Министерство науки и высшего образования Российской Федерации

Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ <u>ИУК «Информатика и управление»</u>

КАФЕДРА <u>ИУК4 «Программное обеспечение ЭВМ, информационные</u> технологии»

ЛАБОРАТОРНАЯ РАБОТА №5

«Дискретное преобразование Фурье»

ДИСЦИПЛИНА: «Цифровая обработка сигналов»

Выполнил: студент гр. ИУК4-7	2Б <u>(Подпись)</u> (<u>Карельский М.К.</u>)
Проверил:	(<u>Тронов К.А.</u>) (Подпись)
Дата сдачи (защиты):	
Результаты сдачи (защиты): - Бал	льная оценка:
- Оц	енка:

Цель: формирование практических навыков анализа спектра дискретных сигналов с помощью дискретного преобразования Фурье (ДПФ).

Задачи:

- 1. Используя ДПФ построить AЧX сигналов: заданного и отфильтрованного;
- 2. С помощью АЧХ проверить правильность процедуры фильтрации, при необходимости скорректировать параметры фильтра

Вариант 7

- Значения частот:
 - \circ S₁: 25
 - \circ S₂: 40
 - \circ S₃: 60
- $S_1 + S_2$:
 - о Фильтр Баттерворта: S₂
 - о Фильтр Чебышева 1 рода: S₁
 - о Фильтр Чебышева 2 рода: S₁
 - о Эллиптический фильтр: S₂
- $S_1 + S_2 + S_3$:
 - о Фильтр Баттерворта: S₂
 - \circ Фильтр Чебышева 1 рода: $S_1 + S_2$
 - \circ Фильтр Чебышева 2 рода: $S_1 + S_3$
 - о Эллиптический фильтр: S₃

Листинг:

```
amp = 0.1;
sr = 1000;
step = 1/sr;
t = (0:step:0.25);
freq1 = 25;
freq2 = 40;
freq3 = 60;
s1 = amp*sin(2*pi*freq1*t);
s2 = amp*sin(2*pi*freq2*t);
s3 = amp*sin(2*pi*freq3*t);
%% Фильтр Баттерворта, s1 + s2
s = s1 + s2;
subplot(4, 1, 1)
plot(t, s)
n = 4;
[z, p, k] = buttap(n);
[b, a] = zp2tf(z, p, k);
f = abs(filter(b, a, s));
sf = s1 + s2.*f;
```

```
subplot(4, 1, 2)
plot(t, sf)
N_s = length(s);
ft = fft(s);
frequencies = (0:N_s-1)*(sr/N_s);
subplot(4, 1, 3)
plot(frequencies(1:31), ft(1:31))
N sf = length(sf);
ftf = fft(sf);
frequencies = (0:N sf-1)*(sr/N sf);
subplot(4, 1, 4)
plot(frequencies(1:31), ftf(1:31))
%% Фильтр Чебышева 1 рода, s1 + s2
s = s1 + s2;
subplot(4, 1, 1)
plot(t, s)
n = 25;
Rp = 0.1;
[z, p, k] = cheb1ap(n, Rp);
[b, a] = zp2tf(z, p, k);
f = abs(filter(b, a, s));
sf = s1.*f + s2;
subplot(4, 1, 2)
plot(t, sf)
N s = length(s);
ft = fft(s);
frequencies = (0:N s-1)*(sr/N s);
subplot(4, 1, 3)
plot(frequencies(1:31), ft(1:31))
N sf = length(sf);
ftf = fft(sf);
frequencies = (0:N_sf-1)*(sr/N_sf);
subplot(4, 1, 4)
plot(frequencies(1:31), ftf(1:31))
%% Фильтр Чебышева 2 рода, s1 + s2
s = s1 + s2;
subplot(4, 1, 1)
plot(t, s)
n = 4;
Rs = 40;
[z, p, k] = cheb2ap(n, Rs);
[b, a] = zp2tf(z, p, k);
f = abs(filter(b, a, s));
sf = s1.*f + s2;
subplot(4, 1, 2)
plot(t, sf)
N s = length(s);
ft = fft(s);
frequencies = (0:N_s-1)*(sr/N_s);
subplot(4, 1, 3)
plot(frequencies(1:31), ft(1:31))
```

```
N_sf = length(sf);
ftf = fft(sf);
frequencies = (0:N_sf-1)*(sr/N_sf);
subplot(4, 1, 4)
plot(frequencies(1:31), ftf(1:31))
%% Эллиптический фильтр, s1 + s2
s = s1 + s2;
subplot(4, 1, 1)
plot(t, s)
n = 25;
Rp = 0.1;
Rs = 40;
[z, p, k] = ellipap(n, Rp, Rs);
[b, a] = zp2tf(z, p, k);
f = abs(filter(b, a, s));
sf = s1 + s2.*f;
subplot(4, 1, 2)
plot(t, sf)
N s = length(s);
ft = fft(s);
frequencies = (0:N s-1)*(sr/N s);
subplot(4, 1, 3)
plot(frequencies(1:31), ft(1:31))
N_sf = length(sf);
ftf = fft(sf);
frequencies = (0:N_sf-1)*(sr/N sf);
subplot(4, 1, 4)
plot(frequencies(1:31), ftf(1:31))
%% Фильтр Баттерворта, s1 + s2 + s3
s = s1 + s2 + s3;
subplot(4, 1, 1)
plot(t, s)
n = 4;
w1 = 0.05;
w2 = 0.15;
[z, p, k] = buttap(n);
[b, a] = zp2tf(z, p, k);
f = abs(filter(b, a, s));
sf = s1 + s2.*f + s3;
subplot(4, 1, 2)
plot(t, sf)
N s = length(s);
ft = fft(s);
frequencies = (0:N_s-1)*(sr/N_s);
subplot(4, 1, 3)
plot(frequencies(1:31), ft(1:31))
N sf = length(sf);
ftf = fft(sf);
frequencies = (0:N_sf-1)*(sr/N_sf);
subplot(4, 1, 4)
plot(frequencies(1:31), ftf(1:31))
```

```
%% Фильтр Чебышева 1 рода, s1 + s2 + s3
s = s1 + s2 + s3;
subplot(4, 1, 1)
plot(t, s)
n = 25;
Rp = 0.1;
w0 = 0.1;
[z, p, k] = cheblap(n, Rp);
[b, a] = zp2tf(z, p, k);
f = abs(filter(b, a, s));
sf = (s1 + s2).*f + s3;
subplot(4, 1, 2)
plot(t, sf)
N s = length(s);
ft = fft(s);
frequencies = (0:N s-1)*(sr/N_s);
subplot(4, 1, 3)
plot(frequencies(1:31), ft(1:31))
N sf = length(sf);
ftf = fft(sf);
frequencies = (0:N sf-1)*(sr/N sf);
subplot(4, 1, 4)
plot(frequencies(1:31), ftf(1:31))
%% Фильтр Чебышева 2 рода, s1 + s2 + s3
s = s1 + s2 + s3;
subplot(4, 1, 1)
plot(t, s)
n = 4;
Rs = 40;
[z, p, k] = cheb2ap(n, Rs);
[b, a] = zp2tf(z, p, k);
f = abs(filter(b, a, s));
sf = (s1 + s3).*f + s2;
subplot(4, 1, 2)
plot(t, sf)
N s = length(s);
ft = fft(s);
frequencies = (0:N s-1)*(sr/N s);
subplot(4, 1, 3)
plot(frequencies(1:31), ft(1:31))
N_sf = length(sf);
ftf = fft(sf);
frequencies = (0:N_sf-1)*(sr/N_sf);
subplot(4, 1, 4)
plot(frequencies(1:31), ftf(1:31))
%% Эллиптический фильтр, s1 + s2 + s3
s = s1 + s2 + s3;
subplot(4, 1, 1)
plot(t, s)
```

```
n = 25;
Rp = 0.1;
Rs = 40;
w0 = 0.15;
[z, p, k] = ellipap(n, Rp, Rs);
[b, a] = zp2tf(z, p, k);
f = abs(filter(b, a, s));
sf = s1 + s2 + s3.*f;
subplot(4, 1, 2)
plot(t, sf)
N s = length(s);
ft = fft(s);
frequencies = (0:N s-1)*(sr/N s);
subplot(4, 1, 3)
plot(frequencies(1:31), ft(1:31))
N sf = length(sf);
ftf = fft(sf);
frequencies = (0:N_sf-1)*(sr/N_sf);
subplot(4, 1, 4)
plot(frequencies(1:31), ftf(1:31))
```

Результат:

Рис. 1. Фильтр Баттерворта, $S_1 + S_2$

Рис. 2. Фильтр Чебышева 1 рода, $S_1 + S_2$

Рис. 3. Фильтр Чебышева 2 рода, $S_1 + S_2$

Рис. 4. Эллиптический фильтр, $S_1 + S_2$

Рис. 5. Фильтр Баттерворта, $S_1 + S_2 + S_3$

Рис. 6. Фильтр Чебышева 1 рода, $S_1 + S_2 + S_3$

Рис. 7. Фильтр Чебышева 2 рода, $S_1 + S_2 + S_3$

Рис. 8. Эллиптический фильтр, $S_1 + S_2 + S_3$

Вывод: в ходе выполнения лабораторной работы были получены практические навыки анализа спектра дискретных сигналов с помощью дискретного преобразования Фурье.