PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-098435

(43)Date of publication of application: 03.04.2003

(51)Int.CI.

G02B 17/08 G02B 5/10 G02B 7/10

G02B 13/18 G02B 15/16 G03B 5/00

(21)Application number : 2001-289113

(71)Applicant: OLYMPUS OPTICAL CO LTD

(22)Date of filing:

21.09.2001

(72)Inventor: AMAUCHI TAKAHIRO

(54) ZOOM OPTICAL SYSTEM

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a zoom optical system which is very compact, whose power consumption is extremely small, whose operating noise is low and which can be applied to an imaging device. SOLUTION: This zoom optical system is constituted of a 1st group G1 having negative power, a 2nd group G2 having positive power, and a 3rd group G3 having positive power in this order from the object side, obtains variable power action by moving the 2nd group G2, and is constituted so that out—of—focus caused by such action is corrected via the reflection surface of a shape variable mirror M provided in the 1st group G1.

(25) (19) 日本国体部庁 (JP)

3 獓 4 盐 华 噩 4

特開2003-98435 (11)特許出願公開番号

(P2003-98435A)

平成15年4月3日(2003.4.3) (43)公開日

f-73-ド(参考)	2H042	2H044	2H087			最終質に続く
	Z	Д	2			(全 49 耳)
						οΓ
	3B 17/08	6/10	1/10	13/18	15/18	職校園の数3
FI	G02B					未贈分
						審查請決
裁別配号						
	17/08	5/10	1/10	13/18	15/16	
(51) Int Cl.7	G02B					

3 8

気を入り				¥					最終頁に続く
最終国に扱く		H 13番2号		3番2号			(外1名)		最終頁
審査請求 未請求 醋求項の数3 OL (全49 頁)		オリンパス光学工業株式会社 東京都渋谷区橋ヶ谷2丁目43番2号		東京都設谷区階ヶ谷2丁目43番2号 オリ	朱式会社内		秦司 (外)		
0 70 -	9750	ンパス光学に野歌台区を	天内 陸格	部数谷区幅	ンパス光学工業株式会社内	2824	弁理士 篠原 1		
週の数3	(71) 出國人 00000376	本し、		15		100065824	中田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田田		
発音	1)出版		(72)発明者			(74)代理人			
未開入	۵		E		••	Ě			
客空請求	特取 2001-289113(P2001-289113)	平成13年9月21日(2001.9.21)						•	
	出鹽海中	出寶田							

(54) [発明の名称] メーム光学系

(57) [要約]

【課題】非常に小型で消費電力が極めて少なく、動作音 が静かな撮像装置に適用可能なズーム光学系を提供する 非常に小型で消費電力が極めて少なく、動作音が静かな 撮像装置に適用可能なズーム光学系を提供する。 【解決手段】物体側から順に、負パワーを有する第1群 31と、正パワーを有する第2群G2と、正パワーを有 する第3群G3とからなり、第2群G2を移動させるこ とにより変倍作用をもたせ、それにより生じる焦点ずれ を、第1群G1中に設けた形状可変ミラーMの反射面を **个して補正することができるように構成されている。**

3

特開2003-98435

\$1, ~

及びフォーカス作用を有する形状可変反射面とを用いた 「開求項1] 少なくとも1つ以上の変倍作用を有する フンズ群と、少なへとも10以上のコンベンセータ作用 ことを特徴とするズーム光学系。 特許請求の範囲】

上のフォーカス作用を有する形状可変反射面とを用いた 【静求項2】 少なくとも2つ以上の変倍作用及びコン ペンセータ作用を有するレンズ群と、少なくとも1つ以 ことを特徴とするズーム光学系。

【請求項3】 少なくともある助作状態で、次の条件式 を満足することを特徴とする静水項1又は2に配載のズ 一厶光学系。

0.5 $0 \le |\psi x/\phi| < 0.5$ | \$ x / \$ | 0 VII

ただし、ゆxは形状可変反射面の傷心方向に垂直な軸の パワー、ゆゞは形状可変反射面の偏心方向に平行な軸の バワー、ゆは光学系全系のパワーである。 [発明の詳細な説明]

[0001]

【発明の属する技術分野】本発明は、電子撮像装置に用 いるズーム光学系に関するものである。

[0002]

ント調整を行うように構成されている。しかし、それら ち所定のレンズ群を共軸方向に移動させて、変倍及びど 【従来の技術および発明が解決しようとする課題】ズー と、それにともなう像面ずれ及び収差を補償する群(コ と、収差性能を補正する固定群とのレンズ群に分けられ る。そして、ズーム光学系は、上配各々のレンズ群のう また、その機械的機構を設ける為に広いスペースが必要 のレンズ群を移動させる為の機械的機構は複雑であり、 ンペンセータ)と、被写体にフォーカスをあわせる群 ム光学系は、焦点距離を変化させる群(バリエータ) になるという問題があった。

クー駆動方式の場合は、ズームの動作が機慢であった* とが困難であり、未使用時にレンズが飛び出したままと なり、携帯に邪魔になるという問題があった。他方、モ [0003]また、ズーム光学系のレンズ群を移動させ を介して手動で行う手動方式と、装置全体に取り付けら る。しかし、手動方式の場合は、レンズを沈顯化するこ る方式としては、一眼レンカメラのようにズームリング わたズームレバーまたはボタンの操作によりモーターを 取動してレンズを移動させるモーター駆動方式とがあ

 $0 \le |\psi x/\phi| < 0.$ > |¢/<a>| ₹

ただし、
ゆxは形状可変反射面の偏心方向に垂直な軸の

パワー、ゆりは形状可変反射面の偏心方向に平行な軸の 、発明の実施の形態】実施例の説明に先立ち、本発明の パワー、ゆは光学系全系のパワーである。 {0011}

*り、作動音がうるさかったり、電力消費量が大きいとい った問題があった。しかも、モーターやそれを動作させ る駆動回路を設ける必要があり、装置が大型化してしま うという問題もあった。 [0004] しかも、撮像装置におけるズーム光学系の フォーカス機構に関しても、オートフォーカスが主流で あり、モーター駆動が必須であるため、動作が機慢であ り、作助音がろるさく、電力消費が大きいという問題が 【0005】しかも、未使用時にレンズを沈嗣させるモ **一タ駆動方式の場合、使用開始時ねよび終了時に、レン** ズを大きく移動させることになり、電力消費量がより一 **番大きくなる原因となる。** 10

[0006]また、近年、小型で商解像なズーム光学系 を用いた撮像装置が要求されてきており、例えば、特開 クト化したズーム光学系を用いた撮像装置が提案されて いるが、単純に光路を折り返しただけに過ぎず、消費電 平11-220646号公報には、光路を折り返すことでコンバ 力が小さくない。

[0007]本発明は上記の課題を解決する為になされ **协作音が静かな狼像装置に適用可能なズーム光学系を提** たものであり、非常に小型で消費電力が極めて少なく **共することを目的とする。** 20

[0008]

きるようにしている。即ち、本第1の発明によるズーム に、形状の変化する反射面を設けることにより、焦点す **れを補正することが可能な損像装置を構成することがで** 光学系は、少なくとも1つ以上の変倍作用を有するレン **ズ群と、少なくとも1つ以上のコンペンセータ作用及び** フォーカス作用を有する形状可変反射面とを用いたこと [課題を解決するための手段] そこで、本発明では、 記目的を達成するため、電子撮像装置用のズーム光学 を特徴とする。 8

は、少なくとも2つ以上の変倍作用及びコンベンセータ カス作用を有する形状可変反射面とを用いたことを特徴 [0009]また、本第2の発明によるズーム光学系 作用を有するレンズ群と、少なくとも1つ以上のフォ

は、本第1又は第2の発明のズーム光学系において、少 なくともある動作状態で、次の条件式(1)。(2)を満足す [0010]また、本第3の発明によるズーム光学系 **2**52.

3 ることを特徴とする。 \$

れば、フォーカシング作用及びコンペンセータ作用、又 はフォーカシング作用を形状可変反射面に持たせること で、モーター及び駆動回路などのレンズ移動機構を設け る必要がなく、小型化、低コスト化できる。また、反射 面の形状を瞬間的に変化させることが可能であることか

5、フォーカシングが非常に高速で、しかも動作音が静

S

作用を説明する。本第1の発明、又は本第2の発明によ

*れているため、偏心収差が発生する。従って、良好な光 学性能を得るためには、本第3の発明のように、次の条 件式(1), (2)を満足するのが望ましい。 せることによりパワーを持つとき、反射面が偏心配置さ米 [0012]ところで、形状可変反射面が形状を変化さ かな撮像装置を実現することが可能となる。

 $0 \leq |\psi \mathbf{x}/\phi| < 0.5$

※は良好である。他方、上限を超えて値が大きくなると $0 \le |\psi y/\phi| < 0.$ ただし、ゆxは形状可変反射面の偏心方向に垂直な軸の

パワー、ゆりは形状可変反射面の偏心方向に平行な軸の

パワー、ゆは光学系全系のパワーである。

形状可変反射面のパワーが大きくなりすぎ、偏心収差の

発生量が大きくなるため、光学性能が悪くなってしま

[0014] 更に望ましくは、次の条件式(3), (4)を満 足することが重要である。 形状可変反射面が平面であることを表しており、これよ 10 り小さくなることはない。平面の場合は、反射面がパワ [0013]上記条件式(1), (2) において、下限は

一を持たないことから、偏心収差が発生せず、光学性能※

0 ≤ |\$y/\$| < 0. $0 \le |\psi \times / \phi| < 0.$

<u>ල</u>

★ [0015] 更に望ましくは、次の条件式(5), (6)を満 € 足することが重要である。 条件式(3), (4)の下限及び上限の意味は上述の条件式 (1), (2)と回様である。

 $0 \le |\psi x/\phi| < 0.05$

<u>ල</u>

< 0.05

な動かすためのコンベンセータを動かすための部材及びス 条件式(5), (6)の下限及び上限の意味は上述の条件式

て良い。 ム等の部材を設ける必要がなく、小型化、低コスト化が で構成すれば、従属的に他のレンズ群を動かすためのカ エータ群を移助させるような構成、例えば、モーター等 構成したズーム光学系に上述の本発明を適用すれば、大 【0016】 さちに、パリエータを1つのレンズ群のみ 可能となり望ましい。加えて、電力を消費しないでバリ の駆動手段を用いずに、手動でズーム操作を行うように (1), (2)と回様である。

 $0.01 < |\eta| < 3.$ とと相俟って、パリエータ及びパリエータに追従させて☆ ただし、ヵはパリエータ群の倍率である。パリエータ群 幅に省電力化ができ、しかも形状可変反射面を用いたこ

ラーに必要な変形量が大きくなりすぎ、そのような、形◆ コンベンセータのパワーが大きくなるため、形状可変ミ の倍率の絶対値「n | が、上記条件式(7の上限を超え て大きくなる場合および下限を超えて小さくなる場合、

 $0.1 < |\eta| < 2.$ 条件式(8)の下限及び上限の意味は上述の条件式(7)と同

 $0.5 < |\eta| < 1.7$ 様である。

変型に要するエネルギーが大きくなるので、省エネ化に★ 形状可変反射面の光線有効径 Dが上配条件式(10)の上限 を超えて大きくなると、形状の変型最が大きくなり、面 形状の制御が困難になる。また、制御が可能であっても D < 20.0 mm

条件式(11)の下限の意味は上述の条件式(10)と同様であ D <17.0 mm

<15.0 mm

方式を採用した場合に内在していた問題を解消できるの で望ましい。バリエータとなるレンズ群は凸作用を持つ ようにすれば、広角のズームレンズが実現しやすくて良 い。また、バリエータとなるレンズ群が凹作用を持つよ 20 ペースを省くことができ携帯に邪魔になるという、手動 りにすれば、全長の短いズームレンズ系が実現しやすく

【0017】また、形状可変反射面の変型量を小さくす る為には次の条件式(7)を満足することが望ましい。

◆状を保つことが不可能であるか、あるいは可能であって も偏心収差の発生量が大きすぎるため、良好な光学性能

[0018] 更に望ましくは、次の条件式(8)を満足す

⊛ ::

ることが重要である。

40% [0020]また、形状可変反射面の光線有効径をDと するとき、次の条件式(10)を満足することが望ましい。 * [0019] 更に望ましくは、次の条件式(9)を満足す 6)... ることが重要である。 条件式(9)の下限及び上限の意味は上述の条件式(7)と同

[0021] 更に望ましくは、次の条件式(11)を満足す ることが重要である。 ★不適切である。

☆【0022】更に望ましくは、次の条件式(12)を満足す ることが重要である。

..(33)

【0034】また、上記の回転非対称な曲面形状の面で★

面が1つだけ存在する自由曲面となる。

特開2003-98435

€

可変反射面の偏心方向に対して撮像素子の長辺方向が平 *シタルカメラ苺でデザイン上のメリット等の為に、形状 条件式(12)の下限の意味は上述の条件式(10)と同様であ

に移動させて、絞り面をできる限り形状可変反射面の近 [0023] 従って、ズーム時において、絞り面を独立 くに配置すれば、形状可変反射面の光線有効径を小さく することができるため好ましい。

[0024]また、折り返しブリズムを用いて、形状可 形状可変反射面の光線有効径を小さくすることができる 変反射面への光線入射角度が小さくなるようにすれば、 ため好ましい。

[0028]また、形状可変反射面をレンズの製作課差 による光学性能の劣化を補正するような形状に変形する

ら好ましい。

ように構成すれば、不良品の数を極端に減らすことがで

[0027]また、形状可変反射面を自由曲面となるよ うに構成すれば、偏心収差の発生量を軽減できることか

行になるように配置してもよい。

[0025]なお、プリズムの屈折面ねよび反射面は 形状可変反射面で生じた偏心収差を打ち消すために、 由曲面で構成しても良い。

き、かつ、収差補正上も有利なため窒ましい。一方、デ* ば、形状可変反射面の光線有効径を小さくすることがで [0028]また、形状可変反射面の偏心方向に対し て、撮像素子の短辺方向が平行になるように配置すれ

作用のみを有するようにし、その他のレンズ群を介して [0029]その他、形状可変反射面がコンペンセータ パンフォーカスとなるようにズーム光学系を構成して き、製作コストを抑えることができる。

[0030]なお、本発明で使用する自由曲面とは次の 式(13)で定義されるものである。この定義式の2軸が自 も、小型化、低コスト化できるので良い。 由曲面の軸となる。

※K:コーニック定数(円錐定数) 2=0r2 / [1+f (1- (1+k) 02 r2)] + E C x x x x

 $\Gamma = f(X^2 + Y^2)$ N: 2以上の自然数 ことで、式(13)の第1項は球面項、第2項は自由曲面項

【0032】自由曲面項は てある, ×

[0031] 珠面項中 c:頂点の曲率

てある。

O, X" Ya -

+C11X4 +C12X2 Y+C18X2 Y2 +C14XY3 +C16Y4 +C, X3 +C8 X2 Y+C8 XY3 +C10Y3 +CAX+CBY2 EC2X+CgY

+C22x8 +C23x6 Y +C24x4 Y2 +C35x3 Y3 + C26x2 Y4 +C16x6 +C17x4 Y+O18x8 Y3 +C16x2 Y8 +C20xY4

+ c28x7 + c30x8 y + c31x5 y2 + c32x4 y3 + c38x3 y4 +C27 X Y 5 + C28 Y 6 + C 34 X 2 Y 5 + C 35 X Y 8 + C 38 Y 7

. . . .

★ある自由曲画の他の定義式として、Zernike多項 定義する。その定義式(14)の2軸が2ernike多項 式の軸となる。回転非対称面の定機は、X-Y面に対す る2の軸の高さの極座標で定義され、AはX-Y面内の 式により定義できる。この面の形状は次の式(14)により 項を全て0にすることによって、X-2面と平行な対称 Y - Z面共に対称面を持つことはないが、Xの奇数次項 を全て0 にすることによって、Y-Ζ面と平行な対称面 が1つだけ存在する自由曲面となる。また、Yの奇数次 【0033】上記自由曲面は、一般的には、X-Z面、 ただし、C, (jは2以上の整数)は係数である。

Z軸からの距離、RはZ軸回りの方位角で、Z軸から測 った回転角で表せられる。 [0035]

 $x = R \times cos(A)$

```
+D, R' cos(3A)+D, (3R' -2R) cos(A)+D<sub>1</sub>, (3R' -2R) s
                                                                                                                                                                                                                                                                         +D<sub>1</sub>, (6R' -6R' +1) +D<sub>1</sub>, (4R' -3R') sin(2A)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     +D<sub>11</sub> (5R<sup>1</sup> -4R<sup>1</sup> ) sin(3A) +D_{11}R^1 sin(5A)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           +D,, (8R* -5R*) sin(4) +D,,R'sin(64)
                                                                                                             + D_1 R^1 cos(2A)+ D_4 (R^1 - 1) + D_1 R^1 sin(2A)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        +D<sub>1</sub>, (15R' -20R' +6R') cos(2A)
+D<sub>1</sub>, (20R' -30R' +12R' -1)
                                                                                                                                                                                                                                                                                                                                                     + D<sub>1</sub>, R' cos(5A) + D<sub>1</sub>, (5 R' - 4 R') cos(3A)
+ D<sub>1</sub>, (1 0 R' - 1 2 R' + 3 R) cos(A) + D<sub>2</sub>, (1 0 R' - 1 2 R' + 3 R) sin(A)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          + D_1, (15 R^4 - 20 R^4 + 6 R^2) sin(2A)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      + D,, R*cos(6A)+ D,, (8R* -5R*) cos(4A)
                                                                                                                                                                                                                                 +D_{11}R^{+}\cos(4A)+D_{11}, (4R^{+}-3R^{2})\cos(2A)
                                                                               +D, Rcos(A)+D, Rsin(A)
                                                                                                                                                                                                   in(A)+D,,R' sin(3A)
y = R \times sin(A)
                                                                                                                                                                                                                                                                                                                + Ds. R* sin(4A)
                                       Z = D,
```

[0038]上配定義式は、回転非対称な曲面形状の面 の例示のために示したものであり、他のいかなる定義式 に対しても同じ効果が得られることは言うまでもない。 お、X軸方向に対称な光学系として設計するには、D 数学的に同値ならば他の定義で曲面形状を表してもよ ただし、D。(mは2以上の整数)は係数である。な , , D, , D, , D10, D11, D11, D11, D11, D;s, D;i, D;i…を利用する。

項を全て 0 とすることで、y - z 面と平行な対称面を持つ [0037] 本発明においては、(13)式中のxの奇数時の 自由曲面としている。

をそれぞれX, Y, Z)と、その面の中心軸(自由曲面* た、偏心面については、光学系の基準面の中心からその 面の面頂位置の偏心量(X軸方向、Y軸方向、Z軸方向 【0038】次に、本発明の実施例を図面を用いて説明 する。なお、以下の説明において、DMは形状可変反射 態、TEは望遠端、Soは物点距離を表している。ま 面、FFSは自由曲面、WEは広角端、STは中間状

なお、上記数値データに関する説明は、本発明の各実施 + by + cy + dy10

例の数値データに共通である。 [0043]第1実施例

移動させることにより変倍作用をもたせ、それにより生 実施例のズーム光学系は、物体側から順に、負パワーを 正パワーを有する第3群G3とからなり、第2群G2を 図1は本発明にかかる第1実施例のメーム光学系のレン (b)は中間状態、(c)は望遠端の状態を示している。 第1 有する第1群G1と、正パワーを有する第2群G2と、 ズ榊成を示す光軸に沿う断面図であり、(a)は広角蟷、

れぞれな、β、γ(゚))とが与えられている。その場 合、aとβとィの正はそれぞれの軸の正方向に対して反 20米 については、上記(13)式の 2軸を中心とする傾き角 (そ 時計回りを意味する.

5. その座標系がミラー面のローカル座標となる。その a、β、γの順で座標系を回転させて、定義座標系を定 [0039]また、個心の順序は、X、Y、Z方向の偏 心が行われた後、a、B、rの順で座標系を回転させ 後、反射された光線の座標系を定義するために、再び 義する。

は、d線(彼長587.56nm)に対するものを表記 【0040】また、反射面の傾きだけを示す場合も、偏 心量としてその面の中心軸の傾き角が与えられている。 [0041]また、データの記載されていない自由曲 面、非球面等に関する項は0である。屈折率について してある。長さの単位はmmである。 R

【0042】また、非球面形状は、光軸方向を2、光軸 に直交する方向をyにとり、円錐係数をk、非球面係数 をa、b、c、dとしたとき、次の式(15)で表される。

 $z = (y^2/\Gamma) / [1 + (1 - (1 + k) \cdot (y/\Gamma)^3)^{1/3}] + gy^4$

じる焦点ずれを、第1群G1中に設けた形状可変ミラー Mの反射面を介して補正することができるように構成さ れている。また、第1実施例のズーム光学系は、焦点距 3. 6 m、 繊像画のサイズが5. 3 m×4. 0 m、 広角 87. 、望遠端における水平画角が24. 91.、垂直 **端における水平画角が47.66°、垂直画角が36.** 職が6.0 m~12.0 m 開放Fナンバーが2.8~ 画角が28.07. に設計されている。

[0044]次に、第1実施例のズーム光学系の数値デ ータ及び条件式の値を示す。また、第1実施例の撮像光

င္ပ

음 る、構収差を表す収差図を図2~4に、形状可変反射面 方向画角がゼロ、Y方向画角がゼロを通る主光線のX方 2.入射する光線を示す状態説明図を図5~7 にそれぞれ 学系の広角端、中間状態、望遠端でとの各波長域におけ 差、(e)はX正方向最大画角、Y負方向最大画角を通る 示す。図2~4中、夫々(a)はX方向画角がゼロ、Y方 向画角がゼロを通る主光線のY方向の横収差、(b)はX 向の憐収差、(c)はX方向画角がゼロ、Y負方向最大画 角を通る主光線のY方向の樹収差、(d)はX方向画角が ゼロ、Y負方向最大画角を通る主光線のX方向の横収 負方向最

右向の横収差を示している。また、図5~7中、0は形 状可変反射面の中心を示している。なね、上記収差図の 大画角、Y正方向最大画角を通る主光線のY方向の構収 X方向画角がゼロ、Y正方向最大画角を通る主光線のX * X正方向最大画角、Y方向画角がゼロを通る主光線のY 差、(j)はX正方向最大画角、Y正方向最大画角を通る 正方向最大画角を通る主光線のY方向の横収差、(1)は 方向の懶収差、(h)はX正方向最大画角、Y方向画角が ゼロを通る主光線のX方向の横収登、(i)はX正方向最 主光線のX方向の横収差、(10はX方向画角がゼロ、Y の収差図に共通である。

特開2003-98435

9

説明は、本発明の実施例中の	[0045]		1 11 1
裁明	9		
カY方向の樹収差、(f)はX正方向最大画角、Y	段大画角を通る主光線のX方向の憤収差、(G)は★	数値データ1	

	数値データ1	-41				
	面番号	曲率半径	面間隔の	命ぐ	屈折率	アッベ数
•	物体面	8	8			
	Н	12.07	4.00		1.7725	49.6
	2	5.96	9.26			
	٣	FFS[1] (DM)	-4.70	(正)小街		
•	4	-170.38	-1.81		1.6968	55.5
	2	非球面[1]	-0.50			
	9	-7.91	-1.00		1.6086	36.1
	7	-5.61	М			
	80	校り面	-0.50			
	6	-7.98	8.8		1.7912	28.4
	10	3.42	4.8		1.8467	23.8
	11	-15.49	03			
	12,	非球面[2]	-2.27		1.7726	43.6
	13	10.71	-1.49			
	14	5.84	-1.00		1.8329	26.1
	15	14.65	-1.00		1.6906	
	16	-9.07	-0.53			
	17	-10.87	-3.79		1.7674	49.9
	18	非球面[3]	-0.50			
	19	8	-1.44		1.5477	8.29
	20	8	-0.80		,	
	77	8	9.0		1.5163	64.1
	22	8	-1.38			
	象	8	0.00			
[0046]		•				
		排	非球面[1]			
	4数半级	36.41				

c = -4.7211×10* $b = -6.4240 \times 10^{-1}$ 26.41 $d = 5.9844 \times 10^{-10}$ $a = 3.6555 \times 10^{4}$ $k = 0.0000 \times 10^{\circ}$ 曲率半径

非球面[2]

-18.21

由率半径

 $c = -5.1569 \times 10^{-7}$ $b = -1.8085 \times 10^{5}$ $a = -7.4468 \times 10^{-5}$ $d = 3.4693 \times 10^{\circ}$ $k = 0.0000 \times 10^{\circ}$

非球面[3]

b = 4.9251×10° c = -1.5318×10° (a) Z = 0.00 (b) T = 0.00 (c) T = 0.000 (d) T = 0.000 (e) T = 0.000 (f) T = 0.0000 (f) T = 0.0000 (f) T = 0.0000 (f) T = 0.0000 (f) T = 0.00000 (f) T = 0.000000 (f) T = 0.000000000000000000000000000000000	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	13 worth 9 worth 13 worth 13 worth 13 worth 13 worth 14 worth 14 worth 14 worth 15 w	9	14 14 14 7 7 7 1 2 1 2 1
C	7	大構成を示す光輪に沿り断回図である。 第2実施例のストナイ学系は、外体回から間に、 負いつしを有する第1 - ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	* \$25.0 0 # \$25.0 \$4.50	1のサイズが5.3mm×4. 1角が47.66.、垂直面 14はままずが流きがらょっ
1.	01 ×1626.4 - 0	# 10 1 C 、		・おいる水十画月からも・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
A	M11	り、第3群G3を移動させることにより変倍作用をせることにより変倍作用をせ、それにより生じる焦点ずれを、第1群G1中は	·	I例のスーム光学系の数値デ また、第2実施例の撮像光
### ### ### ### #####################	0.00 Z=	た形状可変ミラーMの反射面を介して補正すること	•	遺場でとの各被長域におけ
FFS[1]	0.00 T =	きるように構成されている。また、第2実施例ではそのでは、第2人の第一十十二人の人によくはついるのは、		19~11に、形状可変反射部が開放を図10~14にオ
FFS[1]		うだ構成されている。また、第2実施例のメームが	10	1、0は形状可変反射面の中
First Firs		は、焦点距離が6.0m~12.0m、開放Fナン	*	
C. = 0.0000 x10 C, = 0.0000 x1	156[1]	数値アータと 西来等 中電光路	(回)、 (回)、	科
C., = 0.0000 ×10		2000年11日十十日 2000年11日		
Figure F	$C_{11} = 0.0000 \times 10^{9}$		1.7910	18.4
FFS[1]	$C_{13} = 0.0000 \times 10^9$			
First C. = 3.7388 x U C. = 4.0785 x U C. E. E. E. E. E. E. E.			(最小(1)	9
C. = 4.7328X10" C, = -3.566X10"	-7.68		7.7723	0.6
FFE[1] C = 3.5898 x 10^* C = 4.073 x V V V V V V V V V	-2.30		1.8304	9.9
C, = 4,0771X1				
C ₁₁ =8,7318X10 ¹ C ₁₁ =8,2266XI0 ¹ 6,11=8,7318X10 ¹ C ₁₁ =8,2266XI0 ¹ 1,173 11 44,69 11 44,69 11 1,174 11 14,174 11 11 11 11 11 11 11 11 11 11	$C_{\bullet} = -4.0771 \times 10^{3}$			
10 7.67 -1.00 1.867 11 4.69 -1.00 1.867 12 4.69 -1.00 1.867 13 39.06 -1.31 14 4.13 -1.31 15 4.73 -1.00 1.346 16 -7.44 -1.346 17 4.33 -1.346 18 4.466 -1.346 19 4.73 -1.40 -1.346 10 4.73 -1.40 -1.346 10 5 5 5 5 5 10 5 5 5 10 5 5 5 10 5 5 5 10 5 5 5 10 5 10 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 1	$C_{11} = -8.7318 \times 10^{-8}$		1.7173	0.0
1	C ₁₁ = -4.8478×10 ⁴		1.8467	3.8
15			,	
FFS[1]	76 U-		1.7734	***
FF5[1] 15 49.79 -1.00 1.8467 C ₁₁ =8.358×10 ² C ₁₁ =1.355×10 ² 1.847 -1.00 1.8467 C ₁₁ =8.358×10 ² C ₁₁ =1.7746×10 ² 1.847 -0.54 -0.54 1.680 0000 12 13 +146 1.547 1.563 0000 20 0 0 -0.80 1.5163 0000 21 0 0 0 -0.80 1.5163 0000 22 0 0 0 0 -0.80 1.5163 0000 34 4 0 0 0 0 0 0 0003 4 4 0 0 0 0 0 0 0 0008 4 4 0 0 0 0 0 0 0 0 0 0008 4	-9.04		1.7346	7.7
C ₁₁ =8.3582×10 ² C ₁₁ =-7.746×10 ² C ₁₁ = -0.54 -0.54 -0.54 -0.54 C ₁₁ = -0.54 -0.54 C ₁₁ = -0.54 -0.54 C ₁₁ = -0.54	FFS[1]		1.8467	3.8
(1) 2,64 3.35 2.10 1 2.50 1.650	$C_{\bullet} = -3.2403 \times 10^{-6}$		-0.54	
18 非球面[3] -0.57 19 ○ -1.44 1.547 20 ○ -0.60 21 ○ -0.60 21 ○ -0.60 21 ○ -0.60 21 ○ -0.60 21 ○ -0.60 21 ○ -0.60 21 ○ -0.60 21 ○ -0.60 21 ○ -0.60 21 ○ -0.60 21 ○ -0.60 21 ○ -0.60 21 ○ -0.60 21 ○ -0.60 21 ○ -0.60 21 ○ -0.60 22 ○ -0.60 23 ○ -0.60 24 ○ -0.60 25 ○ -0.60 26 ○ -0.60 27 ○ -0.60 27 ○ -0.60 28 ○ -0.60 28 ○ -0.60 28 ○ -0.60 29 ○ -0.60 20 ○ -0.6	$C_{11} = -8.3582 \times 10^{-5}$		1.6820	56.1
19 ○ 1.44 1.547 19 ○ 1.44 1.547 19 ○ 1.44 1.547 19 ○ 1.44 1.547 19 ○ 1.48 1.547 19 ○ 1.48 1.547 19 ○ 1.48 1.547 19 ○ 1.48 1.547 19 ○ 1.48 1.547 19 ○ 1.48 1.547 19 ○ 1.48 1.547 19 ○ 1.48 1.547 19 ○ 1.48 1.547 19 ○ 1.48 1.5431	C., = -1.8438×10³			
20 00 1,5163 1000 11.5163 1			1.5477	22.8
000			1 5163	F 95
(10054) (10054) (10054) (10054) (10054) (10054) (10054) (10054) (10054) (10054) (10054) (10054) (100541) (100641)	= 0, 0000			
1	$ \psi y/\phi = 0.0000$	檀		
#韓面[1] 曲等半径 8.13 k = 0.0000×10 ^c 0 0 3 4	8 1	[0054]		
(中華半径 8.13 (本 - 0.0000×10 (本 - 0.	D=13.00 mm		非球面[1]	
R = 0.0000×10*				
3.00034 a=-2.4592×10* b=7.1762×10* 3 mm 対策値[2] mm m事半径 -13.07 k=0.000×10* 5.00041 a=-6.6592×10* b=2.1510×10* 6=5.5059×10* 対策値[3] nm nm 対策値[3]				
ローバル25×10 非球面[2] 田本学経 -13.07 1. 00069 1. 00041 1. 00041 2. 1510×10** 4 = 5.5059×10** 4 = 5.5059×10** 1年 第 回 5.5059×10** 1年 5.505				
	1 1 2 2 2 2 2 2 2 2		非球面[2]	
00069 00041 d = -6.6592×10 ¹ b = 2.1610×10 [*] d = 5.5059×10 ¹⁰ j株面[3]		-13.07		
00041 d=5.5592×10' b=2.1610×10' d=5.5059×10' b=2.1610×10' j球面[3]	$ \psi x/\phi = 0.00069$	õ	•	
d = 5.5059×10 ^{-1*} 非球面[3] co 1081+*発用にかかえ前り単弦回のブール学学なのし、、	$ \psi y/\phi = 0.00041$			
び	n = 1.18		[: :	
	Š		非球面[3]	

	Ť.	(6)		特開2003-98435 16	٠		ţ	ij	(10)		特開2003-	-98435
	k = 0.0000×10°			1			J=6. 40	mm			QT	
	$a = -2.6909 \times 10^{-1}$ $d = 1.3787 \times 10^{-1}$	$b = 7.0023 \times 10^{-5}$	$c = -1.7726 \times 10^{\circ}$			[0060] <u>第3実施例</u> 図15は木発用にかわる	施例かる無の実施	【0060】 <u>第3実施例</u> 図1527本発用アかも2類3事体図のブー1米彩系の1	※2.0mm、斑	散Fナンバー Se amm	2. 0mm、超校Fナンバーが2. 8~3. 8mm、接着的でキノナなの、9mm×4 0mm けも誓いない	8 mm、協
[0055]						1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	に沿った西図	である。第3実施例の	5水平画角が47.	7.66	66. 、垂直面角が36.87。	6.87°.
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	t				ズーム光学系は、物	体側から順に、	ズーム光学系は、物体側から順に、負パワーを有する第	望遠端における	,水平画角が	望遠端における水平画角が24.91。、垂直画角が2	垂直画角が2
	 - 0	= 7				1群G1と、正パワ	ーを有する第一	1群G1と、正パワーを有する第2群G2と、正パワー	8.07。 に設計されている。	響されてい	٠ <u>٠</u>	1
[0056]		0.00 7 - 0.00				を有する第3群G3 スアンア F P を住存	とからなり、ジェルを表がせ、	を有ずる第3群G3とからなり、第2群G2を移動させるアナンに FN座仏作田をまた せっそわい FN生じえ曲占	[006]]次	(代、第3実)の値を示す	【0061】次に、第3実施例のスーム光学系の数値データ及2%条件式の値を示す。また、第3事時回の場像券	学系の数値が 軸屋∈越き 券
	[WE]					ずれを、第1群の1	mをもんを、 中に設けた形	らここれのシスにIFERものたと、これにネッエンの展示ずれを、第1群G1中に設けた形状可変ミラーMの反射	イベク米ドグル・	で置えば、中間状態、	- イダン米ド式ショイル)。また、おう女組64つ180米ル学系の広角端、中間状態、望遠端にとの各波長域におけ	順列の職業の被母域の基本の
	01: -3.61					面を介して補正することができるように構成されてい	ことができる。		10 る、 横収差を表	きず収差図を	る、横収差を表す収差図を図16~18に、形状可変反	、形状可変反
						る。また、第3実施	例では、その	る。また、第3実施例では、その際、ミラー径を小さく	射面に入射する	光線を示す	射面に入射する光線を示す状態説明図を図19~21に	19~2110
	03 : -0.50	EEC[1]				する為に、第1群G	1年にプリズ	する為に、第1群G1中にプリズムPを設け、形状可変、4~、2000年11日2~1日4日2日2日2日2日2日2日2日2日2日2日2日2日2日2日2日2日2日2日	それぞれ示す。	図19~2	それぞれ示す。図19~21中、〇は形状可変反射面の干にション・ディー・チェン・ディー・新り出す図書	可変反射面の面、色面は
	$C_{\star} = 0.0000 \times 10^{\circ}$	$C_{\bullet} = 0.0000 \times 10^{\circ}$	$C_s = 0.0000 \times 10^6$		ĺ	ミターMの反射画への入射用が小さくなるようにしてる。この入射角は55.以下で構成することが望まし	の人野用が小5.以下で構	ミクーMの反射国への入射月か小さくなるようたしている。 との入射角は55.以下で構成することが望まし	中でやかしては、第3面の歴	る。なお、 を標を原点と	中心を示している。なお、弟3英祐例では、毎心の夙点は、第3面の座標を原点とし、第9面以降は、偏心	、毎じの原点は、毎心
	$C_{10} = 0.0000 \times 10^{\circ}$	$C_{11} = 0.0000 \times 10^{\circ}$	$C_{13} = 0.0000 \times 10^{9}$		<u></u>	く、40。以下で構成すると更に望ましい。また、第一中年間でチェッルやおい。 せんにはいい	成すると更にまず 毎4時	く、40°以下で構成すると更に望ましい。また、第3年は耐くナラシンがおけ、出来がは、4年に解析の「クーニ」		点としてい	5.	
[0057]	011000000					米地でライータルナ	ボは、焦点時数値データ3					
	[ST]						大学 中華 田本	曲率半径	面間隔 偏心	正作品	アッベ数	
	01: -7.87							i - 8			£	
	12: -5.94							15.38	3.80	1.7368	52.0	
	D3: -4.27						2	7.14	3.42			
							3 FFS[1]	豆		1.5254	56.2	
	C, =-3.1575×10°		_	0-1			4	8	0.00 億心(1)	1.5254	56.2	
	$C_{10} = -5.407 \times 10^{\circ}$	$C_{11} = -1.0082 \times 10^{\circ}$	r C1, =-3.9100×10'	10'			5 FFS[2]	[2]				
n 0 0	$C_{13} = -5.3885 \times 10^{\circ}$						6 FFS[3]	E. :				
796001	(TE)						7 FFS[2]	Z 8	0.00 (年)(2)	1.5254	29.5	
	90.						0 0	3 (
							10 非数	6.33 建铁面[1]	1.00	1.656/	7.75	
							; ;	9.80	1.23	1.8466	23.8	
		FFS[1]			*		. 71	16.88	150		<u> </u>	
	C, =-1.5681×10*			10.	j		13 較り面	囲	0.50			
	C1, =-3.0864×10°	C ₁₁ = -6.5207×10°	r' C _{1,} =-7.6455×10°	10 '			14	6.30	3.80	1.7748	32.0	
900	$C_{11} = -9.9537 \times 10^{-8}$	•						-2.65	3.80	1.8466	23.8	
160001	各年代の値						16 2 17 非韓	26.15 非缺而[2]	D2 1 93	4004	2 23	
	[WE]							5.26	3.30	2	:	
	$ \psi x/\phi = 0.$	0000					19	7.19	3.64	1.7612	49.9	
		0000					0Z	-30.76	1.00	1.8459	23.8	
	n = 0.82			•				16.83	0.56			
	D = 9.20 mm						22	18.17	2.19	1.6821	56.1	
	[ST]	1						非球面[3]	0.50			
	$ \psi \mathbf{x}/\phi = 0.00265$	00265					24	8	1.44	1.5477	87.8	
	\psi \psi \psi \psi \psi \psi \psi \psi \psi \psi \psi \psi \psi	90000					52	8	0.80			
	n = 0.89						92	. 8	0.60	1.5163	64.1	
	D=9.27 mm [TF]						~	8 1	1.39			
	φ ! = 0.	00198				[0082]	睡	8	0.00			
		00168						非球面[1]	17			
				-			曲率半径	3.91	r			

(12) 特開2003-98435	FFS[3] C ₄ =-9.6676×10° C ₄ =-1.5055×10° C ₄ =-1.9864×10 C ₁₀ =1.6222×10° C ₁₁ =1.3029×10° C ₁₁ =2.7205×10° C ₁₁ =9.9496×10°	【0088】 条件以の個 【WE】 サ×/ カ = 0.0000 ウッ/ カ = 0.0000	$ n = 0.69$ $D = 9. 20 mm$ $[ST]$ $ \psi \times / \psi = 0.00267$ $ \psi \times / \psi = 0.01004$ $ n = 0.81$ $D = 7.08 mm$ $[TE]$ $ \psi \times / \psi = 0.01219$	*	
(11) 特開2003-98435 19	10×10° 168×10° b=-2.1917×10° c=1.6701×10° 142×10° 非球面[2]	曲率半径 161.20 k = 0.0000×10° a = 1.0967×10° b = 1.8687×10° c = 6.3331×10° d = -3.1901×10° 非球面[3]	曲事半後 -5.27 $k = 0.000 \times 10^{\circ}$ $a = 5.7769 \times 10^{\circ}$ $b = -1.9362 \times 10^{\circ}$ $c = 8.0712 \times 10^{\circ}$ $d = -4.6917 \times 10^{\circ}$ $d = -4.908 \times 10^{\circ}$ d	$C_{\bullet} = -3.8674 \times 10^{\bullet} C_{\bullet} = -4.3299 \times 10^{\bullet} C_{\bullet} = 5.3805 \times 10^{\circ}$ $[0.0.6.4] \qquad (4) (4$	[WE] II: 6.09 II: 6.09

```
特開2003-98435
                                                                                                                                                                                                                       C, =-1.3688×10°
                                                                                                                                                                                                                                                                                                                                           C, =-1.3665×10°
                                                                                                                                                                                                                                                                                                                                                                                                                                                            C, =-2.1052×10° C, =-1.6682×10°
                                                                                                   C_{\bullet} = 0.0000 \times 10^{\circ}
                                                                                                                                                                                                                                                                                                                                          C. =-2.0527×10*
                                                                                                                                                                                                                     C, =-1.7444×10*
                                                                                                   C_{\bullet} = 0.0000 \times 10^{\circ}
   3
                                                                                                                                                                                                                                                                                                                           FFS[1]
                                                                                                                                                                                                                                                                                                                                                                                                                                              FFS[1]
                                                                                                                                                                                                      FFS[1]
                                                                                   FFS[1]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         [ST / So=300mm]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     WE / So=300mm]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      \psi x/\phi | = 0.00346
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |\phi y/\phi| = 0.00173
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 \psi y/\phi | = 0.00000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   \psi x/\phi |=0.00000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    \psi y/\phi |=0.00000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     \psi x/\phi = 0.00243
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      \psi y/\phi | = 0.00243
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                \psi x/\phi |=0.00000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | \phi y / \phi | = 0.0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               \phi x/\phi | = 0.0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ST / So=∞mm]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   TE / So=∞mm]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              [WE / So=∞mm]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 D=10.33 mm
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     D=10.49 mm
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0=12.75 \text{ mm}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                D=12.75 mm
                                                                                                                                                                                                                                                                                                                                          C, =-4.1117×10°
                                                                                                                                                                                                                                                                                                                                                                                                                                                              C, =-4.2915×10*
                                                                                                                                   [WE / So = 300m]
                                                                                                                                                                                                                     C, =-3.8497×10*
                                                                                                                                                                                                                                                     [ST / So = 300m]
                                                                                                                                                                                                                                                                                                                                                                         [TE / So=300mm]
                                                                                                 C_{\bullet} = 0.0000 \times 10^{\circ}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                \eta = 0.67
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   \eta | = 1.06
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     \eta | = 1. 60
                                                                                                                                                                                                                                                                                                                                                                                                             -1.30
                                   -0.80
                                                                                                                                                                                                                                                                         01: -6.20
                                                                                                                                                                                                                                                                                       D2 : -5.24
                                                                                                                                                                                                                                                                                                                                                                                            01: -0.80
                                                                                                                                                     01: -14.38
                                                                                                                                                                    02: -2.56
                                                                                                                                                                                    D3: -8.20
                                                                                                                                                                                                                                                                                                         03: -13.70
                                                                                                                                                                                                                                                                                                                                                                                                                             D3: -23.04
                                                  02: -1.30
                                                                   03: -23.04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               条件式の値
                  52
                                   ..
15
                                                                                                                                                                                                                                      [0078]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             [0800]
                                                                                                                   [0077]
                                                                                                                                                                                                                                                                                                                                                          [0079]
 特開2003-98435
                                                                                                   62.8
                                   51.4
                                                                   70.1
                                                                                                                                    64.1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        C_{\bullet} = 0.0000 \times 10^{\circ}
                                                                   1.4878
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               C_s = 0.0000 \times 10^8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      C_{\bullet} = 0.0000 \times 10^{\circ}
                                   1.7454
                                                                                                   1.5477
                                                                                                                                    1.5163
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              C_{11} = 0.0000 \times 10^{9}
                                                                                                                                                                                                                                                                                                                                                                                                                             c = 1.0897 \times 10^{\circ}
                                                                                                                                                                                                                                                        c = 4.6008 \times 10^{\circ}
                                                                                                                                                                                                                                                                                                                                           c = 3.4132 \times 10^{\circ}
                                                                               -0.50
                                                                                                                                    9.09
                                                                                                                                                    -1.34
                                                                   9.00
                                                                                                   -1.44
                                                                                                                   08.0
                                                                                                                                                                     0.0
                                                  8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              C_{\bullet} = 0.0000 \times 10^{\circ}

C_{\bullet,\bullet} = 0.0000 \times 10^{\circ}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    C_b = 0.0000 \times 10^{\circ}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        C_{\bullet} = 0.0000 \times 10^{\circ}
                                                                                                                                                                                                                                                                                                                                                                                                                             b = -1.2533 \times 10^{4}
                                                                                                                                                                                                                                                     b = -9.0911 \times 10^7
                                                                                                                                                                                                                                                                                                                                           b = -1.2811 \times 10^7
                                                                                                                                                                                       10
   \widehat{\Xi}
                                                                                                                                                                                                                                                                                       非球面[2]
                                                                                                                                                                                                                                                                                                                                                                         非球面[3]
                                                                                                                                                                                                     非球面[1]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                X = 0.00 Y = 0.00 Z = 0.00

\alpha = 45.00 \beta = 0.00 \gamma = 0.00
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               FFS[1]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      FFS[1]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         FFS[1]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 (日)小(1)
                                                                                                                                                                                                                       -6.52
                                                                                                                                                                                                                                                                     d = -7.2232 \times 10^{10}
                                                                                                                                                                                                                                                                                                      曲率半径 -26.78
                                                                                                                                                                                                                                                                                                                                                          d = -5.8522 \times 10^{-10}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              C_4 = 0.0000 \times 10^9
C_{1,0} = 0.0000 \times 10^9
                                                                                                                                                                                                                                                                                                                                                                                           曲率半径 118.63
                                                                                非球面[3]
                                                                                                                                                                                                                                                                                                                                                                                                                               B = -3.4192 \times 10^{4}
                                                                                                                                                                                                                                                                                                                                                                                                                                           d = -3.5236 \times 10^7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 [WE / So=∞]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    C_{\bullet} = 0.0000 \times 10^{\circ}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   [ST / So=∞]
                                  -58.64
                                                                                                                                                                                                                                       k = -8.4413 \times 10^{-1}
                                                                                                                                                                                                                                                                                                                           k = -4.1909 \times 10^{-1}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            C_{11} = 0.0000 \times 10^{9}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        C_{\bullet} = 0.0000 \times 10^{\circ}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         [TE / So=∞]
                                                 -57.48
                                                                 -53.58
                                                                                                                                                                                                                                                        a = 3.1018 \times 10^{-1}
                                                                                                                                                                                                                                                                                                                                           a = 6.8294 \times 10^{5}
                                                                                                                                                                                                                                                                                                                                                                                                             k = -7.3566 \times 10^{3}
                                                                                                   8
                                                                                                                    8
                                                                                                                                    8
                                                                                                                                                    8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       02: -5.24
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        D1: -6.20
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      03: -13.70
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   01: -14.38
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     12: -2.56
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     03: -8.20
                  23
                                                                                                                                                                                                                    抽率半径
                                                                                                                                                                 霰
                                                                                89
                                                                                                 61 02
                                                                                                                                   77
                                                                                                                                                    22
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       [0078]
                                                                                                                                                                                   [0071]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     [0075]
```

[0072]

[0073]

[0074]

D=10.33 mm

[TE / So=300mm] $\psi x/\phi | = 0.00541$

 $|\psi y/\phi| = 0.00265$

D=10.49 mm

上記実施例では、軸上物体からの軸上入射光と、同光線 が撮像案子へ入射する時の光線との成す角が、90。 ± 5. あるいは60. ±5. になっている。このようにす [0081]以上のような本発明によるズーム光学系 ることで機械設計が容易になるメリットがある。

ミラーを上記実施例に用いても良い。なお、可変焦点ミ 携帯端末用のカメラ、監視カメラ、ロボットの眼、電子 内視鏡等に適用可能である。また、上述のズーム光学系 では、レンズ群中に反射面を有する構成のズーム光学系 について説明したが、反射面を有しない構成のズーム光 可変焦点レンズ等を用いて構成すれば、小型化、低コス ト化、省電力化、作動音の静音化等の効果を達成すると とが可能である。更に、可変形状面を有しない可変焦点 [0082]次に、本発明のメーム光学系に適用可能な ラーについては、その一例を図54を用いて後述する。 フィルムカメラ、デジタルカメラ、テレビカメラ、 学系についても可変形状面を備えた光学索子、例えば **可変ミラー、可変焦点レンズの構成例について説明す**

[0083]図29は本発明のズーム光学系に適用可能 る。本実筋例の構成は、もちろん、銀塩フィルムカメラ にも使うことができる。まず、光学特性可変形状貌40 な可変ミラーとして光学特性可変ミラーを用いたデジタ ルカメラのケブラー式ファインダーの蝦略構成図であ 9について説明する。

それ接続された複数の可変抵抗器、412は可変抵抗器 で、これらは図示のように配散されて1つの光学装置を 09 bからなる光学特性可変形状鏡(以下、単に可変形 状鏡と言う。) であり、411は各電極409bにそれ 411と電源スイッチ413を介して薄膜409aと電 極409b間に接続された電源、414は複数の可変抵 5. 416及び417はそれぞれ演算装置414に接続 [0084] 光学特性可変形状鏡409は、アルミコー ティングされた碑葭(反射面)409aと複数の電極4 **抗器411の抵抗値を制御するための演算装置、41** された温度センサー、湿度センサー及び距離センサー 構成している。

S を有する非球面、対称面を1つだけ有する非球面、対称 する面等、いかなる形状をしていてもよく、さらに、反 [0085]なお、対物レンズ902、接眼レンズ90 てもよく、球面、回転対称非球面の他、光軸に対して偏 心した球面、平面、回転対称非球面、あるいは、対称面 面のない非球面、自由曲面、微分不可能な点又は椒を有 5、ミラー406及び可変形状鏡の各回は、平面でなく 1、及び、ブリズム404、二等辺直角ブリズム40

[0086]また、禪驥409aは、例えば、P.Rai-ch achininG and Michrofabrication, Volume 2:Michroma chininG and Michrofabrication, P495, FiG. 8.58, SPI E PRESS刊やOptics Communication, 140巻(1997年)PI 討面でも屈折面でも光に何らかの影響を与え得る面なら oudhury相、Handbook of MichrolithoGraphy, Michrom ばよい。以下、これらの面を総称して拡張曲面という。 に、複数の電極409bとの間に電圧が印加されると、 87~19047記載されているメンブレインミラーのよう 2

化するようになっており、これにより、観察者の視度に 形及び光学素子、枠等の部品の粗立觀差による結像性能 の低下が抑制され、常に適正にピント調整並びにピント 静電気力により薄膜4098が変形してその面形状が変 合わせたピント調整ができるだけでなく、さらに、レン ズ901,902及び/又はブリズム404、二等辺直 角ブリズム405、ミラー408の温度や湿度変化によ る変形や屈折率の変化、あるいは、レンス枠の伸縮や変 調整で生じた収差の補正が行われ得る。なお、電極40 9bの形は、例えば図31、32に示すように、薄膜4 098の変形のさせ方に応じて遠へばよい。

2

[0087] 本実施例によれば、物体からの光は、対物 レンズ902及びプリズム404の各入射面と射出面で 田折され、可変形状鎖409で反射され、ブリズム40 て光線が進むことを示している。)、ミラー406で反 射され、接眼レンズ901を介して眼に入射するように これらの各光学衆子の面形状と肉厚を最適化することに より、物体面の収差を最小にすることができるようにな 4を透過して、二等辺直角ブリズム405できらに反射 され (図29中、光路中の+印は、 紙面の裏側へ向かっ なっている。このように、レンズ901,902、ブリ **ズム404,405、及び、可変形状鏡409によっ** て、本実施例の光学装置の観察光学系を構成しており、

[0088] すなわち、反射面としての薄膜409aの 形状は、結像性能が最適になるように演算装置414か ちの信号により各可変抵抗器411の抵抗値を変化させ へ、温度センサー415、湿度センサー416及び距離 サンサー417から周囲温度及び湿度並びに物体までの は、これらの入力信号に基づき周囲の温度及び湿度条件 **蓴膜409aの形状が決定されるような電圧を電極40** 9 b に印加するように、可変抵抗器411の抵抗値を決 亜饆に応じた大きさの信号が入力され、演算装置414 と物体までの距離による結像性能の低下を補償すべく、 ることにより制御される。 すなわち、演算装置414 5

定するための信号を出力する。このように、薄膜409

特開2003-98435

9

a は電極40g b に印加される電圧すなわち静電気力で 変形させられるため、その形状は状況により非球面を含 む様々な形状をとり、印加される電圧の極性を変えれば 凸面とすることもできる。なお、距離センサー417は なくてもよく、その場合、固体撮像案子408からの像 の信号の商周波成分が略最大になるように、デジタルカ メラの撮像ワンズ403を動かつ、その位置から逆に物 体距離を算出し、可変形状鏡を変形させて観察者の眼に ピントが合うようにすればよい。

[0089]また、薄膜409aをポリイミド等の合成 低電圧でも大きな変形が可能である ので好都合である。なお、ブリズム404と可変形状鏡 109を一体的に形成してユニット化することができ 樹脂で製作すれば、

合、薄膜409aには圧電素子409cの変形に伴う応 力が加わるので、薄膜409aの厚さはある程度厚めに

2

れ、ピント合わせ、温湿度補償等が行われる。この場

9の基板上に固体撮像素子408をリソグラフィーブロ 【0090】また、図示を省略したが、可変形状鏡40 セスにより一体的に形成してもよい。

してもよく、このように構成すれば、さらに精度の良い 等で形成することにより任意の所望形状の曲面を容易に 形成することができ、製作も簡単である。なお、本実施 09を設計すれば、ブリズム404,405、可変形状 04, 405、ミラー408は、プラスチックモールド 例の撮像装置では、レンズ901,902がブリズム4 04から離れて形成されているが、レンズ901,90 2を設けることなく収差を除去することができるように ブリズム404,405、ミラー406、可変形状劔4 競409は1つの光学ブロックとなり、粗立が容易とな 5。また、レンズ901,902、ブリズム404,4 05、ミラー406の一部あるいは全部をガラスで作製 [0091]また、レンズ901, 902、プリズム4 撮像装置が得られる。

温度センサー415、温度センサー418、距離センサ ―417を設け、温湿度変化、物体距離の変化等も可変 形状鏡409で補償するようにしたが、そうではなくて **観察者の視度変化のみを可変形状鏡40gで補正するよ** [0092]なお、図29の例では、演算装置414、 5、湿度センサー418、距離センサー417を省ま、 もよい。つまり、演算装置414、温度センサー41 ろにしてもよい。

し、図32に示すように、矩形分割であってもよく、そ [0093]図30は本発明のズーム光学系にかかる可 の形は、図31に示すように、同心分割であってもよい 変ミラーとして適用可能な可変形状鏡409の他の実施 が介装されていて、これらが支持台423上に設けられ ている。そして、圧電紫子409cに加わる電圧を各電 **匦409b毎に変えることにより、圧電素子409cに** 部分的に異なる伸縮を生じさせて、薄膜409aの形状 を変えることができるようになっている。 電極409b 薄膜409aと電極409bとの間に圧電素子409c 朔を示す蝦略構成図である。本実施例の可変形状貌は、

の他、適宜の形のものを選択することができる。 図30 センサーであって、例えばデジタルカメラの振れを検知 し、振れによる像の乱れを補償するように蹲膜409g 中、424は演算装置414に接続された振れ(ブレ) を変形させるべく、演算装置414及び可変抵抗器41 5。このとき、温度センサー415、湿度センサー4 1を介して電極409bに印加される電圧を変化させ 8及び距離センサー417からの信号も同時に考慮さ

[0094] 図33は本発明のズーム光学系にかかる可 変ミラーとして適用可能な可変形状鎖409のさらに他 の実施例を示す概略構成図である。本実施例の可変形状 蘭は、薄膜409aと電極409bの間に介置される圧 **電素子が逆方向の圧電特性を持つ材料で作られた2枚の** 圧電素子409c及び409c、で構成されている点 で、図30に示された実施例の可変形状鏡とは異なる。 作られて相応の強度を持たせるようにするのがよい。

晶で作られているとすれば、枯晶軸の向きが互いに逆に で、薄膜4098を変形させる力が図30に示した実施 すなわち、圧電素子409cと409c,が強誘電性結 なるように配置される。この場合、圧電索子409cと 州の場合よりも強くなり、結果的にミラー表面の形を大 409c,は電圧が印加されると逆方向に伸縮するの きく変えることができるという利点がある。 2

»化ポリピニール (PVDF) 等の有機圧電物質、上記 が小さく、低電圧でも大きな変形が可能であるので、好 ましい。なお、これらの圧電索子を利用する場合、厚さ を不均一にすれば、上記実施例において薄膜409aの [0095]圧電素子409c, 409c, に用いる材 木晶、電気石、リン酸二水素カリウム(KDP)、リン 酸二水素アンモニウム (ADP)、ニオブ酸リチウム等 の圧電物質、同物質の多結晶体、同物質の結晶、PbZ 以外の強誘電体等があり、特に有機圧電物質はヤング率 4としては、例えばチタン酸パリウム、ロッシエル塩、 r O, とPbTiO, の固容体の圧電セラミックス、ニ 形状を適切に変形させることも可能である。 8

買としては、ポリウレタン、シリコンゴム、アクリルエ ラストマー、PZT、PLZT、ポリフッ化ビニリデン (PVDF) 等の高分子圧電体、シアン化ビニリデン共 [0096]また、圧電素子409c, 409c'の材 食合体、ピニリデンフルオライドとトリフルオロエチレ /の共重合体等が用いられる。 圧電性を有する有機材料 P、圧電性を有する合成樹脂、圧電性を有するエラスト 7一等を用いると可変形状鏡面の大きな変形が実現でき

9

電歪材料、例えば、アクリルエラストマー、シリコンゴ [0097]なお、図30、34の圧電繋子409cに ム等を用いる場合には、圧電索子409cを別の基板4 S

09c-1と電重材料409c-2を貼り合わせた構造

に、支持台423上に設けられた電極409かにも演算 圧が印加されるように構成されている。したがって、本 変ミラーとして適用可能な可変形状貌409のさらに他 とにより抉持され、薄膜409aと電極409d間に演 算装置414により制御される駆動回路425を介して **電圧が印加されるようになっており、さらにこれとは別** 装置414により制御される駆動回路425を介して電 される電圧と電極409bに印加される電圧による静電 気力とにより二重に変形され得、上記実施例に示した何 [0098]図34は本発明のメーム光学系にかかる可 の実施例を示す蝦路構成図である。本実施例の可変形状 **歳は、圧電素子409cが薄膜409aと電極409d** 実施例では、薄膜409aは電飯409dとの間に印加 れのものよりもより多くの変形バターンが可能であり、 かつ、応答性も遠いという利点がある。

変形させることができる。その場合、大きな変形を圧電 電圧の符号を変えれば、可変形状鏡を凸面にも凹面にも 効果で行ない、微細な形状変化を静電気力で行なっても よい。また、凸面の変形には圧電効果を主に用い、凹面 09 dは電極4 09 bのように複数の電極から構成され は、圧電効果と電査効果、電歪をすべてまとめて圧電効 果と述べている。従って、電歪材料も圧電材料に含むも 【0099】そして、薄膜409a、電極409d間の の変形には静電気力を主に用いてもよい。なお、電極4 てもよい。この様子を図34に示した。なお、本願で 0255.

変ミラーとして適用可能な可変形状鎖409のさらに他 鏡は、電磁気力を利用して反射面の形状を変化させ得る トで作られた薄膜409aが付設されていて、可変形状 7はそれぞれ駆動回路428を介して演算装置414亿 14からの出力信号により、各駆動回路428から各コ [0100]図35は本発明のズーム光学系にかかる可 の実施例を示す槪略構成図である。本実施例の可変形状 磁石426が、頂面上には窒化シリコン又はポリイミド 鏡409を構成している。基板409eの下面には複数 のコイル427が配設されており、これらのコイル42 磁石426との間に働く電磁気力で各コイル427は反 発又は吸着され、基板409e及び障膜4098を変形 ようにしたもので、支持台423の内部底面上には永久 において求められる光学系の変化に対応した演算装置4 イル427亿それぞれ適当な電流が供給されると、永久 り、基板409eの表面にはアルミニウム等の金属コー 6, 417, 424か5の信号によって演算装置414 接続されている。したがって、各センサー415,41 等からなる基板409eの周縁部が截置固定されてお

ន る量の電流を流すようにすることもできる。また、コイ [0101] この場合、各コイル427はそれぞれ異な

ル427は1個でもよいし、永久磁石426を基板40 9 e に付穀しコイル427を支持台423の内部底面側 **に設けるようにしてもよい。また、コイル427はリソ** グラフィー等の手法で作るとよく、さらに、コイル42 7 には強磁性体よりなる鉄心を入れるようにしてもよ

るようにすることもできる。また、コイル427は1個 図36に示すように、場所によって変化させることによ でもよいし、また、これちのコイル427亿は強磁性体 り、基板409e及び薄膜409aに所望の変形を与え [0102] この場合、薄膜コイル427の巷密度を、 よりなる鉄心を挿入してもよい。

[0103]図37は本発明のズーム光学系にかかる可

を変えることができ、 基板4096及び薄膜4098の 変ミラーとして適用可能な可変形状鏡409のさらに他 り、反射膜としての薄膜4098はアルミニウム等から イッチに置換すれば、コイル427に流れる電流の方向 5 に示した実施例にも適用することができる。なお、図 の配置を図39に示したようにした場合に適する永久礎 に示した実施例に比べて、微妙な変形を基板409e及 **に電磁気力を用いて基板409e及び薄膜409aを変** 力を用いた場合よりも低電圧で駆動できるという利点が の実施例を示す概略構成図である。本実施例の可変形状 なっている。この場合、環膜コイルを設けなくてもすむ から、構造が簡単で、製造コストを低減することができ る。また、電源スイッチ413を切換え兼電源開閉用ス 形状を自由に変えることができる。図38は本実施例に **おけるコイル427の配置を示し、図39はコイル42** 7の他の配置例を示しているが、これらの配置は、図3 40は、図35に示した実施例において、コイル427 石426の配置を示している。すなわち、図40に示す ように、永久磁石426を放射状に配置すれば、図35 **び</mark>薄膜409a に与えることができる。また、このよう** 形させる場合(図35及び図37の実施例)は、静電気 鏡では、基板409eは鉄等の強磁性体で作られてお 2 20

い形状とするのが好ましく、このように構成すれば、収 いて可変形状鏡を変形させてもよい。 つまり2つ以上の ば、大きな変形と微細な変形とを同時に実現でき、精度 の良い鏡面が実現できる。また、形状可変ミラーの変形 する部分の外形は、軸上光線の入射面に平行な方向に長 **豊補正に有利な楕円面に近い形状に変形させやすいとい** 【0104】以上いくつかの可変形状鏡の実施例を述べ たが、ミラーの形を変形させるのに、図34の例に示す ように、2種類以上の力を用いてもよい。つまり静電気 場、温度変化、電磁波等のうちから2つ以上を同時に用 **り利点がある。上記入射面に長い形状としては、トラッ** 力、電磁力、圧電効果、磁歪、流体の圧力、電場、磁 異なる駆動方法を用いて光学特性可変光学素子を作れ ク形状、多角形、楕円等が利用できる。

04では、レンズ102を通った物体からの光は可変形 の撮像系は、可変形状鏡409と、レンズ802と、固 スーム光学系を用いた損像装置に適用可能な可変 ラーとして可変形状貌409を用いた撮像系、例えば携 徹、パソコン用デジタルカメラ、PDA用デジタルカメ ラ等に用いられる撮像系の蝦略構成図である。本実植例 体撮像素子408と、制御系103とで一つの損像ユニ ット104を構成している。本実施例の撮像ユニット1 状鏡409で集光され、固体撮像素子408の上に結像 rる。可変形状鏡40gは、光学特性可変光学素子の一 [0105]図41は本発明のさらに他の実施例に係 帯電話のデジタルカメラ、カブセル内視線、電子内視 **埋であり、可変焦点ミラーとも呼ばれている。**

09を複数用いることでズーム、変倍の撮像系、光学系 を作ることができる。なお、図41では、制御系103 にコイルを用いたトランスの昇圧回路を含む制御系の構 気を用いる可変形状鏡、可変焦点レンズに用いることが できるが、特に静電気力、圧電効果を用いる場合の可変 [0108] 本実施例によれば、物体距離が変わっても 可変形状鏡409を変形させることでピント合わせをす また、撮像ユニット104は本発明の撮像系としてすべ ての実施例で用いることができる。また、可変形状貌4 と、小型化できてよい。昇圧回路は本発明のすべての電 く、小型化、軽量化、低消費電力化の点で優れている。 ることができ、レンズをモータ等で駆動する必要がな 成例を示している。特に積層型圧電トランスを用いる 形状鏡、可変焦点レンズに有用である。

クロボンブ180で流体181を出し入れし、ミラー面 [0107]図42は本発明のズーム光学系に係る可変 を変形させる可変形状鏡188の観路構成図である。本 実施例によれば、ミラー面を大きく変形させることが可 能になるというメリットがある。マイクロボンブ180 シンの技術で作られたポンプの例としては、熱変形を利 は、例えば、マイクロマシンの技術で作られた小型のポ ンプで、電力で動くように構成されている。マイクロマ 用したもの、圧電材料を用いたもの、静電気力を用いた ミラーとして適用可能なさらに他の実施例に係る、マイ ものなどがある。

戦略構成図である。本実施例のマイクロボンブ180で* 変ミラーに適用可能なマイクロボンブの一実施例を示す [0108]図43は本発明のズーム光学系に用いる可

2 n m ≦ D ≦ λ ∕ 5

程度以上であるので、平均の直径Dの下限値は、2 n m 18の境界面で光が散乱して高分子分散液晶層514が とする。すなわち、液晶分子517の大きさは、2nm にも依存するが、入に比べて大きいと、商分子の屈折率 不透明になってしまうため、後述するように、好ましく と液晶分子517の屈折率との差により、高分子セル5 1の光軸方向における商分子分散液晶層514の厚さも 以上とする。また、Dの上限値は、可変焦点レンズ5

た、点線は変形した時の振動板181を示している。 版 助板181の版動に伴い、2つの弁184,185が開 くは、振動板181は静電気力、圧電効果等の電気力によ り振動する。図43では静電気力により振動する例を示 しており、図43中、182、183は電極である。ま 閉し、流体161を右から左へ送るようになっている。

待開2003-98435

(T8

[0109] 本実施例の可変形状観188では、反射膜 で、可変形状鏡として機能する。可変形状鏡188は流 体161で駆動されている。流体としては、シリコンオ イル、空気、水、ゼリー、等の有機物、無機物を用いる 89が流体161の量に応じて凹凸に変形すること

ことができる。

に示すように、昇圧用のトランス、あるいは圧電トラン ス等を用いて制御系を構成するとよい。また、反射用の 【0110】なお、静電気力、圧電効果を用いた可変形 **状鏡、可変角点レンズなどにおいては、駆動用に高電圧** が必要になる場合がある。その場合には、例えば図41 変形状貌の形状を干渉計等で測定する場合に、基準面と **蓴膜409aは、変形しない部分にも設けておくと、** して使うことができ便利である。

この可変焦点レンズ511は、第1、第2の面としての 09 bを有する第2のレンズ512 bと、これらレンズ 間に透明電極513a, 513bを介して設けた商分子 分散液晶層514とを有し、入射光を第1,第2のレン ズ512g,512bを経て収束させるものである。遊 交流電源516に接続して、商分子分散液晶層514に 交流電界を選択的に印加するようにする。なお、髙分子 分散液晶層 5 1 4 は、それぞれ液晶分子 5 1 7 を含む球 18を有して構成し、その体情は、高分子セル518を **常成する商分子および液晶分子517がそれぞれ占める** [0111]図44は本発明にかかるメーム光学系に適 レンズ面508a.508bを有する第1のレンズ5 1 2 a と、第3, 第4の面としてのレンズ面509 a, 5 明電価513g,513bは、スイッチ515を介して 犬、多面体等の任意の形状の多数の微小な高分子セル5 用可能な可変焦点レンズの原理的構成を示す図である。 本積の和に一致させる。

えば球状とする場合、その平均の直径Dを、使用する光 [0112] ここで、商分子セル518の大きさは、 の波長を入とするとき、例えば、

きDは入以下でよい。なお、高分子分散液晶圏514の は / / 5 以下とする。可変焦点レンズが用いられる光学 與品によっては髙精度を要求しない場合もあり、そのと 透明度は、厚さしが厚いほど悪くなる。

[0113]また、液晶分子517は、例えば、一軸性 Dネマティック液晶分子を用いる。Cの液晶分子517 の屈折宰楕円体は、図45に示すような形状となり、

よびn。、は、常光線を含む面内での互いに直交する方向 である。ただし、n。は常光線の屈折率を示し、n。お

の屈折率は高く、屈折力の強いレンズとなる。これに対 図48に示すように、スイッチ515をオンとして ズ511の光軸と平行となるような配向するので、 屈折 15をオフ、すなわち商分子分散液晶圏514に電界を 印加しない状態では、液晶分子517が様々な方向を向 いているので、入射光に対する高分子分散液晶層514 商分子分散液晶層514亿交流電界を印加すると、液晶 分子517は、屈折率楕円体の長軸方向が可変焦点レン [0114] ここで、図44に示すように、スイッチ5 率が低くなり、屈折力の弱いレンズとなる。

(u°*+u°+u') /3≡u'c

となる。また、上記(17式が成り立つときの平均屈折率※ ※n.cは、n.を異常光線の屈折率n.と表して、 (2 n,+n,) /3 ≡ n,c

率をn,とし、商分子分散液晶層514の体積に占める ★20 で与えられる。このとき、高分子分散液晶圏514の屈 折率11,は、商分子セル518を構成する商分子の屈折

 $n_{\star} = f f \cdot n_{\iota c}$ + $(1 - f f) n_{\flat}$

.. (50)

512 aおよび512 bの内側の面、すなわち高分子分な [0117]したがって、図47に示すように、レンズ

 $1/f_1 = (n_A - 1) (1/R_1 - 1/R_1)$

で与えられる。なお、R,ねよびR,は、曲率中心が像点 剛にあるとき、正とする。また、レンズ512aねよび

512bの外側の面による屈折は除いている。 つまり、◆

とすれば、図46に示す状態、すなわち商分子分散液晶 30米514の屈折率 n.は、 層514に電界を印加した状態での、高分子分散液晶層* $(n_{sx} + n_{sy}) / 2 = n_s$

で与えられるので、この場合の高分子分散液晶層514※ ※のみによるレンズの焦点距離 f.は、 $1/f_1 = (n_1 - 1) (1/R_1 - 1/R_1)$

は、(21)式で与えられる焦点距離 f, と、(24)式で与え 🖈 6におけるよりも低い電圧を印加する場合の焦点距離

 $n_1 - n_A = f f (n_o' - n_{tc}')$

であるから、 | n。 - n.c' | を大きくすれば、変化 率を大きくすることができる。実用的には、n,が、

0. 01≤|n, -n, 1≤10 4による焦点距離を、0.5%以上変えることができる とすれば、ff=0.5のとき、商分子分散液晶層51 お、 | n., -n.c. | は、液晶物質の制限から、10 ので、効果的な可変焦点レンズを得ることができる。 を超えることはてきない。

ន 説明する。「Solar EnerGy Materials and Solar Cell [0120]次に、上記(16)式の上限値の根拠について

[0116]とこで、図44に示す状態、すなわち商分 *【0115】なお、商分子分散液晶層514に印加する 9により段階的あるいは連続的に変化させることもでき **夜晶分子517は、その楕円長軸が徐々に可変焦点レン** ズ511の光軸と平行となるように配向するので、屈折 電圧は、例えば、図47に示すように、可変抵抗器51 る。このようにすれば、印加電圧が高くなるにつれて、 力を段階的あるいは連続的に変えることができる。

分子517の平均屈折率n,c'は、図45に示すように 子分散液晶圏514に電界を印加しない状態での、液晶 屈折率楕円体の長軸方向の屈折率をn,とすると、およ

★液晶分子517の体積の割合をffとすると、マックス ウェル・ガーネットの法則により、

☆散液晶層514側の面の曲率半径を、それぞれR,およ びR,とすると、可変焦点レンズ511の焦点距離 f

◆ 高分子分散液晶圏 5 1 4 のみによるレンズの焦点距離 が、(21)式で与えられる。

[0118]また、 第光線の平均屈折率を

n.=ff.n.' + (1-ff) n,

【0119】上記(21)および(24)式から、 商分子分散液 晶層514による焦点距離の変化率は、 ★られる焦点距離f,との間の値となる。 で与えられる。なお、高分子分散液晶圏514に、図4

で与えられる。したがって、この変化率を大きくするにな ☆は、一n。-n。|を大きくすればよい。ここで、 $|(f_{i}-f_{i})/f_{i}| = |(n_{i}-n_{i})/(n_{i}-1)|$

1.3~2程度であるから、

ishers B.v.発行の第197~214 頁、「Transmission va films 」には、商分子分散液晶の大きさを変化させたと きの透過率ェの変化が示されている。そして、かかる文 **献の第206 頁、図6には、高分子分散液晶の半径をr と** s」31巻,Wilson and Eck,1993, Eleevier Science Publ riation usinG scatterinG/transparent switchinG U, $t=300 \mu m$, ff=0. 5, $n_r=1$. 45,

දි

n.c=1,585、1=500nmとするとき、透過率 A・6 μm (ただし、Dねよび入の単位はnm、以下も **rは、理論値で、r=5nm (D=λ/50、D・t=** 同じ))のときでキ90%となり、r=25nm(D= 3/10)のときでキ50%になることが示されてい

[0121] CCで、例えば、t=150μmの場合を*

であれば、では70%~80%以上となり、レンズとし の場合は、DSA/5で、十分な透過率が得られること D·t≤λ·15μm

[0123]また、高分子分散液晶圏514の透過率

46の状態でも、透過率はほぼ同じで、かつ高い方が良大 【0124】 ここで、可変焦点レンズ511は、レンズ として使用するものであるから、図44の状態でも、図 $n_e = (n_e' + n_{tc}')/2$ を満足するときである。

20分さらに椴和され、 ุวานฐนฐ ูขึ้น ฺื

[0125]上記(29)式を満足すれば、上記(28)式は、 D · t≤λ · 6 0 μm

境界での光の反射、すなわち商分子分散液晶圏514の◆ によれば、反射率は屈折率差の2乗に比例するので、高 であれば良いことになる。なぜなら、フレネルの反射即 分子セル518を構成する商分子と液晶分子517との

*化を大きくするには、 ffの値が大きい方が良いが、 f D·t≤λ·15μm·(1.585-1.45)'/(n,-n,)' ···(32) 【0127】また、可変焦点レンズ511の焦点距離変×30 18を形成できなくなるので、 であればよい。ただし、(n,-n,)'は、(n,c'n,) 'と (n。' -n,) 'とのうち、大きい方である。

とする。一方、 ffは、小さいほどでは向上するので、※ ※上記(32)式は、好ましくは、 0. 1≦ff≦0. 999

 $4 \times 10^{4} (\mu \text{ m})^{2} \leq D \cdot t \leq \lambda \cdot 45 \mu \text{ m} \cdot (1.585 - 1.45)^{2} / (n_{\star} - n_{\star})^{2} \cdots (34)$ が成り立つのは、「岩波科学ライブラリー8 小惑星が★ とする。なね、tの下限値は、図44から明らかなよう に、t = Dで、Dは、上述したように2n m以上である [0128]なお、物質の光学特性を屈折率で表す近似 ので、D・tの下限値は、(2×10-1μm), すな わち4×10- [μm]'となる。

7 n m ≤ D ≤ 5 0 0 λ

素子523上に桔像させる。なお、図48では、液晶分 1 を用いたデジタルカメラ用の撮像光学系の構成を示す ものである。この擬像光学系においては、物体(図示せ ず) の像を、絞り521、可変焦点レンズ511ねよび レンズ5 2 2 を介して、例えばCCDよりなる固体操像 [0129] 図48は図47に示す可変焦点レンズ51 子の図示を省略してある。

ន 19により可変焦点レンズ511の高分子分散液晶層5 [0130]かかる撮像光学系によれば、可変抵抗器5

特開2003-98435

5μm) のときてキ71%となる。また、t=75μm * 推定してみると、透過率でがしの指数関数で変化すると 仮定して、 t = 150μmの場合の透過率でを推定して 452, r=25nm (D=λ/10, D·t=λ·1 の場合は、同様に、r=25nm (D= A/10、D・

[0122] これらの結果から、

14の透過率は悪くなる。図44の状態と図46の状態 て十分実用になる。したがって、例えば、t = 7 5 μm 10 n。'とn,とが異なる値になると、高分子分散液晶圏5 とで、平均して高分子分散液晶層514の透過率が良く ※は、n,の値がn,c,の値に近いほど良くなる。一方、 なるのは、

の材料および液晶分子517の材料に制限があるが、実 ★い。そのためには、商分子セル518を構成する商分子 用的には、

(30)

◆透過率の減少は、およそ上記の商分子と液晶分子517 との屈折率の差の2乗に比例するからである。

585の場合であったが、より一般的に定式化すると [0126]以上は、n。 = 1.45、nuc = 1.

f=1では、商分子の体積がゼロとなり、商分子セル5

子と液晶分子517との界面での光の散乱がフレネルの い場合である。また、Dが5001を超えると、光の散 乱は幾何学的となり、商分子セル518を構成する商分 ★やってくる」向井正著,1994,岩波書店発行の第58頁に 記載されているように、Dが10nm~5nmより大き 反射式に従って増大するので、Dは、実用的には、 14亿印加する交流電圧を調整して、可変焦点レンズ5 11の焦点距離を変えることより、可変焦点レンズ51 く、例えば、無限追から600mmまでの物体距離に対 1 およびレンズ522を光軸方向に移動させることな

[0131] 図49は本発明にかかるズーム光学系に適 **刊可能な可変焦点回折光学素子の一例の構成を示す図で** ある。この可変焦点回折光学素子531は、平行な第 して、連続的に合焦させることが可能となる。

1. 第2の面532a, 532bを有する第1の透明基 板532と、光の波長オーダーの溝深さを有する断面鋸

様に、透明電極513a, 513bを介して商分子分散* 透明基板532,533間には、図44で説明したと同 2, 533を経て出射させるものである。第1, 第2の ねよび平坦な第4の面533bを有する第2の透明基板 **歯波状のリング状回折格子を形成した第3の面533a** 533とを有し、入射光を第1, 第2の透明基板53

 $p \sin \theta = m \lambda$

さをh、透明基板33の屈折率をn;;とし、kを整数と※ を満たす角度のだけ偏向されて出射される。また、溝深

h (n, -n,,) = mλ $h(n_n-n_{11})=k\lambda$

を満たせば、波長入で回折効率が100%となり、フレ アの発生を防止することができる。

が得られる。したがって、例えば、入=500nm、n $h(n_A-n_B)=(m-k)\lambda$ 0. $05 h^2 = (m-k) \cdot 500 nm$,=1.55, n,=1.52 \$ 2,

となる。この場合、透明基板533の屈折率n,は、上 配(37)式から、n,1=1.5であればよい。また、可変 焦点回折光学素子531の周辺部における格子ビッチp となり、m=1, k=0とすると、 $h = 10000 \text{ nm} = 10 \mu \text{ m}$

0. $7m\lambda \le h (n_{\star} - n_{\star\star}) \le 1$. $4m\lambda$ を10μmとすると、0=2.87°となり、Fナンバ☆

0. 7kλ≤h (n.-n,,) ≤1. 4kλ

0. 7 (m-k) $\lambda \le h (n_*-n_*) \le 1$. 4 (m-k) λ

可変焦点レンズもある。図50ねよび図51は、この場 【0136】また、ツイストネマティック液晶を用いる

イストネマティック液晶層554亿交流電界を印加する◆ 合の可変焦点眼鏡550の構成を示すものであり、可変 3 bを介して設けた配向膜539a,539bと、これ 焦点レンズ551は、レンズ552ねよび553と、C れちレンズの内面上にそれぞれ透明電極513a,51 とを有して構成し、その透明電極513g,513bを 可変抵抗器519を経て交流電源516に接続して、ツ ら配向膜間に設けたツイストネマティック液晶圏 5.5.4

とする。なお、この条件の下限値は、液晶分子の大きさ で決まり、上限値は、入射光が自然光の場合に、図50 の状態でツイストネマティック液晶層 5.5.4 が等方媒質 として振る舞うために必要な値であり、この上限値の条 件を満たさないと、可変焦点レンズ5 5 1 は偏光方向に よって焦点距離の異なるレンズとなり、これがため二重 像が形成されてぼけた像しか得られなくなる。 2 n m ≦ P ≤ 2 λ / 3

2と、第3,第4の面563a,563bを有する出射 系に適用可能な可変偏角プリズムの構成を示すものであ る。この可変偏角プリズム561は、第1、第2の面5 62a, 562bを有する人射側の第1の透明基板56 [0139]図52(a)は、本発明にかかるズーム光学

ន

イッチ515を経て交流電源516に接続して、商分子 [0132]かかる構成において、可変焦点回折光学素 子531に入射する光橋は、第3の面533aの格子ビ *液晶層514を設け、透明電極513a,513bをス 分散液晶層514に交流電界を印加するようにする。 ッチをロとし、mを整数とすると、

...(37)

...38

★【0133】ととで、上記(37)および(38)式の両辺の差 を求めると、

なーが10のレンズを得ることができる。

[0134]かかる可変焦点回折光学素子531は、商 長が変わるので、例えば、レンズ系の光束が平行でない 分子分散液晶層514への印加電圧のオン・オフで光路 部分に配置して、ピント調整を行うのに用いたり、レン ズ系全体の焦点距離等を変えるのに用いることができ 2

[0135]なお、この実施形態において、上記(37)~

(39)式は、実用上、

..(40)

...(41)

...(45)

ク液晶層 5.5.4 に印加する電圧を高くすると、液晶分子 ク状態における液晶分子555の螺旋ビッチPは、光の [0137] かかる構成において、ツイストネマティッ 555は、図51に示すようにホメオトロビック配向と なり、図50に示す印加엽圧が低いツイストネマティッ **ク状態の場合に比べて、ツイストネマティック液晶層 5** [0138] ここで、図50に示すツイストネマティッ 54の屈折率は小さくなり、焦点距離が長くなる。 8

..(43)

波長入に比べて同じ程度か十分小さくする必要があるの

で、例えば、

6

| 4を設ける。透明電極5 | 3 a , 5 | 3 bは、可変抵 高分子分散液晶層514に交流電界を印加して、可変偏 に示すように、透明基板562および563の内面を相 側の平行平板状の第2の透明基板563とを有する。入 フレネル状に形成し、この透明基板562と出射側の透 明基板563との間に、図44で説明したと同様に、透 明電極513a, 513bを介して高分子分散液晶階5 抗器519を経て交流電源516に接続し、これにより 角ブリズム561を透過する光の偏角を制御するように する。なお、図52(a)では、透明基板562の内面5 62bをフレネル状に形成したが、例えば、図52(b) 射側の透明基板562の内面 (第2の面) 562 bは、

付的に傾斜させた傾斜面を有する通常のブリズム状に形 **或することもできるし、あるいは図49に示した回折格** 子状に形成することもできる。回折格子状に形成する場 合には、上記の(36)~(42)式が同様にあてはまる。

に性能を向上させるためには、2個の可変偏角ブリズム ように配置するのが望ましい。なお、図52ねよび図5 (偏向方向) は、上下方向とするのが望ましいが、さら うに、上下および左右の直交する方向で屈折角を変える ラ、双眼鏡等のブレ防止用として有効に用いることがで 561を偏向方向を異ならせて、例えば図53に示すよ [0140]かかる構成の可変偏角ブリズム561は きる。この場合、可変偏角ブリズム561の屈折方向 列えば、TVカメラ、デジタルカメラ、フィルムカメ 3では、液晶分子の図示を省略してある。

も、可変形状鏡の中に含めるものとする。

14に交流電界を印加するようにする。なお、図54で [0141]図54は本発明にかかるズーム光学系に適 すものである。この可変焦点ミラー565は、第1, 第 面) 566 b に透明電極513 a を設け、第2の透明基 用可能な可変焦点レンズを応用した可変焦点ミラーを示 2の面566a, 566bを有する第1の透明基板56 6と、第3、第4の面567a、587bを有する第2 版5 6 7 は、内面(第3の面)5 6 7 a を凹面状に形成 して、該四面上に反射膜568を施し、さらにこの反射 38,513b間には、図44で説明したと同様に、高 a, 513bをスイッチ515ねよび可変抵抗器519 を経て交流電源516に接続して、高分子分散液晶圏5 膜568上に透明電極513bを設ける。透明電極51 の透明基板567とを有する。第1の透明基板566 は、平板状またはレンズ状に形成して、内面(第2の 分子分散液晶層514を設け、これら透明電極513 は、液晶分子の図示を省略してある。

反射光の焦点位置を変えることができる。この場合、可 ことができる。なね、透明基板568または567の内 [0142]かかる構成によれば、透明基板566側か ら入射する光線は、反射膜568により高分子分散液晶 514の作用を2回もたせることができると共に、高分 変焦点ミラー565に入射した光線は、高分子分散液晶 **聞514を2回透過するので、商分子分散液晶圏514** の厚さの2倍を1とすれば、上記の各式を同様に用いる 面を、図49に示したように回折格子状にして、商分子 分散液晶層514の厚さを薄くすることもできる。この た、液晶分子の方向を変える方法としては、電圧を変化 層514を折り返す光路となるので、高分子分散液晶層 するため、電源として交流電源516を用いて、液晶に 交流電界を印加するようにしたが、直流電源を用いて液 【0143】なお、以上の説明では、液晶の劣化を防止 子分散液晶層514への印加電圧を変えることにより、 ようにすれば、散乱光をより少なくできる利点がある。 晶に直流電界を印加するようにすることもできる。ま

9

料を用いるとよい。

特開2003-98435

(22)

かける磁場の強さ・周波数、あるいは液晶の温度等を変 おいて、商分子分散液晶は液状ではなく固体に近いもの 方、透明基板532、レンズ538、レンズ552、5 仮566,567の一方はなくてもよい。なね、本頃で **化させることによってもよい。以上に示した実施形態に** もあるので、その場合はレンズ512a,512bの一 2 (b)における透明基板582,583の一方、透明基 53の一方、図52(a)における透明基板563、図5 4図54のような、形状の変化しない可変焦点ミラー

して、この撮像レンズと固体撮像素子408とで撮像ユ は、透明部材142と圧電性のある合成樹脂等の柔らか [0144] 図55は本発明のズーム光学系に適用可能 レンズ140を用いた撮像ユニット141の概略構成図 である。撮像ユニット141は本発明の撮像系として用 な可変焦点レンズのさらに他の実施例に係る、可変焦点 いることができる。本実施例では、レンズ102と可変 焦点レンズ140とで、撮像レンズを構成している。そ い透明物質143とで、光を透過する流体あるいはゼリ ニット141を構成している。可変焦点レンズ140 一状物質144を挟んで構成されている。

43 が変形し、可変焦点レンズ140の焦点距離が変わ るようになっている。従って、本実施例によれば、物体 は、シリコンオイル、弾性ゴム、ゼリー、水等を用いる ことができる。透明物質143の両面には透明電極14 となくフォーカスができ、小型、軽量、消費電力が少な 5が設けられており、回路103.を介して電圧を加え ることで、透明物質143の圧電効果により透明物質1 距離が変わった場合でも光学系をモーター等で動かすと 【0145】流体あるいはゼリー状物質144として

8

コリデン(PVDF)等の商分子圧電体、シアン化ビニ リデン共重合体、ピニリデンフルオライドとトリフルオ ロエチレンの共重合体等が用いられる。圧電性を有する 育機材料や、圧電性を有する合成樹脂、圧電性を有する エラストマー等を用いると可変焦点レンズ面の大きな変 [0146]なお、図55中、145は透明電極、14 43の材質としては、ポリウレタン、シリコンゴム、ア クリルエラストマー、PZT、PLZT、ポリフッ化ビ 6は流体をためるシリンダーである。また、透明物質1 形が実現できてよい。可変焦点レンズには透明な圧電材 い点で優れている。

0は、シリンンダー146を設けるかわりに、図56に を省略した構造にしてもよい。支援部材147は、間に 透明電極145を挟んで、透明物質143の一部の周辺 3 に電圧をかけることによって、透明物質 1 4 3 が変形 しても、図57に示すように、可変焦点レンズ140全 [0147]なお、図55の例で、可変焦点レンズ14 示すように、支援部材147を設けてシリンダー146 部分を固定している。本実施例によれば、透明物質14 S

させること以外に、液晶にかける電場の周波数、液晶に

146が不要になる。なお、図56、57中、148は 変形可能な部材で、弾性体、アコーディオン状の合成樹 体の体積が変わらないように変形するため、シリンダー 脂または金属等でできている。

【0148】図55、56に示す実施例では、電圧を逆 に印加すると透明物質143は逆向きに変形するので凹 レンズにすることも可能である。なお、透明物質143 ゴム等を用いる場合は、透明物質143を透明基板と電 に電歪材料、例えば、アクリルエラストマー、シリコン 歪材料を貼り合わせた構造にするとよい。

ポンプ160で流体161を出し入れし、レンズ面を変 [0149]図58は本発明のズーム光学系に適用可能 な可変焦点レンズのさらに他の実施例に係る、マイクロ イクロポンプ 160は、例えば、マイクロマシンの技術 で作られた小型のポンプで、亀力で動くように構成され ている。流体161は、透明基板163と、弾性体16 4 との間に決まれている。図58中、165は弾性体1 熱変形を利用したもの、圧電材料を用いたもの、静電気 84を保護するための透明基板で、設けなくてもよい。 マイクロレシンの技術で作られたポンプの例としては、 形させる可変焦点レンズ167の概略構成図である。 力を用いたものなどがある。

[0150]そして、図43で示したようなマイクロポ ンブ180を、例えば、図58に示す可変焦点レンズに 用いるマイクロボンブ160のように、2つ用いればよ

は圧電トランス等を用いて制御系を構成するとよい。特 【0151】なお、静電気力、圧電効果を用いた可変焦 点レンズなどにおいては、駆動用に高電圧が必要になる 場合がある。その場合には、昇圧用のトランス、あるい に積層型圧電トランスを用いると小型にできてよい。

8

[0152] 図59は本発明にかかるメーム光学系に適 2には、合成樹脂、有機材料を用いるのが望ましい。本 実施例においては、2つの透明電極59を介して電圧を 用可能な光学特性可変光学素子の他の実施例であって圧 電材料200を用いた可変焦点レンズ201の概略構成 図である。圧配材料200には透明物質143と同様の 材料が用いられており、圧電材料200は、透明で柔ら かい基板202の上に設けられている。なお、基板20 圧電材料200に加えることで圧電材料200は変形 し、図59において凸レンズとしての作用を持ってい

リットがある。

S 点レンズとして動作する。このとき基板202は、流体 くとも一方の電極の大きさを基板202と異ならせてお く、例えば、一方の透明電価59を基板202よりも小 形成しておき、かつ、2つの透明電極59のうち、少な さくしておくと、電圧を切ったときに、図60に示すよ **うに、2つの透明電極59が対向する所定部分だけが凹 状に変形して凹レンズの作用を持つようになり、可変**角 【0153】なお、基板202の形をあらかじめ凸状に

81の体積が変化しないように変形するので、液溜1 68 が不要になるというメリットがある。 [0154] 本実施例では、流体161を保持する基板 の一部分を圧電材料で変形させて、液溜168を不要と したところに大きなメリットがある。 なお、図58の実 苗例にも言えることであるが、透明基板163,165 はレンズとして構成しても、或いは平面で構成してもよ [0155]図61は本発明にかかるメーム光学系に適 用いた可変焦点レンズの概略構成図である。本実施例の 可変焦点レンズは、薄板200Aと200Bの材料の方 向性を反転させることで、変形量を大きくし、大きな可 変焦点範囲が得られるというメリットがある。なお、図 61中、204はレンズ形状の透明基板である。本実施 列においても、柢面の右側の透明電極59は基板202 用可能な光学特性可変光学素子のさらに他の実施例であ って圧電材料からなる2枚の薄板200A,200Bを よりも小さく形成されている。 유

基板202、薄板200,200A,200Bの厚きを 不均一にして、電圧を掛けたときの変形のさせかたをコ ントロールしてもよい。そのようにすれば、レンズの収 【0156】なお、図59~図61の実施例において、 **差補正等もすることができ、便利である。**

2

[0157] 図62は本発明にかかるズーム光学系に適 えばシリコンゴムやアクリルエラストマー等の電面材料 206を用いて構成されている。本実施例の構成によれ ば、電圧が低いときには、図62に示すように、凸レン ので、焦点距離が伸びる。従って、可変焦点レンズとし て動作する。本実施例の可変魚点レンズによれば、大電 用可能な可変焦点レンズのさちに他の実施例を示す概略 構成図である。本実施例の可変焦点レンズ207は、例 に、電歪材料206が上下方向に伸びて左右方向に縮む 頒を必要としないので消費電力が小さくて済むというメ ズとして作用し、電圧を上げると、図63に示すよう

[0158]図64は本発明にかかるズーム光学系に適 用可能な光学特性可変光学素子のさらに他の実施例であ 透明弾性体208,209でアゾベンゼン210が挟ま れており、アゾベンゼン210には、透明なスペーサー 211を経由して光が照射されるようになっている。図 ってフォトメカニカル効果を用いた可変焦点レンズの樹 84中、212, 213はそれぞれ中心波長がス1, ス, 略構成図である。本実施例の可変焦点レンズ214は、

9

に変化して体積が減少する。このため、可変焦点レンズ [0159] 本実施例において、中心被長が1,の光が ると、アゾベンゼン210は、図65(b)に示すシス型 図65(a)に示すトランス型のアゾベンゼンに照射され 214の形状はうすくなり、凸レンズ作用が減少する。 一方、中心被長が入,の光がシス型のアゾベンゼン21 の例えばしED、半導体レーザー等の光弧である。

加する。このようにして、本実施例の光学素子214は 5ず赤外光等でもよい。また、アゾベンゼン210とし 0 に照射されると、アゾベンゼン2 1 0 はシス型からト ランス型に変化して、体積が増加する。このため、可変 焦点レンズ2 1 4 の形状は厚くなり、凸レンズ作用が増 可変焦点レンズとして作用する。また、可変焦点レンズ 2 1 4 では、透明弾性体2 0 8 , 2 0 9 の空気との境界 い。なお、レンズとして利用する光の波長は可視光に限 ては、アゾベンゼンと他の液体の混合物を用いてもよ 面で光が全反射するので外部に光がもれず、効率がよ

なる電査材料453と間を隔てて分割電極409bを設 例を示す概略構成図である。本実施例では、デジタルカ ルミニウム等の金属からなる反射膜450を設けて構成 にくくなるというメリットがある。なお、変形可能な基 釦であり、可変形状鏡45は、釦449を使用者が押す 機材料からなる電査材料のかわりに既に述べたチタン酸 [0160]図66は本発明にかかるズーム光学系に可 変ミラーとして適用可能な可変形状鏡のさらに他の実施 中、411は可変抵抗器、414は演算装置、415は 温度センサー、418は湿度センサー、417は距離セ ンサー、424は振れセンサーである。本実施例の可変 形状鏡45は、アクリルエラストマー等の有機材料から け、電査材料453の上に頃に電極452、変形可能な 基板451を設け、さらにその上に入射光を反射するア されている。このように構成すると、分割電極409b を電面材料453と一体化した場合に比べて、反射膜4 50の面形状が滑らかになり、光学的に収差を発生させ 板451と電極452の配置は逆でも良い。また、図6 6中、449は光学系の変倍、あるいはズームを行なう ズームをすることができるように演算装置414を介し て制御されている。なお、アクリルエラストマー等の有 ことで反射膜450の形を変形させて、変倍あるいは、 メラに用いられるものとして説明する。なね、図66 バリウム等の圧電材料を用いてもよい。

含む装置のことである。光学装置単体で機能しなくても 【0162】光学装置とは、光学系あるいは光学素子を

[0181] 最後に、本発明で用いる用語の定義を述べ

【0163】光学装置には、撮像装置、観察装置、表示 **英置、照明装置、信号処理装置等が含まれる。** よい。つまり、装置の一部でもよい。

画記録装置、カムコーダ、VTRカメラ、電子内視鏡等 デジタルカメラ、ロボットの眼、レンズ交換式デジタル **一眼レフカメラ、テレビカメラ、動画記録装置、電子動** VTRカメラ、動画記録カメラなどはいずれも電子損像 がある。デジカメ、カード型デジカメ、テレビカメラ、 [0164] 撮像装置の例としては、フィルムカメラ、

【0165】観察装置の例としては、顕微鏡、望遠鏡、

었

特開2003-98435

(54)

眼鏡、双眼鏡、ルーペ、ファイバースコープ、ファイン ダー、ピューファインダー等がある。

1、ピューファインダー、ゲームマシン (ソニー社製ブ ノイステーション)、ピデオプロジェクター、液晶プロ ジェクター、頭部装着型画像表示装置(head mo unted display:HMD)、PDA (燒帶 [0188] 表示装置の例としては、液晶ディスプレ

ボ、自動車のヘッドライト、内視鏡光源、顕微鏡光源等 [0.167] 照明装置の例としては、カメラのストロ 育報端末)、携帯電話等がある。

[0168] 信号処理装置の例としては、携帯電話、バ ソコン、ゲームマシン、光ディスクの読取・曹込装置、 光計算機の演算装置等がある。

[0169]なお、本願の光学系は小型軽量なので、 子攝像装置、信号処理装置、特に、デジタルカメラ、 帯電話の撮像系に用いると効果がある。

撮像素子、写真フィルム等を指す。また、平行平面板は 【0170】撮像素子は、例えばCCD、撮像管、固体 ブリズムの1つに含まれるものとする。観察者の変化に は、視度の変化を含むものとする。被写体の変化には、 **坡写体となる物体距離の変化、物体の移動、物体の動** き、振動、物体のふれ等を含むものとする。 20

面、平面、回転対称非球面のほか、光軸に対して偏心し C球面、平面、回転対称非球面、あるいは対称面を有す る非球面、対称面を1つだけ有する非球面、対称面のな 等、いかなる形をしていても良い。反射面でも、屈折面 **でも、光になんらかの影響を与えうる面ならば良い。本** [0171] 拡張曲面の定義は以下の通りである。球 、非球面、自由曲面、微分不可能な点、線を有する面 発明では、これらを総称して拡張曲面と呼ぶことにす

変プリズム、光偏向作用の変わる可変回折光学素子、つ ズ、可変形状績、面形状の変わる偏光ブリズム、頂角可 [0172] 光学特性可変光学案子とは、可変焦点レン まり可変HOE、可変DOE等を含む。

ず、収差量が変化するような可変レンズも含むものとす 5。可変形状鏡についても同様である。要するに、光学 素子で、光の反射、屈析、回折等の光偏向作用が変化し 【0173】可変焦点レンズには、焦点距離が変化せ うるものを光学特性可変光学素子と呼ぶ。 5

【0174】情報発信装置とは、携帯電話、固定式の電 話、ゲームマシン、テレビ、ラジカセ、ステレオ等のリ タッチパネル等の何ろかの情報を入力し、送信すること -、パソコンのモニター、ディスプレイも含むものとす モコンや、バソコン、バソコンのキーボード、マウス、 ができる装置を指す。 撮像装置のついたテレビモニタ 5。 情報発信装置は、信号処理装置の中に含まれる。

特許請求の範囲に記載された発明の他に、次に示すよう 【0175】以上説明したように、本発明の光学系は、

2 するとき、次の条件式を満足することを特徴とする請求 [0176] (1) 次の条件式を満足することを特徴と 移動させるようにしたことを特徴とする請求項1又は2 [0178] (3)形状可変反射面の光線有効径をDと 【0177】(2)電力を消費しないでバリエータ群を 項1又は2 に記載のズーム光学系。D < 20.0 する請求項1又は2に記載のズーム光学系。 ただし、ヵはパリエータ群の倍率である。 **に記載のズーム光学系を用いた撮像装置。** $0.01 < |\eta| < 3.0$

パワー、ゆりは形状可変反射面の偏心方向に平行な軸の [0179] (4) 次の条件式を満足することを特徴と ただし、ψxは形状可変反射面の偏心方向に垂直な軸の パワー、ゆは光学系全系のパワーである。 する請求項3に記載のズーム光学系。 0 ≤ |¢x/¢| < 0.1 $0 \le |\psi y/\phi| < 0.1$

[0180] (5) 次の条件式を満足することを特徴と する請求項3に記載のズーム光学系。

ただし、ゆxは形状可変反射面の傷心方向に垂直な軸の パワー、ゆりは形状可変反射面の偏心方向に平行な軸の ≤ | \psi x/\phi | < 0.05 0 ≤ | \psi \sqrt{\phi} \sqrt{\phi} | < 0.05

[0181] (6) パリエータを1つのレンズ群で構成 [0182] (7) 次の条件式を満足することを特徴と したことを特徴とする請求項1~3、上記(1)、 (3)~(5)のいずれかに記載のズーム光学系。 バワー、ゆは光学系全系のバワーである。

[0183] (8) 次の条件式を満足することを特徴と する請求項1又は2に記載のズーム光学系。 ただし、ヵはパリエータ群の倍率である。 0.1 < |n| < 2.0

する請求項1又は2に記載のズーム光学系。 ただし、ヵはバリエータ群の倍率である。 $0.5 < |\eta| < 1.7$

[0184] (9) 形状可変反射面の光線有効径をDと するとき、次の条件式を満足することを特徴とする請求 項1又は2に記載のズーム光学系。 D < 17.0 mm

【0185】(10)形状可変反射面の光線有効径をD とするとき、次の条件式を満足することを特徴とする前 **求項1又は2に記載のズーム光学系。** < 15.0 mm

[0186] (11) ズーム時において、校り面を独立 に移動させて、形状可変反射面の近くに配置するように (3)~(10)のいずれかに記載のズーム光学系。 **したことを特徴とする請求項1~3、上記(1)、**

とする請求項1~3、上記(1)、(3)~(11)の 面への光線入射角度が小さくなるようにしたことを特徴 いずれかに記載のズーム光学系。

[0188] (13) 煎記プリズムの屈折面ねよび反射 面が自由曲面で構成されていることを特徴とする上記 (12) に記載のズーム光学系。 【0189】(14)撮像素子の短辺方向が、形状可変 反射面の偏心方向に対して平行になるように配置したこ とを特徴とする請求項1~3、上記(1)、(3)~ (13)のいずれかに記載のズーム光学系。

[0190] (15) 形状可変反射面を自由曲面となる (1)、(3)~(14)のいずれかに記載のズーム光 ように構成したことを特徴とする請求項1~3、上記

[0191] (16) 形状可変反射面をレンズあるいは レンズ系の製作調差による光学性能の劣化を補正するよ うな形状に変形するように構成したことを特徴とする酶 **求項1~3、上記(1)、(3)~(15)のいずわか** に記載のズーム光学系。

[0192] (17)形状可変反射面がコンベンセータ 作用のみを有するようにし、その他のレンズ群を介して バンフォーカスとなるように構成されたズーム光学系。 [0193] (18) 請求項1~3、上配(1)、

 $(3) \sim (17)$ のいずれかに配載のズーム光学系を用 いた撮像装置。

え、撮像素子の長辺方向が、前配可変ミラーの偏心方向 に対して平行になるように配置したことを特徴とする光 | 0 1 9 4] (19) 可変ミラーと軸対称レンズを備

【0195】(20) 可変ミラーと軸対称レンズとを備 え、撮像素子の長辺方向が、前記可変ミラーの偏心方向 に対して平行になるように配置したことを特徴とする請 **求項1~3、上記(1)、(3)~(11)のいずれか** に記載のズーム光学系。

[0198] (21) 可変ミラーと、移動するレンズ群 とを備え、前記可変ミラーが、コンペセータとして機能 し、移動するレンズ群で変倍を行うことを特徴とするバ ンフォーカスなズーム光学系。

可変ミラーとを備え、変倍を行うことを特徴とするズー [0197] (22) 1つ以上の移動するレンズ群と、 [0198] (23) 2つ以上の移動するレンズ群と、

[0199] (24) 最も変倍に音与する、移動するレ 可変ミラーとを備え、変倍を行うことを特徴とするズー

ンズ群が凸作用を有することを特徴とする上記(20)

[0200] (25) 最も変倍に寄与する、移動するレ ンズ群が凹作用を有することを特徴とする上記(20) ~ (23) のいずれかに記載の光学系。 ~ (23) のいずれかに記載の光学系

20

[0187] (12) ブリズムを用いて、形状可変反射

特徴とする上記(20)~(25)のいずれかに記載の 0201] (26) ズーム時に校りが移動することを

[0202] (27) ズーム時に移動するレンズ群と共 に赦りが移動することを特徴とする上記(20)~(2 8)のいずれかに記載の光学系。

[0203] (28) フォーカス時に可変ミラーだけを ~3、上記(20)~ (27) のいずれかに記載のメー 動作させてフォーカスを行うことを特徴とする請求項1

【0204】(29)軸上物体からの軸上入射光と、撮 を特徴とする請求項1~3、上記 (20)~ (28)の 像素子への軸上入射光とのなす角が90.±5.あるい 可変ミラーへの軸上光線入射角が55. 以下であること は60°±5°であることを特徴とする請求項1~3、 [0205] (30) 形状の変化しない反射面を有し、 上記 (20)~(28)のいずれかに記載の光学系。 いずれかに記載のズーム光学系。

軸上光線入射角が55.以下であることを特徴とする静 [0206] (31) プリズムを有し、可変ミラーへの **宋項1~3、上記(20)~(28)のいずれかに記載** のズーム光学系。

2

【0207】(32)非球面レンズを有することを特徴 とする請求項1~3、上記(1)~(31)のいずれか に配載のズーム光学系。 [0208] (33) 1つ又は2つ以上のレンズに2つ [0209] (34) 形状可変ミラーの変形するミラー 面が、ポリイミドからなることを特徴とする請求項1~ [0211] (36) 形状可変ミラーの変形するミラー 面が、光の入射面に平行な方向に長い形状であることを **特徴とする請求項1~3、上記(1)~(3 5)のいず** 【0210】(35)形状可変ミラーの変形するミラー 3、上記(1)~(33)のいずれかに記載の光学系。 以上の非球面を設けたことを特徴とする請求項1~3、 面が、有機材料からなることを特徴とする請求項1~ 3、上記(1)~(33)のいずれかに記載の光学系。 上記(1)~(32)のいずれかに記載の光学系。

[0212] (37) 変形するミラー面の形状が凸でな いことを特徴とする請求項1~3、上記 (1)~ (3 6)のいずれかに記載の光学系。 れかに記載の光学系。

とを特徴とする請求項1~3、上記(1)~ (37) の 【0213】(38)形状可変ミラーが静電気力、電磁 気力、圧電効果、電歪、流体のいずれかで駆動されると いずれかに記載の光学系。 [0214] (39) 輸水項1~3、上記(1)~(3 8)のいずれかに記載の光学系を用いたことを特徴とす る電子報像装置

特開2003-98435

るデジタルカメラ

【0216】(41)上記(39)を備えたことを特徴 とする携帯電話。

りが小さく、音が静かで、応答時間が短くなり、機械的 【発明の効果】本発明のズーム光学系によれば、消費電 **構造が簡単となり、コストダウンに寄与することができ**

[図面の簡単な説明]

【図1】本発明にかかる第1実施例のスーム光学系のレ 【図2】第1 実施例の撮像光学系の広角端での各波長域 端、(b)は中間状態、(c)は望遠端の状態を示している。 ンズ構成を示す光軸に沿う断面図であり、(a)は広角

における、 憤収差を表す収差図である。

[図3] 第1実施例の撮像光学系の中間状態での各波長 【図4】第1実施例の撮像光学系の望遠端での各被長域 或における、横収差を表す収差図である。

【図5】第1実施例の撮像光学系の広角端での各波長域 における形状可変反射面に入射する光線を示す状態説明 における、 横収差を表す収差図である。 図である。 【図6】第1実施例の撮像光学系の中間状態での各波長 域における形状可変反射面に入射する光線を示す状態説

【図7】第1実施例の撮像光学系の望遠端での各被長域 における形状可変反射面に入射する光線を示す状態説明 明図である。 図である。

【図8】本発明にかかる第2実施例のズーム光学系のレ ンズ構成を示す光軸に沿り断面図である。

[図9] 第2実施例の撮像光学系の広角端での各被長域 における、横収差を表す収差図である。

【図10】第2実施例の撮像光学系の中間状態での各波 旻域における、横収差を表す収差図である。

[図11] 第2実施例の撮像光学系の望遠端での各波長 【図12】第2実施例の撮像光学系の広角端での各波長 域における、橨収差を表す収差図である。

成にもける形状可変反射面に入射する光線を示す状態説

【図13】第2実施例の撮像光学系の中間状態での各被 畏域における形状可変反射面に入射する光線を示す状態 説明図である。 明図である。 9

[図14] 第2実施例の撮像光学系の望遠端での各波長 数における形状可変反射面に入射する光線を示す状態説 男図である。

【図15】本発明にかかる第3実施例のズーム光学系の ノンズ構成を示す光軸に沿う断面図である。

【図16】第3実施例の撮像光学系の広角端での各波長

【図17】第3実施例の撮像光学系の中間状態での各波 長域における、横収差を表す収差図である。

S

9) のいずれかに記載の光学系を用いたことを特徴とす

[0215] (40) 請求項1~3、上配(1)~(3

(90)

特開2003-98435

(78)

【図19】第3実施例の撮像光学系の広角端での各波長 域における形状可変反射面に入射する光線を示す状態説 【図20】第3実施例の撮像光学系の中間状態での各波 長域における形状可変反射面に入射する光線を示す状態

【図21】第3実施例の撮像光学系の望遠端での各波長 説明図である,

域における形状可変反射面に入射する光線を示す状態説 明図である。

9

【図22】本発明にかかる第4実施例のズーム光学系の 【図23】第4実施例の撮像光学系の広角端での各波長 レンズ構成を示す光軸に沿り断面図である。

[図24] 第4実施例の撮像光学系の中間状態での各波 域における、横収差を表す収差図である。

[図25] 第4実施例の撮像光学系の望遠端での各波長 長域における、横収差を表す収差図である。

【図26】第4実施例の振像光学系の広角端での各波長 域における、横収差を表す収差図である。

2

域における形状可変反射面に入射する光線を示す状態説 明図である。

図27】第4実施例の機像光学系の中間状態での各波 長域における形状可変反射面に入射する光線を示す状態 説明図である

一として光学特性可変ミラーを用いたデジタルカメラの 【図28】第4実施例の撮像光学系の望遠端での各被長 域における形状可変反射面に入射する光線を示す状態説 【図29】本発明のズーム光学系に適用可能な可変ミラ 明図である。

【図30】本発明のズーム光学系にかかる可変ミラーと ケブラー式ファインダーの軟路構成図である。

して適用可能な可変形状鏡409の他の実施例を示す概 略構成図である。

【図31】図30の実施例の可変形状鏡に用いる電極の 一形態を示す説明図である。

【図32】図30の実施例の可変形状鏡に用いる電極の 【図33】本発明のズーム光学系にかかる可変ミラーと 他の形態を示す説明図である。

じて適用可能な可変形状鏡409のさらに他の実施例を [図34] 本発明のメーム光学系にかかる可変ミラーと して適用可能な可変形状鏡409のさらに他の実施例を 示す概略構成図である。

[図35] 本発明のズーム光学系にかかる可変ミラーと した適用可能な回変形状鏡409のさらに他の実施例を 示す概略構成図である。

示す駅路構成図である。

S 【図37】本発明のズーム光学系にかかる可変ミラーと [図36] 図35の実施例における薄膜コイル427の 巻密度の状態を示す説明図である。

して適用可能な可変形状鎖409のさらに他の実施例を

|図38||図37の実施例におけるコイル427の一配 置例を示す説明図である。

[図39] 図37の実施例におけるコイル427の他の **ご置例を示す説明図である** [図40] 図35に示した実施例において、コイル42 7 の配置を図3 9 に示したようにした場合に適する永久 磁石426の配置を示す説明図である。 [図41] 本発明のさらに他の実施例に係る、メーム光 学系を用いた撮像装置に適用可能な可変ミラーとして可 変形状鏡409を用いた撮像系、例えば携帯電話のデジ **タルカメラ、カブセル内視鏡、電子内視鏡、パソコン用** デジタルカメラ、P D A 用デジタルカメラ等に用いられ る撮像系の概略構成図である。

[図42] 本発明のズーム光学系に係る可変ミラーとし **に適用可能なさらに他の実施例に係る、マイクロポンプ** 180で流体161を出し入れし、ミラー面を変形させ る可変ミラーとして用いる可変形状鏡188の概略構成 図である。

[図43] 本発明のズーム光学系に用いる可変ミラーに **適用可能なマイクロポンプの一実施例を示す概略構成図**

[図44] 本発明にかかるズーム光学系に適用可能な可 変焦点レンズの原理的構成を示す図である

【図45】一軸性のネマティック液晶分子の屈折率楕円 体を示す図である。 【図46】図42に示す高分子分散液晶層に電界を印加 伏憩を示す図である。

【図47】図44に示す高分子分散液晶層への印加電圧 を可変にする場合の一例の構成を示す図である。

8

【図48】図47に示す可変焦点レンズ511を用いた 【図49】本発明にかかるズーム光学系に適用可能な可 [図50] ツイストネマティック液晶を用いる可変焦点 【図51】図50に示すツイストネマティック液晶層へ の印加電圧を髙くしたときの液晶分子の配向状態を示す デジタルカメラ用の撮像光学系の構成を示す図である レンズを有する可変焦点眼鏡の構成を示す図である。 変焦点回折光学素子の一例の構成を示す図である。

【図52】本発明にかかるズーム光学系に適用可能な可 【図53】図52に示す可変偏角ブリズムの使用態様を 変偏角ブリズムの2つの例の構成を示す図である。

図である。

9

【図54】本発明にかかるズーム光学系に適用可能な可 変魚点レンズを応用した可変魚点ミラーを示す図であ 説明するための図である。

【図55】本発明のズーム光学系に適用可能な可変焦点 **フンズのさのに他の実施例に係る、回変焦点レンズ14** 0を用いた撮像ユニット141の概略構成図である。

53 Fine column recent (A) 100 1		3	54
区で、区区では、日本のではのでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日		1 0 4	1 医克里斯斯斯氏征
5岁の名より現史図このも。 「図51」図566回祭曲占し、アカ郊珠) ケ井鶴を示		142	成 奶即约 压解杯 6 本 2 滿田 4 新
「四つ・一回つつか」な話がアンドである。		144	流体あるいはゼリー状物質
「図58】本発明のズーム光学系に適用可能な可変焦点		146	ションダー
レンズのさらに他の実施例に係る、マイクロボンブ16		147	支援部材
0で流体161を出し入れし、レンズ面を変形させる可		148	変形可能な部材
変焦点レンズ162の概略構成図である。		160,	180 マイクロボンブ
【図59】本発明にかかるズーム光学系に適用可能な光		164	弹性体
	유	168	液溜
0を用いた可変焦点レンズ201の概略構成図である。		181	振動板
【図60】図59の変形例に係る可変焦点レンズの状態		182,	183, 409b, 409d, 452
説明図である。		電極	
【図61】本発明にかかるズーム光学系に適用可能な光		184,	വ
学特性可変光学素子のさらに他の実施例であって圧電材		œ	450 反射膜
料からなる2枚の薄板200A,200Bを用いた可変 出力し、アル質問題は1500~2~2		200	圧電材料 事報
※※アノイジを出来の国へのう。 【図62】本発明にかかるズーム光学系に適用可能な可		0.2	、こううじ 液理で柔らかい
変焦点レンズのさらに他の実施例を示す概略構成図であ		0	409c-2 電歪材料
	20	208,	209 透明弹性体
【図63】図62の実施例に係る可変焦点レンズの状態		2 1 0	アゾベンゼン
説明図である。		2 1 1	メペーサー
【図64】本発明にかかるズーム光学系に適用可能な光		212,	213 光頑
学特性可変光学素子のさらに他の実施例であってフォト		403	遊像フンバ
メカニカル効果を用いた可変魚点レンズの概略構成図で		404	ブリズム
#5. 		405	二等辺直角プリズム
【図65】図64の実施例に係る可変焦点レンズに用い			1,71
7			523 固体摄像素子
ンス型、(b)はシス型を示している。			光学特性可変形状鏡
[図66] 本発明にかかるズーム光学祭の可変ミラーと・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8	6	薄膜 000
つこ 国共 可語さ 11 ダだくぎろって うちつ 米名 写かた9 夜寝寺 4 証 5・・		n (, 408c
名権収置いめる。「符典で話問」		4090	C - 1, 4 0 9 6 母敬 日亦作 4 8
(1) 35,26631		412	に父母が由価値
		413	電源スイッチ
		414	
G4 第4群		4 1 5	温度センサー
M 形状可変ミラー		416	湿度センサー
P ブリズム		417	距離センサー
可変形	4	423	支持台
		424	版 た な ン ナ ー
5 1 可変焦点レンズ		425,	428 駆動回路
161 流体		426	水久磁石
163, 165, 204, 532, 533, 562, 5		427	コイル
3,566,567透明基板		449	11
a, 513b 透明		451	変形可能な基板
102, 512a, 512b, 522, 552, 553		2	電歪材料
3		508	а, 532а, 562а, 566а
	;	10周	
103. 回路	ည	508b,	o, 532b, 562b, 566b

特開2003-98435

觀別配号

ナヤンド (参考)

F1 G03B 5/00

EC01

(51)Int.Cl.' G 0 3 B 5/00

Fターム(参考) 2H042 D008 D013 2H044 BE01 DA01 DA02 DB00 DB04

2H087 KAD1 PAO7 PAO8 PA19 P809
PB10 QAO2 QAO6 QAO7 QA17
QA21 QA22 QA25 QA26 QA34
QA38 QA41 QA42 QA45 QA46
RAO5 RA12 RA13 RA36 RA41
SA14 SA16 SA19 SA24 SA26
SA29 SA32 SA63 SA64 SA77
SA75 SB04 SB13 SB25 SB33

レロントページの結果