Scattering Theory

Ting-Kai Hsu

January 29, 2024

Contents

1	Pote	ential Scattering]											
	1.1	In-States																										-
	This	article is	desi	gned	l f	or	le	ac	lin	σ	the	- r	ea	de	er :	frc	m	0	ld	SO	cat	tei	rir	σ	th	ec	rv	0

This article is designed for leading the reader from old scattering theory of quantum mechanics to nowadays scattering theory of quantum field theory.

1 Potential Scattering

In this chapter we would study the theory of scattering in a simple but important case, the elastic scattering of a non-relativistic particle in a local potential, but using modern techniques that could easily be extended to more general problems.

1.1 In-States

Consider a non-relativistic particle of mass μ in a potential $V(\mathbf{x})$, whose Hamiltonian is,

$$H = H_0 + V(\mathbf{x}) \tag{1.1}$$

Here $H_0 = \mathbf{p}^2/2\mu$ is the kinetic energy operator. The potential is assumed to be function of position operator, and tends to zero as $|\mathbf{x}| = r \to \infty$. Then it is concerned here with a positive-energy particle¹. The particle comes into facing the potential from great distances regarded to have no interaction with momentum $\hbar \mathbf{k}$,

¹Actually, there could possibly be negative energy if it is in bound state, that is, the energy is less than potential at boundaries. But now, we are considering scattering state, which is opposite with bound state.

and is scattered, going out again to infinity, generally along a different direction.

In Heisenberg picture, for a particle with momentum $\hbar \mathbf{k}$ far from the scattering center if the measurement of the particle is made at very early times, and this situation is represented by a time-independent state vector $|\Psi_{\mathbf{k}}^{\rm in}\rangle$. As mentioned, at very early times the particle is at a location that is far from the scattering center so that the potential is negligible there, so the state has an energy $\hbar^2 \mathbf{k}^2/2\mu$, with the following relation,

$$H |\Psi_{\mathbf{k}}^{\text{in}}\rangle = \frac{\hbar^2 \mathbf{k}^2}{2\mu} |\Psi_{\mathbf{k}}^{\text{in}}\rangle \tag{1.2}$$

Now switch to Schrödinger picture, the state would evolve as time goes on. As mentioned, the scattering state would be continuous *superposition*² of states with a spread of energies,

$$|\Psi_g(t)\rangle = \int d^3k \, g(\mathbf{k}) \exp\left(-i\frac{\hbar t \mathbf{k}^2}{2\mu}\right) |\Psi_{\mathbf{k}}^{\text{in}}\rangle$$
 (1.3)

where $g(\mathbf{k})$ is a smooth function that is peaked around some wave number \mathbf{k}_0 . The eigenstate $|\Psi_{\mathbf{k}}^{\text{in}}\rangle$ satisfies the further condition that for any sufficiently smooth function $g(\mathbf{k})$, in the limit $t \to -\infty$,

$$|\Psi_g(t)\rangle \to \int d^3k \, g(\mathbf{k}) \exp\left(-i\frac{\hbar t \mathbf{k}^2}{2\mu}\right) |\Phi_{\mathbf{k}}\rangle$$
 (1.4)

where $|\Phi_{\bf k}\rangle$ are orthonormal eigenstates of the momentum operator ${\bf P}$ with eigenvalue $\hbar {\bf k}$,

$$\mathbf{P} |\Phi_{\mathbf{k}}\rangle = \hbar \mathbf{k} |\Phi_{\mathbf{k}}\rangle$$

$$\langle \Phi_{\mathbf{k}} |\Phi_{\mathbf{k}'}\rangle = \delta^{(3)} (\hbar \mathbf{k} - \hbar \mathbf{k}')$$
(1.5)

and hence eigenstates of H_0 (not H), with eigenvalue $E(|\mathbf{k}|) = \hbar^2 \mathbf{k}^2 / 2\mu$. Note that $|\Psi_{\mathbf{k}}^{\text{in}}\rangle$ and $|\Phi_{\mathbf{k}}\rangle$ belong to different Hilbert spaces. The incident wave packet $|\Psi_g(t)\rangle$ should satisfy the normalization condition $\langle \Psi_g(t)|\Psi_g(t)\rangle = 1$, which is equivalent to the condition at time limit,

$$\int \int d^3k d^3k' g^*(\mathbf{k}) g(\mathbf{k}') \exp\left(-i\frac{\hbar t}{2\mu}(\mathbf{k}'^2 - \mathbf{k}^2)\right) \delta^{(3)}(\hbar \mathbf{k} - \hbar \mathbf{k}')$$
$$= \hbar^{-3} \int d^3k |g(\mathbf{k})|^2 = 1$$
(1.6)

²It would be discrete sum for a bound state.

Rewrite the equation (1.2) as,

$$(E(|\mathbf{k}|) - H_0) |\Psi_{\mathbf{k}}^{\text{in}}\rangle = V |\Psi_{\mathbf{k}}^{\text{in}}\rangle$$
(1.7)

This has a formal solution,

$$|\Psi_{\mathbf{k}}^{\text{in}}\rangle = |\Phi_{\mathbf{k}}\rangle + (E(|\mathbf{k}|) - H_0 + i\epsilon)^{-1} |\Psi_{\mathbf{k}}^{\text{in}}\rangle$$
 (1.8)

The first term on RHS could always be added up because it is the *homogeneous* solution of equation (1.7), and ϵ is a positive infinitesimal quantity, which is inserted to give meaning to the operator $(E(|\mathbf{k}|) - H_0 + i\epsilon)^{-1}$ when we integrate over the eigenvalues of H_0^3 . It is known as the *Lippmann-Schwinger equation*. The special feature of the particular 'solution' is that it also satisfies the additional initial condition.

To see this, we could expand $V|\Psi_{\bf k}^{\rm in}\rangle$ in the orthonormal free-particle states $|\Phi_{\bf q}\rangle$:

$$V |\Psi_{\mathbf{k}}^{\text{in}}\rangle = \int d^3q |\Phi_{\mathbf{q}}\rangle \langle \Phi_{\mathbf{q}}| V |\Psi_{\mathbf{k}}^{\text{in}}\rangle$$
 (1.9)

Thus equation (1.8) becomes,

$$|\Psi_{\mathbf{k}}^{\text{in}}\rangle = |\Phi_{\mathbf{k}}\rangle + \hbar^{3} \int d^{3}q \, \left(E(|\mathbf{k}|) - H_{0} + i\epsilon\right)^{-1} |\Phi_{\mathbf{q}}\rangle \, \left\langle\Phi_{\mathbf{q}}|V|\Psi_{\mathbf{k}}^{\text{in}}\rangle\right)$$

$$= |\Phi_{\mathbf{k}}\rangle + \hbar^{3} \int d^{3}q \, \left(E(|\mathbf{k}|) - E(|\mathbf{q}|) + i\epsilon\right)^{-1} |\Phi_{\mathbf{q}}\rangle \, \left\langle\Phi_{\mathbf{q}}|V|\Psi_{\mathbf{k}}^{\text{in}}\rangle\right)$$
(1.10)

In calculating the integral over k in equation (1.3),

$$\int d^3k \, g(\mathbf{k}) \frac{\exp(-i\hbar t \mathbf{k}^2/2\mu)}{E(|\mathbf{k}|) - E(q) + i\epsilon} \langle \Phi_{\mathbf{q}} | \, V \, | \Psi_{\mathbf{k}}^{\text{in}} \rangle$$
$$= \int d\Omega \int_0^\infty dk \, k^2 g(\mathbf{k}) \frac{\exp(-i\hbar t \mathbf{k}^2/2\mu)}{E(k) - E(q) + i\epsilon} \langle \Phi_{\mathbf{q}} | \, V \, | \Psi_{\mathbf{k}}^{\text{in}} \rangle$$

where $d\Omega = \sin\theta \, d\theta d\phi$. We could convert the integral over k to an integral over the kinetic energy, using $dk = \mu dE/k\hbar^2$. Now, when $t \to -\infty$, the exponential term oscillates very rapidly, so that the only value of E that contribute are those very near E(q), where the denominator also varies very rapidly.

$$= \int d\Omega \int_0^\infty dE \, \frac{\mu k}{\hbar^2} g(\mathbf{k}) \frac{\exp(-iEt/\hbar)}{E - E(q) + i\epsilon} \langle \Phi_{\mathbf{q}} | V | \Psi_{\mathbf{k}}^{\text{in}} \rangle$$

³It is more reasonable in path integral formalism that the additional term must be added to prevent the integral diverges at large value of wave function.

Hence, for the time limit $t \to -\infty$, we could set k = q everywhere except in the rapidly varying exponential and denominator,

$$= \int d\Omega \, g(\Omega) \frac{\mu q}{\hbar^2} \left\langle \Phi_{\mathbf{q}} \right| V \left| \Psi_{\mathbf{q}}^{\mathrm{in}} \right\rangle \int_{\mathrm{around} \; \mathrm{E}(\mathbf{q})} dE \, \frac{\exp(-iEt/\hbar)}{E - E(q) + i\epsilon}$$

We could extend the integration range to the whole real axis, which is permissible because the integral receives no appreciable contributions anywhere that is far from E(q),

$$\propto \int_{-\infty}^{\infty} dE \, \frac{\exp(-iEt/\hbar)}{E - E(q) + i\epsilon}$$
 (1.11)