

Minimization of finite automata

Chapter - 2: Regular languages and finite automata

Prof. Riddhi Atulkumar Mehta Assistant Professor Department of Computer Science and Engineering

Parul® University

Content

1.	Introduction1
2.	Why Minimize a DFA?2
3.	Minimization Procedure Using Equivalence
	Theorem3
4.	Minimization of DFA – Example4
5.	Properties of Minimal DFA5

Introduction

- Finite Automata can have redundant states
- Minimization reduces the number of states
- Result: A minimal DFA which accepts the same language

Why Minimize a DFA?

- Reduce memory and computation cost
- III Simplify analysis and implementation
- Minimal DFA is unique (up to state renaming)
- J DFA minimization does not change the language accepted

Minimization Procedure Using Equivalence Theorem

- 1. Eliminate Dead and Inaccessible States: Remove states that do not contribute to the acceptance of any string in the language.
- Construct Transition Table: Create a table detailing transitions for each state on every input symbol.
- 3. Initial Partition (P_o): Divide the set of states into two groups: final (accepting) and non-final (non-accepting) states.
- Refine Partitions:
- Iteratively split groups in the current partition if states within a group have transitions on the same input symbol leading to different groups in the previous partition.

Minimization Procedure Using Equivalence Theorem

- 5. Repeat Until Stable: Continue refining partitions until no further splits occur, i.e., the partition remains unchanged between iterations.
- 6. Merge Equivalent States: States that remain in the same group in the final partition are equivalent and can be merged.

Parul® University

Minimization of DFA - Example

Minimization of DFA - Example

Step-01:

The given DFA contains no dead states and inaccessible states.

Step-02:

Draw a state transition table-

а	b	
→q0	q1	q2
q1	q1	q3
q2	q1	q2
q3	q1	*q4
*q4	q1	q2

Minimization of DFA - Example

<u>Step-03:</u>

Now using Equivalence Theorem, we have-

$$P_0 = \{ \ q_0 \ , \ q_1 \ , \ q_2 \ , \ q_3 \ \} \ \{ \ q_4 \ \}$$

$$P_1 = \{ q_0, q_1, q_2 \} \{ q_3 \} \{ q_4 \}$$

$$P_2 = \{ q_0, q_2 \} \{ q_1 \} \{ q_3 \} \{ q_4 \}$$

$$P_3 = \{ q_0, q_2 \} \{ q_1 \} \{ q_3 \} \{ q_4 \}$$

Since $P_3 = P_2$, so we stop.

From P_3 , we infer that states q_0 and q_2 are equivalent and can be merged together.

Minimization of DFA - Example

<u>Step-03:</u>

So, Our minimal DFA is-

Properties of Minimal DFA

- Unique for a given regular language
- No equivalent states
- No unreachable states
- Used as canonical form of a regular language

https://paruluniversity.ac.in/

