

Ano letivo: 2018/2019

DEPARTAMENTO DE MATEMÁTICA

Matemática Discreta - 1° ano - 1° semestre E.I.(D + PL) Folha Prática 3

C.p.o., reticulados e álgebras de Boole

1. Sejam $A = \{1, 2, 3, 4, 5\}$ e

$$R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (3,3), (4,4), (4,2), (5,5)\}.$$

- (a) Verifique que R é uma relação de ordem parcial em A.
- (b) Construa o diagrama de Hasse do c.p.o. (A, R).
- 2. Mostre que $(Partes(A), \subseteq)$, onde A é um conjunto qualquer, é um conjunto parcialmente ordenado.
- 3. Represente o diagrama de Hasse dos seguintes conjuntos parcialmente ordenados:
 - (a) $(\{0,1,2,3,4,5\},\geq);$
 - (b) $(\{1, 2, 3, 4, 5, 6\}, |);$
 - (c) $(\{1, 3, 9, 27, 81, 243\}, |);$
 - (d) $(Partes(A), \subseteq)$ com $A = \{a, b, c, d\}$.
- 4. Sejam $A = \{1, 2, 3, 4, 5, 6, 7, 8\}, X = \{4, 5, 6\}, Y = \{3, 6, 7, 8\}.$ Considere o c.p.o. (A, \leq) com o seguinte diagrama de Hasse:

- (a) Determine: majorantes (X), minorantes (X), majorantes (Y) e minorantes (Y).
- (b) Determine, caso existam, o supremo e o ínfimo de X e de Y.
- (c) Determine, caso existam, o máximo e o mínimo de X e de Y.
- (d) Indique o diagrama de Hasse de (X,\leq_X) e de $(Y,\leq_Y).$
- 5. Seja $A = \{1, 2, 3, 4, 5, 6\}$ e considere o c.p.o. (A, \leq) com o seguinte diagrama de Hasse:

- (a) Determine todos os elementos minimais e maximais de (A, \leq) .
- (b) O c.p.o. (A,\leq) é um reticulado? Justifique.

6. Seja A o conjunto parcialmente ordenado cujo diagrama de Hasse é o seguinte:

Determine, se existir,

- (a) o elemento máximo e o elemento mínimo de A;
- (b) os elementos maximais e minimais;
- (c) Sendo $S = \{c, d, e\}$, determine majorante(S), minorante(S), sup(S) e inf(S);
- 7. Considere o conjunto dos números naturais N, ordenado por divisibilidade, e dois seus subconjuntos:

$$K = \{3, 5, 7\}$$
 e $D_{36} = \{n \in \mathbb{N} : n \text{ \'e divisor de } 36\}$.

- (a) Determine sup(K) e inf(K).
- (b) Esboce o diagrama de Hasse de D_{36} , o conjunto dos divisores de 36.
- (c) O conjunto parcialmente ordenado D_{36} é um reticulado? Justifique convenientemente a sua resposta.
- 8. Considere os seguintes conjuntos parcialmente ordenados, representados abaixo.

- (a) Indique, justificando, quais dos conjuntos parcialmente ordenados são reticulados.
- (b) Mostre que A_1 não é distributivo e que A_2 não é complementado.
- (c) Indique, justificando, se algum dos conjuntos parcialmente ordenados é uma álgebra Booleana.

1.

(a) R é uma relação de ordem parcial uma vez que é reflexiva, antissimétrica e transitiva.

(b)

2.

3.

- 4. (a) majorantes $(X) = \{3, 1, 2\}$; minorantes $(X) = \{8, 6\}$; majorantes $(Y) = \{1, 2, 3\}$; minorantes $(Y) = \{8\}$.
 - (b) $\sup(X) = 3$; $\inf(X) = 6$; $\sup(Y) = 3$; $\inf(Y) = 8$.
 - (c) $\max(X)$: não existe, $\min(X) = 6$; $\max(Y) = 3$, $\min(Y) = 8$.

(d) 4

- 5. (a) Elementos maximais: 1,2; Elementos minimais: 4,6.
 - (b) Não é reticulado porque, por exemplo, não existe inf(4,6).
- 6. (a) elemento máximo: l; elemento mínimo: não existe.
 - (b) elemento maximal: l; elementos minimais: k, c, a, b, f e j.
 - (c) majorantes $(S) = \{h, l\}$; minorantes(S): não existe; $\sup(S) = h$ e inf(S): não existe.

- 7. (a) m.m.c.(K) = 105 e m.d.c.(K) = 1.
 - (b)

- (c) O conjunto D_{36} é um reticulado uma vez que para quaisquer $a, b \in \mathbb{R}$, existem supremo, que é dado por $a \vee b = m.m.c.(a, b)$, e ínfimo, que é dado por $a \wedge b = m.d.c.(a, b)$.
- 8. (a) Apenas o A_3 não é um reticulado uma vez que $\{a,b\}$ tem 3 majorantes, c,d e 1 e como não existe o menor dos majorantes então não existe $a \lor b$.
 - (b) Sabendo que num reticulado distributivo limitado, cada elemento admite no máximo um complemento, e como, por exemplo, o elemento e de A_1 tem dois complementos $\{a,d\}$, logo A_1 não é distributivo.

 A_2 não é complementado pois, por exemplo, o elemento c não tem complemento.

- (c) Como A_1 não é distributivo logo não é algebra de Boole.
 - Como A_2 não é complementado logo não é algebra de Boole.
 - Como A_3 não é reticulado logo não é algebra de Boole.