Théorie des Nombres - TD8 Entiers algébriques, anneaux d'entiers

Exercice 1:

a) Parmi ces nombres algébriques, lesquels sont des entiers algébriques?

$$\frac{3+2\sqrt{6}}{1-\sqrt{6}}\,,\,\frac{\sqrt{3}+\sqrt{5}}{2}\,,\,\frac{\sqrt{3}+\sqrt{7}}{2}\,,\,\frac{1+\sqrt[3]{10}+\sqrt[3]{100}}{3}\,,\,\frac{1+\sqrt{19}}{2}\,,\,\frac{1+i}{\sqrt{2}}\,.$$

b) Si $a, b \in \mathbb{Z} \setminus \{0; 1\}$ sont des entiers distincts sans facteur carré, et si $n \in \mathbb{N}^*$, trouver une condition nécessaire et suffisante pour que $\frac{\sqrt{a} + \sqrt{b}}{n}$ soit un entier algébrique.

Solution de l'exercice 1.

- a) On calcule le polynôme minimal sur Q de ces nombres algébriques :
 - Le premier des nombres proposés n'est autre que $-3 \sqrt{6}$, qui est bien un entier comme somme de deux entiers.
 - Notons $\alpha := \frac{\sqrt{3} + \sqrt{5}}{2}$. Alors $(2\alpha)^2 = 8 + 2\sqrt{15}$, donc $((2\alpha)^2 8)^2 = 60$. Par conséquent, l'élément α est annulé par le polynôme à coefficients entiers

$$((2X)^2 - 8)^2 - 60 = 16X^4 - 64X^2 + 4$$

donc en simplifiant, α est annulé par $4X^2 - 16X^2 + 1 \in \mathbb{Z}[X]$. Or ce polynôme est de contenu égal à 1 et il n'est pas unitaire, donc α n'est pas un entier algébrique (il est clair que α est de degré 4 sur \mathbb{Q}).

- Notons $\beta := \frac{\sqrt{3}+\sqrt{7}}{2}$. Alors on obtient $((2\beta)^2 - 10)^2 - 84 = 0$. Par conséquent, β (qui est de degré 4 sur \mathbb{O}) est annulé par le polynôme

$$16X^4 - 80X^2 + 16$$

donc le polynôme minimal de β sur \mathbb{Q} est

$$X^4 - 5X^2 + 1$$
.

donc β est un entier algébrique.

- Notons $\gamma := \frac{1+\sqrt[3]{10}+\sqrt[3]{100}}{3}$. Alors on a

$$(3\gamma-1)^3 = 110 + 3(\sqrt[3]{100000} + \sqrt[3]{10000}) = 110 + 30(\sqrt[3]{100} + \sqrt[3]{10}) = 110 + 30(3\gamma-1).$$

Donc γ est annulé par le polynôme

$$(3X-1)^3 - 30(3X-1) - 110 = 27X^3 - 27X^2 - 81X - 81$$
,

donc le polynôme minimal de γ est

$$X^3 - X^2 - 3X - 3$$
.

donc γ est un entier algébrique.

– On voit facilement que $\delta := \frac{1+\sqrt{19}}{2}$ est annulé par le polynôme $(2X-1)^2-19=4X^2-4X-18$. Donc son polynôme minimal sur \mathbb{Z} est

$$2X^2 - 2X - 9$$
.

Il n'est pas unitaire, donc δ n'est pas un entier algébrique.

- Posons $\epsilon := \frac{1+i}{\sqrt{2}}$. Alors on a $\epsilon = \zeta_8$, racine primitive 8-ième de l'unité. Par conséquent, ϵ est racine du polynôme $X^4 + 1 \in \mathbb{Z}[X]$, donc ϵ est un entier algébrique.
- b) On sait que l'élément $\alpha := \frac{\sqrt{a} + \sqrt{b}}{n}$ est de degré 4 sur \mathbb{Q} . Calculons son polynôme minimal : on vérifie que

$$((n\alpha)^2 - (a+b))^2 - 4ab = 0$$

i.e. α est annulé par le polynôme

$$n^4 X^4 - 2n^2(a+b)X^2 + (a-b)^2 \in \mathbb{Z}[X]$$
.

Par conséquent, α est un entier algébrique si et seulement si $n^4|2n^2(a+b)$ et $n^4|(a-b)^2$ si et seulement si $n^2|2(a+b)$ et $n^2|(a-b)$ si et seulement si $a \equiv b$ $[n^2]$ et $n^2|4a$. Or par hypothèse, a est sans facteur carré, donc si α est entier algébrique, alors n=1 ou 2.

Finalement, α est un entier algébrique si et seulement si n=1 ou (n=2 et $a\equiv b$ [4]).

Exercice 2 : Soit ϵ une unité d'un corps quadratique. Montrer que ϵ est de norme 1 si et seulement si il existe un entier γ de ce corps quadratique tel que $\epsilon = \frac{\gamma}{\gamma'}$, où γ' est le conjugué de γ .

Solution de l'exercice 2. On note $K = \mathbb{Q}(\sqrt{d})$ le corps quadratique en question. Supposons ϵ de norme 1. Si $\epsilon \neq -1$, on pose $\gamma := 1 + \epsilon$. Alors $\gamma \in \mathbb{Z}_K \setminus \{0\}$ et

$$\gamma' \epsilon = (1 + \epsilon') \epsilon = \epsilon + \epsilon \epsilon' = \epsilon + 1 = \gamma.$$

Donc, puisque $\gamma \neq 0$, on en déduit que $\epsilon = \frac{\gamma}{\gamma'}$. Si $\epsilon = -1$, on peut prendre $\gamma := \sqrt{d}$. La réciproque est évidente.

Exercice 3 : Soit $z \in \mathbb{C}^*$ un entier algébrique. On note $f \in \mathbb{Q}[X]$ son polynôme minimal. Montrer que $\frac{1}{z}$ est un entier algébrique si et seulement si $f(0) = \pm 1$. Montrer également que cela équivaut à $\frac{1}{z} \in \mathbb{Z}[z]$.

Solution de l'exercice 3. Notons $f(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_0 \in \mathbb{Z}[X]$ le polynôme minimal de z. Soit k un corps de nombres contenant z.

Si $f(0) = a_0 = \pm 1$, alors on a $\frac{1}{z} = \mp (z^{n-1} + a_{n-1}z^{n-2} + \cdots + a_1) \in \mathbb{Z}[z]$, donc $\frac{1}{z}$ est un entier algébrique. Réciproquement, si $\frac{1}{z}$ est un entier algébrique, on a $N_{k/\mathbb{Q}}(\frac{1}{z}) \in \mathbb{Z}$ et $N_{k/\mathbb{Q}}(z)N_{k/\mathbb{Q}}(\frac{1}{z}) = N_{k/\mathbb{Q}}(z\frac{1}{z}) = 1$, donc l'entier $N_{k/\mathbb{Q}}(z)$ vaut 1 ou -1, donc $f(0) = \pm N_{k/\mathbb{Q}}(z) = \pm 1$.

Pour la dernière équivalence, on a vu que $f(0) = \pm 1$ impliquait que $\frac{1}{z} \in \mathbb{Z}[z]$. Réciproquement, si $\frac{1}{z} \in \mathbb{Z}[z]$, alors $\frac{1}{z}$ est un entier algébrique.

D'où l'équivalence entre les trois assertions.

Exercice 4 : Soit α un entier algébrique.

- a) On suppose que tous les conjugués de α sont de module strictement inférieur à 1. Montrer que $\alpha = 0$.
- b) On suppose maintenant que les conjugués de α sont de module inférieur ou égal à 1. Montrer que α est une racine de l'unité ou 0.

[Indication : on pourra majorer la valeur absolue des coefficients du polynôme minimal de α^r , pour tout $r \ge 1$.]

Solution de l'exercice 4.

a) Le coefficient constant du polynôme minimal de α est un produit de conjugués de α . Il est donc en module < 1. Or il est entier, donc il est nul. Donc 0 est racine du polynôme minimal de α , donc $\alpha = 0$.

b) Le polynôme minimal de α (dont on note n le degré) est de la forme

$$P(X) = X^{n} + a_{n-1}X^{n-1} + \dots + a_{0} = \prod_{\sigma \in G} (X - \sigma(\alpha))$$

où σ décrit l'ensemble G des plongements de $K = \mathbb{Q}(\alpha)$ dans une clôture normale de K. Alors en développant le produit de droite, on obtient que pour tout $1 \le k \le n-1$,

$$|a_k| \le \binom{n}{k} \le 2^n$$

puisque pour tout σ , $|\sigma(\alpha)| \leq 1$. De même pour α^r , $r \geq 1$: l'élément α^r est dans K, donc son polynôme minimal est de degré $\leq n$. Il est entier sur $\mathbb Z$ et ses conjugués sont des puissances des conjugués de α , donc ils sont de module ≤ 1 , donc on obtient ainsi que les coefficients $a_{r,k} \in \mathbb Z$ du polynôme minimal de α^r sur $\mathbb Q$ vérifient

$$|a_{r,k}| \leq 2^n$$

pour tout k. Donc il n'y a qu'un nombre fini de coefficients qui apparaissent dans les polynômes minimaux de tous les α^r $(r \ge 1)$, donc il existe $r, s \ge 1$ tels que $\alpha^r = \alpha^{r+s}$. Alors $\alpha^s = 1$, donc α est une racine de l'unité.

Exercice 5 : Soit $P \in \mathbb{Z}[X]$ un polynôme irréductible unitaire de degré n. Soit θ une racine de P, $K := \mathbb{Q}(\theta)$ et D_K le discriminant de K.

- a) Montrer que le discriminant de $(1, \theta, \dots, \theta^{n-1})$ est égal au discriminant D(P) de P. Exprimer ce nombre en fonction de la norme $N_{K/\mathbb{Q}}(P'(\theta))$.
- b) Si f désigne l'indice de $\mathbb{Z}[\theta]$ dans \mathbb{Z}_K , montrer que $D(P) = f^2 D_K$.

Solution de l'exercice 5.

a) On sait que le discriminant de $(1, \theta, \dots, \theta^{n-1})$ vaut $d_{\theta} = (\det(({}^{\sigma}\theta)^r))^2$, où les indices r et σ décrivent respectivement $\{0, \dots, n-1\}$ et l'ensemble G des \mathbb{Q} -plongements de K dans un corps de décomposition de P sur \mathbb{Q} . Or on remarque que ce déterminant est un déterminant de Vandermonde. Par conséquent, on peut le calculer : il vaut

$$d_{\theta} = (-1)^{\frac{n(n-1)}{2}} \prod_{\sigma \neq \tau \in G} (\sigma(\theta) - \tau(\theta)).$$

Or les racines de P sont exactement les $\sigma(\theta)$, $\sigma \in G$, donc le discriminant D(P) vaut

$$D(P) = (-1)^{\frac{n(n-1)}{2}} \prod_{\sigma \neq \tau \in G} (\sigma(\theta) - \tau(\theta)).$$

Par conséquent, on a bien $d_{\theta} = D(P)$.

Calculons maintenant $N_{K/\mathbb{Q}}(P'(\theta))$. On sait que P(X) se factorise sous la forme

$$P(X) = \prod_{\sigma \in G} (X - \sigma(\theta)).$$

Par conséquent, on en déduit que $P'(X) = \sum_{\sigma \in G} \prod_{\tau \in G, \tau \neq \sigma} (X - \tau(\theta))$, donc en particulier, $P'(\theta) = \prod_{\tau \in G, \tau \neq \mathrm{id}} (\theta - \tau(\theta))$ puisque tous les autres termes de la somme sont nuls. De même, pour tout $\sigma \in G$, on a $P'(\sigma(\theta)) = \prod_{\tau \neq \sigma} (\sigma(\theta) - \tau(\theta))$. Donc on a

$$N_{K/\mathbb{Q}}(P'(\theta)) = \prod_{\sigma \in G} \sigma(P'(\theta)) = \prod_{\sigma \in G} P'(\sigma(\theta)) = \prod_{\sigma, \tau \in G, \tau \neq \sigma} (\sigma(\theta) - \tau(\theta)).$$

Avec les formules précédentes, on en déduit que

$$d_{\theta} = D(P) = (-1)^{\frac{n(n-1)}{2}} N_{K/\mathbb{Q}}(P'(\theta)).$$

b) On a une inclusion de groupes abéliens libres de type fini $\mathbb{Z}[\theta] \subset \mathbb{Z}_K$, de même rang n. Montrons le résultat général suivant : si $A \subset \mathbb{Z}_K$ est un sous groupe abélien libre de type fini de rang n, et si f désigne l'indice de A dans \mathbb{Z}_K , alors $D_{A/\mathbb{Z}} = f^2 D_K$. Par la théorie des modules sur un anneau principal, on sait qu'il existe une base (e_1, \ldots, e_n) de \mathbb{Z}_K sur \mathbb{Z} , et des entiers (a_1, \ldots, a_n) tels que (a_1e_1, \ldots, a_ne_n) soit une \mathbb{Z} -base de A. Alors

$$D_{A/\mathbb{Z}} = \operatorname{disc}_{\mathbb{Z}}(a_1 e_1, \dots, a_n e_n) = (a_1 \dots a_n)^2 \operatorname{disc}_{\mathbb{Z}}(e_1, \dots, e_n) = (a_1 \dots a_n)^2 D_K.$$

Or par construction le produit $a_1
ldots a_n$ est égal à l'indice f de A dans \mathbb{Z}_K , donc on a $D_{A/\mathbb{Z}} = f^2 D_K$. Dans le cas particulier où $A = \mathbb{Z}[\theta]$, on obtient bien $d_{\theta} = f^2 D_K$. La question précédente permet alors de conclure

Exercice 6 : Montrer que le discriminant du polynôme $P(X) = X^n + aX + b$, avec $a, b \in \mathbb{Q}$, vaut $D(P) = (-1)^{\frac{n(n-1)}{2}} (n^n b^{n-1} + (1-n)^{n-1} a^n)$. Vérifier que l'on retrouve les formules usuelles pour n = 2 et n = 3.

[Indication : on pourra écrire que $D(P) = (-1)^{\frac{n(n-1)}{2}} \prod_i P'(x_i)$, où les x_i sont les racines de P, puis utiliser les fonctions symétriques élémentaires en les x_i^{-1}].

Solution de l'exercice 6. L'exercice 5 assure que si l'on note x_i les racines de P (avec multiplicités), on a $D(P) = (-1)^{\frac{n(n-1)}{2}} \prod_i P'(x_i)$. Or pour tout i, on a $P'(x_i) = nx_i^{n-1} + a$. Mais par définition, on a $P(x_i) = 0$. Supposons d'abord que $b \neq 0$. Alors $x_i \neq 0$ pour tout i, donc $x_i^n = -ax_i - b$ implique que $x_i^{n-1} = -a - \frac{b}{x_i}$. On a donc $\prod_i P'(x_i) = \prod_i ((1-n)a - \frac{nb}{x_i})$. On développe ce produit en termes des fonctions symétriques élémentaires σ_k des x_i^{-1} : on a en effet

$$\prod_{i} \left((1-n)a - \frac{nb}{x_i} \right) = \sum_{k=0}^{n} ((1-n)a)^k (-nb)^{n-k} \sigma_{n-k} \left(\frac{1}{x_1}, \dots, \frac{1}{x_n} \right).$$

Or $\sigma_{n-k}\left(\frac{1}{x_1},\ldots,\frac{1}{x_n}\right) = \frac{\sigma_k(x_1,\ldots,x_n)}{x_1\ldots x_n}$, donc puisque $\sigma_0(x_1,\ldots,x_n) = 1$, $\sigma_k(x_1,\ldots,x_n) = 0$ si $1 \le k \le n-2$, $\sigma_{n-1}(x_1,\ldots,x_n) = (-1)^{n-1}a$ et $\sigma_n(x_1,\ldots,x_n) = (-1)^nb$, on en déduit que

$$\prod_{i} \left((1-n)a - \frac{nb}{x_i} \right) = \frac{(-nb)^n}{(-1)^n b} + ((1-n)a)^{n-1} (-nb) \frac{(-1)^{n-1}a}{(-1)^n b} + ((1-n)a)^n = n^n b^{n-1} + (1-n)^{n-1}a^n.$$

D'où finalement le résultat :

$$D(P) = (-1)^{\frac{n(n-1)}{2}} (n^n b^{n-1} + (1-n)^{n-1} a^n).$$

Exercice 7: Calculer l'anneau des entiers et le discriminant des corps de nombres suivants :

- a) $\mathbb{Q}(\sqrt[3]{5})$.
- b) $\mathbb{Q}(\sqrt[3]{175})$.
- c) $\mathbb{Q}(i,\sqrt{2})$.

Solution de l'exercice 7.

a) Notons $\theta := \sqrt[3]{5}$, $K := \mathbb{Q}(\theta)$ et calculons le discriminant d_{θ} de $\mathbb{Z}[\theta]$ sur \mathbb{Z} . Si $P = X^3 - 5$ est le polynôme minimal de θ , on obtient

$$d_{\theta} = D(P) = -3^3 5^2$$
.

Par conséquent, on déduit de l'exercice 5 que l'indice f de $\mathbb{Z}[\theta]$ dans \mathbb{Z}_K divise 3.5=15. Donc un élément dans \mathbb{Z}_K , de la forme $a+b\theta+c\theta^2$ a nécessairement ses coefficients a,b,c dans $\frac{1}{15}\mathbb{Z}$. Montrons que $\mathbb{Z}_K=\mathbb{Z}[\theta]$: par la remarque précédente, il suffit de montrer que si $\alpha:=\frac{a+b\theta+c\theta^2}{n}\in\mathbb{Z}_K$ avec $a,b,c\in\mathbb{Z}$, alors a,b et c sont divisibles par n, pour n=3 et n=5. Calculons la trace $T(\alpha)$ et la norme $N(\alpha)$ de α . On trouve $T(\alpha)=\frac{3a}{n}$ et $N(\alpha)=\frac{a^3+5b^3+25c^3-15abc}{n^3}$. Puisque $\alpha\in\mathbb{Z}_K$, on doit avoir $T(\alpha),N(\alpha)\in\mathbb{Z}$, donc n|3a et $n^3|a^3+5b^3+25c^3-15abc$.

- Pour n=3, la condition n|3a ne dit rien. Pour tester la seconde condition, on peut supposer que $a, b, c \in \{0, 1, 2\}$, et il reste à tester toutes les possibilités pour remarquer que la seconde condition impose a = b = c = 0. Donc en général a, b et c sont divisibles par 3.
- Pour n=5, la condition sur la trace assure que 5|a. Donc $\frac{b\theta+c\theta^2}{5}\in\mathbb{Z}_K$. Or la norme de β vaut $N(\beta) = \frac{b^3 + 5c^3}{25} \in \mathbb{Z}$, donc b est divisible par 5, donc c aussi. Finalement, on a montré que $\mathbb{Z}_K = \mathbb{Z}[\sqrt[3]{5}]$ et que $D_K = -675$.

- b) On applique exactement la même méthode que précédemment : $P(X) = X^3 175$ est le polynôme minimal de $\theta:=\sqrt[3]{175}$, et on a $D(P)=-3^35^47^2$. On considère $\alpha:=\frac{a+b\theta+c\theta^2}{n}\in\mathbb{Z}_K$, avec $n\in\{3,5,7\}$ et $a,b,c\in\mathbb{Z}$. On a alors $T(\alpha)=\frac{3a}{n}\in\mathbb{Z}$ et $N(\alpha)=\frac{a^3+175b^3+175^2c^3-3.175abc}{n^3}\in\mathbb{Z}$. – Pour n=3, l'information sur la trace n'apporte rien, et on vérifie en testant $a,b,c\in\{0,1,2\}$
 - que la seconde condition impose que a, b et c soient divisibles par 3.
 - Pour n=5 ou n=7, la première condition assure que a est divisible par n, donc on peut considérer $\beta:=\frac{b\theta+c\theta^2}{n}\in\mathbb{Z}_K$, dont la norme vaut $N(\beta)=\frac{175b^3+175^2c^3}{n^3}\in\mathbb{Z}$, ce qui assure que b est divisible par n. Lorsque n=7, on obtient donc que 7|b, donc $7^3|b^3$, donc 7|c (car 7^3 ne divise pas 175^2). Donc a, b et c sont divisible par 7 dans le cas n=7.

Dans le cas n = 5, on a obtenu que a et b sont divisibles par 5, et on n'a aucune contrainte supplémentaire sur c. Réciproquement, il est clair que $\frac{\theta^2}{5}$ est un entier algébrique puisque son polynôme minimal est $X^3 - \frac{175^2}{5^3} = X^3 - 245 \in \mathbb{Z}[X]$ qui est bien unitaire. Donc on a montré qu'un élément $\alpha := \frac{a+b\theta+c\theta^2}{5} \in K$, avec $a,b,c \in \mathbb{Z}$, était un entier algébrique si et seulement si 5|a| et 5|b|. Enfin, il est possible que 25 divise f, donc on doit considérer un élément $\alpha := \frac{a+b\theta+c\frac{\theta^2}{5}}{5} \in \mathbb{Z}_K$, avec $a,b,c \in \mathbb{Z}$. Alors comme précédemment, on a 5|a et $5^3|(5^2.7b^3+5.7^2c^3)$. Donc 5|c et 5|b. Donc finalement les entiers algébriques de la forme

 $\frac{a+b\theta+c\theta^2}{25}$, avec $a,b,c\in\mathbb{Z}$ sont exactement les éléments de $\mathbb{Z}[\theta,\frac{\theta^2}{5}]$. Finalement, on a montré que $\mathbb{Z}_K=\mathbb{Z}[\theta,\frac{\theta^2}{5}]$, que $\mathbb{Z}[\theta]\subset\mathbb{Z}_K$ est d'indice 5 et que $D_K=-3^35^27^2=$ -33075.

c) On dispose d'un sous-groupe libre R de rang 4 dans \mathbb{Z}_K , à savoir $R:=\mathbb{Z}[i,\sqrt{2}].$ Une \mathbb{Z} -base de R est donnée par $(1, i, \sqrt{2}, i\sqrt{2})$. Le discriminant de cette base vaut $2^{10} = 1024$, donc l'indice de R dans \mathbb{Z}_K est une puissance de 2. Soit $\alpha = \frac{a+bi+c\sqrt{2}+di\sqrt{2}}{2} \in \mathbb{Z}_K$, avec $a,b,c,d \in \mathbb{Z}$. La norme de α vaut

 $N(\alpha) = \frac{(a^2 - b^2 - 2c^2 + 2d^2)^2 + 4(ab - 2cd)^2}{16}.$

On a $\mathbb{N}(\alpha) \in \mathbb{Z}$, donc $a \equiv b$ [2] et $4|c^4+d^4+a^2b^2+2c^2d^2$. Il suffit alors de tester ces conditions pour $a, b, c, d \in \{0, 1\}$, et on trouve alors que la seule possibilité non triviale est (a, b, c, d) = (0, 0, 1, 1), i.e. $\alpha = a + bi + \frac{\sqrt{2} + i\sqrt{2}}{2}$.

Ainsi dispose-t-on d'un nouveau sous-groupe R' de \mathbb{Z}_K (qui contient R comme sous-groupe d'indice 2) défini par $R' = \mathbb{Z}[i, \sqrt{2}, \frac{\sqrt{2}+i\sqrt{2}}{2}] = \mathbb{Z}[\frac{\sqrt{2}+i\sqrt{2}}{2}]$, de base $(1, i, \sqrt{2}, \frac{\sqrt{2}+i\sqrt{2}}{2})$ et de discriminant $2^8=256$. On se donne $\beta:=\frac{a+bi+c\sqrt{2}+d\frac{\sqrt{2}+i\sqrt{2}}{2}}{2}\in\mathbb{Z}_K$ avec a,b,c,d entiers dans $\{0,1\}$. Alors

 $N(\beta) = \frac{(a^2 - b^2 - 2c^2 - 2cd)^2 + (2ab - 2cd - d^2)^2}{16}.$

Si cette norme est un entier, alors a = b = d = 0 ou (a = b = 1 et d = 0) (en regardant modulo 4), donc a = b = c = d = 0 ou $(a = b = 1 \text{ et } d = 0 \text{ et } 16|4c^4 + 4)$, donc puisque la dernière condition est impossible, on en déduit que a = b = c = d = 0, donc $\beta \in R'$.

Finalement, on a montré que $\mathbb{Z}_K = \mathbb{Z}[\frac{\sqrt{2}+i\sqrt{2}}{2}]$ et que $D_K = 256$.

Remarquons d'ailleurs que le corps K n'est autre que $\mathbb{Q}(\zeta_8)$ et qu'on a montré que $\mathbb{Z}_K = \mathbb{Z}[\zeta_8]$.

Exercice 8: Soient $m, n \in \mathbb{Z} \setminus \{0; 1\}$ distincts sans facteur carré. On note $K := \mathbb{Q}(\sqrt{m}, \sqrt{n})$ et $k := \frac{mn}{\operatorname{pgcd}(m,n)^2}$. L'objectif de cet exercice est de calculer \mathbb{Z}_K .

- a) Montrer que $(1, \sqrt{m}, \sqrt{n}, \sqrt{k})$ est une \mathbb{Q} -base de K.
- b) Soit $\alpha \in K$. Montrer que $\alpha \in \mathbb{Z}_K$ si et seulement si $\operatorname{Tr}_{K/\mathbb{Q}(\sqrt{m})}(\alpha)$ et $N_{K/\mathbb{Q}(\sqrt{m})}(\alpha)$ sont des entiers algébriques dans $\mathbb{Q}(\sqrt{m})$.
- c) On suppose que $m \equiv 3$ [4] et $n \equiv 2$ [4]. Montrer que tout élément $\alpha \in \mathbb{Z}_K$ s'écrit $\alpha = \frac{a+b\sqrt{m}+c\sqrt{n}+d\sqrt{k}}{2}$ avec $a,b,c,d \in \mathbb{Z}$. Puis montrer que a et b sont pairs, et que $c \equiv d$ [2]. En déduire qu'une \mathbb{Z} -base de \mathbb{Z}_K est donnée par

$$\left(1,\sqrt{m},\sqrt{n},\frac{\sqrt{n}+\sqrt{k}}{2}\right)$$
.

d) On suppose que $m \equiv 1$ [4] et $n \equiv 2$ ou 3 [4]. Montrer que tout élément $\alpha \in \mathbb{Z}_K$ s'écrit $\alpha = \frac{a+b\sqrt{m}+c\sqrt{n}+d\sqrt{k}}{2}$ avec $a,b,c,d\in\mathbb{Z}$. Puis montrer que $a\equiv b$ [2] et $c\equiv d$ [2]. En déduire qu'une \mathbb{Z} -base de \mathbb{Z}_K est donnée par

$$\left(1, \frac{1+\sqrt{m}}{2}, \sqrt{n}, \frac{\sqrt{n}+\sqrt{k}}{2}\right).$$

e) On suppose que $m \equiv n \equiv 1$ [4]. Montrer que tout élément $\alpha \in \mathbb{Z}_K$ s'écrit $\alpha = \frac{a+b\sqrt{m}+c\sqrt{n}+d\sqrt{k}}{4}$ avec $a,b,c,d \in \mathbb{Z}$ de même parité. En déduire qu'une \mathbb{Z} -base de \mathbb{Z}_K est donnée par

$$\left(1, \frac{1+\sqrt{m}}{2}, \frac{1+\sqrt{n}}{2}, \frac{(1+\sqrt{n})(1+\sqrt{k})}{4}\right)$$
.

f) Conclure en récapitulant dans tous les cas possibles quel est l'anneau \mathbb{Z}_K .

Solution de l'exercice 8.

- a) C'est évident (voir par exemple la feuille de TD7, exercice 8).
- b) Si $\alpha \in \mathbb{Z}_K$, il est clair que sa trace et sa norme sont des entiers dans $\mathbb{Q}(\sqrt{m})$. Réciproquement, supposons que $x := \operatorname{Tr}_{K/\mathbb{Q}(\sqrt{m})}(\alpha)$ et $y := N_{K/\mathbb{Q}(\sqrt{m})}(\alpha)$ sont des entiers algébriques. Alors en considérant les quatre conjugués de α dans l'extension K/\mathbb{Q} , on obtient que α est annulé par le polynôme

$$X^4 - \operatorname{Tr}_{\mathbb{Q}(\sqrt{m})/\mathbb{Q}}(x)X^3 + (\operatorname{N}_{\mathbb{Q}(\sqrt{m})/\mathbb{Q}}(y) + \operatorname{Tr}_{\mathbb{Q}(\sqrt{m})/\mathbb{Q}}(x))X^2 - \operatorname{Tr}_{\mathbb{Q}(\sqrt{m})/\mathbb{Q}}(xy)X + \operatorname{N}_{\mathbb{Q}(\sqrt{m})/\mathbb{Q}}(y).$$

Puisque x et y sont des entiers algébriques de $\mathbb{Q}(\sqrt{m})$, on sait que les coefficients de ce polynôme unitaire sont des entiers, donc $\alpha \in \mathbb{Z}_K$.

c) Soit $\alpha = a + b\sqrt{m} + c\sqrt{n} + d\sqrt{k} \in \mathbb{Z}_K$. La question précédente assure que $\operatorname{Tr}_{K/\mathbb{Q}(\sqrt{m})}(\alpha) \in \mathbb{Z}_{\mathbb{Q}(\sqrt{m})}$, $\operatorname{Tr}_{K/\mathbb{Q}(\sqrt{n})}(\alpha) \in \mathbb{Z}_{\mathbb{Q}(\sqrt{k})}$ et $\operatorname{Tr}_{K/\mathbb{Q}(\sqrt{k})}(\alpha) \in \mathbb{Z}_{\mathbb{Q}(\sqrt{k})}$. Donc $2(a + b\sqrt{m}) \in \mathbb{Z}_{\mathbb{Q}(\sqrt{m})}$, $2(a + c\sqrt{n}) \in \mathbb{Z}_{\mathbb{Q}(\sqrt{n})}$ et $2(a + d\sqrt{k}) \in \mathbb{Z}_{\mathbb{Q}(\sqrt{k})}$. Puisque $m \equiv 3$ [4] et $n \equiv 2$ [4], on a $k \equiv 2$ [4], et donc $a, b, c, d \in \frac{1}{2}\mathbb{Z}$, d'où le résultat : il existe $a, b, c, d \in \mathbb{Z}$ tels que $\alpha = \frac{a + b\sqrt{m} + c\sqrt{n} + d\sqrt{k}}{2}$. On calcule la norme de α : on a $\operatorname{N}_{K/\mathbb{Q}(\sqrt{m})}(\alpha) = \frac{1}{4}(a^2 + mb^2 - nc^2 - kd^2) + (\frac{ab}{2} - \frac{cdn}{2\operatorname{pgcd}(m,n)})\sqrt{m}$.

On calcule la norme de α : on a $N_{K/\mathbb{Q}(\sqrt{m})}(\alpha) = \frac{1}{4}(a^2 + mb^2 - nc^2 - kd^2) + (\frac{\omega}{2} - \frac{can}{2\operatorname{pgcd}(m,n)})\sqrt{m}$. Puisque $2\operatorname{pgcd}(m,n)$ divise n, $N_{K/\mathbb{Q}(\sqrt{m})}(\alpha)$ est un entier algébrique dans $\mathbb{Q}(\sqrt{m})$ si et seulement si 4 divise $a^2 + mb^2 - nc^2 - kd^2$ et 2 divise ab si et seulement si $a^2 - b^2 + 2(c^2 + d^2) \equiv 0$ [4] et $ab \equiv 0$ [2] si et seulement si a et b sont pairs et $c \equiv d$ [2].

La question b) assure alors que $\left(1,\sqrt{m},\sqrt{n},\frac{\sqrt{n}+\sqrt{k}}{2}\right)$ est une \mathbb{Z} -base de \mathbb{Z}_K .

d) Soit $\alpha = a + b\sqrt{m} + c\sqrt{n} + d\sqrt{k} \in \mathbb{Z}_K$. La question b) assure que $\operatorname{Tr}_{K/\mathbb{Q}(\sqrt{m})}(\alpha) \in \mathbb{Z}_{\mathbb{Q}(\sqrt{m})}$, $\operatorname{Tr}_{K/\mathbb{Q}(\sqrt{n})}(\alpha) \in \mathbb{Z}_{\mathbb{Q}(\sqrt{k})}$ et $\operatorname{Tr}_{K/\mathbb{Q}(\sqrt{k})}(\alpha) \in \mathbb{Z}_{\mathbb{Q}(\sqrt{k})}$. Donc $2(a + b\sqrt{m}) \in \mathbb{Z}_{\mathbb{Q}(\sqrt{m})}$, $2(a + c\sqrt{n}) \in \mathbb{Z}_{\mathbb{Q}(\sqrt{n})}$ et $2(a + d\sqrt{k}) \in \mathbb{Z}_{\mathbb{Q}(\sqrt{k})}$. Puisque $m \equiv 1$ [4] et $n \equiv 2$ ou 3 [4], on a $k \equiv n$ [4], et donc $b \in \frac{1}{4}\mathbb{Z}$ et $a, c, d \in \frac{1}{2}\mathbb{Z}$. Donc il existe $a, b, c, d \in \mathbb{Z}$ tels que $\alpha = \frac{b\sqrt{m}}{4} + \frac{a + c\sqrt{n} + d\sqrt{k}}{2}$.

On calcule la norme de α : on a $N_{K/\mathbb{Q}(\sqrt{m})}(\alpha) = (\frac{mb^2}{16} + \frac{a^2}{4} - \frac{nc^2 + kd^2}{4}) + (\frac{ab}{4} - \frac{cdn}{2pgcd(m,n)})\sqrt{m}$. Puisque pgcd(m,n) divise n, $N_{K/\mathbb{Q}(\sqrt{m})}(\alpha)$ est un entier algébrique dans $\mathbb{Q}(\sqrt{m})$ si et seulement si 16 divise $4a^2 + mb^2 - 4(nc^2 + kd^2)$ et 4 divise $ab - 2cd\frac{n}{pgcd(m,n)}$.

La première condition implique que b est pair, donc il existe $a,b,c,d\in\mathbb{Z}$ tels que $\alpha=\frac{a+b\sqrt{m}+c\sqrt{n}+d\sqrt{k}}{2}$. Alors $\mathrm{N}_{K/\mathbb{Q}(\sqrt{m})}(\alpha)$ est un entier algébrique si et seulement si $a^2+b^2-n(c^2+d^2)\equiv 0$ [4] et $ab-\frac{cdn}{\mathrm{pgcd}(m,n)}\equiv 0$ [2] si et seulement si $a\equiv b$ [2] et $c\equiv d$ [2] (pour montrer cette dernière équivalence, on utilise le fait que $n\equiv 2,3$ [4]).

La question b) assure alors que $\left(1, \frac{1+\sqrt{m}}{2}, \sqrt{n}, \frac{\sqrt{n}+\sqrt{k}}{2}\right)$ est une \mathbb{Z} -base de \mathbb{Z}_K .

e) Soit $\alpha = a + b\sqrt{m} + c\sqrt{n} + d\sqrt{k} \in \mathbb{Z}_K$. La question b) assure que $\operatorname{Tr}_{K/\mathbb{Q}(\sqrt{m})}(\alpha) \in \mathbb{Z}_{\mathbb{Q}(\sqrt{m})}$, $\operatorname{Tr}_{K/\mathbb{Q}(\sqrt{n})}(\alpha) \in \mathbb{Z}_{\mathbb{Q}(\sqrt{k})}$ et $\operatorname{Tr}_{K/\mathbb{Q}(\sqrt{k})}(\alpha) \in \mathbb{Z}_{\mathbb{Q}(\sqrt{k})}$. Donc $2(a + b\sqrt{m}) \in \mathbb{Z}_{\mathbb{Q}(\sqrt{m})}$, $2(a + c\sqrt{n}) \in \mathbb{Z}_{\mathbb{Q}(\sqrt{n})}$ et $2(a + d\sqrt{k}) \in \mathbb{Z}_{\mathbb{Q}(\sqrt{k})}$. Donc $a, b, c, d \in \frac{1}{4}\mathbb{Z}$, d'où le résultat : il existe $a, b, c, d \in \mathbb{Z}$ tels que $\alpha = \frac{a + b\sqrt{m} + c\sqrt{n} + d\sqrt{k}}{4}$.

On calcule la norme de α : on a $\mathcal{N}_{K/\mathbb{Q}(\sqrt{m})}(\alpha) = \frac{1}{16}(a^2 + mb^2 - nc^2 - kd^2) + (\frac{ab}{8} - \frac{cdn}{8\operatorname{pgcd}(m,n)})\sqrt{m}$. Puisque $\operatorname{pgcd}(m,n)$ divise $n, \mathcal{N}_{K/\mathbb{Q}(\sqrt{m})}(\alpha)$ est un entier algébrique dans $\mathbb{Q}(\sqrt{m})$ si et seulement si 8 divise $a^2 + mb^2 - nc^2 - kd^2$ et 4 divise $ab - \frac{cdn}{\operatorname{pgcd}(m,n)}$ si et seulement si $a^2 + mb^2 - nc^2 - kd^2 \equiv 0$ [8] et $ab \equiv cd$ [4] si et seulement si $a \equiv b \equiv c \equiv d$ [2].

La question b) assure alors que $\left(1, \frac{1+\sqrt{m}}{2}, \frac{1+\sqrt{n}}{2}, \frac{(1+\sqrt{n})(1+\sqrt{k})}{4}\right)$ est une \mathbb{Z} -base de \mathbb{Z}_K .

f) Tous les cas ont été traités dans les trois questions précédentes, quitte à échanger les rôles de m et n.

Exercice 9 : Soient $m, n \in \mathbb{Z} \setminus \{0; 1\}$ distincts sans facteur carré, tels que $m \equiv n \equiv 1$ [8]. On note $K := \mathbb{Q}(\sqrt{m}, \sqrt{n}), \ \alpha := \frac{1+\sqrt{n}}{2}$ et $\beta := \frac{1+\sqrt{m}}{2}$.

- a) Montrer que $\mathbb{Z}_K = \mathbb{Z}[\alpha, \beta]$.
- b) Montrer que l'anneau $\mathbb{Z}_K/2\mathbb{Z}_K$ est isomorphe à l'anneau $A:=\mathbb{F}_2[X,Y]/(X^2-X,Y^2-Y)$.
- c) Montrer qu'il existe au moins quatre morphismes d'anneaux distincts $A \to \mathbb{Z}/2\mathbb{Z}$.
- d) Montrer que pour tout polynôme $P \in \mathbb{F}_2[X]$, A n'est pas isomorphe à $\mathbb{F}_2[X]/(P)$.
- e) Montrer qu'il n'existe pas d'entier $x \in \mathbb{Z}_K$ tel que $\mathbb{Z}_K = \mathbb{Z}[x]$.

Solution de l'exercice 9.

- a) C'est une conséquence de l'exercice 8, question e).
- b) On dispose du morphisme naturel surjectif de \mathbb{Z} -algèbres $\varphi: \mathbb{Z}[X,Y] \to \mathbb{Z}_K$, défini par $\varphi(P):=P(\alpha,\beta)$. Ce morphisme induit un morphisme surjectif de \mathbb{F}_2 -algèbres $\overline{\varphi}: \mathbb{F}_2[X,Y] \to \mathbb{Z}_K/2\mathbb{Z}_K$. Puisque $\alpha^2 \alpha = \frac{n-1}{4} \in 2\mathbb{Z}$ et $\beta^2 \beta = \frac{m-1}{4} \in 2\mathbb{Z}$, le morphisme $\overline{\varphi}$ se factorise en un morphisme surjectif de \mathbb{F}_2 -algèbres $\widetilde{\varphi}: \mathbb{F}_2[X,Y]/(X^2-X,Y^2-Y) \to \mathbb{Z}_K/2\mathbb{Z}_K$. Or c'est une application linéaire surjective entre deux \mathbb{F}_2 -espaces vectoriels de dimension 4, donc c'est un isomorphisme de \mathbb{F}_2 -algèbres.
- c) On dispose des quatres morphismes suivants $\varphi_i: A \to \mathbb{Z}/2\mathbb{Z}$ définis par $\varphi_1(P) := P(0,0)$, $\varphi_2(P) := P(0,1)$, $\varphi_3(P) := P(1,0)$ et $\varphi_4(P) := P(1,1)$. On vérifie facilement que ces morphismes sont bien définis, et qu'ils sont deux-à-deux distincts.
- d) Soit $P \in \mathbb{F}_2[X]$. Si $\phi : \mathbb{F}_2[X]/(P) \to \mathbb{F}_2$ est un morphisme d'anneaux, alors $0 = \phi(P(X)) = P(\varphi(X))$ dans \mathbb{F}_2 . Donc ϕ est définie par l'image de X, qui est une racine de P dans \mathbb{F}_2 . Or \mathbb{F}_2 est de cardinal 2, donc ϕ admet au plus deux racines distinctes dans \mathbb{F}_2 , donc il existe au plus deux morphismes d'anneaux distincts $\mathbb{F}_2[X]/(P) \to \mathbb{F}_2$. Donc la question c) assure que A n'est pas isomorphe à $\mathbb{F}_2[X]/(P)$.

e) Supposons qu'il existe un tel x. On note $\widetilde{P} \in \mathbb{Z}[X]$ le polynôme minimal de x. Alors on a un isomorphisme d'anneaux $\mathbb{Z}_K \cong \mathbb{Z}[X]/(\widetilde{P})$. Donc on en déduit un isomorphisme d'anneaux $\mathbb{Z}_K/2\mathbb{Z}_K \cong \mathbb{F}_2[X]/(P)$, où $P \in \mathbb{F}_2[X]$ est la réduction de \widetilde{P} modulo 2. Donc $A \cong \mathbb{F}_2[X]/(P)$, ce qui contredit la question d). Donc il n'existe pas de $x \in \mathbb{Z}_K$ tel que $\mathbb{Z}_K = \mathbb{Z}[x]$.

Exercice 10 : Soit K/\mathbb{Q} une extension finie de degré n, soit $u \in \mathbb{Z}_K$ tel que $K = \mathbb{Q}(u)$. Soit p un nombre premier tel que le polynôme minimal de u sur \mathbb{Q} soit d'Eisenstein en p. L'objectif de l'exercice est de montrer que p ne divise pas l'indice de $\mathbb{Z}[u]$ dans \mathbb{Z}_K .

- a) Montrer que $\frac{u^n}{p} \in \mathbb{Z}_K$ et que p^2 ne divise pas N(u).
- b) Supposons que $p|[\mathbb{Z}_K : \mathbb{Z}[u]].$
 - i) Montrer qu'il existe $x \in \mathbb{Z}_K \setminus \mathbb{Z}[u]$ tel que $px \in \mathbb{Z}[u]$. En déduire qu'il existe $b_0, \ldots, b_{n-1} \in \mathbb{Z}$ non tous divisibles par p tels que $x = \frac{b_0 + \cdots + b_{n-1} u^{n-1}}{p}$.
 - ii) Notons r le plus petit entier tel que b_r n'est pas divisible par p. Montrer que $y := \frac{b_r u^r + \dots + b_{n-1} u^{n-1}}{p}$ est dans \mathbb{Z}_K .
 - iii) Montrer que $z := \frac{b_r u^{n-1}}{p} \in \mathbb{Z}_K$.
 - iv) Obtenir une contradiction en calculant la norme de z
- c) Si q est une puissance de p et $K := \mathbb{Q}(\sqrt[q]{p})$, montrer que $\mathbb{Z}_K = \mathbb{Z}[\sqrt[q]{p}]$.

Solution de l'exercice 10.

a) On note $P(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_0 \in \mathbb{Z}[X]$ le polynôme minimal de u sur \mathbb{Q} . Par hypothèse, le polynôme P est d'Eisenstein en p, donc $p|a_i$ pour tout $0 \le i \le n-1$ et p^2 ne divise pas a_0 . Or

$$\frac{u^n}{p} = -\left(\frac{a_{n-1}}{p}u^{n-1} + \dots + \frac{a_0}{p}\right),\,$$

et donc comme tous les $\frac{a_i}{p}$ sont des entiers, on a $\frac{u^n}{p} \in \mathbb{Z}[u] \subset \mathbb{Z}_K$. En outre, on a $a_0 = \pm N(u)$, donc l'hypothèse que p^2 ne divise pas a_0 assure que p^2 ne divise par N(u).

b) i) Par hypothèse, p divise le cardinal du groupe abélien fini $\mathbb{Z}_K/\mathbb{Z}[u]$. Donc il existe un élément $\overline{x} \in \mathbb{Z}_K/\mathbb{Z}[u]$ d'ordre exactement p. Il existe un $x \in \mathbb{Z}_K$ dont l'image dans $\mathbb{Z}_K/\mathbb{Z}[u]$ par la projection canonique soit \overline{x} . Alors $x \notin \mathbb{Z}[u]$ et $px \in \mathbb{Z}[u]$, ce qui est exactement ce que l'on cherche.

Puisque $px \in \mathbb{Z}[u]$, il existe des entiers $b_0, \ldots, b_{n-1} \in \mathbb{Z}$ tels que $px = b_0 + b_1 u + \cdots + b_{n-1} u^{n-1}$. D'où finalement $x = \frac{b_0 + b_1 u + \cdots + b_{n-1} u^{n-1}}{p}$.

- ii) On a $x-y=\frac{b_0}{p}+\frac{b_1}{p}u+\cdots+\frac{b_{r-1}}{p}u^{r-1}$. Or pour tout $0\leq i\leq r-1$, on a $p|b_i$ (par définition de r). Donc $x-y\in\mathbb{Z}[u]\subset\mathbb{Z}_K$. Or \mathbb{Z}_K est stable par somme, et $x\in\mathbb{Z}_K$, donc $y\in\mathbb{Z}_K$.
- iii) On remarque que $u^{n-1-r}y=z+w$, avec $w=b_{r+1}\frac{u^n}{p}+\cdots+b_n\frac{u^{2n-2-r}}{p}$. Or la question a) assure que $\frac{u^n}{p},\ldots,\frac{u^{2n-2-r}}{p}\in\mathbb{Z}_K$, donc $w\in\mathbb{Z}_K$. Or $u^{n-1-r},y\in\mathbb{Z}_K$, donc $z=u^{n-1-r}y-w$ est dans l'anneau \mathbb{Z}_K .
- iv) Puisque $z = \frac{b_r u^{n-1}}{p}$, on a

$$N_{K/\mathbb{Q}}(z) = \frac{b_r^n N(u)^{n-1}}{p^n}$$
.

Par la question b) iii), $N_{K/\mathbb{Q}}(z) \in \mathbb{Z}$. Donc p^n divise l'entier $b_r^n N(u)^{n-1}$. Or par définition de b_r , p ne divise pas b_r , donc $p^n | N(u)^{n-1}$. Le nombre p étant premier, cela implique que p^2 divise N(u), ce qui contredit la question a).

Finalement, on a bien montré que p ne divisait pas l'indice de $\mathbb{Z}[u]$ dans \mathbb{Z}_K .

c) On remarque que le polynôme minimal de $\sqrt[q]{p}$ sur \mathbb{Q} est $X^q - p$. C'est bien un polynôme d'Eisenstein en p. En outre, son discriminant vaut $(-1)^{\frac{q(q-1)}{2}}q^qp^{q-1}$. C'est donc au signe près une puissance de p. Cela assure que l'indice de $\mathbb{Z}[\sqrt[q]{p}]$ dans \mathbb{Z}_K est une puissance de p. Or les questions a) et b) assurent que cet indice n'est pas divisible par p. Il est donc égal à 1, ce qui signifie que $\mathbb{Z}_K = \mathbb{Z}[\sqrt[q]{p}]$.

Exercice 11 : Soit $d \in \mathbb{Z}$, d > 1 sans facteur cubique. Notons $\theta := \sqrt[3]{d}$ et $K := \mathbb{Q}(\theta)$. On cherche à déterminer l'anneau des entiers et le discriminant de K sur \mathbb{Q} .

- a) Montrer que $\mathbb{Z}[\theta]$ est de discriminant $-27d^2$.
- b) On écrit $d = ab^2$, avec $a, b \in \mathbb{N}$ sans facteur carré. On pose $\theta' := \sqrt[3]{a^2b}$. Montrer que $K = \mathbb{Q}(\theta')$ et calculer $\mathrm{disc}_{\mathbb{Z}}(1, \theta', \theta'^2)$.
- c) Montrer que $(1, \theta, \theta')$ est une \mathbb{Q} -base de K et calculer son discriminant.
- d) On note f, f' et f'' les indices respectifs de $\mathbb{Z}[\theta]$, $\mathbb{Z}[\theta']$ et $\mathbb{Z}[\theta, \theta']$ dans \mathbb{Z}_K .
 - i) Montrer que (a, f) = 1. [Indication : on pourra utiliser l'exercice 10.]
 - ii) En déduire que si 3|a, alors D_K est divisible par $27a^2$, et que sinon, D_K est divisible par a^2 .
 - iii) Montrer que (b, f') = 1.
 - iv) En déduire que si 3|b, alors D_K est divisible par $27b^2$, et que sinon, D_K est divisible par b^2 .
 - v) Montrer que $a^2b^2|D_K|27a^2b^2$ et que $D_K < 0$.
- e) Montrer que si 3|d, alors $D_K = -27a^2b^2$ et $(1, \theta, \theta')$ est une base de \mathbb{Z}_K .
- f) Montrer le même résultat si $d \not\equiv \pm 1$ [9]. [Indication : on pourra montrer que le polynôme minimal de $\theta - d$ est d'Eisenstein en 3.]
- g) On suppose $d \equiv 1$ [9]. On pose $\alpha := \frac{1+\theta+\theta^2}{3}$.
 - i) Montrer que $\alpha \in \mathbb{Z}_K$ et calculer son polynôme minimal.
 - ii) En déduire que 3|f'', puis que $D_K = -3a^2b^2$.
 - iii) Montrer que $(\alpha, \theta, \theta')$ est une \mathbb{Z} -base de \mathbb{Z}_K .
- h) Si $d \equiv -1$ [9]. On pose $\alpha' := \frac{1-\theta+\theta^2}{3}$. Montrer que $(\alpha', \theta, \theta')$ est une \mathbb{Z} -base de \mathbb{Z}_K .
- i) Conclure en décrivant tous les cas possibles.

Solution de l'exercice 11.

- a) Par l'exercice 5, on sait que le discriminant recherché est le discriminant D(P) du polynôme minimal $P(X) = X^3 d$ de $\sqrt[3]{d}$. Donc il vaut $-27d^2$.
- b) On remarque que $\theta^2 = b\theta'$ et que $\theta'^2 = a\theta$. Cela assure que $K = \mathbb{Q}(\theta')$. Comme à la question a), le discriminant de $(1, \theta', \theta'^2)$ vaut $-27(a^2b)^2 = -27a^4b^2$.
- c) Puisque $(1, \theta, \theta^2)$ est une \mathbb{Q} -base de K et puisque $\theta^2 = b\theta'$, il est clair que $(1, \theta, \theta')$ est une \mathbb{Q} -base de K. Les trois plongements de K dans \mathbb{C} sont donnés par $\theta \mapsto \theta$, $\theta \mapsto j\theta$ et $\theta \mapsto j^2\theta$, donc le discriminant vaut

$$\operatorname{disc}_{\mathbb{Z}}(1, \theta, \theta') = \begin{vmatrix} 3 & 0 & 0 \\ 0 & 0 & 3ab \\ 0 & 3ab & 0 \end{vmatrix} = -27a^2b^2.$$

d) i) Le polynôme minimal de θ sur \mathbb{Q} est X^3-d . Soit p un facteur premier de a. Par définition, p|d et p^2 ne divise pas d. Donc le polynôme X^3-d est d'Eisenstein en p. Par l'exercice 10, on sait que p ne divise pas f. Cela assure que (a,f)=1.

- ii) Supposons que 3|a. La formule usuelle de changement de bases assure que $D_{\mathbb{Z}[\theta]/\mathbb{Z}} = f^2 D_K$, donc $D_{\mathbb{Z}[\theta]/\mathbb{Z}} = -27a^2b^4$ divise f^2D_K . Puisque 3|a et (a,f)=1, f n'est pas divisible par 3, donc $(27a^2,f)=1$. Or $27a^2|f^2D_K$, donc le lemme de Gauss assure que $27a^2|D_K$. Supposons que 3 ne divise pas a. Alors on a toujours $a^2|f^2D_K$ et (a,f)=1, donc on conclut que $a^2|D_K$.
- iii) C'est exactement le même raisonnement que la question d) i) en échangeant θ et θ' .
- iv) C'est exactement le même raisonnement que la question d) ii) en échangeant θ et θ' .
- v) Dans tous les cas, on a $a^2|D_K$ et $b^2|D_K$. Or a et b sont premiers entre eux, donc $a^2b^2|D_K$. Les inclusions $\mathbb{Z}[\theta] \subset \mathbb{Z}_K$ et $\mathbb{Z}[\theta'] \subset \mathbb{Z}_K$ assurent respectivement que $D_K|27a^2b^4$ et $D_K|27a^4b^2$. Puisque a et b sont premiers entre eux, cela assure que $D_K|27a^2b^2$. Le signe de D_K se déduit par exemple de la relation déjà mentionnée $-27a^2b^4 = f^2D_K$: cela assure que $D_K < 0$.
- e) On suppose que 3|d. Alors 3|a ou 3|b (mais pas les deux). Donc par la question d), on sait que (3|a, 3) ne divise pas a, $a^2|D_K$ et $a_K^2|D_K$ et $a_K^2|D_K$ ou $a_K^2|D_K$ ou $a_K^2|D_K$ et $a_K^2|D_K$ et $a_K^2|D_K$. Dans les deux cas, les deux diviseurs de $a_K^2|D_K$ obtenus sont premiers entre eux, donc leur produit divise $a_K^2|D_K$ i.e. $a_K^2|D_K$. Alors la question d) v) assure que $a_K^2|D_K$ est une base de $a_K^2|D_K$.
- f) On suppose que $d \not\equiv \pm 1$ [9] et d non divisible par 3 (ce cas a été traité à la question e)). Un calcul simple assure que

$$(\theta - d)^3 + 3d(\theta - d)^2 + 3d^2(\theta - d) + d(d^2 - 1) = 0.$$

Donc le polynôme minimal de $\theta - d$ sur \mathbb{Q} est $X^3 + 3dX^2 + 3d^2X + d(d-1)(d+1)$. Montrons qu'il est d'Eisenstein en 3. Il est clair que tous ses coefficients sont divisibles par 3. Montrons que son coefficient constant n'est pas divisible par 9 : le produit d(d-1)(d+1) est divisible par 9 si et seulement si l'un des trois entiers consécutifs d-1, d et d+1 est divisible par 9, si et seulement si $d \equiv -1, 0, 1$ [9]. Or on a exclu ces possibilités, donc sous les hypothèses de cette question, le polynôme minimal de $\theta - d$ est d'Eisenstein en 3.

On utilise alors l'exercice 10 pour en déduire que f n'est pas divisible par 3 (puisque $\mathbb{Z}[\theta-d]=\mathbb{Z}[\theta]$). Donc l'égalité $-27a^2b^4=f^2D_K$ assure que $27|D_K$, donc la question d) v) assure que $D_K=-27a^2b^2=\mathrm{disc}_{\mathbb{Z}}(1,\theta,\theta')$, donc $(1,\theta,\theta')$ est une base de \mathbb{Z}_K .

g) i) On calcule les puissances successives de α . On trouve :

$$\alpha = \frac{1+\theta+\theta^2}{3} \,,$$

$$\alpha^2 = \frac{(1+2d)+(2+d)\theta+3\theta^2}{9} \,,$$

$$\alpha^3 = \frac{(d^2+7d+1)+3(1+2d)\theta+3(2+d)\theta^2}{27} \,.$$

Il est alors clair que le polynôme minimal de α est donné par

$$Q(X) = X^3 - X^2 - \frac{d-1}{3}X - \frac{(d-1)^2}{27}$$
.

Or par hypothèse $d \equiv 1$ [9], donc 3|d-1 et $27|(d-1)^2$, donc $Q(X) \in \mathbb{Z}[X]$, donc $\alpha \in \mathbb{Z}_K$.

ii) On a clairement $3\alpha \in \mathbb{Z}[\theta] \subset \mathbb{Z}[\theta, \theta']$, donc $\mathbb{Z}[\theta, \theta']$ est un sous-groupe d'indice 1 ou 3 dans $\mathbb{Z}[\theta, \theta', \alpha]$. Or $\alpha \notin \mathbb{Z}[\theta, \theta']$, donc cet indice est égal à 3. On a une chaîne d'inclusions

$$\mathbb{Z}[\theta, \theta'] \subset \mathbb{Z}[\theta, \theta', \alpha] \subset \mathbb{Z}_K$$
,

avec $[\mathbb{Z}_K : \mathbb{Z}[\theta, \theta']] = f''$ et $[\mathbb{Z}[\theta, \theta', \alpha] : \mathbb{Z}[\theta, \theta'] = 3$, donc 3|f''. Or on a la relation $\operatorname{disc}_{\mathbb{Z}}(1, \theta, \theta'') = f''^2 D_K$, i.e. $-27a^2b^2 = f''^2 D_K$, et par la question d)

v), on a $D_K = na^2b^2$, avec $n \in \{1, 3, 9, 27\}$. Donc les seules possibilités sont f'' = 1 ou 3. Or on a montré que f'' est divisible par 3, donc f'' = 3. Donc $D_K = 3a^2b^2$.

- iii) On a vu que $f'' = 3 = [\mathbb{Z}[\theta, \theta', \alpha] : \mathbb{Z}[\theta, \theta']$, donc cela assure que $\mathbb{Z}_K = \mathbb{Z}[\theta, \theta', \alpha]$, donc que $(\alpha, \theta, \theta')$ est une \mathbb{Z} -base de \mathbb{Z}_K .
- h) Le raisonnement est totalement semblable à celui de la question g).
- i) En résumé, on a montré que :
 - si $d \not\equiv \pm 1$ [9], $(1, \theta, \theta')$ est une \mathbb{Z} -base de \mathbb{Z}_K et $D_K = -27a^2b^2$. En particulier, $\mathbb{Z}[\theta]$ est d'indice b dans \mathbb{Z}_K .
 - si $d \equiv 1$ [9], $(\alpha, \theta, \theta')$ est une \mathbb{Z} -base de \mathbb{Z}_K et $D_K = -3a^2b^2$. En particulier, $\mathbb{Z}[\theta]$ est d'indice 3b dans \mathbb{Z}_K .
 - si $d \equiv -1$ [9], $(\alpha', \theta, \theta')$ est une \mathbb{Z} -base de \mathbb{Z}_K et $D_K = -3a^2b^2$. En particulier, $\mathbb{Z}[\theta]$ est d'indice 3b dans \mathbb{Z}_K .

Exercice 12:

- a) Montrer qu'un anneau factoriel est intégralement clos.
- b) Soit A un anneau intégralement clos et K son corps des fractions. Soit $P \in A[X]$ unitaire. Supposons que P = QR dans K[X], avec Q, R unitaires. Montrer que $Q, R \in A[X]$. [Indication : on pourra considérer les racines de Q et R dans une clôture algébrique de K.]
- c) Soit A un anneau intégralement clos de corps des fractions K. On souhaite montrer que $A[X_1, \ldots, X_n]$ est intégralement clos.
 - i) Vérifier que K(X) est le corps des fractions de A[X]. Pour la suite, on fixe $f \in K(X)$ entier sur A[X].
 - ii) Montrer que $f \in K[X]$.
 - iii) Soit $P(Y) = Y^n + p_{n-1}(X)Y^{n-1} + \cdots + p_0(X) \in A[X][Y]$ un polynôme unitaire annulant f. Montrer que pour $r \in \mathbb{N}$, le polynôme $P_1(Y) := P(Y + X^r)$ est dans A[X][Y], unitaire en Y, et annule $f_1 := f X^r$.
 - iv) Montrer que pour r suffisamment grand, le coefficient constant (en Y) de $P_1(Y)$ est unitaire en X et qu'il est égal au produit de $-f_1$ par un polynôme de K[X].
 - v) En déduire que $-f_1 \in A[X]$, puis que $f \in A[X]$. En déduire que A[X] est intégralement clos.
 - vi) Montrer que $A[X_1,\ldots,X_n]$ est intégralement clos.

Solution de l'exercice 12.

a) Soit A un anneau factoriel. Notons K son corps des fractions. Soit $x \in K$ un élément entier sur A. Par définition, il existe un polynôme $P(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_0 \in A[X]$ tel que P(x) = 0. Il existe $a, b \in A$ tels que $x = \frac{a}{b}$ dans K. On peut supposer que a et b n'ont pas de facteur irréductible commun. On a alors

$$\frac{a^n}{b^n} + a_{n-1} \frac{a^{n-1}}{b^{n-1}} + \dots + a_0 = 0,$$

donc en multipliant par b^n , on obtient

$$a^{n} + a_{n-1}a^{n-1}b + \dots + a_{1}ab^{n-1} + a_{0}b^{n} = 0.$$

Tous les éléments intervenant dans cette égalité sont dans A. Soit $p \in A$ un facteur irréductible de b. Alors l'égalité précédente assure que p divise a^n , donc p divise a. Cela implique que a et b admettent p comme facteur irréductible commun. Cela contredit l'hypothèse. Donc b n'admet pas de facteur irréductible. Donc b est inversible dans a, donc a0 est dans a1.

Donc A est intégralement clos.

- b) Notons x_1, \ldots, x_n les racines de P dans une cloture algébrique de K. Puisque P est unitaire à coefficients dans A, les x_i sont des éléments sur A. Il est clair que les racines de P et de Q sont parmi les x_i . Or les coefficients de P et Q sont des polynômes à coefficients dans \mathbb{Z} (P et Q sont unitaires) en les x_i (via les relations entre coefficients et racines). L'ensemble des éléments algébriques sur A étant un anneau, on en déduit que les coefficients de P et Q sont des entiers sur A. Or ces coefficients sont dans K, et A est intégralement clos dans K, donc ils sont dans A. Donc $P, Q \in A[X]$.
- i) Puisque K(X) est un corps contenant A[X], le corps des fractions de A[X] est contenu dans K(X). Montrons l'inclusion inverse. Soit $f(X) \in K(X)$. Par définition, il existe $P,Q \in K[X]$ tels que $f(X) = \frac{P(X)}{Q(X)}$. Il existe $a,b \in A \setminus \{0\}$ tels que $aP(X),bQ(X) \in A[X]$. Donc $f(X) = \frac{baP(X)}{abQ(X)}$, donc f(X) est un quotient de deux polynômes de A[X], donc f(X) est dans le corps des fractions de A[X].
 - ii) Puisque f est entier sur A[X], f est a fortiori entier sur K[X]. Or K[X] est un anneau factoriel, donc par la question a), K[X] est intégralement clos dans K(X). Donc $f \in K[X]$.
 - iii) Cette question est évidente.
 - iv) Le coefficient constant de $P_1(Y)$ est égal à

$$X^{nr} + p_{n-1}(X)X^{(n-1)r} + \dots + p_1(X)X^r + p_0(X)$$
.

Ce polynôme en X est unitaire dès que $nr > kr + \deg(p_k)$, pour tout $0 \le k \le n-1$, par exemple dès que $r > \max_{0 \le k \le n-1} \deg(p_k)$.

On a montré à la question c) iii) que f_1 est une racine de $P_1(Y)$ dans l'anneau K[X]. On peut faire la division euclidienne du polynôme $P_1(Y)$ par le polynôme unitaire $Y - f_1$ dans l'anneau des polynômes à coefficients dans K[X]. On obtient qu'il existe un polynôme $Q_1(Y) \in K[X][Y]$ tel que $P_1(Y) = (Y - f_1)Q_1(Y)$. En particulier, le coefficient constant de $P_1(Y)$ est égal au coefficient constant (en Y) de $-f_1Q_1(Y)$. Donc le coefficient constant de $P_1(Y)$ est de la forme $-f_1q_1$, avec $q_1 \in K[X]$.

- v) Quitte à augmenter encore r de sorte que $r > \deg(f)$, on peut supposer que $-f_1 \in K[X]$ est unitaire. On a donc écrit à la question c) iv) le coefficient constant de $P_1(Y)$, qui est unitaire à coefficients dans A, comme un produit de deux polynômes unitaires $-f_1$ et q_1 dans K[X]. Alors la question b) assure que $-f_1 \in A[X]$, donc $f \in A[X]$. On a donc bien montré que A[X] est intégralement clos.
- vi) C'est une récurrence simple sur le nombre de variables n.

Exercice 13 : Soit p un nombre premier impair et $K := \mathbb{Q}(\zeta_p)$, où ζ_p désigne une racine primitive p-ième de l'unité.

- a) Calculer la trace d'un élément de K.
- b) Montrer que la norme de $1 \zeta_p$ est égale à p.
- c) Soit $\alpha = a_0 + a_1 \zeta_p + \dots + a_{p-2} \zeta_p^{p-2} \in \mathbb{Z}_K \ (a_i \in \mathbb{Q}).$
 - i) En étudiant $\alpha \zeta_p^{-i} \alpha \zeta_p$, montrer que pour tout $i, b_i := pa_i$ est un entier relatif.
 - ii) Posons $\lambda := 1 \zeta_p$. Montrer que $p\alpha$ s'écrit $p\alpha = c_0 + c_1\lambda + \cdots + c_{p-2}\lambda^{p-2}$ avec $c_i \in p\mathbb{Z}$. [Indication : on pourra montrer le résultat par récurrence sur i, en montrant d'abord que $p \in \lambda^{p-1}\mathbb{Z}_K$.]
 - iii) Montrer que pour tout $i, a_i \in \mathbb{Z}$. En déduire que $\mathbb{Z}_K = \mathbb{Z}[\zeta_p]$.
 - iv) Montrer que $\operatorname{disc}(K) = (-1)^{\frac{p-1}{2}} p^{p-2}$.

Solution de l'exercice 13.

a) Par linéarité, il suffit de calculer la trace des puissances de ζ_p . On a $\mathrm{Tr}_{K/\mathbb{Q}}(1) = [K:\mathbb{Q}] = p-1$ et pour $1 \leq r \leq p-1$,

$$\operatorname{Tr}_{K/\mathbb{Q}}(\zeta_p^r) = \sum_{k=1}^{p-1} (\zeta_p^r)^k = \sum_{k=1}^{p-1} \zeta_p^k = -1 + \sum_{k=0}^{p-1} \zeta_p^k = -1.$$

Donc pour un élément quelconque de K, qui s'écrit $a_0 + a_1\zeta_p + \cdots + a_{p-2}\zeta_p^{p-2}$, sa trace vaut

$$\operatorname{Tr}_{K/\mathbb{Q}}(a_0 + a_1\zeta_p + \dots + a_{p-2}\zeta_p^{p-2}) = pa_0 - (a_0 + a_1 + \dots + a_{p-2}).$$

- b) On a $N_{K/\mathbb{Q}}(1-\zeta_p)=(1-\zeta_p)(1-\zeta_p^2)\dots(1-\zeta_p^{p-1})$. Or le polynôme cyclotomique $\phi_p(X)$ s'écrit $\phi_p(X)=(X-\zeta_p)(X-\zeta_p^2)\dots(X-\zeta_p^{p-1})$, donc $N_{K/\mathbb{Q}}(1-\zeta_p)=\phi_p(1)=1+\dots+1=p$.
- c) i) Calculons la trace de $\alpha \zeta_p^{-i} \alpha \zeta_p$: on a

$$\operatorname{Tr}_{K/\mathbb{Q}}(\alpha\zeta_p^{-i} - \alpha\zeta_p) = \operatorname{Tr}_{K/\mathbb{Q}}(\alpha\zeta_p^{-i}) - \operatorname{Tr}_{K/\mathbb{Q}}(\alpha\zeta_p) = pa_i,$$

en utilisant la question a). Or $\alpha \zeta_p^{-i} - \alpha \zeta_p \in \mathbb{Z}_K$, donc sa trace est dans \mathbb{Z} , i.e. $pa_i \in \mathbb{Z}$, pour tout i.

ii) On a vu à la question b) que $p = N_{K/\mathbb{Q}}(\lambda) = (1 - \zeta_p)(1 - \zeta_p^2) \dots (1 - \zeta_p^{p-1})$. On met $(1 - \zeta_p)$ en facteur dans chaque terme du produit :

$$p = (1 - \zeta_p)^{p-1}u = \lambda^{p-1}u$$

où $u \in \mathbb{Z}[\zeta_p] \subset \mathbb{Z}_K$. Donc $p \in \lambda^{p-1}\mathbb{Z}_K$.

On écrit alors que $p\alpha = b_0 + b_1\zeta_p + \cdots + b_{p-2}\zeta_{p-2}$ et on remplace ζ_p par $1 - \lambda$. On obtient alors

$$p\alpha = \sum_{k=0}^{p-2} b_k \sum_{j=0}^k \binom{k}{j} (-\lambda)^j = \sum_{j=0}^{p-2} \left((-1)^j \sum_{k=j}^{p-2} \binom{k}{j} b_k \right) \lambda^j.$$

On a donc $p\alpha = \sum_{j=0}^{p-2} c_j \lambda^j$, avec $c_j := (-1)^j \sum_{k=j}^{p-2} {k \choose j} b_k$. Montrons que $c_j \in p\mathbb{Z}$ par récurrence sur j.

Si j=0, on a $c_0=b_0+\cdots+b_{p-2}=pb_0-\operatorname{Tr}_{K/\mathbb{Q}}(p\alpha)=p(b_0-\operatorname{Tr}_{K/\mathbb{Q}}(\alpha))\in p\mathbb{Z}$.

Supposons que $c_i \in p\mathbb{Z}$ pour tout $0 \leq i \leq j-1$. On rappelle l'égalité $p\alpha = \sum_{j=0}^{p-2} c_j \lambda^j$. Modulo λ^{j+1} , cette égalité devient $0 \equiv c_j \lambda^j$ puisque $p \in \lambda^{j+1}\mathbb{Z}_K$ $(j+1 \leq p-1)$. On en déduit que $c_j = \beta \lambda$ avec $\beta \in \mathbb{Z}_K$. On prend les normes et on obtient $c_j^{p-1} = N_{K/\mathbb{Q}}(\beta)p$ avec $N_{K/\mathbb{Q}}(\beta) \in \mathbb{Z}$. Donc $p|c_j$.

Finalement, on a bien montré que $p\alpha = c_0 + c_1\lambda + \cdots + c_{p-2}\lambda^{p-2}$ avec $c_i \in p\mathbb{Z}$.

iii) On déduit de la question c) ii) que α est combinaison linéaire à coefficients entiers des λ^i . En remplaçant λ par $1-\zeta_p$, on obtient que α est combinaison linéaire à coefficients entiers de puissances de ζ_p , donc par unicité de la décomposition dans la \mathbb{Q} -base $(1,\zeta_p,\ldots,\zeta_p^{p-2})$, on en déduit que $a_i \in \mathbb{Z}$ pour tout i.

On a donc montré que tout élément de \mathbb{Z}_K était dans $\mathbb{Z}[\zeta_p]$. Or $\zeta_p \in \mathbb{Z}_K$, donc $\mathbb{Z}_K = \mathbb{Z}[\zeta_p]$.

iv) On sait que $D_K = (-1)^{\frac{(p-1)(p-2)}{2}} N_{K/\mathbb{Q}}(\phi_p'(\zeta_p))$ (voir exercice 5, question a)). Or $\phi_p(X) = \frac{X^p-1}{X-1}$, donc $\phi_p'(\zeta_p) = -\frac{p\zeta_p^{p-1}}{\lambda}$. Donc $N_{K/\mathbb{Q}}(\phi_p'(\zeta_p)) = (-1)^{p-1}\frac{p^{p-1}}{p}$ en utilisant la question b). D'où finalement $D_K = (-1)^{\frac{p-1}{2}}p^{p-2}$.