Roland Schäfer. 2019. *Statistische Inferenz in der Linguistik* (Textbooks in Language Sciences 99). Berlin: Language Science Press.

This title can be downloaded at:

http://langsci-press.org/catalog

© 2019, Roland Schäfer

Published under the Creative Commons Attribution 4.0 Licence (CC BY 4.0):

http://creativecommons.org/licenses/by/4.0/

ISBN: no digital ISBN no hardcover ISBN no softcover ISBN

ISSN: 2364-6209

no DOI

Cover and concept of design: Ulrike Harbort

Typesetting: Roland Schäfer

Fonts: Linux Libertine, Arimo, DejaVu Sans Mono

Typesetting software: X₇LAT_EX

Language Science Press Unter den Linden 6 10099 Berlin, Germany langsci-press.org

Storage and cataloguing done by FU Berlin

no logo

Language Science Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Inhaltsverzeichnis

Vo	rwor	t	vii
Da	nksa	gungen	ix
Ab	brev	iations and symbols	хi
Ι	W	issenschaftliche Inferenz in der Linguistik	1
II	Sy	steme der statistischen Inferenz	3
1	Ron	ald Fishers System der statistischen Inferenz	5
	1.1	Randomsierung	5
	1.2	The Lady Tasting Tea	5
	1.3	Die Rolle der Nullhypothese	5
III	Da	atenanalyse	7
IV	Sta	atistische Tests	9
2	<++	>	11
3	Mitt	telwervergleiche	13
	3.1	Beispiele in diesem Kapitel und typische Fragestellungen	13
	3.2	Verteilungen von Stichprobenmitteln und die zentralen Grenzwertsätze	15
	3.3	Stichproben- und Populationsmittel	15
	3.4	Stichproben- und Stichprobenmittel	15
	3.5	Messwiederholungen	15
	3.6	Simulationen zu t-Tests	15

Inhaltsverzeichnis

V	Mo	odelle	17
	5.10	Interpretation von t-rests in N-1	13
	3 10	Interpretation von t-Tests in N-P	15
	3.9	Power von t-Tests	15
	3.8	Zur Absurdität von t-Tests in der Korpuslinguistik	15
	3.7	Voraussetzungen für t-Tests testen	15

Vorwort

Danksagungen

Abbreviations and symbols

Abbreviations

ANOVA	analysis of variance
CDF	cumulative distribution function
CLT	central limit theorem
cp.	ceteris paribus (all other things being equal)
iid.	independent and identically distributed
LM	linear model
LMM	linear mixed model
GLM	linear mixed model
GLMM	generalised linear mixed model
PDF	probability density function
VCOV	variance-covariance matrix

Symbols

Symbols are overloaded ad-hoc to denote either a (possibly indexed) value such as $s_x = 1$ (for "the population mean of variable x is 1") or a function such as s(x) = 1 where applicable.

Mathematische Symbole

$x \sim D$		Zufallsvariable <i>x folgt</i> der Zufallsverteilung D
\bar{x}	mean(x)	arithmetisches Stichprobenmittel von x
$ ilde{x}$	med(x)	Stichprobenmedian von x
\hat{x}		Vorhergesagter Wert für <i>x</i>
		Symbole in Buchstabenform
α		Alphaniveau (Neyman-Pearson, NHST)
α_i		Intercent i
		Intercept i
β		Betaniveau (Neyman-Pearson)

df		Freiheitsgrade (degrees of freedom)
e		Euler-Konstante
ϵ		Fehler/Residuum auf Beobachtungsebene (Modelle)
f		Frequenz
$\stackrel{\scriptscriptstyle J}{F}$		F-Quotien (siehe ANOVA)
γ_i		Koeffizient <i>i</i> der zweiten Ebene (hierarchische Modelle)
• •	cov(x, y)	Kovarianz von <i>x</i> und <i>y</i>
H		Kruskal-Wallis-Statistik
H_0		Nullhypothese (Fisher)
H_A		Alternativhypothese (Neyman-Pearson)
M_M		Haupthypothese (Neyman-Pearson)
IQR		Interquartislabstand
\mathscr{L}		Likelihood
μ		Populationsmittel
μ_i		Mittel des modellierten Effekts <i>i</i> (Modelle)
n		Stichprobengröße
N		Populationsgröße
O		Chance (odds)
р		Anteilswert (proportion)
P_i		i-tes Perzentil
Pr		Wahrscheinlichkeit (probability)
φ		Dispersionsparameter
Q_i		i-tes Quartil
r		Stichproben-Kovariations-Koeffizient
r^2		Bestimmtheitsmaß (coefficient of determination)
R^2		multifaktorielles Bestimmtheitsmaß
ρ		Grundgesamtheits-Kovariations-Koeffizient
S_{χ}	sd(x)	Standardabweichung der Stichprobe x (standard deviation)
$s_{\mathbf{r}}^2$	var(x)	Varianz der Stichprobe <i>x</i>
SE_{n_x,π_x}	$se(n_x, \pi_x)$	Standardfehler (standard error) für n_x und π_x Quadratsumme (sum of squares) für Stichproben x und y
$SQ_{x,y}$	sq(x, y)	Quadratsumme ($sum\ of\ squares$) für Stichproben $x\ und\ y$
$SP_{x,y}$	sp(x, y)	Porduktsumme (<i>sum of products</i>) für Stichproben <i>x</i> und <i>y</i>
σ	sd(X)	Standardabweichung der Population
σ^2		Varianz der Population
sig		Signifikanzniveau (Fisher)
U		Mann-Whitney-Statistik
$VCOV_m$	vcov(m)	Varianz-Kovarianz-Matrix von m
χ^2		Chi-Quadrat-Statistik

Zuvallsverteilungen werden hier durch fettgedruckte Buchtsbaben gekennzeichnet, nicht durch den manchmal üblichen Skript-Font. Die kumulative Verteilung wird mit Strich gegeben, also **Norm**′.

Bern	${\mathscr{B}}$	Bernoulliverteilung
Exp	$\mathscr E$	Exponentialverteilung
F	${\mathscr F}$	F-Verteilung
Norm	\mathscr{N}	Normal-/Gauss-Verteilung
t	${\mathscr T}$	t-Verteilung
Unif	\mathscr{U}	uniforme Verteilung
Chisq	\mathscr{X}^2	χ^2 -Verteilung

Teil I

Wissenschaftliche Inferenz in der Linguistik

Teil II Systeme der statistischen Inferenz

1 Ronald Fishers System der statistischen Inferenz

- 1.1 Randomsierung
- 1.2 The Lady Tasting Tea
- 1.3 Die Rolle der Nullhypothese

Teil III Datenanalyse

Teil IV Statistische Tests

3 Mittelwervergleiche

3.1 Beispiele in diesem Kapitel und typische Fragestellungen

Dieses Kapitel für in mögliche Inferenzen über Mittelwerte ein. Mittelwerte sind für Daten definiert, die numerisch skaliert sind, also unsere typischen Beispiele wie:

- · Wortlängen,
- Satzlängen,
- numerisch gemessene Werte auf Dokumentebene,¹
- Reaktionszeiten wie z. B. Lesezeiten,
- Scores aus Magnitude Estimation-Experimenten.

Oft interessiert uns, ob sich die Zentraltendenzen (als Abhängige) in verschiedenen Gruppen unterschiedlich sind, wobei die Gruppen durch die Unabhänigge gegeben ist. Beispiele wären z.B. Unterschieden der Mittel von:

- Wortlängen von zwei verschiedenen Autoren,
- Nomen-Verb-Quotienten in Texten aus verschiedenen Genres,
- Lesezeiten unter verschiedenen syntaktischen Extraktionsbedingungen,
- ME-Bewertungen von Standard- und Ninctstandard-Varianten.

Eventuell interessiert auch der Vergleich solcher Messungen mit einer quasi als bekannt angenommenen Population. Liegt zum Beispiel ein sehr großes Korpus des Gegenwartsdeutschen vor, aus dem die mittlere Wortlänge für ein Genre mit hoher Konfidenz auf Populationsebene geschätzt werden kann, wollen wir evtl. die mittlere Wortlänge aus einer kleineren Sammlung von Texten mit dem als bekannt angenommenen Populationsmittel vergleichen. Diese Texte können auch durchaus in einem leidlichen gut kontrollierten Szenario entstanden sein, z. B. als Aufsätze einer schulischen Lerner*innen-Gruppe.

¹ Wenn diese Werte aber als Anteilwerte bzw. Prozentwerte erfasst wurden, sind die hier vorgestellten Tests nicht anwendbar. Warum, wird in diesem und den folgenden Kapiteln deutlich.

3 Mittelwervergleiche

In den beiden genannten Fällen sollte nun, wenn wir eine statistischen Inferenz anstreben und einen Test durchführen wollen, eine substantielle theoretische Hypothese vorliegen, gemäß derer es im Mittel einen tatsächlichen Unterschied zwischen mindestens zwei Gruppen oder der Grundgesamtheit und einer Gruppe gibt. Die Gruppen werden definiert durch eine kategoriale Unabhängige. Nehmen wir die Lesezeiten als Beispiel, dann wäre die substantielle Hypothese wahrscheinlich die aus einem bestimmten Processing-Modell abgeleitete psycholinguistische Vermutung, dass ein bestimmter Extraktionstyp mit mentalen Operationen verbunden ist, die zu einer Längung der Lesezeit führen (z. B. Surprisal).

TODO Erkläre, dass es eigentlich immer um GG-Mittel geht!

Die substantielle Hypothese mündet stets die inferenzlogische Form wie in Gleichung 3.1. \mathcal{H} ist definiert als: "Es gibt einen Unterschied zwischen den Mitteln der zwei Populationen X_1 und X_2 ."

$$\mathscr{H} := \bar{X}_1 \neq \bar{X}_2 \tag{3.1}$$

Hypothese \mathcal{H} in Gleichung 3.1 ist grundlegend verschieden von \mathcal{H}_* in Gleichung 3.2. \mathcal{H}_* wird hier definiert als: "Es gibt einen Mittelwertunterschied zwischen Stichprobe x_1 und Stichprobe x_2 ."

$$\mathscr{H}_* := \bar{x_1} \neq \bar{x_2} \tag{3.2}$$

Diese Hypothese ist, wie in Teil I ausführlich argumentiert wurde, trivialerweise fast immer richtig. Außerdem ist sie *beweisbar*, indem wir die Mittelwerte der Stichproben bilden und vergleichen. Das macht sie wissenschaftlich völlig *uninteressant*. Die angestrebte Inferenz zielt immer auf einen grundlegenden datengenerierenden Prozess, nicht auf einzelne Stichproben.

Die korrekte inferenzlogische Form der substantiellen Hypothese in Gleichung 3.1 ist aber nicht mit der eigentlichen Hypothese zu verwechseln. Die (in der Regel in Worten oder in einem Modellformalismus) zu formulierende Theorie $\mathcal T$ bettet $\mathcal H$ kausal ein, beschreibt also einen Mechanismus, der dazu führt, dass die Reaktionszeiten oder die Wortlängen usw. in den beobachteten Gruppen verschieden sind. Es muss also gelten, dass $\mathcal T \hookrightarrow \mathcal H$.

- 3.2 Verteilungen von Stichprobenmitteln und die zentralen Grenzwertsätze
- 3.3 Stichproben- und Populationsmittel
- 3.4 Stichproben- und Stichprobenmittel
- 3.5 Messwiederholungen
- 3.6 Simulationen zu t-Tests
- 3.7 Voraussetzungen für t-Tests testen
- 3.8 Zur Absurdität von t-Tests in der Korpuslinguistik
- 3.9 Power von t-Tests
- 3.10 Interpretation von t-Tests in N-P

Teil V Modelle

Fisher-Yates
Test|see Fisher
Exact Test