

PROCESSING DATA: PREPARING INPUTS AND INTERPRETING OUTPUTS

March 28, 2014

Stacie Wolny and Brad Eichelberger swolny @ stanford.edu beichelb @ stanford.edu

PREPARING INPUTS

SPATIAL INPUT LAYERS

- Have all data in the same projected coordinate system
- Check the units
- Use an appropriate resolution for your goals
 - Overall detail needed
 - Interaction between layers
 - Speed/memory

Stream buffers

← or

threat distance

Choose an appropriate number/types of land cover classes

Choose an appropriate number/types of land cover classes

SOILS

natural capital

- If in the U.S., try USDA Soil Data Viewer
- If working with other soil databases...

SOILS

- If in the U.S., try USDA Soil Data Viewer
- If working with other soil databases...
 - Soil depth: add up horizons or find max depth field
 - AWC: Sum of provided AWC values across horizons

SOILS

- If in the U.S., try USDA Soil Data Viewer
- If working with other soil databases...
 - Soil depth: add up horizons or find max depth field
 - AWC: Sum of provided AWC values across horizons
 - Erodibility: %sand/silt/clay/carbon in top horizon;
 use table to convert to K values
 - Mapping unit value= weighted average across soil units

$$K_{mu} = (K1*.6) + (K2*.4)$$

TOPOGRAPHY/HYDROLOGY

natural capital

- Preparing the DEM: Mosaic, fill holes, fill sinks, burn streams
- Verify watersheds and/or create with ArcHydro/ArcSWAT/AGWA/BASINS...
- Determine threshold flow accumulation

Threshold = 10,000

Threshold = 100

CLIMATE

- Precipitation from weather stations, gridded local or global data, climate change scenarios
- Average over 10+ years
- If weather stations:
 - Best to have full coverage
 - Test out interpolation methods
 - Adjust for elevation?
- Derive PET, AET, erosivity from same precip

INTERPRETING OUTPUTS

- No areas of missing data
- Spatial pattern makes sense
- Model limitations how do they affect your interpretation?
- Uncertainty in inputs
- Output values look like they're in the right ballpark...

Observed data (stream flow etc)

- Average over 10+ years
- Match units with InVEST outputs

Inputs (like climate):

- Average over same 10+ years
- Match time period with observed data

Do calibration before valuation

Nitrogen loading, Hainan, China

Validation examples (Brad)

OVERLAY WITH OTHER DATA

Carbon stock + tiger habitat

COMPARE CHANGE

Percent change can be very useful...

Return on Investment

Total budget (US\$ millions)

RANK ACROSS MULTIPLE SERVICES

Carbon

x 1

x 2

Total Relative ES provision

AGGREGATING RESULTS

- Can aggregate within countries, administrative zones, land cover classes...
- Do the results cover the whole area of interest?

Serviceshed: A specific area that provides a service to a group of people

- Hydrology: watershed
- Pollination: foraging range
- Recreation: travel distance

If servicesheds overlap, total service > supply

TERRESTRIAL HELPER TOOLS

- Calculate change between scenarios
- Prepare the DEM
- Create servicesheds
- Multi-service landscape ranking

CALCULATE CHANGE

- Absolute and percent change
- For pixel, subwatershed and watershed data
- Aggregate by area of interest
- Split raster results into < 0 and >= 0

Inputs:

- 2 scenarios
- Subwatersheds
- Area of interest

Outputs:

- Change rasters (pixel/subwatersheds)
- Change tables (watersheds/subwatersheds/AOI)
- Split rasters

PREPARE THE DEM

natural capital

- Fills holes (missing data)
- Burns streams
- Fills sinks

Inputs:

- DEM
- Streams / depth

Output:

Processed DEM

CREATE SERVICESHEDS

natural capital

Uses Arc Hydro to create watersheds/servicesheds

Inputs:

- DEM
- Outlets
- Stream threshold

Outputs:

- Stream raster/shapefile
- Servicesheds shapefile

MULTI-SERVICE RANK

natural capital

- Ranks landscape across multiple services
- Groups results by a given percent
 - By distribution and/or area

Inputs:

- Service output maps
- Weight per service
- Grouping percent

Outputs:

- Ranked landscape raster
- Grouped ranking shapefile(s)

Stacie Wolny and Brad Eichelberger swolny @ stanford.edu beichelb @ stanford.edu