6.12b Exam: Graphing, perpendicular and parallel slopes

1. Graph and label the two equations. Mark their intersection as an ordered pair.

$$y = \frac{3}{4}x - 5$$

$$y = -x + 2$$

Write down the slopes of the two lines.

$$m_1 = 3/4$$

$$m_2 =$$

Are the lines parallel, perpendicular, or neither? Justify your answer using the slopes.

Neither. The slopes are not equal. Nor are they negative reciprocals. 3/4 not equal -1 and 3/4 * (-1) not equal -1

2. Graph and label the two equations. Mark their intersection as an ordered pair.

$$y = -\frac{1}{3}x + 4$$
$$y = 3x - 6$$

Are the lines parallel, perpendicular, or neither? Justify your answer using the slopes

Perpendicipal. Slopes are Negative reciprocals. -= x3 = -1

- 3. The line l has the equation $y = -\frac{3}{5}x + 3$.
 - (a) What is the slope of the line k, given $k \parallel l$?
 - (b) What is the slope of the line j, given $j \perp l$?

4. Apply a dilation mapping $\triangle ABC \rightarrow \triangle A'B'C'$ with a factor of k=3 centered at the origin. Draw and label the image on the grid and make a table of the coordinates.

A(0,0) = A'(0,0) B(2,2) = B'(6,6) C(3,0) = C'(9,0)

5. Find the image of P(-2,7) after the translation $(x,y) \to (x+5,y-2)$.

p'(3,5)

6. What transformation maps $\triangle ABC$ onto $\triangle DEF$, shown below? Fully specify the transformation.

7. Translate $\triangle ABC$ to the right six units and down two units. Make a table of the coordinates and plot and label the image on the axes.

- 8. A translation maps $P(-5,3) \to P'(6,1)$. What is the image of Q(1,9) under the same translation?
- 9. A dilation maps triangle KLM onto triangle PQR, with KM=5, LM=4, PR=10.

- Complete each mapping or equivalence.
- (b) $\angle K \cong \underline{\hspace{1cm}}$
- (c) $QR = \frac{Z \times 4}{} = 8$
- 10. Given $\triangle ABC \sim \triangle DEF$. $m \angle A = 33^{\circ}$ and $m \angle B = 66^{\circ}$. Find the measure of $\angle D$.

11. A dilation centered at A maps $\triangle ABC \rightarrow \triangle ADE$. Given the sides of the preimage, AC = 6, BC = 4, AB = 8, and of DE = 10 find the scale factor k and the lengths AD and AE. Then find CE and BD.

(a)
$$k = \frac{10}{9} = 2.5$$

(b)
$$AD = 25 \times 8 = 20$$

(d)
$$CE =$$

(e)
$$BD = \sqrt{2}$$

12. Triangle ABC is dilated with a scale factor of k centered at A, yielding $\triangle ADE$, as shown. Given AB=12, BC=16, AC=20, and DE=20.

Find the scale factor k and the segment lengths AD and CE.

BC -> DE

AD=1.25 × 12 = 15

(the diagram is not to scale)

13. As shown, \overline{AB} has endpoints with coordinates A(2,1) and B(8,7). Show the calculation for the coordinates of the midpoint M of \overline{AB} . Mark and label it on the graph.

 $M = \left(\frac{2+8}{2}, \frac{1+7}{2}\right)$ $= \left(5, 4\right)$

14. A(-2,5) is one endpoint of \overline{AB} . The segment's midpoint is M(3,3). Find the other endpoint, B.

What translation maps

$$A(-2,5) \rightarrow M(3,3)$$
?

7+5,-2

15. In the diagram below, \overline{AD} has endpoints with coordinates A(-3,0) and D(6,3). What points B and C trisect \overline{AD} into three congruent segments? Mark and label them on the graph. State their coordinates.

B(0,1) C(3,2)

16. Given $\triangle ABC$, find the lengths of its sides. A(1,2), B(9,8), C(9,2).

(b)
$$BC = \bigcirc$$

(c) Use the formula for distance:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$AB = \sqrt{(9 - 1)^2 + (8 - 2)^2}$$

$$\sqrt{(9 - 1)^2 + (8 - 2)^2}$$

17. Given two parallel lines and a transversal, as shown below. Given $m\angle 1=117$.

(a) Find the measure $m \angle 2$.

(b) Find the measure $m \angle 4$.

(c) Find the measure $m \angle 5$.

(d) Given $m \angle 8 = (5x - 8)^{\circ}$. Find x.

$$//7 = 5x - 8$$

 $x = \frac{125}{5} = 25$

18. Given isosceles $\triangle ABC$ with $\overline{AB} \cong \overline{BC}$, $m \angle A = x$, $m \angle B = 63$, and $m \angle C = y$. Mark and label the diagram, and then find x and y. (the diagram is not to scale)

$$x = y$$

 $2x + 63 = 180$
 $y = x = \frac{117}{2} = 582$

19. Given isosceles $\triangle RSU$ with $\overline{RS} \cong \overline{US}$. If $m \angle UST = 140$ find $m \angle R$. (mark and label the diagram) (the diagram is not to scale)

20. Given parallel lines $\overrightarrow{AB} \parallel \overleftarrow{CDE}$ with $\overline{AC} \cong \overline{CD}$. If $m \angle BAD = 55$ find $m \angle ACD$. (completely mark and label the diagram)

21. Given two parallel lines and a transversal, as shown below.

- (a) State the angle corresponding with $\angle 7$.
- (b) What theorem would justify $m \angle 4 + m \angle 6 = 180^{\circ}$? Same 5. De Interior Gingle
- (c) What theorem would justify $\angle 3 \cong \angle 6$? Alternate interior angles
- (d) Given $m \angle 1 = 117^{\circ}$ and $m \angle 8 = (4x 3)^{\circ}$. Find x.

ml1=nl8 117=4x-3 x=30

Check ml8=4(30)-3 =117/

22. Two parallel lines intersect a second set of parallel lines. Given $m\angle 1=x$ and $m\angle 2=x+48$, find the measure of $\angle 4$.

2x = 132x = 66

ml4 = ml2 = 66 + 48 = 114

Check /

23. Translate $\triangle ABC$ by $(x,y) \rightarrow (x+4,y+2)$ then reflect it over the x-axis. Make a table of the coordinates showing $\triangle ABC \rightarrow \triangle A'B'C' \rightarrow \triangle A''B''C''$ and plot and label the image on the axes.

24. Given $\triangle ABP \sim \triangle JKP$ as shown below. $AB=9.6,\ AP=12.0,\ BP=6.3,\ {\rm and}\ JK=16.0.$ Find JP.

$$AB \to JK$$
 $9.6 \to 16.0$
 $K = \frac{16.0}{9.6} = \frac{5}{3}$
 $AP \to JP$
 $JP = \frac{5}{3} \times 12.0 = 20$