Homework 2

Meiyu Zhang July 2022

1 Question Five

a)

1. Exercise 1.12.2, sections b,e

(b.)

1.	$p \to (q \wedge r)$	Hypothesis
2.	$p \rightarrow q$	Simplification, 1
3.	$\neg q$	Hypothesis
4.	$\neg p$	Modus tollens,2,3

- 1. $p \to (q \land r)$ is a hypothesis.
- 2. Simplification says that if $p \to (q \land r)$ (line 1) is true, then $p \to q$ must also be true.
- 3. $\neg q$ is a hypothesis.
- 4. Modus tollens says that if $p \to q(\text{line 2})$ is true and $\neg q$ (line 3) is true, then $\neg p$ must also be true.

Therefore, the argument is valid.

(e.)

1.	$p \lor q$	Hypothesis
2.	$\neg p \lor r$	Hypothesis
3.	$q \lor r$	Resolution, 1, 2
4.	$\neg q$	Hypothesis
5.	r	Disjunctive syllogism, 3,4

- 1. $p \vee q$ is a hypothesis.
- 2. $\neg p \lor r$ is a hypothesis.
- 3. Resolution says that if $p \vee q$ (line 1) is true and $\neg p \vee r$ (line 2) is true, then $q \vee r$ must be true.
- 4. $\neg q$ is a hypothesis.
- 5. Disjunctive syllogism says that if $q \vee r$ (line 3)is true and $\neg q$ (line 4)is true, then r is true.

Therefore, the argument is valid.

2. Exercise 1.12.3, section c

1.	$p \lor q$	Hypothesis
2.	$\neg(\neg p) \lor q$	Double negation law, 1
3.	$\neg p \rightarrow q$	Conditional Identity, 2
4.	$\neg p$	Hypothesis
5.	q	Modus ponens, 3, 4

- 1. $p \lor q$ is a hypothesis.
- 2. Double negation law says $p \lor q \equiv \neg(\neg p) \lor q$.
- 3. Conditional identity says $\neg(\neg p) \lor q \equiv \neg p \to q$.
- 4. $\neg p$ is a hypothesis.

5. Modus ponens says that if $\neg p \rightarrow q$ is true and $\neg p$ is true, then q is true.

3. Exercise 1.12.5, sections c,d

(c.)

Replace the English phrase with variable:

c: I will buy a new car.

h: I will buy a new house.

j: I will get a job.

The form of the argument is:

$$\begin{array}{c}
(c \land h) \to j \\
 \hline
 \neg j \\
 \hline
 \vdots \neg c
\end{array}$$

The argument is invalid.

The two hypotheses are True, but the conclusion is False.

Therefore, the argument is invalid.

(d.)

Replace the English phrase with variable:

c: I will buy a new car.

h: I will buy a new house.

j: I will get a job.

The form of the argument is:

$$\begin{array}{c}
(c \land h) \to j \\
\neg j \\
h
\end{array}$$

The argument is valid.

1.	$(c \wedge h) \to j$	Hypothesis	
2.	$\neg j$	Hypothesis	
3.	$\neg(c \land h)$	Modus Tollen, 1, 2	
4.	$\neg c \lor \neg h$	De Morgan's law, 3	
5.	h	Hypothesis	
6.	$\neg(\neg h)$	Double negation law, 5	
7.	$\neg c$	Disjunctive syllogism, 4, 6	

1. $(c \wedge h) \rightarrow j$ is a hypothesis.

2. $\neg j$ is a hypothesis.

- 3. Modus tollen says if $(c \wedge h) \to j$ (Line 1) is true and $\neg j$ (Line 2) is true, then $\neg (c \wedge h)$ is true.
- 4. De Morgan's law says $\neg(c \land h) \equiv \neg c \lor \neg h$.
- 5. h is a hypothesis.
- 6. Double negation law says $h \equiv \neg(\neg h)$
- 7. Disjunctive syllogism says if $\neg c \lor \neg h$ (Line 4)is true and $\neg (\neg h)$ (Line 6)is true, then $\neg c$ is true.

Therefore, the argument is valid.

b)

1. Exercise 1.13.3, section b

	P(x)	Q(x)
a	F	Τ
b	F	F

2. Exercise 1.13.5, sections d,e

(d.)

Define the following two predicates:

M(x): x missed the class. D(x): x got a detention.

 $\begin{array}{c} \forall x(M(x) \to D(x)) \\ \text{Penelope, a student in the class} \\ \hline \neg M(Penelope) \\ \hline \therefore \neg D(x) \end{array}$

The form of the argument is:

The argument is invalid.

For the situation like below:

-	of the bitaction into below.					
		M(x)	D(x)	$M(x) \to D(x)$	$\neg M(x)$	$\neg D(x)$
ſ	Penelope	F	Т	T	Т	F

The hypotheses are true while the conclusion is false. Therefore, the argument is invalid.

(e.)

Define the following three predicates:

M(x): x missed the class.

D(x): x got a detention.

A(x) : x got an A.

The form of the argument is:
$$\frac{ \forall x ((M(x) \lor D(x)) \to \neg A(x))}{\text{Penelope, a student in the class.}} \\ \frac{A(\text{Penelope})}{ \therefore \neg D(\text{Penelope})}$$

The argument is valid.

1.	$\forall ((M(x) \lor D(x)) \to \neg A(x))$	Hypothesis	
2.	Penelope, a student in the class.	Hypothesis	
3.	$M(Penelope) \lor D(Penelope) \to \neg A(Penelope)$	Universal instantiation	
4.	A(Penelope)	Hypothesis	
5.	$\neg(\neg A(Penelope))$	Double Negation law, 4	
6.	$\neg (M(Penelope) \lor D(Penelope))$	Modus tollens, 3,5	
7.	$\neg M(Penelope) \land \neg D(Penelope)$	De Morgan's Law, 6	
8.	$\neg D(Penelope)$	Simplification, 7.	

- 1. $\forall ((M(x) \lor D(x)) \to \neg A(x))$ is a hypothesis.
- 2. Penelope, a student in the class is a hypothesis.
- 3. $M(Penelope) \lor D(Penelope) \to \neg A(Penelope)$ is true by universal instantiation applied to line 1 and 2.
- 4. A(Penelope) is a hypothesis.
- 5. $\neg(\neg A(Penelope))$ is true by Double Negation Law applied to line 4.
- 6. $\neg(M(Penelope) \lor D(Penelope))$ is true by Modus tollens applied to line 3 and 5,
- 7. $\neg M(Penelope) \land \neg D(Penelope)$ is true by De Morgan's Law applied to line 6.
- 8. $\neg D(Penelope)$ is true by simplification applied to line 7.

Therefore, the argument is valid.

2 Question Six

1. Exercise 2.4.1, section d

Theorem: The product of two odd integers is an odd integer.

Proof:

Assume that x and y are two odd integers.

Since x is odd, there is an integer a such that x = 2a + 1. And since y is odd, there is an integer b such that y = 2b + 1.

Plug x = 2a + 1 and y = 2b + 1 into $x \times y$ to get:

$$x \times y = (2a+1) \times (2b+1)$$

$$=4ab + 2a + 2b + 1$$

$$= 2(2ab + a + b) + 1$$

Since a and b are two integers, 2ab + a + b is also an integer.

Since $x \times y = 2m + 1$, where m = 2ab + a + b is an integer, the product of two odd integer x and y is odd.

2. Exercise 2.4.3, section b

Theorem: If x is a real number and $x \le 3$, then $12 - 7x + x^2 \ge 0$.

Proof:

Assume x is a real number and $x \le 3$. We shall prove that $12 - 7x + x^2 \ge 0$.

Subtract 3 to both sides of the inequality $x \le 3$, we get $x - 3 \le 0$.

Subtract 4 to both sides of the inequality $x \le 3$, we get $x - 4 \le -1$.

Apparently x - 3 and x - 4 are both negative integers, their product $(x-3) \times (x-4)$ must be a positive integer.

$$(x-3) \times (x-4) \ge 0$$

Multiplying out the left hand side of the inequality gives the conclusion of the theorem:

$$12 - 7x + x^2 \ge 0$$

3 Question Seven

1. Exercise 2.5.1, section d

Prove each statement by contrapositive:

Theorem: For every integer n, if $n^2 - 2n + 7$ is even, then n is odd.

Prove:

Let n be a integer. We will assume that it is not true that n is odd and will show that $n^2 - 2n + 7$ is odd.

Since n is not odd, then n is even.

Since n is even, there is an integer a such that n = 2a.

Therefore
$$n^2 - 2n + 7 = (2a)^2 - 2(2a) + 7$$

$$=4a^2-4a+7$$

$$= 2(2a^2 - 2a + 3) + 1$$

since a is an integer, $2a^2 - 2a + 3$ is also an integer.

since $n^2 - 2n + 7$ is equal to an integer plus 1, $n^2 - 2n + 7$ is odd.

2. Exercise 2.5.4, section a,b

(a.

Theorem: For every pair of real numbers x and y, if $x^3 + xy^2 \le x^2y + y^3$, then $x \le y$.

Prove:

Let x and y be two real numbers, we will assume that x>y, and will show that $x^3+xy^2>x^2y+y^3$.

Since x and y are two real numbers and x > y, then x and y can not be zero at the same time.

Therefore, $x^2 + y^2 > 0$

Since $x^2 + y^2$ is positive, multiplying $x^2 + y^2$ to both sides of x > y will not change the direction of inequality x > y:

$$x(x^2 + y^2) > y(x^2 + y^2)$$

$$x^3 + xy^2 > x^2y + y^3$$

Therefore, the argument is valid.

(b.)

Theorem: For every pair of real numbers x and y, if x+y>20, then x>10 or y>10.

Prove:

Let x and y be two real numbers, we will assume that $x \leq 10$ and $y \leq 10$, and will show that $x+y \leq 20$

add y to both sides of inequality $x \le 10$, we get $x + y \le 10 + y$,

add 10 to both sides of the inequality $y \le 10$, we get $10 + y \le 10 + 10$

$$10+y \leq 20$$

Since we know $x+y \leq 10+y$ and $10+y \leq 20$, we can say that $x+y \leq 10+y \leq 20$

Therefore $x + y \le 20$. Overall, the argument is valid.

3. Exercise 2.5.5, section c

Theorem: For every non-zero real number x, if x is irrational, then $\frac{1}{x}$ is also irrational.

Prove:

Let x be a non-zero real number, we will assume that $\frac{1}{x}$ is rational, and will show that x is also rational.

Since $\frac{1}{x}$ is rational and $x \neq 0$, $\frac{1}{x} = \frac{a}{b}$, where a and b are integers and $a \neq 0, b \neq 0$.

Then $x = \frac{b}{a}$,

Since x is equal to the ratio of two integers where the denominator $\neq 0$, then x is rational.

Question Eight 4

Exercise 2.6.6, sections c,d

(c.)

Theorem:

The average of three real numbers is greater than or equal to at least one of the numbers.

Prove:

Assume there exists three real numbers x, y, and z. And their average number k is smaller than all of them.

Since k is the average of x, y and z, k is equal to $\frac{(x+y+z)}{3}$; Since k < x, k < y, and k < z, then 3k < x + y + z.

Let both sides of the inequality divided by 3, we get $k < \frac{(x+y+z)}{3}$.

Therefore, k cannot be equal to $\frac{(x+y+z)}{3}$.

This contradicts the assumption that k is the average number of x, y, and z.

Therefore, the average of three real numbers must be greater than or equal to at least one of the numbers.

(d.)

Theorem: There is no smallest integer.

Assume that there is a smallest integer called r.

Since r is an integer, r - 1 is also an integer. Since they are both integers,

r - 1 is an integer that is smaller than r.

This contradicts the assumption that r is the smallest integer. Therefore, there is no smallest integer.

5 Question Nine

Theorem:

If integers x and y have the same parity, then x + y is even.

Prove:

If integers x and y have the same parity, we consider two cases:

Case 1: x and y are both even. Since x is even, there is an integer a such that x = 2a. Since y is even, there is an integer b such that y = 2b.

Plug in the expression x + y.

$$x + y = 2a + 2b = 2(a + b)$$

Since a and b are two integers, a + b is also an integer. We can conclude that if x and y are even, then x + y is also even.

Case 2: x and y are both odd. Since x is odd, there is an integer k such that x = 2k+1. Since y is odd, there is an integer i such that y = 2i + 1.

Plug in the expression x + y.

```
x + y = 2k + 1 + 2i + 1 = 2(k + i + 1)
```

Since k, i are both integers, k+i+1 is also an integer. We can conclude that if x and y are odd, then x+y is even.