Дискретная математика. Теория

Александр Сергеев

1 Графы

1.1 Неориентированные графы

Определение

Heopuehmupoванный граф — множество вершин V и множество ребер $E \subset (V \times V \setminus \{(u,u)\})/_{\sim}$ (факторизованное отношением эквивалентности $\sim: (u,v) \sim (v,u)$)

 $\Pi y m b \ P$ — последовательность $u_o e_1 u_1 \dots e_k u_k$, где u_i — вершина, $e_i = u_{i-1} u_i$ — ребро

k:=|P| или $k:=\operatorname{len}(P)$ – длина пути

 $\Pi pocmoй\ nymb$ — путь, который посещает каждую вершину не более одного раза

 $Pеберно-npocmoй\ nymb$ — путь, который посещает каждое ребро не более одного раза

<u> </u>*Щиклический путь* $– путь, где <math>u_0 = u_k$ Зададим uuкл:

- $\exists P = u_0 e_1 u_1 \dots e_k u_k$ $\exists Q = u_i e_{i+1} \dots e_k u_k e_1 u_1 \dots e_i u_i$ $\exists R = u_k e_k u_{k-1} \dots e_1 u_0$ $P \sim R, P \sim Q$ — равны с точностью до отражения и циклического сдвига
- Пусть если в циклическом пути $\forall i \ e_{i+1} \neq e_{i+2}, u_i \neq u_{i+2},$ то циклический путь называется корректным

Тогда $uu\kappa n$ – класс эквивалентности корректных циклических путей относительно отношения эквивалентности \sim

Ациклический граф – граф без циклов

Определение

Пусть $\exists P: u_0=u, u_k=v.$ Тогда $u\leadsto v$ (отношение связанности путем) Пусть $P: u\leadsto v, Q: v\leadsto w.$ Тогда $P\circ Q:= u\leadsto v\leadsto w$ – конкатенация пути

Теорема

Отношение → в неориентированном графе – отношение эквивалентности Определение

Класс эквивалентности по отношению \leadsto – компонента связности Граф, содержащий одну компоненту связности – связный граф

Определение

u,v — реберно двусвязные, если существует два (возможно, совпадающих) реберно непересекающихся пути из u в v

Теорема

Реберная двусвязность – отношение эквивалентности

Доказательство

Путь u (из одной вершины) реберно не пересекается с самим собой. Отсюда рефлексивность

Симметричность очевидна

Докажем транзитивность

Рассмотрим u, v, w, пары (u, v), (v, w) реберно двусвязные

 P_1, P_2 – пути между u, w

Рассмотрим случаи:

- $w = v \lor w = u$ очевидно
- $w \in P_2$

Тогда $Q_2, P_1 \circ Q_2$ реберно не пересекаются

• $\exists a \neq v, u, w$:

Тогда $A_1\circ Q_1, P_1\circ A_2\circ Q_2$ реберно не пересекаются

• $\exists a \neq b \neq v, u, w$:

Тогда $A_1\circ Q_1, P_1\circ B_1\circ Q_2$ реберно не пересекаются

• $\exists a \neq b \neq v, u, w$:

Тогда $B_1 \circ Q_2, P_1 \circ A_1 \circ Q_1$ реберно не пересекаются

•

Тогда $P_1 \circ Q_1, P_2 \circ Q_2$ реберно не пересекаются

Определение

Ребра ab, cd (не являющиеся петлями) являются вершинно двусвязными, если существуют два вершинно непересекающихся пути, соединяющих их концы

Теорема

Отношение вершинной двусвязности – отношение эквивалентности **Доказательство** аналогично предыдущей теореме

Определение

Рассмотрим $A = \{a, b : ab$ – вершинно двусвязные $\}$ – компоненту вершинной двусвязности (блок)

Точка v - mочка сочленения, если она лежит в нескольких блоках

Теорема

Вершина является точкой сочленения \Leftrightarrow Ее удаление увеличивает количество компонент связности

Доказательство ⇒

Пусть u – точка сочленения

Тогда она лежит в нескольких блоках:

a, b — не являются вершинно двусвязными, т.к. лежат в разных блоках Тогда не существует пути $x \leadsto y$, не проходящего через u Отсюда при удалении u x и y окажутся в разных компонентах Доказательство \Leftarrow

Пусть при удалении u количество компонент увеличилось

Возьмем x и y такие, что до удаления u они были в одной компоненте, а после удаления оказались в разных

Тогда любой путь из x в y проходил через u

Выберем какой-то путь из x в y и возьмем на нем вершины x' и y' – соседей вершины u

Тогда ребра a и b вершинно не двусвязные

Определение

Mocm — ребро, соединяющее вершины из разных компонент реберной двусвязности

Mocm — ребро, при удалении которого количество компонент связности увеличивается

1.2 Ориентированные графы

Определение

Oриентированный граф – множество вершин V и ребер $E \subset V \times V$ (разрешаем петли)

B ребре w = uv beg w = u, end w = v

 $\Pi y m b P$ — последовательность $u_o e_1 u_1 \dots e_k u_k$, где u_i — вершина, $e_i = u_{i-1} u_i$ — ребро

Теорема

Если G – ациклический ориентированный граф, то $\exists \phi: V \to \{1, \ldots, n\}: uv \in E \Rightarrow \phi(u) < \phi(v)$

(существует топологическая сортировка – т.е. способ пронумеровать вершины так, чтобы все ребра вели из вершин с меньшим номером в вершины с большим номером)

Лемма

G – ациклический ориентированный граф

Тогда существует вершина, из которой не выходит ребро

Доказательство теоремы

Докажем по индукции

Возьмем вершину, из которой не выходит ребро

Присвоим ей номер n

Удалим ее

Пронумеруем оставшиеся вершины

Определение

Cимметризация G – граф \overline{G} такой, что $uv \in G \Rightarrow uv, vu \in \overline{G}$

(Т.е. восприятие G как неориентированного графа (возможно, с петлями))

Kомпонента слабой связности – компонента связности в \overline{G}

Kомпонента сильной связности — компоненты, где существуют пути $u \leadsto v$ и $v \leadsto u$

Сильная связность – отношение эквивалентности

1.3 Деревья

Определение

Дерево – связный неориентированный граф без циклов

Теорема

G – граф, содержащий n вершин

Рассмотрим утверждения:

- 1. В нем n-1 ребро
- 2. В нем нет циклов
- 3. Он связен

Любые два утверждения влекут третье и задают дерево

Лемма

Пусть G – дерево, содержащее ≥ 2 вершины

Тогда ∃ вершина степени 1

(На самом деле их хотя бы две)

Доказательство

Возьмем вершину u_1 . Если у нее степень 1, ч.т.д.

Иначе пойдем в ее соседа u_2 . Если у него степень 1, ч.т.д.

Иначе пойдем в соседа u_3 , которого мы еще не посещали

Через не более n шагов мы придем в вершину u_i , все соседи которой уже посещены

Если u_i имеет более одного соседа, то мы нашли цикл. Отсюда u_i будет иметь степень 1

Доказательство 2

Рассмотрим самый длинный путь в графе

Предположим, что его конец имеет степень, не равную 1

Тогда либо мы можем продлить путь, либо мы нашли цикл

Отсюда концы пути имеют степени 1, ч.т.д.

Доказательство теоремы

$2+3 \Rightarrow 1$

Если n = 1 - очевидно

Если n > 1: Возьмем вершину степени 1

Удалим ее вместе с ребром. Докажем, что в оставшемся ациклическом связном графе n-2 ребра

$1+2 \Rightarrow 3$

Пусть в графе k компонент связности

Если в i компоненте n_i вершин, то в ней n_i-1 ребро

Тогда всего ребер в графе
$$\sum_{i=1}^{k} (n_i - 1) = n - k = n - 1$$

Отсюда k=1

$1+3 \Rightarrow 2$

Если n = 1 – очевидно

Если n>1 и есть вершина степени 1, удалим ее. Количество циклов это не уменьшает. Докажем, что оставшийся граф ацикличен Если n>1 и нет вершины степени 1, то из каждой вершины выходит как минимум 2 ребра. Тогда всего ребер не меньше $\frac{2*n}{2}=n$ противоречие

Лемма о рукопожатии

$$\sum_{u \in V} \deg u = \sum_{u \in V} \sum_{e \in E} [1, \text{if } e = uv \lor e = vu] = \sum_{e \in E} \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_{2} = \underbrace{\sum_{u \in V} [1, \text{if } e = uv \lor e = vu]}_$$

2|E|

Теорема

G – дерево $\Leftrightarrow \forall u, v \exists !$ простой путь $u \leadsto v$

Доказательство ⇒

Среди всех пар вершин, между которыми существует хотя бы два простых пути, выберем пару, для которой l_1+l_2 минимально

Тогда эти пути не имеют общих вершин, кроме концов (из минимальности)

Тогда эти два пути образуют цикл

Доказательство ←

Граф связен

Граф ацикличен – если это не так, то между вершинами в цикле есть два простых пути

Отсюда это дерево

Теорема

G – связен $\Leftrightarrow G$ связен и любое ребро – мост

Определение

G – граф

H – получен удалением из G вершин и/или ребер

H – $nodepa\phi$ G

Определение

G – граф

H – получен из G удалением вершин (и ребер, выходящих из них)

H – индуцированный подграф G

Определение G – граф

H – получен из G удалением ребер с сохранением связности

H – остовный подграф G

Теорема

У любого связного графа есть остовное дерево

Доказательство 1

Обойдем граф bfs-ом и получим дерево

Доказательство 2

Среди всех остовных подграфов возьмем граф с минимальным количеством ребер

Утверждается, что он будет деревом

Доказательство 3 (жадный алгоритм)

Будем удалять ребра, пока граф связен

Мы получим ацикличный связный граф

Научимся считать количество остовных деревьев

Рассмотрим матрицу $n \times n$:

На диагонали напишем степень вершины

В остальных клетках поставим -1, если вершины соединены ребром, иначе 0

Определение

$$Mampuu, a Kupxzoфа$$
 – матрица $n \times n$ такая, что $a_{ij} = \left\{ egin{array}{ll} \deg i & i=j \\ -1 & ij \in E \\ 0 \end{array} \right.$

Теорема

Пусть G – связный граф

Тогда количество остовных деревьев $G = \widehat{A_i j} \ \forall i,j$ – алгебраическое дополнение любого элемента матрицы A

Лемма 1

Рассмотрим матрицу инцидентности I_G

Это матрица $n \times m, m = |E|$

В ней каждой вершине соответствует строка, каждому ребру соответствует столбец

$$(I_G)_{ve} = \begin{cases} 1 & e = vu \lor e = uv \\ 0 & i = j \\ 1 & ij \in E \end{cases}$$

$$(I_G I_G^T)_{ij} = \begin{cases} \deg i & i = j \\ 1 & ij \in E \\ 0 & i = l \end{cases}$$

Ориентируем граф (для каждого ребра выберем направление). Теперь началу будет соответствовать 1, концу - -1

$$(\overrightarrow{I_G})_{ve} = \begin{cases} 1 & e = vu \\ -1 & e = uv \\ 0 \end{cases}$$
$$(\overrightarrow{I_G}\overrightarrow{I_G}^T)_{ij} = \begin{cases} \deg i & i = j \\ -1 & ij \in E \\ 0 \end{cases}$$

$$\overrightarrow{I_G}\overrightarrow{I_G}^T =$$
 матрица Кирхгофа

 Π емма 2 $\overrightarrow{I_G}$

Выберем n-1 ребро

Рассмотрим столбцы, соответствующие этим ребрам

Удалим строку, соответствующую вершине u (u любая)

Мы получили матрицу $n-1 \times n-1$

Обозначим ее как B

Если выбранные ребра образуют остовное дерево, то $|B| = \pm 1$, иначе |B| = 0

Доказательство

Рассмотрим граф T, образованный всеми вершинами и выбранными ребрами

Докажем, что если T не дерево, то |B|=0

 ${
m T.}$ к. это не дерево и в нем n-1 ребро, то граф не связен

Рассмотрим компоненту связности, не содержащую u

Сложим строки, соответствующие вершинам из этой компоненты

Утверждается, что сумма = 0

Отсюда матрица вырожденная

Докажем, что если T – дерево, то $|B|=\pm 1$

По лемме у дерева есть два листа

Тогда есть как минимум один лист, не равный u. Назовем его v_1

Переставим строчку, соответствующую v, на первое место

От этого определитель не изменится с точностью до знака

Т.к. v_1 – лист, то в соответствующей строчке будет ровно одно число, отличное от 0. Переставим столбец в начало матрицы

От этого определитель не изменится с точностью до знака

Рассмотрим дерево T_2 , полученное удалением v_1 из T

В нем есть как минимум один лист, не равный u. Назовем его v_2

Переставим строчку, соответствующую v_2 , на второе место

Т.к. v_2 – лист, то в соответствующей строчке (исключая первый столбец) будет ровно одно число, отличное от 0. Переставим столбец на второе место

Повторим действия

В итоге мы получили нижнедиагональную матрицу, на диагонали которой ±1

Отсюда определитель будет ± 1

Лемма 3 (Формула Коши-Бине)

Пусть даны матрицы $r \times s$ и $s \times r, r \leq s$

пусть даны матрицы
$$r \times s$$
 и $s \times r, r \leq s$
 $\det AB = \sum_{1 \leq i_1 < \ldots < i_r \leq s} \det A^{i_1 \ldots i_r} \det B_{i_1 \ldots i_r}, A^{i_1 \ldots i_r} - \text{ оставили только столб-}$
 цы $i_1 \ldots i_r, B_{i_1 \ldots i_r}$ – оставили только строки $i_1 \ldots i_r$

$$\widehat{A_ii} = \det(\overrightarrow{I_{G}_{6e3\ i\ ctpoku}}\overrightarrow{I_{G}_{6e3\ i\ ctpoku}}\overrightarrow{I_{G}_{6e3\ i\ ctpoku}}\overrightarrow{I_{G}_{6e3\ i\ ctpoku}}\overrightarrow{I_{G}_{6e3\ i\ ctpoku}})$$
 Т.к. $m = |E| \geq n-1$, применим лемму 3:
$$\widehat{A_ij} = \det(\overrightarrow{I_{G}_{6e3\ i\ ctpoku}}\overrightarrow{I_{G}_{6e3\ i\ ctpoku}}\overrightarrow{I_{G}_{6e3\ i\ ctpoku}}\overrightarrow{I_{G}_{6e3\ i\ ctpoku}}) = \sum_{1 \leq i_1 < \ldots < i_{n-1} \leq m} \det(\overrightarrow{I_{G}_{6e3\ i\ ctpoku}}\det\overrightarrow{I_{G}_{1i\ldots i_{n-1}}}\det\overrightarrow{I_{G}_{1i\ldots i_{n-1}}}$$
 Отсюда $\widehat{A_ij} =$ кол-во остовных деревьев

Отсюда $\widehat{A_ij}=$ кол-во остовных деревьев

1.4 Ориентированные деревья

Определение

Пусть G – ориентированный граф

Подвешенное корневое дерево – ориентированное дерево, в котором из каждой вершины можно добраться в корень

Обратное подвешенное корневое дерево – ориентированное дерево, в котором из корня можно добраться в каждую вершину

Теорема Тутта

$${\it Лапласиан}$$
 графа G – матрица $(L(G))_{ij}=\left\{egin{array}{ll} \deg^-i & i=j \\ -1 & ij\in E \end{array}\right.$ – позволяет 0

искать исходящиие остовные корневые деревь

(Для входящих \deg^+ и $ji \in E$)

Количество остовных корневых деревьев с корнем i равно $\widehat{L}(\widehat{G})_{ii}$

Определение

Пусть
$$f:\{1,\ldots,n\} \to \{1,\ldots,n\}$$

Функциональный граф – граф $G:(i,f(i))\in E$

В функциональном графе каждая компонента имеет вид цикла, в которого входят деревья

Всего существует n^n функциональных графов

Число функциональных подграфов = $\prod \deg^- u$

1.5 Обход графа

Определение

Эйлеров путь/цикл – путь/цикл, проходящий по каждому ребру в графе ровно один раз

 Γ амильтонов путь/цикл – путь/цикл, проходящий по каждой вершине в графе ровно один раз

Если в графе существует Эйлеров цикл, то граф называется Эйлеровым (или граф без ребер)

Теорема

G – Эйлеров \Leftrightarrow Все его ребра лежат в одной компоненте связности и $\forall v \deg v -$ четное

Доказательство \Rightarrow

Заметим, что в каждую вершину мы вошли и вышли

Остюда степени четные и компонента связности одна

Доказательство ←

Н.у.о. будем считать, что в финальном графе одна компонента связности Докажем индукцией по числу ребер

Если ребер 0, доказано

Пусть ребер > 0

//todo

Теорема

G содержит эйлеров путь \Leftrightarrow Все его ребра лежат в одной компоненте связности и в графе не более двух вершин нечетной степени

Доказательство

Если она одна, то начнем обход в ней

Если их две, то соединим их фиктивной вершиной, найдем эйлеров цикл, после чего удалим ее

Теорема

Ориентированный граф содержит эйлеров цикл 👄 граф слабо связен и $\forall v \deg^-(v) = \deg^+(v)$

Теорема

Ориентированный граф содержит эйлеров путь граф слабо связен и $\deg^-(v) = \deg^+(v)$ для не более чем двух вершин $a, b, a \deg^+(a) =$ $\deg^{-}(a) + 1 \text{ u } \deg^{+}(b) = \deg^{-}(b) - 1$

Задача

Покрыть неориентированный граф минимальным количеством реберно простых путей, чтобы все ребра были покрыты

простых путей, чтобы все ребра были покрыты Всего их
$$\sum_{C\ -\ \text{к. cb. c ребрами}G} \max(\frac{\text{odd}(C)}{2},1), \text{odd}(C) - \text{кол-во вершин нечетной степени в }C$$

Покрыть ориентированный граф минимальным количеством реберно про-

стых путей, чтобы все ребра были покрыты

Всего их
$$\sum_{C \text{--к. cb. c ребрами}G} \max(\sum_{u \in C, \deg^+ u < \deg^- u} (\deg^- u - \deg^+ u), 1)$$

BEST-Теорема

В слабо связном ориентированном эйлеровом графе число корневых деревьев всех вершин совпадает, а число эйлеровых циклов

$$E = A \prod_{u \in V} (\deg^- u - 1)!$$

1.6 Укладки графов

Утверждение

Компактные многообразия эквивалентны сфере «с ручками»

Пример: сфера с одной ручкой – тор, с двумя – «крендель»

Определение

Ориентируемое многообразие – поверхность с ручками

Задается числом - количество ручек

Определение

Укладка графа на поверхность A – инъективное отображение точек графа в точки на поверхности и ребер – в непересекающиеся кривые

$$V:V_G o A$$
 – инъекция

$$e: E_G \to C_A$$

$$\phi \in C_A$$
 – путь

$$\phi: [0,1] \to A, \phi(0) = \text{beg}(e), \phi(1) = \text{end}(e)$$

$$\forall \phi_1, \phi_2 \ \phi_1[0,1] \cap \phi_2[0,1] = 0$$

Теорема

Любой граф можно вложить в \mathbb{R}^3

Доказательство

Вложим граф как-то с пересечениями

Для каждого пересечения искривим одно из ребер, чтобы убрать пересечение

Доказательство 2

Воспользуемся вероятностным методом: случайно расположим точки, после чего проведем ребра-отрезки

Вероятность их пересечения равна 0

Определение

Два графа гомеоморфны, если можно превратить G_1 в G_2 следующими

операциями

(кратные ребра разрешены)

- 1. Удаляем ребро uv, добавляем вершину x и ребра ux, xv
- 2. Берем вершину x степени 2 с соседями u, v Удалим вершину x и добавим ребро uv

Лемма 1

G можно уложить на $\mathbb{R}^2 \Leftrightarrow G$ можно уложить на сфере

Доказательство

Нарисуем плоскость

Положим на нее сферу

Точка соприкосновения сферы и плоскости =: южный полюс S

Противоположная сторона сферы =: северный полюс N

Возьмем точку x на плоскости

Построим отрезок xN

Точка пересечения отрезка со сферой x' – существует и единственная Т.о. мы построили непрерывную биекцию между сферой $\setminus \{N\}$ и плоскостью

Теперь положим сферу на плоскость так, чтобы северный полюс не лежал на ребре и не был вершиной

Тогда биекция ребра переводит в кривые-ребра, а вершины – в точки-вершины

Определение

Грани – области, полученные разрезанием поверхности по ребрам

Теорема (Формула Эйлера)

В связном графе на плоскости V + F - E = 2

V – число вершин

E – число ребер

F – число граней

Доказательство

Будем рисовать наш граф постепенно

При добавлении ребра количество ребер увеличивается на 1(E+=1) и число граней увеличивается на 1(F+=1)

При добавлении вершины число ребер увеличивается на 1(E+=1) и число вершин увеличивается на 1(V+=1)

Тогда
$$V + F - E = 2$$

Теорема

 K_5 нельзя уложить на плоскости

Доказательство

V = 5

E = 10

Отсюда F=7

С точки зрения теории графов грань – это цикл

Цикл имеет длину хотя бы 3

Пройдем по каждому циклу, соответствующему грани

Тогда суммарно мы пройдем хотя бы по 21 ребру

С другой стороны, ребро лежит на границе двух граней

Значит по каждому ребру мы должны пройти по 2 раза

Т.е. мы должны пройти суммарно по 20 ребрам

Теорема 2

 $K_{3,3}$ нельзя уложить на плоскости

Доказательство

В двудольном графе цикл имеет длину хотя бы 4

Применяем тот же трюк

Теорема

В произвольном графе $G \ 3V - 6 \ge E$

В произвольном двудольном графе $G\ 2V-4\geq E$

Лемма

 G_1, G_2 гомеоморфны

 G_1 можно уложить $\Leftrightarrow G_2$ можно уложить

Лемма

G – подграф H

H можно уложить $\Rightarrow G$ можно уложить

Лемма

G можно уложить на плоскости и u – вершина G, то G можно уложить так, чтобы u была инцидентна (смежна) внешней грани

Доказательство

Переложим граф на плоскости

Переложим его на сферу

Повернем сферу так, чтобы грань, инцидентная u, содержала северный полюс

Переложим граф на плоскость

Лемма

G можно уложить на плоскости и uv – ребро G, то G можно уложить так, чтобы u было инцидентно(смежна) внешней грани

Определение

G – планарный, если его можно уложить на плоскость

Лемма

Если все компоненты реберной двусвязности G планарны, то G планарен

Доказательство

Докажем по индукции

База (n=1) – очевидно

Переход: Удалим мост *uv*

Тогда в каждой компоненте связности $\leq n-1$ компонента реберной двусвязности

Уложим их так, чтобы u и v оказались инцидентны внейшней грани Проведем ребро uv

Лемма

Если все компоненты вершинной двусвязности G планарны, то G планарен

Доказательство

Докажем по индукции

База (n=1) – очевидно

Переход: Разобьем граф по какой-либо точке сочленения v на два графа В каждой будет своя копия вершины $v-v_i$ Уложим их так, чтобы v_i лежали во внешней грани

Теперь удалим все v_i , кроме v_1 и «притянем» все ребра из v_i к v_1

Теорема

Gможно уложить на $\mathbb{R}^2 \Leftrightarrow G$ не содержит подграфов, гомеоморфных K_5 и $K_{3,3}$

Доказательство ←

Очевидно

Доказательство ⇒

1.7 Раскраска

Определение

$$c:V \to \{1,2,\ldots,k\}$$
 – раскраска

Раскраска *правильная*, если $\forall uv \ c(u) \neq c(v)$

По умолчанию будем говорить о правильный раскрасках

Определение

^{*}слишком сложно описать доказательство, просто поверьте*

G раскрашиваемый в k цветов, если существует правильная раскраска в k пветов

k = 1 – граф изолированный

k=2 – граф двудольный

Теорема

Граф двудольный ⇔ любой цикл четный

Определение

Пусть есть граф G

Хроматическая функция $p_G(t)$ – число способов раскрасить G в t цветов (можно использовать не все цвета)

$$p_{K_n}(t) = t(t-1)\dots(t-n+1) = t^n = \frac{t!}{(t-n)!}$$

Определение

G/uv – стягивание графа по uv

Стягивание означает, что мы заменяем вершины и и одной вершиной Если цвета u и v равны, то стягивание не влияет на раскраски

Лемма

Пусть uv – ребро в G

$$p_G(t) = p_{G \setminus \{uv\}}(t) - p_{G/uv}(t)$$

Теорема о хроматическом многочлене

Пусть G – неориентированный граф с n вершинами, m ребрами, k компонентами связности

Тогда $p_G(t) = t^n - mt^{n-1} + p_{n-2}t^{n-2} - p_{n-3}t^{n-3} + \ldots \pm p_k t^k, p_i > 0$ (коэффициенты знакочередуются)

Доказательство

Индукция по числу вершин и ребер

Если
$$n = n, m = 0$$
, то $p_G(t) = t^n$

Если m > 0

Pассмотрим ребро uv

$$p_G(t) = p_{G \setminus uv}(t) - p_{G/uv}(t)$$

Если uv – не мост

$$p_{G\setminus uv}(t)=t^n-(m-1)t^{n-1}+q_{n-2}t^{n-2}-\ldots\pm q_kt^k$$
 $-p_{G/uv}(t)=-t^{n-1}+r_{n-2}t^{n-2}+\ldots\pm r_kt^k$ Отсюда $p_G(t)=t^n-mt^{n-1}+p_{n-2}t^{n-2}-\ldots\pm p_kt^k, p_i>0$

Отсюда
$$p_G(t) = t^n - mt^{n-1} + p_{n-2}t^{n-2} - \ldots \pm p_k t^k, p_i > 0$$

Если u_v – мост, то $q_k=0$, но это ничего не меняет

Теорема

$$G$$
 – дерево $\Leftrightarrow p_G(t) = t(t-1)^{n-1}$

Доказательство ←

$$p_G(t) = t^n - (n-1)t^{n-1} + \dots + t$$

Отсюда n = n, m = n - 1, k = 1 – дерево

Доказательство ⇒

Возьмем в графе лист а и удалим его

$$p_{\{v\}} = t$$

$$p_{G\setminus a}(t) = t(t-1)^{n-2}$$

$$p_G(t) = (t-1)p_{G\setminus a}(t)$$

Лемма

В планарном графе $\exists u : \deg u \leq 5$

Доказательство

$$E \le 3v - 6$$

Пусть это не так

Тогда $6V \le 2E \le 6V - 12$

Teopeмa (super light)

Любой планарный граф можно раскрасить в 6 цветов

Доказательство

Рассмотрим вершину степени не более 5

Удалим ее из графа

Планарность не сломается

Остаток раскрасим в 6 цветов

Потом добавим вершину обратно вершину

Для нее всегда можно выбрать какой-то цвет

Теорема Хивуда (medium)

Любой планарный граф можно раскрасить в 5 цветов

Доказательство

Рассмотрим вершину степени не более 5

Если степень меньше 5, применим трюк из прошлого доказательства

Если степень ровно 5, удалим ее

Раскрасим граф в 5 цветов

Вернем ее

Если есть 2 соседа одного цвета, то мы победили

Пусть все соседи разных цветов

Пусть по часовой стрелке расположены соседи цветов 1, 2, 3, 4, 5

Возьмем соседа цвета 1, запустим DFS по вершинам цвета 1 и 3

Если мы не дошли до соседа цвета 3, то в дереве DFS'а поменяем всета

1 и 3 местами

Тогда нашу вершину покрасим в цвет 1

Пусть мы дошли до соседа цвета 3 (т.е. нашли цикл)

Тогда повторим аналогичные действия с вершинами цвета 2 и 4

Из планарности цикл в обходе невозможен

Teopeмa (hard)

Любой планарный граф можно раскрасить в 4 цвета

Доказательство слишком сложное

Определение

Регулярный граф – граф, где все степени одинаковые

 $\deg G = d$

Лемма

Пусть G – граф, $\deg v \leq d, \exists u : \deg u < d$

Тогда его можно раскрасить в d цветов

Доказательство

3апустим из u DFS

Построим остовное дерево с корнем в u

Будем раскрашивать вершины с листьев к корню

Вершину будем красить, если все ее дети уже покрашены

У каждой вершины всегда есть один непокрашенный сосед – ее родитель

Тогда мы сможем покрасить дерево

Теорема (Брукс)

Пусть G – связный граф

 $\deg v \leq d$

 $G \neq K_n$

 $G \neq C_{2n+1}$ (цикл)

Тогда \exists раскраска G в d цветов

Доказательство

Какая-то глина

1.8 Паросочетания в произвольных графах

Определение

 $I \subset V : \forall u, v \in I \ uv \notin E$ – независимое множество(антиклика)

 $\alpha(G)$ – максимальный размер независимого множества в графе

Определение

 $C \subset V : \forall uv \in E \ u \in C \lor v \in C$ – вершинное покрытие

 $\beta(G)$ – минимальный размер вершинного покрытия

Теорема

$$\alpha(G) + \beta(G) = n$$

Лемма

A – вершинное покрытие $\Leftrightarrow V \setminus A$ – независимое множество

Доказательство

Для каждого ребра верно, что один его конец лежит в A

Тогда не существует такого ребра uv, что $u, v \notin A$

Тогда $V \setminus A$ для каждого ребра содержит не более одного его конца

Определение

 $\varPi a pocoue manue-M\subset E: \forall\, e,f\in M\,\,e,f\,$ не имеют общих концов

lpha'(G) – размер максимального паросочетания в G

Определение

Реберное покрытие – $F \subset E : \forall u \exists e \in F : e = uv$

 $\beta'(G)$ – размер минимального реберного покрытия

Теорема

$$\alpha'(G) + \beta(G) = n$$

Определение

Будем рассматривать связные графы

Рассмотрим паросочетание размера $\alpha'(G)$

Для каждой изолированной вершины добавим свое ребро

Мы получим реберное покрытие

$$\beta'(G) \le \alpha'(G) + n - 2\alpha'(G)$$

$$\alpha'(G) + \beta'(G) \le n$$

Теперь возьмем минимальное реберное покрытие

Теперь выберем в этом графе максимальное паросочетание (пусть его размер – k)

$$k \leq \alpha'(G)$$

Заметим, что для любого ребра в покрытии паросочетанием покрыта ровно один его конец:

Если оба конца покрыты, то это ребро не может лежать в минимальном покрытии

Если ни один конец не покрыт, то паросочетание не максимальное

Тога
$$\beta'(G) = n - 2k + k$$

$$n \le \alpha'(G) + \beta'(G)$$

Определение

Доминирующее множество $D \subset V : \forall u \ u \in D \lor \exists v \in D : uv \in E$

 $\gamma(G)$ – размер минимального доминирующего множества

Определение

$$K \wedge u \kappa a - C \subset V : \forall u, v \in C : uv \in E$$

 $\omega(G)$ – максимальная клика

Определение

Паросочетание совершенное, если оно покрывает все вершины

Определение

Пусть зафиксировано множество ребер M

Путь чередующийся, если в нем чередуются ребра из M и не из M

Цикл чередующийся, если в нем чередуются ребра из M и не из M

Чередующийся путь dononняющий, если его крайние ребра не в M

Чередующийся путь c балансu ровно одно его крайнее ребро не в M

Чередующийся путь ahmudononhяющий, если его крайние ребра в M

Определение

M – максимальное \Leftrightarrow не существует дополняющих путей

$$|M| = \alpha'(G)$$

Доказательство

 $M_1 \oplus M_2$ — множество ребер, которые входят ровно в одно паросочетание Компоненты связности в получившемся графе — циклы и пути, дополняющие для M_1, M_2 или сбалансированные

Докажем ⇒

Пусть M – максимальный

Возьмем $M \oplus M_2$

В этом графе нет дополняющих путей: если бы они были, то M был бы не максимальным

Докажем ←

Пусть не существует дополняющих путей

Возьмем M_{max}

 $|M_{max}| \ge |M|$

Т.к. нет дополняющих путей, то в $M \oplus M_{max}$ есть только циклы, сбалансированные и антидополняющие пути

В каждом цикле/пути ребер из M не меньше, чем из $|M_{max}|$

Тогда $|M| \geq |M_{max}|$

Тогда $|M| = |M_{max}|$

Отсюда $|M_{max}| = |M|$

Определение

 $T\subset V$ — множество Татта, если $\mathrm{odd}(G\setminus T)>|T|$, где odd — количество компонент нечетного размера

Теорема Татта

G содержит совершенное паросочетание $\Leftrightarrow \forall S \subset V \ \mathrm{odd}(G \setminus S) \leq |S|$ (граф содержит множество Татта)

Доказательство \Rightarrow

Пусть это не так

Пусть в графе содержится множество Татта T, и есть совершенное паросочетание

Удалим его из графа

Тогда у нас получился $\operatorname{odd}(G\setminus T)$ компонент с нечетным количеством вершин

Внутри них нет совершенного паросочетания

Тогда в каждой компоненте существует вершина, которая в совершенном паросочетании связана с вершиной из T

Но таких вершин больше, чем |T|

Отсюда множества Татта быть не может

Лемма

Рассмотрим $uv \notin E$

 $odd(G \cup \{uv\}) \le odd(G)$

Лемма 2

G – не содержит множество Татта, $uv \notin E$

Тогда $G \cup \{uv\}$ не содержит множество Татта

Доказательство

Рассмотрим $S \in V$

$$\operatorname{odd}((G \cup \{uv\}) \setminus S) = \operatorname{odd}(\left[\begin{array}{c} G \setminus S \\ G \setminus S \cup \{uv\} \end{array} \right]) \le \operatorname{odd}(G \setminus S)$$

Доказательство ←

Пусть в графе G не содержится множество Татта и не содержится совершенного паросочетания

Среди всех таких графов выберем G с минимальным числом ребер, а затем с максимальным числом вершин

G содержит четное число вершин – иначе \varnothing – множество Татта

Тогда $G \neq K_n$ (иначе бы в нем содержалось совершенное паросочетание)

$$U := \{v : \deg v = n - 1\}, U \neq V$$

Лемма 3

Компоненты связности $G \setminus U$ – полные графы

Рассмотрим эти компоненты

В четных компонентах выберем паросочетания

В нечетных выберем паросочетания, оставив одну вершину

Т.к. множества Татта нет, то $|U| \ge \operatorname{odd}(G \setminus U)$

Но вершины U связаны со всеми

Соединим вершины U с оставшимися вершинами из компонент в паро-

сочетание

Возможно, в U остались изолированные вершины

Соединим из в паросочетание (это возможно, т.к. в графе четное число вершин)

Т.о. мы построили совершенное паросочетание – противоречие

Доказательство леммы 3

В графе $G \setminus U$ каждая вершина хотя бы с какой-то не связана

Предположим, что в какой-то компоненте $G \setminus U$ есть компонента, не являющаяся полным графом

Тогда в ней хотя бы два ребра

Выберем эти ребра $xy, xz : zy \notin E$

Возьмем $w: xw \notin E$

Вспомним, что G – граф с максимальным числом ребер

Тогда при добавлении ребра в G должно появиться множество Татта (невозможно по леммам) или идеальное паросочетание

Тогда при добавлении yz в графе должно появиться идеальное паросочетание

Назовем это паросочетание $M_1 \ (yz \in M_1)$

Уберем yz и добавим xw

Назовем это паросочетание M_2 ($xw \in M_2$)

 $M_1 \oplus M_2$

 $yz, xw \in M_1 \oplus M_2$

Заметим, что в $M_1 \oplus M_2$ нет путей: если есть путь, то его конец лежит только в одном паросочетании, но покрыты все вершины

Тогда компоненты связности – циклы

1. yz, xw — в разных компонентах

Тогда возьмем из компоненты yz ребра M_2 , а из компоненты xw – ребра M_1

Из других компонент возьмем или ребра M_1 , или ребра M_2 Мы получили совершенное паросочетание – противоречие

2. yz, xw — в одной компоненте

Утвержается, что можно взять в этой компоненте ребра так, что при добавлении ребра xz или xy возникает паросочетание – противоречие

Определение

 $\operatorname{def} G = n - 2\alpha'(G)$ – дефицит G – количество вершин, не покрытых

максимальным паросочетанием

Теорема (Формула Бержа)

$$\operatorname{def} G = \max_{S \subset V} (\operatorname{odd}(G \setminus S) - |S|)$$

Замечание

$$def G \ge odd(G) - |\varnothing| \ge 0$$
//todo 1:22

1.9 Паросочетания №2

Определение

G – фактор-критический, если $\forall\,u\,\,G\setminus u$ содержит совершенное паросочетание

$$\operatorname{def} G = 1$$

$$\alpha'(G) = \frac{n-1}{2}$$

$$\forall u \in V \ \alpha'(G \setminus u) = \alpha'(G)$$

Лемма Татта

$$\forall u \in V \ \alpha'(G \setminus u) = \alpha'(G) \Rightarrow G$$
 – фактор-критический

Лемма

Пусть
$$\forall u \in V \ \alpha'(S \setminus u)$$

$$S \neq \varnothing \Rightarrow S$$
 – не множество Татта

Доказательство

Рассмотрим $v \in S$

$$G' = G \setminus v$$

$$S' = S \setminus v$$

$$\operatorname{def} G' \ge \operatorname{odd}(G' \setminus S') - |S'| = \operatorname{odd}(G \setminus S) - |S| + 1 = \operatorname{def} G + 1$$

Но дефицит не может увеличиться

Отсюда $S = \emptyset$

Отсюда def = 1

Отсюда G – фактор-критический

Декомпозиция Эдмондса-Галлаи

 $D = \{v : \exists M - \text{максимальное паросочетание}, M - \text{не покрывает } v\}$

A – соседи D

$$C = V \setminus (A \cup D)$$

Теорема

Пусть M – совершенное паросочетание в V

Тогда M покрывает все вершины C, причем вершины из C находятся в паросочетании с вершинами C

В каждой компоненте связности D покрыты все вершины, кроме одной (которая единственная может быть связана с вершиной из A)

M покрывает все вершины из множества A

Компоненты в D – фактор-критические

А – множество Татта

Лемма

 $a \in A$

Удалим ее

 $D(G \setminus a) = D(G)$

 $A(G \setminus a) = A(G) \setminus a$

 $C(G \setminus a) = C(G)$

 $\alpha(G \setminus a) = \alpha'(G) - 1$

Доказательство

//todo

1.10 Факторизация

Определение

Регулярный остов степени k - k-фактор графа

0-фактор – изолированные вершины

1-фактор – совершенное паросочетание

2-фактор – разбиение на циклы

Определение

f-фактор, где f-вектор длины n

Остов, где $\deg i = f_i$

Алгоритм

Заменим i-ую вершину на $\deg i$ вершин

Теперь соединим эти вершины, чтобы при конденсации получился исходный граф (степени каждой вершины должны быть 1)

Найдем в полученном графе паросочетания

Далее для каждой вершины создадим $\deg i - d_i$ вершин и соединим каждую из них со всеми вершинами i из предыдущего шага

Теперь найдем совершенное паросочетание

Удалим вершины из предыдущего шага и выполним конденсацию

2 Матроиды

Определение

Пусть есть множество X – носитель

Рассмотрим подмножества X

Пусть «хорошие» подмножества – независимые

«плохие» – зависимые

Множество хороших подмножеств $I \subset 2^X$

I должно удовлетворять следующим свойствам:

- 1. $\varnothing \in I$ аксиома нетривиальности
- 2. $A \in I, B \subset A \Rightarrow B \in I$

Такая система называется предматроидом или Inheritance system Но в такой системе не будет работать жадный алгоритм

Добавим еще одну аксиому:

 $A \in I, B \in I, |A| > |B|$

Тогда $\exists \, x \in A \setminus B : B \cup x \in I$ – аксиома замены

Пример 1 (матричный матроид)

 F^m, F – поле

I – множества линейно независимых векторов

Пример 2 (графовый матроид)

Рассмотрим G – неориентированный граф $\langle V, E \rangle$

X = E, I – ациклическое множество

Докажем аксиому замены

|V|=n, |E|=m Пусть есть множества A и B, |A|>|B|

Рассмотрим компоненты связности в графе G_A и G_B

Количество компонент связности $C_A = n - |A|, C_B = n - |B|$

 $C_A < C_B$

Значит в A существует компонента связности, содержащая вершины из двух компонент в B

Тогда в A есть ребро, соединяющее разные компоненты из B

Утверждение

Рассмотрим $X_1, I_1 \subset 2^{X_1}$

 $X_2, I_2 \subset 2^{X_2}$

Существует биекция $\phi: X_1 \to X_2$

 $A \in I_1 \Leftrightarrow \phi(A) \in I_2$

Тогда пусть M – матроид X_1, I_1

N — система подмножеств X_2, I_2 и существует изоморфизм N и M Тогда N — матроид

Лемма

Графовый матроид изоморфен матричному матроиду

Доказательство

Рассмотрим матрицу инцидентности

Представим ее как множество векторов из 0 и 1 (сложение по модулю 2)

Докажем, что подграф ациклический \Leftrightarrow множество векторов линейно независимое

Если A содержит цикл, то сложение(xor) векторов дает 0

Если A не содержит цикл, то это лес. Там есть лист. Тогда хог не даст 0

Пример 3 (матроид паросочетаний) Рассмотрим G – двудольный граф

X, Y – вершины двух долей

E – множество ребер

 Π усть X – носитель

I – подмножество X, которое может быть покрыто одним паросочетанием

Докажем свойство 3

Пусть A покрывается паросочетанием M_A

B – паросочетанием M_B

Рассмотрим $M_A \oplus M_B$

В таком графе пути будут иметь вид ab...aba(b), где a – ребро из $A,\,b$ – ребро из B

Т.к. $|M_A| > |M_B|$, то найдется путь, начинающийся и заканчивающийся на a

Назовем его P

В $M_B \oplus P$ найдется изолированная вершина

Добавим ее в B

Пример 4 (универсальный матроид)

 $U_{n,k}$

$$X = \{1, \dots, n\}$$

I – подмножества X не более k

Пример 5 (разноцветный матроид)

X – множество пар $\langle i, c_i \rangle, i$ – предмет, c_i – цвет $c_i \in C$

I – множества предметов различных цветов

Определение

$$A \subset X$$

$$base(A) = B : B \in I, B \subset A, |B|$$
 – максимально

В матричном матроиде: базис

В графовом матроиде: остовный лес

base(X) – база матроида

Лемма

$$A \subset X$$

B – максимальное по включению подмножество $A, B \in I$

Тогда B – база A

Доказательство

Пусть есть B' – база A

Если |D|>|B|, то по аксиоме 3 $\exists x:x\in D\setminus B, B\cup x\in I$ – что невозможно

Из данной леммы следует, что мы можем применять жадные алгоритмы

Определение

Взвешенный матроид – пара из матроида и $w:X \to \mathbb{R}$ – весовая функция

$$w(A) = \sum_{x \in A} w(X)$$

Как найти базу минимального веса?

Алгоритм (Жадный, Радо-Эдмондса)

Лемма

Пусть A_k – независимое множество минимального веса мощности k y – элемент минимального веса такой, что $A_k \cup y \in I, y \not\in A_k$

Тогда $A_{k+1} := A_k \cup y$

Доказательство

Рассмотрим A_k и A_{k+1}

По аксиоме замены $z = A_{k+1} \setminus A_k$

Если w(y) < w(z), то $w(A_k \cup y) < w(A_{k+1})$

Тогда A_{k+1} – не минимального веса

Доказательство корректности алгоритма

По индукции

2.1Аксиоматизация матроида

Определение

Ранговая функция: $r: 2^X \to \mathbb{Z}_+$

$$r(A) = \max\{|B| : B \subset A, B \in I\}$$

$$r(M) = r(X)$$

В матричном матроиде: ранг - классический

B графовом матроиде:

цикл - классический

rg = n - k – количество вершин - количство компонент связности

B циклическом матроиде: $\operatorname{rg}(A) = \min(k, |A|)$

цикл – множество мощности k+1

Теорема (О базах)

B – базы M

1.
$$B_1, B_2 \in B, B_1 \subset B_2 \Rightarrow B_1 = B_2$$

2.
$$B_1, B_2 \in B$$

Тогда
$$\forall x \in B_1 \setminus B_2 \ \exists y \in B_2 \setminus B_1 : B_1 \setminus x \cup y \in B$$

Теорема (аксиоматизация базами)

$$X, B \subset 2^X, B \neq \emptyset$$

Если для B выполнена предыдущая теорема, то B – база некоторого матроида

Теорема (о рангах) $r: 2^X \to \mathbb{Z}_+$ для матроида M

1.
$$0 \le r(A) \le |A|$$

2.
$$A \subset B \Rightarrow \operatorname{rg}(A) \leq \operatorname{rg}(B)$$

3.
$$\operatorname{rg}(A \cup B) + \operatorname{rg}(A \cap B) \le \operatorname{rg}(A) + \operatorname{rg}(B)$$

Лемма

Пусть $A \in I$

Тогда \exists база $B:A\subset B$

Теорема (аксиоматизация рангами)

Если $r:2^{X}\to\mathbb{Z}_{+}$ и выполнены аксиомы из предыдущей теоремы, то rранговая функция некоторого матроида

Теорема о циклах

Cyc – множество циклов матроида M

1.
$$C_1, C_2 \in Cyc, C_1 \subset C_2 \Rightarrow C_1 = C_2$$

2.
$$C_1, C_2 \in Cyc, C_1 \neq C_2$$

 $\forall p \in C_1 \cap C_2 \exists C_3 \in Cyc : C_3 \subset (C_1 \cup C_2) \setminus p$

Доказательство

$$r((C_1 \cup C_2) \setminus p) \le r(C_1 \cup C_2) \le r(C_1) + r(C_2) - r(C_1 \cap C_2) = |C_1| - 1 + |C_2| - 1 - |C_1 \cap C_2| = |C_1 \cup C_2| - 2 < |(C_1 \cup C_2) \setminus p|$$

Лемма

$$A \not\in I \Rightarrow \exists C \in Cyc : C \subset A$$

Лемма

B – база матроида M

$$p \in X \setminus B$$

Тогда $\exists \, ! C \subset B \cup p, C \in Cyc$

Доказательство

Существование очевидно

Пусть $C_1, C_2 \subset B \cup p$

 $p \in C_1 \cap C_2$

Тогда $\exists \, C : C \subset (C_1 \cup C_2) \setminus p \subset B$ – противоречие

Теорема о базах усиленная

Пусть B – базы матроида M

 $B_1, B_2 \in B$

Тогда
 $\forall\,y\in B_2\setminus B_1\;\exists\,x\in B_1\setminus B_2:B_1\cup y\setminus x\in B$

Доказательство

Возьмем y и добавим в B_2

 $B_1 \cup y$ содержит единственный цикл C

$$\exists x \in (B_1 \setminus B_2) \cap C$$

Тогда $B_1 \cup y \setminus x$ не содержит циклов \Rightarrow база

Определение

 $\langle A \rangle = A \cup \{p : \operatorname{rg}(A \cup p) = \operatorname{rg}(A)\}$ // Доказательства конспектировать лень