Университет ИТМО

Дискретная Математика

«Курсовая работа по дисциплине Дискретная Математика»

Студент: Фарзекаев Артур Робертович

Кафедра: ВТ

Дисциплина: Дискретная Математика

Факультет: ПИиКТ

Группа: Р3100

Вариант: 17

Преподаватель: Поляков Владимир Иванович.

СИНТЕЗ КОМБИНАЦИОННЫХ СХЕМ, РЕАЛИЗУЮЩИХ ЗАДАННУЮ ФУНКЦИЮ

Задача:

Построить комбинационные схемы в различных базисах, реализующие не полностью определенную булеву функцию:

Номер варианта	Условия, при которых f = 1	Условия, при которых $f = d$					
17	$(X_2X_3 + X_1) > X_4X_5$	$(X_2X_4X_5) = 3$					

Составление таблицы истинности:

N	$X_1X_2X_3X_4X_5$	$X_2X_4X_5$	$(X_2X_4X_5)_{10}$	X_2X_3	X_4X_5	$(X_2X_3)_{10}$	$(X_4X_5)_{10}$	+	f
0	00000	000	0	0 0	0.0	0	0	0	0
1	00001	0 0 1	1	0 0	0 1	0	1	0	0
2	00010	010	2	0 0	10	0	2	0	0
3	00011	0 1 1	3	0 0	1 1	0	3	0	d
4	00100	000	0	0 1	0 0	1	0	1	1
5	00101	001	1	0 1	0 1	1	1	1	0
6	00110	010	2	0 1	10	1	2	1	0
7	00111	0 1 1	3	0 1	1 1	1	3	1	d
8	01000	100	4	10	0 0	2	0	2	1
9	01001	101	5	10	0 1	2	1	2	1
10	01010	110	6	10	10	2	2	2	0
11	01011	111	7	10	1 1	2	3	2	0
12	01100	100	4	1 1	0 0	3	0	3	1
13	01101	101	5	1 1	0 1	3	1	3	1
14	01110	110	6	1 1	10	3	2	3	1
15	01111	111	7	1 1	1 1	3	3	3	0
16	10000	000	0	0 0	0 0	0	0	1	1
17	10001	001	1	0 0	0 1	0	1	1	0
18	10010	010	2	0 0	10	0	2	1	0
19	10011	0 1 1	3	0 0	1 1	0	3	1	d
20	10100	000	0	0 1	0 0	1	0	2	1
21	10101	001	1	0 1	0 1	1	1	2	1
22	10110	010	2	0 1	10	1	2	2	0
23	10111	011	3	0 1	1 1	1	3	2	d
24	11000	100	4	10	0 0	2	0	3	1
25	11001	101	5	10	0 1	2	1	3	1
26	11010	110	6	10	10	2	2	3	1
27	11011	111	7	10	1 1	2	3	3	0
28	11100	100	4	11	0 0	3	0	4	1
29	11101	101	5	1 1	0 1	3	1	4	1
30	11110	110	6	1 1	10	3	2	4	1
31	11111	111	7	11	1 1	3	3	4	1

Представление булевой функции в аналитическом виде:

КДНФ: $f = \overline{x}_1 \ \overline{x}_2 x_3 \ \overline{x}_4 \ \overline{x}_5 \lor \overline{x}_1 x_2 \ \overline{x}_3 \ \overline{x}_4 \ \overline{x}_5 \lor \overline{x}_1 x_2 \ \overline{x}_3 \ \overline{x}_4 x_5 \lor \overline{x}_1 x_2 x_3 x_4 x_5 \lor \overline{x}_1 x_2 x_3 x$

KKHO: $f = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5)(x_1 \lor x_2 \lor x_3 \lor x_4 \lor \overline{x}_5)(x_1 \lor x_2 \lor x_3 \lor x_4 \lor \overline{x}_5)(x_1 \lor x_2 \lor x_3 \lor x_4 \lor \overline{x}_5)(x_1 \lor x_2 \lor \overline{x}_3 \lor x_4 \lor \overline{x}_5)(x_1 \lor x_2 \lor \overline{x}_3 \lor \overline{x}_4 \lor x_5)(x_1 \lor \overline{x}_2 \lor x_3 \lor \overline{x}_4 \lor x_5)(x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5)(x_1 \lor x_4 \lor x_5)(x_$

Минимизация булевой функции методом Квайна-Мак-Класки.

Нахождение простых импликант (максимальных кубов). Получение кубов различной размерности кубического комплекса K(f) и выделение из них простых импликант.

$K^0(f) \cup N(f)$	$K^{I}(f)$	$K^2(f)$	$K^3(f)$	Z(f)
1. 00100 v 2. 01000 v 3. 10000 v 4. 00011 v 5. 01001 v 6. 01100 v 7. 10100 v 8. 11000 v 9. 00111 v 10. 01101 v 11. 01110 v 12. 10011 v 13. 10101 v 14. 11001 v 15. 11010 v 16. 11100 v	1. 0X100 v 1-6 2. X0100 v 1-7 3. 0100X v 2-5 4. 01X00 v 2-6 5. X1000 v 2-8 6. 10X00 v 3-7 7. 1X000 v 3-8 8. 00X11 v 4-9 9. X0011 v 4-12 10. 01X01 v 5-10 11. X1001 v 5-14 12. 0110X v 6-10 13. 011X0 v 6-11 14. X1100 v 6-16 15. 1010X v 7-13 16. 1X100 v 7-16 17. 1100X v 8-14 18. 110X0 v 8-15	1. XX100 1-16 2-14 2. 01X0X v 3-12 4-10 3. X100X v 3-17 5-11 4. X1X00 v 4-19 5-14 5. 1XX00 6-19 7-16 6. X0X11 8-23 9-20 7. X1X01 v 10-26 11-21 8. X110X v 12-28 14-21 9. X11X0 13-29 14-22 10. 1X10X 15-28 16-25 11. 11X0X v 17-28 19-26 12. 11XX0 18-29 19-27	$X1X0X 2-11$ $3-8$ $4-7$ $K^4(f) = \emptyset$	X1X0X XX100 1XX00 X0X11 X11X0 1X10X 11XX0 1X1X1 111XX
17. 10111 v 18. 11101 v 19. 11110 v 20. 11111 v	19. 11X00 v 8-16 20. X0111 v 9-17 21. X1101 v 10-18 22. X1110 v 11-19 23. 10X11 v 12-17 24. 101X1 v 13-17 25. 1X101 v 13-18 26. 11X01 v 14-18 27. 11X10 v 15-19 28. 1110X v 16-18 29. 111X0 v 16-19 30. 1X111 v 17-20 31. 111X1 v 18-20 32. 1111X v 19-20			

Составление импликантной таблицы.

Прости		0-кубы																				
Простые импликанты (максимальные кубы)	00100	00100	01000	01001	01100	01101	01101	01110	01110	10000	10000	10100	10101	11000	11001	1001	11010	11010	11100	11101	11110	11111
		1	2	3	4	í	5 	6	5 I		7 I	8	9	10		11		12	13	14	15	16
X1X0X	_		¥	*	sļe.	()							¥	()			**	*		
XX100	+	<u>*)</u>			*							*				┝			*			_
1XX00	_									(·)	++-		*!*								
X0X11	_																					
X11X0					· i			()							L			*		**	
1X10X												*	*						*	*		
11XX0	_													*		F	(k)	*		*	_
1X1X1													*							*		*
111XX																			*	*	*	*

Определение существенных импликант

Простие импли	Простые импликанты (максималь- ные кубы)			0-кубы											
_				11100	11101	11110	11111								
		a	b	С	d	e	f								
1X10X	A	*	*	*	*										
1X1X1	В		*		*		*								
111XX	С			*	*	*	*								

Множество существенных импликант образует ядро покрытия как его обязательную часть:

$$T = \begin{cases} X1X0X \\ XX100 \\ 1XX00 \\ X11X0 \\ 11XX0 \end{cases}$$

Определение минимального покрытия. Метод Петрика.

$$Y = A (A \lor B) (A \lor C) (A \lor B \lor C) C (B \lor C)$$

 $Y = A \lor C$

Возможны следующие варианты покрытия:

$$C_1 = \begin{Bmatrix} T \\ A \end{Bmatrix}$$
 $C_2 = \begin{Bmatrix} T \\ C \end{Bmatrix}$
 $S_1^a = 17$ $S_2^a = 17$
 $S_1^b = 23$ $S_2^b = 23$

Оба покрытия являются минимальными:

$$C_{\min 1}(f) = \begin{cases} X1X0X \\ XX100 \\ 1XX00 \\ X11X0 \\ 1XX00 \\ 1X10X \end{cases}; \qquad C_{\min 2}(f) = \begin{cases} X1X0X \\ XX100 \\ 1XX00 \\ X11X0 \\ 11XX0 \\ 111XX \end{cases};$$

$$S_{1}^{a} = 17 \qquad S_{2}^{a} = 17$$

$$S_{1}^{b} = 23 \qquad S_{2}^{b} = 23$$

Этим покрытиям соответствует МДНФ следующих видов, соответственно:

$$f = x_2 \,\overline{x}_4 \lor x_3 \,\overline{x}_4 \,\overline{x}_5 \lor x_1 \,\overline{x}_4 \lor \overline{x}_5 \lor x_2 \,x_3 \,\overline{x}_5 \lor x_1 \,x_2 \,\overline{x}_5 \lor x_1 \,x_3 \,\overline{x}_4$$

$$f = x_2 \,\overline{x}_4 \lor x_3 \,\overline{x}_4 \,\overline{x}_5 \lor x_1 \,\overline{x}_4 \lor \overline{x}_5 \lor x_2 \,x_3 \,\overline{x}_5 \lor x_1 \,x_2 \,\overline{x}_5 \lor x_1 \,x_2 \,x_3$$

Определение МКНФ:

Нахождение простых импликант (максимальных кубов)

	0-кубы													
Простые импликанты (максималь- ные кубы)	00000	00001	000010	00101	00110	01010	01011	01111	10001	10010	10110	11011		
	1	2	3	4	5	6	7	8	9	10	11	12		
X0X1X			*		*					*	*			
000XX	*	*	*											
00XX1		*		*										
X00X1		*							*					
0X01X			*			*	*							
0XX11							*	*						
XX011							*					*		

Множество существенных импликант образует ядро покрытия как его обязательную часть:

$$T = \begin{cases} X0X1X \\ 000XX \\ 00XX1 \\ X00X1 \\ 0X01X \\ 0XX11 \\ XX011 \end{cases}$$

$$C_{\min}(f) = \begin{cases} X1X0X \\ XX100 \\ 1XX00 \\ X11X0 \\ 11XX0 \end{cases} \quad S^{a} = 20, S^{b} = 27.$$

Этому покрытию соответствует МКНФ следующего вида:

$$f = (x_2 \vee \overline{x}_4)(x_1 \vee x_2 \vee x_3)(x_1 \vee x_2 \vee \overline{x}_5)(x_2 \vee x_3 \vee \overline{x}_5)(x_1 \vee x_3 \vee \overline{x}_4)(x_1 \vee \overline{x}_4 \vee \overline{x}_5)(x_3 \vee \overline{x}_4 \vee \overline{x}_5)$$

Минимизация булевой функции на картах Карно:

Определение МДНФ

Для минимизации булевой функции от пяти переменных используется две четырехмерные карты Карно, различающиеся по переменной x_1 .

$$C_{1} = \begin{cases} X1X0X \\ XX100 \\ 1XX00 \\ X11X0 \\ 11XX0 \\ 1X10X \end{cases} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{pmatrix} \qquad S_{1}^{a} = 17, \quad S_{1}^{b} = 23$$

МДНФ имеет следующий вид:

$$f = x_2 \overline{x}_4 \lor x_3 \overline{x}_4 \overline{x}_5 \lor x_1 \overline{x}_4 \overline{x}_5 \lor x_2 x_3 \overline{x}_5 \lor x_1 x_2 \overline{x}_5 \lor x_1 x_3 \overline{x}_4$$

$$C_{1} = \begin{cases} X1X0X \\ XX100 \\ 1XX00 \\ X11X0 \\ 111XX \end{cases} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix} \qquad S_{1}^{a} = 17, \quad S_{1}^{b} = 23$$

МДНФ имеет следующий вид:

$$f = x_2 \overline{x}_4 \lor x_3 \overline{x}_4 \overline{x}_5 \lor x_1 \overline{x}_4 \overline{x}_5 \lor x_2 x_3 \overline{x}_5 \lor x_1 x_2 \overline{x}_5 \lor x_1 x_2 x_3$$

Определение МКНФ

$$C_{min} \overline{(f)} = \begin{cases} X0X1X \\ 000XX \\ 00XX1 \\ X00X1 \\ 0X01X \\ 0XX11 \\ XX011 \end{cases} \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{pmatrix} \qquad S^{a} = 20, \, S^{b} = 27.$$

МКНФ имеет следующий вид:

$$f = (x_2 \vee \overline{x}_4)(x_1 \vee x_2 \vee x_3)(x_1 \vee x_2 \vee \overline{x}_5)(x_2 \vee x_3 \vee \overline{x}_5)(x_1 \vee x_3 \vee \overline{x}_4)(x_1 \vee \overline{x}_4 \vee \overline{x}_5)(x_3 \vee \overline{x}_4 \vee \overline{x}_5)$$

Преобразование минимальных форм булевой функции

Факторное преобразование для МДНФ:

$$f = x_2 \overline{x}_4 \lor x_3 \overline{x}_4 \overline{x}_5 \lor x_1 \overline{x}_4 \overline{x}_5 \lor x_2 x_3 \overline{x}_5 \lor x_1 x_2 \overline{x}_5 \lor x_1 x_3 x_4 =$$
 (S_Q = 23)

$$= \overline{x}_4(x_2 \lor x_3 \overline{x}_5 \lor x_1 \overline{x}_5 \lor x_1 x_3) \lor x_2(x_3 \overline{x}_5 \lor x_1 \overline{x}_5) =$$
 (S_Q = 22)

$$= \overline{x}_4(x_2 \vee (\overline{x}_5(x_3 \vee x_1)) \vee x_1 \vee x_3) \vee x_2(\overline{x}_5(x_3 \vee x_1))$$
 (S₀ = 19)

Декомпозиция для МДНФ:

$$\varphi = \overline{x}_5(x_3 \vee x_1); \qquad f = \overline{x}_4(x_2 \vee \varphi) \vee x_2(\varphi \vee x_1 x_3) \qquad (S_Q^{\varphi} = 4; S_Q^f = 12)$$

Факторное преобразование для МКНФ:

$$f = (x_2 \vee \overline{x}_4)(x_1 \vee x_2 \vee x_3)(x_1 \vee x_2 \vee \overline{x}_5)(x_2 \vee x_3 \vee \overline{x}_5)(x_1 \vee x_3 \vee \overline{x}_4)(x_1 \vee \overline{x}_4 \vee \overline{x}_5)$$

$$(\mathbf{X}_3 \vee \overline{\mathbf{X}}_4 \vee \overline{\mathbf{X}}_5) = \tag{S_0 = 27}$$

$$= (x_2 \vee (\overline{x}_4(x_1 \vee x_3)(x_1 \vee \overline{x}_5)(x_3 \vee \overline{x}_5))) (\overline{x}_4 \vee ((x_1 \vee x_3)(x_1 \vee \overline{x}_5)(x_3 \vee \overline{x}_5)))$$
 (S_O = 25)

Декомпозиция для МКНФ:

$$\varphi = (x_1 \vee x_3)(x_1 \vee \overline{x}_5)(x_3 \vee \overline{x}_5); \qquad f = (x_2 \vee (\overline{x}_4 \wedge \varphi))(\overline{x}_4 \wedge \varphi) \qquad (S_Q^{\varphi} = 9; S_Q^f = 8)$$

 x_1 x_2 x_3 x_4 $x_5 \lor$

 $x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5$