Homework Set 1

Jacob Bailey

January 23, 2020

1 Problem 1

Let T_1 and T_2 be topologies on a set X. Show that $T_1 \cap T_2$ is also a topology on X. Give an example to show that $T_1 \cup T_2$ need not be a topology on X.

Recall that by definition, T_1 and T_2 both, as topologies, satisfy the following properties:

- Both include \emptyset and X
- Both are closed under arbitrary unions
- Both are closed under finite intersections

Proof. Consider $T_3 = T_1 \cap T_2$. It is immediate that T_3 contains both \emptyset and X, since T_1 and T_2 do.

Next, we consider unions of members of T_3 . By definition, for a set $U_{\alpha} \in T_3$, U_{α} must also be in T_1 and T_2 . Since both constituents are closed under unions, we have that for any $U_3 = \bigcup_{\alpha \in J} U_{\alpha}$, U_3 is also in T_3 by closedness of T_1 and T_2 . Hence, T_3 is closed under arbitrary unions.

Finally, we consider finite intersections. Again, by definition of T_3 , we have that for any set $U \in T_3$, $(U \in T_1)$ and $(U \in T_2)$. Thus, for a set $V = \bigcap_{\alpha \in J} U_{\alpha}$, J finite, $(V \in T_1)$ and $(V \in T_2)$. Hence, $V \in T_3$, and T_3 is closed under finite intersections.

We have shown that T_3 is a collection of sets on X which satisfies the three properties of a topology. Hence, T_3 is a topology on X.

For an example of how $T_1 \cup T_2$ need not be a topology, consider $\mathbb{R}_{std} \cup \mathbb{R}_l$. We choose the sets (1,2) and [3,4), which are in \mathbb{R}_{std} and \mathbb{R}_l , respectively. However, their union $(1,2) \cup [3,4)$ is not in T_3 , since it is the union of the collections of sets, not the sets themselves. Thus, T_3 isn't closed under unions, and cannot be a topology.

2 Problem 2

Show that the topologies of \mathbb{R}_l and \mathbb{R}_K are not comparable.

Proof. First, we recall the definition of \mathbb{R}_K : the topology generated by the basis of sets $B = \{(a, b) - K \mid a, b \in \mathbb{R}\}$, where $K = \{\frac{1}{n} \mid n \in \mathbb{N}\}$.

Given an element of the basis of \mathbb{R}_l , say $b_l = [a, b)$. Then, choose x = a. Clearly, there is no open set in the topology generated by B_K that both contains x and is a subset of [a, b).

Similarly, take $b_K = (-1,1) - K$, and let x = 0. Then, there is no element of B_l that both contains x and lies within b_K , since there is a point $y = 1/n, n \in \mathbb{N}$ that lies arbitrarily close to x which is not in b_K .

Thus, \mathbb{R}_l and \mathbb{R}_K are not comparable.

3 Problem 3

3.1 Part a

Apply lemma 13.2 to show that the countable collection $B = \{(a, b) | a < b, a, b \in \mathbb{Q}\}$ is a basis that generates \mathbb{R}_{std} .

Lemma 13.2: Let X be a topological space. Suppose that C is a collection of open sets, such that $\forall U \in X$ and $\forall x \in U$, $\exists c \in C$ such that $x \in C \subseteq U$. Then C is a basis for the topology in X.

Proof. Define $B_{\mathbb{Q}} = \{(a,b) | a < b, a, b \in \mathbb{Q}\}.$

Let U be in the topology generated by $B_{\mathbb{Q}}$. Then, U is some combination of finite unions and arbitrary intersections of elements of $B_{\mathbb{Q}}$, which are all also open sets in \mathbb{R}_{std} . Thus, $U \in \mathbb{R}_{std}$.

Conversely, let U be in T_{std} , and take $x \in U$. Then, $\exists (a,b) \in \mathbb{R}$ such that $x \in (a,b) \subseteq U$. Since \mathbb{Q} is dense in \mathbb{R} , we can find c,d such that a < c < x < d < b, and thus $x \in (c,d) \subseteq U$. Thus, by lemma 13.2, our collection $B_{\mathbb{Q}}$ is a basis for the standard topology in \mathbb{R} .

3.2 Part b

Show that the collection $C = \{[a, b) | a < b, a, b \in \mathbb{Q}\}$ is a basis that generates a topology different from \mathbb{R}_l .

Proof. Clearly, C is a basis for a topology in \mathbb{R} , again by lemma 13.2. However, it cannot generate $[i,j), i,j \notin \mathbb{Q}$. $[i,j) \notin C$, since C contains only intervals with rational endpoints. Further, we cannot construct [i,j) as

 $[a,b)\cap [c,d)$, since $[a,b)\cap [c,d)=[\max(a,c),\min(b,d))$, and $a,b,c,d\in\mathbb{Q}$. Finally, we note that we also cannot construct [i,j) as a union of intervals $[a_i,b_i),a_i,b_i\in\mathbb{Q}$, for the same reason as stated above. Since a topology must be closed under arbitrary unions and finite intersections, and we cannot construct $[i,j),i,j\notin\mathbb{Q}$ from C, the topology generated by C cannot be the lower limit topology on \mathbb{R} .

4 Problem 4

Show that if A is a basis for a topology on a set X, then the topology generated by A equals the intersection of all topologies on X that contain A. Prove the same if A is a subbasis.

Lemma 13.1: The topology generated by A is the collection of all unions of all elements of A.

Proof. Let the intersection of all topologies containing A be $T_x = \bigcap_{\alpha \in J} T_\alpha$. Since they contain A and are topologies, by property 2 of a topology, any T_α must be closed under arbitrary unions. Thus, $T_A = \bigcup_{\alpha \in J} U_\alpha$, the topology generated by A (by lemma 13.1), is in any of the above T_α . Therefore, $T_A \subseteq T_x$.

Conversely, T_x is a topology, and closed under unions. Since $T_A \subseteq T_x$, then there is no set $U \in T_x$ for which $U \not\in T_A$. Assume there is. By our construction of T_x , this requires U to be in every T_α on X. However, T_A is a topology on X which contains A, and thus must be one of the T_α . Therefore, $U \in T_A$, a contradiction. Hence, $\forall U \in T_x, U \in T_A$, and $T_x \subseteq T_A$. Therefore, $T_x = T_A$.

Next, we prove that the topology generated by a subbasis A equals the intersection of all topologies on X that contain A.

Definition: A subbasis S for a topology on X is a collection of subsets of X whose union equals X. The topology generated by S is defined to be the collection T of all unions of finite intersections of elements of S.

Proof. Any topology that contains A must also contain the topology generated by A, since any topology must be closed under arbitrary unions and finite intersections (properties 2 and 3 of topologies). Thus, the intersection of all topologies on X containing A must also include the topology generated by A. That the two are equal then follows from the subsetting arguments above.