常见的化学物质——空气和氢气

日期:	时间:	姓名:
Date:	Time:	Name:

初露锋芒

学习目标

&

重难点

1. 知道空气的组成;

- 2. 掌握空气中氧气含量测定的方法;
- 3. 掌握氧气的性质和制法,掌握催化剂的性质,学会多功能瓶的使用;
- 4. 掌握与催化剂有关的性质和实验;
- 5. 掌握水的物理化学性质和氢气的性质。

根深蒂固

模块一:空气和氧气

1. 2	它气的组成	(体积分数)	:	氮气_	、氧气占	\	稀有气体约占1%。
------	-------	--------	---	-----	------	---	-----------

2. 空气的污染:

- (1) 引起空气污染的主要因素是人为污染源,例如矿物燃料(煤和石油)的燃烧。
- (2) 空气质量报告中污染指数包括可吸入颗粒物、SO₂、NO₂(氮氧化物)、PM2.5、臭氧和 CO 等。其中二氧化 硫是引起酸雨的主要气体,PM2.5 是引起雾霾的主要物质。
- (3) 防治空气污染的措施: 开辟城市绿地, 开发新的洁净能源, 使用尾气净化装置, 降低有害物质的排放等。

3. 稀有气体: 🖟	化学性质	,一般不跟其他物质。	发生反应,	利用这一性质,	常用作	_;稀有气体在
通电时能	,	可制成多种用途的	_; 氦气的	密度仅次于氢气,	且不能燃烧,	还可用于填充
安全飞艇。						

4. 氧气的物理性质: 氧气是无色、无味的气体,难溶于水(可用排水法收集),密度比空气大(可用向上排气法收集)。

5. **氢气的化学性质**:活泼,能跟许多金属和非金属发生反应(反应的化学方程式和实验现象);

 \		亚两种非亚两及工及四个及四门	
	反应现象		/I. W>- TH - B
反应物	在空气中(条件:点燃)	在氧气中(条件:点燃)	化学方程式
碳	发出红光	剧烈燃烧,发出白光	
硫	产生淡蓝色火焰和有刺激性	产生蓝紫色火焰和有刺激性	
	气味的气体	气味的气体	
磷	产生大量白烟	产生大量白烟和明亮的白光	
铁	不发生燃烧	剧烈燃烧,火星四射,生成黑 色固体	
镁	发出耀眼的白光,生成白色粉	发出更加耀眼的白光,生成白	
	末	色粉末	

具有氧化性,能助燃,供给呼吸。

(3) 主要用途:可用于供给呼吸、富氧炼钢,用氧炔焰气焊或气割钢板等。

模块二: 氧气的制备

- 1. 主要用途:可用于供给呼吸、支持燃烧、富氧炼钢,用氧炔焰焊接和切割金属等。
- 2. 氧气的工业制法: 分离液态空气(沸点比氮气高的氧气后逸出)。
- 3. 氧气的实验室制备:用 H_2O_2 催化分解或 $KClO_3$ 催化受热分解,反应中的 MnO_2 起催化作用。

H3277322103 E - 713 2		, // / H H H H C / C E B /
	用氯酸钾制取氧气	用双氧水制取氧气
反应原理		
反应物的状态	固固	固液
反应条件	加热	不加热
反应装置		分液 净漏斗 一 维形瓶 ———————————————————————————————————
收集装置		
气体的检验方法		
气体的验满方法		

4. 催化剂: 在化学反应里能使其他物质的反应速率加快,而本身的质量和化学性质在反应前后都没有变化的物质。

【思考】

- (1) 在氯酸钾和二氧化锰混合制取氧气的实验中,随着反应的进行,二氧化锰质量分数的变化情况如何?反应后如何从反应后的混合物中提纯二氧化锰?
- (2) 质量、浓度都相等的两份过氧化氢溶液, a 中加入少量 MnO₂, b 中不加 MnO₂, 分别同时加热,下列图像表示放出氧气质量(纵坐标)与反应时间(横坐标)的关系,其中正确的是 ()

模块三: 空气中氧气含量的测定

1. 实验装置:

2. 实验现象:

红磷燃烧,放出热量,冒出白烟;

装置冷却到室温后打开弹簧夹,烧杯内的水倒流入集气瓶,约占瓶子容积的1/5。

3. 实验结论:

说明空气不是单一的物质;氧气约占空气总体积的 1/5。 还能说明氮气不溶于水,氮气不与水发生反应。

空气中氧气减少,气体压强减少,水倒流到集气瓶中的体积等于气体减少的气体。

- 5. 注意事项:
- (1) 所用的红磷必须 , 如果红磷过少则氧气没有全部消耗完;
- (2) 要等集气瓶(装置) 后才能打开弹簧夹;
- (3)装置的 性要好(否则测量结果偏小);
- (4) 要先夹住橡皮管, 然后再点红磷(否则测量结果偏大)。
- 6. 深度思考:
- (1) 可否换用木炭、硫、铁丝等物质? 为什么?

(2) 若实验过程中止水夹没有夹紧会产生什么后果?

(3) 有时在做红磷燃烧实验时在集气瓶中装有少量水,装水的作用什么?

(4) 实际实验中,如果测得的结果比真实值小,其原因可能是:

(5) 实际实验中,如果测得的结果比真实值大,其原因可能是:

7. 拓展装置

模块四:水和氢气

1. 水的物理性质:

没有颜色、没有气味、没有味道的液体。

在 101.3kPa 压强时,沸点是 100°C,凝固点是 0°C;在 4°C时的密度(为 1.00g/cm³)最大,0°C时的密度 变小,这跟水的缔合性(或反常膨胀性)有关,水的比热容很大。

水具有良好的溶解性和分散性,是最常用的溶剂和分散剂。

2. 水的电解实验: $2H_2O \xrightarrow{\bar{\mathbb{A}}\mathbb{B}} 2H_2 \uparrow +O_2 \uparrow$

实验步骤	实验现象	实验结论及解释
	电极上产生气泡,一段时间后,	
在电解器试管里加满	负极试管里气体的体积约为正极	
水,通直流电	试管里的2倍	电解水生成了氢气和氧气,说明了
切断电源,将带火星的	(1)正极上产生的气体使带火星	水是由氢元素和氧元素组成的,且
木条伸入正极的试管中,	的木条复燃;	水分子中氢原子和氧原子的个数
将燃着的木条伸入负极	(2)负极的气体能燃烧,产生淡	比为 2:1
的试管中	蓝色的火焰	

其他实验结论:水是化合物;化学反应中分子可以再分成原子,而原子不能再分;化学反应前后原子的种类没有改变;化学反应前后原子的数目没有改变;化学反应前后元素的种类没有改变等。

电解水的实验装置的改进:

3. 水的化学性质:

- (1) 水在直流电压作用下能发生分解反应;
- (2) 水能跟某些碱性氧化物(如: CaO)、酸性氧化物(如: CO₂)和无水盐(如: CuSO₄)发生化合反应。

.____; ____;

- 4. 水被污染的原因: 人们向水中排放的废气、废水和废物超过了水的自净能力。
- 5. **水的人工净化**:自来水厂通过挥发、沉降、过滤、吸附、消毒等方法。其中,过滤可除去难溶性固体杂质。加液氯杀菌消毒;加净水剂(明矾或氯化铁)使微小悬浮物凝聚。

6. 氢气的性质与用途:

- (1) 物理性质: 无色、无味、难溶于水; 是最轻的气体,可用于填充气球。
- (2) 化学性质:
- ①具有可燃性,可作高能燃料;点燃混有氧气的氢气可能发生爆炸,因此点燃氢气之前必须检验氢气的纯度。
 - ②具有还原性,可作冶炼金属的还原剂(如: $H_2+CuO \xrightarrow{\Delta} Cu+H_2O$)。

模块一: 空气和氧气

题型1:空气的成分和环境污	染
---------------	---

F bel . T		,	
【例】】	空气中体积分数最大的气体是	()

- B. 氮气 A. 氧气
 - C. 氢气 D. 二氧化碳
- 【例 2】雾霾是一种大气污染现象,不属于雾霾治理措施的是 ()
 - A. 植树绿化, 美化环境
 - B. 提倡绿色出行,发展公共交通
 - C. 外出时佩戴防雾霾口罩
 - D. 减少燃烧发电,增加太阳能发电

题型 2: 氧气的性质和用途

【例 1】在充满氧气的集气瓶中燃烧,产生明亮的蓝紫色火焰的物质是()

- A. 硫粉
- B. 铁丝
- C. 木炭
- D. 红磷
- 【例 2】X 在氧气中燃烧,能生成具有刺激性气味的气体,X 可能是()
 - A. 木炭
- B. 铁丝
- C. 氢气
- D. 硫粉

【例 3】物质在氧气中燃烧的现象叙述错误的是 (

选项	A	В	С	D
物质	木炭	硫粉	红磷	铁丝
用途	发出白光	淡蓝色火焰	大量白烟	火星四射

- 【例 4】下列对实验现象的叙述中,正确的是()
 - A. 磷在空气中燃烧产生大量白色的烟雾
 - B. 硫在氧气中燃烧发出黄色的火焰
 - C. 木炭在氧气中燃烧发出白光
 - D. 铁丝在氧气中剧烈燃烧生成黑色固体四氧化三铁

题型 3: 氧气和稀有气体的性质与用途的关系

- 【例 1】人类的生产和生活都离不开 O_2 。有关 O_2 用途的正确认识是 (
 - A. 用于灭火
 - B. 用氧炔焰焊接和切割金属
 - C. 液氧做火箭燃料
 - D. 用作绿色植物光合作用的原料

【例 2】稀有气体的下列用途,分	别与哪项性质有关?			
A. 一般不跟其他物质反应; B. 密	密度小于空气的密度	; C. 通电后会发出有色的	光; D. 难溶于力	K
(1) 灯泡内充入氩气	.;			
(2) 用氦气填充气球或飞艇	;			
(3) 用于制造霓虹灯	<u>;</u>			
(4) 电焊金属时用氩气作保护气体	<u> </u>			
模块二: 氧气的制备				
【例1】气体制取是重要的化学实	验活动。			
(1) 实验室用双氧水与二氧化锰制	训取氧气,该方法制]取氧气的化学方程式是		_。能收集氧
气的装置是(填编号)。				
氧气	氧气	氧气 氧气 氧气 一十二	d d	
(2) 要得到干燥的氧气,可将制作 【例 2】下面是几种实验室制取气			(化物是。	,
I I 多孔 塑料片		a a a a a a a a a a a a a a a a a a a	<u>ь</u>	
(1) 写出仪器名称: I	, II	o		
(2)实验室可用二氧化锰与双氧水	制取氧气。若要较如	子地控制产生氧气的速度,应	ī选用装置	_(填编号)。
实验室还可以用氯酸钾和二氧化锰	制氧气,反应的化	学方程式为	o	
(3) D 装置收集氧气,操作的正确	角顺序为	(填编号)。		
①将导管深入集气瓶口,气体	进入瓶中			
②将装满水的集气瓶倒置在水	槽中			
③当气体收集满时,用毛玻璃	片盖上瓶口,将集件	气瓶移出水面放置		
若用 E 装置进行排空气法收集	氧气,气体应从	(填"a"或"b")	端通入。	

【例 3】据图回答下列问题:

(1) 写出装置图中标有 a、b 符号的仪器名称:	a	,b	_°
---------------------------	---	----	----

(2) 实验室用双氧水制取氧气时,	可选用的发生装置是	;用氯酸钾制取氧气时可选用的发生	装置是
; 可选用	_或装置收集氧	气(写装置编号)。原因是氧气	且

(3)	固体过氧化钠与水反应的化学方程式如下: $2Na_2O_2+2H_2O \rightarrow 4NaOH+O_2\uparrow$ 。	若通过此反应制取氧气,	可
选用	装置作气体发生装置(写装置编号)。		

- (4) 甲烷(CH_4)是一种无色、无味的气体,密度比空气小且极难溶于水,是天然气的主要成分。实验室制取甲烷气体常用无水醋酸钠(固体)和碱石灰(固体)加热制得。则实验室制取甲烷可选用的发生装置是,选用的收集装置是
- 【例 4】某兴趣小组同学对实验室制取氧气的条件进行如下探究实验。
- (1) 为探究催化剂的种类对氯酸钾分解速度的影响,甲设计以下对比试验:
 - I. 将 3.0gKClO₃与 1.0gMnO₂均匀混合加热
 - II. 将 xgKClO3与 1.0gCuO 均匀混合加热

在相同温度下,比较两组实验产生 O2 的快慢。

I 中反应的化学方程式是______; II 中 x 的值为_____。

(2) 乙探究了影响双氧水分解速度的某种因素,实验数据记录如表:

	双氧水的质量	双氧水的浓度	MnO ₂ 的质量	相同时间内产生 O2 的体积
I	50.0g	1%	0.1g	9mL
II	50.0g	2%	0.1g	16mL
III	50.0g	4%	0.1g	31mL

本实验中,测量 O ₂ 体积的装置是	(填序号)。
实验结论:在相同条件下,	,双氧水分解得越快。
丙用如图装置讲行实验, 通讨比较	也能达到实验目的。

【技巧归纳】多功能瓶的使用

作用一: 洗气瓶

1. 医院:观察氧气速度,使氧气湿润。

氧气从 导管进入,从 导管流出。简称: 进 出, 导管接病人的呼吸面罩。

2. 除去空气(混合气体)中少量的二氧化碳。

为除去二氧化碳,洗气瓶中应放入_____,反应的化学方程式:_____。

导管连接:"进出"

作用二: 贮气瓶

1. 收集密度小于空气的气体, 如 。

(1) 进 出;气体进入后先集中在装置的 (上部/下部);

(2) 进 出;气体进入后先集中在装置的 (上部/下部);

- 2. 收集密度大于空气的气体,如。
- (1) ____进__出;气体进入后先集中在装置的 (上部/下部);

(2) 进 出;气体进入后先集中在装置的 (上部/下部)

3. 排水法收集气体	(要求气体:)
(1) 如下图:		
收集氢气:	进出;	气体进入后先集中在装置的。
收集氧气:	进出;	气体进入后先集中在装置的。
以上两项使用运	过程的共同点:	:都是进出,气体都集中在装置的。
(2) 如下图:		a b
收集氢气:	进	_出;气体进入后先集中在装置的。
收集氧气:	进	_出;气体进入后先集中在装置的。
以上两项使用运	过程的共同点:	: 都是进出,气体都集中在装置的。
作用三:量气瓶:测	川气体体积	
气体应该从	导管进入,水	-从排出,
应该在导管接	一个	
		0

模块三: 空气中氧气含量的测定

【例 1】如图所示装置可用于测定空气中氧气的含量,实验前在集气瓶内加入少量水,并做上记号。下列说法中不正确的是(

- A. 红磷燃烧产生大量的白雾,火焰熄灭后立刻打开弹簧夹
- B. 该实验证明空气中氧气的含量约占 1/5
- C. 实验时红磷一定要过量
- D. 实验前一定要检查装置的气密性

【例2】用来测定空气成分的方法很多,如图所示的是小明用红磷在空气中燃烧的测定方法。

实验过程是:

第一步:将集气瓶容积划分为五等份,并做好标记。

第二步: 点燃燃烧匙内的红磷, 伸入集气瓶中并把塞子塞紧。

③若不改变原装置,要使实验成功,你的改进意见是: 。

④若实验成功,可证明空气中氧气的体积分数约为

第三步: 待红磷熄灭并冷却后,打开弹簧夹,发现水被吸入集气瓶中,进入集气瓶中水的体积约为集气瓶 总容积的 1/5。

请回答下列问题:
(1) 上面的实验同时证明了氮气有的化学性质。
(2)实验完毕,若进入集气瓶中水的体积不到总容积的 1/5,你认为导致这一结果的原因可能是
(只要求写出一种原因)。 _{放大镜}
(3) 某同学对实验进行反思后,提出了改进方法(如图 2 所示), ************************************
你认为改进后的优点是:。
(4) 小刚同学为验证空气中氧气的体积分数,进行实验(如图所示)。燃烧匙里盛燃着的足量的硫,反应结束,
冷却后,打开 C 夹,水不沿导管进入 A 瓶。请回答:
①B容器的名称是, 硫在 A 瓶中燃烧的化学方程式是。
②该实验失败的主要原因是。

模块四:水和氢气

考点1:水的电解实验

【例1】如图是电解水的装置:

(1) 写出水电解的化学方程式	_,	其生成物的分子个数比与	(填"质量"
武"物质的量") 之比相等。			

(2)常温常压下,甲气体和乙气体的溶解度分别为 1.63×10^{-3} g/100 g 水、 4.34×10^{-3} g/100 g 水。在电解过程中,甲、乙两种气体的体积比可能 (填"大于"或"小于") 2:1 。

【例 2】科学家用通电的方法使水分解,从而证明了水的组成。

- (1) 把水注入水电解器装置中,接通直流电,可以观察到 a 管中的电极上
- (2) 检验 b 管中产物的方法是 (选填"I"或"II"或"II")。
 - I. 用点燃的木条接近玻璃管尖嘴部分, 慢慢打开活塞
 - Ⅱ. 用带火星的木条接近玻璃管尖嘴部分, 慢慢打开活塞
 - III. 用内壁沾有澄清石灰水的烧杯罩在尖嘴上方,慢慢打开活塞.
- (3) 科学家还用点燃氢气,证明燃烧产物的方法,证实了水的组成。如果将电解水产生的氢气直接缓缓地通 过装有足量无水硫酸铜的仪器 c, 在导管 d 处点燃, 然后把盛有冷水的烧杯至于如图所示的位置。实验过程中 可以观察到的现象是

题型 2: H2的性质

【例 1】思考并回答下列问题:

- (1)"化学为人类提供动力"。氢能属于绿色能源,氢气燃烧的化学方程式是
- ,其中氧化剂是 (2) 氢气还原氧化铜的化学方程式是
- 【例2】为了进一步测定水中的元素组成的质量比,某科技小组的同学设计了下列实验(装置如图),利用氢 气还原氧化铜生成铜和水,通过称量反应前后装置 A、B的质量,结果测得 m(H):m(O)>1:8,比理论值偏高,

其原因不可能是 ()。

- A. 通入的氢气未经过干燥
- B. 装置 A 内管口有水凝结
- C. 氧化铜没有完全还原 D. 装置 B 同时吸收了空气中的水蒸气和 CO₂

题型3:水的净化

【例1】河水净化的主要步骤如下图所示。有关说法错误的是 ()

A. 步骤I可除去难溶性杂质

B. X 试剂可以是活性炭

C. 步骤III可杀菌、消毒

D. 净化后的水是纯净物

瓜熟蒂落

题型1:空气和氧气

D

1.	雾霾	天气	导致呼吸病人	增多,因为雾霾可值	吏空气中	增加大量的	()
	Α.	二氧/	化碳	B. 一氧化碳	C.	二氧化硫	D.	可吸入颗粒物
	A. B. C. D.	空气 空气 空气 空气 空气	中的稀有气体由氧气和氮气中分离出的氮质量报告中所	下列有关空气的说法 化学性质很稳定, 组成,其中氮气的。 气化学性质不活泼 列的空气质量级别 述错误的是	所以常用 质量约占 ,可作食 数目越大	月作电光源 「空气质量的 4 日保鲜的保护 て,空气质量起	9气 遂好	
	A.	富氧	炼钢	B. 呼吸氧化剂	C.	氧炔焰切割金	法属 D.	光合作用原料
4.	Α.	磷在	中,能观察到 氧气中燃烧产 在氧气中燃烧	生白色烟雾		硫在氧气中燃 铁丝在空气中		
5.	鉴别]空气、	氧气、氮气	最好选用 ()			
	A.	紫色	石蕊试液	B. 澄清石灰水	C.	带火星的木条	D.	燃着的木条
6.	A. B. C.	在盛年	氧气的集气瓶 带火星的木条 丝末端系上火	实验操作或现象不可底预先放少量细砂放在集气瓶口检验操杆,点燃后立即燃烧,火星四射,	或水 氧气是否 伸入集 ^与	F充满 5瓶中		
7.	以下	是根据	居一些反应事	实推理出的影响化学	学反应的	因素,其中推	理不合理	!的是 ()
		序号	· · · · · · · · · · · · · · · · · · ·		反应事实			影响化学反应的因素
		A	双氧水在	常温下很难分解,	一 而在加 <i>)</i>	二氧化锰后は	迅速分解	催化剂
		В	硫在空气中	然烧发出淡蓝色火炸	省,在纯	氧中燃烧发出	蓝紫色火	焰 反应物的浓度
		С		食物在冰箱口	中保存不	易腐烂		温度

反应物的种类

铜片在空气中很难燃烧,铜粉在空气中能燃烧

考点 2: 氧气的制备

8. 实验室用如图所示装置制取氧气,下列有关说法不正确的是 ()

- A. 试管中加入的药品是 MnO₂和 H₂O₂
- B. 实验前应检查装置的气密性
- C. 待导管口产生连续均匀的气泡时才开始收集氧气
- D. 实验结束时应先从水槽中取出导管,再停止加热
- 9. 实验室用右图装置制取氧气时,有关实验操作顺序正确的是 (

- A. 实验开始时,先装药品,后检查装置气密性
- B. 搭建装置时, 先固定试管, 后放置酒精灯
- C. 收集气体后, 先用毛玻璃片盖上集气瓶, 后移出水槽
- D. 实验结束后, 先熄灭酒精灯, 后将导管移出水面
- 10. 某气体常温下不与空气中的成分反应,密度比空气小,极易溶于水,以下收集该气体的方法正确的是

- 11. 用氯酸钾和二氧化锰混合加热制氧气,反应前后二氧化锰发生的变化是 ()
 - A. 质量减少

B. 在残留物中的质量分数变大

C. 化学性质改变

D. 元素化合价降低

12	* 司观宏到11 形際由好黑水遊茄上阪土孔 汝田休和遊休
	本,可观察到 U 形管中红墨水液面左降右升,该固体和液体
试剂不可能是 ()	红墨水
A. 大理石和稀硫酸 B. 生石灰和水	C. 硝酸钾和水 D. 双氧水和二氧化锰
13. 如图表示一定质量的 KClO ₃ 和 MnO ₂ 固体混合	物受热过程中,某变量 y 随时间的变化趋势,纵坐标表示的
是 ()	y ↑
A. 固体中氧元素的质量	B. 生成 O ₂ 的质量
C. 固体中 MnO ₂ 的质量	D. 固体中钾元素的质量
	0 时间/min
14. 如图所示:	
	CuO H ₂
A B C	
, , , , , , , , , , , , , , , , , , , ,	②。
(2) 实验室室制取氧气,应将气体发生装置	和收集装置(只填排空气法)连接(填
字母代号)。	
15. 利用下图装置探究制取气体的原理、方法。	
A B	C D E
(1) 写出仪器名称: a, b。	
(2) 用氯酸钾和二氧化锰的混合物制取 O_2 ,反应	的化学方程式为,选用 C 装
置收集氧气,其原因是;	
(3) 实验室常用氯化铵固体与碱石灰固体共热	·来制取一瓶易溶于水、密度比空气小的氨气(NH ₃),
应选择的装置组合是(填图编号)。	
(4)实验室若用装置 F 来收集氨气,气体应该从	端(填"c"或"d")通入。
	c d
	F

16. 下图是实验室制取气体常见的装置,据图回答有关问题。

(1) 写出指定仪器的名称: a ; b.		;
-----------------------	--	---

(2) 实验室制取二氧化碳气体,	装置 A、B 都可用作发生装置,	其中可以随时使反应发生或停止的装置是
(填序号 , ⁻	下同),可选用的收集装置是	0

(3) 用装置 C 作为发生装置制取氧气,	发生反应的化学方程式为	; 用装置 [
收集氧气,气体收集完毕时,应先	(填"从水中取出导气管"或"熄灭酒精炸	丁");氧气收集完成后,
测得其纯度明显偏低,原因可能是	(填序号)	

I. 氯酸钾中加入了二氧化锰

- Ⅱ. 收集前,集气瓶中未注满水
- III. 收集后,集气瓶中仍有少量水
- IV. 未见气泡连续均匀冒出时就开始收集

(4) 实验室在常温下用块状电石与水反应制取微溶于水的乙炔气体,该反应必须严格控制加水速率,以免剧烈反应放热引起发生装置炸裂。你认为上图中最适合制取乙炔气体的发生装置是_______;如果用右图所示装置收集乙炔,气体应从 (填"m"或"n")端管口通入。

17. 小雨阅读课外资料得知: 双氧水分解除了用二氧化锰还可用氧化铜等物质作催化剂。

【提出问题】氧化铜是否也能作氯酸钾分解的催化剂?它是否比二氧化锰催化效果更好?

【设计实验】小雨以生成等体积的氧气为标准,设计了下列三组实验(其它可能影响实验的因素均忽略)。

实验序号	KClO ₃ 质量	其他物质质量	待测数据
1	1.2 g	/	
2	1.2 g	CuO 0.5 g	
3	1.2 g	MnO_2 0.5g	

(1)	上述实验应测量的"待测数据"是	
()		

(2) 若实验②比实验①的"待测数据"更_____(选填"大"或"小"),说明氧化铜能加快氯酸钾的分解速率:

(3)将实验②反应后的固体加水溶解、过滤、洗涤、干燥, 若称量得到 0.5g 黑色粉末, 说明
(4)再将该黑色粉末放入试管中,加入,若观察到,说明黑色粉末的化学性质在L
应前后保持不变。
【预期结论】氧化铜还能作氯酸钾分解的催化剂。
【评价设计】你认为小雨设计实验③和实验②对比的目的是。
18. 用下图所示装置制备常见气体。请回答下列问题:
(1) 写出图中标号①和②的仪器名称:、、。
(2) 小明用上图 B、E 装置制取一种常见气体(空气中存在)。
①请写出有关反应的化学方程式 ;
②检查装置的气密性: 先将 B 装置的导管浸入水中, 然后用手握住试管外壁, 观察到导管口 (填"有
或"没有")气泡冒出,表明 B 装置肯定会漏气;
③如何检验 D 中的气体已收集满?请写出有关的操作和现象:
④收集气体时,要等到有连续稳定气泡冒出时才开始收集,而不是一看到气泡冒出就收集气体,其原因是。。
⑤若在反应后的残余物中提纯 KCl,需进行以下操作,请把空缺处填上:
$ ext{KCl和MnO}_2$ $\left\{ egin{align*} @2 & (&) \\ @2 & (&) \\ & & \\ & $
在①、②、③的操作中均用到的仪器是。
(3)利用上述实验仪器收集气体时,若只能用 C 装置收集,则该气体必须具备的性质。
(4) 若用如图装置进行"排空气法"收集制取的 O₂,请把图中的"导气管"补画完整。

19. 实验室利用下图实验装置进行实验,回答下列问题:

- (1) 上图中仪器 a 的名称为____。
- (2) 实验室用装置 A 制取氧气的化学方程式是_______, 在上图右侧框内画出排气法收集氧气的装置示意图。
- (3) 实验室用过氧化氢溶液和二氧化锰制氧气时选用 B 装置为反应装置。实验中,同学们发现不能得到平稳的氧气流。大家提出从两个方面加以改进:
 - 一是把发生装置由 B 改为_____(填字母编号),其理由是____。
- 二是将过氧化氢溶液加水稀释。若把 50~g 质量分数为 20%的过氧化氢溶液稀释成 5%的过氧化氢溶液,需加水的质量为 g。
- 20. 根据下图回答问题:

- (2)图2中仪器A的名称为______,它在装置中的主要作用是____。甲同学用
- 图 2 和图______连接来制取二氧化碳,装置中加入盐酸的量至少要_____。
- ,要使反应停止,其操作是
- (4) 丙同学用过氧化氢溶液和二氧化锰制取氧气,反应的化学方程式为_____。反应前他事先往试管中加入了少量的水,甲同学由此产生了疑问,提出了猜想:

猜想 1: 加水可以起到稀释的作用, 使反应速度变缓。

猜想 2:

甲同学根据猜想进行了实验:每次取 15mL 15%的过氧化氢溶液,稀释成不同溶质质量分数,在其他条件相同的情况下进行实验。记录数据如下:

实验	1	2	3	4	5
过氧化氢溶液溶质质量分数	1%	3%	5%	10%	15%
MnO ₂ 粉末用量/g	0.5	0.5	0.5	0.5	0.5
收集到 500mL 气体时所用时间/s	560	186	103	35	12
反应后液体温度/℃	26	38	43	59	71

根据表中数据可知:过氧化氢溶液的溶质质量分数对反应速度的影响是____。

甲同学的猜想 2 是:加水可以。

考点 3: 空气中氧气含量的测定

- 21. 右图所示装置可用于测定空气中氧气的含量,实验前在集气瓶内加入少量水,并做上记号。下列说法中,不正确的是 ()
 - A. 实验时红磷一定过量
- B. 点燃红磷前先用弹簧夹夹紧乳胶管
- C. 红磷熄灭后立刻打开弹簧夹
- D. 最终进入瓶中水的体积约为氧气的体积

22. 甲图所示为测定空气中氧气含量的装置及药品。

- (1) 为获得较为准确的实验数据,下列做法不正确的是 ()
 - A. 检查装置的气密性
 - B. 燃烧匙中的红磷足量
 - C. 点燃红磷后缓慢将燃烧匙插入瓶中, 塞紧瓶塞
 - D. 红磷熄灭, 广口瓶冷却后打开弹簧夹
- (2) 小明同学用足量的木炭代替红磷、氢氧化钠溶液代替水来做此实验。小明操作正确,但是测得的数据小于用红磷测得的数据,其原因是木炭燃烧除生成二氧化碳外还可能生成 。
- (3) 市售"暖宝宝"中发热剂主要成分是:铁粉、炭粉、水和食盐等,反应原理可简化为铁生锈。小明用配置的发热剂按图乙装置实验。他不是将足量的发热剂堆在瓶底,而是将其涂抹在广口瓶内壁的四周,这样做的目的是。
- (4)在上述三个实验操作都正确的情况下,与另两个实验的测量结果相比,第三个实验的测量结果与空气中的氧气含量更接近。推测其最合理的主要原因是。。

23.	某学习小组为挤	系究不同可燃物对测	则定空气中氧气	体积分数实验结果的	的影响,	设计了如图	图所示的实验	装置。
	己知甲、乙两个	等体积的集气瓶中	中充满了实验时的	室温状态下的空气,	装置气	密性良好,	燃烧匙中分别	別盛有
过量	量的红磷和硫粉,	在瓶中点燃并充分	分燃烧后,冷却	至室温。				
			1	1				

A	Ь
(1) 红磷和硫粉在 A、B 瓶中燃烧的现象是: A:	B:
(2) 小组成员打开烧杯中导管上的止水夹后, 观	察到 A、B 两瓶中都迅速有水被倒吸,且倒吸入瓶中的水的
体积相同,都远未达到五分之一体积,实验失败。	经过一番分析研究,小组成员们发现原来问题出在实验装置
上,只需对该装置做一个改动就能达成	这原有的实验目的,你知道这个改动是什么吗?
(4)完善实验装置后,该小组成员再次进行了实验	。 俭,此时可观察到瓶中立即有约五分之一体积的水被倒吸。
另一瓶中没有水被倒吸。由此可知,测定空气中氧	氢气体积分数时可燃物应选择(填"红磷"或"硫")。
若用木炭代替红磷,为了实验成功,可对实验再验	进改进,这个改进是。
考点 4: 水和氢气	
24. 生活离不开水,人们关于水的认识正确是	
A. 水是良好的分散剂,许多物质都能溶于水	S
B. 通过电解水实验,可知水时由氢气和氧气	红组成的
C. 为了节约用水,提倡用工业废水直接灌溉	[农田
D. 用沉淀法、过滤法和蒸馏法净化水,单一	一净化效果最好的是过滤法
25. 能均匀地分散在水中,但不跟水发生化学反应	立的物质是 ()
A. 无水硫酸铜	B. 生石灰
C. 食盐	D. 二氧化碳
26. 下列关于水的说法中不正确的是 ()
A. 水约占人体重量的 65%	B. 水是很好地分散剂
C. 水的密度大于冰的密度	D. 水的沸点恒定为 100℃
27. 下列净水过程中肯定没有化学变化的是 ()
A. 废水净化	B. 明矾净水
C. 活性炭净水	D. ClO ₂ 替代 Cl ₂ 处理自来水

水被电解。 (5) 证明水的组成元素的另一个实验时(用化学方程式表示)。 34. 小明同学去黄山旅游时,用瓶装了一些山下的泉水,带回实验室在老师的指导下,按下列流程进行实验,制取蒸馏水。请回答下列问题: 「加明职」 加速接受 流毒剂 基準本	
(5) 证明水的组成元素的另一个实验时(用化学方程式表示)	将 0.2g 的氢氧化钠溶解在 99.8g 的水中并进行通电,当上述溶液中氢氧化钠的质量分数为 0.5%时,有
34. 小明同学去黄山旅游时,用瓶装了一些山下的泉水,带回实验室在老师的指导下,按下列流程进行实验。 制取蒸馏水。请回答下列问题:	水被电解。
国際	(5)证明水的组成元素的另一个实验时(用化学方程式表示)。
国際	
加爾國	
請回答下列问题: (1) 在水样中加入明矾的作用是 (2) 进行过滤操作时,下列做法错误的是 A. 玻璃棒靠在滤纸边缘的任一下方 B. 漏斗下端的管口要紧靠烧杯的内壁 C. 滤纸的边缘要低于漏斗口 D. 液面要低于滤纸边缘 (3) 向滤液中加入活性炭,利用其 性,除去水样中的色素和异味。 (4) 高铁酸钠(NayFeO4)是一种常用的消毒剂,目前被广泛应用于自来水净化。高铁酸钠中铁元素的化合价为。 (5) 以下方法得到的水,其纯度最高的是。 A. 过滤 B. 吸附 C. 沉淀 D. 蒸馏 (6) 认真观察图 A. B 两装置,写出 B 装置中发生反应的化学方程。 田分子和原子的观点分析比较 A 装置和 B 装置在实验过程中水的变化情况:。 ################################	
請回答下列问题: (1) 在水样中加入明矾的作用是 (2) 进行过滤操作时,下列做法错误的是 ————————————————————————————————————	加明矾
请问答下列问题: (1) 在水样中加入明矾的作用是。 (2) 进行过滤操作时,下列做法错误的是。 A. 玻璃棒靠在滤纸边缘的任一下方 B. 漏斗下端的管口要紧靠烧杯的内壁 C. 滤纸的边缘要低于漏斗口 D. 液面要低于滤纸边缘 (3) 向滤液中加入活性炭,利用其	水样 → 过滤 —
(1) 在水样中加入明矾的作用是。 (2) 进行过滤操作时,下列做法错误的是。 A. 玻璃棒靠在滤纸边缘的任一下方 B. 漏斗下端的管口要紧靠烧杯的内壁 C. 滤纸的边缘要低于漏斗口 D. 液面要低于滤纸边缘 (3) 向滤液中加入活性炭,利用其 性,除去水样中的色素和异味。 (4) 高铁酸钠(Na₂FeO4)是一种常用的消毒剂,目前被广泛应用于自来水净化。高铁酸钠中铁元素的化合价为。 (5) 以下方法得到的水,其纯度最高的是	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
(2)进行过滤操作时,下列做法错误的是。 A. 玻璃棒靠在滤纸边缘的任一下方 B. 漏斗下端的管口要紧靠烧杯的内壁 C. 滤纸的边缘要低于漏斗口 D. 液面要低于滤纸边缘 (3) 向滤液中加入活性炭,利用其 性,除去水样中的色素和异味。 (4) 高铁酸钠(Na3FeO4)是一种常用的消毒剂,目前被广泛应用于自来水净化。高铁酸钠中铁元素的化合价为。 (5) 以下方法得到的水,其纯度最高的是。 A. 过滤 B. 吸附 C. 沉淀 D. 蒸馏 (6) 认真观察图 A、B 两装置,写出 B 装置中发生反应的化学方程。 非用分子和原子的观点分析比较 A 装置和 B 装置在实验过程中水的变化情况:。 35. 水是生命之源,我们应该了解水、爱护水资源。 (1) 向下列物质中分别加入足量的蒸馏水,搅拌后能形成无色溶液的是。 A. 面粉 B. 氯化铁 C. 食盐 D. 食用油 (2) "水"在化学实验中的作用不容小觑。 ———————————————————————————————————	请回答下列问题:
A. 玻璃棒靠在滤纸边缘的任一下方 B. 漏斗下端的管口要紧靠烧杯的内壁 C. 滤纸的边缘要低于漏斗口 D. 液面要低于滤纸边缘 (3) 向滤液中加入活性炭,利用其 性,除去水样中的色素和异味。 (4) 高铁酸钠(Na2FeO4)是一种常用的消毒剂,目前被广泛应用于自来水净化。高铁酸钠中铁元素的化合价为。 (5) 以下方法得到的水,其纯度最高的是。 A. 过滤 B. 吸附 C. 沉淀 D. 蒸馏 (6) 认真观察图 A、B 两装置,写出 B 装置中发生反应的化学方程; 用分子和原子的观点分析比较 A 装置和 B 装置在实验过程中水的变化情况:。 35. 水是生命之源,我们应该了解水、爱护水资源。 (1) 向下列物质中分别加入足量的蒸馏水,搅拌后能形成无色溶液的是。 A. 面粉 B. 氯化铁 C. 食盐 D. 食用油 (2) "水"在化学实验中的作用不容小觑。	(1) 在水样中加入明矾的作用是。
C. 滤纸的边缘要低于漏斗口	(2) 进行过滤操作时,下列做法错误的是。
(3) 向滤液中加入活性炭,利用其	A. 玻璃棒靠在滤纸边缘的任一下方 B. 漏斗下端的管口要紧靠烧杯的内壁
(4) 高铁酸钠 (Na ₂ FeO ₄) 是一种常用的消毒剂,目前被广泛应用于自来水净化。高铁酸钠中铁元素的化合价为。 (5) 以下方法得到的水,其纯度最高的是。 A. 过滤 B. 吸附 C. 沉淀 D. 蒸馏 (6) 认真观察图 A、B 两装置,写出 B 装置中发生反应的化学方程; 用分子和原子的观点分析比较 A 装置和 B 装置在实验过程中水的变化情况:。 35. 水是生命之源,我们应该了解水、爱护水资源。 (1) 向下列物质中分别加入足量的蒸馏水,搅拌后能形成无色溶液的是。 A. 面粉 B. 氯化铁 C. 食盐 D. 食用油 (2) "水"在化学实验中的作用不容小觑。 实验 A 中水的作用是; 实验 C 中的水除提供热	C. 滤纸的边缘要低于漏斗口 D. 液面要低于滤纸边缘
(5) 以下方法得到的水,其纯度最高的是。	(3) 向滤液中加入活性炭,利用其性,除去水样中的色素和异味。
(5)以下方法得到的水,其纯度最高的是。	(4) 高铁酸钠 (Na_2FeO_4) 是一种常用的消毒剂,目前被广泛应用于自来水净化。高铁酸钠中铁元素的化合
A. 过滤 B. 吸附 C. 沉淀 D. 蒸馏 (6) 认真观察图 A、B 两装置,写出 B 装置中发生反应的化学方程	为。
(6) 认真观察图 A、B 两装置,写出 B 装置中发生反应的化学方程	(5)以下方法得到的水,其纯度最高的是。
用分子和原子的观点分析比较 A 装置和 B 装置在实验过程中水的变化情况:。 35. 水是生命之源,我们应该了解水、爱护水资源。 (1) 向下列物质中分别加入足量的蒸馏水,搅拌后能形成无色溶液的是。 A. 面粉 B. 氯化铁 C. 食盐 D. 食用油 (2) "水"在化学实验中的作用不容小觑。 4 B C 实验 A 中水的作用是; 实验 C 中的水除提供热	A. 过滤 B. 吸附 C. 沉淀 D. 蒸馏
35. 水是生命之源,我们应该了解水、爱护水资源。 (1) 向下列物质中分别加入足量的蒸馏水,搅拌后能形成无色溶液的是。 A. 面粉 B. 氯化铁 C. 食盐 D. 食用油 (2) "水"在化学实验中的作用不容小觑。 A B C 实验 A 中水的作用是; 实验 B 中水的作用是; 实验 C 中的水除提供热	(6) 认真观察图 A、B 两装置,写出 B 装置中发生反应的化学方程;
35. 水是生命之源,我们应该了解水、爱护水资源。 (1) 向下列物质中分别加入足量的蒸馏水,搅拌后能形成无色溶液的是。 A. 面粉 B. 氯化铁 C. 食盐 D. 食用油 (2) "水"在化学实验中的作用不容小觑。 A B C 实验 A 中水的作用是; 实验 B 中水的作用是; 实验 C 中的水除提供热	用分子和原子的观点分析比较 A 装置和 B 装置在实验过程中水的变化情况:。
35. 水是生命之源,我们应该了解水、爱护水资源。 (1) 向下列物质中分别加入足量的蒸馏水,搅拌后能形成无色溶液的是。 A. 面粉 B. 氯化铁 C. 食盐 D. 食用油 (2) "水"在化学实验中的作用不容小觑。 A B C 实验 A 中水的作用是; 实验 B 中水的作用是; 实验 C 中的水除提供热	
35. 水是生命之源,我们应该了解水、爱护水资源。 (1) 向下列物质中分别加入足量的蒸馏水,搅拌后能形成无色溶液的是。 A. 面粉 B. 氯化铁 C. 食盐 D. 食用油 (2) "水"在化学实验中的作用不容小觑。 A B C 实验 A 中水的作用是; 实验 B 中水的作用是; 实验 C 中的水除提供热	
35. 水是生命之源,我们应该了解水、爱护水资源。 (1) 向下列物质中分别加入足量的蒸馏水,搅拌后能形成无色溶液的是。 A. 面粉 B. 氯化铁 C. 食盐 D. 食用油 (2) "水"在化学实验中的作用不容小觑。 A B C 实验 A 中水的作用是; 实验 B 中水的作用是; 实验 C 中的水除提供热	■ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
(1) 向下列物质中分别加入足量的蒸馏水,搅拌后能形成无色溶液的是。 A. 面粉 B. 氯化铁 C. 食盐 D. 食用油 (2) "水"在化学实验中的作用不容小觑。	
A. 面粉 B. 氯化铁 C. 食盐 D. 食用油 (2) "水"在化学实验中的作用不容小觑。 A B C 实验 A 中水的作用是	
(2) "水"在化学实验中的作用不容小觑。 A B C 实验 A 中水的作用是	
A B C 实验 A 中水的作用是	
实验 A 中水的作用是; 实验 B 中水的作用是; 实验 C 中的水除提供热	(2)"水"在化学实验中的作用不容小觑。
实验 A 中水的作用是; 实验 B 中水的作用是; 实验 C 中的水除提供热	→
实验 A 中水的作用是;实验 B 中水的作用是;实验 C 中的水除提供热	
重外, 处起到∫	
	里尔,

36. 某科技小组的同学利用天然资源获得红褐色的铜粉(含杂质炭),为了测定该铜粉样品中铜的质量分数(百分率),取 Wg 铜粉样品,设计如下实验装置:

	(1)	仪器②、	⑤的名称是:	2	, ⑤	
--	-----	------	--------	---	-----	--

- (2) ①、④中发生反应的化学方程式为: ① , ④ 。
- (3) 装置③中的实验现象是_____。
- (4) 结束实验时, 先熄灭两个酒精灯, 在冷却过程中可能导致的后果是。
- (5) 利用上述装置,通过称量反应前后装置④的质量,得到 CO_2 的质量,进而求出铜的质量分数(实验过程中忽略水蒸气的影响). 为了确保测得的 CO_2 质量准确可靠,在保证装置不漏气、称量准确、操作规范的前提下,你认为还需要的条件是

回眸中考

1. 我们需要清新的空气,口罩中填充活性炭是利用其______性,以减少污染物的吸入,空气的组成(按体积分数)见图,甲气体的名称是_____。乙中含多种气体,其中可用于填充飞艇且性质稳定的气体名称是_____。

- 2. 硫在氧气中燃烧,现象描述正确的是 ()
 - A. 产生耀眼白光

B. 产生黑色固体

C. 产生蓝紫色火焰

- D. 产生大量白雾
- 3. 关于物质燃烧的现象描述错误的是 ()
 - A. 磷在空气中燃烧、剧烈反应,产生大量白雾
 - B. 铁丝在氧气中燃烧, 火星四射, 生成黑色固体
 - C. 镁带在空气中燃烧,发出耀眼的白光,生成白色固体
 - D. 硫在氧气中燃烧,火焰呈蓝紫色,生成有刺激性气味的气体

4. 关于双氧水制氧气的说法正确的是 ()	
A. 溶液中的质量不变 B. 只有加入二氧化锰才能制得氧气	
C. 液体中氢元素质量分数变大 D. 氧元素全部由化合态变为游离态	
5. 实验室常用的制取气体的发生装置如下:	
A B C	
(1) 仪器 a 的名称是;	
(2) 搭建 B 装置时,酒精灯应在固定仪器 a 之(选填"前"或"后")放置。	
6. 水在通电条件下反应的化学方程式是。生成氢气和氧气的体积上 , 0.5mol 水中约含	七是
7. 我们需要洁净的水源,含有杂质的天然水通过蒸发、沙滤、氧化等得到净化,其中氧化属于变化填"物理"或"化学"),自来水生产通入氯气的作用是。	(选
8. 关于水的净化过程描述错误的是 ()	
A. 加入明矾使小颗粒凝聚 B. 通入氯气杀菌消毒	
C. 通过沙滤装置除去可溶性杂质 D. 通过活性炭吸附部分有害物质	
9. 物质的用途错误的是 ()	

选项	A	В	С	D
物质	干冰	稀盐酸	稀有气体	氧气
用途	人工降雨	除铁锈	制作霓虹灯	光合作用的原料