this section. When the exponential distribution is not appropriate, the variables test plans of this section are nonparametric (i.e., not dependent on the form of the underlying life distribution) and based on one dimensional reliability specifications. Because of this, these test plans are easy to design and use, and operating characteristic curves can be developed and used.

TABLE 1.1

BEGINNING PAGE INDEX FOR PART CLASS LOCATION IN SECTION 5

PART CLASS	PAGE NO. EXPONENTIAL DIST	
ACCELEROMETER	5-10	5-206, 235
ACCUMULATOR	5-12	
ACTUATOR	5-13	5-206, 235
AIR CONDITIONER	5-18	
ANTENNA	5-19	5-236
AXLE	5-22	5-207, 236
AZIMUTH ENCODER	5-23	5-207, 237
	5-24	5-208, 237
BEARING	5-25	5-208, 238
BEARING NUT	5-28	
BELLOWS	5-29	5-210, 239
BELT	5-30	5-210, 240, 272
BINOCULAR	5-31	
BLADE ASSEMBLY	5-32	
BLOWERS & FANS	5-33	5-211, 241, 272
BOOT (DUST & MOISTURE)	5-36	
Brake	5-36	5-211, 242
BRUSHES	5-37	5-212, 242
BURNER	5-38	
BUSHINGS	5-39	5-243
	5-40	
CAMERA	5-40	5-273
CESIUM BEAM TUBE		
CIRCUIT PROTECTION DEVICE	CE 5-42	5-212, 243

^{*}NOTE: A listing under this column indicates that a Weibull analysis for one or more part types and environments under this part class is included in Sections $5.3 \sim 5.5$.

	PAGE NO.	*PAGE NO.
PART CLASS	EXPONENTIAL DIST	WEIBULL DIST
CLUTCH	5-44	5-213, 244
COMPRESSOR	5-46	·
	5-48	5-214, 245, 274
COMPUTER MASS MEMORY CONTROL TUBE ASSEMBLY CORD/CABLE COUNTER COUPLING	5-50	
CORD/CABLE	5-51	
COUNTER	5-52	
COUPLING	5-55	5-214
CRANKSHAFT	5-58	5-215, 245
CROSS HEAD DIAPHRAGMS BURST	5-59	
DIAPHRAGMS BURST	5-59	5-246
DIFFUSER	5-60	
DISC ASSEMBLY	5-60	
DISTILLATION UNIT	5-61	
DRIVE	5-62	5-216, 247
DRIVE FOR COMPUTER		
TAPES & DISCS DRIVE ROD	5-64	5-216, 246, 275
DRIVE ROD	5-67	
DRIM	5-67	5-217, 248
DUCT	5-68	5-218, 248
ELECTRIC HEATERS	5-69	5-218, 249
ELECTROMECHANICAL TIMERS	s 5 - 70	5-249
engines	5-71	
FEEDHORN	5-71	
FILTER	5-72	5-219, 250, 276
FITTINGS	5-74	5-219, 251
PLASH LAMP	5-78	
Puse Holder	5-79	5-252
GAS DRYER DESICATOR	5-82	
GASKETS & SEALS	5-83	5-220, 253
GEAR	5-85	5-221, 254
GEAR BOX GEAR TRAIN GENERATOR (FLECTRIC)	5-91	5-222, 256
GEAR TRAIN	5-93	
GENERATOR (EMECIRIC)		
GENERATOR (GAS)	5-94	
GLASS (SIGHT GAUGE)		
GROMMET	5-95	
GIMBALS	5-96	
GYROSCOPE	5-97	
HEAT EXCHANGERS	5-98	5-223, 256
HEATER	5-100	
HEATER BLANKETS	5-101	

^{*}NOTE: A listing under this column indicates that a Weibull analysis for one or more part types and environments under this part class is included in Sections 5.3 - 5.5.

	PAGE NO.	*PAGE NO.
PART CLASS	EXPONENTIAL DIST	WEIBULL DIST
UDAMDO DI DV DI DMONIM	5-101	
HEATER, PLEX ELEMENT HIGH SPEED PRINTER	5-101 5-102	5-223, 257, 277
HOSE	5-102	5-224, 257
HOUSING	5-107	3-224, 237
INCINERATOR	5-107	
INSTRUMENTS	5-107 5-108	5-225, 258
JOINT, MICROWAVE, ROTARY		5-225, 259
KEYBOARD	5-117	5-226, 259, 277
KNOB	5-119	3-220, 233, 217
LAMP	5-120	
LAMP HOLDER	5-121	
LENS	5-122	
LOW SPEED PRINTER	5-122	5-278
	5-123	3-276
MANIFOLD METAL TUBING	5-124	5-260
MODULES	5-125	3-200
MOTOR GENERATOR SET	5-125	
MOTOR - PLECTRIC	5-127	5-226, 260, 278
MOTOR, ELECTRIC O-RING	5-132	3 220, 200, 270
PARTICLE SEPARATOR	5-132	
PITCH HORN	5-133	
PLOTTER	5-133	
		5-262
POWER SWITCH GEAR	5-136	5-227
POWER CIRCUIT BREAKER POWER SWITCH GEAR PRECIPITATOR	5-137	5 2 2.
PRISM	5-137	
PROPELLER	5-138	
PROPORTIONING UNIT	5-138	
PULLEY	5-139	5-228, 262, 279
PUMP	5-140	5-263, 279
PURIFIER	5-140 . 5-145 5-145	
QUILL ASSEMBLY	5-145	
RADOME	5-146	
REFRIGERATION PLANT	5-146	
REGULATOR	5-147	
RESILIENT MOUNT	5~151	5-264
RESILIENT MOUNT RETAINING RING	5~151 5~153	5-228, 265
SEAL	5-154	·
SENSORS	5-155	
SENSORS/TRANSDUCER/		
TRANSMITTER	5~155	5-280

*NOTE: A listing under this column indicates that a Weibull analysis for one or more part types and environments under this part class is included in Sections 5.3 - 5.5.

	PAGE NO.	*PAGE NO.
PART CLASS	EXPONENTIAL DIST	WEIBULL DIST
SHAPT	5-162	5-229
SHOCK ABSORBERS	5-163	5-265
SLIP RING-BRUSH	5-165	
SLIP RINGS	5-166	
SOLENOIDS	5-167	5-229
SPRING	5-169	
SPROCKET	5-171	
STEAMBOILER	5-171	
STOW PIN	5-172	
SWITCH	5-172	5-230, 266, 281
SWITCHBOAKD CONTROL	5-180	
SYNCRO	5-181	
SYNCRO ASSEMBLY	5-181	
SYNCRO/RESOLVER	5-182	
TACHOMETER	5-182	
TANK	5-183	
TELESCOPE	5~185	5-268
TERMINAL BOARDS	5-186	
THERMOCOUPLE	5-187	
TRACK BALL	5-188	5-269, 283
TRANSMISSION	5-189	
TRUNNION ASSEMBLY	5-189	
VALVE	5-190	5-231, 269
WASHER	5-196	
WATER DEMINERALIZER	5-200	
WINDLASS	5-201	

THE PROPERTY OF THE PROPERTY O

^{*}NOTE: A listing under this column indicates that a Weibull analysis for one or more part types and environments under this part class is included in Sections 5.3 - 5.5.

2.0 APPLICABLE STATISTICAL METHODS FOR NONELECTRONIC RELIABILITY*

2.1 Statistical Failure Models.

2.1.1 The Hazard Rate Concept. The measure of an equipment's reliability is the infrequency with which failures occur in time. A failure distribution represents an attempt to describe mathematically the length of life of a material, a structure, or a device. There are many physical causes that individually or collectively may be responsible for the failure of a device at any particular instant. The present state-of-the-art does not permit isolation of these physical causes and mathematical account for all of them, and, as a consequence, the choice of a failure distribution is still an art. If one tries to rely on actual observations of time to failure to distinguish among the various nonsymmetrical probability functions, one is still faced with a difficulty because nonsymmetric distributions are significantly different at the tails and actual observations are sparse, particularly at the right-hand tail, because of limited sample size.

In view of these difficulties, it is often necessary to hypothesize the type of failure distribution on the basis of knowledge of the physical failure process. For example, fatigue failure of nonelectronic parts is usually assumed to follow a Weibull probability distribution because the theoretical development of this distribution was based on fatigue type failures.

One useful characteristic of failure distributions is the hazard rate or failure rate.

Hazard rate,
$$h(x) = \frac{f(x)}{1-F(x)}$$

where $f(x) = \text{density function}$
 $1-F(x) = \text{reliability.}$

Hazard rate is the probability that a device already in service for time x, will fail in the next instant of time, given no failure up to x.

Each absolutely continuous probability distribution can be characterized by the hazard rate. Physical systems can also be classified in the same manner. Thus the nature of the failure rates in a physical system suggests the type of probability distribution to be assumed.

^{*}This entire section has been reprinted (with minor corrections) from RADC-TR-75-22. A revised statistical methods section containing additional advanced methods was done and is included as Appendix III of the Final Report describing the study and investigation (RADC-TR-85-66).

To assist the choice of h(x) three types of failures generally have been recognized as having a time characteristic. The first one, called the initial failure, manifests itself shortly after time x = 0. The frequency of failures of this type decreases during the initial period of operation. A good example of this is the standard human mortality table, in which it is assumed that up to the age of 10 years a child can die of hereditary defects, but having lived past this age, it is almost free of such defects. The second type occurs during the "chance failure period," in which the device exhibits a constant failure rate, generally lower than during the initial period. The cause of this failure is attributed to unusually severe and unpredictable environmental conditions occurring during the operating time of the device. In the example of human mortality tables, it is assumed that deaths between the ages of 10 and 30 years are generally due to accidents. The third type is called the wearout failure period, and is associated with the gradual depletion of a material, or an accumulation of shocks, fatigue, and so on. In the human mortality tables discussed before, after an age of 30 years an increasing proportion of deaths are attributed to "old age." The three types of failures have been classically represented by the "bathtub" curve, wherein each one of the three segments of the curve represents the three time periods of initial, chance, and wearout.

The discussion in the previous paragraphs applies to the theory of life testing in general and may not apply strictly to every case where the life characteristics of nonelectronic parts are involved. For example the wearout process begins immediately in many types of nonelectronic parts.

It was stated before that given the functional form of h(x), the density function t(x) and the cumulative distribution function F(x) could be easily determined. The development of the following two results is straightforward and can be found in Barlow and Proschan (1964).

$$1 - F(x) = \exp \left(-\int_{0}^{x} h(x)dx\right)$$
 (2.1.1)

and
$$f(x) = h(x) \exp \left(-\int_0^x h(x)dx\right)$$
. (2.1.2)

In the sections to follow a use will be made of this technique to develop the commonly used failure distributions.

2.1.2 The Poisson Process and the Exponential Distribution. In reliability studies, the exponential distribution plays a role analogous to that of the normal distribution in other areas of statistics. An acceptable justification for the assumption of an exponential distribution to life

mathematical argument has been advanced to support the plausibility of the exponential as the failure law of complex equipment (Barlow & Proschan, 1964, p. 18). Although many life distributions, especially those pertaining to the nonelectronic devices, cannot be adequately described by the exponential distribution, an understanding of the theory in the exponential case facilitates the treatment of the more general cases. The desirability of the exponential distribution is because of its simplicity and its inherent association with the well developed theory of Poisson Processes (Feller, 1968). The applicability of the exponential distribution is limited because of its lack of memory property; this property requires that the previous use does not affect its future life length, and the exponential distribution is the only continuous distribution with this property (Feller, 1968).

2.1.2.1 The Poisson Process. The exponential distribution corresponds to a purely random failure pattern, and mathematically this means that whatever is causing the failure occurs according to a Poisson Process with some parameter λ . The Poisson probability law can be derived from rigorous mathematical considerations, and the interested reader is referred to Feller (1968). Briefly, the postulates of a Poisson Process are stated below.

Consider a system (or a unit) subjected to instantaneous changes due to the occurrence of random events (shocks). All random events are assumed to be of the same kind, and one is interested in their total number. Let $P_m(t)$ be the probability that exactly m random events occur during a time interval of length t.

The physical process that induces the occurrence of the random events is characterized by the following two postulates:

- i) the process is time homogeneous and the future occurrences of the random event are independent of its past occurrences.
- ii) the simultaneous occurrences of two or more events is excluded.

The above postulates lead to a system of differential equations for $P_{m}(t), \ \mbox{which lead to}$

$$P_{m}(t) = \frac{e^{-\lambda t}(\lambda t)^{m}}{m!}$$
, $m = 0, 1, 2, ...$

こうで 重要をとうとうない 間でいいがい 大量

2.1.2.2 The Exponential Distribution. The probability density function of the exponential distribution can be obtained from either the hazard rate concept, or by considering the waiting time between arrivals in a Poisson Process. Consider the latter situation first.

Suppose that the device under consideration is subjected to an environment in which shocks occur according to the Poisson distribution, with a Poisson rate A. The device will fail only if a shock occurs and will not fail otherwise. Let X be the life of the device.

Let
$$R(x) = Pr(X > x) = Pr [no shocks occur during (0,x)]$$

$$= e^{-\lambda x}, \text{ by putting } m = 0.$$

$$Pr(X \le x) = 1 - e^{-\lambda x} \text{ or}$$

$$f(x) = \lambda e^{-\lambda x}, \qquad x \ge 0.$$

The same expression for the probability density function of X could be obtained from the hazard rate concept, since the assumption of random shocks with a constant Poisson rate λ implies a constant failure rate $h(x) = \lambda$, for $x \ge 0$.

Substituting $h(x) = \lambda$ in equations 2.1.1 and 2.1.2 one has

$$F(x) = 1 - e^{-\lambda x}.$$

This section will be concluded by emphasizing the fact that the exponential distribution can be chosen as a failure distribution if and only if the assumption of a constant hazard rate can be justified. This assumption implies that the failure of a device is not because of its deterioration due to wear, but is due to random shocks which occur according to the postulates or a Poisson Process. This fact is of importance in nonelectronic parts consideration, since invariably the failure of these is due to either a pure wear or due to a combination of wear and shocks.

2.1.3 The Weibull Distribution. Recently, the Weibull distribution has emerged to be a popular parametric family of failure distributions. Its applicability to a wide variety of failure situations was discussed by Weibull (1951); it has been used to describe vacuum tube failure by Kao (1958) and a ball bearing failure by Lieblein et. al. (1956). While the applicability of the exponential distribution in limited because of the assumption of a constant hazard rate, the family of Weibull distributions can be written to include the increasing and the decreasing hazard rates as well. Since many mechanical or electromechanical components have an increasing failure rate (i.e., due to deterioration or wear), the Weibull distribution is more palatable in describing the failure pattern of such devices.

If the hazard rate h(x) is some monotone function of x, say if

$$h(x) = \frac{b}{a} (x-\gamma)^{\beta-1}, \ \beta, \ \alpha > 0, \ \gamma \ge 0, \ x \ge \gamma$$

then equations 2.1.1, and 2.1.2 give

$$F(x) = 1 - \exp \left[-\frac{(x-\gamma)^{\beta}}{\alpha} \right] \text{ for } x \ge \gamma \text{ and }$$

$$f(x) = \frac{b}{\alpha} (x-\gamma)^{b-1} \exp \left[-\frac{(x-\gamma)^{\beta}}{\alpha} \right] \qquad \dots \quad x \ge \gamma$$

= U otherwise.

p, α , and γ are the shape, the scale, and the location parameters respectively. In Section 5 of this notebook (and other sources) the scale parameter is $\alpha^{1/5}$.

The hazard rate for the Weibull distribution is increasing in $(x-\gamma)$ if p>1, and is independent of x if p=1. When p=1, the Weibull distribution becomes the exponential distribution with location parameter γ , and when p<1, the Weibull distribution reduces to that is called the hyper exponential distribution. When p<1, the hazard rate decreases in $(x-\gamma)$, and such a hazard rate is useful in characterizing phenomenon such as work hardening or other phenomenon associated with the improvement of reliability such as debugging, etc.

Experience in the use of the Weibull distribution in describing the life characteristics of nonelectronic parts leads to the conclusion that very often the location parameter γ can be assumed to be zero. This leads to the failure model referred to in many of the methods presented in this and succeeding sections of this notebook as the two parameter weibull distribution.

2.1.4 The Normal Distribution. A fundamental derivation of this distribution is not attempted here because of the familiarity.

It X denotes the time to failure random variable of a device which fails according to the normal or Gaussian law, then the probability density function of X is given by

$$f(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-1/2 \left(\frac{x-\mu}{\sigma}\right)^2} -\infty < x < \infty.$$

µ and 0 are the parameters, commonly referred to as the mean and the standard deviation respectively. The failure rate of the normal distribution is increasing in x, and hence, this distribution can be used to characterize wear. Since it is not possible to observe negative lifetimes, the use of this distribution is limited to positive random variables.

2.1.5 The Log-Normal Distribution. The Log-Normal Distribution can sometimes be used as a failure model when failure is due to fracture. Since failures due to fracture occur quite commonly in practice, especially for nonelectronic devices, a study of the Log-Normal Distribution is warranted.

The Log-Normal Distribution implies that the logarithms of the lifetimes are normally distributed, and hence, it can be easily derived by a simple logarithmic transformation. It can also be derived more fundamentally by considering a physical process wherein failure is due to fatigue cracks, and the interested reader is referred to Kao (1965). The probability density function of the Log-Normal Distribution is given by

$$f(x) = \frac{1}{x\sigma\sqrt{2\pi}} \exp \left\{-\frac{1}{2}\left(\frac{\log x - \mu}{\sigma}\right)^2\right\}, x > 0, \sigma > 0, -\infty < \mu < \infty;$$

$$= 0 \text{ otherwise.}$$

 μ and σ are the (usually) unknown parameters.

2.1.6 Extreme Value Distribution. The Largest Extreme Value (L.E.V.) distribution is a two parameter right-skewed probability distribution, similar in appearance to the gamma, log-normal, or Weibull distribution. The L.E.V. distribution has been successfully fitted to failure data, particularly where failures are caused by fluctuation of a random load variable such as stress or voltage. For example, a component with tensile strength Y is subjected to a stress during each mission. Let X be the largest stress observed in n missions. If n is large, the random variable, X, will have a L.E.V. distribution, and reliability for n missions will be given by P(X < Y), assuming that the theory of cumulative damage does not apply.

The L.t.V. distribution reliability function is

$$R(x) = 1 - \exp\left(-e^{-\beta(x-m)}\right)$$
 $\beta > 0$, $-\infty < x < \infty$

and the density function is

$$f(x) = \beta e^{-\beta(x-m)} \exp \left(-e^{-\beta(x-m)}\right)$$
.

The Smallest Extreme Value (S.E.V.) distribution is the "mirror image" of the L.E.V. distribution and represents the distribution of the smallest observation in a large number of trials. It is unique among the many like distributions available in that the probability distribution is skewed to the left. One obvious application for the S.E.V. distribution is the "chain" model, a series system of n components where X is the lowest strength among the components. For large n, X has a S.E.V. distribution.

The reliability function is

$$R(x) = \exp \left(-e^{\beta(x-m)}\right) \qquad \beta > 0, \quad -\infty < x < \infty$$

and the density function

$$f(x) = \beta e^{\beta(x-m)} \exp \left(-e^{\beta(x-m)}\right)$$
.

2.1.7 Summary. In the preceding sections several failure models were proposed as possible candidates for describing the life characteristics of nonelectronic parts. In practice, it is very difficult to identify a particular model as the suitable one, because of the considerations given in Section 2.1.1. However, some broad guidelines for the applicability of certain models were given in the other sections and these can be presented in the table below.

Model	Applicability Conditions	Comments
Exponential	Failure due to exactly 1 random shock	Does not characterize wear
	Systems comprised of many components	
Weibull	Applicable under a variety of conditions, especially mechanical parts that fail due to wear	Characterizes wear or work hardening
Normal	Failures occur due to wearout	Describes many life processes as well as many manufacturing processes
Log-Normal	Failure due to fatigue cracks	Characterizes wear
Extreme Value	Failure due to extreme value of some variable	Corrosion is one example

The remainder of this section of the Notebook is devoted to methods of operating on failure data once one of the previously discussed failure distributions is found to or is assumed to describe nonelectronic part failure times. The section is divided by failure distribution and follows a similar pattern for each. Methods are described for calculating point estimates of the reliability or of other parameters of the proven or assumed failure distribution based on empirical data. Where they are available and have utility for the users of the Notebook, graphical methods for estimating these

same values are presented. The general format used includes methods of point and interval estimation for the reliability parameters of each failure distribution. Numerical examples are presented and the user of the Notebook is furnished with references for theoretical development and additional examples of each of the methods presented.

2.2 Design of Statistical Experiments.

the recorded without assessment commission of the

2.2.1 Introduction. Since the state of the art of failure data collection for nonelectronic parts does not give sufficient information for proper analysis, it is necessary to generate the needed information in a systematic manner.

In collecting failure data for estimating reliability characteristics for nonelectronic parts, one is frequently faced with insufficient information. This problem arises from the manner in which the data is collected. It is common practice to include only the operating time of the equipments or systems and the number of failures observed during the operational period covered by a failure report. Individual part failure times are generally not recorded.

This section of the Notebook, therefore, is devoted to describing the methodology of the principles to be followed in the event that one has the opportunity to generate failure data for a nonelectronic part. It describes in a logical manner the discrete guidelines for setting up an experiment which will yield an evaluation of the important factors or combinations of factors which affect the life characteristics of the parts of interest.

The general steps for planning and conducting an experiment plus the procedures to be followed to most efficiently analyze the results of a test program for nonelectronic parts are outlined below. The remainder of this subsection describes these steps in detail and references sources which can be used as patterns to be followed in generating and analyzing the types of information which are required to allow a complete and detailed reliability analysis of nonelectronic parts and of the operating and environmental stresses which affect their life characteristics.

When these guidelines are utilized in the generation and analysis of reliability data for nonelectronic parts, a full and complete analysis of all the data should be possible and no assumptions or guesses should be required which might dilute the power of the conclusions that can be reached from a proper treatment of failure data.

The major steps discussed in the succeeding pages are:

- 1. Determination of Stresses
- 2. Determination of Stress Levels
- 3. Statistical Test Designs
- 4. Physical Test Designs
- 5. Analysis of Experimental Data

2.2.2 Determination of Stresses and Stress Levels. In setting up an experiment to generate reliability data on nonelectronic parts, those stresses should be evaluated which experience and/or failure mode analysis indicates have the greatest effect on part life for the applications of interest.

Even if a part is operated in a very benign environment, there are still many factors competing in combination to cause deterioration of its life characteristics. The rate of deterioration is a function of the level or concentration of a given stress. It is well-known that certain factors affect a product more than others. For example, a tire's life is reduced by Vibration, radiation, corrosive agents, type of road surface, and temperature to name but a few factors. It is well-known, however, that the effects of temperature greatly exceed the effects of other environmental stresses to the point that setting up an experiment to evaluate the life characteristics of this part without including this factor would render useless or distorted results. Some factors work in combination in such a manner that their effect together is greater than the sum of their individual effects acting separately. For example, ozone increases the tendency of rubber to crack, but ozone combined with high temperature creates an even greater amount of damage in most cases. The selection of factors for an experiment then should not only be directed toward including the most important factors affecting life but should seek to apply them in combination since this allows the evaluation of synergistic effects and more closely simulates actual operating conditions.

The goal of an experiment or test program to generate reliability information is therefore to determine the manner in which a part's life characteristics vary over the envelope of environmental and operating stresses to which it will be subjected during normal application. If all the stresses to which it is to be subjected during normal applications are included in the experiment and are evaluated, the size and expense of the experiment required would be prohibitive in nearly every case. The decision as to which stresses to include must therefore be based on experience, knowledge of failure theory, historical data, failure mode analysis, or predicted values in order to yield the most information for a reasonable expenditure of monies and time.

In addition to being certain to include the most important operating or environmental stresses for inclusion in a reliability data generation program, it is important to evaluate the effects of various levels of the stresses. It is expected in most cases that very little degradation occurs in a so-called laboratory environment. However, the rates of deterioration for a given stress usually vary in some systematic manner over the range of stresses to be encountered in a given application. Therefore, it is desirable to investigate what happens at several points in the environmental and operational envelope.

In determining the most significant stress levels to investigate there are several points to consider. The first is to relate failure mode to stress level. This can be done either by prior knowledge or by running some short time screening tests to locate the general stress level at which failure mode changes can be expected. If these stress levels can be located, they may even be used in influencing the operating or environmental limits to be specified in order to effect a meaningful improvement in product life. Another point to

consider in stress level selection is the concept of endurance limit associated with many nonelectronic parts. This assumes that below certain stress levels life can be considered to be infinite or at least extremely long. Therefore, in order to observe failures in a reasonable time these stress levels must be avoided.

This presents the usual dilemma which can best be solved by step-stress testing as described by Dodson and Howard and by Prot. It consists of testing a specimen or group of specimens for a fixed time at a fixed stress level. The survivors are continued on test at the next increment of higher stress for the same fixed time. This procedure continues until it is possible to select several stress levels suitable for evaluation. The stress levels should not be spaced so closely that no differences can be detected but should be selected to sufficiently cover the spectrum of interest.

The objective of the test program is to generate a mathematical model that demonstrates how life characteristics change as operational or operating stresses or combinations of stresses vary. In the case of nonelectronic parts the dimension of time must also be included in the model since the probability of failure increases as the part sees more service.

In summary, this topic discusses the general ground rules for selecting logical stresses and stress levels when setting up an experiment or test program for evaluating the reliability of nonelectronic parts. The objectives of the guidelines are the generation of more useful data for analysis than is now generally available.

2.2.3 Statistical and Physical Test Design. The goal of the designer of an experiment is the generation of accurate and useful conclusions based on economical test program, efficient data collection methods and the proper selection of statistical methods which will lead to the attainment of the goals.

In generating or gathering reliability data on nonelectronic parts, it is possible to simply put a part or group of parts on test at nominal operating and environmental conditions and collect information on operating times and failure times. From this, it will be possible to estimate the parameters of the assumed failure distribution exhibited by the parts with the methods described in Sections 2.3 and 2.4 of this Notebook.

If a greater degree of diversity is desired because the part of interest frequently may encounter stresses other than nominal in different applications then it is probably wise to attempt to evaluate the effect of a given stress on part life when applied at several different levels. Also, it is probably prudent to investigate the effects of several stresses that are thought to be major factors affecting part life again investigating each of these at several levels. More importantly, it is reasonable to evaluate these stresses when they are applied in combination since this comes the closest to simulating the real life situation.

When it is desired to evaluate stresses applied in combination on a part the most efficient type of statistical experiment to use is some form of factorial design. It is true that it would be possible to evaluate the effect of contact current on the life of a switch by holding all environmental and operating conditions constant while varying the stress of interest, in this case contact current over a desired range of values. This same procedure could then be followed for actuation rate, vibration, temperature and the infinite number of other operating and environmental stresses that could and do affect the life of switches. The obvious result would be a series of tests that would take a rather long time to perform. More importantly, however, is the fact that there would be no measure of how two or more of the stresses might act when both were at levels other than nominal. In other words, if a synergistic effect was brought about by a given set of stresses or stress levels, the aforementioned procedure would not be able to evaluate it. The solution to the problem lies in the use of some form of factorial experiment. There are full factorial experiments in which every combination of stresses and stress levels is tested and perhaps replicated. This type of experimental design yields the maximum amount of information regarding main effects and the effects of interactions of stresses. The price paid for the complete information is paid in the cost of parts placed on test and in the test time required to gather the requisite amount of data needed to perform the analysis.

Fractional factorial experiments can be performed in which some of the test cells in the experiment are omitted in order to reduce test time and expenses. The disadvantages associated with the omission of some stress combinations is that the higher order interactions cannot be evaluated. Therefore, the judgment as to which treatments to omit must be based on experience or opinion. Naturally, those that are not felt to be significant will be omitted. There are several other special types of experimental designs which can be used such as central composites, latin squares and many more. For further information regarding the details of how to set up and analyze this type of experiment the reader is referred to "The Design and Analysis of Industrial Experiments," by O.W. Davies, Hafner Publishing Company, 1954. An example of an application of a full factorial experiment is presented in RADC Technical Report 65-46 "Accelerated Reliability Test Methods for Mechanical and Electromechanical Parts," July 1965. Its Defense Documentation Center number is AD 621074. This report details all the steps necessary in selecting the stresses, stress levels, the development of the statistical test design, the physical test design and all the mathematical analyses required to evaluate the effects of environmental and operating stresses and their interactions on part life. Included also is the methodology for fitting the failure distribution and for estimating the values of the parameters of the Weibull distribution. The details presented in the subject report will serve as a complete example for designing and performing a statistical experiment. The methodology used can be followed in almost a step-by-step manner and can therefore be used in a similar manner as this Notebook. An example of a central composite experimental design is Technical Report ECOM-01433-F "Multi-Pole Relay Evaluation Study," December 1968. The central composite analysis yields a response surface in terms of regression equations involving the main stress effects and certain interactions.

これで 一般の こうじゅう ない 間の こうこうしょ

With regard to the physical test design there are a few guidelines that should be followed. The test equipment for generating reliability data for nonelectronic parts should simulate actual operating conditions as accurately as possible. In addition to this the test equipment should be economical to build and use and should yield accurate measurements of the parameters which determine whether or not a part has failed. Finally, the physical test design should include a simple and accurate data collection system. When a large number of parts are tested the record-keeping problems can quickly become quite complex. Therefore, automation of data collection is a commendable goal.

In summary, this section has presented the major types of statistical designs that will yield accurate and useful data and refers the reader to typical sources that will aid in the specification of useful, efficient and economical statistical and physical test designs.

2.3 Fitting Failure Distributions.

2.3.1 Introduction. The two topics immediately following this one deal with specific methods of fitting failure distributions. The placement of this discussion in the overall table of contents is logical because when empirical data are observed the first logical step in its analysis is to attempt to determine the underlying distribution of failure times. While a method for small sample sizes is presented as well as one for large sample sizes it is a fact of life that must be accepted that tests based on small samples are simply not very powerful. Therefore, the methodology is presented here for completeness but very likely a more logical approach is to first make an assumption regarding the failure distribution based on engineering judgment or on historical data or on knowledge of the failure characteristics of similar parts. Once the failure distribution has been assumed the test can be performed for goodness-of-fit for that particular distribution. If the hypothesized distribution is shown not to fit, it is likely that the assumed distribution was not the one from which the samples were selected. If, however, the goodness-of-fit test shows that the data could have come from the hypothesized distribution, then it is likely that other tests for fit would yield like results.

In summary then, it must be realized that the tests presented in the next two items have limitations. The only cure for these limitations is a larger number of observations. If this proves uneconomical or not feasible from the standpoint of test time required to generate the desired number of failures, then the only alternative is to use the results of small sample size analyses with proper discretion.

2.3.2 Small Sample Sizes (Kolmogorov-Smirnov).

1. When to Use

When failure times from a relatively small sample have been observed and it is desired to determine the underlying distribution of failure times.

2. Conditions for Use

- a. Usually historical data or engineering judgment suggests that part failure times of interest are from a given statistical failure distribution. This test then follows the step of assuming a given failure distribution and is useful to determine if empirical data disproves this hypothesis.
- b. The Kolmogorov-Smirnov test for goodness of fit is distribution free and can therefore be used regardless of the failure distribution that the data is assumed to follow.
- c. The discriminating ability of the statistical test is dependent on sample size so naturally the larger the sample size the more reliable the results. Where large sample sizes are available the χ^2 Test tor Goodness-of-Fit should be used. Where sample sizes are small the Kolmogorov-Smirnov test provides some assurance.

d. Strictly speaking, this test method requires prior knowledge of the parameters. If the parameters are estimated from the sample the exact error risks are given in Lawless (1982). However, the values from a Kolmogorov-Smirnov table will provide an adequate approximation in most circumstances.

3. Method

Example

- a. Observe and record part failure times.
- a. Given the following 20 failure times in hours

92	640
130	700
233	710
260	770
320	830
325	1010
420	1020
430	1280
465	1330
518	1690

- b. Assume a distribution of failure times based on historical information or on engineering judgment.
- b. Assume failure times are distributed according to the two parameter Weibull distribution.
- c. Estimate the parameters of the assumed distribution from the observed data.
- c. By the method of least squares (see Section 2.4.2.1.1) the Weibull shape parameter (β)=1.50 and the Weibull scale parameter (α)=28400.
- d. Calculate the probability of failure for each observation from the cumulative failure function for the assumed distribution.
- d. For the Weibull distribution the cumulative failure function

$$\hat{\mathbf{F}}(\mathbf{x}) = 1 - \exp\left(-\frac{\mathbf{x}^{\beta}}{\alpha}\right)$$

where x = observed failure time p=1.5 = Weibull snape parameter 0=28400 = Weibull scale parameter F(x) = probability of failure at or before time x.

Example

d. (Continued)

For the 20 observations of this example, the probability of failure at the respective x's is:

<u>x</u>	$\widehat{\mathbf{f}}(\mathbf{x})$
92	0.03
130	0.05
233	0.12
260	0.14
320	0.18
325	0.19
420	0.26
430	0.27
465	0.30
518	0.24
640	0.43
700	0.48
710	0.49
770	0.53
830	0.57
1010	0.68
1020	0.68
1280	0.80
1330	0.82
1690	0.91

e. Calculate the percentile for each of (i) failure times by the relationship

 $F(i) = \frac{i}{n}$ and subtract these respective values from those of step d. above. Record the absolute value of the difference. Also, shift i to i-l and compute the differences once again.

e. For n=20, $\frac{i}{n}$ gives the tollowing results:

<u> </u>	<u>F(i)</u>	<u>F(i-1)</u>	F(x) -F(i)	F(x) -F(i-1)
0.03	0.05	O	0.02	0.03
0.05	U.10	0.05	0.05	0.00
0.12	0.15	0.10	0.03	0.02
0.14	0.20	0.15	0.06	0.01
0.18	0.25	U.20	0.07	0.02
0.19	0.30	0.25	0.11	0.06
0.26	0.35	0.30	0.09	0.04
0.27	0.40	0.35	0.13	0.08
0.30	0.45	0.40	0.15	0.10
0.34	0.50	0.45	0.16	0.11
0.43	0.55	0.50	0.12	0.07
0.48	0.60	0.55	0.12	0.07
0.49	0.65	0.60	0.10	0.11
0.53	0.70	0.65	0.17	U.12

PRODUCE SERVICES SUPPLIES

Example

e. (Continued)

<u> </u>	F(1)	F(1-1)	F(x) -F(1)	$ \begin{vmatrix} \widehat{\mathbf{f}}(\mathbf{x}) \\ -\mathbf{f}(\mathbf{i}-1) \end{vmatrix} $
0.57	0.75	0.70	0.18	0.13
0.68	0.80	0.75	0.12	0.07
0.68	0.85	0.80	0.17	0.12
0.80	0.90	0.85	0.10	0.05
0.82	0.95	0.90	0.13	0.08
0.91	1.00	0.95	0.09	0.04

- f. Compare the largest difference from step e. with a value at the desired significance level in the Kolmogorov-Smirnov Tables to test for goodness-of-fit. If the tabled value is not exceeded then it is not possible to reject the hypothesis that the failure times are from the assumed distribution.
- f. The largest difference in step e. was .18. From the Kolmogorov-Smirnov Table for a significance of .05 and for a sample of size 20 a difference of greater than .29 must be observed before it can be said that the data could not have come from a Weibull distribution with β=1.5, α=28400.

4. For Further Information

The example presented here illustrates how to test the hypothesis that the failure data came from the Weibull distribution. The Kolmogorov-Smirnov Test can also be used for other failure distributions by properly estimating the parameters in step c. for the appropriate distribution and by using the appropriate cumulative distribution function in step d. Kolmogorov-Smirnov Tables are available on pages 321 and 322 of the Handbook of Tables for Probability and Statistics, Edited by W.H. Beyer, published by the Chemical Rubber Company, Cleveland, Ohio, 1966, and in many texts on statistics.

2.3.3 Large Sample Sizes (X2 Test)

1. When to Use

When failure times are available from a relatively large sample and it is desired to determine the underlying distribution of failure times.

2. Conditions for Use

a. In the statistical analysis of failure data it is common practice to assume that failure times follow a given failure distribution family. This assumption can be based on historical data or on engineering judgment. This test for goodness of fit is used to determine if the empirical data disproves the hypothesis of fit to the assumed distribution.

- b. The χ^2 test for goodness-of-fit is asymptotically distribution free and can therefore be used regardless of the failure distribution that the data is assumed to tollow when samples are large.
- c. This test is not directly dependent on sample size but on the number of intervals into which the scale of failure times is divided with the restriction that no interval should be so narrow that there are not at least 5 theoretical failures within the interval. Therefore, the test is only useful if a relatively large number of failures has been observed.
- d. A table of χ^2 percentage points is required.

a. Observe and record part failure times.

Example

a. The following is the number of cycles to failure for a group of 50 relays on a life test:

1283	6820	16306
1887	7733	17621
1888	8025	17807
2357	8185	20747
3137	8559	21990
3606	8843	23449
3752	9305	28946
3914	9460	29254
4394	9595	30822
4398	10247	38319
4865	11492	41554
5147	12913	42870
5350	12937	62690
5353	13210	63910
5410	14833	68888
5536	14840	73473
6499	14988	

- b. Assume a distribution of railure times based on historical information or on engineering judgment.
- c. Estimate the parameters of the assumed distribution from the observed data.
- tributed according to the two parameter Weibull distribution.
- c. By the method of least squares (see Section 2.4.2.1.1) the weibull shape parameter β=1.21 and the Weibull scale parameter 0=127978.

■ はいいから から ■ これんちんのん B こうかいのう の名 (2) こんり ハラン (1) アンドン かんしょ 女 E ファンス・ファン

- d. Divide the spectrum of failure times into intervals of such a width that the theoretical number of failures in each interval will be at least five. The width of intervals need not be equal.
- e. Calculate the theoretical number e. of failures for each interval.

Example

d. Divide the relay cycles to failure into the following intervals:

The expected number of failures in each interval is obtained as follows:

For the Weibull distribution the cumulative failure function is

$$F(x) = 1 - \exp\left(-\frac{x^{\beta}}{\alpha}\right)$$

Then $F(x_n) - F(x_{n-1}) =$ probability a failure time falls within the interval.

Then for each interval the probability of failure in that interval multiplied by the sample size = the theoretical number of failures for each interval.

Example

e. (Continued)

(1) Upper Boundary of Interval	(2) F(x)	(3) F(*n) -F(*n-1)	(4) Theoretical Failure Prequency (Col. 3x50)
4000	0.16	0.16	8
7200	0.30	0.14	7
13000	0.52	0.22	11
18000	0.56	0.14	7
25000	0.80	0.14	7
co	1.00	0.20	10

NOTE: The theoretical frequency must not be less than > for any interval.

f. Calculate the χ^2 statistic by the formula

$$\chi^2 = \sum_{i=1}^{k} \frac{(f_i - F_i)^2}{F_i}$$

where k = number of intervals

f = observed frequency/

interval

F = theoretical frequency/
interval

g. Determine if the χ^2 statistic indicates that the data could have come from the hypothesized distribution using χ^2 tables and (k-1) - ρ degrees of freedom.

where

k = number of intervals

p = number of parameters estimated from data

I.

Upper Boundary of Interval	4	£	$\frac{(f_i - F_i)^2}{F_i}$
4000 7200 13000 18000 25000	8 7 11 7 7 10	8 10 12 7 3 10	0 1.29 0.11 0 2.29
	50	50	$\chi^2=3.69$

The degrees of freedom for this example are calculated as:

 $d.f. = (k-1) - \rho$

a.f. = (6-1) - 2 = 3

The value from the χ^2 table for 3 degrees of freedom and 0.05 level of significance is 7.815. Since 3.69 does not exceed the tabled value, then the hypothesis that this data came from a Weibull distribution cannot be rejected at the 5% level of significance.

4. For Further Information

The example presented here illustrates how to test the hypothesis that the observed failure data came from the Weibull distribution. The χ^2 test can also be used for other distributions by properly estimating the parameters in step c. for the appropriate distribution and by using the appropriate cumulative distribution function in step c. In step g. the selection of the 5% level of significance was arbitrary and will depend on the researchers willingness to risk a wrong decision in rejecting the hypothesized distribution. There is also a risk of accepting the distribution wrongly which for this test cannot be specified. There are several versions of χ^2 tables but the one used with this example is from "New Tables of the Incomplete Gamma-Function Ratio and of Percentage Points of the Chi-Square and Beta Distributions," by H. Leon Harter, Aerospace Research Laboratories, Office of Aerospace Research, United States Air Force, 1964.

2.4 Estimation Methods

2.4.1 The Exponential Distribution

2.4.1.1 Analytical Point Estimation

1. When to Use

To estimate the parameter $\boldsymbol{\theta},$ mean-time-between-failures, in the exponential distribution function

$$F(x) = 1 - e^{-x/\theta}$$

this computation may be performed. Also, the estimation of reliability is described.

2. Conditions for Use

- a. This estimation method may be used when units are selected at random and placed on test, whether or not all units are allowed to fail, and whether or not failed units are replaced.
- b. No burn-in or wear-out type failures occur. Use of the exponential distribution assumes a constant failure rate.
- c. Total test time and total number of failures must be collected.

Method

a. Sum together the test time accumulated on each unit tested to get the total test time. Whether failed units are replaced or not does not affect the calculation, nor does it matter whether all units are allowed to fail. Only compute the total operating time of parts on test.

Example

a. Suppose 10 units are placed on test for 80 hours and the failed units are not replaced. Failures occur at 20, 30, 35, 45, 70 and 75 hours. So, test time accumulates as follows:

Unit	1	20	hours
Unit	2	30	hours
Unit	3	35	hours
Unit	4	45	hours
Unit	5	70	hours
Unit	6	75	hours
Unit	7	80	hours
Unit	8	80	hours
Unit	9	80	hours
Unit	10	80	hours

Total Test Time = 595 hours

- b. Divide total test time by total number of failures to get an estimate of θ = mean-timebetween-failures.
- c. The reliability is given by

$$R(x) = 1 - \left(1 - e^{-x/\theta}\right)$$

Example

b. Since the total number of failures is 6, divide

$$\frac{595}{6}$$
 = 99.1 hours.

c. The reliability for 30 hours is estimated to be:

$$R(30) = e^{-30/99.1}$$

$$R(30) = 0.74$$

4. For Further Intormation

Additional examples on the use of the exponential distribution are presented in "Reliability Theory and Practice," by Igor Bazovsky, Prentice-Hall, 1961.

2.4.1.2 Interval Estimation

2.4.1.2.1 Two-Sided Confidence Limits

1. When to Use

To compute upper and lower confidence limits on the exponential distribution parameter θ (mean-time-between-failures), this method is used.

2. Conditions for Use

- a. A confidence level, say 1-a, must be specified.
- b. Total test time and total number of failures must be collected, whether or not tailed units are replaced.
- c. A table of χ^2 percentage points is required.

3. Nethod

a. It the test is failure truncated, rather than time truncated, then the lower two-sided confidence limit is

$$\frac{2T}{X_{2r,1-\alpha/2}^2}$$

Example

a. Suppose 5 units are placed on life test and fail at 20, 30, 35, 45, and 70 hours. If the 90% confidence limits are desired, then

$$1-\alpha = 0.90$$

$$n = 5$$

a. (Continued)

where

T = total test time

l-a = confidence level
 desirea

r * total number of failures

b. The corresponding upper twosided confidence limit is

$$\frac{2T}{\chi^2_{2r,\alpha/2}}$$

Example

a. (Continued)

$$\theta = T/r = 40$$
 hours

So, the lower two-sided confidence limit is

$$\frac{2 \times 200}{\chi_{10,0.95}^{2}} = 21.85$$

b. The upper two-sided confidence limit is

$$\frac{2 \times 200}{\chi^{2}_{10,0.05}} = 101.52$$

4. For Further Information

For a time truncated test, the lower two-sided confidence limit is computed with 2r + 2 degrees of treedom:

$$\frac{2T}{x_{2r+2,1-\omega/2}}$$

The upper two-sided confidence limit is the same as in a failure truncated test, with 2r degrees of freedom.

Additional examples demonstrating this method are presented in "Reliability Theory and Practice" by Igor Bazovsky, Prentice-Hall, 1961.

2.4.1.2.2 One-Sided Confidence Limits

1. When to Use

Use this method to compute a lower one-sided confidence limit on the exponential distribution parameter θ (mean-time-between-tailures).

2. Conditions for Use

- a. A confidence level, say 1-a, must be specified.
- b. Total test time and total number of failures must be collected, whether or not failed units are replaced.
- c. Even if no failures have occurred, this method may be used.
- d. A table of χ^2 percentage points is required.

3. Method

a. If the test is failure truncated, rather than time truncated,* then the lower one-sided confidence limit is

$$\frac{2T}{\chi^2_{2\tau,1-\alpha}}$$

where

T = total test time

1-α = confidence level
 desired

r = total number of
 fallures

2 χ_{2r,1-α} = 1-α quantile of the chi-square distribution with 2r degrees of freedom.

*For a time truncated test, the lower one-sidea confidence limit is computed with 2r + 2 degrees of treedom.

$$\frac{2T}{\chi^2_{2\tau+2,1-\alpha}}$$

NOTE: It no failures have occurred, the lower one-sided confidence limit is T/(-lna).

Example

a. Suppose 5 units are placed on life test and fail at 20, 30, 35, 45, and 70 hours. If the 90% lower confidence limit is desired, then

$$1-\alpha = 0.90$$

r = 5

T = 200 hours

 $\hat{\theta} = T/r = 40$ hours

So, the lower 90% one-sided confidence limit is

$$\frac{2 \times 200}{X_{10,0.90}^2} = 25.02$$

4. For Further Information

Additional examples demonstrating this method are presented in "Reliability Theory and Practice" by Igor Bazovsky, Prentice-Hall, 1961.

4.4.2 The Weibull Distribution

2.4.2.1 Analytical Point Estimation

2.4.2.1.1 The Method of Least Squares

1. When to Use

Estimating Weibull shape and scale parameters may be accomplished by fitting a least squares line to transformed Weibull data, provided that the location parameter γ is known or assumed. γ is often assumed to be zero. If not the transformation $X' = X - \gamma$ will reduce to the 2 parameter form. This section of the Notebook on the Weibull distribution contains three methods of estimating the shape and scale parameters. The method of least squares is basically a more accurate version of the graphical method. It takes more calculations to estimate α and β than the graphical method and hence the added cost of these calculations must be balanced against the costs associated with using a less accurate graphical method and being subject to estimation error. While a computer helps reduce calculation time, the least squares method does not require as complex a computer program as the maximum likelihood method although it may not result in as accurate an estimate.

2. Conditions for Use

- a. Failure times must be collected.
- b. A computer if helpful.
- c. A table of median ranks is required. It is provided in Appendix 11, Table I.

3. Method

a. For n ordered Weibull failure times t_1 , t_2 , ... t_n , find median rank values $F(t_1)$ from Table I in the Appendix.

Example

a. Table 1 in the Appendix gives the median ranks for these Weibull failure times.

Failu	re Time	Median Rank
92	Hours	0.0341
130	Hours	0.0831
233	Hours	0.1322
260	Hours	0.1812
320	Hours	0.2302
325	Hours	0.2793
420	Hours	0.3283
430	Hours	0.3774
465	Hours	0.4264
518	Hours	0.4755
640	Hours	0.5245
700	Hours	0.5736

Example

a. (Continued)

Failu	re Time		Median Kank
710	Hours		0.6226
770	Hours		0.6717
830	Hours		0.7207
1010	Hours		0.7698
1020	Hours		0.8188
1280	Hours		0.8678
1330	Hours		0.9169
1690	Hours	•	0.9659

b. For 1 = 1 to n, let

$$y_i = 1n\ln \frac{1}{1 - F(t_i)}$$

b. An adapted computer program for fitting least squares lines gives

$$\beta = 1.52$$

$$\alpha = 2.36 \times 10^4$$
.

c. *Compute

が存在して人人の人となっては、自然の自然にはないというというないないとしているというない。これのないとしては、これにはないとして、これにはないというというというというというというというというというと

$$\beta = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} y_{i}}{n \sum_{i=1}^{n} (x_{i})^{2} - \sum_{i=1}^{n} x_{i}}.$$

d. *Compute

$$\alpha = \exp \left[-\frac{\sum_{i=1}^{n} (x_i)^2 \sum_{i=1}^{n} y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} x_i y_i}{n \sum_{i=1}^{n} (x_i)^2 - \left(\sum_{i=1}^{n} x_i\right)^2} \right]$$

*NOTE: Steps c. and d. would be lengthy calculations by hand, but a computer program to fit a line Y = bX + c by least squares may be easily adapted to fitting a Weibull line by substituting in t for X and inin (1/(1-F(t))) for Y. Then b will be B and c will be -in Q.

4. For Further Information

Additional examples demonstrating the application of this technique to the estimation of Weibull shape and scale parameters are given in RADC TR65-46 "Accelerated Reliability Testing for Nonelectronic Parts", July 1965, AD 621074.

2.4.2.1.2 Maximum Likelihood Method

1. When to Use

age, expension officers, management approprie updates.

Use this method to estimate the shape (c) and scale (α) parameters of the Weibull cumulative distribution function given by $F(x)=1-\exp(-x^C/\alpha)$. The maximum likelihood method as its name implies is the most accurate based on the observed data. However, the calculations required are the most complex in that an iterative method must be used. If an iterative computer program is utilized the disadvantages of the maximum likelihood method are not so serious. This estimation method must be used for calculating α and c if the interval estimation method of Section 2.4.2.3.1 is to be used for calculating confidence limits.

2. Conditions for Use

- a. Failure times must be collected.
- b. An iterative computer program is practically essential for economical use of this method.

3. Metnod

- a. Make an initial estimate of the shape parameter (possibly by the graphical method of Section 2.4.2.2). Refer to it as C.
- b. Using the first estimate of C, solve the maximum likelihood equation:

$$F = \frac{n}{C} - \frac{n \cdot L\left(x_{i}^{C} \ln x_{i}\right)}{L(x_{i})^{C}} + E \ln x_{i}$$

- a. The 20 failure times given in Section 2.4.2.1.1 have been plotted on Weibull probability paper in Section 2.4.2.2. The graphical estimate of the shape parameter is 1.5. Therefore, a tirst iteration of C is 1.5.
- b. With C = 1.5, the equation yields F = 1.603. Since F ≠ 0, it is necessary to proceed to Step c.

Example

b. (Continued)

where

n = sample size

 x_i = ith failure time

If when the equation is solved F = 0, then C represents the maximum likelihood estimate of the shape parameter. If $F \neq 0$ go to Step c.

c. Take the derivative (with respect c. Using C = 1.5, F' = -13.99. to C) of the equation in Step b:

$$F' = -\frac{n}{c^2} - \frac{\left\{ \sum_{i=1}^{C} \mathbb{Z} \left(x_i^C + \ln^2 x_i \right) - \left[\sum_{i=1}^{C} \ln x_i \right]^2 \right\} \cdot n}{\left(\sum_{i=1}^{C} \sum_{i=1}^{C} \ln x_i \right)^2}$$

d. Set B = C - (F/F').

- d. B = 1.5 + 0.115 = 1.615.
- e. Set ε = some small number, determined by the accuracy desired in the answer. If accuracy to K places is desired, then set ε = $10^{-(K+1)}$.
- e. Suppose 2 place accuracy is desired, then set $\varepsilon = 10^{-3}$.
- t. If $|F/F'| \ge \varepsilon$, set C = b and repeat Steps b. f.
- f. IF/F' | = 0.115. 0.115 > 10⁻³ so set C = B and return to Step b. The iterative process eventually gives C = C = 1.62.
- g. Now it is necessary to apply the unbiasing factor to the maximum likelihood estimate. Appendix Table XI gives factors to be multiplied to the maximum likelihood estimate.
- g. Now it is necessary to apply the g. From Appendix Table XI the unbiasumbiasing factor to the maximum ing factor for a sample size of likelihood estimate. Appendix 20 is 0.931.

Therefore

 $\hat{c} = 0.931(1.62) = 1.51.$

Example

- h. To solve for the Weibull scale parameter u
- h. The estimate of the Weibull scale parameter is

$$\hat{\alpha} = \sum_{i} \hat{c}/n$$

$$\hat{\alpha} = 4.47 \times 10^4$$

4. For Further Information

The statistical theory developing the use of this method is presented in "Inferences on the Parameters of the Weibull Distribution," by Thoman, Bain and Antle, Technometrics, Vol. II, No. 3, August 1969, pp. 445-460.

2.4.2.2 Graphical Point Estimation

1. When to Use

Estimates of the Weibull shape and scale parameters may be obtained graphically by using specially prepared Weibull probability paper. The decision to use this method over those described in the two previous topics should be based wholly on the accuracy desired. This method is the least accurate but can be done quickly and casily.

2. Conditions for Use

- a. Failure times must be collected.
- b. Median rank tables are required. They are provided in the Appendix, Table I.
- c. Weibull probability paper is required. See Figure 2.4.2.2.

3. Method

(事業のようななない事業をなるをなる (事業をよう)ののの人間ののかのでない。

a. To plot the ith failure time in a set of n ordered failure times, find the median rank plotting position on the left-hand ordinate by consulting the table of median ranks at n, i. To obtain median ranks for n greater than twenty, the following formula may be used:

Median rank (n, i) =
$$\frac{i - 0.3}{n + 0.4}$$
,

Example

a. As an example of plotting failure times on Weibull probability paper, consider a case in which 20 items are all tested to failure; the 20 failure times, in ascending order, are given below in the left-hand column. In the right-hand column are the median rank plotting positions for each failure time, obtained from the table of median ranks for n = 20 in the Appendix, Table I.

THE TAX OF THE PROPERTY OF THE

Failure Times (Hours)	Median Kanks	
92	U.0341	
130	0.0831	

where

i = order number of failure

n = number of tailures.

Example

a. (Continued)

Failure Times (Hours)	Median Ranks
233	0.1322
260	0.1812
320	0.2302
325	0.2793
420	د 0.328
430	0.3774
465	0.4264
518	0.4755
640	0.5245
700	0.5736
710	0.6226
770	0.6717
830	0.7207
1010	0.7698
1020	0.8188
1280	0.8678
1330	0.9169
1690	0.9659

Before plotting the data, it is necessary to perform a transformation on the bottom scale to accommodate the large failure times. The axis must be multiplied by 10^{-2} in order for the failure data to fit on the paper. So, the bottom scale is properly labeled HOURS X 10^{-2} .

- b. The Weibull line is drawn through the plotted data by using the last point plotted as a reference point for a straight-edge and dividing the rest of the points into two equal groups above and below the line.
- b. The Weibull line, labeled k₁ in Figure 2.4.2.2 is drawn as described.
- c. To estimate \$\beta\$, parallel to the weibull line draw a line passing through the small circled point on the laper.
- c. The shape parameter \$\beta\$ is estimated by drawing the line, labeled \$\mathcal{L}_2\$, parallel to \$\mathcal{L}_1\$ and passing through point \$A\$.

のできるとのでは、これでは、10mmので

- d. Horizontal projection of the point where this line intersects the principal ordinate to the right-hand scale gives -8. The principal ordinate terminates in 0.0 on the upper scale.
- e. Sometimes in order to plot the failure data it is necessary to convert the bottom scale to handle larger numbers. The scales used on this axis are selected for the purpose of convenience in presenting the data on the graph. It the bottom scale has been multiplied by K, then read -ln a_K at the horizontal projection to the right-hand axis of the intersection of the Weibull line and the principal ordinate.
- f. Find the value of α_{K} by using a calculator. The computed α_{K} is a coded value which is dependent on the time scale used.
- g. To convert α_K to an uncoded state that is independent of the time scale used on the probability paper, divide α_K by K^B ,

where \$ is the previously obtained shape parameter.

- d. The point where ½ intersects ½3, the principal ordinate, is projected horizontally to the right-hand axis and -β read off as -1.5. So, β = 1.5.
- To find α, the intersection of l₁ and l₃ is projected horizontally to the right-hand axis. The value read off the axis, -2.9, is -ln α_K, and must be converted.

- f. The value of α_K is found to be 18.2.
- g. α_{K} is converted to an uncoded state by dividing by K^{β} . So, divide 18.2 by $10^{-2\beta}$ giving

$$\alpha = \frac{18.2}{10^{-2}\beta} = 18.2 \times 10^2 \times 1.5$$

$$= 1.82 \times 10^4$$

2~32

4. For Further Information

If desired, the median ranks may be replaced by the unbiased estimate i/(n+1), where

- 1 = order number of failure
- n = number of failures.

2.4.2.3 Interval Estimation

2.4.2.3.1 Weibull Parameters

1. When to Use

Use this method to obtain confidence intervals on the shape (c) and scale (α) parameters of the two parameter Weibull cumulative distribution function given by $F(x) = 1 - \exp(-(x^c)/\alpha)$.

2. Conditions for Use

- a. Point estimates of c and α must be made using the method of Section 2.4.2.1.2.
- b. The tables required in the calculation are provided in Appendix II, Tables V and VI.

3. Method

THE MALESCALE SUBJECTION OF CONTROL OF THE PROPERTY OF THE PRO

- a. To compute 100(1-γ) percent considence limits on c, locate in Table V the column labeled with the value of γ/2. Read off the table value at N = sample size and call it L₁. Locate the column labeled with the value of 1 γ/2. Read off the table value at N = sample size and call it L₂. Then, the confidence interval on c is of the form (c/L₂, c/L₁), where c was obtained by the method of Section 2.4.2.1.2.
- b. To compute 100(1-γ) percent confidence limits on α, locate in Table VI the column labeled with the value of γ/2. Read off the table value at N = sample size and call it t₁. Locate the column labeled with the value

- Suppose it is desired to compute 90% confidence limits on the Weibull parameters for the example given in Section 2.4.2.1.2. Then N = 20, γ = 0.10, c = 1.51 and $\hat{\alpha}$ = 4.47 x 10⁴. From Table V, at N = 20 in the 0.05 column the value of L₁ is read as 0.791 and at N = 20 in the 0.95 column the value at L₂ as 1.449. So the interval on $\hat{\epsilon}$ is (1.51/1.449, 1.51/0.791) = (1.04, 1.91).
- b. The 90% confidence interval on a requires consulting Table VI:

$$t_1 = -0.428$$

$$t_2 = 0.421$$

b. (Continued)

at $1 - \gamma/2$. Read off the table value at N = sample size and call it t_2 . Then, the confidence interval on α is of the form

$$(\hat{\alpha} \exp(-t_2), \hat{\alpha} \exp(-t_1)),$$

where α was obtained by the method of Section 2.4.2.1.2.

Example

b. (Continuea)

The interval on a is given by

$$[4.47 \times 10^4 \exp (-0.421),$$

$$4.47 \times 10^4 \exp(0.428)$$

$$= (2.93 \times 10^4, 6.87 \times 10^4)$$

4. For Further Information

This method is from "Interences on the Parameters of the Weibull Distribution," Thoman, Bain and Antle, Technometrics, Vol. II, No. 3, August 1969, pp. 445-460.

2.4.2.3.2 Reliability

2.4.2.3.2.1 Uncensored Samples

1. When to Use

Use this method to estimate 90% confidence limits on reliability for the Weibull distribution.

2. Conditions for Use

- a. A plot of the failure times must be prepared on Weibull probability paper. See Section 2.4.2.2 for the methodology.
- b. A table of 5% ranks and one of 95% ranks are required. These are provided in Appendix II, Tables II and III.

3. Method

- a. Draw the Weibull line for the observed data, as described in Section 2.4.2.2.
- b. Locate the median ranks on the left-nand axis, project them horizontally and mark their intersection with the Weibull line.

- a. Refer to the example of 20 failure times used in Section 2.4.2.2. The Weibull line on Weibull probability paper is presented here again, Figure 2.4.2.3.2.1.
- b. The following median ranks, for n = 20, have been marked on the Weibull line:

Figure 2.4.2.3.2.1. Graphical Method for Interval Estimation of Reliability for the Weibull Distribution

Example

b. (Continued)

Median Rank	Graph Notation
0.0341	A
0.0831	В
0.1322	С
0,1812	D
0.2302	E
0.2793	F
0,3283	G
0.3774	н
0.4264	I
0.4755	J
0.5245	K
0.5736	L
0.6226	M
0.6717	N
0.7207	0
0.7698	P
0.8188	Q
0.8678	R
0.9169	S
0.9659	T

- c. For the jth plotting position of sample size = n, find the 5% and 95% ranks from Tables II and III. Locate them on the left-hand axis of the Weibull paper, then project them horizontally. Their intersection with a vertical line drawn through the previously marked point of intersection of the jth median rank and the Weibull line gives the lower and upper limits on reliability for that point on the time (lower) axis.
- d. Continue plotting each pair of upper and lower limits for all n failures. Then connect the points above the Weibull line with a smooth curve. Likewise connect the points below the Weibull line, thus forming a band around the Weibull line, narrowing at the center and widening at both ends.

c. The tables show a 5% rank value of 0.0183 and a 95% rank value of 0.2182 for n = 20, j = 2. So, these plots have been plotted on the vertical line through point B.

d. Curves are drawn through the plotted points.

e. To find limits on reliability at a particular time t, locate t on the lower axis and read off upper and lower limits on reliability from the two curves by referring to the left-hand axis.

Example

e. For example, the confidence limits on reliability at 400 hours are 0.19 and 0.49.

4. For Further Information

Tables II and III for 5% and 95% ranks are from Electromechanical Component keliability, May 1963, Chernowitz, et.al., RADC-TDR-63-295, American Power Jet, Ridgefield, N.J.

If confidence intervals other than the 90% for $n \le 20$ given here are desired, any percentile ranks may be obtained in the following manner for sample sizes up to 50. Tables of the Incomplete Beta Function are required. The notation used here is found in Tables of the Incomplete Beta Function, K. Pearson, Cambridge University Press, 1956.

Method

このことを見りているとのなる。

a. For the jth failure of n failures, compute

$$k = n - j + 1$$

For
$$j \ge k$$
 let $p = j$, $q = k$.
For $j \le k$ let $p = k$, $q = j$.

Example

a. Suppose n = 10 and it is required to find the 80% confidence limits on reliability. Then the following table may be constructed:

<u>i</u>	k		Р
1	10	1	10
	9	-	9
2 3 4	8	2 3	8
4	7	4	7
5	6	5 5	Ö
6 7	5	5	6
7	4	4	7
ಶ	3	خ 2	ಶ
9	2	2	>
10	1	1	10

- b. To compute $100 \ (1-\alpha)$ percent confidence limits, locate values or $I_X(p,q)$ in Table I of the reterenced tables, such that $\alpha/2$ and $1-\alpha/2$ are approximated as closely as possible. For $j \geq k$, the γ percentile tank, where $\gamma = \alpha/2$, $1-\alpha/2$, is given by the x in the lefthand column on the same row as the value of $I_X(p,q) = \gamma$.
- b. To compute 80% confidence limits, the 0.10 and 0.90 percentile ranks are needed. So, in Table I find the γ = 0.10 and γ = 0.90 percentile ranks for j-1 on pp. 22, 23, for p = 10 and q = 1. The value of x opposite 0.0946828 in the table, the closest value to 0.1 given, is 0.79, and the value of x opposite 0.9043821, closest to 0.9, is 0.99. So, the

Method

b. (Continued)

For j < k, the γ percentile rank is given by l-x, where x again is in the left-hand column on the same row as the value of $I_X(p,q) = \gamma$.

Example

b. (Continued)

desired percentile ranks for n = 10, j = 1 are 90%: 1 - 0.79 = 0.21; 10%: 1 - 0.99 = 0.01.

The complete set of percentile ranks follows, as computed from Table I.

<u>i</u> _	90%	10%
1	0.21	0.01
2	0.40	0.06
3	0.51	0.09
4	0.55	0.19
5	0.65	0.20
6	0.74	0.35
7	0.81	0.43
ಕ	0.91	0.49
9	0.94	0.6
10	0.99	0.79

2.4.2.3.2 Reliability

2.4.2.3.2.2 Censored Samples

1. When to Use

This section describes a procedure for calculating a lower confidence limit on reliability for parts which are known to have Weibull failure distributions. The method is applicable to both censored and uncensored test data.

2. Conditions for Use

- a. Failure times must be collected.
- b. Certain tables are required in the calculation. They are provided in Appendix II, Tables VII and VIII.

3. Method

a. For a test of n items, r of which are allowed to fail before termination of the test, order the r failure times and for i = 1 to r, set X_i = 1th failure time.

Example

a. Suppose 20 parts are put on test and the test terminates after the 10th failure. Then n = 20, r = 10, and suppose the following failure times are observed:

NO DESCRIPTION OF THE PROPERTY OF THE PROPERTY

a. (Continued)

$$X_1 = 92 \text{ hours}$$

$$X_2 = 130 \text{ hours}$$

$$X_3 = 233$$
 hours

$$X_4 = 260 \text{ hours}$$

$$X_5 = 320$$
 hours

$$X_6 = 325 \text{ hours}$$

$$X_7 = 420 \text{ hours}$$

$$X_{R} = 430 \text{ hours}$$

$$X_0 = 465$$
 hours

b. To find the lower confidence
limit at time to, compute
for i = 1 to r

$$Y_i = 1n X_i - 1n t_0$$

the 95% lower confidence limit on R(50), reliability at 50 hours.

Then ln (50) = 3.91202 and

$$Y_1 = 0.60977$$

$$Y_2 = 0.95551$$

$$Y_3 = 1.53902$$

$$Y_5 = 1.85630$$

$$Y_7 = 2.12823$$

$$Y_8 = 2.15177$$

$$Y_{Q} = 2.23002$$

$$Y_{10} = 2.33796$$

- c. Let p = r/n and find values in Table VII for a₁ and b₁, for i = 1 to r.
- c. Since p = 10/20, Table VII gives the following values for a₁'s and b₁'s.

$$a_1 = -0.04527$$

$$b_1 = -0.09198$$

$$a_2 = -0.04032$$

$$b_2 = -0.09230$$

$$a_3 = -0.03371$$

$$b_3 = -0.09010$$

$$a_4 = -0.02574$$

$$b_{\Delta} = -0.08597$$

$$a_5 = -0.01650$$

$$b_5 = -0.08013$$

Example

c. (Continued)

$$a_6 = -0.00596$$
 $b_6 = -0.07264$
 $a_7 = 0.00595$
 $b_7 = -0.06345$
 $a_8 = 0.01935$
 $b_8 = -0.05246$
 $a_9 = 0.03444$
 $b_9 = -0.03948$
 $a_{10} = 1.10777$
 $b_{10} = 0.66851$

a. Compute

$$z_a = \sum_{i=1}^r a_i Y_i$$

$$z_b = \sum_{i=1}^r b_i Y_i$$

d. $2_{a} = (-0.04527)(0.60977)$

- + (-0.04032)(0.95551)
- + (-0.03371)(1.53902)
- + (-0.02574)(1.64866)
- + (-0.02574)(1.04866) + (-0.01650)(1.85630)
- + (-0.00596)(1.87181)
- (-----
- + (0.00595)(2.12823)
- + (0.01935)(2.15177)
- + (0.03444)(2.23002)
- + (1.10777)(2.33796)
- **2.5188**

$$z_h = (-0.09198)(0.60977)$$

- + (-0.09230)(0.95551)
- + (-0.09010)(1.53902)
- + (-0.08597)(1.64866)
- + (-0.08013)(1.85630)
- + (-0.07264)(1.87181)
- + (-0.06345)(2.12823)
- + (-0.05246)(2.15177)
- + (-0.03948)(2.23002)
- + (0.66851)(2.33796)
- **-** 0.5176

t. To find the lower contidence limit on reliability with contridence coefficient γ , use Table VIII and find the value of L*(Z_a/Z_b) in the column with the desired γ heading. It is the exact lower confidence bound for R(t_o), reliability at time t_o.

e. $L_a/L_b = 4.87$

f. Referring to Table VIII,

$$L*(Z_{a}/Z_{b}) = L*(4.87)$$

= 0.939

So, the lower 95% confidence limit on reliability at 50 hours is 0.939.

g. A point estimate of R(t_o), reliability at time t_o, is given by

$$R(t_0) = \exp(-\exp(-Z_a/Z_b))$$
.

Example

g. Reliability at 50 hours is given by

$$exp(-exp(-4.87)) = 0.991.$$

4. For Further Information

- a. The method given in this section is from "An Exact Asymptotically Efficient Confidence Bound for Reliability in the Case of the Weibull Distribution," Johns and Lieberman, Technometrics, Vol. 8, No. 1, February 1966, pp. 135-175. That paper also includes an estimation method for obtaining a lower confidence limit on reliability for large sample sizes.
- b. A graphical technique for obtaining two-sided confidence limits on reliability is given in Section 2.4.2.3.2.1.
- 2.4.3 The Normal Distribution
- 2.4.3.1 Analytical Point Estimation

1. When to Use

Use this method to obtain estimates of μ and σ , the mean and standard deviation of the Normal distribution. The choice of this method over the graphical method described in the next topic is a matter of the accuracy desired, with this one yielding the most accurate estimate.

2. Conditions for Use

Failure times must be collected and data must be uncensored.

3. method

a. The sample mean, x, is an estimate of μ and is given by

Example

s. Suppose 20 units are tested to failure and the following failure times observed: A STATE OF THE STA

$$\overline{x} = \sum_{i=1}^{n} \frac{x_i}{n} ,$$

where

 $x_1 = ith failure time$

n = sample size.

175	hours
695	hours
872	hours
1250	hours
1291	hours
1402	hours
1404	hours
1713	hours
1741	hours
1893	hours
2025	hours
2115	hours

Method

Example

a. (Continued)

Then
$$n = 20$$
, so

Then
$$n = 20$$
, so

$$\frac{1}{x} = \sum_{i=1}^{20} \frac{x_i}{20} = 1955.2 \text{ hours}$$

- b. The sample standard deviation s is an estimate of o and is given by
- b. The sample standard deviation calculation gives

$$s = \left(\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{(n-1)}\right)^{1/2},$$

where

$$x_4$$
 = ith failure time

An alternate form, useful in computer programming of this method is

$$s = \left(\frac{\sum_{i=1}^{n} x_{i}^{2}}{(n-1)} - \frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n(n-1)}\right)^{1/2}$$

4. For Further Information

Additional information regarding these estimation methods can be obtained from any text on elementary statistics.

2.4.3.2 Graphical Point Estimation

1. When to Use

This method estimates μ and σ , the mean and standard deviation when failure times are normally distributed. This method yields a less accurate estimate than the method of the previous topic but requires very minimal calculations.

2. Conditions for Use

- a. Failure times must be collected, but may be censored.
- b. Normal probability paper is required.

3. Method

a. On normal probabilty paper, plot a. the ith failure time in a sample of n ordered failure times on the lower axis vs i/(n+1) on right-hand axis.

Example

a. The sample data used on the example for Section 2.4.3.1 is repeated here, with the necessary plotting positions.

Failure Time	Plotting Position 1/(n+1)
175 hours	0.05
695 hours	0.10
872 hours	0.14
1250 hours	0.19
1291 hours	0.24
1402 hours	0.29
1404 hours	0.33
1713 hours	0.38
1741 hours	0.43
1893 hours	0.48
2025 hours	0.52
2115 hours	0.57
2172 hours	0.62
2418 hours	0.67
2583 hours	0.71
2725 hours	0.76
2844 hours	0.81
2980 hours	0.86
3268 hours	0.90
3538 hours	0.95

- b. Draw the Normal line of best fit through the plotted points by using the last point plotted as a reference point for a straight-edge and dividing the rest of the points into two
- b. Figure 2.4.3.2 is the plot of this data on normal paper. The normal line has been labeled ℓ_1 .

Figure 2.4.3.2. Graphical Point Estimation for the Normal Distribution

Seed recessor branches societies accommonities

Example

b. (Continued)

equal groups above and below the line.

- c. The mean, μ , is estimated by projecting the 50% probability of failure point on the right-hand axis to the normal line and then projecting that intersection point down to the lower axis. The estimate of μ , \bar{x} , is read off there.
- c. The value of \overline{x} is read off as 1950 hours.
- d. The estimate of σ , s, is obtained by projecting the intersection of the 84% probability of failure point on the right-hand axis with the normal line to the lower axis. Call that point on the lower axis U.
- d. U = 2900 hours.

- e. Repeat Step d. with the 16% point. Call the point L.
- e. L = 1000 hours.

- f. The estimate of σ is
- f. The sample standard deviation, s, is

$$s = \frac{U - L}{2}$$

$$\frac{U-L}{2} = \frac{2900-1000}{2} = 950 \text{ hours}$$

4. For Further Information

Additional examples of the use of this estimation method are presented in most texts on elementary statistics.

2.4.3.3 Interval Estimation

2.4.3.3.1 Small Sample Sizes (o unknown)

1. When to Use

Use this method to obtain confidence limits on the mean of the Normal distribution for sample sizes < 30.

2. Conditions for Use

- a. Estimates of the mean and standard deviation must be available. See Section 2.4.3.1 for method of computing.
- b. A table of percentiles of Student's t distribution is required.

- a. To find two-sided* 100(γ) per cent confidence limits on μ, consult a table of the percentiles of the t distribution, for the value of t(1+γ)/2,n-1 where t is Student's t with n-1 degrees of freedom.
- b. The two-sided confidence limits are given by

$$\frac{1}{x} \pm c_{(1+\gamma)/2,n-1} s/\sqrt{n}$$
,

where x * sample mean

- s = sample standard deviation
- n = sample size

*NOTE: One-sided 100(\gamma) per cent confidence limits are given by

upper only
$$+ \overline{x} + t_{\gamma, n-1} s / \sqrt{n}$$

lower only $+ \overline{x} - t_{\gamma, n-1} s / \sqrt{n}$

4. For Further Information

Additional examples demonstrating this method are presented in "keliability Handbook" edited by W. Grand Ireson, McGraw-Hill, 1966.

2.4.3.3.2 Large Sample Sizes (o unknown)

1. When to Use

Use this method to obtain confidence limits on the mean of the Normal distribution for sample sizes ≥ 30 . If the standards deviation is unknown, Student's t distribution holds. However, for sample sizes of 30 or more the Normal distribution approximates the f distribution.

Example

 a. Consider the 20 failure times used as an example in Section 2.4.3.1,

where $\bar{x} = 1955.2$ hours

s = 886.6 hours

To obtain two-sided 95% confidence limits on μ , the value of t is needed. From a table of percentiles of the t distribution it is seen to be 2.093.

b. The confidence limits are then

1955.2
$$\pm 2.093 \times \frac{886.6}{4.47}$$

= (1540.1, 2370.3)

If it were desired to calculate a lower one-sided 80% confidence limit on μ , it would be given by

$$1955.2 - 0.861 \times \frac{886.6}{4.47}$$

= 1784.

2. Conditions for Use

- a. Estimates of the mean and standard deviation must be available. See Section 2.4.3.1 for method of computing.
- b. A table of standardized normal variates is required.

3. Method

a. To find two-sided $100(\gamma)$ confidence limits on μ , consult a table of standardized normal deviates for the value of $2(1+\gamma)/2$, where Z is the standardized normal variate and $(1+\gamma)/2$ is the area under the curve to be found in the table.

Example

a. Suppose, after testing 50 items to failure, the sample mean and standard deviation are found to be

$$x = 3780$$
 hours

by the methods of Section 3.4.3.1. Suppose, it is desired to find two-sided 90% confidence on μ . Then, from a table of standard normal deviates,

 $3780 \pm 1.645 \times \frac{1440}{7.07} = (3445,4115)$

$$2(1+0.90)/2 = 1.645$$
.

b. The approximate two-sided conti- b. The confidence limits are then dence limits are given by

$$\bar{x} \pm \angle_{(1+\gamma)/2} s/\sqrt{n}$$

wnere x = sample mean

s = sample standard
deviation

n = sample size

c. One-sided $100(\gamma)$ percent confidence limits are given by

upper only
$$\bar{x} + 2_{\gamma} s/\sqrt{n}$$

lower only
$$x - 2y s/\sqrt{n}$$

c. If it were desired to calculate an upper one-sided 99% confidence limit on μ, it would be given by

$$3780 + 2.33 \times \frac{1440}{7.07} = 4255.$$

4. For Further Intormation

Additional examples describing the use of this method are given in "Reliability Handbook" edited by W. Grant Ireson, McGraw-Hill, 1966.

2.4.4 The Log-Normal Distribution. To treat Log-Normal failure data, one procedure is to first take the natural logarithm of each failure time. Then use the methods of Section 2.4.3, the Normal distribution, on the logarithms. The advantage of this procedure is that tables of the standardized Normal deviates may be used in working with the logarithms of the failure times, since they are Normally distributed.

An alternate procedure for treating Log-Normal data is to use Table IV in Appendix II. Its advantage is that logarithms of the failure times do not have to be computed.

Use of Table IV

Method

a. For n Log-Normally distributed failure times x_i, compute

$$\bar{x} = \sum_{i=1}^{n} \frac{x_i}{n}$$

and

$$s = \left(\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}\right)^{1/2}$$

- b. To find the γ percentile value, located in Table IV the column headed " γ Percentile." Kead off the value in this column opposite the value of s/x in the left-hand column. Call it p.
- c. The γ percentile is estimated by $p\overline{\mathbf{x}}$.

Example

 Consider the following set of 6 Log-Normally distributed failure times:

> 5.53 hours 5.70 hours 6.62 hours

7.61 hours

8.33 hours

8.76 hours

Then

 $\bar{x} = 7.09 \text{ hours}$

s = 1.36 hours

- b. To find the 5th percentile, that column in the table is consulted and the value located opposite s/x = 1.36/7.09 0.19 is read off as p = 0.72.
- c. The 5th percentile then is $0.72 \times 7.09 = 5.1$. This can be interpreted as an estimate of the reliability $(R_{0.95})$.

Additional Applications

a. It it is desired to find some percentile other than those presented in the table the following formula will be useful:

Let p_i = the desired percentile

 $\mu_{\mathbf{X}}$ = the mean of the observations which are assumed to be Log-Normally distributed

- σ_{x}^{2} = the variance of the observations which are assumed to be Log-Normally distributed
- z_{i} = the standard Normal deviate associated with p_{i}

Then

$$p_{i} = \frac{\mu_{x}^{2}}{\left[\mu_{x}^{2} + \sigma_{x}^{2}\right]^{1/2}} \exp \left[z_{i} \left(\log \left[\frac{\sigma_{x}^{2} + \mu_{x}^{2}}{\mu_{x}^{2}}\right]\right)^{1/2}\right]$$

b. If the observations are in logarithmic form and a given percentile is desired, the following formula is used:

Let pi = desired percentile

 μ_y = the mean of the loge x_i 's

 σ_y = the standard deviation of the $\log_e x_i$'s

Zi = the standard Normal deviate associated with pi

Then

$$p_i = exp(\mu_y + Z_i\sigma_y)$$

For Further Information

The mathematical theory of this distribution is presented in "The Log-Normal Distribution" by Aitchison and Brown, Cambridge University Press, 1957. The analysis methods and tables accompanying this method were developed and prepared by J.G. Frost, Hughes Aircraft Company, Fullerton, California.

- 2.4.5 The Extreme Value Distribution
- 2.4.5.1 Analytical Point Estimation

1. When to Use

When the distribution of failure times follows the extreme value distribution, this method is applicable. The parameter estimates are calculated by the method of moments. A graphical method for parameter estimation is presented in the next topic. The decision whether to use the analytical or graphical method rests in the accuracy desired when compared to the calculations to be performed in the method described here.

2. Conditions for Use

Failure times must be known or assumed to follow the extreme value distribution. Random failure times must be observed.

3. Method

 a. Observe the failure times from a randomly selected sample.

Example

a. Given the following 30 failure times from a process assuming a largest extreme value (L.E.V.) distribution:

Failure	Time	(Hours
220		453
230		455
262		470
288		476
289		517
297		540
312		550
315		552
360		586
369		588
394		633
399		637
412		657
431		690
438		728

b. Calculate estimates of the mean and standard deviation from the sample observations. b. Using the methods of Section 2.4.3.1, calculate estimates of the mean

$$\bar{x} = 451.6$$

and the standard deviation

$$s = 139.0$$

c. Estimate the parameters β and m from the following formula:

$$\hat{\beta} = \frac{\sigma_N}{S}$$

$$\hat{\mathbf{m}} = \overline{\mathbf{x}} - \frac{\overline{\mathbf{y}}}{\hat{\rho}}$$

c. For n=30, Gumbel gives the constant:

$$\sigma_{N} = 1.11238$$

$$\overline{7}_{N} = .53662$$

でいっている。これであるとと **日**かんできない これがならない 国際にはなない

c. (Continued)

where on and T are two constants which are functions of sample size only. A table of these constants is available in Gumbel, "Statistics of Extremes," Columbia University Press, 1960.

d. Estimate the reliability for any time t from the formula

$$R(t) = 1 - e^{-\hat{\beta}(t-\hat{m})}$$

Example

c. (Continued)

Then

$$\hat{\beta} = \frac{1.11238}{139.0} = .008$$

$$m = 451.6 - \frac{.53662}{.008} = 384.5$$

d. The estimated reliability for a mission of 500 hours is

$$R(500) = 1-e^{-0.008(500-384.5)}$$

 $R(500) = 0.335$

4. For Further Information

The example presented in this section is for the Largest Extreme Value (L.E.V.) Distribution. The methods for the Smallest Extreme Value (S.E.V.) Distribution are essentially equivalent.

2.4.5.2 Graphical Point Estimation

1. When to Use

When the distribution of failure times is known or assumed to follow the extreme value distribution, this method is applicable. This method yields somewhat less accurate estimates than the analytical method of Section 2.4.5.1 but does not require the performance of calculations.

2. Conditions for Use

Either random or ordered censored observations may be used to estimate the parameters.

3. Method

a. Collect failure times from a random process and couple them with median ranks $\widehat{F}(x)$ and calculate

$$\ln \ln \frac{1}{F(x)}$$

Example

a. Given 30 random failure times from a process assuming an L.E.V. distribution. Obtain median ranks for n=30 using the method of Section 2.4.2.2 and couple these with the failure times as follows:

3. Nethod

Example

a. (Continued)

Median

Median	_	
Ranks	$\ln \ln \frac{1}{2}$	Failure Times
F(x)	<u>F(x)</u>	(Hours)
.023	1.33	220
.056	1.06	230
.089	.88	262
.122	. 74	288
.155	.62	289
.188	.52	297
.220	.41	312
.253	.32	315
.286	.22	360
.319	.13	369
.352	.04	394
.385	05	399
.418	14	412
.451	23	431
.484	32	438
.516	41	453
.549	 51	455
.582	61	470
.615	72	476
.648	84	517
.681	96	540
.714	-1.09	550
.747	-1.23	55 2
.780	-1.39	586
.813	-1.57	588
.845	-1.78	633
.878	-2.04	637
.911	-2.38	657
.944	-2.86	69 0
.977	-3.76	728

- o. Plot the failure times on the x axis and $\ln \ln \frac{1}{\hat{F}(x)}$ on the $\hat{F}(x)$ y axis and draw a line of best fit through the points.
- c. Estimate parameters p and m from the graph.
- b. See Figure 2.4.5 for the graph of this data.
- c. From the graph the slope is -.0076 and the intercept is 2.85. Then

$$\hat{\beta}$$
 = - the slope = .0076

$$\hat{m} \hat{\beta} =$$
the intercept

Example

d. (Continued)

Therefore

$$\hat{m} = \frac{2.85}{.0076} = 380$$

NOTE: These results agree closely with the results of the analytical method Section 2.4.5.1.

4. For Further Information

The example presented in this section is for the Largest Extreme Value (L.E.V.) Distribution. The method for the Smallest Extreme Value (S.E.V.) Distribution is essentially the same. Commercial graph paper is available for plosses the extreme value distribution.

2.4.5. Interval Estimation

1. When to Use

When the distribution of failure times follows the extreme value distribution, this method yields an approximate confidence interval or lower confidence bound for reliability.

2. Conditions for Use

This method is applicable if it is assumed that the sample size, n, is large and that the graphical estimates of parameters, β and m (see Section 2.4.5.2) are maximum likelihood estimates. The actual maximum likelihood estimate values can be obtained only by iteration.

3. Method

■ アインファンド A ちょうかい ■ Polycome March Marc

c. Obtain estimates for the parameters β and m using graphical

methods of Section 2.4.5.2.

Examples

a. From the example in Section 2.4.5.2

$$\hat{\beta} = .0076$$

- b. Specify the mission time and confidence desired.
- b. For a mission time of 300 hours, find a lower 95% confidence bound on reliability.

Figure 2.4.5. Plot of Fitted Straight Line for Use With the Extreme Value Distribution

c. Perform the following calculations:

$$\widehat{v} = \widehat{\beta}(x-\widehat{m})$$

$$c = \sqrt{\frac{6}{N\pi^2}} z_{1-\alpha}$$

$$b = \frac{\pi^2}{6}$$

where

x = mission time
N = sample size

Z_{1-α} = 1-α quantile of the standard normal distribution

Examples

c. The calculations provide the following results:

$$\hat{v} = .0076(300-380) = -.6$$

$$Z_{1-.05} = 1.645$$

$$c = \sqrt{\frac{6}{30\pi^2}(1.645)} = .18$$

$$b = \frac{\pi^2}{6} = 1.64$$

d. Calculate a lower bound for ∨* d. ∨* = -.52

$$v^* = \frac{1}{1-c^2} \left(-.423c^2 + \hat{v} + c \sqrt{(\hat{v} + .423)^2 + (1-c^2)/b^2} \right)$$

e. Calculate a lower bound for reliability as follows:

$$R^* = 1 - \exp\left[-e^{-\sqrt{x}}\right]$$

e. The lower 95% confidence bound for reliability at 300 hours is

$$R^* = 1 - e^{-.52}$$
 $R^* = .81$

4. For Further Information

This example demonstrates the Largest Extreme Value Distribution. The method for the Smallest Extreme Value Distribution is essentially the same.

2.4.6 Tests for Increasing Failure Rate

2.4.6.1 Distribution Free Test

1. When to Use

When a number of failure times have been observed and the probability distribution is unknown this test may be used to determine if the observations are from a distribution with a decreasing, constant or increasing failure rate. The test is non-parametric and was originally proposed by M.G. Kendall (1938). The detailed method presented here is from the work of Henry Mann (1945), and from Barlow and Proschan (1964).

2. Conditions for Use

The observed failure times must be arranged in ascending order. A simple computer program will facilitate the calculations. Table A in Appendix II is used in conjunction with the calculations to define the values required to hypothesize whether the failure rate is decreasing constant or increasing.

3. Method

a. Arrange the observed failure times (x_i's) in ascending order.

b. Compute T₁ for each adjacent pair of failure times as follows:

$$T_1 = x_1$$
 $T_2 = x_2 - x_1$
 $T_3 = x_4 - x_3$

$$T_n = x_n - x_{n-1}$$

c. Compute D_i for each T_i as follows:

$$D_1 = nT_1$$
 $D_2 = (n-1)T_2$
 $D_3 = (n-2)T_3$
 $D_n = T_n$

Examples

a. Given the following 8 failure times arranged in ascending order:

b. In this example, the T_i 's are

$$T_1 = 2$$
 $T_2 = 6-2 = 4$
 $T_3 = 9-6 = 3$
 $T_4 = 12-9 = 3$

$$T_5 = 14-12 = 2$$

 $T_6 = 16-14 = 2$

$$T_8 = 18-17 = 1$$

c. The $\mathtt{D_i's}$ are

 $D_{\rm N} = 1 \cdot 1 = 1$

3. Method

d. Generate a V_{ij} statistic by comparing each set of two
 D_i's.

e. Generate the test statistic

$$v_n = \sum_{i < j} v_{ij}$$

f. Now enter Table X of the Appendix with V_n and the desired level of significance.

Example

d. Since n=8, there will be $\binom{8}{2} = \frac{8!}{2!6!} = 28$ comparisons of D₁ through D₈ as follows:

$$V_{12} = 0$$
, since $D_1 \oplus_2 = 16 < 28$
 $V_{13} = 0$, since $D_1 \oplus_3 = 16 < 18$
 $V_{14} = 1$, since $D_1 \oplus_4 = 16 > 15$

In a similar manner the following V_{ij}'s are assigned values of 1 since D_i > D_j:

V₁₅, V₁₆, V₁₇, V₁₈, V₂₃, V₂₄, V₂₅,

V₂₆, V₂₇, V₂₈, V₃₄, V₃₅, V₃₆, V₃₇,

V₃₈, V₄₅, V₄₆, V₄₇, V₄₈, V₅₆, V₅₇,

V₅₈, V₆₇, V₆₈, V₇₈

e. From step d

f. Enter Table X of the Appendix with n=8 and an 0=.10 level of significance. Following across the row n=8, the closest value to .10 is .089 which corresponds to an observed V_n of 8. Therefore, it V_n had been from 0 to 8 it could have been concluded at a .089 level of significance that the failure rate was decreasing.

In this example it is desired to test for an increasing failure rate since $V_n = 25$.

Table & in the Appendix is symmetrical; therefore, an .089 level of significance corresponds

3. Method

Example

f. (Continued)

to $V_n = 20$. Since $V_n = 26 > 20$, it can be concluded that the failure rate is increasing.

4. For Further Information

For the full derivation of this method refer to "Nonparametric Tests Against Trend," Henry Mann, Econometrica, Vol. 13, 1945, and "Mathematical Theory of Reliability," by Barlow and Proschan, John Wiley & Sons, 1964, pp. 232-233.

For an example of the use of the method on empirical data, refer to RADC TR-66-425 "Accelerated Reliability Testing for Nonelectronic Parts," September 1966, AD 803 484.

The table from Mann's paper which is reproduced as Table X in Appendix II covers sample sizes up to n=10. Above n=10, tables of the clandardized normal distribution can be used because Mann proved that V_n is asymptotically normally distributed with mean $\frac{n(n-1)}{4}$ and a variance of

$$\frac{2n^3 + 3n^2 - 5n}{72}.$$

2.4.6.2 Test Based on Probability Limits and Weibull Assumptions.

1. When to Use

When a set of part failure times has been generated and it is desired to test if the underlying distribution of failure times is exponential (β = Weibull shape parameter = 1). In effect, this becomes a form of goodness-of-fit test for deciding between the exponential and Weibull distributions.

2. Conditions for Use

- a. The sample size must be greater than 5.
- b. The p (estimate of Weibull shape parameter) must have been calculated from the empirical data by the maximum likelihood method of Section 2.4.2.1.2.
- c. Table IX in Appendix II is required.

3. Method

Example

- a. Observe and record part failure times.
- a. Given the following 10 failures times

92	325	640	1010
130	420	700	1020
233	430	710	1280
26C	465	770	1330
320	518	830	1690

- b. Calculate the Weibull shape parameter by the maximum likelihood method of Section 2.4.2.1.2.
- b. From this same data and from the example in Section 2.4.2.1.2 the Weibull shape parameter is 1.62.
- c. Decide on the desired significance for the test for exponentiality.
- c. For this example, it is desired to have 10% significance level for the hypothesis test (an arbitrary decision).
- d. Enter Table 1X with the sample size (N), the upper percentage points, and the lower percentage points of the probability interval.
- d. Enter the table at N=20, γ_L =.95, γ_U =.05. The tabled values for a 90% probability interval are 0.690 and 1.264.
- e. Compare the probability limits with the calculated value of (β) , the Weibull shape parameter. If $\gamma_L \leq \beta \leq \gamma_U$, then it can be stated that $\beta = 1$ and hence, the data is from an exponential distribution.
- e. Since β = 1.62 is not contained in the interval 0.690 1.264, then the hypothesis that β is from a distribution with β = 1 (exponential) cannot be supported. The alternate hypothesis is that the failure times were from a distribution with an increasing hazard rate, since β > 1.264.

4. For Further Intermation

The method presented here is from a paper by D.K. Thoman, L.J. Bain and C.E. Antle. The paper was titled "Inferences on the Parameters of the Weibull Distribution" and was published in Technometrics, Vol. 11, No. 3, August 1969, pp. 445-460.

2.4.7 Outlier Tests

2.4.7.1 tarly Failures

1. When to Use

こうない こうこうとうとう とれた

When an early failure is suspected not to belong to a population of failures which fits a particular failure distribution, this method may be

employed to determine if an early failure occurred too early to be included in the population.

2. Conditions for Use

- a. There must be engineering justification for suspecting the early failure to be unrelated to the main group of failures. Such justification might be based upon a difference in failure modes for example.
- b. Failure times must be collected.
- c. A sample size of at least 20 in the main group is necessary.

3. Method

a. For an early suspect failure time x_O, compute F(x_O), the cumulative distribution function, with parameters estimated from the main group of failure times only, evaluated at x_O.

Example

a. Consider a Weibull sample of size 20 with parameters, estimated from the 20 failure times by the method of Section 2.4.2.1.1.

$$\hat{B} = 1.5$$

α = 2 x 10¹⁰ cycles. To examine an early failure at 10⁵ cycles, compute

$$F(10^5) = 1 - exp\left(\frac{-10^5 \times 1.5}{2 \times 10^{10}}\right) = .00158$$

b. $p = (1 - .00158)^{20} = 0.969$.

b. Compute

$$P = (1 - F(x_0))^n$$

where

- n = sample size of main group
 of failures.
- c. It p > 0.95, omit the suspect failure time. It probably does not belong to the population determining the distribution of failure times.
- c. Since p = 0.969 > 0.95, the early failure time does not belong to the population.

4. For Further Information

If p \leq 0.95, recalculate estimates for the parameters of F(x) with x_0 included in the group.

2.4.7.2 Late Failures

1. When to Use

When a later failure is suspected not to belong to a population of failures which fits a particular failure distribution, this method may be employed to determine if a late failure occurred too late to be included in the population.

2. Conditions for Use

There must be engineering justification for suspecting the late failure to be unrelated to the main group of failures. Such justification might be based upon a difference in failure modes for example. A sample size of at least 20 in the main group is needed.

3. Method

a. For a late suspect failure time x_0 , compute $F(x_0)$, the cumulative distribution function, with parameters estimated from the main group of failure times only, evaluated at x_0 .

Example

20 with parameters, estimated from the 20 failure times by the method of Section 2.4.2.1.1,

$$\hat{\beta} = 1.5$$

$$\hat{\alpha} = 2 \times 10^{10}$$
 cycles

To examine a late failure at 2 x 10⁷ cycles, compute

$$F(2x10^7) = 1-exp\left(\frac{-2x10^7x1.5}{2x10^{10}}\right) = 0.988$$

b. Compute

★書からです。その言葉で、これのこの言葉などなどなどを確認されるからい

$$q = (F(x_0))^n$$

- c. If q > 0.95, omit the suspect failure time. It does not belong to the population determining the distribution of failure times.
- d. If $q \le 0.95$, recalculate estimates for the parameters of F(x) with x_0 included in the group.
- = 0.794c. q = 0.794 > 0.95

b. $q = (0.958)^{20}$

d. Since $q = 0.794 \le 0.95$, the failure time 2 x 10 cycles does belong to the population. So, it is necessary to repeat the estimation of the Weibull distribution parameters β and α from Section 2.4.2.1.1 with n = 21 and the failure time 2 x 10^7 cycles included.

3.0 RELIABILITY SPECIFICATIONS

3.1 Introduction. The purpose of a reliability specification is to fix the reliability component of mission effectiveness by quantifying required reliability characteristics for the part, equipment, or system. In order to achieve this purpose the reliability specification must be stated in complete and unambiguous terms. A reliability demonstration test will verify whether or not the requirement is satisfied.

Ambiguous requirements may result in an item that passes the demonstration but is not effective with respect to the requirements, and vice versa. For example, to state that a part must have a life of 1000 hours is ambiguous. The intention of such a specification could be: to require all such parts to survive 1000 hours; to require all such parts to have a 1000 hour MTBF; to require 90% (on the average) of all such parts to have 1000 hours; or any number of requirements. Moreover, in an unambiguous statement, the true intention of the specification must be accurately stated. For example, if the reliability requirement is that a part must survive 100 hours with 90% probability it is often tempting to "convert" this requirement to an MTBF specification based on exponentially distributed lifetimes. For an exponential distribution an MTBF of 1000 hours is roughly equivalent to a 100 hour survival probability of .90 (since exp(-100/1000) = exp(-.1) = .9048). Specifying a 1000 hour MTBF would be approximately equivalent to the requirement in the exponential case. However, if lifetimes are actually Weibull distributed with survival function given by

$$\exp(-(t/308)^2)$$
,

then the mean of this distribution is only 273 hours, and yet the survival probability for 100 hours is

$$\exp(-(100/308)^2)=\exp(-.105)=.90$$

which satisfies the original requirement. Imposing the 1000 hour mean life would thus cause overdesign. Also, this part actually meets the reliability requirement of survival of 100 hours with .90 probability, but would probably fail the corresponding reliability demonstration test that is designed to a 1000 hour MTBF requirement.

Many of these difficulties are alleviated when the underlying life distribution is exponential. In this case, it is sufficient to specify mean life, and knowing the mean determines all other quantifiable reliability measures associated with the exponential distribution. The exponential distribution has been the life distribution of choice in the electronics industry because of compelling evidence (both empirical and theoretical) which makes it suitable for describing lifetimes for complex electronic units whose failure modes are not wear-out related. Consequently, much effort has been spent in developing and updating MIL-STD-781C, "Reliability Design Qualification and Production Acceptance Tests: Exponential Distribution." And, in view of the success of the exponential distribution in the analyses of section 2 of this notebook concerning its applicability to nonelectronic parts, in many cases specifying mean life will be adequate for nonelectronic parts as well.

In summary, reliability can be quantified in many ways: mean life, median life, probability of mission survival, etc. A reliability specification may be any one or more such quantities depending on the underlying reliability requirements, and/or life distribution. The reliability specification must accurately reflect the underlying reliability requirements, and be both semantically and quantitatively unambiguous.

3.2 Reliability Specification for the Exponential Distribution. The survival function (or reliability function) for the exponential distribution is R(t)=exp(-t/v), t>0, where b is the mean life. The most direct way to specify any reliability requirement in the context of the exponential distribution is to convert the requirement to a requirement on mean life. The specification of mean life or, equivalently, MTBF, is particularly convenient in subsequent reliability demonstration test design since MIL-STD-781C is based on MTBF specifications. This, along with the fact that the exponential distribution is uniquely determined by the mean life (making MTBF an unambiguous specification) should establish MTBF as the best form of reliability specification. The following table presents formulae for converting various reliability requirements to MTBF in the exponential case.

RELIABILITY MEASURE

CORRESPONDING MTBF

Failure Rate

| TATA COLONIA TO THE TOTAL A TOTAL TOTA

ŗ

 $\theta = 1/(Failure Rate)$

Probability of survival for

 $\theta = -t/\ln(r)$

t hours = r

x(p) = the p quantile life
(i.e. x(p) = the life
beyond which the part will live
with probability l-p)

 $\theta = -x(p)/\ln(1-p)$

The following examples should clarify these concepts.

Example 1.

The reliability requirement for an equipment is expressed as a failure rate of 250 failures per million hours. The corresponding MTBF requirement is (1/250)(1,000,000) hours = 4000 hours.

Example 2.

The reliability requirement for an equipment is expressed as a probability of mission (= 1000 hours) survival of .99. The corresponding MTBF requirement is $-1000/\ln(.99) = 99,499 \text{ hours}$.

Example 3.

The .10 quantile life requirement for an equipment is 1000 hours. The corresponding MTBF requirement is $-1000/\ln(1-.10) = 9,491$ hours.

In order to use MTBF specifications in a reliability demonstration test from MIL-STD-781C, it is necessary to specify the upper (acceptable) test MTBF (v_0), the lower (unacceptable) test MTBF (v_1), the producer's risk v_1 , and the consumer's risk v_2 . Further details may be found in MIL-STD-781C.

3.3 Reliability Specification for the Weibull Distribution. The two parameter Weibull survival function is given by

$$R(t) = \exp(-(t/b)^c), t > 0, b > 0, c > 0.$$

The parameter b is called the scale parameter (also, characteristic life), and the parameter c is called the shape parameter. The following table lists common reliability measures in terms of these parameters.

RELIABILITY MEASURE

Mean Life

p quantile, x(p), i.e. the life beyond which the equipment will survive with probability 1-p.

Characteristic Life, i.e. x(.632)

FORMULA

b Γ (1+1/c), where Γ is the usual Gamma function.

 $b(-ln(1-p))^{1/c}$

ь

Since the Weibull distribution is a two-parameter distribution, any unambiguous reliability specification must involve two quantities. For example, specifying (b,c) directly would be sufficient, although not much physical significance can be attached to the parameter c. Other specifications which would also be sufficient would be mean life and the .90 quantile life; the .50 and .90 quantiles; or characteristic life (b) and .95 quantile life. These possibilities are summarized in the following table.

RELIABILITY SPECIFICATION

Mean Life, v, and p quantile x(p).

CORRESPONDING VALUES OF (b,c)

Must be found by iteratively solving:

 $\theta = h r (1+1/c)$

 $x(p) = b(1n(1/(1-p)))^{1/c}$

RELIABILITY SPECIFICATION

CORRESPONDING VALUES OF (b,c)

Two quantiles, x(n), x(q).

 $= \frac{\ln[\ln(1/\{1-q\})/\ln(1/\{1-p\})]}{\ln[\kappa(q)/\kappa(p)]}$

$$b = \frac{x(p)}{[\ln(1/\{1-p\})]^{1/c}}$$

Characteristic Life, b, and the quantile x(p).

b is the Characteristic Life

$$c = \frac{\ln[\ln(1/\{1-p\})]}{\ln[x(p)]-\ln(b)}$$

It is not often practical to specify reliability in terms of the Weibull or any other two parameter distribution because the corresponding reliability demonstration test procedures are cumbersome. Moveover, since there are two parameters involved, there is no "OC curve" as in the case of MIL-STD-781C for the exponential distribution. Finally, and most importantly, there is no natural ordering of the parameter pairs (b,c). That is, given that "acceptable" values have been established for the parameters (b,c), there is no obvious logical way to assign "unacceptable" values to (b,c). For example, the pairs (b,c)=(308.6,2) and (b,c)=(212,3) both determine Weibull distributions having 100 hours as the .10 quantile. The respective mean lives are 273 hours, and 189 hours, so that the pair (b,c)=(308.6,2) appears more acceptable. However, the .05 quantiles for the pairs (b,c)=(308.6,2) and (b,c)=(212.3) are 69.9 hours and 78.8 hours, respectively. Thus, from this point of view, the pair (b,c)=(212,3) is more acceptable since 78.8 hours are survived with probability .95, whereas for the pair (b,c)=(308.6,2) only 69.9 hours are survived with probability .95.

One way to alleviate this problem is to fix one parameter for all cases. This is the same as assuming that one parameter, either b or c, is known exactly. Since neither b nor c is ever known exactly in practice, this is an unacceptable solution.

3.4 Reliability Specification Without Respect to a Particular Underlying Life Distribution. In many instances, there is no evidence to suggest a feasible parametric (e.g. exponential, Weibull) life distribution for the equipment on which reliability is to be specified. Also, it is often the case that when a two-parameter life distribution is appropriate, the reliability requirement is only sufficient to determine one of the parameters. Moreover, in a two-parameter model, it is not always clear how to specify acceptable values for the parameters versus unacceptable values even when the reliability requirements are sufficient to determine both parameters.

When these situations arise, there is a type of reliability specification which can be used in conjunction with reliability demonstration tests which do not assume any particular underlying parametric life distribution (so-called nonparametric tests). These specifications are life distribution quantiles.

This type of specifica ion has already been discussed in the sections on reliability specification for the exponential distribution. There, however, it was suggested that these quantiles be used to compute corresponding MTBFs to facilitate the use of MIL-STD-781C. The p quantile of the life distribution (denoted by x(p)' is the life beyond which the equipment will live with probability 1-p. $\frac{1}{2}$ untile x(p) can be specified directly, or indirectly, by specifying the probability of survival for a fixed time period. For example, specifying that with .90 probability the equipment shall survive 1000 hours is equivalent to stating that the .10 quantile of the life distribution shall be 1000 hours, i.e. x(.10)=1000 hours. In many cases, it is of interest to place some requirement on some measure of central tendency of the life distribution, e.g. mean life. While mean life does not lend itself to nonparametric demonstration tests, median life does, since median life is x(.50), the .50 quantile of the life distribution. Indeed, when mean life is specified, the reliability engineer is often (mistakenly, in general) thinking of median life, i.e. that life beyond which 50% of the equipments will survive, on the average.

The following table summarizes the strategy for specfying reliability in cases where no particular underlying parametric life distribution is assumed. These types of specifications can be used directly in the nonparametric test plan discussed in section 5.

x(.50), the median life.

The probability of surviving a fixed time T.

x(p), 0 .

WHEN TO USE

Requirements concern a measure of central tendancy of the life distribution.

Requirements concern a particular mission length T which the equipment must survive with high probability.

See above.

4.0 SPECIAL APPLICATION METHODS FOR RELIABILITY PREDICTION

por proprior programme de la companya del la companya de la compan

4.1 Introduction. This section is concerned with the estimation of reliability of mechanical and electromechanical components in service. We are not concerned herein with the classical estimation problems faced by statisticians which are described in Section 2 but with practical examples where the engineer is required to create an estimate of reliability from whatever data he can find. The methods described in this section involve the use of "engineering experience" or judgment to extend what is usually meager sampling information to obtain meaningful comparisons of materials, designs, and environments.

It is only through the application of engineering judgment to available data that an estimate of reliability in service can be created. The consequence of such methods will of necessity be a point estimate rather than an interval estimate because the probability distribution of the estimator cannot be obtained.

4.2 Background for Reliability Prediction Model Development.
Nonelectronic components have numerous failure modes as compared to electronic components. Some of the more basic failure modes which affect this class of components are fatigue, creep, impact, thermal shock, corrosion, oxidation, fretting-corrosion, elastic deformation, relaxation, lubrication failure, wear, spalling, erosion, leakage, delamination, buckling, and radiation damage. Detailed discussion of these failure modes may be found in ASME (1965). In a proper reliability assessment the dominant mechanisms must be identified and considered since each mechanism represents a competing failure risk with its own failure distribution.

Several possible approaches are available for the model development, each of which has definite merit but is also subject to limiting constraints.

One approach is through the analysis of accelerated life test results. This approach presupposes that a large number of devices has been tested or is currently being tested in combinations representing the various technologies, processes, etc. The results of such controlled tests would provide some indication of the characteristics and peculiarities of the devices as a function of the several configurations, stresses and applications included in the test design. However, the extrapolation of these accelerated test results to more normal operating conditions would be open to questions of validity due to the uncertainties regarding the extrapolation algorithm. Further, while test data under controlled accelerated conditions should sid in understanding the reliability characteristics, it is difficult to obtain data that covers the wide range of technologies and stress conditions that would be necessary in order to place major dependence on this approach alone.

An alternate approach involves the development of a reliability model and its persmeters based on a knowledge of fabrication techniques and the anticipated failure modes. Also required by this approach is a thorough understanding of the fundamental physical/metallurgical/chemical/electrical degradation mechanisms involved, as well as the proportionate weighting of these mechanisms in translating to the various configurations the component may assume.

A third approach would be to rely solely on the collection and reduction of empirical operating data where the pertinent information with respect to the model parameters would be extracted using suitable statistical techniques. This approach should provide optimal applicability since the field data reflect the actual reliability experience of the devices operating in their use environment. However, it requires the collection and reduction of a large database on the entire range of device configurations and application environments in order to evaluate each of the critical factors. In some cases, particularly with new devices, the amount of data needed to provide sufficiently accurate results may not be available.

The best approach endeavors to utilize the collective data and knowledge offered by all three approaches and subject it to careful, analytical scrutiny to censor out conflicting and discrepant information. This approach includes the following tasks: a literature review to define the component, equipment and environmental attributes which will be considered during model development, derivation of the preliminary model form, data collection, data reduction and analysis, development of the model parameters, and model refinement and verification.

Regardless of the approach taken, the derived model should have the following attributes:

- · verified accuracy over the total range of all factors considered
- an uncomplicated approach using easily accessible information on component characteristics and environmental parameters
- dynamic, flexible expression, easily modified to accommodate new techniques
- appropriate discrimination against design and usage attributes which may degrade reliability

The simultaneous attainment of all of the above objectives is difficult, if not impossible. Often these goals are contradictory or mutually exclusive. As an example, some years ago a prediction model was proposed for microcircuits which possessed commendable accuracy over the range of parameters and was based on sound theoretical considerations. Unfortunately, to use the model, the engineer was required to input such information as metallization area, total diffusion area and other such fabrication/design information. Since this information was not available on vendor specification sheets and indeed was often vendor-proprietary, the model proved to be useless. Modifying the model to use more generic but readily available device parameters degraded the accuracy of the model. The overall utility of the model, however, was enhanced. A discussion of modeling and model limitations can be found in Flint et. al. (1982).

In reviewing the literature it becomes obvious that an abundance of models have been advanced for use in the prediction of nonelectronic component reliability. Unfortunately, most have been found to be deficient in one or

والمنافظة والمنافز وا

more of the areas below and as a consequence cannot be included in this section:

- Not application-oriented
- Not yet "engineer-ready"
- Not verified
- Single-vendor specific
- Requires information not easily available
- 4.3 Graphical Approaches to Reliability Prediction. The graphical approach discussed below briefly provides a means of translating meager information into a reliability estimate.

The information is most likely vendor supplied and thus may be optimistic, based on limited test data, or in the worst case represents a design objective. For these reasons, unless prior experience dictates otherwise, assumptions must be conservative in nature. For example, if an L_{10} (life time beyond which 90% survive) supplied by the vendor is based on small sample tests or if the vendor is unwilling to discuss the matter, the L_{10} life should be reduced by one-half as a minimum.

The ambiguity regarding life frequently must be clarified. Life may mean average, median, some period of time/cycles by which some percent will fail on the average, or the time to first failure among a population.

Weibull probability paper is a most useful tool available when the use of a graphical solution is necessary. When the shape or slope parameter, β , is equal to one, the distribution reduces to the exponential; an approximation of the lognormal distribution results from values of β in the range of 1.5 - 3, and the normal distribution approximation results from a β value of 3.5. With an estimate of some percentile of life, an assumption of the value of β , and the use of Weibull paper, the probability of failure before time x, say F(x), and the reliability, 1-F(x), for any lifetime can be determined.

In those cases when a failure rate must be used in a prediction, it must be remembered that only for the special case of the exponential distribution, i.e., β = 1, will the failure rate be constant with all other values of β greater than one resulting in an increasing failure rate. In the latter case an average failure rate over a stated time period may be calculated employing the average cumulative hazard function, H(t). The expression is (assuming l-F(x) = exp $\left\{ \sim (x/\alpha)^{-\beta} \right\}$):

$$\bar{H}$$
 (t) = $\frac{t^{\beta-1}}{\alpha \beta}$. (Wilson, et. al (1977).

Alternate notation for $\overline{H}(t)$ is $\overline{\lambda}(t)$.

4.4 General Theory of Interference. When the strength of a component is less than the stress imposed on it, a failure can be expected to occur. Strength is the ability of a component to resist failure when subjected to stress. Stress or load may be defined as a mechanical load, dimensional variation, environment, temperature, etc. Since both strength and stress are variables, they may be described by probability distributions.

The strength of nominally identical components can be expected to vary due to variations in materials, dimensions, treatments, surface conditions, and so on. This variability can be described by a distribution function. Various approaches to estimating the strength distribution function are given in Bompass-Smith (1969), Burns (1975), Konno et. al. (1975), ASME (1965), Nilsson (1975), Thomas et. al. (1975), and Welker et. al. (1975). Most typically, however, so little will be known that both the form of the distribution and the variability about the mean will have to be assumed. Unless experience dictates otherwise, the strength variable is often assumed to be normally distributed with standard deviation equal to 5 - 15 percent of the normal value (Fulton, 1983).

The distribution of operational stresses can only be known to a reasonable certainty when the response of a reasonable number of prototypes to the full spectrum of operating conditions has been closely observed. Due to such constraints as time, cost, etc., the distribution of stress cannot be established and assumptions must be made. Further information regarding the estimation of the stress distribution may be found in Kececioglu et. al. (1964, 1967), and Fiderer (1976).

If the expected distributions of stress and strength can be estimated for a component then by employing interference theory the probability of failure of the component can be calculated. The concept is presented in detail in Kececioglu et. al. (1964), Disney et. al. (1968), Lipson et. al. (1973), Kapur et. al. (1977), Kececioglu (1972, 1974, 1977, 1968), Kececioglu et. al. (1974), and Dhillon (1980, 1981).

The mathematical foundations of Interference Theory may be outlined as follows. It is assumed that the stress is a random variable X having probability density function f_X and that the strength is a random variable Y having probability density f_Y . It is generally assumed that X and Y are statistically independent (although this assumption is not strictly necessary). The probability of failure, p(f), is then

$$p(f) = P \left\{ X > Y \right\},$$

i.e. the probability of failure is the probability that the stress exceeds the strength. An expression may be derived for p(f) as follows.

$$p(f) = P \left\{ X > Y \right\} = \int_{-\infty}^{\infty} \int_{Y}^{\infty} f_{X}(x) f_{Y}(y) dxdy$$

$$= \int_{-\infty}^{\infty} f_{\chi}(y) (1 - F_{\chi}(y)) dy$$

where

$$f_X(y) = \int_{-\infty}^{y} f_X(x) dx$$

is the cumulative distribution of the random variable X. Thus, the probability of failure is the area beneath the curve $f_Y(y)$ $(1-F_X(y))$ as y varies over all real numbers. Intuitively, $(1-F_X(y))$ $f_Y(y)$ dy is the probability that the strength is in the infinitesimal interval (y, y+dy), and that the stress exceeds y. Integrating (or "summing") over all y then gives the total probability that stress exceeds strength.

The area under the curve $f_Y(y)$ $(1-F_X(y))$ is often referred to as the "interference zone." When the two densities f_X and f_Y coincide (i.e. are exactly equal), the probability of failure is exactly 1/2, although this is by no means the maximum value possible. In fact, when f_X is the normal density with mean μ_X and variance σ_X^2 , and f_Y is the normal density with mean μ_Y and variance σ_Y^2 , then it can be shown that

$$p(f) = \Phi \left(\frac{\mu_X - \mu_Y}{\sqrt{\sigma_X^2 + \sigma_Y^2}} \right)$$

where

$$\phi$$
 (u) = $(\sqrt{2\pi})^{-1}$ $\int_{-\infty}^{u} e^{-t^2/2} dt$

is the standard normal cumulative distribution function. Hence, for example,

- (1) p(f) = 1/2, if $\mu_X = \mu_Y$;
- (2) $p(f) \rightarrow 1$, as $\mu_X \rightarrow + \infty$, μ_Y fixed;
- (3) $p(f) \rightarrow 0$, as $\mu_Y \rightarrow + \infty$, μ_X fixed;

Thus, p(f) can take any value between zero and one. The explanation of (1) above is that when the mean stress equals the mean strength, it is equally likely for stress to exceed strength and vice-versa. In (2) above, when the mean stress is very large with respect to mean strength, the probability of failure is close to one. In (3) above, when the mean stress is very small with respect to strength, the probability of failure is very small.

The concept of interference is shown in Figure 4.4-1 where the interference zone is given as the shaded area. This illustrates the simple case where the strength distribution remains unchanged across time, i.e., is not affected by exposure to the failure causal stress distribution. Figure 4.4-2(a) and (b) illustrates the case where the strength distribution degrades as a function of time exposure to stress as the result of such failure mechanisms as fatigue, corrosion, and wear. Whether this time shift must be considered or may be dismissed depends of course on the rate of change expected. For example, in a naval environment corrosion is a rapid failure causal mechanism and the effect on the strength distribution must be considered; on the other hand, in most military ground fixed applications corrosion is a weak failure causal mechanism and the effect on the strength distribution may be ignored.

Figure 4.4-1. Illustration of the Concept of Interference

Figure 4.4-2(A) Time Varying Strength Density

Figure 4.4-2(B) Time Varying Strength Density

4.5 Applications of Interference Theory to Reliability Prediction Methodology

Source: RADC-TR-66-710 (March, 1967) by Charles Lipson et. al., entitled "Reliability Prediction-Mechanical Stress/Strength Interference Models."

RADC-TR-68-403 (December, 1968) by Charles Lipson et. al., entitled "Reliability Prediction-Mechanical Stress/Strength Interference (Nonferrous)."

- 4.5.1 Purpose. The purpose of this method is to obtain a point estimate of reliability in service for mechanical components subject to fatigue failure. The method is applicable to:
 - a) Components subjected to completely reversed cyclic bending from axial, or torsion loads.
 - b) Components subjected to a combination of static and cyclic loads.
- 4.5.2 Description of Method. Given that strength and service stress each have a probability distribution of known type, and that the parameters of the two distributions are known, the probability that a random observation from the strength distribution exceeds a random observation from the stress distribution is equal to the reliability. The term "interference" is used to designate an occurrence where stress exceeds strength, so that reliability is the probability of no interference.

The source documents provide extensive tables giving the probability of failure as a function of the parameters for the following combinations of distributions:

Strength Distribution	Stress Distribution	
Weibull	Normal	
Weibull	Weibull	
Normal	Normal	
Largest Extreme Value	Normal	
Smallest Extreme Value	Norma1	

These tables are perfectly general, and may be used for other types of failure than fatigue. However, the two reports tabulate parameters for fatigue failure only. Nonstandard symbols for the parameters are used in these tables. Table 4.5.1 shows their relationship with generally accepted symbols.

Several tables have been compiled in the source documents giving fatigue strength parameters for virtually all of the common ferrous, nonferrous, and light metal alloys, subjected to completely reversed bending or axial stresses. Included are the effect of heat treatment, surface finish, stress concentrators, temperature, and frequency.

TABLE 4.5.1. PARAMETERS OF TABULATED PROBABILITY DISTRIBUTIONS AS USED IN RADC-TR-68-403 (LIPSON, et. al. 1968)

l. Weibull Distribution:

$$R(x) = \exp \left[-\left(\frac{x - x_0}{\theta - x_0}\right)^{-b} \right] \qquad x_0 < x < \infty$$

x is the variable

 $\begin{cases} x_0 & \text{is the lower bound of } x \\ \theta & \text{is the characteristic strength} \\ b & \text{is the slope parameter} \end{cases}$

This compares with the usual 3-parameter Weibull distribution

$$R(x) = \exp \left[-\frac{(x-\gamma)^{\beta}}{\alpha}\right] \quad \gamma < x < \infty$$

as follows:

$$\alpha = (\theta - x_0)^{\dagger}$$
.

2. Normal Distribution:

The unit normal deviate is characterized as

$$z = \frac{x - \mu}{\sigma}$$

which agrees with standard notation.

3. Extreme Value Distribution

For the Smallest Extreme Value (S.E.V.) distribution,

$$R(x) = exp \left[-e^{\beta(x-M)}\right]$$
, $- = < x < =$

x is the variable

2 parameters $\begin{cases} \beta^{-1} \text{ is the scale parameter} \\ M \text{ is the location parameter} \end{cases}$

TABLE 4.5.1. PARAMETERS OF TABULATED PROBABILITY DISTRIBUTIONS AS USED IN RADC-TR-68-403 (LIPSON, et. al. 1968) (Continued)

This compares with the usual 2-parameter S.E.V. distribution,

$$R(x) = \exp \left[-e^{\alpha(x-\mu)}\right],$$

as follows:

For the Largest Extreme Value distribution, the same relationship holds, where

$$R(x) = 1 - \exp \left[-e^{-\beta (x-M)}\right].$$

Note: in 1), 2) and 3) above, R(x) is the reliability function.

The procedure for estimating reliability using the interference method takes several forms depending upon the assumptions made regarding the strength distribution and the stress distribution. The various methods are illustrated with numerical examples in the source documents.

4.6 Application of Interference Theory for Normally Distributed Strength and Normally Distributed Stress

- Source: (1) Fiderer, Leo, "Design For Reliability in Hostile Environment," Microelectronics and Reliability, Vol. 15, Supplement, Pergamon Press, 1976, pp. 75-85.
 - (2) Lipson, Charles, <u>Statistical Design and Analysis of</u> Engineering Experiments, McGraw-Hill, 1973.
- 4.6.1 Purpose of the Method. To obtain a point estimate of reliability in service for non-electronic components. The method may be applied to a diverse number of failure causal factors.
- 4.6.2 Description of the Method. The description of interference of stress and strength distributions given in 4.4 applies equally to this method. The difference lies in the assumption that the random variables, which may take various distribution forms, may be approximated by a normal distribution so that in practical calculations normal distributions may be assumed without excessive error.

The steps involved in the procedure are as follows:

(1) Estimate the mean, μ_L , and standard deviation, σ_L of the load, L, and μ_8 and σ_8 of the strength, S.

Where there is no information available to estimate σ_L or σ_8 a value may be assumed from the interval .05 μ ~ .15 μ . Where the part is critical or a high reliability requirements exists, a worse-case approach should be taken, i.e., in the range of .10 μ to .15 μ . For most conditions σ may be taken as .09 μ .

(2) Define the difference between strength and load as a new random variable D:

with mean $\mu_D = \mu_B - \mu_L$,

and

standard deviation $\sigma_{D} = \sqrt{\sigma_{s}^{2} + \sigma_{L}^{2}}$.

(3) The probability of failure, P(f), is found by computing:

$$P(f) = P \mid D < O \mid = P \mid S-L < O \mid$$

$$= P \left\{ \frac{D - \mu_D}{\sigma_D} < \frac{-\mu_D}{\sigma_D} \right\}$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{-\mu_D/\sigma_D} \exp \left\{-t^2/2\right\} dt.$$

Thus, P(f) is found by entering a table of the cumulative distribution function of a standard normal random variable with the value $-\mu_D/\sigma_D$. See figure 4.6.2-1.

(4) The reliability R is then

$$R = 1-P(f)$$
.

4.6.3 Examples

4.6.3.1 Shaft and Bushing Reliability. The reliability of a shaft and a bushing after ten years exposure (in a nonoperating state) to a heavy industrial environment is to be determined, i.e., the ability of the shaft to rotate without drag.

The dominant failure mechanism is considered to be corrosion. Information on corrosion rates and corrosion product build-up is available from the Battelle operated Metals and Ceramics Information Center.

In the analysis it will be assumed that the part dimensional variability is normally distributed and that the maximum and minimum allowable dimensions may be taken as the upper and lower three sigma points, respectively.

Part Specifications

Shaft - Stainless Steel

Dia. .123 - .124

Corrosion Rate 3.5 x 10⁻⁵ in/year loss

Corrosion Products 7 x 10⁻⁵ in/year buildup

Net Gain 3.5 x 10⁻⁵ in/year

Bushing - Aluminum Chromated
I.D. .125 - .127 in.
Corrosion Rate 6 x 10⁻⁵ in/year loss
Corrosion Products 7.8 x 10⁻⁵ in/year buildup
Net Gain 1.8 x 10⁻⁵ in/year

The maximum and minimum diameter 30 points after ten years based on the buildup of corrosion products are:

Shaft Max
$$3\sigma_8 = .124 + 3.5 \times 10^{-5} \times 10 \times 2 = .1247$$

Min $3\sigma_8 = .123 + 3.5 \times 10^{-5} \times 10 \times 2 = .1237$
 $6\sigma_8 = .1247 - .1237 = .001$
 $\sigma_8 = \frac{.001}{6}$
 $\mu_8 = .1142$

Bushing Max
$$3\sigma_B = .128 + 1.8 \times 10^{-5} \times 10 \times 2 = .12764$$

Min $3\sigma_B = .125 + 1.8 \times 10^{-5} \times 10 \times 2 = .12464$
 $6\sigma_B = .12764 - .12464 = .003$
 $\frac{.003}{\sigma_B} = \frac{6}{6}$
 $\mu_B = .12614$

The unreliability or probability of failure, p(f), is evaluated by establishing a new random variable D:

with mean $\mu_D = \mu_B - \mu_s = .00194$

and standard deviation
$$\sigma_D = \sqrt{\sigma_B^2 + \sigma_L^2} = 5.27 \times 10^{-4}$$

Thus,
$$P(f) = P \left(D - \mu_D \right) / \sigma_D < -\mu_D / \sigma_D$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\pi} \frac{\mu_D/\sigma_D}{\exp\left\{-t^2/2\right\}} dt.$$

From a table of the standard normal cumulative distribution entered at $-\mu_D/\sigma_D = -.00194/(5.27\times10^{-4})$ -3.68, it follows that

$$P(f) = 0.0001$$

and the reliability is:

$$R = 1-P(f) = .9999.$$

4.6.3.2 <u>Lifting Eye Reliability</u>. A lifting eye intended to be used in lifting shipboard equipment while the ship is at sea has a nominal strength of 60,000 lbs. The dead weight load is 12,000 lbs. This is all the information available to the reliability analyst.

It will be assumed that both the strength and load can be represented by normal distributions and that the nominal strength and load are the means of the distributions.

$$\mu_a = 60,000$$
 $\mu_1 = 12,000$

The variability of the tensile strength should be controllable such that the standard deviation may be assumed to be eight percent of the mean strength. However, the load due to the dynamics of wave/ship action may be quite variable. Thus, the load standard deviation will be assumed to be twenty percent of the mean load.

$$\sigma_{s} = .08\mu_{s} = 4,800$$
 $\sigma_{L} = .2\mu_{L} = 2,400$

The probability of failure is evaluated by forming the new random variable:

where

$$\mu_{\rm D} = \mu_{\rm S} - \mu_{\rm L} = 48,000$$
, and $\sigma_{\rm D} = \sqrt{\sigma_{\rm S}^2 + \sigma_{\rm L}^2} = 5366$.

thus,

$$p(f) = P \left\{ D < 0 \right\} = P \left\{ \frac{D - \mu_D}{\sigma_D} < \frac{-\mu_D}{\sigma_D} \right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{-\mu_D/\sigma_D} \left\{ -t^2/2 \right\} dt$$

where

$$-\mu_{\rm D}/\sigma_{\rm D} = -48000/5366 = -8.9.$$

From a table of the standard normal cumulative distribution function the value of P(f) is approximately 0.

Thus the reliability is

$$R = 1 - P(f) = 1.$$

4.6.3.3 Diaphragm Reliability. Calculate the reliability of a diaphragm intended to be used in a one-shot device. Each diaphragm must pass 5 cycles of a worst-case pressure-time profile proof test as acceptance criteria. The purchaser has specified the lower 3 sigma point to be 5 test cycles.

A small sample size population has been tested to failure which resulted in an estimate of a mean lifetime of 11.44 proof tests. The sample size was not large enough to prove the lifetimes to be normally distributed.

It will be assumed that the proof test lifetimes of the production population will be normally distributed with a mean of 11.44 test times and a σ of 2.147.

Denoting by L the lifetime in proof tests of the diaphragm, and noting that this is a one-shot device and therefore the diaphragm needs only to survive one test, it follows that the probability of failure is

$$P(f) = P \quad \left| L < 1 \right| = P \quad \left| \frac{L-\mu}{\sigma} < \frac{1-\mu}{\sigma} \right| \quad \text{where } \frac{1-\mu}{\sigma} = (1-11.44)/$$

2.147 = -4.86. Referring to a table of the standard normal cumulative distribution function, it follows that

$$P(f) = .000000605$$

and then

10日間の名の文章間の代表の古町

$$R = 1 - P(f) = .999999395$$

4.7 Application of the Average Failure Rate Method for Grease Lubricated Rolling Element Bearings

Source: Wilson, D.S., and Smith, R., "Electric Motor Reliability Model," RADC-TR-77-408, December, 1977 (AD 050179).

- 4.7.1 Purpose of Method. To obtain an estimate of the average failure rate of grease lubricated rolling element bearings over a related time period.
- 4.7.2 Description of Method. The method consists of an empirical mathematical model which provides an estimate of the Weibull characteristic life, α , and was developed through the use of regression analysis and a large data base. Essential tables are provided.

The average failure rate is obtained by averaging the Weibull cumulative hazard function over the time period of interest.

A modification has been made in the characteristic life model so that it is valid for a single bearing rather than for a population of first failures of pairs of bearings as given in the source. The method employed is given in Ang (1970) under Suspended Item Tests.

The characteristic life model is based primarily on the effect of temperature on the lubrication qualities of grease and such secondary effects as quality, bore size, speed, grease, and load. The consideration of load as a secondary factor is consistent with good design practice which limits the loads on grease-lubricated bearings to 15 percent or less of rated load capacity.

The models are as follows:

$$\bar{\lambda}_{t} = \frac{t^{1.878}}{\alpha_{R}^{2.878}}$$
 (1)

$$\alpha_{B} = \frac{1.241}{10\left[\frac{2342}{T} + q - 4.32 \text{ DNx10}^{-6} + Kg - .001N\left(\frac{W}{SP}\right)^{1.5}\right]} + \frac{1}{10\left[\frac{-4760}{T} + 19.7\right]} + 300}$$

where

t = time for which failure rate is required (in hours)

 α_{B} = bearing characteristic life (in hours)

q = quality factor

DN = bearing bore (mm) x speed (RPM)

T = bearing operating temperature (degrees Kelvin)

Kg = grease constant

N = RPM

W = load in pounds

SP = Specific dynamic capacity at 33 1/3 RPM in pounds

TABLE 4.7.1. QUALITY FACTORS

ŗ	Military Specification	. 12
	Commercial	27

TABLE 4.7.2. Kg GREASE CONSTANT

Source	011	Thickener	MIL-Spec.	Max. T°C	Kg
1	Diester	Sodium and Solid Lubricant	MIL-G-3278A	170	1.35
2	Diester	Lithium	MIL-G-3278A	120	1.55
3	Silicone	Lithium		150	1.74
4	Mineral	Sodium	MIL-G-18709A	150	1.41
5	Silicon	Lithium	MIL-L-15719A	177	1.81
6	Synthetic Hydrocarbon	Non-soap	MIL-G-81322	170	1.74

4.7.3 Examples

Example 1

Determine the average failure rate of a bearing with the following specifications for an operating period of 10,000 hours.

Military quality

Grease 5

Bore Dia. 13 mm

Bearing Operating Temp. 30°C

Speed 3600 RPM

Load 10 lbs

Specific Dynamic Capacity 505 lb (from bearing manufacturer's catalog)

Then:

いるなが、1000年の大学の大学のできます。 1000年の大学のできません アンドラン アンドラン アンドラン 1000年間 アンドラン

$$K_g$$
 (grease constant) = 1.81 (Table 4.7.2)

$$DN = Bore D \times speed = 13 \times 3600 = 46800$$

$$T = 30 + 273 = 303$$
°K

Using Eq. 2

$$= \frac{1.241}{\frac{1}{6.009} + \frac{1}{3.990}}$$
10 10 +300

$$= \frac{1.241}{9.8 \times 10^{-7} + 9.928 \times 10^{-5}}$$

= 12378 hrs.

Using Eq. 1

ののでは、これのことのない。

$$\frac{1}{\lambda_{10,000}} = \frac{(10,000)^{1.878}}{(12378)^{2.878}} = .000054$$
or 54 failures per million hours.

NOTE: This $\bar{\lambda}$ is valid only if the bearing is replaced at the end of the 10,000 hours of operation.

Example 2

Determine that period of operation, t, for the bearing of Example 1 that will result in the average failure rate equal to 20 failures per million hours.

Solve Eq. 1 for t

$$t = \left(\overline{\lambda} \times a^{2.878}\right)^{\frac{1}{1.878}}$$

$$= \left[20 \times 10^{-6} \times (12378)^{2.878}\right]^{\frac{1}{1.878}}$$
= 5886 hrs.

4.8 Reliability Prediction Method - Rolling Bearings Oil Lubricated

Source:

- (1) International Organization for Standardization ISO 281/1-1977(E), "Rolling Bearings Dynamic Load Ratings and Rated Life Part 1: Calculation Methods."
- (2) Marks' Standard Handbook for Mechanical Engineers, 8th ed., McGraw-Hill, 1977, pp. 8-136 through 8-142.
- 4.8.1 Purpose of the Method. To obtain a point estimate of the reliability in service of rolling bearings.
- 4.8.2 Description of the Method. Standard formulas have been developed to predict the $\rm L_{10}$ life of a bearing under any given set of conditions. These formulas are based on an exponential relationship of load to life which has been established from extensive testing.

$$L_{10} = \left(\frac{C}{P}\right)^{K} \times 10^{6} \text{ cyc.}$$

where

L₁₀ = the number of revolutions that 90 percent (on the average) of a population of bearings will complete or exceed without failure, i.e., R = .9.

C = basic load rating, lbs.

P = equivalent radial load, lb.

K = 3 for all bearings, 10/3 for roller bearings.

To convert to hours of life (L_{10}) , this formula becomes

$$L_{10} = \frac{16,666.67}{N} = \frac{C}{P}$$
 (2)

where N = rotational speed, rpm.

The basic load rating, C, value is readily obtainable from any bearing manufacturer's catalog. All bearing loads are converted to an equivalent radial load, P. Equation 3 is the general expression used for both ball and roller bearings.

$$P = XR + YT \tag{3}$$

whe re

R = radial load, lb.

T = thrust (axial) load, lb.

X = radial factor

Y = thrust factor.

The X-Y factors may be calculated using the methods described in Source 1 or, with some loss in precision, average values may be selected from Table 3, pp. 8-140 of Source 2.

One further formula is necessary to adjust the ${\rm L}_{10}$ life for other levels of reliability and less than optimum operating conditions.

$$L_n = a_1 \ a_2 \ a_3 \ L_{10}$$
 (4)

where:

a₁ = life reliability factor

 a_2 = material properties factor

a₃ = operating conditions factor.

The reliability factors are given in Table 4.8-1.

The Control of the Co

TABLE 4.8-1: LIFE ADJUSTMENT FACTOR OF RELIABILITY, a₁, (From Source 1)

Reliability %	L _n	aı	
90	L ₁₀	1	
95	Ls	0.62	
96	L4	0.53	
97	L ₃	0.44	
98	L ₂	0.33	
99	L ₁	0.21	

The life adjustment factor for material, a2, has not been quantified on the basis of material characteristics but rather on test results and bearing applications. In general an a2 value of one applies. However, a value greater than one may apply to bearings made of steel of low impurity content or of special analysis. Values of a2 should be obtained from the bearing manufacturer or from Zaretsky (1971).

Operating conditions which remain to be taken into account are the adequacy of the lubrication (at the operating speed and temperature) and conditions causing changes in material properties (i.e., high temperature causing reduced hardness). The influence on bearing life of such conditions may be considered by the application of a life adjustment factor a3.

The calculation of basic dynamic load rating and basic rating life assumes that bearing life is limited principally by sub-surface fatigue, i.e., that the rolling elements and the ring (washer) raceways are sufficiently separated by a lubricant to make the probability of failures caused by surface distress negligible. Where this requirement if fulfilled, a3 = 1, provided a lower value does not apply, for example, because of a change in material properties caused by the operating conditions.

Reduction of a3 values should be considered whenever the viscosity of the lubricant is less than $13 \text{ mm}^2/\text{s}$ ($1 \text{ mm}^2/\text{s} = 1 \text{ cST}$) for ball bearings or $20 \text{ mm}^2/\text{s}$ for roller bearings at the operating temperature and/or where the rotational speed is exceptionally low (revolutions per minute times pitch dia. in mm less than 10,000). Values of a3 greater than 1 may be considered only where the lubrication conditions are particularly favorable.

In most cases, discussions with the bearing manufacturer regarding the specifics of the application will help in quantifying a value for a₃. Carter (1972) should also be reviewed for guidance.

4.9 Reliability Prediction Method - Spur Gear Systems

Source: Savage, M., C.A. Paridon, and J.J. Coy, "Reliability Model for Planetary Gear Trains," U.S. Army Aviation Research and Development Command, AVRADCOM TR 82-C-6.

- 4.9.1 Purpose of the Method. To estimate the gear system life which will result in a 90 percent probability of survival.
- 4.9.2 <u>Description of the Method and Example</u>. In the design of a transmission to carry power, high strength alloy steels are normally used in key elements to help minimize the transmission's size for a given power and speed rating. As a result, the endurance limit of soft ductile steels is replaced by a higher capacity which gradually decreases with the load cycle count. Key elements, such as bearings and gears are designed on a life basis in order to keep their size reasonable.

This finite life design for lives greater than 10^7 load cycles is common practice in the design of bearings. It is the intent of this approach to extend the Weibull reliability, life and load theory to the gears as well as the bearings and to combine the component lives in a consistent fashion in order to predict the transmission reliability and life as a function of the applied load and its critical component capabilities.

Although this theory will apply just as well to a simple gear reduction or any transmission composed of bearings and gears, the presented example will be for the planetary reduction in the main rotor box of a light helicopter. A schematic diagram of a three planet reduction with the ring gear fixed and the sun gear as input is shown in Figure 4.9-1.

In this transmission the overall ratio is 5:1 and the output planetary spider or arm is to be rotated at 300 RPM. The power transmitted by the transmission is to be 200 horsepower (150 kw). The input speed of the sun gear is 1500 RPM. The gears are all 20° full depth AGMA toothed gears with a diametrical pitch of 6 in (Ng/Dg) (a module of 4.23 mm). They are all made of case hardened A151 9310 vacuum arc remelt steel with a material constant of 21,000 psi (144 MPa). The sun gear has 24 teeth and a 4 inch pitch diameter (102 mm). The planet gears have 36 teeth each and a 6 inch (153 mm) pitch diameter. And the ring gear which is internal has 96 teeth and a pitch diameter of 16 inches (466 mm). All the gears have a 0.725 inch face width (18.4 mm).

The planet bearings are the other key elements in the transmission. These bearings are 75-02 single row cylindrical roller bearings with a 1 inch width (25 mm) and an outside diameter of 5 1/8 inches (130 mm). These bearings have a nominal basic dynamic capacity of 18,200 pounds (81 km) each.

Since the transmission is isolated from external side and thrust loads by outside bearings, these three bearings and five gears comprise the critical elements in the transmission. It is assumed that their loading is sufficiently light to prevent early tooth rupture or bearing brinelling. It is assumed that the life of each component is based on Hertzjan stress pitting fatigue and that the strength in this mode is continually reduced with load cycles.

In order to combine the reliabilities of the transmission components into a consistent system reliability, all component load cycles will be reflected

Figure 4.9-1. Planetary Gear Reduction

into a common counting basis of input sun rotations. This requires a little kinematics.

For a planetary gear train, the number of relative rotations of the plant gear with respect to the planet spider or arm in terms of input sun rotations is:

$$\Theta_{P/A} = \frac{R_S}{R_P(R_S + R_R)} \Theta_S$$

where the subscripts denote the respective gears: S - sun, R - ring and P - planet. The R's represent the respective gear radii. Thus:

$$\Theta_{P/A} = \frac{-2(8)}{3(2+8)} \Theta_{S} = -0.533 \Theta_{S}$$

The negative sign indicates rotation in the opposite direction to $\theta_{\text{S}}.$ Since the speeds are proportional to the number of revolutions

$$\omega_{P/A} = -0.533$$
 (1500) = -800 RPM.

Since the loads on the gears and bearings are stationary with respect to the planetary spider or arm, we are also interested in the number of relative rotations of the sun gear and the ring gear with respect to the arm in terms of input sun rotations:

$$\Theta_{S/A} = \frac{R_R}{R_S + R_R} \Theta_S = \left(\frac{8}{2+8}\right) \Theta_S$$
 $\Theta_{S/A} = 0.8 \Theta_S$
 $\omega_{S/A} = 0.8 (1500) = 1200 \text{ RPM}$

and

$$\Theta_{R/A} = -\frac{R_S}{R_S + R_R} \Theta_S = \frac{-2}{2+8} \Theta_S$$
 $\Theta_{R/A} = -0.2 \Theta_S$
 $\Theta_{R/A} = -0.2 (1500) = -300 \text{ RPM}$

The forces on the components can be found from the power and input speed.

$$T_i = \frac{Power}{\omega_S} \left[63025 \frac{1b-in RPM}{HP} \right]$$

$$T_i = \frac{200}{1500} (63025) = 8403 lb-in$$

where Ti is the total input torque on the sun gear.

As shown in Figure 4.9-2, this torque produces equal tangential tooth loads F_T and a planet bearing load of twice this value,

$$F_{\rm T} = \frac{{\rm T}_{\rm i}}{{\rm nR}_{\rm S}} = \frac{8403}{3(2)}$$

$$F_T = 1400.5 \text{ lbs}$$

$$F_B = 2F_2 = 2801 \text{ lbs}$$

This assumes equal load sharing among the planets and no dynamic loading in the gear meshes.

Given these loads, one can determine the ℓ_{10} lines and effective dynamic capacities of the five components in terms of their own load cycle counts. The two basic relationships for each element are:

$$\ln \frac{1}{S} = \left[\ln \frac{1}{.9}\right] \left(\frac{\ell}{\ell_{10}}\right)^{E}$$

where S is the reliability of the component for ℓ load cycles and ℓ_{10} is the number of cycles at this load for which the component has a reliability of 90 percent and E is the Weibull shape parameter for this reliability distribution. Normally E is taken as 1.2 for roller bearings (it may be as high as 1.5 for tapered roller bearings) and as 2.5 for gears based on testing at NASA Lewis Research Center. The second relationship is that for basic dynamic capacity, or:

$$\ell_{10} = \left(\frac{C}{F}\right)^{P}$$

where C is the basic dynamic capacity of the component, or the load at which 90 percent of the units will last for 10^6 load cycles. Here F is the applied load, ℓ_{10} is the corresponding 90% reliability life and p is the load life factor. The exponent p is normally taken as 10/3 for roller bearings and the NASA Lewis Research Center tests for gears indicates that 4.3 is an appropriate value for gears. The dynamic capacity equation is often modified for bearings as

$$\ell_{10} = a \left(\frac{C}{VF}\right)^p$$

where a is a factor used to increase the life estimate for improved material properties due to a reduction in impurities of the roller and race materials. According to the Roller Elements Committee of the lubrication committee of the ASME, life improvements of from 3 to 8 times are not uncommon. This factor

Figure 4.9-2. Planet Gear Forces

'a' may also be used to derate the life of the bearing if its speed of operation is extremely high (DN > 400,000 RPM-mm) or extremely low (DN < 10,000 RPM-mm) or if the lubrication to the bearing is inadequate. For this application the roller speed is

$$DN \approx \left[\frac{75 \text{ mmID} + 130 \text{ mmOD}}{2}\right] 800 \text{ RPM}$$

as the operating speed should not be a problem. Although helicopter manufacturers use improved steels and lubrication in their transmissions and often use life improvement factors in the order of 8 in their calculations, we chose, in this example, to use a factor of 1/1.5 or 0.67 to indicate unsureness of the dynamic loading on the bearing (this is equivalent to a load factor of 1.13). At best, one can say that this factor is conservative, the 1972 AFBMA standard recommends a factor of 3 for a reasonable application, but disclaimers are also present. In addition to the life adjustment factor, there is also a load adjustment factor, V. The value of 1.2 is used since the counterformal contact on the inner race produces higher stresses than the conformed contact on the outer race does. The choice of not using this factor may be justified in the wide range of the life improvement factor. However for two identical bearings for which one has the load cycling on the inner race and the second has the same load cycling on the outer race, the first bearing will fail first due to its higher stress state.

With all this under advisement, the component ℓ_{B10} life in bearing load cycles of a single planet bearing is:

$$\ell_{B10} = a(\frac{C}{VF})^p$$

$$\ell_{B10} = \frac{1}{1.5} \left[\frac{18,200}{1.2(2801)} \right]^{3.33}$$

$$\ell_{B10} = 184.8 \times 10^6 \text{ cycles}$$

In a similar fashion, the dynamic capacity of a gear tooth is related to its life as:

$$\ell_{10} = \left(\frac{C_T}{F}\right)^{-p}$$

where \mathcal{C}_T is the dynamic capacity of a tooth and F is the tangential pitch point load on that tooth. From tests on a particular gear material (AISI 9310

Vacuum Arc Remelt Steel) at over 9,000 ft/min pitch line velocity, the dynamic capacity, $C_{\rm T}$, is given by:

$$C_{T} = B_{1} \frac{F \sin \phi}{(\frac{1}{R_{1}} + \frac{1}{R_{2}})}$$

where B_1 is the material constant determined by test to be 21,000 psi, F is the face width of the gear, ϕ is the pitch line pressure angle and R_1 and R_2 are the pitch radii of the two gears.

For the sun-planet mesh,

$$c_s = \frac{(21,000) (.725) \sin (20^{\circ})}{\frac{1}{2.0} + \frac{1}{3.0}}$$

$$C_{S} = 6,250 \text{ lbs}$$

For the ring-planet mesh,

$$C_{R} = \frac{(21,000) (.725) \sin (20^{\circ})}{\frac{1}{3} - \frac{1}{3}}$$

$$C_p = 25,000 \text{ lbs.}$$

Unfortunately, the wide range of data available for bearing lives is not matched for gears. Since it is on the basis of this data that the life adjustment factors are established, corresponding factors do not exist in gearing. More statistical gear life data is really needed for gearing. The direct application of the NASA Lewis Research Center gear test data outside the load cycle range of the tests (1.2-3 X 10⁷ cycles) appears to be conservative.

の関係の関係の関係という。 第一個のでは、「他のでは、」」。

For a sun gear tooth and one side of a planet gear tooth

$$z_{S10} = \left(\frac{6250}{1400.5}\right)^{4.3} 10^6 = 620 \times 10^6 \text{ load cycles.}$$

For a ring gear tooth and the other side of the planet gear tooth $\frac{1}{25000}$ $\frac{4.3}{6}$

$$v_{R10} = \left(\frac{25000}{1400.5}\right)^{4.3} 10^6 = 241 \times 10^9 \text{ load cycles.}$$

The next step is to reflect these lines and capacities to a common counting basis, input sun torque and rotation.

For a single bearing

$$\frac{L_{B10}}{\theta_S} = \frac{t_{B10}}{\theta_{P/A}}$$

$$L_{B10} = \frac{\theta_S}{\theta_{D/A}} \ell_{B10} = \frac{1}{.533} (184.8 \times 10^6)$$

$$L_{R10} = 347 \times 10^6$$
 Revolutions

$$L_{B10} = 347 \times 10^6 \left[\frac{1}{1500 \times 60} \right] = 3856 \text{ hours}$$

and its dynamic capacity as an input torque is the torque for which this bearing life equals $10^{\,6}$ sun rotations

$$D_{B} = \left[\frac{R_{P}(R_{S} + R_{R})}{R_{S}R_{R}}\right]^{1/p} \left(\frac{nR_{S}C_{B}}{2}\right)$$

where

$$c_B = {C \choose V} a^{1/p}$$

is the modified bearing dynamic capacity

$$c_B = \left(\frac{18200}{1.2}\right) \left(\frac{1}{1.5}\right)^{1/3.33} = 13,430 \text{ lbs}$$

and

$$D_{B} = \left[\frac{3(10)}{2(8)}\right]^{1/3.33} \quad \left(\frac{3(2)(13430)}{2}\right)$$

 $D_{B} = 48,601 \text{ 1b-in}.$

For the sun gear we must combine the lives of the individual teeth. This is done by the product of probabilities of independent events:

 $S_S = S_T^{N_S}$, where S_S and $S_T^{T_S}$ are the reliabilities of the sun gear and a single sun gear tooth, respectively.

Thus,
$$\ln \left(\frac{1}{S_S}\right) = N_S \ln \left(\frac{1}{S_T}\right)$$

and

$$\ln \left(\frac{1}{S_S}\right) = N_S \left[\ln \left(\frac{1}{.9}\right)\right] \left(\frac{k_S}{k_{S10}}\right)^{e_G}$$

where ℓ_S is the life of the individual tooth in terms of its own load cycles, and e_G is the Weibull shape parameter. In terms of rotations, counting contacts with each of n planets per revolutions, this becomes:

$$\ell_{S} = \frac{n\Theta_{S/A}}{\Theta_{S}} L_{S}$$

OF

$$L_S = 3(0.8) L_S = 2.4 L_S$$

so each tooth receives 2.4 load cycles for each sun rotation. In terms of $L_{10}\ \mbox{lives}$

$$\ln \frac{1}{S_S} = \left[\ln \frac{1}{.9}\right] \left(\frac{L_S}{L_{S10}}\right)^{e_G} = N_S \left[\ln \frac{1}{.9}\right] \left(\frac{2.4 L_S}{\ell_{S10}}\right)^{e_G}$$

のでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、1000mのでは、1000mのでは、1000mのでは、10000mのでは、10000mのでは、10000mのでは、10000mのでは、10000mのでは、10000mのでは、10000mのでは、10000mのでは、100000mのでは、100

OF

$$L_{S10} = \left(\frac{1}{N_S}\right)^{1/e_G} = \frac{\ell_{S10}}{2.4} = \left(\frac{1}{24}\right)^{1/2.5} = \frac{620 \times 10^6}{2.4}$$

$$L_{S10} = 72.5 \times 10^6 \text{ Sun Rotations}$$

or

$$L_{S10} = 72.5 \times 10^6 \left[\frac{1}{1500 \times 60} \right] \text{ hours}$$

 $L_{S10} = 806$ hours.

Its dynamic capacity can be found from the tooth capacity in a similar fashion:

$$D_{S} = \left(\frac{1}{N_{S}}\right)^{1/e_{G}p_{G}} \left[\frac{R_{R} + R_{S}}{nR_{R}}\right]^{1/p_{G}} (nR_{S}c_{S})$$

$$D_{S} = \left(\frac{1}{24}\right)^{1/2.5(4.3)} \left[\frac{10}{3(8)}\right]^{1/4.3}$$
 (3 · 2 · 6250)

$$D_{S} = 22,762 \text{ 1b-in.}$$

For the ring gear, the calculations are similar to those for the sun gear. The reliability of the gear in terms of its teeth reliabilities are:

$$s_R = s_T^{N_R}$$

s o

$$\ln \left(\frac{1}{S_R}\right) = N_R \ln \left(\frac{1}{S_T}\right)$$

and

$$\ln \left(\frac{1}{S_R}\right) = N_S \left[\ln \left(\frac{1}{.9}\right)\right] \left(\frac{l_0}{l_{R10}}\right)^{e_G}$$

where ℓ_R is the life of the individual tooth in terms of its own load cycles. In terms of sun rotations, counting contacts with each of n planets per revolution, this becomes:

$$\ell_R = n \frac{\theta_{R/A}}{\theta_S} L_R$$

or

$$L_R = 3(0.2) L_R = 0.6 L_R$$

so each tooth receives 0.6 load cycles for each sun rotation. In terms of L_{10} lives:

$$\ln\left(\frac{1}{S_R}\right) = \left[\ln\frac{1}{.9}\right] - \left(\frac{L_R}{L_{R10}}\right)^{e_G} - N_R \ln\left(\frac{1}{.9}\right) \left(\frac{.6L_R}{R_{R10}}\right)^{e_G}$$

or

$$L_{R10} = \left(\frac{1}{N_R}\right)^{1/e_G} \frac{\ell_{R10}}{0.6} = \left(\frac{1}{96}\right)^{1/2.5} \left(\frac{241 \times 10^9}{.6}\right)$$

$$L_{p,10} = 64,710 \times 10^6 \text{ Sun Rotations}$$

or

$$L_{R10} = 64,710 \times 10^6 \left[\frac{1}{1500 \times 60} \right]$$
 hours = 719,000 hours.

Its dynamic capacity can be found from the tooth capacity in a similar fashion.

$$D_{R} = \left(\frac{1}{N_{R}}\right)^{1/e_{G}} \left[\frac{R_{R} + R_{S}}{nR_{S}}\right]^{1/p_{G}} (nR_{S}C_{R})$$

$$D_{R} = \left(\frac{1}{96}\right)^{1/2.5(4.3)} \left[\frac{10}{3(2)}\right]^{1/4.3} (3(2)(25,000))$$

$$D_{R} = 110,500 \text{ lb-in.}$$

For the planet gears, the fact that each tooth is loaded on one side by the sun gear and on the other by the ring gear changes the calculation slightly.

The numbers of load cycles that each tooth sees from either sun gear or planet gear is the number of relative rotations of the planet with respect to the arm. In terms of sun gear rotations, this is

$$\frac{\ell_{p}}{\Theta_{p/A}} = \frac{L_{p}}{\Theta_{S}}$$

$$\ell_{p} = \frac{\Theta_{p/A}}{\Theta_{S}} L_{p} = 0.533 L_{p}$$

The reliability of a planet gear is the product of the reliabilities of its individual tooth faces:

$$s_p = s_{ps}^{Np} \cdot s_{pg}^{Np}$$

where S_{PS} is the reliability of a planet tooth face meshing with the sun and S_{PR} is the reliability of a planet tooth face meshing with the ring. Thus:

$$\ln\left(\frac{1}{S_p}\right) = N_p \ln\left(\frac{1}{S_{PS}}\right) + N_p \ln\left(\frac{1}{S_{PR}}\right)$$

OF

REPRESE STOLEN RESIDENCE RESIDENCE CONTRACTOR CONTRACTO

$$\left(\frac{L_{p}}{L_{p10}}\right)^{e_{G}} = N_{p} \left(\frac{.533 L_{p}}{z_{s10}}\right)^{e_{G}} + N_{p} \left(\frac{.533L_{p}}{z_{R10}}\right)^{e_{G}}.$$

The single tooth face lives ℓ_{S10} and ℓ_{R10} are the same as those of the mating teeth on the sun and ring gears. So:

$$L_{P10} = \left(\frac{1}{N_{p}}\right)^{1/e_{G}} \left(\frac{t_{S10}t_{R10}}{.533}\right) \left[\frac{1}{t_{R10}e_{G} + t_{S10}e_{G}}\right]^{1/e_{G}}$$

$$L_{P10} = \left(\frac{1}{36}\right)^{1/2.5} \left[\frac{(620 \times 10^{6})(241 \times 10^{9})}{.533}\right] \times \left[\frac{1}{(620 \times 10^{6})^{2.5} + (241 \times 10^{9})^{2.5}}\right]^{1/2.5}$$

$$L_{P10} = 277 \times 10^{6} \text{ Sun Revolutions}$$

$$L_{P10} = 277 \times 10^{6} \left[\frac{1}{1500(60)}\right] = 3078 \text{ hours}$$

The basic dynamic capacity for a single planet gear is the input torque for which its life equals $10^6\,\mathrm{sun}$ rotations:

$$D_{p} = \left(\frac{1}{N_{p}}\right)^{1/e} G^{p} G \left[\frac{R_{p}(R_{S}+R_{R})}{R_{S}R_{R}}\right]^{1/p} G \left(\frac{n R_{S}C_{S}C_{R}}{(C_{S}^{e}G^{p}G + C_{R}^{e}G^{p}G)^{1/e}G^{p}G}\right)$$

$$D_{p} = \left[\frac{1}{36}\right]^{\frac{1}{2 \cdot 5(4 \cdot 3)}} \left[\frac{3(10)^{4 \cdot 3}}{2(8)}\right]$$

$$X = \frac{3(2) (6250) (25,000)}{((6250)^{2 \cdot 5(4 \cdot 3)} + (25,000)^{2 \cdot 5(4 \cdot 3)})^{1/(2 \cdot 5)4 \cdot 3}}$$

$$D_{p} = 31,100 \text{ lb-in.}$$

At this point all the components are rated for 90% reliability life and basic dynamic capacity in terms of our rotations.

Component	Life	Dynamic Capacity
	10 ⁶ Sun <u>Rotations</u> <u>hrs</u>	lb-in
Plant Bearing	347 3,856	48,661
Sun	72.5 806	22,762
Ring	64,710 719,000	110,500
Planet Gear	277 3,078	31,100

The combination of these lives and capacities involves the product of the probabilities of survival of all the components

$$s_T = s_B^n s_S s_P^n s_R$$

or

$$\ln \left(\frac{1}{S_{T}}\right) = \ln \left(\frac{1}{.9}\right) \left\{ n \left(\frac{L_{T}}{L_{B10}}\right)^{e_{B}} + \left(\frac{L_{T}}{L_{S10}}\right)^{e_{G}} + n \left(\frac{L_{T}}{L_{P10}}\right)^{e_{G}} + \left(\frac{L_{T}}{L_{R10}}\right)^{e_{G}} \right\}.$$

Since eg does not equal eg, this relation cannot be directly set to:

$$\ln \left(\frac{1}{S_{T}}\right) = \ln \left(\frac{1}{.9}\right) \left(\frac{L_{T}}{L_{T10}}\right)^{e_{T}}.$$

However, for values of S_T from 0.5 to 0.95, a least squares fit can be made on Weibull paper to find the values of e_T and L_{T10} which best characterize the system.

For the data of this example:

$$L_{T10} = 58.1 \times 10^6 \text{ Sun Revolutions}$$

$$L_{T10}$$
 58.1 x $10^6 \left[\frac{1}{1500(60)} \right] = 646 \text{ hours}$

and the Weibull slope for the system is

$$e_{T} = 2.12.$$

At similar situation exists for the system's dynamic capacity. To find:

$$c_{T10} = (\frac{\bar{v}_T}{\bar{\tau}_i})^{P_T}$$

one can take the equation for L_{T10} and vary the input torque over a range of 0.1 D_T to D_T and find the corresponding L_{T10} lives. A least square fit of this L_{T10} vs. $T_{\dot{1}}$ data on log-log paper will produce a linear curve for which

$$D_T = 22,605 \ 1b-in$$

and

$$e_{T} = 4.03.$$

So a system Weibull and load life model for this example is

$$\ln \left(\frac{1}{S_T}\right) = \ln \left(\frac{1}{.9}\right) \left[\frac{L_T}{58.1}\right]^{2.12}$$

and

$$L_{T10} = \left(\frac{22,605}{T_i}\right)^{4.03}$$

4.10 Reliability Prediction Method - Minimum Information

The methods of this section are to be employed when there is not sufficient statistical data nor sufficient structural/analytical information concerning the nonelectronic part to allow the use of the other methods of this notebook to obtain reliability predictions.

The circumstances which lead to the necessity of using this section are partly due to rapid advancement of technology. New parts are constantly being introduced with hardly enough lifetime history to allow the vendor to set a warranty or service life (also called useful life). This service life is usually available from the vendor and can be used in conjunction with data from similar devices to provide reliability predictions.

The following examples illustrate the use of this type of information in determining Weibull parameters and failure rates. In the Weibull case, two quantities (usually the shape parameter or "slope" as it is often called, and the vendor supplied service life) are used. In the constant failure rate case (exponential distribution), the service life is sufficient.

4.10.1 Examples

Example 1. The expected service life of a hydraulic motor has been calculated by the vendor to be 12,413 hours where the service life is defined as the minimum life expected without failure of the motor section exclusive of the bearing section. The bearing section has been calculated to have an L_{10} life of 50,000 hours in this application, i.e., 90% probability of surviving 50,000 hours. The preceding constitutes the only information available to be reliability analyst.

In the following calculation, the motor section service life estimate will be conservatively assumed to be the tenth pecentile of failure, L_{10} , of a Weibull distribution. The slope, β_{M} , is assumed to be 2, which is consistent with the scatter in lives to be expected when fatigue is the dominant failure mechanism. The calculated bearing section L_{10} is reduced to 25,000 hours to account for less than ideal lubrication. The distribution is assumed to be Weibull with a slope, β_{B} , of 1.5 which is consistent with practice.

The characteristic lives of the motor section, α_M can now be computed. Since the L10 life of the motor is 12,413, it must be that

.90 = exp
$$\left\{-(L_{10}/\alpha_{M})^{\beta_{M}}\right\}$$

or

.90 = exp
$$\left\{ - (12413/\alpha_{M})^{2} \right\}$$

so that $\alpha_M = (12,413)/(-\ln(.90))^{1/2} = 38,241$ hours

Similarly, $\alpha_B = (25,000)/(-\ln(.90)^{1/1.5}) = 112,070$ hours

Finally, an average failure rate for a use life, t, is calculated using an average Weibull competing risk cumulative hazard model:

$$\bar{\lambda}_{t} = \left(\frac{t^{\beta_{m}-1}}{\alpha_{m}^{\beta_{m}}} + \frac{t^{\beta_{B}-1}}{\alpha_{B}^{\beta_{B}}}\right)$$

where:

t = 10,000 hours
$$\beta_{m} = 2$$

 $\alpha_{M} = 38,241$ $\beta_{B} = 1.5$.
 $\alpha_{B} = 112,070$

$$\overline{\lambda}_{10,000} = \left[\frac{10,000}{(38241)^{2}} + \frac{(10,000)^{.5}}{(112070)^{1.5}} \right] = 9.5 \times 10^{-6}$$

or 9.5 failures per million hours.

Should this failure rate be unacceptably high, a lower failure rate can be obtained by reducing the in-use life or by redesign of the motor section to obtain a greater L_{10} life rating.

Example 2. Ball Screw Reliability Estimation

A ball screw is to be applied in an environment which includes vibration and salt-laden air. Vendor catalog information provides an L_{10} life of 20 x 10^6 inches under the conditions of loading and lubrication of this application. Discussions with the vendor's engineering staff suggest that the given L_{10} is realistic provided a life correction factor of 0.5 is used to account for the special environmental conditions. The vendor also states that test data indicates that the lives will follow the Weibull distribution with a β of 3 when grease lubricated as in this application. In operation there will be 60 inches of travel per cycle and 13 cycles per hour.

Estimate the reliability for a service life of 10,000 hours.

Life $L_{10} = 20 \times 10^6 \times 0.5$ inches = 10^7 inches.

$$cyc/hr = 13$$

 $in/cyc = 60$

Weibull Distribution = $1 - \frac{e^{\left(\frac{t}{\alpha}\right)^{\beta}}}{e^{-\frac{t}{\alpha}}}$ $\beta = 3$

Service Life (t) = 10,000 hours.

Convert L_{10} inches to L_{10} hours.

$$L_{10} \text{ hrs} = \frac{10^7}{(13)(60)} = 12,821 \text{ hours.}$$

Since $\beta = 3$, and since the L₁₀ life satisfies .90 = exp $\left\{-(L_{10}/\alpha)^{\beta}\right\}$, it follows that $\alpha = (12821)/(-\ln(.9))^{1/3} = 27,145$ hours. Thus, the reliability for t = 10,000 hours is R (10,000) = exp $\left\{-(10000/27145)^{3}\right\} = 0.951$.

If an average failure rate over the 10,000 hours service life is required, it can be calculated as follows:

$$\bar{\lambda}(t) = \frac{t^{\beta-1}}{\alpha^{\beta}}$$

とうましたとうできましているとのでは、「「「「「「「」」でいっている。「「「」」でいっている。「「「」」でいっている。「「「」」でいっている。「「「」」でいっている。「「「」」でいっている。「「「」

$$\bar{\lambda}(10,000) = \frac{(10,000)^2}{(27145)^3} = 5.0 \times 10^{-6}$$

or 5 failures per million hours.

Example 3. Estimation of a Constant Failure Rate Based on Service Life.

As demonstrated in this Notebook, most of the time it can be assumed that the nonelectronic parts represented in this Notebook have constant failure rates. In this case, if the only information available is a vendor supplied "warranty" or "service" life, then a failure rate is easily estimated.

Occasionally, the vendor will indicate at which percentile the warranty is developed. That is, if a warranty or service life of 1000 hours is specified, the vendor may have done life testing which indicates that 1000 hours is the life beyond which 90% of the devices will survive on the

average. This would make 1000 hours the 10th percentile of the life distribution. To compute the constant failure rate, simply set $0.90=\exp(-\lambda 1000)$ and solve for λ . In this case, $\lambda = -\ln(0.90)/1000 = 0.000105$ or 105 failures per million hours. In general, use the following formula:

failure rate = -ln(1-p)/(warranty time)

where p is the quantile associated with the warranty time. Usually, p=0.10 but occasionally, if the vendor information is suspect, or the vendor will not say what value p should be, use p=0.05.

5.0 PART FAILURE CHARACTERISTICS

5.1 Introduction. The following sections of the notebook describe the analyses of the nonelectronic part failure data collected for this study. Section 5.2 presents the results of fitting the exponential distribution to the failure data for each part class, part type, and environment. Sections 5.3 - 5.5 present the results of testing the fit of the exponential distribution against Weibull alternatives for the data corresponding to some items. Section 5.6 gives part malfunction data and frequency of occurrence for some parts. It should be pointed out that the data used for preparation of this notebook was screened to exclude secondary failures and failures caused by maintenance personnel.

The environment abbreviations in the tables of this section follow the conventions of MIL-HDBK-217D. For convenience, these abbreviations are defined in table 5.1.1. More detailed descriptions may be found in MIL-HDBK-217D.

Finally, an explanation of the confidence intervals presented in sections 5.2 through 5.5 is necessary. These confidence intervals (for failure rate in the exponential cases, and for the shape and scale parameters in the Weibull analyses) have been called "60% confidence intervals." In the tables, however, the lower and upper bounds are labeled "80% lower" and "80% upper" bounds. This has been done so that either one-sided bound can be used by itself to form a one-sided 80% confidence interval if desired. When the two 80% bounds are combined to form a two-sided interval, the resultant confidence is 60%.

TABLE 5.1.1 DEFINITIONS OF ENVIRONMENT ABBREVIATIONS

Abbreviation	Environment
AIF	Airborne, Inhabited, Fighter
AIT	Airborne, Inhabited, Transport
ARW	Airborne, Rotary Winged
AUF	Airborne, Uninhabited, Fighter
AUT	Airborne, Uninhabited, Transport
GB	Ground, Benign
G P	Ground, Fixed
GM	Ground, Mobile
ML	Missile, Launch
NS	Naval, Sheltered
NSB	Naval, Submarine
NU	Naval, Unsheltered

^{5.1.1} Use of Constant Failure Rate Analyses. We recommend that the results presented in Section 5.2 be used as follows. First, find the

part class, part type, and environment of interest in the tables listed in section 5.2. The corresponding table will give a point estimate (also referred as a "prediction" in many reliability circles) of failure rate per million hours. A two-sided 60% confidence bound on the failure rate is also given in order to give the user a feel for the precision of the estimate. Also included is the number of independent sources (usually projects) which contributed to the estimates, along with total number of failures, total part operating hours and an estimate of mean life (i.e., mean operating time to failure). In a large number of cases, less than 50,000 hours of operating time were available so that care should be taken to examine the width of these confidence intervals. In cases where the total part operating hours shown are less than 1,000 hours, failure rate information is not tabulated. For these cases, the user should be very cautious in using the information presented for reliability purposes. Wherever there is more than one source contributing to an estimate, the observed significance level of a statistical test of homogeneity (also called a p-value, see Cox & Hinkley (1974), p. 66, for further discussion) is given. This test of homogeneity was performed in order to determine if the sources reporting failures were statistically different. In general, the observed significance level is between 0 and 1 with values close to 0 indicating evidence to reject homogeneity. We recommend a threshold of 0.05 for the homogeneity test, i.e., homogeneity is rejected if the observed significance level is below 0.05.

5.1.2 Use of Weibull Analyses. Most data collected was restricted to total operating time and total number of failures. While this approach is adequate (sufficient, in fact, in the statistical sense) when dealing with the exponential distribution, it does not provide a means of evaluating the "fit" or validity of the exponential model. The validity of the exponential distribution for describing the life distribution for nonelectronic parts was one of the central issues addressed by this study.

In order to address this important issue, data sets that contained actual part lifetimes for each failed part and total operating time were collected. In most cases, part lifetime data simply did not exist. However, for a significant number of part classes, part types, and environments, these data were available and were used to test the fit of the exponential distribution against Weibull alternatives. The Weibull family of distributions is rich enough to approximate virtually any unimodal life distribution and is therefore applicable for most nonelectronic parts. Moreover, the Weibull distribution is the resultant extreme-type distribution for describing lifetimes of nonelectronic parts which fail in accordance with a "weakest link" scenario. technique for testing the fit of a distribution by embedding it in a parametric family of distributions is called a "smooth goodness-of-fit test," and is described in further detail in Lawless (1982), p. 438. Since the lifetime data was not collected under any of the commonly treated sampling plans, i.e., nonreplacement type I or II censoring, or complete samples, the goodness-of-fit procedure had to be developed ad hoc, and the smooth goodness-of-fit approach allowed the use of standard likelihood ratio procedures in performing the test. The results of these analyses are presented in sections 5.3 - 5.5.

If the same part class, part type, and environment is reported in sections 5.3 - 5.5 a Weibull analysis was performed (this is indicated in the index to Section 5.2). Use the information in the Weibull table to decide whether to adopt the Weibull distribution, or retain the exponential distribution. For each of the part classes, part types and environments analyzed in sections 5.3 - 5.5, a table summarizing the results is presented. Each table contains a point estimate of mean life (i.e. mean time to failure in hours), and point and 60% confidence interval estimates for the Weibull scale parameter (in hours) and shape parameter (unitless). Also included are total part operating hours, and total failures. In cases where there was a predominant failure mode, this failure mode is given in the comments field, along with the observed significance level for the test of exponentiality. The observed significance level for testing exponentiality is used to decide whether to adopt the Weibull model, or to retain the exponential model. As before, we recommend that the threshold value be 0.05, i.e. reject exponentiality if the observed significance level is less than 0.05, and retain exponentiality otherwise. However, depending on the particular circumstances, the analyst using the observed significance level may wish to base the decision on a different threshold value, e.g. 0.10, 0.005, 0.001, etc. In the majority of cases, the exponential model is shown to be the best fit based on the 0.05 level of significance.

If the Weibull model is shown to be the better fitting model, it may still be desirable to approximate the distribution by the exponential distribution. This approximation is useful if the nonelectronic part(s) under consideration are part of a large system in which the other elements exhibit exponentially distributed lifetimes, and it is necessary to analyze the system as a whole. For exponential approximations it is recommended that the point estimate of the mean for the Weibull be used in the exponential model whenever the Weibull shape parameter is greater than one. When the Weibull shape parameter is less than one, use the mean life estimate from the appropriate table in section 5.2. These guidelines will yield conservative results (i.e. lower bounds) when computing system reliability for the series string in the case where the Weibull shape parameter is greater than one.

A total of 145 part classes/ types were analyzed in sections 5.3 - 5.5. In 6 of those cases exponentiality would be rejected at the 0.05 level of significance. This is not statistically significant. These results suggest that the exponential distribution is an adequate life model for most nonelectronic parts that are operated for time periods smaller than those analyzed in sections 5.3 - 5.5, i.e., there is a time period for most nonelectronic parts during which a constant failure rate model is appropriate. This phenomenon, conjectured in previous editions of this notebook, is supported by the results of sections 5.3 - 5.5.

5.2 Constant Failure Rate Analysis 5.2.1 Index to Section 5.2

Part Class	Part Type	Identification Number*
ACCELEROMETER	FORCED BALANCED	1*
ACCELEROMETER	PENDULUM, LINEAR	2
ACCELEROMETER	PENDULUM, SINGLE AXIS	3
ACCUMULATOR	HYDRAULIC	4
ACCUMULATOR	HYDRAULIC-PNEUMATIC	5
ACTUATOR	ELECTRICAL	6
ACTUATOR	ELECTROMECHANICAL (LINEA	R) 7*
ACTUATOR	ELECTROMECHANICAL (ROTAR	Y) 8
ACTUATOR	ELECTROMECHANICAL (LINEA	R) 9*
ACTUATOR	HYDRAULIC-PNEUMATIC	10
ACTUATOR	MECHANICAL	11
ACTUATOR	ROTARY	12
AIR CONDITIONER	COMFORT	13
AIR CONDITIONER	GENERAL	14
AIR CONDITIONER	PROCESS	15
ANTENNA	COMMUNICATION	16*
ANTENNA	MICROWAVE (COMMUNICATION	
ANTE NNA	RADAR	18
AXLE	GENERAL	19*
AZIMUTH ENCODER	OPTICAL	20*
BATTERY	RECHARGEABLE	21*
BEARING	BALL	22*
BEARING	ROLLER	23*
BEARING	SLEEVE	24*
BEARING NUT	GENERAL	25
BELLOWS	GENERAL	26*
BELT	GEARED	27
BELT	TIMING	28*
BELT	V-BELT	29*
BINOCULAR	NITROGEN PRESSURIZED	30
BLADE ASSEMBLY	GENERAL	31
BLOWERS & FANS	AXIAL	32*
BLOWERS & FANS	CENTRIFUGAL	33*
BOOT (DUST & MOISTURE)	GENERAL	34
BRAKE	ELE CTROMECHANICAL	35★
BRUSHES	ELECTRIC MOTOR	36*
BURNER	CATALYTIC	37
BUSHINGS	GENERAL	38*
CAM	GENERAL	39
CAMERA	MOTION (TV)	40*
CESIUM BEAM TUBE	GENERAL	41
CIRCUIT PROTECTION		
DEVICE	SPARK GAP	42*
CIRCUIT PROTECTION		

Note: An asterisk "" indicates that a Weibull analysis is included in one or more environments in Sections 5.3 - 5.5.

Part Class	Part Type	Identification Number*
DEVICE	SURGE ARRESTER	43★
CLUTCH	FRICTION	44*
CLUTCH	GENERAL	45
COMPRESSOR	GENERAL	46
COMPRESSOR	HIGH PRESSURE	47
COMPRESSOR	LOW PRESSURE	48
COMPUTER MASS MEMORY	FIXED HEAD DISK	49*
COMPUTER MASS MEMORY	MAGNETIC TAPE	50*
COMPUTER MASS MEMORY	MOVABLE HEAD DISK	51*
CONTROL TUBE ASSEMBLY	GENERAL	52
CORD/CABLE	GENERAL	53
COUNTER	ANA LOG	54
COUNTER	DIGITAL	55
COUNTER	MECHANICAL	56
COUNTER	WATER CLOCK	57
COUPLING	FLEXIBLE	58*
COUPLING	FLUID	59
COUPLING	GENERAL	60
COUPLING	RIGID	61*
CRANKSHAFT	GENERAL	62*
CROSS HEAD	GENERAL	63
DIAPHRAGMS BURST	GENERAL	64*
DIFFUSER	GENERAL	65
DISC ASSEMBLY	GENERAL	66
DISTILLATION UNIT	FROM DISTILLING PLANT	67
DRIVE	GEAR	68*
DRIVE	GENERAL	69
DRIVE	VARIABLE PITCH	70*
DRIVE FOR COMPUTER		
TAPES & DISCS	CAPSTAN MOTOR	71
DRIVE FOR COMPUTER		
TAPES & DISCS	DISCS	72*
DRIVE FOR COMPUTER		
TAPES & DISCS	MAGNETIC TAPE TRANSPORT	73*
DRIVE FOR COMPUTER		
TAPES & DISCS	REEL MOTOR	74
DRIVE ROD	GENERAL	75
DRUM	GENERAL	76 *
DUCT	GENERAL	77*
ELECTRIC HEATERS	RESISTANCE	78*
ELECTROMECHANICAL		
TIMERS	GENERAL	79*
ENGINES	GENERAL	80
FEEDHORN	WAVEGUIDE	81
FILTER	GAS (AIR)	82*
FILTER	LIQUID	83*

Note: An asterisk "" indicates that a Weibull analysis is included in one or more environments in Sections 5.3 - 5.5.

シュラを育くというとうの 質問のためをとめる 肥けられたなるのの 変圧が

Part Class	Part Type	Identification Number*
FILTER	OPTICAL	84
FITTINGS	GENERAL	85
FITTINGS	PERMANENT	86*
FITTINGS	QUICK DISCONNECT	87*
FITTINGS	THREADED	88*
FLASH LAMP	GENERAL	89
FUSE HOLDER	BLOCK	90*
FUSE HOLDER	EXTRACTOR POST	91
FUSE HOLDER	PLUG	92*
GAS DRYER DESICATOR	MOLECULAR SIEVE	93
GASKETS & SEALS	DYNAMIC	94*
GASKETS & SEALS	STATIC	95*
GEAR	ANTIROTATION	96
GEAR	BEVEL	97*
GEAR	HELICAL	98*
GEAR	HYPOID	99
GEAR	SPUR	100
GEAR	WORM	101
GEAR BOX	MULTIPLIER	102
GEAR BOX	REDUCTION	103
GEAR TRAIN	BEVEL	104
GENERA TOR	AC	105
GENERATOR	GENERAL (OXYGEN GENERATO	R) 106
GLASS (SIGHT GAUGE)	GENERAL	107
GROMMET	GENERAL	108
GIMBALS	GENERAL	109
GIMBALS	TORQUE	110
GYROSCOPE	SINGLE AXIS	111
GYROSCOPE	TWO AXIS ROTOR	112
HEAT EXCHANGERS	COPLATES	112
HEAT EXCHANGERS	GENERAL	114
HEAT EXCHANGERS	RADIATOR	115*
HEATER	WATER	116
HEATER BLANKETS	GENERAL	117
HEATER, FLEX ELEMENT	HEATER TAPE	118
HIGH SPEED PRINTER	ELECTROSTATIC	119*
HIGH SPEED PRINTER	IMPACT	120*
HIGH SPEED PRINTER	THERMAL	121
HOSE	FLEXIBLE	122
HOSE	FLEXIBLE, PROPELLANT	123
HOSE	GENERAL	124*
HOUSING	GENERAL	125
INCINERATOR	FROM SEWAGE TREATMENT	126
INSTRUMENTS	AMME TER	127*
INSTRUMENTS	FLOW METER	128
INSTRUMENTS	HUMIDITY INDICATOR	129
		- ·

^{*}Note: An asterisk "*" indicates that a Weibull analysis is included in one or more environments in Sections 5.3 - 5.5.

Part Class	Part Type	Identification Number*
Instruments	INDICATOR	130
instruments	INDICATOR (LIGHT)	131
INSTRUMENTS	INDICATOR (FLUID LEVEL)	132
INSTRUMENTS	PRESSURE GAUGE	133
Instruments	TIME METER	134
ins truments	TOTAL TIME HETER	135
INSTRUMENTS	VOLTMETER	136*
JOINT, MICROWAVE		
ROTARY	CENERAL	137*
KEYBOARD	ELECTROMECHANICAL	138*
KEYBOARD	Ceneral	139
KEYBOARD	HECHANICAL	140
KNOB	GENERAL	141
LAMP	XENON	142
LAMP HOLDER	GENERAL	143
LENS	OPTICAL	144
LOW SPEED PRINTER	DOT MATRIX	145*
MANIFOLD	General	146
METAL TUBING	GENERAL	147*
MODULES	GENERAL	148
MOTOR GENERATOR SET	AC	149
MOTOR GENERATOR SET	DC	150
MOTOR GENERATOR SET	GENERAL	151
MOTOR, ELECTRIC	> 1 HORSE POWER, AC	152*
MOTOR, ELECTRIC	> 10 Horse Power, AC	153
MOTOR, ELECTRIC	DC	154
MOTOR, ELECTRIC	DC, (4 HORSEPOWER)	155
MOTOR, ELECTRIC	HYDRAULIC, DC	156
MOTOR, ELECTRIC	SERVO, DC	1574
MOTOR, ELECTRIC	STEPPER	158*
0-RING	GENERAL	159
PARTICLE SEPARATOR	GENERAL	160
PITCH HORN	GENERAL	161
PLOTTER	ELECTROMECHANICAL	162
POWER CIRCUIT BREAKER		163
POWER CIRCUIT BREAKER	CURRENT TRIP	164*
POWER SWITCH GEAR	GENERAL	165*
PRECIPITATOR	ELECTROSTATIC	166
PRISM	OPTICAL	167
PROPELLER	GENERAL (FROM SHIP)	168
PROPORTIONING UNIT	FROM DISTILLING PLANT	169 170*
PULLEY	GEAR BELT	
PULLEY PULLEY	GROOVED V-PULLEY	171 * 172 *
	· · -	173
PUMP	CENTR I FUGAL	174*
PUMP	HYDRAULIC	1/4~

Note: An asterisk "" indicates that a Weibull analysis is included in one or more environments in Sections 5.3 - 5.5.

Part Class	Part Type	Identification Number*
PUMP	HYDRAULIC (ROTARY)	175
PUMP	PNEUMATIC	176*
PUMP	ROTARY	177
PUMP	VACUUM	178*
PUMP	VACUUM - LOBE TYPE	179
PUMP	VACUUM - RING SEAL TYPE	180
PURIFIER	CENTR I FUGAL	181
QUILL ASSEMBLY	GENERAL	182
RADOME	MICROWAVE, ANTENNA	183
REFRIGERATION PLANT	FROM AIR CONDITIONING PL	- ·
REGULATOR	ELECTRICAL	185
REGULATOR	PNEUMATIC (PRESSURE)	186
REGULATOR	PNEUMATIC (VACUUM BREAKE	
REGULATOR	PRESSURE	188
REGULATOR	TEMPERATURE	189
RESILIENT MOUNT RESILIENT MOUNT	GENERAL	190*
	SHOCK MOUNTS	191
RETAINING RING SEAL	GENERAL GENERAL	192* 193
SEAL	SOLDER	193
SENSORS	WATER LEVEL	194
SENSORS/TRANSDUCER/	WAIER LEVEL	193
TRANSMITTER	ACOUSTIC (HYDROPHONES)	104
SENSORS/TRANSDUCER/		196
Transmitter Sensors/Transducer/	AIRFLOW	197
Transmitter	FLOW (LIQUID)	198
SENSORS/TRANSDUCER/		
TRANSMITTER	HUMIDITY	199
SENSORS/TRANSDUCER/		
Transmitter Sensors/Transducer/	INFRARED	200
TRANSMITTER	MOTION	201
SENSORS/TRANSDUCER/		
TRANSMITTER	PRESSURE	202*
SENSORS/TRANSDUCER/		
TRANHSMITTER	TEMPERATURE	203*
SHAFT	GENERAL	204*
SHOCK ABSORBERS	COMBINATION	205*
SHOCK ABSORBERS	RESILIENT	206*
SLIP RING-BRUSH	POWER & SIGNAL	207
SLIP RINGS	GENERAL	208
SOLENOIDS	GENERAL	209
SOLENO IDS SOLENO IDS	LINEAR ROTARY	210*
		211
SPRING	COMPRESS ION	212

^{*}Note: An asterisk "*" indicates that a Weibull analysis is included in one or more environments in Sections 5.3 - 5.5.

SPRING GENERAL 213 SPRING TORRISION 214 SPROGET GENERAL 215 STEAMBOILER GENERAL (FROM SHIP) 216 STOW FIN GENERAL 217 SWITCH COAXIAL (ELECTROMECHANICAL) 218 SWITCH FLOW (LIQUID) 219* SWITCH PRESSURE (AIR FLOW) 221* SWITCH PRESSURE (AIR FLOW) 222* SWITCH HUMBWIREL 224* SWITCH HUMBWIREL 224* SWITCH HUMBWIREL 224* SWITCH HUMBWIREL 226 SWITCH ON TOWN 226 SWITCH HUMBWIREL 226	Part Class	Part Type	Identification Number*
SPROGET GENERAL 215 STEMBOILER GENERAL 216 STOW PIN GENERAL 217 SWITCH COAXIAL (ELECTROMECHANICAL) 218 SWITCH FLOW (LIQUID) 219* SWITCH PRESSURE (AIR FLOW) 221* SWITCH PRESSURE (AIR FLOW) 221* SWITCH ROCKER 222* SWITCH THUMBWHEEL 224* SWITCH THUMBWHEEL 224* SWITCH THUMBWHEEL 225* SWITCH HONOXYGEN GENERATOR 226 SWITCHBOARD CONTROL FROM OXYGEN GENERATOR 226 SYNCRO ASSEMBLY GENERAL 227 SYNCRO ASSEMBLY GENERAL 228 SYNCRO ASSEMBLY GENERAL 228 SYNCRO ASSEMBLY GENERAL 229 TACHOMETER GENERAL 230 TANK NON PRESSURIZED 231 TANK PRESSURIZED 232 TELESCOPE GENERAL 23*	SPRING	GENERAL	213
STEAMBOILER GENERAL (FROM SHIP) 216 STOW PIN GENERAL 217 217 218 SWITCH FLOW (LIQUID) 219* SWITCH FLOW (LIQUID) 219* SWITCH INTERLOCK 220 SWITCH FRESSURE (AIR FLOW) 221* SWITCH ROCKER 222* SWITCH THERMOSTATIC 223* SWITCH THERMOSTATIC 223* SWITCH THUMBWHEEL 224* SWITCH THUMBWHEEL 224* SWITCH WAVE GUIDE 225* SWITCH THOMBWHEEL 224* SWITCH WAVE GUIDE 225* SWITCH SYNCRO ASSEMBLY GENERAL 226 SYNCRO ASSEMBLY GENERAL 227 SYNCRO ASSEMBLY GENERAL 229 TACHONETER GENERAL 230 TANK NON PRESSURIZED 231 TANK FRESSURIZED 231 TANK FRESSURIZED 231 TANK FRESSURIZED 232 TELESCOPE GENERAL 234 TELESCOPE GENERAL 234 TELESCOPE GENERAL 235 THERMOCOUPLE GENERAL 235 THERMOCOUPLE GENERAL 236 TRACK BALL ELECTROMECHANICAL 237* TRANSMISSION GENERAL 238 TRUNNION ASSEMBLY GENERAL 239 VALVE CAS (AIR-VENT) 241 VALVE CAS (AIR-VENT) 241 VALVE PREMIATIC 242* VALVE PREMIATIC 242* VALVE PREMIATIC 242* VALVE SOLENOID OPERATED 244 VALVE (FILL & DRAIN) PRESSURE & CUTATED 244 VALVE (BIPROPELLANT- THURST) TORQUE MOTOR OPERATED 248 VALVE (BIPROPELLANT- TORQUE MOTOR OPERATED 249 WASHER PLAT 250 WASHER SHERR SPRING 255 WASHER SHERR SPRING 255 WASHER SHERR SPRING 255 WASHER SHERR STAR 255 WASHER SHERR STAR 4256 WASHER SHERR STAR 4255 WASHER SHERR STAR 4255 WASHER SATAR 4255 WAS	SPRING	TORR IS ION	214
STOW FIN GENERAL 217 SWITCH COAXIAL (ELECTROMECHANICAL) 218 SWITCH FLOW (LIQUID) 219* SWITCH INTERLOCK 220 SWITCH PRESSURE (AIR FLOW) 221* SWITCH ROCKER 222* SWITCH THERMOSTATIC 223* SWITCH THEMBHEEL 224* SWITCH THUMBHHEEL 224* SWITCH THUMBHHEEL 224* SWITCH WAVE GUIDE 225* SWITCH WAVE GUIDE 225* SWITCHOANS CONTROL FROM OXYGEN GENERATOR 226 SYNCRO ASSEMBLY GENERAL 227 SYNCRO ASSEMBLY GENERAL 228 SYNCRO (RESOLVER LOW SPEED LOW LOAD 229 TACHOMETER GENERAL 230 TANK NON PRESSURIZED 231 TANK PRESSURIZED 231 TANK PRESSURIZED 232 TELESCOPE GENERAL 234 TELESCOPE GENERAL 235 THERMINAL BOARDS GENERAL 235 THERMINAL BOARDS GENERAL 235 THERMOCOUPLE GENERAL 236 TRANK BALL ELECTROMECHANICAL 237* TRANSMISSION GENERAL 238 TRUNNION ASSEMBLY GENERAL 238 TRUNNION ASSEMBLY GENERAL 239 VALVE GAS (AIR-VENT) 241 VALVE CAS (AIR-VENT) 241 VALVE HYDRAULIC 242* VALVE SOLENOID OPERATED 246 VALVE (ISOLATION) PYROTECHNICALLY ACTUATED VALVE 245 VALVE (BIPROPELLANT-HIGH THURST) VALVE (BIPROPELLANT-HIGH THURST) TORQUE MOTOR OPERATED 249 VASHER LOCK 251 VASHER SPRING 253 VASHER SPRING 255 VASHER SPRING 255 VASHER SPRING 255 VASHER SPRING 255 VASHER STAR 255 VASHER STAR 4255 VASHER STAR VASHER	SPROCKET	GENERAL	215
STOM PIN GEMERAL 217 SWITCH COAXIAL (ELECTROMECHANICAL) 218 SWITCH FLOW (LIQUID) 219* SWITCH INTERLOCK 220 SWITCH PRESSURE (AIR FLOW) 221* SWITCH ROCKER 222* SWITCH THERMOSTATIC 223* SWITCH THEMBHEEL 224* SWITCH THUMBHHEEL 224* SWITCH WAVE GUIDE 225* SWITCH WAVE GUIDE 225* SWITCHOAND CONTROL FROM OXYGEN GENERATOR 226 SYNCRO ASSEMBLY GENERAL 227 SYNCRO ASSEMBLY GENERAL 228 SYNCRO/RESOLVER LOW SPEED LOW LOAD 229 TACHOMETER GENERAL 230 TANK PRESSURIZED 231 TANK PRESSURIZED 231 TANK PRESSURIZED 232 TELESCOPE BORES IGHT 233* TELESCOPE GENERAL 236 TRANIAL BOARDS GENERAL 235 THERMINAL BOARDS GENERAL 236 TRANISSION GENERAL 236 TRANISSION GENERAL 237 TRANISMISSION GENERAL 238 TRUNION ASSEMBLY GENERAL 239 VALVE GAS (AIR-VENT) 241 VALVE GAS (AIR-VENT) 241 VALVE VALVE SOLENOID OPERATED 246 VALVE (PILL & DRAIN) PYROTECHNICALLY ACTUATED VALVE 242* VALVE (PILL & DRAIN) PYROTECHNICALLY ACTUATED VALVE 245 VALVE (BIPROPELLANT-HIGH THURST) VALVE (BIPROPELLANT-HIGH THURST) TORQUE MOTOR OPERATED 249 VASHER LOCK 225 VASHER SPRING 255 VASHER STAR 255 VASHER STAR 4255 VASHER STAR VASHER STAR VASHER STAR 4255 VASHER STAR 4255 VASHER STAR 4255 VASHER STAR VASHER STAR 4255 VASHER STAR VA	STEAMBOILER	GENERAL (FROM SHIP)	216
SWITCH FLOW (LIQUID) 219* SWITCH INTERLOCK 220 SWITCH PRESSURE (AIR FLOW) 221* SWITCH ROCKER 222* SWITCH THERMOSTATIC 223* SWITCH THERMOSTATIC 222* SWITCH THERMOSTATIC 226 SYNCRO ASSEMBLY GENERAL 226 SYNCRO ASSEMBLY GENERAL 230 TANK 229 TACHOMETER GENERAL 230 TANK PRESSURIZED 231 TANK PRESSURIZED 232 TELESCOPE GENERAL 234 TELESCOPE GENERAL 234 TERMOCUPLE 234	STOW PIN		217
SWITCH INTERLOCK 220 SWITCH PRESSURE (AIR FLOW) 221* SWITCH ROCKER 222* SWITCH THERNOSTATIC 223* SWITCH THUMBHREL 224* SWITCH WAVE GUIDE 225* SWITCHBOARD CONTROL FROM OXYGEN GENERATOR 226 SYNCRO TRANSHITTER 227 SYNCRO ASSEMBLY GENERAL 228 SYNCRO ASSEMBLY GENERAL 228 SYNCRO/RESOLVER LOW SPEED LOW LOAD 229 TACHOMETER GENERAL 230 TANK NON PRESSURIZED 231 TANK NON PRESSURIZED 231 TANK PRESSURIZED 232 TELESCOPE GENERAL 234 TELESCOPE GENERAL 234 TERMINAL BOARDS GENERAL 234 TRACK BALL ELECTROMECHANICAL 235 TRACK BALL ELECTROMECHANICAL 237* VALVE CONTROL-MANUAL 240	SWITCH	COAXIAL (ELECTROMECHANIC	- · - •
SWITCH PRESSURE (AIR FLOW) 221* SWITCH ROCKER 222* SWITCH THERMOSTATIC 223* SWITCH THERMOSTATIC 224* SWITCH THUMBWHEEL 224* SWITCH WAVE GUIDE 225* SWITCHBOARD CONTROL FROM OXYGEN GENERATOR 226 SYNCRO TRANSMITTER 227 SYNCRO ASSEMBLY GENERAL 228 SYNCRO ASSEMBLY GENERAL 228 SYNCRO ASSEMBLY GENERAL 229 TACHOMETER LOW SPEED LOW LOAD 229 TACHOMETER GENERAL 230 TACHOMETER GENERAL 231 TANK NON PRESSURIZED 231 TANK PRESSURIZED 232 TELESCOPE GENERAL 234 TELESCOPE GENERAL 235 THERMOCOUPLE GENERAL 236 TRANSHISSION GENERAL 236 TRANSHISSION GENERAL 236 TRANSHIS	SWITCH	FLOW (LIQUID)	
SWITCH ROCKER 222* SWITCH THERMOSTATIC 223* SWITCH THUMBWHEEL 224* SWITCH WAVE GUIDE 225* SWITCHBOARD CONTROL FROM OXYGEN GENERATOR 226 SYNCRO TRANSMITTER 227 SYNCRO ASSEMBLY GENERAL 228 SYNCRO/RESOLVER LOW SPEED LOW LOAD 229 TACHOMETER GENERAL 230 TANK NON PRESSURIZED 231 TANK PRESSURIZED 232 TELES COPE GENERAL 234 TELES COPE GENERAL 234 TERMINAL BOARDS GENERAL 234 TREMINAL BOARDS GENERAL 235 THERMOCOUPLE GENERAL 236 TRANSMISSION GENERAL 236 TRANSMISSION GENERAL 239 VALVE GAS (AIR-VENT) 241 VALVE GAS (AIR-VENT) 241 VALVE INTERPRETARY 245 VALVE (I	SWITCH	Interlock	
SWITCH THERMOSTATIC 223* SWITCH THUMBWHREL 224* SWITCH WAVE GUIDE 225* SWITCHBOARD CONTROL FROM OXYGEN GENERATOR 226 SYNCRO TRANSMITTER 227 SYNCRO ASSEMBLY GENERAL 228 SYNCRO/RESOLVER LOW SPEED LOW LOAD 229 TACHOMETER GENERAL 230 TANK NON PRESSURIZED 231 TANK PRESSURIZED 231 TELESCOPE BCRESIGHT 233* TELESCOPE GENERAL 234 TERMINAL BOARDS GENERAL 235 THARMOUPLE GENERAL 235 TRANSMISSION GENERAL 236 TRANSMISSION GENERAL 238 TRUNNION ASSEMBLY CENERAL 238 VALVE CONTROL-MANUAL 240 VALVE HYDRAULIC 242* VALVE HYDRAULIC 242* VALVE HYDRAULIC 245 VALVE	SWITCH	PRESSURE (AIR FLOW)	
SWITCH THURBWHEEL 224* SWITCH WAVE GUIDE 225* SWITCHBOARD CONTROL FROM OXYGEN GENERATOR 226 SYNCRO TRANSMITTER 227 SYNCRO ASSEMBLY GENERAL 228 SYNCRO/RESOLVER LOW SPEED LOW LOAD 229 TACHOMETER GENERAL 230 TANK MON PRESSURIZED 231 TANK PRESSURIZED 232 TELES COPE BCRESIGHT 233* TELES COPE GENERAL 234 TERMINAL BOARDS GENERAL 235 THERMOCOUPLE GENERAL 235 TRANSMISSION GENERAL 236 TRANSMISSION GENERAL 238 TRUNN ION ASSEMBLY CENERAL 239 VALVE CONTROL-MANUAL 240 VALVE GAS (AIR-VENT) 241 VALVE HYDRAULIC 242* VALVE PREMATICALLY ACTUATED 244* VALVE (FICLL & DRAIN) HAND OPERATED 245 </td <td>SWITCH</td> <td>ROCKER</td> <td></td>	SWITCH	ROCKER	
SWITCH WAVE GUIDE 225* SWITCHBOARD CONTROL FROM OXYGEN GENERATOR 226 SYNCRO TRANSMITTER 227 SYNCRO ASSEMBLY GENERAL 228 SYNCRO/RESOLVER LOW SPEED LOW LOAD 229 TACHOMETER GENERAL 230 TANK NON PRESSURIZED 231 TANK PRESSURIZED 232 TELES COPE GENERAL 234 TELES COPE GENERAL 234 TERMINAL BOARDS GENERAL 235 THERMOCOUPLE GENERAL 236 TRACK BALL ELECTROMECHANICAL 237* TRANSMISSION GENERAL 238 TRANSMISSION GENERAL 238 VALVE CONTROL—HANUAL 240 VALVE GAS (AIR-VENT) 241 VALVE HYDRAULIC 242* VALVE HYDRAULIC 243* VALVE (ISOLATION) PYROTECHNICALLY ACTUATED 245 VALVE (BIPROPELLANT- HAND OPERATED 246<	SWITCH	THERMOSTATIC	223*
SWITCHBOARD CONTROL FROM OXIGEN GENERATOR 226 SYNCRO TRANSMITTER 227 SYNCRO ASSEMBLY GENERAL 228 SYNCRO/RESOLVER LOW SPEED LOW LOAD 229 TACHOMETER GENERAL 230 TANK NON PRESSURIZED 231 TANK PRESSURIZED 232 TELESCOPE BCRESIGHT 233* TELESCOPE GENERAL 234 TERMINAL BOARDS GENERAL 235 THERMOCOUPLE GENERAL 235 TRACK BALL ELECTROMECHANICAL 237* TRANSMISSION GENERAL 238 TRUNNION ASSEMBLY GENERAL 238 TRUNNION ASSEMBLY GENERAL 239 VALVE CONTROL-MANUAL 240 VALVE GAS (AIR-VENT) 241 VALVE HYDRAULIC 242* VALVE PNEUMATIC 243* VALVE SOLENOID OPERATED 244 VALVE (FILL & DRAIN) PRESSURE ACTUATED 246 <td>SWITCH</td> <td>THUMBWHEEL</td> <td>224*</td>	SWITCH	THUMBWHEEL	224*
SYNCRO TRANSMITTER 227 SYNCRO ASSEMBLY GENERAL 228 SYNCRO/RESOLVER LOW SPEED LOW LOAD 229 TACHOMETER GENERAL 230 TANK NON PRESSURIZED 231 TANK PRESSURIZED 232 TELESCOPE GENERAL 234 TERMINAL BOARDS GENERAL 235 THERMOCOUPLE GENERAL 236 TRACK BALL ELECTROMECHANICAL 237* TRANSMISSION GENERAL 236 TRUNNION ASSEMBLY GENERAL 239 VALVE CONTROL-MANUAL 240 VALVE GAS (AIR-VENT) 241 VALVE HYDRAULIC 242* VALVE HYDRAULIC 243* VALVE SOLENOID OPERATED 244 VALVE (ISOLATION) PYROTECHNICALLY ACTUATED VALVE 245 VALVE (FILL & DRAIN) HAND OPERATED 246 VALVE (BIPROPELLANT- TORQUE MOTOR OPERATED 248 VALVE (BIPROPELLANT- TOR	SWITCH	WAVE GUIDE	225*
SYNCRO ASSEMBLY GENERAL 228 SYNCRO/RESOLVER LOW SPEED LOW LOAD 229 TACHOMETER GENERAL 230 TANK NON PRESSURIZED 231 TANK PRESSURIZED 232 TELESCOPE BCRESIGHT 233* TELESCOPE GENERAL 234 TERMINAL BOARDS GENERAL 235 THERMOCOUPLE GENERAL 235 TRACK BALL ELECTROMECHANICAL 237* TRANSMISSION GENERAL 238 TRUNNION ASSEMBLY GENERAL 239 VALVE CONTROL—MANUAL 240 VALVE GAS (AIR-VENT) 241 VALVE HYDRAULIC 242* VALVE PNEUMATIC 243* VALVE PNEUMATIC 243* VALVE (SICLEP) PRESSURE ACTUATED 244 VALVE (FILL 6 DRAIN) PYROTECHNICALLY ACTUATED VALVE 245 VALVE (BIPROPELLANT— THORQUE MOTOR OPERATED 248 VALVE (BIPROPELLANT— TORQUE	SWITCHBOARD CONTROL	FROM OXYGEN GENERATOR	226
SYNCRO/RESOLVER LOW SPEED LOW LOAD 229 TACHOMETER GENERAL 230 TANK NON PRESSURIZED 231 TANK PRESSURIZED 232 TELESCOPE BCRESIGHT 233* TELESCOPE GENERAL 234 TERMINAL BOARDS GENERAL 235 THERMOCOUPLE GENERAL 236 TRACK BALL ELECTROMECHANICAL 237* TRANSMISSION GENERAL 238 TRUNNION ASSEMBLY GENERAL 239 VALVE CONTROL-MANUAL 240 VALVE GAS (AIR-VENT) 241 VALVE HYDRULIC 242* VALVE HYDRULIC 242* VALVE PREMATIC 243* VALVE SOLENOID OPERATED 245 VALVE (ISOLATION) PYROTECHNICALLY ACTUATED VALVE 245 VALVE (BIPROPELLANT- HAND OPERATED 246 VALVE (BIPROPELLANT- TORQUE MOTOR OPERATED 248 WASHER FLAT 250	SYNCRO	TRANSMITTER	227
SYNCRO/RESOLVER LOW SPEED LOW LOAD 229 TACHOMETER GENERAL 230 TANK NON PRESSURIZED 231 TANK PRESSURIZED 232 TELESCOPE BCRESIGHT 233* TELESCOPE GENERAL 234 TERMINAL BOARDS GENERAL 235 THERMOCOUPLE GENERAL 236 TRACK BALL ELECTROMECHANICAL 237* TRANSMISS ION GENERAL 238 TRUNNION ASSEMBLY GENERAL 239 VALVE CONTROL-MANUAL 240 VALVE GAS (AIR-VENT) 241 VALVE HYDRAULIC 242* VALVE HYDRAULIC 243* VALVE SOLENOID OPERATED 244 VALVE (ISOLATION) PYROTECHNICALLY ACTUATED VALVE 245 VALVE (RELIEF) PRESSURE ACTUATED 246 VALVE (BIPROPELLANT- HAND OPERATED 248 THURST) TORQUE MOTOR OPERATED 249 WASHER LOCK	SYNCRO ASSEMBLY	GENERAL	228
TACHOMÉTER GENERAL 230 TANK NON PRESSURIZED 231 TANK PRESSURIZED 232 TELESCOPE BCRES IGHT 233* TELESCOPE GENERAL 234 TERMINAL BOARDS GENERAL 235 THERMOCOUPLE GENERAL 236 TRANSMISSION GENERAL 238 TRUNNION ASSEMBLY GENERAL 239 VALVE CONTROL-MANUAL 240 VALVE GAS (AIR-VENT) 241 VALVE HTDRAULIC 242* VALVE PREMATIC 243* VALVE SOLENOID OPERATED 244 VALVE (ISOLATION) PYROTECHNICALLY ACTUATED VALVE 245 VALVE (RELIEF) PRESSURE ACTUATED 246 VALVE (BIPROPELLANT- HAND OPERATED 248 THURST) SOLENOID OPERATED 248 VALVE (BIPROPELLANT- TORQUE MOTOR OPERATED 249 WASHER PLAT 250 WASHER SPERING 253		LOW SPEED LOW LOAD	229
TANK PRESSURIZED 231 TANK PRESSURIZED 232 TELESCOPE BCRESIGHT 233* TELESCOPE GENERAL 234 TERMINAL BOARDS GENERAL 235 THERMOCOUPLE GENERAL 236 TRACK BALL ELECTROMECHANICAL 237* TRANSMISSION GENERAL 239 TRUNNION ASSEMBLY GENERAL 239 VALVE CONTROL—MANUAL 240 VALVE GAS (AIR—VENT) 241 VALVE HYDRAULIC 242* VALVE PNEUMATIC 243* VALVE SOLENOID OPERATED 244 VALVE (ISOLATION) PYROTECHNICALLY ACTUATED VALVE 245 VALVE (RELIEF) PRESSURE ACTUATED 246 VALVE (BIPROPELLANT— HIGH THURST) SOLENOID OPERATED 247 VALVE (BIPROPELLANT— HIGH THURST) SOLENOID OPERATED 248 VALVE (BIPROPELLANT— HIGH THURST) SOLENOID OPERATED 249 WASHER FLAT 250 WASHER SHERR 251 WASHER SHERR 252 WASHER SPRING 253 WASHER SPRING 253 WASHER STAR 254 WATER DEMINERALIZER MIX—RESIN 255	TACHOMETER	GENERAL	230
TANK TELESCOPE BCRESIGHT 233* TELESCOPE GENERAL TELESCOPE GENERAL TELESCOPE GENERAL TERMINAL BOARDS GENERAL TRANK BALL BLECTROMECHANICAL TRANKSISSION GENERAL TRUNNION ASSEMBLY VALVE CONTROL—MANUAL VALVE VALVE HYDRAULIC VALVE VALVE PNEUMATIC VALVE VALVE VALVE VALVE VALVE VALVE VALVE VALVE VALVE SOLENOID OPERATED VALVE VALVE VALVE VALVE VALVE VALVE VALVE SOLENOID VALVE VALVE VALVE VALVE SOLENOID VALVE VALVE SOLENOID VALVE VALVE BIPROPELLANT— HIGH THURST) VALVE BIPROPELLANT— THURST TORQUE MOTOR OPERATED VALVE WASHER VALVE WASHER SPRING STAR WASHER SPRING STAR WASHER STAR WATER DEMINERALIZER MIX-RESIN 233 TRUNNION CASHER STAR MIX-RESIN 234 TRUNNION CASHER STAR VALVE CONTROL—MANICAL CASH CASH CASH CASH CASH CASH CASH CASH			231
TELESCOPE BCRESIGHT 233* TELESCOPE GENERAL 234 TERMINAL BOARDS GENERAL 235 THERMOCOUPLE GENERAL 236 TRACK BALL ELECTROMECHANICAL 237* TRANSMISSION GENERAL 238 TRUNNION ASSEMBLY CENERAL 239 VALVE CONTROL-MANUAL 240 VALVE GAS (AIR-VENT) 241 VALVE HYDRAULIC 242* VALVE PNEUMATIC 243* VALVE (ISOLATION) PYROTECHNICALLY ACTUATED VALVE 245 VALVE (RELIEF) PRESSURE ACTUATED 246 VALVE (BIPROPELLANT-HICH THURST) 247 VALVE (BIPROPELLANT-THURST) TORQUE MOTOR OPERATED 249 WASHER PLAT 250 WASHER SHERR 252 WASHER SPRING 253 WASHER SPRING 253 WASHER STAR 254 WATER DEMINERALIZER MIX-RESIN 255	TANK	PRESSUR IZED	232
TELESCOPE GENERAL 234 TERMINAL BOARDS GENERAL 235 THERMOCOUPLE GENERAL 236 TRACK BALL ELECTROMECHANICAL 237* TRANSMISSION GENERAL 238 TRUNNION ASSEMBLY GENERAL 239 VALVE CONTROL-MANUAL 240 VALVE GAS (AIR-VENT) 241 VALVE HYDRAULIC 242* VALVE PNEUMATIC 243* VALVE SOLENOID OPERATED 244 VALVE (ISOLATION) PYROTECHNICALLY ACTUATED VALVE 245 VALVE (RELIEF) PRESSURE ACTUATED 246 VALVE (FILL & DRAIN) HAND OPERATED PLUG VALVE 247 VALVE (BIPROPELLANT- TORQUE MOTOR OPERATED 248 VALVE (BIPROPELLANT- TORQUE MOTOR OPERATED 249 WASHER FLAT 250 WASHER LOCK 251 WASHER SPRING 252 WASHER SPRING 253 WASHER SPRING			
TERMINAL BOARDS GEMERAL 235 THERMOCOUPLE GENERAL 236 TRACK BALL ELECTROMECHANICAL 237* TRANSMISSION GEMERAL 238 TRUNNION ASSEMBLY GENERAL 239 VALVE CONTROL-MANUAL 240 VALVE CONTROL-MANUAL 241 VALVE GAS (AIR-VENT) 241 VALVE PREUMATIC 242* VALVE PREUMATIC 243* VALVE (ISOLATION) PYROTECHNICALLY ACTUATED VALVE 245 VALVE (RELIEF) PRESSURE ACTUATED 246 VALVE (FILL & DRAIN) HAND OPERATED PLUG VALVE 247 VALVE (BIPROPELLANT- THURST) SOLENOID OPERATED 248 VALVE (BIPROPELLANT- TORQUE MOTOR OPERATED 249 WASHER FLAT 250 WASHER LOCK 251 WASHER SHERR 252 WASHER SPRING 253 WASHER SPRING 253 WASHER			234
THERMOCOUPLE GENERAL 236 TRACK BALL ELECTROMECHANICAL 237* TRANSMISSION GENERAL 238 TRUNNION ASSEMBLY GENERAL 239 VALVE CONTROL-MANUAL 240 VALVE GAS (AIR-VENT) 241 VALVE HYDRAULIC 242* VALVE PNEUMATIC 243* VALVE (ISOLATION) PYROTECHNICALLY ACTUATED VALVE 245 VALVE (RELIEF) PRESSURE ACTUATED 246 VALVE (FILL & DRAIN) HAND OPERATED 247 VALVE (BIPROPELLANT-HIGH THURST) SOLENOID OPERATED 248 VALVE (BIPROPELLANT-THURST) TORQUE MOTOR OPERATED 249 WASHER FLAT 250 WASHER SHERR 251 WASHER SHERR 252 WASHER SPRING 253 WASHER SPRING 253 WASHER STAR 254 WATER DEMINERALIZER MIX-RESIN 255			
TRACK BALL ELECTROMECHANICAL 237* TRANSMISSION GENERAL 238 TRUNNION ASSEMBLY GENERAL 239 VALVE CONTROL-MANUAL 240 VALVE GAS (AIR-VENT) 241 VALVE HYDRAULIC 242* VALVE PNEUMATIC 243* VALVE SOLENOID OPERATED 244 VALVE (ISOLATION) PYROTECHNICALLY ACTUATED VALVE 245 VALVE (RELIEF) PRESSURE ACTUATED 246 VALVE (FILL & DRAIN) HAND OPERATED 247 VALVE (BIPROPELLANT-HIGH THURST) SOLENOID OPERATED 248 VALVE (BIPROPELLANT-THURST) TORQUE MOTOR OPERATED 249 WASHER FLAT 250 WASHER SHERR 251 WASHER SHERR 252 WASHER SPRING 253 WASHER SPRING 253 WASHER STAR 254 WATER DEMINERALIZER MIX-RESIN 255			
TRANSMISSION GENERAL 238 TRUNNION ASSEMBLY GENERAL 239 VALVE CONTROL-MANUAL 240 VALVE GAS (AIR-VENT) 241 VALVE HYDRAULIC 242* VALVE PNEUMATIC 243* VALVE SOLENOID OPERATED 244 VALVE (ISOLATION) PYROTECHNICALLY ACTUATED VALVE 245 VALVE (RELIEP) PRESSURE ACTUATED 246 VALVE (FILL & DRAIN) HAND OPERATED PLUG VALVE 247 VALVE (BIPROPELLANT- TORQUE MOTOR OPERATED 248 VALVE (BIPROPELLANT- TORQUE MOTOR OPERATED 249 WASHER PLAT 250 WASHER LOCK 251 WASHER SHERR 252 WASHER SPRING 253 WASHER STAR 254 WATER DEMINERALIZER MIX-RESIN 255	-		237*
VALVE CAS (AIR-VENT) 241 VALVE HYDRAULIC 242* VALVE PNEUMATIC 243* VALVE SOLENOID OPERATED 244 VALVE (ISOLATION) PYROTECHNICALLY ACTUATED VALVE 245 VALVE (RELIEF) PRESSURE ACTUATED 246 VALVE (FILL & DRAIN) HAND OPERATED PLUG VALVE 247 VALVE (BIPROPELLANT-HIGH THURST) SOLENOID OPERATED 248 VALVE (BIPROPELLANT-THURST) TORQUE MOTOR OPERATED 249 WASHER FLAT 250 WASHER SHERR 251 WASHER SHERR 252 WASHER SPRING 253 WASHER SPRING 253 WASHER STAR 254 WATER DEMINERALIZER MIX-RESIN 255		-	
VALVE GAS (AIR-VENT) 241 VALVE HYDRAULIC 242* VALVE PNEUMATIC 243* VALVE (ISOLATION) PYROTECHNICALLY ACTUATED 244 VALVE (RELIEF) PRESSURE ACTUATED 246 VALVE (FILL & DRAIN) HAND OPERATED 247 VALVE (BIPROPELLANT-HIGH THURST) SOLENOID OPERATED 248 VALVE (BIPROPELLANT-THURST) TORQUE MOTOR OPERATED 249 WASHER FLAT 250 WASHER SHERR 251 WASHER SHERR 252 WASHER SPRING 253 WASHER STAR 254 WATER DEMINERALIZER MIX-RESIN 255	TRUNNION ASSEMBLY	GENERAL	239
VALVE GAS (AIR-VENT) 241 VALVE HYDRAULIC 242* VALVE PNEUMATIC 243* VALVE (ISOLATION) PYROTECHNICALLY ACTUATED 244 VALVE (RELIEF) PRESSURE ACTUATED 246 VALVE (FILL & DRAIN) HAND OPERATED 247 VALVE (BIPROPELLANT-HIGH THURST) SOLENOID OPERATED 248 VALVE (BIPROPELLANT-THURST) TORQUE MOTOR OPERATED 249 WASHER FLAT 250 WASHER SHERR 251 WASHER SHERR 252 WASHER SPRING 253 WASHER STAR 254 WATER DEMINERALIZER MIX-RESIN 255		CONTROL-MANUAL	240
VALVE HYDRAULIC 243* VALVE PNEUMATIC 243* VALVE SOLENOID OPERATED 244 VALVE (ISOLATION) PYROTECHNICALLY ACTUATED VALVE 245 VALVE (RELIEF) PRESSURE ACTUATED 246 VALVE (FILL & DRAIN) HAND OPERATED PLUG VALVE 247 VALVE (BIPROPELLANT- HICH THURST) SOLENOID OPERATED 248 VALVE (BIPROPELLANT- THURST) TORQUE MOTOR OPERATED 249 WASHER PLAT 250 WASHER SHERR 251 WASHER SHERR 252 WASHER SPRING 253 WASHER STAR 254 WATER DEMINERALIZER MIX-RESIN 255			
VALVE SOLENOID OPERATED 244 VALVE (ISOLATION) PYROTECHNICALLY ACTUATED VALVE 245 VALVE (RELIEF) PRESSURE ACTUATED 246 VALVE (FILL & DRAIN) HAND OPERATED PLUG VALVE 247 VALVE (BIPROPELLANT- HIGH THURST) SOLENOID OPERATED 248 VALVE (BIPROPELLANT- THURST) TORQUE MOTOR OPERATED 249 WAS HER FLAT 250 WAS HER LOCK 251 WAS HER SHERR 252 WAS HER SPRING 253 WAS HER STAR 254 WATER DEMINERALIZER MIX-RESIN 255	VALVE	HYDRAULIC	242*
VALVE SOLENOID OPERATED 244 VALVE (ISOLATION) PYROTECHNICALLY ACTUATED VALVE 245 VALVE (RELIEF) PRESSURE ACTUATED 246 VALVE (FILL & DRAIN) HAND OPERATED PLUG VALVE 247 VALVE (BIPROPELLANT- HIGH THURST) SOLENOID OPERATED 248 VALVE (BIPROPELLANT- THURST) TORQUE MOTOR OPERATED 249 WASHER FLAT 250 WASHER SHERR 251 WASHER SPRING 253 WASHER SPRING 253 WASHER STAR 254 WATER DEMINERALIZER MIX-RESIN 255	VALVE		243*
VALVE (ISOLATION) PYROTECHNICALLY ACTUATED VALVE VALVE (RELIEF) PRESSURE ACTUATED 246 VALVE (FILL & DRAIN) HAND OPERATED PLUG VALVE 247 VALVE (BIPROPELLANT- HIGH THURST) SOLENOID OPERATED 248 VALVE (BIPROPELLANT- THURST) TORQUE MOTOR OPERATED 249 WASHER FLAT 250 WASHER LOCK 251 WASHER SHERR 252 WASHER SPRING 253 WASHER STAR 254 WATER DEMINERALIZER MIX-RESIN 255			- : ;
VALVE (RELIEF) PRESSURE ACTUATED 246 VALVE (FILL & DRAIN) HAND OPERATED PLUG VALVE 247 VALVE (BIPROPELLANT- HIGH THURST) SOLENOID OPERATED 248 VALVE (BIPROPELLANT- THURST) TORQUE MOTOR OPERATED 249 WASHER FLAT 250 WASHER LOCK 251 WASHER SHERR 252 WASHER SPRING 253 WASHER STAR 254 WATER DEMINERALIZER MIX-RESIN 255	**		
VALVE (FILL & DRAIN) HAND OPERATED PLUG VALVE VALVE (BIPROPELLANT- HIGH THURST) SOLENOID OPERATED VALVE (BIPROPELLANT- THURST) TORQUE MOTOR OPERATED WASHER FLAT 250 WASHER LOCK 251 WASHER SHERR 252 WASHER SPRING 253 WASHER SPRING 253 WASHER STAR 254 WATER DEMINERALIZER MIX-RESIN 255			
VALVE (BIPROPELLANT- HIGH THURST) SOLENOID OPERATED 248 VALVE (BIPROPELLANT- THURST) TORQUE MOTOR OPERATED 249 WASHER FLAT 250 WASHER LOCK 251 WASHER SHERR 252 WASHER SPRING 253 WASHER STAR 254 WATER DEMINERALIZER MIX-RESIN 255			— · -
VALVE (BIPROPELLANT- THURST) WASHER WASHER FLAT LOCK WASHER WASHER SHERR SHERR SPRING WASHER WASHER SPRING STAR WASHER WATER DEMINERALIZER MIX-RESIN 249 249 249 250 251 250 251 252 252 253 254 WATER DEMINERALIZER MIX-RESIN 255			
VALVE (BIPROPELLANT- THURST) WASHER WASHER FLAT LOCK WASHER WASHER SHERR SHERR SPRING WASHER WASHER SPRING STAR WASHER WATER DEMINERALIZER MIX-RESIN 249 249 249 250 251 250 251 252 252 253 254 WATER DEMINERALIZER MIX-RESIN 255	HIGH THURST)	SOLENOID OPERATED	248
WASHER FLAT 250 WASHER LOCK 251 WASHER SHERR 252 WASHER SPRING 253 WASHER STAR 254 WATER DEMINERALIZER MIX-RESIN 255	VALVE (BIPROPELLANT-		2.0
WASHER LOCK 251 WASHER SHERR 252 WASHER SPRING 253 WASHER STAR 254 WATER DEMINERALIZER MIX-RESIN 255	THURST)	TORQUE MOTOR OPERATED	
WASHER SHERR 252 WASHER SPRING 253 WASHER STAR 254 WATER DEMINERALIZER MIX-RESIN 255	WASHER		
WASHER SPRING 253 WASHER STAR 254 WATER DEMINERALIZER MIX-RESIN 255	WASHER	LOCK	
WASHER STAR 254 WATER DEMINERALIZER MIX-RESIN 255	WASHER	SHERR	
WATER DEMINERALIZER MIX-RESIN 255	WASHER	SPRING	
	was her	STAR	254
WINDLASS FROM ANCHOR 256	WATER DEMINERALIZER	MIX-RESIN	255
	WINDLASS	FROM ANCHOR	256

^{*}Note: An asterisk "*" indicates that a Weibull analysis is included in one or more environments in Sections 5.3 - 5.5.

ACCEL	ACCELEROMETER	,	FORCED BALANCED		IDENTIFICATION NUMBER	N NUMBER 1
E S	DIST TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RATE	(FAILURES PER MILLION FAILURE RATE ESTIMATE	R MILLION HOURS) 80% UPPER BOUND
Ã	EXPONENTIAL	37547	18.562		26.633	37.887
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
8	2	8 3	300376	SIGNIFICANCE	E LEVEL FOR COMBINING	INING SOURCES 0.55
ACCEL	ACCELEROMETER		PENDULUM, LINEAR		IDENTIFICATION	ON NUMBER 2
EN S	DIST. TYPE	ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RATE	(FAILURES PER MILLION HOURS) FAILURE 1 8 RATE 1 8 ESTIMATE 1 8	M HOURS) 80x UPPER BOUND
AUF	EXPONENTIAL	328	15.559		30.408	55.906
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
AUF			98657			

ACCELE	ACCELEROMETER		PENDULUM, SINGLE AXIS	AXIS	IDENTIFICATION NUMBER	N NUMBER 3
EN X	DIST TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RATE	(FAILURES PER MILLION HOURS) RAILURE RATE B ESTIMATE	HOURS) 80% UPPER BOUND
AUF	EXPONENTIAL	164889	3.747		8,065	9.590
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
AUF		S	824445			
ACCUM	ACCUMULATOR		HYDRAULIC		IDENTIFICATION NUMBER	ON NUMBER 4
E N	DIST. TYPE	ESTIMATE (HOURS)	SOX LOWER BOUND	RATE	(FAILURES PER MILLION HOURS) FAILURE RATE ESTIMATE	HOURS) 80% UPPER BOUND
¥5	EXPONENTIAL	3780.	59.038		264.550	792.261
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMPRENTS		
3			3780			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ACCUM	ACCUMULATOR	H /	HYDRAULIC-PNEUMATIC	IDENTIFICAL	IDENTIFICATION NUMBER 5
EN	DIST TYPE	MEAN ESTIMATE (HOURS)	FAILURE RA 80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) 80% RATE UPPER UPPER BOUND	ION HOURS) 80% UPPER BOUND
ARK	ARW EXPONENTIAL	1914		522.513	567.516
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART COM OPERATING HOURS	COMPRENTS	
2	-	116	222004		

ACTUATOR	TOR	,	/ ELECTRICAL	IDENTIFICATION NUMBER	N NUMBER 6
EN	DIST TYPE	MEAN ESTIMATE (HOURS)	FAILUR 80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION MOURS) RAILURE RATE ESTIMATE B	HOURS) 80% UPPER BOUND
AUT	EXPONENTIAL		0.0	000 0	8 , 225
- Gr	EXPONENTIAL	214907	2.875	4.653	7.358
18	EXPONENTIAL	6047	128.783	165.368	212.044
2	EXPONENTIAL	43667.	11.718	22.901	42.103
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
AUT		0	195696		
GF	2	un i	1074536	SIGNIFICANCE LEVEL FOR COMBI	LEVEL FOR COMBINING SOURCES - 0.87
¥.		15	90707		
3		6	131000		

ACTUATOR	TOR	,	ELECTROMECHANICAL	L (LINEAR)	IDENTIFICATION NUMBER	N NUMBER 7
> W	DIST TYPE	ESTIMATE (HOURS)	80% LOWER BOUND	Æ ₩ ₩	(FAILURES PER MILLION HOURS) FAILURE 90x RATE 90PER ESTIMATE 9	HOURS) 80% UPPER BOUND
ARW	EXPONENTIAL	803	1063.898		1107.625	1153.341
63	EXPONENTIAL		0 0		000 0	124.985
E N	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	10TAL PART OPERATING HOURS	COMMENTS		
ARW		459	414400	-		
89		0	12878			
ACTUATOR	.TO#	,	ELECTROMECHANICAL	IL (ROTARY)	IDENTIFICATION NUMBER	ON NUMBER 8
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	RATE	(FAILURES PER MILLION HOURS) FAILURE 9 90% RATE 9 BOUND	HOURS) 80% UPPER BOUND
89	EXPONENTIAL		0.0		000 0	249.970
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
85		0	90			

ACTUATOR	TOR		/ ELECTROMECHANICAL (LINEAR)	(LINEAR) ! IDENTIFICATION NUMBER	ON NUMBER 9
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) 80% 1 RATE UPPER 1 ESTIMATE 1 BOUND	M HOURS) 80% UPPER BOUND
GF	EXPONENTIAL	111194	2 007		26.933
Ī	EXPONENTIAL		SEE NO.	NOTE BELOW	
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
GF		1 1 1 1 1 1 1 1 1 1 1	111194		
Ŧ		0	6		

NOTE: Low total part operating hours, develop failure data with caution

ACTUATOR	TOR		HYDRAULIC PNEUMATIC	C IDENTIFICATION NUMBER	ON NUMBER 10
₽ E	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER HILLION HOURS) RATE RATE UPPER BOUND ESTIMATE BOUND	M HOURS) 80x UPPER BOUND
AR	EXPONENTIAL	1782.	489.140	561.274	644.497
AUT	EXPONENTIAL	27878.	18.354	35.871	65.948
3	EXPONENTIAL	4610.	48.409	216.920	649.619
EN.	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING I	COMENTS	
ARE		77	78393	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
AUT		e	83634		
3	7	-	4610		

ACTUATOR	TOR	,	/ MECHANICAL		IDENTIFICATION NUMBER	ON NUMBER 11
E	DIST. TYPE	ESTINATE (HOURS)	FAILURE LOWER BOUND	8 4 7 7	(FAILURES PER MILLION HOURS) FAILURE 1 1 8 RATE 1 9	N HOURS) BOUND
AUT	EXPONENTIAL	195696.	1.140	-	5.110	15.303
3	: \$:	29741.	13.859		33.624	71.943
EN.	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMENTS		
AUT	e-1	F-I	195696			
3	Tell	2	59481			
ACTUATOR	TOR	,	/ ROTARY		I IDENTIFICATION NUMBER	ON NUMBER 12
EN	DIST. TYPE	ESTIMATE (HOURS)	FAILURE LOWER BOUND		RATE (FAILURES PER MILLION HOURS) FAILURE	M HOURS) 80% UPPER BOUND
AUT	EXPONENTIAL	1253	80 80 . S		79.758	113.460
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMENTS		
AUT	()	•	100304	-		
1 1 1 1 1 1 1 1 1 1			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , , , , , , , , , , , , , , ,		

A DECEMBER OF THE PROPERTY OF

DIST. TYPE ESTIMATE BOUND EXPONENTIAL 1406. 635.451 711	AIR	CONDITIONER	,	COMFORT		IDENTIFICATION NUMBER	N NUMBER 13
EXPONENTIAL 1406. 635.451 711 EXPONENTIAL NAMER OF OCCUPIED OPERATING OPERATS FAILED OPERATING	E	,		80% LOWER BOUND	RATE TO THE	LURES PER MILLION FAILURE RATE ESTIMATE	HOURS) 80% UPPER BOUND
V NUMBER OF NUMBER OF TOTAL PART COMMENTS SOURCES PARTS FAILED OPERATING HOURS I 64 90000 SS481 I 0 0 SS481 FAILURE RATE (FAILURE RATE (FAILURE (HOURS)) EXPONENTIAL AND STATE BOUND V NUMBER OF NUMBER OF TOTAL PART COMMENTS SOURCES PARTS FAILED OPERATING HOURS		EXPONENTIAL	1406		-		796.307
V NUMBER OF NUMBER OF TOTAL PART COMMENTS SOURCES PARTS FALLED OPERATING HOURS 1	ð		# # # # # # # # # # # # # # # # # # #	· •	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 1	27.060
1 64 90000	EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED		COMMENTS		
R CONDITIONER R CONDITIONER R CONDITIONER REAN BOX FAILURE RATE (FAILURE RATIONER V DIST. TYPE ESTIMATE LOWER EXPONENTIAL ARRANAM 0.0 O O O O O O O O O O O O O O O O O O O	G.		79	00006			
R CONDITIONER REAN DIST. TYPE EXTINATE CHOURS EXPLURE RATE (FAILURE RAIL RAIL RAIL RAIL COMMENTAL NUMBER OF NUMBER OF OPERATING SOURCES PARTS FAILED 1 10 0 1 1900	3		0	59481			
V DIST. TYPE ESTENDE BOUND FAILURE PER FAILURE PER FAILURE (HOURS) PER LOWER FAILURE ESTIMATE (HOURS) PER BOUND FERTINATE ESTIMATE EXTENDER OF NUMBER OF NUMBER OF TOTAL PART COMMENTS FAILED PHOURS FAILED HOURS		ONDITIONER	,	GENERAL		IDENTIFICATION NUMBER	W NUMBER 14
V NUMBER OF NUMBER OF TOTAL PART COMMENTS SOURCES PARTS FAILED OPERATING HOURS 1 1 0 1 1900	ENV	,		80x LOWER BOUND	A TE	LURES PER MILLION HOURS) FAILURE RATE ESTIMATE	HOURS) 80x UPPER BOUND
V NUMBER OF NUMBER OF TOTAL PART SOURCES PARTS FAILED OPERATING HOURS	3	EXPONENTIAL				000.0	847.136
0	EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED		COMMENTS		
	3	=		1900			

AIR CONDITIONER ENV DIST TYPE GF EXPONENTIAL GF SOURCES	PE ESTIMATE (HOURS) [AL	A TLED	PROCESS SOX LOWER BOUND O 0 TOTAL PART O PERATING HOURS 125000	SO PATE	(FAILURES PER MILLION HOURS) RATE ESTIMATE 0.000 12	HUMBER 15
F	MEAN TYPE ESTIMATE	~ ;	FAILURE 80% LOWER BOUND	RATE	(FAILURES PER MILLION MOURS) FAILURE RATE ESTIMATE	HOURS) 80% UPPER BOUND
EXPONENTION	ا ما اسار المار	150188.	2.744			14.246
NUMBER OF SOURCES		NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
7		2	300376	SIGNIFICANCE LEVEL	2	COMBINING SOURCES = 0.77

ANTENNA	NA NA	,	/ MICROWAVE (COMMUNICATION)	CATION) IDENTIFICATION NUMBER	N NUMBER 17
ENV	DIST TYPE	MEAN ESTIMATE (HOURS)	FAILUR 80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RAILURE BESTIMATE BESTIMATE BESTIMATE	HOURS) 80x UPPER BOUND
ARE	EXPONENTIAL	52302	16.088	19.120	22.734
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
ARW		29	1516770		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ANTENNA	*	4	/ RADAR	IDENTIFICATION NUMBER	N NUMBER 18
2	DIST. TYPE	ESTIMATE (HOURS)	FAILUR LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE ESTIMATE B	HOURS] 80% UPPER BOUND
AUT	EXPONENTIAL		5563.172	\$913.230	6287.363
GF	EXPONENTIAL	. 500000.	0.446	2.000	5.989
3	! EXPONENTIAL	8710.	25.625	27	343.830
2	EXPONENTIAL	87118	2.562	11.479	34.375
ENS	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
AUT		205	60		
Gr		-	000005		
3	2	 1	8710	SIGNIFICANCE LEVEL FOR COMBINING SOURCES 0.13	SINING SOURCES 0.13
2	60	-	87120	SIGNIFICANCE LEVEL FOR COMBINING SOURCES 0.56	SINING SOURCES= 0.56

AXLE		•	/ GENERAL	IDENTIFICATION NUMBER	N NUMBER 19
E	DIST. TYPE	ESTIMATE (HOURS)	80X LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE ESTIMATE BESTIMATE	HOURS) BOX UPPER BOUND
3	EXPONENTIAL	104835	3.932	9.539	20.410
EN S	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING	COMMENTS	
3	2	2	209669	SIGNIFICANCE LEVEL FOR COMBINING SOURCES 0.85	MING SOURCES 0.85

が発展が必要を必要を表現のことのなどのというと言葉をいっているというできませんというのである。自動では、これの言葉をいっているとの言葉をいっていると言葉をいっていると言葉をいっているというというという

AZIMU	AZIMUTH ENCODER	`	/ OPTICAL	IDENTIFICATION NUMBER	ON NUMBER 20
B ≥	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) FAILURE RATE PRATE CESTIMATE PROUND	H HOURS)
¥	EXPONENTIAL	48.5	174.759	206,408	243.927
NSB	EXPONENTIAL	23250.	24.695	43.011	72.276
2	EXPONENTIAL	24510.	8 . 105	40.800	122.185
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
£	2	31	150188	SIGNIFICANCE LEVEL FOR COMBINING SOURCES - 0.92	INING SOURCES 0.92
NSB		◀	00000		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2			24510		

BATTERY	>· ~	,	/ RECHARGEABLE	IDENTIFICATION NUMBER	ON NUMBER 21
EN <	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE ESTIMATE B	N HOURS) 80% UPPER BOUND
ARW	EXPONENTIAL	99	5131.805	5379.859	5641.117
- GF	EXPONENTIAL	1433894	0.454	0.697	1.055
3	EXPONENTIAL	121420.	\$ 0.2	8 236	13.023
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMPLENTS	
ARW		337	62641		
GF.	· ·	40	8603396	SIGNIFICANCE LEVEL FOR COMBINING SOURCES 0.90	INING SOURCES = 0.90
3	₹	v	607102	SIGNIFICANCE LEVEL FOR COMBINING SOURCES - 0.99	INING SOURCES = 0.99

BEARING	J.	8 /	BALL		
EN <	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RE RATE (FAILURES PER MILLION FAILURE ESTIMATE	M HOURS]
ARW	EXPONENTIAL	3688	242.952	271.142	302.800
Allf	EXPONENTIAL	198680.	l N	5.033	5.577
AUT	EXPONENTIAL	330237	1.739	3.028	5.089
9	EXPONENTIAL	447103	∞.	2.237	2.735
;	EXPONENTIAL	165558.		0,040	8.002
¥ 4	EXPONENTIAL	31552	19.580	31.694	50.116
2 2	EXPONENTIAL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9.751	16.984	28.540
ENS	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
AR		67	247103		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
AUF	2	7.7	15298373	SIGNIFICANCE LEVEL FOR COM	COMBINING SOURCES* 0.71
AUT		•	1320948		
95	6	22	9836258	SIGNIFICANCE LEVEL FOR COM	COMBINING SOURCES= 0.48
¥5	8	12	9	SIGNIFICANCE LEVEL FOR COMB	COMBINING SOURCES = 0.91
SN.	2	yo.		SIGNIFICANCE LEVEL FOR COM	COMBINING SOURCES 0.99
		7	(1)	SIGNIFICANCE LEVEL FOR COM	COMBINING SOURCES* 0.20

BEARING		,	/ ROLLER	IDENTIFICATION NUMBER	ON NUMBER 23
) N	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILI 80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) FAILURE RATE ESTIMATE B	N HOURS)
ARW	EXPONENTIAL	9150	71.107	109.296	165.324
- AUT	EXPONENTIAL		0.0	000.0	16.450
3	EXPONENTIAL	120150.	5 . 142	8.323	13.161
2	EXPONENTIAL	147060.	1.518	008 9	20.364
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
ARW		•	54897		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AUT		0	97848		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A S	2	v	600752	SIGNIFICANCE LEVEL FOR COMBINING SOURCES 0 99	INING SOURCES = 0.9
2		-	147060		

BEARING	9	\$ /	/ SLEEVE	IDENTIFICATION NUMBER	N NUMBER 24
EN S	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	E RATE (FAILURES PER MILLION HOURS) FAILURE RATE ESTIMATE	M MOURS) 80% UPPER BOUND
3	EXPONENTIAL	2000	278.111	346.102	430.448
P O ∀	EXPONENTIAL	293544.	092.0	3.407	10.202
5	EXPONENTIAL	202415.	3.443	4.940	7.028
3	EXPONENTIAL	214554.	3.152	4.661	6.814
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
ARW		18	54897		1 1 1 1 1 1 1 1 1 1
AUT			293544		
GF	5	60	1619318	SIGNIFICANCE LEVEL FOR COMB	COMBINING SOURCES+ 0.53
3	~		1501880	SIGNIFICANCE LEVEL FOR COMBINING SOURCES 0.86	SINING SOURCES* 0.8

BEARIN	BEARING NUT	,	/ GENERAL	IDENTIFICATION NUMBER	ION NUMBER 25
EX	DIST. TYPE	ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) 80% RATE UPPER 1 ESTIMATE BOUND	NA HOURS) 80x UPPER BOUND
A P. E.	ARW EXPONENTIAL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	425.572	548.468	700.711
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING	COMMENTS	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ARK		15	27449		

BELLOWS	SA) /	/ GENERAL		IDENTIFICATION NUMBER	N NUMBER 26
2	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) 1 SOX RATE 1 UPPER UPPER 1 BOUND	ES PER MILLION LURE FE IMATE	HOURS) 80x UPPER BOUND
AUT	EXPONENTIAL		2.281)1	10.220	30.606
£	EXPONENTIAL	75094	5. 489		13.317	28.493
NS.	EXPONENTIAL	26200.	8.518	36	38.168	114.303
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMENTS		
AUT			07848	0 0 0 0 0 0 0 0 0 0 0 0		
3	2	7	150188	SIGNIFICANCE LE	VEL FOR COMBIN	SIGNIFICANCE LEVEL FOR COMBINING SOURCES 0.77
S	-	-	26200			

EXPONENTIAL ************************************	BELT		,	GEARED		IDENTIFICATION NUMBER	ON NUMBER 27
EXPONENTIAL INTEREST TOTAL PART COMPENSOR FAILED OPERATING HOURS OF SOURCES PARTS FAILED OPERATING HOURS OF CHANNER OF TOTAL PART COMPENSOR SOURCES PARTS FAILED OPERATING OPERA	EN	DIST. TYPE		80% LOWER BOUND	RATE	(FAILURES PER MILLION FAILURE RATE ESTIMATE	HOURS) #0% UPPER BOUND
NUMBER OF NUMBER OF TOTAL PART COMMEN SOURCES PARTS FAILED OPERATING HOURS 1 0 89785 1 1 0 0 89785 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GF.	EXPONENTIAL		0.0		000 0	17.927
DIST. TYPE ESTINATE BOUND FAILURE RATE (HOURS) BOUND EXPONENTIAL 27846. 23.364 EXPONENTIAL 100125. 5.110 SOURCES PARTS FAILED OPERATING STORMER	EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED		COMMENTS		
DIST. TYPE ESTIMATE BOUND FAILURE RATE (HOURS) BOUND EXPONENTIAL 27846. 23.364 EXPONENTIAL 100125. 5.110 EXPONENTIAL 100125. 5.110 SOURCES PARTS FAILED OPERATING SOURCES 2 0 200276 STGNIFT	.		0	89785			
EXPONENTIAL 100125. S.110 EXPONENTIAL 100125. S.110 EXPONENTIAL 100125. S.110 EXPONENTIAL COMPENS SOURCES PARTS FAILED OPERATING 1 SOURCE	BELT			TIMING		IDENTIFICATION	ON NUMBER 28
EXPONENTIAL 100125. 23.364 EXPONENTIAL 100125. 5.110 V NUMBER OF TOTAL PART SOURCES PARTS FAILED OPERATING HOURS 2 6 167074	ENV		, W	80% LOWER BOUND	A A A	(FAILURES PER MILLION HOURS) FAILURE RATE ESTIMATE	N HOURS) 80% UPPER BOUND
EXPONENTIAL 100125. 1 5.110 NUMBER OF TOTAL PART SOURCES PARTS FAILED OPERATING HOURS 2 6 167074	GF.	EXPONENTIAL				35.912	54.322
SOURCES PARTS FAILED OPERATING HOURS	3	EXPONENTIAL	100125	S.		9.987	18.362
167074	ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED		COMMENTS		
22000	GF	2	6	167074	FICAN	LEVEL FOR	COMBINING SOURCES* 0.09
222222	3	2	က	300376	SIGNIFICANCE	LEVEL FOR	COMBINING SOURCES- 0.82

SELT		,	/ V-BELT		IDENTIFICATION NUMBER	ON NUMBER 29
2	DIST. TYPE	FSTIMTE (HOURS)	FAIL 80X LOWER BOUND	FAILURE RATE (FA)	(FAILURES PER MILLION NOURS) FAILURE 1 8 RATE 6	M MOURS) SOX UPPER BOUND
8	EXPONENTIAL	59481	3.752		16.812	50.348
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
8		-	59481	8-4-		
BINOCULAR	ULAR	,	NITROGEN PRESSURIZED	12ED	IDENTIFICATION NUMBER	ON NUMBER 30
E	DIST. TYPE	ESTIMATE (HOURS)	FAIL BOUND BOUND	FAILURE RATE (FAI	(FAILURES PER MILLION HOURS) FAILURE RATE ESTIMATE B	HOURS) SOX UPPER BOUND
3	EXPONENTIAL	240	607.566		1058.201	178.231
ENZ	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMPENTS		
3	e4	₹	3780	3 2. 3 2.		

BLADE	BLADE ASSENBLY	,	/ GENERAL	IDENTIFICATION NUMBER	ON NUMBER 31
ENS	DIST. TYPE	MEAN E ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE RATE BESTIMATE	HOURS) 80x UPPER BOUND
ARE	EXPONENTIAL	2745.	294.660	364.312	450.364
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING	COMMENTS	
ARV		20	A. C. S.		

ASSESSED TO SECURE ASSESSED TO SECURE ASSESSED TO SECURE ASSESSED ASSESSED

BLOWES	BLOWERS & FANS	•	/ AXIAL	IDENTIFICATION NUMBER	ON NUMBER 32
> 2	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE RI BOUND	FAILURE RATE (FAILURES PER MILLION FAILURE RATE ESTIMATE	MILLION HOURS) \$0x UPPER BOUND
AIT	EXPONENTIAL	90	80	119.900	132.078
ARY	EXPONENTIAL	2246.	401.425	445.148	493.943
AUT	EXPONENTIAL	2059.	437.736	485.774	539.422
89	EXPONENTIAL	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.0	000.00	4.764
Ğ	EXPONENTIAL	32575.	11.060	12.110	13.268
3	EXPONENTIAL	64071.	12.542	15.608	19.411
SE	EXPONENTIAL	631267	1.318	1.584	1.904
NSB		28800.	7.749	34.722	103.984
2	EXPONENTIAL	***************************************	0.0	000.0	68.259

M V	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS
AIT		6	717264	
AR		15	168483	
AUT	2	74	152334	SIGNIFICANCE LEVEL FOR COMBINING SOURCES 0.23
85		0	337888	
i GF	2	භ ග	7927205	SIGNIFICANCE LEVEL FOR COMBINING SOURCES. 0.61
3	4	61	1217343	SIGNIFICANCE LEVEL FOR COMBINING SOURCES- 0.26
S.H. i	m	56	16412950	SIGNIFICANCE LEVEL FOR COMBINING SOURCES 0.09
NSB.			28800	
2		0	23580	

BLOWER	BLOWERS & FANS		CENTRIFUGAL	IDENTIFICATION NUMBER	ON NUMBER 33
E X	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 804 LOVER BOIND	RATE (FAILURES PER FAILURE ESTIMATE	MILLION HOURS; 80% UPPER BOUND
AUT	EXPONENTIAL	3123	280.416	320.224	365.942
<u>.</u>	EXPONENTIAL	153191.	4.662	6.528	9.081
₹	EXPONENTIAL	206618.	2.990	4.840	7.653
SZ	EXPONENTIAL	120964.	6.302	8.267	10.819
NSB	EXPONENTIAL		0.0	000.0	111.775
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
AUT		47	146772		
J	₹	6	1378716	SIGNIFICANCE LEVEL FOR COM	COMBINING SOURCES # 0.18
3	es	S.	1033090	SIGNIFICANCE LEVEL FOR COMBINING	BINING SOURCES = 0.78
S N	69	13	1572530	SIGNIFICANCE LEVEL FOR COMBINING	BINING SOURCES # 0.14
NSB.		0	14400		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

B00T (DUST & MOIST	rure) /	GENERAL	8.0	IDENTIFICATION	N NUMBER 34
E X	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RE RATE (FAILURES PER FAILURE RATE ESTIMATE	PER MILLION	HOURS) 80x UPPER BOUND
ARW	EXPONENTIAL	3050	234.177	327		456.106
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
ARK	7	6	27449		8 8 8 8 9 9	
BRAKE			ELECTROMECHANICAL		IDENTIFICATION	M NUMBER 35
> X	DIST. TYPE	ESTIMATE (HOURS)	FAILURE BOUND	JRE RATE (FAILURES PER FAILURE FAILURE FAILURE FAILURE FAILURE FAILURE FAILURATE FAILURA	S PER MILLION URE MATE	HOURS) 80% UPPER BOUND
GF.	EXPONENTIAL	62500	6.595	10	000	34.234
3	EXPONENTIAL	- , - ,	182.884	508	. 855	240.971
2	EXPONENTIAL	940	61.064	106	.355	178.722
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMENTS		
GF		2	125000			
3) 	7	209669	SIGNIFICANCE LE	LEVEL FOR COMBI	COMBINING SOURCES= 0.07
Ē	2	•	37610	SIGNIFICANCE LE	LEVEL FOR COMB	COMBINING SOURCES 0.67

BRUSHES	FIS	1/	/ ELECTRIC MOTOR	IDENTIFICATION NUMBER	N NUMBER 36
M ×	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RAILURE BRATE BRAT	HOURS SOX BOUND BOUND
Aut	EXPONENTIAL		0.0	000.0	32.899
<u>.</u>	EXPONENTIAL	500000.	0.446	2.000	8.8.3
, ,	EXPONENTIAL		3.394	5.911	9.932
S.R.	EXPONENTIAL		0.0	000.0	30.717
) N	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
AUT		0	48924		
- GF			200000		
3		•	676752 ! S	SIGNIFICANCE LEVEL FOR COMBINING SOURCES - 0.80	SINING SOURCES 0.80
SN		0	52400		

BURNER	*		/ CATALYTIC	I IDENTIFICATION NUMBER	ON HUMBER 37
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) FAILURE RATE RATE BOUND ESTIMATE	HOURS) 1 BOUND 1 BOUND
S	EXPONENTIAL	0	471.959	530.241	596.124
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
NS SE		09	113156		

BUSHINGS	NGS	9 /	GENERAL	IDENTIFICATION NUMBER	N NUMBER 38
EN.	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RE RATE (FAILURES PER MILLION HOURS) RATE RATE ESTIMATE	HOURS) 80% UPPER BOUND
AUT	EXPONENTIAL	88063	60 60	11.355	14.561
	EXPONENTIAL	163567	4.601	6.114	8,100
₩.O	EXPONENTIAL	1287441.	0.654	0.777	0.924
NS	EXPONENTIAL	1250989	899.0	0.799	0.957
S N	EXPONENTIAL	936632	0.440	1.068	2.284
ER	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
AUT		15	1320948		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GF	m	12	1962806	SIGNIFICANCE LEVEL FOR COMB	COMBINING SOURCES 0.81
3	2	29	37335808	SIGNIFICANCE LEVEL FOR COMB	COMBINING SOURCES 0.27
S.N.	en	27	33776704	SIGNIFICANCE LEVEL FOR COMBINING	SINING SOURCES= 0.71
2		8	1873264		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

N A		,	GENERAL		IDENTIFICATION NUMBER	ON NUMBER 39
2	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RATE	(FALLURES PER MILLION HOURS) RAILURE RATE CSTIMATE	HOURS) 80% UPPER BOUND
AUT	EXPONENTIAL	244620.	0.912		80	12.242
G.	EXPONENTIAL	1 1261	1.770	-:-	7 .930	23.748
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FALLED	TOTAL PART OPERATING HOURS	COMMENTS		
AUT		-	244620	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
GF	60	•	126104	SIGNIFICANCE	CE LEVEL FOR COMBINING	INING SOURCES 0.65
CAMERA	A	,	MOTION (TV)		I DENTIFICATION NUMBER	ON NUMBER 40
 	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	# +	(FAILURES PER MILLION HOURS) FAILURE RATE U ESTIMATE 9	HOURS) 80% UPPER BOUND
79	EXPONENTIAL	73 88	3.686	-	135.457	214.103
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
	! !	vs .	36912	4		8 9 8 8 8 9 9 9 9

CESIU	CESTUM BEAM TUBE	,	/ GENERAL	IDENTIF	IDENTIFICATION NUMBER 41	_ :
EX	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILU BOUND BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) 100 100 100 100 100 100 100 100 100 10	ILLION HOURS) 80% 1 UPPER 1 BOUND	
9	EXPONENTIAL	29174.	22.300	34.277	51.048	
X S	EXPONENTIAL	29174.	22.300	34.277	51.848	
EKK	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
GF	5 une m. 6 1 2 ord 6 1 1 1 1 1 1 1 1 1 1 1 1 1		175045		1 0 0 0 1 1 1 2 2 3 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
SE		• • • • • • • • • • • • • • • • • • •	175045			

と言うないのうの意味のことのなどの概念ののはないない。

CIRCU	CIRCUIT PROTECTION	DEVICE /	SPARK GAP	I DENTIFICATION NUMBER	UMBER 42
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS)	URS) 80% UPPER BOUND
3	EXPONENTIAL	75094.		13.317	28.493
S.	EXPONENTIAL	49020	4.553	20.400	61.092
DE.	EXPONENTIAL	49020.	4.553	20.400	61.092
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING	COMMENTS	
3	2	2	150188	SIGNIFICANCE LEVEL FOR COMBINING SOURCES = 0.77	G SOURCES 0.77
SE			49020		
) N		-	49020		6 0 0 0 0 0 0 0 0

CIRCUI	CIRCUIT PROTECTION DEVICE		SURGE ARRESTER	IDENTIFICATION NUMBER	N NUMBER 43
E	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILUR 80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION MOURS) RATE ESTIMATE B	MOURS] 80x UPPER BOUND
3	EXPONENTIAL	61310	10.612	16.311	24.672
SE	EXPONENTIAL	395320	1.452	2.530	4.251
NSB	EXPONENTIAL	6100.	36.589	183.936	490.944
D.N.	EXPONENTIAL	73530.	3.035	13.600	40.728
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
5	(7)	9	367857	SIGNIFICANCE LEVEL FOR COMB	LEVEL FOR COMBINING SOURCES - 0.27
Z Z	2	•	1581279	SIGNIFICANCE LEVEL FOR COMBINING SOURCES. 0.10	INING SOURCES 0.10
MSB	2		6100	SIGNIFICANCE LEVEL FOR COMBINING SOURCES 0.37	IINING SOURCES 0.37
2		-	73530		

ССОТСН	.	•	/ FRICTION	IDENTIFICATION NUMBER	NUMBER 44
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	80X LOWER BOUND	FAILURE RATE (FAILURE PER MILLION HOURS) 80% RATE RATE UPPER UPPER	HOURS) 80% UPPER BOUND
GF	EXPONENTIAL	188052	3.053	8 318	80 80 80
75	EXPONENTIAL	26209.	26,593	38.155	54.278
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
g.	-	•	752208	SIGNIFICANCE LEVEL FOR COMBINING SOURCES = 0.24	ING SOURCES 0.24
3	2	•••	209669	SIGNIFICANCE LEVEL FOR COMBINING SOURCES. 0.07	IING SOURCES. 0.07

СГОТСН		,	/ GENERAL	IDENTIFICATION NUMBER	TIFICATION NUMBER 45
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILU 80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE ESTIMATE Comparison of the compa	N HOURS) 80% UPPER BOUND
AUF	AUF EXPONENTIAL	197314.	1:131	8 90 · S	15.178
ENS	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
AUF 1			197314		

COMPRESSOR	ESSOR		/ GENERAL	IDENTIFICAL	IDENTIFICATION NUMBER 46
>	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% FAILURE LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE ESTIMATE BG	TON HOURS) 1 80% 1 UPPER 1 BOUND
AUT	EXPONENTIAL		0.0	000.0	16.450
G.	EXPONENTIAL	125000	1.785	000.	23.958
3	EXPONENTIAL	29741.	13.859	33.624	71.943
EN<	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
AUT		0		0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	
.		-	125000		
3		2	59481		

COMPRESSOR	SSOR	,	/ HIGH PRESSURE		DENTIFICATION NUMBER	M NUMBER 47
EN	DIST. TYPE	ESTIMATE (HOURS)	FAILL 80X LOWER BOUND	FAILURE RATE (FA	(FAILURES PER MILLION HOURS) FAILURE RATE ESTIMATE B	HOURS) BOX UPPER BOUND
S	EXPONENTIAL	1212.	774.738		824.949	878.711
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMENTS		
SZ		194	235166		1 1 2 3 4 6 5 6 7 6 0 0	
COMPRESSOR	ESSOR	,	/ LOW PRESSURE		IDENTIFICATION NUMBER	ON NUMBER 48
₩ ₩	DIST. TYPE	ESTIMATE (HOURS)	FAILURE 80% BOUND	RATE	(FAILURES PER MILLION FAILURE RATE ESTIMATE	MILLION MOURS) 80% UPPER BOUND
N.	EXPONENTIAL	4	149.846		202.076	271.479
EN K	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
SE			54435			0 0 0 0 0 0 0 0

COMPU	COMPUTER MASS MEMORY		/ FIXED HEAD DISK	IDENTIFICATION NUMBER	ION NUMBER 49
E S	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) 804 RATE UPPER BOUND	ON HOURS] BOUND BOUND
95	EXPONENTIAL	.0588	128.633	170.928	226.448
NS i	EXPONENTIAL	12500.	17.853	80.000	239.580
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMPTENTS	
GF	end de	12	70205	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6 6 8 9 9 9 1 1 1 1 1 1
SH I		1	12500		

СОМР	COMPUTER MASS MEMORY		/ MAGNETIC TAPE	IDENTIFICATION NUMBER	N NUMBER 50
E 24	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION MOURS) RATE RATE BESTIMATE	HOURS) 80% UPPER BOUND
- GF	EXPONENTIAL	2656	350.806	376.459	404.150
3	EXPONENTIAL	1 2520.	340.445	3906.882	462.976
SE	EXPONENTIAL	9825.	70.938	101.781	144.790
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
. GF	2	155	411731	SIGNIFICANCE LEVEL FOR COMBINING SOURCES = 0.45	NING SOURCES 0.45
3		38	80707		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
N.		••	78600		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

リスト 10mm アンドルスクス 12mm アイ・ショント 1mm アイティング 1mm アスカスカストではない

では、100mmので

COMPUT		MORY /	/ MOVEABLE HEAD DISK	¥	IDENTIFICATION NUMBER	ON NUMBER 51
X	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% 10WER BOUND	RATE	(FAILURES PER MILLION FAILURE RATE ESTIMATE	MILLION HOURS) 80x UPPER BOUND
r.	EXPONENTIAL	60	73.811		105.904	150.655
SN S	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
£	2	60	75540	SIGNIFICANCE LEVEL		FOR COMBINING SOURCES= 0.12
CONTROL	TUBE ASSI	/ ATRICAL	GENERAL		IDENTIFICATION	ON NUMBER 52
> 2	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RA ====================================	(FAILURES PER MILLION FAILURE ESTIMATE	MILLION HOURS) 80% UPPER BOUND
A	EXPONENTIAL	9150.	55.922		109.294	200.936
EN <	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
ARW		က	27448			

CORD/CABLE	SABLE	9 /	/ GENERAL	IDENTIFICATION NUMBER	M NUMBER 53
EN	DIST. TYPE	ESTIMATE (HOURS)	FATLUR BOX BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE RATE BESTIMATE BESTIMATE	HOURS) SOX UPPER BOUND
9	EXPONENTIAL	180149.	3.754	5.551	8.115
3	EXPONENTIAL	421614.	1.879	2.372	2.991
SX	EXPONENTIAL	773487.	1.007	1.293	1.658
2	EXPONENTIAL	2270629.	0.272	0.440	969.0
ENV	NUMBER OF I	NUMBER OF PARTS FAILED	TCTAL PART OPERATING	COPPENTS	
<u>.</u>	m	7	1261040	SIGNIFICANCE LEVEL FOR COMB	FOR COMBINING SOURCES* 0.48
¥	2	17	7167438	SIGNIFICANCE LEVEL FOR COMBINING SOURCES # 0.18	INING SOURCES# 0.16
NS I	60	15	11602311	SIGNIFICANCE LEVEL FOR COMBINING SOURCES- 0.07	INING SOURCES- 0.07
) N	2	ស	11353145	SIGNIFICANCE LEVEL FOR COMBINING SOURCES 0.10	IINING SOURCES 0.10

COUNTER	ال جد	,	/ ANALOG	I IDENTIFICATION NUMBER	N NUMBER 54
N N N	DIST. TYPE	ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) FAILURE RATE ESTIMAT" B	HOURS) BOX UPPER BOUND
25	EXPONENTIAL	16667	3.070	000 9	11.031
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING I	COMMENTS	
<u>9</u>	-	က	200000		· 6 · 6 · 6 · 6 · 6 · 6 · 6 · 6 · 6 · 6

WE DESCRIBE ASSESSED FOR THE PROPERTY OF THE P

COUNTER	œ	0 /	/ DIGITAL		IDENTIFICATION NUMBER	N NUMBER 55
E X	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RE RATE (FAIL	RATE (FAILURES PER MILLION HOURS) 80% RATE HOPP	HOURS) 80% UPPER BOUND
AUT	EXPONENTIAL		0.0		0.000	32.899
N N	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
AUT		0	48924		0 0 0 0 0 0 0 0 0 0 0 0	
COUNTER	23 25	,	MECHANICAL		IDENTIFICATION NUMBER	ON NUMBER 56
EX	DIST TYPE	ESTIMATE (HOURS)	FAILL COWER BOUND	JRE RATE (FAI	FAILURE RATE (FAILURES PER MILLION HOURS) FAILURE FAILURE ESTIMATE B FAILURE FA	M HOURS \$0% UPPER BOUND
AUF	EXPONENTIAL		0.0		000 0	8.157
ENV	≥ ∠	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMPLENTS		
AUF		0	197314		0 0 0 0 0 0 0 0 0 0	

COUNTER	&	,	/ WATER CLOCK	IDENTIFICATION NUMBER	ON NUMBER 57
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE ESTIMATE B	K MOURS) 80% BOUND
GF	EXPONENTIAL	18000	34.322	85.25	
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
GF		ĸ	00006		

					TOENTIETCATION NUMBER	N NUP:3ER 58
COUPLING	ING	•	/ FLEXIBLE			
ENV	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILUR 80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOU'S) FAILURE RATE CSTIMATE BA	S PER MILLION URE MATE	HOU'S SOX UPPER BOUND
AUT	EXPONENTIAL	58709	11.082	71	17.033	25.765
¥5	EXPONENTIAL	100125.	5.110	6	788.6	18.362
SX	EXPONENTIAL	10480	21.294	50	95.420	285.758
2	EXPONENTIAL		0.0	0	0.000	614.335
				OTMORANGO		
EN <	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	OPERATING HOURS	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		1 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
AUT		ဖ	352253	1 1 1 1 1 1 1 0 0		
₩5	2	က	300376	SIGNIFICANCE, LE	VEL FOR COMB	SIGNIFICANCE, LEVEL FOR COMBINING SOURCES* 0.34
SN			10480		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
) N		0	2620			

OUPLING	ING		FLUID		IDENTIFICATION NUMBER	ON NUMBER 59
1 2 3 1 1 1	DIST TYPE	ESTIMATE (HOURS)	FAIL 80x LOWER BOUND	URE RATE (FAILL	FAILURE RATE (FAILURES PER MILLION HOURS) 8 FAILURE 1 1 ESTIMATE 1 B	N HOURS)
S S S	EXPONENTIAL	11700.	64.321		85.470	115.232
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMFENTS		
RS R	2	12	140400	SIGNIFICANCE	SIGNIFICANCE LEVEL FOR COMBINING	INING SOURCES 0.61
COUPLING	DNI	,	GENERAL		IDENTIFICATION NUMBER	ON NUMBER 60
) N N	DIST. TYPE	ESTIMATE (HOURS)	BOWER BOUND	A	(FAILURES PER MILLION FAILURE ESTIMATE	MILLION HOURS) 60% UPPER BOUND
SZ	EXPONENTIAL	766130	0.538		1.305	2.793
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
S Z		~	1532259			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

COUPLING	ING	# /	/ RIGID	IDENTIFICATION NUMBER	19
8	DIST. TYPE	MEAN ESTIMATE (HOURS)	SOX LOWER BOUND	RE RATE (FAILURES PER MILLION MOURS) FAILURE UPPER ESTIMATE	*Q
Fuz	EXPONENTIAL	52838.	13.784	18.926	137
	EXPONENTIAL	\$00000	1 023	2.000	3.677
3	EXPONENTIAL	524173.	1.095	1.908	3.206
#S	EXPONENTIAL	7	5.244	12.723 27.222	222
2	EXPONENTIAL	0.00	6 .002	14.562	31.158
N N	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
AUT		10	528379		
GF		m	1500000		
3	2	•	2096690	SIGNIFICANCE LEVEL FOR COMBINING SOUR	SOURCES 0.45
SE SE	=4	2	157200		
2	2	2	157340	SIGNIFICANCE LEVEL FOR COMBINING SOURCES-	ICES- 0.53

CRAN	CRANKSHAFT		/ GENERAL	I IDENTIFICATION NUMBER	N NUMBER 62
X	DIST TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) R FAILURE UPPER D ESTIMATE BOUND	HOURS) 80% BOUND
¥01	EXPONENTIAL	0 40 40	4.212	10.220	21.867
3	EXPONENTIAL	30038	20.568	33.292	52.643
2	EXPONENTIAL	# 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1	0.0	000 0	65.669
N N	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
AUT		2	195696		
3	2	ស	150188	SIGNIFICANCE LEVEL FOR COMBINING SOURCES. 0.36	INING SOURCES# 0.36
3		0	24510		

CROSS HEAD	HEAD	,	GENERAL	O I	IDENTIFICATION NUMBER	N NUMBER 63
E N	DIST. TYPE	MEAN ESTINATE (HOURS)	FAILURE 80x LOWER BOUND	A	(FAILURES PER MILLION HOURS) 80x FAILURE PPPPER BOU	HOURS) 80% UPPER BOUND
ARW	EXPONENTIAL	13725.	30.031	72.8	862	155.399
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ARW		8	27449			1 1 2 1 0 0 0 0 0 0 0
DIAPH	₹ 8	,	GENERAL	<u> </u>	IDENTIFICATION	N NUMBER 64
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	JRE RATE (FAILURES PER P FAILURE RATE ESTIMATE	PER MILLION	HOURS) 80% UPPER BOUND
3	EXPONENTIAL	90	3.752	16.8	812	50.348
SN	EXPONENTIAL	19650	20.975	50.8	168	108.887
EN) DV	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
₹			50 40 1			
Z.			39300		1	

DIFFUSER	SER	3 /	GENERAL		IDENTIFICATION NUMBER	N NUMBER 65
EN	DIST. TYPE	ESTIMATE (HOURS)	FAILURE BOUND	RATE	(FAILURES PER MILLION FAILURE ESTIMATE	R MILLION HOURS) 30% 10PER BOUND
AUT	EXPONENTIAL		0.0		0.00	10.966
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
AUT		0	146772			
DISC	DISC ASSEMBLY	,	GENERAL		IDENTIFICATION NUMBER	N NUMBER 86
EN	DIST TYPE	ESTIMATE (HOURS)	FAILURE 80% BOUND	RATE	(FAILURES PER MILLION HOURS) FAILURE () ESTIMATE () ESTIMATE	M HOURS) 80x UPPER BOUND
ARW	EXPONENTIAL	2590	340.987	e	386.173	437.651
S S	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
ARW		83	137244			

DISTIL	DISTILLATION UNIT		/ FROM DISTILLING PLANT	01	N NUMBER 67
EN	DIST TYPE	MEAN ESTIMATE (HOURS)	FAILURE RATE (1	FAILURE RATE (FAILURES PER MILLION HOURS) RATE ESTIMATE B	HOURS X # 0 PPER BOUND
SZ	EXPONENTIAL	2070.	345.030	483.092	672.016
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
SE		•	18630		1 0 0 0 0 0 0 0 0 0 0

DRIVE			/ GEAR	IDENTIFICATION NUMBER	N NUMBER 68
EN	DIST. TYPE	ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) FAILURE FAILURE ESTIMATE B	HOURS) \$0x UPPER BOUND
AUT	EXPONENTIAL	195696	1.140	5 110	15.303
£	EXPONENTIAL	16667.	3.070	000 9	11.031
8	EXPONENTIAL	119952	5.424	8.337	12.610
2	EXPONENTIAL		80.915	88.600	155.912
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
AUT			195696		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
35		က	200000		0 0 0 0 0 0 0 0 0 0 0 0 0
3	2	€	719714	SIGNIFICANCE LEVEL FOR COMBINING	INING SOURCES 0.98
2	2	ın	50710	SIGNIFICANCE LEVEL FOR COMBINING SOURCES 0.71	INING SOURCES 0.71

DRIVE			GENERAL	IDENTIFICAL	IDENTIFICATION NUMBER 69
N N	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RATE (FAILURES PER FAILURE FAILURE ESTIMATE	MILLION HOURS) 80% UPPER BOUND
ARW	EXPONENTIAL	3431	203.130	291.449	414.605
ENV	i oñ	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
ARK		60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	27448		
DRIVE		,	/ VARIABLE PITCH	IDENTIFICATION	TION NUMBER 70
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RATE (FAILURES PER RATE ESTIMATE	MILLION HOURS) 80% UPPER BOUND
95	EXPONENTIAL	.	. 836	7.151	10.454
¥5	EXPONENTIAL	37547	15.291	26.633	44.755
EN	ည်တို့	ex u_	TOTAL PART OPERATING HOURS	COMMENTS	
GF	2		278897	SIGNIFICANCE LEVEL FOR CO	COMBINING SOURCES* 0.34
3	2	4	150188	SIGNIFICANCE LEVEL FOR CO	FOR COMBINING SOURCES - 0.67

RIVE	FOR COMPUTER	DRIVE FOR COMPUTER TAPES&DISCS/ CAPSTAN MOTOR	CAPSTAN MOTOR		IDENTIFICATION NUMBER	M NUMBER 71
ENC	DIST. TYPE	ESTIMATE (HOURS)	FAILI 80WER BOUND	FAILURE RATE (FAILUR	(FAILURES PER MILLION HOURS) FAILURE RATE ESTIMATE	HOURS) 80% UPPER BOUND
GF	EXPONENTIAL	137244.	3.728		7.286	13.396
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
G.	N	e	411731	SIGNIFICANCE LEVEL	LEVEL FOR COMBINING	MING SOURCES # 0.32
RIVE	FOR COMPUTER	DRIVE FOR COMPUTER TAPES&DISCS/ DISCS	DISCS		IDENTIFICATION NUMBER	N NUMBER 72
) > !	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILY 80% LOWER BOUND	FAILURE RATE (FAILUR	(FAILURES PER MILLION HOURS) FAILURE SATE ESTIMATE B	HOURS) 80% UPPER BOUND
68	EXPONENTIAL	56313	7.319		17.758	37.995
GF	EXPONENTIAL	43745.	13.125		22.860	38.414
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
68		2	112626			
ئ	60	•	174980	SIGNIFICANCE	LEVEL FOR COMBI	SIGNIFICANCE LEVEL FOR COMBINING SOURCES- 0.81

DRIVE	DRIVE FOR COMPUTER	ĺ	TAPES&DISCS/ MAGNETIC TAPE TRANSPORT	TRANSPORT	IDENTIFICATION NUMBER	N NUMBER 73
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% BOWER BOUND	ILURE RATE (FAIL	FAILURE RATE (FAILURES PER MILLION HOURS) RATE BESTIMATE BESTIMATE BESTIMATE	HOURS) 80% UPPER BOUND
GF	EXPONENTIAL	23402	21.865		42.732	78.563
S.	EXPONENTIAL	2520.	340.445		396.882	462.976
NS	EXPONENTIAL	26200	19.529		300, 100	70.172
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
GF		က	70205			
N.		36	90707		0 0 0 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
NS	-	က	78600			

DRIVE	DRIVE FOR COMPUTER	TER TAPES&DISCS/ REEL MOTOR	REEL MOTOR	IDENTIF	IDENTIFICATION NUMBER 74
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE D ESTIMATE B	S PER MILLION HOURS) URE SOX UPPER HATE BOUND
GF	EXPONENTIAL 137245.	137245.	4.740	7.286	11.021
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
J.	2	60	823472	SIGNIFICANCE LEVEL FOR	SIGNIFICANCE LEVEL FOR COMBINING SOURCES = 0.16

DRIVE ROD	800	/	GENERAL	1 5 6 9 1 1 1	IDENTIFICATION NUMBER	N NUMBER 75
EN K	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RATE	(FAILURES PER MILLION HOURS) FAILURE 1 UPPER 1 BOUND	HOURS) 80% UPPER BOUND
¥.	EXPONENTIAL		0 0		000 0	27.060
ENV		NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
3		0	59481		8 8 8 8 8 8 8 8	
DRUM			GENERAL		IDENTIFICATION	ON NUMBER 76
ENC	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE ROX LOWER BOUND	RATE	(FAILURES PER MILLION FAILURE ESTIMATE	N HOURS)
GF.			0.0		000.0	12.764
3	EXPONENTIAL	4774.	168.317		209.466	260.512
EN K	35 9	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
45	60	0	126104	SIGNIFICANCE	LEVEL FOR	COMBINING SOURCES* 1.00
3		19	90707			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

DUCT		,	/ GENERAL		IDENTIFICATION NUMBER	NTION NUM	BER 77	
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE BRATE U ESTIMATE B	RES PER MILL ILURE ATE TIMATE	ION HOUR	S) 80% UPPER BOUND	
AUT	EXPONENTIAL	61155	80 1		16.352		27.478	
GF	EXPONENTIAL	344578	2 . 023		2.902		4.128	
M 9	EXPONENTIAL	234353.	3.110		4.267		5.825	
E X <	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS				
AUT		• 1	244620					
Ĝ.	4	66 66 1	2756624	SIGNIFICANCE LEVEL FOR COMBINING SOURCES. 0.38	LEVEL FOR CO	MEINING	SOURCES (38
3	2	10	2343527	SIGNIFICANCE LEVEL FOR COMBINING SOURCES 0.44	LEVEL FOR CO	MEINING	SOURCES	9.44

ELECTI	ELECTRIC HEATERS	1 /	/ RESISTANCE	IDENTIFICATION NUMBER	N NUMBER 78
EX	DIST. TYPE	MEAN ESTIMATE (HOURS)	80x LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE U ESTIMATE B	HOURS) SOK UPPER BOUND
3	EXPONENTIAL	52063	12.496	19.208	29.054
¥ 4	EXPONENTIAL		62.926	152.672	326.862
2	EXPONENTIAL		11.211	27.200	56.198
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERALING HOURS	COMMENTS	
3	8	¢,	312376	SIGNIFICANCE LEVEL FOR COMBINING SOURCES- 0.47	INING SOURCES- 0.4
SE		2	13100		
2		8	73530		1 1 1 1 1 1 1 1 1

ELECTI	ELECTROMECHANICAL 1	TIMERS /	GENERAL	IDENTIFIC	IDENTIFICATION NUMBER 79
EN	DIST TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RATE (FAILURES PER FAILURE RATE ESTIMATE	MILLION HOURS) 80% UPPER BOUND
AUF	EXPONENTIAL	247010	2.071	4	7.443
AUT	EXPONENTIAL	97848	4.212	10.220	21.867
<u>5</u>	EXPONENTIAL	211093	4,355	4.739	5.160
3			18.703	26.188	36.429
S	Z	29540	27.683	33.852	41.400
MSB		34199.	6.526	29.241	87.567
N >	NUMBER OF SOURCES	NUMBER OF PARTS FALED	TOTAL PART OPERATING HOURS	COMPLEXIS	
AUF		e	741030	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
AUT	-	2	969561		
G.	10	011	23210336	SIGNIFICANCE LEVEL FOR	FOR COMBINING SOURCES 0.18
¥.	4	တ	343675	SIGNIFICANCE LEVEL FOR	COMBINING SOURCES 0.44
Z.	2	22	649889	SIGNIFICANCE LEVEL FOR	COMBINING SOURCES= 0.71
N SB			34200	SIGNIFICANCE LEVEL FOR COMBINING	COMBINING SOURCES* 0.66

ENGINES	S	6 /	/ GENERAL		IDENTIFICATION NUMBER	I NUMBER 80
Na Swa	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	E RATE (FAILURES PER FAILURE RATE ESTIMATE	ES PER MILLION HOURS LURE LURE LIMATE	HOURS] BOX UPPER BOUND
A R	EXPONENTIAL	738.	1328.109	1392	2.106	1459.500
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
ARE		338	243516			
FEEDHORN	ORN		/ WAVEGUIDE		IDENTIFICATION NUMBER	N NUMBER 81
ERV	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE BESTIMATE B	RES PER MILLION ILURE THE IMATE	HOURS) 80% UPPER BOUND
AUT	EXPONENTIAL	1900	50 1 TT 1		51.000	62.695
E	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
TITE		21	411768		0 0 0 0 0 0	

FILTER	e-	/	/ GAS (AIR)		IDENTIFIC	IDENTIFICATION NUMBER	4BER 82	1
8	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80WER BOUND	RATE (FAI	LURES PER MIN FAILURE RATE ESTIMATE	LLION HOUR	R MILLION HOURS) 90x 1 UPPER BOUND	
AUT	EXPONENTIAL	73386	5.616		13 627		29.156	
SF.	EXPONENTIAL	94026	7.412		10.635		15.129	
3		308449	2.192		3.242		4.739	
SN	EXPONENTIAL	129100	3 . 193		7.746		16.573	
2		122550	3.363		8.160		17.459	
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS				
AUT		2	146772			1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
9 5	₹	80	752208	SIGNIFICANCE LEVEL FOR COMBINING SOURCES = 0.07	EVEL FOR	COMBINING	SOURCE S.	0.07
3	- 2	7	2159142	SIGNIFICANCE LEVEL FOR COMBINING SOURCES - 0.72	EVEL FOR	COMBINING	SOURCES.	0.72
NS.	2 +	2	258200	SIGNIFICANCE LEVEL FOR COMBINING SOURCES. 0.07	LEVEL FOR	COMBINING	SOURCES	0.07

FILTER	~	11/	/ רוסחום		IDENTIFICATION NUMBER	N NUMBER 83
۳. ک	DIST TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURE PAIL	(FAILURES PER MILLION HOURS) RAILURE ESTIMATE Bareal	HOURS) 80% UPPER BOUND
پ	FXPONENTIAL	166667	3.070		000 9	11.031
. E		66916	10.415		14.944	21.259
¥	EXPONENTIAL		SEE	NOTE BELOW	1 · · · · · · · · · · · · · · · · · · ·	
V X	EXPONENTIAL	21821.	32.730		15.827	63.748
2	EXPONENTIAL		0 0		0.000	32.835
S S	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
95		n	200000			1
3	e-d	60	535329		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
<u> </u>		0	188		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
SZ.	(7)	တ	196392	SIGNIFICANCE	LEVEL FOR COMB	COMBINING SOURCES # 0.47
2		0	49020		1	

NOTE: Low total part operating hours, develop failure data with caution.

FILTER	æ		OPTICAL	IDENTIF	IDENTIFICATION NUMBER 84
EN	DIST TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RATE (FAILURES PER FAILURE RATE ESTIMATE	MILLION HOURS) 80% 1 UPPER BOUND
AUT	EXPONENTIAL	244620	0 912	8880	12.242
N	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
AUT		-	244620		
FITTINGS	NGS		/ GENERAL	IDENTIF	IDENTIFICATION NUMBER 85
	DIST TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RATE (FAILURES PER FAILURE FAATE ESTIMATE	MILLION HOURS) \$0% UPPER BOUND
NS.	EXPONENTIAL	24510	9.105	40.800	122.185
2	EXPONENTIAL	# 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1	0 0	000.0	689 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
EN.	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
NS.		-	24510		
₹		0	24510		

FITTINGS	KGS	,	/ PERMANENT	IDENTIFICATION NUMBER	TION NUMBER 86
≥	DIST TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) 8 RATE 0 ESTIMATE 1 B	ON HOURS) 80x UPPER 90UND
AUT	EXPONENTIAL	80 60	2.261	10 220	30.606
95	EXPONENTIAL	\$00000	1.023	2.000	3.677
S.	EXPONENTIAL	306751.	2.204	3.260	4.766
E N	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMPLENTS	
AUT		1	80 100		
GF.		(C)	1500000		
Æ	2	4	2147258	SIGNIFICANCE LEVEL FOR COMBINING SOURCES + 0.85	IBINING SOURCES. 0.85

FITTINGS	NGS	,	/ QUICK DISCONNECT		IDENTIFICATION NUMBER	ON YUMBER 87
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILU 80% LOWER BOUND	FAILURE RATE (FAJLURES PER MILLION HOURS) RATE D ESTIMATE B	RES PER MILLION ILURE ATE TIMATE	HOURS) 80% UPPER BOUND
AUT	EXPONENTIAL	146772.	1.520		6.813	20.404
GF	EXPONENTIAL	750000	0.550		1.333	2.853
X.	EXPONENTIAL	79308	6.452		12.609	23.182
NS.	EXPONENTIAL	52400	4.259		19.084	57.152
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
AUT	e- e-	-1	146772			
		2	150000		1 1 1 1 1 1 1 1 1 1	
25	-	m	237924			
2		· · · · · · · · · · · · · · · · · · ·	52400			

FITTINGS	NGS	,	/ THREADED	IDENTIFICATION NUMBER 88
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RE RATE (FAILURES PER MILLION HOURS) FAILURE RATE ESTIMATE BOUND
AUT.	EXPONENTIAL	135696	1.140	5 110
<u>.</u>	EXPONENTIAL	416667	1.561	2.400
¥ 5	EXPONENTIAL	195213.	2.941	5.123
N SB	EXPONENTIAL	6571.	102.901	152.174 222.459
2	EXPONENTIAL	131000	3.906	7.634
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS
AUT			195696	
35		40	2500000	
3	2		780853	SIGNIFICANCE LEVEL FOR COMBINING SOURCES 0.78
NSB NSB		7	46000	
2	-	m	383000	

FLASH	FLASH LAMP	9 /	/ GENERAL	IDENTIFICATION NUMBER	ON NUMBER 89
EN	DIST TYPE	MEAN ESTIMATE (HOURS)	FAILU 80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) 80 RATE US ESTIMATE BG	HOURS] UPPER BOUND
AUT	EXPONENTIAL	48924	4.561	20 440	61.212
ENV	NUMBER OF	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMPMENTS	
AUT		; — — ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	48.924		

FUSE	FUSE HOLDER	,	/ BLOCK	IDENTIFICATION NUMBER	ION NUMBER 90
M N S	DIST TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RATE (FALURES PE FALURE) RATE ESTIMATE	R MILLION HOURS) 80x 1 UPPER 1 BOUND
50	EXPONENTIAL	320772	2.346	3.117	4.130
<u>\$</u>	EXPONENTIAL	250922	588.0	3.985	11.935
SZ	EXPONENTIAL	52400	4.259	19.084	57.152
NSB	EXPONENTIAL	# # # # # # # # # # # # # # # # # # #	0.0	000 0	402.389
2	EXPONENTIAL		0 0	000 0	21.890
> W	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
Ę.	₹	12	3849263	SIGNIFICANCE LEVEL FOR COMBINING	BINING SOURCES 0.49
¥.	2	-	250924	SIGNIFICANCE LEVEL FOR COM	LEVEL FOR COMBINING SOURCES # 0.74
SN	7	1	52400		
NSB		O	4000		
2		0	73530		

ると言うできないとのかと言葉なるなななななな。 ■ これのものとの

JSE }	FUSE HOLDER		EXTRACTOR POST	IDENTIFICATION NUMBER	ON NUMBER 91
EN	DIST TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) 80% RATE UPPER ESTIMATE BOUND	HOURS) 80% UPPER BOUND
GF	EXPONENTIAL	250000	649	4 000	8 559
₹.	EXPONENTIAL	# 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1	0.0	000 0	6.765
N.S	EXPONENTIAL	98040	2.276	10.200	30.546
N V	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMPRENTS	
j.		2	200000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Æ	-4	0	237924		8 8 8 8 8 9 8 9
S		-	98040		

FUSE P	FUSE HOLDER	1 /	/ PLUG	IDENTIFICA	IDENTIFICATION NUMBER 92
> ×	DIST TYPE	MEAN ESTIMATE (HOURS)	80% FAILUF LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE ESTIMATE B	LION HOURS) 80% UPPER BOUND
Ĝ.	EXPONENTIAL	300000	1.374	3.333	7 132
£	EXPONENTIAL	602404	0.370	1.660	1.87
NS.	EXPONENTIAL	1415465	0.539	0.708	0.925
EN <	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
GF	2	2	000009	SIGHIFICANCE LEVEL FOR COMBINING SOURCES # 0.28	OMBINING SOURCES # 0.2
¥.	2		32410	SIGNIFICANCE LEVEL FOR COMBINING SOURCES # 0.87	OMBINING SOURCES* 0.8
SZ	2	13	18401056	SIGNIFICANCE LEVEL FOR COMBINING SOURCES. D. 06	OMBINING SOURCES - 0.C

GAS D	GAS DRYER DESICATOR		MOLECULAR SIEVE	IDENTIFI	IDENTIFICATION NUMBER 93
EN	DIST TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE ESTIMATE B	LLION HOURS) 80% UPPER BOUND
SX	EXPONENTIAL	13100	17.035	9000	228.607
EN V	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
S	-	•	13100		

				TOENTIFICATION NUMBER	NUMBER 94
GASKET	GASKETS & SEALS	AQ /	DYNAMIC		
E S	DIST TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80x LOWER BOUND	RE RATE (FAILURES PER MILLION FAILURE RATE ESTIMATE	HOURS) 80% UPPER BOUND
AUT	EXPONENTIAL	110511	7 . 169	670.6	11.412
<u>.</u>	EXPONENTIAL	303450		3.295	4,427
3	EXPONENTIAL		3.140	4.643	60
SN	EXPONENTIAL	520196.	1.425	1.922	2.583
NSE	EXPONENTIAL		4.851	21.739	65.103
2	EXPONENTIAL	315118	1.308	3.173	6.790
E S S	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
A 13.7		17	1878681		
. OF	***************************************		3337948	SIGNIFICANCE LEVEL FOR COMBI	COMBINING SOURCES = 0.16
3	(C)		1507580	SIGNIFICANCE LEVEL FOR COMBI	: :
SX	₹	11	5722160	SIGNIFICANCE LEVEL FOR COMB	COMBINING SOURCES* 0.29
NSB			46000		
2	2	2	630240	SIGNIFICANCE LEVEL FOR COMB	COMBINING SOURCES 0.86
1 1 1 1 1					

AILURE RATE NG SIGNIF SIGNIF SIGNIF SIGNIF	GASKETS &	TS & SEALS	,	STATIC	IDENTIFICATION NUMBER	N NUMBER 95
EXPONENTIAL 137155 1 627 EXPONENTIAL 108385 7 681 EXPONENTIAL 246955 2 951 EXPONENTIAL 246955 2 951 EXPONENTIAL 46000 4 851 EXPONENTIAL 716918 0 801 EXPONENTIAL 716918 0 801 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E X	DIST TYPE	, ,	80% LOWER BOUND	RATE (FAILURES PER ! FAILURE ! RATE ! ESTIMATE	MILLION HOURS) 80% UPPER BOUND
EXPONENTIAL 108385. 7 681 EXPONENTIAL 246955. 2 031 EXPONENTIAL 246955. 2 951 EXPONENTIAL 46000. 4 851 EXPONENTIAL 716918 0 801 EXPONENTIAL 716918 0 801 EXPONENTIAL 716918 0 801 A 1 1 137155 A 7 2330272 A 2 1 11483769	AIF	EXPONENTIAL		1 627	7.291	21.835
EXPONENTIAL 332896. 2 031 EXPONENTIAL 246955. 2 951 EXPONENTIAL 46000. 4 851 EXPONENTIAL 716918. 0 801 EXPONENTIAL 716918. 0 801 SOURCES PARTS FAILED OPERATING HOURS 1 1 26 2818022 4 7 2330272 4 21 11483769 1 1 1 1 46000	AUT	EXPONENTIAL		7.681	9.226	11.087
EXPONENTIAL 246955 2 951 EXPONENTIAL 46000 4 851 EXPONENTIAL 716918 0 801 EXPONENTIAL 716918 0 801 EXPONENTIAL 716918 0 801 I	6F	EXPONENTIAL			3.004	4.391
EXPONENTIAL 546846 1.488 EXPONENTIAL 46000 4.851 EXPONENTIAL 716918 0.801 0.	3	EXPONENTIAL		· •	4,049	5.528
EXPONENTIAL 716918 0 801 EXPONENTIAL 716918 0 801 NUMBER OF NUMBER OF TOTAL PART SOURCES PARTS FAILED OPERATING HOURS 1 1 26 2818022 4 7 2330272 4 7 2330272 4 21 11483769	N.S.	EXPONENTIAL	· · ·	4	1.829	2.248
EXPONENTIAL 716918 0 801	NSB	EXPONENTIAL		4.851	21.739	65.103
NUMBER OF NUMBER OF TOTAL PART SOURCES PARTS FAILED OPERATING HOURS 1 1 26 2818022 4 7 2330272 4 21 11483769 1 1 1 1 1 46000	⊋	EXPONENTIAL			1.395	2.344
1 1 26 2818022 4 7 2330272 3 10 2469547 4 21 11483769	ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
1 26 2818022 4 7 2330272 3 10 2469547 4 21 11483769	AIF		-	137155		
3 10 2469547 4 21 11483769	AUT		26	2818022		
3 10 2469547 4 21 11483769 1 1 46000	GF	3		2330272	SIGNIFICANCE LEVEL FOR COMBINING	INING SOURCES= 0.58
1 1 46000	3	Ю.	10	4695	SIGNIFICANCE LEVEL FOR COMBINING	INING SOURCES 0.13
	SE	4	21	1 11483769	SIGNIFICANCE LEVEL FOR COMBINING	INING SOURCES 0.27
	NSB		-	46000		
NU i 1 i 4 i 2867670 i	2	 	•	2867670		

1881 Responde Foreign Constitut Reproposed Technologists Constitute Constitute Reproposed Reproposed Reproposed

GEAR		,	/ ANTIROTATION	IDENTIFICATION NUMBER	IN NUMBER 96
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILU 80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE ESTIMATE BG	HOURS) #0x UPPER BOUND
3	EXPONENTIAL		807.708	1578.948	2802.883
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3		e e	1900		

GEAR		,	BEVEL	IDENTIFICATION NUMBER	ON NUMBER 97
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE LOWER BOUND	E RATE (FAILURES PER MILLION MOURS) RATE RATE BOUND	HOURS) 80% UPPER BOUND
AIF	EXPONENTIAL	68578	6.010	14.582	31.200
AUT	EXPONENTIAL	146772.	2.808	6	14.578
Ĝ.	EXPONENTIAL	750000	0.550	1 333	2.853
3	EXPONENTIAL	340030	1.505	2.941	5.407
S	EXPONENTIAL	104800	2.129	9.542	28.576
2	EXPONENTIAL	320317.	0.697	3 122	9.349
ENS	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
AIF		2	137155		
AUT		2	293544		
GF		2	1500000		
3	2	e.	1020090	SIGNIFICANCE LEVEL FOR COMB	COMBINING SOURCES # 0.64
Z.			104800		
•	(4	-4	320320	SIGNIFICANCE LEVEL FOR COMB	COMBINING SOURCES 0.68

GEAR		1	/ HELICAL	IDENTIFICATION NUMBER	ON NUMBER 98
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILUR 80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) 8 8 1	N HOURS) 80% UPPER BOUND
AUT	EXPONENTIAL	146772.	2.808	60	14.578
GF.	EXPONENTIAL		1.116	2.000	14.974
3	EXPONENTIAL	50698	10.093	19.725	36.265
SH	EXPONENTIAL		0.0	000 0	13.134
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
AUT		2	293544		
GF		-4	200000		1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3	m	m	152088	SIGNIFICANCE LEVEL FOR COMBINING SOURCES = 0.08	IINING SOURCES 0.04
Z.		0	122550	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

GEAŘ			/ HYPOID	IDENTIFICATION NUMBER	N NUMBER 99	t
1	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILUR 80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) 80% RATE RATE BOUND	HOURS) 80x UPPER BOUND	
,	EXPONENTIAL	200000	1.116	8.000	14.974	:
	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		:
		-1	200000			

GEAR		6 /	SPUR	IDENTIFICATION NUMBER	ON NUMBER 100
<u>×</u>	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 30% LOWER BOUND	URE RATE (FAILURES PER MILLION HOURS) 8 1	N HOURS) 80% UPPER BOUND
ARE	EXPONENTIAL	852054	0.725	1.174	1.856
AUT	EXPONENTIAL	78278.	7.892	12.775	20.200
	EXPONENTIAL	317244	2.132	3,152	4.608
36	EXPONENTIAL	168077	3.676	5.950	9 408
SN	EXPONENTIAL	104800	3.933	9.542	20.416
2	EXPONENTIAL	199458.	1.119	5.014	15.014
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
ARW		\$	4260268		
AUT	-4	S	391392		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Ğ	4	7	2220710	SIGNIFICANCE LEVEL FOR COMB	COMBINING SOURCES= 0.45
35	6	L P	840386	SIGNIFICANCE LEVEL FOR COMB	COMBINING SOURCES- 0.75
SN		2	209600	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
O.K.	2	-	199460	SIGNIFICANCE LEVEL FOR COMB	COMBINING SOURCES = 0.10

GEAR		,	/ WORM	IDENTIFICATION NUMBER	ON NUMBER 101
EN C	DIST TYPE	MEAN ESTIMATE (HOURS)	FAILI 80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) 80% RATE DPPER BOUND	M HOURS) 80% UPPER BOUND
GF.	EXPONENTIAL		0.0	000 0	840
Æ	EXPONENTIAL		0.0	000 0	26.223
EN<	NUMBER OF	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
GF		0	20000		
¥ 5	2	0	61381	SIGNIFICANCE LEVEL FOR COMBINING SOURCES . 0.89	INING SOURCES 0.89

GEAR BOX	Вох	/	/ MULTIPLIER	IDENTIFICATION NUMBER	ON NUMBER 107
EN C	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE OPPER BOUND	N HOURS) 80x UPPER BOUND
ARW	EXPONENTIAL	(C) (C)	2071.857	2159 230	2250.676
<u>6</u>	EXPONENTIAL	# 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1 # 1	0.0	000 0	16,096
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
ARW		437	202387		
ĞF		0	100000		

GEAR BOX	вох	,	REDUCTION	IDENTIFICATION NUMBER	ON NUMBER 103
N N N	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RATE (FAILURES PER MILLIC FAILURE RATE ESTIMATE	N HOURS) 80% UPPER BOUND
AUT	EXPONENTIAL	146772.	2 . 808	8 9	14.578
GF	EXPONENTIAL	200000	1.116	5.000	14.974
Æ	EXPONENTIAL	53320	10.768	18.755	31.516
NS	EXPONENTIAL	51969	13.411	19.242	27.373
) Z	EXPONENTIAL	62119.	3.593	16.098	48.209
N N	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMPLENTS	
AUT		2	293544		
GF			20000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
¥ 5	₹	•	213279	SIGNIFICANCE LEVEL FOR COMB	COMBINING SOURCES = 0.16
SN		e 5	415750	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
2	2		62120	SIGNIFICANCE LEVEL FOR COMBINING SOURCES = 0.49	INING SOURCES 0.49

ENV DIST TYPE ESTIMATE (HOURS) AUF EXPONENTIAL 172025. ENV NUMBER OF PARTS FAILED SOURCES PARTS FAILED AUF 1 52 GENERATOR 1 52 GENERATOR 1 1 52 GENERATOR 1 1 1 52 GENERATOR 1 1 1 52 GW EXPONENTIAL 104834. ENV NUMBER OF 1 NUMBER OF	-			
EXPONENTIAL 172025. NUMBER OF NUMBER OF SOURCES PARTS FAILE SOURCES PARTS FAILE EXATOR 1 104834. EXPONENTIAL 104834.	BOUND	A	(FAILURES PER MILLION MOURS) RAILURE RATE ESTIMATE B	HOURS) 80% UPPER BOUND
ERATOR ERATOR DIST. TYPE ESTIMATE (HOURS) NUMBER OF NUMBER OF	5.126	S .	e	9 3 9
ERATOR DIST TYPE ESTIMATE (HOURS) EXPONENTIAL 104834.	TOTAL PART OPERATING HOURS	COMMENTS		
DIST. TYPE ESTIMATE (HOURS) EXPONENTIAL 104834.	8945282			
DIST. TYPE EXPONENTIAL NUMBER OF	/ AC		IDENTIFICATION	I NUMBER 105
EXPONENTIAL NUMBER OF	FAILURE 80x LOWER BOUND	RATE	(FAILURES PER MILLION HOURS) RATE ESTIMATE B	HOURS) 80% UPPER BOUND
NUMBER OF	3.932		83.8	20.410
SOURCES	FD TOTAL PPRT OPERATING HOURS	COMMENTS		
GM 1 2 1 2	209669	SIGNIFICANCE LEV	VEL FOR COMBIA	SIGNIFICANCE LEVEL FOR COMBINING SOURCES. 0.13

テリー 日本日のクラックの自由のことはなったの間でいることでは、新元マンないのでは開発できないのである。 1997年 - 1997年 -

GENERATOR	A TOR		GENERAL (OXYGEN	(OXYGEN GENERATOR)	IDENTIFICATION NUMBER	IN NUMBER 106
S S S	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 10WER BOUND	RATE	(FAILURES PER MILLION HOURS) FAILURE 1 UPPER ESTIMATE 1 BOUND	HOURS) 80% UPPE: BOUND
S	EXPONENTIAL	526	1759.922		900.320	2052.836
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
Š		132	69462			
GLASS	(SIGHT GAUGE	`	GENERAL		IDENTIFICATION NUMBER	IN NUMBER 107
> 2	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% FAILURE 10WER BOUND	RATE	(FAILURES PER MILLION HOURS) FAILURE RATE ESTIMATE B	HOURS) 80% UPPER BOUND
3	EXPONENTIAL	2287.	328.998		437.174	579.174
N >	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
ARW		12	27449			

GROMMET	ET	,	GENERAL	IDENTIFICATION NUMBER	ON NUMBER 108
EN	DIST TYPE	MEAN ESTIMATE (HOURS)	FAILUI 80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE BESTIMATE BESTIMATE BESTIMATE	N HOURS)
AUT	EXPONENTIAL	293544	0 760	3.407	10.202
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
AUT		7	293544	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

■マイト・ランド ■ これのことを ■ はんのことの ● ひとのことがは ■なるのののない ■ でんだけない ● になってい は ■ たいにない ● でないないない ■できない これには ■ できない ■ できない これには ■ できない これには

GIMBALS	rs.	,	/ GENERAL	IDENTIF	IDENTIFICATION NUMBER 109
ENC	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILUR 80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) 80% RATE DPPER BOUND	MILLION HOURS) 80% UPPER BOUND
AUT	EXPONENTIAL	48924	8 425	20.440	43.734
¥	EXPONENTIAL		SEE NC	SEE NOTE BELOW	8 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2	EXPONENTIAL	49020	4.553	20.400	61.092
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
AUT		2	60		
¥		0	100		
3		7	49020		

NOTE; Low total part operating hours develop failure data with caution

GIMBALS	v.	,	/ TORQUE		IDENTIFICATION NUMBER	N NUMBER 110
EN <	DIST. TYPE	HEAN ESTIMATE (HOURS)	FAILURE 80% BOUND	JRE RATE (FAI	RATE (FAILURES PER MILLION HOURS) PRICE FAILURE 1 PP	HOURS) UPPER BOUND
AUF	EXPONENTIAL	193637	3.599		5.164	7.347
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
AUF	6	ac	1549092			
GYROSCOPE	COPE		SINGLE AXIS		IDENTIFICATION NUMBER	ON NUMBER 111
> X	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	ATE TE	(FAILURE PER MILLION HOURS) RAILURE ESTIMATE B ESTIMATE B	M HOURS) 80% UPPER BOUND
AUT	EXPONENTIAL	2224.	301		449.877	516.352
ENS	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
AUT		7	97848			6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

GYROSCOPE	COPE	,	TWO AXIS ROTOR		IDENTIFICATION NUMBER	N NUMBER 112
FR	DIST TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RATE	(FAILURES PER MILLION HOURS) 80x RAIE ESTIMATE	HOURS) 80x UPPER BOUND
AUF	EXPONENTIAL	20234.	42.919		49.422	56.949
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
AUF		42	849826			
HEAT	HEAT EXCHANGERS	,	COPLATES		IDENTIFICATION NUMBER	N NUMBER 113.
EN	DIST TYPE	MEAN ESTINATE (HOURS)	FAILURE 80% LOWER BOUND	A	(FAILURES PER MILLION HOURS) FAILURE RATE ESTIMATE B	HOURS) 80% UPPER BOUND
3	EXPONENTIAL	90707	5.641		11.025	20.269
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMPENTS		
3			272121			0 0 0 0 0 0 0 0 0 0 0

HEAT I	HEAT EXCHANGERS	,	/ GENERAL	IDENTIFICATION NUMBER	ON NUMBER 114
EN	DIST. TYPE	ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE ESTIMATE B	M HOURS) 80% UPPER BOUND
AUT	EXPONENTIAL	3000	20.510	27.253	36.105
GF.	EXPONENTIAL	312500.	1.319	3.200	6.847
S	EXPONENTIAL	72495.	11.157	13.794	17.052
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
AUT	ar ar a	12	440316		
GF.		2	625000	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S	2	20	1449899	SIGNIFICANCE LEVEL FOR COMBINING SOURCES. 0.18	INING SOURCES. 0.18

HEAT	HEAT EXCHANGERS	,	RADIATOR		IDENTIFICATION NUMBER	N NUMBER 115
> W	DIST TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	# TE	(FAILURES PER MILLION HOURS) FAILURE RATE ESTIMATE BE	HOURS) 80% UPPER BOUND
3	EXPONENTIAL	178443	2.310		5.604	11.991
SZ	EXPONENTIAL	000	154.450		250 000	395.314
EN C	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
3	e-1	2	356886			
SE	ed	in.	20000			
HEATER	ex	,	/ WATER		IDENTIFICATION NUMBER	N NUMBER 116
) N	_	MEAN E ESTIMATE (HOURS)	FAILURE 10WER BOUND	RATE	(FAILURES PER MILLION FAILURE RATE ESTIMATE	MILLION HOURS] 80% 1 UPPER 9 BOUND
9	EXPONENTIAL	300	363.796	-	422.222	490.362
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMENTS		
<u></u>	, ed	89	00008			

HEATER	HEATER BLANKETS	`	/ GENERAL	IDEN	IDENTIFICATION NUMBER	R 117
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RE RATE (FAILURES PER FAILURE PRATE ESTIMATE	MILLION HOURS	BOUND
AUT	EXPONENTIAL	9	2.281	10.220		30.606
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART	COMMENTS		
AUT			97878	0 0 0 0 0 0 0 0 0 0		
HEATE	HEATER, FLEX ELEMENT	/ TM	HEATER TAPE	IDE	IDENTIFICATION NUMBER	IR 118
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80X LOWER BOUND	8. A	(FAILURES PER MILLION HOURS) RAILURE RATE ESTIMATE BESTIMATE	BOX BPPER BOUND
AUF	EXPONENTIAL	1358145	0.423	0.736	92	1.237
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
AUF		4	5432580		0 0 0 0 0 0 0 0 0 0 0 0	1

нтан	HIGH SPEED PRINTER	,	' ELECTROSTATIC	IDENTIFICATION NUMBER	ION NUMBER 119
EN <	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) FAILURE STATE ESTIMATE BA	N HOURS) 80x UPPER BOUND
3	EXPONENTIAL	1417.	630.498	705.568	780.100
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
₹		79	1 90707		0 0 0 0 0 0 0 0 0 0 0 0

	HIGH SPEED PRINTER		/ IMPACT	IDENTIFICATION NUMBER	ON NUMBER 120
	DIST. TYPE	MEAN ESTIMATE (HOURS)	80X LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) 80% RATE OPP	HOURS) 80% UPPER BOUND
	EXPONENTIAL	112626		60.2	28.590
	EXPONENTIAL	3269.	226.851	305.921	410,990
	EXPONENTIAL	11503.	44.480	86.931	159.823
L i	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
		-	112626		
	2	7	35957	SIGNIFICANCE LEVEL FOR COMBINING SOURCES 0.13	INING SOURCES = 0.13
	2	e	34510	SIGNIFICANCE LEVEL FOR COMBINING SOURCES = 0.18	INING SOURCES - 0.18

1IGH	HIGH SPEED PRINTER	/	THERMAL		IDENTIFICATION NUMBER	N NUMBER 121
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% BOUND	RATE	(FAILURES PER MILLION HOURS) RAILURE RATE ESTIMATE	HOURS) 80% UPPER BOUND
GF	EXPONENTIAL	34049	22.102		29.370	38,909
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
ĞF	2	12	408583	SIGNIFICANCE LEVEL	CE LEVEL FOR COMBI	FOR COMBINING SOURCES = 0.67
HOSE			FLEXIBLE		IDENTIFICATION NUMBER	N NUMBER 122
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% 1OWER BOUND	A	(FAILURES PER MILLION HOURS) FAILURE RATE ESTIMATE (BOUND)	HOURS) 80% UPPER BOUND
X 38	EXPONENTIAL	18600.	39.185		53.763	73.397
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
NSB		10	186000			

IDENTIFICATION NUMBER 163	LLION HOURS) 80x UPPER BOUND			
	FAILURE RATE (FAILURES PER MILLION HOURS) RATE BOUND BOUN	SEE NOTE BELOW	COMMENTS	
/ FLEXIBLE, PROPELLANT	FAILU 80% LOWER BOUND	SEE	TOTAL PART OPERATING HOURS	27
4 /	ESTINATE (HOURS)		NUMBER OF PARTS FAILED	
	DIST. TYPE	EXPONENTIAL	NUMBER OF SOURCES	
HOSE	> <u>~</u>		CNV	

NOTE: Low total part operating hours, develop failure data with caution

HOSE		,	/ GENERAL	IDENTIFICATION NUMBER	N NUMBER 124
E X	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) FAILURE RATE BESTIMATE BESTIMATE	HOURS) 80% UPPER BOUND
S.	EXPONENTIAL	288556.	2.607	3.464	4.590
3	EXPONENTIAL	225390	3 000	4.437	80 90 91
NS	EXPONENTIAL	224538	3.181	4.454	6 . 195
2	EXPONENTIAL	77340.	5.329	12.930	27.665
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMPMENTS	
GF.		12	3463872	SIGNIFICANCE LEVEL FOR COMBINING SOURCES = 0.40	NING SOURCES 0.40
E S	2	7	1577732	SIGNIFICANCE LEVEL FOR COMBINING SOURCES = 0.41	NING SOURCES 0.41
Z.	₹	G	2020839	SIGNIFICANCE LEVEL FOR COMBINING	NING SOURCES 0.17
2	m	2	154680	SIGNIFICANCE LEVEL FOR COMBINING SOURCES = 0.47	NING SOURCES = 0.47

HOUSING	10		/ GENERAL		IDENTIFICATION NUMBER	NUMBER 125
X	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80x LOWER BOUND	RATE (FAI	LURES PER MILLION MOURS) FAILURE ! ! U RATE ! B	HOURS 80% UPPER BOUND
ARW	EXPONENTIAL	3580	229.535	279.	908	339.940
EN <	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMENTS		
ARK		23	82346			
INCIN	INCINERATOR		FROM SEWAGE TREATMENT	THENT	IDENTIFICATION NUMBER	N NUMBER 126
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE LOWER BOUND	URE RATE (FAILURI FAI ! EST	RATE (FAILURES PER MILLION HOURS) FAILURE U ESTIMATE B	HOURS) SOX UPPER BOUND
SE	EXPONENTIAL	492	(C)	2034	80 80 80	4353.273
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
X X		2	883			

INSTR	INSTRUMENTS	,	/ AMMETER	IDENTIFICATION NUMBER	ON NUMBER 127
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE ESTIMATE B	N HOURS) 80% UPPER BOUND
GF	EXPONENTIAL	125000	1.785	000 8	23.958
3	EXPONENTIAL	75819	5 . 436	13	28.220
SZ	EXPONENTIAL	132526.	5.595	7.546	10.137
NSB	EXPONENTIAL		0.0	000 0	98.145
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
GF.		-	125000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
3	-	2	151638	SIGNIFICANCE LEVEL FOR COMBINING	INING SOURCES 0.94
N.	₩	11	1457787	SIGNIFICANCE LEVEL FOR COMBINING	INING SOURCES 0.80
8 88	2	0	16400	SIGNIFICANCE LEVEL FOR COMBINING SOURCES-	INING SOURCES 1.00

INSTR	INSTRUMENTS	,	/ FLOW METER	IDENTIFICATION NUMBER	NUMBER 128
N N	DIST. TYPE	ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) FAILURE RATE BOUND BOUND	HOURS) 80x UPPER BOUND
GF.	EXPONENTIAL	63333	8.079	15.789	29.029
SZ	EXPONENTIAL	19525	29.406	51.216	86.065
NSB.	EXPONENTIAL	4800	148.794	208.334	289.807
D.W.	EXPONENTIAL	15000	14.878	66.667	199.650
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
GF.	an- m-	e	190000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
S	2	₹	78100	SIGNIFICANCE LEVEL FOR COMBINING SOURCES-	IING SOURCES- 0.68
NSB	6	6	43200	SIGNIFICANCE LEVEL FOR COMBINING SOURCES = 0.15	ING SOURCES= 0.15
) X		-	15000		

INSTR	INSTRUMENTS	,	HUMIDITY INDICATOR	OI -	ON NUMBER 129
EX	DIST. TYPE	ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) 80% 1	N HOURS) 80% UPPER BOUND
AUT	EXPONENTIAL	48924	4.561	20.440	61.212
ENV	NUMBER OF SOURCES	HUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
AUT	-	-	48924		

INSTRU	INSTRUMENTS	,	/ INDICATOR	IDENTIFIC	IDENTIFICATION NUMBER 130
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	80x LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE RATE U ESTIMATE B	LION HOURS) 80x UPPER BOUND
2	EXPONENTIAL	925.	958.565	1081.666	1221.415
<u>.</u>	EXPONENTIAL	242713.	2.108	4.120	7.575
S.	EXPONENTIAL	16340	31.314	61 198	112.515
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
ARK		89	51772		
S.		m	728140		
ž.		60	49020		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

INSTR	INSTRUMENTS	,	INDICATOR (LIGHT)		IDENTIFICATION NUMBER	N NUMBER 131	
EN	DIST TYPE	ESTIMATE (HOURS)	80% LOWER BOUND	RATE	(FAILURES PER MILLION FAILURE ESTIMATE	R MILLION HOURS) 80% UPPER 1 UPPER 1 BOUND	
S	EXPONENTIAL	766130. 1	0 538		1.305	2.793	!
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING	COMMENTS			 ;
S.		2	1532259				!
INSTR	INSTRUMENTS	,	INDICATOR (FLUID LEVEL	EVEL)	IDENTIFICATION NUMBER	W NUMBER 132	
ENV	DIST. TYPE	ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FA.	(FAILURES PER MILLION HOURS) FAILURE RATE ESTIMATE	HOURS) 80% UPPER BOUND) (
3	EXPONENTIAL	1280.	406.086		793.651	1459.126	!
ENV	NUMBER OF	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS			 :
3		e	3780				!

INSTRU	INSTRUMENTS		PRESSURE GAUGE		IDENTIFICATION NUMBER	ON NUMBER 133
EN <	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RATE	(FAILURES PER MILLION FAILURE RATE ESTIMATE	MILLION HOURS) 80% UPPER BOUND
AUT	EXPONENTIAL	24462	26.596		40.880	601
E N	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
AUT			146772	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
INSTR	INSTRUMENTS	1	/ TIME METER		IDENTIFICATION NUMBER	ON NUMBER 134
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	A	(FAILURES PER MILLION HOURS) RAILURE RATE ESTIMATE BESTIMATE	M HOURS) 80% 10PER BOUND
NS NS	EXPONENTIAL	383065	1.409	~	2.611	4.387
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
SE		•	1532259		6 6 6 6 1 1	

INSTR	INSTRUMENTS		/ TOTAL TIME METER	IDENTIFICATION NUMBER	ON NUMBER 135
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BGUND	FAILURE RATE (FAILURES PER MILLION HOURS) 8 RATE RATE URATE URAT	M HOURS) 80% UPPER BOUND
5	EXPONENTIAL	696	14.955	17.132	19.640
EN C	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
GF		45	2626598		

INSTRU	INSTRUMENTS		/ VOLTMETER	IDENTIFICATION NUMBER	N NUMBER 136
ENV	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RAILURE U RATE ESTIMATE B	HOURS) 80% UPPER BOUND
GF	EXPONENTIAL	266458	1.547	3.753	8 030
3	EXPONENTIAL	04458	4 0 0 0 0 0 0 0 0 0	9.573	17.600
NS NS	EXPONENTIAL	586924	1.053	1.704	2.694
RSB	EXPONENTIAL		0.0	000 0	30.142
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
GF	2	64	532916	SIGNIFICANCE LEVEL FOR COMB	FOR COMBINING SOURCES 0.68
3	(n)	e	313376	SIGNIFICANCE LEVEL FOR COMBINING	INING SOURCES + 0.86
Z Z	ມີ	ĸ	i 2934631	SIGNIFICANCE LEVEL FOR COMBINING SOURCES-	INING SOURCES 0.74
NSB	е	0	53400	SIGNIFICANCE LEVEL FOR COMB	COMBINING SOURCES* 1.00
,,,,,,,					

JOINT	JOINT, MICROWAVE RO	ROTARY /	/ GENERAL	IDENTIFICATION NUMBER	ON NUMBER 137
EN	DIST TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE ESTIMATE B	N HOURS) 80x UPPER BOUND
AUT	EXPONENTIAL	3550	259.500	281 712	305.975
GF	EXPONENTIAL	41667	12.280	24.000	44.124
E	EXPONENTIAL	126941.	4.867	7.878	12.457
DN.	EXPONENTIAL	20707	24.710	48.294	88.788
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
AUT		116	411768		
- GF		က	125000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
3	e	တ	634707	SIGNIFICANCE LEVEL FOR COMBINING SOURCES # 0.72	INING SOURCES= 0.72
2	2	e .	62120	SIGNIFICANCE LEVEL FOR COMBINING SOURCES - 0.62	INING SOURCES 0.62

KEYBOARD	ARD	/ E	/ ELECTROMECHANICAL	IDENTIFICATION NUMBER	ON NUMBER 138
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILUR 80X LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE ESTIMATE	N HOURS)
AIT	EXPONENTIAL	75000	2.976	13.333	39.930
89	EXPONENTIAL	112626.	100 CG . T	8 8 8	26.590
SZ	EXPONENTIAL	47609.		21.004	62.902
W S Z	EXPONENTIAL		0.0	000'0	804.779
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
AIT			75000		0 0 0 0 0 0 0 0 0 0
89			112626		
SN	(7)	e=4	47610	SIGNIFICANCE LEVEL FOR COM	LEVEL FOR COMBINING SOURCES - 0.28
ESE.		•	2000		0 0 0 0 0 0 0 0 0 0 0

KEYBOARD	ARD	,	GENERAL	I DENTIFICATION NUMBER	ON NUMBER 139
N N	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RATE (FAILURES PER FAILURE RATE ESTIMATE	MILLION HOURS) 80x UPPER BOUND
9	EXPONENTIAL	144741	204	606.8	10.451
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
Ğ	2	80	86.84	SIGNIFICANCE LEVEL FOR COMB	COMBINING SOURCES= 0.19
KEYBOARD	ARD		/ MECHANICAL	IDENTIFICATION	ON NUMBER 140
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RATE (FAILURES PER FAILURE RATE ESTIMATE	MILLION HOURS) 80% UPPER BOUND
<u>5</u>	EXPONENTIAL	1 214323.	2.679	60.00	7 .04)
X.	EXECUTIAL	1509	107.701	133.189	164.821
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
GF	en	₹	857290		
3	2	20	1 150188	SIGNIFICANCE LEVEL FOR COMB	COMBINING SOURCES 0.17

KNOB		1	/ GENERAL	IDENTIFICATION NUMBER	NUMBER 141
E Š	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RE RATE (FAILURES PER MILLION HOURS) RATE RATE BESTIMATE BESTIMATE	HOURS) 80% UPPER BOUND
AUT	EXPONENTIAL	16308.	48.942	61.320	76.782
<u> </u>	EXPONENTIAL	480622.	0.858	2.081	4.452
SE	EXPONENTIAL	1384822.	0.298	0.722	1,545
N N N	EXPONENTIAL	10200	40.409	98.040	209.769
2	EXPONENTIAL		0.0	000 0	21.890
N N	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
AUT		89 1	293544		
- GF	2	2	961243	SIGNIFICANCE LEVEL FOR COMBIN	COMBINING SOURCES = 0.14
SE	2	2	2769659	SIGNIFICANCE LEVEL FOR COMBINING	IING SOURCES = 0.54
NSB	2	2	20400	SIGNIFICANCE LEVEL FOR COMBINING	IING SOURCES= 0.35
28		0	73530		

LAMP		,	/ XENON	IDENTIFICATION NUMBER	N NUMBER 142
E X	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) 8 RATE U ESTIMATE B	HOURS) 80% UPPER BOUND
SZ	EXPONENTIAL	130	6503.187	7704.156	9131.840
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
SN .		30	3894		

LAMP H	LAMP HOLDER	19 /	/ GENERAL	IDENTIFICATION NUMBER	ON NUMBER 143
EN K	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURI 80% LOWER BOUND	FAILURE RATE (FAILUTES PER MILLION HOURS) 80% RATE PATE BOU	M HOURS) 80% UPPER BOUNC
AUT	EXPONENTIAL	24462.	16.849	0 9	87.468
S.	EXPONENTIAL	220268.	3.242	4.540	6.315
S	EXPONENTIAL	631139	0.910	80 S. II	2.663
N 88	EXPONENTIAL	20687.	31.480	786.84	73.192
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
AUT		2	48924		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GF	2	G s	1982414	SIGNIFICANCE LEVEL FOR COMBINING SOURCES = 0.71	BINING SOURCES = 0.7
NS NS		•	2524554		
NSB		ဖ	124000		

LENS			/ OPTICAL		IDENTIFICATION NUMBER	ON NUMBER 144
₩ W	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% BOUND	RATE	(FAILURES PER MILLION FAILURE RATE ESTIMATE	N HOURS) 80x UPPER BOUND
AUT	EXPONENTIAL		0.0		0.000	2.742
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
AUT		0	587088		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 4 0 0 0 0 1 1 1 1
IS MOT	LOW SPEED PRINTER	,	DOT MATRIX		IDENTIFICATION NUMBER	ON NUMBER 145
₩ ₩ ₩	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE BOUND	₹	(FAILURES PER MILLION FAILURE RATE ESTIMATE	M HOURS) BOX UPPER BOUND
70	EXPONENTIAL	3076	244.654	e :	325 097	430.693
EN <	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
Q.		12	36912			1 1 1 1 1 1 1 1 1

EXPONENTIAL 97848. 4.212 EXPONENTIAL 97848. 4.212 EXPONENTIAL 75000. 1 0.550 EXPONENTIAL 155000. 3.704 EXPONENTIAL 155000. 3.704 EXPONENTIAL 155000. 3.704 EXPONENTIAL 155000. 3.704 1 2 1500000 1 2 153259 1 32259 1 4 620000 1 1 2 1 153259 1 1 4 620000 1 1 1 4 620000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MANIFOLD	ארס	,	/ GENERAL	IDENTIFICATION NUMBER	ON NUMBER 146
EXPONENTIAL 750000 0.550 EXPONENTIAL 768130 0.538 EXPONENTIAL 155000 3.704 EXPONENTIAL 155000 1.5000000 1.5000000 1.5000000 1.5000000 1.5000000 1.5000000 1.5000000 1.5000000 1.5000000 1.5000000 1.50000000 1.5000000 1.50000000 1.5000000000000000000000000000000000000	E N		MEAN ESTIMATE (HOURS)	FAILURI 80% LOWER BOUND		M HOURS) BOX UPPER BOUND
EXPONENTIAL 750000 0.550 EXPONENTIAL 768130 0.538 EXPONENTIAL 155000 3.704 EXPONENTIAL ******* 0.0 EXPONENTIAL ******* 0.0 INUMBER OF NUMBER OF 1500000 1 2 1500000 1 1 2 1532259 1 1 2 1532259 1 1 4 620000 1 1 4 620000 1 1 1 4 620000 1 1 1 4 620000 1 1 1 1 1 1 1 1 1	AUT	EXPONENTIAL	97848	4.212	1 10.220	21.867
EXPONENTIAL 766130 0.538 EXPONENTIAL 766130 3.704 EXPONENTIAL 155000 3.704 EXPONENTIAL 155000 1 2 1500000 1 2 1532259 1 1 4 620000 1 1 4 620000 1 1 4 620000 1 1 4 620000 1 1 4 620000 1 1 4 620000 1 1 4 620000 1 1 4 620000 1 1 4 620000 1 1 4 620000 1 1 4 620000 1 1 4 620000 1 1 4 620000 1 1 4 620000 1 1 4 620000 1 1 1 4 620000 1 1 1 1 1 1 1 1 1		EXPONENTIAL	750000.	• •	1.333	2.853
EXPONENTIAL 768130 0.538 EXPONENTIAL 155000 3.704 EXPONENTIAL 155000 3.704 0.0	4	EXPONENTIAL	1 🕊 🖠		NOTE BELOW	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
EXPONENTIAL 155000. 3.704 EXPONENTIAL 155000. 0.0 NUMBER OF NUMBER OF TOTAL PART OPERATING HOURS 1 2 1500000 1 2 1532259 1 1 2 1532259 1 1 2 1 1 1 4 1 620000 1 1 1 1 1 1 1 1 1	SN	EXPONENTIAL	i 766130. i	• 1	1.305	2.793
NUMBER OF NUMBER OF TOTAL PART SOURCES PARTS FAILED OPERATING HOURS 1 2 195696 1 2 1532259 1 3 4 620000	N SB	EXPONENTIAL	155000.	3.704	6.452	10.841
NUMBER OF NUMBER OF TOTAL PART SOURCES PARTS FAILED OPERATING HOURS 1 2 195696 1 2 1500000 1 2 1532259 1 1 4 620000	2	EXPONENTIAL		0.0	0.000	62.669
	ENV	NUMBER OF 1 SOURCES	NUMBER OF PARTS FAILED		COMMENTS	
	AUT	-	2	99		
0 2 4	95	-	8	150000		
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	=======================================		0	76		
	SE		7	1532259		
1	NSB I	1	• • • • • • • • • • • • • • • • • • •	620000		
	28	1	0	24510		

NOTE: Low total part operating hours, develop failure data with caution

META	METAL TUBING	,	GENERAL	IDENTIFICATION NUMBER	ON NUMBER 147
ENV	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) FAILURE RATE BESTIMATE BESTIMATE	M HOURS)
GF	EXPONENTIAL	999999	0.077	0.150	0.276
3	EXPONENTIAL	1371027	0.301	0.729	1.581
SX	EXPONENTIAL	829994	0.744	1.205	1.905
⊋:	EXPONENTIAL	1643844	0.136	809.0	1.822
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
GF	e4 	က	2000000		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
£	2	7	2742068	SIGNIFICANCE LEVEL FOR COMB	COMBINING SOURCES= 0.45
NS.	2	'n	4149919	SIGNIFICANCE LEVEL FOR COMBINING SOURCES-	INING SOURCES 0.96
2	2	-	1643860	SIGNIFICANCE LEVEL FOR COMBINING	INING SOURCES 0.86
		1))))))))			

MODULES	S		GENERAL		IDENTIFICATION NUMBER	N NUMBER 148
N ×	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE BOUND	RA	(FAILURES PER MILLION HOURS) FAILURE RATE ESTIMATE B B B B B B B B B B B B B B B B B B	HOURS) 80% UPPER BOUND
ARE	EXPONENTIAL	40.	521.754	557	7.491	595.895
E K	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING	COMMENTS		
AR		175	313906			
HOTOR	MOTOR GENERATOR SE	, 1	AC		IDENTIFICATION NUMBER	N NUMBER 149
E. ₹	DIST. TYPE	ESTIMATE (HOURS)	FAILURE BOUND BOUND	URE RATE (FAILURES PER FAILURE PRATE ESTIMATE	ES PER MILLION HOURS)	HOURS) BOX UPPER BOUND
3	EXPONENTIAL		0.0		0.00	425.809
S	EXPONENTIAL	13100.	17.035	1 76	8.336	228.607
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
3		0	3780			0 0 0 0 0 0 0 0 0 0 0
SR		-	13100			

MOTOR	MOTOR GENERATOR SET	1.	DC		I DENTIFICATION NUMBER	ON NUMBER 150
E S	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FA)	(FAILURES PER MILLION FAILURE RATE ESTIMATE	MILLION HOURS) 80x UPPER BOUND
SX	EXPONENTIAL	26200			38.168	114.303
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
SI		7	26200			
MOTOR	MOTOR GENERATOR SET		GENERAL		IDENTIFICATION	ON NUMBER 151
EX	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FA)	(FAILURES PER MILLION HOURS) FAILURE RATE ESTIMATE	HOURS) 80% UPPER BOUND
AUF	EXPONENTIAL	50 60 60 60	22.261	an- an-	25.384	28.964
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
AUF		₩	1890976			

MOTOR.	MOTOR, ELECTRIC		/ > 1 HORSE POWER. AC	C IDENTIFICATION NUMBER	N NUMBER 152
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILUR 80X LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE ESTIMATE	HOURS) 80% UPPER BOUND
	EXPONENTIAL	750000	0.550	1.333	2.853
7	EXPONENTIAL	36240	11.373	27.594	59.040
2	EXPONENTIAL	24274	35.778	41.196	47.470
2	EXPONENTIAL	8170.	62.62	122.399	225.030
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TO AL PART OPERATING HOURS	COMMENTS	
J.		2	1500000		0 0 0 0 0 0 0 0 0 0 0 0
3	2	2	72481	SIGNIFICANCE LEVEL FOR COMB	LEVEL FOR CCHBINING SOURCES 0.37
SE		42	1019520		
2		က	24510		

DTOR	MOTOR, ELECTRIC		> 10 HORSE POWER,	, Ac	IDENTIFICATION NUMBER	ON NUMBER 153
E X	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	RATE	(FAILURES PER MILLION HOURS) RAILURE 1	HOURS) 80% UPPER BOUND
GF.	EXPONENTIAL	00006	2.480		. 11.111	33.275
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
GF		٦	00006			
DTOR	MOTOR, ELECTRIC	,	/ DC		IDENTIFICATION NUMBER	ON NUMBER 154
ENV	-	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RATE	(FAILURES PER MILLION FAILURE RATE ESTIMATE	MILLION HOURS) 80% UPPER BOUND
SZ	EXPONENTIAL	54024.	14.110		18.510	24.225
ENY	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMPRENTS		
X.	2	13	702310	SIGNIFICANCE		LEVEL FOR COMBINING SOURCES 0.67
1						

					Ì
MOTOR.	. ELECTRIC		DC, (4 HORSEPOWER)	IDENTIFICATION NUMBER	ON NUMBER 155
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE BOUND	RE RATE (FAILURES PER MILLION RATE ESTIMATE	HOURS) 80x UPPER BOUND
89	EXPONENTIAL		0.0	0.000	83.323
E X	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPE ATING	COMPTENTS	
88		0	19317		
MOTOR.	ELECTRIC		/ HYDRAULIC, DC	IDENTIFICATION	ION NUMBER 156
E X	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RATE (FAILURES PER FAILURE RATE ESTIMATE	MILLION HOURS) 80% UPPER BOUND
AUT	EXPONENTIAL	16308	4 000000000000000000000000000000000000	61.320	92.754
Ğ	EXPONENTIAL	I	2.480	11.111	33.275
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART D OPERATING HOURS	COMMENTS	
AUT		60	97848		
5			00006		

MOTOR	MOTOR, ELECTRIC		SERVO, DC	IDENTIFICATION NUMBER	N NUMBER 157
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	RATE (FAILURES PER MILLIC FAILURE RATE ESTIMATE	M HOURS) 80% UPPER BOUND
AIF	EXPONENTIAL	34289	16.745	29.164	49.008
ARW	EXPONENTIAL	81928	10.161	12.206	. 4.1 88.8 8.0
AUT	EXPONENTIAL	i 65232. i	7.844	15.330	28.184
5	EXPONENTIAL		7 . 183	10.058	13.991
¥	· ∢ :	e	19.601	31.726	50.168
2	EXPONENTIAL	# 1 # 1 # 1		000 0	65.668
E S	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
AIF	-	4	137155		
ARE		26	2130134		
AUT		8	185696		
GF.		Ø	69 48 26		
¥	₹	ın	157598	SIGNIFICANCE LEVEL FOR COMBINING	NING SOURCES 0.53
2	-4	0	24510		

نہ	MOTOR, ELECTRIC	•	/ STEPPER	IDENTIFICATION NUMBER	ON NUMBER 158
	DIST. TYPE	MEAN ESTIMATE (HOURS)	80X LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) 1	M HOURS) SOX UPPER BOUND
, i	EXPONENTIAL	125215	6.219	00.7	10.240
	EXPONENTIAL	75084.	5.489	13.317	28.493
	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
		15	1878222		6 8 9 7 8 6 8 8 8 8 9 9 9 9
	2	2	150188	SIGNIFICANCE LEVEL FOR CONBINING SOURCES. 0.77	INING SOURCES. 0.77

O-RING	94	,	GENERAL		IDENTIFICATION NUMBER	M NUMBER 159
EN	DIST TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND		RATE (FAILURES PER MILLION HOURS) FAILURE RATE ESTIMATE B	HOURS) SOX UPPER BOUND
AUT	EXPONENTIAL	56723.	15.823	-	17.629	19.654
3	EXPONENTIAL	3780.	59.038		- T	792.261
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
AUT		69	3913920			
3			e !			
ART	PARTICLE SEPARATOR		GENERAL		IDENTIFICATION	W NUMBER 160
EX	DIST. T.PE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	A	(FAILURES PER MILLION HOURS) FAILURE RATE BESTIMATE BESTIMATE	HOURS) SOX UPPER BOUND
ARE	EXPONENTIAL	1082	\$58.0 23		921.659	990.418
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
ARE		151	38			
	************				,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

PITCH HORN	HORN	,	/ GENERAL		IDENTIFICATION NUMBER	ON NUMBER 161
EN <	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80x LOWER BOUND	URE RATE (FAIL)	RATE (FAILURES PER MILLION HOURS) FAILURE RATE ESTIMATE	HOURS) 80% UPPER BOUND
ARK	EXPONENTIAL	2287.	383.404		137.178	498.845
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
ARW		50 ·	109795	1	1 1 1 1 1 1 1	
PLOTTER	ER	,	/ ELECTROMECHANICAL	-1	IDENTIFICATION NUMBER	ON NUMBER 162
E N	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	URE RATE (FAIL)	RATE (FAILURES PER MILLION HOURS) FAILURE	M HOURS) BOUND BOUND
N.	EXPONENTIAL	144730.	9		608.9	9.828
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
SN.		60	1157842			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

POWER	POWER CIRCUIT BRE	AKER	CURRENT & VOLTAGE TRIP	TRIP IDENTIFICATION NUMBER	ON NUMBER 163
ENV	DIST TYPE	MEAN E ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE CESTIMATE B	N HOURS) 80% UPPER BOUND
GF	EXPONENTIA	10000	7 . 363	06.6	13.340
NS.	EXPONENTIAL	1667	46.726	000.09	76.935
NSB	EXPONENTIA	37939.	5.874	26.317	78.810
EN C	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMPRENTS	
GF	2	11	1107781	SIGNIFICANCE LEVEL FOR COMBINING SOURCES - 0.62	INING SOURCES 0.62
SK	T	15	250000		0 1 6 6 1 1 2 2 3 9
NSB	4		38000	SIGNIFICANCE LEVEL FOR COMBINING SOURCES = 0.62	INING SOURCES 0.62

POWER	POWER CIRCUIT BREAL	AKER / C	/ CURRENT TRIP	IDENTIFICATION NUMBER	N NUMBER 164
ENV	DIST TYPE	MEAN ESTIMATE (HOURS)	FAILU 80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE ESTIMATE B	HOURS) 80% UPPER BOUND
GF	EXPONENTIAL	243017	2.542	4,115	6.507
3	EXPONENTIAL	154105.	5.214	9	8.070
SN		357597	618.1	2.796	4.230
S	EXPONENTIAL	355395.	1.16.1	2.814	6.020
ER	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
ğ	6	1 0	1215091	SIGNIFICANCE LEVEL FOR COMB	LEVEL FOR COMBINING SOURCES= 0.38
¥5	m	13	2927995	SIGNIFICANCE LEVEL FOR COMBINING SOURCES = 0.07	INING SOURCES* 0.07
NS	2	6 0	2145579	SIGNIFICANCE LEVEL FOR COMBINING SOURCES-	INING SOURCES 0.06
		6	710790		

POWER	POWEP SWITCH GEAR	,	GENERAL	I DENTIFICATION NUMBER	N NUMBER 165
EN	DIST TYPE	MEAN ESTIMATE (HOURS)	80x LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE RATE	HOURS) 80% UPPER BOUND
GF	EXPONENTIAL	250000		000 4	11.979
Æ	EXPONENTIAL	304150.	0.734	3 2 88	
2	EXPONENTIAL		0 0	000.0	65.869
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COPPENTS	
GF			250000		
3	m	-	304156	SIGNIFICANCE LEVEL FOR COMBINING SOURCES = 0.60	INING SOURCES 0.60
		0	24510		

/ ELECTROSTATIC IDENTIFICATION NUMBER 166	FAILURE RATE (FAILURES PER MILLION HOURS) 80% FAILURE UPPER BOUND BOUND	184.230 360.057 1 661.965	TOTAL PART COMMENTS OPERATING HOURS	2888	/ OPTICAL	SOX FAILURE RATE (FAILURES PER MILLION HOURS) SOX FAILURE FAILURE 1 UPPER RATE BOUND	
1	MEAN ESTIMATE (HOURS)	2777.	NUMBER OF PARTS FAILED			ESTIMATE (HOURS)	
TATOR	DIST. TYPE	EXPONENTIAL	NUMBER OF 1 SOURCES P			DIST. TYPE	
PRECIPITATOR	> 3	SE	EN K	SN	PRISM	EN	

PROPELLER	LLER	,	GENERAL (FROM SHIP	1IP)	IDENTIFICATION NUMBER	M NUMBER 168
ERV	DIST. TYPE	MEAN E ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FA	(FAILURES PER MILLION HOURS) FAILURE RATE U ESTIMATE B	I HOURS) 80% UPPER BOUND
Ş	EXPONENTIAL	1120.	368.167		89 3.256	1911.242
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMPLENTS		
S	en	2	2239			
PROPO	PROPORTIONING UNIT	,	FROM DISTILLING PLANT	LANT	IDENTIFICATION NUMBER	W NUMBER 169
ENV	DIST. TYPE	MEAN ESTINATE (HOURS)	8 0% LOWER BOUND	FAILURE RATE (FA	(FAILURES PER MILLION HOURS) RATE STIMATE B	HOURS) 60% CPPER BOUND
SE	EXPONENTIAL		0.0		000	102.357
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMPENTS		
S¥		0	15725			
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			2

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	A	(FAILURES PER MILLION HOURS) RAILE ESTIMATE	HOURS) BOX UPPER BOUND
. ~ .	189156	3.439	-	5.287	7.997
	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
		1134936	SIGNIFICANCE	E LEVEL FOR COMBINING	ING SOURCES 0.23
	/ 68	GROOVED		IDENTIFICATION	NUMBER 171
	MEAN ESTIMATE (HOURS)	FAILURE 30% LOMER BOUND	& 	(FAILURES PER MILLION FAILURE RATE ESTIMATE	HOURS) 80% UPPER BOUND
; -	\$0298. !	6.372	- , -	12,454	22.896
. ~ .	766130.	0.538		1.305	2.793
1 2	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
	·	246895	SIGNIFICANCE	E LEVEL FOR COMBINING	NING SOURCES # 0.74
	~-	1532259			

PULLEY	>	,	/ V-PULLEY		IDENTIFICATION NUMBER	ON NUMBER 172
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RATE	(FAILURES PER MILLION HOURS) FAILURE 90X RATE UPPER BOUND	M HOURS) 80X UPPER BOUND
¥5	EXPONENTIAL	79308	6.452		12.609	23.182
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMPLENTS		
X.		m	237924			
PUMP		,	/ CENTRIFUGAL		IDENTIFICATION NUMBER	ON NUMBER 173
ENC	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	# 4	(FAILURES PER MILLION HOURS) 80% RATE BOU ESTIMATE	N HOURS) 80% UPPER BOUND
K S	EXPONENTIAL	26825	32.693		37.278	42.537
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
NS NS		40	1 1287605			

PUMP		-	/ HYDRAULIC	IDENTIFICATION NUMBER	N NUMBER 174
ENV	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE ESTIMATE B	HOURS) 80% UPPER BOUND
AUT	EXPONENTIAL	48924.	4.561	20.440	61.212
	EXPONENTIAL	68000	80.6	14.706	23.254
3	EXPONENTIAL	473.	1475.055	2116.402	3010.715
SX SX	EXPONENTIAL	17700.	28.908	58.497	103.870
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING	COMMENTS	
AUT		1	48924		
9	2	S.	340000	SIGNIFICANCE LEVEL FOR COMBINING SOURCES 0.12	INING SOURCES 0.12
3		60	3780		
SR	2	ო	83100	SIGNIFICANCE LEVEL FOR COMBINING SOURCES - 0.74	IINING SOURCES - 0.7

PUMP		,	/ HYDRAULIC(ROTARY		IDENTIFICATION NUMBER 175
EN V		MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	URE RATE (FAILURES PER MILLION HOURS) 8 RATE U ESTIMATE B	LION HOURS) 80x 10PER BOUND
2	EXPONENTIAL	24510.	9.105	40.800	122.185
ENV	NUMBER OF I	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
2			24510		
PUMP		,	/ PNEUMATIC	IDENTIFIC	IDENTIFICATION NUMBER 176
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	URE RATE (FAILURES PER MILLION HOURS) RATE ESTIMATE	LION HOURS) BOX UPPER BOUND
9	EXPONENTIAL	106153.	4.820	9.420	17.319
£		19827	25.807	50.436	92.727
ENS	NUMBER OF I	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
Ę,	2	6	318459	SIGNIFICANCE LEVEL FOR C	COMBINING SOURCES 0.86
3		C	59481		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PUMP		1/	/ ROTARY		I DENTIFICATION NUMBER	N NUMBER 177
≥	DIST. TYPE	ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILU	(FAILURES PER MILLION HOURS) FAILURE RATE ESTIMATE B	HOURS) 80% UPPER BOUNC
N S	EXPONENTIAL	3667	60.857		272.702	816.675
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
ν, Ζ	-1	1	3667	1 1 1 1 1 1 1 1		
PUMP			/ VACUUM		IDENTIFICATION NUMBER	N NUMBER 178
EN	DIST. TYPE	ESTIMATE (HOURS)	80% LOWER BOUND	RATE	(FAILURES PER MILLION FAILURE RATE ESTIMATE	MILLION HOURS) 80% 1 UPPER 1 BOUND
F.5	EXPONENTIAL	94250	5.429	30 - 30	10.610	19.507
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	CCVORENTS		
GF	6	(P)	262750	SIGNIFICANCE	LEVEL FOR COMBI	FOR COMBINING SOURCES 0.45

PUMP		,	/ VACUUM - LOBE TYPE	PE	IDENTIFICATION NUMBER	ON NUMBER 179
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAI	(FAILURES PER MILLION FAILURE RATE ESTIMATE	MILLION HOURS) 80% UPPER BOUND
	EXPONENTIAL	4091	0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		244,444	298.946
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMPLENTS		
5		22	00006			
PUMP		/	VACUUM - RING SE	SEAL TYPE	IDENTIFICATION NUMBER	ON NUMBER 180
₩ \$	DIST. TYPE	ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RATE	(FAILURES PER MILLION FAILURE RATE ESTIMATE	R MILLION HOURS) 80% UPPER BOUND
5	EXPONENTIAL	00006	2.480		11.11	33.275
EN.	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
g.			00008			

PURIFIER	16.8		CENTRIFUGAL	9	IDENTIFICATION NUMBER	N NUMBER 181
≥	DIST. TYPE	MEAN ESTIMATE (HOURS)	80x LOWER BOUND	FAILURE RATE (FAILURES RATE ESTIMA	(FAILURES PER MILLION HOURS) FAILURE CONTROL ESTIMATE	HOURS) 80% UPPER BOUND
NS	EXPONENTIAL	655	1033.057	1527.717	717	2233.328
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
SZ		7	4582			
9016	QUILL ASSEMBLY		GENERAL		IDENTIFICATION NUMBER	N NUMBER 182
ENC	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	8 1 1 1 1 1	(FAILURE PER MILLIOM HOURS) RAILURE 1 U U ESTIMATE B	HOURS) UPPER BOUND
ARW	EXPONENTIAL	771	1186.734	1296.933	933	1418.125
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMENTS		
ARK		100	77105		0 0 0 0 0 0 0	

RADOME		,	/ MICROWAVE. ANTENNA	ZA A	IDENTIFICATION NUMBER	N NUMBER 183
R S	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RATE	(FAILURES PER MILLION HOURS) FAILURE 1 BOX RATE BOUND	HOURS) 80% UPPER BOUND
AIF	EXPONENTIAL	137155	3.005		7.291	15.600
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMPLENTS		
AIF		2	274310			
REFRIC	REFRIGERATION PLAN	1	FROM AIR CONDITION	CONDITIONG PLANT	IDENTIFICATION NUMBER	N NUMBER 184
8	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% 80% LOWER BOUND	RATE	(FAILURES PER MILLION HOURS) FAILURE 180x RATE 180U	HOURS) 80% UPPER BOUND
S	EXPONENTIAL	9337	95.233		107 106	120.541
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
Z.	-4	59	550856			

REGULATOR	LTOR	'	. ELECTRICAL		IDENTIFICATION NUMBER	N NUMBER 185
EN.	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RATE	(FAILURES PER MILLION HOURS) FAILURE RATE ESTIMATE B	N HOURS BOX UPPER BOUND
<u>.</u>	EXPONENTIAL	377134.	1.093		2.652	5.673
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
GF	2	2	754268	SIGNIFICANC	SIGNIFICANCE LEVEL FOR COMB	COMBINING SOURCES* 0.46
REGULATOR	ATOR	,	PNEUMATIC (PRESSURE	SURE)	IDENTIFICATION NUMBER	ON NUMBER 186
E S	DIST. TYPE	MEAN ESTIMATE (HOURS)	80X FAIU LOWER BOUND	FAILURE RATE (FAI	(FAILURES PER MILLIO FAILURE ESTIMATE	MILLION HOURS) 80% UPPER BOUND
	EXPONENTIAL	6429	119.929		155.556	201.397
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
- GF		7	00006			

REGULATOR	ATOR	,		BREAKER) IDENTIFICATION NUMBER	N NUMBER 187
EX	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE U BRIMATE BO	HOURS) 80% UPPER BOUND
GF	EXPONENTIAL	0006	80.982		151.687
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
g.		10	00006		

ž	REGULATOR		/ PRESSURE	IDENTIFICATION NUMBER	ON NUMBER 188
8 × √	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE ESTIMATE B	N HOURS) 80% UPPER BOUND
AUT	EXPONENTIAL	(() () () () () () () () () (2.2	10.220	30.606
GF.	EXPONENTIAL	200000	1.023	2.000	3.677
Y.	EXPONENTIAL	97771.	5.872	10.228	17.187
	EXPONENTIAL	# # # # # # # # # # # # # # # # # # #	된 된 된	NOTE BELOW	
NS	EXPONENTIAL	34040	15.031	29.377	54.010

ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS
AUT			97848	
GF.	1	6	1500000	
¥	2	4	391083	SIGNIFICANCE LEVEL FOR COMBINING SOU?CES. 0.81
Ę		0	216	
SZ	en	e	102120	SIGNIFICANCE LEVEL FOR COMBINING SOURCES # 0.13

NOTE: Low total part operating hours, develop failure data with caution

REGULATOR	ATOR	1 /	TEMPERATURE	IDENTIFIC	IDENTIFICATION NUMBER 189
E.≅ >	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% FAILL BOUND BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) 8 FAILURE U ESTIMATE B	LION HOURS) 80% UPPER BOUND
£	EXPONENTIAL	1001	588.06	220 507	471.805
SN	EXPONENTIAL	13100	17.035	76.336	228.607
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TUTAL PART OPERATING HOURS	COMMENTS	
¥		2	9070		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
S S		-	13100		

RESIL	RESILIENT MOUNT		GEWERAL	IDENTIFICATION NUMBER	ON NUMBER 190
EN	DIST TYPE	ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	URE RATE (FAILURES PER MILLION HOURS) RATE ESTIMATE B	N HOURS) 800K BOUND
AUT	EXPONENTIAL	330237.	1.739	3.028	5.089
Ş.	EXPONENTIAL	250000	2.297	4.000	6.722
3	EXPONENTIAL	34166.	21.704	29.269	39.321
S N :	EXPONENTIAL	772117.	0.744	1.295	2.176
N SB	EXPONENTIAL	12300.	33.509	81.301	173.954
2	EXPONENTIAL	424840	1.204	2.354	4.328
S S	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
AUT			1320948		
ĢF		₹	1000000		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Ē	2		375828	SIGNIFICANCE LEVEL FOR COMBI	COMBINING SOURCES- 0.39
N.	2	-	3088468	SIGNIFICANCE LEVEL FOR COMBI	COMBINING SOURCES 0.83
NSB		2	24600		0 0 0 0 0 0 0 0 0 0 0 0 0
3	~	E	1274520		
	************			*************************	

RESI	RESILIENT MOUNT	,	/ SHOCK MOUNTS	IDENTIFICATION NUMBER	M NUMBER 191
EN X	DIST. TYPE	ESTIMATE (HOURS)	FAILURE SOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) FAILURE 80% UPPER BOUND ESTIMATE BOUND	HOURS) 80x UPPER BOUND
3	EXPONENTIAL	5600	91.369	178.571	328.303
N N	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMPLENTS	
3			16800		

ETAIN	ETAINING RING	,	GENERAL	IDENTIFICATION NUMBER	N NUMBER 192
2	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80x LOWER BOUND	RATE (FAILURES PER MILLION HOURS) RATE RATE ESTIMATE B	HOURS) #0% UPPER BOUND
12	EXPONENTIAL	15759.	59.726	83.455	87.439
	EXPONENTIAL	612693.	1.104	1.632	2.386
¥.	EXPONENTIAL	391925	1.822	2.552	3.549
S	EXPONENTIAL	1474697	0.347	0.678	1.247
2	EXPONENTIAL	339590	1.214	2.845	6.301
E N	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
AUT		208	3277908		
GF	7	7	4288853	SIGNIFICANCE LEVEL FOR COMBINING SOURCES.	INING SOURCES* 0.37
3	67	00	3527328	SIGNIFICANCE LEVEL FOR COMB	FOR COMBINING SOURCES* 0.58
SE	2	8	4424091	SIGNIFICANCE LEVEL FOR COMBINING	IINING SOURCES # 0.41
2	2	2	679180	SIGNIFICANCE LEVEL FOR COMBINING SOURCES 0.09	INING SOURCES 0.09

SEAL		,	GENERAL		IDENTIFICATION NUMBER	N NUMBER 193
> ~	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FA)	(FAILURES PER MILLION HOURS) FAILURE 10PPER	HOURS) 80% UPPER BOUND
ARE	EXPONENTIAL	1961	393.223		510.037	660.340
E N V	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TUTAL PART OPERATING HOURS	COMMENTS		
AR		77	27449	1		
SEAL		,	SOLDER		IDENTIFICATION NUMBER	M NUMBER 194
EN <	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	URE RATE (FA	FAILURES PER MILLION HOURS) FAILURE FAILURE ESTIMATE P	HOURS) 80K UPPER BOUND
AUF	EXPONENTIAL	460402	1.583		2.172	2.965
E K	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
AUF		10	4604017			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

	SENSORS		WAIER LEVEL			
> ×	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RA 1	(FAILURES PER MILLION HOURS) 80x FAILURE OPPER PATE BOURE	N HOURS) 80% UPPER BOUND
GF	EXPONENTIAL	12857	52.594		77.778	113.701
EN<	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
Ğ		7	00006			
SENSO	SENSORS/TRANSDUCER,	/TRANSMITTER/	/IRANSMITTER/ ACOUSTIC (HYDROPHONES	HONES]	IDENTIFICATION NUMBER	ON NUMBER 196
M N N	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (F.	(FAILURES PER MILLION HOURS) RATE ESTIMATE	N HOURS) 80% UPPER BOUND
Z.	EXPONENTIAL		0.0		0.00.0	184.244
M ×	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
NSB		0	8736			

SENSO	RS/TRANSDUCER	SENSORS/TRANSDUCER/TRANSMITTER/ AIRFLOW	AIRFLOW	OI OI	IDENTIFICATION NUMBER	N NUMBER 197
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILUR 80x LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE RATE U ESTIMATE	PER MILLION HOURS) RE () () () () () () () () () (HOURS) 80X UPPER BOUND
3	EXPONENTIAL	1900	216.928	526.316	97	1126.124
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
3		2	3800			

SENSO	SENSORS/TRANSDUCER,	SDUCER/TRANSMITTER/ FLOW (LIQUID)	FLOW (LIQUID)	. IDENTIFICATION NUMBER	N NUMBER 198
E X	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% ROWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE ESTIMATE B	HOURS) 80% BOUND
AUF	EXPONENTIAL	98657	4.178	10.136	21.688
3	2 :	95764.	7.611	10.442	14.256
. SX	EXPONENTIAL	36765.	11.211	27.200	58.198
2	EXPONENTIAL	39300.	5.678	25.445	76.202
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
AUF	w	6	197314		
-	2	10	957638	SIGNIFICANCE LEVEL FOR COMBI	FOR COMBINING SOURCES + 0.16
NS SN		2	73530		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
⊋	-	7	39300		

RS/	SENSORS/TRANSDUCER	R/TRANSMITTER/ HUMIDITY	HUMIDITY		IDENTIFICATION NUMBER	ON NUMBER 199
	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% BOUND	RATE	(FAILURES PER MILLION HOURS) RAILURE RATE ESTIMATE B	HOURS) 80x UPPER BOUND
! !	EXPONENTIAL	48924	4.561		20.440	61.212
	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPELATING HOURS	COMPRENTS		
i			48924			
نم ا	SENSORS/TRANSDUCER	R/TRANSMITTER/ INFRARED	INFRARED		IDENTIFICATION NUMBER	ON NUMBER 200
	DIST. TYPE	MEAN ESTIMATE (HOURS)	SOX SOX LOWER BOUND	RATE	(FAILURES PER MILLION HOURS) FAILURE RATE ESTIMATE BOU	HOURS) 80% UPPER BOUND
i i	EXPONENTIAL	1553.	574.805		643.855	721.681
- 1	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
		89	97848			0 0 0 0 0 0 0 0 0 0
į						

SENSO	SENSORS/TRANSDUCER/	R/TRANSMITTER/ MOTION	HOTION	IDENTIFICATION NUMBER	ON NUMBER 201
E A	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE RATE ESTIMATE 1 8	HOURS) 80% UPPER BOUND
¥.	EXPONENTIAL	10728	71.867	93.217	120.687
SN	EXPONENTIAL	# I # I # I # I # I # I # I # I # I # I	0.0	000 0	65.669
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMPTENTS	
3	2	4	150188	SIGNIFICANCE LEVEL FOR COMBINING SOURCES = 0.80	INING SOURCES 0.80
NS NS		0	24510		8 9 9 1 1 1 6 6 6 8 9

SENSO	SENSORS/TRANSDUCER/	CER/TRANSMITTER/ PRESSURE	PRESSURE	IDENTIFICATION NUMBER	TON NUMBER 202
X	DIST. TYPE	ESTIMATE (HOURS)	80% FAILI BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) 80% RATE (AILURE) 1 RATE (BOUND	ON HOURS) 80% 1 80% 1 BOUND
AUT	EXPONENTIAL	24462.	26.596	40.880	61.836
G.	EXPONENTIAL	5201.	172.717	192.271	214.175
¥	EXPONENTIAL		218.076	1 529.100	1132.082
S.	EXPONENTIAL	43315.	9.515	23.087	49.397
NSB SB	EXPONENTIAL	364	613.087	2747.252	8227.320
Erav	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
A UT		ဖ	146772		
5		0,2	364070		
3		2	3780		
SZ	2	8	86630	SIGNIFICANCE LEVEL FOR COMBINING	MBINING SOURCES 0.25
2	;	,			

EN <	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RE N. TE (FAILURES PER MILLION HOURS) FAILURE STIMATE FESTIMATE FE	N HOURS) 80x UPPER BOUND
AUT	EXPONENTIAL	97848	4.212	10.220	21.867
35	EXPONENTIAL	15763.	44.215	63.440	90.247
3	EXPONENTIAL	75342.	GB GB .	13.273	17.584
SE	EXPONENTIAL	63809	3.498	15.672	46.932
K 58	EXPONENTIAL	34073.	18.132	29.349	46.408
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
AUT		2	969561		
GF	6	60	126104	SIGNIFICANCE LEVEL FOR COM	LEVEL FOR COMBINING SOURCES+ 0.21
3	2	12	904099	SIGNIFICANCE LEVEL FOR COM	COMBINING SOURCES- 0.78
NS	2		63810	SIGNIFICANCE LEVEL FOR COM	COMBINING SOURCES* 0.32
2		2000 1000 1000	170364	SIGNIFICANCE LEVEL FOR COMBINING SOURCES.	BINING SOURCES= 0.30

SHAFT			GENERAL	IDENTIFICATION NUMBER	ON NUMBER 204
N	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	RE RATE (FAILURES PER MILLION HOURS) FAILURE RATE CSTIMATE	N HOURS) 80% UPPER BOUND
ARK	EXPONENTIAL	3431.	240.616	291.453	353.124
AUT	EXPONENTIAL	207927	2.781	808	8.082
GF .	EXPONENTIAL	186772	3.0224	5.354	7.448
¥5	EXPONENTIAL	80642	9 . 453	12.401	16.229
2		99729.	2.238	10.027	30.029
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
ARW		24	82346		
AUT		4	831708	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1
GF	₩.	တ	1630937	SIGNIFICANCE LEVEL FOR COMBINING	COMBINING SOURCES 0.97
3	2	13	1048345	SIGNIFICANCE LEVEL FOR COMBINING	INING SOURCES* 0.06
3	2	13	1048345	!	

SIGNIFICANCE LEVEL FOR COMBINING SOURCES# 0.44

SHOCK	SHOCK ABSORBERS	,	/ COMBINATION	IDENTIFICATION NUMBER	N NUMBER 205
EX <	DIST. TYPE	ESTIMATE (HOURS)	FAILUR BOWE BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) FAILURE FAILU	HOURS) 80% UPPER BOUND
AUT	EXPONENTIAL	73386	5.616	13.627	29.156
3	EXPONENTIAL	\$2417.	13.296	19.078	27.139
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FRILED	TOTAL PART OPERATING I	COMMENTS	
AUT		2	146772	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
3	2	**	419338	SIGNIFICANCE LEVEL FOR COMBINING SOURCES = 0.07	NING SOURCES 0.07

SHOCK	SHOCK ABSORBERS	X	RISILIENT	IDEN	IDENTIFICATION NUMBER	18ER 206
E S	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE ESTIMATE B	ER MILLION HOUR	(S) 80% UPPER BOUND
<u>\$</u>	EXPONENTIAL	52417	10.953	19.078		32,059
D.N.	EXPONENTIAL	122550	4.175	8.160		15.002
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
¥5	2	₹	509669	SIGNIFICANCE LEVEL FOR COMBINING SOURCES = 0.79	FOR COMBINING	SOURCES 0.7
2		m	367650	•		

SLIP	SLIP RING-BRUSH		/ POWER & SIGNAL	IDENTIFICATION NUMBER	ON NUMBER 207
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) BAILURE BATE BATE BATE BATE BATE BATE BATE BAT	HOURS) 80% UPPER BOUND
AUF	EXPONENTIAL 1760462	1760462	0.421	0 .568	0.763
EN	NUMBER OF SOURCES	NUMBER OF PARTS FALLED	TOTAL PART OPERATING HOURS	COMMENTS	
AUF		11	19365088		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SLIP RINGS	RINGS	,	/ GENERAL	IDENTIFICATION NUMBER	ON NUMBER 208
₩ ×	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE F 80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE ESTIMATE B	N HOURS) 80% UPPER BOUND
GF	EXPONENTIAL	1500000	0.149	199 0	1 996
3	EXPONENTIAL	3800	171.209	263.158	398.061
S	EXPONENTIAL	73530.	3.035	13.600	40.728
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART CC OPERATING HOURS	COMMENTS	
GF.		-	150000		
3			22800		
NS			73530		0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2	SOLENOIDS	,	/ GENERAL	IDENTIFICATION NUMBER	IN NUMBER 209
EN <	DIST. TYPE	HEAN ESTIMATE (HOURS)	# FAILUI LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS)	HOURS) SOX BOUND
	EXPONENTIAL	24510.	9.105	40.800	122 185
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
1			24510		1

SOLENOIDS	OIDS	,	/ LINEAR	IDENTIFICATION NUMBER	ON NUMBER 210
E	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) 80% RATE UPPER BOUND	HOURS) 80% UPPER BOUND
GF	EXPONENTIAL	00006	2.480	111	33.275
A.	EXPONENTIAL	50379	12.914	19.849	30.025
SE	EXPONENTIAL	32750.	12.585	30.534	65.332
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
GF		-	00006		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.	e	æ	302276	SIGNIFICANCE LEVEL FOR COMBINING SOURCES = 0.08	INING SOURCES 0.08
SZ		2	65500		

SOLENOIDS	SOIC		ROTARY		IDENTIFICATION NUMBER	N NUMBER 211
¥ ¥	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RE RATE (FAILURES PER PEAILURE RATE ESTIMATE	ES PER MILLION LURE TE IMATE	R MILLION HOURS) 80x UPPER BOUND
<u>.</u>	EXPONENTIAL	29493	20.947	E7	33.906	53.614
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
GF	(m)	5	147466	SIGNIFICANCE	LEVEL FOR COMBINING SOURCES.	INING SOURCES* 0.88
SPRING	g	,	COMPRESSION		IDENTIFICATION	ON NUMBER 212
EN	DIST TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	URE RATE (FALLURES PER FALLURE RATE ESTIMATE	RES PER MILLION ILURE ATE ILMATE	MILLION HOURS) 80% UPPER BOUND
9	EXPONENTIAL	918	6.254	•	10.892	18.303
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
35			367248		1 6 1 5 1 1 1 1 1	

SPRING	O	0 /	GENERAL		IDENTIFICATION NUMBER	N NUMBER 213
E .	DIST. TYPE	ESTIMATE (HOURS)	80% FAIL BOUND	FAILURE RATE (FAIL	(FAILURES PER MILLION HOURS) FAILURE 1 0PP ESTIMATE 1 BOU	HOURS) 80% UPPER BOUND
AIF	EXPONENTIAL	45718	11.192		21.873	40.214
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
AIF		m	137155			
SPRING	9		/ TORRISION		IDENTIFICATION NUMBER	N NUMBER 214
ENC	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE BOWER BOUND	R TE	(FAILURES PER MILLION FAILURE ESTIMATE	N HOURS) 80% BOUND
GF	EXPONENTIAL	69952	7.315		14.296	26.282
EN <	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
SF.		n	209856			8 3 4 4 9 9 9

SPROCKET	ET.		GENERAL			
> Z	DIST TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	A T T T T T T T T T T T T T T T T T T T	(FAILURES PER MILLION HOURS) FAILURE BRATE ESTIMATE B	HOURS) 80% UPPER BOUND
AUT	EXPONENTIAL	244620	0.912		89 89	12.242
G.	EXPONENTIAL	175662	3.517	a a a a a	5.693	9.002
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
AUT			244620		1 1 1 1 1 1 1	
GF.				SIGNIFICANCE	LEVEL FOR COMBINING	NING SOURCES = 0.
STEAM	STEAMBOILER		GENERAL (FROM SHIP)	HIP)	IDENTIFICATION	N NUMBER 216
E &	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOMER BOUND	FAILURE RATE (FAIL	(FAILURE PER MILLION HOURS) FAILURE U ESTIMATE B	HOURS) 80% UPPER BOUND
S N	EXPONENTIAL	1858	378.790		510.820	686.262
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMPLENTS		
NS NS		11	21534	a. a.		

STOW PIN	NIG		GENERAL		IDENTIFICATION NUMBER	N NUMBER 217
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RATE	(FALLURES PER MILLION FAILURE RATE ESTIMATE	R MILLION HOURS) 80% UPPER BOUND
2	EXPONENTIAL	163400	3.131	1	6.120	11.252
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
2		m	490200			
SWITCH		,	COAXIAL (ELECTRO	(ELECTROMECHANICAL)	IDENTIFICATION NUMBER	N NUMBER 218
EN	3dk). 1SIQ	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAIL	(FAILURES PER MILLION HOURS) FAILURE RATE ESTIMATE	HOURS) 80% UPPER BOUND
SZ	EXPONENTIAL	27780	26.236		35.997	49.143
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
NS		10	277800			

SWITCH	Ī	,	/ FLOW (LIQUID)	IDENTIFICATION NUMBER	N NUMBER 219
ERV	DIST. TYPE	MEAN ESTIMATE (HOURS)	80X FAILT LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE ESTIMATE B	HOURS) 80x UPPER BOUND
3	EXPONENTIAL	133885	4.285	7,463	12.541
S N	EXPONENTIAL	198017.	3,415	5.050	7.383
2	EXPONENTIAL	10480	39,320	95.420	204.164
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
<u>7</u>	2		535968	SIGNIFICANCE LEVEL FOR COMBINING SOURCES + 0.21	INING SOURCES* 0.21
NS	8	<u></u>	1386117	SIGNIFICANCE LEVEL FOR COMBINING SOURCES - 0.06	INING SOURCES 0.00
2		2	20960		

SWITCH	F	,	/ INTERLOCK	IDENTIFICATION NUMBER	ON NUMBER 220
ENC	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILU 80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE ESTIMATE B	N HOURS) 80% UPPER BOUND
₩.	EXPONENTIAL	1583	410.902	631.579	955.348
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3		6	0056		

SWITCH			PRESSURE (AIR FLOW)	- · - ·	IDENTIFICATION NUMBER	ION NUMBER 221
> z	OIST TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	URE RATE (FAILURES PER	S PER MILLIGUE E Mate	R MILLION HOURS) 80x 10PER BOUND
GF	EXPONENTIAL	239465	2.983		4.176	5 808
¥5	Z	90047	7.932	17	11.105	15.448
Ę	EXPONENTIAL		EEC	NOTE BELOW		
SE	EXPONENTIAL	110582	7.792	67	043	10.502
2	EXPONENTIAL	40000	5.579	25.	000	74.869
E N <	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
GF	100	5	2155190	SIGNIFICANCE LEVEL FOR COMBINING	VEL FOR COM	BINING SOURCES = 0.83
Σ	2	6	810421	SIGNIFICANCE LEVEL FOR COMBINING	VEL FOR COM	BINING SOURCES * 0.51
Σ		0	164		1	
NS	4	80 i	4202120	SIGNIFICANCE LE	VEL FOR COM	SIGNIFICANCE LEVEL FOR COMBINING SOURCES = 0.33
n N	-	~	40000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

NOTE: Low total part operating hours, develop failure data with caution

0 0 0 0 0 0 0 0		
FAILURE RATE (FAILURES PER MILLION HOURS) RATE ESTIMATE BG	FAILL	MEAN 80% FAILU ESTIMATE LOWER (HOURS) BOUND
	452	95067.
COMMENTS	PART	NUMBER OF TOTAL PART PARTS FAILED OPERATING HOURS
SIGNIFICANCE LEVEL FOR COMBINING SOURCES. 0.46	08	19 1 1806280

SWITCH	T	,	THERMOSTATIC	IDENTIFICATION NUMBER	ON NUMBER 223
) 2 2	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RATE (FAILURES PER FAILURE RATE ESTIMATE	MILLION HOURS
AUT	EXPONENTIAL	61155	80 80 0	16.352	27.478
15	EXPONENTIAL	205556	3.475	30	6.767
3	Y Y	63101.	13.024		19.288
N.	EXPONENTIAL	334866	2.383	2.986	3.739
NS S	EXPONENTIAL	18232.	44.075	54.850	68.217
2	EXPONENTIAL	66730	7.668	986	27.551
EN	NUMBER OF SOURCES	NUMBER OF PARTS FALLED	TOTAL PART OPERATING HOURS	COMPENTS	
AUT		-	244620		
ĞŁ	2	٥	1850000	SIGNIFICANCE LEVEL FOR COMB	COMBINING SOURCES* 0.08
3		23	1451312		
S	6	80	6027596	SIGNIFICANCE LEVEL FOR COMB.	COMBINING SOURCES = 0.73
N SB	₹	19	346400	SIGNIFICANCE LEVEL FOR COMB	COMBINING SOURCES = 0.75
2	e	e	200190	SIGNIFICANCE LEVEL FOR COMBINING SOURCES.	INING SOURCES - 0.48

SWITCH	x	`	/ THUMBWHEEL	IDENTIFI	IDENTIFICATION NUMBER	ER 224	
ENV	DIST. TYPE	ESTINATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) 80% 1 RATE UPPER UPPER BOUND	LLION HOURS	SOUND BOUND	i
ų, J	EXPONENTIAL	249616.	2.792	900		8.699	
3	EXPONENTIAL	3780.	59.038	264.550		792.261	•
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PAR, OPERATING HOURS	COMPRENTS			
<u>.</u> 5	e	**	1996924	SIGNIFICANCE LEVEL FOR COMBINING SOURCES 0.32	COMBININGS	OURCES 0.3	~ .
3		-	3780				

SWITCH	1		/ WAVE GUIDE	IDENTIFICATION NUMBER	N NUMBER 225
)	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURI 80x LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE ESTIMATE B	HOURS) 80% UPPER BOUND
GF	EXPONENTIAL	250000	649	000 🔻	83 S. 89
3	EXPONENTIAL	1987	25 . 807	50.436	92.727
SZ .	TYLLNENCHX	15400.	33.225	64.935	119.383
E N	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
ĝ.		2	200000		
3		6	400 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
SN	2	m	46200	SIGNIFICANCE LEVEL FOR COMBINING SOURCES = 0.42	INING SOURCES= 0.42

SWITC	SWITCHBOARD CONTROL		FROM OXYGEN GENERATOR	105	ION NUMBER 226
ENV	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILUR 80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE PESTIMATE B	DN HOURS) 80% UPPER BOUND
N S N	EXPONENTIAL	1670	542.640	598.877	661.336
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
NS	~	200	136923		

SYNCRO		-	TRANSMITTER		IDENTIFICATION NUMBER	N NUMBER 227
ENC	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILI 80% LOWER BOUND	FAILURE RATE (FA)	(FAILURES PER MILLION HOURS) SOX RATE ESTIMATE BOU	HOURS) 80% UPPER BOUND
S	EXPONENTIAL	19315.	3.502		5.178	7.570
ERV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
NS			1351805			
SYNCR	SSE	,	GENERAL		IDENTIFICATION NUMBER	ON NUMBER 228
EN	DIST TYPE	MEAN ESTIMATE (HOURS)	FAILURE BOWND	A	(FAILURES PER MILLIO FAILURE RATE ESTIMATE	ER MILLION HOURS) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SE	EXPONENTIAL	2100	36.723		45.701	20.00
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
SX		6	415750	, , , , , , , , , , , , , , , , , , ,		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HEAT SECRETARY SYNTHE RESIDENCE INVESTIGATION DESCRIPTION SECRETARY RESIDENCE FOR THE PROPERTY OF THE PROPERTY

SYNCR	SYNCRO/RESOLVER	,	/ LOW SPEED LOW LOAD	Q1	IDENTIFICATION NUMBER	ON NUMBER 229
ENV	DIST. TYPE	ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	A TE	(FAILURES PER MILLION HOURS) RAIE ESTIMATE B B B B B B B B B B B B B B B B B B B	W HOURS) BOX UPPER BOUND
AUF	EXPONENTIAL	774548.	0.532		1.291	2.762
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
AUF		2	1549092			
TACHO	TACHOMETER	,	GENERAL		IDENTIFICATION NUMBER	ON NUMBER 230
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RATE	(FAILURES PER MILLION HOURS) FAILURE : 8 RATE : U ESTIMATE : B	N HOURS) 80% UPPER BOUND
AUT	EXPONENTIAL	16308	43.795		61.320	85.300
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
AUT		တ	146772			

TANK			/ NON PRESSURIZED	IDENTIFICATION NUMBER	ON NUMBER 231
EX	DIST. TYPE	ESTIMATE (HOURS)	FAILUR 80X LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RAILURE RATE ESTIMATE B	M HOURS) BOX UPPER BOUND
3	EXPONENTIAL	1880	218.076	528.100	1132.082
2	EXPONENTIAL	17467	29.294	57.252	105.258
ENS	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3		2	09		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2		က	52400		

TANK			/ PRESSURIZED	IDENTIFICATION NUMBER	ION NUMBER 232
EN <	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILI 80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) 80% RATE ESTIMATE BOU	ON HOURS) 80% UPPER BOUND
£	EXPONENTIAL	125000	1.785	000	23.958
¥	EXPONENTIAL		0.0	0.000	18084.918
2		14837.	34,487	67.401	123.916
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
GF.		-	125000		
로	e e	0	Ø)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2	2	E	44510	SIGNIFICANCE LEVEL FOR COMBINING SOURCES - 0.68	BINING SOURCES 0.68

TELESCOPE	OPE	\	/ BORESIGHT	IDENTIFICATION NUMBER 233
N <	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RE RATE (FAILURES PER MILLION HOURS) RATE RATE ESTIMATE BOUND
35	EXPONENTIAL	30038	20.568	33.292 52.643
N ×	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS
3	8	so.	150188	SIGNIFICANCE LEVEL FOR COMBINING SOURCES 0.99
TELESCOPE	COPE		GENERAL	IDENTIFICATION NUMBER 234
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RE RATE (FAILURES PER MILLION HOURS) FAILURE UPPER ESTIMATE BOUND
AUT	EXPONENTIAL		0.0	0.000
EN S	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS
AUT		0	48924	

TERMI	TERMINAL BOARDS	,	GENERAL	IDENTIFICATION NUMBER	ION NUMBER 235
N N	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	RATE (FAILURES PER FAILURE ESTIMATE	MILLION HOURS) 80% 1 PPER BOUND
AUT	EXPONENTIAL	195696	2.934	5.110	\$ 587
ويا	EXPONENTIAL	260072.	2.746	3 , 84.5	5 349
3	EXPONENTIAL	482827.	1.595	2 . 029	2.579
SE	EXPONENTIAL	1011	0.812	886 0	1 203
NSB	EXPONENTIAL	131	9	7 590	12.001
N N	EXPONENTIAL	99560	2.241	10.044	30.080
EN C	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
AUT		→	782784		
GF	ي. ا	Ø.	2340646	SIGNIFICANCE LEVEL FOR COM	COMBINING SOURCES 0.35
ğ	6	16	7885228	SIGNIFICANCE LEVEL FOR COM	COMBINING SOURCES 0.13
N.S.	E7	23	23272336	SIGNIFICANCE LEVEL FOR COM	COMBINING SOURCES# 0.17
NSB		S.	658800	SIGNIFICANCE LEVEL FOR COM	COMBINING SOURCES= 0.48
N.		-1	09260		

THERM	THERMOCOUPLE	,	/ GENERAL	IDENTIFICATION NUMBER	ON NUMBER 236
EX	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILU 80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE RATE BOUND ESTIMATE	M HOURS) 80% UPPER BOUND
GF.	EXPONENTIAL	750000	0.550	1.333	2.853
3	EXPONENTIAL	75342.	3	13.273	17.584
NS.	EXPONENTIAL	16903	30.270	59.160	108.765
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
GF	1	2	1500000		
¥5	2	12	904089	SIGNIFICANCE LEVEL FOR COMBINING SOURCES 0.78	IINING SOURCES 0.78
SN	2		50710	SIGNIFICANCE LEVEL FOR COMBINING SOURCES = 0.52	INING SOURCES 0.52

TRACK BALL	BALL		/ ELECTROMECHANICAL	IDENTIFICATION NUMBER	ON NUMBER 237	
E	DIST. TYPE	ESTIMATE (HOURS)	80% FAILU BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE ESTIMATE B	M HOURS) 80% 80% 800ND	
GF	EXPONENTIAL	24383.	34.823	41.012	48.329	
<u> </u>	EXPONENTIAL	30794	20.063	32.474	51.350	i
X X	EXPONENTIAL	128100.	6.350	7.806	9.597	
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
GF	2	32	780257	SIGNIFICANCE LEVEL FOR COMBINING SOURCES. 0.70	INING SOURCES = 0	70
3	e	S	153968	SIGNIFICANCE LEVEL FOR COMBINING SOURCES . 0.88	INING SOURCES.	10 10
SE SE	2	21	2690101	SIGNIFICANCE LEVEL FOR COMBINING SOURCES = 0.17	INING SOURCES = 0	17

TRANS	TRANSMISSION	,	GENERAL		IDENTIFICATION NUMBER	ON NUMBER 238
EX	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILL 80% LOWER BOUND	JRE RATE (FA)	FAILURE RATE (FAILURES PER MILLION HOURS) 8 FAILURE 1 ESTIMATS 1 B	M HOURS) SOX UPPER BOUND
ARK	EXPONENTIAL	106	1044 302	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	1101.965	1163.125
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
ARK	-	262	237757			
TRUNN	TRUNNION ASSEMBLY		GENERAL		IDENTIFICATION NUMBER	ON NUMBER 239
ENV	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	JRE RATE (FA)	RATE (FAILURES PER MILLION HOURS) 80% RATE RATE ESTIMATE	N HOURS) 80% UPPER BOUND
ARW	EXPONENTIAL	218	1704.926		1930.854	2188.241
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
AR		53	27449			

VALVE		,	CONTROL-MANUAL		IDENTIFICATION NUMBER	ON NUMBER 240
E S	DIST TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FA	(FAILURES PER MILLION HOURS) 80% RATE UPPER ESTIMATE	N HOURS) 80% UPPER BOUND
SZ	EXPONENTIAL	91970	8		10.873	14.405
EN C	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
S N		12	1103639			
VALVE			GAS (AIR-VENT)		IDENTIFICATION	ON NUMBER 241
EN	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	RATE	(FAILURES PER MILLION HOURS) RAILURE RATE ESTIMATE	N HOURS) 80% UPPER BOUND
S	EXPONENTIAL	80 80 00 00 00 00 00 00 00 00 00 00 00 0	0.461		11.11.00	2.392
EN C	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
SN	en en .	2	1789259			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

VALVE		H /	/ HYDRAULIC	IDENTIFICATION NUMBER	ON NUMBER 242
> W	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80X LOWER BOUND	RE RATE (FAILURES PER MILLION FAILURE RATE ESTIMATE	M HOURS) 80% UPPER BOUND
Aut	EXPONENTIAL		0.0	000 0	32.899
3	EXPONENTIAL	16667.	3.904	000 9	9.076
3	EXPONENTIAL	51001.	12.757	19 608	29.650
S	EXPONENTIAL	31690	18.118	31.556	53.027
80	EXPONENTIAL	4356.	163.977	229.592	319.379
2	EXPONENTIAL	23100	17 . 84.3	43.290	92.625
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
AUT		0	48924		
9		80	1000000		
3	2	80	306003	SIGNIFICANCE LEVEL FOR COM	COMBINING SOURCES 0.15
NS		→	126760	SIGNIFICANCE LEVEL FOR COM	COMBINING SOURCES 0.44
NS8		တ	39200	SIGNIFICANCE LEVEL FOR COM	COMBINING SOURCES 0.92
2	2	7	46200	SIGNIFICANCE LEVEL FOR COME	COMBINING SOURCES 0.85

VALVE		,	/ PNEUMATIC		IDENTIFICATION NUMBER	N NUMBER 243
8	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RA	(FAILURES PER MILLION HOURS) FAILURE RATE ESTIMATE B	HOURS) 80x UPPER BOUND
AUT	EXPONENTIAL	48924	13.298		20.440	30.918
<u>5</u> 6	EXPONENTIAL	250000.	1.649	3 3 3 4 3 4 3 4 4 1 1 1 1 1 1 1 1 1 1 1	4.000	8.559
8	EXPONENTIAL	60471.	8.461		16.537	30.403
SZ	EXPONENTIAL		0 0		0.000	00 (10)
2	EXPONENTIAL	21690.	10.289		104	138.070
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMENTS		
AUT		6	293544		8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
GF		2	200000			
3			7			
SE		0	1440000			
2			21690			

VALVE		,	SOLENOID OPERATED		IDENTIFICATION NUMBER	N NUMBER 244	
X	DIST. TYPE	ESTIMATE (HOURS)	80x LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) FAILURE RATE RATE BOUND	IES PER MILLION ILURE 17E IMATE	HOURS] BOX UPPER BOUND	
. GF	EXPONENTIAL	00006	2.480			33.275	!
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS			
5		-	00006	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			!
VALVE	(ISOLATION	/	PYROTECHNICALLY ACTUATED VALVE	ACTUATED VALVE	IDENTIFICATION NUMBER	M NUMBER 245	
2	DIST. TYPE	ESTIMATE (HOURS)	FAILURE LOWER BOUND	URE RATE (FAILUR	RATE (FAILURES PER MILLION HOURS) FAILURE RATE BOUND ESTIMATE BOUND	HOURS) BOX UPPER BOUND	
ž	EXPONENTIAL		SEE	E NOTE BELOW		* 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	!
ENS	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS			r!
Ŧ		0	124				!

NOTE: Low total part operating hours, develop failure data with caution

VALVE	VALVE (RELIEF)	,	PRESSURE ACTUATED		IDENTIFICATION NUMBER	N NUMBER 246
EN	DIST. TYPE	ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	& A - · - · - · · · · · · · · · · · · · ·	(FAILURES PER MILLION HOURS) FAILURE RATE ESTIMATE	HOURS) 80x UPPER BOUND
₹	EXPONENTIAL		SEE N)TE	E BELOW		
EX	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
로		0	42			
VALVE	VALVE (FILL & DRAIN	1	HAND OPERATED PLUG VALVE	G VALVE	IDENTIFICATION NUMBER	N NUMBER 247
ER	DIST. TYPE	MEAN ESTIMATE (HOURS)	80% LOWER BOUND	RATE	(FAILURES PER MILLION FAILURE RATE ESTIMATE	R MILLION HOURS) 80% UPPER BOUND
¥	EXPONENTIAL		0.0		000 0	922.383
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
Ī	3	0	1745		1 1 2 2 3 3 4 4 4 4 9	

NOTE: Low total part operating hours, develop failure data with caution

VAL VE	VALVE (BIPROPELLANT-	HIGH THURST/	HIGH THURST / SOLENOID OPERATED		IDENTIFICATION NUMBER	N NUMBER 248
E X <	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80x LOWER BOUND	RATE	(FAILURES PER MILLION FAILURE RATE ESTIMATE	R MILLION HOURS) 80× UPPER BOUND
로	EXPONENTIAL			SEE NOTE BELOW	MC	
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
Ž.		0	45		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
VALVE	VALVE (BIPROPELLANT	-LOW THURST]/ TORQUE	TORQUE MOTOR OPERATED	RATED	IDENTIFICATION NUMBER	ON NUMBER 249
EN	DIST TYPE	ESTINATE (HOURS)	FAIL 80X LOWER BOUND	FAILURE RATE (FAI	(FAILURE PER MILLION HOURS) RAILURE CSTIMATE BESTIMATE B	M HOURS) 80% UPPER BOUND
¥	EXPONENTIAL		0.0		000.0	\$152.230
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
로		0	312		1	

CONTRACTOR STANDARD CONTRACT CONTRACT STANDARD CONTRACT CONTRACTOR

Low total part operating hours, develop failure data with caution NOTE:

WASHER		,	FLAT	IDENTIFICATION NUMBER	N NUMBER 250
E S	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	URE RATE (FAILURES PER MILLION FAILURE RATE ESTIMATE	HOURS) 80% UPPER BOUND
AUT	EXPONENTIAL	14567	89.5.	68.647	71.886
GF	EXPONENTIAL	162	0.693	0.614	0.763
3	EXPONENTIAL	6051034	-	0.165	0.180
S	EXPONENTIAL	2345333	0.343	0.426	0.530
N N	EXPONENTIAL		0.0	000.0	2.454
2	EXPONENTIAL	2742413.	0.225	0.365	0.577
N N	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMPRENTS	
AUT	e-i	356	5185944		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
75	e	19	30954240	SIGNIFICANCE LEVEL FOR COMBINING	NING SOURCES= 0.27
3	8	110	665613824	SIGNIFICANCE LEVEL FOR COMBINING	NING SOURCES 0 96
SZ		61	44561328		
NSB	2	0	656000	SIGNIFICANCE LEVEL FOR COMBINING	NING SOURCES 1.00
3		v	13712066	SIGNIFICANCE LEVEL FOR COMBINING	NING SOURCES 0.25

WASHER	œ		/ 10CK	IDENTIFIC	IDENTIFICATION NUMBER 251
E S	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	RATE (FAILURES PE	R MILLION HOURS) 80x 1 UPPER 1 BOUND
AUT	EXPONENTIAL	11605.		60	91.483
GF	EXPONENTIAL	1706841.	0.447	0.586	1 0.767
3	EXPONENTIAL	8636816.	0.097	0 . 116	0.138
Z Z	EXPONENTIAL	1161859.	0.711	198.0	1.043
NS8	EXPONENTIAL	# # # # # # # # # # # # # # # # # # #	0.0	000.0	7.186
2	EXPONENTIAL	834536.	889 0	861.1	2.014
C N C	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
AUT		215	2495124	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
GF.	(Y)	13	22188944	SIGNIFICANCE LEVEL FOR COMBINING	OMBINING SOURCES # 0.77
3	2	28	241830848	SIGNIFICANCE LEVEL FOR COMBINING	OHBINING SOURCES 0.97
NS	2	24	27884624	SIGNIFICANCE LEVEL FOR CO	FOR COMBINING SOURCES 0.84
NSB	e=4	0	224000		
D.		•	3338142		
					1

WASHER	æ	\$ /	SHERR	301	IDENTIFICATION NUMBER	UMBER 252
EX	DIST. TYPE	ESTIMATE (HOURS)	80% LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RAILURE RATE U ESTIMATE B	EK MILLION HOU	URS) 80% UPPER BOUND
S	EXPONENTIAL	637260.	0.350	1.569		689.
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
SX			637260			

WASHER	~	,	/ SPRING	IDENTIFICATION NUMBER	N NUMBER 253
E .	DIST. TYPE	MEAN ESTIMATE (HOURS)	FAILUR EDWER LOWER BOUND	FAILURE RATE (FAILURES PER MILLION HOURS) RATE ESTIMATE B	HOURS) 80% UPPER BOUND
6F	EXPONENTIAL	615994	699.0	1.623	3.473
¥5	EXPONENTIAL	232437	3.381	4.302	5.469
SN	EXPONENTIAL	41920	15.520	23.855	36.084
NG	EXPONENTIAL		0.0	000 0	25.597
EN	NUMBER OF	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
GF	(m)	2	1231994	SIGNIFICANCE LEVEL FOR COMB	LEVEL FOR COMBINING SOURCES - 0.16
NS S		91	3718986		
SZ		6	251520		
2		0	62880		

もらううことを聞うしてくることを願いるのもとなるない問題できられることが必要して

WASHER	ôc.	,	STAR		IDENTIFICATION NUMBER	ON NUMBER 254
EN	DIST TYPE	MEAN ESTIMATE (HOURS)	FAILURE 80% BOUND	&	(FAILURES PER MILLION HOURS) RAILURE RATE ESTIMATE B	N HOURS)
GF	EXPONENTIAL	56624992	0.010		0 0 0 8	0.030
E X <	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
ē.		•	226500000			
WATER	WATER DEMINERALIZE	~	MIX-RESIN		IDENTIFICATION NUMBER	ON NUMBER 255
	7 TYP	MEAN ESTIMATE (HOURS)	FAILURE 80% LOWER BOUND	A	(FAILURES PER MILLION HOURS) FAILURE	M MOURS) 80% UPPER BOUND
S	EXPONENTIAL	13100	17 035		76.336	228.607
E X <	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
NS		-	13100			

IDENTIFICATION NUMBER 256	PER MILLION HOURS) RE UPPER BOUND			
IDENT	FAILURE RATE (FAILURES PER MILLION HOURS) RATE ESTIMATE BE	ВЕГ.ОЖ	COMMENTS	
/ FROM ANCHOR	80% LOWER BOUND	SEE NOTE BE	TOTAL PART OPERATING HOURS	e0 •0
4 /	MEAN ESTIMATE (HOURS)		NUMBER OF PARTS FAILED	
SS	DIST. TYPE	EXPONENTIAL	NUMBER OF SOURCES	
WINDLASS	EN	S	ENV	NS

NOTE: Low total part operating hours, develop failure data with ceution

5.3 Weibull Analyses -- Project 1. This section contains the results of fitting the Weibull distribution to nonelectronic part lifetime data collected on a ground mobile mortar locating radar. For each part type and class represented, a table is presented which gives the part identification number, a point estimate of mean life in hours, a point and 60% confidence interval estimate of the Weibull scale parameter in hours, and a point and 60% confidence interval estimate of the Weibull shape parameter. The form of the Weibull survival function considered here is given by:

Pr(survive t) = $\exp[-(t/b)^c]$,

where b>0 is the scale parameter, c>0 is the shape parameter, and t>0 is measured in hours. This convention is followed throughout sections 5.3 - 5.5.

In addition to these quantities, the total part operating hours are given, along with the total number of failures. The "comments" field contains the predominant failure mode observed (i.e. the failure mode which occurred most often in the sample) and the observed significance level for testing exponentiality. We recommend that exponentiality be rejected if the observed significance level is below 0.05, although other thresholds may be used according to the particular application.

In some cases, less than two failures are reported. However, because there are multiple systems reporting (53 in this case) and one or more parts per system, the systems which have no failures were also used as "data" so that the two parameters of interest could actually be estimated. This applies to section 5.4 also.

In only one instance in project 1 is exponentiality rejected at the 0.05 significance level, namely for electrostatic high speed printers (identification number 1-2-36). The Weibull shape parameter estimate in this case was 0.748. The corresponding Weibull distribution would, in this case, have a decreasing failure rate and its probability density function would be shaped somewhat like that of the exponential distribution. One interpretation for the shape parameter being less than one is that infant failures were still taking place in the printers after they were installed. If this is true, it would be indicative of poor vendor quality control.

5.3.1 Weibull Analyses Summaries. Following is an index of the nonelectronic parts analyzed in this section. Each part is identified by a number of the form "x-y-z". The prefix "x" identifies the project from which the data was collected ("x" is 1 in this section). The number "y", being either 1,2, or 3 indicates the sampling and censoring scheme (in the statistical sense) used in collection the data for that part. These schemes are described in the Final Technical Report of this study. The number "z" is the sequence number as listed in the index that follows.

The column under "Best Fit" indicates which distribution is the better fitting distribution (assuming 0.05 significance level) with E=exponential, and W=Weibull. The format for this index is used in sections 5.4 and 5.5. also.

Index to Project 1 Weibull Analyses

ACCELEROMETER FORCED BALANCE GM 1 E ACTUATOR LINEAR GM 2 E AXILE GENERAL GM 3 E AZIMUTH ENCODER OPTICAL GM 4 E BATTERY RECK'AGEABLE GM 5 E BEARING ROLLER GM 7 E BEARING ROLLER GM 7 E BEARING SLEEVE 8 E BEARING SLEEVE 8 E BELLOWS GENERAL GM 9 E BELLOWS GENERAL GM 9 E BELLOWS GENERAL GM 10 E BELLOWS GENERAL GM 11 E BRAKES ELECTROMECHANICAL GM 11 E BRAKES ELECTROMECHANICAL GM 12 E B'USHES ELECTRICAL MOTOR GM 13 E CIRCUIT PROTECTION DEVICE SURCE ARRESTER GM 14 E CIRCUIT PROTECTION DEVICE SURCE ARRESTER GM 15 E CUIVER MASS MEMORY MAGNETIC TAPE GM 17 E COUPLING FLEXIBLE GM 18 E COUPLING RIGID GM 19 E BRIVE FOR COMPUTER TAPES/DISCS MAGNETIC TAPE GM 20 E DRIVE FOR COMPUTER TAPES/DISCS MAGNETIC TAPE DRIVE GM 21 E DRIVE FOR COMPUTER TAPES/DISCS MAGNETIC TAPE DRIVE GM 22 E DRIVES VARIABLE PITCH GM 23 E DRIVES VARIABLE PITCH GM 23 E DRIVE SOR GM 24 E DRIVE GM 25 E FILTERS AIR (GAS) GM 27 E GEAR BEVEL GM 31 E GEAR STATIC GM 30 E GEAR STATIC GM 31 E GEAR GM 37 E INSTRUMENTS AMMETER GM 38 E INSTRUMENTS AMMETER GM 44 E MOTOR, ELECTRIC SERVO, DC CM 42 E MOTOR, ELECTRIC SERVO, DC CM 45 E	Part Name	Part Type	Environment	Sequence Number	Best Fit
ACTUATOR	ACCELEROMETER	FORCED BALANCE	GM	1	E
AXIE GENERAL GM 3 E AZIMUTH ENCODER OPTICAL GM 4 E BATTERY RECHAGEABLE GM 5 E BEARING BALL GM 6 E BEARING ROLLER GM 7 E BEARING SLEEVE 8 E BELLOWS GENERAL GM 9 E BELLOWS GENERAL GM 10 E BLOWERS & FANS AXIAL GM 11 E BLOWERS & ELECTROMECHANICAL GM 11 E BRAKES ELECTRICAL MOTOR GM 11 E BRAKES ELECTRICAL MOTOR GM 12 E GIRCUIT PROTECTION DEVICE SPARK GAP GM 14 E CIRCUIT PROTECTION DEVICE SURGE ARRESTER GM 15 E CULUTCH FROTECTION DEVICE SURGE ARRESTER GM 15 E COUPLING FRICTION GM 16 E COMPUTER MASS HEMORY MAGNETIC TAPE GM 17 E COUPLING RIGID GM 19 E CRANK SHAFT GENERAL GM 20 E DRIVES GENERAL GM 20 E DRIVES GENERAL GM 20 E DRIVES GENERAL GM 21 E DRIVES VARIABLE PITCH GM 21 E DRIVES VARIABLE PITCH GM 23 E DRIVES VARIABLE PITCH GM 23 E DRUM WEAPON LOCATION UNIT GM 24 E DRUM WEAPON LOCATION UNIT GM 24 E FILTERS AIR (GAS) GM 27 E FITTINGS PERMANENT GM 28 E GASKETS & SEALS DYNAMIC GM 29 E GEAR BEVEL GM 31 E GEAR STATIC GM 32 E GEAR SPUR GM 32 E GEAR GENERAL GM 32 E GEAR GENERAL GM 33 E GEAR BEVEL GM 31 E GEAR GENERAL GM 32 E GEAR GENERAL GM 33 E GEAR GENERAL GM 36 W HOSES GENERAL GM 37 E HISTRUMENTS AMBETER GM 39 E HISTRUMENTS AMBETER GM 39 E HISTRUMENTS VOLTMETER GM 39 E HISTRUMENTS SHOW COMMENT GM 44 E HOTOR, ELECTRIC SERVO, DC GM 42 E HOTOR, ELECTRIC SERVO, DC GM 44 E			GM	2	E
AZIMUTH ENCODER BATTERY RECHZAGRABLE GM 5 E BEARING BALL GM 6 E BEARING BALL GM 6 E BEARING BEALL GM 6 E BEARING BEALL GM 7 E BEARING BELLOWS GENERAL GM 9 E BELLOWS GENERAL GM 10 E BLOWERS & FANS AXIAL GM 11 E BLOWERS & FANS AXIAL GM 11 E BLOWERS & FANS AXIAL GM 11 E BLOWERS & FANS BELECTROMECHANICAL GM 13 E CIRCUIT PROTECTION DEVICE SPUSHES CIRCUIT PROTECTION DEVICE SPARK GAP GIRCUIT PROTECTION DEVICE SURGE ARRESTER GM 14 E CIRCUIT PROTECTION DEVICE SURGE ARRESTER GM 15 E CLUTCH COMPUTER MASS MEMORY MAGNETIC TAPE GM 17 E COUPLING RIGID GM 19 E COUPLING RIGID GM 19 E COUPLING RIGID GM 19 E DRIVES DRIVES DRIVES VARIABLE PITCH GM 22 E DRIVES DRIVES VARIABLE PITCH GM 22 E DRIVE BUCT GENERAL GM 22 E FILTERS AIR (GAS) GM 24 E DUCT GENERAL GM 25 E FILTERS AIR (GAS) GM 26 E FILTERS AIR (GAS) GM 27 E FILTERS AIR (GAS) GM 26 E GAAR GASKETS & SEALS DYNAMIC GM 30 E GEAR GEAR BEVEL GM 31 E GEAR GH 33 E GEAR					E
BATTERY RECH/AGRABLE GM 5 E BEARING BALL GM 6 E BEARING ROLLER GM 7 E BEARING SLEEVE 8 E BELLOWS GEMERAL GM 9 E BELLOWS GEMERAL GM 10 E BLOWERS & FANS AXIAL GM 10 E BLOWERS ELECTROMECHANICAL GM 11 E BRAKES ELECTROMECHANICAL GM 12 E BEUSHES ELECTRICAL MOTOR GM 13 E CIRCUIT PROTECTION DEVICE SPARK GAP GM 14 E CIRCUIT PROTECTION DEVICE SURGE ARRESTER GM 15 E CIRCUIT PROTECTION DEVICE SURGE ARRESTER GM 15 E CILUTCH FRITCHON GM 16 E COUPLING RIGID GM 17 E COUPLING <td< td=""><td></td><td>*</td><td>GM</td><td></td><td></td></td<>		*	GM		
BEARING BALL GM 7 E BEARING SLEVE 8 E BELLOWS GEMERAL GM 9 E BELT TIMING GM 10 E BLOWERS & FANS AXIAL GM 11 E BRAKES ELECTROMECHANICAL GM 12 E BPUSHES ELECTROMECHANICAL GM 13 E CIRCUIT PROTECTION DEVICE SPARK GAP GM 14 E CIRCUIT PROTECTION DEVICE SURGE ARRESTER GM 15 E CIRCUIT PROTECTION DEVICE SURGE ARRESTER		•		5	
BEARING ROLLER GM 7 E BEALIOWS GEMERAL GM 9 E BELLOWS GEMERAL GM 10 E BELLOWS GEMERAL GM 10 E BELLOWS AXIAL GM 11 E BELLOWS AXIAL GM 11 E BELOWS AXIAL GM 11 E BELOWS ELECTROMECHANICAL GM 12 E BPUSHES ELECTROMECHANICAL GM 12 E CUPLUES ELECTRICAL MOTOR GM 12 E CIRCUIT PROTECTION DEVICE SURGE ARRESTER GM 14 E CILUTCH FRICTION GM 16 E COUPLING FRICTION GM 16 E COUPLING RIGID GM 19 E CRANK SHAFT GE COMPUTER TAPES/DISCS MACHETIC TAPE DRIVE GM 20 E			•		E
BELLOWS GENERAL GM 9 E BELT TIMING GM 10 E BLOWERS & FANS AXIAL GM 11 E BRAKES ELECTROMECHANICAL GM 12 E BUSHES ELECTRICAL MOTOR GM 13 E CUCUIT PROTECTION DEVICE SPARK GAP GM 14 E CIRCUIT PROTECTION DEVICE SURGE ARRESTER GM 15 E CULTCH FRICTION GM 16 E CUPLING FRICTION GM 16 E COUPLING FIEXIBLE GM 17 E COUPLING RIGID GM 19 E CRANK SHAPT GERERAL GM 20 E DRIVE FOR COMPUTER TAPES/DISCS GEAR GM 21 E DRIVE FOR COMPUTER TAPES/DISCS GEAR GM 22 E DRIVE FOR COMPUTER TAPES/DISCS GEAR GM 22 E <td></td> <td></td> <td>GM</td> <td></td> <td></td>			GM		
BELT	BEARING	SLEEVE		8	E
BLOWERS & FANS	BELLOWS	GENERAL	GM	9	E
BRAKES	BELT	TIMING	GM	10	E
BPUSHES CIRCUIT PROTECTION DEVICE SPARK GAP GM 14 E CIRCUIT PROTECTION DEVICE SURGE ARRESTER GM 15 E CLUTCH FROTECTION DEVICE SURGE ARRESTER GM 16 E COMPUTER MASS MEMORY MAGNETIC TAPE GM 17 E COUPLING FILEXIBLE GM 18 E COUPLING RIGID GM 19 E CRANK SHAFT GENERAL GM 20 E DRIVE FOR COMPUTER TAPES/DISCS MAGNETIC TAPE DRIVE GM 21 E DRIVES GEAR GM 22 E DRIVES VARIABLE PITCH GM 23 E DRUM WEAPON LOCATION UNIT GM 24 E DUCT GENERAL GM 25 E ELECTRIC HEATERS RESISTANCE GM 26 E FILTINOS PERMANENT GM 28 E GASKETS & SEALS DYNAMIC GM 28 E GASKETS & SEALS DYNAMIC GM 29 E GEAR STATIC GM 30 E GEAR GEAR GM 31 E GEAR GEAR GM 32 E GEAR GEAR GM 30 E GEAR GEAR GM 30 E GEAR GEAR GM 31 E GEAR GEAR GM 32 E GEAR GEAR GM 33 E GEAR GEAR GM 33 E GEAR GEAR GM 31 E GEAR GEAR GM 33 E GEAR GEAR GM 36 GM 37 E INSTRUMENTS ELECTROSTATIC GM 36 W HOSES GENERAL GM 37 E INSTRUMENTS OUTMETER GM 38 E INSTRUMENTS OUTMETER GM 38 E INSTRUMENTS OUTMETER GM 38 E INSTRUMENTS OUTMETER GM 39 E INSTRUMENTS OUTMETER GM 38 E INSTRUMENTS OUTMETER GM 39 E INSTRUMENTS OUTM	BLOWERS & FANS	AXIAL	GM	11	E
CIRCUIT PROTECTION DEVICE SPARK GAP GM 14 E CIRCUIT PROTECTION DEVICE SURGE ARRESTER GM 15 E CLUTCH FRICTION GM 16 E CLUTCH FRICTION GM 16 E COMPUTER MASS MEMORY MAGNETIC TAPE GM 17 E COUPLING FILEXIBLE GM 18 E COUPLING RIGID GM 19 E CRANK SHAFT GENERAL GM 20 E DRIVE FOR COMPUTER TAPES/DISCS MAGNETIC TAPE DRIVE GM 21 E DRIVES GEAR GM 22 E DRIVES VARIABLE PITCH GM 23 E DRIV WEAPON LOCATION UNIT GM 24 E DUCT GENERAL GM 25 E ELECTRIC HEATERS RESISTANCE GM 26 E FILTERS AIR (GAS) GM 27 E FITTINGS PERMANENT GM 28 E GASKETS & SEALS DYNAMIC GM 29 E GEAR STATIC GM 30 E GEAR BEVEL GM 31 E GEAR BEVEL GM 31 E GEAR BEVEL GM 31 E GEAR BEVEL GM 32 E GEAR BEVEL GM 32 E GEAR BOX REDUCTION GM 32 E GEAR BOX REDUCTION GM 34 E HELICAL GM 35 E HELICAL GM 36 W HELICAL GM 37 E HIGH SPEED PRINTERS ELECTROSTATIC GM 36 W HOSES GENERAL GM 36 E HIGH SPEED PRINTERS ELECTROSTATIC GM 36 W HOSES GENERAL GM 37 E HISTRUMENTS AMMETER GM 38 E HISTRUMENTS AMMETER GM 39 E JOINT, MICROWAVE ROTARY GENERAL GM 40 E KEYBOARD ELECTRIC SERVO, DC GM 42 E MOTOR, ELECTRIC SERVO, DC GM 42 E MOTOR, ELECTRIC SERVO, DC GM 42 E	BRAKES	ELECTROMECHANICAL	GM	12	
CIRCUIT PROTECTION DEVICE SURGE ARRESTER GM 15 E CLUTCH FRICTION GM 16 E COMPUTER MASS MEMORY MAGNETIC TAPE GM 17 E COUPLING FLEXIBLE GM 18 E COUPLING RIGID GM 19 E CRANK SHAFT GENERAL GM 20 E DRIVE FOR COMPUTER TAPES/DISCS MAGNETIC TAPE DRIVE GM 21 E DRIVES GEAR GM 22 E DRIVES VARIABLE PITCH GM 23 E DRUM WEAPON LOCATION UNIT GM 24 E DUCT GENERAL GM 25 E ELECTRIC HEATERS RESISTANCE GM 26 E FILTERS AIR (GAS) GM 27 E FITTINGS PERMANENT GM 28 E GASKETS & SEALS DYNAMIC GM 29 E GEAR STATIC GM 30 E GEAR BOX HELICAL GM 31 E GEAR BOX REDUCTION GM 31 E GEAR SPUR GM 33 E GISTSUMENTS ELECTROSTATIC GM 36 W HEAT EXCHANGERS COPLATES GM 35 E HIGH SPEED PRINTERS ELECTROSTATIC GM 36 W HOSES GEMERAL GM 37 E INSTRUMENTS AMMETER GM 38 E INSTRUMENTS AMMETER GM 39 E JOINT, MICROWAVE ROTARY GENERAL KEYBOARD ELECTROMECHANICAL GM 40 E KEYBOARD ELECTRIC SERVO, DC GM 42 E MOTOR, ELECTRIC SERVO, DC GM 43 E POWER SWITCH GEAR	BRUSHES	ELECTRICAL MOTOR	GM	13	E
CLUTCH COMPUTER MASS MEMORY MAGNETIC TAPE GM 17 E COMPUTER MASS MEMORY MAGNETIC TAPE GM 17 E COUPLING FLEXIBLE GM 18 E COUPLING RIGID GM 19 E CRANK SHAFT GENERAL GM 20 E DRIVE FOR COMPUTER TAPES/DISCS MAGNETIC TAPE DRIVE GM 21 E DRIVES GEAR GM 22 E DRIVES VARIABLE PITCH GM 23 E DRIVM WEAPON LOCATION UNIT GM 24 E DUCT GENERAL GM 25 E ELECTRIC HEATERS RESISTANCE GM 26 E FILTERS AIR (GAS) GM 27 E FITTINGS PERMANENT GM 28 E GASKETS & SEALS DYNAMIC GM 29 E GEAR STATIC GM 30 E GEAR BEVEL GM 31 E GEAR BEVEL GM 31 E GEAR BEVEL GM 32 E GEAR GEAR HELICAL GM 32 E GEAR GEAR GM 32 E GEAR GEAR GM 33 E GEAR GEAR GM 34 E HEAT EXCHANGERS COPLATES GM 36 W HOSES GENERAL GM 37 E INSTRUMENTS AMMETER GM 38 E INSTRUMENTS AMMETER GM 38 E INSTRUMENTS VOLTMETER GM 39 E JOINT, MICROWAVE ROTARY GENERAL GM 40 E KEYBOARD ELECTRIC SERVO, DC GM 42 E MOTOR, ELECTRIC SERVO, DC GM 42 E POWER SWITCH GEAR	CIRCUIT PROTECTION DEVICE	SPARK GAP	GM	14	E
COMPUTER MASS MEMORY MAGNETIC TAPE GM 17 E COUPLING FLEXIBLE GM 18 E COUPLING RIGID GM 19 E CRANK SHAFT GENERAL GM 20 E DRIVE FOR COMPUTER TAPES/DISCS MAGNETIC TAPE DRIVE GM 21 E DRIVES GEAR GM 22 E DRUM WEAPON LOCATION UNIT GM 23 E DRUM WEAPON LOCATION UNIT GM 24 E DUCT GENERAL GM 25 E ELECTRIC HEATERS RESISTANCE GM 26 E FILTERS AIR (GAS) GM 27 E FILTERS AIR (GAS) GM 27 E FITTINGS PERMANENT GM 28 E GASKETS & SEALS DYNAMIC GM 29 E GEAR STATIC GM 30 E GEAR BEV			GM	15	E
COMPUTER MASS MEMORY MAGNETIC TAPE GM 17 E COUPLING FLEXIBLE GM 18 E COUPLING RIGID GM 19 E CRANK SHAFT GENERAL GM 20 E DRIVE FOR COMPUTER TAPES/DISCS MAGNETIC TAPE DRIVE GM 21 E DRIVES GEAR GM 22 E DRIVES VARIABLE PITCH GM 23 E DRUM WEAPON LOCATION UNIT GM 24 E DUCT GENERAL GM 25 E ELECTRIC HEATERS RESISTANCE GM 26 E FILITERS AIR (GAS) GM 27 E FILITINGS PERMANENT GM 28 E GASKETS & SEALS DYNAMIC GM 29 E GEAR STATIC GM 30 E GEAR BEVEL GM 31 E GEAR BEVEL	CLUTCH	FRICTION	GM	16	E
COUPLING RIGID GM 19 E CRANK SHAFT GENERAL GM 20 E DRIVE FOR COMPUTER TAPES/DISCS MAGNETIC TAPE DRIVE GM 21 E DRIVES GEAR GM 22 E DRIVES VARIABLE PITCH GM 23 E DRUM WEAPON LOCATION UNIT GM 24 E DUCT GENERAL GM 25 E ELECTRIC HEATERS RESISTANCE GM 26 E FILTERS AIR (GAS) GM 27 E FITTINGS PERMANENT GM 28 E GASKETS & SEALS DYNAMIC GM 29 E GEAR STATIC GM 30 E GEAR BEVEL GM 31 E GEAR BEVEL GM 31 E GEAR HELICAL GM 32 E GEAR GH 32 E GEAR GM 32 E GEAR GM 33 E GEAR GM 34 E HEAT EXCHANGERS COPLATES GM 35 E HIGH SPEED PRINTERS ELECTROSTATIC GM 36 W HOSES GENERAL GM 37 E INSTRUMENTS AMMETER GM 38 E INSTRUMENTS AMMETER GM 38 INSTRUMENTS VOLTMETER GM 39 INSTRUMENTS VOLTMETER GM 39 INSTRUMENTS VOLTMETER GM 39 INSTRUMENTS AMMETER GM 38 INSTRUMENTS VOLTMETER GM 39 INSTRUMENTS SERVO, DC GM 42 E MOTOR, ELECTRIC SERVO, DC GM 42 E MOTOR, ELECTRIC SERVO, DC GM 43 E POWER SWITCH GEAR			GM	17	E
COUPLING CRANK SHAFT GENERAL GM 20 E CRANK SHAFT GENERAL GM 21 E DRIVE FOR COMPUTER TAPES/DISCS GEAR GM 22 E DRIVES GEAR GM 22 E DRIVES VARIABLE PITCH GM 23 E DRUM WEAPON LOCATION UNIT GM 24 E ELECTRIC HEATERS RESISTANCE GM 25 E ELECTRIC HEATERS AIR (GAS) GM 27 E FILTERS AIR (GAS) GM 27 E GASKETS & SEALS GYNAMIC GM 29 E GASKETS & SEALS DYNAMIC GM 30 E GEAR GEAR BEVEL GM 31 E GEAR GH GH 32 E GEAR GEAR GH GH 33 E GEAR GEAR GH GH 34 E GEAR GH GH 35 E GIAN GEAR GH GH 36 GEAR GH GH 37 E INSTRUMENTS LECTROSTATIC GM 38 E INSTRUMENTS AMMETER GM 38 E INSTRUMENTS AMMETER GM 39 E KEYBOARD MOTOR, ELECTRIC SERVO, DC GM 42 E POWER SWITCH GEAR	COUPLING	FLEXIBLE	GM	18	E
CRANK SHAFT DRIVE FOR COMPUTER TAPES/DISCS MAGNETIC TAPE DRIVE GM 21 E DRIVES GEAR GM 22 E DRIVES VARIABLE PITCH GM 23 E DRUM WEAPON LOCATION UNIT GM 24 E DRUM GENERAL GM 25 E ELECTRIC HEATERS RESISTANCE GM 26 E FILTERS AIR (GAS) GM 27 E FITTINGS PERMANENT GM 28 E GASKETS & SEALS DYNAMIC GM 29 E GEAR STATIC GM 30 E GEAR BEVEL GM 30 E GEAR BEVEL GM 31 E GEAR BEVEL GM 32 E GEAR GEAR SPUR GM 32 E GEAR BOX REDUCTION GM 34 E HEAT EXCHANGERS COPLATES GM 35 E HIGH SPEED PRINTERS ELECTROSTATIC GM 36 W HOSES GENERAL GM 37 E INSTRUMENTS AMMETER GM 38 E INSTRUMENTS OUTMANDED GM 38 E INSTRUMENTS OUTMANDED GM 39 E JOINT, MICROWAVE ROTARY GENERAL GM 39 E MOTOR, ELECTRIC STEPPER GM 43 E MOTOR, ELECTRIC STEPPER GM 44 E POWER SWITCH GEAR			GM	19	E
DRIVE FOR COMPUTER TAPES/DISCS MAGNETIC TAPE DRIVE GM 21 E DRIVES GEAR GM 22 E DRIVES VARIABLE PITCH GM 23 E DRUM WEAPON LOCATION UNIT GM 24 E DUCT GENERAL GM 25 E ELECTRIC HEATERS RESISTANCE GM 26 E FILTERS AIR (GAS) GM 27 E FITTINGS PERMANENT GM 28 E GASKETS & SEALS DYNAMIC GM 29 E GEAR STATIC GM 30 E GEAR BEVEL GM 31 E GEAR BEVEL GM 32 E GEAR SPUR GM 32 E GEAR SPUR GM 33 E GEAR SPUR GM 34 E HEAT EXCHANGERS COPLATES GM 35 E HIGH SPEED PRINTERS ELECTROSTATIC GM 36 W HOSES GENERAL GM 37 E INSTRUMENTS AMMETER GM 38 E INSTRUMENTS VOLTMETER GM 39 E JOINT, MICROWAVE ROTARY GENERAL GM 39 ENOTOR, ELECTRIC SERVO, DC GM 42 ENOTOR, ELECTRIC SERVO, DC GM 43 E HOTOR, ELECTRIC SERVO, DC GM 43 E POWER SWITCH GEAR		GENERAL	GM	20	E
DRIVES DRIVES VARIABLE PITCH GM 23 E DRUM WEAPON LOCATION UNIT GM 24 E ELECTRIC HEATERS RESISTANCE GM 25 E ELECTRIC HEATERS AIR (GAS) GM 27 E FILTERS FITTINGS PERMANENT GM 28 E GASKETS & SEALS DYNAMIC GM 29 E GEAR STATIC GM 30 E GEAR BEVEL GM 31 E GEAR GEAR BEVEL GM 31 E GEAR GEAR GEAR GM 32 E GEAR GEAR GEAR GEAR GEAR GEAR GEAR GE		MAGNETIC TAPE DRIV	TE GM	21	E
DRUM WEAPON LOCATION UNIT GM 24 E DUCT GENERAL GM 25 E ELECTRIC HEATERS RESISTANCE GM 26 E FILTERS AIR (GAS) GM 27 E FITTINGS PERMANENT GM 28 E GASKETS & SEALS DYNAMIC GM 29 E GEAR STATIC GM 30 E GEAR BEVEL GM 31 E GEAR HELICAL GM 32 E GEAR SPUR GM 32 E GEAR SPUR GM 33 E GEAR BOX REDUCTION GM 34 E HEAT EXCHANGERS COPLATES GM 35 E HIGH SPEED PRINTERS ELECTROSTATIC GM 36 W HOSES GENERAL GM 37 E INSTRUMENTS AMMETER GM 38 E INSTRUMENTS VOLTMETER GM 39 E JOINT, MICROWAVE ROTARY GENERAL GM 39 ELECTROMECHANICAL GM 40 ELECTRIC SERVO, DC GM 42 E MOTOR, ELECTRIC STEPPER GM 43 E POWER SWITCH GEAR	DRIVES	GEAR	GM	22	E
DUCT GENERAL GM 25 E ELECTRIC HEATERS RESISTANCE GM 26 E FILTERS AIR (GAS) GM 27 E FITTINGS PERMANENT GM 28 E GASKETS & SEALS DYNAMIC GM 29 E GEAR STATIC GM 30 E GEAR BEVEL GM 31 E GEAR HELICAL GM 32 E GEAR SPUR GM 33 E GEAR BOX REDUCTION GM 34 E HEAT EXCHANGERS COPLATES GM 35 E HIGH SPEED PRINTERS ELECTROSTATIC GM 36 W HOSES GENERAL GM 37 E INSTRUMENTS AMMETER GM 38 E INSTRUMENTS VOLTMETER GM 38 E INSTRUMENTS VOLTMETER GM 39 E JOINT, MICROWAVE ROTARY GENERAL GM 40 E KEYBOARD ELECTRIC SERVO, DC GM 42 E MOTOR, ELECTRIC STEPPER GM 43 E POWER SWITCH GEAR	DRIVES	VARIABLE PITCH	GM	23	E
ELECTRIC HEATERS RESISTANCE GM 26 FILTERS AIR (GAS) GM 27 E FITTINGS PERMANENT GM 28 E GASKETS & SEALS DYNAMIC GM 29 E GEAR STATIC GM 30 E GEAR BEVEL GM 31 E GEAR HELICAL GM 32 E GEAR SPUR GM 33 E GEAR GEAR SPUR GM 34 E HEAT EXCHANGERS COPLATES GM 35 E HIGH SPEED PRINTERS ELECTROSTATIC GM 36 W HOSES GENERAL GM 37 E INSTRUMENTS AMMETER GM 38 E INSTRUMENTS JOINT, MICROWAVE ROTARY GENER 4L MOTOR, ELECTRIC SERVO, DC MOTOR, ELECTRIC STEPPER GM 43 E POWER SWITCH GEAR	DRUM	WEAPON LOCATION UN	IT GM	24	E
FILTERS AIR (GAS) GM 27 E FITTINGS PERMANENT GM 28 E GASKETS & SEALS DYNAMIC GM 29 E GEAR STATIC GM 30 E GEAR BEVEL GM 31 E GEAR HELICAL GM 32 E GEAR GEAR GM 33 E GEAR BOX REDUCTION GM 34 E HEAT EXCHANGERS COPLATES GM 35 E HIGH SPEED PRINTERS ELECTROSTATIC GM 36 W HOSES GENERAL GM 37 E INSTRUMENTS AMMETER GM 38 E INSTRUMENTS VOLTMETER GM 38 E INSTRUMENTS VOLTMETER GM 39 E JOINT, MICROWAVE ROTARY GENERAL GM 40 E KEYBOARD ELECTROC SERVO, DC GM 42 E MOTOR, ELECTRIC SERVO, DC GM 43 E POWER SWITCH GEAR	DUCT	GENERAL	GM	25	E
FITTINGS GASKETS & SEALS GASKETS & SEALS GEAR GEAR	ELECTRIC HEATERS	RESISTANCE	GM	26	
FITTINGS PERMANENT GM 28 E GASKETS & SEALS DYNAMIC GM 29 E GEAR STATIC GM 30 E GEAR BEVEL GM 31 E GEAR HELICAL GM 32 E GEAR SPUR GM 33 E GEAR BOX REDUCTION GM 34 E HEAT EXCHANGERS COPLATES GM 35 E HIGH SPEED PRINTERS ELECTROSTATIC GM 36 W HOSES GENERAL GM 37 E INSTRUMENTS AMMETER GM 38 E INSTRUMENTS VOLTMETER GM 39 E JOINT, MICROWAVE ROTARY GENERAL GM 40 E KEYBOARD ELECTRIC SERVO, DC GM 42 E MOTOR, ELECTRIC STEPPER GM 43 E POWER SWITCH GEAR	FILTERS	AIR (GAS)	GM	27	E
GEAR BEVEL GM 31 E GEAR BEVEL GM 31 E GEAR HELICAL GM 32 E GEAR SPUR GM 33 E GEAR BOX REDUCTION GM 34 E HEAT EXCHANGERS COPLATES GM 35 E HIGH SPEED PRINTERS ELECTROSTATIC GM 36 W HOSES GENERAL GM 37 E INSTRUMENTS AMMETER GM 38 E INSTRUMENTS VOLTMETER GM 38 E INSTRUMENTS COPLATER GM 39 E JOINT, MICROWAVE ROTARY GENERAL GM 40 E KEYBOARD ELECTROBECHANICAL GM 41 E MOTOR, ELECTRIC SERVO, DC GM 42 E MOTOR, ELECTRIC STEPPER GM 43 E POWER SWITCH GEAR			GM	28	
GEAR BEVEL GM 31 E GEAR BEVEL GM 31 E GEAR HELICAL GM 32 E GEAR SPUR GM 33 E GEAR BOX REDUCTION GM 34 E HEAT EXCHANGERS COPLATES GM 35 E HIGH SPEED PRINTERS ELECTROSTATIC GM 36 W HOSES GENERAL GM 37 E INSTRUMENTS AMMETER GM 38 E INSTRUMENTS VOLTMETER GM 38 E INSTRUMENTS COPLATER GM 39 E JOINT, MICROWAVE ROTARY GENERAL GM 40 E KEYBOARD ELECTROBECHANICAL GM 41 E MOTOR, ELECTRIC SERVO, DC GM 42 E MOTOR, ELECTRIC STEPPER GM 43 E POWER SWITCH GEAR	GASKETS & SEALS	DYNAMIC	GM	29	E
GEAR HELICAL GM 32 E GEAR SPUR GM 33 E GEAR BOX REDUCTION GM 34 E HEAT EXCHANGERS COPLATES GM 35 E HIGH SPEED PRINTERS ELECTROSTATIC GM 36 W HOSES GENERAL GM 37 E INSTRUMENTS AMMETER GM 38 E INSTRUMENTS VOLTMETER GM 39 E JOINT, MICROWAVE ROTARY GENERAL GM 40 E KEYBOARD ELECTROMECHANICAL GM 41 E MOTOR, ELECTRIC SERVO, DC GM 42 E MOTOR, ELECTRIC STEPPER GM 43 E POWER SWITCH GEAR			GM	30	
GEAR SPUR GM 33 E GEAR BOX REDUCTION GM 34 E HEAT EXCHANGERS COPLATES GM 35 E HIGH SPEED PRINTERS ELECTROSTATIC GM 36 W HOSES GENERAL GM 37 E INSTRUMENTS AMMETER GM 38 E INSTRUMENTS VOLTMETER GM 39 E JOINT, MICROWAVE ROTARY GENERAL GM 40 E KEYBOARD ELECTROMECHANICAL GM 41 E MOTOR, ELECTRIC SERVO, DC GM 42 E MOTOR, ELECTRIC STEPPER GM 43 E POWER SWITCH GEAR	GEAR	BEVEL	GM	31	E
GEAR BOX REDUCTION GM 34 E HEAT EXCHANGERS COPLATES GM 35 E HIGH SPEED PRINTERS ELECTROSTATIC GM 36 W HOSES GENERAL GM 37 E INSTRUMENTS AMMETER GM 38 E INSTRUMENTS VOLTMETER GM 39 E JOINT, MICROWAVE ROTARY GENERAL GM 40 E KEYBOARD ELECTROMECHANICAL GM 41 E MOTOR, ELECTRIC SERVO, DC GM 42 E POWER SWITCH GEAR GM 43 E		HELICAL	GM	32	
HEAT EXCHANGERS COPLATES GM 35 E HIGH SPEED PRINTERS ELECTROSTATIC GM 36 W HOSES GENERAL GM 37 E INSTRUMENTS AMMETER GM 38 E INSTRUMENTS VOLTMETER GM 39 E JOINT, MICROWAVE ROTARY GENERAL GM 40 E KEYBOARD ELECTROMECHANICAL GM 41 E MOTOR, ELECTRIC SERVO, DC GM 42 E MOTOR, ELECTRIC STEPPER GM 43 E POWER SWITCH GEAR	GEAR	SPUR	GM	33	E
HIGH SPEED PRINTERS GENERAL INSTRUMENTS INSTRUMENTS INSTRUMENTS JOINT, MICROWAVE ROTARY KEYBOARD MOTOR, ELECTRIC MOTOR, ELECTRIC MOTOR, ELECTRIC STEPPER GM 36 W 37 E ELECTROSTATIC GM 38 E W 39 E ELECTROMECHANICAL GM 40 E ELECTROMECHANICAL GM 41 E MOTOR, ELECTRIC STEPPER GM 43 E POWER SWITCH GEAR		REDUCTION	GM	34	
HOSES GENERAL GM 37 E INSTRUMENTS AMMETER GM 38 E INSTRUMENTS VOLTMETER GM 39 E JOINT, MICROWAVE ROTARY GENERAL GM 40 E KEYBOARD ELECTROMECHANICAL GM 41 E MOTOR, ELECTRIC SERVO, DC GM 42 E MOTOR, ELECTRIC STEPPER GM 43 E POWER SWITCH GEAR GM 44 E	HEAT EXCHANGERS	COPLATES	GM	35	E
HOSES GENERAL GM 37 E INSTRUMENTS AMMETER GM 38 E INSTRUMENTS VOLTMETER GM 39 E JOINT, MICROWAVE ROTARY GENERAL GM 40 E KEYBOARD ELECTROMECHANICAL GM 41 E MOTOR, ELECTRIC SERVO, DC GM 42 E MOTOR, ELECTRIC STEPPER GM 43 E POWER SWITCH GEAR GM 44 E	HIGH SPEED PRINTERS	ELECTROSTATIC	GM	36	W
INSTRUMENTS VOLTMETER GM 39 E JOINT, MICROWAVE ROTARY GENERAL GM 40 E KEYBOARD ELECTROMECHANICAL GM 41 E MOTOR, ELECTRIC SERVO, DC GM 42 E MOTOR, ELECTRIC STEPPER GM 43 E POWER SWITCH GEAR GM 44 E			GM		E
JOINT, MICROWAVE ROTARY GENERAL GM 40 E KEYBOARD ELECTROMECHANICAL GM 41 E MOTOR, ELECTRIC SERVO, DC GM 42 E MOTOR, ELECTRIC STEPPER GM 43 E POWER SWITCH GEAR GM 44 E	INSTRUMENTS	AMMETER	GM	38	E
JOINT, MICROWAVE ROTARY GENERAL GM 40 E KEYBOARD ELECTROMECHANICAL GM 41 E MOTOR, ELECTRIC SERVO, DC GM 42 E MOTOR, ELECTRIC STEPPER GM 43 E POWER SWITCH GEAR GM 44 E	INSTRUMENTS	VOLTMETER	GM	39	E
MOTOR, ELECTRICSERVO, DCGM42EMOTOR, ELECTRICSTEPPERGM43EPOWER SWITCH GEARGM44E	JOINT, MICROWAVE ROTARY	GENER AL	GM	40	E
MOTOR, ELECTRICSERVO, DCGM42EMOTOR, ELECTRICSTEPPERGM43EPOWER SWITCH GEARGM44E	KEYBOARD	ELECTROMECHANICAL	GM	41	E
MOTOR, ELECTRIC STEPPER GM 43 E POWER SWITCH GEAR GM 44 E	MOTOR, ELECTRIC	SERVO, DC	GM		E
POWER SWITCH GEAR GM 44 E	•	•	GM	43	E
PULLEY GROOVED GM 45 E			GM	44	E
	PULLEY	GROOVED	GM	45	E

STATE PRODUCTION STATES OF BUSINESS CONTRACTOR CONTRACT

Index to Project 1 Weibull Analyses

Part Name	Part Type	Environment	Sequence Number	Best Pit
RETAINING RING	GENERAL.	GM	46	B
Shaft	GENERAL	GM	47	E
SOLENOIDS	LINEAR	GM	48	B
SWITCH	PRESSURE (AIR FLOW)	GM	49	E
SWITCH	THERMOSTATIC	GM	50	E
VALVES	PENUMATIC	GM	51	E

ACCEL	ACCELEROMETER	1 /	FORCED BALANCED		IDENTIFICATION NUMBER 1-1- 1
EN	DIST. TYPE	MEAN	80X LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
3	WEIBULL	65890.17	0 0	62580.41 131290.35	0.623 ! 0.899 1.175
ENV	NUMBER OF I	NUMBE'S OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMENTS	
3		•	181414.	DEFECTIVE PARTS INSIDE SIGNIFICANCE LEVEL FOR)E TESTING EXPONENTIALITY =0.762
ACTUATOR	108		/ LINEAR		IDENTIFICATION NUMBER 1-2-2
EN	DIST. TYPE	HEAN	80X LOWER BOUND	SCALE 80% POINT 1 UPPER ESTIMATE 1 BOUND	80% SHAPE 80% LOWER POINT ! UPPER BOUND ! ESTIMATE ! BOUND
3	WEIBULL	7518.42	2018.08	7361.84 ! 9705.60	0.790 ! 0.954 ! 1.118
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMPLENTS	
3		13	90707	UNKNOWN SIGNIFICANCE LEVEL FOR	R TESTING EXPONENTIALITY #6.610

では、一大人という人も、これがあれて、これがはないとし、これになっても、これにはなって、これにはなって、

AXLE		5 /	GENERAL		IDENTIFICATION NUMBER 1-1-3
EN K	DIST. TYPE	MEAN ESTIMATE	80% LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
3	WEIBULL	26360.24	795.80	29306.49 57817.18	0.842 1.549 2.256
N N	NUMBER OF I	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3			90707.	UNKNOWN SIGNIFICANCE LEVEL F	UNKNOWN SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY +0.487
AZIMUI	AZIMUTH ENCODER	0 /	/ OPTICAL		IDENTIFICATION NUMBER 1-2- 4
E 2	DIST. TYPE	ESTIMATE	BOUND LOWER BOUND	SCALE 80X POINT ! UPPER ESTIMATE ! BOUND	BOX SHAPE BOX LOWER ! POINT ! UPPER ! BOUND ! ESTIMATE ! BOUND
3	ME I BULL	388.20	3430.82	4158.22 4885.62	1.054 ! 1.216 ! 1.378
ENS	NUMBER OF 1	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMENTS	
3	en en en	8	90707.	ANTENNA WON'T MOVE I SIGNIFICANCE LEVEL F	FOR TESTING EXPONENTIALITY =0.244

BATTERY	RY		RECHARGEABLE		IDENTIFICATION NUMBER 1-1- S
EN	DIST. TYPE	HEAN	8 0X LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
¥5	i WEIBULL	130716.62	0.0	129683.31 ! 310343.12	0.650 0.982 1.314
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3	## (## (## (## (## (## (## (## (## (##	m	362828	CONNECTOR PINS SHORTED	ED STING EXPONENTIALITY =0.963
BEARING	SZ.	1	BALL		IDENTIFICATION NUMBER 1-1- 6
E S	DIS) TYPE	HEAN	80X LOWER BOUND	SCALE 80X POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER! POINT! UPPER BOUND! ESTIMATE! BOUND
3	WEIBULL	113304.26	15188.33	117998.94 220799.55	0.865 1.117 1.368
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3	ed :	10	10884884	UNKNOWN SIGNIFICANCE LEVEL FO	UNKNOWN SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY =0.692

BEARING	MG	/	/ ROLLER		IDENTIFICATION NUMBER 1-1-7
EN	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80X POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER! POINT! UPPER BOUND! ESTIMATE! BOUND
3	MEIBULL	279610.93	0.0	254716.67 716746.73	0.531 0.838 1.145
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3		m	362828	UNKNOWN SIGNIFICANCE LEVEL FO	FOR TESTING EXPONENTIALITY =0.668
BEARING	92		SLEEVE		ON NUMBER 1
> *	DIST. TYPE	HEAN ESTIMATE	BOX LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER ! POINT ! UPPER BOUND ! ESTIMATE ! BOUND
3	WEIBULL	124555.02	0.0	130751.50 269865.58	0.836 1.146 1.457
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3		4	907070	UNKNOWN SIGNIFICANCE LEVEL FOR	R TESTING EXPONENTIALITY =0.687

DIST. TYPE	BELLOWS	SA	`	GENERAL		IDENTIFICATION NUMBER 1-1-8
WEIBULL 10734.21 7589.02 11989.22 16389.42 NUMBER OF NUMBER OF OPERATING COMMENTS	ENV	DIST. TYPE	MEAN			80% SHAPE 80% LOWER ! POINT ! UPPER BOUND ! ESTIMATE ! BOUND
NUMBER OF NUMBER OF TOTAL PART COMMENTS SOURCES PARTS FAILED OPERATING T	3	WEIBULL		7589.02	22 ! 16389.4	1.668 ! 3.176 ! 4.683
1 1 90707 SIGNIFICANCE LEVEL FOR SIGNIFICANCE SIGN	ENK	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
DIST. TYPE MEAN BOUND ESTIMATE BOUND	3			90707	LEVEL	TEST
DIST. TYPE	BELT			TIMING		IDENTIFICATION NUMBER 1-1-10
WEIBULL 20305.47 9855.58 1 22817.05 1 35778.51 NUMBER OF NUMBER OF TOTAL PART COMMENTS SOURCES PARTS FAILED OPERATING HOURS 1 2 181414. SIGNIFICANCE LEVEL FOR	EN		ESTIM	-	-	80% SHAPE 80% LOWER POINT 1 UPPER BOUND 1 ESTIMATE ! BOUND
/ NUMBER OF NUMBER OF TOTAL PART COMMENTS SOURCES PARTS FAILED OPERATING HOURS HOURS 1 2 181414 SIGNIFICANCE LEVEL FOR	3	i WEIBULL		80 80	.05 35778.	
1 2 181414. SIGNIFICANCE LEVEL FOR	ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
	8		2	181414	ANCE LEVEL	2 TESTING EXPONENTIALITY =0.208

BLOWE	BLOWERS & FANS	4 /	AXIAL	1	. .	IDENTIFI	IDENTIFICATION NUMBER	1-3-11
EN	DIST. TYPE	MEAN	BOWER PROUND	SCALE 8 POINT U	80% UPPER BOUND	80x LOWER BOUND	SHAPE POINT ESTIMATE	8 UPPER BOUND
3	VEIBULL	221726.04	0 0	187582.37 398	398396,87	0.580	1 0.757	0.933
EN <	NUMBER OF SOURCES	NUMBER OF PARTS FAILLD	TOTAL PART OPERATING HOURS	COMMENTS				
3		••••••••••••••••••••••••••••••••••••••	516594.	UNKNOWN	LEVEL FOR	A TESTING	EXPONENTIAL	ITY =0.271
BRAKES	S	/ 6	/ ELECTROMECHANICAL	ון		IDENTIFICATION	ICATION NUMBER	R 1-2-12
ENV	DIST. TYPE	MEAN	80X LOWER BOUND	SCALE POINT	80X UPPER BOUND	BDX LOWER BOUND	SHAPE POINT ESTIMATE	80% UPPER BOUND
3	WEIBULL	3367.52	2911.59 (3507.71.1	4103.83	0.979	1 1.117	1.255
ENV	KUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS				
3		2.	90707	UNKNOWN	EVEL	OR TESTIN	FOR TESTING EXPONENTIALITY	ITY =0.465

BRUSHES	ES	3 /	ELECTRICAL MOTOR		IDENTIFICATION NUMBER 1-1-13
E	DIST. TYPE	MEAN ESTIMATE	8 0X LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
3	WEIBULL	68275.17	0.0	73790.65 ! 158845.39	. 28
EN	NUMBER OF I	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3		2	362828.	SHORTED SIGNIFICANCE LEVEL FO	FOR TESTING EXPONENTIALITY =0.585
CIRCU	CIRCUIT PROTECTION DEVICE		SPARK GAP		IDENTIFICATION NUMBER 1-1-14
EN	DIST. TYPE	ESTE	80X LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
¥5	WEIBULL	64458	0.0	66765.81 ! 190449.44	0.494 1.098 1.702
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
¥.			90707.	UNKNOWN SIGNIFICANCE LEVEL FOR	OR TESTING EXPONENTIALITY =0.890

CIRCUI	CIRCUIT PROTECTION DEVIC	, iii	SURGE ARRESTER			IDENTIFI	IDENTIFICATION NUMBER	1-1-15
₩ ₩	DIST. TYPE	MEAN	80X LOWER BOUND	SCALE POINT ESTIMATE	80% UPPER BOUND	80% LOWER BOUND	SHAPE POINT ESTIMATE	800 CPPK BOUND WD
3	WEIBULL	31693.39	7753.35	33976.80 !	60200.25	0.875	1 2.242 1	1.609
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS				
8		m	181414.	UNKNOWN SIGNIFICANCE	E LEVEL FO	M TESTING	LEVEL FOR TESTING EXPONENTIALITY	ΓY =0.569
CLUTCH		1,	/ FRICTION			IDENTIFI	IDENTIFICATION NUMBER	1-2-16
EN S	DIST. TYPE	FSTIMATE	BOUND -	SCALE POINT ESTIMATE	80% UPPER BOUND	80% LOWER BOUND	SHAPE ! POINT ! ESTIMATE !	80% UPPER BOUND
35	WEIBULL	10397.23	99.	11087.16 1	15688.62	0.941	1.215	1.489
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS				
3		6	90707.	ANTENNA FAILS	ILS TO ROTATE	NTE MR TESTING	TESTING EXPONENTIALITY	TY =0.497

TER MASS MEMOI		MAGNETIC TAPE		IDENTIFICATION NUMBER 1-2-17
DIST. TYPE	MEAN	80x LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER ! POINT ! UPPER BOUND ! ESTIMATE ! BOUND
WEIBULL	3254.01	2330.26	2876.68 3423.10	0.716 ! 0.802 ! 0.888
NUMBER OF I	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
-	35	90707.	WON'T LOAD SIGNIFICANCE LEVEL FO	R TESTING EXPONENTIALITY =0.064
ING	1/	:LEXIBLE		IDENTIFICATION NUMBER 1-1-18
DIST. TYPE	ESTI	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE ! BOUND	WER ! PS
WEIBULL	51383.91	0.0	56492.70 133424.34	0.740 ! 1.419 ! 2.097
NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
	~1	181414.	UNKNOWN SIGNIFICANCE LEVEL FO	UNKNOWN SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY =0.587
	COMPUTER MASS MEMO ENV DIST TYPE GM WEIBULL	WASS MEMORY DIST. TYPE ESTIMATE WEIBULL 3254.01 WEIBULL 3254.01 SOURCES PARTS FAILED METBULL 51383.91 WEIBULL 51383.91 UMBER OF NUMBER OF SOURCES PARTS FAILED 1 1 1 1 1 1 1 1 1	MAGN ESTIMATE 3254.01 ARTS FAILED ARTS FAILED 51383.91	MEAN ESTIMATE BOUND EST POOF SC STIMATE BOUND EST ST S

COUPLING	ING	8 /	RIGID		IDENTIFICATION NUMBER 1-1-19
E S	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE ESUND	80% SKAPE 80% LOWER ! POINT ! UPPER BOUND ! ESTIMATE ! BOUND
¥.	WEIBULL	1079237.26	0.0	1066291.17 ! 4931904.61	0.398 0.973 1.547
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
¥ Ö			907070.	UNKNOWN SIGNIFICANCE LEVEL FO	FOR TESTING EXPONENTIALITY +0.968
CRANK SHAFT	SHAFT	6 /	/ GENERAL		IDENTIFICATION NUMBER 1-1-20
EN	DIST. TYPE	MEAN	80X LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 60% LOWER ! POINT ! UPPER BOUND ! ESTIMATE ! BOUND
3	WEIBULL	31668.10	0.0	33113.46 ! 67287.92	0.698 1.131 1.564
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
A.		2	90707	UNKNOWN SIGNIFICANCE LEVEL FO	UNKNOWN SIGNIFICANCE LEVEL FOR TESTING EXCONENTIALITY =0.785

DRIVE	FOR COMPUTER	TAPES/DISCS/ M	DRIVE FOR COMPUTER TAPES/DISCS/ MAGNETIC TAPE DRIVE	RIVE	IDENTIFICATION NUMBER 1-2-21
EN	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT ! UPPER BOUND ! ESTIMATE ! BOUND
Æ	WEIBULL	2691.13	2187.81	2598.07 ! 3008.34	i 0.834 i 0.927 i 1.020
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
ş		36	90707	UNKNOWN SIGNIFICANCE LEVEL	FOR TESTING EXPONENTIALITY *0.515
DRIVES	s	9 /	GEAR		IDENTIFICATION NUMBER 1-1-22
EN	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER POINT ! UPPER BOUND ! ESTIMATE ! BOUND
¥.5	WEIBULL	54124.41	5467.83	58133.14 110798.45	5 0.882 1.252 1.622
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
¥.		က	362828	IMPROPER ADJUSTMENT SIGNIFICANCE LEVEL	FOR TESTING EXPONENTIALITY =0.556

	!	!	!	4		
1-1-23	80% BOUND	1.872		۲۷ ۱۹۰۰	1-2-24	80% UPPER BOUND
BER		-		ALI	BER.	
IDENTIFICATION NUMBER	SHAPE POINT ESTIMATE	1.402		EXPONENTI	IDENTIFICATION NUMBER	SHAPE POINT ESTIMATE
FIC	~~	~		9	1610	~~
IDENTI	80x LOWER BOUND	0.932		X TEST	IDENT	80X LOWER BOUND
	80X UPPER BOUND	36389.48		IMPROPER ADJUSTMENT SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY +0.454		80X UPPER BOUND
		-	TS	ECA)		
	SCALE POINT ESTIMATE	21489.09	COMMENTS	IMPROP	UNIT	SCALE POINT ESTIMATE
VARIABLE PITCH	80X LOWER BOUND	60	TOTAL PART OPERATING HOURS	90707	/ WEAPON LOCATION UNIT	80% LOWER I BOUND I
^ \	ESTIMATE	19581.54	NUMBER OF	2	*/	MEAN
	8					Y P.E.
	DIST. TYPE	WEIBULL	NUMBER OF SOURCES			DIST. TYPE
DRIVES	X	8	ENV	¥	DRUM	EN S

ORC		3	/ WEAPON LOCATION UNIT	UNIT	IDENTIFICATION NUMBER 1-2-24
EN	DIST. TYPE	MEAN	8 0% LOWER BOUND	SCALE 80X POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
¥	WEIBULL	464.01	3683.43	4707,49 (5731,54	5731.54 0.882 1.023 1.164
ENV	NUMBER OF SOURCES	NUMBER OF	TOTAL PART OPERATING HOURS	COMMENTS	
₹5		19		DRUM STICKS SIGNIFICANCE LEVEL F	DRUM STICKS SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY =0.891

DUCT		3 /	/ GENERAL		IDENTIFICATION NUMBER 1-1-25
E	DIST. TYPE	MEAN	BOUND E	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
3	WEIBULL	454731.46	0.0	437147.91 1072003.25	0.670 ! 0.920 ! 1.169
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	CCAMENTS	
¥	-	'n	1451312.	USED UP.NEEDS REPLACE	USED UP NEEDS REPLACEMENT SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY +0.789
ELECT	ELECTRIC HEATERS		RESISTANCE		IDENTIFICATION NUMBER 1-1-28
EN	DIST. TYPE	MEAN	80X LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
¥9	WEIBULL	33.84.04	6986.72	35612.00 i 64237.29	0.852 1.216 1.581
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
8		င	101	UNKNOWN SIGNIFICANCE LEVEL FO	UNKNOWN SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY =0.609

FILTERS	S		AIR (GAS)		IDENTIFICATION NUMBER 1-3-27
EN	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER POINT PUPPER BOUND ESTIMATE BOUND
3	WEIBULL	238600.87	0	240544.09 ! 693739.61	0.609 1.020 1.430
EN <	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
¥		8	525672.	NEDS REPLACEMENT SIGNIFICANCE LEVEL FO	FOR TESTING EXPONENTIALITY -0.967
FITTINGS	4GS	1	PERMANENT		
EN	DIST. TYPE	HEAN	80X LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER ! POINT ! UPPER BOUND ! ESTIMATE ! BOUND
8	MEIBULL	89359.57	0 0	97964.93 257768.71	0.717 1.393 2.069
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3	e-1		362828	TMPROPER ADJUSTMENT	OR TESTING EXPONENTIALITY =0.609

ENV DIST. TYPE E GM WEIBULL 1 ENV NUMBER OF PART GM 1 GM 1 1	MEAN	 		
METBULL SOURCES	ESTIMATE	80x LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER POINT POPER BOUND ESTIMATE BOUND
NUMBER OF SOURCES	175631.12	0.0	183181.28 ! 429526.25	0.768 1.122 1.476
SKE TS &	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMPRENTS	
GASKETS & SEALS	ო	907070.	ZH.	R TESTING EXPONENTIALITY =0.768
	18 /	STATIC		IDENTIFICATION NUMBER 1-1-30
ENV DIST TYPE E	MEAN	80% LOWER ! BOUND !	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT ! UPPER BOUND ! ESTIMATE ! BOUND
GN WEIBULL	83986.29	2554.53	87783.95 ! 173013.17	0.823 ! 1.130 ! 1.437
ENV NUMBER OF NUM SOURCES PART	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3	-	544242.	NEEDS REPLACEMENT SIGNIFICANCE LEVEL FOR	R TESTING EXPONENTIALITY +0.717

GEAR) /	BEVEL		IDENTIFICATION NUMBER 1-1-31
. EN	DIST. TYPE	<u>(1</u>	80% LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
3	WEIBULL	118856.11	0.0	26.44	1 0.760 1 1.207 1 1.654
ENS.	NUMBER OF SOURCES	MUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3		2	544242.	UNKNOWN ELEVEL F	FOR TESTING EXPONENTIALITY =0.689
GEAR		1	, HELICAL		I DENTIFICATION NUMBER 1-1-32
EN	DIST. TYPE	MEAN	8 OX LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 60% LOWER POINT UPPER BOUND ESTIMATE BOUND
3	WEIBULL	35476.88	0.0	38672.51 87971.17	0.687 1.347 2.007
EN Y	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMENTS	
₹	# P P P P P P P P P P P P P P P P P P P		90707.	UNKNOWN SIGNIFICANCE LEVEL FO	FOR TESTING EXPONENTIALITY =0.646

GEAR		; /	SPUR		IDENTIFICATION NUMBER 1-1-33
EN	DIST. TYPE	MEAN ESTIMATE	80X LOWER BOUND	SCALE 80X POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER ! POINT ! UPPER BOUND ! ESTIMATE ! BOUND
3	WEIBULL	55819.02	4712.54 !	S9815.99 i 114919.43	0.871 1.240 1.608
ENS	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3		က	362828.	WORN OUT SIGNIFICANCE LEVEL FO	FOR TESTING EXPONENTIALITY +0.574
GEAR BOX	ВОХ	1./	REDUCTION		IDENTIFICATION NUMBER 1-1-3
E N	DIST. TYPE		80X LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER ! POINT ! UPPER BOUND ! ESTIMATE ! BOUND
3	MEIBULL	34678.72	0	37860.85 ! 85458.13	0.696 1.359 2.022
EN<	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3	a		90707	NEEDS OVERHAUL SIGNIFICANCE LEVEL FO	FOR TESTING EXPONENTIALITY =0.636

HEAT	HEAT EXCHANGERS		/ COPLATES		IDENTIFICATION NUMBER 1-1-35
ENV	DIST. TYPE	MEAN ESTIMATE	80% LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER ! POINT ! UPPER BOUND ! ESTIMATE ! BOUND
8	MEIBULL	40579.60	8321.07	43790.21 79259.35	0.906 1.279 1.652
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
*		e	272121.	NEEDS ADJUSTMENT	FOR TESTING EXPONENTIALITY =0.516
HIGH	SPEED PRINTERS		/ ELECTROSTATIC		IDENTIFICATION NUMBER 1-2-36
EN	DIST. TYPE	MEAN ESTIMATE	80% LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	BOWER POINT UPPER BOUND ESTIMATE BOUND
3	WEIGULL	1732.16	1279.95	1486.24 1692.53	0.706 i 0.770 i 0.835
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3	## ## ## ## ## ## ## ## ## ## ## ## ##	4	. 40708	UNKNOWN SIGNIFICANCE LEVEL FOR TESTING	OR TESTING EXPONENTIALITY =0.005

HOSES		5 /	/ GENERAL		· • •	IDENTIF	IDENTIFICATION NUMBER 1-1-37	MBER	1-1-37
ENV	DIST. TYPE	MEAN	8 0X LOWER BOUND	SCALE POINT ESTIMATE	800 UPPER BOUND	80% LOWER BOUND	SHAPE POINT ESTIMATE	. — —	80% UPPER BOUND
8	WEIBULL	34968.20	0.0	0.0 ! 38164.63 !	86043.48 0.695 1.356 2.018	0.695	1.356	-	2.018
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS					
3	el	=	90707.	WORN OUT SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY =0.637	E LEVEL FO	R TESTING	EXPONENT	IALIT	¥ =0.63

INSTR	INSTRUMENTS	1	/ AMETER			IDENTIF	IDENTIFICATION NUMBER 1-1-38	:R 1-1-
ENV	DIST. TYPE	MEAN	80X LOWER BOUND	SCALE POINT ESTIMATE	S C C C C C C C C C C C C C C C C C C C	80X LOWER BOUND	SHAPE	80X UPPER BOUND
3	WEIBULL	55723.50	0	0.0 ! 58510.81 ! 159288.74 ! 0.530 ! 1.147 ! 1.765	159288.74	0.530	1.147	1.76
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS				
3	-	-	90707	UNKNOWN	HCE LEVEL FO	A TESTIN	UNKHOWN SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY =0.838	ITY =0

INSTRU	INSTRUMENTS	>	VOLTMETER	1	IDENTIFICATION NUMBER 1-1-39
E S	DIST. TYPE	MEAN	8 0X LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
3	WEIBULL	49694.65	0.0	52728.06 (112377.31	0.749 1.191 1.63
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
T O		N	181414.	NKNOWN IGNIFICANCE LEVEL FO	OR TESTING EXPONENTIALITY =0
JOINT	JOINT, MICROWAVE ROTARY		GENERAL		IDENTIFICATION NUMBER 1-1-40
EN	DIST. TYPE	PESTIMATE	BOUND BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
3	WEIBULL	53027.44	2131.45	55938.90 109746.35	0.808 1.166 1.52
ENC	NUMBER OF	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMPENTS	
¥5				UNKNOWN SIGNIFICANCE LEVEL F	FOR TESTING EXPONENTIALITY -0

KEYBOARD	ARD	1 /	ELECTROMECHANICAL	4L	IDENTIFICATION NUMBER 1-2-41
ER	DIST. TYPE	ESTI	80% LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER ! POINT ! UPPER BOUND ! ESTIMATE ! BOUND
X.	WEIBULL	10215.75	5395.26	8841.30 ! 12287.33	0.647 (0.779 (0.911
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMPLENTS	
3		4	90707	UNKNOWN SIGNIFICANCE LEVEL FO	UNKNOWN SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY =0.180
MOTOR	MOTOR, ELECTRIC	\$ /	SERVO, DC		IDENTIFICATION NUMBER 1-1-42
E S	DIST. TYPE	MEAN	8 0X LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ! ESTIMATE ! BOUND
¥	WEIBULL	97451.22	0.0	87189.28 244094.99	0.448 ! 0.816 ! 1.184
ENV	NUMBER OF I	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3		7	90707	MLU MAP DRUM OSCILLAT	OSCILLATES DEMAGNETIZED LEVEL FOR TESTING EXPONENTIALITY =0.885

MOTOR.	MOTOR, ELECTRIC	ls /	STEPPER		IDENTIFICATION NUMBER 1-1-43
EX <	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% COWER POINT UPPER BOUND ESTIMATE BOUND
Š	WEIBULL	36136.15	0.0	39353.01 ! 89861.35	0.680 1.340 2.000
ENS	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
X		44)	90707	UNKNOWN SIGNIFICANCE LEVEL FO	FOR TESTING EXPONENTIALITY = 0.652
POWER	POWER SWITCH GEAR	,			IDENTIFICATION NUMBER 1-1-44
EN	DIST. TYPE	MEAN	80X LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE 1 BOUND
\$	WEIBULL	60.	÷ 0.0	52967.52 / 121520.84	0.769 1.456 2.143
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMENTS	
W.			181414.	UNKNOWN SIGNIFICANCE LEVEL F	FOR TESTING EXPONENTIALITY =0.557

PULLEY	>	5 /	GROOVED		IDENTIFICATION NUMBER 1-1-45
E X	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER! POINT! UPPER BOUND! ESTIMATE! BOUND
<u>×</u>	WEIBULL	50940.81	0.0	53924.21! 116745.09	0.735 ! 1.181 ! 1.627
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
¥ 6		8	1814.	PRINTER INOPERATIVE I SIGNIFICANCE LEVEL FOR	R TESTING EXPONENTIALITY =0.727
RETAINING	NING RING	9 /	GENERAL		IDENTIFICATION NUMBER 1-3-46
EN	DIST. TYPE	MEAN	80X LOWER BOUND	SCALE 80% POINT I UPPER ESTIMATE I BOUND	80% SHAPE 80% LOWER ! POINT ! UPPER BOUND ! ESTIMATE ! BOUND
Σ	WEIBULL	229156.66	14887.05 !	237805.12 : 460923.18	0.878 1.106 1.334
ENV	NUMBER OF SOURCES	NUPBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
X		7	2652030.	NEEDS REPLACEMENT SIGNIFICANCE LEVEL FO	FOR TESTING EXPONENTIALITY =0.692

1 1) /	GENERAL		IDENTIFICATION NUMBER 1-3-47
	DIST. TYPE	ESTIMATE	80% LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
; ;	WEIBULL	92929	11801.65	86557.76 ! 161313.87	0.678 ! 0.868 ! 1.058
_	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
1 1		40	434030	UNKNOWN SIGNIFICANCE LEVEL F	LEVEL FOR TESTING EXPONENTIALITY =0.570
	SOLENOIDS	11/	/ LINEAR		IDENTIFICATION NUMBER 1-1-48
•	DIST. TYPE	MEAN	8 0X LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER ! POINT ! UPPER BOUND ! ESTIMATE ! BOUND
, ,	WEIBULL	83937.45	0.0	84638.07 (210877.66	1 0.607 1.020 1.434
1	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
, ,		2	181414.	UNKNOWN SIGNIFICANCE LEVEL FOR TESTING	OR TESTING EXPONENTIALITY +0.987

SWITCH		1 /	PRESSURE (AIR FLOW	[m]	IDENTIFICATION NUMBER 1-1-49
EN	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT 1 UPPER ESTIMATE 1 BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND
¥	WEIBULL	47632.70	16600.12	50014.64 83429.1	15 0.896 1.147 1.399
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMPRENTS	
E	e-1	ω	453535.	UNKNOWN SIGNIFICANCE LEVEL	FOR TESTING EXPONENTIALITY =0.616
SWITCH	-		THERMOSTATIC		IDENTIFICATION NUMBER 1-3-50
EN	DIST. IVPE	MEAN EST MATE	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND
Σ	WEIBULL	65219.07	23705.78	67732.24 111758.7	70 0.910 1.107 1.304
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
Œ		12	1179360.	UNKNOWN SIGNIFICANCE LEVEL	FOR TESTING EXPONENTIALITY =0.641

1	d /	PNEUMATIC		IDENTIFICATION NOTICES
DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 30% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER POINT - UPPER BOUND ESTIMATE BOUND
WEIBULL	27337.24	9207.89	29694.76 ! 50181.54	0.943 1.321 1.700
NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
-	m	41.00	SEAL WORN OUT SIGNIFICANCE LEVEL	SEAL WORN OUT SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY =0.459

5.4 Weibull Analyses -- Project 2. This section contains the results of fitting the Weibull distribution to nonelectronic part lifetime data collected from a ground mobile artillery locating radar. For a description of the tables in this section, refer to section 5.3.

In only three cases is exponentiality rejected at the 0.05 level of significance. These cases are listed below.

Part Class	Type	Shape Parameter Estimate
Accelerometer	Forced Balanced	0.297
Azimuth Encoder	Optical	0.641
Crank Shaft	General	0.413

Note that in each of these cases, the corresponding Weibull distribution has a decreasing failure rate. This is perhaps indicative of the occurrence of infant failures which were not properly screened by the vendor, or, as with the Accelerometer and Crank Shaft, a very small sample of failures.

5.4.1 Weibull Analyses Summaries. Following is an index of the nonelectronic parts analyzed in this section. See section 5.3.1 for a description of the entries of this index.

Index to Project 2 Weibull Analyses

Part Name	Part Type	Environment	Sequence Number	Best Fit
ACCELEROMETER	FORCED BALANCED	GM	1	W
ACTUATOR	MECHANICAL	GM	2	E
ANTENNA	COMMUNICATION	GM	3	E
AXLE	GENERAL	GM	4	2
AZIMUTH ENCODER	OPTICAL	GH.	5	W
BATTERY	RECHARGEABLE	GM	6	E
BEARING	BALL	GM.	7	E
BEARING	ROLLER	GM	8	E
BEARING	SLEEVE	GM	9	E
BELLOWS	GENERAL	GM	10	E
BELT	TIMING	GM	11.	E
BELT	V-BELT	GM	12	E
BLOWERS & FANS	AXIAL	GM	13	E
BLOWERS & FANS	Centrifugal	GM	14	E
BRAKES	ELECTROMECHANICAL	GM	15	E
BRUSHES	ELECTRIC MOTOR	GM	16	E
BUSHINGS	GENERAL	GM	17	E
CIRCUIT PROTECTION DEVICE	SPARK GAP	GM	18	E
CIRCUIT PROTECTION DEVICE	SURGE ARRESTER	GM	19	E
CLUTCH	PRICTION	GH	20	E
COMPUTER MASS MEMORY	MAGNETIC TAPE	GM	21	E
CRANK SHAFT	GENERAL	GM	22	W
DIAPHRAGMS BURST	GENERAL	GM	23	E
DRIVE FOR COMPUTER TAPES/DISCS			24	E
DRIVES	GEAR	GM	25	E
DRIVES	VARIABLE PITCH	GM	26	E
DRUM	WEAPON LOCATING UN		27 28	E
DUCT ELECTRIC HEATERS	GENERAL	GM GM	28 29	E
ELECTRIC HEATERS ELECTROMECHANICAL TIMERS	RESISTANCE	GM GM	30	e e
FILTERS	GENERAL AIR	GM	30 31	
FILTERS	LIQUID	GM GM	32	e E
FITTINGS	PERMANENT	GM	33	E
FITTINGS	QUICK DISCONNECT	GM	34	E
FITTINGS	THREADED	GM	35	E
PUSE HOLDER	BLOCK	GM	36	Ē
FUSE HOLDER	PLUG	GM	37	E
GASKETS & SEALS	DYNAMIC	GM	38	Ē
GASKETS & SEALS	STATIC	GM	39	E
GEAR	BEVEL	GM	40	Ē
GEAR	HELTCAL	GM	41	E
GEAR	SPUR	GM	42	E
GEAR BOX	REDUCTION	GM	43	E
HFAT EXCHANGERS	RADIATOR	GM	44	E
HIGH SPEED PRINTERS	ELECTROSTATIC	GM	45	Ē
HOSES	GENERAL	GM	46	Ĕ
==		•	, -	_

**** ころんののの **** ならないない ***** ないないない ないではないない ない

Index to Project 2 Weibull Analyses

Part Name	Part Type	Environment	Sequence Number	Best Fit
INSTRUMENTS	AMMETER	GM	47	E
INSTRUMENTS	VOLTMETER	GM	48	E
JOINT, MICROWAVE ROTARY	GENERAL	GM	49	E
KEYBOARD	ELECTROMECHANICAL	GM	50	E
METAL TUBING	GENERAL	GM	51	E
MOTOR, ELECTRIC	> 1 HORSE POWER, A	C GM	52	E
MOTOR, ELECTRIC	SERVO, DC	GM	53	E
MOTOR, ELECTRIC	STEPPER	GM	54	E
POWER CIRCUIT BREAKER	CURRENT TRIP	GM	55	E
PULLEY	GROOVED	GH	56	E
PULLEY	V-PULLEY	GM	57	E
PUMP	HYDRAULIC	GM	58	E
PUMP	PNEUMATIC	GM	5 9	E
RESILIENT MOUNT	GENERAL	GM	60	E
RETAINING RING	GENERAL	GM	61	E
SHOCK ABSORBERS	COMBINATION	GM	62	E
SHOCK ABSORBERS	RESILIENT	GM	63	E
SWITCH	LIQUID FLOW	GM	64	E
SWITCH	PRESSURE (AIR FLOW) GM	65	E
SWITCH	THERMOSTATIC	GM	66	E
SWITCH	WAVE GUIDE	GM	67	E
TELESCOPE	BORE SIGHT	GM	68	E
TRACK BALL	ELECTROMECHANICAL	GM	69	E
VALVES	HYDRAULIC	GM	70	E

E N	ACCELEROMETER	/ FI	FUNCEU BALANCEU		
-	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER POINT ! UPPER BOUND ! ESTIMATE ! BOUND
GM GM	WEIBULL		0.0 1216	21611482.92	0.160 ! 0.297 ! 0.433
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
¥			112682.	DEFECTIVE PARTS INSIDE	E TESTING EXPONENTIALITY =0.003
ACTUATOR	oc.	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	MECHANICAL		IDENTIFICATION NUMBER 2-1- 2
EN C	DIST TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	86% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
3	WEIBULL	17576.23	98.0964	18972.54 (32984.22)	0.784 ! 1.281 ! 1.778
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
		8	59481.	UNKNOWN SIGNIFICANCE LEVEL FC	UNKNOWN SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY =0.620

ANTENNA	W Z		COMMUNICATION		IDENTIFICATION NUMBER 2-1-3
EN	DIST. TYPE	ESTIMATE	80% LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
₩.	WEIBULL	1400759.62	0	993079.80 ! 5427732.47	0.178 0.632 1.086
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
X O			118962.	UNKNOWN SIGNIFICANCE LEVEL FI	UNKNOWN SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY #0.543
AXLE			GENERAL		IDENTIFICATION NUMBER 2-1- 4
EN	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT PUPPER BOUND ESTIMATE BOUND
3	WEIBULL	1	0.0	62992.93 168271.36	0.530 1.229 1.929
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3		-	118962.	DAMAGED SIGNIFICANCE LEVEL FO	DAMAGED SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY =0.775

ZIMU	AZIMUTH ENCODER	do /	OPTICAL			IDENTIFICATION NUMBER	BER 2-2-	S i
E N	DIST. TYPE	MEAN	800 LOSTER BOUND	SCALE 81	80% UPPER BOUND	80% SHAPE LOWER POINT BOUND ESTIMATE	80x UPPER BOUND	~ <u>Q</u>
¥	WEIBULL	10502 73	4023.89	7571.59 ! 11	11119.30	0.513 ! 0.641	0.770	0
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS			1	
*		12	59481.	UNKNOWN	LEVEL FOR	R TESTING EXPONENTIALITY		=0.034
BATTERY	⊁ 6 5	x /	RECHARGEABLE			IDENTIFICATION NUMBER	MBER 2-1	9
E X	DIST. TYPE	MEAN	8 CX LOVER BOUND	SCALE POINT ESTIMATE	30X UPPER BOUND	80% SHAPE LOWER ! POINT BOUND ! ESTIMATE	80% I UPPER E I BOUND	₩
3	WEIBULL	1433685.15	0.0	1012499.16 1 422	4224447.36	0 310 1 0 630	6.0	951
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS			1	1
¥ 5		2	237924.	SHORTED VR1-3	LEVEL FI	LEVEL FOR TESTING EXPONENTIALITY	1	=0.387

BEARING	S S		BALL		IDENTIFICATION NUMBER 2-1-7
E S	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER ! POINT ! UPPER BOUND ! ESTIMATE ! BOUND
¥0	WEIBULL	25.	8451.73	97196.10 / 185940.48	
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3		ဖ	535329.	EXCESSIVE PLAY SIGNIFICANCE LEVEL FO	FOR TESTING EXPONENTIALITY =0.930
BEARING	£ 22	1/	ROLLER		IDENTIFICATION NUMBER 2-1-8
N N N N N N N N N N N N N N N N N N N	DIST. TYPE	MEAN	80X LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER ! POINT ! UPPER BOUND ! ESTIMATE ! BOUND
3	i WEIBULL	133721.94	0	132010.90 357064.22	0.543 ! 0.971 ! 1.399
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
2		8	237924.	22	OR TESTING EXPONENTIALITY +0.955

BEARING	NG	3 /	SLEEVE		IDENTIFICATION NUMBER 2-1- 9
EN	DIST TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER ! POINT ! UPPER BOUND ! ESTIMATE ! BOUND
E	WEIBULL	437248.87	0 0	402329.97 1172904.55	0.529 ! 0.851 ! 1.174
EN K	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3		67	594810.	REQUIRES OVERHAUL SIGNIFICANCE LEVEL FO	FOR TESTING EXPONENTIALITY =0.709
BELLOWS	Š	9 /	GENERAL		IDENTIFICATION NUMBER 2-1-10
EN	DIST TYPE	MEAN	80x LOWER BOUND	SCALE 20% POINT 1 UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER ! POINT ! UPPFR BOUND ! ESTIMATE ! BOUND
X.	WEIBULL	262866.38	0	207917.25 ! 879943.96	0.214 ! 0.701 ! 1.188
EN	NUMBER OF SOURCES	NUMBER OF PARTS FALLED	TOTAL PART OPERATING HOURS	COMMENTS	
\$		ed :	59481	UNKNOWN SIGNIFICANCE LEVEL FC	FOR TESTING EXPONENTIALITY =0.635

BELT		1 /	TIMING		IDENTIFICATION NUMBER 2-1-11
EN	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT POINT BOUND ESTIMATE
¥5	WEIBULL	56859	0 0	60995.18! 160377.56	0.542 1.245 1.949
EN	NUMBER OF I	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
W.			118962	WORN OUT SIGNIFICANCE LEVEL FOR	R TESTING EXPONENTIALITY =0.760
BELT		> \	V-BELT		IDENTIFICATION NUMBER 2-1-12
EN	DIST TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT ! UPPER BOUND ! ESTIMATE ! BOUND
¥.	WEIBULL	29334.21	- 0 0	31777.46 ! 7:473.99	0.586 1.303 2.021
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
<u>.</u>			59481	BROKEN SIGNIFICANCE LEVEL FC	FOR TESTING EXPONENTIALITY =0.709

BLOWE	BLOWERS & FANS	/ A3	/ AXIAL		IDENTIFICATION NUMBER 2-3-13
EN	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
3	WEIBULL	289726.63	0 0	247070.90 ! 597030.43	0.541 ! 0.764 ! 0.987
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3		ω	509460.	UNKNOWN SIGNIFICANCE LEVEL FO	FOR TESTING EXPONENTIALITY *0.409
BLOWERS &	RS & FANS	3 /	/ CENTRIFUGAL		IDENTIFICATION NUMBER 2-1-1
EN	DIST. TYPE	MEAN	80x LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
.	WEIBULL	570851.43	0.0	491516.46 1 1519208.55	0.471 0.774 1.076
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
: : §		1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	475848.	BEARINGS WORN OUT	FOR TESTING EXPONENTIALITY =0.554

BRAKES	S	/ 6	/ ELECTROMECHANICAL	AL.	IDENTIFICATION NUMBER 2-3-15
S S	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
¥	1708I34	21667.34	7828.78	17422.70 ! 27016.62	9 563 9 0 713 9 0 864
m X X	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
¥.		10	105056	EXCESSIVE GAP SIGNIFICANCE LEVEL F	FOR TESTING EXPONENTIALITY =0.137
BRUSHES	S:) ·	ELECTRIC MOTOR		I IDENTIFICATION NUMBER 2-1-18
) N	DIST TYPE	FSTIMATE	80% LOWER BOUND	SCALE 80X POINT UPPER ESTIMATE 9 BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND FESTIMATE
3	WEIBULL	795505.51	0	700628.80 ! 3354568.10	i 0.263 ! 0.798 ! 1.333
N N	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
ž.		ed :	237924.	NEEDS ADJUSTMENT	FOR TESTING EXPONENTIALITY =0.763

BUSHINGS	NGS	<i>i</i>	/ GENERAL		IDENTIFICATION NUMBER 2-1-17
EN	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER POINT ! UPPER BOUND ! ESTIMATE ! BOUND
¥5	WEIBULL	207815.85	40062.94	231388.30 422713.67	1.234 1.571 1.908
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
2		ဖ	13026339.	WORN OUT SIGNIFICANCE LEVEL FO	FOR TESTING EXPONENTIALITY =0.118
CIRCU	CIRCUIT PROTECTION DEVICE		SPARK GAP		IDENTIFICATION NUMBER 2-1-18
EN	DIST. TYPE	MEAN	80x LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER ! POINT ! UPPER BOUND ! ESTIMATE ! BOUND
₹	WEIBULL	124668.75	0 0	111922.87 ! 400619.42	0.279 0.820 1.360
ENV.	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
£		~	59481.	UNKNOWN SIGNIFICANCE LEVEL FO	UNKNOWN SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY =0.789

システストの重要ののできたできる。2000年、カラスの人の間であるもののないではなって大人のの問題の

CIRCU	CIRCUIT PROTECTION DEVICE	_	SURGE ARRESTER		IDENTIFICATION NUMBER 2-1-19
EN	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE (BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
Σg	WEIBULL	1347662.81	0 0	886354,76 3701416,46	0.289 0.595 ! 0.902
EN<	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3		2	178443.	UNKNOWN SIGNIFICANCE LEVEL FO	FOR TESTING EXPONENTIALITY =0.330
СГОТСН	-	J /	FRICTION		IDENTIFICATION NUMBER 2-1-20
EN	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER ! POINT ! UPPER BOUND ! ESTIMATE ! BOUND
£	WEIBULL	119774.67	0 0	108271.87 (304747.72	0.441 0.828 1.216
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
£		2	118962.	ANTENNA FAILS TO ROTATE	TESTING EXPONENTIALITY =0.721

COMPU	COMPUTER MASS MEMORY		/ MAGNETIC TAPE		IDENTIFICATION NUMBER 2-1-21
EN	DIST TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
Σ.	WEIBULL	29420.65	1812.84	24868.76 ! 47924.68	0.505 ! 0.756 ! 1.007
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
Æ		4	59481	WON'T LOAD SIGNIFICANCE LEVEL FOR	OR TESTING EXPONENTIALITY = 0.443
CRANK	CRANK SHAFT	9 /	GENERAL		IDENTIFICATION NUMBER 2-2-22
E N	DIST TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
3	WEIBULL	1013766.24	0 0	331808.41 1175986.58	0.231 0.413 0.595
N ×	NUMBER OF SOUNCE	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
Æ	-	8	59481.	BRACKET BROKEN SIGNIFICANCE LEVEL FC	BRACKET BROKEN SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY #0.037

DIAPH	DIAPHRAGMS BURS	75 /	GENENAL		IDENTIFICATION NUMBER 2-1-2
Ε. Χ	18 18 18 18 18 18 18 18 18 18 18 18 18 1	MEAN ESTIMATE	SON BGUND BGUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
1	WEIBULL	409183.78	0 0	298265.16 1376933.67	0.186 0.648 1.109
<u>22</u> W	NUMBER OF SOURCES	NUMBER OF PARTS FALED	TOTAL PART OPERATING HOURS	COMPLENTS	
25			59481	UNKNOWN SIGNIFICANCE LEVEL F	FOR TESTING EXPONENTIALITY =0.56
. I VE	IVE FOR COMPUTER	TAPES/DISCS/	MAGNETIC TAPE TR	TRANSPORT	IDEN: CATION NUMBER 2-1-24
. >	SIST TYPE	MEAN ESTIMATE	SOUND BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
¥ .	WEIBULL	1 1262797 98	0.0	517993.27 + 2197885.61	0.209 0.453 0.698
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOUPS	COMMENTS	
3		~	. 8 & 8.5 5 9 & 8 &	UNKNOWN SIGNIFICANCE LEVEL F	UNKNOWN SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY *0.13

DRIVES	: (4)	9 /	GEAR		IDENTIFICATION NUMBER 2-1-25
> 2	DIST TYPE	MEAN	80% LOWER ! BOUND !	SCALE 80% POINT UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
3	WEIBULL	112079 01	0 0	112796.38 ! 260004.45	0.655 1.016 1.376
. X X	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
秀		e	.36886.	NEEDS REPLACEMENT SIGNIFICANCE LEVEL FO	FOR TESTING EXPONENTIALITY *0.971
DRIVES		^ /	/ VARIABLE PITCH		IDENTIFICATION NUMBER 2-1-26
F X	DIST. TYPE	MEAN EST.MATE	80X LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE ! BOUND	80% SMAPE 80% LOWER POINT : UPPER BOUND ! ESTIMATE ! BOUND
3	WEIBULL	16828.00	5613.63	18281.23 (30948.82	0.815 1.322 1.830
E N C	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3		7	59481.	WORN OUT	WORN OUT SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY +0.57

DRUM		*	WEAPON LOCATING UNIT	UNIT	IDENTIFICATION NUMBER 2-1-27
EN	OIST TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
E	WEIBULL	15290.09	4008	15199.73 25491.22	0.663 0.986 1.310
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3		₹	59481.	UNKNOWN SIGNIFICANCE LEVEL FC	FOR TESTING EXPONENTIALITY =0.972
DUCT		9 /	GENERAL		IDENTIFICATION NUMBER 2-1-28
EN	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
¥	WEIBULL	320770.11	0	301519.04 715859.70	0.627 ! 0.882 ! 1.138
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3		ស	892215.	UNKNOWN SIGNIFICANCE LEVEL FO	FOR TESTING EXPONENTIALITY -0.707

ELECTI	ELECTRIC HEATERS	1 /	RESISTANCE			IDENTIFICATION NUMBER	1	2-1-29
244	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE POINT ESTIMATE	80% UPPER BOUND	80% SHAPE LOWER ! POINT BOUND ! ESTIMATE	8 00 NO	# 2
¥.	WEIBULL	21004.97	60	23371.17 3	38631.14	0.992 1.561	7	129
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS				
3		8	118962	SHORTED	LEVEL FO	SHORTED SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY	IALITY =0	367
ELECT	ELECTROMECHANICAL TIME	RS	GENERAL			IDENTIFICATION NUMBER		2-1-30
EN	DIST TYPE	MEAN	80X LOWER BOUND	SCALE POINT ESTIMATE	80% UPPER BOUND	80% SHAPE LOWER ! POINT BOUND ! ESTIMATE	80x UPPER SOUND	E Q
3	MEIBULL	19663.70	7630.35	21453.53 ! 3	35276.70	0.906 1 1.53	1	20
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS				
3		m	118962.	UNKNOWN SIGNIFICANCE	LEVEL FO	UNKNOWN SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY	TALITY =0	•0.480

FILTERS	RS R	1	AIR		IDENTIFICATION NUMBER 2-1-31
. Z.	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER POINT ! UPPER BOUND ! ESTIMATE ! BOUND
\$	WEIBULL	20949.63	3472.11	20728.06 37984.01	0.625 ! 0.976 ! 1.327
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
£		٣	59481.	UNKNOWN SIGNIFICANCE LEVEL FC	FOR TESTING EXPONENTIALITY =0.954
FILTERS	RS		/ LIQUID		IDENTIFICATION NUMBER 2-1-32
EN	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
3	WEIBULL	37650 97	19720.18	40196.86 60673.54	0.975 ! 1.220 1.466
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3	-	∞	535329.	LEAKING SIGNIFICANCE LEVEL FO	FOR TESTING EXPONENTIALITY =0.433

FITTINGS	NGS	d /	PERMANENT		IDENTIFICATION NUMBER 2-3-33
₽.	DIST TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	8C% SHAPE 80% LOWER! POINT! UPPER BOUND! ESTIMATE! BOUND
3	MEIBULL	10254430.80	0.0	7302483.72 (28354012.69	0.410 0.635 0.859
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
₩.		•	1723290	UNKNOWN SIGNIFICANCE LEVEL FOR	OR TESTING EXPONENTIALITY = 0.222
FITTINGS	NGS	6 /	QUICK DISCONNECT		IDENTIFICATION NUMBER 2-1-34
EN	DIST. TYPE	MEAN	80% LOMER BOUND	SCALE 80% POINT UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER ! POINT ! UPPER BOUND ! ESTIMATE ! BOUND
3	WEIBULL.	1390001	0	129990.22 324602.92	0.540 0.864 1.188
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3		6	237924.	UNKNOWN SIGNIFICANCE LEVEL FOR	R TESTING EXPONENTIALITY -0.733

FITTINGS	NGS	1 /	THREADED		IDENTIFICATION NUMBER 2-1-35
EN	DIST. TYPE	MEAN ESTIMATE	80x LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT PPER BOUND ESTIMATE BOUND
3	WEIBULL	339122.53	0 0	319992 17 1 815290 52	0.602 (0.888 ! 1.175
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3		•	773253	LEAKING SIGNIFICANCE LEVEL FI	FOR TESTING EXPONENTIALITY #0.750
FUSE	FUSE HOLDER	8 /	/ вгоск		IDENTIFICATION NUMBER 2-1-38
. 2 2	DIST. TYPE	MEAN	8 0X LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER POINT ! UPPER BCJND ! ESTIMATE ! BOUND
3	MEIBULL	707994.58	0 0	632133.96 2966092.95	0.271 0.813 1.356
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3			237924	DAMAGED SIGNIFICANCE LEVEL F	DAMAGED SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY =0.782

FUSE	FUSE HOLDER	4 /	PLUG		IDENTIFICATION NUMBER	2-1-37
EX	DIST TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE LOWER POINT BOUND ! ESTIMATE!	80% UPPER BOUND
3	WEIBULL	1,5863776.40	0.0	111400990 36 181379544 47	0.181 0.640	1.099
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
₹	•••	-	594810.	DAMAGED SIGNIFICANCE LEVEL FOR	OR TESTING EXPONENTIALITY	*0.555
GASKE	GASKETS & SEALS	3 /	DYNAMIC		IDENTIFICATION NUMBER	2-3-38
E K	OIST TYPE	MEAN	80X LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE LOWER ! POINT BOUND ! ESTIMA E !	80% UPPER BOUND
3	WEIBULL	2393608.94	0.0	1912170.23 8253465.48	0.359 0.708	1 057
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
3		2	594810	LEAKING SIGNIFICANCE LEVEL FO	LEAKING SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY =0.518	"0.518

GASKE	GASKETS & SEALS	; /	STATIC		IDENTIFICATION NUMBER 2-1-39
EN	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER ! POINT ! UPPER BOUND ! ESTIMATE ! BOUND
.	WEIBULL	443979.34	0 0	424115.17 1038827.92	0.647 ! 0.909 ! 1.170
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3		'n	1368063	UNKNOWN SIGNIFICANCE LEVEL FO	FOR TESTING EXPONENTIALITY =0.773
GEAR		3 /	13A38		IDENTIFICATION NUMBER 2-1-40
EN	DIST. TYPE	MEAN	80X LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER ! POINT ! UPPER BOUND ! ESTIMATE ! BOUND
¥	WEIBULL	933130 85	0	852593.58 4100974.33	0.287 ! 0.342 ! 1.397
ER	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3	e e	e4	356886	UNKNOWN SIGNIFICANCE LEVEL FOR	R TESTING EXPONENTIALITY =0.818

GEAR		# /	/ HELICAL		IDENTIFICATION NUMBER 2-1-41
ENC	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80%. SHAPE 80% LOWER POINT UPPER BOUNT ESTIMATE BOUND
¥	WEIBULL	28725 94	0.0	31179 10 69486 05	0.594 ! 1.316 ! 2.038
E N <	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
¥5			59481.	WORN OUT SIGNIFICANCE LEVEL FO	FOR TESTING EXPONENTIALITY =0.698
GEAR		\$ /	SPUR		IDENTIFICATION NUMBER 2-1-42
EN	DIST TYPE	MEAN	80x LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
Ŧ.	WEIBULL	305094.17	0 0	297975,62 ! 916483.59	0.526 0.949 1.372
ENS	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
¥		2	475848.	UNKNOWN SIGNIFICANCE LEVEL F	UNKNOWN SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY *0.920

GEAR	вох		REDUCTION		IDENTIFICATION NUMBER 2-1-43
E S	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER ! POINT ! UPPER BOUND ! ESTIMATE ! BOUND
A.S	WEIBULL	73061.95	0 0	71067.04 177693.41	0.521 ! 0.941 ! 1.361
EN<	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3		2	118962	NO OIL IN GEAR BOX	FOR TESTING EXPONENTIALITY *0.907
HEAT	HEAT EXCHANGERS		/ RADIATOR		IDENTIFICATION NUMBER 2-1-44
EN	DIST. TYPE	MEAN	3 UK LOWER BOUND	SCALE 80x POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER ! POINT ! UPPER BOUND ! ESTIMATE ! BOUND
¥5	WEIBULL	968374.54	0 0	793508.09 (3064689.05	0.373 ! 0.729 ! 1.084
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
I	٦	7		NOT PROPERLY FABRICA	FABRICATED BY VENDOR LEVEL FOR TESTING EXPONENTIALITY =0.552

HIGH SPEED PRINIERS	•	ELECTROSTATIC	. •	
DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
WEIBULL	5317.82	3667.88	5171.37 6674.85	6,770 (0.941 (1.111
NUMBER OF SOURCES	NUMBER OF PARTS FAILED		COMMENTS	
	21		UNKNOWN SIGNIFICANCE LEVEL FOR	R TESTING EXPONENTIALITY =0.773
	9 /	ENERAL		IDENTIFICATION NUMBER 2-3-46
DIST. TYPE	MEAN	80% LOWER PUUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
WEIBULL	1697362.80	0 0	1610694.75 1 4540045.06	0.640 (0.897 (1.155
NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
-	ις.	4299481.	H I	S ANTENNA MOVEMENT R TESTING EXPONENTIALITY =0.744
	WEIBULL TYPE TST TYPE TST TYPE TST TYPE TST TYPE TST TYPE	ESTIMATE S317.82 NUMBER OF PARTS FAILED 12 12 12 1697362.80 1697362.80	ESTIMATE BOUND S317 82 3667 88 1 NUMBER OF TOTAL PART PARTS FAILED OPERATING HOURS (GENERAL S9481 1697362 80 0 0 0 1 NUMBER OF TOTAL PART PARTS FAILED OPERATING HOURS 5 4299481	S317 82 3667 88 5171 37 1 6674 85

INSTR	INSTRUMENTS	4 ,	AMMETER		IDENTIFICATION NUMBER 2-1-47
E N	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
¥	WEIBULL	122545.11	0.0	110322.28 393320.44	0.281 0.823 1.36
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
\$		٦	59481	SEALING DAMAGED SIGNIFICANCE LEVEL FO	FOR TESTING EXPONENTIALITY #0.793
INSTR	INSTRUMENTS		VOLTMETER		IDENTIFICATION NUMBER 2-1-48
N N	DIST TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT I UPPER BOUND	80% SHAPE 80% LOWER ! POINT ! UPPER BOUND ! ESTIMATE ! BOUND
£	WEIBULL	2627205.96	0	157:884.11 9987333.85	0.156 ! 0.581 ! 1.006
E N	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
¥ 5			118962	UNKNOWN SIGNIFICANCE LEVEL FO	UNKNOWN SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY =0.472

の経典を対象の対象を与っているとの

ENV DIST					
	TYPE	MEAN	80% LOWER -	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
GN WE	WEIBULL	270665.42	0 0	259247.87 794649.1	12 0 500 0 913 1 1 326
ENV I NUMB	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
		2	356886.	DEFECTIVE SIGNIFICANCE LEVEL	FOR TESTING EXPONENTIALITY =0.862
KEYBOARD		13 /	/ ELECTROMECHANICAL	-	IDENTIFICATION NUMBER 2-2-50
ENV DIST	ST. TYPE	MEAN	80x LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
3 W	WEIBULL	23734.58	3456.68	19793.06 ! 36129.	44 0 510 1 0.744 1 0.977
ENV NUM	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
¥5		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	59481.	LOCKED UP SIGNIFICANCE LEVE	LEVEL FOR TESTING EXPONENTIALITY +0.393

METAL	METAL TUBING		GENERAL		I DENTIFICATION NUMBER 2-1-51
E N	DIST. TYPE	MEAN	80°, LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND
¥5	WEIBULL	306441.73	0	321143.95 1 926619.51	0 665 1 140 1 614
N N V	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
¥ .		2	1189620	UNKNOWN SIGNIFICANCE LEVEL FOR	UR TESTING EXPONENTIALITY =0.799
MOTOR	MOTOR, ELECTRIC		> 1 HORSE POWER.	, AC	IDENTIFICATION NUMBER 2-1-52
E X	DIST TYPE	MEAN	80X LOWER BOUND	SCALE 80x POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ! ESTIMATE ! BOUND
3	WEIBULL	371635.49	0	212811.17 764417.81	0.260 0.541 0.822
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3		2	59481.	UNKNOWN SIGNIFICANCE LEVEL FO	FOR TESTING EXPONENTIALITY -0.244

MCTOR,	MOTOR, ELECTRIC	S /	SERVO, DC		IDENTIFICATION NUMBER 2-1-53
E ×	DIST TYPE	MEAN	8 CK LOWER -	SCALE 80% FOINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND
3	WEIBULL	30337 19	0.0	30237 56 63713 84	0.565 1 0.992 1 420
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3		2	2005	UNKNOWN SIGNIFICANCE LEVEL FO	FOR TESTING EXPONENTIALITY *0.988
MOTOR	MOTOR_ELECTRIC	\$ /	/ STEPPER		IDENTIFICATION NUMBER 2-1-54
E N <	CIST TYPE	FSTIMATE	80x LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SMAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
3	WEIBULL	72837.22	0 0	70856.67 219393.30	0 348 0 941 1.535
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3			59481	PAPER TAKE UP UNEVEN	OR TESTING EXPONENTIALITY #0.935

POWER	POWER CIRCUIT BREAKER		CURRENT TRIP		IDENTIFICATION NUMBER 2-3-55
> Z	DIST. TYPE	ESTIMATE	80% LOWER BOUND	SCALE 80% POINT 1 UPPER ESTIMATE 1 BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
.	WEIBULL	132440.51	12053 05	130601 23 249149 41	0.742 0.969 1.196
EN.	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
¥		7	816970	UNKNOWN SIGNIFICANCE LEVEL F	FOR TESTING EXPONENTIALITY =0.909
PULLEY			/ GROOVED		IDENTIFICATION NUMBER 2-1-56
E X	DIST TYPE	MEAN	80x LOWER BOUND	SCALE 80% POINT 1 UPPER ESTIMATE 1 BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
3	WEIBULL	34714.05	0 0	36986 36 + 89230 82	0.524 1.211 1.897
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
¥ 5	-	7	59481.	WORN OUT	FOR TESTING EXPONENTIALITY *0.790

PULLEY	 		V-PULLEY		IDENTIFICATION NUMBER 2-1-57
E X	DIST. TYPE	HEAN	80% COWER BOUND	SCALE 80% POINT UPPER BOUND	80% SHAPE 80% LOWER POINT POPER BOUND ESTIMATE BOUND
X	WEIBULL	89088	0 0	87826 09 1 198794 33	0.619 0.968 1.317
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
₹ 5		6	237924	WORN OUT SIGNIFICANCE LEVEL F	FOR TESTING EXPONENTIALITY #0.939
PUMP			HYDRAULIC		IDENTIFICATION NUMBER 2-1-58
EN	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
¥.	WEIBULL	4077	6591.90	8756.86 10921.83	1.376 1.814 2.252
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
¥.		4	59481.	CIRCUIT BREAKER TRIPS SIGNIFICANCE LEVEL FOR	S TESTING EXPONENTIALITY =0.080

PUMP		d /	PNEUMATIC			IDENTIF	IDENTIFICATION NUMBER 2-1-59	R 2-1-59
> Z	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE POINT ESTIMATE	80% OPPER BOUND	80% LOWER BOUND	SHAPE POINT ESTIMATE	80% UPPER BOUND
3	MEIBULL	17897 50	5075.40	5075.40 18249 51	31423.62	0.692	31423 62 1 0 692 1 1 050 1 1 408	1.408
SE SE	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS				
T		ю.	59481	UNKNOWN	ICE LEVEL FO	R TESTING	UNKNOWN SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY =0 905	.ITY =0.90

80% SCALE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
0.0 325104.59 759332.85 0.683 0.952 1.220
TOTAL PART COMMENTS OPERATING HOURS
IMPROPER MOUNT SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY =0.881

REIAI	RETAINING RING	9 \	GENERAL		IDENIILICALION NUMBER 2-2
EN	DIST. TYPE	MEAN	8 0% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE ESTIMATE	80% SMAPE 80% LOWER ! POINT ! UPPER BOUND ! ESTIMATE ! BOUND
¥5	WEIBULL	517555.16	0 0	536833.42 2156620.53	0 445 1 103 1 760
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMPLENTS	
.			892215	UNKNOWN SIGNIFICANCE LEVEL FOR	OR TESTING EXPONENTIALITY #0
SHOCK	SHOCK ABSORBERS	3 /	/ COMBINATION		IDENTIFICATION NUMBER 2-1-62
ENV	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
3	WEIBULL	32380.29	6750.00	36039.38.1 65328.76	0.979 1.565 2.152
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3		8	237924.	UNKNOWN SIGNIFICANCE LEVEL FOR	UNKNOWN SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY =0.376

SHOCK	SHOCK ABSORBERS		RESILIENT		IDENTIFICATION NUMBER 2-1-63
₩	DIST. TYPE	HEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
E	WEIBULL	22550.79	7271.53	24970.42 ! 42669.31	0.936 ! 1.495 ! 2.054
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COPPRENTS	
3		2	118962.	IMPROPER MOUNT SIGNIFICANCE LEVEL F	FOR TESTING EXPONENTIALITY =0.421
SWITCH		\ 	/ LIQUID FLOW		IDENTIFICATION NUMBER 2-3-64
N N	DIST. TYPE	MEAN ESTIMATE	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE 1 BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
*	WEIBULL	7	0 0	75533,35 174174,56	0.677 1.153 1.628
) N	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
3		2	237924	UNKNOWN SIGNIFICANCE LEVEL F	FOR TESTING EXPONENTIALITY =0.781

SWITCH		d /	PRESSURE(AIR FLOW)	3	IDENTIFICATION NUMBER 2-1-65
ENC	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE 1 BOUND	80% SHAPE 80% LOWER POINT 1 UPPER BOUND 1 ESTIMATE 1 BOUND
Σ. O	WEIBULL	699927.62	0 0	554124.50 ! 1796714.96	0 419 1 0 702 1 0 985
ENV :	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
Σ.		63	356886	UNKNOWN SIGNIFICANCE LEVEL FOR	R TESTING EXPONENTIALITY =0.415
SWITCH	!		/ THERMOSTATIC		IDENTIFICATION NUMBER 2-3-66
EN	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
¥	WEIBULL	468654 17	0	439528.39 1006599.28	0 664 0.879 1 094
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
¥5		1	1906536	UNKNOWN SIGNIFICANCE LEVEL F	FOR TESTING EXPONENTIALITY #0.647

SWITCH	ı		WAVE GUIDE		IDENTIFICATION NUMBER 2-1-67
E K	DIST TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND
¥.	WEIBULL	145020.37	- 0 0	87969 92 241296 36	0.327 1 0.562 1 0.796
E N C	NUMBER OF I SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
.		<u>ب</u>		IMPROPER WIRING SIGNIFICANCE LEVEL FO	FOR TESTING EXPONENTIALITY = 0.178
TELESCOPE	COPE	8 /	BORE SIGHT		IDENTIFICATION NUMBER 2-1-68
EN	DIST TYPE	MEAN	80% LOWER - BOUND -	SCALE 80% POINT UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
Σ	WEIBULL	000000000000000000000000000000000000000	- 0 0	115523.25 (364350.35	0 311 0 629 0 946
 	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
£		N	59481	UNKNOWN SIGNIFICANCE LEVEL FO	FOR TESTING EXPONENTIALITY =0.381

TRACK BALL	BALL	3 /	ELECTROMECHANICAL		IDENTIFICATION NUMBER	2-1-69
EN	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE LOWER POINT BOUND ESTIMATE	80% UPPER BOUND
3	WEIBULL	22514.64	2009 95	23506 14 4 45002 33	0 663 1 1 126	1.589
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS		
X		2	59481.	UNKNOWN SIGNIFICANCE LEVEL F	FOR TESTING EXPONENTIALITY	*0.816
VALVES	S	H /	HYDRAULIC		IDENTIFICATION NUMBER	2-1-70
EN	DIST, TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE LOWER POINT BOUND ESTIMATE	80% UPPER BOUND
3	WEIBULL	235410.87	0 0	00.000 T	0.495 0.716	0.937
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMERTS		
¥.		ιΛ	297405.	IMPROPER SEALING SIGNIFICANCE LEVEL F	FOR TESTING EXPONENTIALITY	*0.318

5.5 Weibull Analyses -- Project 3. This section presents the results of fitting the Weibull distribution to nonelectronic part lifetimes collected from an air defense, ground fixed system. For a description of the tables presented in this section, refer to section 5.3.

The part classes/types for which the observed significance level was below 0.05 (supporting the Weibull over the exponential at the 0.05 level of significance) are listed below.

Part Class	Туре	Significance Level	Shape Parameter Estimate
Drive for Computer Tapes	Magnetic Tape Drive	0.028	4.649
Track Ball	Electromechanical	< 0.0005	2.319

5.5.1 Weibull Analyses Summaries. Following is an index of the nonelectronic parts analyzed in this section. See Section 5.3.1 for a description of the entries of this index.

Index to Project 3 Weibull Analyses

Part Name	Part Type E	avironment	Sequence Number		
BELT	TIMING	GF	1	E	
BLOWERS & PANS	AXIAL	GF	2	E	
BLOWERS & FANS	CENTRIFUGAL	GF	3	E	
CAMERA	TV	GF	4	E	
COMPUTER MASS MEMORY	FIXED HRAD DISK MEM	ORY GF	5	E	
COMPUTER MASS MEMORY	MAGNETIC TAPE	GF	6	E	
COMPUTER MASS MEMORY	MOVABLE HEAD DISK	GF	7	E	
DRIVE FOR COMPUTER TAPES/DISCS	DISCS	GF	8	E	
DRIVE FOR COMPUTER TAPES/DISCS		GF	9	W	
FILTERS	AIR	GF	10	W E	
HIGH SPEED PRINTERS	IMPACT	GF	11	E	
KEYBOARD	ELECTROMECHANICAL	GF	12	E E	
LOW SPEED PRINTERS	DOT MATRIX	GF	13	E	
MOTOR, ELECTRIC	SERVO, DC	GF	14	e e e e	
PULLEY	GEAR, BELT	GF	15	E	
PUMP	PNEUMATIC	GF	16		
PUMP	VACUUM	GF	17	E	
CENSOR/TRANSDUCER/TRANSMITTER	PRESURE	GF	18	E	
SENSOR/TRANSDUCER/TRANSMITTER		GF	19	E E	
SWITCH	PRESSURE	G f	20	E	
SWITCH	ROCKER	GF	21	E	
SWITCH	THERMOSTATIC	GF	22	E E	
SWITCH	THUMBWHEEL	GF	23	E W	
TRACK BALL	ELECTROMECHANICAL	GF	24	W	

BELT		1 /	TIMING		IDENTIFICATION NUMBER 3-1- 1
X	DIST. TYPE	MEAN ESTIMATE	80% LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SMAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
ĝ.	WEIBULL	# 1	20040.97	49527.46 79013.96	1.267 1.910 2.554
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
GF		80	1386500.	DUE TO EXCESSIVE USE	R TESTING EXPONENTIALITY =0.148
					Thentrescation Mimbe 3-1-2
BLOWE	BLOWERS & FANS		/ AXIAL		, ,
N N	DIST TYPE	MEAN	80x LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER POINT ! UPPER BOUND ! ESTIMATE! BOUND
GF.	WEIBULL	127945.26	14379.14	129342.22 244305.29	0.707 1.027 1.347
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
<u>.</u>		7	972930.	UNKNOWN SIGNIFICANCE LEVEL FO	UNKNOWN SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY +0.943

BLOWE	BLOWERS & FANS	3 /	CENTRIFUGAL		IDENTIFICATION NUMBER 3-3
≥	DIST. TYPE	MEAN	80% COWER BOUND	SCALE 80% POINT PUPPER ESTIMATE POUND	80% SHAPE 80% LOWER ! POINT ! UPPER BOUND ! ESTIMATE ! BOUND
9	MEIBULL	103218	43916.16	204932.58 ! 365948.99	0.878 ! 1.189 ! 1.501
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
45		40	282220	DEFECTIVE SENSOR	FOR TESTING EXPONENTIALITY -0.591
CAMERA	4	1 /	>		IDENTIFICATION NUMBER 3-1
₩ 2 2	DIST. TYPE	MEAN	8 0× LOVER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
95	WEIBULL	2648	0.0	262206.68 603822.75	0.613 0.977 1.340
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
5		'n	1213498	DEFECTIVE POWER SUPPLY SIGNIFICANCE LEVEL FOR	Y OR TESTING EXPONENTIALITY =0.958

COMPL	COMPLITER MASS MEMORY	`	FIXED HEAD DISK MEMORY	MEMORY	IDENTIFICATION NUMBER 3-3-
EN	DIST TYPE	HEAN	80% LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT ! UPPER BOUND ! ESTIMATE ! BOUND
5	WEIBULL	91718.40	51064.13	99837.22 148610.31	1.028 1.336 1.645
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
70		Ø	1735360.	WN FICANCE LEVEL	FOR TESTING EXPONENTIALITY +0.324
COMPU	COMPUTER MASS MEMORY	,	MAGNETIC TAPE		IDENTIFICATION NUMBER 3-3-
EN	DIST. TYPE	ESTIMATE	80% LOWER BOUND	SCALE 80X POINT 1 UPPER ESTIMATE 1 BOUND	80% SHAPE 80% LOWER POINT 1 UPPER BOUND ! ESTIMATE ! BOUND
GF.	WEIBULL	274772.53	1555	285606.52 415632.39	0.954 1.110 1.266
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
ĞF		20	11224044	DEFECTIVE SENSOR SIGNIFICANCE LEVEL FO	FOR TESTING EXPONENTIALITY =0.542

COMPU	COMPUTER MASS MEMORY		/ MOVABLE HEAD DISK	XX.		IDENTIFI	IDENTIFICATION NUMBER	3-1-7
E N	DIST TYPE	MEAN	80X LOWER BOUND	SCALE POINT ESTIMATE	80% UPPER BOUND	80% LOWER SOUND	SHAPE POINT ESTIMATE	80x UPPER BOUND
Ĉ.	WEIBULL	27646.90	17636.62	31196.55	44756.48	1.569	1 2.358 !	3.148
SN S	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMPENTS				
9	=======================================	6	998280	UNKNOWN SIGNIFICANCE	CE LEVEL FOR		TESTING EXPONENTIALITY	TY =0.060
DRIVE	DRIVE FOR COMPUTER TAPES.	TAPES/DISCS/ DISCS	DISCS			IDENTIFI	IDENTIFICATION NUMBER	3-1-8
E	DIST. TYPE	HEAN ESTIMATE	BOX LOWER BOUND	SCALE POINT ESTIMATE	BOUND BOUND	80% LOWER BOUND	SHAPE POINT FSTIMATE	80% UPPER BOUND
<u> </u>	WEIBULL	20502.52	14032.96	22584.47	31135.98	1.915	4 111 4	6.306
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS				
35		2	377910.	UNKNOUN SIGNIFICANCE	SE LEVEL FG	A TESTING	LEVEL FOR TESTING EXPONENTIALITY	TY =0.085

IVE	DRIVE FOR COMPUTER TAPES/D	TAPES/DISCS/	ISCS/ MAGNETIC TAPE DRIVE	RIVE		IDENTIF	IDENTIFICATION NUMBER 3-1-	ER 3-1-9
E &	DIST. TYPE	MEAN	80X LOWER BOUND	SCALE POINT ESTIMATE	8 UPPER BOUND BOUND	80X LOWER BOUND	SHAPE POINT ESTIMATE	80% BOUND
	WEIBULL	38707.09	27147.14	27147.14 ! 42334.91 ! 57522.69 ! 2.534 ! 4.649 ! 6.765	57522.69	2.534	4.649	6.765
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS				
, = . = . = . ! !		m	2095632	UNKNOWN SIGNIFICAN	CE LEVEL FO	R TESTING	UNKNOWN SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY =0.028	LITY =0.02

FILTERS		1/	/ AIR			IDENTIF	ICAT!	IDENTIFICATION NUMBER 3-1-10	e	-1-10	
DIST. TYPE		ESTIMATE	80x LOWER BOUND	SCALE 80 POINT 1 UP	80X UPPER BOUND	80x LOWER BOUND		SHAPE POINT ESTIMATE		BOX UPPER BOUND	
WEIBULL		58780.63	646.53	62802 44 124958 35 0 647 1 224 1 801	58.35	0 647	-	1.224	-	801	1
NUMBER OF I NU SOURCES PAR	PAR	NUMBER OF	TOTAL PART OPERATING HOURS	COMMENTS							
		m	290320.	DAMAGED SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY =0.728	EVEL FO	R TESTIM	G EXP	PONENTIAL	TI	.0.728	

HIGH	HIGH SPEED PRINTERS	,	IMPACT		IDENTIFICATION NUMBER 3-3-11
ENC	DIST. TYPE	MEAN	80x LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER POINT POPER BOUND STIMATE BOUND
GF	WEIBULL	7644.37	5787.38	8531.28 ! 11275.19	1 163 1.611 2.058
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
GF	ed I		60 1	DEFECTIVE IC SIGNIFICANCE LEVEL F	FOR TESTING EXPONENTIALITY +0.196
KEYBOARD	ARD	1	ELECTROMECHANICAL	11	IDENTIFICATION NUMBER 3-3-12
ENC	DIST. TYPE	MEAN	80× LOWER BOUND	SCALE 80X POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT 1 UPPER BOUND 1 ESTIMATE 1 BOUND
GF	WEIBULL	211230.96	0.0	228449.22 588391.99	i 0.669 ! 1.293 ! 1.916
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
GF.		m	1735620.	UNKNOWN SIGNIFICANCE LEVEL F	LEVEL FOR TESTING EXPONENTIALITY =0.668

いった。 1914年では、1000年の11日では、1000年間ではいいというない。 1914年では、1000年間である。 1914年では、1000年間では、1000年には、

104 Si	LOW SPEED PRINTERS	3 /	DOT MATRIX		IDENTIFICATION NUMBER 3-3-13
Ж Э	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT 1 UPPER ESTIMATE 1 BOUND	80% SHAPE 80% LCWER POINT POPER BOUND FESTIMATE BOUND
6F	ME IBULL	70051.86	43692.92	77545.46 111398.00	1.153 (1.492 (1.830
EN <	NUMBER OF I	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
<u>.</u>		70	1496250.	FUSE BLOWN OUT	FOR TESTING EXPONENTIALITY +0.185
MOTOR	MOTOR, ELECTRIC	\$ /	SERVO, DC		IDENTIFICATION NUMBER 3-1-
EN	DIST. TYPE	MEAN	80X LOWER BOUND	SCALE 80% POINT PUPPER ESTIMATE BOUND	80% SHAPE 80% LCWER POINT UPPER BOUND ESTIMATE BOUND
GF	WEIBULL	741309.54	0.0	599300.01 1591129.00	0.451 ! 0.718 ! 0.984
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
9		ν	910840	UNKNOWN SIGNIFICANCE LEVEL F	FOR TESTING EXPONENTIALITY =0.427

が必要である。 「「「「「「「「「」」」というない。 「「「」」というない。 「「「」」というない。 「「」」というない。 「」」というない。 「「」」というない。 「」」というない。 「「」」というない。 「」」というない。 「「」」というない。 「」」というない。 「」

PULLEY		3 /	GEAR BELT		IDENTIFICATION NUMBER 3-1-15
EN	DIST. TYPE	HEAN	80X LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT POINT BOUND
49	WEIBULL	46517.77	7266.77	\$2526.13 ! 97785.4	49 1,140 2,188 3,235
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
5		e		DUE TO EXCESSIVE USE	JSE FOR TESTING EXPONENTIALITY +0.225
PUMP		1	PNEUMATIC		IDENTIFICATION NUMBER 3-1-16
EN	DIST. TYPE	EST	80X LOWER BOUND	SCALE 80X POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT PUPPER BOUND ESTIMATE BOUND
5	WEIBULL	69.030	40540.86	95710.03 150879.1	19 1.027 1.430 1.834
EN	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
9		ی	1304767.	DEFECTIVE COMPONENTS SIGNIFICANCE LEVEL FOR	ITS FOR TESTING EXPONENTIALITY =0.332

PUMP			/ VACUUM		IDENTIFICATION NUMBER 3-1-17
EN	DIST. TYPE	FSTIMATE	80X LOWER BOUND	SCALE 80X POINT : UPPER ESTIMATE ! BOUND	80% SHAPE 80% I LOWER POINT UPPER BOUND ESTIMATE BOUND
9	MEIBULL	9536	7571.16	10258.59 ! 12946.01	1.091 1 3.548 1 6.005
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
9		-4	19132.	UNKNOWN SIGNIFICANCE LEVEL	FOR TESTING EXPONENTIALITY =0.218
SENSO	SENSOR/TRANSDUCER/TRANSMITT	ER /	PRESSURE		IDENTIFICATION NUMBER 3-1-18
EN	DIST. TYPE	FESTIMATE	80% LOWER BOUND	SCALE 30% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT 1 UPPER BOUND 1 ESTIMATE 1 BOUND
96	, WEIBULL	226790.74	51892.87	248791.11 ! 445689.36	1 1.008 1.399 1.789
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
7.5		7	5196390.	NO TAPE LOADING SIGNIFICANCE LEVEL	FOR TESTING EXPONENTIALITY =0.350

SENSO	SENSOR/TRANSDUCER/TRANSM	ITTER /	TEMPERATIVE		IDENTIFICATION NUMBER 3-1-19
EN	DIST. TYPE	MEAN	80X LOWER BOUND	SCALE 80% POINT UPPER BOUND	80% SHAPE 80% LOWER POINT UPFTE BOUND ESTIMATE BOUND
GF.	WEIBULL	345074.16	0.0	186319.12 ! 524388.85	0.278 ! 0.522 ! 0.767
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMPENTS	
ĢF.		e	116635.	PRINTER INOPERATIVE SIGNIFICANCE LEVEL FOR	OR TESTING EXPONENTIALITY = 0.188
SWITCH	3.	3 /	/ PRESSURE		IDENTIFICATION NUMBER 3-1-20
E	DIST. TYPE	HEAN ESTIMATE	BOUND 1	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER ! POINT ! UPPER BOUND ! ESTIMATE ! BOUND
GF	MEIBULL	63917.24	0.0	72067.57 160814.47	0.795 1.933 3.072
E S	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
9		2	957050.	U'KNOWN SIGNIFICANCE LEVEL FOR	X TESTING EXPONENTIALITY =0.397

SWITCH	<u> </u>	1 /	ROCKER		IDENTIFICATION NUMBER 3-1-21
ENV	DIST. TYPE	MEAN	80x LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND
15	WEIBULL	996681.35	0.0	1104908.26 3096761.48	0.943 1.510 2.076
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
G.	el .	ĸ	62505757.	DEFECTIVE WIRING SIGNIFICANCE LEVEL FO	FOR TESTING EXPONENTIALITY =0.388
SWITCH	*	1	/ THERMOSTATIC		IDENTIFICATION NUMBER 3-1-22
EX	DIST. TYPE	MEAN	80X LOWER BOUND	SCALE 80% POINT ! UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER ! POINT ! UPPER BOUND ! ESTIMATE ! BOUND
Ĝ	WEIBULL	1298702.01	0.0	1397896.50 ! 4338015.14	0.734 1.264 1.794
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
5			20703888.	UNKNOWN SIGNIFICANCE LEVEL FO	UNKNOWN SIGNIFICANCE LEVEL FOR TESTING EXPONENTIALITY =0.651

SWITCH	r	ι /	THUMBWHEEL		IDENTIFICATION NUMBER 3-1-23
Х >	DIST. TYPE	MEAN ESTIMATE	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE ! BOUND	80% SHAPE 80% LOWER POINT UPPER BOUND ESTIMATE BOUND
GF	WEIBULL	40932.97	1660.29	46198.29 ! 90736.30	0.842 2.027 3.213
ENC	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
S.		2	466416.	DAMAGED SIGNIFICANCE LEVEL FOR	R TESTING EXPONENTIALITY =0.364
TRACK BALL	BALL	/ 6	ELECTROMECHANICAL	1	IDENTIFICATION NUMBER 3-3-24
EN	DIST. TYPE	MEAN	80% LOWER BOUND	SCALE 80% POINT UPPER ESTIMATE BOUND	80% SHAPE 80% LOWER ! POINT ! UPPER BOUND ! ESTIMATE ! BOUND
.	MEIBULL	86684.26	57744.82	97837.46 137930.10	1.928 i 2.319 i 2.710
ENV	NUMBER OF SOURCES	NUMBER OF PARTS FAILED	TOTAL PART OPERATING HOURS	COMMENTS	
GF.	→	22	51605371	DEFECTIVE COMPONENT SIGNIFICANCE LEVEL FOR	R TESTING EXPONENTIALITY +0.000

5.6 Part Malfunction Data. Table 5.6.1 gives the malfunction data and frequency of occurrence for each part name based only on the information which was available when the part failure data was collected. The malfunction data for each part name are accumulated over all use environments and part types for the particular part name.

Not all malfunctions reported are mutually exclusive. For example, "improper adjustment" and "improperly installed" may overlap. We leave it to the reader to combine the malfunction data into categories, as needed, using the information presented.

Table 5.6.1. PART MALFUNCTION DATA

PART NAME	MALFUNCTION	FREQUENCY OF OCCURRENCE %
ACCELEROMETER		
	DEPECTIVE PARTS INSIDE	100.0
ACTUATOR		
	BEARING & BRAKE RUSTED	6.7
	CABLE INSULATION FRAYED	6.7
	CARLE STERVE NEEDS FIXING	6.7
	IMPROPER CONFIGURATION SHOULD BE -2	6.7
	IMPROPER CONNECTOR INSTALLED	0.7
	REQUIRES ADJUSTMENT OF TM	6.7
	REQUIRES OVERHAUL	6.7 6.7
	SAFETY WIRE BRACKET BROKEN	
	THERMAL SWITCH FOUND TO BE DEFECTIVE UNKNOWN	40.0
ANTENNA		
	unknown	100.0
AXLE		
	DAMAGED	50.0
	UNKNOWN	50.0
AZIMUTH ENCODER		
	ANTENNA WON'T MOVE	32.3
	CASING ROTATES	3.2
	CRACKED GLASS DISC	3.2
	ENCODER MARKING SHOULD BE REMOVED	3.2
	INCORRECT ANTENNA ROTATION	3.2 3.2
	LAMP DESIGN DEFECTIVE	3.2
	NO MOVEMENT BETWEEN DWELLS OPTICAL ASSEMBLY DEFECTIVE	3.2
	RESISTER IS DEFECTIVE	3.2
	UNKNOWN	41.9
BATTERY		
	CONNECTOR PANEL DEFECTIVE	20.0
	CONNECTOR PINS SHORTED	20.0
	CONNECTOR SHORTED	20.0
	K-1 MISWIRED	20.0
	SHORTED VR1-3 TO CHASSIS	200

Table 5.6.1, continued. PART MALFUNCTION DATA

ができないのできる。 「「「「「「「」」」というないできないできない。 「「「」」というないできない。 「「「」」というのできない。 「「」というないないできない。 「「」」というないない。 「「」」というないないできない。 「「」」というないないできない。 「「」」というないないできない。 「「」」というないないできない。

PART NAME	MALFUNCTION	FREQUENCY OF OCCURRENCE %
BEARING		OCCURRENCE 5
	PRINTER INOPERATIVE REQUIRES OVERHAUL	4.2 4.2 4.2 12.5 4.2 12.5 4.2 12.5 45.8 4.2
BELLOWS		
	CRACKED UNKNOWN	50.0 50.0
BELT		
BLOWERS & PANS	BROKEN DUE TO EXCESSIVE USE WORN OUT	10.0 60.0 30.0
	BEARINGS WORN OUT	15.8
	EXCESSIVE CURRENT HAS SHORTED EXCESSIVE VIBRATIONS & BEARINGS LOOSE HAS EXCESSIVE VIBRATIONS & MOUNT IS LOOSE IMPROPER INSTALLATION	5.3 2.6
	MOTOR DAMAGED NOISY DUE TO DEFECTIVE BEARINGS	2.6 5.3
	REVERSE WIRING SHORTED SWITCH IS LOOSE SWITCH NOT PROPERLY INSTALLED SWITCH NOT WORKING UNKNOWN	2.6 5.3 2.6 2.6 2.6 2.6 23.7

Table 5.6.1, continued. PART MALFUNCTION DATA

PART NAME BRAKES	MALFUNCTION	FPEQUENCY OF OCCURRENCE %
	ASSY SCREW TOO TIGHT	2.3
	BRAKE CABLE TOO SHORT	2.3
	BRAKE DISCS WORN OUT	2.3
	Brake Pad Bushings screw loose	2.3
	BRAKES CORRODED	4.7
	EXCESSIVE GAP	18.6
	IMPROPER ADJUSTMENT	7.0 4.7
	IMPROPER POSITIONING IMPPOPERLY INSTALLED	2.3
	LOCK SCREW NEEDS REPLACEMENT	2.3
	NEEDS ADJUSTMENT	18.6
	PARTS ARE WORN OUT	2.3
	PARTS BROKEN	2.3
	RECRIMP TERMINAL D&C REQUIRED	2.3
	SCREW LOOSE	2.3
	UNIKNOWN	20.9
	WORN OUT	2.3
BRUSHES		
	NEEDS ADJUSTMENT	66.7
	SHORTED	33.3
BUSHINGS		
	UNKNOWN	16.7
	WORN OUT	83.3
	WORN OUT	65.5
CAMERA		
	DEFECTIVE POWER SUPPLY	40.0
	PICTURE BECOMES WEAK & BREAKS UP	20.0
	UNKNOWN	40.0
CIRCUIT PROTECTION DE	RVICE	
	PAINT STENCILED ON ARRESTER SHORTED	14.3
	UNKNOWN	85.7
CLUTCH		
	ANTENNA FAILS TO ROTATE	62.5
	ANTENNA MOVES SLOWLY	12.5
	NEEDS ADJUSTMENT	25.0
COMPUTER MASS MEMORY		

Table 5.6.1, continued. PART MALFUNCTION DATA

PART NAME	MALFUNCTION BAD REEL HUB ASSEMBLY	FREQUENCY OF OCCURRENCE %
	BAD REEL HUB ASSEMBLY	1.0
	RAD SOLDED JOINTS ON CONNECTOR DINS	1 0
	BAD REEL HUB ASSEMBLY BAD SOLDER JOINTS ON CONNECTOR PINS CABLE WIRES SWITCHED	1.0
	CABLE WIRES SWITCHED CAPSTAN MOTOR DEFECTIVE CAPSTAN MOTOR JAMMED CONNECTOR PINS HAVE BROKEN DEFECTIVE CAPACITOR DEFECTIVE CAA DEFECTIVE COA DEFECTIVE CONTROL SYSTEM DEFECTIVE DISC DEFECTIVE MOTOR ASSEMBLY DEFECTIVE MOTOR ASSEMBLY DEFECTIVE SENSOR DEFECTIVE SENSOR DEFECTIVE TRANSISTOR DEFECTIVE TRANSISTOR IN SERVO ASSEMBLY DEFECTIVE VACUUM CHAMBER SENSOR FLOPPY DRIVE ONE IS DEFECTIVE FUSE BLOWN HAS LOW PRESSURE MTC DEFECTIVE PINS 1 & 3 ARE DAMAGED POWER SUPPL DEFECTIVE Q1 & Q2 IMPROPERLY ORIENTED READ/WRITE HEAD IS DEFECTIVE RIBBON CABLE BROKEN SERVO AMP. DEFECTIVE TWO PINS SHORTED ON CONNECTOR UNKNOWN WON'T ACCEPT CERTAIN PROGRAMS	1.0
	CAPSTAN MOTOR JAMMED	1.0
	CONNECTOR PINS HAVE BROKEN	1.0
	DEFECTIVE CAPACITOR	2.0
	DEFECTIVE CCA	1.0
	DESECTIVE CHECK VALVE	1.0
	DEFECTIVE CONTROL SYSTEM	1.0
	DESCRITAR DISC	6.9
	DEFECTIVE MOTOR ASSEMBLY	1.0
	DEFECTIVE POWER SUPPLY	1.0
	DEFECTIVE SENSOR	14.9
	DEFECTIVE SOLDERING ON IC.	2.0
	DEFECTIVE TRANSISTOR	3.0
	DEFECTIVE TRANSISTOR IN SERVO ASSEMBLY	1.0
	DEFECTIVE VACUUM CHAMBER SENSOR	1.0
	FLOPPY DRIVE ONE IS DEFECTIVE	1.0
	fuse blown	1.0
	has low pressure	2.0
	MTC DEFECTIVE	1.0
	PINS 1 & 3 ARE DAMAGED	1.0
	POWER SUPPL DEFECTIVE	1.0
	Q1 & Q2 IMPROPERLY ORIENTED	1.0
	READ/WRITE HEAD IS DEFECTIVE	1.0
	RIBBON CABLE BROKEN	1.0
	SERVO AMP. DEFECTIVE	1.0
	TWO PINS SHURTED ON CONNECTOR	1.0
	UNKNOWN WON'T ACCEPT CERTAIN PROGRAMS WON'T ACCEPT VRS-131 WON'T LOAD WON'T RECORD WON'T REWIND	0.7 1 Ω
	HON'T ACCEPT UPC_131	1.0
	UON'T LOAD	19.8
	WON'T RECORD	4.0
	WON'T REWIND	9.9
	WRONG PUSE WAS INSTALLED	1.0
COUPLING		
	UNKNOWN	100.0
CRANK SHAFT		
	BRACKET BROKEN	40.0

Table 5.6.1, continued. PART MALFUNCTION DATA

PART NAME	MALFUNCTION	FREQUENCY OF
	UNKNOWN	OCCURRENCE %
DIAPHRAGMS BURST		
	UNIONOWN	100.0
DRIVE FOR COMPUTER T	APES/DISCS	
	DATA LOST FROM TAPES	2.3
	DEFECTIVE	25.6
	DEFECTIVE IC	2.3
	LOOSE CONNECTION	4.7
•	UNKNOWN	65.1
DRIVES (GEAR)		
	IMPROPER ADJUSTMENT	30.0
	IMPROPER INSTALLATIONS	10.0
	NEEDS REPLACEMENT UNKNOWN	10.0 30.0
	WORN OUT	20.0
	WORN OUT	20.0
DRUM		
	BAD ROTATION AFTER DROP TEST	4.3
	BRACKET BROKEN	4.3
	CONNECTOR P-4 DEFECTIVE	4.3
	DAMAGED DUE TO OVERSPEED & MANY IMPACTS	4.3
	DRUM HAS EXCESSIVE WEIGHT BEARING DAMAGE	4.3
	DRUM OUT OF ALIGNMENT	8.7
	DRUM STICKS	30.4
	HAS OPEN TACH WINDING	4.3
	NOT PROPERLY ALIGNED	4.3
	SERVO AMP FOUND TO BE DEFECTIVE	4.3
	UNICHOWN	26.1
DUCT		
	CRACKED	30.0
	IMPROPERLY INSTALLED	10.0
	UNKNOWN	20.0
	USED UP. NEEDS REPLACEMENT	40.0

Table 5.6.1, continued. PART MALFUNCTION DATA

SHORTED UNKNOWN 60.0 ELECTROMECHANICAL TIMERS NEEDS ADJUSTMENT 33.3 UNKNOWN 66.7 PILTER DAMAGED 16.7 LEAKING 38.9 LINE FILTER PIN-D OPEN 5.6 NEEDS REPLACEMENT 11.1 UNKNOWN 27.8
UNKNOWN 60.0 ELECTROMECHANICAL TIMERS NEEDS ADJUSTMENT 33.3 UNKNOWN 66.7 PILTER DAMAGED 16.7 LEAKING 38.9 LINE FILTER PIN-D OPEN 5.6 NEEDS REPLACEMENT 11.1
NEEDS ADJUSTMENT 33.3 UNKNOWN 66.7 PILTER DAMAGED 16.7 LEAKING 38.9 LINE FILTER PIN-D OPEN 5.6 NEEDS REPLACEMENT 11.1
UNKNOWN 66.7 PILTER DAMAGED 16.7 LEAKING 38.9 LINE FILTER PIN-D OPEN 5.6 NEEDS REPLACEMENT 11.1
PILTER DAMAGED LEAKING LEAKING LINE FILTER PIN-D OPEN NEEDS REPLACEMENT 11.1
DAMAGED 16.7 LEAKING 38.9 LINE FILTER PIN-D OPEN 5.6 NEEDS REPLACEMENT 11.1
LEAKING 38.9 LINE FILTER PIN-D OPEN 5.6 NEEDS REPLACEMENT 11.1
LINE FILTER PIN-D OPEN 5.6 NEEDS REPLACEMENT 11.1
NEEDS REPLACEMENT 11.1
== =
UNINOWN 27.8
FITTINGS
IMPROPER ADJUSTMENT 7.1
LEAKING 28.6
NEEDS CLEANING 7.1
UNKNOWN 57.1
FUSE HOLDER
DAMAGED 100.0
GASKETS & SEALS
BAD INTERNAL SEAL IN GEAR DRIVE 6.7
IMPROPER INSTALLATION 6.7
LEAKING 6.7
NEEDS REPLACEMENT 46.7
POPS UP DURING ANTENNA MOVEMENT 6.7 UNKNOWN 26.7
20.7
GEAR
UNKNOWN 60.0
WORN OUT 40.0
GEAR BOX
NEEDS OVERHAUL 33.3
NO OIL IN GEAR BOX 66.7

Table 5.6.1, continued. PART MALFUNCTION DATA

	MALFUNCTION	FRECUENCY OF OCCURRENCE %
HEAT EXCHANGERS		
	NEEDS ADJUSTMENT NEEDS REPLACEMENT	20.0
	nreds replacement	20.0
	NOT PROPERLY PABRICATED BY VENDOR	20.0
	UNKNOWN	40.0
HIGH SPEED PRINTERS		
	AC INPUT SHORTED	0.9
	AC INPUT SHORTED AC INPUT SHORTED UNDER LOAD	0.9
	BELT IS SLIPPING	0.9
	BEARINGS WORN OUT. REQUIRES REPLACEMENT BELT IS SLIPPING DEPECTIVE IC DEFECTIVE POTENTIOMETER DEFECTIVE SENSOR DEFECTIVE TRANSISTOR FEEDING MECHANISM NEEDS REPAIR HAMMER BLOWER NOISY HAMMER DRIVER DAMAGED HAMMER HEAD BROKEN HAS RIBBON SKEWING PROBLEM LOOSE PULLEY MOTOR & ROLLER ARE DEFECTIVE	10.5
	DEFECTIVE POTENTIOMETER	0.9
	DEFECTIVE SENSOR	1.8
	DEFECTIVE TRANSISTOR	3.5
	FEEDING MECHANISM NEEDS REPAIR	0.9
	HAMMER BLOWER NOISY	0.9
	HAMMER DRIVER DAMAGED	0.9
	HAMMER HEAD BROKEN	0.9
	has ribbon skewing problem	0.9
	LOOSE PULLEY	2.6
	KVIIII IEG DIL SUSTI	W • #
		1.8
	MOTOR JAMMED	0.9
	MOTOR NOT WORKING PROPERLY	1.8
	MOTOR SHORTED	0.9
	NEEDS OVERHAUL	0.9
	NEEDS WIRE REPLACEMENT	0.9
	NO POWER AT - 32C	0.9
	OVER CURRENT, SHORTED	1.8
	MOTOR JAMMED MOTOR NOT WORKING PROPERLY MOTOR SHORTED NEEDS OVERHAUL NEEDS WIRE REPLACEMENT NO POWER AT - 32C OVER CURRENT, SHORTED PAPER FEED NOT WORKING PAPER FEEDING MECHANISM JAMMED PAPER SPINDLE ROTATION SLOW	1.8
	PAPER FEEDING MECHANISM JAMMED	0.9
	PAPER SPINDLE ROTATION SLOW PAPER SPINDLE TENSION LOW	0.7
	PAPER SPINDLE TENSION LOW	1.8
	PARTS MISSING	3.5
	PRINT FINGERS BENT	1.8
	PROBLEM WITH TAKE UP PULLEY BROKEN	0.9
	RESISTOR R-35, IS OPEN	0.9 0.9
	RIBBON MOTOR INOPERATIVE	0.9
	RIBBON WORN OUT	1.8
	RIBBON WORN OUT & BAD SWITCH	0.9
	ROLLER PRESSURE IS LOW-NEEDS ADJUSTMENT	0.9
	ROLLER PRESSURE NEEDS ADJUSTMENT	0.9

Table 5.6.1, continued. PART MALFUNCTION DATA

PART NAME MALFUNCTION	FREQUENCY OF OCCURRENCE %
STEPPER MOTOR DEPECTIVE	1.8
STEPPER MCTOR IS INOPERATIVE	0.9
TAKE UP REEL LATCH IS INOPERATI	VE 1.8
TIMING BELT & PULLEY WORN OUT	0.9
TIMING BELT BROKEN	1.8
timing brit damaged & worn out	
TIMING BELT WORN OUT	1.8
TOP ROLLER PRESSURE NEEDS ADJUS	TMENT 0.9
TRANSFORMER HAS OPEN LEAD	0.9
UNKNOWN	32.5
HOSES	
DEFECTIVE	28.6
HOSE HAS CRACKS DUE TO ANTENNA	MOVEMENT 42.9
UNKNOWN	14.3
WORN OUT	14.3
INSTRUMENTS	
SEALING DAMAGED	20.0
UNKNOWN	80.0
JOINT, MICROWAVE ROTARY	
DEFECTIVE	40.0
NWCNXNU	60.0
KEYBOAKD	
CABLE(GP554)DEFECTIVE	4.3
IMPROPER CONNECTIONS	4.3
LED DISPLAY DEFECTIVE	4.3
LOCKED UP	13.0
U-32 DEFECTIVE	4.3
UNKNOWN	69.6
LOW SPEED PRINTERS	
DEFECTIVE CAPACITOR	8.3
DEFECTIVE IC	16.7
DEFECTIVE RELAY	8.3
DEFECTIVE SWITCH	8.3
FUSE BLOWN OUT	33.3
TEAR BAR BROKEN	8.3

Table 5.6.1, continued. PART MALFUNCTION DATA

PART NAME	MALFUNCTION	FREQUENCY OF OCCURRENCE %
	TERMINAL WILL NOT LINE PEED	8.3
	TRANSFORMER SHORTED	8.3
METAL TUBING		
	UNKNOWN	100.0
MOTOR, ELECTRIC		
	HAS OPEN TACH-WINDING	7.7
	PAPER TAKE UP UNEVEN	7.7
	SWITCH DEFECTIVE	15.4
	UNIKNOWN	61.5
	WLU MAP DRUM OSCILLATES. DEMAGNETIZED	7.7
POWER CIRCUIT BREAKER		
	CONNECTOR DEFECTIVE	12.5
	IMPROPER CONNECTIONS	25,0
	UNKNOWN	62.5
POWER SWITCH GEAR		
	UNKNOWN	100.0
PULLEY		
	DUE TO EXCESSIVE USE	33.3
	PRINTER INOPERATIVE	22.2
	WORN OUT	44.4
PUMP	•	
	CIRCUIT BREAKER TRIPS	7.1
	DEFECTIVE CHECK VALVE	7.1
	DEFECTIVE COMPONENTS	21.4
	HAS HIGH 10N CURRENT	7.1
	LOW PRESSURE	14.3
	NEEDS ADJUSTMENT	7.1
	OUTPUT PRESSURE VERY LOW	7.1
	UNKNOWN	28.6
RESILIENT MOUNT		
	IMPROPER MOUNT	40.0

Table 5.6.1, continued. PART MALFUNCTION DATA

PART NAME	MALFUNCTION	FREQUENCY OF OCCURRENCE %
	screws missing Unknown	20.0
RETAINING RING		
	NEEDS ADJUSTMENT NEEDS REPLACEMENT UNKNOWN	33.3 33.3 33.3
SENSOR/TRANSDUCER/TRA	Ansmitter	
	NO TAPE LOADING PRINTER INOPERATIVE RELAY DEFECTIVE VACUUM COLUMN NOISY	30.0 30.0 20.0 20.0
SHAPT		
	HINGE REDESIGN REQUIRED RUST UNDER GUSSET UNIT HAD GREASE WHICH HAS FROZEN UNKNOWN	11.1 11.1 11.1 66.7
SHOCK ABSORBERS		
	IMPROPER MOUNT REQUIRES REFURBISHING UNKNOWN	50.0 25.0 25.0
SOLENO IDS		
	UNK NOW N	100.0
SWITCH		
	BRAKE INTERLOCK SYSTEM STUCK CONNECTION LOOSE CONNECTOR BASE PULLED OUT DAMAGED DEFECTIVE WIRING IMPROPER CONNECTION IMPROPER INSTALLATION IMPROPER WIRING IMPROPERLY BONDED	1.6 1.6 1.6 4.8 4.8 3.2 6.5 9.7
	LOOSE DUE TO EXCESSIVE VIBRATIONS	1.6

Table 5.6.1, continued. PART MALFUNCTION DATA

DESTRUCTION BRANCHES CARREST AND CONTROL OF THE CON

PART NAME	MALFUNCTION	FREQUENCY OF OCCURRENCE %
	LOOSE INSTALLATION	1.6
	LOW PRESSURE	1.6
	NERDS REPOSITIONING	4.8
	NEEDS REWIRING	1.6
	OPEN	1.6
	Q-3 LEADS SHORTED	1.6
	REVERSED LEADS	1.6 3.2
	SHORTED	1.6
	SWITCH IS BENT	
	UNKNOWN	43.5
TELESCOPE		
	DAMAGED	50.0
	UNKNOWN	50.0
TRACK BALL		
	CONSOLE CANNOT ENTER MODE BITE	3.2
	DEFECTIVE COMPONENT	67.7
	DEFECTIVE CONTOURNEY	3.2
	DEFECTIVE IC	3.2
	DEFECTIVE LAMP	9.7
	IMPROPER SOLDERING INSIDE	3.2
	LOOSE CONNECTOR	3.2
	NUKNOWN	6.5
VALVES		
	CRACKS ON BODY	12.5
	DUE TO LOW PRESSURE	12.5
	IMPROPER SEALING	12.5
	SEAL WORN OUT	37.5
	UNKNOWN	25.0

6.0 RELIABILITY DEMONSTRATION TESTS

- 6.1 Introduction. The purpose of a reliability demonstration test is to decide if additional reliability design effort is necessary to achieve the specified reliability for the nonelectronic item when it is operated in the field environment. The reliability specification (see section 3.0) identifies the parameter(s) and the values to be nominally and minimally acceptable. Reliability demonstrations are statistical hypothesis tests which lead to one of two mutually exclusive decisions:
 - (a) The reliability parameter(s) of the component is (are) acceptable and no additional design effort is required under the contract;
 - (b) The realiability parameter(s) of the component is (are) unacceptable and additional design effort is required.

The demonstration is designed to have a high probability that the decision reached is correct. When the decision is (a), the consumer runs the risk that the decision is incorrect, i.e. that (b) is true but there were an unusually low number of failures during the test. The probability of this type of incorrect decision is called the consumer's risk (β) .

Similarly, the probability that the decision is (b) when (a) is true (i.e. the component has an unusually large number of failures during the test) is called the producer's risk (a).

It is important that the demonstration simulate the field environment or that there he a known relationship between the field environment and the test environment. For example, if the component actuation rate in the field is low and the effect of actuation rate is known, it would save test time to raise the actuation rate and lower the acceptable reliability values accordingly.

- 6.1.1 Statistical Characteristics of a Reliability Demonstration Test. There are six essential characteristics of a reliability demonstration test.
- (1) The reliability parameter(s) in the specification. If the distribution of the number of failures in the period of time [0,T] is available in a mathematical expression then the reliability parameters will be related to the distribution parameters.
- (2) The acceptable values for the reliability parameter(s). For example, the upper test MTBF (θ_0) in MIL-STD-781C is the smallest desired value of MTBF.
- (3) The unacceptable values for the reliability parameter(s). For example, the lower test MTBF (θ_1) in MIL-STD-781C is the largest unacceptable value for MTBF.
 - (4) The producer's risk, α .
 - (5) The consumer's risk, β .

6.0 RELIABILITY DEMONSTRATION TESTS

- 6.1 Introduction. The purpose of a reliability demonstration test is to decide if additional reliability design effort is necessary to achieve the specified reliability for the nonelectronic item when it is operated in the field environment. The reliability specification (see section 3.0) identifies the parameter(s) and the values to be nominally and minimally acceptable. Reliability demonstrations are statistical hypothesis tests which lead to one of two mutually exclusive decisions:
 - (a) The reliability parameter(s) of the component is (are) acceptable and no additional design effort is required under the contract;
 - (b) The realiability parameter(s) of the component is (are) unacceptable and additional design effort is required.

The demonstration is designed to have a high probability that the decision reached is correct. When the decision is (a), the consumer runs the risk that the decision is incorrect, i.e. that (b) is true but there were an unusually low number of failures during the test. The probability of this type of incorrect decision is called the consumer's risk (β) .

Similarly, the probability that the decision is (b) when (a) is true (i.e. the component has an unusually large number of failures during the test) is called the producer's risk (α).

It is important that the demonstration simulate the field environment or that there be a known relationship between the field environment and the test environment. For example, if the component actuation rate in the field is low and the effect of actuation rate is known, it would save test time to raise the actuation rate and lower the acceptable reliability values accordingly.

- 6.1.1 Statistical Characteristics of a Reliability Demonstration Test. There are six essential characteristics of a reliability demonstration test.
- (1) The reliability parameter(s) in the specification. If the distribution of the number of failures in the period of time [0,T] is available in a mathematical expression then the reliability parameters will be related to the distribution parameters.
- (2) The acceptable values for the reliability parameter(s). For example, the upper test MTBF (Θ_0) in MIL-STD-781C is the smallest desired value of MTBF.
- (3) The unacceptable values for the reliability parameter(s). For example, the lower test MTBF (θ_1) in MIL-STD-781C is the largest unacceptable value for MTBF.
 - (4) The producer's risk, α.
 - (5) The consumer's risk, B.

(b) The sampling plan which defines how and what parameters will be observed, and the criterion for ending the demonstration test and reaching a decision.

In what follows, R will denote a generic reliability parameter (e.g. MTBF, probability of survival of a prespecified time period, etc.) larger values of which are preferred. The smallest acceptable value of R in (2) above is denoted by R₀, and the largest unacceptable value of R is denoted by R₁. R₀ must be strictly greater than R₁. The values of R which lie between R₁ and R₀ are called indifference values. The ratio R₀/R₁ is called the discrimination ratio.

The statistical characteristics of a demonstration are summarized in the operating characteristic (OC) relationship between R and the probability of passing the test when R is the "true" reliability, P(R). Characteristics (4) and (5) give two points in the OC relationship, namely $P(R_0)=(1-\alpha)$, and $P(R_1)=0$.

6.1.2 Cost of Demonstration. The cost of demonstration is determined by the number of samples collected and the calendar time the test facility is occupied. Cost efficient demonstrations require the smallest number of samples and the least calendar time to meet the risk objectives of the demonstration.

If the reliability parameters are related to the parameters of a life distribution, then the most cost efficient demonstration is to measure the time of failure (a variable) for each sample. The demonstration is then called a variables test and the sample of failure times provides the maximum information on the reliability of the design of the component. If the reliability parameter is the fraction of components in a lot which will live beyond some time T, the demonstration will attribute success or failure to each sample according to whether or not the component is operational at time T (attributes testing).

The rule for terminating the demonstration also affects the cost. Given the values for the characteristics in 6.1.1 (1)-(5), it is possible to design a fixed sample size (or fixed time) or sequential demonstration test. In a fixed sample demonstration test termination occurs when (i) all the sample values are observed or (ii) when enough failures have been observed to decide the reliability is unacceptable. Similarly, a fixed time demonstration terminates when (i) the fixed time limit is reached or (ii) when enough failures are observed to decide the reliability is unacceptable. During a sequential demonstration, a sequence of decision points for both acceptable and unacceptable reliability are formulated and a decision is reached the first time one of these decision points is reached. On the average a sequential demonstration will require a smaller sample than a fixed sample test for the same R_0 , R_1 , α , β . Sequential demonstrations are possible for both variables and attributes testing.

5.1.3 Sample Size limitations. In general sample size (N) (or average sample size, for sequential demonstration tests) is the dependent variable of

- a reliability demonstration (i.e. the demonstration characteristics in 6.1.1 (1)-(5) are allowed to determine N). N increases as either the discrimination ratio, α , or β decrease. There is a maximum value for N (NMAX) in all practical situations. If the N required by the characteristics of 6.1.1 (1)-(5) exceeds NMAX, one of the parameters (usually α) must be changed (R_0 , α , or β can be increased, or R_1 can be decreased).
- 6.1.4 Summary. The remainder of this section presents step-by-step instructions on the use of various types of reliability demonstration test plans. The section is arranged to present first test plans based on attributes, followed by variables test plans.

6.2 Attributes Demonstration Tests

6.2.1 Attributes Plans for Small Lots

1. When to use

When testing parts from a small lot where the accept/reject decision for the lot is based on attributes, the hypergeometric distribution is applicable. Attributes tests should be used when the parameter of interest is the fraction of components in a lot which possess a certain reliability attribute.

The example demonstrating the method is based on a small lot and small sample size. This situation frequently characterizes the demonstration test problem associated with nonelectronic parts. The sample size limits the discriminatory power of the demonstration test plan but frequently cost and time constraints force us into larger than desired risks.

2. Conditions for Use

The attribute of interest may be that a part survives at least t hours. A "success" for a component tested would be that it survives t hours. The parameter to be evaluated then is the fraction of the parts in the lot whose lives would exceed t hours. The estimation of the parameter would be based on a fixed sample size and testing without replacement. The selection of the criteria for success (t hours) can be derived from a requirement (such as mission length, for example). If the lot size is 30 or more, then the Poisson approximation may be used to make the calculation simpler. (See Section 6.2.3).

3. Method

 Define criterion for success/failure, i.e. define the attribute.

Example

a. A part that lasts 100 or more hours on a given life test is considered a success. Parts failing before 100 hours are considered failures.

- b. Define acceptable lot quality level (1-p₀).
- c. Specify producer's risk (a) (i.e, the probability that acceptable lots be rejected).
- d. Define unacceptable quality level (1-p₁).
- e. Specify the consumer's risk (β) (i.e., the probability that unacceptable quality lots will pass the demonstration test).
- f. Now that α, β, l-p₀, and l-p₁ have been specified the following steps describe the calculations required to determine the sample size and accept/ reject criteria which will satisfy the stated risks.
- g. The process consists of a general and error solution of the hypergeometric equation using N, 1-p₀, 1-p₁ and various sample sizes until the conditions of α and β are

Example

- b. Lots in which $(1-p_0) = 90\%$ of of the parts will survive 100 hours are to be accepted by this demonstration test plan with high probability.
- c. Let $\alpha = .2$. This decision is an engineering one based on the consequences of allowing defective lots to be accepted and based on the time and dollar constraints associated with inspecting the lot.
- d. Lots in which only 1-p₁
 = 20% of the parts will survive
 100 hours will be accepted by the demonstrations test plan with low probability.
- e. Let β = .022 (Taken for convenience in calculations).
- f. Given: 1ct size N=10

 $1-p_0 = .9$ $1-p_1 = .2$ $\alpha = .2$ $\beta = .022$

follows: If N = 10 and it is assumed that samples are taken from a lot with 1-p₀ = .9 then that lot contains 9 good parts and 1 defective part. As the

Example

g. met. The equation used is

$$Pr(x) = \frac{\binom{r}{x} \binom{N-r}{n-x}}{\binom{N}{n}}$$

x=max(0,n-N+r), 1, 2 ... min(n,r)

where x = number of
successes
in sample
r = number of
successes in
lot
N = lot size

n = sample size

 $\binom{\mathbf{r}}{\mathbf{x}} = \frac{\mathbf{r}!}{\mathbf{x}!(\mathbf{r}-\mathbf{x})!}$

h. Find the number of successes which satisfies α and β in the calculations involving l-p₀ and l-p₁.

first step in the trial and error procedure assume a sample size of 2. The possible outcomes are either 0, 1 or 2 good parts. The probability of each outcome using the hypergeometric formula is

 $Pr(2) = \frac{\binom{9}{2}\binom{1}{0}}{\binom{10}{2}} = .8$ Pr(1) = .2 Pr(0) = 0

The same calculations for 1-p1 = .2 results in

Pr(2) = .022 Pr(1) = .356 Pr(0) = .622

h. From these 2 sets of results it can be seen that if a sample size of 2 is specified, then α and β will be satisfied if the decision rule is made that if 2 successes are observed in the sample the lot is accepted and for all other outcomes the lot is rejected.

If $1-p_0 = .9$, then Pr(2) = .8, therefore $1-.8 = .2 = \alpha$ If $1-p_1 = .2$, then $Pr(2) = .022 = \beta$.

NOTE: A different sample size can be traded off against different α , β , $1-p_0$, $1-p_1$.

i. The demonstration test is then specified.

Example

- i. The test procedure is as follows:
 - 1. Test a random sample of 2 parts from a lot of 10 parts for 100 hours.
 - 2. If both parts survive 100 hours, accept the lot.
 - 3. If only 0 or 1 parts survive 100 hours reject the lot.

4. For Further Information.

There are "Tables of the Hypergeometric Distribution" by G. J. Lieberman and D. B. Owen, Stanford University Press, Stanford, California, 1961 to perform the mathematical calculations of Step g. Also if N becomes large (say 30 or more) then the binomial or the Poisson distribution can be used as an approximation for the hypergeometric distribution.

6.2.2 Attributes Plans for Large Lots (Binomial)

1. When to Use

When testing parts from a large lot where the accept/reject decision for the lot is based on attributes, the binomial distribution is applicable. Strictly speaking, all reliability attributes testing should follow the hypergeometric distribution as long as individual parts are placed on test and tested to failure without replacement. However, when the lot size is large, the binomial distribution is a good approximation for the hypergeometric and therefore the example presented in this section covers the use of the binomial. Attributes test should be used when the parameter of interest is the fraction of components in a lot which possess a certain reliability attribute.

2. Conditions for Use

The attribute of interest may be that a part survives for at least t hours. A "success" for a component tested would be that it survives t hours. The parameter to be evaluated then is the fraction of the parts in the lot that would survive t hours. The estimation of the parameter would be based on a fixed sample size and testing without replacement. The selection of the criteria for success (t hours) can be derived from a requirement (such as a mission length, for example).

Method

- a. Define criterion for success/failure, i.e. define the attribute.
- Define acceptable lot quality level (1-p₀).
- c. Specify producer's risk (α) (i.e., the probability that acceptable lots will be rejected).
- d. Define unacceptable lot quality level (1-p₁).
- e. Specify consumer's risk (β). (i.e., the probability that lots of unacceptable quality level will be accepted).
- f. Now that α, β, 1-p₀, and 1-p₁ have been specified, the following steps describe the calculations required to determine the sample size and accept/reject criteria which will satisfy the stated risks.
- g. The process now consists of a trial and error solution of the binomial equation using $1-p_0$, $1-p_1$ and various sample sizes until at a given decision point, the conditions of α and β are

Example

- a. A part that lasts 100 or more hours on a given life test is considered a success. Parts failing before 100 hours are considered failures.
- b. Lots in which 1-p₀ = .9 (i.e., the life of 90% of the parts will exceed 100 hours) are to be accepted by this demonstration test plan with high probability.
- c. let $\alpha = .01$.
- d. Lots with only a true fraction of acceptable parts 1-p₁ = .5 are to be accepted by this demonstration test plan with low probability.
- e. let β = .17 (selected for ease of calculation).
- f. Given: lot size N = large
 say > 30

 $1-p_0 = .9$ $1-p_1 = .5$ $\alpha = .01$ $\beta = .17$

g. Assume a random sample of size n = 10 is taken from a lot whose true fraction of good parts is .9. Solve the binomial equation for the total number of consecutive outcomes whose summed probabilities equal

| 1990年 | 19

g. satisfied. The binomial equation is:

$$Pr(x) = \binom{n}{x} (1-p)^{x}(p)^{n-x}$$

where n = sample size
x = observed successes in sample
p = lot fraction

defective

Example

a starting at 0
successes. The
calculations for this
decision point are:

$$Pr(10) = \binom{10}{10} (.9)^{10} (.1)^0 = .3486$$

Then

Perform the same type of calculations assuming the true fraction defective is .5. In this instance sum the probabilities starting at 10 successes until succeeding consecutive probabilities sum to the value of \$\beta\$. This yields the following results:

Pr(10) =
$$\binom{10}{10}$$
(.5) $\binom{10}{10}$ (.5) = .001
Pr(9) = .010
Pr(8) = .044
Pr(7) = .117
Pr(7 or more) \approx .17 (which satisfies the β risk)

- h. The demonstration test is then specified.
- h. The test procedure is as follows:
 - 1. Test a random sample of 10 parts for 100 hours.

h.

Example

- 2. If 7 or more parts survive 100 hours, accept the lot.
- 3. If 6 or less successes are observed, reject the lor.

4. For Further Information

There are several published tables for use in determining binomial probabilities in the event that the sample size makes calculations too lengthy. One of these is Tables of the Binomial Probability Distribution, National Bureau of Standards, Applied Mathematics Series 6, Washington, D.C., 1950. It gives individual terms and the distribution function for p = .01 to p = .50 in graduations of .01 and n = 2 to n = .49 in graduations of 1.

6.2.3 Attributes Demonstration Test Plans for Large Lots (The Poisson Approximation Method)

1. When to Use

In attributes demonstration test plans if the lot size gets much above 100 the calculations required to generate a demonstration test plan become very time consuming. The Poisson distribution can be used as an approximation of both the hypergeometric and the binomial distributions if the lot size is large and if the fraction defective in the lot is small. This method can therefore be used in lieu of the previous two methods in many cases.

2. Conditions for Use

If the lot size is large and the fraction defective is small, this method is applicable. Its use is initiated by specifying a desired producer's risk, consumer's risk, acceptable lot fraction defective and unacceptable lot fraction defective. As before, it is also necessary to specify the characteristics that constitute a defective part since this is an attributes type test.

3. Method

いたのいとは自然ですではないは国際であるのののの主義にあるののののは、国際のののののの意思

Example

- a. Define criterion for success/failure.
- a. A part that lasts 100 or more hours on a given life test is considered a success. Parts failing before 100 hours are considered failures.

THE PROPERTY OF THE PROPERTY O

Example

- b. Define acceptable lot quality level (1-p₀).
- b. Lots in which 1-p₀ = .9
 (the life of 90% of the parts in
 the lot will exceed 100 hours) are
 to be accepted by this
 demonstration test plan with high
 probability.
- c. Specify the producer's risk (α) (i.e., the probability that acceptable lots will be rejected).
 - c. Select $\alpha = .05$.
- d. Define unacceptable lot quality level (1-p₁).
- d. Lots with only a true fraction of acceptable parts 1-p₁ = .75 are to be accepted by this demonstration test plan with low probability.
- e. Specify the Consumer's risk β (i.e. the probability that lots of unacceptable quality level will be accepted by this plan).
- e. Select β = .02.
- f. Now that α, β, 1-p₀, and 1-p₁ have been specified, the accept/reject criteria are determined by the following formulas:
- f. Given: lot size N=1000 1-p₀ = .90 1-p₁ = .75 α = .05 β = .02

$$1 - \alpha = \sum_{k=0}^{c} \frac{(np_0)^k \exp(-np_0)}{k!}$$

$$\beta = \sum_{x=0}^{c} \frac{(np_1)^x exp(-np_1)}{x!}$$

- g. The solution now consists g. of trying various values of n in the above formulas until they are approximately satisfied.
- Assume n = (sample size) = 100.

Then,

 $np_0 = 100 (.10) = 10$

 $np_1 = 100 (.25) = 25.$

Using a digital computer to

Example

compute the formulas in (f) above leads to c=15, and

 $\alpha = .049$ $\beta = .022$

The decision criterion is now specified as c=15 or less failures.

h. The demonstration is then fully specified.

The demonstration test procedure is as follows:

- 1) Take a random sample of 100 parts from the lot of size 1000 and test each part for 100 hours.
- 2) If 15 or less fail to survive 100 hours, accept the lot. If more than 15 parts fail to survive 100 hours, reject the lot.
- 4. For additional examples using this method, refer to E.B. Grant, Statistical Quality Control, McGraw Hill, 1964.

6.2.4 Attributes Sampling Using MIL-STD-105D

1. When to Use

When the accept/reject criteria for a part is based on attributes decisions MIL-STD-105D is a useful tool. These sampling plans are keyed to fixed AQL's (Acceptable Quality Level) and are expressed in lot size, sample size, AQL and acceptance number. Plans are available for single sampling, double sampling and multiple sampling. The decision as to which type to use is based on a trade-off between the average amount of inspection, the administrative cost and the information yielded regarding lot quality. For example, single sampling usually results in the greatest amount of inspection, but this can be offset by the fact that it requires less training of personnel, and record keeping is simpler, and it gives a greater amount of information regarding the lot being sampled. The main difference between MIL-STD-105D plans and the previous plans is that the unacceptable quality level need not be specified.

2. Conditions for Use:

The user of a MIL-STD-105D sampling plan must have items a and b below. MIL-STD-105D will determine items c, d, and e below, for a given type of sampling type (i.e. single, double, multiple, etc.):

- a. Lot Size
- b. Acceptable Quality Level
- c. Sample Size

d. Acceptance Number

e. Criteria for Acceptance or Rejection.

The specification of the AQL is an engineering decision based on the fraction defective that a user of parts considers acceptable. Lots with this percent defective will be accepted a high fraction of the time. Operating characteristic curves are supplied with each sampling plan and these can be used to evaluate the protection afforded by the plan for various quality levels.

MIL-STD-105D also contains plans for normal, tightened and reduced inspection plans which can be invoked if the fraction defective of lots seems to be varying or trending.

3. Method

のでは、「「「大きなないない」というできない。 「ないかん ないない アンドン 「「「「ないかいないない」」ということとなって、「「「ないないない」」というできない。

- Determine lot size and specify AQL and type of sampling.
- b. Enter the table with lot size and select the sample size code letter.

- c. Enter the single sampling plan table for normal inspection with the code number from Step b.
- d. Enter the same table in the proper column for the specified AQL.

Example

- a. Given a lot containing 100 parts and an AQL is specified at 6.5% with single sampling specified.
- b. From Table I (Sample Size Code Letters) on page 9, MIL-STD-105D, find the sample size code letter for a lot of size 100. For this example and for normal sampling, the specified code number is F (General inspection level II is the default).
- c. Enter Table II-A (Single Sampling Plans for Normal Inspection) page 10 with code letter F. Under the column titled Sample Size, find the number 20 in the same row as the letter F. This is the number of parts to be randomly selected and inspected.
- d. Find the column in Table II-A page 10 corresponding to an AQL of 6.5%.

- e. Proceed horizontally along the Sample Size Code Number row until it intersects with the AQL column to obtain the acceptance number.
- f. The Single Sampling Plan from MIL-STD-105D is to select a random sample of size n from a lot of size N, inspect it and accept the lot if the number of defectives in the lot is equal to or less than the Acceptance Number. If the observed number of defects is equal to or greater than the rejection number, the lot is rejected.

Example

- e. At the intersection of row F and column 6.5%, the acceptance number is 3 and the rejection number is 4.
- f. For the single sampling plan N = 100, AQL = 6.5%, select a random sample of size n = 20 and inspect it for attributes criteria. If 3 or less
- f. defectives are found in the sample accept the lot. If 4 or more defectives are found in the sample reject the lot.

4. For Further Information

In addition to the example discussed above, MIL-STD-105D contains other plans for any lot size and for selected AQL's from .01 to 1000% (AQL's over 10% are defects per hundred units, rather than percent of defective units). MIL-STD-105D also presents operating characteristic curves for each sampling plan.

6.2.5 Sequential Binomial Test Plans

1. When to Use

When the accept/reject criterion for the parts on test is based on attributes, and when the exact test time available and sample size to be used are not known or specified then this type of test plan is useful. The test procedure consists of testing parts one at a time and classifying the tested parts as good or defective. After each part is tested, calculations are made based on the test data generated to that point and the decision is made either that the test has been passed, failed, or that another observation should be made. A sequential test will result in a shorter average number of parts tested than either failure truncated or time truncated tests when the lot tested has a fraction defective at or close to p_0 or p_1 .

2. Conditions for Use

a. The parts subjected to test will be classified as either good or defective. In other words, testing will be by attributes.

- b. The acceptable fraction defective in the lot po, the unacceptable fraction defective p1, the producer's risk a, and consumer's risk B must be specified.
- c. The test procedure will be to test one part at a time. After the part fails or its test time is sufficient to classify it as a success, the decision to accept, reject or continue testing the lot will be made.
- d. The part lot size must be large (greater than 100).

3. Method

a. Specify p_0 , p_1 , α ,

- b. Calculate decision points with the following formula $\frac{1-\beta}{\alpha}$ and $\frac{\beta}{1-\alpha}$
- c. As each part is tested, classify it as a failure or a success and evaluate the expression:

$$(p_1/p_0)^f((1-p_1)/(1-p_0))^s$$

where f = total number of failures s = total number of

If at some point, this expression exceeds $(1-\beta)/$ a reject the lot. If at some point, this expression is less than $\beta/(1-\alpha)$ accept the lot. Continue

Example

- Given a lot of parts to be tested by attributes. Lots having only $p_0 = .04$ fraction defective parts are to be accepted by the demonstration test plan 95% of the time (i.e., $\alpha = .05$). Lots having $p_1 = .05$.10 fraction defective are to be accepted 10% of the time (i.e., $\beta = .10$).
- The decision points are:

$$\frac{1-\beta}{\alpha} = \frac{1-.10}{.05} = 18$$

$$\frac{\beta}{1-\alpha} = \frac{.10}{1-.05} = .105$$

- c. In this example, if (.10/.04)! (.90/.96)* is:

 - 1) > 18, reject the lot.
 2) < .105, accept the lot;
 - 3) between .105 and 18, the test is continued.

3. Method

- c. sampling as long as neither of these conditions arises.
- d. The operating characteristic curve (1.e. the probability of acceptance as
 a function true fraction
 defective) can be roughly
 sketched from the following points:

<u>P</u>	Probability of Acceptance
0	1
Po	1 - a
P_1	β
1	0
P'	Pa

where:

$$p' = \frac{\ln((1-p_1)/(1-p_0))}{\ln((1-p_1)/(1-p_0)) - \ln(p_1/p_0)}$$

$$P_{a} = \frac{\ln((1-\beta)/\alpha)}{\ln((1-\beta)/\alpha) - \ln(\beta/(1-\alpha))}$$

6.3 Variables Demonstration Tests

6.3.1 Introduction. Reliability demonstration tests conducted in industrial applications are virtually always constrained by time. It is almost never the case that a demonstration test is carried out by placing n items on test, and waiting until all (in the complete sample case) or r < n (in the failure censored case) items have failed and recording their respective lifetimes. In practice, such sampling schemes are not used because the time necessary to complete the test is random, making it impossible for management to allocate the correct amount of time and resources to conduct the test. Instead, a time truncated test is appropriate (and often easier to administer) because an upper bound on the time to complete the test is known in advance of testing. Such tests were developed in MIL-STD-781C for the exponential distribution, and have been used almost exclusively in industry for electronic equipment.

Example

d. The five points on the OC curve are as follows:

P	Prob. of Accept
0.00	1.00
.04	.95
.10	.10
1.00	0.00
.063	.56

The last point above is calculated as follows:

Another aspect of sampling for rellability demonstration tests is replacement versus nonreplacement tests. That is, if n items are placed on life test initially, should failed items be replaced (or repaired to new working order) or not. Just as in the failure truncated case discussed above, the replacement life test presents a problem with respect to planning, since the ultimate number of items needed to complete the test is random and thus impossible to plan exactly in advance. Moreover, except in the exponential case, replacement tests are mathematically extremely difficult to levelop in the time truncated case. Replacement tests are appropriate, however, when the item under test is a complete system, and "replacement" signifies "repair/restore to new working condition." Indeed, the MIL-STD-781C time truncated tests are replacement tests. Whenever the item to be tested is a complete, complex system in which the predominant failure modes are due to electronic (or other constant failure rate) equipments, then the MIL-STD-78IC time truncated tests can be used. However, if the system is primarily composed of nonelectronic parts having increasing failure rates and the predominant failure modes are associated with these parts, then a replacement (by repair to new working order) test is out of the question, since in order to restore the system to new working order at each failure, each wear-out related part would have to be replaced with a new part whether failed or not.

In summary, when the exponential distribution is assumed, the time truncated tests presented in MIL-STD-781C are recommended in the replacement case. In the nonreplacement case, MIL-HDBK-108 (H 108) contains time truncated test plans for the exponential case. In view of the applicability of the exponential distribution to most nonelectronic parts in section 2 of this notebook, these documents should be adequate most of the time. When the exponential distribution is not justified, then a time truncated, nonreplacement demonstration test is recommended. Although they possess interesting statistical properties and are mathematically tractable, failure truncated demonstration tests (which include the complete sample case) are not desirable when time must be limited, and are not recommended here. For information concerning statistical inference for various life distributions under failure truncated sampling, refer to section 3 of this notebook, MIL-HDBK-108, or to Mann, et.al. (1974) or to Lawless (1982).

6.3.2 Time Truncated Demonstration Test Plans

6.3.2.1 Nonparametric Reliability Demonstration Test

1. When to use

This type of test is applicable to any situation in which reliability (i.e. probability of survival for a preselected time period), median life, or any quantile of the underlying life distribution is specified. This test procedure is valid no matter what form the underlying life distribution assumes (i.e. exponential, Weibull, Gamma, Lognormal, etc.) as long as it is of the continuous type.

2. Conditions for use

The user of this type of test plan must specify (or select from the table of test plans) the producer's risk (α) , the consumer's risk

(p), the acceptable reliability (R_0), the unacceptable reliability (R_1), and the time (T) corresponding to the reliability values (i.e. R_0 is the acceptable probability of surviving the time T, while R_1 is the unacceptable probability of surviving the time T).

The test entails placing a predetermined fixed number of parts or equipments on test for T units of time, and recording the number items that fail before time T. Failed items are not replaced. The demonstration test is passed (i.e. items are judged to have the acceptable reliability R₀) if c or less items fail before time T, and the demonstration test is failed if c+1 or more items fail before time T. The value of c is predetermined by the user's specifications.

3. Method

a. Specify R₀, R₁, T, α, p or select them from the table of test plans, table 6.3.2.1.

b. Determine sample size n, and pass/fail number c as follows:

> Choose the smallest c and the smallest n which satisfy the

inequalities:

$$1 - \alpha \le \sum_{k=0}^{c} {n \choose k} (1-R_0)^k R_0^{n-k}$$

$$\beta \geq \sum_{k=0}^{c} {n \choose k} (1-R_1)^k R_1^{n-k}$$

This value of n is the sample size, and c is the decision criterion; that

Example

a. An axial blower must survive T=100 hours of continuous use with high probability. The acceptable reliability is

$$R_0 = .95$$

and unacceptable reliability is

$$R_1 = .85.$$

A producer's risk of no more than .10 and a consumer's risk of no more than .10 are acceptable.

9A is appropriate. The sample size is n=60, and the test is passed if 5 or less failures occur before time T, and the test is failed if 6 or more failures occur before time T.

3. Method

が必要では、100mmで

b. is, the test is passed for c or less failures before time T, and the test is failed if c+l or more failures occur before time T.

Alternatively, table 6.3.2.1 can be used to identify n and c.

- c. Because the binomial distribution is discrete. the planned risks cannot be achieved exactly. The exact producer's and consumer's risks are given by one minus the first summation in b above, and the second summation in b above, respectively. Alternatively, if table 6.3.2.1 is used, the exact producer's and consumer's risks are given there. The test plans 1A-13A are based on planned values of .10 for both risks, and the test plans 1B-13B are based on planned values of .20 for both risks.
- d. Once a test plan is defined, it is often necessary to know what the probability of passing the test is as a function of true reliability, that is, the operating characteristic curve is needed. This curve gives the probability of passing the test (i.e. the probability of accepting the parts or equipments) for the entire range of possible values of the reliability,

Example

c. From table 6.3.2.1, test plan 9A, the exact risks are:

a = .079 b = .097

d. Figure 6.3.2.9A is the operating characteristic curve for test plan 9A. As expected, when true reliability is RO = .95, the probability of acceptance is 1-.079=.921, and when true reliability is R1=.85, the probability of acceptance is .097. If, for example, true reliability is .90, then the probability of acceptance is about .45.

3. Method

置きためるのとは重要を入っている。 通りのではないのでは、では、これでは、これでは、これでは、10mmでは、

Example

- d. not just at R₀ and R₁. The operating characteristic curve is defined by:
 - P {acceptance | reliability=R}

$$= \sum_{k=0}^{c} {n \choose k} (1-R)^{k} R^{n-k}$$

Figures 6.3.2.1A-6.3.2.13A and 6.3.2.1B-6.3.2.13B are the operating characteristic curves for test plans 1A-13A and 1B-13B, respectively.

TABLE 6.3.2.1. NONPARAMETRIC RELIABILITY DEMONSTRATION TEST PLANS

The planned producer's and consumer's risks are .10 for test plans 1A-13A, and .20 for test plans 1B-13B.

						ACCEPT	REJECT
Plan	alpha	beta	RO	R1	ח	equal or less	equal or more
• •	205						0.3
1A	.095	.096	.50	.40	168	92	93
2 A	.091	.099	.80	.70	127	31	32
3A	.087	.099	.85	.75	109	21	22
4 A	.086	.099	.90	.80	86	12	13
5A	.096	.094	.91	.81	79	10	11
6 A	.087	.093	.92	.82	77	9	10
7 A	.095	.098	.93	.83	67	7	8
8 A	.088	.096	.94	. 5,4	64	6	7
9 A	.079	.097	.95	.85	60	5	6
10A	.073	.092	.96	.86	56	4	5
11A	.063	.096	.97	.87	50	3	4
12A	.055	.097	.98	.88	43	2	3
13A	.045	.099	.99	.89	34	1	2
18	.181	. 194	.50	.40	77	42	43
2 B	.197	.190	.80	.70	55	13	14
3 E	.191	. 183	.85	.75	49	9	10
4 B	.190	.180	.90	.80	39	5	6
5 E	.187	. 199	.91	.81	34	4	5
6 B	.157	.199	.92	.82	36	4	5
7 :	.183	.183	.93	.83	32	3 3	4
81	.145	.184	.94	.84	34	3	4
91	. 163	. 187	.95	.85	28	2 2	3
	.117	.189	.96	.86	30		3
111		.180	.97	.87	23	1	3 3 2 2 1
12 E	.083	.199	.98	.88	24	1	2
131	B .131	.196	.99	.89	14	0	1

いたというない。これであるというとは、これできないないできない。

Figure 6.3.2.1A. Operating Characteristic Curve for Test Plan 1A

Figure 6.3.2.2A. Operating Characteristic Curve for Test Plan 2A

Figure 6.3.2.3A. Operating Characteristic Curve for Test Plan 3A

Figure 6.3.2.4A. Operating Characteristic Curve for Test Plan 4A

Figure 6.3.2.5A. Operating Characteristic Curve for Test Plan 5A

Figure 6.3.2.6A. Operating Characteristic Curve for Test Plan 6A

Figure 6.3.2.7A. Operating Characteristic Curve for Test Plan 7A

Figure 6.3.2.8A. Operating Characteristic Curve for Test Plan 8A

Figure 6.3.2.9A. Operating Characteristic Curve for Test Plan 9A

Figure 6.3.2.10A. Operating Characteristic Curve for Test Plan 10A

Figure 6.3.2.11A. Operating Characteristics Curve for Test Plan 11A

Figure 6.3.2.12A. Operating Characteristic Curve for Test Plan 12A

Figure 6.3.2.13A. Operating Characteristic Curve for Test Plan 13A

Figure 6.3.2.1B. Operating Characteristic Curve for Test Plan 1B

Figure 6.3.2.3B. Operating Characteristic Curve for Test Plan 3B

Figure 6.3.2.4B. Operating Characteristic Curve for Test Plan 4B

Figure 6.3.2.5B. Operating Characteristic Curve for Test Plan 5B

Figure 6.3.2.6B. Operating Characteristic Curve for Test Plan 6B

こう・1 書からららららら過ぎなシンクシン

Figure 6.3.2.7B. Operating Characteristic Curve for Test Plan 7B

Figure 6.3.2.8B. Operating Characteristic Curve for Test Plan 8B

Figure 6.3.2.9B. Operating Characteristic Curve for Test Plan 9B

Figure 6.3.2.10B. Operating Characteristic Curve for Test Plan 10B

Figure 6.3.2.11B. Operating Characteristic Curve for Test Plan 11B

Figure 6.3.2.12B. Operating Characteristic Curve for Test Plan 12B

Figure 6.3.2.13B. Operating Characteristic Curve for Test Plan 13B

APPENDIX I REFERENCES AND BIBLIOGRAPHY

APPENDIX I REFERENCES AND BIBLIOGRAPHY

ASCE (1982). Fatigue reliability: Introduction. ASCE, Vol. 108, No. ST1, June 1982, pp. 3-23.

ASME (1965). Mechanical reliability concepts. ASME design engineering conference, New York.

Abramowitz, M. and Stegun, I. A. Eds. (1965). Handbook of Mathematical Functions. New York: Dover.

Ang, A.H.S. (1970). Extended reliability basis of structural design under uncertainties. 1970 Annals of reliability and maintainability conference. New York: IEEE., pp. 642-649.

Atchison, J., and Brown, J.A.C. (1963). The lognormal distribution. Cambridge University Press, New York.

Austin, W. H. (1967). Development of improved gust load criteria for USAF aircraft. 1967 Annals of Reliability and Maintainability Conference, New York: IEEE, pp. 68-74.

Bain, L. J. (1972). Inference based on censored sampling from the Weibull or extreme value distribution. Technometrics, 14, 693-702.

Bain, L. J. (1978). Statistical Analysis of Reliability and Life-Testing Models. New York: Dekker.

Barlow, R. E. and Proschan, F. (1964). Mathematical Theory of Reliability. New York: Wiley.

Bartholomew, D. J. (1963). The sampling distribution of an estimate arising in life testing. Technometrics, 5, 361-374.

Bazovsky, I. (1971). Reliability of rifles, machine guns and other small arms. Proceedings Annual Symposium on Reliability, IEEE, New York, pp. 71-73.

Bell, R., and Mioduski, R. (1976). Extension of life of U.S. Army trucks. 1976 Annual Reliability and Maintainability Symposium, IEEE, New York, pp. 200-205.

Bennet, S. B., Ross, A. L., and Zemanick, P. Z., editors (1977). Failure prevention and reliability. Society of Mechanical Engineers, New York.

Bhattacharyya, G. K., and Johnson, R. A. (1975). Stress-strength models for system reliability, reliability and fault tree analysis. Philadelphia: SIAM, pp. 509-532.

Billet, R. B. (1964). Reliability of hydraulic controls in space vehicles. National Symposium on Reliability, IEEE, New York, pp. 69-84.

Billman, B. Antle, C. and Bain, L. J. (1972). Statistical Inferences from censored Weibull sample. Technometrics, 14, 831-840.

Birnbaum, Z. W., and Saunders, S. C. (May 1968). A probabilistic interpretation of Miner's rule. SIAM Journal on Applied Mathematics, Vol. 16, No.3, pp. 637-652.

Birnbaum, Z. W., and Saunders, S. C. (October 1969). A new family of life distributions. J. Appl. Probl., pp. 319-327.

Bompass-Smith, J. H. (1969). The determination of distributions that describe the failures of mechanical components. Annals of Reliability and Maintainability Conference, IEEE, New York, pp. 343-356.

Bompass-Smith, J. H. (1973). Mechanical Survival: The Use of Reliability Data. London: McGraw-Hill.

SAME TO THE PROPERTY OF THE PR

Bratt, M. J., Truscott, H. A. and Weber, G. W. (1968). Probabilistic strength mapping reliability vs life prediction tool. 1968 Annals of Reliability and Maintainability Conference, IEEE, New York, pp. 501-510.

Bratt, M. J., Reethoff, G., and Weber, G. W. (1969). A model for time varying and interfering stress/strength probability density distributions with consideration for failure incidence and property degradation. Proceedings 3rd Annual Aerospace Reliability and Maintainability Conference, IEEE, New York, 566-575.

Brewer, J. W. (1971). Interim scale reliability statements consistent with conventional materials strength criteria. 1971 Annals of Reliability and Maintainability Conference, IEEE, New York, pp. 63-71.

Buckland, W. R. (1964). Statistical Assessment of the Life Characteristics. London: Griffin.

Burns, J. J. (1975). Reliability of nuclear mechanical systems. Annual Reliability and Maintainability Symposium, IEEE, New York, pp. 163-169.

Carter, A.D.S. (1972): Mechanical Reliability. London: Wiley.

Chester, L. B., Nolf, C. F., and Kececioglu, D. (1975). Combined bending-torsion fatigue reliability - III. 1975 Annual Reliability and Maintainability Symposium, IEEE, New York, pp. 511-518.

Cohen, A. C. (1965). Maximum likelihood estimation in the Weibull distribution. Technometrics, 17, 347-351.

Collins, J. A., Hagan, G. T., and Bratt, H. M. (1975). Helicopter failure modes and corrective actions. 1975 Annual Reliability and Maintainability Symposium, IEEE, New York, pp. 504-510.

Crow, L. H. (1974). Reliability Analysis for complex, repairable systems. In Reliability and Biometry, F. Proschan and R. J. Serfling, Eds. Philadelphia: SIAM.

D'Agostino, R. B. and Stephens, M., Eds. (1984). Goodness-of-Fit Techniques. New York: Dekker.

Davidson, J. R. (1973). Reliability after inspection. Proceedings of the ASTM Symposium on the Fatigue of Composite Materials, Bal Harbor, Florida.

Davis, D. J. (1952). An analysis of some failure data. J. Amer. Stat. Assoc., pp. 113-150.

Dehardt, J. H., and McLaughlin, H. D. (1966). Using Bayesian Methods to Select a Design with Knoron Reliability Without a Confidence Coefficient. 1966 Annals of Reliability and Maintainability Conference. New York: IEEE, pp. 611-617.

Dennis, N. G. (1977). PMR, NDE, design practices; present and future. 1977 Annual Reliability and Maintainability Symposium. New York: IEEE, pp. 164-170.

Dhillon, B. S., and Singh, C. (1981). Engineering Reliability - New Techniques and Applications. John Wiley.

Dhillon, B. S. (1980). Mechanical reliability: Interference theory models. Proceedings Annual Reliability and Maintainability Symposium, pp. 462-467.

Dhillon, B. S. (1981). Interference theory application to mechanical systems. Proceedings Annual Reliability and Maintainability Symposium, pp. 24-27.

Dillin, A. L. (1971). Reliability assessment of army weapons and weapon systems. Proceedings of the Annual Symposium on Reliability, IEEE, New York, pp. 74-76.

Disney, R. L., and Sheth, N. J. (1968). The determination of the probability of failure by stress/strength interference theory. 1968 Annual Symposium on Reliability, IEEE, New York, pp. 417-422.

Disney, R. L., Lipson, C., and Sheth, N. J. (January 1968). The determination of the probability of failure by stress/strength interference theory. Proceedings of the Symposium on Reliability, pp. 417-422.

Dixon, W. J. and Brown, M. B. (1977). BMDP-77: Biomedical Computer Programs P Series. Berkeley: University of California Press.

Dumonceau, R., and Antle, C. E. (November 1973). "Discrimination between the log normal and Weibull distributions." Technometrics, Vol. 15, No. 4, pp. 923-926.

Engelhardt, M. (1975). On simple estimation of parameters of the Weibull or extreme value distribution. Technometrics, 17, 369-374.

Engelhardt, M. and Bain, L. J. (1973). Some complete and censored sampling results for the Weibull or extreme value distribution. Technometrics, 15, 542-549.

Engelhardt, M. and Bain, L. J. (1974). Some results on point estimation for the two-parameter Weibull or extreme value distribution. Technometrics, 17, 353-356.

Engelhardt, M. and Bain, L. J. (1977). Simplified statistical procedures for the Weibull or extreme value distribution. Technometrics, 19, 323-331.

Epstein, B. and Sobel, M. (1953). Life Testing. Journal of the American Statistical Association, Vol. 48.

Feller, W. (1968). An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd ed. New York: Wiley.

Fiderer, L. (1976). Design for reliability in hostile environment. Microelectronics and Reliability, Vol. 15 Supplement, pp. 75-85.

Fisher, G. K. (June 1981). Advanced power transmission technology. NASA Conf. Pub. 2210, AVRADCOM TR-82-C-16.

Fisher, R. A. and Tippett, L. M. C. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. Cambridge Phil. Soc., 24, 180-190.

Flint, S. J., and Steinkirchner, J. J. (1982). Reliability models - practical constraints. NATO ASI Electronic Systems Effectiveness and Life Cycle Costing Conference. New York: Springer Verlag.

Forrestor, E. R., and Thevenow, V. H. (1968). Designing for expected fatigue life. 1968 Annals of Reliability and Maintainability, IEEE, New York, pp. 511-519.

Furth, J. A., Upton, C. and Kimball, A. W. (1959). Late pathologic effects of atomic detonation and their pathogenesis. Radia. Res. Suppl. 1, 243-264.

Ghane, P. M. (1970). Quality and safety factors in reliability. 1970 Annals of Reliability and Maintainability, IEEE, New York, pp. 637-641.

Gnedenko, B. V. (1943). Sur la distribution limite du terme maximum d'une series aleatoire. Ann. Math., 44, 423-453.

Grow, A. J., and Clark, V. A., Survival Distribution: Reliability Applications in the Biomedical Sciences. Wiley, New York, 1975.

Grubbs, F. E. (1971). Fiducial bounds on reliability for the two-parameter negative exponential distribution. Technometrics, 13, 873-876.

Gumbel, E. J. (1958). Statistics of Extremes. Columbia University Press, New York.

Gupta, S., and Groll, P. (December 1961). Gamma distribution in acceptance sampling based on life tests. J. Amer. Stat. Assoc., IEEE, New York, pp. 942-970.

- Hahn, G. J., Nelson, W. B. and Cillay, C. (1975). STATSYSTEM A user-oriented interactive system for statistical data analysis in 1975 Statistical Computing Section Proceedings of the American Statistical Association, Washington, D. C.: American Statistical Association.
- Hald, A. (1952). Statistical Theory with Engineering Applications. New York: Wiley.
- Hassanein, K. M. (1972). Simultaneous estimation of the parameters of the extreme value distribution by sample quantiles. Technometrics, 17, 63-70.
- Haugen, E. G. (1964). Statistical methods for structural reliability analysis. National Symposium on Reliability, IEEE, New York, pp. 97-121.
- Havilan, R. P. (1964). Engineering reliability and longlife design. Princeton: Van Nostrand.
- Heller, R. A., and Heller, H. S. (1973). Analysis of early failures in unequal. 1973 Annual Reliability and Maintainability Symposium, IEEE, New York, pp. 198-200.
- Heller, R. A., and Shinozuka, M. (1970). State-of-the-Art: Reliability techniques in materials and structures. 1970 Annals of Reliability and Maintainability Conference, IEEE, New York, pp. 635-636.
- Ingram, G. E., Herrmann, C. R., and Welker, E. L. (1968). Designing for reliability based on probabilistic modeling using remote access computer system. 1968 Annals of Reliability and Maintainability Conference, IREE, New York, pp. 492-500.
- Ingram, G. E., Haugen, E. B., Dicks, C., and Wilson, S. (1965). Panel discussion structural reliability. National Symposium on Reliability, IEEE, New York, pp. 154-169.
- Inoue, K., Daito, H. (1977). Safety analysis of automobile brake systems by fault tree methods. Proceedings HOPE International JSME Symposium, Japan Society of Mechanical Engineers, Tokyo, pp. 213-220.
- Japan Society of Mechanical Engineers (1979). Proceedings of the HOPE international symposium.
- Johnson, C. W., and Maxwell, R. E. (1976). "Reliability analysis of structures a new approach. 1976 Annual Reliability and Maintainability Symposium, IEEE, New York, pp. 213-217.
- Johnson, W. S., Heller, R. A., and Yang, J. N. (1977). Flight inspection data and crack initiation times. 1977 Annual Reliability and Maintainability Symposium, IEEE, New York, pp. 148-154.

のでは、10mmのでは、

Johnson, N. L. and Kotz, S. (1970). Continuous Univariate Distributions. Vols. 1 and 2. Boston, Massachusetts: Houghton Mifflin.

Jones, L. G., and Thompson, D. (1971). Essential elements of analysis from army test and field data. Proceedings Annual Symposium on Reliability, IEEE, New York, pp. 85-90.

Kalivoda, F. E., and Yun, K. W. (1976). Modeling mechanical system accelerated life tests. 1976 Annual Reliability and Maintainability Symposium, IEEE, New York, 206-212.

Kao, J.H.K. (1958). Computer methods for estimating Weibull parameters in reliability studies. IRE Transactions on Reliability and Quality Control.

Kao, J.H.K. (1960). A summary of some new techniques for failure analysis. Proceedings Sixth National Symposium on Reliability, IEEE, New York, p. 191.

Kao, J.H.K. (1959). A graphical estimation of mixed Weibull parameters in life-testing of electron tubes. Technometrics 1, pp. 389-407.

Kao, J.H.K. (1965). Statistical models in mechanical reliability. National Symposium on Reliability, IEEE, New York, pp. 240-247.

Kapur, K. C., and Lamberson, L. R. (1977). Reliability in Engineering Design. New York: John Wiley.

Karnopp, D. (1971). Structural reliability predictions using finite element programs. 1971 Annals of Reliability and Maintainability Conference, IEEE, New York, pp. 72-80.

Kececioglu, D., McKinley, J. W., and Saroni, M. (Jan. 1967). A probabilistic method of designing a specified reliability into mechanical components with time dependent stress and strength distributions. The University of Arizona, Tucson, Arizona, (NASA report under contract NGR 03-002-044).

Kececioglu, D., and Cormier, D. (1964). Designing a specified reliability directly into a component. Proceedings 3rd Annual Conference on Aerospace Reliability and Maintainability. Washington DC, IEEE, New York, pp. 546-565.

Kececioglu, D. (1968). Why design by reliability? 1968 Annals of Reliability and Maintainability Conference, IEEE, New York, p. 491.

Kececioglu, D. (1972). Reliability analysis of mechanical components and systems. Nucl. Eng. Design, pp. 259-290.

Kececioglu, D. (1974). Fundamentals of mechanical reliability theory and applications to vibroacoustic failures. Proceedings of Reliability Design for Vibroacoustic Environments. ASME, New York, pp. 1-38.

Kececioglu, D. (1977). Probabilistic design methods for reliability and their data and research requirements. Failure Prevention and Reliability Conference Proceedings, ASME, New York.

Kececioglu, D., Chester, L. B. and Dodge, T. M. (1974). Alternating bending - steady torque fatigue reliability. Annual Reliability and Maintainability Symposium, IEEE, New York, pp. 153-173.

Kececioglu, D., and Koharcheck, A. (1977). Wear reliability of aircraft splines. 1977 Annual Reliability and Maintainability Symposium, IEEE, New York, pp. 155-163.

Kececioglu, D., and Haugen, E. B. (1968). A unified look at design safety factors, safety margins and measures of reliability. 1968 Annals of Reliability and Maintainability Conference, IEEE, New York, pp. 520-530.

Kececioglu, D. B., Smith, R. E. and Felsted, E. A. (1970). Distribution of strength in simple fatigue and the associated reliabilities. Annals of reliability and maintainability conference, IEEE, New York, pp. 659-672.

Kendall, M.G. (1938). A new measure of rank correlation. Biometrika, Vol. 30.

King, J. R. (1971). Probability Charts for Decision Making. New York: Industrial Press.

Kirkpatrick, I. (1960). Predicting reliability of electromechanical devices. Sixth National Symposium on Reliability and Quality Control, IEEE, New York, pp. 272-281.

Konno, K., K. Nakano, and Yoshimura, Y. (1975). A new accelerated fatigue test. The effective random peak method. Annual Reliability and Maintainability Symnposium, IEEE, New York, pp. 263-268.

Kullman, L. W., and Phillips, G. W. (1964). Reliability engineering disciplines applied to commercial weapon systems - guns and ammunition. National Symposium on Reliability, IEEE, New York, pp. 122-137.

Kurtz, P. H. (1975). A strength-stress interference model for time-varying probability of failure and its application to an electromechanical system. Naval Sea Systems Command, TM-75-122, AD A016299, NTIS.

Kurtz, P. H. (1971). Reliability study of a hydraulic control system using the hybrid computer. Annals of Reliability and Maintainability Conference, IEEE, New York, pp. 81-85.

Lambert, R. G. (1978). Mechanical reliability for low cycle fatigue. 1978 Annual Reliability and Maintainability Symposium, IEEE, New York, pp. 179-183.

Lawless, J. F. (1982). Statistical Models and Methods for Lifetime Data. New York: Wiley.

Lemaitre, J., and Plumtree, A. (July 1979). Application of damage concepts to predict creep-fatigue failures. Journal of Engineering Materials and Technology, Vol. 101, ASME, pp. 284-292.

Lemon, G. H., and Manning, S. D. (October 1974). Literature survey on structural reliability. IEEE Trans. Reliab. R-23.

Lieblein, J., and Zelen, M. (1956). Statistical investigation of the fatigue life of deep-groove ball bearings. J. Res. Nat. Bur. Stand., 5 (Res. Paper 2719), pp. 273-316.

- Lieblein, L. and Zelen, M. (1956). Statistical investigation of the fatigue life of deep groove ball bearings. J. Res. Nat. Bur. Stand., 57, 273-316.
- Liebowitz, H. (1967). Navy reliability research. 1967 Annals of Reliability and Maintainability Conference, IEEE, New York, pp. 33-53.
- Linhart, H. (1965). Approximate confidence limits for the coefficient of variation of gamma distributions. Biometrics, 21, 733-738.
- Lipson, C., and Sheth, N. J. (1973). Statistical Design and Analysis of Engineering Experiment. McGraw-Hill, pp. 311-343.
- Lipson, C., Sheth, N. J., and Disney R. L. (March 1977). Reliability prediction mechanical stress/strength interference. RADC-TR-66-710.
- Lipson, C., Sheth, N. J., Disney, R. L., and Altun, M. (December 1968). Reliability prediction mechanical stress/strength interference (nonferrous). RADC-TR-68-403.
- Lloyd, G. J., and Wareing, J. (August 1981). Life-prediction methods for combined creep-fatigue endurance. Metals Technology, pp. 297-305.
- Lloyds, D., and Lipow, M. (1961). Reliability: Management, Methods and Mathematics. Englewood Cliffs, NJ: Prentice-Hall.
- Mann, H. (1945). Nonparametric tests against trend. Econometrica, Vol. 13.
- Mann, N. R., Shafer, R. E. and Singpurwalla, N. D. (1974). Methods for Statistical Analysis of Reliability and Life Data, Wiley, New York.
- Mann, N. R. (1967a). Results on location and scale parameter estimation with application to the extreme value distribution. Wright-Patterson Air Force Base, Ohio, ARL Technical Report ARL 67-0023.
- Mann, N. R. (1967b). Tables for obtaining the best linear invariant estimates of parameters of the Weibull distribution. Technometrics, 9, 629-645.
- Mann, N. R. (1968) Point and interval estimation procedures for the two-parameter Weibull and extreme value distributions. Technometrics, 10, 231-256.
- Mann, N. R. (1977). An F approximation for two parameter Weibull and log-normal tolerance bounds based on possibly censored data. Nav. Res. Log. Q. 24, 187-196.
- Mann, N. R. and Fertig, K. W. (1973). Tables for obtaining confidence bounds and tolerance bounds based on best linear invariant estimates of parameters of the extreme value distribution. Technometrics, 15, 87-101.
- Mann, N. R. and Fertig, K. W. (1975a). Simplified efficient point and interval estimators for Weibull parameters. Technometrics, 17, 237-245.

Mann, N. R. and Fertig, K. W. (1975b). A goodness-of-fit test for the two parameter vs. three-parameter Weibull: confidence bounds for the threshold. Technometrics, 17, 237-245.

Mann, N. R. and Fertig, K. W. (1977). Efficient unbiased quantile estimators for moderate-size complete samples from extreme value and Weibull distributions: confidence bounds and tolerance and prediction intervals. Technometrics, 19, 87-93.

Manning, S. D., and Lemon, G. H. (1974). Plan for developing structural criteria for composite airframes. 1974 Annual Reliability and Maintainability Symposium. IEEE, New York, pp. 155-162.

Marble, Q. G. (1965). Improving mechanical reliability of digital computers. National Symposium on Reliability and Quality Control, IEEE, New York, pp. 136-143.

Martin, P. (1976). Reliability in mechanical design and production. Proceedings Generic Techniques in Systems Reliability Assessment. Noordhoff-Leyden, Ameterdam, pp. 267-271.

Matney, V. D. (1974). Reliability, pollutants and aluminum raw. Annual Reliability and Maintainability Symposium, IEEE, New York, pp. 174-178.

Mesloh, R. (1966). Reliability design criteria for mechanical creep. 1966 Annals of Reliability and Maintainability Conference, IEEE, New York, pp. 590-597.

Moreno, F. J. (1973). Reliability estimate of a space deployable antenna. 1973 Annual Reliability and Maintainability Symposium, IEEE, New York, pp. 182-185.

Mukkayee, B. (January 1979). Residual fatigue life determination of anchor bolts. Journal of Engineering Materials and Technology, Vol. 101, ASME, pp. 47-52.

Naresky, J. J. (1966). Reliability and maintainability research in the USAF. Reliability and Maintainability Conference, IEEE, New York, pp. 769-787.

Nelson W. and Hahn, G. J. (1972). Linear estimation of a regression relationship from censored data. Part I - Simple methods and their applications. Technometrics, 14, pp. 247-269.

Nelson, W. (1982). Applied Life Data Analysis. New York: Wiley.

ことに、自己のですがなる。自己のこのことを置けていたいない。自己のなどのなどのない。

Nilsson, S. O. (1975). Reliability data on automotive components. Annual Reliability and Maintainability Symposium, IEEE, New York, pp. 276-279.

Niyogi, P. K. (1968). Application of statistical methods and information theory to structural reliability estimates. PhD Dissertation, Department of Civil Engineering, University of Pennsylvania, Philadelphia, PA.

Niyogi, P. K., Shah, H. C., Doshi, K. D., and Tang, W. (April 1969). Statistical evaluation of load factors for concrete bridge design. Chicago.

Odeh, R. E. and Owen, D. B. (1980). Tables for Normal Tolerance Limits, Sampling Plans, and Screening. New York: Dekker.

Persson, T. and Rootzen, T. (1977). Simple and highly efficient estimators for a Type-I censored normal sample. Biometrika, 64, 123-128.

Pettitt, A. N. (1976). Cramer-von Mises statistics for testing normality with censored samples. Biometrika, 63, 475-481.

Pettitt, A. N. (1977). Tests for the exponential distribution with censored data using Cramer-von Mises statistics. Biometrika, 64, 629-632.

Proschan, F (1963). Theoretical explanation of observed decreasing failure rate. Technometrics, 5, 541-554.

Quality assurance: Reliability handbook. (October 1968). Headquarters, U.S. Army Material Command, (AMCP 702-C, AD 702 936), NTIS, Springfield, VA.

Redler, W. M. (1966). Mechanical reliability research in the NASA, 1966 Annals of Reliability and Maintainability Conference, IEEE, New York, pp. 763-768.

Reethof, G. (1973). Session organizer's report. Annual Reliability and Maintainability Symposium, IEEE, New York, p. 181.

Reethof, G. (1971). State-of-the-art: Mechanical and structural reliability. 1971 Annals of Reliability and Maintainability Conference, IEEE, New York, p. 62.

Roberts, N. (1964). Mathematical Methods in Reliability Engineering. New York: McGraw-Hill.

Sarhan, A. E. and Greenberg, B. G. (1962). Contributions to Order Statistics. New York: Wiley.

Schatz, R., Shooman M. L., and Shaw, L. (January 1974). Application of time dependent stress-strength models of non-electrical and electrical systems. Proceedings of the Reliability and Maintainability Symposium, IEEE, New York, pp. 540-547.

Schupbach, M. and Husler, J. (1983). Simple estimators for the parameters of the extreme-value distribution based on censored data. Technometrics, 25, 189-192.

Shah, H. C. (1966). Use of maximum entropy in estimating the damage distribution of a single degree of freedom system subjected to random loading. 1966 Annals of Reliability and Maintainability Conference, IEEE, New York, pp. 598-604.

- Shah, H. C., and Tang, W. H. (1970). Statistical evaluation of load factors in structural design. 1970 Annals of Reliability and Maintainability Conference, IEEE, New York, pp. 650-658.
- Shaw, L., Shooman, M. and Schatz, R. (1973). Time-dependent stress-strength models for non-electrical and electronic systems. 1973 Annual Reliability and Maintainability Symposium, IEEE, New York, pp. 186-197.
- Shinozuka, M., and Hanai, M. (1967). Structural reliability of a simple rigid frame. 1967 Annals of Reliability and Maintainability Conference, IEEE, New York, pp. 63-67.
- Shinozuka, M., and Itagaki, H. (1966). On the reliability of redundant structures. 1966 Annals of Reliability and Maintainability Conference, IEEE, New York, pp. 605-610.
- Shooman, M. L. (1968). Probabilistic Reliability: An Engineering Approach. New York: McGraw-Hill.
- Singpurwalla, N. D. Statistical fatigue models: A survey, IEEE Trans. Reliab., R-20, 1971, pp. 185-189.
- Spoormaker, J. L. (1977). Reliability prediction of hairpin type springs. 1977 Annual Reliability and Maintainability Symposium. IEEE, New York, pp. 142-147.
- Spoormaker, J. L. (1975). Design of reliable plastic assemblies. 1975 Annual Reliability and Maintainability Symposium, IEEE, New York, pp. 498-503.
- Stephens, M. A. (1974). EDF statistics for goodness of fit and some comparisons. J. Amer. Statist. Assoc., 69, 730-737.
- Stephens, M. A. (1977). Goodness of fit for the extreme value distribution. Biometrika, 64, 583-588.
- Stiles, E. M. (1964). Reliability in mass-produced consumer products. National Symposium on Reliability, IEEE, New York, pp. 85-96.
- Tallian, T.E. (July 1982). A unified model for rolling contact life prediction. Journal of lubrication technology, Vol. 104, pp. 336-346.
- Taraman, S. I., and Kapur, K. C. (1975). Optimization considerations in design reliability by stress-strength interference theory. IEEE Trans. Reliability, 24, pp. 136-138.

- Thomas, J. M., Hanagnd, S. and Hawk, J. D. (1975). Decision theory in structural reliability. 1975 Annual Reliability and Maintainability Symposium, IEEE, New York, pp. 255-262.
- Thoman, D. R., Bain, L. J. and Antle, C. E. (1969). Inferences on the parameters of the Weibull distribution. Technometrics, 11, 445-460.

Thoman, D. R., Bain, L. J. and Antle, C. B. (1970). Reliability and tolerance limits in the Weibull distribution. Technometrics, 12, 363-371.

Tumolillo, T. A. (1974). Methods for calculating the reliability function for systems subjected to random stresses. IEEE Trans. Reliability, 23, pp. 256-262.

Weaver, L., and Scarlett, T. (1965). Reliability and failure distributions of inertial sensors. National Symposium on Reliability and Quality Control, IEEE, New York, p. 144-153.

Weibull, W. (1951). A statistical distribution function of wide applicability. J. Appl. Mech., 18, pp. 293-297.

MI TOURS AND SOURCE SUPPLIES OF THE PROPERTY O

Welker, D. R., and Buchanan, H. N. (1975). Safety-availability study methods applied to BART. 1975 Annual Reliability and Maintainability Symposium, IEEE, New York, pp. 269-275.

Whittemore, A., Altschuler, B. (1976). Lung cancer incidence in cigarette smokers: further analysis of Doll and Hill's data for British physicians. Biometrics, 32, 805-816.

Wilson, D. S., and Smith, R. (1977). Electric motor reliability model. Rome Air Development Center, RADC-TR-77-408 dated Dec 77, AD 050179, NTIS.

Yadav, R. P. S. (1973). A reliability model for stress vs strength problem. Microelectron. Reliability, 12, pp. 119-123.

Yadav, R. P. S. (1974). Component reliability under environmental stress. Microelectron. Reliability, 13, pp. 473-475.

Yao, J. T. P., and Yeh, H. Y. (1967). Safety analysis of statically indeterminate trusses. 1967 Annals of Reliability and Maintainability Conference, IEEE, New York, pp. 54-62.

Zaretsky, E. V. (1971). Life adjustment factors for ball and roller bearings. American Society of Mechanical Engineers.

APPENDIX II STATISTICAL TABLES

TABLE I. MEDIAN RANKS

sample size = n

failure rank = j

J	1	2	3	4	5	6	7	8	9	10
1	.5000	.2929	.2063	.1591	.1294	.1091	.0943	.0830	.0741	.0670
2		.7071	.5000	.3864	.3147	.2655	.2295	.2021	.1806	.1632
3			.7937	.6136	.5000	.4218	.3648	.3213	.2871	.2594
4				.8409	.6853	.5782	.5000	.4404	.3935	.3557
5 6					.8706	.7345	.6352	.5596	•5000	.4519
						.8909	.7705 .9057	.6787 .7979	.6065 .7129	.5481 .6443
. 7 8							.9057	.9170	.8194	.7406
9								• > 1 + 0	.9259	.8368
10									•,_,,	.9330
				·		·				
		1			nple si					
				fai	lure si	ze = j				
j	11	12	13	14	15	16	17	18	19	20
. 1	.0611	.0561	.0519	.0483	.0452	.0424	.0400	.0378	.0358	.0341
2	.1489	.1368	.1266	.1788	.1101	.1034	.0975	.0922	.0874	.0831
3	.2366	.2175	.2013	.1873	.1751	.1644	.1550	.1465	.1390	.1322
4	.3244	.2982	.2760	.2568	.2401	.2254	.2125	.2009	.1905	.1812
5	.4122	.3789	.3506	.3263	.3051	.2865	.2700	.2553	.2421	.2302
6	.5000	•4596	.4253	.3958	.3700	.3475	.3275	.3097	.2937	.2793
7	.5878	.5404	.5000	.4653	•4350	.4085	.3850	.3641	.3453	.3283
ಕ	.6756	.6211	.5747	.5347	.5000	.4695	•4425	.4184	.3968	.3774
9	.7634	.7018	.6494	.6042	.5650	.5305	.5000	.4728	•4484	.4264
10	.8511	.7825	.7240	.6737	.6300	.5915	.5575	.5272	.5000	.4755
11	•9389	.8632	.7987	.7432	.6949	.6525	.6150	.5816	.5516	.5245
12 13		.9439	.8734 .9481	.8127 .8822	.7599 .8249	.7135 .7746	.6725 .7300	.6359 .6903	.6032 .6547	.5736 .6226
14			• 340 L	.9517	.8899	.8356	.7875	.7447	.7063	.6717
15					.9548	.8966	.8450	.7991	.7579	.7207
16						.9576	.9025	.8535	.8095	.7698
17							.9600	.9078	.8610	.8188
18								.9622	.9126	.8678
19									.9642	.9169
										.9659

TABLE II. TABLE of 5% RANKS

samp	le si	ze	-	IJ
------	-------	----	---	----

j	1	2	3	4	5	6	7	8	9	10
1	.0500	.0253	.0170	.0127	.0102	.0085	.0074	.0065	.0057	.0051
2	,	.2236	.1354	.0976	.0764	.0629	.0534	.0468	.0410	.0368
3 4			.3684	.2486	.1893	.1532	.1287	.1111	.0978	.0873
4				.4729	.3426	.2713	.2253	.1929	.1688	.1500
5 6					.5493	.4182	.3413	.2892	.2514	.2224
						.6070	.4793	.4003	.3449	.3035
7 8							.6518	.5293	.4504	.3934
9								.6877	.5709 .7169	.6058
10									./10>	.7411
			,							.,411
				sat	nple sia	ze = n				
j	11	12	13	14	15	16	17	18	19	20
1	.0047	.0043	.0040	.0037	.0034	.0032	.0030	.0029	.0028	.0026
2	.0333	.0307	.0281	.0263	.0245	.0227	.0216	.0205	.0194	.0183
3	.0800	.0719	.0665	.0611	.0574	.0536	.0499	.0476	.0452	.0429
4	.1363	.1245	.1127	.1047	.0967	.0910	.0854	.0797	.0761	.0725
5	.2007	.1824	.1671	.1527	.1424	.1321	.1247	.1173	.1099	.1051
6 7	.2713	.2465	.2255	.2082	.1909	.1786	.1664	.1575	.1485	.1396
	.3498	.3152	.2883	.2652	.2459	.2267	.2128	.1990	.1887	.1785
8 9	.4356 .5299	.3909 .4727	.3548	.3263	.3016	.2805	.2601	.2449	.2298	.2183
10	.6356	.5619	.4274 .5054	.4600	.3608 .4226	.3350	.3131	.2912	.2749	.3029
11	.7616	.6613	_		-		-	.3429	-	.3029
12	. 1010	.7791	.5899 .6837	.5343 .6416	.4893 .5602	.4517 .5156	.4208 .4781	.4460	.3703 .4196	.3957
13		.//71	.7942	.7033	.6366	.5834	.5395	.5022	.4711	.3937
13 14			./942	.7033	.6366	.5834	.6044	.5022	.5242	.4932
15				.0074	.8190	.7360	.6738	.6233	.5809	.5444
16					.0170	.8274	.7475	.6871	6379	.5964
17						,	8358	.7589	.7005	,6525
18								8441	.7704	.7138
19									.8525	.7818
20										.8609

TABLE III. TABLE OF 95% RANKS

sample size = n

ţ	1	2	3	4	5	6	7	8	9	10
1	.9500	.7766	.6316	.5271	.4507	.3930	.3482	.3123	.2831	.2589
2	•	.9747	.8646	,7514	.6574	.5818	.5207	.4707	.4291	.3942
3			.9830	.9024	.8107	.7287	.6587	.5997	.5496	.5069
4				.9873	.9236	.8468	.7747	.7108	.6551	.6056
5 6					.9898	.9371	.8713	.8071	.7486	.6965
6						.9915	.9466	.8889	.8312	.7776
7							.9926	.9532	.9032	.8500
8							•	.9935	.9590	.9127
9									.9943	.9632
10										.9949
				sat	mple si	ze = n				
j	11	12	13	14	15	16	17	18	19	20
1	.2384	.2209	.2058	.1926	.1810	.1726	.1642	.1559	.1475	.1391
2	.3644	.3387	.3163	.2967	.2794	.2640	.2525	.2411	.2296	.2182
3	.4701	.4381	.4101	.3854	.3634	.3438	.3262	.3129	.2995	.2862
4	.5644	.5273	.4946	.4657	.4398	.4166	.3956	.3767	.3621	.3475
5	.6502	.6091	.5726	.5400	,5107	.4844	.4605	.4389	.4191	.4036
6	.7287	.6848	.6452	.6096	.5774	.5483	.5219	.4978	.4758	.4556
7	.7993	.7535	.7117	.6737	.6392	.6078	.5792	.5540	.5289	.5068
8	.8637	.8176	.7745	.7348	.6984	.6650	.6458	.6063	.5804	.5566
9	.9200	.8755	.8329	.7918	.7541	.7195	.6869	.6571	.6297	.6043
10	.9667	.9281	.8873	.8473	.8091	.7733	.7399	.7088	.6799	.6531
11	.9953	.9693	.9335	.8953	.8576	.8214	.7872	.7551	.7251	.6971
12		.9957	.9719	.9389	.9033	.8679	.8336	.8010	.7702	.7413
13			.9960	.9737	.9426	.9090	.8753	.8425	.8113	.7818
14				.9963	.9755	.9464	.9146	.8827	.8525	.821
					.9966	.9773	.9501	.9203	.8901	.8604
15						.9968	.9784 .9970	.9534 .9795	.9239 .9548	.8949 .9275
15 16							44/11	U/U1		
15 16 17							, , , , , ,			
15 16							,,,,,	.9971	.9346 .9806 .9972	.9273 .9573

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION

s/X	.5th	lst	2.5th	5th
.01	.974522	,976956	.980542	.983637
.02	.949602	.954342	.96137	.967447
.03	.925235	.932184	.942484	.951434
. 04	.901413	.91045	.923886	.9356
.05	.87813	.889146	.905574	.919946
.06	.855381	.86827	,887551	.904476
.07	.833158	.847817	.869815	.889191
.08	.811453	.827785	.852368	.874093
.09	.790261	.808169	.835208	.859184
.1	.769574	.788966	.818334	.844465
.11	.749384	.77017	.801747	.829938
. 12	.729683	,751778	.785445	.815604
.13	.710465	.733785	.769428	.801464
. 14	.69172	.716186	.753693	.787519
.15	.673442	.698976	.73824	.773769
. 16	.655622	.68215	.723067	.760215
.17	.638252	.665703	.708172	.746857
. 18	.621324	.649629	.693553	.733697
.19	.60483	.6333924	.679208	.720732
. 2	.588761	.618581	.665135	.707965
.21	.57311	,603596	.651331	.695394
. 22	.557868	.588961	.637794	.683019
.23	.543026	.574672	.624522	.670839
. 24	.528577	.560723	.611511	.658855
.25	.514512	.547108	.598759	.647065
. 26	.500823	,533821	.586263	.635468
.27	.487502	.520856	.57402	.624063
. 28	.474541	.508207	,562026	.61285
.29	.461931	.495868	.550279	.601827
.3	.449665	.483834	.538775	.590992
.31	.437735	.472097	.527512	.580345
.32	.426132	.460653	.516484	.569884
.33	.414849	.449495	.50569	.559607
. 34	.403879	.438618	.495125	.549513
.35	.393213	.428015	.484787	.539599
. 36	.382844	.417681	.47467	.529865
.37	.372764	.407609	464773	.520308
.38	.362967	.397795	455091	.510926
.39	.353445	.388232	.445621	.501718
. 4	.344191	.378914	.436358	.49268
.41	.335198	,369837	.4273	.483812

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

s/x	,5th	lst	2.5th	5th
.42 .43	.326459	.360994 .35238	.418442	.475111 .466575
.44	.309717 .301701	.34399 .335818	.401315 .393037	.458201 .449987
.46 .47	.293912 .286346	.327858 .320107	.384946 .377036	.441932 .434032
.48	.278994 .271853	.312558	.369306 .361751	.426286 .418691
.5	.264915	.298049	.354368	.411244

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

s/X	10th	20th	30th	40th
.01	.987217	.991569	.99472	.997419
.02	.974502	.983113	.989369	.994747
.03	.961858	.9764634	.983951	.991983
.04	.94929	.966135	.978468	.98913
.05	.936799	.957621	.972921	.986138
.06	.92439	.949092	.967313	.983159
.07	.912066	.940554	.961647	.980044
.08	.899829	.932009	.955925	.976846
.09	.887682	.92346	.95015	.973566
. 1	.87563	.914911	.944325	.970205
.11	.863673	.906364	.938451	.966766
. 12	.851815	.897823	.932531	.96325
.13	.840058	.889289	.926569	.959659
. 14	.828405	.880768	.920567	.955995
.15	.816858	.87226	.914527	.95226
.16 .17	.805419	.86377	.908451	.948456
.17	.794089	.8553	.902344	.944586
	.782872	.846852	.896207	.940651
.19	.771768	.83843	.890042	.936653
. 2	.760779	,830035	.883853	.932594
.21	.749907	.821671	.877642	,928478
. 22	.739154	.81334	.871412	.924305
.23	.728519	.805044	.865164	.920079
. 24	.718006	.796786	.858903	.915801
.25 .26	.707614	.788568	.852629	.911473
.27	.697344	.780391	.846345	.907099 .902679
.27	.687198 .677176	.772259 .764173	.840055 .83376	.898217
.29	.667278	.756135	.827462	.893714
. 3	.657506	.748147	.821164	.889173
,31	.647859	740211	.814868	.884596
. 32	.638337	732328	.808576	.879986
.33	.628942	.7245	.80229	.875343
. 34	,619673	.716728	.796013	.870671
,35	.61053	.709015	.789746	.865972
.36	.601512	.70136	.783492	.861247
.37	.59262	.693767	.777251	.856499
.38	.583854	.686235	.771027	.851729
.39	.575213	.678766	.76482	.846941
.4	.566696	.671362	.758633	.842.35
.41	.558304	.664022	.752467	.837314

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

s/X	.5th	lst	2,5th	Sth
.42	.550034	.656748	.746324	.83248
	.541888	.649541	.740205	.827634
.44	.533864	.642401	.734112	.822779
.45	.525961	.635329	.728046	.817916
.46	.518179	.628327	.722009	.813046
.47	.510517	.621393	.716002	.808173
.48	.502973	.61453	.710026	.803296
.49	.495547	.6077 3 6	.704083	.798418
.5	.488238	.601014	.698173	.793541

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

5/ \(\bar{\chi}\)	60 th	70 ch	BUth	90th
.01	1.00249	1.00521	1.0084	1.01285
.02	1.00488	1.01034	1.01677	1.02575
.03	1.00717	1.0154	1.0251	1.03872
.04	1.00937	1.02037	1.0334	1.05174
.05	1.01148	1.02527	1.4165	1.0648
.06	1.01348	1.03008	1.04986	1.07791
.07	1.01539	1.03481	1.05802	1.09107
.08	1.01719	1.03945	1.06613	1.10425
.09	1.0189	1.04401	1.07418	1.11748
. 1	1.0205	1.04847	1.08218	1.13073
.11	1.02201	1.05285	1.09012	1.144
. 12	1.02341	1.05713	1.09799	1.1573
.13	1.02472	1.06131	1.1058	1.17061
. 14	1.02592	1.0654	1.11355	1.18393
. 15	1.02702	1.0694	1.12122	1.19726
.16	1.02803	1.0733	1.12882	1.2106
.17	1.02893	1.0771	1.13634	1.22393
.18	1.02973	1.0808	1.14378	1.23726
. 19	1.03043	1.08439	1.15115	1.25058
. 2	1.03104	1.08759	1.15843	1.26389
.21	1.03154	1.09129	1.16563	1.27717
.22	1.03195	1.09458	1.17274	1.29044
.23	1.03226	1.09778	1.17976	1.30368
.24	1.03247	1.10087	1.18669	1.31689
.25	1.03259	1.10385	1.19353	1.33007
.20	1.03261	1.10673	1.20027	1.34321
.27	1.03254	1.10951	1.20692	1.35631
.28	1.03238	1.11219	1.21347	1.36936
.29	1.03212	1.11476	1.21992	1.36237
.3	1.03178	1.11723	1.22627	1.39532
.31	1.03135	1.1196	1.23252	1.40822
.32	1.03083	1.12180	1.23867	1.42105
.33	1.03022	1.12402	1.24471	1.43383
.34	1.02953	1.12608	1.25065	1.44653
.35	1.02875	1.12804	1.25649	1.45917
.36	1.02789	1.1299	1.26222	1.47174
.37	1.02695	1.13166	1,26784	1.48423
.38	1.02594	1.13332	1.27335	1.49664
.39	1.02484	1.13488	1.27876	1.50897
.4	1.02367	1.13634	1.28406	1.52122
.41	1.02242	1.13771	1.28925	1.53338

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

s/X	60th	70th	80th	90th
.42	1.02111	1.13898	1.29433	1.54545
.43	1.01972	1.14016	1,29931	1.55743
.44	1.01826	1.14124	1.30417	1.56931
.45	1.1673	1.14224	1,30893	1,5811
.46	1.01514	1.14314	1,31358	1.5928
.47	1.01348	1.14395	1.31811	1.60439
.48	1.01176	1.14467	1.32255	1.61588
.49	1.00998	1.1453	1.32687	1.62726
.5	1,00814	1.14585	1.33108	1.63854

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

s∕ x	95 th	97.5th	99th	99.5th
.01	1.01653	1.10974	1.02348	1.02604
.02	1.03323	1.03977	1.04741	1.05265
.03	1.0501	1.06007	1.97178	1.07983
.04	1.06713	1.08966	1.0966	1.1076
.05	1.08431	1.10152	1.12187	1.13594
.06	1.10165	1.12265	1.14758	1.16488
.07	1.11913	1.14406	1.17375	1.1944
.06	1.13677	1.16574	1.20036	1.22452
.09	1.15454	1.18769	1,22742	1.25524
. 1	1.17246	1.20989	1.25493	1.28655
.11	1.1905	1.23236	1.28289	1.31848
.12	1.20868	1.25509	1.3113	1.351
. 13	1.22698	1.27807	1.34015	1.38414
. 14	1.2454	1.30129	1.36944	1.41788
.15	1.26394	1.32476	1.39918	1.45223
.16	1.28258	1.34848	1.42936	1.4872
.17	1.30133	1.37242	1,45998	1.52277
.18	1.32019	1.3966	1.49103	1.55895
.19	1.33913	1.421	1.52251	1.59575
. 2	1.35817	1.44563	1.55442	1.63315
.21	1.37729	1.47047	1.58676	1.67117
.22	1.3965	1.49552	1.61952	1.70978
.23	1.41577	1.52077	1.65269	1.74901
.24	1.43512	1.54623	1.68628	1.78883
.25	1.45453	1.57188	1.72027	1.82926
.26	1.474	1.59771	1.75467	1.87028
.27	1.49352	1.62373	1.78946	1.91189
.28	1.51309	1.64992	1.82465	1.9541
.29	1.53271	1.67628	1.86022	1.99688
.3	1.55236	1.70281	1.89617	2.04025
.31	1.57204	1.72949	1.93249	2.08419
.32	1.59175	1.75632	1.96918	2.12871
.33	1.61148	1.78329	2.00624	2.17379
.34	1.63122	1.81041	2.04364	2.21942
.35	1.65098	1.83765	2.08139	2.26561
.36	1.67074	1.86502	2.11945	2.31235
.37	1.69051	1.8925	2.15791	2.35962
۵٤.	1.71027	1.9201	2.19666	2.40743
.39	1.73002	1.9478	2.23572	2.45577
.4	1.74975	1.9756	2.2751	2.50462
.41	1.76947	2.00349	2.31478	2.55398

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

s/X	95th	97.5th	99th	99.5th
.42	1.78916	2.03146	2.35475	2.60385 2.6542
.43 .44	1.80883 1.82846	2.05952 2.08764	2.395 2.43554	2.70505
.45	1.84805	2.11583	2.47634	2.75637 2.80816
.4 6 .47	1.86761 1.88711	2.14408 2.17238	2.51741 2.55873	2.86041
.48	1.90657 1.92597	2.20073 2.22912	2.60029 2.64209	2.91311 2.96626
.49	1.94531	2.25754	2.68412	3.01983

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

S/X	.5th	lst	2.5th	5th
•5	.264915	.298049	.354368	.411244
.51	.258175	.291079	.347152	.403944
.52	.251628	.284292	.340102	.396788
. 53	.245268	.277683	.333213	.389774
.54	.239089	.271248	.326481	.382898
.55	.233086	. 264983	.319904	.37616
.56	.227256	.258882	.313478	.369557
.57	.221591	.252942	.3072	.363085
.58	.216088	.247159	.301066	.356743
. 59	.210742	.241527	.295074	.350529
.6	,205548	.236044	.28922	.34444
.61	.200502	.230706	.283501	.338474
.62	.195599	.225507	.277914	.332629
.63	. 190836	.220445	.272456	.326901
.64	.186207	.215517	.267124	.32129
.65	.18171	.210717	.261916	.315793
.66	.17734	.206043	.256827	.310407
.67	.173093	.201492	.251856	.305131
.68	.168966	.19706	.247	.299962
. 69	.164956	.192743	.242256	. 294898
.7	.161057	.188539	.237621	.289937
.71	.157268	. 184444	.233692	.285077
.72	.153585	.180456	.228668	.280316
. 73	.150005	.176571	.224346	.275652
.74	.146525	.172787	.220123	.271083
.75	.143141	.169101	.215997	.266606
.76	.139851	.16551	.211963	.262221
.77	.136653	.162011	.208026	.257924
.78	.133542	.158603	.204176	.253715
. 79	.130517	.155281	.200414	.249591
٠,8	.127575	.152045	.196738	.245551
.81	.124713	.148891	. 193146	.241593
.82	.12193	.145817	.189634	.237714
.83	.119222	.142821	.186203	.233914
-84	.116588	.139901	.182849	.230191
58،	.114025	. 137055	.17957	.226542
.86	.111531	.134281	.176365	.222967
.87	. 109104	.131576	.173232	.219464
.88	.106742	.128939	.17017	.216031
.89	. 104443	.126368	.167175	.212666
.9	.104205	.12386	.164248	.209369

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

s/X	.5th	lst	2.5th	5 th
.91	.100027	.121415	.161385	.206138
.92	.09790%	.11903	.158586	.20297
.93	.095842	.116705	.155849	.199866
. 94	.093831	.114436	.153172	.196823
.95	.091873	.112223	.150554	.19384
.96	.089966	.110063	. 147994	.190916
•97	.088108	.107957	.145489	.18805
.98	.086299	.105901	.143039	.18524
.99	.08453€	.103895	.140642	.182485
1.	.082819	.101938	.138297	.179783

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

S∕X̄	10th	20th	30th	40th
.5	.488238	.601014	.698173	.793541
.51	.481044	.594362	.692297	.788666
.52	.473965	.587781	.686457	.783794
.53	.467	.581272	.680654	.778927
.54	.460146	.574834	.674888	.774066
.55	.453404	.568468	.669161	.769213
.56	.446771	.562174	.663473	.764369
.57	.440247	.555951	.657824	.759535
.58	.43383	.5498	.652217	.754712
.59	.427519	.54372	.64665	.749902
.6	.421313	.537712	.641126	.745106
.61	.41521	.531775	.635644	.740324
.62	.409209	.525908	.630205	.735559
. 63	.403308	.520113	.624809	.73081
.64	.397506	.514387	.619457	.726078
.65	.391803	.508732	.61415	.721366
.66	.386196	.503147	.6088£7	.716673
.67	.380683	.497631	.603669	.712
.68	.375265	.492183	.598496	.707348
.69	.369939	.486805	.593368	.702719
. 7	.364703	.481494	.586287	.698112
.71	.359557	.476251	.583251	.693528
.72	.354499	.471075	.578261	.688968
. 73	.349528	.465965	.573317	.684433
.74	.344642	.460922	.568419	.679923
. 75	.33984	.455943	.563567	.675438
.76	3512د.	.45103	.558762	.670979
.77	.330482	.446181	.554003	.666548
.78	.325924	.441395	.549289	.662143
. 75	.321444	.436673	.544622	.657765
.8	.317041	.432013	.540001	.653416
.81	.312715	.427415	.535426	.649094
.82	.308462	.422877	.530897	.644802
.83	.304284	.418401	.526413	.640537
.84	.300177	.413984	.521975	.636303
. 85	.296141	.409626	.517582	.63209
.86	.292174	.405327	.513234	.627921
.87	.288276	.401085	.508931	.623775
.88	.284445	.396901	.504672	.619658
. 89	.28068	.392773	.500458	.615572
.9	.276979	.388701	.496289	.611516

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

s/ x	10th	20th	30th	40th
.91	.273342	.384684	.492163	.607491
	.269767	.380721	.48808	.603495
.93	.266254	.376812	.484042	.599531
.94	_2628	.372956	.480046	.595597
.95	.259406	.369152	.476093	.591694
	.256069	.3654	.472182	.587821
.97	.25279	.361699	.468313	.583979
.98	.249566	.358048	.464487	.580168
.99	.246397	.354447	.460701	.576387
1.	.243282	.350895	.456957	.572638

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

	60 th	70th	80th	90 t h
.5	1.09814	1.14585	1.33108	1.63854
.51	1.00624	1.14631	1.33519	1.64972
.52	1.00429	1.14669	1.33919	1.66078
. 53	1.00228	1.14699	1.34309	1.67174
.54	1.00022	1.1472	1.34688	1.68258
.55	.998103	1.14734	1.35057	1.69331
.56	.99594	1.1474	1.35415	1.70393
.57	.993731	1.14738	1.35763	1.71443
.58	.991475	1.14729	1.361	1.72482
. 59	.989174	1.14712	1.36428	1.73509
.6	.986831	1.14688	1.36745	1.74524
.6l	.984446	1.14657	1.37052	1.75528
.62	.982021	1.14619	1.3735	1.7652
. 63	.979557	1.14574	1.37638	1.775
.64	.977057	1.14523	1.37916	1.78465
.65	.974522	1.14405	1.38184	1.79424
.66	د97195.	1.14401	1.38443	1.80368
.67	.969351	1.14331	1.38693	1.813
.68	.966718	1.14254	1.38933	1.8222
.69	.964056	1.14172	1.39165	1.83128
•7	.961365	1.14084	1.39387	1.84024
.71	.958647	1.1399	1.39601	1.84908
.72	.955904	1.13891	1.39805	1.8578
. 73	.953136	1.13787	1.40001	1.8664
• 74	.950345	1.13677	1.40189	1.87488
. 75	.947532	1.13562	1.40368	1.88324
.76	. 944699	1.13443	1.40539	1.89148
.77	.941846	1.13318	1.40702	1.8996
.78	.938974	1.13189	1.40857	1.90761
. 79	.936086	1.13055	1.41004	1.9155
.8	.933181	1.12917	1.41143	1.92327
.81	.930261	1.12775	1.41274	1.93092
.82	.927328	1.12629	1.41398	1.93846
.83	.924381	1.12478	1.41515	1.94588
•84	.921422	1.12324	1.41625	1.95319
.85	.918452	1.12166	1.41727	1.96039
.86	.915472	1.12004	1.41822	1.96747
.87	-912483	1.11839	1.41911	1.97444
.88	.909485	1.11671	1.41993	1.9813
.89 .9	.90648 .903468	1.11499 د1.1132	1.42068 1.42136	1.98805 1.99468

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

s/X	60th	70th	80th	90th
.91 .92	.900451 .897428	1.11145	1.42199	2.00121
.93	.894401	1.1078	1.42255	2.01395
.94 .95	.891371 .888337	1.10593	1.42349 1.42387	2.02015 2.02626
.96 .97 .98	.885302 .882265 .879227	1.10212 1.10017 1.0982	1.42419 1.42446 1.42467	2.03226 2.03815 2.04394
.99	.876189 .873151	1.09621	1.42482	2.04964

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

s/X	95th	97.5th	99th	99.5th	
.5 .51	1.94531	2.25754	2.68412	3.01983	
	1.9646	2.28599	2.72636	3.07383	
.52	1.98381	2.31446	2.76882	3.12824	
.53	2.00296	2.34295	2.81148	3.18305	
.54	2.02203	2.37145	2.85433	3.23826	
.55	2.04103	2,39995	2.89737	3.29385	
.56	2.05994	2.42845	2.94059	3.34982	
. 57	2.07878	2.45694	2.98397	3.40615	
.58	2.09752	2.48542	3.02752	3.46284	
. 59	2.11618	2.51389	3.07122	3.51987	
.6	2.13475	2.54233	3.11506	3.57723	
.61	2.15322	2.57074	3.15904	3.63492	
.62	2.17159	2.59912	3.20315	3.69292	
.63	2.18986	2.62747	3.24738	3.75123	
.64	2.20803 2.2261	2.65577 2.68402	3.29172 3.33616	3.80983 3.86872	
.65 .66	2.24406	2.71222	3.3807	3.868/2 3.92788	
.67	2.26191	2.74036	3.42533	3.98731	
.68	2.27964	2.76845	3.47005	4.04699	
.69	2.29727	2.79647	3.51.483	4.10692	
.7	2.31478	2.82442	3,55969	4.16708	
.71	2.33217	2.85229	3.6046	4.22747	
.72	2.34944	2.88009	3.64956	4.28807	
.73	2.3666	2.90781	3.69457	4.34889	
.74	2.38363	2.93545	3.73962	4.40989	
.75	2.40054	2.93343	3.78471	4.47109	
.76	2.41733	2.99046	3.82981	4.53247	
.77	2.43399	3.01782	3.87494	4.59401	
.78	2.45052	3.04509	3.92008	4.65572	
.79	2.46693	3.07226	3,96522	4.71758	
.8	2.48321	3,09932	4.01036	4.77958	
.81	2,49936	3.12628	4.0555	4.84172	
.82	2.51538	3.15313	4.10063	4.90398	
. 83	2.53127	3.17987	4.14574	4.96636	
.84	2.54703	3.20649	4,19082	5.02885	
.85	2,56266	3.233	4.23588	5.09144	
.86	2.57815	3.25939	4.2809	5,15412	
.87	2.59351	3.28566	4.32588	5.21689	
.85	2,60874	3.31181	4.37082	5,27973	
.89	2.62384	3.33783	4.41571	5.34265	
.9	2,63881	3.36372	4.46054	5.40562	

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

s/X	95th	97.5th	99th	99.5th
.91	2.65364	3.38949	4.50532	5,46865
. 92	2.66834	3.41513	4,55003	5.53173 5.59485
.93 .94	2.6829 2.69733	3.44064 3.46601	4.59468 4.63925	5.658
,95	2.71163	3.49125	4.68374	5.72118
. 96 . 97	2.72579 2.73982	3.51636 3.54132	4.72816 4.77248	5.78438 5.84759
.98	2.75372	3.56615	4.81672	5.9108
.99 1.	2.76749 2.78112	3.59084 3.61539	4.86087 4.90493	5.97402 6.03723

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

s/X	.5th	lst	2.5th	5th
1.	.082319	.101938	.138297	.179783
1.01	.081145	.100027	.136003	.177134
1.02	.079515	.098162	.133758	.174537
1.03	.077925	.096342	.131561	.17199
1.04	.076376	.094564	.129412	.169492
1.05	.074866	.092829	.127308	.167043
1.06 1.07	.073393 .071958	.091135 .08948	.125249 .123233	.16464 .162283
1.07	.070558	.087864	.12126	.159972
				.157704
1.09	.069193	.086286	.119329	
1.1	.067862	.084744	.117438	.15548
1.11	.066563	.083238	.115586	.153297
1.12	.065296	.081767	.113773	.151156
1.13	.06406	.080329	.111998	.149055
1.14	.062855	.078924	.110259	.146993
1.15	.061678	.077551	.108556	.14497
1.16 1.17	.06053 .059409	.076209 .074898	.106889 .105255	.142985 .141036
1.17	.058315	.073616	.103233	.139124
1.19	.057247	.073616	.102086	.137247
1.2	.056204	.071137	.10055	135404
1.21	.055186	.069939	.099045	.133595
1.22	.054192	.068768	.097569	.131819
1,23	.053221	.067622	.096124	.130076
1.24	.052272	.066501	.094707	.128364
1.25	.051346	.065405	.093318	.126683
1.26	.050441	.064332	.091957	.125032
1.27	.049557	.063283	.090622	.123411
1.28	.048693	.062257	.089314	.121818
1.29	.047849	.061252	.088031	.120255
1.3	.047024	.060269	.086773	.118718
1.31	.046217	.059307	.085539	.11721
1.32	.045429	.058366	.08433	.115727
1.33	.044658	.057444	.083143	.114271
1.34	.043905	.056542	.08198	.11284
1.35	.043168	.055658	.080838	.111434
1.36	.042447	.054793	.079718	.110053
1.37	.041743	.053946	.07862	.108695
1.38	.041053	.053116	.077542	.107361
1.39	.040379	.052304	.076484	.106049
1.4	.03972	.051508	.075446	.10476

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

s/X	.5th	lst	2.5th	5th
1.41	.039074	.050728	.074427 .073428	.103493
1.43	.037825	.049216	.072446	.101024
1.44 1.45	.03722 .036628	.048483 .047764	.071483 .070537	.09982 .098636
1.46 1.47	.036049 .035482	.04706 .04637	.069609 .068698	.097472 .096328
1.48 1.49	.034926 .034383	.045694	.067803 .066924	.095203 .094096
1.5	.03385	.04438	.066061	,093007

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

s/X	10th	20th	30th	40th
1.	.243282	.350895	.456957	.572638
1.01	.240219	.34739	.453253	.568918
1.02	.237208	.343934	.44959	.56523
1.03	.234248	.340525	.445967	.561572
1.04	.231338	.337161	442383	.557944
1.05	.228476	.333844	.438839	.554347
1.06	.225663	.330571	.435334	.55078
1.07	,222896	.327343	.431867	.547243
1.08	.220176	.324158	.428438	.543737
1.09	.217501	.321017	.425047	.54026
1.1	.21487	.317918	.421694	.536813
1.11	.212283	.314861	.418377	.533396
1.12	.209739	.311845	.415097	.530008
1.13	.207237	.30887	.411854	.52665
1.14	.204776	.305935	.408646	.52332
1.15	.202355	.303039	.405474	.52002
1.16	.199974	.300182	.402336	.516749
1.17	.197632	.297363	.399234	.513507
1.18	.195327	.294582	.396166	.510293
1.19	.193061	.291839	.393131	.507107
1.2	.19083	,289131	.390131	.50395
1.21	1.88636	.28646	.387163	.500821
1.22	.186478	.283825	.384229	.497719
1.23	.184353	.281224	.381326	.494645
1.24	.1842263	.278658	.378456	.491599
1.25	.180206	.276125	.375618	.48858
1.26	.178182	.273626	.37281	.485587
1.27	.17619	.27116	.370034	.482622
1.28	.174229	.268726	.367288	.479683
1.29	.1723	.266325	.364573	.47677
1.3	.1704	.263954	.361887	.473884
1.31	.168531	.261615	.359231	.471023
1.32	.16669	.259306	.356604	.468188
1.33	.164879	. 257027	.354006	.465379
1.34	.163095	.254777	.351436	.462595
1.35	.161339	.252557	.348894	.459836
1.36	,15961	.250365	.34638	.457102
1.37	.157907	.248201	.343893	.454393
1.38	.15623	.246065	.341434	.451708
1.39	.15458	. 243957	.339001	.449047
1.4	.152954	.241875	.336595	.44641

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

				
s∕x̄	10th	20th	30th	40th
1.41	.151353	.23982	.334214	.443797
1.42		.237791	.331859	.441208
1.43	.148222	.235788	.32953	.438642
	.146692	.23381	,327226	.436098
1.45	.145185	.231857	,324946	.433578
1.46	.143701	.229929	,322691	.431081
1.47	.142238	.228024	.320461	.428606
1.48	.140797	.226144	.318254	.426153
1.49	.139377	.224286	.31607	.423722
1.5	.137979	.222452	.31391	.421313

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

1. 1.01				
1.01	.873151	1.09419	1.42493	2.05523
	.870115	1.09216	1.42498	2.06072
1.02	.86708	1.0901	1.42498	2.06611
1.03	.864046	1.08803	1.42493	2.07141
1.04	.861016	1.08593	1.42483	2.07661
1.05	.857989	1.08382	1.42469	2.08172
1.06	.854965	1.08169	1.4245	2.08673
1.07	.851946	1.07955	1.42426	2.09165
1.08	.84893	1.07739	1.42398	2.09648
1.09	.84592	1.07521	1.42365	2.10122
1.1	.842916	1.07303	1.42328	2.10586
1.11	.839917	1.07082	1.42288	2.11042
1.12	.836924	1.06861	1.42243	2.11489
1.13	.833938	1.06638	1.42194	2.11928
1.14	.830959	1.06414	1.42141	2.12358
1.15	.827987	1.06189	1.42084	2.12779
1.16	.825022	1.05963	1.42024	2.13192
1.17	.822065	1.05737	1.4196	2.13597
1.18	.819117	1.05509	1.41892	2.13994
1.19	.816177	1.0528	1.41821	2.14383
1.2	.813246	1.05051	1.41747	2.14764
1.21	.810324	1.04821	1.4167	2.15137
1.22	.807411	1.0459	1.41589	2.15502
1.23	.804508	1.04358	1.41505	2.1586
1.24	.801614	1.04126	1.41418	2.1621
1.25	.79873	1.03894	1.41328	2.16553
1.26	.795857	1.03661	1.41236	2.16889
1.27	.792994	1.03427	1.4114	2.17217
1.28	.790141	1.03193	1.41042	2.17539
1.29	.787299	1.02959	1.40941	2.17853
1.3	.784468	1.02724	1.40838	2.1816
1.31	.781648	1.0249	1.40731	2.18461
1.32	.778839	1.02254	1.40623	2.18755
1.33	.776042	1.02019	1.40512	2.19042
1.34	.773255	1.01784	1.40399	2.19323
1.35	.770481	1.01548	1.40283	2.19597
1.36	.767718	1.01312	1.40166	2.19865
7د.1	.764967	1.01077	1.40046	2.20127
1.38	.762228	1.00841	1.39924	2.20382
1.39	.759501	1.00605	1.398	2.20632
1.4	.756786	1.00369	1.39674	2.2087

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

s/ x	60th	70 th	80th	90th
1.41	.754083	1.00134	1.39546	2.21113
1.42	.751393	.998978	1.39416	2.21344
1.43	.748715	.996623	1.39285	2.2157
1.44	.746049	.99427	1.39152	2.21791
1.45	.743396	.991917	1.39017	2.22006
1.46	.740755	.989567	1.3888	2.22215
1.47	.738126	.987219	1.38742	2.22419
1.48	.735511	.984874	1.38602	2,22618
1.49	.732907	.982531	1.38461	2,22811
1.5	.730317	.98019	1.38318	2,22999

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

S/X	95 ch	97.5th	99th	99.5th
1.	2.78112	3.61539	4.90493	6.03723
1.01	2.79462	3.6398	4.94888	6.10043
1.02	2.80799	3.66407	4.99273	6.16361
1.03	2.82123	3.68819	5.03647	6.22677
1.04	2.83434	3.71217	5.0801	6.2899
1.05	2.84731	3.736	5.12363	6.35299
1.06	2.86016	3.75969	5.16703	6.41605
1.07	2.87288	3.78324	5.21032	6.47906
1.08	2.88547	3.80664	5.25348	6.54201
1.09	2.89793	3.82989	5.29653	6.60492
1.1	2.91027	3.85299	5.33944	6.66776
1.11	2.92247	3.87595	5.38223	6.73053
1.12	2.93456	3.89876	5.42489	6.79324
1.13	2.94651	3.92143	5.46741	6.85587
1.14	2.95834	3.94394	5.50979	6.91843
1.15	2.97005	3.96631	5.55204	6.9809
1.16	2.98163	3.98853	5.59415	7.03428
1.17	2.9931	4.0106	5.63612	7.10558
1.18	3.00443	4.03252	5.67794	7.16778
1.19	3.01565	4.0543	5.71962	7.22988
1.2	3.02675	4.07593	5.76115	7.29187
1.21	3.03773	4.09741	5.80253	7.35376
1.22	3.04859	4.11874	5.84376	7.41554
1.23	3.05934	4.13992	5.88484	7.47721
1.24	3.06996	4.16096	5.92577	7.53876
1.25	3.08047	4.18185	5.96654	7.6002
1.26	3.09087	4.20259	6.00716	7.66151
1.27	3.10115	4.22319	6.04762	7.72269
1.28	3.11132	4.24364	6.08792	7.78375
1.29	3.12138	4.26395	6.12806	7.84467
1.3	3.13132	4.28411	6.16805	7.90546
1.31	3.14116	4.30413	6.20787	7.96612
1.32	3.15088	4.324	6.24753	8.02663
1.33	3.1605	4.34373	6.28702	8.08701
1.34	3.17001	4.36331	6.32636	8.14724
1.35	3.17941	4.38276	6.36552	8.20732
1.36	3.1887	4.40206	6.40453	8.26725
1.37	3.19789	4.42122	6.44337	8.32704
1.38	3.20698	4.44023	6.48204	8.38667
1.39	3.21596	4.45911	6.52054	8.44615
1.4	3.22485	4.47785	6.55888	8.50547

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

s/X	95 th	97.5th	99th	99.5th
1.41	3.23363	4.49645	6.59705	8.56464
1.42	3.24231	4.51491	6.63506	8.62364
1.43	3.25089	4.53323	6.67289	8.68248
1.44	3.25937	4.55142	6.71056	8.74116
1.45	3.26775	4.56947	6.74806	8.79968
1.46	3.27604	4.58738	6.78539	8.85802
1,47	3.28423	4.60516	6.82255	8.9162
1.48	3.29233	4.6228	6.85954	8.97422
1.49	3.30034	4.64032	6.89636	9.03206
1.5	3.30825	4.65769	6.93302	9.08973

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

s/X	.5th	lst	2.5th	5th
1.5	.03385	.04438	.066061	.093007
1.51	.033329	.043743	.065213	.091936
1.52	.032818	.043118	.06438	.090883
1.53	.032318	.042505	.063562	.089847
1.54	.031828	.041904	.062759	.088828
1.55	.031347	.041314	.06197	.087825
1.56	.030877	.040736	.061194	.086838
1.57	.030416	.040169	.060432	.085867
1.58	.029964	.039612	.059684	.084911
1.59	.029522	.039066	.058948	.083971
1.6	.029088	.03853	.058225	.083046
1.61	.028662	.038005	.057514	.082135
1.62	.028246	.037489	.056816	.081238
1.63	.027837	.036982	.056129	.080356
1.64	.027436	.036485	.055454	.079487
1.65	.027043	.035998	.05479	.078632
1.66	.026657	.035519	.054138	.07779
1.67	.026279	.035048	.053496	.076961
1.68	.025909	.034587	.052865	.076145
1.69	.025545	.034134	.052245	.075341
1.7	.025188	.033688	.051635	.074549
1.71	.024838	.033251	.051034	.073769
1.72	.024495	.032822	.050444	.073002
1.73	.024158	.0324	.049863	.072245
1.74	.023827	.031986	.049292	.0715
1.75	.023503	.031579	.04873	.070767
1.76	.023184	.031179	.048177	.070044
1.77	.022871	.030787	.047633	.069331
1.78	.022565	.030401	.047098	.06863
1.79	.022263	.030021	.04/070	.067938
1.8	.021967	.029649	.046053	.067257
1.81	.021677	.029282	.045542	.066586
1.82	.021392	.028922	.04504	.065924
1.83	.021112	.028568	.044546	.065272
1.84	.020837	.02822	.044059	.064629
1.85	,020566	.027878	.04358	.063996
1.86	.020301	.027542	.043108	.063372
1.87	.02004	.027212	.042644	.062756
1.88	.019784	.026886	.042187	.062149
1.89	.019532	.026567	.041737	.061551
1.9	.019285	.026252	.041293	.060962

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

s/X	.Sth	lst	2.5th	5th
1.91 1.92	.019042	.025943	.040856	.06038
1.93	.018569	.02534	.040003	.059242
1.94	.018338 .018111	.025045 .024756	.039586 .039175	.058684 .058134
1.96	.017889	.024471	.03877	.057592
1.97 1.98	.017669 .017454	.024191 .023915	.038371 .037978	.057057 .05653
1.99	.017242 .017034	.023643	.03759	.056009

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

s/ X	10th	20th	30th	40th
1.5	.137979	.222452	.31391	.421313
1.51	.1366	.220641	.311773	.418925
1.52	.135242	.218852	.309658	.416559
1.53	.133903	.217085	.307566	.414214
1.54	. 132584	.21534	.305496	.41189
1.55	.131284	.213616	.303448	.409586
1.56	.130003	.211913	.301421	.407304
1.57	.12874	.210231	.299416	.405041
1.58	.127495	.20857	.297431	.402799
1.59	.126267	.206928	.295468	.400576
1.6	.125058	.205307	.293524	.398373
1.61	.123865	.203704	.291601	.39619
1.62	.122689	.202121	.289698	.394026
1.63	.121529	.200557	.287815	.391881
1.64	.120396	.199012	.285951	.389755
1.65	.119259	.197485	.284106	.387648
1.66	.118147	.195976	.28228	.385559
1.67	.11705	.194485	.280473	.383489
1.68	.115969	.193011	.278684	.381437
1.69	.114903	.191555	.276913	.379402
1.7	.113851	.190116	.275161	.377386
1.71	.112813	.188693	.273426	.375387
1.72	.11179	.187287	.271709	.373405
1.73	.11078	.185898	.270009	.371441
1.74	.109784	.184524	.268327	.369493
1.75	.108802	.183167	.266661	.367563
1.76	.107832	.181824	.265012	.365649
1.77	.106876	.180498	. 263379	.363752
1.78	.105932	.179186	.261762	.361871
1.79	.105001	.177889	.260162	.360006
1.8	.104081	.176607	.258577	.358157
1.81	.103174	.17534	.257009	.356324
1.82	.102279	.174086	.255455	.354506
1.83	.101396	.172847	.253917	.352704
1.84	.100524	.171622	.252394	.350918
1.85	.099663	.17041	.250886	.349146
1.86	.098814	.169212	.249392	.34739
1.87	.097975	.168027	.247913	.345648
1.88	.097147	.166855	.246448	.343921
1.89	.09633	.165696	.244998	.342208
1.9	.095523	.16455	.243561	.34051

たのでは、1900年の1900年のことには、1900年の

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

s/X	10th	20th	30th	40th
1.91	.094726	.163416	.242138 .240729	.338826 .337156
1.93	.093163	.161186	.239334	.3355
1.94		.160089	.237951	.333858
1.95	.091638	.159004	.236582	.33223
1.96	.09089	.15793	.235226	.330614
1.97	.090151	.156868	.233882	.329013
1.98	.089421	.155817	.232551	
1.99	.088701	.154778	.231233	.32584 <i>9</i>
2.	.087989	.153749	.229927	.324286

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

s/X	60th	70 c h	80 ch	y0th
1.5	.730317	.98019	1.38318	2.22999
1.51	.727739	.977853	1.38174	2.23182
1.52	.725174	.975519	1.35028	2.23361
1.53	.722622	.973188	1.37881	2.23534
1.54	.720082	.970861	1.37733	2,23702
1.55	.717556	.968538	1.37584	2.23866
1.56	.715042	.966219	1.37433	2.24025
1.57	.71254	.963904	1.37281	2.24179
1.58	.710052	.961593	1.37128	2.24329
1.59	.707576	.959287	1.36974	2.24474
1.6	.705113	.956985	1.36819	2.24615
1.61	.702663	.954688	1.36663	2.24751
1.62	.700226	.952396	1.36506	2.24883
1.63	.697801	.950108	1.36348	2.25011
1.64	.695389	.947826	1.36189	2.25135
1.65	.69299	.94555	1.36029	2.25255
1.66	.690603	.943278	1,35868	2.2537
1.67	.688229	.941012	1.35706	2.25482
1.68	.685868	.938752	1.35544	2.2559
1.69	.683519	.936497	1.35381	2.25694
1.7	.681183	.934249	1.35217	2.25794
1.71	.67886	.932006	1.35052	2.2589
1.72	.676549	.929769	1.34887	2.25983
1.73	.67425	.927538	1.34721	2.26072
1.74	.671964	.925314	1.34555	2.26158
1.75	.66969	.923095	1.34388	2.2624
1.76	.007429	.920883	1.3422	2.26318
1.77	.66518	.918678	1.34052	2.26394
1.78	.662943	.916478	1.33883	2.26465
1.79	.660719	.914286	1.33714	2.26534
1.8	.658506	.9121	1.33544	2.26599
1.81	.656306	.90992	1.33374	2.26661
1.82	.654118	.907748	1.33203	2.26721
1.83	.651942	.905582	1.33032	2.26776
1.84	.649778	.903423	1.32861	2.26829
1.85	.647626	.901271	1.32689	2.26879
1.86	.645485	.899126	1.32517	2.26926
1.87	.643357	.896987	1.32345	2.2697
1.88	.64124	.894856	1.32172	2.27012
1.89	.639135	.892732	1.31999	2.8705
1.9	.637042	.890615	1.31826	2.27086

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

s/X	60th	70th	80th	90th
1.91	.63496	.888505	1.31652	2.27119
1.92	.63289	.886402	1.31478	2.27149
1.93 1.94	.630832 .628784	.884306 .882218	1.31304 1.3113	2.27177 2.27202
1.95	.626749	.880137	1.30956	2.27224
1.96	.624724	.878063	1.30781	2.27244
1.97	.622711	.875996	1.30606	2.27262
1.98	.620709	.873936	1.30432	2.27277
1.99	.618718 .616738	.871884 .869889	1.30257 1.30081	2.2729 2.273

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

s/X	95th	97.5th	99th	99.5th
1.5	3.30825	4.65769	6.93302	9.08973
1.51	3.31607	4.67494	6.9695	9.14723
1.52	3.32379	4.69205	7.00581	9.20455
1.53	3.33143	4.70904	7.04196	9.2617
1.54	3.33898	4.72589	7.07793	9.31867
1.55	3.34644	4.74262	7.11374	9.37547
1.56	3,35381	4.75922	7.14938	9.43209
1.57	3.36109	4.77569	7.18484	9.48853
1.58	3.36829	4.79203	7.22014	9.54479
1.59	3.37541	4.80825	7.25527	9.60087
1.6	3.38244	4.82434	7.29024	9.65677 9.71249
1.61	3.38939	4.84031	7.32503 7.35966	9.71249
1.62	3.39625 3.40303	4.85616 4.87188	7.39412	9.82338
1.63	3.40973	4.88748	7.42841	9.87855
1.64 1.65	3.41636	4.90296	7.46253	9.93353
1.66	3.4229	4.91832	7.49649	9.98834
1.67	3.42937	4.93356	7.53028	10.043
1.68	3.43575	4.94869	7.56391	10.0974
1.69	3.44206	4.96369	7.59737	10.1516
	3.4483	4.97858	7.63067	10.2057
1.7 1.71	3.45446	4.97838	7.6638	10.2596
	3.46055	5.00801	7.69677	10.2330
1.72 1.73	3.46656	5.02255	7.72957	10.3668
1.74	3.4725	5.03698	7.76221	10.4201
1.75	3.47837	5.0513	7.79469	10.4732
1.76	3.48417	5.06551	7.82701	10.5262
1.77	3.48989	5.0796	7.85916	10.5789
1.78	3.49555	5.09359	7.89115	10.6315
1.79	3.50114	5.10746	7.92299	10.6839
1.8	3.50666	5.12123	7.95466	10.7361
1.81	3.51211	5.13489	7.98618	10.7881
1.82	3.5175	5.14844	8.01753	10.8399
1.83	3.52282	5.16188	8.04873	10.8915
1.84	3.52807	5.17522	8.07977	10.943
1.85	3.53326	5.18846	8.11065	10.9942
1.86	3.53839	5.20159	8.14138	11.0453
1.87	3.54345	5.21462	8.17195	11.0962
1.88	3.54845	5.22755	8.20236	11.1469
1.89	3.55339	5.24037	8.23262	11.1974
1.9	3.55827	5.2531	8.26273	11.2477

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

s/X	95th	97,5th	99th	99.5th
1.91	3.56309	5,26573	8.29268	11.2979
	3.56785	5,27825	8.32249	11.3478
1.93	3.57254	5.29068	8.35214	11.3976
	3.57718	5.30301	8.38163	11.4472
1.95	3.58177	5.31525	8.41098	11.4966
1.96	3.58629	5.32738	8.44018	11.5458
1.97	3.59076	5.33943	8.46923	11.5948
1.98	3.59517	5.35138	8.49813	11.6437
1.99	3.59953	5.36323	8.52688	11.6923
2.	3.60383	5.37499	8.55549	11.7408

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

S/X	.5th	lst	2.5th	5 th
2.	.017034	.023376	.037209	.055496
2.01	.016829	.023113	.036833	.05499
2.02	.016628	.022855	.036462	.05449
2.03	.01643	.0226	.036097	.053997
2.04	.016235	.022349	.035737	.053511
2.05	.016044	.022103	.035382	.053031
2.06	.015855	.02186	.035033	.052558
2.07	.01567	.02162	.034688	.05209
2.08	.015487	.021385	.034348	.051629
2.09	.015308	.021153	.034013	.051174
2.1	.015131	.020924	.033683	.050725
2.11	.014957	.0207	.033357	.050282
2.12	.014786	.020478	.033036	.049844
2.13	.014618	.02026	.032719	.049413
2.14	.014452	.020045	.032407	.048986
2.15	.014289	.019833	.032099	.048565
2.16	.014129	.019625	.031795	.04815
2.17	.013971	.019419	.031496	.04774
2.18	.013815	.019217	.0312	.047335
2.19	.013662	.019017	.030909	.046935
2.2	.013511	.018821	.030621	.04654
2.21	.013363	.018627	.030338	.04615
2.22	.013217	.018436	.030058	.045765
2.23	.013073	.018248	.029782	.045384
2.24	.012931	.018063	.02951	.045009
2.25	.012791	.01788	.029241	.044638
2.26	.012654	.0177	.028976	.044272
2.27	.012518	.017523	.028714	.04391
2.28	.012385	.017348	.028456	.043552
2.29	.012254	.017175	.028201	.043199
2.3	.012124	.017005	.027949	.04285
2.31	.011996	.016838	.027701	.042506
2.32	.011671	.016672	.027456	.042165
2.33	.011747	.016509	.027214	.041829
2.34	.011625	.016348	.026975	.041496
2.35	.011505	.01619	.026739	.041168
2.36	.011386	.016034	.026507	.040843
2.37	.011269	.015879	.026277	.040523
2.38	.011154	.015727	.02605	.040206
2.39	.01104	.015577	.025826	.039892
2.4	.010929	.015429	.025605	.039583

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

s/X	.5th	lst	2.5th	5 th
2.41	.010818	.015283	.025386	.039277
2.42	.010709	.015139	.025171	.038974
2.43	.010602	.014997	.024958	.038676
2.44	.010497	.014857	.024747	.03838
2.45	.010392	.014719	.02454	.038088
2.46	.01029	.014582	.024334	.037799
2.47	.010188	.014448	.024132	.037514
2.48	.010088	.014315	.023931	.037232
2.49	.00999	.014184	.023734	.036953
2.5	.009892	.014054	.023538	.036677

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

S/X	10 th	20th	30th	40th
2.	.087989	.153749	.229927	.324286
2.01	.087286	.152732	.228633	.322736
2.02	.086591	.151725	.227351	.321199
2.03	.085905	.150729	.226081	.319674
2.04	.085227	.149743	.224823	.318162
2.05	.084557	.148767	.223577	.316662
2.06	.083896	.147802	.222342	.315174
2.07	.083242	.146847	.221118	.313698
2.08	.082596	.145901	.219906	.312234
2.09	.081957	. 144966	.218704	.310782
2.1	.081327	.14404	.217514	.309341
2.11	.080703	.143123	.216334	.307912
∠.12	.080087	.142216	.215165	.306494
2.13	.079478	.141318	.214006	.305088
2.14	.078877	.140429	.212858	.303692
2.15	.078282	.139549	.211721	.302308
2.16	.077694	.138678	.210593	.300934
2.17	.077113	.137816	.209475	.299572
2.18	.076539	.136962	.208368	.29822
2.19	.075971	.136117	.20727	. 296879
2.2	.075409	.135281	.206182	.295548
2.21	.074854	. 134452	.205103	.294227
2.22	.074306	.133632	.204034	.292917
2.23	.073763	.13282	.202974	.291617
2.24	.073227	.132016	.201924	.290327
2.25	.072697	.13122	.200883	.289046
2.26	.072172	.130431	.19985	.287776
2.27	.071654	.12965	.198827	.286516
2.28	.071141	.128877	.197812	.285265
2.29	.070634	.128112	.196807	.284023
2.3	.070132	.127353	.19581	.282791
2.31	.069636	. 1.26602	.194821	.281569
2.32	.069145	.125858	.193841	.280355
2.33	.06866	.125121	.192869	.279151
2.34	.06818	.124392	.191905	.277956
2.35	.067705	.123669	.19095	.27677
2.36	.067236	.122953	.190002	.275593
2.37	.066771	.122244	. 189063	.274424
2.38	.066311	.121541	.188131	.273265
2.39	.065857	.120845	.187207	.272114
2.4	.065407	.120155	.186291	.270971

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

s/X	10th	20th	30th	40th
2,41	.064962	.119472 .118796	.185383	.269837
2.43	.064085 .063654	.118125 .117461	.183588 • .182702	.267594 .266484
2.45 2.46 2.47	.063228 .062885 .062388	.116802 .11615 .115504	.181823	.265383 .26429
2.48 2.49	.061974 .061565	.114864	.180087 .179229 .178379	.263205 .262128 .261058
2.5	.06116	.1136	.177535	.259996

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

s/X	60th	70th	80th	90th
2.	.616738	.869839	1.30081	2,273
2.01	.614769	.867802	1.29906	2,27308
2.02	.612811	.865772	1.29731	2.27314
2.03	.610865	.863749	1.29556	2.27318
2.04	.608928	.861734	1.2938	2.27319
2.05	.607003	.859726	1.29205	2.27318
2.06	.605088	.857725	1.29029	2.27316
2.07	.603184	.855732	1.28854	2.27311
2.08	.601291	.853746	1.28678	2,27303
2.09	.599408	.851768	1.28503	2,27294
2.1	.597536	.849796	1.28327	2.27283
2.11	.595674	.847833	1.28152	2.2727
2.12	.593822	.845877	1.27977	2.27255
2.13	.591981	.843928	1.27801	2.27238
2.14	.59015	.841986	1.27626	2.2722
2.15	.588329	.840052	1.27451	2.27199
2.16	.586518	.838126	1.27275	2.27177
2.17	.584717	.836206	1.271	2.27153
2.18	.582926	.834294	1.26 325	2.27127
2.19	.581145	.83239	1.2675	2.27099
2.2	.579373	.830492	1.26576	2.2707
2.21	.577612	.828603	1.26401	2.27039
2.22	.57596	.82672	1.26226	2.27006
2.23	.574118	.824845	1.26052	2.26972
2.24	.572386	.822977	1.25878	2.26936
2.25	.570663	.821116	1.25704	2.26898
2.25	.568949	.819263	1.2553	2.26859
2.27	.567245	.817417	1.25356	2.26819
2.28	.56555	.815578	1.25182	2.26777
2.29	.563865	.813746 .811922	1.25009 1.24835	2.26734 2.26689
2.3 2.31	.562189 .560522	.810105	1.24662	2.26642
2.32	.558864	.808295	1.24489	2.26595
2.33	.557215	.8064.2	1.24317	2.26546
2.34	.555575	.804696	1.24144	2.26495
2.35	.553944	.802907	1.23972	2.26444
2.36	.552322	.801126	1.238	2.26391
2.37	.550708	.799352	1.23628	2.26336
2.38	.549104	.797584	1.23457	2.26281
2.39	.547508	.795824	1.23285	2.26224
2.4	.54592	.794071	1.23114	2.26166

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

s/X	60th	70th	80th	90th
2.41	.544342	.792324	1.22943	2.26107
2.42	.542772	.790585	1.22773	2.26047
2.43	.54121	.788853	1.22602	2.26985
2.44	.539657	.787127	1.22432	2.25923
2.45	.538112	.785409	1.22262	2.25859
2.46	.536575	.783697	1.22093	2.25794
2.47	.535046	.781993	1.21924	2.25728
2.48	.533526	.780295	1.21754	2.25661
2.49	.532014	.778604	1.21586	2.25593
2.5	.53051	.776919	1.21417	2.25524

というのと関うというないなど質なるののののはは関でなるなどなどなどで変勢

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

s/₹	95th	97.5th	99th	99.5th
2.	3.60383	5.37499	8.55549	11.7408
2.01	3.60808	5.38666	8.58395	11.7891
2.02	3.61227	5.39824	8.61226	11.8372
2.02	3.61641	5.40973	8.64043	11.8852
	3.6203	5.42113	8.66845	11.9329
2.04 2.05	3.62454	5.43244	8.69633	11.9805
2.06	3.62853	5.44366	8.72407	12.0279
2.07	3.63246	5.45479	8.75167	12.0751
2.08	3.63634	5.46583	8.77912	12.1221
2.09	3.64018	5.47679	8.80643	12.169
2.1	3.64397	5.48767	8.83361	12.2157
2.11	3.6477	5.49846	8.86064	12,2622
2.12	3.65139	5.50916	8.88754	12.3085
2.13	3.65503	5.51978	8.91429	12.3546
2.14	3.65863	5.53032	8.94091	12.4006
2.15	3.66218	5.54077	8.9674	12.4464
	3.66568	5.55114	8.99374	12.492
2.16 2.17		5.56144	9.01996	12.5374
	3.66914		9.04604	12.5827
2.18	3.67255	5.57165		
2.19	3.67591	5.58178	9.07198	12.6278
2.2	3.67924	5.59184	9.09779 9.12347	12.6727 12.7174
2.21	3.68252	5.60181		12.7174
2.22 2.23	3.68575	5.61171 5.62153	9.14902 9.17444	12.762
	3.68895 3.6921	5.63127	9.19972	12.8506
2.24 2.25	3.69521	5 64094	9.22488	12.8947
2.26	3.69828	5.65053	9.24991	12.9386
2.27	3.70131	5.66005	9.27481	12.9823
2.28	3.70429	5.6695	9.29959	13.0258
2.29	3.70724	5.67887	9.32423	13.0692
2.3				13.1124
	3.71015	5.68817	9.34875	
2.31	3.71302	5.69739	9.37315	13.1554
2.32	3.71585	5.70655	9.39742	13.1983
2.33	3.71864	5.71563	9.42157	13.241
2.34	3.7214	5.72464	9.4456	13.2836
2.35	3.72412	5.73359	9.4695	13.326
2.36	3.7268	5.74246	9.49328	13.3682
2.37	3.72944	5.75127	9.51694	13.4102
2.38	3.73205	5.76	9.54048	13.4521
2.39	3.73462	5.76867	9.5639	13.4938
2.4	3.73716	5.77728	9.5872	13.5354

TABLE IV. PERCENTILES OF THE LOG-NORMAL DISTRIBUTION (Continued)

s/x̄	95th	97.5th	99th	99.5ch
2.41	3.73966	5.78581	9.61038	13.5768
2.42	3.74213	5.79428	9.63345	13.6181
2.43 2.44	3.74456 3.74696	5.80269 5.81103	9.6564 9.67923	13.6592 13.7001
2.45	3.74932	5.8193	9.70195	13.7408
2.46	3.75165	5.82752	9.72455	13.7815
2.47	3.75395	5.83567	9.74704	13.8219
2.48	3.75622	5.84375	9.76941	13.8622
2.49	3.75845	5.85178	9.79167	13.9023
2.5	3.76066	5.85974	9.81382	13.9423

*TABLE V. PERCENTAGE POINTS, b_{γ} , SUCH THAT $P[\hat{c}/c < b_{\gamma}] = \gamma$

Y							
1	0.02	0.05	0.10	0.25	0.40	0.50	0.60
5	0.604	0.683	0.766	0.951	1.116	1.238	1.37
6	0.623	0.697	0.778	0.937	1.080	1.188	1.30
7	0.639	0.709	0.785	0.930	1.059	1.155	1,25
8	0.653	0.720	0.792	0.926	1.045	1.131	1.22
9	0.665	0.729	0.797	0.925	1.035	1.114	1.19
10	0.676	0.738	0.802	0.924	1.028	1.101	1.17
11	0.686	0.745	0.807	0.924	1.022	1.090	1.16
12	0.695	0.752	0.811	C.924	1.017	1.082	1.15
13	0.703	0.759	0.815	0.924	1.014	1.075	1.14
14	0.710	0.764	0.819	0.925	1.011	1.069	1.13
15	0.716	0.770	0.823	0.925	1.008	1.064	1.12
16	0.723	0.775	0.826	0.926	1.006	1.059	1.11
17	0.728	0.779	0.829	0.927	1.004	1.056	1.11
18	0.734	0.784	0.832	0.927	1.003	1.052	1.10
19	0.739	0.788	0.835	0.928	1.001	1.049	1.10
20	0.743	0.791	0.838	0.929	1.000	1.047	1.09
22	0.752	0.798	0.843	0.930	0.998	1.042	1.09
24	0.759	0.805	0.848	0.932	0.997	1.038	1,08
26	0.766	0.810	0.852	0.933	0.995	1.035	1.07
28	0.772	0.815	0.856	0.934	0.994	1.033	1.07
30	0.778	0.820	0.860	0.935	0.993	1.030	1.07
32	0.783	0.824	0.863	0.937	0.993	1.028	1.00
34	0.788	0.828	0.866	0.938	0.992	1.027	1.06
36	0.793	0.832	0.869	0.939	0.992	1.025	1.00
38	0.797	0.835	0.872	0.940	0.991	1.024	1.05
40	0.801	0.839	0.875	0.940	0.991	1.023	1.0
42	0.804	0.842	0.877	0.941	0.990	1.022	1.05
44	0.808	0.845	0.880	0.942	0.990	1.021	1.0
46	0.811	0.847	0.882	0.943	0.990	1.020	1.05
48	0.814	0.850	0.884	0.944	0.990	1.019	1.0
50	0.817	0.852	0.886	0.944	0.989	1.018	1.04
52	0.820	0.854	0.888	0.945	0.989	1.017	1.0
54	0.822	0.857	0.890	0.946	0.989	1.017	1.04
56	0.825	0.859	0.891	0.946	0.989	1.016	1.04
58	0.827	0.861	0.893	0.947	0.989	1.015	1.04
60	0.830	0.863	0.894	0.948	0.989	1.015	1.0
62	0.832	0.864	0.896	0.948	0.989	1.014	1.04
64	0.834	0.866	0.897	0.949	0.989	1.014	1.04

^{*}Reproduced from "Inferences on the Parameters of the Weibull Distribution," by Darrel R. Thoman, Lee J. Bain, and Charles E. Antle, Technometrics, Vol. 11 No. 3, (1969), pp. 445-460.

TABLE V. PERCENTAGE POINTS, b_{γ} , SUCH THAT $P[\widehat{c}/c \le b_{\gamma}] = \gamma$ (Continued)

Υ	Υ						
N	0.70	0.75	0.80	0.85	0.90	0.95	0.98
66	0.836	0.868	0.899	0.949	0,988	1.014	1.039
68	0,838	0.869	0.900	0.950	0.988	1.013	1.038
70	0.840	0.871	0.901	0.950	0.988	1.013	1.037
72	0.841	0.872	0.903	0.951	0.988	1.012	1.036
74	0.843	0.874	0.904	0.951	0.988	1.012	1.036
76	0.845	0.875	0.905	0.952	0.988	1.012	1.035
78	0.846	0.876	0.906	0.952	0.988	1.011	1.034
80	0.848	0.878	0.907	0.952	0.988	1.011	1.034
85	0.852	0.881	0.910	0.953	0.988	1.011	1.032
90	0.855	0.883	0.912	0.954	0.988	1.010	1.031
95	0.858	0.886	0.914	0.955	0.988	1.009	1.030
100	0.861	0.888	0.916	0.956	0.988	1.009	1.029
110	0.866	0.893	0.920	0.958	0.988	1.008	1.027
120	0.871	0.897	0.923	0.959	0.988	1.007	1.025

TABLE V. PERCENTAGE POINTS, b_{γ} , SUCH THAT $P[\widehat{c}/c < b_{\gamma}] = \gamma$ (Continued)

Reserved Systems reserved to account processing

	0.70	0.75	0.80	0.85	0.90	0.95	0.98
5	1.557	1.671	1.512	2.001	2.277	2.779	3.518
6	1.453	1.543	1.662	1.812	2.030	2.436	3.067
7	1.386	1.461	1.561	1.688	1.861	2.183	2.640
ઠ	1.338	1.404	1.491	1.602	1.747	2.015	2.377
9	1.303	1.361	1.439	1.538	1.665	1.896	2.199
10	1.275	1.328	1.399	1.489	1.602	1.807	2.070
11	1.253	1.302	1.367	1.450	1.553	1.738	1.972
12	1.234	1.281	1.341	1.418	1.513	1.682	1.894
13	1.219	1.263	1.319	1.391	1.480	1.636	1.830
14	1.206	1.248	1.300	1.369	1.452	1.597	1.77
15	1.195	1.234	1.284	1.349	1.427	1.564	1.732
16	1.185	1.223	1.270	1.332	1.406	1.535	1.693
17	1.176	1.213	1.258	1.317	1.388	1.510	1.660
18	1.168	1.204	1.247	1.303	1.371	1.487	1.630
19	1.162	1.196	1.237	1.291	1.356	1.467	1.603
20	1.155	1.188	1.228	1.281	1.343	1.449	1.57
22	1.144	1.176	1.213	1.262	1.320	1.418	1.53
24	1.135	1.165	1.200	1.246	1.301	1.392	1.50
26	1.128	1.156	1.189	1.232	1.284	1.370	1.475
28	1.121	1.148	1.180	1.220	1.269	1.351	1.450
30	1.115	1.141	1.171	1.210	1.257	1.334	1.429
32	1.110	1.135	1.164	1.201	1.246	1.319	1.409
34	1.105	1.129	1.157	1.193	1.236	1.306	1.393
36	1.101	1.125	1.151	1.186	1.227	1.294	1.37
38	1.097	1.120	1.146	1.179	1.219	1.283	1.363
40	1.094	1.116	1.141	1.173	1.211	1.273	1.35
42	1.091	1.112	1.137	1.167	1.204	1.265	1.339
44	1.088	1.109	1.132	1.162	1.198	1.256	1.329
46	1.085	1.106	1.129	1.158	1.192	1.249	1.319
48	1.083	1.103	1.125	1.153	1.187	1.242	1.310
50	1.081	1.100	1.122	1.149	1.182	1.235	1.30
52	1.078	1.098	1.119	1.145	1.177	1.229	1.294
54	1.076	1.095	1.116	1.142	1.173	1.224	1.286
56	1.075	1.093	1.113	1.139	1.169	1.218	1.280
58	1.073	1.091	1.111	1.135	1.165	1.213	1.273
60	1.071	1.089	1.108	1.133	1.162	1.208	1.267
62	1.070	1.087	1.106	1.130	1.158	1.204	1.262
64	1.068	1.086	1.104	1.127	1.155	1.200	1.256
66	1.067	1.084	1.102	1.125	1.152	1.196	1.25
68	1.066	1.083	1.100	1.122	1.149	1.192	1.246
70	1.064	1.081	1.098	1.120	1.146	1.188	1.242
72	1.063	1.080	1.097	1.118	1.144	1.185	1.237

TABLE V. PERCENTAGE POINTS, b_{γ} , SUCH THAT $P[\widehat{c}/c < b_{\gamma}] = Y \text{ (Continued)}$

Υ								
N	0.70	0.75	0.80	0.85	0.90	0.95	0.98	
74	1,062	1.078	1.095	1.116	1.141	1.182	1.233	
76	1.061	1.077	1.093	1.114	1,139	1.179	1.229	
78	1.060	1.076	1.092	1.112	1,136	1.176	1.225	
80	1.059	1.075	1.090	1,110	1.134	1,173	1,222	
85	1.057	1.072	1.087	1.106	1,129	1.166	1.213	
90	1.055	1.069	1.084	1.102	1.124	1,160	1,206	
95	1.053	1.067	1.081	1.099	1.120	1,155	1.199	
100	1.051	1.065	1.079	1.096	1.116	1.150	1,192	
110	1.048	1.061	1.074	1.090	1.110	1.141	1,181	
120	1.046	1.058	1.070	1.086	1.104	1.133	1.171	

*TABLE VI. PERCENTAGE POINTS, ℓ_{γ} , SUCH THAT P [\widehat{c} ℓ_{n} (\widehat{b}/b) < ℓ_{γ}] = γ

				•			
Υ							
N	0.02	0,05	0.10	0.25	0.40	0.50	0.60
5	-1.631	-1.247	-0.888	-0.444	-0.241	-0.056	0.085
6	-1.396	-1.007	-0.740	-0.385	-0.194	-0.045	0.079
7	-1.196	-0.874	-0.652	-0.344	-0.168	-0.038	0.074
8	-1.056	-0.784	-0.591	-0.313	-0.150	-0.032	0.070
9	-0.954	-0.717	-0.544	-0.289	- 0.137	-0.029	0.067
10	-0.876	-0.665	-0.507	-0.269	-0.126	-0.026	0.065
11	-0.813	-0.622	-0.477	-0.253	-0.118	-0.023	0.062
12	-0.762	-0,587	-0.451	-0.239	-0.111	-0.021	0.061
13	-0.719	- 0.557	-0.429	-0.228	-0.106	-0.019	0.059
14	-0.683	-0.532	-0.410	-0.217	-0.100	-0.018	0.057
15	-0.651	-0.509	-0.393	-0.208	-0.096	-0.016	0.056
16	-0.624	-0.489	-0.379	-0.200	-0.092	-0.015	0.054
17	-0.599	-0.471	-0.365	-0.193	-0.089	-0.014	0.053
18	-0.578	-0.455	-0.353	-0.187	-0.085	-0.013	0.052
19	-0.558	-0.441	-0.342	-0.181	-0.083	-0.013	0.051
20	-0.540	-0.428	-0.332	-0.175	-0.080	-0.012	0.050
22	-0.509	-0.404	-0.314	-0.166	-0.075	-0.011	0.048
24	-0.483	-0.384	-0.299	-0.158	-0.071	-0.009	0.047
26	-0.460	-0.367	-0.286	-0.150	- 0.068	-0.009	0.046
28	-0.441	-0.352	-0.274	-0.144	-0.065	-0.008	0.044
30	-0.423	-0.338	-0.264	-0.139	-0.062	-0.007	0.043
32	-0.408	-0,326	-0.254	-0.134	-0.059	-0.006	0.042
34	-0.394	-0.315	-0.246	-0.129	-0.057	-0.006	0.041
36	-0.382	-0.305	-0.238	-0.125	-0.055	-0.005	0.040
38	-0.370	-0.296	-0.231	-0.121	-0.053	-0.005	0.040
40	-0.360	-0.288	-0.224	-0.118	-0.052	-0.004	0.039
42	-0.350	-0.280	-0.218	-0.115	-0.050	-0.004	0.038
44	-0.341	-0.273	-0.213	-0.112	-0.048	-0.004	0.037
46	-0.333	-0.266	-0.208	-0.109	-0.047	-0.003	0.037
48	-0.325	-0.260	-0.203	-0.106	-0.046	-0.003	0.036
50 53	-0.318	-0.254	-0.198	-0.104	-0.045	-0.003	0.036
52 57	-0.312	-0.249	-0.194	-0.102	-0.043	-0.003	0.035
54	-0.305	-0.244	-0.190	-0.100	-0.042	-0.002	0.035
56	-0.299	-0.239	-0.186	-0.098	-0.041	-0.002	0.034
58	-0.294	-0.234	-0.183	-0.096	-0.040	-0.002	0.034
60	-0.289	-0.230	-0.179	-0.094	-0.039	-0.002	0.033
62	-0.284	-0.226	-0.176	-0.092	-0.039	-0.002	0.033
64	-0.279	-0.222	-0.173	-0.091	-0.038	-0.001	0.032

^{*}Reproduced from "Inferences on the Parameters of the Weibull Distribution," by Darrel R. Thoman, Lee J. Bain, and Charles E. Antle, Technometrics, Vol. 11, No. 3, (1969), pp. 445-460.

TABLE VI. PERCENTAGE POINTS, ℓ_{γ} , SUCH THAT P (\hat{b}/b) < ℓ_{γ}] = γ (Continued)

Υ	Υ						
N	0.02	0.05	0.10	0.25	0.40	0.50	0.60
66	-0.274	-0.218	-0.170	-0.089	-0.037	-0.001	0.032
68	-0.270	-0.215	-0.167	-0.088	-0.036	-0.001	0.032
70	-0.266	-0.211	-0.165	-0.086	-0.035	-0.001	0.031
72	-0.262	-0.208	-0.162	-0.085	-0.035	-0.001	0.031
74	-0.259	-0.205	-0.160	-0.084	-0.034	-0.001	0.031
76	~0.255	-0.202	-0.158	-0.083	-0.033	-0.001	0.030
78	-0.252	-0.199	-0.155	-0.081	-0.033	-0.001	0.030
80	-0.248	-0.197	-0.153	-0.080	-0.032	-0.000	0.030
85	-0.241	-0.190	-0.148	-0.078	-0.031	-0.000	0.029
90	-0.234	-0.184	-0.144	-0.075	-0.030	0.000	0.028
95	-0.227	-0.179	-0.139	-0.073	-0.028	0.000	0.028
100	-0.221	-0.174	-0.136	-0.071	-0.027	0.000	0.02
110	-0.211	-0.165	-0.129	-0.067	-0.025	0.001	0.026
120	-0.202	-0.158	-0.123	-0.064	-0.024	0.001	0.02

TABLE VI. PERCENTAGE POINTS, ℓ_{γ} , SUCH THAT

P [\widehat{c} $\ln (\widehat{b}/b) < \ell_{\gamma}$] = γ (Continued)

							_~-
Υ							
N	0.70	0.75	0.80	0.85	0.90	0.95	0.98
5	0.254	0.349	0.452	0.587	0.772	0.107	1.582
6	0.221	0,302	0.404	0.516	0.666	0.939	1.291
7	0.200	0.272	0.362	0.465	0.598	0.829	1.120
8	0.185	0.251	0.331	0.427	0.547	0.751	1.003
9	0.174	0.235	0.307	0.397	0.507	0.691	0.917
10	0.165	0.222	0.288	0.372	0.475	0.644	0.851
11	0.157	0.211	0.273	0.351	0.448	0.605	0.797
12	0.150	0.202	0.260	0.334	0.425	0.572	0.752
13	0.145	0.194	0.249	0.319	0.406	0.544	0.714
14	0.140	0.187	0.239	0.306	0.389	0.520	0.681
15	0.135	0.180	0.230	0.294	0.374	0.499	0.653
16	0.131	0.175	0.223	0.284	0.360	0.480	0.627
17	0.128	0.170	0.216	0.274	0.348	0.463	0.605
18	0.124	0.165	0.209	0.266	0.338	0.447	0.584
19	0.121	0.161	0.204	0.258	0.328	0.433	0.566
20	0.118	0,157	0.199	0.251	0.318	0.421	0.549
22	0.113	0.150	0.189	0.239	0.302	0,398	0.519
24	0.109	0.144	0.181	0.228	0.288	0.379	0.494
26	0.105	0.138	0.174	0.219	0.276	0.362	0.472
28	0.102	0.134	0.168	0.210	0.265	0.347.	0.453
30	0.098	0.129	0.163	0.203	0.256	0.334	0.435
32	0.095	0.125	0.158	0.197	0.247	0.323	0.420
34	0.093	0.122	0.153	0.191	0.239	0.312	0.406
36	0.090	0.118	0.149	0.185	0.232	0.302	0.393
38	0.088	0.115	0.145	0.180	0.226	0.293	0.382
40	0.086	0.113	0.142	0.175	0.220	0.285	0.371
42	0.084	0.110	0.139	0.171	0.214	0,278	0.361
44	0.082	0.108	0.136	0.167	0.209	0.271	0.352
.46	0.080	0.105	0.133	0.164	0.204	0.264	0.344
48	0.079	0.103	0.130	0.160	0.199	0.258	0.336
50	0.077	0.101	0.128	0.157	0.195	0.253	0.328
52	0.076	0.099	0.126	0.154	0.191	0.247	0.321
54	0.074	0.097	0.123	0.151	0.187	0.243	0.315
6ز	0.073	0.096	0.121	0.148	0.184	0.238	0.309
58	0.072	0.094	0.119	0.146	0.181	0.233	0.303
60	0.071	0.092	0.117	0.143	0.177	0.229	0.297
62	0.070	0.091	0.116	0.141	0.174	0.225	0.292
64	0.068	0.089	0.114	0.139	0.171	0.221	0.287
66	0.067	0.088	0.112	0.137	0.169	0.218	0.282
68	0.066	0.087	0.111	0.135	0.166	0.214	0.278

TABLE VI. PERCENTAGE POINTS, ℓ_{γ} , SUCH THAT

P [\hat{c} ln (\hat{b}/b) < ℓ_{γ}] = γ (Continued)

Υ							
N	0.70	0.75	0.80	0.85	0.90	0.95	0.98
70	0.065	0.085	0.109	0.133	0.164	0.211	0.274
72	0.064	0.084	0.108	0.131	0.161	0.208	0.269
74	0.064	0.083	0.107	0.129	0.159	0,205	0.266
76	0.063	0.082	0.105	0.128	0.157	0.202	0.262
78	0.062	0.081	0.104	0.126	0.155	0.199	0.258
80	0.061	0.080	0.103	0.125	0.153	0.197	0.255
85	0.059	0.077	0.100	0.121	0.148	0.190	0.246
90	0.057	0.075	0.097	0.118	0.143	0.185	0.239
95	0.056	0.073	0.095	0.115	0.139	0.179	0.232
100	0.054	0.071	0.093	0.112	0.136	0.175	0.226
110	0.051	0.067	0.089	0.107	0.129	0.166	0.215
120	0.049	0.064	0.085	0.103	0.123	0.159	0.20

TABLE VII. TABLE OF COEFFICIENTS FOR COMPUTING $\mathbf{z_a}$ AND $\mathbf{z_b}^{\star}$

							n = 1	l0							
p=r/n		נ	Ļ		7	' /:	10		9	5/:	10		2	/1	0
1	ai		bi		ai		bi		ai		bi		ai		bi
1	.03958	_	.07107	_	.00255	_	.12531		.08169	_	.18478	-	.67530	_	.46452
2			.07334				.12299		-		.17371		1.67530		.46452
3	.06219	_	.07177		.03094	-	.11279	-	.01793	-	.14970				
4	.07342	_	.06675		.05228	-	.09525		.02859	_	.11335				
5	.08512	_	.05797				.06949		1.12561		-				
6	.09767	-	.04452		.10833	-	.03336								
7	.11155	_	.02459		.72057		.55919								
8	.12761		.00548												
9	.14751		.05431												
10	.20427		.35022												

^{*}Reproduced from "An Exact Asymptotically Efficient Confidence Bound for Reliability in the Case of the Weibull Distribution," by M. V. Johns, Jr. and G. J. Lieberman, Technometrics, Vol. 8, No. 1, (1966), pp. 135-175.

				n = 15		-		
p=r/n	1		11/1	5	7/	15	3/:	15
i	ai	bi	ai	bi	ai	bi	aį	bi
1	.02383 -	.04619	.00065 -	.07776 -	.07407 -	.13306 -	.47594 -	.31963
2	.02932 -	.04830	.00683 -			.13055 -		
3	.03452 -	.04890	.01367 -	.07754 -	.04717 -	.12274	1.88740	.61260
4 5	.03961 -	.04832	.02120 -	.07379 -	.02811 -	.11056		
5	.04471 -	.04667	.02950 -	.06793 -	.00541 -			
6	.04990 -	.04392	.03871 -	.05989	.02125 -	.07332		
7	.05525 -	.03996	.04899 -	.04941	1.19616	.66438		
8	.06084 -	.03461	.06059 -	.03610				
9	.u6677 -	.02757	.07386 -	.01931				
10	.07315 -	.01835	.08930	.00194				
11	.08016 -	.00619	.61672	.53884				
12	.08808	.01025						
13	.09740	.03359						
14	.10911	.06982						
15	.14734	.29532						
				n = 20				
p=r/n	1	ļ	15/2	20	10/	20	5/	20
i	ai	b ₁	ai	bi	aį	bi	ai	bi
1	.01682 -	03402	.00120 -	.05593 -	.04527 -	.09198 -	-24498 -	.1931
2	.02007 -					.09230 -		

p=r/n	1		15/	20		10)/2	20		5	/2	O
i	ai	bı	ai	bi		aį		bi		ai		bi
1	.01682 -	.03402	.00120 -	.05593	-	.04527	-	.09198	_	.24498	_	.19315
2	.02007 -	.03564	.00456 -	.05745 •	-	.04032	-	.09230	-	.22587	-	.18644
3	.02312 -	.03645	.00816 -	.05754	_	.03371	_	.09010	_	.19843	-	.17383
4	.02607 -	.03667	.01201 -	.05657 -	_	.02574	-	.08597	_	.16426	-	.15659
5	.02898 -	.03639	.01612 -	.05468	-	.01650	_	.08013		1.83354	-	.71001
6	.03189 -	.03563	.02053 -	.05190 -	-	.00596	-	.07264				
7	.03482 -	.03441	.02526 -	.04822		.00595	_	.06345				
8	.03780 -	.03269	.03037 -	.04361		.01935	-	.05246				
9	.04086 -	.03045	.03591 -	.03798		.03444	-	.03948				
10	.04401 -	.02762	.04196 -			1.10777	-	.66851				
11	.04729 -		.04862 -									
12	.05074 -		.05600 -									
13	.05439 -		.06428 -									
14	.05830 -			.01235								
15	.06257	.00016	.56132	.52087								
16	.06730	.01054										
17	.07268	.02419										
18	.07906	.04312										
19	.08714	.07197										
20	.11608	.25640										

TABLE VII. TABLE OF COEFFICIENTS FOR COMPUTING Za AND Zb (Continued)

n = 30

p=r/n	1	22/30	n = 30	15/30)	7/3	10
1	a _i b _i	81	bi	ai	bi	ai	b ₁
1	.0104602215	001050	3780 -	.03092	06072 -	.18830 -	.13857
2	.0120102314	.000420	3893 -	.02916	06164 -	.18110 -	.13688
3	.0134502379	.001980		.02675		.17012 -	.13259
4	.0148302419		3951 -		06063 -	.15631 -	.12611
5	.0161802440	.005360	3923 -	.02052	05914 -	.14008 -	.11862
6	.0175102445	.007180	3863 -	.01679	05710 -	.12169 -	.10937
7	.0188202434	.009100	3775 -	.01267	05453	1.95751	.76245
8	.0201302409	.011110	3658 -	.00816	05146		
9	.0214502369	.013230	3513 -	.00325	04788		
10	.0227702315	.015460	3339	.00209	04379		
11	.0241102246	.017810	3137	.00787	.03915		
12	.0254602162	.020300	2903	.01413	03393		
13	.0268402062		2636	.02092	02811		
14	.0282401944		2334	.02827			
15	.0296901807		1992	1.09870 -			
16	.0311701648		1607	1.070,0	,00117		
17	.0327001466		1173				
18	.0342801257		0683				
19	.0359301017		00129				
20	.0376700740		0500				
21	.0394900420		01218				
22	.0414300047		2514				
23	.04350 .00391	.50702 .5					
24	.04574 .00913						
25	.04821 .01545						
25	.05096 .02331						
27	.05412 .03343						
28	.05789 .04719						
29							
	.06270 .06779						
30	.08227 .20535						
			n = 50				
p=r/n	1	37/50		25/50)	12/5	50
i	a _i b _i	ai	bi	a ₁	b ₁	ai	bi
1	.0058801296	000670	02197 -	.01880 -	03594 -	.10798 -	.08046
2	.0064801344	-		.01837 -		.10666 -	•
3	.0070501380	.000380		.01772 -			.08013
4	.0075801407		02325 -		03701 -		.07896
5	.0081001428		02340 -		.03689 -	.09675 -	.07731
	•						
6 7	.0086101444	.002090			03661 -	.09213 -	
	.0091101456	.002700			.03619 -	.08699 -	.07287
8	.0096001463	.003330)2332 -	.01260 -	.03563 -	.08135 -	.0/013

TABLE VII. TABLE OF COEFFICIENTS FOR COMPUTING Za AND Zb (Continued)

		n = 50		
p=r/n	1	37/50	25/50	12/50
1	a _i b _i	a _i b _i	a ₁ b ₁	a _i b _i
9	.0100801467	.0039802315 -	.0112903495 -	.0752306709
10	.0105701467	.0046402291 -	.0098903415 -	
11	.0110501463	.0053202261 -	.0084003324 -	.0616206008
12	.0115201457	.0060302224 -	.0068303221	1.98227 .80675
13	.0120001447	.0067502182 -	.0051703107	
14	.0124801434	.0075002133 ~	.0034202982	
15	.0129601418	.0082702079	.0015802846	
16	.0134401399	.00907 ~ .02018	.0003502698	
17	.0139301376	.0098901951	.0023802538	
18	.0144201351	.0107301877	.0045102366	
19	.0149101321	.0116101796	.0067502181	
20	.0154001289	.0125201709	.0091001984	
21	.0159101252	.0134501614	.0115601772	
22	.0164201212	.0144301512	.0141501546	
23	.0169301168	.0154401401	.0168701305	
24	.0174501119	.0164801282	.0197301047	
25	.0179801067	.0175701154	1.09036 .69008	
26	.0185201009	.0187101017		
27	.0190700946	.0198900869		
28	.0196400877	.0211300709		
29	.0202100803	.0224300538		
30	.0208000722	.0237900354		
31	.0214000634	.0252100154		
32	.0220200538	.0267200060		
33	.0226600434	.0283100203		
34	.0233200319	.0299900545		
35	.0240100194	.03178 .00820		
36 37	.0247100057 .02545 .00095	.03369 .01119 .53455 .51043		
38	.02545 .00095 .02623 .00263	.55455 .51045		
39	.02704 .00450			
40	.02789 .00659			
41	.02880 .00894			
42	.02977 .01163			
43	.03082 .01473			
44	.03196 .01834			
45	.03322 .02266			
46	.03464 .02793			
47	.03627 .03462			
48	.03823 .04360			
49	.04074 .05685			
50	.05269 .15062			
- -	• • • • • •			

TABLE VII. TABLE OF COEFFICIENTS FOR COMPUTING $\hat{\tau}_{a}$ AND $\hat{\mathbf{z}}_{b}$ (Continued)

p=r/n		1	75/1	n = 100	50/10	o	25/10	0
		<u> </u>	75/ 6					
i	aı	b ₁	a 1	b_i	ai	bi	aı	bi
ı	.00277 -	.00632 -	.00020 -	.01056 -	.00944 -	.01768 -	.04999 -	.03820
2 3	.00294 -	.00648 -	.00013 -	.01079 -	.00940 -	.01797 -	.05003 ~	.03854
3	.00310 -	.00662 -	.00000 -	.01096 -	.00931 -	.01817 -	.04981 -	.03868
4	.00325 -	.00673	.00013 -	.01109 -	.00918 -	.01831 -	.04249 -	.03869
5	- 00339	.00682	.00027 -	.01121 -	.00902 -	.01841 -	.04889 -	.03861
6	.00353 -	.00690	.00040 -	.01130 -	.00885 -	.01847 -	.04824 -	.03844
7	.00367 -	.00698	.00054 -	01137 -	.00865 -	.01850 -	.04750 -	.03820
8	.00380 -	.00704	.00068 -	.01143 -	.00844 -	.01851 -	.04668 -	.03789
9	.00393 -	.00710	.00082 -	.11477 -	.00821 -	.01848 -	.04577 -	.03754
10	.00406 -	.00715	.00097 -	.01150 -	.00797 -	.01844 -	.04479 -	.03713
11	.00419 -			.01152 -	.00771 -	.01838 -	.04375 -	.03667
12	.00432 -	.00723	.00126 -	.01153 -		.01829 -	.04264 -	.03616
13	.00445 -	.00726		01153 -	.00716 -	.01819 -	.04146 -	
14	.00457 -			.01152 -		.01808 -	.04023 -	
15	.00469 -			01150 -		.01794 -	.03894 -	
16	.00482 -			01147 -		.01779 -	.03759 -	
17	.00494 -			01143 -		.01762 -	.03619 -	
18	.00506 ~			.01138 -		.01744 -	.03473 -	
19	.00519 -			01133 -		.01724 ~		
20	.00531 -			.01127 -		.01703 -	.03165 -	
21	.00543 -			01120 -		.01681 -		
22	.00555 -			.01112 -		.01656 -		
23	.00567 -			01103 -		.01631 -		
24	.00579 -			01094 -		.01604 -		
25	.00591 -			01084 -	.00290 -		1.97141	.83495
26 27	.00603 -			01073 - .01061 -	.00248 -			
28	.00627 -			01049 -	.00204 -			
29	.00627 -			01036 -	.00133 -			
36	.00652 -			01022 -	.00065 -			
31	.00664 -			01007 -	.00017 -			
32	.00676 -			00992	.00033 -			
33	.00688 -			00976	.00084 -			
34	.00701 -			00959	.00137 -			
35	.00713 -	00680	.00533	00941	.00190 -	.01212		
36	.00725 -			00922	.00245 -			
37	.00738 -		.00575	00903	.00301 -	.01121		
38		.00658		00882	.00359 -			
39	.00763 -	-		00861	.00418 -			
40		00611		00839	.00479 -			

TABLE VII. TABLE OF COEFFICIENTS FOR COMPUTING $\mathbf{Z_a}$ AND $\mathbf{Z_b}$ (Continued)

				n = 100)			
p=r/n	1		75/1	00	50/1	.00	25/1	100
i	ai	bi	ai	bi	ai	b _i	åi	b _i
41	.007880	00632	.00664 -	.00816	.00541 -	.00918		
42	.008010	00622	.00688 -	.00792	-00695	.00863		
43	.008130	00612	.00711 ~	.00767	-00670 -	.00806		
44	.00826	00601	.00736 -	.00741	.00737 -	.00747		
45		00590	.00760 -		.00805 -			
46	.00852	00579	.00785 -		.00875 -			
47	.008660		.00811 -		.00948 -			
48	.00879		.00837 -		.01022 -			
49		00540	.00863 -		.01097 -			
50	.00906		.00890 -		1.08321	.69595		
21	.00919		.00918 -					
52	.00933		.00946 -					
53	.00947		.00975 -					
54	.00961		.01005 -					
55	.00975		.01035 -					
56	.00990		.01065 -					
57	.01004		.01097 -					
58	.01019		.01129 -					
59	.01034		.01162 -					
60	.01049		.01196 -					
61	.01064		.01231 -					
62	.01080		.01266 -					
63	.01095		.01303 -					
64	.01111		.01341	.00046				
65	.01127		.01379	.00104				
66	.01144		.01419	.00163				
67	.01160		.01460	.00226				
68	.01177		.01502	.00291				
69	.01195		.01546	.00359				
70		00074	.01591	.00429				
71		00039	.01637	.00504				
72		00002	.01685	.00581				
73		00037	.01735	.00663				
74		00077	.01786	.00748				
75		00120	.49752	.49223				
76		.00165						
77	.01347 .	.00213						

TABLE VII. TABLE OF COEFFICIENTS FOR COMPUTING $\mathbf{z_a}$ AND $\mathbf{z_b}$ (Continued)

				n = 100	0			
p=r/n	_	L	75/	100	80/	100	25/	100
1	ai	bi	ai	bi	4 _i	b _i	4 _i	bi
78	.01368	.00264						
79	.01390	.00317						
80	.01412	.00374						
81	.01436	.00435						
82	.01459	.00500						
83	.01484	.00569						
84	.01510	.00643						
85	.01537	.00723						
86	.01565	.00810						
87	.01594	.00904						
88	.01625	.01006						
89	-01657	.01119						•
90	.01692	.01243						
91	.01728	.01382						
92	.01768	.01538						
93	.01810	.01716						
94	.01857	.01922						
95	.01908	.02164						
96	.01967	.02458						
97	.02034	.02826						
98	.02115	.03314						
99	.02220	.01027						
100	.02829	.09493			•			

のでは、「一般のでは、1000年のでは

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR R(to)*

		n = p =	10 r/n = 2/10		
	Y = 0.50	Y = 0.75	γ = 0.90	Y = 0.95	γ = 0.99
2 /2 b	L*(Z/Z)	L*(2/2)	L*(2/2)	L*(2/2 _b)	L*(2/2)
.0	.726	.543	.319	.154	.010
.1	.734	. 564	.357	.193	.022
. 2	.742	.585	.381	.224	.045
.3	.749	.599	.409	.274	.072
.4	.755	.614	.439	.314	. 104
.5	.763	.626	.469	.345	.135
.6	.773	.647	.493	.385	.169
.7	.780	.660	.520	.423	.224
.8	.789	.677	.539	.450	.256
.9	.797	.690	.560	•477	.304
1.0	.806	.702	.585	.508	.338
1.1	.814	.717	.601	.538	.412
1.2	.822	.725	.614	.556	.428
1.3	.828	.738	.634	-578	.467
1.4	.835	.751	.648	•594	.484
1.5	.842	.759	.661	.609	.501
1.6	.848	.769	.672	.618	.514
1.7	.855	.778	.685	.626	.526
1.8	.860	.785	.694	.639	.541
1.9	.865	.793	.708	.645	.545
2.0	.873	.800	.717	.652	.554
2.1	.878	-806	.722	.659	.562
2.2	.883	.811	.731	.670	.569
2.3	.888	.815	.738	.675	.572
2.4	.892	.821	.743	. 686	.578
2.5	.897	-829	.746	.688	.578
2.6	.900	.833	.751	.691	.586
2.7	.903	.838	.757	.694	.589
2.8	.907	.842	.760	.700	.595
2.9	.912	.849	.767	.707	.596
3.0	.915	.853	.773	.711	.597
3.1	.918	.855	.779	.714	.600
3.2	.921	.859	.784	.717	.605
3.3	.924	.863	.786	.721	.609
3.4	.926	.665	.791	.724	-609
3.5	.928	.869	.796	.728	.609
3.6	.930	.870	.798	.732	.609
3.7	.932	.873	.800	.736	.609

 $L^{*}(\frac{Z}{a}/\frac{Z}{b})$ is the exact lower confidence bound for $R(t_0)$

^{*}Reproduced from "An Exact Asymptotically Efficient Confidence Bound for Reliability in the Case of the Weibull Distribution," by M. V. Johns, Jr. and G. J. Lieberman, Technometrics, Vol. 8, No. 1, (1966), pp. 135-175.

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR $R(t_0)$ (Continued)

	n = 10 $p = r/n = 2/10$										
	$\gamma = 0.50$ $\gamma = 0.75$ $\gamma = 0.90$ $\gamma = 0.95$										
z _a /z _b	$L*(Z_a/Z_b)$	L*(2 _a /2 _b)	$L^{*}(Z_{a}/Z_{b})$	$L^{*}(Z_{a}/Z_{b})$	L*(Z _a /Z _b)						
3.8	.934	.875	.804	.740	.609						
3.9	.937	.879	.807	.745	.611						
4.0	.939	.880	.809	.748	.613						
4.1	.941	.883	.810	.752	.616						
4.2	. 944	.887	.813	.753	.617						
4.3	.946	.890	.816	.754	.617						
4.4	.948	.892	.818	.755	.618						
4.5	.950	.894	.820	.756	.622						
4.6	.951	.896	.823	.759	.623						
4.7	.953	.899	.825	.762	.623						
4.8	.955	.900	.826	.764	.623						
4.9	.957	.901	.830	.766	.626						
5.0	.959	.902	.833	.769	.628						

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR R(to) (Continued)

		n = .	10 r/n = 5/10		
	$\gamma = 0.50$	$\gamma = 0.75$	$\gamma = 0.90$	$\gamma = 0.95$	γ - 0.99
z _a /z _b	L*(Z _a /Z _b)	L*(2 _a /2 _b)	L*(Z ₄ /Z _b)	L*(Z ₄ /Z _b)	L*(Z _a /Z _b)
.0	.464	.341	.244	.193	.095
.1	.490	.374	.281	.234	.126
.2	.516	.403	.315	.270	. 153
.3	.543	.434	.350	.304	.180
. 4	.568	.466	.381	.334	.217
.5	.593	.493	.410	.357	.236
.6	,617	.518	.436	.386	,269
.7	.640	.542	.462	.413	.300
.8	.663	.568	.484	.430	.327
.9	.684	.589	.508	.455	.352
1.0	.703	.611	.531	.475	.378
1.1	.720	.633	.543	.495	.404
1.2	.738	.653	.564	.513	.426
1.3	.766	.674	.581	.526	.440
1.4	.771	.692	.599	.540	.453
1.5	.789	.707	.616	.557	.467
1.6	.805	.719	.631	.573	.486
1.7	.817	.731	.643	.589	.495
1.8	.829	.745	.657	.603	.505
1.9	.840	.759	.670	.618	.518
2.0	.850	.773	.683	.630	.530
2.1	.859	.784	.696	.642	.538
2.2	.868	.794	.707	.651	.551
2.3	.877	.804	.720	.662	.561
2.4	.885	.815	.733	.671	.568
2.5	.892	.824	.742	.678	.576
2.6	.899	.832	.750	.687	.592
2.7	.906	.843	.760	.696	.606
2.8	.912	.850	.771	.707	.616
2.9	.919	.858	.780	.718	.627
3.0	.924	.864	.789	.724	.634
				.730	.640
3.1	.929	.870	.797		.646
3.2	.934	.878	.806	.736 .743	.652
3.3	.939	.885	.813	.743 .751	,657
3.4	.942	,891	.820	.751 .756	.663
3.5	.946	.896	.826 .834	.762	.669
3.6	.950 .953	.901 .906	.841	.767	.675
3.7 3.8	.953 .956	.906 .911	.841 .846	.775	.681

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR R(t0) (Continued)

n = 10 p = r/n = 5/10								
	Y = 0.50	γ = 0.75	γ = 0.90	γ = 0.95	γ = 0.99			
z _a /z _b	L*(Z _a /Z _b)	$L*(Z_a/Z_b)$	L*(Z _a /Z _b)	$L^*(Z_a/Z_b)$	$L^*(Z_a/Z_b)$			
3.9	.960	.916	.850	,783	.687			
4.0	.963	.921	.855	.789	.693			
4.1	.965	.925	.862	.795	.699			
4.2	.968	.929	.867	.801	.704			
4.3	.970	.932	.872	.806	.710			
4.4	.972	.935	.877	.812	.716			
4.5	.974	.939	.883	.818	.721			
4.6	.975	.942	.887	.823	.727			
4.7	.977	.944	.891	.828	.732			
4.8	.978	.947	.896	.834	.738			
4.9	.980	.950	.899	.839	.744			
5.0	.981	.953	.903	.843	.750			

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR R(t0) (Continued)

n = 10 $p = r/n = 7/10$							
	$\gamma = 0.50$	Y = 0.75	γ = 0.90	$\gamma = 0.95$	Y = 0.99		
z _a /z _b	$L*(Z_a/Z_b)$	$L*(Z_a/Z_b)$	$L*(Z_a/Z_b)$	$L^{*}(Z_{a}/Z_{b})$	$L^*(Z_a/Z_b)$		
.0	.415	.332	.260	.215	.141		
, 1	.448	.362	.290	.245	,163		
, 2	.480	.396	.323	,275	.191		
.3	.509	.423	.351	.302	.214		
. 4	.537	.453	.380	.328	.243		
, 5	.567	.482	.402	.357	.271		
.6	.595	.509	.426	.387	.304		
.7	.620	.535	.452	.408	.322		
. 8	.645	.560	.475	.425	.340		
. 9	.668	.582	.493	.447	.359		
1.0	.691	.607	.514	.469	.377		
1.1	.712	.629	.537	.491	.402		
1.2	.730	.650	.555	.508	.420		
1.3	.747	.669	.578	.522	.435		
1.4	.767	.687	.595	.537	.453		
1.5	.784	.704	.612	.554	.467		
1.6	.800	.722	.630	.570	.485		
1.7	.814	.736	.645	.583	.500		
1.8	.827	.752	.659	.599	.514		
	.840				.529		
1.9	.852	.765	.672	.615			
		.779	.687	.628	.543		
2.1	.862	.791	.702	.645	.556		
2.2	.873	.804	.714	.660 .674	.567 .576		
2.3	.883 .892	.813 .824	.727 .741	,684	.583		
2.5	.900	.835	.752	,697	.590		
2.6	,908	.845	.763	.710	.597		
2.7	.915	.855	.773	.717	.604		
2.8	.921	.863	.782	.727	.615		
2.9	.927	.871	.792	.738	.626		
3.0	.932	.879	.802	.748	.634		
3.1	.937	.886		.758	.640		
			.811				
3.2	.942	.892	.819	.768	.651		
3.3	.947	.899	.830	.778	.662		
3.4	.951	.905	.837	.787	.674		
3.5	.955	.910	.845	.795	.684		
3.6	.958	,916	.853	.804	.698		
3.7	.952	.921	.860	.813	.702		
3.8	.965	.926	.866	.821	.709		

とうころうと 医がられている

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR R(to) (Continued)

	n = 10 p = r/n = 7/10								
	γ = 0.50	$\gamma = 0.75$	γ = 0.90	$\gamma = 0.95$	γ = 0.99				
2 /2 a b	L*(2/2)	L*(2 _a /2 _b)	L*(2 _a /2 _b)	L*(Z ₄ /Z _b)	L*(2 _a /Z _b)				
3.9	.968	.930	.873	.827	.715				
4.0	.970	.934	.878	.836	.722				
4.1	.973	.939	.883	. 845	.730				
4.2	.975	.943	.888	.851	.737				
4.3	.977	.946	.893	.856	.744				
4.4	.979	.949	.898	.861	.750				
4.5	.980	.952	.904	.866	.755				
4.6	.982	.955	.908	.870	.759				
4.7	.983	.958	.911	.875	.764				
4.8	.985	.960	.915	.880	.770				
4.9	.986	.963	.919	.884	.778				
5.0	.987	.965	.924	.889	.785				

 $L^*(Z_a/Z_b)$ is the exact lower confidence bound for $R(t_0)$

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR R(to) (Continued)

n = 10 $p = r/n = 1$							
	γ = 0.50	Y = 0.75	γ = 0.90	Y = 0.95	γ = 0.99		
z _a /z _b	L*(2/Zb)	L*(2 _a /2 _b)					
.0	.393	.315	.255	.212	.153		
.1	.428	.345	.283	.238	.176		
.2	.458	.376	.311	.264	.202		
.3	.492	.409	.336	.291	.226		
.4	.522	.442	.363	.319	.247		
•5	.552	.474	.389	.345	.273		
.6	.581	.502	.416	.371	.298		
. 7	.607	.527	.439	.396	.317		
.8	.634	.553	.464	.421	.334		
.9	.658	.579	.490	.442	.352		
1.0	.682	.605	.512	.463	.369		
1.1	.705	.627	.535	.485	.395		
1,2	.726	. 649	.559	.505	.421		
1.3	.747	.670	.582	.525	.445		
1.4	.768	.690	.605	.546	.462		
1.5	.786	.707	.621	.567	.478		
1.6	.800	.725	.644	.587	.494		
1.7	.816	.742	.662	.603	.506		
1.8	.830	.758	.680	.622	.522		
1.9	.843	.772	.697	.636	.540		
2.0	.855	.787	.710	.654	.559		
2.1	.868	.801	.727	.668	.573		
2.2	.879	.814	.743	.684	.587		
2.3	.889	.826	.758	.700	.600		
2.4	.898	.837	.772	.713	.613		
2.5	.907	.847	.783	.725	.626		
2.6	.915	.856	.795	.738	.639		
2.7	.921	.865	.806	.751	.651		
2.8	.928	.874	.816	.762	.665		
2.9	.934	.883	.826	.775	.677		
3.0	.939	.890	.835	.787	.689		
3.1	.944	.898	.846	.800	.698		
3.2	949	.904	.853	.811	.708		
3.3	.954	.911	.861	.820	.719		
3.4	.957	.917	.868	.827	.729		
3.5	.961	•922	.875	.837	.739		
3.6	.964	.927	.883	.846	.748		
3.7	.968	.933	.889	.854	.757		
3.8	.970	•933 •937	.895	.862	.766		

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR R(to) (Continued)

n = 10 $p = r/n = 1$								
	Y = 0.50	Y = 0.75	γ = 0.90	Y = 0.95	Y = 0.99			
z _a /z _b	L*(Z _a /Z _b)	$L^*(Z_a/Z_b)$	L*(Z _a /Z _b)	L*(Z _a /Z _b)	L*(2 _a /2 _b)			
3.9	.973	.941	.901	.869	,775			
4.0	.975	.945	.906	.875	.784			
4.1	.977	.949	.912	.880	.792			
4.2	.979	.952	.917	.885	.800			
4.3	.981	.956	.922	,892	.808			
4.4	.982	.959	.926	.898	.815			
4.5	.984	,962	.931	. 903	.822			
4.6	.985	.964	.935	.907	.827			
4.7	.987	.967	.939	.912	.833			
4.8	.988	.969	.943	.916	.838			
4.9	.989	.972	.946	.921	.843			
5.0	.990	.974	.950	.925	.848			

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR R(t₀) (Continued)

		n = :	15 r/n = 3/15		
	$\gamma = 0.50$	$\gamma = 0.75$	$\gamma = 0.90$	$\gamma = 0.95$	γ = 0.99
z _a /z _b	L*(Z _a /Z _b)	$L*(2_a/2_b)$	$L*(Z_a/Z_b)$	$L*(Z_a/Z_b)$	$L*(z_a/z_b)$
.0	.646	.443	.210	,090	.001
.1	.660	.475	.242	.118	.006
. 2	.673	.508	.276	,160	.017
.3	.688	.534	.318	.194	.037
.4	.702	.561	.357	.240	.064
.5	.716	.583	.392	.285	.101
.6	.732	.607	.433	.331	.147
.7	.742	.627	.478	.382	.202
.8	.755	.647	.520	.428	.257
.9	.766	.665	.553	.465	.300
1.0	.776	.681	.584	.495	.348
1.1	.787	.698	.610	.533	.395
1.2	.799	.715	.631	.559	.451
		.733		.591	.491
1.3 1.4	.812 .821	.733 .749	.651 .671	.619	.522
1.5	.832	.762	.691	.642	.547
1.6	.840	.762 ,773	.707	.658	.566
1.7	.849	.785	.725	.673	.587
1.8	.857	.797	.736	.684	.604
1.9	.866	.806	.744	.697	.609
2.0	.873	.814	.751	.707	.620
2.1		.823		.718	.642
	.879		.761		
2.2	.886	.829	.768	.729	.654
2.3	.893	.839	.774	.739	.661
2.4	.900	.846	.782	.749	.676
2.5	.905	.853	.791	.757	.688
2.6	.911	.859	.798	.763	.699
2.7	.914	.864	.805	.772	.704
2.8	.919	,869	.814	.776	.707
2.9	.923	.874	.819	.784	.709
3.0	.927	.879	.824	.790	.711
3.1	.932	.883	.829	.794	.717
3.2	.936	.887	.832	.799	.720
3.3	.939	.891	.836	.802	.723
3.4	.942	.896	.842	.803	.726
3.5	.945	.899	.849	.810	.733
3.6	.948	.902	.852	.819	.735
3.7	.951	.906	.857	.822	.736
3.6	.953	.910	.860	.825	.738

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR R(to) (Continued)

n = 15 p = r/n = 3/15								
	$\gamma = 0.50$	$\gamma = 0.75$	$\gamma = 0.90$	$\gamma = 0.95$	γ = 0.99			
z_a/z_b	$L*(Z_a/Z_b)$	$L*(Z_a/Z_b)$	L*(Z _a /Z _b)	$L*(Z_a/Z_b)$	$L^*(Z_a/Z_b)$			
3.9	.955	.914	.863	.828	.741			
4.0	.957	.917	.865	.832	.743			
4.1	.960	.919	.868	.835	.745			
4.2	.962	.921	.871	.837	.745			
4.3	.964	.924	.875	.841	.746			
4.4	.966	.927	.878	.843	.748			
4.5	.968	.929	.880	.846	.749			
4.6	.969	.932	.884	.849	.752			
4.7	.971	.934	.888	.853	.757			
4.8	.972	.936	.890	.857	.763			
4.9	.974	.938	.892	.860	.768			
5.0	.975	.939	895	.862	.769			

 $L^{*}(Z_{a}/Z_{b})$ is the exact lower confidence bound for $R(t_{0})$

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR R(to) (Continued)

	n = 15 $p = r/n = 7/15$							
	γ = 0.50	γ = 0.75	γ = 0.90	γ = 0.95	Y = 0.99			
z _a /z _b	$L^*(Z_a/Z_b)$	$L^*(Z_a/Z_b)$	L*(Z _a /Z _b)	L*(2 _a /2 _b)	L*(Z _a /Z _b)			
.0	.443	.343	.247	.205	.111			
.1	.471	.373	.284	.245	.149			
. 2	.502	.404	.320	.280	.197			
.3	.530	.438	.356	.317	.243			
.4	.560	.472	.391	.351	.285			
.5	.586	.500	.427	.385	.318			
.6	.615	.528	.457	.417	.344			
.7	.639	.556	.486	.446	.381			
.8	.661	.582	.514	.470	.403			
.9	.684	.608	.542	.496	.421			
1.0	.705°	.630	.562	.521	.444			
1.1	.725	.653	.587	.548	.466			
1.2	.743	.672	.606	.567	.487			
1.3	.760	.690	.626	.585	.502			
1.4	.776	.710	.646	.604	.516			
1.5	.794	.729	.664	.624	.530			
1.6	.809	.743	.677	.642	.543			
1.7	.823	.759	.690	.658	.564			
1.8	.835	.773	.706	.673	.579			
1.9	.846	.786	.719	.689	.592			
2.0	.857	.799	.732	.702	.610			
2.1	.868	.810	.744	.715	.627			
2.2	.877	.822	.757	.725	.642			
2.3	.886	.832	.768	.735	.658			
2.4	.895	.841	.779	.744	.670			
2.5	.902	.851	.788	.755	.680			
2.6	.910	.859	.799	.764	.689			
2.7	.916	.866	.810	.774	.697			
2.8	.922	.873	.819	.783	.707			
2.9	.928	.881	.827	.791	.719			
3.0	.933	.889	.836	.798	.731			
3.1	.938	.895	.644	.806	.743			
3.2	.943	.901	.851	.815	.754			
3.3	.948	.906	,857	.822	.760			
3.4	.952	.911	.864	.828	.765			
3.5	.955	.916	.870	.836	.770			
3.6	.958	.920	.876	.843	.775			
3.7	.962	.925	.882	.851	.780			
3.8	.965	.929	.888	.857	.784			

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR R(to) (Continued)

n = 15 $p = r/n = 7/15$								
	$\gamma = 0.50$	$\gamma = 0.75$	$\gamma = 0.90$	Y = 0.95	Y = 0.99			
z_a/z_b	L*(Z _a /Z _b)	$L^{*}(Z_{a}/Z_{b})$	$L*(Z_a/Z_b)$	L*(2 _a /2 _b)	$L*(z_a/z_b)$			
3.9	.967	.933	.894	.862	.789			
4.0	.969	.937	.898	.867	.795			
4.1	.972	.940	.902	.872	.801			
4.2	.974	.944	.907	.876	.808			
4.3	.976	.947	.911	.882	.814			
4.4	.978	.949	.915	.886	.821			
4.5	.979	.952	.919	.891	.827			
4.6	.981	.955	.922	.896	.834			
4.7	.982	.958	.926	.900	.840			
4.8	.984	.960	.929	.905	.845			
4.9	.985	.963	.932	.908	.850			
5.0	.986	.965	.935	.912	.852			

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR R(t0) (Continued)

n = 15 $p = r/n = 11/15$						
	γ = 0.50	Y = 0.75	Y = 0.90	Y = 0.95	γ = 0.99	
z _a /z _b	L*(Z _a /Z _b)	L*(Z _a /Z _b)	L*(2 _a /z _b)	L*(2 _a /2 _b)	L*(Z _a /Z _b)	
.0	.401	.328	.269	.233	.179	
.1	.433	.362	.304	.262	.207	
. 2	.467	.395	.335	.297	.233	
.3	.499	.427	.369	.325	.264	
.4	.530	.458	.400	.355	.295	
.5	.559	488	.430	.383	.318	
.6	.587	.516	.457	.412	.340	
.7	.614	.544	.485	.440	.363	
. 8	.641	.573	,512	.468	.388	
.9	.664	.598	.535	.492	.413	
1.0	.688	.624	.557	.518	.434	
1.1	.712	.646	.578	.539	.450	
1.2	.732	.667	.599	,559	.469	
1.3	.752	.685	.622	.580	.490	
1.4	.772	.705	.642	.601	.510	
1.5	.790	.724	.659	.620	.527	
1.6	.807	.742	.676	.639	.539	
1.7	.823	.759	.691	.657	.560	
1.8	.837	.775	.707	.672	.580	
1.9	.851	.790	.721	.687	.599	
2.0	.862	.805	.736	.700	.618	
2.1	.873	.818	.752	.716	.634	
2.2	.883	.830	.765	.729	.645	
2.3	.892	.842	.779	.742	.663	
2.4	.901	.852	.792	.755	.675	
2.5	.909	.861	.803	.768	.687	
2.6	.917	.870	.813	.779	.702	
2.7	.924	.879	.823	.790	.712	
2.8	.930	.887	.832	.801	.722	
2.9	.936	.896	.842	.812	.734	
3.0	.941	.903	.852	.822	.746	
3.1	.946	.910	.861	.829	.758	
3.2	.946 .951	.916	.869	.837	.769	
					.769 .779	
3.3	.955	.922	.877	.845	-	
3.4	.958	.927	,883	.853	.789	
3.5	.962	.932	.890	.861	.798	
3.6	.965	.936	.896	.869	.806	
3.7 3.8	.968 .971	.941 .945	.901 .907	.875 .882	.813 .819	

これの事でのことでは、1887年、これのなる。

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR R(t0) (Continued)

n = 15								
		p = r	n = 11/15					
	$\gamma = 0.50$	$\gamma = 0.75$	γ • 0.90	$\gamma = 0.95$	γ = 0.99			
z _a /z _b	L*(Z _a /Z _b)	$L*(Z_a/Z_b)$						
3.9	.973	.949	.912	.888	.825			
4.0	.976	.953	.917	.893	.831			
4.1	.978	.956	.922	.898	.837			
4.2	.980	.959	.927	.903	.846			
4.3	.981	.962	.932	.907	.854			
4.4	.983	.965	.936	.911	.862			
4.5	.984	.967	.939	.916	.870			
4.6	.985	.969	.942	.920	.877			
4.7	.987	.971	.946	.923	.882			
4.8	.988	.973	.949	.928	.887			
4.9	.989	.975	.952	.932	.892			
5.0	.990	.977	.955	.936	.896			

 $L^{\pm}(Z/Z_{0})$ is the exact lower confidence bound for $R(t_{0})$

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR R(t0) (Continued)

n = 15 $p = r/n = 1$							
	$\gamma = 0.50$	Y = 0.75	γ = 0.90	γ = 0.95	γ = 0.99		
z _a /z _b	$L*(Z_a/Z_b)$	$L^{\pm}(Z_a/Z_b)$	$L^{\pm}(Z_a/Z_b)$	$L*(Z_a/Z_b)$	$L*(Z_a/Z_b)$		
.0	.388	.321	.271	.234	.180		
.1	.422	,355	.302	.261	.207		
.2	.455	.388	.334	.286	.235		
.3	.488	.419	.365	.317	.267		
.4	.521	.452	.393	.345	.291		
.\$.552	.482	.422	.376	.314		
.6	.580	.513	.450	403	.336		
.7	.610	.540	.478	.430	.362		
.8	.638	.568	,505	.461	.390		
.9	.664	.595	.531	.489	.411		
1.0	.688	.620	.556	.515	.428		
1.1	.712	.645	.581	.539	.454		
1.2	.734	.668	.602	.565	.471		
1.3	.754	.690	.623	.588	.495		
1.4	.773	.711	.643	.612	.518		
1.5	.791	.731	.663	,631	.539		
1.6	.808	.748	.683	.653	.555		
1.7	.823	.765	,701	.670	.571		
1.8	.836	.781	.720	.687	,587		
1.9	.851	.797	.738	.704	.605		
2.0	.864	.813	.755	.719	.623		
2.1	.875	.826	.770	.732	.640		
2.2	.885	.839	.784	.747	.658		
2.3	.895	.850	.798	.762	.673		
2.4	.904	.861	,809	.776	.688		
2.5	.912	.871	.823	.787	.703		
2,6	.920	.880	.835	.799	.718		
2.7	.927	.889	.845	.810	.732		
2.8	,933	.897	.855	.821	.745		
2.9	.939	.906	.865	.831	,758		
3.0	.945	.912	.873	.840	.770		
3.1	.950	.919	.882	.849	.782		
3.2	.954	.925	.890	.857	.793		
3.3	.958	.931	.897	.865	.802		
3.4	.962	.936		.874			
			.904		.812		
3.5	.966	.940	.910	.881	.822		
3.6	.968	.945	.916	.888	.830		
3.7	.971	.949	.922	.895	.836		
3.8	.974	.953	.927	,900	.844		

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR R(to) (Continued)

n = 15 $p = r/n = 1$					
	$\gamma = 0.50$	$\gamma = 0.75$	$\gamma = 0.90$	$\gamma = 0.95$	Y = 0.99
Z /Z b	L*(2 _a /Z _b)	L*(Z _a /Z _b)	L*(2 ₆ /2 _b)	L*(Z/Zb)	L*(Z _a /Z _b)
3.9	.976	.957	.932	.906	.854
4.0	.978	.960	.936	.911	.863
4.1	.980	.963	.941	.916	.871
4.2	.982	.966	.945	.921	.878
4.3	.984	.969	. 949	.926	.884
4.4	.985	.971	.952	.931	.887
4.5	.986	.973	.956	.935	.890
4.6	.988	.975	.959	.939	.893
4.7	.989	.977	.962	.942	.896
4.8	.990	.979	.964	.945	.899
4.9	.991	.980	.966	.949	.902
5.0	.992	.982	.968	.952	.907

 $L^{*}(\frac{2}{a},\frac{7}{b})$ is the exact lower confidence bound for $R(t_0)$

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR $R(t_0)$ (Continued)

	n = 20 p = r/n = 5/20							
	$\gamma = 0.50$	Y = 0.75	Y = 0.90	Y = 0.95	γ = 0.99			
2 _a /2 _b	L*(2/2 _b)	L*(2 _a /Z _b)	L*(Z _a /Z _b)	L*(Z _a /Z _b)	L*(2 _a /2 _b)			
•0	.523	.350	.188	.105	.008			
.1	.544	.387	.228	.140	.020			
• 2	.569	.423	.271	.186	.037			
.3	.596	.459	.305	.231	.068			
.4	.620	.491	.343	.274	.118			
• 5	.642	.524	.385	.317	.164			
• 6	.663	.552	.427	.360	.229			
.7	.683	.582	.465	.401	.287			
.8	.704	.610	.501	.439	.331			
.9	.720	.640	.539	.477	.380			
1.0	.735	.665	.570	.519	.430			
1.1	.754	.687	.601	.552	.464			
1.2	.768	.706	.631	.583	-484			
1.3	.783	.724	.656	.614	.519			
1.4	.796	.742	.679	.637	.538			
1.5	.809	.758	.698	.659	.559			
1.6	.824	.775	.718	.674	.587			
1.7	.835	•790	.735	.697	.609			
1.8	.846	.802	.746	.713	.628			
1.9	.358	.813	.761	.728	.644			
2.0	.868	.823	.773	.741	.665			
2.1	.878	.834	.785	.753	.677			
2.2	.687	.842	.797	.762	.687			
2.3	.895	.850	.807	.773	.695			
2.4	.903	.857	.817	.781	.702			
2.5	.909	.865	.824	.791	.713			
2.6	.916	.873	.831	.798	.720			
2.7	.922	.879	.837	.803	.726			
2.8	.928	.885	.843	.809	.733			
2.9	.933	.891	.851	.815	.745			
3.0	.938	.896	.857	.823	.752			
3.1	.942	.902	.865	.826	.755			
3.2	.946	.907	.870	.833	.763			
3.3	.950	.912	.875	.830	.768			
3.4	.953	.917	.880	.844	.773			
3.5	.956	.921	.885	.850	.779			
3.6	.959	.925	.889	. 654	.784			
3.7	.962	.929	.893	.858	.788			
3.8	.965	.933	.898	.862	.793			

 $L^*(Z_a/Z_b)$ is the exact ower confidence bound for $R(t_0)$

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR R(to) (Continued)

n = 20 p = r/n = 5/20							
	$\gamma = 0.50$	$\gamma = 0.75$	$\gamma = 0.90$	$\gamma = 0.95$	Y = 0.99		
z _a /z _b	L*(2 _a /z _b)	L*(Z _a /Z _b)	L*(2 _a /2 _b)	L*(2/2 _b)	L*(Z _a /Z _b)		
3.9	.967	.936	.902	.866	.797		
4.0	.969	.939	.905	.870	.802		
4.1	.971	.942	.909	.873	.806		
4.2	.973	.945	.912	.878	.810		
4.3	975	,948	.915	.880	.815		
4.4	.977	.951	.919	.883	.819		
4.5	.978	.954	.922	.886	.824		
4.6	.980	.957	.924	.889	.828		
4.7	.981	.959	.927	.893	.832		
4.8	.983	.962	.931	.898	.836		
4.9	.984	.963	.933	.902	.839		
5.0	.985	.965	.936	.904	.843		

では、100mmので

 $L^{*}(\frac{Z}{z})$ is the exact ower confidence bound for $R(t_{0})$

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR R(t0) (Continued)

	n = 20 p = r/n = 10/20						
	y = 0.50	y = 0.75	γ = 0.90	γ = 0.95	γ = 0.99		
z_a/z_b	L*(Z _a /Z _b)	L*(2 _a /2 _b)	L*(2 _a /2 _b)	$L*(Z_a/Z_b)$	L*(2 _a /2 _b)		
.0	.415	.333	.257	.224	.141		
.1	.446	.369	.294	.263	.180		
, 2	.479	.405	.332	.297	.222		
.3	.509	.441	,365	.332	.264		
. 4	.542	.472	.402	.367	.290		
.5	.573	.502	.436	.401	.336		
.6	.604	.530	.468	.432	.370		
.7	.632	.559	.497	.461	.404		
. 8	.657	.588	.530	.492	.432		
. 9	.681	.614	.559	,520	.453		
1.0	.704	.637	.584	.546	.474		
1.1	.725	.659	.608	.571	.495		
1.2	.746	,680	.633	.591	.516		
1.3	.764	.701	.652	.614	.534		
1.4	.780	.701 .721	.672	.637	.546		
1.5	.796	,740	.691	.657	.564		
1.6	.811	.758	.707	.673	.588		
1.7	.824	.773	.721	.692	.607		
1.8	.837	790	.737	,710	.628		
1.9	.850	.804	.751	.723	.646		
2.0	.862	.817	.764	.737	.660		
2.1	.872	.829	.777	.750	.671		
2.2	.882	.840	.789	.761	.681		
2.3	.892	.850	.801	.772	.692		
2.4	.900	.860	.812	.782	.702		
				.793	.712		
2.5	.909	.869	.823		.722		
2.6	.916	.878	.832	.804	.722		
2.7	.922	.887	.842	.815 .821	.740		
2.8	.929	.894	.851	.830	.749		
2.9	.935	.901	.859	.839	.758		
3.0	.940 .945	.907	.868 .875	.848	.766		
3.1 3.2	.950	.913 ,918	.883	.855	.774		
3.3	.954	.924	.890	.862	,782		
3.4	.958	.929	.896	.869	.792		
3.5		.933	.902	.875	.801		
	.962 .965	.933 .938	.902	.881	.809		
3.6		.942	.913	.887	.817		
3.7	.968				.825		
3.8	.970	.946	.918	,892	.023		

 $L^*(Z_a/Z_b)$ is the exact lower confidence bound for $R(t_0)$

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR R(to) (Continued)

n = 20 $p = r/n = 10/20$							
	$\gamma = 0.50$	$\gamma = 0.75$	$\gamma = 0.90$	$\gamma = 0.95$	Y = 0.99		
z _a /z _b	L*(Z _a /Z _b)	L*(Z _a /Z _b)	L*(2 _a /2 _b)	L*(2 _a /2 _b)	L*(Z _a /Z _b)		
3,9	.973	.949	.923	.898	.833		
4.0	.975	.953	,928	,903	.840		
4.1	.977	.956	.932	.908	.848		
4.2	.979	.959	.936	.912	.854		
4.3	.981	.961	.939	.916	.860		
4.4	.982	.964	.943	.920	.864		
4.5	.984	.967	.946	.925	.868		
4.6	.985	.969	.949	.929	.871		
4.7	.987	.971	.952	.933	.875		
4.8	.988	.973	.955	.936	.879		
4.9	.989	.975	.957	.940	.882		
5.0	.990	.976	.960	.943	.886		

 $L^*(Z/Z_b)$ is the exact lower confidence bound for $R(t_0)$

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR R(to) (Continued)

n = 20 p = r/n = 15/20					
	γ = 0.50	$\gamma = 0.75$	Y = 0.90	$\gamma = 0.95$	γ = 0.99
a/Z _b	L*(Z _a /Z _b)	L*(2 _a /2 _b)	L*(Z _a /Z _b)	$L^*(Z_a/Z_b)$	L*(Za/Zb)
.0	.390	,332	.278	.240	.192
	.424	.367	.310	.272	.221
.1	.457	.400	. 342	.306	.253
.3	.492	.433	.374	.338	.279
.4	.524	.466	.408	.373	.307 .332
.5	.558	.496	.438	.408	
.6	.589	.523	.466	.439	.361
.7	.617	.550	.497	.466	.387
.8	.645	.575	.528	.489	.412
.9	.671	.603	.554	.516	.436
1.0	.697	.629	.580	.540	.459
	.720	.655	.605	.565	.482
1.1	.741	.676	.629	.589	. 503
1.2		.698	.649	,612	.524
1.3	.761 .780	.719	.668	.634	.544.
1.4		.737	.687	.654	.564
1.5	.797	756	.705	.672	.584
1.6	.812 .827	.772	.723	.690	.603
1.7	.840	.788	.739	.707	.621
1.8	.853	.803	.755	.723	.639
1.9	.866	.816	.770	.738	.656
	.877	.830	.784	.753	.670
$\frac{2.1}{2.2}$.887	842	.797	.765	.688
2.3	.896	.854	.810	.778	.704
	.905	.864	.821	.792	.719
2.4	.913	.875	.832	.805	.733
2.5	.920	.883	.842	.817	.746
2.6		.892	.851	.826	.757
2.7	.927	.899	.860	.835	.769
2.8	.933	.907	.869	.845	.780
2.9	.939		.877	.856	.790
3.0	.944	.914	.884	,863	.800
3.1	.949	.920 .925	.891	.870	.809
3.2	.953	.930	.898	.877	.818
3.3	.958	.936	.905	. 884	.827
3.4	.961	.930	,911	.890	.835
3.5	.964	.945	.916	.895	.843
3.6	.967 .970	.949	.921	.902	.851
3.7 3.8	.970 .973	.953	.927	.908	.858

 $L*(Z_a/Z_b)$ is the exact lower confidence bound for $R(t_0)$

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR R(t0) (Continued)

	n = 20 p = r/n = 15/20						
	$\gamma = 0.50$	$\gamma = 0.75$	$\gamma = 0.90$	γ = 0.95	Y = 0.99		
z _a /z _b	$L^*(Z_a/Z_b)$	$L*(Z_a/Z_b)$	$L*(Z_a/Z_b)$	$L*(Z_a/Z_b)$	$L*(Z_a/Z_b)$		
3.9	.975	.956	.932	.914	.865		
4.0	.977	.960	.936	.919	.872		
4.1	.979	.963	.939	.923	.878		
4.2	.981	.966	.943	.928	.884		
4.3	.983	,968	.947	.931	.890		
4.4	.985	.971	.950	.935	.895		
4.5	.986	.973	.954	.939	.900		
4.6	.987	.975	.957	.942	904		
4.7	.988	.977	.959	.945	.907		
4.8	.989	.979	.962	.948	.910		
4.9	.990	.980	. 964	.951	.915		
5.0	.991	.982	.967	.954	.919		

 $L*(\frac{2}{a}/\frac{2}{b})$ is the exact lower confidence bound for $R(t_0)$

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR R(t0) (Continued)

	n = 20 p = r/n = l							
	$\gamma = 0.50$	γ = 0.75	γ = 0.90	$\gamma = 0.95$	$\gamma = 0.99$			
Z _a /Z _b	$L*(Z_a/Z_b)$	L*(2 _a /2 _b)	L*(Z _a /2 _b)	L*(2 _a /2 _b)	$L^*(Z_a/Z_b)$			
.0	.380	.328	.278	.249	.202			
.1	.416	.363	.309	.283	.228			
. 2	.451	.395	.338	,313	.256			
.3	.487	.429	.370	.348	.281			
.4	.519	.462	.403	.379	.312			
.5	. 553	.491	.433	.406	.338			
.6	.586	.521	.464	.434	.364			
.7	člò.	,548	.494	.461	.388			
.8	.642	.575	.525	.490	.413			
.9	.568	.603	.552	.514	.436			
1.0	.693	.629	.579	.541	.462			
1.1	.717	.654	.605	.568	.486			
1.2	.740	.679	,628	.593	.510			
1.3	.761	.700	.649	.615	.533			
1.4	.781	.722	.670	.636	.557			
1.5	.799	.742	.692	.657	.579			
1.6	.816	.761	.713	.680	.600			
1.7	.831	.779	,732	.700	.621			
1.8	.846	.795	.748	.721	.640			
1.9	.859	.810	.763	.737	.661			
2.0	.871	.824	.778	.755	.681			
2.1	.883	.837	.792	.768	.700			
2.2	.893	.849	.806	.785	.719			
2.3	.902	.861	.819	.798	.732			
2.4	,911	.872	.830	.811	.745			
2.5	.919	.881	.842	.823	.758			
2.6	.926	.890	.852	.834	.772			
2.7	.933	.898	.863	.844	.785			
2.8	.939	.906	,873	.854	.796			
2.9	.944	.914	.881	.862	.807			
3.0	.949	.920	.889	.872	.817			
3.1	.954	.926	.896	.881	.827			
3.2	.958	.932	.904	.888	.836			
3.3	.962	,938	.911	.895	.844			
3.4	.965	.943	.917	.901	.853			
3.5	.969	.947	.923	.901 .907	.861			
3.6	.971	.951	.928	.914	.869			
3.7	.974	.955	.933	.920	.877			
3.8	.976	.959	.938	.925	.07 / .885			
5.0		. / . /	.,,,,,	, , , ,	• G.O.A.			

 $L^*(Z_a/Z_b)$ is the exact lower confidence bound for $R(z_0)$

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR $R(t_0)$ (Continued)

n = 20 p = 1/n = 1							
	$\gamma = 0.50$	$\gamma = 0.75$	γ = 0.90	Y = 0.95	γ = 0.99		
z_a/z_b	$L*(Z_a/Z_b)$	L*(2 _a /Z _b)	$L^{\star}(Z_a/Z_b)$	$L^{*}(2_{a}/Z_{b})$	$L*(Z_a/Z_b)$		
3.9	.979	.962	.942	.930	.893		
4.0	.981	.965	.947	.935	.898		
4.1	, 982	.968	.951	.939	,903		
4.2	.984	.971	.954	.943	.908		
4.3	.985	.973	.957	.947	.913		
4.4	.987	.975	.960	.950	.918		
4.5	.988	.977	.963	.953	.923		
4.6	.989	.979	.966	.956	.927		
4.7	.990	.981	.968	.959	.931		
4.8	.991	.982	.970	.962	.935		
4.9	.992	.984	.972	.964	.938		
5.0	.993	.985	.974	.967	.942		

 $L^{*}(Z/Z)$ is the exact lower confidence bound for $R(t_0)$

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR $R(t_0)$ (Continued)

p = r/n = 7/30 $\gamma = 0.50$ $\gamma = 0.75$ $\gamma = 0.90$	$\gamma = 0.95$ $L*(2_a/2_b)$	$\gamma = 0.99$ $L*(Z_a/Z_b)$
		L*(Z /2)
$2_a/2_b$ $L*(2_a/2_b)$ $L*(2_a/2_b)$ $L*(2_a/2_b)$		a b
.0 .485 .335 .198	. 104	.015
.1 .512 .372 .238	.136	.033
.2 .542 .408 .282	.179	.060
.3 .567 .442 .323	.220	.098
.4 .592 .477 .367	.268	. 143
.5 .615 .513 .408	.322	.188
.6 .637 .543 .449	.361	.237
.7 .661 .576 .486	.409	.289
.8 .663 .604 .520	.456	.346
.9 .705 .630 .555	.501	.397
1.6 .723 .656 .590	.544	.442
1742 .681 .619	•577	.482
1.2 .759 .704 .643	.604	-515
1.3 .776 .726 .669	.631	.552
1.4 .793 .745 .688	.655	.589
1.5 .809 .761 .711	.676	.608
1.0 .823 .777 .729	.694	.633
1.7 .836 .794 .746	.716	.659
1.8 .847 .807 .761.	.735	.669
1.9 .858 .819 .774	.752	.691
2.0 .869 .831 .787	.765	.712
2.1 .878 .841 .799	•777	.732
2.2 .887 .851 .810	.787	.741
2.3 .895 .860 .820	.798	.750
2.4 .903 .869 .829	.809	.762
2.5 .911 .877 .839	.820	.773
2.6 .918 .885 .846	.829	.783
2.7 .925 .892 .855	.835	.791
2.8 .930 .898 .862	.843	.800
2.9 .935 .903 .868	.851	.809
3.0 .940 .909 .874	.857	.816
3.1 .945 .914 .881	.864	.824
3.2 .948 .920 .886	.869	.831
3.3 .952 .925 .892	.874	.838
3.4 .950 .929 .896	.878	.842
3.5 .959 .933 .901	.882	.846
3.0 .962 .938 .907	.886	.849
3.7 .965 .941 .911	.891	.855
968 .945 .916	.895	.860

L*(2/2) is the exact lower confidence bound for R(t)

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR $R(t_0)$ (Continued)

	n = 30 p = r/n = 7/30							
	$\gamma = 0.50$	$\gamma = 0.75$	γ = 0.90	$\gamma = 0.95$	γ = 0.99			
2 / 2 a b	L*(2/2)	L*(Z/Zb)	L*(2/2 _b)	L*(2/Z _b)	L*(Z _a /Z _b)			
3.9	.970	.948	.920	.898	.865			
4.0	.972	.951	.923	.902	.870			
4.1	.974	.954	.926	.906	.875			
4.2	.977	.957	.929	.910	.879			
4.3	.978	. 960	.932	.914	.882			
4.4	.980	.962	.935	.918	.885			
4.5	.981	.964	.939	.920	.886			
4.6	.983	.966	.942	.923	.888			
4.7	.984	.968	.944	.925	.890			
4.8	.985	.970	.946	.928	.892			
4.9	.986	.972	.949	.931	.894			
5.0	.988	.974	.951	.933	.895			

L*(Z/Z) is the exact lower confidence bound for $R(t_0)$

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR $R(t_0)$ (Continued)

n = 30 p = r/n = 15/30						
	γ = 0.50	Y = 0.75	$\gamma = 0.90$	γ = 0.95	Y = 0.99	
z _a /z _b	$L*(Z_a/Z_b)$	$L^{*}(Z_{a}/Z_{b})$	L*(Z _a /Z _b)	L*(Z _a /Z _b)	$L*(Z_a/Z_b)$	
.0	.399	.329	.269	.230	.169	
.1	.432	.369	.303	.270	.212	
. 2	.464	.402	.341	.309	.252	
.3	.496	.437	.375	.348	.292	
. 4	.527	.470	.412	.384	.330	
. 5	.560	.501	.445	.421	.368	
.6	.591	.534	.481	.456	.403	
.7	.619	.563	.513	.487	.434	
.8	.646	. 593	.541	.514	.463	
.9	.673	.618	.571	.542	.490	
1.0	.696	.643	.577 .597	.567	,518	
1.1	.719	.667	.620	.595	.540	
1.2	.740	.689	.645	.619	.562	
1.3	.760	.712	.664	.640	.582	
1.4	.778	.730	.685	.660	.603	
1.5	.796	.748	,706	.677	.624	
1.6	.812	.766	.723	.693	.643	
1.7	.826	.782	.740	.711	.660	
1.8	.840	.798	.756	.729	.676	
1.9	.853	.811	.771	.746	.688	
2.0	.865	.825	.784	.759	.701	
2.1	.877	.837	.797	.773	.721	
2.2	.886	.849	.810	.787	.735	
2.3	.895	.859	.820	.800	.749	
2.4	.903	.871	.832	.811	.760	
2.5	.910	.879	.841	.824	.769	
2.6	.918	.887	.852	.834	.779	
2.7	.925	.895	.861	.845	.789	
2.8	.931	.903	.870	.853	.798	
2.9	.936	.910	.878	.861	.805	
3.0	.941	.917	.885	.869	.813	
3.1	.946	.922	.891	.875	.821	
3.2	.950	.928	.898	.883	.827	
3.3	.955	,933	.904	,889	.834	
3.4	.959	.938	.910	.895	.840	
3.5	.962	.942	.916	.900	.847	
2 6	.965	.947	.922	.906	.854	
3.6						
3.7	.968	.951	.927	.911	.861	
3.8	.971	.954	.932	.917	.868	

 $L^*(Z_a/Z_b)$ is the exact lower confidence bound for $R(t_0)$

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR R(t0) (Continued)

n = 30 p = r/n = 15/30							
	$\gamma = 0.50$	γ = 0.75	$\gamma = 0.90$	$\gamma = 0.95$	γ = 0.99		
z _a /z _b	L*(Z _a /Z _b)	L*(2 _a /2 _b)	$L*(Z_a/Z_b)$	L*(Z _a /Z _b)	L*(Z _a /Z _b)		
3.9	.974	.958	.936	.921	.873		
4.0	.976	.961	.940	.926	.877		
4.1	.978	.964	.943	.930	.883		
4.2	.980	.966	.947	.934	.889		
4.3	.981	,969	.950	.938	.895		
4.4	.983	.971	.953	.942	.899		
4.5	.984	,973	.956	.945	.904		
4.6	.986	.975	.959	.949	.908		
4.7	.987	.977	.961	.952	.912		
4.8	.988	.979	.964	.954	.916		
4.9	.989	.980	.966	.957	.920		
5.0	.990	.982	.968	.959	.924		

L*(2/2) is the exact lower confidence bound for $R(t_0)$

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR $R(t_0)$ (Continued)

	n = 30 $p = r/n = 22/30$											
	$\gamma = 0.50$	$\gamma = 0.75$	γ = 0.90	γ = 0.95	Y = 0.99							
Z _a /Z _b	L*(2/2)	L*(2/2 _b)	L*(2/2 _b)	L*(Z/Z _b)	L*(Z/Z)							
.0	.382	.333	.281	.257	.206							
.1	.416	.366	.318	.290	.243							
. 2	.453	.400	.353	.325	•277							
.3	.489	.433	.385	.359	.307							
.4	.521	.465	.419	.392	.341							
.5	.553	.497	.449	.424	.373							
- 0	.583	.528	.479	.455	-406							
. 7	.612	•560	.512	.486	.438							
•8	.640	.589	.540	.517	.465							
•9	•666	.615	•566	•544	.486							
1.0	.091	.641	.593	.569	.511							
1.1	.716	.665	.618	.592	.534							
1.2	.737	.687	.642	.615	.556							
1.3	.758	•70 9	.664	•637	.577							
1.4	.777	.729	.685	.659	.602							
1.5	.795	.748	.705	•677	.623							
1.0	.812	.766	.722	.697	.641							
1.7	.827	.782	.741	.717	,656							
1.8	.842	.798	.758	.734	.675							
1.9	.855	.813	.774	.749	.692							
2.0	.867	.826	.788	.765	.706							
2.1	.878	.840	.803	.778	.718							
2.2	.888	.852	.816	.793	.732							
2.3	.897	.864	.828	.807	.746							
2.4	.906	.875	.839	.818	.759							
2.5	.914	.884	.851	.829	.771							
2.6	.921	.894	.862	.839	.783							
2.7	.928	-901	.871	.850	.795							
2.8	.935	.909	.880	.859	.806							
2.9	.940	.916	.888	.867	.816							
3.0	.945	.923	.896	.876	.826							
3.1	.950	.929	.902	.884	.836							
3.2	.955	.934	.909	.891	.845							
3.3	.958	.940	.915	.898	.853							
3.4	.962	. 944	.921	.905	.861							
3.5	.966	.949	.927	.911	.868							
3.0	.969	.953	.932	.917	.874							
3.7	.971	.956	.937	.922	.881							
٥.٥	.974	.960	.941	.927	.888							

 $L^{*}(Z/Z)$ is the exact lower confidence bound for R(t)

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR $R(t_0)$ (Continued)

n = 30 p = r/n = 22/30											
	$\gamma = 0.50$	Y = 0.75	$\gamma = 0.90$	γ = 0.95	$\gamma = 0.99$						
z_a/z_b	$L*(Z_a/Z_b)$	L*(Z _a /Z _b)	$L^*(Z_a/Z_b)$	L*(2 _a /2 _b)	$L*(Z_a/Z_b)$						
3.9	.976	.963	.945	.931	.892						
4.0	.979	.966	.948	.935	.897						
4.1	.981	.969	.952	.939	.902						
4.2	.982	.971	.956	.943	.907						
4.3	.984	.973	.959	.947	.912						
4.4	.985	.975	.961	.950	.916						
4.5	.987	.977	.964	.953	.921						
4.6	.988	.979	.967	.956	.926						
4.7	, 989	.981	.969	.959	.930						
4.8	.990	.982	.971	.962	.934						
4.9	.991	.984	.973	.964	.938						
5.0	.992	.985	.975	.966	.942						

 $L*(Z/Z_b)$ is the exact lower confidence bound for $R(t_0)$

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR R(t0) (Continued)

$ \begin{array}{c} n = 30 \\ p = r/n = 1 \end{array} $											
	γ = 0.50	$\gamma = 0.75$	γ - 0.90	γ = 0.95	$\gamma = 0.99$						
z _a /z _b	L*(Z _a /Z _b)	L*(2 _a /2 _b)	$L*(Z_a/Z_b)$	L*(Z _a /Z _b)	$L*(Z_a/Z_b)$						
.0	.376	.326	,283	.265	.222						
.1	.413	.361	.317	.297	.255						
, 2	.450	.394	.349	.328	.286						
.3	.483	.429	.381	.362	.317						
.4	.516	.462	.413	.394	.350						
. 5	.550	.494	.446	.426	.380						
.6	80د.	.526	.478	.455	.409						
.7	.610	.556	.507	.485	.436						
.8	.638	.585	.536	,515	.463						
.9	.665	.613	.565	.544	.490						
1.0	.691	.639	.593	,570	.515						
1.1	.715	.664	.618	.593	.543						
1.2	.738	.688	.641	.618	.566						
1.3	.759	.710	.665	.639	.587						
1.4	.780	.730	.687	.662	.608						
1.5	.798	.751	.708	.683	.629						
1.6	.815	.770	.728	.703	.648						
1.7	.830	.787	.746	.721	.667						
1.8	.845	,803	.764	.739	,685						
1.9	.858	.818	.781	.755	.706						
2.0	.871	,832	.797	.772	.724						
2.1	.882	.844	.811	.788	.741						
2.2	.892	.857	.824	.802	.758						
2.3	.902	.868	.836	.815	.773						
2.4	.910	.879	.849	.827	.786						
2.5	.919	.888	.860	.839	.797						
2.6	.926	.897	.870	.851	.808						
2.7	.933	.906	.879	.861	.819						
2.8	.939	.913	.888	.870	.829						
2.9	.944	.920	.897	.879	,838						
	.949		.904	.887	.847						
3.0		.926			.858						
3.1 3.2	.954 .958	.932 .938	.911 .917	.895 .903	.864						
3.3	.962	.943	.923	.910	.873						
3.4	.965	.943	.929	.916	.880						
3.5	.968	.952	.934	.922	.888						
3.6	.971	.956	.934	.927	.895						
3.7	.974	.960	.943	.927 .933	.902						
3.8	.976	.963	.948	.938	.908						

 $L^*(Z_a/Z_b)$ is the exact lower confidence bound for $R(t_0)$

TABLE VIII. TABLE OF EXACT LOWER CONFIDENCE BOUNDS FOR $R(t_0)$ (Continued)

n = 30 $p = r/n = 1$											
	$\gamma = 0.50$	$\gamma = 0.75$	$\gamma = 0.90$	$\gamma = 0.95$	γ = 0.99						
$\overline{z_a/z_b}$	$L^*(Z_a/Z_b)$	$L*(Z_a/Z_b)$	L*(2 _a /2 _b)	L*(Z _a /Z _b)	$L*(Z_a/Z_b)$						
3.9	.978	.966	. 952	.942	.914						
4.0	.980	.969	.955	.946	.920						
4.1	. 982	.971	.958	.950	.925						
4.2	.984	.974	.961	,954	.929						
4.3	.985	.976	.964	.957	.934						
4.4	.987	.978	.967	.960	.938						
4.5	.988	.980	.969	.963	.942						
4.6	.989	.981	.972	.966	.945						
4.7	.990	.983	.974	.968	.949						
4.8	.991	.984	.976	.971	.952						
4.9	.992	.986	.978	.973	.955						
5.0	.992	.987	.979	.975	.958						

 $[\]frac{L^{*}(Z/Z)}{a}$ is the exact lower confidence bound for $R(t_{0})$

TABLE VIII. TABLE OF EXACT AND ASYMPTOTIC LOWER CONFIDENCE BOUNDS FOR $R(t_0)$ (Continued)

	n = 50										
				P *	r/n =	12/50					
	γ =	0.50	γ =	0.75	γ =	0.90	γ =	0.95	γ = 0.99		
Z _a Z _b	$L*\left(\frac{Z_a}{Z_b}\right)$	$L_A \star \left(\frac{z_a}{z_b}\right)$	$L*\left(\frac{2}{a}\right)$	$L_A \star \left(\frac{Z_a}{Z_b}\right)$	$L \star \left(\frac{Z_a}{Z_b}\right)$	$L_A \star \left(\frac{Z_a}{Z_b}\right)$	$L \star \left(\frac{z_a}{z_b}\right)$	$L_{A} \star \left(\frac{Z_{a}}{Z_{b}}\right)$	$L \star \left(\frac{Z_a}{Z_b}\right)$	$L_A \star \left(\frac{z_a}{z_b}\right)$	
.0	.441	.368	.320	.252	.207	.158	.163	.111	.080	.048	
. 1	.471	.405	.359	.292	.249	.197	.203	. 147	.119	.073	
.2	.504	.441	.397	.334	.292	.240	.246	.188	.155	.105	
.3	.532	.477	.433	.375	.337	.284	.291	.231	. 196	-144	
.4	.560	.512	.467	.417	.380	.329	.335	.277	.240	.187	
.5	-588	.545	.503	.458	.427	.375	.379	.324	.291	.233	
.6	.614	.578	.537	.497	.469	.419	-419	.372	.350	.282	
.7	.638	.609	.567	.535	.508	.463	.463	.418	.397	.332	
.8	.664	.638	-600	.571	.545	.504	.505	.462	.454	.381	
. 9	.689	. 566	.632	.605	.580	.543	-543	.505	.494	.428	
1.0	.711	.692	.661	.636	.614	.580	.577	.544	.536	.478	
1.1		.717	.687	.666	.642	.614	.609	.581	.571	.514	
1.2	.754	.740	.710	-693	.669	.645	.637	.614	.600	.552	
د.1	.774	.761	.733	.718	.693	.674	.665	.645	.626	.586	
1.4	.792	.781	.753	.741	.715	.700	.689	.673	.650	.617	
1.5	.808	.800	.772	.762	.736	.723	.710	.698	.674	.644	
1.6	.823	.817	-790	.781	.754	.744	.727	.720	.696	.669	
1.7	37ە.	.833	.805	.799	.770	.764	.746	.740	.711	.691	
1.8	.849	.848	.819	.815	.787	.781	.762	.758	.724	.710	
1.9	.501	.861	.832	.830	.803	.797	.777	.775	.738	.727	
2.0	.873	.873	.844	.844	.816	.811	.791	.789	.750	.742	
2.1	.883	.885	.855	.856	.828	.825	.805	.803	.762	.756	
2.2	.892	.895	.865	.867	.839	.837	.817	.815	.777	.769	
2.3	.900	.905	.875	.878	.850	.848	.828	.827	.787	.780	
2.4	.908	.913	.883	.887	.860	.858	.840	.837	.796	.791	
2.5	.915	.921	.891	.896	.868	.867	.851	.847	.805	.800	
2.6		.928	.898	.904	.876	.876	.860	.856	.813	.809	
2.7		.935	.905	.912	.883	.884	.866	.864	.823	.817	
2.8		.941	.912	.919	.891	.892	.874	.872	.831	.825	
2.9		.946	.918	.925	.897	.899	.881	.879	.840	.832	
3,0		.951	.924	.931	.903	.905	.888	.886	.848	.839	
3.1		.456	-929	.936	.908	.911	.894	.892	.856	.846	
3.2		.960	.934	.941	.914	.917	.900	.898	.863	.852	
3.3	.957	.964	.938	•946	.919	.922	.905	.904	.868	.868	

L*($\frac{Z}{a}$) is the exact lower confidence bound for R(t₀) L*($\frac{Z}{a}$) is the asymptotic lower confidence bound for R(t₀)

TABLE VIII. TABLE OF EXACT AND ASYMPTOTIC LOWER CONFIDENCE BOUNDS FOR $R(t_0)$ (Continued)

n = 50p = r/n = 12/50

	γ = 0.50		γ = 0.75		Υ =	γ = 0.90		γ = 0.95		0.99
z _a z _b	$L * \left(\frac{z_a}{z_b}\right)$	$L_A \star \left(\frac{z_a}{z_b}\right)$	$L \star \left(\frac{z_a}{z_b}\right)$	$L_{A} \star \left(\frac{z_{a}}{z_{b}}\right)$	$L \neq \left(\frac{z_a}{z_b}\right)$	$L_{A} \star \left(\frac{z_{a}}{z_{b}}\right)$	$L \star \left(\frac{z_a}{z_b}\right)$	$L_{A} \star \left(\frac{z_{a}}{z_{b}}\right)$	$L \star \left(\frac{z_a}{z_b}\right)$	$L_{A} \star \left(\frac{z_{a}}{z_{b}}\right)$
3.4	.961	.967	.942	.950	.923	.927	.909	.909	.873	.863
3.5	.964	.970	.946	.954	.928	.932	.914	.914	.878	.868
3.6	.967	.973	.950	.957	.932	.936	.919	.919	.883	.873
3.7	.970	.976	.953	.961	.936	.940	.922	.923	.888	.878
3.8	.972	.978	.957	.964	.940	.944	.925	.927	.892	.882
3.9	.975	.980	.960	.967	.943	.947	.930	.931	.898	.887
4.0	.977	.982	.962	.969	.946	.951	.934	.935	.903	.891
4.1	.979	.984	.965	.972	.949	.954	.937	.938	.908	.895
4.2	.981	.985	.967	.974	.952	.957	.940	.942	.912	.899
4.3	.982	.987	.969	.976	.955	.959	.944	.945	.917	.902
4.4	.984	.988	.971	.978	.957	.962	.947	.948	.921	.906
4.5	.985	.989	.973	.980	.960	.964	.949	.951	.924	.909
4.6	.986	.990	.975	.981	.962	.967	.951	.953	.926	.913
4.7	.987	.991	.977	.983	.965	.969	.954	.956	.928	.916
4.8	.988	.992	.979	.984	.967	.971	.957	.958	.931	.919
4.9	.989	.993	.980	.985	.969	.973	.959	.960	.934	.922
5.0	.990	.993	.982	.988	.971	.974	.961	.962	.937	.924

 $L^*(Z_a/Z_b)$ is the exact lower confidence bound for $R(t_0)$ $L_A^*(Z_a/Z_b)$ is the asymptotic lower confidence bound for $R(t_0)$

TABLE VIII. TABLE OF EXACT AND ASYMPTOTIC LOWER CONFIDENCE BOUNDS FOR $R(\tau_0)$ (Continued)

	n = 50 p = r/n = 25/50										
	Υ •	0.50	Y =	0.75		0.90	γ =	0.95	γ -	0.99	
Z a Z _b	$L^{*}\left(\frac{z_{a}}{z_{b}}\right)$	$L_A * \left(\frac{z_a}{z_b}\right)$	$)L = \left(\frac{z}{z_b}\right)$	$L_A \star \left(\frac{z_a}{z_b}\right)$	$\widehat{\sum_{L * \left(\frac{z_a}{z_b}\right)}}$	$L_A \star \left(\frac{z_a}{\overline{z_b}}\right)$	$L \star \left(\frac{z_a}{z_b}\right)$	$L_A \star \left(\frac{z_a}{z_b}\right)$	$L \neq \left(\frac{z_a}{z_b}\right)$	$L_A \star \left(\frac{z_a}{z_b}\right)$	
.0	.383	.368	.333	,313	.286	.264	.258	.236	.209	.186	
.1	.419 .456	.405 .441	.368 .406	.351	.325	.303	.297	.275	.249 .288	.224 .263	
.2	.488	.477	.444	.389 .427	.363 .399	.342 .382	.336 .377	.315	.328	.303	
.4	.522	.512	.477	.464	.436	.420	.414	.393	.368	.342	
. 5	.555	.545	.509	.499	.471	.457	.451	.430	.408	.381	
.6	.586	.578	.543	.534	.507	492	.483	.466	.441	.417	
.7	.615	.600	.573	.566	.540	.526	.515	.500	.475	.452	
.8	.643	.638	.603	.597	.569	.557	.546	.533	.502	.484	
.9	.670	.666	.630	.626	.596	.587	.575	.563	.534	.515	
1.0	.695	.692	.658	.653	.622	.615	,601	.591	.560	.544	
1.1	.718	.717	.682	.679	.647	.641	.626	.618	.584	.570	
1.2	.741	740	,705	.703	.672	,666	.651	.642	.605	.595	
1.3	.761	.761	.727	.725	.693	.689	.673	.666	.627	.618	
1.4	780	.781	.746	.746	.714	.710	692	.687	.649	.640	
1.5	.798	.800	.766	766	.732	.730	.711	.707	.669	.660	
1.6	.816	.817	.783	.784	.750	.749	.728	.726	.688	.679	
1.7	.830	.833	.799	.800	.767	.767	.745	.744	.706	.69 7	
1.8	.845	.848	.815	.816	.784	.783	.761	.761	.724	.714	
1.9	.857	.801	.829	.831	.800	.798	.776	.776	.741	.729	
2.0	.869	.873	.842	.844	.813	.812	.789	.791	.757	.744	
2.1	.880	.885	.854	.856	.827	.825	.804	.804	.770	.758	
2.2	.890	.895	.865	.868	.839	.838	.816	.817	.781	.771	
2.3	,900	.905	.875	.878	.850	.849	.828	.829	.793	.784	
2.4	.908	.913	.885	.888	.861	.860	.839	.840	.803	.796	
2.5	.916	.921	.893	.897	.871	.870	.849	.850	.814	.807	
2.6	.923	.928	.901	.906	.879	.879	.359	.860	.823	.817	
2.7	.930	.935	.909	.913	.888	.888	.867	.869	.834	.827	
2.8	.936	.941	.916	.920	.896	.896	.875	.878	.843	.836	
2.9		.946	.922	.927	.903	.903	.884	.886	.851	.845	
3.0 3.1	.947 .951	.951 .956	.928	.933	.910	.910	.891	.893	.859	.854	
3.2	.956	.960	.934 .939	.938 .943	.916 .922	.917 .923	.898 .905	.900 .907	.867 .874	.862 .869	
3.3		.964	.944	.948	.927	.928	.911	.913	.880	.876	
			, , , , ,					• • • •			

L*(2 / 2) is the exact lower confidence bound for $R(t_0)$ $L_A*(2 / 2)$ is the asymptotic lower confidence bound for $R(t_0)$

TABLE VIII. TABLE OF EXACT AND ASYMPTOTIC LOWER CONFIDENCE BOUNDS FOR R(t_O) (Continued)

n = 50

p = r/n = 25/50Y = 0.99y = 0.50Y = 0.75Y = 0.90Y = 0.953.4 .963 .967 .952 .932 .933 .919 .887 .883 .948 .917 .956 .938 .924 .894 .889 3.5 .966 .970 .952 .937 .923 .929 .895 .969 .973 .956 .960 .941 .943 .928 .901 3.6 .934 .907 .901 .972 .976 .959 .963 .946 .947 .933 .978 .966 .949 .951 .937 .938 .913 .907 3.8 .975 .963 .977 .953 .954 .941 .942 .918 .912 3.9 .980 .966 .969 .922 4.0 .946 .917 .979 .982 .969 .972 .956 .958 .945 .949 .927 .921 .984 .974 .959 .961 .950 .981 .971 .953 .931 .925 .983 .973 .976 .962 .964 .953 .985 .984 .987 .975 .978 .965 .966 .956 .956 .935 .930 .986 .988 .977 .980 .967 .969 .959 .959 .940 .933 .937 4.5 .987 .989 .979 .982 .969 .971 .962 .962 . 443 4.6 .988 .990 .981 .983 .972 .973 .964 .965 .947 .941 .991 .985 .975 .967 .967 .950 .944 4.7 .989 .982 .973 4.8 .990 .992 .984 .986 .975 .977 .969 .969 .953 .947 .955 .950 4.9 .991 .993 .985 .987 .977 .979 .971 .971

.979

.980

.973

.973

.958

.953

 $L^*(\frac{Z}{a}/\frac{Z}{b})$ is the exact lower confidence bound for $R(t_0)$ $L_A^*(\frac{Z}{a}/\frac{Z}{b})$ is the asymptotic lower confidence bound for $R(t_0)$

5.0

.992

.993

.986

.988

TABLE VIII. TABLE OF EXACT AND ASYMPTOTIC LOWER CONFIDENCE BOUNDS FOR $R(t_{\bar{Q}})$ (Continued)

	p = r/n = 37/50									
	у ж	0.50	γ =	0.75	γ =	0.90	Υ =	0.95	Υ =	0.99
z a z _b	$L \neq \left(\frac{z_a}{z_b}\right)$	$L_A \star \left(\frac{z_a}{z_b}\right)$	$L \star \left(\frac{z_a}{z_b}\right)$	$L_{A} \star \left(\frac{z_{a}}{z_{b}}\right)$	$L \star \left(\frac{z_a}{z_b}\right)$	$L_{A} \star \left(\frac{z_{a}}{z_{b}}\right)$	$L \neq \left(\frac{z_a}{z_b}\right)$	$L_{A} = \left(\frac{z_{a}}{z_{b}}\right)$	$L \star \left(\frac{z_a}{z_b}\right)$	$L_{A} \star \left(\frac{z_{a}}{z_{b}}\right)$
.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3	.448 .483 .517 .549 .580 .610 .639 .666 .692 .717 .789 .760 .780 .798 .815 .831 .845 .858 .870 .882 .901	.368 .405 .441 .477 .512 .545 .578 .609 .638 .666 .692 .717 .740 .761 .781 .800 .817 .833 .848 .861 .873 .895	.335 .371 .406 .442 .477 .510 .542 .572 .601 .630 .657 .681 .704 .726 .746 .746 .746 .765 .783 .799 .816 .830 .844 .857 .868 .879	.327 .364 .400 .436 .471 .505 .538 .569 .599 .627 .654 .679 .703 .725 .746 .766 .784 .801 .817 .831 .845 .857 .869	.304 .339 .373 .409 .441 .475 .506 .537 .567 .596 .621 .645 .669 .713 .733 .751 .768 .785 .800 .815 .828 .840 .852	.291 .327 .363 .399 .434 .467 .500 .531 .561 .590 .617 .642 .666 .689 .711 .731 .750 .768 .784 .800 .814 .828 .841	.283 .317 .352 .387 .422 .457 .489 .521 .548 .574 .601 .626 .649 .671 .712 .731 .748 .765 .780 .795 .809 .822 .834	.270 .305 .341 .376 .411 .444 .477 .508 .538 .566 .593 .619 .643 .666 .688 .708 .727 .746 .763 .779 .794 .808 .821 .833	.252 .291 .328 .358 .389 .422 .452 .478 .506 .533 .555 .575 .645 .665 .687 .708 .728 .743 .755 .768	.231 .265 .300 .334 .368 .401 .432 .463 .492 .520 .546 .572 .596 .619 .641 .661 .681 .699 .717 .734 .750 .764 .779
2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2	.926 .932 .938 .944 .949 .954	.913 .921 .928 .935 .941 .946 .951 .956	.889 .898 .906 .913 .921 .927 .933 .939 .944	.890 .899 .907 .915 .922 .929 .935 .940 .945	.863 .873 .883 .892 .899 .907 .914 .920 .927	.863 .874 .883 .892 .900 .908 .915 .921 .927	.846 .857 .867 .877 .885 .893 .901 .908	.845 .856 .866 .875 .884 .892 .900 .907 .914	.805 .817 .829 .840 .850 .860 .869 .877 .885	.804 .816 .928 .838 .848 .857 .866 .875 .882

 $L^*(\frac{Z}{a},\frac{Z}{b})$ is the exact lower confidence bound for $R(t_0)$ $L_A^*(\frac{Z}{a},\frac{Z}{b})$ is the asymptotic lower confidence bound for $R(t_0)$

TABLE VIII. TABLE OF EXACT AND ASYMPTOTIC LOWER CONFIDENCE BOUNDS FOR $R(t_0)$ (Continued)

				n =						
				P =	= r/n =	37/50				
	γ=	0.50	γ =	0.75	γ =	0.90	Υ =	0.95	γ =	0.99
$\frac{z_a}{z_b}$	$L*\left(\frac{Z_a}{Z_b}\right)$	$L_A \star \left(\frac{Z_a}{Z_b}\right)$	$L*\left(\frac{Z_a}{Z_b}\right)$	$L_{A}*\left(\frac{Z_{a}}{Z_{b}}\right)$	$L*\left(\frac{Z_a}{Z_b}\right)$	$L_A \star \left(\frac{Z_a}{Z_b}\right)$	$L*\left(\frac{Z_a}{Z_b}\right)$	$L_A * \left(\frac{Z_a}{Z_b}\right)$	$L*\left(\frac{Z_a}{Z_b}\right)$	$L_{A} * \left(\frac{Z_{a}}{Z_{b}}\right)$
3.4	.965	.967	.952	.954	.937	.938	.927	.926	.900	.897
3.5	.968	.970	.956	.958	.942	.943	.932	.931	.905	•903
3.6	.971	.973	.960	.962	.946	.947	.937	.936	.911	•909
3.7	•974	.976	.963	.965	.950	.951	.942	.941	.916	•915
3.8	.976	.978	.966	.968	.954	.955	.946	.945	.921	.920
3.9	.978	.980	.969	.971	.957	•958	.950	.949	.926	.925
4.0	.980	.982	.972	.973	.961	.962	.954	.953	.930	.930
4.1	.982	.984	.974	.975	.963	.965	.957	.956	.934	.934
4.2	•984	.985	•976	.977	.966	.967	.960	.959	.938	.939
4.3	•985	.987	.978	.979	.969	.970	.963	.962	.942	.942
4.4	•987	.988	.980	.981	.971	.972	.966	.965	.945	.946
4.5	.988	.989	.982	.983	.973	.974	.968	•968	.949	•950
4.6	.989	•990	•983	.984	.975	.976	.971	.970	.952	.953
4.7	.990	.991	.985	.986	.977	•978	.973	.972	•955	.956
4.8	.991	.992	.986	.987	.979	.980	.975	•974	.957	.959
4.9	.992	.993	.987	.988	.981	.981	.977	.976	.960	.961
5.0	.992	.993	•988	.989	.982	.983	•979	.978	.953	.964

 $L^*(\frac{Z}{a}/\frac{Z}{b})$ is the exact lower confidence bound for $R(t_0)$ $L^*(\frac{Z}{a}/\frac{Z}{b})$ is the asymptotic lower confidence bound for $R(t_0)$

TABLE VIII. TABLE OF EXACT AND ASYMPTOTIC LOWER CONFIDENCE BOUNDS FOR $R(t_0)$ (Continued)

n = 50 $p = r/n = 1$										
	γ =	0.50	γ =	0.75	γ =	0.90	γ = 0.95		γ = 0.99	
$\frac{z}{z_b}$	$L^{*}\left(\frac{2}{2}_{b}\right)$	$L_{A}^{\star}\left(\frac{z_{a}}{z_{b}}\right)$	$L \star \left(\frac{z_{a}}{z_{b}}\right)$	$L_{A} \star \left(\frac{Z_{a}}{Z_{b}}\right)$	$L^{\star}\left(\frac{z_{a}}{z_{b}}\right)$	$L_{A}^{\star} \left(\frac{Z_{a}}{Z_{b}} \right)$	$L \star \left(\frac{z_a}{z_b}\right)$	$L_{A} \star \left(\frac{z_{a}}{z_{b}}\right)$	$L^{\frac{1}{2}}\left(\frac{z_{a}}{z_{b}}\right)$	$L_A \star \left(\frac{z_a}{z_b}\right)$
.0	.372	.368	.336	.331	.304	.298	.284	.279	.263	.243
.1	.408	.405	.372	.367	.339	.333	.320	.312	.294	.275
.2	.444	.441	.408	.402	.374	.367	.356	.346	.325	.307
.3	.480	.477	.443	.438	.407	.402	.390	.380	.356	.339
.4	.514	.312	.477	.472	.442	.435	.422	.413	.388	.371
.5	.547	.545	.510	.506	.474	.468	.456	.446	.417	.403
.6	.579	.578	.542	.538	.506	.501	.487	.478	.448	.433
.7	.610	.609	.572	.569	.537	.532	.517	.508	.476	.464
.8	.639	.638	.603	.599	.586	.561	.548	.538	.507	.493
.9	.667	.666	.630	.627	.595	.590	.577	.567	.535	.521
1.0	.693	.692	.657	.654	.621 .647	.617	.603	.594	.562	.548 .574
1.1	.718	.717	.683	.680		.643	.628	.620	.590	
1.2	.741	.740	.707	.704	.671	.668	.652	.645	.617	.599
1.3		.761	.728	.726	.695	.691	.675	.669	.641	.623
1.4	.782	.781	.749	.747	.718	.713	.698	.691	.663	.646
1.5	.800	.800	.769	.767	.738	.734	.719	.712	. ú82	.668
1.6	.818	.817	.787	.786	.757	.753	.738	.732	.701	.689
1.7	.834	.833	.804	.803	.775	.772	.757	.751	.720	.708
1.8	.848	.848	.819	,819	.791	.789	.774	.769	.739	.727
1.9	.861	.861	.834	.833	.806	.804	.791	.785	.756	.744
2.0		.873	.848	.847	.821	.819	.807	.801	.773	.761 .776
2.1	.885 .895	.885 .895	.860 .872	.860 .871	.834 .847	.833 .846	.822 .835	.815 .828	.789 .803	.776
2.3		.905	.882	.882	.859	.858	.837	.841	.817	.805
2.4	.914	.913	.892	.892	.870	.869	.858	.853	.829	.818
2.5		.921	.901	.901	.880	.879	.869	.864	.840	.830
2.6	9.29	.928	.910	.910	,890	.889	.878	.874	.851	.842
2.7		,935	.917	.917	.899	.897	.887	.883	.860	.852
2.8	.941	.941	.924	.924	.907	.905	.396	.892	.870	.862
2.9		.946	.931	.931	.907	,913	.904	.900	.878	.872
3.0	.951	.951	.937	.937	.921	.920	.911	.908	.886	.881
3.0		.956	.937	.937	.921	.926	.911	.908	.894	.859
3.2	.960	.960	.947	.947	.933	,932	.924	.921	.901	.897
3.2		.964	.952	.947	.939	.932		.921		
د. د	,704	. 704	.726	,934	, 727	.730	.930	.94/	.908	.904

 $L^{*}(Z_{a}/Z_{b})$ is the exact lower confidence bound for $R(\tau_{0})$ $L_{A}^{*}(Z_{a}/Z_{b})$ is the asymptotic lower confidence bound for $R(\tau_{0})$

TABLE VIII. TABLE OF EXACT AND ASYMPTOTIC LOWER CONFIDENCE BOUNDS FOR $R(t_0)$ (Continued)

	n = 50										
					p = r/n	= 1					
	γ = 0.50 γ = 0.			0.75	0.75 $\gamma = 0.90$			0.95	γ =	0.99	
$\frac{z_a}{z_b}$	$L \star \left(\frac{z_a}{z_b}\right)$	$L_A * \left(\frac{Z_a}{Z_b}\right)$	$L*\left(\frac{z_a}{z_b}\right)$	$L_A \star \left(\frac{Z_a}{Z_b}\right)$	$L \star \left(\frac{z_a}{z_b}\right)$	$L_A \star \left(\frac{z_a}{z_b}\right)$	$L \star \left(\frac{z_a}{z_b}\right)$	$L_A \star \left(\frac{z_a}{z_b}\right)$	$L*\left(\frac{z_a}{z_b}\right)$	$L_A \star \left(\frac{z_a}{z_b}\right)$	
3.4	.967	.967	.956	.956	.944	.943	.935	.933	.914	.910	
3.5	.970	.970	.960	.960	.948	.947	.940	. 938	.920	.917	
3.6	.973	.973	.963	.963	.952	.952	.945	.943	.925	.922	
3.7	.970	.976	.966	.966	.956	.956	.949	. 947	.930	.928	
3.8	.978	.978	.969	.969	.960	.959	.953	.951	.935	.933	
3.9	.980	.980	.972	.972	.963	.962	.956	.955	.940	.938	
4.0	.982	.982	.974	.975	.966	.965	.960	.959	.944	.942	
4.1	.983	.984	.977	.977	.969	.968	.963	.962	.948	.946	
4.2	. 485	.985	.979	.979	.971	.971	.966	.965	.951	.950	
4.3	.986	.987	.981	.981	.974	.973	.969	.968	.955	.954	
4.4	.988	.988	.982	.982	.976	.975	.971	.970	.958	.957	
4.5	.989	.989	.984	.984	.978	.977	.973	•972	.960	.960	
4.6	.990	.990	.985	.985	.980	.979	.976	.975	.963	.963	
4.7	.991	.991	.980	7ه٤.	.981	.981	.978	.977	.965	.965	
4.8	.992	.992	.988	.988	.983	.983	.979	.978	.968	.968	
4.9	.993	.993	.989	. 989	.984	.984	.981	.980	.970	.970	
5.0	.993	.993	.990	.990	.986	.985	.982	.982	.972	.972	

 $L*(2/4_b)$ is the exact lower confidence bound for $R(t_0)$ $L_A*(4_b/4_b)$ is to asymptotic lower confidence bound for $R(t_0)$

TABLE VIII. TABLE OF EXACT AND ASYMPTOTIC LOWER CONFIDENCE BOUNDS FOR $R(t_0)$ (Continued)

n = 190											
				Р	r/n =	25/100					
	Υ =	0.50	Υ **	0.75 -	γ =	0.90	γ •	0.95	γ = 0.99		
$\frac{z_a}{z_b}$	$L \star \left(\frac{2_a}{2_b}\right)$	$L_A \star \left(\frac{Z_a}{Z_b}\right)$	$L*\left(\frac{z_a}{\overline{z_b}}\right)$	$L_A \star \left(\frac{Z_a}{Z_b}\right)$	$L \star \left(\frac{2_a}{2_b}\right)$	$L_{A} \star \left(\frac{2_{a}}{2_{b}}\right)$	$L \star \left(\frac{z_a}{z_b}\right)$	$L_A \star \left(\frac{z_a}{z_b}\right)$	$L \star \left(\frac{Z_a}{Z_b}\right)$	$L_{A} \star \left(\frac{z_{a}}{z_{b}}\right)$	
.0	.402	.308	.315	.288	.243	.220	.193	.182	. 149	.119	
.1	.437	.405	.353	.328	.282	.261	.234	.222	.157	.156	
. 2	.469	.441	.390	.368	.325	.303	.280	.205	.198	.197	
.3	.501	•477	.428	.409	.368	.346	.321	.309	.240	.241	
.4	.534	.512	.466	.448	.408	.389	.863	.353	.284	.287	
.5	.564	-545	.503	.487	.449	-431	.408	.397	.333	.384	
.6	.593	.578	.538	.524	.487	.472	.451	.441	.384	.380	
.7	.622	.609	.573	.559	.526	.512	.492	.483	.432	.426	
.8	.648	.638	.605	.593	.562	.550	.533	.522	.484	.469	
. 9	.675	.636	.635	.625	-595	.585	.569	.560	.525	.511	
1.0	.699	.692	.663	.655	.626	.618	.605	.595	.566	.550	
1.1	.723	.717	.690	.682	.655	.649	.637	.628	.603	.585	
1.2	.745	.740	.713	.708	.683	.677	.668	.657	.635	.618	
1.3	.765	.761	.737	.732	.708	.703	.695	.685	.662	•648	
1.4	.784	.781	.758	.754	.730	.727	.717	.710	.683	.675	
1.5	.801	.800	•777	.774	.752	.749	.740	.732	.704	.699	
1.6	.818	.817	.796	.793	.771	.768	.758	.753	.724	.721	
1.7	.833	.833	.812	.810	.790	.787	.776	.772	.746	.741	
1.8	.848	.848	.827	.825	.806	.803	.791	.789	.764	.759	
1.9	.561	.261	.840	.840	.821	.818	.806	.804	•777	.775	
2.0	.873	.873	.853	.653	.834	.832	.820	.818	.791	.790	
2.1	. 854	.885	.865	.865	.846	.845	.832	.831	.805	.803	
2.2	.894	.893	.875	.876	.857	.856	.843	.843	.819	.815	
2.3	.902	.905	.885	.886	.867	.867	.854	.854	.832	.827	
2.4	.911	.913	-894	.896	.876	.877	.863	.864	.843	.837	
2.5	.919	.921	.903	. 904	.885	.886	.872	.874	3زه.	.847	
2.6	.926	.928	.910	.912	.894	.894	.880	.882	.862	.856	
2.7		.935	.917	.919	.901	.902	.888	.690	.872	.864	
2.8		.941	.923	.926	.908	.909	.895	.898	.881	.872	
2.9		, 946	.929	.932	.914	.916	.902	.905	.888	.879	
٥.٥		.951	.934	.938	.920	.922	.909	.911	.895	.886	
3.1		.956	.940	.943	.926	.928	.915	.917	.901	.892	
3.2		.960	.944	.948	.931	.933	.921	.923	.907	.899	
د . د	.961	•964	.949	.952	.935	.938	.926	.928	.913	.904	

L*(2_a/2_b) is the exact lower confidence bound for R(t₀) L_A *(2_a/2_b) is the asymptotic lower contidence bound for R(t₀)

TABLE VIII. TABLE OF EXACT AND ASYMPTOTIC LOWER CONFIDENCE BOUNDS FOR $R(t_0)$ (Continued)

				n P		25/100				
	γ =	0.50	γ =	0.75	γ =	0.90	γ =	0.95	Υ •	0.99
z a z b	$L \star \left(\frac{z_a}{z_b}\right)$	$L_{A} \star \left(\frac{z_{a}}{z_{b}}\right)$	$L \neq \left(\frac{z_a}{z_b}\right)$	$L_A \star \left(\frac{z_a}{z_b}\right)$	$L \star \left(\frac{z_a}{z_b}\right)$	$L_A \star \left(\frac{z_a}{z_b}\right)$	$L \star \left(\frac{z_a}{z_b}\right)$	$L_{A} \star \left(\frac{z_{a}}{z_{b}}\right)$	$L \star \left(\frac{z_a}{z_b}\right)$	$L_{A} \star \left(\frac{z_{a}}{z_{b}}\right)$
3.4	.965	.967	.953	.956	.940	.942	.931	.933	.918	.909
3.5	.968	.970	.956	.959	.944	.947	.935	.937	.923	.914
3.6	.971	.973	.960	.963	.948	.950	.939	.941	.928	.919
3.7	.973	.976	.963	.966	.951	.954	.944	.945	.932	.924
3.8		.978	.965	.969	.955	.957	.947	.949	.936	.928
3.9	.978	.980	.908	.971	.958	.960	.951	.952	.940	.932
4.0	.980	.982	.971	.974	.961	.963	.954	.955	.943	.935
4.1	.982	.984	.973	.976	.964	.966	.957	.958	.947	.939
4.2	.983	.985	.976	.978	.966	.968	.960	.961	.950	.942
4.3	.985	.987	.977	.980	.968	.971	.963	.964	.953	.945
4.4	.986	.988	.979	.981	.971	.973	.965	.966	.956	.948
4.5	.987	.989	.981	.983	.973	.975	.967	.968	.958	.951
4.6	.989	.990	.982	.984	.975	.977	.969	.970	.961	.954
4.7	.990	.991	.984	.986	.976	.978	.971	.972	.963	.956
4.8	.991	.992	.985	.987	.978	.980	.973	.974	.985	.959
4.9	.991	.993	.986	.988	.979	.981	.975	.976	.967	.961
5.0	.992	.993	.987	.989	.981	.983	.977	.978	.969	.963

 $L^{*}(Z_{a}/Z_{b})$ is the exact lower confidence bound for $R(t_{0})$ $L_{A}^{*}(Z_{a}/Z_{b})$ is the asymptotic lower confidence bound for $R(t_{0})$

TABLE VIII. TABLE OF EXACT AND ASYMPTOTIC LOWER CONFIDENCE BOUNDS FOR $R(t_0)$ (Continued)

n = 100

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					p •	r/n =	50/100				
2b 2b/s 2		γ =	0.50	γ =	0.75	γ =	0.90	γ =			0.99
1 .413 .405 .377 .367 .348 .333 .323 .312 .284 .275 2 .448 .441 .413 .405 .386 .371 .361 .352 .318 .315 3 .483 .477 .450 .442 .422 .410 .400 .390 .359 .354 4 .516 .512 .486 .478 .458 .447 .439 .428 .399 .393 .5 .549 .545 .522 .513 .493 .483 .476 .465 .441 .430 .6 .581 .578 .555 .547 .525 .518 .510 .500 .477 .466 .7 .612 .609 .586 .579 .557 .551 .542 .534 .511 .500 .8 .640 .638 .615 .609 .587 .582 .571 .565 .540 .533 .9 .668 .666 .663 .665 .644 .639<	z a Z _b	$L \star \left(\frac{z_a}{z_b}\right)$	$L_{A}^{\star} \begin{pmatrix} \frac{z_{a}}{z_{b}} \end{pmatrix}$	$L*\left(\frac{z_a}{z_b}\right)$	$L_A \star \left(\frac{z_a}{z_b}\right)$		$L_A \star \left(\frac{z_a}{z_b}\right)$	$L \neq \left(\frac{z_a}{z_b}\right)$	$L_{A}^{\star} \left(\frac{z_{a}}{z_{b}} \right)$	$L \neq \left(\frac{z_a}{\overline{z_b}}\right)$	$L_A * \left(\frac{z_a}{z_b}\right)$
.2 .448 .441 .413 .405 .386 .371 .361 .352 .318 .315 .3 .483 .477 .450 .442 .422 .410 .400 .390 .359 .354 .4 .516 .512 .486 .478 .458 .447 .439 .428 .399 .393 .5 .549 .545 .522 .513 .493 .483 .476 .465 .441 .430 .6 .581 .578 .555 .547 .525 .518 .510 .500 .477 .466 .7 .612 .609 .586 .579 .557 .551 .542 .534 .511 .500 .8 .640 .638 .615 .609 .587 .551 .542 .534 .511 .500 .8 .640 .638 .617 .611 .598 .595 .567 .563 1.0 .694 .692 .666 .665 .644 .639 .626	.0	.377	.368	.339	.329	.309	.294	.287	.273	.244	.236
.3 .483 .477 .450 .442 .422 .410 .400 .390 .359 .354 .4 .516 .512 .486 .478 .458 .447 .439 .428 .399 .393 .5 .549 .545 .522 .513 .493 .483 .476 .465 .441 .430 .6 .581 .578 .555 .547 .525 .518 .510 .500 .477 .466 .7 .612 .609 .586 .579 .557 .551 .542 .534 .511 .500 .8 .640 .638 .615 .609 .587 .582 .571 .565 .540 .533 .9 .668 .666 .643 .638 .617 .611 .598 .595 .567 .563 .9 .668 .666 .643 .638 .617 .611 .598 .595 .567 .563 .1 .0 .694 .692 .669 .665 .644 .639 .626 .623 .595 .591 .1 .718 .717 .695 .690 .669 .665 .652 .649 .621 .618 .1 .2 .741 .740 .717 .714 .691 .689 .676 .673 .644 .642 .1 .3 .761 .761 .738 .736 .713 .712 .698 .696 .667 .666 .1 .4 .781 .781 .759 .757 .734 .733 .720 .718 .687 .687 .1.5 .798 .800 .777 .776 .753 .753 .739 .738 .707 .707 .1 .6 .816 .817 .794 .794 .794 .771 .771 .756 .756 .726 .726 .726 .726 .1 .7 .831 .833 .810 .811 .788 .788 .773 .774 .745 .744 .8 .846 .848 .825 .826 .804 .804 .790 .790 .790 .762 .761 .1 .9 .859 .861 .840 .840 .818 .819 .804 .805 .776 .776 .776 .20 .872 .873 .852 .853 .832 .832 .832 .832 .805 .804 .2 .2 .893 .895 .875 .876 .857 .857 .857 .854 .844 .818 .817 .2 .3 .903 .905 .885 .887 .867 .868 .855 .855 .830 .829 .2 .4 .912 .913 .894 .896 .877 .878 .878 .866 .866 .842 .840 .2 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9			.405	.377	.367		.333	.323	.312	.284	
.4 .516 .512 .486 .478 .458 .447 .439 .428 .399 .393 .5 .549 .545 .522 .513 .493 .483 .476 .465 .441 .430 .6 .581 .578 .555 .547 .525 .518 .510 .500 .477 .466 .7 .612 .609 .586 .579 .557 .551 .542 .534 .511 .500 .8 .640 .638 .615 .609 .587 .582 .571 .565 .540 .533 .9 .668 .666 .643 .638 .617 .611 .598 .595 .567 .563 .10 .694 .692 .669 .665 .644 .639 .626 .662 .595 .591 .11 .718 .717 .695 .690 .669 .665 .623 .595 .591 .11 .718 .717 .695 .690 .669 .665 .625 .649 .621 .618 .12 .741 .740 .717 .714 .691 .689 .676 .673 .644 .642 .1.3 .761 .761 .738 .736 .713 .712 .698 .696 .667 .666 .1.4 .781 .781 .781 .759 .757 .734 .733 .720 .718 .687 .687 .1.5 .798 .800 .777 .776 .753 .753 .739 .738 .707 .707 .1.6 .816 .817 .794 .794 .771 .771 .756 .756 .756 .726 .726 .726 .1.7 .831 .833 .810 .811 .788 .788 .773 .774 .745 .744 .1.8 .846 .848 .825 .826 .804 .804 .790 .790 .762 .761 .19 .859 .861 .840 .840 .818 .819 .804 .805 .776 .776 .776 .20 .872 .873 .852 .853 .832 .832 .818 .819 .792 .791 .21 .883 .885 .864 .865 .845 .845 .832 .832 .805 .804 .22 .893 .895 .875 .876 .857 .857 .858 .855 .855 .830 .829 .24 .912 .913 .894 .896 .877 .878 .887 .875 .876 .851 .850 .26 .927 .928 .911 .913 .895 .887 .887 .887 .875 .876 .851 .850 .26 .927 .928 .911 .913 .895 .896 .884 .885 .861 .860 .27 .933 .935 .938 .907 .903 .905 .887 .887 .887 .887 .875 .876 .851 .850 .26 .927 .928 .911 .913 .895 .896 .884 .885 .861 .860 .27 .933 .935 .938 .930 .905 .887 .887 .887 .875 .876 .851 .850 .26 .927 .928 .911 .913 .895 .896 .884 .885 .861 .860 .27 .933 .935 .938 .990 .991 .993 .991 .991 .991 .990 .901 .879 .878 .29 .944 .946 .931 .933 .917 .919 .907 .908 .887 .886 .29 .944 .946 .931 .933 .917 .919 .907 .908 .887 .886 .30 .949 .951 .937 .939 .923 .925 .914 .915 .937 .939 .923 .925 .914 .915 .937 .939 .923 .925 .914 .915 .937 .939 .923 .925 .914 .915 .937 .939 .923 .925 .914 .915 .990 .990 .901 .879 .878 .890 .907 .908 .887 .886 .30 .949 .951 .937 .939 .923 .925 .914 .915 .990 .990 .990 .990 .990 .990 .990 .99	.2						.371	.361			
.5 .549 .545 .522 .513 .493 .483 .476 .465 .441 .430 .6 .581 .578 .555 .547 .525 .518 .510 .500 .477 .466 .7 .612 .609 .586 .579 .557 .551 .542 .534 .511 .500 .8 .640 .638 .615 .609 .587 .582 .571 .565 .540 .533 .9 .668 .666 .643 .638 .617 .611 .598 .595 .567 .563 .10 .694 .692 .669 .665 .644 .639 .626 .623 .595 .591 .1 .718 .717 .695 .690 .669 .665 .652 .649 .621 .618 .1.2 .741 .740 .717 .714 .691 .689 .676 .673 .644 .642 .1.3 .761 .761 .738 .736 .713 .712 .698 .696 .667 .666 .1.4 .781 .781 .759 .757 .734 .733 .720 .718 .687 .687 .1.5 .798 .800 .777 .776 .753 .753 .739 .738 .707 .707 .1.6 .816 .817 .794 .794 .771 .771 .756 .756 .756 .726 .726 .726 .17 .831 .833 .810 .811 .788 .788 .773 .774 .745 .744 .1.8 .846 .848 .825 .826 .804 .804 .790 .790 .762 .761 .1.9 .859 .861 .840 .840 .818 .819 .804 .805 .776 .776 .776 .20 .872 .873 .852 .853 .832 .832 .818 .819 .792 .791 .2.1 .883 .885 .864 .865 .845 .845 .832 .832 .832 .805 .804 .2.2 .893 .895 .875 .876 .857 .857 .844 .844 .818 .817 .2.3 .903 .905 .885 .887 .867 .868 .855 .855 .830 .829 .2.4 .912 .913 .894 .896 .877 .878 .866 .866 .842 .840 .2.5 .919 .921 .903 .905 .887 .867 .868 .855 .855 .830 .829 .2.4 .912 .913 .894 .896 .877 .878 .866 .866 .842 .840 .2.5 .919 .921 .903 .905 .887 .887 .887 .886 .884 .885 .861 .860 .2.7 .933 .935 .918 .920 .903 .904 .892 .893 .870 .869 .2.8 .939 .941 .925 .927 .910 .912 .900 .901 .879 .878 .866 .866 .842 .840 .2.5 .919 .921 .903 .905 .887 .867 .868 .855 .855 .830 .829 .2.8 .939 .941 .925 .927 .910 .912 .900 .901 .879 .878 .866 .942 .944 .946 .931 .933 .917 .919 .907 .908 .887 .886 .866 .866 .842 .840 .2.8 .939 .941 .925 .927 .910 .912 .900 .901 .879 .878 .894 .893 .310 .944 .946 .931 .933 .917 .919 .907 .908 .887 .886 .893 .907 .908 .907 .908 .887 .886 .900 .900 .901 .879 .878 .890 .907 .908 .887 .886 .900 .900 .901 .879 .878 .890 .907 .908 .887 .886 .900 .900 .901 .879 .908 .907 .908 .887 .886 .900 .900 .901 .879 .908 .907 .908 .890 .907 .908 .907 .908 .907 .908 .907 .908 .907 .908 .907 .908 .907 .908 .907 .908 .907 .908 .907 .											
.6 .581 .578 .555 .547 .525 .518 .510 .500 .477 .466 .7 .612 .609 .586 .579 .557 .551 .542 .534 .511 .500 .8 .640 .638 .615 .609 .587 .582 .571 .565 .540 .533 .9 .668 .666 .643 .638 .617 .611 .598 .595 .567 .563 1.0 .694 .692 .669 .665 .644 .639 .626 .623 .595 .591 1.1 .718 .717 .695 .690 .669 .665 .644 .639 .676 .673 .644 .642 1.3 .761 .761 .738 .736 .713 .712 .698 .696 .667 .666 1.4 .781 .781 .759 .757 .734 .733 .720 .718 .687 .687 1.5 .798 .800 .777										-	
.7 .612 .609 .586 .579 .557 .551 .542 .534 .511 .500 .8 .640 .638 .615 .609 .587 .582 .571 .565 .540 .533 .9 .668 .666 .643 .638 .617 .611 .598 .595 .567 .563 1.0 .694 .692 .669 .665 .644 .639 .626 .623 .595 .591 1.1 .718 .717 .695 .690 .669 .665 .652 .649 .621 .618 1.2 .741 .740 .717 .714 .691 .689 .676 .673 .644 .642 1.3 .761 .761 .738 .736 .713 .712 .698 .696 .667 .666 1.4 .781 .781 .759 .757 .734 .733 .720 .718 .687 .687 1.5 .798 .800 .777 .776 .753 .753 .739 .738 .707 .707 1.6 .816 .817 .794 .794 .771 .771 .771 .776 .756 .726 .726 1.7 .831 .833 .810 .811 .788 .788 .773 .774 .745 .744 1.8 .846 .848 .825 .826 .804 .804 .790 .790 .762 .761 1.9 .859 .861 .840 .840 .818 .819 .804 .805 .776 .776 2.0 .872 .873 .852 .853 .832 .832 .818 .819 .792 .791 2.1 .883 .885 .864 .865 .845 .845 .845 .832 .832 .805 .804 2.2 .893 .895 .875 .876 .857 .857 .844 .844 .818 .817 2.3 .903 .905 .885 .887 .867 .868 .855 .855 .830 .829 2.4 .912 .913 .894 .896 .877 .878 .875 .876 .851 .850 2.6 .927 .928 .911 .913 .895 .887 .887 .887 .875 .876 .851 .850 2.7 .933 .935 .918 .920 .903 .904 .892 .893 .870 .869 2.8 .939 .941 .925 .927 .910 .912 .900 .901 .879 .878 2.9 .944 .946 .931 .933 .917 .919 .907 .908 .887 .886 3.0 .949 .951 .937 .939 .923 .925 .914 .915 .894 .893 3.1 .954 .956 .942 .944 .929 .931 .919 .921 .902 .900 3.2 .958 .960 .947 .949 .934 .936 .925 .927 .908 .907	.5		.545		.513	.493	.483	.476	.465	.441	
.8 .640 .638 .615 .609 .587 .582 .571 .565 .540 .533 .9 .668 .666 .643 .638 .617 .611 .598 .595 .567 .563 1.0 .694 .692 .669 .665 .644 .639 .626 .623 .595 .591 1.1 .718 .717 .695 .690 .669 .665 .652 .649 .621 .618 1.2 .741 .740 .717 .714 .691 .689 .676 .673 .644 .642 1.3 .761 .761 .738 .736 .713 .712 .698 .696 .667 .666 1.4 .781 .781 .759 .757 .734 .733 .720 .718 .687 .687 1.5 .798 .800 .777 .776 .753 .753 .739 .738 .707 .707 1.6 .816 .817 .794 .771 .771		.581						.510		.477	
.9 .668 .666 .643 .638 .617 .611 .598 .595 .567 .563 1.0 .694 .692 .669 .665 .644 .639 .626 .623 .595 .591 1.1 .718 .717 .695 .690 .669 .665 .652 .649 .621 .618 1.2 .741 .740 .717 .714 .691 .689 .676 .673 .644 .642 1.3 .761 .761 .738 .736 .713 .712 .698 .696 .667 .666 1.4 .781 .781 .759 .757 .734 .733 .720 .718 .687 .687 1.5 .798 .800 .777 .776 .753 .753 .739 .738 .707 .707 1.6 .816 .817 .794 .771 .771 .756 .756 .726 .726 1.7 .831 .833 .810 .811 .788 .788	.7	.612	.609	.586	.579	.557	.551	.542	.534	.511	
1.0 .694 .692 .669 .665 .644 .639 .626 .623 .595 .591 1.1 .718 .717 .695 .690 .669 .665 .652 .649 .621 .618 1.2 .741 .740 .717 .714 .691 .689 .676 .673 .644 .642 1.3 .761 .761 .738 .736 .713 .712 .698 .696 .667 .666 1.4 .781 .781 .759 .757 .776 .753 .753 .739 .738 .707 .707 1.6 .816 .817 .794 .771 .771 .756 .756 .726 .726 1.7 .831 .833 .810 .811 .788 .788 .773 .774 .745 .744 1.8 .846 .848 .825 .826 .804 .804 .790 .790 .762 .761 1.9 .859 .861 .840 .818 .819											
1.1					.638						
1.2 .741 .740 .717 .714 .691 .689 .676 .673 .644 .642 1.3 .761 .761 .738 .736 .713 .712 .698 .696 .667 .666 1.4 .781 .781 .759 .757 .734 .733 .720 .718 .687 .687 1.5 .798 .800 .777 .776 .753 .753 .739 .738 .707 .707 1.6 .816 .817 .794 .794 .771 .771 .756 .756 .756 .726 .726 1.7 .831 .833 .810 .811 .788 .788 .773 .774 .745 .744 1.8 .846 .848 .825 .826 .804 .804 .790 .790 .762 .761 1.9 .859 .861 .840 .818 .819 .804 .805 .776 .776 2.0 .872 .873 .852 .853 .832											
1.3 .761 .761 .738 .736 .713 .712 .698 .696 .667 .666 1.4 .781 .759 .757 .734 .733 .720 .718 .687 .687 1.5 .798 .800 .777 .776 .753 .753 .739 .738 .707 .707 1.6 .816 .817 .794 .794 .771 .771 .756 .756 .726 .726 1.7 .831 .833 .810 .811 .788 .788 .773 .774 .745 .744 1.8 .846 .848 .825 .826 .804 .804 .790 .790 .762 .761 1.9 .859 .861 .840 .840 .818 .819 .805 .776 .776 2.0 .872 .873 .852 .853 .832 .832 .818 .819 .792 .791 2.1 .883 .885 .864 .865 .845 .845 .832											
1.4 .781 .781 .759 .757 .734 .733 .720 .718 .687 .687 1.5 .798 .800 .777 .776 .753 .753 .739 .738 .707 .707 1.6 .816 .817 .794 .794 .771 .771 .756 .756 .726 .726 1.7 .831 .833 .810 .811 .788 .788 .773 .774 .745 .744 1.8 .846 .848 .825 .826 .804 .804 .790 .790 .762 .761 1.9 .859 .861 .840 .840 .818 .819 .804 .805 .776 .776 2.0 .872 .873 .852 .853 .832 .832 .818 .819 .792 .791 2.1 .883 .885 .864 .865 .845 .845 .832 .832 .805 .804 2.2 .893 .895 .875 .876 .857											
1.5 .798 .800 .777 .776 .753 .753 .739 .738 .707 .707 1.6 .816 .817 .794 .771 .771 .756 .756 .726 .726 1.7 .831 .833 .810 .811 .788 .788 .773 .774 .745 .744 1.8 .846 .848 .825 .826 .804 .804 .790 .790 .762 .761 1.9 .859 .861 .840 .840 .818 .819 .804 .805 .776 .776 2.0 .872 .873 .852 .853 .832 .832 .818 .819 .792 .791 2.1 .883 .885 .864 .865 .845 .845 .832 .832 .805 .804 2.2 .893 .895 .875 .876 .857 .857 .844 .844 .818 .817 2.3 .903 .905 .885 .887 .867 .868											
1.6 .816 .817 .794 .794 .771 .771 .756 .756 .726 .726 1.7 .831 .833 .810 .811 .788 .788 .773 .774 .745 .744 1.8 .846 .848 .825 .826 .804 .804 .790 .790 .762 .761 1.9 .859 .861 .840 .840 .818 .819 .804 .805 .776 .776 2.0 .872 .873 .852 .853 .832 .832 .818 .819 .792 .791 2.1 .883 .885 .864 .865 .845 .845 .832 .832 .805 .804 2.2 .893 .895 .875 .876 .857 .857 .844 .844 .818 .817 2.3 .903 .905 .885 .887 .867 .868 .855 .855 .830 .829 2.4 .912 .913 .894 .896 .877											
1.7 .831 .833 .810 .811 .788 .788 .773 .774 .745 .744 1.8 .846 .848 .825 .826 .804 .804 .790 .790 .762 .761 1.9 .859 .861 .840 .840 .818 .819 .805 .776 .776 2.0 .872 .873 .852 .853 .832 .818 .819 .792 .791 2.1 .883 .885 .864 .865 .845 .845 .832 .832 .805 .804 2.2 .893 .895 .875 .876 .857 .857 .844 .844 .818 .817 2.3 .903 .905 .885 .887 .867 .868 .855 .855 .830 .829 2.4 .912 .913 .894 .896 .877 .878 .866 .866 .842 .840 2.5 .919 .921 .903 .905 .887 .887 .875											
1.8 .846 .848 .825 .826 .804 .804 .790 .790 .762 .761 1.9 .859 .861 .840 .840 .818 .819 .805 .776 .776 2.0 .872 .873 .852 .853 .832 .818 .819 .792 .791 2.1 .883 .885 .864 .865 .845 .845 .832 .832 .805 .804 2.2 .893 .895 .875 .876 .857 .857 .844 .844 .818 .817 2.3 .903 .905 .885 .887 .867 .868 .855 .855 .830 .829 2.4 .912 .913 .894 .896 .877 .878 .866 .866 .842 .840 2.5 .919 .921 .903 .905 .887 .887 .875 .876 .851 .850 2.6 .927 .928 .911 .913 .895 .896 .884											
1.9 .859 .861 .840 .840 .818 .819 .804 .805 .776 .776 2.0 .872 .873 .852 .853 .832 .818 .819 .792 .791 2.1 .883 .885 .864 .865 .845 .845 .832 .832 .805 .804 2.2 .893 .895 .875 .876 .857 .857 .844 .844 .818 .817 2.3 .903 .905 .885 .887 .867 .868 .855 .855 .830 .829 2.4 .912 .913 .894 .896 .877 .878 .866 .866 .842 .840 2.5 .919 .921 .903 .905 .887 .887 .875 .876 .851 .850 2.6 .927 .928 .911 .913 .895 .896 .884 .885 .861 .860 2.7 .933 .935 .918 .920 .903 .904											
2.0 .872 .873 .852 .853 .832 .832 .818 .819 .792 .791 2.1 .883 .885 .864 .865 .845 .845 .832 .832 .805 .804 2.2 .893 .895 .875 .876 .857 .857 .844 .844 .818 .817 2.3 .903 .905 .885 .887 .867 .868 .855 .855 .830 .829 2.4 .912 .913 .894 .896 .877 .878 .866 .866 .842 .840 2.5 .919 .921 .903 .905 .887 .887 .875 .876 .851 .850 2.6 .927 .928 .911 .913 .895 .896 .884 .885 .861 .860 2.7 .933 .935 .918 .920 .903 .904 .892 .893 .870 .869 2.8 .939 .941 .925 .927 .910											
2.1 .883 .885 .864 .865 .845 .845 .832 .832 .805 .804 2.2 .893 .895 .875 .876 .857 .844 .844 .818 .817 2.3 .903 .905 .885 .887 .867 .868 .855 .855 .830 .829 2.4 .912 .913 .894 .896 .877 .878 .866 .866 .842 .840 2.5 .919 .921 .903 .905 .887 .887 .875 .876 .851 .850 2.6 .927 .928 .911 .913 .895 .896 .884 .885 .861 .860 2.7 .933 .935 .918 .920 .903 .904 .892 .893 .870 .869 2.8 .939 .941 .925 .927 .910 .912 .900 .901 .878 2.9 .944 .946 .931 .933 .917 .919 .907											
2.2 .893 .895 .875 .876 .857 .844 .844 .818 .817 2.3 .903 .905 .885 .887 .867 .868 .855 .855 .830 .829 2.4 .912 .913 .894 .896 .877 .878 .866 .866 .842 .840 2.5 .919 .921 .903 .905 .887 .887 .875 .876 .851 .850 2.6 .927 .928 .911 .913 .895 .896 .884 .885 .861 .860 2.7 .933 .935 .918 .920 .903 .904 .892 .893 .870 .869 2.8 .939 .941 .925 .927 .910 .912 .900 .901 .878 2.9 .944 .946 .931 .933 .917 .919 .907 .908 .887 .886 3.0 .949 .951 .937 .939 .923 .925 .914											
2.3 .903 .905 .885 .887 .867 .868 .855 .855 .830 .829 2.4 .912 .913 .894 .896 .877 .878 .866 .866 .842 .840 2.5 .919 .921 .903 .905 .887 .887 .875 .876 .851 .850 2.6 .927 .928 .911 .913 .895 .896 .884 .885 .861 .860 2.7 .933 .935 .918 .920 .903 .904 .892 .893 .870 .869 2.8 .939 .941 .925 .927 .910 .912 .900 .901 .879 .878 2.9 .944 .946 .931 .933 .917 .919 .907 .908 .887 .886 3.0 .949 .951 .937 .939 .923 .925 .914 .915 .894 .893 3.1 .954 .956 .942 .944 .929		-									
2.4 .912 .913 .894 .896 .877 .878 .866 .866 .842 .840 2.5 .919 .921 .903 .905 .887 .887 .875 .876 .851 .850 2.6 .927 .928 .911 .913 .895 .896 .884 .885 .861 .860 2.7 .933 .935 .918 .920 .903 .904 .892 .893 .870 .869 2.8 .939 .941 .925 .927 .910 .912 .900 .901 .879 .878 2.9 .944 .946 .931 .933 .917 .919 .907 .908 .887 .886 3.0 .949 .951 .937 .939 .923 .925 .914 .915 .894 .893 3.1 .954 .956 .942 .944 .929 .931 .919 .921 .902 .900 3.2 .958 .960 .947 .949 .934											
2.5 .919 .921 .903 .905 .887 .887 .875 .876 .851 .850 2.6 .927 .928 .911 .913 .895 .896 .884 .885 .861 .860 2.7 .933 .935 .918 .920 .903 .904 .892 .893 .870 .869 2.8 .939 .941 .925 .927 .910 .912 .900 .901 .879 .878 2.9 .944 .946 .931 .933 .917 .919 .907 .908 .887 .886 3.0 .949 .951 .937 .939 .923 .925 .914 .915 .894 .893 3.1 .954 .956 .942 .944 .929 .931 .919 .921 .902 .900 3.2 .958 .960 .947 .949 .934 .936 .925 .927 .908 .907											
2.6 .927 .928 .911 .913 .895 .896 .884 .885 .861 .860 2.7 .933 .935 .918 .920 .903 .904 .892 .893 .870 .869 2.8 .939 .941 .925 .927 .910 .912 .900 .901 .879 .878 2.9 .944 .946 .931 .933 .917 .919 .907 .908 .887 .886 3.0 .949 .951 .937 .939 .923 .925 .914 .915 .894 .893 3.1 .954 .956 .942 .944 .929 .931 .919 .921 .902 .900 3.2 .958 .960 .947 .949 .934 .936 .925 .927 .908 .907											
2.7 .933 .935 .918 .920 .903 .904 .892 .893 .870 .869 2.8 .939 .941 .925 .927 .910 .912 .900 .901 .879 .878 2.9 .944 .946 .931 .933 .917 .919 .907 .908 .887 .886 3.0 .949 .951 .937 .939 .923 .925 .914 .915 .894 .893 3.1 .954 .956 .942 .944 .929 .931 .919 .921 .902 .900 3.2 .958 .960 .947 .949 .934 .936 .925 .927 .908 .907											
2.8 .939 .941 .925 .927 .910 .912 .900 .901 .879 .878 2.9 .944 .946 .931 .933 .917 .919 .907 .908 .887 .886 3.0 .949 .951 .937 .939 .923 .925 .914 .915 .894 .893 3.1 .954 .956 .942 .944 .929 .931 .919 .921 .902 .900 3.2 .958 .960 .947 .949 .934 .936 .925 .927 .908 .907											
2.9 .944 .946 .931 .933 .917 .919 .907 .908 .887 .886 3.0 .949 .951 .937 .939 .923 .925 .914 .915 .894 .893 3.1 .954 .956 .942 .944 .929 .931 .919 .921 .902 .900 3.2 .958 .960 .947 .949 .934 .936 .925 .927 .908 .907											
3.0 .949 .951 .937 .939 .923 .925 .914 .915 .894 .893 3.1 .954 .956 .942 .944 .929 .931 .919 .921 .902 .900 3.2 .958 .960 .947 .949 .934 .936 .925 .927 .908 .907											
3.1 .954 .956 .942 .944 .929 .931 .919 .921 .902 .900 3.2 .958 .960 .947 .949 .934 .336 .925 .927 .908 .907											
3.2 .958 .960 .947 .949 .934 .936 .925 .927 .908 .907											

L*($\frac{Z}{a}$) is the exact lower confidence bound for R(t_0)

L*($\frac{Z}{a}$) is the asymptotic lower confidence bound for R(t_0)

TABLE VIII. TABLE OF EXACT AND ASYMPTOTIC LOWER CONFIDENCE BOUNDS FOR R(t₀) (Continue)

				n '	= 100 = r/n =	50/100				
	Υ =.	0.50	Υ =	0.75		0.90	γ=	0.95	γ =	0.99
z a z _b	$L \neq \left(\frac{z_{a}}{z_{b}}\right)$	$L_{A} \neq \left(\frac{z_{a}}{z_{b}}\right)$	$L \star \left(\frac{z_a}{z_b}\right)$	$L_{A} \star \left(\frac{z_{a}}{z_{b}}\right)$	$L \neq \left(\frac{z_a}{z_b}\right)$	$L_{A} \star \left(\frac{z_{a}}{z_{b}}\right)$	$L^{\frac{2}{a}}\left(\frac{z_{a}}{z_{b}}\right)$	$L_A * \left(\frac{z_a}{z_b}\right)$	$L \neq \left(\frac{z_a}{z_b}\right)$	$L_{A}^{A}\left(\frac{Z_{A}}{Z_{b}}\right)$
3.4	.966	.967	.956	.957	.944	.946	.936	.938	.921	.919
3.5	.969	.970	.959	.961	.949	.950	.941	.942	.926	.924
3.6	.972	.973	.963	.964	.953	.954	.945	.947	.932	.929
3.7	.974	.976	.966	.967	.956	.958	.949	.951	.937	.934
3.8	.977	.978	.968	.970	.960	.961	.953	.954	941	.938
3.9	.979	.980	.971	.973	.963	.964	.957	.958	.945	.942
4.0	.981	.982	.974	.975	.966	.967	.960	.961	.948	.946
4.1	.982	. 984	.976	.977	.968	.970	.963	.964	.952	.950
4.2	.984	.985	.978	.979	.971	.972	.966	.966	.955	.953
4.3	.986	.987	.980	.981	.973	.974	.968	.969	.958	.956
4.4	.9 87	.988	.981	.983	.975	.976	.971	.971	.961	.959
4.5	.988	.989	.983	.984	.977	.978	.973	.973	.964	.962
4.6	.989	.990	.984	.986	.979	.980	.975	.975	.966	.965
4.7	.990	.991	.986	.987	.981	.981	.977	.977	.968	.967
4.8	.991	.992	.987	.988	.982	.983	.979	.979	.971	.969
4.9	.992	.993	.988	.989	.983	.984	.980	.981	.973	.971
5.0	.993	.993	.989	.990	.985	.986	.982	.982	.975	-973

 $L^*(Z_a/Z_b)$ is the exact lower confidence bound for $R(t_0)$ $L_A^*(Z_a/Z_b)$ is the asymptotic lower confidence bound for $R(t_0)$

TABLE VIII. TABLE OF EXACT AND ASYMPTOTIC LOWER CONFIDENCE BOUNDS FOR $R(t_Q)$ (Continued)

n = 100

	p = r/n = 75/100												
	γ =	0.50	γ =	0.75	γ =	0.90	γ =	0.95	γ =	J.99			
Z _a Z _b	$L \star \left(\frac{2}{2} \atop b\right)$	$L_A \star \left(\frac{z_a}{z_b}\right)$	$L \star \left(\frac{Z_a}{Z_b} \right)$	$L_{A} \star \left(\frac{z_{a}}{z_{b}}\right)$	$L \star \left(\frac{z_a}{z_b}\right)$	$L_A \star \left(\frac{z_a}{z_b}\right)$	$L \neq \left(\frac{z_a}{z_b}\right)$	$L_A \star \left(\frac{Z_a}{Z_b}\right)$	$L \neq \left(\frac{z_a}{z_b}\right)$	$L_A \star \left(\frac{Z_a}{Z_b}\right)$			
.0	.374	.368	.347	.339	.320	.314	.305	.298	.273	.270			
.1	.410	.405	.383	.376	.357	.350	.341	.335	.307	.306			
. 2	.445	.441	.419	.412	.393	.386	.377	.371	.343	.342			
٤.	.480	-477	.455	.448	.427	.422	.414	.406	.383	.377			
• 4	.515	.512	.489	.483.	.461	.457	-448	.441	.421	.411			
. 5	.548	.545	.523	.517	.494	.491	.481	.475	.452	.445			
. 6	.579	.578	.555	.550	.526	.523	.513	.508	.482	.477			
. 7	.609	.609	.585	.581	.557	.555	.543	.539	.513	-508			
.8	.639	.638	.613	.611	.587	.585	.572	.569	.541	.538			
.9	.006	.666	.641	.639	.615	.613	.599	.597	.568	.566			
1.0	.692	.692	.668	.665	.642	.640	.625	.624	.594	.593			
1.1	.716	.717	.692	.691	.666	.665	.650	.650	.619	.619			
1.2	.739	.740	.715	.714	.690	.689	.675	.674	.642	.643			
1.3	.761	.761	.737	.736	.712	.712	.695	.696	.666	. 666			
1.4	.780	.781	.758	.757	.732	.733	-718	.718	.688	.688			
1.5	.798	.800	.777	.776	.753	.753	.738	.738	.709	.708			
1.6	.816	.817	.794	.794	.771	.772	.757	.757	.728	.727			
1.7	.831	.833	.811	.811	.788	.789	.775	.775	.747	.746			
1.8	.846	.848	.826	.826	.804	.805	.790	.791	.764	.763			
1.9	.859	.861	.840	.841	.819	.820	.807	•806	.779	.779			
2.0		.873	.853	.854	.833	.834	.821	.821	.793	.794			
2.1	.883	.885	.865	.866	.846	.847	.834	.834	.808	.808			
2.2	.893	.895	.876	.877	.858	.859	.847	.847	.821	.821			
2.3	.903	.905	.887	.888	.809	.870	.858	.858	.835	.834			
2.4	.911	.913	.896	.897	.880	.880	.868	.869	.846	.845			
2.5	.919	.921	.905	.906	.889	.890	.878	.879	.856	.856			
2.6	.927	.928	.913	.914	.898	.899	.887	.888	.885	.866			
2.7		.935	.920	.921	.906	.907	.896	.897	.875	.876			
2.8	.939	.941	.927	.928	.913	.914	.904	.905	.885	.884			
2.9		.946	.933	.934	.920	.921	.911	.912	.894	-893			
3.0	.950	.951	.939	.940	.927	.928	.918	.919	.902	.900			
3.1	956	.956	.944	.945	.932	.934	.924	.925	.910	•907			
٥.2		.960	.949	.950	.938	.939	.929	.931	.916	.914			
3.3	.962	.964	.953	.954	.943	-944	.935	.937	.922	.920			

L* $(2 {}_{a}/2 {}_{b})$ is the exact lower confidence bound for R(t $_{0}$) is the asymptotic lower confidence bound for R(t $_{0}$)

・・ ■マンス・スクロー・ションクントのウンスングを置ったりののの時間

TABLE VIII. TABLE OF EXACT AND ASYMPTOTIC LOWER CONFIDENCE BOUNDS FOR $R(t_0)$ (Continued)

				n •		75/100				
	γ =	0.50	γ =	0.75		0.90	γ =	0.95	γ =	0.99
Z _a Z _b	$L \star \left(\frac{z_a}{z_b}\right)$	$L_A \star \left(\frac{Z_a}{Z_b}\right)$	$L*\left(\frac{z_a}{z_b}\right)$	$L_A \star \left(\frac{Z_a}{Z_b}\right)$	$L \star \left(\frac{z_a}{z_b}\right)$	$L_A \star \left(\frac{z_a}{z_b}\right)$	$L \star \left(\frac{z_a}{z_b}\right)$	$L_A \star \left(\frac{Z_a}{Z_b}\right)$	$L \star \left(\frac{z_a}{z_b}\right)$	$L_{A}\star \left(\frac{z_{a}}{z_{b}}\right)$
3.4	.966	.967	.957	.958	.947	.949	.940	.942	.928	.926
3.5	.969	970	.961	.962	.952	.953	.944	.946	.933	.931
3.6	.972	.973	.964	.965	.955	.957	.949	.950	.938	.936
3.7	.975	.976	.967	.968	.959	.960	.953	.954	.942	.941
3.8	.977	.978	.970	.971	.962	.963	.957	.958	.946	.945
3.9	.979	.980	.973	.974	.965	.966	.960	.961	.950	.949
4.0	.981	.982	.975	.976	.968	.969	.963	.964	.954	.953
4.1	.983	.984	.977	.978	.971	.972	.966	.967	.957	.956
4.2	.984	.985	.979	.980	.973	.974	.969	.970	.960	.959
4.3	. 786	.987	.981	.982	.975	.976	.971	.972	.963	.962
4.4	.987	.988	.983	.983	.977	.978	.978	.974	.966	.965
4.5	.988	.989	.984	.985	.979	.980	.975	.976	.968	.968
4.6	.989	.990	.986	.986	.981	.982	.977	.978	.971	.970
4.7	. 990	.991	.987	.987	.983	.983	.979	.980	.973	.972
4.8	.991	.992	.988	.989	.984	.985	.981	.982	.975	.974
4.9	.992	.993	.989	.990	.985	.986	.982	.983	.976	•976
5.0	.993	.993	.990	.991	.987	.987	.984	.984	.978	.978

 $L^*(\frac{2}{a}/\frac{2}{b})$ is the exact lower confidence bound for $R(t_0)$ $L_A^*(\frac{2}{a}/\frac{2}{b})$ is the asymptotic lower confidence bound for $R(t_0)$

TABLE VIII. TABLE OF EXACT AND ASYMPTOTIC LOWER CONFIDENCE BOUNDS FOR $R(t_0)$ (Continued)

			· · ·		n = 100 $p = r/n$	= 1				
	γ =	0.50	γ =	0.75	•	0.90	γ -	0.95	γ =	0.99
$\frac{z}{z_b}$	$L^{\star} \left(\frac{z_{a}}{z_{b}} \right)$	$L_{A} * \left(\frac{z_{a}}{z_{b}}\right)$	$L*\binom{\frac{z}{a}}{\frac{z}{b}}$	$L_A \star \left(\frac{z_a}{z_b}\right)$	$L^*\left(\frac{z_a}{z_b}\right)$	$L_{A} \star \left(\frac{z_{a}}{z_{b}}\right)$	$L^{\frac{2}{a}}\left(\frac{z_{a}}{z_{b}}\right)$	$L_{A} \star \left(\frac{z_{a}}{z_{b}}\right)$	$L^{\star} \left(\frac{z_{a}}{z_{b}} \right)$	$L_A \star \left(\frac{z_a}{z_b}\right)$
.0	.371 .408 .445	.368 .405 .441	.347 .382 .419	.342 .378 .414	.325 .361 .394	.318 .354 .389	.304 .340 .377	.304 .339 .374	.282 .314 .348	.279 .312 .346
.3 .4 .5	.480 .514 .547 .579	.477 .512 .545 .578	.455 .489 .522 .554	.449 .481 .517 .550	.428 .461 .494 .526	.424 .458 .492 .524	.412 .447 .479 .512	.409 .443 .476 .508	.381 .415 .448 .481	.380 .413 .446 .478
.7 .8 .9	.610 .639 .666	.609 .638 .666	.585 .614 .642 .669	.581 .611 .639	.558 .587 .615	.555 .585 .613	.544 .572 .601	.539 .569 .598 .625	.510 .543 .573	.508 .538 .567 .594
1.0 1.1 1.2 1.3	.717 .741 .762	.717 .740 .761	.694 .718 .740	.666 .691 .715 .737	.667 .692 .715	.666 .690 .713	.629 .653 .677 .700	.651 .675 .698	.626 .650 .672	.620 .645 .669
1.4 1.5 1.6 1.7	.782 .800 .817 .833	.781 .800 .817 .833	.760 .779 .797 .814	.758 .777 .795 .812	.736 .756 .774 .792	.735 .755 .774 .791	.721 .742 .761 .779	.720 .741 .760 .778	.693 .713 .732 .750	.691 .712 .732 .751
1.8 1.9 2.0 2.1	.848 .861 .873 .885	.848 .861 .873 .885	.829 .843 .856 .868	.828 .842 .855 .868	.808 .823 .837 .850	.808 .823 .837 .850	.795 .810 .824 .837	.795 .810 .825 .839	.767 .784 .799 .813	.769 .785 .801 .815
2.2 2.3 2.4	.895 .905 .913	.895 .905 .913	.879 .890 .899	.879 .889 .899	.862 .873 .884	.862 .873 .884	.850 .862 .873	.851 .863 .874	.827 .840 .852	.828 .841 .853
2.5 2.6 2.7 2.8	.921 .929 .935 .941	.921 .928 .935	.908 .916 .923 .930	.907 .916 .923 .930	.893 .902 .910 .918	.893 .902 .910 .918	.883 .892 .901 .909	.884 .893 .902 .909	.862 .871 .881 .889	.864 .874 .883 .892
2.9 3.0 3.1 3.2	.946 .951 .956	.946 .951 .956	.936 .942 .947 .952	.936 .941 .947	.925 .931 .937	.924 .931 .937	.916 .923 .929	.917 .924 .930	.898 .905 .912 .919	.900 .908 .915 .921
3.3	.964	.964	.956	.956	.947	.947	.941	.941	.925	.927

L*(Z_a/Z_b) is the exact lower confidence bound for R(t_0)

L*(Z_a/Z_b) is the asymptotic lower confidence bound for R(t_0)

マラス 日本 こうじょうかん 一つ アンマンス かいまた かんないない はい

TABLE VIII. TABLE OF EXACT AND ASYMPTOTIC LOWER CONFIDENCE BOUNDS FOR R(t₀) (Continued)

					n = 100 $p = r/n$	- 1				
	Υ =	0.50	Υ =	0.75	Υ =	0.90	γ =	0.95	γ •	0.99
z a z _b	$L \star \left(\frac{z_a}{z_b}\right)$	$L_A \star \left(\frac{Z_A}{Z_b}\right)$	$L \star \left(\frac{z_{a}}{z_{b}}\right)$	$L_{A} \star \left(\frac{z_{a}}{z_{b}}\right)$	$L \star \left(\frac{z_a}{z_b}\right)$	$L_{A} \star \left(\frac{z_{a}}{z_{b}}\right)$	$L^{\star}\left(\frac{z_{a}}{z_{b}}\right)$	$L_{A} = \left(\frac{z_{a}}{z_{b}}\right)$	$L \neq \left(\frac{z_a}{z_b}\right)$	$L_A \star \left(\frac{z_a}{z_b}\right)$
3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1	.967 .970 .973 .976 .978 .980 .982	.967 .970 .973 .976 .978 .980 .982	.960 .963 .966 .969 .972 .975 .977	.960 .963 .966 .969 .972 .975	.951 .955 .959 .963 .966 .969 .972	.951 .955 .959 .963 .966 .969	.945 .950 .954 .958 .961 .964 .967	.946 .950 .954 .958 .961 .965	.931 .936 .941 .945 .950 .953 .957	.933 .938 .943 .947 .951 .955 .959
4.2 4.3 4.4 4.5 4.6	.985 .987 .988 .989	.985 .987 .988 .989	.981 .983 .984 .986	.981 .983 .984 .986	.976 .978 .980 .982	.976 .978 .980 .982 .983	.972 .974 .977 .979	.973 .975 .977 .979	.963 .966 .969 .971 .973	.965 .968 .970 .972 .975
4.7 4.8 4.9 5.0	.991 .992 .993	.991 .992 .993	.988 .989 .990	.988 .989 .990	.985 .986 .987 .988	.985 .986 .987 .988	.982 .983 .985	.982 .984 .985 .986	.975 .977 .979	.977 .978 .980 .982

 $L^*(Z_a/Z_b)$ is the exact lower confidence bound for $R(t_0)$ $L_A^*(Z_a/Z_b)$ is the asymptotic lower confidence bound for $R(t_0)$

TABLE IX. FACTORS FOR TESTS FOR INCREASING HAZARD RATES

	TABLE IX.	FACTORS FOR TES			0.70
N/Y	0.0	2 0.05	0.10	0.25	0.40
	1.65		1.305	1.052	0.896
5			1,285	1.067	0.926
6 7	1.60 1.56		1.274	1.075	0.944
		. <u> </u>	1,263	1.080	0.957
8	1.53		1.255	1.081	0.966
9	1.50		1.247	1.082	0.973
10	1.47		1.239	1.082	0.978
11	1.45			1.082	0.983
12	1.43	1.330	1.233	1.082	0.986
13	1.42		1.227		0.989
14	1.40	1.309	1.221	1.081	0.992
15	1.39		1.215	1.081	
16	1.38		1.211	1.080	0.994
17	1.3		1.206	1.079	0.996
18	1.30		1,202	1.079	0.997
19	1.3		1.198	1.078	0.999
20	1.3	-	1.193	1.076	1.000
22	1.3		1.186	1.075	1.002
24	1.3		1.179	1.073	1.003
26	1.3		1.174	1.072	1.005
28	1.2		1.168	1.071	1.006
30			1.163	1.070	1.007
	1.2		1.159	1.067	1.007
32		· · · · · · · · · · · · · · · · · · ·	1.155	1.066	1.008
34			1.151	1.065	1.008
36			1.147	1.064	1.009
38			1.143	1.064	1.009
40			1.140	1.063	1.010
42		244 1.188	1.136	1.062	1.010
44		238 1.183	1.134	1.060	1.010
46		233 1.181	1.131	1.059	1.010
48	3 1.2	228 1.176	1.129	1.059	1.011
50		224 1.174	1.126	1.058	1.011
52		220 1.171	1.124	1.057	1.011
54		216 1.167	1.124	1.057	1.011
56		212 1.164			1.011
5		209 1.161	_	_	1.011
60		205 1.159			1.011
6		202 1.157		- 4. *	1.011
6		199 1.155		1.054	1.012
6	6 1.	196 1.152	1.112		
6		193 1.151	1.111		1.012
7	-	190 1.148	1.110		1.012
7		189 1.147	1.107	1.052	1.012
		.186 1.144		1.052	1.012
		183 1.143		1.050	
		.182 1.14		4 1.050	
		.179 1.13	_	1.050	1.012
		.170 1.13		6 1.048	1.012
	-	• -		2 1.046	1.012
10	-	.161 1.12 .155 1.12		7 1.044	1.012
		.148 1.11			

TABLE IX. FACTORS FOR TESTS FOR INCREASING HAZARD RATES (Continued)

TABLE IX.		FOR TESTS FOR	INCREASING	HAZARD RATES	(Continued)
N/Y	0.50	0.60	0.70	0.75	0.80
5	0.808	0.726	0.642	0.598	0.552
6 7	0.842	0.767	0.688	0.648	0.602
	0.866	0.796	0.722	0.684	0.641
8	0,884	0.818	0.747	0.712	0.671
9	0.898	0.835	0.767	0.735	0.695
10	0.908	0.848	0.784	0.753	0.715
11	0.917	0.860	0.798	0.768	0,732
12	0.924	0.869	0.810	0.781	0.746
13	0.930	0.877	0.820	0,792	0.758
14	0.935	0.883	0.829	0.801	0.769
15	0.940	0.890	0.837	0.810	0.779
16	0.944	0.895	0.844	0.818	0.787
17	0.947	0.900	0.850	0.824	0.795
18	0.950	0.904	0.856	0.830	0.802
19	0.953	0.908	0.860	0.836	0.808
20	0.955	0.912	0.866	0.842	0.814
22	0.960	0.917	0.874	0.850	0.824
24	0.963	0.922	0.881	0.858	0.833
26	0.966	0.927	0.886	0.865	0.841
28	0.968	0.931	0.892	0.871	0.847
30	0.971	0.934	0.897	0,876	0.854
32	0.973	0.937	0.901	0.881	0.859
34	0.974	0.940	0.905	0.886	0.864
36	0.976	0.942	0.908	0.889	0.869
38	0.976	0.944	0.912	0.893	0,873
40	0.978	0.947	0.914	0.896	0.876
42	0.978	0.949	0.916	0.899	0.880
44	0.979	0.950	0.919	0.902	0.883
46	0.980	0.951	0.922	0.904	0.886
48	0.981	0.953	0.923	0,907	0.889
50	0.982	0.954	0.925	0.909	0.891
52	0.983	0.956	0.928	0,911	0.894
54	0.983	0.957	0.929	0.913	0.896
56	0.984	0.958	0.930	0.915	0.898
58	0.985	0.959	0.932	0.916	0.900
60	0.985	0.961	0.934	0.918	0.902
62	0.986	0.962	0.934	0.920	0.904
64	0.986	0.962	0.936	0.921	0,906
66	0.986	0.962	0.937	0.922	0.907
68	0.987	0.963	0.938	0.923	0.909
70	0.987	0.964	0.940	0.925	0.911
72	0.988	0.965	0.941	0.926	0.912
74	0.988	0.965	0.942	0.928	0.912
76	0.988	0.966	0.942	0.928	0.915
78	0.989	0.967	0.943	0.929	0.916
80	0.989	0.967	0.944	0.930	0.917
90	0.990	0.970	0.948	0.935	0.922
100	0.991	0.972	0.951	0,939	
110	0.992	0.974	0.951		0.927
120	0.993	0.976	0.956	0.942	0.931
		0,970	0.730	0,945	0.934

たれる。100mmであれるのでは100mmである。100mmである。100mmである。これののでは、100mmである。100mmである

TABLE IX. FACTORS FOR TESTS FOR INCREASING HAZARD RATES (Continued)

IABLE IA.	1102010 1011 1201			<u></u>
N/Y	0.85	0.90	0.95	0.98
5	0.500	0.439	0.360	0.284
Š	0,552	0.493	0.410	0.326
5 6 7	0.592	0.537	0.458	0.379
8	0.624	0.572	0.496	0.421
9	0.650	0,601	0.527	0.455
	0.672	0,624	0.553	0.483
10	0.690	0.644	0.575	0.507
11		0.661	0.594	0.528
12	0.705		0.611	0.546
13	0.719	0.676		0.563
14	0.730	0.689	0.626	0.577
15	0.741	0.701	0.639	
16	0.751	0.711	0.651	0.591
17	0.759	0.720	0.662	0.602
18	0.767	0.729	0.672	0.613
19	0.774	0.737	0.682	0.624
	0.781	0.745	0.690	0.633
20	0.792	0.758	0,705	0.650
22		0.769	0.718	0.665
24	0.802 0.812	0.779	0.730	0.678
26		0.788	0.740	0.690
28	0.820	0.796	0.750	0.700
30	0.826		0.758	0.710
32	0.833	0.802	0.766	0.718
34	0.838	0.809		0.726
36	0.843	0.815	0.773	0.734
38	0.848	0.820	0.779	
40	0.852	0.826	0.786	0.740
42	0.857	0.830	0.790	0.747
44	0.860	0.835	0.796	0.752
46	0.864	0.839	0.801	0.758
	0.867	0.842	0.805	0.763
48		0.846	0.810	0.769
50	0.870	0.850	0.814	0.773
52	0.873	0.852	0.817	0.778
54	0.876		0.821	0.781
56	0.878	0.855	0.824	0.786
58	0.881	0.858	0.828	0.789
60	0.883	0.860	0.830	0.792
62	0.885	0.864		0.796
64	0.887	0.866	0.833	0.799
66	0.889	0.868	0.836	
68	0.891	0.870	0.839	0.802
70	0,893	0.873	0.842	0.805
72	0.894	0.874	0.844	0.808
74	0.896	0.876	0.846	0.811
	0.898	0.878	0.848	0.814
76		0.880	0.850	0.816
78	0.899		0.852	0.818
80	0.901	0.882		0.829
90	0.907	0.890	0.862	0.839
100	0.912	0.896	0.870	0.847
110	0.917	0.901	0.876	0.854
120	0.921	0.906	0.883	0.024

1									1
21								431	429
20					666			364 431	360 429
19					995			300	967
18					985			242	237
17					. 596		095	190	186
16					932		381	146	142
10 11 12 13 14 15 16 17 18 19 20				666	719 809 881 932 965 985 995 999		130 179 238 306 381 460	054 078 108 146 190 242	105
14				992	608		238	078	976
13				972 992	719	452	179	054 (054
12				932	719	360	130	036	037
=					200	274	060	023	025
10				765	200 200	199	090	014	910
6			992	500 640 765 864	386	031 054 089 138 199 274	038 060 090	002 005 008 014 023	002 004 006 010 016 025 037 054 076 105 142 186 237 296
80			883 958 992	200	119 191 281 386	680		900	900
7			883	200	191	054	012 022	005	700
5 6			758	360	119	031	900	001	005
5		958	592	068 136 235 360	890	910	003	000	100
4		625 833 958	408	136	035	007	001	000	001 001
6		625	242	890	015	003	000	000	000
2	833		~					_	
-	165 500 833	042 167 375	008 042 11	001 008 028	000 001 002	000 000 000	000 000 000	000 000 000	000
•	165	042	800	001	000	000	000	000	000
t a	3	4	\$	9	7	∞	6	10	P(c) 000 000 000

*Tabular values should be divided by 1000.

c) =
$$\frac{1}{\sqrt{2\pi}} \int_{e}^{-c} e^{-x^2/2} dx$$
, c = $\left(\frac{n(n-1)}{4} - T - \frac{1}{2}\right) \sqrt{\frac{2n^2 + 3n^2 - 5n}{72}}$, n > 10.

**Reproduced from "Nonparametric Tests Against Trends," by H. B. Mann, Econometrica, Vol. 13 (1945) pp. 245-259.

TABLE XI. UNBIASING FACTORS FOR THE M.L.E. OF C

n	5	ь	7	ర	9	10	11	12	13	14	15	16
B(n)	.669	.752	.792	.820	.842	.859	.872	.883	.893	.901	.908	.914
n	18	20	22	24	26	28	30	32	34	36	38	40
B(n)	.923	.931	.938	.943	.947	.951	.955	.958	.960	.962	.964	.966
n	42	44	46	48	50	52	54	56	58	60	62	64
R(u)	.968	.970	.971	.972	.973	.974	.975	.976	.977	.978	.979	.980
n	66	68	70	72	74	76	78	80	85	90	100	120
B(n)	.980	.981	.981	.982	.982	.983	.983	.984	.985	.986	.987	.990

This table is reproduced from "Inferences on the Parameters of the Weibull Distribution" by D. R. Thoman, L. J. Bain, and C. E. Antle, Techometrics, Vol. 11, No. 3, August 1969, pp. 445-460.

MISSION of Rome Air Development Center

RADC plans and executes research, development, test and selected acquisition program, in support of Command, Control Communications and Intelligence (C³I) activities. Technical and engineering support within areas of technical competence is provided to ESD Program Offices (PPs) and other ESD elements. The principal technical mission areas are communications, electromagnetic guidance and control, surveillance of ground and aerospace objects, intelligence data collection and handling, information system technology, ionospheric propagation, solid state sciences, microwave physics and electronic reliability, maintainability and competibility.