SMALL-SCALE COHERENTLY STIMULATED BRILLOUIN SPECTROSCOPY

By Joel N. Johnson

A Dissertation

Submitted in Partial Fulfillment
of the Requirements for the Degree of
Doctor of Philosophy
in Applied Physics and Materials Science

Northern Arizona University
!Month YYYY!

Ryan O. Behunin, Ph.D., Co-Chair
John G. Gibbs, Ph.D., Co-Chair
Inès Montaño, Ph.D.
Jennifer S. Martinez, Ph.D.

Table of Contents

Li	t of Tables	iv
Li	t of Figures	\mathbf{v}
D	dication	vii
Pı	eface	ix
1	Introduction 1.1 Spontaneous Brillouin Scattering	1 1 2
	1.3 Phase-matching	2 2 2 3
2	Foundational Experimental Techniques and Instrumentation 2.1 Experimental Techniques 2.1.1 ways we can direct light in a photonic system 2.1.2 photonic devices and diagrams 2.1.3 ways we can select and isolate signals 2.1.4 heterodyne detection and the role of the LO 2.1.5 loss in a photonic system 2.1.6 free space optics and beam alignment 2.1.7 special fiber types and properties 2.2 Optical Instrumentation 2.3 Electronic Instrumentation 2.4 Noise and Background Handling 2.5 Custom Software 2.5.1 Description of Python Script for CABS Data Collection	5 5 6 6 6 6 6 6 6 6 7 7 7 7 8 8 8 8 8 8 8 8
3	2.5.2 Description of Plotting Data in Go Program Manuscript I: Laser cooling of traveling wave phonons in an optical fiber 3.1 Optomechanical Cooling and Heating	8 9 9 9 9 9 9 9 9 9

	3.5.2 Pump-Probe Experiment Results	9
	3.6 Discussion	9
	3.6.1 Application to Ground State Cooling	9
	3.6.2 Standardized Cooling Metric	9
	3.6.3 Syncronous Achievement by Max Plank Group	9
	3.6.3.1 Platform: Tapered chalcogenide Photonic Crystal Fiber	9
4	Manuscript II: A coherently stimulated phonon spectrometer	11
-	4.1 Abstract	11
	4.2 Introduction	11
	4.2.1 Theory of CABS	11
	4.2.2 Phase-matching at short lengths	11
	4.3 Methods	11
	4.3.1 Theory of CABS	11
	4.3.2 Phase-matching bandwidth	12
	4.4 Results	$\frac{12}{12}$
	4.4.1 Design of instrument	12
	4.4.2 From fiber-coupled to micrometer-scale free-space	12
	4.4.3 Relaxation of Phase-matching conditions	12
	4.5 Discussion	12
	4.6 Acknowledgements	12
	4.7 Appendix	12
	4.7.1 Equal contribution of P, S, Pr	12
5	Manuscript III: Brillouin-induced Raman modes	15
9	5.1 Abstract	15 15
	5.2 Introduction	15
	5.2 Introduction	10
6	Manuscript IV: Nanoscale Brillouin scattering	17
	6.1 Abstract	17
	6.2 Introduction	17
7	Discussion & Conclusion	10
7	Discussion & Conclusion	19
\mathbf{A}	Acronyms	21
В	Code	23
_	B.1 Python Code for CABS Data Collection	23
	B.2 Plotting Data In Go Program	24
	2.2 Flowing Data in Go Frogram	
\mathbf{C}	Supplementary Information for Chapter 3: Manuscript I	25
	C.1 Data	25
D	Supplementary Information for Chapter ??: Manuscript II	27
_	D.1 Data	27
ъ	c.	00
K€	eferences	28

List of Tables

5.1	Table caption	16
6.1	Table caption	18

List of Figures

4.1	CABS measurement of 100um of CS2.														13	

Dedication

Preface

Introduction

Optomechanics is the study of light-matter interactions; it is the study of how the intangible (light) can affect change in the tangible (matter) and visa-versa. Injecting light into a material under specific conditions allows for an exchange of energy to occur between the light and the mechanical oscillations of the material which changes the mechanical energy of the material. This interaction can be controlled to deposit or withdraw mechanical energy into/from a system and thus leave the system in a more, or less, mechanically energizetic state respectively. The same interaction can be harnessed instead for passive observation of material properties. Mechanical systems from bulk to atomic scales can be probed and characterized with light by retrieving the inelastically scattered light resulting from interaction with the material. This retrieved light contains embedded information about the energy exchange that occured which, when considered as part of a population of scattering events, reveals natural resonances of a mechanical system.

1.1 Spontaneous Brillouin Scattering

1.2 Stimulated Brillouin Scattering

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

1.3 Phase-matching

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

1.4 Brillouin Gain of Materials

1.5 Raman Scattering

Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

1.6 Raman-like Brillouin Modes

Foundational Experimental Techniques and Instrumentation

This is an inline citation, Boyd (2020). This is a parenthetical citation (Boyd, 2020). This is a figure reference (Figure ??). This is a section reference §??. This is a chapter reference with chapter spelled out: ??. This is an acronym definition American Geophysical Union (AGU). This is the second time I use the acronym in this section AGU. This is if I want to spell out the full acronym again American Geophysical Union (AGU). Define new acronyms in the acronyms.tex file.

2.1 Experimental Techniques

- 2.1.1 ways we can direct light in a photonic system
- 2.1.2 photonic devices and diagrams
- 2.1.3 ways we can select and isolate signals
- 2.1.4 heterodyne detection and the role of the LO
- 2.1.5 loss in a photonic system
- 2.1.6 free space optics and beam alignment
- 2.1.7 special fiber types and properties

2.2 Optical Instrumentation

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

2.3 Electronic Instrumentation

2.4 Noise and Background Handling

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

2.5 Custom Software

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

2.5.1 Description of Python Script for CABS Data Collection

2.5.2 Description of Plotting Data in Go Program

Manuscript I: Laser cooling of traveling wave phonons in an optical fiber

- 3.1 Optomechanical Cooling and Heating
- 3.2 Cooling Platform: CS₂-Liquid Core Optical Fiber
- 3.2.1 Optomechanical Properties
- 3.2.2 Fabrication
- 3.2.3 Fabrication Iterative Refinement
- 3.3 Intention of the Pump-Probe Experiment
- 3.4 Experimental Setup
- 3.4.1 Main Experiment
- 3.4.2 Pump-Probe Experiment
- 3.5 Results
- 3.5.1 Main Experiment Results
- 3.5.2 Pump-Probe Experiment Results
- 3.6 Discussion
- 3.6.1 Application to Ground State Cooling
- 3.6.2 Standardized Cooling Metric
- 3.6.3 Syncronous Achievement by Max Plank Group
- 3.6.3.1 Platform: Tapered chalcogenide Photonic Crystal Fiber

Manuscript II: A coherently stimulated phonon spectrometer

Joel N. Johnson^{1,2}, Nils T. Otterstrom³, Peter T. Rakich⁴, Ryan O. Behunin^{1,2}

This is the Accepted Manuscript version of an article accepted for publication in Nature Photonics. Wiley Inc is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at https://doi.org/.

4.1 Abstract

4.2 Introduction

State of brillouin microscopy Applications and usefulness Challenges: selection of backscattered signal conflated with Stokes field phase-matching requires probe wavelength to be exactly that of Stokes Wouldn't it be nice if we could break free of strict phase-matching requirements, therefore perfectly isolating the signal In this work

4.2.1 Theory of CABS

description of physics with scattered power equation

4.2.2 Phase-matching at short lengths

phase-matching bandwidth description with equation

4.3 Methods

4.3.1 Theory of CABS

full CABS theory arriving at scattered power

¹ Department of Applied Physics and Materials Science, Northern Arizona University, Flagstaff, AZ 86011, USA

² Center for Materials Interfaces in Research and Applications, Flagstaff, AZ 86011, USA

 $^{^3}$ Sandia National Laboratory, 1515 Eubank Blvd SE, Albuquerque, NM 87123, USA

⁴ Department of Applied Physics, Yale University, New Haven, CT 06520, USA

4.3.2 Phase-matching bandwidth

phase-matching bandwidth theory

4.4 Results

4.4.1 Design of instrument

description of design figure: instrument apparatus design sensitivity measurements

4.4.2 From fiber-coupled to micrometer-scale free-space

figure: demonstration measurements 1mm uhna3 fiber 1mm CS2 bulk comparison to stimulated brillouin and spontaneous brillouin?

4.4.3 Relaxation of Phase-matching conditions

figure: phase-matching peak vs pump-probe separation 1cm uhna3, CS2 peak vs pump-probe separation 1mm uhna3, CS2

4.5 Discussion

4.6 Acknowledgements

4.7 Appendix

4.7.1 Equal contribution of P, S, Pr

figure: P, S, Pr equal contributors

100 μm CS2 CABS

Figure 4.1: CABS measurement of 100um of CS2.

Manuscript III: Brillouin-induced Raman modes

5.1 Abstract

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus

libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat

ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut

massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes,

nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus

luctus mauris.

5.2 Introduction

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus

libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat

ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut

massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes,

nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus

luctus mauris.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam

lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum,

erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse

ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient

montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque

cursus luctus mauris.

15

Table 5.1: Table caption.

	Parameter	Value	Description					
	lat	-85°-85°	Latitude (35 bins in 5° increments)					
Looleum	ALBEDO	0.05 – 0.225	Bolometric albedo (6 bins in 0.035 increments)					
Lookup Variables	SLOPE	0°-90°	Surface slope (19 bins in 5° increments)					
variables	SLOAZI	0°-360°	Surface azimuth (19 bins in 20° increments)					
	DELLS	$4 \degree$	L_s step size (90 bins spanning 0°-360°)					
	EMISS	0.96	Emissivity					
	thick	0.05	Upper layer thickness [m]					
	DENSITY	1100	Upper layer density [kg/m ³]					
Thermal	DENS2	1800	Lower layer density [kg/m ³]					
Parameters	lbound	18	Interior heat flow $[mW/m^2]$					
	PhotoFunc	0.045/albedo	Photometric function (Keihm-style)					
	SphUp0/SphLo0	602.88098583						
	SphUp1/SphLo1	235.98988249	Specific heat capacity expressed as 4th-order					
	SphUp2/SphLo2	-29.59742178	polynomial $(c0 + c1 \cdot T + c2 \cdot T^2 + c3 \cdot T^3)$					
	$\mathrm{SphUp3/SphLo3}$	-3.78707193						
Temperature-dependent parameters	ConUp0 ConUp1 ConUp2 ConUp3	0.00133644 0.00073150 0.00033250 0.00005038	Upper layer conductivity expressed as 4th-order polynomial $ (c0+c1\cdot T+c2\cdot T^2+c3\cdot T^3) $					
	ConLo0	0.00634807	T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
	ConLo1	0.00347464	Lower layer conductivity expressed as					
	ConLo2	0.00157938	4th-order polynomial					
	ConLo3	0.00023930	$(c0 + c1 \cdot T + c2 \cdot T^2 + c3 \cdot T^3)$					
	body	Moon	Target body					
	k_style	Moon	Conductivity style (Moon for airless bodies)					
	LKofT	${ m T}$	Temperature-dependent conductivity					
Model Setup	FLAY	0.01	First layer thickness [m]					
Parameters	RLAY	1.3	Layer thickness multiplier					
	N1	26	Number of layers					
	N24	288	Timesteps per day (5 min steps)					
	DJUL	0	Start date					

Manuscript IV: Nanoscale Brillouin scattering

6.1 Abstract

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus

libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat

ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut

massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes,

nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus

luctus mauris.

6.2 Introduction

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus

libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat

ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut

massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes,

nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus

luctus mauris.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam

lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum,

erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse

ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient

montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque

cursus luctus mauris.

17

Table 6.1: Table caption.

	Parameter	Value	Description					
	lat	-85°-85°	Latitude (35 bins in 5° increments)					
Looleum	ALBEDO	0.05 – 0.225	Bolometric albedo (6 bins in 0.035 increments)					
Lookup Variables	SLOPE	0°-90°	Surface slope (19 bins in 5° increments)					
variables	SLOAZI	0°-360°	Surface azimuth (19 bins in 20° increments)					
	DELLS	$4 \degree$	L_s step size (90 bins spanning 0°-360°)					
	EMISS	0.96	Emissivity					
	thick	0.05	Upper layer thickness [m]					
	DENSITY	1100	Upper layer density [kg/m ³]					
Thermal	DENS2	1800	Lower layer density [kg/m ³]					
Parameters	lbound	18	Interior heat flow $[mW/m^2]$					
	PhotoFunc	0.045/albedo	Photometric function (Keihm-style)					
	SphUp0/SphLo0	602.88098583						
	SphUp1/SphLo1	235.98988249	Specific heat capacity expressed as 4th-order					
	SphUp2/SphLo2	-29.59742178	polynomial $(c0 + c1 \cdot T + c2 \cdot T^2 + c3 \cdot T^3)$					
	$\mathrm{SphUp3/SphLo3}$	-3.78707193						
Temperature-dependent parameters	ConUp0 ConUp1 ConUp2 ConUp3	0.00133644 0.00073150 0.00033250 0.00005038	Upper layer conductivity expressed as 4th-order polynomial $ (c0+c1\cdot T+c2\cdot T^2+c3\cdot T^3) $					
	ConLo0	0.00634807	T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
	ConLo1	0.00347464	Lower layer conductivity expressed as					
	ConLo2	0.00157938	4th-order polynomial					
	ConLo3	0.00023930	$(c0 + c1 \cdot T + c2 \cdot T^2 + c3 \cdot T^3)$					
	body	Moon	Target body					
	k_style	Moon	Conductivity style (Moon for airless bodies)					
	LKofT	${ m T}$	Temperature-dependent conductivity					
Model Setup	FLAY	0.01	First layer thickness [m]					
Parameters	RLAY	1.3	Layer thickness multiplier					
	N1	26	Number of layers					
	N24	288	Timesteps per day (5 min steps)					
	DJUL	0	Start date					

Discussion & Conclusion

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Appendix A

Acronyms

AGU American Geophysical Union

Appendix B

 \mathbf{Code}

B.1 Python Code for CABS Data Collection

B.2 Plotting Data In Go Program

Appendix C

Supplementary Information for Chapter 3: Manuscript I

C.1 Data

Appendix D

Supplementary Information for Chapter ??: Manuscript II

D.1 Data

References

Boyd, R. W. 2020, Nonlinear optics (Academic press)