On pose pour tout réel
$$x \in]1, +\infty[, \zeta(x) = \sum_{p=1}^{+\infty} \frac{1}{p^x}$$

Problème 1: Calcul de la somme
$$\sum_{n=2}^{+\infty} (\zeta(n) - 1)$$

Dans cette partie, z un nombre complexe tel que |z| < 2 et $(u_{n,p})$ est une famille de nombres complexes définie pour n et p entiers naturels, $n \ge 2$, $p \ge 2$ par $u_{n,p} = \frac{z^n}{p^n}$.

L'objectif de cette partie est de calculer la somme $\sum_{n=2}^{+\infty} (\zeta(n) - 1)$

- 1. (a) Justifier que, pour tout $p \ge 2$, la série $\sum_{n \ge 2} u_{n,p}$ est absolument convergente et calculer $S_p = \sum_{n=2}^{+\infty} \left| \frac{z^n}{p^n} \right|$
 - (b) En déduire que la famille $(u_{n,p})_{n\geqslant 2,p\geqslant 2}$ de nombres complexes est sommable.
- 2. (a) Démontrer que $\sum_{p=2}^{+\infty}\frac{z^2}{p(p-z)}=\sum_{n=2}^{+\infty}\left(\zeta(n)-1\right)z^n$
 - (b) En déduire la valeur de la somme $\sum_{n=2}^{+\infty} \left(\zeta(n) 1 \right)$

Problème 2: Calcul de la somme
$$\sum_{n=2}^{+\infty} \frac{(-1)^n}{n} \zeta(n)$$

On rappelle que $\forall x \in]-1,1], \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} x^n = \ln(1+x).$

Dans ce problème on calcule la valeur de la somme $\sum_{n=2}^{+\infty} \frac{(-1)^n}{n} \zeta(n)$.

On définit la suite $(x_n)_{n\in\mathbb{N}}$ par $x_0=0$ et $\forall n\in\mathbb{N}^*, x_n=\left(\sum_{k=1}^n\frac{1}{k}\right)-\ln(n)$.

- 1. (a) Montrer que $x_{n-1} x_n \sim \frac{1}{2n^2}$
 - (b) En déduire que $(x_n)_{n\geqslant 0}$ converge vers un réel γ
- 2. Montrer que $\sum_{n\geqslant 1}\left(\frac{1}{n}-\ln\left(1+\frac{1}{n}\right)\right)$ converge et que $\sum_{n=1}^{+\infty}\left(\frac{1}{n}-\ln\left(1+\frac{1}{n}\right)\right)=\gamma$.
- 3. On considère la suite double $\left(\frac{(-1)^k}{kn^k}\right)_{\substack{n\geqslant 2\\k\geqslant 2}}$
 - (a) Justifier que, pour tout $n \ge 2$, la série $\sum_{k \ge 2} \frac{(-1)^k}{k n^k}$ est absolument convergente;
 - (b) Vérifier que $S_n = \sum_{k=2}^{+\infty} \frac{1}{kn^k} = \mathcal{O}\left(\frac{1}{n^2}\right)$
 - (c) En déduire que la famille $\left(\frac{(-1)^k}{kn^k}\right)_{\substack{n\geqslant 2\\k\geqslant 2}}$ est sommable. .
- 4. Montrer que $\sum_{k=2}^{+\infty} \frac{(-1)^k}{k} \zeta(k) = \gamma.$

$$\text{Problème 3: Calcul de trois sommes } \sum_{(p,q) \in \mathbb{N}^{\star 2}} \frac{1}{p^2 \, q^2}, \; \sum_{(p,q) \in \mathbb{N}^{\star 2} \atop p \mid q} \frac{1}{p^2 \, q^2} \text{ et } \sum_{(p,q) \in (\mathbb{N}^{\star})^2 \atop p \wedge q = 1} \frac{1}{p^2 \, q^2}.$$

Dans cette partie on se propose de calculer les trois sommes

$$A = \sum_{(p,q) \in \mathbb{N}^{\star 2}} \frac{1}{p^2 q^2}, \ B = \sum_{\substack{(p,q) \in \mathbb{N}^{\star 2} \\ p \mid q}} \frac{1}{p^2 q^2} \text{ et } C = \sum_{\substack{(p,q) \in (\mathbb{N}^{\star})^2 \\ p \wedge q = 1}} \frac{1}{p^2 q^2}.$$

On considère la suite double $\left(\frac{1}{p^2\,q^2}\right)_{(p,q)\in\mathbb{N}^{*2}}$ et les ensembles

$$I = \{(p, q) \in \mathbb{N}^{*2} \mid p \text{ divise } q\}$$

et

$$\forall n \in \mathbb{N}^*, \quad J_n = \{(p,q) \in \mathbb{N}^{*2} \mid p \land q = n\} \text{ et } I_n = \{(p,np) \mid p \in \mathbb{N}^*\}$$

- 1. Montrer que $\left(\frac{1}{p^2\,q^2}\right)_{(p,q)\in\mathbb{N}^{*2}}$ est sommable et calculer $A=\sum_{(p,q)\in\mathbb{N}^{*2}}\frac{1}{p^2\,q^2}$
- 2. (a) Justifier que la famille $\left(\frac{1}{p^2\,q^2}\right)_{(p,q)\in I}$ est sommable;
 - (b) Montrer que $(I_n)_{n\in\mathbb{N}^*}$ est une partition de I;
 - (c) Par le théorème de la sommation par paquets calculer $\sum_{\substack{(p,q)\in\mathbb{N}^{\star 2}\\p|q}} \frac{1}{p^2 q^2}$.
- $3. \quad \text{(a) V\'erifier que}: \forall n \in \mathbb{N}^*, \quad \sum_{(p,q) \in J_n} \frac{1}{p^2 q^2} = \frac{1}{n^4} \sum_{(p,q) \in J_1} \frac{1}{p^2 q^2} \, ;$
 - (b) Montrer que $(J_n)_{n\in\mathbb{N}^*}$ est une partition de \mathbb{N}^{*2}
 - (c) Déduire la valeur de la somme $C = \sum_{\substack{(p,q) \in \mathbb{N}^{\star 2} \\ p \wedge q = 1}} \frac{1}{p^2 q^2}$

Problème 4: Sommabilité de la famille
$$\left(\frac{1}{a^n+b^m}\right)_{(m,n)\in\mathbb{N}^2}$$

Soit a et b deux réels strictement positifs.

On propose d'étudier la sommabilité de la famille $\left(\frac{1}{a^n+b^m}\right)_{(m,n)\in\mathbb{N}^2}.$

- 1. On suppose, dans cette question, que la famille $\left(\frac{1}{a^n+b^m}\right)_{(m,n)\in\mathbb{N}^2}$ est sommable
 - (a) Donner un équivalent de $\frac{1}{a^n+b^m}$ lorsque n tend vers $+\infty$, puis de $\frac{1}{a^n+b^m}$ lorque $m\to +\infty$ (discuter selon les valeurs de a et b).
 - (b) En déduire que a > 1 et b > 1.
- 2. On suppose que a>1 et b>1. On pose $\alpha=\frac{1}{\sqrt{a}}$ et $\beta=\frac{1}{\sqrt{b}}$
 - (a) Montrer majoration de $\frac{1}{a^n + b^m} \leqslant \frac{1}{2} \alpha^n . \beta^m$
 - (b) Etudier la sommabilité de $(\alpha^n \beta^m)$ puis conclure .

Problème 5: Étude d'une sommabilité

On considère la suite double $(u_{p,q})_{(p,q)\in\mathbb{N}^{*2}}$, définie par : $u_{p,q}=\frac{1}{p^{\alpha}+q^{\beta}}$

1. Montrer que si $\alpha \leqslant 1$ ou $\beta \leqslant 1$, alors $(u_{p,q})_{(p,q) \in \mathbb{N}^{*2}}$ n'est pas sommable.

On suppose dans ce qui suit que $\alpha > 1$ et $\beta > 1$

- 2. Soit $p\geqslant 1$ fixé. Montrer que la série $\sum_{q\geqslant 1}u_{p,q}$ est convergente. On note $X_p=\sum_{q=1}^{+\infty}u_{p,q}$
- 3. On considère la fonction $\varphi_p: \left\{ \begin{array}{ccc} [0,+\infty[& \longrightarrow & \mathbb{R} \\ & t & \longmapsto & \dfrac{1}{p^\alpha+t^\beta} \end{array} \right.$
 - (a) Justifier la convergence de l'intégrale $\int_1^{+\infty} \varphi_p(t) \, \mathrm{d}t$, puis montrer que

$$\int_{1}^{+\infty} \varphi_p(t) \, \mathrm{d}t \leqslant X_p \leqslant \int_{0}^{+\infty} \varphi_p(t) \, \mathrm{d}t$$

(b) En déduire que :

$$\frac{1}{p^{\gamma}} \! \int_{p^{-\frac{\alpha}{\beta}}}^{+\infty} \varphi_1(t) \, \mathrm{d}t \leqslant X_p \leqslant \frac{1}{p^{\gamma}} \! \int_0^{+\infty} \varphi_1(t) \, \mathrm{d}t$$

Où γ est une constante que l'on déterminera.

- 4. Conclure que $X_p \sim \frac{C}{p^{\gamma}}$, où C est une constante à préciser
- 5. Étudier la sommabilité de la famille

Problème 1: Calcul de la somme
$$\sum_{n=2}^{+\infty} \left(\zeta(n) - 1 \right)$$

- 1. (a) Soit $p \ge 2$, la série $\sum_{n\ge 2}^{+\infty} \left| \frac{z^n}{p^n} \right|$ est géométrique de raison $\left| \frac{z}{p} \right| < 1$, donc elle converge. Notons S_p sa somme, alors $S_p = \sum_{n=2}^{+\infty} \left| \frac{z^n}{p^n} \right| = \frac{\left| \frac{z}{p} \right|^2}{1 \left| \frac{z}{p} \right|} = \frac{|z|^2}{p(p-|z|)}$
 - (b) Comme $S_p \sim \frac{|z|^2}{p^2}$, alors la série $\sum_{p\geqslant 2} S_p$ est convergente. D'après le critère suffisant de sommabilité, la famille $(u_{n,p})_{n\geqslant 2}$ est sommable
- 2. (a) La famille $(u_{n,p})_{n\geqslant 2,p\geqslant 2}$ est sommable, donc d'après le théorème de la sommation par paquets, on a

$$\sum_{n=2}^{+\infty} \left(\zeta(n)-1\right) z^n = \sum_{n=2}^{+\infty} \sum_{p=2}^{+\infty} \frac{z^n}{p^n} \quad = \quad \sum_{p=2}^{+\infty} \sum_{n=2}^{+\infty} \frac{z^n}{p^n} = \sum_{p=2}^{+\infty} \frac{z^2}{p^2} = \sum_{p=2}^{+\infty} \frac{z^2}{p(p-z)}$$

(b) Pour z = 1, on a |z| < 2 et la formule précédente devient

$$\sum_{n=2}^{+\infty} (\zeta(n) - 1) = \sum_{p=2}^{+\infty} \frac{1}{p(p-1)} = \sum_{p=2}^{+\infty} \left(\frac{1}{p-1} - \frac{1}{p}\right) = 1$$

Problème 2: Calcul de la somme $\sum_{n=2}^{+\infty} \frac{(-1)^n}{n} \zeta(n)$

1. (a) On a

$$x_{n-1} - x_n = -\frac{1}{n} - \ln\left(1 - \frac{1}{n}\right)$$
$$= -\frac{1}{n} + \frac{1}{n} + \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$$
$$= \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$$

Donc $x_{n-1} - x_n \sim \frac{1}{2n^2}$

- (b) Par le critère de Riemann, la série télescopique $\sum_{n\geqslant 1} (x_n-x_{n-1})$ converge, donc la suite (x_n) . Soit γ sa limite
- 2. Soit $n \ge 1$, on a

$$\sum_{k=1}^{n} \left(\frac{1}{k} - \ln\left(1 + \frac{1}{k}\right)\right) = \sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{n} \ln\left(1 + \frac{1}{k}\right)$$

$$= \sum_{k=1}^{n} \frac{1}{k} - \sum_{k=1}^{n} (\ln(k+1) - \ln(k))$$

$$= \sum_{k=1}^{n} \frac{1}{k} - \ln(n+1)$$

$$= x_n + \ln(n) - \ln(n+1)$$

$$= x_n - \ln\left(1 + \frac{1}{n}\right) \xrightarrow[n \to +\infty]{} \gamma$$

 $\mathrm{donc}\ \mathrm{la}\ \mathrm{s\acute{e}rie}\ \sum_{n\geqslant 1}\left(\frac{1}{n}-\ln\left(1+\frac{1}{n}\right)\right)\ \mathrm{converge}\ \mathrm{et}\ \mathrm{que}\ \sum_{n=1}^{+\infty}\left(\frac{1}{n}-\ln\left(1+\frac{1}{n}\right)\right)=\gamma.$

- 3. (a) Soit $n \ge 2$, pour tout $k \ge 2$ on a $0 \le \frac{1}{kn^k} \le \frac{1}{n^k}$. La série géométrique $\sum_{n \ge 1} \frac{1}{n^k}$ de raison $\frac{1}{n} \in]0,1[$ est convergente, donc la série $\sum_{k \ge 2} \frac{1}{kn^k}$ convergente. Notons $S_n = \sum_{k=2}^{+\infty} \frac{1}{kn^k}$.
 - (b) On a $0 \leqslant S_n \leqslant \sum_{k=2}^{+\infty} \frac{1}{n^k} = \frac{\frac{1}{n^2}}{1 \frac{1}{n}} = \frac{1}{n(n-1)}$, donc $S_n = O\left(\frac{1}{n^2}\right)$ et par suite $\sum_{n \geqslant 2} S_n$ converge
 - (c) D'après le critère suffisant de la sommabilité la suite double $\left(\frac{(-1)^k}{kn^k}\right)_{\substack{n\geqslant 2\\k\geqslant 2}}$ est sommable.
- 4. D'après la question 2.) on a $\sum_{n=1}^{+\infty} \left(\frac{1}{n} \ln\left(1 + \frac{1}{n}\right)\right) = \gamma$. D'autre part, on a

$$\frac{1}{n} - \ln\left(1 + \frac{1}{n}\right) = \sum_{k=2}^{+\infty} \frac{(-1)^k}{kn^k}$$

La suite double $\left(\frac{(-1)^k}{kn^k}\right)_{\substack{n\geqslant 2\\k\geqslant 2}}$ est sommable, alors par le théorème de la sommation par paquets

$$\sum_{n=2}^{+\infty} \sum_{k=2}^{+\infty} \frac{(-1)^k}{kn^k} = \sum_{k=2}^{+\infty} \sum_{n=2}^{+\infty} \frac{(-1)^k}{kn^k}$$

Avec

$$\sum_{n=2}^{+\infty} \frac{(-1)^k}{kn^k} = \frac{(-1)^k}{k} \left(\zeta(k) - 1 \right)$$

et

$$\sum_{n=2}^{+\infty} \sum_{k=2}^{+\infty} \frac{(-1)^k}{kn^k} = \sum_{n=2}^{+\infty} \left(\frac{1}{n} - \ln\left(1 + \frac{1}{n}\right) \right) = \gamma - 1 + \ln 2$$

Alors

$$\sum_{k=2}^{+\infty} \frac{(-1)^k}{k} (\zeta(k) - 1) = \gamma - 1 + \ln 2$$

La série $\sum_{k>2} \frac{(-1)^k}{k}$ est convergente de somme $1-\ln 2$. Ainsi

$$\sum_{n=2}^{+\infty} \frac{(-1)^n}{n} \zeta(n) = \sum_{n=2}^{+\infty} \frac{(-1)^n}{n} \left(\zeta(n) - 1 \right) + \sum_{n=2}^{+\infty} \frac{(-1)^n}{n} = \gamma$$

 $\text{Problème 3: Calcul de trois sommes } \sum_{(p,q) \in \mathbb{N}^{\star 2}} \frac{1}{p^2 \, q^2}, \; \sum_{(p,q) \in \mathbb{N}^{\star 2} \atop p \mid q} \frac{1}{p^2 \, q^2} \; \text{et } \sum_{(p,q) \in (\mathbb{N}^{\star})^2 \atop p \mid q \mid q} \frac{1}{p^2 \, q^2}.$

- 1. Il s'agit d'une suite double de réels positifs
 - Soit $p \in \mathbb{N}^*$, la série $\sum_{q \ge 1} \frac{1}{p^2 q^2}$ est convergente de somme $S_p = \sum_{q=1}^{+\infty} \frac{1}{p^2 q^2} = \frac{1}{p^2} \sum_{q=1}^{+\infty} \frac{1}{q^2} = \frac{\zeta(2)}{p^2}$
 - La série $\sum_{p\geq 1} \frac{\zeta(2)}{p^2}$ est convergente de somme $\sum_{p=1}^{+\infty} \frac{\zeta(2)}{p^2} = \zeta^2(2)$

Donc la famille est sommable et par le théorème de sommation par paquets, on a

$$A = \sum_{\substack{(p,q) \in \mathbb{N}^{+2}}} \frac{1}{p^2 q^2} = \sum_{p=1}^{+\infty} \sum_{q=1}^{+\infty} \frac{1}{p^2 q^2} = \zeta^2(2)$$

- 2. (a) La famille $\left(\frac{1}{p^2\,q^2}\right)_{(p,q)\in I}$ est une sous-famille d'une famille sommable, donc elle est sommable;
 - (b) Soit $n \in \mathbb{N}^*$ l'élément $(1, n) \in I_n$, donc $I_n \neq \emptyset$
 - Soit $m, n \in \mathbb{N}^*$ tels que $m \neq n$. Si $(p,q) \in I_n \cap I_m$, alors q = np = mp, donc m = n. Absurde
 - Pour tout $n \in \mathbb{N}^*$, on a $I_n \subset I$, donc $\bigcup_{n \in \mathbb{N}^*} I_n \subset I$. Inversement si $(p,q) \in I$, alors $p \mid q$, donc il existe $n \in \mathbb{N}^*$ tel que q = pn, soit $(p,q) \in I_n$, ainsi $I \subset \bigcup_{n \in \mathbb{N}^*} I_n$. D'où $\bigcup_{n \in \mathbb{N}^*} I_n = I$

On conclut que $(I_n)_{n\in\mathbb{N}^*}$ est une partition de I

(c) Par le théorème de la sommation par paquets on a :

$$\sum_{\substack{(p,q)\in\mathbb{N}^{\star}^{2}\\p|q}} \frac{1}{p^{2}q^{2}} = \sum_{n=1}^{+\infty} \sum_{\substack{(p,q)\in I_{n}}} \frac{1}{p^{2}q^{2}}$$
$$= \sum_{n=1}^{+\infty} \sum_{\substack{p\in\mathbb{N}^{*}\\p\in\mathbb{N}^{\star}}} \frac{1}{n^{2}p^{4}}$$
$$= \zeta(2)\zeta(4)$$

3. (a) L'application $\sigma: \left\{ \begin{array}{ll} J_1 & \longrightarrow & J_n \\ (p,q) & \longmapsto & (pn,qn) \end{array} \right.$ est une bijection. La famille $\left(\frac{1}{p^2q^2}\right)_{(p,q)\in J_1}$ est sommable car elle est sous-famille d'une famille sommbale. Soit $n\in\mathbb{N}^*$, alors

$$\sum_{(p,q)\in J_n} \frac{1}{p^2 q^2} = \sum_{(p,q)\in J_1} \frac{1}{(np)^2 (nq)^2} = \frac{1}{n^4} \sum_{(p,q)\in J_1} \frac{1}{p^2 q^2}$$

- (b) Soit $n \in \mathbb{N}^*$ l'élément $(n, n) \in J_n$, donc $J_n \neq \emptyset$
 - Soit $m, n \in \mathbb{N}^*$ tels que $m \neq n$. Si $(p,q) \in J_n \cap J_m$, alors $p \wedge q = m = n$, donc m = n. Absurde
 - Pour tout $n \in \mathbb{N}^*$, on a $J_n \subset \mathbb{N}^{*2}$, donc $\bigcup_{n \in \mathbb{N}^*} J_n \subset \mathbb{N}^{*2}$. Inversement si $(p,q) \in \mathbb{N}^{*2}$, on pose $n = p \wedge q$, donc $(p,q) \in J_n$, ainsi $\mathbb{N}^{*2} \subset \bigcup_{n \in \mathbb{N}^*} J_n$. D'où $\bigcup_{n \in \mathbb{N}^*} J_n = \mathbb{N}^{*2}$

On conclut que $(J_n)_{n\in\mathbb{N}^*}$ est une partition de \mathbb{N}^{*2} :

(c) Par le théorème de la sommation par paquets on a :

$$\sum_{(p,q)\in\mathbb{N}^{\star 2}} \frac{1}{p^2 q^2} = \sum_{n=1}^{+\infty} \sum_{(p,q)\in J_n} \frac{1}{p^2 q^2}$$

$$= \sum_{n=1}^{+\infty} \sum_{(p,q)\in J_1} \frac{1}{n^4 p^2 q^2}$$

$$= C\zeta(4)$$

$$\text{D'autre part } \sum_{(p,q) \in \mathbb{N}^{\star 2}} \frac{1}{p^2 \, q^2} = \zeta^2(2), \text{ donc } \sum_{\substack{(p,q) \in (\mathbb{N}^{\star})^2 \\ p \wedge q = 1}} \frac{1}{p^2 \, q^2} = C = \frac{\zeta^2(2)}{\zeta(4)}$$

Problème 4: Sommabilité de la famille $\left(\frac{1}{a^n+b^m}\right)_{(m,n)\in\mathbb{N}^2}$

1. (a) On a

$$\frac{1}{a^n + b^m} \underset{n \to +\infty}{\sim} \begin{cases} \frac{1}{b^m} & \text{si } 0 < a < 1 \\ \frac{1}{1 + b^m} & \text{si } a = 1 \\ \frac{1}{a^n} & \text{si } a > 1 \end{cases}$$

De même

$$\frac{1}{a^n + b^m} \underset{m \to +\infty}{\sim} \begin{cases} \frac{1}{a^n} & \text{si } 0 < b < 1\\ \frac{1}{a^n + 1} & \text{si } b = 1\\ \frac{1}{b^m} & \text{si } b > 1 \end{cases}$$

(b) Soit $m \in \mathbb{N}$, la sous-famille $\left(\frac{1}{a^n+b^m}\right)_{n \in \mathbb{N}}$ de la famille sommable $\left(\frac{1}{a^n+b^m}\right)_{(m,n) \in \mathbb{N}^2}$ est sommable donc la série $\sum_{n \geq 0} \frac{1}{a^n+b^m}$ est convergente. Donc il est nécessaire que son terme général tend vers 0, soit

$$\frac{1}{a^n + b^m} \xrightarrow[n \to +\infty]{} 0$$

Ceci n'est possible que si a > 1.

De la même façon on montre que $b>1\,$

- 2. On suppose que a > 1 et b > 1. On pose $\alpha = \frac{1}{\sqrt{a}}$ et $\beta = \frac{1}{\sqrt{b}}$
 - (a) Un cadeau de tronc commun : $\forall (u, v) \in (\mathbb{R}_+)^2$, $2\sqrt{uv} \leq u + v$.
 - (b) On utilise ínégalité précédente, en posant $u = a^n$ et $v = b^m$:

$$a^n + b^m \geqslant 2\sqrt{a}^n \sqrt{b}^m \Longrightarrow \frac{1}{a^n + b^m} \leqslant \frac{1}{2}\alpha^n \cdot \beta^m$$

- (c) $(\alpha^n \beta^m)_{(m,n) \in \mathbb{N}^2}$ est une suite double de réels positifs.
 - Soit $m \geqslant 0$, la série $\sum_{n\geqslant 0} \alpha^n \beta^m$ converge, c'est une série géométrique de raison $\alpha \in]0,1[$, de somme

$$S_m = \sum_{n=0}^{+\infty} \alpha^n \beta^m = \frac{\beta^m}{1-\alpha}$$

— $\sum_{m\geqslant 0} S_m$ est convergente car il s'ait d'une série géométrique de raison $\beta\in]0,1[$

Ainsi la famille $(\alpha^n \beta^m)_{(m,n) \in \mathbb{N}^2}$ est sommable. Or

$$\forall (n,m) \in \mathbb{N}^2, \quad \frac{1}{a^n + b^m} \leqslant \frac{1}{2} \alpha^n . \beta^m$$

Donc, par le critère de comparaison, $\left(\frac{1}{a^n+b^m}\right)_{(m,n)\in\mathbb{N}^2}$ est sommable

On conclut l'équivalence

$$\left(\frac{1}{a^n+b^m}\right)_{(m,n)\in\mathbb{N}^2} \text{ est sommable } \Longleftrightarrow a>1 \text{ et }b>1$$

PROBLÈME 5: Étude d'une sommabilité

- 1. Si $\alpha \leq 1$, alors pour q fixé, on a $u_{p,q} = \frac{1}{p^{\alpha} + q^{\beta}} \sim \frac{1}{p^{\alpha}}$ et par le critère de Riemann la série $\sum_{p \geqslant 1} u_{p,q}$ diverge, donc la non sommabilité de la famille $(u_{p,q})_{(p,q) \in \mathbb{N}^{*2}}$
 - Si $\beta \leqslant 1$, alors pour p fixé, on a $u_{p,q} = \frac{1}{p^{\alpha} + q^{\beta}} \sim \frac{1}{q^{\beta}}$ et par le critère de Riemann la série $\sum_{q \geqslant 1} u_{p,q}$ diverge, donc la non sommabilité de la famille $(u_{p,q})_{(p,q) \in \mathbb{N}^{*2}}$
- 2. Par hypothèse $\beta > 1$, alors pour p fixé, on a $u_{p,q} = \frac{1}{p^{\alpha} + q^{\beta}} \sim \frac{1}{q^{\beta}}$ et par le critère de Riemann la série $\sum_{q \geqslant 1} u_{p,q}$ converge. Notons X_p sa somme
- 3. (a) L'application φ est continue, décroissante et positive sur $[1, +\infty[$, donc l'intégrale $\int_1^{+\infty} \varphi_p(t) dt$ est de même nature que la série $\sum_{q\geqslant 1} \varphi_p(q) = \sum_{q\geqslant 1} u_{p,q}$ qui est convergente.

Soit $q \in \mathbb{N}^*$, on utilise l'encadrement $\int_q^{q+1} \varphi_p(t) dt \leqslant \varphi_p(q) \leqslant \int_{q-1}^q \varphi_p(t) dt$. Après on somme de q=1 à l'infini, on obtient :

$$\int_{1}^{+\infty} \varphi_p(t) \, \mathrm{d}t \leqslant X_p \leqslant \int_{0}^{+\infty} \varphi_p(t) \, \mathrm{d}t$$

(b) On effectue le changement de variable $s = \frac{t}{p^{\frac{\alpha}{\beta}}}$, on obtient

$$\int_0^{+\infty} \varphi_p(t) \, \mathrm{d}t \quad = \quad \int_0^{+\infty} \frac{1}{p^\alpha + t^\beta} \, \mathrm{d}t = \int_0^{+\infty} \frac{p^{\frac{\alpha}{\beta}}}{p^\alpha + p^\alpha s^\beta} \, \mathrm{d}s = \frac{1}{p^{\left(\alpha - \frac{\alpha}{\beta}\right)}} \int_0^{+\infty} \varphi_1(t) \, \mathrm{d}t$$

et

$$\int_1^{+\infty} \varphi_p(t) \, \mathrm{d}t \quad = \quad \int_1^{+\infty} \frac{1}{p^\alpha + t^\beta} \, \mathrm{d}t = \int_{p^{-\frac{\alpha}{\beta}}}^{+\infty} \frac{p^{\frac{\alpha}{\beta}}}{p^\alpha + p^\alpha s^\beta} \, \mathrm{d}s = \frac{1}{p^{\left(\alpha - \frac{\alpha}{\beta}\right)}} \int_{p^{-\frac{\alpha}{\beta}}}^{+\infty} \varphi_1(t) \, \mathrm{d}t$$

On prend $\gamma = \alpha - \frac{\alpha}{\beta}$

- 4. On a $\int_{p^{-\frac{\alpha}{\beta}}}^{+\infty} \varphi_1(t) dt \xrightarrow[p \to +\infty]{} \int_0^{+\infty} \varphi_1(t) dt$, donc d'après le théorème d'encadrement $p^{\gamma} X_p \xrightarrow[p \to +\infty]{} C = \int_0^{+\infty} \varphi_1(t) dt$, d'où $X_p \sim \frac{C}{p^{\gamma}}$
- 5. D'après le théorème de sommation par paquets la suite double $(u_{p,q})_{(p,q)\in\mathbb{N}^{*2}}$ est sommable, si et seulement, si la série $\sum_{p\geqslant 1}X_p$ est convergente, si et seulement, si la série de Riemann $\sum_{p\geqslant 1}\frac{1}{p^{\gamma}}$ converge, si et seulement, si $\gamma>1$.

$$(u_{p,q})_{(p,q)\in\mathbb{N}^{*2}} \Leftrightarrow \alpha > 1, \ \beta > 1 \ \text{et} \ \alpha - \frac{\alpha}{\beta} > 1$$