代数学2,第9回の内容の理解度チェックの解答

2025/6/23 担当:那須

□ ℤは単項イデアル環であることを示せ.

(**解答**) I を \mathbb{Z} のイデアルとする. I = (0) ならば, I は単項イデアルであるため, $I \neq (0)$ とする. $a \in I$, $a \neq 0$ が存在する. a < 0 ならば (-1) 倍した -a = (-1)a も I の元であるため, I は自然数を含む. I に含まれる自然数 a の中で最小のものを b とすれば, I = (b) となる. 実際, $(b) \subset I$ は明らかであり, I の任意の元 c に対し, 剰余定理より,

$$c = qb + r$$
, $0 \le r < b$

となる q,r が存在するが, b の最小性により r=0, すなわち $b\mid c$ となる. したがって $c\in(b)$ となり, $I\subset(b)$ が従う. つまり I=(b) となり, I は単項イデアルである.

② \mathbb{Z} のイデアル $I=(a_1,a_2,\ldots,a_n)$ において、 $d=\gcd(a_1,a_2,\ldots,a_n)$ とおけば、I=(d) を満たすことを示せ.

(**解答**) ①より \mathbb{Z} は単項イデアル整域 (PID) である. したがって I=(a) となる $a\in\mathbb{Z}$ が存在する. -1 は \mathbb{Z} の単元なので, a>0 と仮定して良い. $I=(a)\subset(d)$ より, $d\mid a$ を満たす. 任意の $i=1,\ldots,n$ に対し $a_i\in I=(a)$, したがって, $a\mid a_i$ を満たす. 故に $a\mid d$ を得る. 以上により a と d は同伴 $(a\sim d)$ であり, 両者の生成する単項イデアルは等しい ((a)=(d)).

 $\boxed{3}$ 体 k 上の 1 変数多項式環 k[x] は単項イデアル環であることを示せ.

(**解答**) $I \in k[x]$ のイデアルとする. I = (0) ならば, I は単項イデアルであるため, $I \neq (0)$ とする. $f \neq 0$ となる $f \in I$ が存在する. $f \in I$ となる $f \neq 0$ の中で次数が最小の元をひとつ選び, それを f_0 とする. $(f_0) \subset I$ は明らかであり, I の任意の元 g に対し, 剰余定理より,

$$g = f_0 q + r, \quad 0 \le \deg r < \deg f_0$$

となる $q,r \in k[x]$ が存在するが, f_0 の次数の最小性により r=0, すなわち $f_0 \mid g$ となる. したがって $g \in (f_0)$ となり, $I \subset (f_0)$ が従う. つまり $I=(f_0)$ となり, I は単項イデアルである.

4 体 k 上の 1 変数多項式環 k[x] のイデアル $I=(f_1,f_2,\ldots,f_n)$ において, $d=\gcd(f_1,f_2,\ldots,f_n)$ とおけば, I=(d) を満たすことを示せ.

(**解答**) ③より $I = (f_0)$ となる $f_0 \in \mathbb{Z}$ が存在する. $I = (f_0) \subset (d)$ より, $d \mid f_0$ を満たす. 任意の i について $f_i \in I = (f_0)$ より $f_0 \mid f_i$, したがって $f_0 \mid d$ を得る. 以上により f_0 と d は同伴であり $(f_0 \sim d)$, 両者の生成する単項イデアルは等しい, すなわち $(f_0) = (d)$ が得られた.

- $5 R = \mathbb{Z}[\sqrt{-3}]$ とする.
 - (1) Rは単項イデアル整域でないことを示せ.
 - (2) 単項イデアルでない Rのイデアルの例を一つ与えよ.

(解答)

(1) $R = \mathbb{Z}[\sqrt{-3}]$ において, $4 \in R$ は分解

$$4 = 2^2 = (1 + \sqrt{-3})(1 - \sqrt{-3})$$

をもつ. したがってRは一意分解整域ではない. したがって単項イデアル整域でもない.

(2) $\mathfrak{a}=(2,\sqrt{-3})$ を考えると、2 と $\sqrt{-3}$ のいずれも既約元であり $(N(2)=4,N(\sqrt{-3})=3$ であり、 $(N(\alpha)=)$ $a^2+3b^2=\pm 2$ を満たす $(a,b)\in\mathbb{Z}^2$ は存在しない。)、 $2\nmid\sqrt{-3}$ かつ $\sqrt{-3}\nmid 2$ より、 $\mathfrak{a}=(\beta)$ となる $\beta\in R$ は存在しない.したがって \mathfrak{a} は単項イデアルではない.