Изучение рассеяния медленных электронов на атомах. Эффект Рамзауэра.

Дедков Денис, Маслов Артём группа Б01-108а 27.11.2023

Цель и задачи работы:

- 1. Исследовать энергетические зависимости вероятности рассеяния электронов атомами инертного газа.
- 2. Определить энергии электронов, при которых наблюдается просветление инертного газа.
- 3. Оценить размер внешней электронной оболочки инертного газа.
- 4. По значению измеренного ионизационного потенциала определяется, каким газом заполнен тиратрон.

Описание экспериментальной установки

Рис. 1 Слева схема подключения тиратрона. Справа блок-схема экспериментальной установки.

В работе для наблюдения эффекта Рамзауэра используется тиратрон ТГЗ-01/1.3Б, заполненный инертным газом (рис. 2). Электроны, эмитируемые катодом тиратрона, ускоряются напряжением V, приложенным между катодом и ближайшей к нему сеткой. Затем электроны рассеиваются на атомах инертного газа. Рассеянные электроны отклоняются в сторону и уходят на сетку, а оставшаяся часть электронов достигает анода и создаёт анодный ток $I_{\rm a}$.

Схема экспериментальной установки приведена на рисунке 1. Лампа тиратрона расположена на корпусе блок источников питания. Напряжение к электродам лампы подаётся от источников питания, находящихся в корпусе прибора. Регулировка напряжения и выбор режима работы установки производится при помощи ручек управления, выведенных на лицевую панель блока источников питания.

Оборудование и приборы

Стенд с экспериментальной установкой номер 1.3.1.

- 1. Тиратрон $T\Gamma 3-01/1.3Б$.
- 2. Вольтметры GDM-8145. Инвентарный номер вольтметра, измеряющего напряжение, пропорциональное току анода, №210104003098. Инвентарный номер вольтметра, измеряющего напряжение катод-сетка, №210104003102. Инвентарный номер вольтметра, измеряющего напряжение накала тиратрона, №210104003100. Все вольтметры измеряют в пределе 20 В. Погрешность измерения $\sigma = \pm (0.03\% \ rdg + 4 \ digits)$.
- 3. Блок источников питания. Заводской номер №606-502. Инвентарный номер №410134125767.
- 4. Осциллограф GOS-620. Инвентарный номер №210104000620. Коэффициент отклонения 4% в диапазоне 5 $\frac{\text{мB}}{\text{дел}} \div 5 \frac{\text{B}}{\text{дел}}$.

Рис. 2 Схема тиратрона: 1, 2, 3 — сетки с одинаковым потенциалом, 4 — внешний металлический цилиндр, 5 — катод, 6 — анод, 7 — накаливаемая спираль.

Первичные экспериментальные данные

Первичные экспериментальные данные приведены в таблицах 1-3.

Таблица 1. Статический режим. $V_{\text{накала}} = 2.52 \text{ B}.$

		V =	= 2.52, B		
$V_{\text{катод}}$, В	$\sigma_{V_{\text{катод}}}$, B	$V_{\rm анод}$, мВ	$\sigma_{V_{\mathrm{анод}}}$, мВ	$I_{ m ahog}$, мк ${ m A}$	$\sigma_{I_{\mathrm{анод}}}$, мк ${ m A}$
0.21	0.01	0.1	0.1	0.001	0.001
0.41	0.01	0.1	0.1	0.001	0.001
0.60	0.01	0.2	0.1	0.002	0.001
0.82	0.01	1.8	0.1	0.018	0.002
1.19	0.01	27.9	0.1	0.279	0.028
1.41	0.01	63.0	0.2	0.630	0.063
1.50	0.01	80.0	0.2	0.800	0.080
1.60	0.01	94.4	0.2	0.944	0.094
1.70	0.01	105.4	0.2	1.054	0.105
1.81	0.01	110.1	0.2	1.101	0.110
1.88	0.01	110.6	0.2	1.106	0.111
1.96	0.01	115.0	0.2	1.150	0.115
2.06	0.01	109.7	0.2	1.097	0.110
2.10	0.01	103.8	0.2	1.038	0.104
2.21	0.01	99.4	0.2	0.994	0.099
2.42	0.01	84.3	0.2	0.843	0.084
2.62	0.01	76.7	0.2	0.767	0.077
2.83	0.01	62.5	0.2	0.625	0.063
3.03	0.01	54.9	0.2	0.549	0.055
3.49	0.02	42.4	0.2	0.424	0.042
4.02	0.02	34.3	0.2	0.343	0.034
4.52	0.02	29.2	0.1	0.292	0.029
5.05	0.02	25.7	0.1	0.257	0.026
5.50	0.02	23.4	0.1	0.234	0.023
6.04	0.02	21.9	0.1	0.219	0.022
6.47	0.02	21.4	0.1	0.214	0.021
7.05	0.02	21.2	0.1	0.212	0.021
7.48	0.02	21.5	0.1	0.215	0.022
8.05	0.02	22.5	0.1	0.225	0.023
8.53	0.02	23.8	0.1	0.238	0.024
9.02	0.02	25.5	0.1	0.255	0.026
9.50	0.02	27.9	0.1	0.279	0.028
10.00	0.02	35.7	0.2	0.357	0.036

 $V_{
m katog}$ — напряжение катод-сетка, $V_{
m ahog}$ — напряжение анод-сетка. Погрешность измерения напряжения определяется погрешностью измерения вольтметра $\sigma_{
m при6}=\pm(0.03\%\ rdg+4\ digits)$; шумом в электрической схеме, погрешность шума оцениваем как среднеквадратичное отклонение нескольких измерений $\sigma_{
m mym}^{
m katog}=0.01\ {
m B},$ $\sigma_{
m mym}^{
m ahog}=0.1\ {
m mB}.$ Ток анода вычислялся по формуле $I_{
m ahog}=RV_{
m ahog}$, погрешность оценивается как $\sigma_{I_{
m ahog}}=I_{
m ahog}$ — $I_{
m ahog}$ — $I_{
m ahog}$ — допустимое отклонение сопротивления резистора от номинального.

Таблица 2. Статический режим. $V_{\text{накала}} = 2.75 \text{ B}.$

		V =	= 2.75, B		
$V_{\text{катод}}$, В	$\sigma_{V_{\text{катод}}}$, B	$V_{ m ahog}$, мВ	$\sigma_{V_{\mathrm{ahog}}}$, мВ	$I_{ m ahog}$, мк $ m A$	$\sigma_{I_{\mathrm{ahog}}}$, мк A
0.52	0.01	0.3	0.1	0.003	0.001
1.03	0.01	20.3	0.1	0.203	0.020
1.23	0.01	52.0	0.2	0.520	0.052
1.43	0.01	88.0	0.2	0.880	0.088
1.54	0.01	107.0	0.2	1.070	0.107
1.67	0.01	126.0	0.2	1.260	0.126
1.73	0.01	133.0	0.2	1.330	0.133
1.83	0.01	141.0	0.2	1.410	0.141
1.90	0.01	143.0	0.2	1.430	0.143
1.98	0.01	143.0	0.2	1.430	0.143
2.07	0.01	142.0	0.2	1.420	0.142
2.14	0.01	139.0	0.2	1.390	0.139
2.33	0.01	131.0	0.2	1.310	0.131
2.48	0.01	124.0	0.2	1.240	0.124
2.58	0.01	120.0	0.2	1.200	0.120
2.64	0.01	117.0	0.2	1.170	0.117
2.81	0.01	110.0	0.2	1.100	0.110
2.98	0.01	104.0	0.2	1.040	0.104
3.07	0.01	100.0	0.2	1.000	0.100
3.21	0.01	96.0	0.2	0.960	0.096
3.42	0.02	90.0	0.2	0.900	0.090
3.60	0.02	85.0	0.2	0.850	0.085
3.82	0.02	80.0	0.2	0.800	0.080
4.12	0.02	73.0	0.2	0.730	0.073
4.50	0.02	66.0	0.2	0.660	0.066
5.05	0.02	59.0	0.2	0.590	0.059
5.53	0.02	56.0	0.2	0.560	0.056
6.06	0.02	53.0	0.2	0.530	0.053
6.60	0.02	52.0	0.2	0.520	0.052
7.05	0.02	52.0	0.2	0.520	0.052
7.51	0.02	53.0	0.2	0.530	0.053
7.99	0.02	55.4	0.2	0.554	0.055
8.53	0.02	60.0	0.2	0.600	0.060
9.02	0.02	65.0	0.2	0.650	0.065
9.49	0.02	69.3	0.2	0.693	0.069
10.01	0.02	87.0	0.2	0.870	0.087
10.53	0.02	95.0	0.2	0.950	0.095
11.35	0.02	116.0	0.2	1.160	0.116

 $V_{
m katog}$ — напряжение катод-сетка, $V_{
m ahog}$ — напряжение анод-сетка. Погрешность измерения напряжения определяется погрешностью измерения вольтметра $\sigma_{
m при6}=\pm(0.03\%\ rdg+4\ digits)$; шумом в электрической схеме, погрешность шума оцениваем как среднеквадратичное отклонение нескольких измерений $\sigma_{
m mym}^{
m katog}=0.01\ {
m B},$ $\sigma_{
m mym}^{
m ahog}=0.1\ {
m mB}.$ Ток анода вычислялся по формуле $I_{
m ahog}=RV_{
m ahog}$, погрешность оценивается как $\sigma_{I_{
m ahog}}=I_{
m ahog}\cdot\sqrt{\varepsilon_R^2+\varepsilon_{V_{
m ahog}}^2},$ где $\varepsilon_R=10\%$ — допустимое отклонение сопротивления резистора от номинального.

Таблица 3. Динамический режим.

$V_{ m {\scriptscriptstyle Haka}_{ m J}}, { m B}$	$V_{\text{мин}}, \mathbf{B}$	$\sigma_{V_{\scriptscriptstyle{\mathrm{MHH}}}}, \mathrm{B}$	$V_{ m makc}, { m B}$	$\sigma_{V_{ ext{make}}}, \mathbf{B}$	$V_{\rm пробой}, { m B}$	$\sigma_{V_{ m npo6o\"{n}}}, { m B}$
2.51	6.8	0.4	2.1	0.3	13.1	0.6
2.77	7.1	0.4	2.2	0.3	12.3	0.6
2.97	6.5	0.4	2.0	0.3	11.0	0.5

 $V_{
m Hakan}$ – напряжение накала тиратрона, погрешность измерения одинакова и определяется точностью вольтметра и шумами в электрической цепи $\sigma_{V_{\text{накал}}} = 0.01$ В. $V_{\text{мин}}$ – напряжение минимума, $V_{\text{макс}}$ – напряжение максимума, V_{break} – напряжение пробоя. Погрешность $V_{\text{мин}}, V_{\text{макс}}$ и V_{break} определяется погрешность измерения напряжения по осциллографу $\varepsilon_{\text{осц}} = 4\%$ и ошибкой, связанной с определением положения максимума. Погрешность определения максимума связана с шириной линии на экране осциллографа. Данные с осциллографа оцифровывались для увеличения точности измерения и удобства обработки измеренных данных: делалась фотография измеряемого сигнала так чтобы плоскость камеры была параллельная плоскости экрана осциллографа и изображение было четким (камера сфокусирована на экране осциллографа), затем координаты максимумов измерялись в пикселях на компьютере и переводились в соответствие со шкалой прибора, отградуированной в пикселях. При этом возникает дополнительная погрешность, связанная с конечным разрешением камеры. Погрешность определения положения максимума сигнала оценим как ширину наблюдаемой на экране осциллографа линии, которая была настроена максимально тонкой и яркой при измерениях. Ширина линии сигнала составляет 12 пикселей, погрешность, связанная с конечным разрешением камеры составляет ~ 1 пиксель. Тогда погрешность снятия показаний с осциллографа $\sigma_{\text{цифр}} = \sqrt{12^2 + 1^2} \approx 12$ пикселей, что соответствует $\sigma_{\text{цифр}} = 0.3$ В. Общая погрешность $\sigma_{\text{осц}} = \sqrt{\sigma_{\text{цифр}}^2 + (V_{\text{измер}} \cdot \varepsilon_{\text{осц}})^2}$. Также существует ошибка определения напряжения, связанная с наличием контактной разности потенциалов, оценить которую напрямую не удаётся.

Обработка экспериментальных данных

Динамический режим

По результатам измерения в динамическом режиме определим эффективный размер (диаметр) электронной оболочки атома инертного газа

$$l = \frac{h\sqrt{5}}{\sqrt{32m_e e(V_{\text{MMH}} - V_{\text{MAKC}})}}$$

и эффективную глубину потенциальной ямы атома

$$U_0 = e \left(\frac{4}{5} V_{\text{мин}} - \frac{9}{5} V_{\text{макс}} \right)$$

Оценим погрешность l по формуле косвенных измерений:

$$\sigma_l = rac{1}{2}l \cdot rac{\sqrt{\sigma_{V_{ ext{muh}}}^2 + \sigma_{V_{ ext{makc}}}^2}}{V_{ ext{muh}} - V_{ ext{makc}}}$$

Оценим погрешность U_0 по формуле косвенных измерений:

$$\sigma_{U_0} = \sqrt{\left(\frac{4}{5}\sigma_{V_{\text{mhH}}}\right)^2 + \left(\frac{9}{5}\sigma_{V_{\text{makc}}}\right)^2}$$

При измерении напряжение осциллографом существует опибка, связанная с наличием контактной разности потенциалов, оценить которую напрямую не удаётся. С другой стороны, при вычислении эффективного размера электронной оболочки атома l используются значения напряжение не по отдельности, а их разность. В предположении, что контактная разность потенциалов не зависит от значения измеряемого напряжения, при вычислении l контактная разность потенциалов не влияет на итоговый результат, тем не менее она вносит дополнительную опибку при нахождении эффективной глубины потенциальной ямы атома U_0 .

Результаты вычислений приведены в таблице 4.

Таблица 4. Динамический режим. Эффективный размер электронной оболочки атома l и эффективная глубина потенциальной ямы атома U_0 .

$V_{ m накал}, { m B}$	l, Å	σ_l , Å	U_0 , эВ	σ_{U_0},aB
2.51	3.2	0.2	1.7	0.6
2.77	3.1	0.2	1.7	0.7
2.97	3.2	0.2	1.6	0.6

Геометрические размеры тиратрона таковы, что ионизационный потенциал практически совпадает с напряжением пробоя. Среднее значение напряжения пробоя:

$$U_{\text{пробой}} = 12 \pm 1 \text{ B}$$

Погрешность определяется по формуле

$$\sigma_{U_{\rm пробой}} = \sqrt{\sigma_{\rm приб}^2 + \sigma_{\rm случ}^2} = 1.1~{\rm B}$$

$$\sigma_{
m c,nyq} = \sqrt{rac{1}{N-2}\sum_i rac{\left(U_i - \overline{U}
ight)^2}{N}} = 0.9 \; {
m B}$$

Приборную погрешность измерения среднего напряжения оценим как среднюю погрешность отдельных измерений $\sigma_{\rm приб} = 0.6~{\rm B}$. Итого, ионизационный потенциал

$$U_{\text{ион}} = 12 \pm 1 \text{ эВ}$$

что совпадает с ионизационным потенциалом ксенона $U_{\text{ион}}^{Xe}=12.1\ \text{эВ}.$

Статический режим

Построим графики зависимости $I_{\text{анод}}(V_{\text{катод}})$ при разных напряжениях накала тиратрона.

Рис. 3 График зависимости тока анода $I_{\text{анод}}$ от напряжения катода $V_{\text{катод}}$.

По графику $I_{\text{анод}}(V_{\text{катод}})$ определим напряжения максимумов и минимумов.

Таблица 5. Статический режим. Напряжения максимумов и минимумов на графике $I_{
m ahog}(V_{
m katog})$

$V_{\text{накал}}, \mathbf{B}$	$V_{\text{\tiny MИH}}, \mathrm{B}$	$\sigma_{V_{\scriptscriptstyle{ ext{MUH}}}}, \mathbf{B}$	$V_{ m\scriptscriptstyle Makc}, { m B}$	$\sigma_{V_{ ext{makc}}}, \mathbf{B}$
2.52	7.05	0.02	1.96	0.02
2.75	6.60	0.02	1.90	0.02

 $V_{
m накал}$ — напряжение накала тиратрона, погрешность измерения одинакова и определяется точностью вольтметра и шумами в электрической цепи $\sigma_{V_{
m накал}}=0.01~{
m B}.~V_{
m мин}$ — напряжение минимума, $V_{
m макс}$ — напряжение максимума.

Определим эффективный размер электронной оболочки атома l и эффективная глубина потенциальной ямы атома U_0 .

Таблица 6. Статический режим. Эффективный размер электронной оболочки атома l и эффективная глубина потенциальной ямы атома U_0 .

$V_{ m накал}, { m B}$	$l,\mathrm{\AA}$	σ_l , Å	U_0 , эВ	σ_{U_0},aB
2.52	3.04	0.01	2.11	0.04
2.75	3.17	0.01	1.86	0.04

Построим график зависимости вероятности рассеяния электронов (с точностью до константы) от энергии:

$$w(V) = -\frac{1}{C} \ln \frac{I_{\text{анод}}(V)}{I_0}$$

Рис. 4 График зависимости вероятности в условных единицах от напряжения катод-сетка $V_{\rm катод}$.

Обсуждение результатов и выводы

В работе были оценены эффективные размеры электронной оболочки атома инертного газа и эффективная глубина потенциальной ямы статическим и динамическим методами.

Динамический режим. Эффективный размер электронной оболочки атома l и эффективная глубина потенциальной ямы атома U_0 .

$V_{ m {\tiny HAKAJ}}, { m B}$	l, Å	σ_l , Å	U_0 , эВ	σ_{U_0} , эВ
2.51	3.2	0.2	1.7	0.6
2.77 2.97	$\frac{3.1}{3.2}$	$0.2 \\ 0.2$	$1.7 \\ 1.6$	$0.7 \\ 0.6$

Статический режим. Эффективный размер электронной оболочки атома l и эффективная глубина потенциальной ямы атома U_0 .

$V_{ m накал}, { m B}$	$l,\mathrm{\mathring{A}}$	σ_l , Å	U_0 , эВ	σ_{U_0} , эВ
2.52	3.04	0.01	2.11	0.04
2.75	3.17	0.01	1.86	0.04

Значения эффективных размеров электронных оболочек атомов из справочника: E. Clementi; D.L.Raimondi; W.P. Reinhardt (1967). "Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons". The Journal of Chemical Physics. 47 (4): 1300–1307.

	$l_e, ext{Å}$	$l_c, \text{Å}$
Ar	1.42	1.42
Kr	_	1.76
Xe	_	2.16

 l_e — диаметр внешней электронной оболочки, полученный на основе экспериментальных данных. Если указан прочерк, то таких данных нету. l_c — диаметр внешней электронной оболочки, полученный на основе теоретических моделей.

С помощью динамического метода был определён ионизационный потенциал инертного газа:

$$U_{\text{ион}} = 12 \pm 1$$
 эВ

что совпадает с ионизационным потенциалом ксенона $U_{\rm ион}^{Xe}=12.1$ эВ. Поэтому можно предположить, что в тиратроне находится ксенон.