Exercices sur les intégrales généralisées

1. Calculer les inégrales généralisées suivantes :

a)
$$\int_{0}^{\infty} \frac{dx}{(1+e^{x})(1+e^{-x})}$$
 b)
$$\int_{0}^{\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} dx$$

b)
$$\int_{0}^{\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} dx$$

$$c) \quad \int\limits_0^1 \ln x \, dx$$

$$d) \quad \int\limits_{1}^{\infty} \frac{\ln x}{x^2} \, dx$$

$$e) \int_{0}^{1} \frac{\ln x}{(1+x)^2} dx$$

$$f) \quad \int\limits_{0}^{\infty} x^{n} e^{-x} dx \quad (n \in \mathbf{N})$$

$$g) \quad \int\limits_{0}^{\infty} \frac{\arctan x}{1+x^2} \, dx$$

h)
$$\int_{a}^{\infty} \frac{dx}{x(x+r)} (a>0, r>0) \qquad i) \quad \int_{0}^{\pi/2} \frac{\cos 2x dx}{\sqrt{\sin 2x}}$$

$$i) \int_{0}^{\pi/2} \frac{\cos 2x dx}{\sqrt{\sin 2x}}$$

2. Montrer que les intégrales suivantes convergent :

a)
$$\int_{0}^{\infty} \frac{1}{\sqrt{x}} e^{-\sqrt{x^2 + x + 1}} dx \quad b$$

$$\int_{-\pi/2}^{\pi/2} \ln(1 + \sin x) dx \quad c$$

$$\int_{0}^{\infty} e^{-t^2} dt \quad d$$

$$\int_{0}^{\infty} \frac{1 + \sin t}{1 + \sqrt{t^3}} dt .$$

3. Déterminer pour quelles valeurs du couple $(\alpha, \beta) \in \mathbb{R}^2$ les intégrales suivantes sont convergentes. (On dessinera dans le plan l'ensemble des couples (α, β) pour lesquels il y a convergence).

a)
$$\int_{0}^{\infty} \frac{dx}{x^{\alpha}(1+x^{\beta})} \quad b) \quad \int_{0}^{\infty} \frac{\ln(1+x^{\alpha})}{x^{\beta}} dx \quad c) \quad \int_{0}^{\infty} \frac{(1+t)^{\alpha}-t^{\alpha}}{t^{\beta}} dt .$$

4. Etudier pour quelles valeurs de $n \in \mathbb{N}$ l'intégrale $I(n) = \int \frac{\ln x}{x^n} dx$ converge et calculer I(n)dans ce cas.

5. Soit $I(\lambda) = \int \frac{dx}{(1+x^2)(1+x^{\lambda})}$. Montrer que $I(\lambda)$ converge pour tout réel λ et calculer cette intégrale en utilisant le changement de variable t = 1/x.

1

6. Soit
$$I = \int_{0}^{\infty} \frac{e^{-t} - e^{-2t}}{t} dt$$
.

a) Montrer que I est convergente.

b) Pour
$$\varepsilon > 0$$
, établir, en posant $x = 2t$, la relation
$$\int_{\varepsilon}^{\infty} \frac{e^{-t} - e^{-2t}}{t} dt = \int_{\varepsilon}^{2\varepsilon} \frac{e^{-t}}{t} dt .$$

c) En déduire la valeur de I.

7. Soit
$$J = \int_{0}^{\pi/2} \ln \sin x \, dx$$
.

- a) Montrer que J est convergente et que l'on a $J = \int_{0}^{\pi/2} \ln \cos x \, dx$.
- b) Montrer que $2J = \int\limits_0^{\pi/2} \ln \frac{\sin 2x}{2} \, dx$, et en déduire la valeur de J.
- 8. Montrer que les intégrales suivantes sont semi-convergentes :

a)
$$\int_{-\pi}^{\infty} \frac{\cos x}{\sqrt{x}} dx \quad b$$
)
$$\int_{-1}^{\infty} \cos(x^2) dx \text{ (poser } u = x^2) \quad c$$
)
$$\int_{-\pi}^{\infty} x^2 \sin(x^4) dx .$$

- 9. Soit f une fonction de \mathbb{R} dans \mathbb{R} continue et périodique dont l'intégrale $\int_{0}^{\infty} f(x) dx$ est convergente. Montrer que f est la fonction nulle. (Raisonner par l'absurde : supposer que $f(c) \neq 0$ pour un certain réel c, et montrer que le critère de Cauchy est alors contredit).
- 10. Soit f une fonction uniformément continue de $[a, \infty[$ dans \mathbb{R} , telle que l'intégrale $\int_a^\infty f(x)\,dx$ converge. Montrer que $\lim_{x\to\infty} f(x)=0$ (montrer que sinon le critère de Cauchy serait contredit).
- 11. Soit f une fonction de classe C^1 de $\mathbb R$ dans $\mathbb R$ telle que, quand x tend vers $\pm \infty$, on ait $f'(x) = O\left(\frac{1}{x^2}\right)$.
- a) Démontrer que les limites L et ℓ de f en $+\infty$ et $-\infty$ respectivement existent.
- b) On suppose en outre que, pour tout x réel, on a $|f'(x)| \le \frac{1}{x^2 + 1}$. Montrer que $|L \ell| \le \pi$.
- 12. Soit f une fonction décroissante de $[a, \infty[$ dans \mathbb{R}^+ .
- a) Montrer que si l'intégrale $\int\limits_a^\infty f(t)\,dt$ converge, alors $\lim_{x\to\infty} xf(x)=0$.

(Remarquer que l'on a, si $x \ge a$, l'inégalité : $xf(2x) \le \int_{a}^{2x} f(t) dt$).

- b) Montrer par un contre-exemple que la réciproque est fausse.
- 13. Déterminer la limite des suites (a_n) définies ci-dessous :

a)
$$a_n = \int_0^\infty \frac{\arctan(nx)}{n(1+x^2)} dx$$
, b) $a_n = \int_0^1 \frac{dx}{1+x^n}$, c) $a_n = \int_1^{+\infty} \frac{dx}{1+x^n}$, d) $a_n = \int_0^{+\infty} \frac{\arctan\left(\frac{n+1}{n}x\right)}{1+x^2} dx$.

14. Etudier pour quelles valeurs de $n \in \mathbb{N}$ l'intégrale $J_n = \int_0^\infty \frac{dx}{(x^3+1)^n}$ converge. Calculer J_1 , puis montrer que si $n \geq 2$, on a $J_{n+1} = \frac{3n-1}{3n} J_n$. En déduire J_n si $n \geq 1$.

2

Corrigé

1. a) On a

$$\frac{1}{(1+e^x)(1+e^{-x})} = \frac{e^x}{(1+e^x)^2} \ .$$

Cette expression est de la forme $u'/(1+u)^2$ et admet comme primitive -1/(1+u). Donc

$$\int_{0}^{\infty} \frac{dx}{(1+e^{x})(1+e^{-x})} = \left[-\frac{1}{1+e^{x}} \right]_{0}^{\infty} = \frac{1}{2} - \lim_{x \to \infty} \frac{1}{1+e^{x}} = \frac{1}{2} .$$

b) Une primitive de $e^{-\sqrt{x}}/\sqrt{x}$ est $-2e^{-\sqrt{x}}$, donc

$$\int_{0}^{\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} dx = \left[-2e^{-\sqrt{x}} \right]_{0}^{\infty} = 2\left(\lim_{x \to 0} e^{-\sqrt{x}} - \lim_{x \to \infty} e^{-\sqrt{x}} \right) = 2.$$

c) Une primitive de $\ln x$ est $x \ln x - x$. Donc

$$\int_{0}^{1} \ln x \, dx = \left[x \ln x - x \right]_{0}^{1} = -1 - \lim_{x \to 0} (x \ln x - x) = -1 ,$$

car la limite de $x \ln x$ est nulle en 0.

d) En intégrant par parties

$$\int \frac{\ln x}{x^2} \, dx = -\frac{\ln x}{x} + \int \frac{dx}{x^2} = -\frac{\ln x}{x} - \frac{1}{x} \, ,$$

donc

$$\int\limits_{1}^{\infty} \frac{\ln x}{x^2} \, dx = \left[-\frac{\ln x}{x} - \frac{1}{x} \right]_{1}^{\infty} = \lim_{x \to \infty} \left(-\frac{\ln x}{x} - \frac{1}{x} \right) + 1 = 1 \ .$$

e) En intégrant par parties

$$\int \frac{\ln x}{(1+x)^2} \, dx = -\frac{\ln x}{1+x} + \int \frac{dx}{x(1+x)} \, .$$

Mais en décomposant la fraction rationnelle

$$\frac{1}{x(1+x)} = \frac{1}{x} - \frac{1}{1+x} \; ,$$

on obtient

$$\int \frac{\ln x}{(1+x)^2} dx = -\frac{\ln x}{1+x} + \ln x - \ln(1+x) = \frac{x \ln x}{1+x} - \ln(1+x) .$$

Alors

$$\int_{0}^{1} \frac{\ln x}{(1+x)^2} dx = \left[\frac{x \ln x}{1+x} - \ln(1+x) \right]_{0}^{1} = -\ln 2 - \lim_{x \to 0} \left(\frac{x \ln x}{1+x} - \ln(1+x) \right) = -\ln 2.$$

3

f) Posons $I_n = \int_0^\infty x^n e^{-x} dx$. Puisque les fonctions intégrées sont positives, la fonction F_n définie par

$$F_n(\alpha) = \int_0^\alpha x^n e^{-x} dx ,$$

est croissante et possède une limite finie ou non à $+\infty$.

En intégrant par parties, si $n \ge 1$.

$$\int x^n e^{-x} dx = -x^n e^{-x} + \int nx^{n-1} e^{-x} dx .$$

Mais

$$\lim_{x \to \infty} x e^{-x} = 0 .$$

Il en résulte que

$$\lim_{\alpha \to \infty} \int_{0}^{\alpha} x^{n} e^{-x} dx = n \lim_{\alpha \to \infty} \int_{0}^{\alpha} x^{n-1} e^{-x} dx ,$$

et donc

$$I_n = nI_{n-1} .$$

Mais, d'après b),

$$I_0 = \int_0^\infty e^{-x} \, dx = 1 \ ,$$

donc l'intégrale I_n converge et

$$I_n = n(n-1)\cdots 1\cdot I_0 = n!$$
.

g) Comme $\arctan x$ a pour dérivée $1/(1+x^2)$, on a

$$\int \frac{\arctan x}{1+x^2} dx = \frac{1}{2} (\arctan x)^2 ,$$

et

$$\int_{-\infty}^{\infty} \frac{\arctan x}{1+x^2} dx = \left[\frac{1}{2} \left(\arctan x\right)^2\right]_{0}^{\infty} = \lim_{x \to \infty} \frac{1}{2} \left(\arctan x\right)^2 = \frac{\pi^2}{8} .$$

h) La fraction rationnelle se décompose facilement, puisque

$$\frac{1}{x(x+r)} = \frac{1}{r} \left(\frac{1}{x} - \frac{1}{x+r} \right) ,$$

et admet sur $[a, \infty[$ la primitive $\frac{1}{r} \ln \frac{x}{x+r}$. Donc

$$\int\limits_{-\pi}^{\infty} \frac{dr}{x(x+r)} = \left[\frac{1}{r} \ln \frac{x}{x+r}\right]_{a}^{\infty} = \frac{1}{r} \left(\ln \frac{a+r}{a} + \lim_{x \to \infty} \ln \frac{x}{x+r}\right) = \frac{1}{r} \ln \frac{a+r}{a} \ .$$

i) Une primitive de $\cos 2x/\sqrt{\sin 2x}$ est $\sqrt{\sin 2x}$, donc

$$\int_{0}^{\pi/2} \frac{\cos 2x dx}{\sqrt{\sin 2x}} = \left[\sqrt{\sin 2x}\right]_{0}^{\pi/2} = \lim_{x \to \pi/2} \sqrt{\sin 2x} - \lim_{x \to 0} \sqrt{\sin 2x} = 0.$$

2. a) Au voisinage de 0 on a

$$\frac{1}{\sqrt{x}}e^{-\sqrt{x^2+x+1}} \sim \frac{e^{-1}}{\sqrt{x}}$$
,

donc l'intégrale $\int_{0}^{1} \frac{1}{\sqrt{x}} e^{-\sqrt{x^2-x+1}} dx$ converge par comparaison à $\int_{0}^{1} \frac{dx}{x^{1/2}}$.

Lorsque x > 1,

$$\frac{1}{\sqrt{x}}e^{-\sqrt{x^2+x+1}} \le e^{-x}$$
.

Et l'intégrale $\int\limits_1^\infty \frac{1}{\sqrt{x}} \, e^{-\sqrt{x^2+x+1}} \, dx$ converge par comparaison à $\int\limits_1^\infty e^{-x} dx$.

b) Cherchons un équivalent de $\ln(1+\sin x) dx$ au voisinage de $-\pi/2$. Posons $u=x+\pi/2$. Alors

$$\ln(1+\sin x) = \ln(1-\cos u) = \ln\left(\frac{u^2}{2} + o(u^2)\right) = 2\ln u \left(1 + \frac{\ln(1/2 + o(1))}{2\ln u}\right) \sim 2\ln u.$$

Mais l'intégrale $\int_0^1 \ln u \, du$ converge (Voir ex 1c) et $\ln u$ est négative. Donc l'intégrale $\int_{-\pi/2}^{\pi/2} \ln(1+\sin x) \, dx$ converge.

c) On peut donner deux arguments montrant la convergence de l'intégrale.

1) Lorsque t>1, on a $t^2>t$, donc $e^{-t^2}< e^{-t}$, et l'intégrale $\int\limits_{-\infty}^{\infty}e^{-t^2}dt$ converge par comparaison à l'intégrale $\int\limits_{-\infty}^{\infty}e^{-t}dt$.

2) Lorsque t tend vers l'infini $t^2e^{-t^2}$ admet 0 comme limite, donc est majoré par 1 sur un intervalle $[a, +\infty[$. Alors $e^{-t^2} \le 1/t^2$, et l'intégrale $\int_{-t^2}^{\infty} e^{-t^2} dt$ converge par comparaison à l'intégrale $\int_{-t^2}^{\infty} \frac{dt}{t^2}$.

d) On a, si t > 0,

$$0 \le \frac{1 + \sin t}{1 + \sqrt{t^3}} \le \frac{2}{t^{3/2}} \ ,$$

et l'intégrale $\int\limits_{-\infty}^{\infty} \frac{1+\sin t}{1+\sqrt{t^3}}\,dt$ converge par comparaison à l'intégrale $\int\limits_{-\infty}^{\infty} \frac{dt}{t^{3/2}}$.

3. a) Cherchons un équivalent simple en 0 et en $+\infty$ de la fonction f définie sur $]0, \infty[$ par

$$f(x) = \frac{1}{x^{\alpha}(1+x^{\beta})} .$$

Le résultat dépend du signe de β . On peut résumer ce que l'on obtient dans le tableau suivant :

5

	$\sim f(x)$ en 0	$\sim f(x) \text{ en } + \infty$	condition de convergence de $\int_{0}^{1} f(x) dx$	condition de convergence de $\int_{1}^{\infty} f(x) dx$
$\beta > 0$	$\frac{1}{x^{\alpha}}$	$\frac{1}{x^{\alpha+\beta}}$	$\alpha < 1$	$\alpha + \beta > 1$
$\beta = 0$	$\frac{1}{2x^{\alpha}}$	$\frac{1}{2x^{\alpha}}$	$\alpha < 1$	$\alpha > 1$
$\beta < 0$	$\frac{1}{x^{\alpha+\beta}}$	$\frac{1}{x^{\alpha}}$	$\alpha + \beta < 1$	$\alpha > 1$

L'ensemble des couples (α,β) pour les quels l'intégrale $\int\limits_0^\infty f(x)\,dx$ est le domaine du plan limité par les droites d'équation $\alpha+\beta=1$ et $\alpha=1$ (exclues). On ne peut jamais avoir $\beta=0$.

b) Même méthode. Les équivalents dépendent du signe de α cette fois. Remarquons que si $\alpha>0,\ x^\alpha$ tend vers 0 en 0 donc

$$\ln(1+x^{\alpha}) \sim x^{\alpha} ,$$

et si $\alpha < 0$, on peut écrire

$$\ln(1+x^{\alpha}) = \ln(x^{\alpha}) + \ln(1+x^{-\alpha})$$
$$= \alpha \ln x \left(1 + \frac{\ln(1+x^{-\alpha})}{\alpha \ln x}\right) ,$$

et donc

$$\ln(1+x^{\alpha}) \sim \alpha \ln x .$$

On a des résultats inversés en $+\infty$. On peut résumer ce que l'on obtient dans le tableau suivant :

	$\sim f(x)$ en 0	$\sim f(x) \text{ en } + \infty$	condition de convergence de $\int_{0}^{1} f(x) dx$	condition de convergence de $\int_{1}^{\infty} f(x) dx$
$\alpha > 0$	$\frac{1}{x^{\beta-\alpha}}$	$\alpha \frac{\ln x}{x^{\beta}}$	$\beta - \alpha < 1$	$\beta > 1$
$\alpha = 0$	$\frac{\ln 2}{x^{\beta}}$	$\frac{\ln 2}{x^{\beta}}$	$\beta < 1$	$\beta > 1$
$\alpha < 0$	$\alpha \frac{\ln x}{x^{\beta}}$	$\frac{1}{x^{\beta-lpha}}$	$\beta < 1$	$\beta - \alpha > 1$

L'ensemble des couples (α, β) pour les quels l'intégrale $\int\limits_0^\infty f(x)\,dx$ est le domaine du plan limité par les droites d'équation $\beta-\alpha=1$ et $\beta=1$ (exclues). On ne peut jamais avoir $\alpha=0$.

c) Posons

$$f(t) = \frac{(1+t)^{\alpha} - t^{\alpha}}{t^{\beta}} .$$

Si $\alpha=0$ la fonction f est nulle et l'intégrale converge.

Si $\alpha \neq 0$ et si t tend vers l'infini, on écrit

$$(1+t)^{\alpha} - t^{\alpha} = t^{\alpha} \left(\left(1 + \frac{1}{t} \right)^{\alpha} - 1 \right) ,$$

et en faisant un développement limité en 0 par rapport à 1/t, on obtient

$$(1+t)^{\alpha} - t^{\alpha} = t^{\alpha} \left(1 + \frac{\alpha}{t} + o\left(\frac{1}{t}\right) - 1 \right) \sim \alpha t^{\alpha - 1}$$
.

Donc

$$f(t) \sim \frac{\alpha}{t^{\beta-\alpha+1}}$$
,

et l'intégrale $\int_{1}^{\infty} f(t) dt$ converge si et seulement si $\beta - \alpha > 0$.

En 0, le résultat dépend du signe de α .

Si $\alpha < 0$

$$(1+t)^{\alpha} - t^{\alpha} = -t^{\alpha} \left(1 - t^{-\alpha} (1+t)^{\alpha} \right) \sim -t^{\alpha} ,$$

car $1 - t^{-\alpha}(1+t)^{\alpha}$ tend vers 1. On en déduit

$$f(t) \sim -\frac{1}{t^{\beta-\alpha}}$$
,

et l'intégrale $\int_{0}^{1} f(t) dt$ converge si et seulement si $\beta - \alpha < 1$.

Si $\alpha > 0$, la quantité $(1+t)^{\alpha} - t^{\alpha}$ tend vers 1 en 0, donc

$$f(t) \sim \frac{1}{t^{\beta}}$$
,

et l'intégrale $\int_{0}^{1} f(t) dt$ converge si et seulement si $\beta < 1$.

On a donc le tableau suivant :

	$\sim f(t)$ en 0	$\sim f(t) \text{ en } + \infty$	condition de convergence de $\int_{0}^{1} f(t) dt$	condition de convergence de $\int_{1}^{\infty} f(t) dt$
$\alpha > 0$	$rac{1}{t^{eta}}$	$\frac{\alpha}{t^{\beta-\alpha+1}}$	$\beta < 1$	$\beta - \alpha > 0$
$\alpha < 0$	$-\frac{1}{t^{\beta-lpha}}$	$\frac{\alpha}{t^{\beta-\alpha+1}}$	$\beta - \alpha < 1$	$\beta - \alpha > 0$

Les couples (α, β) répondant à la question sont les points du domaine limité par les droites d'équation $\beta = 1$, $\beta = \alpha$ et $\beta = \alpha + 1$ (bords exclus), auxquels on peut ajouter la droite d'équation $\alpha = 0$.

4. On a une intégrale de Bertrand $\int_{1}^{\infty} \frac{dx}{x^{n}(\ln x)^{-1}}$ qui converge si et seulement si $n \geq 2$.

Si $n \ge 1$, intégrons par parties $\int \frac{\ln x}{x^n} dx$. On a

$$\int \frac{\ln x}{x^n} dx = \frac{x^{-n+1}}{-n+1} \ln x - \int \frac{x^{-n+1}}{-n+1} \frac{1}{x} dx = \frac{x^{-n+1}}{-n+1} \ln x - \frac{x^{-n+1}}{(n-1)^2} ,$$

et donc

$$I(n) = \left[\frac{x^{-n+1}}{-n+1} \ln x - \frac{x^{-n+1}}{(n-1)^2} \right]_1^{\infty} = \frac{1}{(n-1)^2} .$$

5. Soit, pour x > 0, $f_{\lambda}(x) = \frac{1}{(1+x^2)(1+x^{\lambda})}$.

On a

$$0 \le f_{\lambda}(x) = \frac{1}{1+x^2} ,$$

et $\int_{0}^{+\infty} \frac{dx}{1+x^2}$ converge. Il résulte du théorème de comparaison que $\int_{0}^{+\infty} \frac{1}{(1+x^2)(1+x^{\lambda})}$ converge.

En posant t = 1/x, on a x = 1/t donc $dx = -dt/t^2$, et l'on obtient

$$I(\lambda) = \int_{0}^{\infty} \frac{t^{\lambda} dt}{(t^2 + 1)(t^{\lambda} + 1)} .$$

Alors, en additionnant, puisque toutes les intégrales convergent,

$$2I(\lambda) = \int_{0}^{\infty} \frac{dt}{(t^2+1)(t^{\lambda}+1)} + \int_{0}^{\infty} \frac{t^{\lambda} dt}{(t^2+1)(t^{\lambda}+1)} = \int_{0}^{\infty} \frac{dt}{t^2+1} = \left[\arctan t\right]_{0}^{\infty} = \frac{\pi}{2} .$$

6. a) En effectuant un développement limité en 0, on a

$$e^{-t} - e^{-2t} = 1 - t - (1 - 2t) + \circ(t) = t + \circ(t)$$
,

donc

$$\lim_{t \to 0} \frac{e^{-t} - e^{-2t}}{t} = 1 ,$$

et la fonction se prolonge par continuité en 0. Il en résulte que l'intégrale $\int_0^1 \frac{e^{-t} - e^{-2t}}{t} dt$ converge.

D'autre part, si $t \ge 1$, on a

$$0 \le \frac{e^{-t}}{t} \le e^{-t}$$
 et $0 \le \frac{e^{-2t}}{t} \le e^{-2t}$,

et puisque les intégrales $\int_{1}^{\infty} e^{-t} dt$ et $\int_{1}^{\infty} e^{-2t} dt$ convergent, les intégrales $\int_{1}^{\infty} \frac{e^{-t}}{t} dt$ et $\int_{1}^{\infty} \frac{e^{-2t}}{t} dt$

convergent également. Donc la différence $\int_{1}^{\infty} \frac{e^{-t} - e^{-2t}}{t} dt$ converge.

b) Transformons $\int_{\epsilon}^{\infty} \frac{e^{-2t}}{t} dt$ par le changement de variable x = 2t. On obtient

$$\int_{\varepsilon}^{\infty} \frac{e^{-2t}}{t} dt = \int_{2\varepsilon}^{\infty} \frac{e^{-t}}{t} dt ,$$

d'où

$$\int_{\varepsilon}^{\infty} \frac{e^{-t}}{t} dt - \int_{2\varepsilon}^{\infty} \frac{e^{-2t}}{t} dt = \int_{\varepsilon}^{2\varepsilon} \frac{e^{-t}}{t} dt.$$

c) On cherche la limite lorsque ε tend vers 0 du membre de droite. En utilisant la première formule de la moyenne, il existe c_{ε} dans $[\varepsilon, 2\varepsilon]$ tel que

$$\int_{\varepsilon}^{2\varepsilon} \frac{e^{-t}}{t} dt = e^{-c_{\varepsilon}} \int_{\varepsilon}^{2\varepsilon} \frac{1}{t} dt = e^{-c_{\varepsilon}} \ln 2.$$

Comme c_{ε} tend vers zéro d'après le théorème d'encadrement, il en résulte que $I=\ln 2$.

7. a) la fonction qui à x associe $\ln \sin x$ est continue sur $]0, \pi/2]$. On étudie ce qui se passe en 0. On a au voisinage de 0

$$\ln\sin x = \ln(x + \circ(x)) = \ln x + \ln(1 + \circ(1)) ,$$

donc

$$\ln \sin x = \ln x \left(1 + \frac{\ln(1 + \circ(1))}{\ln x} \right) .$$

Mais $1 + \frac{\ln(1 + \circ(1))}{\ln x}$ tend vers 1 lorsque x tend vers 0, et donc

 $\ln \sin x \sim \ln x$.

D'autre part l'intégrale $\int_0^1 \ln x \, dx$ converge (ex 1 c) et $\ln x$ est de signe constant au voisinage de 0. Donc l'intégrale J converge.

Le changement de variable $t=\pi/2-x$ donne immédiatement

$$J = \int_{0}^{\pi/2} \ln \cos t \, dt \; ,$$

puisque $\cos(\pi/2 - x) = \sin x$.

b) Alors, puisque

$$\ln \sin x + \ln \cos x = \ln(\sin x \cos x) = \ln \frac{\sin 2x}{2} ,$$

on obtient

$$2J = \int\limits_{0}^{\pi/2} \ln \frac{\sin 2x}{2} \, dx \ .$$

Ce que l'on peut écrire

$$2J = \int_{0}^{\pi/2} \ln \sin 2x \, dx - \int_{0}^{\pi/2} \ln 2 \, dx = \int_{0}^{\pi/2} \ln \sin 2x \, dx - \frac{\pi \ln 2}{2} .$$

Effectuons le changement de variable u = 2x dans l'intégrale du membre de droite. On trouve

$$\int_{0}^{\pi/2} \ln \sin 2x \, dx = \int_{0}^{\pi} \ln \sin u \, \frac{du}{2} .$$

Mais le changement de variable $v = \pi - u$ donne, puisque $\sin(\pi - v) = \sin v$,

$$\int_{\pi/2}^{\pi} \ln \sin u \, du = \int_{0}^{\pi/2} \ln \sin v \, dv .$$

Donc

$$\int_{0}^{\pi} \ln \sin u \, \frac{du}{2} = \int_{0}^{\pi/2} \ln \sin u \, du = J .$$

Finalement

$$2J = J - \frac{\pi \ln 2}{2} ,$$

et donc

$$J = -\frac{\pi \ln 2}{2} \; .$$

8. a) Première méthode En intégrant par parties

$$\int \frac{\cos x}{\sqrt{x}} dx = \frac{\cos x}{\sqrt{x}} + \frac{1}{2} \int \frac{\sin x}{\sqrt{x^{3/2}}} dx .$$

Or la fonction $x \mapsto \frac{\cos x}{\sqrt{x}}$ admet une limite nulle en $+\infty$, et

$$\frac{|\sin x|}{\sqrt{x^{3/2}}} \le \frac{1}{\sqrt{x^{3/2}}} .$$

Donc l'intégrale $\int \frac{\sin x}{\sqrt{x^{3/2}}} dx$ converge absolument, donc converge. Il en résulte que l'intégrale $\int \frac{\cos x}{\sqrt{x}} dx$ converge.

Deuxième méthode En appliquant directement le critère d'Abel. La fonction $x \mapsto 1/\sqrt{x}$ est décroissante et tend vers 0 à l'infini, par ailleurs

$$\left| \int_{x}^{x'} \cos t \, dt \right| = \left| \sin x' - \sin x \right| \le 2 ,$$

donc l'intégrale converge.

Pour montrer qu'elle ne converge pas absolument, on peut utiliser l'inégalité

$$|\cos x| \ge \cos^2 x = \frac{1 + \cos 2x}{2}$$

Alors

(1)
$$\int_{-\pi}^{x} \frac{|\cos t|}{\sqrt{t}} dt \ge \int_{-\pi}^{x} \frac{1 + \cos 2t}{2\sqrt{t}} dt = \int_{-\pi}^{x} \frac{1}{2\sqrt{t}} dt + \int_{-\pi}^{x} \frac{\cos 2t}{2\sqrt{t}} dt .$$

Mais

$$\int_{-\infty}^{x} \frac{1}{2\sqrt{t}} dt = \sqrt{x} - \sqrt{\pi} ,$$

et ceci tend vers $+\infty$ lorsque x tend vers $+\infty$. Par contre, en posant u=2t, on obtient

$$\int_{-\pi}^{x} \frac{\cos 2t}{2\sqrt{t}} dt = \frac{1}{2\sqrt{2}} \int_{2\pi}^{2x} \frac{\cos u}{\sqrt{u}} du ,$$

et elle possède une limite finie lorsque x tend vers $+\infty$. Donc le membre de droite de l'inégalité (1) tend vers $+\infty$ et il en résulte que celui de gauche a la même limite. Par suite, l'intégrale $\int\limits_{-\infty}^{x} \frac{|\cos t|}{\sqrt{t}} \, dt \text{ diverge.}$

b) Comme la fonction qui à x associe $\cos(x^2)$ est continue sur $[-1, +\infty[$, l'intégrale $\int\limits_{-1}^{\infty}\cos(x^2)\,dx$ converge si et seulement si l'intégrale $\int\limits_{\sqrt{\pi}}^{\infty}\cos(x^2)\,dx$ converge, et de même l'intégrale $\int\limits_{-1}^{\infty}|\cos(x^2)|\,dx$

converge si et seulement si l'intégrale $\int_{\sqrt{\pi}}^{\infty} |\cos(x^2)| dx$ converge. En faisant le changement de variable $t=x^2$ on obtient,

$$\int_{\sqrt{\pi}}^{\infty} \cos(x^2) dx = \int_{\pi}^{\infty} \frac{\cos t}{2\sqrt{t}} dt ,$$

et également

$$\int_{\sqrt{\pi}}^{\infty} |\cos(x^2)| \, dx = \int_{\pi}^{\infty} \frac{|\cos t|}{2\sqrt{t}} \, dt \ .$$

Il en résulte que l'intégrale $\int_{\sqrt{\pi}}^{\infty} \cos(x^2) dx$ est semi-convergente, et donc que l'intégrale $\int_{-1}^{\infty} \cos(x^2) dx$ est également semi-convergente.

c) On effectue le changement de variable $u=x^4$. L'intégrale devient

$$\int_{\pi}^{\infty} x^2 \sin(x^4) \, dx = \int_{\pi^4}^{\infty} \frac{\sin u}{u^{1/4}} \, du \ .$$

La situation est identique à celle de l'exercice a). La fonction qui à t dans $[\pi, \infty[$ associe $1/t^{1/4}$ est décroissante et tend vers 0 à l'infini. Par ailleurs

$$\left| \int_{x}^{x'} \sin t \, dt \right| = \left| \cos x - \cos x' \right| \le 2 \; .$$

Donc la critère d'Abel permet de conclure que l'intégrale $\int_{-\pi}^{\infty} \frac{\sin u}{u^{1/4}} du$ converge.

Pour montrer qu'elle ne converge pas absolument, on peut utiliser l'inégalité

$$|\sin u| \ge \sin^2 u = \frac{1 - \cos 2u}{2} .$$

et conclure comme dans a).

9. Raisonnons par l'absurde. S'il existe c dans $[0, \infty[$ tel que $f(c) \neq 0$, on peut, quitte à prendre la fonction -f, supposer que f(c) > 0. Comme f est continue en c, il existe un intervalle $[\alpha, \beta]$ inclus dans $[0, \infty[$ et non réduit à un point, tel que f(x) > 0 sur $[\alpha, \beta]$. Soit alors m le minimum de f sur $[\alpha, \beta]$. Ce minimum est atteint en un point de cet intervalle et donc m > 0. Si la fonction f est T-périodique, on a, pour tout entier n positif,

$$\int_{\alpha+nT}^{\beta+nT} f(x) dx = \int_{\alpha}^{\beta} f(x) dx \ge m(\beta - \alpha) .$$

Puisque l'intégrale $\int\limits_0^\infty f(x)\,dx$ converge, le critère de Cauchy s'applique et il existe A>0 tel que A< X< Y implique

$$\left| \int_{X}^{Y} f(x) \, dx \right| < m(\beta - \alpha) .$$

Mais comme la suite $(\alpha + nT)$ tend vers plus l'infini, il existe N tel que $n \geq N$ implique $\alpha + nT \geq X$. Dans ce cas

$$\int_{\alpha+nT}^{\beta+nT} f(x) dx = \left| \int_{\alpha+nT}^{\beta+nT} f(x) dx \right| < m(\beta - \alpha) .$$

On obtient bien une contradiction.

10. Raisonnons par l'absurde, et nions le fait que f tende vers 0 à l'infini. Il existe un nombre $\varepsilon > 0$, tel que pour tout nombre A, il existe $x_A \ge A$ tel que $|f(x_A)| \ge \varepsilon$.

En utilisant la continuité uniforme de f, il existe $\alpha > 0$ tel que, l'inégalité $|x - x'| \le \alpha$, implique

$$|f(x) - f(x')| \le \varepsilon/2$$
.

En particulier, si

$$x_A \le t \le x_A + \alpha$$
,

on a

$$|f(x_A) - f(t)| \le \frac{\varepsilon}{2}$$
,

et donc

$$-\frac{\varepsilon}{2} \le f(x_A) - f(t) \le \frac{\varepsilon}{2} ,$$

ou encore

$$f(x_A) - \frac{\varepsilon}{2} \le f(t) \le f(x_A) + \frac{\varepsilon}{2}$$
.

Si $f(x_A) > 0$, on a $f(x_A) \ge \varepsilon$ et

$$f(t) \ge \varepsilon - \frac{\varepsilon}{2} = \frac{\varepsilon}{2}$$
,

donc

$$\left| \int_{x_A}^{x_A + \alpha} f(t) dt \right| = \int_{x_A}^{x_A + \alpha} f(t) dt \ge \frac{\alpha \varepsilon}{2} .$$

Si $f(x_A) < 0$, on a $-f(x_A) \ge \varepsilon$ et

$$f(t) \le f(x_A) + \frac{\varepsilon}{2} \le \frac{\varepsilon}{2} - \varepsilon = -\frac{\varepsilon}{2}$$
,

donc

$$\left| \int_{x_A}^{x_A + \alpha} f(t) dt \right| = - \int_{x_A}^{x_A + \alpha} f(t) dt \ge \frac{\alpha \varepsilon}{2} .$$

Il existe donc un nombre $\beta = \alpha \varepsilon/2$ pour lequel, pour tout A, on a trouvé deux nombres x_A et $x_A + \alpha$ vérifiant les inégalités $A \le x_A \le x_A + \alpha$ et

$$\left| \int_{x_A}^{x_A + \alpha} f(t) \, dt \right| \ge \beta .$$

Cela signifie que la propriété de Cauchy n'est pas satisfaite, donc que l'intégrale $\int\limits_0^\infty f(t)\,dt$ diverge. D'où une contradiction.

11. a) L'égalité $f'(x) = O(1/x^2)$ signifie que la fonction $x \mapsto x^2 f'(x)$ est bornée au voisinage de l'infini, c'est-à-dire qu'il existe deux nombres a > 0 et M > 0, tels que, si $|x| \ge a$, on ait $x^2 |f'(x)| \le M$, soit

$$|f'(x)| \le \frac{M}{x^2} \ .$$

On remarque que l'intégrale $\int_{1}^{\infty} \frac{dx}{x^2}$ converge. Donc, de l'inégalité précédente, on déduit que

l'intégrale $\int_{a}^{\infty} f'(t) dt$ converge absolument donc converge. Mais

$$\int_{a}^{\infty} f'(x) dx = \lim_{X \to \infty} \int_{a}^{X} f'(x) dx = f(X) - f(a) .$$

Donc la fonction f a une limite en $+\infty$ qui vaut $\int_{a}^{\infty} f'(x) dx + f(a)$.

La démonstration est analogue à $-\infty$.

b) Si x et x' sont deux réels quelconques tels que x < x', on a encore

$$|f(x) - f(x')| \le \int_{x}^{x'} |f'(t)| dt$$
,

ce qui se majore par

$$\int_{x}^{x'} \frac{dt}{1+t^2} = \arctan x' - \arctan x ,$$

mais puisque la fonction arctangente est comprise entre $-\pi/2$ et $+\pi/2$, on a finalement

$$|f(x') - f(x)| \le \arctan x' - \arctan x \le \pi$$
.

En faisant tendre x vers $-\infty$ et x' vers $+\infty$, on obtient alors, par passage à la limite dans les inégalités

$$|L-\ell| \leq \pi$$
.

12. a) Comme f décroit, on peut minorer f(t) par f(2x), lorsque t appartient à l'intervalle [x, 2x]. Alors

$$\int_{x}^{2x} f(t) dt \ge \int_{x}^{2x} f(2x) dt = x f(2x) .$$

On a donc, si x > a/2

$$0 \le x f(x) \le 2 \int_{x/2}^{x} f(t) dt .$$

Comme l'intégrale converge, il existe, d'après le critère de Cauchy, un nombre A, tel que les inégalités $A \le u \le v$ impliquent

$$\left| \int_{u}^{v} f(t) \, dt \right| < \frac{\varepsilon}{2} \; .$$

Alors si $x \ge 2A$, on a $A \le x/2 \le x$, et

$$0 \le x f(x) \le 2 \int_{x/2}^{x} f(t) dt < \varepsilon.$$

On en déduit que xf(x) tend vers 0 à l'infini.

b) La fonction f définie sur $[2, \infty)$ par

$$f(x) = \frac{1}{x \ln x} \;,$$

et telle que xf(x) tende vers 0 à l'infini. On vérifie facilement qu'elle est décroissante. Par contre l'intégrale de f diverge, puisque

$$\int_{2}^{x} \frac{dx}{x \ln x} = \ln \ln x - \ln \ln 2$$

a pour limite $+\infty$ quand x tend vers $+\infty$.

13. a) Pour $x \ge 0$ et $n \ge 1$, posons $f_n(x) = \frac{\arctan(nx)}{n(1+x^2)}$.

Tout d'abord

$$0 \le f_n(x) \le \frac{\pi}{2} \frac{1}{1+x^2} = g(x)$$
.

Comme l'intégrale $\int_{0}^{\infty} g(x) dx$ converge, il résulte du théorème de comparaison que toutes les

intégrales $\int_{0}^{\infty} f_n(x) dx$ convergent.

Par ailleurs

$$0 \le f_n(x) \le \frac{\pi}{2n} \ ,$$

et donc la suite (f_n) converge uniformément, donc uniformément localement, vers la fonction nulle.

Alors le théorème de convergence dominée montre que la suite (a_n) converge vers $\int_0^{+\infty} 0 \, dx = 0$.

b) Pour $x \in [0, 1]$ et $n \ge 0$, posons $f_n(x) = 1/(1 + x^n)$. Tout d'abord

$$0 \le f_n(x) \le 1 = g(x)$$
.

La fonction g et les fonctions f_n sont Riemann-intégrables sur [0, 1].

Par ailleurs la suite f_n converge simplement sur [0, 1[vers la fonction f = 1. Sur $[0, \alpha]$, avec $\alpha \in]0, 1[$, on a

$$|f_n(x) - f(x)| = \frac{x^n}{1 + x^n} \le \alpha^n$$
,

et il en résulte que la suite (f_n) converge uniformément vers f sur $[0, \alpha]$. La suite (f_n) converge donc uniformément localement vers f sur [0, 1].

Alors le théorème de convergence dominée montre que la suite (a_n) converge vers $\int_0^1 1 dx = 1$.

c) Pour $x \in]1, +\infty[$ et $n \ge 0$, posons $f_n(x) = 1/(1+x^n)$.

Tout d'abord, si $n \geq 2$,

$$0 \le f_n(x) \le f_2(x) = g(x) .$$

Comme $\int_{1}^{\infty} g(x) dx$ converge, il résulte du théorème de comparaison que toutes les intégrales

$$\int_{0}^{\infty} f_n(x) dx \text{ convergent si } n \geq 2.$$

Par ailleurs la suite f_n converge simplement sur $[1, \infty[$ la fonction f = 0. Sur $[\alpha, +\infty]$, avec $\alpha > 0$, on a

$$0 \le f_n(x) \le \frac{1}{1 + \alpha^n} \ ,$$

et il en résulte que la suite (f_n) converge uniformément vers 0 sur $[\alpha, +\infty[$. La suite (f_n) converge donc uniformément localement vers f sur $]1, \infty[$.

Alors le théorème de convergence dominée montre que la suite (a_n) converge vers $\int_0^1 0 dx = 0$.

d) Pour $x \ge 0$ et $n \ge 1$, posons $f_n(x) = \frac{\arctan \frac{n+1}{n} x}{1 + x^2}$.

Tout d'abord

$$0 \le f_n(x) \le \frac{\pi}{2} \frac{1}{1+x^2} = g(x)$$
.

Comme l'intégrale $\int_{0}^{\infty} g(x) dx$ converge, il résulte du théorème de comparaison que toutes les

intégrales $\int_{0}^{\infty} f_n(x) dx$ convergent.

Par ailleurs, f_n tend simplement vers la fonction f qui à x associe $\frac{\arctan x}{1+x^2}$. Soit x dans l'intervalle $[0, \alpha]$, où $\alpha > 0$. On a

$$|f_n(x) - f(x)| \le \left| \arctan\left(1 + \frac{1}{n}\right) x - \arctan x \right|.$$

En appliquant l'égalité des accroissements finis, il existe c dans $[0, \alpha]$ tel que

$$\left|\arctan\left(1+\frac{1}{n}\right)x - \arctan x\right| = \left|\left(1+\frac{1}{n}\right)x - x\right| \frac{1}{1+c^2} = \frac{x}{n(1+c^2)} \le \frac{\alpha}{n},$$

et donc la suite (f_n) converge uniformément sur $[0, \alpha]$ donc uniformément localement sur $[0, +\infty[$, vers la fonction f.

Alors le théorème de convergence dominée montre que la suite (a_n) converge vers

$$\int_{0}^{+\infty} \frac{\arctan x}{1+x^2} dx = \left[\frac{1}{2} (\arctan x)^2\right]_{0}^{+\infty} = \frac{\pi^2}{8} .$$

14. On a, à l'infini,

$$\frac{1}{(x^3+1)^n} \sim \frac{1}{x^{3n}}$$
,

et l'intégrale $\int\limits_0^\infty \frac{dx}{(x^3+1)^n}$ converge si et seulement si 3n>1, soit $n\geq 1$.

En utilisant la factorisation

$$x^3 + 1 = (x+1)(x^2 - x + 1)$$
,

la fraction rationnelle $\frac{1}{x^3+1}$, se décompose sous la forme

$$\frac{1}{x^3+1} = \frac{1}{(x+1)(x^2-x+1)} = \frac{a}{x+1} + \frac{bx+c}{x^2-x+1} .$$

On peut obtenir les coefficients de la manière suivante :

en multipliant par x + 1 et en faisant tendre x vers -1, on obtient a = 1/3;

en remplaçant x par 0, on trouve 1=a+c d'où c=1-a=2/3;

en multipliant par x et en faisant tendre x vers $+\infty$, on trouve 0=a+b, d'où b=-1/3. Finalement

$$\frac{1}{x^3+1} = \frac{1}{3(x+1)} + \frac{1}{3} \frac{-x+2}{x^2-x+1} ,$$

ce qui s'écrit encore

$$\frac{1}{x^3+1} = \frac{1}{3(x+1)} - \frac{1}{6} \frac{2x-1}{x^2-x+1} + \frac{1}{2} \frac{1}{x^2-x+1} ,$$

On obtient alors comme primitive, pour $x \geq 0$,

$$\int \frac{dx}{x^3+1} = \frac{1}{3} \ln(x+1) - \frac{1}{6} \ln(x^2-x+1) + \frac{1}{\sqrt{3}} \arctan \frac{2x-1}{\sqrt{3}} = \frac{1}{3} \ln \frac{x+1}{\sqrt{x^2-x+1}} + \frac{1}{\sqrt{3}} \arctan \frac{2x-1}{\sqrt{3}}.$$

(On rappelle qu'une primitive de $1/(ax^2+bx+c)$ où $\Delta=b^2-4ac<0$ est $\frac{2}{\sqrt{-\Delta}}\arctan\frac{2ax+b}{\sqrt{-\Delta}}$).

Alors

$$\int_{0}^{\infty} \frac{dx}{x^{3} + 1} = \left[\frac{1}{3} \ln \frac{x + 1}{\sqrt{x^{2} - x + 1}} + \frac{1}{\sqrt{3}} \arctan \frac{2x - 1}{\sqrt{3}} \right]_{0}^{\infty}$$

$$= \lim_{x \to \infty} \left(\frac{1}{3} \ln \frac{x + 1}{\sqrt{x^{2} - x + 1}} + \frac{1}{\sqrt{3}} \arctan \frac{2x - 1}{\sqrt{3}} \right) + \frac{1}{\sqrt{3}} \arctan \frac{1}{\sqrt{3}}.$$

Mais

$$\ln \frac{x+1}{\sqrt{x^2-x+1}} = \ln \frac{1+\frac{1}{x}}{\sqrt{1-\frac{1}{x}+\frac{1}{x^2}}} ,$$

et cette expression a pour limite $0 \ alpha + \infty$. Par ailleurs arctan $\frac{2x-1}{\sqrt{3}}$ admet pour limite $\pi/2$ en $+\infty$, et

$$\arctan \frac{1}{\sqrt{3}} = \frac{\pi}{6} ,$$

d'où

$$\int_{0}^{\infty} \frac{dx}{x^3 + 1} = \frac{1}{\sqrt{3}} \frac{\pi}{2} + \frac{1}{\sqrt{3}} \frac{\pi}{6} = \frac{2\pi\sqrt{3}}{9} .$$

Si $n \geq 1$, l'intégral J_n est donc convergente. En intégrant par parties,

$$J_n = \left[\frac{x}{(x^3+1)^n}\right]_0^\infty + \int_0^\infty \frac{3nx^3}{(x^3+1)^{n+1}} dx = \int_0^\infty \frac{3nx^3}{(x^3+1)^{n+1}} dx .$$

Mais

$$\int_{0}^{\infty} \frac{x^3}{(x^3+1)^{n+1}} dx = \int_{0}^{\infty} \frac{x^3+1}{(x^3+1)^{n+1}} dx - \int_{0}^{\infty} \frac{1}{(x^3+1)^{n+1}} dx = J_n - J_{n+1}.$$

Donc

$$J_n = 3n(J_n - J_{n+1}) ,$$

d'où l'on déduit

$$J_{n+1} = \frac{3n-1}{3n}J_n \ .$$

Alors

$$J_n = \frac{3n-4}{3n-3} \cdots \frac{2}{3} J_1 = \frac{3n-4}{3n-3} \cdots \frac{2}{3} \frac{2\pi\sqrt{3}}{9}$$
.