2.1.6 Proof: Suppose there exists a rational s that $s^2 = 6$, then $\exists m, n \in \mathbb{N}$ and g.c.d.(m,n) = 1 that s = m/n. So $m^2/n^2 = 6$.

Then $m^2 = 6n^2$, so m^2 is divisible by 2, so m is also even. Let $m = 2k, k \in \mathbb{N}$. Then $4k^2 = 6n^2 \Leftrightarrow 2k^2 = 3n^2$, so n^2 is even, as is n.

This corollary implies that g.c.d.(m,n)=2, which contradicts with the assumption.

Thus, there is no rational s that $s^2 = 6$.

2.1.8 Solution:

(a) **Proof:** Since x, y are rational numbers, then $x = m/n, y = p/q, m, n, p, q \in \mathbb{Z}$, p and q, m and n are relatively prime.

x+y=(mq+np)/nq. Since $\mathbb Z$ is closed under addition and p and q, m and n are relatively prime, mq+np and n, mq+np and q are relatively prime. So x+y is rational.

xy = mp/np. Since \mathbb{Z} is closed under multiplication and p and q, m and n are relatively prime, mp and nq are relatively prime.

So xy is rational.

(b) Proof: Suppose x+y, xy is rational, $x+y=m/n, m, n\in\mathbb{Z}, g.c.d(m,n)=1, \ xy=s/t, s, t\in\mathbb{Z}, g.c.d(s,t)=1.$ Since x is rational, $x=p/q, p, q\in\mathbb{Z}, g.c.d(p,q)=1.$ Then $y=x+y-y=m/n-p/q\in\mathbb{Q}$ or $y=xy/x=s/t/(m/n)=sn/mt\in\mathbb{Q},$ which contradicts with that y is irrational.

Thus, x + y and xy are irrational.

2.1.12 Solution: Let a = 2, b = 3, c = -2, d = -1, we have 0 < a < b and c < d < 0 and ac = -4 < -3 = bd.

Let a = 1/2, b = 1, c = -1/2, d = -1, we have 0 < a < b and c < d < 0 and bd = -1 < -1/4 = ac.

2.1.13 Solution: Proof: If $a^2 + b^2 = 0$, since $a^2 \ge 0, b^2 \ge 0$, so if $a \ne 0$ or $b \ne 0$, $a^2 > 0$ or $b^2 > 0$ which means $a^2 + b^2 > 0$.

As a result, $a^2 + b^2 = 0 \Rightarrow a = b = 0$.

If a = b = 0, $a^2 = b^2 = 0$, so $a^2 + b^2 = 0$.

Thus, $a^2 + b^2 = 0$ if and only if a = b = 0.

2.2.5 Proof: Since a < x < b, a < y < b, we have that -b < -x < -a, -b < -y < -a, so x - y < b - a and y - x < b - a. As a result, |x - y| < b - a. Geometrically speaking, this inequality is true since x, y is in the line between a, b, so the length |x - y| < |b - a| = b - a.

2.2.6 Solution:

(a)

$$|4x - 5| \le 13$$

$$\Rightarrow -13 \le 4x - 5 \le 13$$

$$\Rightarrow -8 \le 4x \le 18$$

$$\Rightarrow -2 \le x \le 9/2$$

(b)

$$|x^{2} - 1| \le 3$$

$$\Rightarrow -3 \le x^{2} - 1 \le 3$$

$$\Rightarrow -2 \le x^{2} \le 4$$

$$\Rightarrow x \le 2$$

2.2.12 Solution:

$$\begin{aligned} &4 < |x+2| + |x-1| < 5 \\ &\Rightarrow 4 < |x-(-2)| + |x-1| < 5 \\ &\Rightarrow 2|x-1| < 2, x > 1 \text{ or } 2|x+2| > 1, x < -2 \\ &\Rightarrow 3/2 < x < 2 \text{ or } -3 < x < -5/2 \end{aligned}$$

2.3.6 Proof: Let $m = \sup\{-s : s \in S\}$. Then $\forall n \in \{-s : s \in S\}, n \leq m$, then $-n \geq -m$ for all $n \in \{-s : s \in S\}$. So $-m = -\sup\{-s : s \in S\}$ is a lower bound of S.

Suppose -m is not the infimum of S, then $\exists v$ that $\forall s \in S, v \leq s$ and v > -m. Then -v < m and $\forall n \in \{-s : s \in S\}, n \leq -v$, which means m is not the supremum of $\{-s : s \in S\}$ and contradicts with the condition given.

Hence, inf $S = -\sup\{-s : s \in S\}$.

2.3.7 Proof: Let the upper bound be m, then $\forall s \in S, s \leq m$. Suppose m is not a supremum, then there exists an v < m that $\forall s \in S, s \leq v$. Since $m \in S, m \leq v$ and contradicts with the assumption.

As a result, this upper bound is the supremum of $S.\blacksquare$