AMENDMENTS TO THE CLAIMS

- 1. (Currently Amended) A method of introducing a nucleic acid into cells by electroporation, comprising the step (A) of loading a nucleic acid onto the surface of an electrode; the step (B) of adhering cells onto the surface of the obtained nucleic acid-loaded electrode; and
- the step (B) of adhering cells onto the surface of the obtained nucleic acid-loaded electrode; and the step (C) of applying electric pulses to the adhering adhered cells.
- 2. (Original) A method of introducing a nucleic acid into cells by electroporation, comprising the step (a) of providing an electrode with a cationic surface;
- the step (b) of adsorbing and loading a nucleic acid onto the cationic surface of an electrode; the step (c) of adhering cells onto the surface of the nucleic acid-loaded electrode obtained in the step (b); and
- the step (d) of applying electric pulses to the cells.
- **3.** (Currently Amended) The method according to claim 2, wherein the electrode with a cationic surface is an electrode on which athe monolayer of a thiol compound, a disulfide compound or a sulfide compound having an anionic functional group at the terminal is formed and a cationic polymer is adsorbed onto the surface of the monolayer.
- 4. (Currently Amended) The method according to claim 2, wherein the electrode with a cationic surface is an electrode on which a monolayer of a thiol compound, a disulfide compound or a sulfide compound having a cationic functional group at the terminal or a silanising agent having a cationic functional group at the terminal is formed, an anionic polymer is adsorbed onto the surface of the monolayer and a cationic polymer is further adsorbed onto its surface.

- **5.** (Original) The method according to claim 2, wherein the electrode with a cationic surface is a transparent electrode on which a cationic polymer is adsorbed.
- **6. (Original)** The method according to claim 2, wherein the step (b) is carried out by directly adsorbing nucleic acids on the cationic surface of an electrode only once, or adsorbing alternately nucleic acid and cationic polymer onto the surface in the order of the nucleic acid, cationic polymer and nucleic acid by an alternate adsorption method.
- 7. (Previously Presented) The method according to claim 3, wherein the electrode is an electrode made of a metal selected from platinum, gold and aluminum.
- **8.** (**Previously Presented**) The method according to claim 3, wherein the electrode substrate is a gold electrode substrate.
- **9.** (Original) The method according to claim 8, wherein the gold electrode is a glass substrate or a transparent plastic substrate on which gold is deposited.
- 10. (Original) The method according to claim 5, wherein the transparent electrode is a glass or a transparent plastic substrate on which indium-tin oxide, indium oxide, aluminum-doped zinc oxide or antimony-doped tin oxide is deposited.
- 11. (Original) The method according to claim 5, wherein the transparent electrode is a glass substrate or a transparent plastic substrate on which indium-tin oxide is deposited.

12. (Currently Amended) The method according to claim 3, wherein the electrode with a cationic surface is an electrode on which the monolayer of a thiol compound having an anionic functional group at the terminal is formed and a cationic polymer is adsorbed onto the surface of the monolayer, and the thiol compound having an anionic functional group at its terminal is a thiol compound indicated by the formula (1):

$$R^{1}(CH_{2})_{n}-SH$$
 (1)

[[(]]wherein R¹ represents an anionic functional group and n represents an integer of 1 to 40[[)]].

- 13. (Currently Amended) The method according to claim 12, wherein R¹ is a group selected from a carboxylic acid group, a phosphoric acid group, a sulfonic acid group and a phosphonic acid group the group consisting of a carboxyl group, a phosphate group, a sulfo group and a phosphonic acid group.
- 14. (Previously Presented) The method according to claim 12, wherein the thiol compound represented by the formula (1) is a mercaptoalkanoic acid selected from 11-mercaptoundecanoic acid, 8-mercaptooctanoic acid and 15-mercaptohexadecanoic acid.
- 15. (Previously Presented) The method according to claim 3, wherein the cationic polymer is a polymer selected from a polyethyleneimine, polyallylamine, polyvinylamine, polyvinylpyridine, aminoacetalized poly(vinyl alcohol), acrylic or methacrylic polymer having primary to quaternary amine at the terminal of the side chain, acid-treated gelatin, protamine, polylysine, polyornithine, polyarginine, chitosan, DEAE-cellulose, DEAE-dextran and polyamidoamine dendrimer.

16. (Currently Amended) The method according to claim 4, wherein the electrode with a cationic surface is an electrode on which a monolayer of a thiol compound having a cationic functional group at the terminal is formed, an anionic polymer is adsorbed onto the surface of the monolayer and a cationic polymer is further adsorbed onto its surface, and the thiol compound having a cationic functional group at the terminal is a thiol compound represented by the formula (2):

$$R^{2}(CH_{2})_{n}-SH$$
 (2)

[[(]]wherein R² represents a cationic functional group and n represents an integer of 1 to 40[[)]].

- 17. (Previously Presented) The method according to claim 16, wherein R² is an amino group.
- **18.** (**Previously Presented**) The method according to claim 1, wherein the nucleic acid is DNA, RNA, antisence nucleic acid, siRNA or expression vector thereof.
- 19. (Previously Presented) The method according to claim 1, wherein the nucleic acid is DNA or a part thereof which encodes a protein.
- 20. (Original) The method according to claim 1, wherein the step (B) is carried out by incubating cells on the nucleic acid-loaded electrode.
- 21. (Original) The method according to claim 2, wherein the step (c) is carried out by incubating cells on the surface of the nucleic acid-loaded electrode.
- **22.** (Original) The method according to claim 1, wherein the step (C) is carried out by providing a counter electrode facing to the nucleic acid-loaded electrode on which cells adhere and generating electric pulses between both electrodes.

- 23. (Original) The method according to claim 2, wherein the step (d) is carried out by providing a counter electrode facing to the nucleic acid-loaded electrode on which cells adhere and generating electric pulses between both electrodes.
- **24.** (Original) The method according to claim 2, wherein an electrode with the cationic surface electrode is an electrode having a micropatterned surface.
- 25. (Currently Amended) An electrode with a cationic surface wherein athe monolayer of a thiol-compound, a disulfide compound or a sulfide compound having an anionic functional group at the terminal is formed and a cationic polymer is adsorbed onto the surface of the monolayer.
- **26.** (Currently Amended) An electrode with a cationic surface wherein <u>athe</u> monolayer of a thiol compound represented by the formula (1):

$$R^{1}(CH_{2})_{n}-SH$$
 (1)

[[(]], wherein R1 represents an anionic functional group and n represents an integer of 1 to 40[[)]].

is formed on the surface of a gold electrode substrate prepared by depositing gold onto a glass substrate and a cationic polymer is adsorbed onto the surface of the monolayer.