Lecture 11

Sunday, February 26, 2017

• Part 1: $H < \pi_1(X, x_0)$, Construct a Covering Space $P_H: (\widetilde{X}_H, \widetilde{x}_H) \longrightarrow (X, x_0)$ Such that $P_{H*}(\pi_1(\widetilde{X}_H, \widetilde{x}_0)) = H$

. Part 2 Symmetries of a Covering Spale (Deck trans. group)

Recall Define an action of H on (\tilde{X}, \tilde{z}_0) where $p: (\tilde{X}, \tilde{z}_0) \longrightarrow (X, z_0)$ $s.t. p(h.\tilde{z}) = p(\tilde{z})$ i.e. $h: p^{-1}(z) \longrightarrow p^{-1}(z)$ for all $z \in X$. Cover

$$H \Rightarrow h = [f] , \tilde{\chi} = [\Upsilon] \implies h \cdot \tilde{\chi} = [f \cdot \Upsilon]$$

$$P(\tilde{\chi}) = \Upsilon(I) = f \cdot \Upsilon(I) = P(h \cdot \tilde{\chi})$$

Equivalunc relation: $\tilde{\alpha}_1 \sim \tilde{\alpha}_2$ if for a hell we have $h\tilde{\alpha}_1 = \tilde{\alpha}_2$. Let $\tilde{X}_{H} = \tilde{X}_{A}$, $\tilde{x}_{H} = [\tilde{x}_{o}]$, $\tilde{y}_{H} = [\tilde{x}_{o}]$

1) PH is a Covering Space map. For any x & X, Let U be a path connected open

 $nbd S.t Tu(U) \longrightarrow Tu(X)$ is trivial.

 $\Rightarrow P^{-1}(U) = \coprod_{\Upsilon(\omega) = \varkappa_{\emptyset}} U_{\Upsilon}$

If for $[Y_1, \eta_1] \in U_{[Y_1]}$ and $[Y_2, \eta_2] \in U_{[Y_2]}$ we have $[Y_1, \eta_1] \sim [Y_2, \eta_2]$

$$\Rightarrow \left[\Upsilon_{1}.\Upsilon_{1}.\widetilde{\Upsilon}_{2}.\widetilde{\Upsilon}_{2}\right] \in \mathbb{H} \Rightarrow \left[\Upsilon_{1}.\widetilde{\Upsilon}_{2}\right] \in \mathbb{H} \Rightarrow \left[\Upsilon_{1}\right] \sim \left[\Upsilon_{2}\right]$$
and
$$\left[\Upsilon_{1}.\Upsilon_{1}\right] \sim \left[\Upsilon_{2}.\Upsilon_{1}\right]$$

=> equivalenc relation identifies $U_{[r_1]}$ and $U_{[r_2]}$ iff $[Y_1] \sim [Y_2] \Rightarrow P_{\#}$ is Covering map.

 $\Rightarrow 9: (\tilde{X}, \tilde{x}_0) \longrightarrow (\tilde{X}_H, \tilde{x}_H)$ is Covering map

(2) $P_{H+}(\Pi_1(\widetilde{X}_H)\widetilde{\chi}_H))$? $P_H q = P \sim For a loop f band at <math>\chi_0$, lift of $f + o \widetilde{X}_H$ bound at $\widetilde{\chi}_H$ is $q\widetilde{f} \Rightarrow q\widetilde{f}(1) = \widetilde{\chi}_0$ if $\widetilde{f}(1) \sim \widetilde{\chi}_0 \sim Ff > C_{\chi_0} \sim Ff \in H$.

Det Action of a group G on a top space Y is called free if it has no fixed pt i.e. yer and y gt G ⇒ gy +y.

- . It's called a <u>Covering spale action</u>, if for any yet, there exists a nod U of y such that for any $e \neq g \in G$, $g \cup \cap V = \emptyset$
- · Covering space action => free

 \overline{Thm} If action of G on a top spec. Y is a Covening space action, then $q:Y \longrightarrow Y_G$ is a Normal Covening Space.

Det A Covering space $p: \tilde{X} \longrightarrow X$ is called normal if for any $z \in X$ and any $\tilde{z}_1, \tilde{z}_2 \in P^{-1}(x)$ there exists an isom of Covering spaces $\tilde{X} \longrightarrow \tilde{X}$ which takes \tilde{z}_1 to \tilde{z}_2 .

· If $y_1 \sim y_2 \Rightarrow \exists geas.t. gy_1 = y_2 \longrightarrow isom. is homeo Corresponding to g.$

Det $p: \widetilde{X} \longrightarrow X$, group of Givening space isom $\widetilde{X} \longrightarrow \widetilde{X}$ is called deck trans. Space Space denoted $G_{i}(\widetilde{X})$.

If \widetilde{X} normal $\longrightarrow \widetilde{X}/G_{i}(\widetilde{X}) \approx X$ and $p: \widetilde{X} \longrightarrow \widetilde{X}/G_{i}(\widetilde{X})$

Suppone X is path Connected; uniq. Lifting property implies that if such an f exists \Rightarrow it's unique.

 $(\widetilde{X}_{x_{0}}^{\widetilde{\lambda}_{1}}) \xrightarrow{f} (\widetilde{X}, \widetilde{\lambda}_{2})$ (X_{1}, x_{0})

 \Rightarrow Isom f is determined by where it sends one pt.

Cor If Y poth connuted, then $G(Y) \approx G$

Thm Suppose X and \tilde{X} are path consulted and locally path Consulted. Then $p: (\tilde{X}, \tilde{x}_0) \longrightarrow (X, x_0) \text{ normal } \iff P_* (\Pi_1(\tilde{X}, \tilde{x}_0)) \swarrow \Pi_1(X, x_0) \text{ normal subgroup}$

Then $P_*(\Pi_1(\widetilde{X},\widetilde{z}_0))$ and $P_*(\Pi_1(\widetilde{X},\widetilde{z}_1))$ are Conjugate $\underline{\text{lem}} \quad P: (\widetilde{X}, \widetilde{z}_0) \longrightarrow (X, z_0)$ $P: (\widetilde{X}, \widetilde{x}_1) \longrightarrow (X, x_0)$

 $PF = P_{\star}(\Pi_{1}(\widetilde{X}, \widetilde{\alpha}_{0})) \text{ normal} \Leftarrow) \text{ for any } \widetilde{\alpha}_{1} \in P^{-1}(\alpha_{0}) P_{\star}(\Pi_{1}(\widetilde{X}, \widetilde{\alpha}_{0})) = P_{\star}(\Pi_{1}(\widetilde{X}, \widetilde{\alpha}_{1}))$ $(\widetilde{X},\widetilde{x}_0) \underset{\mathfrak{D}}{\longleftrightarrow} (\widetilde{X},\widetilde{x}_1) \iff \widetilde{X} \text{ is normal }.$ $\frac{Thm}{Thm}$ $G(\tilde{X}) \approx N(H)$ where $H=P_*(\Pi_i(\tilde{X},\tilde{x}_0))$ and N(H) is normalizer of H in $\Pi_i(X,x_0)$. Pf Construct homo $\varphi: N(H) \longrightarrow G(\widetilde{X})$ [8] \longrightarrow 7 \iff isom which mays \tilde{x}_0 to $\tilde{x}_1 = \tilde{x}(1)$ $\underline{\mathsf{homo}}: \varphi([\Upsilon\Upsilon']) = \widetilde{\varkappa}_0 \longmapsto \widetilde{\Upsilon\Upsilon'}(1) = \overline{\mathsf{T}}\widetilde{\mathsf{Y}}(1) = \overline{\mathsf{T}}\widetilde{\mathsf{T}}(\widetilde{\varkappa}_0) \Rightarrow \varphi([\Upsilon\Upsilon']) = \overline{\mathsf{T}}\widetilde{\mathsf{T}}' = \varphi([\Upsilon])\varphi([\Upsilon))$ $[Y] \in \ker(\emptyset)$ if Y lifts to a loop in $X \iff [Y] \in H \Rightarrow \ker(\emptyset) = H$ Cor If $\tilde{\chi}$ is normal then $G(\tilde{\chi}) \approx \pi_1(\chi_1\chi_0)/\chi_1$ Cor If \tilde{X} is the universal cover of X, $G(\tilde{X}) \approx T_1(X, x_0)$. $| R_{X}|R \longrightarrow T^{2}$ $G(R_{X}R) \approx Z_{X}Z_{X} (x,y) \xrightarrow{(m,n)} (x+m,y+n)$ $E_X p: \mathbb{R} \longrightarrow S^1 \qquad G(\mathbb{R}) \approx \mathbb{Z}$ $\chi \mapsto^{m \in \mathbb{Z}} \chi_+ m$ Cor If Y path commuted, locally path commuted, G > TI(Y/G) /PX(TI(Y)) (9:Y-Y/G)