

Lembar Jawaban Assignment - A04

Network Implementation and Analysis

Nama Kelompok : Network+

Nama	NPM
Lyzander Marciano Andrylie	2106750755
Muhammad Hafizha Dhiyaulhaq	2106750723
Kevin Alexander	2106705026

[50 Poin] Topologi

Tangkapan Layar

Nilai Variabel X

- NPM = 2106750755
- X = 755 mod 256 = 243
- Alamat jaringan lokal NSC = 10.243.0.0/23
- Alamat jaringan publik NSC = 35.243.0.0/23
- Alamat jaringan privat akan dibagi menjadi 7 subnet:

Nama Subnet	Informasi Host	Total Host
Kurt-1	61 end-device + 1 default gateway	62

Kurt-2	61 end-device + 1 default gateway	62
Krist-1	20 end-device + 1 default gateway	21
Krist-2	23 end-device + 1 default gateway	24
Dave-1	12 end-device + 1 default gateway	13
Dave-2	12 end-device + 1 default gateway	13

Alokasi Alamat IP Subnet Jaringan Privat antara Router

Subnet	Network Address	Subnet Mask	Banyak <i>Host</i> Maksimum	Range Alamat IP	
Router-Dave-Server	10.243.0.224/30	255.255.255.252	2	10.243.0.225	10.243.0.226
Router-Krist-Dave	10.243.0.228/30	255.255.255.252	2	10.243.0.229	10.243.0.230
Router-Krist-Kurt	10.243.0.232/30	255.255.255.252	2	10.243.0.233	10.243.0.234
Router-Kurt-Server	10.243.0.236/30	255.255.255.252	2	10.243.0.237	10.243.0.238

Distribusi Alamat IPV4

Device Name	IPv4 Address	Subnet Mask	Default Gateway
Server-App	35.243.0.2	255.255.254.0	35.243.0.1
Server-DNS	35.243.0.3	255.255.254.0	35.243.0.1

[30 Poin] Alokasi Alamat IP Subnet Jaringan Privat

Subnet	Network Address	Subnet Mask	Banya k <i>Host</i> Maksi mum	Default Gateway	Banyak End Device Maksim um	Alamat IP End Device Pertama	Alamat IP End Device Terakhir
Kurt-1	10.243.0.0/26	255.255.	62	10.243.0.1	61	10.243.0.2	10.243.0.62
		255.192					
Kurt-2	10.243.0.64/26	255.255.	62	10.243.0.65	61	10.243.0.66	10.243.0.126
		255.192					
Krist-1	10.243.0.128/27	255.255.	30	10.243.0.129	29	10.243.0.130	10.243.0.158
		255.224					

Krist-2	10.243.0.160/27	255.255.	30	10.243.0.161	29	10.243.0.162	10.243.0.190
		255.224					
Dave-1	10.243.0.192/28	255.255.	14	10.243.0.193	13	10.243.0.194	10.243.0.206
		255.240					
Dave-2	10.243.0.208/28	255.255.	14	10.243.0.209	13	10.243.0.210	10.243.0.222
		255.240					

[10 Poin] Alokasi Alamat IP Subnet End Device

[10 poin] Tes Konektivitas

Tes Konektivitas	Tangkapan Layar Hasil Tes
PC-Krist-1 ke PC-Krist-2	Fire Last Status Source Destination Type Color Successful PC-Krist-1 PC-Krist-2 ICMP
PC-Krist-1 ke PC-Kurt	Fire Last Status Source Destination Type Color Successful PC-Krist-1 PC-Kurt ICMP
PC-Krist-2 ke PC-Dave-1	Fire Last Status Source Destination Type Color Successful PC-Krist-2 PC-Dave-1 ICMP
PC-Dave-1 ke PC-Dave-2	Fire Last Status Source Destination Type Color Successful PC-Dave-1 PC-Dave-2 ICMP
PC-Dave-1 ke PC-Krist-1	Fire Last Status Source Destination Type Color Successful PC-Dave-1 PC-Krist-1 ICMP
PC-Dave-2 ke Laptop-Kurt	Fire Last Status Source Destination Type Color Successful PC-Dave-2 Laptop-Kurt ICMP
PC-Kurt ke Laptop-Kurt	Fire Last Status Source Destination Type Color Successful PC-Kurt Laptop-Kurt ICMP
PC-Kurt ke PC-Krist-2	Fire Last Status Source Destination Type Color Successful PC-Kurt PC-Krist-2 ICMP

PC-Kurt ke PC-Dave-2	Fire Last Status Source Destination Type Color Successful PC-Kurt PC-Dave-2 ICMP
PC-Kurt ke Server-App	Fire Last Status Source Destination Type Color Successful PC-Kurt Server-App ICMP
PC-Kurt ke Server-DNS	Fire Last Status Source Destination Type Color Successful PC-Kurt Server-DNS ICMP

[50 Poin] Analisis Jaringan

[15 Poin] Ketahanan Jaringan

1. [5 poin] Bandingkan rute yang diambil saat tidak ada *link* yang dimatikan dengan saat ada satu *link* yang dimatikan! Apa efek dari kejadian tersebut terhadap koneksi antara kedua sistem? Berikan tangkapan layar untuk mendukung jawaban anda!

Jawaban:

Saat tidak ada *link* yang dimatikan, terlihat bahwa perjalanan paket dari Laptop-Kurt membutuhkan sebanyak 3 hops untuk sampai di PC-Krist-1. Dimulai dari Router-Kurt pada hops pertama, kemudian melewati *link* antara Router-Kurt dan Router-Krist (ditunjukkan pada hops kedua, dimana alamat IP 10.243.0.233 adalah alamat IP yang menghubungkan Router-Krist dan Router-Kurt), dan tiba pada tujuan yaitu PC-Krist-1 dengan alamat IP 10.243.0.130. Namun, saat interface Serial0/1/0 pada Router-Kurt dimatikan (dimana interface tersebut merupakan *link* antara Router-Kurt dan Router-Krist), rute yang diambil oleh paket dari Laptop-Kurt lebih jauh, yaitu sebanyak 5 hops. Dimana paket akan melewati Router-Kurt, Router-Server, Router-Dave, dan barulah tiba pada Router-Krist. Rute tersebut terlihat pada *screenshot* kedua, dimana alamat IP 10.243.0.238 adalah alamat IP yang menghubungkan Router-Kurt dengan Router-Server, alamat IP 10.243.0.225 adalah alamat IP yang menghubungkan Router-Server dengan Router-Dave, dan alamat IP 10.243.0.229 adalah alamat IP yang menghubungkan Router-Server dengan Router-Dave, dan alamat IP 10.243.0.229 adalah alamat IP yang menghubungkan Router-Dave dengan Router-Krist. Efek yang dihasilkan saat ada satu *link* yang dimatikan adalah jumlah hops yang dibutuhkan dari *source* ke *destination* akan lebih banyak, sehingga dapat mempengaruhi performa pengiriman paket.

Tangkapan Layar / Bukti:

• Saat tidak ada *link* yang dimatikan

```
C:\>tracert 10.243.0.130
Tracing route to 10.243.0.130 over a maximum of 30 hops:
      23 ms
                 19 ms
                           10 ms
                                      10.243.0.1
  2
       14 ms
                 10 ms
                           23 ms
                                      10.243.0.233
  3
       14 ms
                 25 ms
                                      10.243.0.130
                           33 ms
Trace complete.
C:\>
Saat interface Serial0/1/0 pada Router-Kurt dimatikan
C:\>tracert 10.243.0.130
Tracing route to 10.243.0.130 over a maximum of 30 hops:
      19 ms
                                      10.243.0.1
                 13 ms
                           23 ms
  2
      16 ms
                 13 ms
                           23 ms
                                      10.243.0.238
                                      10.243.0.225
      27 ms
                 11 ms
                           9 ms
                           29 ms
      19 ms
                 12 ms
                                      10.243.0.229
      12 ms
                 24 ms
                           33 ms
                                      10.243.0.130
Trace complete.
C:\>
```

2. [5 poin] Dari data *tracing* rute yang didapatkan, buat sebuah **graf berarah** yang merepresentasikan perjalanan packet dari *source* ke *destination* dengan **semua** *link* **menyala**! Kalian harus melabelkan tiap *node* dengan nama perangkat yang sesungguhnya di topologi yang kalian buat (PC-Kurt, Router-Kurt, dan sebagainya).

3. [5 poin] Dari data *tracing* rute yang didapatkan, buat sebuah **graf berarah** yang merepresentasikan perjalanan *packet* dari *source* ke *destination* dengan **salah satu** *link* **yang dimatikan**! Kalian harus melabelkan tiap *node* dengan nama perangkat yang sesungguhnya di topologi yang kalian buat (PC-Kurt, Router-Kurt, dan sebagainya).

[15 Poin] Konfigurasi Alamat IP (DHCP)

Tipe Pesan DHCP	Source	L	Destinati	on	Fung	si Pesan	
DHCP Discovery	PC-Krist-2	DHCP	Server	(dalam	Klien	melakuk	kan
		kasus	ini	adalah	broadcast	dalam sa	atu
		Router	-Krist)		network (subnet lok	(al)
					untuk	menemuk	kan
					DHCP S	erver ya	ang
					alamat IF	-nya bera	ada
					di 255	5.255.255.2	255
					(dalam	kasus	ini
					adalah Ro	uter-Krist).	,
Tangkapan Layar pada Source			Tangkap	an Layar	pada Desti	nation	

[10 Poin] Jaringan Publik - Privat (Implementasi NAT)

1. [2 poin] Apa field pada protokol Network Layer yang terkena efek saat NAT aktif?

Jawaban:

Field yang terkena efek saat NAT aktif adalah source IP address dan destination IP address. Field source IP address akan ditranslasikan dari alamat IP privat menjadi alamat IP publik ketika jaringan lokal mencoba berkomunikasi dengan jaringan publik. Sedangkan destination IP address, akan ditranslasikan dari alamat IP publik menjadi alamat IP privat ketika ada response dari jaringan publik menuju jaringan lokal.

2. [8 poin] Berdasarkan simulasi *packet* PDU yang kalian lakukan dari PC-Krist-1 ke Server-App, berikan bukti bahwa konfigurasi NAT kalian bekerja dengan baik (translasi alamat IP memang terjadi)! Berikan tangkapan layar yang mendukung jawaban kalian!

Jawaban:

Berdasarkan konfigurasi IP yang sudah dilakukan sebelumnya, terlihat bahwa PC-Krist-1 mempunyai alamat IP privat **10.243.0.130**. Ketika dilakukan simulasi *packet* PDU dengan PC-Krist-1 sebagai *source* dan Server-App sebagai *destination*, terlihat bahwa alamat IP private *source* sudah berhasil ditranslasikan menjadi alamat IP publik yaitu **35.243.0.4**. Hal tersebut menandakan bahwa konfigurasi NAT yang sudah dilakukan bekerja dengan baik.

Tangkapan Layar / Bukti:

OSI Model at Device Server-App

[10 Poin] DNS (Domain Name Server) dan HTTP

[2 Poin] Setup Web

Tangkapan Layar

[2 Poin] Setup DNS

Tangkapan Layar

[6 Poin] Analisis

1. [2 poin] Apa tipe DNS *record* yang kalian gunakan? Mengapa kalian menggunakan tipe record tersebut? Berikan tangkapan layar yang berisi DNS *record* yang kalian buat!

Jawaban:

Tipe DNS record yang digunakan adalah A. Hal ini dikarenakan tipe A berfungsi sebagai pemetaan antara hostname dengan ip address. Dalam konteks DNS record yang telah dibuat, field Name berisi hostname berupa nirvana.network dan field Detail berisi ip address berupa 35.243.0.2 yang merupakan ip address dari Server-App. Dengan demikian, ketika browser dari PC-Dave-1 mengakses URL http://nirvana.network/school.html, PC-Dave-1 akan melakukan DNS query ke Server-DNS dengan ip 35.243.0.3 pada Subnet Server dan Server-DNS akan mengirimkan DNS reply berupa resource record yang mengandung pemetaan antara hostname dengan ip address yang diinginkan (nirvana.network dengan 35.243.0.2). Selanjutnya, browser bisa mengakses file school.html yang diinginkan dengan melakukan HTTP request, menerima HTTP response dari server, dan melakukan rendering file html yang diterima sedemikian sehingga pengguna dapat melihat halaman web tersebut.

Tangkapan Layar / Bukti Pembuatan DNS Record:

2. [4 poin] Buatlah sebuah DNS *record* yang berisi domain alias dari alamat domain App Nirvana. Nama alias yang digunakan adalah "nirvana" + ".alias" + ".namakelompokkalian". Apa tipe DNS *record* yang kalian gunakan? Mengapa kalian menggunakan tipe record tersebut? Berikan tangkapan layar yang berisi DNS Record yang anda buat! Berikan juga tangkapan layar saat anda mengakses Nirvana App dengan domain aliasnya dari PC-Dave-1! Pastikan nama *end-device*, URL, dan laman *website* terlihat.

Jawaban:

Tipe DNS record yang digunakan adalah CNAME. Hal ini dikarenakan tipe CNAME berfungsi sebagai pemetaan antara alias hostname dengan canonical hostname. Dalam konteks DNS record yang telah dibuat, field Name berisi alias hostname berupa nirvana.alias.network dan field Detail berisi canonical hostname berupa nirvana.network. Dengan demikian, browser dari PC-Dave-1 dapat mengakses URL http://nirvana.alias.network/school.html dengan menggunakan alias hostname.

Tangkapan Layar / Bukti Pembuatan DNS Record:

