ИНФОРМАЦИОННАЯ ТЕХНОЛОГИЯ

ИНТЕРФЕЙСЫ ДЛЯ СОПРЯЖЕНИЯ РАДИОЭЛЕКТРОННЫХ СРЕДСТВ

основные положения

Издание официальное

ГОССТАНДАРТ РОССИИ Москва

ПРЕДИСЛОВИЕ

- 1 ПОДГОТОВЛЕН И ВНЕСЕН ТЕХНИЧЕСКИМ КОМИТЕТОМ ПО СТАН-ДАРТИЗАЦИИ "ИНФОРМАЦИОННАЯ ТЕХНОЛОГИЯ (ТК22)"
- 2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ

Постановлением Госстандарта России № 3 от 10 января 1993 г.

- 3 Срок первой проверки 1997 г., периодичность проверки 5 лет
- 4 Введен впервые

© Издательство стандартов, 1993

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен без разрещения Госстандарта России

СОДЕРЖАНИЕ

1 Область применения	1
2 Нормативные ссылки	1
3 Основные положения ,	
3.1 Структура и состав интерфейсов	
3.2 Уровни конструктивного исполнения	
4 Классификация интерфейсов	
4.1 Функциональное назначение	
4.2 Уровень конструктивного исполнения	
4,3 Принцип обмена данными	
4.4 Способ обмена данными	5
4.5 Режим обмена данными	
4.6 Структура организации взаимодействия абонентов	
5 Содержание НТД на интерфейсы	
Приложение. Структурная схема классификации интерфейсов 10	

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Информационная технология

ИНТЕРФЕЙСЫ ДЛЯ СОПРЯЖЕНИЯ РАДИОЭЛЕКТРОННЫХ СРЕДСТВ

Основные положения

Information technology. Interfaces for interconnection of the radioelectronic facilities. General regulations

Дата введения 1994-01-01

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт распространяется на интерфейсы для сопряжения радиоэлектронных средств (РЭС), обеспечивающие обмен данными между элементами в радиоэлектронных системах.

Стандарт устанавливает:

- состав и структуру интерфейсов;
- классификацию интерфейсов;
- требования к содержанию нормативно-технических документов (НТД) на интерфейс следующих категорий: государственных стандартов, отраслевых стандартов, стандартов предприятия, руководящих документов.

Разработка новых и пересмотр действующих НТД на интерфейсы, за исключением прямого внедрения международных стандартов, должны проводиться с учетом требований настоящего стандарта. Термины, применяемые в настоящем стандарте, и их определения — по ГОСТ Р 50304.

2 НОРМАТИВНЫЕ ССЫЛКИ

- ГОСТ Р 1.5 Государственная система стандартизации. Построение, изложение, оформление и содержание стандартов.
- ГОСТ 26632 Уровни разукрупнения радиоэлектронных средств по функционально-констуктивной сложности. Термины и определения.
- ГОСТ Р 50304 Системы для сопряжения радиоэлектронных средств интерфейсные. Термины и определения.

Издание официальное

3 ОСНОВНЫЕ ПОЛОЖЕНИЯ

3.1 Структура и состав интерфейсов

Состав требований к интерфейсам включает:

- требования к логической организации;
- требования к физической реализации.
- 3.1.1 Логическая организация интерфейса предусматривает совокупность правил по подсоединению абонентов, организации обмена между ними с обеспечением информационной совместимости и определяет следующие требования:
- состав и логическую организацию линий и шин интерфейса, а также указаний по их функционированию и характеру логических сигналов в линиях;
- возможные способы взаимного подсоединения устройств в системе обработки информации, реализуемые данным интерфейсом;
- набор процедур по реализации взаимодействия абонентов посредством интерфейса, условия и характер их выполнения для различных режимов функционирования;
- способы кодирования и форматы команд, данных, адресной информации и информации состояния, а также форматы сообщений;
- временные соотношения между управляющими сигналами в последовательностях и временные ограничения на выполнение процедур;
- наименование и описание алгоритмов и параметров подпрограмм выполнения процедур интерфейса, описание языков программирования для программируемых приборов, состав, алгоритмы и описание параметров микропрограмм для программируемых интерфейсных БИС и т. п.

Формат сообщения, предназначенного для передачи команд, данных, адресной информации, информации состояния и служебной информации, устанавливает состав, назначение, размеры и взаимное расположение полей и отдельных элементов сообщения. В качестве единицы обмена информацией устанавливается слово или его часть (полуслово, байт, бит).

3.1.2 Физическая реализация интерфейса предусматривает способы физической организации линий интерфейса, средства передачи сигналов, элементы соединения с аппаратурой абонентов, конструктивное исполнение линий, соединений и элементов устройств.

Физическая реализация интерфейса должна обеспечивать электрическую и конструктивную совместимость абонентов и определяет требования по электрическим и конструктивным характеристикам.

Требования по электрическим характеристикам устанавливают:

— тип используемой для линий интерфейса физической среды передачи сигналов и ее физические характеристики, например, для провод-

ных линий — волновое сопротивление, емкостные характеристики, затухание, длины отводов, средства согласования, организация экранировки и заземления и т. д.;

- уровни сигналов для определения логического состояния линии, допустимые уровни статической и импульсной помехи, динамические характеристики сигнала;
- предельные длины линий, число подключаемых абонентов, а также допустимые минимальные и максимальные расстояния между абонентами;
- требования к передатчикам и приемникам сигналов, включая допустимые выходные и входные уровни напряжений и токов, вносимые емкости, нагрузочную способность, напряжения электропитания;
- требования к подключению и отключению абонентов к линиям, а также к включению и отключению электропитания;
- устойчивость к внешним воздействующим факторам (ВВФ) в соответствии с требованиями абонентов к ВВФ;

Требования по конструктивным характеристикам устанавливают:

- типы используемых для линий кабелей и проводов;
- типы соединителей и их конструктивное исполнение, включая указание габаритных, присоединительных и установочных размеров и др.;
 - распределение линий интерфейса по контактам соединителей;
- конструкцию интерфейсных кабелей, элементов согласования, переходных устройств;
- конструктивное исполнение элементов устройств (плат, блоков) с учетом расположения соединителей.
- 3,1,3 Необходимый состав характеристик и требований к интерфейсу конкретного типа спедует устанавливать в стандартах или технических условиях (ТУ) на эти интерфейсы в соответствии с требованиями настоящего стандарта.

3,2 Уровни конструктивного исполнения

Уровни конструктивного исполнения взаимодействующих элементов РЭС устанавливаются по ГОСТ 26632.

4 КЛАССИФИКАЦИЯ ИНТЕРФЕЙСОВ

В зависимости от назначения, функций, организации систем и обмена данными, конструктивного исполнения интерфейсы объединяются в группы по следующим признакам:

- по функциональному назначению;
- по уровню конструктивного исполнения;
- по признаку обмена данными;
- по способу обмена данными;

- по режиму обмена данными;
- по структуре организации систем.

Структурная схема классификации интерфейсов дана в приложении.

- 4.1 Функциональное назначение
- 4.1.1 Межсистемный интерфейс

Интерфейс, обеспечивающий взаимодействие между двумя и более радиоэлектронными системами и комплексами.

4.1.2 Системные интерфейсы ЭВМ и сосредоточенных систем обработки информации

Системные (внутрисистемные) интерфейсы предназначены для сопряжения одного или нескольких центральных процессоров с основными системными устройствами ЭВМ, в т. ч. со специализированными процессорами.

4.1.3 Периферийные интерфейсы

Периферийные интерфейсы предназначены для сопряжения контроллеров, устройств ввода-вывода, внешних запоминающих устройств и т. д.

4.1.4 Интерфейсы (стыки) систем передачи данных

Интерфейсы (стыки) систем передачи данных предназначены для сопряжения оконечного оборудования данных (ООД) и аппаратуры канала данных (АКД), а также отдельного промежуточного оборудования, которое может быть включено между ООД и АКД.

4.1.5 Интерфейсы оборудования управления технологическими процессами

Интерфейсы оборудования управления технологическими процессами (измерительные и управляющие интерфейсы) предназначены для сопряжения средств обработки информации с оборудованием измерения и управления технологическими процессами при построении информационных, измерительных и управляющих вычислительных систем.

4.1.6 Интерфейсы магистрально-модульных систем

Интерфейсы магистрально-модульных систем (ИММС) представляют многоуровневую интерфейсную систему, обеспечивающую взаимодействие абонентов в виде модулей на одном или различных уровнях системы (внутримодульном, межмодульном, межсистемном).

ИММС содержит, как правило, несколько магистралей (системную и специализированные) или использует один и тот же магистральный интерфейс на различных уровнях системы.

4.1.7 Интерфейсы локальных вычислительных сетей Интерфейсы локальных вычислительных сетей (ЛВС) предназначены для образования ЛВС, представляющих собой в общем случае коммуникационную систему, позволяющую при помощи единой передающей среды взаимодействовать друг с другом однотипным или разнородным средствам вычислительной техники (большим и малым ЭВМ, специализированным процессорам, ПЭВМ, терминалам и терминальным станциям, различным периферийным устройствам, накопителям на магнитных дисках и магнитных лентах, а также специализированным средствам).

4.1.8 Интерфейсы рассредоточенных систем управления (РСУ)

Интерфейсы систем обработки информации, предназначенные для управления рассредоточенными объектами в реальном масштабе времени.

4.2. Уровень конструктивного исполнения

4.2.1 Межмодульный интерфейс

Межмодульный интерфейс предназначен для сопряжения компонентов радиоэлектронной системы на уровне радиоэлектронного устройства, шкафа, радиоэлектронного модуля 1, 2 и 3-го уровней.

4.2.2 Внутримодульный интерфейс

Внутримодульный интерфейс предназначен для сопряжения компонентов модулей 1, 2 и 3-го уровней.

4.3 Принцип обмена данными

4.3.1 Синхронный обмен данными

Синхронный обмен данными — это обмен сигналами в интерфейсе, при котором темп выдачи и приема данных задается при помощи регулярной последовательности управляющих синхронных сигналов.

4.3.2 Асинхронный обмен данными

Асинхронный обмен данными — это обмен сигналами в интерфейсе, при котором передача данных происходит после получения сигнала абонента-приемника, подтверждающего готовность к приему, и завершается подтверждением о приеме данных.

4.4 Способ обмена данными

4.4.1 Параллельный интерфейс

Параллельный интерфейс — это интерфейс, в котором передача данных осуществляется по нескольким параллельным линиям интерфейса.

4.4.2 Последовательный интерфейс

Последовательный интерфейс — это интерфейс, в котором все информационные биты передаются по одной линии интерфейса.

4.5 Режим обмена данными

4.5.1 Двунаправленный режим одновременного обмена

Двунаправленный режим одновременного обмена – это режим,

при котором передача данных между абонентами может осуществляться одновременно в обоих направлениях.

4.5.2 Двунаправленный режим поочередного обмена

Двунаправленный режим поочередного обмена — это режим, при котором передача данных между абонентами осуществляется поочередно в каждом из двух направлений.

4.5.3 Однонаправленный режим обмена

Однонаправленный режим обмена — это режим, при котором передача данных между абонентами осуществляется только в одном заранее определенном направлении.

4.6 Структура организации взаимодействия абонентов

4.6.1 Радиальный интерфейс

Интерфейс, который обеспечивает взаимодействие двух абонентов с помощью индивидуальных линий интерфейса. Один из абонентов может выполнять функции задатчика, например, устройства управления (УУ). а другой — исполнителя.

4.6.2 Цепочечный интерфейс

Интерфейс, при котором абоненты соединены между собой последовательно посредством цепочки магистральных кабелей.

4.6.3 Кольцевой интерфейс

Интерфейс, при котором абоненты связаны между собой по кольцевой структуре.

4.6.4 Магистральный интерфейс

Интерфейс, при котором обеспечивается параллельное соединение всех абонентов к одной общей магистрали.

4.6.5 Матричный интерфейс

Матричный интерфейс — интерфейс, при котором взаимодействие абонентов осуществляется через коммутатор, реализующий перекрестные связи взаимодействующих абонентов.

4.6.6 Структура организации взаимодействия абонентов в конкретном интерфейсе может быть смещанной, например, радиально-магист-

ральной, когда адрес передается по радиальным линиям интерфейса, а данные — по одной общей магистрали, и т. д.

4.7 Для реализации системы обработки информации организуется интерфейсная система как совокупность интерфейсов для сопряжения РЭС,

5 СОДЕРЖАНИЕ НТД НА ИНТЕРФЕЙСЫ

- 5.1 НТД на интерфейсы РЭС должны включать следующие разделы:
- назначение и область применения:
- основные характеристики;
- логическая организация интерфейса;
- физическая реализация интерфейса;
- рекомендации по применению.
- 5.2 Раздел "Назначение и область применения" должен содержать сведения: о назначении интерфейса, какие возможности он обеспечивает и где может быть использован.
 - 5.3 В разделе "Основные характеристики" должны быть указаны:
- классификационные признаки интерфейса согласно настоящему стандарту;
 - формат обмена (бит, байт, полуслово, слово, сообщение и т. д.);
 - разрядность шин адреса/данных;
- минимальное время одного цикла обмена данными или быстродействие шин данных;
 - общее число линий интерфейса;
 - максимальное число абонентов, подключаемых к интерфейсу.
- 5.4 В разделе "Логическая организация интерфейса" должны быть определены требования в соответствии с 1.1.1.

Объем требований к логической организации конкретного интерфейса указывается в техническом задании (ТЗ) на разработку НТД на интерфейс.

- $5.5~\bar{B}$ разделе "Физическая реализация интерфейса" должны быть предусмотрены подразделы:
 - электрические характеристики интерфейса;
 - конструктивная реализация интерфейса.

Состав требований к электрическим характеристикам и конструктивной реализации интерфейса должны быть определены в соответствии с 1,1.2.

Объем требований к электрическим характеристикам и конструктивной реализации конкретного интерфейса указывается в ТЗ на разработку НТД на интерфейс.

5.6 Раздел "Рекомендации по применению" может содержать:

ГОСТ Р 34.1350-93

- примеры конструктивной реализации связей между абонентами;
- протоколы обмена для рекомендуемой архитектуры интерфейстой системы;
- указания по расширению интерфейса (например, по увеличению максимальной длины, максимального числа абонентов);
 - указания по построению интерфейсной части абонентов;
 - указания по способам контроля передачи информации;
- указания по организации технического обслуживания, включая организацию диагностики, тестирования, поиска неисправностей и др.;
 - другие необходимые сведения по применению интерфейса.
- 5.7 Состав разделов НТД и их содержание могут быть дополнены или сокращены в ТЗ на разработку НТД на конкретный интерфейс.

УДК 681.327.8:006.354

П85

Ключевые слова: обмен данными, интерфейс, логическая реализация, физическая реализация, интерфейсная система

Редактор В.П. Огурцов Технический редактор О.Н. Власова Корректор Н.Л. Шнайдер Оператор Т.Е. Ерофеева

Сдано в набор 26.02.93. Подп. в печ. 18.03.93. Усл.-печ. л. 0,93. Усл. кр.-отт. 0,93. Уч.-изд. л. 0,67. Тираж 577 экз. С 51. Зак. 1317

Ордена "Знак Почета" Издательство стандартов, 107076, Москва, Колодезный пер., 14.

Набрано в Изд-ве стандартов на НПУ.

Калужская типография стандартов.

Калужская типография стандартов. 248006, Калуга, ул. Московская, 256.