Biostatistics Week IV

Ege Ülgen, MD, PhD

27 October 2022

Sampling Distribution

- Population Distribution
- Sample Distribution
- Sampling Distribution
 - theoretical probability distribution of a statistic obtained through a specific number of samples drawn from a specific population
 - if samples are randomly selected, the sample means will be somewhat different from the population mean (sampling error)

Sampling Distribution - cont.

• If sample size is large enough, the sampling distribution of the sample mean will be approximately normal

- the mean of the sample means will be the same as the population mean
- the standard deviation of the sample means = $\frac{\sigma}{\sqrt{n}}$

Confidence Interval

- When you make an estimate in statistics, there is always uncertainty around that estimate because the number is based on a single sample
- The confidence interval is the range of values that you expect your estimate to fall between a certain percentage of the time if you run your experiment again (re-sample the population in the same way)

Confidence Interval

- The confidence level is the percentage of times you expect to reproduce an estimate between the upper and lower bounds of the confidence interval
 - if you construct a confidence interval with a 95% confidence level, you are confident that 95 out of 100 times the estimate will fall between the upper and lower values specified by the confidence interval

a 95% confidence interval [10 15] indicates that we can be 95% confident that the parameter is within that range

However, it does NOT indicate that 95% of the sample values occur in that range

Confidence Interval

$$CI = \bar{x} \pm Z * \frac{s}{\sqrt{n}}$$

$$CI = \bar{x} \pm t * \frac{s}{\sqrt{n}}$$

Confidence Interval - Example

id	$week_1$	cd4_1	$week_2$	$cd4_2$	<pre>perc_benefit</pre>
361	0	26	7.43	3	-11.905994
1017	0	13	7.00	10	-3.296703
519	0	3	8.14	5	8.190008
1147	0	65	33.00	97	1.491841
1216	0	36	8.00	31	-1.736111
52	0	16	9.43	31	9.941676
660	0	34	8.43	32	-0.697788
1145	0	41	8.00	71	9.146341
697	0	33	8.00	45	4.545455
560	0	21	8.00	27	3.571429

- Mean percentage benefit is 1.925015
- What is the 95% confidence interval of the mean percentage benefit?

Confidence Interval - Example (cont.)

Demo in R

- Mean percentage benefit is 1.925015
- Standard deviation is 6.702202
- Sample size is 10

95%
$$CI = [\bar{X} - t^* \frac{S}{\sqrt{n}}, \bar{X} + t^* \frac{S}{\sqrt{n}}]$$
 $(t^* \sim t_{n-1} = t_9)$

Hypothesis Testing

- **Hypothesis**: an assumption that can be tested based on the evidence available
 - A novel drug is efficient in treating a certain disease
 - Regular smoking leads to lung cancer
 - Overweight individuals who (1) consume greasy food and (2) consume a low amount vegetables (1) have high levels of cholesterol and (2) have a higher risk of cardiovascular diseases
- Hypothesis test: investigation of the hypothesis using the sample
 - Assessing evidence provided by the data against the null claim (the claim which is to be assumed true unless enough evidence exists to reject it)

Null and Alternative Hypotheses

- H₀ Null hypothesis
 - The mean of a variable is not different than c
 - There is no difference between the two groups' means
 - There is no difference compared to baseline
 - ...
- H_a or H₁ Alternative hypothesis
 - There is a difference between the two groups' means
 - The mean in group A is higher than group B
 - ...

One- vs. Two-tailed Tests

The coin is biased

Two-tailed

$$H_0$$
: p = 0.5

$$H_a$$
: p \neq 0.5

• The probability of heads is larger (or smaller) than 0.5

One-tailed

$$H_0$$
: $p \le 0.5$ (or $p \ge 0.5$)

$$H_a$$
: p > 0.5 (or p < 0.5)

	Decision			
H _o	Fail to reject	Reject		
True	Correct decision	Type I Error α		
False	Type II Error B	Correct decision		

Hypothesis Testing

- P(Type 1 error) = α = P(reject H₀| H₀ is true)
- P(Type 2 error) = β = P(fail to reject H₀| H₀ is false)
- As α gets larger β gets smaller, vice versa
- As n gets large, both α and β get smaller

Hypothesis Testing

	Decision			
H _o	Fail to reject	Reject		
True	Correct decision	Type I Error α		
False	Type II Error ß	Correct decision		

- Confidence level = 1α
 - P(fail to reject H₀ | H₀ is true)
- Statistical power = 1β
 - P(reject H₀| H₀ is false)

Hypothesis Testing - Steps

Hypothesis Testing - Steps

1. Check assumptions, determine H_0 and H_a , choose α

- Assumptions differ based on the test
- The null hypothesis always contains equality (=)

2. Calculate the appropriate test statistic

• z, t, χ^2 , ...

3. Calculate critical values/p value

With the aid of precalculated tables/software

4. Decide whether to reject/fail to reject H₀

• Reject if the statistic is within the critical region/p $\leq \alpha$

Test Statistic

$$\operatorname{test\ statistic} = \frac{\operatorname{estimator} - \operatorname{null\ value}}{\operatorname{standard\ error\ of\ estimator}}$$

$$t = \frac{\bar{X} - \mu}{s/\sqrt{n}}$$

Critical Value/Rejection Region

- We select α (significance level) prior to performing a hypothesis test
 - Some common values for α are 0.01, **0.05** an 0.10
- Based on the selected α , the critical values are calculated, and the rejection region is determined
 - the region where the null hypothesis is rejected

$$H_0$$
: $\mu = \mu_0$

$$H_1: \mu < \mu_0$$

$$H_0$$
: $\mu = \mu_0$

$$H_1: \mu > \mu_0$$

$$H_0: \mu = \mu_0$$

$$H_1$$
: $\mu \neq \mu_0$

One-Sample t-Test

 a statistical hypothesis test used to determine whether an unknown population mean is different from a specific value

One-Sample t-Test

One-Sample t-Test – Example I

id	$week_1$	cd4_1	week_2	cd4_2	perc_benefit
361	0	26	7.43	3	-11.905994
1017	0	13	7.00	10	-3.296703
519	0	3	8.14	5	8.190008
1147	0	65	33.00	97	1.491841
1216	0	36	8.00	31	-1.736111
52	0	16	9.43	31	9.941676
660	0	34	8.43	32	-0.697788
1145	0	41	8.00	71	9.146341
697	0	33	8.00	45	4.545455
560	0	21	8.00	27	3.571429

- Mean percentage benefit is 1.925015
- Is it due to chance? Or does it indicate positive impact of the novel treatment?
 - What would be the value of mean percentage benefit what if you selected another set of 10 patients?

- 1. Check assumptions, determine H_0 and H_a , choose α
 - Normality of the variable is checked (Quantile-quantile plot)
 - H_0 : $\mu = 0$ H_a : $\mu \neq 0$
 - $\alpha = 0.05$

- 2. Calculate the appropriate test statistic
 - Mean percentage benefit is 1.925015
 - Standard deviation is 6.702202
 - Sample size is 10

$$t = \frac{\overline{X} - \mu}{s/\sqrt{n}} = \frac{1.925015 - 0}{6.702202/\sqrt{10}} = 0.9082736 \quad (\sim t_{n-1} = t_9)$$

- 3. Calculate critical values/p value
- 4. Decide whether to reject/fail to reject H₀

- 3. Calculate critical values/p value
- 4. Decide whether to reject/fail to reject H₀

One-Sample t-Test — Example II

- It is claimed that the post-treatment tumor volume of glioblastoma patients subject to a novel treatment is different than 5 cm³
- The mean tumor volume of 41 randomly-selected patients is 5.9 cm³
- Sample standard deviation is 1.74

- 1. Check assumptions, determine H_0 and H_a , choose α
 - Normality of the variable is checked
 - H_0 : $\mu = 5$ H_a : $\mu \neq 5$
 - $\alpha = 0.05$
- 2. Calculate the appropriate test statistic

$$t = \frac{\overline{X} - \mu}{s/\sqrt{n}} = \frac{5.9 - 5}{1.74/\sqrt{41}} = 3.312 \quad (\sim t_{n-1} = t_{40})$$

- 3. Calculate critical values/p value
- 4. Decide whether to reject/fail to reject H₀

5. State a conclusion:

With 95% confidence, we can conclude that there is enough evidence to say that post-treatment tumor volume of glioblastoma patients subject to a novel treatment is different than 5 cm³.

One-Sample t-Test – Example III

- It is claimed that:
- A novel drug reduces the recovery time of patients to less than 10 days
- Recovery time for 7 randomly-selected patients:

2, 4, 11, 3, 4, 6, 8 (
$$\bar{X}$$
 = 5.43, s = 3.15)

• Test the hypothesis using $\alpha = 0.01$

- 1. Check assumptions, determine H_0 and H_a , choose α
 - Normality of the variable is checked
 - H_0 : $\mu \ge 10$ H_a : $\mu < 10$
 - $\alpha = 0.01$
- 2. Calculate the appropriate test statistic

$$t = \frac{\overline{X} - \mu}{s/\sqrt{n}} = \frac{5.43 - 10}{3.15/\sqrt{7}} = -3.84 \quad (\sim t_{n-1} = t_6)$$

- 3. Calculate **critical values**/p value
- 4. Decide whether to reject/fail to reject H₀

Brief Summary

