Übungsblatt 10 zur Kommutativen Algebra

Aufgabe 1. (m+m+1+1) Erste Schritte mit der Dimension von Ringen Bestimme für die folgenden Ringe ihre Dimension. Dabei ist K ein Körper.

- a) *K*
- b) K[X]
- c) $\mathbb{Z}/(90)$
- d) K[X,Y]/(XY)

Aufgabe 2. () Artinität über einem Körper

Sei A eine endlich erzeugte Algebra über einem Körper K. Zeige, dass A genau dann als Ring artinsch ist, wenn A als K-Vektorraum endlich dimensional ist.

Aufgabe 3. () Beispiel für den Struktursatz artinscher Ringe Schreibe den artischen Ring $\mathbb{Z}/(90)$ als Produkt artinscher lokaler Ringe.

Aufgabe 4. (2+2+2+0) Eine elementare Charakterisierung der Dimension Für ein Ringelement $x \in A$ sei \mathfrak{b}_x das Ideal $(x) + (\sqrt{(0)} : x)$.

- a) Sei \mathfrak{p} ein minimales Primideal. Sei $x \in A$. Zeige, dass $\mathfrak{b}_x \not\subseteq \mathfrak{p}$.
- b) Sei $\mathfrak{p} \subsetneq \mathfrak{q}$ eine echte Inklusion von Primidealen. Sei $x \in \mathfrak{q} \setminus \mathfrak{p}$. Zeige, dass $\mathfrak{b}_x \subseteq \mathfrak{q}$.
- c) Zeige für $n \ge 0$: Genau dann gilt dim $A \le n$, wenn dim $A/\mathfrak{b}_x \le n-1$ für alle $x \in A$.
- d) Folgere: Ein Ring ist genau dann von Dimension $\leq n$, wenn für je n+1 Ringelemente x_0, \ldots, x_n eine Zahl $r \geq 0$ mit

$$(x_0 \cdots x_n)^r \in (x_0 \cdots x_{n-1})^r (x_n^{r+1}) + (x_0 \cdots x_{n-2})^r (x_{n-1}^{r+1}) + \cdots + (x_0)^r (x_1^{r+1}) + (x_0^{r+1})$$

existiert.