Introducción a la Lógica y la Computación - Lógica proposicional Práctico 4: Más sobre derivación

(1) Complete las siguientes derivaciones agregando la rama que falta, la abreviatura de la regla utilizada en cada paso, y los corchetes en las hipótesis canceladas, suponiendo que en cada paso se cancelan la mayor cantidad de hipótesis posibles. En ambas derivaciones se deben cancelar todas las hipótesis.

- (2) Encuentre derivaciones para:
 - (a) $\{\neg \varphi \lor \psi\} \vdash \varphi \to \psi$ (Usando eliminación de \lor)
 - (b) $\{\neg \varphi \lor \neg \psi\} \vdash \neg (\varphi \land \psi)$
 - (c) $\{\varphi \to \psi\} \vdash \neg \varphi \lor \psi$

(Sugerencia: la última regla es RAA, no intente con introducción de V, no funciona como última regla. Aparte está desarrollado en el apunte.

- (d) $\{\neg(\varphi \land \psi)\} \vdash \neg \varphi \lor \neg \psi$ (Copie la idea de la derivación anterior)
- (3) En el ejercicio 1 se muestra una derivación (incompleta) de $\varphi \vee \neg \varphi$, llamado principio del tercero excluido. Una estrategia posible para demostrar una proposición γ , es utilizar una eliminación del V para subdividir la prueba en dos sub-derivaciones (también de γ), cada una de las cuales tiene una hipótesis más para utilizar:

Obtenga derivaciones para c y d del punto anterior usando esta estrategia.

- (4) Encuentre derivaciones para:
 - (a) $\vdash (\varphi \to \psi) \lor (\psi \to \varphi)$
 - (b) $\vdash (\varphi \to \psi) \land (\neg \varphi \to \psi) \to \psi$
- (5) Demostrar, transformando derivaciones cuando sea necesario:
 - (a) $\vdash \varphi$ implies $\vdash \psi \to \varphi$
 - (b) Si $\varphi \vdash \psi$ y $\neg \varphi \vdash \psi$ entonces $\vdash \psi$.
 - (c) $\Gamma \cup \{\varphi\} \vdash \psi \text{ implica } \Gamma \setminus \{\varphi\} \vdash (\varphi \to \varphi) \land (\varphi \to \psi).$ (d) $\Gamma \cup \{\varphi\} \vdash \psi \text{ implica } \Gamma \vdash \varphi \to (\psi \lor \neg \varphi).$
- (6) Demuestra los siguientes casos de la inducción en las derivaciones que prueba el Teorema de Corrección: $(I \vee)$ y $(E \vee)$.