

Rechnernetze

Grundlagen konkreter Umsetzungen

anhand Simulationsprogramm Filius

Bauteile in Filius

Standardkonfiguration eines Rechners:

Name	Neues Notebook		
MAC-Adresse	74:7D:0D:E8:83:4A		
IP-Adresse	192.168.0.10		
Netzmaske	255.255.255.0		
Gateway			
Domain Name Server			

Verbindung zweier Rechner + Befehlszeile

Befehlszeile

Software-Installation

root /> ipconfig IP Adresse . . . : 192.168.0.10 Netzmaske. . . : 255.255.255.0 Physische Adresse: 59:0A:FE:3F:D7:7E Standardgateway. : DNS-Server . . . :

```
root /> ping 192.168.0.11
PING 192.168.0.11 (192.168.0.11)
From 192.168.0.11 (192.168.0.11): icmp_seq=1 ttl=64 time=208ms
From 192.168.0.11 (192.168.0.11): icmp_seq=2 ttl=64 time=104ms
From 192.168.0.11 (192.168.0.11): icmp_seq=3 ttl=64 time=103ms
From 192.168.0.11 (192.168.0.11): icmp_seq=4 ttl=64 time=104ms
    192.168.0.11 Paketstatistik -
4 Paket(e) gesendet, 4 Paket(e) empfangen, 0% Paketverlust
```

Datenaustausch zu obigem ping-Befehl (nur Netzzugangs- und Vermittlungsschicht aktiv!)

Verbindung mehrerer Rechner über einen Switch + SAT-Tabelle + Echo-Client-Server

Der Switch merkt sich im Aktionsmodus alle an ihm angeschlossenen Rechner-Adressen (vgl. SAT-Tabelle unten), so dass er nach der ersten Netzwerkaktivität stets die Datenpakete an die richtige

Datenaustausch zur Echo-Kommunikation

Im obigen Beispiel haben die Netzwerkkarten die IPs 192.168.0.1 bzw. 192.168.1.1. Die Konfiguration der Rechner muss allerdings ebenfalls angepasst werden – wie oben beispielhaft erkennbar, ist unter "Gateway" die Adresse der entsprechenden Netzwerkkarte des Vermittlungsrechners einzutragen. Die Weiterleitungstabelle des Vermittlungsrechners gibt an, wie eingehende Pakete weitergeleitet werden.

Datenaustausch zu einer ping-Abfrage über den Vermittlungsrechner

	Rechner 0.10 - 192.168.0.10 Vermittlungsrechner - 192.168.0.1				Vermittlungsrechner - 192.168.1.1		8.1.1
	Nr.	Zeit	Quelle	Ziel	Protokoll	Schicht	Bemerkungen
1		10:20:07.020	192.168.0.10	192.168.0.1	ARP	Vermittlung	Suche nach MAC für 192.168.0.1, 192.168.0.10: 0F:C8:91:CD:58:D5
2		10:20:07.228	192.168.0.1	192.168.0.10	ARP	Vermittlung	192.168.0.1: CB:CA:63:8E:6D:EC
3		10:20:07.229	192.168.0.10	192.168.1.10	ICMP	Vermittlung	ICMP Echo Request (ping), TTL: 64, SeqNr.: 1
4		10:20:07.837	192.168.1.10	192.168.0.10	ICMP	Vermittlung	ICMP Echo Reply (pong), TTL: 63, SeqNr.: 1
5		10:20:08.215	192.168.0.10	192.168.1.10	ICMP	Vermittlung	ICMP Echo Request (ping), TTL: 64, SeqNr.: 2
6		10:20:08.632	192.168.1.10	192.168.0.10	ICMP	Vermittlung	ICMP Echo Reply (pong), TTL: 63, SeqNr.: 2
7		10:20:09.419	192.168.0.10	192.168.1.10	ICMP	Vermittlung	ICMP Echo Request (ping), TTL: 64, SeqNr.: 3
8		10:20:09.824	192.168.1.10	192.168.0.10	ICMP	Vermittlung	ICMP Echo Reply (pong), TTL: 63, SeqNr.: 3
9		10:20:10.623	192.168.0.10	192.168.1.10	ICMP	Vermittlung	ICMP Echo Request (ping), TTL: 64, SeqNr.: 4
1	0	10:20:11.030	192.168.1.10	192.168.0.10	ICMP	Vermittlung	ICMP Echo Reply (pong), TTL: 63, SeqNr.: 4

Beispiel Web-Client-Server + DNS-Server

Der Vermittlungsrechner bekommt nun eine dritte Schnittstelle, an die ein Rechner mit DNS-Server-Funktion angeschlossen werden soll, der bzgl. einer Webserver-Anfrage die Namensauflösung bereitstellen soll. Dafür muss die IP des DNS-Servers beim Webclient eingetragen werden. Der DNS-Server hingegen muss den Namen der Webseite sowie die zugehörige IP des Webservers abspeichern.

Nr.: 11 / Zeit: 20:11:07.380 Netzzugang 5B:EF:3D:1E:4D:41 Ouelle: Ziel: 61:41:F6:B3:C6:D4 Bemerkungen: 0x800 Vermittlung 192.168.2.10 Quelle: Ziel: 192.168.1.10 Protokoll: Protokoll:17, TTL: 63 Bemerkungen: Transport

Ouelle:

Protokoll:

Ziel:

Anwendung
Pemerkungen:

oben dargestellter Webserver-Anfrage

Datenaustausch zu

exemplarisch ein paar Erklärungen zum DNS-Header:

ID = Marker zur Wiedererkennung QR = 0 (Anfrage) oder 1 (Antwort) RCode = Fehlercodierungen (0 = kein Fehler) QDCOUNT = Anzahl an Anfragen

Beispiel E-Mail

53

UDP

17356

www.filius.de. A 3600 192.168.0.12

Hierzu muss auf einem E-Mail-Server ein Konto eingerichtet werden. Ein E-Mail-Client ruft die Mails über ein entsprechendes Konto vom Server ab. Der DNS-Server muss zusätzlich die Mail-Domain dem

ID=11040 QR=1 RCODE=0 QDCOUNT=0 ANCOUNT=1 NSCOUNT=0 ARCOUNT=0

Beispiel DHCP-Server

In großen Netzwerken ist es günstig, die IP-Adress-Vergabe der Computer in diesem Netzwerk automatisch durchzuführen; ein DHCP-Server übernimmt diese Aufgabe (sobald die Clients erreichbar

