

REPUBLIC OF LIBERIA

MINISTRY OF EDUCATION

NATIONAL CURRICULUM FOR GRADES 10 TO 12

PHYSICS

February 2011

MESSAGE FROM THE MINISTER OF EDUCATION

I wish to extend my thanks and appreciation to ECSEL, UNESCO and all our partners for their immense contribution to this important task of revising and strengthening of the National Curriculum. Special thanks to USAID through LTTP for their funding and technical support in the harmonization or realignment of the curriculum. We extend sincere thanks and appreciation to the Bureau of Curriculum Development and Textbook Research, the National Curriculum Taskforce, and the subject specialists from various institutions for the level of professionalism that went into this exercise.

The revision and strengthening of our National Curriculum comes at a time when our nation is faced with the Herculean task or challenge of education transformation, national reconstruction, recovery and renewal in the aftermath of a devastating civil war. Hence, critical to this national challenge is the rebuilding of the education sector as Liberians can not achieve the desired socio-economic progress in the absence of a strong, vibrant and productive education and training system.

The revised national curriculum has two features which include the regular core subject areas of Mathematics, Science, Language Arts and Social Studies and emphasis is being given to the global challenge of HIV/AIDS, Peace, Citizenship, Human Rights and Environmental education. Secondly, the new curriculum is developed in line with international standards especially those practiced and enshrined in the curriculum of our sisterly Republic of Nigeria and Ghana who are also members of the West African Examinations Council (WAEC) .

We wish to urge all our education partners including students, teachers, principals, proprietors of schools and members of school boards to use this curriculum in our schools to enhance quality and relevant instruction and to enable our students to be adequately prepared to take the West African Senior Secondary Certificate Examinations (WASSCE) come 2013 as envisaged by us in the education sector.

May I conclude by once again saying big thank-you to all those who contributed to make this project a success.

Hon. E. Othello Gongar **MINISTER**

INTRODUCTION

This curriculum on Physics for Grades 10 to 12 has been designed to provide students with a sound knowledge of the fundamental concepts in Physics, and to nurture in them the skills, competencies, and proper attitudes for the successful study of Science generally, and Physics in particular. It assumes a conceptual approach that focuses on enabling students acquire an understanding of scientific phenomena, facts, concepts, theories, laws, and principles. Accordingly, the major concepts of Motion, Energy, Heat, Waves and Sounds, Matter, Light, etc. are treated in a manner appropriate for the levels targeted. The curriculum also provides ample scope for laboratory/practical work which is essential for students to develop the critical scientific skills needed in the successful study and application of Physics.

A student-centred approach is emphasized in this curriculum. This is based on the firm belief that learning becomes more permanent, meaningful, and exciting when students themselves take ownership of the learning process. Teachers are, therefore, urged to contrive those classroom strategies that would engage students actively in the teaching/learning process.

AIMS AND OBJECTIVES

Upon the completion of this course of study, students will be able to:

- 1. Demonstrate proper understanding of the basic principles and applications of Physics.
- 2. Exhibit scientific skills, competencies, and attitudes those are proper to the more advanced study of Physics in particular, and Science in general.
- 3. Apply their knowledge of Physics to their understanding of the natural and man-made phenomena of everyday life.
- 4. Recognize the usefulness as well as limitations of the scientific method.

PERIOD: <u>I</u>

GRADE: <u>10</u>

TOPIC: PHYSICAL QUANTITIES

SPECIFIC OBJECTIVES:

- 1. Describe and demonstrate how some measuring instruments are used.
- 2. Identify and distinguish instruments of length, mass and capacity.
- 3. Calculate the area and volumes of irregular-shape objects.
- 4. Write figures in scientific notation.
- 5. Recognize significant figures.
- 6. Identify measuring instruments use in hospitals.
- 7. Identify / distinguished between fundamental and derive quantities and the SI units.
- 8. Distinguish between precision and accuracy.

OUTCOMES		CONTENTS		ACTIVITIES		MATERIALS		EVALATION
Describe the magnitude of	1.	Systems of	1.	Measurement of length,	A	A. Primary Text	Ess	ential tasks students should be
quantities.		measurement.		width and height using	•	Brian Arnold,	able	e to do:
				meter rule.		Steve Wolley & Penny	1.	Describe and demonstrate how
Analyze the danger of	2.	Fundamentals and				Johnson, Edexcel IGCSE		some measuring instruments are
errors during measurement.		derived units.	2.	Use micro-meter		Physics (Pearson,		used.
				Varnier caliper to		2009).	2.	Identify and distinguish
Clarify measuring	3.	Error calculations.		measure length,	B	3. Secondary Text		instruments of length, mass and
instruments.				thickness and depth.	•	John Motey Addo & Barry		capacity.
	4.	Significant figures.				Jackson, Senior High	3.	Calculate the area and volumes of
Describe the units of			3.	Use spherometer to		Physics		irregular-shape objects.
various systems.	5.	Metrics prefixes and		measure thickness of		(Longman, 2009)	4.	Write figures in scientific
		units.		glass and radius of		2009).		notation.
Clarify how measuring				curvature	(C. Other	5.	Recognize significant figures.
instruments are used in	6.	Measuring	4.	Use spring and beam	F	Resources/Supplementary	6.	Identify measuring instruments
hospitals.		instruments.		balances to measure	F	<u>Readings</u>		use in hospitals.
				mass	•	Bob McDuell, Senior High	7.	Identify / distinguished between

Clarify the difference	7. Scientific notation.		Integrated Science	fundamental and derive quantities
between fundamentals &		5. Conversion from one	(Pearson, 2009)	and the SI units.
derived quantities, and	8. Units' conversion.	metric prefix to another	 Meter rule, screw gauge, 	8. Distinguish between precision and
precision & accuracy			speedometer Beaker, spring	accuracy.
		6. Discussing the	balance, Beam balance,	Other essential evaluation tools:
		important of	venires, cylinders, mirror	
		measurement to	glass lab, geometry set,.	Assignment
		treatment.	• Thermometer, B.P. cuff	Test
				Quizzes
		7. Conversion of one		Class work
		system of measurement		Final Exams
		to another.		• (Project ,Oral,
				Written, and practical
				exercises)
				Laboratory Demonstration

PERIOD: II

GRADE: <u>10</u>

TOPIC: VELOCITY AND ACCELERATION

SPECIFIC OBJECTIVES:

- 1. Analyze motion.
- 2. Describe uniformly accelerated motion.
- 3. Apply the basic equations of motion.
- 4. Interpret motion graphs.5. State Newton's laws of motion.
- 6. Analyze the effect of gravity on falling bodies.
- 7. Discuss the force of gravitation between objects.

OUTCOMES		CONTENTS		ACTIVITIES	MATERIALS		EVALUATION
Describe objects as it relate	1.	Nature of motion	1.	Processes on finding	A. Primary Text	Es	sential tasks students should be
to places, position and				acceleration of gravity	Brian Arnold,		le to do:
time.	2.	Types of motion		using the simple	Steve Wolley & Penny	1.	Analyze motion.
				pendulum	Johnson, Edexcel IGCSE	2.	Describe uniformly accelerated
Analyze motion by using	3.	Elements of motion			Physics (Pearson,		motion.
graphs.		(position,	2.	Demonstrating	2009).	3.	Apply the basic equations of
		displacement, speed,		Newton's laws of	B. Secondary Text		motion.
Analyze the work of Sir		etc)		motion	John Motey Addo & Barry	4.	Interpret motion graphs.
Isaac Newton relative to					Jackson, Senior High	5.	State Newton's laws of motion.
motion.	4.	Speed and velocity	3.	Exercise using the basic	Physics	6.	Analyze the effect of gravity on
	_			equations of motion	(Longman, 2009)	_	falling bodies.
	5.	Acceleration (uniform)			2009).	7.	Discuss the force of gravitation
			4.	Analyze distance- time	C. Other		between objects.
	6.	Linear motion		graph and velocity time	Resources/Supplementary		
	_			graph	Readings	•	Assignment
	7.	Graph and motion	_	Distinction between	Bob McDuell, Senior High	•	Test
	o	N	5.	Distinction between	Integrated Science	•	Quizzes
	δ.	Newton's laws of		distance and	(Pearson, 2009)	•	Class work
		motion.		displacement, average and instantaneous	Simple pendulum	•	Final Exams
	9.	Newton's Law of		velocities	meter stick	•	(Project Oral, written, and practical
	9.	Universal Gravitation		velocities	Stop watch/clock		exercises).
		Omversal Gravitation	6.	Calculate force between	Graph papers	•	Laboratory demonstration
			0.	masses of two objects.	• Rubber band, balloon, cart,		
				masses of two objects.	rubber or glass tube, cork		

PERIOD: III

GRADE: <u>10</u>

TOPIC: WORK, ENERGY AND POWER

SPECIFIC OBJECTIVES:

Upon completion of this topic, students will be able to:

1. Outline the concept and characteristics of work, energy and power;

- 2. Identify the types of simple machines
- 3. Distinguish between work input and work-output
- 4. Calculate potential and kinetic energies
- 5. State the law of conservation of mechanical energy
- 6. Recognize the SI units of work, energy and power.

OUTCOMES		CONTENTS		ACTIVITIES		MATERIALS		EVALUATION
Demonstrate how	1.	Concept and	1.	Experimenting with	A	. Primary Text	Ess	sential tasks students should be
machines make work		characteristics of		system of pulleys and	•	Brian Arnold,	ab	le to do:
easier.		work, energy and		inclined plane.		Steve Wolley & Penny		
		power.				Johnson, Edexcel IGCSE	1.	Outline the concept and
Describe power as an			2.	Clarify Hooke's law by		Physics (Pearson,		characteristics of work, energy and
outcome of work done in a	2.	Simple machines.		experimenting with		2009).		power;
given time.				helical spring showing	<u>B</u>	S. Secondary Text	2.	Identify the types of simple
	3.	Efficiency.		that stress is	•	John Motey Addo & Barry		machines
Explain the relationship				proportional to strain		Jackson, Senior High	3.	Distinguish between work input
between KE and PE.	4.	Potential and kinetic				Physics		and work-output
		energies.	3.	Identification of some		(Longman, 2009)	4.	Calculate potential and kinetic
				simple machines at		2009).		energies
	5.	Conservation of		home and in school.	<u>C</u>	<u>C. Other</u>	5.	State the law of conservation of
		mechanical energy.	4.	Working according to	R	Resources/Supplementary		mechanical energy
				time. Timing your	R	<u>Readings</u>	6.	Recognize the SI units of work,
				activities.	•	Bob McDuell, Senior High		energy and power.

 5. Calculating the efficiency / IMA, AMA and the velocity ratio of a machine 6. Identifying the sources and forms of energy 7. Calculation involving 	 Integrated Science (Pearson, 2009) Set of simple machines Meter rule Stop clock, coil spring, assorted masses 	Other essential evaluation tools:
work, energy & power		practical exercisesLaboratory demonstration

PERIOD: <u>IV</u>

GRADE: <u>10</u>

TOPIC: TEMPERATURE AND THERMAL EXPANSION

SPECIFIC OBJECTIVES:

- 1. Convert from one temperature scales to the other.
- 2. Explain coefficient of linear expansion & its disadvantages.
- 3. State at least three advantages of linear expansion.
- 4. Explain the abnormal expansions of water.
- 5. State Charles, Boyle's, combined gas laws, and pressure laws

OUTCOMES	CONTENTS	ACTIVITIES	MATERIALS	EVALUATION
Recognize that water expands abdominally between 0'C- and 4'C. Describe the construction and use of heat engines and cooling systems. Demonstrate expansion and contraction of objects during temperature change. Demonstrate the uses of temperature scales	 Temperature Scale. Types of Thermometers. Linear Expansion. Area and Volume Expansion. Abnormal Expansion of water. Charles and Boyle's laws. Combined gas law. Pressure Law (P₂ T₁ = P₁ T₂). 	 Experimenting on linear expansion, Charles law using boiling water. Demonstrating Conductivity of different metals. Calculation involving Charles, Boye, Combined and Pressure Laws. Lower and upper fixed points of thermometer. Demonstration of Max-min temperature Air thermometer Alcoholic thermometer Mercury thermometer. 	A. Primary Text Brian Arnold, Steve Wolley & Penny Johnson, Edexcel IGCSE Physics (Pearson, 2009). B. Secondary Text John Motey Addo & Barry Jackson, Senior High Physics (Longman, 2009) 2009). C. Other Resources/Supplementary Readings Bob McDuell, Senior High Integrated Science (Pearson, 2009) Linear expansion apparatus Metal rods, weight meter stick Heat engine apparatus Rubber tubing Thermo flask Source of heat	Essential tasks students should be able to do: 1. Convert from one temperature scales to the other. 2. Explain coefficient of linear expansion & its disadvantages. 3. State at least three advantages of linear expansion. 4. Explain the abnormal expansions of water. 5. State Charles, Boyle's, combined gas laws, and pressure laws Other essential evaluation tools: Assessment Test Quizzes Class room Exams Project Oral, Written and practical exercises Laboratory demonstration

PERIOD: <u>V</u>

GRADE: <u>10</u>

TOPIC: ELECTROSTATICS

SPECIFIC OBJECTIVES:

- 1. Name the two kinds of electric charges.
- 2. State the methods of electrification.
- 3. Distinguish between conductors and insulators.
- 4. Distinguish between coulomb's law of electrostatics and the law of electric charges.
- 5. Draw lines of force relative to charges.
- 6. Calculate potential difference and capacitance.
- 7. Name the types of capacitors.

OUT COMES	CONTENTS	ACTIVITIES	MATERIALS	EVALUATION
Describe electric line of	1. Charges at rest	1. Exercising using the	A. Primary Text	Essential tasks students should be able
force as vectors.		equation of coulomb's	Brian Arnold,	to do:
	2. Coulombs law	law.	Steve Wolley & Penny	1. Name the two kinds of electric
Recognize that electric			Johnson, Edexcel IGCSE	charges.
charges can be stationery.	3. Electric field	2. Displaying and	Physics (Pearson,	2. State the methods of electrification.
		demonstrating	2009).	3. Distinguish between conductors and
Clarify that force exists	4. Potential difference	electroscope.	B. Secondary Text	insulators.
between two or more			John Motey Addo & Barry	4. Distinguish between coulomb's law
charges.	5. Capacitance	3. Demonstrating	Jackson, Senior High	of electrostatics and the law of
		electrification	Physics	electric charges.
Demonstrate the uses of	6. Distribution and	using silk and	(Longman, 2009)	5. Draw lines of force relative to
capacitors in electronic	storage of changes on	glass rod .	2009).	charges.
devices (television, radio,	surface		C. Other	6. Calculate potential difference and
and calculators).		4. Experiments involving	Resources/Supplementary	capacitance.
		Charge and discharge	Readings	7. Name the types of capacitors.
		capacitors.	Bob McDuell, Senior High	
			Integrated Science	Assignments
		5. Calculating involving	(Pearson, 2009)	Test

	electric field intensity, potential difference and gradients. 6. Discussing the structure and operation of capacitors, charging and discharging capacitors.	 Electroscope glass rod silk, combs, pieces of paper, plastic pens capacitors, power source, voltmeter ammeter, conduction wires. 	 Quizzes Class work Exams Projects Oral, written, and practical exercises Laboratory demonstration
--	--	---	--

PERIOD: <u>VI</u>

GRADE: <u>10</u>

TOPIC: PROPERTIES OF MATTER

SPECIFIC OBJECTIVES:

- 1. Distinguish between atoms and molecules
- 2. Explain the kinetic theory of matter
- 3. Distinguish between cohesion and adhesion
- 4. Name the properties of solid, liquid and gases
- 5. State Hooke's law
- 6. Apply Young's modulus in solving problems involving stress and strain.

OUTCOMES	CONTENT	ACTIVITIES	MATERIALS	EVALUATION
Recognize the structure of	1. The structure of	1. Finding the specific	A. Primary Text	Essential tasks students should be
matter	matter.	gravity using	Brian Arnold,	able to do:
		a. U-tubes	Steve Wolley & Penny	1. Distinguish between atoms and
Describe the changes of	2. Kinetic theory.	b. Specific gravity	Johnson, Edexcel IGCSE	molecules
phase.		bottles	Physics (Pearson,	2. Explain the kinetic theory of matter
	3. Forces between	c. Archimedes	2009).	3. Distinguish between cohesion and
Analyzed that the	molecules.	principles.	B. Secondary Text	adhesion
properties of a material		2. Verifying law of floatation.	John Motey Addo & Barry	4. Name the properties of solid, liquid
determines its uses.	4. The phases of matter	3. Experimenting using test	Jackson, Senior High	and gases
		tube hydrometer	Physics	5. State Hooke's law
Clarify that stress is	5. Young's modulus	4. Demonstrating with	(Longman, 2009)	6. Apply Young's modulus in solving
proportional to strain.		a. Inner tubing	2009).	problems involving stress and
	6. Hooke's Law	b. Force siphons	C. Other	strain.
		c. Life pumps	Resources/Supplementary	
		d. Hydrometer.	Readings	Other essential evaluation tools:
		5. Demonstrating	Bob McDuell, Senior High	Assignments
		a. Cohesion and	Integrated Science	• Test
		adhesion	(Pearson, 2009)	Quizzes
		b. Ductility and	• U-tubes, liquids	Class work
		malleability	Hares apparatus	• Exams
		c. Capillarity	Gravity bottle	Project
		d. surface	 hydrometer, test tubes, 	• Oral, written, and practical
		e. Tension with	force siphons, life pump	exercises
		different liquids in	crystal samples	Laboratory demonstration
		tubes with various	• balloons	
		diameters.		
		6. Discussing viscosity and		
		diffusion in solid, liquid		
		and gas.		
		7. Discussing work done in		
		springs and elastic strings.		

PERIOD: <u>I</u>

GRADE: <u>11</u>

TOPIC: MOTION IN TWO DIMENSIONS

SPECIFIC OBJECTIVES:

- 1. Distinguish between scalar and vectors.
- 2. Apply equations of motion in solving problems (one and two dimensions).
- 3. Distinguish between centripetal and centrifugal forces.
- Solve simple rotational inertial problems.
 Recognize the pendulum as a time measuring device.
- 6. Distinguish rotary motion from circular motion.

OUTCOMES	CONTENTS	ACTIVITIES	MATERIALS	EVALUATION
State the difference	1. Scalars and vectors.	1. Exercise solving	A. Primary Text	Essential tasks students should be
between scalars and		problem using equations	Brian Arnold,	able to do:
vectors.	2. Equations of motion.	of motion (projectile,	Steve Wolley & Penny	1. State the difference between scalars
		rotary, circular etc).	Johnson, Edexcel IGCSE	and vectors.
Recognize the use of	3. Projectile motion.	2. Demonstration of	Physics (Pearson,	2. Recognize the use of vector in space
vector in space and		motion using kits (toys	2009).	and navigation.
navigation.	4. Rotational motion.	cars, pendulum).	B. Secondary Text	3. Describe the pendulum as a timing
		3. Calculation in projectile	John Motey Addo & Barry	device.
Describe the pendulum as a	5. Circular motion.	motion involving range,	Jackson, Senior High	4. Recognize the importance of road
timing device.		height and time of	Physics	banking and the use of sling.
	6. Simple harmonic	flight.	(Longman, 2009)	
Recognize the importance	motion.	4. Finding acceleration due	2009).	Other essential evaluation tools:
of road banking and the use		to gravity.	C. Other	Assignment
of sling.	7. Oscillatory and	5. Performing centripetal	Resources/Supplementary	• Test
	relative motions.	force experiment using a	Readings	• Quizzes
		T- sling.	Bob McDuell, Senior High	Class work
		6. Swinging small ball	Integrated Science	• Exams
		tied to a string in	(Pearson, 2009)	• Project; Oral, written, and practical
		vertical and horizontal	Motion demonstration kit	exercises.

circles at varying length and discusses what they observed.	 Toy cars, stop clocks, meter stick, twine Pendulum bulbs Geometry set Rotation bar Force 	• Lab. demonstration
---	--	----------------------

PERIOD: II

GRADE: <u>11</u>

TOPIC: COMPOSITION AND RESOLUTION OF FORCES

SPECIFIC OBJECTIVES:

- 1. Combine force vectors.
- 2. Apply the cosine and sine laws.
- 3. Find components of a given force.
- 4. Distinguish between resultant and equilibrant force.
- 5. State and apply the two conditions for equilibrium.
- 6. Define and calculate coefficient of friction.
- 7. Distinguish between center of gravity and center of mass.

OUTCOMES	CONTENTS	ACTIVITIES	MATERIALS	EVALUATION
Outline the role of friction	1. Resultant and	1. Performing center of	A. Primary Text	Essential tasks students should be
as hindrance and necessity.	equilibrant forces.	gravity and equilibrium	Brian Arnold,	able to do:
		experiment using force	Steve Wolley & Penny	1. Outline the role of friction as
Demonstrate the	2. Composition of forces.	table.	Johnson, Edexcel IGCSE	hindrance and necessity.
application of torque in the			Physics (Pearson,	2. Demonstrate the application of
use of seesaw and merry-	3. Resolution of forces	2. Demonstrating	2009).	torque in the use of seesaw and
go-round.		composition and	B. Secondary Text	merry-go-round.
	4. Parallel forces.	resolution of forces	John Motey Addo & Barry	3. Describe the two conditions of

Describe the two		using the force table.	Jackson, Senior High	equilibrium.
conditions of equilibrium.	5. Torque.		Physics	4. Clarify the position that center of
		3. Performing co-efficient	(Longman, 2009)	gravity determines stability or
Clarify the position that	6. Center of gravity.	of friction experiments	2009).	instability of an object.
center of gravity		(kinetic and static)using	C. Other	Other essential evaluation tools:
determines stability or	7. Friction.	the inclined plan.	Resources/Supplementary	Assignment
instability of an object.			Readings	Test
		4. Calculation involving	Bob McDuell, Senior High	Quizzes
		forces.	Integrated Science	Class work
			(Pearson, 2009)	• Exams
		5. Discussing the methods	Weights	Project
		of reducing friction	Pulleys, force table	Oral, Written and practical
			Air track and accessories	exercises
			Hard board	Laboratory demonstration
			Inclined plane wooden	
			blocks.	

PERIOD: III

GRADE: <u>11</u>

TOPIC: MOMENTUM AND ITS CONSERVATION

SPECIFIC OBJECTIVES:

Upon completion of this topic, students will be able to:

1. Describe the nature of momentum.

2. Explain the relationship between impulse and momentum.

3. Distinguish between elastic and inelastic collisions.

4. State the laws of conservation of linear and angular momentum.

OUTCOMES	CONTENTS	ACTIVITIES	MATERIALS	EVALUATION
Recognize the dangers in the collision of moving objects and avoid them. Clarify that momentum depends on mass and velocity. Demonstrate the role of spinning flywheels attached to shafts in doing work.	1. Impulse of forces. 2. Elastic and inelastic collisions. 3. Nature of momentum. 4. Angular Momentum. 5. Conservation of Momentum.	1. Demonstrating conservation of momentum (momentum carts) elastic and elastic). 2. Performing experiment verifying conservation of momentum using pendulum. 3. Calculation involving elastic and inelastic collision.	A. Primary Text Brian Arnold, Steve Wolley & Penny Johnson, Edexcel IGCSE Physics (Pearson, 2009). B. Secondary Text John Motey Addo & Barry Jackson, Senior High Physics (Longman, 2009) 2009). C. Other Resources/Supplementary Readings Bob McDuell, Senior High Integrated Science (Pearson, 2009) Air track (set) Bump putty cars	Essential tasks students should be able to do: 1. Recognize the dangers in the collision of moving objects and the means to avoid them. 2. Clarify that momentum depends on mass and velocity. 3. Demonstrate the role of spinning flywheels attached to shafts in doing work. Other essential evaluation tools:

PERIOD: <u>IV</u>

GRADE: <u>11</u>

TOPIC: HEAT AND ITS MEASUREMENTS

SPECIFIC OBJECTIVES:

- 1. Outline the concept and characteristics of heat.
- 2. Distinguish between specific heat and specific heat capacity.
- 3. State the methods of heat transfer.
- 4. State the laws of heat exchange.
- 5. Recognize that object changes phase from one to another.

OUTCOMES	CONTENTS	ACTIVITIES	MATERIALS	EVALUATION
 Describe heat as a form of energy. Distinguish between heat and temperature. Demonstrate that the amount of heat a substance contains depends on the type of substance. Clarify that heat flows from high to low temperate zones. Explain the effects of 	CONTENTS 1. Heat 2. Specific heat and specific capacity 3. Heat transfer 4. Latent heat of fusion and vaporization 5. Change of Phase 6. heat engines	1. Calorimeter heat experiments 2. Find specific heat of various metals latent heat of fusion and heat of vaporization 3. with triple point cell 4. Displaying and demonstrating the principles of the combustion engines.	MATERIALS A. Primary Text Brian Arnold, Steve Wolley & Penny Johnson, Edexcel IGCSE Physics (Pearson, 2009). B. Secondary Text John Motey Addo & Barry Jackson, Senior High Physics (Longman, 2009) 2009). C. Other Resources/Supplementary Readings Bob McDuell, Senior High	Essential tasks students should be able to do: 1. Outline the concept and characteristics of heat. 2. Distinguish between specific heat and specific heat capacity. 3. State the methods of heat transfer. 4. State the laws of heat exchange. 5. Recognize that object changes phase from one to another. Other essential evaluation tools: • Assignments • Quizzes • Class work • Test
heat in our environment.			Integrated Science (Pearson, 2009)Calorimeter thermometer,	ExamsProject; oral, written and practical exercises

hydrometer, liquids, heat	Laboratory demonstrations
sources, Beakers, triple	•
point cell, ice camphor ball,	
solid air freshener	

PERIOD: <u>V</u>

GRADE: <u>11</u>

TOPIC: WAVES AND SOUND

SPECIFIC OBJECTIVES:

- 1. Outline the characteristics and the concept of waves.
- 2. State the properties and characteristics of waves.
- 3. Name the two categories of waves.
- 4. Calculate the speed of wave.
- 5. Explain methods of production and transmittal of sound wave.
- 6. Calculate the speed of sound relative to temperature.
- 7. Explain the Doppler effect.

OUTCOMES	CONTENTS	ACTIVITIES	MATERIALS	EVALUATION
Describe various methods of energy transfer. Clarify that vibration causes waves. Recognize the application of Doppler Effect to detect red shift, radar techniques and satellite tracking system. Explain the occurrence of fundamental and harmonics notes in music.	 Nature of waves. Wave interactions. Nature of sound waves. Characteristics of sound waves. Speed of sound. Properties of sound wave. Doppler Effect. 	 Performing ripple tank experiment. Demonstrating transverse wave using a string Demonstrating longitudinal wave using a cool spring Doing exercises relative to the wave equations (v=Xf) Demonstrating Doppler effect using turning forks Using percussion instrument (drum, bells, cymbal, horn, guitar, flute etc) sassa. to produce different sounds to illustrate methods of sound transmission. Detail discussions should include types of waves, transmission of sound, classification of musical instruments, beat, noise, echoes etc. 	 A. Primary Text Brian Arnold, Steve Wolley & Penny Johnson, Edexcel IGCSE Physics (Pearson, 2009). B. Secondary Text John Motey Addo & Barry Jackson, Senior High Physics (Longman, 2009) 2009). C. Other Resources/Supplementary Readings Bob McDuell, Senior High Integrated Science (Pearson, 2009) Ripple tank Strings (ropes) Coil spring Turning forks Resonance boxes Open and closed tubes Drums, bells, cymbals, horn, flute sassa, guitar, etc. 	Essential tasks students should be able to do: 1. Describe various methods of energy transfer. 2. Clarify that vibration causes waves. 3. Recognize the application of Doppler Effect to detect red shift, radar techniques and satellite tracking system. 4. Explain the occurrence of fundamental and harmonics notes in music. Other essential evaluation tools: • Assignments • Quizzes • Test • Class work • Exams • Projects oral, written and practical exercises • Laboratory demonstration

PERIOD: <u>VI</u>

GRADE: <u>11</u>

TOPIC: LIGHT

SPECIFIC OBJECTIVES:

- 1. List the sources of radiant energy and give examples
- 2. Illustrate and discuss production of shadow and eclipses
- 3. Explain and demonstrate the image formation using a mirror
- 4. State the major regions of the electromagnetic spectrum
- 5. Explain the photoelectric effect
- 6. Explain the basic principle of a laser
- 7. Distinguish between luminous and illuminate objects
- 8. State the effects of burning on the environment

OUTCOMES	CONTENTS	ACTIVITIES	MATERIALS	EVALUATION
Describe optical	1. Nature of light.	1. Demonstrating the	A. Primary Text	Essential tasks students should be
instruments and states their		production of shadows	Brian Arnold,	able to do:
uses.	2. Sources of light.	and ellipses	Steve Wolley & Penny	1. Describe optical instruments and
			Johnson, Edexcel IGCSE	states their uses.
Demonstrate object image	3. Illumination.	2. Experimenting with	Physics (Pearson,	2. Demonstrate object image
relationship.		Pin-hole camera to	2009).	relationship.
	4. Reflection.	illustrate rectilinear	B. Secondary Text	3. Recognize that photometry is a
Recognize that		propagation of light	John Motey Addo & Barry	study of light
photometry is a study of	5. Inclined and spherical	rays.	Jackson, Senior High	4. Describe total internal reflection in
light	mirror.		Physics	crystal.
		3. Displaying and	(Longman, 2009)	5. Clarify that some objects emit their
Describe total internal	6. Laser.	demonstrating a laser	2009).	own light while others only reflect
reflection in crystal.		pointer	C. Other	light.
Clarify that some objects	7. Photoelectric effect	4. Exercise using the	Resources/Supplementary	
emit their own light while		mirror equation $(1/f =$	<u>Readings</u>	Other essential evaluation tools:
others only reflect light.		1/u + 1/v)	Bob McDuell, Senior High	Assignment
			Integrated Science	• Test

	T
(Pearson, 2009)	Class work
C. Other	Quizzes
Resources/Supplementary	• Exams
Readings	Project oral, written, and practical
Ray-box	exercises
Pin-hole camera	Laboratory demonstration
Laser pointer	
Photometer	
Plane and curve	
Mirrors	
Air track (set)	
Meter rule	
Posters	
Markers	

PERIOD: <u>I</u>

GRADE: <u>12</u>

TOPIC: REFRACTION AND DISPERSION

SPECIFIC OBJECTIVES:

- 1. Explain and illustrate the laws of refraction.
- 2. Calculate and discuss the refractive index of various materials.
- 3. Demonstrate Snells law in solving problems.
- 4. Distinguish between primary colors and primary pigments.5. Explain total internal reflection and critical angle.
- 6. Distinguish between constructive and destructive interference.
- 7. Explain how polarization confirms the transverse wave function of light.

OUTCOMES	CONTENTS	ACTIVITIES	MATERIALS	EVALUATION
Explain how rainbow is a direct result of refraction. Clarify that the shapes of	 Optical refraction Lens optics Dispersion Interference and 	Displaying optical instruments for description.	A. Primary Text • Brian Arnold, Steve Wolley & Penny Johnson, Edexcel IGCSE	Essential tasks students should be able to do: 1. Explain how rainbow is a direct result of refraction.
objects in liquids are refractive index dependent Recognize that the brilliancy of diamond is due to its high index of refraction	diffraction5. Polarization6. Snells law and critical angles.7. Eye defects	2. Using prism to disperse light.3. Experimenting with glass block and prism to find the refractive index of material of glass.	Physics (Pearson, 2009). B. Secondary Text John Motey Addo & Barry Jackson, Senior High Physics (Longman, 2009) 2009).	 Clarify that the shapes of objects in liquids are refractive index dependent Recognize that the brilliancy of diamond is due to its high index of refraction Identify eye defects and state how they can be corrected using
Identify eye defects and state how they can be corrected using lenses Demonstrate the polarization of light in		4. Demonstrating constructive and destructive interference of waves.5. Using polarizer to illustrate polarization	C. Other Resources/Supplementary Readings Bob McDuell, Senior High Integrated Science	lenses 5. Demonstrate the polarization of light in photographing Other essential evaluation tools: • Assignments

photographing	of light, 6. Discussion should include the eye defects and correction, the camera, projection, simple and compound microscopes and telescopes.	(Pearson, 2009) C. Other Resources/Supplementary Readings Ienses (set) prisms glass slab. color charts color filters water color set color mixer polarizer Interferometers	 Tests Quizzes Class work Final Exams Projects, Oral, written, and practical exercises Laboratory demonstration
---------------	---	--	--

PERIOD: II

GRADE: <u>12</u>

TOPIC: ELECTRODYNAMICS

SPECIFIC OBJECTIVES:

Upon completion of this topic, students will be able to:
1. Identify sources of direct current.

- Distinguish and analyze series and parallel circuits.
 State Ohms law.
- 4. State Kirchhoff's laws of electric energy.

OUTCOMES	CONTENTS	ACTIVITIES	MATERIALS	EVALUATION
Recognize that radiant energy is a source of electricity. Describe internal resistance of emf sources. Recognize the advantage of parallel circuit over series circuit in house wiring	 Sources of direct current Series and parallel circuits Internal resistance Factors affecting resistance of a conductor Heating effects Electrolysis Kirchhoff's Law of electric energy 	 Displaying and illustrating sources of direct current. Constructing series and parallel circuits using lamps. Solving practical problems applying ohms law. Demonstrating heating effect in circuits using cells and tungsten wire) Detail discussion should include the meter bridge, potentiometer, 	A. Primary Text Brian Arnold, Steve Wolley & Penny Johnson, Edexcel IGCSE Physics (Pearson, 2009). B. Secondary Text John Motey Addo & Barry Jackson, Senior High Physics (Longman, 2009) 2009). C. Other Resources/Supplementary Readings Bob McDuell, Senior High Integrated Science (Pearson, 2009) Sources of emf(cells)	Essential tasks students should be able to do: 1. Identify sources of direct current. 2. Distinguish and analyze series and parallel circuits. 3. State Ohms law. 4. State Kirchhoff's laws of electric energy. Other essential evaluation tools: • Assignments • Tests • Quizzes • Class work • Final Exams • Projects • Oral, written and practical exercises • Laboratory demonstration
		shunt and multiplier and the measuring	Electric meters	

instruments of elective circuits.	Wheatstone bridgeConstantan wire (28
	gauge)
	Conduction wires
	Photocell
	Tungsten wire
	Resistance box
	• Lamps (6 or 12 vl)
	_

PERIOD: III

GRADE: <u>12</u>

TOPIC: MAGNETISM AND ELECTRO - MAGNETISM

SPECIFIC OBJECTIVES:

- 1. State the origin of magnets.
- 2. Explain the relationship between electricity and magnetism.
- 3. Distinguish motor from generator.
- 4. Demonstrate the principle of transformer and perform calculation involving transformer.
 5. State the difference between AC and DC motors.

OUTCOMES	CONTENTS	ACTIVITIES	MATERIALS	EVALUATION
Recognize the usage of	1. Magnetism	1. Discussion should	A. Primary Text	Essential tasks students should be
magnets in		include the	Brian Arnold,	able to do:
electromagnetism	2. Electromagnetism	magnetization,	Steve Wolley & Penny	1. State the origin of magnets.
		demagnetization, the	Johnson, Edexcel IGCSE	2. Explain the relationship between
Clarify that magnets	3. Induced Current	magnet domain of a	Physics (Pearson,	electricity and magnetism.
exerts forces		magnet.	2009).	3. Distinguish motor from generator.
	4. Generator and Motors		B. Secondary Text	4. Demonstrate the principle of
Demonstrate the uses of		2. Displaying various	John Motey Addo & Barry	transformer and perform
transformers	5. Inductance	types of magnets for	Jackson, Senior High	calculation involving transformer.
	(transformer)	description.	Physics	5. State the difference between AC
Demonstrate interaction			(Longman, 2009)	and DC motors.
between electricity and		3. Demonstrating the	2009).	
magnetisms		laws of magnetism for	C. Other	Other essential evaluation tools:
		verification.	Resources/Supplementary	 Assignments
			Readings	• Tests
		4. Converting AC to DC	Bob McDuell, Senior High	Quizzes
		and vice versa.	Integrated Science	Class work
			(Pearson, 2009)	Final Exams
		5. Demonstrating	Magnets (Bar, U-shape and	• Projects
		magnetic field using		J

Ammeter and volt meter

PERIOD: IV

GRADE: <u>12</u>

TOPIC: ALTERNATING CURRENT

SPECIFIC OBJECTIVES:

- 1. Identify electrical measuring instruments and state their uses.
- 2. Demonstrate the functions of alternating current.
- 3. Distinguish between resistance and impedance.
- 4. Explain the R, C, L circuits.
- 5. Draw a phase diagram R.C.L. Circuits.6. Explain the principle of the cathode ray tube.
- 7. State applications of transistors and diodes.

OUTCOMES	CONTENTS	ACTIVITIES	MATERIALS	EVALUATION
Recognize the usage of	1. AC measurements	1. Displaying electrical	A. Primary Text	Essential tasks students should be
alternating current		measuring instruments	Brian Arnold,	able to do:
	2. Function of AC	for verification.	Steve Wolley & Penny	1. Identify electrical measuring
Demonstrate how			Johnson, Edexcel IGCSE	instruments and state their uses.
capacitors store current	3. Resonance	2. Performing experiment	Physics (Pearson,	2. Demonstrate the functions of
		in circuits involving:	2009).	alternating current.
Recognize television	4. Vacuum tubes	a) inductor	B. Secondary Text	3. Distinguish between resistance and
screen as a vacuum tube		b) capacitor	 John Motey Addo & Barry 	impedance.
	5. Transistors and	c) resistor	Jackson, Senior High	4. Explain the R, C, L circuits.
Clarify that transistors are	diodes		Physics	5. Draw a phase diagram R.C.L.
important components of		3. Describing and	(Longman, 2009)	Circuits.
transceivers and receivers		discussing vacuum	2009).	6. Explain the principle of the cathode
		tubes	C. Other	ray tube.
			Resources/Supplementary	7. State applications of transistors and
		4. Demonstrating the uses	Readings	diodes.
		of transistors and	Bob McDuell, Senior High	
		diodes.	Integrated Science	Other essential evaluation tools:
			(Pearson, 2009)	Assignments

 Vacuum tubes Voltmeter, ammeter ohm meter Resistors, capacitors and inductors Diodes and transistors 	 Tests Quizzes Class work Final Exams Projects Oral, written and practical exercises
 Diodes and transistors Conduction wires Power source 	 Oral, written and practical exercises Laboratory demonstration

PERIOD: <u>V</u>

GRADE: <u>12</u>

TOPIC: <u>ATOMIC AND NUCLEAR PHYSICS</u>

SPECIFIC OBJECTIVES:

- 1. State the properties of an electron.
- 2. Discuss and explain the effect of radioactivity substances on the human body.
- 3. Draw and label a typical atom.
- 4. State some applications of nuclear energy.
- 5. Distinguish between fission and fusion.

	Т	T	T	T
OUTCOMES	CONTENTS	ACTIVITIES	MATERIALS	EVALUATION
Identify substances that can	1. The electron	1. Displaying and	A. Primary Text	Essential tasks students should be
emit harmful particles		demonstrating the	Brian Arnold,	able to do:
	2. The nucleus	existence and strength	Steve Wolley & Penny	1. State the properties of an electron.
Recognize the sun as bi-		of radioactive	Johnson, Edexcel IGCSE	2. Discuss and explain the effect of
product of fission.	3. Types of nuclear	detectors and	Physics (Pearson,	radioactivity substances on the
	Reactions	radioactive substance.	2009).	human body.
Demonstrate conversion of			B. Secondary Text	3. Draw and label a typical atom.
nuclear energy into other	1. Uses of nuclear energy	2. Drawing and	John Motey Addo & Barry	4. State some applications of nuclear
forms.		displaying a simple	Jackson, Senior High	energy.
	2. Radioactive	fission and fusion	Physics	5. Distinguish between fission and
Take appropriate	substances	reaction (exp. U238	(Longman, 2009)	fusion.
precautions against the	- effects on lives	disintegration).	2009).	
harm of long term			C. Other	Other essential evaluation tools:
exposure to radioactive	3. Nuclear fission and	3. Listing application of	Resources/Supplementary	Assignments
substances,	fusion	nuclear energy.	Readings	• Tests
	4 553	4 5 6	Bob McDuell, Senior High	• Quizzes
	4. Thermionic emission,	4. Performing tracer	Integrated Science (Pearson,	Class work
	cathode and x - rays	experiment.	2009)	Final Exams
		5 6 4 11 1	Atomic model	• Projects
		5. Stating and discussing effects of radioactive	Heavy nuclei chart	Oral, written and practical exercises

	substances on lives. 6. Explanation should include the cathode ray and x – rays, their nature, properties and characteristics.	 Periodic table Geiger, counter and muller Radioactive sources Lead shields Nuclear actors Posters Markers Newspapers / Magazines 	Laboratory demonstration
--	---	---	--------------------------

.

PERIOD: <u>VI</u>

GRADE: <u>12</u>

TOPIC: HIGH ENERGY PHYSICS

SPECIFIC OBJECTIVES:

Upon completion of this topic, students will be able to:

1. State the uncertainty principle

- 2. Name the principle quantum numbers and describe the motion of an electron
- 3. State and discuss various types of particle accelerators
- 4. Identify and discuss the four basic interactions between particles of matter
- 5. State the conservation laws of particle physics.

OUTCOMES		CONTENTS		ACTIVITIES		MATERIALS		EVALUATION
Explain how the	1.	0 1 1	1.	Half –life experiment	Α	. Primary Text	Essen	tial tasks students should be able
disintegration of atoms		C •••••••••		using Geiger counters	•	Brian Arnold,	to do:	
produces energy	2.	Particle Accelerators				Steve Wolley & Penny	1.	State the uncertainty principle
			2.	Electron configuration of		Johnson, Edexcel IGCSE	2.	Name the principle quantum
Recognize other	3.	Detecting		some light elements		Physics (Pearson,		numbers and describe the motion
subatomic particles.		instruments				2009).		of an electron
			3.	Drawing and libeling	B	. Secondary Text	3.	State and discuss various types of
Explain how particles can	4.	Subatomic reactions		diagram of various particle	•	John Motey Addo &		particle accelerators
be accelerated and				accelerators		Barry Jackson, Senior	4.	Identify and discuss the four basic
captured	5.	Einstein's				High Physics		interactions between particles of
		photoelectric	4.	Preparing a chart of		(Longman, 2009)		matter
		equation		subatomic particles.		2009).	5.	State the conservation laws of
					<u>C</u>	<u>C. Other</u>		particle physics.
					R	esources/Supplementary	6.	State the uncertainty principle
					R	<u>eadings</u>	7.	1 1 1
					•	Bob McDuell, Senior		numbers and describe the motion
						High Integrated Science	_	of an electron
						(Pearson, 2009)	8.	State and discuss various types of
					•	Geiger muller counter		particle accelerators
					•	Half-life chart	9.	Identify and discuss the four basic
								interactions between particles of

	 Electron configuration chart List of subatomic particles. 	matter 10. State the conservation laws of particle physics. Other essential evaluation tools:
		Laboratory demonstration

