Predicting Conditions from Electronic Health Records

Jessica Cabrera, Chloe Jeon, Isha Karim,

Maddie Shenkan

Al4ALL Project 4

7/26/19

What are EHRs?

- Electronic Health Records
- One large data from storing patient information
- Includes: patient information (demographics, age), conditions, medications, care plans, etc.
- Best source of large amounts of clinical data for analysis

Methodology

- data collection
 - public data (real)
 - Synthea (synthetic)
- data cleanup
- classifiers
 - decision trees
 - decision tree forests
 - accuracy
- confusion matrix

1 Preterm Birth

Maddie Shenkan

User Guide to the 2017 Natality Public Use File

Fixed Width File

201701 10052 11 88888 02604 0612 03 031 1 NNNNN 11111 1 1N1111 0941885	1 N10000000000001111N1 1 9 M 04	66124.52 1521 164 11221	220305513 0153 1 NNNNN111111 NN 11 L1NNNNNN11111111 NYY1	040000	5 5 02604 NNNNNN1111111 14N11142
201701 18182 11 88888 99999 0211 08 051 1 NNNNN 11111 1 1Y2211 0421083	1 N12015150033301111Y1 1 9 F 07	72115.61 1151 125 11011	270410615 0164 1 NNNN111111 NN 11 LINNNNN1111111 NYY1	020000	3 3 99999 NNNNN1111111 14N11132
201701 02043 11 99999 99999 0412 09 061 1 NNNNN 11111 1 1N2211 0521094	1 N10000000000001111N1 1 9 F 04	20083 1 101 68120.52 1351 154 11921 2016 37062 360512875 063	 200301101 0113 1 NNNN111111 NN 11 LINNNNN1111111 NYY1	000001	1 2 88888 NNNYNY1111110 11X11111

DECISION TREE

Accuracy: 82%

Class 1 = Pre-Term

Classe 2 = Full Term

Random Forest (Average of 100 Decision Trees)

Confusion Matrix

True Positives = 8564

Ex: the woman is preterm and the algorithm predicted preterm birth

True Negatives = 1161

Ex: the woman is full term and the algorithm did predict it

- False Positives = 1637
- False Negatives = 271

Confusion Matrix

2

Coronary Heart Disease

Jessica Cabrera

SYNTHEA

- Uses real data to produce a realistic population and patient health record
- Well-organized, no missing or incorrect data
- Even if it's as realistic as possible, it's not real

SYNTHEA

Coronary Heart Disease

Background:

- CHD happens when the arteries harden, narrowing the blood supply to the heart
- This disease is very common
 - More than 3 million cases recorded per year
- 610,000 people die annually of heart disease alone

Bar Graph

Decision Tree - Complex

Accuracy: 95%

Decision Tree - Simplified

Accuracy: 94%

- 94% don't have CHD
- 6% do have CHD

Future Implications

- Remove Viral Sinusitis
 - Correlation does not mean causation
- Investigate chronic congestive heart failure
- Consider other factors such as lifestyle, exercise, and environment
- Implementing a confusion matrix
 - To look into my original model if its always saying no

3 Depression
Chloe Jeon

Classifiers - Complicated Decision Tree

Classifiers - "Pruned" Decision Tree

99.63%

Complicated Tree

99.48%

Simplified Tree

99.73%

Complicated Forest

99.39%

Simplified Forest

Accuracies

ISSUES

- Too many controls (.5%)
 - o removed: younger than 19, conditions after first depression-related diagnosis
 - o depression is not rare; diagnosis is rare
 - Synthea doesn't handle depression well?
- Decision tree tried to avoid false positives
 - tried to avoid saying "depressed" when they were actually not depressed
 - out of 200 depressed patients, only 2 were reported as depressed

SOLUTION?

- changed tree criteria
- improved results
- still only 100 of 200 depressed patients were reported as depressed

Sinusitis (disorder)										
0.132552										
Smokes tobacco daily										
0.127229										
AGE										
0.086067										
Neoplasm of prostate										
0.076878										
Acetaminophen 21.7 MG/ML / Dextromethorphan Hydrobromid										
0.051526										
insulin human isophane 70 UNT/ML / Regular Insulin Human										
0.027877										
Diabetes										
0.027351										
Acute viral pharyngitis (disorder)										
0.026604										
24hr nicotine transdermal patch										
0.021142										

Smokes tobacco daily	0.614428
24hr nicotine transdermal patch	0.102101
Acute bacterial sinusitis (disorder)	0.086585
Amoxicillin 250 MG / Clavulanate 125 MG Oral Tablet	0.070102
Viral sinusitis (disorder)	0.052665
Sertraline 100MG	0.040712
Anemia (disorder)	0.020857
AGE	0.010821
Tear of meniscus of knee	0.001084
sevoflurane 1000 MG/ML Inhalant Solution	0.000625
Childhood asthma	0.000021
Brain damage - traumatic	0.000000
History of myocardial infarction (situation)	0.000000
Preeclampsia	0.000000
Facial laceration	0.000000
Seasonal allergic rhinitis	0.000000
Laceration of forearm	0.000000
Metastasis from malignant tumor of prostate (disorder)	0.000000
Laceration of hand	0.000000

Viral sinusitis (disorder)	0.101519						
Acute viral pharyngitis (disorder)							
24hr nicotine transdermal patch							
Acetaminophen/Hydrocodone							
Prediabetes							
Sertraline 100MG	0.044584						
Body mass index 30+ - obesity (finding)							
Acute bronchitis (disorder)							
Anemia (disorder)							
Carcinoma in situ of prostate (disorder)							
insulin human isophane 70 UNT/ML / Regular Insulin Huma							
0.25 ML Leuprolide Acetate 30 MG/ML Prefilled Syringe	0.030126						
F							
Diabetes	0.022034						
M_y	0.018456						
Smokes tobacco daily	0.016040						
1 ML DOCEtaxel 20 MG/ML Injection	0.015347						
Suspected lung cancer (situation)	0.014684						
Neoplasm of prostate	0.014627						

Important Features

CONCLUSIONS

- Feature Importance
 - sinusitis (common cold)
 - smokes tobacco daily
 - o 24hr nicotine transdermal patch
 - o age (20-30)
 - acute viral pharyngitis (sore throat)
 - obesity
 - o cancer
 - insulin (diabetes medication)
 - "Insulin-sensitizing drug relieves symptoms of chronic depression"

FUTURE IMPLICATIONS

- neural network
- synthetic data
- correlation doesn't imply causation
 - o common cold/sore throat are common
- depression factors not in EHRs
- study potential risk factors
 - o inaccurate decision tree?
 - actual risk factor that was previously unknown?
- apply same methods to real data

4

Opioid Overdose

Isha Karim

BACKGROUND

- Opioid Overdose: toxicity due to excessive opioid consumption
- In 2017, over 47,000 Americans died as a result of opioid overdose.

MANAGING & SORTING DATA

- Public and synthetic data was merged to create a final dataframe.
 - Used a NLP matching algorithm
 - NLTK library classified data from each file (string matching) into dictionaries

Gender	Race	Ethnic Group	Manner of D	Manner Type	Manner Sub	Cause of Death	Cor
Иale	White	White	Accident	Drug - Medic	Medication	Mixed fentanyl, alprazolam, and doxylam	i Nor
Иale	White	White	Accident	Drug - Medic	Drug and Me	Acute methadone, clonazazepam, gabapo	e Nor
emale	White	White	Accident	Drug - Medic	Medication	Acute fentanyl, oxycodone, alprazolam, a	ı Rec
Иale	White	White	Accident	Drug - Medic	Medication	Complications including anoxic encephalo	o Nor
Иale	White	White	Accident	Drug - Medic	Drugs of abu	Acute heroin intoxication	Nor
Иale	White	White	Accident	Drug - Medic	Drug and Me	Oxycodone, alprazolam and methamphe	t Nor
Иale	White	White	Accident	Drug - Medic	Meds & Alco	Acute oxycodone, chlordiazepoxide and a	Nor
emale	White	White	Accident	Drug - Medic	Medication	Combined effects of fentanyl and morphi	ir Blu
Иale	White	White	Accident	Drug - Medic	Medication	Acute methadone intoxication	Nor
emale	White	White	Accident	Drug - Medic	Medication	Acute morphine, oxycodone, diphenhydr	a Nor
Иale	White	White	Accident	Drug - Medic	Drug and Me	Fentanyl and methamphetamine intoxica	1 Ath
Иale	White	White	Accident	Drug - Medic	Drug and Me	Fentanyl, cocaine, pseudoephedrine, and	Nor
emale	White	White	Accident	Drug - Medic	Medication	Mixed fentanyl, alprazolam, amphetamin	Nor
Иale	White	White	Accident	Drug - Medic	Medication	Acute combined drug intoxication (amph	€ Cor

ELIMINATING BIAS FROM THE PREDICTIVE MODEL

RACE

• GENDER

CONTROL

In the data set, an even breakdown of **all races and gender** and control pop. avoided overwhelming bias in the model.

Randomly set the amount of controls equal to the overdose diagnoses

FINAL BINARY MATRIX

	22298006	49436004	53741008	55680006	82423001	196416002	230690007	399211009	410429000	429007001		433112001	447365002	F	М	
0002b13d- b122-4912- b65f- d1b58b4cd4d6	1	0	1	0	0	0	0	1	0	0		0	0	0	1	
00031e80- 8438-4173- 9a2c- deeda37af0c9	0	0	1	0	0	0	0	0	1	1		0	1	0	1	
001ae9bc- bcd1-4012- 9d3a- 5c57c8b47721	0	1	0	0	0	0	0	0	0	0	•••	0	0	1	0	
00212701- 01fa-4a12- b3e8- 0f48e0e4c9d0	0	1	0	0	0	1	0	0	0	0		0	0	1	0	
0033a913- 4cdc-405e- b18a- 1ee59f4ed78c	0	1	1	0	0	0	1	0	0	0		1	0	0	1	

DECISION TREE

Accuracy: 94.42%

CONFUSION MATRIX

RISK FACTORS & FEATURE IMPORTANCE

RISK FACTORS for HIGH RISK GROUPS

- Medications
 - o <u>Fentanyl, oxycodone, hydrocodone</u>
 - Taking more than one at a time is worse
 - o In <u>combination with depressants</u>, the risk is greater

ANALYZING METRICS

Using LogLoss and ROC curves

CONCLUSIONS

- Using NLTK, merging of the public and synthetic datasets made the results more realistic and accurate.
- Even breakdown of features decreased false negatives.
 - Categorizing patients at risk for overdose as not at risk

CAVEATS AND FUTURE IMPROVEMENTS

- Subgroup Analysis by race
- Investigating how an opioid is taken
 - o i.e. topically, orally, or injection-wise
- Delving into a deep neural network
 - Compare results with other predictive models
- Matching on more criteria

Acknowledgements

Special Thanks to:
Jean Costello, Brian Le, Sarah Tan
Pingyang Liu,
Maya Gonzalez, Jillian Burchard,
Marina Sirota,
Eva Kaye-Zweibel,
And
The AI4ALL Program