# Chapter 3 Data modelling and databases OLTP & OLAP

#### Outline

- Overview
- OLTP vs OLAP
- Data warehouse modeling
- Data warehouse design



# Heterogeneous data sources





# Why data integration

- To facilitate information access and reuse through a single information access point
- Data from different complementing information systems is to be combined to gain a more comprehensive basis to satisfy the need
  - Improve decision making
  - Improve customer experience
  - Increase competitiveness, Streamline operations
  - Increase productivity
  - Predict the future



# Data integration challenges

- Physical systems
  - Various hardwares, standards
  - Distributed deployment
  - Various data format
- Logical structures
  - Different data models
  - Different data schemas
- Business organization
  - Data security and privacy
  - Business rules and requirements
  - Different administrative zones in the business organization



#### Data Warehouse

- A single, complete and consistent store of data obtained from a variety of different sources made available to end users in a what they can understand and use in a business context. [Barry Devlin]
- A data warehouse is a copy of transaction data specifically structured for query and analysis [Ralph Kimball]
- Data from several operational sources (OLTP) are extracted, transformed, and loaded (ETL) into a data warehouse





# Data Warehouse usage

- Three kinds of data warehouse applications
  - Information processing
    - supports querying, basic statistical analysis, and reporting using crosstabs, tables, charts and graphs
  - Analytical processing
    - multidimensional analysis of data warehouse data
    - supports basic OLAP operations, slice-dice, drilling, pivoting
  - Data mining
    - knowledge discovery from hidden patterns
    - supports associations, constructing analytical models, performing classification and prediction, and presenting the mining results using visualization tools



# Data Warehouse usage



# Advantages

- High query performance
  - But not necessary most current information
- Does not interfere with local processing at sources
  - Complex queries at warehouse
  - OLTP at information sources



#### Characteristics of Data warehouse

- Subject-Oriented
- Integrated
- Time-variant
- Non-volatile



# Subject-Oriented

- Offer information regarding a theme instead of companies' ongoing operations
  - Subjects can be sales, marketing, distributions, etc.
  - A data warehouse never focuses on the ongoing operations
- Emphasis on modeling and analysis of data for decision making
  - Provide a simple and concise view around the specific subject by excluding data which not helpful



# Integrated

- Constructed by integrating multiple, heterogeneous data sources
  - Data needs to be stored in the Datawarehouse in a common and universally acceptable manner
  - This integration helps in effective analysis of data
- Data cleaning and data integration techniques are applied.
  - Ensure consistency in naming conventions, encoding structures, attribute measures, etc. among different data sources
    - E.g., Hotel price: currency, tax, breakfast covered, etc.
  - When data is moved to the warehouse, it is converted.





#### Time-Variant

- The time horizon for the data warehouse is significantly longer than that of operational systems
  - Operational database: current value data
  - Data warehouse data: provide information from a historical perspective (e.g., past 5-10 years)
- Every key structure in the data warehouse
  - Contains an element of time, explicitly or implicitly
  - But the key of operational data may or may not contain "time element"
- Data warehouse is loaded daily, hourly, or on some other periodic basis, and does not change within that period



Time Data
01/97 Data for January
02/97 Data for February
03/97 Data for March

03/97 Data for March

#### Non-volatile

- Historical data in a data warehouse should never be altered
  - Helps to analyze historical data and understand what & when happened
- Data is read-only
  - Does not require transaction process, recovery and concurrency control mechanisms
  - Delete, update, and insert are omitted
- Only two types of data operations
  - Data loading
  - Data access (reading)



# **Data Warehousing**

 A process for assembling and managing data from various sources for the purpose of answering business questions





#### ETL

- Extract
  - Get the data from source system as efficiently as possible
- Transform
  - Perform calculations on data
- Load
  - Load the data in the target storage





# Staging area

- An intermediate storage area used for data processing during the extract, transform and load (ETL) process
- Mainly required for timing reasons (optional)
  - If it is not feasible to extract all the data from all Operational databases at exactly the same time
- Objectives
  - Consolidation: as a large "bucket" in which data from multiple source systems can be temporarily placed for further processing
  - Alignment: standardization of reference data, validation of relationships between records and data elements from different sources
  - Minimizing contention: efficient data transfer from sources
  - Independent scheduling
  - Change detection
  - Cleansing data



# Why is ETL (System) Important?

- Adds value to data
  - Removes mistakes and corrects data
  - Documented measures of confidence in data
  - Captures the flow of transactional data
  - Adjusts data from multiple sources to be used together (conforming)
  - Structures data to be usable by BI tools
  - Enables subsequent business / analytical data procesing



# Metadata Repository

- Metadata is the data defining warehouse objects. It stores:
- Description of the structure of the data warehouse
  - schema, view, dimensions, hierarchies, derived data defn, data mart locations and contents
- Operational meta-data
  - data lineage (history of migrated data and transformation path), currency of data (active, archived, or purged), monitoring information (warehouse usage statistics, error reports, audit trails)
- The algorithms used for summarization
- The mapping from operational environment to the data warehouse
- Data related to system performance
  - warehouse schema, view and derived data definitions
- Business data
  - business terms and definitions, ownership of data, charging policies



## **OLTP vs OLAP**



#### OLTP (Online Transaction processing)

- OLTP is characterized by a large number of short online transactions (INSERT, UPDATE, DELETE).
- The main emphasis for OLTP systems is put on very fast query processing, maintaining data integrity in multi-access environments and an effectiveness measured by number of transactions per second.
- In OLTP database there is detailed and current data, and schema used to store transactional databases is the entity model (usually 3NF).



#### OLAP (Online analytical processing)

- Is characterized by relatively low volume of transactions.
- Queries are often very complex and involve aggregations.
- For OLAP systems a response time is an effectiveness measure.
- OLAP applications are widely used by Data Mining techniques.
- In OLAP database there is aggregated, historical data, stored in multi-dimensional schemas (usually star schema).



#### **OLTP vs OLAP**

- targets one specific process
- Many short transactions (queries + updates)
- Examples
  - Update account balance
  - Enroll in course
  - Add book to shopping cart
- Queries touch a small amounts of data (one record or a few records)
- Updates are frequent
- Concurrency is biggest performance concern

- integrates data from different processes
- often makes use of historical data
- Long transactions, complex, ad hoc queries
- Examples
  - Report total sales for each department in each month
  - Identify top selling books
- Queries touch large amounts of data
- Updates are infrequent
- Individual queries can require lots of resources



## OLTP vs. OLAP

|                    | OLTP                                                   | OLAP                                                                    |  |
|--------------------|--------------------------------------------------------|-------------------------------------------------------------------------|--|
| users              | clerk, IT professional                                 | knowledge worker                                                        |  |
| function           | day to day operations                                  | decision support                                                        |  |
| DB design          | application-oriented                                   | subject-oriented                                                        |  |
| data               | current, up-to-date detailed, flat relational isolated | historical,<br>summarized, multidimensional<br>integrated, consolidated |  |
| usage              | repetitive                                             | ad-hoc                                                                  |  |
| access             | read/write<br>index/hash on prim. key                  | lots of scans                                                           |  |
| unit of work       | short, simple transaction                              | complex query                                                           |  |
| # records accessed | tens                                                   | millions                                                                |  |
| #users             | thousands                                              | hundreds                                                                |  |
| DB size            | 100MB-GB                                               | 100GB-TB                                                                |  |
| metric             | transaction throughput                                 | query throughput, response                                              |  |



# OLAP & OLTP: Different performance requirements

- Transaction processing (OLTP)
  - Fast response time important
  - Data must be up-to-date, consistent at all times
- Data analysis (OLAP)
  - Queries can consume lots of resources
  - Operating on static "snapshot" of data
- OLAP queries would degrade operational DB
  - Analysis query asks for sum of all sales
  - Acquires lock on sales table
  - New sales transaction is blocked



# OLAP & OLTP: Different data modeling requirements

#### OLTP

- Normalized schema for consistency
- Complex data models, many tables
- Limited number of standardized queries and updates

#### OLAP

- Simplicity of data model is important
- De-normalized schemas are common
  - Fewer joins -> improved query performance
  - Fewer tables -> schema is easier to understand



# Data Warehouse Modeling

Data Cube and OLAP models and operations



#### Multi-dimensional data model

- A data warehouse is based on a multidimensional data model, which views data in the form of a data cube.
  - optimized for very quick data analysis
- A data cube allows data to be modeled and viewed in multiple dimensions.
  - Fact tables contain measures of interest (such as dollars) sold) and keys to each of the related dimension tables.
  - Dimension tables provide the context of the measures such as item (item name, brand), product, location or time(day, week, month, quarter, year).



## Multi-dimensional data representation

Relational table only represents multi-dimensional data in two dimensions

| ID | Product | Country | Date | Sales |
|----|---------|---------|------|-------|
| 1  | TV      | US      | 1Qtr | 100   |
| 2  | PC      | Canada  | 4Qtr | 500   |
| 3  | CAR     | US      | 2Qtr | 30    |
| 4  | PC      | UK      | 3Qtr | 200   |
| 5  | CAR     | UK      | 1Qtr | 20    |
| 6  | CAR     | UK      | 2Qtr | 15    |
| 7  | TV      | Canada  | 4Qtr | 80    |

- Cube represents data as cells in an array
  - Each side of cube is a dimension



#### From Tables to Data Cubes



#### Multidimensional Data

 Sales volume as a function of product, month, and region

• For each dimension, the set of values can be organized in a hierarchy Dimensions: *Product, Location, Time* 

Hierarchical summarization paths







# Browsing a Data Cube





#### **Cube: A Lattice of Cuboids**





# An example of cuboids



Q2

Q3



Sales(QI, Japan, Food), Sales(QI, Japan, NonFood)

Sales(Q2, Japan, Food), Sales(Q2, Japan, NonFood)

Sales(Q3, Japan, Food), Sales(Q3, Japan, NonFood) Sales(Q4, Japan, Food), Sales(Q4, Japan, NonFood) 

#### **Cube: A Lattice of Cuboids**





# Data Warehouse Schemas (Conceptual)

- Star Schema
  - A fact table in the middle connected to a set of dimension. tables
- Snowflake Schema
  - A refinement of star schema where some dimensional hierarchy is normalized into a set of smaller dimension tables, forming a shape similar to snowflake
- Fact Constellations
  - Multiple fact tables sharing dimension tables, viewed as a collection of stars, therefore called galaxy schema or fact constellation



#### The Star Schema



### The Star Schema: An Example



| customer | <u>custld</u> name |       | address   | city |  |
|----------|--------------------|-------|-----------|------|--|
|          | 53                 | joe   | 10 main   | sfo  |  |
|          | 81                 | fred  | 12 main   | sfo  |  |
|          | 111                | sally | 80 willow | la   |  |



#### The Snowflake Schema



#### The Fact Constellation Schema



### **Concept Hierarchy**

 Define a sequence of mappings from a set of very sepecific, low-level concepts to more general, higherlevel concepts

 E.g. concept of Location Location all North\_America Europe region Canada Germany ... Spain country Vançouver... Frankfurt ... **Toronto** Chan ... M. Wind office



### **Concept Hierarchy**

- Concept hierarchies are useful to perform OLAP
  - Data are organized in multiple dimensions where each dimension contains multiple levels of abstraction defined by concept hierarchies
    - It give flexibility to summarize data on various levels of granularity
    - And OLAP operations enable materialization of such views



### **Set-Grouping Hierarchy**





### Typical OLAP Operations

- Roll up (drill-up): summarize data
  - by climbing up hierarchy or by dimension reduction
- Drill down (roll down): reverse of roll-up
  - from higher level summary to lower-level summary or detailed data, or introducing new dimensions
- Slice and dice: project and select
- Pivot (rotate):
  - reorient the cube, visualization, 3D to series of 2D planes



## Slice





item(types)





### Roll-Up & Drill-Down

Higher Level of Aggregation

Roll Up

- Sales Channel
- Region
- Country
- State
- Location Address
- Sales Representative

Drill-Down

Low-level Details



#### Roll UP





item(types)







### Pivot (1)

- Pivot is also called a rotation.
- Pivot rotates the data axes in view to provide an alternative presentation of the data.
- It may contain swapping the rows and columns or moving one of the row-dimensions into the column dimensions.





ocations

Item

(types)

### Pivot (2)





# Pivot (3)

| ORDERID | PRODUC  | VARIANT       | QUANTITY | PRODUC  | Blue | Red | White |
|---------|---------|---------------|----------|---------|------|-----|-------|
| 1       | Helmets | Blue          | 10       | Helmets | Σ    | Σ   | Σ     |
| 2       | Helmets | White         | 5        | Caps    | Σ    | Σ   | Σ     |
| 3       | Helmets | Red           | 20       | Chapeau | Σ    | Σ   | Σ     |
| 4       | Caps    | Red           | 15       |         |      |     |       |
| 5       | Chapeau | White         | 10       |         |      |     |       |
| 6       | Chapeau | Red           | 30       |         |      |     |       |
| 7       | Helmets | White         | 5        |         |      |     |       |
| 8       | Caps    | Red           | 5        |         |      |     |       |
|         |         | $\overline{}$ |          |         |      |     |       |

### A Star-Net Query Model



#### Data Warehouse Design



#### 3-tier data warehouse architecture





#### Enterprise warehouse & data marts

- Enterprise warehouse
  - collects all of the information about subjects spanning the entire organization
- Data mart
  - Holds data only for a specific department or line of business, such as sales, finance, or human resources.
  - A data warehouse can feed data to a data mart
  - A data mart can feed a data warehouse.



#### A Recommended Approach



### Summary

- Data warehousing: A multi-dimensional model of a data warehouse
  - A data cube consists of dimensions & measures
  - Star schema, snowflake schema, fact constellations
  - OLAP operations: drilling, rolling, slicing, dicing and pivoting
- Data Warehouse Architecture, Design, and Usage
  - Multi-tiered architecture
  - Business analysis design framework
  - Information processing, analytical processing, data mining
- Implementation: Efficient computation of data cubes
  - Partial vs. full vs. no materialization
  - Indexing OALP data: Bitmap index and join index
  - OLAP query processing
  - OLAP servers: ROLAP, MOLAP, HOLAP



#### References (I)

- S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan, and S. Sarawagi. On the computation of multidimensional aggregates. VLDB'96
- D. Agrawal, A. E. Abbadi, A. Singh, and T. Yurek. Efficient view maintenance in data warehouses. SIGMOD'97
- R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional databases. ICDE'97
- S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology.
   ACM SIGMOD Record, 26:65-74, 1997
- E. F. Codd, S. B. Codd, and C. T. Salley. Beyond decision support. Computer World, 27, July 1993.
- J. Gray, et al. Data cube: A relational aggregation operator generalizing group-by, cross-tab and sub-totals. Data Mining and Knowledge Discovery, 1:29-54, 1997.
- A. Gupta and I. S. Mumick. Materialized Views: Techniques, Implementations, and Applications. MIT Press, 1999.
- J. Han. Towards on-line analytical mining in large databases. *ACM SIGMOD Record*, 27:97-107, 1998.
- V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes efficiently.
   SIGMOD'96
- J. Hellerstein, P. Haas, and H. Wang. Online aggregation. SIGMOD'97



#### References (II)

- C. Imhoff, N. Galemmo, and J. G. Geiger. Mastering Data Warehouse Design: Relational and Dimensional Techniques. John Wiley, 2003
- W. H. Inmon. Building the Data Warehouse. John Wiley, 1996
- R. Kimball and M. Ross. The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling. 2ed. John Wiley, 2002
- P. O'Neil and G. Graefe. Multi-table joins through bitmapped join indices. SIGMOD Record, 24:8–11, Sept. 1995.
- P. O'Neil and D. Quass. Improved query performance with variant indexes. SIGMOD'97
- Microsoft. OLEDB for OLAP programmer's reference version 1.0. In http://www.microsoft.com/data/oledb/olap, 1998
- S. Sarawagi and M. Stonebraker. Efficient organization of large multidimensional arrays. ICDE'94
- A. Shoshani. OLAP and statistical databases: Similarities and differences. PODS'00.
- D. Srivastava, S. Dar, H. V. Jagadish, and A. V. Levy. Answering queries with aggregation using views. VLDB'96
- P. Valduriez. Join indices. ACM Trans. Database Systems, 12:218-246, 1987.
- J. Widom. Research problems in data warehousing. CIKM'95
- K. Wu, E. Otoo, and A. Shoshani, Optimal Bitmap Indices with Efficient Compression, ACM Trans. on Database Systems (TODS), 31(1): 1-38, 2006





VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

#### Thank you for your attention!!!

