

IP Formulation Minimize Makespan Cmax

		Min	C_{max}
O	ne position has at most one job	$\sum_{i=1}^m \sum_{j=1}^n x_{i,j}$	$_{,k} \le 1 \forall k$
One job must be assigned to one position		$\sum_{i=1}^m \sum_{k=1}^n x_{i,j,k} =$	1 ∀ <i>j</i>
Job in position k is completed its release and processing		$h_{i,k} \ge \sum_{j=1}^{n} (p_{i,j} + r_j) x_{i,j,k} \forall i, j, k$	
Job in position k is completed after job in position k-1		$h_{i,k} \geq h_{i,k-1}$	$+\sum_{j=1}^n x_{i,j,k}*p_{i,j}$
	Lower bound of Makespan	$C_{max} \ge h_{i,k}$	$\forall i, k$
	Position starts from 1	$\sum_{j=1}^{n} x_{i,j,k} \le \sum_{j=1}^{n} x_{i,j,k}$	$\forall i, j, k-1 \qquad \forall i, \forall k > 1$
Binary constraint		$x_{i,j,k} \in \{0,1\}$	
	* Improve the calculation speed	$x_{i,j,k} = 0$	$\forall i, j, p_{i,j} = 2000$

1 A:--

 $x_{i,j,k}$ Binary Indicator of whether job j is in position k on machine i

 $h_{i,k}$ Completion time of job in position k on machine i

Completion time of job i on machine j removed under this objective function

 $Cmax^* = 442.12$

Computation Time = 1.78 sec

M1

M2

Extension: Fairness in Scheduling Problems

Motivation

- People feel better when they know why they are waiting and the schedule caters to their perceived "fairness".
- Pairness could potentially go hand-in-hand with other societal objectives

Objective

- With IP, compare the efficacy of various definitions of fairness from administrator's perspective
- 2 Assess the feasibility of heuristics in achieving fairness

Data Preparation

- 1. Reduce job quantity to 15 for manageability
- 2. Replace 2000 with realistic values

 $w_{i,j,k} \geq 0$

New variables and constraints

W(i,j,k): Waiting Time of Job j in position k on machine i

Results comparison

Obj Func	Wmax	Cmax	Time (s)
min Wmax	65.62	149.1	28.8
min Cmax	81	146.2	0.5

$$\begin{aligned} w_{i,j,k} &\geq h_{i,k-1} - r_j - M \times \left(1 - x_{i,j,k}\right) & \forall i, j, \forall k > 1 \\ w_{max} &\geq w_{i,j,k} & \forall i, j, k \\ w_{i,j,k} &\leq M \times x_{i,j,k} & \forall i, j, k \end{aligned}$$

Optimal sequence & analysis

 $\forall i, j, k$

Rationale

Allow more waiting time for jobs that require long processing time.

1 New variables and constraints

$$ww_{i,j} = \frac{\sum_{k=1}^{m} w_{i,j,k}}{p_{i,j}} \quad \forall i, j$$

$$ww_{max} \ge ww_{i,j} \quad \forall i, j$$

2 Results comparison

Obj Func	Wmax	Cmax	Time (s)
min WWmax	69.78	153.2	50.75
Min Cmax	81	146.2	0.5

IP Formulation: Wmax OR WWmax

Maximum Waiting Time

WWmax although has slightly higher Wmax, as expected, it still greatly reduces Wmax from Cmax as an objective.

Makespan

Wmax is relatively close to the optimal makespan achieved by Cmax, followed by WWmax

Objective function: k * Cmax + Wmax

Heuristic Approach: Greedy Algorithm

1

First Come First Serve

When one job is completed, process the job that has been released for the longest time.

- No machine idle time
- Maximum waiting time: 68.7
- Makespan: 157.1

2

First Complete First Serve

When one job is completed, process the job with the smallest expected completion time.

- Potential machine idle time
- Maximum waiting time: 69.7
- Makespan: 158.1

Makespan

Maximum Waiting Time

Speed

It takes significantly longer time to solve an IP with fairness as the objective

Adaptability

Fairness can be achieved with varying definitions that are tailored for different scenarios

Compatibility

Minimal sacrifice in makespan for huge reduction in waiting time and improvement in perceived services

Heuristic

"First Come First Serve" principle is a simple yet effective method in achieving fairness