{EPITECH}

{EPITECH}

T-DEV-811

Smart Trash Cans IOT – Augmented Reality

Augmented Reality

History

1968, Harvard
Ivan Sutherland
1st Head-mounted display called 'The
Sword of Damocles'

1990, Boeing's Computer Services Research

Tom Caudell

Coined the term "Augmented Reality"

Developed a software which displayed the position of key cables during construction

Today
AIRBUS
Microsoft HoloLens 2

PHYSICAL WORLD DIGITAL WORLD MIXED REALITY SPECTRUM

What Are The Different Types of Augmented Reality?

Marker-based AR

• Just need a

(2D or 3D) target marker ...

... and an overflowing imagination!

or

Markers: Best Practices

• DOs

- Feature-rich target markers
- Various shapes / curves / shadows
- Distinctive designs
- Bright and clear images
- Large, graphic targets
- Matte finish
- ...

DO NOTs

- Minimalist design
- Repeated textures
- Duplicating symbols across markers
- Blurry images or background
- Tiny markers
- Text-heavy markers
- Glossy print-outs
- ...

Overlaying data

« Real-life » states of the trash cans

Have you heard of 3D animations?

Overlaying data

 Garbage truck equipped with a highperformance GPS to optimize journeys

 Have you ever heard of "Pathfinding algorithms"?

Choosing the right engine

 Unity3D is recommended but not mandatory!

- Why Unity3D?
 - Lots of tutorials
 - Huge community
 - Cross-platform
 - Asset store
 - SDK manager

IoT

Example: industrial maintenance

loT

- Internet of the Things
- Extremely wide range of applications

How many devices?

• 2018 : 7 billions devices

• 2025 : 21 billion devices (estimated)

Far more connected objects than humans using Internet

loT

Internet of the Things

History

- PDP-8 (1965-1984)
- Designed for research lab automation
- Huge success (for the time) : > 50000 units

• Why?

History

- PDP-8 (1965-1984)
- Designed for research lab automation
- Huge success (for the time) : >
 50000 units
- Why ?
 - Low cost
 - Easy to use IO bus
 - Compact (easy to integrate in a lab)
 - 12 bits words = suitable range for measures (most ADC today are 12 bits)

- « Everything on a single chip »
- Very few side components needed
 - Even quartz is optional

- « Everything on a single chip »
- Very few side components needed
 - Even quartz is optional

- Integrates all parts of computer (CPU, Flash, RAM, IOs...)
- Mostly: single chip board (only the MCU + power)
 - Even quartz is optional

- Low range CPU :
 - 8 bits are common
 - Low MHz (low power)
- Few kB of RAM and Flash
- But many IOs

- Mass market (billions of units / years)
- Cost effective
 (dozen of units in a car; multiply unit cost by number of produced car...)
- Very wide range of MCU
 - Cost effective
- Time to market

MCU examples

• PIC10F200

- 6 pins package
- 256 words FLASH for programs
- 16 bytes RAM
- 4MHz

• PIC16C54

- 18 pins package
- 8bit (12 bits instructions), 40 MHz
- ROM: 512 words, RAM 20 bytes
- 12 IO pins

MCU examples

- 68K flash, 20K RAM
- ARM 32 bits, 72MHz
- 80 GPIO, 7 timers, 9 communication interfaces,
 16 ADC channels, 7 DMA channels

STM32H757

- Dual ARM Cortex-M5, 480 MHz
- DP FPU
- JPEG codec, crypto hardware
- 2MB FLASH, 1MB RAM

- Low power usage
 - For battery powered devices or solar powered
 - MCU often have low consumption
 - Configurable frequency
 - Advanced low power modes

Inputs/Outputs

• GPIO

 General purpose IO, can be configured as input or output

Timers

Some can be used to generate PWM, or as counter

ADC

Generally multichannel, 12 bits

DAC

Seldom present, PWM is suitable for many uses

Watchdog

Communication channels

• 12C

Communication with sensors / actuators

CAN

 Communication bus for multiple MCU (automotive)

UART

« old style» serial port, asynchronous or synchronous

SPI

- High speed serial port (serial flash, etc..)
- USB, support for ethernet, Wifi, display, etc...

Sensors and actuators

- Interaction with real words
- Sensors
 - Get information from the world
 - Can be simple (contact, IR barrier, ...)
 - MEMS: inertial sensor, pressure measure...

Actuators

- Act on the world
- Generally require external power!
- Motors (DC, step, servo), relay
- Display, LED, audio...
- MEMS (ex: inkjet), DLP...

MCU difficulties

- Low memory
 - Low level languages
 - Design constraints (algorithm choice)
- Interaction with real world
 - Problems cannot be easily reproduced
 - Breakpoint : can't continue after a breakpoint
 - Unit tests are more complex
- Hardware/Software
 - Both developed simultaneously (often)
 - Investigate if problem is hardware or software (or connection)
- But often very high reliability expected!

MCU difficulties

- Hopefully small programs
- Strict methodology
 - Never change hardware and software at the same time
 - QA standards for automotive, aviation, space
- Test environments
 - Dedicated hardware that simulate external world
 - Cross compilation on PC for tests / debug
 - MCU emulation (eg. QEMU)

• ...

Communication

Shannon theorem

$$C = B \log(1 + \frac{S}{N})$$

- C channel capacity
- B bandwidth
- S signal, N noise
- Noise cannot be suppressed (cosmic noise)
- Bandwidth is expensive + power consumption
- Signal can be increase but radio Tx consume a lot
- It is not possible to have high data rate, low power and low cost

For this project

- Discovering of MCU
- Discovering of sensors and actuators
- Discovering MCU development with both hardware and software
- Many of your issues : cable connection, sensor misuse
- Wide knowledge requirements
 - HW and SW are closely linked
 - Datasheets contains a lot of information, one need to get use to find relevant part.
- Wi-Fi communication
- No power consumption constraints

Merci.