Making predictions

INTRODUCTION TO REGRESSION IN R

Richie Cotton

Learning Solutions Architect at DataCamp

The fish dataset: bream

```
bream <- fish %>%
  filter(species == "Bream")
```

species	length_cm	mass_g
Bream	23.2	242
Bream	24.0	290
Bream	23.9	340
Bream	26.3	363
Bream	26.5	430
•••	•••	•••

Plotting mass vs. length

```
ggplot(bream, aes(length_cm, mass_g)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE)
```


Running the model

```
mdl_mass_vs_length <- lm(mass_g ~ length_cm, data = bream)
```

```
Call:
lm(formula = mass_g ~ length_cm, data = bream)

Coefficients:
(Intercept) length_cm
   -1035.35 54.55
```

Data on explanatory values to predict

If I set the explanatory variables to these values, what value would the response variable have?

```
library(dplyr)
explanatory_data <- tibble(length_cm = 20:40)</pre>
```

Call predict()

```
library(tibble)
explanatory_data <- tibble(length_cm = 20:40)</pre>
predict(mdl_mass_vs_length, explanatory_data)
                                                               6
  55.65205 110.20203 164.75202 219.30200 273.85198 328.40196
                   8
                                        10
 382.95194 437.50192 492.05190 546.60188 601.15186 655.70184
                             15
                                        16
        13
                   14
                                                   17
                                                              18
 710.25182 764.80181 819.35179 873.90177 928.45175 983.00173
                   20
        19
                             21
1037.55171 1092.10169 1146.65167
```

Predicting inside a data frame

```
library(dplyr)
explanatory_data <- tibble(length_cm = 20:40)

prediction_data <- explanatory_data %>%
  mutate(
    mass_g = predict(
    mdl_mass_vs_length, explanatory_data
    )
  )
}
```

```
# A tibble: 21 x 2
  length_cm mass_g
      <int> <dbl>
            55.7
         20
         21 110.
         22 165.
         23 219.
         24 274.
         25 328.
         26 383.
         27 438.
         28 492.
         29 547.
10
  ... with 11 more rows
```

Showing predictions

```
ggplot(bream, aes(length_cm, mass_g)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE) +
  geom_point(
    data = prediction_data,
    color = "blue"
)
```


Extrapolating

Extrapolating means making predictions outside the range of observed data.

```
explanatory_little_bream <- tibble(length_cm = 10)
explanatory_little_bream %>%
  mutate(
    mass_g = predict(
    mdl_mass_vs_length, explanatory_little_bream
  )
  )
)
```


Let's practice!

INTRODUCTION TO REGRESSION IN R

Working with model objects

INTRODUCTION TO REGRESSION IN R

Richie Cotton

Learning Solutions Architect at DataCamp

coefficients()

```
mdl_mass_vs_length <- lm(mass_g ~ length_cm, data = bream)
Call:
lm(formula = mass_g ~ length_cm, data = bream)
Coefficients:
(Intercept)
              length_cm
  -1035.35
                  54.55
coefficients(mdl_mass_vs_length)
(Intercept)
             length_cm
              54.54998
-1035.34757
```


fitted()

fitted values: predictions on the original dataset

```
fitted(mdl_mass_vs_length)
```

or equivalently

```
explanatory_data <- bream %>%
  select(length_cm)

predict(mdl_mass_vs_length, explanatory_data)
```

1	2	3	4	5	
230.2120	273.8520	268.3970	399.3169	410.2269	
6	7	8	9	10	
426.5919	426.5919	470.2319	470.2319	519.3269	
11	12	13	14	15	
513.8719	530.2369	552.0569	573.8769	568.4219	
16	17	18	19	20	
568.4219	622.9719	622.9719	650.2468	655.7018	
21	22	23	24	25	
672.0668	677.5218	682.9768	699.3418	704.7968	
26	27	28	29	30	
699.3418	710.2518	748.4368	753.8918	792.0768	
31	32	33	34	35	
873.9018	873.9018	939.3617	1004.8217	1037.5517	

residuals()

Residuals: actual response values minus predicted response values

```
residuals(mdl_mass_vs_length)
```

or equivalently

```
bream$mass_g - fitted(mdl_mass_vs_length)
```

1	2	3	4	5	
11.788	16.148	71.603	-36.317	19.773	
6	7	8	9	10	
23.408	73.408	-80.232	-20.232	-19.327	
11	12	13	14	15	
-38.872	-30.237	-52.057	-233.877	31.578	
16	17	18	19	20	
31.578	77.028	77.028	-40.247	-5.702	
21	22	23	24	25	
-97.067	7.478	-62.977	-19.342	-4.797	
26	27	28	29	30	
25.658	9.748	-34.437	96.108	207.923	
31	32	33	34	35	
46.098	81.098	-14.362	-29.822	-87.552	

summary(mdl_mass_vs_length)

```
Call:
lm(formula = mass_g ~ length_cm, data = bream)
Residuals:
         1Q Median 3Q Max
  Min
-233.9 -35.4 -4.8 31.6 207.9
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) -1035.35
                      107.97 -9.59 4.6e-11 ***
length_cm 54.55 3.54 15.42 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 74.2 on 33 degrees of freedom
Multiple R-squared: 0.878, Adjusted R-squared: 0.874
F-statistic: 238 on 1 and 33 DF, p-value: <2e-16
```

summary(): call

```
Call:
lm(formula = mass_g ~ length_cm, data = bream)
```

summary(): residuals

summary(): coefficients

summary(): model metrics

```
Residual standard error: 74.2 on 33 degrees of freedom
Multiple R-squared: 0.878, Adjusted R-squared: 0.874
F-statistic: 238 on 1 and 33 DF, p-value: <2e-16
```

tidy()

```
library(broom)

tidy(mdl_mass_vs_length)
```

```
# A tibble: 2 x 5

term estimate std.error statistic p.value

<chr> <dbl> <dbl> <dbl> <dbl> <dbl> 

1 (Intercept) -1035. 108. -9.59 4.58e-11

2 length_cm 54.5 3.54 15.4 1.22e-16
```

augment()

augment(mdl_mass_vs_length)

```
# A tibble: 35 x 9
   mass_g length_cm .fitted .se.fit .resid
                                             .hat .sigma .cooksd .std.resid
    <dbl>
              <dbl>
                      <dbl>
                              <dbl> <dbl> <dbl>
                                                    <dbl>
                                                            <dbl>
                                                                        <dbl>
                               28.1
                                       11.8 0.144
      242
               23.2
                       230.
                                                     75.3 0.00247
                                                                        0.172
      290
               24
                       274.
                               25.6
                                       16.1 0.119
                                                     75.2 0.00364
                                                                        0.232
 3
      340
               23.9
                       268.
                               25.9
                                       71.6 0.122
                                                     74.1 0.0738
                                                                        1.03
                                                     75.0 0.00894
      363
               26.3
                       399.
                               18.9
                                      -36.3 0.0651
                                                                       -0.507
               26.5
                       410.
                                       19.8 0.0616
                                                     75.2 0.00248
                                                                        0.275
 5
      430
                               18.4
               26.8
                       427.
                                                     75.2 0.00317
 6
      450
                               17.6
                                       23.4 0.0566
                                                                        0.325
               26.8
                       427.
                                       73.4 0.0566
                                                     74.1 0.0311
                                                                        1.02
      500
                               17.6
               27.6
                       470.
                               15.8
                                      -80.2 0.0452
                                                     73.9 0.0291
      390
                                                                       -1.11
 8
               27.6
                                      -20.2 0.0452
                                                     75.2 0.00185
 9
      450
                       470.
                               15.8
                                                                       -0.279
      500
               28.5
                               14.1 -19.3 0.0360
                                                     75.2 0.00132
                                                                       -0.265
10
                       519.
      with 25 more rows
```

glance()

```
glance(mdl_mass_vs_length)
```


Let's practice!

INTRODUCTION TO REGRESSION IN R

Regression to the mean

INTRODUCTION TO REGRESSION IN R

Richie Cotton
Learning Solutions Architect

The concept

- Response value = fitted value + residual
- "The stuff you explained" + "the stuff you couldn't explain"
- Residuals exist due to problems in the model and fundamental randomness
- Extreme cases are often due to randomness
- Regression to the mean means extreme cases don't persist over time

Pearson's father son dataset

- 1078 father/son pairs
- Do tall fathers have tall sons?

father_height_cm	son_height_cm
165.2	151.8
160.7	160.6
165.0	160.9
167.0	159.5
155.3	163.3
•••	•••

¹ Adapted from https://www.rdocumentation.org/packages/UsingR/topics/father.son

Scatter plot

```
plt_son_vs_father <- ggplot(
   father_son,
   aes(father_height_cm, son_height_cm)
) +
   geom_point() +
   geom_abline(color = "green", size = 1) +
   coord_fixed()</pre>
```


Adding a regression line

```
plt_son_vs_father +
  geom_smooth(method = "lm", se = FALSE)
```


Running a regression

```
mdl_son_vs_father <- lm(
    son_height_cm ~ father_height_cm,
    data = father_son
)</pre>
```

```
Call:
lm(formula = son_height_cm ~ father_height_cm, data = father_son)

Coefficients:
    (Intercept) father_height_cm
    86.072    0.514
```

Making predictions

```
really_tall_father <- tibble(
  father_height_cm = 190
)
predict(mdl_son_vs_father, really_tall_father)</pre>
```

```
really_short_father <- tibble(
  father_height_cm = 150
)
predict(mdl_son_vs_father, really_short_father)</pre>
```

183.7

163.2

Let's practice!

INTRODUCTION TO REGRESSION IN R

Transforming variables

INTRODUCTION TO REGRESSION IN R

Richie Cotton

Learning Solutions Architect at DataCamp

Perch dataset

```
library(dplyr)

perch <- fish %>%
  filter(species == "Perch")
```

species	mass_g	length_cm
Perch	5.9	7.5
Perch	32.0	12.5
Perch	40.0	13.8
Perch	51.5	15.0
Perch	70.0	15.7
•••	•••	•••

It's not a linear relationship

```
ggplot(perch, aes(length_cm, mass_g)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE)
```


Bream vs. perch

Plotting mass vs. length cubed

```
ggplot(perch, aes(length_cm ^ 3, mass_g)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE)
```


Modeling mass vs. length cubed

```
mdl_perch <- lm(mass_g ~ I(length_cm ^ 3), data = perch)
```

Predicting mass vs. length cubed

```
explanatory_data <- tibble(
  length_cm = seq(10, 40, 5)
)</pre>
```

```
prediction_data <- explanatory_data %>%
  mutate(
    mass_g = predict(mdl_perch, explanatory_data)
)
```

Plotting mass vs. length cubed

```
ggplot(perch, aes(length_cm ^ 3, mass_g)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE) +
  geom_point(data = prediction_data, color = "blue")
```



```
ggplot(perch, aes(length_cm, mass_g)) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE) +
  geom_point(data = prediction_data, color = "blue")
```


Facebook advertising dataset

How advertising works

- 1. Pay Facebook to shows ads.
- 2. People see the ads ("impressions").
- 3. Some people who see it, click it.

- 936 rows
- Each row represents 1 advert

spent_usd	n_impressions	n_clicks
1.43	7350	1
1.82	17861	2
1.25	4259	1
1.29	4133	1
4.77	15615	3
•••	•••	•••

Plot is cramped

```
ggplot(
  ad_conversion,
  aes(spent_usd, n_impressions)
) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE)
```


Square root vs square root

```
ggplot(
  ad_conversion,
  aes(sqrt(spent_usd), sqrt(n_impressions))
) +
  geom_point() +
  geom_smooth(method = "lm", se = FALSE)
```


Modeling and predicting

```
mdl_ad <- lm(
    sqrt(n_impressions) ~ sqrt(spent_usd),
    data = ad_conversion
)

explanatory_data <- tibble(
    spent_usd = seq(0, 600, 100)
)</pre>
```

```
prediction_data <- explanatory_data %>%
  mutate(
    sqrt_n_impressions = predict(
        mdl_ad, explanatory_data
    ),
    n_impressions = sqrt_n_impressions ^ 2
)
```

```
# A tibble: 7 x 3
  spent_usd sqrt_n_impressions n_impressions
      <dbl>
                         <dbl>
                                        <dbl>
                          15.3
                                         235.
          0
        100
                         598.
                                      357289.
        200
                         839.
                                      703890.
        300
                        1024.
                                     1048771.
                        1180.
                                     1392762.
5
        400
6
        500
                        1318.
                                     1736184.
                        1442.
                                     2079202.
        600
```

Let's practice!

INTRODUCTION TO REGRESSION IN R

