Cálculo I – Agrupamento 4

2019/2020

SOLUÇÕES DA FICHA DE EXERCÍCIOS 3

- 1. (a) f é integrável em [0,4];
 - (b) f não é integrável em $\left|0, \frac{\pi}{2}\right|$;
 - (c) f é integrável em [-2, 1].
- 2. (a) $D_{F'} = \mathbb{R}, F'(x) = \frac{x^2}{x^2+1}$
 - (b) $D_{F'} = \mathbb{R}, F'(x) = -e^{-x^2}$
 - (c) $D_{F'} = \mathbb{R}^+, F'(x) = \frac{\cos(x^2)}{2\sqrt{x}}$
 - (d) $D_{F'} = \mathbb{R}, F'(x) = 3x^2 \ln(x^6 + 1) + \sin x \ln(\cos^2 x + 1)$
 - (e) $D_{F'} = \mathbb{R}, F'(x) = 3x^2 \int_1^x e^{-s^2} ds + x^3 e^{-x^2}$
- 3. $F''(x) = e^{-x^2}$.
- 4. (a) $F'(x) = (1 + e^{x^4})2x, \forall x \in \mathbb{R};$
 - (b) F é estritamente decrescente em \mathbb{R}_0^- e F é estritamente crescente em \mathbb{R}_0^+ . $F(0) = \int_1^0 (1+e^{t^2}) dt$ é mínimo local de F.
- 5. (a)—; (b) $H'(x) = x(x+1)^2 \cos x + 2(x+1) \int_0^{\sin x} \arcsin t \, dt$; (c) 0 \(\epsilon\) minimizante global de He $\frac{\pi}{2}$ é maximizante global de H.
- 6. 1
- 7.

(a)
$$\frac{192}{5}$$
 (b) $-\frac{19}{9} - \frac{4}{3}\sqrt{2} + 2\sqrt{3}$ (c) $\frac{1}{3e^3} - \frac{1}{3e^4}$ (d) $\frac{2}{7}(27\sqrt{3} - 1)$ (e) $\frac{\pi}{4}$ (f) 1

- (g) $\frac{3-\sqrt{3}}{3}$ (h) $\frac{\pi}{6}$ (i) $-\frac{2}{3}$ (j) $\ln 2$ (k) $\ln 2$ (l) 2 (m) $-\frac{9}{28}$ (n) $\frac{1}{2}$ (o) $\frac{1}{3}(2\sqrt{2}-1)$ (p) $\frac{1}{2}\left(\arctan(\frac{3}{2})-\frac{\pi}{4}\right)$
- 8. (a) $\frac{\ln 3}{4}$
 - (b) $\frac{\pi}{8}$
 - (c) $\frac{\pi}{3} + \frac{\sqrt{3}}{2}$
 - (d) $\frac{e^2+1}{4}$
 - (e) e-2
- 9. (a) $2 + \ln 2$
 - (b) $\frac{\pi}{2} + \ln 2$
 - (c) $\frac{1}{2} \ln 5$
 - (d) $-\pi 3$
- 10. (a)
 - (b) Falso

- 11. $\frac{3 \ln 3}{2}$
- 12. $e^2 + 1 2 \ln \frac{1 + e^2}{2}$
- 13. $\frac{1}{2}$
- 14. $\frac{1}{6}$
- 15. $1-\frac{5}{4e}$
- 16. $\frac{1}{3} + \ln 2$
- 17. $\frac{-4\pi+8+\pi^2}{8}$
- 18. $\int_{-\pi}^{-3\pi/4} (\sin x \cos x) \, dx + \int_{-3\pi/4}^{\pi/4} (\cos x \sin x) \, dx + \int_{\pi/4}^{\pi} (\sin x \cos x) \, dx$
- 19. (a)
 - (b) $\frac{37}{6}$
- 20. (a) $\frac{4\pi}{3}$ (b) $\frac{4}{3} + 2\pi$
- 21. —
- 22. $1 13e^{-4}$
- 23. (a) 1800ℓ ;
 - (b) $V(t) = 200t 2t^2$;
 - (c) $t = 50 10\sqrt{10}$, i.e., o tanque terá debitado um total de $3 \,\mathrm{m}^3$ de água aos $18.4 \,\mathrm{min}$, aproximadamente.
- 24. —
- 25. $\frac{\pi^2}{72}$
- 26. —
- 27. h é integrável em [-1,4] porque h é limitada em [-1,4] e descontínua apenas num ponto de [-1,4] (em x=2).
- 28. (a) $F'(x) = 3x^5 e^{\sin(x^3)}$.
 - (b) 0.
- 29. (a) $-\frac{1}{\sqrt{1+x^2}} + C$, $C \in \mathbb{R}$.
 - (b) $\frac{3\sqrt{2}-2}{2\sqrt{2}}$.
- 30. —
- 31. —
- 32. (a) (Sugestão: Usar o Teorema Fundamental do Cálculo Integral)
 - (b) $\frac{1}{2}$ (Sugestão: Usar a Regra de Cauchy e a alínea anterior)
- 33. (a) $F'(x) = -\frac{x^2}{e^{\arcsin x} + 1} \cdot \frac{1}{\sqrt{1 x^2}}$ (Sugestão: Usar o Teorema Fundamental do Cálculo Integral)
 - (b) F é estritamente decrescente em [-1,1].
 - x = -1 é maximizante global de F.
 - x = 1 é minimizante global de F.