UNIVERSIDAD AUTONOMA DE SANTO DOMINGO (INTEC) FACULTAD DE CIENCIAS 1er EXAMEN PARCAL DE FISICA II

MATRICUL: 2023-1283 NOMBRE: Jesus Alberto Beato Pimentel SECCION: #1 FECHA: 14/02/2024 TELEF: 849-353-2718 PROF: José Antonio Scott Guilleard.

RESUELVA LOS PROBLEMAS Y ENCIERRE EN UN CIRCULO LA LETRA DE LAS CORRECTAS.

- 1,- El centro de gravedad de un cuerpo plano:
- a) Cambia de lugar, en el cuerpo, si se traslada el cuerpo
- b) Cambia de lugar, en el cuerpo, si se rota el cuerpo
- c) Permanece en el mismo lugar del cuerpo
- d) Faltan datos para responder correctamente

Justificación: Porque el centro de gravedad de un cuerpo es el lugar donde se concentra la suma total de todas las fuerzas gravitatorias que afectan a cada una de las partículas del objeto.

- 2.- Con la figura de la derecha, cono apoyado en una superficie horizontal en su base, podemos afirmar que el objeto:
- a) Está en equilibrio inestable

b) Está en equilibrio estable

- c) Está en equilibrio neutro o indiferente
- d) No está en equilibrio

Justificación: Se encuentra en equilibrio estable ya cuando se desplaza de su posición de equilibrio, tiende a regresar a su posición original.

3.-- Un recipiente lleno de un fluido tiene una aceleración vertical a hacia arriba. La variación de la presión (P) con la profundidad, h, del fluido de densidad ρ está dada por la expresión:

a) $P = \rho h (g + a)$

- b) $P = \rho h (a g)$
- c) $P = \rho h (g a)$
- d) $P = \rho h g$

Justificación: Un cuerpo sólido se hunde parcialmente en un fluido cuando la densidad del cuerpo es menor que la densidad del fluido, pero el peso del cuerpo es mayor que la fuerza de flotación.

4.- Un objeto de masa m está suspendido de una balanza de resorte que indica 25 N, en el aire. Cuando la masa se sumerge completamente en agua, la balanza indica 20 N. La densidad relativa del objeto es:

a) 4.00 b) 5.00

c) 1.25 d) 0.80

e) Ninguna de las anteriores, mi respuesta es

- 5.- El teorema fundamental de la Hidrostática dice que en todo liquido sometido a la acción de la gravedad la diferencia de presiones entre dos puntos cualesquiera es:
 - a) Inversamente proporcional a la densidad del liquido
 - b) Inversamente proporcional a la gravedad
 - c) Directamente proporcional a la diferencia de profundidades (alturas)
 - d) Inversamente proporcional la diferencia de profundidades (alturas)

Justificación: Ya que el principio fundamental de la hidrostática indica que, en cualquier líquido bajo la influencia de la gravedad, la variación de presión entre dos ubicaciones específicas está relacionada de manera proporcional con la diferencia en sus alturas o profundidades respectivas.

.-6.- Un trozo de madera flota en el agua, $\rho = 1.0 \text{ g/cm}^3$, con la mitad de su altura sumergida. Si el mismo trozo de madera se pone a flotar en aceite con densidad relativa 0.8. La parte sumergida bajo la superficie del aceite será:

a) Más de la mitad

- b) La mitad
- c) Menos de la mitad
- d) La respuesta depende de la forma que tenga el objeto de madera.

Justificación: Tiene más de la mitad porque el principio de flotación establece que un objeto flotará parcialmente sumergido en un líquido si su densidad es menor que la densidad del líquido.

- 7.-. Si un cuerpo sólido se hunde parcialmente en un fluido, es porque:
- a) La densidad del cuerpo es igual que la densidad del fluido
- b) La densidad del cuerpo es mayor que la densidad del fluido
- c) La densidad del cuerpo es menor que la densidad del fluido
- d) El peso del cuerpo es menor que el empuje

Justificación: Un cuerpo sólido se hunde parcialmente en un fluido cuando la densidad del cuerpo es menor que la densidad del fluido, pero el peso del cuerpo es mayor que la fuerza de flotación.

PROBLEMAS

1.- A un estudiante se le atasca su carro sobre la nieve. No se desespera, y como estudia física, se le ocurre amarrar un extremo de una cuerda al coche y el otro al tronco de un árbol dejándola un poco floja. Si la distancia del auto al árbol es de 12m. El estudiante entonces aplica una fuerza F en el centro de la cuerda en la dirección perpendicular a la línea entre el coche y el árbol, como se muestra en la figura. Si la cuerda es inextensible y la magnitud de la cuerda es de 500 N, ¿cuál es la fuerza sobre el coche? (Suponga condiciones de equilibrio)

2.- Una escalera de $400\,\mathrm{N}$ de peso y $10\,\mathrm{m}$ de longitud se coloca contra una pared vertical sin fricción. Una persona que pesa $800\,\mathrm{N}$ se encuentra parada a $2\,\mathrm{m}$ sobre la escalera. La altura que alcanza la escalera sobre la pared es de $8\,\mathrm{m}$. Calcule la fuerza ejercida por la pared y la fuerza normal del piso sobre la escalera.

3.- Un lado de un tubo en forma de U simple se le echa un líquido de densidad ρ_1 mientras que el otro lado contiene un líquido de densidad ρ_2 . Si los líquidos no se mezclan, demuestre que: $\rho_2 = (h_1/h_2) \rho_1$

4.- Un gran recipiente abierto en la parte superior contiene agua (densidad = 1000 kg/m^3) hasta una altura de 10.0 m. Se practica un pequeño orificio a una profundidad de 0.018 m por debajo de la superficie libre del agua. Considere g = 10 m/s^2 . Calcular la rapidez de salida del agua.

 $h = 10.0m \cdot 0.018 m = 9.982m$ $V = \sqrt{2gh}$ $V = \sqrt{2(10m/8^2)(9.982)}$ $V = \sqrt{199.64m^2/8^2}$ V = 14.13m/8

16.- Agua ($\rho = 1.0 \times 10^3 \, \text{kg/m}^3$) asciende a través de una tubería que se estrecha gradualmente. En la parte superior tiene un área de 6 x 10⁻⁴ m², está a 16.0 m por encima de la superficie de la Tierra y se mueve con una rapidez de 8.0 m/s. La parte inferior tiene una presión de 2.230 x 10⁵ Pa y una área de 12 x 10⁻⁴ m² y está a 8.0 m por encima de la superficie de la Tierra. La presión en el nivel superior es:

a) 1.109 x 10⁵ Pa

- b) 1.206 x 10⁵ Pa c) 1.205 x 10⁵ Pa
- d) 1.200 x 10⁵ Pa

Pi + 2 Pai + Pgh = P2 1 2 Pv2 + Pgh2	
1 1 1 1 1 2 1 2 Pv 2 + Pghz	Datos
Re V. : Az V2	Vator
	P= 1 0 = 13 × / =
U2 = A1 U1	P= 1.0 x 103 kg/m3.
	V1 = 8.0 m/s
1)2 = 16 × 10 4 m2) × (8.0 m/s)	b1 - 16.0m
	Pa = 2.230 × 105 Pa
U2 = 48 × 10 - 4 m 3/5	A2 = 12 × 10 40 2
12×10-1m2	hz = 8.0m
1/2 = 4.0 m/s	- SaUM
1.0111/5	
10.61	
11 12 (1.0 × 10 kg/m3) ×(8.0 m/s) 2 1/10 ×1	34/2)/2
P1 + 5 (1.0 × 10 tg/m3) × (8.0 m/s) 2 + (1.0 × 1	ong/m3) x14.8m/22)
= 2.230 × 15 la + ½ (1.5 × 103 kg/m³) × (4.0 m/s	7 /
x(9.8m/2)x(8.0m)	4 (1.0 x 16 kg/g?)
The state of the s	0
Picco	
P1 + 32000 P2 + 15680 Pa = 2.230 × 105 Pa + 8000 Pa + 7840 Pa	
P1 + 47680 Pa = 239840 Pa	0000 4 4840 40
R1 = 239840 Pa - 47680 Pa	
P1 = 192160 Pa	
11-11-11-11-11-11-11-11-11-11-11-11-11-	
D	
P1=1.9216 × 10-5 Pa	

6.-. - En una rampa para subir automóviles en una estación de servicio, el aire comprimido ejerce una fuerza sobre un pequeño pistón de radio 5.00 cm. La presión se transmite a un segundo pistón de radio 15.0 cm. ¿Qué fuerza deberá ejercer el aire comprimido para levantar un automóvil con un peso de 13,300 N?

