स्वतंत्र कम्पन (Free Vibration)—वस्तु को एक बार कम्पित कर छोड़ देने पर स्वत: कम्पन करती है। वस्तु के ऐसे कम्पन को स्वतंत्र कम्पन और उसकी आवृत्ति को प्राकृतिक आवृत्ति कहते हैं। Ex.: सरल लोलक का कम्पन

तरंग चाल, तरंगदैर्घ्यं एवं आवृत्ति में संबंध (Relation between waves speed, wavelength and frequency)

तरंग एक आवर्तकाल 'T' में एक तरंगदैर्ध्य λ की दूरी तय करती है। यदि तरंग का वेग v हो तो समय 'T' में तरंग vT की दूरी तय करेगी।

$$\therefore \lambda = vT \qquad \because \quad n = \frac{1}{T} \qquad \therefore \frac{v}{n} = \lambda \quad \therefore$$

 $v = n \times \lambda$

अत: (तरंग चाल = आवृत्ति 🗴 तरंगदैर्घ्य)

कलान्तर (Phase difference)—एक तरंग दूसरी तरंग की अपेक्षा कितना आगे या पीछे है अथवा एक तरंग दूसरी से कितने समय से आगे है-इसकी जानकारी कालान्तर से होती है।

अतः
$$\left[$$
कालान्तर $= \frac{2\pi}{\lambda} \times$ पथान्तर $\right]$

अध्यारोपण सिद्धाना (Superposition Principle)—

परिणामी तरंग का रूप अलग-अलग तरंगों के योग के बराबर होता है।

कुछ तरंग रूपों को जोडने का यह नियम अध्यारोपण कहलाता है।

व्यतिकरण की व्याख्या तरंगों के अध्यारोपण सिद्धांत से ही होती है।

अध्यारोपण का सिद्धान्त केवल तब तक ही लागू होता है जब तक विक्षोभ का साइज अधिक बडा नहीं होता है।

विस्पंद (Beats)-समान दिशा में गतिमान दो तरंगें, जिनकी आवृत्तियों। में अति-सूक्ष्म अंतर है, परस्पर अध्यारोपण करती हैं तो विस्पन्द की प्रक्रिया होती है।

प्रगामी तरंग (Progressive Wave)—जिस तरंग गति से संचार की दिशा में लम्बवत् स्थित प्रति एकांक क्षेत्र से ऊर्जा का एक निश्चित परिमाण लगातार प्रवाहित होता है, उसे प्रगामी रंग कहते हैं।

अप्रगामी तरंगें (Stationary Wave)—विपरीत दिशा में संवरित दो सरल हामोनिक तरंगों (प्रगामी) के अध्यारपेण से जो परिणामी तरंग मिलता है, उसे अप्रगामी तरंग कहते हैं।

प्रत्येक आवर्तकाल में दो बार सभी बिन्दु विभिन्न वेग के साथ अपनी

माध्य स्थितियों से एक साथ गुजरते हैं।

(B) अयांत्रिक तरंगें या विद्युत चुंबकीय तरंग (Non-Mechanical Wave or Electromagnetic Wave)-

वैसी तरंगें जिसके संचरण के लिए किसी माध्यम की आवश्यकता नहीं होती है, अर्थात् तरंगें निर्वात् में भी संचरित हो सकती हैं, उन्हें विद्युत्-चुम्बकीय या अयात्रिक तरंग कहते हैं।

सभी विद्युत्-चुम्बकीय तरंगें एक ही चाल से चलती हैं, जो प्रकाश की

चाल के बराबर होती हैं।

सभी विद्युत-चुम्बकीय तरंगें फोटॉन की बनी होती हैं।

प्रकाश तरंग, कष्पीय विकिरण, एक्स किरणें (X-rays), रेडियो तरंगें विद्युत चम्बकीय तरंग के उदाहरण है।

विद्युत चुम्बकीय तरंगों का तरंगदैर्घ्य परिसर 10^{-14} मी. से लेकर 10^{-4} मी. तक होता है।

विद्युत चुम्बकीय तूरंगुरें के गुण :

(i) यह उँदासीन होती है।

(ii) यह अनुप्रस्थ होती है।

(iii) यह प्रकाश के वेग से गमन करती है।

(iv) इसके पास कर्जा एवं संवेग होता है।

(v) इसकी अवधारणा मैक्सवेल द्वारा प्रतिपादित किया गया था।

विद्युत चुम्बकीय स्पेक्ट्रम (Electromagnetic Spectrum)—सूर्य के प्रकाश स्पेक्ट्रम के लाल से बेंगनी रंग दिखाई पड़ते हैं। स्पेक्ट्रम को दुश्य स्पेक्ट्रम कहते हैं।

लाल रंग के कपर के तरंगदैर्ध्य याले भाग को अवरक्त स्पेक्ट्रम तथा बैंगनी रंग से नीचे छोटे तरंगदैर्घ्य वाले भाग को पराबैंगनी स्पेक्ट्रम कहते हैं।

सभी विकिरण विद्युत चुम्बकीय तरंग हैं।

विद्यत-च्रष्यकीय म्पेक्टम

र विद्युत्-युग्यकाय स्पक्ट्रम					
骄.	तरंगें	खांज-	तरंगदेश्यं पगस	आयृति पराम (Hz	
	(Waves)	कर्ता	(m में)	में)	
			Wavelength	Frequency	
			Range (In m)	Range (In Hz)	
1.	गामा-किरणें	वैकुरेल 💰	10 ⁻¹⁴ to 10 ⁻¹⁰	5×10^{22} to	
	(Gamma-rays)	100	1.100	3×10^{19}	
2.	एक्स-किरणें	रॉण्टेजन	10 ⁻¹⁰ to 10 ⁻⁸	$3 \times 10^{19} \text{to}$	
	(X-rays)	45		1 × 1016	
3.	परावैंगनी किरणें	रिटर 🐃	10 ⁻⁸ to 10 ⁻⁷	$5 \times 10^{17} \text{ to}$	
	(Ultraviolet	THE NAME OF	Alb.	8 × 10 ¹⁴	
	rays)	A STATE OF THE		14	
4.	दुश्य विकिरण	न्यूटन	3.9×10^{-7} to	8 × 10 ¹⁴ to	
	(Visible	ALC:	7.8×10^{-7}	4×10^{14}	
	Radiation)	1	no	4 1014	
5.	अवरक्त विकिरण	हरशेल	7.8×10^{-7} to	4×10^{14} to	
	(Infrared		10 ³	1×10^{13}	
-58	Radiation)		10-5, 10-1	$3 \times 10^{13} \text{ to}$	
6.	कथ्मीय विकिरण	-	10 ⁻⁵ to 10 ⁻¹	3 × 10 ¹⁵ to	
Alle.	(Heat			3 × 10,	
250	Radiation)	मारकोनी	10 ⁻³ to 0.3	$3 \times 10^{11} \text{ to}$	
7.,	सूक्ष्म तरंगें	मारकाना	10 010 0.5	1 × 109	
THE STATE OF	(Microwaves) पराबेंगनी उच्च		1×10^{-1} to 1	3×10^9 to	
8.	7 44 7 7 7 7	-	1 × 10 -101	3 × 108	
MIN.	आवृति			3 × 10-	
7	(Ultra high				
9.	frequency) अत्यधिक उच्च		1 to 10	3×10^8 to	
9.	रेडियो आवृतित	-	11010	3×10^{7}	
	(Um bigh			3 ^ 10	
	(Very high radiation	- 1		1	
	frequences)			1 10 10	
10	रेडियो-आवृत्ति	विलियम	10 to 10 ⁴	3×10^7 to	
10.	(Radio-	हर्ज	10.010	3 × 10 ⁴	
	frequencies)	000	1	0 ^ 10	
11.			$5 \times 10^6 \text{ to}$	60 to 50	
11.	(Power		6 × 10 ⁶	00,000	
	frequencies)		100.10	1	
_	inequencies/	7 10-	2 _214		

Note: 10^{-3} m से 10^{-2} m की तरंगें सूक्ष्म तरंगें कहलाती हैं।

पराबैंगनी तरंगें (Ultraviolet Waves)—ये तरंगें सूर्य के प्रकारा विद्युत विसर्जन, निर्वात् स्पार्क आदि से उत्पन्न होती है।

दृश्य विकिरण (Visible Radiation)—ये विकिरण ताप दीप्त वस्तुओं सं उत्पन्न होती हैं।

अवरक्त विकिरण (Infrared rays)—ये तरंगें पदार्थों को उच्च ताप पर गर्म करने पर निकलती है। इन विकिरणों की वेधन शक्ति अधिक होने के कारण ये घने कोहरे व धुन्ध से पार निकल जाती है। अस्पताल में रोगियों को सेंकने में व कोहरे में फोटोग्राफी में इसका उपयोग होता है।

घ्वनि तरंग (Sound Waves)

ध्वनि तरंग (Sound)—

ध्वनि कर्जा का एक रूप है, जो कानों में सुनने की संवेदना उत्पन

ध्वनि वस्तुओं के कम्पन से उत्पन्न होती है और किसी माध्यम में अनुदैर्घ्यं तरंग के रूप में गमन करती है।

एक तरंग की लम्बाई एक कम्पन के फलस्वरूप माध्यम में विश्लोध जितनी दूरी चलता है, वह दूरी तरंग लम्बाई (Waves Length) कहलाती है।

अलग-अलग मनुष्यों के लिए ध्वनि परिसर अलग-अलग होती है।

ध्वनि की चाल (Speed of Sound)—

ध्वनि बिना किसी माध्यम के गमन नहीं कर सकती है। अत: इसकी चाल के लिए एक माध्यम की आवश्यकता होती है।

किसी माध्यम में ध्वनि की चाल मुख्यत: माध्यम की प्रत्यास्थता तथा

घनत्व पर निर्भर करती है।

अत: माध्यम जितना अधिक प्रत्यास्य होगा ध्वनि की चाल उतनी अधिक होगी लेकिन जितना अधिक घनत्व होगा ध्वनि की चाल उतनी

ध्विन की चाल सर्वाधिक ठोस में होती है तथा सबसे कम गैस में

होती है।

चुँकि घ्वनि तरंगें प्रकृति में अनुदैर्ध्य तरंग हैं अतः किसी प्रत्यास्थ माध्यम में ध्विन की चाल उस माध्यम में अनुदैर्ध्य तरंग की चाल के बराबर होगी।

वायु में ध्विन की चाल 332 m/sec, जल में ध्विन की चाल 1483 m/sec तथा लोहा में घ्वनि की चाल 5130 m/sec होती है।

जब ध्विन एक माध्यम से दूसरे माध्यम में जाती है, तो ध्विन की चाल एवं तरंगदैर्घ्य बदल जाती है, जबिक आवृत्ति नहीं बदलती है।

अत: किसी माध्यम में ध्विन की चाल आवृत्ति पर निर्भर नहीं करती है। ध्वनि की चाल पर दाब का प्रभाव (Effect of pressure on the speed of sound)-

ध्विन की चाल पर दाब परिवर्तन का कोई प्रभाव नहीं पड़ता है क्योंकि न्यूटन ने सैद्धान्तिक रूप से यह व्याख्या की कि ध्वनि की चाल

समानुपाती होती है
$$\sqrt{\frac{दाब}{घनत्व}}$$
 के।

अत: बॉयल के नियम के अनुसार नियत द्रव्यमान के वायु पर दाब को दोगुना किया जाता है तो आयतन आधा हो जाता है, इस प्रकार घनत्व दोगुना हो जाएगा।

अत: नियत ताप पर दाब/घनत्व का अनुपात हमेशा स्थिर रहेगा।

ध्वनि की चाल पर ताप का प्रभाव-

माध्यम का ताप बढ़ाने पर उसमें ध्वनि की चाल बढ़ जाती है।

वायु में 1°C ताप बढ़ाने पर ध्वनि की चाल 0.61m/sec या 61 cm/ sec या 2 फुट/सेकण्ड बढ़ जाता है।

0°C तथा t°C पर किसी गैस में ध्वनि की चाल क्रमशः Vo एवं vt

$$\Rightarrow Vt = V_0 \sqrt{1 + \frac{t}{273}}$$

$$\Rightarrow Vt = V_0 \cdot 1 + \sqrt{\frac{t}{2 \times 273}} = V_0 \left[1 + \frac{t}{546} \right]$$

$$V_0 = 332 \text{ m/sec}$$

$$Vt = 332 \left[1 + \frac{t}{546} \right] = \left[332 + \frac{332t}{546} \right] = (332 + 0.61 t) m/\sec t$$

$$\frac{Vt}{Vo} = \sqrt{1 + \frac{t}{273}} = \sqrt{\frac{273 + t}{273}} = \sqrt{\frac{T}{T_0}}$$

अतः *V* ∝ √*T*

ष्विन की चाल परमताप के वर्गमूल के समानुपाती होता है।

व्यनि की चाल पर आर्द्रता का प्रमाव—नमीयुक्त वायु का घनत्व, शुष्क वायु के घनत्व से कम होता है। अत: शुष्क वायु की अपेक्षा नमीयुक्त वायु में ध्वनि की चाल अधिक होती है।

विभिन्न गैसों में ध्यनि की चाल (Speed of sound in difference Gases)—यदि हवा में ध्यनि की चाल Va, हवा का घनत्व da तथा संगान ताप तथा दाव पर किसी अन्य गैस में ध्वनि की चाल Vx तथा गैस का घनत्व dx हो, तो

$$Va = \sqrt{\frac{YP}{da}}$$
 तथा $Vx = \sqrt{\frac{YP}{dx}}$ या, $\frac{Va}{Vx} = \sqrt{\frac{dx}{da}}$
आत: $\frac{\varepsilon a \ddot{\mu} + va \ddot{\mu}}{va \ddot{\mu} + va \ddot{\mu}} = \sqrt{\frac{va}{va} + va \ddot{\mu}} = \sqrt{\frac{va}{va} + va \ddot{\mu}}$

ध्वनि तरंगों का आवृत्ति परिसर

ध्वनि तरंगों को उसके आवृत्ति परिसर के आधार पर तीन वर्गों में विभाजित किया जा सकता है।

(i) अवश्रव्य तरंगें (Infrasonic Waves)—

20 Hz से नीचे की आवृत्ति वाली ध्वनि तरंगों के अवश्रव्य तरंगें कहते हैं।

इसे हमारा कान सुन नहीं सकता है।

इस प्रकार की तरंगों को बहुत बड़े आकार के स्रोतों से उत्पन किया जा सकता है।

भूकम्प के समय धरती के अन्दर उत्पन्न तरंगें तथा मनुष्य के हृदय में उत्पन्न तरंगें अवश्रव्य तरंगों के उराहरण हैं।

(ii) श्रव्य तरंगें (Audible Waves)-

20 Hz से 20000 Hz के बीच की आवृत्ति वाली तरंगों को श्रव्य तरंगें कहते हैं।

इन तरंगों को मनुष्य द्वारा सुना जा सकता है।

(iii) पराश्रव्य तरंगों (Ultrasonic Waves)— 20000 Hz से ऊपर की तरंगों को पराश्रव्य तरंगें कहा जाता है।

इसे मनुष्य नहीं सुन सकता है, लेकिन इसे कुछ जानवर जैसे-कुत्ता, बिल्ली, चमगादड आदि इसे सुन सकता है।

इन तरंगों को गाल्टन की सीटी के द्वारा तथा दाब वैद्युत प्रमाव की विधि द्वारा क्वार्टज के क्रिस्टल के कम्पनों से उत्पन्न करते हैं।

इन तरंगों में आवृत्ति बहुत काँची होने के कारण इसमें बहुत अधिक कर्जा होती है।

साथ ही इसका तरंगदैर्घ्य छोटा होने के कारण इसे एक पतले किरण पुंज के रूप में बहुत दूर तक भेजा जा सकता है।

पराश्रव्य तरंगों की वायु में तरंगदैध्य 1.6 सेमी. से कम होती है।

चमगादह की क्षमता 1 लाख Hz तक की आवृत्ति वाले पराश्रव्य तरंगों

को सुनने की होती है।

पराश्रव्य तरंगों का उपयोग समुद्र की गहराई नापने, कल-कारखानों से कालिख हटाने, रुधिर-रहित ऑपरेशन, द्युमर का पता लगाने तथा दाँत निकालने में होता है।

राडार (Radar)

राडार का अर्थ होता है रेडियो संसूचन एवं सर्वेक्षण (Radio Detection and Ranging)!

इसके द्वारा रेडियो तरंगों की सहायता से आकाशगामी वाययान की

स्थिति या दूरी का पता लगाया जाता है।

इसके अलावा, धातु एवं तेल भंडार का पता लगाने तथा आयनमंडल (Ionosphere) की कँचाई ज्ञात करने में राडार का प्रयोग किया जाता है।

सोनार (Sonar)

पराश्रव्य तरंगों द्वारा समुद्र की गहराई, समुद्र के अंदर बड़ी-बड़ी चट्टानों एवं विशाल मछलियों का पता लगाया जाता है।

इसी सिद्धांत पर समुद्र में डूबी वस्तुओं का पता लगाने के लिए Sonar (Sound Navigation Ranging) नामक युक्ति तैयार

इस तरंग का उपयोग छोटे-छोटे जीवों की कोशिकाओं को नष्ट करने में भी किया जाता है।

THE PLATFORM

Join online test series : www.platformonlinetest.com

GENERAL SCIENCE 58

ध्वनि के अभिलक्षण (Characteristics of Sound)

तीवता (Intensity of Sound)—

- किसी एकांक क्षेत्रफल से एक सेकण्ड में गुजरनेवाले ध्विन-कर्जा को ध्विन की तीवता कहते हैं।
- ध्विन का तेज या धीमा सुनाई देना उसकी तीवता पर निर्भर करता है।
- तीव्रता ध्विन स्रोत के कंपन के आयाम के वर्ग के समानुपाती होता है। अतः $1 \propto \alpha^2$
- अत: कण का आयाम जितना अधिक होगा उसकी तीव्रता उतनी ही अधिक होगी और वह उतनी ही तीव्र सनाई देगी।
- ध्विन की तीव्रता कुछ बातों पर निर्भर करती है जो निम्न हैं—
 - (i) माध्यम का घनत्व.
 - (ii) ध्वनि स्रोत से दूरी.
 - (iii) आयाम,
 - (iv) अनुनादी वस्तुओं की उपस्थिति,
 - (v) ध्वनि स्रोत का विस्तार।
- ध्विन की निरपेक्षता तीव्रता को वाट/मी.² (Wm⁻²) में व्यक्त किया जाता है। बेल एक बड़ा मात्रक है। अत: व्यवहार में इससे छोटा मात्रक डेसीबल प्रयुक्त होता है।

प्रवलता (Loudness)-

- कानों में प्रति सेकण्ड पहुँचने वाली ध्विन कर्जा की माप को ध्विन की प्रवलता कहते हैं।
- यह ध्विन की तीव्रता के लिए कानों की शारीरिक अनुक्रिया है।
- इसका मात्रक डेसीबल (dB) होता है। ध्विन की प्रवलता कम्पन के आयाम पर निर्भर करता है।

तारत्व (Pitch)-

- ध्विन का गुण, जिससे मनुष्य का मस्तिष्क भारी (मोटी) ध्विन और पतली (तीखी) ध्विन में विभेद कर पाता है, तारत्व कहलाता है।
- घ्विन का तारत्व कम्पन की आवृत्ति पर निर्भर करता है।
- आवृत्ति अधिक होने से तारत्व अधिक होता है और ध्विन पतली होती है।
- आवृत्ति कम होने से तारत्व कम होता है, अतः ध्विन भारी होती है।
- शेर की दहाड़ तथा मच्छर की भिनिभनाहर में शेर की दहाड़ का तारत्व कम होता है, तथा मच्छर की भिनिभनाहर का तारत्व अधिक होता है।
- ध्विन के तारत्व को आवृत्ति द्वारा व्यक्त किया जाता है।
- सुस्वर ध्वनि का मूल लक्षण तारत्व है।
- शेर का कोई निश्चित तारत्व नहीं होता है।
- तरंग वक्र पर तारत्व को तरंग की आवृत्ति की संख्या द्वारा व्यक्त किया जाता है (प्रति सेकण्ड उत्पन्न तरंगें)।

गुणता (Quality)—

- गुणता घ्वनि का वह अभिलक्षण है, जिससे समान तीव्रता और समान प्रबलता वाली घ्वनियों में अंतर का पता चलता है।
- गुणता, उत्पन्न ध्वनि-तरंगों की आवृत्ति पर निर्मर करता है।
- गुणता के कारण हो मनुष्य अपने विभिन्न परिचितों की पहचान उनको बगैर देखे उनकी आवाज सुनकर कर सकता है।
- टोन (Tone)—एकल आवृत्ति की ध्विन को येन कहते हैं।
- स्वर (Note)—अनेक आवृत्तियों के मिश्रण से उत्पन्न ध्विन को स्वर कहते हैं। यह सुनने में सुखद होती है।
- प्रतिष्विन (Echo)—ध्विन का किसी सतह से टकराकर उसी माध्यम से लौटने को प्रतिष्विन कहते हैं।

- प्रतिभ्यति सुनने के लिए कुछ शते हैं—
 - (i) ध्यनि ग्रोत से उत्पन्न ध्यनि को पर्याप्त ग्रवल होना चाहिए।
 - ii) मूल ध्यति और परायर्तित ध्यति के बीच कम-से-कम 0.1 सेकण्ड का समय-अंतमल होना चाहिए।
 - (iii) ध्वनि-स्रोत और अवरोध के बीच की दूरी कम-सं-कम 17 मी. होनी चाहिए।
 - (iv) ध्यनि तरंगों का तरंगदैर्घ्य परावर्तक सतह की कँचाई से कम होती

Note: ध्यनि के अपवर्तन के कारण ध्यनि दिन की अपेक्षा गत में अधिक दूरी तक सुनाई पड़ती है।

- कान पर घ्विन का प्रभाव 1/10 संकण्ड तक रहता है।
- अनुनाद (Resonance)—जब किसी वस्तु के कम्पनों की स्वामाविक आवृत्ति किसी चालक-बल के कम्पनों की आवृत्ति के वगवर होती है, तो यह वस्तु बहुत अधिक आयाम से कम्पन करने लगती है। इस घटना को अनुनाद कहते हैं।

वायु-स्तंभों का कम्पन (Vibration of Air Columns)

- स्वरक (Tone)—सरल आवर्त गति से जो घ्वनि उत्पन्न होती है, वह स्वरक कहलाती है।
- स्वर (Note)—आवर्त गति से जो ध्वनि उत्पन होती है, वह उस
- सनादी तथा अधिस्वरक (Harmonics and overtones)—िकसी स्वर में उपस्थित अधिक आवृत्ति वाले स्वरक (Tones) को ही अधिस्वरक (over tone) कहते हैं। जब अधिस्वरकों की आवृत्तियाँ मृल स्वरक की यथार्थ अपवर्त्य (Exact multiple) होती हैं। तो ये संनादी (Harmonics) के नाम से पुकारी जाती है।
- आर्गन पाइप (Organ pipe)—खुले आर्गन पाइप (Open end

organ pipe) की मूल आवृत्ति $n = \frac{v}{2l}$ तथा बन्द आर्गन पाईप

(Closed end organ pipe) की मूल आवृत्ति $n = \frac{V}{4I}$ जहाँ v = वायु में घ्वनि का वेग, I = आर्गन पाईप को लम्बाई।

- खुले आर्गन पाईप में सम (Even) तथा विषम (Odd) दोनों प्रकार के संनादी पैदा होते हैं। मूल स्वरण प्रथम संनादी प्रथम अधिस्वरक, द्वितीय संनादी-द्वितीय अधिस्वरक, तृतीय संनादी आदि होते हैं। प्रथम अधिस्वरक की आवृत्ति n₁ = 2n, द्वितीय अधिस्वरक को आवृत्ति n₂ = 3n आदि।
- बन्द आर्गन पाईप में केवल विषम संनादी (Odd Harmonics) पैदा होते हैं। मूल स्वरण पहला संनादी पहला अधिस्वरक तृतीय संनादी और द्वितीय अधिस्वरक पंचम संनादी आदि कहलाते हैं। प्रथम अधिस्वरक की आवृत्ति $n_1 = 2n$, द्वितीय अधिस्वरक की आवृत्ति $n_2 = 5n$...
- स्वरमापी (Sonometer)—यदि स्वरमापी के तार से लटकाया गया द्रव्यमान M, तार की क्रिन्या r, घनत्व d तथा दो सेतुओं के बीच की दूरी 1 हो, तो मूल आवृति
 - $n = \frac{1}{2l} \sqrt{\frac{M}{\pi r^2 d}}$ जहाँ $\pi r^2 d$ तार की एकांक लम्बाई का द्रव्यमान m, तथा Mg तार पर तनाव है।
- स्वरानाराल (Musical Interval)—दो स्वरों को आवृत्ति के अनुपात को उनका स्वर अनाराल कहते हैं।
- प्रत्येक संगीतिक उपकरण में भिन्न आवृत्ति के स्वरों का कर्णप्रिय अनुक्रमण रहता है। इसे स्वरावली कहते हैं।

ध्वनि का विवर्तन (Diffraction of Sound)-ध्वनि का तरंगदैर्घ 1 मी. की कोटि का होता है। अत: जब किसी कोटि का कोई अवरोध ध्विन के मार्ग में आता है, तो ध्विन अवरोध के किनारे से मुडकर आगे बढ़ जाता है। इस घटना को ध्वनि का विवर्तन कहते हैं। इसी कारण, वाहन से आने वाली ध्वनि दरवाजों, खिड़की आदि पर मुड़कर मनुष्य के कान तक पहुँचता है।

डॉप्लर प्रभाव (Doppler's Effect)—

विस्तृत रूप में डॉप्लर प्रभाव का अनुभव तब होता है जब कभी ध्वनि स्रोत और प्रेक्षक के बीच आपेक्षिक गति होती है।

स्रोत एवं प्रेक्षक जब एक-दूसरे के सापेक्ष स्थिर रहते हैं तब स्रोत द्वारा प्रति सेकेण्ड उत्पन तरंगों की संख्या, प्रक्षेप द्वारा प्राप्त तरंगों की संख्या के बराबर होती है।

अत: प्रेक्षक एवं म्रोत के बीच की आपेक्षिक गति के कारण स्रोत की आवृत्ति एवं प्रेक्षक द्वारा प्राप्त तरंग की आवृत्ति में जो भिन्तता होती है। उसे ही डॉप्लर प्रभाव कहते हैं।

ध्वनि का परावर्तन (Reflection of Sound)—दो माध्यमों के अंतरापृष्ठ जिसे परावर्तक सतह कहते हैं, से टकराकर तरंग के वापस लौटने की घटना को तरंग का परावर्तन कहते हैं।

प्रतिष्विन का दैनिक जीवन में बहुत उपयोग है। जैसे-वायुयान को कँचाई, अपने से दूर स्थित पहाड़ों की दूरी, समुद्र की गहराई, कुओं की गहराई आदि जात करने में।

मैक संख्या—िकसी माध्यम में किसी पिंड की चाल तथा उसी माध्यम में ताप एवं दाब की उन्हीं परिस्थितियों में ध्विन की चाल के अनुपात को उस वस्तु की उस माध्यम में मैक संख्या कहते हैं।

यदि मैक संख्या 1 से अधिक है, तो पिंड की चाल पराध्वनिक (Supersonic) कहलाती है। यदि मैक संख्या 5 से अधिक है, तो घ्वनि की चाल अति पराघ्वनिक (hypersonic) कहलाती है।

ध्वनि का व्यतिकरण (Interference of Sound)—जब समान आवृति या आयाम की दो ध्वनि तरंगे एक साथ किसी बिन्दु प्र पहुँचती हैं, तो उस बिन्दु पर ध्वनि-कर्जा का पुन: वितरण हो जाता है। इस घटना को ध्वनि का व्यतिकरण कहते हैं।

यदि दोनों तरंगें उस बिन्दु पर एक ही कला में पहुँचती हैं, तो वहाँ ध्वनि को तीव्रता अधिकतम होती है, इसे सम्पोषी व्यतिकरण कहते हैं। यदि दोनों तरंगें विपरीत कला में पहुँचती हैं, तो वहाँ पर तीव्रता न्यूनतम होती है, इसे विनाशी व्यतिकरण कहते हैं।

प्रधाती तरंग (Shock Waves)—जब पिंड की चाल पराध्वितिक हो जाती है तो वह अपने पीछे माध्यम में शंक्वाकार विक्षोभ छोड़ती है। इस विक्षोभ के संचरण को ही प्रघाती तरंग कहते हैं।

तरंग गति एवं ध्वनि : महत्वपूर्ण तथ्य एक नजर में

- 20,000 से अधिक आवृत्ति की अनुदैध्यं तरंगों को कहते हैं पराश्रव्य (Ultrasonic) तरंगे
- पराश्रव्य (Ultrasonic) तरंगें वस्तु के वेग तथा ध्वनि के वेग के अनुपात को जाता है —मैक संख्या
- ध्वनि की तीव्रता प्रत्यक्ष रूप से निर्भर करती है -क्षेत्र के वर्ग पर
- अनुप्रस्थ तरंगें संचरित हो सकती है -केवल धातुओं में

यदि एक श्रोता ध्वनि के किसी स्थिर स्रोत की ओर चलता है, तो वहां पर आभासी आवृत्ति अधिक होगी —वास्तविक आवृत्ति से

- "ध्विन में डॉप्लर प्रमाव ध्विन स्रोत तथा श्रोता की आपेक्षिक गति के साथ-साथ इस बात पर भी निर्भर करता है कि इनमें से कौन गतिमान है, जबिक प्रकाश में डॉप्लर प्रभाव केवल प्रकाश स्रोत तथा प्रेक्षक की आपेक्षित गति पर निर्भर करता है।" यह किसके सिद्धांत के अंतर्गत आता है —आइन्सटीन के आपेक्षिकता सिद्धांत के अंतर्गत
- जब कोई प्रकाश स्रोत किसी प्रेक्षक की ओर गति कर रहा होता है, तो स्पेक्ट्रमी रेखार्ये विस्थापित होती है --बैंगनी भाग की ओर से
- अप्रगामी तरंगों के लिए कर्जा का प्रवाह किस दिशा में होता है -किसी भी दिशा में नहीं
- गूंजती आवाज किस कारण गुंजती हैं —ध्विन तरंगों के परावर्तन के कारण

- जब कभी भी एक प्रेक्षक तथा स्रोत के बीच आपेक्षिक गति होती है, तो —ध्यनि की पिच परिवर्तित हो जाती है
- वाय एवं हाइडोजन में से किसमें ध्वनि का वेग अधिक होता है -हाइडोजन में
- विजली की गर्जना क्यों गूंजती है -वहुत सी प्रतिध्वनि के कम्पन के
- किसी गैस में उत्पन्न ध्यनि तरंग सदैव होती है -अनुप्रस्थ
- स्थिर तरंग के पृष्ठ भाग में कण की गति होती है -सर्वाधिक
- किसमें परिवर्तन होने पर स्वर की गुणता में परिवर्तन होता है -अधिस्वरकों की प्रकृति में
- यदि ध्वनि स्रोत एवं प्रेक्षक के बीच की दूरी दोगुनी कर दी जाये, तो ष्विन की तीव्रता —1/4 हो जायेगी
- यदि दो मनुष्य चन्द्रमा की सतह पर बात करें तो क्या वे एक-दूसरे की बातों को —नहीं सुन सकते हैं
- समुद्र की सीपी को कान के पास ले जाने पर समुद्र गर्जन क्यों सुनायी देती है - बहुगुणित आंतरिक सतहाँ (पृष्टों) के कारण
- जब ताप बढ़ता है, तो आर्गन पाइप की —आवृत्ति स्थिर रहती है
- ध्विन की चाल अनुक्रमानुपाती होती है -परम ताप के वर्गमूल कं अनुक्रमानुपाती
- हवा में ध्विन का वेग बढ़ता है -ताप के बढ़ने से
- सितार तथा बीणा के बजाये गये समान स्वर (Notes) किस क्षेत्र में भिन्न होते हैं - गुणता में
- पानी एवं लोहे में से किसमें ध्वनि वेग अधिकतम होता है —लोहे में
- शेर तथा मच्छर में स्वराघात अधिक होता है --- मच्छर का जब वायुयान की चाल ध्वनि से अधिक हो जाती है, तो वहद ध्वनि क्यों सुनायी देती है —तरंग उत्पन्न करने के कारण
- ध्वनि स्वर की पिच किस तथ्य पर निर्भर करती है —आवृति पर एक तनी डोरी को कम्पित करने से उत्पन्न स्वर की आवृत्ति बढ़ती है 0
 - —डोरी में तनाव बढ़ने पर
- सितार के तार में किस प्रकार के कम्पन उत्पन होते हैं —अप्रगामी अनुप्रस्थ कम्पन
- ध्वोंने की प्रवलता किस तथ्य पर निर्भर करती है —आयम पर
- .यंत्र का तार किस प्रकार की तरंगें उत्पन्न करता है —अनुप्रस्थ तरंगें
- लड़के की अपेक्षा लड़की की आवाज का पिच (Pitch) होता है —अधिक
- तार के कम्पन की आवृत्ति बढ़ाने के लिए —तनाव को स्थिर रख कर तार का घनत्व कम करना चाहिए
- किसी गूंज को सुनने के लिए मूल आवाज और गूंज के बीच का समय अंतराल होता है —1/10 सेकण्ड से अधिक
- हवा की प्रतिध्विन में किस प्रकार की तरंगें होती है —अनुप्रस्थ गतिशील तरेंगे
- आवाज संगीतमय प्रभाव उत्पन्न करती है —जब दो स्वरों की आवृति का अनुपात सामान्य हो
- एक स्वरमापी के कम्पित तार के अनुदिश तरंग को कहा जाता है . समतल प्रगामी तरंगें
- जब कोई तरंग वायु से जल में प्रवेश करती है, तो उसमें बदलने वाली तीन चीजों के नाम बताइये —आयाम, चाल एवं तरंगदैर्ध्य
- यदि तेल, जिसका घनत्व पानी से अधिक है, पानी पर अनुनाद नली में प्रयोग किया जाता है, तो इसकी —आवृत्ति वही रहेगी
- जैसे ही एक खाली बर्तन जल से भर दिया जाता है, तो उसकी आवृत्ति वढ जाती है
- यदि स्वरित्र की एक भुजा टूट जाये, तो इसके द्वारा उत्पन —ध्विन की तीव्रता बढ़ जायेगी
- अप्रगामी तरंगों द्वारा ले जायी जा सकती है —कर्जा
- पीले रंग का प्रकाश उत्सर्जित कर रहा एक तारा पृथ्वी की ओर त्वरित गति से गति करे, तो पृथ्वी पर से प्रेक्षक को यह दिखायी देगा -धीरे-धीरे लाल होता दिखायी देगा
- जल एवं स्टील में से ध्विन किसमें तीव्रतम चलती है —स्टील में

 न्यूटन द्वारा दिये गये किसके सूत्र में लाप्लास संशोधन की आवश्यकता पड़ी —ध्वनि की चाल के सत्र में

यदि किसी तनी हुई डोरी के कम्पन की आवृत्ति को दो गुना करना हो,
 तो डोरी में तनाव को पहले की तुलना में कितना करना होगा — चार
 गुना

ध्विन के वेग से अधिक वेग वाली वस्तु कहलाती है —पराध्विक

• अनुनाद (Resonance) किस प्रकार का कम्पन है —प्रणोदित कम्पन

 किसी माध्यम में वस्तु की चाल एवं ध्विन की चाल के अनुपात को कहते हैं —मैक नम्बर

• वायु में ध्वनि चलती है —सप्पीडन एवं विरलन

- ध्वनि तरंगों का ध्रुवीकरण (Polarisation) —असंभव है
- वैसी ध्विन तरंगें, जिनकी आवृत्ति 20 हर्ज से कम होती हैं अवश्रव्य तरंगें

ध्विन की सुमधुरता निर्भर करती है —आवृत्ति

- जिन तरंगों के गमन हेतु सतत एवं प्रत्यास्थ माध्यम की जरूरत होती है, उन्हें कहते हैं —यांत्रिक तरंगें
- किसी ध्विन स्रोत की आवृत्ति में होने वला उतार-चढा़व कहलाता है

 —डॉप्लर प्रभाव

सितार के तार में तरंगें उत्पन्न होती हैं —अप्रगामी

 ष्विन के पुनरुत्वादन हेतु किसी सीडी ऑडियो प्लेयर में क्या प्रयुक्त तकनीक है —आवृत्ति मॉडुलन

स्टेथोस्कोप एवं मेगाफोन ध्वनि के सिद्धांत पर कार्य करते हैं —

- एक शेर एवं एक मच्छर की आंवाज में अंतर होता है —आवृत्तियों में अंतर के कारण
- बीट्स (Beats) तब सुनायी देती है, जब दो ध्वनियों की आवृत्तियों में अंतर होता है — बहुत कम

पायलट के केबिन में स्थित 'ब्लैक वॉक्स' होता है —ध्विन रिकॉर्डर

- ध्वनि को तीव्रता निर्भर करती है, इसकी —आयाम पर
- गमन प्रभाव संबंधित है —कम्पित अणुओं के बिखराव से

विद्युत स्थैतिकी (Electrostatics)

- यदि पदार्थों को रगड़ने पर उन पर उत्पन्न विद्युत आवेश स्थिर रहता
 है, तो ऐसे विद्युत को स्थिर विद्युत कहते हैं।
- यदि दो वस्तुओं को रगड़ने पर उन पर उत्पन्न विद्युत-आवेश उस वस्तु से प्रवाहित होने लगता है, तो इसे विद्युत-धारा कहते हैं।
- िकसी वस्तु को दूसरी वस्तु से रगड़ने पर यदि उसमें आकर्षण का गुण आ जाता है, तब उस वस्तु को आवेशित कहते हैं।
- गिलबर्ट के अनुसार, कुछ वस्तुओं जैसे-अम्बर आदि को रगड़ने पर इसमें हल्की वस्तुओं को आकर्षित करने का गुण आ जाता है और इसी गुण को विद्युत (Electricity) कहते हैं।

विद्युत आवेश (Electric Charge)—

- विद्युत आवेश दो प्रकार के होते हैं —(i) धन-आवेश तथा (ii) ऋण-आवेश जो वेंजामिन फ्रेंकिलन के नाम दिया था।
- समान प्रकार के आवेश परस्पर प्रतिकर्षित करते हैं तथा विपरीत प्रकार के आवेश परस्पर आकर्षित होते हैं।
- वस्तुओं का आवेशन इलेक्ट्रॉनों के स्थानान्तरण के फलस्वरूप होता है।
- एक आवेशित वस्तु एक अनावेशित वस्तु के बीच आकर्षण होता है।

क्लॉम का नियम (Coulomb's Law)-

- दो वैद्युत आवेशों के बीच आकर्षण या विकर्षण बल दोनों आवेशों के परिणामों के गुणनफल का समानुपाती होता है।
- दो वैद्युत आवेशों के बीच आकर्षण या प्रतिकर्षण यल दोनों आवेशों के बीच की दूरी के वर्ग के व्युत्क्रमानुपाती होता है।
- यह दोनों नियम सिम्मिलत रूप से कूलॉम का नियम कहलाता है।

इसे वैद्युत बल का व्युत्क्रम वर्ग नियम भी कहा जाता है।

 इसमें जो बल उत्पन्न होता है वह दोनों आवेशों को मिलाने वाली रेखा के अनुदिश कार्य करता है। • क्लॉग नियम से, $q_1 \oplus r \oplus q_2$ $F \propto \frac{q_1 q_2}{r^2} \text{ (जहाँ } q_1 \text{ और } q_2 \text{ दो आवेश हैं।}$ r = इन आवेशों के बीच की दूरी है। F = 4 eq.)

यह नियम विपरीत आयेश पर ही लागू होता है।
 यह नियम मतिशील आयेशों पर लागू नहीं होता है।

 यह नियम बहुत अधिक दूरी (km) से बहुत कम दूरी (10⁻¹⁵ m) तक लागू होता है। इससे कम दूरी पर यह नियम लागू नहीं होता है।

 दो आवेशों के बीच आकर्षण व प्रतिकर्षण अन्य आवेशों की उपस्थिति से अप्रभावित रहता है।

 अदिश योग व आयेशों के अध्यारोपण के नियम इस नियम में सम्मिलत हैं।

कूलंब का नियम सिर्फ बिंदु आवेशों के लिए ही सही है।

एकांक आवेश (Unit Charge)—

• यदि $Q_1 = Q_2 = 1$ कूलंब (C) तथा r = 1 मीटर (m) हो तो— $9 \times 10^9 \times 1 \times 1$

$$F = \frac{9 \times 10^9 \times 1 \times 1}{1^2} = 9 \times 10^9 N$$

अतः SI मात्रक में एकांक आवेश (Unit Charge) वह आवेश है जो अपने बराबर परिमाण के सजातीय आवेश में 1 मी. की दूरी पर 9
 × 10⁹ N के बल से प्रतिकर्षित होता है।

• आवेश का SI मात्रक कूलंब या कूलॉम (C) होता है।

कूलॉम विद्युत् आवेश का एक बहुत बड़ा मात्रक है। अत:, प्राय: माइक्रो कूलंब (μC) अथया नैनो कूलंब (nC) मात्रकों का व्यवहार होता है।

• $1\mu C = 10^{-6}C$, $1nC = 10^{-9}C$ → 1 = 200 e.s.u

आवेश का CGS मात्रक State columb or e.s.u. (electrostatic unit of charge है)

• चूँकि 1 इलेक्ट्रॉन पर 1.6×10^{-19} C आवेश होता है, अत: 1C आवेश 6.25×10^{18} इलेक्ट्रॉनों पर होगा। इसका अर्थ हुआ, किसी चालक के अनुप्रस्थ काट से प्रति सेकेण्ड 6.25×10^{18} इलेक्ट्रॉन गुजर रहे हैं।

विद्युत क्षेत्र (Electric Field)—जब किसी चालक तार में घारा
प्रवाहित किया जाता है तथा तार के चारों ओर कोई अन्य आवेश को
ले जाने पर आकर्षण या विकर्षण बल का अनुभव करता है तो उस
क्षेत्र की विद्युत क्षेत्र कहते हैं।

 अत:, विद्युत बल-रेखा वह चक्र है जिसके किसी बिंदु पर खींची गई स्पर्श रेखा उस बिंदु पर विद्युत क्षेत्र (Electric field) की दिशा बताती है।

 ये बल-रेखाएँ केवल एक समतल में न होकर माध्यम में अनेक दिशाओं में होती हैं।

चालक तथा अचालक पदार्थ (Conductor and Non-Conductor or Bad Conductor Materials)—

- जिन पदार्थों से होकर विद्युत्-आवेश सरलता से प्रवाहित होता है, उसे चालक पदार्थ कहते हैं तथा जिन पदार्थों से आवेश का प्रवाह नहीं होता है, उसे अचालक पदार्थ कहते हैं। लगभग सभी धातुएँ, अम्ल, क्षार, लवणों के जलीय विलयन एवं मानव-शरीर आदि विद्युत्चालक पदार्थों के उदाहरण हैं तथा रबड़, लकड़ी, कागज, अभ्रक एवं आसुत जल आदि अचालक पदार्थों के उदाहरण हैं।
- ताप बढ़ाने पर चालक पदार्थों का विद्युत्-प्रतिरोध (Electric Resistance) बढ़ता है तथा उनकी विद्युत्चालकता (Electric Conductivity) घटती है।

अर्द्धचालक (Semi-conductor)—

- वैसे, पदार्थ, जिनकी विद्युत्चालकता चालक तथा अचालक पदार्थों के बीच होती है, उसे अर्द्धचालक पदार्थ कहते हैं।
- जैसे-कार्बन, सिलिकॉन, जर्मेनियम आदि अर्द्धचालक पदार्थ के उदाहरण हैं।
- अर्द्धचालक पदार्थों की चालकता ताप बढ़ाने पर बढ़ती है तथा ताप के घटाने पर घटती है।

अतिचालक (Super Conductor)—

यदि किसी धात का ताप घटा दिया जाय, तो उसमें विद्युत्चालन बढ़ जाता है अर्थात् उसका विद्युत्-प्रतिरोध घट जाता है।

किसी ऐसे धातु हैं, जिनका प्रतिरोध परम शून्य ताप (OK) के निकट पहुँचने पर शून्य हो जाता है, तब वे पदार्थ अतिचालक कहलाते हैं।

कुछ सेरामिक (Ceramic) पदार्थ 100 K ताप पर ही अतिचालक यन जाते हैं।

आवेश का पृष्ठ-घनत्व (Surface Density of Charge)—

किसी चालक के इकाई क्षेत्रफल पर आवेश की मात्रा को आवेश का 'पृष्ठ-घनत्व' कहते हैं।

चालक का पृष्ठ-घनत्व चालक के आकार और चालक के समीप स्थित अन्य चालक या विरोधरोधी पदार्थों पर निर्भर करता है।

किसी चालक के पृष्ठ के विभिन्न स्थानों पर आवेश का वितरण उन स्थानों के आकार पर निर्भर करता है।

चालक के नुकीले भाग पर आवेश का पृष्ठ-घनत्व सबसे अधिक होता है।

जब वायु के कण किसी नुकीले आवेशित चालक के सम्पर्क में आते हैं. तो वे आवेशित हो जाता हैं तथा प्रतिकर्षित होकर दूर चले जाते हैं।

उनका स्थान लेने के लिए वायु के नये कण आ जाते हैं। यही क्रिया बार-बार चलती रहती है।

इस प्रकार वायु के कणों द्वारा आवेश के बाहर ले जाने की घटना को संवहन-विसर्जन (Convection discharge) एवं इस संहवहन धारा को विद्युत्-पवन (Electric wind) कहते हैं।

तड़ितचालक (Lightning Conductor)

बादलों में विजली उत्पन्न होने की क्रिया को 'तिहत' कहते हैं।

तड़ित के द्वारा अत्यधिक विद्युत्-आवेशन होता है।

यह क्रिया दो आवेशित बादलों के बीच या आवेशित बादलों और पृथ्वी के बीच होती है।

तिहतचालक का प्रयोग तिहत के दौरान भवनों की सुरक्षा के लिए किया जाता है।

तिडतचालक एक मोटी ताँबें की पट्टी होती है, जिसके ऊपरी सिरे पर कई नुकीले सिरे बने होते हैं।

इस नुकीले सिरे को भवनों के सबसे कपर लगा दिया जाता है तथा दूसरे सिरे को ताँवे की पट्टी के साथ जमीन में गाड दिया जाता है।

जब आवेशित बादल भवन से गुजरते हैं, तो उनका पृथ्वी में चला जाता है और भवन की सुरक्षा हो जाती है।

विद्युत क्षेत्र को तीवता (Intensity of Electric Field)—

विद्युत क्षेत्र में किसी बिन्दु पर स्थित एकांक घन आवेश पर क्रियाशील बल को विद्युत-क्षेत्र की तीवता कहा जाता है। 🔝 🤲

इसका मात्रक न्यूटन प्रति कुलॉम्ब या वोल्ट प्रति मीटर होता है। यह एक सदिश राशि है।

THE PLATFORM

विद्युतदर्शी (Electroscope)—यह एक ऐसी युक्ति है जिसके द्वारा किसी वस्तु पर आवेश की उपस्थिति और आवेश की प्रकृति का पता लगाया जाता है। 130

विद्युत विभव-विद्युत क्षेत्र में विद्युत विभव का वही महत्त्व है, जो कप्मा में ताप का एवं द्रयों में द्रय के तेल या दाव का है।

कय्मा जिस प्रकार सदा अधिक ताप से कम ताप की ओर, द्रव अधिक दाय से कम दाय की ओर प्रवाहित होता है, उसी प्रकार सदा ऊँचे विभव से निम्न विभाग की ओर प्रवाहित होता है। इसी कारण इसे विद्युत दाय भी कहा जाता है।

यह एक अदिश राशि है। इसका मात्रक जूल कुलंब-1 या वोल्ट होता है। | 1Jc-1 = 1volt

अत: एकांक धन-आवेश को अनन्त से विद्युतीय क्षेत्र में किसी बिन्द तक लाने में किए गए कार्य को उस बिन्द पर विभव कहा जाता है।

आवेश के प्रवाह की तुलना तरल प्रवाह (fluid flow) एवं कष्मा चालन (heat conduction) भी की जा सकती है जिस प्रकार तरल प्रवाह की दिशा दार्बातर (Pressure difference) से, कप्पा-चालन की दिशा 'तापांतर (temp difference)' से निर्धारित होती है उसी प्रकार 'आवेश के प्रवाह' की दिशा विभवांतर (Potential difference) से निर्धारित होती है।

विभवान्तर (Potential Difference)—विद्युत क्षेत्र में एकांक घनावेश को एक बिंदु से दूसरे बिंदु तक वैद्युत तीव्रता के विरुद्ध ले जाने में किये गुये कार्य को उन बिन्दुओं के बीच विभवान्तर कहा जाता है। इसका मात्रक वोल्ट होता है। यह एक अदिश राशि है।

किसी भी खोखले चालक के अन्दर विद्युत क्षेत्र शून्य होता है। यदि ऐसे चाले को आवेशित किया जाय तो सम्पूर्ण आवेश उसके बाहरी

पुष्ठ पर ही रहता है।

अत: खोखला गोला एक विद्युत परीक्षक का कार्य करता है। यही कारण है कि यदि किसी कार पर तड़ित विद्युत गिर जाए तो कार के अन्दर बैठा व्यक्ति पूर्ण सुरक्षित रहता है। तडित से प्राप्त विद्युत आवेश कार की बाहरी सतह पर ही रहता है।

विद्यंत धारिता—िकसी चालक को दी जानेवाली आवेश की वह मात्रा जिससे उसका विभव एकांक से बढता है, चालक की विद्युत धारिता

कही जाती है।

धारिता की SI मात्रक फैराड है। इसे कुलॉम/वोल्ट भी कहा जाता है।

इसकी विमाएँ [M-1L-2T4A2] होती हैं।

फराड (Farad)—यदि एक चाक को 1 कुलॉम आवेश देने से उसके विभव में एक वोल्ट की वृद्धि हो तब उसकी धारिता एक फैराड कहलाती है।

वोल्ट (Volt)-यदि एक बिन्दु से दूसरे बिन्दु के बीच विभवान्तर एक

वोल्ट होता है।

विभव प्रवणता—दूरी के साथ विभव परिवर्तन की दर को विभव प्रवणता कहते हैं।

अत: विभव प्रवणता =

$$\therefore E = -\frac{dv}{dx}$$

विभव प्रवणता एक सदिश राशि है। इसका मात्रक वोल्ट/मीटर होता है।

विद्युत धारा की दिशा—धन-आवेश के प्रवाह की दिशा को विद्युत-धारा की दिशा माना जाता है। अतः विद्युत-धारा की दिशा उच्च विभव से निम्न विभव की ओर होती है। परंतु इलेक्ट्रॉनों के प्रवाह की दिशा निम्न विभय से उच्च विभव की ओर होती है।

इलेक्ट्रॉन की अधिकता इलेक्ट्रॉन का प्रवाह

- (निम्न विभव) विभव की विशेषता—दिए हुए आवेश के लिए किसी गालक का विभव उसके आकार पर निर्भर करता है। आकार के बढ़ने से विभव घट जाता है।
- किसी चालक पर जितना अधिक आवेश होगा उस पर उतना ही अधिक विभव होगा।
- किसी चालक का विभव उसके चारों ओर स्थित माध्यम पर निर्भर करता है।
- यदि एक आवेशित चालक के पास कोई अन्य चालक रख दिए जाए तब उसका विभव घट जाएगा।
- इलेक्ट्रॉन वोल्ट (Electron Volt)—यदि एक इलेक्ट्रॉन एक वोल्ट विभवानार द्वारा त्वरित किया जाये, तब उसके द्वारा प्राप्त गतिज कर्जा एक इलेक्ट्रॉन वोल्ट कहलाती है।

विद्युत घारा के स्रोत

- विद्युत सेल-विद्युत सेल मुख्यत: दो प्रकार के होते हैं-(i) प्राथिमक सेल, (ii) द्वितीयक सेल।
- वह युक्ति जो रासायनिक कर्जा का विद्युत कर्जा में रूपांतरण करती है, विद्युत से कहलाती है।
- प्राथमिक सेल-प्रयुक्त रासायनिक पदार्थ के समाप्त होने पर इन सेलों से विद्युत धारा बन्द हो जाती है।
- पुन: विद्युत घारा प्राप्त करने के लिए नया रासायनिक पदार्थ डालना पडता है।
- इन सेलों को आवेशित नहीं किया जा सकता। लैकलांशे, डेनियल, वोल्टीय सेल आदि प्राथमिक सेल हैं।
- द्वितीयक सेल-सीसा संचायक सेल व क्षारीय सेल द्वितीयक से हैं।
- इन सेलों को पुन: आवेशित किया जा सकता है। इस प्रक्रिया में विद्युत-कर्जा, सेल में रासायनिक कर्जा में सचित हो जाती है।
- बाह्य परिपथ में जोड़ने पर यह सीचत कर्जा ही पुनः विद्युत् कर्जा में बदलती रहती है।
- ये सेल यद्यपि महैंगे तथा भारी होते हैं, परन्तु इनसे स्थिर विद्युत वाहक बल प्राप्त किया जा सकता है।
- लेकलारी सेल में एनोड के रूप में प्रयुक्त कार्बन की छड़ मैंगनीज डाइऑक्साइड व कार्बन के मिश्रण के बीच रखी जाती है।
- इन छड़ों सेल में एनोड के रूप में कार्बन की छड़ एवं कैथोड के रूप में जस्ते की छड का प्रयोग किया जाता है।
- लेकलांशे सेल का विद्युत्-वाहक बल यानि विभव लगभग 1.5 वोल्ट होता है।

विद्यत घारा (Current Electricity)

विद्यत धारा (Electric Current)—विभवान्तर के अधीन विद्युत आवेश के प्रवाह की दर को विद्यूत घारा कहते हैं। इसे । द्वारा सूचित किया जाता है। इसका SI मात्रक ऐम्पियर होता है। विद्युत धारा

$$(I) = \frac{\operatorname{आवेश}(Q)}{\operatorname{समय}(t)}$$

- यह एक अदिश राशि है।
- यह बंद पथ, जिसमें लगातार विद्युत धारा प्रवाहित होती है, उसे विद्युत परिपथ (Electrical circuit) कहते हैं।
- विद्युत्वाहक यल (e.m.f.)—1 कूलॉम आवेश को पूरे विद्युत्-परिपथ में एक पूर्ण चक्कर लगाने हेतु सेल द्वारा किये गए कार्य को सेल का 'विद्युत्वाहक बल' (e.m.f.) कहते हैं। इसका मात्रक वोल्ट होता है।

	कुछ मेलों के विद्युत्वाहक बल				
1	1.46 योल्ट	मीमा मंनायक मेल	2.0 वोल्ट		
ोज	1 46 200	राजामा संस्थीत रोख	1 ೧೪ ವರ್ಣ		

शुष्क सेल र्लक्लांशे सेल डेनियल सेल 1.08 बोल्ट 6 संलवाली कार-बैटरी 12.0 वोल्ट

- आमीटर (Ammeter)-किसी परिपथ में प्रवाहित होनेवाली धारा के परिमाण को मापने के लिए प्रयोग किए जानेवाले उपकरण को आमीटर कहते हैं। इसे हमेशा श्रेणी क्रम में जोड़ा जाता है।
- एक आदर्श आमीटर का प्रतिरोध शून्य होना चाहिए।

- वोल्टमीटर (Voltmeter)—वोल्टमीटर का प्रयोग परिपय के किन्हीं दो बिन्दुओं के बीच विभवान्तर मापने में किया जाता है।
- इसे परिपध में सदैव समानान्तर क्रम में लगाया जाता है।
- एक आदर्श वोल्टमीटर का प्रतिरोध अनन्त होना चाहिए।

- गैल्वेनोमीटर (Galvanometer)—यह ऐसा उपकरण है जिसकी सहायता से परिपथ में घारा की उपस्थिति का पता लगाया जाता है।
- इसकी सहायता से 10-6 एम्पियर तक की विद्युत घारा को मापा जा
- गैल्वेनोमीटर में शंट का प्रयोग किया जाता है। इसका कारण है कि शंट अल्प प्रतिरोध वाला एक तार होता है जिसे गैल्वेनोमीटर के समानान्तर क्रम में लगाकर आमीटर बनाया जाता है।
- गैल्वेनोमीटर के श्रेणी क्रम में एक उच्च प्रतिरोध लगाकर वोल्टमीटर बनाया जाता है।
- विद्युत फ्यूज (Electric Fuse)—यह परिषय एवं उपकरणों की सुरक्षा उस समय करता है जब उनमें निर्धारित से अधिक वोल्टता की धारा प्रवाहित होने लगती है। यह-
 - कम गलनांक का तार होता है।
 - (ii) यह सदैव फेज वायर में तथा परिपथ के श्रेणी क्रम में जोड़ जाता है।
 - (iii) उपकरण की सामर्ध्य के अनुसार उपयुक्त क्षमता का फ्यूज वायर उपयोग करना चाहिए। चूँकि, फ्यूज पर उसकी क्षमता चिह्नित होती है।
 - (iv) अच्छा फ्यूज सीसा एवं टिन का मिश्रधातु का परन्तु सस्ता फ्यूज ताँबे और टिन की मिश्रधातु का बना होता है।
 - प्रतिरोध (Resistance)—िकसी पदार्थ द्वारा उससे प्रवाहित होनेवाली धारा का विरोध करने के गुण को प्रतिरोध कहते हैं। इसका SI मात्रक ओम (Ω) होता है।
- चालकता (Conductance)—िकसी चालक के प्रतिरोध के व्युत्क्रम को चालकता कहते हैं। इसका SI मात्रक (Ω^{-1}) होता है।

- चालकता को G से सुचित किया जाता है। इसका SI इकाई सीमेन भी
- विशिष्ट चालकता (Specific Conductance o Conductivity)— विशिष्ट प्रतिरोध के व्युत्क्रम को विशिष्ट चालकता कहते हैं। इसका मात्रक ओम $^{-1}$ मीटर $^{-1}$ (Ω^{-1} m $^{-1}$) होता है।

- विशिष्ट प्रतिरोध को σ को सूचित किया जाता है।
- विशिष्ट प्रतिरोध अथवा प्रतिरोधकता—िकसी चालक तार का विद्युत प्रतिरोध चालक की लम्बाई (I) के अनुक्रमानुपाती होता है तथा तार की अनुप्रस्थ काट के क्षेत्रफल (A) के व्युत्क्रमानुपाती होता है।

ਭਾਗ:
$$R \propto L$$
 $R \propto \frac{1}{A}$ $\Rightarrow \rho = \frac{R \times L}{A}$

जहाँ ρ(rho) एक नियतांक है जिसका मान तार के पदार्थ पर निर्भर करता है। इसे तार का विशिष्ट प्रतिरोध या प्रतिरोधकता कहते हैं।

क्योंकि
$$\rho = \frac{R \times A}{L} = \frac{\text{ओम} \times \text{मीटर}^2}{\text{मीटर}} = \text{ओम मीटर}$$

Note-एक ही पदार्थ की भिन-भिन लम्बाईयों के तथा भिन-भिन मोटाईयों के तारों के प्रतिरोध भिन-भिन होंगे परन्त विशिष्ट प्रतिरोध

- जबिक आजकल विशिष्ट प्रतिरोध को प्रतिरोधकता ही लिखा जाता है।
- एक ही पदार्थ के बने हुए मोटे तार का प्रतिरोध कम तथा पतले तार का प्रतिरोध अधिक होता है।
- किसी चालक का प्रतिरोध चाक की लम्बाई के समानुपाती होता है
- चालक का प्रतिरोध उसके अनुप्रस्थ काट के क्षेत्रफल के व्युत्क्रमानुपाती होता है।

$$R = \frac{1}{A}$$

- चालक का प्रतिरोध चालक की प्रकृति पर निर्भर करता है। ताप बढ़ने पर चालक का प्रतिरोध बढ़ता है।
- एक एम्पीयर विद्युत-धारा-यदि किसी चालक तार में एक एम्पीयर (1 A) विद्युत घारा प्रवाहित हो रही है तो इसका अर्घ है कि उस तार में प्रति सेकण्ड 6.25×10^{18} इलेक्ट्रॉन एक सिरे से प्रविष्ट होते हैं तथा इतने ही इलेक्ट्रॉन दूसरे सिरे से बाहर निकल जाते हैं।

प्रतिरोधों का संयोजन (Combination of Resistance)—

(i) श्रेणी क्रम में (in series)—जब R₁, R₂ R₃ प्रतिरोधों को श्रेणी क्रम में जोड़ जाता है तो उनका तुल्य प्रतिरोध, सभी प्रतिरोधों के योग के

श्रेणी क्रम में—

- जुड़े सभी चालकों में समान प्रबलता की विद्युत धारा प्रवाहित होती है।
- प्रत्येक चालक के सिरों पर विभवान्तर अलग-अलग होता है। परिपथ का कुल विभवान्तर सभी चालकों के विभवान्तर के योग के बराबर होता है।
- (ii) समान्तर क्रम में (In Parallel)—जब R₁, R₂, R₃ प्रतिरोधों को समान्तर क्रम में जोड़ा जाता है तो उनके तुल्य प्रतिरोध का व्युत्क्रम उन प्रतिरोधों के व्युत्क्रमों के योग के बराबर होता है। अत:

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

समान्तर क्रम में—

- तुल्य प्रतिरोध का मान संयोजन के प्रत्येक प्रतिरोध के मान से कम होता है।
- सभी प्रतिरोधों के सिर्धे पर विभवान्तर समान होता है।
- प्रत्येक प्रतिरोध में अलग-अलग प्रबलता की धारा प्रवाहित होती है।
 - विद्युत शक्ति या विद्युत सामर्थ्य—विद्युत कर्जा के व्यय की समय दर को विद्युत शक्ति कहते हैं। इसका मात्रक जूल/सेकण्ड अथवा वाट (W) है।
 - 1 मेगावाट = 10⁶ वाट
 - 1 किलोवाट = 1000 वाट

अत: विद्युत शक्ति =
$$\frac{\text{कार्य} (जूल में)}{\text{समय} (सेकेण्ड में)}$$

$$P = \frac{W}{t} = \frac{V \times It}{t} = vI$$

- अत: शिक्ति P = विभवान्तर × धारा की प्रवलता
- जब विद्युत धारा किसी प्रतिरोध में प्रवाहित होती है तो उच्मा
- सामान्य बल्व में कुल वैद्युत कर्जा का 5% से 10% भाग ही प्रकाश में बदल जाता है।
- किलोवाट घंटा मात्रक अथया यूनिट-एक किलोवाट घंटा मात्रक अयवा एक यूनिट विद्युत कर्जा की यह मात्रा है, जो कि किसी परिपथ में एक घंटा में व्यय होती है, जबिक परिपथ में 1 किलोवाट की शक्ति है।

किलोबाट घंटा मात्रक =
$$\frac{\text{बोल्ट} \times \text{ऐम्पियर} \times \text{घंटा}}{1000} = \frac{\text{बाट} \times \text{घंटा}}{1000}$$

1 किलोवाट घंटा = 3.6×10^6 जुल

Note: स्मरणीय है कि वाट-घण्टा तथा किलोवाट घंटा, कर्जा के मात्रक हैं जबिक वाट व किलोवाट शक्ति के मात्रक है।

ओम का नियम-यदि चालक की भौतिक अवस्था (जैसे-मोटाई, ताप, लम्बाई आदि) स्थिर रहे तो चालक में प्रवाहित थारा की प्रवलता (i) चालक के सिरों पर लगाये गये विभवान्तर (V) के अनुक्रमानुपाती होती है।

अत:] ∞ V या V cc I

अत: V = IR

चुँकि यहाँ 'R' एक नियतांक है जो चालक की भौतिक अवस्था पर निर्भर करता है जिसे चालक का प्रतिरोध कहते हैं। विभवान्तर (V) तथा घारा की प्रबलता (l) के बीच खींचा गया ग्राफ यदि सरल रेखा प्राप्त होता है तो चालक ओमीय कहलाता है।

- ओमीय प्रतिरोध—जो चालक ओम के नियम का पालन करता है, उनके प्रतिरोध को ओमीय प्रतिरोध कहते हैं। जैसे-मैंगनीज का तार।
- अन-ओमीय प्रतिरोध—जो चालक ओम के नियम का पालन नहीं करता है, उसके प्रतिरोध को अन-ओमीय प्रतिरोध कहते हैं। जैसे-डायोड बल्ब का प्रतिरोध, ट्रायोड बल्ब का प्रतिरोध।
- ह्वीटस्टोन ब्रिजं (Wheat stone Bridge)—यदि चार प्रतिरोधों को एक चतुर्भुज की चारों भुजाओं के रूप में जोड़ा जाय तथा दो परस्पर सम्मुख बिंदुओं के एक जोड़े के बीच एक गैलवेनोमीटर और शेष दो बिंदुओं के मध्य सेल लगा दिया जाय तो इस प्रबंध को 'हीटस्टोन ब्रिज' कहा जाता है। सामान्यत: प्रतिरोच (resistance) का मापन इसी सिद्धांत पर होता है।

विद्युत-धारा के ऊष्मीय प्रभाव के उपयोग

- 1. विजली के फ्यूज (Fuse)—
- मकानों में बिजली ले जाने के लिए मेन स्विच के निकट बिजली के स्विच लगाये जाते हैं।
- यह सीसे एवं टिन की बनी मिश्रधातु (alloy) के तार का एक दुकड़ा होता है, जिसका गलनांक बहुत कम, परंतु प्रतिरोध बहुत अधिक होता है।
- घारा की प्रबलता अधिक हो जाने के कारण उत्पन्न ऊच्या से यह तार गल जाता है तथा विद्युत परिपध भंग हो जाता है।
- अत:, यदि विद्युत परिपथ (Electrical Circuit) में फ्यूज का उपयोग न हो तो धारा की प्रबलता बढ़ाने पर पंखे, वल्ब तथा हीटर जल जा सकते हैं।
- धिजली के बल्ब (Electric Bulb)—
- विजली का बल्य भी धारा के ऊष्मीय प्रभाव के सिद्धांत पर कार्य करता है।
- इसमें काँच का एक बल्ब होता है जिसके भीतर की हवा निकाल कर निष्क्रिय गैस आर्गन या नाइट्रोजन गैस भर दिया जाता है।

 बल्ब के भीतर उच्च प्रतिरोध तथा उच्च द्रवणांक वाली मिश्रधातु (alloy) या टंगस्टन के बारोक तार, ऐंटी हुई कुंडली के रूप में लगे रहते हैं जिसे फिलामेंट (filament) कहा जाता है।

जब बल्च के फिलामेंट से विद्युत-भारा प्रवाहित की जाती है तो यह तार

दीप्त होकर प्रकाश देने लगते हैं।

 निष्क्रिय गैस की उपस्थिति में फिलामेंट के तार का ऑक्सीकरण नहीं हो पाता है और इसका ताप लगभग 2500°C तक बढ़ाया जा सकता है।

 हीटर (Heater)—यह उपकरण विद्युत-धारा के ऊच्छीय प्रभाव पर कार्य करते हैं। इसमें नाइक्रोम के पतले तार से बनी सर्पिल, कुंडली को चीनी मिट्टी के आधार पर बनी खाँचों में फैला दिया जाता है। नाइक्रोम की प्रतिरोधकता बहुत अधिक होती है।

विद्युतीय कार्य (Electrical Work)—िकसी चालक से विद्युत-आवेश

को प्रवाह के लिए कुछ कार्य संपादित होता है।

यदि चालक के सिरों के बीच विभवांतर (V) हो, तो उसके आवेश q
 के प्रवाहित करने के लिए किया गया कार्य-

$$W = qV$$
, या $W = Vlt (:: q = It)$

 यदि I ऐम्पियर (A) में, V वोल्ट (V) तथा t सेकेंड (s) में व्यक्त किये जायें तो विद्युतीय कार्य का मात्रक जुल (J) होगा।

 विद्युत-शक्ति (Electrical Power)—िकसी विद्युत परिपथ में विद्युत-आवेश के प्रवाहित होने पर कार्य संपादित होता है। प्रति सेकेंड में संपादित विद्युतीय कार्य को विद्युत-शक्ति कहते हैं।

 परिपथ में प्रति सेकेंड दी गई विद्युत कर्जा से 'विद्युत-शक्ति' की माप होती है।

विद्युत - शक्ति
$$(P) = \frac{\text{विद्युतीय कार्य }(W)}{\text{समय }(t)} = \frac{W}{t} = \frac{VIt}{t} = VI$$

 यदि 1 ऐम्पियर A में तथा वोल्ट V में व्यक्त किया जाय तो P को मात्रक वाट (W) होता है।

1 वाट=1 वोल्टता ×1 ऐम्पियर =1 VA

 अत:, यदि 1 वोल्टता विभवांतर पर 1 ऐम्पियर की धारा प्रवाहित की जाय, तो विद्युत शक्ति 1 वाट होगी।

 शक्ति का 'वाट' से बड़ा मात्रक किलोवाट (KW) एवं मेगावाट (MW) होता है।

 $1KW = 10^3 W$ तथा, $1MW = 10^6 W$

विद्युतीय यंत्र (Electrical Instruments)

 गैल्वेनोमीटर (Galvanometer)—गैल्वेनोमीटर द्वारा 'विद्युत परिपथ' में विद्युत-धारा की उपस्थिति बतायी जाती है इसकी सहायता से 10-6

Amp. तक की विद्युत धारा मापी जा सकती है।

2. शंट (Shunt) यदि गैल्वेनोमीटर से अधिक धारा प्रवाहित होती है तो उसकी कुंडली जल जाती है। गैल्वेनोमीटर को प्रवल धारा से बचाने हेतु इसके समांतर-क्रम में काफी कम प्रतिरोध वाले तार या ताँबे की पट्टी जोड़ी जाती है, इससे गैल्वेनोमीटर क्षतिग्रस्त होने से बच जाता है। ऐसे तार या ताँबे की पट्टी को शंट कहा जाता है।

3. सार्वत्रिक शंट (Universal Shunt)—गैल्वेनोमीटर से मुख्य घारा के

 $\frac{1}{10}$, $\frac{1}{100}$ अथवा $\frac{1}{1000}$ भाग को सुगमतापूर्वक भेजने के लिए इसके साथ एक विशेष प्रकार के शंट की व्यवस्था की जाती है। इसे सार्वित्रक शंट कहा जाता है।

चुम्बकीय प्रभाव (Magnetic Effect)

 जब मी किसी चालक से विद्युत् घारा का प्रवाह होता है, तो चालक के चारों ओर एक चुंबकीय क्षेत्र उत्पन्न हो जाता है। सन् 1812 ई० में कोपेनहेगन निवासी ऑस्टेंड (Oersted) ने एक प्रयोग के द्वारा पता लगाया कि यदि किसी धारावाही तार के समीप चुम्पकीय मुई रखी जाए, तो यह विचलित हो जाती है।

चूँकि नुष्यकीय मुई कंयल नुष्यकीय क्षेत्र में ही विचलित होती है, अत:

स्यष्ट है कि यिद्यत-भाग चुप्यकीय क्षेत्र उत्पन करती है।

इसे ही विद्युत् का चुम्बकीय प्रभाव कहते हैं।

चुम्बकत्व की दिशा संबंधी नियम—

 चुम्यकीय क्षेत्र की दिशा मैक्सवे के कॉर्क-स्क्रू नियम, फ्लेमिंग के दाहिने हाथ के नियम आदि से दी जाती है।

1. मैक्सवेल का कॉर्क-स्क्र नियम (Maxwell's Cork-Screw Law)—

 यदि एक काग पेंच के हाथ में लेकर इस तरह से घुमाया जाए कि वह घारा की दिशा में आगे की ओर बढ़े, तो अँगूठे की गति की दिशा चुम्बकीय बल रेखाओं की घनात्मक दिशा बताती है।

. फ्लेमिंग के दाहिने हाथ का नियम (Fleming's Right Hand

Rule) —

 जिस तार से हरेक धारा बहती है उस तार के ऊपर यदि दाहिने हाथ को रखकर अँगुठे तथा पहली दो ऊँगलियों को इस तरह फैलाया जाय कि वे एक-दूसरे के समकोणिक दिशा में हों और यदि तर्जनी (Fore finger) धारा की दिशा तथा बीच वाली ऊँगली सूई की विशेषित दिशा बतावें, तो अँगुठे की दिशा चुम्बकीय बल की दशा बताती है।

लॉरेन्ज बल (Lorentz force)—

• जिब किसी चुम्बकीय क्षेत्र में कोई आवेशित कण गति करता है, तो उस पर एक बल आरोपित होता है, जिसे लॉरेन्ज बल कहते हैं।

यह बल कण के आवेश, उकी चाल तथा चुम्बकीय क्षेत्र की तीवता के अनुक्रमानुपाती होता है।

इस बल की दिशा कण की गति के लम्बवत् तथा चुम्बकीय क्षेत्र के

लम्बवत् होती है।

बल को परिमाण महत्तम तब होता है, तब कण चुम्बकीय क्षेत्र के लम्बवत् करता है और यह बल न्यूनतम् (शून्य) तब होता है जब कण चुम्बकीय क्षेत्र के अनुदिश गति करता है।

बल का व्यंजक क F = qv B sin θ [जहाँ q = कण का आवेश, v = कण की चाल, B = चुम्बकीय क्षेत्र, θ = कण के वेग v एवं

चुम्बकीय क्षेत्र B के मध्य का कोण]

 बल F की दिशा फ्लेमिंग के बायें हाथ के नियम (Fleming's left hand rule) से भी ज्ञात की जा सकती है।

विद्युत-चुम्बक (Electromagnet)—

यदि किसी बेलनाकार वस्तु के चारों ओर विद्युतरोधी तार (Insulated wire) को लपेट दिया जाए, तो इसे परिनालिका (Solenoid) कहते हैं।

• बेलनाकार वस्तु को उसका क्रोड़ (core) कहते हैं।

नर्म लोहे के क्रोड़ वाली परिनालिका विद्युत् चुम्बक कहलाती है।
 इनका उपयोग डायनेमों, ट्रांसफॉर्मर, विद्युत् घंटी, तार-संचार, टेलीफोन, अस्पताल आदि में होता है।

नर्म लोहा से अस्थायी चुम्बक बनता है।

 विद्युत् चुम्बक द्वारा उत्पन्न क्षेत्र की तीव्रता निम्न बातों पर निर्मर करती है—

(i) परिनालिका के फेरों (turns) की संख्या—यदि फेरों की संख्या अधिक है, तो चुम्बकीय क्षेत्र भी तीव्र होगा।

(ii) क्रोड़ पदार्थ की प्रकृति—यदि क्रोड़ नर्म लोहे का है, तो चुम्बकीय क्षेत्र की तीव्रता अधिक होती है।

(iii) धारा का परिमाण—भारा का परिमाण जितना अधिक होगा, क्षेत्र उतना ही तीव्र होगा।

 एकसमान चुम्बकीय क्षेत्र में स्थित धारावाही चालक पर बल—यिद L लम्बाई के चालक में I धारा प्रवाहित हो रही हो तथा वह B चुम्बकीय क्षेत्र में रखा गया हो, तो उस पर लगने वाला बल।
 F = BlL sin θ[जहाँ θ = धारा की दिशा तथा चुम्बकीय क्षेत्र के बीच

म = BIL sin b[जहां छ = पार्त का प्रिशा तथा युम्बकार बनने वाला कोणा]

यदि $\theta = 0^{\circ}$ तो $\sin \theta = \sin 0^{\circ} = 0$

अत: F = 0

Join online test series: www.platformonlinetest.com

GENERAL SCIENCE 65

अर्थात् यदि धारावाही चालक तार चुम्बकीय क्षेत्र की दिशा में हो, तो उस पर कोई बल नहीं लगेगा।

यदि $\theta = 90^{\circ}$ तय $\sin 90^{\circ} = 1$

अर्थात् यदि धारावाही चालक तार चुम्बकीय क्षेत्र के लम्बवत् दिशा में

हो, तो उस पर लगने वाला बल महत्तम होगा।

चुम्बकीय फ्लक्स (Magnetic flux)— चुम्बकीय क्षेत्र में रखी हुई किसी सतह के लम्बवत् गुजरने वाली कुल चुम्बकीय रेखाओं की संख्या को उस सतह का चुम्बकीय फ्लक्स कहते हैं। चुम्बकीय फ्लक्स का SI इकाई वेबर (wb) है।

चुम्बकीय क्षेत्र (Magnetic field)—चुम्बकीय क्षेत्र की परिभाषा किसी बिन्दु पर चुम्बकीय फ्लक्स के पद में भी दी जाती है यथा प्रति इकाई क्षेत्रफल से लम्बवत् गुजरने वाली चुम्बकीय फ्लक्स उस बिन्दु

का चुम्बकीय क्षेत्र कहलाता है।

चुम्बकीय क्षेत्र का मात्रक (Unit of strength of magnetic field) -चुम्बकीय क्षेत्र का SI मात्रक टेसला (T) होता है।

1 टेसला = 1 वेब्र्यमीटर²

SI unt of strength of mag. field.

 $= 1 \text{ NA}^{-1} \text{ m}^{-1}$ 1 Tesla (T)

 $= 1 \text{ wbm}^{-2}$ = 104 Gauss

चुम्बकीय क्षेत्र को गॉस में भी व्यक्त किया जाता है, (1 गॉस = 10⁻⁴

सरलरेखी घारावाही चालक के कारण चुम्बकीय क्षेत्र—एक घारावाही चालक अपने चारों ओर एक चुम्बकीय क्षेत्र उत्पन्न कर लेता है। एक लम्बे एवं सीधे तार में जिसमें 1 धारा प्रवाहित हो रही है। r दूरी पर स्थित बिन्दु पर चुम्बकीय क्षेत्र (B) का मान निम्नलिखित सूत्र से प्राप्त

 $B = 2 \times 10^{-7} \frac{1}{r}$ न्यूटन/एम्पीयर मीटर

धारामापी (Galvanometer)—विद्युत् परिपथ में विद्युत् धारा की उपस्थिति बताने वाला एक यंत्र है। इसमें एक कुंडली होती है, जो चुम्बकीय पुव खंडों के मध्य स्थित होती है। कुंडली से एक संकेतक जुड़ा रहता है, जो एक अर्द्धवृत्ताकार स्केल पर घूमकर घारा की उपस्थित बताता है। इस यंत्र को सहायता से 10-6 एम्पियर तक की विद्युत् घारा को मापा जा सकता है।

शंट (Shunt)— रांट एक अत्यन्त ही कम प्रतिरोध वाला तार होता है। शंट उच्च धाराओं से घारामापी की रक्षा करता है, क्योंकि यह मुख्य घारा का अधिकांश भाग अपने अन्दर होकर प्रवाहित कर देता है। शंट का प्रतिरोध कम होने से शंटयुक्त धारामापी का कुल प्रतिरोध भी बहुत

कम होता है।

अमीटर (Ammeter)— धारामापी के समानान्तर क्रम में शंट लगाकर आमीटर बनाया जाता है। इसकी सहायता से विद्युत् धारा का मान एम्पियर में ज्ञात किया जाता है। एक आदर्श आमीटर का प्रतिरोध शून्य होना चाहिए। आमीटर को विद्युत्-परिपथ के श्रेणीक्रम में लगाया जाता है। वोल्टमीटर (Voltmeter)—धारामापी के श्रेणीक्रम में एक उच्च प्रतिरोध लगाकर वोल्टमीटर बनाया जाता है। इसकी सहायता से दो बिन्दुओं के बीच विभवान्तर ज्ञात किया जाता है। इसको उन दो बिन्दुओं के बीच समानान्तर क्रम में जोड़ते हैं, जिनके बीच विभवान्तर

ज्ञात करना होता है। वोल्टमीटर का प्रतिरोध बहुत अधिक होता है। एक आदर्श वोल्टमीटर का प्रतिरोध अनन्त होना चाहिए।

विद्युत् चुम्बकीय प्रेरण (Electromagnetic Induction)—यदि किसी बन्द परिपथ में होकर गुजरने वाले चुम्बकीय फ्लक्स में परिवर्तन कर दिया जाय, तो परिपथ में विद्युत् धारा उत्पन्न हो जाती है, विद्युत् धारा उत्पन्न होने की इस घटना की विद्युत् चुम्बकीय प्रेरण कहते हैं। चुम्बकीय फ्लक्स में परिवर्तन से उत्पन्न विद्युत् धारा के प्रेरित विद्युत घारा (Induced current) तथा विद्युत वाहक बल (e.m.f.) को प्रेरित विद्युत्वाहक बल (Induced e.m.f.) कहते हैं। परिपथ में

प्रेरित विद्युत् धारा का अस्तित्व तव तक रहता है, जब तक पलक्स परिवर्तन होता है। विद्युत् चुम्बकीय प्रेरण का उपयोग हृदय के लिए कृत्रिम पेसमेकर, डायनेमो, ट्रांसफॉर्मर आदि बनाने में किया जाता है।

लेंज का नियम (Lenz's law)—प्रेरित विद्युत् वाहक बल की दिशा सदैव होती है कि वह उस कारक का विग्रंप करती है, जिससे इसकी

उत्पत्ति हुई है।

स्य-प्रेरण (Self induction)—ऐसी घटना जिसमें स्वयं की घारा उत्पन्न पलक्स में परिवर्तन होने से किसी परिपथ में प्रेरित विद्युत वाहक बल उत्पन्न हो जाता है, उसे स्य-प्रेरण कहते हैं। स्य-प्रेरण को स्व-प्रेरण गुणांक (स्व-प्रेरकत्व) द्वारा मापते हैं। इसका मात्रक हेनरी (Henry-H) होता है।

अन्योन्य प्रेरण (Mutual Induction)— एक कुण्डली में घार परिवर्तन करके दूसरी कुंडली में प्रेरित विद्युत याहक वल उत्पन्न करने की घटना

को अन्योन्य प्रेरण कहते हैं। 🎏

अन्योन्य प्रेरण गुणांक (Coefficient of Mutual Induction)— एक कुण्डली में धारा परिवर्तन करके दूसरी कुंडली में प्रेरित विद्युत् वाहक वल उत्पन्न करने की घटना को अन्योन्य प्रेरण कहते हैं।

फैराडे के विद्युत-चुम्बकीय प्रेरण का नियम (Faraday's Laws of

Electromagnetic Induction)-

प्रथम नियम जब किसी कुंडली से सम्बद्ध चुम्बकीय फ्लक्स में परिवर्तन होता है, तो उस कुंडली में एक प्रेरित विद्युत् वाहक बल उत्पन्न हो जाता है।

(ii) द्वितीय नियम—प्रेरित विद्युत् वाहक बल चुम्बकीय फ्लक्स में परिवर्तन

की दर के अनुक्रमानुपाती होता है, अर्थात्

प्रेरित वि.वा. बल $e = -n \frac{d\phi}{dt} = वोल्ट$

जहाँ n= कुंडली में फोरों की संख्या और $\frac{d\phi}{dt}=$ फ्लक्स परिवर्तन की दर। यहाँ पर ऋणात्मक चिह्न बताता है कि प्रेरित वि.वा.ब. की दिशा ऐसी होती है कि वह अपने उत्पत्ति के मूल कारण का विरोध करता है।

प्रेरित विद्युत् वाहक बल (Induced c.m.f.)—चुम्बकीय क्षेत्र में गतिशील चालक के सिरों पर विद्युत् वाहक बल उत्पन्न हो जाता है। यदि चालक चुम्बकीय क्षेत्र (B) के साथ 0 कोण पर गति करें, तो प्रेरित विभवान्तर—

 $E = VBL \sin \theta$ जहाँ L = चालक की लम्बाई (मी.), V = चालक का वेग (मी./से.) $B = चुम्बकीय क्षेत्र (वेब<math>\sqrt{\mu}$ 1.2)

अब यदि sin $\theta = 90^\circ$ अर्थात् चुम्बकीय क्षेत्र (B) के लम्बवत् दिशा में 🗸 वेग से गतिशील चालक के सिरों पर उत्पन्न वि. वा. बल

E = vBlप्रेरित वि. वा. बल का SI मात्रक वोल्ट होता है।

रासायनिक प्रभाव (Chemical Effect)

शुद्ध जल विद्युत् का कुचालक होता है, लेकिन जब जल में किसी घातु के लवण, अम्ल अथवा क्षार घुले रहते हैं, तो ऐसा विद्युत् का सुचालक हो जाता है।

वर्षा का जल सबसे शुद्ध जल होता है।

ऐसे घोल जिससे विद्युत् धारा गुजर सकती है, विद्युत् अपघद्य

(Electrolyte) कहलाता है।

जब किसी लवण, अम्ल अथवा क्षार घुले जलीय घोल में विद्युत् घारा प्रवाहित की जाती है, तो उसका विद्युत् अपघटन (Electrolysis) होता है, अर्थात् उस विलियन का धनात्मक व ऋणात्मक आयनों में अपघटन (Decomposition) हो जाता है।

इस घटना को विद्युत् धारा का रासायनिक प्रभाव कहते हैं।

जिस उपकरण में घोल का विद्युत् अपघटन होता है, उसे वोल्टमीटर (Voltameter) कहते हैं।

- धातु के दो चालक, जो वोल्टमीटर में धारा के प्रवेश (Entrance) और निर्गमन (Exit) के लिए लगे रहते हैं, इलेक्ट्रोड (Electrode) कहलाते हैं।
- जिस इलेक्ट्रोड होकर धारा वोल्टामीटर में प्रवेश करती है, उसे एनोड (Anode) तथा जिससे होकरधारा बाहर निकलती है, उसे कैथोड़ (Cathode) कहते हैं।
- अर्थात् वोल्यमीटर के धन इलेक्ट्रोड को एनोड व ऋण इलेक्ट्रोड को कैथोड कहते हैं।
- जब विद्युत् अपघट्य में धारा प्रवाहित की जाती है, तो धनायन (Cation) कैथोड की ओर तथा ऋणायन (Anion) एनोड की ओर चलने लगते हैं और उन पर जाकर जमा हो जाते हैं।

संचायक सेल या द्वितीयक सेल (Accumulator or Secondary Cell)—

- संवायक से में विद्युत् कर्जा को ग्रसायनिक कर्जा के रूप में जमा किया जाता है और जब सेल को किसी परिपथ से जोड़ दिया जाता है, तब सेल के भीतर एकत्रित रासायनिक कर्जा विद्युत् कर्जा में धीरे-धीरे परिवर्तित होने लगती है।
- संचायक सेल दो प्रकार के होते हैं—(i) सीसा संचायक सेल (Lead accumulator) (ii) क्षारीय संचायक सेल (Alkaline accumulator)

सीसा संचायक सेल (Lead Accumulator Cell)—

- इसमें सीसे की दो पट्टिकाएँ होती है। पट्टिकाएँ तनु गंधकाम्ल में डुबी रहती है।
- विद्युत घारा प्रवाहित करने यानी आवेशन करने पर पानी का विघटन होता है, जिसके कारण हाइड्रोजन कैथोड पर और ऑक्सीजन एनोड पर जमा होता है।
- ऑक्सोजन ऐनोड पर के सीसे से मिलकर लेड पेरॉक्साइड बनता है, जो गहरे भूरे रंग का होता है।
- कुछ देर तक धारा बहने के बाद धारा बन्द कर दी जाती है।
- इस समय सेल आवेशित हो जाता है एवं इसका विभवान्तर 2 वोल्ट मिलता है।
- जब सेल को चालक से जोड़ते हैं, तो बाहरी परिपथ में घारा एनोड से कैथोड की आर बहती है।
- इस प्रकार की घारा बहने से हाइड्रोजन लेड पेरॉक्साइड वाली पट्टिका की ओर जाता है और लेड पेरॉक्साइड को लेड मोनोक्साइड (PbO) में परिवर्तित कर देता है, जो गंधकाम्ल से मिलकर लेड सल्फेट तथा जल बनता है।
- जल के निर्माण से तनु गंधकाम्ल का विशिष्ट धनत्व घट जाता है,
 जिससे सेल अनावेशित हो जाती है।

पूर्णरूपेण आवेशित रहने पर सेल का वि. वा. बल 2.2 वोल्ट और

अनावेशित रहने पर इसका वि. वा. बल 1.8 वोल्ट हो जाता है।

• सेल के अनावेशन की स्थिति को सल्फेटिंग कहते हैं।

 सल्फेटिंग की स्थिति सेल से अत्यधिक घारा निकालने पर तथा सेल को अनावेशित दशा में बहुत समय तक रहने पर उत्पन्न होती है।

 क्षारीय संचायक सेल (Alkaline Accumulator Cell)— इस सेल को एडिसन या निफे (Nife) सेल भी कहते हैं। इस सेल में काँच के बर्तन में पोटाशियम हाइड्रॉक्साइड का गाढ़ा (concentrated) घोल रहता है। इस सेल का एनोड इस्पात का जालीदार फ्रेम होता है, जिसमें निकेल हाइड्रॉक्साइड तथा निकेल के छीलन (Filings) एकान्तर क्रम में तहाँ (layers) में जमे रहते हैं। दूसम प्लेट रंग्नमुक्त (Porus) इस्पात का होता है, जिसमें लौह ऑक्साइड (Iron oxide) का बारीक चूर्ण भरा रहता है। यह प्लेट कैथोड़ का काम करता है।

सेल का आवेशन (Charging of Cell)— जब सेल को आवेशित करने के लिए इसमें याहरी ग्रांत से विद्युत थाग प्रवाहित की जाती है, तो विद्युत अपघटन से पोटाशियम के आयन (K⁺) कैथोड पर तथा हाइड्रोक्सिल आयन (OH-) एनोड पर एकत्रित होते हैं (आवेश के दौरान)। इस तरह सेल द्रियत हो जाता है और विपरीतात्मक वि. वा. ब. प्रभावशाली और स्थायी हो जाता है। अब इस सेल को किसी विद्युतीय परिषय में रखा जाता है, तो इससे थाग बहतो है तथा इसके एनोड तथा कैथोड पर क्रमश: K⁺ एवं OH- मुक्त होते हैं (अनावेशन के दौरान)।

पूर्णरूपेण आवेशित होने पर इस सेल का विद्युत याहक बल 1.35 वोल्ट तथा अनावेशित होने पर इसका वि.वा. बल 0.9 वोल्ट हो जाता है। इस सेल का आंतरिक प्रतिरोध 0.1 ओम होता है।

 सेल की दक्षता (Efficiency of a cell)— किसी संल की दखता संल द्वारा किए गए लाभदायक कार्य उसी संल के द्वारा किए गए कुल कार्य का अनुपात है।

i.e. सेल की दक्षता = सेल द्वारा किए गए लाभदायक कार्य उसी सेल द्वारा किए गए कुल कार्य

अगर किसी सेल का वि. वा. बल E तथा बन्द परिपथ में घुवों के बीच विभवान्तर V हो, तो—

सेल की दक्षता = $\frac{V}{E}$

विद्युत्-अपघटन के उपयोग (Application of Electrolysis)—

- (i) धातु का निष्कर्षण (Extraction of metals)— एलुमिनियम, सोडियम, कैल्शियम, मैग्नीशियम आदि धातु विद्युत्-अपघटन से प्राप्त होते हैं। इन्हीं धातुओं का इलेक्ट्रोड बना रहता है और जब इस धातु के नमक वाले घोल से विद्युत् की धारा प्रवाहित की जाती हे, तो शुद्ध धातु कैंथोड पर एकत्रित हो जाता है।
- (ii) विद्युत-अपघटन से विश्लेषण (Analysis by Electrolysis)— विद्युत्-अपघटन के सिद्धान्त से कुछ यौगिकों (Some compounds) को विश्लेषित किया जाता है। इस विधि से HCl, HCN आदि के बनावट (Composition) का पता लगाया जाता है।
- (iii) विद्युत-लेपन या कलई करना (Electro-plating)— विद्युत्-अपघटन के सिद्धान्त से किसी धातु की पतली परत (Layer) किसी दूसरी घातु पर चढ़ायी जाती है। जिस धातु पर परत चढ़ाना रहता है, उसका कैथोड़ और जिस धातु का परत चढ़ाना रहता है उसका एनोड बनाया जाता है। इन दोनों को विद्युत्-अपघटन के द्रव में रखकर एक विद्युतीय सेल (Electrolytic cell) तैयार किया जाता है। इस सेल से जब विद्युत् की धारा प्रवाहित की जाती है, तो ऐनोड वाले धातु से धातु घोल में घुलकर कैथोड वाले धातु पर जमा होता जाता है और इस तरह से कुछ देर के बाद इस धातु की कैथोड वाले धातु पर एक पतली परत जम जाती है। इस क्रिया के लिए प्राय: सोना, चाँदी, ताँबा, निकेल और क्रोमियम धातु लिया जाता है।
- (iv) विद्युतीय-मुद्रण (Electro-typing)— आजकल बड़े-बड़े प्रेसों में अच्छी तरह काम करने के लिए टाइप बनाकर ताँबे के वोल्टामीटर में कैथोड़ की जगह पर रख दिया जाता है। ऐसा करने से इस पर ताँबे की एक परत जम जाती है। इससे छपाई अच्छी होती है।
- (v) विद्युतीय संचक (Electrolytic condenser)— ऐसे संचक में एलुमिनियम के दो इलेक्ट्रोड रहते हैं। इसमें बोरिक एसिड, ग्लिसरीन और अमोनिया जल का मिश्रण विद्युत्-अपघटन द्रव के रूप में रहता है। जब इस तरह द्रव से होकर विद्युत्धारा प्रवाहित की जाती है तब एनोड पर एलुमिनियम हाइड्रॉक्साइड की परत बन जाती है। यह परत दोनों प्लेटों के बीच पराविद्युत् (Di-electric) का कार्य करती है।

(vi) धातुओं का शुद्धीकरण (Purification of metals)—इसके लिए अशुद्ध धातु का एनोड और शुद्ध धातु का कैथोड बनाया जाता है। अशुद्ध धातु का घोल के रूप में विद्युत्-अपघटन द्वय बनाया जाता है। जब इस अशुद्ध धातु के घोल से होकर धारा प्रवाहित की जाती है,तो इसमें से शुद्ध धातु निकलकर कैथोड वाले शुद्ध धातु पर जमा होता है। इस तरह से ताँबा का शुद्धीकरण 99.99% तक किया जाता है।

कष्मीय प्रभाव (Heating Effects)

- चालक का प्रतिरोध धारा बहने में रूकावट डालता है, जिससे गितशील इलेक्ट्रॉन निरन्तर चालक के परमाणुओं से टकराते हैं तथा इस प्रक्रिया में अपनी कर्जा चालक के परमाणुओं को स्थानानिरित करते हैं।
- इसके कारण चालक का ताप बढ़ जाता है। चालक के ताप बढ़ने की इस घटना को विद्युत धारा का कष्मीय प्रभाव कहते हैं।
 - किसी चालक में विद्युत् धारा द्वारा उत्पन्न कष्मा H = 1²Rt जूल (SI पढित में)

जहाँ H = उत्पन ऊष्मा, I = चालक में बहने वाली धारा, R = चालक का प्रतिराध, t = धारा बहने का समय।

H = I²Rt में विद्युत धारा द्वारा उत्पन्न कष्मा के जो नियम सम्मिलित है, वे जुल के नियम (Joule's Laws) कहलाते हैं, जो निम्नोंकित हैं—

- यदि किसी चालक का प्रतिरोध नियत रहता है, तो उसमें नियत समय में उत्पन्न ऊष्णा धारा के वर्ग के समानुपाती होती है। अर्थात् $H \propto l^2$ जब R एवं t नियत है।
- यदि किसी चालक में बहती हुई धारा का मान नियम हो, तो किसी निश्चित समय में उत्पन्न ऊष्मा चालक के प्रतिरोध के समानुपाती होती है।
- अर्थात् H ∝ R, जब I एवं t नियत हैं। (iii) यदि किसी चालक का प्रतिरोध तथा बहती हुई धारा नियत हो, तो उसमें उत्पन्न कथ्मा समय का समानुपाती होती है। अर्थात् H ∝ t, जब I एवं R नियत हों।
- कष्मा विद्युत् (Thermo electricity)—जब किसी तार को गर्म किया जाता है, तो उससे होकर विद्युत् धारा बहती है। अतः कष्मा विद्युत् में किसी तार को गर्म करने में उसमें प्रवाहित विद्युत् धारा का अध्ययन किया जाता है।

सीबेक प्रभाव (Seebeck effect)—

- सीबेक ने दो भिन्न-भिन्न पदार्थों के तारों को उनके दोनों सिरे अलग-अलग मिलाकर दो जंक्शन बनाया, जंक्शनों के तापों में अन्तर रहने पर तारों से होकर विद्युत् धारा प्रवाहित होने लगती है।
- इसी प्रमाव को सीबेक प्रमाव कहते हैं। इस प्रकार बहने वाली विद्युत् धारा को कथ्या-विद्युत धारा कहते हैं।
- जिस विद्युत् वाहक बल के कारण यह कप्मा विद्युत् धारा बहती है, उसे कप्मा विद्युत् वाहक बल (Thermo electro motive force)
 - सीबेक ने भिन्न-भिन्न घातुओं के जोड़े (couple) बनाकर अपने प्रभाव को दिखाया। इसमें घातुओं की एक कच्मा विद्युत् श्रेणी बनाई।
- इस श्रेणी वाले किन्हीं दो धातुओं से कच्या वैद्युत युग्म बनाने पर उनमें जो धातु श्रेणी में पहले आता है, उससे धारा श्रेणी में अपने से नीचे वाले धातु ठंढे जंक्शन होकर प्रवाहित होती है।
 - कष्मा विद्युत् श्रेणी के कुछ धातु निम्नलिखित है
 - 1. एन्टीमनी 2. लोहा
 - 3. जस्ता 4. चाँदी 7. सीसा 8. ताँबा
 - सोना 6. टिन 7. सीसा 8
 प्लैटिनम 10. निकेल
- कपर की तालिका में क्रम संख्या में सीसा से कपर वाली घातु यानी एन्टीमनी, लोहा, जस्ता, चाँदी, सोना एवं टिन कप्मा विद्युतीय ऋणात्मक एवं क्रम संख्या में सीसा से नीचे वाली घातु यानी ताँबा, प्लैटिनम, निकेल एवं बिस्मथ कष्मा विद्युतीय घनात्मक है।

- कथ्मा वैद्युत् युग्म में एक भातु से दूसरे धातु में धारा को बहने की दिशा का ज्ञात आसानी में A, B और C शब्द से होता है, जैसे A से एण्टीमनी, B से विस्माथ और C में ठंढा (Cold) यानी Current Flows from A to B though C गर्म जंक्शन होने पर धारा की दिशा उलट जाती है, जैसे ताँचे एवं लोहें के युग्म में Current Flows from Copper to Iron at the Hot Junction.
 - पेस्टियर प्रभाव (Peltier Effect)—पेस्टियर प्रभाव मीवेक प्रभाव का व्युक्तम प्रभाव है। जब दो भिना-भिना धातुओं के जोड़े एक होकर एक भारा प्रवाहित करती है, तब जंक्शन पर या तो कष्मा का उत्पादन होता है या अवशोषण होता है। किसी जंक्शन से होकर यदि एक दिशा में धारा के बहने से कष्मा का उत्पादन होता है, दूसरी दिशा में धारा बहने पर उसी जंक्शन पर कष्मा का शोषण होता है।
- धॉम्सन-प्रमाय (Thomson-effect)—यदि किसी तार के सिरे पर के तापों को नियत रखकर तार के बीच वाले माग के ताप को बढ़ाया जाता है और साथ-साथ तार से होकर विद्युत् यारा प्रवाहित की जाती है, तो तार का पहला आधा माग ठंढा और दूसरा आधा माग गर्म हो जाता है। तार में धारा की दिशा बदल देने पर गर्म एवं ठंढं माग भी आपस में बदल जाते हैं। इस प्रभाव को धॉम्सन प्रभाव कहते हैं।
- कम्पीय प्रभाव पर आधारित घरेलू उपकरण (Home appliances based on Heating effect)—विद्युत् धारा के कम्पीय प्रभाव का उपयोग, घरेलू उपकरणों जैसे—विद्युत् हीटर, विद्युत प्रेस, वल्ब, द्यूव-लाइट आदि में किया जाता है।
- विद्युत् प्रेस (Electric Iron)—मरेलू विद्युत् ग्रंस में अम्रक के ऊपर नाइक्रोम का तार लिपटा हुआ रहता है। अम्रक एक अच्छा प्रतिगंधी है, जो कचै ताप पर भी नहीं पिघलता है। इस प्लेट को इस्पात के उचित आकार के आवरण के अन्दर रखा जाता है। इस आवरण के ऊपर कुचालक पदार्थ का हत्था लगा रहता है। जब तार में घारा प्रवाहित की जाती है तो वह गरम हो जाती है, जिससे आवरण भी गरम हो जाती है, तो कपड़े को ग्रेस कर देती है।

विद्युत् बल्ब (Electric Bulb)—

- विद्युत बल्च का आविष्कार धॉमस एल्वा एडीसन (Thomas Alva Edison) ने किया था।
- इसमें टंगस्टन घातु का तन्तु (फिलामेंट) लगा होता है।
- टंगस्टन के ऑक्सीकरण को रोकने के लिए बल्बं के अंदर निर्वात् कर दिया जाता है।
- कभी-कभी पूर्णतः निर्वात् न करके उसके अन्दर नाइट्रोजन या आर्गन गैस भर दी जाती है, ताकि उच्च ताप पर टंगस्टन का वाष्पीकरण न हो।
- उच्च ताप पर टंगस्टन वाष्पीकृत होकर बल्ब की दीवारों को काला कर देता है, जिसे ब्लैकनिंग (Blackening) कहते हैं।
- बल्ब में टंगस्टन धातु का प्रयोग, उसका गलनांक (3500°C) उच्च होने के कारण किया जाता है।
- धारा प्रवाहित किए जाने पर टंगस्टन-तन्तु का ताप 1500°C से 2500°C तक हो जाता है।
- साधारण बल्ब में दी गई विद्युत् कर्ज़ा का 5% से 10% भाग हो प्रकाश में परिवर्तित होता है।

द्यूब लाइट (Tube Liht)—

- इसमें काँच की एक लम्बी ट्यूब होती है, जिसके अन्दर की दीवारों पर प्रतिदीप्तशील पदार्थ (Fluorescent Material) का लेप चढ़ा रहता है।
- द्रगुब के अन्दर अक्रिय गैस जैसे ऑगन को कुछ पारे के साथ भर देते हैं।
- ट्यूब के दोनों किनारों पर बेरियम ऑक्साइड की तहें चढ़ी हुई हो तन्तु लगे होते हैं।
- जब तन्तुओं में धारा प्रवाहित की जाती है, तो इनसे इलेक्ट्रॉन उत्सर्जित होते हैं, जो ट्यूब में भरी गैस का आयनीकरण करते हैं।
- आयनीकरण से उत्पन्न आयनों के प्रवाह के फलस्वरूप ट्यूब में घारा बहने लगती है।
- द्यूव स्थित पारा गरमी पाकर वाष्पित होता है तथा इससे विद्युत् उत्सर्जन होने के कारण परावेंगनी किरणें (UV Rays) उत्पन्न होती है।

जब ये किरणे ट्यूब की दीवारों पर पुते प्रतिदीप्तिशील पदार्थ पर पड़ती हैं, तो उन्हें अवशोषित करके निचली आवृत्ति के दृश्य प्रकाश का उत्सर्जन करती है।

ट्यूब में उपयोग किया जाने वाला प्रतिदीप्तिशील इस प्रकार लगाया जाता है कि उससे उत्पन्न प्रकाश सूर्य के प्रकाश के समान श्वेत

दिखाई पडता है।

ट्यूब में ऊष्मा ऊर्जा कम उत्पन्न होती है, इसलिए लगभग 60 से

70% विद्युत् कर्जा प्रकाश कर्जा में बदल जाती है।

इसलिए ट्यूब की दक्षता बल्ब की तुलना में अधिक होती है। जैसे एक 40 वाट की ट्यूब एक 40 वाट की बल्ब की तुलना में 6 से 8 गुना अधिक प्रकाश देती है।

प्रत्यावर्ती घारा (A.C.)

पुत्यावर्ती घारा (Alternative current, A.C.)— यह एक ऐसी धारा है, जिसका परिमाण एवं दिशा समय के साथ बदलता है। यह धारा पहले एक दिशा में शून्य से अधिकतम व अधिकतम से शून्य तथा फिर विपरीत दिशा में शून्य से अधिकतम व अधिकतम से शून्य हो जाती है। इसे प्रत्यावर्ती धारा का एक चक्र (Cycle) कहते हैं। प्रत्यावर्ती धारा को उत्पन्न करने वाला विभवांतर (वि. वा. बल) भी प्रत्यावर्ती होता है। इसका समीकरण है-

 $V = V_0 \sin \omega t$

जहाँ V = विभवांतर का तात्क्षणिक मान तथा $V_0 =$ विभवान्तर का शिखर मान प्रत्यावर्ती धारा के एक चक्र का समीकरण—

 $I = I_0 \sin \omega t$

जहाँ l = तात्क्षणिक धारा, l₀ = धारा का शिखर मान यानी अधिकतम मान, $\omega = 2\pi f$; जहाँ, f =धारा की आवृत्ति, t =प्रारम से कोई क्षण है।

व्यवहार में प्रत्यावर्ती घारा का वर्ग माध्य मूल मान (root mean square (rms) value) ही व्यक्त किया जाता है।

 $I_v = I_{rms} = \frac{I_0}{\sqrt{2}} = 0.707 I_0$ जहाँ $I_v = \text{virtual value of a.c.}$

अर्घात् प्रत्यावर्ती धारा का वर्ग माध्य मूल मान शिखर मान का 0.707 गुणा (या 70.7%) होता है।

प्रत्यावर्ती धारा को उत्पन्न करने वाला विभवान्तर (वि. वा. बल) भी प्रत्यावर्ती होती है। प्रत्यावर्ती विद्युत् वाहक यल का समीकरण है-

 $V = V_0 \sin \omega t$

जहाँ V एवं Vo क्रमशः प्रत्यावर्ती विद्युत् वाहक बल के तात्क्षणिक तथा शिखर मान है। प्रत्यावर्ती धारा का पूरे चक्र में औसत मान शून्य होता है। प्रत्यावर्ती घारा का पहले आधे चक्र में औसत मान

 $\frac{2I_0}{I_0} = 0.637 I_0$ तथा दूसरे आधे चक्र में औसत मान $0.637 I_0$

होता है। I₀ प्रत्यावर्ती धारा का शिखर मान है। भारत के घरों में सप्लाई की जाने वाली प्रत्यावर्ती धारा का शिखर (peak) वोल्टेज <u>+</u> 311 वोल्ट तथा आवृत्ति 50 Hz होती है। दिष्ट घारा (Direct current) की अपेक्षा समान वोल्टेज प्रत्यावर्ती धारा अधिक खतरनाक होती है। कारण यह है कि 220V की d.c. का वास्तविक मान +311V से -311V तक होता है, जबिक 220V की a.c. का वास्तविक मान 220V ही होता है।

प्रत्यायती धारा अमीटर एवं योल्टमीटर (A.C. Ammeter & Voltmeter)— प्रत्यावर्ती थांग के पूरे चक्र (Cycle) के लिए घारा का मान शून्य होता है। अत: यदि प्रत्यावर्ती धारा किसी विद्युत् चुम्बकीय अमीटर या धारामापी में प्रयाहित की जाय, तो उसका निर्देशक शून्य पर ही रहेगा। इसी कारण प्रत्यावर्ती भाग एवं विभवान्तर को मापने के लिए राप्त तार अमीटर एवं योल्टमीटर का प्रयोग किया जाता है। प्रत्यावर्ती धारा अपीटर के पाट्यांक से सीचे घारा का वर्ग माध्य मूल्य मान (rms value) प्राप्त होता है। इसी प्रकार प्रत्यावर्ती वोल्टमीटर के पाठ्यांक से सीधे योल्टेज का वर्ग माध्य मूल (rms values) मान प्राप्त

वाटहीन धारा (Wattless current)— जब प्रत्यावर्ती घारा (A.C.) परिपथ में बिना कर्जा का व्यय किए प्रवाहित होती है, तो ऐसी घारा को वाटहीन धारा कहते हैं। ऐसी धारा तभी प्रवाहित होगी, जब परिपय

में ओमीय प्रतिरोध का मान शुन्य हो।

प्रत्यावर्ती धारा (A.C.) के दोष- प्रत्यावर्ती धारा के निम्न दोष हैं— प्रत्यावर्ती धारा के द्वारा विद्युत्-अपघटन (Electrolysis) नहीं हो सकता है, इसलिए एलुमिनियम कारखाने तथा अन्य कारखानों में जहाँ विद्युत्-अपघटन की आवश्यकता होती है, वहाँ दिष्ट घारा का प्रयोग किया जाता है। इसी कारण से कलई (Electroplating) करने के काम में भी दिष्ट धारा का व्यवहार किया जाता है।

प्रत्यावर्ती को दिष्ट धारा के समान संचायक (Accumulator cell) में

संचित नहीं किया जाता है।

(iii) विद्युत् चुम्बकों (Electromagnets) में केवल दिष्ट घारा का प्रयोग

किया जाता है।

चोक-कुण्डली (Choke coil)—विद्युत् परिपथ में प्रत्यावर्ती घारा की प्रयलता कम करने वाली कुंडली को चोक-कुंडली कहा जाता है। प्रतिरोध की सहायता से धारा घटाने पर विद्युत् कर्जा का अपव्यय कथ्मा कर्जा के सृजन के रूप में होता है जबकि चोक कुंडली की सहायता से धारा घटाने पर कर्जा का अपव्यय बहुत ही कम होता है। अल्प आवृत्ति की प्रत्यावर्ती धारा के साथ व्यवहार में लाये गए चोक क्ंडली का क्रोड (Core) नर्म लोहे (चुम्बकीय) का बना होता है। अधिक आवृत्ति की प्रत्यावर्ती धारा के साथ व्यवहार में लाए गए चोक कुण्डली का क्रोड़ (Core) लोहे का बना होता है।

चोक-कुंडली शक्ति गुणांक $\cos \phi = \frac{R}{\sqrt{R^2 + L^2 \omega^2}}$

जहाँ R = vरिपथ का प्रतिरोध, L = vरिपथ का प्रेरकत्व, $\omega = v$ । की कोणीय आवृत्ति नरम लोहे से बने कुंडली का प्रेरकत्व (L) काफी अधिक होता है और आवृत्ति (ω) कम होने पर भी इसका प्रतिघात (Lω) का मान अधिक होता है। लोहे से बने कुंडली का प्रेरकत्व (L) कम होता है और उसकी आवृत्ति (ω) अधिक होती है, इसीलिए इसका भी प्रतिघात (Lω) काफी अधिक होता है। चोक-कुंडली का प्रयोग घरों की ट्यूब लाइट, रेडियो तथा परानली लैम्प में किया जाता है।

दूांसफार्मर (Transformer)— यह एक ऐसी युक्ति है, जो प्रत्यावर्ती धारा (AC) की वोल्टेज बढ़ाने या घटाने के काम आती है। इसमें दो कुण्डलियाँ होती हैं, जिन्हें क्रमश: प्राथमिक तथा द्वितीयक कुण्डली कहते हैं।

ट्रांसफार्मर विद्युत-चुम्यकीय प्रेरण के सिद्धांत पर कार्य करता है।

ट्रांसफार्मर दो प्रकार के होते हैं।

स्टेप अप दांसफार्मर—यह कम वोल्टेज वाली प्रबल प्रत्यावर्ती घारा को अधिक वोल्टेज वाली दुर्बल प्रत्यावर्ती धारा में बदल देता है।

इसकी प्राथमिक कुण्डली में फेरों की संख्या कम होती है और द्वितीय

कुण्डली में फेरों की संख्या अधिक होती है।

(ii) स्टेप डाउन ट्रांसफामर—यह अधिक वोल्टेज वाली दुर्बल प्रत्यावर्ती धारा को कम वोल्टेज वाली प्रबल धारा में बदल देता है।

इसकी प्राथमिक कुण्डली में फेरों की संख्या अधिक तथा द्वितीयक कुण्डली में फेरों की संख्या कम होती है।

हायनेमो या विद्युतीय जनित्र (AC Dynamo)— डायनेमो एक ऐसा यन्त्र है यान्त्रिक कर्जा को विद्युत कर्जा में बदलता है।