

L'approche gloutonne (vorace)

Le problème de rendre la monnaie

- Étant donné un montant n et une quantité suffisante de pièces pour chacune des dénominations d₁, d₂,...,d_m, trouvez le plus petit nombre de pièces dont la valeur totale donne n.
 - Exemple: au Canada nous avons:
 - $d_1 = 25$ cents
 - $d_2 = 10$ cents
 - $d_3 = 5$ cents
 - $d_4 = 1$ cents
 - Pour rendre la monnaie d'un montant n, les caissiers utilisent un algorithme glouton (vorace):
 - On utilise les pièces de la plus grande dénomination possible tant que leur valeur totale n'excède pas n
 - Ex: lorsque n = 32. Nous utilisons $1 \times 25 + 0 \times 10 + 1 \times 5 + 2 \times 1$ (donc 4 pièces).

Le problème de rendre la monnaie (suite)

- En fait, l'algorithme glouton trouve la solution optimale pour certaines dénominations (comme celle utilisée au Canada).
- Cependant, il existe des dénominations où la solution trouvée par l'algorithme glouton n'est pas optimale.
 - Ex: supposons que nous utilisons une dénomination sans pièces de 5 cents: $d_1 = 25$, $d_2 = 10$ et $d_3 = 1$.
 - Pour n = 32, l'algorithme glouton trouve: 1 × 25 + 7 × 1 (8 pièces)
 - Or, la solution optimale est: 3 × 10 + 2 × 1 (5 pièces)
- Il existe un algorithme de programmation dynamique (problèmes série
 7) qui trouve toujours la solution optimale en un temps ⊕(mn).
- Or le temps requis par l'algorithme glouton est ∈ O(n) car, en pire cas,
 l'algorithme utilisera uniquement les pièces de dénomination d₁ = 1.
- Un algorithme glouton est souvent l'algorithme de choix lorsqu'il arrive à trouver la solution optimale ou lorsque l'on est satisfait de sa solution

Caractéristiques des algorithmes gloutons

- Un algorithme glouton construit une solution en effectuant une séquence de décisions. Pour chaque décision:
 - Le choix effectué satisfait les contraintes du problème
 - Ex: chaque pièce que l'on ajoute (aux pièces déjà choisies) nous donne un montant total ≤ n.
 - Le choix effectué est localement optimal
 - Ex: on choisi la pièce de la plus grande dénomination possible nous donnant un montant total (avec les autres pièces) ≤ n
 - Le choix effectué est irrévocable
 - Ex: La pièce choisie ne pourra pas être retirée ultérieurement
- Ainsi, chacune des décisions est gloutonne (ou vorace)
- C'est une bonne stratégie lorsque la séquence de décisions, localement optimales, donne une solution globalement optimale ou lorsque l'on est satisfait de la « non optimalité » de la solution globale

Arbres de recouvrement minimaux

- Considérons les graphes connexes et non orientés où chaque arête possède un poids (ou une distance)
- Un arbre de recouvrement d'un graphe connexe et non orienté est un arbre (i.e. un graphe acyclique) contenant tous les nœuds du graphe
- Un arbre de recouvrement minimal est un arbre de recouvrement dont le poids (la somme des poids de chacune de ses arêtes) est minimal
- Nous allons étudier 2 algorithmes gloutons différents permettant de trouver un arbre de recouvrement minimal

FIGURE 9.1 Graph and its spanning trees; T_1 is the minimum spanning tree

L'algorithme de Prim

- Cet algorithme débute avec un arbre constitué d'un seul nœud (choisi arbitrairement)
- Un arbre de recouvrement minimal est construit en ajoutant un nœud à la fois à cet arbre
- À chaque étape, le nœud est choisi de manière gloutonne
 - C'est le nœud, n'appartenant pas à l'arbre, qui est connecté à un nœud de l'arbre par l'arête de poids minimal
- L'algorithme termine lorsque l'arbre contient les n nœuds du graphe
 - L'algorithme effectue donc n 1 choix gloutons
- L'algorithme retourne l'ensemble des arêtes constituant cet arbre de recouvrement
- Nous allons démontrer, sous peu, que cet arbre est un arbre de recouvrement minimal

Pseudo code de l'algorithme de Prim

```
ALGORITHM Prim(G)
    //Prim's algorithm for constructing a minimum spanning tree
    //Input: A weighted connected graph G = \langle V, E \rangle
    //Output: E_T, the set of edges composing a minimum spanning tree of G
    V_T \leftarrow \{v_0\} //the set of tree vertices can be initialized with any vertex
    E_T \leftarrow \emptyset
    for i \leftarrow 1 to |V| - 1 do
         find a minimum-weight edge e^* = (v^*, u^*) among all the edges (v, u)
         such that v is in V_T and u is in V - V_T
         V_T \leftarrow V_T \cup \{u^*\}
         E_T \leftarrow E_T \cup \{e^*\}
    return E_T
```


Détail de chaque étape gloutonne de Prim

- À chaque étape gloutonne, nous devons déterminer, pour chaque nœud u à l'extérieur de l'arbre T (i.e. ∀ u ∈ V – V_T):
 - Le poids w_u de l'arête de poids minimal reliant u à l'arbre T
 - (le poids est ∞ lorsque u n'est pas relié à l'arbre par une arête)
 - et le nœud v_u ∈ V_T relié à u par cet arête de poids w_u
- Pour cela, nous attachons (et maintenons) les 2 étiquettes w_u et v_u à chaque nœud u ∈ V − V_T
- Après avoir identifié l'arête (v*, u*) : v*∈ V_T et u*2 V V_T et (v*, u*) est de poids minimal il faut:
 - Déplacer u* de V V_T vers V_T
 - Pour chaque u ∈ V V_T connecté à u* par une arête de poids w inférieur à w_u, il faut faire les mise à jour des 2 étiquettes:
 - $\mathbf{W}_{\mathsf{U}} \leftarrow \mathsf{W}$
 - $V_u \leftarrow u^*$

Application de l'algorithme de Prim

Tree vertices	Remaining vertices a	Illustration		
a(-,-)	$\mathbf{b}(\mathbf{a}, 3) \ c(-, \infty) \ d(-, \infty)$ $\mathbf{e}(\mathbf{a}, 6) \ f(\mathbf{a}, 5)$	3 b 1 c 6 6 5 d 6 e 8		
b(a, 3)	$c(b, 1) d(-, \infty) e(a, 6)$ f(b, 4)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		

Application de l'algorithme de Prim (suite)

Exactitude de l'algorithme de Prim

- Démontrons que l'arbre de recouvrement fourni par l'algorithme de Prim est un arbre de recouvrement minimal.
- Soit T₀ l'arbre initial contenant un seul nœud
- Soit T_i l'arbre à la fin de la i-ième étape gloutonne de l'algorithme de Prim (contenant i + 1 nœuds)
- T_{n-1} est alors l'arbre final fourni par l'algorithme de Prim
- Démontrons, par induction, que chaque arbre T_i est un sous arbre d'un arbre de recouvrement minimal
 - Si c'est vrai, alors T_{n-1} est un arbre de recouvrement minimal
- T₀, étant constitué d'un seul nœud, est forcément un sous arbre d'un arbre de recouvrement minimal
- Démontrons que pour tout i : si T_{i-1} est un sous arbre d'un arbre de recouvrement minimal, alors il en sera ainsi pour T_i

Exactitude de l'algorithme de Prim (suite)

- Prouvons ce dernier énoncé par contradiction.
- Supposons que T_i ne soit pas un sous arbre d'un arbre de recouvrement minimal
- Par contre, T_{i-1} est, par hypothèse, un sous arbre d'un arbre de recouvrement minimal T
- Soit e_i = (v,u) = l'arête de poids minimal utilisé par l'algorithme de Prim pour passer de T_{i-1} à T_i
- Par hypothèse, e_i ne peut pas être inclus dans T car sinon T_i serait un sous arbre d'un arbre de recouvrement minimal.
- L'ajout de e_i à T forme forcément un cycle contenant e_i ainsi qu'une autre arête (v',u') telle que v' ∈ T_{i-1} et u'∉T_{i-1} (voir figure page suivante)
- (il est possible que v' coïncide avec v ou que u' coïncide avec u mais non les deux à la fois)

Exactitude de l'algorithme de Prim (suite)

- En enlevant (v',u') nous obtenons alors un autre arbre de recouvrement T'≠ T qui inclut e_i et dont le poids total est inférieur ou égal à celui de T car le poids de e_i est inférieur ou égal à celui de (v',u').
- Donc T' est forcément un arbre de recouvrement minimal.
- Alors T_i est un sous arbre d'un arbre de recouvrement minimal. CQFD

Analyse de l'efficacité de l'algorithme de Prim

- Le temps d'exécution de l'algorithme de Prim dépend de la structure de données utilisée pour le graphe et de la structure de données utilisée pour la file d'attente des nœuds ∈ V – V_T
- Utilisons un tas-min pour la file d'attente des nœuds ∈ V V_T
 - Un tas-min est un arbre binaire essentiellement complet dont la valeur de chaque nœud est inférieure ou égale à celle de ses enfants
 - Les tas que nous avons étudiés au chapitre 6 sont, en fait, des tas-max
 - La valeur de chaque nœud u dans la file d'attente est la valeur w_u du poids de l'arête de poids minimal reliant u à l'arbre
 - Le nœud u* ∈ V V_T ayant la plus faible valeur w_{u*} sera donc toujours au sommet du tas-min et cela prendra un temps ∈ O(log(|V V_T|)) pour reconstruire le tas-min après avoir enlevé u*
 - Cela aurait pris un temps ∈ O(|V V_T|) si, au lieu d'un tas-min, nous utilisions un simple tableau (non-trié) pour cette file.

Analyse de l'efficacité de l'algorithme de Prim (suite)

- Lorsque l'on ajoute un nœud u^{*} à l'arbre, il faut, pour chaque u ∈ V V_T connecté à u^{*}, mettre possiblement à jour w_u et v_u et reconstruire le tas-min pour chaque u mis à jour
 - Si E_{u*} désigne l'ensemble des nœuds connectés à u*, cela nécessite un temps ∈ O(|E_{u*}| × log(|V – V_T|)) ⊆ O(|E_{u*}| × log(|V|)) lorsque le graphe est représenté par des listes d'adjacences
 - Ça serait O(|V| × log(|V|)) pour un graphe représenté par une matrice d'adjacence (nettement moins bon)

FIGURE 1.8 (a) Weighted graph. (b) Its adjacency matrix. (c) Its adjacency linked lists.

Analyse de l'efficacité de l'algorithme de Prim (suite)

- Donc pour chaque nœud u* que l'on insère dans l'arbre cela coûte un temps O(log|V|) pour enlever u* du tas-min et cela coûte un temps O(|E_{u*}| × log(|V|)) pour les mis à jour des u ∈ V – V_T connectés à u*
 - La somme des temps requis pour les mis à jours effectuées pour tous les nœuds u* insérés dans l'arbre sera de O(|E| × log(|V|)) pour un graphe de |E| arêtes
 - La somme des temps requis pour enlever chacun des |V| 1 nœuds u* du tas min sera de O((|V|-1) × log(|V|))
- Le temps d'exécution total sera donc en O((|V|-1+ |E|) × log(|V|)) et donc en O(|E| × log(|V|)) puisque |E| ≥ |V|-1 pour un graphe connexe
- Examinons maintenant un autre algorithme glouton nous permettant, également, de trouver un arbre de recouvrement minimal.

4

Pseudo-code de l'algorithme de Prim avec monceau

```
Procédure MST-Prim (G, w, r)
  pour u \in G.noeuds faire
      u.distance \leftarrow \infty;
      u.\pi \leftarrow \text{nil}:
      u.dansQ \leftarrow vrai;
  r.distance \leftarrow 0:
  Q \leftarrow G.noeuds;
  // Crée un monceau inverse en utilisant l'attribut distance pour comparer les éléments;
  HeapBottomUp(Q);
  tant que Q \neq \emptyset faire
      u \leftarrow \text{ExtraisLaRacine}(Q);
      u.\mathsf{dansQ} \leftarrow \mathsf{faux};
      pour v adjacent à u dans G faire
           si v.dansQ \land w(u,v) < v.distance alors
               v.distance \leftarrow w(u, v) // Percoler v dans le monceau Q;
  E_T \leftarrow \emptyset;
  pour v \in G.noeuds \setminus \{r\} faire
   E_T \leftarrow E_T \cup \{(v, v.\pi)\};
  retourner E_T;
```


L'algorithme de Kruskal

- L'algorithme trie d'abord, en ordre croissant de leur poids, l'ensemble
 E des arêtes d'un graphe G = (V,E) connexe
- Ensuite, en débutant avec E_T = Ø, l'algorithme ajoute à E_T l'arête e ∈ E de poids w_e minimal qui ne forme pas de cycle avec les arêtes déjà dans E_T
 - Cette arête n'est pas nécessairement connectée à une autre arête de E_T
 - L'ensemble des arêtes de E_T constitue alors une forêt (d'arbres)
 - C'est donc un graphe généralement non connexe
- Cette séquence de choix gloutons se termine lorsque |E_T| = |V| − 1
 - E_T deviens alors un arbre (unique) qui recouvre G
 - Nous démontrerons que c'est nécessairement un arbre de recouvrement minimal

Pseudo code de l'algorithme de Kruskal

ALGORITHM Kruskal(G)

```
//Kruskal's algorithm for constructing a minimum spanning tree //Input: A weighted connected graph G = \langle V, E \rangle //Output: E_T, the set of edges composing a minimum spanning tree of G Sort E in nondecreasing order of the edge weights w(e_{i_1}) \leq \ldots \leq w(e_{i_{|E|}}) E_T \leftarrow \emptyset; ecounter \leftarrow 0 //initialize the set of tree edges and its size k \leftarrow 0 //initialize the number of processed edges while ecounter < |V| - 1 k \leftarrow k + 1 if E_T \cup \{e_{i_k}\} is acyclic E_T \leftarrow E_T \cup \{e_{i_k}\}; ecounter \leftarrow ecounter + 1 return E_T
```


Application de l'algorithme de Kruskal

Tree edges			Soi	rted	lis	of	edg	ges ^a			Illustration
	bc 1	ef 2	ab 3	bf 4	cf 4	af 5	df 5	ae 6	cd 6	de 8	3 5 1 C 6 6 5 d 6 6 8
bc 1	bc 1	ef 2	ab 3	bf 4	cf 4	af 5	df 5	ae 6	cd 6	de 8	3 5 6 5 d 3 5 6 8

Application de l'algorithme de Kruskal (suite)

Exactitude de l'algorithme de Kruskal

- La démonstration est presque identique à celle démontrant l'exactitude de l'algorithme de Prim
- Chaque étape gloutonne construit une forêt F_i à ajoutant une arête de poids minimal à la forêt précédente F_{i-1}
 - La forêt initiale F₀ est constituée de |V| arbres triviaux : chacun étant constitué d'un seul noeud
- Démontrons, par induction, que chaque forêt F_i est un sous graphe d'un arbre de recouvrement minimal
 - Cela impliquera alors que la forêt finale est un arbre de recouvrement minimal
- F₀ est trivialement un sous graphe d'un arbre de recouvrement minimal
- Supposons que F_{i-1} soit un sous graphe d'un arbre T de recouvrement minimal
- Démontrons, par contradiction, que F_i est nécessairement un sous graphe d'un arbre de recouvrement minimal

Exactitude de l'algorithme de Kruskal (suite)

- Alors si F_{i-1} est un sous graphe de T et que F_i n'en est pas un, l'arête e_i = (v, u) choisie à l'étape i ne doit pas être incluse dans T.
- e_i forme alors un cycle avec T constitué de e_i et d'une autre arête (v',u') telle que v'∈ F_{i-1} et u' ∉ F_{i-1}
- En enlevant (v',u') nous obtenons alors un autre arbre de recouvrement T'≠ T qui inclus e_i et dont le poids total est inférieur ou égal à celui de T car le poids de e_i est inférieur ou égal à celui de (v',u').
- Donc T' est forcément un arbre de recouvrement minimal et F_i est un sous graphe de T'. CQFD.

Analyse de l'efficacité de l'algorithme de Kruskal

- Le tri de E nécessite un temps ∈ O(|E| log |E|)
- Pour chacun des choix gloutons, nous devons:
 - Choisir le prochain élément e de E (en un temps Θ(1))
 - Vérifier si e forme un cycle avec un arbre de la forêt F_{i-1}
 - Pour cela, il faut vérifier si e_i = (v,u) est tel que v et u appartiennent au même arbre dans F_{i-1} (voir figure)
 - Si e ne forme pas de cycle: ajouter e_i à F_{i-1} pour obtenir F_i

FIGURE 9.5 New edge connecting two vertices may (a) or may not (b) create a cycle

Analyse de l'efficacité de l'algorithme de Kruskal (suite)

- Les arbres de la forêt F_{i-1} forment une collection d'ensembles disjoints: chaque nœud dans F_{i-1} est élément d'un seul arbre
- Initialement, nous avons |V| ensembles disjoints S₁, S₂, ... S_{|V|} où chaque ensemble S_i contient un seul nœud de V
- Ayant choisi l'arête (v,u) de poids minimal, il faut trouver l'ensemble S_i contenant v et l'ensemble S_i contenant u.
 - Si S_i = S_i on ignore (v,u) et on passe à l'arête suivante;
 - sinon, on fusionne S_i avec S_i pour obtenir S_i ∪ S_i
- L'algorithme de Kruskal effectue (exactement) |V| 1 opérations fusionner
 - car nous avons 1 fusion par arête de l'arbre de recouvrement minimal
- L'algorithme de Kruskal effectue au plus 2 × |E| opérations trouver
 - car, en pire cas, toutes les arête de E seront examinées.
- Nous verrons que le total de ces opération trouver et fusionner nécessite un temps O(|V| log |V| + |E|) ou de O(|V| + |E| log |V|)
- Le temps d'exécution total de l'algorithme de Kruskal sera alors dominé par l'étape du triage de E. Le temps total d'exécution sera alors ∈ O(|E| log |E|).

Structures de données pour ensembles disjoints

- Examinons les structures de données pour ensembles disjoints pour effectuer, le plus efficacement possible, les opérations trouver et fusionner
- Nous avons un ensemble S de n éléments qui sont distribués, initialement, parmi n ensembles disjoints S₁, S₂, ... S_n où chaque S_i contient un seul élément.
- Nous effectuerons alors au plus n 1 opérations fusionner
 - Car, après ce nombre d'opérations, il reste forcément un seul ensemble.
- Supposons que nous désirons effectuer m opérations trouver
- Les opérations trouver sont entremêlées parmi les opérations fusionner

Exemple

- Soit S = {1,2,3,4,5,6}. Initialement nous avons les ensembles disjoints: {1}, {2}, {3}, {4}, {5}, {6}
- Après les opérations fusionner(1,4) et fusionner(5,2), nous avons: {1,4}, {5,2}, {3}, {6}
- Après les opérations fusionner(4,5) et fusionner(3,6), nous avons: {1,4,5,2}, {3,6}
- Chaque ensemble est identifié par un seul de ses éléments, appelé le représentant (de l'ensemble)
 - Le choix du représentant est arbitraire

La structure fusionner-rapide

- Cette structure optimise les opérations fusionner au prix d'un ralentissement des opérations trouver
- Ici la structure est celle d'une forêt: chaque arbre représente un ensemble. La racine de l'arbre est le représentant de l'ensemble.
- Pour trouver le représentant de l'ensemble contenant un élément x, il suffit de remonter du nœud x jusqu'à la racine.

FIGURE 9.7 (a) Forest representation of subsets {1, 4, 5, 2} and {3, 6} used by quick union. (b) Result of union(5, 6).

La structure fusionner-rapide (suite)

- Lorsque l'on fusionne deux ensembles, il suffit de connecter l'un des arbres à la racine de l'autre arbre.
 - Cette opération s'effectue en un temps Θ(1) car, pour cela, il suffit de mettre à jour un seul pointeur.
- Ainsi chaque opération fusionner s'effectue en temps Θ(1).
- Par contre une opération trouver(i) pourrait nécessiter un temps ⊕(n) lorsque i est situé au niveau inférieur d'un arbre de profondeur n.
 - Rappel: trouver(i) consiste à déterminer le représentant (donc l'élément racine) de l'ensemble contenant l'élément i.
- Il faut donc éviter, le plus possible, de construite des arbres profonds.
 - Pour tenter d'arriver à cette fin, connectons la racine de l'arbre le moins profond (à celui de l'arbre le plus profond) lors de chaque opération fusionner.

La structure fusionner-rapide (suite)

- Théorème: En utilisant cette technique pour fusionner deux ensembles, après une séquence arbitraire d'opérations fusionner, tout arbre contenant k nœuds aura une hauteur d'au plus lg(k).
- Preuve (par induction):
 - C'est vrai pour k=1 car un arbre d'un seul nœud possède une hauteur = 0 = [lg(1)]
 - Supposons que cela soit vrai pour tous les arbres de m nœuds tels que 1 ≤ m < k.</p>
 - Démontrons que cela est nécessairement vrai pour un arbre de k nœuds obtenu par la fusion de deux arbres contenant, respectivement, a nœuds et b nœuds tels que a + b = k
 - Nous avons nécessairement: 1≤ a,b < k</p>
 - Désignons par h_a la hauteur de l'arbre contenant a nœuds
 - Désignons par h_b la hauteur de l'arbre contenant b nœuds
 - Désignons par h_k la hauteur de l'arbre contenant a+b nœuds

La structure fusionner-rapide (suite)

- Preuve (...suite...):
 - Si $h_a \neq h_b$, alors $h_k = \max(h_a, h_b) \leq \max(\lfloor \lg(a) \rfloor, \lfloor \lg(b) \rfloor) \leq \lfloor \lg(k) \rfloor$
 - Si h_a = h_b, supposons, sans perte de généralité que a ≤ b. (Nous avons donc a ≤ k/2.)
 - Alors $h_k = h_a + 1 \le \lfloor \lg(a) \rfloor + 1 \le \lfloor \lg(k/2) \rfloor + 1 = \lfloor \lg(k) \rfloor$
 - Ainsi dans tous les cas $h_k \leq \lfloor \lg(k) \rfloor$. **CQFD**.
- Ainsi m opérations trouver s'effectuent en temps O(m log n)
- Il est cependant possible de faire mieux.

Compression de chemins

- Il est possible de réduire substantiellement la profondeur des arbres si, durant l'exécution de trouver(x), nous connectons le nœud x, et chaque ancêtre du nœud x, à la racine.
 - Ceci nécessite de parcourir 2 fois le chemin de x à la racine et ralentit donc d'un facteur 2 chaque opération trouver
 - Mais chaque opération trouver effectuée (à l'avenir) sur cet arbre sera accélérée en raison de la réduction de la profondeur de l'arbre
 - Une analyse sophistiquée montre que le temps requis pour effectuer m opérations trouver est presque linéaire en m

Implémentation de la structure de données des ensembles disjoints

- Nous encodons les arbres avec un vecteur R[1..n].
 - R[i] < 0 si i est un représentant. |R[i]| est un de plus que la hauteur de l'arbre
 - R[i] ≥ 0 si i est dans le même ensemble que R[i].
- Initialement, nous avons R[1..n] = [-1, -1, ..., -1] ce qui correspond à une forêt d'arbres triviaux.

Après des appels successifs à fusion(3, 4), fusion(5, 6), fusion(4, 6), nous obtenons le vecteur R[1..n] = [-1, -1, 4, 6, 6, -3]

Algorithme 1: Fusionner (r_1, r_2, R)

// Fusionne les ensembles dont les représentants sont r_1 et r_2 .

// Entrée : Les représentants r_1 et r_2 et le vecteur R qui encode la forêt d'arbres.

// Sortie : Le vecteur R est modifié pour représenter la nouvelle forêt.

Assertion $(R[r_1] < 0 \land R[r_2] < 0) // r_1$ et r_2 sont des représentants.

si
$$R[r_1] < R[r_2]$$
 alors $|R[r_2] \leftarrow r_1$

sinon si $R[r_1] > R[r_2]$ alors

$$L$$
 $R[r_1] \leftarrow r_2$

sinon

$$\begin{bmatrix}
R[r_1] \leftarrow r_2 \\
R[r_2] \leftarrow R[r_2] - 1
\end{bmatrix}$$

Algorithme 2 : Trouver(x, R)

// Retourne le représentant de l'ensemble contenant l'élément \boldsymbol{x}

$$r \leftarrow x$$

tant que $R[r] \geq 0$ faire

$$\ \ \ \ \ \ r \leftarrow R[r]$$

// r est le représentant

// Compression de l'arbre

tant que $x \neq r$ faire

$$t \leftarrow R[x] \\ R[x] \leftarrow r$$

$$x \leftarrow t$$

retourner r

Analyse de la structure de donnée

- La fonction Fusionner s'exécute en temps ⊕(1) puisque la fonctionne ne comporte que des instructions élémentaires et aucune boucle.
- D'après le théorème que nous avons prouvé, la hauteur d'un arbre de k éléments ne dépasse pas llg(k). La fonction Trouver s'exécute donc en pire cas en ⊕(log n).
- Cependant, la compression des arbres fait en sorte qu'on ne peut pas atteindre le pire cas à chaque appel à Trouver.
- Tarjan a démontré que le temps d'exécution amorti de la fonction Trouver est $\Theta(\alpha(n))$ où α est l'inverse de la fonction d'Ackermann.

n	$\alpha(n)$
3	1
7	2
61	3
$2^{2^{2^{65536}}}$	4

Retour à l'analyse de l'algorithme de Kruskal

- Résumé des opérations:
 - Trie: Θ(|E| log |E|)
 - Entre |V| 1 et |E| opérations Trouver
 - $C_{BEST}(|V|, |E|) \in \Theta(|V| \alpha(|V|))$
 - $C_{WORST}(|V|, |E|) \in \Theta(|E| \alpha(|V|))$
 - |V| 1 opérations Fusionner: Θ(|V|)
- Le trie domine toutes les opérations.
- L'algorithme de Kurskal s'exécute donc en temps Θ(|E| log |E|).
- Note:
 - Si les poids des arêtes sont des entiers entre 1 et |E|, on peut utiliser le tri par dénombrement dont l'efficacité est ⊕(|E|).
 - L'algorithme de Kruskal s'exécute alors en temps
 - $C_{BEST}(|V|, |E|) \in \Theta(|E| + |V| \alpha(|V|))$
 - $C_{WORST}(|V|, |E|) \in \Theta(|E| \alpha(|V|))$