Optional slides: Supplementary Fourier Transform Material

Rebecca Fiebrink Lecturer, Department of Computing Goldsmiths, University of London

Beginning Fourier Analysis

Key principles from last term:

1) All media signals are functions

2) All functions can be expressed as sums of sinusoids

Sinusoids are "basis functions" >
You can add together carefully-chosen sinusoids to get any function

Fourier Theorem:

We can express *any** signal as a sum of sinusoids:

$$x = A_1 sin(2\pi f_1 t + \Phi_1)$$

+ $A_2 sin(2\pi f_2 t + \Phi_2)$
+ $A_3 sin(2\pi f_3 t + \Phi_3)$
+ ...

^{*}requires signal be either infinitely periodic or (more likely) finite in duration

Fourier Analysis

Answers the question: Given a waveform, what are its sinusoidal components?

If
$$x(t) = A_1 \sin(2\pi f_1 t + \Phi_1)$$

 $+ A_2 \sin(2\pi f_2 t + \Phi_2)$
 $+ A_3 \sin(2\pi f_3 t + \Phi_3)$
 $+ \dots$
What are A_k , f_k , Φ_k for all k ?
spectrum of x

9

Why?

Audio:

- Tells us about pitch, timbre, instrumentation, mastering; speech/ speaker; recording environment; ...
- Re-synthesize and process sounds (e.g. time stretch, pitch shift)
- Reason about how filters, reverb, EQ, etc. will affect a sound
- Design filters, reverb, EQ, etc.

Why?

Image:

- Tells us about objects, texture; text and image orientation
- Re-synthesize and process images (e.g., de-noising, blurring, sharpening)
- Design image effects

Other basis functions (e.g. wavelets) are great for other computer vision tasks

- E.g., find objects / faces in photos
- Dating Van Gogh's paintings (!!)

How Fourier Analysis Works

Fourier Analysis

Answers the question: Given a waveform, what are its sinusoidal components?

If
$$x(t) = A_1 \sin(2\pi f_1 t + \Phi_1)$$

 $+ A_2 \sin(2\pi f_2 t + \Phi_2)$
 $+ A_3 \sin(2\pi f_3 t + \Phi_3)$
 $+ \dots$
What are A_k , f_k , Φ_k for all k ?
spectrum of x

- Determining amplitudes: "How much" of a basis function (a specific frequency) is present in a signal?
- 2. Determining phase of each frequency: Reformulating phase as sine + cosine
- 3. Which frequencies do we really need?
- 4. Putting these together in a concise mathematical formula (the DFT)

1. Determining amplitude A_n for basis function at frequency f_n

Let x[n] be the nth sample of x

s_k[n] be the nth sample of the basis sine at frequency k

and N be the length (# samples) of x

Compute:

$$x[1] * s_k[1] + x[2] * s_k[2] + ... + x[N] * s_k[N]$$

Point-wise product of x and s₁

Point-wise product of x and s₁

Finally, add up all values in this product:

The higher the content of this frequency f_k to the function x, the greater this sum!

If this frequency is not present in the signal, the sum will be 0!

In mathematical terminology:

Compute A_{sn} , a measure of "weight" or contribution of frequency n:

$$A_{sk} = \sum_{n=1}^{N} x[n] \times s_k[n]$$

```
t = arange(0, 1, 1./1000)
x = sin(2*pi*2*t) + .5*sin(2*pi*3*t)
s1 = sin(2*pi*1*t)
s2 = sin(2*pi*2*t)
s3 = sin(2*pi*3*t)
print sum(x * s1)
print sum(x * s2)
print sum(x * s3)
```

```
-3.0371321777e-14
500.0
250.0
```

A problem:

```
t = arange(0, 1, 1./1000)
x1 = sin(2*pi*t + pi/2)
s1 = sin(2*pi*1*t)
print sum(x1 * s1)
```

9.33116431345e-14

Handling phase

Recognize that a sinusoid with non-zero phase is just a weighted sum of a sine and cosine at the same frequency!

```
sin(2πft + Φ)
=
cos(Φ) * sin(2πft) + sin(Φ) * cos(2πft)
```

Handling phase

Solution: compute summed product for both sine and cosine at the frequency f_k

- 1. Determining amplitude of basis sinusoid with frequency f_k
- 2. Determining phase of basis sinusoid with frequency f_k

$$A_k = 2 \times \frac{\sqrt{A_{sk}^2 + A_{ck}^2}}{N}$$

$$\phi_k = \tan^{-1} \left(\frac{A_{ck}}{A_{sk}} \right)$$

Don't memorize these equations! Most important idea: We can compute A_k and Φ_k precisely using the process of multiplying our signal \Re ith the sine and cosine, then summing.

3. Which frequencies do we really need?

If our signal is N samples long, we only need to look at sinusoids that oscillate:

Once in *N* samples
Twice in *N* samples
3 times in *N* samples
etc.

Up to N/2 times in N samples (Nyquist)

i.e., periods are N, N/2, N/3, ... 2 samples

i.e., frequencies are (1/N), (2/N), (3/N), ... ((N/2)/N)=1/2 oscillations per sample

As well as a constant "offset", i.e. 0 frequency

A nearly final algorithm for computing the spectrum:

For each frequency *n* in {0, 1/N, 2/N, 3/N, ..., 1/2}:

- 1. Compute A_{sn} , the summed product with sine at frequency n
- 2. Compute A_{cn} , the summed product with cosine at frequency n
- 3. Compute amplitude A_n and phase Φ_n from A_{sn} and A_{cn}

- 1. Determining amplitudes: "How much" of a basis function (a specific frequency) is present in a signal?
- 2. Determining phase of each frequency: Reformulating phase as sine + cosine
- 3. Which frequencies do we really need?
- 4. Putting these together in a concise mathematical formula (the DFT)

Imaginary numbers

Building block: $i = \sqrt{-1}$

Examples of imaginary numbers:

5i (same as 5*i)

-10i

3.51*i*

Complex numbers

Have a *real* part and an *imaginary* part

E.g.:

-5 + 3i Can't write in a simpler form!

135 - 42.5*i*

0 + 10i Imaginary numbers are a subset of the complex numbers

32 + 0i Real numbers are a subset of the complex numbers

Another way to think about complex numbers

... and yet another way to think about complex numbers

The number e

A mathematical constant; a real number:

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = 1 + \frac{1}{1} + \frac{1}{1 \cdot 2} + \frac{1}{1 \cdot 2 \cdot 3} + \cdots$$

e is approximately equal to 2.718

Euler's formula

$$e^{ix} = \cos x + i \sin x$$

for any number x

 $e^{i\phi}$ is a point in complex plane

This point lies on the unit circle: radius is 1 (magnitude of $e^{i\phi} = 1$) Phase offset is ϕ

Real and imaginary components can be easily derived:

 $sin(\boldsymbol{\phi}) = (length of opposite side) / (length of hypotenuse)$

 $cos(\Phi)$ = (length of adjacent side) / (length of hypotenuse)

Using Euler's formula for spectral analysis: The main idea

$$e^{-iq} = \cos q - i \sin q$$

Instead of multiplying each x[n] by a sine and cosine at frequency f multiply it by $e^{-i2\pi f}$

Do this for all relevant frequencies, $\{0/N, 1/N, 2/N,\}$ For each given frequency, compute summed product for all sample points, n = 1 to N

The Discrete Fourier Transform

$$X_k = \sum_{n=1}^{N} x[n] \times e^{-i2\pi(k/N)n}$$

Compute X_k for k = 0, 1, 2, ... (i.e., for freqs 0/N, 1/N, 2/N, ... osc. per sample) Each X_k is a single complex number Magnitude of X_k (sometimes written $||X_k||$) is the "amount" of frequency k in X_k Phase of X_k is the phase of frequency X_k in X_k

Plotting spectra

This is a plot of the *magnitudes* of X_k , for X_k starting at 0Hz and going up to the Nyquist rate (here 22050 Hz)

Recommended further reading

http://betterexplained.com/articles/aninteractive-guide-to-the-fouriertransform/

Book on signal processing for music and audio:

http://www.amazon.com/Digital-Signal-Processing-Primer-Applications/dp/0805316841

(available in Goldsmiths library!)