Лабораторная работа №17

Имитационное моделирование

Серёгина Ирина Андреевна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
	3.1 Модель работы вычислительного центра	7
	3.2 Модель работы аэропорта	10
	3.3 Модель работы морского порта	13
4	Выводы	20

Список иллюстраций

3.1	Модель работы вычислительного центра	8
3.2	Отчёт модели работы вычислительного центра	9
3.3	Отчёт модели работы вычислительного центра	9
3.4	Модель работы аэропорта	11
3.5	Отчёт модели работы аэропорта	12
3.6	Отчёт модели работы аэропорта	12
3.7	Модель работы морского порта	13
3.8	Отчёт модели работы морского порта	14
3.9	Модель работы морского порта	15
3.10	Отчёт модели работы морского порта	16
3.11	Модель работы морского порта	16
3.12	Отчёт модели работы морского порта	17
3.13	Модель работы морского порта	18
3 14	Отчёт молели работы морского порта	19

Список таблиц

1 Цель работы

Выполнить задания для самостоятельного выполнения.

2 Задание

Реализовать следующие модели:

- 1. Модель работы вычислительного центра
- 2. Модель работы аэропорта
- 3. Модель работы морского порта

3 Выполнение лабораторной работы

3.1 Модель работы вычислительного центра

На вычислительном центре в обработку принимаются три класса заданий A, B и C. Исходя из наличия оперативной памяти ЭВМ задания классов A и B могут решаться одновременно, а задания класса C монополизируют ЭВМ. Задания класса A поступают через 20 ± 5 мин, класса B — через 20 ± 10 мин, класса C — через 28 ± 5 мин и требуют для выполнения: класс A — 20 ± 5 мин, класс B — 21 ± 3 мин, класс C — 28 ± 5 мин. Задачи класса C загружаются в ЭВМ, если она полностью свободна. Задачи классов A и B могут дозагружаться к решающей задаче. Смоделировать работу ЭВМ за 80 ч. Определить её загрузку

Пишу код в gpss (рис. 3.1).

ram STORAGE 2

GENERATE 20,5
QUEUE class_A
ENTER ram,1
DEPART class_A
ADVANCE 20,5
LEAVE ram,1
TERMINATE 0

GENERATE 20,10
QUEUE class_A
ENTER ram,1
DEPART class_A
ADVANCE 21,3
LEAVE ram,1
TERMINATE 0

GENERATE 28,5
QUEUE class_A
ENTER ram,2
DEPART class_A
ADVANCE 28,5
LEAVE ram,2
TERMINATE 0

GENERATE 4800 TERMINATE 1 START 1

Рис. 3.1: Модель работы вычислительного центра

После чего формирую отчёт (рис. 3.2), (рис. 3.3).

	GPSS	World	Simulat	cion Rep	ort - U	Jntitl	ed Model	1.1.1	
		пятни	ца, мая	30. 202	5 15:34	4:55			
			44, 1147	00, 202					
	START TI	IME		END TIM	E BLO	CKS F	ACILITIES	STO	RAGES
	0.0	000		4800.00	0 23	3	0	1	L
						_			
	NAME				VALUE				
	CLASS_A				.0001.00				
	RAM			1	.0000.00	00			
LABEL		LOC	BLOCK T	TYPE	ENTRY	COUNT	CURRENT	COUNT	RETRY
		1	GENERAT	ΓE	24	10		0	0
		2	QUEUE		24	40		4	0
		3	ENTER		23	36		0	0
			DEPART		23	36		0	0
			ADVANCE	E		36		1	0
			LEAVE			35		0	0
			TERMINA			35		0	0
			GENERAT	ľΕ		36		0	0
			QUEUE			36		5	0
			ENTER		23			0	0
			DEPART		23			0	0
			ADVANCE	5	23			1	0
			LEAVE		23			0	0
			TERMINA		23			0	0
			GENERAT	ľΕ	17	_		0	0
			QUEUE		17		17		0
			ENTER			0		0	0
			DEPART			0		0	0
			ADVANCE	2		0		0	0
			LEAVE			0		0	0
			TERMINA			0		0	0
			GENERAT	_		1		0	0
		23	TERMINA	ATE		1		0	0

Рис. 3.2: Отчёт модели работы вычислительного центра

QUEUE CLASS_A	MAX CONT. 183 181	ENTRY ENT		VE.CONT. 92.354	AVE.TIME 684.105		
STORAGE RAM	CAP. REM. 2 0	MIN. MAX.		ES AVL. 7 1	AVE.C. UT:		DELAY 181
FEC XN PRI 650 0 636 0 651 0 637 0 652 0 653 0	BDT 4803.512 4805.704 4807.869 4810.369 4813.506 9600.000	ASSEM 0 650 636 651 637 652 653	0 5 0 12 0	NEXT F 1 6 15 13 8 22	'ARAMETER	VALUE	

Рис. 3.3: Отчёт модели работы вычислительного центра

Видим, что загруженность имеет значение 0,994.

3.2 Модель работы аэропорта

Самолёты прибывают для посадки в район аэропорта каждые 10 ± 5 мин. Если взлетно- посадочная полоса свободна, прибывший самолёт получает разрешение на посадку. Если полоса занята, самолет выполняет полет по кругу и возвращается в аэропорт каждые 5 мин. Если после пятого круга самолет не получает разрешения на посадку, он отправляется на запасной аэродром. В аэропорту через каждые 10 ± 2 мин к взлетно -посадочной полосе выруливают готовые к взлёту самолёты и получают разрешение на взлёт, если полоса свободна. Для взлета и посадки самолёты занимают полосу ровно на 2 мин. Если при свободной полосе одновременно один самолёт прибывает для посадки, а другой — для взлёта, то полоса предоставляется взлетающей машине. Требуется: — выполнить моделирование работы аэропорта в течение суток; — подсчитать количество самолётов, которые взлетели, сели и были направлены на запасной аэродром; — определить коэффициент загрузки взлетно-посадочной полосы

Пишу код в gpss (рис. 3.4).

GENERATE 10,5,,,1
ASSIGN 1,0
QUEUE arrival
landing GATE NU runway,wait
SEIZE runway
DEPART arrival
ADVANCE 2
RELEASE runway
TERMINATE 0

wait TEST L pl,5,goaway
ADVANCE 5
ASSIGN 1+,1
TRANSFER 0,landing
goaway SEIZE reserve
DEPART arrival
RELEASE reserve
TERMINATE 0

GENERATE 10,2,,,2
QUEUE takeoff
SEIZE runway
DEPART takeoff
ADVANCE 2
RELEASE runway
TERMINATE 0

GENERATE 1440 TERMINATE 1 START 1

Рис. 3.4: Модель работы аэропорта

После чего формирую отчёт (рис. 3.5), (рис. 3.6).

	пятни	ца, мая 30,	2025	15:57:40			
START 1	TTME	END	TIME	BLOCKS H	CACTITTIES	STO	DAGES
	.000			26	1	3101	
v	.000	111	0.000	20	-	,	,
NAM	Ε			VALUE			
ARRIVAL			100	002.000			
GOAWAY				14.000			
LANDING				4.000			
RESERVE			UNS	SPECIFIED			
RUNWAY			100	001.000			
TAKEOFF			100	000.000			
WAIT				10.000			
LABEL	100	BLOCK TYPE	-	NTDV COUNT	CHDDENT	COUNT	עמדסע
LABEL	1	GENERATE	-	146	CORRENT	0	0
	2	ASSIGN		146		0	0
	3	OUEUE		146		0	0
T.ANDTNG	4	GATE		184		0	0
LANDING	5	SEIZE		146		0	0
	6	DEPART		146		0	0
	7	ADVANCE		146		0	0
	8	RELEASE		146		0	0
	9	TERMINATE		146		0	0
WATT	-	TEST		38		0	0
HALL	11	ADVANCE		38		0	0
	12	ASSIGN		38		0	0
	13	TRANSFER		38		0	0
GOAWAY	14	SEIZE		0		0	0
00111111	15	DEPART		0		0	0
	16	RELEASE		0		0	0
	17	TERMINATE		0		0	0
	18	GENERATE		142		0	0
	19	QUEUE		142		0	0
	20	SEIZE		142		0	0
	21	DEPART		142		0	0
	22	ADVANCE		142		0	0
	23	RELEASE		142		0	0
	24	TERMINATE		142		0	0
	25	GENERATE		1		0	0
	26	TERMINATE		1		0	0

Рис. 3.5: Отчёт модели работы аэропорта

FACILITY RUNWAY		ENTRIES 288	UTIL. 0.400		E AVAIL.		O INTER RETRY	DELAY 0
QUEUE TAKEOFE ARRIVAL		MAX CO 1 2	ONT. ENTE 0 14 0 14	12 114	0.01 0.13	7 0.1		0
FEC XN 290 291 292	PRI 2 1 0	BDT 1440.7 1445.3 2880.0	67 29	90 0	NT NEXT 18 1 25	PARAMETE	R VALUE	

Рис. 3.6: Отчёт модели работы аэропорта

Из отчета видно, что загруженность системы равна 0,4, взлетели 142 самолета, приземлились 146 и 0 самолетов улетело на резервный аэродром.

3.3 Модель работы морского порта

Морские суда прибывают в порт каждые (а \pm \Box) часов. В порту имеется N причалов. Каждый корабль по длине занимает M причалов и находится в порту (b \pm \Box) часов. Требуется построить GPSS-модель для анализа работы морского порта в течение полугода, определить оптимальное количество причалов для эффективной работы порта. Исходные данные: 1) а = 20 ч, \Box = 5 ч, b = 10 ч, \Box = 3 ч, N = 10, M = 3; 2) а = 30 ч, \Box = 10 ч, b = 8 ч, \Box = 4 ч, N = 6, M = 2.

Реализую первую модель, пишу код (рис. 3.7).

pier STORAGE 10 GENERATE 20,5

QUEUE arrive ENTER pier,3 DEPART arrive ADVANCE 10,3 LEAVE pier,3 TERMINATE 0

GENERATE 24 TERMINATE 1 START 180

Рис. 3.7: Модель работы морского порта

Получаю отчёт (рис. 3.8).

	START T		END T 4320.	IME BLOCE			
	NAME ARRIVE PIER			VALUE 10001.000 10000.000)		
LABEL		1 2 3 4 5 6 7	BLOCK TYPE GENERATE QUEUE ENTER DEPART ADVANCE LEAVE TERMINATE GENERATE TERMINATE	ENTRY (218 218 219 219 214 214 214 214 180	5 5 5 5 5 4 4	COUNT 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	T RETRY 0 0 0 0 0 0 0 0 0 0 0 0 0
QUEUE ARRIVE			NT. ENTRY EN 0 215				AVE.(-0) RETRY 0.000 0
STORAGE PIER			EM. MIN. MAX 7 0 3				L. RETRY DELAY 48 0 0
FEC XN 395 396 397	0	4324.2 4335.2	ASSEM 60 395 33 396 00 397	5 0		METER	VALUE

Рис. 3.8: Отчёт модели работы морского порта

Видно, что суда обслуживаются быстрее, чем поступают, то есть система простаивает, поэтому, чтобы получить оптимальные результаты, сокращаю количество причалов до возможного минимального.

Пишу код (рис. 3.9).

pier STORAGE 3 GENERATE 20,5

QUEUE arrive ENTER pier,3 DEPART arrive ADVANCE 10,3 LEAVE pier,3 TERMINATE 0

GENERATE 24 TERMINATE 1 START 180

Рис. 3.9: Модель работы морского порта

Получаю отчёт (рис. 3.10).

		IME 000	END 4320			FACILITIES 0		S
	NAME ARRIVE			VAL				
	PIER			10000.				
LABEL		LOC	BLOCK TYPE	ENTR	COUNT	CURRENT C	OUNT RET	RY
		1	GENERATE		215	C) ()
		2	QUEUE		215	C) ()
		3	ENTER		215	0) ()
		4	DEPART		215	C)
		5	ADVANCE		215	1	. ()
			LEAVE		214) ()
		7	TERMINATE		214	C) ()
			GENERATE		180	•) ()
		9	TERMINATE		180	C) ()
QUEUE		MAX CO	ONT. ENTRY E	NTRY(0)	AVE.CON	NT. AVE.TIM	E AVE	(-0) RETE
ARRIVE		1	0 215	215	0.000	0.00	0 (0.000 0
STORAGE		CAP. I	REM. MIN. MA	X. ENTR	IES AVI	. AVE.C.	UTIL. RE	TRY DELAY
PIER		3	0 0	3 6	15 1	1.485	0.495	0 0
FEC XN	PRI	BDT	ASSEM	CURRENT	NEXT	PARAMETER	. VALU	ΙE
395	0	4324.2	260 395	5	6			
396	0	4335.2	233 396	0	1			
397	0	4344.0	000 397	0	8			

Рис. 3.10: Отчёт модели работы морского порта

Реализую вторую модель, пишу код (рис. 3.11).

pier STORAGE 6 GENERATE 30,10

QUEUE arrive ENTER pier,2 DEPART arrive ADVANCE 8,4 LEAVE pier,2 TERMINATE 0

GENERATE 24 TERMINATE 1 START 180

Рис. 3.11: Модель работы морского порта

Получаю отчёт (рис. 3.12).

	START T	IME		END 1	TIME	BLOCKS	FAG	CILITIES	STO	RAGES	
	0.0	000		4320	.000	9		0	- 1	1	
	NAME ARRIVE				7	1.000					
	PIER					0.000					
	PIEK				1000	0.000					
LABEL		LOC	BLOCK	TYPE	EN	TRY CO	UNT (CURRENT	COUNT	RETRY	
		1	GENERA	TE		143			0	0	
		2	QUEUE			143			0	0	
		3	ENTER			143			0	0	
		4	DEPART			143			0	0	
		5	ADVANC	E		143			1	0	
		6	LEAVE			142			0	0	
		7	TERMIN	ATE		142			0	0	
		8	GENERA	TE		180			0	0	
		9	TERMIN	ATE		180			0	0	
QUEUE		MAY C	מאר באו	ים עמד	יי עמדני) ATTE	CONT	AVE.TI	ME :	NTTE (0)	DETRV
ARRIVE								0.0			
ARRIVE		1	0	143	143	0.	000	0.0	00	0.000	U
STORAGE		CAP.	REM. MI	N. MAX	K. EN	TRIES	AVL.	AVE.C.	UTIL.	. RETRY	DELAY
PIER		6	4 0		2	286	1	0.524	0.087	7 0	0
			_								
FEC XN							XI I	PARAMETE	K \	VALUE	
322	-		892								
324			599								
325	0	4344.	000	325	0	8					

Рис. 3.12: Отчёт модели работы морского порта

Видно, что суда обслуживаются быстрее, чем поступают, то есть система простаивает, поэтому, чтобы получить оптимальные результаты, сокращаю количество причалов до возможного минимального.

Пишу код (рис. 3.13).

pier STORAGE 2 GENERATE 30,10

QUEUE arrive ENTER pier,2 DEPART arrive ADVANCE 8,4 LEAVE pier,2 TERMINATE 0

GENERATE 24 TERMINATE 1 START 180

Рис. 3.13: Модель работы морского порта

Получаю отчёт (рис. 3.14).

	START T	IME END T	IME BLOCKS FA	CILITIES STORAGES	
	0.	000 4320.	000 9	0 1	
	NAME		VALUE		
	ARRIVE		10001.000		
	PIER		10000.000		
LABEL		LOC BLOCK TYPE			
		1 GENERATE		0 0	
		2 QUEUE		0 0	
		3 ENTER	143	0 0	
		4 DEPART	143	0 0	
		5 ADVANCE	143	1 0	
		6 LEAVE	142	0 0	
		7 TERMINATE		0 0	
		8 GENERATE	180	0 0	
		9 TERMINATE	180	0 0	
OUEUE		MAX CONT. ENTRY EN	TRY(0) AVE.CONT	. AVE.TIME AVE.(-0)	RETRY
ARRIVE				0.000 0.000	
STORAGE				AVE.C. UTIL. RETRY D	
PIER		2 0 0 2	286 1	0.524 0.262 0	0
	PRI	BDT ASSEM (CURRENT NEXT	PARAMETER VALUE	
FEC XN					
FEC XN 322	0	4325.892 322			
		4325.892 322 4336.699 324			

Рис. 3.14: Отчёт модели работы морского порта

4 Выводы

Я выполнила задания для самостоятельного выполнения.