Laboratorium 6

Modelowanie urządzenia hamującego lądujący samolot

Janusz Pawlicki

1. Wstęp

Schemat układu:

2. Równania

$$\sin\Theta = \frac{x}{h + y_1} = \frac{x}{\sqrt{x^2 + h^2}},$$

$$y_1 = \sqrt{x^2 + h^2} - h.$$

1

$$m_3\ddot{y}_3 = f_{k2} - f_b$$
, $f_b = f(y_3)(\dot{y}_3)^2$

Tabela przedstawiająca współczynnik proporcjonalności f(y3)

$y_3[m]$	f(y ₃)	$y_3[m]$	f(y ₃)
0	833	80	1070
10	400	90	1600
20	160	94	2100
30	320	98	2800
40	520	102	4100
50	520	104	5000
60	660	107	9000
70	830	120	9000

3. Dane:

```
% Warunki początkowe

% x(0)=0m,
% x'(0)=67m/s = 241km/h,
% y2(0)=0m,
% y2'(0)=0m/s,
% y3(0)=0m,
% y3'(0)=0m/s.

% Dane układu

m1 = 14000;
m2 = 450.28;
m3 = 200;
k1 = 54700;
k2 = 303600;
h = 42;
```

4. Model w simulinku

5. Wykresy

5.1 Wykres przemieszczenia i drogi

5.2 Wykres przyspieszenia

6. Bibliografia

 $https://upel.agh.edu.pl/pluginfile.php/61766/mod_resource/content/1/Samolot.pdf$

https://upel.agh.edu.pl/pluginfile.php/61767/mod_resource/content/1/Informacja_dodatkowa.pdf