Subject: PDE

**Date:** October 15, 2025

## 1 Theory

Here is the equation, representing the heat conduction forward model for a one-dimensional frozen soil temperature field, accounting for ice-water phase change:

$$C(T, x, t) \frac{\partial T(x, t)}{\partial t} + L \frac{\partial \theta(T, x)}{\partial t} = \frac{\partial}{\partial x} \left[ \lambda \frac{\partial T(x, t)}{\partial x} \right]$$

Boundary and initial conditions:

1. Initial condition:

$$T(x,0) = T_0(x), \quad x \in [0,l]$$

2. Upper boundary condition:

$$\lambda \frac{\partial T}{\partial x}\Big|_{x=0} = q_1(t), \quad T(0,t) = T_s(t)$$

3. Lower boundary condition:

$$\lambda \frac{\partial T}{\partial x}\Big|_{x=l} = q_2(t), \quad T(l,t) = T_g(t)$$

Where: C: Volumetric heat capacity of the soil ( $J/(m^3 \cdot K)$ );

 $\lambda$ : Thermal conductivity of frozen soil (W/(m · K));

*L*: Latent heat of phase change per unit volume  $(3.34 \times 10^5 \,\text{KJ/m}^3)$ ;

 $\theta(T,x)$ : Unfrozen water content, depending on temperature and spatial position;

 $T_0(x)$ : Initial temperature distribution;

 $q_1(t)$ ,  $q_2(t)$ : Heat flux at the boundaries;

 $T_s(t)$ ,  $T_q(t)$ : Temperatures at the boundaries.

The unfrozen water content  $\theta(T, x)$  is expressed as:

$$\theta(T, x) = \eta(x)\phi(T, x)$$

Where:  $\eta(x)$ : Porosity of the soil;  $\phi(T,x)$ : Fraction of pore water content.

The fraction of pore water content  $\phi(T, x)$  is defined as:

$$\phi(T,x) = \begin{cases} 1, & T \ge T_{\nabla} \\ |T_{\nabla}|^b |T(x,t)|^{-b}, & T < T_{\nabla} \end{cases}$$

Where:

b: Coefficients related to the unfrozen water content;

 $T_{\nabla}(x)$ : Freezing temperature of the soil at position x;

T(x,t): Temperature.

The volumetric heat capacity C and thermal conductivity  $\lambda$  are expressed as a weighted combination of frozen and thawed states:

$$C = \phi C_t + (1 - \phi)C_f, \quad \lambda = \lambda_t^{\phi} \lambda_f^{1 - \phi}$$

Where:  $\phi$ : Fraction of unfrozen water in the soil;  $C_f$ ,  $C_t$ : Volumetric heat capacities of frozen and thawed states, respectively;  $\lambda_f$ ,  $\lambda_t$ : Thermal conductivities of frozen and thawed states, respectively.

The effective thermal properties of saturated soil, including  $C_f$ ,  $C_t$ ,  $\lambda_f$ , and  $\lambda_t$ , are calculated as weighted averages of the components (soil particles, ice, and water):

$$C_f = (1 - \eta)C_s + \eta C_i, \quad C_t = (1 - \eta)C_s + \eta C_l$$
  
$$\lambda_f = \lambda_s^{1-\eta}\lambda_i^{\eta}, \quad \lambda_t = \lambda_s^{1-\eta}\lambda_l^{\eta}$$

Where:  $\eta$ : Porosity of the soil;

 $C_s$ ,  $\lambda_s$ : Volumetric heat capacity and thermal conductivity of soil particles;

 $C_i$ ,  $\lambda_i$ : Volumetric heat capacity and thermal conductivity of ice;

 $C_l, \lambda_l$ : Volumetric heat capacity and thermal conductivity of water.

The relationship between the thermal properties in the thawed and frozen states is expressed as:

$$C_t = C_f + \eta (C_l - C_i), \quad \lambda_t = \lambda_f (\frac{\lambda_l}{\lambda_i})^{\eta}$$

Where:

 $C_t$ ,  $\lambda_t$ : Volumetric heat capacity and thermal conductivity in the thawed state;

 $C_f$ ,  $\lambda_f$ : Volumetric heat capacity and thermal conductivity in the frozen state;

 $\phi$ : Fraction of unfrozen water in the soil;

 $C_l, \lambda_l$ : Volumetric heat capacity and thermal conductivity of water;

 $C_i$ ,  $\lambda_i$ : Volumetric heat capacity and thermal conductivity of ice.

| Parameter                                       | Value Range or Specific Value | Unit               |
|-------------------------------------------------|-------------------------------|--------------------|
| $C_i$ (Heat capacity of ice)                    | 1.672                         | $KJ/(m^3 \cdot K)$ |
| $C_l$ (Heat capacity of water)                  | 4.18                          | $KJ/(m^3 \cdot K)$ |
| $\lambda_i$ (Thermal conductivity of ice)       | $2.210 \sim 2.326$            | $W/(m \cdot K)$    |
| $\lambda_l$ (Thermal conductivity of water)     | $0.465 \sim 0.582$            | $W/(m \cdot K)$    |
| L (Latent heat of phase change per unit volume) | $3.34 \times 10^{5}$          | KJ/m <sup>3</sup>  |

Table 1: Values of thermal properties of ice and water.

There are 5 soil thermal properties:  $(\lambda_f, C_f, \eta, b, T_{\nabla})$ 



Figure 1: Schematic diagram