

Chương 2

CƠ SỞ TOÁN HỌC

Mathematic Foundation

PGS.TS. Lê Đắc Nhường

Nội dung chương 2

- 2.1 Lý thuyết số học đồng dư
- 2.2 Phần tử nghịch đảo
- 2.3 Bài toán Logarit rời rạc
- 2.4 Kiểm tra số nguyên tố
- 2.5 Bài toán phân tích số nguyên tố
- 2.6 Hàm một phía và hàm cửa sập một phía
- 2.7 Lý thuyết về độ phức tạp tính toán

Đồng dư modulo

- Giả sử a và b là các số nguyên và m là một số nguyên dương.
- Khi đó ta viết a≡b(mod m) nếu m chia hết cho b-a.
- Mệnh đề a≡b(mod m) được gọi là "a đồng dư với b theo mođun m"
- Giả sử:

$$a = q1*m + r1 và b = q_2*m + r2$$

trong đó **0**≤**r1**≤**m-1 và 0**≤**r2**≤**m-1**.

Khi đó có thể dễ dàng thấy rằng:

a = b(mod m) khi và chỉ khi r1 = r2

- Ký hiệu a mod m để xác định phần dư khi a được chia cho m.
- Như vậy: a≡b(mod m) khi và chỉ khi:

$$(a \mod m) = (b \mod m).$$

- Thay giá trị a bằng (a mod m) tức là a được rút gọn theo modulo m.
 - Nhiều ngôn ngữ lập trình: a mod m là phần dư trong dải -m+1,...,m-1 có cùng dấu với a. Ví dụ -18 mod 7 = -4, giá trị này khác với giá trị 3 là giá trị được xác định theo công thức trên (vì phần bù: 7 4 = 3)
 - □ Qui ước: **a mod m luôn là một số không âm**

Số học mođun m:

- Z_m là tập hợp {0,1,...,m-1} có trang bị hai phép toán cộng và nhân.
- Việc cộng và nhân trong Z_m được thực hiện giống như cộng và nhân các số thực ngoại trừ một điểm là các kết quả được rút gọn theo mođun m.

Ví dụ:

- Z₂₆ là tập hợp {0,1, 2...,25} có trang bị hai phép toán cộng và nhân.
- ▶ $25 + 7 = 32 \mod 26 = 6$ (ví dụ K=7, 'Z' → 'H')
- $5*9 = 45 \mod 26 = 19$

- Định lý về đồng dư thức
 - Đồng dư thức ax≡ b (mod m) chỉ có một nghiệm duy nhất x∈ Z_m với mọi b∈Z_m khi và chỉ khi UCLN(a,m) =1.

- Ví dụ 1: a=7, b=5, m=11
 - Dồng dư thức 7x≡ 5 (mod 11), kiểm tra: UCLN(7, 11) =1
 - → Có một nghiệm duy nhất x=7 vì 7*7 mod 11 = 49 mod 11 = 5
 - Để giải phương trình đồng dư thức áp dụng công thức sau:

7x – 5 phải chia hết cho 11

- Ví dụ 2: giải phương trình 5x ≡ 7 mod 11
 - ▶ KQ x=8

Khái niệm phần tử nghịch đảo

- Giả sử $a \in Z_m$.
- Phần tử nghịch đảo của a là phần tử a⁻¹ ∈ Z_m sao cho:

$$aa^{-1} \equiv a^{-1}a \equiv 1 \pmod{m}$$

Tính chất

- a có nghịch đảo theo mođun m khi và chỉ khi UCLN(a,m) = 1,
- Néu nghịch đảo tồn tại thì phải là duy nhất.
- Nếu b = a^{-1} thì a = b^{-1} .
- Nếu m là số nguyên tố thì mọi phần tử khác không của Z_m đều có nghịch đảo.

- Thuật toán Euclide tìm ước chung lớn nhất của 2 số a, n
 - Ký hiệu

(a, n) là ước số chung lớn nhất của a,n; Giả sử n > a.

 $\phi(n)$ là số các số nguyên dương < n và nguyên tố với n.

Thuật toán Euclide tìm UCLN (a,n) được thực hiện:

$$r_0 = q_1 r_1 + r_2$$

$$0 < r_2 < r_1$$

$$r_0 = q_1 r_1 + r_2,$$

$$r_1 = q_2 r_2 + r_3,$$

$$0 < r_2 < r_1$$

 $0 < r_3 < r_2$

$$r_{m-2} = q_{m-1}r_{m-1} + r_m, \quad 0 < r_m < r_{m-1}$$

$$r_{m-1} = q_m r_m$$

Thuật toán phải kết thúc ở một bước thứ m nào đó. Ta có:

$$(n,a) = (r_{0,}r_{1}) = (r_{1,}r_{2}) = \dots = (r_{m-1,}r_{m}) = r_{m}$$

- Thuật toán Euclide mở rộng tìm phần tử nghịch đảo
- Ta tìm được $r_m = (n,a)$. Mở rộng thuật toán Euclide bằng cách xác định thêm dãy số $t_0, t_1, ..., t_m$:
 - $t_0 = 0, t_1 = 1,$
 - ► $t_{j} = t_{j-2} q_{j-1}t_{j-1} \mod r_{0}$, néu $j \ge 2$,

Thuật toán Euclide mở rộng tìm phần tử nghịch đảo

Bước 1: Xây dựng bảng (gồm 6 cột) như sau:

Dòng	r_0	r_1	r_2	q	t_0	t_1

Trên mỗi dòng, ta có: $r_0 = r_1 \times q + r_2$

Bước 2: Điền giá trị vào dòng đầu tiên $r_0 = n$, $r_1 = a$, $t_0 = 0$, $t_1 = 1$

Dòng	r_0	r_1	r_2	q	t_0	t_1
0	n	a			0	1

Bước 3: Trên dòng i đang xét, tính giá trị

$$r_2 = r_0 \mod r_1,$$

 $q = \lfloor r_0 / r_1 \rfloor$

Dòng	r_0	r_1	r_2	q	t_0	t_1
• • •	•••	• • •	•••	•••	• • •	• • •
i			$r_0 \mod r_1$	$\lfloor r_0 / r_1 \rfloor$		

Bước 4: Tính giá trị t_1 (của dòng i) từ giá trị q, t_0 và t_1 của dòng i-1.

Dòng	r_0	r_1	r_2	q	t_0	t_1
• • •	• • •	•••	• • •	•••	• • •	•••
<i>i</i> -1				X	Y	Z
i						Y- X × Z
						mod n

- Bước 5: Trên dòng i đang xét:
 - Nếu $r_2 = 0$ thì:
 - Nếu r_1 = 1 thì giá trị t_1 là phần tử nghịch đảo của a trong Z_n
 - Ngược lai (tức là $r_1 \neq 1$) thì không tồn tại phần tử nghịch đảo. Dừng
 - Ngược lại (tức là $r_2 \neq 0$) thì sang bước 6

Dòng	R_0	r_1	r_2	q	t_0	t_1
• • •	•••	•••	•••	•••	• • •	•••
i		$r_1 = 1?$	$r_2 = 0$?			

<u>Bước 6</u>: Sao chép giá trị sang dòng tiếp theo theo quy tắc dưới đây, sau đó, trở lại <u>bước 3</u>:

Dòng	r_0	r_1	r_2	q	t_0	t_1
i						

 \square Ví dụ 1: n=101, a = 25

Dòng	r_0	r_1	r_2	q	t_0	t_1
0	101	25	1	4	0	1

Dòng	g r_0	r_1	r_2	q	t_0	t_1
0	101	25	1	4	0	1
1	25	<u></u>	<u>0</u>	25	1	<u>97</u>

Vậy $25^{-1} = 97 \text{ (trong } Z_{101})$

 \square Ví dụ 2: n = 1024, a = 173

Dòng	r_0	r_1	r_2	q	t_0	t_1
0	1024	173	159	5	0	1
1	173	159	14	1	1	1019
2	159	14	5	11	1019	6
3	14	5	4	2	6	953
4	5	4	1	1	953	148
5	4	<u>1</u>	<u>0</u>	4	148	<u>805</u>

Vậy 173⁻¹ = 805 (trong Z_{1024})

2.3 Bài toán Logarit rời rạc

- Discrete Logarithmic Problem (DLP)
 - Thiết lập môi trường hữu hạn Z_p, p là số nguyên tố.
 - Nhóm Cyclic Z_p* và phần tử sinh (phần tử nguyên thủy)
 - Đặc trưng của bài toán: I = (p,α,β) trong đó p là số nguyên tố, α ∈ Z_p
 là phần tử nguyên thủy, β ∈ Z_p*
 - Mục tiêu: Hãy tìm một số nguyên duy nhất a, 0 ≤ a ≤ p-2 sao cho:

$$\alpha^a \equiv \beta \pmod{p}$$

Ta sẽ xác định số nguyên:

$$a = \log_{\alpha} \beta \pmod{p}$$

2.4 Kiểm tra số nguyên tố

Số nguyên dương p > 1 là nguyên tố nếu p không chia hết cho số nguyên dương nào ngoài 1 và p.

1. int ktra (int a)

```
1.int ktra(int a)
2.{
3.    int i,dem=0;
4.    for(i=1;i<=a[i];i++)
5.        if(a[i]%i==0) dem++;
6.    return (dem==2)? 1: 0;
7.}</pre>
```

- Dự án Sierpinski đã tìm ra được số nguyên tố khổng lồ là số 10.223 * 2 31172165 + 1, dài 9.383.761 chữ số.
- Một chiếc máy tính thông thường sẽ phải mất nhiều thế kỷ để có tìm ra con số khổng lồ này. Kết quả dài hơn 9 triệu chữ số kia là sản phẩm của hàng nghìn chiếc máy tính chạy liên tục trong 8 ngày.

2.4 Kiểm tra số nguyên tố

Số nguyên tố lớn nhất (2016): chiều dài của nó lên tới 22 triệu chữ số (2^{74.207.281} - 1) được in ra 3 quyển sách.

Số nguyên tố lớn nhất (2018) đặt tên M77232917 có giá trị bằng 2^{77.232.917} - 1, cho ra một dãy số khổng lồ có 23.249.425 chữ số. M77232917 có thể được biểu diễn trên 9.000 trang giấy, kéo dài 118km với độ dài 1 chữ số là 0,5cm.

2.4 Kiểm tra số nguyên tố

Giải thuật kiểm tra Miller-Rabin

INPUT Số tự nhiên lẻ n.

OUTUT NguyenTo: TRUE/FALSE

- 1. Phân tích $n-1=2^s\cdot m$ trong đó s \geq 1 và m là số tự nhiên lẻ
- 2. Chọn ngẫu nhiên số tự nhiên $a \in \{2,...,n-1\}$.
- 3. Đặt $b = a^m \pmod{n}$
- 4. Nếu $b \equiv -1 \pmod{n}$ thì trả về TRUE. Kết thúc.
- 5. Cho k chạy từ 0 đến s:
 - 1. Nếu $b \equiv -1 \pmod{n}$ thì trả về TRUE. Kết thúc.
 - 2. Thay b:= $b^2 \pmod{n}$.
- 6. Trả lời FALSE. Kết thúc.

2.5 Phân tích ra thừa số nguyên tố

Phân tích một số tự nhiên lớn hơn 1 ra thừa số nguyên tố là viết số đó dưới dạng một tích các thừa số nguyên tố.

$$300 = 2 \cdot 3 \cdot 2 \cdot 5 \cdot 5 = 2^2 \cdot 3 \cdot 5^2$$

2.6 Hàm 1 phía và hàm cửa sập 1 phía UNIVERSITY

Hàm một phía

- Hàm f(x) được gọi là hàm một phía, nếu:
- Tính y = f(x) là dễ, nhưng tính ngược $x = f^{-1}(y)$ là rất khó.
- Ví dụ: Hàm f(x) = g^x (mod p) (p là số nguyên tố, g là phần tử nguyên thủy theo mođun p) là hàm một phía.
 - Biết x tính f(x) là khá đơn giản
 - Biết f(x) để tính x thì với các thuật toán đã biết hiện nay đòi hỏi một khối lượng tính toán cỡ lớn (với máy tính mạnh nhất mất khoảng 3000 năm)

2.6 Hàm 1 phía và hàm cửa sập 1 phía

- Hàm cửa sập một phía
 - Hàm f(x) được gọi là hàm cửa sập một phía, nếu:
 - Tính y = f(x) là dễ, tính $x = f^{-1}(y)$ là rất khó
 - Nhưng có cửa sập \mathbf{Z} để tính $\mathbf{X} = \mathbf{f_z}^{-1}(\mathbf{y})$ là dễ
- Ví dụ: n = p×q là tích của hai số nguyên tố lớn, a là số nguyên, hàm f(x) = x² (mod n) là hàm cửa sập một phía.
 - Nếu chỉ biết n và a thì tính x = f⁻¹(y) là rất khó,
 - Nếu biết cửa sập, chẳng hạn hai thừa số của n, thì sẽ tính được f-1(y) khá dễ

Algorithm	Time Comp	Space Complexity		
	Best	Average	Worst	Worst
Quicksort	$\Omega(n \log(n))$	Θ(n log(n))	O(n^2)	O(log(n))
Mergesort	$\Omega(n \log(n))$	Θ(n log(n))	O(n log(n))	O(n)
Timsort	$\Omega(n)$	Θ(n log(n))	O(n log(n))	O(n)
<u>Heapsort</u>	$\Omega(n \log(n))$	Θ(n log(n))	O(n log(n))	0(1)
Bubble Sort	$\Omega(n)$	Θ(n^2)	O(n^2)	0(1)
Insertion Sort	$\Omega(n)$	Θ(n^2)	O(n^2)	0(1)
Selection Sort	Ω(n^2)	Θ(n^2)	O(n^2)	0(1)
Tree Sort	$\Omega(n \log(n))$	Θ(n log(n))	O(n^2)	O(n)
Shell Sort	$\Omega(n \log(n))$	Θ(n(log(n))^2)	O(n(log(n))^2)	0(1)
Bucket Sort	$\Omega(n+k)$	Θ(n+k)	O(n^2)	O(n)
Radix Sort	$\Omega(nk)$	Θ(nk)	O(nk)	O(n+k)
Counting Sort	$\Omega(n+k)$	Θ(n+k)	O(n+k)	0(k)
Cubesort	$\Omega(n)$	Θ(n log(n))	O(n log(n))	O(n)

Big-O Complexity Chart

Elements

