

链表(上)

网络工程教研中心 陈卫卫

稀疏多项式求和问题

$$P=8+10x^2+5x^{100}$$

	ceof	exp
	8	0
P	10	2
	5	100

	ceof	exp
	2	2
Q	9	17
	-5	100
	15	130

	ceof	exp
	8	0
P+Q	12	2
	9	17
	15	130

稀疏多项式求和问题

- ❖ 在原表P上进行稀疏多项式相加,若采用顺序存储,效率较低,如何改进算法?
- $P=8+10x^2+5x^{100}$
- \bullet Q=2x²+9x¹⁷-5x¹⁰⁰+15x¹³⁰

ceof	exp
------	-----

8	0
12	2
9	17
,	, and the second

130

15

ceof ex	кр
---------	----

2	2
9	17
-5	100
15	130

计算结果: P

学习目标和要求

- 1.准确地描述表的链式存储结构
- 2.写出单向链表的指定位置插入和删除的程序段

1. 表的链式存储—链表

❖ 链表是线性表的一种存储形式

链表的结点结构

值域链域

值域(数据域): 存储表元素值

链域(指针域):存储后继结点的存储地址(指单向链表)

1. 表的链式存储—链表

链式存储结构图:

首指针(表头指针):指向链表的第一个结点的指针变量。 其值为首结点的存储地址。

表尾结点(最后一个结点)的链域值为空(NULL)△

链表就是表头指针和一串相继链接的结点的总称

1. 表的链式存储—链表

链表的图示:

单向链表的结点结构的定义

链表的结点结构

值域 链域

```
typedef struct linkednode //结点类型
{ int data; //值域
  struct linkednode *next; //链域
} snode, *ptr; //结点类型名snode和指针类型名ptr
ptr head,p,q; //定义指针类型变量
```

类型struct linkednode * 与类型ptr等价都是指向snode的指针类型

编译预处理命令: #include <malloc.h> 通过调用文件malloc.h中的动态存储分配函数 malloc产生结点(动态结点) free回收结点

malloc()的典型用法:

p=(ptr)malloc(sizeof(snode));

含义:

产生一个结点——动态分配的变量

将结点的地址值转换成ptr类型

赋给指针变量p

若分配失败,返回NULL

NULL是值为0的指针常量,无效地址

❖ new的用法:

p=new snode;

结点的引用:

p->data: 结点的值域 等价于 (*p).data

p->next: 结点的链域 等价于 (*p).next

"废结点"的回收:

调用函数free(p)

例如: free(p);

释放后,变量p->不复存在 对p->的操作将变成"无意义"

delete p;

3. 结点的链接操作

让前趋结点的链域指向后继结点

q->next=p;

4. 指定位置的插入

基本操作: 局部的修改结点的链域

4. 指定位置的插入

(1) 插在表头

◆ 第2章 表结构
◆ 解放军理工大学

4. 指定位置的插入

(2) 插在表中

❖ 第2章 表结构

5. 指定位置的删除

基本操作: 局部的修改结点的链域

5. 指定位置的删除

(1) 删除表头结点

5. 指定位置的删除

(2) 删除表中结点

◆ 第2章 表结构
◆ 解放军理工大学

6. 链表的特点

特点:

- (1) 结点地址不连续
- (2) 插入/删除不移动结点, 耗时为O(1)
- (3) 用于动态管理

核心:

- (1) 使用指向结点(结构类型)的指针
- (2) 执行期间,调用动态存储管理函数产生结点、 回收结点