C-Store: Column Oriented **DBMS**

Michael	Stonebraker	MIT	
Daniel	Abadi	MIT	
Adam	Batkin	Brandeis	
Xuedong	Chen	UMass	
Mitch	Cherniack	Brandeis	
Miguel	Ferreira	MIT	
Edmond	Lau	MIT	
Amerson	Lin	MIT	
Sam	Madden	MIT	
Elizabeth	O'Neil	UMass	
Pat	O'Neil	UMass	
Alex	Rasin	Brown	
Nga	Tran	Brandeis	
Stan	Zdonik	Brown	

Q1. Determine the total number of lineitems shipped for each day after day D.

```
SELECT l_shipdate, COUNT (*)
FROM lineitem
WHERE l_shipdate > D
GROUP BY l shipdate
```

21x

Query	C-Store	Row Store	Column Store
Q1	0.03	6.80	2.24
Q2	0.36	1.09	0.83
Q3	4.90	93.26	29.54
Q4	2.09	722.90	22.23
Q5	0.31	116.56	0.93
Q6	8.50	652.90	32.83
Q7	2.54	265.80	33.24

C-Store	Row Store	Column Store	
1.987 GB	4.480 GB	2.650 GB	

Row-oriented storage

Name	Age	Dept	Year
Andrew	24	CS	G1
Fred	28	Chemistry	G3
Vanessa	25	History	G1

SELECT name
FROM students
WHERE dept == 'CS'

. . .

Andrew, 24, CS, G1	Fred, 28, Chemistry, G3		٧	Vanessa, 25, History, G1		
Matthew, 30, Econom	nics, G1	Mark, 25, CS, G	1	Ann, 27, Music, G5		

Name	Age	Dept	Year
Andrew	24	CS	G1
Fred	28	Chemistry	G3
Vanessa	25	History	G1

Andrew, Fred, Vanessa, Matthew, Mark, Ann				
24, 28, 25, 30, 25, 27				
CS, Chemistry, History, Economics, CS, Music				
G1, G3, G1, G1, G5				

• • •

SELECT name FROM students WHERE dept == 'CS'

Name	Age	Dept	Year	→
Andrew	24	CS	G1	
Fred	28	Chemistry	G3	
Vanessa	25	History	G1	→

Andrew, Fred, Vanessa, Matthew, Mark, Ann

24, 28, 25, 30, 25, 27

CS, Chemistry, History, Economics, CS, Music

G1, G3, G1, G1, G1, G5

SELECT name FROM students WHERE dept == 'CS'

Name	Age	Dept	Year
Andrew	24	CS	G1
Fred	28	Chemistry	G3
Vanessa	25	History	G1

Andrew, Mark, Vanessa, Ann, Fred, Matthew 24, 25, 25, 27, 28, 30 sorted by age

CS, Chemistry, History, Economics, CS, Music

G1, G3, G1, G1, G5

SELECT name FROM students ORDER BY age

22, 22, 23, 23, 23, 23, 24, 24, 24, ..., 24, 24, 25, 25, 25, 25, 26, 26, 26, 26, 26, 26, 27, 27, 27

Run length encoding

(22: 2), (23: 4), (24: 16), (25: 4), (26: 6), (27: 3)

AL, PA, CA, CA, NJ, NY, NY, NJ, ..., CA, NJ, NJ, AL, AL, CA, CA Encode positions in bitmask (CA: 001100...000011), (PA: 010000...00000), (NJ: 00001000...0110000) ... Run length encoding CA: (0:2), (1:2), (0:100), (1:2) PA: (0:1), (1:1), (0:102) NJ: (0:4), (1:1), (0:99), (1:2), (0:4)

Name	Age	Dept	Year
Andrew	24	CS	G1
Fred	28	Chemistry	G3
Vanessa	25	History	G1

. . .

SELECT name FROM students ORDER BY age

Andrew, Mark, Vanessa, Ann, Fred, Matthew 24, 25, 25, 27, 28, 30 sorted by age

Andrew, Mark, Vanessa, Matthew, Fred, Ann 24, 25, 25, 27, 28, 30 sorted by year

Andrew, Ann, Fred, Mark, Matthew, Vanessa

CS, Music, Chemistry, CS, Economics, History

G1, G5, G3, G1, G1, G1 sorted by name

Columnar storage key ideas

Avoid reading columns not used in query

More efficient storage due to compression

Multiple column ordering due to reduced space

Operate directly on compressed data

Row-oriented

Write-optimized, great for OLTP

Simple, battle tested by traditional DBMS

Reads must read in all columns and incur lots of random seeks

High storage cost

Column-oriented

Read-optimized, great for OLAP

Must maintain join indices to reconstruct complete rows

Reads can skip unused columns and often incur sequential scans

Low storage cost

C-Store

Read-optimized columnar database

Support many column sort-orders through projections

Writeable Store to handle inserts and updates efficiently

Distributed transactions using 2PC

Snapshot isolation for read availability

VERTICA

InfiniDB

