Zusammenfassung

v401 - Michelson-Interferometer

 $\label{eq:max_rademacher} \begin{aligned} & \text{Max Rademacher} \\ & \text{max.rademacher@tu-dortmund.de} \end{aligned}$

25.06.2024

TU Dortmund – Fakultät Physik

1 Ziel

Bestimmung der Wellenlänge eines Lasers und Brechungsindex der Luft

2 Theorie

2.1 Allgemeines

- Licht ist elektromagnetische Welle
 - elektrische und magnetische Feldstärke stehen senkrecht aufeinander
 - Ausbreitungsgeschwindigkeit $c = \lambda \nu$ mit Frequenz ν und Wellenlänge λ
 - für Optik nur elektrische Feldstärke relevant (hauptsächlich)

$$\vec{E}(\vec{x},t) = \vec{E}_0 \sin(\omega t - kx)$$

mit $\omega = 2\pi\nu$: Kreisfrequenz, $k = \frac{1}{\lambda}$: Wellenzahl (in Theorie: $k = \frac{2\pi}{\lambda}$)

- Licht hochfrequent \to nicht \vec{E} sondern nur Intensität $I \propto |\vec{E}|^2$ detektierbar
- Interferenz bei Überlagerung zweier monochromatischer Wellen, Intensität abhängig von Phasenbeziehung $\Delta \varphi$
 - $-\ I = I_1 + I_2 + 2\sqrt{I_1I_2}\cos(\varphi_{12})$
 - konstruktive Interferenz bei phasengleicher Überlagerung
 - destruktive Interferenz bei gegenphasiger Überlagerung
- inkohärentes Licht: natürliche Lichtquellen, die durch spontane Emission unkorrelierte Wellenzüge aussenden mit statistisch verteilter Phasendifferenz
- kohärentes Licht: monochromatisches Licht mit fester Phasenbeziehung (Laser)
 - spektrale Bandbreite

$$\Delta \nu \propto \frac{1}{\Delta l}$$

mit Δl : Länge des Wellenzuges $(\Delta \nu \Delta l = c)$

- nur unendlich ausgedehnte Welle ist wirklich monochromatisch

2.2 Laser

- Light amplification of simulated emission of radiation
- induzierte Emission
 - induzierte Welle hat selbe Ausbreitungsrichtung und feste Phasenbeziehung zur induzierenden Welle
 - -geringe spektrale Breite und große Kohärenzlänge (He
Ne-Laser haben ca. $1000\,\mathrm{km}$ Kohärenzlänge)
- wird von Interferometern genutzt, um Längenänderungen oder Brechungsindizes präzise zu bestimmen

Abbildung 1: Laser - Aufbau

2.2.1 Bestandteile

- Glasrohr mit Medium
 - Durchmesser von 1 mm
 - Gas steht unter geringem Druck
 - Gemisch aus 80% Helium und 20% Neon (Neon ist das laseraktive Medium)
- Elektronenpumpe
 - Kathode und Anode an jeweils den Enden des Glasrohrs
 - Hochspannung wird an die Kathode und Anode angelegt
 - Elektronen werden an Kathode ausgelöst → stoßen auf dem Weg zur Anode mit Gasatomen zusammen → Ionisation → Auslösung von weiteren Elektronen → Stöße übertragen Energie, regen Helium-Atome an, diese regen Neon-Atome an

– Neon-Atom fällt aus angeregtem Zustand \rightarrow stimulierte Emission eines Photons (Photon trifft auf Neon-Atom und wird stimuliert mit Wellenlänge $\lambda = 633 \, \mathrm{nm}$)

• Resonator

- Photonen bewegen sich zufällig durch Glasrohr
- -bei senkrechtem Aufprall auf Spiegel \rightarrow Photonen bewegen sich durch Gas und verstärken Licht
- Spiegel haben im Optimalfall einen Abstand von $n^{\lambda}/2$ Bildung einer stehenden Welle

3 Photozelle

Abbildung 2: Photozelle

- Glaskolben mit großflächiger Kathode
- Anode vor Kathode, meist dünner Drahtring oder Netz, damit Licht auf dem Weg zur Kathode nicht geschwächt wird
- Beim Einfall in die Photozelle lösen die Photonen Elektronen aus der Kathode aus
- Elektronen wandern zur Anode und lösen elektrischen Impuls aus
- Signal näherungsweise proportional, schwach $(1 \mu A 1 mA)$
- Betriebsspannung zwischen 10 V 200 V
- Effekt kann mit Edelgas unter leichtem Druck in Glaskolben verstärkt werden

3.1 Schmidttrigger

- obere und untere Schaltwelle
- $\bullet\,$ bei überschreiten der unteren Schaltschwelle durch elektrischen Puls wird eine "1" gesetzt
- wird die Schaltschwelle unterschritten, wird eine "0" gesetzt

4 Durchführung/Auswertung

Abbildung 3: Versuchsaufbau

4.1 Interferometer

- Lichtbündel von Laser wird auf Teilerplatte geschickt \to Aufteilung in zwei zueinander senkrechte Strahlen
- Strahlenbündel werden gespiegelt und parallel den Strahlen entgegengeschickt
- neue Strahlen werden zurück zur Teilerplatte geschickt und gebündelt \to Interferenz bei Weglängenänderung
- Interfenz sichtbar als Interferenzmuster auf Schirm, wird von Photodiode detektiert
- Umwandlung durch Schmidttrigger (Unterabschnitt 3.1) in elektrischen Pul
s \to verstärktes Signal wird von Zähler aufgenommen und gezählt
- Bei Strahlenteilung verlängert sich der Weg des transmittierten Strahls \to Glasplatte wird zur Kompensation in Weg des reflektierten Strahls gesetzt
- Verschub eines Spiegels um $^{\lambda}/_{2} \to \text{Interferenzmaximum}$ wird zu Minimum, oder Minimum wird zu Maximum

 $\bullet\,$ Bei Verschub um d und Anzahl z der Maxima kann Wellenlänge berechnet werden

$$\lambda = \frac{2 \cdot d}{z}$$

- Gaszelle zwischen verschiebbarem Spiegel und Strahlteiler
- Mikrometerschraube mit Motor und Übersetzung

Abbildung 4: Interferometer

4.2 Wellenlänge

4.2.1 Durchführung

- Justieren der Apperatur
 - Laser
 - Spiegel
 - Linse
 - Überlagern der beiden hellsten Reflexe der Spiegel
- Berechnen der Wellenlänge
 - Zählen der Intensitätsmaxima bei einem Weg von 5 mm an der Mikrometerschraube (Durch Übersetzung ist der wirkliche Weg geringer)
 - wiederholen des Prozesses (9 weitere Male)
 - Berechnen der Wellenlänge, anschließende Mittlung der Ergebnisse

4.2.2 Auswertung

• Wellenlänge erbibt sich aus

$$\lambda = c_{trans} \cdot \frac{2 \cdot d}{z}$$

- $\bar{\lambda}_{\mathrm{Laser}} \approx 700\,\mathrm{nm},$ in Theorie $\lambda_{\mathrm{theo}} = 633\,\mathrm{nm}$
- relativ gute Bestimmungsmethode

4.3 Brechungsindex

4.3.1 Durchführung

- durch Luft erhält das Lichtbündel Phasenverschiebung \rightarrow Brechung(sindex)
- Aufnahme der Raumtemperatur T und des Umgebungsdrucks p_0
- Evakuierung der Gaszelle und Messen der Maxima während der Evakuierung

4.3.2 Auswertung

• Brechungsindex ergibt sich aus

$$n = 1 + \Delta n \frac{T}{T_0} \frac{p_0}{\Delta p}$$

mit $T_0:$ Temperatur unter Normalbedingung (273,15 K), $\varDelta p:$ Druck innerhalb Gaszelle

 $\Delta n = \frac{z \cdot \lambda}{2 \cdot D}$

mit D: Länge der Gaszelle, "2", da Gaszelle zwei mal durchlaufen wird

- $\implies n \approx 1,00015$
- Methode relativ schlecht durchzuführen
- Pumpe ist deffekt, es tritt wieder Luft beim Evakuieren ein
- Ergebnisse sind dennoch gut, da durch die geringe Temperaturdifferenz und dem kleinen Δn der Druckunterschied kaum Gewicht in der Berechnung hat