

Aufgaben zu Riemannschen Flächen

9. Blatt - Übung am Montag, 19.12.2016

Aufgabe 28: Zeigen Sie den Residuensatz auf \mathbb{CP}^1 mit Hilfe des Residuensatzes aus der Funktionentheorie.

Hinweis: Wählen Sie eine geeigneten Integrationsweg auf $\mathbb{CP}^1 = \mathbb{C} \sqcup \{\infty\}$.

Aufgabe 29: Sei $f:X\to\mathbb{CP}^1$ eine nicht-konstante, holomorphe Abbildung, X kompakte Riemannsche Fläche. Wir wissen (aus der Überlagerungstheorie), dass jeder Wert $c\in\mathbb{CP}^1$ gleich oft angenommen wird (mit Vielfachheit). Wie folgt das auch aus dem Residuensatz?

Aufgabe 30: Sei X eine Riemannsche Fläche und γ ein geschlossener Weg in X, der weder Null- noch Polstelle einer meromorphen Funktion $f \in \mathcal{M}(X)$ trifft. Zeigen Sie, dass

$$\int_{\gamma} \frac{df}{f} \in 2\pi i \mathbb{Z}$$

gilt.

Aufgabe 31: Sei $\Gamma = \mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2 \subset \mathbb{C}$ ein vollständiges Gitter und $T = \mathbb{C}/\Gamma$ der entsprechende Torus. Zeigen Sie, dass für eine meromorphe Funktion $f \in \mathcal{M}(T)$ gilt, dass

$$\sum_{p \in T} \nu_p(f) \cdot p = 0 \in T$$

gilt. Hierbei ist $\nu_p(f)$ die Null-/Polstellenordnung¹ von f bei p als doppelt-periodische meromorphe Funktion auf $\mathbb C$.

Beachte, dass $T=\mathbb{C}/\Gamma$ mit der von \mathbb{C} induzierten Addition eine abelsche Gruppe ist. Zudem scheint die meromorphe 1-Form

$$\frac{z \cdot f'(z)}{f(z)} \, dz$$

ganz hilfreich zu sein – dabei ist f als doppelt-periodische, meromorphe Funktion zu lesen, wenn von f'(z) die Rede ist.

¹Beachten Sie den Unterschied zur Definition der Ordnung einer holomorphen Abbildung $g:X\to Y$ (§3), bei der wir zur Definition Karten h für X und k für Y gewählt haben, so dass h(p)=0 und k(f(p))=0. Damit ist $\operatorname{ord}_p(f)\geq 1$. Im Gegensatz dazu ist $\nu_p(f)=0$, wenn f dort keine Null-/Polstelle hat. Man könnte das auch so ausdrücken, dass wir hier auf $Y=\mathbb{CP}^1$ im Gegensatz zur Wahl einer Karte k mit k(f(p))=0 immer eine der zwei Standardkarten auf \mathbb{CP}^1 , also id auf \mathbb{C} und 1/z auf $\mathbb{CP}^1\setminus\{\infty\}$, verwenden.