Heart Failure Prediction

Load Packages and Data

```
library(pROC)
library(caret)
library(ggplot2)
library(dplyr)
library(tidyr)
library(corrplot)
library(PRROC)
library(ggbiplot)
library(factoextra)
library(rpart.plot)

# load data
hfp_data <- read.csv("data/heart_failure_clinical_records_dataset.csv")</pre>
```

1. Explore Dataset

summary(hfp_data)

```
# read structure/summary
str(hfp_data)
```

```
## 'data.frame':
                  299 obs. of 13 variables:
                            : num 75 55 65 50 65 90 75 60 65 80 ...
## $ age
## $ anaemia
                            : int
                                  0 0 0 1 1 1 1 1 0 1 ...
## $ creatinine_phosphokinase: int 582 7861 146 111 160 47 246 315 157 123 ...
## $ diabetes
                            : int 0000100100...
## $ ejection_fraction
                            : int 20 38 20 20 20 40 15 60 65 35 ...
## $ high_blood_pressure
                            : int
                                  1 0 0 0 0 1 0 0 0 1 ...
## $ platelets
                            : num 265000 263358 162000 210000 327000 ...
## $ serum_creatinine
                            : num 1.9 1.1 1.3 1.9 2.7 2.1 1.2 1.1 1.5 9.4 ...
## $ serum sodium
                            : int 130 136 129 137 116 132 137 131 138 133 ...
## $ sex
                            : int 1 1 1 1 0 1 1 1 0 1 ...
## $ smoking
                            : int 0010010101...
                            : int 4 6 7 7 8 8 10 10 10 10 ...
## $ time
## $ DEATH_EVENT
                            : int 1 1 1 1 1 1 1 1 1 1 ...
```

```
## age anaemia creatinine_phosphokinase diabetes
## Min. :40.00 Min. :0.0000 Min. : 23.0 Min. :0.0000
## 1st Qu.:51.00 1st Qu.:0.0000 1st Qu.: 116.5 1st Qu.:0.0000
```

```
Median:60.00
                   Median :0.0000
                                    Median : 250.0
                                                            Median :0.0000
                                                            Mean :0.4181
##
  Mean :60.83 Mean :0.4314
                                    Mean : 581.8
   3rd Qu.:70.00
                   3rd Qu.:1.0000
                                    3rd Qu.: 582.0
                                                            3rd Qu.:1.0000
## Max.
          :95.00
                   Max.
                          :1.0000
                                    Max.
                                          :7861.0
                                                            Max. :1.0000
##
   ejection_fraction high_blood_pressure
                                          platelets
                                                         serum_creatinine
##
  Min.
         :14.00
                     Min. :0.0000
                                        Min. : 25100
                                                         Min. :0.500
   1st Qu.:30.00
                     1st Qu.:0.0000
                                         1st Qu.:212500
                                                         1st Qu.:0.900
                  Median :0.0000
## Median :38.00
                                        Median :262000
                                                         Median :1.100
                  Mean :0.3512
##
   Mean :38.08
                                        Mean :263358
                                                         Mean :1.394
##
   3rd Qu.:45.00
                     3rd Qu.:1.0000
                                         3rd Qu.:303500
                                                         3rd Qu.:1.400
  Max.
          :80.00
                     Max. :1.0000
                                        Max. :850000
                                                         Max.
                                                                :9.400
##
   serum_sodium
                        sex
                                       smoking
                                                         time
                          :0.0000
                                           :0.0000
## Min.
         :113.0
                                    Min.
                                                    Min. : 4.0
                  {	t Min.}
  1st Qu.:134.0
                  1st Qu.:0.0000
                                                    1st Qu.: 73.0
                                    1st Qu.:0.0000
## Median :137.0
                   Median :1.0000
                                    Median :0.0000
                                                    Median :115.0
##
   Mean :136.6
                   Mean :0.6488
                                    Mean
                                           :0.3211
                                                    Mean :130.3
##
   3rd Qu.:140.0
                                    3rd Qu.:1.0000
                   3rd Qu.:1.0000
                                                    3rd Qu.:203.0
  Max. :148.0
                   Max. :1.0000
                                         :1.0000
                                                    Max.
                                                           :285.0
##
    DEATH_EVENT
## Min.
          :0.0000
##
   1st Qu.:0.0000
## Median :0.0000
## Mean :0.3211
   3rd Qu.:1.0000
         :1.0000
   Max.
head(hfp_data)
    age anaemia creatinine_phosphokinase diabetes ejection_fraction
## 1 75
              0
                                     582
                                                0
## 2 55
              0
                                    7861
                                                0
                                                                38
## 3
     65
              0
                                     146
                                                0
                                                                20
## 4
     50
              1
                                     111
                                                0
                                                                20
## 5
     65
              1
                                     160
                                                                20
                                                1
## 6
              1
                                      47
                                                0
    high_blood_pressure platelets serum_creatinine serum_sodium sex smoking time
## 1
                           265000
                                               1.9
                                                           130
                                                                 1
                                                                         0
                      1
## 2
                           263358
                                                                         0
                                                                              6
                      0
                                               1.1
                                                           136
                                                                 1
## 3
                      0
                           162000
                                               1.3
                                                           129
                                                                         1
                                                                              7
                                                                              7
## 4
                      0
                           210000
                                               1.9
                                                                         0
                                                           137
                                                                 1
## 5
                           327000
                                               2.7
                                                           116
                                                                 0
                                                                         0
                                                                              8
## 6
                           204000
                                                           132
                                                                              8
                      1
                                               2.1
                                                                 1
                                                                         1
    DEATH_EVENT
## 1
              1
## 2
              1
## 3
              1
## 4
              1
## 5
              1
## 6
              1
# check missing values
colSums(is.na(hfp_data))
```

anaemia creatinine_phosphokinase

```
##
                             0
                                                         0
##
                     diabetes
                                       ejection_fraction
                                                                high_blood_pressure
##
                             0
##
                    platelets
                                        serum_creatinine
                                                                        serum_sodium
##
                             0
##
                           sex
                                                  smoking
                                                                                 time
                                                                                     0
##
                             0
                                                         0
##
                  DEATH_EVENT
##
```

```
# distribution
table(hfp_data$DEATH_EVENT)
```

```
## ## 0 1
## 203 96
```

```
prop.table(table(hfp_data$DEATH_EVENT))
```

203 (67.8%) of patients survived, while 96 (32.1%) died.

Which variables are related to whether a patient died from heart failure (response variable (DEATH_EVENT)?

2. Exploratory Data Analysis

```
# correlation matrix
cor_matrix_y <- cor(hfp_data)
cor_matrix_y</pre>
```

2. 1 Correlation Matrix

```
##
                                            anaemia creatinine_phosphokinase
                                    age
                             1.00000000 0.08800644
                                                                 -0.081583900
## age
## anaemia
                             0.08800644 1.00000000
                                                                 -0.190741030
## creatinine_phosphokinase -0.08158390 -0.19074103
                                                                  1.000000000
## diabetes
                            -0.10101239 -0.01272905
                                                                 -0.009638514
## ejection_fraction
                             0.06009836 0.03155697
                                                                 -0.044079554
## high_blood_pressure
                             0.09328868 0.03818200
                                                                 -0.070589980
                            -0.05235437 -0.04378555
## platelets
                                                                  0.024463389
## serum_creatinine
                             0.15918713 0.05217360
                                                                 -0.016408480
## serum_sodium
                            -0.04596584 0.04188161
                                                                  0.059550156
## sex
                             0.06542952 -0.09476896
                                                                  0.079790629
## smoking
                             0.01866787 -0.10728984
                                                                  0.002421235
## time
                            -0.22406842 -0.14141398
                                                                 -0.009345653
## DEATH_EVENT
                             0.25372854 0.06627010
                                                                  0.062728160
```

```
##
                            diabetes ejection_fraction high_blood_pressure
## age
                        -0.101012385
                                          0.06009836
                                                           0.093288685
## anaemia
                        -0.012729046
                                          0.03155697
                                                           0.038182003
## creatinine_phosphokinase -0.009638514
                                         -0.04407955
                                                          -0.070589980
## diabetes
                         1.000000000
                                         -0.00485031
                                                          -0.012732382
## ejection fraction
                                                           0.024444731
                        -0.004850310
                                          1.00000000
## high_blood_pressure
                        -0.012732382
                                          0.02444473
                                                           1.000000000
## platelets
                         0.092192828
                                          0.07217747
                                                           0.049963481
## serum creatinine
                        -0.046975315
                                         -0.01130247
                                                          -0.004934525
## serum_sodium
                        -0.089550619
                                          0.17590228
                                                           0.037109470
## sex
                        -0.157729504
                                         -0.14838597
                                                          -0.104614629
                        -0.147173413
                                         -0.06731457
                                                          -0.055711369
## smoking
## time
                         0.033725509
                                          0.04172924
                                                          -0.196439479
## DEATH_EVENT
                        -0.001942883
                                                           0.079351058
                                         -0.26860331
##
                          platelets serum_creatinine serum_sodium
## age
                        -0.05235437
                                       0.159187133 -0.045965841
                                                              0.065429524
## anaemia
                        -0.04378555
                                       ## creatinine_phosphokinase 0.02446339
                                       -0.016408480 0.059550156 0.079790629
                                       -0.046975315 -0.089550619 -0.157729504
## diabetes
                         0.09219283
## ejection fraction
                         0.07217747
                                       ## high_blood_pressure
                         0.04996348
                                       ## platelets
                         1.00000000
                                       ## serum_creatinine
                        -0.04119808
                                       1.000000000 -0.189095210 0.006969778
## serum sodium
                                       -0.189095210 1.000000000 -0.027566123
                         0.06212462
## sex
                                       0.006969778 -0.027566123 1.000000000
                        -0.12512048
## smoking
                         0.02823445
                                       -0.027414135 0.004813195 0.445891712
                         0.01051391
                                       ## time
## DEATH_EVENT
                                       0.294277561 -0.195203596 -0.004316376
                        -0.04913887
##
                                           time DEATH_EVENT
                             smoking
## age
                         0.018667868 -0.224068420 0.253728543
## anaemia
                        -0.107289838 -0.141413982 0.066270098
## creatinine_phosphokinase 0.002421235 -0.009345653 0.062728160
## diabetes
                        ## ejection_fraction
## high_blood_pressure
                        -0.055711369 -0.196439479 0.079351058
## platelets
                         ## serum creatinine
                        -0.027414135 -0.149315418 0.294277561
## serum_sodium
                         ## sex
                         0.445891712 -0.015608220 -0.004316376
## smoking
                         1.000000000 -0.022838942 -0.012623153
## time
                        -0.022838942 1.000000000 -0.526963779
                        -0.012623153 -0.526963779 1.000000000
## DEATH EVENT
# top predictors most correlated with DEATH_EVENT
cor_target <- cor_matrix_y["DEATH_EVENT", ]</pre>
top_5 <- sort(abs(cor_target[names(cor_target) != "DEATH_EVENT"]), decreasing = TRUE)[1:5]
top_5
##
                   serum_creatinine ejection_fraction
              time
                                                               age
##
         0.5269638
                         0.2942776
                                         0.2686033
                                                         0.2537285
##
      serum sodium
##
         0.1952036
```

```
# heatmap
corrplot(cor_matrix_y,
         method = "color",
         type = "upper",
                                 # upper triangle
         order = "hclust",
                                 # group similar variables
         addCoef.col = "black", # show correlation values
         tl.cex = 0.7,
                                 # axis text
                                 # correlation values
         number.cex = 0.6,
                                 # axis label color
         t1.col = "black",
         cl.cex = 0.6,
                                 # color legend text size
         mar = c(1, 1, 2.5, 1)) # plot margins
title("Correlation Matrix of Variables in Heart Failure Dataset", cex.main = 0.75)
```


From this matrix, we can see that the top 5 predictors most correlated with DEATH_EVENT are time, serum creatinine, ejection fraction, age, and serum sodium.

2.2 Boxplots of Continuous Features To observe visual differences, we explored all continuous variables grouped by DEATH_EVENT.

```
# ID binary vars and derive continuous ones
binary_vars <- c("sex", "diabetes", "high_blood_pressure", "smoking", "anaemia")
continuous_vars <- setdiff(names(hfp_data), c(binary_vars, "DEATH_EVENT"))</pre>
```

```
# include all continuous vars + DEATH EVENT
box_vars <- hfp_data[, c(continuous_vars, "DEATH_EVENT")]</pre>
# pivot longer for faceted plotting
long_box <- pivot_longer(box_vars,</pre>
                         cols = -DEATH EVENT,
                         names_to = "Variable",
                         values to = "Value")
# plot
ggplot(long_box, aes(x = factor(DEATH_EVENT), y = Value, fill = factor(DEATH_EVENT))) +
  geom_boxplot(alpha = 0.6, outlier.color = "red", outlier.alpha = 0.3) +
  facet_wrap(~ Variable, scales = "free", ncol = 3) +
  labs(title = "Boxplots of All Continuous Variables by Death Event",
       x = "Death Event", y = "Value", fill = "Death Event") +
  scale_fill_manual(values = c("0" = "pink", "1" = "turquoise"),
                    labels = c("0 (Survived)", "1 (Died)")) +
  theme_minimal()
```

Boxplots of All Continuous Variables by Death Event

These boxplots align with the top predictors seen in the correlation matrix above.

2.3 Violin Plots for Top Predictors Based on the correlation and boxplots, we've selected the top 5 features to explore more deeply.

Death Event

Each of these plots shows the value comparision of partients who survived ($\mathtt{DEATH_EVENT} = 0$), and died ($\mathtt{DEATH_EVENT} = 1$)

- time: patients who survived had a longer time where they followed up compared to those who died.
- serum_creatnine: shows more right-skewed distributions for patients who died, which shows that they had higher levels of serum creatnine, an indicator of poor kidney function.
- ejection_fraction: there was more instances of lower ejection fraction (how much blood the heart pumps out each heartbeat) in patients who died.
- age: the died group skews older, confirming that age is a risk factor, but still there is some overlap so it shouldn't be used as a sole predictor.
- serum_sodium: the distributions are a bit similar, with slightly lower sodium levels in patients who died. Since they are so similar, this variable might be weakly predictive.
- **2.4 Density Plot for Age** We wanted to explore how the top correlated variable (time) is distributed across the response group.

```
ggplot(hfp_data, aes(x = time, fill = factor(DEATH_EVENT))) +
  geom_density(alpha = 0.4, color = NA) +
  labs(
    title = "Time (Follow up Duration) Density by Death Event",
    x = "Time (days)",
    y = "Density",
    fill = "Death Event"
```


This plot shows the estimated probability density of follow up-time (in days). The blue curve (deaths) is heavily concentrated at lower times (<50 days), and suggests that patients who died had shorter follow up durations. The pink curve shows a "bimodal" distribution (two peaks at ~75 and 200), and indicates a wider range and longer time duration among surviving patients. This feature may contribute more significantly to class seperation and therefore reduce error training rate in models like LDA or Logistic Regression.

3. Preprocessing

```
binary_vars <- c("sex", "diabetes", "high_blood_pressure", "smoking", "anaemia")
continuous_vars <- setdiff(names(hfp_data), c(binary_vars, "DEATH_EVENT"))

scaled_cont <- scale(hfp_data[, continuous_vars])
binary_data <- hfp_data[, binary_vars]

hfp_scaled <- cbind(as.data.frame(scaled_cont), binary_data, DEATH_EVENT = hfp_data$DEATH_EVENT)
head(hfp_scaled)</pre>
```

3.1 Scaling Predictors

```
##
            age creatinine_phosphokinase ejection_fraction
                                                                platelets
## 1
                             0.000165451
                                                             1.678834e-02
     1.1909487
                                               -1.527997920
## 2 -0.4904571
                             7.502062717
                                               -0.007064906 7.523048e-09
## 3 0.3502458
                            -0.449185725
                                               -1.527997920 -1.036336e+00
## 4 -0.9108085
                                               -1.527997920 -5.455595e-01
                            -0.485257493
     0.3502458
                                               -1.527997920 6.507077e-01
## 5
                            -0.434757017
## 6 2.4520030
                            -0.551217299
                                                0.161927651 -6.069065e-01
     serum_creatinine serum_sodium
                                         time sex diabetes high_blood_pressure
           0.48923681 -1.50151891 -1.626775
## 1
## 2
          -0.28407611 -0.14173853 -1.601007
                                                         0
                                                                              0
                                                1
## 3
          -0.09074788 -1.72814897 -1.588122
                                                         0
                                                                              0
## 4
           0.48923681
                        0.08489153 -1.588122
                                                1
                                                         0
                                                                              0
## 5
           1.26254973
                       -4.67433977 -1.575238
                                                0
                                                         1
                                                                              0
## 6
           0.68256504 -1.04825878 -1.575238
                                                                              1
##
     smoking anaemia DEATH EVENT
           0
## 1
                   0
## 2
           0
                   0
## 3
           1
                   0
                               1
## 4
           0
                   1
                               1
## 5
           0
                   1
                               1
## 6
           1
                   1
```

All continuous features were standardized using z-score scaling (mean = 0, sd = 1). This makes sure that the features have equal weight in distance-based methods. The binary features were kept the same to keep their categorical interpretation.

```
hfp_data$DEATH_EVENT <- factor(hfp_data$DEATH_EVENT, levels = c(0, 1), labels = c("Survived", "Died"))
set.seed(2025)

train_index <- createDataPartition(hfp_scaled$DEATH_EVENT, p = 0.7, list = FALSE)
train_data <- hfp_scaled[train_index, ]
test_data <- hfp_scaled[-train_index, ]
```

3.2 Train-Test Split The dataset was split 70/30 using stratified sampling, which makes sure that the data distribution is consistent, keeping the same amount of instances where patients have died for the training and test set.

```
train_control <- trainControl(method="cv", number=10, classProbs = TRUE, summaryFunction = twoClassSumm
```

3.3 K-Fold Cross Validation 10-fold cross validation was set up for all models.

4. Model Training

We trained the following classifiers:

- Quadratic Discriminant Analysis (QDA)
- Linear Discriminant Analysis (LDA)
- Logistic Regression (LogReg)
- k-Nearest Neighbors (KNN)
- Support Vector Machine (SVM)
- Random Forest (RF)
- Decision Tree (DT)

No pre-processing

Since there are binary values, we performed a conversion in the beginning to designate values for patients who died and survived.

```
#Classfication Models
# Convert DEATH_EVENT to a factor for classification since it is numeric (meant for regression)
#test data$DEATH EVENT <- as.factor(test data$DEATH EVENT)</pre>
#train_data$DEATH_EVENT <- as.factor(train_data$DEATH_EVENT)</pre>
test_data$DEATH_EVENT <- factor(test_data$DEATH_EVENT, levels = c(0, 1), labels = c("Survived", "Died")
train_data$DEATH_EVENT <- factor(train_data$DEATH_EVENT, levels = c(0, 1), labels = c("Survived", "Died
# QDA Model
set.seed(2025)
qda_model <- train(DEATH_EVENT ~ ., data = train_data, method = "qda", trControl = train_control, metri
print(qda_model)
## Quadratic Discriminant Analysis
##
## 210 samples
  12 predictor
##
##
     2 classes: 'Survived', 'Died'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 189, 189, 188, 190, 189, 189, ...
## Resampling results:
##
##
     ROC
                Sens
                           Spec
##
     0.7677778  0.8928571  0.447619
lda_model <- train(DEATH_EVENT ~ ., data = train_data, method = "lda", trControl = train_control, metri</pre>
print(lda_model)
## Linear Discriminant Analysis
##
## 210 samples
   12 predictor
##
##
    2 classes: 'Survived', 'Died'
```

```
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 188, 189, 190, 189, 189, 190, ...
## Resampling results:
##
##
    ROC
                Sens
                           Spec
##
    0.8396032 0.8980952 0.6404762
# Logistic Regression
logistic_regression_model <- train(DEATH_EVENT ~ ., data = train_data, method = "glm", family = "binomi</pre>
print (logistic_regression_model)
## Generalized Linear Model
## 210 samples
## 12 predictor
    2 classes: 'Survived', 'Died'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 189, 189, 190, 188, 189, 189, ...
## Resampling results:
##
##
    ROC
                Sens
                           Spec
##
     0.8349206 0.8909524 0.6142857
knn_model <- train(DEATH_EVENT ~ ., data = train_data, method = "knn", trControl = train_control, metri
print (knn_model)
## k-Nearest Neighbors
##
## 210 samples
## 12 predictor
    2 classes: 'Survived', 'Died'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 189, 189, 189, 188, 188, 189, ...
## Resampling results across tuning parameters:
##
##
    k ROC
                   Sens
                              Spec
##
    5 0.7699206 0.9533333 0.3547619
##
    7 0.8013889 0.9466667
                              0.3380952
##
    9 0.7920238 0.9533333 0.3880952
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was k = 7.
svm_model <- train(DEATH_EVENT ~ ., data = train_data, method = "svmRadial", trControl = train_control,</pre>
print(svm_model)
```

```
## Support Vector Machines with Radial Basis Function Kernel
##
## 210 samples
## 12 predictor
##
    2 classes: 'Survived', 'Died'
##
## Pre-processing: centered (12), scaled (12)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 189, 189, 190, 189, 189, 190, \dots
## Resampling results across tuning parameters:
##
##
           ROC
                      Sens
                                 Spec
##
    0.25 0.8511111 0.8709524
                                 0.6095238
                                 0.5928571
##
    0.50 0.8535714 0.8842857
##
     1.00 0.8499206 0.8771429 0.5595238
##
## Tuning parameter 'sigma' was held constant at a value of 0.05627339
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were sigma = 0.05627339 and C = 0.5.
# Random Forest
rf_model <- train(DEATH_EVENT ~ ., data = train_data, method = "rf", trControl = train_control, metric
print(rf_model)
## Random Forest
##
## 210 samples
## 12 predictor
    2 classes: 'Survived', 'Died'
##
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 189, 189, 189, 189, 189, 188, ...
## Resampling results across tuning parameters:
##
##
    mtry ROC
                      Sens
                                 Spec
##
     2
           0.8975907 0.9461905 0.5761905
##
           0.8858050 0.8923810 0.6119048
           0.8653288 0.8790476 0.5952381
##
##
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 2.
# Decision Tree
dt_model <- train(DEATH_EVENT ~ ., data = train_data, method = "rpart", trControl = train_control, metr
print(dt_model)
## CART
##
## 210 samples
## 12 predictor
    2 classes: 'Survived', 'Died'
##
```

```
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 190, 188, 189, 189, 189, 188, ...
## Resampling results across tuning parameters:
##
##
                 ROC
                            Sens
                                       Spec
##
     0.01612903 0.7930952 0.8723810
                                       0.6404762
     0.02688172 0.7898413 0.8857143
                                      0.6547619
##
##
     0.46774194 0.5919048 0.9457143 0.2380952
##
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was cp = 0.01612903.
rpart.plot(dt_model$finalModel, main = "Decision Tree for Heart Failure Prediction")
```

Decision Tree for Heart Failure Prediction


```
dt_pred <- predict(dt_model, newdata = test_data)
confusionMatrix(dt_pred, test_data$DEATH_EVENT)</pre>
```

```
## Confusion Matrix and Statistics
##
## Reference
## Prediction Survived Died
## Survived 51 9
## Died 4 25
##
```

```
##
                  Accuracy : 0.8539
##
                    95% CI: (0.7632, 0.9199)
       No Information Rate: 0.618
##
       P-Value [Acc > NIR] : 9.176e-07
##
##
##
                     Kappa: 0.6817
##
##
   Mcnemar's Test P-Value: 0.2673
##
##
               Sensitivity: 0.9273
##
               Specificity: 0.7353
            Pos Pred Value: 0.8500
##
            Neg Pred Value: 0.8621
##
                Prevalence: 0.6180
##
##
            Detection Rate: 0.5730
##
      Detection Prevalence: 0.6742
##
         Balanced Accuracy: 0.8313
##
##
          'Positive' Class: Survived
##
```

5. Model Evaluation: F1 and AUC

```
# Function to calculate F1 from confusion matrix
calculate_f1 <- function(cm) {</pre>
  precision <- cm$byClass["Pos Pred Value"]</pre>
  recall <- cm$byClass["Sensitivity"]</pre>
  # Handle division by zero
  if ((precision + recall) == 0) {
    return(NA)
  f1 <- 2 * (precision * recall) / (precision + recall)</pre>
  return(round(f1, 4))
}
calculate_auc <- function(actual, predicted_probs, positive_label = "Died") {</pre>
  actual <- factor(actual, levels = c("Survived", "Died"))</pre>
  predicted_probs <- as.numeric(predicted_probs)</pre>
  roc_curve <- roc(response = actual, predictor = predicted_probs, levels = c("Survived", "Died"))</pre>
  auc_value <- auc(roc_curve)</pre>
  return(round(auc_value, 4))
}
```

5.1 Utility Functions

5.2 Metrics per Model We generated confusion matrices for each of the models, along with manually calculating F1-score and AUC.

```
# Logistic Regression
logreg_pred <- predict(logistic_regression_model, newdata = test_data)</pre>
logreg_cm <- confusionMatrix(logreg_pred, test_data$DEATH_EVENT, positive = "Died")</pre>
logreg_f1 <- calculate_f1(logreg_cm)</pre>
print(logreg_cm)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction Survived Died
                   48
##
     Survived
##
     Died
                     7
                          25
##
##
                  Accuracy : 0.8202
##
                    95% CI: (0.7245, 0.8936)
##
       No Information Rate: 0.618
       P-Value [Acc > NIR] : 3.019e-05
##
##
##
                      Kappa: 0.6149
##
   Mcnemar's Test P-Value: 0.8026
##
##
               Sensitivity: 0.7353
##
               Specificity: 0.8727
##
##
            Pos Pred Value: 0.7812
##
            Neg Pred Value: 0.8421
                Prevalence: 0.3820
##
            Detection Rate: 0.2809
##
##
      Detection Prevalence: 0.3596
##
         Balanced Accuracy: 0.8040
##
##
          'Positive' Class : Died
##
cat("\nF1: ", logreg_f1, "\n") #Calculating F1
##
## F1: 0.7576
logreg_probs <- predict(logistic_regression_model, newdata = test_data, type = "prob")</pre>
auc_value <- calculate_auc(test_data$DEATH_EVENT, logreg_probs$Died) #Calculating AUC
cat("AUC:", auc_value, "\n\n\n")
## AUC: 0.9032
lda_pred <- predict(lda_model, newdata = test_data)</pre>
lda_cm <- confusionMatrix(lda_pred, test_data$DEATH_EVENT, positive = "Died")</pre>
lda_f1 <- calculate_f1(lda_cm)</pre>
print(lda cm)
```

```
## Confusion Matrix and Statistics
##
             Reference
##
## Prediction Survived Died
##
     Survived
                  48
##
     Died
                     7
                         26
##
##
                  Accuracy: 0.8315
##
                    95% CI: (0.7373, 0.9025)
##
       No Information Rate: 0.618
##
       P-Value [Acc > NIR] : 1.018e-05
##
##
                     Kappa: 0.641
##
##
   Mcnemar's Test P-Value : 1
##
##
               Sensitivity: 0.7647
##
               Specificity: 0.8727
##
            Pos Pred Value: 0.7879
            Neg Pred Value: 0.8571
##
##
                Prevalence: 0.3820
##
            Detection Rate: 0.2921
##
      Detection Prevalence: 0.3708
##
         Balanced Accuracy: 0.8187
##
##
          'Positive' Class: Died
##
cat("\nF1: ", lda_f1, "\n")
##
## F1: 0.7761
lda_probs <- predict(lda_model, newdata = test_data, type = "prob")</pre>
auc_value <- calculate_auc(test_data$DEATH_EVENT, lda_probs$Died) #Calculating AUC
cat("AUC:", auc_value, "\n\n\n")
## AUC: 0.9203
qda_pred <- predict(qda_model, newdata = test_data)</pre>
qda_cm <- confusionMatrix(qda_pred, test_data$DEATH_EVENT, positive = "Died")</pre>
qda_f1 <- calculate_f1(qda_cm)</pre>
print(qda_cm)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction Survived Died
    Survived
                  47
##
                         17
##
     Died
                    8
                         17
##
```

```
##
                  Accuracy : 0.7191
                    95% CI : (0.6138, 0.8093)
##
       No Information Rate: 0.618
##
       P-Value [Acc > NIR] : 0.02998
##
##
##
                     Kappa: 0.3734
##
    Mcnemar's Test P-Value: 0.10960
##
##
##
               Sensitivity: 0.5000
##
               Specificity: 0.8545
            Pos Pred Value: 0.6800
##
            Neg Pred Value: 0.7344
##
                Prevalence: 0.3820
##
##
            Detection Rate: 0.1910
##
      Detection Prevalence: 0.2809
##
         Balanced Accuracy: 0.6773
##
##
          'Positive' Class : Died
##
cat("\nF1: ", qda_f1, "\n")
##
## F1: 0.5763
qda_probs <- predict(qda_model, newdata = test_data, type = "prob")</pre>
auc_value <- calculate_auc(test_data$DEATH_EVENT, qda_probs$Died) #Calculating AUC
cat("AUC:", auc_value, "\n\n\n")
## AUC: 0.7289
knn_pred <- predict(knn_model, newdata = test_data)</pre>
knn_cm <- confusionMatrix(knn_pred, test_data$DEATH_EVENT, positive = "Died")
knn_f1 <- calculate_f1(knn_cm)</pre>
print(knn_cm)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction Survived Died
     Survived
##
                    48
                         19
##
     Died
                     7
                         15
##
##
                  Accuracy : 0.7079
##
                    95% CI: (0.6019, 0.7995)
##
       No Information Rate: 0.618
       P-Value [Acc > NIR] : 0.04905
##
##
##
                     Kappa: 0.3366
##
```

```
Mcnemar's Test P-Value: 0.03098
##
##
               Sensitivity: 0.4412
##
               Specificity: 0.8727
##
            Pos Pred Value: 0.6818
##
            Neg Pred Value: 0.7164
##
                Prevalence: 0.3820
            Detection Rate: 0.1685
##
##
      Detection Prevalence: 0.2472
##
         Balanced Accuracy: 0.6570
##
##
          'Positive' Class : Died
##
cat("\nF1: ", knn_f1, "\n")
##
## F1: 0.5357
knn_probs <- predict(knn_model, newdata = test_data, type = "prob")</pre>
auc_value <- calculate_auc(test_data$DEATH_EVENT, knn_probs$Died) #Calculating AUC
cat("AUC:", auc_value, "\n\n\n")
## AUC: 0.8142
# SVM
svm_pred <- predict(svm_model, newdata = test_data)</pre>
svm_cm <- confusionMatrix(svm_pred, test_data$DEATH_EVENT, positive = "Died")</pre>
svm_f1 <- calculate_f1(svm_cm)</pre>
print(svm_cm)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction Survived Died
     Survived
                   46
                         10
     Died
##
                     9
                         24
##
##
                  Accuracy : 0.7865
##
                    95% CI: (0.6869, 0.8663)
##
       No Information Rate: 0.618
       P-Value [Acc > NIR] : 0.000518
##
##
##
                     Kappa : 0.5453
##
    Mcnemar's Test P-Value: 1.000000
##
##
##
               Sensitivity: 0.7059
##
               Specificity: 0.8364
            Pos Pred Value: 0.7273
##
##
            Neg Pred Value: 0.8214
                Prevalence: 0.3820
##
```

```
##
            Detection Rate: 0.2697
##
      Detection Prevalence: 0.3708
##
         Balanced Accuracy: 0.7711
##
##
          'Positive' Class : Died
##
cat("\nF1: ", svm_f1, "\n")
##
## F1: 0.7164
svm_probs <- predict(svm_model, newdata = test_data, type = "prob")</pre>
auc_value <- calculate_auc(test_data$DEATH_EVENT, svm_probs$Died) #Calculating AUC
cat("AUC:", auc_value, "\n\n\n")
## AUC: 0.8861
# Random Forest
rf_pred <- predict(rf_model, newdata = test_data)</pre>
rf_cm <- confusionMatrix(rf_pred, test_data$DEATH_EVENT, positive = "Died")
rf_f1 <- calculate_f1(rf_cm)</pre>
print(rf_cm)
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction Survived Died
##
     Survived
                    51
                         12
     Died
                         22
##
                     4
##
                  Accuracy : 0.8202
##
##
                    95% CI: (0.7245, 0.8936)
       No Information Rate: 0.618
##
##
       P-Value [Acc > NIR] : 3.019e-05
##
##
                     Kappa: 0.6013
##
##
    Mcnemar's Test P-Value: 0.08012
##
               Sensitivity: 0.6471
##
##
               Specificity: 0.9273
            Pos Pred Value: 0.8462
##
##
            Neg Pred Value: 0.8095
##
                Prevalence: 0.3820
##
            Detection Rate: 0.2472
##
      Detection Prevalence: 0.2921
##
         Balanced Accuracy: 0.7872
##
##
          'Positive' Class : Died
##
```

```
cat("\nF1: ", rf_f1, "\n")
##
## F1: 0.7333
rf_probs <- predict(rf_model, newdata = test_data, type = "prob")</pre>
auc_value <- calculate_auc(test_data$DEATH_EVENT, rf_probs$Died) #Calculating AUC
cat("AUC:", auc_value, "\n\n\n")
## AUC: 0.9516
# Decision Tree
dt_pred <- predict(dt_model, newdata = test_data)</pre>
dt_cm <- confusionMatrix(dt_pred, test_data$DEATH_EVENT, positive = "Died")</pre>
dt_f1 <- calculate_f1(dt_cm)</pre>
print(dt_cm)
## Confusion Matrix and Statistics
##
             Reference
##
## Prediction Survived Died
##
     Survived
                    51
                          9
     Died
                     4
##
##
##
                  Accuracy : 0.8539
##
                    95% CI: (0.7632, 0.9199)
       No Information Rate: 0.618
##
##
       P-Value [Acc > NIR] : 9.176e-07
##
##
                     Kappa: 0.6817
##
##
   Mcnemar's Test P-Value: 0.2673
##
##
               Sensitivity: 0.7353
##
               Specificity: 0.9273
##
            Pos Pred Value: 0.8621
            Neg Pred Value: 0.8500
##
##
                Prevalence: 0.3820
##
            Detection Rate: 0.2809
##
      Detection Prevalence: 0.3258
##
         Balanced Accuracy: 0.8313
##
##
          'Positive' Class : Died
##
cat("\nF1: ", dt_f1, "\n")
##
```

F1: 0.7937

```
dt_probs <- predict(dt_model, newdata = test_data, type = "prob")
auc_value <- calculate_auc(test_data$DEATH_EVENT, dt_probs$Died) #Calculating AUC
cat("AUC:", auc_value, "\n\n")</pre>
```

AUC: 0.8639

```
# variable importance for rf
library(caret)
importance_rf <- varImp(rf_model)
print(importance_rf)</pre>
```

5.3 Variable Importance for Random Forest

```
## rf variable importance
##
##
                            Overall
                           100.0000
## time
## ejection_fraction
                            53.9184
## serum_creatinine
                            43.7095
                            37.9317
## age
## creatinine_phosphokinase 31.6159
## platelets
                            31.5847
## serum_sodium
                          29.7679
## anaemia
                            2.1262
                            1.4597
## sex
## high_blood_pressure
                             0.9020
## smoking
                             0.6079
## diabetes
                             0.0000
```

```
# top 10 important variables
plot(importance_rf, top = 10, main = "Top 10 Important Variables - Random Forest")
```

Top 10 Important Variables – Random Forest

varImp() IDs which predictors had the biggest impact on model performance. In RF, var. importance is calculated based on how much each variable reduces impurity across all trees. The top variables are time, serum_creatine, ejection_fraction, and age, which aligns with domain knowledge-> indicators of heart failure progression.

6. Performance Comparision

```
results <- resamples(list(SVM = svm_model, LogReg = logistic_regression_model, LDA = lda_model, QDA = qsummary(results)
```

6.1 Summary

```
##
## Call:
  summary.resamples(object = results)
##
## Models: SVM, LogReg, LDA, QDA, RF, KNN
## Number of resamples: 10
##
## ROC
##
                                                                   Max. NA's
               Min.
                      1st Qu.
                                  Median
                                              Mean
                                                      3rd Qu.
## SVM
          0.7142857 0.7750000 0.8500000 0.8535714 0.9444444 0.9777778
                                                                           0
## LogReg 0.6071429 0.8261905 0.8555556 0.8349206 0.8908730 0.9642857
                                                                           0
```

```
0.7222222 0.8037698 0.8333333 0.8396032 0.8869048 0.9714286
## LDA
                                                                            0
          0.6222222 0.7000000 0.7642857 0.7677778 0.8285714 0.9555556
                                                                            0
## QDA
## RF
          0.7333333 0.8729167 0.9277778 0.8975907 0.9416667 0.9897959
                                                                            0
          0.5777778 0.7396825 0.8000000 0.8013889 0.8908730 0.9583333
## KNN
                                                                            0
##
## Sens
##
               Min.
                       1st Qu.
                                  Median
                                               Mean
                                                      3rd Qu.
          0.7142857 0.8821429 0.9333333 0.8842857 0.9333333 0.9333333
## SVM
## LogReg 0.7857143 0.8595238 0.9000000 0.8909524 0.9333333 1.0000000
                                                                            0
          0.8000000\ 0.8571429\ 0.8666667\ 0.8980952\ 0.9833333\ 1.0000000
                                                                            0
## QDA
          0.7333333  0.8666667  0.8976190  0.8928571  0.9333333  1.0000000
                                                                            0
          0.8666667\ 0.9333333\ 0.9333333\ 0.9461905\ 0.9833333\ 1.0000000
## RF
                                                                            0
          0.8000000 0.9333333 0.9666667 0.9466667 1.0000000 1.0000000
## KNN
                                                                            0
##
## Spec
##
               Min.
                       1st Qu.
                                  Median
                                               Mean
                                                      3rd Qu.
## SVM
          0.5000000 0.5000000 0.5833333 0.5928571 0.6666667 0.7142857
                                                                            0
## LogReg 0.3333333 0.5000000 0.6666667 0.6142857 0.6666667 1.0000000
                                                                            0
          0.5000000 0.5416667 0.6666667 0.6404762 0.6666667 0.8571429
                                                                            0
## LDA
## QDA
          0.1666667 0.3333333 0.3809524 0.4476190 0.6250000 0.8333333
                                                                            0
## RF
          0.3333333 \ 0.4464286 \ 0.5833333 \ 0.5761905 \ 0.6666667 \ 1.0000000
                                                                            0
## KNN
          0.1428571 \ 0.1666667 \ 0.3333333 \ 0.3380952 \ 0.5000000 \ 0.5714286
```

```
# Boxplot for Accuracy
## bwplot(results, metric = "Accuracy")
get_accuracy <- function(cm) {</pre>
  accuracy <- as.numeric(cm$overall["Accuracy"])</pre>
  return(round(accuracy, 4))
}
logreg_acc <- get_accuracy(logreg_cm)</pre>
lda_acc <- get_accuracy(lda_cm)</pre>
qda_acc <- get_accuracy(qda_cm)</pre>
knn_acc <- get_accuracy(knn_cm)</pre>
svm_acc <- get_accuracy(svm_cm)</pre>
rf acc <- get accuracy(rf cm)
dt_acc <- get_accuracy(dt_cm)</pre>
accuracy_df <- data.frame(Model = c("LogReg", "LDA", "QDA", "KNN", "SVM", "RF", "DT"),</pre>
                            Accuracy = c(logreg_acc, lda_acc, qda_acc, knn_acc, svm_acc, rf_acc, dt_acc))
# Bar plot for accuracy - used this instead of boxplot because the accuracy were singe points so boxplo
barplot(accuracy_df$Accuracy, names.arg = accuracy_df$Model, col = "darkgreen",
        main = "Accuracy Comparison of Models", ylab = "Accuracy")
```

Accuracy

${\bf 6.2\ Comparison\ Plots\ (Barplot\ and\ Boxplot\ of\ Model\ Performace)}$


```
# function to extract ROC curve data
extract_roc_df <- function(roc_obj, model_name) {</pre>
  data.frame(
    FPR = 1 - roc_obj$specificities,
    TPR = roc_obj$sensitivities,
    Model = model_name
  )
}
true_labels <- test_data$DEATH_EVENT</pre>
# calculate ROC curves and AUCs
roc_logreg <- roc(true_labels, logreg_probs$Died)</pre>
          <- roc(true_labels, knn_probs$Died)</pre>
roc_knn
            <- roc(true_labels, svm_probs$Died)</pre>
roc svm
            <- roc(true_labels, rf_probs$Died)</pre>
roc_rf
# get AUC values
auc_logreg <- round(auc(roc_logreg), 3)</pre>
auc_knn <- round(auc(roc_knn), 3)</pre>
            <- round(auc(roc_svm), 3)</pre>
auc_svm
            <- round(auc(roc_rf), 3)</pre>
auc_rf
```

```
# combine data
roc_data <- rbind(</pre>
  extract_roc_df(roc_logreg, paste0("Logistic (AUC = ", auc_logreg, ")")),
  extract_roc_df(roc_knn, paste0("KNN (AUC = ", auc_knn, ")")),
  extract_roc_df(roc_svm, paste0("SVM (AUC = ", auc_svm, ")")),
  extract_roc_df(roc_rf, paste0("Random Forest (AUC = ", auc_rf, ")"))
# plot
ggplot(roc_data, aes(x = FPR, y = TPR, color = Model)) +
  geom_line(size = 0.6) +
  geom_abline(slope = 1, intercept = 0, linetype = "dashed", color = "grey") +
  labs(title = "ROC Curves for All Models",
       x = "False Positive Rate (1 - Specificity)",
       y = "True Positive Rate (Sensitivity)") +
  theme_minimal() +
  theme(
    plot.title = element_text(hjust = 0.5, size = 14),
    axis.text = element_text(size = 10),
    axis.title = element_text(size = 11)
```


6.3 ROC Curve

AUC shows probability that random positive class instance (Died) is ranked higher than random negative class (Survived) in predicted probability. It is more informative when class distribution is imbalanced (ex. hfp_data 68/32) in comparison to accuracy and F1-score since they are threshold-independent and not

affected by skewed data.

- Random Forest performs the best (AUC=0.952), and the top-left curve indicates a high sensitive and low false positive rate
- Logistic Regression and Support Vector Machine perform strongly (AUC=0.903, 0.886 respectively)
- **K-Nearest Neighbour** is least effective out of the 4 (AUC=0.814). This might be because of noise, high variance, "curse of dimensionality".

```
# PR curves
pr_logreg <- pr.curve(scores.class0 = logreg_probs$Died[true_labels == "Died"],</pre>
                       scores.class1 = logreg_probs$Died[true_labels == "Survived"],
                       curve = TRUE)
pr_knn <- pr.curve(scores.class0 = knn_probs$Died[true_labels == "Died"],</pre>
                    scores.class1 = knn probs$Died[true labels == "Survived"],
                    curve = TRUE)
pr_svm <- pr.curve(scores.class0 = svm_probs$Died[true_labels == "Died"],</pre>
                    scores.class1 = svm_probs$Died[true_labels == "Survived"],
                    curve = TRUE)
pr_rf <- pr.curve(scores.class0 = rf_probs$Died[true_labels == "Died"],</pre>
                   scores.class1 = rf_probs$Died[true_labels == "Survived"],
                   curve = TRUE)
# extract PR curve as data frame
extract_pr_df <- function(pr_obj, model_name) {</pre>
  data.frame(
    Recall = pr_obj$curve[, 1],
    Precision = pr_obj$curve[, 2],
    Model = model_name
  )
}
# PR AUCs
auc_pr_logreg <- round(pr_logreg$auc.integral, 3)</pre>
auc_pr_knn <- round(pr_knn$auc.integral, 3)</pre>
auc_pr_svm <- round(pr_svm$auc.integral, 3)</pre>
auc_pr_rf
              <- round(pr_rf$auc.integral, 3)</pre>
# combine to one df for ggplot
pr_data <- rbind(</pre>
  extract_pr_df(pr_logreg, paste0("Logistic (PR AUC = ", auc_pr_logreg, ")")),
  extract_pr_df(pr_knn, paste0("KNN (PR AUC = ", auc_pr_knn, ")")),
  extract_pr_df(pr_svm, paste0("SVM (PR AUC = ", auc_pr_svm, ")")),
  extract_pr_df(pr_rf, paste0("Random Forest (PR AUC = ", auc_pr_rf, ")"))
)
# plot
ggplot(pr_data, aes(x = Recall, y = Precision, color = Model)) +
```

Precision-Recall Curves for All Models

6.4 PR Curves

PR curve focuses on positive class ("Died") by plotting precision vs. recall. More informative than ROC AUC when class distribution is imbalanced, since it directly evaluates model ability to identify true positives.

- Random Forest has highest AUC-PR (0.912) which shows its ability to identify actual deaths while also keeping high precision.
- Logistic Regression had strong performance at 0.849
- Support Vector Machine gives a moderate performance at 0.8
- K-Nearest Neighbour performed least well, at 0.746, showing it had more false positives and less effective in ID actual deaths.

7. Hyperparameter Tuning

7.1 K-Nearest Neighbours (KNN)

```
## k-Nearest Neighbors
##
## 210 samples
## 12 predictor
##
    2 classes: 'Survived', 'Died'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 189, 189, 189, 189, 189, 190, ...
## Resampling results across tuning parameters:
##
        ROC
##
    k
                   Sens
                              Spec
##
     3 0.7268821 0.9247619 0.3690476
##
     5 0.7342971 0.9390476 0.3190476
     7 0.7748129 0.9528571 0.2904762
##
##
     9 0.7773469 0.9661905 0.3761905
##
    11 0.7862812 0.9590476 0.3547619
##
    13 0.8033617 0.9657143 0.3380952
##
    15 0.8143537 0.9657143 0.3214286
##
    17 0.8136111 0.9657143 0.3047619
##
    19 0.8121769 0.9590476 0.3214286
##
    21 0.8132370 0.9590476 0.3071429
##
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was k = 15.
```

7.2 Support Vector Machine (SVM)

```
## Support Vector Machines with Radial Basis Function Kernel
##
## 210 samples
## 12 predictor
## 2 classes: 'Survived', 'Died'
```

```
##
## Pre-processing: centered (12), scaled (12)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 189, 188, 189, 190, 189, 189, ...
## Resampling results across tuning parameters:
##
##
     C
           sigma ROC
                             Sens
                                        Spec
##
     0.25 0.25
                  0.7745238  0.8980952  0.31904762
##
     0.25 0.50
                  0.6031746 0.9523810
                                       0.03095238
##
     0.25 1.00
                  0.4580952 0.9800000 0.00000000
##
     0.25
          2.00
                  0.4731746 0.9733333 0.00000000
##
     0.25 4.00
                 0.5439286 0.9933333
                                       0.00000000
##
     0.50 0.25
                 0.7745238 0.9042857
                                       0.35000000
##
     0.50 0.50
                  0.6876190 0.9457143 0.06190476
##
     0.50 1.00
                  0.3603175 0.9866667
                                       0.00000000
##
     0.50
           2.00
                  0.3725397
                            0.9866667
                                       0.00000000
##
     0.50 4.00
                  0.4302381 0.9861905
                                       0.00000000
##
     1.00 0.25
                  0.7691270 0.9180952 0.31666667
##
     1.00 0.50
                  0.6876190 0.9447619 0.01428571
##
     1.00
          1.00
                  0.4857143 0.9866667 0.00000000
##
     1.00 2.00
                 0.4153968 0.9733333 0.01666667
##
     1.00 4.00
                  0.4203571 0.9861905 0.00000000
##
     2.00 0.25
                  0.7711111 \quad 0.9190476 \quad 0.28571429
     2.00 0.50
                  0.6808730 0.9519048 0.01666667
##
##
     2.00 1.00
                  0.4242857 0.9866667 0.00000000
##
     2.00 2.00
                  0.4139683 0.9795238 0.00000000
##
     2.00 4.00
                 0.4557937 0.9928571 0.00000000
##
     4.00 0.25
                 0.7735714 0.8976190 0.23809524
##
     4.00 0.50
                  0.6282540 0.9590476
                                      0.01428571
##
     4.00 1.00
                  0.4531746 0.9866667
                                       0.00000000
##
     4.00
           2.00
                  0.3725397
                            0.9661905
                                       0.01666667
##
     4.00 4.00
                  0.4557937 0.9861905 0.00000000
##
## ROC was used to select the optimal model using the largest value.
## The final values used for the model were sigma = 0.25 and C = 0.25.
rf_grid <- expand.grid(mtry = 2:6)</pre>
rf_model <- train(DEATH_EVENT ~ ., data = train_data, method = "rf",
                  trControl = train_control, metric = "ROC",
                  tuneGrid = rf_grid)
print(rf_model)
7.3 Random Forest (RF)
## Random Forest
##
## 210 samples
    12 predictor
##
     2 classes: 'Survived', 'Died'
##
```

No pre-processing

```
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 189, 189, 188, 188, 189, 189, ...
## Resampling results across tuning parameters:
##
##
     mtry ROC
                     Sens
                                 Spec
##
          0.8855556 0.9528571
     2
                                0.5809524
##
     3
          0.8860317 0.9395238
                                0.6261905
##
     4
          0.8883333 0.9052381
                                0.6261905
##
     5
          0.8854762 0.9057143 0.6261905
##
          0.8788889 0.8980952 0.5976190
##
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 4.
```

7.4 Decision Tree (DT)

```
## CART
##
## 210 samples
##
  12 predictor
    2 classes: 'Survived', 'Died'
##
## No pre-processing
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 189, 189, 189, 189, 189, 189, ...
## Resampling results across tuning parameters:
##
##
           ROC
    ср
                      Sens
                                 Spec
    0.001 0.8065079 0.8790476 0.6119048
##
    0.006 0.8065079 0.8790476 0.6119048
##
    0.011 0.8065079 0.8790476 0.6119048
##
    0.016  0.8065079  0.8790476  0.6119048
##
    0.021 0.8048413 0.8857143 0.6619048
##
    0.026 0.7987302 0.8857143 0.6452381
##
    0.031 0.7857143 0.8923810 0.6285714
##
    0.036 0.7593651 0.8990476
                                0.6285714
##
    0.041 0.7593651 0.8990476 0.6285714
##
    0.046
          0.7593651
                     0.9057143
                                0.6285714
##
    0.051 0.7593651 0.9057143 0.6285714
##
    0.056 0.7638095 0.9323810 0.5952381
##
    0.061 0.7638095 0.9323810 0.5952381
##
    0.066 0.7638095 0.9323810 0.5952381
##
    0.071 0.7638095 0.9323810 0.5952381
##
    0.076 0.7638095 0.9323810 0.5952381
##
    0.081 0.7638095 0.9323810 0.5952381
```

```
## 0.086 0.7638095 0.9323810 0.5952381

## 0.091 0.7638095 0.9323810 0.5952381

## 0.096 0.7638095 0.9323810 0.5952381

##

## ROC was used to select the optimal model using the largest value.

## The final value used for the model was cp = 0.016.
```

For each model trained, we performed grid search and 10-fold cross validation to optimize k, c/sigma, mtry, and cp for their respective models. ROC was used to select optimal model using largest value.

8. Principal Component Analysis (PCA)

We applied PCA to reduce dimensionality so we can plot and interpret better, as PCA will give us a low-dimensional representation of the data that captures as much variance as possible.

```
# extract only scaled continuous predictors
pca_data <- hfp_scaled[, continuous_vars]
pca_result <- prcomp(pca_data, center = FALSE, scale. = FALSE)</pre>
```

8.1 Scree Plot This plot shows how much variance is explained by each principal component.

```
# scree plot -> proportion of variance explained
screeplot(pca_result, type = "lines", main = "Scree Plot of Principal Components")
```

Scree Plot of Principal Components

scree plot: shows amt of variance explained by each PC, each point represents 1 PC and y-axis shows how much variance PC explains. We used it to determine how many PCs show meaningful dimensionality reduction - PC1 and PC2 explain most variance.

8.2 PCA Biplot This plot shows patient scores on the first two PCs and the loadings of each variable.

Principal Component Analysis Biplot: Heart Failure Patients

This biplot visualizes both PCs (Dim1, Dim2) for each patient, and variable loadings. A positive loading shows that the variable increases the PC score, and a negative loading shows that the variable decreases the PC score. Each arrow represents a variable and coneys:

- direction: how variable contributes to PCs
- length: how strongly a variable influences PCA (longer=stronger)

- angle between arrows:
 - same direction = **positive correlation** between variables
 - opposite direction = **negative correlation** between variables
 - perpendicular = uncorrelated

This helps us visually see the clutering between survived (0) and died (1).

We can see that variables like serum_creatine and age arrows are long and point right, therfore they strongly contribute to PC1.

ejection_fraction and serum_sodium point towards the upper-left quadrant of the plot, and it has moderate positive loading on PC2, but negative on PC1.

time points bottom-left, meaning it loads negatively on PC1 and PC2.

creatine_phosphokinase points downward, and it contributes mostly negatively to PC2

platlets points left, indicating a negative PC1 loading

8.3 PC1 vs. PC2 Scatterplot This plot visualizes patients in the PCA space, colored by survival outcome.

```
# PCA dataframe
pca_df <- as.data.frame(pca_result$x)
pca_df$DEATH_EVENT <- hfp_scaled$DEATH_EVENT

# PC1 vs. PC2
ggplot(pca_df, aes(x = PC1, y = PC2, color = DEATH_EVENT)) +
    geom_point(alpha = 0.6) +
    labs(title = "Principal Component Analysis: PC1 vs. PC2", x = "PC1", y = "PC2", color = "Death Event"
    theme_minimal()</pre>
```


The scatterplot explores how individual points lie in PCA space. It shows the spatial grouping of DEATH_EVENT classes, but it is not perfectly seperable. It also shows that PCA doesn't fully separate classes but shows patterns instead.

9. K-Means Clustering

We applied K-Means (k=2) to identify groups in PCA reduced space, this will explore **unsupervised** grouping.

```
# top 2 PCs for visualization, full data for clustering
kmeans_result <- kmeans(pca_data, centers = 2, nstart = 25)

# cluster labels to PCA df
pca_df$Cluster <- as.factor(kmeans_result$cluster)

# confusion matrix to check alignment with DEATH_EVENT
table(Cluster = pca_df$Cluster, DEATH_EVENT = pca_df$DEATH_EVENT)</pre>
```

```
## DEATH_EVENT
## Cluster 0 1
## 1 162 26
## 2 41 70
```

```
# plot clusters
ggplot(pca_df, aes(x = PC1, y = PC2, color = Cluster)) +
  geom_point(alpha = 0.6) +
  labs(title = "K-Means Clustering (k = 2) on PCA Components") +
  theme_minimal()
```

K-Means Clustering (k = 2) on PCA Components

We used k-means (k=2) on first 2 PC to see the unsupervised grouping of patients. Compared to the other scatter plot above which used <code>DEATH_EVENT</code>, K-Means formed the groups based only on patterns in the data and no knowledge of survival outcomes. The plot shows two distinct clusters, which indicates the dataset has a natural structure, and the patients are grouped based on similar features (ex. <code>age</code>, <code>serum_creatine</code>, etc) which had a strong impact on patterns found by PCA (plots above).