Final 2015

Теория вероятностей и математическая статистика

Обратная связь:

https://github.com/bdemeshev/probability_hse_exams

Последнее обновление: 8 января 2019 г.

Случайные величины X и Y распределены нормально. Для тестирования гипотезы о равенстве дисперсий выбирается m наблюдений случайной величины X и n наблюдений случайной величины Y. Какое распределение может иметь статистика, используемая в данном случае?

- $t_m + n 2$
- $t_m + n 1$
- $F_m + 1, n + 1$
- $ightharpoonup F_m, n$
- $F_m 1, n 1$

Требуется проверить гипотезу о равенстве математических ожиданий в двух нормальных выборках размером m и n. Если дисперсии неизвестны, но равны, то тестовая статистика имеет распределение

- $rac{1}{2}F_m, n$
- $t_m + n 2$
- $F_m + 1, n + 1$
- $F_m 1, n 1$
- $t_m + n 1$

Требуется проверить гипотезу о равенстве дисперсий по двум нормальным выборкам размером 20 и 16 наблюдений. Несмещённая оценка дисперсии по первой выборке составила 60, по второй — 90. Тестовая статистика может быть равна

- **D** 2
- **2** 4
- 1.224
- 1.5

Требуется проверить гипотезу о равенстве математических ожиданий по двум нормальным выборкам размером 20 и 16 наблюдений. Истинные дисперсии по обеим выборкам известны, совпадают и равны 16. Разница выборочных средних равна 1. Тестовая статистика может быть равна

- **2**
- 1.5
- **4**
- 1.224

При проверке гипотезе о равенстве математических ожиданий в двух нормальных выборках размеров m и n при известных, но не равных дисперсиях, тестовая статистика имеет распределение

- $F_{m-1,n-1}$ t_{m+n-1}

- t_{m+n-2}
- $\sim N(0;1)$

При проверке гипотезы о равенстве долей используется следующее распределение

- $F_{m-1,n-1}$
- $ightharpoonup F_{m,n}$
- $\sim N(0;1)$
- t_{m+n-1} t_{m+n-2}

Есть две нормально распределённых выборки размером 20 и 16 наблюдений. Истинные дисперсии по обеим выборкам неизвестны и равны. Выборочные средние по обеим выборкам совпадают. Гипотеза о равенстве математических ожиданий

- Гипотезу невозможно проверить
- 🕑 не отвергается на любом разумном уровне значимости
- 🕑 отвергается на любом разумном уровне значимости
- ▶ не отвергается на 5%-ом и отвергается на 1%-ом уровне значимости
- •• не отвергается на 1%-ом и отвергается на 5%-ом уровне значимости

Для проверки гипотезы о равенстве долей в двух выборках могут использоваться следующие распределения

- $lue{}$ только χ_1^2
- только N(0; 1)
- \sim N(0;1) и $F_{m,n}$
- $lue{}$ только $F_{m,n}$
- ightharpoonup N(0;1) и χ_1^2

Доля успехов в первой выборке равна 0.55, доля успехов во второй выборке — 0.4. Количество наблюдений в выборках равно 40 и 20 соответственно. Тестовая статистика для проверки гипотезы о равенстве долей может быть равна

- 2.2
- 2.4
- **1.1**
- **1.2**
- 0.9

Доля успехов в первой выборке равна 0.8, доля успехов во второй выборке — 0.3. Количество наблюдений в выборках 40 и 20 соответственно. Гипотеза о равенстве долей

- 📭 Гипотезу невозможно проверить
- ▶ не отвергается на 5%-ом и отвергается на 1%-ом уровне значимости
- не отвергается на 1%-ом и отвергается на 5%-ом уровне значимости
- 📭 не отвергается на любом разумном уровне значимости
- 🖸 отвергается на любом разумном уровне значимости

11

Для выборки X_1,\ldots,X_n , имеющей нормальное распределение, проверяется гипотеза $H_0:\sigma^2=\sigma_0^2$ против $H_a:\sigma^2>\sigma_0^2$. Критическая область имеет вид

- (0, A), где A таково, что $\mathbb{P}(\chi_n^2 1 < A) = \alpha$
- $(A, +\infty)$, где A таково, что $\mathbb{P}(\chi_n^2 1 < A) = \alpha$ $(-\infty, A)$, где A таково, что $\mathbb{P}(\chi_n^2 - 1 < A) = 1 - \alpha$
- $(-\infty, A)$, the A Takobo, 410 $\mathbb{P}(\chi_n^2 1 < A) = 1 C$
- $igodots (A,+\infty)$, где A таково, что $\mathbb{P}(\chi_n^2-1 < A)=1-lpha$
- igoplus (0,A), где A таково, что $\mathbb{P}(\chi_n^2 1 < A) = 1 lpha$

Для выборки X_1,\ldots,X_n , имеющей нормальное распределение, проверяется гипотеза $H_0:\sigma^2=\sigma_0^2$ против $H_a:\sigma^2<\sigma_0^2$. Критическая область имеет вид

- $igoplus (A, +\infty)$, где A таково, что $\mathbb{P}(\chi_{n-1}^2 < A) = 1 \alpha$
- $(A, +\infty)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A) = \alpha$
- igoplus (0,A), где A таково, что $\mathbb{P}(\chi^2_{n-1} < A) = 1-lpha$
- $igodots (A,+\infty)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A) = 1-lpha$
- igodots $(A,+\infty)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A) = lpha$

При подбрасывании игральной кости 600 раз шестерка выпала 105 раз. Гипотеза о том, что кость правильная

- $lue{}$ не отвергается при любом разумном значении lpha
- $lue{}$ отвергается при lpha= 0.05, не отвергается при lpha= 0.01
- $lue{}$ отвергается при lpha=0.01, не отвергается при lpha=0.05
- Гипотезу невозможно проверить
- $lue{}$ отвергается при любом разумном значении lpha

Величины X_1,\dots,X_n — выборка из нормально распределенной случайной величины с неизвестным математическим ожиданием и известной дисперсией. На уровне значимости α проверяется гипотеза $H_0:\mu=\mu_0$ против $H_a:\mu\neq\mu_0$. Обозначим φ_1 и φ_2 вероятности ошибок первого и второго рода соответственно. Между параметрами задачи всегда выполнено соотношение

$$\varphi_1 = 1 - \alpha$$

По случайной выборке из 200 наблюдений было оценено выборочное среднее $\bar{X}=25$ и несмещённая оценка дисперсии $\hat{\sigma}^2=25$. В рамках проверки гипотезы $H_0:\mu=20$ против $H_a:\mu>20$ можно сделать вывод, что гипотеза H_0

- $lue{}$ отвергается при lpha=0.05, не отвергается при lpha=0.01
- $lue{}$ отвергается при lpha=0.01, не отвергается при lpha=0.05
- Гипотезу невозможно проверить
- $lue{}$ не отвергается при любом разумном значении lpha
- ullet отвергается при любом разумном значении lpha

По выборке X_1,\ldots,X_n из нормального распределения строятся по стандартным формулам доверительные интервалы для математического ожидания. Получен интервал (a_1,a_2) при известной дисперсии и интервал (b_1,b_2) при неизвестной дисперсии. Всегда справедливы следующие соотношения:

- $|a_1-b_1|=|a_2-b_2|$
- $a_2 a_1 > b_2 b_1$
- $a_1 > 0, b_1 > 0, a_2 > 0, b_2 > 0$
- $a_2 a_1 < b_2 b_1$

Величины X_1, \dots, X_n — выборка из нормального распределения. Статистика $U = \frac{5-X}{5/\sqrt{n}}$ применима для проверки

- гипотезы $H_0: \mu = 5$ при известной дисперсии, равной 5, при больших n
- гипотезы H_0 : $\mu=5$ при известной дисперсии, равной 25, только при больших n
- $m \Omega$ гипотезы $H_0: \mu = 5$ при известной дисперсии, равной 5, при любых n
- $lue{}$ гипотезы $H_0: \sigma = 5$
- $lue{lue}$ гипотезы $H_0: \mu = 5$ при известной дисперсии, равной 25, при любых n

Выборочная доля успехов в некотором испытании составляет 0.3. Исследователь Ромео хочет, чтобы длина двустороннего 95%-го доверительного интервала для истинной доли не превышала 0.1. Количество наблюдений, необходимых для этого, примерно равно

- 81

Пусть X_1,\dots,X_n — выборка из нормального распределения с известной дисперсией σ^2 . Пусть $U=\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}}$. Величина U^2 имеет распределение

- χ_1^2
- $\chi_n^2 1$
- $F_{1,n-1}$
- t_{n-1}
- t_1

20

Дана реализация выборки: 3, 1, 2. Выборочный начальный момент первого порядка равен

- **14/3**
- **2**
- **2** 3
- **D** 0

21

Дана реализация выборки: 3, 1, 2. Несмещённая оценка дисперсии равна

- **1/2**
- **1**
- **2**
- **1/3**
- 2/3

Выберите HEBEPHOE утверждение про эмпирическую функцию распределения $F_n(x)$

- $igodots F_n(x)$ имеет разрыв в каждой точке вариационного ряда
- $igodots F_n(x)$ асимптотически нормальна
- $\mathbb{E}(F_n(x)) = F(x)$
- $F_n(x)$ является состоятельной оценкой функции распределения F(x)
- $igodots F_n(x)$ является невозрастающей функцией

Юрий Петров утверждает, что обычно посещает половину занятий по Статистике. За последние полгода из 36 занятий он не посетил ни одного. Вычислите значение критерия хи-квадрат Пирсона для гипотезы, что утверждение Юрия Петрова истинно и укажите число степеней свободы

$$\chi^2 = 24$$
, $df = 1$

$$\chi^2 = 14$$
, $df = 1$

$$\chi^2 = 20$$
, $df = 2$

$$\chi^2 = 2$$
, $df = 2$

$$\chi^2 = 36$$
, $df = 1$

24

Производитель фломастеров попросил трёх человек оценить качество двух вида фломастеров: «Лесенка» и «Erich Krause» по 10-балльной шкале:

	Пафнутий	Андрей	Карл
Лесенка	9	7	6
Erich Krause	8	9	7

При альтернативной гипотезе о том, что Erich Krause качественнее, точное P-значение (P-value) статистики теста знаков равно

- 1/2
- 1/8
- 2/3
- **3/8**
- 1/3

25

Производитель фломастеров попросил трёх человек оценить два вида фломастеров: «Лесенка» и «Erich Krause» по 10-балльной шкале:

	Пафнутий	Андрей	Карл	
Лесенка	9	7	6	
Erich Krause	8	9	7	

Вычислите модуль значения статистики теста знаков. Используя нормальную аппроксимацию, проверьте на уровне значимости 0.1 гипотезу о том, что фломастеры имеют одинаковое качество.

- 1.65, H₀ отвергается
- 1.96, H₀ отвергается
- \bigcirc 0.43, H_0 не отвергается
- \bigcirc 0.58, H_0 отвергается
- \bigcirc 0.58, H_0 не отвергается

Кузнец Вакула в течение 100 лет ведет статистику о прилете аистов и рождении младенцев на хуторе близ Диканьки. У него получилась следующая таблица сопряженности

	Аисты прилетали	Аисты не прилетали
Появлялся младенец	30	10
Не появлялся младенец	30	30

Укажите число степеней свободы статистики Пирсона и на уровне значимости 5% определите, зависит ли появление младенца от прилета аистов

- \bigcirc df = 1, зависит

В коробке 50 купюр пяти различных номиналов. Случайным образом достаются две купюры. Номиналы вынимаемых купюр

- 💶 не коррелированы и не зависимы
- 🕑 отрицательно коррелированы
- 💶 положительно коррелированы
- 🕑 положительно коррелированы, но не зависимы
- 💶 не коррелированы, но зависимы

28

Экзамен принимают два преподавателя: Злой и Добрый. Они поставили следующие оценки:

Злой	2	3	10	8	3
Добрый	6	4	7	8	

Значение статистики критерия Вилкоксона о совпадении распределений оценок равно

- 20.5
- **1**9
- 22.5
- **2**0
- 7.5

Датчик случайных чисел выдал два значения псевдослучайных чисел: 0.5 и 0.9. Вычислите значение критерия Колмогорова и проверьте гипотезу о соответствии распределения равномерному на уровне значимости 0.1. Критическое значение статистики Колмогорова для уровня значимости 0.1 и двух наблюдений равно 0.776.

- 1.4, H₀ отвергается
- $\bigcirc 0.9, \ H_0 \$ не отвергается
- 0.9, H₀ отвергается
- $igoplus 0.5, \, H_0 \,$ не отвергается
- \bigcirc 0.4, H_0 не отвергается

Выберите HEBEPHOE утверждение про метод максимального правдоподобия (ММП):

- ММП оценки не всегда совпадают с оценками метода моментов
- ММП применим для оценивания двух и более параметров
- При выполнении технических предпосылок оценки ММП состоятельны
- $lue{}$ Оценки ММП асимтотически нормальны $\mathcal{N}(0;1)$
- ММП применим для зависимых случайных величин

31

Если величина $\hat{\theta}$ имеет нормальное распределение $\mathcal{N}(2;0.01^2)$, то, согласно дельта-методу, $\hat{\theta}^2$ имеет примерно нормальное распределение

- $\mathcal{N}(2; 4 \cdot 0.01^2)$
- $\mathcal{N}(4; 8 \cdot 0.01^2)$
- $\mathcal{N}(4; 4 \cdot 0.01^2)$
- $\mathcal{N}(4; 16 \cdot 0.01^2)$
- $\sim \mathcal{N}(4; 2 \cdot 0.01^2)$

Случайные величины X_1 , X_2 и X_3 независимы и одинаково распределены,

$$X_i$$
 3 5 $\mathbb{P}(\cdot)$ p 1 $-p$

Имеется выборка из трёх наблюдений: $X_1 = 5$, $X_2 = 3$, $X_3 = 5$. Оценка неизвестного p, полученная методом максимального правдоподобия, равна:

- 2/3
- 1/2
- Метод неприменим
- **1/3**
- **1/4**

Случайные величины X_1 , X_2 и X_3 независимы и одинаково распределены,

$$X_i$$
 3 5 $\mathbb{P}(\cdot)$ p 1 $-p$

По выборке оказалось, что $\bar{X}=4.5.$ Оценка неизвестного p, полученная методом моментов, равна:

- **1/3**
- Метод неприменим
- **1/4**
- 2/3
- **1**/2

Величины $X_1, X_2, \ldots, X_{2016}$ независимы и одинаково распределены, $\mathcal{N}(\mu;42)$. Оказалось, что $\bar{X}=-23$. Про оценки метода моментов, $\hat{\mu}_{MM}$, и метода максимального правдоподобия, $\hat{\mu}_{ML}$, можно утверждать, что

- $\hat{\mu}_{M}L < -23, \ \hat{\mu}_{M}M = -23$
- $\hat{\mu}_{M}L = -23, \, \hat{\mu}_{M}M > -23$
- $\hat{\mu}_M L = -23, \ \hat{\mu}_M M = -23$
- $\hat{\mu}_M L = -23, \ \hat{\mu}_M M < -23$
- $\hat{\mu}_M L > -23, \ \hat{\mu}_M M = -23$

Выберите HEBEPHOE утверждение про логарифмическую функцию правдоподобия $\ell(\theta)$

- $lue{}$ Функция $\ell(heta)$ может иметь несколько экстремумов
- ullet Функция $\ell(heta)$ может принимать значения больше единицы
- $lue{}$ Функция $\ell(heta)$ имеет максимум при heta=0
- $lue{}$ Функция $\ell(heta)$ может принимать положительные значения
- ullet Функция $\ell(heta)$ может принимать отрицательные значения

Величины X_1,\ldots,X_n независимы и одинаково распределены, $\mathbb{E}(X_1^2)=2\theta+4$. По выборке из 100 наблюдений оказалось, что $\sum_{i=1}^{100}X_i^2=200$. Оценка метода момента, $\hat{\theta}_{MM}$, равна

- **D** 0
- **D** -1
- Метод неприменим
- **O** 2

По выборке из 100 наблюдений построена оценка метода максимального правдоподобия, $\hat{\theta}_{ML}=42$. Вторая производная лог-функции правдоподобия равна $\ell''(\hat{\theta})=-1$. Ширина 95%-го доверительного интервала для неизвестного параметра θ примерно равна

- 1/2
- **D** 2
- **2** 4
- **1**

Проверяется гипотеза H_0 : $\theta=\gamma$ против альтернативной гипотезы H_a : $\theta\neq\gamma$, где θ и γ — два неизвестных параметра. Выберите верное утверждение о распределении статистики отношения правдоподобия, LR:

- $lue{}$ И при H_0 , и при H_a , $LR \sim \chi_1^2$
- $lue{}$ И при H_0 , и при H_a , $LR\sim\chi_2^2$
- $lue{}$ Если верна H_{a} , то $LR \sim \chi_{1}^{2}$
- $lue{}$ Если верна H_0 , то $LR \sim \chi_1^2$
- $lue{}$ Если верна H_a , то $LR \sim \chi_2^2$

По 100 наблюдениям получена оценка метода максимального правдоподобия, $\hat{\theta}=20$, также известны значения лог-функции правдоподобия $\ell(20)=-10$ и $\ell(0)=-50$. С помощью критерия отношения правдоподобия, LR, проверьте гипотезу H_0 : $\theta=0$ против H_0 : $\theta\neq0$ на уровне значимости 5%.

- Критерий неприменим
- LR = 60, H_0 не отвергается
- ullet LR=40, H_0 не отвергается
- \blacksquare LR=80, H_0 отвергается
- ightharpoonup LR = 40, H_0 отвергается

Пусть $X = (X_1, \dots, X_n)$ — случайная выборка из биномиального распределения Bi(5,p). Известно, что $\mathbb{P}(X=x) = C_n^x p^x (1-p)^{n-x}$. Информация Фишера $I_n(p)$ равна:

- $\frac{5n}{p(1-p)}$
- $\frac{p(1-p)}{5n}$
- $\frac{n}{5p(1-p)}$

Пусть $X = (X_1, \dots, X_n)$ — случайная выборка из экспоненциального распределения с плотностью

$$f(x; \theta) = egin{cases} rac{1}{ heta} \exp(-rac{x}{ heta}) & ext{при } x \geq 0, \\ 0 & ext{при } x < 0. \end{cases}$$

Информация Фишера $I_n(p)$ равна:

$$n\theta^2$$

$$\frac{\theta^2}{n}$$

Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из равномерного на $(0,\theta)$ распределения. При каком значении константы c оценка $\hat{\theta}=c\bar{X}$ является несмещённой?

- **D** 2
- **u** n
- $\frac{1}{2}$

Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из биномиального распределения Bi(5,p). При каком значении константы c оценка $\hat{p}=c\bar{X}$ является несмещённой?

- 5
- **C** r

Последовательность оценок $\hat{ heta}_1,\hat{ heta}_2,...$ называется состоятельной, если

- $m{P}(|\hat{ heta}_n heta| > t) o 0$ для всех t > 0
- \blacksquare $\mathbb{E}(\hat{\theta}_n) \to \theta$
- $ightharpoonup Var(\hat{ heta}_n) \geq Var(\hat{ heta}_n+1)$
- $lue{}$ Var $(\hat{ heta}_n) o 0$

Пусть $X = (X_1, \dots, X_n)$ — случайная выборка из распределения с плотностью

$$f(x; heta) = egin{cases} rac{1}{ heta} \exp(-rac{x}{ heta}) \ ext{при } x \geq 0, \ 0 \ ext{при } x < 0. \end{cases}$$

При каком значении константы c оценка $\hat{\theta}=car{X}$ является несмещённой?

- $\frac{1}{n}$
- **D** 1
- n
- **□** n
- $\frac{n}{n+1}$
- $\frac{n+1}{n}$

Пусть $X=(X_1,\dots,X_n)$ — случайная выборка из равномерного на $(0,2\theta)$ распределения. Оценка $\hat{\theta}=X_1$

- Эффективная
- Нелинейная
- Асимптотически нормальная
- Несмещённая
- Состоятельная

Пусть $X = (X_1, \ldots, X_n)$ — случайная выборка. Случайные величины X_1, \ldots, X_n имеют дискретное распределение, которое задано при помощи таблицы

При каком значении константы c оценка $\hat{\theta}_n = c(\bar{X}+2)$ является несмещённой?

- **D** 3

- $\frac{1}{3}$

Пусть $X = (X_1, \ldots, X_n)$ — случайная выборка. Случайные величины X_1, \ldots, X_n имеют дискретное распределение, которое задано при помощи таблицы

Xi	-4	0	3
\mathbb{P}_{X_i}	$\frac{3}{4} - \theta$	<u>1</u>	θ

При каком значении константы c оценка $\hat{\theta}_n = c(\bar{X}+3)$ является несмещённой?

- **6**
- **2** 4
- ldot 1

Пусть $X=(X_1,\dots,X_n)$ — случайная выборка и $I_n(\theta)$ — информация Фишера. Тогда несмещённая оценка $\hat{\theta}$ называется эффективной, если

- $I^{-1}_n(\theta) \leq \operatorname{Var}(\hat{\theta})$
- $I^{-1}_n(\theta) \geq \operatorname{Var}(\hat{\theta})$
- $ightharpoonup Var(\hat{\theta}) \cdot I_n(\theta) = 1$
- $ightharpoonup Var(\hat{\theta}) \leq I_n(\theta)$
- $ightharpoonup Var(\hat{\theta}) = I_n(\theta)$

Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка и $\ell(\theta)=\ell(X_1,\ldots,X_n;\theta)$ — логарифмическая функция правдоподобия. Тогда информация Фишера $I_n(\theta)$ равна

$$lacksquare$$
 $-\mathbb{E}\left(\left(rac{\partial \ell(heta)}{\partial heta}
ight)^2\right)$

Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка и $\ell(\theta)=\ell(X_1,\ldots,X_n;\theta)$ — логарифмическая функция правдоподобия. Тогда информация Фишера $I_n(\theta)$ равна

$$\mathbb{E}\left(\frac{\partial^2 \ell(\theta)}{\partial \theta^2}\right)$$

$$-\mathbb{E}\left(\frac{\partial \ell(\theta)}{\partial \theta}\right)$$

$$\mathbb{E}\left(\frac{\partial \ell(\theta)}{\partial \theta}\right)$$

$$\mathbb{E}\left(\left(\frac{\partial \ell(\theta)}{\partial \theta}\right)^2\right)$$

Случайные величины X и Y распределены нормально. Для тестирования гипотезы о равенстве дисперсий выбирается m наблюдений случайной величины X и n наблюдений случайной величины Y. Какое распределение может иметь статистика, используемая в данном случае?

- $t_m + n 2$
- $t_m + n 1$
- $F_m + 1, n + 1$
- P_m , n
- $F_m 1, n 1$

Требуется проверить гипотезу о равенстве математических ожиданий в двух нормальных выборках размером m и n. Если дисперсии неизвестны, но равны, то тестовая статистика имеет распределение

- $rac{1}{2}$ F_m , n
- $t_m + n 2$
- $F_m + 1, n + 1$
- $F_m 1, n 1$
- $t_m + n 1$

Требуется проверить гипотезу о равенстве дисперсий по двум нормальным выборкам размером 20 и 16 наблюдений. Несмещённая оценка дисперсии по первой выборке составила 60, по второй — 90. Тестовая статистика может быть равна

- **D** 2
- **1** 4
- 1.224
- 1.5

Требуется проверить гипотезу о равенстве математических ожиданий по двум нормальным выборкам размером 20 и 16 наблюдений. Истинные дисперсии по обеим выборкам известны, совпадают и равны 16. Разница выборочных средних равна 1. Тестовая статистика может быть равна

- **2**
- 1.5
- **2** 4
- 1.224

При проверке гипотезе о равенстве математических ожиданий в двух нормальных выборках размеров m и n при известных, но не равных дисперсиях, тестовая статистика имеет распределение

- $F_{m-1,n-1}$ t_{m+n-1}
- $\mathbf{D} F_m$
- t_{m+n-2}
- $\sim N(0;1)$

При проверке гипотезы о равенстве долей используется следующее распределение

- $F_{m-1,n-1}$
- $F_{m,n}$
- $\sim N(0;1)$
- t_{m+n-1}
 - t_{m+n-2}

Есть две нормально распределённых выборки размером 20 и 16 наблюдений. Истинные дисперсии по обеим выборкам неизвестны и равны. Выборочные средние по обеим выборкам совпадают. Гипотеза о равенстве математических ожиданий

- Гипотезу невозможно проверить
- 🖸 не отвергается на любом разумном уровне значимости
- 🕑 отвергается на любом разумном уровне значимости
- ▶ не отвергается на 5%-ом и отвергается на 1%-ом уровне значимости
- •• не отвергается на 1%-ом и отвергается на 5%-ом уровне значимости

Для проверки гипотезы о равенстве долей в двух выборках могут использоваться следующие распределения

- $lue{}$ только χ_1^2
- только N(0; 1)
- ightharpoonup N(0;1) и $F_{m,n}$
- $lue{}$ только $F_{m,n}$
- N(0;1) и χ_1^2

Доля успехов в первой выборке равна 0.55, доля успехов во второй выборке — 0.4. Количество наблюдений в выборках равно 40 и 20 соответственно. Тестовая статистика для проверки гипотезы о равенстве долей может быть равна

- 2.2
- 2.4
- **1.1**
- 1.2
- 0.9

Доля успехов в первой выборке равна 0.8, доля успехов во второй выборке — 0.3. Количество наблюдений в выборках 40 и 20 соответственно. Гипотеза о равенстве долей

- 📭 Гипотезу невозможно проверить
- ▶ не отвергается на 5%-ом и отвергается на 1%-ом уровне значимости
- •• не отвергается на 1%-ом и отвергается на 5%-ом уровне значимости
- 📭 не отвергается на любом разумном уровне значимости
- 🕟 отвергается на любом разумном уровне значимости

Для выборки X_1,\ldots,X_n , имеющей нормальное распределение, проверяется гипотеза $H_0:\sigma^2=\sigma_0^2$ против $H_a:\sigma^2>\sigma_0^2$. Критическая область имеет вид

- igoplus (0,A), где A таково, что $\mathbb{P}(\chi_n^2 1 < A) = lpha$
- $(A, +\infty)$, где A таково, что $\mathbb{P}(\chi_n^2 1 < A) = \alpha$ $(-\infty, A)$, где A таково, что $\mathbb{P}(\chi_n^2 - 1 < A) = 1 - \alpha$
- $igodots (A,+\infty)$, где A таково, что $\mathbb{P}(\chi_n^2-1 < A) = 1-lpha$
- (0,A), где A таково, что $\mathbb{P}(\chi_n^2-1 < A) = 1-\alpha$

Для выборки X_1,\ldots,X_n , имеющей нормальное распределение, проверяется гипотеза $H_0:\sigma^2=\sigma_0^2$ против $H_a:\sigma^2<\sigma_0^2$. Критическая область имеет вид

- $igoplus (A, +\infty)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A) = 1 lpha$
- $(A, +\infty)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A) = \alpha$
- igoplus (0,A), где A таково, что $\mathbb{P}(\chi^2_{n-1} < A) = 1-lpha$
- $(A, +\infty)$, где A таково, что $\mathbb{P}(\chi_{n-1}^2 < A) = 1 \alpha$
- $(A, +\infty)$, где A таково, что $\mathbb{P}(\chi_{n-1}^2 < A) = \alpha$

При подбрасывании игральной кости 600 раз шестерка выпала 105 раз. Гипотеза о том, что кость правильная

- $oldsymbol{oldsymbol{oldsymbol{arphi}}}$ не отвергается при любом разумном значении lpha
- $lue{}$ отвергается при lpha= 0.05, не отвергается при lpha= 0.01
- $lue{}$ отвергается при lpha=0.01, не отвергается при lpha=0.05
- Гипотезу невозможно проверить
- ullet отвергается при любом разумном значении lpha

Величины X_1,\dots,X_n — выборка из нормально распределенной случайной величины с неизвестным математическим ожиданием и известной дисперсией. На уровне значимости α проверяется гипотеза $H_0:\mu=\mu_0$ против $H_a:\mu\neq\mu_0$. Обозначим φ_1 и φ_2 вероятности ошибок первого и второго рода соответственно. Между параметрами задачи всегда выполнено соотношение

$$\mathbf{Q} \varphi_1 = 1 - \alpha$$

По случайной выборке из 200 наблюдений было оценено выборочное среднее $\bar{X}=25$ и несмещённая оценка дисперсии $\hat{\sigma}^2=25$. В рамках проверки гипотезы $H_0:\mu=20$ против $H_a:\mu>20$ можно сделать вывод, что гипотеза H_0

- $lue{}$ отвергается при lpha=0.05, не отвергается при lpha=0.01
- $lue{}$ отвергается при lpha= 0.01, не отвергается при lpha= 0.05
- Гипотезу невозможно проверить
- $lue{}$ не отвергается при любом разумном значении lpha
- $lue{}$ отвергается при любом разумном значении lpha

По выборке X_1,\ldots,X_n из нормального распределения строятся по стандартным формулам доверительные интервалы для математического ожидания. Получен интервал (a_1,a_2) при известной дисперсии и интервал (b_1,b_2) при неизвестной дисперсии. Всегда справедливы следующие соотношения:

- $|a_1-b_1|=|a_2-b_2|$
- $a_2 a_1 > b_2 b_1$
- $a_1 > 0, b_1 > 0, a_2 > 0, b_2 > 0$
- $a_2 a_1 < b_2 b_1$

Величины X_1, \dots, X_n — выборка из нормального распределения. Статистика $U = \frac{5-X}{5/\sqrt{n}}$ применима для проверки

- m ullet гипотезы $H_0: \mu = 5$ при известной дисперсии, равной 5, при больших n
- $lue{lue{+}}$ гипотезы H_0 : $\mu=5$ при известной дисперсии, равной 25, только при больших n
- m ullet гипотезы $H_0: \mu = 5$ при известной дисперсии, равной 5, при любых n
- $lue{}$ гипотезы $H_0: \sigma = 5$
- $lue{lue}$ гипотезы $H_0: \mu = 5$ при известной дисперсии, равной 25, при любых n

Выборочная доля успехов в некотором испытании составляет 0.3. Исследователь Ромео хочет, чтобы длина двустороннего 95%-го доверительного интервала для истинной доли не превышала 0.1. Количество наблюдений, необходимых для этого, примерно равно

- 81

Пусть X_1,\dots,X_n — выборка из нормального распределения с известной дисперсией σ^2 . Пусть $U=\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}}$. Величина U^2 имеет распределение

- χ_1^2
- $F_{1,n-1}$
- t_{n-1}

Дана реализация выборки: 3, 1, 2. Выборочный начальный момент первого порядка равен

- **14/3**
- **1**
- **2**
- **2** 3
- **D** 0

21

Дана реализация выборки: 3, 1, 2. Несмещённая оценка дисперсии равна

- 1/2
- \bigcirc 1
- **2**
- **1/3**
- 2/3

Выберите HEBEPHOE утверждение про эмпирическую функцию распределения $F_n(x)$

- $igodots F_n(x)$ имеет разрыв в каждой точке вариационного ряда
- $igodots F_n(x)$ асимптотически нормальна
- $F_n(x)$ является состоятельной оценкой функции распределения F(x)
- $m{ } \ \ \, F_n(x)$ является невозрастающей функцией

Юрий Петров утверждает, что обычно посещает половину занятий по Статистике. За последние полгода из 36 занятий он не посетил ни одного. Вычислите значение критерия хи-квадрат Пирсона для гипотезы, что утверждение Юрия Петрова истинно и укажите число степеней свободы

$$\chi^2 = 24$$
, $df = 1$

$$\chi^2 = 14$$
, $df = 1$

$$\chi^2 = 20, df = 2$$

$$\chi^2 = 2$$
, $df = 2$

$$\chi^2 = 36$$
, $df = 1$

Производитель фломастеров попросил трёх человек оценить качество двух вида фломастеров: «Лесенка» и «Erich Krause» по 10-балльной шкале:

	Пафнутий	Андрей	Карл
Лесенка	9	7	6
Erich Krause	8	9	7

При альтернативной гипотезе о том, что Erich Krause качественнее, точное P-значение (P-value) статистики теста знаков равно

- 1/2
- 1/8
- 2/3
- **3/8**
- **1/3**

Производитель фломастеров попросил трёх человек оценить два вида фломастеров: «Лесенка» и «Erich Krause» по 10-балльной шкале:

	Пафнутий	Андрей	Карл
Лесенка	9	7	6
Erich Krause	8	9	7

Вычислите модуль значения статистики теста знаков. Используя нормальную аппроксимацию, проверьте на уровне значимости 0.1 гипотезу о том, что фломастеры имеют одинаковое качество.

- 1.96, H₀ отвергается
- 0.43, H₀ не отвергается
- **1** 0.58, *H*₀ отвергается
- 0.58, H₀ не отвергается

26 Да! Следующий вопрос

Кузнец Вакула в течение 100 лет ведет статистику о прилете аистов и рождении младенцев на хуторе близ Диканьки. У него получилась следующая таблица сопряженности

	Аисты прилетали	Аисты не прилетали
Появлялся младенец	30	10
Не появлялся младенец	30	30

Укажите число степеней свободы статистики Пирсона и на уровне значимости 5% определите, зависит ли появление младенца от прилета аистов

- df = 3, зависит df = 4, зависит

В коробке 50 купюр пяти различных номиналов. Случайным образом достаются две купюры. Номиналы вынимаемых купюр

- 🕨 не коррелированы и не зависимы
- 💶 отрицательно коррелированы
- 🔼 положительно коррелированы
- 🕑 положительно коррелированы, но не зависимы
- 💶 не коррелированы, но зависимы

Экзамен принимают два преподавателя: Злой и Добрый. Они поставили следующие оценки:

 Злой	2	3	10	8	3
Добрый	6	4	7	8	

Значение статистики критерия Вилкоксона о совпадении распределений оценок равно

- 20.5
- **1**9
- 22.5
- 20
- 7.5

Следующий вопрос

Датчик случайных чисел выдал два значения псевдослучайных чисел: 0.5 и 0.9. Вычислите значение критерия Колмогорова и проверьте гипотезу о соответствии распределения равномерному на уровне значимости 0.1. Критическое значение статистики Колмогорова для уровня значимости 0.1 и двух наблюдений равно 0.776.

- 1.4, H₀ отвергается
- $igodown 0.9, \ H_0 \$ не отвергается
- О.9, H₀ отвергается
- 0.5, H₀ не отвергается
- \bigcirc 0.4, H_0 не отвергается

Выберите HEBEPHOE утверждение про метод максимального правдоподобия (ММП):

- ММП оценки не всегда совпадают с оценками метода моментов
- ММП применим для оценивания двух и более параметров
- При выполнении технических предпосылок оценки ММП состоятельны
- $lue{}$ Оценки ММП асимтотически нормальны $\mathcal{N}(0;1)$
- ММП применим для зависимых случайных величин

Если величина $\hat{ heta}$ имеет нормальное распределение $\mathcal{N}(2;0.01^2)$, то, согласно дельта-методу, $\hat{ heta}^2$ имеет примерно нормальное распределение

- $\mathcal{N}(2; 4 \cdot 0.01^2)$
- $\mathcal{N}(4; 8 \cdot 0.01^2)$
- $\sim \mathcal{N}(4; 4 \cdot 0.01^2)$
- $\mathcal{N}(4; 16 \cdot 0.01^2)$
- $\mathcal{N}(4; 2 \cdot 0.01^2)$

Случайные величины X_1 , X_2 и X_3 независимы и одинаково распределены,

$$\begin{array}{c|cccc} X_i & 3 & 5 \\ \hline \mathbb{P}(\cdot) & p & 1-p \end{array}$$

Имеется выборка из трёх наблюдений: $X_1 = 5$, $X_2 = 3$, $X_3 = 5$. Оценка неизвестного p, полученная методом максимального правдоподобия, равна:

- 2/3
- 1/2
- Метод неприменим
- **1/3**
- 1/4

Случайные величины X_1 , X_2 и X_3 независимы и одинаково распределены,

$$\begin{array}{c|cccc} X_i & 3 & 5 \\ \hline \mathbb{P}(\cdot) & p & 1-p \end{array}$$

По выборке оказалось, что $\bar{X}=4.5.$ Оценка неизвестного p, полученная методом моментов, равна:

- **1/3**
- Метод неприменим
- 1/4
- 2/3
- 1/2

Величины $X_1,\,X_2,\,\dots,\,X_{2016}$ независимы и одинаково распределены, $\mathcal{N}(\mu;42)$. Оказалось, что $\bar{X}=-23$. Про оценки метода моментов, $\hat{\mu}_{MM}$, и метода максимального правдоподобия, $\hat{\mu}_{ML}$, можно утверждать, что

- $\hat{\mu}_{M}L < -23, \ \hat{\mu}_{M}M = -23$
- $\hat{\mu}_{M}L = -23, \, \hat{\mu}_{M}M > -23$
- $\hat{\mu}_M L = -23, \ \hat{\mu}_M M = -23$
- $\hat{\mu}_M L = -23, \ \hat{\mu}_M M < -23$
- $\hat{\mu}_M L > -23, \ \hat{\mu}_M M = -23$

Выберите HEBEPHOE утверждение про логарифмическую функцию правдоподобия $\ell(\theta)$

- $lue{}$ Функция $\ell(heta)$ может иметь несколько экстремумов
- $lue{}$ Функция $\ell(heta)$ может принимать значения больше единицы
- $lue{}$ Функция $\ell(heta)$ имеет максимум при heta=0
- $lue{}$ Функция $\ell(heta)$ может принимать положительные значения
- $lue{}$ Функция $\ell(heta)$ может принимать отрицательные значения

Величины X_1,\ldots,X_n независимы и одинаково распределены, $\mathbb{E}(X_1^2)=2\theta+4$. По выборке из 100 наблюдений оказалось, что $\sum_{i=1}^{100}X_i^2=200$. Оценка метода момента, $\hat{\theta}_{MM}$, равна

- **O**
- **D** -1
- Метод неприменим
- **D** 2

37

По выборке из 100 наблюдений построена оценка метода максимального правдоподобия, $\hat{\theta}_{ML}=42$. Вторая производная лог-функции правдоподобия равна $\ell''(\hat{\theta})=-1$. Ширина 95%-го доверительного интервала для неизвестного параметра θ примерно равна

- **1**
- **1/2**
- **2** 2
- **1**

Проверяется гипотеза H_0 : $\theta=\gamma$ против альтернативной гипотезы H_a : $\theta\neq\gamma$, где θ и γ — два неизвестных параметра. Выберите верное утверждение о распределении статистики отношения правдоподобия, LR:

- $lue{}$ И при H_0 , и при H_a , $LR\sim\chi_1^2$
- $lue{}$ И при H_0 , и при H_a , $LR\sim\chi_2^2$
- $lue{}$ Если верна H_{a} , то $LR \sim \chi_{1}^{2}$
- $lue{}$ Если верна H_0 , то $LR \sim \chi_1^2$
- $lue{}$ Если верна H_a , то $LR \sim \chi_2^2$

По 100 наблюдениям получена оценка метода максимального правдоподобия, $\hat{\theta}=20$, также известны значения лог-функции правдоподобия $\ell(20)=-10$ и $\ell(0)=-50$. С помощью критерия отношения правдоподобия, LR, проверьте гипотезу H_0 : $\theta=0$ против H_0 : $\theta\neq0$ на уровне значимости 5%.

- Критерий неприменим
- ho LR=60, H_0 не отвергается
- ullet LR = 40, H_0 не отвергается
- $m{\square}$ LR=80, H_0 отвергается
- ightharpoonup LR = 40, H_0 отвергается

Пусть $X = (X_1, \dots, X_n)$ — случайная выборка из биномиального распределения Bi(5,p). Известно, что $\mathbb{P}(X=x) = C_n^x p^x (1-p)^{n-x}$. Информация Фишера $I_n(p)$ равна:

- ⇒ $\frac{5n}{p(1-p)}$ ⇒ $\frac{p(1-p)}{5n}$ ⇒ $\frac{5p(1-p)}{n}$ ⇒ $\frac{n}{5p(1-p)}$ ⇒ $\frac{n}{p(1-p)}$ Следующий вопрос
- Да! Следующий вопрос

41

Пусть $X = (X_1, \dots, X_n)$ — случайная выборка из экспоненциального распределения с плотностью

$$f(x; \theta) = \begin{cases} \frac{1}{\theta} \exp(-\frac{x}{\theta}) & \text{при } x \ge 0, \\ 0 & \text{при } x < 0. \end{cases}$$

Информация Фишера $I_n(p)$ равна:

- $lue{}$ n $heta^2$
- $\frac{\theta^2}{n}$
- $\Box \frac{\theta}{n}$
- n
- $\frac{\overline{\theta^2}}{\theta}$
- $\frac{1}{\theta}$

Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из равномерного на $(0,\theta)$ распределения. При каком значении константы c оценка $\hat{\theta}=c\bar{X}$ является несмещённой?

- **u** n

- $\bigcirc \frac{1}{n}$

Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из биномиального распределения Bi(5,p). При каком значении константы c оценка $\hat{p}=c\bar{X}$ является несмещённой?

- **5**
- **D** r

Последовательность оценок $\hat{ heta}_1,\hat{ heta}_2,...$ называется состоятельной, если

$$m{P}(|\hat{ heta}_n - heta| > t) o 0$$
 для всех $t > 0$

$$ightharpoonup Var(\hat{ heta}_n) \geq Var(\hat{ heta}_n+1)$$

$$ightharpoonup Var(\hat{\theta}_n) o 0$$

$$\mathbb{E}(\hat{\theta}_n) = \theta$$

Пусть $X = (X_1, \dots, X_n)$ — случайная выборка из распределения с плотностью

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} \exp(-\frac{x}{\theta}) \text{ при } x \ge 0, \\ 0 \text{ при } x < 0. \end{cases}$$

При каком значении константы c оценка $\hat{\theta}=car{X}$ является несмещённой?

- $\sum \frac{1}{n}$
- **n**
- 11
- $\frac{n}{n+1}$
- $\frac{n+1}{n}$

Пусть $X=(X_1,\dots,X_n)$ — случайная выборка из равномерного на $(0,2\theta)$ распределения. Оценка $\hat{\theta}=X_1$

- Эффективная
- Нелинейная
- Асимптотически нормальная
- Несмещённая
- Состоятельная

47

Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка. Случайные величины X_1,\ldots,X_n имеют дискретное распределение, которое задано при помощи таблицы

При каком значении константы c оценка $\hat{\theta}_n = c(\bar{X} + 2)$ является несмещённой?

- **3**

- а Следующий вопрос

Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка. Случайные величины X_1,\ldots,X_n имеют дискретное распределение, которое задано при помощи таблицы

Xi	-4	0	3
\mathbb{P}_{X_i}	$\frac{3}{4} - \theta$	<u>1</u>	θ

При каком значении константы c оценка $\hat{\theta}_n = c(\bar{X}+3)$ является несмещённой?

- **D** (
- $\mathbf{D} \frac{1}{4}$
- 4
- ldot
- $\frac{1}{6}$

Пусть $X=(X_1,\dots,X_n)$ — случайная выборка и $I_n(\theta)$ — информация Фишера. Тогда несмещённая оценка $\hat{\theta}$ называется эффективной, если

- $I^{-1}_n(\theta) \leq \operatorname{Var}(\hat{\theta})$
- $I^{-1}_n(\theta) \geq \operatorname{Var}(\hat{\theta})$
- $ightharpoonup Var(\hat{\theta}) \cdot I_n(\theta) = 1$
- $ightharpoonup Var(\hat{\theta}) \leq I_n(\theta)$
- $ightharpoonup Var(\hat{\theta}) = I_n(\theta)$

Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка и $\ell(\theta)=\ell(X_1,\ldots,X_n;\theta)$ — логарифмическая функция правдоподобия. Тогда информация Фишера $I_n(\theta)$ равна

$$\mathbb{E}\left(\frac{\partial \ell(\theta)}{\partial \theta}\right)$$

$$\mathbb{E}\left(\frac{\partial^2 \ell(\theta)}{\partial \theta^2}\right)$$

$$lacksquare$$
 $-\mathbb{E}\left(\left(rac{\partial \ell(heta)}{\partial heta}
ight)^2\right)$

Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка и $\ell(\theta)=\ell(X_1,\ldots,X_n;\theta)$ — логарифмическая функция правдоподобия. Тогда информация Фишера $I_n(\theta)$ равна

$$- \mathbb{E} \left(\frac{\partial \ell(\theta)}{\partial \theta} \cdot \frac{\partial \ell(\theta)}{\partial \theta} \right)$$

$$\mathbb{E}\left(\frac{\partial^2 \ell(\theta)}{\partial \theta^2}\right)$$

$$-\mathbb{E}\left(\frac{\partial \ell(\theta)}{\partial \theta}\right)$$

$$\mathbb{E}\left(\frac{\partial \ell(\theta)}{\partial \theta}\right)$$

$$\mathbb{E}\left(\left(\frac{\partial \ell(\theta)}{\partial \theta}\right)^2\right)$$

Случайные величины X и Y распределены нормально. Для тестирования гипотезы о равенстве дисперсий выбирается m наблюдений случайной величины X и n наблюдений случайной величины Y. Какое распределение может иметь статистика, используемая в данном случае?

- $t_m + n 2$
- $t_m + n 1$
- $P_m + 1, n + 1$
- $ightharpoonup F_m, n$
- $F_m 1, n 1$

Требуется проверить гипотезу о равенстве математических ожиданий в двух нормальных выборках размером m и n. Если дисперсии неизвестны, но равны, то тестовая статистика имеет распределение

- $\longrightarrow F_m, n$
- $t_m + n 2$
- $F_m + 1, n + 1$
- $F_m 1, n 1$
- $t_m + n 1$

Требуется проверить гипотезу о равенстве дисперсий по двум нормальным выборкам размером 20 и 16 наблюдений. Несмещённая оценка дисперсии по первой выборке составила 60, по второй — 90. Тестовая статистика может быть равна

- **2** 4
- 1.224
- **1.5**

Требуется проверить гипотезу о равенстве математических ожиданий по двум нормальным выборкам размером 20 и 16 наблюдений. Истинные дисперсии по обеим выборкам известны, совпадают и равны 16. Разница выборочных средних равна 1. Тестовая статистика может быть равна

- **2**
- 1.5
- **2** 4
- 1.224

При проверке гипотезе о равенстве математических ожиданий в двух нормальных выборках размеров m и n при известных, но не равных дисперсиях, тестовая статистика имеет распределение

- $F_{m-1,n-1}$ t_{m+n-1}

- t_{m+n-2}
- $\sim N(0;1)$

При проверке гипотезы о равенстве долей используется следующее распределение

- $F_{m-1,n-1}$
- $\sim N(0;1)$
- t_{m+n-1} t_{m+n-2}

Есть две нормально распределённых выборки размером 20 и 16 наблюдений. Истинные дисперсии по обеим выборкам неизвестны и равны. Выборочные средние по обеим выборкам совпадают. Гипотеза о равенстве математических ожиданий

- Гипотезу невозможно проверить
- 🕑 не отвергается на любом разумном уровне значимости
- 🕑 отвергается на любом разумном уровне значимости
- ▶ не отвергается на 5%-ом и отвергается на 1%-ом уровне значимости
- •• не отвергается на 1%-ом и отвергается на 5%-ом уровне значимости

Для проверки гипотезы о равенстве долей в двух выборках могут использоваться следующие распределения

- $lue{}$ только χ_1^2
- только N(0; 1)
- N(0;1) и $F_{m,n}$
- $lue{}$ только $F_{m,n}$
- ightharpoonup N(0;1) и χ_1^2

Доля успехов в первой выборке равна 0.55, доля успехов во второй выборке — 0.4. Количество наблюдений в выборках равно 40 и 20 соответственно. Тестовая статистика для проверки гипотезы о равенстве долей может быть равна

- 2.2
- 2.4
- **1.1**
- 1.2
- 0.9

Доля успехов в первой выборке равна 0.8, доля успехов во второй выборке — 0.3. Количество наблюдений в выборках 40 и 20 соответственно. Гипотеза о равенстве долей

- 📭 Гипотезу невозможно проверить
- ▶ не отвергается на 5%-ом и отвергается на 1%-ом уровне значимости
- ▶ не отвергается на 1%-ом и отвергается на 5%-ом уровне значимости
- 📭 не отвергается на любом разумном уровне значимости
- 🕟 отвергается на любом разумном уровне значимости

Для выборки X_1,\ldots,X_n , имеющей нормальное распределение, проверяется гипотеза $H_0:\sigma^2=\sigma_0^2$ против $H_a:\sigma^2>\sigma_0^2$. Критическая область имеет вид

- igoplus (0,A), где A таково, что $\mathbb{P}(\chi_n^2 1 < A) = lpha$
- $(A,+\infty)$, где A таково, что $\mathbb{P}(\chi_n^2-1< A)=lpha$
- igodots $(-\infty,A)$, где A таково, что $\mathbb{P}(\chi_n^2-1< A)=1-lpha$
- $igodots (A,+\infty)$, где A таково, что $\mathbb{P}(\chi_n^2-1< A)=1-lpha$
- igodots (0, A), где A таково, что $\mathbb{P}(\chi_n^2 1 < A) = 1 lpha$

Для выборки X_1,\ldots,X_n , имеющей нормальное распределение, проверяется гипотеза $H_0:\sigma^2=\sigma_0^2$ против $H_a:\sigma^2<\sigma_0^2$. Критическая область имеет вид

- $igodots (A,+\infty)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A) = 1-lpha$
- igodots $(A,+\infty)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A) = lpha$
- igoplus (0,A), где A таково, что $\mathbb{P}(\chi^2_{n-1} < A) = 1-lpha$
- $igoplus (A, +\infty)$, где A таково, что $\mathbb{P}(\chi_{n-1}^2 < A) = 1 lpha$
- $igodots (A,+\infty)$, где A таково, что $\mathbb{P}(\chi^2_{n-1} < A) = lpha$

При подбрасывании игральной кости 600 раз шестерка выпала 105 раз. Гипотеза о том, что кость правильная

- $lue{}$ не отвергается при любом разумном значении lpha
- $lue{}$ отвергается при lpha= 0.05, не отвергается при lpha= 0.01
- $lue{}$ отвергается при lpha=0.01, не отвергается при lpha=0.05
- Гипотезу невозможно проверить
- $lue{}$ отвергается при любом разумном значении lpha

Величины X_1,\dots,X_n — выборка из нормально распределенной случайной величины с неизвестным математическим ожиданием и известной дисперсией. На уровне значимости α проверяется гипотеза $H_0:\mu=\mu_0$ против $H_a:\mu\neq\mu_0$. Обозначим φ_1 и φ_2 вероятности ошибок первого и второго рода соответственно. Между параметрами задачи всегда выполнено соотношение

$$\varphi_1 = \alpha$$

$$\mathbf{\Phi} \varphi_1 = 1 - \alpha$$

По случайной выборке из 200 наблюдений было оценено выборочное среднее $\bar{X}=25$ и несмещённая оценка дисперсии $\hat{\sigma}^2=25$. В рамках проверки гипотезы $H_0:\mu=20$ против $H_a:\mu>20$ можно сделать вывод, что гипотеза H_0

- $lue{}$ отвергается при lpha=0.05, не отвергается при lpha=0.01
- $lue{}$ отвергается при lpha=0.01, не отвергается при lpha=0.05
- Гипотезу невозможно проверить
- $lue{}$ не отвергается при любом разумном значении lpha
- ullet отвергается при любом разумном значении lpha

По выборке X_1,\ldots,X_n из нормального распределения строятся по стандартным формулам доверительные интервалы для математического ожидания. Получен интервал (a_1,a_2) при известной дисперсии и интервал (b_1,b_2) при неизвестной дисперсии. Всегда справедливы следующие соотношения:

- $|a_1-b_1|=|a_2-b_2|$
- $a_2 a_1 > b_2 b_1$
- $a_1 > 0, b_1 > 0, a_2 > 0, b_2 > 0$
- $a_2 a_1 < b_2 b_1$

Величины X_1,\dots,X_n — выборка из нормального распределения. Статистика $U=\frac{5-X}{5/\sqrt{n}}$ применима для проверки

- m ullet гипотезы $H_0: \mu = 5$ при известной дисперсии, равной 5, при больших n
- гипотезы H_0 : $\mu = 5$ при известной дисперсии, равной 25, только при больших n
- m ullet гипотезы $H_0: \mu = 5$ при известной дисперсии, равной 5, при любых n
- $lue{}$ гипотезы $H_0: \sigma = 5$
- $m \square$ гипотезы $H_0: \mu = 5$ при известной дисперсии, равной 25, при любых n

Выборочная доля успехов в некотором испытании составляет 0.3. Исследователь Ромео хочет, чтобы длина двустороннего 95%-го доверительного интервала для истинной доли не превышала 0.1. Количество наблюдений, необходимых для этого, примерно равно

- 8 **1**

Пусть X_1,\dots,X_n — выборка из нормального распределения с известной дисперсией σ^2 . Пусть $U=\frac{\bar{X}-\mu_0}{\sigma/\sqrt{n}}$. Величина U^2 имеет распределение

- χ_1^2
- $\chi_n^2 1$
- t_{n-1}
- t_1

Дана реализация выборки: 3, 1, 2. Выборочный начальный момент первого порядка равен

- **14/3**
- **1**
- **2**
- **2** 3
- **D** 0

Дана реализация выборки: 3, 1, 2. Несмещённая оценка дисперсии равна

- 1/2
- \bigcirc 1
- **2**
- 1/3
- 2/3

Выберите HEBEPHOE утверждение про эмпирическую функцию распределения $F_n(x)$

- $igodots F_n(x)$ имеет разрыв в каждой точке вариационного ряда
- $igodots F_n(x)$ асимптотически нормальна
- $\mathbb{E}(F_n(x)) = F(x)$
- $igoplus F_n(x)$ является состоятельной оценкой функции распределения F(x)
- $\longrightarrow F_n(x)$ является невозрастающей функцией

Юрий Петров утверждает, что обычно посещает половину занятий по Статистике. За последние полгода из 36 занятий он не посетил ни одного. Вычислите значение критерия хи-квадрат Пирсона для гипотезы, что утверждение Юрия Петрова истинно и укажите число степеней свободы

$$\chi^2 = 24$$
, $df = 1$

$$\chi^2 = 14$$
, $df = 1$

$$\chi^2 = 20$$
, $df = 2$

$$\chi^2 = 2$$
, $df = 2$

$$\chi^2 = 36$$
, $df = 1$

24

Производитель фломастеров попросил трёх человек оценить качество двух вида фломастеров: «Лесенка» и «Erich Krause» по 10-балльной шкале:

	Пафнутий	Андрей	Карл
Лесенка	9	7	6
Erich Krause	8	9	7

При альтернативной гипотезе о том, что Erich Krause качественнее, точное P-значение (P-value) статистики теста знаков равно

- 1/2
- 1/8
- 2/3
- **3/8**
- **1/3**

25

Производитель фломастеров попросил трёх человек оценить два вида фломастеров: «Лесенка» и «Erich Krause» по 10-балльной шкале:

	Пафнутий	Андрей	Карл
Лесенка	9	7	6
Erich Krause	8	9	7

Вычислите модуль значения статистики теста знаков. Используя нормальную аппроксимацию, проверьте на уровне значимости 0.1 гипотезу о том, что фломастеры имеют одинаковое качество.

- 1.65, H_0 отвергается
- 1.96, H₀ отвергается
- 🔼 0.43, *H*₀ не отвергается
- **2** 0.58, *H*₀ отвергается
- \bigcirc 0.58, H_0 не отвергается

26 Нет!

Кузнец Вакула в течение 100 лет ведет статистику о прилете аистов и рождении младенцев на хуторе близ Диканьки. У него получилась следующая таблица сопряженности

	Аисты прилетали	Аисты не прилетали
Появлялся младенец	30	10
Не появлялся младенец	30	30

Укажите число степеней свободы статистики Пирсона и на уровне значимости 5% определите, зависит ли появление младенца от прилета аистов

- df = 3, зависит df = 4, зависит

В коробке 50 купюр пяти различных номиналов. Случайным образом достаются две купюры. Номиналы вынимаемых купюр

- 🕨 не коррелированы и не зависимы
- отрицательно коррелированы
- 💶 положительно коррелированы
- 🕑 положительно коррелированы, но не зависимы
- 📭 не коррелированы, но зависимы

Экзамен принимают два преподавателя: Злой и Добрый. Они поставили следующие оценки:

Злой	2	3	10	8	3
Добрый	6	4	7	8	

Значение статистики критерия Вилкоксона о совпадении распределений оценок равно

- 20.5
- **1**9
- 22.5
- **2**0
- 7.5

Heт!

Датчик случайных чисел выдал два значения псевдослучайных чисел: 0.5 и 0.9. Вычислите значение критерия Колмогорова и проверьте гипотезу о соответствии распределения равномерному на уровне значимости 0.1. Критическое значение статистики Колмогорова для уровня значимости 0.1 и двух наблюдений равно 0.776.

- 1.4, H₀ отвергается
- О.9, H₀ отвергается
- \bigcirc 0.4, H_0 не отвергается

Выберите HEBEPHOE утверждение про метод максимального правдоподобия (ММП):

- ММП оценки не всегда совпадают с оценками метода моментов
- ММП применим для оценивания двух и более параметров
- При выполнении технических предпосылок оценки ММП состоятельны
- $lue{}$ Оценки ММП асимтотически нормальны $\mathcal{N}(0;1)$
- ММП применим для зависимых случайных величин

Если величина $\hat{ heta}$ имеет нормальное распределение $\mathcal{N}(2;0.01^2)$, то, согласно дельта-методу, $\hat{ heta}^2$ имеет примерно нормальное распределение

- $\mathcal{N}(2; 4 \cdot 0.01^2)$
- $\mathcal{N}(4; 8 \cdot 0.01^2)$
- $\mathcal{N}(4; 4 \cdot 0.01^2)$
- $\sim \mathcal{N}(4; 16 \cdot 0.01^2)$
- $\mathcal{N}(4; 2 \cdot 0.01^2)$

Случайные величины X_1 , X_2 и X_3 независимы и одинаково распределены,

$$X_i$$
 3 5 $\mathbb{P}(\cdot)$ p 1 $-p$

Имеется выборка из трёх наблюдений: $X_1 = 5$, $X_2 = 3$, $X_3 = 5$. Оценка неизвестного p, полученная методом максимального правдоподобия, равна:

- 2/3
- 1/2
- Метод неприменим
- **1**/3
- 1/4

Случайные величины X_1 , X_2 и X_3 независимы и одинаково распределены,

$$\begin{array}{c|cccc} X_i & 3 & 5 \\ \hline \mathbb{P}(\cdot) & p & 1-p \end{array}$$

По выборке оказалось, что $\bar{X}=4.5.$ Оценка неизвестного p, полученная методом моментов, равна:

- **1/3**
- Метод неприменим
- **1/4**
- 2/3
- **1**/2

Величины $X_1,\,X_2,\,\dots,\,X_{2016}$ независимы и одинаково распределены, $\mathcal{N}(\mu;42)$. Оказалось, что $\bar{X}=-23$. Про оценки метода моментов, $\hat{\mu}_{MM}$, и метода максимального правдоподобия, $\hat{\mu}_{ML}$, можно утверждать, что

- $\hat{\mu}_{M}L < -23, \ \hat{\mu}_{M}M = -23$
- $\hat{\mu}_M L = -23, \ \hat{\mu}_M M > -23$
- $\hat{\mu}_M L = -23, \ \hat{\mu}_M M = -23$
- $\hat{\mu}_M L = -23, \ \hat{\mu}_M M < -23$
- $\hat{\mu}_M L > -23, \ \hat{\mu}_M M = -23$

Выберите HEBEPHOE утверждение про логарифмическую функцию правдоподобия $\ell(\theta)$

- $lue{}$ Функция $\ell(heta)$ может иметь несколько экстремумов
- $lue{}$ Функция $\ell(heta)$ может принимать значения больше единицы
- $lue{}$ Функция $\ell(heta)$ имеет максимум при heta=0
- $oldsymbol{oldsymbol{oldsymbol{arepsilon}}}$ Функция $\ell(heta)$ может принимать положительные значения
- $lue{}$ Функция $\ell(heta)$ может принимать отрицательные значения

Величины X_1,\ldots,X_n независимы и одинаково распределены, $\mathbb{E}(X_1^2)=2\theta+4$. По выборке из 100 наблюдений оказалось, что $\sum_{i=1}^{100}X_i^2=200$. Оценка метода момента, $\hat{\theta}_{MM}$, равна

- **D** 0
- **D** -1
- Метод неприменим
- **D** 2

По выборке из 100 наблюдений построена оценка метода максимального правдоподобия, $\hat{\theta}_{ML}=42$. Вторая производная лог-функции правдоподобия равна $\ell''(\hat{\theta})=-1$. Ширина 95%-го доверительного интервала для неизвестного параметра θ примерно равна

- **1**
- **1/2**
- **D** 2
- **2** 4
- 8

Проверяется гипотеза H_0 : $\theta=\gamma$ против альтернативной гипотезы H_a : $\theta\neq\gamma$, где θ и γ — два неизвестных параметра. Выберите верное утверждение о распределении статистики отношения правдоподобия, LR:

- $lue{}$ И при H_0 , и при H_a , $LR \sim \chi_1^2$
- $lue{}$ И при H_0 , и при H_a , $LR\sim\chi_2^2$
- $lue{}$ Если верна H_a , то $LR \sim \chi_1^2$
- $lue{}$ Если верна H_0 , то $LR \sim \chi_1^2$
- $lue{}$ Если верна H_a , то $LR \sim \chi_2^2$

По 100 наблюдениям получена оценка метода максимального правдоподобия, $\hat{\theta}=20$, также известны значения лог-функции правдоподобия $\ell(20)=-10$ и $\ell(0)=-50$. С помощью критерия отношения правдоподобия, LR, проверьте гипотезу H_0 : $\theta=0$ против H_0 : $\theta\neq0$ на уровне значимости 5%.

- Критерий неприменим
- LR = 60, H_0 не отвергается
- ullet LR=40, H_0 не отвергается
- $m{\square}$ LR=80, H_0 отвергается
- ightharpoonup LR = 40, H_0 отвергается

Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из биномиального распределения Bi(5,p). Известно, что $\mathbb{P}(X=x)=C_n^x p^x (1-p)^{n-x}$. Информация Фишера $I_n(p)$ равна:

- $\frac{5n}{p(1-p)}$

- $\frac{n}{5p(1-p)}$
- $\frac{n}{p(1-p)}$

Пусть $X = (X_1, \dots, X_n)$ — случайная выборка из экспоненциального распределения с плотностью

$$f(x; \theta) = \begin{cases} \frac{1}{\theta} \exp(-\frac{x}{\theta}) & \text{при } x \ge 0, \\ 0 & \text{при } x < 0. \end{cases}$$

Информация Фишера $I_n(p)$ равна:

- $n\theta^2$
- $\frac{\theta^2}{n}$
- $\bigcirc \frac{6}{r}$
- $\frac{n}{a^2}$
- $\frac{n}{\theta}$

Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из равномерного на $(0,\theta)$ распределения. При каком значении константы c оценка $\hat{\theta}=c\bar{X}$ является несмещённой?

- **u** n

Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка из биномиального распределения Bi(5,p). При каком значении константы c оценка $\hat{p}=c\bar{X}$ является несмещённой?

- 5
- **5**
- \square r
- $\frac{1}{r}$

Последовательность оценок $\hat{ heta}_1,\hat{ heta}_2,...$ называется состоятельной, если

$$m{P}(|\hat{ heta}_n - heta| > t) o 0$$
 для всех $t > 0$

$$\blacksquare \mathbb{E}(\hat{\theta}_n) \to \theta$$

$$ightharpoonup Var(\hat{ heta}_n) \geq Var(\hat{ heta}_n+1)$$

$$ightharpoonup Var(\hat{\theta}_n) o 0$$

Пусть $X = (X_1, \dots, X_n)$ — случайная выборка из распределения с плотностью

$$f(x;\theta) = \begin{cases} \frac{1}{\theta} \exp(-\frac{x}{\theta}) \text{ при } x \ge 0, \\ 0 \text{ при } x < 0. \end{cases}$$

При каком значении константы c оценка $\hat{\theta}=car{X}$ является несмещённой?

- $\sum \frac{1}{n}$
- **O** 1
- \square n
- <u>n</u>
- n+1
- $\frac{n+1}{n}$

Пусть $X=(X_1,\dots,X_n)$ — случайная выборка из равномерного на (0,2 heta) распределения. Оценка $\hat{ heta}=X_1$

- Эффективная
- Нелинейная
- Асимптотически нормальная
- Несмещённая
- Состоятельная

Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка. Случайные величины X_1,\ldots,X_n имеют дискретное распределение, которое задано при помощи таблицы

$$\begin{array}{c|ccccc} X_i & -3 & 0 & 2 \\ \hline \mathbb{P}_{X_i} & \frac{2}{3} - \theta & \frac{1}{3} & \theta \end{array}$$

При каком значении константы c оценка $\hat{\theta}_n = c(\bar{X} + 2)$ является несмещённой?

- **D** 1

- 1

Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка. Случайные величины X_1,\ldots,X_n имеют дискретное распределение, которое задано при помощи таблицы

Xi	-4	0	3
\mathbb{P}_{X_i}	$\frac{3}{4} - \theta$	$\frac{1}{4}$	θ

При каком значении константы c оценка $\hat{\theta}_n = c(\bar{X} + 3)$ является несмещённой?

- **6**

- 7
- $\mathbf{D} \frac{1}{6}$

Пусть $X=(X_1,\dots,X_n)$ — случайная выборка и $I_n(\theta)$ — информация Фишера. Тогда несмещённая оценка $\hat{\theta}$ называется эффективной, если

- $I^{-1}_n(\theta) \leq \operatorname{Var}(\hat{\theta})$
- $I^{-1}_n(\theta) \geq \operatorname{Var}(\hat{\theta})$
- $ightharpoonup Var(\hat{\theta}) \cdot I_n(\theta) = 1$
- $ightharpoonup Var(\hat{\theta}) \leq I_n(\theta)$
- $ightharpoonup Var(\hat{\theta}) = I_n(\theta)$

Пусть $X=(X_1,\ldots,X_n)$ — случайная выборка и $\ell(\theta)=\ell(X_1,\ldots,X_n;\theta)$ — логарифмическая функция правдоподобия. Тогда информация Фишера $I_n(\theta)$ равна

$$\mathbb{E}\left(\frac{\partial^2 \ell(\theta)}{\partial \theta^2}\right)$$

$$-\mathbb{E}\left(\left(\frac{\partial \ell(\theta)}{\partial \theta}\right)^2\right)$$

Пусть $X=(X_1,\dots,X_n)$ — случайная выборка и $\ell(\theta)=\ell(X_1,\dots,X_n;\theta)$ — логарифмическая функция правдоподобия. Тогда информация Фишера $I_n(\theta)$ равна

$$\mathbb{E}\left(\frac{\partial^2 \ell(\theta)}{\partial \theta^2}\right)$$

$$-\mathbb{E}\left(\frac{\partial \ell(\theta)}{\partial \theta}\right)$$

$$\mathbb{E}\left(\left(\frac{\partial \ell(\theta)}{\partial \theta}\right)^2\right)$$