Tournant énergétique dans le secteur électrique

Mode d'emploi

Philippe Jacquod

Energy Efficiency & Smart Grid groups

@ HES-SO/VS

Production électrique suisse

Consommation vs. production électrique suisse

Echanges import-export

Prod. > cons. en été -> exportations Cons. > prod. en hiver -> importations

nucléaire

hydro-électricité

échanges import/export

1. nucléaire : fermeture à terme

2. hydro-électricité : difficultés économiques

2. hydro-électricité : difficultés économiques

- 3. échanges import/export:
 - *relations tendues CH-UE
 - *contrats avec FR arrivent à échéance
 - *tournant énergétique en Europe
 - ->manque de puissance en hiver

Equation de la transition énergétique

fin du nucléaire + réduction des émissions de CO₂

= pénétration accrue de nouveaux renouvelables

Quel modèle de production ?

- -> échanges avec l'étranger ?
- -> futur de l'hydroélectricité?
- -> peut-on vraiment se passer du nucléaire ?

Photovoltaïque vs. nucléaire : fluctuations

Fluctuations journalières

-> pompage-turbinage / stockage courte durée

Photovoltaïque vs. nucléaire : fluctuations

Fluctuations saisonnières

- -> basculer 1/4 de la production totale d'été vers l'hiver
- -> est-ce possible avec les barrages?

Basculement de productions estivales vers l'hiver

Turbinage plus intensif en hiver Turbinage plus doux en été

- -> possible de transférer 2TWh
- -> 8TWh de PV absorbable

Absorption des fluctuations par l'hydroélectrique

2013

2013 + Mühleberg et Beznau -> PV

It's the economy, stupid

Indicateur économique :

Economics DUMIES

consommation résiduelle C_R:

 $C_R(t) := consommation - somme de toutes les productions incontrôlables$

pour la Suisse de 2013 C_R = prod. barrages - (export-import)

C_R grand et positif : demande >> offre

C_R négatif : demande < offre

Absorption des fluctuations par l'hydroélectrique

Production barrages, exports, consommation résiduelle 2013

Production des barrages corrélée avec la consommation résiduelle, en toute saison!

Absorption des fluctuations par l'hydroélectrique

Scénario importations ~ consommation résiduelle

= nulles en moyenne hebdomadaire

Situation après la fermeture de Mühleberg et Beznau :

Réhaussement des barrages de 10% ou autre forme de stockage saisonnier

Etapes de la transition et challenges

5 étapes - à la fermeture de chacun des 5 réacteurs nucléaires

*Etapes 1 et 2 : OK

*Etape 3 (M+B1+B2 fermés)

Scénarios	Challenge	Solution	Remarque
Echanges 2013	Aucun	N/A	Pompage-turbinage relativement utile
Suisse en îlot	Léger sur-remplissage	Quelques rehaussements	Pompage-turbinage
	des bassins ~11 TWh	de barrages	utile et bien valorisé
Echanges	Léger sur-remplissage	Quelques rehaussements	Pompage-turbinage très
court terme	des bassins ~11 TWh	de barrages	utile et très valorisé

*Etape 4 (M+B1+B2+G fermés)

Scénarios	Challenge	Solution	Remarque
Echanges 2013	Léger sur- remplissage des bassins ~10 TWh	Quelques rehaussements de barrages	Pompage- turbinage utile et bien valorisé
Suisse en îlot	Net sur-remplissage des bassins ~13 TWh	-Rehaussement des barrages -Réduction du pourcentage de pénétration PVpar l'engagement de centrales à cycle combiné	Pompage- turbinage indispensable
Echanges court terme	Net sur-remplissage des bassins ~13 TWh	-Rehaussement des barrages -Réduction du pourcentage de pénétration PV par l'engagement de centrales à cycle combiné	Pompage- turbinage indispensable

Etape finale : fermeture de Leibstadt - plus de nucléaire

Fluctuations saisonnières de renouvelable trop grandes

- -> autres productions flexibles ? CCGT ?
- -> autre stockage longue durée ? power-to-gas ?

Question centrale (surtout à ce moment-là) : "Quelle sera la nature de nos échanges avec l'UE ?"

Morale de l'histoire + thank you's

*Principal problème du tournant énergétique dans le domaine électrique : stockage saisonnier

*Nos installations hydroélectriques se révèleront extrêmement précieuses pour maîtriser le tournant énergé Article à paraître dans

*Corollair le bulletin SEV/AES surer leur pérennité (=décision économico-politique)

Collaboration avec Michel Bonvin

Financement du Fonds National

