DIS2

1 Bias Variance for Ridge Regression

Recall the statistical model for ridge regression from lecture. We have a set of samples $\{x_i, y_i\}_{i=1}^n$ and **zero-mean** Gaussian noise z_i . Our model is then the following, where the rows of X are x_i :

$$Y = Xw^* + z$$

Throughout this problem, you may assume X^TX is invertible. Recall both least squares estimators we studied:

$$w_{\text{OLS}} = \min_{w \in \mathbb{R}^d} ||Xw - y||_2^2$$

$$w_{\text{Ridge}} = \min_{w \in \mathbb{R}^d} ||Xw - y||_2^2 + \lambda ||w||_2^2$$

- 1. Write the solution for w_{OLS} , w_{Ridge} . There's no need to re-derive it.
- 2. Let $\widehat{w} \in \mathbb{R}^d$ denote any estimator of w_* , the optimal weights. In the context of this problem, an estimator $\widehat{w} = \widehat{w}(X, y)$ is any function which takes the data X and the labels y, and computes a guess of w_* .

Define the MSE (mean squared error) of the estimator \widehat{w} as

$$MSE(\widehat{w}) := \mathbb{E} \Big[\Big\| \widehat{w} - w_* \Big\|_2^2 \Big].$$

Above, the expectation is taken with respect to the randomness inherent in the noise z.

Define $\widehat{\mu} := \mathbb{E}\widehat{w}$. Show that the MSE decomposes into

$$MSE(\widehat{w}) = \|\widehat{\mu} - w_*\|_2^2 + Tr(Cov(\widehat{w})).$$

Hint: Expectation and trace commute, so E[Tr(A)] = Tr(E[A]) for any square matrix A.

3. Show that

$$E[w_{\text{Ridge}}] = (X^{\top}X + \lambda I_d)^{-1}X^{\top}Xw_*.$$

Also compute $E[w_{OLS}]$ from your expression for $E[w_{Ridge}]$. Which estimator is biased, and which estimator is unbiased?

- 2 Independence and Multivariate Gaussians
 - 1. For $X = [X_1, \dots, X_n]^{\top} \sim \mathcal{N}(\mu, \Sigma)$, verify that if X_i, X_j are independent (for all $i \neq j$), then Σ must be diagonal, that is, X_i, X_j are uncorrelated.
 - 2. Let N=2, $\mu=\begin{pmatrix} 0\\0 \end{pmatrix}$, and $\Sigma=\begin{pmatrix} \alpha&\beta\\\beta&\gamma \end{pmatrix}$. Suppose $X=\begin{pmatrix} X_1\\X_2 \end{pmatrix}\sim \mathcal{N}(\mu,\Sigma)$. Show that X_1,X_2 are independent if $\beta=0$. Recall that two continuous random variables W, Y with joint density $f_{W,Y}$ and marginal densities f_W , f_Y are independent if $f_{W,Y}(w,y)=f_W(w)f_Y(y)$.