# Aplikace Embedded systémů v Mechatronice









Michal Bastl

# Poslední test:

## **Témata:**

- ADC
- PWM
- WDT, Sleep
- SPI-DAC

## Serial pheripheral interface:

- Sběrnice v embedded systémech
- Topologicky jednoduchá synchronní (má sdílený CLK)
- Master-Slave
- Typicky komunikace v rámci DPS
- Paměti, ADC, DAC, SD karty atd.
- Rychlá (desítky MHz běžně)



### Serial pheripheral interface:

- Názvosloví není zcela konzistentní
- CLK je vodič hodinového signálu (synchronizace)
- MOSI master out slave in; MISO master in slave out
- Ale také SDI seriál data in; SDO seriál data out
- CS (SS) chip select, nebo slave select
- Komunikuji vždy s jedním zařízením (volím pomocí CS)
- SPI ma tedy 3 komunikační vodiče
- A pak n CS dle počtu slave jednotek



## Serial pheripheral interface:

- Princip je mimořádně jednoduchý
- Zařízení obsahují posuvné registry, které plní příchozími znaky (0/1)
- Vše je synchronizováno CLK z mástra



- Existují 4 módy SPI
- V podstatě lze vybrat polaritu clk (normální vs. Invertovaná)
- Také mohu číst data na nástupnou, nbo vzestupnou hranu clk
- Toto spolu tvoří 4 kombinace viz obr.
  - Master sends useful data and slave sends dummy data.
  - Master sends useful data and slave sends useful data.
  - Master sends dummy data and slave sends useful data



### SPI PIC18

#### REGISTER 15-2: SSPxSTAT: SSPx STATUS REGISTER

| R/W-0       | R/W-0 R-0 |       | R-0 | R-0 | R-0 | R-0 | R-0 |  |  |  |  |
|-------------|-----------|-------|-----|-----|-----|-----|-----|--|--|--|--|
| SMP CKE     |           | D/Ā P |     | S   | R/W | UA  | BF  |  |  |  |  |
| bit 7 bit 0 |           |       |     |     |     |     |     |  |  |  |  |

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'u = Bit is unchangedx = Bit is unknown-n/n = Value at POR and BOR/Value at all other Resets'1' = Bit is set'0' = Bit is cleared

#### REGISTER 15-3: SSPxCON1: SSPx CONTROL REGISTER 1

| R/C/HS-0    | R/C/HS-0 | R/W-0  | R/W-0 | R/W-0      | R/W-0 | R/W-0 | R/W-0 |  |  |  |
|-------------|----------|--------|-------|------------|-------|-------|-------|--|--|--|
| WCOL        | SSPxOV   | SSPxEN | CKP   | SSPxM<3:0> |       |       |       |  |  |  |
| bit 7 bit 0 |          |        |       |            |       |       |       |  |  |  |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared | HS = Bit is set by hardware C = User cleared          |

SSP1CON1bits.SSPM = 0b0010; // SPI clock SSP1STATbits.CKE = 1; SSP1CON1bits.SSPEN = 1; // SPI zapnuto



# SPI DAC MCP4802/12/22

- SPI DAC (Pouze Sdi, tedy zapíši příkaz)
- 8/10/12 bit verze
- Dva kanály
- Vnitřní napěťová reference
- Nastavitelné zesílení 1x,2x
- String DAC obvod



#### REGISTER 5-3: WRITE COMMAND REGISTER FOR MCP4802 (8-BIT DAC)

| W-x    | W-x | W-x | W-0  | W-x   |
|--------|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|
| Ā/B    | _   | GA  | SHDN | D7  | D6  | D5  | D4  | D3  | D2  | D1  | D0  | X   | X   | Х   | Х     |
| bit 15 |     |     |      |     |     |     |     |     |     |     |     |     |     |     | bit 0 |



# SPI DAC MCP4802/12/22





$$V_{OUT} = \left(\frac{D_{IN}}{2^n}\right) \times V_{REF} \times Gain$$

### SPI PIC18

```
void SPIWrite(uint8_t channel ,uint8_t data){
uint8 t msb, lsb, flush;
msb = (channel | (data >> 4));
                                          // prvni bajt
lsb = (data << 4) \& 0xF0;
                                          // druhy bajt
DAC_SS = 0;
                                          // slave select
PIR1bits.SSPIF = 0;
                                          // vynulovani priznaku SPI
SSPBUF = msb;
                                          // zapis do bufferu
while(PIR1bits.SSPIF == 0)NOP();
                                          // pockat nez SPI posle prvni bajt
PIR1bits.SSPIF = 0;
                                          // vynulovani priznaku SPI
SSPBUF = lsb;
                                          // zapis do bufferu
while(PIR1bits.SSPIF == 0)NOP();
                                          // pockat nez SPI posle druhy bajt
DAC SS = 1;
                                          // vypnout slave select
flush = SSPBUF;
                                          // vycteni bufferu
```

### **12C PIC18**

- Dva vodiče half-duplex
- Rychlost 100 a 400 kHz (až 3.4 MHz)
- Na lince jsou pull-up rezistory
- Používá adresy zařízení (začína Master)
- Start → Adresa → Data → Stop





### **12C PIC18**

### Příklad: Master zapisuje a potom čte data ze senzoru

#### **START**

Master vytvoří start podmínku (SDA z 1 na 0 při SCL = 1).

### Adresa + zápis (0)

Master pošle 7bitovou adresu senzoru + 0 (pro zápis).

→ Senzor odpoví ACK.

### Zápis registru

Master pošle číslo registru, ze kterého chce číst (např. 0x10).

→ Senzor odpoví ACK.

#### REPEATED START

Master vyšle opět start podmínku.

### Adresa + čtení (1)

Master pošle 7bitovou adresu senzoru + 1 (pro čtení).

→ Senzor odpoví ACK.

#### Čtení dat

Master přečte bajt (např. 0x5A) ze senzoru.

→ Po přečtení pošle NACK (už nechce další bajty).

#### **STOP**

Master vytvoří stop podmínku (SDA z 0 na 1 při SCL = 1).

