Collision Prevention in Distributed 6TiSCH Networks

Ali lawad Fahs

Lebanese University-Faculty of Engineering (ULFG) Université Grenoble Alpes (UGA) - UFR IM²AG Laboratoire d'Informatique de Grenoble (LIG), Team Drakkar VERIMAG, Synchrone Supervised by: Dr. Olivier Alphand, Dr. Franck Rousseau Dr. Karine Altisen, Dr. Stéphane Devismes Prof Abed Ellatif Samhat

Final Year Project, 13th of July,2017

Outline

Introduction & Background

General Introduction IEEE802.15.4 Protocols Project challenges & Objectives

Proposed Mechanism

Using 6top Transaction Avoid Table Cell Buffer

Simulator and Results

Simulator Results

Summary and Contributions

Outline

Introduction & Background General Introduction

IEEE802.15.4 Protocols
Project challenges & Objectives

Proposed Mechanism

Using 6top Transaction Avoid Table Cell Buffer

Simulator and Results

Simulator Results

Summary and Contributions

IoT & Wireless Sensor Networks

Network technologies and IoT.

IoT & Wireless Sensor Networks

- Network technologies and IoT.
- ▶ WSN: standardization of IoT nodes communication.

IoT & Wireless Sensor Networks

- Network technologies and IoT.
- WSN: standardization of IoT nodes communication.
- ▶ Low power consumption, low cost.

IoT & Wireless Sensor Networks

- Network technologies and IoT.
- WSN: standardization of IoT nodes communication.
- ▶ Low power consumption, low cost.
- ▶ IEEE802.15.4 one of the main standards of WSN.

IEEE802.15.4

Converge Cast Structure

► Nodes radio range defines the neighborhood.

IEEE802.15.4

Converge Cast Structure

- Nodes radio range defines the neighborhood.
- Sink is selected.

IEEE802.15.4

Converge Cast Structure

- ► Nodes radio range defines the neighborhood.
- Sink is selected.
- Packets are forwarded toward the sink.

IEEE802.15.4

Converge Cast Structure

- Nodes radio range defines the neighborhood.
- Sink is selected.
- Packets are forwarded toward the sink.
- Communication pairs.

Outline

Introduction & Background

General Introduction

IEEE802.15.4 Protocols

Project challenges & Objectives

Proposed Mechanism

Using 6top Transaction

Avoid Table

Cell Buffer

Simulator and Results

Simulator

Results

Summary and Contributions

- ▶ IEEE802.15.4 defines the MAC and PHY layers.
- ▶ TSCH is an extension of the MAC layer of IEEE802.15.4.

- ▶ IEEE802.15.4 defines the MAC and PHY layers.
- ► TSCH is an extension of the MAC layer of IEEE802.15.4.
- ► Time/Frequency multiplexing of the bandwidth.

- ▶ IEEE802.15.4 defines the MAC and PHY layers.
- ► TSCH is an extension of the MAC layer of IEEE802.15.4.
- ► Time/Frequency multiplexing of the bandwidth.
- ▶ Shared cells/Dedicated cells..

- ▶ IEEE802.15.4 defines the MAC and PHY layers.
- ► TSCH is an extension of the MAC layer of IEEE802.15.4.
- ► Time/Frequency multiplexing of the bandwidth.
- ► Shared cells/Dedicated cells..

- ► IEEE802.15.4 defines the MAC and PHY layers.
- ► TSCH is an extension of the MAC layer of IEEE802.15.4.
- ► Time/Frequency multiplexing of the bandwidth.
- ► Shared cells/Dedicated cells..
- ▶ 6TiSCH operation sublayer 6top will manage the TSCH.

Cell Reservation Process

1. Scheduling function decides new cell should be assigned.

- 1. Scheduling function decides new cell should be assigned.
- 2. Child node sends an Add request.

- 1. Scheduling function decides new cell should be assigned.
- 2. Child node sends an Add request.
- 3. Scheduling function decides which cells to be selected.

- 1. Scheduling function decides new cell should be assigned.
- 2. Child node sends an Add request.
- 3. Scheduling function decides which cells to be selected.
- 4. Parent node replies with an Add response.

- 1. Scheduling function decides new cell should be assigned.
- 2. Child node sends an Add request.
- 3. Scheduling function decides which cells to be selected.
- 4. Parent node replies with an Add response.
- 5. Cell is added and communication starts.

Outline

Introduction & Background

General Introduction IEEE802.15.4 Protocols

Project challenges & Objectives

Proposed Mechanism

Using 6top Transaction
Avoid Table

Simulator and Results

Simulator

Results

Summary and Contributions

Project challenges & Objectives

Collision in Dedicated Cells

- Collision free Dedicated Cells?
- ▶ Neighbor nodes can select the same communication cell.

Project challenges & Objectives

Collision in Dedicated Cells

- Collision free Dedicated Cells?
- ▶ Neighbor nodes can select the same communication cell.

Project challenges & Objectives

Collision in Dedicated Cells

- Collision free Dedicated Cells?
- ▶ Neighbor nodes can select the same communication cell.
- Collision at the reception Node.

Project Objectives

Reducing the collisions in TSCH dedicated cells.

Project Objectives

- Reducing the collisions in TSCH dedicated cells.
- Modifying the Cell reserving process without introducing new overhead on the network

Project Objectives

- Reducing the collisions in TSCH dedicated cells.
- Modifying the Cell reserving process without introducing new overhead on the network
- Creating a flexible mechanism, compatible with all scheduling functions

Outline

Introduction & Background

General Introduction IEEE802.15.4 Protocols Project challenges & Objectives

Proposed Mechanism

Using 6top Transaction

Avoid Table

Cell Buffer

Simulator and Results

Simulator

Results

Summary and Contributions

Using 6top Transaction

Why?

- Submitted in the shared slot.
- Contains the reserved cells.

How?

▶ The child node Sends an Add Request.

Using 6top Transaction

Why?

- Submitted in the shared slot.
- Contains the reserved cells.

How?

- ▶ The child node Sends an Add Request.
- ▶ The parent replies with the selected cells.

Using 6top Transaction

Why?

- Submitted in the shared slot.
- ► Contains the reserved cells.

How?

- ▶ The child node Sends an Add Request.
- ▶ The parent replies with the selected cells.
- ► The Neighbor nodes collects the reserved cells and save them.

Outline

Introduction & Background

General Introduction IEEE802.15.4 Protocols Project challenges & Objectives

Proposed Mechanism

Using 6top Transaction Avoid Table

Simulator and Results

Simulator

Avoid Table structure and functioning

Avoid Table

► The cells reserved by neighbors will be saved by a structure similar to TSCH table.

Avoid Table structure and functioning

Avoid Table

- The cells reserved by neighbors will be saved by a structure similar to TSCH table.
- Scheduling function will avoid selecting cells found in this structure.

Avoid Table structure and functioning

Avoid Table

- ► The cells reserved by neighbors will be saved by a structure similar to TSCH table.
- Scheduling function will avoid selecting cells found in this structure.
- ▶ 6top will manage this table.

Outline

Introduction & Background

General Introduction IEEE802.15.4 Protocols Project challenges & Objectives

Proposed Mechanism

Using 6top Transaction Avoid Table Cell Buffer

Simulator and Results

Simulator Results

Summary and Contributions

Cell Buffer

Why?

- Some of the 6top Transaction are lost.
- Number of the neighbors will not receive the reserved cells.

How?

Creating a cell buffer that will contain k reserved cells for each node.

Cell Buffer

Why?

- Some of the 6top Transaction are lost.
- Number of the neighbors will not receive the reserved cells.

How?

- Creating a cell buffer that will contain k reserved cells for each node.
- Transmitting the cell buffer each time a cell is reserved.

Outline

Introduction & Background

General Introduction IEEE802.15.4 Protocols Project challenges & Objectives

Proposed Mechanism

Using 6top Transaction Avoid Table Cell Buffer

Simulator and Results Simulator

Results

Summary and Contributions

Simulator Architecture

Simulation Parameters

Parameter	Value
Number of Motes	100
Number of cycles per run	1000
Number of runs per simulation	1000
Timeslot duration	10 <i>ms</i>
Slotframe length	101
Number of channels	16
Area	1Km $ imes 1$ Km
Topology constraint	\geq 3 neighbors with PDR 50 $\%$
Radio sensitivity	-97~dBm
Radio range	100m
Traffic	$1~{\sf packet/node}$ each $10~{\sf cycles}$

Outline

Introduction & Background

General Introduction IEEE802.15.4 Protocols Project challenges & Objectives

Proposed Mechanism

Using 6top Transaction Avoid Table Cell Buffer

Simulator and Results

Simulator

Results

Summary and Contributions

Comparison with random scheduling

Comparison with random scheduling

Comparison with random scheduling

Results

Collision reasons

- ▶ The lost 6top transactions.
- Special Case That Induce Collisions.

- Housekeeping approach and cell relocation.
- Tx housekeeping.

Collision in Dedicated Cells

- Housekeeping approach and cell relocation.
- ► Tx housekeeping.

0.8 Cell 1 PDR

0.8 Cell 2 PDR

0.8 Cell 3 PDR

Collision in Dedicated Cells

- Housekeeping approach and cell relocation.
- Tx housekeeping.

0.8 Cell 1 PDR

0.8 Cell 2 PDR

0.3 Cell 3 PDR

- Housekeeping approach and cell relocation.
- ► Tx housekeeping.
- Rx housekeeping.

- Housekeeping approach and cell relocation.
- ► Tx housekeeping.
- Rx housekeeping.

- Housekeeping approach and cell relocation.
- Tx housekeeping.
- Rx housekeeping.
- Dealing with collisions after they occur. Good idea ?

Comparison with Housekeeping

Summary

- Our implementation introduce no overhead in the network.
- The implementation achieved 60% reduction in the number of collided Tx cells.
- ► The Combination of Our approach and Housekeeping accomplish an almost collision free dedicated cells.
- Outlook
 - Our goal is to reach a place were we have collision free network, using more complex methods.
 - Our perspective in this project was work on 6top, but our next steps is to study the effects of traffic in the protocols performances.

Contributions

- Understanding the simulator code.
- Optimizing, and implementing on top of this code.
- Designing the proposed mechanisms, and enhancing them.
- Publishing a poster in Computational sciences days in Grenoble, organized by LabEx PERSYVAL-Lab.
- ▶ Submitting a paper to Wimob 2017 conference.

Thanks for your attention! Questions?

6TiSCH

► IEEE802.15.4 left the management of TSCH for other Protocols.

- ► IEEE802.15.4 left the management of TSCH for other Protocols.
- 6TiSCH offered the integration of TSCH over IPv6.

- IEEE802.15.4 left the management of TSCH for other Protocols.
- 6TiSCH offered the integration of TSCH over IPv6.
- 6TiSCH operation sublayer (6top) offered the management of TSCH:
 - Centralized algorithm.

- ► IEEE802.15.4 left the management of TSCH for other Protocols.
- 6TiSCH offered the integration of TSCH over IPv6.
- 6TiSCH operation sublayer (6top) offered the management of TSCH:
 - Centralized algorithm.
 - Distributed algorithm.

- IEEE802.15.4 left the management of TSCH for other Protocols.
- 6TiSCH offered the integration of TSCH over IPv6.
- 6TiSCH operation sublayer (6top) offered the management of TSCH:
 - Centralized algorithm.
 - Distributed algorithm.
- 6top contains:
 - 6top transactions.

- ► IEEE802.15.4 left the management of TSCH for other Protocols.
- 6TiSCH offered the integration of TSCH over IPv6.
- 6TiSCH operation sublayer (6top) offered the management of TSCH:
 - Centralized algorithm.
 - Distributed algorithm.
- 6top contains:
 - ▶ 6top transactions.
 - Scheduling function.

