Apresentação Semanal

Miguel Inocêncio

Universidade de Aveiro

26/03/2019

Conteúdos

HEVC - Introdução Geral

AV1 - Introdução Geral

Comparação técnica entre HEVC vs AV1

High Level Syntax

Partições

Intra-Prediction

Inter-Prediction

Transformadas

Quantização

Codificação de Entropia

Filtragem

Análise de Performance

HEVC

- Projeto lançado em 2010 pela ITU-T Video Coding Experts Group (VCEG) e ISSO/IEC Moving Picture Experts Group (MPEG)
- Originou uma nova organização: Joint Collaborative Team on Video Coding (JCT-VC)
- Primeira versão lançada em 2013
- Sucessor do H.264/AVC

Figura 1: Detentores de patentes do HEVC

AV1

- Formato de compressão Open Source e sem royalties
- ► Finalizada a primeira versão em 2018, pela Alliance for Open Media (AOMedia)
- Sucessor do VP9 (formato da Google, usado no Youtube)
- Desenvolvido para aplicações de streaming

Figura 2: Alliance for Open Media

Comparação técnica entre HEVC vs AV1

- Apresentação geral de ambos os formatos de codificação
- Comparação de aspetos técnicos

High Level Syntax

Característica	HEVC	AV1
Perfis	14	3
Níveis	13	12
Lovers	Slices	Frames divididas
Layers	independentes	por Tiles

Tabela 1: Noções gerais de ambos os codecs

Partições

Tamanho máximo *Coding Tree Units*'s no HEVC e **superblock**'s no AV1, bem como todos os tamanhos usados nas diferentes fases do processo.

Característica	HEVC	AV1
Nº de tamanhos	24	42
Tamanho máximo	64×64	128×128

Tabela 2: Partitioning

Intra-Prediction

Ambos os formatos usam processos semelhantes, embora o HEVC apenas melhore as tecnologias implementadas no AVC. Neste aspeto, o AV1 adiciona funcionalidades inexistentes no VP9.

Característica	HEVC	AV1
Nº de modos angulares	33	56
Nº modos não angulares	2	6
Outres adiazas	Ø	5 modos recursivos
Outras adições		1 Chroma from Luma

Tabela 3: Intra-Prediction

Inter-Prediction

Novamente, ambos os processos seguem abordagens semelhantes. Contudo, o HEVC é mais exigente em termos de memória, enquanto que o AV1 peca pela exigência em termos de complexidade.

Característica	HEVC	AV1
Nº de modos de predição	2	4
Nº frames de referência	8 de 16	
	$\frac{1}{8}$ pel	Global Motion
Outras adições		5 filtros de sub-pel
		independentes

Tabela 4: Inter-Prediction

Transformadas

Ambos os formatos manteram as técnicas dos seus predecessores, inovando nos tamanhos dos blocos. Quer isto dizer que o AV1 apresenta um grau de liberdade bastante superior ao HEVC.

Característica	HEVC	AV1
	DCT e DST	DCT, ADST,
Tipos de transformadas		Flip ADS e Identidade
		Identidade
Tamanho máximo do bloco	32×32	64×64
Outras adições	Ø	Blocos Retangulares Blocos Recursivos

Tabela 5: Transforms

Quantização

Nenhum dos dois formatos sofreu grandes alterações em relação ao análogo anterior. A quantização é feita através de matrizes fixas, que é escolhida a partir de um parâmetro calculado (QP).

Característica	HEVC	AV1
Nº de parametros para QP	2	6
Outras adições	Ø	Offset para superblocos

Tabela 6: Quantization

Codificação de Entropia

Neste ramo, o HEVC retirou um dos modos de codificação, mantendo apenas o CABAC. No caso do AV1, manteve-se a codificação aritmética do VP9, com o aumento do alfabeto.

Característica	HEVC	AV1
Codificação	CABAC	Multi-symbol arithmetic
Codificação		com alfabeto até 16
Atualização do alfabeto	a cada frame	a cada símbolo

Tabela 7: Entropy Coding

Filtragem

Ambos os formatos inovaram neste ramo, adicionando filtros opcionais, assim como formalizando a utilização de filtros opcionais nos formatos anteriores.

Característica	HEVC	AV1
De-blocking	Sim	Sim
Outros Filtros	Sample Adaptive Offset	Constrained Directional Enhancement Filter Loop Filter

Tabela 8: Filtering

Análise de Performance

A performance de ambos os encoders foi avaliada em dois aspetos: qualidade de codificação e tempo de enconding.

Este último parâmetro está altamente dependente do hardware no qual é implementado, nomeadamente devido à grande maioria das placas gráficas lançadas desde 2016 já possuírem aceleradores de hardware dedicado para encoding/decoding de HEVC. Além disto, também a maturidade dos encoders em software para HEVC e correspondente optimização dos seus processos leva ao aumento da sua vantagem em relação ao AV1.

Quanto à qualidade objetiva e subjetiva dos formatos, também aqui existe alguma liberdade de resultados, devido aos diferentes perfis a utilizar.

Análise de Performance

A complexidade adicional do AV1 é recompensada, devido à qualidade adicional obtida, quando comparada com o HEVC. Contudo, torna-se difícil concluir com um número final, devido à disparidade de resultados encontrada, já que alguns testes mostram acréscimos de 2

Quanto ao tempo de codificação, os resultados mais recentes (Julho de 2018) mostram resultados pouco animadores, apesar de terem sido feitas melhorias aos encoders de software posteriormente.

Codificador	Tempo de Encoding (s)	x Tempo Real
x265	289	58
libaom	226 080	45 216

Tabela 9: Tempo de codificação de clip de 5s