SEPARAREA SOLUȚIILOR ECUAȚIILOR METODA BISECȚIEI

A rezolva ecuația algebrică sau transcendentă (în continuare ecuația) f(x) = o înseamnă a determina acele valori ale variabilei x pentru care egalitatea f(x) = o este una adevărată.

Daca functia are forma unui polinom atunci ea este denumita algebrica.

Daca functia nu are forma unui polinom atunci ea este denumita transcendenta.

Rezolvarea ecuatiilor

În cele ce urmează se va presupune că ecuația are soluții distincte (izolate), adică pentru fiecare soluție a ecuației există o vecinătate a sa, care nu conține alte soluții. Astfel, rezolvarea prin metode numerice a unei ecuații se divide în două etape:

- Separarea intervalelor pe care ecuația are o singură soluție.
- 2. Micşorarea pe cît mai mult posibil a fiecărui din aceste intervale (dacă se pune problema determinării tuturor soluțiilor) sau a unuia din ele (dacă trebuie de determinat doar una din soluții).

Metode de rezolvare a ecuatiilor:

- Metoda analitică. Pentru separarea analitică a soluțiilor vor fi folosite proprietățile derivatei.
- Metoda grafică. O altă posibilitate de separare a rădăcinilor ecuației f(x) = o este cercetarea directă a graficului funcției f(x). Pentru construcția acestuia pot fi folostie atît aplicații software specializate1, cît şi programe simple, elaborate cu ajutorul instrumentelor unui limbaj de programare.

Exemplu de rezolvare

Să se separe rădăcinile ecuației $x^3 - 9x^2 + 24x - 19 = 0$ pe segmentul [0, 8].

Avem ecuatia $f(x) = x^3 - 9x^2 + 24x - 19$;

$$f'(x) = 3x^2 - 18x + 24$$
.

Rezolvînd ecuația f'(x) = 0, se obțin soluțiile x1 = 2, x2 = 4.

Deci ecuația va avea trei soluții, cîte una pe fiecare din segmentele [0, 2], [2, 4], [4, 8]

Metoda bisectiei

Una dintre cele mai simple metode de determinare a unei soluții a ecuației f(x) = 0 este metoda bisecției. Metoda presupune determinarea punctului de mijloc c al segmentului [a, b], apoi calculul valorii f(c). Dacă f(c) = 0, atunci c este soluția exactă a ecuației. În caz contrar, soluția este căutată pe unul dintre segmentele [a, c] și [c, b]. Ea va aparține segmentului pentru care semnul funcției în extremități este diferit. Dacă $f(a) \times f(c) > 0$, atunci soluția e căutată în continuare pe segmentul [a1, b1], unde a1 primește valoarea c, iar b1 – valoarea b. În caz contrar, a1 primește valoarea a, iar b1 – valoarea c. Procesul de divizare se reia pe segmentul [a1, b1], repetîndu-se pînă cînd nu se obține soluția exactă sau (în majoritatea absolută a cazurilor!) devierea soluției calculate ci de la cea exactă nu devine suficient de mică.

Algoritmizarea primei metodei

A1. Algoritmul de calcul pentru un număr prestabilit n de divizări consecutive:

Pasul o. Iniţializare: $i \leftarrow o$.

Pasul 1. Determinarea mijlocului segmentului $c \leftarrow (a+b)/2$

Pasul 2. Reducerea segmentului ce conține soluția: dacă f(c) = o, atunci soluția calculată este x = c. SFÎRŞIT. În caz contrar, dacă $f(a) \times f(c) > o$, atunci $a \leftarrow c$; $b \leftarrow b$, altfel $a \leftarrow a$; $b \leftarrow c$.

Pasul 3. $i \leftarrow i + 1$. Dacă i = n, atunci soluția calculată este x = (a+b)/2 SFÎRŞIT.

Algoritmizarea metodei a doua

A2. Algoritmul de calcul pentru o precizie^2 ε dată:

Pasul 1. Determinarea mijlocului segmentului $c \leftarrow (a+b)/2$.

Pasul 2. Dacă f(c) = o, atunci soluția calculată este x = c. SFÎRŞIT. În caz contrar, dacă f(a) × f(c) > o, atunci a \Leftarrow c; b \Leftarrow b, altfel a \Leftarrow a; b \Leftarrow c.

Pasul 3. Dacă $|b-a| < \epsilon$, atunci soluția calculată este x = (a+b)/2. SFÎRŞIT. În caz contrar, se revine la pasul 1. Exemplul 1: Să se determine o rădăcină a ecuației $x^4 + 2x^3 - x - 1 = 0$ pe segmentul [0, 1] pentru 16 divizări consecutive. Deoarece numărul de aproximări succesive este fixat, iar extremitățile segmentului cunoscute, atribuirile se realizează nemijlocit în program.

Programul propriu zis

```
Program exemplu;
var a,b,c: real;
i,n:integer;
function f(x:real):real;
begin f:=sqr(sqr(x))+2*x*sqr(x)-x-1;
end;
begin a:=0; b:=1; n:=16;
for i:=1 to n do
```

```
begin c:=(b+a)/2; writeln('i=',i:3,'
x=',c:10:8,' f(x)=',f(c):12:8);

if f(c)=o then break^3 else if
f(c)*f(a)>o then a:=c else b:=c;
end;
end.
```

MULTUMIM PENTRU ATENTIE

Proiect realizat de Fortuna Cristian