1 Uvod v Umetno inteligenco

1.1 Turingov test

Opazovalec po pogovru ne more lociti racunalnika od cloveka

2 STROINO UCENIE

2.1 Problemski prostor, ocenjevanje znanja

2.2 EVALVIRANJE HIPOTEZ

Pomembni kriteriji:

- konsistentnost hipotez z primeri (ucnimi)
- splosnost (tocnost za nevidene primere)
- · razumljivost hipotez

Ocenjevanje uspesnosti pri klasifikaciji na podlagi njihove toc-

TP - true positive, FP - false positive, FN - false negative, TN - true negative

Klasifikacijska tocnost =
$$\frac{TP + TN}{TP + TN + FP + FN} = \frac{TP + TN}{N}$$

Napaka 1. tipa = FP, napaka 2. tipa = FN

Obcutljivost/senzitivnost =
$$TPR = \frac{TP}{TP + FN}$$

2.3 Gradnia odlocitvenih dreves

Informacijski prispevek $Gain(A) = I - I_{res}(A)$, I=H(C)

$$I_{\text{res}} = -\sum_{v_i \in A} p_{v_i} \sum_{c} p(c|v_i) \log_2 p(c|v_i)$$

Za koliko se entropija zmanjsa po delitvi z Atributom A.

Razmerje inofrmacijskega prispevka atributa A:

$$IGR(A) = \frac{Gain(A)}{H(A)}$$

2.3.1 TDIDT (Top down induction decision tree) algoritem

Pozresen algoritem, ki lokalno izbira najbolsi atribut.

- kratkoviden algoritem
- 2.3.2 BINARIZACHA ATRIBUTOV

Aleternativa za resevanje problematike z vecvrednostnimi atributi: Primer: barve ∈ rdeca, rumena, zelena, modra

- Strategije, razbijemo v dve mnozici: - rdeca, rumena, zelena, modra
- rdeca, rumena, zelena, modra

Prednost: manjse vejanje drevesa.

2.4 Ucenje iz sumnih podatkov (rezanje)

tocnost t...verjetnost pravilnosti klasifikacije

napaka e ... 1-t

relativna frekvenca $p = \frac{n}{N}$

m-ocena $p = \frac{n + p_a * m}{N + m}$

m... koliko zaupam apriorni verjetnosti

p_q apriorna verjetnost (domenski ekspert lahko pove)

Laplacova ocena verjetnosti $p = \frac{n+1}{N+k}$

k...stevilo vseh moznih razredov

2.4.1 REP (REDUCED ERROR PRUNNING)

Dela dobro ce imamo veliko rezalno mnozico.

Obicajno uporabljamo relativno frekvenco za ocenjevanje verjet-

 $G(v) = \# napak_T - \# napak_T$

 $G(v) \ge 0 \Rightarrow$ rezemo podrevo

e(C) = 3

 $e_T = 2 + 3 = 5$

 $G(C) = 5 - 3 = 2 \ge 0 \rightarrow \text{rezemo}$

2.4.2 MEP (MINIMAL ERROR PRUNNING)

e...staticna napaka,E...vzvratna napaka, $e \le E \rightarrow$ rezemo poddrevo

$$e_L(d) = 1 - t = 1 - \frac{13+1}{20+2} = 0.363$$

 $E_L(d) = 12/20 \cdot e_L(d_l) + 8/20 \cdot e_L(d_d) = \frac{12}{20} \cdot (1 - \frac{7+1}{12+2}) + \frac{8}{20}(1 - \frac{13+1}{20+2})$

2.5 Ocenievanie uspesnosti modelov

tocnost t ... verjetnost pravilnosti klasifikacije

Laplacova ocena verjetnosti $p = \frac{n+1}{N+k}$

k...stevilo vseh moznih razredov

 $t_{L1} = \frac{2+1}{3+3} = 0.5, t_{L2} = \frac{4+1}{7+3} = 0.5, t_{L3} = \frac{2+1}{2+3} = 0.6$ tocnost drevesa: $t_D = 3/12 \cdot 0.5 + 7/12 \cdot 0.5 + 2/12 \cdot 0.6 = 0.5167$

2.6 OBRAVNANVA MANKAJOCIH ATRIBUTOV, NAVINI BAYESOV KLASI-FIKATOR

2.6.1 NAIVNI BAYES

Ce poznamo razred, kam klasificiramo ce nepoznamo atributov:

Klasifikator:
$$\operatorname{argmax}_{c \in C} P(c) \prod_{i=1}^{n} P(x_i|c)$$

 $c \dots razred, x_i \dots atributi$

Verjetnost::

$$P(C = c|x_1,...,x_n) = \frac{P(C = c)P(X_1 = x_i|C = c)P(X_2 = x_j|C = c)...}{P(X_1 = x_i)P(X_2 = x_j)...}$$

Primer moski: visina ≥ 175 , teza ≥ 65 , spol = M

$X \backslash Y$	Razred A	Razred B		
p_a	$P(A) = \frac{2}{3}$	$P(B) = \frac{1}{3}$		
spol	P(M A)	P(M B)		
visina	$P(V \ge 175 A)$	$P(V \ge 175 B)$		
teza	$P(T \ge 65 A)$	$P(T \ge 65 B)$		
$P(y) \prod_{i=1}^{n} P(x_i y)$				

2.6.2 Nomogragmi

Ciljni razred $C = c_T$

$$X_{X_i=x_j} = \ln \left(\frac{P(X_i=x_j|C=c_T)}{P(X_i=x_j|C=\overline{c_T})} \right)$$

2.7 K-najblizjih sosedov

3 Vrste ucenja

3.1 Nadzorovano ucenje (supervised learning)

Ucni primeri so podani/oznaceni kot vrednosti vhodov in izhodov.

 $(\vec{x}_1, \vec{y}_1), (\vec{x}_2, \vec{y}_2), \dots, (\vec{x}_N, \vec{y}_N)$

 $\vec{x_i}$... atributi, $\vec{y_i}$... ciljna spremenljivka

Locimo dve vrsti problemov:

- 1. Klasifikacijski problemi yi diskretna
- 2. Regresijski problemi y_i zvezna

3.1.1 Lokalno utezena regresija

$$h(\vec{x}_{i}^{2}) = \frac{\sum_{i=1}^{k} w_{i} \cdot f(\vec{x}_{i}^{2})}{\sum_{i=1}^{k} w_{i}}, w_{i}(d)...uto$$

Α	В	С	dolžina	d(xiixi)	Wi	W:-f(-x	∂
0	0	0	9	4	415	915	
0	0	0	10	4	115	2	
0	1	1	9	2_	113	3	1. () S. w. f(x)
0	2	0	12	2	113	4	N(X2) = 12
0	2	1	12	1	112	6	. 2 w.
1	0	0	12	3	1/4	3	$h(x_1) = \frac{\sum_{i=1}^{N} w_i \cdot f(x_1)}{\sum_{i=1}^{N} w_i}$ $= \frac{\frac{Ms}{20}}{\frac{2a}{4s}} = M.355$
1	0	0	15	3	114	15/4	26 = 11.359
1	1	1	11	1	112	11/2	15
1	1	1	15	1	112	1512	•
1	1	1	9	1	112	912	
1	2	0	9	1	112	512	
1	2	1	12	0	1	12	
					76	1111	•
lokalno	uteženo reg	resijo želir	no napove	dati dolžino p	ostrviza		$\{A=1,B=2,C=1\}$. Pri izračunu uporabi:
	ttansko razd		erjenje raze	dalj,			
iedrno	funkcijo w_i	1_					

3.1.2 Regresijska drevesa

Linearna regresija je poseben primer regresijskega drevesa. V listih regresijskega drevesa vcasih napovemo kar povprecno

3.2 Nenadzorovano ucenje (unsupervised learning)

Ucni primeri niso oznaceni (nimajo ciljne spremenljivke), ucimo se vzorcev v podatkih, (npr. grucenje)

3.2.1 HIERARHICNO GRUCENJE

Poveze po podobnosti med primeri, primer zacne kot samostojna gruca, na koncu vsi primeri pripadajo eni gruci

Dendrogram: drevo, ki predstavlja grucenje.

Single-linkage: povezava med grucami je najkrajse razdalje med primeroma iz razlicnih gruc.

Complete-linkage: povezava med grucami je najdaljsa razdalja med primeroma iz razlicnih gruc.

Average-linkage: povezava med grucami je povprecna razdalja med primeroma iz razlicnih gruc.

3.2.2 K-MEANS

- 1. V prostor dodamo k centroidov, ki predstavljajo gruce.
- 2. Izracunamo ketri centroid je najblizji vsakemu primeru.
- 3. Izracunamo nove centre gruc = $\frac{1}{|G|} \sum_{i \in C} x_i$
- 4. Ponovimo korake 2 in 3 dokler se centri ne premaknejo.

3.3 Spodbujevalno ucenje - reinforcement learning

Inteligentni agent se uci iz zaporedja nagrad in kazni

- 3.4 Ocenjevanje ucenja
- 3.4.1 Precno preverianie

Poseben primer veckratnega ucenja in testiranja

k-kratno precno preverjanje

- · celo ucno mnozico razbij na k disjunktnih podmnozic
- za vsako od k podmnozic:
- uporabi mnozico kot testno mnozico
- uporabi preostalih k-1 mnozic kot ucno mnozico
- · povpreci dobljenih k ocen tocnosti v koncno oceno

Pri precnem preverjanju uporabimo vse podatke za testiranje in

Metoda **leave one out** je poseben primer precnega preverjanja Imamo dve hipotezi A in B. Izkase se, da A bolje napoveduje na ucnih podatkih B pa na testnih. Potem je B verjetno boljsa hipoteza.

4 Preiskovanje

NEINFORMIRANI PREISKOVALNI ALGORITMI

- 4.1.1 ISKANIE V SIRINO
- 4.1.2 ISKANJE V GLOBINO

Izboljsave:

· Iskanje s sestopanjem

 depth-limited-search (vnapej definiramo globino l (dolocimo preko domenskega znanja))

4.1.3 ITERATIVNO POGLABLJANJE

problem gobinsko omejenega iskanja -> nastavitev meje l Mejo l postopoma povecujemo za 1, dokler ne najdemo resitve.

- popolnost: Da
- optimalnost: Da
- casovna zahtevnost O(b^d)
- prostorska zahtevnost O(bd)

Boljse od iskanja v globino/sirino

4.1.4 DVOSMERNO ISKANJE

Ideja: pognati vzporedni iskanji od zacetka do cilja in od cilja do zacetka.

Motivacija:

Implemenatcija dvosmernega iskanja

- · ciljno vozlisce mora biti znano
- originalni problemski prostor preslikamo v dvosmerni prosto stanj E1, E2 dosegljiv iz E in S1,S2,S3 dosegljiv iz S (S,E) -> (S1, E1), (S1,E2), (S2, E1), (S2, E2)... Vozlisce (Si, Ei) je v dvosmernem prostur ciljo vozlisce ce velja E=S (soda dolzina na isto mesto pridemo iz obeh strani) ali S->E (liha pot sosednja)

4.1.5 CENOVNO - OPTIMALNO ISKANJE

- posplositev iskanja v sirino (iskanje v sirino je optimalno, ce so cene vseh povezav enake 1)
- · dijkstra basically (sam do zadnga noda)
- https://stackoverflow.com/a/14587449

4.1.6 PRIMERJAVA ALGORITMOV Kriterij sirino globino

4.2	Informirani preiskovalni algoritmi
4.2.1	HEVRISTICNO PREISKOVANJE

omejitvijo globine

ideja: preiskovanje usmerjamo z dodatnim znanjem (ocenitven funcija za obetavnost vozlisca)

hevristika je ocenitvena funkcija za obetavnost vozlisca

- optimisticna/dopustna: $h(n) \le h^*(n)$ (h^* je optimalna ocena)
- optimalna: $h(n) = h^*(n)$
- pesimisticna: $h(n) \ge h^*(n)$

4.2.2 POZRESNO PREISKOVANJE/ GREEDY BEST-FIRST SEARCH

h(n) hevristicna ocena

vrednotenje vozlisca f(n) = h(n) hevristicna ocena ... npr manhattan distance (zracna razdalja)

- popolnost (ali najde vedno resitev): Ne
- optimalnost: Ne
- casovna zahtevnost $O(b^m)$, kjer je m najvecja globina drevesa

4.2.3 A*

A* is informed version of **dijkstra** (uses heuristics and pq) Vozlisca vrednotimo: f(n) = g(n) + h(n)

g(n) cena poti do n (znano),

h(n) cena od n do najblizjega cilja (ocena)

prioritetna vrsta (max glede na f(n)) Basically dijkstra + h(n) (A* is basically an informed variation of Dijkstra.)

- popolnost: Da (ce ustreza pogoju dopustnosti)
- optimalnost: Da (ce ustreza pogoju dopustnosti)
- casovna zahtevnost $O(b^m)$, kjer je m najvecja globina drevesa

4.2.4 IDA* (Iterative deepening A*)

DFS with heuristics and iterative bound (value)

podane so verticost (fig. (e), e) + h(n)) vozilišč
 simuliari prefetovanje z (DA*)
 simuliari prefetovanje z (DA*)
 genericana voziššća
 1. Interalja, meja+1; arl, b/2, c/1, t/1, i/3, g/2
 2. Interalja, meja+1; arl, b/2, c/1, t/1, i/3, g/2
 3. Interalja, meja-2 arl, b/2, d/10, e/10, c/1, t/1, i/3, g/2, b/4
 4. Iteracija, meja-4; arl1, b/2, d/10, e/10, c/1, t/1, i/3, i/4, g/2, b/4
 4. Iteracija, meja-4; arl1, b/2, d/10, e/10, c/1, t/1, i/3, i/4

Ucinkovitost

- neucinkovit ce vozlisca raznolika f(n)
- prednost: ne hrani vec vseh vozlisc kot A*
- optimalen: ce razvija v prioritetnem vrsntem redu, h(n) mora biti monotona|konsistentna (h(n) skos pada) (posledicno tudi dopustna)

$$h(n) \le c(n, n') + h(n')$$

(h naslednjega vozlisca manjsi ker je blizji cilja)

• monotona \rightarrow dopustna (proti primer h(n) = 0)

4.2.5 Kakovost hevristicnih funkcij

7	2	4
5		6
8	3	1

Primer igra 8 ploscic

-h₁: stevilo ploscic ki niso na pravem mestu (8)

-h₂: vsota manhattanskih razdalj ploscic do pravega mesta(3+1+2+2+2+3+3+2=18)

Kakovost h ocenimo z:

iterativno poglatevalgen generaraenilo vskalisje

- z efektivnim faktorjem vejanja (koliko vozlisc N je algoritem

generiral da je na globini d nasel resitev)

	število generiranih vozlišč			efektivni faktor vejanja		
Globina	IDS	A*(h₁)	A*(h ₂)	IDS	A*(h₁)	A*(h ₂)
2	10	6	3	2,45	1,79	1,79
4	112	13	12	2,87	1,48	1,45
6	680	20	18	2,73	1,34	1,30
8	6384	39	25	2,80	1,33	1,24
10	47127	93	39	2,79	1,38	1,22
12	3644035	227	73	2,78	1,42	1,24
14	?	539	113	?	1,44	1,23
16	?	1301	211	?	1,45	1,25
18	?	3056	363	?	1,46	1,26
20	?	7276	676	?	1,47	1,27
22	?	18094	1219	?	1,48	1,28
24	?	39135	1641	?	1,48	1,26

Vidimo $h_2(n) \ge h_1(n) \forall n$ pravimo h_2 **dominira** h_1

4.3 Lokalno preiskovalni algoritmi

4.3.1 Plezanje na hrib

Ne pomnemo poti do cilja, ampak samo trenutno stanje Koristni v primerih:

- ce nas zanima samo kakovost resitve (in ne pot do cilja)
- resevanje optimizacijskih problemov (kjer je podana kriterijska funkcija za oceno kakovosti resitve)

Prednosti:

majhna poraba prostora

Primer 4 kraljice na sahovnici - kriterijska funkcija: maksimiziramo - (minus) stevilo kraljic, ki se medsebojno napadajo

Tezave:

- lokalni maksimumi
- "rame, plaote" (kriterijska funkcija konstantna vrednost)
- grebeni (za plezanje navzgor je potreben sestop po pobocju grebena)

Resevanje iz lokalnih maksimumov:

- koraki vstran: ce ima naslednje stanje isto vrednost kriterijske funkcie, dovolimo premik v to stanje
- stohasticno plezanje na hrib: iz mnozice boljsih stanj, verjetnostno izberemo naslednje stanje (pri cemer upostevamo da imajo boljsa stanja vecjo verjetnost izbora)
- nakljucni ponovni zagon: veckrat pozeni plezanje na hrib iz nakljucnih stanj dokler ne najdes resitve

4.3.2 SIMULIRANO OHLAJANJE

algoritem ki izvira iz metalurgije (ko je jeklo tekoce, so molekule v njem bolj gibljive; ko se ohlaja se strjuje in molekuele se umirjajo) Analogija:

- generiramo nakljucne sosede trenutnega stanja
- ce najdemo boljse stanje ga izberemo
- ce najdemo slabse stanje, ga izberemo z doloceno verjetnostjo
- · verjetnost izbire neoptimalnega stanja s casom pada (nizanje temperature)

4.3.3 Lokalno iskanje v snopu

Algoritem:

- v spominu hrani k aktualnih stanj namesto enega
- izberi k optimalnih stanj od sosedov aktualnih stanj
- ponavaljaj do ustavitnega pogoja

4.4 PREISKOVANJE GRAFOV AND/OR, NEDETERMINISTICNO OKOLJE

Pomagajo resevati probleme z **dekompozicijo na manjse probleme** Uporabnost:

- princip deli in vladaj
- · iskanje v nedeterministicnih okoljih
- igre med dvema nasprotnikoma s popolno informacijo (sah, dama)
- ekspertno resevanje problem

Primer graf dekompozicja v dva manjsa problema skozi g in f Resitveno drevo je resitev AND/OR grafov

4.4.1 AO*

Vozlisce **OR**: Razvijamo najbolj obetavno poddrevo, dokler njegova cena ne preseze alternativnega poddrevesa Konec (AND vozlisca imajo v vsaki veji resitev, OR pa vsaj v eni)

- posplositev A* na grafe AND/OR
- popoln in optimalen ⇔ h(n) ne precenjuje dejanske cene do cilja

Vsako vozlisce N ima:

- lokalno (dinamicno) hevristicno oceno H(N)
- lokalno (dinamico) vrednost kriterijske funkcije F(N) G(N) cena od predhodnika do trenutnega vozlisca

$$F(N_i) = G(N_i) + H(N_i) = \mathbf{cena}(N_{i-1}, N_i) + H(N_i)$$

Dinamicna hevristicna ocena H(N) je **odvisna od tipa vozlisca**:

- za liste:
- H(N) = h(n)
- F(N) = G(N) + H(N) = cena(stars,N) + h(n)
- za notranja vozlisca:

4.4.2 Preiskovanje v nedeterministicnem okolju:

Nedeterministican akcija - ista akcija lahko obrodi razlicna ciljna stanja

Do resitve ni vec **poti** temvec **drevesa** (uporbljamo AND/OR grafe) Vozsilca OR **mozne akcije**, vozlisca AND **vejanja v mozna stanja**, ki so rezultat nedeterministicnih akcij

4.5 Preiskovanje brez informacij o stanju

Okolja smo razdelili na transparent (agent lahko zazna popolno informacija) in netransparentna (brez informacije o stanju)

Kej ce imamo opravka z netraspranetim okoljem?

- izvajamo preiskovanje prostora verjetnih stanj in ne prostora dejanskih stanj
- izvajamo s postokopom omejevanja moznozsti kandidatnih stanj

4.6 IGRANJE IGER

4.6.1 Predstavitev problema

4.6.2 ALGORITEM MINIMAX

- m globina - b

4.6.3 REZANJE ALFA-BETA

5 Planiranje

plan zaporedje akcij, ki pripelje od zacetnega do koncnega stanja

5.1 STRIPS

Agentu opisemo svet in postavimo fizikalne omejitve.

Ne zagotovalja optimalne resitve, obravnavamo le en cilj naenkrat (ko ga dosezemo, se lahko ostali izgubijo) = Sussmanova anomalija Akcija move(X, From, To)

- pogoj: con=[clr(X), on(X,F), clr(T)] → pogoji za izvajanje akcije,
- poz. ucinki: adds= $[on(X, T), clr(F)] \rightarrow nova stanja,$
- neg. ucinki: $dels=[on(X, F), clr(T)] \rightarrow izbrisana stanja$,
- omejitve: constr=[F ≠ T, X≠ F, X≠ T, block(X)] → omejitve akcij (fizikalne omejitve),

Algoritem:

- 1. Izberi se neresen cilj iz mnozice CILJEV
- 2. Izberi akcijo, ki izbrani cilj doda v stanje
- 3. Omogoci izbrano akcijo (izpolni pogoje)
- 4. Izvedi akcijo (ki izopolni najvec pogojev)
- 5. Ce obstajajo nereseni cilji \Rightarrow 1.

Primer dfs, zlaganje kock

5.2 PLANIRANJE Z REGRESIRANJEM CILJEV

Resitev za sussmanovo anomalijo

5.3 RAZPOREJANJE OPRAVIL

6 SKLEPANJE

6.1 Bayesovske mreze