

Recent Advances on Graph Analytics and Its Applications in Healthcare

KDD 2020 Tutorial

August 23, morning

Fei Wang, Peng Cui, Jian Pei, Yangqiu Song, Chengxi Zang

http://www.calvinzang.com/kdd2020 tutorial medical graph analytics.html

Outline

- Introduction
- Network Embedding & GNNs
- Knowledge Graph Mining
- Graph Generative Models & Drug Discovery
- Discussions

Graph Generative Models& Drug Discovery

MoFlow: An Invertible Flow Model for Generating

Molecular Graphs (KDD 2020 Research)

Chengxi Zang and Fei Wang Weill Cornell Medicine

www.calvinzang.com

Drug Discovery and Development

Lead Discovery

1.5 years

Lead
Optimization
3 years

Preclinical 1.5 years

Screen millions of functional molecules to inform design

Design, make, test 1000s new and better molecules with optimized property

In-vitro and invivo **experiments**; synthesis Phase I,
II, III,
Launch

Nature Biotechnology 2019

Background: Drug Discovery

Lead Discovery

1.5 years

<u>Lead</u>
<u>Optimization</u>

<u>3 years</u>

Preclinical 1.5 years Molecule for human Clinical trial

- 1. Lengthy, costly, & with high failure rate
 - o\$2.6 billion, ≥ 10 years in total, clinical success ~12%, poor translation in patients
 - Our focus: Drug discovery (lead discovery and optimization) ~ 5 years and 33% of total cost
- ☐ How to accelerate the process, cost, and increase success rate?

Nature 2010
Proteomes 2016

Background: Drug Discovery

Lead Discovery

1.5 years

Lead Optimization

3 years

Preclinical

1.5 years

Molecule for human Clinical trial

- 2. Big chemical space but largely unexplored
 - The scale of drug-like small molecules: $10^{33} \sim 10^{60}$
 - oExisting chemical database to (linearly) screen: $\sim 10^6$
 - OA huge gap! Impossible to exhaustive enumeration!
- ☐ How to efficiently explore such a big chemical space?

Nature 2017

Background: Drug Discovery

Lead Discovery

1.5 years

Lead
Optimization
3 years

Preclinical

1.5 years

Molecule for human Clinical trial

- **□**3. Difficult to optimize molecules
 - ODifficult to design novel & better molecules:
 - High-throughput virtual screen, or
 - Medicinal chemists' knowledge
 - ODifficult to evaluate:
 - *expensive experiments, In-vitro, in-vivo, in-silico
- ☐ How to efficiently optimize molecules guided by the targeted properties?

Image from Sygnaturediscovery

Evaluate

Our Vision: Al for Drug Discovery

- □ Driven by AI and Big Chemical Data
- to reduce time, cost and failure rate of drug discovery process
 - $\circ 3-5 \underline{\text{years}} \rightarrow 3-5 \underline{\text{months}}$
- □to efficiently explore big chemical space

 ~ 10⁶⁰ drug-like chemical space
- ☐ to efficiently and automatically design novel molecules with optimized properties
 - oautomatic, in silico, learning from data and human knowledge

Problem Definition

□Goal: To generate novel molecular graphs with optimized properties

□ Data Input:

- oDiscrete 2D molecular graphs, etc.
- $\circ \{G_1, G_2, ..., G_N\}$: Molecular graph data samples
- $\circ \{y_{1,k}, y_{2,k}, \dots, y_{N,i}\}_{k=1\dots K}$ Some properties of molecules

Metformin (二甲双胍) CN(C)C(=N)N=C(N)N

□Output:

Novel molecular graphs $\{G_{N+1}, G_{N+2}, ...\}$ with **optimized** properties.

Why Is It Hard?

Discrete molecular graph data and its combinatorial complexity

- Nodes/atoms and edges/bonds can have multiple types
 - ❖Node types: C, H, O, etc., Edge types: single, double, triple bond.
- Combinatorial Complexity
 - ightharpoonup the scale of small molecular graphs $\sim 10^{60}$

Deep models are majorly designed for regular grid structures (image

VS.

Why Is It Hard?

- □Complex molecular graph optimization task:
 - **Graph generation**: $G \sim P(G)$
 - **o**Graph property prediction: f(G)

•Graph optimization: $G \rightarrow G'$ and maximizing f(G') - f(G)

Why Is It Hard?

Encoding graph is hard, Decoding graph is much harder

Encoding, embedding, inference with graph input

- Decoding, generation with graph output
 - E.g. chemically valid molecular graphs with valency constraints, novel

■Sequence-based VAE model

- SMILES (Simplified molecular-input line-entry system) string
- Grammar Variational Autoencoder (Grammar-VAE)
- Limitation: Sequences lose structural information

Image from: Kusner et al. 2017. Grammar Variational Autoencoder.

☐ Graph-based VAE model

- Structural information of molecules is better kept by graphs
 - ❖E.g., similarity, chemical validity
- Junction Tree Variational Autoencoder (JT-VAE)
- Limitation
 - Expensive sampling for generation
 - Only for tree-structured molecules.
 - Ciclosporin: Large circle

N N N S N S

Cc1cn2c(CN(C)C(=O)c3ccc(F)cc3C)c(C)nc2s1 Cc1cc(F)ccc1C(=O)N(C)Cc1c(C)nc2scc(C)n12

Image from: **Jin** et al. 2018. <u>Junction Tree</u>

<u>Variational Autoencoder for Molecular Graph</u>

Generation. *ICML*15

https://en.wikipedia.org/wiki/Ciclosporin

□GAN-based models

- Molecular Generative adversarial network (MolGAN)
- Limitation
 - ♦No chemical validity guarantee; Mode collapse->tend to generate duplicated molecules → few novel molecules

KDD 2020 -- MOFLOW 16

Image from: De Cao et al. 2018. MolGAN: An implicit generative model for small molecular graphs

□ Autoregressive-based models

- Graph Convolutional Policy Network (GCPN)
- Graph Autoregressive Flow model (GraphAF)
- Reject sampling for validity + Reinforcement Learning for optimization
- Limitations
 - Sequential generation, tend to generate long chains.

Image from: **You** et al. 2018. <u>Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation</u>. *NeurIPS*

Image from: **Shi** et al. <u>2020. GraphAF: a Flow-based</u> <u>Autoregressive Model for Molecular Graph Generation.</u> *ICLR*

■Normalizing Flow-based models

- oGraphNVP: Graph Real-valued Non-Volume Preserving flow
 - Only use add coupling
- Limitations
 - Unstable deep structures, No chemical validity guarantee, Few novel molecular graphs

Image from: Madhawa et al. 2019. <u>GraphNVP: An Invertible Flow Model for Generating Molecular Graphs</u>

18

□Classified by Data:

- Sequence: SMILES
- •Graph: molecular graphs

□Classified by Deep Generative Models:

- OAutoregressive Models (AR)
- Variational Autoencoders (VAE)
- Generative Adversarial Networks (GAN)
- Normalizing Flow Models (Flow)

Classified by Search & Optimization

- Gradient ascend
- Reinforcement learning

Our Choice

□Classified by Data:

- Sequence: SMILES
- **OGraph:** molecular graphs

□Classified by Deep Generative Models:

- OAutoregressive Models (AR)
- Variational Autoencoders (VAE)
- Generative Adversarial Networks (GAN)
- ONormalizing Flow Models (Flow)

Classified by Search & Optimization

- Gradient ascend
- Reinforcement learning

Basics of Normalizing Flow

- An invertible generative model
 - oGoal: $X \sim P(X)$
- \square Inference: $Z = f_{\theta}(X)$
 - o From complex to simple, e.g. Z is Gaussian
- **□** Generation: $X = f_{\theta}^{-1}(Z)$
 - Generate complex by invertible mapping
- Exact Maximum Likelihood Training
 - •Change of variable $\log P(X) = \log P(Z) + \log |\det(\frac{\partial f_{\theta}}{\partial Z})|$
 - $\underset{\theta}{\circ} \operatorname{argmax} E_{M \sim P_{data}}[\log P_{M}(M; \theta)]$
- □ Constraints of network structures:
 - $\circ f_{\theta}$: invertible DNNs, each layer is invertible
 - \circ Computing $\det(\frac{\partial f_{\theta}}{\partial Z})$ should be efficient

Image from: Dinh et al. 2017. Density Estimation using Real NVP. ICLR.

P(Z):
Simple latent distribution

Related works: NICE Model

- **NICE: Non-linear Independent Components Estimation**
- Invertible layers: splitting dimensions + residual flow updated alternately

×L layers

- **□** Split:
 - $\circ X = (X_1, X_2)$
 - $\circ Z = (Z_1, Z_2)$
- ☐ Add:
 - $\circ Z_1 = X_1$ (Save information for reversing)
 - $\circ Z_2 = X_2 + f_{\theta}(X_1)$ (Residual)
 - Reverse mapping:
 - $Arrow X_1 = Z_1$
 - $X_2 = Z_2 f_{\theta}(Z_1)$
- Deep: Next layer by alternating update
 - $\circ Z_1 = X_1 + f_{\theta}(X_2)$ (Residual)
 - $\circ Z_2 = X_2$ (save information for reverse)

Dinh et al. 2014. Nice: Non-linear independent components estimation Dinh et al. 2017. Density Estimation using Real NVP. ICLR.

Chen et al. 2019. Neural Ordinary Differential Equations. NeurlPS.

Related works: RealNVP Model

- RealNVP: Real-valued Non-Volume Preserving flow
- Invertible layers: splitting dimensions + affine updated alternately

×L layers

□ Split:

$$\circ X = (X_1, X_2)$$

$${\overset{\circ}{\circ}} \, Z = (Z_1, Z_2)$$

- ☐ Affine:
 - \circ Z_1 = X_1 (save information for reversing)
 - $\circ Z_2 = X_2 e^{s_{\theta}(X_1)} + f_{\theta}(X_1)$ (affine)
 - Reverse mapping:

$$X_1 = Z_1$$

Deep: Next layer by alternating update,

$$\circ Z_1 = X_1 e^{s_{\theta}(X_2)} + f_{\theta}(X_2)$$
 (Residual)

$$\circ Z_2 = X_2$$
 (save information for reverse)

Dinh et al. 2014. Nice: Non-linear independent components estimation Dinh et al. 2017. Density Estimation using Real NVP. ICLR.

Chen et al. 2019. <u>Neural Ordinary</u> <u>Differential Equations</u>. *NeurIPS*.

Related works: Glow Model

□ Glow: Generative flow with invertible 1*1 convolutions

□ Actnorm:

Stable dynamics

$$\circ B = \frac{B-\mu}{\sqrt{\sigma^2 + \epsilon}}$$
 each channel over batch

o invertible

☐ Invertible 1*1 convolution:

Expressive power

Affine:

$$\circ Z_1 = X_1$$

$$\circ Z_2 = X_2 e^{s_{\theta}(X_1)} + f_{\theta}(X_1)$$

Hamiltonian Systems

$$= \left[\frac{\frac{dZ_1}{dt}}{\frac{dZ_2}{dt}} \right] = \left[f_{\theta}(Z_2) \right]$$

Chen et al. 2019. <u>Neural Ordinary</u> <u>Differential Equations</u>. *NeurIPS*.

24

Kingma et al. 2018. Glow: Generative flow with invertible 1x1 convolutions. NeurIPS.

Why Flow Frameworks

■Invertible mappings

- Potentials to generate more novel molecules
- oVAE, GAN, AR are not invertible, see diagrams below
- oFlow learns a strict superset and explores chemical space better

Training Model or Da

Training VAE, GAN, AR Model
Data

Why Flow Frameworks

- Exact maximum likelihood training
 - oVAE,GAN are not
- ☐ Efficient one-shot inference and generation
 - Capturing molecular structures in a holistic way v.s. AR's step-bystep way.
- **□**Better performance shown later

Idea of our MoFlow

- Molecular Graph: Molecule = (Atom, Bond)
 - oAtoms → Nodes, Atom ∈ $\{0,1\}^{n\times k}$, n Nodes in k (atom) types
 - oBonds → Edges, **B**ond ∈ $\{0,1\}^{c \times n \times n}$, Edges in c (bond) types

Idea of our MoFlow

■MoFlow:

- <u>oM</u>olecule=(<u>A</u>tom, <u>B</u>ond) <u>How to model discrete atom-bond structures of molecule?</u>
- ${}_{\bullet}P_{M}(M) = P_{M}((A,B)) \approx P_{A|B}(A|B)P_{B}(B)$
- \circ Any flow model $f_B(B)$ for bonds $P_B(B)$
 - *****Generating graph skeleton by $P_B(B)$
- •Graph conditional flow $f_{A|B}(A|B)$ for atoms given bonds $P_{A|B}(A|B)$
 - **Generating nodes given graph skeleton by** $P_{A|B}(A|B)$
- Assembling atom and bonds with validity correction

The Generative Framework

A variant of Glow for Bond/Edge

Squeeze

$$\circ X \in \mathbb{R}^{c \times n \times n} \to \mathbb{R}^{ck^2 \times \frac{n}{k} \times \frac{n}{k}}$$

Actnorm:

- Stable dynamics
- o $B = \frac{B-\mu}{\sqrt{\sigma^2 + c}}$ each channel over batch

Invertible 1*1 convolution:

- Expressive power
- $\bigcap \mathbb{R}^{c \times n \times n} \times \mathbb{R}^{c \times c} \to \mathbb{R}^{c \times n \times n}$

Split:

- Discretization of Hamiltonian system
- o B= (B_1, B_2)
- $o Z = (Z_{B1}, Z_{B2})$

Affine coupling:

- Stable (batchnorm2D, Sigmoid) and expressive power (Affine)
- $o Z_{R1} = B_1$
- $\circ Z_{B2} = B_2 \odot Sigmoid(S_{\theta}(B_1)) + T_{\theta}(B_1)$
- Deep: alternating update in next layer

Graph Conditional Flow For Atoms Given Bonds

Actnorm2D:

- Stable dynamics
- o $B = \frac{B-\mu}{\sqrt{\sigma^2 + \epsilon}}$ each row over batch

Split:

- Discretization of Hamiltonian system on Graphs
- \circ A= (A_1, A_2) by each row
- $\circ Z = (Z_{A1|B}, Z_{A2|B})$

Graphnorm

 \circ $\widehat{B}_i = D^{-1}B_i$, $D = \sum_{c,i} B_{c,i,j}$ in-degree over all channels

GraphConv(A|B), multi-channel

- $\circ \sum_{i=1}^{c} \widehat{B_i}(M \odot A) W_i + (M \odot A) W_0$
- update each row by the remaining rows

Affine coupling:

- Stable (batchnorm, Sigmoid) and expressive power (Affine)
- $O_{A1|B} = A_1$
- Deep: alternating update in next layer

Molecular Graph Generation

Graph Property Prediction

Molecular Graph Optimization

Validity Correction

□ Valid molecules: valency constraints

$$\circ \sum_{c,j} c * B(c,i,j) \leq Valency(Atom_i) + Formal_Charge$$

oC: 4, O:2, O+:3

□ Validity Correction

- •While checking valency constraints:
 - if follows constraints:
 - Return the greatest connected component
 - ❖else:
 - Delete unnecessary bond or add charge to invalid atoms according to chemical rules

Experiments

- 1. Molecular Generation & Reconstruction
- 2. Visualization of Continuous Latent Space
- 3. Property Optimization
- 4. Constrained Property Optimization

EXP1: Molecular Generation & Reconstruction

□The Problem:

- oInput: $\{G_1, G_2, ...\}$ molecular graphs
- Model
 - \bullet Learned molecular generative model P_M , and its invertible mapping f
 - ❖Generation: $G = f^{-1}(Z)$, where Z follows isotropic Gaussian
 - *Reconstruction: $G = f^{-1}(Z)$ where Z = f(G)
- •Goal: To generate valid & unique & novel molecular graphs

□ Datasets:

 O

	#Graphs	#Nodes	#Node/Atom Types	#Edge/Bond Types
QM9	134K	9	4	3
ZINC	250K	38	9	3

EXP1: Molecular Generation & Reconstruction

Evaluation metrics:

- Validity: %chemically valid molecules in all the generated molecules
- 2. Validity without check/correction
- 3. <u>Uniqueness</u>: %chemically valid and unique molecules in all the generated molecules
- 4. Novelty: %generated valid molecules not in training dataset
- 5. Reconstruction rate: % training dataset which can be reconstructed from their latent representations
- N.U.V.: %novel, unique and valid molecules in all the generated molecules

EXP1: Molecular Generation & Reconstruction

- More novel & unique & valid molecules
- □ 100% Reconstruction
 - Strict superset of training dataset
- Better validity without check
 - Than AR models. Oneshot models, a holistic way
- Our MoFlow explores the big chemical space further and better!

Table 1: Generative performance on QM9

	% Validity	% Validity w/o check	% Uniqueness	% Novelty	% N.U.V.	% Reconstruct
GraphNVP	83.1 ± 0.5	-	99.2 ± 0.3	58.2 ± 1.9	47.97	100
GRF	84.5 ± 0.70	-	66.0 ± 1.15	58.6 ± 0.82	32.68	100
GraphAF	100	67	94.51	88.83	83.95	100
MoFlow	100.00 ± 0.00	95.74 ± 0.65	99.48 ± 0.33	98.69 ± 0.39	98.18 ± 0.53	100.00 ± 0.00

Table 2: Generative performance on Zinc250k

	% Validity	% Validity w/o check	% Uniqueness	% Novelty	% N.U.V.	% Reconstruct
JT-VAE	100	-	100	100	100	76.7
GCPN	100	20	99.97	100	99.97	-
MRNN	100	65	99.89	100	99.89	-
GraphNVP	42.6 ± 1.6	-	94.8 ± 0.6	100	40.38	100
GRF	73.4 ± 0.62	-	53.7 ± 2.13	100	39.42	100
GraphAF	100	68	99.10	100	99.10	100
MoFlow	100.00 ± 0.00	81.94 ± 0.45	99.94 ± 0.05	100.00 ± 0.00	99.94 ± 0.05	100.00 ± 0.00

EXP2: Visualization of latent space

- □ Encode & decode between discrete graph space and continuous latent space!
 - Grid interpolation around the latent representation of one molecular graph, and decode its neighbors
 - ♦Smooth latent space ← → Similar graph structures (Tanimoto similarity)
 - Linear interpolation between two molecules
 - Changing trajectory from one graph to another one.

EXP3: Property Optimization

- □ To Generate Novel
 Molecules with the best
 Quantitative Estimate
 of Druglikeness (QED)
 scores as many as
 possible
 - Searching latent space by gradient ascend
- □Our MoFlow generates more novel molecules with top QED scores!

Table 3: Discovered novel molecules with top QED score. Our MoFlow finds more molecules with the best QED score. More results in

Method	1st	2nd	3rd	4th
ZINC (Dataset)	0.948	0.948	0.948	0.948
JT-VAE	0.925	0.911	0.910	-
GCPN	0.948	0.947	0.946	-
MRNN	0.948	0.948	0.947	-
GraphAF	0.948	0.948	0.947	0.946
MoFlow	0.948	0.948	0.98	0.948

EXP3: Property Optimization

EXP4: Constrained Property Optimization

☐ Find a new molecular graph G' from a seed molecular graph G

- To maximize: similarity(\mathbf{G} , \mathbf{G}') and property $Y(\mathbf{G}') Y(\mathbf{G})$
 - Tanimoto similarity of Morgan fingerprint
 - *Target property Y: penalized logP (plogP), which is the octanol-water partition coefficients (logP) penalized by the synthetic accessibility (SA) score and number of long cycles.

EXP4: Constrained Property Optimization

□Best similarity

☐Second best improvement

□More realistic

 AR+RL model tends to generate long chains

Table 4: Constrained optimization on Penalized-logP

	JT-VAE			GCPN			
δ	Improvement	Similarity	Success	Improvement	Similarity	Success	
0.0	1.91 ± 2.04	0.28 ± 0.15	97.5%	4.20 ± 1.28	0.32 ± 0.12	100%	
0.2	1.68 ± 1.85	0.33 ± 0.13	97.1%	4.12 ± 1.19	0.34 ± 0.11	100%	
0.4	0.84 ± 1.45	0.51 ± 0.10	83.6%	2.49 ± 1.30	0.48 ± 0.08	100%	
0.6	0.21 ± 0.71	0.69 ± 0.06	46.4%	0.79 ± 0.63	0.68 ± 0.08	100%	
	GraphAF			MoFlow			
δ	Improvement	Similarity	Success	Improvement	Similarity	Success	
0.0	13.13 ± 6.89	0.29 ± 0.15	100%	8.61 ± 5.44	0.30 ± 0.20	98.88%	
0.2	11.90 ± 6.86	0.33 ± 0.12	100%	7.06 ± 5.04	0.43 ± 0.20	96.75%	

99.88%

96.88%

 8.21 ± 6.51

 4.98 ± 6.49

KDD 2020 -- MOFLOW

0.4

0.6

 0.49 ± 0.09

 0.66 ± 0.05

 4.71 ± 4.55

 2.10 ± 2.86

 0.61 ± 0.18

 0.79 ± 0.14

85.75%

58.25%

EXP4: Constrained Property Optimization

CN1CC[NH+](C)CCN(C)CC[NH+](C)CCN(C)CC[NH+](C)CC1

COc1ccccc1C(=O)Oc1cc2c3c(c1)C(C)=CC(C)(C)N3C(=O)C2=O

C=C(C)C[N+](=C)CCN(C)C=CC(C)C=CN(C)CC

COc1ccccc1C(=O)OC1=CC=C2C(C1)C(C)=CC(C)(C)N2C(=O)C=O

Summary

■Novel MoFlow model for molecular graph generation

- A variant of Glow for bonds
- Novel Graph conditional flow for atoms given bonds
- Novel validity correction
- •Invertible, fast inference and generation at one shot

☐ The state-of-the-art results

- Best results for generation and reconstruction
 - *w.r.t. novelty, uniqueness, validity, and reconstruction rate
- Best results for QED property optimization
 - ❖More drug-like molecules
- Best similarity scores for constraint optimization and second best improvement scores for plogP

MoFlow: An Invertible Flow Model for Generating Molecular Graphs

Chengxi Zang and Fei Wang Weill Cornell Medicine

www.calvinzang.com

Outline

- Introduction
- Network Embedding & GNNs
- Knowledge Graph Mining
- Graph Generative Models & Drug Discovery
- Discussions