Example 5

In $\triangle ABC, AM$ is the median. ABGF and ACDE are squares. Prove: EF = 2AM.

Solution: Extend AM to N such that AM = MN. Connect BN.

Since
$$BM = CM, AM = MN$$
, and $\angle AMC = \angle NMB$, we have
$$\triangle AMC \cong \triangle NMB.$$
 Thus $BN = AC, \angle MNB = \angle MAC = \alpha$,
$$Connect \ EF.$$

$$\angle EAF = 360^{\circ} - 90^{\circ} - 90^{\circ} - \angle BAM - \angle MAC$$

$$= 180^{\circ} - \beta - \alpha.$$

$$\angle ABN = 180^{\circ} - \angle BAM - \angle MNB.$$
 Since $\angle MNB = \angle MAC = \alpha$,
$$\angle ABN = 180^{\circ} - \angle BAM - \angle MAC == 180^{\circ} - \beta$$

Therefore, $\angle ABN = \angle EAF$. In $\triangle EAF$ and $\triangle NBA$, AF = AB, AE = AC = BN, and $\angle ABN = \angle EAF$. Thus $\triangle EAF \cong \triangle NBA$. So EF = AN = 2AM.