Thomas M. Klapötke
Energetic Materials Encyclopedia

Also of interest

The Properties of Energetic Materials.

Sensitivity, Physical and Thermodynamic Properties
M. H. Keshavarz, T. M. Klapötke, 2018
ISBN 978-3-11-052187-0, e-ISBN (PDF) 978-3-11-052188-7, e-ISBN (EPUB) 978-3-11-052195-5

Combustible Organic Materials.

Determination and Prediction of Combustion Properties
Mohammad Hossein Keshavarz, 2018
ISBN 978-3-11-057220-9, e-ISBN (PDF) 978-3-11-057222-3,
e-ISBN (EPUB) 978-3-11-057233-9

Chemistry of High-Energy Materials Thomas M. Klapötke, 2019 ISBN 978-3-11-062438-0, e-ISBN (PDF) 978-3-11-062457-1, e-ISBN (EPUB) 978-3-11-062469-4

High Explosives, Propellants, Pyrotechnics Ernst-Christian Koch, 2021 ISBN 978-3-11-066052-4, e-ISBN (PDF) 978-3-11-066056-2, e-ISBN (EPUB) 978-3-11-066059-3

Energetic Compounds.

Methods for Prediction of their Performance
M. H. Keshavarz, T. M. Klapötke, 2020
ISBN 978-3-11-067764-5, e-ISBN (PDF) 978-3-11-067765-2,
e-ISBN (EPUB) 978-3-11-067775-1

Thomas M. Klapötke

Energetic Materials Encyclopedia

0-7

Author

Prof. Dr. Thomas M. Klapötke

Department of Chemistry
Ludwig-Maximilians University Munich
Butenandstr. 5-13 (Building D)
81377 Munich, Germany
tmk@cup.uni-muenchen.de
and
Department of Chemistry
University of Rhode Island
Beaupre Center
140 Flagg Road
Kingston, RI 02881
USA

ISBN 978-3-11-067245-9 e-ISBN (PDF) 978-3-11-067255-8 e-ISBN (EPUB) 978-3-11-067271-8

Library of Congress Control Number: 2020949508

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

© 2021 Walter de Gruyter GmbH, Berlin/Boston Cover image: ThomasVogel/iStock/Getty Images Plus Typesetting: Integra Software Services Pvt. Ltd. Printing and binding: CPI books GmbH, Leck

www.degruyter.com

Contents

```
0
Octanitrocubane — 1279
Octanitroterphenyl — 1284
Octogen — 1289
6-Oxo-2,5,7-trinitro-2,5,7,9-tetraazabicyclo[4.3.0]nonane-8-one — 1347
P
Pentaammine(5-cyanotetrazolato-N2)cobalt(III) perchlorate — 1349
Pentaerythritol trinitrate — 1356
Pentaerythrityl tetranitramine — 1358
Pentanitroaniline — 1360
Pentanitrobenzene — 1362
PETN — 1364
Picramic acid — 1431
Picric acid — 1434
4-Picrylamino-2,6-dinitrotoluene — 1453
5-Picrylamino-1,2,3,4-tetrazole — 1455
3-Picrylamino-1,2,4-triazole — 1457
Poly-3-azidomethyl-3-methyl-oxetane — 1459
Poly-3,3-bis-(azidomethyl)-oxetane — 1461
Poly-GLYN — 1465
Poly(3-nitratomethyl-3-methyloxetane) — 1467
Polynitropolyphenylene — 1470
Polyvinyl nitrate — 1472
Potassium 5-aminotetrazolate — 1476
Potassium chlorate — 1478
Potassium dinitramide — 1481
Potassium 1,1'-dinitramino-5,5'-bistetrazolate — 1486
Potassium dinitrobenzfuroxan — 1488
Potassium 5,7-dinitro-[2,1,3]-benzoxadiazol-4-olate 3-oxide — 1493
Potassium nitrate — 1496
Potassium 5-nitrotetrazolate — 1500
Potassium perchlorate — 1502
Potassium picrate — 1507
Potassium tetrazolate — 1515
Propyleneglycol dinitrate — 1517
Propvl nitrate — 1519
Propyl nitroguanidine — 1522
PYX --- 1524
```

```
S
Silver azide — 1529
Silver fulminate — 1541
Sixolite — 1544
Sixonite — 1546
Silver nitrotetrazolate — 1548
Sodium 5-aminotetrazolate trihydrate — 1550
Sodium azide —— 1552
Sodium chlorate — 1560
Sodium nitrate — 1562
Sodium 5-nitrotetrazolate dihydrate — 1565
Sodium perchlorate — 1567
Strontium nitrate — 1570
Styphnic acid — 1572
Symmetrical dimethylhydrazine — 1576
Т
Tacot — 1579
TATP — 1588
Tetraamine-cis-bis(5-nitro-2H-tetrazolato) cobalt(III) perchlorate — 1601
3,4:7,8:11,12:15,16-Tetrafurazano-1,2,5,6,910,13,14-octaazacyclohexadeca-
1,3,5,7,9,11,13,15-octane-1,10-dioxide — 1605
Tetramethylammonium nitrate — 1607
Tetramethylene diperoxide dicarbamide — 1610
2,2,5,5-Tetramethylolcyclopentanol pentanitrate — 1613
Tetramethylolcyclopentanone tetranitrate — 1615
Tetranitroacetimidic acid — 1618
2.3.4.6-Tetranitroaniline — 1621
Tetranitrobenzene — 1626
Tetranitro-bicyclo-nonanone — 1629
Tetranitrocarbazole — 1630
1,1,3,3-Tetranitrocyclobutane — 1633
Tetranitroethane — 1635
N,N',N''',N''''-Tetranitro-1,1,2,2-ethanetetramine —— 1636
Tetranitroglycolurile — 1638
1,3,5,5-Tetranitrohexahydropyrimidine — 1644
Tetranitromethane — 1647
Tetranitronaphthalene — 1655
2,4,2',4'-Tetranitrooxanilide — 1659
2,4,6,8-Tetranitro-2,4,6,8-tetraazabicyclo[3.3.1]nonane-3,7-dione — 1661
2,5,7,9-Tetranitro-2,5,7,9-tetraazabicyclo[4.3.0]nonane-8-one — 1664
```

```
2,4,6,8-Tetranitro-2,4,6,8-tetraazabicvclo[3.3.0]octane-3-one — 1666
Tetranitrotoluene — 1668
Tetrazene — 1671
6,6'-{1,2,4,5-Tetrazine-3,6-diylbis[(4H,8H-bis[1,2,5]oxadiazolo[3,4-b:3',4'-e]
pyrazine-8,4-diyl)]}bis(2,4-dioxo-1,2,4,5-tetrazin-3-amine) — 1682
Tetrazino-tetrazine-1,3,6,8-tetroxide — 1684
Tetrazole — 1689
Tetrazolium dinitramide — 1694
1,4H-Tetrazolium perchlorate — 1696
1-[(2E)-3-(1H-Tetrazol-5-yl)triaz-2-en-1-ylidene]methanediamine — 1698
Tetryl — 1699
2,4,6-Triamino-3,5-dinitropyridine — 1737
Triaminoguanidinium 1-aminotetrazol-5-oneate — 1739
Triaminoguanidinium dinitramide — 1741
Triaminoguanidinium nitrate — 1743
Triaminoguanidinium nitroformate — 1751
1.3.5-Triamino-2.4.6-trinitrobenzene — 1753
Triazidopentaerythrite-acetate — 1794
Triazidopivalic-acid-ethylester — 1796
1,3,5-Triazido-2,4,6-trinitrobenzene — 1797
Triethyleneglycol dinitrate — 1802
Trimethylammonium nitrate — 1807
Trimethyleneglycol dinitrate — 1809
Trinitroaniline — 1811
Trinitroanisole — 1818
Trinitroazetidine — 1822
2,4,6-Trinitrobenzamide — 1829
Trinitrobenzene — 1831
Trinitrobenzoic acid — 1845
2,4,6-Trinitrobenzyl nitrate — 1848
Trinitrochlorobenzene — 1850
2,4,6-Trinitrocresol — 1854
2,2,2-Trinitroethyl formate — 1858
2,2,2-Trinitroethyl nitrocarbamate — 1862
Trinitroethyltrinitrobutyrate — 1864
1,3,5-Trinitrohexahydropyrimidine — 1869
Trinitromethane — 1871
Trinitronaphthalene — 1874
Trinitrophenoxyethyl nitrate — 1879
2,4,6-Trinitrophenylnitraminoethyl nitrate — 1881
1,3,5-Trinitro-2-(prop-2-yn-1-yloxy)benzene —— 1884
```

```
Trinitropyridine — 1886
Trinitropyridine-N-oxide — 1889
2,4,6-Trinitro-2,4,6,8-tetraazabicyclo[3.3.0]-octane-3-one — 1892
2,4,6-Trinitrotoluene — 1894
Trinitroxylene — 1986
Tripentaerythritol octanitrate — 1991
Tripentanone triperoxide — 1995
1,3,5-Tripicrylbenzene — 1998
N²,N⁴,N⁶-Tripicrylmelamine — 2000
2,4,6-Tripicryl-s-triazine — 2004
2,4,6-Tris(3',5'-diamino-2',4',6'-trinitrophenylamino)-1,3,5-triazene — 2010
Tris-hydrazinenickel(II) nitrate — 2012
2,4,6-Tris(2,2,2-trinitroethylamino)-1,3,5-triazine — 2018
U
```

Uronium nitrate —— 2021 Urotropinium dinitrate —— 2025

X

Xylitol pentanitrate — 2027

Octanitrocubane

Name [German, acronym]: Octanitrocubane [octanitrocuban, ONC]

Main (potential) use: Insensitive (high) explosive, patented as potential

oxidizer in PBXs^[9]

Structural formula:

	ONC
Formula	$C_8N_8O_{16}$
Molecular mass [g mol ⁻¹]	464.1
Appearance at room temperature (RT)	White solid granular powder ^[9] , white solid, solvent-free crystals from trifluoroacetic acid, fuming acid/sulfuric acid or anhydrous cyclohexane ^[12]
IS [J]	Samples not detonated by hammer taps ^[12]
N [%]	24.14
Ω(CO ₂) [%]	±0
T _{m.p.} [°C]	297 (with dec.) ^[9]
T _{sublimation} [°C]	Sublimes unchange @ 200 °C @ atmospheric pressure ^[12]
T _{dec.} [°C]	297 (melts with dec.) ^[9]
ρ [g cm ⁻³]	$1.979^{[12]}$, 2.80 (@ 293 K) ^[1] , 2.03 (@ 294 K) ^[2] , 2.1 (theoretical), $1.92-2.2$ (theoretical density) ^[9] , 2.1 (predicted using calculations for the most stable polymorph of ONC) ^[12] , 2.189 (crystal, calcd.) ^[13]
Heat of formation	413.8 kJ/mol ($\Delta_i H^o$), 81 cal/mol ($\Delta_i H^o$, calcd., est. using bond energies) ^[1,8] , 381.2 kJ/mol ($\Delta_i H^o$) ^[3, 11] , 937 kJ/kg ($\Delta_i H^o$) ^[6] , 163 kJ/mol ^[9] , 594.1 kJ/mol (ΔH_i^o) ^[10] , 374.4 kJ/mol (condensed phase enthalpy of form., calcd., EDPHT 2.0) ^[11] , 575.5 kJ/mol (condensed phase enthalpy of form., calcd., quantum mechanical) ^[11] , 594 kJ/mol (solid ONC) ^[12] , 505.84 kJ/mol (calcd.) ^[13] , 726.47 kJ/mol (calcd., gas phase) ^[13]

	Calcd. (EXPLO5 6.03)	Lit. values		Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	7,376	7,271 (calcd.) ^[6]			
		ONC $\rho = 2.09 \text{ g/cn}$ $\Delta H_f^{\circ} = 594.1 \text{ kJ/m}$ (* = @ $Q_{\text{calc}} = Q_{\text{max}}$)	ol		
		Calcd. method	$Q_{\rm calc}$, MJ/kg		
		Lit. method	8.07		
		BKW-RDX	7.99		
		BKW-R	7.94		
		BKW-RR	7.87		
		Lit. method	8.06		
		Lit. method	7.63		
		Lit. method	8.06*		
T _{ex} [K]	5,324	ONC $\rho = 2.09 \text{ g/cn}$ $\Delta H_{\rm f}^{\circ} = 594.1 \text{ kJ/m}$			
		Calcd. method	T _{CJ} , K		
		BKW-RDX	3,325		
		BKW-R	4,849		
		BKW-RR	4,798		
p _{C-J} [kbar]	422	390 (calcd.) ^[6]			
		467 (@ 2.10 g cm ⁻¹ simple method) ^[1]			
		467 (@ 2.09 g cm simple method) ^[8]			
		520.85 (@ 2.189 g ΔH _f = 505.84 kJ/m			
		ONC $\rho = 2.09 \text{ g/cn}$ $\Delta H_{\rm f}^{\circ} = 594.1 \text{ kJ/m}$ crystal density d^{20} * = @ $Q_{\rm calc} = Q_{\rm max}$)			

	i	1		
		Calcd. method	p _{CJ} , GPa	
		Lit. method	46.9	
		BKW-RDX	49.8	
		BKW-R	46.6	
		BKW-RR	44.8	
		Lit. method	37.7 [†]	
		Lit. method	48.0	
		Lit. method	50.7	
		Lit. method	41.2*	
VoD [m s ⁻¹]	9,562 (@ TMD)	9,350 (@ 1.982 g	cm ⁻³ , calcd.) ^[6]	9,800 (@ 2.00 g cm ⁻³) ^[5]
		9,900 (calcd.) ^[2]		10,100
		9,820 (@ 2.09 g c simple method) ^[8]	m ⁻³ , calcd., K-J	(@ 2.00 g cm ⁻³) ^[7]
		1,026 (@ 2.189 g ΔH _f = 505.84 kJ/m		
		ONC $\rho = 2.09 \text{ g/cn}$ $\Delta H_f^{\circ} = 594.1 \text{ kJ/m}$ crystal $\rho d^{20}_4 \text{ of } 2.$ * = @ $Q_{\text{calc}} = Q_{\text{max}})^{\text{I}}$		
		Calcd. method	D, km/s	
		Lit. method	9.20	
		BKW-RDX	9.90	
		BKW-R	9.51	
		BKW-RR	9.31	
		Lit. method	8.93 [†]	
		Lit. method	9.97	
		Lit. method	10.16	
		Lit. method	8.95*	
V ₀ [L kg ⁻¹]	646			

I _{rel}	ONC $\rho = 2.09 \text{ g/cm}$ $\Delta H_f^{\circ} = 594.1 \text{ kJ/m}$ crystal $\rho d^{20}_4 \text{ of } 2.$ * = @ $Q_{\text{calc}} = Q_{\text{max}})^{\text{I}}$		
	Calcd. method	I _{rel}	
	Lit. method	146.7	
	BKW-RDX	144.9	
	BKW-R	140.9	
	BKW-RR	138.3	
	Lit. method	121.6 [†]	
	Lit. method	138.7	
	Lit. method	146.6	
	Lit. method	124.4*	

Thermal stability	Little known about long-term storage behavior ^[12] , at least one sample sealed in glass tube survived unchanged for 14 months ^[12]		
Enthalpy of sublimation [kJ/mol]	220.63 (calcd.) ^[13]		
Activation energy for pyrolysis initiation reaction [kJ/mol]	155.30 (calcd.) ^[13]		
Heat capacity [J•mol ⁻¹ •K ⁻¹]	Calcd. standard molar I from ^[13] :	neat capacity, <i>T</i> in K, data	
	<i>T</i> (K)	C ⁰ _{p,m}	
	298	411.86	
	400	492.60	
	500	554.97	
	600	602.25	
	700	637.73	
	800	664.47	
	900	684.85	
	1,000	700.60	

	ONC ^[4]
Chemical formula	C ₈ N ₈ O ₁₆
Molecular weight [g mol ⁻¹]	130.06
Crystal system	Monoclinic
Space group	C2/c (No. 15)
a [Å]	12.785(1)
<i>b</i> [Å]	8.840(1)
c [Å]	13.924(1)
α [°]	90
β[°]	98.03
γ [°]	90
V [Å ³]	1,558.17
Z	4
$ ho_{ m calc}$ [g cm ⁻³]	1.978
τ[K]	283-303

Solvent-free crystals from trifluoroacetic acid, fuming acid/sulfuric acid or anhydrous cyclohexane. [12]

- [1] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© **1994–2017** ACD/Labs).
- [2] P. E. Eaton, M. X. Zhang, Propellants, Explosives, Pyrotechnics, 2002, 27, 1–6.
- [3] J. P. Lu, Evaluation of the Thermochemical Code CHEETAH 2.0 for Modelling Explosives Performance, in, DTIC Document, 2001.
- [4] P. E. Eaton, M. X. Zhang, R. Gilardi, Angew. Chem., Int. Ed., 2000, 39, 401–404.
- [5] M. H. Keshavarz, J. Haz. Mat., 2009, 166, 762-769.
- [6] A. Smirnov, D. Lempert, T. Pivina, D. Khakimov, Central Eur. J. Energ. Mat., 2011, 8, 223-247.
- [7] P. W. Cooper, Explosives Engineering, Wiley-VCH, New York, 1996.
- [8] J. Alster, S. Iyer, O. Sandus, Molecular Architecture Versus Chemistry and Physics of Energetic Materials, in Chemistry and Physics of Energetic Materials, NATO ASI Series, Kluwer Academic Publishers, vol. 309, Suraya N. Bulusu (ed.), 1990.
- [9] S. Daoud, T. R. Berger, M. J. Villeburn, Explosive Compositions and Methods for Fabricating Explosive Compositions, US Patent 8,172,965 B2, May 8th 2012.
- [10] A. M. Astakhov, R. S. Stepanov, A. Y. Babushkin, *Combust., Explosion, Shock Waves*, **1998**, *34*, 85–87.
- [11] M. H. Keshavarz, H. Motamedoshariati, R. Moghayadnia, M. Ghanbarzadeh, J. Azarniamehraban, Propellants, Explosives, Pyrotechnics, 2013, 38, 95–102.
- [12] P. E. Eaton, M. X. Zhang, R. Gilardi, N. Gelber, S. Iyer, R. Surapaneni, *Propellants, Explosives, Pyrotechnics*, **2002**, *27*, 1–6.
- [13] J. Zhang, H. Xiao, J. Chem. Phys., 2002, 116, 10674–10683.

Octanitroterphenyl

Name [German, acronym]: 2,2^I,4,4^I,4^{II},6,6^I,6^{II}-Octanitro-*m*-terphenyl,

2,2",4,4',4",6,6',6"-octanitro-1,1':3',1"-terphenyl

[oktanit, ONT]

Main (potential) use: Thermally highly stable secondary explosive,

components of perforators or detonators in downhole well applications, possible spacecraft applications

Structural formula:

	ONT						
Formula	C ₁₈ H ₆ N ₈ O ₁₆	$C_{18}H_6N_8O_{16}$					
Molecular mass [g mol ⁻¹]	590.31						
Appearance at RT							
IS [J]	$H_{50} = 3.85^{[1]}$, 15.73 (Bruce $H_{50\%} = 64$ cm (type 12 too						
FS [N]	F ₅₀ >36 kgf ^[1]						
ESD [J]	$E_{50}=0.887~(@~293~\text{K})^{[1]},~E_{50}=0.940~(@~333~\text{K})^{[1]},~E_{50\%}=0.887~(T_0=293~\text{K})^{[1]},~0.940~(T_0=333~\text{K})^{[1]}$ Data from $^{[16]}$: ESD (NAVORD OD 44811), test conditions = 10 K Volt potential, 0.01 mfd capacitance, result = ONT passed* (*observation of 20 consecutive shots with no smoke, burning and/or explosion) $^{[16]}$ Data from $^{[16]}$ (*observation of 20 consecutive shots with no smoke, burning and/or explosion):						
	Capacitance (mfd) m/m m/r						
	1.0	-	-				
	0.1	-	3,000				
	0.01	7,400	7,500*				
	0.001	7,500	7,500*				

N [%]	18.98							
Ω(CO ₂) [%]	-62.34							
T _{m.p.} [°C]	>400 ^[5, 10] , 362 (>400 ^[5, 10] , 362 (dec.) ^[7] , 387.5 (dec., sample in sealed cell) ^[1]						
T _{dec.} [°C]	387.5 (DSC, san	nple in sealed cell) ^[1] , 334 (DTA,	onset exotherm) ^[8, 12]					
$ ho$ [g cm $^{-3}$]	1.80 (@ TMD) ^[1] ,	1.80 ^[3]						
Heat of formation	19.7 kcal/mol (¿ mol (enthalpy of	19.7 kcal mol ^{-1[3]} , 99.2 kcal/kg (ΔH_f) ^[1] , 38.0 kcal/kg (enthalpy of form.) ^[9] , 19.7 kcal/mol (ΔH^o_f) ^[15] , 94.6 kJ/mol (enthalpy of form., exptl.) ^[14] , 105.4 kJ/mol (enthalpy of form., calcd., emp.) ^[14] , 94.7 kJ/mol (enthalpy of form., calcd., S-D method) ^[14]						
Heat of combustion	-1,917.6 kcal m	$100^{-1[3]}$, $\Delta H^{\circ}_{c} = -1,917.6 \text{ kcal/mo}$	ol ^[15]					
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.					
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]		4,550 MJ•kg ⁻¹ (@ TMD, Q _{real}) ^[12] 1,035 kcal/kg (@ 1.490 g cm ⁻³ , calcd.) [H ₂ O vapor] ^[9]	1,039 kcal/kg (@ 1.490 g cm ⁻³) [H ₂ O vapor] ^[9]					
<i>T</i> _{ex} [K]								
p _{C-J} [kbar]		247 (calcd. K-J) ^[3]						
VoD [m s ⁻¹]		7,460 (@ 1.80 g cm ⁻³ , calcd. K-J) ^[3, 8] 7,310 (@ 1.78 g cm ⁻³ , calcd. empirical, Rothstein method) ^[4] 7,460 (@ TMD, calcd., K-J) ^[12]	7,330 (no ρ given) ^[3, 4] 7,330 (@ 1.800 g cm ⁻³) ^[6] 7,200 (@ 1.72 g cm ⁻³) ^[8, 12]					
V ₀ [L kg ⁻¹]		, , , , , , , (w 11112) catean, (t))						
.01-02 1		<u> </u>	<u> </u>					

SSGT [cm]	L_c (critical length) = 8 mm (critical length, underwater SSGT) ^[1]								
	Data from ^[16] :								
	Loading	Densi	ity (g/cn	1 ³)		Sensitiv	Sensitivity (DBG)		
	pressure (kpsi)	Avg.	s		Avg.	g	S _m		N
	4	1.396	0.03	113	4.567	0.0617	0.034	489	20
	8	1.487	0.00	082	4.752	0.0068	0.007	70	20
	16	1.595	0.00	068	5.213	0.0071	0.003	39	20
	32	1.6775	0.00)45	5.950	-	<u> </u>		20
	64	1.7688	0.00)38	6.936	0.0276	0.023	19	20
5 s explosion T [°C] Ignition T [°C]	370 ^[8, 12]								
Thermal stability	290 °C (threshold of thermal stability) ^[8, 12]								
	Analysis of explosives after heat treatment under vacuum ^[16] :								
	Explosive	T(°C)	Time (l	1)	% Explosi	ve in resid	due		
	ONT	278	16		96.7				
	ONT	250	44		98.7				
Vacuum stability test [cm³/days]	@ 200 °C (total amount of gas evolved): 0.9/2, 1.3/7, 1.4/14, 1.5/21, 1.6/28, 1.7/35, 1.9/42, 1.9/49, 2.0/56, 2.1/63, 2.3/70, 2.4/77, 2.5/84, 2.6/91 ^[2, 13] @ 175 °C (total amount of gas evolved): 0.2/2, 0.6/7, 0.9/14, 1.2/21, 1.3/28, 1.4/35, 1.5/42, 1.6/49, 1.7/56, 1.8/63, 1.9/70, 1.9/77, 2.0/84, 2.0/91 ^[2] @ 150 °C (total amount of gas evolved): 0.1/2, 0.2/7, 0.2/14, 0.3/21, 0.4/28, 0.4/35, 0.5/42, 0.6/49, 0.6/56, 0.7/63, 0.8/70, 0.8/77, 0.9/84, 0.9/91 ^[2] Data from ^[16] : Explosive								
	ONT (NOL ID	1803)	300	0.8	8		3.94		\neg
	L CIAT (NOLID	1003)	J00	0.8			J.74		

Vapor pressure [atm. @ °C]	Summary of data obtained and vapor pressures calculated in the vapor pressure study $^{\rm [16]}$:								
	T(°C)	Δt (s)	Surfac area (-	Wt. los	s (g)	Vapor p	oressure	
	277.8	38,400	5.1		0.1760)	1.50(10	O ⁻⁵)	
	247.6	56,220	6.3		0.0189)	8.57(10	0 ⁻⁷)	
	247.6	55,200	5.1		0.0185	5	1.07(10	0 ⁻⁶)	
	247.6	190,920	5.1		0.0341	l	5.67(10	10 ⁻⁷)	
	206.9	71,040	5.1 0.0021		l	9.01(10 ⁻⁸)			
	206.9	229,020	5.1		0.0041	l	5.46(10	0 ⁻⁸)	
	149.7	492,900	5.1			Indeterminate			
Compatibility	Data in ^[16] :								
	Sample			Com	patible		@28	0 °C	
						ı	in gas e (cc/g)	2 h (mL/g/h)	
	ONT/Ag		50/50	Yes		0.22		0.38	
	ONT/Al		50/50	Yes		0.25		0.35	
	ONT/Pb + Sb		50/50	Yes		0.26		0.35	
	ONT/stai	nless steel	50/50	Yes		0.32		0.36	

	ONT ^[7]
Chemical formula	C ₁₆ H ₆ N ₈ O ₁₆
Molecular weight [g mol ⁻¹]	590.31
Crystal system	Orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a [Å]	11.4131(9)
b [Å]	11.4128(5)
c [Å]	16.4168(12)
α [°]	90
β[°]	90
γ [°]	90
V [ų]	2,138.4

Z	4
$ ho_{ m calc}$ [g cm ⁻³]	1.834
T[K]	150

- [1] F. Hosoya, K. Shiino, K. Itabashi, Propellants, Explosives, Pyrotechnics, 1991, 16, 119-122.
- [2] J. F. Baytos, *High-Temperature Vacuum Thermal Stability Tests of Explosives*, LA-5829-MS, LANL, January **1975**.
- [3] P. E. Rouse, J. Chem. Engineering Data, 1976, 12, 16-20.
- [4] L. R. Rothstein, *Propellants and Explosives*, **1981**, *6*, 91–93.
- [5] E. G. Kayser, J. Energet. Mater., 1983, 1:3, 251-273.
- [6] I. R. Stine, I. Energet, Mater., 1990, 8, 41-73.
- [7] S. Zeman, M. Roháč, Z. Friedl, A. Růžička, A. Lyčka, *Propellants, Explosives, Pyrotechnics*, **2010**, *35*, 130–135.
- [8] S. Zeman, M. Roháč, *Chinese J. Energet. Mater.*, **2006**, *14*, 361–366.
- [9] A. Smirnov, M. Kuklja, M. Makhov, V. Pepkin, *Methodical Problems of Experimental Definition of Heat of Explosive Transformation*, ICT **2017**, Karlsruhe, Germany, pp. 15-1–15-11.
- [10] E. G. Kayser, *Analysis Methods for Explosive Materials I. Polynitro Compounds*, NSWC TR 81–123, Naval Surface Weapons Center, Maryland, USA, 3rd March **1962**.
- [11] W.-P. Lai, P. Lian, B.-Z. Wang, Z.-X. Ge, J. Energet. Mater., **2010**, 28, 45–76.
- [12] S. Zeman, Z. Friedl, M. Roháč, Thermochim. Acta, 2006, 451, 105-114.
- [13] W. Yang, R. A. Parrott, L. A. Behrmann, W. E. Voreck, P. Kneisel, *High Temperature Explosives for Downhole Well Applications*, US Patent US 2002/0129940 A1, 19th September **2002**.
- [14] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248-258.
- [15] LASL Explosive Property Data, T. R. Gibbs, A. Popolato (eds.), University of California Press, Berkeley, 1980.
- [16] E. E. Kilmer, A Characterization Study of Several Heat Resistant Explosives, NOLTR 74-177, Naval Ordnance Laboratory, White Oak, Maryland, USA, 4th October 1974.

Octogen

Name [German, acronym]: β -Octogen, tetramethylenetetranitramine,

1,3,5,7-tetraza-1,3,5,7-tetranitrocyclooctane, cyclotetramethylenetetranitramine, octahydro-1,3,5,7-

tetranitro-1,3,5,7-tetrazocine, 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane, homocyclonite [β-HMX]*

*(Values given are for β-HMX unless otherwise stated: Note - although values have been included for γ-HMX, it is has been determined that γ-HMX is in fact a hydrate and not a true

polymorph of HMX).

Main (potential) use: Secondary (high) explosive, high performance solid

propellant, ingredient in plastic-bonded explosives[†], explosive charge when desensitized^[16], booster charge with TNT in Octols^[16], oxidizer in solid rocket and gun

propellants^[16]

Structural formula:

[†] Military-grade HMX consists of only the β-polymorph^[16]

	β-нмх
Formula	$C_4H_8N_8O_8$
Molecular mass [g mol ⁻¹]	296.16
Appearance at RT	β-HMX: white transparent crystals on recryst. from acetone/acetonitrile ^[130] , γ-HMX: fluffy white powder/crystals ^[130] , white crystalline material ^[137] , white crystals ^[139] , white solid ^[14, 147] , white, crystalline solid ^[16] , solid light crystalline substance, large, transparent, rhombic crystals if slowly recryst. from acetone ^[150]
IS [J]	6.40 ^[1] , 7.4 Nm ^[3] , 7.59 (1st reaction) ^[6,82] , 6.40 (sound) ^[6,82] , 6.35 (20 µm) ^[8] , 6.55 (50 µm) ^[8] , 6.65 (100 µm) ^[8] , 6.88 (200 µm) ^[8] , 9.17 (300 µm) ^[8] , 10.72 (400 µm) ^[8] , 6.37 ^[9] , 60 cm (B.M.) ^[12,13] , 23 cm (P.A.) ^[12,13] , 26 cm (tool type 12, E.R.L.) ^[12,13] , 33 cm (tool type 12, 5 kg mass, E.R.L.) ^[12,13] , 32 cm (32 mg sample, B.M.) ^[14] , 9 in (23 mg sample, P.A.) ^[14] , 32 cm (2 kg mass, B.M.) ^[16] , $H_{50} = 26$ cm (tool type 12) ^[17] , $H_{50} = 37$ cm (tool type 12B) ^[17] , $H_{50} = 33$ cm

(tool type 12, 5 kg mass)^[21], H_{50} = 40 cm (tool type 12B, 5 kg mass)^[21], $H_{50\%}$ = 26 cm (US-NOL apparatus)^[28, 29], $H_{50\%}$ = 26 cm (LASL test)^[23], 32 cm (20 mg sample, 2 kg mass, B.M.)^[27], 9 in (23 mg sample, 2 kg mass, P.A.)^[27], median height = 73 cm (5 kg mass, 30 mg sample, Rotter apparatus)^[29], $H_{50\%}$ = 26 cm (LASL)^[29], $H_{10\%}$ = 32 cm (B.M.)^[29], $H_{10\%}$ = 9 in (P.A.)^[29], 4.0 Nm (BAM)^[34], 7.59 (drop energy required for 50% initiation probability, 25 mg sample, Julius-Peters apparatus)^[33], Rotter FOI = 49–55 (powdered sample)^[38], 30–35 cm (US drop-hammer)^[38], 6.2 (micro-HMX)^[164], 6.6 (submicro-HMX)^[164], A_{d1} = 92%, A_{d2} = 100%, LL = 0.7 m, $A_{50 d1}$ = 1.8 m, $A_{50 d2}$ = 0.8^[19], 31–32 cm (β-HMX, Holston Defense Corp., 5 kg mass)^[174], 6–25 cm (δ-HMX, Holston Defense Corp., 5 kg mass)^[174], 6–12 cm (γ-HMX, Holston Defense Corp., 5 kg mass)^[174]

Sensitivity: $\delta \to \gamma \to \alpha \to \beta \to [27, 41, 174]$, crystal habit has an significant effect on the IS of α -HMX and γ -HMX but little effect on δ -HMX $^{[174]}$

P.A. apparatus (type 12 tool, 2.5 kg mass): δ -=19.2 cm, γ -=13.8-33.9 cm, α -=15.6-22.4 cm, β -=21.2-24.9 cm^[27]

Olin impact test apparatus^[24]:

Olin impact test apparatus			
Dropping mass (kg)	Drop height (cm) No. of trials No.		No. of initiations
5.0	9	20	0
4.0	14	10	1
3.0	21	32	1
5.0	14	13	1
4.0	21	10	2
3.0	32	30	3
5.0	21	15	2
2.0	56	10	1
4.0	32	30	8
3.0	48	35	5
5.0	32	20	12
3.0	56	30	17
Dropping mass (kg) 5.0 4.0 3.0 5.0 4.0 3.0 5.0 4.0 3.0 5.0 2.0 4.0 3.0 5.0 4.0 5.0 5.0 5.0	48	10	9
4.0	56	10	7
5.0	48	10	10

Powdered samples: $H_{50\%} = 26 \text{ cm (NOL)}^{[29]}$, $H_{50\%} = 26 \text{ cm (LASL)}^{[29]}$, $H_{10\%} = 32 \text{ cm (B.M.)}^{[29]}, H_{10\%} = 9 \text{ in (P.A.)}^{[29]}, 42 \text{ (BAM, Julius-Peters)}^{[50]},$ 17-25 cm (ERL)^[51], 1-8 cm (ABL)^[51], 27 in (Tc)^[51], $H_{50} = 30$ cm $(2 \text{ kg hammer})^{[53]}$, $H_{50} = 16.8 \pm 0.1 \text{ cm (FC-HMX)}^{[55]}$, $H_{50} = 72.2 \pm 0.1 \text{ cm}$ $(FD-HMX)^{[55]}$, $H_{50} = 59.6 \pm 0.1$ cm $(LC-HMX)^{[55]}$, $H_{50} = 68.8 \pm 0.1$ cm $(LD-HMX)^{[55]}$, 42 (BAM Julius-Peters)^[50], 17-25 cm (ERL)^[51], 1-8 cm (ABL)^[51], $H_{50} = 30$ cm (2 g hammer)[53, 101], <7 (α-HMX (authentic), Rotter Fol, 5 kg mass, VMD 80 μm, Rotter impact test)^[59], 60 (β -HMX (authentic), 17–23 (α -HMX (from reaction of TAT with N₂O₅/HNO₃; quenched with H₂O), Rotter Fol, 5 kg mass, VMD 14 µm, Rotter impact test)^[59], 13 (α -HMX (from reaction of TAT with N₂O₅/HNO₃; not quenched with H₂O), Rotter Fol, 5 kg mass, VMD 12 µm, Rotter impact test)^[59], 33–40 (α -HMX (from reaction of TAT with N₂O₅/HNO₃; guenched with H₂O, followed by addition of HMX/HNO₃), Rotter FoI, 5 kg mass, VMD 24 μm, Rotter impact test)^[59], 20–27 (α -HMX (from reaction of DADN with N₂O₅/Ac₂O/HNO₃ followed by quenching with H₂O), Rotter Fol, 5 kg mass, VMD 17 μm, Rotter impact test)^[59], Rotter Fol, 5 kg mass, VMD 80 μm, Rotter impact test)^[59], 20 cm (BAM, 2 kg mass, HMX Klasse-C)^[60], $H_{50} = 29$ cm^[63], 5.0 (β-, nonheated sample, BAM)^[65], 2.0 (δ-, sample heated @ 6 °C/min, maintained @ 200 °C for 30 min then cooled to RT, BAM)[65], 19 cm (NEDED)^[66], 28 cm (NOL)^[22], 32 cm (LANL)^[22], 27 in (20 μ . Thiokol app.)^[67], 1.8 cm (20 μ , ABL app.)^[67], $H_{50\%} = 26$ cm (US NOL, 2.5 kg hammer, 35 mg sample)[74], explosive layer was only partly consumed for impacts from a drop-height of 1 m (β-HMX, glass-anvil drop-weight machine, max. drop height 1.3 m, powdered sample)^[75], 3 Nm $(H_{50}\text{Wg}^{-1})^{[77]}$, 1.8 cm (ABL)^[80], 17-25 cm (ERL)[80], 26 cm (Bruceton method, type 12 tool, 2.5 kg mass, 40 mg sample, 5/0 sandpaper, 25 trials)[84], 7.5 Nm[88], 6.0 Nm (20 °C, 42% rel. humidity, time of sample bead milling = 0 h)[99], 6.0 Nm (20 °C, 42% rel. humidity, time of sample bead milling = 1.0 h)[99], 6.0 Nm (20 °C, 42% rel. humidity, time of sample bead milling = 5.9 h)^[99], 7.5 Nm ($d_{50.3}$ = 0.58 μ m, ball milled)^[103], 7.5 Nm ($d_{50.3} = 355 \mu m$)^[103], 6.0 Nm ($d_{50.3} = 7.6 \mu m$, particles processed by PCA)^[103], $H_{50} = 24.5$ cm (5 kg mass, 30 mg sample, GJB-772A-97 standard method 601.2)[114], 10 Nm (HMX core material, mean particle size = 197 μ m)^[117], 7.5 Nm (pure HMX after 3 h fluidized bed process, mean particle size = 75 μ m (abrasion))^[117], 17 cm (minimum, 2.5 kg mass, type 12 tool, HMX grade B, composition: β-HMX = ≥98% by weight, α-HMX = ≤0.01% by weight, RDX = ≤2.0% by weight)[120], 18 cm (ERL, NSWC Indian head values, virgin HMX, 99.8% purity)[120], 26.2 cm (ERL, LANL values, recovered HMX, 100% purity, particle size = 22.45 μ m)^[120], 7.5 Nm (raw HMX, $X_{50.3}$ = 355 μ m, 1.923 g cm⁻³)[123], 7.5 Nm (milled HMX using annular gap ball mill, $X_{50.3} = 0.58 \,\mu\text{m}, 1.951 \,\text{g cm}^{-3})^{[123]}, 6.0 \,\text{Nm}$ (HMX micronization by PCA process, $X_{50.3} = 7.6 \,\mu\text{m}$, 1.939 g cm⁻³)^[123], IS of δ -HMX is independent of crystal size and method of synthesis, and δ -HMX is more sensitive when no grit is on the drop weight (Cady)[129], δ-HMX has 22% lower drop height cf. β-HMX (type 12A impact machine, 50% probability, Bruceton method)^[129], $H_{50} = 24$ cm (β-HMX, BAM, type 12 tool)^[130], $H_{50} = 22$ cm (γ-HMX, BAM, type 12 tool)^[130], $H_{50} = 26.4$ cm (sm-HMX (submicron-HMX), >99% y-polymorph, oblong particles,

average particle width ~300 nm, average particle length = $1-2 \mu m$, type 12 machine)^[131], $H_{50} = 24.9 \text{ cm}$ (standard-HMX (β -HMX), type 12 machine)^[131], $H_{50} = 29 \text{ cm}$ (2.5 kg mass, type 12 tool)^[133], 9 in (23 mg sample, P.A.)^[152], 60 cm (B.M.)^[152], 30.7 (FEM-HMX)^[171]

 $H_{50\%}$, up-down method, 25 mg samples, pressed to 10 kbar to give pellets of 5 mm diameter, 0.8 mm height; grit was fine, very fine or coarse where stated; PC = polycarbonate, PS = polysulfone, PMMA = polymethyl methacrylate, PP = polypropylene^[54]:

Sample (sample + binder)	50% Height (cm)	Sample (sample + binder)	50% Height (cm)
HMX (pure)	29.0 ± 2.0	HMX + PMMA (coarse)	22.6 ± 1.0
HMX + PC (fine)	16.0 ± 1.5	HMX + PP (fine)	24.4 ± 0.8
HMX + PS (very fine)	15.1 ± 1.0		·

Size density and sensitivity of HMX crystalline particles, C-HMX (fine) = commonly used β -HMX, fine particles, C-HMX (coarse) = commonly used β -HMX, coarse particles, D-HMX (fine) = desensitized β -HMX, fine particles with mean particle size of ~20 μ m, D-HMX (coarse) = desensitized β -HMX, coarse particles with mean particle size of ~150 μ m $^{[56]}$:

Material	I I	Mean size, d ₅₀ (μ m) Average crystal ρ @ 20 °C (g/cm ³)	Drop-weight impact tests	
	· '		Exploding probability Hammer: 10 kg Sample: 50 mg Drop height: 25 cm	H ₅₀ (cm) of go and no go Hammer: 2 kg Sample: 30 mg
C-HMX (fine)	23.1	1.8984±0.0005	88% (0.69, 0.98) _{0.95}	16.8 ± 0.1
C-HMX (coarse)	162.4	1.9003 ± 0.0005	72% (0.51, 0.88) _{0.95}	59.6±0.1
D-HMX (fine)	19.6	1.9015±0.0003	24% (0.09, 0.45) _{0.95}	75.7±0.1
D-HMX (coarse)	148.9	1.9018±0.0003	60% (0.45, 0.74) _{0.95}	68.8±0.1

Fine and coarse HMX fractions (according to UNST/SG/AC.10/11, ρ measured using liquid pycnometry)^[90]:

Sieve fraction (µm)	ρ (g cm ⁻³)	IS (Nm) (trial 1/ trial 2)	Comments
355-425	1.900	15/15	Recryst., stirrer rate = 360 rpm
106-180	1.895	25/7.5	Recryst., stirrer rate = 450 rpm
355-425	1.895	20/15	Recryst., stirrer rate = 450 rpm
355-425	1.895	10/7.5	As-received

Particle size (d_{50}) (µm) vs. energy of impact sensitivity tests (approx. values)^[102]: 3 µm/4 Nm, 10/4, 15/5, 105/75, 103/15, 103/20^[102] ρ (pycnometry, g cm⁻³) vs. energy of impact sensitivity tests (J)^[102]: 1.873 g cm⁻³/4.5 J, 1.883/4.5, 1.902/5.0, 1,895/6.5, 1.9/9.0, 1.934/9.5^[102]

 H_{50} values (2.5 kg hammer, according to GJB772A-2005 method 601.2)^[169]:

Sample	wt./%		H ₅₀ / cm
	α-HMX	β-НМХ	
β-НМХ	0	100	44.1
HMX-I	60	40	34.1
HMX-II	80	20	30.7
HMX-III	90	10	28.4
α-HMX	100	0	26.1

 $H_{50} = 79.10$ cm (submicron-HMX, median particle diameter = 616 nm)^[170], $H_{50} = 34.05$ cm (raw HMX)^[170]

FS [N]

120^[3], 154.4^[7], 152.56 (20 μm)^[8], 141.99 (50 μm)^[8], 141.70 (100 μm)^[8], 142.46 (200 μm)^[8], 126.88 (300 μm)^[8], 114.12 (400 μm)^[8], 154.4^[9], $P_{fr,LL} = 200 \text{ MPa}^{[19]}, P_{fr,50\%} = 350 \text{ MPa}^{[19]}, \text{ Rotary friction test: mean figure of friction (F0F)} = 2.5^[20], BAM mean limiting load = 147^[20], mallet friction test: steel on steel = 50%, nylon on steel = 0%, wood on softwood = 0%, wood on hardwood = 0%, wood on vorkstone = 0%^[20], explodes with steel shoe (friction pendulum test)^[14, 16, 152], unaffected by fiber shoe (friction pendulum test)^[14, 16], 113 (BAM Julius-Peters)^[50], 11–17 kg (BAM)^[51], 100 psi @ 4 ft/s (ABL)^[51], 8.0 kg (Julius-Peters, HMX Klasse-C)^[60], 100 Nm (50% value)^[61], 50 psi @ 4 ft/s (ABL)^[67], Rotter FoF = 2.5^[72], Rotter FoF = 1.5^[72], 147 (BAM, limiting load)^[72], 80 (BAM limiting load)^[72], 120 (BAM limiting load)^[72], 11–17 kg (BAM)^[80], 50–100 psi @ 4 ft/s (ABL)^[80], 144^[88], 144 (20 °C, 42% rel.$

humidity, time of sample bead milling = 0 h)^[99], 216 (20 °C, 42% rel. humidity, time of sample bead milling = 1.0 h)^[99], 240 (20 °C, 42% rel. humidity, time of sample bead milling = 5.9 h)^[99], 96 ($d_{50.3}$ = 0.58 μm, ball milled)^[103], 108 ($d_{50.3}$ = 355 μm)^[103], 120 ($d_{50.3}$ = 7.6 μm, particles processed by PCA)^[103], P = 100% (explosion probability, angle of pendulum = 90°, rel. pressure = 3.92 MPa)^[114], 128 (HMX core material, mean particle size = 197 μm)^[117], 160 (pure HMX after 3 h fluidized bed process), mean particle size = 75 μm (abrasion)^[117], 108 (raw HMX, $X_{50.3}$ = 355 μm, 1.923 g cm⁻³)^[123], 96 (milled HMX using annular gap ball mill, $X_{50.3}$ = 0.58 μm, 1.951 g cm⁻³)^[123], 120 (HMX micronization by PCA process, $X_{50.3}$ = 7.6 μm, 1.939 g cm⁻³)^[123], 15.6 kg (50% load, sm-HMX (submicron-HMX), >99% γ-polymorph, oblong particles, average particle width ~300 nm, average particle length = 1–2 μm, BAM)^[131], 11.6 kg (50% load standard-HMX (β-HMX), BAM)^[131], 116 (micro-HMX)^[164], 183.5 (FEM-HMX)^[171]

Wood mallet on stone = $0\%^{[158]}$, wood mallet on soft wood = $0\%^{[158]}$, wood mallet on hard wood = $0\%^{[158]}$

 ρ (g cm⁻³, calcd. from X-ray diffraction measurements) vs. pin load (N) of friction tests, approx. values^[102]: 1.885/60, 1.887/80, 1.888/85, 1.888/95, 1.89/110, 1.892/130, 1.879/145^[102]

particle size (d_{50} , μ m) vs. pin load of friction tests (N) (approx. values)^[102]: 4μ m/80 N, 10/85, 12/108, 104/97, 104/130, 105/145^[102]

Test swing angle = 80°, 2.45 MPa pressure, % probability of explosion^[169]:

Sample	wt./%		P/%
	α-HMX	β-нмх	
β-НМХ	0	100	86
нмх-і	60	40	92
HMX-II	80	20	96
HMX-III	90	10	98
α-HMX	100	0	100

ESD [J]

0.21–0.23 (<100 μ m), 2.89^[1, 4], 236.4 mJ^[4], spark sensitivity: 0.2 (brass electrode, 3 mm Pb foil thickness)^[16, 17], 1.03 (brass electrode, 10 mm Pb foil thickness)^[16, 17], 0.12 (steel electrode, 1 mm Pb foil thickness)^[16, 17], 0.87 (steel electrode, 10 mm Pb foil thickness)^[16, 17], 225 \geq 726 mJ^[50], depends on size^[51], $E_{50\%} = 0.25^{[67]}$, $E_{50\%} = 0.21 \pm 0.09$ (Bruceton formula)^[69], $E_{50\%} = 0.17 \pm 0.02$ (Bruceton formula)^[69], $E_{50\%} = 0.23$ (LANL using 0.008 cm Pb foil confinement)^[69], 56–1,800 mJ (old equipment, different particle sizes), >5,600 mJ (medium particle size of 341 μ m, new equipment)^[122], energy in capacitors = 182 mJ, spark duration = short^[124], 0.625 (threshold of

initiation, sm-HMX (submicron-HMX), >99% γ -polymorph, oblong particles, average particle width ~300 nm, average particle length = 1–2 μ m, ABL-ESD machine) $^{[131]}$, 0.25 (threshold of initiation, standard-HMX (β -HMX), ABL-ESD) $^{[131]}$, 0.25 (micro-HMX) $^{[164]}$, 0.625 (submicro-HMX) $^{[164]}$, 0.1050 (FEM-HMX) $^{[171]}$, 0.400 (40,000 Voltage, 100 sieve, for zero ignition, 500 MMF capacitance, 0.005" gap setting) $^{[173]}$

Data from^[180]:

Material	50	% Point energy (J)	
	3-mil foil	10-mil foil	% Expl.
HMX (impact std)	0.23	1.42	23

Heated explosives, HMX (88–63), \star = Polystyrene holders, † = Teflon holders^[180]:

T (°C)	50% Point energy (J)		
	3-mil foil	10-mil foil	% Expl.
22	0.26	1.12	75*
75	0.26	1.03	0 [†]
125	0.19	0.80	0 [†]
175	0.12	0.52	25 [†]
200	0.125	0.36	54 [†]

Heated molding powders, * = Polystyrene holders, † = Teflon holders^[180]:

T (°C)	50% Point energy (J)		
	3-mil foil	10-mil foil	% expl.
	9,404 (94/3/	3, HMX/NC/C	EF)
22	0.42	3.13	0*
75	0.33	3.25	0 [†]
125	0.30	2.50	O [†]
175	0.24	1.92	25 [†]
	LX-04 (85/1	L5, HMX/Viton)
22	1.04	2.58	38*
75	0.78	2.25	O [†]
125	0.73	2.10	42 [†]
175	0.65	2.15	31 [†]

N [%]	37.84
Ω(CO ₂) [%]	-21.61

T_{phase transition} [°C]

193 $(\beta \to \delta -)$, >160–164 $(\alpha \to \delta -)^{[16]}$, meta exists at 160–164^[16], 102–104.5 $(\beta \to \alpha -)^{[16]}$, 192 $(\beta \to \delta -$ crystalline phase transition, endo, irrev., DTA @ 2 °C/min)^[30], 193–201 $(\alpha \to \delta -)^{[30,35]}$, 167–183 $(\beta \to \delta -)^{[30,35]}$, 167–182 $(\gamma \to \delta -)^{[30]}$, 154 $(\beta \to \gamma -)^{[30,35]}$, 116 $(\alpha \to \beta -)^{[30,35]}$, 181–193 (DSC, $\beta \to \delta -)^{[41]}$, 188–194 (DSC, $\alpha \to \delta -)^{[41]}$, 171–182 $(\gamma \to \delta -)^{[41]}$, β -HMX $\frac{\text{heating} \cdot 102 - 104.5 °C}{\text{production}}$ α -HMX $\frac{\text{heating} \cdot 160 - 164 °C}{\text{production}}$ γ -HMX $\frac{\text{heating} \cdot 160 - 164 °C}{\text{production}}$ δ -HMX $\frac{\text{heating} \cdot 160 - 164 °C}{\text{production}}$ δ -HMX δ -HMX

192 (DTA @ 2 °C/min, 1 atm, β-HMX in air, endo, irreversible cryst. phase transition of β - \rightarrow δ -)^[30], 185 (β - \rightarrow δ - phase transition, endo, DTA)^[30], HMX-I is RT stable form^[22]. HMX-II is stable form from 115-156 °C^[22]. HMX-III has only a very narrow stability range @ atmospheric pressure @ 156 °C[22], HMX-IV is stable from ~156 °C to mpt. of 279 °C^[22], pure samples of the unstable polymorphs transform to β-HMX @ RT (except in presence of solvent) $^{[41]}$, ~159 °C $\beta\text{-}\to\delta\text{-}$ (most commonly observed phase transition) $^{[41]}$, presence of RDX impurities facilitates β - \rightarrow δ - conversion @ 159 °C^[41], no β - \rightarrow δ - conversion <170 °C if RDX-free HMX^[41], β - \rightarrow δ - (s) \rightarrow (s) phase transition occurs @ RT if both polymorphs in close contact^[41], δ-HMX can be stored indefinitely without phase transition to β -HMX occurring if pure^[41]. β - \rightarrow α - occurs @ 170–190 °C^[41], α - \rightarrow β - (for solids) not observed^[41], α - \rightarrow δ ->190 °C, reverse transition not observed^[41], β - \rightarrow y- not observed^[41], but $y \rightarrow \beta$ - occurs @ RT (s)^[41], ~190 (insensitive β - \rightarrow sensitive δ -, approx. 6.7% volume expansion)^[65], 192.0 (endo, DSC @ 10 °C/min, β - \rightarrow δ -, rate constant from 7.2 × 10^{-4} s⁻¹ @ 178 °C to 2.6 × 10^{-3} s⁻¹ @ 183 °C, E_a = 416.6 kJ mol⁻¹)^[65], 190-195

(β- \rightarrow δ- occurring, 24.9% of HMX is δ- @ 195 °C, only 5% β- remained @ 210 °C, 98.5% δ- on cooling back to 30 °C, in situ XRD, Rietveld refinement)^[65], ε - \rightarrow δ- occurs via intermediate formation of β-HMX^[100], heating a ε -HMC single crystal to 170 °C followed by rapid cooling results in formation of a single crystal of β-HMX^[100], heating single crystal of ε -HMX to 200 °C results in formation of polycrystalline aggregate of δ-HMX^[100], ε - \rightarrow β-transformation occurs immediately after grinding ε -HMX crystals in agate mortar^[100], no phase transition between ambient temperature and 280 °C (sm-HMX (submicron-HMX), >99% γ-polymorph, oblong particles, average particle width ~300 nm, average particle length = 1–2 μm, DSC @ 1 K/min up to 200 °C, then 5 K/min)^[131], β-HMX is stable to ~102–104.5 °C (β- \rightarrow α-)^[16], metastable γ-form exists @ 160–164 °C^[16], δ- form exists >160–164 °C^[16], the four different HMX polymorphs can be prepared by precipitation form different solvents^[16], metastable @ RT (α -HMX)^[150], stable @ RT (α -HMX)^[150], metastable @ RT (α -HMX)^[150], labile @ RT (α -HMX)^[150]

HMX phase transition 7 from DSC $^{[41]}$: β - \rightarrow δ - @ 454-466 K (181-193 °C) $^{[41]}$, α - \rightarrow δ - @ 461-467 K (188-194 °C) $^{[41]}$, γ - \rightarrow δ - @ 444-455 K (171-182 °C) $^{[41]}$, no phase transition to a plastically crystalline phase @ high $T^{[41]}$

196.31 (β- \to δ-, LC-HMX, DSC @ 1 °C/min, 1 mg sample, N₂ atm.)^[55], 193.96 (β- \to δ-, FC-HMX, DSC @ 1 °C/min, 1 mg sample, N₂ atm.)^[55], 202.33 (β \to δ, LD-HMX, DSC @ 1 °C/min, 1 mg sample, N₂ atm.)^[55], 203.81 (β- \to δ-, FD-HMX, DSC @ 1 °C/min, 1 mg sample, N₂ atm.)^[55], 180 (β- \to δ-, DSC @ 5 °C/min, 5 mg sample)^[60]

Transition	Goetz & Brill (slow heating)	Goetz and Brill (rapid heating)	McCrone	Fedoroff	Orlova et al.	Firsich	Achuthan & Jose
β - \rightarrow α -	-	175	115	102	115	102	115
$\beta ext{-} o\delta ext{-}$	142	175	-	-	-	-	_
α - \rightarrow γ -	-	_	156	160	156	160	_
$\alpha ext{-} o\delta ext{-}$	147	185	_	_	_	_	_
$\gamma ext{-} o\delta ext{-}$	205	170	156	164	271	164	_

β-HMX obtained by crystallization from acetone solution [100], γ-HMX by dissolving β-HMX under moderate heating in cyclohexanone then adding the soln. to dichloroethane and filtration of γ-HMX crystals [100], ε-HMX obtained as coproduct of β- \rightarrow δ- transformation in presence of cyclohexanone near bpt. of solvent (ca. 152–153 °C) [100], spindle-shaped δ-HMX crystals change into fine-grained opaque aggregates of β-HMX days after crystallization [100], heat effect of transitions [100]: -1.88 kcal/mol (α- \rightarrow δ-) [100], -2.14 kcal/mol β- \rightarrow δ- [100], -1.10 kcal/mol γ- \rightarrow δ- [100], -2.21 kcal/mol α- \rightarrow δ- [100]

388.5 K (
$$\beta$$
- \rightarrow α -, ΔH = 1.9 kJ/mol)^[78], 439.0 K (α - \rightarrow δ -, ΔH = 7.95 kJ/mol)^[78]

 $eta o \delta$ phase transition T, (<74 µm particle size, endo) @ various heating rates, open pan, using DSC $^{[128]}$:

Heating rate (°C/min)	T _{onset} (°C)	T _{peak} (°C)	Δ <i>H</i> (J/g)
10	192.2 ± 0.6	196.2±0.6	30.6
15	194.6 ± 0.1	199.5±0.8	29.4
20	195.5 ± 0.5	201.4 ± 0.7	30.1
25	196.9 ± 0.9	202.6 ± 0.6	31.1

 $\beta \to \delta$ phase transition T @ 15 °C/min, 2.5 mg sample, open pan, various particle sizes, using DSC^[128]:

Particle size (µm)	T _{onset} (°C)	T _{peak} (°C)	Δ <i>H</i> (J/g)
>354	181.0 ± 0.6	186.5 ± 0.6	27.8 ± 0.1
177-354	178.6 ± 0.6	191.4 ± 2.1	27.4 ± 0.3
125-177	188.9±0.8	194.9±0.3	28.2 ± 0.4
74–125	194.7 ± 0.5	199.6±0.3	26.8 ± 0.9
<74	193.3 ± 0.5	200.5 ± 0.7	29.6 ± 2.7

158–190 (range of values for 0.05–10 °C/s heating rates, $\beta \to \delta$ phase transition)^[129], α -HMX stable @ 103–162 °C^[130], δ -HMX stable from 182 °C \to mpt.^[130], γ -HMX metastable with respect to other polymorphs^[130], $\gamma \to \beta$ occurs @ 85 °C and polar solvent (e.g. $\mathrm{H_2O})^{[130]}$

Fig. 14 data from^[130]:

Fig. 14: Interconversion of different polymorphs of HMX^[130].

Arrhenius data for the three thermally induced solid-phase transformation of HMX at 1 atm. $^{[130]}$:

HMX phase transition	E _a (kJ/mol)	Log A (Arrhenius factor)	<i>T</i> (°C)
eta- $ au$ -	204 ± 14	19.9 ± 1	166-294
$lpha ext{-} o\delta ext{-}$	208 ± 18	19.9 ± 2	188-200
$\gamma ext{-} o\delta ext{-}$	219 ± 20	21.8 ± 2	171–185

Pouring acetone or acetonitrile soln. of $\beta\text{-HMX}$ into cold H_2O (10 °C) precipitates fluffy powder of $\gamma\text{-HMX}^{[130]}$, heating $\gamma\text{-HMX}$ in H_2O results in conversion to crystalline $\beta\text{-HMX}^{[130]}$, $\alpha\text{-HMX}$, $\beta\text{-HMX}$ and $\gamma\text{-HMX}$ are stable up to 275 °C (TGA/DTA)^[130], pressing pellets of nano- $\gamma\text{-HMX}$ causes conversion to $\beta\text{-HMX}^{[130]}$, 180–190 ($\beta\text{-}\to\delta\text{-}$, solid state, @ 10 °C/min, STA, exact value depends on heating rate) $^{[130]}$

180 (weak endo, DSC @ 5 °C/min, β - (monoclinic) \rightarrow δ - (hexagonal), 0.5–2.5 mg sample, Al pan with perforated cover, N₂)^[132], 190 (weak endo, DSC @ 20 °C/min, β - (monoclinic) \rightarrow δ - (hexagonal), 0.5–2.5 mg sample, Al pan with perforated cover, N₂)^[132]

 β -HMX decomposes @ elevated T in the pressure range 0.2–6.5 GPa^[135], but β - \rightarrow δ- occurs @ 453–493 K @ pressures <0.2 GPa^[135]

	$\begin{array}{l} 193-201\ (\alpha - \to \delta \text{-})^{[162]},\ 167-183\ (\beta - \to \gamma \text{-})^{[162]},\ 167-182\ (\gamma - \to \delta \text{-})^{[162]},\ 167-183\ (\beta - \to \delta \text{-})^{[174]},\ 154\ (\beta - \to \gamma \text{-})^{[174]},\ 102-104\ (\beta - \to \gamma \text{-})^{[174]},\ 193-201\ (\alpha - \to \delta \text{-})^{[174]},\ 116\ (\alpha - \to \beta \text{-})^{[174]},\ metastable\ (\alpha - \to \gamma \text{-})^{[174]},\ 160-164\ (\alpha - \to \delta \text{-})^{[174]},\ 167-182\ (\gamma - \to \delta \text{-})^{[174]} \end{array}$				
	Туре	T (°C)	Lat	ent heat]
			cal/g	kcal/mol	
	Solid-	-solid			
	β to α	102-104	2.0	0.6	
	α to γ	Metastable	-	-	
	α to δ	160-164	7.8	2.3]
T _{mpt.} [°C]	285 ^[12,16] , 246 ^[12,137,146] , 276 ^[12] , 273 ^[12,36,86] , 273 (capillary method) ^[14] , 280 (Koffer microhot stage) ^[14] , 256–257 (α -) ^[17,174] , 246–247 (β -) ^[17,174] , 279–280 (γ -) ^[17,174] , 280–281 (δ -) ^[17] , 280 ^[39] , 282 ^[41] , 276–280 (with dec.) ^[27] , 226–227 ^[25] , 280 (dec.) ^[36,50] , 271.8 (dec., Mettler mpt. apparatus, @ 1 K/min beginning 10 K beneath the mpt.) ^[162] , 553.15 K ^[172] , 280–281.5 (γ -HMX, form III) ^[174]				
T _{b.p.} [°C]	extrapolating to	atmospheric p	ressure) ^[7]	^{3]} , 800 ± 4 K (es	re over liq. HMX and st. <i>Lyman et al</i> .) ^[80] ,
T _{dec} . [°C]	709.5 K (T_{nbp} , est., Stein-Brown method) ^[172] 276 (DSC @ 5 °C/min), 200 ^[12] , 509 K (DTA) ^[6] , 282 (α-HMX, DTA @ 10 °C/min), 276 (violent dec. of δ-HMX, DTA @ 2 °C/min.) ^[30] , 244 (DSC @ 20 °C/min, exotherm peak max.) ^[39] , 280 (dec.) ^[36] , 279 (violent dec. exotherm, DTA) ^[30] , 276 (violent dec. of δ-HMX, DTA @ 2 °C/min of β-HMX) ^[30] , 271 (onset, exo), 276 (exo peak max.) (DSC @ 5 °C/min, 5 mg sample) ^[60] , 240 (TG onset) ^[61] , 250 (exo reaction) ^[61] , 284.8 (exo, enthalpy = 1,624 J g ⁻¹) ^[65] , 264 (dec. onset) ^[93] , 534 K (pyrolytic dec./deflagration) ^[92] , 284.6 (PDSC @ 10 °C/min @ 3 MPa) ^[93] , 283.2 (PDSC @ 10 °C/min @ 1 MPa) ^[93] , 284.0 (PDSC @ 10 °C/min @ 0.1 MPa) ^[93] , 275 (exo, DTA) ^[106] , 279.8 (onset), 283 (peak max) (DSC, virgin HMX, 99.8% purity) ^[120] , 251 (onset), 283 (peak max) (DSC, recovered HMX, 100% purity) ^[120] , 278 (β-HMX, STA @ 5 °C/min) ^[130] , 285 (γ-HMX, STA @ 5 °C/min) ^[130] , 281 (sm-HMX (submicron-HMX), >99% γ-polymorph, oblong particles, average particle width ~300 nm, average particle length = 1–2 μm, DSC @ 1 K/min from ambient temperature to 200 °C then 5 K/min, 1 mg sample crimped in Al pans) ^[131] Extent of β-HMX dec. (mole fraction) vs. time (s) for the thermal decomposition of β-HMX @ 3.6 GPa and various temperatures ^[135] :				

Time (s)	@ 568 K	@ 563 K	@ 558 K	@ 553 K
~100	~0.4			
~200	~0.82			
~500		~0.32		
~800		~0.68	~0.24	
~1,300			~0.38	~1.7
~2,000			~0.55	
~2,500			~0.75	
~2,800			~0.82	~0.4
~3,000			~0.92	
~3,800				~0.54
~4,300				~0.62
~5,300				~0.72

Heating rate of 8 °C/min: $T_{\rm idb} = 264.9^{[40]}$, $T_{\rm w} = 267.6^{[40]}$, $T_{\rm max} = 272.0^{[40]}$ Heating rate of 16 °C/min: $T_{\rm idb} = 278.3^{[40]}$, $T_{\rm w} = 284.7^{[40]}$, $T_{\rm max} = 290.9^{[40]}$, $T_{\rm cr} = 253-255^{[40]}$

Data from^[169]:

Sample	β (°C/min)	<i>T</i> _p (°C)
β-нмх	5	283.3
β-нмх	10	287.3
β-нмх	15	292.0
β-нмх	20	297.0
HMX-I	5	282.6
HMX-I	10	286.6
HMX-I	15	291.6
HMX-I	20	296.6
α-HMX	5	282.0
α-HMX	10	286.4
α-HMX	15	291.4
α-HMX	20	296.4

280.62 (exo peak max., raw HMX, DSC @ 5 °C/min) $^{[170]}$, 284.30 (exo peak max, raw HMX, DSC @ 10 °C/min) $^{[170]}$, 289.05 (exo peak max., raw HMX, DSC

@ 20 °C/min)[170], 281.26 (exo peak max, submicron-HMX, median particle
size = 616 nm, DSC @ $5 ^{\circ}$ C/min) ^[170] , 285.12 (exo peak max, submicron-HMX,
median particle size = 616 nm,, DSC @ 10 °C/min) ^[170] , 290.44 (exo peak max,
submicron-HMX, median particle size = 616 nm, DSC @ 20 °C/min)[170]

ρ [g cm⁻³]

1.962 (@ 20 K), 1.905 (TMD @ 25 °C)^[17], 1.90^[27,146], 1.903 (@ 25 °C)^[25], 1.886 (@ 298 K, gas pycnometer), 1.899^[2], 1.90 (crystal)^[14], 1.903 (β-crystal)^[16], 1.82 (α-crystal)^[16], 1.76 (γ- crystal)^[16,41], 1.80 (δ-HMX)^[41], 1.902^[12], 1.91 (β-HMX)^[50], 1.894^[63], 1.904^[93], 1.839 (α-HMX)^[100], 1.902 (β-HMX)^[100], 1.82 (γ-HMX)^[100], 1.763 (δ-HMX)^[100], 1.919 (ε-HMX)^[100], 1.90 (β-HMX)^[134], 1.87 (crystals)^[139], 1.905 (TMD)^[16], 1.89 (nominal)^[16], 1.905 (@ TMD)^[142], 1.905^[158,167], 1.91 (FEM-HMX)^[171], 1.893 (β-HMX, form I, X-ray)^[174], 1.902 (β-HMX, form IV, X-ray)^[174], 1.839 (α-HMX, form III, X-ray)^[174], 1.759 (δ-HMX, form IV, X-ray)^[174], 1.78 (γ-HMX, form III, X-ray)^[174], 1.82 (γ-HMX, form III, X-ray)^[174]

Purity and particle density of HMX particles^[55]:

Sample	LD-HMX	LC-HMX	FD-HMX	FC-HMX
Purity	99.7 ± 0.1	99.3 ± 0.1	99.6±0.1	99.2 ± 0.1
Mean ρ (g cm ⁻³)	1.9018	1.9003	1.9016	1.8984
% TMD (based on TMD = 1.903 g cm ⁻³)	99.94	99.86	99.93	99.76
ρ Distribution (g cm ⁻³)	1.9012- 1.9020	1.8973- 1.9018	1.9010- 1.9019	1.8970- 1.8993

1.8806 (0.0005) (cryst., type B, class 1, Dyno Nobel, Norway) [98], 1.8891 (0.0009) (cryst., type B, 10–15 μm, Dyno Nobel, Norway) [98], 1.8974 (0.0010) (cryst., recryst. from PC (propylene carbonate)) [98], 1.9016 (0.0003) (cryst., recryst. from γ-Bl = γ-butyrolactone) [98], 1.9002 (nonsieved reference HMX, class 6, d_{10} = 71.50 μm, d_{50} = 130.33 μm, d_{90} = 208.53 μm, Dyno Nobel) [103], 1.895 (RS-HMX, recryst. from propylene carbonate, d_{10} = 45.78 μm, d_{50} = 104.45 μm, d_{90} = 175.25 μm, ICT) [103], 1.8735 (Fine HMX, HMX comminuted with annular gap mill, d_{10} = 0.92 μm, d_{50} = 1.64 μm, d_{90} = 31.71 μm, ICT) [103], 1.9330 (HMX comminuted with annular gap mill, d_{10} = 0.92 μm, d_{50} = 1.64 μm, d_{90} = 3.07 μm, ICT) [103]

Effect of bead milling (time of milling (h)/ ρ (g cm⁻³))^[99]: 0/1.8931^[99], 1.0/1.8976^[99], 5.9/1.8988^[99]

Average particle ρ (g cm⁻³)/ particle ρ distribution (g cm⁻³)^[105]: 1.898/1.894-1.900 (standard HMX, class 1), 1.898/1.897-1.899 (standard HMX, class 5), 1.901(1.900-1.902) (RS-HMX)^[105]

	1.8806 ± 0.0005 (crystal, HMX type B, class 1, 0.67% RDX impurity, fluid pycnometer) ^[115] , 1.8891 ± 0.0009 (crystal, HMX type B, 10–15 μm, 0.22% RDX impurity, fluid pycnometer) ^[115] , 1.8974 ± 0.0010 (crystal, HMX recrystallized from PC, 0.04% RDX impurity, fluid pycnometer) ^[115] , 1.9016 ± 0.0003 (crystal, HMX recrystallized from butyrolactone, 0.02% RDX impurity, fluid pycnometer) ^[115] , 1.91 (β-HMX) ^[130] , 1.82 (γ-HMX) ^[130] , sp. gr. = 1.96 (α-HMX) ^[150] , sp. gr. = 1.87 (β-HMX) ^[150] , sp. gr. = 1.82 (γ-HMX) ^[150] , sp. gr. = 1.77 (δ-HMX) ^[150] Data from ^[17] :						
	Method of deter	mination	State		Densit	y (g/cm³)	
				α	β	γ	δ
	X-ray		Solid	1.838	1.902	1.78	1.786
	Direct measuren	nent	Solid	1.84	1.905	1.76	1.80
Heat of formation Heat of combustion	$ \begin{array}{l} 11.3-17.93 \text{ kcal per mol}^{[16]}, 11.3 \text{ kcal mol}^{-1} \left(\Delta H^{\circ}_{\rm f}\right)^{[17]}, 17.92 \text{ kcal mol}^{-1} \\ (\Delta H_{\rm f}, \text{crystal} \otimes 25^{\circ}\text{C})^{[25]}, -17.1 \text{ kcal mol}^{-1[27]}, 11.3 \text{ kcal/mol}^{[12]}, \\ 17.93 \text{ kcal/mol}^{[12]}, 255.2 \text{ kJ/kg}^{[2]}, 60.0 \text{ kcal/kg (enthalpy of form.)}^{[85]}, \\ 87.8 \text{ kJ/mol (enthalpy of form.)}^{[50]}, 24.5 \text{ kcal/mol} \left(\Delta H_{\rm f}(s)\right)^{[63]}, 84 \text{ kJ/mol} \\ (\text{enthalpy of form.)}^{[50]}, 17.9 \text{ kcal/mol} \left(\Delta H^{\circ}_{\rm f}\right)^{[57]}, 92.8 \text{ kJ/mol} \left(\Delta H^{\circ}_{\rm f}\right)^{[64]}, \\ 75.02 \text{ kJ/mol}^{[142]}, -60.5 \text{ kcal/kg}^{[28]}, -60.5 \text{ cal/g}^{[14]}, 21 \pm 0.66 \text{ kcal/mol} \left(\Delta H^{\circ}_{\rm f}\right)^{[298}, \\ \text{based on exptl.} \Delta Q_{\rm c} \text{ value}\right)^{[162]}, 75 \text{ (no units given)}^{[171]}, 17.9 \text{ kcal/mol}^{[183]}, \\ -11.90 \text{ kcal/mol} \left(-\Delta H_{\rm f} (\text{heat of form.} \otimes \text{ standard conditions})\right)^{[184]} \\ 667.4 \text{ kcal/mol}^{[27]}, 2,362 \text{ kcal/kg}^{[28]}, 2362 \text{ cal/g}^{[14]}, \text{ heat of comb.} = 660.7 - \\ 667.4 \text{ kcal/mol}^{[16]}, \Delta H_{\rm c} = -9,330 \text{ kJ/kg}^{[61]}, \Delta Q_{\rm c} = 674 \pm 0.66 \text{ kcal/mol} (\text{exptl.})^{[162]}, \\ \Delta H^{\circ}_{\rm c} = -660.7 \text{ kcal/mol}^{[17]} \\ \text{Exptl. heat of combustion data}^{[184]} \text{:} \end{array}$						
	$-\Delta U_{\rm B/M}$ (cal/g)	-Δ <i>U</i> _B (kα	cal/mol)	–ΔU _R (k @ 1 atn constar		$-\Delta H_{\rm R}$ (kca @ 1 atm. constant p	and
	2,254.93 ± 0.86	667.84		666.61		663.06	
	Calcd. (EXPLO5 Lit. values Exptl.						
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	5,837	1,356 cal/g [H ₂ O (l)] 1,356 cal/g ^[14] (calcd.) ^[27]					
		1,222 cal/ (calcd.) ^[27]		g)]	1.62 kcal	/g [H ₂ O (l)]	[16]

T		
	1,365 kcal/kg ^[28]	7.48 kcal/g [H ₂ O (g)] ^[16]
	1.50 kcal/g (Q_{max} , calcd.) ^[63]	1,356 cal/g [H ₂ O (l)] ^[27]
	5,668 ^[93]	1,222 cal/g [H ₂ O (g)] ^[27]
	1,256 kcal/kg (@ 1.300 g cm ⁻³ , calcd.) $[H_2O \text{ vapor}]^{[85]}$	5,558 J/g (heat of explosion) ^[60]
	1,301 kcal/kg (@ 1.800 g cm $^{-3}$, calcd.) [H_2O vapor] $^{[85]}$	6,192 (@ 1.89 g cm $^{-3}$, heat of detonation, heavily confined charge) [H $_2$ O (I)] ^[81]
	1,222 cal/g (calcd.) ^[149] Heat of det., = -6.78 MJ/kg ^[167]	5,719 (@ 1.89 g cm $^{-3}$, heat of detonation, heavily confined charge) $[H_2O(g)]^{[81]}$
	-0.76 Mij/ Ng	5,527 (@ 1.20 g cm ⁻³ , heat of detonation, heavily confined charge) $[H_2O(l)]^{[81]}$
		5,116 (@ 1.20 g cm ⁻³ , heat of detonation, heavily confined charge) $[H_2O (g)]^{[81]}$
		5,808 J/g (@ 1.894 g cm ⁻³ , det. energy, cylinder test) ^[81]
		5,387 J/g (@ 1.188 g cm ⁻³ , det. energy, cylinder test) ^[81]
		1,210 kcal/kg (@ 1.300 g cm ⁻³) [H ₂ O vapor] ^[85]
		1,300 kcal/kg (@ 1.800 g cm ⁻³) [H ₂ O vapor] ^[85]
		1,340 kcal/kg (@ 1.81 g cm $^{-3}$, $Q_{\rm exp}$) $^{[126]}$
		2,580 cal/cm³ (voidless, volumetric heat of explosion) ^[152]
		2,070 cal/cm³ (pressed @ 10,000 psi, volumetric heat of explosion) ^[152]

	İ		
T _{ex} [K]	3,702	3,689 (@ 1.902 g cm ⁻³ , calcd.) ^[57]	2,364 (@ 1.90 g cm ⁻³) ^[12]
		4,045 (@ 1.90 g cm ⁻³ , $\Delta H_{\rm f}$ = 17.9 kcal/ mol, calcd. BKWC, THEOSTAR-T) ^[112]	4,300 (@ 1.60 g cm ⁻³) ^[183]
		3,192 (@ 1.90 g cm ⁻³ , $\Delta H_{\rm f} = 17.9 \text{ kcal/}$ mol, calcd. BKWR, THEOSTAR-T) ^[112]	
		3,250 (@ 100% TMD, calcd., CHEETAH-6) ^[119]	
		2,364 (@ 1.90 g cm ⁻³ , $\Delta H_{\rm f}^{0}$ = 613.9 kJ/kg, calcd., FORTRAN BKW) ^[143]	
		3,514 (@ 1.905 g cm ⁻³ , $\Delta H_{\rm f} = 75$ kJ/mol, calcd., JAGUAR) ^[163]	
		3,090 (@ 1.89 g cm ⁻³ , calcd. BKWR) ^[183]	
		3,470 (@ 1.60 g cm ⁻³ , calcd. BKWR) ^[183]	
		3,680 (@ 1.40 g cm ⁻³ , calcd. BKWR) ^[183]	
		3,830 (@ 1.20 g cm ⁻³ , calcd. BKWR) ^[183]	
		3,900 (@ 1.00 g cm ⁻³ , calcd. BKWR) ^[183]	
		4,000 (@ 0.75 g cm ⁻³ , calcd. BKWR) ^[183]	
		4,070 (@ 1.89 g cm ⁻³ , calcd. BKWS) ^[183]	
		4,270 (@ 1.60 g cm ⁻³ , calcd. BKWS) ^[183]	

	i		
		4,380 (@ 1.40 g cm ⁻³ , calcd. BKWS) ^[183]	
		4,450 (@ 1.20 g cm ⁻³ , calcd. BKWS) ^[183]	
		4,480 (@ 1.00 g cm ⁻³ , calcd. BKWS) ^[183]	
		4,440 (@ 0.75 g cm ⁻³ , calcd. BKWS) ^[183]	
p _{C-J} [kbar]	381	385 (calcd., CHEETAH 2.0) ^[5]	389.8 (@ 1.90 g cm ⁻³) ^[12]
		323 (@ 1.77 g cm ⁻³ , calcd., thermochem.) ^[46]	5.20 GPa (@ 0.70 g cm ⁻³) ^[37]
		393.0 (@ 1.9 g cm ⁻³ , calcd., thermochem.) ^[46]	28.0 GPa (@ 1.63 g cm ⁻³) ^[37]
		388 GPa (@ 1.90 g cm ⁻³ (TMD), calcd., R-P method) ^[49]	316.5 (@ 1.77 g cm ⁻³) ^[46]
			376.3 (@ 1.9 g cm ⁻³) ^[46]
		28.0 GPa (@ 1.63 g cm ⁻³) ^[37]	5.20 GPa (@ 0.70 g cm ⁻³) ^[37]
		364.0 (@ 1.902 g cm ⁻³ , calcd.) ^[57]	28.0 GPa (@ 1.63 g cm ⁻³) ^[37]
		381 (@ 1.894 g cm ⁻³ , calcd.) ^[63]	40.5 GPa (@ 1.894 g cm ⁻³) ^[81]
			15.5 GPa (@ 1.188 g cm ⁻³) ^[81]
		376 (@ 1.90 g cm ⁻³ , $\Delta H_{\rm f} = 17.9$ kcal/ mol, calcd. BKWC,	42.0 GPa (@ 1.891 g cm ⁻³ , cylinder test results) ^[111]
		THEOSTAR-T) ^[112]	39.3 GPa (@ 1.90 g cm ⁻³) ^[143]
		399 (@ 1.90 g cm ⁻³ , Δ <i>H</i> _f = 17.9 kcal/	40.5 GPa (@ 1.894 g cm ⁻³) ^[144]
		mol, calcd. BKWR, THEOSTAR-T) ^[112]	15.5 GPa (@ 1.188 g cm ⁻³) ^[144]
			414 cal/cm³ (voidless) ^[152]
		367 (@ 100% TMD, calcd., Cheetah-6) ^[119]	261 cal/cm³ (pressed @ 10,000 psi) ^[152]
		39.5 GPa (@ 1.90 g cm ⁻³ , $\Delta H_f^0 = 613.9 \text{ kJ/kg},$ calcd., FORTRAN BKW) ^[143]	390 (@ 1.89 g cm ⁻³) ^[183]
		caicu., FORTRAIN BRW)	280 (@ 1.60 g cm ⁻³) ^[183]

37.19 GPa (calcd., Cheetah 7.0) ^[171]	210 (@ 1.40 g cm ⁻³) ^[183]
38.7 GPa	160 (@ 1.20 g cm ⁻³) ^[183]
(@ 1.905 g cm ⁻³ , $\Delta H_f = 75 \text{ kJ/mol, calcd.,}$	110 (@ 1.00 g cm ⁻³) ^[183]
JAGUAR) ^[163] 405 (@ 1.89 g cm ⁻³ ,	60 (@ 0.75 g cm ⁻³) ^[183]
calcd. BKWR) ^[183]	
281 (@ 1.60 g cm ⁻³ , calcd. BKWR) ^[183]	
213 (@ 1.40 g cm ⁻³ , calcd. BKWR) ^[183]	
160 (@ 1.20 g cm ⁻³ , calcd. BKWR) ^[183]	
117 (@ 1.00 g cm ⁻³ , calcd. BKWR) ^[183]	
69 (@ 0.75 g cm ⁻³ , calcd. BKWR) ^[183]	
374 (@ 1.89 g cm ⁻³ , calcd. BKWS) ^[183]	
259 (@ 1.60 g cm ⁻³ , calcd. BKWS) ^[183]	
199 (@ 1.40 g cm ⁻³ , calcd. BKWS) ^[183]	
151 (@ 1.20 g cm ⁻³ , calcd. BKWS) ^[183]	
110 (@ 1.00 g cm ⁻³ , calcd. BKWS) ^[183]	
64 (@ 0.75 g cm ⁻³ , calcd. BKWS) ^[183]	

V D I -11	0.206	0.227 (0.4.02 = -2	0.400[3]
VoD [m s ⁻¹]	9,286	9,224 (@ 1.89 g cm ⁻³ , calcd. CHEETAH 2.0) ^[5]	9,100 ^[3]
		9,150 (@ 1.90 g cm ⁻³ ,	9,110 (@ 1.89 g cm ⁻³) ^[10-12, 16, 17, 21]
		calcd., K-J) ^[21]	7,910 (@ 1.6 g cm ⁻³) ^[10]
		8,773 (@ 1.81 g cm ⁻³) ^[34]	7,300 (@ 1.4 g cm ⁻³) ^[10]
		9,110 (@ 1.89 g cm ⁻³) ^[48]	6,580 (@ 1.2 g cm ⁻³) ^[10]
		8,500 (@ 1.77 g cm ⁻³ , calcd., thermochem.) ^[46]	5,800 (@ 1.0 g cm ⁻³) ^[10]
		9,100 (@ 1.9 g cm ⁻³ ,	4,880 (@ 0.75 g cm ⁻³) ^[10]
		calcd., thermochem.) ^[46]	9,124 (@ 1.84 g cm ⁻³) ^[14, 26, 27]
		9,050 (@ 1.90 g cm ⁻³ (TMD), calcd., R-P	8,773 (@ 1.81 g cm ⁻³) ^[34]
		method) ^[49]	5,450 (@ 0.85 g cm ⁻³) ^[37]
		9,230 (@ 1.90 g cm ⁻³ (TMD), calcd.,	8,340 (@ 1.68 g cm ⁻³) ^[37]
		Aizenshtadt) ^[49]	9,110 (@ 1.9 g cm ⁻³) ^[37]
		9,120 (@ 1.90 g cm ⁻³ (TMD), calcd., K-J) ^[49]	4,390 (@ 0.70 g cm ⁻³) ^[37]
			7,870 (@ 1.63 g cm ⁻³) ^[37]
		9,250 (@ 1.902 g cm ⁻³ , calcd.) ^[57]	1,160 (@ 1.1 g cm ⁻³ , <44
		9,130 (@ 1.894 g cm ⁻³ , calcd.) ^[63]	micron particle size, detonated high order @ 4,000 V level) ^[30]
			5,450 (@ 0.85 g cm ⁻³) ^[37]
		6,040 (@ 1 g cm ⁻³ , calcd., Kamlet method) ^[87]	8,340 (@ 1.68 g cm ⁻³) ^[37]
		8,090 (@ 1.6 g cm ⁻³ , calcd., Kamlet method) ^[87]	9,110 (@ 1.9 g cm ⁻³) ^[37]
		_	4,390 (@ 0.70 g cm ⁻³) ^[37]
		5,530 (@ 1 g cm ⁻³ , calcd., Urizar method) ^[87]	8,458 (@ 1.77 g cm ⁻³) ^[46]
		7,940 (@ 1.6 g cm ⁻³ , calcd., Urizar method) ^[87]	8,919 (@ 1.9 g cm ⁻³) ^[46]
			9,110 (@ 1.89 g cm ⁻³) ^[47]
		9,540 (@ 1.90 g cm ⁻³ , $\Delta H_{\rm f} = 17.9$ kcal/ mol, calcd. BKWC,	9,150 (@ 1.902 g cm ⁻³) ^[57]
		THEOSTAR-T) ^[112]	

9,540 (@ 1.90 g cm ⁻³ , \(\Delta H_1 = 17.9 \) kcal/\(\text{mol}\), calcd. BKWR, \(\text{THEOSTAR-T}\) [1121\) 9,159 (@ 1.90 g cm ⁻³ , \(\Delta H_1 = 6.680 (@ 1.188 g cm ⁻³)\) [81, 144]\) 6,030 (@ 1 g cm ⁻³)\) [87] 9,159 (@ 1.90 g cm ⁻³ , \(\Delta H_2 = 6.680 (@ 1.188 g cm ⁻³)\) [87] 9,159 (@ 1.90 g cm ⁻³ , \(\Delta H_2 = 6.680 (@ 1.188 g cm ⁻³)\) [87] 9,100 (@ 1.69 g cm ⁻³), \(\text{calcd., FORTRAN BKW}\) [143]\) 9,246 (@ 1.91 g cm ⁻³ , \(\text{calcd., Cheetah 7.0}\) [127] 9,110 (@ 1.89 g cm ⁻³)\] [183] 7,910 (@ 1.60 g cm ⁻³)\] [183] 7,910 (@ 1.60 g cm ⁻³)\] [183] 6,580 (@ 1.20 g cm ⁻³)\] [183] 5,800 (@ 1.00 g cm ⁻³)\] [183] 5,800 (@ 1.00 g cm ⁻³)\] [183] 4,880 (@ 0.75 g cm ⁻³)\] [183] 9,120 (@ 1.84 g cm ⁻³)\] [158] 9,090 (@ 1.90 g cm ⁻³)\] [158] 9,090 (@ 1.905 g cm ⁻³ , \(\Delta H_3 g cm^{-3}\), \(\Delta H_4 g cm^{-3}\)\] [158] 9,090 (@ 1.905 g cm ⁻³ , \(\Delta H_4 g cm^{-3}\)\] [158] 9,090 (@ 1.89 g cm ⁻³ , \(\text{calcd., JAGUAR}\)\] [169] 9,080 (@ 1.89 g cm ⁻³ , \(\text{calcd. BKWR}\)\] [183] 8,100 (@ 1.60 g cm ⁻³ , \(\text{calcd. BKWR}\)\] [183] 6,850 (@ 1.20 g cm ⁻³ , \(\text{calcd. BKWR}\)\] [183] 6,850 (@ 1.20 g cm ⁻³ , \(\text{calcd. BKWR}\)\] [183] 9,350 (@ 1.89 g cm ⁻³ , \(\text{calcd. BKWR}\)\] [183] 9,350 (@ 1.89 g cm ⁻³ , \(\text{calcd. BKWR}\)\] [183] 9,350 (@ 1.89 g cm ⁻³ , \(\text{calcd. BKWR}\)\] [183]		1
mol, calcd. BKWR, THEOSTART)[112] 9,159 (@ 1.90 g cm ⁻³ , Δtt/?= 613.9 kJ/kg, calcd., FORTRAN BKW)[143] 9,246 (@ 1.91 g cm ⁻³ , calcd., Cheetah 7.0][171] 9,110 (@ 1.89 g cm ⁻³)[183] 7,910 (@ 1.60 g cm ⁻³)[183] 7,900 (@ 1.40 g cm ⁻³)[183] 6,580 (@ 1.20 g cm ⁻³)[183] 5,800 (@ 1.00 g cm ⁻³)[183] 4,880 (@ 0.75 g cm ⁻³)[183] 4,880 (@ 0.75 g cm ⁻³)[183] 8,100 (@ 1.89 g cm ⁻³)[158] 9,120 (@ 1.84 g cm ⁻³)[158] 9,120 (@ 1.84 g cm ⁻³)[158] 9,120 (@ 1.89 g cm ⁻³)[158] 9,120 (@ 1.89 g cm ⁻³ , calcd. BKWR)[183] 7,450 (@ 1.40 g cm ⁻³ , calcd. BKWR)[183] 6,850 (@ 1.20 g cm ⁻³ , calcd. BKWR)[183] 6,850 (@ 1.20 g cm ⁻³ , calcd. BKWR)[183] 6,850 (@ 1.20 g cm ⁻³ , calcd. BKWR)[183] 7,450 (@ 1.40 g cm ⁻³ , calcd. BKWR)[183] 6,850 (@ 1.20 g cm ⁻³ , calcd. BKWR)[183] 6,850 (@ 1.20 g cm ⁻³ , calcd. BKWR)[183] 7,450 (@ 1.40 g cm ⁻³ , calcd. BKWR)[183] 6,850 (@ 1.20 g cm ⁻³ , calcd. BKWR)[183] 9,350 (@ 1.89 g cm ⁻³ , calcd. BKWR)[183] 9,350 (@ 1.89 g cm ⁻³ , calcd. BKWR)[183] 8,140 (@ 1.60 g cm ⁻³ , calcd. BKWR)[183] 8,140 (@ 1.60 g cm ⁻³ , calcd. BKWR)[183]		9,100 (@ 1.894 g cm ⁻³) ^[81, 144]
9,159 (@ 1.90 g cm ⁻³ , ΔH/ ² = 613.9 kJ/kg, calcd., FORTRAN BKW) ^[143] 9,246 (@ 1.91 g cm ⁻³ , calcd., Cheetah 7.0) ^[127] 9,110 (@ 1.89 g cm ⁻³) ^[183] 7,910 (@ 1.60 g cm ⁻³) ^[183] 7,910 (@ 1.60 g cm ⁻³) ^[183] 7,300 (@ 1.40 g cm ⁻³) ^[183] 6,580 (@ 1.20 g cm ⁻³) ^[183] 5,800 (@ 1.00 g cm ⁻³) ^[183] 4,880 (@ 0.75 g cm ⁻³) ^[183] 4,880 (@ 0.75 g cm ⁻³) ^[183] 9,090 (@ 1.84 g cm ⁻³) ^[158] 9,120 (@ 1.84 g cm ⁻³) ^[158] 9,090 (@ 1.90 5 g cm ⁻³ , ΔH ₁ =75 kJ/mol, calcd., JAGUAR) ^[163] 9,080 (@ 1.89 g cm ⁻³ , calcd. BKWR) ^[183] 8,100 (@ 1.60 g cm ⁻³ , calcd. BKWR) ^[183] 6,850 (@ 1.20 g cm ⁻³ , calcd. BKWR) ^[183] 6,310 (@ 1.00 g cm ⁻³ , calcd. BKWR) ^[183] 5,540 (@ 0.75 g cm ⁻³ , calcd. BKWR) ^[183] 9,350 (@ 1.89 g cm ⁻³ , calcd. BKWR) ^[183] 9,350 (@ 1.89 g cm ⁻³ , calcd. BKWR) ^[183] 9,350 (@ 1.89 g cm ⁻³ , calcd. BKWR) ^[183] 9,350 (@ 1.89 g cm ⁻³ , calcd. BKWR) ^[183] 9,350 (@ 1.89 g cm ⁻³ , calcd. BKWR) ^[183] 9,350 (@ 1.89 g cm ⁻³ , calcd. BKWR) ^[183] 9,350 (@ 1.89 g cm ⁻³ , calcd. BKWR) ^[183]	mol, calcd. BKWR,	6,680 (@ 1.188 g cm ⁻³) ^[81, 144]
Δ/H/° = 613.9 kJ/kg, calcd., FORTRAN BKW) ^[143] 9,246 (@ 1.91 g cm ⁻³ , calcd., Cheetah 7.0) ^[171] 9,110 (@ 1.89 g cm ⁻³) ^[183] 9,150 (@ 1.90 g cm ⁻³) ^[112] 9,150 (@ 1.90 g cm ⁻³) ^[112] 9,150 (@ 1.90 g cm ⁻³) ^[113] 7,300 (@ 1.40 g cm ⁻³) ^[183] 8,410 (@ 1.79 g cm ⁻³) ^[158] 9,120 (@ 1.84 g cm ⁻³) ^[158] 9,120 (@ 1.89 g cm ⁻³ , Δ/H _f = 75 kJ/mol, calcd., JAGUAR) ^[163] 9,080 (@ 1.89 g cm ⁻³ , calcd. BKWR) ^[183] 8,100 (@ 1.60 g cm ⁻³ , calcd. BKWR) ^[183] 6,850 (@ 1.20 g cm ⁻³ , calcd. BKWR) ^[183] 6,850 (@ 1.20 g cm ⁻³ , calcd. BKWR) ^[183] 6,310 (@ 1.00 g cm ⁻³ , calcd. BKWR) ^[183] 9,350 (@ 1.89 g cm ⁻³		6,030 (@ 1 g cm ⁻³) ^[87]
9,246 (@ 1.91 g cm ⁻³ , calcd., Cheetah 7.0) ^[171] 9,110 (@ 1.89 g cm ⁻³) ^[183] 7,910 (@ 1.60 g cm ⁻³) ^[183] 7,300 (@ 1.40 g cm ⁻³) ^[183] 9,100 (@ 1.90 g cm ⁻²) ^[143] 9,100 (@ 1.90 g cm ⁻²) ^[143] 8,410 (@ 1.79 g cm ⁻²) ^[158] 5,800 (@ 1.20 g cm ⁻³) ^[183] 9,120 (@ 1.84 g cm ⁻³) ^[158] 9,120 (@ 1.84 g cm ⁻²) ^[158] 9,090 (@ 1.905 g cm ⁻³) 4,880 (@ 0.75 g cm ⁻³) ^[183] 9,090 (@ 1.905 g cm ⁻³ , AH ₊ = 75 kJ/mol, calcd., JAGUAR) ^[163] 9,080 (@ 1.89 g cm ⁻³ , calcd. BKWR) ^[183] 8,100 (@ 1.60 g cm ⁻³ , calcd. BKWR) ^[183] 7,450 (@ 1.40 g cm ⁻³ , calcd. BKWR) ^[183] 6,850 (@ 1.20 g cm ⁻³ , calcd. BKWR) ^[183] 5,540 (@ 0.75 g cm ⁻³ , calcd. BKWR) ^[183] 5,540 (@ 0.75 g cm ⁻³ , calcd. BKWR) ^[183] 9,350 (@ 1.89 g cm ⁻³ , calcd. BKWR) ^[183] 8,140 (@ 1.60 g cm ⁻³ , calcd. BKWR) ^[183]	$\Delta H_{\rm f}^{0} = 613.9 \text{kJ/kg},$	8,110 (@ 1.6 g cm ⁻³) ^[87]
9,110 (@ 1.89 g cm ⁻³) ^[183] 7,910 (@ 1.60 g cm ⁻³) ^[183] 7,300 (@ 1.40 g cm ⁻³) ^[183] 6,580 (@ 1.20 g cm ⁻³) ^[183] 5,800 (@ 1.00 g cm ⁻³) ^[183] 4,880 (@ 0.75 g cm ⁻³) ^[183] 9,090 (@ 1.90 g cm ⁻³) ^[158] 9,120 (@ 1.84 g cm ⁻³) ^[158] 9,120 (@ 1.84 g cm ⁻³) ^[158] 9,090 (@ 1.90 g cm ⁻³) ^[158] 9,090 (@ 1.90 g cm ⁻³) ^[158] 9,090 (@ 1.90 g cm ⁻³ , calcd. gKWR) ^[183] 8,100 (@ 1.60 g cm ⁻³ , calcd. gKWR) ^[183] 7,450 (@ 1.40 g cm ⁻³ , calcd. gKWR) ^[183] 6,850 (@ 1.20 g cm ⁻³ , calcd. gKWR) ^[183] 6,850 (@ 1.20 g cm ⁻³ , calcd. gKWR) ^[183] 6,310 (@ 1.00 g cm ⁻³ , calcd. gKWR) ^[183] 5,540 (@ 0.75 g cm ⁻³ , calcd. gKWR) ^[183] 9,350 (@ 1.89 g cm ⁻³ , calcd. gKWR) ^[183] 9,350 (@ 1.89 g cm ⁻³ , calcd. gKWR) ^[183] 9,350 (@ 1.89 g cm ⁻³ , calcd. gKWR) ^[183]		
7,910 (@ 1.60 g cm ⁻³) ^[183] 7,300 (@ 1.40 g cm ⁻³) ^[183] 6,580 (@ 1.20 g cm ⁻³) ^[183] 5,800 (@ 1.00 g cm ⁻³) ^[183] 4,880 (@ 0.75 g cm ⁻³) ^[183] 4,880 (@ 0.75 g cm ⁻³) ^[183] 8,100 (@ 1.84 g cm ⁻³) ^[188] 9,120 (@ 1.84 g cm ⁻³) ^[188] 9,120 (@ 1.84 g cm ⁻³) ^[188] 9,120 (@ 1.84 g cm ⁻³) ^[188] 9,090 (@ 1.905 g cm ⁻³ , Ah _t =75 k]/mol, calcd., JAGUAR) ^[163] 8,100 (@ 1.60 g cm ⁻³ , calcd. BKWR) ^[183] 7,450 (@ 1.40 g cm ⁻³ , calcd. BKWR) ^[183] 6,850 (@ 1.20 g cm ⁻³ , calcd. BKWR) ^[183] 6,310 (@ 1.00 g cm ⁻³ , calcd. BKWR) ^[183] 5,540 (@ 0.75 g cm ⁻³ , calcd. BKWR) ^[183] 9,350 (@ 1.89 g cm ⁻³ , calcd. BKWR) ^[183] 9,350 (@ 1.89 g cm ⁻³ , calcd. BKWR) ^[183] 8,140 (@ 1.60 g cm ⁻³ , calcd.		9,150 (@ 1.90 g cm ⁻³) ^[112]
7,300 (@ 1.40 g cm ⁻³) ^[183] 8,410 (@ 1.79 g cm ⁻³) ^[158] 8,410 (@ 1.79 g cm ⁻³) ^[158] 9,120 (@ 1.84 g cm ⁻³) ^[158] 9,120 (@ 1.84 g cm ⁻³) ^[158] 9,090 (@ 1.905 g cm ⁻³ , 4,880 (@ 0.75 g cm ⁻³) ^[183] 9,080 (@ 1.89 g cm ⁻³ , 4,87 (@ 1.40 g cm ⁻³ , calcd. BKWR) ^[183] 8,100 (@ 1.60 g cm ⁻³ , calcd. BKWR) ^[183] 6,850 (@ 1.20 g cm ⁻³ , calcd. BKWR) ^[183] 6,310 (@ 1.00 g cm ⁻³ , calcd. BKWR) ^[183] 6,310 (@ 1.00 g cm ⁻³ , calcd. BKWR) ^[183] 5,540 (@ 0.75 g cm ⁻³ , calcd. BKWR) ^[183] 9,350 (@ 1.89 g cm ⁻³ , calcd. BKWR) ^[183] 8,140 (@ 1.60 g cm ⁻³ , calcd.		9,124 (@ 1.84 g cm ⁻³) ^[14]
8,410 (@ 1.79 g cm ⁻³) ^[188] 9,120 (@ 1.84 g cm ⁻³) ^[158] 9,120 (@ 1.84 g cm ⁻³) ^[158] 9,090 (@ 1.905 g cm ⁻³ , ΔH _i = 75 kl/mol, calcd., JAGUAR) ^[163] 9,080 (@ 1.89 g cm ⁻³ , calcd. BKWR) ^[183] 8,100 (@ 1.60 g cm ⁻³ , calcd. BKWR) ^[183] 7,450 (@ 1.40 g cm ⁻³ , calcd. BKWR) ^[183] 6,850 (@ 1.20 g cm ⁻³ , calcd. BKWR) ^[183] 6,310 (@ 1.00 g cm ⁻³ , calcd. BKWR) ^[183] 5,540 (@ 0.75 g cm ⁻³ , calcd. BKWR) ^[183] 9,350 (@ 1.89 g cm ⁻³ , calcd. BKWS) ^[183] 9,350 (@ 1.89 g cm ⁻³ , calcd.		9,100 (@ 1.90 g cm ⁻³) ^[143]
6,580 (@ 1.20 g cm ⁻³) ^[183] 5,800 (@ 1.00 g cm ⁻³) ^[183] 9,120 (@ 1.84 g cm ⁻³) ^[158] 9,090 (@ 1.905 g cm ⁻³ , ΔH _t =75 kl/mol, calcd., JAGUAR) ^[163] 9,080 (@ 1.89 g cm ⁻³ , calcd. BKWR) ^[183] 8,100 (@ 1.60 g cm ⁻³ , calcd. BKWR) ^[183] 7,450 (@ 1.40 g cm ⁻³ , calcd. BKWR) ^[183] 6,850 (@ 1.20 g cm ⁻³ , calcd. BKWR) ^[183] 6,310 (@ 1.00 g cm ⁻³ , calcd. BKWR) ^[183] 5,540 (@ 0.75 g cm ⁻³ , calcd. BKWR) ^[183] 9,350 (@ 1.89 g cm ⁻³ , calcd. BKWS) ^[183] 9,350 (@ 1.89 g cm ⁻³ , calcd.	7,300 (@ 1.40 g cm ⁻³) ^[183]	8,410 (@ 1.79 g cm ⁻³) ^[158]
5,800 (@ 1.00 g cm ⁻³) ^[183] 9,090 (@ 1.905 g cm ⁻³ , ΔH _f = 75 kJ/mol, calcd., JAGUAR) ^[163] 9,080 (@ 1.89 g cm ⁻³ , calcd. BKWR) ^[183] 8,100 (@ 1.60 g cm ⁻³ , calcd. BKWR) ^[183] 7,450 (@ 1.40 g cm ⁻³ , calcd. BKWR) ^[183] 6,850 (@ 1.20 g cm ⁻³ , calcd. BKWR) ^[183] 6,310 (@ 1.00 g cm ⁻³ , calcd. BKWR) ^[183] 5,540 (@ 0.75 g cm ⁻³ , calcd. BKWR) ^[183] 9,350 (@ 1.89 g cm ⁻³ , calcd. BKWS) ^[183] 9,350 (@ 1.89 g cm ⁻³ , calcd.	6,580 (@ 1.20 g cm ⁻³) ^[183]	
4,880 (@ 0.75 g cm ⁻³) ^[183]	5,800 (@ 1.00 g cm ⁻³) ^[183]	
9,080 (@ 1.89 g cm ⁻³ , calcd. BKWR) ^[183] 8,100 (@ 1.60 g cm ⁻³ , calcd. BKWR) ^[183] 7,450 (@ 1.40 g cm ⁻³ , calcd. BKWR) ^[183] 6,850 (@ 1.20 g cm ⁻³ , calcd. BKWR) ^[183] 6,310 (@ 1.00 g cm ⁻³ , calcd. BKWR) ^[183] 5,540 (@ 0.75 g cm ⁻³ , calcd. BKWR) ^[183] 9,350 (@ 1.89 g cm ⁻³ , calcd. BKWS) ^[183] 9,350 (@ 1.89 g cm ⁻³ , calcd. BKWS) ^[183]	4,880 (@ 0.75 g cm ⁻³) ^[183]	$\Delta H_{\rm f} = 75 \text{ kJ/mol, calcd.,}$
BKWR) ^[183] 8,100 (@ 1.60 g cm ⁻³ , calcd. BKWR) ^[183] 7,450 (@ 1.40 g cm ⁻³ , calcd. BKWR) ^[183] 6,850 (@ 1.20 g cm ⁻³ , calcd. BKWR) ^[183] 6,310 (@ 1.00 g cm ⁻³ , calcd. BKWR) ^[183] 5,540 (@ 0.75 g cm ⁻³ , calcd. BKWR) ^[183] 9,350 (@ 1.89 g cm ⁻³ , calcd. BKWS) ^[183] 9,350 (@ 1.89 g cm ⁻³ , calcd.		,
BKWR) ^[183] 7,450 (@ 1.40 g cm ⁻³ , calcd. BKWR) ^[183] 6,850 (@ 1.20 g cm ⁻³ , calcd. BKWR) ^[183] 6,310 (@ 1.00 g cm ⁻³ , calcd. BKWR) ^[183] 5,540 (@ 0.75 g cm ⁻³ , calcd. BKWR) ^[183] 9,350 (@ 1.89 g cm ⁻³ , calcd. BKWS) ^[183] 8,140 (@ 1.60 g cm ⁻³ , calcd.		
BKWR) ^[183] 6,850 (@ 1.20 g cm ⁻³ , calcd. BKWR) ^[183] 6,310 (@ 1.00 g cm ⁻³ , calcd. BKWR) ^[183] 5,540 (@ 0.75 g cm ⁻³ , calcd. BKWR) ^[183] 9,350 (@ 1.89 g cm ⁻³ , calcd. BKWS) ^[183] 8,140 (@ 1.60 g cm ⁻³ , calcd.		
BKWR) ^[183] 6,310 (@ 1.00 g cm ⁻³ , calcd. BKWR) ^[183] 5,540 (@ 0.75 g cm ⁻³ , calcd. BKWR) ^[183] 9,350 (@ 1.89 g cm ⁻³ , calcd. BKWS) ^[183] 8,140 (@ 1.60 g cm ⁻³ , calcd.		
BKWR) ^[183] 5,540 (@ 0.75 g cm ⁻³ , calcd. BKWR) ^[183] 9,350 (@ 1.89 g cm ⁻³ , calcd. BKWS) ^[183] 8,140 (@ 1.60 g cm ⁻³ , calcd.		
BKWR) ^[183] 9,350 (@ 1.89 g cm ⁻³ , calcd. BKWS) ^[183] 8,140 (@ 1.60 g cm ⁻³ , calcd.		
BKWS) ^[183] 8,140 (@ 1.60 g cm ⁻³ , calcd.		

		7,410 (@ 1.40 g cm ⁻³ , calcd. BKWS) ^[183]
		6,780 (@ 1.20 g cm ⁻³ , calcd. BKWS) ^[183]
		6,200 (@ 1.00 g cm ⁻³ , calcd. BKWS) ^[183]
		5,420 (@ 0.75 g cm ⁻³ , calcd. BKWS) ^[183]
V ₀ [L kg ⁻¹]	775	902 ^[15]

Calorimetric heat of detonation, Ornellas method, 25 g cylinder sample, 1.2 cm diameter, detonated in an isothermal calorimetry bomb under a 65 Pa vacuum^[70]:

Material	ρ (g/cm³)	Heat of detonation [H ₂ O (l) @ 25 °C] (J/g)	Heat of detonation [H ₂ O (l) @ 25 °C] (J/cm ³)	Heat of detonation [H ₂ O (I) @ 25 °C] @ TMD (J/cm ³)
нмх	1.89	6,192	11,703	11,782

Summary of experimental copper cylinder wall velocity data, all samples have a wall thickness/diameter ratio of 0.1, all cylinders were 305 mm long, PETN with $\rho = 1.763 \text{ g/cm}^3$ is the reference explosive^[142]:

Initial $ ho$, g/cm ³	Inner diameter, mm	Wall thickness, mm	Wall velocity, mm/µs at 25.4 mm diameter for <i>R–R</i> ⁰ equal to		Velocity-squared cf. with PETN for the same configuration, % comparison $R-R_0$ equal to			
			6 mm	12.5 mm	19 mm	6 mm	12.5 mm	19 mm
1.894	25.43	2.596	1.650	1.820	1.883	11.9	13.9	10.6
1.188	25.43	2.596	1.173	1.314	1.384	-43.5	-40.6	-40.2

Summary of code calculations with measured detonation velocities and detonation energies derived from JWL's $^{[142]}$:

Initial ρ (g/cm ³)		•	ted BKWR Tiger, θ 1,850 K, at v		JCZ3, LLNL library, v		CHEQ V2.4, at v		
	2.2	4.1	6.5	2.2	4.1	6.5	2.2	4.1	6.5
1.894	4	1	2	4	-1	-1	3	-2	-2
1.188	-5	-6	-5	-7	-10	-9	-15	-15	-13

Derivation of the total energy of detonation, E_0 from the measured heat of detonation (the final state is assumed to be at one atmosphere for all gaseous products, including water, at 298 K). Code calculated energies with the 1,800 K freeze are also included^[142]:

Measured	Measured	Density	Heat of	Energy of	detonatio	on, <i>E</i> ₀ (kJ/	cm³)
ρ (g/cm ³)	confined	from ^[142]	detonation using density from ^[142]	From heat of detonation	Freeze at 1,800 K		
	heat of detonation (kJ/cm³)				Tiger BKWR	Tiger JCZ3	CHEQ
1.89	-11.70	1.893	-11.71	-11.0	-11.4	-10.9	-11.2
1.20	-6.63	1.188	-6.56	-6.2	-6.5	-6.4	-6.4

Comparison of measured "CJ" temperatures using optical pyrometry [142]:

Exptl. ρ (g/cm ³)	Maximum	Calculated CJ T (K)			Wavelength (µm)
	measured T (K)	Tiger BKWR	Tiger JCZ3	CHEQ	
1.70	2,500-2,800	3,200	4,000	4,200	0.49, 0.69

Desensitized HMX (D-HMX) refers to high-quality β -HMX crystal particles which show less crystal defects and a better morphology than conventional HMX (C-HMX). Values given for D-HMX are for samples with purity of 99.6 \pm 0.1% and mean particle ρ > 1.9016 g cm⁻³. Fine grain D-HMX is abbreviated as FD-HMX and large grain D-HMX as LD-HMX^[55]

Critical diameter [cm]	Critical detonation diameter $d_{\rm c0}$ [mm] and specific surface area, $S_{\rm g}$ [cm 2 g $^-$						
	$S_{\rm g}$ (cm ² g ⁻¹)	d _{c0} (mm)	$S_{\rm g}$ (cm ² g ⁻¹)	d _{c0} (mm)			
	Monodisperse	HMX (fractions)	Polydisp	erse HMX			
	1,580 (0-90 μm)	1.50	400	2.97			
	1,010 (90-160 μm)	2.10	800	1.64			
	450 (200–250 μm)	3.10	1,900	0.70			
	200	4.80	3,000	0.60			
	(400-500 μm)		4,300	0.65			
			8,900	0.55			

Critical detonation diameter d_{c0} [mm] and specific surface area, S_g [cm² g⁻¹] @ rel. high density (0.98–0.995)^[93]:

$S_{\rm g}$ (cm ² g ⁻¹)	d _{c0} (mm)	$S_{\rm g}$ (cm ² g ⁻¹)	d _{c0} (mm)
650	2.15	2,900	0.75
1,500	1.25	8,000	0.45

 d_{c0} (mm) @ mean crystal size (μ m)^[93]: 0.40 @ 3, 0.75 @ 10, 1.20 @ 20^[72]

 d_c in mm, values from ^[16]:

HMX/wax (%)	ρ (g/cm ³)	Critical diameters
90/10	1.10	6.0 < d _c < 7.0
78/22	1.28	7.0 < d _c < 8.0
70/30	1.42	8.0 < d _c < 9.0

Critical T [°C]

257 (HMX, isothermal time-to-explosion tests)^[92], 242 (HMX-D₈, isothermal time-to-explosion tests)^[92], 253–255 (exptl. value)^[96, 136], 253 (calcd.)^[96, 136], 913.5 K (est., Joback-Stein method)^[172], 1,234.4 K (Valderrama-Alveraz method)^[172], 927 K^[172], critical T, $T_{\rm m} = 253^{[17]}$

Calcd. $T_{b}^{[132]}$:

Particle size (µm)	T _i (K)	Т _ь (К)	
		Kissinger	Ozawa
350	551.3	557.45	557.31
160	546.6	554.32	554.11
90	544.5	553.42	553.13
50	539.8	549.85	549.48
40	538.1	548.99	548.56

Critical pressure [bar]

52.97 (est., Joback-Stein method) $^{[172]}$, 28.83 (Valderrama-Alveraz method) $^{[172]}$

Critical pressure of initiation of explosion [GPa]

Critical pressure of explosion initiation (impact) $P_{cr}=0.65\pm0.02$; $\sigma_{ult}=135$ MPa^[94], critical pressure of explosion initiation (DT) $P_{cr}=1.00\pm0.03^{[94,\,104,\,166]}$, critical pressure of explosion initiation (impact) $P_{cr}=0.65\pm0.02$; $\sigma_{ult}=130$ MPa^[104], $P_{cr}=0.99\pm0.03$ (commercial HMX of trade mark "B", $10-30~\mu m$)^[121], $P_{cr}=1.01\pm0.03$ (ultra-fine HMX, ~1.4 μm)^[121], $P_{cr}=0.88^{[126]}$, $\sigma_{ult}=155$ MPa^[126]

Trauzl test [cm³, % TNT]

159–165% TNT^[16, 26], 145% TNT^[14, 27], 486 cc (expansion in Pb bomb)^[150], $428^{[160]}$, $480^{[160]}$

Sand test [g]	60.4 g (200 g crushed (cf. 4	, ,	125% TNT (~96%	6 RDX) ^[16] , 54.4	4 g-60.4 g sand		
Ballistic mortar test	150% TNT ^{[14, 3}	6, 26, 27]					
Ballistic pendulum test	170% TNT ^[16]						
Initiation efficiency	0.30 g LA min	imum deto	nating charge ^{[14,}	16, 152]			
Gap test	$\rho = 1.78 \text{ g/cm}$ $\rho = 95.4\%^{[107]}$		= 11 kbar ^[34] , G_{50}	,=49.5 mm, ρ	= 1.822 g cm ⁻³ , rel.		
LSGT [cm]	$G_{50} = 70.68 \text{ m}$ cards ^[120] LANL LSGT da		71 mm (@ 1.07 g	; cm ⁻³) ^[17] , 61	mm (LANL) ^[66] , 105		
	ρ (g/cm ³) % voids Sensitivity (mm)						
	1.07	43.7	70.7				
	1 -	Negative @ 150 cards for a slurry of HMX and butyrolactone-DMSO (72/27) that contained 67% by weight HMX (NOL LSGT) ^[148]					
SSGT [cm]	$L_{95} = 0.10 \text{ mm}$ (@ 1.83 g cm	(@ 1.79 g ⁻³) ^[17] , 7.4 n		.04 mm, L ₉₅ = = 10.81 kbar (
		ρ (g/	cm³)	% Voids	Sensitivity (mm)		
	NSWC SSGT	1.81	4	4.7	8.71		
		1.51	7	20.3	11.28		
	LANL SSGT	1.84	0 (pressed)	3.2	3.43		
		1.79	0 (pressed)	5.8	4.27		
			(coarse)	36.8	8.53		
		0.7 (1	fine crystals)	63	6.45		

	HMX TMD =	1.903 g/c	m³, o	data	from ^[156] :					
	Loading pressure	Dens (g/cr			% TMD		Sensitivi	ity (DE	3G)	
	(kpsi)	avg.	S		Ì	Avg.	g	s _m		N
	8	1.517	-		79.7	3.526	0.0172	0.0)216	20
	16	1.627	-		85.5	3.475	0.0548	0.0)328	20
	32	1.718	-		90.3	3.508	0.0102	0.0	0097	20
	64	1.814	_		90.3	4.644	0.1546	0.1	1023	20
Cook-off T [°C]	210 (confine Cook-off test				modified I	M47 de	tonators ^{[152}	·:		
	Group designation	Upper	chai	rge	Intermed charg		Base cha	rge	Cook T (°F)	
	HMX Inert 10 Inert 66 HMX 34 460									
5 s explosion T[°C] 10 s explosion T[°C]	327 ^[14, 16, 27, 1] @ 85 °C) ^[118] (dec.) ^[152] , 32 306 ^[14, 16, 27, 1]	, 318.1 (tl 27 (cook-o	nerm	nal a	ggressed H	НМХ, 4	0 days @ 71	1 °C) ^{[1}	^{18]} , 32	
0.1 s explosion T[°C]	380 ^[16, 152] , 3	80 (no ca _l	o us	ed) ^{[1}	4, 27]					
Explosion T[°C]	337 ^[25] , 280	(DTA/TG @	96°	PC/m	nin) ^[34] , 327	[139]				
5 s ignition	327 (USA va	lue) ^[28] , 33	5 (R	Russi	an value) ^{[2}	8]				
T[°C] Ignition T[°C]	300 ^[74] , 252 Crystal ρ (g of 1.887/235, Pin load (N) 98/248, 130	cm ⁻³) vs. i 1.8885/2 of friction	gniti 41, : test	ion 7 1.88 s vs.	(°C) (appr 85/248, 1 ignition <i>T</i>	ox. valı .892/2	52.5, 1.89/	/256 ^{[1}	.02]	/242,
Detonating T [°C]	347 ^[137]									
Autoignition T [°C]	234 ^[16]									

SBAT (small-scale autoignition test) [°C]	208 (Thiokol) ^[67]			
100 °C heat test [% mass loss]	0.05% mass loss in first 48 h $^{[14,16]}$, 0.3% mass loss in second 48 h $^{[14,16]}$, no explosions in 100 h $^{[14,16]}$			
Thermal stability	No. moles gas per mole HMX produced/no. hours ^[39] : @ 120 °C: 0/22 h, $0/72^{[39]}$, @ 220 °C: $4.43/22$ h, $4.3/72^{[39]}$, @ 320 °C: $4.24/22$ h, $5.4/72^{[39]}$, 0.04% mass loss @ 120 °C, 48 h (TG) ^[106] , metastable @ RT (α -HMX) ^[150] , stable @ RT (β -HMX) ^[150] , metastable @ RT (β -HMX) ^[150] , labile @ RT (β -HMX) ^[150] , 32–39 mm rise in pressure @ $166-167$ °C for 5 h (manometric specimen) ^[150]			
LLNL reactivity test	<0.01 cm ³ gas evolved ^[16, 21]			
Vacuum stability test [cm³/h]	0.37 cc/40 @ 100 °C ^[14] , 0.45 cc/40 h @ 120 °C ^[14,152] , 0.62 cc/40 h @ 150 °C ^[14,16] , 0.1–0.4 mL/g gas evolved after 48 h @ 120 °C ^[17] , 0.07 cm³ evolved after 48 h @ 120 °C ^[21] , @ 150 °C: 1.2/2 days, 8.9/7 days, 32.9/14 days ^[45] , @ 175 °C: 3.1/2 days, 31.2/7 days ^[45] , @ 100 °C: 0.37 cc gas evolved after 40 h (5 g sample) ^[27] , @ 120 °C: 0.45 cc gas evolved after 40 h (5 g sample) ^[27] , @ 150 °C: 0.62 cc gas evolved after 40 h (5 g sample) ^[27] , 0.06 cm³ gas produced @ 110 °C for 20 h ^[53,101,113] , 0.0 cc/g @ 100 °C/48 h ^[79] , 0.1 cc/g @ 200 °C/h (average for 2 h exposure) ^[79] , mL/5 g/120 °C/48 h: 0.12 LC-HMX ^[55] , 0.24 FC-HMX ^[55] , 0.06 LD-HMX ^[55] , 0.06 FD-HMX ^[55] , 0.4 cm³/g (5 g sample, 40 h thermostating @ 120 °C) ^[95] , 0.6 cm³/g (5 g sample, 40 h thermostating @ 150 °C) ^[95] , 0.4 mL (5 g sample, 48 h, 120 °C) ^[106] STANAG 4147 test 1B, total gas evolved after 40 h @ 100 °C, values in cc: 0.0699 ^[171]			
Bourdon manometer	0.04 mL•g ⁻¹ @ 120 °C, 48 h ^[106]			
Vapor pressure [mm Hg × 10 ⁷ @ °C]	$ \begin{array}{c} 0.032 \ @\ 97.6^{[17]},\ 0.164 \ @\ 108.2^{[17]},\ 0.385-0.419 \ @\ 115.6^{[17]},\ 2.830-2.870 \ @\ 129.3^{[17]},\ 1.51 \times 10^{-11} \ \text{Torr} \ @\ 66 \ ^{\text{C}[44]},\ 3.3 \times 10^{-14} \ \text{Torr} \ @\ 20 \ ^{\text{C}[52]},\ 3.33 \times 10^{-14} \ \text{Torr} \ @\ 25 \ ^{\text{C}[134]},\ 3.3 \times 10^{-14} \ \text{mm Hg} \ @\ 25 \ ^{\text{C}[141]},\ 3.00 \times 10^{-9} \ \text{mm Hg} \ (\text{solid})^{[146]},\ 3.33 \times 10^{-13} \ \text{mm Hg} \ (\text{solid})^{[146]},\ 2.6 \pm 0.01 \ \text{mm Hg} \ @\ 20 \ ^{\text{C}} \ (\text{solid})^{[146]},\ 5 \ \text{mm Hg} \ @\ 22-25 \ ^{\text{C}} \ (\text{solid})^{[146]},\ 3.3 \times 10^{-16} \ \text{mm Hg} \ @\ 20 \ ^{\text{C}} \ (\text{solid})^{[146]},\ 3.3 \times 10^{-16} \ \text{mm Hg} \ @\ 20 \ ^{\text{C}} \ (\text{solid})^{[146]},\ 3.3 \times 10^{-16} \ \text{mm Hg} \ @\ 30 \ ^{\text{C}} \ (\text{solid})^{[146]},\ 3.01 \times 10^{-15} \ \text{Torr} \ @\ 25 \ ^{\text{C}[165,171]},\ 3.14 \times 10^{-11} \ \text{Torr} \ @\ 70 \ ^{\text{C}[165,171]},\ 4.37 \times 10^{-9} \ \text{Torr} \ @\ 100 \ ^{\text{C}[165,171]} \ \end{array}$ $ \text{Vapor pressure of } \beta - \text{HMX}^{[30]} $			
	T (K) Vapor pressure (Torr)			
	$\begin{array}{ c c c } \hline 2,690 & 33 \times 10^{-9} \\ \hline 2,615 & 18 \times 10^{-8} \\ \hline \end{array}$			
	2,575 4 × 10 ⁻⁸			
	2,490 3 × 10 ⁻⁷			

 $log_{10} P = 16.855 - 82.96/T (K) Pa^{[78]}$

Values from^[140]:

T (°C)	Vapor pressure (x 10 ⁷ Torr)	Wt. loss (g × 10³)	Time (s)	Area (cm²)
97.6	0.0324	3.7	3,456,000	6.33
108.2	0.164	4.6	860,400	6.33
115.6	0.390	1.97	424,080	2.34
115.6	0.385	1.98	424,080	2.38
115.6	0.419	2.09	424,080	2.31
129.3	2.83	4.92	145,800	2.38
129.3	2.87	4.83	145,800	2.31

Burn rate [mm/s]

Mass burn rate (kg/m² s) vs. pressure (MPa) (approx. values) [91]: 22/0.4, 30/1.1, 40/1.5, 50/2.0, 55/2.9, 70/3.5, 90/4.8, 100/5.5 [91], 3 @ 10 atm. pressure [109], 15 @ 100 atm. pressure [109], 100 @ 1,000 atm. pressure [109], 0.37 (@ 1 atm., SMATCH/FTIR spectroscopy) [168], 0.5 (@ 1 atm., strand burner) [168]

HMX and HMX-d₈ burn rates (in/s)^[92]:

I	psi MPa)	l '	0 psi MPa)		0 psi MPa)
нмх	HMX-d ₈	нмх	HMX-d ₈	нмх	HMX-d ₈
0.257	0.167	0.464	0.306	0.716	0.604
0.253	0.219	0.505 0.311		0.690	0.596
0.284	0.183	0.529	0.320	0.698	0.502
_	0.192	-	0.308	-	-

Burning characteristics of HMX^[108]: $\rho = 1.7 \text{ g cm}^{-3}$, u (linear burning rate) = 0.35 mm/s, m (mass burning rate) = 0.6 kg/m²s, T_s (surface T) = 633 K, Q_s (heat evolved/absorbed in condensed phase) = -0.16 kJ/kg^[108]

Burn rate characteristics: pressure interval = 0.3–40.1 MPa, pressure exponent = 0.861, burning rate @ 10 MPa = 18.1 mm/s, strand ρ = 1.72 g cm⁻³, adiabatic flame T @ 10 MPa = 3,295 K^[110, 127]

HMX combustion parameters, subatmospheric, atmospheric and high pressure @ T_0 = 20 °C^[116]:

p (MPa)	0.05	0.075	0.1	20	30	50
m (g/cm ² c)	0.05	0.06	0.07	3.4	4.4	5.8
<i>T</i> _s (°C)	307	309	312	551	565	581
(<i>dT/dx</i>) ₀ •10 ⁻⁴ (K/cm)	9.5	9	8	42.5	42.7	47.8
q (cal/g)	228	180	138	20	16	14
$q_{\rm r}$ (cal/g)	3	4	7	6	5	4
Q (cal/g)	-92	-44	-4.5	170	220	230
/ (mkm)	345	286	268	_	-	-
I _m (mkm)	51	47	50	-	-	-
ks•10 ⁻⁴ (cal/cm•K•s)	5	5	6	28	30	40
T _f (°C)	1,600	1,800	2,100	2,750	2,780	2,800
L (mm)	0.6	1.2	1.0	0.3	0.22	0.18
I _R (mkm)	13	13	14	1.85	1.54	1.56
d (mkm)	87	73	64	1.6	1.2	1.0
L/d	7	16	16	190	180	180
W	0	0.14	0.26	0.92	0.95	0.98
F _s (kcal/cm ³ s)	-2.3	-2.3	-1.0	4,060	6,590	8,990
F ₀ (kcal/cm ³ s)	1.2	1.5	1.7	450	600	1,250

φ (λθγε) -17 -18 -18 -18 -19 -	HMX combustion parameters ^[116] ;	eters ^{[116}	6];													
 (-17) (-18) (-19) <l< td=""><td><i>р</i> (МРа)</td><td></td><td>0.5</td><td></td><td></td><td>1</td><td></td><td></td><td>2</td><td></td><td></td><td>5</td><td></td><td></td><td>10</td><td></td></l<>	<i>р</i> (МРа)		0.5			1			2			5			10	
(c) 0.19 0.26 0.36 0.34 0.46 0.58 0.6 0.78 0.94 1.22 1.42 1.68 1.68 2.04 2.2 1.42 1.42 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.44 1.45 1.45 1.45 1.45 1.45 1.45 1.45	7 ₀ (°C)	-170	20	100	-170	20	100	-170	20	100	-170	20	100	-170	20	100
10 ⁻⁴ (K/cm) 21.3 12.7 14.8 25.2 18.5 18.6 26.7 23 24.3 26.5 28 33.3 31.5 357 340 10 ⁻⁴ (K/cm) 21.3 12.7 14.8 25.2 18.5 18.6 26.7 28.7 24.3 26.5 28 33.3 31.5 36 24 2	$m (g/cm^2c)$	0.19	0.26	0.36	0.34	0.46	0.58	9.0	0.78	0.94	1.22	1.42	1.68	2.04	2.2	2.5
10 ⁴ (K/cm) 1.1 1.4.8 5.5. 18.5 18.6 26.7 28.7 26.5 28.7 38.7 36.7 38.9 33.3 30.5 31.5 31.5 36.7 1.46 6.5 56 100 54 46 63 43 38 33.2 30.9 30.9 30.9 30.0 <td>T_s (°C)</td> <td>367</td> <td>385</td> <td>404</td> <td>403</td> <td>424</td> <td>439</td> <td>441</td> <td>461</td> <td>474</td> <td>964</td> <td>505</td> <td>514</td> <td>523</td> <td>527</td> <td>533</td>	T _s (°C)	367	385	404	403	424	439	441	461	474	964	505	514	523	527	533
146 65 65 66 100 54 46 63 43 88 33 30 30 64 6 24 6 63 6 43 6 43 8 8 33 30 30 6 24 6 26 26 20 100 8 146 120 12 10 10 10 10 10 10 10 10 10 10 10 10 10	$(dT/dx)_0 \bullet 10^{-4} \text{ (K/cm)}$	21.3	12.7	14.8	25.2	18.5	18.6	26.7	23	24.3	26.5	28	33.3	31.5	36	38.7
16 12 12 14 120 150 166 146 125 118 176 150 190 191 100 75 600 55 45 42 400 38 32 26 246 250 192 100 75 600 55 45 42 400 38 32 26 24 22 200 192 100 75 600 55 45 42 400 38 32 26 24 22 200 192 100 75 600 55 34 45 45 45 45 45 45	q (cal/g)	146	65	99	100	54	46	63	43	38	33	30	30	24	26	25
56 94 82 144 120 105 166 146 125 218 176 150 150 169 189 192 192 192 100 75 60 55 45 42 42 40 88 32 2 6 5 4 5 24 5 20 18 18 18 18 18 18 18 18 18 18 18 18 18	<i>q</i> _r (cal/g)	16	12	8	16	12	6	15	12	10	13	11	10	10	6	8
(cal/cm•K•s) (5.6) 45 42 40 38 32 66 45 45 40 38 32 66 24 60 45 40 38 32 66 42 42 45 60 50 60 50 60 50 60	Q (cal/g)	99	94	82	114	120	105	166	146	125	218	176	150	240	192	165
(cal/cm•K•s) 5.6 5.8 6.3 5.6 6.0 7.0 6.6 8.7 9.2 17 17 19 10 14 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	/ (mkm)	100	7.5	09	55	45	42	40	38	32	26	24	22	20	18	17
(cal/cm•K•s) 5.6 6.3 6.0 <t< td=""><td><i>I_m</i> (mkm)</td><td>12</td><td>20</td><td>32</td><td>18</td><td>25</td><td>34</td><td>15</td><td>20</td><td>25</td><td>12</td><td>17</td><td>19</td><td>10</td><td>14</td><td>18</td></t<>	<i>I_m</i> (mkm)	12	20	32	18	25	34	15	20	25	12	17	19	10	14	18
3,450 2,450 2,450 2,500 2,500 2,700 2,750 <th< td=""><td>ks•10⁻⁴ (cal/cm•K•s)</td><td>5.6</td><td>5.8</td><td>6.3</td><td>5.6</td><td>6.0</td><td>7.0</td><td>9.9</td><td>8.7</td><td>9.2</td><td>2.6</td><td>10</td><td>11</td><td>12</td><td>12</td><td>13</td></th<>	ks•10 ⁻⁴ (cal/cm•K•s)	5.6	5.8	6.3	5.6	6.0	7.0	9.9	8.7	9.2	2.6	10	11	12	12	13
(a) 6, 5 (a) 7 (a) 8 (a) 8 (a) 8 (a) 9	$T_{\rm f}$ (°C)	2,450	2,450	2,450	2,450	2,500	2,500	2,600	2,700	2,750	2,600	2,750	2,850	2,600	2,750	2,850
48 5.6 6.0 3.4 4.0 4.5 2.8 3.7 3.9 1.3 1.5 1.6 1.6 1.7 1.6 1.6 1.7 1.6 1.5 1.6 1.7 1.6 1.7 1.6 1.7 1.6 1.6 1.7 1.6 1.6 1.7 1.6 1.8 1.6 1.8 1.6 1.8 1.6 1.8	7 (mm)	0.65	0.7	0.7	8.0	8.0	8.0	0.5	0.5	9.0	0.4	0.45	0.5	0.3	0.34	0.25
48 35 26 19 15 16 12 10 8 7 6 5 4.8 14 20 28 30 42 53 30 42 60 50 64 80 60 70 0.42 0.57 0.57 0.58 0.64 0.65 0.73 0.72 0.72 0.88 0.80 0.94 0.87 25.8 44.0 58.0 126 150 154 390 340 343 2,095 1,800 1,700 1,900 3,760 - 10 - - 30 - 55 - - 270 - - 350	<i>I_R</i> (mkm)	14	6.2	6.0	3.4	4.0	4.5	2.8	3.7	3.9	1.3	1.5	1.6	1.6	1.2	1.3
14 20 28 30 42 53 30 42 60 60 64 80 60 70 0.42 0.57 0.58 0.64 0.65 0.73 0.72 0.72 0.88 0.80 0.94 0.87 25.8 44.0 58.0 126 154 390 340 343 2,095 1,800 1,700 1,900 3,760 - 10 - - 30 - - 55 - - 270 - - 350	d (mkm)	48	35	25	26	19	15	16	12	10	8	7	9	5	4.8	4.2
0.42 0.57 0.58 0.64 0.65 0.73 0.72 0.72 0.88 0.82 0.80 0.94 0.87 25.8 44.0 58.0 126 150 154 390 340 343 2,095 1,800 1,700 1,900 3,760 - 10 - 30 - 55 - 270 - - 350	<i>p/</i> 7	14	20	28	30	42	53	30	42	09	50	64	80	09	70	09
25.8 44.0 58.0 126 156 154 390 340 343 2,095 1,800 1,700 1,900 3,760 - 10 - - 30 - - 55 - - 270 - - 350	W	0.42	0.57	0.57	0.58	0.64	0.65	0.73	0.72	0.72	0.88	0.82	0.80	0.94	0.87	0.85
- 10 30 55 270 350	$F_{\rm s}$ (kcal/cm ³ s)	25.8	44.0	58.0	126	150	154	390	340	343	2,095	1,800	1,700	1,900	3,760	3,380
	F_0 (kcal/cm ³ s)	ı	10	ı	ı	30	ı	ı	55	ı	1	270	ı	ı	350	ı

Pressure and temperature sensitivities of HMX burning rate @ 20 °C[116]:

p (MPa)	0.5	1	2	5	10
n	0.82	0.78	0.72	0.64	0.58
<i>b</i> •10², 1/K	0.26	0.24	0.18	0.14	0.15

Burning rates of pressed HMX @ various pressures (atm.), paper tube method (approx. values taken from graphs) $^{[151]}$:

HMX powder characteristics (particle diameter/mean loading ρ)	apparent mass burning rate (g cm ⁻² s ⁻¹)/@ pressure (atm.)
200-600 μ/1.20 g cm ⁻³	10/25, 20/23, 25/25, 30/27, 40/35
104-124 μ/1.05 g cm ⁻³	3/25, 20/45, 40/65
64-76 μ/1.07 g cm ⁻³	2/40, 4/50, 15/70, 34/100
53-64 μ/1.08 g cm ⁻³	3/90, 18/110, 25/120, 45/150
approx. 5 $\mu/1.02 \text{ g cm}^{-3}$	2/25, 3/50, 4/155, 6/200

Results of burning rates in unconstricted (a), (b) and constricted (c) tubes using coarse HMX (200–600 μ particle diameter), Fig. 15^[151]:

Fig. 15: Typical distance against time plots of the flame front for HMX; nitrogen pressure 27.2 atm; particle diameter approximately 200–600 μ ; loading density 1.08 g/cm^{3[151]}.

Dependence of burning rate of volatile explosives on pressure^[155]:

$\delta = \rho/\rho_{\text{max}}$	Coefficients	in formulae, m($= 1 + b p^{v}_{atm}$	gm cm ⁻² s ⁻¹)	Pressure, atm.
	а			
0.875	-	0.0436	0.90	12-205

Values of the mass burning rate of HMX for two values of δ at different pressures^[155]:

Pressure,	m, gm (cm ⁻² s ⁻¹	Pressure,	m, gm o	cm ⁻² s ⁻¹
atm.	$\delta = 0.54$	$\delta = 0.87$	atm.	δ = 0.54	$\delta = 0.87$
12.6	0.48	0.49	154	3.31	3.91
27.2	0.88	_	205	5.13	5.20
52	1.43	1.48			

Particle size

Particle size of fine (F) and large grain (L) conventional (C-HMX) and desensitized HMX (D-HMX), particle sizes measured using laser particle sizer^[55]:

Sample	Mean particle size (μm)	Median particle size (μm)	D ₁₀ (μm)	D ₉₀ (μm)
LD-HMX	153.4	153.3	81.4	224.9
LC-HMX*	162.4	185.3	88.8	227.6
FD-HMX	15.5	16.3	8.4	24.7
FC-HMX	26.9	18.0	4.2	62.1

*LC-HMX refers to conventional HMX which has been sieved

 $25-180 \mu m$ (average particle size = $94.1 \mu m$) HMX obtained via solvent/nonsolvent (DMSO/H₂O) recrystallization process^[65]

Solubility [g/mL]

 $\begin{array}{l} 5.0 \text{ mg/L H}_2\text{O} @ 20 \text{ °C}^{[52,\,146]}, 4.80 \text{ mg/L H}_2\text{O} @ 25 \text{ °C}^{[58]}, \text{ aqueous} \\ \text{solubility} = 5 \text{ mg/L} @ 25 \text{ °C}^{[134,\,146]}, 0.0045 \text{ g/L in H}_2\text{O} @ 25 \text{ °C}^{[138]}, \\ 4.5 \text{ mg/L in H}_2\text{O} @ 25 \text{ °C}^{[141]}, \text{ insoluble in water}^{[16]}, 0.003 \text{ g/100 mL} \\ \text{CHCl}_3^{[16]}, 0.002 \text{ g/100 mL CCl}_4^{[16]}, 0.144 \text{ g/100 mL dioxane}^{[16]}, \text{ insoluble in} \\ \text{CS}_2^{[16]}, 6.6 \text{ mg/L} @ 20 \text{ °C}^{[146]}, 150 \text{ mg/L}^{[146]}, 6.60 \text{ mg/L}^{[146]}, 6.63 \text{ mg/L}^{[146]}, \\ 2.6 \text{ mg/L}^{[146]}, 5 \text{ mg/L}^{[146]}, 5.0 \times 10^{-3} \text{ mg/mL in H}_2\text{O} @ 25 \text{ °C}^{[165]} \\ \end{array}$

Solubility in less common organic solvents^[76]:

Solvent	Structure	Solubility (g) of HMX in 100 g solvent	
		@ 23 °C	@ 120 °C
γ-Butyrolactone		11.0	48.1
γ-Valerolactone	H ₃ C 0	9.2	35.5
δ-Valerolactone		6.5	35.7
ε-Caprolactone		6.8	38.3

Recryst. from acetone, cyclohexane or $\gamma\text{-butyrolactone}$ produces $\beta\text{-HMX}$ crystals $^{[76]}$

Mass fraction of HMX in acetone/2-propanol mixtures (m(HMX)/m(solvent)) vs. mole fraction of 2-propanol (n(2-propanol)/n(total solvent)) (approx. values) [88]: 0.029 mass fraction/0 mole fraction, 0.020/0.1, 0.014/0.2, 0.009/0.3, 0.006/0.4, 0.003/0.5, 0.002/0.6, 0.001/0.7, 0.0005/0.8, 0.00/0.9, 0.00/1 [88]

Mass fraction of HMX in acetonitrile/2-propanol mixtures (m(HMX)/m(solvent)) vs. mole fraction of 2-propanol (n(2-propanol)/n(total solvent)) (approx. values) $^{[88]}$: 0.021 mass fraction/0 mole fraction, 0.015/0.1, 0.009/0.2, 0.007/0.3, 0.005/0.4, 0.003/0.5, 0.002/0.6, 0.001/0.7, 0.0005/0.8, 0.00/0.9, 0.00/1 $^{[88]}$

Solubility (g HMX/g solv.) @ different temperatures^[115]:

Temperature (°C)	Solvent		
	Butyrolactone	Propylene carbonate	
20	0.13	0.02	
40	0.17	0.055	
60	0.21	0.09	
80	0.275	0.13	

Solubility of HMX in different solvents @ different $T(g(HMX)/g(solvent))^{[125]}$: 0.125 (butyrolactone @ 20 °C)^[125], 0.025 (PC @ 20 °C)^[125], 0.024 (cyclohexanone @ 20 °C)^[125], 0.18 (butyrolactone @ 40 °C)^[125], 0.05 (PC @ 40 °C)^[125], 0.04 (cyclohexanone @ 40 °C)^[125], 0.225 (butyrolactone @ 60 °C)^[125], 0.075 (PC @ 60 °C)^[125], 0.05 (cyclohexanone @ 60 °C)^[125], 0.075 (butyrolactone @ 80 °C)^[125], 0.075 (PC @ 80 °C)^[125], 0.06 (cyclohexanone @ 80 °C)^[125], practically insoluble in $H_2O^{[137]}$, similar solubility in other solvents with that of RDX^[137], practically insoluble in water^[139], soluble in other solvents which dissolve RDX^[139]

Data from^[16]:

Solvent	g HMX dissolved per 100 g soln.	T (°C)
DMF	4.4	25
Nitrobenzene	0.129	25
1,2-Dichloroethane	0.125	70
Acetic acid	0.0375	25
Acetone	0.96	25
Acetonitrile	1.98	25
Cyclohexanone	2.11	25
Ethylacetate	0.02	25
Ethylbromide	0.02	25
Methy ethyl ketone	0.46	25
Nitroethane	0.172	25
Nitromethane	0.778	25
Triethylphosphate	1.75	25

Solubility of HMX by volume^[16]:

Solvent	g HMX dissolved per 100 mL of soln.
γ-butyrolactone	21.0
Cyclopentanone	1.3
Cylohexanone	5.2
Acetone	2.2
Acetonitrile	2.0
Nitromethane	1.1
Nitroethane	0.03
Methylisobutylketone	1.8

Solubility of HMX (g/100 g of solvent) after 5 mins. stirring $^{[148]}$:

Solvent	25 °C	60 °C	80 °C	98 °C
DMSO	57	68		89
DMF	Solvate			
N-Methylpyrrolidone	Solvate			
Dimethylacetamide	Solvate			
Butyrolactone	12	20		35
Acetone	2.8	4.2		
Acetonitrile	2.0		7.3	
Cyclohexanone	1.0			8.9
Hexamethylphosphoramide	1.4			37

Solubilities of HMX in binary solvent mixtures @ 25 °C (g/100 g solvent) after 5 mins. stirring $^{[148]}\!\!:$

Solvent	нмх
DMSO	57
NMP	Solvate
NMP 79.20% DMSO 20.8%	Solvate
DMF	Solvate
DMF 71.7% DMSO 28.3%	Solvate
Butyrolactone	12
Butyrolactone 73.0% DMSO 27.0%	26

Solubility of HMS in butyrolactone-DMSO (72/27) (g/100 g solvent) after 5 mins. stirring $^{[148]}$:

Т	O°C	25 °C	60 °C	98 °C
Solubility	20	26	33	49

Comparison of solubilities (g/100 g solvent) after 5 mins. and 30 mins. stirring @ $25 \, ^{\circ} C^{[148]}$:

Sample	Solvent	5 min stirring	30 min stirring
нмх	DMSO	57	58
нмх	Butyrolactone	12	13

Insoluble in MeOH, EtOH, benzene, toluene, xylene and $Et_2O^{[150]}$, poorly soluble in dichloroethane, aniline, nitrobenzene and dioxane^[150], 0.003% solubility in water @ 15–20 °C^[150], 0.02% solubility in water @ 100 °C^[150]

Data from^[150]:

T (°C)	Solubility of HMX, %					
	Acetone	Butylacetate	Aniline	Mononitrotoluene		
22	2.10	1.14	_	_		
27	2.65	_	0.35	_		
37	3.52	_	_	_		
44	4.0	3.38	_	0.89		
56	4.13	-	0.49	1.23		
60	-	0.57	_	_		
68	-	-	0.67	_		
78	-	-	0.89	_		
83	-	-	1.05	_		
90	-	-	1.19	_		
99	-	-	1.38	_		
104	-	0.77	1.61	1.60		
122	-	0.88	2.09	1.98		

 $4.46\times10^{-3}~g/L~in~H_2O^{[172]},~2.7\times10^{-3}~g/L~in~H_2O~@~298.15~K~(est.,~Klopman~method)^{[172]},~2.16\times10^{-3}~g/L~in~H_2O~(@~298.15~K,~est.,~COSMOtherm~method)^{[172]}$

	İ					
	Data from ^[17] :					
	Solvent	g disso	g dissolved/100 g solvent			
		20 °C	40 °C	60 °C		
	Glacial acetic acid	0.037	0.044	0.090		
	70% acetic acid	-	0.033	0.103		
	Acetic anhydride	-	1.29	1.94		
	Anhydrous acetone	2.4	3.4	-		
	70% acetone	0.66	1.20	ı		
	Acetonitrile	-	3.07	4.34		
	Cyclohexanone	-	5.91	7.17		
	DMF	-	6.1	11.1		
	DMSO	-	45.5	47.2		
Batch sorption	$K_{\text{ow}} = 1.46 \pm 0.001^{[58]}, k_{\text{organic rich}} = 5.78 \pm 0$		0.07 ± 0.11 L	_/kg ^[58] ,	$K_{\rm d}$ (clayed soil,	
Log K _{ow}	$ \begin{array}{l} 0.26^{[134,165]}, 0.06^{[134]}, 0.17 @ 25 {}^{\circ}C^{[138, 141]}, K_{ow} = 1.15 \text{L/kg}^{[146]},\\ K_{ow} = 3.9 \text{L/kg}^{[146]}, K_{ow} = 2.6 \text{L/kg}^{[146]}, K_{ow} = 0.6 \text{L/kg}^{[146]}, K_{ow} = 0.13,\\ 0.06 \text{L/kg}^{[146]}, K_{ow} = 0.061 \text{L/kg}^{[146]}, K_{ow} = 5.9 \text{L/kg}^{[146]}, K_{ow} = 1.82^{[165]},\\ 0.165 (@ 21 {}^{\circ}\text{C}, \text{measured})^{[172]}, 1.13 (@ 298.15 \text{K}, \text{est.}, \text{Broto method})^{[172]},\\ 1.39 (@ 298.15 \text{K}, \text{est.}, \text{Ghose method})^{[172]}, 0.42 (@ 298.15 \text{K}, \text{est.},\\ \text{COSMOtherm method})^{[172]} \end{array} $					
Log K _{oc}		0.54 ^[134, 165] , $K_{oc} = 3.47 \text{ L/kg}^{[146]}$, $K_{oc} = 5.4 \text{ L/kg}^{[146]}$, $K_{oc} = 2.83 \text{ L/kg}^{[146]}$, $K_{oc} = 6.310 \text{ L/kg}^{[146]}$, $K_{oc} = 2.8 \text{ L/kg}^{[146]}$, $K_{oc} = 3.46^{[165]}$				
Hygroscopicity	0.0% @ 30 °C, 95% RI hygroscopic ^[139]	H ^[14] , nonhygros	copic @ 30%	and 95°	% RH ^[16, 147] , non-	
Photosensitivity	Properties of aqueous HMX solns. before and after UV irradiation in continuous flow system determined by LC and TLC ^[62] :					
		C HMX, ppm)	рН		TLC detectable products	
	0 5	.6	6.9		НМХ	
	2 0		3.6		0	
	4 0		3.2		0	
	6 0		3.1		0	
	24 0		3.0		0	
	24 0	1	3.0		0	

	UV, $0.1\%~\text{H}_2\text{O}_2$ static treatment of aqueous HMX solutions $^{\text{[62]}}$:					
	UV exposure	e time (h)	ppm H ₂ O ₂	TOC analyzer		
	0		1,000	_*		
	0.5		~ 100	-		
	1		>12,>50	-		
	5		0	-		
	*sensitivity o	f TOC analyz	zer insufficient to	determine concentration		
				^{134]} , aqueous HMX solns. affected by light ^[150]		
Compatibility	CL-20 does not influence the dec. of HMX @ ambient pressure $^{[93]}$, the dec. of CL-20 is accelerated by HMX @ higher pressure and the acceleration effect is almost independent of HMX content $^{[93]}$, vacuum test of HMX/TNAZ $(60/40)$ mixtures, 110 °C, 20 h, $\rho=1.85$ g cm $^{-3}$, $(98.7\%$ TMD), vol. of gas = 0.04 cm $^3/g^{[101]}$, very dil. sulfuric and nitric acids do not decompose HMX on boiling for 6 h $^{[150]}$ VTS compatibility (STANAG 4147 test 1B, 2.5 g of compound 1 mixed with 2.5 g of compound 2, total gas evolved after 40 h @ 100 °C, values in cc) $^{[171]}$: 0.2323 (TNBA), (DNMT), 1.3033 (PiPE), (DNP), (DNGU), 0.3372 (LLM-105),					
Heat capacity [cal/(g K)]	0.226 (HK-56), concluding that all are compatible with HMX ^[171] $C_p = 0.2080 + 2.761 \times 10^{-3} \text{ T (K) (J/g/K)}^{[78]}$					
	Cp^{298} (cal mol ⁻¹ K ⁻¹): 75.1 (α-) ^[162] , 73.6 (β-) ^[162] , 75.6 (γ-) ^[162] , 89.5 (δ-) ^[162] β-HMX, initial ρ = 1.85 g cm ^{-3[71]} :					
	<i>T</i> (K)	Heat cap	acity (cal/(g K))			
	298	0.24				
	373	0.30				
	433	0.34				
	563	0.40				
	623	0.46				
	773	0.55				
	>1,273	0.55				

δ-HMX.	initial	0 = 1.85	g cm ^{-3[71]} :
--------	---------	----------	--------------------------

T (K)	Heat capacity (cal/(g K))
298	0.24
373	0.30
433	0.34
563	0.40
623	0.46
773	0.55
>1,273	0.55

Heat capacity = $0.231 + 5.5 \times 10^{-4} T \text{ cal/g-°C}$ (@ constant pressure, T range: 37 < T < 167 °C)^[17]

Specific heat [cal/g/°C]

recryst. HMX^[14, 16]:

T(°C)	Specific heat (cal/gm/°C)	T(°C)	Specific heat (cal/gm/°C)
-75	0.153	85	0.288
0	0.228	90	0.290
25	0.248	100	0.295
50	0.266	125	0.307
75	0.282	150	0.315

Thermal conductivity [cal/(cm g K)]

β-HMX and δ-HMX, initial ρ = 1.85 g cm^{-3[71]}:

T (K)	β-HMX thermal conductivity (cal/(cm g K))	δ-HMX thermal conductivity (cal/(cm g K))
298	1.28 × 10 ⁻³	1.18 × 10 ⁻³
373	1.09 × 10 ⁻³	1.0 × 10 ⁻³
433	1.02 × 10 ⁻³	9.2 × 10 ⁻⁴
563	8.15 × 10 ⁻⁴	8.15 × 10 ⁻⁴
623	7.5 × 10 ⁻⁴	7.5 × 10 ⁻⁴
773	1.0 × 10 ⁻⁴	1.0 × 10 ⁻⁴
>1,273	1.0 × 10 ⁻⁴	1.0 × 10 ⁻⁴

 7×10^{-4} cal/cm s °C $^{[167]}$, 1.2 × 10^{-3} cal/s cm °C @ 25 °C $^{[17]}$, 9.7 × 10^{-4} cal/s cm °C @ 160 °C $^{[17]}$

Enthalpy for phase changes [kJ mol ⁻¹]	$\Delta H^{\rm o} = 9.8\%$ (exptl. val $\Delta H_{\rm phasetran}$ 2.34 ± 0.0 (γ - \rightarrow δ -) ^{[1} $\Delta H_{\rm phasetran}$	β-HMX → δ-HMX, ΔH° = 9.8 ± 0.1 (exptl. value) ^[73] , β-HMX → δ-HMX, ΔH° = 9.832 ($Hall's$ value) ^[73] , δ-HMX → liq. HMX, ΔH° = 69.9 ± 4.2 (exptl. value) ^[73] , β-HMX → δ-HMX, enthalpy of phase change = 30 J/g ^[129] , $\Delta H_{phase transition}$ = 1.77 ± 0.05 kcal/mol (α - → δ-) ^[162] , $\Delta H_{phase transition}$ = 2.34 ± 0.03 kcal/mol (β - → δ-) ^[162] , $\Delta H_{phase transition}$ = 0.67 ± 0.02 kcal/mol (γ - → δ-) ^[162] , $\Delta H_{phase transition}$ = 1.67 ± 0.03 kcal/mol (β - → γ -) ^[162] , $\Delta H_{phase transition}$ = 0.57 ± 0.05 kcal/mol (α - → β -) ^[162]							
Enthalpy change for sublimation, ΔH_{sub} [kJ mol ⁻¹]	185.762 ±	185.762 ± 1.5 (β-HMX, calcd.) ^[73] , 174.930 ± 1.5 (δ-HMX, calcd.) ^[73]							
Heat of sublimation	heat of su	41.89 kcal (molar heat of sublimation, β-HMX) ^[140] , 141.4 cal/g (specific heat of sublimation, β-HMX) ^[140] , 41.9 kcal/mol (β-HMX) ^[174] , 39.3 kcal/mol (α -HMX) ^[174] , 38.0 kcal/mol (γ -HMX) ^[174] ,							
Enthalpy change for vaporization, $\Delta H_{\rm v}$ [kJ mol ⁻¹]	105.067 ±	105.067 ± 4.2 (liq. HMX) ^[73] , 174.5 ^[165] , 174.7 (est.) ^[171]							
Exploding foil shock detonation		HMX flyer plate velocity = 2.37 mm/ μ s ^[92] , HMX-d ₈ flyer plate velocity = 2.27 mm/ μ s ^[92]							
Acceleration ability		Calculated and measured cylinder velocities; $R-R_0$ (mm) ($R=$ current value of outer cylinder radius, $R_0=$ initial outer radius of cylinder, Cu cylinder) ^[97] :							
		δ (g cm ⁻³)		_	$R-R_0$	(mm)			
			4	5	7	10	12	15	
	Exptl.	1.81	1.59	1.65	1.72	1.77	1.80	1.83	
	Calcd.	1.81 1.59 1.65 1.72 1.77 1.80 1.83						1.83	
	Exptl.	1.73	1.73 1.53 1.59 1.66 1.71 1.74 1.77						
	Calcd.	1.73	1.53	1.59	1.66	1.71	1.74	1.77	

Particle size	Particle size and particle size distribution (span = $(X_{84.3} - X_{16.3})/2 \cdot X_{50.3}$), measured by laser light scattering ^[98] :						
	measured by laser lig	ht scatterin	g[30]:				
	Sample	Sample	X _{50.3}	Span			
	Type B, class 1 (Dyn Nobel, Norway)	0 161.6	0.640	Class 1, NSO 112 (Eurenco)	385.7	0.629	
	Type B, 10–15 m (Dyno Nobel, Norwa	15.5 y)	0.411	Class 5, NSO 155 (Eurenco)	39.8	0.409	
	RS-HMX, class 1 (Dyno Nobel, Norwa	375.6 y)	0.432	Recryst. in PC (Fraunhofer IC	T) 103.9	0.927	
	RS-HMX, class 5 (Dyno Nobel, Norwa	7.1 y)	0.586	Recryst. in γ-B (Fraunhofer IC		0.832	
	PC = propylene carbo				(22)		
	Effect of bead milling 1.0/176.2 ^[99] , 5.9/17		n crystal	size (nm) ^[99] : 0/	452.9 ^[99] ,		
	Particle size and particle size distribution (laser light scattering, M Mastersizer) ^[115] :						
	Sample				X _{50.3} (μm)	Span	
	HMX, type B, class :	l (0.67% RE	X impuri	ty)	161.6	0.640	
	HMX, type B, 10–15	μm (0.22%	RDX im	ourity)	15.5	0.411	
	HMX, recryst. from I RDX impurity)	Propylene c	arbonate	(0.04%	103.9	0.927	
	HMX, recryst. from I impurity)	outyrolacto	ne (0.029	% RDX	285.9	0.832	
Cylinder test results	$\rho = 1,891 \text{ kg/m}^3, \text{ VoD} = 9,110 \text{ m/s}, P_{\text{C-J}} = 42.0 \text{ GPa}, \text{EG} = 4,669 \text{ kJ/kg (calcd.}$ based on VoD, $P_{\text{C-J}}$ results), $v_{\text{G}} = 3,056 \text{ m/s}$, det. energy (lit. value), $E_0 = 10.5 \text{ GPa}, E_{0\text{cal}} \text{ (calcd. from cylinder test data} = = 11.09 \text{ GPa})^{[111]}$ Data from [17]:						
	Density (g/cm³) Cylinder wall velocity (mm/µs) at						
	/	$R - R_0 = 5 \text{ mm}$	1	$R-R_0 = 19 \text{ mm}$	_		
	1.891	1.65		1.86			
Heat of soln. [kcal/mol]	Nitromethane: 4.4 (β Corp.) ^[174] , 3.8 (α-HM) Defense Corp.) ^[174] , 1.	(, Holston D	efense C	orp.) ^[174] , 3.7 (δ	HMX, Hols		

Thermal expansion	Anisotropic volume	Anisotropic volumetric thermal expansion = 0.0131%/K on heating $\beta\text{-HMX}^{[129]}$						
Energy of melting [kJ/mol]	DSC @ 5 °C/min, 0.5–2.5 mg sample, Al pan with perforated cover, $N_2^{[132]}$: 419.71 (350 µm particle size, Kissinger's method) ^[132] , 373.06 (160 µm particle size, Kissinger's method) ^[132] , 330.72 (125 µm particle size, Kissinger's method) ^[132] , 285.49 (90 µm particle size, Kissinger's method) ^[132] , 250.17 (50 µm particle size, Kissinger's method) ^[132] , 429.29 (350 µm particle size, Ozawa's method) ^[132] , 382.34 (160 µm particle size, Ozawa's method) ^[132] , 339.96 (125 µm particle size, Ozawa's method) ^[132] , 294.69 (90 µm particle size, Ozawa's method) ^[132] , 259.33 (50 µm particle size, Ozawa's method) ^[132] , 239.01 (40 µm particle size, Ozawa's method) ^[132] , $\Delta H_m = 45.0^{[172]}$							
Diffusion coefficient [cm²/s]	0.063 (air) ^[134, 146] , ().78 (air) ^[146] , 6.02 ×	10 ⁻⁶ (water) ^[134, 146]]				
Biodegradation	Aerobic biotransformation has little effect on the presence of HMX in the environment ^[134] , certain anaerobic sludge treatments with elevated nutrient levels result in effective transformation ^[134] , biodegradability soil (aerobic) = negligible ^[146] , biodegradability soil (anaerobic) = accelerated ^[146]							
Half life in soil [days]	14,235 ^[146] , 1.17 ×	14,235 ^[146] , 1.17 × 10 ^{6[146]}						
Half-life in water [days]	0.46-0.5 ^[146] , 17.7 ^{[1}	^{146]} , 1.4 ^[146]						
Hardness	2.3 (Moh's scale) ^{[14} 20 °C, Vicker's hard		⁻² (single crystals, ~	-5 mm diameter, @				
Laser ignition	successful detonati	Detonated by Q-switched laser, 6,943 Å when HMX is under 13,500 lb/in ^{2[16]} successful detonation, if HMX sample compressed against glass plate (Ruby laser (6,943 Å) both in free running and Q-switch modes) ^[152]						
Heat of decomposition [cal/g]	855 (est.) ^[149] Thermal dec. temperature and exothermic quantity for three types of HMX samples ^[169] :							
	Sample	t _i (°C)	T _p (°C)	Q (J/)g				
	α-HMX	281.1	334.6	1,063				
	HMX-I	281.6	335.1	1,035				
	β-НМХ	282.1	335.6	1,014				
Kast brisance	4.2 mm (@ 1.53 g c	m ⁻³) ^[150]						
Flash point [°C]	291 ^[150]							

Reflectance tests	Reflectance tests @ 10,600 Å (continuous wave yttrium garnet aluminum laser, pressed explosive) ^[154] :										
	Material	Pa	rticle si	ze, n	nesh		Loading pressure, 10³ psi			Reflectance, %	
	НМХ	Th	rough 3	25			10			80.	0
BIC test	< <i>dp</i> / <i>dt</i> ≥20	3 psi	/μs, < <i>E</i>	≥163	3 J/g ^{[1}	157]					
CRT	≤0.1 cm³/g	(22	h @ 12	o °C	unde	r 1	atm. He) ^{[1}	59]			
Small-scale shock reactivity test	Used samp	le w	eight = !	534 ı	mg, d	ent	t = 972 mg	g SiO ₂ ^[181]			
Radiation sensitivity	Effect of 60 MeV electron irradiation on explosives, samples tested at 100 cm with NOL apparatus ^[189] :						ed at 100 cm				
	Weight (mg)	Dose	e (R)	Dos (R/	se rat s)	е	Weight loss	Color change	Tes	t	Results
	7.7	1.14	× 10 ⁹	1.7	× 10	6			Imp	act	No explosion
	Critical dos							high-ene	rgy e	lectro	ons,
	Explosive			Critic	al do	se	(J/g)	Τ	Ignit	tion 1	Γ (°C)
			Calcd.			Exp	otl.a	Calcd.		E	xptl.
	НМХ		156.1	> 16	7	310	0	335			
	Data from ^{[1}	85]:									
	Exposure	rate	(R/h)		Tota	al d	ose (R)	Va	cuun	ı stal	bility test
	200 °C (cc/2 g/2 h)										
	Control 0.42										
	8 × 10 ⁵				1.3	× 1	.07	1.40			
					1.1	× 1	.08	7.09	(mar	ginal)
					1.0	× 1	.09	Defla	grate	ed (3	min)

DTA for irradiated HMX @ 20 °C/min^[185]:

Total		Endot	herms	Exotherms				
dose (R)	19	st	2r	2nd		1st		d
	Onset (°C)	Peak (°C)	Onset (°C)	Peak (°C)	Onset (°C)	Peak (°C)	Onset (°C)	Peak (°C)
0	192	199	271	272	272	286		
1.3 × 10 ⁷	173	177	274	275	275	286		
1.1 × 10 ⁸	185	190*			170	179	250	293
1.0 × 10 ⁹	180	182			150	172	190	270

^{* =} small dip

TGA for irradiated HMX^[185]:

Total dose (R)	Heating rate (°C/min)	Weight (mg)	Start of dec. (°C)	10% weight loss T(°C)	Total weight loss (%)	Remarks
0	20	8.4	250	282	10 @ 282 °C	Detonated @ 282 °C
1.3 × 10 ⁷	20	10.9	180	266	15 @ 268 °C	Detonated @ 268 °C
1.1 × 10 ⁸	20	8.2	55	250	21 @ 274 °C	Detonated @ 274 °C
1.0 × 10 ⁹	20	8.2	105	185	14 @ 252 °C	Detonated @ 252 °C
0	50	10.3	275	_	23 @ 297 °C	Detonated @ 297 °C
0	80	9.5	280	_	6 @ 300 °C	Detonated @ 300 °C

Effect of gamma radiation on the mpt. and color^[185]:

Total dose (R)	Mpt. (°C)	Color
0	273.5	White
1.3 × 10 ⁷	271.0	White
1.1 × 10 ⁸	271.0	White
1.0 × 10 ⁹	255 Dec.	White

IS for irradiated explosives, 50% fire height in in, Bruceton method (P.A. apparatus, 2 kg mass) $^{[185]}$:

Total Co ⁶⁰ gamma dose (R)	\bar{X} mean (in)	σ std. dev. (in)
0	14.04	1.04
1.3 × 10 ⁷	11.04	1.44
1.1 × 10 ⁸	8.96	2.57
1.0 × 10 ⁹	9.96	2.40

Effect of gamma radiation on explosion T (5 s explosion T in °C) and activation energy (kcal/mol)^[185]:

Total dose (R)	5 s explosion $T(^{\circ}C)$	Apparent activation energy (kcal/mol)
0	300	14.45
1.3 × 10 ⁷	290	16.36
1.1 × 10 ⁸	286	23.50
1.0 × 10 ⁹	201	6.10

Effect of gamma radiation on rates of detonation^[185]:

Total dose (R)	Density (g/cc)	Density after irradiation (g/cc)	Rate of detonation (m/s)	Detonation pressure (kbar)
0	1.75	-	8,620	325
0.1×10^7	1.75	1.75	8,620	325
3 × 10 ⁸	1.74	1.66	8,410	293
1.1 × 10 ⁹	Pellets crumble	d	_	

Refractive index	Data from ^[17] :				
	Face		HMX polymo	rph	
		α	β	γ	δ
	Alpha	1.561-1.565	1.589	1.537	-
	Beta	1.562-1.566	1.594-1.595	1.585	-
	Gamma	1.729-1.740	1.730-1.773	1.666	1.566
	Epsilon	-	-	-	1.607
	Omega	-	-	-	
	Double refraction	Positive	Positive	Positive	Negative
Wedge test results	Data from ^[17] :				
	Density (g/cm³)	Distance, x*, to d	etonation (mm)	Pressure range (GPa)	
	1.891	$log P = (1.18 \pm 0.00)$ $log x^*,$ where P = pressure		4.41 < P <	9.55

Fig. 16 data from^[153]:

Fig. 16: ODTX results of ANPZ and TATB, HMX, RDX and PETN $^{[153]}$.

	Octogen (β-HMX)[31, 41, 131, 174]	α-HMX[16, 18, 22, 35, 130, 174]	β-HMX ^[16, 18, 22]	γ-HMX ^[16, 22, 35, 41, 131]	5-HMX ^[32, 174]	β-HMX ^[42, 43]
	Neutron diffraction	(HMX-II)	(HMX-I)	(HMX-III)*	(VI-XMH)	
Chemical formula	C ₄ H ₈ O ₈ N ₈	C ₄ H ₈ O ₈ N ₈	C ₄ H ₈ O ₈ N ₈		C ₄ H ₈ O ₈ N ₈	C ₄ H ₈ O ₈ N ₈
Molecular weight [g mol ⁻¹]	296.18	296.18	296.18		296.18	296.18
Crystal system		Orthorhombic	Monoclinic	Monoclinic	Hexagonal	Monoclinic
Space group		Fdd2	$P 2_1 / c $ (no. 14)	Pc, P 2/ c or P 2/ n	P6 ₁ or P6 ₅	P 2 ₁ / n
a [Å]	6.54	15.14	6.54	10.95	7.711(2)	6.5209(2)
<i>b</i> [Å]	11.05	23.89	11.05	7.93	7.711(2)	10.7610(2)
c [Å]	8.70	5.91	8.70	14.61	32.553(6)	7.3062(2)
α [°]	96	06	90	90	90	90
β [⁰]	124.3	06	$102.8^{[18]}, 103^{[22]}$	119.4	06	102.058(2)
γ [⁰]	06	06	06	06	120	06
V [ų]				1,105.25 ^[35]	1,676.3	501.37
2	2	8	2	4	9	2
$ ho_{ m catc}$ [g cm $^{-3}$]	1.894	$1.838^{[18]}, 1.87^{[22]}$ $1.84087^{[35]}$	$\frac{1.902^{[18]}}{1.96^{[22]}}$	1.78, 1.7798 ^[35]	1.586	1.962
7 [K]			298 ^[22]	298 ^[22]	RT	20
	Unit cell constants of Eiland and Pepinsky are used			*It has been shown that γ -HMX is in fact a hydrate – $2C_{\alpha}H_8N_9O_8^{-1}/_2H_2O^{[41]}$		

	β-ΗΜΧ ^[43]	β-ΗΜΧ ^[35]	γ-HMX ^[32, 35, 41]	δ-HMX ^[16, 35, 41]	β-HMX ^[100]	6-HMX ^[100]	E-HMX ^[100]
Chemical formula	$C_4H_8O_8N_8$	C ₄ H ₈ O ₈ N ₈		C ₄ H ₈ O ₈ N ₈			
Molecular weight [g mol ⁻¹]	296.18	296.18		296.18	296.18	296.18	296.18
Crystal system	Monoclinic	Monoclinic	Monoclinic		Monoclinic	Hexagonal	Monoclinic
Space group	P 2 ₁ / n	<i>P</i> 2 ₁ / <i>c</i> (no. 14)	<i>3d</i>	P 65 or P 61			P2 ₁ /c
a [Å]	6.5250(2)	6.5380(8)	13.271	7.711(2)	6.50	99'2	21.799
<i>b</i> [Å]	10.8249(2)	11.054(2)	7.90	7.711(2)	10.93	99.2	10.913
c [Å]	7.3175(1)	8.702(2)	10.95	32.553(6)	7.32	32.49	10.819
α [ο]	06	06	06	06	06	06	06
β [°]	102.256(1)	124.44	106.8	06	103.3	06	97.43
γ [°]	06	06	90	120	90	120	06
V [ų]	505.07	518.668	1,099.01	1,676.27			
Z	2	2	7	9			10
$ ho_{ m calc}$ [g cm ⁻³]	1.948	1.8963	1.82	1.76026	1.902	1.763	1.919
7 [K]	120						
			*It has been shown that γ -HMX is in fact a hydrate – $2C_4H_8N_8O_8^{-1}/_2H_2O^{[41]}$				

The cell constants reported in reference below are not a y-form of HMX, but instead correspond to those of the hemihydrate[174]; There are over 100 stoichiometric compounds which have been prepared between HMX and organic molecules^[174]; B-HMX can be prepared from a number of routes, for example, by very slow cooling of acetic acid, acetone, nitric acid or nitromethane solns. [174], a-HMX can be prepared from the same solns. but with rapid cooling [174], y-HMX can be obtained by even more rapid cooling^[174], δ-HMX obtained rapidly chilling of, or pouring onto ice solns. in which it has slight solubility^[174]

	HMX ^[174, 175]	HMX ^[174, 176]	HMX ^[177]	HMX ^[177]	HMX ^[177]	HMX ^[177]
Chemical formula	C ₄ H ₈ O ₈ N ₈	C ₄ H ₈ O ₈ N ₈	C ₄ H ₈ O ₈ N ₈	C ₄ H ₈ O ₈ N ₈	C ₄ H ₈ O ₈ N ₈	C ₄ H ₈ O ₈ N ₈
Molecular weight [g mol ⁻¹]	296.18	296.18	296.18	296.18	296.18	296.18
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	$P 2_1 / c $ (no. 14)	$P 2_1 / n \text{ (no. 14)}$	P 2 ₁ / n (no. 14)	<i>P</i> 2 ₁ / <i>n</i> (no. 14)	$P 2_1 / n (\text{no.} 14)$	<i>P</i> 2 ₁ / <i>n</i> (no. 14)
a [Å]	6.540	6.533(1)	6.5289(5)	6.5245(10)	6.5254(9)	6.5255(10)
<i>b</i> [Å]	11.050	7.351(2)	10.9875(9)	11.0240(17)	10.9702(16)	11.0369(18)
c [Å]	8.700	11.032(3)	7.3453(5)	7.3619(11)	7.3503(11)	7.3640(12)
α [٥]	06	06	06	06	06	06
β [⁰]	124.30	06	102.616(4)	102.642(9)	102.582(9)	102.670(10)
γ [o]	06	77.32(2)	06	06	06	06
V [ų]	519.387	516.88	514.20(7)	516.68(14)	513.53(13)	517.45(14)
Z	2	2	2	2	2	2
$ ho_{ m calc}$ [g cm $^{-3}$]	1.894	1.903	1.913	1.904	1.915	1.901
7 [K]	295	295	273	293	248	303

	HMX ^[175]	HMX ^[176]	HMX ^[177]	HMX ^[178]	y-HMX ^[174, 179]	α-HMX ^[17]	β-HMX ^[17]	γ-HMX ^[17]	6-HMX ^[17]
Chemical formula	C ₄ H ₈ O ₈ N ₈	$C_4H_8O_8N_8$	C ₄ H ₈ O ₈ N ₈	C ₄ H ₈ O ₈ N ₈	2C ₄ H ₈ N ₈ O ₈ · ¹ / ₂ H ₂ O				
Molecular weight [g mol ⁻¹]	296.18	296.18	296.18	296.18	296.18	296.18	296.18	296.18	296.18
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic				
Space group	<i>P</i> 2 ₁ / <i>c</i> (no. 14)	$P2_1/n$ (no. 14)	<i>P</i> 2 ₁ / <i>n</i> (no. 14)	<i>P</i> 2 ₁ / <i>c</i> (no. 14)	<i>Pn</i> (no. 7)				
a [Å]	6.5334(9)	6.5206(9)	6.5288(8)	21.799(3)	13.27(1)	15.14	6.54	10.95	7.66
<i>b</i> [Å]	10.9419(14)	10.9123(16)	10.8862(13)	10.913(2)	7.90(1)	23.89	11.05	7.93	
<i>c</i> [Å]	7.3421(10)	7.3395(11)	7.3304(9)	10.819(2)	10.95(1)	5.91	7.37	14.61	32.49
α [٥]	06	06	06	06	06				
β [⁰]	102.491(2)	102.467(9)	102.365(2)	97.43(2)	106.8(1)		102.8	119.4	
γ [⁰]	06	06	06	06	06				
V [ų]	512.45(12)	509.93(13)	508.91(11)	2552.15	1098.93				
Z	2	2	2	10	2	8	2	4	9
$ ho_{ m calc}$ [g cm $^{-3}$]	1.919	1.929	1.933	1.927	1.817				
7 [K]	223	198	173	200	295				

Effect of bead milling on results of Rietveld analysis [99]:

Time of milling (h)	a (Å)	b (Å)	c (Å)	β (°)	Vol. (ų)
0	6.5552	11.0331	8.7085	124.422	519.55
1.0	6.5370	11.0425	8.7049	124.420	518.34
5.9	6.5389	11.0407	8.7000	124.442	517.99

Preparation of different HMX polymorphs using solvents^[16]:

Polymorph obtained	Conditions
α-HMX	Precipitated from the same solns. as for $\beta\textsc{-HMX}$ but with more rapid cooling
β-НМХ	Precipitated from a soln. of HMX in acetic acid, acetone, nitric acid or nitromethane with slow cooling
	$\alpha\textsc{-HMX}$ converted to $\beta\textsc{-HMX}$ by cryst. from boiling acetone, acetonitrile or cyclohexanone
ү-НМХ	Precipitated from the same solns. as for $\alpha\text{-}$ and $\beta\text{-HMX}$ but with even more rapid cooling
б-НМХ	Crystallized from solns. such as acetic acid or betachloroethyl phosphate in which HMX shows low solubility, with very rapid cooling $(e.g.$ by pouring over ice)

- S. Zeman, A Study of Chemical Micro-Mechanisms of Initiation of Organic Polynitro Compounds, Ch. 2 in Energetic Materials, Part 2: Detonation, Combustion, P. A. Politzer, J. S. Murray (eds.), Theoretical and Computational Chemistry, Vol. 13, 2003, Elsevier, pp. 25-60.
- [2] https://engineering.purdue.edu/~propulsi/propulsion/comb/propellants.html
- [3] H. H. Krause, *New Energetic Materials*, Ch. 1 in *Energetic Materials*, U. Teipel (ed.), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, **2005**, pp. 1–26.
- [4] S. Zeman, V. Pelikán, J. Majzlík, Central Europ. J. Energ. Mat., 2006, 3, 27-44.
- J. P. Lu, Evaluation of the Thermochemical Code CHEETAH 2.0 for Modelling Explosives Performance, DSTO Aeronautical and Maritime Research Laboratory, August 2011, AR-011-997.
- [6] S. Zeman, Study of the Impact Reactivity of Polynitro Compounds Part IV. Allocation of Polynitro Compounds on the Basis of their Impact Sensitivities, in Proceedings of New Trends in Research of Energetic Materials, NTREM, April 24th–25th 2002, pp. 434–443.
- [7] M. H. Keshavarz, M. Hayati, S. Ghariban-Lavasani, N. Zohari, ZAAC, 2016, 642, 182–188.
- [8] M. Jungová, S. Zeman, A. Husárová, *Chinese J. Energ. Mater.*, **2011**, *19*, 603–606.
- [9] C. B. Storm, J. R. Stine, J. F. Kramer, Sensitivity Relationships in Energetic Materials, in S. N. Bulusu (ed.), Chemistry and Physics of Energetic Materials, Kluwer Academic Publishers, Dordrecht, 1999, p. 605.
- [10] M. H. Keshavarz, J. Haz. Mat., 2009, 166, 762-769.
- [11] A. Koch, *Propellants, Explosives, Pyrotechnics*, **2002**, *27*, 365–368.
- [12] R. Weinheimer, *Properties of Selected High Explosives*, Abstract, 27th International Pyrotechnics Seminar, 16th–21st July **2000**, Grand Junction, USA.

- [13] Determined using the Bureau of Mines (B.M.) or Picatinny Arsenal (P.A.) or Explosive Research Laboratory (ERL) apparatus.
- [14] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.
- [15] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [16] Military Explosives, Department of the Army Technical Manual TM 9-1300-214, Headquarters, Department of the Army, September 1984.
- [17] LASL Explosive Property Data, T. R. Gibbs, A. Popolato (eds.), University of California Press, Berkelev. 1980.
- [18] H. H. Cady, A. C. Larson, D. T. Cramer, Acta Cryst., 1963, 16, 617–623.
- [19] A. Smirnov, D. Voronko, B. Korsunsky, T. Pivina, Huozhayo Xuebao, 2015, 38, 1-8.
- [20] R. K. Wharton, J. A. Harding, J. Energet. Mater., 1993, 11, 51–65.
- [21] B. M. Dobratz, Properties of Chemical Explosives and Explosive Simulants, UCRL-5319, LLNL, December 15th, 1972.
- [22] W. C. McCrone, Analytical Chemistry, 1950, 22, 1225–1226.
- [23] G. T. Afanas'ev, T. S. Pivina, D. V. Sukhachev, *Propellants, Explosives, Pyrotechnics*, **1993**, *18*, 309–316.
- [24] M. L. Jones, E. Lee, J. Energet. Mater., 1997, 15, 193-204.
- [25] S. M. Kaye, Encyclopedia of Explosives and Related Items, Vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1978.
- [26] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, Vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1962.
- [27] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, Vol. 3, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1966.
- [28] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, Vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1969.
- [29] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items, Vol. 7*, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1975**.
- [30] S. M. Kaye, Encyclopedia of Explosives and Related Items, Vol. 9, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1980.
- [31] C. S. Choi, H. P. Boutin, Acta Cryst., 1970, B26, 1235–1240.
- [32] R. E. Cobbledick, R. W. H. Small, Acta Cryst., 1970, B26, 1235–1240.
- [33] S. Zeman, *Propellants, Explosives, Pyrotechnics*, **2000**, *25*, 66–74.
- [34] H.-H. Licht, *Propellants, Explosives, Pyrotechnics*, **2000**, *25*, 126–132.
- [35] C.-O. Lieber, *Propellants, Explosives, Pyrotechnics*, **2000**, *25*, 288–301.
- [36] E. G. Kayser, J. Energet. Mater., 1983, 1:3, 251-273.
- [37] A. Smirnov, S. Smirnov, V. Balalaev, T. Pivina, Calculation of Detonation Velocity and Pressure of Individual and Composite Explosives, NTREM 17, April 9th–11th 2014, pp. 24–37.
- [38] A. P. Jardine, D. M. Williamson, S. Gymer, N. E. Taylor, S. M. Walley, J. P. Palmer, *Optical Diagnostics to Study Impact Initiation Meschanisms in Modern Energetic Materials*, NTREM 17, 9th–11th April **2014**, pp. 243–252.
- [39] J. C. Oxley, J. L. Smith, E. Rogers, X. X. Dong, J. Energet. Mater., 2000, 18, 97–121.
- [40] A. A. Gidaspov, E. V. Yurtaev, Y. V. Moschevskiy, V. Y. Avdeev, The Correlations Between the High Explosives' Critical Temperature of Thermal Explosion with the Flash Point and Decomposition Temperatures, NTREM 17, 9th–11th April 2014, pp. 658–661.
- [41] G. R. Miller, A. N. Garroway, A Review of the Crystal Structures of Common Explosives Part I: RDX, HMX, TNT, PETN and Tetryl, NRL/MR/6120—01-8585, Naval Research Laboratory, October 15th 2001.

- [42] E. A. Zhurova, V. V. Zhurov, A. A. Pinkerton, J. Am. Chem. Soc., 2007, 29, 13887-13893.
- [43] V. V. Zhurov, E. A. Zhurova, A. I. Stash, A. A. Pinkerton, Acta Cryst., 2011, A67, 160-173.
- [44] C. S. Gorzynski, J. N. Maycock, *Explosives and Pyrotechnics Propellants For Use in Long-Term Deep Space Missions*, NASA-CR-132373, **1974**.
- [45] J. F. Baytos, High-Temperature Vacuum Thermal Stability Tests of Explosives, LA-5829-MS, LANL, January 1975.
- [46] J. Bogdanov, Z. Bajić, R. Jeremić, R. Dimitroijević, M. Ugrčić, Prediction of High Explosives' Detonation Characteristics Using a Simplified Thermochemical Approach, NTREM 17, 9th–11th April 2014, pp. 572–577.
- [47] J. R. Stine, J. Energet. Mater., 1990, 8, 41–73.
- [48] A. Koch, B. Arnold, M. Estermann, Propellants, Explosives, Pyrotechnics, 2002, 27, 365-368.
- [49] L. R. Rothstein, R. Petersen, *Propellants and Explosives*, 1979, 4, 56–60.
- [50] E. M. Golfier, H. Graindorge, Y. Longevialle, H. Mace, New Energetic Molecules and Their Applications in Energetic Materials, ICT 1998, Karlsruhe, Germany, pp. 3-1–3-18.
- [51] P. C. Braithwaite, R. L. Hatch, K. Lee, R. B. Wardle, M. Mezger, S. Nicolich, *Development of High Performance CL-20 Explosive Formulations*, ICT **1998**, Karlsruhe, Germany, pp. 4-1–4-7.
- [52] S. Thibout, G. Ampleman, P. Dublé, J. Hawari, T. F. Jenkins, M. E. Walsh, *Protocol for the Characterization of Explosives-Contaminated Sites*, ICT 1998, Karlsruhe, Germany, pp. 127-1–127-14.
- [53] K. Dudek, P. Mareček, P. Vávra, Laboratory Testing of HNIW Mixtures, ICT 2000, Karlsruhe, Germany, pp. 110-1–110-6.
- [54] J. E. Field, M. M. Chaudhri, G. M. Swalloe, T. B. Tang, Deformation and Thermal Properties of Energetic Materials, AD A103275, European Research Office, London, December 1980.
- [55] X. Ruijuan, K. Bin, H. Hui, C. Ya, J. Yan, H. Z. Li, L. Ming, N. Fude, Study on Properties of Desensitized Octogen, ICT 2011, Karlsruhe, Germany, pp. 50-1-50-11.
- [56] H. Hui, R. J. Xu, B. Kang, M. Huang, H. Z. Li, R. Xu, J. Sun, F. D. Nie, M. Li, *Recent Advances on Reduced Sensitivity Energetic Crystals at Institute of Chemical Materials in China*, ICT **2011**, Karlsruhe, Germany, pp. 28-1–28-12.
- [57] V. I. Pepekin, Y. N. Matyushin, A. V. Inozemtsev, Energetic Characteristic of Furazanotetrazendioxide, ICT 2010, Karlsruhe, Germany, pp. 54-4-54-7.
- [58] P. Brousseau, S. Brochu, M. Brassard, G. Ampleman, S. Thiboutot, F. Cŏté, L. S. Lussier, E. Diaz, V. Tanguay, I. Poulin, M. Beauchemin, *Munitions With a Lower Environmental Impact: The Righttrac Project*, ICT 2010, Karlsruhe, Germany, pp. 3-1–3-12.
- [59] A. J. Bellamy, P. Lagerkvist, Nitrolysis of TAT and DADN with N_2O_5/HNO_3 : Formation of α -HMX, ICT **1998**, Karlsruhe, Germany, pp. 8-1–8-10.
- [60] H. R. Bircher, P. M\u00e4der, J. Mathieu, Properties of CL-20 Based High Explosives, ICT 1998, Karlsruhe, Germany, pp. 94-1-94-14.
- [61] H. W. R. Sabel, E. Schonewille, Extrusion Trials with a TSK045 Twin Screw Extruder, ICT 1998, Karlsruhe, Germany, pp. 96-1–96-11.
- [62] C. C. Andrews, J. L. Osmon, *The Effects of UV Light on TNT and Other Explosives in Aqueous Solution*, WQEC/C-77-32, Naval Weapons Support Center, Crane, Indiana, USA, December **1976**.
- [63] P. Politzer, J. S. Murray, High-Performance, Low Sensitivity: The Impossible (or Possible) Dream? in Energetic Materials From Cradle to Grave, M. K. Shukla, V. M. Boddu, J. A. Steevens, R. Damavarapu, J. Leszczynski (eds.), Springer-Verlag, 2017, pp. 1–22.
- [64] P. Marecek, J. Pokorna, P. Vavra, *A Study of Some Insensitive Explosives*, ICT **1998**, Karlsruhe, Germany, pp. 52-1–52-5.
- [65] F. Gong, Z. Yang, L. Ding, X. Guo, Phase Transition of HMX: Isothermal Kinetics and Modeling, ICT 2017, Karlsruhe, Germany, pp. 27-1–27-11.

- [66] R. Petersen, Susceptibility Index of Explosives to Accidental Initiation, NWSY TR 81–6, Naval Weapons Station, Virginia, USA, October 1981.
- [67] P. C. Braithwaite, W. W. Edwards, R. M. Hajik, T. K. Highsmith, G. K. Lund, R. B. Wardle, TEX: A Promising New Insensitive High Explosive, ICT 1998, Karlsruhe, Germany, pp. 62-1-62-7.
- [68] C. P. Achuthan, C. I. Jose, Propellants, Explosives, Pyrotechnics, 1990, 15, 271-275.
- [69] D. Skinner, D. Olson, A. Block-Bolten, Propellants, Explosives, Pyrotechnics, 1997, 23, 34-42.
- [70] R. L. Simpson, P. A. Urtiew, D. L. Ornellas, G. L. Moody, K. J. Scribner, D. M. Hoffman, Propellants, Explosives, Pyrotechnics, 1997, 22, 249-255.
- [71] C. M. Tarver, T. D. Tran, Comb. and Flame, 2004, 137, 50-62.
- [72] R. K. Wharton, D. Chapman, Propellants, Explosives, Pyrotechnics, 1997, 22, 71-73.
- [73] J. L. Lyman, Y.-C. Liau, H. V. Brand, Comb. and Flame, 2002, 130, 185–203.
- [74] P. A. Davies, J. Hazard. Mater., 1994, 38, 75-88.
- [75] J. P. Agrawal, S. M. Walley, J. E. Field, Comb. and Flame, 1998, 112, 62–72.
- [76] L. Svensson, J.-O. Nyqvist, L. Westhing, J. Hazard. Mater., 1986, 13, 103–108.
- [77] S. Ye, K. Tonokura, M. Koshi, Comb. and Flame, 2003, 132, 240-246.
- [78] K. V. Meredith, M. L. Gross, M. W. Beckstead, Comb. and Flame, 2015, 162, 506-515.
- [79] M. F. Murphy, N. L. Coleburn, A Preliminary Investigation of TACOT, A New Heat Resistant Explosive, NOLTR 61-155, US Naval Ordnance Lab, USA, 1961.
- [80] M. J. Mezger, S. M. Nicolich, D. A. Geiss, R. L. Hatch, K. E. Lee, *Performance and Hazard Characterization of CL-20 Formulations*, ICT **1999**, Karlsruhe, Germany, 4-1–4-14.
- [81] M. Sućeska, Calculation of Detonation Heat by EXPLO5 Computer Code, ICT 1999, Karlsruhe, Germany, pp. 50-1–50-14.
- [82] S. Zeman, Propellants, Explosives, Pyrotechnics, 2003, 28, 308-313.
- [83] A. A. Kotomin, S. A. Dushenok, A. S. Kozolov, D. A. Barannik, N. P. Shirokova, M. A. Il'yushin, Russ. J. Appl. Chem., 2016, 89, 793–799.
- [84] P. Politzer, J. S. Murray, Computational Studies of Energetic Organic Molecules, AD-A274 726, ONR Technical Report, December 27th 1993.
- [85] A. Smirnov, M. Kuklja, M. Makhov, V. Pepkin, *Methodical Problems of Experimental Definition of Heat of Explosive Transformation*, ICT **2017**, Karlsruhe, Germany, pp. 15-1–15-11.
- [86] E. G. Kayser, Analysis Methods For Explosive Materials I. Polynitro Compounds, NSWC TR 81–123, Naval Surface Weapons Center, Maryland, USA, 3rd March 1962.
- [87] D. Price, The Detonation Velocity-Loading Density Relation For Selected Explosives and Mixtures of Explosives, NSWC TR 82–298, Naval Surface Weapons Center, Maryland, USA, 26th August 1982.
- [88] D. Herrmannsdörfer, M. Herrmann, T. Heintz, New Approaches to the CL-20/HMX Cocrystal A Less Sensitive High Power Explosive, ICT 2015, Karlsruhe, Germany, pp, 107-1–107-9.
- [89] É. Francois, V. E. Sanders, J. Lloyd, J. Mong, Shock Sensitivity of Diaminoazoxy Furazan (DAAF) Using an Instrumental Small Scale Gap Test, ICT 2009, Karlsruhe, Germany, pp. 17-1–17-10.
- [90] A. E. D. M. van der Heijden, R. H. B. Bouma, R. J. van Esveld, Shock Sensitivity of HMX Based Compositions, ICT 2000, Karlsruhe, Germany, pp. 69-1-69-11.
- [91] Princeton Combustion Research Laboratories, Combustion of Nitramine Propellants, ARBRL-CR-00507, US Army Armament Research and Development Command, Maryland, USA, March 1983
- [92] S. A. Shackelford, Condensed Phase Kinetic Deuterium Isotope Effects in High Energy Phenomena: Mechanistic Investigations and Relationships, FJSRL-TR-89-0010, Air Force Systems Command, United States Air Force, December 1989.
- [93] L. Ding, F.-Q. Zhao, Z.-R. Liu, Studies on Thermal Decomposition Characteristics of CL20/HMX Binary Systems, ICT 2007, Karlsruhe, Germany, pp. 132-1–132-7.

- [94] V. A. Teselkin, Some Aspects of Explosion Initiation of Highly Energetic Materials Under Mechanical Actions, ICT 2008, Karlsruhe, Germany, pp. 96-1–96-12.
- [95] V. B. Zabrodin, Y. A. Kulagin, P. N. Strolyarov, P. A. Vlasov, Devices for Analyzing Explosion Hazards, ICT 2002, Karlsruhe, Germany, pp. 69-1-69-13.
- [96] R. Petersen, L. R. Rothstein, J. H. Smith, Thermochemistry and the Demilitarization of Explosives, NWSY TR-76-2, Naval Weapons Station, Virginia, USA, July 1976.
- [97] M. N. Makhov, V. I. Arkhipov, Evaluation of the Acceleration Ability of High Explosives, ICT 2007, Karlsruhe, Germany, pp. 125-1–125-12.
- [98] P. Gerber, A. Kretschmer, A. Happ, Characterization of Insensitive Octogen, ICT 2007, Karlsruhe, Germany, pp. 148-1–148-9.
- [99] C. Roßmann, T. Heintz, M. Herrmann, *Production of Ultrafine Explosive Particles by Bead Milling Technology*, ICT **2012**, Karlsruhe, Germany, pp. 93-1–93-12.
- [100] N. V. Chukanov, B. L. Korsunskiy, G. V. Shilov, S. A. Vozchikova, ε-HMX: Crystallization, Properties and Comparison with Other HMX Polymorphs, ICT 2012, Karlsruhe, Germany, pp. 64-1-64-9.
- [101] K. Dudek, P. Marecek, Z. Jalovy, Some Properties of Cast TNAZ Mixtures, ICT 2002, Karlsruhe, Germany, pp. 53-1–53-7.
- [102] M. Herrmann, I. Mikonsaari, H. Krause, M. Kaiser, R. Hühn, H. Sohn, M. H. Lefebvre,
 M. Alouaamari, C. Martin, A. E. D. M. van der Heijden, R. H. B. Bouma, J. Paap, J. Campos,
 I. Plaksin, J. Ribeiro, R. Mendes, J. Góis, S. Almada, *Particle Processing and Characterisation Part V: Correlation and Final Results*, ICT 2007, Karlsruhe, Germany, pp. 42-1-42-15.
- [103] I. Plaksin, J. Campos, R. Mendes, J. Ribeiro, S. Plaksin, L. Rodrigues, J. Gois, S. Almada, M. Herrmann, H. Kröber, H. Krause, M. Kaiser, Shock Sensitivity of PBX Formulations Based on the RS-RDX, RS-HMX and Fine/Ultra-Fine HE Particles Bonded with the Inert Binders: Real Time Measurements from the Registration of the Reaction Front Radiation Growth and Emission Absorption, ICT 2008, Karlsruhe, Germany, pp. 28-1–28-17.
- [104] V. A. Teselkin, *Peculiarities of Mechanical Explosion Initiation for Some Solid Explosives*, ICT **2009**, Karlsruhe, Germany, pp. 102-1–102-6.
- [105] C. Zhan, M. Huang, R. Xu, Effect of RS-HMX on the Properties of Pressable PBX Composition, ICT 2009, Karlsruhe, Germany, pp. 82-1-82-8.
- [106] Q. Hu, Z. Lu, *The Discussion of Explosive Thermal Decomposition and its Sensitivity*, ICT **2002**, Karlsruhe, Germany, pp. 1655-1–155-8.
- [107] T. Yepeng, *The Effect of NQ and TATB to the Insensitivity of HMX*, ICT **2002**, Karlsruhe, Germany, pp. 54-1–54-7.
- [108] B. N. Kondrikov, S. Christoforetti, I. V. Grebenyuk, L. T. DeLuca, Gasification of Solid Propellants and Propellant Ingredients Under Influence of Thermal Radiation, ICT 2001 Karlsruhe, Germany, pp. 6-1-6-15.
- [109] R. L. Simmons, C. M. Walsh, *Designing Advanced Gun Propellants With Improved Energy Release*, ICT **2001**, Karlsruhe, Germany, pp. 43-1–43-11.
- [110] V. P. Sinditskii, V. Y Egorshev, M. V. Berezin, *Study on Combustion of New Energetic Nitramines*, ICT **2001**, Karlsruhe, Germany, pp. 59-1-59-13.
- [111] W. A. Trzciński, *Use of a Cylinder Test for Determining Some Characteristics of Explosives*, ICT **2001**, Karlsruhe, Germany, pp. 64-1-74-14.
- [112] S. B. Victorov, S. A. Gubin, I. V Maklashova, I. I. Revyakin, Thermodynamic TDS Code: Application to Detonation Properties of Condensed Explosives, ICT 2001, Karlsruhe, Germany, pp. 69-1-69-15.
- [113] P. Mareček, K. Dudek, P. Vávra, *Laboratory Testing of TNAZ Mixtures*, ICT **2001**, Karlsruhe, Germany, pp. 90-1–90-8.

- [114] S.-Y. Xu, F.-Q. Zhao, S.-W. Li, H.-X. Hao, Q. Pei, H.-X. Gao, *The Mechanical and Electrostatic Spark Sensitivity of Composite Modified Double-Base Propellant Containing Hexanitrohexaazaisowurtzitane (CL-20)*, ICT **2006**, Karlsruhe, Germany, pp. 8-1–8-10.
- [115] P. Gerber, Properties of Insensitive Octogen, ICT 2006, Karlsruhe, Germany, pp. 51-1-51-8.
- [116] A. Zenin, S. Finjakov, *Characteristics of Octogen and Hexogen Combustion: A Comparison*, ICT **2006**, Karlsruhe, Germany, pp. 118-1–118-18.
- [117] P. Gerber, A. Happ, T. Heinz, *Gap Test Results of Formulations Based on Coated Nitramine Particles*, ICT **2013**, Karlsruhe, Germany, pp. 80-1–80-4.
- [118] J.-Y. Luan, Z.-Q. Chen, C.-M. Zheng, X.-Y. Li, P. Yue, Evaluation of HMX Crystal After Thermal Aggression by Micro-Raman Spectroscopy, ICT 2014, Karlsruhe, Germany, pp. 80-1–80-7.
- [119] A. L. Kuhl, Emission Properties of Various High Explosive Charges, ICT 2014, Karlsruhe, Germany, pp. 19-1–19-14.
- [120] S. K. Poehlein, D. Burch, R. Johnson, M. Beyard, S. Larson, *Requalification of Demilitarized HMX for Military Use*, ICT **2005**, Karlsruhe, Germany, pp. 8-1–8-13.
- [121] V. A. Teselkin, Mechanical Sensitivity of Metallized Explosive Nanocomposites, ICT 2005, Karlsruhe, Germany, pp. 81-1–81-11.
- [122] B. Berger, B. Haas, J. Mathieu, M. Tanner, J. Gyseler, *Improved Method for the Determination of the Sensitivity of Explosives to ESD*, ICT **2005**, Karlsruhe, Germany, pp. 120-1–120-13.
- [123] I. Mikonsaari, H. Kröber, K. Leisinger, K. Hartlieb, U. Teipel, Submicron Energetic Materials by Communition and Supercritical Fluid Technology, ICT 2005, Karlsruhe, Germany, pp. 166-1–166-11.
- [124] D. Jarman, W. Prinse, R. Bouma, *Electrostatic Discharge Initiation of CL-20: Effect of Discharge Time and Spark Energy*, ICT **2003**, Karlsruhe, Germany, pp. 71-1 71-11.
- [125] U. Teipel, H. Kröber, K. Leisinger, K. Hartlieb, *Determination of Solubilities of Energetic Materials*, ICT **2003**, Karlsruhe, Germany, pp. 106-1–106-9.
- [126] Y. N. Matyushin, G. T. Afanas'ev, V. P. Lebedev, M. N. Mahov, V. I. Pepekin, TATB and Fox-7: Thermochemistry, Performance, Detonability, Sensitivity, ICT 2003, Karlsruhe, Germany, pp. 119-1–119-13.
- [127] V. F. Zhilin, G. F. Rudakov, A. V. Ladonin, V. P. Sinditskii, V. Y. Egorshev, M. V. Berezin, Synthesis and Burn Rate Study of Nitro Derivatives of 2,6-Dioxodecahydro-1H,5H-diimidazolo [4,5-B:4',5'-E]Pyrazine, ICT 2003, Karlsruhe, Germany, pp. 141-1-141-10.
- [128] Y. Y. Imamura, V. L. Lourenço, E. D. Moreira, N. N. Oliveira, Study on the Particle Size and Crystal Shape over β \rightarrow δ -HMX Transition by DSC and SEM, ICT **2003**, Karlsruhe, Germany, pp. 154-1–154-13.
- [129] B. W. Asay, B. F. Henson, L. B. Smilowitz, P. M. Dickson, J. Energet. Mater., 2003, 21, 223-235.
- [130] P. Soni, C. Sarkar, R. Tewari, T. D. Sharma, J. Energet. Mater., 2011, 29, 261–279.
- [131] K.-Y. Lee, D. S. Moore, B. W. Asay, A. Llobet, J. Energet. Mater., 2007, 25, 161–171.
- [132] M. Fathollahi, S. M. Pourmortazavi, S. G. Hosseini, J. Energet. Mater., 2007, 26, 52-69.
- [133] W.-P. Lai, P. Lian, B.-Z. Wang, Z.-X. Ge, J. Energet. Mater., 2010, 28, 45-76.
- [134] E. P. Burrows, D. H. Rosenblatt, W. R. Mitchell, D. L. Parmer, Organic Explosives and Related Compounds: Environmental and Health Considerations, Technical Report 8901, US Army Biomedical Research and Development Laboratory, Frederick, MD, USA, March 1989.
- [135] G. J. Piermarini, S. Block, P. J. Miller, Effects of Pressure on the Thermal Decomposition Rates, Chemical Reactivity and Phase Behavior of HMX, RDX and Nitromethane, Ch. 3 in Chemistry and Physics of Energetic Materials, NATO ASI Series, Kluwer Academic Publishers, vol. 309, Suraya N. Bulusu (ed.), 1990.
- [136] L. W. Collins, L. D. Haws, Thermochim. Acta, 1977, 21, 1–38.

- [137] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [138] K. Dontsova, S. Taylor, *High Explosives and Propellant Energetics: Their Dissolution and Fate in Soils*, in *Energetic Materials From Cradle to Grave*, M. K. Shukla, V. M. Boddu, J. A. Steevens, R. Damavarapu, J. Leszczynski, Springer, **2017**.
- [139] Handbook of Foreign Explosives, U. S. Materiel Command, US Army Foreign Science and Technology Center, Washington, D. C., USA, October 1965.
- [140] J. M. Rosen, C. Dickinson, J. Chem. Engineering Data, 1969, 14, 120–124.
- [141] T. Jenkins, C. Vogel, Department of Defense Operational Range Sustainability Through Management of Munitions Constituents, SERDP ESTCP Technical Report, 04/01/2014.
- [142] P. C. Souers, J. W. Kury, *Propellants, Explosives, Pyrotechnics*, **1993**, *18*, 175–183.
- [143] M. Sućeska, Propellants, Explosives, Pyrotechnics, 1991, 16, 197–202.
- [144] M. Sućeska, Propellants, Explosives, Pyrotechnics, 1999, 24, 280–285.
- [145] D. Tabor, J. E. Field, M. N. Chaudhri, H. M. Hauser, R. G. Patel, Mechanical Properties of Energetic Materials, Final Technical Report, ADA039600, European Research Office, London, January 1977.
- [146] M. A. Dewey, Synthesis, Evaluation, and Formulation Studies on New Oxidizers as Alternatives to Ammonium Perchlorate in DoD Missile Propulsion Applications, SERDP final report, 23rd April 2007.
- [147] Encyclopedia of Explosives A Compilation of Principal Explosives, Their Characteristics,
 Processes of Manufacture and Uses, Ordnance Technical Intelligence Agency, Durham, North
 Carolina, USA, 13th May 1960.
- [148] M. E. Sitzmann, S. Foti, C. C. Misener, Solubilities of High Explosives Removal of High Explosive Fillers from Munitions by Chemical Dissolution, AD-773 078, Naval Ordnance Laboratory, White Oak, Maryland, USA, 21st November 1973.
- [149] J. Wenograd, *The Thermal Sensitivity of Explosives and Propellants*, US Naval Ordnance Laboratory, White Oak, Maryland, USA, NOLTR 61-97, 1st September **1961**.
- [150] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part II, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [151] J. W. Taylor, Trans. Faraday Soc., 1962, 58, 561–568.
- [152] Engineering Design Handbook, Explosives Series, Explosive Trains, AMC Pamphlet AMCP 706–179, Headquarters, US Army Materiel Command, Alexandria, Virginia, USA, 15th January 1974.
- [153] P. C. Hsu, G. Hust, M. McClelland, M. Gresshoff, *One-Dimensional Time to Explosion (Thermal Sensitivity) of ANPZ*, LLNL-TR-667280, Lawrence Livermore National Laboratory, California, USA, 25th April **1994**.
- [154] V. J. Menichelli, L. C. Yang, Sensitivity of Explosives to Laser Energy, Technical Report 32–1474, NASA CR110133, Jet Propulsion Laboratory, California Institute of Technology, California, USA, 30th April 1970.
- [155] N. N. Bakhman, A. F. Belyaev, Combustion of Heterogeneous Condensed Systems, translated from Gorenje Geterogennykh Kondensirovannykh Sistem, Institute of Chemical Physics, Academy of Science, U.S.S.R. Moscow, Nauka Publication (1967) by C. A. J. Elphinston, M. Goyer, I. C. Graham, G. A. Heath, G. R. Ramsden, R.P.E. Translation No. 19, Ministry of Technology, London, November 1967.
- [156] J. N. Ayres, L. J. Montesi, R. J Bauer, Small Scale Gap Test (SSGT) Data Compilation: 1959–1972. Volume I. Unclassified Explosives, AD-773 743, Naval Ordnance Laboratory, Maryland, USA, 26th October 1973.

- [157] C. S. Coffey, V. F. Devost, *Impact Testing of Explosives and Propellants*, AD-A267 391, Naval Surface Warfare Center, Maryland, USA, June 1992.
- [158] Services Textbook of Explosives, JSP 333, Procurement Executive, Ministry of Defence, UK, March 1972.
- [159] R. L. Simpson, P. F. Pagoria, A. R. Mitchell, C. L. Coon, *Propellants, Explosives, Pyrotechnics*, 1994, 19, 174–179.
- [160] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [161] E. E. Gilbert, W. E. Voreck, Propellants, Explosives, Pyrotechnics, 1989, 14, 19–23.
- [162] G. Krien, H. H. Licht, J. Zierath, *Thermochim. Acta*, **1973**, *6*, 465–472.
- [163] P. Samuels, K. Spangler, D. Iwaniuk, R. Cornell, E. L. Baker, L. I. Stiel, *Detonation Performance Analyses for Recent Energetic Molecules*, *AIP Conf. Proc.*, **1979**, 15003-1-150033-5.
- [164] N. Zohari, M. H. Keshavarz, S. A. Seyedsadjadi, Centr. Eur. J. Energet. Mater., 2013, 10, 135–147.
- [165] R. A. Pesce-Rodriguez, L. B. Blaudeau, Experimental Determination of Physical Properties of DNGU, TNBA, LLM-105, HK-56, and DNP, ARL-TN-0788, US Army Research Laboratory, Aberdeen Proving Ground, Maryland, USA, September 2016.
- [166] V. A. Teselkin, Combustion, Explosion, Shock Waves, 2009, 45, 632–633.
- [167] C. B. Storm, J. R. Travis, Molecular Composition, Structure, and Sensitivity of Explosives, in Structure and Properties of Energetic Materials, D. H. Liebenberg, R. W. Armstrong, J. J. Gilman, (eds.), Symposium, Boston, Massachusetts, USA, 30th November 2nd December 1992, Materials Research Society Symposium Proceedings, 1993, vol. 296, Materials Research Society, Pittsburg, Pennsylvania, USA, pp. 25–34.
- [168] T. B. Brill, Surface Chemistry of Energetic Materials at High Temperature, D. H. Liebenberg, R. W. Armstrong, J. J. Gilman, (eds.), Symposium, Boston, Massachusetts, USA, 30th November 2nd December 1992, Materials Research Society Symposium Proceedings, 1993, vol. 296, Materials Research Society, Pittsburg, Pennsylvania, USA, pp. 269–280.
- [169] Y.-J. Wang, J. Liu, Q. Yang, W. Jiang, Chinese J. Expl. Prop., **2015**, 38, 30–32.
- [170] C.-H. Hou, X.-L. Jia, J.-Y. Wang, X.-M. Jiang, Chinese J. Expl. Prop., 2016, 39, 27–36.
- [171] D. Price, GrIMEx: Development of a Novel, Green IM Comp B Replacement, Oral presentation, 2016 Insensitive Munitions and Energetic Materials Technology Symposium, Nashville, Tennessee, USA, 2016.
- [172] V. M. Boddu, S. W. Maloney, R. K. Toghiani, H. Toghiani, Prediction of Physicochemical Properties of Energetic Materials for Identification of Treatment Technologies for Waste Streams, ERDC/CERL TR-10-27, US Army Corps of Engineers, Engineer Research and Development Center (ERDC), Champaign, USA, November 2010.
- [173] H. J. Jackson, A Study of the Electrical Characteristics of Some Explosives and Explosive Mixtures, Technical Memorandum 1288, Feltman Research Laboratories, Picatinny Arsenal, New Jersey, USA, October 1963.
- [174] J. Bernstein, Polymorphism in High Energy Materials, Ch. 9 in Polymorphism in Molecular Crystals, IUCr Monographs on Crystallography No. 14, Oxford Science Publications, Clarendon Press, Oxford, 2002.
- [175] H. H. Cady, A. C. Larson, D. T. Cromer, Acta Cryst., 1963, 16, 617-623.
- [176] N. G. Zhitomirskaya, L. T. Eremenko, N. I. Golovina, L. O. Atovmyan, *Izvestiya Akademii Nauk SSSR*, Seriya Khimicheskaya, 1987, 576-580.
- [177] J. R. Deschamps, M. Frisch, D. Parrish, J. Chem. Cryst., 2011, 41, 966–970.
- [178] B. L. Korsunsky, S. M. Aldoshin, S. A. Vozchikova, N. I. Golovina, N. V. Chukanov, G. V. Shliov, Khimicheskaia Fizika, 2010, 29, 62-69.
- [179] P. Main, R. E. Cobbledick, R. W. H. Small, Acta Cryst., 1985, C41, 1351–1354.

- [180] T. E. Larson, P. Dimas, C. E. Hannaford, *Electrostatic Sensitivity Testing of Explosives at Los Alamos*, 9th Int. Symp. on Detonation, Portland, Oregon, USA, vol. II, August 28th–1st September 1989, pp. 1076–1083.
- [181] T. M. Klapötke, D. G. Piercey, J. Stierstorfer, M. Weyrauther, *Propellants, Explosives*, *Pyrotechnics*, 2012, 37, 527–535.
- [182] L. Avrami, J. Haberman, Sensitivity to Heat and Nuclear Radiation, Ch. 6 in Energetic Materials 2: Technology of the Inorganic Azides, H. D. Fair, R. F. Walker (eds.), Plenum Press, 1977.
- [183] M. L. Hobbs, M. R. Baer, *Calibrating the BKW-EOS with a Large Product Species Data Base and Measured C-J Properties*, in *Proceedings of the 10th International, Detonation Symposium, Office of Naval Research ONR 33395–12*, **1993**, pp. 409–418.
- [184] G. Stegeman, Heat of Combustion of Explosive Substances, OSRD No. 5306, Division 8 National Defense Research Committee of the Office of Scientific Research and Development, USA, 4th July 1945.
- [185] L. Avrami, H. J. Jackson, M. S Kirshenbaum, Radiation-Induced Changes in Explosive Materials, AD-775 371, Picatinny Arsenal, Dover, New Jersey, USA, December 1973.

6-Oxo-2,5,7-trinitro-2,5,7,9-tetraazabicyclo[4.3.0]nonane-8-one

Name [German, acronym]: 2,5,7-Trinitro-2,5,7,9-tetraazabicyclo

[4.3.0]nonane-8-one, [K-56]

Main (potential) use: Investigated as possible RDX replacement^[5]

Structural formula: high explosive

	НК-56					
Formula	C ₅ H ₇ N ₇ O ₇	$C_5H_7N_7O_7$				
Molecular mass [g mol ⁻¹]	277.15					
Appearance at RT	White powder ^[4] , white	microcrystals (recryst. fro	m CH ₃ CN) ^[4]			
IS [J]	35 cm ^[5]					
FS [N]	>360 ^[5]					
ESD [J]	0.0829 ^[5]					
N [%]	35.38					
Ω(CO ₂) [%]	-37.52					
T _{m.p.} [°C]	Dec. without melting ^[2] ,	Dec. without melting ^[2] , 187–198 ^[4]				
T _{dec.} [°C]	N ₂ , hermetic pan, pinho	201.55 (exo, onset), 203.75 (exo, peak max) (DSC @ 10 °C/min, N ₂ , hermetic pan, pinhole) ^[2] , 202.56 (exo, onset), 206.91 (exo, peak max) (DSC @ 10 °C/min, N ₂ , standard pan) ^[2]				
ρ [g cm ⁻³]	1.84 ^[1] , 1.84 (crystal) ^[4]	1.84 ^[1] , 1.84 (crystal) ^[4]				
Heat of formation	100.6 kJ/mol ^[5]					
	Calcd. Lit. values Exptl. (EXPLO5 6.03)					
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]						
T _{ex} [K]		2,916 (@ 1.85 g cm ⁻³ , $\Delta H_{\rm f} = -129.9 \text{ kJ/mol},$ calcd., JAGUAR) ^[3]				

	1	ı	1		
p _{C-J} [kbar]		31.2 GPa (@ 1.85 g cm ⁻³ , $\Delta H_{\rm f} = -129.9 \text{ kJ/mol},$ calcd., JAGUAR) ^[3]			
		32.82 GPa (calcd., CHEETAH 7.0) ^[5]			
VoD [m s ⁻¹]		8,380 (@ 1.85 g cm ⁻³ , $\Delta H_{\rm f} = -129.9 \text{ kJ/mol},$ calcd., JAGUAR) ^[3] 8,628 (@ 1.85 g cm ⁻³ ,			
		calcd., CHEETAH 7.0) ^[5]			
$V_0 [L \text{ kg}^{-1}]$					
Vacuum stability test [cm³/h]	STANAG 4147 test 1B, to 0.2857 ^[5]	otal gas evolved after 40 h	@ 100 °C, values in cc):		
Vapor pressure [Pa]	1.52 × 10 ⁻¹² Torr @ 25 °C (est.) ^[2, 5] , 1.13 × 10 ⁻⁹ Torr @ 70 °C (est.) ^[2, 5] , 2.35 × 10 ⁻⁷ Torr @ 100 °C ^[2, 5]				
Solubility [g/mL]	5.1×10^{-1} mg/mL (H $_2$ O solubility @ 25 °C (measured)) ^[2]				
Compatibility	VTS compatibility (STANAG 4147 test 1B, 2.5 g of compound 1 mixed with 2.5 g of compound 2, total gas evolved after 40 h @ 100 °C, values in cc) ^[5] : 0.4146 (TNBA), 0.1175 (DNMT), – (PiPE), 0.2971 (DNP), 0.4653 (DNGU), – (LLM-105), 0.226 (HMX) concluding that all are compatible with HK-56 ^[5]				
Kow	$K_{ow} = 0.016^{[2]}$, $\log K_{ow} = -1.8^{[2]}$, $K_d = 0.92^{[2]}$				
K _{oc}	$K_{oc} = 40.3 \text{ (measured)}^{[2]}, \log K_{oc} = 1.61, K_{oc} = 61.5 \text{ (predicted)}^{[2]}$				
ΔH _{vap} [kJ/mol]	147.3 (est.) ^[5]				

- [1] P. F. Pagoria, G. S. Lee, A. R. Mitchell, R. D. Schmidt, Thermochim. Acta, 2002, 384, 187-204.
- [2] R. A. Pesce-Rodriguez, L. B. Blaudeau, Experimental Determination of Physical Properties of DNGU, TNBA, LLM-105, HK-56, and DNP, ARL-TN-0788, US Army Research Laboratory, Aberdeen proving Ground, Maryland, USA, September 2016.
- [3] P. Samuels, K. Spangler, D. Iwaniuk, R. Cornell, E. L. Baker, L. I. Stiel, *Detonation Performance Analyses for Recent Energetic Molecules*, *AIP Conf. Proc.*, **1979**, pp. 15003-1–150033-5.
- [4] P. F. Pagoria, A. R. Mitchell, E. S. Jessop, Propellants, Explosives, Pyrotechnics, 1996, 21, 14–18.
- [5] D. Price, GrIMEx: Development of a Novel, Green IM Comp B Replacement, Oral Presentation, 2016 Insensitive Munitions and Energetic Materials Technology Symposium, Nashville, Tennessee, USA, 2016.

Pentaammine(5-cyanotetrazolato-N2)cobalt(III) perchlorate

Name [German, acronym]: (5-Cyanotetrazolato-N²)pentaamminecobalt(III)

perchlorate, 2-(5-cyanotetrazolato)

pentaamminecobalt(III) perchlorate [pentaammin (5-cyanotetrazolato-N2)cobalt(III) perchlorat, CP]

Main (potential) use: Applications in down hole completion work for the oil

industry^[1, 2], defense^[1], exploding bridgewire (EBW) detonator for applications which require a hermetically sealed detonator^[2], CP as safer replacement for LA in low-voltage detonators^[3], primary explosive in safe blasting caps and safe commercial detonators^[5], possible replacement for primary explosives in hot-wire detonators^[6], secondary explosive^[8], for applications involving deflagration-to-detonation transition^[8], low

voltage, hot-wire detonators^[8]

	СР
Formula	$C_2H_{15}CoN_{10}Cl_2O_8$
Molecular mass [g mol ⁻¹]	436.98
Appearance at RT	Free-flowing yellow-orange powder ^[6] , yellow free-flowing crystalline solid ^[7] , yellow solid ^[8, 10] , yellow-orange solid ^[11]

IS [J] FS [N]	IS of CP solns. (0.5 M 0.2–0.3 mL soln., nor apparatus) ^[9] : no ignit $DH_{50} = 60.6 \pm 1.0$ cm(ϵ tool, 2.5 kg mass, 35 flint paper, Bruceton ϵ DH_{50} (cm): 19 (fine) ^[10] 1–1.5 kg (BAM) ^[2] , 1/2	$100-140~{\rm kg}$ cm (drop height) ^[2] , ~40 cm (loose powder, 2 kg mass) ^[8] IS of CP solns. (0.5 M in DMSO, Olien-Mathieson apparatus, 5 kg mass, 0.2–0.3 mL soln., nonhermetic sealed Al pan in brass cup on anvil of apparatus) ^[9] : no ignitions in 20 attempts ^[9] $DH_{50}=60.6\pm1.0~{\rm cm}$ (@ 68° F, 56° RH, ERL type 12 apparatus, type 12A tool, 2.5 kg mass, 35 mg sample, powder sample on Carborundum 120 flint paper, Bruceton up–down method) ^[10] DH_{50} (cm): 19 (fine) ^[10] , 9 (coarse) ^[10] , $61^{[10]}$ $1-1.5~{\rm kg}$ (BAM) ^[2] , $1/10~{\rm goes}$ @ $1.0~{\rm kg}$ (@ 68° F and 60° RH, $0.031~{\rm cm}^2$ contact area, BAM) ^[10] ,			
	Test	CP, literature	CP values from ^[10]		
	Friction (fine)		+		
	Triction (line)	30 psig @ 8 ft/s 180 psig @ 3 ft/s	455 psig @ 0.1 ft/s		
	Fristian (seers)	, , , , ,	+		
	Friction (coarse)	<30 psig @ 8 ft/s			
		420 psi @ 3 ft/s			
ESD [J]	in confined pressed s	tate ^[3] , spark sensitive as			
ESD [J]	in confined pressed s @ 600 pF and 500 oh sensitivity increases v densities the spark se	tate ^[3] , spark sensitive as I ms (loose powder and und with increasing density up ensitivity decreases with i	loose powder ^[1] , >20 kV confined pellet) ^[8, 10] , spark to 1.6 g cm ⁻³ , but at greater ncreasing density ^[9]		
ESD [J]	in confined pressed s @ 600 pF and 500 oh sensitivity increases v densities the spark se	tate ^[3] , spark sensitive as ms (loose powder and und with increasing density up ensitivity decreases with in Lowest fire (kV) ^[9]	loose powder ^[1] , >20 kV confined pellet) ^[8, 10] , spark o to 1.6 g cm ⁻³ , but at greater ncreasing density ^[9] Highest no-fire (kV) ^[9]		
ESD [J]	in confined pressed s @ 600 pF and 500 oh sensitivity increases v densities the spark se	tate ^[3] , spark sensitive as ms (loose powder and und with increasing density upensitivity decreases with in Lowest fire (kV) [9]	loose powder ^[1] , >20 kV confined pellet) ^[8, 10] , spark to 1.6 g cm ⁻³ , but at greater ncreasing density ^[9] Highest no-fire (kV) ^[9] 8		
ESD [J]	in confined pressed s @ 600 pF and 500 oh sensitivity increases we densities the spark set $ \frac{\text{CP } \rho \text{ (g cm}^{-3})^{[9]}}{1.3} $	tate ^[3] , spark sensitive as ms (loose powder and und with increasing density upensitivity decreases with in Lowest fire (kV) [9] 10 3.5	loose powder ^[1] , >20 kV confined pellet) ^[8, 10] , spark to 1.6 g cm ⁻³ , but at greater ncreasing density ^[9] Highest no-fire (kV) ^[9] 8 5		
ESD [J]	in confined pressed s @ 600 pF and 500 oh sensitivity increases we densities the spark set $ \frac{\text{CP } \rho \text{ (g cm}^{-3})^{[9]}}{1.3} $ $ \frac{1.43}{1.5} $	tate ^[3] , spark sensitive as ms (loose powder and und with increasing density upensitivity decreases with in Lowest fire (kV) ^[9] 10 3.5 3.8	loose powder ^[1] , >20 kV confined pellet) ^[8, 10] , spark to 1.6 g cm ⁻³ , but at greater ncreasing density ^[9] Highest no-fire (kV) ^[9] 8 5 5.5		
ESD [J]	in confined pressed s @ 600 pF and 500 oh sensitivity increases we densities the spark set	tate ^[3] , spark sensitive as ims (loose powder and und with increasing density upensitivity decreases with in Lowest fire (kV) [9] 10 3.5 3.8 4.3	loose powder ^[1] , >20 kV confined pellet) ^[8, 10] , spark to 1.6 g cm ⁻³ , but at greater ncreasing density ^[9] Highest no-fire (kV) ^[9] 8 5 5.5		
ESD [J]	in confined pressed s @ 600 pF and 500 oh sensitivity increases we densities the spark set $ \frac{\text{CP } \rho \text{ (g cm}^{-3})^{[9]}}{1.3} $ $ \frac{1.43}{1.5} $	tate ^[3] , spark sensitive as ms (loose powder and und with increasing density upensitivity decreases with in Lowest fire (kV) ^[9] 10 3.5 3.8	loose powder ^[1] , >20 kV confined pellet) ^[8, 10] , spark to 1.6 g cm ⁻³ , but at greater ncreasing density ^[9] Highest no-fire (kV) ^[9] 8 5 5.5		
ESD [J]	in confined pressed s @ 600 pF and 500 oh sensitivity increases we densities the spark set of the spark set	tate ^[3] , spark sensitive as ms (loose powder and und with increasing density upensitivity decreases with increasing density upensitivity decreases with increasing density upensitivity decreases with increasing density upensitivity decreases with increasing density upensity density decreases with increasing density upensity density decreases with increasing density upensity density decreases with increasing density upensity decreases with increasing density decreases and decrease density decreases decreased density decreases density decreases density decreases density decreases density decreases density decreases decreased density decreases density decreases decreased decreases density decreases decreased decreases decreased decreases decreased decreases decreased decreases decreased dec	loose powder ^[1] , >20 kV confined pellet) ^[8, 10] , spark to 1.6 g cm ⁻³ , but at greater ncreasing density ^[9] Highest no-fire (kV) ^[9] 8 5 5.5 6 10 16 modified electrical ter, samples loaded into ape, sample $\rho = 1.4$ g cm ⁻³) ^[10]		
N [%]	in confined pressed s @ 600 pF and 500 oh sensitivity increases we densities the spark set of the spark set	tate ^[3] , spark sensitive as ms (loose powder and und with increasing density upensitivity decreases with increases ith increase with increase w	loose powder ^[1] , >20 kV confined pellet) ^[8, 10] , spark to 1.6 g cm ⁻³ , but at greater ncreasing density ^[9] Highest no-fire (kV) ^[9] 8 5 5.5 6 10 16 modified electrical ter, samples loaded into ape, sample $\rho = 1.4$ g cm ⁻³) ^[10]		
	in confined pressed s @ 600 pF and 500 oh sensitivity increases we densities the spark set of the spark set	tate ^[3] , spark sensitive as ms (loose powder and und with increasing density upensitivity decreases with increases ith increase with increase w	loose powder ^[1] , >20 kV confined pellet) ^[8, 10] , spark to 1.6 g cm ⁻³ , but at greater ncreasing density ^[9] Highest no-fire (kV) ^[9] 8 5 5.5 6 10 16 modified electrical ter, samples loaded into ape, sample $\rho = 1.4$ g cm ⁻³) ^[10]		

<i>T</i> _{dec.} [°C]	Dec. occurs without melting ^[4] , ~260 (endo, dissociation of NH ₃ ligands from Co(III) center, DSC @ 5 °C/min) ^[4] , 250 (weight loss begins and accelerates sharply @ 260 °C, TGA) ^[4] , dec. on attempts to sublime under vacuum ^[4] , ~295 (exo peak max., DSC @ 10 °C/min, open sample) ^[8] , 270 (onset, weak endo, stage 1 dec.) ~320 (exothermic peak max., broad, stage 2 dec.), ~345 (exo peak max., sharp, stage 3 dec.) (DSC @ 10 °C/min, hermetically sealed) ^[8] , dec. is complex and shows autocatalysis characteristics ^[12]				
ρ [g cm ⁻³]		(crystal) ^[7] , 1.9	.989 (measured, pycnometer) ^[1] , 0.6 (loose 74 (X-ray) ^[8, 10] , 1.96 (He pycnometer) ^[8, 11] ,		
Heat of formation					
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]					
<i>T</i> _{ex} [K]					
p _{C-J} [kbar]			22.0 GPa (@ 1.52 g cm ⁻³ , VISAR system, steel casing, initiated by RP-2 detonator) ^[9]		
			27.5 GPa (@ 1.77 g cm ⁻³ , VISAR system, steel casing, initiated by RP-2 detonator) ^[9]		
VoD [m s ⁻¹]	CP requires fairly long column lengths (4–6 mm) in steel confinement to achieve steady-state detonation ^[2]				
	6.03 ± 0.18 km/s (@ 1.52 g cm ⁻³ , VISAR system, steel casing, initiated by RP-2 detonator) ^[9]				
	6.79 ± 0.09 km/s (@ 1.77 g cm ⁻³ , VISAR system, steel casing, initiated by RP-2 detonator) ^[9]				
$V_0 [L kg^{-1}]$					
Critical explosion T[°C]	508 K (cylindrical pellets, 0.238 mm radii, 1.5 g cm ⁻³ nominal density, ARC, isothermal) ^[12] , ~450 K (slab pellets, 2.0 mm charge radius) ^[12] , ~460 K (cylinder pellets, 2.0 mm charge radius) ^[12] , ~475 K (sphere pellets, 2.0 mm charge radius) ^[12] , ~465 K (slab pellets, 1.0 mm charge radius) ^[12] , ~475 K (cylinder pellets, 1.0 mm charge radius) ^[12] , ~485 K (sphere pellets, 1.0 mm charge radius) ^[12] , ~482 K (slab pellets, 0.5 mm charge radius) ^[12] , ~495 K (cylinder pellets, 0.5 mm charge radius) ^[12] , ~500 K (sphere pellets, 0.5 mm charge radius) ^[12]				
5 s explosion T [°C] Autoignition T [°C]	290 (DSC @ 10 °C/min, sealed hermetic pans and cups) ^[2] , 340 (instantaneous autoignition) ^[6]				

Thermal stability

<0.05% reaction occurred after aging @ temperature up to 80 °C for 15 years $^{[2]}$, stable for at least 100 h @ 160 °C $^{[2]}$

Calcd. dec. products after 25 years @ two temperatures and corresponding accelerated aging times^[4]:

Quantity determined	Dec. product produced in 25 years (mg x/g CP present initially)		Times equivalent @ 150 °C (h)		
	@ 30 °C		25 years @ 30 °C	25 years @ 70 °C	
Co ²⁺	2.76 × 10 ⁻⁷	1.66 × 10 ⁻³	1.4×10^{-4}	0.81	
NH ₄ ⁺	6.93 × 10 ⁻⁸	6.23 × 10 ⁻⁴	6.1×10^{-5}	0.55	
Cl ⁻	1.01 × 10 ⁻⁶	2.72×10^{-3}	1.0×10^{-3}	2.7	
CN-	4.56 × 10 ⁻¹³	9.05 × 10 ⁻⁸	3.4×10^{-8}	0.0067	
Gas evolution	1.01 × 10 ⁻³	1.36	5.9 × 10 ⁻³	7.9	

No dec. on storing @ 80 °C for 3 years (using Co(II) as the prime stability measurement, hermetically sealed detonator)^[8], ~2.2% rxn. on storing @ 120 °C for 3 years (using Co(II) as the prime stability measurement, hermetically sealed detonator)^[8], stable on storing <70 °C^[8], dec. in <612 days @ 120 °C (using Co(II) as the prime stability measurement, hermetically sealed detonator)^[8], little dec. of powder @ 80 °C^[9]

Co²⁺ analysis of CP removed from aged minidets.^[8]:

Environment	ppm Co ²⁺ present after aging			
	612 days	795 days	1,078 days	
RT	166	301	456 ± 215	
	334	630	778 ± 209	
	<100			
	<100			
60 °C	254	383	639 ± 169	
	<100	355	1,370 ± 134	
	313			
80 °C	299	461	463 ± 93	
	824	542	839 ± 171	
120 °C	3,710	3,070	3,160 ± 218	
	2,270	4,557	4,180 ± 138	
	2,700			
	3,150			

	Aging studies @ \leq 80 °C for 3 years show that formation of Co(II) is nominally <800 ppm, not significantly greater than @ RT ^[11] but ~2.5% conversion @ 120 °C ^[11]						
Burn rate [mm/s]	$0.4-0.5~{\rm km/s}$ (for column lengths of $1.6-2.4~{\rm mm})^{[9]}, 0.932~{\rm km/s}$ (terminal velocity @ $1.42~{\rm g~cm^{-3}})^{[9]}, 1.035~{\rm km/s}$ (terminal velocity @ $1.62~{\rm g~cm^{-3}})^{[9]}$						
Solubility [g/mL]	Soluble in D	MSO ^[9]					
Hygroscopicity	Nonhygroso 0.12-0.27%				0.15 w/o (@ RT @ 95%	΄ RH ^[8] ,
Photosensitivity	Crystals are are stable b radiation ^[1]						
Compatibility	except Cu a compatible on mixing w and Kovar w incompatib and anhydr compatible	Compatible with all typical hot wire and EBW materials of construction except Cu and Zn and their alloys ^[2] , incompatible with Ag and Au ^[2] , compatible with epoxy adhesives ^[2, 8] , incompatible with Cu ^[8] , compatible on mixing with boron/calcium chromate and pressed with Trophet A and Kovar wires after 8 months @ 50% and 92% RH and up to 120 °C ^[8] , incompatible with Cu (corrosion) ^[8] , compatible with Alumina ^[8] , Amine and anhydride cured epoxy are compatible (CRT, 4 months, 120 °C) ^[8] , compatible with most metallic, ceramic and epoxy materials used in typical detonator designs ^[8] , no corrosive attack on Alumina, Kovar or Nichrome					
Plate dent test	0.45 mm (s	teel witnes	ss plate de	nt) ^[2]			
Flying plate velocity [mm/us]	2.7 ^[2]	· · · · · · · · · · · · · · · · · · ·					
Shock sensitivity	Insensitive	Insensitive in bulk form, sensitive in unconfined pressed state ^[3]					
Hot-wire sensitivity	Does not sustain in bulk form but sustains detonation in confined pressed state ^[3]						
Coefficient of thermal expansion [mm/mm°K]	$60 \times 10^{-6} \ (\text{@ }25-50\ ^{\circ}\text{C})^{[8,10]},\ 52 \times 10^{-6}\ \text{mm/mm-°C}\ \text{@ }-50-25\ ^{\circ}\text{C}^{[11]},\ 66 \times 10^{-6}\ \text{mm/mm-°C}\ \text{@ }100-125\ ^{\circ}\text{C}^{[11]},\ 60 \times 10^{-6}\ \text{mm/mm-°C}\ \text{@ }RT^{[11]}$ CP CTE values, α , μ m/m°C, data from TMA method (sample length = 0.089 cm, sample diameter = 0.508 cm, mass = 0.306 g, sample volume = 0.0180 cc, sample ρ = 1.696 g/cc) ^[10] :						
	Material	-20 °C -0 °C	0 °C -25 °C	25 °C -50 °C	50 °C -75 °C	75 °C -100 °C	100 °C -125 °C
	Ref ^[10] results	59	55	59	56	55	62
	Lit. values ^[10]	58	59	60	62	66	71

Heat capacity [cal/g°K]	0.1545 + 0.0003 (@ 353-453 K) ^[8, 10, 11]
Laser ignition sensitivity	50% initiation threshold = 0.03 J/mm^2 (Ruby laser) ^[11] , no-fire level = 0.01 J/mm^2 (Ruby laser) ^[11] , initiation threshold = 0.25 J/mm^2 (neodymium laser, 1.0 mm diameter, 630 μ s pulse) ^[11]
Hot-wire ignition sensitivity	Mean all-fire energy (kergs)/ ρ (g cm ⁻³) ^[11] : ~18 kergs @ 1.6 g cm ⁻³ (43–88 µm particle size) ^[11] , ~21 kergs @ 1.6 g cm ⁻³ (53–90 µm particle size) ^[11] , ~20 kergs @ 1.7 g cm ⁻³ (88–246 µm particle size) ^[11]

Temperature and total energy to bridgewire at CP ignition, data from ^[9]:

Avg. power to bridgewire ~150 W	Parameter	Avg. power to bridgewire ~5,500 W
1.46	CP density, Mg/m³	1.42
195 ± 10	Ignition time, µs	13±1
578 ± 10	Bridgewire temp., K	983 ± 10
25±1	IE at ignition, mJ	59±6
1.55	CP density, Mg/m³	1.62
172 ± 5	Ignition time, µs	10±1
554 ± 10	Bridgewire temp., K	995
23±1	IE at ignition, mJ	47 ± 5

	CP ^[1]	CP ^[8, 10]	CP ^[9, 11]
Chemical formula	C ₂ H ₁₅ CoN ₁₀ Cl ₂ O ₈	$C_2H_{15}CoN_{10}Cl_2O_8$	$C_2H_{15}CoN_{10}Cl_2O_8$
Molecular weight [g mol ⁻¹]	437.04	437.04	437.04
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	P2 ₁ /a		P2 ₁ /a
a [Å]	24.813(5)		24.777(9)
<i>b</i> [Å]	7.661(2)		7.673(3)
c [Å]	7.971(1)		7.884(3)
α [°]	90		90
β [°]	101.17(1)		101.20(1)
γ [°]	90		90
<i>V</i> [Å ³]	1,486.5		
Z	4		4

$ ho_{ m calc}[{ m g~cm^{-3}}]$	1.952	1.974	1.974
<i>T</i> [K]	RT		
Miscellaneous	Crystals obtained from aq. soln.		

- [1] E. J. Graeber, B. Morosin, *Acta Cryst.*, **1983**, *C39*, 567–570.
- [2] T. M. Massis, J. W. Fronabarger, W. B. Sanborn, *New Explosive Materials and Pyrotechnic Formulations with Improved Safety and Sensitivity Properties*, Sandia National Laboratories, Alberquerque, USA, August **1996**.
- [3] M. L. Lieberman, Ind. Eng. Chem. Prod. Res. Dev., 1985, 24, 436-440.
- [4] J. Q. Searcy, K. L. Shanahan, Thermal Decomposition of the New Explosive 2-(5-Cyanotetrazolato)-pentaamminecobalt(III) Perchlorate, SAND 78-0466, Sandia Laboratories, New Mexico, USA, August 1978.
- [5] S. R. Ahmad, M. Cartwright, Laser Ignition of Energetic Materials, John Wiley and Sons Ltd., 2015.
- [6] J. P. Agrawal, High Energy Materials: Propellants, Explosives and Pyrotechnics, Wiley-VCH, 2010.
- [7] P. E. Luebcke, P. M. Dickson, J. E. Field, *Proc. Roy. Soc. London A*, **1995**, 448, 439–448.
- [8] T. M. Massis, P. K. Morenus, D. H. Huskisson, R. M. Merrill, Stability and Compatibility Studies with the Inorganic Explosive 2-(5-Cyanotetrazolato) pentaamminecobalt(III) Perchlorate (CP), SAND80-0965, Sandia National Laboratories, Albuquerque, New Mexico, USA.
- [9] M. L. Lieberman (ed.), The Deflagration-to-Detonation Transition Project: Quarterly Report for the Period September Through November 1979, SAND80-1157, Sandia National Laboratories, Albuquerque, New Mexico, USA, July 1980.
- [10] R. K. Weese, A. K. Burnham, A. T. Fontes, CP: An Investigation of Coefficient of Thermal Expansion, Decomposition Kinetics and Reaction to Various Stimuli, UCRL-CONF-210860, Lawrence Livermore National Laboratory, USA, March 25th 2005.
- [11] M. L. Lieberman, J. W. Fronabarger, Status of the Development of 2-(5-Cyanotetrazolato) pentaamminecobalt(III) Perchlorate for DDT Devices, Proc. 7th Int. Pyrotech. Seminar, vol. 1, Colorado, USA, 14th–18th July 1980, pp. 322–355.
- [12] J. M. Pickard, J. Hazard. Mater., 1984, 9, 121-131.

Pentaerythritol trinitrate

Name [German, acronym]: Pentaerythritol trinitrate [pentaerythrittrinitrat,

PETRIN]

Main (potential) use: Ingredient in explosives, propellants or igniters^[4],

intermediate in the preparation of many mixed nitrate esters^[8, 10], explosive, propellant or low mpt.

components in gunpowder^[11]

	PETRIN				
Formula	C ₅ H ₉ N ₃ O ₁₀				
Molecular mass [g mol ⁻¹]	271.14				
Appearance at RT	Viscous liquid ^[8] , white	solid ^[11]			
IS [J]	2.49-4.98 (5–10 in, 2 kg mass, 38 mg sample, P.A.) ^[4] , 5–10 in (P.A.) ^[8] , lower than that of PETN ^[11] , 285 cm (some smoke, type 12A) ^[12] , 285 cm (no smoke at all, type 12B) ^[12] , 5–10 in (1 lb mass, P.A.) ^[8]				
N [%]	15.50				
Ω(CO ₂) [%]	-26.55				
T _{m.p.} [°C]	30 ^[1] , 26–28 ^[4, 11] , <20 (production grade) ^[8] , 26–28 (purified) ^[8] , 27–28 ^[10] , -28 (freezing point) ^[8]				
T _{b.p.} [°C]	130 (@ 4 mm Hg, dec.) ^[4]				
T _{dec.} [°C]	130 ^[4] , 130 (@ 4 mm Hg) ^[8]				
$ ho$ [g cm $^{-3}$]	1.54 ^[4,7,11] , 1.54 (@ 20 °C) ^[8] , 1.632 (@ 293 K) ^[1]				
Heat of formation	-134 kcal/mol (ΔH_f @ 25 °C) ^[8] , $-2,069$ kJ/kg (enthalpy of form.) ^[7]				
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	5,218 5,037.54 kJ/kg ^[11] 5,038 ^[4]				
	5,230 [H ₂ O (l)] ^[7]				
			4,777 [H ₂ O (g)] ^[7]		
			1,204 cal/g ^[4, 8]		
<i>T</i> _{ex} [K]	3,501				

p _{C-J} [kbar]	253		
VoD [m s ⁻¹]	7,777 (@ TMD)	7,380 (@ 1.54 g cm ⁻³ (TMD), calcd., R-P method) ^[9] 8,500 (@ 1.54 g cm ⁻³	7,640 (@ 1.54 g cm ⁻³) ^[3]
		(TMD), calcd., <i>Aizenshtadt</i>) ^[9]	
		7,610 (@ 1.54 g cm ⁻³ (TMD), calcd., K-J) ^[9]	
V ₀ [L kg ⁻¹]	767		902 ^[5, 7]
			918 ^[6]

5 s explosion T[°C] Explosion T[°C]	~280 (minimum explosion <i>T</i> , Wenograd test) ^[8]
Vacuum stability test [cm³/h]	2.54–5.65 cc/40 h @ 100 °C ^[4, 11]
Vapor pressure [atm. @ °C]	4.5 × 10 ⁴ mm Hg @ 60 °C ^[8]
Viscosity [cP]	Absolute viscosity (poises): 14.8 @ 17 °C ^[4] , 4.8 @ 23 °C ^[4] , 3.0 @ 28 °C ^[4] , 1.2 @ 38 °C ^[4] Production grade: 14.8 @ 17 °C ^[8] , 4.8 @ 23 °C ^[8] , 3.0 @ 28 °C ^[8] , 1.2 @ 38 °C ^[8]
Dipole moment [D]	5.06 ^[8]

- [1] H. Muthurajan, R. Sivabalan, M. B., Talawar, M. Anniyappan, S. Venugopalan, *J. Hazard. Mater.*, **2006**. *133*, 30–45.
- [2] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© **1994–2017** ACD/Labs).
- [3] M. H. Keshavarz, Propellants, Explosives, Pyrotechnics, 2012, 37, 489-497.
- [4] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.
- [5] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [6] H. Muthurajan, R. Sivabalan, M. B. Talawar, S. N. Asthana, J. Hazard. Mater., 2004, A112, 17–33.
- [7] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 250-251.
- [8] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1978.
- [9] L. R. Rothstein, R. Petersen, *Propellants and Explosives*, **1979**, 4, 56–60.
- [10] T. Urbański, Ch. 8 in Chemistry and Technology of Explosives, vol. II, 1965, Pergamon Press, Oxford.
- [11] J. Liu, Nitrate Esters Chemistry and Technology, Springer, 2019.
- [12] J. Sandoval, W. T. Quinlin, *PETN Homologs*, MHSMP-72-26, U.S. Atomic Energy Commission, Albuquerque,, New Mexico, USA, February **1972**.

Pentaerythrityl tetranitramine

Name [German, acronym]: 2,2-Bis(nitroaminomethyl)propane-1,3-dinitroamine,

[PETNA]

Main (potential) use: high explosive

	PETNA				
Formula	$C_5H_{12}N_8O_8$				
Molecular mass [g mol ⁻¹]	312.23				
Appearance at RT	Colorless crystals ^[1, 2]				
IS [J]	6 (5 or 10 kg mass, 20	mg sample, BAM) ^[1]			
N [%]	35.89				
Ω(CO ₂) [%]	-41.00				
T _{m.p.} [°C]					
T _{dec.} [°C]	183 (DSC @ 10 °C/min, N ₂) ^[1, 2]				
$ ho$ [g cm $^{-3}$]	1.778 (gas pycnometry @ 25 °C) ^[1, 2]				
Heat of formation	-0.193 kJ/g (Δ _t H° ₂₉₈) ^[1]				
	Calcd. Lit. values Exptl. (EXPLO5 6.04)				
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]					
T _{ex} [K]					
p _{C-J} [kbar]	31.6 (@ 1.778 g cm ⁻³ , calcd., CHEETAH 5.0) ^[1, 2]				
VoD [m s ⁻¹]	8,657 (@ 1.778 g cm ⁻³ , calcd., CHEETAH 5.0) ^[1, 2]				
V_0 [L kg ⁻¹]					

	PETNA ^[2]
Chemical formula	$C_5H_{12}N_8O_8$
Molecular weight [g mol ⁻¹]	312.23
Crystal system	Tetragonal
Space group	I-4 (82)
a [Å]	9.6543(11)
<i>b</i> [Å]	9.6543(11)
c [Å]	6.3283(9)
α[°]	90
β[°]	90
γ [°]	90
V [ų]	589.83(13)
Z	2
$ ho_{ m calc}$ [g cm $^{-3}$]	1.758
T[K]	293

^[1] J. M. Shreeve, Nitroamino and Nitro Energetics, ONR Technical Report, 13th September 2012.

^[2] Y.-H. Joo, J. M. Shreeve, *Chem. Comm.*, **2009**, 142–144.

Pentanitroaniline

Name [German, acronym]: 2,3,4,5,6-Pentanitroaniline, [pentanitroanilin, PNA]

Main (potential) use: secondary explosive

$$\begin{array}{c|c} & \text{NH}_2 \\ \text{O}_2 \text{N} & \text{NO}_2 \\ \\ \text{O}_2 \text{N} & \text{NO}_2 \end{array}$$

	Pentanitroaniline				
Formula	C ₆ H ₂ N ₆ O ₁₀	$C_6H_2N_6O_{10}$			
Molecular mass [g mol ⁻¹]	318.11	318.11			
Appearance at RT	Clear yellow plate	crystals ^[1] , crysta	ılline yellow solid ^[2]		
IS [J]		$H_{50} = 0.15 \text{ m}^{[4]}, H_{50} = 15 \text{ cm}^{[5]}, H_{50\%} = 22 \text{ cm} (2.5 \text{ kg mass, type } 12 \text{ tool,}$ 35 mg sample in conical pile, 1 in ² garnet paper) ^[6] , $H_{50\%} = 22 \text{ cm}$ (2.5 kg mass) ^[7]			
ESD [J]	Data from ^[3] :	Data from ^[3] :			
		50% point energ	ry (J)]	
	3 mil foil 10 mil foil % expl. 0.21 0.31 75				
N [%]	26.42				
Ω(CO ₂) [%]	-15.09	-15.09			
T _{m.p.} [°C]					
T _{dec.} [°C]	192–200 (dec.) ^[1] , 193–202 ^[1, 2] , 188–192 (recryst. from boiling 1,2-dichoroethane, some dec. occurred) ^[2] , 210–211 (chunky yellow crystals recryst. from benzene) ^[2]				
ρ [g cm ⁻³]	186 (obs.) ^[6]				

Heat of formation			
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]			
T _{ex} [K]			
p _{C-J} [kbar]		366 (@ 1.92 g cm ⁻³ , calcd.) ^[6]	
VoD [m s ⁻¹]		8,810 (@ 1.92 g cm ⁻³ , calcd.) ^[6]	
V ₀ [L kg ⁻¹]			

- [1] R. L. Atkins, A. T. Nielsen, C. Bergens, W. S. Wilson, J. Org. Chem., 1984, 49, 503–507.
- [2] A. T. Nielsen, R. L. Atkins, W. P. Norris, C. L. Coon, M. E. Sitzmann, J. Org. Chem., 1980, 45, 2341–2347.
- [3] T. E. Larson, P. Dimas, C. E. Hannaford, *Electrostatic Sensitivity Testing of Explosives at Los Alamos*, 9th Int. Symp. on Detonation, Portland, Oregon, USA, vol. II, August 28th–1st September 1989, pp. 1076–1083.
- [4] X. Cao, B. Xiang, C.-Y. Zhang, Chinese J. Energet. Mater., 2012, 20, 643–649.
- [5] G.-D. Wang, Y.-C. Liu, Chinese J. Energet. Mater., 2008, 16, 167–174.
- [6] W. S. Wilson, D. E. Bliss, S. L. Christian, D. J. Knight, Explosive Properties of Polynitroaromatics, NWC TP 7073, Naval Weapons Center, China Lake, USA, April 1990.
- [7] C. K. Kim, S. G. Cho, J. Li, C. K. Kim, H. W. Lee, *Bull. Korean Chem. Soc.*, **2011**, *32*, 4341–4346.

Pentanitrobenzene

Name [German, acronym]: Pentanitrobenzene, [pentanitrobenzol, PNB]

Main (potential) use: high explosive

$$O_2N$$
 NO_2
 NO_2
 NO_2

	Pentanitrobenzene				
Formula	C ₆ HN ₅ O ₁₀				
Molecular mass [g mol ⁻¹]	303.10	303.10			
Appearance at RT	Pale yellow crystallir	ne needles ^[1]			
IS [J]		n grain size) ^[1] , $H_{50\%} = 11$ cm (type et paper, B.M.) ^[2] , $H_{50\%} = 11$ cm (2.1)			
FS [N]	96 (BAM, 100-500 µ	ım grain size) ^[1]			
ESD [J]	63 mJ (100-500 μm	grain size) ^[1]			
N [%]	23.11				
Ω(CO ₂) [%]	-13.2				
T _{m.p.} [°C]	143 (onset, DTA @ 5	$K/min)^{[1]}$			
T _{dec.} [°C]	220 (DTA @ 5 K/min) ^[1]				
$ ho$ [g cm $^{-3}$]	1.91 (recalculated for RT from LT X-ray) ^[1] , 1.910 (crystal @ 143 K) ^[1]				
Heat of formation	66.4 (Δ <i>H</i> _f , calcd., CBS-	66.4 (ΔH _f , calcd., CBS-4M) ^[1] , –39.9 kcal/mol (ΔH _f (g) @ 25 °C, calcd., MINDO/3) ^[4]			
	Calcd. Lit. values Exptl. (EXPLO5 6.03)				
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]					
<i>T</i> _{ex} [K]					
p _{C-J} [kbar]	355 (@ 1.91 g cm ⁻³ , calcd.) ^[2]				
	38.96 GPa (@ 1.98 g cm ⁻³ , calcd., K-J) ^[3]				
VoD [m s ⁻¹]		8,700 (@ 1.91 g cm ⁻³ , calcd.) ^[2]			
		9,110 (@ 1.98 g cm ⁻³ , calcd., K-J) ^[3]			

V ₀ [L kg ⁻¹]			
I _{sp} [s]	251 (calcd., EXPLO5 6.03, 70 kbar, isobaric combustion, equilibrium expansion) ^[1] , 259 (15% Al, calcd., EXPLO5 6.03, 70 kbar, isobaric combustion, equilibrium expansion) ^[1] , 234 (15% Al, 14% binder (6% polybutadiene acrylic acid, 6% polybutadiene acrylonitrile, 2% bisphenol A ether), calcd., EXPLO5 6.03, 70 kbar, isobaric combustion, equilibrium expansion) ^[1]		
Solubility [g/mL]	Recryst. from $CH_2Cl_2^{[1]}$		
Compatibility	dec. in moist environment $^{[1]}$, ~50% dec. in polar solvents (e.g. acetone) within 3 days $^{[1]}$		
Dipole moment, μ [D]	2.90 (gas @ 25 °C, calcd., MINDO/3) ^[4] , 3.44 (gas @ 25 °C, calcd., MNDO) ^[4]		

	Pentanitrobenzene ^[1]
Chemical formula	C ₆ HN ₅ O ₁₀
Molecular weight [g mol ⁻¹]	303.10
Crystal system	Triclinic
Space group	P-1
a [Å]	8.1268(5)
<i>b</i> [Å]	13.1290(8)
c [Å]	20.3142(15)
α[°]	88.676(5)
β [°]	79.512(6)
γ [°]	81.601(5)
<i>V</i> [ų]	2,108.4(2)
Z	8
$ ho_{ m calc}$ [g cm $^{-3}$]	1.910
T[K]	143
	recryst. from cold CH ₂ Cl ₂

- [1] T. Huber, C. von der Heidi, T. M. Klapötke, B. Krumm, ZAAC, 2019, 645, 126–132.
- [2] W. S. Wilson, D. E. Bliss, S. L. Christian, D. J. Knight, *Explosive Properties of Polynitroaromatics*, NWC TP 7073, Naval Weapons Center, China Lake, USA, April **1990**.
- [3] H. Du, H. Lui, Y. Liu, J. Zhang, F. Wang, X. Gong, *Chinese J. Chem.*, **2011**, *29*, 455–462.
- [4] R. M. Guidry, L. P. Davis, MINDO/3 and MNDO Calculations for Nitro Compounds, FJSRL-TR-83-0012, Air Force Systems Command, Unites States Air Force, Colorado, USA, 13th January 1983.
- [5] C. K. Kim, S. G. Cho, J. Li, C. K. Kim, H. W. Lee, *Bull. Korean Chem. Soc.*, **2011**, *32*, 4341–4346.

PETN

Name [German, acronym]: Pentaerythritol tetranitrate, 2,2-bis[(nitrooxy)methyl]-

1,3-propanediol dinitrate, penthrite, nitropenta, nyperite, pentyl, nitropentaerythrite, penta, pentryt, TEN (USSR) [pentrit, nitropentaerythrit, niperyth,

nitropenta, NP, PETN]†

Main (potential) use: Booster explosive, ingredient in grenades and

small-caliber projectiles, in World War II: secondary explosive charge for filling grenades, detonating fuses, ammunition, explosive blends^[63], excellent transmitter of a detonation from initiating explosive to secondary explosive^[63], explosive core of detonating cords^[102], booster and detonator base charge^[102], ingredient of priming compositions^[107], in the manufacture of pentolite and other composite bursting charges^[107]

[†] Phlegmatized (desensitized) PETN is prepared by adding 10% of montan wax (lignit) and often used due to the relatively high sensitivity of PETN^[63]

	PETN
Formula	$C_5H_8N_4O_{12}$
Molecular mass [g mol ⁻¹]	316.14
Appear- ance at RT	White crystalline substance $^{[63,10,117,138]}$, usually needles or column-shaped crystals $^{[63]}$, cubic crystals obtained by recryst. from ethyl acetate $^{[63]}$, crystallizes from $\mathrm{H_2O}$ as tetragonal crystals $^{[64]}$, white solid $^{[91]}$, fine crystalline or granular powder which is white (pure) or light gray (if impurities are present) $^{[102]}$, white prismatic needles $^{[107]}$, tetragonal crystals from normal manufacturing $^{[20]}$, white or light buff solid $^{[8]}$, crystal shape varies depending on solvent used during crystallization $e.g.$ needle, bevel, stable α -cubic, unstable β -cubic $^{[138]}$

IS [J]^[9]

3.59 (1st reaction) $^{[5,31]}$, 2.90 (sound) $^{[5,31]}$, 17 cm (3.34 l, 2 kg mass, B, M,) $^{[8,9]}$, 6 in $(2.99 \text{ J}, 2 \text{ kg mass}, P. A.)^{[8, 9]}, 3.34 \text{ cm} (17 \text{ cm}, 2 \text{ kg mass}, 20 \text{ mg sample}, B.M.)^{[11-13]},$ 15 cm (P.A.)^[11, 12], 2.99 (6 in, 2 kg mass, 16 mg sample, P.A.)^[13], 5.40 (E.R.L.)^[11, 12], $3-4.2^{[17]}$, $H_{50\%} = 13$ cm (US-NOL apparatus)^[35], $H_{50\%} = 13$ cm (2.5 kg hammer, 35 mg sample, US Naval lab)^[67], $H_{50} = 12$ cm (tool type 12)^[21], $H_{50} = 37$ cm $(\text{tool type 12B})^{[21]}$, $H_{50} = 11 \text{ cm (tool type 12, 5 kg mass)}^{[26]}$, $IS_{LL} = 0.5 \text{ m}^{[24]}$, $IS_{A50} = 0.9 \text{ m}^{[24]}$, median height = 66 cm (5 kg mass, 30 mg sample, Rotter apparatus)^[37], drop weight = $3.5 \text{ Nm}^{[39]}$, Rotter FoI = $50^{[43]}$, US drop hammer = $12-15 \text{ cm}^{[43]}$, $E_{dmin} = 2.5$ (BAM, 5 kg, max. level with six consecutive negative results)^[141], $H_{50} = 12$ cm^[59], 16 cm (NEDED)^[60], 14 cm (LANL)^[60], $H_{50\%} = 60-80$ cm $(500 \text{ g hammer})^{[67]}$, minimum hot-spot T for initiation by impact = $400-430 \, ^{\circ}\text{C}$ (in presence of grit)^[67], $H_{20\%} = 50$ cm (2 kg mass)^[68], $H_{50\%} = 60$ cm (2 kg mass)^[68], $H_{80\%} = 70 \text{ cm } (2 \text{ kg mass})^{[68]}, 12 \text{ cm (Bruceton method, type } 12 \text{ tool, } 2.5 \text{ kg mass,}$ 40 mg sample, 5/0 sandpaper, 25 trials)^[73], $6.5^{[92]}$, $Ed_{min} = 5$ (BAM, 5 kg mass, RT)^[94], $H_{50\%} = 12 \text{ cm} (2.5 \text{ kg mass, LANL type } 12, \text{ PETN type RPS } 3518)^{[96]}, 1,422 \text{ mm (drop } 1,422 \text{ mm (drop$ height, Rotter impact test)[100], 1,555 mm (drop height, Rotter impact test, +5% DETA)^[100], 60-80 cm (0.5 kg mass)^[105], 13 cm (max. height for no explosions, 5 kg mass) $^{[107]}$, DH₅₀ = 25.2 cm (4 kg mass, Bruceton method, 35 mg sample, 120 grit sandpaper, LLNL small-scale apparatus)[109], 17 cm (2 kg mass)[117], 6 in (16 mg sample, P.A.)[119], 14 cm (50% point, type 12 tool, 2.5 kg mass, sandpaper)[125], $16 \text{ cm} (50\% \text{ point, type } 12 \text{ tool, } 2.5 \text{ kg mass, sandpaper})^{[125]}$

Powdered samples: $H_{50\%} = 12$ cm (NOL)^[37], $H_{50\%} = 12$ cm (LASL)^[37], $H_{50\%} = 43$ cm (B.M., ERL)^[37], $H_{10\%} = 17$ cm (P.A., B.M.)^[37], $H_{10\%} = 6$ cm (P.A.)^[37]

BAM (artificial aging performed as isothermal @ 70 °C for 113 days in absence of air or moisture): fresh PETN $E_{50} = 4.1^{[12]}$; aged PETN $E_{50} = 3.6^{[12]}$, 50% explosion prob. = kinetic energy of 0.20 kg/cm^{2[63]}, 20 cm but sometimes by a drop of 10–15 cm (2 kg mass, detonates)^[64]

Drop height = 1.05 m, sample thickness = 1.0-2.0 mm, drop weight = Al alloy plate of mass \sim 5.5 kg, impact velocity from max. drop height = \sim 4.5 ms⁻¹ producing max. impact pressure of \sim 1 GPa^[69]:

Material	Pellet diameter (mm)	ρ (% TMD)	No. of tests	% positive
Conventional PETN	4	50-60	3	100
(powders, grain size = 10-200 µm)	8	63-68	3	100
Size = 10=200 μm)	4	90-94	3	100
	8	80-85	3	100
Ultrafine PETN (powders, grain size = micron)	8	45-48	3	33
	4	90-94	3	33
	6	78-84	3	80
	8	73-77	3	33
	4	37-45	3	0

Drop height = 1.3 m, sample thickness = 1.0–2.0 mm, drop weight = Al alloy plate of mass \sim 5.5 kg^[69]:

Material	Pellet diameter (mm)	ρ (% TMD)	no. of tests	% positive
Conventional PETN	4	54-75	5	100
(powders, grain size = 10-200 μm)	6	48-50	3	100
3126 – 10–200 μπ)	8	59-66	3	100
	4	90-94	5	100
	6	72-80	3	100
	8	84	3	100
Ultrafine PETN	8	42-49	3	0
(powders, grain size = micron)	4	72-92	21	10
	6	83-85	3	0
	8	74-78	3	0

 $H_{50\%}$, up-down method, 25 mg samples, pressed to 10 kbar to give pellets of 5 mm diameter, 0.8 mm height; grit was fine, very fine or coarse where stated; PC = polycarbonate, PS = polysulfone, PMMA = polymethyl methacrylate, PP = polypropylene, HDPE = high-density polythene^[55]:

Sample (sample + binder)	50% height (cm)	Sample (sample + binder)	50% height (cm)
PETN (pure)	21.8 ± 1.0	PETN + HDPE	24.8 ± 1.5
PETN + PC (very fine)	10.5 ± 2.0	PETN + PMMA (coarse)	21.0 ± 1.6
PETN + PC (very fine, repeat)	10.7 ± 0.6	PETN + PMMA (fine)	19.2 ± 0.8
PETN + PS (very fine)	11.1 ± 0.3	PETN + PP (very fine)	18.8 ± 0.8
PETN + PS (fine)	13.0 ± 1.5	PETN + PP (very fine, 10% grit)	19.2 ± 0.7
PETN + PS (coarse)	10.4 ± 0.6	PETN + polyester	15.5 ± 1.0

Initiation of explosion by impact of PETN in the presence of grit^[119]:

Grit added	Impact explosion efficiency, %	Grit added	Impact explosion efficiency, %
Nil (pure PETN)	2	Silver iodide	-
AN	3	Borax	30
Potassium bisulfate	3	Bismuthinite	42
Silver nitrate	2	Glass	100
Sodium dichromate	0	Rock salt	6
Potassium nitrate	0	Chalcocite	50
Potassium dichromate	0	Galena	60
Silver bromide	6	Calcite	43
Lead chloride	27		

17 cm (2 kg mass)^[138], $H_{100\%} = 25$ cm (10 kg drop weight)^[138]

Rotter impact data: 27 mg sample, Bruceton method/25 drop run to obtain $H_{50\%}$; initiation criteria = 1 mL gas evolved or 0.5 mL accompanied by smoke or evidence of burning in the sample; data from^[139]:

Rotter	impact data	US	data
FofI	Gas evolved (mL)	NSWC/NOL, ERL type 12	NWC B.M. type 12
50	12	12	12

 $H_{50\%}$ = 16 cm (4 kg mass, B.M. design 5)^[140], $H_{50\%}$ = 19 cm (5 kg mass, plane sandblasted surfaces)^[140], 9 cm (sensitivity to glancing impact, Hercules sliding rod, sandblasted surfaces, 45° slide angle, 10 lb rod, 30 mg sample)^[140]

FS [N]

Crackles with steel shoe (friction pendulum test)^[13, 119], unaffected by fiber shoe (friction pendulum test)^[13], $80^{[17]}$, $P_{\rm fr,LL}=175~{\rm MPa}^{[24]}$, $P_{\rm fr,50\%}=345~{\rm MPa}^{[24]}$, $G_{\rm min}=60~{\rm (BAM Julius-Peters, max. level with six consecutive negative runs)^{[46]}$, 70 Nm (50% value, BAM)^[58], 73 N (BAM, limiting load)^[65], 60 N (BAM, limiting load)^[65], ($H_{50}{\rm Wg})^{-1}=3~{\rm Nm}^{[66]}$, rel. insensitive, but makes loud crackling when rubbed in rough porcelain mortar^[64], 35–40 cm (torpedo friction, 1 kg @ 80 °C, 0.5 m/s)^{[67,[105]]}, 10 kg (friction wheel, 1 kg @ 80 °C, 0.5 m/s)^[67,105], minimum hot-spot T for initiation by friction = $400-430~{\rm ^{\circ}C^{[67]}}$, $18.6~{\rm kg}$ load (20% samples fired, Julius-Peters)^[68], $19.2~{\rm kg}$ (80% samples fired, Ju

Rotary FS mean figure of friction (FoF) = $2.4^{[25,65]}$, Rotary FoF = $1.3^{[65]}$, BAM mean limiting load = $73 \, N^{[25]}$

Mallet friction test: steel on steel = $50\%^{[25]}$, nylon on steel = $0\%^{[25]}$, wood on softwood = $0\%^{[25, 127]}$, wood on hardwood = $0\%^{[25, 127]}$, wood on Yorkstone = $0\%^{[25]}$, wood mallet on stone = $100\%^{[127]}$

BAM (artificial aging performed as isothermal @ 70 °C for 113 days in absence of air or moisture): fresh PETN $F_{50} = 64^{[12]}$; aged PETN $F_{50} = 55^{[12]}$

Gelled PETN with different PETN concentrations and different gels, CGC = critical gellator concentration, BAM, Bruceton method, FS measured 24 h after preparation, $E_{50\%}^{(97)}$:

Gel type	Gellant system	Solvent	CGC	PETN conc. [% v/v]	FS [N]
_	-	Powdered	_	100	28
Physical organic gels	GSSG	DMF	8.2 mM	21	220 ± 110
Physical	Guar gum	H ₂ O	0.035 g/mL	20	>360
hydrogels	Xanthan gum	H ₂ O/EtOH	0.120 g/mL	50	>360
I	1.5% w/w	H ₂ O/ Not a solid	34	>360	
	PAA isopropa	isopropanol	sopropanol gel	50	216
		· I		65	112
	3.0% w/w			50	>360
	PAA			65	235 ± 25
				72	130 ± 50
Physical	1.5%		6.4 μM/mL	50	>360
cross-linked hydrogel	PAA-Fe ³⁺			65	120 ± 40
(Ionotropic gel)				72	95

Initiation of explosion by friction of PETN in the presence of grit^[119]:

Grit added	Friction explosion efficiency, %	Grit added	Friction explosion efficiency, %
Nil (pure PETN)	0	Silver iodide	100
AN	0	Borax	100
Potassium bisulfate	0	Bismuthinite	100
Silver nitrate	0	Glass	100
Sodium dichromate	0	Rock salt	50
Potassium nitrate	0	Chalcocite	100
Potassium dichromate	0	Galena	100
Silver bromide	50	Calcite	100
Lead chloride	60		

 $H_{50\%}$ = 7.5 cm (friction pendulum, 30 mg sample, sandblasted surface, 2 in ball, 5 kg weight, 8° angle of incidence)^[140]

ESD [J]

0.06 (100 mesh, unconfined)^[13], 0.21 (100 mesh, confined)^[13], $E_{50} = 40$ mJ (PETN-I, crystal width ≤ 0.125 mm)^[83], $E_{50} = 139$ mJ (PETN-II, crystal width ≤ 0.500 mm)^[83], 56 mJ (old equipment, different particle sizes), >5,600 mJ (new equipment)^[95], 0.0625 (ABL, PETN type RPS 3518)^[96], 0.06 (unconfined)^[119], 0.21 (confined)^[119]

Spark sensitivity: 0.19 (brass electrode, 3 mm Pb foil thickness) $^{[20,\,21]}$, 0.36 (brass electrode, 10 mm Pb foil thickness) $^{[20,\,21]}$, 0.41 (steel electrode, 10 mm Pb foil) $^{[20,\,21]}$, 0.1 (steel electrode, 1 mm Pb foil) $^{[20]}$, discharge energy increases with increasing PETN particle size, packing density, water content, circuit inductance and decreasing temperature $^{[20]}$

Max. nonignition energy = 0.036, max. nonignition spark voltage = 12,000 V (2.6 micron particle size, 0.005 in spark gap, 500 μ F capacitance)^[20]

Highest electrostatic discharge energy @ 5,000 volts for zero ignition probability^[35]:

	Highest E for zero ignition probability		Type of	ignition
	Confined	Unconfined	Confined	Unconfined
Bulk PETN	>11.0	0.21	None	Deton.
PETN through 100 mesh	0.062	0.21	Deflag.	Deton.

Fresh PETN $E_{50} = 30 \text{ mJ}^{[12]}$; aged PETN $E_{50} = 20 \text{ mJ}^{[12]}$ (artificial aging performed as isothermal @ 70 °C for 113 days in absence of air or moisture)^[12], initiation by electric spark: can be detonated by 2,000–12,000 V electric spark produced by discharging a condenser^[63], 0.036 (12,000 V, 2.6 micron, for zero ignition, 500 MMF capacitance, 0.005 in gap setting)^[133], 0.144 (24,000 V, special crystal, for zero ignition, 500 MMF capacitance, 0.005 in gap setting)^[133]

Highest energy (J) for zero ignition probability^[133]:

Results from ^[133]	Bureau of Mines, 1943	Bureau of Mines, 1946	NOL, 1959
0.036	0.31	0.062	0.085

PETN particle size effects (*U.S. standard sieve series, tested with steel phonograph needles)^[135]:

Sample particle size*	50% point energy (J)		
	1 mil foil	10 mil foil	% expl.
On 35	0.162	4.0	0
Through 35 on 42	0.150	2.42	0
Through 42 on 60	0.165	1.83	0
Through 60 on 80	0.138	1.23	0
Through 80 on 115	0.135	1.00	15
Through 115 on 325	0.098	0.408	33

Data from^[135]:

Material	50% point energy (J)			
	3 mil foil 10 mil foil % expl.			
PETN (DuPont)	0.19	0.75	8	

Heated explosives^[135]:

T(°C)	50% energy (J)		
	3 mil foil	10 mil foil	% expl.
22	0.25	0.70	50
50	0.24	0.78	42
75	0.21	0.70	15
100	0.18	0.60	42
125	0.26	0.79	40

N [%]	17.72				
Ω(CO ₂) [%]	-10.12				
T _{phase} transitions [°C]	130.0 PETN I (most comm orthorhombic (phase-II) ^{[4-} (phase-II) – tetragonal (pl transition ~96 GPa @ RT, phase transition: <i>P</i> -42 ₁ <i>c</i> - (142.9 °C), later, observe that at this temperature for	olymorphs of PETN: tetrage on phase) \rightarrow PETN II ^[21] , 13 of rapid transformatinase-I) ^[44] , high pressure prime irreversible under hydrostate \rightarrow Pcnb ^[87] , early reports stode that form II melts 0.2 °C form II is the stable form ^[134] at $T < 130$	30 tetragonal (phase- on of orthorhombic hase transitions: pha atic conditions ^[87] , hig ated form I stable to higher than form I su ^{il} , form II forms on the	l) – se gh T mpt ggesting e face of	
<i>T</i> _{m.p.} [°C]	142 (crystals) ^[38] , 140–14 2,500 °C/s, nanocalorime 142.10 (endo, peak max.) 138.0–138.5 (commercial DSC) ^[68] , 139.45 (endo, DS Al pans) ^[76] , 142 (aged san sample) ^[91] , 140.1 (onset), pinhole cover) ^[98] , 141–14	d into Al pinhole pans, 1 m	(single-crystal, therm 140.82 (endo, onset 0–141 ^[63] , 141.3 (pure pure PETN) ^[64] , 140 (esample, unsealed but 1mple, DTA) ^[91] , 140 (siend T) (DSC @ 10.0 K	ocycle @),) ^[8, 63] , ndo, max covered tandard /min,	
	PETN sample type	Average max. mpt. (°C)	SSA (cm ² g ⁻¹)		
	Spherical	142.4	-5,550		
	Needle shaped	142.1	-6,750		
	Spherical with same SSA as PETN "D"	141.9	-7,200		

DSC, flame sealed in glass microampoules, N ₂ @ 50 mL/min ^[109]

Heating rate (K/min)	п	Mass (mg)	Endotherm, T _{min} (°C)	ΔH_{fus} (J/g)
20	4	0.125	144	109
10	4	0.297	143	148
9	3	0.280	143	128
8	4	0.298	142	147
7	3	0.330	142	145
6	3	0.326	142	117
5	3	0.284	143	110
4	3	0.289	142	117
3	3	0.282	141	102
2	3	0.301	140	120
1	3	0.352	140	137

PETN eutectics^[20]:

Composition	mpt. (°C)
1.5% PETN, 98.5% NG	12.3
20% PETN, 80% <i>m</i> -dinitrobenzene	82.4
10% PETN, 90% 2,4-dinitrotoluene	67.3
13% PETN, 87% TNT	76.1
30% PETN, 70% tetryl	111.3
20% PETN, 80% mannitol hexanitrate	101.3

$T_{b.p.}$ [°C]

160 °C @ 2 mm Hg^[20, 63, 64], 180 °C @ 50 mm Hg^[20, 63, 64], 200 °C \pm 10 @ 760 mm Hg^[63, 64]

T_{dec.} [°C]

179 (DSC @ 5 °C/min), 421 K (DTA)^[5,71], 225 (@ 5 °C/s)^[11], 210 (@ 10 °C/s)^[11], 210 (exotherm peak maximum, @ 20 °C/s)^[42], sublimation and dec. occur concurrently^[54], dec. begins @ 75 (activation energy of 192 kJ mol⁻¹ obtained between 75–130 °C)^[54], 170 (exotherm reaction)^[58], 100 (TG onset)^[58], 192.35 (exo, onset), 201.62 (exo, peak max) DSC @ 10 °C/min)^[61], 165 (onset)^[72], 202.0 (DTA)^[79], 192.07 (exo, DSC @ 10 °C/min, 1–10 mg sample, unsealed but covered Al pans)^[76], 142.98 (endo, crude sample, peak max., DSC @ 10 °C/min, 1–10 mg sample, unsealed but covered Al pans)^[76], 141.30 (endo, 93.97 mol% purity, DSC @ 10 °C/min, 1–10 mg sample, unsealed but covered Al pans)^[76], 143.37 (endo, purified sample, peak max., DSC @ 10 °C/min, 1–10 mg sample, unsealed but covered Al pans)^[76], 205–215 (DSC @ 10 °C/min, sealed into Al pinhole pans, 1 mg sample, Ar)^[90], ~110 ($T_{\rm db}$, dec. onset, aged sample, TGA)^[91], 183 ($T_{\rm idb}$, intensive dec. onset,

aged sample, DTA)^[91], 160–180 (T_{idb} , intensive dec. onset, standard samples, DTA)^[91], 167 (onset), 206 (exo peak max) (DSC @ 10 °C/min, sealed Al pan with pinhole lid, PETN type RPS 94–01B)^[96], 187.7 (onset), 202.9 (peak max), 216.3 (end T) (DSC @ 10.0 K/min, pinhole cover)^[98], 200 (DTA, max. mass loss @ 10 K/Min, 8–10 mg sample, open Pt pan)^[109], >210 (rapid dec. sometimes with detonation at atmospheric pressure)^[20], 140–145^[138]

@ 8 °C/min: T_{idb} = 171.1, T_w = 182.3, T_{max} = 203.5^[50] @ 16 °C/min: T_{idb} = 193.7, T_w = 206.6, T_{max} = 215.4^[50], T_{cr} = 200–203^[50] 230 (exo peak max., sharp peak suggesting rapid dec., DSC)^[68]

DSC, flame sealed in glass microampoules, $N_2 @ 50 \text{ mL/min}^{[109]}$:

Heating rate (K/min)	n	Mass (mg)	Exotherm, T _{min} (°C)	Exotherm, T _{max} (°C)	Δ <i>H</i> (J/g)
20	4	0.125	198	212	1,971
10	4	0.297	193	202	3,874
9	3	0.280	192	201	3,358
8	4	0.298	191	199	4,032
7	3	0.330	188	196	3,634
6	3	0.326	189	195	4,060
5	3	0.284	186	194	3,734
4	3	0.289	183	192	2,985
3	3	0.282	181	189	2,919
2	3	0.301	178	183	3,553
1	3	0.352	172	173	4,096

Nonisothermal TG data^[142]:

β/К	$T_{\rm ot}$	T _i	Mass loss/%		L _{max} /%	T _p /°C	T _{oe} /°C
min ⁻¹			Stage 1	Residue/%	min ⁻¹		
5.0	172.7	128.9	98.52	0.27	-24.70	186.9	199.9
7.0	176.3	129.1	97.34	0.93	-33.47	190.1	205.8
10.0	180.8	129.3	96.11	2.41	-48.17	194.5	214.6
15.0	186.0	129.5	95.66	3.75	-73.22	199.4	224.4

 $T_{\rm ot}$ = onset T of dec., $T_{\rm oe}$ = onset T of end of dec., $T_{\rm i}$ = initial T for thermal dec., $T_{\rm p}$ = peak T of mass loss rate, stage 1 = from initial T to end T of DTG peak, $L_{\rm max}$ = max. mass loss rate

ρ [g cm⁻³]

 $\begin{array}{l} 1.827 \ (\textcircled{@}\ 123 \ K),\ 1.750 \ (\textcircled{@}\ 298 \ K,\ gas\ pycnometer),\ 1.67 \ (\textcircled{@}\ 293 \ K)^{[1]}, \\ 1.772^{[3]},\ 1.778^{[11]},\ 1.77 \ (crystal)^{[13,77,119]},\ 1.778 \ (tetragonal\ crystals)^{[20]},\ 1.716 \\ (orthorhombic\ crystals)^{[20]},\ 1.77 \ (\textcircled{@}\ TMD)^{[26]},\ 1.76 \ (nominal)^{[26,91]},\ 1.76^{[59]},\ sp. \\ gr. = 1.77 \ (in\ cryst.\ form)^{[63]},\ 1.773 \ (single\ crystal)^{[72]},\ 1.78 \ (\textcircled{@}\ TMD)^{[91,112]},\ 1.78^{[99]}, \\ 1.765 \ (crystal)^{[107]},\ 1.74 \ (pressed\ \rho\ \textcircled{@}\ 40,000\ psi)^{[107]},\ 1.60 \ (compressed)^{[107]}, \\ 1.7599 \ (pycnometer)^{[109]},\ 1.778 \ (X-ray)^{[109]},\ sp.\ gr. = 1.77^{[117]},\ 1.765^{[127]},\ 1.77^{[138]} \\ \end{array}$

Loading densities^[13]: 1.37 @ 3,000 psi^[13], 1.58 @ 5,000 psi^[13], 1.64 @ 10,000 psi^[13], 1.71 @ $20,000^{[13]}$, 1.72 @ 30,000 psi^[13], 1.74 @ 40,000 psi^[13]

Loading densities: 1.48 g cm⁻³ @ 5 kpsi^[37, 119], 1.61 @ 10 kpsi^[37, 119], crystal = $1.76^{[37, 119]}$

Packing density as function of loading press, pressure (kg/cm²)/ ρ (g cm⁻³): 351/1.575, 703/1.638, 1,406/1.710, 2,109/1.725, 2,812/1.740^[7, 20, 63]

Crystal density^[21]:

Method of determination	T (°C)	Crystal form	Crystal density (g/cm³)
X-ray calculation	22	1	1.778
X-ray Calculation	136	Ш	1.716
Exptl.	22	1	1.778

Under compression^[21]:

Pressure (psi)	Density (g/cm³)
5,000	1.58
10,000	1.64
20,000	1.71
30,000	1.73
40,000	1.74

Heat of formation

 $\begin{array}{l} -128.7 \text{ kcal mol}^{-1} \text{ (enthalpy of form.)}^{[20,91]}, -110.34 \text{ kcal mol}^{-1} \text{ (heat of form., } \Delta H^{\circ}_{\rm f} \text{ (25 °C)}^{[20,21]}, 390 \text{ kcal/kg } (\Delta H_{\rm f})^{[63]}, 123 \text{ kcal/mol } (\Delta H_{\rm f})^{[63]}, \\ -515.3 \text{ kJ mol}^{-1} \text{ (enthalpy of form.)}^{[72]}, -125.5 \text{ kcal/mol } (\Delta H_{\rm f})^{[77]}, \\ -538.48 \text{ kJ/mol}^{[109,112]}, -128.8 \text{ kcal/mol } (\Delta H_{\rm f}(s))^{[59]}, -401 \text{ cal/g}^{[3]}, \\ 383 \text{ kcal/kg}^{[13,35]}, -398 \text{ kcal/kg (enthalpy of form.)}^{[74]}, 379.5 \text{ kcal/kg}^{[117]} \end{array}$

Heat of combustion

1,960 kcal/kg^[13, 35, 119], $\Delta H_c = -8,140$ kJ/kg^[58], 1,974 kcal/kg^[63], 618.7 kcal/mol^[20], 1,962 (@ C)^[117], $\Delta H^o_c = -618.7$ kcal/mol^[21]

	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.
-Δ _{ex} U° [kJ kg ⁻¹]	1 `	165 kcal/100 g [H ₂ O (l)] (calcd.) ^[26] 151 kcal/100 g [H ₂ O (g)] (calcd.) ^[26] 1,385 kcal/kg ^[35, 117] 1.51 kcal/g (Q_{max} , calcd.) ^[59] 5,866 ^[72] 1,372 kcal/kg (@ 1.700 g cm ⁻³ , calcd.) [H ₂ O vapor] ^[74] 1,391 kcal/kg (@ 1.7650 g cm ⁻³ , calcd.) [H ₂ O vapor] ^[74] 1,416 cal/g (calcd.) ^[116] 153.7 kcal/100 g (@ 1.50 g cm ⁻³ , constant volume) [H ₂ O (l)] ^[127] 6,401.52 J/g (explosion heat) ^[138]	1,385 cal/g ^[13,119] 1,410 kcal/kg ^[18] 6,404 ^[19] 1.65 kcal/g [H ₂ O (I)] ^[20] 1,51 kcal/g [H ₂ O (g)] ^[20] 1,490 kcal/kg [H ₂ O (I)] ^[26] 1,370 kcal/kg [H ₂ O (g)] ^[26] 1,530 kcal/kg (tests using 1 kg PETN) ^[63] 1,350 kcal/kg (@ 1.700 g cm ⁻³) [H ₂ O vapor] ^[74] 1,422 kcal/kg (@ 1.7650 g cm ⁻³) [H ₂ O vapor] ^[74] Calorimetric heat of detonation, 25 g cylinder sample, 1.2 cm diameter, detonated in isothermal calorimetry bomb under 65 Pa vacuum) ^[62] : ρ = 1.73 g cm ⁻³ , 6,234 J/g (25 °C, H ₂ O (I)), 10,795 J/cm ³ , 11,096 J/cm ³ (TMD) ^[62] 6,226 J/g (@ 1.735 g cm ⁻³ , [H ₂ O (I)], heavily confined) ^[70] 5,739 J/g (@ 1.735 g cm ⁻³ , [H ₂ O (I)], heavily confined) ^[70] 6,297 J/g (@ 1.496 g cm ⁻³ , [H ₂ O (I)], heavily confined) ^[70] 5,824 J/g (@ 1.496 g cm ⁻³ ,
			[H ₂ O (g)], heavily confined) ^[70]

			6,293 J/g (@ 1.34 g cm ⁻³ , [H ₂ O (l)], heavily confined) ^[70]
			$5,817 \text{ J/g } (@ 1.34 \text{ g cm}^{-3}, [\text{H}_2\text{O } (\text{g})],$ heavily confined) $^{[70]}$
			5,710 J/g (@ 1.263 g cm ⁻³ , cylinder test) ^[70]
			5,655 J/g (@ 1.503 g cm ⁻³ , cylinder test) ^[70]
			6,130 J/g (@ 1.763 g cm ⁻³ , cylinder test) ^[70]
			10.1 GPa (@ 1.710 g cm ⁻³ , detonation energy, PETN containing ~5% of organic phlegmatizer) ^[78]
			2,240 cal/cm³ (voidless, volumetric heat of explosion) ^[119]
			2,260 cal/cm³ (pressed @ 10,000 psi, volumetric heat of explosion) ^[119]
<i>T</i> _{ex} [K]	3,958	4,500 (@ 1.67 g cm ⁻³) ^[28]	2,833 (@ 1.77 g cm ⁻³) ^[11]
		3,018 (@ 1.67 g cm ⁻³) ^[28]	3,970 (@ 1.0 g cm ⁻³) ^[11]
		2,340 (@ 1.67 g cm ⁻³) ^[28]	4,493 (@ 0.50 g cm ⁻³) ^[11]
		4,400 (@ 1.77 g cm ⁻³) ^[28]	4,442 (@ 0.25 g cm ⁻³) ^[11]
		2,833 (@ 1.77 g cm ⁻³) ^[28]	5,684 (@ 1.56 g cm ⁻³) ^[35]
		2,070 (@ 1.77 g cm ⁻³) ^[28]	3,400 (@ 1.67 g cm ⁻³) ^[28]
		4,850 (@ 1.00 g cm ⁻³) ^[28]	4,200 (single crystal) ^[28]
		3,970 (@ 1.00 g cm ⁻³) ^[28]	5,783 (@ 1.0 g cm ⁻³) ^[35]
		4,300 (@ 1.00 g cm ⁻³) ^[28]	6,900 (@ 1.48 g cm ⁻³) ^[35]
		5,280 (@ 1.60 g cm ⁻³ , calcd.) ^[35]	5,125 (@ 1.0 g cm ⁻³ , radiation
		2,812 (@ 1.78 g cm ⁻³ , calcd.) ^[35]	method) ^[35]
			5,700 (@ 1.2 g cm ⁻³ , radiation method) ^[35]

4,145 (@ 1.77 g cm $^{-3}$, $\Delta H_{\rm f} = -125.5$ kcal/mol, calcd., KLRR/C, THEOSTAR-T)^[77]

4,298 (@ 1.77 g cm $^{-3}$, $\Delta H_{\rm f}$ = -125.5 kcal/mol, calcd., BKWC, THEOSTAR-T) $^{[77]}$

3,528 (@ 1.77 g cm $^{-3}$, $\Delta H_{\rm f} = -125.5$ kcal/mol, calcd., BKWR, THEOSTAR-T) $^{[77]}$

4,001 (@ 1.778 g cm⁻³ (100% TMD), calcd. CHEETAH-6)^[93]

3,018 (@ 1.67 g cm⁻³, $\Delta H_{\rm f}^{0} = -1,264$ kJ/kg, calcd., FORTRAN BKW)^[113]

3,970 (@ 1.00 g cm $^{-3}$, $\Delta H_{\rm f}^{\,0} = -1,264$ kJ/kg, calcd., FORTRAN BKW)[113]

4,345 °C (@ 1.50 g cm $^{-3}$) $^{[127]}$

4,230 °C[138]

3,330 (@ 1.76 g cm $^{-3}$, calcd. BKWR) $^{[14]}$

3,400 (@ 1.70 g cm $^{-3}$, calcd. BKWR) $^{[14]}$

3,520 (@ $1.60 \mathrm{~g~cm^{-3}}$, calcd. BKWR) $^{[14]}$

3,710 (@ 1.45 g cm $^{-3}$, calcd. BKWR) $^{[14]}$

3,940 (@ 1.23 g cm $^{-3}$, calcd. BKWR) $^{[14]}$

4,150 (@ 0.99 g cm⁻³, calcd. BKWR)^[14]

4,240 (@ 0.88 g cm^{-3} , calcd. BKWR)^[14]

6,550 (@ 1.5 g cm $^{-3}$, radiation method) $^{[35]}$

4,200 (@ 1.77 g cm⁻³, luminosity method)^[35]

4,230 °C (tests using 1 kg PETN)^[63]

4,200^[77]

4,400 (@ 1.60 g cm⁻³)^[14]

4,460 (@ 0.48 g cm ⁻³ , calcd. BKWR) ^[14] 4,470 (@ 0.30 g cm ⁻³ , calcd. BKWR) ^[14] 4,460 (@ 0.25 g cm ⁻³ , calcd. BKWR) ^[14] 4,280 (@ 1.76 g cm ⁻³ , calcd. BKWS) ^[14] 4,320 (@ 1.70 g cm ⁻³ , calcd. BKWS) ^[14] 4,390 (@ 1.60 g cm ⁻³ , calcd. BKWS) ^[14] 4,490 (@ 1.45 g cm ⁻³ , calcd. BKWS) ^[14] 4,600 (@ 1.23 g cm ⁻³ , calcd. BKWS) ^[14] 4,640 (@ 0.99 g cm ⁻³ , calcd. BKWS) ^[14] 4,640 (@ 0.88 g cm ⁻³ , calcd. BKWS) ^[14] 4,450 (@ 0.48 g cm ⁻³ , calcd. BKWS) ^[14] 4,450 (@ 0.30 g cm ⁻³ , calcd. BKWS) ^[14] 4,400 (@ 0.25 g cm ⁻³ , calcd. BKWS) ^[14] 4,400 (@ 0.25 g cm ⁻³ , calcd. BKWS) ^[14] 30.84 GPa (CHEETAH 2.0) ^[4] 31.6 226 (@ 1.78 g cm ⁻³ , calcd.) 31.6 224 (@ 1.78 g cm ⁻³ , calcd.) 324 (@ 1.78 g cm ⁻³ , calcd.) 37 (@ 0.99 g cm ⁻³) ^[11] 306 (@ 1.67 g cm ⁻³) ^[11] 37 (@ 0.99 g cm ⁻³) ^[11]			Y	,
BKWR) ^[14] 4,460 (@ 0.25 g cm ⁻³ , calcd. BKWR) ^[14] 4,280 (@ 1.76 g cm ⁻³ , calcd. BKWS) ^[14] 4,320 (@ 1.70 g cm ⁻³ , calcd. BKWS) ^[14] 4,390 (@ 1.60 g cm ⁻³ , calcd. BKWS) ^[14] 4,490 (@ 1.45 g cm ⁻³ , calcd. BKWS) ^[14] 4,600 (@ 1.23 g cm ⁻³ , calcd. BKWS) ^[14] 4,640 (@ 0.99 g cm ⁻³ , calcd. BKWS) ^[14] 4,640 (@ 0.88 g cm ⁻³ , calcd. BKWS) ^[14] 4,450 (@ 0.48 g cm ⁻³ , calcd. BKWS) ^[14] 4,450 (@ 0.30 g cm ⁻³ , calcd. BKWS) ^[14] 4,400 (@ 0.25 g cm ⁻³ , calcd. BKWS) ^[14] 4,400 (@ 0.25 g cm ⁻³ , calcd. BKWS) ^[14] 30.384 GPa (CHEETAH 2.0) ^[4] 324 (@ 1.78 g cm ⁻³ , 306 (@ 1.67 g cm ⁻³) ^[11]				
BKWR) ^[14] 4,280 (@ 1.76 g cm ⁻³ , calcd. BKWS) ^[14] 4,320 (@ 1.70 g cm ⁻³ , calcd. BKWS) ^[14] 4,390 (@ 1.60 g cm ⁻³ , calcd. BKWS) ^[14] 4,490 (@ 1.45 g cm ⁻³ , calcd. BKWS) ^[14] 4,600 (@ 1.23 g cm ⁻³ , calcd. BKWS) ^[14] 4,640 (@ 0.99 g cm ⁻³ , calcd. BKWS) ^[14] 4,640 (@ 0.88 g cm ⁻³ , calcd. BKWS) ^[14] 4,560 (@ 0.48 g cm ⁻³ , calcd. BKWS) ^[14] 4,560 (@ 0.30 g cm ⁻³ , calcd. BKWS) ^[14] 4,400 (@ 0.25 g cm ⁻³ , calcd. BKWS) ^[14] 31.6 226 (@ 1.60 g cm ⁻³ , calcd. BKWS) ^[14] 335 (@ 1.77 g cm ⁻³) ^[11] 306 (@ 1.67 g cm ⁻³) ^[11]				
BKWS) ^[14] 4,320 (@ 1.70 g cm ⁻³ , calcd. BKWS) ^[14] 4,390 (@ 1.60 g cm ⁻³ , calcd. BKWS) ^[14] 4,490 (@ 1.45 g cm ⁻³ , calcd. BKWS) ^[14] 4,600 (@ 1.23 g cm ⁻³ , calcd. BKWS) ^[14] 4,640 (@ 0.99 g cm ⁻³ , calcd. BKWS) ^[14] 4,640 (@ 0.88 g cm ⁻³ , calcd. BKWS) ^[14] 4,560 (@ 0.48 g cm ⁻³ , calcd. BKWS) ^[14] 4,450 (@ 0.30 g cm ⁻³ , calcd. BKWS) ^[14] 4,400 (@ 0.25 g cm ⁻³ , calcd. BKWS) ^[14] 4,400 (@ 0.25 g cm ⁻³ , calcd. BKWS) ^[14] 31.6 226 (@ 1.60 g cm ⁻³ , calcd. BKWS) ^[14] 30.84 GPa (CHEETAH 2.0) ^[4] 324 (@ 1.78 g cm ⁻³ , 306 (@ 1.67 g cm ⁻³) ^[11]				
BKWS) ^[14] 4,390 (@ 1.60 g cm ⁻³ , calcd. BKWS) ^[14] 4,490 (@ 1.45 g cm ⁻³ , calcd. BKWS) ^[14] 4,600 (@ 1.23 g cm ⁻³ , calcd. BKWS) ^[14] 4,640 (@ 0.99 g cm ⁻³ , calcd. BKWS) ^[14] 4,640 (@ 0.88 g cm ⁻³ , calcd. BKWS) ^[14] 4,560 (@ 0.48 g cm ⁻³ , calcd. BKWS) ^[14] 4,450 (@ 0.30 g cm ⁻³ , calcd. BKWS) ^[14] 4,400 (@ 0.25 g cm ⁻³ , calcd. BKWS) ^[14] 4,400 (@ 0.25 g cm ⁻³ , calcd. BKWS) ^[14] 31.6 226 (@ 1.60 g cm ⁻³ , calcd. BKWS) ^[14] 3084 GPa (CHEETAH 2.0) ^[4] 315 (@ 1.77 g cm ⁻³) ^[11] 306 (@ 1.67 g cm ⁻³) ^[11]				
$ \begin{array}{c} BKWS)^{[14]} \\ 4,490 \ (@ \ 1.45 \ g \ cm^{-3}, \ calcd. \\ BKWS)^{[14]} \\ 4,600 \ (@ \ 1.23 \ g \ cm^{-3}, \ calcd. \\ BKWS)^{[14]} \\ 4,640 \ (@ \ 0.99 \ g \ cm^{-3}, \ calcd. \\ BKWS)^{[14]} \\ 4,640 \ (@ \ 0.88 \ g \ cm^{-3}, \ calcd. \\ BKWS)^{[14]} \\ 4,560 \ (@ \ 0.48 \ g \ cm^{-3}, \ calcd. \\ BKWS)^{[14]} \\ 4,450 \ (@ \ 0.30 \ g \ cm^{-3}, \ calcd. \\ BKWS)^{[14]} \\ 4,400 \ (@ \ 0.25 \ g \ cm^{-3}, \ calcd. \\ BKWS)^{[14]} \\ 30.84 \ GPa \ (CHEETAH \ 2.0)^{[4]} \\ 306 \ (@ \ 1.67 \ g \ cm^{-3})^{[11]} \\ 306 \ ($				
BKWS) ^[14] 4,600 (@ 1.23 g cm ⁻³ , calcd. BKWS) ^[14] 4,640 (@ 0.99 g cm ⁻³ , calcd. BKWS) ^[14] 4,640 (@ 0.88 g cm ⁻³ , calcd. BKWS) ^[14] 4,560 (@ 0.48 g cm ⁻³ , calcd. BKWS) ^[14] 4,450 (@ 0.30 g cm ⁻³ , calcd. BKWS) ^[14] 4,400 (@ 0.25 g cm ⁻³ , calcd. BKWS) ^[14] 31.6 226 (@ 1.60 g cm ⁻³ , calcd. BKWS) ^[14] 300[1] 31.77 g cm ⁻³) ^[11] 306 (@ 1.67 g cm ⁻³) ^[11]				
BKWS) ^[14] 4,640 (@ 0.99 g cm ⁻³ , calcd. BKWS) ^[14] 4,640 (@ 0.88 g cm ⁻³ , calcd. BKWS) ^[14] 4,560 (@ 0.48 g cm ⁻³ , calcd. BKWS) ^[14] 4,450 (@ 0.30 g cm ⁻³ , calcd. BKWS) ^[14] 4,400 (@ 0.25 g cm ⁻³ , calcd. BKWS) ^[14] 31.6 226 (@ 1.60 g cm ⁻³ , calcd. BKWS) ^[14] 30.84 GPa (CHEETAH 2.0) ^[4] 306 (@ 1.67 g cm ⁻³) ^[11] 306 (@ 1.67 g cm ⁻³) ^[11]				
BKWS) ^[14] 4,640 (@ 0.88 g cm ⁻³ , calcd. BKWS) ^[14] 4,560 (@ 0.48 g cm ⁻³ , calcd. BKWS) ^[14] 4,450 (@ 0.30 g cm ⁻³ , calcd. BKWS) ^[14] 4,400 (@ 0.25 g cm ⁻³ , calcd. BKWS) ^[14] 4,400 (@ 0.25 g cm ⁻³ , calcd. BKWS) ^[14] 31.6 226 (@ 1.60 g cm ⁻³ , calcd. BKWS) ^[14] 30.84 GPa (CHEETAH 2.0) ^[4] 324 (@ 1.78 g cm ⁻³ , 306 (@ 1.67 g cm ⁻³) ^[11]				
$\begin{array}{c} BKWS)^{[14]} \\ 4,560 \ (@ \ 0.48 \ g \ cm^{-3}, \ calcd. \\ BKWS)^{[14]} \\ 4,450 \ (@ \ 0.30 \ g \ cm^{-3}, \ calcd. \\ BKWS)^{[14]} \\ 4,400 \ (@ \ 0.25 \ g \ cm^{-3}, \ calcd. \\ BKWS)^{[14]} \\ \\ p_{C-J} \ [kbar] \\ & 31.6 \\ & 226 \ (@ \ 1.60 \ g \ cm^{-3}, \ calcd. \\ BKWS)^{[14]} \\ & 30.84 \ GPa \ (CHEETAH \ 2.0)^{[4]} \\ & 306 \ (@ \ 1.67 \ g \ cm^{-3})^{[11]} \\ & 306 \ (@ \ 1.67 \ g \ cm^{-3})^{[11]} \\ \end{array}$				
$\begin{array}{c} BKWS)^{[14]} \\ 4,450 \ (@ \ 0.30 \ g \ cm^{-3}, \ calcd. \\ BKWS)^{[14]} \\ 4,400 \ (@ \ 0.25 \ g \ cm^{-3}, \ calcd. \\ BKWS)^{[14]} \\ \\ p_{\text{C-J}} \ [kbar] \\ & 31.6 \\ & 226 \ (@ \ 1.60 \ g \ cm^{-3}, \\ calcd.)^{[35]} \\ & 30.84 \ GPa \ (CHEETAH \ 2.0)^{[4]} \\ & 324 \ (@ \ 1.78 \ g \ cm^{-3}, \\ & 306 \ (@ \ 1.67 \ g \ cm^{-3})^{[11]} \\ \end{array}$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
calcd.) ^[35] 30.84 GPa (CHEETAH 2.0) ^[4] 30.84 GPa (CHEETAH 2.0) ^[4] 306 (@ 1.67 g cm ⁻³) ^[11] 324 (@ 1.78 g cm ⁻³ ,				
335 (@ 1.77 g cm ⁻³) ^[11] 30.84 GPa (CHEETAH 2.0) ^[4] 306 (@ 1.67 g cm ⁻³) ^[11] 324 (@ 1.78 g cm ⁻³ ,	p _{C-J} [kbar]	31.6		300 ^[1]
306 (@ 1.67 g cm ⁻³) ^[11]				335 (@ 1.77 g cm ⁻³) ^[11]
				306 (@ 1.67 g cm ⁻³) ^[11]
				87 (@ 0.99 g cm ⁻³) ^[11]
7 (@ 0.25 g cm ⁻³ , calcd. 337 (@ 1.76 g cm ⁻³) ^[14] thermochem.) ^[53]				337 (@ 1.76 g cm ⁻³) ^[14]
307 (@ 1.70 g cm ⁻³) ^[14]				307 (@ 1.70 g cm ⁻³) ^[14]
thermochem.) ^[53] 266 (@ 1.60 g cm ⁻³) ^[14]				266 (@ 1.60 g cm ⁻³) ^[14]

335 (@ 1.77 g cm ⁻³ , calcd. thermochem.) ^[53]	208 (@ 1.45 g cm ⁻³) ^[14]
327 (@ 1.76 g cm ⁻³ , calcd.) ^[59]	139 (@ 1.23 g cm ⁻³) ^[14]
	87 (@ 0.99 g cm ⁻³) ^[14]
30.6 GPa (@ 1.77 g cm ⁻³ , $\Delta H_f = -125.5$ kcal/mol, calcd., KLRR/C, THEOSTAR-T) ^[77]	68 (@ 0.88 g cm ⁻³) ^[14]
31.7 GPa (@ 1.77 g cm ⁻³ ,	24 (@ 0.48 g cm ⁻³) ^[14]
$\Delta H_{\rm f} = -125.5$ kcal/mol, calcd., BKWC, THEOSTAR-T) ^[77]	13 (@ 0.30 g cm ⁻³) ^[14]
32.9 GPa (@ 1.77 g cm ⁻³ ,	8 (@ 0.25 g cm ⁻³) ^[14]
$\Delta H_{\rm f} = -125.5$ kcal/mol, calcd., BKWR, THEOSTAR-T) ^[77]	309 (@ 1.78 g cm ⁻³) ^[15]
307 @ 1.778 g cm ⁻³ (100%	335 (@ 1.77 g cm ⁻³) ^[20]
TMD), calcd. CHEETAH-6) ^[93]	300 (@ 1.67 g cm ⁻³) ^[20, 26]
30.44 GPa (@ 1.7599 g cm ⁻³ (pycnometry density), heat of	87 (@ 0.99 g cm ⁻³) ^{[20].[26]}
formation = -538.48 kJ/mol, CHEETAH 6.0) ^[109]	340 (@ 1.77 g cm ⁻³) ^[26]
3.717 GPa (@ 0.69 g cm ⁻³	224.7 (@ 1.538 g cm ⁻³) ^[35]
(SSED density), heat of formation = -538.48 kJ/mol,	239.9 (@ 1.568 g cm ⁻³ , pressed) ^[35]
CHEETAH 6.0) ^[109]	31 GPa (@ 1.67 g cm ⁻³) ^[21]
28.0 GPa (@ 1.67 g cm ⁻³ , $\Delta H_1^0 = -1,264$ kJ/kg, calcd.,	340,000 atm. (@ 1.77 g cm ⁻³ , luminosity method) ^[35]
FORTRAN BKW) ^[113]	
10.1 GPa (@ 1.00 g cm ⁻³ ,	2.64 GPa (@ 0.50 g cm ⁻³) ^[52]
$\Delta H_f^0 = -1,264 \text{ kJ/kg, calcd.,}$ FORTRAN BKW)[113]	31.5 GPa (@ 1.77 g cm ⁻³) ^[52]
298 (@ 1.76 g cm ⁻³ , calcd.	6.6 (@ 0.25 g cm ⁻³) ^[53]
BKWR) ^[14]	21.2 (@ 0.5 g cm ⁻³) ^[53]
279 (@ 1.70 g cm ⁻³ , calcd. BKWR) ^[14]	79.3 (@ 1.0 g cm ⁻³) ^[53]
251 (@ 1.60 g cm ⁻³ , calcd.	254.8 (@ 1.67 g cm ⁻³) ^[53]
BKWR) ^[14]	292.1 (@ 1.77 g cm ⁻³) ^[53]
215 (@ 1.45 g cm ⁻³ , calcd. BKWR) ^[14]	31.5 GPa (@ 1.763 g cm ⁻³) ^[70]

		87 (@ 1.0 g cm ⁻³ , calcd. thermochem.) ^[53]	24.0 GPa (24.0 GPa (@ 1.503 g cm ⁻³) ^[70]		
		,	16.0 GPa (@ 1.263 g cm ⁻³) ^[70]			
		300 (@ 1.67 g cm ⁻³ , calcd. thermochem.) ^[53]	31.7 GPa (@ 1.77 g cm ⁻³	B) ^[77]	
		161 (@ 1.23 g cm^{-3} , calcd. BKWR) $^{[14]}$	32.0 GPa (@ 1.77 g cm ⁻³ , cylinder test) ^[78] 30.0 GPa (@ 1.67 g cm ⁻³) ^[113]			
		104 (@ 0.99 g cm ⁻³ , calcd. BKWR) ^[14]				
		,	8.7 GPa (@	1.00 g cm ⁻³)	[113]	
		82 (@ 0.88 g cm ⁻³ , calcd. BKWR) ^[14]	31.5 GPa (@ 1.763 g cm	⁻³) ^[114]	
		28 (@ 0.48 g cm ⁻³ , calcd. BKWR) ^[14]	24.0 GPa (@ 1.503 g cm	⁻³) ^[114]	
		,	16.0 GPa (@ 1.263 g cm	⁻³) ^[114]	
		13 (@ 0.30 g cm ⁻³ , calcd. BKWR) ^[14]	327 (voidless) ^[119] 264 (pressed @ 10,000 psi) ^[119] 0.253 Mbar ^[119] Data from ^[20] :			
		10 (@ 0.25 g cm ⁻³ , calcd. BKWR) ^[14]			psi) ^[119]	
		2 1 1				
		312 (@ 1.76 g cm ⁻³ , calcd. BKWS) ^[14]				
		289 (@ 1.70 g cm $^{-3}$, calcd. BKWS) $^{[14]}$	ρ (g/cm³)	Dimen- sions of	Detona- tion	
		254 (@ 1.60 g cm ⁻³ , calcd. BKWS) ^[14]		PETN: diameter × length	pressure (kbar)	
		208 (@ 1.45 g cm ⁻³ , calcd. BKWS) ^[14]		(cm); shock Elec- tric effect		
		153 (@ 1.23 g cm ⁻³ , calcd.		measure- ments		
		BKWS) ^[14]	1.764	5 × 3	338	
		100 (@ 0.99 g cm ⁻³ , calcd.	1.763	2.5 × 1.3	333	
		BKWS) ^[14]	1.763	2.5 × 2.5	340	
	78 (@ 0.88 g cm ⁻³ , calcd.	1.763	5 × 1.3	338		
		BKWS) ^[14]	1.763	5 × 2.5	340	
	26 (@ 0.48 g cm ⁻³ , calcd. BKWS) ^[14]		1.762	5 × 2.5	339	
		BKWS) ^[14]	1.758	2.5 × 2.5	333	
			1.71	2.5 × 2.5	309	

		12 (@ 0.30 g cm ⁻³ , calcd. BKWS) ^[14]		1.70	2.5 × 2.5	307
		DKW3). 4	lÌ	1.69	2.5 × 2.5	304
		9 (@ 0.25 g cm ⁻³ , calcd.	lÌ	1.60	2.5 × 2.5	266
		BKWS) ^[14]	lÌ	1.59	2.5 × 2.5	259
			$\ $	1.53	2.5 × 2.5	225
			Ιĺ	1.46	2.5 × 2.5	198
			$\ $	1.45	2.5 × 2.5	208
			$\ $	1.44	2.5 × 2.5	199
				1.38	2.5 × 2.5	173
				1.23	2.5 × 2.5	138
			$\ $	0.99	2.5 × 1.3	87
				0.95	2.5 × 1.3	85
				0.93	2.5 × 2.5	77
				0.93	2.5 × 3.8	72
				0.89	2.5 × 2.5	71
				0.88	2.5 × 2.5	68
				Optical (sm	near camera) ents	
			li	0.48	3.8 × 2.5	24
			li	0.30	3.8 × 1.3	24
			lÌ	0.29	3.8 × 2.5	15
			lÌ	0.27	3.8 × 1.3	5
			lÌ	Quartz crys	stal measure	ments
			lÌ	0.25	4.5 × 2.5	8
				0.25	4.5 × 2.5	7
				0.25	4.5 × 3.8	6
VoD [m s ⁻¹]	8,525	8,274 (@ 1.76 g cm ⁻³) (CHEETAH 2.0) ^[4]	1	8,000 ^[1]		
		8,280 (@ 1.77 g cm ⁻³ , calcd.) ^[26]	8	8,270 (@ 1.	763 g cm ⁻³) [[]	70]
				7,480 (@ 1.	503 g cm ⁻³) [[]	70]
	8,350 (@ 1.67–1.70 g cm ⁻³ ,		۱	6,590 (@ 1.:	263 g cm ⁻³) [[]	70]
		average value from lit.) ^[33]	8	8,260 (@ 1.	76 g cm ⁻³) ^{[26}]
		8,300 (@ 1.70 g cm ⁻³) ^[33]	8	8,300 (@ 1.	77 g cm ⁻³) ^[7]	

2,830 (@ 0.25 g cm ⁻³ , calcd. thermochem.) ^[53]	8,270 (@ 1.76 g cm ⁻³) ^[6, 14]
	8,070 (@ 1.7 g cm ⁻³) ^[6, 14]
3,800 (@ 0.5 g cm ⁻³ , calcd. thermochem.) ^[53]	7,750 (@ 1.6 g cm ⁻³) ^[6, 14]
5,480 (@ 1.0 g cm ⁻³ , calcd. thermochem.) ^[53]	7,180 (@ 1.45 g cm ⁻³) ^[6, 14]
7,980 (@ 1.67 g cm ⁻³ , calcd.	6,370 (@ 1.23 g cm ⁻³) ^[6, 14]
thermochem.) ^[53]	5,480 (@ 0.99 g cm ⁻³) ^[6, 14]
8,300 (@ 1.77 g cm ⁻³ , calcd. thermochem.) ^[53]	5,060 (@ 0.88 g cm ⁻³) ^[6, 14]
8,650 (@ 1.76 g cm ⁻³ , calcd.) ^[59]	3,600 (@ 0.48 g cm ⁻³) ^[6, 14]
6,945 (@ sp. gr. = 1.48) ^[63]	2,990 (@ 0.3 g cm ⁻³) ^[6, 14]
7,200 (@ sp. gr. = 1.60) ^[63]	2,830 (@ 0.25 g cm ⁻³) ^[6, 14]
8,000 (@ sp. gr. = 1.62) ^[63]	8,300 (@ 1.70 g cm ⁻³) ^[8, 13]
	8,260 (@ 1.76 g cm ⁻³) ^[10]
8,340 (@ sp. gr. = 1.71) ^[63]	8,404 (@ 1.78 g cm ⁻³) ^[15]
4,200 (@ sp. gr. = 0.76) ^[63]	7,975 (@ 1.67 g cm ⁻³) ^[11, 21]
4,400 (@ sp. gr. = 0.80) ^[63]	8,260 (@ 1.76 g cm ⁻³) ^[11]
4,860 (@ sp. gr. = 0.84) ^[63]	2,810 (@ 0.241 g cm ⁻³ , unconfined
5,120 (@ sp. gr. = 0.91) ^[63]	rate stick) ^[20]
5,320 (@ sp. gr. = 1.00) ^[63]	2,730 (@ 0.201 g cm ⁻³ , unconfined rate stick) ^[20]
6,950 (@ sp. gr. = 1.35) ^[63]	2,670 (@ 0.185 g cm ⁻³ , unconfined
7,125 (@ sp. gr. = 1.40) ^[63]	rate stick) ^[20]
7,295 (@ sp. gr. = 1.45) ^[63]	7,675 (@ 1.538 g cm ⁻³ , pressed) ^[35]
5,550 (@ sp. gr. = 1.00) ^[63]	7,794 (@ 1.568 g cm ⁻³ , pressed) ^[35]
8,300 (@ sp. gr. = 1.70) ^[63]	8,500 (@ 1.77 g cm ⁻³) ^[28]
6,060 (@ 1 g cm ⁻³ , calcd., Kamlet method) ^[27]	8,350 (@ 1.73 g cm ⁻³) ^[27, 28]
8,120 (@ 1.6 g cm ⁻³ , calcd.,	8,100 (@ 1.66 g cm ⁻³) ^[27, 28]
Kamlet method) ^[27]	7,910 (@ 1.62 g cm ⁻³) ^[27, 28]

5,360 (@ 1 g cm ⁻³ , calcd., Urizar method) ^[27]	7,920 (@ 1.60 g cm ⁻³) ^[28]
	7,420 (@ 1.51 g cm ⁻³) ^[27, 28]
7,710 (@ 1.6 g cm ⁻³ , calcd., Urizar method) ^[27]	7,130 (@ 1.40 g cm ⁻³) ^[28]
8,450 (@ 1.77 g cm ⁻³ , $\Delta H_{\rm f} = -125.5$ kcal/mol, calcd., KLRR/C, THEOSTAR-T) ^[77]	2,050 (@ 0.99 g cm ⁻³ , low conc. PETN deposited on polystyrene) ^[28]
8,670 (@ 1.77 g cm ⁻³ ,	8,500 (@ 1.77 g cm ⁻³ , luminosity method) ^[35]
$\Delta H_{\rm f} = -125.5$ kcal/mol, calcd., BKWC, THEOSTAR-T) ^[77]	8,409 (calcd. based on 1,700 g bomb sand test) ^[33]
8,700 (@ 1.77 g cm ⁻³ , $\Delta H_f = -125.5$ kcal/mol, calcd.,	8,142 (@ 1.72 g cm ⁻³) ^[39]
BKWR, THEOSTAR-T) ^[77] 8,260 (@ 1.76 g cm ⁻³) ^[91]	8,260 (@ 1.76 g cm ⁻³) ^[51]
	3,600 (@ 0.50 g cm ⁻³) ^[52]
8,710 (@ 1.630 g cm ⁻³ , calcd., K-J) ^[98]	7,770 (@ 1.60 g cm ⁻³) ^[52]
8,150 (@ 1.50 g cm ⁻³ , calcd. K-W eqn.) ^[105]	8,220 (@ 1.77 g cm ⁻³) ^[52]
8,481 (@ 1.7599 g cm ⁻³	3,370 (@ 0.50 g cm ⁻³) ^[52]
(pycnometry density), heat of formation = -538.48 kJ/mol,	8,060 (@ 1.77 g cm ⁻³) ^[27, 52]
CHEETAH 6.0) ^[109]	3,468 (@ 0.25 g cm ⁻³) ^[53]
4,293 (@ 0.69 g cm ⁻³ (SSED density), heat of	4,178 (@ 0.5 g cm ⁻³) ^[53]
formation = -538.48 kJ/mol, CHEETAH 6.0) ^[109]	5,720 (@ 1.0 g cm ⁻³) ^[53]
8,056 (@ 1.67 g cm ⁻³ ,	7,795 (@ 1.67 g cm ⁻³) ^[53]
$\Delta H_f^0 = -1,264 \text{ kJ/kg, calcd.,}$ FORTRAN BKW) ^[113]	8,125 (@ 1.77 g cm ⁻³) ^[53]
5,947 (@ 1.00 g cm ⁻³ , $\Delta H_{\rm f}^{0} = -1,264$ kJ/kg, calcd.,	5,330 (@ sp. gr. = 0.85, iron pipe, 25 mm diameter) ^[63]
FORTRAN BKW) ^[113]	7,550 (@ sp. gr. = 1.75, Cu pipe, 15/17 mm diameter) ^[63]
8,230 (@ 1.76 g cm ⁻³ , calcd. BKWR) ^[14]	3,150 (@ sp. gr. = 0.45, bakelite

pipe, 6/8.5 mm diameter)[63]

	8,020 (@ 1.70 g cm ⁻³ , calcd. BKWR) ^[14]	5,300 (@ sp. gr. = 0.91, bakelite pipe, 4.5/6.3 mm diameter) ^[63]
	7,700 (@ 1.60 g cm ⁻³ , calcd. BKWR) ^[14]	5,730 (@ sp. gr. = 1.04, bakelite pipe, 4.5/6.3 mm diameter) ^[63]
	7,270 (@ 1.45 g cm ⁻³ , calcd. BKWR) ^[14]	7,375 (@ sp. gr. = 1.45, bakelite pipe, 4.5/6.3 mm diameter) ^[63]
	6,710 (@ 1.23 g cm ⁻³ , calcd. BKWR) ^[14]	8,500 (@ sp. gr. = 1.72, bakelite pipe, 4.5/6.3 mm diameter) ^[63]
	6,010 (@ 0.99 g cm ⁻³ , calcd. BKWR) ^[14]	3,965 (@ sp. gr. = 0.50, Cu pipe, 15/17 mm diameter) ^[63]
	5,650 (@ 0.88 g cm ⁻³ , calcd. BKWR) ^[14]	5,615 (@ sp. gr. = 1.03, glass pipe, 11.4/13 mm diameter) ^[63]
	4,240 (@ 0.48 g cm ⁻³ , calcd. BKWR) ^[14]	6,355 (@ sp. gr. = 1.22, Cu tube, 10/10.6 mm diameter) ^[63]
	3,570 (@ 0.30 g cm ⁻³ , calcd. BKWR) ^[14]	7,420 (@ sp. gr. = 1.50, without confinement) ^[63]
	3,380 (@ 0.25 g cm ⁻³ , calcd. BKWR) ^[14]	7,913 (@ sp. gr. = 1.62, without confinement) ^[63]
	8,670 (@ 1.76 g cm ⁻³ , calcd. BKWS) ^[14]	8,350 (@ sp. gr. = 1.73, without confinement) ^[63]
	8,430 (@ 1.70 g cm ⁻³ , calcd. BKWS) ^[14]	8,340 (@ 1.712 g cm ⁻³ , Dautriche method, Cu tube, 10 mm diameter, compressed under 2,500 kg/cm ²) ^[64]
	8,030 (@ 1.60 g cm^{-3} , calcd. BKWS) ^[14]	5,330 (@ 0.85 g cm ⁻³ , slightly compressed material, iron
	7,480 (@ 1.45 g cm ⁻³ , calcd. BKWS) ^[14]	pipe, 25 mm internal diameter) ^[64]
	6,760 (@ 1.23 g cm ⁻³ , calcd. BKWS) ^[14]	8,000 (@ 1.62 g cm ⁻³ , PETN compressed, <i>Kast</i>) ^[64]
	5,990 (@ 0.99 g cm ⁻³ , calcd. BKWS) ^[14]	5,520 (@ 1 g cm ⁻³) ^[27]
	5,610 (@ 0.88 g cm ⁻³ , calcd. BKWS) ^[14]	7,740 (@ 1.6 g cm ⁻³) ^[27] 7,980 (@ 1.67 g cm ⁻³) ^[27]
	-	•

1	,
4,120 (@ 0.48 g cm ⁻³ , calcd. BKWS) ^[14]	7,920 (@ 1.65 g cm ⁻³) ^[27]
3,440 (@ 0.30 g cm ⁻³ , calcd.	6,970 (@ 1.37 g cm ⁻³) ^[27]
BKWS) ^[14]	5,620 (@ 1.03 g cm ⁻³) ^[27]
3,250 (@ 0.25 g cm ⁻³ , calcd. BKWS) ^[14]	5,330 (@ 0.97 g cm ⁻³) ^[27]
	5,300 (@ 0.95 g cm ⁻³) ^[27]
	8,300 (@ 1.77 g cm ⁻³) ^[77]
	8,300 (@ 1.77 g cm ⁻³ , cylinder test) ^[78]
	8,080 (@ 1.710 g cm ⁻³ , PETN containing ~5% of organic phlegmatizer) ^[78]
	26,000 ft/s (@ 1.6 g/mL) ^[102]
	7,600 (@ 1.50 g cm ⁻³) ^[105]
	7,300 (@ 1.70 g cm ⁻³ (pressed ρ)) ^[107]
	8,400 (Dautriche method) ^[107]
	7,980 (@ 1.67 g cm ⁻³) ^[113]
	5,480 (@ 1.00 g cm ⁻³) ^[113]
	8,270 (@ 1.763 g cm ⁻³) ^[114]
	7,480 (@ 1.503 g cm ⁻³) ^[114]
	6,590 (@ 1.263 g cm ⁻³) ^[114]
	8,300 (@ 1.70 g cm ⁻³) ^[8]
	8,300 (@ 1.56 g cm ⁻³) ^[127]
,	

			* = un	ntion veloci confined rat	e stick,	nsity;
			ρ (g/cc	Deto- nation veloc- ity (m/s)	ρ (g/cc)	Deto- nation velocity (m/s)
			1.77	8,300*	1.27	6,660 [†]
			1.76	8,280 [†]	1.26	6,760 [†]
			1.76	8,240*	1.09	5,830 [†]
			1.76	8,270*	0.55	3,850*
			1.76	8,250*	0.436	3,400*
			1.76	8,260*	0.241	2,810*
			1.51	7,440 [†]	0.201	2,730*
			1.51	7,490 [†]	0.185	2,670*
V ₀ [L kg ⁻¹]	746	790 ^[117]	790 ^{[13}	119]		
		78.0 L/100 g	780 ^{[16}]		
		(@ 1.50 g cm ⁻³ , @ STP) ^[127] 768 ^[138]	823 ^[19]			
		7,00	828 (@	0 °C & 76	0 mm Hg) ^[34]
			using	₂ O (l)] (dete Dolger's bo 5 g cm ⁻³) ^{[3!}	mb, PETN	I
			using	₂ 0 (g)] (det Dolger's bo 5 g cm ⁻³) ^{[36}	mb, PETN	I
			768.0	(tests using	g 1 kg PE	TN) ^[63]

Critical diameter [cm]

Critical detonation diameter d_{c0} [mm] and SSA, S_g [cm² g⁻¹]^[72]:

S _g (cm ² g ⁻¹)	d _{c0} (mm)	$S_{\rm g}$ (cm ² g ⁻¹)	d _{c0} (mm)	
Monodisperse TEN (fractions)		Polydisperse TEN		
140 (500–600 μm)	3.38	4,700	0.12	
170 (400-500 μm)	3.18	7,700	0.10	
340 (200-250 μm)	2.29	10,000	0.09	
430 (90-160 μm)	1.73			
980 (0-90 μm)	0.86			

Critical detonation diameter $d_{\rm c0}$ [mm] and SSA, $S_{\rm g}$ [cm 2 g $^{-1}$] @ rel. high density (0.98–0.995) g cm $^{-3[72]}$:

$S_{\rm g}$ (cm ² g ⁻¹)	<i>d</i> _{c0} (mm)	$S_{\rm g} ({\rm cm}^2 {\rm g}^{-1})$	<i>d</i> _{c0} (mm)
650	1.00	2,900	0.25
1,500	0.50	8,000	0.10

 d_{c0} (mm) @ mean crystal size (µm) $^{[72]}$: 0.08 @ 3, 0.20 @ 10, 0.40 @ $20^{[72]}$

Measurements of d_c and initiation pressure $(P_i)^{[110]}$:

Form	ρ_0 (g/cc)	P _i (kbar)	d _c (mm)
single crystal	1.77	-112	8.5< d _c <19

0.9 mm @ 1.0 g cm $^{-3}$, 0.025–0.1 mm particle size $^{[20]}$, critical diameter, $d_{\rm c}$ decreases as charge density increases $^{[20]}$

	Data from ^[126] :				
	Particle size (μ)	$\rho_0 (g/cc)$	Approx. d _c (mm)		
	1-10	1-68	0.18-0.19		
	3 mm (@ 1 g cm ⁻³) ^{[13}	38]			
Critical T [°C]	200-203 (exptl.) ^{[88, 1}	^{101]} , 196 (calcd.) ^{[88, 10}	^{1]} , 192 (<i>T</i> _m) ^[21]		
Critical pressure [GPa]	of CL-20) ^[81] , $P_{\text{ult}} = 0.9$	93 ± 0.03 GPa ^[81] , P _{cr}	$\sigma_{\text{ult}} = 60 \text{ MPa (by impact}$ = 0.50 ± 0.02 (impact) ^[80] , pressure = 0.93 ± 0.03 GPa ^[131]		
Trauzl test [cm³, % TNT]	173% TNT ^[8, 13] , 161–189% TNT ^[20] , 173% TNT ^[28] , 161–181% TNT ^[33] , 500 cm ³ (sand tamping, 10 g sample) ^[63, 64] , 560 cm ³ (H ₂ O tamping, 10 g sample) ^[63, 64] , ~93% NG or 170% PA ^[63] , 378 cc (net expansion, Brün) ^[64] , 521 mL (10 g sample) ^[68] , 500 mL ^[117, 129] , 480 ^[129] , 490 ^[129] , 515 ^[129] , 520 ^[129] , 520 ^[129] , 500 cm ³ (sand tamping) ^[138] , 560 cm ³ (H ₂ O tamping) ^[138]				
Lead block compression test	130–137% TNT ^[20] , 14–16 mm (lead column, 25 g PETN) ^[138]				
Sand test [g]	62.7 g (200 g bomb) ^[8, 13] , 129–141% TNT ^[20, 33] , 57.9 g sand crushed (1,700 g bomb, 0.4 g PETN) ^[33]				
Brisance from Cu cylinder crusher method	128% PA ^[107]				
Ballistic mortar test	145% TNT ^[8, 13, 28] , 137–145% TNT ^[20, 33] , 100% (10 g sample, Al foil used as wrapper) ^[68] , 108% PA ^[107]				
Initiation efficiency	0.17 g MF minimum detonating charge ^[13] , 0.03 g LA minimum detonating charge ^[13, 119] , PETN with 35% water present can be detonated by a No. 6 blasting cap ^[20]				
	Minimum initiating quantity of different donor charges to PETN (crystalline PETN = acceptor charge, accelerating distance = 2 mm, witness plate = lead plate); donor charge/minimum initiating quantity (mg) ^[57] : LP/20, LTNR/20, LA/10, Fine PETN/40, ultrafine RDX/10 ^[57]				
	Very high sensitivity 0.01 g LA ^[63, 64]	to initiation by explo	osion ^[63] , detonated by		

	of PETN (0.4 g PE of 6.2 mm inside on top; or 0.4 g F pressed loosely (Minimum charges of primary explosives necessary to initiate explosion of PETN (0.4 g PETN tamped down or pressed loosely into Cu capsules of 6.2 mm inside diameter and primary charge pressed down loosely on top; or 0.4 g PETN compressed @ 2,000 kg/cm², primary charge pressed loosely on compressed PETN or pressed on top of the already pressed PETN with 500 kg/cm², 1,000 kg/cm² or 1,500 kg/cm² pressure) ^[64] :						
	Pressure on PETN (kg/cm²)	0	2,000	2,000 2,000 2,000				
	Pressure on initiator (kg/cm²)	0	0	500	1,000	1,500		
	Primary explosive		Minimum	initiating charge (g)				
	Tetracene	0.16	0.250	Dead pressed				
	MF (gray)	0.30	0.330	Dead pressed Dead pressed				
	MF (white)	0.30	0.340					
	LS	0.55	N	0.05 0.05 0.04				
	LA (technical)	0.04	0.170					
	LA (pure)	0.015	0.100	0.01	0.01	0.01		
	Silver azide	0.005	0.110	0.005	0.005	0.005		
	Limiting weight of 40% water can b					, PETN with		
Gap test	Gap test = 3.9 kb	ar, charge	$e \rho = 1.62 \text{ g}$	cm ^{-3[39]}				
LSGT [cm]	60 mm (LANL) ^[60] , sensitivity = 69.4			, percent v	oids = 54.	2%,		
SSGT [cm]	$G_{50} = 5.21 \text{ mm } (@$ $P_{90} = 7.47 \text{ kbar } (H_{50})^{7/3}$	_						
	LANL SSGT, $\rho = 0$. specific surface (samples ^[89] :	_						

Precipitated sar	mple	Ball-milled sample			
Brass thickness (in)	Specific surface (cm ² g ⁻¹)	Brass thickness (inches)	Specific surface (cm ² g ⁻¹)		
0.240	15,200	0.240	15,200		
0.270	9,000	0.260	11,500		
0.280	6,500	0.270	12,000		
0.285	7,500	0.270	9,500		
0.310	3,000	0.275	8,000		
0.320	2,500	0.325	4,000		

Gap test results from^[20]:

	Density (g/cc)	% voids	Sensitivity (mm)
NSWC SSGT	1.775	0.3	6.03
	1.576	11.5	14.38
	1.355	27.9	13.56
LANL SSGT	1.757 (pressed)	0.7	5.21

(1) = no mixed response zone, TMD = 1.78 g cm⁻³, data from^[125]:

Loading	Density	/ (g/cm³)	%	Sensitivity (DBG)				
pressure (kpsi)	Avg.	s	TMD	Avg.	g	s _m	N	
4	1.355	0.0053	76.1	2.726	0.0206	0.0215	18	
8	1.440	0.0049	80.9	2.476	0.0939	0.0555	18	
16	1.576	0.0058	88.5	2.621	0.0101	0.0106	18	
32	1.681	0.0041	94.4	3.238	ı	ı	18 (1)	

PETN (IS 50% point = 14 cm, type 12 tool, 2.5 kg mass, sandpaper, commercial sample, dried prior to test), TMD = $1.78 \text{ g cm}^{-3[125]}$:

	Loading pressure	pressure Ti				Sensitivit	y (DBG)			
	(kpsi)	Avg.	s		Avg.	g	s _m	N		
	8	1.499	0.0065	84.2	1.725	0.5416	0.2529	22		
	16	1.600	0.0058	89.9	2.468	0.0459	0.2568	23		
	32	1.708	0.0047	96.0	3.555	0.0918	0.0445	23		
	64	1.775	0.0057	99.7	4.998	0.0158	0.0167	23		
	2.62 DBg @	2.62 DBg @ 1.576 g cm ⁻³ (110 MPa) ^[130]								
5 s explosion T [°C]	222 ^[8] , 225 ^[8]							225		
1 s explosion T [°C] Explosion T [°C]	255 ^[8] , 270 ^[8] 272 (0.1 s,	(dec., cook-off) ^[119] , 237 (Wood's metal bath, 40 mg) ^[130] 255 ^[8] , 270 ^[8] , 276 ^[8] , 244 ^[13,119] 272 (0.1 s, no cap used) ^[13] , 211 (10 s) ^[13,119] , 215 ^[20] , 202 (DTA/TG @ 6 °C/min) ^[39] , explodes violently above its mpt. @ 205–225 ^[63] , 205 ^[107] ,								
5 s ignition T [°C]		225 (dec., USA value) ^[35] , 205–225 (dec., Russian) ^[35] , 222 ^[84]								
Ignition T[°C]	Inflames sp measureme	Inflames spontaneously @ $210^{[64]}$, $215^{[64]}$, $205^{[67]}$, 150 (calorimetric measurement) ^[84] , $205-215^{[84]}$								
Ignition T (30 s delay) [°C]	202 (before paper bags)		e) ^[91] , 204	(after 2	22 years	storage i	n multilay	ered		
Detonating T [°C]	Explosion ti	me vs.	T (°C) ^[101] :							
	T(°C)		plosion ne (s)	T (°C)	Explosion time (se				
	350	0.0)50	244		1.57				
	324	0.0)91	229		2.93				
	272	0.4	475	220		4.55				
	256	1.0)3	215		No expl	osion			
Thermal ignition T [°C]	175 ^[102] , 22 215 ^[119]	5 (5 s) ^{[8}	[]] , 215 ^[117] ,	202-2						
100 °C heat test [% mass loss]	0.1% mass explosion in			^{13]} , 0.0°	% mass l	loss in se	cond 48 h	^[13] , no		
75 °C int. heat test	0.02% mas	s loss ir	1 48 h ^[13]							
LLNL reactivity test	0.10-0.14	cm³ gas	evolved p	per 0.2!	5 g samp	ole ^[20, 26]				

Thermal stability	No significant deterioration on heating @ 100 °C for 100 h ^[20] , storage @ 65 °C for 20 months does not cause dec. and only slightly acidic after 24 months ^[20] , extremely stable when no acid is present ^[8] , no dec. observed after storage @ 100 °C for prolonged periods of time ^[8] Moles gas formed per mole PETN/no. h ^[42] : @ 120 °C; 0/22, 0/72 ^[42] , @ 220 °C; 5.04/22, 5.19/72 ^[42] , @ 320 °C; 6.32/22, 6.3/72 ^[42] , 7.87% (TG @ 120 °C, 48 h) ^[79] , red fumes form within 30 min @ $T \ge 140.5$ °C ^[64] Nonisothermal TG data, $\beta =$ °C/min, $T_{ei} =$ onset T of TG peaks, $T_p =$ peak T , $T_{oe} =$ endset T of TG peaks, $T_b =$ critical T for thermal dec. ^[98] :						
	β (°C/min)	T _{ei} (°C)	T _p (°C)	T _{oe} (°C)	T _b (°C)		
	5.0	172.7	186.9	199.9	171.2		
	7.0	176.3	190.1	205.8			
	10.0	180.8	194.5	214.6			
	15.0	186.0	199.4	224.4			
		l and unwashing present ar	ed PETN is of nd mainly due	low stability of to the acid it	due to several t contains ^[117] ,		
Vacuum stability test [cm ³ /h]	aged PETN: v : 48 h) ^[79] , dec. significantly v @ 175 °C ^[117] , (military PETN	gas evolved a for 100 h ^[20] , = 0.22 mL/g (liberates nitro vithin 30 minu detonation @) ^[138]	after 48 h @ 1 fresh PETN: v 40 h, 120 °C) ogen oxides @ utes ^[117] , inter 0 215 °C ^[117] , ($1.00 ^{\circ} \mathrm{C}^{[21]}$, no $= 0.79 \mathrm{mL/g}$ $= 0.79 \mathrm{mL/g}$ $1.25.0 \mathrm{mL/g}$ $= 1.40 - 1.45 ^{\circ}$ $= 1.40 $	significant (40 h, 120 °C) ^[48] , 5 g (@ 120 °C, C and does so of brown fumes		
Vanor proceuro	(PETN does no 8 × 10 ⁻⁵ mm F				109]		
Vapor pressure [atm @ °C]	$5.38 \times 10^{-9} \text{ m}$ $\log_{10} P \text{ (mm Hg)} = 17.5$	m Hg @ 25 °(g) = 14.44-6, .73-7750/T(k 8 ppt (i.e., 0.0 .026 ppb _v (eq	[111] 352/T(K) for [() for 383< T <br () 18 ppb, v/v) uilibrium vap	323< <i>T</i> <371 k 412 K ^[21] , 5.0 @ 25 °C ^[49] , 5 or pressure @	$(^{[21]}, \log_{10}P$ 1×10^{-5} Torr 5.38×10^{-9} Torr $0.300 \times (^{[106]},$		

	Vapor press	ure (cm Hg)	[63]	T (°C)			
	8.38 × 10 ⁻⁵			97.0			
	3.12 × 10 ⁻⁴			110.6			
	1.09 × 10 ⁻³			121.0			
	3.76×10^{-3}			131.6			
	7.08×10^{-3}			138.8			
	$\log_{10} P(\text{mm Hg}) = 14.44 - 6,352/T (K) \text{ for } 323 < T < 371 \text{ K}^{[21]},$ $\log_{10} P(\text{mm Hg}) = 17.73 - 7,750/T (K) \text{ for } 383 < T < 412 \text{ K}^{[21]}$						
Volatility	0.0 ^[13]						
Evaporation T[°C]	~300 (nanoca	llorimetric c	curve,	thermoc	/cle @ 2,5	500 °C	C/s) ^[56]
Burn rate [mm/s]	Does not burn in tubes ≤ 18 mm diameter ^[63] , burning induced by preheating to 95 °C (linear rate of 0.047 cm/s) ^[63] , burns quietly when ignited (in small quantities) ^[117] , in tubes with 18 mm diameter can only be ignited if warmed to 95 °C and its burning rate is very low ^[138] , thin layer can be ignited in air and burnt smoothly ^[138] , 0.047 cm/s ^[138] , burning with constant speed can be achieved by increasing the pressure ^[138] Relationship between burning rate and pressure: $U = 0.02 + 0.018P^{[138]}$ Perspex tube assembly, throat diameter = 4.3 mm, gauze support, 6 mm bore diameter of Perspex tube, measured using blank nozzle with sealed lower end, standard deviation of the mean in parenthesis ^[118] :						
	Explosive	d	oadin lensity g/cm³	<i>i</i> (a	essure tm)	buri	arent mass ning rate m ⁻² s ⁻¹)
	PETN 500-8	53 μ 0).928	27	'.2	0.54	44 (0.011)
	PETN 500-8	53 μ 0).918	27	'.2	0.53	31 (0.006)
	PETN 500-8	53 μ 0).936	31	6	8.86	6 (0.17)
	PETN 500-8	53 μ 0).912	36	5.7	13.9	9 (0.53)
	PETN 500-8	53 μ 0).939	52	2.0	47.7	7 (0.56)
	PETN 500-8	53 μ 0).917	52	2.0	59.0	0 (0.70)
	Mass burning	rate data fr	rom ^{[12}	4]:			
			m (gr	n cm ⁻² se	c ⁻¹)		
	40 atm	100 atm		00 atm	İ		1,000 atm
	0.77 0.80	1.93 1.95	\dashv	.86	7.72		18

Burn rate and equilibrium combustion temperature^[124]: $T_e = 3,880 \text{ K}^{[124]}, m = 1.93 \text{ g cm}^{-2} \text{ s}^{-1} (100 \text{ atm})^{[124]}$

Dependence of burning rate of volatile explosives on pressure, PETN, $\rho_{\rm max} = 1.77 \ {\rm g/cm^{3[124]}}$:

$\delta = \rho/\rho_{\text{max}}$	Coeffi m (gm cn	Pressure, atm.		
	а	b		
~1.0	-	0.0193	1.0	15-750
0.98	_	0.028	0.96	16-100
	_	0.0173	1.0	500-1,500

Dependence of mass burning rate of volatile explosives on the relative density of the charge, $PETN^{[124]}$:

Initial size of particle of explosive	p, atm.	m (δ)						
~5 µ	52	δ	0.50	0.51	0.66	0.73	0.88	
		m (gm cm ⁻² s ⁻¹)	0.99	0.85	0.86	0.88	0.99	
100–400 μ	52	δ	0.60	0.82	0.86	0.90	-	
		m (gm cm ⁻² s ⁻¹)	0.99	1.00	0.87	0.99	-	

PETN does not detonate or burn in vacuum^[64]

Solubility [g/mL]

Solubility, g PETN per 100 g (%) of [13]:

1	Trichloroethylene or alcohol		Acetone		Benzene		Toluene	
T°C	%	Т°С	%	Т°С	%	T°C	%	
0	0.070	0	14.37	0	0.150	0	0.150	
20	0.195	20	24.95	20	0.450	20	0.430	
40	0.415	40	30.56	40	1.160	40	0.620	
60	1.205	60	42.68	80	7.900	60	2.490	
						80	5.850	
						100	15.920	
						112	30.900	

Solubility, g PETN per 100 g (%); eutectic of the system PETN–TNT is about 13% PETN and 87% TNT @ 76 °C $^{[13]}$:

Isopro	panol	Isobutanol		Chlor	oform	1T	TNT	
T°C	%	T°C	%	T°C	%	T°C	%	
15	0.02	20	0.27	20	0.09	80	19.3	
20	0.04	30	0.31			85	25.0	
30	0.15	40	0.39			90	32.1	
40	0.36	50	0.52			95	39.5	
50	0.46					100	48.6	
						105	58.2	
						110	70.0	
						115	87.8	
						120	115	
						125	161	

Solubility, g PETN per 100 g $(\%)^{[13]}$:

	thyl tate	Et	her	β-Ethoxy- ethyl-acetate		Chlorobenzene			
T°C	%	T°C	%	T°C	%	T°C	%		
20	13	0	0.200	20	1.5	20	0.35		
30	17	20	0.340	30	4.1	30	2.8		
40	22	34.7	0.450	40	7.6	40	6.1		
50	31			50	11.2	50	9.2		
				60	14.2	60	12.2		
_ ′	enedi- oride	Met	hanol		hloro- ane		bon nloride		
T°C	%	T°C	%	T°C	%	T°C	%		
10	0.9	20	0.26	20	0.18	20	0.096		
30	1.5	40	1.15	30	0.27	30	0.108		
50	2.6	60	2.6	40	0.40	40	0.118		
							$\overline{}$		

0.0043 g/100 g $\rm H_2O$ @ 25 °C $^{[20]}$, 0.018 g/100 g $\rm H_2O$ @ 96 °C $^{[20]}$

50

0.58

50

0.121

Solubility of PETN in acetone/water mixtures $^{[20]}$:

Amount of PETN (g)		Aceton	e concen	tration	
dissolved in 100 g	55%	70%	80%	90%	92%
Solvent		T	of soln. (°	,C)	
1	41				
2	52				
2.5		24.5			
4	62				
5		41.5	22		
10		54.5	38.5	15	10
15		62	48	24.5	20.5
17.5		65			
20			54	34.5	29
25			59	41.5	34
30			63	46.5	40.5
35				51.5	45
40				55	50
45				58.5	54
50				61.5	57.5
55					60.5
60					62.5

Data from^[21]:

Solvent	g diss	solved/100 g s	olvent
	20 °C	40 °C	60 °C
Acetone	24.8	44.92	_
Acetone and water (w	t.% water)		
6.23	16.29	31.42	_
12.30	9.31	20.25	_
18.22	5.22	12.66	_
23.99	2.87	7.66	_
35.11	0.68	2.33	_
55.80	0.03	0.13	_
Benzene	0.27	0.83	2.58
EtOH	0.13	0.37	1.19
Ethyl acetate	10.6	18.50	_

Practically insoluble in $H_2O^{[63,107]}$, 0.01 g in 100 g H_2O @ 50 °C^[63], 0.035 g in 100 g H_2O @ 100 °C^[63], soluble in most common organic solvents^[63], 24.6 g PETN per 100 g acetone @ 293 K^[88], 10.6 g PETN per 100 g et al. acetate @ 293 K^[88], aqueous solubility = 2.1 mg/L @ 25 °C^[99], very slightly soluble in MeOH, EtOH, Et₂O, CCl₄ and cyclohexanol ^[107], slightly soluble in hot EtOH, hot toluene and hot benzene^[107], very soluble in acetone and methyl acetate^[107], values of 2.1–43 mg/L in H_2O @ 25 °C are cited in the lit.^[111]

Solubility values from^[63]:

T (°C)		PETN (g) dis	ssolved in 1	00 g solvent	
	EtOH	Et ₂ O	Acetone	Benzene	Toluene
0	0.070	0.200	14.37	_	0.150
10	0.085	0.225	16.43	0.150	0.170
20	0.115	0.250	20.26	0.200	0.230
30	0.275	0.340	24.95	0.450	0.430
40	0.415	0.450	36.16	1.60	0.620
50	0.705	-	-	2.010	1.100
60	1.205	_	-	3.350	2.490
62	-	_	42.68	-	-
70	2.225	-	_	5.400	3.290
78.4	3.795	_	-	5.400	-
80.2	_	_	_	7.900	-
90	_	_	_	_	9.120
113	_	_	_	_	30.960

Values taken from $^{[63]}$: 6.322 g soluble in 100 g ethyl acetate @ 19 $^{\circ}$ C $^{[63]}$, 17.868 g soluble in 100 g ethyl acetate @ 50 $^{\circ}$ C $^{[63]}$, 5.436 g soluble in 100 g pyridine @ 19 $^{\circ}$ C $^{[63]}$, 8.567 g soluble in 100 g pyridine @ 50 $^{\circ}$ C $^{[63]}$

Solubility in acetone/ H_2O mixtures (amount of PETN (g) dissolved in 100 g solvent mixture/acetone concentration/T(°C)]^[63]: 1 g/55%/41 °C, 2/55/52, 4/55/62, 2.5/70/24.5, 5/70/41.5, 10/70/54.5, 15/70/62, 17.5/70/65, 5/80/22, 10/80/38.5, 15/80/48, 20/80/54, 25/80/59, 30/80/63, 10/90/15, 15/90/24.5, 20/90/34.5, 25/90/41.5, 30/90/46.5, 35/90/51.5, 40/90/55, 45/90/58.5, 50/90/61.5, 10/92/10, 15/92/20.5, 20/92/29, 25/92/34, 30/92/40.5, 35/92/45, 40/92/50, 45/92/54, 50/92/57.5, 55/92/60.5, 60/92/62.5[⁶³]

g PETN dissolved in 100 g solvent, values from [63]:

T(°C)	Acetone	Benzene	EtOH
15	20.81	_	_
20	24.84	0.275	0.125
25	30.56	_	_
30	34.56	0.496	0.213
40	44.93	0.834	0.378
50	58.76	1.448	0.657
60	-	2.389	1.196

DMF: 40 g PETN dissolves in 100 g DMF @ 40 $^{\circ}$ C^[63], 50 g PETN dissolves in 100 g DMF @ 60 $^{\circ}$ C^[63], 70 g PETN dissolves in 100 g DMF @ 100 $^{\circ}$ C^[63],

1 part PETN dissolves in 18 parts H_2O @ 15 °C^[64], insoluble in $H_2O^{[102]}$, soluble in acetone and methyl acetate^[102], solubility in H_2O = 0.01% @ 19 °C^[117], 0.035% @ 100 °C^[117]

Data from[117]:

T(°C)	So	Solubility of PETN (g) per 100 g solvent					
	MeOH	EtOH	Et ₂ O	Benzene	Toluene		
0	0.19	0.07	0.20		0.15		
10	0.24	0.08	0.22	0.15	0.17		
20	0.45	0.16	0.25	0.30	0.23		
30	0.71	0.27	0.34	0.45	0.43		
35			0.45				
40	1.16	0.42		1.16	0.62		
50	1.8	0.71		2.01	1.10		
60	2.60	1.21		3.35	2.49		
62							
65	3.24						
70		2.22		5.40	3.29		
74		3.79					
80				7.90	5.85		
90					9.12		
100					15.92		
113					30.69		

Data from[117]:

Т		Solul	oility of	PETN (g) i	n 100 g sol	vent	
(°C)	Cello- solve	Methyl cello- solve	Car- bitol	Methyl carbitol	Carbitol acetates	Butyl carbitol	DMF
25	1.1	1.8	0.9	1.5	3.0	0.8	26.4
100	24.6	33.1	19.3	25.4	32.5	15.8	42.6

Solubility of PETN (g) in 100 g acetone containing various quantities of water (g) $^{[117]}$:

T(°C)	Solubi	lity of PE		n 100 g a tities of v		ntaining	various
	0	2.5	6.25	9.07	10.0	14.29	30
10					16.4		
25	31.4	25.6		20.0	22.0	9.4	3.4
45	50.6		33.7	29.9	33.0	22.1	
55	66.6	60.0	46.0		37.5	30.7	9.7
62					42.7		

Almost insoluble in water $^{[138]}$, soluble in acetone, methyl acetate $^{[138]}$, insoluble in EtOH, Et $_2O^{[138]}$, can form eutectic with NG $^{[138]}$

Solubility of PETN in TNT @ different $T(g \text{ PETN}/100 \text{ g TNT})^{[138]}$:

T(°C)	g PETN/100 g TNT
80	19.3
85	25.0
90	32.1
95	39.5
100	48.6
105	58.2
110	70.0
115	87.8
120	115.0
125	161.0

Solvent		PETN	dissolut	tion capa	PETN dissolution capability of solvent (100 mL) at different $T({}^{ m c}{}{}_{ m C})$	nt (100 r	nL) at diff	erent $T(^{\circ}C)$		
	0	20	25	30	40	47	50	09	80	100
Acetone	14.37	24.95	1	ı	30.56	1	ı	42.68	1	1
Benzene	0.15	0.45	ı	ı	1.16	ı	ı	3.35	1	ı
β-Ethoxyethyl acetate	-	1.5	ı	4.1	7.6	ı	11.2	14.2	1	1
CC14	_	960'0	1	0.108	0.118	ı	0.121	-	-	1
снсіз		60.0	ı	ı	1	ı	ı	-	1	1
Ethylene epoxide	-	0.35	ı	2.8	6.1	ı	9.2	12.2	ı	ı
Ethyl ether	0.20	0.34	1	ı	ı	0.45	ı	-	-	1
Етон	0.07	0.195	ı	ı	0.415	ı	ı	11.6 (61 °C)	ı	ı
Dichloroethane	ı	0.9 (10 °C)	ı	1.25	5.02 (43 °C)	ı	8.28	13.8 (65 °C)	ı	ı
МеОН	_	97.0	1	ı	1.15	ı	ı	2.60	-	1
Ethyl formate	-	13.0	ı	17.0	22.0	ı	31.0	ı	1	ı
Ethyl acetate	-	6.322 (19°C)	1	ı	ı	1	17.863	-	1	1
2-Methyl-1-propanol	_	0.27	ı	0.31	0.39	ı	0.52	-	1	ı
Nitromethane	3.36	ı	8.89	-	ı	1	-	-	8.89	ı
Tetrachloroethane	-	0.18	1	0.27	0.40	1	0.58	-	1	
Toluene	0.15	6,43	ı	ı	0.62	ı	ı	2.49	1	15.92
DMF	-	-	ı	ı	40	ı	-	95	ı	20
Pvridine	1	5.436 (19°C)	,	_	ı	,	8.567			

Hygroscopicity		pic and not	affected by	pletely nonhy / moisture ^[102] ,					
Radiation sensitivity	Effect of UV light on the thermal dec. of PETN/grit samples; PETN/additive samples were irradiated with UV light as they were being heated in the TC; reaction parameters in the presence of UV light ^[55] :								
	Sample	E _a (kJ/ mol)	ln A _s	E _d (kJ/mol)	ln A _d /ln (s ⁻¹)	<i>T</i> _p (K)			
	PETN	143±5	31 ± 4	193±7	44 ± 6	478			
	PETN + UV	120±4	28 ± 2	183 ± 16	45 ± 4.5	458			
	PETN, PC + UV	124±8	29±3	196 ± 25	49 ± 7	458			
	PETN, PP+UV	102±8	22 ± 4	186±8	45 ± 3	458			
	PETN, PS + UV	112±8	25 ± 2.5	E _{d1} 368 ± 9 E _{d2} 185 ± 15	ln A _{d1} 99±6 ln A _{d2} 47±5				
	UV irradiation significant di with intensity 3 megaroent PETN phlegm showing stab	n of 900 J e rop in chem / of 3 × 10 ⁴ gens reduc atized with vility even v	nergy ^[63] nical stabilit Roentgens ed its stabil paraffin sh vith doses c	al exposed for y after exposur /h; administer ity to zero (col rows consider of 20 megaroer exposure to ga	ire to γ-rays ring doses o balt-60 sour ably higher ntgens ^[107]	f ce) ^[107] , resistance			
	Weight of s	ample		5					
	Volume of g	as produce	d (mL/g) in	following time	(days)				
	10			0.10					
	20			0.43					
	30			1.04					
	40			2.33					
	50			_					
	90			_					
	Total irradia			42					
	mpt. (°C) or	iginal mate	erial	140.8					

mpt. (°C) irradiated sample

137.0

PETN irradiated at ambient T using 0.41 MeV $^{198}_{79}$ Au γ -rays; volumes of gas produced measured during and after irradiation, amount of gas evolved as function of gamma dose $^{[137]}$:

Gamma energy absorbed, 10 ⁷ R	Gas evolved (mL/g) @ STP
1	0.1
2	0.5
3	1
4	2

Effect of 60 MeV electron irradiation on explosives^[137]:

Weight (mg)	Dose (R)	Dose rate (R/s)	Weight loss	Color change	Test	Results
14.0	1.14 × 10 ⁹	0.6 × 10 ⁶	None	Gray	Heat	Sample evaporated

Critical doses and T to initiate PETN by pulsed high-energy electrons, a = estimated 50% initiation dose^[137]:

Explosive	Critical d	ose (J/g)	Ignition T (°C)		
	Calcd.	Exptl. ^a	Calcd.	Exptl.	
PETN	89.6	>167	222	205 - 225	

UV rays can detonate PETN^[138], rapid dec. and explosion on strong radiation for 1.2 ms with UV (900 J)^[138], can explode within 20 ms of UV radiation with 480 J^[138]

Data from^[143]:

Exposure	Total	Vacuum stability test				
rate (R/h) dose (R	dose (R)	100 °C (cc/g/40 h)	120 °C (cc/g/40 h)	200 °C (cc/.2 g/2 h)		
	Control	0.45	1.54	Deflagrated (88 min)		
6.4 × 10 ⁵	1.0 × 10 ⁷	4.43	11 + (6 h)	Deflagrated (3 min)		
	9.0 × 10 ⁷	11+(30 min)				

DTA for irradiated DATB @ 20 °C/min^[143]:

Total	Endotherms				Exotherms			
dose (R)	I 1st I 2nd I		15	1st		2nd		
	Onset (°C)	Peak (°C)	Onset (°C)	Peak (°C)	Onset (°C)	Peak (°C)	Onset (°C)	Peak (°C)
0	183	143			160	216		
1.0 × 10 ⁷	127	133	136	141	170	215		
9.0 × 10 ⁷	115	138			160	215		
1.06 × 10 ⁹					130	163	187	242

TGA for irradiated DATB $^{[143]}$:

Total dose (R)	Heating rate (°C/ min)	Weight (mg)	Start of dec. (°C)	10% Weight loss T (°C)	Total weight loss (%)	Remarks	
0	20	8.3	160	187	96 @ 220 °C	-	
1.0 × 10 ⁷	20	8.4	135	178		_	
9.0 × 10 ⁷	20	8.15	70	177	96 @ 220 °C	_	
0	50	8.45	173	200	46 @ 219 °C	Deflagrated @ 219 °C	
1.0 × 10 ⁷	50	8.5	130	197	30 @ 212 °C	Deflagrated @ 212 °C	
9.0 × 10 ⁷	50	8.5	70	184	50 @ 214 °C	Deflagrated @ 214 °C	

Effect of gamma radiation on the mpt. and $color^{[143]}$:

Total dose (R)	mpt. (°C)	Color
0	141.5	White
1.0 × 10 ⁷	141.5	White
9.0 × 10 ⁷	136	White
1.06 × 10 ⁹		White paste

IS for irradiated explosives, 50% fire height in inches, Bruceton method (P.A. apparatus, 2 kg mass)^[143]:

Total Co ⁶⁰ gamma dose (R)	\bar{X} mean (in)	σ std. dev. (in)
0	9.23	4.47
1.0×10^7	7.69	3.28
9.0 × 10 ⁷	7.56	7.45

Effect of gamma radiation on explosion T (5 s explosion T in °C) and activation energy (kcal/mol)^[143]:

Total dose (R)	5 s explosion T(°C)	Apparent activation energy (kcal/mol)
0	228	18.12
9.0 × 10 ⁷	222	14.16

Effect of gamma radiation on rates of detonation^[143]:

Total dose (R)	Density (g/cc)	Density after irradiation (g/cc)	Rate of detonation (m/s)	Detonation pressure (kbar)
0	1.67	-	8,045	270
1.0 × 10 ⁷	1.68	1.67	8,035	270
9.0 × 10 ⁷	1.66	1.54	7,660	226
X*.0 × 10 ⁹	1.66	Pellets crumbled		

*X = illegible in original literature

Compatibility

Dry PETN does not affect: Cu, brass, Al, Mg, Mg-Al alloy, stainless steel, mild steel, mild steel coated with acid-proof black paint or mild steel plated with Cu, Cd, Ni or Zn^[13], wet PETN does not affect: stainless steel and Al is only slightly affected after prolonged storage^[13, 20], wet PETN affects: Cu, brass, Mg, Mg-Al alloy, mild steel, mild steel coated with acid-proof black paint or mild steel plated with Cu, Cd, Ni or Zn^[13, 20], nonhygroscopic and not affected by moisture^[102], reacts to some extent with most metals when wet^[102], most metals unaffected by dry PETN^[102], slowly dec. by caustic soda^[102], rapid dec. in soln. of boiling ferrous chloride^[102], dry PETN does not corrode metals at normal or elevated $7^{[107]}$, in presence of moisture slight corrosion of brass, cadmium or zinc occurs^[107], several hours required for dec. by boiling in 2.5% aq. NaOH soln.^[20], hydrolysis in water @ ~100 °C^[20], rapid dec. @ 125 °C under pressure^[20], @ T < 50 °C dry PETN does not

react with Cu, brass, Al, Mg, Mg–Al alloys, stainless steel, mild steel, mild steel coated with acid-proof black paint and mild steel plated with Cu, Cd, Ni or Zn^[20], presence of >0.01% acid or alkali rapidly accelerate PETN dec.^[20], rapid increase in dec. occurs if 0.01% free acid or alkali is present @ 65 °C for 15 months^[20], dry PETN does not react with metals^[8], wet PETN reacts with Cu, brass, Mg, Mg–Al alloy, mild steel, mild steel coated with acid-proof black paint and mild steel plated with Cd, Cu, Cu, Ni or Zn^[8], wet PETN affects Al after prolonged exposure^[8], presence of only 0.01% free acid causes rapidly increasing dec.^[8], does not react with metal^[117], dec. after long-term reaction with bases and acids^[117], compatible with vaseline and paraffin^[117], storing cast mixture of PETN/TNT (50:50) for 3 years @ RT resulted in decrease in pH from 6.58 to 5.46^[117], stability of PETN also decreases when other nitro derivatives of benzene and toluene are added^[117]

A = no reaction, B = slight reaction, C = reacts readily, D reacts to form sensitive materials, H = heavy corrosion of metals, VS = very slight corrosion of metals, S = slight corrosion of metals, N = no corrosion $^{[119]}$:

Material	Compatibility		
Magnesium	В	N	S
Aluminum	А	N	VS
Steel	В	N	VS
Copper	В	N	VS
Cadmium-plated steel	В	N	S
Copper-plated steel	В	N	VS
Nickel-plated steel	В	N	VS
Zinc-plated steel	В	N	VS
Magnesium aluminum	В	N	S
Brass	В	N	S
18–8 stainless steel	А	N	N

Acetone, acids and alkali can all accelerate the hydrolysis of PETN^[138], no weight loss of PETN after heating in water for 2 h @ 100 °C, but rapidly hydrolyzes @ 125 °C under pressure^[138]

Dipole moment [D]	μ = ~2.0 (dilute soln. of PETN in benzene) ^[63, 138] , 2.5 in 1,4-dioxocyclohexane ^[138]
Specific heat [cal/g/°C]	0.26 @ $RT^{[13]}$, 1.09 J g^{-1} K $^{-1}$ (@ RT) $^{[55]}$, 0.4 $^{[63]}$, 0.272 $^{[86]}$, 0.4 kcal/g/ $^{\circ}$ C $^{[117]}$
Heat capacity [J/(g °C)]	Heat capacity @ constant pressure = $0.239 + 0.008 T$ cal/g-°C @ $32 < T < 127$ °C [21], 1.67 [138]

Latent heat of sublimation [kcal/mol]	$36.3 \pm 0.5^{[63]}$, 146.6 kJ/mol (ΔH_{sub}) ^[109] , 151.9 kJ/mol (enthalpy of subl.) ^[138] , 91.9 cal/g (latent heat of sublimation, 29.1 kcal/mol) ^[21]								
Thermal conductivity [calcm ⁻¹ s ⁻¹ °C ⁻¹]	0.0006 ^[86]	0.0006 ^[86]							
Bourdon manometer [mL/g]	28.20 (120 °Cm 4	28.20 (120 °Cm 48 h) ^[79]							
Cook-off temperature, T_c [°C]	145 (prior to cool state, explosive p rate = 1 °C/min u	roce	ess develop	วร	within mo	olten sa		en	
Energy to dec. [J/g]	1,309 ^[96]								
ΔH _{melt} [J/g]	-504.6 (heat abs						^{8]} , 11.82 kcal/mol data) ^[21]		
Heat of fusion [cal/g]	76 ^[99] , 144.7 kJ/kg ^[55] , 48 ^[88] , 10.0 cal g ⁻¹ (latent heat of fusion) ^[86] Heats of fusion of different PETN crystal habits determined by gas permeability ^[101] :								
	Habit		Surface ((cı	m ² /g)	$\Delta H_{\rm fusi}$	on (cal/g)		
	Superfine		4,700			31.7	± 0.1		
			4,300			31.8 ± 0.2			
			5,400			33.2	± 0.2		
	Needle		3,250			36.5	66.5 ± 0.3		
			4,400			37.0	± 0.1		
			16,400			36.6	± 0.3		
			18,600			37.7	± 1.2		
	Tetragonal		1,000			36.8	± 0.4		
			1,000			36.5	± 0.5		
			Single cr	ry:	stals	37.4	± 0.3		
	DSC, flame seale	d in s	glass micro	oa	ımpoules,	N ₂ @ 5	0 mL/min ^[109] :		
	Heating rate ΔH_{fus} (J/g) Heating rate ΔH_{fus} (J/g) (K/min)						ΔH _{fus} (J/g)		
	20 109 5 110						110		
	10 148 4 117								
	9 128 3			3		102			
	8 147 2		2		120				
	7	14	45		1		137		
	6	11	17						

ΔH _{dec.} [J/g]	2,385 (heat release) ^[98] , heat of dec. = 234 cal/g (est.) ^[116]							
	DSC, flame sea	aled in	glass m	icroampoules,	N ₂ @ 50 mL/r	nin ^[109] :		
	Heating rate (K/min)	n	Mass (mg)	Exotherm, T _{min} (°C)	Exotherm, T _{max} (°C)	Δ <i>H</i> (J/g)		
	20	4	0.125	198	212	1,971		
	10	4	0.297	193	202	3,874		
	9	3	0.280	192	201	3,358		
	8	4	0.298	191	199	4,032		
	7	3	0.330	188	196	3,634		
	6	3	0.326	189	195	4,060		
	5	3	0.284	186	194	3,734		
	4	3	0.289	183	192	2,985		
	3	3	0.282	181	189	2,919		
	2	3	0.301	178	183	3,553		
	1	3	0.352	172	173	4,096		
Diffusion coefficient (air) [cm²/s]	0.057 ^[99]							
Diffusion coefficient (water) [cm²/s]	5.61 × 10 ^{-6[99]}							
Log K _{ow}	3.71 ^[99, 111]							
Log K _{oc}	3.39 ^[99]							
Fracture surface energy [J m ⁻²]	≤0.11 ^[108]							
Hardness	1.9 (Moh's scale) ^[13] , 17.9 kg mm ⁻² (Vicker's hardness) ^[55, 108] , slightly less than 2 (Moh's scale, PETN crystals) ^[20] , 17.9 \pm 0.6 kg mm ⁻² (single crystals, ~5 mm diameter, @ 20 °C, Vicker's hardness) ^[115] , 1.8 (Moh's scale) ^[119]							
Small-scale explosivity device (SSED)	British .303 cartridge, 2 g explosive, RP-3 EBW ^[109] :							
	Charge Tap Mass Mass Fraction remaining (mm) (g mL ⁻¹) (g) (g) (%)							
	17 0.69			11.0747	2.8792	26		
	14	0.64		11.183	2.9109	26		
	18	0.71		11.3524	3.0374	26.8		

Rifle bullet impact test	100% explosions in five trials (4.86% moisture in samples) $^{[13]}$, 100% explosions in tests $^{[119]}$, 100% detonations (pressed sample, Reg disk bomb, 3/16 in steel disk) $^{[140]}$							
Plate dent test		ce = 127%		ethod A, pi	ressed, co	onfined,	$\rho = 1.50 \text{ g}$	cm ^{-3[13]} ,
	Densi	ity (g/cm³)	Dent dep	th (mm)	Ch	arge height	(mm)
	1.670)		9.80		<u> </u>		
	1.665	5		9.75		20)3	
Booster sensitivity test	Presse	d, 5 g tetr	yl, 3 g w	ax, $\rho = 1.6$	0 g cm ⁻³	[13, 119]		
Laser sensitivity	PETN does not initiate with normal light except in few examples of deflagration with very intense light $^{[20]}$, lasers can be used to initiate PETN $^{[20]}$, 5 mm thick PETN (ρ = 1.0 g cm $^{-3}$) initiated by neodymium glass laser with output @ 10,600 Å with focused beam producing power density >0.08 MW/mm 2 , delay in ignition is 1.5–2.0 μ s $^{[20]}$, delay in ignition is <0.5 μ s if PETN is coated with 1,000 Å thick layer of Al and laser radiation is from 0.5–4.2 J for 25 ns $^{[20]}$, successful detonation, if PETN sample compressed against glass plate (Ruby laser (6,943 Å) both in free running and Q-switch modes) $^{[119]}$				tiate um ng o []] , delay f Al and tion, 43 Å)			
	Den- sity	Deto- nator type	Nomi- nal wave- length (nm)	Spot diam- eter (mi- crons)	Power or energy (J)	Func- tion time (µs)	Laser type	Pulse dura- tion (µs)
	1.64	Uncon- fined	1,060	600	0.26		Neo- dymium/ glass	250
	1.64	Con- fined	694	<3,000	1	2.9	Q- switched ruby	0.43
	1.72	Con- fined	694	<3,000	2	2.9	Q- switched ruby	0.36

	Initiation en ignition ^[123] :		N usir	g free-	running lase	r; X = igni	tion, O	= no
	Energy range (J/sq mm)			Detonation				
	0.0795-0	.1000		οх				
	0.1001-0	.1260		0				
	0.1261-0.	.1590		0				
	0.1591-0	.2000		0 X	(
	0.2001-0	.2510		οх				
	0.2511-0.	.3160		хх				
	0.3161-0	.3980		Х				
Frictional properties	Frictional pr	operties @	20 °C	with s	liding velocit	y of 0.20 i	mms ⁻¹	[115]
	μ (coefficient of friction at high loads)	τ ₀ (constant)	α (con	stant)	μ _{cal} (calcd. coefficient of friction at high loads)	μ (coeffi of friction single con on single crystal)	n for rystal	-(l-m)
	0.40	−5.0 × 10 ⁵ Pa	0.45 0.05		0.38± 0.02	0.40		0.39
Critical air gap	0.47 in (0.2	in diameter)[119]					
Reflectance tests	Reflectance tests @ 10,600 Å (continuous wave yttrium garnet aluminum laser, pressed explosive) ^[121] :							
	Particle siz	Particle size, mesh Loading pressure, Reflectance, % 10³ psi						
	Class 1		10			88.5		
	Class 4		10	10 71.0		71.0		
CRT	0.4–0.56 cm ³ /g (22 h @ 120 °C under 1 atm. He) ^[128]							
Shock sensitivity	Short pulse shock test (exploding foil), PETN class 2: threshold flyer velocity = 2.21 km/s, ρ = 1.50 g cm ⁻³ , consolidation pressure = 103.4 MPa ^[132]							
Small-scale shock reactivity test (SSRT)	Used sample weight = 482 mg, dent = 917 mg SiO ₂ ^[136]							
Abel test	Up to severa	al hours ^[138]						

Flame sensitivity	Low, difficult to ignite with a flame ^[138] , seamless steel tube with 18 mm diameter loaded with PETN cannot be ignited, must be heated >95 °C to cause ignition ^[138]							
Refractive index	Form $I = \alpha$ -PETN, form $II = \beta$ -PETN ^[21] :							
			Form I		Form II			
	Omega		1.556		1.556			
	Epsilon		1.551		1.551			
	Birefringe	nce	0.005		0.002			
	Double re	fraction	Negativ	ve	_			
Cylinder test	Data from ^[21] :							
	Density	· 1		r wall vel	ocity ((mm/µs) at		
	(g/cm ³)	velocity (m	ım/µs)	$R-R_0 = 5 \text{ mm}$ $R-$		R-R	₀ = 19 mm	
	1.765	8.16		1.56 1.7		1.79)	
Wedge test	Data from ^[21] :							
	Density (g/cm³)					re		
	1.4	$\log P = (0.14 \pm 0.03) - (0.4 \pm 0.05) \log x^{*}$ $\log P = (0.04 \pm 0.02) - (0.33 \pm 0.04) \log t^{*}$ < 0.66 < P						
	1.6	$\log P = (0.40 \pm 0.03) - (0.54 \pm 0.05) \log x^{*} $ $\log P = (0.18 \pm 0.02) - (0.44 \pm 0.09) \log t^{*} $ < 2.0						
	1.72	$\log P = (0.61 \pm 0.03) - (0.49 \pm 0.05) \log x^* $ $\log P = (0.34 \pm 0.02) - (0.50 \pm 0.09) \log t^* $ < 3.9						
	1.75	$\log P = (0.57 \pm 0.04) - (0.41 \pm 0.06) \log X^* 1.7 < P$ $\log P = (0.33 \pm 0.02) - (0.22 \pm 0.16) \log t^* < 2.54$						
	where $P = p$	ressure in G	Pa					

VoD of foamed PETN (PETN was uniformly dispersed in polyurethane forms to achieve low densities): 1.17 km/s @ 0.133 g cm $^{-3[23]}$, 1.14 km/s @ 0.120 g cm $^{-3[23]}$, 1.12 km/s @ 0.109 g cm $^{-3[23]}$, 0.98 km/s @ 0.094 g cm $^{-3[23]}$, 0.78 km/s @ 0.055 g cm $^{-3[23]}$, 0.59 km/s @ 0.049 g cm $^{-3[23]}$

Additional exptl. VoD for PETN $^{[27, 40]}$:

VoD (mm/µs)	ρ (g cm ⁻³)	VoD (mm/µs)	ρ (g cm ⁻³)
8.60	1.77	7.42	1.51
8.35	1.73	6.97	1.37
7.98	1.67	5.62	1.03
8.10	1.66	5.33	0.97
7.92	1.65	5.30	0.95
7.91	1.62		

Exptl. VoD values, PETN particle diameter = 10 microns, charge diameter = 1.92 cm, average VoD for station distance of 10 cm $^{[35]}$:

VoD (m/s)	ρ (g cm ⁻³)
4,120	0.60
4,310	0.68
5,240	0.95
6,510	1.21
7,560	1.55

Radiation *T* observed without slit aperture, for interval after detonation of 18 μ s, loading $\rho = 1.64$ g cm⁻³, average T = 6,220 K^[35].

Additional VoD for PETN, pin switch measurements (a) = unconfined rate stick; (b) = cylinder test^[28]:

VoD (mm/µs)	ρ (gcm ⁻³)	VoD (mm/µs)	ρ (gcm ⁻³)
8.30	1.773 ^(a)	7.49	1.51 ^(b)
8.28	1.765 ^(b)	6.67	1.27 ^(b)
8.16	1.765 ^(b)	6.76	1.26 ^(b)
8.24	1.765 ^(a)	5.83	1.09 ^(b)
8.24	1.765 ^(a)	3.85	0.55 ^(a)
8.27	1.763 ^(a)	3.40	0.436
8.25	1.762 ^(a)	2.81	0.241 ^(a)
8.26	1.762 ^(a)	2.73	0.201 ^(a)
7.44	1.51 ^(b)	2.67	0.185 ^(a)

Additional VoD for PETN, shock electric effect measurements^[28]:

VoD (mm/µs)	ρ (gcm $^{-3}$)	VoD (mm/µs)	ρ (gcm $^{-3}$)
8.00	1.71	7.07	1.38
8.08	1.71	6.48	1.23
8.03	1.70	6.50	1.23
7.96	1.70	6.46	1.23
7.97	1.69	6.43	1.23
7.74	1.60	5.52	0.99
7.69	1.59	5.41	0.95
7.51	1.53	5.31	0.93
7.41	1.46	5.33	0.93
7.26	1.45	5.20	0.89
7.20	1.44	5.17	0.88

Additional VoD for PETN[28]:

VoD (km/s)	ρ (g cm ⁻³)	VoD (km/s)	$ ho$ (g cm $^{-3}$)
6.97	1.37	4.71	0.75
6.36	1.22	3.90	0.50
5.62	1.03	3.97	0.50
5.55	1.00	3.53	0.32
5.33	0.97	3.55	0.30
5.30	0.95	3.42	0.30
4.76	0.80	3.20	0.24

Additional VoD for PETN of two different particle sizes; charge diameter = 0.32 cm $^{[28]}$: packing density = 0.95 g cm $^{-3}$, PETN of -35 ± 48 mesh, VoD = 4,300 m/s $^{[28]}$, packing density = 0.95 g cm $^{-3}$, PETN of -65 ± 100 mesh, VoD = 4,800 m/s $^{[28]}$, for a charge diameter of 0.63 cm, no difference in VoD observed for the two particle sizes $^{[28]}$

VoD can be increased by replacing air among crystals by a non-explosive liquid such as $H_2O^{[63]}$:

PETN sample	Loading ρ (g cm ⁻³)	VoD (m/s)
Dry PETN	1.45	7,295
PETN with 10% H ₂ O	1.45	7,445
Dry PETN	1.40	7,125
PETN with 10% H ₂ O	1.40	7,825

Values calculated for the detonation pressure and detonation temperature using hydrodynamic theory of detonation equations^[35]:

ho of charge (g cm ⁻³)	Detonation pressure (kg/cm²)	Detonation temperature (K)
0.80	65,000	5,050
1.00	95,300	5,320
1.20	140,500	5,720
1.40	195,500	6,170
1.60	252,800	6,670

Calculated temperatures of detonation^[35]:

ρ of charge (g cm ⁻³)	Average detonation temperature (K)
0.70	3,580
0.75	3,670
1.50	5,910
1.60	6,040

Exptl. determined temperatures of detonation (detonated in air at atmospheric pressure)[35]:

ρ of charge (g cm ⁻³)	Average detonation temperature (K)
0.68	3,750
0.95	4,020
1.55	6,460
1.68	5,840

Exptl. determined temperatures of detonation (detonated in glass cylinders)[35]:

ho of charge (g cm ⁻³)	Average detonation temperature (K)	
0.70	4,980	
0.95	4,960	
1.60	5,520	

Exptl. determined temperatures of detonation (within H₂O-filled glass cylinders)^[35]:

ρ of charge (g cm ⁻³)	Average detonation temperature (K)	
0.60	4,080	
0.95	3,970	
1.55	5,650	

Exptl. determined temperatures of detonation by radiation method (charges contained within evacuated glass cylinders)^[35]:

ρ of charge (g cm ⁻³)	Average detonation temperature (K)	
0.82	5,590	
1.55	5,230	
1.60	5,330	

Exptl. determined temperatures of detonation by radiation method (charges contained in H_2O -filled glass tubes)^[35]:

ρ of charge (g cm ⁻³)	Average detonation temperature (K)	
0.72	4,020	
0.98	3,990	
1.44	5,350	

Exptl. determined temperatures of detonation by luminosity method (unsheathed explosives in air) $^{[35]}$:

ho of charge (g cm ⁻³)	Radiation slit width (mm)	Average detonation temperature (K)
1.18	1.0	6,000
1.64	1.0	5,750
1.60	1.5	5,450

VoD of PETN powder, charge diameter = 1.90 cm, station distance ca. 10 cm^[35]:

ρ (g cm ⁻³)	0.68	0.80	1.10	1.40	1.56
VoD (m/s)	4,160	4,730	5,990	7,270	7,445

PETN, confining vessel glass walls, 16 mm charge diameter, 0.8 mm wall thickness, charge density = 0.3 g cm $^{-3}$, VoD = 3,419 m/s $^{[35]}$

PETN, confining vessel glass walls, 15 mm charge diameter, 1.0 mm wall thickness, charge density = 0.3 g cm $^{-3}$, VoD = 3,548 m/s $^{[35]}$

Steady-state VoD measured in small, brass-confined pressings of PETN^[45]:

Diameter (mm)	¹ / _D (per mm) [reciprocal of charge diameter]	VoD (km/s)	Charge density (kg/m³)
4.06	0.246	4.58	950
		4.56	950
		4.58	950
		4.60	950
7.62	0.131	4.88	950
		4.86	950
11.4	0.088	5.01	950
		5.02	950
14.0	0.071	5.06	950
		5.11	950
		4.80	900
		5.56	1,000
16.5	0.061	5.14	950

Detonation velocity of low-density foamed PETN charges, PMMA = polymethyl methacrylate, wall thickness \sim 6 mm, fine PETN has an average particle size of 10–12 microns^[103]:

Confinement		Type of	Weight %	Foam	Explosive	Detonation	
Туре	I.D., cm	PETN PETN		density, g/cc	density, g/cc	velocity, mm/µs	
PMMA	5.71	Coarse	Unknown	Unknown	0.185	2.15	
PMMA	5.08	Fine	56.3	0.136	0.176	2.45	

Steel	5.08	Fine	43.0	0.175	0.133	1.17
PMMA	5.08	Fine	43.8	0.154	0.120	1.14
Steel	5.08	Fine	47.4	0.121	0.109	1.12
Steel	5.08	Fine	39.8	0.142	0.094	0.98
Aluminum	5.08	Fine	40.2	0.087	0.058	1.02
PMMA	7.62	Fine	30.9	0.127	0.057	Unstable
Steel	5.08	Fine	31.0	0.124	0.055	0.78
PMMA	5.08	Fine	31.0	0.124	0.055	Unstable
Steel	5.08	Fine	30.7	0.112	0.049	0.59
Steel	5.08	Fine	13.3	0.140	0.022	Unstable

Calculation of detonation pressure for low-density foamed PETN charges, PMMA = polymethyl methacrylate $^{[103]}$:

Explosive density, g/cc	Foam density, g/cc	Minimum gage resistance, ohms	Gage pressure, kbars	PMMA pressure, kbars	Detonation pressure, kbars
0.176	0.136	274	7.6	8.0	4.8
0.133	0.175	282	7.1	7.5	_
0.101	0.086	331	4.4	4.9	_
0.058	0.087	381	2.4	2.9	_

Summary of calculated Chapman–Jouguet conditions for low-density explosive systems^[103]:

System	Initial explosive density, g/cc	Foam density, g/cc	CJ density, g/cc	CJ pressure, kbars	Particle velocity, mm/µs	γ
Foamed PETN	72	0.176	0.136	0.420	0.63	2.89
Expanded	106	0.252	-	0.550	1.02	0.84
	104	0.141	-	0.223	0.85	1.72
	105	0.104	-	0.141	0.54	2.84

PETN experimental detonation pressures from^[104]:

Density (g/cc)	Dimensions of PETN, diameter × length (in)	Detonation velocity (mm/µs)	Shock velocity (mm/µs)	Detonation pressure, <i>P</i> _{CJ} (kbar)				
Shock electric effect measurements								
1.764	2 × 0.5	8.28	7.01	338				
1.763	1 × 0.5	8.27	6.98	333				
1.763	1 × 0.5	8.27	6.98	334				
1.763	1 × 1	8.27	7.04	340				
1.763	2 × 0.5	8.27	7.01	338				
1.763	2 × 1	8.27	7.03	340				
1.762	1 × 1	8.27	6.99	335				
1.762	1 × 1	8.27	7.07	343				
1.758	1 × 1	8.26	6.98	333				
1.71	1 × 1	8.11	6.86	311				
1.71	1 × 1	8.11	6.81	307				
1.71	1 × 1	8.10	6.83	309				
1.70	1 × 1	8.08	6.84	308				
1.70	1 × 1	8.06	6.83	306				
1.69	1 × 1	8.03	6.83	304				
1.60	1 × 1	7.76	6.57	266				
1.60	1 × 1	7.74	6.60	266				
1.59	1 × 1	7.71	6.52	259				
1.53	1 × 1	7.49	6.21	225				
1.46	1 × 1	7.22	5.99	198				
1.45	1 × 1	7.18	6.16	208				
1.44	1 × 1	7.14	6.05	199				
1.38	1 × 1	6.91	5.79	173				
1.23	1 × 1	6.38	5.45	136				
1.23	1 × 1	6.37	5.42	134				
1.23	1 × 1	6.37	5.47	137				
1.23	1 × 1	6.37	5.56	142				

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.23	1 × 1	6.36		5.54		141	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.23	1 × 1	6.36		5.56		142	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.99	1 × 0.5	5.48		4.91		87	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.95	1 × 0.5	5.33		4.93		85	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.93	1 × 1.5	5.27		4.68		73	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.93	1 × 1	5.26		4.77		77	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.93	1 × 1.5	5.25		4.61		70	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.89	1 × 1	5.10		4.70		71	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.88	1 × 1	5.06		4.63		68	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Op	tical (smear	camera) mea	surements			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.49	1.5 × 1	3.60		3.72		24	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.30	1.5 × 0.5	2.99		3.44		13	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.29	1.5 × 1	2.96		3.49		15	
Density (g/cc)Defonation velocity diameter × length (in)Detonation velocity (mm/ μ s)Pressure in Quartz (kbar)Detonation pressure, P_{CJ} (kbar)0.251.75 × 12.831680.251.75 × 12.83137	0.27	1.5 × 0.5	2.91		3.18		5	
(g/cc) diameter × length (in) (mm/ μ s) in Quartz (kbar) pressure, P_{CJ} (kbar) 0.25 1.75 × 1 2.83 16 8 0.25 1.75 × 1 2.83 13 7			Quartz cry	stal measure	ments			
0.25 1.75 × 1 2.83 13 7	1 '	•			velocity	in Qu	artz	pressure,
	0.25	1.75 × 1		2.83		16		8
0.25	0.25	1.75 × 1		2.83		13		7
0.25 1./5 × 1.5 2.83 12 6	0.25	1.75 × 1.5		2.83		12		6

PETN experimental detonation pressures, values cited in[104]:

Density, g/cc	Detonation velocity, mm/µs	Detonation pressure, P_{CJ} , kbar
1.77	8.50	340
1.77	8.31	320
1.67	7.97	300
1.66	8.10	246
1.65	7.92	305
1.51	7.42	187
0.95	5.30	64

PETN experimental detonation velocities; *= unconfined rate stick, † = cylinder test, ‡ = detonation pressure experiments[104]:

Density (g/cc)	Detonation velocity (mm/µs)	Density (g/cc)	Detonation velocity (mm/µs)				
Pin switch measurement							
1.773	8.30*	1.27	6.66 [†]				
1.765	8.28 [†]	1.26	6.76 [†]				
1.765	8.16 [†]	1.09	5.83 [†]				
1.765	8.24*	1.09	5.83 [†]				
1.763	8.27*	0.55	3.85*				
1.762	8.25*	0.436	3.40*				
1.762	8.26*	0.241	2.81*				
1.51	7.44 [†]	0.201	2.73*				
1.51	7.49 [†]	0.185	2.67*				
	Shock electric e	fect measurement [‡]					
1.71	8.00	1.23	6.48				
1.71	8.00	1.23	6.50				
1.71	8.08	1.23	6.46				
1.70	8.03	1.23	6.46				
1.70	7.96	1.23	6.46				
1.69	7.97	1.23	6.43				
1.60	7.74	0.99	5.52				
1.60	7.74	0.95	5.41				
1.59	7.69	0.93	5.31				
1.53	7.51	0.93	5.33				
1.46	7.41	0.93	5.15				
1.45	7.26	0.89	5.20				
1.44	7.20	0.88	5.17				
1.38	7.07						

Experimental detonation velocity values cited in^[104]:

Density (g/cc)	Detonation velocity (mm/µs)	Density (g/cc)	Detonation velocity (mm/µs)
1.77	8.50	1.03	5.62
1.73	8.35	1.00	5.55
1.67	7.97	0.97	5.33
1.66	8.10	0.95	5.30
1.65	7.92	0.95	5.35
1.62	7.91	0.80	4.76
1.60	7.92	0.75	4.71
1.51	7.42	0.50	3.90
1.51	7.42	0.50	3.97
1.40	7.13	0.32	3.53
1.37	6.97	0.30	3.55
1.22	6.36	0.3	3.42
1.20	6.34	0.24	3.20

Summary of experimental copper cylinder wall velocity data, samples have wall thickness/diameter ratio of 0.1 except those marked with an asterisk; all cylinders were 305 mm long, PETN with $\rho = 1.763 \text{ g/cm}^3$ is the reference explosive^[112]:

Initial density (g/cm³)	Inner diameter (mm)	Wall thickness (mm)	Wall velocity (mm/ μ s) at 25.4 mm diameter for $R-R_0$ equal to			Velocity squared cf. with PETN for the same configuration, % comparison R - R 0 equal to		
			6 mm	12.5 mm	19 mm	6 mm	12.5 mm	19 mm
PETN (ref)	1.763	25.44	1.361*	2.285	2.415	0.0	0.0	0.0
PETN (ref)	1.763	25.43	2.594	1.560	1.790	0.0	0.0	0.0
PETN	1.507	25.45	1.365	1.832	2.125	-22.8	-20.3	-22.6
PETN	1.498	25.43	2.596	1.355	1.590	-24.6	-21.6	-21.1
PETN	1.266	25.42	2.598	1.156	1.382	-45.1	-41.5	-40.4
PETN	1.261	25.45	1.356	1.575	1.865	-42.9	-39.6	-40.4

Summary of code calculations with measured detonation velocities and detonation energies derived from JWL's data from $^{[112]}$:

Explosive	Initial density (g/cm³)	PETN-adjusted BKWR Tiger, LLNL library θ = 1,850 K, at v		JCZ3, LL	Z3, LLNL library, v		CHEQ V2.4, at v			
		2.2 4.1 6.5		2.2	4.1	6.5	2.2	4.1	6.5	
PETN (ref)	1.763	0	0	0	-3	-4	-5	-9	-9	-9
PETN	1.503	0	-1	1	-4	-7	-5	-15	-14	12
PETN	1.263	1	0	2	-6	-8	-6	-18	-16	-13

Derivation of the total energy of detonation from the measured heat of detonation (the final state is assumed to at one atmosphere for all gaseous products, including water, at 298 K. Code calculated energies with the 1,800 K freeze) $^{[112]}$:

Measured	to and		Energy of detonation E_0 (kJ/cm ³)				
density (g/cc)	confined heat of detonation	from ^[112]	om ^[112] detonation using density	From heat of detonation	Freeze at	1,800 K	
	(kJ/cm³) density from ^[112]		Tiger BKWR	Tiger JCZ3	CHEQ		
1.732	-10.81	1.763	-11.01	-10.3	-10.7	-10.4	-10.5
1.496	-9.41	1.503	-9.46	-8.9	-9.0	-9.0	-8.7

JWL cylinder coefficients as determined in[112]:

Initial density, ρ_0 (g/cm ³)	tion velocity, D	of detonation, E_0	CJ pres- sure (GPa)	A (GPa)	B (GPa)	C (GPa)	R ₁	R ₂	ω	γ cj
	(mm/µs)	(kJ/cm³)								
1.763	8.274	-10.80	31.5	1,032.158	90.57014	3.72735	6.000	2.60	0.57	2.832
1.503	7.48	-8.50	24.9	351.0723	5.705547	1.216240	4.075	0.90	0.35	2.504
1.263	6.59	-7.20	16.0	228.1744	5.104579	1.412013	4.240	1.05	0.35	2.428

	PETN-I ^{[20–22} , ⁴⁴]	PETN-II ^[21, 22, 44]	PETN ^[20, 22]	PETN ^[29]	PETN ^[30]	PETN ^[31]	PETN ^[32]
	Phase I (α-)	Phase I (eta -)					
Chemical formula	$C_5H_8N_4O_{12}$	$C_5H_8N_4O_{12}$	$C_5H_8N_4O_{12}$	$C_5H_8N_4O_{12}$	$C_5H_8N_4O_{12}$	C ₅ H ₈ N ₄ O ₁₂	$C_5H_8N_4O_{12}$
Molecular weight [g mol ⁻¹]	316.14	316.14	316.14	316.14	316.14	316.14	316.14
Crystal system	Tetragonal	Orthorhombic	Orthorhombic	Tetragonal	Tetragonal	Tetragonal	Tetragonal
Space group	$Par{4}2_1c$ (no. 114)	<i>Pcnb</i> (no. 60)	<i>Pcnb</i> (no. 60)	$P ar{4} 2_1 c$ (no. 114)	$P ar{4} 2_1 c$ (no. 114)	$P \bar{4} 2_1 c$ (no. 114)	$P \bar{4} 2_1 c$ (no. 114)
a [Å]	9:38	13.22	13.29	9.380	9.3027(3)	9.2759(8)	9.38
<i>b</i> [Å]	9:38	13.49	13.49	088.6	9.3027(3)	9.2759(8)	9.38
<i>c</i> [Å]	6.71	6.83	6.83	6.700	6.6403(2)	6.6127(4)	6.70
α [°]	06	90	06	06	06	90	06
β [°]	06	90	06	06	06	96	06
γ [°]	06	90	06	06	06	96	06
V [ų]	590.375		1,224.5	589.495	574.65(3)	568.97	
Z	2	4	4	2	2	2	2
$ ho_{ m calc}$ [g cm $^{-3}$]	1.778	1.716	1.715	1.781	1.827	1.845	1.773
7 [K]	295	136 °C	295	295	123	100	

PETN has two common polymorphs: (i) PETN-I (tetragonal, stable up to 130 °C, mpt. = 142.9 °C) and (ii) PETN-II (orthorhombic, stable from 130 °C to its mpt. (143.1 °C))^[144]. PETN-II rapidly transforms to PETN-I at T < 130 °C. Impurities in PETN-II can inhibit transformation to the stable PETN-I^[44].

Pressure dependence of the volume of PETN @ 298 $K^{[87]}$:

Pressure (GPa)	Vol (ų) (approx. exptl. values, <i>Ohlinger</i>)	Vol (ų) (approx. exptl. values, Ciezaketal)	Vol (ų) (calcd. approx. values, PW91, VASP program package)
0	422	402	482
1	-	379	_
1.2	385	_	418
1.5	_	365	_
2.3	375	_	390
2.35	-	350	-
3.55	355	_	377
5.0	350	_	365
5.45	-	340	-
5.7	340	_	365
6.8	335	335	355
7.6	330	330	345
8.4	320	320	340
9.2	318	318	338
10.5	318	_	338

Failure diameters of lead and booster explosives^[119]:

	Confine	ment, in	
Fabric detonating cord	Aluminum (0.006 walls)	Lead (MDF)	Heavy brass or steel
0.05	<0.05	<0.01	<0.05

Fig. 17: ODTX results of ANPZ and TATB, HMX, RDX and PETN[120].

- [1] S. P. Sharma, S. C. Lahiri, J. Energ. Mater., 2005, 23, 239-264.
- [2] F. Volk, H. Bathelt, Propellants, Explosives, Pyrotechnics, 2002, 27, 136–141.
- [3] https://engineering.purdue.edu/~propulsi/propulsion/comb/propellants.html
- [4] J. P. Lu, Evaluation of the Thermochemical Code CHEETAH 2.0 for Modelling Explosives
 Performance, DSTO Aeronautical and Maritime Research Laboratory, August 2011, AR-011-997.
- [5] S. Zeman, Study of the Impact Reactivity of Polynitro Compounds Part IV. Allocation of Polynitro Compounds on the Basis of their Impact Sensitivities, in Proceedings of New Trends in Research of Energetic Materials, NTREM 2002, April 24th–25th, pp. 434–443.
- [6] M. H. Keshavarz, J. Haz. Mat., 2009, 166, 762-769.
- [7] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2012**, *37*, 489–497.
- [8] Ordnance Technical Intelligence Agency, Encyclopedia of Explosives: A Compilation of Principal Explosives, Their Characteristics, Processes of Manufacture and Uses, Ordnance Liaison Group-Durham, Durham, North Carolina, 1960.
- [9] B.M. abbreviation for Bureau of Mines apparatus; P. A. abbreviation for Picatinny Arsenal apparatus, or ERL for Explosive Research Laboratory apparatus.
- [10] A. Koch, Propellants, Explosives, Pyrotechnics, 2002, 27, 365–368.
- [11] R. Weinheimer, *Properties of Selected High Explosives*, Abstract, 27th International Pyrotechnics Seminar, 16th–21st July **2000**, Grand Junction, USA.
- [12] J. Šelešovsky, J. Pachmáň, M. Hanus, *Changes in Sensitiveness of Phlegmatized High Explosives After Artificial Aging*, NTREM 6, 22nd-24th April **2003**, pp. 309-321.
- [13] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.
- [14] M. L. Hobbs, M. R. Baer, Calibrating the BKW-EOS with a Large Product Species Data Base and Measured C-J Properties, in Proceedings of the 10th International, Detonation Symposium, Office of Naval Research ONR 33395–12, 1993, pp. 409–418.

- [15] Chemical Rocket Propulsion: A Comprehensive Survey of Energetic Materials, L. DeLuca, T. Shimada, V. P. Sinditskii, M. Calabro (eds.), Springer, 2017.
- [16] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [17] R. Matyaš, J. Pachman, Explosive Properties of Primary Explosives. Chapter 2 in Primary Explosives, Springer-Verlag Berlin Heidelberg: Wiesbaden, Germany, 2013, pp. 11–36.
- [18] H. D. Mallory (ed.), *The Development of Impact Sensitivity Tests at the Explosives Research Laboratory Bruceton, Pennsylvania During the Years 1941–1945*, 16th March **1965**, AD Number AD-116 878, US Naval Ordnance Laboratory, White Oak, Maryland.
- [19] H. Muthurajan, R. Sivabalan, M. B. Talawar, S. N. Asthana, J. Hazard. Mater., 2004, A112, 17–33.
- [20] Military Explosives, Department of the Army Technical Manual, TM 9-1300-214, Headquarters, Department of the Army, September 1984.
- [21] LASL Explosive Property Data, T. R. Gibbs, A. Popolato (eds.), University of California Press, Berkeley, 1980.
- [22] H. H. Cady, A. C. Larson, Acta Cryst., 1975, 31, 1864–1869.
- [23] J. L. Austing, A. J. Tulis, C. D. Johnson, "Detonation Characteristics of Very Low Density Explosive Systems", Proceedings: Symposium (International) on Detonation (5th), Office of Naval Research, Virginia, USA, 1970, pp. 47–59.
- [24] A. Smirnov, O. Voronko, B. Korsunsky, T. Pivina, Huozhayo Xuebao, 2015, 38, 1-8.
- [25] R. K. Wharton, J. A. Harding, J. Energet. Mater., 1993, 11, 51-65.
- [26] B. M. Dobratz, Properties of Chemical Explosives and Explosive Simulants, UCRL-5319, LLNL, December 15th 1972.
- [27] D. Price, The Detonation Velocity-Loading Density Relation for Selected Explosives and Mixtures of Explosives, NSWC TRR2-298, 26th August, 1982.
- [28] S. M. Kaye, Encyclopedia of Explosives and Related Items, Vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1978.
- [29] J. Trotter, Acta Cryst., 1963, 16, 698-699.
- [30] M. Nieger, J. Lehmann, CSD Communication, 2002.
- [31] E. A. Zhurova, A. I. Stash, V. G. Tsirelson, V. V. Zhurov, E. V. Bartashevich, V. A. Potemkin, A. A. Pinkerton, J. Am. Chem. Soc., 2006, 128, 14728-14734.
- [32] A. D. Booth, F. J. Llewellyn, J. Chem. Soc., 1947, 69, 837-846.
- [33] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, *Vol. 2*, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [34] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, *Vol. 3*, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1966**.
- [35] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, Vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1969**.
- [35] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, *Vol. 5*, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1972**.
- [36] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, Vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1974.
- [37] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, Vol. 7, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1975.
- [38] S. M. Kaye, Encyclopedia of Explosives and Related Items, Vol. 9, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1980.
- [39] H.-H. Licht, *Propellants, Explosives, Pyrotechnics*, **2000**, *25*, 126–132.
- [40] D. Price, J. Energet. Mater., 1983, 1:1, 55-82.
- [41] E. G. Kayser, J. Energet. Mater., 1983, 1:3, 251-273.

- [42] J. C. Oxley, J. L. Smith, E. Rogers, X. X. Dong, J. Energet. Mater., 2000, 18, 97–121.
- [43] A. P. Jardine, D. M. Williamson, S. Gymer, N. E. Taylor, S. M. Walley, S. J. P. Palmer, *Optical Diagnostics to Study Impact Initiation Mechanisms in Modern Energetic Materials*, NTREM 17, 9th–11th April **2014**, pp. 243–252.
- [44] G. R. Miller, A. N. Garroway, A Review of the Crystal Structures of Common Explosives Part I: RDX, HMX, TNT, PETN and Tetryl, NRL/MR/6120—01-8585, Naval Research Laboratory, October 15th 2001.
- [45] R. H. Dinegar, *Propellants and Explosives*, **1976**, *1*, 97–100.
- [46] S. Ek, K. Dudek, J. Johansson, N. Latypov, Scale-Up and Characterisation of 3(5),4-Dinitropyrazole (DNP) For Its Use as a Melt-Cast, NTREM 17, 9th-11th April 2014, pp. 180-188.
- [47] C. S. Gorzynski, J. N. Maycock, *Explosives and Pyrotechnic Propellants for Use in Long-Term Deep Space Missions*, NASA-CR-132373, **1974**.
- [48] J. Šelešovsky, J. Pachmáň, M. Hanus, Changes in Sensitiveness of Phlegmatized High Explosives, NTREM 6, 22nd-24th April 2003, Pardubice, Czech Republic, pp. 309-321.
- [49] B. C. Dionne, D. P. Rounbehler, E. K. Achter, J. R. Hobbs, D. H. Fine, J. Energet. Mater., 1986, 4, 447–472.
- [50] A. Gidaspov, E. V. Yurtaev, Y. V. Moschenskiy, V. Y. Avdeev, The Correlations Between the High Explosives' Critical Temperature of Thermal Explosion with the Flash Point and Decomposition Temperature, NTREM 17, 9th-11th April 2014, Pardubice, Czech Republic, pp. 658-661.
- [51] A. Koch, B. Arnold, M. Estermann, Propellants, Explosives, Pyrotechnics, 2002, 27, 365-368.
- [52] A. Smirnov, S. Smirnov, V. Balalaev, T. Pivina, Calculation of Detonation Velocity and Pressure of Individual and Composite Explosives, NTREM 17, 9th–11th April 2014, Pardubice, Czech Republic, pp. 24–37.
- [53] J. Bogdanov, Z. Bajić, R. Jeremić, R. Dimitrijević, M. Ugrčić, *Prediction of High Explosives'*Detonation Characteristics Using a Simplified Thermochemical Approach, NTREM 17, 9th–11th

 April 2014, Pardubice, Czech Republic, pp. 572–577.
- [54] D. Tabor, J. E. Field, M. M. Chaudhri, H. M. Hauser, R. G. Patel, Mechanical Properties of Energetics, European Research Office, London, January 1977.
- [55] J. E. Field, M. M. Chaudhri, G. M. Swalloe, T. B. Tang, Deformation and Thermal Properties of Energetic Materials, AD A103275, European Research Office, London, December 1980.
- [56] N. Piazzon, A. Bondar, D. Anokhin, D. Hassler, D. Spitzer, D. A. Ivanov, *Thermal Signatures of Explosives Studied by Nanocalorimetry*, ICT 2011, Karlsruhe, Germany, pp. 7-1–7-8.
- [57] S. Zhu, L. Zhang, Y. Ye, L. Chen, P. Ma, *Research on the Construction of Detonator With Preformed Flying-Plate*, ICT **2010**, Karlsruhe, Germany, pp. 44-1–44-6.
- [58] H. W. R. Sabel, E. Schonewille, Extrusion Trials with a TSK045 Twin Screw Extruder, ICT 1998, Karlsruhe, Germany, pp. 96-1–96-11.
- [59] P. Politzer, J. S. Murray, High-Performance, Low Sensitivity: The Impossible (or Possible) Dream? in Energetic Materials From Cradle to Grave, M. K. Shukla, V. M. Boddu, J. A. Steevens, R. Damavarapu, J. Leszczynski (eds.), Springer-Verlag, 2017, pp. 1–22.
- [60] R. Petersen, Susceptibility Index of Explosives to Accidental Initiation, NWSY TR 81-6, Naval Weapons Station, Virginia, USA, October 1981.
- [61] J. C. Oxley, F. Furman, A. C. Brown, F. Dubnikova, J. L. Smith, R. Kosloff, Y. Zeiri, J. Phys. Chem. C, 2017, 121, 16145–16157.
- [62] R. L. Simpson, P. A. Urtiew, D. L. Ornellas, G. L. Moody, K. J. Scribner, D. M. Hoffman, Propellants, Explosives, Pyrotechnics, 1997, 22, 249–255.
- [63] T. Urbański, Ch. 8 in Chemistry and Technology of Explosives, vol. II, 1965, Pergamon Press, Oxford.

- [64] T. L. Davis, The Chemistry of Powder and Explosives, vol. 2, 1943, John Wiley and Sons Inc., New York.
- [65] R. K. Wharton, D. Chapman, Propellants, Explosives, Pyrotechnics, 1997, 22, 71-73.
- [66] S. Ye, K. Tonokura, M. Koshi, Comb. and Flame, 2003, 132, 240-246.
- [67] P. A. Davies, J. Hazard. Mater., 1994, 38, 75-88.
- [68] B. K. M. Murali, V. Ganesan, K. B. Rao, V. K. Mohan, J. Hazard. Mater., 1979, 3, 177-182.
- [69] J. E. Balzer, J. E. Field, M. J. Gifford, W. G. Proud, S. M. Wally, Comb. and Flame, 2002, 130, 298–306.
- [70] M. Sućeska, Calculation of Detonation Heat by EXPLO Computer Code, ICT 1999, Karlsruhe, Germany, pp. 50-1–50-14.
- [71] S. Zeman, Propellants, Explosives, Pyrotechnics, 2003, 28, 308–313.
- [72] A. A. Kotomin, S. A. Dushenok, A. S. Kozolov, D. A. Barannik, N. P. Shirokova, M. A. Il'yushin, Russ. J. Appl. Chem., 2016, 89, 793–799.
- [73] P. Politzer, J. S. Murray, Computational Studies of Energetic Organic Molecules, AD-A274 726, ONR Technical Report, December 27th 1993.
- [74] A. Smirnov, M. Kuklja, M. Makhov, V. Pepkin, *Methodical Problems of Experimental Definition of Heat Of Explosive Transformation*, ICT **2017**, Karlsruhe, Germany, pp. 15-1–15-11.
- [75] E. G. Kayser, *Analysis Methods For Explosive Materials I. Polynitro Compounds*, NSWC TR 81–123, Naval Surface Weapons Center, Maryland, USA, 3rd March **1962**.
- [76] M. Sućeska, M. Rajic, Analytical Application of Thermal Methods in the Field of Explosive Materials, ICT 2000, Karlsruhe, Germany, pp. 84-1-84-15.
- [77] S. B. Victorov, S. A. Gubin, I. V. Maklashova, I. I. Revyakin, *Thermdynamic TDS Code: Application to Detonation Properties of Condensed Explosives*, ICT 2001, Karlsruhe, Germany, pp. 69-1-69-15.
- [78] W. A. Trzciński, Use of a Cylinder Test for Determining Some Characteristics of Explosives, ICT 2001, Karlsruhe, Germany, pp. 64-1-64-14.
- [79] Q. Hu, Z. Lu, The Discussion of Explosive Thermal Decomposition and its Sensitivity, ICT 2002, Karlsruhe, Germany, pp. 155-1–155-8.
- [80] V. A. Teselkin, Some Aspects of Explosion Initiation of Highly Energetic Materials Under Mechanical Actions, ICT 2008, Karlsruhe, Germany, pp. 96-1–96-12.
- [81] V. A. Teselkin, Peculiarities of Mechanical Explosion Initiation for Some Solid Explosives, ICT 2009, Karlsruhe, Germany, pp. 102-1–102-6.
- [82] E. Francois, V. E. Sanders, J. Lloyd, J. Mong, Shock Sensitivity of Diaminoazoxy Furazan (DAAF) Using an Instrumental Small Scale Gap Test, ICT 2009, Karlsruhe, Germany, pp. 17-1–17-10.
- [83] J. Majzlik, J. Molnár, ESD Sensitivity Evaluation of the Secondary Explosives Discharge Firing Circuit of the ESD Tester Efficiency, ICT 2009, Karlsruhe, Germany, pp. 57-1-57-10.
- [84] V. B. Zabrodin, Y. A. Kulagin, P. N. Stolyarov, P. A. Vlasov, *Devices for Analyzing Explosion Hazards*, ICT 2002, Karlsruhe, Germany, pp. 69-1–69-13.
- [85] R. Petersen, L. R. Rothstein, J. H. Smith, Thermochemistry and the Demilitarization of Explosives, NWSY TR 76–2, Naval Weapons Station, Virginia, July 1976.
- [86] D. A. Jones, R. P. Parker, Simulation of Cook-off Results in a Small Scale Test, DSTO-TR-0090, Department of Defence, Melbourne, Australia, October 1994.
- [87] J. A. Ciezak, E. F. C. Byrd, B. M. Rice, Exploring the High-Pressure Behavior of PETN: A Combined Quantum Mechanical and Experimental Study, Technical Report, US Army Research Laboratory, Aberdeen Proving Ground, USA, 1st November 2006.
- [88] J. N. Sherwood, P. J. Halfpenny, K. J. Roberts, The Influence of Lattice Imperfections on the Chemical Reactivity of Solids. The Growth, Perfection and Defect Properties of PETN and RDX Single Crystals, AD-A141 271, US Army European Research Office, London, UK, February 1984.

- [89] D. Price, Effect of Particle Size on the Shock Sensitivity of Pure Porous HE, NSWC TR 86–336, Naval Surface Weapons Center, Virginia, USA, September 1986.
- [90] J. R. Baker, M. Kay, A. F. MacDonald, J. Mansell, The Use of Differential Scanning Calorimetry to Determine PETN Specific Surface Area, ICT 2006, Karlsruhe, Germany, pp. 152-1–152-6.
- [91] V. P. Filin, P. Y. Detkov, N. V. Garmasheva, V. T. Timofeev, I. V. Chemagina, Y. A. Shakhtorin, N. P. Taibinov, N. G. Bagavetdinov, B. G. Loboiko, *Influence of the Long-Term Storage on Thermal Stability of PETN and HNS*, ICT 2006, Karlsruhe, Germany, pp. 98-1–98-9.
- [92] N. V. Latypov, C. Oscarson, M. Liljedahl, P. Goede, Evaluation of DETRA-D as a Melt-Cast Matrix, ICT **2013**, Karlsruhe, Germany, pp. 3-1–3-8.
- [93] A. L. Kuhl, *Emission Properties of Various High Explosive Charges*, ICT **2014**, Karlsruhe, Germany, pp. 19-1–19-14.
- [94] J. Ritums, C. Oscarson, M. Liljedahl, P. Goede, K. Dudek, U. Heiche, Evaluation of 3,(5),4-Dinitropyrazole (DNP) as a New Melt Cast Matrix, ICT 2014, Karlsruhe, Germany, pp. 2-1–2-12.
- [95] B. Berger, B. Haas, J. Mathieu, M. Tanner, J. Gyseler, Improved Method for the Determination of the Sensitivity of Explosives to ESD, ICT 2005, Karlsruhe, Germany, pp. 120-1–120-13.
- [96] M. C. Schulze, D. E. Chavez, J. Energet. Mater., 2016, 34, 129–137.
- [97] A. Weitz, G. Korodgodsky, A. Tsoglin, D. Grinstein, L. Gottlieb, *Propellants, Explosives*, *Pyrotechnics*, 2015, 40, 706–711.
- [98] Q.-L. Yan, M. Künzel, S. Zeman, R. Svoboda, M. Bartošková, *Thermochim. Acta*, 2013, 566, 137–148.
- [99] E. P. Burrows, D. H. Rosenblatt, W. R. Mitchell, D. L. Parmer, Organic Explosives and Related Compounds: Environmental and Health Considerations, Technical Report 8901, US Army Biomedical Research and Development Laboratory, Frederick, MD, USA, March 1989.
- [100] J. Connor, Chemical Sensitization in Nitro, Nitramine and Nitrate Explosives, in Chemistry and Physics of Energetic Materials, NATO ASI Series, Kluwer Academic Publishers, vol. 309, Suraya N. Bulusu (ed.), 1990.
- [101] L. W. Collins, L. D. Haws, *Thermochim. Acta*, **1977**, *21*, 1–38.
- [102] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [103] J. L. Austing, A. J. Tulis, C. D. Johnson, *Detonation Characteristics of Very Low Density Explosive Systems*, in Proceedings (International) on Detonation (5th), Pasadena, California, USA, 18th–21st August 1970.
- [104] H. C. Hornig, E. L. Lee, M. Finger, J. E. Kurrle, Equation of State of Detonation Products, in Proceedings (International) on Detonation (5th), Pasadena, California, USA, 18th–21st August 1970.
- [105] S. Fordham, High Explosives and Propellants, 2nd edn., Pergamon Press, 1980.
- [106] J. I. Steinfeld, J. Wormhoudt, Annu. Rev. Phys. Chem., 1998, 49, 203–232.
- [107] Handbook of Foreign Explosives, U. S. Materiel Command, US Army Foreign Science and Technology Center, Washington, D. C., USA, October 1965.
- [108] J. T. Hagan, M. M. Chaudhri, J. Materials Sci., 1977, 12, 1055–1058.
- [109] J. C. Oxley, J. L. Smith, J. E. Brady, A. C. Brown, *Propellants, Explosives, Pyrotechnics*, **2012**, 37, 24–39.
- [110] D. Price, J. O. Erkman, A. R. Clairmont, D. J. Edwards, *Explosive Behavior of Dinitrotoluene*, NOLTR 69–92, US Naval Ordnance Laboratory, Maryland, USA, 10th July **1969**.
- [111] T. Jenkins, C. Vogel, Department of Defense Operational Range Sustainability Through Management of Munitions Constituents, SERDP ESTCP Technical Report, 04/01/**2014**.

- [112] P. C. Souers, J. W. Kury, Propellants, Explosives, Pyrotechnics, 1993, 18, 175–183.
- [113] M. Sućeska, Propellants, Explosives, Pyrotechnics, 1991, 16, 197–202.
- [114] M. Sućeska, *Propellants, Explosives, Pyrotechnics*, **1999**, 24, 280–285.
- [115] D. Tabor, J. E. Field, M. N. Chaudhri, H. M. Hauser, R. G. Patel, Mechanical Properties of Energetic Materials, Final Technical Report, ADA039600, European Research Office, London, January 1977.
- [116] J. Wenograd, *The Thermal Sensitivity of Explosives and Propellants*, US Naval Ordnance Laboratory, White Oak, Maryland, USA, NOLTR 61–97, 1st September **1961**.
- [117] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part III, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [118] J. W. Taylor, Trans. Faraday Soc., 1962, 58, 561–568.
- [119] Engineering Design Handbook, Explosives Series, Explosive Trains, AMC Pamphlet AMCP 706–179, Headquarters, US Army Materiel Command, Alexandria, Virginia, USA, 15th January 1974.
- [120] P. C. Hsu, G. Hust, M. McClelland, M. Gresshoff, One-Dimensional Time to Explosion (Thermal Sensitivity) of ANPZ, LLNL-TR-667280, Lawrence Livermore National Laboratory, California, USA, 25th April 1994.
- [121] V. J. Menichelli, L. C. Yang, *Sensitivity of Explosives to Laser Energy*, Technical Report 32–1474, NASA CR110133, Jet Propulsion Laboratory, California Institute of Technology, California, USA, 30th April **1970**.
- [122] S. S. Cooper, P. G. Malone, S. W. Bartholomew, W. J. Necker, Light-Initiated Detonation Systems, GL-86-28, Department of the Army, Washington D. C., USA, September 1986.
- [123] M. J. Barbarisi, E. G. Kessler, *Initiation of Secondary Explosives By Means of Laser Radiation*, Technical Report 3861, Picatinny Arsenal, New Jersey, USA, May **1969**.
- [124] N. N. Bakhman, A. F. Belyaev, Combustion of Heterogeneous Condensed Systems, translated from Gorenje Geterogennykh Kondensirovannykh Sistem, Institute of Chemical Physics, Academy of Science, U.S.S.R. Moscow, Nauka Publication (1967) by C. A. J. Elphinston, M. Goyer, I. C. Graham, G. A. Heath, G. R. Ramsden, R.P.E. Translation No. 19, Ministry of Technology, London, November 1967.
- [125] J. N. Ayres, L. J. Montesi, R. J Bauer, Small Scale Gap Test (SSGT) Data Compilation: 1959–1972. Volume I. Unclassified Explosives, AD-773 743, Naval Ordnance Laboratory, Maryland, USA, 26th October 1973.
- [126] D. Price, A. R. Clairmont, J. O. Erkman, The NOL Large Scale Gap Test. III. Compilation of Unclassified Data and Supplementary Information for Interpretation of Results, AD-780 429, Naval Ordnance Laboratory, White Oak, Maryland, USA, 8th March 1974.
- [127] Services Textbook of Explosives, JSP 333, Procurement Executive, Ministry of Defence, UK, March 1972.
- [128] R. L. Simpson, P. F. Pagoria, A. R. Mitchell, C. L. Coon, *Propellants, Explosives, Pyrotechnics*, 1994, 19, 174–179.
- [129] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, *ZAAC*, **2015**, *641*, 2446–2451.
- [130] E. E. Gilbert, W. E. Voreck, *Propellants, Explosives, Pyrotechnics*, **1989**, 14, 19–23.
- [131] V. A. Teselkin, Combustion, Explosion, Shock Waves, 2009, 45, 632–633.
- [132] M. E. Sitzmann, J. Energet. Mater., 1988, 6, 129-144.
- [133] H. J. Jackson, A Study of the Electrical Characteristics of Some Explosives and Explosive Mixtures, Technical Memorandum 1288, Feltman Research Laboratories, Picatinny Arsenal, New Jersey, USA, October 1963.

- [134] J. Bernstein, Polymorphism in High Energy Materials, Ch. 9 in Polymorphism in Molecular Crystals, IUCr Monographs on Crystallography No. 14, Oxford Science Publications, Clarendon Press, Oxford, 2002.
- [135] T. E. Larson, P. Dimas, C. E. Hannaford, *Electrostatic Sensitivity Testing of Explosives at Los Alamos*, 9th Int. Symp. on Detonation, Portland, Oregon, USA, vol. II, August 28th–1st September 1989, pp. 1076–1083.
- [136] T. M. Klapötke, D. G. Piercey, J. Stierstorfer, M. Weyrauther, *Propellants, Explosives, Pyrotechnics*, **2012**, *37*, 527–535.
- [137] L. Avrami, J. Haberman, Sensitivity to Heat and Nuclear Radiation, Ch. 6 in Energetic Materials 2: Technology of the Inorganic Azides, H. D. Fair, R. F. Walker (eds.), Plenum Press, 1977.
- [138] J. Liu, Nitrate Esters Chemistry and Technology, Springer, 2019.
- [139] R. J. Spear, L. Montelli, An Investigation of the Material Hazard of Some Insensitive High Explosives, MRL-TR-91-22, Materials Research Laboratory DSTO, Maribyrnong, Australia, 1991.
- [140] Summary Technical Report of Division 8, NDRC, Volume 1, The Preparation and Testing of Explosives, Office of Scientific Research and Development, National Defense Research Committee, Washington D. C., USA, 1946.
- [141] M. S. Gruhne, M. Lommel, M. H. H. Wurzenberger, N. Szimhardt, T. M. Klapötke, J. Stierstorfer, Impact Sensitivities of Explosives Explored by the OZM Ball Drop Tester (BIT-132), NTREM 2019, Pardubice, Czech Republic, pp. 410–417.
- [142] J. Dong, Q.-L. Yan, P.-J. Liu, W. He, X.-F. Qi, S. Zeman, J. Therm. Anal. Calorim., 2018, 131, 1391–1403.
- [143] L. Avrami, H. J. Jackson, M. S Kirshenbaum, Radiation-Induced Changes in Explosive Materials, AD-775 371, Picatinny Arsenal, Dover, New Jersey, USA, December 1973.

Picramic acid

Name [German, acronym]: Picramic acid, dinitroaminophenol, 1,6-amino-2,4-

dinitrophenol, 2-amino-4,6-dinitrophenol, 4,6-dinitro-2-

aminophenol

Main (potential) use: No current applications and is a source for $DDNP^{[7]}$

Structural formula:

$$O_2N$$
 O_2
 O_2
 O_2
 O_3
 O_4
	Picramic acid					
Formula	C ₆ H ₅ N ₃ O ₅					
Molecular mass [g mol ⁻¹]	199.12					
Appearance at RT	Dark red crystals ^[7] , dark red ned CHCl ₃ ^[9]	edles from EtOH and prisms from				
IS [J]	34 Nm ^[5]					
FS [N]	>353 ^[5]					
N [%]	21.10	'				
Ω(CO ₂) [%]	-76.3	-76.3				
T _{m.p.} [°C]	168–169 ^[1] , 169.9 ^[5] , 169–170 ^[7, 9]					
T _{dec.} [°C]	240					
ρ [g cm ⁻³]	1.749 (@ 293 K) ^[2] , 1.685 (crystal @ 293 K) ^[6]					
Heat of formation	-1,248 kJ/kg (enthalpy of form.) ^[5] , -248.1 kJ/mol (enthalpy of form., exptl.) ^[10] , -201.8 kJ/mol (enthalpy of form., calcd., emp.) ^[10] , -229.9 kJ/mol (enthalpy of form., calcd., S-D method) ^[10]					
	Calcd. (EXPLO5 6.03)	Exptl.				
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	3,422	2,674 [H ₂ O (l)] ^[3, 5]				
T _{ex} [K]	2,574					
p _{C-J} [kbar]	185					
VoD [m s ⁻¹]	6,938 (@ TMD)					
V ₀ [L kg ⁻¹]	636	847 ^[4, 5]				

Trauzl test [cm³, % TNT]	166 cm ^{3[8]}
Burn rate [mm/s]	Ignites and burns rapidly in contact with open flame in glass tube or beaker ^[9]
Solubility [g/mL]	Soluble in benzene, acetic acid ^[7] , poorly soluble in other common organic solvents ^[7] , 0.065 g dissolves in 100 mL H_2O and only slightly more in hot water ^[9] , sparingly soluble in Et_2O , $CHCl_3^{[9]}$, moderately soluble in $EtOH^{[9]}$, soluble in benzene, glacial acetic acid, aniline ^[9]
Compatibility	Ignites and burns rapidly in contact with open flame in glass tube or beaker ^[9]
Flash point [°C]	Flashes @ 210 ^{o[9]}

	Picramic acid ^[6]
Chemical formula	C ₆ H ₅ N ₃ O ₅
Molecular weight [g mol ⁻¹]	199.12
Crystal system	Triclinic
Space group	P-1 (no. 2)
a [Å]	7.890(1)
<i>b</i> [Å]	8.174(1)
c [Å]	13.886(3)
α [°]	83.94(2)
β [°]	74.02(2)
γ [°]	65.76(2)
V [ų]	785.0(2)
Z	4
$ ho_{ m calc}$ [g cm ⁻³]	1.685
τ[K]	293

- [1] G. I. Gershzon, Zh. Prikl. Khim., 1936, 9, 879–884.
- [2] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© **1994–2017** ACD/Labs).
- [3] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2008**, *33*, 448–453.
- [4] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [5] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 259.
- [6] M. A. Menelaou, N. H. Fischer, CSD Communication, 1999.
- [7] T. Urbański, Ch. 17 in Chemistry and Technology of Explosives, vol. 1, 1964, Pergamon Press, Oxford.

- [8] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, *ZAAC*, **2015**, *641*, 2446–2451.
- [9] The Merck Index An Encyclopedia of Chemicals and Drugs, 9th edn., M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig (eds.), Merck and Co. Inc., Rahway, New Jersey, USA, 1976.
- [10] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248–258.

Picric acid

Name [German, acronym]: 2,4,6-Trinitrophenol, melinite^[36], lyddite^[36,48],

pertite^[36], shimose^[36], picronitric acid, carbazotic acid, nitroxanthic acid [pikrinsäure, ekrasit (Austria)^[37], sprengkörper 88^[37], grf 88^[48], granatfullung 88^[48],

bittersäure $^{[50]}$, füllpulver Nr 2,5 & 24 $^{[50]}$, PA]

Main (potential) use: Secondary (high) explosive, explosive admixture, used

in the manufacture of explosive D, main charge or

booster explosive^[48]

Structural formula:

	PA
Formula	$C_6H_3N_3O_7$
Molecular mass [g mol ⁻¹]	229.10
Appearance at RT	Pale yellow, flat needles if recryst. from H_2O (pure PA) ^[36] , colorless or yellow needles or lamellae ^[37] , lemon yellow crystalline powder but can vary in color from cream to yellow red ^[48] , yellow orthorhombic crystals obtained from EtOH ^[50] , light-bright yellow solid ^[9] , bright yellow crystalline substance which exists in two polymorphic forms ^[55] , aqueous solns. are yellow ^[55] , PA dissolved in sulfuric acid or ligroin produces colorless solns. ^[55] , yellow crystals (industrial PA) ^[55] , virtually colorless crystals if PA recryst. from sulfuric acid or hydrochloric acid ^[55] , pale yellow, odorless, intensely bitter crystals ^[61]
IS [J]	$ >50^{[12]}, 16.68 (85 \text{cm}, 2 \text{kg mass}, 20 \text{mg sample}, \text{B.M.})^{[9, 10, 13]}, 6.48 (13 \text{in}, 2 \text{kg mass}, 17 \text{mg sample}, \text{P.A.})^{[9, 10, 13]}, 16.0^{[18]}, H_{50\%} = 65-93 \text{cm} (\text{B.M.})^{[19]}, 13 \text{in} \\ (\text{P.A.})^{[19]}, 9.5 \times 10^3 \text{kg/cm}^2 (\text{critical stress for impact initiation})^{[19]}, \text{max. fall for}^{ 0/6} \text{shots} > 60 \text{cm} (2 \text{kg mass}, \text{Lenze-Kast apparatus})^{[19]}, \text{min. fall for}^{ 6/6}, \text{shots} > 24 \text{cm} (10 \text{kg mass}, \text{Lenze-Kast apparatus})^{[19]}, \text{min. fall for}^{ 6/6}, \text{shots} > 24 \text{cm} (10 \text{kg mass}, \text{Lenze-Kast apparatus})^{[19]}, \text{min. fall for}^{ 6/6}, \text{shots} > 24 \text{cm} (10 \text{kg mass}, \text{Lenze-Kast apparatus})^{[19]}, H_{50\%} = 87 \text{cm}^{[26, 35]}, \text{rel. scale} = \text{less sensitive than TNT}^{[19]}, 85 \text{cm} (2 \text{kg mass}, \text{B.M.})^{[27]}, H_{50\%} = 64 \text{cm} (\text{B.M.}, \text{type 12 tool}, 2.5 \text{kg mass}, 35 \text{mg} \text{sample, garnet paper})^{[28]}, H_{50\%} = 65 \text{cm} (5 \text{kg mass}, \text{PA contained in small 0.2 mm} \text{thick iron cup, covered with 0.2 mm thick small iron disc})^{[36]}, H_{50\%} = 30 \text{cm} (5 \text{kg mass})^{[36]}, 87 \text{cm} (\text{Bruceton method, type 12 tool, 2.5 kg mass, 40 \text{mg sample,} 5/0 \text{sandpaper, 25 trials})^{[40]}, \log(H_{50}) = 1.940 (\text{Kamlet/Adolph})^{[45]}, 42.5 \text{cm} (0 \text{explosions in 5 trials, 2,000 g mass, BM small impact device})^{[49]}, H_{50\%} = 90 \text{cm} (2.5 \text{kg mass, type 12 tool, ERL method})^{[53]}, 80 \text{cm} (2 \text{kg mass})^{[55]}, 13 \text{in} (17 \text{mg sample, P.A.})^{[56]}, 100+ \text{cm} (\text{B.M.})^{[56]}, H_{50\%} = 64 \text{cm} (2.5 \text{kg mass})^{[64]} $

FS [N]	>363 ^[10] , explodes if powder is exposed to friction between plates of iron, steel or stones ^[55] , wood mallet on stone = 0% ^[58] , wood mallet on soft wood = 0% ^[58] , wood mallet on hard wood = 0% ^[58]					
ESD [J]	8.98 ^[5, 18, 65]					
N [%]	18.34					
Ω(CO ₂) [%]	-45.39					
T _{m.p.} [°C]	point = 121.3 ^[37] , so melting point appa	$124^{[20]}$, $121.8-122.4^{[29]}$, $122.5^{[36, 37, 50, 58]}$, (settablimes > mpt. $^{[37]}$), $121.8-122.4$ (Thomas Hooveratus @ 2 °C/min) $^{[42]}$, $123^{[46]}$, $121.8^{[52]}$, $122-12$ tals) $^{[55]}$, 121.3 (freezing point, orthorhombic cr	er capillary 23 ^[9, 61] , 122.5			
T _{b.p.} [°C]		195 (@ 2 mm Hg) ^[39] , 255 (@ 50 mm Hg) ^[39] , 325 \pm 10 (@ 760 mm Hg, most probable value) ^[39] , 160 $-$ 198 ^[43]				
T _{dec.} [°C]	237 (DSC @ 5 °C/min),>300 (DSC @ 5 °C/min) ^[1] , 190 (77%, DSC) ^[12] , 332 (exotherm peak max., DSC @ 20 °C/min) ^[20] , 160 (slight dec.) ^[37]					
	pycnometer) ^[2] , 1.76 (crystal) ^[13, 27] , 1.76 ^[19, 46, 60] , 1.763 ^[61] Loading ρ @ different pressures:					
	Pressure (kpsi)	ρ (g cm ⁻³)				
	3	1.4 ^[13, 27, 56]				
	5	1.5 ^[13, 27, 56]				
	10	1.57 ^[13, 27, 56]				
	12 1.59 ^[13, 27, 56]					
	15 1.61 ^[13, 27, 56]					
	20	1.64 ^[13, 27, 56]				
	Cast	(or rel				
	Crystal	1.76 ^[27, 56]				
	gr. = 1.513 (molten 1.763 (crystal) ^[50] , 1 (crystalline) ^[55] , 0.9	= 1.813 ^[37] , sp. gr. = 1.589 (molten PA @ 124 °C PA @ 170 °C) ^[37] , apparent weight of crystal. PA	$A = 0.9 - 1.0^{[37]},$ sp. gr. = 1.763			

	ρ of PA dep	ending o	n the pressure ap	plied, v	alues from ^[37]	:			
	Pressure (kg/cm²)	applied	Average ρ (g cm ⁻³)	Press (kg/c	ure Applied m²)	Average ρ (g cm ⁻³)			
	275		1.315	2,750)	1.714			
	685		1.480	3,43	5	1.731			
	1,375		1.614	4,125		1.740			
	2,060								
	1.63 (@ 4,000 kg/cm², $Kast$) ^[37] , 1.74 (@ 4,500 kg/cm²) ^[37] , 1.66 (solidified PA on slowly cooling molten PA) ^[37] , 1.70 (solidified PA on rapidly cooling molten PA) ^[37]								
Heat of formation	-51.3 kcal (Δ <i>H</i> _f) ^[37] , -4 208.9 kcal	/mol ^[14] , - 46.8–50.9 /kg ^[54] , -	-248.53 kJ/mol (ε 9 kcal/mol (Δ <i>H</i> _f) ^{[3}	enthalpy 7], –226 _f H (s)) ^{[3}	of form.) ^[43] , .0 kcal/kg (er ^{5]} , 248 kcal/k	nthalpy of form.) ^[41] , g ^[13, 30] , –214.5 kJ/mol			
Heat of combustion	2,672 kcal/kg ^[13, 30, 56] , 2,696 kcal/kg (@ C^{V}) ^[54] , ΔH_c = 621.2 kcal/mol (@ C^{V}) heat of comb. = 611.93 kcal/mol (@ 1 atm.) ^[62] Exptl. heat of combustion data ^[63] :								
	Exptt. neat of compustion data ¹⁵⁵ :								
	-Δ <i>U</i> _{B/M} (α	al/g)	$-\Delta U_{\rm B}$ (kcal/mol)		U _R (kcal/mol 1 atm. and nstant vol.)	$-\Delta H_R$ (kcal/mol @ 1 atm. and constant pressure)			
	2,687.21	±0.84 615.69		61	4.44	611.93			
	Calcd. (EXPLO5 6.03)	Lit. values			Exptl.				
$-\Delta_{\rm ex}U^{\rm o}$	4,604	4,184 ^[4]			3,437 [H ₂ O (l)] ^[8]				
[kJ kg ⁻¹]		1,000 k	cal/kg ^[30]		1,000 cal/	g ^[13, 56]			
			l/g (@ 1.76 g cm ⁻ Mader) ^[19]	³ ,	1,010 kcal	/kg [H ₂ O (g)] ^[17]			
			al/g (@ 1.00 g cm <i>Mader</i>) ^[19]	ı ⁻³ ,	1,010 kcal/ [H ₂ O vapor]	kg (@ 1.700 g cm ⁻³)			
				[35]	1,050 kca	/kg ^[55]			
	1	1.28 kcal/g (Q _{max} , calcd.) ^[35] 910–935 kcal/kg ^[37]			1				

		1,000 kcal/kg (<i>Kast</i>) ^[37]	
		960 kcal/kg (Schmidt)[37]	
		810 cal ^[39]	
		1,054 kcal/kg (@ 1.700 g cm $^{-3}$, calcd.) [H_2O vapor] $^{[41]}$	
		$-\Delta H_{\text{det}} = 3.59 \text{ kJ/g}^{[60]}$	
T _{ex} [K]	3,484	3,230 (no units given, probably °C) ^[4, 30]	3,300–3,500 °C ^[55]
		3,230 °C (<i>Kast</i>) ^[37]	
		3,530 °C (<i>Schmidt</i>) ^[37]	
		2,430 °C ^[39]	
		3,280 (@ 1.76 g cm ⁻³ , calcd. BKWR) ^[14]	
		3,330 (@ 1.71 g cm ⁻³ , calcd. BKWR) ^[14]	
		3,420 (@ 1.60 g cm ⁻³ , calcd. BKWR) ^[14]	
		4,010 (@ 1.76 g cm ⁻³ , calcd. BKWS) ^[14]	
		4,030 (@ 1.71 g cm ⁻³ , calcd. BKWS) ^[14]	
		4,080 (@ 1.60 g cm ⁻³ , calcd. BKWS) ^[14]	
p _{C-J} [kbar]	234	251 (@ 1.767 g cm ⁻³ , calcd.) ^[35]	2,150 kg/cm ² (@ 0.20 g cm ⁻³ , piston and obturator) ^[36]
		259 (@ 1.76 g cm ⁻³ , calcd. BKWR) ^[14]	3,055 kg/cm ² (@ 0.25 g cm ⁻³ , piston and obturator) ^[36]
		243 (@ 1.71 g cm ⁻³ , calcd. BKWR) ^[14]	3,865 kg/cm ² (@ 0.30 g cm ⁻³ , piston and obturator) ^[36]
		210 (@ 1.60 g cm ⁻³ , calcd. BKWR) ^[14]	0.187 Mbar ^[56]
		237 (@ 1.76 g cm ⁻³ , calcd. BKWS) ^[14]	

		222 (@ 1.71 g cm ⁻³ , calcd. BKWS) ^[14]	
		192 (@ 1.60 g cm ⁻³ , calcd. BKWS) ^[14]	
VoD [m s ⁻¹]	7,472	7,100 (@ 1.69 g cm ⁻³) ^[4]	5,270 (@ 1.64 g cm ⁻³ , pressed, 1.0 in charge diameter) ^[13]
		7,460 (@ 1.70 g cm ⁻³) ^[31] 7,100 (@ 1.59–1.70 g cm ⁻³ , av. value from lit.) ^[31]	7,350 (@ 1.71 g cm ⁻³ , cast, 1.25 in charge diameter) ^[13]
		7,200 (@ 1.7 g cm ⁻³) ^[30]	7,570 (@ 1.76 g cm ⁻³) ^[6, 7, 8, 14]
		7,680 (@ 1.76 g cm ⁻³ , calcd.,	7,260 (@ 1.71 g cm ⁻³) ^[6, 8, 14, 34]
		Mader) ^[19]	7,260 (@ 1.7 g cm ⁻³) ^[37]
		5,545 (@ 1.00 g cm ⁻³ , calcd., <i>Mader</i>) ^[19]	7,100 (@ 1.60 g cm ⁻³) ^[6, 8, 14]
		7,360 (@ 1.76 g cm ⁻³ (TMD),	5,210 (@ 1.64 g cm ⁻³ , pressed) ^[9]
		calcd., R-P method) ^[33]	7,390 (@ 1.71 g cm ⁻³ , cast) ^[9]
		7,570 (@ 1.767 g cm ⁻³ , calcd.) ^[35]	7,350 (@ 1.70 g cm ⁻³) ^[16]
		7,580 (@ 1.76 g cm ⁻³ (TMD), calcd., <i>Aizenshtadt</i>) ^[33]	4,965 (@ 0.97 g cm ⁻³) ^[19]
		7,510 (@ 1.76 g cm ⁻³ (TMD),	6,190 (@ 1.32 g cm ⁻³) ^[19]
		calcd., K-J) ^[33]	6,510 (@ 1.41 g cm ⁻³) ^[19]
		7,360 (@ 1.76 g cm ⁻³ (TMD), calcd., R-P method) ^[33]	7,200 (@ 1.62 g cm ⁻³) ^[19]
			7,480 (@ 1.70 g cm ⁻³) ^[19]
		7,100–7,150 generally accepted as highest VoD values found ^[37]	7,160 (@ 1.6 g cm ⁻³) ^[30]
			7,350 (cast) ^[27]
		7,510 (@ 1.76 g cm ⁻³ , calcd. BKWR) ^[14]	6,777 (cast PA) ^[36]
		7,360 (@ 1.71 g cm ⁻³ , calcd. BKWR) ^[14]	4,835 (@ 0.862 g cm ⁻³ , compressed PA) ^[36]
		7,030 (@ 1.60 g cm ⁻³ , calcd. BKWR) ^[14]	4,970 (@ 0.98 g cm ⁻³ , extra light Pb tubing) ^[39]
		7,520 (@ 1.76 g cm ⁻³ , calcd. BKWS) ^[14]	5,980 (@ 1.30 g cm ⁻³ , unconfined charge of 21 mm diameter, 1 g detonator) ^[37]

V ₀ [L kg ⁻¹]	638	675 (@ 0 °C) ^[4]	675 ^[13]
		725 (Robertson, Garner) ^[37]	826 ^[15]
		737 (Schmidt) ^[37]	730 ^[55]
		675 (Kast) ^[37]	
		877 (@ 0 °C and 760 mm Hg) ^[39]	

VoD values (m/s) in cylindrical charges of 3.17 cm diameter, unconfined, cast PA, ρ = 1.71 g cm⁻³, no. shots fired = $10^{[51]}$: 7,296, 7,275, 7,275, 7,274, 7,273, 7,263, 7,257, 7,239, 7,235, 7,227, mean value = 7,260 m/s^[51]

Critical T [K]	903 (explosion in 250 μs) ^[53]
Trauzl test [cm³, % TNT]	$ 101\% \text{TNT}^{[9,13,19]}, 103-117\% \text{TNT}^{[31]}, 30-365 \text{cc} (10 \text{g charge})^{[27]}, \\ 250-350 \text{mL}^{[37]}, 12.4 \text{cc} (\text{small Trauzl test})^{[39,49]}, 470 \text{cc} (15 \text{g sample})^{[36]}, \\ 300 \text{cm}^3 (\text{sand tamping}, 10 \text{g sample})^{[39]}, \text{more powerful than TNT}^{[50]}, 305 \text{cc}^{[55]}, 315^{[59]}, 332^{[59]} $
Small lead block compression test	50 g PA, exploded by detonator on top of 64 mm long lead cylinder = 16.4 mm block shortening ^[39] , PA detonated by detonator containing 1.5 g fulminate, 40 g exploded on 67 mm diameter Pb block produced shortening of 10.5 mm ^[39]
Sand test [g]	$48.5~g~(200~g~bomb)^{[9,~13]},~103-110\%~TNT^{[31]},~113\%~TNT^{[27]},~41.8~g~sand~crushed~(1,700~g~bomb,~0.4~g~sample)^{[31]},~104\%~TNT^{[37]},~57.0~g~(amount~of~sand~crushed~finer~than~30~mesh,~by~total~charge~consisting~of~base~charge~of~0.50~g~PA~and~0.30~g~priming~charge~of~MF)^{[49]},~45.3~g~(amount~of~sand~crushed~finer~than~30~mesh,~by~base~charge~of~0.50~g~PA)^{[49]},~rel.~strength~cf.~TNT = 1.04^{[49]}$
Ballistic mortar test	112% TNT ^[9, 13, 19, 62] , 106–112% TNT ^[31] , 110–120% TNT ^[37]
Ballistic pendulum test	More powerful than TNT ^[50]
Initiating efficiency	Minimum initiating charge of primary explosive (g) required to initiate explosion in 0.5 g PA in a No. 8 detonator shell, both explosives compressed under 3,400 lb/in ^{2[39]} : 0.115 g DDNP ^[39] , 0.225 g MF ^[39] , 0.12 g LA ^[39] , 0.24 g minimum detonating charge LA ^[56] Minimum amount of primary explosive (g) needed to cause detonation of PA ^[39] : 0.02 g cadmium azide ^[39] , 0.035 g SA ^[39] , 0.025 g LA ^[39] , 0.045 cuprous azide ^[39] , 0.075 g mercurous azide ^[39] , 0.115 g thallium azide ^[39] , 0.005 g silver fulminate ^[39] , 0.05 g cadmium fulminate ^[39] , 0.08 g copper fulminate ^[39] , 0.30 g MF ^[39] , 0.43 g thallium fulminate ^[39]

	Minimum initiating charge (g) required for 0.4 g PA in detonator capsule, initiator added, pressed down, short reinforcing cap, pressed @ 200 atm/					
		in ^{2[39]} : 0.05 g cyanuric azide ^[39] , 0.21 g MF ^[39]				
	Minimum initiating charge (g) required for 0.4 g PA, compressed in detonator capsule, pressed @ 1,000 lb/in ^{2[39]} : 0.21 g fulminate (with reinforcing cap) ^[39] , 0.05 g HMTD (with reinforcing cap) ^[39] , 0.06 g HMTD (without reinforcing cap) ^[39]					
				e which causes com ^{49]} , 0.225 g MF ^[49] , (plete detonation of 0.12 g LA ^[49]	
5 s explosion T [°C] 5 s ignition T [°C]				ec., cook off) ^[56] value) ^[30] , 295–322	(dec., Russian value) ^[30]	
Explosion T[°C]	20 °C/min) [[] 310 (explos	^{19]} , 309 (bath ion, if rapidl	n heating rat y heated) ^[37] ,	e 5 °C/min) ^[19] , 260	816 (bath heating rate °C (30 min) ^[37] , >300– heating in an enclosed y heated ^[61]	
Initiation T [°C] Ignition T [°C]	243–288 (slow heating) ^[37] , 337–346 (rapid heating) ^[37] 300–310 (vacuum) ^[39] , 316 (heated from 100 °C @ 20 °C/min) ^[36] , 309 (heated from 100 °C @ 5 °C/min) ^[36]					
Detonating T [°C]	T (°C) and t	me to explo	sion (s), 25	mg sample ^[47] :		
	T(°C)	Time (s)	T (°C)	Time (s)		
	350	1.48	277	26.3		
	330	2.96	273	29.6		
	312	5.50	267	50.3		
	294	11.8	260	No explosion		
	286	16.6				
	~320 ^[48] , 32	.0 (5 s) ^[9] , 30	00-310 (def	lagration) ^[55]	_	
Thermal stability				samples, small dia 7/26.3, 267/50.3,	ameter thin-walled Cu 260/failed ^[19, 32]	
	Ignition $T(^{\circ}C)$ /heating times (min) after bath reached 100 $^{\circ}C^{[27]}$: 243/13.25 (ignition), 281/17.17 (ignition), 281/19.25 (ignition), 262/36.47 (ignition) $^{[27]}$					
	No. of moles gas produced per mole PA/no. $h^{[20]}$: 0/22 (@ 120 °C) ^[20] , 0/72 (@ 120 °C) ^[20] , 3.47/22 (@ 220 °C) ^[20] , 3.64/72 (@ 220 °C) ^[20] , 3.89/22 (@ 320 °C) ^[20] , 4.09/72 (@ 320 °C) ^[20]					
	deterioration	on ^[9, 50] , 2.8 o	cc/g/h @ 21	temperatures show 10°C ^[53] , stable at u upidly heated ^[61]		

100 °C heat test [% mass loss]	0.03% loss in first 48 h $^{[13]}$, 0.09% loss in second 48 h $^{[13]}$, no explosion in 100 h $^{[13]}$					
75 °C Int. heat test	0.05% loss in	48 h ^[13]				
Vacuum stability test [cm³/h]	0.2 cc/40 h @	100 °C ^[13] , 0	.5 cc/40 h @) 120 °C ^{[13, 5}	6]	
Vapor pressure [atm. @ °C]					, 7.47 × 10 ⁻⁷ Torr ; @ 195 °C ^[55] , 50	mm Hg
Burn rate [mm/s]	remains ^[48] , ig packaging ^[55]	Large quantities have been burned without explosion but explosion risk remains ^[48] , ignited PA burns slowly with a smoky flame in open air or wood packaging ^[55] Mass burn rate of volatile explosives ^[57] :				
			<i>m</i> , gm cm⁻²	s ⁻¹		
	40 atm	100 atm	200 atm	400 atm	1,000 atm	
	0.46	0.945	1.75	3.36	8.19	
	Burn rate and equilibrium combustion temperature ^[57] : T_e = 2,475 K ^[57] , m = 0.945 g cm ⁻² s ⁻¹ (100 atm.) ^[57] Dependence of burning rate of volatile explosives on pressure, PA $\rho_{\rm max}$ = 1.81 g/cm ^{3[57]} :					
	$\delta = \rho/\rho_{\text{max}}$ Coefficients in formulae Pressure, atm.					
		а	b	Ν		
	~1.0	0.14	0.008	1.0	25-950	
		-	0.036	0.68	25-80	
		_	0.0101	0.97	80-950	

Solubility [g/mL]

Solubility (g/100 solvent, %)[13]:

Wat	ter	Alco	hol	Ben	zene	Tolu	iene	Eth	ier
°C	%	°C	%	°C	%	°C	%	°C	%
0	0.85	0	4.5	0~2	20 ~ 13	20~			
20	1.17	20	6.9	20	9.6	60 ~ 30	34.7	3.96	
40	1.88	40	12.0	40	27.5				
60	2.98			60	59				
80	4.53								
100	7.1								
Chloro	oform	Etl ace	nyl tate	ı	bon hloride	Pyri	dine	Acetone	
°C	%	°C	%	°C	%	°C	%	°C	%
20~2	20	42	20 ~ 0.07	10	24	20	125		
60 ~ 6	30	50	60 ~ 0.4	30	37.5	30	137		
		40	58			50	58	40	164
		50	69					50	208
Me	OH		ropyl ohol	Propa	anol-1	ı	bon Ilfide		
°C	%	°C	%	°C	%	°C	%		
0	14	10	6.4	0	2.4	20	0.12		
20	19	30	9.8	20	3.3	30	0.16		
40	31	50	15.5	40	5.4				
50	41			50	7.4				

Solubility in $H_2O^{[37]}$:

T (°C)	Amount of PA (g) dissolved in 100 g H ₂ O	T(°C)	Amount of PA (g) dissolved in 100 g H ₂ O
0	0.68	60	2.81
10	0.81	70	3.47
20	1.11	80	4.41
30	1.40	90	5.72
40	1.78	100	7.24
50	2.19		

Solubility in organic solvents^[37]:

Solvent	T(°C)	Amount of solvent (parts)	Amount of PA (parts)
EtOH	25	100	7.452
Et ₂ O	13	100	1.08
Et ₂ O (H ₂ O saturated)	13	100	4.00
Benzene	6	100	3.50
Benzene	15	100	5.9
Toluene	20	100 mL soln.	12.0 g
Amyl alcohol	20	100 mL soln.	1.755 g

Solubility in aqueous solns. of alcohols and acetone^[37]:

% of organic	Amount of PA	Amount of PA (g) dissolved in 100 g @ 25 °C			
component of soln.	MeOH	EtOH	Acetone		
0	1.3	1.3	1.3		
30	2.4	3.1	9.5		
60	7.1	10.5	46.7		
80	-	13.8	87.8		
81	-	13.8	-		
85	_	13.2	_		
90	16.0	12.3	-		
100	21.1	8.0	43		

Aqueous solubility = 12,400 mg/L @ 25 °C^[46], slightly soluble in H_2O , $Et_2O^{[48]}$, moderately soluble in EtOH, ⁱPrOH, and benzene^[48], soluble in toluene, MeOH and baking soda soln. ^[48], very soluble in acetone^[48], slightly soluble in water at normal temperature^[50], moderately soluble in hot water^[50], slightly soluble in Et_2O , CCl_4 and $CS_2^{[50]}$, readily soluble in hot EtOH, benzene, toluene, acetone, MeOH and other solvents^[50], 12,800 mg/L in H_2O @ 25 °C^[52]

Solubility data in water from^[55]:

T(°C)	Solubility of PA g/100 g solvent	T(°C)	Solubility of PA g/100 g solvent
0	1.05	40	1.98
5	1.07	50	2.53
10	1.10	60	3.17
15	1.16	70	3.89
20	1.22	80	4.66
25	1.37	90	5.49
30	1.55	100	6.33

Solubility in sulfuric acid data from^[55]:

Strength of sulfuric	Solubility, g PA/100 g acid @ T(°C)					
acid	18 °C	50 °C	80 °C			
0	1.184	2.389	4.541			
2.3	0.0230	0.692	1.940			
4.7	0.142	0.368	1.251			
10.0	0.091	0.265	0.727			
18.0	0.049	0.214	0.561			
25.5	0.092	0.230	0.587			
50.5	0.429	0.645	1.104			
69.7	0.928	1.424	2.203			
87.9	2.451	5.826	7.610			
97.4	7.532	12.785	24.024			
100.0	10.180	16.230	25.860			

Solubility data in organic solvents from^[55]:

Solvent	Solubility of PA, % at temperatures in °C											
	15	20	27	35	38	42	48	51	56	60	65	78
Alcohol	-	5.9										40
Dichlo- robenzene	1	3.45								8.4		
Nitroben- zene	-	28.3		33.3		38.3		42.5	46.2			
Dichloro- ethane	9.1		12.3	14.3	16.7		22.7		29.4		39.7	
Benzene	6.8	8.8	11.4	17.6		23.5			33.5		41.7	50

Soluble in Et_2O , MeOH, glycerin, CHCl₃, CS_2 and in resins and lacquers [55],

1 g dissolves in: 78 mL water^[61], 15 mL boiling water^[61], 12 mL EtOH^[61], 10 mL benzene^[61], 35 mL CHCl₃^[61], 65 mL Et₂O^[61]

Partition coefficients

Partition coefficients for PA between two liquid phases: either water-toluene or water-Et $_2O^{[37]}$:

Conc. of PA in soln. (g/L)	Soln. vols.	Amount of PA (g) dissolved in 100 mL soln.		Partition coefficient			
	H₂O− Toluene	H ₂ O	Toluene				
10	100:100	0.275	0.725	1:2.63			
3		0.125	0.175	1:1.24			
1		0.062	0.038	1:0.63			
0.1		0.010	-	-			
-	H ₂ O-Et ₂ O	H ₂ O	Et ₂ O	-			
10	106:96	0.374	0.670	1:1.79			
1		0.085	0.011	1:0.129			
0.1		0.0105	0.00011	1:0.010			
0.01		0.000952	-	_			

	Values from ^[37] , partition coefficient $k = C_1^n/C_2$; $n =$ temperature-independent exponent, C_1 and $C_2 =$ concentrations:						
	T Benzene-H ₂ O T Toluene- (°C) $(N = 1.727 \text{ k} \times 10^2)$ (°C) $(N = 1.67)$				H ₂ O 7 k × 10 ²)	Chlorobenzene $-H_2O$ (N = 1.674 k × 10 ²)	
	10	1.563	20	1.875		2.421	
	30	1.892	40	2.323		2.965	
	50	2.275	60	2.884		3548	
	70	2.673	80	3.532		4.416	
Log K _{ow}	2.03 ^[46] , 1.33 ^[52]						
Log K _{oc}	2.00[4	6]					
Hygroscopicity	0.04% @ 30 °C with 90% RH ^[13] , only slightly hygroscopic ^[37] , PA in contact with H ₂ O-saturated air @ 32 °C for 48 h absorbed 0.37% H ₂ O ^[37] , slightly hygroscopic ^[48] , nonhygroscopic ^[9] , virtually nonhygroscopic ^[55]						
Radiation sensitivity	No drop in chemical stability after exposure to γ -rays with intensity of 3×10^4 Roentgens/h administering doses of 0.5–20 megaroentgens with total exposure times of 15–660 h (cobalt-60 source) ^[50]						
Compatibility	Presence of moisture increases reactivity especially with metals ^[48] , reacts with all metals except Al and Sn ^[48] , is highly acidic and corrosive ^[48] , forms very dangerous mixtures with lead or lead compounds ^[48] , dry PA has little effect on ordinary metals ^[50] , moist PA in contact with Fe, Pb, Ni, Zn or Cu can form dangerous picrates ^[50] , molten PA can form picrates on contact with Pb or Zn ^[50] , PA reacts with all metals except Al and Sn ^[9] , incompatible with all oxidizable substances, albumin, gelatin and alkaloids ^[61]						
Specific heat [cal/g]	Values from ^[13] :						
	T(°C) Specific heat (cal/g/°C)						
	0	0.23					
	30	0.25	8				
	60	0.28	32				
	90	0.31	.0				
	120 0.337						

	Values from ^[37] :					
	<i>T</i> (°C)	Specific heat (cal/g)				
	0	Specific heat (cal/g) 0.234	7 (°C)	0.300		
	20	0.250	100	0.318		
	40	0.266	120	0.337		
	60	0.282	120	0.557		
	0.234 ^[55]	0.202	<u> </u>			
Heat capacity [J•mol ⁻¹ •K ⁻¹]	C ⁰ _{p,m} = 211.13 @ 298.15 K (calcd.) ^[66] , 258.59 @ 400.00 K (calcd.) ^[66] , 295.72 @ 500.00 K (calcd.) ^[66] , 324.47 @ 600.00 K (calcd.) ^[66] , 346.67 @ 700.00 K (calcd.) ^[66] , 363.99 @ 800.00 K (calcd.) ^[66]					
Heat of solidification [cal/mol]	4.30 ^[37] , 4.6	56 ^[37]				
Heat of fusion [cal/g]	20.4 ^[13] , 20 ^[46] , 20.4 (latent heat of fusion) ^[55]					
ΔH _{sub} [kJ/mol]	105.1 (exptl.) ^[44] , 111.3 (calcd., QSPR) ^[44]					
Diffusion coefficient [cm²/s]	0.066 (air) ^[46] , 7.03 × 10 ⁻⁶ (water) ^[46]					
Rifle bullet impact test	60% partials, 40% burned, 0% explosions, 0% unaffected in trials ^[13]					
Plate dent test	Brisance = 107% TNT, method A, pressed, not confined, ρ = 1.50 g cm ^{-3[13]}					
Booster sensitivity test	Pressed, 10 g tetryl, 2 g wax, $\rho = 1.6$ g cm ^{-3[13]} ; cast, 5 g tetryl, 0 g wax, $\rho = 1.7$ g cm ^{-3[13]} ; 50% detonation sensitivity, 100 g tetryl, 2 g wax gap, $\rho = 1.7$ g cm ^{-3[56]}					
Thermal conductivity [cal/s/cm/°C]	6.24 × 10 ⁻⁴ @ 1.406 g cm ^{-3[13]}					
Hardness	2.1 (Moh's scale) ^[13]					
Hess brisance	16 mm ^[55]					
Combustion T [K]	Burn rate and equilibrium combustion temperature ^[57] : $T_e = 2,475 \text{ K}$, $m = 0.945 \text{ g cm}^{-2} \text{ s}^{-1} (100 \text{ atm.})^{[57]}$					
Specific volume	0.423 cc/g (@ 1.76 g cm $^{-3}$, calcd., $Mader$) $^{[19]}$, 0.714 cc/g (@ 1.00 g cm $^{-3}$, calcd., $Mader$) $^{[19]}$					
Manometric bomb	2,350 kg/cm ² (@ 0.2 g cm ⁻³ , pressure formed on explosion in manometric bomb) ^[36] , 2,210–2,310 kg/cm ² (@ 0.20 g cm ⁻³ , manometric bomb) ^[36, 38] , 3,230 kg/cm ² (@ 0.25 g cm ⁻³ , manometric bomb) ^[36, 38]					

	PA ^[3]	PA ^[21]	PA ^[22, 23]	PA ^[24]	PA ^[25]
Chemical formula	C ₆ H ₃ N ₃ O ₇	C ₆ H ₃ N ₃ O ₇	C ₆ H ₃ N ₃ O ₇	C ₆ H ₃ N ₃ O ₇	C ₆ H ₃ N ₃ O ₇
Molecular weight [g mol ⁻¹]	229.10	229.10	229.10	229.10	229.10
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic
Space group	Pca 2 ₁ (no. 29)	P c a 2 ₁ (no. 29)	Pca2 ₁ (no. 29)	Pca 2 ₁ (no. 29)	Pca2 ₁ (no. 29)
a [Å]	9.2548	9.254(2)	9.262(1)	9.1849(9)	9.1295(2)
<i>b</i> [Å]	19.1408	19.127(4)	19.137(1)	18.8333(19)	18.6869(5)
c [Å]	9.7134	9.704(2)	9.714(1)	9.8061(99)	9.7902(2)
α [°]	90	90	90	90	90
β [°]	90	90	90	90	90
γ [°]	90	90	90	90	90
<i>V</i> [Å ³]	1,720.6740	1,717.62	1,721.78	1,696.3(3)	1,670.23(7)
Z	8	8	8	8	8
$ ho_{ m calc}$ [g cm $^{-3}$]					
<i>T</i> [K]					

Orthorhombic crystals obtained from EtOH.

- [1] M.-J. Liou, M.-C. Lu, J. Mol. Catal. A: Chem., 2007, 277, 155–163.
- [2] C.-M. Jin, Y. Chengfeng, C. Piekarski, B. Twamley, J. M. Shreeve, Eur. J. Inorg. Chem., 2005, 18, 3760–3767.
- [3] P. Srinivasan, M. Gunasekaran, T. Kanagesekaran, R. Gopalakrishnan, P. Ramasamy, *J. Cryst. Growth.*, **2006**, *289*, 639–646.
- [4] Explosives, Section 2203 in Chemical Technology, F. H. Henglein, Pergamon Press, Oxford, 1969, pp. 718–728.
- [5] M. H. Keshavarz, Z. Keshavarz, ZAAC, 2016, 642, 335-342.
- [6] M. H. Keshavarz, J. Haz. Mat., 2009, 166, 762-769.
- [7] M. H. Keshavarz, Propellants, Explosives, Pyrotechnics, 2012, 37, 489-497.
- [8] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2008**, *33*, 448–453.
- [9] Ordnance Technical Intelligence Agency, Encyclopedia of Explosives: A Compilation of Principal Explosives, Their Characteristics, Processes of Manufacture and Uses, Ordnance Liaison Group-Durham, Durham, North Carolina, 1960.
- [10] B.M. abbreviation for Bureau of Mines apparatus; P. A. abbreviation for Picatinny Arsenal apparatus.
- [11] P. Politzer, J. S. Murray, Centr. Eur. J. Energ. Mater., 2014, 11, 459-474.
- [12] T. A. Roberts, M. Royle, ICHEME Symposium Series no. 124, 16th-18th April 1991, pp. 191-208.
- [13] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.

- [14] M. L. Hobbs, M. R. Baer, Calibrating the BKW-EOS with a Large Product Species Data Base and Measured C-J Properties, in Proceedings of the 10th International, Detonation Symposium, Office of Naval Research ONR 33395–12, 1993, pp. 409–418.
- [15] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [16] P. W. Cooper, Explosives Engineering, Wiley-VCH, New York, 1996.
- [17] A. Smirnov, M. Kuklja, On the Use of Heat of Explosion for Blast Action Estimate. Individual Explosives and their Mixtures, in Proceedings of the 20th Seminar on New Trends in Research of Energetic Materials, Pardubice, April 26th–28th, 2017, pp. 381–392.
- [18] N. Zohari, S. A. Seyed-Sadjadi, S. Marashi-Manesh, Central Eur. J. Energ. Mater., 2016, 13, 427–443.
- [19] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1978.
- [20] J. C. Oxley, J. L. Smith, E. Rogers, X. X. Dong, J. Energet. Mater., 2000, 18, 97–121.
- [21] E. N. Duesler, J. H. Engelmann, D. Y. Curtin, I. C. Paul, *Crystal Structure Communications*, **1978**, 7, 449–453.
- [22] M. Soriano-Garcia, T. Srikrishnan, R. Parthsavathy, Acta Cryst., 1978, 34A, s114b.
- [23] T. Srikrishnan, M. Soriano-Garcia, R. Parthsavathy, Z. Kristallogr., 1980, 151, 317–232.
- [24] B. Naryana, B. K. Sarojini, H. S. Yathirajan, CSD Communication, 2007.
- [25] V. Bertolasi, P. Gilli, G. Gilli, Crystal Growth and Design, 2011, 11, 2724–2735.
- [26] M. J. Kamlet, H. G. Adolph, *Propellants and Explosives*, **1979**, 4, 30–34.
- [27] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 7, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1975**.
- [28] D. E. Bliss, S. L. Christian, W. S. Wilson, J. Energet. Mater., 1991, 9, 319–348.
- [29] E. G. Kayser, J. Energet. Mater., 1983, 1:3, 251-273.
- [30] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1969**.
- [31] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [32] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1974.
- [33] L. R. Rothstein, R. Petersen, *Propellants and Explosives*, 1979, 4, 56–60.
- [34] J. R. Stine, J. Energet. Mater., 1990, 8, 41-73.
- [35] P. Politzer, J. S. Murray, High-Performance, Low Sensitivity: The Impossible (or Possible) Dream? in Energetic Materials From Cradle to Grave, M. K. Shukla, V. M. Boddu, J. A. Steevens, R. Damavarapu, J. Leszczynski (eds.), Springer-Verlag, 2017, pp. 1–22.
- [36] T. L. Davis, The Chemistry of Powder and Explosives, vol. 1, 1941, John Wiley and Sons Inc., New York.
- [37] T. Urbański, Ch. 13 in Chemistry and Technology of Explosives, vol. 1, 1964, Pergamon Press, Oxford.
- [38] T. Urbański, Ch. 16 in Chemistry and Technology of Explosives, vol. 1, 1964, Pergamon Press, Oxford.
- [39] T. L. Davis, The Chemistry of Powder and Explosives, vol. 2, 1943, John Wiley and Sons Inc., New York.
- [40] P. Politzer, J. S. Murray, Computational Studies of Energetic Organic Molecules, AD-A274 726, ONR Technical Report, December 27th 1993.
- [41] A. Smirnov, M. Kuklja, M. Makhov, V. Pepkin, *Methodical Problems of Experimental Definition of Heat Of Explosive Transformation*, ICT **2017**, Karlsruhe, Germany, pp. 15-1–15-11.

- [42] E. G. Kayser, *Analysis Methods For Explosive Materials I. Polynitro Compounds*, NSWC TR 81–123, Naval Surface Weapons Center, Maryland, USA, 3rd March **1962**.
- [43] A. W. Arber, P. Golding, S. J. Trussell, *Scale-Up of Energetic Polyphosphazenes Development of a Continuous Nitration Process*, ICT **2008**, Karlsruhe, Germany, pp. 12-1–12-12.
- [44] H. W. Lee, K.-H. Chung, S. G. Cho, B.-S. Lee, C. K. Kim, *Predictive Studies on Various Physicochemical Properties of Explosive Molecules*, ICT **2006**, Karlsruhe, Germany, pp. 177-1–177-12.
- [45] N. R. Badders, C. Wei, A. A. Aldeeb, W. J. Rogers, M. S. Mannan, J. Energet. Mater., 2006, 24, 17–33.
- [46] E. P. Burrows, D. H. Rosenblatt, W. R. Mitchell, D. L. Parmer, Organic Explosives and Related Compounds: Environmental and Health Considerations, Technical Report 8901, US Army Biomedical Research and Development Laboratory, Frederick, MD, USA, March 1989.
- [47] L. W. Collins, L. D. Haws, Thermochim. Acta, 1977, 21, 1–38.
- [48] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [49] L. R. V. Clark, Industrial and Engineering Chemistry, 1934, 26, 554-557.
- [50] Handbook of Foreign Explosives, U. S. Materiel Command, US Army Foreign Science and Technology Center, Washington, D. C., USA, October 1965.
- [51] W. B. Cybulski, W. Payman, D. W. Woodhead, Proc. Royal Soc. A, 1949, 51-72.
- [52] T. Jenkins, C. Vogel, Department of Defense Operational Range Sustainability Through Management of Munitions Constituents, SERDP ESTCP Technical Report, 04/01/2014.
- [53] J. Wenograd, The Thermal Sensitivity of Explosives and Propellants, US Naval Ordnance Laboratory, White Oak, Maryland, USA, NOLTR 61–97, 1st September 1961.
- [54] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part III, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [55] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part II, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [56] Engineering Design Handbook, Explosives Series, Explosive Trains, AMC Pamphlet AMCP 706–179, Headquarters, US Army Materiel Command, Alexandria, Virginia, USA, 15th January 1974.
- [57] N. N. Bakhman, A. F. Belyaev, Combustion of Heterogeneous Condensed Systems, translated from Gorenje Geterogennykh Kondensirovannykh Sistem, Institute of Chemical Physics, Academy of Science, U.S.S.R. Moscow, Nauka Publication (1967) by C. A. J. Elphinston, M. Goyer, I. C. Graham, G. A. Heath, G. R. Ramsden, R.P.E. Translation No. 19, Ministry of Technology, London, November 1967.
- [58] Services Textbook of Explosives, JSP 333, Procurement Executive, Ministry of Defence, UK, March 1972.
- [59] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [60] C. B. Storm, J. R. Travis, Molecular Composition, Structure, and Sensitivity of Explosives, in Structure and Properties of Energetic Materials, D. H. Liebenberg, R. W. Armstrong, J. J. Gilman, (eds.), Symposium, Boston, Massachusetts, USA, 30th November 2nd December 1992, Materials Research Society Symposium Proceedings, 1993, vol. 296, Materials Research Society, Pittsburg, Pennsylvania, USA, pp. 25–34.
- [61] The Merck Index An Encyclopedia of Chemicals and Drugs, 9th edn., M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig (eds.), Merck and Co. Inc., Rahway, New Jersey, USA, 1976.

- [62] Summary Technical Report of Division 8, NDRC, Volume 1, The Preparation and Testing of Explosives, Office of Scientific Research and Development, National Defense Research Committee, Washington D. C., USA, 1946.
- [63] G. Stegeman, Heat of Combustion of Explosive Substances, OSRD No. 5306, Division 8 National Defense Research Committee of the Office of Scientific Research and Development, USA, 4th July 1945.
- [64] C. K. Kim, S. G. Cho, J. Li, C. K. Kim, H. W. Lee, *Bull. Korean Chem. Soc.*, **2011**, *32*, 4341–4346.
- [65] L. Turker, Electrostatic Discharge and Energetic Materials, To Chemistry Journal, 2019, 2, 72-114.
- [66] H.-H. Ju, X.-J. Xu, H.-M. Xiao, J. Energet. Mater., 2005, 23, 121–130.

4-Picrylamino-2,6-dinitrotoluene

Name [German, acronym]: Picrylamino dinitrotoluene, [4-picrylamino-2,6-

dinitrotoluol, PADNT]

Main (potential) use: Useful for safe and insensitive explosive/propellant

formulations^[1, 2, 4]

$$O_2N$$
 NO_2
 NO_2
 NO_2
 NO_2
 NO_2

	PADNT			
Formula	C ₁₃ H ₈ N ₆ O ₁₀	C ₁₃ H ₈ N ₆ O ₁₀		
Molecular mass [g mol ⁻¹]	408.24	408.24		
Appearance at RT	Yellow crystalline so	lid ^[2]		
IS [J]	135 cm ^[1, 4] , H _{50%} = 13	35 cm (2 kg mass) ^[2] , 97 c	m (calcd., EDPHT 3.0) ^[3]	
FS [N]	Insensitive up to 36	kg (Julius-Peters apparatı	us) ^[2]	
N [%]	20.59			
Ω(CO ₂) [%]	-78.39	-78.39		
T _{m.p.} [°C]	198–201 (open capillary, uncorrected) $^{[1,2]}$, 201 (endo, DTA @ 10 °C/min, static air, 10 mg sample) $^{[2]}$, 198–201 $^{[4]}$			
T _{dec.} [°C]	299 (exo, DTA @ 10 °C/min, static air, 10 mg sample)[2]			
ρ [g cm ⁻³]	1.85 (density bottle method) ^[1, 2] , 1.718 (calcd. crystal ρ , calcd., EDPHT 2.0) ^[3] , 1.682 (calcd. crystal ρ , Ammon's method) ^[3] , 1.85 ^[4]			
Heat of formation				
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]				
T _{ex} [K]				
p _{c-J} [kbar]		203.17 (@ 1.85 g cm ⁻³ , calcd.) ^[2]		

VoD [m s ⁻¹]		6,628 (@ 1.85 g cm ⁻³ , calcd.) ^[2]	
V ₀ [L kg ⁻¹]			
5 s explosion T[°C] Deflagration T[°C]	294 ^[2]		
Solubility [g/mL]	Recryst. from ethyl acetate ^[2]		

- [1] J. P. Agrawal, *Propellants, Explosives, Pyrotechnics*, **2005**, *30*, 316–328.
- [2] M. Mehilal, R. B. Salunke, A. K. Sikder, J. P. Agrawal, J. Hazard. Mater., 2001, A84, 117–122.
- [3] M. H. Keshavarz, H. Motamedoshariati, R. Moghayadnia, M. Ghanbarzadeh, J. Azarniamehraban, *Prop. Explo. Pyro.*, **2013**, *38*, 95–102.
- [4] T. M. Klapötke, J. M. Short, *Energetics in the Rest of the World*, ch. 4 in *Topics in Energetics Research and Development*, CALCE Press, University of Maryland, Maryland, USA, **2013**.

5-Picrylamino-1,2,3,4-tetrazole

Name [German, acronym]: 5-(Picrylamino)tetrazole, picrylaminotetrazole

[picrylaminotetrazol, PAT]

Main (potential) use: Possible future lead-free initiator^[2]

	PAT				
Formula	C ₇ H ₄ N ₈ O ₆				
Molecular mass [g mol ⁻¹]	682.44				
Appearance at RT	Dark red solid ^[1]				
IS [J]	>50 cm (ball and disc te	est) ^[2] , $H_{50\%} = 36 \text{ cm}^{[2]}$			
FS [N]	>3.7 m/s (Emery paper	test) ^[2]			
ESD [J]	1.0 ^[1] , ignition @ 0.45 k	1.0 ^[1] , ignition @ 0.45 but not @ 0.045 (standard test) ^[2]			
N [%]	29.01	29.01			
Ω(CO ₂) [%]	-23.45				
T _{m.p.} [°C]	77 (endo, DSC) ^[1]				
T _{dec.} [°C]	210 (exo, peak max., DSC) ^[1]				
ρ [g cm ⁻³]	1.91 ^[2]				
Heat of formation	452.23 kJ/mol (calcd.) ^{[:}	452.23 kJ/mol (calcd.) ^[1]			
	Calcd. Lit. values Exptl. (EXPLO5 6.03)				
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]					
<i>T</i> _{ex} [K]					
p _{C-J} [kbar]					

VoD [m s ⁻¹]		
V ₀ [L kg ⁻¹]		
5 s explosion T [°C] Ignition T [°C] Explosion T [°C]	214 ^[2] 210 (DTA) ^[2]	

	PAT ^[1]
Chemical formula	C ₇ H ₄ N ₈ O ₆ •5H ₂ O
Molecular weight [g mol ⁻¹]	682.44
Crystal system	Monoclinic
Space group	P2 ₁ /c
a [Å]	18.6978(11)
<i>b</i> [Å]	12.23850(13)
c [Å]	13.6407(12)
α [°]	90
β [°]	110.702(3)
γ [°]	90
V [ų]	2,919.9(3)
Z	1.552
$ ho_{ m calc}$ [g cm $^{-3}$]	4
T[K]	291

^[1] Y. Tang, H. Yang, X. Ju, H. Huang, C. Lu, G. Chen, J. Mater. Chem. A, 2014, 2, 4127–4131.

^[2] R. W. Millar, Lead-Free Initiator Materials for Small Electro-Explosive Devices for Medium Caliber Munitions: Final Report 04 June 2003, QinetiQ Ltd., Farnborough, U.K., May 2003.

3-Picrylamino-1,2,4-triazole

Name [German, acronym]: 3-Picrylamino-1,2,4-triazole, [3-picrylamino-1,2,4-

triazol, PATO]

Main (potential) use: Possible replacement for TATB, thermally stable

explosive^[6]

	PATO				
Formula	C ₈ H ₅ N ₇ O ₆	$C_8H_5N_7O_6$			
Molecular mass [g mol ⁻¹]	295.17				
Appearance at RT					
IS [J]	>320 cm (2.	5 kg mass) ^[2, 6, 9] , 145 (Rotter Fol) ^[3] , 3	20+ cm ^[10]		
FS [N]	>6 (Rotary fr	riction FoF) ^[3]			
N [%]	32.22				
Ω(CO ₂) [%]	-67.76				
T _{m.p.} [°C]		310 ^[2, 6, 8, 10] , 315.6 ^[3] , 304.5 (dec., crude PATO) ^[9] , 310 (recryst. from γ -butyrolactone) ^[9] , 310 (dec.) ^[13]			
T _{dec.} [°C]	304.5 (crude PATO) ^[9] , 310 (one recryst. from γ-butyrolactone) ^[9] , 300 (DTA) ^[10]				
ρ [g cm ⁻³]	$1.94 \text{ (crystal)}^{[1, 2, 6]}, 1.82^{[3]}, 1.936 \text{ (crystal)}^{[9]}, 1.82 \text{ (crystal)}^{[10]}, 1.936^{[13]}$				
Heat of formation	36.3 kcal mol^{-1} (ΔH^o_f) ^[1, 13] , 151.5 kJ/mol (enthalpy of form., exptl.) ^[12] , 149.6 kJ/mol (enthalpy of form., calcd., emp.) ^[12] , 112.5 kJ/mol (enthalpy of form., calcd., S-D method) ^[12]				
Heat of combustion	-959.5 kcal	$-959.5 \text{ kcal mol}^{-1[1]}, \Delta H^{\circ}_{c} = -959.5 \text{ kcal/mol}^{[13]}$			
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]					
T _{ex} [K]					

p _{C-J} [kbar]		281 (calcd., K-J) ^[1]		
		307 (calcd.) ^[3]		
		307 (@ 1.936 g cm ⁻³ , calcd., BKW) ^[9]		
		24.7 GPa ^[10]		
VoD [m s ⁻¹]		7,780 (@ 1.94 g cm ⁻³ , calcd. K-J) ^[1]		
		7,850 (@ 1.936 g cm ⁻³ , calcd., BKW) ^[9]		
V ₀ [L kg ⁻¹]				
Critical T [°C]	280–282 (exptl.) ^[4, 7] , 288 (calcd.) ^[4, 7] , 281 ± 1 (T _m) ^[13]			
Thermal stability	Thermally stable up to 300 °C (DTA and pyrolysis studies) ^[9]			
Vacuum stability test [cm³/h]	@ 200 °C, total gas evolved (cm³/g) @ STP/time of exposure (days) ^[5] : 1.0/2, 1.9/7, 2.8/14, 3.4/21, 4.0/28,4.6/35, 5.2/42, 5.6/49, 6.1/56, 6.5/63, 7.2/70, 7.7/77, 8.7/84, 10.7/91 ^[5] @ 175 °C, total gas evolved (cm³/g) @ STP/time of exposure (days) ^[11] : 0.1/3, 0.6/17, 0.6/14, 0.7/21, 0.8/28, 0.0/35, 1.1/42, 1.2/40, 1.3/56			
		0.1/2, 0.4/7, 0.6/14, 0.7/21, 0.8/28, 0.9/35, 1.1/42, 1.2/49, 1.3/56, 1.4/63, 1.4/70, 1.4/77, 1.4/84, 1.5/91 ^[11]		

- [1] P. E. Rouse, J. Chem. Engineering Data, **1976**, 21, 16–20.
- [2] J. P. Agrawal, *Prog. Energy Combust. Sci.*, **1998**, *24*, 1–30.
- [3] J. Hamid, T. Griffiths, R. Claridge, T. Jordan, *Application of Novel Energetic Materials for Initiators and Explosive Trains*, *NTREM 7*, April 20th–22nd **2004**, pp. 132–140.
- [4] R. Petersen, L. R. Rothstein, J. H. Smith, *Thermochemistry and the Demilitarization of Explosives*, NWSY TR 76-2, Naval Weapons Station, Virginia, USA, July **1976**.
- [5] J. F. Baytos, High-Temperature Vacuum Thermal Stability Tests of Explosives, LA-5829-MS, LANL, USA, January 1975.
- [6] J. P. Agrawal, Centr. Eur. J. Energet. Mater., 2012, 9, 273-290.
- [7] L. W. Collins, L. D. Haws, Thermochim. Acta, 1977, 21, 1-38.
- [8] J. P. Agrawal, *Propellants, Explosives, Pyrotechnics*, **2005**, *30*, 316–328.
- [9] M. D. Coburn, 3-Picrylamino-1,2,4-triazole and its Preparation, US Patent 3,483,211, 9th December 1969.
- [10] M. D. Coburn, B. W. Harris, K.-Y. Lee, M. M. Stinecipher, H. H. Hayden, *Ind. Eng. Chem. Prod. Res. Dev.*, 1986, 25, 68–72.
- [11] W. Yang, R. A. Parrott, L. A. Behrmann, W. E. Voreck, P. Kneisel, *High Temperature Explosives for Downhole Well Applications*, US Patent US 2002/0129940 A1, 19th September **2002**.
- [12] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248-258.
- [13] LASL Explosive Property Data, T. R. Gibbs, A. Popolato (eds.), University of California Press, Berkeley, 1980.

Poly-3-azidomethyl-3-methyl-oxetane

 $Name\ [German, acronym] \hbox{:} \quad Poly-3-azidomethyl-3-methyl-oxetane\ [poly-AMMO]$

 $\mbox{Main (potential) use:} \qquad \mbox{Energetic binder in composite propellants} \mbox{}^{[3]}$

$$\begin{bmatrix} N_3 \\ O \end{bmatrix}$$

	Poly-AMMO (some data refer to structural unit)			
Formula	C ₅ H ₉ N ₃ O (AMMO)			
Molecular mass [g mol ⁻¹] Mean molecular weight [g mol ⁻¹]	127.15 1,000-3,000			
Appearance at RT				
IS [J]	>90 cm ^[2] , 1.0 Nm (1 kg hammer, 10 cm, very weak bang, AMMO) ^[5] , 7.5 Nm (5 kg hammer, 15 cm, ICT apparatus, very weak bang, poly-AMMO) ^[5] , 1.0 Nm (1 kg mass, 0.10 m drop height, very weak bang, ¹ / ₆ positive tests, AMMO monomer, liq., @ 20 °C, 51% air humidity) ^[7]			
FS [N]	160 (very weak crackling) ^[5] , 40 (tiny flames, ² / ₆ positive, AMMO monomer, liq., @ 20 °C, 51% air humidity) ^[7]			
N [%]	33.05			
Ω(CO ₂) [%]	-169.9			
T _{glass transition} [°C]	$-46.5^{[1]}$, -50 (oligo-AMMO, wt. = 1,030) ^[6] , -35 (poly-AMMO) ^[8]			
T _{dec.} [°C]	256 (DSC @ 5 °C/min) ^[1] , 220 (TGA @ 10 °C/min, first step) ^[1] , 232 (oligo-AMMO) ^[6]			
ρ [g cm ⁻³]	$1.17^{[3]}, 1.24$ (@ 293 K) $^{[1]}, 1.26^{[2]}, 1.17$ (AMMO) $^{[4]}, 1.06$ (poly-AMMO) $^{[8]}$			
Heat of formation	43.9 kJ/mol ($\Delta_i H^o$), 345.19 kJ/kg (enthalpy of form.) ^[3] , 10.5 kcal/mol (ΔH_f , AMMO) ^[4] , 18 kJ/mol ^[8]			
	Calcd. (EXPLO5 6.03) Exptl.			
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	2,506			
T _{ex} [K]	1,829			
p _{C-J} [kbar]	123			
VoD [m s ⁻¹]	6,069 (@ 1.7 g cm ⁻³)			
V ₀ [L kg ⁻¹]	763			

Thermal stability	81.6% mass loss @ 232 °C (dec. <i>T</i> , oligo-AMMO) ^[6]
Dec. enthalpy [J/g]	1,572 (oligo-AMMO) ^[6]

- [1] G. Wang, Z. Ge, Y. Luo, Propellants, Explosives, Pyrotechnics, 2015, 40, 920–926.
- [2] Chemical Rocket Propulsion: A Comprehensive Survey of Energetic Materials, L. DeLuca, T. Shimada, V. P. Sinditskii, M. Calabro (eds.), Springer, 2017.
- [3] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 262-263.
- [4] P. Braithwaite, W. Edwards, A. J. Sanderson, R. B. Wardle, *The Synthesis and Combustion of High Energy Thermoplastic Elastomer Binders*, ICT **2001**, Karlsruhe, Germany, pp. 9-1–9-7.
- [5] A. M. Kawamoto, T. Keicher, H. Krause, J. A. S. Holanda, Synthesis and Characterization of Energetic ABA-Type Thermoplastic Elastomers for Propellant Formulations, ICT 2006, Karlsruhe, Germany, pp. 136-1–136-11.
- [6] D. V. Pleshakov, E. R. Badamshina, M. A. Zaverkina, N. N. Il'icheva, L. P. Merkolova, Y. B. Banzula, N. N. Parfenov, T. A. Kosheleva, I. I. Makarov, *Investigation of Structure and Properties of Oxetane Block Copolymers*, ICT 2006, Karlsruhe, Germany, pp. 153-1–153-12.
- [7] A. M. Kawamoto, T. Keicher, H. Krause, J. A. S. Holanda, *Synthesis and Characterization of Energetic Oxetane-Oxirane-Polymers for use in Thermoplastic Elastomer Binder Systems*, ICT **2005**, Karlsruhe, Germany, pp. 195-1–195-14.
- [8] U. R. Nair, S. N. Asthana, A. S. Rao, B. R. Gandhe, Defence Science Journal, 2010, 60, 137-151.

Poly-3,3-bis-(azidomethyl)-oxetane

Name [German, acronym]: Poly-3,3-bis-(azidomethyl)-oxetane [poly-BAMO]*
Main (potential) use: Energetic binder in composite propellants

Structural formula:

 $\begin{bmatrix} N_3 \\ N_3 \end{bmatrix}$

*CE-BAMO is the abbreviation for chain-extended BAMO ($C_5H_{7.831}N_{5.396}O_{1.063}$)

	Poly-BAMO (some data refer to structural unit)		
Formula	$C_5H_8N_6O$		
Molecular mass [g mol ⁻¹] Mean molecular weight [g mol ⁻¹]	168.16 1,000–10,000		
Appearance at RT	Colorless liquid (monomer) ^[5] , solid (poly-BAMO) ^[9]		
IS [J]	>200 cm ^[2] , $5 \text{ Nm}^{[4]}$, 1.0 Nm (1 kg hammer, 10 cm, ICT apparatus, very weak bang, BAMO) ^[7] , 10.0 Nm (5 kg hammer, 20 cm, very weak bang, poly-AMMO) ^[7] , 1.0 Nm (1 kg mass, 0.10 m drop height, very weak bang, BAMO monomer, liq., $^2/_6$ positive, @ 20 °C , 51% air humidity) ^[10]		
FS [N]	288 ^[4] , 60 (tiny flames, BAMO) ^[7] , 192 (very weak crackling, poly-BAMO) ^[7] , 60 (tiny flames, BAMO monomer, liq., $^1/_6$ positive tests, @ 20 °C, 51% air humidity) ^[10]		
N [%]	49.98 (monomer unit)		
Ω(CO ₂) [%]	-123.69		
T _{glass transition} [°C]	$-39.2^{[1]}, -39 \text{ (poly-BAMO)}^{[11]}, -46 \text{ (oligo-BAMO, MWt.} = 1,300)^{[8]}, \\ -45 \text{ (oligo-BAMO, MWt.} = 1,420)^{[8]}, -43 \text{ (oligo-BAMO, first heating, MWt.} = 2,770)^{[8]}, \\ -42 \text{ (oligo-BAMO, second heating, MWt.} = 2,770)^{[8]}, \\ -30 - 24 \text{ (poly-BAMO)}^{[8]}$		

T _{melt.} [°C]	60 ^[1]						
	BAMO homopolymerization initiated by benzyl alcohol (BA) and $BF_3 \bullet Et_2O$ (as catalyst) in $CH_2Cl_2^{[7]}$:						
	mpt. (°C)	Initiator	Ratio BAMO/ BA	Repeated units	MW	Catalyst	Ratio of catalyst: initiator
	74.3	ВА	3	13	2,184	BF ₃ •Et ₂ O	2
	65.78	ВА	6	25	4,200	BF ₃ •Et ₂ O	2
	72.0	BA	6	29	4,872	BF ₃ •Et ₂ O	2
	78.24	BA	30	58	9,744	BF ₃ •Et ₂ O	2
	70–90 (poly-BAMO, range, depending on thermal treatment) ^[8] , 47 (oligo-BAMO, MWt. = 1,300), 53 (oligo-BAMO, MWt. = 1,420) ^[8] , 61–71 (oligo-BAMO, first heating, MWt. = 2,770) ^[8] , 48–61 (oligo-BAMO, second heating, MWt. = 2,770) ^[8]						
T _{dec.} [°C]	186.9 (DTA) ^[1] , 261 (DSC) ^[3] , 219 (DTA @ 10 °C/min, oligo-BAMO, MWt. = 2,770) ^[8] , ~250 (DSC @ 10 °C/min, oligo-BAMO, MWt. = 2,770) ^[8]						
T _{b.p.} [°C]	67 @ 0.2	67 @ 0.25 mm (monomer) ^[5] , 79–81 @ 0.4 mm (monomer) ^[5]					
ho [g cm ⁻³]	1.30 (poly-BAMO) ^[11] , 1.270 (BAMO copolymer) ^[12] , 1.25 ^[4] , $d^{25} = 1.22$ (monomer) ^[5] , 1.3 (@ 293 K) ^[1] , 1.30 (BAMO) ^[6] , 1.29 (CE-BAMO) ^[6]						
Heat of formation	2,460 kJ/kg ^[1] , 2,460.8 kJ/kg (enthalpy of form.) ^[4] , 102 kcal/mol (calcd., monomer) ^[5] , 100.3 kcal/mol (Δ <i>H</i> _f , BAMO) ^[6] , 103.5 (Δ <i>H</i> _f , CE-BAMO) ^[6] , 2,209 kJ/kg (poly-BAMO) ^[9] , 413 kJ/mol (poly-BAMO) ^[11] , 2.46 MJ/kg (@ 293 K, BAMO prepolymer) ^[12]						
	Calcd. (EXPLO5 6.03) Exptl.						
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	3,982						
<i>T</i> _{ex} [K]	2,544						
p _{C-J} [kbar]	134						
VoD [m s ⁻¹]	6,753						
V_0 [L kg ⁻¹]	78						

Thermal stability	91.7% (loss of mass @ dec. 7) ^[8]
Burn rate [mm/s]	Approx. values from graph for BAMO co-polymer: 1.4 mm/s @ 7.2 mol/mg N_3 bond density ^[12] , 1.9 mm/s @ 8.0 mol/mg N_3 bond density ^[12] , 3.0 mm/s @ 8.4 mol/mg N_3 bond density ^[12] , 4.0 mm/s @ 8.9 mol/mg N_3 bond density ^[12]

Melting enthalpy [J/g]	-7.3 (oligo-BAMO, MWt. = 1,300) ^[8] , -24.8 (oligo-BAMO, MWt. = 1,420) ^[8] , -34.8 (oligo-BAMO, MWt. = 2,770, first heating) ^[8] , -12.6 (oligo-BAMO, MWt. = 2,770, second heating) ^[8]
Decomposition enthalpy [J/g]	2,625 (oligo-BAMO) ^[8]
ΔC _p [J/g K]	0.57 (oligo-BAMO, MWt. = 1,300) ^[8] , 0.32 (oligo-BAMO, MWt. = 1,420) ^[8] , 0.28 (oligo-BAMO, MWt. = 2,770, first heating) ^[8] , 0.50 (oligo-BAMO, MWt. = 2,770, second heating) ^[8]
Flame T [K]	2,020 (@ 10 MPa, BAMO pre-polymer) ^[12] , 1,520 (@ 10 MPa, BAM copolymer) ^[12]

	oligo-BAMO ^[8]
Chemical formula	
Molecular weight [g mol ⁻¹]	2,770
Crystal system	Monoclinic
Space group	
a [Å]	10.907(7)
<i>b</i> [Å]	7.5046(16)
c [Å]	6.150(3)
α[°]	90
β[°]	100.58(4)
γ[°]	90
V [ų]	494.8(5)
Z	
$ ho_{ m calc}$ [g cm ⁻³]	
<i>T</i> [K]	

- [1] T. Miyazaki, N. Kubota, *Propellants, Explosives, Pyrotech*nics, **1992**, *17*, 5–9.
- [2] Chemical Rocket Propulsion: A Comprehensive Survey of Energetic Materials, L. DeLuca, T. Shimada, V. P. Sinditskii, M. Calabro (eds.), Springer, 2017.
- [3] K. Kishore, K. Sridhara, *Solid Propellant Chemistry: Condensed Phase Behavior of Ammonium Perchlorate-Based Solid Propellants*, Defence Research and Development Organisation, Ministry of Defence, New Delhi, India, **1999**.
- [4] R. Meyer, J. Köhler, A. Homburg, *Explosives*, 7th edn., Wiley-VCH, Weinheim, **2016**, p. 203.
- [5] H. R. Frankel, E. R. Wilson, D. Woolery, C. Hamermesh, C. McArthur, Energetic Azido Compounds, ONR, 28th March 1980.
- [6] P. Braithwaite, W. Edwards, A. J. Sanderson, R. B. Wardle, *The Synthesis and Combustion of High Energy Thermoplastic Elastomer Binders*, ICT **2001**, Karlsruhe, Germany, pp. 9-1–9-7.

- [7] A. M. Kawamoto, T. Keicher, H. Krause, J. A. S. Holanda, *Synthesis and Characterization of Energetic ABA-Type Thermoplastic Elastomers for Propellant Formulations*, ICT **2006**, Karlsruhe, Germany, pp. 136-1–136-11.
- [8] D. V. Pleshakov, E. R. Badamshina, M. A. Zaverkina, N. N. Il'icheva, L. P. Merkolova, Y. B. Banzula, N. N. Parfenov, T. A. Kosheleva, I. I. Makarov, *Investigation of Structure and Properties of Oxetane Block Copolymers*, ICT 2006, Karlsruhe, Germany, pp. 153-1–153-12.
- [9] T. Keicher, W. Janitschek, U. Schaller, H. Krause, Synthesis and Properties of Random Co-Polymer Poly-(GA/BAMO) As Energetic Binder, ICT 2014, Karlsruhe, Germany, pp. 101-1–101-14.
- [10] A. M. Kawamoto, T. Keicher, H. Krause, J. A. S. Holanda, Synthesis and Characterization of Energetic Oxetane-Oxirane-Polymers for Use in Thermoplastic Elastomer Binder Systems, ICT 2005, Karlsruhe, Germany, pp. 195-1–195-14.
- [11] U. R. Nair, S. N. Asthana, A. S. Rao, B. R. Gandhe, *Defence Science Journal*, 2010, 60, 137–151.
- [12] N. Kubota, *Propellants and Explosives Thermochemical Aspects of Combustion*, Wiley-VCH, **2002**.

Poly-GLYN

Name [German, acronym]: Poly-GLYN, poly(glycidyl nitrate) [poly-GLYN, poly

glyn, PGN]

Main (potential) use: Energetic binder in composite propellants

Structural formula:

* currently poly-GLYN is produced in two molecular weight ranges: (i) standard with MW 1,000–2,000 and M_n 750–1,100 and (ii) longer chain with MW 2,000–3,500 and M_n 1,100–2,000. End-modified PolyGLYN is end-modified using the sulfuric acid hydrolysis process

	Poly-GLYN (some data refer to si	tructural unit)	
Formula	C ₃ H ₅ NO ₄		
Molecular mass [g mol ⁻¹] Mean molecular weight [g mol ⁻¹]	119.08 (ideal mol. wt. = 1,500 g/mol) ^[5]		
Appearance at RT			
IS [J]	>200 cm ^[2]		
N [%]	11.76		
Ω(CO ₂) [%]	-60.46		
T _{glass transition} [°C]	-35 ^[1, 5]		
T _{dec.} [°C]			
ρ [g cm ⁻³]	1.39 (PGN) ^[1] , 1.47 ^[4] , 1.45 ^[5]		
Heat of formation	-68 kcal/mol ^[5] , 2.71 kJ/g ($Δ_fH^o$, prepolymer) ^[3] , -2.244 kJ/g ($Δ_fH^o$, calcd., CHEETAH 2.0, pre-polymer) ^[3] , -2.389 kJ/g ($Δ_fH^o$) ^[3] , -2,586 kJ/kg (poly-GLYN) ^[4] , -285 kJ/mol (poly-GLYN) ^[1]		
Heat of combustion	14.7 kJ/g (ΔH _c) ^[3]		
	Calcd. (EXPLO5 6.03)	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	6,100		
T _{ex} [K]	3,863		
p _{C-J} [kbar]	207		
VoD [m s ⁻¹]	7,253		
V_0 [L kg ⁻¹]	819		

5 s explosion T[°C]	
Ignition T [°C]	170 ^[5]

- [1] U. R. Nair, S. N. Asthana, A. S. Rao, B. R. Gandhe, Defence Science Journal, 2010, 60, 137-151.
- [2] Chemical Rocket Propulsion: A Comprehensive Survey of Energetic Materials, L. DeLuca, T. Shimada, V. P. Sinditskii, M. Calabro (eds.), Springer, **2017**.
- [3] E. Diaz, P. Brousseau, G. Ampleman, R. E. Prud'homme, *Propellants, Explosives, Pyrotechnics*, **2003**, *28*, 101–106.
- [4] K. Menke, M. Bohn, P. B. Kempa, *AN/PolyGLYN Propellants Minimum Smoke Propellants with Reduced Sensitivity*, ICT **2006**, Karlsruhe, Germany, pp. 14-1-14-14.
- [5] A. J. Paraskos, Energetic Polymers: Synthesis and Applications, in Energetic Materials From Cradle to Grave, M. K. Shukla, V. M. Boddu, J. A. Steevens, R. Damavarapu, J. Leszczynski (eds.), Springer, 2017.

Poly(3-nitratomethyl-3-methyloxetane)

Name [German, acronym]: Main (potential) use:

Poly(3-nitratomethyl-3-methyloxetane) [polyNIMMO] Energetic polymer^[9], energetic binder^[8], promising energetic binder for insensitive munitions^[8], can be used as energetic binder in low vulnerability gun propellants, high-impulse rocket propellants, elastomer-modified double-base propellants and high energy PBXs^[9]

$$HO = \begin{bmatrix} & & & & \\ & H_2C & & \\ & H_2 & & & \\ & C & & C & & C \\ & & & CH_3 & & \end{bmatrix} n$$

	polyNIMMO
Formula	C ₅ H ₉ NO ₄ (monomer)
Molecular mass [g mol ⁻¹]	147.12 (monomer)
Appearance at RT	Highly viscous, yellow transparent liquid with slight odor (uncured material) ^[8]
IS [J]	
FS [N]	
ESD [J]	
N [%]	9.52 (monomer)
Ω(CO ₂) [%]	-114.18 (monomer)
T _{glass transition} [°C]	-15.1 (DSC @ 10 °C/min, midpoint) ^[4] , -33.0 (DSC) ^[7] , -15 (DSC) ^[1] , -15 ^[2] , 258.2 K ^[2] , -25 (polyNIMMO) ^[6] , ~-33 (polyNIMMO) ^[8]
T _{dec.} [°C]	216.47 (exo, peak max. (dec. in range 195–225 °C), DSC @ 10 K/min) ^[8]
$ ho$ [g cm $^{-3}$]	1.26 ^[5-7]
Heat of formation	335 kJ/mol (poly-NIMMO) ^[6] , -2.29 kJ/g (prepolymer) ^[3] , -0.39 kJ/g (prepolymer, Colclough) ^[3] , -2.101 kJ/g (prepolymer, <i>Cumming</i>) ^[3] , -2,101.5 kJ/kg (heat of formation, poly-NIMMO) ^[5]

	Calcd. (EXPLO5 6.04)		Lit. valu	es	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]						
T _{ex} [K]						
p _{C-J} [kbar]						
VoD [m s ⁻¹]						
V ₀ [L kg ⁻¹]						
5 s explosion T[°C] Deflagration T[°C]	193 (DSC @ 20 °C	/min) [[]	[4]			
Thermal stability	Decomposes to form gases on aging leading to voids in explosive composition ^[9] , prepolymer polyNIMMO ages naturally with time even @ ambient T and dec. is accelerated by increasing $T^{[9]}$, pyrolysis >90 °C results in darker color and increase in viscosity with longer heating times ^[9]					
Viscosity [cP]	234.80 Pa s ^[4]					
	Viscosity ^[1] (cP)	T(°C)	Viscosity ^[1] (cP)	T(°C)	
	~320,000	25		~ 50,000	45	
	~190,000	30		~ 20,000	50	
	~120,000	35		~10,000	55	
	~70,000	40		~ 5,000	60	
	Viscosity of plasticizer/binder blend increases: BDNPA < BTTN < DNDA-57 < BuNENA ≈ DEGDN ^[87]					
Dutch test	0.45% (105 °C, 72 h) ^[4]					
Decomposition energy [J/g]	1,300 (DSC) ^[7]					
Radiation sensitivity	Very stable to gamma radiation up to doses of 250 kGy ^[8, 9] , radicals produced @ 250 kGy but are short lived and do not result in structural changes, whereas @ 750 kGy structural changes occur ^[9] , easily decomposes if subjected to UV radiation ^[9]					
Compatibility	Compatible (A rating) with BTTN, DNDA-57, DEGDN, BuNENA, BDNPA based on shift of $T_{\rm dec.}$ in DSC ($T_{\rm dec.}$ (exo peak max., DSC @ 10 K/min, poly-NIMMO with 20% energetic plasticizer): 216.47 (poly-NIMMO), 215.53 (poly-NIMMO + BDNPA), 216.33 (poly-NIMMO + BuNENA), 217.13 (poly-NIMMO + DEGDN), 214.60 (poly-NIMMO + BTTN), 215.50 (poly-NIMMO + DNDA-57)[8]					
Photosensitivity	Easily decomposes if subjected to UV radiation ^[9]					

- [1] C. Leach, P. Flower, R. Hollands, S. Flynn, E. Marshall, J. Kendrick, *Plasticisers in Energetic Materials Formulations A UK Overview*, ICT **1998**, Karlsruhe, Germany, pp. 2-1–2-14.
- [2] P. Bunyon, A. Cunliffe, P. Honey, *Plasticisers for New Energetic Binders*, ICT **1998**, Karlsruhe, Germany, pp. 86-1–86-14.
- [3] E. Diaz, P. Brousseau, G. Ampleman, R. E. Prud'homme, *Propellants, Explosives, Pyrotechnics*, **2003**, *28*, 101–106.
- [4] D. Drees, D. Löffel, A. Messmer, K. Schmid, *Synthesis and Characterization of Azido Plasticizer*, ICT **2000**, Karlsruhe, Germany, pp. 52-1–52-12.
- [5] K. Menke, M. Bohn, P. B. Kempa, *AN/PolyGLYN Propellants Minimum Smoke Propellants with Reduced Sensitivity*, ICT **2006**, Karlsruhe, Germany, pp. 14-1–14-14.
- [6] U. R. Nair, S. N. Asthana, A. S. Rao, B. R. Gandhe, Defence Science Journal, 2010, 60, 137-151.
- [7] T. M. Klapötke, J. M. Short, *Energetics in the Rest of the World*, ch. 4 in *Topics in Energetics Research and Development*, CALCE Press, University of Maryland, Maryland, USA, **2013**.
- [8] S. K. Shee, P. N. Shah, J. Athar, A. Dey, R. R. Soman, A. K. Sikder, S. Pawar, S. Banarjee, *Propellants, Explosives, Pyrotechnics*, **2017**, *42*, 167–174.
- [9] J. Akhavan, E. Kronfli, S. C. Waring, *Polymer*, **2003**, *44*, 7617–7624.

Polynitropolyphenylene

Name [German, acronym]: Main (potential) use:

Polynitrophenylene [polynitropolyphenylen, PNP] Energetic binder, heat resistant but extremely impact sensitive energetic binder^[3], caseless munition^[3], high ignition temperature propellants^[3], possible future high-temperature resistant explosive binding agent^[4]

	PNP (some o	PNP (some data refer to structural unit)						
Formula	C ₆ HN ₃ O ₆	C ₆ HN ₃ O ₆						
Molecular mass [g mol ⁻¹] Mean molecular	211.09 2,350, (GPC	211.09 2,350, (GPC mol. wt. = ~2,000 g/mol) ^[3]						
weight [g mol ⁻¹]								
Appearance at RT		Amorphous green, yellow-brown powder ^[3] , green, brownish-yellow solid mass, noncrystalline (polymer) ^[4]						
IS [J]	4 ^[1, 4] , 4 (BAN	V) ^[3]						
FS [N]	360 ^[1] , 240 (360 ^[1] , 240 (no go, BAM) ^[3] , 360 (weak, sizzling) ^[4] , 240 (no reaction) ^[4]						
N [%]	19.91	19.91						
Ω(CO ₂) [%]	-49.30							
T _{m.p.} [°C]	Does not me	Does not melt (polymer) ^[4] , no endotherm in DSC (polymer) ^[4]						
T _{dec.} [°C]	, i	280–304 (DSC @ 5 °C/min), 250 (DTA @ 5 °C/min) ^[1, 3] DTA/TGA, Mettler TA 200 C apparatus ^[4] :						
	Heating rate				°C			
	(K/min)	Start	Peak max	Start	1%	5%	10%	20%
	10, N ₂	248	298	200	253	276	287	292 (deflag.)
	5, N ₂	250	317	190	256	284	292	301

$ ho$ [g cm $^{-3}$]	1.8–2.2 (@ 293 K) ^[1] , 1.8–2.2 ^[4] , 520 (bulk ρ) ^[4]		
Heat of formation	$-65.2 \text{ kJ/mol } (\Delta_t H^o)^{[1]}, -309 \text{ kJ/kg } (\Delta_t H^o)^{[1]}$		
	Calcd. (EXPLO5 6.03) Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	4,549	3,200 [H ₂ O (l)] ^[2]	
		3,300 (explosion energy, 25 mL bomb, loading $\rho = 100 \text{ kg/m}^3)^{[4]}$	
T _{ex} [K]	3,616		
p _{C-J} [kbar]	236		
VoD [m s ⁻¹]	7,538		
V ₀ [L kg ⁻¹]	606		

5 s explosion T [°C] Deflagration T [°C]	286–294 (50 mg sample, @ 20 K/min, polymer) ^[4] , 304 (50 mg sample, @ 20 K/min, improved purity sample, polymer) ^[4] , 292 ≥ 300 (TGA, polymer) ^[4]
Thermal stability	1.349 mL gas evolved after 40 h @ 125 °C (polymer) ^[4]
Solubility [g/mL]	Readily soluble in organic solvents such as acetone and ethyl acetate ^[3, 4]
Compatibility	Compatible with HMX ^[4]
Steel case test	20 mm nozzle diameter, fragment pattern F, explosion time = 9 s (confined in steel case Rn 1154 GGVE) ^[4] , 24 mm nozzle diameter, fragment pattern B, deflagration time = 10 s (confined in steel case Rn 1154 GGVE) ^[4]
Flame sensitivity	Burns immediately (soot generation, ignition by match) ^[4] , burns immediately (soot generation, 10 mm high, 5 mm wide gas flame) ^[4] , 0.5 g PNP ignited immediately and burned with 20 cm high sooty flame, duration of 1–2 s (red-hot steel dish) ^[4]

- M. E. Colclough, H. Desai, R W. Millar, N. Paul, M. J. Stewart, P. Golding, *Polym. Adv. Technol.*, 1994, 5, 554–560.
- [2] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2008**, *33*, 448–453.
- [3] A. J. Paraskos, Energetic Polymers: Synthesis and Applications, in Energetic Materials From Cradle to Grave, M. K. Shukla, V. M. Boddu, J. A. Steevens, R. Damavarapu, J. Leszczynski (eds.), Springer, 2017.
- [4] K. H. Redecker, R. Hagel, *Propellants, Explosives, Pyrotechnics*, **1987**, *12*, 196–201.

Polyvinyl nitrate

Name [German, acronym]: Polyvinyl nitrate, polyvinyl alcohol nitrate

[polyvinylnitrat, PVN]

Main (potential) use: Plasticizer for TNT^[4], few applications due to

poor chemical stability^[8], PVN dissolved in

mononitrotoluene is used as an additive to TNT charges since it improves the crystallinity structure of the TNT

cast^[10]

$$\begin{bmatrix} O_2 N \\ O \end{bmatrix}$$

	PVN (data refer to structural unit)
Formula	$(C_2H_3NO_3)_n$
Molecular mass [g mol ⁻¹] Mean molecular weight [g mol ⁻¹]	89.05 (@ degree of substitution 1) ^[10] 200,000
Appearance at RT	Pale yellow brown ^[10]
IS [J]	10 Nm ^[4] , 1.99 (4 in, 2 kg mass, P.A. for 14.86% N) ^[1] , 30–35 cm (cf. 158 cm for TNT, Rotter apparatus) ^[5] , 4 in (2 kg mass, P.A. for 14.86% N) ^[5]
FS [N]	196 $^{[4]}$, crackles with steel shoe (friction pendulum test) $^{[1]}$, unaffected by fiber shoe (friction pendulum test) $^{[1]}$
N [%]	15.73 (@ degree of substitution 1) $^{[10]}$, usually 13.5–14.5% with theoretical max. of 15.75 $^{[11]}$
Ω(CO ₂) [%]	–44.9 (@ degree of substitution 1) ^[10]
T _{m.p.} [°C]	$50^{[1]}$, (softening point = $30-50$ °C) ^[5] , nonmeltable ^[11]
T _{dec.} [°C]	175, (deflagration point = 175) ^[5]
$ ho$ [g cm $^{-3}$]	1.6 ^[4]
Heat of formation	-102.6 kJ/mol ($\Delta_f H^o$), $-1,152.1$ kJ/kg (enthalpy of form.) ^[4] , $-1,152$ kJ/kg (ΔH_f , ICT thermochemical database) ^[9] , -275.6 kcal/kg (Q_f^{V}) ^[5] , -102.59 kJ/mol (enthalpy of form., PVN with 15.73% N content) ^[10] , -102.6 kJ/mol (enthalpy of form., exptl.) ^[12] , -154.3 kJ/mol (enthalpy of form., calcd., emp.) ^[12] , -150.2 kJ/mol (enthalpy of form., calcd., S-D method) ^[12]

	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	5,357	4,781 J/g (calcd., ICT-code) ^[9] 4,782 J/g [H ₂ O (l)] (calcd. thermodynamically, 15.73% N content) ^[10] 4,490 J/g [H ₂ O (g)] (calcd. thermodynamically, 15.73% N content) ^[10]	3,766 ^[1] 4,574 ^[3] 4,781 [H ₂ O (I)] ^[4] 4,490 [H ₂ O (g)] ^[4] 1,180 kcal/kg ^[5] 900 kcal/kg ^[1,6] 900 kcal/kg (for PVN with 14.86% N content) ^[5]
<i>T</i> _{ex} [K]	3,559	3,388 (calcd., ICT-code) ^[9]	14.00 % N COILEIL)
$p_{\text{C-J}}$ [kbar]	235	143.0 MPa (calcd., ICT-code) ^[9]	
VoD [m s ⁻¹]	7,563 (@ 1.5 g cm ⁻³) ^[4]		2,030 (@ 0.3 g cm ⁻³ , PVN containing 13.4% N, cardboard cartridge, 30 mm diameter) ^[5, 8, 11] 3,450–3,520 (@ 0.6 g cm ⁻³ , PVN containing 13.4% N, cardboard cartridge, 30 mm diameter) ^[5, 8, 11] 4,920–5,020 (@ 1.0 g cm ⁻³ , PVN containing 13.4% N, cardboard cartridge, 30 mm diameter) ^[5, 8, 11] 6,090 (@ 1.4 g cm ⁻³ , PVN containing 13.4% N, cardboard cartridge, 30 mm diameter) ^[5, 8, 11] 6,560 (@ 1.5 g cm ⁻³ , PVN containing 13.4% N, cardboard cartridge, 30 mm diameter) ^[5, 8, 11]
V ₀ [L kg ⁻¹]	755		838 ^[1] 958 ^[2, 4] 1,009 ^[3] 833 (for PVN with 14.86% N

Trauzl test [cm³, % TNT]	153–341 cc (cf. 255 cc for TNT) ^[5] , 113.5 cc (low viscosity PVN, max. N content = 14.48%) ^[5] , 102 cc (high viscosity PVN, max. N content = 13.43%) ^[5] , 153–342 cm ³ (PVN, 13–15% N content) ^[8, 11]
Sand test [g]	49.9 g (200 g bomb) ^[1] , 104–107% TNT ^[7] , 49.9 g sand crushed (200 g bomb, cf. 48.0 g for TNT; for PVN with 14.86% N content) ^[5]
5 s explosion T [°C] 5 s ignition T [°C] Ignition T [°C] Autoignition T [°C]	265 (for PVN with 14.86% N content) ^[1, 5] 265 ^[6] 160–178 ^[5] 188–190 (0.2 g sample, @ 5 °C/min, Wood's metal bath, PVN with 14.9% N, degree of substitution of 0.90) ^[10]
100 °C heat test [% mass loss]	1.9% mass loss in first 48 h ^[1, 5] , 2.1% in second 48 h ^[1, 5] , no explosions in 100 h (for PVN with 14.86% N content) ^[1, 5]
Thermal stability	<0.3% mass loss (2 days @ 75 °C, closed vials for PVN with 14.86% N content) $^{[10]}$, ~0.6% mass loss (5 days @ 75 °C, closed vials for PVN with 14.86% N content) $^{[10]}$, ~0.8% mass loss (6 days @ 75 °C, closed vials for PVN with 14.86% N content) $^{[10]}$, ~1.0% mass loss (8 days @ 75 °C, closed vials for PVN with 14.86% N content) $^{[10]}$, <0.5% mass loss (2 days @ 75 °C, closed vials for PVN with 14.86% N content) $^{[10]}$, 3% mass loss requires 17 years @ 30 °C (apparent time, predicted, PVN with 14.86% N content) $^{[10]}$, 3% mass loss requires 10 years @ 30 °C (real time, predicted, PVN with 14.86% N content) $^{[10]}$
Vacuum stability test [cm³/h]	>11 cc in 16 h @ 100 °C (for PVN with 14.86% N content) ^[1, 5] , >11 cc in 16 h @ 120 °C (for PVN with 14.86% N content) ^[1, 5] , 2.7 mL/g (40 h @ 90 °C, PVN with 14.86% N content) ^[10]
Burn rate [mm/s]	Readily inflammable, burns without melting ^[8] , flammable ^[11]
Adiabatic self-heating [°C]	Transition to deflagration @ 164 °C (ARC™, PVN with 14.86% N content) ^[10]
Dec. activation energy [kJ/mol]	146 (PVN with 14.86% N content) ^[10]
Hygroscopicity	0.62% @ 30 °C with 90% RH ^[1]
65.5 °C KI test	60+ min ^[1]
34.5 °C heat test	Salmon pink, 20 minutes $^{[1]}$, red fumes, 25 min $^{[1]}$, explodes, 300+ min $^{[1]}$
40 h hydrolysis test	5.07% HNO ₃ ^[1]

- [1] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.
- [2] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [3] H. Muthurajan, R. Sivabalan, M. B. Talawar, S. N. Asthana, J. Hazard. Mater., 2004, A112, 17–33.
- [4] R. Meyer, J. Köhler, A. Homburg, *Explosives*, 7th edn., Wiley-VCH, Weinheim, **2016**, pp. 266–267.

- [5] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1978.
- [6] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1969.
- [7] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [8] T. Urbański, Ch. 7 in Chemistry and Technology of Explosives, vol. II, 1965, Pergamon Press, Oxford.
- [9] F. Volk, H. Bathelt, *Propellants, Explosives, Pyrotechnics*, **2002**, *27*, 136–141.
- [10] M. A. Bohn, J. Aniol, M. Dörich, K. Hartlieb, H. Pontius, Stability, *Aging and Usetime Prediction of Polyvinylnitrate (PVN)*, ICT **2006**, Karlsruhe, Germany, pp. 73-1–73-18.
- [11] J. Liu, Nitrate Esters Chemistry and Technology, Springer, 2019.
- [12] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248–258.

Potassium 5-aminotetrazolate

Name [German, acronym]: Potassium aminotetrazolate, [kalium

5-aminotetrazolat]

Main (potential) use: In the synthesis of other energetic tetrazole

compounds^[1]

	Potassium 5-aminotetr	azolate				
Formula	CH ₂ KN ₅					
Molecular mass [g mol ⁻¹]	123.16					
Appearance at RT	Colorless crystals ^[1, 3]					
IS [J]						
FS [N]						
ESD [J]						
N [%]	56.86					
Ω(CO ₂) [%]						
T _{m.p.} [°C]	263 (DSC @ 5 °C/min,	covered Al pans) $^{[1]}$, 267 $^{[3]}$				
T _{dec.} [°C]						
$ ho$ [g cm $^{-3}$]	1.961 (X-ray) ^[1]					
Heat of formation	–202 kJ/mol (ΔH _f °) ^[1]					
Heat of combustion	$\Delta_c H^o = -763 \text{ kJ/mol}^{[1]}, \Delta_c U = -1,484 \text{ cal/g } (@ C^V, \text{ exptl. bomb calorimetry})^{[1]}$					
	Calcd. Lit. values Exptl. (EXPLO5 6.03)					
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]						
<i>T</i> _{ex} [K]						
p _{C-J} [kbar]						
VoD [m s ⁻¹]						
$V_0 [L \text{ kg}^{-1}]$						
Solubility [g/mL]	Recryst. from hot H ₂ O/	EtOH (1:4) ^[1]				
Flame test	Purple flame color ^[1]					

	Potassium aminotetrazolate ^[1, 2]
Chemical formula	KCH ₂ N ₅
Molecular weight [g mol ⁻¹]	123.18
Crystal system	Monoclinic
Space group	P2 ₁ /c (no. 14)
a [Å]	6.8702(8)
<i>b</i> [Å]	9.8516(9)
c [Å]	6.8372(7)
α [°]	90
β[°]	115.6(1)
γ [°]	90
V [ų]	417.29(8)
Z	4
$ ho_{ m calc}$ [g cm $^{-3}$]	1.961
τ[K]	120
	Recryst. from hot H ₂ O/EtOH (1:4)

^[1] J. Stierstorfer, Advanced Energetic Materials Based on 5-Aminotetrazole – Synthesis, Characterization and Scale-Up, PhD Thesis, LMU München, 2009.

^[2] V. Ernst, T. M. Klapötke, J. Stierstorfer, ZAAC, 2007, 633, 879–887.

^[3] T. M. Klapötke, *Insensitive High-Performance Replacements for RDX in Explosive and Propellant Formulations*, Interim Technical Report, European Research Office, US Army, 16th March **2007**.

Potassium chlorate

Name [German, acronym]: Main (potential) use:

Potassium chlorate, potcrate [Kaliumchlorat]
Oxidizer for primer formulations and pyrotechnical compositions, common pyrotechnic oxidizer^[10]

Structural formula:

KCIO₃

	Potassium chlorate			
Formula	KClO ₃			
Molecular mass [g mol ⁻¹]	122.6			
Appearance at RT	White powder ^[7] , white crystallir crystals/white powder ^[10] , color granules/powder ^[11]			
IS [J]	² / ₆ positive @ 16 cm (2 kg mass	;) ^[5]		
N [%]	±0			
Ω(CO ₂) [%]	+39.2			
T _{phase transitions} [°C]	(monoclinic, distorted NaCl-type conditions and transforms @ 25 with distorted NaCl-type structur	>523 K (monoclinic (phase I) → orthorhombic (phase-III)) ^[2] , phase I (monoclinic, distorted NaCl-type structure) is stable @ ambient conditions and transforms @ 257 °C to phase III (orthorhombic with distorted NaCl-type structure) ^[4] , when compressed, phase I transforms to phase II (~6% higher density phase) ^[4]		
T _{m.p.} [°C]	368-370 ^[5] , 368 ^[8, 11] , 370 ^[10]			
T _{dec.} [°C]	400 ^[5, 8] , above 368 °C dec. ^[11]			
ρ [g cm ⁻³]	2.32 ^[5, 8, 11] , 2.34 ^[10]			
Heat of formation	$-93.5 \text{ kcal/mol} (Q_f)^{[5]}, -398 \text{ kJ/}$	mol (enthalpy of form.) ^[10]		
	Calcd. (EXPLO5 6.04) Exptl.			
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]				
T _{ex} [K]				
p _{C-J} [kbar]				
VoD [m s ⁻¹]				
V ₀ [L kg ⁻¹]				

Trauzl test [cm³, % TNT]	No measureable value ^[5]
5 s explosion T [°C] Explosion T [°C]	Rapid heating may cause explosion ^[7]

Solubility [g/mL]	3.3 parts KClO $_3$ per 100 parts H $_2$ O @ 0 °C $^{[6]}$, 56 parts KClO $_3$ per 100 parts H $_2$ O @ 100 °C $^{[6]}$, moderately soluble in water $^{[7]}$, slightly soluble in EtOH $^{[7]}$, 8.6 g/100 g H $_2$ O @ 25 °C $^{[10]}$, 1 g dissolves slowly in 16.5 mL water $^{[11]}$, 1 g dissolves in 1.8 mL boiling water $^{[11]}$, 1 g dissolves in ~50 mL glycerol $^{[11]}$, almost insoluble in EtOH $^{[11]}$
Hygroscopicity	Not hygroscopic ^[6] , critical humidity = 98.0% RH @ 25 °C ^[9]
Compatibility	Can form explosive mixtures with combustible materials such as sulfur, charcoal, sugar and metal powders ^[10] , dec. catalyzed by MnO ₂ , [Co ₃ O ₄] or metal oxides of metals which have multiple oxidation states ^[10] , ammonium salts can result in formation of spontaneously explosive ammonium chlorate) ^[10] , unstable in presence of acid ^[10] , incompatible with sulfides of antimony or arsenic (forms compositions highly IS and FS) ^[10] , incompatible with any soluble copper salts ^[10] , should be kept out of contact with organic substances or other oxidizable substances ^[11] , explodes with sulfuric acid ^[11] , inflames with explosion if triturated with organic substances, sulfur, phosphorus, sulfites, hypophosphite and other oxidizable substances ^[11] , incompatible with iodides and tartaric acid ^[11]
Enthalpy of dec. [kJ/mol]	-39 (assuming KClO ₃ → KCl + 1½ O ₂) ^[10]

	Potassium chlorate ^[2]	Potassium chlorate ^[1]	Potassium chlorate ^[3]	Potassium chlorate ^[4]
	Phase-I	Phase-III	Phase-I	High-pressure phase-II
Chemical formula	KClO₃	KClO₃	KClO₃	KClO₃
Molecular weight [g mol ⁻¹]	122.6	122.6	122.6	122.6
Crystal system	Monoclinic	Orthorhombic	Monoclinic	
Space group	P 2 ₁ / m (no. 11)	Pcmn	P 2 ₁ / m (no. 11)	R 3 m (no. 160)
a [Å]	4.630(2)	4.74	4.6569	4.273(10)
<i>b</i> [Å]	5.568(3)	5.64	5.59089	4.273(10)
c [Å]	7.047(3)	13.8	7.0991	4.273(10)
α [°]	90	90	90	85.5(2)
β [°]	110.21(3)	90	109.648	85.5(2)
γ [°]	90	90	90	85.5(2)
<i>V</i> [Å ³]		368.92		77.24
Z	2	4		
$ ho_{ m calc}$ [g cm $^{-3}$]				
<i>T</i> [K]	77	280 °C		25 °C, 112.5 kbar pressure

- [1] G. N. Ramachandran, M. A. Lonappan, *Acta Cryst.*, **1957**, *10*, 281–287.
- [2] J. Danielsen, A. Hazell, K. F. Larsen, Acta Cryst., 1981, B37, 913-915.
- [3] A. F. Ievin, J. K. Ozol, Structure Reports, 1953, 17, 526.
- [4] C. W. F. T. Pistorius, J. Chem. Phys., 1972, 56, 6263–6264.
- [5] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1962.
- [6] T. L. Davis, The Chemistry of Powder and Explosives, vol. 2, 1943, John Wiley and Sons Inc., New York, pp. 357–366.
- [7] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [8] Services Textbook of Explosives, JSP 333, Procurement Executive, Ministry of Defence, UK, March 1972.
- [9] K. L. Kosanke, B. J. Kosanke, B. T. Sturman, R. M. Winokur, *Encyclopedic Dictionary of Pyrotechnics (and Related Subjects), Part 2 F to O*, Pyrotechnic Reference Series No.5, Journal of Pyrotechnics Inc., Whitewater, Colorado, USA, **2012**, p. 609.
- [10] K. L. Kosanke, B. J. Kosanke, B. T. Sturman, R. M. Winokur, *Encyclopedic Dictionary of Pyrotechnics (and Related Subjects), Part 3 P to Z*, Pyrotechnic Reference Series No.5, Journal of Pyrotechnics Inc., Whitewater, Colorado, USA, **2012**, pp. 856–859.
- [11] The Merck Index An Encyclopedia of Chemicals and Drugs, 9th edn., M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig (eds.), Merck and Co. Inc., Rahway, New Jersey, USA, 1976.

Potassium dinitramide

Name [German, acronym]: Main (potential) use:

Potassium dinitramide [kalium-dinitramid, KDN] Synthetic reagent for introducing the dinitramide ion into energetic compounds^[1], inorganic oxidant with potential applications in propellants and pyrotechnics^[9]

	KDN
Formula	KN ₃ O ₄
Molecular mass [g mol ⁻¹]	145.12
Appearance at RT	White crystalline solid $^{[9]}$, crystalline solid mainly small cubes with typical edge length of 200–300 $\mu m^{[12]}$
IS [J]	>50 cm ^[1] , FoI =>145 ^[6] , >20 (mean particle diameter of sample = 256 μ m) ^[11]
FS [N]	$0^{[2]}$, >360 (BAM) ^[6] , >360 (mean particle diameter of sample = 256 μ m) ^[11]
ESD [J]	$142.53 \text{ mJ}^{[2]}, 4.5^{[6]}, > 5.6 \text{ (mean particle diameter of sample} = 256 \ \mu\text{m})^{[11]}$
N [%]	28.96
Ω(CO ₂) [%]	
T _{m.p.} [°C]	124–126 ^[1] , 128 ^[2] , 127–131 ^{[[5,12]]} , movt. in sample >90 °C, fusion of salt ~ 130 °C (thermomicroscopy) ^[9] , 130 (DSC @ 20 °C/min, sealed tubes) ^[9] , 130 ^[10] , 130 (strong endo peak, DSC, mean particle diameter of sample = 256 μm) ^[11] , 125–129 (small scale) ^[12] , 126–131 (large scale) ^[12] , 127 ^{[[12]]} , 125 (DSC/TGA @ 5 K/min) ^[12]

T _{dec.} [°C]	238 ^[3] , 105 (DSC @ 5 °C 109–115 (p 108 (endoth exotherm m movt. in san (thermomic two-stage d peak, DSC, loss @ 90 ° DSC, Al cruc T _e = extrapo	C/min) ^[5, 6] ; opartial melti herm, mpt. naxima) ^[5] , 2 mple >90°C, roscopy) ^[9] , lec., ~38% open partic C and 180°C	92-108 (exing), 119 (mof KDN/KNC) 27 (exother, fusion of s >200 (DSC) mass loss ir cle diamete C (total wei	otherm, bre elting, onse oly eutectic), and eutectic), m), 319 (en alt ~ 130 °C) 20 °C/mi of first stage or of sample ght loss = 3	akdown of one of the contract	erystal structure microsco two overlap NO ₃ melting n melt >150 bes) ^[9] , 160 0-230 (structure) GA @ 5 K/m	cture), py) ^[5, 6] , ping g) (DSC) ^[5, 6] , °C (onset, ong exo weight nin) ^[12]
	KDN type	Fusion (melting)		Decom	position	
		T _e (°C)	<i>T</i> _p (°C)	T _e (°C)	T _{p1} (°C)	T _{p2} (°C)	T _{p3} (°C)
	Crystals	129.3 ± 0.8	132.0± 0.3	199.0± 0.4	228.7 ± 0.3	236.2± 0.1	238.1 ± 0.2
	Powder	130.1± 0.6					238.0 ± 0.2
ρ [g cm ⁻³]	2.206 ^[2] , 2.25 ^[6]						
Heat of formation	$-264.18 \pm 0.54 \text{ kJ/mol } (\Delta_i H^o)^{[i]}, -1,820.41 \pm 3.75 \text{ kJ/kg } (\Delta_i H^o)^{[i]}, -63.14 \text{ kcal/mol } (\Delta H^o, \text{ exptl.})^{[7]}, -62.55 \text{ kcal/mol } (\Delta H^o, \text{ calcd.})^{[7]}, -63.14 \pm 0.13 \text{ kcal/mol } (\Delta H^o, \text{ loss})^{[8]}$						
	Calcd. (K-J) Exptl.						
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]							
T _{ex} [K]							
p _{C-J} [GPa]							
VoD [m s ⁻¹]							
$V_0 [L kg^{-1}]$							

5 s explosion T [°C] Ignition T [°C]	140 ^[6]				
Vacuum stability test [cm³/h]	22.9 mL/5 g	@ 80 °C, 40 h ^[6]			
Thermal stability	Overall mass loss = 35.6% (TG, N_2 atmosphere, two stage dec. process; 2.5% mass loss @ $70-110$ °C and $33.1\% > 200$ °C) ^[9] , overall mass loss = 30.2% (3 stage mass loss, TG @ 5 °C/min, Ar) ^[9] , TGA mass loss = 30.2% ^[6] TG, 5 mg samples in Al crucibles with pinholes in lid, Ar, 10 °C/min ^[9] :				
	KDN type Mass loss (%)				
	Stage 1 (occurs @ ~120 °C) Stage 2 (main dec.) Total Crystals 0.46 ± 0.04 34.87 ± 0.14 35.33 ± 0.18				
	Powder 0.21±0.01 34.90±0.07 35.11±0.06				
Solubility [g/mL]	Good solubility in water or MeOH but higher in water ^[12]				
Photosensitivity	Sensitive to daylight, after 24 h in daylight shows different DSC peak ^[9]				
ΔH° _{sol} [kcal/mol]	11.28 ± 0.02	(H ₂ O) ^[8]			
Decomposition activation energy [kJ/mol]	142.9 ^[10]				

	KDN ^[4]	KDN ^[3]	KDN ^[3]	KDN ^[3]	KDN ^[3]	KDN ^[3]	KDN ^[3]
Chemical formula	KN ₃ O ₄	KN₃O₄	KN ₃ O ₄	KN ₃ O ₄	KN ₃ O ₄	KN ₃ O ₄	KN ₃ O ₄
Molecular weight [g mol ⁻¹]	145.13	145.13	145.13	145.13	145.13	145.13	145.13
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	$P 2_1 / n $ (no. 14)	P 2 ₁ / n (no. 14)	P 2 ₁ / n (no. 14)	P 2 ₁ / n (no. 14)	P 2 ₁ / n (no. 14)	P 2 ₁ / n (no. 14)	$P 2_1 / n$ (no. 14)
a [Å]	6.614(1)	6.5891(4)	6.5918(4)	6.6010(3)	6.6029(4)	6.6114(1)	6.6162(2)
<i>b</i> [Å]	9.280(2)	9.0653(5)	9.0778(5)	9.1253(5)	9.1694(5)	9.2299(2)	9.2831(2)
c [Å]	7.198(1)	7.1459(4)	7.1540(4)	7.1657(4)	7.1731(4)	7.1878(2)	7.2000(3)
α [⁰]	06	96	96	96	90	96	06
[º]	97.58(1)	97.975(2)	97.946(2)	97.890(1)	97.805(1)	97.639(1)	97.583(1)
γ [°]	06	96	96	96	90	06	06
V [ų]	437.94(13)	422.71(4)	423.98(4)	427.55(4)	430.27(4)	434.73(2)	438.35(2)
7	4	4	4	4	4	4	4
$ ho_{ m calc}$ [g cm ⁻³]	2.201	2.280	2.274	2.255	2.240	2.217	2.199
<i>T</i> [K]	296	85	100	150	200	250	298

- [1] T. S. Kon'kova, Y. N. Matyushin, E. A. Miroshnichenko, A. B. Vorob'ev, *Russian Chemical Bulletin, International Edition*, **2009**, *58*, 2020–2027.
- [2] Q. Lei, Y.-H. Lu, J.-X- He, Chinese J. Expl. Prop., 2017, 40, 57-64.
- [3] M. J. Hardie, A. Martin, A. A. Pinkerton, E. A. Zhurova, Acta Cryst., 2001, 57B, 113-118.
- [4] R. Gilardi, J. Flippen-Anderson, C. George, R. J. Butcher, J. Am. Chem. Soc., 1997, 119, 9411–9416.
- [5] M. D. Cliff, M. W. Smith, J. Energet. Mater., 1999, 17, 69-86.
- [6] M. D. Cliff, D. P. Edwards, M. W. Smith, Alkali Metal Dinitramides Properties, Thermal Behaviour and Decomposition Products, ICT 1998, Karlsruhe, Germany, pp. 24-1-24-12.
- [7] Y. N. Matyushin, Estimation Method of Enthalpies of Formation of Salt Compounds, ICT 2008, Karlsruhe, Germany, pp. 44-1-44-15.
- [8] Y. N. Matyushin, T. S. Kon'kova, A. B. Vorob'ev, Y. A. Lebedev, Thermochemical Properties of Metallic Salts Dinitroamide, ICT 2006, Karlsruhe, Germany, pp. 179-1–179-4.
- [9] E. L. Charsley, P. G. Laye, H. M. Markham, J. J. Rooney, B. Berger, P. Folly, R. P. Claridge, T. T. Griffiths, *Thermal Studies on Potassium Dinitramide in the Liquid State*, ICT 2005, Karlsruhe, Germany, pp. 34-1–34-12.
- [10] G. Santhosh, S. Venkatachalam, K. Krishnan, K. B. Catherine, K. N. Ninan, *A Thermogravimetric Study on the Thermal Decomposition of Ammonium Dinitramide (ADN) Potassium Dinitramide (KDN) Mixtures*, ICT **2003**, Karlsruhe, Germany, pp. 16-1–16-10.
- [11] B. Berger, J. Mathieu, *Alkali Dinitramide Salts Oxidizers for Special Pyrotechnic Applications*, ICT **2003**, Karlsruhe, Germany, pp. 38-1–38-15.
- [12] B. Berger, H. Bircher, M. Studer, M. Wälchli, *Propellants, Pyrotechnics, Explosives*, **2005**, *30*, 184–190.

Potassium 1,1'-dinitramino-5,5'-bistetrazolate

Name [German, acronym]: Potassium 1,1′-dinitramino-5,5′-bistetrazolate

[K2DNABT]

Main (potential) use: Primary explosive

	K2DNABT			
Formula	C ₂ K ₂ N ₁₂ O ₄			
Molecular mass [g mol ⁻¹]	334.3			
Appearance at RT				
IS [J]	1 ^[1]	1 ⁽¹⁾		
FS [N]	<1[1]			
ESD [J]	0.003 ^[1]			
N [%]	50.3			
Ω(CO ₂) [%]				
T _{dec.} [°C]	200 ^[1]			
ρ [g cm ⁻³]	2.11 (@ 298 K) ^[1]			
Heat of formation	326.4 kJ/mol $(\Delta_f H^o_m)^{[1]}$, $\Delta_f U^o = 1$,	,036.1 kJ/kg (energy of form.) ^[1]		
	Calcd. (EXPLO5 6.02)	Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	4,959			
T _{ex} [K]	3,424			
p _{C-J} [kbar]	317			
VoD [m s ⁻¹]	8,330 (@ 2.11 g cm ⁻³)			
V ₀ [L kg ⁻¹]	489			

	K2DNABT ^[1]
Chemical formula	$C_2K_2N_{12}O_4$
Molecular weight [g mol ⁻¹]	334.3
Crystal system	Triclinic
Space group	P-1 (no. 2)
a [Å]	5.0963(6)
<i>b</i> [Å]	6.8248(8)
c [Å]	8.4271(8)
α [°]	7.56(1)
β[°]	86.15(1)
γ [°]	71.02(1)
<i>V</i> [Å ³]	225.65(5)
Z	1
$ ho_{ m calc}$ [g cm $^{-3}$]	2.172
τ[K]	100

^[1] D. Fischer, T. M. Klapötke, J. Stierstorfer, *Angew. Chem. Int. Ed.*, **2014**, *53*, 8172–8175.

^[2] M. Born, *Master Thesis on Primary Explosives*, Ludwig-Maximilians-Universität München, Munich, **2016**.

Potassium dinitrobenzfuroxan

Name [German, acronym]: Potassium salt of 4,6-dinitrobenzfuroxan,

4,6-dinitrobenzofurazon-1-oxide potassium salt,

potassium 4,6-dinitrobenzofurazan-1-oxide, potassium 4,6-dinitro-7-hydro-7-hydroxybenzfuroxamide [KDNBF]

Main (potential) use: Primary explosive^[1, 11], squibs, in primary

compositions^[4], was used in low-toxicity mixtures for primer production^[14], "green" primary explosive

alternative to LS in primer compositions^[15]

	KDNBF			
Formula	C ₆ H ₄ N ₄ O ₆ K			
Molecular mass [g mol ⁻¹]	225			
Appearance at RT	Orange-brown solid ^[1, 11] , smacrystalline solid ^[4]	all golden-orange plates ^[1] , red		
IS [J]	as LS ^[14] , $H_{50\%}$ = 35 cm (2 kg r Effect of liquid nitrogen on the	ne IS (2 kg mass, modified P.A. machine, \log sample in LN $_2$ for 15 min then		
	Height (cm) (standard Deviation)			
	Mean height for 50% probability of reaction			
	Control (dry) 27.31 (1.24)			
	LN ₂ test 27.61 (4.24)			
	Height for 10% probability of reaction			
	Control (dry) 5.08			
	LN ₂ test	12.50		
	Effect of T cycling at 50% h	eight		
	In LN ₂ , % fire	75		
	Dry, % fire	60		

FS [N]	1	orcelain plate and peg, Bruceton			
ESD [J]	fires @ 4.5, 0.45 and 0.045 ^[5]				
N [%]	19.9				
Ω(CO ₂) [%]					
T _{m.p.} [°C]	$215^{[2]}$, explodes @ $210^{[1.6]}$, 215 (melts with dec., onset, hot-stage microscopy @ 10 °C/min) ^[5] , $210^{[11]}$, 215 (explodes) ^[13] , 222 (exo, DTA @ 10 °C/min, static air) ^[13]				
T _{dec.} [°C]		max., exotherm, @ $10 ^{\circ}\text{C/min})^{[5]}$, e) ^[4] , 190 (onset for intensive dec.) ^[14] ,			
ρ [g cm ⁻³]	2.21 ^[1, 4] , 2.21 (crystal) ^[14] ,				
	Loading density (g cm $^{-3}$ @ psi × 10^3) $^{[1]}$: 1.63 @ $10^{[1]}$, 1.77 @ $20^{[1]}$, 1.81 @ $30^{[1]}$, 1.86 @ $40^{[1]}$, 1.98 @ $80^{[1]}$				
Heat of formation					
Heat of combustion	2,209 kcal/kg ^[1,7]				
	Calcd. (EXPLO5 6.03)	Exptl.			
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]		725 cal/g ^[1, 7]			
T _{ex} [K]					
p _{C-J} [kbar]					
VoD [m s ⁻¹]					
$V_0 [L kg^{-1}]$		604 ^[1]			

Sand test [g]	93% TNT ^[4, 8] , 44.8 g ^[4] , 43.6–44.8 g (200 g bomb) ^[11]
Initiation efficiency	0.30 g MF or 0.10 g LA minimum charges required for initiation $^{[4]}$, lower initiation ability than that of MF $^{\![14]}$
5 s explosion T[°C] 5 s ignition T[°C]	250 ^[1, 11] 250 ^[7]
Ignition T [°C] Explosion T [°C] Autoignition T [K]	199, 200, 201 (50 mg sample, @ 5 °C/min) ^[5] , ~210 ^[14] 210 (explosive dec.) ^[4] 453 ^[12]
<u> </u>	
100 °C heat test [% mass loss]	0.03% mass loss in first 48 h ^[1, 4] , 0.05% mass loss in second 48 h ^[1, 4] , no explosions in 100 h ^[1, 4] , <0.1% mass loss @ 100 °C for 4 days ^[11]

Thermal stability	Main exo dec. pe sterilization cycle crystals after two (1.32%) weight le (equivalent to 8.9 equivalent to 6.1	es at 125 °C for sterilization coss over 255 d 5 years) ^[16] , DT <i>P</i>	r 64 h each ^[16] , ycles (@ 125° ay test period i A/TGA after 183	no change in m C for 64 h each n accelerated a 3 days accelera	norphology of) ^[16] , 0.55 mg aging test
Solubility [g/mL]	0.245 g/100 g H ₂ O @ 30 °C ^[1, 4] ,				
Hygroscopicity	0.11% @ 30 °C with 75% RH $^{[1]}$, 0.27% @ 30 °C with 90% RH $^{[1,4]}$, only slightly hygroscopic $^{[11]}$				
Blast wave characteristics	Blast wave overpressure $P_{\text{max}} = 4.1 \text{ kPa (mean value)}^{[9]}$, blast wave positive phase impulse $I^+ = 0.56 \text{ Pa s (mean value)}^{[9]}$ (loose filled into mild steel test units $(4.6 \times 2.5 \times 2.5 \text{ cm}, 0.9 \text{ cm} \text{ hole diameter})$ sealed with a cork disc and adhesive mass of material = $200-1,000 \text{ mg}$, initiated with an ICI type "E" fusehead) ^[9]				
Specific heat [cal/g/°C]	0.217 @ -50 °C ^[1] , 0.217 @ 0 °C ^[1] , 0.217 @ 25 °C ^[1] , 0.217 @ 50 °C ^[1, 4]				
Stab sensitivity	Stab sensitivity values from ^[1] :				
	Density (g/cc) Firing point (inch-ounces)				
	0% 50% 100%				
	1.63	73	79	84	
	1.77	66	75	83	
	1.81	42	48	64	
	1.86	12	15	18	
	1.93	11	17	21	
	1.98	7	11	14	

Radiation sensitivity	Effects of react φ >0.17 eV 8.6	tor irradiation, [°] × 10 ¹³ n/cm ² s,	³average reacto , gamma 4.0 ×	or exposure rat 108 R/h (3.38	es: fast neuti × 10¹º ergs/ɛ̞	rons φ >0.18 Με ξ (C)/h gamma).	: If the composition is the standard of the s	reactor irradiation, ^a average reactor exposure rates: fast neutrons ϕ >0.18 MeV 1.4 × 10 ¹³ n/cm ² s, thermal neutron V 8.6 × 10 ¹³ n/cm ² s, gamma 4.0 × 10 ⁸ R/h (3.38 × 10 ¹⁰ ergs/g (C)/h gamma), ^b sample detonated, ^c 200 °C ^[18] :	utron
	Irradiation	Total neuí	Total neutron dose	Total	Weight	10% loss	150° avg.	DTA peak exo-	5 s explo-
	time (min)	Fast (n/cm²) Thermal (n/cm²)	Thermal (n/cm²)	gamma (R)	loss (%)	on TGA (°C)	gas evolution (mL/g/h)	therm @ 20 °C/ min (°C)	sion $T(^{\circ}C)$
	0					210	2.55	212 ^b	194
	09	5.04×10^{16}	5.04×10^{16} 3.10×10^{17} 4.0×10^{8}	4.0×10^{8}	0.46	188	10.95	198 ^b	185
	120	1.01×10^{17}	1.01×10^{17} 6.19×10^{17} 8.0×10^{8}	8.0×10^{8}	1.52	188	11.0	188 ^b	170
	180	1.61×10^{17}	1.61×10^{17} 9.29×10^{17} 1.2×10^9	1.2×10^9	4.84 ^c	175	11.0	182 ^b	169

- [1] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.
- [2] L. Y. Chen, Z. N. Zhou, T. L. Zhang, J. G. Zhang, A Biography of Potassium Complexes as Versatile Green Energetic Materials, in Proceedings of the 20th Seminar on New Trends in Research of Energetic Materials, NTREM 20, Pardubice, April 26th–28th, 2017, pp. 226–243.
- [3] R. Matyáš, J. Pachman, *Primary Explosives*, Springer-Verlag, **2013**, pp. 173–175.
- [4] Military Explosives, Department of the Army Technical Manual, TM 9-1300-214, Headquarters, Department of the Army, September 1984.
- [5] R. J. Spear, W. P. Norris, *Propellants, Explosives, Pyrotechnics*, **1983**, *8*, 85–88.
- [6] C. S. Gorzynski, J. N. Maycock, Explosives and Pyrotechnics Propellants for Use in Long-Term Deep Space Missions, NASA-CR-132373, 1974.
- [7] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1969**.
- [8] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [9] L. V. De Yong, G. Campanella, J. Hazard. Mater., 1989, 21, 125–133.
- [10] K. D. Oyler, Green Primary Explosives, Ch. 5 in Green Energetic Materials, T. Brinck (ed.), Wiley, 2014.
- [11] Encyclopedia of Explosives A Compilation of Principal Explosives, Their Characteristics, Processes of Manufacture and Uses, Ordnance Technical Intelligence Agency, Durham, North Carolina, USA, 13th May 1960.
- [12] J. Harris, *Friction Sensitivity of Primary Explosives*, Technical Report ARLCD-TR-82012, US Army Armament Research and Development Command, New Jersey, USA, 6th October **1982**.
- [13] M. N. Sikder, S. H. Chougule, A. K. Sikder, B. R. Gandhe, J. Energet. Mater., 2004, 22, 117–126.
- [14] M. A. Ilyushin, I. V. Tselinsky, I. V. Shugalei, Central Eur. J. Energet. Mater., 2012, 9, 293-327.
- [15] J. J. Sabatini, K. D. Oyler, *Crystals*, **2016**, *6*, 5.
- [16] L. L. Rouch, J. N. Maycock, *Explosive and Pyrotechnic Aging Demonstration*, National Aeronautics and Space Administration, Washington D. C., USA, February, **1976**.
- [17] L. Avrami, R. Hutchinson, *The Sensitivity to Impact and Friction*, Ch. 4 in *Energetic Materials 2: Technology of the Inorganic Azides*, H. D. Fair, R. F. Walker (eds.), Plenum Press, **1977**.
- [18] L. Avrami, J. Haberman, Sensitivity to Heat and Nuclear Radiation, Ch. 6 in Energetic Materials 2: Technology of the Inorganic Azides, H. D. Fair, R. F. Walker (eds.), Plenum Press, 1977.

Potassium 5,7-dinitro-[2,1,3]-benzoxadiazol-4-olate 3-oxide

Name [German, acronym]: Potassium 5,7-dinitro-[2,1,3]-benzoxadiazol-4-olate-3-

oxide, potassium 4,6-dinitro-7-hydroxybenzofuroxan, 4,6-dinitro-7-hyroxybenzofuroxan, potassium salt

[KDNP]

Main (potential) use: Primary explosive, possible LS replacement^[3], tests for

use in percussion primers, impulse cartridges and other initiators^[3], fast deflagrating material^[6], evaluated for use in a bridgewire slurry mix in CCU-63 impulse cartridge^[6], evaluated for use in TOW missile initiator units pressed onto bridgewire^[6], evaluated for use as a component of a primer mix in PVU-12/A percussion primers^[6,7], green replacement for LS (patent pending)^[6],

lead-free replacements for primers^[7]

$$C_2N$$
 C_2N
 C_2N
 C_2N
 C_2N

	KDNP
Formula	C ₆ HN ₄ O ₇ K
Molecular mass [g mol ⁻¹]	280.21
Appearance at RT	Light brown solid/crystalline solid ^[1]
IS [J]	$0.05^{[1]}$, 51 mJ (ball drop, needles) $^{[2]}$, $0.047^{[5]}$, 0.047 ± 0.004 (ball drop apparatus, 50% value) $^{[1]}$
FS [N]	10 ^[1] , 175 g no-fire level, 200 g low-fire level (BAM, needles) ^[2] , 9.81 ^[5] , 9.81 (no fire, Julius-Peters small BAM) ^[1] , 10.79 (low-fire, Julius-Peters small BAM) ^[1]
ESD [J]	>2 mJ ^[1] , >675 μ J ^[5] , <675 μ J (no fire, confined, LEESA or Electro-Tech systems model 931) ^[1] , >675 μ J (low fire, confined, LEESA or Electro-Tech systems model 931) ^[1] , >1.88 mJ (no-fire, unconfined, LEESA or Electro-Tech systems model 931) ^[1]
N [%]	20.0 ^[1]
Ω(CO ₂) [%]	
T _{m.p.} [°C]	Explodes @ 350 ^[1]

T _{dec.} [°C]	intensive dec., DSC)[4],	onset, DSC @ 20 °C/min) ~285 (DSC) ^[3] , 284.57 (exo ole, sealed Al cup, Ar) ^[1] , 2	peak max., DSC			
ρ [g cm ⁻³]	1.982 (@ 103 K) ^[1] , 1.945 (@ 298 K), 1.94–2.13 (anhydrous salt) ^[2] , 1.982 (crystalline) ^[5]					
Heat of formation	–197.07 kJ/mol ($\Delta_f H^o$, bomb calorimetry) ^[1] , 197.07 kJ/mol ($\Delta_f H^o$) ^[5]					
	Calcd. (EXPLO5 6.03) Lit. values Exptl.					
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	4,757 3,280 ^[5] 3,280 (bomb calorimetry) ^[1]					
T _{ex} [K]	3,453					
p _{C-J} [kbar]	242					
VoD [m s ⁻¹]	7,486 (@ 1.945 g cm ⁻³)					
V ₀ [L kg ⁻¹]	467					

Critical T [°C]	483-503 K (1 cm d	iameter spher	e @ 80% TMD) ^[1]			
5 s explosion T [°C]	562 K (deflagration) ^[1]					
1 s explosion T[°C]	573 K (deflagration	1)[1]					
10 s explosion T[°C]	557 K (deflagration) ^[1]					
Thermal stability	5 K/min up to 393 \sim 6% mass loss (rap from H_2O , TGA, isot	\leq 1% mass loss (mainly surface water loss, TGA, isothermally @ 393 K, Al, @ 5 K/min up to 393 K then maintained for 90 h @ 393 K, Ar, Alumina pans) $^{[1]}$, \sim 6% mass loss (rapid mass loss during heating if KDNP prepared or recryst. from H $_2$ O, TGA, isothermally @ 393 K, Al, @ 5 K/min up to 393 K then maintained for 90 h @ 393 K, Ar, Alumina pans) $^{[1]}$					
Solubility [g/mL]	Can be recryst. from acetone/toluene ^[1] , soluble in 2-methoxyethanol ^[1]						
Hygroscopicity	Rel. nonhygroscopic gains $1-2\%$ surface water over time ^[1] Values from ^[1] :						
	Rel. humidity (%)	Rel. humidity (%) T(K) Time (h) Weight gain (%)					
	92	293	24	+1.11]		
	92	92 293 48 +1.60					
	55	293	35 days	+1.40]		
Compatibility	1 '	, brass, Tophe	t C (Nichrome)	ninum, 2024-T3 alum I, Tophet A, EvenOhm			

Thermal conductivity	0.09 W r	n ^{−1} K ^{−1} (@	ي 303 K, ۱	for free flowi	ng cryst. pow	der) ^[1]	
p <i>K</i> _a	pH = 5.3	5 (0.45 ខ្	g KDNP in	100 mL deio	nized water)[1]	
Closed bomb data		T_0 = application of pulse, T_{p0} = time to first indication of pressure, T_{pk} = time-to-peak pressure, * = first perturbation in current or voltage trace, data from ^[7] :					
	T_0 - T_{p0}	$T_0 - T_{pk}$	$T_{p0}-T_{pk}$	Ignition time *(ms)	Peak pres- sure (psi)	Charge weight (g)	Impetus (in lb/g)
	0.781	0.913	0.132	0.710	1,480	0.149	6,047

	KDNP ^[1]
Chemical formula	C ₆ HKN ₄ O ₇
Molecular weight [g mol ⁻¹]	280.21
Crystal system	Monoclinic
Space group	P2 ₁ /c (no. 14)
a [Å]	7.4789(7)
<i>b</i> [Å]	9.8999(9)
c [Å]	12.8390(11)
α[°]	90
β [°]	98.945(2)
γ [°]	90
V [ų]	939.04(15)
Z	4
$ ho_{ m calc}$ [g cm ⁻³]	1.982 (@ 103 K) 1.945 (@ 298 K)
<i>T</i> [K]	103 K

- [1] J. F. Fronabarger, M. D. Williams, W. B. Sanborn, D. A. Parrish, M. Bichay, *Propellants, Explosives, Pyrotechnics*, **2011**, *36*, 459–470.
- [2] R. Matyáš, J. Pachman, *Primary Explosives*, Springer-Verlag, **2013**, pp. 176–179.
- [3] K. D. Oyler, *Green Primary Explosives*, Ch. 5 in *Green Energetic Materials*, T. Brinck (ed.), Wiley, **2014**.
- [4] M. A. Ilyushin, I. V. Tselinsky, I. V. Shugalei, Central Eur. J. Energet. Mater., 2012, 9, 293-327.
- [5] J. J. Sabatini, K. D. Oyler, *Crystals*, **2016**, *6*, 5.
- [6] J. Fronabarger, M. Williams, M. Bichay, Environmentally Acceptable Alternatives to Existing Primary Explosives: Replacements for Lead Azide, Lead Styphnate and Tetrazene, Joint Armaments Conferences, Dallas, Texas, USA, 20th May 2010.
- [7] J. W. Fronabarger, M. D. Williams, Lead-Free Primers, US Patent 2012/0152140 A1, June 21st 2012.

Potassium nitrate

Name [German, acronym]: Potassium nitrate, niter^[17], nitre^[17], nitrate of potash,

sal prunella (KNO₃ that has been melted and cast into

blocks)^[17] [kaliumnitrat, salpeter, kalisalpeter]

Main (potential) use: Pyrotechnical compositions, manufacture of fuses,

matches, component of propellants, ingredient in black powder – not an explosive^[15], naturally occurring

pyrotechnic oxidizer^[17]

Structural formula:

 KNO_3

	Potassium nitrate
Formula	KNO ₃
Molecular mass [g mol ⁻¹]	101.1
Appearance at RT	White powder ^[15] , colorless crystals/white powder ^[17] , colorless, transparent prisms, white granular or crystalline powder ^[18]
N [%]	13.86
Ω(CO ₂) [%]	+39.6
T _{phase transition} [°C]	~128 (α -KNO $_3$ (orthorhombic) $$ β -KNO $_3$ (trigonal)) $^{[6]}$, cooling β -KNO $_3$ from 200 °C passes through γ -KNO $_3$ (trigonal) before reverting to α -KNO $_3$ @ 100 °C $^{[6]}$, 114–139 (endotherm), 128 (rhombic $$ trigonal, DTA @ 15 °C/min) $^{[7]}$, 137 (endo, onset), 145 (endo peak max) (DSC @ 20 °C/min) $^{[14]}$
T _{m.p.} [°C]	330 ^[1] , 314 ^[5, 17] , 333 ^[18] , 322 (fusion, DSC @ 20 °C/min) ^[14]
T _{dec.} [°C]	340 (DTA) ^[1] , 332 (fusion), 628 (slight bubbling), 642 (rapid bubbling), 805 (slight nitrous fumes) ^[7] , no exothermic peak <450 °C (DSC @ 20 °C/min) ^[14] , ~600–750 °C (dec. forming KNO $_2$ and O $_2$) ^[17] , >800 °C (dec. forming K $_2$ O $_2$, KO $_2$, K $_2$ O, O $_2$ and NO $_2$) ^[17] , 400 ^[18]

ρ [g cm ⁻³]	2.1 (@ 298 K) ^[2] , 2.123 ^[4] , 2.10 ^[5, 17] , 2.	1062-2.109 (crystal) ^[11] , 2.11 ^[18]		
Heat of formation	$-4,891$ kJ/kg (enthalpy of form.) ^[5] , $-1,167$ cal/g ^[4] , -117.76 kcal/mol ($\Delta H^{\circ}_{\rm f}$) ^[13] , 117.7 kcal/mol ($\Delta H^{\circ}_{\rm f}$ °, exptl.) ^[12] , 116.7 kcal/mol ($\Delta H^{\circ}_{\rm f}$ °, calcd.) ^[12] , -495 kJ/mol (enthalpy of form.) ^[17]			
	Calcd. (EXPLO5 6.04) Exptl.			
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]				
T _{ex} [K]				
p _{C-J} [kbar]				
VoD [m s ⁻¹]				
$V_0 [L kg^{-1}]$				

Solubility [g/mL]	Soluble in cold $H_2O^{[15]}$, very soluble in hot water ^[15] , insoluble in EtOH and $Et_2O^{[15]}$, 38 g/100 g in H_2O @ 25 °C ^[17] , insoluble in EtOH ^[17] , 1 g in 2.8 mL $H_2O^{[18]}$, 1 g/0.5 mL boiling $H_2O^{[18]}$, 1 g/620 mL EtOH ^[18] , soluble in glycerol ^[18] , insoluble in abs. alcohol ^[18] , dissolves in H_2O with lowering of temperature ^[18]
Hygroscopicity	Critical humidity = 94.2% RH @ 20 °C ^[16, 17]
Compatibility	Should not be mixed with AP ^[17] , mixture with red phosphorus is highly impact sensitive ^[17] , mixtures with combustible dust are dangerous ^[17] , can burn for hours with combustible substances ^[17] , incompatible for long-term storage with Al under moist conditions ^[17]
Enthalpy of dec. [kJ/mol]	225 (for dec. to KNO $_2$) ^[17] , 188 (for dec. to K $_2$ O, N $_2$ and O $_2$) ^[17]
рН	~7 ^[18]

	KNO ₃ ^[8]	KNO ₃ ^[9]	KNO ₃ ^[9]	KNO ₃ ^[10]	KNO ₃ ^[9]	KNO ₃ ^[3]	KNO ₃ ^[3]
	α-KNO ₃	β-KNO ₃ (powder)	y-KNO ₃ (powder)	ō-KNO ₃	High pressure phase	γ-KNO ₃ (Phase-III)	γ-KNO ₃ (Phase-III)
Chemical formula	KNO ₃	KN0 ₃	KNO ₃	KN0 ₃	KNO ₃	KNO ₃	KNO ₃
Molecular weight [g mol ⁻¹]	101.11	101.11	101.11	101.11	101.11	101.11	101.11
Crystal system	Orthorhombic	Hexagonal	Hexagonal	Monoclinic	Orthorhombic	Hexagonal	Hexagonal
Space group	Pmcn	R 3 m (no. 166)	R 3 m (no. 160)	P 2 ₁ / c (no. 14)	P n m a (no. 62)	R 3 m (no. 160)	R 3 m (no. 160)
a [Å]	5.414(2)	5.425(1)	5.487(1)	3.6820(7)	7.4867(2)	5.4698(8)	5.4325(2)
<i>b</i> [Å]	9.166(9)	5.415(1)	5.487(1)	5.5830(11)	5.5648(2)	5.4698(8)	5.4325(2)
c [Å]	6.431(9)	9.386(4)	9.156(3)	15.065(3)	6.7629(2)	8.992(3)	8.8255(7)
α [°]	06			90	06		
β [⁰]	06			103.91(3)	06		
γ [°]	90			90	06		
V [ų]				300.6	281.76	232.99(8)	225.56(2)
Z	4	3	3	4		3	3
$ ho_{ m calc}$ [g cm ⁻³]				2.23			
7 [K]	25 °C	151 °C	91 °C	293		295	123

- [1] S. Pincemin, R. Olives, X. Py, M. Christ, Sol. Energy Mater. Sol. Cells., 1994, 92, 603–613.
- [2] "Hazardous Substances Data Bank" data were obtained from the National Library of Medicine (US)
- [3] E. F. Freney, L. A. Garvie, T. L. Groy, P. R. Buseck, *Acta Cryst.*, **2009**, *B65*, 659–663.
- [4] https://engineering.purdue.edu/~propulsi/propulsion/comb/propellants.html
- [5] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 268.
- [6] J. K. Nimmo, B. W. Lucas, Acta Cryst., 1976, B32, 1968–1971.
- [7] S. Gordon, C. Campbell, *Analytical Chem.*, 1955, 27, 1102–1109.
- [8] J. R. Holden, C. W. Dickinson, J. Phys. Chem., 1975, 79, 249-256.
- [9] T. G. Worlton, D. L. Decker, J. D. Jorgensen, R. Kleb, *Physica B and C*, **1986**, *136*, 305–306.
- [10] S. Wolf, N. Alam, C. Feldmann, ZAAC, 2015, 641, 383-387.
- [11] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1978.
- [12] L. Kostikova, Y. Matyushin, V. Palyulin, T. Pivina, *The Enthalpy of Formation Study of Nitrate and Perchlorate Salts*, ICT **1999**, Karlsruhe, Germany, pp. 76-1–76-7.
- [13] Y. N. Matyushin, *Estimation Method of Enthalpies of Formation of Salt Compounds*, ICT **2008**, Karlsruhe, Germany, pp. 44-1–44-15.
- [14] J. C. Oxley, J. L. Smith, S. Naik, J. Moran, J. Energet. Mater., 2008, 27, 17–39.
- [15] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [16] K. L. Kosanke, B. J. Kosanke, B. T. Sturman, R. M. Winokur, *Encyclopedic Dictionary of Pyrotechnics (and Related Subjects), Part 2 F to 0*, Pyrotechnic Reference Series No.5, Journal of Pyrotechnics Inc., Whitewater, Colorado, USA, **2012**, p. 609.
- [17] K. L. Kosanke, B. J. Kosanke, B. T. Sturman, R. M. Winokur, *Encyclopedic Dictionary of Pyrotechnics (and Related Subjects), Part 3 P to Z*, Pyrotechnic Reference Series No.5, Journal of Pyrotechnics Inc., Whitewater, Colorado, USA, **2012**, pp. 859–862.
- [18] The Merck Index An Encyclopedia of Chemicals and Drugs, 9th edn., M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig (eds.), Merck and Co. Inc., Rahway, New Jersey, USA, 1976.

Potassium 5-nitrotetrazolate

Name [German, acronym]: Potassium nitrotetrazolate, [kalium 5-nitrotetazolat]

Main (potential) use: Potential green primary explosive^[2]

	Potassium 5-nitrote	trazolate		
Formula	CKN ₅ O ₂			
Molecular mass [g mol ⁻¹]	153.14			
Appearance at RT		'		
IS [J]	10 (BAM) ^[1] , 10 ^[2]	·		
FS [N]	<5 (BAM) ^[1] , <5 ^[2]	<5 (BAM) ^[1] , <5 ^[2]		
ESD [J]				
N [%]	45.73	45.73		
Ω(CO ₂) [%]				
T _{m.p.} [°C]	168 (onset, DSC @ !	168 (onset, DSC @ 5 °C/min) ^[1] , 168 ^[2]		
T _{dec.} [°C]	195 (DSC @ 5 °C/m	195 (DSC @ 5 °C/min) ^[1, 2]		
ρ [g cm ⁻³]	2.027 (X-ray @ 200 K) ^[1, 2]			
Heat of formation				
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]				
T _{ex} [K]				
p _{C-J} [kbar]				
VoD [m s ⁻¹]				
V ₀ [L kg ⁻¹]				
Solubility [g/mL]	Soluble in H ₂ O, MeC	OH, acetone, DMSO ^[1]		
Flame sensitivity	Explodes ^[1, 2]			

	KNT ^[1]
Chemical formula	CKN ₅ O ₂
Molecular weight [g mol ⁻¹]	153.16
Crystal system	Monoclinic
Space group	P2 ₁ /c
a [Å]	4.8268(3)
<i>b</i> [Å]	13.1717(8)
c [Å]	7.9423(6)
α[°]	90
β[°]	96.363(7)
γ [°]	90
V [ų]	501.84(6)
Z	4
$ ho_{ m calc}$ [g cm ⁻³]	2.027
T[K]	200
	Crystals from slow evaporation of MeOH soln.

^[1] T. M. Klapötke, C. M. Sabaté, J. M. Welch, *Dalton Trans.*, **2008**, 6372–6380.

^[2] M. A. Ilyushin, I. V. Tselinsky, I. V. Shugalei, *Centr. Eur. J. Energet. Mater.*, **2012**, *9*, 293–327.

Potassium perchlorate

Name [German, acronym]: Potassium perchlorate, peroidin [kaliumperchlorat]
Main (potential) use: Pyrotechnics, oxidant in pyrotechnic compositions^[10],

common oxidizer in pyrotechnics^[12]

Structural formula:

KCIO₄

	Potassium perchlorate		
Formula	KClO ₄		
Molecular mass [g mol ⁻¹]	138.6		
Appearance at RT	White rhombohedral cryst. solid powder ^[12, 13]	l ^[4] , colorless crystals/white	
IS [J]	Insensitive, that is, $H_{50\%} > 320$ cr 1% ferric oxide, Mn dioxide, sug 50/50 mixture with AN all insen	gar, ammonium dichromate and	
N [%]	±0		
Ω(CO ₂) [%]	+46.2 (K ₂ O, HCl)		
T _{phase transition} [°C]	300 (rhombohedral \rightarrow cubic) ^[4, 5] , 284–301 (endotherm, DTA transition T = 300 °C, rhombic \rightarrow cubic, DTA @ 15 °C/min) ^[5] , 300 (crystal phase transition) ^[10]		
T _{m.p.} [°C]	525 ^[1, 4] , 588 (with dec.) ^[4] , 588 (fusion, DTA @ 15 °C/min) ^[5]	
T _{dec.} [°C]	510 ^[4] , 530 ^[4] , 588 (fusion), 619 (rapid bubbling), 616 (vigorous bubbling) (DTA @ 15 °C/min) ^[5] , 600 ^[6] , 653 ^[10] , 400 ^[13]		
ρ [g cm ⁻³]	2.53 ^[1] , 2.519 ^[3] , 2.530 (@ 25 °C) ^[4] , 2.5374 (@ 0 °C) ^[4] , sp. gr. = 2.53 g/mL ^[10] , 2.52 ^[12, 13] , 2.53574 ± 0.0001 @ 0 °C ^[4]		
Heat of formation	-111.29 kcal/mol (Q_t) ^[4] , -742 cal/ $g^{[3]}$, -103.22 kcal/mol (ΔH_t) ^[6] , -103.37 kcal/mol (ΔH^o_f , exptl.) ^[8] , -101.07 kcal/mol (ΔH^o_f , calcd.) ^[8] , -433 kJ/mol (enthalpy of form.) ^[12]		
	Calcd. (EXPLO5 6.03)	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]			
<i>T</i> _{ex} [K]			
p _{C-J} [kbar]			
VoD [m s ⁻¹]			
V_0 [L kg $^{-1}$]			

5 s explosion T [°C] Explosion T [°C]	240 (80/20 mixture with polyester resin) ^[4] , 245 () ^[4] , 290 (80/20 mixture with ith cotton linters) ^[4]
Burn rate [mm/s]	Catalysis of burning rate mixtures ^[6] :	e of stoichiometr	ic aluminum-potassium chlorate
	Additive	Weight, %	Burning rate in s ⁻¹ at 100 psi
	None		0.38
	Chlorium dioxide	10	0.70
	Cobaltic oxide	10	0.80
	Ferric oxide	10	0.93
	Manganese dioxide	10	0.89
	Nickel oxide	10	0.70
	Cobalt chromate	10	1.15
	Cobalt	10	0.87
	Copper	10	0.74
	Lead	13	0.90
	Tin	6	0.94
	Ferrovanadium	10	0.63
Flame <i>T</i> Solubility [g/mL]	$T=3,024 \text{ K } (100 \text{ psi}), \text{ S.l.} = 206.5 \text{ lb s}^{-1} \text{ lb } (\text{stoichiometric combustion with high grade paraffin as fuel, } (CH_2)_n \text{ and } \Delta H_f = -5.971 \text{ kcal/mol } @ 298 \text{ K})^{[6]}$ $0.11 \text{ g/}100 \text{ g MeOH}^{[6]}, 0.02 \text{ g/}100 \text{ g EtOH}^{[6]}, 0.01 \text{ g/}100 \text{ g } n\text{-propanol}^{[6]}, 0.005 \text{ g/}100 \text{ g } n\text{-butanol}^{[6]}, 0.16 \text{ g/}100 \text{ g acetone}^{[6]}, insoluble in Et_2O^{[6]}, 0.7 \text{ parts KClO}_4 \text{ per } 100 \text{ parts H}_2O @ 0 \text{ °C}^{[7]}, 18.7 \text{ parts KClO}_4 \text{ per } 100 \text{ parts H}_2O @ 100 \text{ °C}^{[7]}, 2.1 \text{ g/}100 \text{ g H}_2O @ 25 \text{ °C}^{[12]}, \text{ soluble in } 65 \text{ parts cold}$		
		I ₂ 0 @ 0 °C ^[4] , 18.	er ^[13] , practically insoluble in 2 g/100 g $\rm H_2O$ @ 100 ° $\rm C^{[4]}$,
Hygroscopicity	Critical humidity = 99.8	% RH @ 15 °C ^[11] ,	, not hygroscopic ^[12]

Compatibility

Relative catalytic activity of metal oxides with potassium perchlorate as shown by DTA and TGA data from $^{[6]}$:

Catalyst	T of initial dec. (°C)	Catalyst	T of initial dec. (°C)
None	600	MnO ₂	460
ZnO	565	Fe ₂ O ₃	450
TiO ₂	535	CuO	450
Al ₂ O ₃	530	CoO	380
MgO	525	Cu ₂ O	380
NiO	520	Co ₃ O ₄	375
Ag ₂ O	520	Cr ₂ O ₃	325

Oxidation of fuels by potassium perchlorate, data from $^{[6]}$:

Fuel	T (°C)	Catalysts	Inhibitors	Comments
Carbon black	320-385			No induction period
Nuchar sugar charcoal		Alkali and alkaline earth halides	Basic salts	CO ₂ only gaseous product
Carbon black	343	LiCl, BaCl ₂ , KCl, NaCl	KI, Li ₂ CO ₃	
Synthetic diamond	380	V ₂ O ₅ , Fe ₂ (SO ₄) ₃ , Al ₂ (SO ₄) ₃ , Cu, Al	-	V₂O₅ catalyst
Graphite	380	V ₂ O ₅	-	Sandwich tablets also studied
Toluene, Naphthalene,	370-440	_	-	No reaction
Anthracene	510	-	-	Explosion
Decalin, Cyclohexane, Cyclohexanol, Cyclohexanone	350–380	-	-	Dehydrogena- tion

	1				
	Polystyrene	300-550	-	_	No reaction
	Styrene copolymer	360-400	LiCl	K ₂ CO ₃ no effect	
	Bakelite	367	LiCl → ignition in 2–3 min	K ₂ CO ₃ inhibited	15% reaction in 5 h with no additive
	Novolac	367	LiCl \rightarrow ignition at 355 °C $K_2CO_3 \rightarrow$ ignition at 367 °C	-	30% reaction in 5 h with no additive
	Alicyclic compounds	-	-	-	Chromic oxide, BaO ₂ , PbO ₂ had no effect
	Polydivinylben- zene (PDVB)	400	O ₂ , air, CO ₂	-	Air at various pressures
	PDVB	420-490	V ₂ O ₅ and wide range of compounds	Li ₂ CO ₃ , Zn, Pb ₃ O ₄ , Al, Cu, Fe	From ignition delays decomposition at 360° gave a similar division
	PDVB	275-350	-	-	Sodium perchlorate as oxidizer
	Forms sensitive n sulfide and sulfur LiCl ^[12]				
ΔH° _{sol} [kcal/mol]	12.20 ± 0.05 ^[9] , 12	2.335 ± 0.010) ^[9]		
Enthalpy of decomposition [kJ/mol]	-4 ^[12]				

	Potassium perchlorate ^[2]
Chemical formula	KClO ₄
Molecular weight [g mol ⁻¹]	138.55
Crystal system	Orthorhombic
Space group	Pnma
a [Å]	8.7684(3)
<i>b</i> [Å]	5.6237(2)
c [Å]	7.2039(3)
α [°]	90.0
β[°]	90.0
γ[°]	90.0
V [Å ³]	355.23(2)
Z	4
$ ho_{ m calc}$ [g cm ⁻³]	2.591
T[K]	126

- [1] "Hazardous Substances Data Bank" data were obtained from the National Library of Medicine (US)
- [2] D. Marabello, G. Gervasio, F. Cargnoni, Acta Cryst., 2004, 60A, 494–501.
- [3] https://engineering.purdue.edu/~propulsi/propulsion/comb/propellants.html
- [4] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1978.
- [5] S. Gordon, C. Campbell, *Analytical Chem.*, **1955**, *27*, 1102–1109.
- [6] G. S. Pearson, Perchlorates A Review of Their Thermal Decomposition and Combustion with an Appendix on Perchloric Acid, R. P. E. Technical Report no. 68/11, Ministry of Technology, London, October 1968.
- [7] T. L. Davis, *The Chemistry of Powder and Explosives*, vol. 2, **1943**, John Wiley and Sons Inc., New York, pp. 357–366.
- [8] Y. N. Matyushin, Estimation Method of Enthalpies of Formation of Salt Compounds, ICT 2008, Karlsruhe, Germany, pp. 44-1-44-15.
- [9] Y. N. Matyushin, T. S. Kon'kova, *To A Question on the Enthalpy of Formation of the Ammonium Perchlorate*, ICT **2003**, Karlsruhe, Germany, pp. 121-1–121-14.
- [10] Services Textbook of Explosives, JSP 333, Procurement Executive, Ministry of Defence, UK, March 1972.
- [11] K. L. Kosanke, B. J. Kosanke, B. T. Sturman, R. M. Winokur, *Encyclopedic Dictionary of Pyrotechnics (and Related Subjects), Part 2 F to 0*, Pyrotechnic Reference Series No.5, Journal of Pyrotechnics Inc., Whitewater, Colorado, USA, **2012**, p. 609.
- [12] K. L. Kosanke, B. J. Kosanke, B. T. Sturman, R. M. Winokur, *Encyclopedic Dictionary of Pyrotechnics (and Related Subjects), Part 3 P to Z*, Pyrotechnic Reference Series No.5, Journal of Pyrotechnics Inc., Whitewater, Colorado, USA, **2012**, pp. 862–864.
- [13] The Merck Index An Encyclopedia of Chemicals and Drugs, 9th edn., M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig (eds.), Merck and Co. Inc., Rahway, New Jersey, USA, **1976**.

Potassium picrate

Name [German, acronym]: Potassium salt of 2,4,6-trinitrophenol,

potassium 2,4,6-trinitrophenolate, potassium 2,4,6-trinitrophenate, potassium salt of picric acid, potassium 2,4,6-trinitrophenoxide [kaliumpikrat, PP]

Main (potential) use: Was used in the past as a component of high explosives

and smokeless powders^[2] formerly the principal ingredient in pyrotechnic whistle compositions^[2], mixtures with PETN or HMX can be used as initiators of other explosives charges in low-voltage detonators containing no primary explosives^[8], was used in the explosives poudres Designolles and poudres Fontaine^[14], in pyrotechnic whistle compositions, propellants such as Ballistite, some primer mixtures^[14]

	Potassium picrate
Formula	$C_6H_2KN_3O_7$
Molecular mass [g mol ⁻¹]	267.19
Appearance at RT	Reddish-yellow crystalline solid ^[2] , crystals range in color from yellow to deep orange/red-brown with the darker colors suggested to be an impurity produced by overheating the salt soln. in an excess of base, the orange gave the same X-ray diffraction pattern as the yellow crystals ^[10] , yellow needle crystals (pure) ^[10] , long thin yellow crystals from aqueous soln. ^[4] , reddish or yellow rhombic crystals ^[14]
IS [J]	125 cm (detonates, air-dry sample, 750 g mass) ^[7] , $H_{50} = 37.3 \pm 0.05$ cm (type 12, ERL apparatus) ^[13] , $H_{50} = 55.9 \pm 0.04$ cm (type 12B, ERL apparatus) ^[13]

ESD [J]	Data from ^[9] :					
	50%	% point energ	y (J)			
	3 mil foil	10 mil foil	% expl.			
	0.73	0.54	100			
	Data form ^[13] :	Data form ^[13] :				
	En	ergy (J)				
	0.076 mm foil	1	ı foil			
	0.73 0.54					
N [%]	15.73					
Ω(CO ₂) [%]						
T _{m.p.} [°C]	Melts before it violently decomposes ^[14]					
T _{phase transition} [°C]	3 polymorphs reported (A, B and C): type A obtained when an aqueous/alcohol soln. of PA is neutralized with KOH soln.; type B obtained on using methylated at RT or isopropyl alcohol or amyl alcohol at $T > 50$ °C as solvent in the absence of water; type C obtained by heating type A to 260 °C ^[14] , type B does not show transition to high temperature form ^[14]					
T _{dec.} [°C]	Melts before it undergoes violent decomposition ^[14]					
	DSC, T_m = peak T (K): 583.2 @ 1.25 K/min, 583.5 @ 1.25 K/min, 594.4 @ 2.5 K/min, 591.3 @ 2.5 K/min, 594.2 @ 2.5 K/min, 592.7 @ 2.5 K/min, 609.0 @ 10 K/min, 611.0 @ 10 K/min, 608.0 @ 10 K/min, 610.5 @ 10 K/min, 619.0 @ 20 K/min, 620.5 @ 20 K/min, 620.0 @ 20 K/min, 619.5 @ 20 K/min, 633.0 @ 40 K/min, 632.5 @ 40 K/min ^[14]					
ρ [g cm ⁻³]	1.940 (flotation	ı method @ R	T) ^[10] , 1.852 ^{[10 as being}	probably too low], 1.95 ^[14]		
Heat of formation	-508.09 ± 3.05 505.8 ± 3.05 kJ		^[14] , –118.45 kcal/m alcd.) ^[14] ,	ol $(\Delta H_{\mathrm{f}}^{\theta})^{[14]}$,		
	Calcd. Lit. values Exptl. (EXPLO5 6.03)					
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]						
<i>T</i> _{ex} [K]						
p _{C-J} [kbar]						
VoD [m s ⁻¹]						
V ₀ [L kg ⁻¹]						
Trauzl test [cm³, % TNT]				small lead block, 6.5 mm 8 with interior cap) ^[7]		

Initiation efficiency	Can be ignit	ted to	deflag	ration b	y a rapi	dly hea	ted bric	dgewire	[8]
5 s explosion T [°C] Explosion T [°C]	311-316 ^[14]								
Burn rate [mm/s]	Linear and mass rates of burning @ 1 atm.: $u = 1.50$ cm/s, $m = 2.74$ g cm ² s ^{-1[1]} Dependence on the burning rate with the initial temperature, T_0 , crystals ground to particle size of ~50 μ m, pressed into brass tubes of 8 mm diameter to rel. ρ of 0.9–0.99 g, constant pressure bomb in N ₂ atmosphere ^[6] :								
	p, atm.			u (mı	n/s) @	<i>T</i> ₀, °C			β , 10 ³ ,
		20	40	60	80	100	120	150	1/deg
	0.5	40	45	52	60	67	75	96	6.7
	1.0	52	58	64	70	76	82	98	4.8
	3.0	68	74	79	82	90	93	106	3.4
	6.0 7	72	76	3	90	92	100	110	3.2
	10.0	64	68	74	80	87	94	100	3.4
		42.5	47	52	56	62	67	76	4.5
	40.0 30 35 40 45 50 56 68 6.3								
Solubility [g/mL]	$ \begin{array}{l} 0.22\% \text{ in MeOH}^{[5]}, 0.029\% \text{ in MeOH (abs.)}^{[5]}, <0.00001\% \text{ in Et}_2O^{[5]}, \\ 1.02\% \text{ in acetone}^{[5]}, 0.4\% \text{ in H}_2O^{[5]}, \text{ slightly soluble in cold water} \\ (0.5 \text{ g}/100 \text{ g water @ 15 °C})^{[14]}, \text{ more soluble in hot water (25 g}/100 \text{ g} \\ \text{@ 100 °C})^{[14]} \\ \\ \text{Aqueous solubility data from}^{[14]} \text{:} \end{array} $								
	T(°C)		10	3 s/mo	dm ⁻³				
	20		18	3.9					
	25		24	.1					
	25		23	.1					
	25		24	.2					
	25		23	.3					
	25		26	.7					
	30		28	3.2					
	30		33	.2					
Hygroscopicity	Crystallizes	from	water a	s anhy	drous sa	alt ^[14]			

Enthalpy of soln. [kJ/mol]	In water a = mol confidence ^[14] :	e ratio of PP	to water; b = uncertaint	ties are	95%
	m (g)	n ^a	ΔH^{Θ} (kJ/mol)]	
	0.5230	5,678	50.84	1	
	0.5142	5,775	52.18	1	
	0.5133	5,784	50.43]	
	0.5109	5,811	52.08		
	0.5035	5,898	50.50		
	0.4459	6,657	50.64]	
	0.4161	0.4161 7,136 51.26			
	0.4118	0.4118 7,210]	
	0.3614	8,212	50.46		
	0.1177	25250	50.77		
	mean = 51.14 ± 0.55^{b} 42 kJ/mol in water $(\Delta H_{s}^{\theta})^{[14]}$				
DDT initiation	Effect of donor-charge composition and loading density on DDT reaction, data from ref ^[8] :				
	Redu	Reduced-diameter transition charge			
	Transition charge Acceptor charge				
	PETN S ^P _o = 330	PETN $S_{o}^{P} = 330 \text{ m}^{2}/\text{kg}$ PETN $S_{o}^{P} = 330 \text{ m}^{2}/\text{kg}$			
	Density = 1.0 g	g/cm³	Density = 1.6 g/cm ³		
	Diameter = 2.5	mm			
	Length = 6.4 m	ım			
i	1				

Ignition voltage = 2.5 V

		Donor charge			
	Explosive	(% by mass)	Density (g/cm³)	D = detonation ND = ignition but no detonation	
	KP	100	1.6	ND	
	KP	100	1.2	ND	
	KP/PETN	90/10	1.6	ND	
	KP/PETN	50/50	1.6	ND	
	KP/PETN	25/75	1.6	D	
	KP/PETN	10/90	1.6	D	
	KP/PETN	90/10	1.6	ND	
	KP/PETN	50/50	1.2	D	
	KP/PETN	25/75	1.2	D	
	KP/PETN	10/90	1.2	D	
Activation energy to decomposition [kJ/mol]	214.1 ± 1.5 (DSC, Kissinger method) ^[14] , 223.3 ± 1.5 (DSC, Ozawa method) ^[14]				
Heat capacity [J•mol ⁻¹ •K ⁻¹]	311.11 @ 500.	method) ¹⁻⁷ $C^{0}_{p,m} = 230.13 @ 298.15 K (calcd.)^{[15]}, 275.67 @ 400.00 K (calcd.)^{[15]}, 311.11 @ 500.00 K (calcd.)^{[15]}, 338.89 @ 600.00 K (calcd.)^{[15]}, 359.27 @ 700.00 K (calcd.)^{[15]}, 375.41 @ 800.00 K (calcd.)^{[15]}$			

	Potassium picrate ^[3]	Potassium picrate ^[4]	Potassium picrate ^[10]	Potassium picrate ^[11]	Potassium picrate ^[12]	Potassium picrate ^[14]
Chemical formula	C ₆ H ₂ KN ₃ O ₇	C ₆ H ₂ KN ₃ O ₇	C ₆ H ₂ KN ₃ O ₇	C ₆ H ₂ KN ₃ O ₇	C ₆ H ₂ KN ₃ O ₇	C ₆ H ₂ KN ₃ O ₇
Molecular weight [g mol ⁻¹]	267.19	267.19	267.19	267.19	267.19	267.19
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic
Space group	Ibca (73)					
a [Å]	13.325	13.333(4)	13.33 ± 0.01	7.135	13.316(3)	13.33
<i>b</i> [Å]	19.090	19.112(4)	19.16 ± 0.02	13.332	19.107(5)	19.09
c [Å]	7.140	7.118(5)	7.154 ± 0.005	19.124	7.138(2)	7.14
α [⁰]	06	06	06	06	06	06
β [⁰]	06	06	06	06	06	06
γ [º]	06	06	06	06	06	06
V [ų]	1,816.23	1,813.81			1,816	
Z	8	8	8	8	8	8
$ ho_{ m catc}$ [g cm ⁻³]	1.954	1.957			1.95	
7 [K]	295	295			295	
					Slow cooling to RT of a hot aqueous soln.	

3 polymorphs reported (A, B and C): type A obtained when an aqueous/alcohol soln. of PA is neutralized with KOH soln.; type B obtained on using methylated at RT or isopropyl alcohol or amyl alcohol at T > 50 °C as solvent in the absence of water; type C obtained by heating type A to 260 °C^[14]; crystallizes from water as anhydrous salt^[14].

Flying plate initiation of acceptor explosives, large diameter charges^[8]:

Donor charge			Flying plate			
KP/PETN mixes KP SP0 = $250 \text{ m}^2/\text{kg}$ PETN SP0 = $320 \text{ m}^2/\text{kg}$		Flyer material = 6061-T6 Al Flyer barrel: diameter = 2.5 mm Length = 6.4 mm				
[Oonor ch	arge	Thickness	Acceptor explosive	Ignition	Result
KP	PETN	density	(mm)	(density = 1.6 g cm ⁻³)	voltage (V)	D = detonation ND = no
(% by n	nass)	(g/cm³)				detonation
90	10	1.6	1.27	PETN	40	ND
90	10	1.2	1.27	PETN	40	ND
50	50	1.6	1.27	PETN	40	D
50	50	1.6	1.27	PETN	3	ND
50	50	1.2	1.27	PETN	40	D
50	50	1.6	1.27	9407 PBX	3	ND
25	75	1.6	1.27	PETN	40	D
25	75	1.2	1.27	PETN	40	D
25	75	1.6	1.27	9407 PBX	3	ND
10	90	1.6	1.27	PETN	3	D
10	90	1.6	1.27	PETN	3	D
10	90	1.6	1.27	PETN	40	D
10	90	1.6	1.27	PETN	40	D
10	90	1.6	1.27	PETN	40	D
10	90	1.2	1.27	PETN	3	D
10	90	1.2	1.27	PETN	3	D
10	90	1.6	1.27	9407 PBX	3	D
10	90	1.6	1.27	9407 PBX	40	D
10	90	1.6	1.27	9407 PBX	3	D
10	90	1.6	1.27	9407 PBX	3	ND

10	90	1.6	0.64	9407 PBX	3	D
10	90	1.6	0.64	9407 PBX	3	ND
10	90	1.2	1.27	9407 PBX	3	ND
10	90	1.2	0.64	9407 PBX	3	ND
10	90	1.6	1.27	RDX	40	D

- [1] A. A. Alberts u. G. B. Bachman, J. Am. Soc. 1935, 57, 1284.
- [2] K. L. Kosanke, B. T. Sturman, R. M. Winokur, B. J. Kosanke, *Encyclopedic Dictionary of Pyrotechnics: And Related Subjects*, *Part 3 P to Z*, J. Pyrotechnics Inc., Whitewater, USA, 2012
- [3] K. Maartmann-Moe, Acta Cryst., 1969, 25B, 1452–1460.
- [4] G. J. Palenik, Acta Cryst., 1972, 28B, 1633–1635.
- [5] A. Bolliger, J. Bio. Chem., 1934, 107, 229-234.
- [6] V. V. Zhalnin, Y. S. Kichin, Combustion, Explosion Shock Waves, 1971, 7, 129-130.
- [7] E. Herz, Explosive and Process of Making Same, US Patent 1,443,328A, 23rd January 1923.
- [8] R. H. Dinegar, The Ignition and Deflagration of Potassium Picrate (KP) and KP/Explosives Mixtures: Low-Voltage, Nonprimary Detonators, LA-UR-78-1298, 6th International Pyrotechnics Seminar, Estes Park, Colorado, USA, 17th-21st July 1978.
- [9] T. E. Larson, P. Dimas, C. E. Hannaford, Electrostatic Sensitivity Testing of Explosives at Los Alamos, 9th Int. Symp. on Detonation, Portland, Oregon, USA, vol. II, August 28th–1st September 1989, pp. 1076–1083.
- [10] M. Bettman, *The Determination of the Crystal Structure of Potassium Picrate*, PhD Thesis, California Institute of Technology, Pasadena, California, USA, **1952**.
- [11] X.-H. Ju, Y.-L. Lu, X.-F. Ma, H.-M. Xiao, Prop., Expl. Pyrotech., 2006, 31, 290-293.
- [12] J. M. Harrowfield, B. W. Skelton, A. H. White, Aust. J. Chem., 1995, 48, 1311-1331.
- [13] LASL Explosive Property Data, T. R. Gibbs, A. Popolato (eds.), University of California Press, Berkeley, 1980.
- [14] A. E. Smith, Thermochemical and Kinetic Aspects of Metal Picrates, PhD Thesis, University of London, 1983.
- [15] H.-H. Ju, X.-J. Xu, H.-M. Xiao, J. Energet. Mater., 2005, 23, 121–130.

Potassium tetrazolate

Name [German, acronym]: Tetrazole, potassium salt [Kaliumtetrazolat]

Main (potential) use: Useful in the synthesis of other energetic compounds

	Potassium tetrazola	Potassium tetrazolate				
Formula	CHN ₄ K	CHN ₄ K				
Molecular mass [g mol ⁻¹]	108.14	108.14				
Appearance at RT	Colorless crystals ^{[1,}	2]				
IS [J]	>100 (BAM) ^[1]	>100 (BAM) ^[1]				
FS [N]	>360 (BAM) ^[1]					
N [%]	51.81					
Ω(CO ₂) [%]						
T _{m.p.} [°C]	210 (endo, DSC @ 5 °C/min, covered Al pan) ^[1, 2]					
T _{dec.} [°C]	308 (exo, DSC @ 5 °C/min, covered Al pan) ^[1]					
$ ho$ [g cm $^{-3}$]	1.774 (X-ray @ 200 K) ^[1, 2]					
Heat of formation	174 kJ/mol (Δ <i>H</i> _f °, calcd.) ^[1, 2]					
Heat of combustion	-996 kJ/mol ^[1, 2]					
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.			
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]						
<i>T</i> _{ex} [K]						
p _{C-J} [kbar]						
VoD [m s ⁻¹]						
$V_0 [L kg^{-1}]$						
Flame test	Purple-red flame col	or ^[1, 2]				

	Potassium tetrazolate ^[1, 2]
Chemical formula	CHKN ₄
Molecular weight [g mol ⁻¹]	108.14
Crystal system	Hexagonal
Space group	P-6 (no. 174)
<i>a</i> [Å]	14.0037(2)
<i>b</i> [Å]	14.0037(2)
c [Å]	10.7285(2)
α[°]	90
β [°]	90
γ [°]	120
V [ų]	1,822.03(5)
Z	6
$ ho_{ m calc}$ [g cm $^{-3}$]	1.774
<i>T</i> [K]	200
	Colorless crystals from EtOH

^[1] J. Stierstorfer, Advanced Energetic Materials Based on 5-Aminotetrazole – Synthesis, Characterization and Scale-Up, PhD Thesis, LMU München, Munich, 2009.

^[2] T. M. Klapötke, M. Stein, J. Stierstorfer, ZAAC, 2008, 634, 1711–1723.

Propyleneglycol dinitrate

Name [German, acronym]: Propyleneglycol dinitrate [propylenglykoldinitrat,

PGDN]

Main (potential) use: Component of liquid torpedo propellant called Otto

fuel^[3]

$$O_2N$$
 O NO_2

	Propyleneglycol dinitra	ite				
Formula	C ₃ H ₆ N ₂ O ₆	$C_{3}H_{6}N_{2}O_{6}$				
Molecular mass [g mol ⁻¹]	166.09	166.09				
Appearance at RT	Colorless liquid ^[1]		,			
N [%]	16.87	16.87				
Ω(CO ₂) [%]	-28.9	-28.9				
T _{m.p.} [°C]	-20 ^[3]	-20[3]				
$ ho$ [g cm $^{-3}$]	1.368 (@ 293 K) ^[1, 2] , 1.	1.368 (@ 293 K) ^[1, 2] , 1.37 ^[3]				
Heat of formation		'				
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.			
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]		5.55 MJ/kg (calcd., SD method) ^[4]				
T _{ex} [K]		3,702 (calcd., SD method) ^[4]				
p _{C-J} [kbar]						
VoD [m s ⁻¹]			6,958 (@ 1.37 g cm ⁻³ , D_i) (D_i = ideal detonation velocity) ^[4] 6,573 (@ 1.37 g cm ⁻³ , D_f) (D_f = detonation velocity for critical detonation diameter) ^[4]			
V ₀ [L kg ⁻¹]						

Critical diameter [cm]	5.1 mm ^[4]
Trauzl test [cm³, % TNT]	155% TNT ^[2] , 540 ^[5] , 540 cm³ (10 g sample) ^[1]
Vapor pressure [atm. @ °C]	0.0984 Torr @ 25 °C ^[3]
Solubility [g/mL]	Aqueous solubility = 3,500 mg/L @ 25 °C (est.) ^[3] , readily soluble in common organic solvents ^[1] , almost insoluble in water ^[1]
Diffusion coefficient [cm ² /s]	0.077 (air) ^[3] , 7.93 × 10 ⁻⁶ (water) ^[3]
Log K _{ow}	2.66 (est.) ^[3]
Log K _{oc}	2.52 ^[3]
Biodegradation	Undergoes aerobic biodegradation ^[3]

- [1] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 275.
- [2] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, *vol. 2*, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [3] E. P. Burrows, D. H. Rosenblatt, W. R. Mitchell, D. L. Parmer, *Organic Explosives and Related Compounds: Environmental and Health Considerations*, Technical Report 8901, US Army Biomedical Research and Development Laboratory, Frederick, MD, USA, March 1989.
- [4] G. D. Kozak, Combust. Expl. Shock Waves, 1998, 34, 581–586.
- [5] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446–2451.

Propyl nitrate

Name [German, acronym]: Propyl nitrate, nitric acid propyl ester, (*n*-, *iso*-)

propanol nitrate, isopropyl alcohol nitrate [n-/iso-

propylnitrat, IPN (iso-)]

Main (potential) use: n-Propyl nitrate: monergol in liquid propellant

rockets^[3], *iso*-propyl nitrate: thermobaric explosives^[3],

was used as monopropellant prior to hydrazine^[6]

Structural formula:

$$^{\text{NO}_2}$$
 $^{\text{NO}_2}$

n-Propyl nitrate isopropyl nitrate

	Propyl nitrate			
	n-	iso-		
Formula	C ₃ H ₇ NO ₃			
Molecular mass [g mol ⁻¹]	105.10			
Appearance at RT	Liquid @ RT $(n-)^{[7]}$, pale yellow liquid with sweet, sickly odor $(n-)^{[15]}$, flammable liquid $^{[16]}$			
IS [J]	>7.4, >49 $\rm Nm^{[3]}$, $(H_{50}\rm Wg)^{-1}$ = >49 $\rm Nm^{[9]}$, 87 cm (median height, <i>iso-</i> , Rotter apparatus) ^[14]			
FS [N]	>353			
N [%]	13.33			
Ω(CO ₂) [%]	-99.0			
T _{m.p.} [°C]	-122 ^[1]	<0 ^[2]		
<i>T</i> _{b.p.} [°C]	110.2 (@ 750 mm Hg) ^[4] , 110.5 ^[7, 8, 16] , bp ₇₆₂ = 110 ^[15]	101.3 (@ 755 mm Hg) ^[4] , 101–102 ^[7, 8, 16] , 102 ^[16]		
$ ho$ [g cm $^{-3}$]	1.058 (@ 293 K) ^[3] , sp. gr. = 1.063 ^[7,16] , sp. gr. (15°/15°) = 1.0631 ^[7] , sp. gr. (25°/25°) = 1.0531 ^[7] , $d^{20}_4 = 1.0538^{[15]}$	1.036 (@ 293 K) ^[3] , sp. gr. = 1.054 (@ 0 °C) ^[7] , sp. gr. = 1.036 (@ 19 °C) ^[7] , rel. ρ = 1.036 ^[16]		
Heat of formation	$-2,041$ (enthalpy of form.) ^[3] , -214.6 ± 1.2 kJ/mol (- $\Delta_f H^o$ @ 298 K, liq.) ^[5] , 174.0 ± 1.3 kJ/mol ($\Delta_f H^o$ (g)) ^[5]	$ \begin{array}{l} -2,184 \ (\text{enthalpy of form.})^{[3]}, \\ -229.7 \pm 1.2 \ \text{kJ/mol} \ (-\Delta_{\text{f}} H^{\text{o}} \ \textcircled{0}) \\ 298 \ \text{K, liq.})^{[5]}, 190.9 \pm 1.3 \ \text{kJ/mol} \\ (\Delta_{\text{f}} H^{\text{o}} \ (\text{g}))^{[5]}, -2,187 \ \text{kJ/kg} \ (\Delta H_{\text{f}}, \\ \text{ICT thermochemical database})^{[10]}, \\ -229.3 \ \text{kJ/mol} \ (\text{enthalpy of form.}, \\ \text{exptl.})^{[13]}, -236.6 \ \text{kJ/mol} \ (\text{enthalpy of form.}, \\ \text{calcd.}, \text{emp.})^{[13]} \end{array} $		

	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	4,090	3,126 (calcd., ICT-code, <i>iso-</i>) ^[10] 2,297 (calcd., explosion heat, <i>n-</i>) ^[16]	n-: 3,272 [H ₂ O ()] ^[3] iso-: 3,126 [H ₂ O ()] ^[3] 549 kcal/kg [H ₂ O (vapor)] (calcd., n-) ^[7]
T _{ex} [K]	2,598	1,723 (calcd., ICT-code, <i>iso-</i>) ^[10]	,
p _{C-J} [kbar]	95	92.7 MPa (calcd., ICT-code, <i>iso-</i>) ^[10]	
VoD [m s ⁻¹]	5,815 (@ TMD)		7,350
V ₀ [L kg ⁻¹]	941		826

High-velocity detonation was not found, it does not propagate in glass tube [11]. Low-velocity detonation in steel tube (10 mm diameter, 13 mm wall thickness) has been observed [11].

Trauzl test [cm³, % TNT]	15 cm ³ (n -, after correction for expansion produced by detonator) ^[7, 16] , 45 cc (15 cc more than cap alone, 10 g sample, H ₂ O tamping, No. 8 blasting cap, only partial detonation occurred) ^[8]					
Gap test	scale III (donor = 2×20 g pellets of tetryl pressed to $\rho = 1.5$ g mL, each 1.5 in in diameter, Gap = 4 in square cards, charge case = 3 in length of $1\frac{1}{2}$ in steam pipe faced at both ends, hooks, test plate = 3 in square of 16 gage mild steel placed on top of the filled charge case, n -propyl nitrate) critical card value = $16^{[12]}$ Probable critical card value ^[12] :					
	Card value	Probability	Card value	Probability		
	13	0.00001	16	0.54]	
	14	0.17	>16	0.06]	
	15	0.23]	
Thermal stability	Heating n - isomer may cause it to explode ^[15]					
Burn rate [mm/s]			atmosph 40 bar p 14.8% o	iso-: linear burn rate in air atmosphere = 1.42 ± 0.01 mm/s @ 40 bar pressure ^[6] , iso-: burning rate in 14.8% oxygen = 1.39 ± 0.05 mm/s @ 40 bar pressure ^[6]		

Solubility [g/mL]	Very slightly soluble in water $(n-)^{[15]}$, soluble in EOH, Et ₂ O $(n-)^{[15]}$		
Compatibility	Vapor can form explosive mixture with air with explosion limit 2–100% and flash point = 20 °C, ignition point = 176.7 °C in air ^[16]		
Latent heat of evaporation [kg cal/mol]	7.6 (calcd., <i>n-</i>) ^[4]	7.3 (calcd., <i>iso-</i>) ^[4]	
Enthalpy of vaporization, $\Delta_{vis}H^o$ [kJ/mol]	40.6 ± 0.4 (n-) ^[5]	38.8 ± 0.4 (iso-) ^[5]	
Refractive index	$n^{20}_{D} = 1.3979 (n-)^{[15]}$		
Dipole moment	2.98 ^[15]		

- [1] Hazardous Substances Data Bank, obtained from the National Library of Medicine (US).
- [2] "PhysProp" data were obtained from Syracuse Research Corporation of Syracuse, New York (US).
- [3] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 275–276.
- [4] G. M. S. Duff, J. Appl. Chem., 5th December 1955, 642–642.
- [5] L. M. Kostikova, E. A. Miroshnichenko, J. O. Inozemtcev, Y. N. Matyushin, Efficient Energies of Interaction of Functional Groups and Energies of Dissociation Bonds in Alkylnitrates, 32nd ICT, Karlsruhe, Germany, 3rd-6th July 2001, pp. 104-1-104-9.
- [6] A. Ambekar, S. Sreedhora, A. Chowdhury, *Comb. and Flame*, **2015**, *162*, 836–845.
- [7] T. Urbański, Ch. 6 in Chemistry and Technology of Explosives, vol. II, 1965, Pergamon Press, Oxford.
- [8] T. L. Davis, The Chemistry of Powder and Explosives, vol. 2, 1943, John Wiley and Sons Inc., New York.
- [9] S. Ye, K. Tonokura, M. Koshi, *Comb. and Flame*, **2003**, *132*, 240–246.
- [10] F. Volk, H. Bathelt, Propellants, Explosives, Pyrotechnics, 2002, 27, 136–141.
- [11] V. M. Raikova, G. D. Kozak, E. A. Likholatov, *The Failure Diameter of Detonation of Nitroesters Solutions*, ICT **2003**, Karlsruhe, Germany, pp. 117-1-117-10.
- [12] R. Pape, E. G. Whitbread, Sensitiveness of Solid and Liquid Explosives, Part 3: The Application of the Gap Test to Liquid Explosives, Technical Memorandum No. 21/M/52, Ministry of Supply Explosives Research and Development Establishment, Essex, U.K., March 1953.
- [13] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248–258.
- [14] Services Textbook of Explosives, JSP 333, Procurement Executive, Ministry of Defence, UK, March 1972.
- [15] The Merck Index An Encyclopedia of Chemicals and Drugs, 9th edn., M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig (eds.), Merck and Co. Inc., Rahway, New Jersey, USA, 1976.
- [16] J. Liu, Nitrate Esters Chemistry and Technology, Springer, 2019.

Propyl nitroguanidine

Name [German, acronym]: 1-Propyl-2-nitroguanidine, *N*-propyl-*N*'-nitroguanidine

[PrNQ]

Main (potential) use: Investigated as a melt-cast binder for insensitive

energetic formulations^[1]

	PrNQ				
Formula	C ₄ H ₁₀ N ₄ O ₂				
Molecular mass [g mol ⁻¹]	146.15				
Appearance at RT					
IS [J]	$DH_{50} = >100$ (PrNQ, ERL, functionally equivalent to type 12B test; type 12B test = 2.5 kg mass) ^[2] , $DH_{50} = >100$ (PAX-PrNQ, ERL, functionally equivalent to type 12B test; type 12B test = 2.5 kg mass) ^[2]				
FS [N]	>360 (BAM) ^[2] , >360 (PAX-PrNQ, BAM) ^[2]				
ESD [J]	0.25 (no units specified, ABL apparatus operating at 10,000 V) ^[2] , 0.063 (no units specified, ABL apparatus operating at 10,000 V, PAX-PrNQ) ^[2]				
N [%]	38.34				
Ω(CO ₂) [%]	-120.42				
T _{m.p.} [°C]	101.62 (endo onset), 102.48 (endo peak max) (DSC @ 10 °C/min, N_2) ^[1] , 99–100 ^[3]				
T _{dec.} [°C]	177 (onset of mass loss, TGA @ 10 °C/min, N_2 , Pt pan) ^[1] , 226.62 (exo onset), 236.26 (exo peak max) (DSC @ 10 °C/min, N_2) ^[1]				
ρ [g cm ⁻³]					
Heat of formation					
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]					
T _{ex} [K]					
p _{C-J} [kbar]					
VoD [m s ⁻¹]			7,760 (@ 1.64 g cm ⁻³ , PAX-PrNQ formulation, rate stick/plate dent method) ^[2]		

V_0 [L kg ⁻¹]							
LSGT [cm]	LSGT on PAX-PrNQ, $\rho = 1.65 \text{ g/cc}$, 50% point = 1.750 in = 175 cards ^[2] :						
	Gap (in)	Result (go/no go)	Gap (in)	Result (go/no go)			
	1.500	Go	1.760	Go			
	2.000	No go	1.770	No go			
	1.750	Go	1.770	No go			
	1.870	No go	1.760	No go			
	1.820	No go	1.750	No go			
	1.780	No go	1.750	No go			
Thermal stability	177 (onset of mass loss, TGA @ 10 °C/min, N_2 , Pt pan, mass loss is rapid until ~250 °C then slow to 350 °C at which residual mass loss drops to zero) ^[1]						
Vapor pressure [Pa]	1	1.48 × 10 ⁻¹¹ Torr @ 25 °C (est.) ^[1] , 9.85 × 10 ⁻⁹ Torr @ 70 °C (est.) ^[1] , 1.52 × 10 ⁻⁶ Torr @ 100 °C (est.) ^[1]					
Solubility [g/mL]	1.6×10^4 mg/L in H ₂ O (predicted.) ^[1] , soluble in water ^[3] , recryst. from EtOH ^[3]						
Compatibility	Compatible with RDX, HMX and nitroguanidine ^[1] , stable towards hydrolysis in neutral water ^[1]						
K _{ow} (log)	1.35 (K _{ow}) ^[1] , 0	$1.35 (K_{\rm ow})^{[1]}, 0.13 (\log K_{\rm ow})^{[1]}$					
K _{oc} (log)	9.57 (K _{oc}) ^[1] , 0	.98 (log K _{oc}) ^[1]					
ΔH _{dec} [J/g]	796 (DSC @ 10 °C/min, N ₂) ^[1]						
ΔH _{melt} [J/g]	177 (DSC @ 10 °C/min, N ₂) ^[1]						
ΔH _{vap} [kJ/mol]	139.7 (est.) ^[1]						
рН	7 (saturated aqueous soln.) ^[1]						
Irreversible growth testing	10.63% (average vol. change, 30 temp. cycles between –65°F and 160°F, 3 h at each temperature) ^[2]						
Exudation testing	0.051 wt.% (cycle $-65^{\circ}\text{F} \rightarrow 160^{\circ}\text{F}$, 3 h at each temperature)[2]						

- [1] R. A. Pesce-Rodriguez, C Munson, L. Giri, L. B. Blaudeau, Experimental Determination of Physical Properties of 1-Propyl-2-Nitroguanidine (PrNQ), ARL-TN-0927, US Army Research Laboratory, Aberdeen Proving Ground, USA, November 2018.
- [2] P. Leonard, E. G. Francois, *Final Report for SERDP WP-2209 Replacement Melt-Castable Formulations for Composition B*, LA-UR-17-24143, 19th May **2017**.
- [3] P. E. Gagnon, J. L. Boivin, J. Zauhar, Can. J. Chem., 1958, 36, 1436–1440.

PYX

Name [German, acronym]: 3,5-Dinitro2,6-bispicrylmino pyridine,

2,6-bis(picrylamino)-3,5-dinitropyridine [PYX]

Main (potential) use: Secondary (high) explosive, produced in 300–400 lb/

year quantities for use in thermally stable perforators for oil and gas wells $^{[16]}$, replacement for HNS as thermally

stable explosive in commercial applications [16]

	РҮХ				
Formula	C ₁₇ H ₇ N ₁₁ O ₁₆				
Molecular mass [g mol ⁻¹]	621.30				
Appearance at RT					
IS [J]		^{9]} , 84 cm (type 12		ıment) ^[15] , 63 cm m (AFX-521; 95 wt.%	
FS [N]	360 ^[1, 6] , 280 (FSK	M 10 instrument)	^[15] , negative at al	l angles ^[16, 19]	
ESD [J]	8.9 ^[1, 5, 20] , 137 mJ ^[1] , 1.00 ^[6] , 0.5 ^[6] , $E_{50\%} = 0.45 \pm 0.06$ (Bruceton formula) ^[13] , $E_{50\%} = 0.49$ (Bruceton formula) ^[13] , $E_{50\%} = 1.18$ (LANL using 0.008 cm Pb foil confinement) ^[13] , 1 (ESD 2008A electric spark tester) ^[15] , 1.175 (0.076 mm foil) ^[16, 19] Data from ^[17] :				
	50% point energy (J)				
	3 mil foil 10 mil foil % expl.				
	1.18 9.00 0				
N [%]	24.80				
Ω(CO ₂) [%]	-55.36				

T _{m.p.} [°C]	$460^{[1,8,16]},360^{[9,14]},$ melts @ 460 °C but begins to rapidly dec. @ 350 °C (DTA @ 20 °C/min) $^{[19]}$						
T _{dec.} [°C]	(367 °C onset DSC open pan @ 4 °C/ rates are used ^[11] ,	$360^{[2]}$, $385^{[4,15]}$, $373^{[6]}$, 360 (DSC @ 5 °C/min) ^[6] , 366 (mass loss begins (367 °C onset DSC)), 371 (max. rate of mass loss, exo (374 °C, DSC)) (TG, open pan @ 4 °C/min) – these values shift to lower T if slower heating rates are used ^[11] , 350 (DTA) ^[16,19] , melts @ 460 °C but begins to rapidly dec. @ 350 °C (DTA @ 20 °C/min) ^[19]					
$ ho$ [g cm $^{-3}$]		$(0 {}^{\circ}{}^{}$					
Heat of formation	43.7 kJ/mol (Δ _f H°) 127 kJ/mol ^[1] , 80	$(\Delta H_{\rm f})^{[2]}$, 80.3 ($\Delta H_{\rm f}$ (heat of form.)) kJ/mol ($\Delta H_{\rm f}$) $^{[18]}$	^[4, 15] , 20.9 kcal/mol (Δ <i>H</i> ° _f) ^[7] ,				
Heat of combustion	$\Delta H^{\circ}_{c} = -1,858.8 \text{ k}$	ccal/mol ^[7]					
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.				
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	4,780 ^[2]	3,006 (@ 1.75 g cm ⁻³ , calcd. LOTUSES) ^[18]					
T _{ex} [K]	3,609 ^[2]	3,100 (@ 1.75 g cm ⁻³ , calcd. LOTUSES) ^[18]					
p _{C-J} [kbar]	354 ^[3]	24.2 GPa (calcd., K-J) ^[4, 15]	242 ^[19]				
	251 ^[2]	25.19 GPa (calcd.) ^[10]					
		25.186 GPa (@ 1.75 g cm ⁻³ , calcd. LOTUSES) ^[18]					
VoD [m s ⁻¹]	7,757 ^[2]	7,448 (calcd., K-J) ^[4, 15]	7,450 (no ρ given) ^[19]				
	8,858 ^[3]	7,500 (@ 1.75 g cm ⁻³ , calcd.) ^[10] 7,211 (AFX-521; 95 wt PYX/5 wt.% Kel-F 800, rate stick @ 1.70 g cm pressed ρ) ^[19]					
		7,497 (@ 1.75 g cm $^{-3}$, calcd. LOTUSES) $^{[18]}$ 7,202 (AFX-521; 95 wt.% PYX/5 wt.% Kel-F 800, cylinder test @ 1.70 g cm $^{-1}$ pressed ρ) $^{[19]}$					
V ₀ [L kg ⁻¹]	633 ^[2]	989 (@ 1.75 g cm ⁻³ , calcd. LOTUSES) ^[18]					

Critical diameter [cm]	Failure diameter = <2.54 mm ^[16] , failure diameter = <7.62 mm ^[19]
SSGT [cm]	1.02 mm (AFX-521; 95 wt.% PYX/5 wt.% Kel-F 800) ^[19]
Isothermal long-term experiment	RADEX, 100 h @ 260 °C: no dec. or thermal rearrangement occurred ^[6]
Vacuum stability test [cm³/days]	@ 200 °C: 0.1/2, 0.1/7, 0.2/14, 0.2/21, 0.2/28, 0.3/35, 0.3/42, 0.4/49, 0.4/56, 0.4/63, 0.5/70, 0.6/77, 0.6/84, 0.7/91 ^[12] 0.5 cm ³ /g/h @ 300 °C ^[16, 19] , 0.9 cm ³ /g/48 h @ 250 °C ^[16, 19] , 0.7 cm ³ /g/91 days @ 200 °C ^[16, 19] 0.02 cm ³ /g/48 h @ 120 °C (AFX-521; 95 wt.% PYX/5 wt.% Kel-F 800) ^[19]
Plate dent test	1.27 cm diameter, confined: 4.01 mm (AFX-521; 95 wt.% PYX/5 wt.% Kel-F 800) ^[19] , 2.54 cm diameter, confined: 7.34 mm (AFX-521; 95 wt.% PYX/5 wt.% Kel-F 800) ^[19] , 2.54 cm diameter unconfined: 4.01 mm (AFX-521; 95 wt.% PYX/5 wt.% Kel-F 800) ^[19]

	PYX ^[6]
Chemical formula	C ₁₇ H ₇ N ₁₁ O ₆
Molecular weight [g mol ⁻¹]	621.34
Crystal system	Orthorhombic
Space group	P 2 ₁ 2 ₁ 2 ₁ (no. 19)
a [Å]	14.5179(11)
<i>b</i> [Å]	17.6612(13)
c [Å]	18.3198(14)
α[°]	90
β [°]	90
γ [°]	90
V [ų]	4,697.3(6)
Z	8
$ ho_{ m calc}$ [g cm ⁻³]	1.757
T[K]	298

- [1] A. Smirnov, S. Zeman, T. Pivina, *Prediction of Explosives Characteristics and Optimization of the Chemical Composition of Explosives*, in *Proceedings of New Trends in Research of Energetic Materials*, NTREM 20, April 26th–28th **2017**, pp. 1014–1024.
- [2] T. M. Klapötke, T. G. Witkowski, *Synthesis and Investigation of the Novel Thermally Stable Explosive: TKX-55*, in *Proceedings of New Trends in Research of Energetic Materials*, NTREM 19, April 20th–22nd **2016**, pp. 320–334.

- [3] J. Kim, M.-J. Kim, B. S. Min, Synthesis and Crystallization of HNF (Hydrazinium Nitroformate) as an Eco-Friendly Oxidizer, in Proceedings of New Trends in Research of Energetic Materials, Pardubice, NTREM 18, 15th–17th April 2015, pp. 601–607.
- [4] M. Liu, Y.-J. Shu, H. Li, L.-J. Zhai, Y.-N. Li, B.-Z. Wang, Heat-Resistant Energetic Materials of Polynitroaromatic Substituted Difurazano[3,4-b:3',4'-e]-Pyrazine, in Proceedings of New Trends in Research of Energetic Materials, Pardubice, 15th–17th April 2015, pp. 698–704.
- [5] N. Zohari, S. A. Seyed-Sadjadi, S. Marashi-Manesh, Central Eur. J. Energ. Mater., 2016, 13, 427–443.
- [6] T. M. Klapötke, J. Stierstorfer, M. Weyrauther, T. G. Witkowski, Chem. Eur. J., 2016, 22, 8619-8626.
- [7] P. E. Rouse, J. Chem. Engineering Data, 1976, 21, 16–20.
- [8] J. P. Agrawal, *Prog. Energy Combust. Sci.*, **1998**, 24, 1–30.
- [9] E. G. Kayser, J. Energet. Mater., 1983, 1:3, 251-273.
- [10] H. S. Jadhay, M. B. Talawar, R. Sivabalan, D. D. Dhavale, S. N. Asthana, V. N. Krishnamurthy, Ind. J. Heterocyclic Chem., 2006, 15, 383–386.
- [11] T. Golofit, M. Szala, J. Therm. Anal. Calorim., 2017, 130, 2047-2054.
- [12] J. F. Baytos, High-Temperature Vacuum Thermal Stability Tests of Explosives, LA-5829-MS, LANL, January 1975.
- [13] D. Skinner, D. Olson, A. Block-Bolten, *Propellants, Explosives, Pyrotechnics*, 1997, 23, 34–42.
- [14] E. G. Kayser, *Analysis Methods For Explosive Materials I. Polynitro Compounds*, NSWC TR 81–123, Naval Surface Weapons Center, Maryland, USA, 3rd March **1962**.
- [15] N. Liu, Y. J. Shu, H. Li, L. J. Zhai, Y. N. Li, B. Z. Wang, RSC Adv., 2015, 5, 43780–43785.
- [16] M. D. Coburn, B. W. Harris, K. Y. Lee, M. M. Stinecipher, H. H. Hayden, *Ind. Eng. Chem. Prod. Res. Dev.*, 1986, 25, 68–72.
- [17] T. E. Larson, P. Dimas, C. E. Hannaford, *Electrostatic Sensitivity Testing of Explosives at Los Alamos*, 9th Int. Symp. on Detonation, Portland, Oregon, USA, vol. II, August 28th–1st September 1989, pp. 1076–1083.
- [18] D. M. Badgujar, M. B. Talawar, S. F. Harlapur, S. N. Asthana, P. P. Mahulikar, J. Hazard. Mater., 2009, 172, 276–279.
- [19] M. D. Coburn, D J. Hufnagle, D. L. Loverro, Development of AFX-511 and AFX-521, Two New Thermally Stable Explosives, LA-8115-MS, Los Alamos Scientific Laboratory, New Mexico, USA, February 1980.
- [20] L. Turker, Electrostatic Discharge and Energetic Materials, To Chemistry Journal, 2019, 2, 72–114.

Silver azide

Name [German, acronym]: Silver azide, [silberazid, SA]
Main (potential) use: Initiators^[7], small-size detonators

Structural formula:

 AgN_3

	Silver azide					
Formula	AgN ₃					
Molecular mass [g mol ⁻¹]	149.9					
Appearance at room temperature (RT)	White crystals ^[14] , white – pale-gray powder (depends on purity), white – gray ^[4,7] , white crystalline solid, technical product is often gray ^[32] , tends to nucleate a lot so it usually precipitates as a fine powder ^[33] , white (99.9% purity) ^[34] , average size of 105 μ opaque and translucent crystals under microscope (99.9% purity sample) ^[34] , colorless plates and needles (recryst. from aq. ammonia) ^[40]					
IS [J]	1.18 (6 cm, 2 kg mass, 20 mg sample, B.M.) ^[4, 5, 7] , 1.50 (3 in, 2 kg mass, 18 mg sample, P.A.) ^[4, 5, 7] , 2-4 ^[6] , 2.5-4 Nm ^[8] , 3 in (2 kg mass, B.M.) ^[11] , 6 cm (1 kg mass, B.M.) ^[11] , 41 cm (500 g mass, B.M.) ^[11] , $H_{50} = 47.4$ cm (ball and disc test) ^[14] , Fol = 30 (Rotter test) ^[14] , 77.7 cm (0.5 kg mass, colloidal) ^[14] , 28.5 cm (0.5 kg mass, coarse crystals) ^[14] , ~1.2 (B.M.) ^[14] , ~1.4 ^[14] , 2.0 ^[14] , ~3.8 ^[14] , 777 mm (drop-height of 500 g mass required to cause detonation of colloidal AgN ₃) ^[21] , work = 13.97 kg•m•cm², drop weight = 914 mg, upper limit = 245 cm, lower limit = 150 cm ^[22] $H_{50\%}$, up-down method, 25 mg samples, pressed to 10 kbar to give pellets of 5 mm diameter, 0.8 mm height; grit was fine, very fine or coarse where stated; PC = polycarbonate ^[18] :					
	Sample (sample + binder)	50% height (cm)				
	AgN ₃ (pure) 19.3 ± 0.8					
	AgN ₃ + PC (fine) 16.8 ± 1.3					
	10% point = 11 in (P.A., reduced sensitivity AgN_3 from Costain process, granulation: 18% on 100, 27% on 140, 33% on 200, 18% on 325, 4% through 325) ^[29] , 50% point = 17 in (P.A., reduced sensitivity AgN_3 from Costain process, granulation: 18% on 100, 27% on 140, 33% on 200, 18% on 325, 4% through 325) ^[29] , 10% point = 11 in (ball drop, reduced sensitivity					

AgN₃ from Costain process, granulation: 18% on 100, 27% on 140, 33% on 200, 18% on 325, 4% through 325]^[29], 10% point = 7 in (P.A., reduced sensitivity AgN₃ from Costain process, granulation: 17% on 100, 32% on 140, 24% on 200, 22% on 325, 5% through 325)^[29], 50% point = 10 in (P.A., reduced sensitivity AgN₃ from Costain process, granulation: 17% on 100, 32% on 140, 24% on 200, 22% on 325, 5% through 325)^[29], 10% point = 10 in (ball drop, reduced sensitivity AgN₃ from Costain process, granulation: 17% on 100, 32% on 140, 24% on 200, 22% on 325, 5% through 325)^[29], unexplosive point = 4 cm, explosive point = 18 cm (silver sand test, 16.3 g falling mass)^[30], 47.4 cm (ball and disc test)^[31], white and gray (partially decomposed) show equally high sensitivity^[32], particle size has large influence: coarse samples are more sensitive^[32], long needles frequently explode when broken with metal wire^[32], FI = 13–16 (composition RD1336, Rotter apparatus)^[34]

Ball and stick apparatus, AgN₃ composition RD1336^[34]:

Distance of fall (cm)	12	14	16	19	21
% reactions	4	18	38	76	88

FS [N]

2.6 m s⁻¹ (emergency paper friction test, 50% prob.)^[14], detonates with steel shoe (friction pendulum test)^[7], detonates with fiber shoe (friction pendulum test)^[7], $E_{50} = 5 \text{ g}^{[25]}$, 2.6 m/s (Emery paper test)^[31], white and gray (partially decomposed) show equally high sensitivity^[32]

FS (g) tested on porcelain and Emery paper (Julius-Peters BAM)[20]:

Friction sensitivity (g)							
Porcelain		Emery paper grades					
	P80	P80 P100 P120 P180 P360					
10	20 10 25 20 20						

Mallet FS, % ignitions[35]:

Standard wood mallet on anvils of					
York stone Hardwood Softwood					
100 100 100					

Pendulum FS: failed fiber shoe^[35], failed steel shoe^[35]

Emery paper FS ^[35] :							
	Ignitions/trial at strike velocity (ft/s) AgN ₃						
	3				0/10		
	4				4/10		
	5				5/10		
	7				5/5		
	Type of ignit	ion			Complete		
ESD [J]	test no. 7) ^[14] , 18 mJ (zero ig not @ 0.118 μ	on, advanced te $1.3^{[14]}$, 24 mJ (z nition probabili IJ (test no. 7, 42 .0094 (<i>Taylor</i>) ^{[3} s ^[25] :	ero ignition ty, PVP coa pF, 100 V	n proba ited Ag	ıbility, uncoa N ₃) ^[25] , igniti	ated Ag	(N ₃) ^[25] , 0.21 μJ but
	Explosive	Capacitance (MF)	Voltage (kV)	Energ	y T(°C)	RH (%)	Remarks
	SA (PVP coated)	0.003	5.0	0.037	75 28.5	40	Ignited
	SA (uncoated)	0.001	8.0	0.032	2 28.3	41	Ignited
	0.0094 (P.A., reduced sensitivity AgN $_3$ from Costain process, granulation: 18% on 100, 27% on 140, 33% on 200, 18% on 325, 4% through 325) ^[29] , 0.018 (P.A., reduced sensitivity AgN $_3$ from Costain process, granulation: 17% on 100, 32% on 140, 24% on 200, 22% on 325, 5% through 325) ^[29] 2.8 × 10 ⁻⁶ (minimum initiation energy, powder sample, plumb-bob approaching electrode apparatus (contact discharge)) ^[36] , 4 × 10 ⁻⁴ (conducting rubber electrode (100 Ω resistance) substituted for the base electrode) ^[36] , 7.5 × 10 ⁻³ (minimum energy, sieved powder sample passing through 100 mesh but retained on 200 mesh screen, approaching electrode apparatus, 0.50 mm preset gap) ^[36] , 7 × 10 ⁻⁴ (minimum energy, subsieve range, approaching electrode apparatus, 0.50 mm preset gap) ^[36] , crystals of 1.0 × 0.5 × 0.5 mm with electrical resistance of ~10 ¹² Ω on being subjected to a constant electrical field of 450 V/cm, the current increased through the crystal with time and after several minutes when the current reached 150 μ A an explosion occurred ^[36]						
N [%]	28.03						
Ω [%]	0						

7 _{m.p.} [°C]	$251^{[4,7,10,24,39]}$, $310^{[1]}$, ~ 250 melts $^{[14]}$, $250^{[11]}$, 250 (melts and turns black) $^{[14]}$, 251 (rapid dec. > mpt.) $^{[21]}$, 582 K (DTA @ 5 K/min) $^{[23]}$, 303 (melts followed by dec. in liquid phase, DSC @ 10 °C/min, onset, Al pan with pinhole Al lid) $^{[31]}$, softens @ 250 °C but complete melting does not occur until 300 °C in vacuum (crystalline silver azide) $^{[39]}$, ~ 250 (dec.) $^{[40]}$				
T _{phase transition} [°C]	461 ± 2 K (crystallogra	ohic transformation, DTA	@ 5 K/min) ^[23]		
T _{dec.} [°C]	(explodes) ^[11] , 303 (@ melts @ 250 and turns (melts followed by dec pinhole Al lid) ^[31] , turns liquid ^[32] , @ 253 °C me	10 °C/min, onset) ^[14] , turi black ^[14] , dec. rapidly ab . in liquid phase, DSC @ s violet @ 150 °C then me It evolves N ₂ gas which g	10 °C/min, onset, Al pan with		
ρ [g cm ⁻³]	5.1 (@ 293 K) ^[2, 6] , 5.1 (crystal) ^[7, 14] , 4.8–5.1 ^[11] , 4.81 (crystal) ^[14] , ~1 (bulk ρ , RD1336 AgN ₃ *) ^[14] , 1.6 (bulk ρ , AgN ₃ from Costain process, reduced sensitivity, granulation: 18% on 100, 27% on 140, 33% on 200, 18% on 325, 4% through 325) ^[29] , 1.6 (bulk ρ , AgN ₃ from Costain process, reduced sensitivity, granulation: 17% on 100, 32% on 140, 24% on 200, 22% on 325, 5% through 325) ^[29] , 1.6 (<i>Costain</i>) ^[33] , 1.1 (<i>Taylor</i>) ^[33]				
Heat of formation	(279.5 kJ/mol) (ΔH _f °) ^{[13}		2 kcal/mol (Q _f ^{V)[11]} , 1.86 kJ/g kJ/mol ^[14] , 74.17 kcal/mol		
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	2,031	65.5 kcal/mol (Q _{det}) ^[11]	452 cal/g ^[7]		
		452 kcal/kg ^[16]			
<i>T</i> _{ex} [K]	3,471		3,345 ^[11]		
p _{C-J} [kbar]	268		90,260 kg/cm ² (@ 3.0 g cm ⁻³ , under 1,100 kg/cm ² press) ^[11]		
VoD [m s ⁻¹]	5,372 6,800 ^[6] 1,500 (unconfined, hot wire initiation) ^[11, 14] $\Delta_f H = 312.7 \text{ kJ/mol}$ 6,800 (@ 5.1 g cm ⁻³) ^[8]				
	$\Delta_f H = 312.7 \text{ KJ/mol}$ $1,700 \text{ (unconfined, initiation by impact with grit particle)}^{[11,14]}$				
			1,900 (unconfined, in vacuo @ 0.1 mm Hg pressure) ^[11]		
			4,000 (@ 4.00 g cm ⁻³) ^[9]		
			3,830 (@ 2 g cm ⁻³) ^[14]		

			4,400 (@ max. obtainable ρ) ^[14] 1,500 (crystals with
			0.3–0.4 mm diameter, 1 cm length) ^[14]
V_0 [L kg ⁻¹]	245	244 dm ³ kg ^{-1[14]}	224 ^[10]

Critical diameter [cm]		Needles with 25 μm explode $^{[14]}$, rapid combustion (~7 ms $^{-1}$) for diameter ~ 10 $\mu m^{[14]}$				
Trauzl test [cm³, % TNT]	22.6 cc (for 2 g	22.6 cc (for 2 g sample) ^[11] , 115 cm ³ (10 g sample, 38.3% TNT) ^[14] , 88% MF ^[4]				
Sand test [g]		18.9 g (200 g bomb) ^[4,7] , 40–43% TNT ^[15] , 41.1 g sand crushed (cf. 37.2 g by MF) ^[11] ,				
	Charge weight	t SA (g)	Weigh	t of crushed san	d (g)	
	0.05		1.4			
	0.1		3.3			
	0.2		6.8			
	0.3		10.4			
	0.5		18.9			
	0.75		30.0			
	1		41.1			
	Sand crushing p 1,000 lb/in²) ^[21] Weight of			tor capsule, com	npressed under Weight of sand	
	charge (g)	1 - 1 -		charge (g)	crushed (g)	
	0.05	0.05 1.4		0.50	18.9	
	0.10	0.10 3.3		0.75	30.0	
	0.20	6.8		1.00	41.1	
	0.30	10.4				

Initiating efficiency	0.02-0.05 0.07 g for T	g required for com NT ^[14]	iplete initia	tion of TI	NT ^[7] , 0.05	g for TNT	^[14] ,
	Initiating	efficiency (g) ^[14]	Acc	eptor exp	olosive		
	~0.02		Tet	ryl			
	~0.03		Pic	ric acid			
	~0.07		Trir	itroaniso	ole		
	~0.26		Trir	itroxyler	ie		
	~0.25		TN				
	PETN in ¹⁰ / ₁ reinforcing	cap) ^[14]					
		cap) ^[14]					
	reinforcing	cap) ^[14] on PETN (MPa) ^[14]	0	196	196	196	196
	reinforcing Pressure		0 0	196	196	196 98	196 147
	Pressure of Min. initia	on PETN (MPa) ^[14] on initiator (MPa) ating charge (g)	0 0.005	0.110	49	98	147
	Pressure of Min. initial 0.05 g is no capsule, will Minimum a 0.02 g for to 0.25 g trini	on PETN (MPa) ^[14]	0 0.005 detonation of the det	0 0.110 n of 0.4 g inforcing n of the s TNT ^[21] , (49 0.005 g TNT (no. g cap or n secondary 0.26 g trii	98 0.005 6 detona not) ^[21] v explosive nitroaniso	147 0.00 tor $e^{[21]}$: $e^{[21]}$,
	Pressure of Min. initial 0.05 g is no capsule, will Minimum a 0.02 g for to 0.25 g trini	on PETN (MPa) ^[14] on initiator (MPa) ating charge (g) ecessary to cause hether charge cor mount (g) to cause etryl ^[21] , 0.035 g Pa troxylene ^[21] ilver azide require	0 0.005 detonation of the det	0 0.110 n of 0.4 g inforcing n of the s TNT ^[21] , d	49 0.005 g TNT (no. g cap or n secondary 0.26 g trii	98 0.005 6 detona not) ^[21] v explosive nitroaniso	147 0.00 tor $e^{[21]}$: $e^{[21]}$,
	Pressure of Min. initial 0.05 g is no capsule, will Minimum a 0.02 g for to 0.25 g trini	on PETN (MPa) ^[14] on initiator (MPa) ating charge (g) ecessary to cause hether charge cor mount (g) to cause etryl ^[21] , 0.035 g Pa troxylene ^[21] ilver azide require	0 0.005 detonation of the det	0 0.110 n of 0.4 grinforcing n of the strong TNT ^[21] , (strong of section of	49 0.005 g TNT (no. g cap or n secondary	98 0.005 6 detona not) ^[21] v explosive nitroaniso	147 0.00 tor $e^{[21]}$: $e^{[21]}$,

Dead pressing	AgN ₃ cannot be dead pressed ^[14]
5 s explosion T[°C]	$297^{[11,14]}$, 297 (microcrystalline powder compressed into pellet of 0.02 g) ^[21] , 290 (5 s, detonates) ^[4, 26] , 337 (297 °C = minimum explosion <i>T</i> , 20 mg sample) ^[37]
1 s explosion T[°C] Explosion T[°C]	$308^{[11]}$, 273 (hot iron dish method) ^[14] 310 (no cap used, 0.1 s) ^[7] , 340 (pure, presence of impurities can lower this to 270 °C) ^[13] , 340 (N ₂ atmosphere @ 26.7 kPa) ^[14] , 273 (spontaneous explosion, varies according to method of heating) ^[21] , 290 (within 20 s, heated Cu
	capsule in Wood's metal bath) ^[21] , 310 (0.1 s) ^[26] , 300 (on rapid

	'	heating, explodes with high brisance, emits green flash) ^[32] , 305 (partially decomposed gray sample) ^[32] , does not explode even at 400 °C under vacuum ^[39] , 340 (1 s, if nitrogen pressure of 20 cm) ^[39] , explosion occurs at higher T in thin-walled glass vessels and at lower T when a hot-air furnace is used instead of a liquid bath ^[39] Data from ^[37] :						s at
	l	Explosion T (°C)		Ignition de	elay (s)	Sam	ple wt. (mg)	1
		310-320		300		50		1
		>250		9		9		1
		290		5		10		1
	l	340		1		~ 2		1
5 s ignition T [°C]		290 (explodes, US						
Ignition T[°C]	:	273 (dropped onto 300–301 ^[14] , 548 k 390 (explodes) ^[31]						s) ^[30] ,
Vacuum stability test [cm³/h]	(0.49/g @ 150 °C f 0.34/g @ 150 °C f 0.49-0.34/1 g/40 Data from ^[37] :	for 40	h (reduced	sensitivity A	gN ₃ fr	om Costain proce	ess) ^[29] ,
	١.							,
		T (°C)	Weig	ght (g)	Time (h)		Gas evolved (mL, STP)	
		150	1.0		40		0.49	
		150	1.0		40		0.34	
	l	150	1.0		40		0.40]
Volatility	L	Nonvolatile ^[4] , 0.0	0 @ 7	5 °C, 24 h ^[7]				
Thermal stability		No explosion on h crystal >100 °C ca			n vacuo ^[14] ,	heatir	ng a single	
Solubility [g/mL]		0.006 g in 100 g H Et ₂ O @ RT ^[7] , 0.006 RT ^[7] , practically inso practically insolub insoluble in nitric a dissolved as a com unchanged after ev solubility in water, 20 °C ^[34] , soluble in	g in 1 soluble le in co acid ^[21] plex b vapora value	e in H ₂ O ^[14] , (ommon orgal, practically by aq. ammo ation ^[32] , 8.4 s range from	tOH @ RT ^[7] , 0.765 mg/10 onic solvents insoluble in nia or anhyd × 10^{-3} g/L in	0.015 00 mL ^[14] , so water rous H	g in 100 g acetonometric $H_2O @ 25 °C^{[14]}$, luble in aq. $NH_3^{[21]}$ and organic solve HF but azide is recort $@ 18 °C^{[32]}$, low	e @ , nts ^[32] , overed

Hygroscopicity	nonhygro	0.04% @ 25 °C in 100% RH ^[7] , nonhygroscopic ^[14] , practically nonhygroscopic ^[4] , nonhygroscopic (reduced sensitivity AgN ₃ from Costain process) ^[29] , nil (<i>Costain</i> and <i>Taylor</i>) ^[33]								
Photosensitivity	light absorption light absorption sensitive light $^{[30]}$, μ photocomphotocum $\lambda = 3,650$	Less affected by light than MF or LA ^[7] , 0.19 mJ per mm ² of crystal = critical light absorption for initiation of a crystal ^[14] , light sensitive ^[14] , light sensitive and electron beam ^[23] , turns dark purple when exposed to light ^[30] , photosensitive ^[32] , turns violet then black in light ^[32] , crystals are photoconductors @ RT irradiated with light of correct wavelength, max. photocurrent @ 2,800 A ^[40] , activation energy for RT photolysis (light $\lambda = 3,650 \text{ Å}) = ~6 \text{ kcal/mol}^{[40]}$, critical light energy for ignition = 39 J (light flash = ~50 µs duration) ^[40]								
Radiation sensitivity	Slow neu	tron ir	radiat	ion	data from	[37]:				
	Density (g/mL)	Flux (n/cn	n²/s)		al atoms r mL)	Metal n reacting second	g (per	Nitrogen nuclei reacting (per second)	Nucl reac	- 1
	0.745	1 × 1	08	1.2	1 × 10 ²²	¹⁰⁷ Ag 4 ¹⁰⁹ Ag 1		1 × 10 ⁶	nitro	er and gen tions
	1	_		_				y light flashes, ^e exploded within		
	Compou	ınd	Colo	r	Thermalignition			rical energy sh, half-life ns (J)	Light inten (J/cm	sity
	Silver a	zide	Whi	te	250		310		2.6	
	Light-flas	h igni	tion e	nerg	ies for sil	ver azid	e and i	ts mixtures ^[37] :		
	Explosiv	/e				Critica	al flash	ignition energy	(J)	
	Silver a	zide				48.0				
	Silver a	zide +	10%	PbI ₂		62.0				
	Silver a	zide +	10%	Hgl ₂		72.0				
	Initiated	by irra	diatio	n wi	th electro	n pulses	s of na	nosecond durati	on ^[13]	
Compatibility	Dec. in ni boiling w			[]] , un	affected l	y water	and Co	O ₂ ^[7] , dec. as sus	pensi	on in
Dielectric breakdown	Time to b	reakd	own =	<1 s	in d.c. fie	eld of≥4	00 kVn	1 ^{-1[19]} , 5 days @	15 kV	m ^{-1[19]}

ΔH _{melting} [kJ kg ⁻¹]	104 ± 2 (DT	A @ 5	K/mi	n) ^[23]								
Enthalpy of soln. [kcal/mol]	16.67 ^[40]	16.67 ^[40]										
Specific heat [kJ kg ⁻¹ K ⁻¹]	0.29 ± 0.04 0.117 cal/				oeratur	e range	e, DTA	A @ 5 K	/mi	n) ^[23] ,		
Explosive power	192,000 k	g m, 1.	097%	6 MF ^[7]								
Hardness [kg mm ⁻²]	51.9 ± 2.6	(single	cryst	tals, @	20°C,	Vicke	's ha	rdness)) ^[24]			
Frictional properties	Frictional p	ropert	ies @	20°0	with s	liding	veloci	ity of 0.	.20 ו	mms ^{-1[24]} :		
	μ τ_0 (con (coefficient of friction at high loads)		(cons	stant)	α (con	stant)	coef of fri	calcd. ficient iction at loads)	of si oı	(coefficier f friction fo ngle cryst n single rystal)	r	1)
	0.40	1.	01 × 1	LO ⁷ Pa	0.42 ±	0.01	0.44	± 0.02	!		0.37	7
Firing times of hot bridgewire initiators	Firing time 450 V ^[26] :	s of ho	t brid	lgewir	e initiat	tors, 50) mg	sample	loa	ds, voltag	e of	
	Milling ti	me, h				Capac	itanc	e, μF				
			0.05		0.05			0.0	047			
	24		1.13-1.47 1.17-		7-1.56 1.9		1.9	1.9-3.1				
	64		1.2	3-1.8	9	1.23-	-2.36		1.3	-43.1		
Laser sensitivity	SA can be	succes	sfully	initia	ted usii	ng a U\	/ exci	mer las	er ^[2]	l <u>:</u>		
	Pressing Detona force, KN type		onator Nominal e wavelengt nm			Ene den KJ/r	sity,	Functi time (µs)	on	Source	Pulse duratio (µs)	n
	1 KN	1 KN Confined		249		0.4		0.5		Excimer laser	15	
	10 KN	Confi	ned	249		0.4		1.5		Excimer laser	15	
Sensitiveness	13.97 N cn	n² (wor	k) ^[28]									

M59 detonator transition	Data from ^[29]	Data from ^[29] :									
charge test	Transition material	Charge weight (mg)	RDX weight (mg)	Test holder	Witness material	indent depth (in)					
	AgN ₃	60	68	Brass	Aluminum	0.0599					
	AgN ₃	110	34	Brass	Aluminum	0.0520					
	AgN ₃	60	68	Brass	aluminum	0.0630					
Dielectric constant, k	9.35 (log-fre	9.35 (log-frequency, frequency = 1.35 mc/s) ^[40]									
Miscellaneous	Applying an -100 °C ^[13]	electric field t	o crystals will	cause de	tonation at T	as low as					

	RT-AgN ₃ ^[1]	HT-AgN ₃ ^[3]	HP-AgN ₃ ^[12]	AgN ₃ ^[40]
Chemical formula	AgN ₃	AgN ₃	AgN ₃	AgN ₃
Molecular weight [g mol ⁻¹]	149.9	149.9	149.9	149.9
Crystal system	Orthorhombic	Monoclinic	Tetragonal	Orthorhombic
Space group	<i>I b a m</i> (no. 72)	P 2 ₁ /c (no. 14)	I 4/ m c m (no. 140)	
a [Å]	5.600(1)	6.0756(2)	5.52(2)	5.59
<i>b</i> [Å]	5.980(6)	6.1663(2)	5.52(2)	5.91
c [Å]	5.998(1)	6.5729(2)	5.57(1)	6.01
α [°]	90	90	90	90
β [°]	90	114.2(1)	90	90
γ [°]	90	90	90	90
<i>V</i> [ų]	200.86	224.62(1)	169.722	
Z	4	4		4
$ ho_{ m calc}$ [g cm ⁻³]	4.957	4.4324		
<i>T</i> [K]	298	442		
			@ 2.7 GPa pressure	

^{*} RD1336 AgN $_3$ is produced by adding aqueous HNO $_3$ to an almost neutral solution of NaN $_3$ /AgNO $_3$ / aq. NH $_3$

Long colorless crystals of AgN₃ which explode on breaking are obtained from aqueous ammonia^[7].

- [1] C. S. Schmidt, R. Dinnebier, U. Wedig, M. Jansen, *Inorq. Chem.*, **2007**, *46*, 907–916.
- [2] A. Stettbacher, Nitrocellulose, 1942, 13, 23-26.
- [3] G.-C. Wang, Q.-M. Wang, T. C. W. Mak. J. Chem. Cryst., 1999, 29, 561–564.
- [4] Ordnance Technical Intelligence Agency, Encyclopedia of Explosives: A Compilation of Principal Explosives, Their Characteristics, Processes of Manufacture and Uses, Ordnance Liaison Group-Durham, Durham, North Carolina, 1960.
- [5] B.M. abbreviation for Bureau of Mines apparatus; P. A. abbreviation for Picatinny Arsenal apparatus.
- [6] http://feem.info/wp-content/uploads/2013/01/Explosives1.pdfz
- [7] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.
- [8] J. Boileau, C. Fauquignon, B. Hueber, H. Meyer, Explosives, in Ullmann's Encyclopedia of Industrial Chemistry, 2009, Wiley-VCH, Weinheim.
- [9] P. W. Cooper, Explosives Engineering, Wiley-VCH, New York, 1996.
- [10] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 289–290.
- [11] B. T. Fedoroff, H. A. Aaronson, E. F. Reese, O. E. Sheffield, G. D. Clift, Encyclopedia of Explosives and Related Items, vol. 1, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1960.
- [12] D. B. Hou, F. X. Zhang, H. T. Cheng, H. W. Zhu, J. Z. Wu, V. I. Levitas, Y. Z. Ma, J. Appl. Physics, 2011, 110, 023524-1-023524-6.
- [13] Bretherick's Handbook of Reactive Chemical Hazards, 8th edn., P. G. Urben (ed.), Elsevier, **2017**, p. 10.
- [14] R. Matyáš, J. Pachman, *Primary Explosives*, Springer-Verlag, 2017, pp. 89–96.
- [15] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [16] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1969**.
- [17] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 7, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1975**.
- [18] J. E. Field, M. M. Chaudhri, G. M. Swalloe, T. B. Tang, *Deformation and Thermal Properties of Energetic Materials*, AD A103275, European Research Office, London, December **1980**.
- [19] T. B. Tang, M. M. Chaudhri, *Nature*, **1979**, *282*, 54–55.
- [20] J. J. J. P. A. Le Roux, *Propellants, Explosives, Pyrotechnics*, **1990**, 15, 243–247.
- [21] T. L. Davis, The Chemistry of Powder and Explosives, vol. 2, 1943, John Wiley and Sons Inc., New York.
- [22] C. Zhang, X. C. Wang, H. Huang, *Computational Treatment of the Structure-Sensitivity Relationships of Explosives*, ICT **2008**, Karlsruhe, Germany, pp. 99-1–99-9.
- [23] T. B. Tang, M. M. Chaudhri, *Proc. Royal Soc. London A*, **1979**, *369*, 83–104.
- [24] D. Tabor, J. E. Field, M. N. Chaudhri, H. M. Hauser, R. G. Patel, Mechanical Properties of Energetic Materials, Final Technical Report, ADA039600, European Research Office, London, January 1977.
- [25] M. B. Talawar, A. P. Agrawal, M. Anniyappan, D. S. Wani, M. K. Bansode, G. M. Gore, J. Hazard. Mater., 2006, B137, 1074–1078.
- [26] Engineering Design Handbook, Explosives Series, Explosive Trains, AMC Pamphlet AMCP 706–179, Headquarters, US Army Materiel Command, Alexandria, Virginia, USA, 15th January 1974.
- [27] S. S. Cooper, P. G. Malone, S. W. Bartholomew, W. J. Necker, *Light-Initiated Detonation Systems*, GL-86-28, Department of the Army, Washington D. C., USA, September 1986.

- [28] M. Cartwright, J. Wilkinson, *Propellants, Explosives, Pyrotechnics*, **2010**, *35*, 326–332.
- [29] M. Bichay, J. Hirlinger, New Primary Explosives For Medium Caliber Stab Detonators, SERDP Final Report, 1st September 2004.
- [30] A. Suzuki, Explosive Properties of Initial Explosives, Crystallographic, Molecular, and Quantum-Chemical Considerations, T-1797-65, Department of the Army, U.S. Army Mobility Equipment Center, Fort Belvoir, Virginia, USA, August 1965.
- [31] R. W. Millar, Lead-Free Initiator Materials for Small Electro-Explosive Devices for Medium Caliber Munitions: Final Report 04 June 2003, QinetiQ Ltd., Farnborough, U.K., May 2003.
- [32] Energetic Materials 1: Physics and Chemistry of the Inorganic Azides, H. D. Fair, R. F. Walker (eds.), Plenum Press, 1977.
- [33] T. Costain, F. B. Wells, *Processes for the Manufacture of Lead and Silver Azide*, Ch. 1 in *Energetic Materials 2: Technology of the Inorganic Azides*, H. D. Fair, R. F. Walker (eds.), Plenum Press, **1977**.
- [34] H. Kramer, Analysis of Azides for Assay, and in Complex Media, Ch. 2 in Energetic Materials 2: Technology of the Inorganic Azides, H. D. Fair, R. F. Walker (eds.), Plenum Press, 1977.
- [35] L. Avrami, R. Hutchinson, *The Sensitivity to Impact and Friction*, Ch. 4 in *Energetic Materials 2: Technology of the Inorganic Azides*, H. D. Fair, R. F. Walker (eds.), Plenum Press, **1977**.
- [36] M. S. Kirshenbaum, Electrostatic Sensitivity, Ch. 5 in Energetic Materials 2: Technology of the Inorganic Azides, H. D. Fair, R. F. Walker (eds.), Plenum Press, 1977.
- [37] L. Avrami, J. Haberman, Sensitivity to Heat and Nuclear Radiation, Ch. 6 in Energetic Materials 2: Technology of the Inorganic Azides, H. D. Fair, R. F. Walker (eds.), Plenum Press, 1977.
- [38] W. Voreck, N. Slagg, L. Avrami, The Role of Azides in Explosive Trains, Ch. 7 in Energetic Materials 2: Technology of the Inorganic Azides, H. D. Fair, R. F. Walker (eds.), Plenum Press, 1977
- [39] A. D. Yoffe, Proc. Royal Soc. A, 1951, 208, 188-199.
- [40] B. L. Evans, A. D. Yoffe, P. Gray, Chem. Revs., 1959, 59, 515–568.

Silver fulminate

Name [German, acronym]: Silver fulminate, silver oxidoazaniumylidynemethane^[9]

[silberfulminat, knallsilber]

Main (potential) use: Historically as primary explosive, very small amounts

used in firework torpedoes, snaps and crackers^[9], unsuitable for military applications, for example, as stab-sensitive material due to its extreme sensitivity^[11], detonators used by the Italian Navy^[11], small quantities in pyrotechnics, fireworks, snaps, pull-crackers and

paper caps^[11]

Structural formula:

AgCNO

	Silver fulminate
Formula	AgCNO
Molecular mass [g mol ⁻¹]	149.9
Appearance at RT	White crystals with silky luster ^[8] , colorless crystals/white powder ^[9] , white crystalline material ^[11] , fine needles (crude product) ^[11]
IS [J]	~0.8–1.9 ^[4] , unexplosive point = \leq 1 cm, explosive point = 8 cm (silver sand test, falling mass = 8.6 g) ^[8] , FoI = 22 (Rotter test, cf. RDX FoI = 80, commercial silver fulminate) ^[11]
	Ball and disc: $15 \text{ cm} = {}^6/{}_{10} \text{ fires}^{[11]}, 13 \text{ cm} = {}^6/{}_{10} \text{ fires}^{[11]}, 12 \text{ cm} = {}^4/{}_{10} \text{ fires}^{[11]}, 11 \text{ cm} = {}^4/{}_{10} \text{ fires}^{[11]}, 10 \text{ cm} = {}^3/{}_{10} \text{ fires}^{[11]}, 9 \text{ cm} = {}^1/{}_{10} \text{ fires}^{[11]}, 8 \text{ cm} = {}^0/{}_{20} \text{ fires}$ (commercial silver fulminate) ${}^{[11]}$
FS [N]	Emery paper: 2.5 ft/s (\sim 0.76 m/s) = $^{7}/_{10}$ fires ^[11] , 2.0 ft/s (\sim 0.6 m/s) = $^{5}/_{10}$ fires ^[11] , 1.5 ft/s (\sim 0.45 m/s) = $^{0}/_{10}$ fires (commercial silver fulminate) ^[11]
ESD [J]	Metal/metal electrodes 0.04 µJ @ 48 pF (commercial silver fulminate) ^[11] , rubber/metal electrodes 0.3 µJ @ 48 pF (commercial silver fulminate) ^[11]
N [%]	9.34
Ω(CO ₂) [%]	
T _{phase transition} [°C]	Two polymorphic forms detected using X-ray diffraction (orthorhombic and trigonal (rhombohedral)) but no amorphous form detected ^[11] , no phase changes between 20 and 145 °C (DTA) ^[11]
T _{dec.} [°C]	Explodes @ 186–193 °C (@ 0.2 °C/min) ^[4] , 170 (explodes in 5 s) ^[5]
$ ho$ [g cm $^{-3}$]	3.938 (@ 293 K) ^[1] , 4.107 (orthorhombic crystals) ^[4] , 3.796 (trigonal crystals) ^[4]
Heat of formation	179 kJ/mol $(\Delta_f H^o)^{[4]}$, 361.5 kJ/mol $(\Delta H_f^o$, dimer), 1.21 kJ/g $^{[10]}$, 180 kJ/mol (enthalpy of form.) $^{[9]}$

	Calcd. (EXPLO5 6.03)	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]		1,970 kJ mol ⁻¹ (calorimeter) ^[4]
<i>T</i> _{ex} [K]		
p _{C-J} [kbar]		
VoD [m s ⁻¹]		~1,700 (average VoD, for ~0.5 mm thick unconfined film ignited by hot wire, no $ ho$ specified) ^[11]
V ₀ [L kg ⁻¹]		

Sand test [g]	Essentially the same brisance as that of mercury fulminate (MF)[11]
Initiation efficiency	Minimum amount (g) which causes detonation in secondary explosive ^[7] : 0.02 g for tetryl ^[7] , 0.05 g for PA ^[7] , 0.095 g for TNT ^[7] , 0.23 g for trinitroanisole ^[7] , 0.30 g for trinitroxylene ^[7] , ~15 times more efficient as MF for exploding tetryl, but only about 30% more efficient for exploding TNX ^[11]
5 s explosion T[°C] Ignition T[°C]	$170^{[5,7]}$ 245 (dropped onto preheated Wood's alloy) ^[6] , 225 (instantaneous) ^[8] , 200 (exploded, commercial silver fulminate) ^[11] , 204 (exploded, commercial silver fulminate) ^[11] , 170 ^[11]
Thermal stability	Sample stored under water for 40 years darkened in color but showed no change in other physical or chemical properties ^[11]
Solubility [g/mL]	0.75 g dissolved in 1 L H_2O @ 13 °C ^[7] , 0.18 g dissolved in 1 L H_2O @ 30 °C ^[7] , slightly soluble in water: 0.075 g/100 mL H_2O @ 13 °C ^[11] , 0.25 g/100 mL H_2O @ 100 °C ^[11] , insoluble in nitric acid ^[11]
Hygroscopicity	Nonhygroscopic ^[11]
Photosensitivity	Darkens on exposure to light ^[7, 11] , not very sensitive to light ^[8]
Compatibility	Violent explosion on contact with $H_2S^{[10]}$, dec. in hydrochloric acid $^{[11]}$
Radiation sensitivity	Crystals warped under exposure to X-rays during data collection $^{[11]}$, ignition on exposure to intense light from Xe-filled flash bulb $^{[11]}$
Stab sensitivity	Relatively stab insensitive – 1.7 g stab igniters containing 10 mg silver fulminate failed to function with input energies ≤25 in ounces (~176 mJ), only positive response achieved with 60 mg pressed in one increment @ 10 in ounces ^[11]
Dead pressed	@ loads > 33 MPa ^[11]

	Silver fulminate ^[1, 3]	Silver fulminate ^[2, 3]
Chemical formula	AgCNO	AgCNO
Molecular weight [g mol ⁻¹]	149.89	149.89
Crystal system	Trigonal	Orthorhombic

Space group	R-3	C m c m (no. 63)
a [Å]	9.109 ± 0.015	3.864±0.006
<i>b</i> [Å]		10.722 ± 0.018
c [Å]		5.851±0.010
α[°]	115.44	90
β [°]		90
γ [°]		90
<i>V</i> [ų]	393.3	242.4
Z	6	4
$\rho_{\rm calc}$ [g cm ⁻³]	3.796	4.107
<i>T</i> [K]	297	

Crystals grown from 6M ammonia formed as needles and leaflet clusters. Both polymorphs appeared as both types of crystals (needles and leaflets) and could not be distinguished under the microscope^[12].

- [1] D. Britton, Acta Cryst.., 1991, C47, 2646–2647.
- [2] J. C. Barrick, D. Canfield, B. C. Giessen, Acta Cryst., 1979, B35, 464–465.
- [3] D. Britton, J. D. Dunnitz, Acta Cryst., 1965, 19, 662–668.
- [4] R. Matyáš, J. Pachman, *Primary Explosives*, Springer-Verlag, **2013**, pp. 58–62.
- [5] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1974**.
- [6] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 7, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1975**.
- [7] T. L. Davis, *The Chemistry of Powder and Explosives*, vol. 2, **1943**, John Wiley and Sons Inc., New York, pp. 411–413.
- [8] A. Suzuki, Explosive Properties of Initial Explosives, Crystallographic, Molecular, and Quantum-Chemical Considerations, T-1797-65, Department of the Army, U.S. Army Mobility Equipment Center, Fort Belvoir, Virginia, USA, August 1965.
- [9] K. L. Kosanke, B. J. Kosanke, B. T. Sturman, R. M. Winokur, *Encyclopedic Dictionary of Pyrotechnics (and Related Subjects), Part 3 P to Z*, Pyrotechnic Reference Series No.5, Journal of Pyrotechnics Inc., Whitewater, Colorado, USA, **2012**, pp. 1013–1014.
- [10] Bretherick's Handbook of Reactive Chemical Hazards, 8th edn., P. G. Urben (ed.), Elsevier, 2017.
- [11] P. H. Collins, K. J. Holloway, *Propellants and Explosives*, **1978**, *3*, 159–162.

Sixolite

Name [German, acronym]: Tetramethylolcyclohexanol pentanitrate, nitrohexanol Main (potential) use: under research

	Sixolite				
Formula	C ₁₀ H ₁₅ N ₅ O ₁₅	$C_{10}H_{15}N_5O_{15}$			
Molecular mass [g mol ⁻¹]	445.25				
Appearance at RT	Pale yellow solid ^[2]				
IS [J]					
FS [N]					
ESD [J]					
N [%]	15.73				
Ω(CO ₂) [%]	-44.9				
T _{m.p.} [°C]	122.5 ^[2]				
T _{dec.} [°C]					
$ ho$ [g cm $^{-3}$]	1.44 ^[2]				
Heat of formation	170.39 kcal/mol ($-\Delta H_f$, heat of form. @ standard conditions) ^[3] , -357 kcal/kg (enthalpy of form.) ^[4]				
Heat of combustion	exptl. heat of com	bustic	on data ^[3] :		
	$-\Delta U_{\rm B/M}$ (cal/g)			$-\Delta U_R$ (kcal/mo @ 1 atm. and constant vol.)	$ \begin{array}{c c} -\Delta H_{R} \text{ (kcal/mol} \\ \text{ @ 1 atm. and} \\ \text{ constant pressure)} \end{array} $
	2,900.94 ± 2.41 1,291.67 1,290.42		1,286.72		
	Calcd. (EXPLO5 6.03)	Lit. values			Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]		3,765.6 ^[2]			
<i>T</i> _{ex} [K]					

p _{C-J} [kbar]		
VoD [m s ⁻¹]	7,430 (@ 1.58 g cm ⁻³) ^[5]	
V_0 [L kg ⁻¹]		

Trauzl test [% TNT]	135 ^[5]
Ballistic mortar test [% TNT]	127 ^[5]

- [1] J. P. Agrawal, R. D. Hodgson, *Organic Chemistry of Explosives*, John Wiley and Sons Ltd., **2007**, pp. 73–74.
- [2] J. Liu, Nitrate Esters Chemistry and Technology, Springer, 2019.
- [3] G. Stegeman, Heat of Combustion of Explosive Substances, OSRD No. 5306, Division 8 National Defense Research Committee of the Office of Scientific Research and Development, USA, 4th July 1945.
- [4] S. M. Kaye, *Encyclopedia of Explosives and Related Items*, vol. 9, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1980**.
- [5] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.

Sixonite

Name [German, acronym]: Tetramethylolcyclohexanone tetranitrate, 2-oxo-1,1,3,3-

tetrakis-nitryloxymethyl-cyclohexane, 1,1,3,3-tetrakis-nitryloxymethyl-cyclohexanone-(2), 2,2,6,6-tetrakis (nitryloxymethyl) cyclohexanone, cyclohexanone

tetranitrate

Main (potential) use: Structural formula: flashless propellant

$$\begin{array}{c|c} \mathbf{O}_2\mathbf{NOH}_2\mathbf{C} & \mathbf{CH}_2\mathbf{ONO}_2 \\ \\ \mathbf{O}_2\mathbf{NOH}_2\mathbf{C} & \mathbf{CH}_2\mathbf{ONO}_2 \end{array}$$

	Sixonite				
Formula	C ₁₀ H ₁₄ N ₄ O ₁₃	C ₁₀ H ₁₄ N ₄ O ₁₃			
Molecular mass [g mol ⁻¹]	398.24	398.24			
Appearance at RT					
IS [J]	Design no. 3 apparat	Design no. 3 apparatus ^[4] :			
	Drop height (cm)	Trials	% explosions]	
	80	20	40		
	85 20 40 90 20 55				
	95 20 55 $H_{50} = >90 \text{ cm (design no. 3 apparatus)}^{[4]}, H_{50} = 29 \text{ cm (design no. 5 apparatus)}^{[4]}, H_{50} = 120 \text{ cm (design no. 9, 2.5 kg hammer)}^{[4]}, H_{50} = 46 \text{ cm (2.5 kg hammer, design no. 11)}^{[4]}, H_{50} = 47.5 \text{ cm (design no. 12, 63 units cf. TNT} = 100 \text{ units)}^{[4]}$				
FS [N]					
ESD [J]					
N [%]	14.07	14.07			
Ω(CO ₂) [%]	-56.2				
T _{m.p.} [°C]	55-56 ^[1, 6] , 66 ^[2]				
T _{dec.} [°C]					
$ ho$ [g cm $^{-3}$]					

Heat of formation	182.24 kcal/mol ($-\Delta H_{\rm f}$, heat of form. @ standard conditions) ^[3]					
Heat of combustion	Exptl. heat of comb	Exptl. heat of combustion data ^[3] :				
	$-\Delta U_{\rm B/M}$ (cal/g)	$-\Delta U_{\rm B}$ (kcal/mol)	$-\Delta U_R$ (kcal/r @ 1 atm. and constant vol	d	$-\Delta H_R$ (kcal/mol @ 1 atm. and constant pressure)	
	3,127.70 ± 1.33	1,245.59	1,243.67		1,240.71	
	$Q_c^{V} = 3,153 \text{ cal/g}^{[6]}$	l				
	Calcd. (EXPLO5 6.03)	Lit. values		Exp	otl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]		3,451.8 ^[2]				
<i>T</i> _{ex} [K]						
p _{C-J} [kbar]						
VoD [m s ⁻¹]		7,740 (@ 1.5	1 g cm ⁻³) ^[2, 5]	25,	400 ft/s (@ 1.4 g cm ⁻	³) ^[1]
$V_0 [L kg^{-1}]$						

Ballistic mortar test [% TNT]	11,4[5,6]
Battistic mortar test [% TNT]	11414, -,

- [1] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [2] J. Liu, Nitrate Esters Chemistry and Technology, Springer, 2019.
- [3] G. Stegeman, Heat of Combustion of Explosive Substances, OSRD No. 5306, Division 8 National Defense Research Committee of the Office of Scientific Research and Development, USA, 4th July 1945.
- [4] H. D. Mallory, The Development of Impact Sensitivity Tests at the Explosives Research Laboratory Bruceton, Pennsylvania During the Years 1941–1945, NAVORD Report 4236, US Naval Ordnance Laboratory, White Oak, Maryland, USA, 16th March 1956.
- [5] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [6] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 9, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1980.

Silver nitrotetrazolate

Name [German, acronym]: Main (potential) use:

5-Nitro-(1*H*)-tetrazole silver salt [Silber nitrotetrazolat] Investigated as possible component of detonant/ stab sensitive composition, possible future lead-free initiator (detonant class)^[3], possible use as initiating primers^[4]

	Silver nitrotetrazolate			
Formula	CN ₅ O ₂ Ag			
Molecular mass [g mol ⁻¹]	221.91	221.91		
Appearance at RT	Creamy-tan colored, fre	ee flowing solid ^[3] , white, f	elt-like needles ^[4]	
IS [J]		orph): 4 cm, $6/10$ fires ^[1] ; $\frac{1}{2}$, 22.7 cm (ball and disc te		
FS [N]	, , , ,	Emery friction (A polymorph): 4 ft/s, 5/5 fires ^[1] ; 3 ft/s, 2/20 fires ^[1] ; 2 ft/s, 1/20 fires ^[1] ; $1^{1}/_{2}$ ft/s, 0/20 fires ^[1] , <5 ^[2] , 1.7 m/s (Emery paper test) ^[3]		
ESD [J]	Minimum electrostatic energy to fire metal/metal electrodes = 12 μJ (A polymorph) ^[1] , <50 mJ ^[2] , ignitions @ 45 μJ (standard test) ^[3] , ignition @ 2.6 μJ but not @ 1.9 μJ (test no. 7) ^[3]			
N [%]	31.56	31.56		
Ω(CO ₂) [%]				
T _{m.p.} [°C]	Explodes @ 262 °C[3]			
T _{dec.} [°C]	254 (onset, DSC @ 10	254 (onset, DSC @ 10 °C/min, Al pan with Al pinhole lid) ^[3]		
Heat of formation				
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]				
T _{ex} [K]				
p _{C-J} [kbar]				
VoD [m s ⁻¹]				
V_0 [L kg ⁻¹]				

Initiating efficiency	Exceeds that of LA for tetryl ^[4] , 0.005 g against tetryl ^[4]
5 s explosion T [°C] Ignition T [°C] Explosion T [°C]	265 (@ 5 °C/min, A polymorph) ^[1] , 259 (explodes) ^[3] 340 ^[3] , ~230 (detonates) ^[4]
Vacuum stability test [cm³/h]	0.3% mass loss @ 100 °C, 0.2 mm Hg vacuum for 1 week (A polymorph) $^{[1]}$, 4.5% mass loss @ 230 °C, 1 mm pressure, 1 h (A polymorph) $^{[1]}$
Solubility [g/mL]	Difficultly soluble in water ^[4]
Hygroscopicity	Inflammability not influenced by moisture
Compatibility	Not unduly susceptible to hydrolysis ^[1] , less susceptible to attack by vapors from plastic or rubber than LA or silver azide ^[1] , reacts rapidly with tetrazene at high humidity and high T ^[1] , incompatible with Al under humid conditions ^[1] ,more corrosive towards Al than to Cu ^[1] , does not affect stainless steel ^[1] , stable in nitric acid solution ^[4] , inflammability not influenced by moisture ^[4] ,
Stab sensitivity	Insensitive ^[1]
ERDET test [wt. found to detonate RDX in an ERDET)]	30 mg (A polymorph) ^[1]
Dead pressing	Dead pressed @ 46 MN/m² (A polymorph) ^[1] , prone to dead pressing ^[3]

Six types of silver nitrotetrazolate were found using X-ray powder photography patterns, however, only three were isolated pure: A, D and $F^{[1]}$

A = main product from nitric acid solns. [1]; A = main product from neutral solns. in admixture with D and $E^{[1]}$; F = main product from ammonia solns. [1]; D = obtained pure from simultaneous addition of sodium nitrotetrazolate and AgNO₃ to dil. aq. ammonia followed by neutralization with dil. nitric acid [1]

- [1] J. M. Jenkins, J. R. White, *The Salts of 5-Substituted Tetrazoles: Part 3: Further Investigations into the Preparation and Properties of Silver 5-Nitrotetrazole and Mercuric 5-Nitrotetrazole*, Technical Report No. 172, Explosives Research and Development Establishment, Waltham Abbey, Essex, UK, February **1974**.
- [2] T. M. Klapötke, J. Stierstorfer, *Energetic Tetrazole N-Oxides*, Ch. 6 in *Green Energetic Materials*, T. Brinck (ed.), Wiley, **2014**.
- [3] R. W. Millar, Lead-Free Initiator Materials for Small Electro-Explosive Devices for Medium Caliber Munitions: Final Report 04 June 2003, QinetiQ Ltd., Farnborough, U.K., May 2003.
- [4] E. von Herz, C-Nitrotetrazole Compounds, US Patent 2,066,954, January 5th 1937.

Sodium 5-aminotetrazolate trihydrate

Name [German, acronym]: Sodium aminotetrazolate trihydrate [natrium

5-aminotetrazolat trihydrat]

Main (potential) use: In the synthesis of other tetrazole-based energetic

 $materials^{[1]}$

	Sodium 5-aminotetraz	olate trihydrate		
Formula	CH ₈ N ₅ NaO ₃			
Molecular mass [g mol ⁻¹]	161.11			
Appearance at RT	Colorless crystals ^[1]			
IS [J]				
FS [N]				
ESD [J]				
N [%]	43.47			
Ω(CO ₂) [%]				
T _{m.p.} [°C]	306 (DSC @ 5 °C/min, covered Al pans) ^[1]			
T _{dec.} [°C]	Loses water @ T<100 °C in several steps (DSC @ 5 °C/min, covered Al pan)[1]			
$ ho$ [g cm $^{-3}$]	1.54 (X-ray) ^[1]	1.54 (X-ray) ^[1]		
Heat of formation	$-1,136 \text{ kJ/mol } (\Delta_{\rm f} H^{\rm o})^{[1]}$			
Heat of combustion	$\Delta_c H = -657 \text{ kJ/mol (exptl.)}^{[1]}, \ \Delta_c U = -980 \text{ cal/g (@ CV, bomb calorimetry)}^{[1]}$			
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]				
T _{ex} [K]				
p _{C-J} [kbar]				
VoD [m s ⁻¹]				
V_0 [L kg ⁻¹]				
I _s [s]				
Thermal stability	Loses H ₂ O on standing in air ^[1]			
Hygroscopicity	Loses water on standing in air ^[1]			
Flame test	Orange flame color ^[1]			

	Sodium 5-aminotetrazole trihydrate ^[1]
Chemical formula	NaCH ₈ N ₅ O ₃
Molecular weight [g mol ⁻¹]	161.11
Crystal system	Triclinic
Space group	P-1 (no. 2)
a [Å]	5.8689(7)
<i>b</i> [Å]	10.0258(9)
c [Å]	12.171(1)
α [°]	87.34(1)
β[°]	77.546(9)
γ [°]	80.059(9)
V [ų]	688.76(13)
Z	4
$ ho_{ m calc}$ [g cm $^{-3}$]	1.554
τ[K]	200

^[1] J. Stierstorfer, Advanced Energetic Materials Based on 5-Aminotetrazole – Synthesis, Characterization and Scale-Up, PhD Thesis, LMU München, Munich 2009.

Sodium azide

Name [German, Acronym]: Sodium azide, sodium trinitride^[11], Smite^[11]

[Natriumazid]

Main (potential) use: Gas generator for safety systems, for example,

 $airbags^{[11]}$, reagent in energetic materials synthesis^[11], preparation of lead azide^[12, 21], automotive airbags and

other nitrogen gas generators^[13]

Structural formula:

Na \bigcirc N = N = N

	Sodium azide
Formula	NaN ₃
Molecular mass [g mol ⁻¹]	65.01
Appearance at RT	Colorless crystals/white powder ^[11] , white crystalline solid ^[13] , white salt ^[14] , white, odorless crystalline solid ^[21, 22]
IS [J]	Not sensitive ^[14] , 15 mJ, $P_{cr} = 0.8 \pm 0.05$ GPa @ $H_0 = 0.7$ mm (10 kg mass, K-44-2 vertical impact testing machine, testing device no. 2) ^[18]
FS [N]	not sensitive ^[14]
ESD [J]	
N [%]	64.64
Ω(CO ₂) [%]	
T _{m.p.} [°C]	275 (dec.) ^[11, 21, 22]
T _{b.p.} [°C]	300 @ 1.013 hPa (vigorous dec.) ^[22]
T _{phase transition} [°C]	$β$ - \rightarrow $α$ - (compression @ 294 K) ^[1] , $α$ - \rightarrow $γ$ - (compression under 2.8 GPa @ 333 K) ^[1] , $γ$ - \rightarrow $α$ - (decompression @ ambient $\mathcal{D}^{[1]}$, NaN ₃ adopts two different phases at atmospheric pressure depending on the \mathcal{T} : rhombohedral (R – 3 m , high \mathcal{T} , $β$ -form, \mathcal{T} > 292 K) ^[1] and monoclinic ($C2/m$, low \mathcal{T} , $α$ -form) ^[1] , $β$ - \rightarrow $α$ - (\mathcal{T} (transition \mathcal{T}) between 285–296 K) ^[1] , no phase transitions on heating $β$ - to its \mathcal{T}_{dec} . @ 548 K ^[1] , unit cell of a monoclinic form @ ~1.0 GPa (diamond-anvil cell technology) consistent with LT $α$ -form ^[1] , $β$ - \rightarrow $α$ - occurs @ 0.07 GPa and the formed $α$ -form remains stable to the highest pressures studied ^[1] , three pressure induced phase transitions observed (diamond anvil cell): 0.3 GPa ($α$ - \rightarrow $β$ -), 17.3 GPa and 28.7 GPa ^[1] , $β$ - \rightarrow $γ$ - (compression of $β$ -form @ ~257 K between 2.6 and 3.0 GPa) ^[1] , 0.25 GPa ($α$ - \rightarrow $β$ -) $^{[1]}$, $α$ - does not undergo phase transition @ 290 K @ pressures up to 6.06 GPa ^[1] , above 287 K (phase I) NaN ₃ = $R3m$ (Z = 1), below 287 K (phase II) NaN ₃ = $C2/m$ (Z = 1) $^{[16]}$, 292.2 K (HT rhombohedral phase \rightarrow LT monoclinic phase) ^[177] , lower T form = $α$ -NaN ₃ , higher T form = $β$ -NaN ₃ ^[19] , 13 ($α$ - \rightarrow $β$ -, value probably too low) ^[19] , ~18

		(single crystal changes appearance probably due to cleavage, flaking which is sharp, reversible and reproducible) ^[19] , 291–294 K transition T ^[20]					
	548 K (@ atmosph 275 (melts with de DTA (Alumina oper (small exotherm), mass loss @ 450 = NaN ₃ tablet, air): 4 (Alumina open cru corresponding to (Alumina open cru DTA (Alumina open (exotherm) ^[2] DTA (Alumina open (particle size = 4.8	ec.) ^[21] n crucible, 20 °C/r 450 (onset, large = ~60% ^[2] , DTA (Alu 102 ± 2 (larger exo cible, 20 °C/min, -5% mass loss (av cible, 20 °C/min, n crucible, 20 °C/r	exotherm), 460 ± 9 umina open crucibl therm cf. powder s N_2 atmosphere): 4 verage value from 1 Ar atmosphere): 4 nin, He atmosphere)	NaN ₃): 400 (exo, peak max.), e, 20 °C/min, ample) ^[2] , DTA 40 (exotherm 0 mins.)) ^[2] , DTA 40 (exotherm) ^[2] , e): 460			
	Milling time (h)	Milling time (h) DTA exotherm peak max. (°C) Milling time (h) DTA exother peak max. (°C)					
	0	~ 450	~ 24	~ 400			
	5	~ 450	~ 50	~ 390			
	~12	~ 420					
	DTA (Alumina oper Particle size (μm)	DTA exotherm peak max. (°C)	Particle size	DTA exotherm peak max. (°C)			
	>105	~ 463	44-77	~ 480			
	74–105	~ 470	< 44	~ 485			
	Aging in N ₂ : purity = 460 °C after 0 h storage ^[2] , 460 °C after 8 h storage ^[2] , ~457 °C after 12 h storage ^[2] , ~458 °C after 24 h storage ^[2] , ~458 °C after 48 h storage ^[2] , ~455 °C (18 h storage) ^[2] Aging in Ar: 460 °C (8 h storage) ^[2] , ~455 °C (18 h storage) ^[2] , ~447 °C (48 h storage) ^[2] Aging in CO ₂ saturated by H ₂ O: ~455 °C (24 h storage) ^[2] , ~447 °C (48 h storage) ^[2] Aging in dried CO ₂ : ~458 °C (8 h storage) ^[2] , ~454 °C (12 h storage) ^[2] , ~453 °C (24 h storage) ^[2] , ~452 °C (49 h storage) ^[2] Aging in O ₂ : ~457 °C (8 h storage) ^[2] , ~453 °C (12 h storage) ^[2] , ~454 °C (24 h storage) ^[2] , ~454 °C (48 h storage) ^[2]						
$ ho$ [g cm $^{-3}$]	1.85 ^[11] , 1.846 ^[12] , 1.85 @ 20 °C ^[22]	$1.85^{[11]}$, $1.846^{[12]}$, sp. gr. = $1.846^{[13]}$, 1.850 (rel. ρ) ^[13] , 1.846 @ 20 °C ^[21] ,					
Heat of formation	5.09 kcal/mol ($\Delta H^{\circ}_{f_{1}}$, exptl.) ^[3] , 6.12 kcal/mol ($\Delta H^{\circ}_{f_{2}}$, calcd.) ^[3] , 5.08 kcal/mol (standard enthalpy of formation, cryst., @ 25 °C) ^[24] , 21.7 kJ/mol (enthalpy of form.) ^[11]						

	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]				
<i>T</i> _{ex} [K]				
p _{C-J} [kbar]				
VoD [m s ⁻¹]			Does not propagate even when LA is exploded near it ^[23]	
V ₀ [L kg ⁻¹]				
Thermal stability	NaN ₃ exposed in a dessicator @ RT to flowing gas environments ^[2] : Aging in N ₂ (no aging observed after 48 h): purity = ~98.5% after 0 h storage ^[2] , purity = ~98.5% after 12 h storage ^[2] , purity = ~98.5% after 24 h storage ^[2] , purity = ~98.5% after 48 h storage ^[2] Aging in O ₂ : purity = ~98.5% after 0 h storage ^[2] , purity = ~97% after 12 h storage ^[2] , purity = ~95% after 24 h storage ^[2] , purity = ~94% after 48 h storage ^[2] Aging in CO ₂ (g) saturated by H ₂ O: purity = ~98.5% after 0 h storage ^[2] , purity = ~94% after 8 h storage ^[2] , purity = ~92% after 18 h storage ^[2] , purity = ~90% after 24 h storage ^[2] , purity = ~48% after 48 h storage ^[2] Aging in dried CO ₂ : purity = ~98.5% after 0 h storage ^[2] , purity = ~97% after 8 h storage ^[2] , purity = ~96% after 12 h storage ^[2] , purity = ~95% after 24 h storage ^[2] , purity = ~91% after 48 h storage ^[2] Dec. on heating into sodium and nitrogen ^[12] , stable for several years in			
Vapor pressure [atm. @ °C]	1 Pa @ 20 °C ^[21] , 0.01hl	Pa @ 20 °C ^[22]		
Burn rate [mm/s]	$1.2 \pm 0.1 \text{ psi } \textcircled{@} 1,000 \text{ psi, rel. vol. gas per vol. generant} = 0.97$ $(\text{NaN}_3 \text{ baseline})^{[10]}, 1.3 \pm 0.2 \text{ psi } \textcircled{@} 1,000 \text{ psi, rel. vol. gas per vol.}$ $\text{generant} = 1.0 (\text{NaN}_3 \text{ low sulfur})^{[10]}$			
Solubility [g/mL]	$ \begin{array}{l} 41 \ g/100 \ g \ H_2O \ @ \ 20 \ ^{\circ}C^{[11]}, \ 40.16\% \ in \ H_2O \ @ \ 10 \ ^{\circ}C^{[12]}, \ 41.7\% \ in \ H_2O \ @ \ 17 \ ^{\circ}C^{[12]}, \ 0.3\% \ in \ EtOH \ @ \ 25 \ ^{\circ}C^{[12]}, \ in soluble \ in \ Et_2O^{[12]}, \ soluble \ in \ liq. \\ NH_3^{[12]}, \\ 30-42\% \ @ \ 20 \ ^{\circ}C \ in \ water^{[13]}, \ dissolves \ readily \ in \ water: \ 28\% \ w/w \ @ \ 0 \ ^{\circ}C, \\ 29.5\% \ w/w \ @ \ 21 \ ^{\circ}C, \ 34\% \ w/w \ @ \ 80 \ ^{\circ}C, \ 35.5\% \ w/w \ @ \ 100 \ ^{\circ}C^{[14]}, \ less \\ readily \ soluble \ in \ 1,2-ethanediol, \ 2-methoxyethanol, \ formamide^{[14]}, \\ practically \ insoluble \ in \ EtOH, \ Et_2O, \ acetone, \ THF, \ toluene, \ CHCl_3, \\ 2-butanone, \ methyl \ acetate \ methyl \ urethane^{[14]}, \ 40.8 \ g \ dissolve \ in \ 100 \ mL \\ H_2O \ @ \ 20 \ ^{\circ}C^{[18]}, \ 41.0 \ g/100 \ g \ H_2O \ @ \ 15 \ ^{\circ}C^{[21]}, \ 420 \ g/L \ H_2O \ @ \ 17 \ ^{\circ}C^{[22]} \\ \end{array}$			
Compatibility	heavy metals (e.g., bras	s, heavy metals and mater $(SS)^{[13]}$, contact with water ds and vapors of low pH $^{[13]}$ carbons $^{[13]}$	may form HN ₃ ^[13] ,	

Dielectric constants	Dielectric constants and losses versus crystal orientation ^[4] :				
	Orientation	k'	k"	ω	
	<111>	17 ± 2.0 < 10 ⁻²	10 ³ – 10 ⁶		
рН	9.0[13]				
log P _{ow}	0.3 (n-octanol/water) ^[22]				
Thermal conductivity	25×10^{-4} c.g.s. units (mean $T = 68$ °C, pellet density = 1.77 g/cc) ^[24]				
Enthalpy of soln. [kcal/mol]	3.17 (@ 25 °C) ^[24]				

	Sodium azide α-NaN ₃ ^[9]	NaN ₃ ^[5, 6, 9]	NaN ₃ ^[7]	NaN ₃ ^[8]	γ-NaN ₃ ^[1] (NaN ₃ -III)	α-NaN ₃ ^[1]
Chemical formula	NaN ₃	NaN ₃	NaN ₃	NaN ₃	NaN ₃	NaN ₃
Molecular weight [g mol ⁻¹]	65.01	65.01	65.01	65.01	65.01	65.01
Crystal system	Monoclinic	Trigonal	Trigonal	Trigonal	Tetragonal	Monoclinic
Space group	C2/m (no. 12)	R3m (166)	R3m (160)	R3m (166)	I4/mcm	C2/m (no. 12)
a [Å]	6.211	5.481	5.499	3.646	5.6114(3)	5.9019(6)
<i>b</i> [Å]	3.658	5.481	5.499	2.646		3.5414(3)
c [Å]	5.323	5.481	5.499	15.223	6.0418(4)	5.0732(9)
α [°]	90	38.72	38.72	90		90
β [°]	108.43	38.72	38.72	90		104.45(1)
γ [°]	90	38.72	38.72	120		90
<i>V</i> [Å ³]	114.735	57.9	58.480	175.252	190.24(2)	103.12(2)
Z		1	1	3		
ρ_{calc} [g cm ⁻³]	1.88175	1.85				
T [K]						
					Powder diffraction @ 3.30 GPa, 393 K	Powder diffraction @ 3.22 GPa, 393 K

	NaN ₃ ^[15]	α-NaN ₃ ^[19]	β-NaN ₃ ^[19]	β-NaN ₃ ^[20]	NaN ₃ ^[24]
Chemical formula	NaN ₃	NaN ₃	NaN ₃	NaN ₃	NaN ₃
Molecular weight [g mol ⁻¹]	65.01	65.01	65.01	65.01	65.01
Crystal system	Monoclinic	Monoclinic	Rhombohedral	Rhombohedral	Body-centered rhombohedral
Space group	C2/m (no. 12)	C2/m (no. 12)	R3m (166)	R3m (166)	
a [Å]	6.1654(5)	6.211	3.646±0.002	Used unit cell parameters from ^[19]	
<i>b</i> [Å]	3.6350(3)	3.658			5.488
c [Å]	5.2634(6)	5.323	15.213±0.005		
α [°]	90	90			
β [°]	107.543(5)	108.43			
γ [°]	90	90			
<i>V</i> [ų]					
Z		2	1		1
$ ho_{ m calc}$ [g cm $^{-3}$]					
<i>T</i> [K]	12			300	
		Powder X-ray diffraction @ 90 – –100°C; powder ground but not sieved	Single crystal data, RT	Powder neutron diffraction	

 α -NaN $_3$ = monoclinic (C2m) $^{[9]}$, β -NaN $_3$ = rhombohedral (R-3m) $^{[9]}$, crystallizes as β -form from 1, 2-ethanediol, 2-methoxyethanol and formamide $^{[14]}$

variation in the cell parameters of α -NaN $_3$ with pressure $^{[1]}$:

P (GPa)	a (Å)	b (Å)	c (Å)	β (°)	V (ų)
0.00	6.3027(4)	3.6526(2)	5.4525(8)	111.551(9)	116.75(1)
0.09	6.2785(4)	3.6552(2)	5.4070(7)	110.458(8)	116.26(1)
0.19	6.2483(4)	3.6529(2)	5.3654(7)	109.490(8)	115.45(1)
0.37	6.2169(3)	3.6478(2)	5.3284(6)	108.687(7)	114.47(1)
0.79	6.1476(4)	3.6305(2)	5.2588(6)	107.212(9)	112.11(1)

1.29	6.0720(4)	3.6069(2)	5.1935(6)	105.860(7)	109.41(1)
1.54	6.0228(4)	3.5901(2)	5.1570(5)	105.086(7)	107.66(1)
2.17	5.9664(4)	3.5689(2)	5.1160(5)	104.237(7)	105.59(1)
2.87	5.9122(4)	3.5474(2)	5.0802(5)	103.494(7)	103.61(1)
3.29	5.8687(4)	3.5298(2)	5.0536(6)	102.909(7)	102.04(1)
3.84	5.8259(4)	3.5111(2)	5.0280(6)	102.376(8)	100.46(1)
4.42	5.7879(5)	3.4931(2)	5.0061(6)	101.931(8)	99.03(1)
5.02	5.7510(5)	3.4766(2)	4.9859(7)	101.506(9)	97.68(1)
5.66	5.7175(6)	3.4606(2)	4.9685(7)	101.128(10)	96.46(1)
6.06	5.6924(12)	3.4474(5)	4.9552(14)	100.836(20)	95.51(3)

Unit cell parameters for NaN₃ from variable temperature and pressure neutron powder diffraction; pattern @ 300 K/2.47 GPa is a mixed phase of both α - and γ - forms^[1]:

<i>T</i> (K)	P (GPa)	Form	a (Å)	b (Å)	c (Å)	β (°)	V (ų)
294	0.13	β-	3.64684(17)		15.222(3)		175.32(3)
294	0.70	α-	6.1721(11)	3.6373(6)	5.2817(19)	107.66(3)	113.00(4)
294	1.23	α-	6.0907(12)	3.6139(6)	5.2061(18)	106.11(2)	110.10(4)
294	1.91	α-	6.0055(10)	3.5826(5)	5.1422(14)	104.82(2)	106.96(3)
333	2.19	α-	5.9838(11)	3.5749(5)	5.1316(15)	104.57(2)	106.24(3)
333	2.46	α-	5.9224(10)	3.5493(5)	5.0836(14)	103.64(2)	103.85(3)
338	3.03	α-	5.9139(9)	3.5476(5)	5.0841(14)	103.59(2)	103.68(3)
350	3.03	α-	5.9118(5)	3.5459(2)	5.0802(7)	103.55(1)	103.53(1)
373	3.14	α-	5.9091(5)	3.5439(2)	5.0802(7)	103.53(1)	103.41(1)
393	3.20	α-	5.9073(7)	3.5430(3)	5.0802(10)	103.53(1)	103.37(2)
393	3.22	α-	5.9019(6)	3.5414(3)	5.0732(9)	104.45(1)	103.12(2)
393	3.30	γ-	5.6114(3)		6.0418(4)		190.24(2)
393	3.33	γ-	5.5965(3)		6.0136(4)		188.35(2)
383	3.47	γ-	5.5962(4)		6.0092(6)		188.20(3)
373	3.34	γ-	5.5957(4)		6.0093(5)		188.17(3)
363	3.35	γ-	5.5950(3)		6.0096(4)		188.13(2)
353	3.24	γ-	5.5947(4)		6.0076(5)		188.04(2)
343	3.29	γ-	5.5943(3)		6.0063(5)		187.97(2)
333	3.28	γ-	5.5937(3)		6.0047(4)		187.88(2)

313	3.27	γ-	5.5932(3)		6.0023(4)		187.78(2)
300	2.47	γ- α-	5.6169(4) 5.933(3)	3.5512(2)	6.0553(6) 5.079(5)	103.96(7)	191.04(3) 103.85(9)
300	1.32	α-	6.068(2)	3.6006(9)	5.187(3)	105.85(4)	109.02(6)
300	0.00	α-	6.2957(14)	3.6573(8)	5.434(2)	110.70(3)	117.04(5)

Cell constants of NaN₃ from single crystal data^[15]:

<i>T</i> (K)	a (Å)	b (Å)	c (Å)	β (°)
160	6.2233(42)	3.6510(27)	5.3359(25)	108.444(37)
210	6.2467(40)	3.6573(25)	5.3642(25)	109.092(40)
228	6.2614(58)	3.6579(39)	5.3842(25)	109.522(55)
253	6.2764(31)	3.6558(25)	5.4178(16)	110.108(23)
272	6.3043(40)	3,6613(35)	5.4285(27)	110.802(37)
280	6.3016(43)	3.6566(43)	5.4265(29)	111.106(35)
282	6.3105(40)	3.6578(20)	5.4830(20)	111.212(30)
295	6.3264(48)	3.6525(28)	5.4902(41)	112.593(43)

- [1] D. I. A. Millar, C. Barry, W. G. Marshall, C. R. Pulham, Z. Kristallogr., 2014, 229, 259-275.
- [2] H. Nakamura, K. Sakumoto, Y. Hara, K. Ochi, J. Hazard. Mater., 1994, 38, 1–12.
- [3] Y. N. Matyushin, *Estimation Method of Enthalpies of Formation of Salt Compounds*, ICT **2008**, Karlsruhe, Germany, pp. 44-1-44-15.
- [4] W. L. Garrett, P. J. Kemmey, *Dielectric Constant Measurements on Lead Azide Single Crystals*, Technical Report ARLCD-TR-80023, September **1980**.
- [5] S. B. Hendricks, L. Pauling, J. Am. Chem. Soc., 1925, 47, 2904–2920.
- [6] L. K. Frevel, J. Am. Chem. Soc., 1936, 58, 779-782.
- [7] M. Bassiere, Memorial des Services Chemique de L'Etat, 1943, 30, 33-46.
- [8] E. D. Stevens, H. Hope, Acta Cryst., 1977, A33, 723–729.
- [9] M. Cartwright, J. Wilkinson, *Propellants, Explosives, Pyrotechnics*, **2010**, *35*, 326–332.
- [10] G. K. Lund, R. J. Blau, Anhydrous 5-Aminotetrazole Gas Generant Compositions and Methods of Preparation, US Patent 5,500,059, March 19th 1996.
- [11] K. L. Kosanke, B. J. Kosanke, B. T. Sturman, R. M. Winokur, *Encyclopedic Dictionary of Pyrotechnics (and Related Subjects), Part 3 P to Z*, Pyrotechnic Reference Series No.5, Journal of Pyrotechnics Inc., Whitewater, Colorado, USA, **2012**, p. 1035.
- [12] The Merck Index An Encyclopedia of Chemicals and Drugs, 9th edn., M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig (eds.), Merck and Co. Inc., Rahway, New Jersey, USA, 1976.
- [13] Sodium Azide Safety Data Sheet, American Pacific™ Company, http://www.ampac.us/pdf/ SODIUM_AZIDE_SAFETY_DATA_SHEET.pdf
- [14] Energetic Materials 1: Physics and Chemistry of the Inorganic Azides, H. D. Fair, R. F. Walker (eds.), Plenum Press, 1977.
- [15] S. R. Aghdaee, A. I. M. Rae, Acta Cryst., 1984, B40, 214-218.

- [16] Z. Iqbal, C. W. Christoe, Solid State Commun., 1974, 17, 71-74.
- [17] S. R. Aghdaee, A. I. M. Rae, J. Chem. Phys., 1983, 79, 4558-4563.
- [18] A. A. Denisaev, I. G. Assovskii, A. A. Berlin, Doklady Physical Chem., 2013, 453, 261-263.
- [19] G. E. Pringle, D. E, Noakes, Acta Cryst., 1968, B24, 262-269.
- [20] C. S. Choi, E. Prince, J. Chem. Phys., 1976, 64, 4510-4516.
- [21] H. H. Jobelius, H.-D. Scharff, *Hydrazoic Acid and Azides*, in *Ullmann's Encyclopedia of Industrial Chemistry*, vol. 18, Wiley-VCH, **2012**, p. 97–102.
- [22] Sodium Azide Safety Data Sheet, Merck, http://www.merckmillipore.com/INTERSHOP/web/ WFS/Merck-INTL-Site/en_US/-/USD/ShowDocument-File?ProductSKU=MDA_CHEM-106688&D ocumentType=MSD&Language=en&Country=en
- [23] F. P. Bowden, H. T. Williams, Proc. R. Soc., Lond. A, 1951, 208, 176-178.
- [24] B. L. Evans, A. D. Yoffe, P. Gray, Chem. Revs., 1959, 59, 515-568.

Sodium chlorate

Name [German, acronym]: Sodium chlorate [natrium chlorat]

Main (potential) use: Pyrotechnics, component of initiating high explosives

and propellant compositions

Structural formula:

NaClO₃

	Sodium chlorate	
Formula	NaClO ₃	
Molecular mass [g mol ⁻¹]	106.40	
Appearance at RT	White powder, colorless odorles	ss crystals or white granules ^[8]
N [%]	0	
Ω(CO ₂) [%]		
T _{m.p.} [°C]	248 ^[1, 8] , 248–261 ^[6]	
T _{dec.} [°C]	356 ^[2] , ~300 (liberates oxygen) ^[8]	
ρ [g cm $^{-3}$]	2.50 ^[1] , 2.488 ^[3] , 2.490 (@ 15 °C) ^[6] , 2.5 ^[8]	
Heat of formation	-805 cal/g ^[3]	
	Calcd. (EXPLO5 6.03)	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]		
T _{ex} [K]		
p _{C-J} [kbar]		
VoD [m s ⁻¹]		
V ₀ [L kg ⁻¹]		

Solubility [g/mL]	82 parts per 100 parts $H_2O @ 0 °C^{[7]}$, 204 parts per 100 parts $H_2O @ 100 °C^{[7]}$
Hygroscopicity	Hygroscopic ^[7]
Compatibility	Should not be in contact with organic substances or other oxidizable substances ^[8]
рН	Aqueous soln. is neutral ^[8]

	NaClO ₃ ^[4]	NaClO ₃ ^[5]
	Ambient pressure, RT, phase-I [†]	Metastable, high temperature phase-III
Chemical formula	NaClO ₃	NaClO ₃
Molecular weight [g mol ⁻¹]	106.40	106.40
Crystal system	Cubic	Monoclinic
Space group	P 2 ₁ 3 (no. 198)	P 2 ₁ / a
a [Å]	6.570(6)	8.78(5)
<i>b</i> [Å]	6.570(6)	5.17(5)
c [Å]	6.570(6)	6.88(5)
α [°]	90	90
β [°]	90	110
γ [°]	90	90
<i>V</i> [ų]	283.59	293.47
Z		
$\rho_{\rm calc}$ [g cm ⁻³]		
<i>T</i> [K]		

[†] common form = cubic crystals^[6]

- [1] Hazardous Substances Data Bank, obtained from the National Library of Medicine (US).
- [2] A. P. Vitoria, An. R. Soc. Esp. Fis. Quim., 1929, 27, 787-797.
- [3] https://engineering.purdue.edu/~propulsi/propulsion/comb/propellants.html
- [4] C. Aravindakshan, Z. Kristall., 1959, 111, 241-248.
- [5] D. Meyer, M. Gasperin, Bull. Soc. Francaise Mineral. Crystall., 1973, 96, 18–20.
- [6] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [7] T. L. Davis, *The Chemistry of Powder and Explosives*, vol. 2, **1943**, John Wiley and Sons Inc., New York.
- [8] The Merck Index An Encyclopedia of Chemicals and Drugs, 9th edn., M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig (eds.), Merck and Co. Inc., Rahway, New Jersey, USA, 1976.

Sodium nitrate

Name [German, acronym]: Sodium nitrate, soda niter^[12, 13], nitratine^[12], sodium

saltpeter $^{[12]}$, sodium salt of nitric acid $^{[12]}$, cubic nitre $^{[12,\,13]}$,

nitrate of soda $^{\![12]}\!$, Chile niter $^{\![12]}\!$, Chile saltpeter $^{\![12,\,13]}\!$

[natronsalpeter, natriumnitrat, SN]

Main (potential) use: In industrial explosives, oxidizer in blasting powder^[5]

Structural formula:

NaNO₃

	SN		
Formula	NaNO ₃		
Molecular mass [g mol ⁻¹]	85.0		
Appearance at RT	Crystalline, white solid ^[8] , colorless, transparent crystals, white granules or powder ^[13]		
N [%]	16.48		
Ω(CO ₂) [%]			
T _{phase transitions} [°C]	206–273 (endo), DTA transition T=	= 273 (rhombic → trigonal) ^[6]	
T _{m.p.} [°C]	310 ^[1, 12] , 317 ^[5] , 306.8 ^[8] , 308 (onset, endo), 311 (endo, peak max, DSC @ 20 °C/min) ^[10] , 308 ^[13]		
T _{dec.} [°C]	380 (DSC @ 5 °C/min) ^[1] , 380 ^[8] , ~605 (start of dec. TGA @ 10 °C/min, 5–10 mg sample, covered Al pans) ^[9] , DTA (@ 15 °C/min): 304 (fusion), 628 (slight bubbling), 642 (rapid bubbling), 710 (slight nitrous fumes), 777 (vigorous nitrous fumes) ^[6] , no exotherm peak <450 °C (DSC @ 20 °C/min) ^[10]		
ρ [g cm ⁻³]	2.260 (@ 293 K) ^[2] , 2.259 ^[4] , 2.265 ^[5] , 2.261 ^[8] . 2.26 ^[12, 13]		
Heat of formation	-423 kJ/mol ($\Delta_t H^0$) ^[3] , $-5,503$ kJ/kg ($\Delta_t H^0$) ^[3] , $-1,312$ kJ/kg ^[4] , -445.9 kJ/mol (H_t) ^[8] , -468 kJ/mol (enthalpy of form.) ^[12]		
	Calcd. (EXPLO5 6.03)	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]			
T _{ex} [K]			
p _{C-J} [kbar]			
VoD [m s ⁻¹]			
V ₀ [L kg ⁻¹]			

C _p [J/mol K]	103.2 ^[8]
Solubility [g/mL]	Highly H_2O soluble ^[8] , 15.8 g soluble in 100 g N,N-DMF @ 60 °C ^[8] , 91 g/100 g H_2O @ 25 °C ^[12] , 1 g in 1.1 mL $H_2O^{[13]}$, 1 g in 0.6 mL boiling water ^[13] , 1 g in 125 mL EtOH ^[13] , 1 g in 52 mL boiling EtOH ^[13] , 1 g in 3,470 mL abs. alcohol ^[13] , 1 g in 300 mL abs. MeOH, dissolving in water lowers the temperature ^[13]
Hygroscopicity	Very hygroscopic ^[8] , usually used as prills due to its strong H_2O affinity ^[8] , critical humidity = 77.5% RH @ 20 °C ^[11] , deliquescent in moist air ^[13]
Heat of melting [J/g]	31 (DSC @ 20 °C/min) ^[10]
рН	Aqueous soln. is neutral ^[13]

	NaNO ₃ ^[7]	NaNO ₃ ^[7]	NaNO ₃ ^[7]
Chemical formula	NaNO ₃	NaNO ₃	NaNO ₃
Molecular weight [g mol ⁻¹]	85.0	85.0	85.0
Crystal system	Trigonal	Trigonal	Trigonal
Space group	<i>R</i> -3 <i>c</i> (no. 167)	<i>R</i> -3̄ <i>c</i> (no. 167)	R-3 m (no. 166)
a [Å]	5.0655(5)	5.0660(5)	5.0889(5)
<i>b</i> [Å]	5.0655(5)	5.0660(5)	5.0889(5)
c [Å]	16.577(3)	16.593(3)	8.868(3)
α [°]			
β [°]			
γ [°]			
V [Å ³]	368.4	368.8	204.6
Z	6	6	3
$ ho_{ m calc}$ [g cm $^{-3}$]			
<i>T</i> [K]	100	120	563
	Synchroton	Neutron diffraction	Neutron diffraction

- [1] S. Pincemin, R. Olives, X. Py, M. Christ, Sol. Energy Mater. Sol. Cells, 2008, 92, 603–613.
- [2] B. Zalba, J. M. Marin, L. F. Cabeza, H. Mehling, Appl. Therm. Eng., 2003, 23, 251.
- [3] H. Gao, C. Ye, C. M. Piekarski, J. M. Shreeve, J. Phys. Chem. C, 2007, 111, 10718–10731.
- [4] https://engineering.purdue.edu/~propulsi/propulsion/comb/propellants.html
- [5] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 294.
- [6] S. Gordon, C. Campbell, *Analytical Chem.*, **1955**, *27*, 1102–1109.
- [7] G. Gonschorek, H. Weitzel, G. Miehe, H. Fuess, W. W. Schmal, Z. für Kristallogr., 2000, 215, 752–756.

- [8] L. Durães, J Campos, T. Matias, A. Portugal, *Flame Velocity Experiments of Heterogeneous Pyrotechnic Mixtures*, ICT **2011**, Karlsruhe, Germany, pp. 2-1–2-15.
- [9] M. Sućeska, M Rajic, Analytical Application of Thermal Methods in the Field of Explosive Materials, ICT 2000, Karlsruhe, Germany, pp. 84-1-84-15.
- [10] J. C. Oxley, J. L. Smith, S. Naik, J. Moran, J. Energet. Mater., 2008, 27, 17–39.
- [11] K. L. Kosanke, B. J. Kosanke, B. T. Sturman, R. M. Winokur, *Encyclopedic Dictionary of Pyrotechnics (and Related Subjects), Part 2 F to O*, Pyrotechnic Reference Series No. 5, Journal of Pyrotechnics Inc., Whitewater, Colorado, USA, **2012**, p. 609.
- [12] K. L. Kosanke, B. J. Kosanke, B. T. Sturman, R. M. Winokur, *Encyclopedic Dictionary of Pyrotechnics (and Related Subjects)*, *Part 3 P to Z*, Pyrotechnic Reference Series No. 5, Journal of Pyrotechnics Inc., Whitewater, Colorado, USA, **2012**, p. 1037.
- [13] The Merck Index An Encyclopedia of Chemicals and Drugs, 9th edn., M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig (eds.), Merck and Co. Inc., Rahway, New Jersey, USA, 1976.

Sodium 5-nitrotetrazolate dihydrate

Name [German, acronym]: Sodium nitrotetrazolate dihydrate, [natrium

nitrotetrazolat dihydrat, NaNT]

Main (potential) use: Precursor for synthesis of DBX-1^[1], useful precursor for

the synthesis of Pb-free primary explosives^[2]

	NaNT•2H ₂ O			
Formula	CH₄N₅NaO₄			
Molecular mass [g mol ⁻¹]	173.06	173.06		
Appearance at RT	Colorless – light-yellow	crystals ^[1] , off-white so	lid or crystals ^[2]	
IS [J]	>30 (BAM) ^[2]		,	
FS [N]	~360 (BAM) ^[2]		,	
N [%]	40.47			
Ω(CO ₂) [%]				
T _{m.p.} [°C]	75 ($\rm H_2O$ loss, DSC @ 5 °C/min) ^[2] , highly exothermic dec. without melting ^[2]			
T _{dec.} [°C]	200 (DSC @ 5 °C/min) ^[2] , highly exothermic dec. without melting ^[2]			
ρ [g cm ⁻³]	1.731 (X-ray) ^[2]			
Heat of formation	360 kJ/mol (Δ _f H°) ^[2]			
Heat of combustion	$\Delta_c U = 1,200(20) \text{ cal/g (exptl., @ constant volume)}^{[2]}, \Delta_c H = 850(20) \text{ kJ/mol (exptl.)}^{[2]}$			
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]				
T _{ex} [K]				
p _{C-J} [kbar]				
VoD [m s ⁻¹]				
V ₀ [L kg ⁻¹]				
Solubility [g/mL]	Recryst. from acetone ^[1, 2] , soluble in acetone ^[2]			
Flame sensitivity	Explodes ^[2]			

	NaNT•2H ₂ O ^[2]
Chemical formula	CH ₄ N ₅ NaO ₄
Molecular weight [g mol ⁻¹]	173.08
Crystal system	Triclinic
Space group	P-1
a [Å]	6.4266(9)
<i>b</i> [Å]	7.875(2)
c [Å]	8.180(3)
α [°]	104.66(2)
β[°]	109.78(2)
γ [°]	110.28(2)
V [ų]	331.7(2)
Z	2
$ ho_{ m calc}$ [g cm $^{-3}$]	1.731
<i>T</i> [K]	200

^[1] T. M. Klapötke, D. G. Piercey, N. Mehta, K. D. Oyler, M. Jorgensen, S. Lenahan, J. S. Salan, J. W. Fronabarger, M. D. Williams, *ZAAC*, **2013**, *639*, 681–688.

^[2] T. M. Klapötke, C. M. Sabaté, J. M. Welch, *Dalton Trans.*, **2008**, 6372–6380.

Sodium perchlorate

Name [German, acronym]: Sodium perchlorate [natriumperchlorat]

Main (potential) use: Manufacture of other perchlorates, used in flares,

incendiaries

Structural formula:

NaClO₄

^{*}Sodium perchlorate is often obtained as a $hydrate^{[5]}$

	Sodium perchlorate		
Formula	NaClO ₄		
Molecular mass [g mol ⁻¹]	122.4		
Appearance at RT	Colorless crystals ^[5] , white powder, white deliquescent crystals (monohydrate) ^[12]		
IS [J]	H _{50%} >320 cm ^[8]		
N [%]	0		
Ω(CO ₂) [%]	+52.3 (Na ₂ O + HCl)		
T _{phase transitions} [°C]	313 (rhombohedral \rightarrow cubic) ^[8] , 175–313 (endotherm), DTA transition T = 313 (rhombic \rightarrow cubic, DTA @ 15 °C/min) ^[3]		
T _{m.p.} [°C]	473 (crystals) ^[8]		
T _{dec.} [°C]	482 (DSC @ 5 °C/min) ^[1, 5] , 480 ^[8] , 473 (fusion), 527 (slight bubbling), 578 (vigorous bubbling) (DTA @ 15 °C/min) ^[3]		
ρ [g cm ⁻³]	2.52 ^[1] , 2.54 ^[5] , 2.5298 ^[8] , 2.536 (@ 25 °C) ^[8]		
Heat of formation	$-305.9 \text{ kJ/mol } (\Delta_{\rm f} H^{\rm o})^{[2]}, -3,130 \text{ kJ/kg (enthalpy of form.)}^{[5]}, -750 \text{ cal/g}^{[4]}, -91.48 \text{ kcal/mol } (Q_{\rm f})^{[8]}, -91.56 \text{ kcal/mol } (\Delta H^{\rm o}_{\rm f}, \text{ exptl.)}^{[9]}, -93.46 \text{ kcal/mol } (\Delta H^{\rm o}_{\rm f}, \text{ calcd.)}^{[9]}$		
	Calcd. (EXPLO5 6.03)	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]			
<i>T</i> _{ex} [K]			
p _{C-J} [kbar]			
VoD [m s ⁻¹]			
V ₀ [L kg ⁻¹]			

Solubility [g/mL]	51.4 g/100 g MeOH ^[11] , 14.7 g/100 g EtOH ^[11] , 4.0 g/100 g n -propanol ^[11] , 1.0 g/100 g n -butanol ^[11] , 51.7 g/100 g acetone ^[11] , insoluble in Et ₂ O ^[11] , very soluble in water ^[12] , readily soluble in water and EtOH ^[5]
Hygroscopicity	Hygroscopic ^[5] , deliquescent crystals (monohydrate) ^[12]
ΔH° _{sol} [kcal/mol]	$3.32 \pm 0.08^{[10]}$, $3.347 \pm 0.005^{[10]}$

	NaClO ₄ ^[6]	NaClO ₄ ^[7]
	HT phase, stable above 581 K	Phase stable below 581 K
Chemical formula	NaClO ₄	NaClO ₄
Molecular weight [g mol ⁻¹]	122.44	122.44
Crystal system	Cubic	Orthorhombic
Space group	F m 3 m (no. 225)	C m c m (no. 63)
a [Å]	7.08	7.085(1)
<i>b</i> [Å]	7.08	6.526(1)
c [Å]	7.08	7.048(1)
α [°]	90	90
β [°]	90	90
γ [°]	90	90
<i>V</i> [Å ³]	354.89	325.88
Z	4	
$\rho_{\rm calc}$ [g cm ⁻³]		
<i>T</i> [K]	315 °C	

- [1] Hazardous Substances Data Bank, obtained from the National Library of Medicine (US).
- [2] H. Gao, C. Ye, C. M. Piekarski, J. M. Shreeve, J. Phys. Chem. C, 2007, 111, 10718–10731.
- [3] S. Gordon, C. Campbell, Analytical Chem., 1955, 27, 1102–1109.
- [4] https://engineering.purdue.edu/~propulsi/propulsion/comb/propellants.html
- [5] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 295.
- [6] H. J. Berthold, B. G. Kruska, R. Wartchow, Z. Naturforsch., 1979, B34, 522-523.
- [7] R. Wartchow, H. J. Berthold, Z. Kristallogr., 1978, 147, 307–317.
- [8] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1978.
- Y. N. Matyushin, Estimation Method of Enthalpies of Formation of Salt Compounds, ICT 2008, Karlsruhe, Germany, pp. 44-1-44-15.
- [10] Y. N. Matyushin, T. S. Kon'kova, *To a Question on the Enthalpy of Formation of the Ammonium Perchlorate*, ICT **2003**, Karlsruhe, Germany, pp. 121-1–121-14.

- [11] G. S. Pearson, *Perchlorates: A Review of Their Thermal Decomposition and Combustion, with an Appendix on Perchloric Acid*, R. P. E. Technical Report No. 68/11, Rocket Propulsion Establishment Westcott, Ministry of Technology, London, October **1968**.
- [12] The Merck Index An Encyclopedia of Chemicals and Drugs, 9th edn., M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig (eds.), Merck and Co. Inc., Rahway, New Jersey, USA, 1976.

Strontium nitrate

Name [German, acronym]: Strontium nitrate [strontiumnitrat]

Main (potential) use: Pyrotechnics, gas-generating propellants, airbags,

tracer powder and red-colored flares^[4], component of illuminants^[4], pyrotechnic oxidizer and red flame color agent^[6], red fire in pyrotechnics, signal lights, marine

signals, matches^[7]

Structural formula:

 $Sr(NO_3)_2$

	Strontium nitrate		
Formula	Sr(NO ₃) ₂		
Molecular mass [g mol ⁻¹]	211.7		
Appearance at RT	White granules or powder ^[4, 7] , co	olorless crystals/white powder ^[6]	
N [%]	13.23		
Ω(CO ₂) [%]			
T _{m.p.} [°C]	570 ^[1, 4, 6, 7]		
T _{dec.} [°C]	618 (fusion), 672 (vigorous bubbling), 685 (slight nitrous fumes), 715 (rapid nitrous fumes) (DTA @ 15 °C/min) ^[3] , dec. on heating above mpt. ^[6]		
ρ [g cm ⁻³]	2.99 ^[1, 6, 7] , sp. gr. = 2.98 ^[4]		
Heat of formation	$-4,622$ kJ/kg ($\Delta_{\rm f}H^{\rm o}$)[1], -978 kJ/mol (enthalpy of form.)[6]		
	Calcd. (EXPLO5 6.03)	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]			
T _{ex} [K]			
p _{C-J} [kbar]			
VoD [m s ⁻¹]			
V_0 [L kg ⁻¹]			

Solubility [g/mL]	80 g/100 g in H_2O @ 25 °C ^[6] , soluble in 1.5 parts water ^[7] , slightly soluble in EtOH, acetone ^[7]
Hygroscopicity	Critical humidity = 86% RH @ 20 ${}^{\circ}C^{[5]}$, somewhat hygroscopic, can be dried in oven then protected from moist air ${}^{[6]}$
Compatibility	Wet mixture with Al can result in exothermic reaction ^[6]
рН	Aqueous soln. is neutral ^[7]

	Strontium nitrate ^[2]
Chemical formula	Sr(NO ₃) ₂
Molecular weight [g mol ⁻¹]	211.7
Crystal system	Cubic
Space group	<i>Pa3</i> (no. 205)
a [Å]	7.8220(10)
<i>b</i> [Å]	7.8220(10)
c [Å]	7.8220(10)
α [°]	90
β [°]	90
γ[°]	90
<i>V</i> [ų]	478.58(11)
Z	4
$\rho_{\rm calc}$ [g cm ⁻³]	
τ[K]	173(2)

- [1] Hazardous Substances Data Bank, obtained from the National Library of Medicine (US).
- [2] B. El-Bali, M. Bolte, Acta Cryst., 1998, 54C, IUC9800046.
- [3] S. Gordon, C. Campbell, Analytical Chem., 1955, 27, 1102-1109.
- [4] J. Bebie, Manual of Explosives, Military Pyrotechnics and Chemical Warfare Agents, Composition, Properties, Uses, MacMillan Co., 1943.
- [5] K. L. Kosanke, B. J. Kosanke, B. T. Sturman, R. M. Winokur, *Encyclopedic Dictionary of Pyrotechnics (and Related Subjects), Part 2 F to O*, Pyrotechnic Reference Series No.5, Journal of Pyrotechnics Inc., Whitewater, Colorado, USA, **2012**, p. 609.
- [6] K. L. Kosanke, B. J. Kosanke, B. T. Sturman, R. M. Winokur, *Encyclopedic Dictionary of Pyrotechnics (and Related Subjects), Part 3 P to Z*, Pyrotechnic Reference Series No.5, Journal of Pyrotechnics Inc., Whitewater, Colorado, USA, **2012**, pp. 1093–1094.
- [7] The Merck Index An Encyclopedia of Chemicals and Drugs, 9th edn., M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig (eds.), Merck and Co. Inc., Rahway, New Jersey, USA, 1976.

Styphnic acid

Name [German, acronym]: Styphnic acid, 1,3-dihydroxy-2,4,6-trinitrobenzene,

2,4,6-trinitroresorcinol, 2,4,6-trinitrobenezene-1,3-diol, 2,4-dihydroxy-1,3,5-trinitrobenzene [trinitroresorcinol,

styphninsäure, TNR]

Main (potential) use: Lead salt is used as primary explosive

$$O_2N$$
 O_2
 O_2
 O_3
 O_4
 O_4
 O_4
 O_5

	TNR
Formula	$C_6H_3N_3O_8$
Molecular mass [g mol ⁻¹]	245.10
Appearance at RT	Yellow crystalline solid $^{[18,19]}$, bright-yellow crystals (hexagonal) $^{[26,28]}$, becomes almost colorless on vacuum sublimation but turns yellow on contact with air $^{[28]}$
IS [J]	7.4 Nm ^[10] , 10.54 ^[4] , 35% TNT ^[12] , same as PA ^[12] , $H_{50\%} = 43$ cm ^[13, 17] , 43 cm (2.5 kg mass) ^[21] , 24.0 cm (2.5 kg mass, AFATL) ^[21] , $H_{50} = 43$ cm (2.5 kg mass, type 12 tool) ^[23] , $\log(H_{50}) = 1.633$ (Kamlet/Adolph) ^[24]
FS [N]	>353 ^[10]
ESD [J]	12.30 ^[5, 6] , 230.0 mJ ^[5] , 12.3 ^[29]
N [%]	17.14
Ω(CO ₂) [%]	-35.9
T _{m.p.} [°C]	$175-176^{[1]}$, $176^{[10]}$, $176-177$ (stable modification) ^[12] , $165-166$ (unstable modification) ^[12] , $175.5^{[18,19,28]}$, $176.2-176.5^{[18]}$, $180^{[26]}$, $179-180^{[28]}$
T _{dec.} [°C]	223 (DSC @ 5 °C/min) ^[2]
$ ho$ [g cm $^{-3}$]	2.012 (@ 293 K) ^[3] , 1.83 ^[10, 17] , sp. gr. = 1.83 ^[26]
Heat of formation	-523.0 kJ/mol ($\Delta_f H^o$), $-2,133.8$ kJ/kg (enthalpy of form.) ^[10] , -467.5 kJ/mol (based on ΔH_c) ^[14] , -111.7 kcal/mol ($\Delta_f H$ (s)) ^[17] , 404.8 kcal/kg ^[25]
Heat of combustion	–23,222.31 kJ/mol (bomb calorimetry) $^{[14]}$, 2,310 kcal/kg (@ $^{\text{CV}}$) $^{[25]}$

	Calcd. (EXPLO5 5.04)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	3,969	1.15 kcal/g (Q_{max} , calcd.) ^[17]	2,952 [H ₂ O (l)] ^[7, 10]
			2,510 [H ₂ O (g)] ^[9]
			2,843 [H ₂ O (g)] ^[10]
<i>T</i> _{ex} [K]	3,093		
p _{C-J} [kbar]	237	263 (@ 1.83 g cm ⁻³) ^[17]	
VoD [m s ⁻¹]	7,522 (@ TMD)	7,660 (@ 1.83 g cm ⁻³) ^[17]	~50% MF ^[12]
V_0 [L kg ⁻¹]	622		814 ^[8]

Trauzl test [cm³, % TNT]	105-115% TNT ^[15] , 284 ^[27]				
Sand test [g]	94% TNT ^[15]				
Ballistic mortar test	108% TNT ^[15]				
Initiation efficiency	Minimum amount of primary explosive (g) needed for detonation (0.5 g Styphnic acid in No. 8 detonator shell, primary placed on top and compressed under reinforcing capsule @ 3,400 lb/in²): 0.110 g DDNP ^[20] , 0.225 g MF ^[20] , 0.075 g LA ^[20] , cap detonator causes it to explode ^[26] Minimum amount of primary explosive (g) needed for detonation (0.4 g Styphnic acid, primary explosive, compressed in detonator capsule @ 1,000 lb/in²): 0.20 g fulminate with reinforcing cap ^[20] , 0.08 g HMTD				
	(with reinforci				
5 s explosion T [°C] Explosion T [°C]	314 ^[12]				
Thermal stability	Deflagrates or	Deflagrates on rapid heating ^[28]			
Burn rate [mm/s]	Ignited TNR burns with bright flame without explosion ^[26]				
Solubility [g/mL]	Soluble in EtOH ^[18] , H ₂ O ^[18] , poorly soluble in water (bright yellow soln.): 0.65% dissolve in water @ $14 ^{\circ}\text{C}^{[26]}$ and 1.1% @ $62 ^{\circ}\text{C}^{[26]}$, 1 g in $156 \text{mL} \text{H}_2\text{O}$ @ $14 ^{\circ}\text{C}^{[28]}$, 1 g in 88mL water @ $62 ^{\circ}\text{C}^{[28]}$, freely soluble in EtOH, Et ₂ O ^[28] 0.641g dissolves in $100 \text{mL} \text{H}_2\text{O}$ @ $14 ^{\circ}\text{C}^{[18]}$, 1.136g dissolves in $100 \text{mL} \text{H}_2\text{O}$ @ $62 ^{\circ}\text{C}^{[18]}$, 0.45d issolves in 100mL H ₂ O @ $15 ^{\circ}\text{C}^{[18]}$, $0.55-0.58 \text{g}$ dissolves in $100 \text{mL} \text{H}_2\text{O}$ @ $20 ^{\circ}\text{C}^{[18]}$, $0.68-0.69 \text{g}$ dissolves in $100 \text{mL} \text{H}_2\text{O}$ @ $25 ^{\circ}\text{C}^{[18]}$ Solubility of styphnic acid in g in 100g solvents @ $T (^{\circ}\text{C})^{[26]}$:				
	0 5 10 17				
	Alcohol 5.10 6.22				

	Benzene] -	4.5	-	-
	Toluene	-	-	3.1	[-
	Acetone	_	_	-	313.1
Hygroscopicity	Slightly hygroscopic $^{[18]}$, absorbs 2–3% 19 0 after exposure to atmosphere of 60% rel. hum. @ 25 °C for 30–100 $^{[19]}$, becomes almost colorless on vacuum sublimation but turns yellow on contact with air $^{[28]}$				
Compatibility	Reacts with Cu, Sn Pb and Cd $^{[26]}$, aqueous soln. dissolves Fe and Zn liberating hydrogen $^{[26]}$, carbonates decompose TNR with liberation of ${\rm CO}_2^{[26]}$, dil. and conc. nitric or sulfuric acids do not react with TNR even on boiling $^{[26]}$, reacts with aqua regia $^{[26]}$				
Dipole moment [D]	1.78 (calcd.) ^[21]				
Acidity	Strong acid ^[26] , dibasic acid ^[26, 28] , acid to litmus ^[28]				
ΔH_{sub} [kJ/mol]	120.8 (exptl.) ^[22] , 123.4 (calcd., QSPR) ^[22]				

	Styphnic acid ^[11]
Chemical formula	C ₆ H ₃ N ₃ O ₈
Molecular weight [g mol ⁻¹]	245.10
Crystal system	Trigonal
Space group	P 3 c 1 (no. 158)
a [Å]	12.7
<i>b</i> [Å]	12.7
c [Å]	10
α [°]	90
β [°]	90
γ [°]	120
V [ų]	1,396.81
Z	6
$\rho_{\rm calc}$ [g cm ⁻³]	1.748
τ[K]	295

- [1] R. L. Datta, P. S. Varma, J. Am. Chem. Soc., 1919, 41, 2039–2048.
- [2] M. Tomita, T. Kugo, *Pharm. Bull.*, **1956**, *4*, 121–123.
- [3] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© **1994–2017** ACD/Labs).
- [4] S. Zeman, A Study of Chemical Micro-Mechanisms of Initiation of Organic Polynitro Compounds, Ch. 2 in Energetic Materials, Part 2: Detonation, Combustion, P. A. Politzer,

- J. S. Murray (eds.), Theoretical and Computational Chemistry, Vol. 13, **2003**, Elsevier, pp. 25–60.
- [5] S. Zeman, J. Majzlík, Central Europ. J. Energ. Mat., 2007, 4, 15-24.
- [6] M. H. Keshavarz, Z. Keshavarz, ZAAC, 2016, 642, 335-342.
- [7] M. H. Keshavarz, Propellants, Explosives, Pyrotechnics, 2008, 33, 448-453.
- [8] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [9] W. C. Lothrop, G. R. Handrick, Chem. Revs., 1949, 44, 419-445.
- [10] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 305–306.
- [11] Hertel, Schreider, Z. Physikalische Chemie (Leipzig), 1931, B12, 139.
- [12] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 5, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1972**.
- [13] M. J. Kamlet, H. G. Adolph, Propellants and Explosives, 1979, 4, 30-34.
- [14] A. Finch, J. Payne, Thermochim. Acta, 1990, 170, 209-212.
- [15] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [16] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1974**.
- [17] P. Politzer, J. S. Murray, High-Performance, Low Sensitivity: The Impossible (or Possible) Dream? in Energetic Materials from Cradle to Grave, M. K. Shukla, V. M. Boddu, J. A. Steevens, R. Damavarapu, J. Leszczynski (eds.), Springer-Verlag, 2017, pp. 1–22.
- [18] T. Urbański, Ch. 15 in Chemistry and Technology of Explosives, vol. 1, 1964, Pergamon Press, Oxford.
- [19] T. L. Davis, The Chemistry of Powder and Explosives, vol. 1, 1941, John Wiley and Sons Inc., New York.
- [20] T. L. Davis, The Chemistry of Powder and Explosives, vol. 2, 1943, John Wiley and Sons Inc., New York.
- [21] P. Politzer, Computational Studies of Polynitroaromatic Molecules and the Development of Sensitivity Relationships, AFATL-TR-90-66, Air Force Armament Laboratory, Florida, USA, October 1990.
- [22] H. W. Lee, K.-H. Chung, S. G. Cho, B.-S. Lee, C. K. Kim, *Predictive Studies on Various Physicochemical Properties of Explosive Molecules*, ICT **2006**, Karlsruhe, Germany, pp. 177-1–177-12.
- [23] W.-P. Lai, P. Lian, B.-Z. Wang, Z.-X. Ge, J. Energet. Mater., 2010, 28, 45-76.
- [24] N. R. Badders, C. Wei, A. A. Aldeeb, W. J. Rogers, M. S. Mannan, J. Energet. Mater., 2006, 24, 17–33.
- [25] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part III, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [26] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part II, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [27] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [28] The Merck Index An Encyclopedia of Chemicals and Drugs, 9th edn., M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig (eds.), Merck and Co. Inc., Rahway, New Jersey, USA, 1976.
- [29] L. Turker, Electrostatic Discharge and Energetic Materials, To Chemistry Journal, 2019, 2, 72–114.

Symmetrical dimethylhydrazine

Name [German, acronym]: N,N'-Dimethylhydrazine, sym-dimethylhydrazine,

1,2-dimethylhydrazine, hydrazomethane,

dimethylhydrazine, symmetrical [1,2-dimethylhydrazin,

SDMH]

Main (potential) use: liquid propellant

	sym-DMH			
Formula	$C_2H_8N_2$			
Molecular mass [g mol ⁻¹]	60.10			
Appearance at RT	Flammable, mobile liquid ^[1] , colorless liquid ^[2] , colorless liquid with ammonia smell ^[3]			
N [%]	46.62			
Ω(CO ₂) [%]	-212.98			
T _{m.p.} [°C]	-9 ^[3]			
T _{b.p.} [°C]	bp ₇₅₃ = 81 ^[1] , 87 (@ 1	bp ₇₅₃ = 81 ^[1] , 87 (@ normal pressure) ^[2] , 81 (@ 1004 hPa) ^[3]		
T _{dec.} [°C]				
$ ho$ [g cm $^{-3}$]	$d^{20}_{4} = 0.8274^{[1]}, 0.83$	3 (@ 20 °C) ^[3]		
Heat of formation				
Heat of combustion	-1,983.0 ± 4.2 kJ/m	ol ($\Delta_c H^o$, liq.) ^[4]		
	Calcd. Lit. values Exptl. (EXPLO5 6.03)			
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]				
<i>T</i> _{ex} [K]				
p _{C-J} [kbar]				
VoD [m s ⁻¹]				
V ₀ [L kg ⁻¹]				
Vapor pressure [Pa]	70.8 hPa (@ 20 °C) ^[3]			
Volatility				
Burn rate [mm/s]				

Solubility [g/mL]	Miscible with water with release of large amounts of heat $^{[1]}$, miscible with EtOH, Et $_2$ O, DMF, hydrocarbons $^{[1]}$, miscible with water $^{[3]}$		
Hygroscopicity	Hygroscopic – fumes in air and gradually turns yellow ^[1]		
Photosensitivity			
Compatibility	Fumes in air and gradually turns yellow $^{[1]}$, forms explosive mixtures with $air^{[3]}$		
Refractive index	$n^{20}_{D} = 1.4209^{[1]}$		
Heat of vaporization [kJ/mol]	35.16 ^[2] , 35.16 (@ 360.2 K, $\Delta_{\text{vap}}H$) ^[4] , 41.0 (@ 286 K, $\Delta_{\text{vap}}H$) ^[4]		
Heat of fusion [kJ/mol]	13.638 (@ 264.8 K) ^[4] , 13.64 (@ 264.3 K) ^[4]		
Flash point [°C]	<5 ^[3]		
Heat capacity, C_p [J/mol K]	171.04 (@ 298.15 K) ^[4]		

- [1] The Merck Index An Encyclopedia of Chemicals and Drugs, 9th edn., M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig (eds.), Merck and Co. Inc., Rahway, New Jersey, USA, 1976.
- [2] V. Majer, V. Svoboda, Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, p. 300.
- [3] 1,2-Dimethylhydrazin, GESTIS-Stoffdatenbank des Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung, http://gestis.itrust.de/nxt/gateway.dll/gestis_de/034110. xml?f=templates\$fn=default.htm\$3.0
- [4] P. J. Lindstrom, W. G. Mallard, NIST Chemistry WebBook, NIST Standard Reference Database, National Institute of Standards and Technology, Gaithersburg, USA, webbook.nist.gov.

Tacot

Name [German, acronym]: Tacot, tetranitrodibenzo-1,3a,4,6a-tetrazapentalene,

tetranitro-1,2,5,6-tetraazadibenzocyclooctatetraene,

z-Tacot, 2,4,8,10-tetranitrobenzotriazolo[2,1-*a*]

benzotriazol-6-ium inner salt (z-Tacot),

(2,4,8,10-Tetranitrobenzotriazolo[1,2-*a*]bentotriazol-6-ium inner salt (y-Tacot), tetranitrobenzotriazolo [1,2-*a*]

benzotriazole (t-Tacot))

Main (potential) use: Was used as grenade and mine filling, potential high

thermal stability explosive, secondary explosive, useful when high-temperature resistance is required^[17],

commercially available as flexible linear-shaped charges (FLSC), PBXs, high density charges and mild

detonating fuzes^[17]

$$O_2N$$
 $N = N$
 NO_2
 NO_2

	Tacot*
Formula	$C_{12}H_4N_8O_8$
Molecular mass [g mol ⁻¹]	388.21
Appearance at RT	Orange solid ^[15] , orange-red crystals (commercial) ^[17]
IS [J]	69 Nm ^[4, 17] , 12 in (P.A.) ^[7] , 50% point >56 in (5 kg mass) ^[6] , 50% point = 102 cm (type 12 apparatus) ^[6] , $H_{50\%} = 66 - 89$ cm ^[7] , $H_{50\%} = 101$ cm ^[7, 13] , 69.0 (E_{dr} , Bruceton method) ^[16] , 28 (ZBL-B instrument) ^[21]
FS [N]	50% point = 418 cm, no fires @ 440 cm ^[7] , >360 (FSKM 10 instrument) ^[21]
ESD [J]	No det. when 3 grains of unconfined loose charge subjected to 30,000 V discharge from 2,000 microfarad condenser ^[6] , 7 (ESD 2008A electric spark tester) ^[21]
N [%]	28.86
Ω(CO ₂) [%]	-74.2

T _{m.p.} [°C]	$378^{[4,22]}$, 378 (dec.) ^[6] , $410^{[7]}$, $>360^{[1]}$, dec. without melting ^[17] , 400 (dec., y-Tacot) ^[22] , 398 (y-Tacot) ^[22]			
T _{dec.} [°C]	Dec. >380 ^[5] , 354 (onset exotherm) ^[8, 18] , 381 (deflagration exotherm) (DTA) ^[8, 18] , 410 (single crystal, slow heating from ambient 7) ^[13] , 410 ^[15] , starts dec. @ 300 ^[15] , 368 (DTA, onset, exotherm) ^[16] , 378 (exo peak, DSC, z-TACOT) ^[17] , 400 (exo peak, DSC, y-TACOT) ^[17] , 401 ^[21]			
$ ho$ [g cm $^{-3}$]		nal) ^[5] , 1.84 ^[6] , 1.84–1.86 (5 °C) ^[21] , 1.84 (calcd., y-Tac		
Heat of formation	462.015 kJ/mol ($\Delta_i H^o$, EXPLO5 6.04), 536 kJ/mol (ΔH_i) ^[5,21] , 152 kcal/mol (standard enthalpy of form. @ 298 K (calcd.)) ^[17] , 465 kJ/mol (enthalpy of form. in (s)) ^[17] , 1,190.12 kJ/kg ($\Delta_i H^o$, EXPLO5 6.04), 1,380 kJ/kg (ΔH_i) ^[5] , 1,188 kJ/kg (ΔH_i , ICT thermochemical database) ^[14] , 459 kJ/mol (ΔH_i) ^[24] , 111.0 kcal/mol ^[25] , 461.1 kJ/mol (enthalpy of form., exptl.) ^[26] , 460.7 kJ/mol (enthalpy of form., calcd., emp.) ^[26] , 315.4 kJ/mol (enthalpy of form., calcd., S-D method) ^[26]			
Heat of combustion	3,575 cal/g ^[6, 13] , 537	cal/mol ^[6]		
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.	
-Δ _{ex} <i>U</i> ° [kJ kg ⁻¹]	4,534	141 kcal/g [H ₂ O (l)] (calcd. using $\Delta_{\rm f}H$) ^[5] 135 kcal/g [H ₂ O (g)] (calcd. using $\Delta_{\rm f}H$) ^[5] 4,121 (calcd., ICT-code, z-Tacot) ^[14] 4,374 MJ•kg ⁻¹ ($Q_{\rm real}$, calcd., semi-empirical Pepekin method, TACOT-Z) ^[16] 3,487 (@ 1.81 g cm ⁻³ , calcd., LOTUSES) ^[24]	4,103 [H ₂ O (l)] ^[4] 98 kcal/g [H ₂ O (l)] ^[5, 7] 96 kcal/g [H ₂ O (g)] ^[5]	
T _{ex} [K]	3,383	3,086 (calcd., ICT-code, z-Tacot) ^[14] 3,900 (@ 1.81 g cm ⁻³ , calcd., LOTUSES) ^[24] 3,330 (@ 1.85 g cm ⁻³ , calcd. BKWR) ^[25] 4,040 (@ 1.85 g cm ⁻³ , calcd. BKWS) ^[25]		

p _{C-J} [kbar]	238	181 (@ 1.61 g cm ⁻³ ,	245 (@ 1.85 g cm ⁻³) ^[22]
$p_{\text{C-J}}$ [KDa1]	256	Ruby code) ^[5]	245 (@ 1.85 g till *)* *
		, .	
		103.6 MPa (calcd.,	
		ICT-code, z-Tacot) ^[14]	
		24.5 GPa	
		(@ 1.76 g cm ⁻³ ,	
		calcd., K-J) ^[21]	
		202 (@ 1.84 g cm ⁻³ ,	
		calcd., y-Tacot) ^[22]	
		23.15 GPa (@ 1.81 g cm ⁻³ ,	
		calcd., LOTUSES)[24]	
		,,	
		288 (@ 1.85 g cm ⁻³ ,	
		calcd. BKWR) ^[25]	
		253 (@ 1.85 g cm ⁻³ ,	
		calcd. BKWS) ^[25]	
VoD [m s ⁻¹]	7,493	7,050 (@ 1.85 g cm ⁻³ ,	7,250 (@ 1.64 g cm ⁻³) ^[4, 6, 16, 18]
	(@ 1.85 g cm ⁻³ ,	calcd., R-P method) ^[10]	7 250 (0.4 25 -3)[2 5 11 25]
	$\Delta_f H = 462.015 \text{ kJ/}$ mol)	6,448 (@ 78% TMD) ^[7]	7,250 (@ 1.85 g cm ⁻³) ^[2, 5, 11, 25]
	moty	0,440 (@ 7070 IMD)	6,935 (@ 1.58 g cm ⁻³) ^[7]
		7,250 (@ 89% TMD) ^[7]	
		7 // 0 / 0 TAAD	6,530 (@ 1.61 g cm ⁻³) ^[9]
		7,440 (@ TMD, calcd., K-J, z-TACOT) ^[16]	6,600 (in Al sheaths) ^[13]
		K-J, 2-1ACO1)	0,000 (III At sileatils)
		7,200 (@ 1.76 g cm ⁻³ ,	7,300 (pellet form) ^[13]
		calcd., K-J) ^[21]	2
		7.0(0.(0.1.0), ~ cm ⁻³	6,448 (@ 1.45 g cm ⁻³ , 78.8%
		7,060 (@ 1.84 g cm ⁻³ , calcd., y-Tacot) ^[22]	TMD, rate stick method, VoD photographically
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	measured) ^[13]
		7,050 (@ 1.81 g cm ⁻³ ,	_
		calcd., LOTUSES) ^[24]	6,690 (@ 1.59 g cm ⁻³ ,
		7,790 (@ 1.85 g cm ⁻³ ,	86.5% TMD, wedge max. thickness = 12.7 mm, NOL
		calcd. BKWR) ^[25]	wedge test) ^[13]
		- (22 / - 4 3	0.000 (1.7.4.5.4.1.1/15]
		7,620 (@ 1.85 g cm ⁻³ , calcd. BKWS) ^[25]	2,300 ft/s (@ 1.86 g/mL) ^[15]
		Julius Ditti 3)	1
			7,200 (@ 1.85 g cm ⁻³) ^[22]

Critical diameter, d _c [cm]		3 mm (@ 1.45 g cm ⁻³ , 78.4% TMD) ^[12] Data from ^[20] :						
	ρ_0 (g/cc)	%	TMD	d _c (cr	n)			
	1.45	78	.8	<0.3				
Sand test [g]	88% PETN ^{[6}]						
Ballistic mortar test	96% TNT ^[6]							
SSGT [cm]	Small-scale gap (booster) sensitivity test ^[13, 17] :							
	Pressed		@ 93% TI	MD		@ 95%	TMD	
	compositi	on	DBg L	ucite gap	(mils)	DBg	Lucite gap	(mils)
	TACOT		7.5 1	.82		<u> </u>	_	
	$DB_g = 30-10 \log (test gap/ref. gap)$ Sensitivity change with density ^[13] :							
	Loading pressure (psi)	Density (g/		% TMD	DBg	Lucite gap	in mils
	4,000		1.1620		63.2	5.56	278	
	8,000		1.2809		69.1	5.64	273	
	16,000		1.4345		78.0	6.06	248	
	32,000		1.5928		86.6	6.70	214	
	64,000		1.6983		92.3	7.46	180	
	TMD = 1.85	g/cm³,	(1) = z-Ta	cot, TMD	= no mix	ed respor	ise zone ^[19] :	
	Loading	Densi	ty (g/cm³)	% TME	Sens	itivity (DB	g)	
	pressure (kpsi)	AVG.	S		AVG.	g	S _m	N
	4	1.162	0.0139	62.8	5.56	0.077	3 0.0434	20
	8	1.281	0.0100	69.2	5.65	0.091	1 0.0490	20
	16	1.434	0.0074	77.5	6.05)		20 (1)
	32	1.593	 	+	6.70	+	-	20
	64	1.698	0.0100	91.8	7.48	0.152	0 0.0932	20

5 s explosion T[°C] 15 min explosion T [°C] Ignition T[°C]	374 ^[16] , ~497 ^[18]	_		een 388 and 400 ^[13] ,
Thermal stability [°C]		sis in 15 min @ 300 of thermal stability)		e @ 280 for≥2 h ^[13] ,
Vacuum stability test [cm³/h]	0.04 $-$ 0.08 mL/g/48 h @ 120 °C ^[7] , 0.1 mL/g/h @ 260 °C ^[7] , 0.3 mL/g/h @ 280 °C ^[7] , 0.0 cc/g/48 h @ 100 °C ^[13] , 0.7 cc/g/h @ 260 °C (average for 2 h exposure) ^[13] , 2.0 cc/g/h @ 280 °C (average for 2 h exposure) ^[13] t-TACOT @ 200 °C, total gas evolved (cm³/g) @ STP/time of exposure (days) ^[14] : 0.1/2, 0.5/7, 0.9/14, 1.3/21, 1.6/28, 1.9/35, 2.1/42, 2.5/49, 3.0/56, 3.5/63, 3.9/70, 4.3/77, 4.8/84, 5.3/91 ^[14, 23] z-TACOT @ 200 °C, total gas evolved (cm³/g) @ STP/time of exposure (days) ^[14] : 0.4/2, 0.6/7, 0.7/14, 0.8/21, 1.0/28, 4.1/35, 4.9/42, 7.1/49, 8.6/56, 10.8/63, 11.2/70, 11.4/77, 11.5/84, 11.5/91 ^[14] z-TACOT @ 175 °C, total gas evolved (cm³/g) @ STP/time of exposure (days) ^[23] : 0.4/2, 0.5/7, 0.6/14, 0.7/21, 0.8/28, 0.8/35, 0.8/42, 0.8/49, 0.8/56, 0.9/63, 1.0/70, 1.1/77, 1.4/84, 1.7/91 ^[23]			
Specific heat capacity,	Calcd. values for g	aseous TACOT ^[17] :		
C_p [kcal/mol]	<i>T</i> (K)	$C_{\rm p}$ (kcal/mol)	<i>T</i> (K)	C _p (kcal/mol)
	300	52.5	2,000	114.4
	400	64.4	2,500	116.5
	500	74.2	3,000	117.8
	600	81.9	3,500	118.7
	800	92.9	4,000	119.2
	1,000	100.1	4,500	119.6
	1,500	109.7	5,000	119.9
Solubility [g/mL]	(<0.1 g/100 mL so	^[15] , recryst. from ac lvent) in CHCl ₃ , EtO colvent) in DMFA, D <i>l</i>	H, $H_2O^{[5]}$, slightly so	oluble

Processing

Vacuum pressing of pure Tacot pellets $\frac{1}{2}$ in diameter × $\frac{1}{2}$ in long @ 20,000 psi^[13]:

T (°C)	Dwell (min)	Ejection T(°C)	Results	Density (g/cm³)	% TMD	Solvent
150	20	50	Cracked	_	-	None
140	20	50	Good	1.56	85.0	None
150	20	25	Cracked	1.56	85.0	None
50	30	25	Good	1.72	93.5	3% methylene chloride
60	30	25	Good	1.75	95.0	3% acetone
60	45	25	Cracked	-	-	3% acetone
50	45	25	Good	1.76	95.5	3% acetone

Radiation sensitivity

Data from[27]:

Exposure rate (R/h)	Total dose (R)	Vacuum stability test
		200 °C (cc/2 g/2 h)
	Control	0.10
8.5×10^5	1.4×10^7	0.27
	1.2 × 10 ⁸	0.14
	1.1 × 10 ⁹	0.51
	3.7 × 10 ⁹	2.44

DTA for irradiated explosives @ 20 °C/min^[27]:

Total dose (R)	Exotherms			
	First			
	Onset (°C)	Peak (°C)		
0	340	376		
0	365	398		
1.4 × 10 ⁷	365	398		
1.2 × 10 ⁸	350	398		
1.1 × 10 ⁹	350	385		
3.7 × 10 ⁹	320	387		

TGA for irradiated explosives^[27]:

Total dose (R)	Heating rate (°C/min)	Weight (mg)	Start of dec (°C)	10% weight loss T (°C)	Total weight loss (%)	Remarks
0	20	8.4	350	ı	7 @ 406 °C	Detonated @ 406 °C
1.4 × 10 ⁷	20	7.2	340	-	7 @ 287 °C	Detonated @ 387 °C
1.2 × 10 ⁸	20	9.7	320	-	8 @ 372 °C	Detonated @ 372 °C
1.1 × 10 ⁹	20	9.9	320	-	9 @ 387 °C	Detonated @ 387 °C
3.7 × 10 ⁹	20	8.5	240	354	18 @ 370 °C	Detonated @ 370 °C
7.0 × 10 ⁹	20	10.75	180	330	17 @ 355 °C	Detonated @ 355 °C

Effect of gamma radiation on the mpt. and color^[27]:

Total dose (R)	mpt. (°C)	Color
0	390 dec.	Red orange
1.4×10^{7}	390 dec.	Red orange
1.2 × 10 ⁸	388 dec.	Brownish orange
1.1 × 10 ⁹	378 dec.	Reddish dark brown
3.7 × 10 ⁹		Maroon dark brown

IS for irradiated explosives, 50% fire height in inches, Bruceton method (P.A. apparatus, 2 kg mass) $^{[27]}$:

Total Co ⁶⁰ gamma dose (R)	<i>X</i> mean (in)	σ std. dev. (in)
0	12.0	1.86
1.4 × 10 ⁷	12.5	1.34
1.2 × 10 ⁸	12.32	1.25
1.1 × 10 ⁹	11.83	2.28

Effect of gamma radiation on explosion T (5 s explosion T in $^{\circ}$ C) and activation energy (kcal/mol)[27]:

Total dose (R)	5 s explosion T (°C)	Apparent activation energy (kcal/mol)
0	415	31.14
1.4×10^{7}	411	26.16
1.2 × 10 ⁸	407	26.58
1.1 × 10 ⁹	404	27.50

Effect of gamma radiation on rates of detonation^[27]:

Total dose (R)	Density (g/cc)	Density after irradiation (g/cc)	Rate of detonation (m/s)	Detonation pressure (kbar)
0	1.58	-	6,935	190
1.1 × 10 ⁷	1.57	1.57	6,915	188
1.3 × 10 ⁸	1.56	1.56	6,910	186
1.1 × 10 ⁹		1.38	6,285	136

- * Du Pont: Tacot is usually a mixture of isomers of the $-NO_2$ groups, but since the properties are similar, the isomers are not usually separated^[8]
- [†] Two Tacot isomers have been isolated: z and y, the values given in this section are for z-Tacot unless otherwise stated^[22]:

$$O_2N$$
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N
 O_2N

- [1] M. S. Chang, R. R. Orndoff, *Method for the Preparation of Tetranitrodibenzo-tetrazapentalene*, US Patent 4,526,980A, **1985**.
- [2] M. H. Keshavarz, J. Haz. Mat., 2009, 166, 762-769.
- [3] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2012**, *37*, 489–497.
- [4] R. Meyer, J. Köhler, A. Homburg, *Explosives*, Wiley-VCH, Weinheim, **2016**, pp. 230–233.
- [5] B. M. Dobratz, Properties of Chemical Explosives and Explosive Simulants, UCRL-5319, LLNL, December 15 1972.

- [6] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 5, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1972**.
- [7] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 9, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1980.
- [8] J. P. Agrawal, Prog. Energy Combust. Sci., 1998, 24, 1-30.
- [9] A. Koch, N. Arnold, M. Estermann, Propellants, Explosives, Pyrotechnics, 2002, 27, 365-368.
- [10] L. R. Rothstein, R. Petersen, Propellants and Explosives, 1979, 4, 56-60.
- [11] J. R. Stine, J. Energet. Mater., 1990, 8, 41-73.
- [12] R. J. Spear, M. G. Wolfson, Determination of Detonation Parameters of Booster Explosions at Small Charge Diameters, MRL Technical Report, MRL-TR-89-45, DSTO Materials Research Laboratory, Australia, 1990.
- [13] M. F. Murphy, N. L. Coleburn, A Preliminary Investigation of TACOT, A New Heat Resistant Explosive, NOLTR 61-155, US Naval Ordnance Lab, USA, 1961.
- [14] J. F. Baytos, High-Temperature Vacuum Thermal Stability Tests of Explosives, LA-5829-MS, LANL, USA, January 1975.
- [15] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [16] S. Zeman, Z. Friedl, M. Roháč, Thermochim. Acta, 2006, 451, 105-114.
- [17] L. Türker, S. Varis, A Review of Polycyclic Aromatic Energetic Materials, in Polycyclic Aromatic Compounds, 2009, 29, 228–266.
- [18] J. P. Agrawal, Propellants, Explosives, Pyrotechnics, 2005, 30, 316-328.
- [19] J. N. Ayres, L. J. Montesi, R. J Bauer, Small Scale Gap Test (SSGT) Data Compilation: 1959–1972. Volume I. Unclassified Explosives, AD-773 743, Naval Ordnance Laboratory, Maryland, USA, 26th October 1973.
- [20] D. Price, A. R. Clairmont, J. O. Erkman, The NOL Large Scale Gap Test. III. Compilation of Unclassified Data and Supplementary Information for Interpretation of Results, AD-780 429, Naval Ordnance Laboratory, White Oak, Maryland, USA, 8th March 1974.
- [21] N. Liu, Y.-J. Shu, H. Li, L.-J. Zhai, Y.-N. Li, B.-Z. Wang, RSC Adv., 2015, 5, 43780–43785.
- [22] G. Subramanian. G. Eck, J. H. Boyer, E. D. Stevens, M. L. Trudell, J. Org. Chem., 1996, 61, 5801–5803.
- [23] W. Yang, R. A. Parrott, L. A. Behrmann, W. E. Voreck, P. Kneisel, High Temperature Explosives for Downhole Well Applications, US Patent US 2002/0129940 A1, 19th September 2002.
- [24] D. M. Badgujar, M. B. Talawar, S. F. Harlapur, S. N. Asthana, P. P. Mahulikar, J. Hazard. Mater., 2009, 172, 276–279.
- [25] M. L. Hobbs, M. R. Baer, Calibrating the BKW-EOS with a Large Product Species Data Base and Measured C-J Properties, in Proceedings of the 10th International, Detonation Symposium, Office of Naval Research ONR 33395-12, 1993, pp. 409–418.
- [26] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248-258.
- [27] L. Avrami, H. J. Jackson, M. S Kirshenbaum, Radiation-Induced Changes in Explosive Materials, AD-775 371, Picatinny Arsenal, Dover, New Jersey, USA, December 1973.

TATP

 ${\tt Name} \ [{\tt German, acronym}] \quad \ {\tt Triacetonetriperoxide, tricycloacetone peroxide,}$

acetone peroxide trimer, 3,3,6,6,9,9-hexamethyl-

1,2,4,5,7,8-hexaoxocyclononane, 3,3,6,6,9,9-hexamethyl-

1,2,4,5,7,8-hexanone, peroxyacetone [TATP, APEX]

Main (potential) use: Improvised explosive, patented as primary charge for

detonators (not used due to its low mpt. and ease of sublimation)^[19], suggested as component for secondary

explosives^[19], no current industrial or military use^[19]

	ТАТР				
Formula	C ₉ H ₁₈ O ₆				
Molecular mass [g mol ⁻¹]	222.24				
Appearance at room temperature (RT)	Colorless crystals (cubes) ^[19] , white solid on grinding ^[19] , colorless solid ^[21] , white crystalline substance with an acid odor which readily sublimes at RT ^[29] , white crystalline solid ^[31]				
IS [J]	1.5 (<100 μm), 0.3 (BAM) ^[1, 4, 5] ,	0.03 kg ^[7] , 0.03 kg (0/6	positive results, BAM	l) ^[7]	
	TATP fine powder	3.1	16		
	TATP small crystals	2.4	12		
	TATP and 20% glass rubble	1.0	5		
	TATP and 8–10% oil	4.3-5.5	22-28		

0.1 (resublimed TATP)^[21], 0.5 (crude TATP from aqueous synthesis)^[21], 1.5 (1/6 positive, BAM)^[21], 6.5 cm^[23], 0.3 Nm^[24, 25], FoI = <10 (below sensitivity threshold of machine, Rotter impact test, 30 mg sample, 5 kg mass)^[24], 0.5 (hydrated TATP, ~ 20%, 50% GO)^[27], 0.1 (anhydrous (sublimed) TATP, 50% GO)^[27]

Gelled TATP with different TATP concentrations and different gels, CGC = critical gellator concentration, BAM, Bruceton method, $E_{50\%}^{[28]}$: TATP (no gel), powdered, 6 J^[28]; TATP = 21% v/v, GSSG gellant system, DMF solvent, 8.2 mM CGC, 30 J^[28]; TATP = 24.4% v/v, sol–gel system (% v/v) = 50 TEOS, 30 MTES, 20 DDES, f_n = 3.219, >49 J^[28]; TATP = 35.8% v/v, solgel system (% v/v) = 50 TEOS, 30 MTES, 20 DDES, f_n = 3.219, >49 J^[28]; TATP = 23.9% v/v, sol–gel system (% v/v) = 60 TEOS, 20 MTES, 20 DDES, f_n = 3.313, >49 J^[28]; TATP = 35.2% v/v, sol–gel system (% v/v) = 60 TEOS, 20 MTES, 20 DDES, f_n = 3.313, >49 J^[28];

10 tests per sample, up-down method, ERL apparatus^[29]:

Material	Impact energy (J) ^[29]	T(°C)/RH(%)
TATP needle-like crystals	<1.2	21/74
TATP fine powder	< 2.0	18/27
TATP fine powder	1.9	19/26
TATP crystals	<1.2	17/25
TATP fine powder	2.3	19/28

FS [N]

<5 (<100 µm), $0.1^{[1,4,5]}$, $1.6 N^{[3]}$, extremely sensitive^[6], <0.01 kgf^[7], <0.5 kgf (below detection limit of apparatus, BAM)^[7], 0.05 (resublimed TATP)^[21], 0.2 (crude TATP from aqueous synthesis)^[21], <5 (1/6 positive, BAM)^[21], 39^[23], <0.1 N^[24], <5 N (below threshold of machine, BAM)^[24], 0.1^[25], 25 (hydrated TATP, ~20%, 2.5 kg, 50% GO, steel against steel)^[27], 0.2 (hydrated TATP, ~20%, 20 g, 50% GO, porcelain against porcelain)^[27], 0.2 (anhydrous (sublimed) TATP, 20 g, 50% GO, minimal load with mini-BAM apparatus, porcelain against porcelain)^[27]

Gelled TATP with different TATP concentrations and different gels, CGC = critical gellator concentration, BAM, Bruceton method, ${\rm E_{50\%}}^{[28]}$:

Gel type	Gellant system	Solvent	CGC	TATP conc. [% v/v]	FS [N]
-	_	Powdered	_	100	6
Physical	GSSG	DMF	8.2 mM	21	7
organic gels	Sylvagel-1000	EG	3.3% w/v	31	6
		EGME	2.0% w/v	16	192
				33	144
				44	122
Physical	Guar gum	H ₂ O	0.035 m/mL	13	360
hydrogels		H ₂ O/EtOH		16	360
	Xanthan gum	H ₂ O/EtOH	0.120 g/mL	23	360
	1.5% w/w PAA	H ₂ O/	Not a solid	35	16
	3.0% w/w PAA	isopropanol	gel	35	16
Physical cross- linked hydrogel (ionotropic gel)	1.5% PAA- Fe ³⁺		6.4 μM/mL	33	14

FS of TATP in hybrid silicon-based gels at different TATP concentrations and in different gels, BAM, Bruceton method, $E_{50\%}^{[28]}$:

Sol-gel system (% v/v)		f_{n}	TAP conc. (% v/v)	FS (N)	
TEOS	MTES	DDES			
50	20	30	3.098	26	10
50	30	20	3.219	23.2	>360
				24.3	324
				24.4	20
				35.8	20
60	20	20	3.313	22.9	324
				23.2	360
				23.7	84
				23.9	16
				35.2	12
				57.1	12

	TATP FS, 10 tests per sample, apparatus ^[29] : Material	Friction (kp/cm²) ^[29]	T (°C)/ RH (%)			
	TATP needle-like crystals	<1.0	21 / 74			
	TATP fine powder	<0.5	18 / 27			
	TATP fine powder	<0.5	19 / 26			
	TATP Crystals	<0.5	17 / 25			
	TATP fine powder	<0.5	19 / 28			
ESD [J]	0.2 (<100 µm), $0.16^{[1.5]}$, $0.0056^{[4]}$, E_{50} = 160 mJ (pure TATP) ^[19] , 0.2 (<100 µm, OZM ESD 2010 EN) ^[21] , $0.006^{[23]}$, <0.045 (below threshold sensitivity of machine, DSTO apparatus) ^[24]					
N [%]	0					
Ω(CO ₂) [%]	-151.2					
<i>T</i> _{m.p.} [°C]						
T _{phase transition} [°C]	86 (phase 1b→ phase 1a) (DS0	2 °C/min, crimped Al p	an) ^[22]			

T _{dec.} [°C]	150–160 ^[1, 5, 29] , 80 (endotherm peak), 120 (exotherm peak) (DSC @ 20 °C/min, pure TATP DSC is highly dependent on purity of the TATP; TATP samples show endotherm peak in range 80–140 and exotherm peak in range 120–240) ^[7] , 215 (range of ~ 80 °C, broad exotherm, DSC @ 20 °C/min) ^[8] , >150–160 ^[19] , >160 (onset, DSC @ 10 °C/min, recryst. TATP, sealed pan) ^[19] Dependence of dec. onset on acetone:acid molar ratio $(n_c/n_a$, using acid as catalyst, heating rate = 5 °C/min) ^[19] :							
	Molar ratio $Acid = H_2SO_4$ $Acid = HClO_4$ $Acid = HCl$ $Acid = HNO_3$ $(n_c:n_a)$						id = HNO ₃	
	2.5-5 × 10 ⁻¹	Dec. onset before melting	Dec. start before melting		Dec. starts > 145	- 1	Dec. starts > 145 °C	
	$ \begin{array}{c c} 1 \times 10^{-1} \\ -5 \times 10^{-2} \end{array} $	Dec. during melting	Dec. durin	ng				
	$1 \times 10^{-2} \\ -2.5 \times 10^{-4}$	Dec starts > 145 °C	Dec. starts >145 °C	s İ				
	DSC transition temperatures, heating rat 50–120 °C, cooling cycle run from 120 to Polymorph First heating cycle onset T (°C) $\Delta H_{\text{sublimation}}$ (J/g) First cooling cycle onset T (°C) $\Delta H_{\text{sublimation}}$ (J/g) Second heating cycle onset T (°C) $\Delta H_{\text{sublimation}}$ (J/g)				1d 93.6 65.8 7 65.9 9 62.4 8 88.1		1f 91.6	
ρ [g cm ⁻³]	1.272 (@ 180 K), 1.250 (calcd.), $1.18^{[1, 5]}$, $1.272^{[4]}$, 1.272 (X-ray) $^{[19, 21, 25]}$, 1.25 (@ 298 K, calcd.) $^{[21]}$, $1.004^{[29]}$							
Heat of formation	$ \begin{array}{l} 1.25 \ (\textcircled{@}\ 298\ \text{K, calcd.})^{[21]},\ 1.004^{[29]} \\ -583.8\ \text{kJ/mol}\ (\Delta H_f^{\circ})^{[1,4]},\ 583.5\ \text{kJ/mol}\ (\Delta H_f^{\circ}_{_{298}},\ \text{exptl.,}\ (\text{g}))^{[16]},\ -640\ \text{kJ/mol}\ (\Delta H_f^{\circ},\ \text{calcd.},\ \text{CBS-4M})^{[21]},\ 90.8\ \text{kJ/mol}^{[19]},\ -2,804.5\ \text{kJ/kg}\ (\text{enthalpy of form.})^{[25]},\ -90.8\ \text{kJ/mol}\ (\text{enthalpy of form.})^{[31]},\ 151.4\pm32.7\ \text{kJ/mol}\ (\text{enthalpy of form.},\ \Delta H_{f298}^{\circ},\ \text{semi-micro oxygen bomb calorimetry})^{[31]},\ -395\ \text{kJ/mol}\ (\text{enthalpy of form.},\ \text{est. by semi-empirical AM1 with allowance for heat of sublimation})^{[31]},\ -561.8\pm51.0\ \text{kJ/mol}\ (\Delta H_f^{\circ}_{298}\ (\text{gas}),\ \text{calcd.},\ G4\ \text{method, average value from isodesmic and atomization reactions})^{[31]},\ -664.5\pm44\ \text{kJ/mol}\ (\Delta H_f^{\circ}_{298})^{[31]},\ -583.8\pm44\ \text{kJ/mol}\ (\Delta H_f^{\circ}_{298}\ (\text{gas}),\ \text{exptl.})^{[31]},\ -132.4\ \text{kcal/mol}\ (\Delta H_f^{\circ}_{298})^{[31]},\ -583.8\pm44\ \text{kJ/mol}\ (\Delta H_f^{\circ}_{1988},\ \text{exptl.})^{[31]},\ -132.4\ \text{kcal/mol}\ (\Delta H_f^{\circ}_{1988},\ \text{calcd.})^{[25]},\ -622.6\ \text{kJ/mol}\ (\Delta H_f^{\circ}_{1988},\ \text{exptl.})^{[31]},\ -90.8\ \text{kJ/mol}\ (\text{enthalpy of form.},\ \Delta_f H_{298}^{\circ})^{[16]},\ 151.4\ \text{kJ/mol}\ (\Delta_f H_{298}^{\circ},\ \text{exptl.},\ \text{semi-micro bomb calorimetry})^{[16]},\ 151.4\pm32.7\ \text{kJ/mol}\ (\Delta_f H_{298}^{\circ},\ \text{exptl.},\ \text{semi-micro bomb calorimetry})^{[16]},\ 151.4\pm32.7\ \text{kJ/mol}\ (\Delta_f H_{298}^{\circ})^{[33]} \\ \end{array}$							

Heat of combustion	2,405 kJ/kg (calcd.) ^[16] , $-\Delta_c H = 5,449.7 \pm 44$ kJ/mol ^[31] , 2,405 kJ/kg (heat of combustion, calcd. from measured flame T) ^[31] , $-\Delta U_c = 24,507 \pm 199$ J/g or $5,446 \pm 44$ kJ/mol (exptl., bomb calorimeter) ^[31] , $\Delta_c U^o = -28,177 \pm 147$ J/g ^[33] , $\Delta_c U^o = -6,261.8 \pm 32.7$ kJ/mol ^[33] , $\Delta_c H^o = -6,265.5 \pm 32.7$ kJ/mol ^[33]				
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.		
-Δ _{ex} <i>U</i> ° [kJ kg ⁻¹]	3,420 (@ 1.25 g cm ⁻³ , $\Delta H_{\rm f}^{\rm o} = -640 \text{ kJ/mol})^{[21]}$	2,745 ^[1, 4, 5] 5,665 (heat of explosion, <i>Muraour</i> , but cited in ^[31] as being too high) ^[31]	5,665 (small pressed sample) ^[16] 2,803 (cast, small pressed sample) ^[16, 31] 2,745 (heat of explosion, @ 0.42 g cm ⁻³ load ρ , 1.20 g sample, Al shell, bomb calorimeter) ^[31]		
T _{ex} [K]	2,038 (@ 1.25 g cm ⁻³ , $\Delta H_f^{\circ} = -640 \text{ kJ/mol})^{[21]}$	2,895 (@ 100% TMD, calcd., Cheetah-6) ^[20]			
p _{C-J} [kbar]	114 (@ 1.25 g cm ⁻³ , $\Delta H_f^{\circ} = -640 \text{ kJ/mol})^{[21]}$	132 (@ 100% TMD, calcd., Cheetah-6) ^[20]			
VoD [m s ⁻¹	6,322 (@ 1.25 g cm ⁻³ , $\Delta H_{\rm f}^{\circ} = -640 \text{ kJ/mol})^{[21]}$	5,300 (@ 1.18 g cm ⁻³) ^[1, 4-6, 17]	5,290 (@ 1.2 g cm ⁻³ , detonated in column, 6.3 mm diameter) ^[6] 3,065 (@ 0.68 g cm ⁻³ , detonated in column, 15 mm diameter) ^[6] 3,750 (@ 0.92 g cm ⁻³) ^[6] 5,300 (@ 1.18 g cm ⁻³) ^[1, 4, 19] 1,430 (@ 0.47 g cm ⁻³ , initiated by pyroxylin layer, steel confinement) ^[15, 19] 3,750 ^[15] 3,950 (@ 0.95 g cm ⁻³) ^[19]		
V₀ [L kg ⁻¹]	821 (@ 1.25 g cm ⁻³ , $\Delta H_{\rm f}^{\circ} = -640 \text{ kJ/mol})^{[21]}$	855 ^[4, 5]	855 (@ 0.42 g cm ⁻³ load ρ , 1.20 g sample, Al shell, bomb calorimeter) ^[31]		

Trauzl test [cm³, % TNT]	250 cc (10 g TATP, cf. 285 cc for TNT) ^[6] , 80% TNT ^[29]				
Sand test [g]	80% $TNT^{[17]}$, 34.1 g sand crushed by 0.4 g initiated by 0.2 g MF (cf. 48.0 g with $TNT^{[6]}$, 250 cc (10 g TATP, cf. 300 cm ³ for $TNT^{[11]}$, 71% $TNT^{[19]}$, 46.2–50.5% $TNT^{[19]}$				
Initiation efficiency		acceptor both pressed 0.09 g initiates Tetryl ^{[19}			
Dead-pressing	Dead-pre	ssed @ 49 MPa ^[19]			
5 s explosion T [°C] Ignition T [°C]	Sublimes	before reaction ^[24]			
Thermal stability	Spectroscopically pure TATP samples produced using aq. HCl as catalyst and which have been recryst. several times from MeOH did not show any transformation to DADP after 4 weeks @ RT in contrast to TATP produced using sulfuric acid ^[33]				
Vapor pressure [atm. @ °C]	24.8 Pa @ 25 °C ^[14] , 6.95 Pa (gas chromatography) ^[19] , 7.87 Pa (@ 25 °C, gas chromatography) ^[19] Values from ^[30] , cited in ^[29] :				
	<i>T</i> (K)	Vapor pressure (Pa)	<i>T</i> (K)	Vapor pressure (Pa)	
	285	0.95	305	18.9	
	285	1.13	315	46.1	
	295	1.85	315	51.2	
	295	1.44	325	98.4	
	298	6.95	325	101	
	298	6.86	331	720	
	305	16.8	331	596	
Volatility	~66% mass lost in 2 weeks @ $RT^{[11]}$, ~ 6.5% mass lost in 2 weeks @ $RT^{[6,18]}$, 68.6% mass lost in 14 days @ $RT^{[6,18]}$, 1.5% mass lost in 2 h @ 50 °C $^{[6,18]}$, 100% mass lost in 3 h @ 50 °C $^{[6]}$				
Heat of sublimation [kJ/mol]	72.5 (calcd., Clapeyron eqn.) ^[19] , 80.6 (calcd., <i>Egorshev</i>) ^[19] , 80.7 ^[31]				
Heat of evaporation [k]/mol]	$58.1 \text{ (calcd., } \textit{Egorshev})^{[19]}, \text{ enthalpy of vaporization} = 40.39 \pm 3.0 \text{ kJ/mol}^{[29]}, \text{ enthalpy of vaporization} = 46.41 \text{ kJ/mol}^{[29]}, \text{ enthalpy of vaporization} = 51.73 \text{ kJ/mol}^{[29]}$				
Heat of melting [kJ/mol]	22.6 (calcd., <i>Egorshev</i>) ^[19]				
L					

Burn rate [mm/s]	Dependence o	f burn rate on	pressure ^[19] :	
	Pressure (MPa) ^[19]	Burn rate (mm s ⁻¹)[1	Pressure (MPa) ^[19]	Burn rate (mm s ⁻¹) ^[19]
	~0.017	~ 1.7	~ 0.75	~ 35
	~0.03	~ 3.3	~1.1	~ 50
	~0.045	~ 4.9	~ 2.1	~80
	~0.07	~ 8	~3.5	~ 100
	~0.1	~ 10	~ 10	~ 300
	~0.2	~ 18	~ 18	~ 450
	Linear and ma $m = 1.16 \text{ g cm}$		ning @ 1 atm ^[32] : <i>u</i>	= 0.95 cm/s ^[32] ,
Solubility [g/mL]	solvents ^[19] , so			mmon organic etone ^[25] , 3.1 g/L in
	Solubility in g	/100 mL solve	nt ^[19] :	
	Solvent	@ 1	7 °C	@ RT

Solvent	@ 17 °C	@ RT
Acetone	7.96	16.5
Benzene	19.3	_
CS ₂	11.2	-
CCl ₄	52.5	-
CHCl ₃	110	111
Et ₂ O	4.2	-
EtOH	0.12	3.5
Hexane	_	11.1
MeOH	-	3.8
Pyridine	17.9	_
Toluene	-	34.7

mL solvent required to dissolve 100 mg TATP @ RT^[26]: 1.0 (acetone)^[26], 3.0 (Diesel)^[26], 1.2 (ethyl acetate)^[26], 2.1 (*i*-octane)^[26], 0.8 (toluene)^[26], 3.0 (EtOH, 100%)^[26], 62.2 (EtOH, 50%)^[26], 3.8 (*i*-PrOH)^[26], 40.2 (*i*-PrOH, 50%)^[26], 14–16 ppm (H₂O)^[26], very poor solubility in H₂O^[26]

Solubility in ionic liquids @ 25 °C, TATP concentration wt. % $^{[27]}$: 0.4% in 3MBP BF₄, 0.5% in HP BF₄, 1.0 in HP Tf₂N, 1.0 in EMIM C₈H₁₇OSO₃, 1.25 in DMIM BF₄, 2.2 in OMIM BF₄, 1.3 in HMIM BF₄, 0.1 in EMIM BF₄, 0.8 in HMIM Tf₂N, 0.9 in BMIM Tf₂N, 0.3 in EMIM Tf₂N $^{[27]}$

Hygroscopicity	Nonhygrosc	opic ^[19]					
Compatibility	TATP reacts	violently	y with conc	. H ₂ SO ₄ ^[26]			
	TATP destru	TATP destruction tests, methods for TATP dec. (destruction) ^[26] :					
	Mass TATP (g)	Solven	solve (mL)	nt Acid	Acid (mL)	Time to	
	100	EtOH 50%	200	HCl 36%	400	20 min	
	100	IPA 50	% 200	HCl 36%	400	20 min	
	100	IPA 50	% 100	HCl 36%	400	2 h 20	min
	460	IPA 50	% 900	HCl 36%	425	25 min	
DDT	Transition distance = 1.7 mm, 30-50% TMD ^[23]						
Activation energy to dec. [kcal/mol]	36.3 (thermal dec. of TATP in soln. @ 150–230 °C) ^[25]						
Heat of dec. [kJ kg ⁻¹]	>3,765 (calcd. from dec. products @ low heating rates) ^[31] , 4,853 (calcd. from dec. products @ fast heating rates) ^[31] , 2,261 (isothermal dec., based on exptl. $\Delta H_{\rm f}$) ^[31] , 2,285 (fast temperature rise, based on exptl. $\Delta H_{\rm f}$) ^[31]						
ΔH _{sub} [kcal/mol]	16.4 ^[25]						
Max. combustion T [°C]	1,300 K (measured using thin thermocouples) ^[31]						
Brisance	Brisance: (30 mm Al witness plate, No. 8 detonator, stainless steel cylinder, 10 mm diameter, 35 mm high, standard prEN 13,763-15 test setup), ρ (TATP) = 1.26 g cm ⁻³ , mass of TATP = 2.27 g, manufacturing pressure = 720 bar, dent depth = 3.65 mm ^[7] . Overall brisance range of TATP is 60–100% TNT (standard No. 8 detonator dent depth = 1.96 mm) ^[7]						
	TATP ^[7] Mass Diameter Manufacturing Effect Dent depth $(\rho/g \text{ cm}^{-3})$ (g) pressure (bar)					depth	
	0.86	1.14	7.62	Manually	Detor	nation	2.5
	1.03	1.54	7.65	303.5	Detor	nation	2.03
	1.18	1.35	7.7	~ 425	Low o	order nation	0.26
	1.18	1.69	7.65	607	Low o	order nation	0.3
	1.25	2.29	10.20	720	Defla (burn	gration)	-

	TATP ^[10, 29]	TATP ^[11]	TATP ^[12]	TATP ^[9]	TATP ^[9]	TATP ^[9]	TATP ^[9]	TATP ^[9]	TATP ^[13]	TATP ^[13]	TATP ^[9]
Chemical formula	C ₉ H ₁₈ O ₆	C ₉ H ₁₈ O ₆	C ₉ H ₁₈ O ₆	C ₉ H ₁₈ O ₆	C ₉ H ₁₈ O ₆	C ₉ H ₁₈ O ₆	C ₉ H ₁₈ O ₆	C ₉ H ₁₈ O ₆	C ₉ H ₁₈ O ₆	C ₉ H ₁₈ O ₆	C ₉ H ₁₈ O ₆
Molecular weight [g mol ⁻¹]	222.23	222.23	222.23	222.23	222.23	222.23	222.23	222.23	222.23	222.23	222.23
Crystal system	Monoclinic	Monoclinic	Monoclinic	Orthorhombic	Triclinic	Monoclinic	Monoclinic	Monoclinic Monoclinic	Triclinic	Monoclinic	Monoclinic
Space group	<i>P</i> 2 ₁ / <i>c</i> (no. 14)	<i>P</i> 2 ₁ / <i>c</i> (no. 14)	<i>P</i> 2 ₁ / <i>c</i> (no. 14)	<i>C m c a</i> (no. 64)	<i>P ī</i> (no. 2)	<i>P</i> 2 ₁ / <i>c</i> (no. 14)	<i>P</i> 2 ₁ / <i>c</i> (no. 14)	$P 2_1 / c$ (no. 14)	<i>P ī</i> (no. 2)	$P 2_1 / c$ (no. 14)	<i>P</i> 2 ₁ / <i>c</i> (no. 14)
a [Å]	13.925(5)		13.7617(7)	28.055(4)	8.901(1)	11.964(2)	11.968(2)	11.9620(6)	8.900(2)	13.8088(12)	13.788(6)
<i>b</i> [Å]	10.790(4)		10.6514(6)	15.616(6)	10.500(2)	28.083(6)	14.029(3)	14.0380(4)	10.997(2)	10.6956(7)	10.664(5)
c [Å]	7.970(4)		7.8800(4)	10.667(1)	12.576(1)	15.600(3)	15.606(3)	15.5950(8)	12.569(3)	7.8949(7)	7.894(4)
α [٥]	90	90	90	06	82.560(9)	06	96	90	82.587(6)	90	90
β [°]	91.64(5)	91.77(5)	91.8240(10)	96	84.445(7)	117.22(3)	117.15(3)	117.270(2)	84.276(6)	91.635(7)	91.77(5)
γ [°]	90	90	90	96	73.053(6)	90	90	90	73.014(6)	90	90
v [ų]	1,197.01	1,160.1(9)	1,154.48(11)	4,673.3(2)	1,112.7(3)	4,660.9(15)	2,331.5(8)	2,327.7(18)	1,164.1(5)	1,165.55(16)	1,160.1(9)
Z	4	4	4	16	4	16	4	4	4	4	4
$ ho_{\rm calc}$ [g cm ⁻³]	1.233	1.272	1.279	1.263	1.327	1.267	1.266	1.268	1.268	1.266	1.272
<i>T</i> [K]	295	180	120	200	200	200	200	200	200	193	180
		Crystals from slow sublimation in closed flask @ RT		Polymorph 1b, prisms	Polymorph 1c, plates	Polymorph 1d	Polymorph 1e	Polymorph 1f			Polymorph 1a, needles

TATP forms≥6 polymorphic crystals^[19]; raw TATP has three different crystal forms: needles (monoclinic), prisms (orthorhombic), plates (triclinic)^[19], crystallization from organic solvents results in another 3 orthorhombic crystalline forms^[19]; Crystallizations from the reaction solution always produced mixtures of polymorphs rather than a phase-pure sample^[9, 22]. Phase 1a is the most stable polymorph, all other polymorphs (1b−1f) transform spontaneously into phase 1a on standing as a consequence of the ready sublimation of TATP at room temperature and its subsequent crystallization on cooling^[22]. Phase 1b is kinetically favored phase, phase 1a is the thermodynamic phase^[22]. Powder X-ray diffraction patterns show the polymorph components of as-synthesized TATP samples, prepared using different routes^[22]:

TATP phase(s) from PXRD	Conditions	Factors influencing pure phase vs. mixed phase samples
Pure phase 1b	TATP produced from percarbonate route, TATP produced from urea route, Hydrochloric acid and aq. H ₂ O ₂ ; rapid crystallization - Na ₂ CO ₃ , H ₂ O ₂ , HCl - urea, H ₂ O ₂ , HCl - urea, H ₂ O ₂ , H ₂ SO ₄ - urea, H ₂ O ₂ , HNO ₃ - aq. H ₂ O ₂ , HCl	Acidity of soln., presence of carbonate ions or urea, ionic strength of soln.; high acid content, high ionic strength of soln., high concentrations of very strong acids, rapid crystallization favors phase pure phase 1b
Mixed phases	Slow crystallization - aq. H ₂ O ₂ , H ₃ PO ₄ - aq. H ₂ O ₂ , HCl	Lower ionic strength, lower acid concentration, weaker acids even in high concentrations, slow crystallization conditions favors formation of mixed phases
Almost pure phase 1a	Use of Lewis acid (e.g., SnCl ₄)	Lewis acid acts as catalyst

- [1] J. J. Sabatini, K.D. Oyler, *Crystals*, **2016**, *6*, 1–22.
- [2] M. H. Lefebvre, B. Falmagne, B. Smedts, Sensitivities and Performances of Non-Regular Explosives, in Final Proceedings for New Trends in Research of Energetic Materials, S. Zeman (ed.), NTREM 7, 20th–22nd April 2004, Pardubice, pp. 13–22.
- [3] R. Matyáš, J. Šelešovský, T. Musil, J. Hazard. Mater., 2012, 213–214, 236–241.
- [4] N.-D. H. Gamage, "Synthesis, Characterization and Properties of Peroxo-Based Oxygen-Rich Compounds For Potential Use As Greener High Density Materials", 2016, Wayne State University Dissertations, paper 1372.
- [5] H.-D. H. Gamage, B. Stiasny, J. Stierstorfer, P. D. Martin, T. M. Klapötke, C. H. Winter, Chem. Comm., 2015, 51, 13298–13300.
- [6] B. T. Fedoroff, H. A. Aaronson, E. F. Reese, O. E. Sheffield, G. D. Clift, Encyclopedia of Explosives and Related Items, vol. 1, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1960.

- [7] M. H. Lefebvre, B. Falmagne, B. Smedts, Sensitivities and Performances of Non-Regular Explosives, NTREM 7, 20th–22nd April 2004, pp. 164–173.
- [8] J. C. Oxley, J. L. Smith, H. Chen. Propellants, Explosives, Pyrotechnics, 2002, 27, 209-216.
- [9] O. Reany, M. Kapon, M. Botosharsky, E. Keinan, Crystal Growth and Design, 2009, 9, 3661–3670.
- [10] P. Groth, Acta Chem. Scand., 1969, 23, 1311-1329.
- [11] F. Dubnikova, R. Kosloff, J. Almog, Y. Zeiss, R. Boese, H. Itzhaky, A. Alt, E. Keinan, J. Am. Chem. Soc., 2005, 127, 1146–1159.
- [12] L. Jensen, P. M. Mortensen, R. Trane, P. Harris, R. W. Berg, *Applied Spectroscopy*, **2009**, *63*, 92–97.
- [13] D. Schollmayer, B. Ravindran, CSD Communication, 2015.
- [14] J. Oxley, J. L. Smith, J. Brady, S. Naik, *Propellants, Explosives, Pyrotechnics*, **2010**, *35*, 278–283.
- [15] V. V. Kuzmin, M. Y. Solov'ev, Y. B. Tuzkov, G. D. Kozak, Centr. Eur. J. Energet. Mater., 2008, 5, 77–83.
- [16] V. P. Sinditskii, V. I. Kolesov, V. Y. Egorshev, D. I. Patrikeev, O. V. Dorofeeva, Organic Explosive Peroxides of Acetone: Enthalpies of Formation, NTREM 17, 9th–11th April 2014, pp. 963–972.
- [17] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [18] R. Matyáš, Chemical Decomposition of Triacetone Triperoxide and Hexamethylenetriperoxidediamide, NTREM 6, 22nd-24th April **2003**, pp. 241-247.
- [19] R. Matyáš, J. Pachman, *Primary Explosives*, Springer-Verlag, 2013.
- [20] A. L. Kuhl, Emission Properties of Various High Explosive Charges, ICT 2014, Karlsruhe, Germany, pp. 19-1–19-14.
- [21] M. A. C. Härtel, T. M. Klapötke, B. Stiasny, J. Stierstorfer, Propellants, Explosives, Pyrotechnics, 2017, 42, 1–13.
- [22] G. R. Peterson, W. P. Bassett, B. L. Weeks, L. J. Hope-Weeks, Cryst. Growth Des., 2013, 13, 2307–2311.
- [23] P. R. Bowden, B. C. Tappan, V. W. Manner, D. N. Preston, B. L. Scott, Characterization of Diacetone Diperoxide (DADP), in AIP Conference Proceedings, 1793, 040010-1-040010-5, 2017.
- [24] M. S. Bali, D. Armitt, L. Wallace, A. I. Day, J. Forensic Sci., 2014, 59, 936–942.
- [25] T. M. Klapötke, T. Wloka, Peroxide Explosives, ch. 29 in Patai's Chemistry of Functional Groups, I. Marek (ed.), John Wiley & Sons, Ltd: Chichester, UK. DOI: 10.1002/9780470682531.pat0879. Published online 4/28/2014, 2014, pp. 1–28.
- [26] J. C. Oxley, J. L. Smith, J. E. Brady, L. Steinkamp, *Propellants, Explosives, Pyrotechnics*, **2014**, 39, 289–298.
- [27] D. Lubczyk, A. Hahma, M. Brutschy, C. Siering, S. R. Waldvogel, *Propellants, Explosives, Pyrotechnics*, **2015**, *40*, 590–594.
- [28] A. Weitz, G. Korogodsky, A. Tsoglin, D. Grinstein, L. Gottlieb, *Propellants, Explosives, Pyrotechnics*, **2015**, *40*, 706–711.
- [29] D. S. Viswanath, T. K. Ghosh, V. M. Boddu, *Triacetone Triperoxide (TATP)*, Ch. 10 in *Emerging Energetic Materials: Synthesis*, *Physicochemical*, and *Detonation Properties*, Springer, **2018**.
- [30] J. C. Oxley, J. L. Smith, K. Shinde, J. Moran, *Propellants, Explosives, Pyrotechnics*, **2005**, *30*, 127–130.
- [31] V. P. Sinditskii, V. I. Kolesov, V. Y. Egorshev, D. I. Patrikeev, O. V. Dorofeeva, *Thermochim. Acta*, **2014**, *585*, 10–15.

- [32] N. N. Bakhman, A. F. Belyaev, Combustion of Heterogeneous Condensed Systems, translated from Gorenje Geterogennykh Kondensirovannykh Sistem, Institute of Chemical Physics, Academy of Science, U.S.S.R. Moscow, Nauka Publication (1967) by C. A. J. Elphinston, M. Goyer, I. C. Graham, G. A. Heath, G. R. Ramsden, R.P.E. Translation No. 19, Ministry of Technology, London, November 1967.
- [33] A. E. Contini, A. J. Bellamy, L. N. Ahad, *Propellants, Explosives, Pyrotechnics*, **2012**, *37*, 320–328.

Tetraamine-cis-bis(5-nitro-2H-tetrazolato) cobalt(III) perchlorate

Tetraamine-cis-bis(5-nitro-2H-tetrazolato) cobalt(III) Name [German, acronym]:

> perchlorate, tetraammine-bis-(5-nitrotetrazolato-*N*²) cobalt(III) perchlorate, bis-(5-nitro-2*H*- tetrazolato-*N*²)

tetraamino cobalt perchlorate [BNCP]

Primary explosive, hot wire DDT designs^[4], possible Main (potential) use:

substitute for LA^[4], safe commercial detonators^[5], primary or secondary charge in blasting caps^[5], pyrotechnic, automatic control systems of rockets^[5], energy producing component for semi-conducting

bridge (SCB) initiator applications^[6]

$$\begin{array}{c|c} & NO_2 \\ N & & \\ N & & \\ N & & \\ N & & \\ N & & \\ H_3N & & \\ N & & \\ N & & \\ N & & \\ NH_3 & & \\ N & & \\ NH_3 & & \\ N &$$

	виср
Formula	$C_2ClCoH_{12}N_{14}O_8$
Molecular mass [g mol ⁻¹]	454.59
Appearance at RT	Yellow-orange prismatic crystals ^[2] , light orange needle-shaped crystals ^[6]
IS [J]	$30 \text{ cm}^{[3]}$, $100 \text{ kg-cm}^{[4]}$, $H_{50} = 30 \text{ cm} (2 \text{ kg mass})^{[6]}$
FS [N]	3 kg ^[3] , 0.6–1 kg (BAM) ^[4] , 3.0 kg (friction insensitiveness) ^[6]
ESD [J]	5 (spark insensitivity) ^[3] , >25 (Sandia Man Model testers) ^[4] , ~5 (spark insensitivity) ^[6]
N [%]	43.14
Ω(CO ₂) [%]	
T _{dec.} [°C]	269 ^[1, 5] , 260 ^[3]
ρ [g cm ⁻³]	2.03, 2.05 (@ 291 K) ^[1] , 2.031 (gas pycnometer) ^[2] , 2.03 (crystal) ^[5] , 0.3 (bulk density of crystals without additives) ^[6] , 0.6 (bulk density, increased by addition of 1% dextrin and dioctyl succinate during synthesis) ^[6]
Heat of formation	

	Calcd. (EXPLO5 6.03)	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]		
<i>T</i> _{ex} [K]		
p _{C-J} [kbar]		
VoD [m s ⁻¹]		Will detonate in column lengths (2–3 mm) in steel confinement) ^[4]
		7,120 (@ 1.79 g cm ⁻³) ^[5]
V_0 [L kg ⁻¹]		

Ignition ability	Minimal charge in a No. 8 detonator toward RDX = 0.05 $g^{[5]}$, BNCP and BNCP/NHN could not be initiated by flash and hot wire stimuli ^[6] , BNCP with CCP/NCP co-initiators could be initiated by flash and hot wire stimuli ^[6]				
5 s explosion $T[^{\circ}C]$ Explosion $T[^{\circ}C]$ Autoignition $T[^{\circ}C]$	260 ^[6] 270 (DSC @ 10 °C/min, sealed her	metic pans and cups) ^[4]			
Thermal stability	Functional after exposure to 160 °C	for 100 h ^[4]			
Compatibility	Compatible with all typical hot wire and EBW materials of construction $^{[4]}$, compatible with epoxy adhesives $^{[4]}$				
Witness plate dents	0.66 mm (steel witness plate) ^[4] Performance evaluation of BNCP in detonator no. 27 ^[6] :				
	Composition quantity given in mg in brackets Puncture on witness plate* diameter of the hole (mm)				
	BNCP (150) + LA (200)	No puncture	No initiation		
	BNCP (150) + NHN (200)	No puncture	No initiation		
	BNCP (150) + NCP/CCP (200)	9	Initiated		
	BNCP (175) + NCP/CCP (175)	9	Initiated		
	BNCP (200) + NCP/CCP (150)	9	Initiated		
	BNCP (225) + NCP/CCP (125)	9	Initiated		
	BNCP (250) + NCP/CCP (100)	9	Initiated		
	BNCP (275) + NCP/CCP (75)	9	Initiated		

	ı			
	BNCP (300) + NCP/CCP (50)	9	Initiated	
	BNCP (325) + NCP/CCP (25)	9	Initiated	
	NCP/CCP (350)	9	Initiated	
	BNCP (325), NCP (25) and Tetryl/PETN (550)	9	Initiated	
	BNCP (150), NCP (200) and Tetryl/PETN (550)	9	Initiated	
	ASA composition (standard) 9 Initiated			
	LA = lead azide, SA = silver azide, CCP = cobalt carbohydrazide perchlorate, NCP = Nickel carbohydrazide perchlorate; ASA composition = service LA (SLA 65%), lead styphnate (LS 32.5%) and Al (2.5%); * each experiment was repeated five times to prove the reproducibility in detonator No. 27.			
Flying plate velocity [mm/µs]	3.2 ^[4]			
Time of DDT	10 μs ^[5]			
Heat of dec. [J/g]	3,319 (DSC) ^[5]		<u> </u>	

	BNCP ^[2]	BNCP ^[2]
Chemical formula	$C_2H_{12}ClCoN_{14}O_8$	$C_2H_{12}ClCoN_{14}O_8$
Molecular weight [g mol ⁻¹]	454.59	454.59
Crystal system	Monoclinic	Monoclinic
Space group	P2 ₁ /n (14)	P2 ₁ /n (14)
a [Å]	10.031(2)	9.946(7)
<i>b</i> [Å]	10.547(2)	10.542(5)
c [Å]	14.861(3)	14.820(7)
α [°]	90	90
β [°]	109.09(3)	108.68(4)
γ [°]	90	90
<i>V</i> [Å ³]	1,485.8(6)	1,472.0(15)
Z	4	4
$ ho_{ m calc}$ [g cm ⁻³]	2.032	2.051
<i>T</i> [K]	293	213

- [1] A.-S. Tverjanovich, A.-O. Aver'yanov, M. A. Ilyshin, S. Yu, A. V. Smirnov, *J. Russ. J. Appl. Chem.*, **2015**, *8*8, 226–231.
- [2] B. Morosin, R. G. Dunn, R. Assink, T. M. Massis, J. Fronabarger, E. N. Duesler, *Acta Cryst.*, 1997, C53, 1609–1611.
- [3] U. R. Nair, S. N. Asthana, A. S. Rao, B. R. Gandhe, *Defence Science Journal*, **2010**, *60*, 137–151.
- [4] T. M. Massis, J. W. Fronabarger, W. B. Sanborn, *New Explosive Materials and Pyrotechnic Formulations with Improved Safety and Sensitivity Properties*, Sandia National Laboratories, Alberquerque, USA, August **1996**.
- [5] M. A. Ilyushin, I. V. Tselinsky, I. V. Shugalei, Central Eur. J. Energet. Mater., 2012, 9, 293-327.
- [6] M. B. Talawar, A. P. Agrawal, J. S. Chhabra, C. H. Ghatak, S. N. Asthana, K. U. B. Rao, J. Sci. Ind. Res., 2004, 63, 677-681.

3,4:7,8:11,12:15,16-Tetrafurazano-1,2,5,6,910,13,14octaazacyclohexadeca-1,3,5,7,9,11,13,15-octane-1,10-dioxide

Name [German, acronym]: [DOATF]

Main (potential) use: under research

	DOATF	DOATF				
Formula	C ₈ N ₁₆ O ₆	$C_8N_{16}O_6$				
Molecular mass [g mol ⁻¹]	416.19	416.19				
Appearance at RT	Orange crystals ^[1]					
IS [J]	$H_{50\%} = 11.2 \text{ cm } (2.5 \text{ kg})$	mass, LANL type 12 test, I	Bruceton method) ^[1]			
FS [N]	4.7 kg (BAM, Bruceton, 50% load) ^[1]					
ESD [J]	0.125 (ABL) ^[1]					
N [%]	53.85					
Ω(CO ₂) [%]	-38.44					
T _{m.p.} [°C]	127 (DSC @ 10 °C/min, hermetically sealed Al pans with pinhole lid, 1 mg sample) $^{\![1]}$, 93 (Chinese value) $^{\![1]}$, 144 (Russian value) $^{\![1]}$					
T _{phase transition} [°C]						
T _{dec.} [°C]	212 (exo, onset), 289 (exo, peak max.) (DSC @ 10 °C/min, hermetically sealed Al pans with pinhole lid, 1 mg sample) ^[1]					
ρ [g cm ⁻³]	1.809 (X-ray, calcd. @ 1	1.809 (X-ray, calcd. @ 113 K), 1.761 (X-ray, calcd. @ 293 K)				
Heat of formation						
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.			

$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]			
<i>T</i> _{ex} [K]			
p _{C-J} [kbar]		292 ^[1]	
VoD [m s ⁻¹]		8,200 ^[1]	
V ₀ [L kg ⁻¹]			
		•	
Solubility [g/mL]	Crystals grown from hot	toluene ^[1]	
Energy of dec. [J/g]	3,089 ^[1]		

	DOATF ^[1]
Chemical formula	C ₈ N ₁₆ O ₆
Molecular weight [g mol ⁻¹]	416.24
Crystal system	Triclinic
Space group	P-1
a [Å]	5.7364(2)
<i>b</i> [Å]	11.5088(5)
c [Å]	12.0378(5)
α[°]	96.1030(10)
β [°]	98.3090(10)
γ [°]	101.1660(10)
<i>V</i> [ų]	764.08(5)
Z	2
$ ho_{ m calc}$ [g cm ⁻³]	1.809 (calcd. @ 113 K) 1.761 (calcd. @ 293 K)
T [K]	113

^[1] J. M. Veauthier, D. E. Chavez, B. C. Tappan, D. A. Parrish, J. Energet. Mater., 2010, 28, 229–249.

Tetramethylammonium nitrate

Name [German, acronym]: Tetramethylammonium nitrate, nitetra

[tetramethylammoniumnitrat, Tetra-Salz, TeMeAN]

 $\label{thm:main} \mbox{Main (potential) use:} \qquad \mbox{Was used as fuel component in fusible ammonium}$

nitrate mixtures^[4], acts as a fuel when mixed with

oxygen carriers^[5]

	Tetramethylammonium nitrate		
Formula	$C_4H_{12}N_2O_3$		
Molecular mass [g mol ⁻¹]	136.2		
Appearance at RT	White or colorless crystals ^[5] , white crystals ^[7]		
IS [J]	No explosions @ 3 m (10 kg mass, encapsulated samples) ^[5] , attempts to provoke explosive dec. by impact failed ^[7]		
N [%]	20.57		
Ω(CO ₂) [%]	-129.2		
T _{phase transitions} [°C]	DSC @ 20 K/min, 6 mg sample ^[6] : 292 K Phase-III 290 K Phase-II 295 K Phase-I		
T _{m.p.} [°C]	410 ^[1] , 326–328 (Ger.) ^[5] , 405–410 (Fr.) ^[5] , 410 ^[7]		
T _{dec.} [°C]	Color change @ 400 °C (heating in test tube from 250 °C @ 5 °C/min) ^[5]		
$ ho$ [g cm $^{-3}$]	1.25 ^[4, 5, 7] , 0.70 (bulk) ^[5] , 1.23 (cryst., measured) ^[6] , 1.22 (compressed under 3,400 kg/cm ²) ^[7]		
Heat of formation	$\begin{array}{l} -330.4 \text{ kJ/mol } (\Delta_i H^o)^{[2]}, -2,507.3 \text{ kJ/kg (enthalpy of form.)}^{[4]}, \\ -624 \text{ cal/g}^{[3]}, -607.4 \text{ kcal/kg } (\Delta H_f)^{[5]}, 75.8 \text{ kcal/mol } (\text{@ } 18 \text{ °C, F}^V)^{[5]}, \\ 80.8 \text{ kcal/mol } (\text{@ } 18 \text{ °C, F}^D)^{[5]}, -341.5 \text{ kJ/mol (enthalpy of form., exptl.)}^{[8]}, -337.5 \text{ kJ/mol (enthalpy of form., calcd., emp.)}^{[8]} \end{array}$		
Heat of combustion	707.2 kcal/mol (@ 18 °C, Qc ^V) [H ₂ O (l)] ^[5]		

	Calcd. (EXPLO5 6.03)	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	3,128	
T _{ex} [K]	1,952	
p _{C-J} [kbar]	133	
VoD [m s ⁻¹]	6,745	
V_0 [L kg ⁻¹]	952	

Critical diameter [cm]†						
Trauzl test [cm³, % TNT] †	Could not be detonated when used alone ^[5] , 96cc (cf. 100 cc for PA if 50/50 mixture of TeMeAN/RDX used) ^[5] , 112.5 cc (cf. 100 cc for PA, 13.5% TeMeAN in mixture with AN and RDX) ^[5] , 119.5 cc (cf. 100 cc for PA, 13.5% TeMeAN in mixture with AN and 13% RDX) ^[5]					
Sand test [g] [†]						
Ballistic mortar test [†]						
Initiation efficiency	Does not detonate,	even whe	n initiated	by a stron	ig charge o	of PETN ^[7]
Gap test	1.5 cm (13.5% TeM TeMeAN in mixture				X) ^[5] , 4.5 c	cm (11.7%
LSGT [cm]	t					
SSGT [cm]	t					
Thermal stability	Color change to light brown @ ~ 400 °C and white smoke with sample converting to black liq. @ 410 °C (0.1 g sample, heated in test tube from 250 °C @ 5 °C/min) ^[5] , nitrous fumes produced and sample eventually turned black @ 370 °C after 2 min (sample immersed in metal bath) ^[5]					
Solubility [g/mL]	Soluble in hot water ^[5] , slightly soluble in cold water ^[5] , soluble in $H_2O^{[7]}$					
Hygroscopicity	Less than AN ^[5]					
Compatibility	Incompatible with T	NT ^[5]				
Flame sensitivity	On exposure to open flame, ignited after 50–60 s when placed in 20 mm × 1 m trough and burned with orange flame ^[5]					
Compressibility	Data from ^[5] :					
	Pressure (kg/cc)	68	170	270	850	3,400
	ρ (g/cc)	0.90	1.17	1.20	1.21	1.22
p <i>K</i> a	pH = 7.0-7.1 (aq. soln.) ^[5]					

 $^{^{\}dagger}$ Me $_4$ N $^{+}$ NO $_3$ $^{-}$ has no explosive properties $^{[7]}$

	Tetramethylammonium nitrate ^[6]
Chemical formula	$C_4H_{12}N_2O_3$
Molecular weight [g mol ⁻¹]	136.2
Crystal system	Tetragonal
Space group	P4/nmm
a [Å]	8.072(2)
b [Å]	
c [Å]	5.642(3)
α [°]	
β[°]	
γ [°]	
V [ų]	367.6
Z	2
$ ho_{ m calc}$ [g cm $^{-3}$]	1.23
τ[K]	303

- [1] A. Le Roux, Meml. Poudres, 1953, 35, 121–132.
- [2] S. P. Verevkin, V. N. Emel'yanenko, I. Krossing, R. Kalb, J. Chem. Thermodyn., 2012, 51, 107–113.
- [3] https://engineering.purdue.edu/~propulsi/propulsion/comb/propellants.html
- [4] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 311.
- [5] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 9, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1980.
- [6] M. Mylrajan, T. K. K. Srinivasan, J. Phys. C (Solid State Physics), 1988, 21, 1673–1690.
- [7] T. Urbański, Ch. 19 in *Chemistry and Technology of Explosives*, vol. II, **1965**, Pergamon Press, Oxford.
- [8] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, *Fluid Phase Equilibria*, **2016**, *408*, 248–258.

Tetramethylene diperoxide dicarbamide

Name [German, acronym]: 1,2,8,9-Tetraoxa-4,6,11,13-tetraazacyclo-tetradecane-

5,12-dione [TMDD]

Main (potential) use: Improvised explosive, suggested as component of

priming mixtures in past to increase combustibility of the mixture^[1], primary explosive for blasting caps^[1,5], patented as sensitizer for other explosives^[6], no

widespread military or commercial use^[3]

$$0 = C \xrightarrow{\begin{array}{c} H_{-} & H_{2} \\ N - C & -O - O - C \\ N - C & -O - O - C \\ N - C & -O - O - C \\ \end{array}} C = O$$

	TMDD
Formula	$C_6H_{12}N_4O_6$
Molecular mass [g mol ⁻¹]	236.18
Appearance at RT	White crystals ^[1] , white powder ^[2] , fine colorless needles ^[3]
IS [J]	FoI = 20 (average gas evolution = 1 mL; cf. RDX FoI = 80, Rotter impact apparatus, 20 mg sample, 2 kg mass) ^[3] , requires strong hammer blow to initiate explosion ^[4] , detonates reliably if 0.5 in steel ball of 8.3 g dropped from height of 12 in but no detonations if dropped from 5 in ^[5] , 30 in (50% ignition point, 2 kg mass) ^[6]
FS [N]	48 (10 mg sample, low report, barely audible cracking sound, Julius Peters BAM) ^[3] , initiation failed @ 42 N (Julius Peters BAM) ^[3]
ESD [J]	0.45 $^{[3]}$, failed to initiate with 0.045 $^{[3]}$, amenable to electrical ignitions of 0.28-0.33 $^{[5]}$
N [%]	23.72
Ω(CO ₂) [%]	-81.29
T _{m.p.} [°C]	~180 ^[1]
T _{dec.} [°C]	154.0 (exo, onset), 185.5 (exo, peak max) (DSC @ 5 °C/min) ^[3]
$ ho$ [g cm $^{-3}$]	
Heat of formation	

	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]				
<i>T</i> _{ex} [K]				
p _{C-J} [kbar]				
VoD [m s ⁻¹]				
$V_0 [L kg^{-1}]$				
Temperature of ignition (°C)	162 (popping sound, test tube remained unbroken @ 5 °C/min) ^[3] , explosion with bright bang on rapid heating ^[4]			
Vapor pressure [atm. @ °C]	Extremely low ^[2]			
Solubility [g/mL]	Insoluble in H ₂ O, MeOH, EtOH, CHCl ₃ , pyridine, other common organic solvents ^[1] , minimal solubility/insoluble in most organic solvents ^[2] , soluble in sulfuric acid ^[2] , insoluble in a wide range of solvents ^[3]			
Heat of decomposition	820 (exo dec. @ 185.5	°C, DSC) ^[3]		

	TMDD ^[3]
Chemical formula	C ₆ H ₁₂ N ₄ O ₆
Molecular weight [g mol ⁻¹]	236.20
Crystal system	Monoclinic
Space group	Pc (7)
a [Å]	4.587(4)
<i>b</i> [Å]	16.080(2)
c [Å]	6.690(5)
α[°]	90
β[°]	107.44(5)
γ[°]	90
V [Å ³]	470.8(5)
Z	2
$ ho_{ m calc}$ [g cm ⁻³]	1.666
<i>T</i> [K]	100

- [1] R. Matyáš, J. Pachman, *Primary Explosives*, Springer Verlag, 2013.
- [2] A.-P. Zarate, F. Colpas-Castillo, D. J. A. Castro, W. A. Cabrera-Lafaurie, E. A. Espinosa-Fuentes, *Huozhayao Xuebao*, **2018**, *41*, 16–20.
- [3] M. Fitzgerald, M. G. Gardiner, D. Armitt, G. W. Dicinoski, C. Wall, J. Phys. Chem., 2015, 119A, 905–910.
- [4] V. von Girsewald, H. Siegens, Chem. Ber., 1914, 47, 2464-2469.
- [5] C. P. Spaeth, *Ignition Composition*, US Patent 1,984,846, 1934.
- [6] L. O. Young, Sensitizing Agents Comprising the Reaction Product of Urea-Formaldehyde-Hydrogen Peroxide, US Patent 3,166,451, **1965**.

2,2,5,5-Tetramethylolcyclopentanol pentanitrate

Name [German, acronym]: Nitropentanol, tetramethylolcyclopentanol

pentanitrate, nitrocyclopentanone, cyclopentanone

pentanitrate [FIVOLITE]

Main (potential) use: melt-cost

$$\begin{array}{c|c} & \text{ONO}_2 \\ & \text{O}_2\text{NOH}_2\text{C} \\ & \text{O}_2\text{NOH}_2\text{C} \\ & \text{H}_2\text{C} \\ & \text{CH}_2 \\ \end{array} \begin{array}{c} \text{CH}_2\text{ONO}_2 \\ & \text{C}_2\text{H}_2\text{ONO}_2 \\ & \text{H}_2\text{C} \\ \end{array}$$

	Fivolite					
Formula	C ₉ H ₁₃ N ₅ O ₁₅	C ₉ H ₁₃ N ₅ O ₁₅				
Molecular mass [g mol ⁻¹]	431.23					
Appearance at RT	Solid ^[2] , pale pink s white crystalline so		id, almost pink-free (pure) ^[5] ,			
IS [J]	H _{50%} = 26 cm (2 kg (design no. 3 appa		milar to RDX) ^[5] , $H_{50} = 29$ cm			
FS [N]	Less sensitive than RDX in sliding friction test ^[5] , 50% firing position = no firing @ 150 cm (6 lb sliding weight, 30° incline, RDX = 40 cm) ^[5] , slight crackling on vigorous grinding in unglazed porcelain mortar ^[5]					
N [%]	16.24	16.24				
Ω(CO ₂) [%]	-35.3	-35.3				
T _{m.p.} [°C]	91–92 (crystals) ^[1] , 92 ^[2] , 91 (pure) ^[5] , 90.5 (crude) ^[5] , 79 ^[6]					
$ ho$ [g cm $^{-3}$]	sp. gr. = 1.57 ^[1] , 1.61 ^[6]					
Heat of formation	144.3 kcal/mol ^[1]					
Heat of combustion	1,149.9 kcal/mol (@ C') ^[1]				
	Calcd. Lit. values Exptl. (EXPLO5 6.04)					
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	1,035 kcal/kg ^[2] 1,035 kcal/kg ^[1]					
	4,330.44 ^[6]					
T _{ex} [K]						

p _{C-J} [kbar]					
VoD [m s ⁻¹]		7,360 (@ 1.57 g cm ⁻³) ^[2]	5,060 (@ 0.75 g cm ⁻³) ^[1]		
			7,360 (@ 1.57 g cm ⁻³) ^[1]		
			24,200 ft/s (@ 1.5 g/mL) ^[3]		
V ₀ [L kg ⁻¹]					
Trauzl test [cm³, % TNT]	160% ^[1] , 480 cm ^{3[4]}				
Ballistic mortar test	15% TNT ^[1] , 1.51 × power of TNT (loose sample) ^[5]				
Vacuum stability test [cm³/h]	@ 80 °C: <0.5 mL after 60 min (5 g sample) ^[5] @ 95 °C: 11–13 mL in 24 h (acetone precipitated sample) ^[5] @ 95 °C: >14 mL in 24 h (EtOH cryst. sample) ^[5] @ 100 °C: 12–15 mL in 12 h (no difference between precipitated or recryst. samples) ^[5]				
Abel test	15–35 min @ 100 °C ^[5]				
Solubility [g/mL]	Soluble in acetone ^[5] , recryst. from EtOH, boiling benzene ^[5] , insoluble in water ^[6] , soluble in most organic solvents ^[6]				

- [1] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1974**.
- [2] T. Urbański, Ch. 8 in *Chemistry and Technology of Explosives*, vol. II, **1965**, Pergamon Press, Oxford.
- [3] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [4] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [5] D. C. Downing, Can. J. Chem., 1952, 30, 124-127.
- [6] J. Liu, Nitrate Esters Chemistry and Technology, Springer, 2019.
- [7] H. D. Mallory, The Development of Impact Sensitivity Tests at the Explosives Research Laboratory Bruceton, Pennsylvania During the Years 1941–1945, NAVORD Report 4236, US Naval Ordnance Laboratory, White Oak, Maryland, USA, 16th March 1956.

Tetramethylolcyclopentanone tetranitrate

Name [German, acronym]: 2,2,5,5-Tetramethylolcyclopentanone tetranitrate

[nitropentanon, FIVONITE, FV]

Main (potential) use: Good plasticizer for NC, is suitable for use in some

explosive and propellant mixtures

$$O_2N$$
 O_2N
 O_2N
 O_2N
 O_2N
 O_2

	FIVONITE
Formula	$C_9H_{12}N_4O_{13}$
Molecular mass [g mol ⁻¹]	384.21
Appearance at RT	White crystalline solid ^[9]
IS [J]	$H_{50\%}$ = 90 cm (Bruceton no. 3 apparatus, 5 kg mass) ^[A] , 62% PA or similar to TNT ^[S] , >90 cm (ERL #3, sample in brass cup 0.308 in inside diameter, 0.01 in thick, $^{7}/_{8}$ in height, 5 kg mass) ^[11] , 38 cm (ERL #5, sample in cylindrical cavity $^{1}/_{16}$ in deep, 0.376 in inside diameter, 5 kg mass) ^[11] , 69 cm (ERL #12, sample on square of Flint paper, $^{21}/_{2}$ kg mass) ^[11]
N [%]	14.58
Ω(CO ₂) [%]	-45.8
T _{m.p.} [°C]	74 ^[3, 4] , 68-70 ^[4] , 68 ^[9, 11]
T _{dec.} [°C]	(Deflagration temp. = $265 {}^{\circ}\text{C}$) ^[4]
ρ [g cm ⁻³]	1.59 ^[3] , 1.611 (crystals @ 20 °C) ^[4] , 1.56 (@ 293 K) ^[1] , 1.590 (cast @ 20 °C) ^[4] , 1.499 (liq. @ freezing point) ^[4] , 1.59 (c) ^[11]
Heat of formation	$-1,760$ kJ/kg (enthalpy of form.) ^[3] , 166.3 kcal/mol ^[4] , 172.57 kcal/mol ($-\Delta H_{\rm f}$, heat of form. @ standard conditions) ^[12]

Heat of combustion	1,093.5 kcal/mol ^[4]						
	Exptl. heat of combustion data ^[12] :						
	$-\Delta U_{\rm B/M}$ (cal/g)	–Δ (kc	U _B al/mol)	–ΔU _R (kc @ 1 atm constant	. and	$-\Delta H_R$ (kcal/mol @ 1 atm. and constant pressure)	
	2,843.99 ± 1.43	1,0	92.71	1,090.85		1,097.60	
	Calcd. (EXPLO5 6.0	3)	Lit. valu	ies	Exptl.		
$-\Delta_{\rm ex}U^{\rm o}[{\rm kJ}{\rm kg}^{-1}]$	4,719				820 kg	cal/kg ^[4]	
T _{ex} [K]	3,307				020 10	,	
p _{C-J} [kbar]	203						
VoD [m s ⁻¹]	7,158 (@ 1.55 g cn	n ⁻³)	1		(@ 1.59 g cm ⁻³) ^[2]		
				calcd., R-P method) ^[7] 7,		7,040 (@ 1.55 g cm^{-3}) ^[3]	
					7,292	(@ 1.57 g cm ⁻³) ^[4]	
			6,815 (@ 1.44 g cm 7,300 (@ 1.57 g cm 23,900 ft/s (@ 1.5		(@ 1.44 g cm ⁻³) ^[4]		
					(@ 1.57 g cm ⁻³) ^[6]		
					23,900 ft/s (@ 1.5 g/ml) ^l		
					7,160	(@ 1.57 g cm ⁻³) ^[11]	
V ₀ [L kg ⁻¹]	747						

Trauzl test [cm³, % TNT]	129% TNT ^[4, 6] , 117% PA ^[5] , 387 cm ^{3[10]}
Ballistic mortar test	121–122% TNT ^[6] , 127% TNT ^[4] , 122% TNT ^[5] , 121% TNT ^[11]
5 s explosion $T[^{\circ}C]$ Explosion $T[^{\circ}C]$	285 (Wood's metal surface) ^[4] $T(^{\circ}\text{C})$ /time to explosion (s) ^[5] : 350/0.300, 320/0.490, 300/0.760, 232/3.35 ^[5]

	T(°C) and ex	$T(^{\circ}\text{C})$ and explosion time (s), 25 mg sample ^[8] :		
	T(°C)	Time (s)	T (°C)	Time (s)
	350	0.300	249	2.40
	320	0.490	232	3.35
	300	0.760	225	No explosion
	270	1.35		
	265 (deflagr	ates) ^[9] , no explosio	on <360 ^[9]	
Vacuum stability test [cm³/h]	5–10 cc gas	5–10 cc gas evolved from 5 g sample in 48 h @ 100 °C ^[4]		
Bullet sensitivity	42 (l. l. (ord)	42 (I. I. (ord)) ^[11] , 58 (no I. I. (alz)) ^[11]		

- [1] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994-2017 ACD/Labs).
- [2] M. H. Keshavarz, Propellants, Explosives, Pyrotechnics, 2012, 37, 489-497.
- R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 311-312. [3]
- B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1974.
- [5] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 9, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1980.
- B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 2, US Army [6] Research and Development Command, TACOM, Picatinny Arsenal, USA, 1962.
- [7] L. R. Rothstein, R. Petersen, *Propellants and Explosives*, 1979, 4, 56-60.
- L. W. Collins, L. D. Haws, Thermochim. Acta, 1977, 21, 1-38.
- [9] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [10] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [11] Summary Technical Report of Division 8, NDRC, Volume 1, The Preparation and Testing of Explosives, Office of Scientific Research and Development, National Defense Research Committee, Washington D. C., USA, 1946.
- [12] G. Stegeman, Heat of Combustion of Explosive Substances, OSRD No. 5306, Division 8 National Defense Research Committee of the Office of Scientific Research and Development, USA, 4th July 1945.

Tetranitroacetimidic acid

Name [German, acronym]: Tetranitroacetimidic acid [TNAA]

Main (potential) use: Possible future oxidizer and replacement for AP^[1],

proposed as an environmentally benign oxidizer $^{\!\scriptscriptstyle{[2]}}$

	TNAA					
Formula	C ₂ HN ₅ O ₉	$C_2HN_5O_9$				
Molecular mass [g mol ⁻¹]	239.06	239.06				
Appearance at RT	Colorless crystal	s which turn s	slightly yellow o	ver time ^[1]		
IS [J]	19 ^[1]					
FS [N]	$20^{[1]}$, triangular crystals obtained from dichloromethane sensitive to friction $^{[2]}$ very thin, flake style particles obtained by precipitating from hexane showed less sensitivity $^{[2]}$, 98 (crystalline TNAA from dichloromethane, average particle size = 112.4 μ m) $^{[2]}$ Concentrated TNAA soln. in dichloromethane (130 g/L) precipitated in 4 volume parts on the following liquids under constant stirring (Julius Peters apparatus) $^{[2]}$:					
	Liquid	Yield (%)	Particle size (µm)	Surface area (m² g ⁻¹)	FS (N)	
	Pentane	90	2.07	1.55	118	
	Hexane	95	2.14	1.50	196	
	Cyclohexane	85	2.97	1.08	157	
	Heptane	75	2.03	1.58	137	
N [%]	29.30					
Ω(CO ₂) [%]	30.12					
T _{m.p.} [°C]	91 ^[1] , 149.1 (TGA) ^[2]					
T _{dec.} [°C]	137 (onset) ^[1] , 100 (onset), 160 (complete dec.) (TGA) ^[2]					
$ ho$ [g cm $^{-3}$]	1.87 (measured)	$1.87 \; (measured)^{[1]}, 1.84 \; (crystal)^{[1]}$				
Heat of formation	$-134.6 \text{ kJ/mol } (\Delta H_{\rm f}, \text{ calcd.})^{[1]}, -0.563 \text{ kJ/g } (\Delta H_{\rm f}, \text{ calcd.})^{[1]}$					

	Calcd. (EXPLO5 6.01)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]			
<i>T</i> _{ex} [K]			
p _{C-J} [kbar]	23 GPa (@ 1.84 g cm ⁻³ , $\Delta H_f = -134.7 \text{ kJ/mol})^{[1]}$		
VoD [m s ⁻¹]	7,503 (@ 1.84 g cm ⁻³ , $\Delta H_f = -134.7 \text{ kJ/mol})^{[1]}$		
$V_0 [L \text{ kg}^{-1}]$			
Thermal stability	Stable @ RT for long periods of time ^[1]		
Solubility [g/mL]	Only slightly soluble in most organic solvents ^[1] , partially soluble in ethyl acetate and dichloromethane ^[1] , unstable in acetonitrile ^[1] , can be recryst. from dichloromethane ^[1] , decomposition in DMSO and NMP ^[2] , hexane can be used as antisolvent ^[2]		
Hygroscopicity	Nonhygroscopic ^[1] , hydrolyzed by water ^[2]		
Compatibility	Unstable in acetonitrile (dec.) ^[1] , dec. in DMSO ^[1] , dec. in aqueous KOH, sodium bicarbonate, ammonia or guanidinium carbonate soln. ^[1] , decomposition in DMSO and NMP ^[2] , hydrolyzed by water ^[2] , inert toward HTPB and TDI (toluene diisocyanate) (FT-IR) ^[2]		
I _{sp} [s]	209 (calcd. EXPLO 5 6.01, @ isobaric pressure of 70 bar and initial T of 3,300 K) $^{[1]}$		

	TNAA ^[1]
Chemical formula	$C_2H_1N_5O_9$
Molecular weight [g mol ⁻¹]	239.06
Crystal system	Monoclinic
Space group	P2 ₁ /c
<i>a</i> [Å]	11.866(4)
<i>b</i> [Å]	6.713(2)
c [Å]	10.848(4)
α[°]	90
β [°]	93.929(4)
γ [°]	90

<i>V</i> [Å ³]	862.0(5)
Z	4
$ ho_{ m calc}$ [g cm $^{-3}$]	1.842
τ[K]	293

- [1] T. T. Vo, D. A. Parrish, J. M. Shreeve, J. Am. Chem. Soc., 2014, 136, 11934–11937.
- [2] P. M. Jadhav, H. Prasanth, P. K. Pandey, R. S. Patil, S. C. Bhattacharyya, *RSC Adv.*, **2017**, *7*, 30663–30672.

2,3,4,6-Tetranitroaniline

Name [German, acronym]: Main (potential) use:

2,3,4,6-Tetranitroaniline [tetranitroanilin, TNA, TeNA] Filler in bombs, mines, component of HE compositions, substitute for tetryl in detonators^[8], no practical use as a consequence of its low stability^[13], acts as a starting material for the preparation of other energetic materials^[13], too reactive to be suitable for application^[14], was used during World War I^[14], was used as an ingredient of cheap, relatively insensitive blasting explosives^[22], MF replacement in commercial blasting caps or electric detonators^[22], as a booster charge in ammunition^[22]

$$O_2N$$
 NH_2
 NO_2
 NO_2

	TNA
Formula	$C_6H_3N_5O_8$
Molecular mass [g mol ⁻¹]	273.12
Appearance at RT	Yellow crystals ^[13, 24] , yellowish-brown or greenish-brown crystals ^[13] , brownish crystals ^[21] , greenish-yellow to olive-green crystalline solid ^[22]
IS [J]	6 Nm ^[7] , log $H_{50\%} = 1.61^{[6]}$, FI = 86% of PA ^[8] , 54–55 cm (2 kg hammer, Kast apparatus) ^[8] , $H_{50\%} = 41$ cm ^[9, 12] , $H_{50\%} = 141$ cm (B.M., type 12 tool, 2.5 kg mass, 35 mg sample, garnet paper) ^[11] , same sensitivity as Tetryl ^[14] , 41 cm (2.5 kg mass) ^[16] , 27.7 cm (2.5 kg mass, AFATL) ^[16] , $H_{50} = 47$ cm (2.5 kg mass, type 12 tool) ^[17] , $\log(H_{50}) = 1.613$ (<i>Kamlet/Adolph</i>) ^[18] , $H_{50\%} = 47$ cm (2.5 kg mass) ^[25]
N [%]	25.64
Ω(CO ₂) [%]	-32.2
T _{m.p.} [°C]	207–211 ^[1] , 216 ^[7] , 216–217 (dec.) ^[8] , 215 (dec.) ^[13, 19] , 210 (melts with dec) ^[14, 21] , 210–215 (dec.) ^[22] , 217–220 (dec.) ^[24]
T _{dec.} [°C]	220–230, 222 (puffs) ^[8] , 210 (melts with dec.) ^[14]
$ ho$ [g cm $^{-3}$]	1.87 (@ 293 K) $^{[2]}$, 1.867 $^{[7]}$, 1.867 (crystal) $^{[8]}$, sp. gr. = 1.867 $^{[13, 24]}$, 1.861 $^{[12]}$

Heat of formation	$\begin{array}{l} -179 \text{ kJ/kg (enthalpy of form.)}^{[7]}, \ 14.0 \text{ kcal/mol } (Q_t)^{[8]}, \ 25.4 \text{ kcal/kg}^{[23]}, \\ -11.74 \text{ kcal/mol } (\Delta H_f \text{ (s))}^{[12]}, \ -48.9 \text{ kJ/mol (enthalpy of form., exptl.)}^{[24]}, \\ -61.5 \text{ kJ/mol (enthalpy of form., calcd., emp.)}^{[24]}, \ -63.9 \text{ kJ/mol (enthalpy of form., calcd., S-D method)}^{[24]} \end{array}$		
Heat of combustion	654.3 kcal/mol ($(Q_c^{V})^{[8]}$, 653 kcal/mol $(Q_c^{P})^{[8]}$) ^[8] , 2,411 kcal/kg (@ C ^V) ^[23]
	Calcd. (EXPLO5 5.04)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}[{\rm kJ}{\rm kg}^{-1}]$	5,203	1.39 kcal/g $(Q_{\text{max}}, \text{calcd.})^{[12]}$	4,378 [H ₂ O (l)] ^[3, 7] 4,100 [H ₂ O (g)] ^[5]
			4,280 [H ₂ O (g)] ^[7] 265.1 kcal/mol ^[8]
<i>T</i> _{ex} [K]	3,794	3,238 °C (calcd.) ^[8] 3,500 °C (calcd.) ^[8]	
p _{C-J} [kbar]	30.8	307 (@ 1.861 g cm ⁻³ , calcd.) ^[12]	
VoD [m s ⁻¹]	8,375 (@ TMD)	8,240 (@ 1.861 g cm ⁻³ , calcd.) ^[12]	7,300 (@ 1.5 g cm ⁻³) ^[5] 7,630 (@ 1.6 g cm ⁻³) ^[8] 25,000 ft/s (@ 1.6 g/mL) ^[19] 7,500 (@ 1.6 g cm ⁻³) ^[21]
V ₀ [L kg ⁻¹]	657		813 ^[4, 7] 10.55 L gas produced on explosion of 1 g TNA @ 3,238 °C ^[8]

Trauzl test [cm³, % TNT]	130-149% TNT ^[10] , $140%$ TNT (average value) ^[8] , 430 cc (10 g sample, cf. 254 cc for TNT, 297 cc for PA) ^[14] , 430 cc (i.e., $10-15%$ higher than for Tetryl) ^[24]
Sand test [g]	102% TNT ^[8, 10] , 56.3 g (amount of sand crushed finer than 30 mesh, by total charge consisting of base charge of 0.50 g tetranitroaniline and 0.30 g priming charge of MF) ^[20] , 44.6 g (amount of sand crushed finer than 30 mesh, by base charge of 0.50 g tetranitroaniline) ^[20] , rel. strength cf. TNT = $1.02^{[20]}$

Ballistic mortar test	121% TNT ^[10] , 121% TNT (average value) ^[8]
Initiation efficiency	Minimum initiating charge of primary explosive (g) required to initiate 0.4 g TNA (0.4 g TNA in detonator capsule, pressed down, initiator added on top, covered with reinforcing cap, pressed @ 200 atm./in²) ^[15] : 0.09 g cyanuric azide ^[15] , 0.20 g mercury fulminate ^[15]
	Minimum initiating charge of primary explosive (g) required to initiate 0.5 g TNA (0.5 g TNA in No. 8 detonator shell, primary explosive added on top, both compressed under reinforcing capsule @ 3,400 lb/in ²) ^[15] : 0.085 g DDNP ^[15] , 0.175 g mercury fulminate ^[15] , 0.05 g LA ^[15]
	Minimum initiating charge of primary explosive (g) required to initiate 0.4 g TNA (0.5 g TNA compressed in detonator capsules @ 1,000 lb/in²) ^[15] : 0.20 g fulminate with reinforcing cap ^[15] , 0.05 g HMTD with reinforcing cap ^[15]
5 s explosion T [°C] Explosion T [°C] Initiation T [°C]	237 (@ 5 °C/min) ^[8] , 247 (@ 20 °C/min) ^[8] , ~ 237 ^[19] 231–233 ^[13] , 226 (deflagrates) ^[14, 21]
Thermal stability	Heat test: dec. @ 65.5 °C if traces of moisture are present ^[13] , long storage stability not very satisfactory particularly in the presence of moisture ^[21] , completely stable in dry storage ^[22] , long-term exposure to moisture promotes hydrolysis ^[22] , storage for 9 years during World War I showed significant deterioration ^[24]
Vacuum stability test [cm³/h]	Industrial sample: 0.34 cc/g/h in first 16 h @ 100 °C , 0.020 cc/g/h in $17-32 \text{ h}$ period, 0.015 cc/g/h in $33-48 \text{ h}$ period ^[8] sample stored for ~ 10 months : 1.39 cc/g gas evolved in 30 h @ $120 \text{ °C}^{[8]}$
Solubility [g/mL]	Poorly soluble in common organic solvents ^[13, 24] , soluble in acetone and o -nitrotoluene ^[13] , readily soluble in acetone (1 part in 6 parts acetone @ boiling temp.) ^[14] , readily soluble in glacial acetic acid (1 part in 24 parts glacial acetic acid @ boiling temp.) ^[14] , sparingly soluble in benzene and $\text{CHCl}_3^{[14]}$, insoluble in water ^[24] , can be recryst. from nitroxylene ^[24]
Hygroscopicity	Moisture on long-term storage promotes hydrolysis ^[21] , nonhygroscopic ^[24]
Compatibility	Does not attack metals ^[19, 22] , moisture on long-term storage promotes hydrolysis ^[21] , no reaction with water @ RT but vigorous reaction @ $50 ^{\circ} C^{[24]}$, reacts with aqueous sodium acetate @ $RT^{[24]}$
Dipole moment [D]	4.85 (calcd.) ^[16]
Rifle bullet test	Readily detonated by rifle bullet ^[22]
Abel test	Withstands @ 71 °C for 1 h ^[24]
Flash point [°C]	222-223 ^[24]

	TNA ^[2]
Chemical formula	C ₆ H ₃ N ₅ O ₈
Molecular weight [g mol ⁻¹]	273.12
Crystal system	Monoclinic
Space group	P2 ₁ /c (no. 14)
a [Å]	7.270(10)
<i>b</i> [Å]	11.060(20)
c [Å]	12.270(20)
α [°]	90
β[°]	98.80(30)
γ[°]	90
V [Å ³]	974.97
Z	4
$ ho_{ m calc}$ [g cm ⁻³]	1.861
T[K]	295

- [1] L. A. Kaplan, Method of Production of 2,3,4,6-Tetranitroaniline, US Patent 3,062,885, 1962.
- [2] C. Dickinson, J. M. Stewart, J. R. Holden, *Acta Cryst.*, **1966**, *21*, 663–670.
- [3] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2008**, *33*, 448–453.
- [4] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [5] W. C. Lothrop, G. R. Handrick, Chem. Revs., 1949, 44, 419-445.
- [6] H. Nefati, J.-M. Cense, J.-J. Legendre, J. Chem. Inf. Comput. Sci., 1996, 36, 804–810.
- [7] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 312–313.
- [8] B. T. Fedoroff, H. A. Aaronson, E. F. Reese, O. E. Sheffield, G. D. Clift, Encyclopedia of Explosives and Related Items, vol. 1, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1960.
- [9] M. J. Kamlet, H. G. Adolph, *Propellants and Explosives*, 1979, 4, 30–34.
- [10] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [11] D. E. Bliss, S. L. Christian, W. S. Wilson, J. Energet. Mater., 1991, 9, 319–348.
- [12] P. Politzer, J. S. Murray, High-Performance, Low Sensitivity: The Impossible (or Possible) Dream? in Energetic Materials From Cradle to Grave, M. K. Shukla, V. M. Boddu, J. A. Steevens, R. Damavarapu, J. Leszczynski (eds.), Springer-Verlag, 2017, pp. 1–22.
- [13] T. Urbański, Ch. 17 in *Chemistry and Technology of Explosives*, vol. 1, **1964**, Pergamon Press, Oxford.
- [14] T. L. Davis, The Chemistry of Powder and Explosives, vol. 1, 1941, John Wiley and Sons Inc., New York.
- [15] T. L. Davis, The Chemistry of Powder and Explosives, vol. 2, 1943, John Wiley and Sons Inc., New York.

- [16] P. Politzer, Computational Studies of Polynitroaromatic Molecules and the Development of Sensitivity Relationships, AFATL-TR-90-66, Air Force Armament Laboratory, Florida, USA, October 1990.
- [17] W.-P. Lai, P. Lian, B.-Z. Wang, Z.-X. Ge, J. Energet. Mater., 2010, 28, 45-76.
- [18] N. R. Badders, C. Wei, A. A. Aldeeb, W. J. Rogers, M. S. Mannan, J. Energet. Mater., 2006, 24, 17–33.
- [19] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [20] L. R. V. Clark, Industrial and Engineering Chemistry, 1934, 26, 554-557.
- [21] J. Bebie, Manual of Explosives, Military Pyrotechnics and Chemical Warfare Agents, Composition, Properties, Uses, MacMillan Co., 1943.
- [22] Encyclopedia of Explosives A Compilation of Principal Explosives, Their Characteristics, Processes of Manufacture and Uses, Ordnance Technical Intelligence Agency, Durham, North Carolina, USA, 13th May 1960.
- [23] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part III, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [24] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248–258.
- [25] C. K. Kim, S. G. Cho, J. Li, C. K. Kim, H. W. Lee, Bull. Korean Chem. Soc., 2011, 32, 4341–4346.

Tetranitrobenzene

Name [German, acronym]: 1,2,3,5-Tetranitrobenzene, 1,2,4,6-tetranitrobenzene

[tetranitrobenzol, TetNB, TETNB]

Main (potential) use: high explosive

$$O_2N$$
 NO_2
 NO_2

	Tetranitrobenzene
Formula	$C_6H_2N_4O_8$
Molecular mass [g mol ⁻¹]	258.10
Appearance at RT	Bright yellow crystalline solid (1,2,3,5-isomer) ^[1] , fine yellow needles ^[5] , yellow solid (1,2,3,4-isomer) ^[11]
IS [J]	$H_{50\%} = 28 \text{ cm (log h} = 1.45, \text{ type 12 tool, 2.5 kg mass, 35 mg sample,}$ garnet paper, B.M.) ^[3] , $H_{50} = 0.27 \text{ m (cf. 4.90 m for TATB)}^{[8]}$, $H_{50} = 33 \text{ cm}^{[9]}$, $H_{50\%} = 28 \text{ cm (2.5 kg mass)}^{[12]}$
N [%]	21.71
Ω(CO ₂) [%]	-31.00
T _{m.p.} [°C]	129–130 (1,2,3,5-isomer) ^[1,11] , 116 (crystals) ^[5] , 124–125 (recryst.) ^[6] , 125–129 (recryst.) ^[6] , 108–109 (1,2,3,4-isomer) ^[11] , 127–129 (no isomer specified) ^[11]
T _{dec.} [°C]	
$ ho$ [g cm $^{-3}$]	1.82 ^[3]
Heat of formation	$-30.9 \text{ kcal/mol } (\Delta H_{\rm f}(g) @ 25 ^{\circ}\text{C}, 1,2,3,4\text{-isomer, calcd., MINDO/3})^{[10]}, \\ -31.6 \text{ kcal/mol } (\Delta H_{\rm f}(g) @ 25 ^{\circ}\text{C}, 1,2,3,5\text{-isomer, calcd., MINDO/3})^{[10]}, \\ -32.0 \text{ kcal/mol } (\Delta H_{\rm f}(g) @ 25 ^{\circ}\text{C}, 1,2,4,5\text{-isomer, calcd., MINDO/3})^{[10]}, \\ 112.5 \text{ kcal/mol } (\Delta H_{\rm f}(g) @ 25 ^{\circ}\text{C}, 1,2,3,4\text{-isomer, calcd., MNDO})^{[10]}, \\ 110.1 \text{ kcal/mol } (\Delta H_{\rm f}(g) @ 25 ^{\circ}\text{C}, 1,2,3,5\text{-isomer, calcd., MNDO})^{[10]}, \\ 109.9 \text{ kcal/mol } (\Delta H_{\rm f}(g) @ 25 ^{\circ}\text{C}, 1,2,4,5\text{-isomer, calcd., MNDO})^{[10]}$

	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]			
<i>T</i> _{ex} [K]			
p _{C-J} [kbar]		33.38 GPa (@ 1.90 g cm ⁻³ , calcd., K-J) ^[4]	
VoD [m s ⁻¹]		8,530 (@ 1.90 g cm ⁻³ , calcd., K-J) ^[4]	
V_0 [L kg $^{-1}$]			
Thermal stability	Virtually no dec. on storage in air ^[1]		
Solubility [g/mL]	1,2,3,5-isomer soluble in EtOH, acetone, $Et_2O^{[1]}$, some solubility in hydrocarbons and halocarbons ^[1] , practically insoluble in $H_2O^{[1]}$, easily soluble in EtOH, Et_2O , glacial acetic acid ^[5] , recryst. from CCl_4 (1,2,3,4-isomer) ^[11]		
Compatibility	1,2,3,5-isomer slowly reacts with H_2O turning soln. yellowish ^[1] , rapid conversion of 1,2,3,5-isomer to PA in boiling $H_2O^{[1]}$, forms red complexes in presence of hydroxide or sulfide ion in water or ethoxide ion in ethanol ^[7]		

	1,2,4,6-Tetranitrobenzene ^[2]	
Chemical formula	C ₆ H ₂ N ₄ O ₈	
Molecular weight [g mol ⁻¹]		
Crystal system	Orthorhombic	
Space group	P2 ₁ 2 ₁ 2 ₁ (no. 19)	
a [Å]	12.4	
<i>b</i> [Å]	13.1	
c [Å]	6.15	
α [°]	90	
β[°]	90	
γ[°]	90	
V [ų]	999.006	
Z	4	
$ ho_{ m calc}$ [g cm ⁻³]	1.716	
τ[K]	295	

- [1] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part II, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [2] Hertel, Romer, Z. Physikalische Chemie (Leipzig), 1933, B22, 267.
- [3] W. S. Wilson, D. E. Bliss, S. L. Christian, D. J. Knight, Explosive Properties of Polynitroaromatics, NWC TP 7073, Naval Weapons Center, China Lake, USA, April 1990.
- [4] H. Du, H. Lui, Y. Liu, J. Zhang, F. Wang, X. Gong, Chinese J. Chem., 2011, 29, 455–462.
- [5] R. Nietzki, R. Dietschy, Ber. der Dtsch. Chem. Gesell.., 1901, 34, 55-59.
- [6] R. L. Atkins, A. T. Nielsen, C. Bergens, W. S. Wilson, J. Org. Chem., 1984, 49, 503-507.
- [7] M. R. Crampton, M. El Ghariani, J. Chem. Soc. B, 1970, 391–395.
- [8] X. Cao, B. Xiang, C.-Y. Zhang, *Chinese J. Energet. Mater.*, **2012**, *20*, 643–649.
- [9] G.-D. Wang, Y.-C. Liu, Chinese J. Energet. Mater., 2008, 16, 167–174.
- [10] R. M. Guidry, L. P. Davis, MINDO/3 and MNDO Calculations for Nitro Compounds, FJSRL-TR-83-0012, Air Force Systems Command, Unites States Air Force, Colorado, USA, 13th January 1983.
- [11] J. H. Boyer, T. P. Pillai, *High Energy Materials, New Preparation Approaches to Nitro and Nitroso Derivatives*, AD-A100 142, ONR report, 1st June **1981**.
- [12] C. K. Kim, S. G. Cho, J. Li, C. K. Kim, H. W. Lee, Bull. Korean Chem. Soc., 2011, 32, 4341-4346.

Tetranitro-bicyclo-nonanone

Name [German, acronym]: 1,3,4,7-Tetranitrooctahydro-2*H*-imidazo[4,5-*b*]pyrazin-2-

one [K56]

Main (potential) use: under research

Structural formula:

	K56		
Formula	C ₅ H ₆ N ₈ O ₉		
Molecular mass [g mol ⁻¹]	322.15		
Appearance at RT			
IS [J]			
FS [N]			
ESD [J]			
N [%]	34.78		
Ω(CO ₂) [%]	-19.87		
T _{m.p.} [°C]			
T _{dec.} [°C]			
$ ho$ [g cm $^{-3}$]	1.975 ^[1]		
Heat of formation	-144 kJ/mol (enthalpy of form.) ^[1]		
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]			
<i>T</i> _{ex} [K]			
p _{C-J} [kbar]			
VoD [m s ⁻¹]			
V_0 [L kg ⁻¹]			

[1] M. Golfier, H. Graindorge, Y. Longevialle, H. Mace, *New Energetic Molecules and Their Applications in Energetic Materials*, ICT **1998**, Karlsruhe, Germany, pp. 3-1–3-18.

Tetranitrocarbazole

Name [German, acronym]: Tetranitrocarbazole, 1,3,6,8-tetranitrocarbazole,

tetranitrodibenzopyrrole, nitrosan [tetranitrocarbazol,

TNC, TeNCbz]

Main (potential) use: Ingredient in pyrotechnic compositions, igniter^[3],

energetic fuel in some propellants^[10], some pyrotechnic

compositions^[10]

$$O_2N$$
 NO_2
 NO_2
 NO_2

	TNC	
Formula	C ₁₂ H ₅ N ₅ O ₈	
Molecular mass [g mol ⁻¹]	347.20	
Appearance at RT	Light yellow solid ^[3] , yellow crystals ^[10]	
IS [J]	$19.62~(100 + cm, 2~kg~mass, 20~mg~sample, B.M.)^{[3]}, 18~in~(14~mg~sample, 2~kg~mass, P.A.)^{[3,6]}, 28~in~(2~kg~mass, confined, height of no detonation, P.A.)^{[10]}$	
FS [N]	Unaffected by steel shoe (friction pendulum test) $^{[3]}$, unaffected by fiber shoe (friction pendulum test) $^{[3]}$	
N [%]	20.17	
Ω(CO ₂) [%]	-85.3	
T _{m.p.} [°C]	296 ^[1, 4, 5, 9] , 296 (for pure 1,3,6,8-isomer) ^[3] , 280 for crude product ^[3] , 300 ^[10]	
T _{dec.} [°C]	Yellow crystals turn red-brown above 200 °C ^[10]	
$ ho$ [g cm $^{-3}$]	1.893 (@ 293 K) ^[2] , 1.765 (@ 173 K) ^[4] , 1.73 (@ 20 °C, pycnometer) ^[4]	
Heat of formation	54.4 kJ/kg (enthalpy of form.) ^[5] , -18.9 kJ/mol ^[4] , -6.9 kcal/mol $(Q_l)^{[6]}$, 28.3 kcal/kg (energy of form.) ^[7] , 13.0 kcal/kg (enthalpy of form.) ^[7] , -18.9 kJ/mol (enthalpy of form.) ^[10] , 18.9 kJ/mol (enthalpy of form., exptl.) ^[11] , 24.0 kJ/mol (enthalpy of form., calcd., emp.) ^[11] , 3.2 kJ/mol (enthalpy of form., calcd., S-D method) ^[11]	
Heat of combustion	1,310 kcal/mol ^[6]	

	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	3,738	890 kcal/kg ^[7]	3,433 [H ₂ O (l)] ^[5]
T _{ex} [K]	2,812		
p _{C-J} [kbar]	205		
VoD [m s ⁻¹]	7,125 (@ TMD)		
V ₀ [L kg ⁻¹]	543		

Sand test [g]	41.3 g (200 g bomb) ^[3] , 86–959	41.3 g (200 g bomb) ^[3] , 86–95% TNT ^[6]		
Initiation efficiency	0.20 g LA minimum detonating charge ^[3] , 0.25 g Tetryl (minimum detonating charge) ^[3]			
5 s explosion T [°C] 5 s ignition T [°C]	470 ^[6] , 470 (dec.) ^[3] 470 (dec.) ^[8]			
100 °C heat test [% mass loss]	0.15% mass loss in first 48 $h^{[3,}$ 48 $h^{[3,6]}$, no explosion in 100 h			
Thermal stability	Can be dried as thin layer @ 10	00–110 °C for 4 h ^[3]		
Vacuum stability test [cm³/h]	0.2 cc/40 h @ 100 °C ^[3] , 0.2 cc	/40 h @ 120 °C ^[3]		
Solubility [g/mL]	0.10 g / 100 g H ₂ O @ 95 °C ^[3] , i	nsoluble in water ^[10]		
Hygroscopicity	0.01% @ 30 °C with 90% RH ^[3] , very soluble in nitrobenzene ^[3] , soluble in acetone ^[3] , insoluble in benzene, CHCl ₃ , CCl ₄ , Et ₂ O and petroleum ether ^[3] Qualitative solubilities ^[3] :			
	Solvent	Solubility		
	Nitrobenzene	Very soluble		
	Acetone	Soluble		
	Benzene	Insoluble		
	Chloroform Insoluble			
	Carbon tetrachloride Insoluble			
	Ether Insoluble			
	Ether, petroleum Insoluble			
Flash point [°C]	350 ^[10]			

	Tetranitrocarbazole ^[4]
Chemical formula	C ₁₂ H ₅ N ₅ O ₈
Molecular weight [g mol ⁻¹]	347.21
Crystal system	Monoclinic
Space group	P2 ₁ /c (no. 14)
a [Å]	
<i>b</i> [Å]	
c [Å]	
α[°]	
β [°]	
γ [°]	
V [ų]	
Z	
$ ho_{calc}$ [g cm $^{-3}$]	1.765
τ[K]	−100 °C

- D. B. Murphy, F. R. Schwartz, J. P. Picard, J. V. R. Kaufmann, J. Am. Chem. Soc., 1953, 75, 4289–4291.
- [2] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994–2017 ACD/Labs).
- [3] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.
- [4] J. Šarlauskas, *Synthesis and X-ray Crystal Structure of TNC (1,3,6,8-Tetranitrocarbazole)*, in *Proceedings of New Trends in Research of Energetic Materials*, NTREM 20, April 26th–28th **2017**, pp. 1038–1048.
- [5] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 313.
- [6] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, *vol. 2*, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [7] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 9, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1980.
- [8] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1969.
- [9] T. Urbański, Ch. 17 in Chemistry and Technology of Explosives, vol. 1, 1964, Pergamon Press, Oxford.
- [10] K. L. Kosanke, B. J. Kosanke, B. T. Sturman, R. M. Winokur, *Encyclopedic Dictionary of Pyrotechnics (and Related Subjects), Part 3 P to Z*, Pyrotechnic Reference Series No.5, Journal of Pyrotechnics Inc., Whitewater, Colorado, USA, **2012**, p. 1108.
- [11] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248-258.

1,1,3,3-Tetranitrocyclobutane

Name [German, acronym]: Tetranitrocyclobutane [TNCB]

Main (potential) use: high explosive

	TNCB			
Formula	C ₄ H ₄ N ₄ O ₈			
Molecular mass [g mol ⁻¹]	236.09			
Appearance at RT	Clear, colorless plat	e crystals ^[1]	'	
IS [J]				
FS [N]				
ESD [J]				
N [%]	23.73			
Ω(CO ₂) [%]	-13.55	-13.55		
T _{m.p.} [°C]	165 ^[2]	165 ^[2]		
T _{b.p.} [°C]				
T _{phase transition} [°C]				
T _{dec.} [°C]				
$ ho$ [g cm $^{-3}$]	1.83 ^[2]			
Heat of formation	-84 kJ/mol			
	Calcd. Lit. values Exptl. (EXPLO5 6.03)			
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	6178			
<i>T</i> _{ex} [K]	4222			

p _{C-J} [kbar]	339	
VoD [m s ⁻¹]	8646	
V_0 [L kg ⁻¹]	706	

	TNCB ^[1]
Chemical formula	$C_4H_4N_4O_8$
Molecular weight [g mol ⁻¹]	236.1
Crystal system	Triclinic
Space group	P-1
a [Å]	6.301 (1)
<i>b</i> [Å]	7.858 (1)
c [Å]	8.736 (1)
α[°]	85.88 (1)
β [°]	84.62 (1)
γ[°]	85.13 (1)
<i>V</i> [Å ³]	428.2 (1)
Z	2
$ ho_{ m calc}$ [g cm $^{-3}$]	1.831
τ[K]	295

^[1] R. Gilardi, C. George, J. L. Flippen-Anderson, *Acta Cryst.*, **1992**, *C48*, 1680–1681.

^[2] P. F. Pagoria, G. S. Lee, A. R. Mitchell, R. D. Schmidt, *Thermochim Acta*, **2002**, *384*, 187–204.

Tetranitroethane

Name [German, acronym]: Main (potential) use:

1,1,2,2-Tetranitroethane [tetranitroethan, TNE]
Possible precursor for high-performance energetic

materials^[1]

	TNE		
Formula	$C_2H_2N_4O_8$		
Molecular mass [g mol ⁻¹]	210.06		
Appearance at RT			
N [%]	26.67		
Ω(CO ₂) [%]	+22.9		
T _{m.p.} [°C]			
T _{dec.} [°C]			
ρ [g cm ⁻³]			
Heat of formation	$-19.8 \text{ kcal/mol } (\Delta H_{\rm f}({\rm g}) \ @ \ 25 \ ^{\circ}{\rm C}$, calcd., MINDO/3) ^[2] , 86.1 kcal/mol ($\Delta H_{\rm f}({\rm g}) \ @ \ 25 \ ^{\circ}{\rm C}$, calcd., MNDO) ^[2]		
		'	·
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]			
T _{ex} [K]			
p _{C-J} [kbar]			
VoD [m s ⁻¹]			
V ₀ [L kg ⁻¹]			
Dipole moment, μ [D]	0.07 (calcd., MINDO/3, (g) @ 25 °C) ^[2] , 0.02 (calcd., MNDO (g) @ 25 °C) ^[2]		

^[1] P. Yin, Q. Yu, S. Dharavath, J. M. Shreeve, J. Mater. Chem. A, 2018, 6, 15815–15820.

^[2] R. M. Guidry, L. P. Davis, MINDO/3 and MNDO Calculations for Nitro Compounds, FJSRL-TR-83-0012, Air Force Systems Command, United States Air Force, Colorado, USA, January 1984.

N,N',N"',N"''-Tetranitro-1,1,2,2-ethanetetramine

Name [German, acronym]: N,N',N'',N'''-Tetranitro-1,1,2,2-ethanetetramine [TNAE]

Main (potential) use: Potential new energetic material^[1]

	TNAE		
Formula	C ₂ H ₆ N ₈ O ₈		
Molecular mass [g mol ⁻¹]	270.12		
Appearance at RT			
IS [J]	$H_{50} = 0.76 \text{ kp-m } (2 \text{ kg m})$	ass, @ 20 °C, ~ 45% RH,	25 tests, BAM) ^[1]
FS [N]	8.3 kp (BAM) ^[1]		
N [%]	41.48		
Ω(CO ₂) [%]	5.92		
T _{m.p.} [°C]			
T _{dec.} [°C]	143 (onset), 145 (peak max.) (DSC, @ 10 °C/min, N_2 flow = 50 mL/min, Al cup with pierced lid) ^[1] 415.0 K (T_p , DSC @ 5 K/min) ^[2] , 421.1 K (T_p , DSC @ 10 K/min) ^[2] , 425.0 K (T_p , DSC @ 15 K/min) ^[2] , 427.9 K (T_p , DSC @ 20 K/min) ^[2] , 430.0 K (T_p , DSC @ 25 K/min) ^[2]		
$ ho$ [g cm $^{-3}$]	1.87 ^[1] , 1.89 (He pycnometer) ^[1]		
Heat of formation	40.9 kcal/mol ($\Delta_f H^o$ (g), calcd.) ^[1] , 11.6 kcal/mol ($\Delta_f H^o$ (s), calcd.) ^[1] , 12.5 kcal/mol (calcd.) ^[1]		
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]		1,373.80 cal/g (calcd.) ^[1]	

T _{ex} [K]			
p _{C-J} [kbar]		39.25 GPa (calcd.) ^[1]	
		37.6 GPa (@ 1.89 g cm ⁻³ , calcd., BKWC, $\Delta_i H^o$ (s) = 12.5 kcal/mol) ^[1]	
VoD [m s ⁻¹]		8,760 (@ 1.87 g cm ⁻³ , calcd.) ^[1]	
		9,580 (@ 1.89 g cm ⁻³ , calcd., BKWC, $\Delta_f H^o$ (s) = 12.5 kcal/mol) ^[1]	
V ₀ [L kg ⁻¹]			
ΔH _{sub} [kcal/mol]	29.3 ^[1]		_

^[1] Y. Lee, P. Goede, N. Latypov, H, Östmark, *Synthesis and Analysis of N,N',N'''N'''-Tetranitro-1,1,2,2-ethanetetramine and Energetic Salts Thereof*, ICT **2005**, Karlsruhe, Germany, pp. 124-1–124-9.

^[2] K.-J. Cui, Z.-B. Xu, P. Wang, Z.-H. Meng, *Chinese J. Expl. Prop.*, **2014**, *37*, 17–20.

Tetranitroglycolurile

Name [German, acronym]: Tetranitroglycolurile, tetranitroacetylenediurein,

 $2,\!4,\!6,\!8\text{-tetranitro-}2,\!4,\!6,\!8\text{-tetraazabicyclo}[3.3.0] octane-$

3,7-dione [Sorguyl, TNGU]

Main (potential) use: Highly explosive^[1], first patented in 1975^[18], potential

for use in self-remediating formulations that are specifically designed to have short lifetimes in the environment after deployment (reduction of UXO

environmental hazards)[18]

$$\begin{array}{c|c} O_2N & NO_2 \\ \hline \\ O & \\ \hline \\ O_2N & NO_2 \\ \end{array}$$

	Sorguyl		
Formula	C ₄ H ₂ N ₈ O ₁₀		
Molecular mass [g mol ⁻¹]	322.11		
Appearance at RT	Small clumps of fine needle crystals ^[18] , spherical morphology also obtained ^[18]		
IS [J]	$2.04^{[1]}, H_{50} = 10.4 \text{ cm}^{[1]}, 0.15 - 0.2 \text{ ((no units) based on TNT} = 1)^{[5]}, \\ 0.15 - 0.2 \text{ kg m}^{[8]}, 2 \text{ in (2 kg mass, P.A.)}^{[8]}, 6 \text{ cm (2 kg mass, B.M.)}^{[8]}, \\ A_{d1} = 100\%^{[16]}, H_{50\%} = 4.09 \text{ in}^{[18]}$ IS data of various morphologies of TNGU, H_{50} , 5 lb mass, Lanlie one-shot method ^[18] :		
	Morphology Impact (in)		
	Sample prepared by lit. method 4.09		
	TNGU prepared from imidazo imidazoles 11.06		
	Sample prepared by lit. method, sphericalized 13.07		
	TNGU prepared from nitrate salt, sphericalized 15.39		

	IS data of various morphologies of TNGU, H_{50} , 2 kg mass, L method ^[18] :	anlie one-shot	
	Morphology	Impact (cm)	
	Sample prepared by lit. method	10.4	
	TNGU prepared from imidazo imidazoles	28.1	
	Sample prepared by lit. method, sphericalized	33.2	
	TNGU prepared from nitrate salt, sphericalized	29.1	
FS [N]	$54^{[1,18]}$ FS data of various morphologies of TNGU, H_{50} , Julius-Peters	s, BAM ^[1, 18] :	
	Morphology	Friction (N)	
	Sample prepared by lit. method	54	
	TNGU prepared from imidazo imidazoles	70	
	Sample prepared by lit. method, sphericalized	72	
	TNGU prepared from nitrate salt, sphericalized 94		
	ESD data of various morphologies of TNGU, ABL Laboratori apparatus ^[1, 18] :	es ESD	
	Morphology	ESD (J)	
	Sample prepared by lit. method	3.25	
	TNGU prepared from imidazo imidazoles	3.25	
	Sample prepared by lit. method, sphericalized	3.25	
	TNGU prepared from nitrate salt, sphericalized	3.25	
N [%]	34.79		
Ω(CO ₂) [%]	5.0		
T _{m.p.} [°C]	241 ^[2] , 190 ^[5]		
T _{dec.} [°C]	237 (deflagration) ^[9] , 217–220 (DSC @ 10 °C/min) ^[1,18]		
ρ [g cm ⁻³]	$\begin{array}{c} 2.51 \pm 0.1 \ (\textcircled{@}\ 293.15\ \textbf{K})^{[3]},\ 2.03 - 2.04^{[5]},\ 2.01^{[10,13]},\ 2.04^{[13]},\ 2.04\ (\textcircled{@}\ \textbf{TMD})^{[14]},\\ 2.01\ (\textbf{measured})^{[18]},\ 2.01\ (\textbf{CHEETAH}\ database)^{[1]} \end{array}$		
Heat of formation	41.8 kJ/mol ($\Delta_t H^o$, EXPLO5 6.04), 379.0 kcal/kg ($\Delta_t H^o$) ^[7] , -33.5 kJ/mol (ΔH_t^o) ^[13] , 379.0 kcal/kg (enthalpy of form.) ^[12] , 50.21 kJ/mol ^[14] , 50 kJ/mol (ΔH_t^o) ^[18] , 50 kJ/mol (ΔH_t^o) database) ^[1]		

	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	5,745	11.78 kJ/mL (calcd. CHEETAH 7.0) ^[1] 1,218 kcal/kg (@ 1.510 g cm ⁻³ , calcd.) [H ₂ O vapor] ^[12]	1,200 kcal/kg $[H_2O (g)]^{[7]}$ 1,200 kcal/kg $(@ 1.510 \text{ g cm}^{-3}) [H_2O \text{ vapor}]^{[12]}$
7 _{ex} [K]	4,177	4,088 (@ 2.01 g cm ⁻³ , $\Delta H_{\rm f} = 50$ kJ/mol, calcd., JAGUAR) ^[15]	
<i>р</i> _{С-J} [GPa]	40.2	41.77 (calcd., CHEETAH 7.0) ^[1] 40.5 (@ 2.01 g cm ⁻³ , $\Delta H_{\rm f}$ = 50 kJ/mol, calcd., JAGUAR) ^[15] 38.7 GPa (@ 1.98–2.01 g cm ⁻³) ^[17]	
VoD [m s ⁻¹]	9,446 (@ 2.02 g cm ⁻³ ; $\Delta_i H = 41.8 \text{ kJ mol}^{-1}$)	9,566 (@ 2.01 g cm ⁻³ , calcd., CHEETAH 7.0) ^[1] 8,850 (@ 2.01 g cm ⁻³ (TMD), calcd., R-P method) ^[11] 9,460 (@ 2.01 g cm ⁻³ , $\Delta H_{\rm f}$ = 50 kJ/mol, calcd., JAGUAR) ^[15] 9,200 (@ 1.98–2.01 g cm ⁻³) ^[17]	9,070 (@ 1.94 g cm ⁻³) ^[4] 9,330 ^[5] 9,150 (@ 1.95 g cm ⁻³)[6]
V ₀ [L kg ⁻¹]	718		

Summary of experimental copper cylinder wall velocity data , samples have a wall thickness/diameter ratio of 0.1, cylinders were 305 mm long, PETN with ρ = 1.763 g cm⁻³ is the reference explosive^[14]:

Initial density (g/cm³)	Inner diameter (mm)	Wall thickness (mm)	Wall velocity (mm/µs) at 25.4 mm diameter for R-R ₀ equal to			Velocity-squared cf. with PETN for the same configuration, % comparison R-R ₀ equal to		
			6 mm 12.5 mm 19 mm			6 mm	12.5 mm	19 mm
1.885	25.42	2.598	1.600	1.750	1.825	5.2	5.3	3.9

Summary of code calculations with measured detonation velocities and detonation energies derived from JWL's $^{[14]}$:

Initial density (g/cm³)	PETN-adjusted BKWR Tiger, LLNL library $\theta = 1,850$ K, at v			JCZ3, LLNL library, v		CHEQ V2.4, at v			
	2.2 4.1 6.5		2.2	4.1	6.5	2.2	4.1	6.5	
1.885	-2	-2	-1	-1	-4	-3	-9	-9	-8

Sand test [g]	61.9 g sand cru	shed (cf. 48.0 g f	For TNT) ^[8]		
5 s explosion T [°C] Explosion T [°C]	133 ^[8]				
100 °C heat test [% mass loss] 75 °C heat test [% mass loss]	Exploded in 30	min ^[8]			
Burn rate [mm/s]	Pressure interval = 0.6–15 MPa, pressure exponent = 0.867, burning rate @ 10 MPa = 44.4 mm/s, strand ρ = 1.58 g cm ⁻³ , adiabatic flame T @ 10 MPa = 3,395 K (measured using window constant pressure bomb) ^[13]				
Solubility [g/mL]	Soluble in 100% nitric acid ^[1, 18] , insoluble in CH ₂ Cl ₂ ^[1, 18]				
Hygroscopicity	Decomposition in humid air (85% RH) according to $(t_{50} = 3.67 \text{ days})^{[17]}$:				
	Time (days)	R _t (%)			
	0	100			
	0.9375	97.449			
	1.583	92.720			
	2.354	85.496			
	3.3125	65.500			
	4.792	2.579			

Decomposition in dry air (28% RH) according to $(t_{50} = 240 \pm 19 \text{ days})^{[17]}$:

Time (days)	R _t (%)
0	100
5.854	97.553
13.958	96.552
33.815	98.068
47.058	95.798
60.961	96.829
74.726	91.032
125.797	87.254

Unstable in moist atmosphere and in presence of water $^{[18]}$, half-life if exposed to atmosphere with relative humidity approaching 85% can be in the order of days $^{[18]}$

Compatibility

Decomposition in humid air (85% RH) according to $(t_{50} = 3.67 \text{ days})^{[17]}$:

Time (days)	R _t (%)
0	100
0.9375	97.449
1.583	92.720
2.354	85.496
3.3125	65.500
4.792	2.579

99.6% dec. after 26 h in moist soil expt. with t_{50} = ~ 1.72 h^[17]

Decomposition in dry soil (28% air RH) according to $(t_{50} = 202 \pm 35 \text{ days})^{[17]}$:

Time (days)	R _f (%)
0	100
5.871	98.905
12.020	100.142
17.968	98.865
33.840	93.059
47.091	84.492
60.990	87.256
74.792	81.580
125.822	79.292

Unstable in presence of water – even moist atmosphere^[18]

Many morphologies of TNGU have been reported^[1, 18], spherical morphology obtained using solvent/ antisolvent method by dissolving TNGU in 100% nitric acid and precipitating it by addition beneath the surface of dichloromethane^[1, 18], small clumps of fine needle crystals usually obtained from literature procedures^[1, 18], TNGU derived from certain imidazo imidazoles obtained as thicker and longer needles^[1, 18], a summary of the methods for producing spherical TNGU morphologies is given below^[18]:

Scale (mg)	HNO ₃ (mL)	DCM (mL)	Stir rate (rpm)	Morphology
25	0.025	1	0	Cubes
25	0.025	10	0	Spheres and needles
25	0.025	10	500	Spheres
640	6.4	100	500	Spheres
2,270	22.7	200	500	Spheres

- [1] W. M. Sherrill, E. C. Johnson, J. E. Banning, *Propellants, Explosives, Pyrotechnics*, **2014**, *39*, 670–676.
- [2] Y. Zheng, J. Zhou, D. Zhou, M. Zhang, Binggong Xuebao, 1988, 59-63.
- [3] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994–2017 ACD/Labs).
- [4] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2012**, *37*, 489–497.
- [5] J. Boileau, C. Fauquignon, B. Hueber, H. Meyer, *Explosives*, in *Ullmann's Encyclopedia of Industrial Chemistry*, **2009**, Wiley-VCH, Weinheim.
- [6] P. W. Cooper, Explosives Engineering, Wiley-VCH, New York, 1996.
- [7] A. Smirnov, M. Kuklja, On the Use of Heat of Explosion for Blast Action Estimate. Individual Explosives and Their Mixtures, in Proceedings of the 20th Seminar on New Trends in Research of Energetic Materials, NTREM 20, Pardubice, April 26th–28th, 2017, pp. 381–392.
- [8] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1974**.
- [9] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 9, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1980.
- [10] S. M. Kaye, H. L. Herman, Encyclopedia of Explosives and Related Items, vol. 10, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1983.
- [11] L. R. Rothstein, R. Petersen, *Propellants and Explosives*, **1979**, 4, 56–60.
- [12] A. Smirnov, M. Kuklja, M. Makhov, V. Pepkin, *Methodical Problems of Experimental Definition of Heat Of Explosive Transformation*, ICT **2017**, Karlsruhe, Germany, pp. 15-1–15-11.
- [13] V. P. Sinditskii, V. Y. Egorshev, M. V. Berezin, *Study of Combustion of New Energetic Nitramines*, ICT **2001**, Karlsruhe, Germany, pp. 59-1–59-13.
- [14] P. C. Souers, J. W. Kury, *Propellants, Explosives, Pyrotechnics*, **1993**, *18*, 175–183.
- [15] P. Samuels, K. Spangler, D. Iwaniuk, R. Cornell, E. L. Baker, L. I. Stiel, *Detonation Performance Analyses for Recent Energetic Molecules*, AIP Conf. Proc., 1979, 15003-1-150033-5.
- [16] A. Smirnov, O. Voronko, B. Korsunsky, T. Pivina, Chinese J. Expl. Prop., 2015, 38, 1-8.
- [17] R. D. Chapman, *Cyclic Dinitroureas as Self-Remediating Munition Charges*, SERDP Project WP-1624, February **2009**.
- [18] W. M. Sherrill, J. E. Banning, *Preparation of Spherical Morphology of Tetranitroglycoluril* (TNGU), Army Research Laboratory, Aberdeen Proving Ground, USA, ARL-TR-6940, May **2014**.

1,3,5,5-Tetranitrohexahydropyrimidine

Name [German, acronym]: 1,3,5,5-Tetranitrohexahydro-1,3-diazine

[1,3,5,5-tetranitrohexahydropyrimidin, DNNC]

Main (potential) use: high explosive

	DNNC						
Formula	C ₄ H ₆ N ₆ O ₈	C ₄ H ₆ N ₆ O ₈					
Molecular mass [g mol ⁻¹]	266.13						
Appearance at RT	Colorless crystals ^[5] , sm EtOH ^[6]	all colorless, transparent	rods on recryst. form				
IS [J]	3.5 cm (ABL) ^[1] , Thiokol	Corporation impact = 25.	5 in ^[1]				
FS [N]	660 lb @ 8 ft/s (ABL) ^[1]						
ESD [J]	Thiokol Corporation ESI	(unconfined) = 1.9, no b	ulk ignition ^[1]				
N [%]	31.6						
Ω(CO ₂) [%]	-18.04						
T _{m.p.} [°C]	$153-154^{[1,7]}$, $152-154^{[2]}$, $154.8-156.2$ (DSC, $1.50-1.53$ mg sample, melts without noticeable dec.) ^[4] , $151-154^{[1,6]}$						
T _{phase transition} [°C]	195 K (first order phase transition below which, positioning of – NO_2 groups causes lower molecular symmetry, FTIR) ^[5] , 1,965 K solid–solid phase transition DNNC-I (high temperature structure) – DNNC-II ^[5] , DNNC-I is stable for at least 1 h @ 193 K ^[5] , transformation of DNNC-I–DNNC-II is completely reversible @ ~ 195 K ^[5]						
T _{dec.} [°C]	219 (onset), 227 (peak)	(DSC) ^[1]					
ρ [g cm ⁻³]	1.82 ^[1]						
Heat of formation	11 kcal/mol ($\Delta H_{\rm f}$) ^[1]						
	Calcd. (EXPLO5 6.04) Lit. values Exptl.						
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]							
T _{ex} [K]							
p _{C-J} [kbar]							

VoD [m s ⁻¹]							
V₀ [L kg ⁻¹]							
Thermal stability	IDSC analysis showing mass loss in the solid state dec. process ^[3] :						
	T (°C)			Mass los	ss (%)	S.D.	
	148			78.5		± 5.1	L
	145			75.5		± 3.3	3
	142		Ì	75.2		± 1.5	5
	KDIE (kinetic of thermoche				ect) data for in	ductio	n period ($t_{ m i}$) portion
	T (°C)		t _i (mir	1)	S.D.		KDIE $(t_{\rm d}/t_{\rm h})$
	148		184		± 18		1.14
	145		251		± 19		1.36
	142		293		± 67		1.25
		erties	of nea	it liquid D	NNC thermoch	emica	l data ^[4] :
	T (°C)	Induc	tion tin	ne (s)	$\Delta H_{\rm dec}$ (kJ mol	-1)	wt. loss (%)
	194	52.6 ±	£ 28.3		-775.3 ± 56.9 8 -801.6 ± 30.1 8		80 ± 2
	190	72.2 ±	19.3				82 ± 4
	186	93.8±	£ 17.5				82 ± 4
	182	148.4	± 13.8				80 ± 5
	178	228.6	± 76.4		-799.1 ± 61.1		80 ± 7
	174	359.6	± 153.	7	-803.3 ± 38.	1	80±3
Vapor pressure [atm. @ °C]	5.27 × 10 ⁻⁷ mm Hg ^[1]						
Burn rate [mm/s]	0.27 (@ 1 atm., SMATCH/FTIR spectroscopy) ^[8] , 0.27 (@ 1 atm., strand burner) ^[8]						
Solubility [g/mL]	$50,100 \text{ mg/L in H}_2\text{O}$ (predicted) ^[1] , soluble in acetone, dichloromethane, acetonitrile and methyl acetate ^[5] , soluble in EtOH ^[6]						
Photosensitivity	No photolysis expected ^[1]						
Heat of fusion [kcal/mol]	5.19 ^[4]						

SBAT [°F]	317 (onset) ^[1]
Log K _{ow}	-1.14 (predicted) ^[1] , K _{ow} = 0.72 L/Kg ^[1]
Koc	1,678 (predicted) ^[1]
ΔH _{phase transition} [kcal/mol]	0.8 (DNNC-I \rightarrow DNNC-II) ^[5]

	DNNC ^[5]
Chemical formula	C ₄ H ₆ N ₆ O ₈
Molecular weight [g mol ⁻¹]	266.02
Crystal system	Orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁ (no. 19)
a [Å]	11.130(2)
<i>b</i> [Å]	11.227(2)
c [Å]	15.705(3)
α [°]	90
β [°]	90
γ [°]	90
V [ų]	1,962.44
Z	8
$ ho_{ m calc}$ [g cm ⁻³]	1.801
τ[K]	295

- [1] M. A. Dewey, Synthesis, Evaluation, and Formulation Studies on New Oxidizers as Alternatives to Ammonium Perchlorate in DoD Missile Propulsion Applications, SERDP final report, 23rd April 2007.
- [2] J. Boileau, M. Piteau, G. Jacob, *Propellants, Explosives, Pyrotechnics*, 1990, 15, 38-39.
- [3] S. A. Hendrickson, S. A. Schackelford, *Thermochim. Acta*, **2006**, 440, 146–155.
- [4] S. A. Shackelford, J. A. Menapace, J. F. Goldman, *Thermochim. Acta*, 2007, 464, 42–58.
- [5] Y. Oyumi, T. B. Brill, A. L. Rheingold, T. M. Haller, J. Phys. Chem., 1985, 89, 4317-4324.
- [6] D. A. Levins, C. D. Bedford, S. J. Staats, *Propellants, Explosives, Pyrotechnics*, **1983**, *8*, 74–76.
- [7] D A. Cichra, H. G. Adolph, J. Org. Chem., 1982, 47, 2474-2476.
- [8] T. B. Brill, Surface Chemistry of Energetic Materials at High Temperature, D. H. Liebenberg, R. W. Armstrong, J. J. Gilman (eds.), Symposium, Boston, Massachusetts, USA, 30th November – 2nd December 1992, Materials Research Society Symposium Proceedings, 1993, vol. 296, Materials Research Society, Pittsburg, Pennsylvania, USA, pp. 269–280.

Tetranitromethane

Name [German, acronym]: Tetranitromethane [tetranitromethan, TNM]
Main (potential) use: Possible oxidizer, explosive mixture component,

component in detonating compositions and blasting explosives^[27], oxidizer in liquid-fueled rocks or as a

 $monopropellant^{[31]}$

$$O_2N$$
 NO_2
 NO_2
 NO_2

	TNM					
Formula	CN ₄ O ₈					
Molecular mass [g mol ⁻¹]	196.03					
Appearance at RT	and colorless liquid with	Colorless–pale yellow colored liquid ^[11, 25] , free-flowing, volatile, transparent and colorless liquid with a sharp odor ^[29] , colorless liquid with pungent odor ^[31] , pale yellow liquid ^[33] , colorless to pale yellow oily liquid ^[8] , freezes to colorless solid ^[11]				
IS [J]	$H_{50\%} \ge 100 \text{ cm} (2 \text{ kg mass, B.M.})^{[11]}, H_{50\%} = 320 \text{ cm} (2.5 \text{ kg mass, type 13 tool,}$ ERL method) ^[28] , >320 cm (2.50 kg mass, ERL machine) ^[35] IS of TNM mixtures with combustible materials (2.5 kg mass, ERL machine; reference sensitivities: NG = 4–5 cm, RDX = 22 cm, TNT = 160 cm, pure TNM $\ge 320 \text{ cm})^{[35]}$:					
	Diluent	wt. % TNM	IS (cm)			
	NM	44.6	109			
		21.2	196			
		65	180			
		85	210			
	Nitrobenzene	42.6	264			
	61.7 44					
		76.3	22			
		82.8	47			
	2,4-Dinitrobutulene	95	300			

FS [N]	≥131 kPa × 10 ⁻⁴ @ 2.4 m/s (threshold level above which initiation occurs) ^[21] , 2/10 explosions in friction pendulum test ^[8]				
N [%]	28.58				
Ω(CO ₂) [%]	+49.0				
T _{m.p.} [°C]		$^{5, 8, 11]}$, 14.2 (freezing point) $^{[29]}$, 13 ct) $^{[29]}$, 14 $^{[31]}$, 14.136 (freezing poi			
T _{b.p.} [°C]	$bp_{760} = 126^{[33]},$	127 (with partial dec.) ^[29] , 130 ^[31] , $bp_{25.8} = 40^{[33]}$, $bp_{14.9} = 30^{[33]}$, $bp_{8.4}$, $5^{[8]}$, 125.7 ^[11] , 126 (760 mm Hg, 99	= $20^{[33]}$, $bp_{5.7} = 13.8^{[33]}$,		
ρ [g cm ⁻³]	1.65 (@ TMD) ^{[26}	1.6377 ^[2, 8, 10] , 1.641 ^[3] , 1.650 (@ 286 K) ^[5] , 1.62294 (@ 25 °C) ^[11] , 1.65 ^[23] , 1.65 (@ TMD) ^[26] , sp. gr. d ¹⁵ _{4°} = 1.65 ^[29] , 1.64 ^[31] , d ²⁵ ₄ = 1.6229 ^[33] , d ²⁵ ₄ = 1.638 (technical grade) ^[33] , 1.65 (99.996% purity) ^[35]			
Heat of formation	(enthalpy of for $-8.9 \text{ kcal/mol}^{12}$ $(\Delta_i H^o \text{ (gas))}^{[22]}$, $(\Delta_i H^o \text{ (gas))}^{[19]}$, $(\text{enthalpy of for } (\Delta H_i(g)^o, \text{calcd.}, 18.8 \text{ kcal/mol})$	13.0 kcal mol $^{-1[6]}$, 38.40 kJ/mol (standard heat of form.) $^{[8]}$, 196.4 kJ/kg (enthalpy of form.) $^{[10]}$, 45 cal/g $^{[3]}$, 195.89 kJ/kg (standard heat of form.) $^{[8]}$, -8.9 kcal/mol $^{[11]}$, 9.2 kcal/mol (liq., $\Delta_f H^o$) $^{[22]}$, 19.7 kcal/mol ($\Delta_f H^o$ (gas)) $^{[22]}$, -9.1 ± 0.4 kcal/mol ($\Delta_f H^o$ (liq.)) $^{[19]}$, 19.7 ± 0.4 kcal/mol ($\Delta_f H^o$) $^{[20]}$, 54.39 kJ/mol $^{[26]}$, 38.5 kJ/mol (enthalpy of form.) $^{[31]}$, 25.6 kcal/mol (ΔH_f (g) o , calcd., ccCA-PS3) $^{[34]}$, 22.0 kcal/mol (ΔH_f (g) o , calcd., ccCA-S3) $^{[34]}$, -23.8 kcal/mol (ΔH_f (g) o , calcd., ccCA-PS3) $^{[34]}$, 18.8 kcal/mol (ΔH_f (g) o , calcd., G3) $^{[34]}$, 25.6 kcal/mol (ΔH_f (g) o , calcd., G3(MP2)) $^{[34]}$, 19.7 \pm 0.4 kcal/mol (ΔH_f (g) o , exptl.) $^{[34]}$			
Heat of combustion	$-2,217.5 \text{ J/g}^{(8)}, 102.9 \text{ kcal/mol}^{[11]}, \Delta_c H^o = -103.2 \pm 0.4 \text{ kcal/mol}^{[19, 22]}$				
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	2,255	55 kcal/g [H ₂ O (l)] (calcd.) ^[13]	2,259 ^[9]		
		55 kcal/g [H ₂ O (g)] (calcd.) ^[13]	2,200 ^[10]		
		552 cal/g ^[17]	557 cal/g (calcd. from DTA) ^[11]		
	$45.6 \text{ kcal/}100 \text{ g}$ (@ 1.643 g cm^{-3} , constant volume) $[\text{H}_2\text{O (I)}]^{[30]}$ 580 kcal/kg ^[29]				
		2,200 ^[31]			
		2,259 J/g (explosion heat) ^[8]			
		-1,890 J/g (explosion enthalpy) ^[8]			

<i>T</i> _{ex} [K]	2,570	2,243 (@ 1.64 g cm ⁻³ , calcd.) ^[20]	2,800 (@ 1.64 g cm ⁻³) ^[6, 15]
		2,222 (@ 1.65 g cm ⁻³ , calcd., KLRR/C, THEOSTAR-T) ^[23]	3,100 ^[15]
		2,651 (@ 1.65 g cm ⁻³ , calcd., BKWC, THEOSTAR-T) ^[23]	2,900 °C ^[29]
		2,112 (@ 1.65 g cm ⁻³ , calcd., BKWR, THEOSTAR-T) ^[23]	
		2,100 °C (@ 1.643 g cm ⁻³) ^[30]	
		2,180 (@ 1.64 g cm ⁻³ , calcd. BKWR) ^[6]	
		2,860 (@ 1.64 g cm ⁻³ , calcd. BKWS) ^[6]	
p _{C-J} [kbar]	145	144 (calc.) ^[5]	159 (@ 1.64 g cm ⁻³) ^[6, 15, 17]
		159 (@ 1.64 g cm ⁻³ , calcd., Xiong) ^[17]	159 ^[14]
		147.9 (@ 1.64 g cm ⁻³ , calcd.) ^[20]	15.5 GPa (@ 1.65 g cm ⁻³) ^[23]
		15.1 GPa (@ 1.65 g cm ⁻³ , calcd., KLRR/C, THEOSTAR-T) ^[23]	
		13.8 GPa (@ 1.65 g cm ⁻³ , calcd., BKWC, THEOSTAR-T) ^[23]	
		14.8 GPa (@ 1.65 g cm ⁻³ , calcd., BKWR, THEOSTAR-T) ^[23]	
		1.44 × 10 ⁷ Pa ^[8]	
		150 (@ 1.64 g cm ⁻³ , calcd., BKWR) ^[6]	
		116 (@ 1.64 g cm ⁻³ , calcd., BKWS) ^[6]	

VoD [m s ⁻¹]	6,367	6,750 (@ 1.65 g cm ⁻³ (TMD), calcd., R-P method) ^[16]	6,360 (@ 1.64 g cm ⁻³) ^[4, 6, 15, 17]
	(@ TMD)		6,400 (@ 1.6 g cm ⁻³) ^[5, 13]
		6,270 (@ 1.65 g cm ⁻³ (TMD), calcd., <i>Aizenshtadt</i>) ^[16]	6,360 (@ 1.637 g cm ⁻³) ^[10]
		6,670 (@ 1.65 g cm ⁻³ (TMD), calcd., K-J) ^[16]	6,400 (@ 1.65 g cm ⁻³) ^[18]
		() ((((((((((((((((((6.55 mm/μs (@ TMD) ^[14]
		6,446 (@ 1.64 g cm ⁻³ , calcd., <i>Xiong</i>) ^[17]	6,400 (@ 1.64 g cm ⁻³) ^[20]
		6,410 (@ 1.64 g cm ⁻³ , calcd.) ^[20]	6,450 (@ 1.65 g cm ⁻³) ^[23]
		6,460 (@ 1.65 g cm ⁻³ , calcd., KLRR/C, THEOSTAR-T) ^[23]	
		6,260 (@ 1.65 g cm ⁻³ , calcd., BKWC, THEOSTAR-T) ^[23]	
		6,180 (@ 1.65 g cm ⁻³ , calcd., BKWR, THEOSTAR-T) ^[23]	
		6,360 (@ 1.64 g cm ⁻³ , confined) ^[31]	
		6,220 (@ 1.64 g cm ⁻³ , calcd. BKWR) ^[6]	
		5,540 (@ 1.64 g cm ⁻³ , calcd. BKWS) ^[6]	
V_0 [L kg ⁻¹]	744	68.6 l/100 g (@ 1.643 g cm ⁻³ , @ STP) ^[30]	685 ^[7, 9, 10]
			670 ^[29]

Data from^[26]:

Initial density (g/cm³)	Inner diameter (mm)	Wall thickness (mm)	Wall velocity (mm/µs) at 25.4 mm diameter for R-R ₀ equal to			for the	-squared cf. same configuation R-R ₀	guration,
			6 mm	12.5 mm	19 mm	6 mm	12.5 mm	19 mm
1.650	25.43	2.592	1.000	1.095	1.130	-58.9	-58.8	-60.1

Summary of code calculations with measure detonation velocities and detonation energies derived from JWL's^[26]:

	PETN-adjusted BKWR Tiger, LLNL library, $\theta = 1,850$ K, at v		JCZ3, LLNL library, v		CHEQ V2.4, at v				
(g/cm ³)	2.2 mm	4.1 mm	6.5 mm	2.2 mm	4.1 mm	6.5 mm	2.2 mm	4.1 mm	6.5 mm
1.65	2	-1	1	5	0	1	-1	-4	-2

JWL cylinder coefficients data from^[26]:

1		Energy of detonation, E_0 (kJ/cm ³)		A (GPa)	B (GPa)	C (GPa)	R ₁	R ₂	ω	γсյ
1.65	6.45	-3.60	15.5	642.2267	3.898275	0.258200	5.020	0.90	0.52	3.429

Comparison of measured "CJ" temperatures using optical pyrometry^[26]:

Experimental	Max.	(Calculated CJ T (K	Wavelength	
density (g/cm³)	measured T(K)	Tiger BKWR	Tiger JCZ3	CHEQ	(μm)
1.64	2,840	2,200	2,500	2,500	0.6-0.9

Critical diameter [cm]	$d_{\rm c}$ for detonation propagation of TNM thickened with poly(methylacrylate) and loaded with up to 75% inert solids decreased with increasing solids loading ^[11]
Trauzl test [cm³, % TNT]	21.4% TNT (when pure TNM) $^{[8, 11]}$, 54% TNT $^{[18]}$, 134% TNT (87:13 mixture with benzene) $^{[11]}$, 30.62 cc (4 moles NMe:1 mole TMN) $^{[11]}$
Sand test [g]	108% TNT ^[18] , 7.5 g ^[8]
Initiation efficiency	Not fully detonated by 10 g Tetryl ^[8]
Gap test	>300 cards (mixture of 65–90% in benzene) ^[11] , 270 cards (50% soln. by weight in ethylene glycol) ^[11] , 75 cards (mixture with NM containing 40% TNM) ^[11]
5 s explosion T[°C] 5 s flash point [°C] Explosion T[°C]	225 ^[8] Does not explode below 360 °C ^[11]
100 °C heat test [% mass loss]	Acid fumes produced within 30 minutes $^{[11]}$, no explosion after 300 min @ 135 $^{\circ}C^{[11]}$

Vacuum stability test [cm³/h] No gas released from 2.5 g sample @ 90 °C for 6 h ^[8] Thermal stability test [cm³/h] Becomes acidic on standing due to dec. ^[29] , dec. more readily in presence of water ^[29] , stable in acidic media and can be stored in these conditions for years ^[29] , stable on storage @ 25 °C[³²²] Vapor pressure [atm. @ °C] 13 mm Hg @ 25 °C[¹³] Enthalpy of vaporization [kcal mol⁻¹] 10.6 ± 0.1¹¹9¹ Viscosity [cP] 0.0177 Poise @ 20 °C[²²], 1.76 cP @ 20 °C[³³] Solubility [g/mL] Insoluble in water ^[8, 25, 31, 33] , very soluble in EtOH, Et ₂ O and hydrocarbons ^[25] , virtually insoluble in water, glycerol[²²], readily soluble in toluene, benzene, dichloroethane and many other common organic solvents ^[28] , TNT, paraffin and naphthalene are miscible with tetranitromethane in any ratio @ 7 above their mpts. ^[29] , soluble in sulfuric and nitric acids ^[29] , freely soluble in EtOH, Et ₂ O and alcoholic KOH ^[33] , soluble in many organic solvents, e.g., EtOH, Et ₂ O, acetone, toluene, nitrobenzene ^[8] Hygroscopicity Nonhygroscopic ^[29] Compatibility Forms explosive mixtures with wood, oil, grease or other organic materials ^[29] , attacks iron, copper, brass, zinc, rubber ^[33] , pure TNM is colorless but become syellow on contact with water due to hydrolysis ^[11] Activation energy of thermal decomposition [k]/mol] E _{A, solin.} = 173.0 (Freon 114B) ^[24] , E _{A, solin.} = 166.3 (CCl ₄) ^[24] , E _{A, gaseous} = 160.1 ^[24] , n ₀ ²⁵ = 1.4351 (99.996% purity) ^[35] Dipole moment [D] Essentially zer		
of water ^[29] , stable in acidic media and can be stored in these conditions for years ^[29] , stable on storage @ 25 °C ^[32] Vapor pressure [atm. @ °C] Enthalpy of vaporization [kcal mol ⁻¹] Heat of fusion [cal/mol] Viscosity [cP] Solubility [g/mL] Insoluble in water ^[8, 25, 31, 33] , very soluble in EtOH, Et ₂ O and hydrocarbons ^[23] , virtually insoluble in water, glycerol ^[29] , readily soluble in toluene, benzene, dichloroethane and many other common organic solvents ^[29] , TNT, paraffin and naphthalene are miscible with tetranitromethane in any ratio @ 7 above their mpts. ^[29] , soluble in sulfuric and nitric acids ^[29] , freely soluble in EtOH, Et ₂ O, acetone, toluene, nitrobenzene ^[8] Hygroscopicity Nonhygroscopic ^[29] Compatibility Forms explosive mixtures with wood, oil, grease or other organic materials ^[29] , technical product is stabilized by sulfuric acid or nitrogen oxides (to an acidity of 0.1–0.2%) which allows storage in iron apparatus ^[29] , attacks iron, copper, brass, zinc, rubber ^[33] , pure TNM is colorless but becomes yellow on contact with water due to hydrolysis ^[11] Activation energy of thermal decomposition [k]/mol] Refractive index $n^{2^{0}}_{0} = 1.4384^{[33]}, n^{2^{0}}_{0} = 1.4358^{[33]}, 1.4382225^{[8]}, 1.43822 @ 25 °C[11], np25 = 1.4351 (99.996% purity)[35]$	1	No gas released from 2.5 g sample @ 90 °C for 6 h ^[8]
$[atm. @ ^{\circ}C]$ Enthalpy of vaporization [kcal mol^{-1}] Heat of fusion [cal/mol] Viscosity [cP] O.0177 Poise @ 20 $^{\circ}C^{[29]}$, 1.76 cP @ 20 $^{\circ}C^{[33]}$ Solubility [g/mL] Insoluble in water(8, 25, 31, 33), very soluble in EtOH, Et ₂ O and hydrocarbons(23), virtually insoluble in water, glycerol(29), readily soluble in toluene, benzene, dichloroethane and many other common organic solvents(29), TNT, paraffin and naphthalene are miscible with tetranitromethane in any ratio @ T above their mpts.(29), soluble in sulfuric and nitric acids(29), freely soluble in EtOH, Et ₂ O and alcoholic KOH(33), soluble in many organic solvents, e.g., EtOH, Et ₂ O, acetone, toluene, nitrobenzene(8) Hygroscopicity Nonhygroscopic(29) Compatibility Forms explosive mixtures with wood, oil, grease or other organic materials(25), technical product is stabilized by sulfuric acid or nitrogen oxides (to an acidity of 0.1–0.2%) which allows storage in iron apparatus(29), attacks iron, copper, brass, zinc, rubber(33), pure TNM is colorless but becomes yellow on contact with water due to hydrolysis(111) Activation energy of thermal decomposition [kJ/mol] Refractive index $n^{20}_0 = 1.4384^{[33]}, n^{25}_0 = 1.4358^{[33]}, 1.4382225^{[8]}, 1.43822 @ 25 °C(111), n025 = 1.4351 (99.996% purity)(135)$	Thermal stability	of water ^[29] , stable in acidic media and can be stored in these conditions
vaporization [kcal mol ⁻¹] Heat of fusion [cal/mol] Viscosity [cP] O.0177 Poise @ $20 ^{\circ}C^{[29]}$, $1.76 ^{\circ}CP$ @ $20 ^{\circ}C^{[33]}$ Solubility [g/mL] Insoluble in water $^{[8, 25, 31, 33]}$, very soluble in EtOH, Et ₂ O and hydrocarbons $^{[25]}$, virtually insoluble in water, glycerol $^{[29]}$, readily soluble in toluene, benzene, dichloroethane and many other common organic solvents $^{[29]}$, TNT, paraffin and naphthalene are miscible with tetranitromethane in any ratio @ T above their mpts. $^{[29]}$, soluble in sulfuric and nitric acids $^{[29]}$, freely soluble in EtOH, Et ₂ O and alcoholic KOH $^{[33]}$, soluble in many organic solvents, e.g., EtOH, Et ₂ O, acetone, toluene, nitrobenzene $^{[8]}$ Hygroscopicity Nonhygroscopic $^{[29]}$ Forms explosive mixtures with wood, oil, grease or other organic materials $^{[25]}$, technical product is stabilized by sulfuric acid or nitrogen oxides (to an acidity of 0.1–0.2%) which allows storage in iron apparatus $^{[29]}$, attacks iron, copper, brass, zinc, rubber $^{[33]}$, pure TNM is colorless but becomes yellow on contact with water due to hydrolysis $^{[11]}$ Activation energy of thermal decomposition [k]/mol] Refractive index $n^{20}_D = 1.4384^{[33]}, n^{25}_D = 1.4358^{[33]}, 1.4382225^{[8]}, 1.43822 @ 25 ^{\circ}C^{[11]}, n_D^{25} = 1.4351 (99.996\% \text{purity})^{[35]}$	1 ' '	13 mm Hg @ 25 °C ^[13]
Viscosity [cP] O.0177 Poise @ 20 °C[^{29]} , 1.76 cP @ 20 °C[^{33]} Insoluble in water ^[8, 25, 31, 33] , very soluble in EtOH, Et ₂ O and hydrocarbons ^[25] , virtually insoluble in water, glycerol ^[29] , readily soluble in toluene, benzene, dichloroethane and many other common organic solvents ^[29] , TNT, paraffin and naphthalene are miscible with tetranitromethane in any ratio @ <i>T</i> above their mpts. ^[29] , soluble in sulfuric and nitric acids ^[29] , freely soluble in EtOH, Et ₂ O and alcoholic KOH ^[33] , soluble in many organic solvents, e.g., EtOH, Et ₂ O, acetone, toluene, nitrobenzene ^[8] Hygroscopicity Nonhygroscopic ^[29] Forms explosive mixtures with wood, oil, grease or other organic materials ^[25] , technical product is stabilized by sulfuric acid or nitrogen oxides (to an acidity of 0.1–0.2%) which allows storage in iron apparatus ^[29] , attacks iron, copper, brass, zinc, rubber ^[33] , pure TNM is colorless but becomes yellow on contact with water due to hydrolysis ^[11] Activation energy of thermal decomposition [kJ/mol] Refractive index $n^{20}_{D} = 1.4384^{[33]}, n^{25}_{D} = 1.4358^{[33]}, 1.4382225^{[8]}, 1.43822 @ 25 °C[11], nD25 = 1.4351 (99.996% purity)[35]$	vaporization	10.6±0.1 ^[19]
Solubility [g/mL] Insoluble in water ^[8, 25, 31, 33] , very soluble in EtOH, Et ₂ O and hydrocarbons ^[25] , virtually insoluble in water, glycerol ^[29] , readily soluble in toluene, benzene, dichloroethane and many other common organic solvents ^[29] , TNT, paraffin and naphthalene are miscible with tetranitromethane in any ratio @ T above their mpts. ^[29] , soluble in sulfuric and nitric acids ^[29] , freely soluble in EtOH, Et ₂ O and alcoholic KOH ^[33] , soluble in many organic solvents, e.g., EtOH, Et ₂ O, acetone, toluene, nitrobenzene ^[8] Hygroscopicity Nonhygroscopic ^[29] Compatibility Forms explosive mixtures with wood, oil, grease or other organic materials ^[25] , technical product is stabilized by sulfuric acid or nitrogen oxides (to an acidity of 0.1–0.2%) which allows storage in iron apparatus ^[29] , attacks iron, copper, brass, zinc, rubber ^[33] , pure TNM is colorless but becomes yellow on contact with water due to hydrolysis ^[11] Activation energy of thermal decomposition [kJ/mol] Refractive index $n^{20}_D = 1.4384^{[33]}, n^{25}_D = 1.4358^{[33]}, 1.4382225^{[8]}, 1.43822 @ 25 °C[11], n25 = 1.4351 (99.996% purity)[35]$		2,250.6 ^[35]
hydrocarbons ^[25] , virtually insoluble in water, glycerol ^[29] , readily soluble in toluene, benzene, dichloroethane and many other common organic solvents ^[29] , TNT, paraffin and naphthalene are miscible with tetranitromethane in any ratio @ <i>T</i> above their mpts. ^[29] , soluble in sulfuric and nitric acids ^[29] , freely soluble in EtOH, Et ₂ O and alcoholic KOH ^[33] , soluble in many organic solvents, e.g., EtOH, Et ₂ O, acetone, toluene, nitrobenzene ^[8] Hygroscopicity Nonhygroscopic ^[29] Forms explosive mixtures with wood, oil, grease or other organic materials ^[25] , technical product is stabilized by sulfuric acid or nitrogen oxides (to an acidity of 0.1–0.2%) which allows storage in iron apparatus ^[29] , attacks iron, copper, brass, zinc, rubber ^[33] , pure TNM is colorless but becomes yellow on contact with water due to hydrolysis ^[11] Activation energy of thermal decomposition [kJ/mol] Refractive index $n^{20}_{D} = 1.4384^{[33]}, n^{25}_{D} = 1.4358^{[33]}, 1.4382225^{[8]}, 1.43822 @ 25 °C[11], nD25 = 1.4351 (99.996% purity)[35]$	Viscosity [cP]	0.0177 Poise @ 20 °C ^[29] , 1.76 cP @ 20 °C ^[33]
Compatibility Forms explosive mixtures with wood, oil, grease or other organic materials ^[25] , technical product is stabilized by sulfuric acid or nitrogen oxides (to an acidity of 0.1–0.2%) which allows storage in iron apparatus ^[29] , attacks iron, copper, brass, zinc, rubber ^[33] , pure TNM is colorless but becomes yellow on contact with water due to hydrolysis ^[11] Activation energy of thermal decomposition [kJ/mol] Refractive index $n^{20}_{D} = 1.4384^{[33]}, n^{25}_{D} = 1.4358^{[33]}, 1.4382225^{[8]}, 1.43822 @ 25 °C^{[11]}, n_{D}^{25} = 1.4351 (99.996\% purity)^{[35]}$	Solubility [g/mL]	hydrocarbons ^[25] , virtually insoluble in water, glycerol ^[29] , readily soluble in toluene, benzene, dichloroethane and many other common organic solvents ^[29] , TNT, paraffin and naphthalene are miscible with tetranitromethane in any ratio @ T above their mpts. ^[29] , soluble in sulfuric and nitric acids ^[29] , freely soluble in EtOH, Et ₂ O and alcoholic KOH ^[33] , soluble in many organic solvents, e.g., EtOH, Et ₂ O, acetone, toluene,
materials ^[25] , technical product is stabilized by sulfuric acid or nitrogen oxides (to an acidity of 0.1–0.2%) which allows storage in iron apparatus ^[29] , attacks iron, copper, brass, zinc, rubber ^[33] , pure TNM is colorless but becomes yellow on contact with water due to hydrolysis ^[11] Activation energy of thermal decomposition [kJ/mol] Refractive index $n^{20}_{D} = 1.4384^{[33]}, n^{25}_{D} = 1.4358^{[33]}, 1.4382225^{[8]}, 1.43822 @ 25 °C^{[11]}, n_{D}^{25} = 1.4351 (99.996\% purity)^{[35]}$	Hygroscopicity	Nonhygroscopic ^[29]
of thermal decomposition [kJ/mol]	Compatibility	materials ^[25] , technical product is stabilized by sulfuric acid or nitrogen oxides (to an acidity of 0.1–0.2%) which allows storage in iron apparatus ^[29] , attacks iron, copper, brass, zinc, rubber ^[33] , pure TNM is
$n_D^{25} = 1.4351 (99.996\% \text{ purity})^{[35]}$	of thermal decomposition	
Dipole moment [D] Essentially zero ^[11]	Refractive index	
	Dipole moment [D]	Essentially zero ^[11]

	C(NO ₂) ₄ ^[12]	C(NO ₂) ₄ ^[12]
Chemical formula	CN ₄ O ₈	CN ₄ O ₈
Molecular weight [g mol ⁻¹]	196.05	196.05
Crystal system	Orthorhombic	Tetragonal

Space group	Pca2 ₁	/ 4(no. 82)
a [Å]	9.7331(2)	6.9893(3)
<i>b</i> [Å]	9.7317(2)	6.9893(3)
c [Å]	20.4635(5)	6.9866(7)
α [°]	90	90
β [°]	90	90
γ [°]	90	90
<i>V</i> [ų]	1,938.28(7)	341.30(4)
Z	12	2
$ ho_{ m calc}$ [g cm ⁻³]	2.016	1.908
<i>T</i> [K]	100	200

- [1] Hazardous Substances Data Bank, obtained from the National Library of Medicine (US).
- [2] K. V. Auwers, L. Harres, Ber. Dtsch. Chem. Ges. B., 1929, 62, 2287–2297.
- [3] https://engineering.purdue.edu/~propulsi/propulsion/comb/propellants.html
- [4] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2012**, *37*, 489–497.
- [5] B. M. Dobratz, P. C. Crawford, LLNL Explosives Handbook Properties of Chemical Explosives and Explosive Simulants, Lawrence Livermore National Laboratory, January 31st 1985.
- [6] M. L. Hobbs, M. R. Baer, Calibrating the BKW-EOS with a Large Product Species Data Base and Measured C-J Properties, in Proceedings of the 10th International, Detonation Symposium, Office of Naval Research ONR 33395-12, 1993, pp. 409–418.
- [7] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*. 2015. 22, 701–706.
- [8] J. Liu, Liquid Explosives, Springer-Verlag, Heidelberg, 2015.
- [9] H. Muthurajan, R. Sivabalan, M. B. Talawar, S. N. Asthana, J. Hazard. Mater., 2004, A112, 17–33.
- [10] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 314–315.
- [11] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1978.
- [12] Y. V. Vishnevsky, D. S. Tikhonov, J. Schwabedissen, H. G. Stammler, R. Moll, B. Krumm, T. M. Klapötke, N. Mitzel, *Angew. Chem. Int. Ed.*, **2017**, *56*, 9619–9623.
- [13] B. M. Dobratz, Properties of Chemical Explosives and Explosive Simulants, UCRL-5319, LLNL, December 15th 1972.
- [14] L. R. Rothstein, R. Petersen, Predicting High Explosive Detonation Velocities From Their Composition and Structure, NWSY TR 78–3, September 1978.
- [15] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 7, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1975**.
- [16] L. R. Rothstein, R. Petersen, *Propellants and Explosives*, **1979**, 4, 56–60.
- [17] W. Xiong, J. Energet. Mater., 1985, 3:4, 263-277.
- [18] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.

- [19] E. A. Miroshnichenko, T. S. Kon'kova, J. O. Inozemtcev, V. P. Vorob'eva, *The Laws of Energies of Dissociation of Bonds in the Nitroderivatives of Alkanes*, ICT 2011, Karlsruhe, Germany, pp. 65-1-65-11.
- [20] V. I. Pepekin, Y. N. Matyushin, A. V. Inozemtsev, Energetic Characteristic of Furazanotetrazendioxide, ICT 2010, Karlsruhe, Germany, pp. 54-4-54-7.
- [21] F. T. Kristoff, M. L. Griffith, W. T. Bolleter, J. Hazard. Mater., 1983, 7, 199-210.
- [22] Y. N. Matyushin, V. P. Lebedev, E. A. Miroshnichenko, L. M. Kostikova, Y. O. Inozemcev, Energy of Interaction NO₂-Groups in Nitroderivatives Methane and Ethane, ICT 2000, Karlsruhe, Germany, pp. 51-1-51-8.
- [23] S. B. Victorov, S. A. Gubin, I. V. Maklashova, I. I. Revyakin, Thermodynamic TDS Code: Application to Detonation Properties of Condensed Explosives, ICT 2001, Karlsruhe, Germany, pp. 69-1-69-15.
- [24] R. S. Stepanov, L. A. Kruglyakova, A. M. Astachov, *Thermal Decomposition Kinetics and Mechanism of 5-gem-Dinitromethyl Substituted 2-Methyl-1,2,3-Triazoles*, ICT **2007**, Karlsruhe, Germany, pp. 62-1–62-8.
- [25] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [26] P. C. Souers, J. W. Kury, Propellants, Explosives, Pyrotechnics, 1993, 18, 175-183.
- [27] Ordnance Technical Intelligence Agency, Encyclopedia of Explosives: A Compilation of Principal Explosives, Their Characteristics, Processes of Manufacture and Uses, Ordnance Liaison Group-Durham, Durham, North Carolina, 1960.
- [28] J. Wenograd, *The Thermal Sensitivity of Explosives and Propellants*, US Naval Ordnance Laboratory, White Oak, Maryland, USA, NOLTR 61-97, 1st September **1961**.
- [29] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part II, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [30] Services Textbook of Explosives, JSP 333, Procurement Executive, Ministry of Defence, UK, March 1972.
- [31] K. L. Kosanke, B. J. Kosanke, B. T. Sturman, R. M. Winokur, *Encyclopedic Dictionary of Pyrotechnics (and Related Subjects), Part 3–P to Z*, Pyrotechnic Reference Series No.5, Journal of Pyrotechnics Inc., Whitewater, Colorado, USA, **2012**, p. 1108.
- [32] A. T. Nielsen, W. P. Norris, R. L. Atkins, W. R. Vuono, J. Org. Chem., 1983, 48, 1056-1059.
- [33] The Merck Index An Encyclopedia of Chemicals and Drugs, 9th edn., M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig (eds.), Merck and Co. Inc., Rahway, New Jersey, USA, 1976.
- [34] K. R. Jorgensen, G. A. Oyedepo, A. K. Wilson, J. Hazard. Mater., 2011, 186, 583-589.
- [35] F. Taylor, Semi-Pilot Scale Production of Tetranitromethane, NAVORD Report 3979, U. S. Naval Ordnance Laboratory, White Oak, Maryland, USA, 15th May 1955.

Tetranitronaphthalene

Name [German, acronym]: Tetranitronaphthalene, 1,4,5,8-tetranitronaphthalene

[tetranitronaphthalin, TNN, TENN, 1,4,5,8-TENN,

β-TENN]

Main (potential) use: Investigated as possible heat-resistant explosive, used

in dynamites, safety explosives and as a component of

some military explosives^[16]

	TNN
Formula	C ₁₀ H ₄ N ₄ O ₈
Molecular mass [g mol ⁻¹]	308.16
Appearance at RT	Sand colored crystals ^[17] , yellowish solid (mixture of isomers) ^[20]
IS [J]	9.64 (first reaction) ^[5, 18] , 24.61 (sound) ^[5, 18] , $H_{50\%}$ = 99 cm (2.5 kg mass, sandpaper, NOL apparatus) ^[9] , 9.65 (drop energy, Julius-Peters apparatus) ^[10] , H_{50} = 100 cm (2.5 kg mass, type 12 tool) ^[19]
ESD [J]	8.26 ^[3, 25] , 95.0 mJ ^[3] , 8.26 (for <i>para</i> isomer) ^[4]
N [%]	18.18
Ω(CO ₂) [%]	-72.7
T _{phase transitions} [°C]	250–260 ^[9]
<i>T</i> _{m.p.} [°C]	207 ^[1] , 190 (softening of the isomer mixture) ^[7] , >450 (dec. without melting) ^[9] , 450 ^[11] , 340–350 (with dec., 1,4,5,8-isomer) ^[9] , 203 (1,3,6,8-isomer, β-isomer) ^[16,17] , 194–195 (1,3,5,8-isomer, γ-isomer) ^[16,17] , 270 (dec., no melting, 1,2,5,8-isomer) ^[16] , 340–345 (1,4,5,8-isomer) ^[17] , 260 (1,3,5,7-isomer) ^[17] , 205–220 (mixture of isomers) ^[20]
T _{dec.} [K]	579 (DTA, onset) ^[3, 18] , >450 °C (dec. without melting) ^[9]
$ ho$ [g cm $^{-3}$]	1.8 ^[7,8] , 1.802 (@ 293 K) ^[2] , 1.80 (crystal) ^[9] , 1.823 (X-ray @ 295 K, Form-II) ^[15]
Heat of formation	12.9 kcal mol $^{-1}$ ($\Delta H^{o}_{\rm f}$, exptl.) $^{[8]}$, 11.3 ± 2.0 kcal/mol ($\Delta H^{o}_{\rm f}$) $^{[8]}$, 35.3 kJ/kg (enthalpy of form.) $^{[7]}$, -32.5 kcal/kg $^{[22]}$, 10.8 kJ/mol (enthalpy of form., exptl.) $^{[24]}$, 1.3 kJ/mol (enthalpy of form., calcd., emp.) $^{[24]}$, 47.8 kJ/mol (enthalpy of form., calcd., S-D method) $^{[24]}$

Heat of combustion	$\Delta H_c^{\circ} = -1,090.0 \text{ kcal/mol (exptl.)}^{[8]}, 3,522 \text{ kcal/kg (@ CV)}^{[22]}$			
	Calcd. (EXPLO5 6.03)	Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	4,449		2,887 [H ₂ O (g)] ^[6]	
T _{ex} [K]	3,303			
p _{C-J} [kbar]	216	236 (calcd., K-J) ^[8]	25.74 GPa (1,4,5,8- isomer) ^[21]	
VoD [m s ⁻¹]	7,206	7,300 (@ 1.88 g cm ⁻³ , calcd., K-J) ^[8]	7,013 in ½ in Al tubes ^[9]	
V ₀ [L kg ⁻¹]	574		780 ^[9]	

Ballistic mortar test	101% TNT ^[12]
Vacuum stability test [cm³/h]	0.22 cc/g/h gas evolved @ 280 °C ^[9] , 1.1 cc/g/h @ 300 °C ^[9]
	@ 200 °C (total vol. of gas evolved (cm³)/no. of days): 0.3/2, 0.5/7, 0.6/14, 0.8/21, 0.9/28, 1.0/35, 1.2/42, 1.3/49, 1.4/56, 1.6/63, 1.7/70, 1.8/77, 2.0/84, 2.2/91 ^[13, 23]
Solubility [g/mL]	All isomers are poorly soluble in common organic solvents ^[17] , 1,3,5,8-isomer is readily soluble in acetone ^[17]

	1,3,6,8-TNN ^[14]	1,3,6,8-TNN ^[14]	1,3,6,8-TNN ^[14]
Chemical formula	C ₁₀ H ₄ N ₄ O ₈	C ₁₀ H ₄ N ₄ O ₈	C ₁₀ H ₄ N ₄ O ₈
Molecular weight [g mol ⁻¹]	308.16	308.16	308.16
Crystal system	Orthorhombic	Orthorhombic	
Space group	<i>Pbn</i> (no. 562)	P2 ₁ 2 ₁ 2 ₁ (no. 19)	
a [Å]	7.77	8.87	16.4
<i>b</i> [Å]	26.4	26.5	29.6
c [Å]	5.55	7.16	7.56
α [°]	90	90	90
β [°]	90	90	90
γ [°]	90	90	90
<i>V</i> [ų]	1,138.46	1,682.99	3,669.93

Z	4		
$ ho_{ m calc}$ [g cm $^{-3}$]	1.798		
<i>T</i> [K]	295	295	295

	1,4,5,8-TNN ^[15] (Form-II)
Chemical formula	C ₁₀ H ₄ N ₄ O ₈
Molecular weight [g mol ⁻¹]	308.16
Crystal system	Monoclinic
Space group	P2 ₁ /c (no. 14)
a [Å]	5.38
<i>b</i> [Å]	7.71
c [Å]	13.55
α [0]	90
β [°]	92.7
γ [°]	90
V [ų]	561.427
Z	2
$ ho_{ m calc}$ [g cm $^{-3}$]	1.823
T[K]	295
Comments	RT stable polymorph

- [1] "PhysProp" data were obtained from Syracuse Research Corporation of Syracuse, New York (US)
- [2] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© **1994–2017** ACD/Labs).
- [3] S. Zeman, J. Majzlík, Central Europ. J. Energ. Mat., 2007, 4, 15-24.
- [4] M. H. Keshavarz, Z. Keshavarz, ZAAC, 2016, 642, 335–342.
- [5] S. Zeman, Study of the Impact Reactivity of Polynitro Compounds Part IV. Allocation of Polynitro Compounds on the Basis of their Impact Sensitivities, in Proceedings of New Trends in Research of Energetic Materials, NTREM 2002, April 24th–25th 2002, pp. 434–443.
- [6] W. C. Lothrop, G. R. Handrick, Chem. Revs., 1949, 44, 419–445.
- [7] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 315.
- [8] P. E. Rouse, J. Chem. Engineering Data, **1976**, 21, 16–20.
- [9] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1978.
- [10] S. Zeman, M. Krupka, *Propellants, Explosives, Pyrotechnics*, **2003**, *28*, 249–255.
- [11] E. G. Kayser, J. Energet. Mater., 1983, 1:3, 251-273.
- [12] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, *vol. 2*, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.

- [13] J. F. Baytos, *High-Temperature Vacuum Thermal Stability Tests of Explosives*, LA-5829-MS, LANL, January **1975**.
- [14] Gol'der, Zh. Fizicheskoi Kimii, 1952, 26, 1259-1265.
- [15] J. R. Holden, C. Dickinson, J. Chem. Soc. D, 1969, 144-144.
- [16] T. L. Davis, The Chemistry of Powder and Explosives, vol. 1, 1941, John Wiley and Sons Inc., New York, pp. 156–158.
- [17] T. Urbański, Ch. 11 in Chemistry and Technology of Explosives, vol. 1, 1964, Pergamon Press, Oxford.
- [18] S. Zeman, *Propellants, Explosives, Pyrotechnics*, **2003**, *28*, 308–313.
- [19] W.-P. Lai, P. Lian, B.-Z. Wang, Z.-X. Ge, J. Energet. Mater., 2010, 28, 45–76.
- [20] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [21] L. Türker, S. Varis, A Review of Polycyclic Aromatic Energetic Materials, in Polycyclic Aromatic Compounds, 2009, 29, 228–266.
- [22] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part III, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [23] W. Yang, R. A. Parrott, L. A. Behrmann, W. E. Voreck, P. Kneisel, *High Temperature Explosives for Downhole Well Applications*, US Patent US 2002/0129940 A1, 19th September **2002**.
- [24] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248–258.
- [25] L. Turker, *Electrostatic Discharge and Energetic Materials*, *To Chemistry Journal*, **2019**, 2, 72–114.

2,4,2',4'-Tetranitrooxanilide

Name [German, acronym]: N,N'-Di-(2,4-dinitrophenyl)ethanediamide [TNO]
Main (potential) use: Component of black powder type and pyrotechnic

 $compositions^{[2]} \\$

$$O_2N$$
 O_2N
 O_2
 $O_$

	TNO			
Formula	C ₁₄ H ₈ N ₆ O ₁₀			
Molecular mass [g mol ⁻¹]	420.25			
Appearance at RT	light yellow solid ^[2]		'	
IS [J]		g mass, 11 mg sample, P. cation of no detonation, c		
FS [N]	Unaffected by steel sho shoe (friction pendulur	pe (friction pendulum test) n test) ^[2]) ^[2] , unaffected by fiber	
N [%]	20.00			
Ω(CO ₂) [%]	-84	-84		
T _{m.p.} [°C]	313 ^[1] , 313 (dec.) ^[2, 4]	313 ^[1] , 313 (dec.) ^[2, 4]		
T _{dec.} [°C]			'	
$ ho$ [g cm $^{-3}$]				
Heat of formation				
	Calcd. Lit. values Exptl. (EXPLO5 6.04)			
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]				
<i>T</i> _{ex} [K]				

p _{C-J} [kbar]			
VoD [m s ⁻¹]			
$V_0 [L kg^{-1}]$			
Sand test [g]	16.3 g (20 g bomb) ^[2]		
Initiation efficiency	0.20 g LA minimum detonating charge $^{[2]}$, 0.25 g Tetryl minimum detonating charge $^{[2]}$		
5 s explosion T[°C]	392 ^[1, 2]		
100 °C heat test [% mass loss]	0.07% in first 48 $h^{[1,2]},$ 0.00% in second 48 $h^{[1,2]},$ no explosions in 100 $h^{[2]}$		
Vacuum stability test [cm³/h]	0/40 (@ 90 °C) ^[1] , 0/40 (@ 100 °C) ^[1] , 0.11/40 (@ 120 °C) ^[1, 2]		
Solubility [g/mL]	<0.10% in water @ 100 °C ^[2] , 715% in nitrobenzene @ 150 °C ^[2] , insoluble in EtOH ^[2] , insoluble in benzene ^[2] , insoluble in butyl acetate ^[2] , insoluble in CCl ₄ ^[2] , insoluble in ethyl ether ^[2] , soluble in acetic acid ^[2] , soluble in nitric acid ^[2] , soluble in caustic potash ^[2] , very soluble in DMF ^[2]		
Hygroscopicity	Trace @ 30 °C with 90% RH ^[2]		

- [1] S. M. Kaye, *Encyclopedia of Explosives and Related Items*, vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1978**.
- [2] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.
- [3] H. W. Voigt, Impact Resistant Pressable Explosive Composition of High Energetic Material Content, US Patent 4,251,301, February 17th 1981.
- [4] C. S. Gorzynski, J. N. Maycock, *Explosives and Pyrotechnic Propellants for Use in Long-Term Deep Space Missions*, NASA-CR-132373, **1974**.

2,4,6,8-Tetranitro-2,4,6,8-tetraazabicyclo[3.3.1]nonane-3,7-dione

Name [German, acronym]: Tetranitropropane diurea [TNPDU]

Main (potential) use: Possible future thermally stable, insensitive explosive^[1]

	TNPDU			
Formula	$C_5H_4N_8O_{10}$			
Molecular mass [g mol ⁻¹]	336.13			
Appearance at RT	White solid ^[1]			
IS [J]	$H_{50\%} = 27.5 \text{ cm } (2 \text{ kg mass, Bruceto})$	on method) ^[1]		
	Height for 50% explosion, 2 kg mas	ss ^[1] :		
	Composition	Height for 50% explosion (cm)		
	TNPDU	20		
	TNPDU/Polyurethane, 90/10	25		
	TNPDU/Polyurethane, 85/15 26			
	TNPDU/Polyurethane, 80/20	PDU/Polyurethane, 80/20 40		
	TNPDU/Paraffin wax, 90/10 26			
	TNPDU/Paraffin wax, 85/15 47			
FS [N]	Insensitive up to 8 kg (Julius-Peters apparatus) ^[1] Insensitive up to $(kg)^{[1]}$:			
	Composition	FS (kg)		
	TNPDU	8		
	TNPDU/Polyurethane, 90/10 12			
	TNPDU/Polyurethane, 85/15	J/Polyurethane, 85/15 19.2		
	TNPDU/Polyurethane, 80/20 16			
	TNPDU/Paraffin wax, 90/10 21.6			
	TNPDU/Paraffin wax, 85/15	36		

N [%]	33.34					
Ω(CO ₂) [%]	-9.52					
T _{m.p.} [°C]	>220 (deflagration, recryst.) ^[1]					
T _{dec.} [°C]	194 (exo, onset), 220 (exo peak max), (DTA) ^[1] , 235 (DTA) ^[1]					
	DTA data from ^[1] (magnitude of exothermicity is ratio of peak height to mass of sample):					
	Compou	und/mixture		T _i (°C)	T _m (°C)	Exothermicity
	TNPDU			194	220	10.5
	TNPDU -	+ NTO		220	240	10
	TNPDU -	+ ANTA		220	245	3.9
	TNPDU -	+ TATB		218	235	3.57
	TNPDU -	+ TNABN		199	220	2.65
$ ho$ [g cm $^{-3}$]	1.93 (exp	tl.) ^[1]				
Heat of formation	-81.39 kJ/mol (Δ <i>H</i> _f , calcd.) ^[1]					
	Calcd. (EXPLO5	6.03)	Lit. v	alues		Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]						
T _{ex} [K]						
p _{C-J} [kbar]			39.3	8 GPa (cal	cd.) ^[1]	
VoD [m s ⁻¹]				4 (@ 1.93 d., R-P met		
V_0 [L kg ⁻¹]						
5 s explosion T[°C] Deflagration T[°C]	252 (0.02 g sample, Wood's metal bath @ 5 °C/min) ^[1] Explosion delay measurements ^[1] :					
Explosion delay <i>T</i> [°C]	<i>T</i> (°C)	Explosion de	alav (c)			
	220	12.0	itay (3)	<u>'</u>		
	230	9.4				
	240	7.4				
	250	6.8				
		1				

Thermal stability	High thermal stability ^[1]				
Vacuum stability test [cm³/h]	Compatibility of vacuum stability data: @ 94 °C for 48 h/5 g, values in parentheses indicate the vacuum stabilities of the additional component, i.e. ANTA, TATB, TNABN and NTO ^[1] :				
	Composition	Vacuum stabi	lity @ 94 °0	C for 48 h, mL/5 g	
	TNPDU (crystalline)	0.7597			
	TNPDU (amorphous)	0.6191			
	TNPDU:ANTA (1:1)	0.4929 (0.310	04)		
	TNPDU:TATB (1:1)	0.4369 (0.20	6)		
	TNPDU:TNABN (1:1)	0.5245 (0.33	95)		
	TNPDU:NTO (1:1)	0.4098 (0.2139)			
Solubility [g/mL]	Recryst. from nitromethane ^[1]				
Compatibility	Better hydrolytic stability than similar compounds (e.g., TNGU) ^[1] , stable in neutral and acidic media ^[1] , immediate dec. in alkaline media (e.g. 0.1 M NaOH) ^[1] , compatible with ANTA, TATB, NTO and TNABN (see vacuum stability test data) ^[1] DTA data from (magnitude of exothermicity is ratio of peak height to mass of sample) ^[1] :				
	Compound/mixture	T _i (°C)	T _m (°C)	Exothermicity	
	TNPDU 194 220 10.5				
	TNPDU + NTO 220 240 10				
	TNPDU + ANTA 220 245 3.9				
	TNPDU + TATB 218 235 3.57				
	TNPDU + TNABN 199 220 2.65				

^[1] A. K. Sikder, G. M. Bhokare, D. B. Sarwade, J. P. Agrawal, *Propellants, Explosives, Pyrotechnics*, **2001**, *26*, 63–68.

2,5,7,9-Tetranitro-2,5,7,9-tetraazabicyclo[4.3.0]nonane-8-one

Name [German, acronym]: 2,5,7,9-Tetranitro-2,5,7,9-tetraazabicyclo [4.3.0]nonane-8-

one [K-56, TN650, TNABN]

Main (potential) use: Possible future thermally stable insensitive explosive^[6]

	K-56			
Formula	C ₅ H ₆ N ₈ O ₉			
Molecular mass [g mol ⁻¹]	322.15	322.15		
Appearance at RT		e crystals (recryst. from ni rystals (recryst. from EtO		
IS [J]	H ₅₀ = 115 cm (2 kg mass H _{50%} = 115 cm (2 kg ma	s) ^[3] , $H_{50\%}$ = 20 cm (Holsto ss, Bruceton method) ^[6]	n impact) ^[3] , 115 cm ^[4, 5] ,	
FS [N]	132.5 (50% value) ^[3] , in	sensitive up to 36 kg (Juli	ius-Peters apparatus) ^[6]	
N [%]	34.78			
Ω(CO ₂) [%]	-19.87			
T _{m.p.} [°C]	>230 ^[4, 5, 6] , 194–196 (crystals) ^[6] , 203–204 (microcrystals recryst. from EtOAc/toluene) ^[7] , 194–196 (Thomas Hoover capillary apparatus) ^[8]			
T _{dec.} [°C]	235 (DTA) ^[6] , 199 (onset), 205 (peak max) (DTA) ^[6]			
$ ho$ [g cm $^{-3}$]	1.969 ^[1, 2] , 1.97 ^[3] , 1.92 ^[4-6] , 1.969 (X-ray) ^[7]			
Heat of formation	71.1 kJ/mol ($\Delta_{\rm f} H^{\rm o}$) ^[2] , 70.31 kJ/mol ($\Delta H^{\rm o}$) ^[3] , 70.313 kJ/mol ($\Delta H_{\rm f}$) ^[6]			
	Calcd. Lit. values Exptl. (EXPLO5 6.03)			
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	5,661 ($\Delta H_f = 71 \text{ kJ/}$ mol, $\rho = 1.96 \text{ g cm}^{-3}$)			
T _{ex} [K]	3,745 ($\Delta H_f = 71 \text{ kJ/}$ mol, $\rho = 1.96 \text{ g cm}^{-3}$)			
p _{C-J} [kbar]	382 ($\Delta H_f = 71 \text{ kJ/mol},$ $\rho = 1.96 \text{ g cm}^{-3}$)	37.0 GPa (calcd.) ^[6]		

VoD [m s ⁻¹]	9,169 ($\Delta H_f = 71 \text{ kJ/}$ mol, $\rho = 1.96 \text{ g cm}^{-3}$)	9,015 (ρ not specified) ^[4, 5] 9,015 (@ 1.92 g cm ⁻³ , calcd., R-P method) ^[6]		
V ₀ [L kg ⁻¹]	710 ($\Delta H_{\rm f} = 71 \text{ kJ/mol},$ $\rho = 1.96 \text{ g cm}^{-3}$)			
5 s explosion T [°C] Deflagration T [°C]	202 (0.2 g sample, Wood's metal bath, @ 5 °C/min) ^[6]			
Burn rate [mm/s]	Pressure interval = 0.1–4 MPa, pressure exponent = 0.547, burning rate = 26.5 mm/s @ 10 MPa, strand ρ = 1.55 g/cc, adiabatic flame T = 3,413 K $^{[2]}$			
Solubility [g/mL]	Recryst. from nitromethane ^[6]			

- [1] P. F. Pagoria, G. S. Lee, A. R. Mitchell, R. D. Schmidt, Thermochim. Acta, 2002, 384, 187-204.
- [2] V. P. Sinditskii, V. Y. Egorshev, M. V. Berezin, *Study on Combustion of New Energetic Nitramines*, ICT 2001, Karlsruhe, Germany, **2001**, pp. 59-1-59-13.
- [3] D. Price, J. Morris, S. Haedrick, N. Tucker, R. Uy, *Energetic Ingredients Synthesis*, BAE systems presentation, Holston Army Ammunition Plant, October **2013**.
- [4] J. P. Agrawal, *Propellants, Explosives, Pyrotechnics*, **2005**, *30*, 316–328.
- [5] J. P. Agrawal, High Energy Materials, Wiley-VCH, 2010.
- [6] A. K. Sikder, G. M. Bhokare, D. B. Sarwade, J. P. Agrawal, *Propellants, Explosives, Pyrotechnics*, **2001**, *26*, 63–68.
- [7] P. F. Pagoria, A. R. Mitchell, E. S. Jessop, *Propellants, Explosives, Pyrotechnics*, **1996**, *21*, 14–18.
- [8] X. Liu, M. Lu, J. Energet. Mater., 2012, 30, 30–39.

2,4,6,8-Tetranitro-2,4,6,8-tetraazabicyclo[3.3.0]octane-3-one

Name [German, acronym]: 2,4,6,8-Tetranitro-2,4,6,8-tetraazabicyclo [3.3.0]octane-3-

one [K-55, TN550]

Main (potential) use: high explosive

	K-55		
Formula	C ₄ H ₅ N ₈ O ₉		
Molecular mass [g mol ⁻¹]	309.14		
Appearance at RT			
IS [J]			
FS [N]			
ESD [J]			
N [%]	36.37		
Ω(CO ₂) [%]	-7.76		
T _{m.p.} [°C]			
T _{dec.} [°C]			
ρ [g cm ⁻³]	1.91 (crystal) ^[1-3] , 1.954 ^[2]		
Heat of formation	23.0 kJ/mol (Δ _f H ^o) ^[2]		
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	5,924		
T _{ex} [K]	4,027		
p _{C-J} [kbar]	376		
VoD [m s ⁻¹]	9,183		
V ₀ [L kg ⁻¹]	745		

0.1–10.1 MPa pressure interval, pressure exponent = 0.901, burning rate @ 10 MPa = 63.1 mm/s, strand ρ = 1.72 g/cc, adiabatic
flame <i>T</i> = 3,469 K ^[2]

- [1] P. F. Pagoria, G. S. Lee, A. R. Mitchell, R. D. Schmidt, *Thermochim. Acta*, **2002**, *384*, 187–204.
- [2] V. P. Sinditskii, V. Y. Egorshev, M. V. Berezin, *Study on Combustion of New Energetic Nitramines*, ICT 2001, Karlsruhe, Germany, **2001**, pp. 59-1–59-13.
- [3] P. F. Pagoria, A. R. Mitchell, E. S. Jessop, *Propellants, Explosives, Pyrotechnics*, **1996**, *21*, 14–18.

Tetranitrotoluene

Name [German, acronym]: 2,3,4,6-Tetranitrotoluene,

2,3,4,6-tetranitromethylbenzene

[2,3,4,6-tetranitrotoluol, tetranitrotoluol, TeNT]

Main (potential) use: high explosive

	TeNT
Formula	C ₇ H ₄ N ₄ O ₈
Molecular mass [g mol ⁻¹]	272.13
Appearance at RT	Orange crystalline solid ^[7]
IS [J]	50 cm (2 kg mass) ^[1, 2] , $H_{50} = 19$ cm (2.5 kg mass, type 12 tool) ^[4] , $H_{50} = 13$ cm (2,3,4,5-) ^[5] , $H_{50\%} = 15$ cm (2.5 kg, type 12 tool, B.M., 2,3,4,5-) ^[6] , $H_{50\%} = 19$ cm (2.5 kg, type 12 tool, B.M., 2,3,4,6-) ^[6] , $H_{50\%} = 25$ cm (2.5 kg, type 12 tool, B.M., 2,3,5,6-) ^[6] , 50 cm (2 kg mass, Kast apparatus) ^[7] , $H_{50} = 25$ cm (2,3,4,6-) ^[8] , $H_{50\%} = 13$ cm (2,3,4,5-) ^[8] , $H_{50\%} = 15$ cm (2.5 kg mass, 2,3,4,5-isomer) ^[10] , $H_{50\%} = 19$ cm (2.5 kg mass, 2,3,5,6-isomer) ^[10]
N [%]	20.59
Ω(CO ₂) [%]	-47.03
T _{m.p.} [°C]	136.5 ^[1,2,7] , 135 ^[7] , 107–109 (2,3,4,5-isomer recryst.) ^[11] , 95–102 (crude, 2,3,4,5-isomer) ^[11] , 135–136.5 (2,3,4,6-isomer) ^[11] , 163–165 (2,3,5,6-isomer, double recryst.) ^[11] , 141–163 (crude, 2,3,5,6-isomer) ^[11] , 150–152 (2,3,5,6-isomer) ^[11]
T _{dec.} [°C]	
ho [g cm ⁻³]	$ \begin{array}{l} 1.72 \ (\text{calcd.}, 2, 3, 4, 5\text{-}, 2, 3, 4, 6\text{-}, 2, 3, 5, 6\text{-})^{[6]}, \ 1.71 \ (2, 3, 4, 5\text{-})^{[6]}, \ 1.69 \ (2, 3, 5, 6\text{-})^{[6]}, \ 1.70 \ (2, 3, 4, 5\text{-}\text{isomer}, \ \text{gas pycnometer})^{[11]}, \ 1.69 \ (2, 3, 4, 6\text{-}\text{isomer}, \ \text{gas pycnometer})^{[11]}, \ 1.66 \ (2, 3, 5, 6\text{-}\text{isomer}, \ \text{gas pycnometer})^{[11]} \\ \text{pycnometer})^{[11]} \end{array} $
Heat of formation	$-34.0 \text{ kcal/mol} (\Delta H_f(g) @ 25 °C, 2,3,4,5\text{-isomer, calcd., MINDO/3})^{[9]}, $ $-30.8 \text{ kcal/mol} (\Delta H_f(g) @ 25 °C, 2,3,4,6\text{-isomer, calcd., MINDO/3})^{[9]}, $ $-30.0 \text{ kcal/mol} (\Delta H_f(g) @ 25 °C, 2,3,5,6\text{-isomer, calcd., MINDO/3})^{[9]}$

	1					
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.			
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]						
T _{ex} [K]						
p _{C-J} [kbar]		256 (@ 1.73 g cm ⁻³ , 2,3,4,5-, calcd.) ^[6]				
		256 (@ 1.73 g cm ⁻³ , 2,3,4,6-, calcd.) ^[6]				
		256 (@ 1.73 g cm ⁻³ , 2,3,5,6-, calcd.) ^[6]				
VoD [m s ⁻¹]		7,600 (@ 1.73 g cm ⁻³ , 2,3,4,5-, calcd.) ^[6]				
		7,600 (@ 1.73 g cm ⁻³ , 2,3,4,6-, calcd.) ^[6]				
		7,600 (@ 1.73 g cm ⁻³ , 2,3,5,6-, calcd.) ^[6]				
V_0 [L kg ⁻¹]						
		•	•			
Trauzl test [cm³, % TNT]	327 cm ^{3[1, 2]} , 327 cm ³ (1	10 g sample) ^[7]				
Thermal stability	Turns yellow after 1 day ^[2] , 57% dec. @ 80 °C for 24 h ^[1] , tetranitrotoluenes are thermally stable and can be stored indefinitely at ambient T under anhydrous conditions like α -TNT ^[11]					
Solubility [g/mL]	Soluble in CHCl ₃ ^[7] , very	slightly soluble in water [[]	7]			
Dipole moment, μ [D]	2,3,4,6-TeNT) ^[3] , 6.55 (§ 3.85 (gas @ 25 °C, calc	Soluble in CHCl ₃ ^[7] , very slightly soluble in water ^[7] 5.19 (calcd., 2,3,4,5-TeNT) ^[3] , 0.93 (calcd., 2,3,5,6-TeNT) ^[3] , 3.54 (calcd., 2,3,4,6-TeNT) ^[3] , 6.55 (gas @ 25 °C, calcd., MINDO/3, 2,3,4,5-isomer) ^[9] , 3.85 (gas @ 25 °C, calcd., MINDO/3, 2,3,4,6-isomer) ^[9] , 1.23 (gas @ 25 °C, calcd., MINDO/3, 2,3,5,6-isomer) ^[9]				

- [1] T. Urbański, Ch. 8 in *Chemistry and Technology of Explosives*, vol. 1, **1964**, Pergamon Press, Oxford.
- [2] A. F. Holleman, Chem. Zentralblatt, 1930, D Org. Chem., Band II, 548.
- [3] P. Politzer, Computational Studies of Polynitroaromatic Molecules and the Development of Sensitivity Relationships, AFATL-TR-90-66, Air Force Armament Laboratory, Florida, USA, October 1990.
- [4] W.-P. Lai, P. Lian, B.-Z. Wang, Z.-X. Ge, J. Energet. Mater., 2010, 28, 45–76.
- [5] G.-D. Wang, Y.-C. Liu, *Chinese J. Energet. Mater.*, **2008**, *16*, 167–174.
- [6] W. S. Wilson, D. E. Bliss, S. L. Christian, D. J. Knight, *Explosive Properties of Polynitroaromatics*, Naval Weapons Center, China Lake, USA, April **1990**.

- [7] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 9, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1980.
- [8] G.-D. Wang, Y.-C. Liu, Chinese J. Energet. Mater., 2008, 16, 167–174.
- [9] R. M. Guidry, L. P. Davis, MINDO/3 and MNDO Calculations for Nitro Compounds, FJSRL-TR-83-0012, Air Force Systems Command, Unites States Air Force, Colorado, USA, 13th January 1983.
- [10] C. K. Kim, S. G. Cho, J. Li, C. K. Kim, H. W. Lee, *Bull. Korean Chem. Soc.*, **2011**, *32*, 4341–4346.
- [11] A. T. Nielsen, S. L. Christian, A. P. Chafin, W. S. Wilson, J. Org. Chem., 1994, 59, 1714-1718.

Tetrazene*

 $Name \ [German, acronym] : \quad Tetrazene, 1-amino-1-((1H.tetrazol-5-yl)-azo) guanidine$

monohydrate, 4-guanyl-1-(nitrosoaminoguanyl)-1-tetrazene, 1-amino-1-(tetrazol-5-yldiazenyl)guanidin monohydrate, 1-guanyl-4-nitrosoaminoguanyltetrazene, tetracene (older lit.), guanyldiazoguanyl tetrazene

[tetrazen, GNGT]

Main (potential) use: Primary explosive, used in detonators if initiated by

another primary explosive^[4], often used to sensitize other primary explosives^[12], intermediate booster in detonators if initiated by another primary explosive or mixed with another primary explosive^[14], priming compositions and with LA in explosive rivets^[18],

ingredient of primer and detonator compositions^[19, 20],

component of priming compositions or as an intermediate booster $^{[22]}$, environmentally friendly primary explosive $^{[25]}$, in impact primers and prick blasting caps as an additive to LA and LS $^{[25]}$,

sensitization of priming compositions^[26]

Structural formula:

X-ray structure

^{*} Tetrazene forms a hydrate with 3 molecules of water^[4]

	Tetrazene*
Formula	$C_2H_8N_{10}O$
Molecular mass [g mol ⁻¹]	188.16

Appearance at RT	Colorless, pale yellow crystals (crystallizes as monohydrate) ^[10] , colorless or pale yellow fluffy solid ^[4, 14, 18, 19, 22] , needle crystals ^[4] , pale yellow ^[20]					ss or	
IS [J]	1 Nm ^[3] , 7 cm (2 kg mass, B.M.) ^[4, 6, 20, 22] , 8 in (8 ounce mass, P.A.) ^[4, 6, 14] , 10 cm (2 kg mass) ^[8] , $\sim 0.5^{[10]}$, $1.0^{[10]}$, $1.4^{[10]}$, 0.5 (P.A.) ^[10] , 1.4 (B.M.) ^[10] , 2 in (2 kg mass, P.A.) ^[22] , $0.021^{[26]}$, $H_{10\%} = 8$ in (2 kg mass, P.A.) ^[28] , 17.0 in (ball drop, 7 g ball impacting on a 0.5 mm thick layer of sample) ^[28] , $H_{10\%} = 14$ in (ball drop test, 8.35 g, $\frac{1}{2}$ in diameter steel ball, 35 mg sample) ^[31] , $H_{50\%} = 18$ in (ball drop test, $H_{50\%} = 18$ in (ball drop test, $H_{50\%} = 18$ in (100% fire, 400 g hammer, 20 mg sample) ^[33] , 3.5 cm (100% no-fire, 400 g hammer, 20 mg sample) ^[33]						
	Drop-heigh	t (cm)	No. of deta	nations out	of 5 trials		
	16		2				
	19		2				
	17 3						
	20		3				
	23		3				
	24		4				
	Minimum hot-spot T for initiation by impact = 400–430 °C (in the presence of grit) ^[16]						
FS [N]	8.57 ^[10] , 70% (explosion % of 25 samples under 588.40 kPa and 80° swing angle) ^[33] FS (g) tested on porcelain and Emery paper (Julius-Peters BAM) ^[13] :						
							ı
	Porcelain Emery paper grades						
	P80 P100 P120 P180 P360						
	430 >2,075 1,000 700 1,000 >2,075						
	F_{50} = 7.53 (dry sample) (FSKM-PEx OZM friction tester, roughened ceramic plate and porcelain peg) ^[17] , F_{50} = 34.55 (5% water) (FSKM-PEx OZM friction tester, roughened ceramic plate and porcelain peg) ^[17] , F_{50} = 20.05 (10% water) (FSKM-PEx OZM friction tester, roughened ceramic plate and porcelain peg) ^[17] , F_{50} = 30.14 (20% water) (FSKM-PEx OZM friction tester, roughened ceramic plate and porcelain peg) ^[17] , F_{50} = 28.56 (excess water) (FSKM-PEx OZM friction tester, roughened ceramic plate and porcelain peg) ^[17]						

ESD [J]	$F_{50\%}=850\pm350$ g (Julius-Peters, BAM, porcelain plate and peg, Bruceton method, Tetrazene $407913)^{[23]}$, $F_{10\%}=300$ g (Julius-Peters, BAM, porcelain plate and peg, Bruceton method, Tetrazene $407913)^{[23]}$, $F_{50\%}=900\pm180$ g (Julius-Peters, BAM, porcelain plate and peg, Bruceton method, Tetrazene $7902454)^{[23]}$, $F_{10\%}=700$ g (Julius-Peters, BAM, porcelain plate and peg, Bruceton method, Tetrazene $7902454)^{[23]}$ No fire @ 1,100 g but low fire @ 1,200 g (Julius-Peters, BAM) $^{[26]}$ 0.01 $^{[4]}$, 0.010 (unconfined) $^{[6,20]}$, 0.012 (confined) $^{[6,20]}$, 2.7 mJ $^{[10]}$, no fire >7.43 mJ $^{[26]}$, 0.006 (minimum energy) $^{[28,33]}$ Highest electrostatic discharge energy @ 5,000 V for zero ignition probability $^{[7]}$:						
	Highest E for zer	ro ignition	Туре	of ignition ^[7]			
	Unconfined	Confined	Unco	nfined	Confined		
	0.010	0.012	Low o	rder ation	Low order detonation		
	Approaching-elec	Approaching	Ainimu App	m energy (10	⁻⁷ J)		
	Oscillatory	needle ~ 200,000 (unclear in original report)	plan 56,	pe-to-plane 000	parallel-plate 18,500		
	Arc	53,000	26,	000	4,000		
	Spark	20,000	4,5	00	1,300		
		50% point					
	Spark	62,000	_		9,600		
	50% initiation values (spark discharge) ^[34] : Energy ($J \times 10^{-4}$) parallel plane, fixed gap Approaching needle >9.6 62						
	>9.6			62			
N [%]	>9.6			62			

T	roc
/ m.n.	L۷

140-160 (dec. with explosion)[4, 19, 20, 22], 142 (dec.)[6]

DSC (T_0 = onset T of peak, T_p = peak T of thermal event, ΔH = heat absorbed), tetrazene is melt-dehydrated @ 128.4 °C^[26]:

Heating rate	Endothermic peaks					
	$T_{\rm o}$ (°C) $T_{\rm p}$ (°C) ΔH (J/g)					
2 K/min	123.0	128.4	-50.0			
5 K/min	127.8	127.8 133.8 -26.4				

$T_{\text{dec.}}$ [°C]

136 (DSC @ 20 °C/min)^[1], $142^{[6]}$, \ge 60 in presence of moisture^[10], explodes @ 408 K if heated slowly in vacuum, whereas rapid heating to 440 K only causes rapid volatilization of the products, no melting was observed (*Yoffe*)^[12], ~ 140 (onset of intense dec.)^[25], 138 (onset), 144 (peak) (DSC @ 20 °C/min)^[26]

Mass loss data from nonisothermal TG curves (T_i = initial T for thermal dec.; T_{ot} = onset T for dec.; L_{max} = max mass loss rate; T_p = peak T of mass loss rate, T_{oe} = end T of DTG peak)^[26]:

TG curves			DTG peaks			
β (°C/ min)	T _i (°C)	T _{ot} (°C)	Mass loss (%)	L _{max} (%/ min)	T _p (°C)	T _{oe} (°C)
1.0	118.6	112.5	-19.7	-3.03	126.3	131.7
2.0	124.8	113.7	-20.5	-5.23	131.2	137.0
3.0	129.8	116.2	-19.3	-8.73	134.9	139.9
4.0	133.1	124.6	-20.3	-15.48	137.8	142.0

DSC ($T_{\rm ot}$ = onset T of peak, $T_{\rm p}$ = peak T of thermal event, ΔH = heat released, $T_{\rm sp}$ = shoulder peak, $T_{\rm e}$ = end T for heat change)^[26]:

	Exothermic peaks					
$T_{\rm o}$ (°C) $T_{\rm p}$; $T_{\rm sp}$ (°C) $T_{\rm e}$ (°C) ΔH (
2 K/min	131.7	133.1; 158.2	136.4	1,037		
5 K/min	138.5 140.9; 168.9 142.5 905					
5 °C/min (cited in ^[26])		140.5; 167.6		590 ± 20		

ρ [g cm ⁻³]	1.7 (@ 293 K) ^[3] , 1.7 (crystal @ 20 °C) ^[4] , 0.45 (apparent ρ) ^[4, 6, 14] , 1.05 (pellet, if compressed @ 3,000 psi) ^[6, 20] , 0.5 (apparent ρ) ^[8] , 1.64–1.65 (crystal) ^[10] , 0.45 (bulk) ^[10] , 1.05 (when compressed under 3,000 lb/in ²) ^[4, 14] , 1.7 (crystal) ^[4, 23] , 1.63 (crystal) ^[25]						
	Loading $ ho$ @ different pı	ressures ^[9] :					
	Pressure (kpsi)	Pressure (kpsi) Loading ρ (g cm ⁻³)					
	3	1.05 ^[9, 24]					
	5	1.22 ^[9, 24]					
	10	1.33 ^[9, 24]					
	12	1.37 ^[9, 24]					
	15	1.41 ^[9, 24]					
	20	1.48 ^[9, 24]					
	Crystal	1.72 ^[9]					
Heat of formation	212 kJ/mol (heat of form cal/mol ^[4]	n., ΔH _f) ^[2] , 1,005 kJ/kg (ent	thalpy of form.) ^[3] , 270 kg				
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.				
$-\Delta_{\rm ex}U^{\rm o}[{\rm kJ}{\rm kg}^{-1}]$	2,623		2,755 ^[2] 658 cal/g ^[4, 6, 20]				
T _{ex} [K]	2,002		,,,				
p _{C-J} [kbar]	26.8						
VoD [m s ⁻¹]	8,820 (@ TMD)						
V ₀ [L kg ⁻¹]	922	1,190 cc/g ^[6]	1,190 cm ³ /g ^[4, 20]				
Trauzl test [cm³, % TNT]	51–63% TNT ^[4] , 61% TN	[[6, 20, 22]					
Sand test [g]	28.0 g sand crushed (cf. 48.0 g TNT) by 0.4 g Tetrazene initiated by No. 6 cap $^{[4]}$, 40–70% TNT $^{[4]}$, max. brisance = 21.2 g sand crushed by 0.4 g Tetracene compressed @ 3,000 lb/in² initiated by fulminate $^{[4,14]}$, 22.6 g sand crushed by 0.4 g Tetracene using compound primer of 0.15 g Tetryl initiated with 0.25 g mercury fulminate $^{[14]}$, 13.1 g (loose Tetrazene) $^{[4]}$, 2 g (if Tetrazene loaded under pressure of 3,000 lb/in²) $^{[4]}$, 28.0 g (200 g bomb) $^{[22]}$						

	Values from ^[14] :						
	Amount of Compressed under Tetracene (g) pressure (lb/in²)				ount of san hed (g)	d	
	0.4	Not comp	ressed	13.1	l		
	0.4	Compres	sed @ 250	9.2			
	0.4	Compres	sed @ 500	7.5			
	0.4	Compres	sed @ 3,00	00 2.0			
Initiating efficiency	0.40 g MF minimum Minimum charges no loosely pressed into placed loosely on to shows one failure; o charges either loose @ 500, 1,000 or 1,5	ecessary to Cu capsule p, values gi or 0.4 g PETI ely placed o	initiate PE es, 6.2 mm ven for mi N compres n top or pr	TN (0.4 g l inside dia n. weight (sed @ 2,0	meter, pri or primary 00 kg/cm²	mary char charge th , priming	ge at
	Pressure on PETN (kg/cm²)	0	2,000	2,000	2,000	2,000	
	Pressure on initiator (kg/cm²)	0	0	500	1,000	1,500	
	Primary explosive		Minimum	initiating	charge (g)		1
	Tetracene	0.16	0.250	D	ead-press	ed	1
Dead-pressing	Pressed tetrazene d detonates PETN and of 0.25 g in No. 8 de Easily dead-pressed	Tetryl if the tonator req	tetrazene uired for P	is unpres	sed ^[22] , mii	nimum ch	arge
, , , , , , , , , , , , , , , , , , ,	in No. 8 blasting cap						
5 s explosion T [°C] Explosion T [°C] Ignition T [°C] Autoignition T [K] Thermal ignition T [°C]	$160^{[4, 6, 14, 20, 22, 24, 33]}$ $140^{[8]}$, explodes in the solid state in the <i>T</i> range 408–418 K ^[12] , $150^{[19]}$, explodes @ 408 K if heated slowly in vacuum, whereas rapid heating to 440 K only causes rapid volatilization of the products, no melting was observed (<i>Yoffe</i>) ^[12] , $154^{[18]}$ $160^{[16]}$, ~ $160^{[25]}$, $147^{[30]}$ 395 (Tetrazene 407913) ^[23] , 393 (Tetrazene 7902454) ^[23] 160 (calcd.) ^[24]						

Thermal stability

Relatively stable @ T <75 °C $^{[4,19]}$, stable @ RT wet or dry $^{[14]}$, dec. by boiling H $_2O^{[14]}$, no significant change in power if stored at moderately elevated T $^{[18]}$, stable at T <75 °C, but dec. at higher T with dec. rate increasing rapidly as T increases $^{[22]}$, slow dec. @ 60 °C and complete dec. @ 90 °C after 6 days $^{[25]}$, low thermal stability with complete dec. @ 90 °C in 6 days $^{[26]}$, complete dec. in boiling water $^{[26]}$, 36.1% weight loss @ 167 h (TGA) $^{[26]}$, deteriorated in 5 weeks @ 60 °C or 8 days @ 75 °C or 3 h @ 100 °C (commercial sample) $^{[29]}$, deteriorated in >13 weeks @ 60 °C or 14 days @ 75 °C or 7.5 h @ 100 °C (commercial sample) $^{[29]}$, dec. too slow @ 60 °C for short-term expts. $^{[29]}$, withstands 75–80 °C for short periods $^{[29]}$, dec. complete within 1 week @ 90 °C $^{[29]}$, recovered unchanged after 91 days @ 65 °C $^{[29]}$, @ 89 °C after 6 weeks 20% Tetrazene sample remains and 50% mass loss occurs $^{[29]}$, 3% of residual sample remains after 5 weeks @ 89 °C (large sample) $^{[29]}$

Analysis results^a for Tetrazene samples undergoing thermal degradation at 89 °C (a = all measurements were made in duplicate and represent mean values; b = samples weighed directly into DSC pans and stored at 89 °C; c = sample originally 1.25 g, stored in covered petric dish at 89 °C; d = as a percent of the total original mass. Numbers in parenthesis are percent in remaining mass to afford a direct comparison with results for large sample; e = as a percent of the total mass of sample removed for analysis. This does not take into account mass losses by volatilization of decomposition products; f = very broad, difficult to measure T_{max})[29]:

Time	Small samples ^b			Large sample ^c	
elapsed (days)	Mass loss (% of total)	Residual tetrazene content (%) ^d	Thermo- gram T _{max} (°C)	Residual tetrazene content (%)e	Thermo- gram T _{max} (°C)
0	0.0	100.0 (100.0)		100.0	
1	0.6	95.6 (95.7)	149.9	95.7	150.4
4	2.6	82.7 (84.6)	148.8	90.1	149.1
7	5.0	71.7 (77.4)	148.1	80.5	148.2
10	10.4	62.3 (72.3)	148.4	60.4	148.6
14	19.5	55.1 (67.1)	148.8	45.6	148.1
18	24.5	41.6 (54.7)	148.7	32.9	148.7
21	27.5	44.9 (60.9)	148.7	32.7	148.2
28	35.1	33.8 (51.3)	148.3	13.0	147.5 ^f
35	42.7	17.1 (29.7)	148.5	~3	~ 146 ^f
42	46.9	20.0 (36.5)	149.6	<3	~ 147 ^f

Flame sensitivity	1,000 MPa compacting pressure, 1 mm orifice diameter ^[11] :			
	Time in hydrogen/air flame (ms)	Prob. of initiation (%)		
	~2.4	0		
	~2.6	~16		
	~3.2	~ 56		
	~6.5	100		
	0 MPa compacting pressure, 3 mm o	orifice diameter ^[11] :		
	Time in hydrogen/air flame (ms)	Prob. of initiation (%)		
	1.5	0		
	~1.4	20		
	~1.5	50		
	~1.6	100		
	Undergoes mild explosion producing a lot of black smoke on contact with flame ^[4, 19] , detonates readily on exposure to flame ^[22]			
Specific heat [J kg ⁻¹ K ⁻¹ × 10 ²]	15.85 ± 0.65 (temperature range 290–400 K) ^[12] , 16.3 (lit. value) ^[12]			
Activation energy for dec. [kJ/mol]	148 (Tetracene A, slow dec. studies, <i>Bird</i>) ^[12] , 138 (Tetrazene B, slow dec. studies, <i>Bird</i>) ^[12] , 360 (<i>Krien</i>) ^[12]			
100 °C heat test [% mass loss]	Extreme dec. in first 48 $h^{[4]}$, 23.2% mass loss in first 48 $h^{[6, 20]}$, 3.4% in second 48 $h^{[6, 20]}$, no explosion in 100 $h^{[6, 20]}$			
International test @ 75 °C	0.5% mass loss in 48 h ^[4, 6, 20]			
Burn rate [mm/s]	Undergoes mild explosion producing	g black smoke on contact with flame ^[19]		
Solubility [g/mL]	Practically insoluble in H_2O and most organic solvents, e.g. EtOH, acetone, Et_2O , benzene ^[10] , practically insoluble in H_2O , EtOH, Et_2O , benzene, $CCl_4^{[4, 14, 19, 20]}$, practically insoluble in acetone and ethylene dichloride ^[4] , soluble in dil. nitric acid or strong hydrochloric acid ^[4]			
Hygroscopicity	Slightly hygroscopic $^{[10,14,22]}$, absorbs 0.77% $\rm H_2O$ @ 30 °C, 90% rel. humidity $^{[4,10,20]}$, hydrolytically unstable $^{[26]}$			
Compatibility	Does not react with conc. HNO $_3$, steel, Cu, Al, TNT, Tetryl, PETN, or RDX @ RT ^[10] , dec. by boiling H $_2$ O ^[4, 14, 20] , reacts with excess of AgNO $_3$ ^[4] , dec. by wet CO $_2$ ^[25] , hydrolytically stable: DSC showed >99% sample purity after 2 months suspended in water @ 20 °C ^[29]			

Blast characteristics	Values from [15] (loose-filled into mild steel test units $(4.6 \times 2.5 \times 2.5 \text{ cm})$, 0.9 cm hole diameter, sealed with cork disc and adhesive, mass of material = 200–1,000 g, initiated with ICI type "E" fuzehead):						
	Material		1	ve peak sure, P _{max} ean value)	phase i	ave positive mpulse I ⁺ nean value)	
	Tetracene		3.2		0.32		
	Tetracene/Na ₂ (proportions by		2.8		0.24		
	Tetracene/NaN (proportions by		2.8		0.23		
	TNT equivalence and 25 mkg ^{-1/3}) [[]		age betwee	n scaled di	stances 10	0 mkg ^{-1/3}	
Stab sensitivity	Stab initiation energies for admixtures of lead azide with tetrazene which had been subjected to thermal and hydrolytic stability studies (Tetrazen RD1343 (1:20 by weight), compacted @ 560 MPa into stab detonator)[25]				s (Tetrazene/L	.А	
	Test/time elap	sed	Stab initiation energies (mJ)				
	thermal stabili						
	0		3.6]	
	1 week		3.9]	
	2 weeks		6.6]	
	3 weeks		10.2]		
	4 weeks]		
	5 weeks		20				
	6 weeks		110				
Ignition sensitivity by electric bridge	Bridge current and ignition time (I = ignition current (ampere), s = ignition time (1/1,000 s), l^2s = (ignition current) ² × (ignition time)) ^[30] :						
current	1 2.0	1.6	1.3	1.0	0.8]	
	s 2.4	3.1	4.1	5.3	6.6	1	
	<i>l</i> ² s 9.6	7.9	6.9	5.3	4.2	1	
	,		•	•	-	•	
Brisance	40-70% TNT ^[4]						

	Tetrazene ^[5]	Tetrazene ^[5]
Chemical formula	$C_2H_8N_{10}O$	C ₂ H ₈ N ₁₀ O
Molecular weight [g mol ⁻¹]	188.16	188.16
Crystal system	Monoclinic	Monoclinic
Space group	la	P 2 ₁ / a
a [Å]	12.888(1)	12.955(2)
<i>b</i> [Å]	9.332(1)	9.295(1)
c [Å]	6.811(1)	6.847(1)
α [°]	90	90
β [°]	112.47(1)	111.54(1)
γ [°]	90	90
<i>V</i> [ų]	756.973	766.912
Z	Not given	4
$\rho_{\rm calc}$ [g cm ⁻³]	Not given	1.63
<i>T</i> [K]	295	295

- [1] R. J. Spear, M. Maksacheff, *Thermochim. Acta.*, **1986**, *105*, 287–293.
- [2] J. W. Fronabarger, M. D. Williams, A. G. Stern, D. A. Parrish, Centr. Europ. J. Energ. Mat., 2016, 13, 33–52.
- [3] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 315–316.
- [4] Military Explosives, Department of the Army Technical Manual, TM 9-1300-214, Headquarters, Department of the Army, September 1984.
- [5] J. R. C. Duke, J. Chem. Soc. D, 1971, 2-3.
- [6] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1974.
- [7] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 5, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1972**.
- [8] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 9, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1980.
- [9] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, *vol. 7*, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1975**.
- [10] R. Matyáš, J. Pachman, *Primary Explosives*, Springer-Verlag, **2013**.
- [11] F. Taylor, Primary Explosive Research Report, NAVORD 2800, Naval Ordnance Laboratory, USA, 1953.
- [12] D. Tabor, J. E. Field, M. N. Chaudhri, H. M. Hauser, R. G. Patel, *Mechanical Properties of Energetic Materials*, Final Technical Report, ADA039600, European Research Office, London, January **1977**.
- [13] J. J. P. A. Le Roux, *Propellants, Explosives, Pyrotechnics*, **1990**, *15*, 243–247.
- [14] T. L. Davis, The Chemistry of Powder and Explosives, vol. 2, 1943, John Wiley and Sons Inc., New York.
- [15] L. V. De Yong, G. Campanella, J. Hazard. Mater., 1989, 21, 125–133.
- [16] P. A. Davies, J. Hazard. Mater., 1994, 38, 75–88.

- [17] R. Matyáš, J. Šelešovský, J. Energet. Mater., 2014, 32, 88–94.
- [18] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [19] Handbook of Foreign Explosives, U. S. Materiel Command, US Army Foreign Science and Technology Center, Washington, D. C., USA, October **1965**.
- [20] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.
- [21] D. Tabor, J. E. Field, M. N. Chaudhri, H. M. Hauser, R. G. Patel, Mechanical Properties of Energetic Materials, Final Technical Report, ADA039600, European Research Office, London, January 1977.
- [22] Encyclopedia of Explosives A Compilation of Principal Explosives, Their Characteristics, Processes of Manufacture and Uses, Ordnance Technical Intelligence Agency, Durham, North Carolina, USA, 13th May 1960.
- [23] J. Harris, *Friction Sensitivity of Primary Explosives*, Technical Report ARLCD-TR-82012, US Army Armament Research and Development Command, New Jersey, USA, 6th October **1982**.
- [24] Engineering Design Handbook, Explosives Series, Explosive Trains, AMC Pamphlet AMCP 706–179, Headquarters, US Army Materiel Command, Alexandria, Virginia, USA, 15th January 1974.
- [25] M. A. Ilyushin, I. V. Tselinsky, I. V. Shugalei, Central Eur. J. Energet. Mater., 2012, 9, 293-327.
- [26] Q.-L. Yan, S. Zeman, J.-G. Zhang, P. He, T. Musil, M. Bartošková, PCCP, 2014, 16, 24282-24291.
- [27] J. Fronabarger, M. Williams, M. Bichay, Environmentally Acceptable Alternatives to Existing Primary Explosives: Replacements for Lead Azide, Lead Styphnate and Tetrazene, Joint Armaments Conferences, Dallas, Texas, USA, 20th May 2010.
- [28] E. E. Gilbert, W. E. Voreck, Propellants, Explosives, Pyrotechnics, 1989, 14, 19-23.
- [29] P. P. Elischer, R. J. Spear, A Thermal Stability Test for Primary Explosive Stab Sensitizers: Study of the Thermal and Hydrolytic Stability of 2-Picryl-5-Nitrotetrazole, MRL-R-918, Department of Defence Material Research Laboratories, Melbourne, Australia, February 1984.
- [30] A. Suzuki, Explosive Properties of Initial Explosives, Crystallographic, Molecular, and Quantum-Chemical Considerations, T-1797-65, Department of the Army, U.S. Army Mobility Equipment Center, Fort Belvoir, Virginia, USA, August 1965.
- [31] B. D. Pollock, R. F. Gentner, *Impact Sensitivity of Wetted Primary Explosives as Determined by the Ball Drop Test*, Technical Report 4311, Picatinny Arsenal, New Jersey, USA, April 1972.
- [32] M. Kirshenbaum, Response of Primary Explosives to Gaseous Discharges in an Improved Approaching-Electrode Electrostatic Sensitivity Apparatus, Technical Report 4955, Picatinny Arsenal, New Jersey, USA, October 1976.
- [33] Z. Shunguan, W. Youchen, Z. Wenyi, M. Jingyan, *Propellants, Explosives, Pyrotechnics*, **1997**, 22, 317–320.
- [34] M. S. Kirshenbaum, Electrostatic Sensitivity, Ch. 5 in Energetic Materials 2: Technology of the Inorganic Azides, H. D. Fair, R. F. Walker (eds.), Plenum Press, 1977.

6,6'-{1,2,4,5-Tetrazine-3,6-diylbis[(4*H*,8*H*-bis[1,2,5] oxadiazolo[3,4-b:3',4'-e]pyrazine-8,4-diyl)]} bis(2,4-dioxo-1,2,4,5-tetrazin-3-amine)

Name [German, acronym]: 3,3'-((1,4-Dioxido-1,2,4,5-tetrazine-3,6-diyl)bis(4*H*,8*H*-

bis([1,2,5]oxadiazolo)[3,4-b:3',4'-e]pyrazine-8,4-diyl))

bis(6-amino-1,2,4,5-tetrazine 1,5-dioxide)

Main (potential) use: thermally stable explosive

Formula	C ₁₄ H ₄ N ₂₆ O ₈			
Molecular mass [g mol ⁻¹]	664.36			
Appearance at RT	Clear block orange crys	tals (solvate with DMF) ^[1]		
IS [J]	$H_{50\%} = 35.7$ (LANL type :	12, 2.5 kg mass) ^[1]		
FS [N]	>360 (50% load, Brucet	on up/down method) ^[1]		
ESD [J]	0.062 (ABL spark, 3.4%	threshold initiation level) ^[1]	
N [%]	54.82			
Ω(CO ₂) [%]	-52.98			
T _{dec.} [°C]	226 (exo, onset), 295 (exo, peak max) (DSC @ 10 °C/min, hermetically sealed Al pan) ^[1]			
ρ [g cm ⁻³]	1.903 (calcd. @ 23 °C) ^[1] , 1.541 (DMF solvate, X-ray @ 296 K) ^[1]			
Heat of formation	2,128 kJ/mol (enthalpy	of form., calcd.) ^[1]		
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]				
T _{ex} [K]				

p _{C-J} [kbar]		32 GPa (@ 1.903 g cm ⁻³ , calcd., CHEETAH) ^[1]	
VoD [m s ⁻¹]		8,700 (@ 1.903 g cm ⁻³ , calcd., CHEETAH) ^[1]	
V ₀ [L kg ⁻¹]			
ΔH _{dec} [J/g]	1,211 (DSC @ 10 °C/min, hermetically sealed Al pan) ^[1]		

	6,6'-{1,2,4,5-Tetrazine-3,6-bis[1,2,5]oxadiazolo[3,4-b:3',4'-e]pyrazine-8,4-diyl)]}bis(2,4-dioxo-1,2,4,5-tetrazin-3-amine) N,N-dimethylformamide solvate ^[1]
Chemical formula	C ₁₄ H ₄ N ₂₆ O ₈ •4DMF
Molecular weight [g mol ⁻¹]	956.81
Crystal system	Triclinic
Space group	P-1 (no. 2)
a [Å]	9.5919(4)
<i>b</i> [Å]	12.8830(6)
c [Å]	17.5266(8)
α [°]	100.2430(10)
β [°]	96.5340(10)
γ [°]	101.589(2)
<i>V</i> [ų]	2,062.57(16)
Z	2
$\rho_{\rm calc}$ [g cm ⁻³]	1.541
<i>T</i> [K]	296

^[1] C. J. Snyder, L. A. Wells, D. E. Chavez, G. H. Imler, D. A. Parrish, *Chem. Comm.*, **2019**, *55*, 2461–2464.

Tetrazino-tetrazine-1,3,6,8-tetroxide

Name [German, acronym]: [1,2,3,4]Tetrazino[5,6-e][1,2,3,4]tetrazine

1,3,6,8-tetraoxide, di-tetrazine-tetroxide [TTTO, DTTO]

Main (potential) use: Possible component of future high-power explosive

compositions and solid high propellants^[3]

$$\bigoplus_{\Theta} \bigvee_{N} \bigvee_{N} \bigoplus_{N} \bigvee_{\Theta} \bigoplus_{\Theta} \bigoplus_{\Theta} \bigoplus_{N$$

	ттто	
Formula	$C_2N_8O_4$	
Molecular mass [g mol ⁻¹]	200.07	
Appearance at RT	Yellow powder ^[1] , yellow crystals (crude product) ^[3]	
IS [J]	~27 (est., 2.5 kg mass, ~ 110 cm, calcd.) ^[5]	
FS [N]	No detonation on rubbing in an agate mortar $^{[1]}$, exploded on rubbing in an unglazed porcelain mortar $^{[1]}$	
N [%]	56.01	
Ω(CO ₂) [%]	0	
T _{m.p.} [°C]	183–186 (dec.) ^[1, 3]	
T _{b.p.} [°C]	653 K (est., COSMO-RS) ^[7]	
T _{dec.} [°C]	183–186 (dec.) ^[1]	
ρ [g cm ⁻³]	1.98 (calcd.) ^[1] , 1.96 (calcd., most stable calcd. isomer C_1 with $P2_12_12_1$ space group and $Z=4$) ^[4] , 1.899 (calcd.) ^[5]	
Heat of formation	~206 kcal/mol (calcd.) ^[1] , $\Delta H_{\rm f}^{\rm o}$ = 1,030 kcal/kg (calcd.) ^[3] , $\Delta H_{\rm f}^{\rm o}$ (g) = 223.3 kcal/mol (calcd., B3LYP) ^[5] , $\Delta H_{\rm f}^{\rm o}$ (liq.) = 209.1 kcal/mol (calcd.) ^[5] , $\Delta H_{\rm f}^{\rm o}$ (s) = 205.5 kcal/mol (calcd.) ^[5] , $\Delta H_{\rm f}^{\rm o}$ = 207.53 kcal/mol (calcd.) ^[6] , 868.3 kJ/mol (enthalpy of form.) ^[7] , 965.9 kJ/mol ($\Delta H_{\rm f}$ (298 K), calcd., W1U) ^[7]	

	calcd. gas phase (0 I (kJ/mol) ^[7] : Property $\Delta H_{\rm f}$ (0 K) $\Delta H_{\rm f}$ (298 K, liq.) $\Delta H_{\rm f}$ (298 K, liq.) $\Delta H_{\rm f}$ (298 K, liq.) $\Delta H_{\rm f}$ (298 K, liq.) $\Delta H_{\rm f}$ (298 K, liq.) $\Delta H_{\rm f}$ (298 K, liq.) $\Delta H_{\rm f}$ (298 K, liq.) $\Delta H_{\rm f}$ (298 K, liq.) $\Delta H_{\rm f}$ (298 K, liq.) $\Delta H_{\rm f}$ (298 K, liq.)	Method G3MP2 G3MP2 G3MP2 G3MP2 G3 G3 G3 G3 G4MP2 G4MP2 G4MP2 G4 G4 G4	puid (298 K) heats DTTO 1,022.4 996.0 927.4 1,001.1 974.7 906.0 994.4 968.0 899.7 975.5 949.1 880.9	of formation
	234.4 kcal/mol (ΔH_f ccCA-S3) ^[8] , 232.2 kc (ΔH_f (g)°, calcd., G3) ^[8]	$\operatorname{al/mol}(\Delta H_{\mathrm{f}}(\mathrm{g})^{\mathrm{o}}, \operatorname{cal/mol}(\mathrm{g})^{\mathrm{o}})$		
	Calcd. (EXPLO5 V6.05.02)	Lit. values		Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	4,972 (@ 1.96 g cm ⁻³ , $\Delta H_f = 206 \text{ kcal/mol}$)	1,967 kcal/kg ^[3] $\Delta H_{det} = -393.6 \text{ kcal/mol (calcd.)}$ $Q = 1,967 \text{ cal/g}^{[5]}$ $Q = 1.978 \text{ kcal/g (calcd.)}^{[6]}$		
T _{ex} [K]	3,921 (@ 1.96 g cm ⁻³ , $\Delta H_f = 206 \text{ kJ/mol}$)			

p _{C-J} [kbar]	368 (@ 1.96 g cm ⁻³ , $\Delta H_f = 206 \text{ kJ/mol}$)	43.2 GPa ^[3] 43.0 GPa (calcd. for most stable calcd. isomer C_1 with $P2_12_12_1$ space group and $Z=4$, $\rho=1.96$ g cm ⁻³) ^[4] 432 (@ 1.899 g cm ⁻³ , calcd.) ^[5] calculated values using Cheetah 7.0, assuming enthalpy of formation of 868.3 kJ/mol ^[7] :		
		Crystal ρ (g/cm³)	Detonation pressure (GPa)	
		1.80	37.524	
		1.85	40.310	
		1.90	43.377	
		1.95	46.771	
		2.00	50.529	
		2.05	54.654	
		2.10	59.112	
		2.15	63.876	
		2.20	68.978	
		2.25	74.518	
		2.30	80.598	
		2.35	87.228	
		2.40	94.274	
		2.419	97.018	
		2.45	124.592	
VoD [m s ⁻¹]	9,287 (@ 1.96 g cm ⁻³ , $\Delta H_{\rm f}$ = 206 kJ/mol)	9,710 (@ 1.98 g cm ⁻³ , calcd.) ^[2] 9,700 (calcd. for most stable calcd. isomer C_1 with $P2_12_12_1$ space group and $Z=4$, $\rho=1.96$ g cm ⁻³) ^[4]		
		9,710 (@ 1.8	899 g cm ⁻³ , calcd.) ^[5]	

		calculated va	alues using Cheetah		
		7.0, assumir	ng enthalpy of		
		formation of 868.3 kJ/mol ^[7] :			
		Crystal ρ (g/cm³)	VoD (km/s)		
		1.80	8.947		
		1.85	9.130		
		1.90	9.312		
		1.95	9.492		
		2.00	9.669		
		2.05	9.843		
		2.10	10.012		
		2.15	10.176		
		2.20	10.336		
		2.25	10.490		
		2.30	10.637		
		2.35	10.775		
		2.40	10.902		
		2.419	10.947		
		2.45	10.929		
V ₀ [L kg ⁻¹]	736 (@ 1.96 g cm ⁻³ , Δ <i>H</i> _f = 206 kJ/mol)				
I _{sp} [Ns g ⁻¹]	2.90 (ISPBKW code) ^[6] , 2.91 (0.48%) (calcd., emp.) ^[6] , 2.77 (-4.49%) (calcd., emp.) ^[6]				
Hygroscopicity	TTTO and TTTO•benzene can be handled in open air for a short period of time ^[1]				
Compatibility	TTTO unchanged after 1 h @ RT in HNO $_3$ /H $_2$ SO $_4$ /Ac $_2$ O system $^{[1]}$, hydrolysis complete within 2 h in 50% aq. EtOH @ 20 °C $^{[1]}$, dec. on silica gel 60 $^{[1]}$				
ΔH _{vap} [kcal/mol]	14.2 ^[5]				
ΔH _{subl} [kcal/mol]	17.8 ^[5]				

	TTTO•benzene ^[1]
Chemical formula	C ₈ H ₆ N ₈ O ₄
Molecular weight [g mol ⁻¹]	278.21
Crystal system	Triclinic
Space group	P-1
a [Å]	6.4875(9)
<i>b</i> [Å]	6.7454(10)
c [Å]	13.2696(19)
α [°]	91.743(3)
β [°]	90.868(3)
γ [°]	108.093(3)
<i>V</i> [ų]	551.53(4)
Z	2
$ ho_{ m calc}$ [g cm $^{-3}$]	1.675
T [K]	120
	Twinned orange crystals obtained by slow evaporation of TTTO in dry benzene (containing 1% v/v trifluoroacetic acid) in vacuum dessicator over P ₄ O ₁₀

Obtained as TTTO•benzene adduct on recryst. from benzene^[1], crystals not obtained from other solvents and powder X-ray diffraction showed disordered molecules^[1]

- [1] M. S. Klenov, A. A. Guskov, O. V Anikin, A. M. Churakov, Y. A. Strelenko, I. V. Fedyanin, K. A. Lyssenko, V. A. Tartakovsky, *Angew. Chem. Int. Ed.*, **2016**, *55*, 11472–11475.
- [2] L. Zhai, F. Bi, Y. Luo, N. Wang, J. Zhang, B. Wang, *Nature Scientific Reports*, **2019**, *9*, Article Nr. 4321.
- [3] M. S. Klenov, A. A. Guskov, O. V. Anikin, A. M. Churakov, V. A. Tartakovskij, *Method for Producing* [1,2,3,4]-Tetrazino-[5,6-e]-[1,2,3,4]-Tetrazino-1,3,6,8-Tetraoxide, Russian Patent RU2, 593,993 C1, 22nd June **2015**.
- [4] C.-C. Ye, Q. An, W. A. Goddard, T. Cheng, W.-G. Liu, S. V. Zybin, X.-H. Ju, J. Mater. Chem., 2015, 3, 1972–1978.
- [5] P. Politzer, P. Lane, J. S. Murray, Centr. Eur. J. Energet. Mater., 2013, 10, 37–52.
- [6] D. Frem, J. Aerosp. Technol. Manag., 2018, 10, e3318.
- [7] K. O. Christe, D. A. Dixon, M. Vasiliu, R. I. Wagner, R. Haiges, J. A. Boatz, H. L. Ammon, *Propellants, Explosives, Pyrotechnics*, **2015**, *40*, 463–468.
- [8] K. R. Jorgensen, G. A. Oyedepo, A. K. Wilson, J. Hazard. Mater., 2011, 186, 583–589.

Tetrazole

Name [German, acronym]: α -1*H*-1,2,3,4-Tetrazole* [tetrazol]

Main (potential) use: Precursor for the synthesis of many other energetic

materials^[9]

Structural formula:

*Tetrazole can theoretically exist in three tautomeric forms: 1*H*-tetrazole, 2*H*-tetrazole and 5*H*-tetrazole. Both 1*H*-tetrazole and 2*H*-tetrazole have been identified^[11]. In soln. 1*H*- or 2*H*-tetrazole are present, the proportion of tautomers depends on the polarity of the soln. Polar solvents favor the 1*H*-tautomer^[11]

	Tetrazole
Formula	CH₂N₄
Molecular mass [g mol ⁻¹]	70.05
Appearance at RT	Colorless prism crystals ^[4] , crystalline ^[9] , colorless crystals (recryst. from ethyl acetate) ^[10]
IS [J]	<4 (BAM) ^[10] , <4 ^[11]
FS [N]	>360 (none) (BAM) ^[10] , >360 ^[11]
N [%]	79.98
Ω(CO ₂) [%]	-68.52
7 _{m.p.} [°C]	156.4 ^[1] , 438 K (broad peak, DSC) ^[A] , 156–157 ^[9] , 154 (endo) (DSC @ 2 °C/min, covered Al pans, N_2) ^[10] , 155.5 (melts without dec.) ^[5] , 430 ± 1 K (triple-heat-bridge method) ^[12]
T _{phase transition} [°C]	No phase transition observed in $DSC^{[4]}$, $1H$ -tautomer exists in crystalline state ^[9] , $1H$ - and $2H$ -tautomers co-exist in gas-phase with $2H$ -tautomer predominating ^[9] , $1H$ -tautomer dominates over $2H$ -tautomer in polar solvents ^[9] , $1H$ -tautomer in melt ^[9] $2H$ -tautomer formed during evaporation ^[9]

T _{dec.} [°C]	188 (exo, dec., DSC @ 2 °C/min, covered Al pans, N ₂) ^[10]				
ρ [g cm ⁻³]	1.632 ^[1] , 1.529 ^[10] , 1.406 (flotation) ^[5] , 1.632 (X-ray) ^[5]				
Heat of formation	237.07 kJ/mol (enthalpy of form.) ^[1] , 236.0 kJ/mol ^[1] , 82.3 kcal/mol ($\Delta_f H^o$ _{gas} , calcd., G3 method, 1 H -tautomer) ^[8] , 80.4 kcal/mol ($\Delta_f H^o$ _{gas} , calcd., G3 method, 2 H -tautomer) ^[8] , 78.3 kcal/mol ($\Delta_f H^o$ _{gas} , exptl., 1 H -tautomer) ^[8] , 78.1 kcal/mol ($\Delta_f H^o$ _{gas} , exptl., 1 H -tautomer) ^[8] , 79.1 kcal/mol ($\Delta_f H^o$ _{gas} , calcd., W1 level of theory, 1 H -tautomer) ^[9] , 80.2 kcal/mol ($\Delta_f H^o$ _{gas} , calcd., CCSD(T)/CBS, 1 H -tautomer) ^[9] , 81.0 kcal/mol ($\Delta_f H^o$ _{gas} , calcd., weighted average of G3, G3B3 and CBS-APNO values, 1 H -tautomer) ^[9] , 82.3 kcal/mol ($\Delta_f H^o$ _{gas} , calcd., G3, 1 H -tautomer) ^[9] , 77.3 kcal/mol ($\Delta_f H^o$ _{gas} , calcd., W1 level of theory, 2 H -tautomer) ^[9] , 79.0 kcal/mol ($\Delta_f H^o$ _{gas} , calcd., weighted average of G3, G3B3 and CBS-APNO values, 2 H -tautomer) ^[9] , 80.4 kcal/mol ($\Delta_f H^o$ _{gas} , calcd., G3, 2 H -tautomer) ^[9] , 79.9 kcal/mol ($\Delta_f H^o$ _{gas} , exptl., static bomb calorimetry, 1 H -tautomer) ^[9] , 79.9 kcal/mol ($\Delta_f H^o$ _{gas} , exptl., 1 H -tautomer) ^[cited in9] , 56.4 kcal/mol ($\Delta_f H^o$ _{solid} , exptl., combustion and vapor pressure measurements, 1 H -tautomer) ^[9] , 76.7 kcal/mol ($\Delta_f H^o$ _{gas} , exptl., 1 H -tautomer) ^[9] , 78.1 ($\Delta_f H^o$ _{gas} , exptl., 1 H -tautomer) ^[9] , 237 kJ/mol ($\Delta_f H^o$ _{calcd} , calcd.) ^[10] , 237.224 kJ/mol (enthalpy of form.) ^[11] calcd. and exptl. gas phase heats of formation (298 K) in kJ/mol ^[13] :				
	Method 1 <i>H-</i> Tetrazole				
	G3MP2	346.7			
	G3	G3 344.6 G4MP2 333.3			
	G4MP2				
	G4	330.7			
	Exptl.	334.5 ± 4.2 321.1 ± 2.9 358.8			
Heat of combustion	$\Delta U_{\text{comb.}} = -3,281 \text{ cal/g}^{[10]}, \Delta H_{\text{comb.}} = -916 \text{ kJ/mol}^{[10]}$				
					_
	Calcd. (EXPLO	5 5.02)	Lit. va	alues	Exptl.
$-\Delta_{\rm ex}U^{\rm o} [\rm kJ~kg^{-1}]$	3,941 ^[10]				
T _{ex} [K]	3,047 ^[10]				
p _{C-J} [kbar]	210 ^[10, 11]				

V D I -11	-2/10 11		
VoD [m s ⁻¹]	7,813 (@ 1.529 g cm ⁻³) ^[10,11]		
V ₀ [L kg ⁻¹]	785		
Volatility	Crystals obtained by slow sublimation @ 50 °C ^[5]		
Enthalpy of fusing [kJ/mol]	17.7 ^[1] , $\Delta_{\text{fus}}H^{\circ}_{\text{m}} = 18.0 \pm 0.5 \text{ kJ/mol (triple-heat-bridge method)}^{[12]}$		
Enthalpy of boiling [kJ/mol]	79.6 ^[1]		
Enthalpy of sublimation [kJ/mol]	97.3 ^[1] , 90.1 ^[1] , 88.0 ^[1] , 125.5 (exptl.) ^[3] , 95.0 (calcd., QSPR) ^[3] , 23.26 kcal/mol (exptl.) ^[9] , 20.2 kcal/mol (exptl.) ^[9] , 21.5 kcal/mol (exptl.) ^[9] , 21.4 kcal/mol (exptl., differential heat-conduction microcalorimetry) ^[9]		
Heat of decomposition [kJ/mol]	162 ^[1] , 216 ^[1]		
Thermal conductivity, λ_c [J/s•cm•K]	0.0125 ^[1]		
Specific heat, C _p [J/g•K]	243 ^[1]		
Surface $T(T_s)$ [°C]	Values from. ^[1]		
	$P ext{ (atm.)}$ $T_s ext{ (°C)}$ (min. and max. measured values)		
	1 250-302		
	3.5 300-422		
	8 368–515		
	13 328-600		
T of combustion [°C]	Max. measured value = ~ 1,140 ^[1] , 1,140 °C (measured @ 0.1 MPa) ^[7] , 1,925 °C (calcd., @ 0.1 MPa) ^[7] , 2,216 K (adiabatic burning T @ 30 MPa) ^[7]		

		_	
Burn	rata	[mm	/cl
Duili	Iale		<i>-</i> 31

Pressure bomb, 1.5 L vol., slit camera, compacted samples in transparent acrylic tubes of 4 or 7 mm diameter @ 150-200 MPa pressure^[1]:

Pressure (MPa)	Burning rate (cm/s)		
	Strands of 4 mm	Strands of 7 mm	
0.1	0.03	0.05	
0.2	0.06	0.1	
0.3	0.07	0.2 @ 0.2 MPa	
0.5	0.1	_	
0.7	0.15	_	
2	0.6	0.7	
3	0.7	_	
4	0.8	1.0	
5	1.0	-	
6	1.5	-	
8	~ 1.8	2	
10	~ 1.9	2.5	

Burning rate from Russian FLAME database $^{[2]}$: 0.3 mm/s @ 1 atm. pressure $^{[2]}$, 1.0 mm/s @ 4 atm. pressure $^{[2]}$, 2.5 mm/s @ 10 atm. pressure $^{[2]}$, 10.0 mm/s @ 50 atm. pressure $^{[2]}$, 11.0 mm/s @ 100 atm. pressure $^{[2]}$

 $\begin{array}{l} 0.3 \text{ mm/s @ } 0.1 \text{ MPa}^{[7]}, 0.22 \text{ mm/s @ } 0.2 \text{ MPa}^{[7]}, 0.75 \text{ @ } 0.3 \text{ MPa}^{[7]}, \\ 0.95 \text{ mm/s @ } 0.5 \text{ MPa}^{[7]}, 1.6 \text{ mm/s @ } 0.75 \text{ MPa}^{[7]}, 2.2 \text{ mm/s @ } 1.2 \text{ MPa}^{[7]}, \\ 4.5 \text{ mm/s @ } 1.6 \text{ MPa}^{[7]}, 6 \text{ mm/s @ } 2 \text{ MPa}^{[7]}, 7 \text{ mm/s @ } 3 \text{ MPa}^{[7]}, 9 \text{ mm/s } \\ @ 4 \text{ MPa}^{[7]}, 10 \text{ mm/s @ } 5 \text{ MPa}^{[7]}, 15 \text{ mm/s @ } 6 \text{ MPa}^{[7]}, 18 \text{ mm/s @ } 8 \\ \text{MPa}^{[7]}, 19 \text{ mm/s @ } 10 \text{ MPa}^{[7]}, 30 \text{ mm/s @ } 15 \text{ MPa}^{[7]}, 40 \text{ mm/s @ } 20 \text{ MPa}^{[7]}, \\ 50 \text{ mm/s @ } 25 \text{ MPa}^{[7]} \end{array}$

Combusts readily without smoke^[10]

Solubility [g/mL]

Recryst. from $EtOH^{[1]}$, soluble in dioxane, DMSO, DMF, H_2O , acetone, $CHCl_3^{[9]}$, recryst. from ethyl acetate and other common organic solvents^[5]

	α-1 <i>H</i> -1,2,3,4-Tetrazole ^[4]	Tetrazole (α-) ^[5]	β-Tetrazole ^[6]
Chemical formula	CH ₂ N ₄	CH ₂ N ₄	CH ₂ N ₄
Molecular weight [g mol ⁻¹]	70.07	70.06	70.07
Crystal system	Triclinic	Triclinic	Monoclinic

Space group	P1		P2 ₁ or P2 ₁ /m
a [Å]	3.7250(10)	5.00	4.931(2)
<i>b</i> [Å]	4.7730(10)	5.46	6.451(2)
c [Å]	4.9360(10)	3.75	5.390(1)
α [°]	107.03(2)	130	90
β [°]	107.23(2)	111	116.69(3)
γ [°]	101.57(2)	63	90
<i>V</i> [ų]	76.08(4)		
Z	1	1	2
$ ho_{\rm calc}$ [g cm ⁻³]	1.529	1.632	1.52
T[K]	293		
	Crystals grown from n-pentane, colorless prisms		

- [1] V. P. Sinditskii, V. Y. Egorshev, A. E. Fogelzang, V. V. Serushkin, V. I. Kolesov, *Combustion Behavior and Flame Structure of Tetrazole Derivatives*, ICT **1998**, Karlsruhe, Germany, 171-1–171-14.
- [2] R. L. Simmons, C. M. Walsh, *Designing Advanced Gun Propellants with Improved Energy Release*, ICT **2001**, Karlsruhe, Germany, pp. 43-1–43-11.
- [3] H. W. Lee, K.-H. Chung, S. G. Cho, B.-S. Lee, C. K. Kim, *Predictive Studies on Various Physicochemical Properties of Explosive Molecules*, ICT **2006**, Karlsruhe, Germany, pp. 177-1–177-12.
- [4] R. Goddard, O. Heinemann, C. Krüger, *Acta Cryst.*, **1997**, *C53*, 590–592.
- [5] W. C. McCrone, D. Grabar, E. Lieber, Anal. Chem., 1951, 23, 543.
- [6] N. van der Putten, D. Heijdenrijk, H. Schenk, Cryst. Struct. Comm., 1974, 3, 321.
- [7] V. P. Sinditskii, V. Y. Egorshev, T. Y. Duntova, M. D. Duntov, T. L. Zhang, J. G. Zhang, *Combust., Explosion, Shock Waves*, **2011**, *47*, 36–44.
- [8] V. G. Kiselev, N. P. Gritsan, J. Phys. Chem. A, 2009, 113, 3677-3684.
- 9] V. G. Kiselev, P. B. Cheblakov, N. P. Gritsan, *J. Phys. Chem. A*, **2011**, *115*, 1743–1753.
- [10] J. Stierstorfer, Advanced Energetic Materials Based on 5-Aminotetrazole Synthesis, Characterization and Scale-Up, PhD Thesis, LMU München, Munich, 2009.
- [11] A. Wojewodka, T. Witkowski, Chemik, 2013, 67, 19-24.
- [12] G. J. Kabo, A. A. Kozyro, A. P. Krasulin, V. M. Sevruk, L. S. Ivashkevich, J. Chem. Thermodynamics, 1993, 25, 485–493.
- [13] K. O. Christe, D. A. Dixon, M. Vasiliu, R. I. Wagner, R. Haiges, J. A. Boatz, H. L. Ammon, *Propellants, Explosives, Pyrotechnics*, **2015**, *40*, 463–468.

Tetrazolium dinitramide

Name [German, acronym]: 5 *H*-Tetrazolium dinitramide [tetrazolium dinitramid,

HTZ-DN]

Main (potential) use: high explosive, oxidizer

	Tetrazolium dinitramid	e	
Formula	CH ₃ N ₇ O ₄		
Molecular mass [g mol ⁻¹]	177.08		
Appearance at RT	colorless crystals ^[1]		
IS [J]	2 (75–125 μm grain siz	e, BAM) ^[1, 2] , 2 ^[3]	
FS [N]	28 (75–125 μm grain si	ize, BAM) ^[1, 2]	
ESD [J]	500 mJ (5-100 μm crys	tal size, OZM apparatus) [[]	1, 2]
N [%]	36.14		
Ω(CO ₂) [%]	+4.5		
T _{m.p.} [°C]	90 (DSC @ 5 °C/min, pressed Al containers with hole in lid) ^[1] , 70 (DSC @ 5 K/min) ^[2]		
T _{dec.} [°C]	110 (DSC @ 5 °C/min, pressed Al containers with hole in lid) ^[1] , 110 (onset, DSC @ 5 K/min) ^[2] , 130 ^[3]		
$ ho$ [g cm $^{-3}$]	1.824 (X-ray @ 200 K) ^[1]		
Heat of formation	87.6 kcal/mol $(\Delta_f H^o (s))^{[1]}$, 78.6 kcal/mol $(\Delta_f H^o (s), calcd.)^{[2]}$, 367 kJ/mol $(\Delta H^o_f)^{[2]}$, -367 kJ/mol (enthalpy of form.) ^[3] , 1,813.3 kJ/kg $(\Delta_f U^o (s), calcd.)^{[2]}$		
	Calcd. (EXPLO5 5.02)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	6,277 ^[1]		
T _{ex} [K]	4,880 ^[1]		
p _{C-J} [kbar]	365 ^[1]	36.5 GPa (@ 1.82 g cm ⁻³ , calcd., EXPLO) ^[3]	

VoD [m s ⁻¹]	9,215 (@ 1.824 g cm ⁻³) ^[1]	9,215 (@ 1.82 g cm ⁻³ , calcd., EXPLO) ^[3]	
V ₀ [L kg ⁻¹]	794 ^[1]		
Solubility [g/mL]	Soluble in EtOH ^[1]		
Hygroscopicity	Hygroscopic ^[1, 2]		

	Tetrazolium dinitramide ^[1]
Chemical formula	CH ₃ N ₇ O ₄
Molecular weight [g mol ⁻¹]	177.08
Crystal system	Monoclinic
Space group	C2/c (no. 15)
a [Å]	6.904(2)
b [Å]	7.668(2)
c [Å]	12.200(4)
α [°]	90
β[°]	93.01(3)
γ [°]	90
V [ų]	645.0(3)
Z	4
$\rho_{\rm calc}$ [g cm ⁻³]	1.824
τ[K]	200

^[1] J. Stierstorfer, Advanced Energetic Materials Based on 5-Aminotetrazole – Synthesis, Characterization and Scale-Up, PhD Thesis, LMU München, Munich, 2009.

^[2] T. M. Klapötke, J. Stierstorfer, Dalton Trans., 2009, 643–653.

^[3] A. Wojewodka, T. Witkowski, *Chemik*, **2013**, *67*, 19–24.

1,4H-Tetrazolium perchlorate

Name [German, acronym]: Tetrazolium perchlorate, 1*H*-tetrazolium perchlorate

[Tetrazoliumperchlorat, HTz-ClO₄]

Main (potential) use: oxidizer

$$\bigvee_{N=-N}^{\bigoplus} NH \qquad \text{CIO}_4 \quad \ominus$$

	Tetrazolium perchlor	ate	
Formula	CH ₃ CIN ₄ O ₄		
Molecular ,mass [g mol ⁻¹]	170.52		
Appearance at RT	Colorless plate crysta	als ^[2]	
IS [J]			
FS [N]			
ESD [J]			
N [%]	32.86		
Ω(CO ₂) [%]			
T _{m.p.} [°C]			
T _{dec.} [°C]			
$ ho$ [g cm $^{-3}$]	2.021 (X-ray @ 200 K) ^[1, 2]		
Heat of formation			
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]			
<i>T</i> _{ex} [K]			
p _{C-J} [kbar]			
VoD [m s ⁻¹]			
V ₀ [L kg ⁻¹]			
Hygroscopicity	Hygroscopic ^[1]		

	Tetrazolium perchlorate ^[1, 2]
Chemical formula	CH ₃ ClN ₄ O ₄
Molecular weight [g mol ⁻¹]	170.52
Crystal system	Monoclinic
Space group	P2 ₁ /n (no. 14)
a [Å]	4.9338(4)
<i>b</i> [Å]	7.4893(5)
<i>c</i> [Å]	15.1744(10)
α [°]	90
β [°]	92.073(6)
γ [°]	90
<i>V</i> [ų]	560.34(7)
Z	4
$ ho_{ m calc}$ [g cm ⁻³]	2.021
T[K]	200

^[1] J. Stierstorfer, Advanced Energetic Materials Based on 5-Aminotetrazole – Synthesis, Characterization and Scale-Up, PhD Thesis, LMU München, Munich, 2009.

^[2] T. M. Klapötke, J. Stierstorfer, Dalton Trans., 2009, 643–653.

1-[(2E)-3-(1H-Tetrazol-5-yl)triaz-2-en-1-ylidene]methanediamine

Name [German, acronym]: 1-[(2*E*)-3-(1*H*-Tetrazol-5-yl)triaz-2-en-1-ylidene]

methanediamine [MTX-1]

Main (potential) use: Possible tetrazene replacement

	MTX-1			
Formula	$C_2H_5N_9$			
Molecular mass [g mol ⁻¹]	155.13			
Appearance at RT				
IS [J]	0.02 Nm ^[3]			
ESD [J]	3–4 mJ ^[3]			
N [%]	81.27			
Ω(CO ₂) [%]	-67.0			
T _{dec.} [°C]	209 (DSC @ 5 °C/min)			
ho [g cm ⁻³]	2.47 ^[1] , 2.351 (@ 296 K) ^[2]			
Heat of formation	382 kJ/mol $(\Delta_i H^o)^{[3]}$, 2,469 kJ/kg $(\Delta_i H^o)^{[3]}$			
	Calcd. (EXPLO5 6.03)	Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	2,696	2,254		
<i>T</i> _{ex} [K]	2,007			
p _{C-J} [kbar]	338			
VoD [m s ⁻¹]	9,729 (@ 1.9 g cm ⁻³)			
V_0 [L kg ⁻¹]	847			

^[1] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© **1994–2017** ACD/Labs.

^[2] J. W. Fronabarger, M. D. Williams, A. G. Stern, D. A. Parrish, Centr. Europ. J. Energ. Mat., 2016, 13, 33–52.

^[3] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 316–317.

Tetryl

Name [German, acronym]: 1-Methylnitramino-2,4,6-trinitrobenzene,

N-methyl-*N*-(2,4,6-trinitrophenyl)nitramide, *N*-methyl-*N*,2,4,6-tetranitrobenazamine, *N*-methyl-*N*,2,4,6-tetranitroaniline, pyronite, tetrylit, tetralite, tetralita, picrylmethylnitramine, 2,4,6-trinitrophenylmethylnitramine, *N*-2,4,6tetranitro-*N*-methylaniline, 2,4,6-trinitrophenyl-*N*methylnitramine, tetrylite, tetranitromethylamulene

[tetryl, CE]

Main (potential) use: Secondary (high) explosive, ingredient in explosive

mixtures, component of blasting caps, military

boosters, rarely as bursting charge^[9], less commonly in military and commercial detonators^[9], partial substitute for MF charges^[9], was used as booster

explosive, in mixtures with TNT and as a base charge in

detonators^[21]

$$O_2N$$
 NO_2
 NO_2
 NO_2

	Tetryl
Formula	$C_7H_5N_5O_8$
Molecular mass [g mol ⁻¹]	287.14
Appearance at RT	Light yellow solid ^[14] , light yellow crystalline solid ^[21] , finely divided crystalline powder ^[66] , colorless (freshly prepared, high purity) ^[66] , colorless (highly purified) but rapidly becomes yellow when exposed to light ^[19,69] , colorless or yellow crystalline solid ^[9] , white crystalline substance, but technical product is bright yellow ^[75]

IS [J]^[10]

3 (<100 μ m), 7.85^[1], 5.49^[2], 5.10 (26 cm, 2 kg mass, 20 mg sample, B.M.)^[9, 10, 14], 3.00 (P.A.) $^{[9,10]}$, 26 cm (B.M) $^{[10,12]}$, 26 cm (2 kg mass, B.M.) $^{[33]}$, 25 cm (2.5 kg mass) $(P.A.)^{[10, 12]}$, 42 cm (tool type 12, ERL) $^{[12, 13]}$, 28 cm (tool type 12, 5 kg mass, ERL) $^{[12, 13]}$, 3.99 (8 in, 2 kg mass, 18 mg sample, P.A.) $^{[10, 14]}$, 13.73 (5 kg, $12 \text{ tool})^{[15]}$, 9.07 (2.5 kg, 12 tool)^[15], 10.06 (2.5 kg, 12B tool)^[15], 25 cm $(5 \text{ kg mass})^{[18]}$, $H_{50} = 42 \text{ cm}$ (tool type 12)^[21], $H_{50} = 49 \text{ cm}$ (tool type 12B)^[21], $H_{50} = 28 \text{ cm (tool type 12, 5 kg mass)}^{[23]}, H_{50\%} = 38 \text{ cm (US-NOL apparatus)}^{[28, 31]}.$ $H_{50\%} = 32 \text{ cm (LASL test)}^{[24]}, H_{50\%} = 42 \text{ cm (LASL, powdered sample)}^{[31]},$ $H_{50\%} = 94$ cm (ERL app. at B.M., powdered sample)^[31], $H_{50\%} = 26$ cm (B.M. apparatus at P.A., powdered sample)^[31], $H_{10\%} = 8$ in (P.A., powdered sample)^[31], max. fall for $^{0}/_{6}$ shots = 51 cm (2 kg mass)^[26], 14 cm (10 kg mass)^[26], min. fall for $^{6}/_{6}$ shots ≥ 60 cm (2 kg mass)^[26], >24 cm (10 kg mass)^[26], $H_{50\%} = 25$ cm (B.M., type 12 tool, 2.5 kg mass, 35 m sample, garnet paper)^[36], $H_{50} = 32 \text{ cm}^{[46]}$, 26 cm $(NEDED)^{[47]}$, 40 cm $(NOL)^{[47]}$, 37 cm $(LANL)^{[47]}$, 150 cm $(^{10}/_{10}$ trials positive, 5 kg mass)^[48], 100 cm $\binom{9}{10}$ trials positive, 5 kg mass)^[48], 50 cm $\binom{5}{10}$ trials positive)^[48], 40 cm $(^{3}/_{10}$ trials positive, 5 kg mass)^[48], 30–35 cm (2 kg mass, Stettbacher)^[49], $H_{50\%}$ = 50 cm (5 kg mass, several decigrams sample contained in small iron cup (0.2 mm thick), covered with 0.2 mm thick iron disc)^[48], $H_{50\%}$ = 38 cm (2.5 kg hammer, 35 mg sample, US Naval lab)^[50], 7.8 Nm^[51], 32 cm (Bruceton method, type 12 tool, 2.5 kg mass, 40 mg sample, 5/0 sandpaper, 25 trials)[56], Rotter Fol = 123 (yellow, unaged)^[62], Rotter Fol = 100 (orange, unaged)^[62], Rotter Fol = 132 (depth charge, unaged)^[62], Rotter Fol = 111 (recrystallized, unaged)^[62], Rotter FoI = 108 (yellow, aged @ 110 °C for 33 days) $^{[62]}$, Rotter FoI = 102 (orange, aged @ 110 °C for 33 days)[62], Rotter Fol = 95 (depth charge, aged @ 110 °C for 33 days)^[62], Rotter FoI = 121 (recrystallized, aged @ 110 °C for 3 days)^[62], $H_{50} = 25$ cm (2.5 kg mass, type 12 tool)^[63], 27.5 cm (max height for no explosions in 5 trials, 2,000 g mass, BM small impact device)^[67], 40 cm (2 kg mass, explodes)^[75], 8 in (18 mg sample, P.A.)^[76], 26 cm (B.M.)^[76], 32 cm $(2.5 \text{ kg mass})^{[85]}$, $A_{d1} = 60\%$, $A_{d2} = 24\%$, LL = 1.2 m, $A_{50 d1} = 2.3 \text{ m}$, $A_{50 d2} = 7.3^{[86]}$, median height = 112 cm (5 kg mass, 30 mg sample, Rotter apparatus)^[31], \bar{P}_{cr} (critical stress) value for IS = 8.4×10^{-3} kg cm² with a critical thickness h_{cr} of ~ 0.012 mm^[32], drop energy for 50% initiation probability >29.43 J (Julius-Peters apparatus, 25 mg sample)[33], shock sensitivity dropweight (BAM apparatus) = $6.5-15 \text{ Nm}^{[34]}$

Rotter impact data: 27 mg sample, Bruceton method/25 drop run to obtain $H_{50\%}$; initiation criteria = 1 mL gas evolved or 0.5 mL accompanied by smoke or evidence of burning in the sample; data from^[90]:

Rotter impact data		US data		
FofI	Gas evolved (mL)	NSWC/NOL, ERL type 12	NWC B.M. type 12	
90-110	12-15	38	30, 25	

FS [N] ESD [J]	360 (<100 µm), 353 ^[5] , 0.152 @ 0.15 M ^[18] , $P_{fr,LL}$ = 400 MPa ^[22,86] , $P_{fr,50\%}$ = 540 MPa ^[22,86] , Rotter FS: mean figure of friction (FOF) = 6.3 ^[35] , Rotter FoF = 6.3 ^[53] , 4.5 ^[53] , >360 (BAM, limiting load) ^[53] , 353 (BAM, limiting load) ^[53] , BAM mean limiting load >360 ^[35] Mallet friction sensitivity: steel on steel = 0% ^[35] , nylon on steel = 0% ^[35] , wood on soft wood = 0% ^[35,81] , wood on hardwood = 0% ^[35,81] , wood on Yorkstone = 0% ^[35] , wood mallet on stone = 50% ^[81] Friction pendulum test: crackles with steel shoe ^[12,14,76] , no effect with fiber shoe ^[12,14] , does not explode ^[69] , no detonations with steel shoe ^[19] 0.6 (<100 µm), 5.49 ^[1] , 0.007 (100 mesh, unconfined) ^[14] , 4.4 (100 mesh, confined) ^[14] , 0.007 (unconfined) ^[76] , 0.44 (confined) ^[76] , 0.025 (8,000 Voltage, 100 sieve, for zero ignition, 500 MMF capacitance, 0.005 in gap setting) ^[87] Highest energy (J) for zero ignition probability ^[87] :								
	11	Bureau of Mines, 1943		eau of es, 1946		eau of es, 1954	NOL, 1959		
		0.020	0.00	·	0.00		1.25		
	electrode, 10 mm Pb foil thickness) ^[21] , 0.19 (steel electrode, 1 mm Pb foil thickness) ^[21] , 3.83 (steel electrode, 10 mm Pb foil thickness) ^[21] Highest electrostatic discharge energy @ 5,000 V for zero ignition probability ^[29] : Highest energy (J) for zero Type of ignition								
		1	Highest energy (J) for zero ignition probability		\perp	Type of ignition			
		Unconfined	\dashv	onfined	+-	confined	Confined		
	Granular (Tetryl)		-	4.68 None			Deton.		
	Granular through 100 mesh (Tetryl)	1	4	.38	De	flag.	Deton.		
	Data from ^[88] : Material 50% point energy (J)								
		3-mil foil	3-mil foil		l % expl.				
	Tetryl (Impact Sto	d) 9.54		3.79		42			
N [%]	24.39								
Ω(CO ₂) [%]	47.26				-47.36				

<i>T</i> _{m,p.} [°C]	128, 129.5 ^[12, 37, 45, 58, 64, 81, 84] , 130 ^[14, 66] , 130 (pure) ^[32] , 129 (technical grade) ^[32] , 129.45 (pure, partial dec.) ^[19, 75] , 129 (technical grade, partial dec.) ^[19] , 130 ^[33, 76] , 128 (DTA @10 °C/min) ^[23] , 130 (dec.) ^[37] , 130 (Thomas Hoover capillary melting point apparatus @ 2 °C/min) ^[58] , 128.07 (endo, onset, DSC @ 10 °C/min, 1–10 mg sample, unsealed but uncovered Al pans) ^[59] , first melts then dec. and explodes on heating ^[66] , 129.5 (with partial dec., monoclinic crystals) ^[69] , 129.5 ^[71] , 129–130 ^[9] , 128.5 (freezing point, chemically pure Tetryl) ^[75] , 127.7 (freezing point, technical Tetryl) ^[75] , 129 ^[85] , 129.45 ^[21]					
T _{b.p.} [°C]	Dec. ^[45]	Dec. ^[45]				
T _{dec.} [°C]	190 (DSC @ 5 °C/min), 257 (@ 5 °C/s) ^[12] , 238 (@ 10 °C/s) ^[12] , 236 ^[12] , 213 ^[12] , ~ 198 (rapid dec., DTA @ 10 °C/min.) ^[23] , 129 (onset) ^[55] , 195.4 (exo, onset, DSC @ 10 °C/min, 1–10 mg sample, unsealed but uncovered Al pans) ^[59] , 209.2 (exo peak, DTA) ^[61] , 128.8 (DSC, as-received) ^[62] , 128.5 (DSC, Tetryl with low degree of dec.) ^[62] , 128.76 (DSC, Tetryl with medium degree of dec.) ^[62] , 124.4 (DSC, Tetryl with high degree of dec.) ^[62]					
ρ [g cm ⁻³]	1.731 (@ 295 K) ^[5] , 1.731 (crystal, @ 295 K) ^[20] , 1.74 (flotation) ^[20, 38] , 1.73 (@ TMD) ^[12, 19, 20, 32, 33] , 1.71 (nominal) ^[19, 32] , 1.731 (@ TMD) ^[12] , 1.67 (loaded ρ @ 20 kpsi) ^[12] , 1.731 (X-ray data @ 21 °C) ^[21] , 1.74 (flotation @ 21 °C) ^[21] ρ @ different loading pressures (pressed):					
	Pressure (kpsi)	Loading ρ (g cm ⁻³)				
	0	0.9 ^[14, 32]				
	3	1.40 ^[14, 19, 21, 31, 32, 76]				
	5	1.47 ^[14, 19, 21, 31, 32, 76]				
	10	1.57 ^[14, 19, 21, 31, 32, 76]				
	12	1.60 ^[14, 19, 31, 32, 76]				
	15	1.63 ^[14, 19, 31, 32, 76]				
	20	1.67 ^[14, 19, 21, 31, 32, 69, 76]				
	30	1.71 ^[14, 21]				
1.73 (crystal) ^[14, 31, 69, 76, 85] , 1.62 (cast) ^[12, 19, 32] , 1.731 ^[46, 81] , 1.730 ^[55] gr. = 1.73 ^[75] , 0.9–1 (gravimetric density) ^[75]						
Heat of formation	$ \begin{array}{l} 4.67 \text{ kcal mol}^{-1} \left(\text{standard heat of form., } \Delta H_{f}^{\text{o}}\right)^{[32]}, 7 \text{ kcal mol}^{-1} \left(\text{standard heat of form., } \Delta H_{f}^{\text{o}}\right)^{[32]}, 7.6 \text{ kcal mol}^{-1} \left(\Delta H_{f}^{\text{o}}\right)^{[21]}, 4.67-7.6 \text{ kg cal/mol}^{[18, 19]}, -69.9 \text{ kJ/kg} \\ \left(\Delta H_{f}, \text{ICT thermochemical database}\right)^{[54]}, -14 \text{ cal/g}^{[14, 28]}, 27.0 \text{ kcal/kg (enthalpy of form.)}^{[57]}, 9.8 \text{ kcal/mol} \left(\Delta_{f} H\left(s\right)\right)^{[46]}, 19.1 \text{ kJ/mol} \left(\text{enthalpy of form.)}^{[55]}, \\ 4.70 \text{ kcal/mol} \left(\Delta H_{g}\right)^{[84]}, 7.5 \text{ kcal/mol} \left(\Delta H_{g}\right)^{[84]}, 4.67 \text{ kcal/mol} \left(\Delta H_{g}\right)^{[84]}, \\ 23.7 \text{ kcal/mol} \left(\Delta H_{g}\right)^{[84]}, 5.02 \text{ kcal/mol} \left(\Delta H_{g}\right)^{[84]}, -4.67 \text{ kcal/mol} \left(-\Delta H_{f} \right)^{(66)}, \\ \left(\text{heat of form. @ standard conditions}\right)^{[92]} \end{array} $					

Heat of combustion	$ 2,925 \; kcal/kg^{[14,28,76]}, \; \Delta H^o_c = -836.8 \; kcal/mol^{[21]}, \; 2,914 \; cal/g \; (@\; C^P)^{[19]}, \\ \Delta Q_c = 840.2 \; kcal/mol^{[84]}, \; \Delta Q_c = 840.22 \; kcal/mol^{[84]}, \; \Delta Q_c = 854.3 \; kcal/mol^{[84]}, \\ \Delta Q_c = 837.0 \; kcal/mol^{[84]}, \; heat \; of \; comb. = 836.78 \; kcal/mol \; (@\; 1 \; atm.)^{[91]} $ Exptl. heat of combustion data [92]:						
	-ΔU _{B/M} (cal,	/g)	$-\Delta U_{\rm B}$ (kcal/mol)	$-\Delta U_R$ (kcal/mol @ 1 atm. and constant vol.)		−ΔH _R (kcal/mol @ 1 atm. and constant pressure)	
	2,930.39±3	1.01	841.46	938.89		836.78	
	Calcd.	Lit.	values		Exptl. val	ues	
	(EXPLO5 6.03)						
$-\Delta_{\rm ex}U^{\rm o}[\rm kJ$ $\rm kg^{-1}]$	5,619	4,6! 1,10	51 ^[3] 00 kcal/kg ^[28]		4,773 [H ₂	.,130 cal/g ^[14, 76]	
		1.44	4 kcal/g (Q_{max} , calco	l.) ^[46]	1,450 ca	l/g [H ₂ O (g)] ^[19]	
		4,271 J/g (calcd., ICT-code) ^[54]			1,090 ca	l/g (@ 1.51 g /cc) ^[32]	
		4,815 ^[55] 1,160 cal/g (@ 1.69 g cm ⁻³ , heat of det., sample confine in brass $[H_2O (g)])^{[32]}$ 1,160 cal/g (@ 1.69 g cm ⁻³ , heat of det., sample confine in brass $[H_2O (g)])^{[32]}$			et., sample confined H ₂ O (g)]) ^[32]		
		$\begin{array}{c} 960 \text{ cal/g (@ 0.98 g cm}^{-3}, \\ 1,164 \text{ kcal/kg (@ 1.690 g cm}^{-3}, \\ \text{calcd.) [H}_2\text{O vapor]}^{[57]} \end{array}$ heat of det., sample confined in brass [H}_2\text{O (g)]})^{[32]}			et., sample confined		
		1,047 cal/g (calcd.) ^[74] 960 kcal/kg (@ 0.980 g cm ⁻³) [H ₂ O vapor] ^[57]					
		1,160 kcal/kg (@ 1.690 g cm ⁻³) [H ₂ O vapor] ^[57]					
		1,900 cal/cm³ (voidless, volumetric heat of explosion) ^[76]					
		1,720 cal/cm³ (pressed @ 10,000 psi, volumetric heat of explosion) ^[76]					

T _{ex} [K]	4,347	3,370 ^[3]	2,017 (@ 1.70 g cm ⁻³) ^[12]
		4,700 (calcd., @ 1.6 g cm ⁻³) ^[28]	4,837 (@ 1.60 g cm ⁻³) ^[12]
		3,468 (calcd., ICT code) ^[54]	4,837 (@ 1.614 g cm ⁻³ , pressed) ^[28]
		2,917 (@ 1.70 g cm ⁻³ , $\Delta H_1^0 = 116.1 \text{ kJ/kg, calcd.,}$	4,200 (@ 1.61 g cm ⁻³) ^[16]
		FORTRAN BKW) ^[72]	4,130 (@ 1.40 g cm ⁻³) ^[16]
		3,460 (@ 1.73 g cm ⁻³ , calcd. BKWR) ^[16]	4,300 (@ 1.20 g cm ⁻³) ^[16]
		3,480 (@ 1.71 g cm ⁻³ , calcd. BKWR) ^[16]	4,390 (@ 1.00 g cm ⁻³) ^[16]
		3,520 (@ 1.68 g cm ⁻³ , calcd.	4,700 (@ 0.95 g cm ⁻³ , radiation method, det. T) ^[28]
		BKWR) ^[16]	
		3,590 (@ 1.61 g cm ⁻³ , calcd. BKWR) ^[16]	5,100 (@ 1.2 g cm ⁻³ , radiation method, det. T) ^[28]
			5,750 (@ 1.55 g cm ⁻³ ,
		3,750 (@ 1.40 g cm ⁻³ , calcd. BKWR) ^[16]	radiation method, det. T) ^[28]
		3,780 (@ 1.36 g cm ⁻³ , calcd.	4,800 (@ 1.0 g cm ⁻³ , det. T) ^[28]
		BKWR) ^[16]	5,750 (@ 1.5 g cm ⁻³ , det. T) ^[28]
		3,840 (@ 1.20 g cm ⁻³ , calcd. BKWR) ^[16]	4,800 (@ 0.95 g cm ⁻³) ^[28]
		3,840 (@ 1.00 g cm ⁻³ , calcd.	5,750 (@ 1.5 cm ⁻³) ^[28]
		BKWR) ^[16]	3,339 °C (Aranaz) ^[48]
		4,210 (@ 1.73 g cm ⁻³ , calcd. BKWS) ^[16]	2,911 °C (@ 0.3 g cm ⁻³ , <i>Koehler</i>) ^[48]
		$4,220 \ (@\ 1.71\ g\ cm^{-3},\ calcd.$ BKWS) $^{[16]}$	
		4,240 (@ 1.68 g cm ⁻³ , calcd. BKWS) ^[16]	
		$4,270 \ (\mbox{$\it @$}\ 1.61 \ \mbox{$\rm g$\ cm}^{-3}, \ \mbox{$\rm calcd}.$ BKWS) $^{[16]}$	
		4,350 (@ 1.40 g cm ⁻³ , calcd. BKWS) ^[16]	

	i		
		4,360 (@ 1.36 g cm ⁻³ , calcd. BKWS) ^[16]	
		4,380 (@ 1.20 g cm ⁻³ , calcd. BKWS) ^[16]	
		4,340 (@ 1.00 g cm ⁻³ , calcd. BKWS) ^[16]	
p _{C-J} [kbar]	232	22.11 GPa (@ 1.61 g cm ⁻³ , calcd., CHEETAH 2.0) ^[4]	22.64 GPa (@ 1.61 g cm ⁻³) ^[4, 21]
		15.41 GPa (@ 1.36 g cm ⁻³ ,	226.4 (@ 1.614 g cm ⁻³) ^[12]
		calcd., CHEETAH 2.0) ^[4]	226.4 (@ 1.614 g cm ⁻³ , pressed) ^[28]
		64.6 (@ 0.9 g cm $^{-3}$, calcd., thermochem.) $^{[40]}$	226 (Tetryl pellets of 5.1 cm diameter (aquarium method), $\rho = 1.614 \text{ g cm}^{-3})^{[32]}$
		140 (@ 1.36 g cm ⁻³ , calcd., thermochem.) ^[40]	~207 (Tetryl pellets of 0.5 in diameter, $\rho = 1.60 \text{ g cm}^{-3}$) ^[32]
		195 (@ 1.51 g cm ⁻³ , calcd., Ruby code) ^[43]	260 (@ 1.71 g cm ⁻³) ^[12]
		193 (@ 1.51 g cm ⁻³ , calcd., LASL code) ^[43]	196 (@ 1.53 g cm ⁻³) ^[12]
		264 (@ 1.731 g cm ⁻³ , calcd.) ^[46]	239 (@ 1.68 g cm ⁻³) ^[16]
		137.0 MPa (calcd., ICT-code) ^[54]	226 (@ 1.61 g cm ⁻³) ^[16]
		25.1 GPa (@ 1.70 g cm ⁻³ ,	142 (@ 1.36 g cm ⁻³) ^[16]
		$\Delta H_{\rm f}^{0} = 116.1 {\rm kJ/kg, calcd.,}$ FORTRAN BKW) ^[72]	58.8 (@ 0.9 g cm ⁻³) ^[40]
		288 (@ 1.73 g cm ⁻³ , calcd.	151.5 (@ 1.36 g cm ⁻³) ^[40]
		BKWR) ^[16]	0.170 Mbar ^[76]
		270 (@ 1.71 g cm ⁻³ , calcd. BKWR) ^[16]	276 (voidless) ^[76]
		260 (@ 1.68 g cm ⁻³ , calcd. BKWR) ^[16]	221 (pressed @ 10,000 psi) ^[76]
		237 (@ 1.61 g cm ⁻³ , calcd. BKWR) ^[16]	

		178 (@ 1.40 g cm ⁻³ , calcd. BKWR) ^[16]	
		168 (@ 1.36 g cm ⁻³ , calcd. BKWR) ^[16]	
		13 (@ 1.20 g cm ⁻³ , calcd. BKWR) ^[16]	
		97 (@ 1.00 g cm ⁻³ , calcd. BKWR) ^[16]	
		255 (@ 1.73 g cm ⁻³ , calcd. BKWS) ^[16]	
		248 (@ 1.71 g cm ⁻³ , calcd. BKWS) ^[16]	
		239 (@ 1.68 g cm ⁻³ , calcd. BKWS) ^[16]	
		218 (@ 1.61 g cm ⁻³ , calcd. BKWS) ^[16]	
		165 (@ 1.40 g cm ⁻³ , calcd. BKWS) ^[16]	
		157 (@ 1.36 g cm ⁻³ , calcd. BKWS) ^[16]	
		127 (@ 1.20 g cm ⁻³ , calcd. BKWS) ^[16]	
		95 (@ 1.00 g cm ⁻³ , calcd. BKWS) ^[16]	
VoD [m s ⁻¹]	7,038	7,200 (@ 1.65 g cm ⁻³) ^[3]	7,581 (@ 1.614 g cm ⁻³ , pressed) ^[25, 28]
		average value from lit. = 7,680 (@ $1.60-1.71 \text{ g cm}^{-3}$)[27]	7,580 (@ 1.71 g cm ⁻³) ^[12, 16, 25]
		7,361 (@ 1.61 g cm ⁻³ , calcd., CHEETAH 2.0) ^[4]	7,860 (@ 1.70 g cm ⁻³) ^[25]
		6,616 (@ 1.36 g cm ⁻³ , calcd.,	7,560 (@ 1.70 g cm ⁻³) ^[25]
		CHEETAH 2.0) ^[4]	7,440 (@ 1.6 g cm ⁻³) ^[25]
		5,360 (@ 0.9 g cm ⁻³ , calcd., thermochem.) ^[40]	7,170 (@ 1.53 g cm ⁻³) ^[12]

· · · · · · · · · · · · · · · · · · ·	1	
	6,680 (@ 1.36 g cm ⁻³ , calcd., thermochem.) ^[40]	7,720 (@ 1.73 g cm ⁻³) ^[6, 16]
		7,500 (@ 1.68 g cm ⁻³) ^[6, 16, 25]
	7,780 (@ 1.73 g cm ⁻³ (TMD), calcd., R-P method) ^[42]	7,400 (@ 1.60 g cm ⁻³) ^[25]
	7,770 (@ 1.73 g cm ⁻³ (TMD), calcd., <i>Aizenshtadt</i>) ^[42]	7,300 (@ 1.55 g cm ⁻³) ^[25]
		7,170 (@ 1.51 g cm ⁻³) ^[25]
	7,790 (@ 1.73 g cm ⁻³ (TMD), calcd., K-J) ^[42]	7,150 (@ 1.506 g cm ⁻³) ^[25]
	7,020 (@ 1.51 g cm ⁻³ , calcd., Ruby code) ^[43]	6,875 (@ 1.44 g cm ⁻³) ^[25]
	7 000 (@ 1 51 g cm ⁻³ calcd	6,680 (@ 1.36 g cm ⁻³) ^[6, 16, 25]
	7,000 (@ 1.51 g cm ⁻³ , calcd., LASL code) ^[43]	6,291 (@ 1.22 g cm ⁻³) ^[25]
	7,800 (@ 1.731 g cm ⁻³ , calcd.) ^[46]	5,360 (@ 0.90-0.95 g cm ⁻³)
	5,510 (@ 1 g cm ⁻³ , calcd., Kamlet method) ^[25]	5,390 (@ 0.95 g cm ⁻³) ^[25]
	7,370 (@ 1.6 g cm ⁻³ , calcd., Kamlet method) ^[25]	6,340 (@ 1.2 g cm ⁻³) ^[6, 16]
		7,580 (@ 1.61 g cm ⁻³) ^[16]
	5,150 (@ 1 g cm ⁻³ , calcd., Urizar method) ^[25]	7,910 (@ 1.73 g cm ⁻³) ^[7]
	7,350 (@ 1.6 g cm ⁻³ , calcd., Urizar method) ^[25]	7,350 (@ 1.71 g cm ⁻³) ^[9]
	7,550 (@ 1.50 g cm ⁻³ , calcd.	7,570 (@ 1.62 g cm ⁻³) ^[11, 39]
	K-W eqn.) ^[68]	7,850 (@ 1.71 g cm ⁻³ , 1.0 in charge diameter, pressed, no
	7,629 (@ 1.70 g cm ⁻³ , $\Delta H_0^0 = 116.1 \text{ kJ/kg, calcd.,}$	confinement) ^[14]
	FORTRAN BKW) ^[72]	7,626 (based on sand expt.) ^[27]
	7,750 (@ 1.73 g cm ⁻³ , calcd.	7,850 (@ 1.71 g cm ⁻³ ,
	BKWR) ^[16]	pressed @ 30,000 psi) ^[69]
	7,690 (@ 1.71 g cm ⁻³ , calcd. BKWR) ^[16]	7,350 (@ 1.71 g cm ⁻³) ^[9]
	7,600 (@ 1.68 g cm ⁻³ , calcd.	7,160 (@ 1.50 g cm ⁻³) ^[81]
	BKWR) ^[16]	7,229 (cast Tetryl) ^[48]

		7,390 (@ 1.61 g cm ⁻³ , calcd. BKWR) ^[16] 6,780 (@ 1.40 g cm ⁻³ , calcd.	5,400 (@ 0.90 g cm ⁻³ , half- meter lengths, contained in extra-light Pb tubing, 12 ounces to the foot) ^[49]
		BKWR) ^[16] 6,670 (@ 1.36 g cm ⁻³ , calcd.	7,530 (@ 1.682 g cm ⁻³ , Dautriche method, Cu tubes,
		BKWR) ^[16]	10 mm diameter, compressed under 2,500 kg/cm ²) ^[49]
		6,240 (@ 1.20 g cm ⁻³ , calcd. BKWR) ^[16]	7,440 (@ 1.682 g cm ⁻³ , Dautriche method, Cu tubes,
		5,750 (@ 1.00 g cm ⁻³ , calcd. BKWR) ^[16]	10 mm diameter, compressed under 2,500 kg/cm²) ^[49]
		7,810 (@ 1.73 g cm ⁻³ , calcd. BKWS) ^[16]	5,176 (@ 0.9 g cm ⁻³) ^[40]
		7,740 (@ 1.71 g cm ⁻³ , calcd.	6,751 (@ 1.36 g cm ⁻³) ^[40]
		BKWS) ^[16]	7,850 (@ 1.710 g cm ⁻³) ^[41]
		7,630 (@ 1.68 g cm ⁻³ , calcd. BKWS) ^[16]	5,680 (@ 1 g cm ⁻³) ^[25]
		7,380 (@ 1.61 g cm ⁻³ , calcd.	7,440 (@ 1.6 g cm ⁻³) ^[25]
		BKWS) ^[16]	7,300 (@ 1.50 g cm ⁻³) ^[68]
		6,700 (@ 1.40 g cm ⁻³ , calcd. BKWS) ^[16]	7,573 (@ 1.71 g cm ⁻³) ^[34]
		6,590 (@ 1.36 g cm ⁻³ , calcd. BKWS) ^[16]	7,150 (@ 1.52 g cm ⁻³ , after 16 h @ –54 °C) ^[14]
		6,150 (@ 1.20 g cm ⁻³ , calcd.	7,170 (@ 1.53 g cm $^{-3}$, after 16 h @ 21 °C) $^{[14]}$
		BKWS) ^[16]	7,560 (@ 1.70 g cm ⁻³) ^[72]
		5,680 (@ 1.00 g cm ⁻³ , calcd. BKWS) ^[16]	7,500 (@ 1.63 g cm ⁻³) ^[75]
V_0 [L kg ⁻¹]	626	710 (@ 0 °C) ^[3]	760 ^[12, 14, 19, 76]
			861 ^[17]
			620 (@ 1.55 g cm ⁻³ , using Dolgov's bomb) [H ₂ O (l)] ^[29, 30]
			740 (@ 1.55 g cm ⁻³ , using Dolgov's bomb) [H ₂ O (g)] ^[29, 30]
			765 ^[75]

Low velocity detonation in Tetryl^[19]:

Particle size in mm	Minimum diameter for low velocity detonation	Minimum diameter from normal detonation in mm	Transition diameter in mm	Minimum low velocity detonation in km/s	Maximum low velocity detonation in km/s
0.5	7	13	13	1.4	2.1
0.8	9	15	16	1.3	2.3
1.3	12	20	21	1.3	2.2

Values calculated using hydrodynamic theory of detonation equations^[28]:

ρ of charge (g cm ⁻³)	Detonation pressure (kg/cm²)	VoD (m/s)	Detonation temperature (K)
1.00	91,800	5,480	4,400
1.28	160,400	6,510	4,740
1.45	218,100	7,220	4,980
1.54	242,500	7,375	5,100
1.61	259,100	7,470	5,140

Loading ρ = 1.50 g cm⁻³, det. T = 4,480 °C, VoD = 7,125 m/s, pressure (10 atm.) = 1.48^[28]

Experimental temperatures of detonation by the radiation method in air at atmospheric pressure^[28]:

Average particle diameter (microns)	ρ (g cm ⁻³)	Average temp. of det. (K)
10	0.70	4,120
10	1.60	6,050
800 (20 mesh)	0.95	4,460
800 (20 mesh)	1.62	6,200

Experimental temperatures of detonation using the luminosity method, unsheathed explosions in air [28]:

Loading ρ (g cm ⁻³)	Radiation slit width (mm)	Average temp. of det. (K)	
1.30	1.0	6,000	
1.60	1.0	4,900	

Experimental VoD (sweep-trace of cathode ray tube by electrical signals; separation of original stations = 10 cm, station 1 located 5 cm from detonator, charge diameter = 1.92 cm)^[28]:

Average particle diameter (microns)	ρ (g cm ⁻³)	VoD (m/s)
10	0.70	4,310
10	1.60	7,200
800 (20 mesh)	0.95	4,940
800 (20 mesh)	1.62	7,470

VoD of Tetryl of size 10 microns propagated at a distance of \sim 10 cm^[28]:

$ ho$ (g cm $^{-3}$)	0.85	1.04	1.26	1.57
VoD (m/s)	5,040	5,750	6,415	7,405

VoDs for pelleted Tetryl in air and propane as well as cemented vs. noncemented charges. Station distance of 8.8 cm for $\rho = 1.62$ g cm⁻³ charges and 7.1 cm for $\rho = 1.22$ g cm⁻³ charges^[28]:

ρ (g cm ⁻³)	Pellet boundary	Surround and impregnant	VoD (m/s)
1.62	Cemented	Air	7,341
1.62	Noncemented	Air	7,364
1.62	Cemented	Propane	7,449
1.22	Noncemented	Air	6,502
1.22	Noncemented	Propane	6,525

VoD after storing Tetryl; Tetryl pellets, charges = sticks of $1^{-1}/_{8}$ in in diameter and 18 in long, drum camera apparatus^[28]:

Storage	ρ (g cm ⁻³)	Detonation rate (m/s)	
16 h @ -65°F	1.52	7,150	
16 h @ +70 °F	1.53	7,170	

VoD using different confining vessels^[28]:

Confining vessel	Charge diameter (mm)	Wall thickness (mm)	Charge ρ (g cm ⁻³)	VoD (m/s)
Paper wall	5	0.08	0.240	2,605
Glass wall	5	1.0	0.240	2,900
Copper wall	7	0.23	1.69	7,622
Copper wall	21	2	1.69	7,625

Radiation *T* observed without slit aperture, for interval after detonation of 18 ms: loading $\rho = 1.64 \, \mathrm{g \ cm^{-3}}$, average $T = 5,335 \, \mathrm{K}^{[28]}$

C-J particle velocity (U_{C-J}) :

1.83 mm/ μ s (@ 1.51 g cm⁻³, calcd., Ruby code)^[43]

 $1.827 \text{ mm/}\mu\text{s}$ (@ 1.51 g cm^{-3} , calcd., LASL code)^[43]

VoD values (m/s) in cylindrical charges of 3.17 cm diameter, unconfined, pressed Tetryl, $\rho = 1.506$ g cm⁻³, no. shots fired = $10^{[70]}$: 7,175; 7,170; 7,162; 7,155; 7,153; 7,151; 7,150; 7,148; 7,142; 7,135, mean value = 7,250 m/s $^{[70]}$

Critical T[°C]	187 (T _m) ^[21]						
Critical diameter [cm]	Critical detonation diameter d_{c0} [mm] and specific surface area, $S_{\rm g}$ [cm ² g ⁻¹] ^[55] :						
	$S_g (cm^2 g^{-1})$	$S_{\rm g} ({\rm cm}^2 {\rm g}^{-1})$ $d_{\rm c0} ({\rm mm})$					
	Monodisperse Tetryl (fractions)	Monodisperse Tetryl (fractions)					
	200 (400-500 μm)	5.79					
	390 (200-315 μm)						
	840 (90-160 µm) 3.04						

		d_{c0} (mm) @ mean crystal size (μ m) ^[55] : 0.80 @ 3, 1.30 @ 10, 1.75 @ 20 ^[55] Data from ^[80] :							
	Particle size (μ) ρ_0 (g/cm ³) Approx. d_c (mm)								
	50-150	ε (μ)	ρ ₀ (g/ c	.m-)	0.55-0.58				
	50-150		1.58		0.55-0.56				
	1-10		1.16		0.70				
				11	ļ				
	Failure diame	ters or	lead and	er e	explosives ^{1, 3} :				
	Bare, in			C	onfinement, ir	1			
		Fabrio (deto cord)	nating	Lucite	Aluminum (0.006 walls)	Lead (MDF)	Heavy brass or steel		
	<0.50	-		-	0.10-0.13	-	<0.08		
Trauzl test [cm³, % TNT]		ızl test)	^[49, 67] , 30	60 cm ³ (10	5% TNT ^[9, 14, 32] , g sample, sai ^{75]} , 410 ^[82]			8	
Sand test [g]	crushed (1,70 than 30 mesh 0.30 g primir	00 g bo n, by tot ng charg	mb, 0.4 tal charg ge of MF)	g Tetryl) ^{[27} ge consistio) ^[67] , 54.2 g	NT ^[19, 27] , 126 ⁹ , 65.9 g (among of base charge) (amount of sa ⁵⁷ , rel. strengt	unt of sand rge of 0.50 and crushe	d crushed fine 0 g Tetryl and ed finer than 3		
Lead block compression test	Small lead bl lead cylinder				g Tetryl exploo nortening ^[49]	ded by det	onator on top	of	
Ballistic mortar test	126-132% T	NT ^[19, 27]	[]] , 130%	TNT ^{[9, 14, 32}	33]				
Initiation efficiency	MF ^[48] , 0.02 g mercurous az 0.1 g cadmiu 0.025 g cupro fulminate ^[49] ,	silver fide ^[48] , m azide ous azide readily 0% wate	ulminate 0.02 g s 2 ^[48] , 0.0 de ^[49] , 0. initiated er canno	e ^[48] , 0.008 ilver azide 1 g cadmiu 025 g copp d by 0.10 g ot be deton	yl requires ^[48] : 8 g cadmium fu ^[48] , 0.025–0.1 Im azide ^[49] , 0. Der fulminate ^{[4} g LA or 0.20 g ated by a com	Ilminate ^{[48} 10 g LA ^[19] , 07 g thalli ^{19]} , 0.30 g t MF in sand	^{3]} , 0.045 g 0.025 g LA ^{[48} , ium azide ^[49] , thallium I test ^[69] , Tetryl	^{49]} ,	

,	•						
		es of fulminate-chlorition of Tetryl or TN			ecessary to cause		
	Complete detona	ition of fetryt of th	ii/ietiytiiikt	ules			
	TNT-Tetryl W	eight of initiator	TNT-Tetryl	Weight o	f initiator		
	mixture re	quired (g)	mixture	required	(g)		
	90-10 0.	.22	50-50	0.20			
	80-20 0.	21	0-100	0.19			
	Minimum initiating charge (g) required to detonate Tetryl (0.4 g Tetryl loaded into detonator capsule, pressed down, initiator added on top, covered with short reinforcing cap, pressed with 200 atm./in²) ^[49] : 0.04 g cyanuric azide ^[49] , 0.24 g MF ^[4] Minimum initiating charge required to detonate Tetryl (0.5 g Tetryl in No. 8 detonator shell, primary explosive added on top, both compressed under reinforcing capsule @ 3,400 lb/in²) ^[49] : 0.075 g DDNP ^[49] , 0.165 g MF ^[49] , 0.03 g LA ^[4] Minimum detonating charge required to detonate Tetryl (0.4 g, with primary explosive, compressed in detonator capsule under 1,000 lb/in²) ^[49] : 0.24 g fulminate (with reenforcing cap) ^[49] , 0.05 g HMTD (with reinforcing cap) ^[49] , 0.06 g HMTD (without reinforcing cap) ^[49]						
	TATNB compressed on top of it under 300 kg/cm² required 0.01 g TATNB for complete detonation ^[49] Minimum weight of priming charge which causes complete detonation of the base charge ^[67] : 0.075 g DDNP ^[67] , 0.165 g MF ^[67] , 0.03 g LA ^[67] Max. initiating charge of MF for pressed Tetryl = 0.29 g ^[75] and 0.03 g for LA ^[75]						
Gap test		g charge = 1.62 g c		ambient T [[]	^[85] , 0.156 @ 100 °C ^[85]		
US NOL gap test	6.63 cm gap valu	ue (@ 1.615 g cm ⁻	³, pressed Tet	tryl) ^[28, 50]			
LSGT [cm]	$G_{50} = 69.21 \text{ mm}, L_{95} = 0.61 \text{ mm} \ (\text{@ } 0.85 \text{ g cm}^{-3})^{[21]}, G_{50} = 60.60 \text{ mm}, L_{95} = 0.63 \text{ mm} \ (\text{@ } 1.666 \text{ g cm}^{-3})^{[21]}, G_{50} = 59.38 \text{ mm}, L_{95} = 0.18 \text{ mm} \ (\text{@ } 1.682 \text{ g cm}^{-3})^{[21]}, 52 \text{ mm} \ (\text{NOL})^{[47]}, 54 \text{ mm} \ (\text{LANL})^{[47]}, L_{g} = 234 \text{ in} \times 10^{2} \ (\text{@ } 1.682 \text{ g cm}^{-3}, 97.2\% \text{ TMD}, \\ \text{LASL LSGT, pressed Tetryl})^{[58]}, L_{g} = 221 \times 10^{2} \text{ in} \ (\text{extrapolated, NSWC LSGT})^{[58]}, \\ \rho_{0} = 1.43 \text{ g/cc, } 82.4\% \text{ TMD, } 50\% \text{ pressure} \ (P_{g}) = 9.0 \text{ kbar}^{[80]}$ $\text{Data from}^{[19]}:$						
		Density (g/cm ³) %	voids	Sensitivity (mm)		
	LANL LSGT	1.690 (not pres			59.82		
		1.666 (pressed) 3.	7	60.60		
		0.85 (bulk)).9	69.2		

Regular test, I = isostatic press, H = hydraulic press, data from [80]:

Density		50%	point	Particle size (microns)
g/cc	% TMD	Cards	kbar	
1.431	82.6	294	9	460 (charges contain 0.5% graphite)
1.491	86.0	283	10	460
1.62 H	93.4	261	(12)	X-8
1.641	94.9		14	460

SSGT [cm]

 $G_{50} = 7.44 \text{ mm}, L_{95} = 0.05 \text{ mm} \ (\textcircled{o} \ 0.93 \text{ g cm}^{-3})^{[21]}, G_{50} = 4.04 \text{ mm}, L_{95} = 0.20 \text{ mm} \ (\textcircled{o} \ 1.678 \text{ g cm}^{-3})^{[21]}, G_{50} = 3.83 \text{ mm}, L_{95} = 0.30 \text{ mm} \ (\textcircled{o} \ 1.684 \text{ g cm}^{-3})^{[21]}, 7.4 \text{ mm} \ (\text{NOL})^{[47]}, 3.7 \text{ mm} \ (\text{LANL})^{[47]}, P_{90} = 10.64 \text{ kbar} \ (P_{90} = \text{pressure to } 90\% \text{ of TMD}, \text{NSWC small-scale gap test})^{[56]}$

Data from^[19]:

	Density (g/cc)	% Voids	Sensitivity (mm)
NSWC SSGT	1.687	2.5	7.80
	1.434	17.1	11.96
LANL SSGT	1.684 (pressed)	2.7	3.84
	1.676 (pressed)	3.1	4.04
	0.93 (bulk)	46.2	7.44

Tetryl, yellow, TMD = 1.73 g cm⁻³, data from^[79]:

Loading	Loading Density (g/cm³)		ading Density (g/cm³) %				Sensitivity	y (DBg)	
pressure (kpsi)	AVG.	S		AVG.	g	S _m	N		
4	1.434	-	82.9	3.267	0.0475	0.0243	20		
8	1.535	-	88.7	3.468	0.0477	0.0297	20		
10	1.527	0.0096	88.3	3.586	0.1307	0.0434	46		
16	1.623	-	93.8	4.360	0.1631	0.0901	20		
32	1.687	-	97.5	5.133	0.0242	0.0205	20		
64	1.732	-	100.1	6.093	0.0242	0.0202	20		

Tetryl (graphited), TMD = 1.73 g/cm³ (the TMD of pure Tetryl is used since graphited Tetryl can contain either calcium stearate (ρ = 1.040) or graphite (ρ = 2.25), or both in any combination, up to a total of 2% by weight)^[79]:

Loading	Density (g/cm³)		%	Sensitivity (DBg)			
pressure (kpsi)	AVG.	s	TMD	AVG.	g	S _m	N
3	1.423	0.0073	82.3	3.291	0.0369	0.0220	28
5.3	1.503	0.0032	86.9	3.684	0.0282	0.0209	28
8	1.549	-	89.5	4.239	0.0098	0.0337	28
24	1.660	0.0015	96.0	5.081	0.0392		28

Tetryl (graphited), TMD = 1.73 g/cm³ (the TMD of pure Tetryl is used since graphited Tetryl can contain either calcium stearate (ρ = 1.040) or graphite (ρ = 2.25), or both in any combination, up to a total of 2% by weight)^[79]:

Loading pressure (kpsi)	Density (g/cm³)		% TMD	Sensitivity (DBg)			
	AVG.	s		AVG.	g	S _m	N
4	1.445	0.0042	83.5	3.450	0.0352	0.0220	23
8	1.541	0.0057	89.1	4.103	0.0123	0.0132	23
16	1.630	0.0038	94.2	4.659	0.0400	0.0237	23
32	1.696	0.0022	98.0	5.465	0.0489	0.0297	23
64	1.737	0.0022	100.4	6.503	0.0748	0.0404	23

Tetryl (graphited), TMD = 1.738, (1) = no mixed response zone^[79]:

Loading	Density (g/cm³)		%	, , ,			
pressure (kpsi)	AVG.	s	TMD	AVG.	g	s _m	N
8	1.545	0.0030	88.9	4.112	0.0037	0.0047	20
16	1.623	0.0023	93.4	4.487	ı	-	20 (1)
32	1.695	0.0021	97.5	5.243	-	-	20 (1)

 $\rho_0 = 1.43 \text{ g/cc}$, 82.4% TMD, 50% pressure $(P_g) = 9.9 \text{ kbar (interpolated)}^{[80]}$

 $4.36 \; \text{DBg} \; @ \; 1.623 \; \text{g cm}^{-3} \; (110 \; \text{MPa})^{[83]}$

5 s explosion T [°C]	257 (droppi	ing on hot C	u surface)[3	32]	
Explosion T [°C]	(20 s) ^[14] , 40 explosion <i>T</i> occurred): 3 (DTA/TG @ 196 (bath h 302 (0.4 s, Cu surface) ^{[1} dropping or	os @ 180°(c°C)/time of 46/0.325, 6°C/min) ^{[34} eating rate dropping or 19, 32], 260 (c) in hot Cu sur	C ^[19] , 340 (0 f exposure 314/0.742 ³ , 190–194 @ 20 °C/m n hot Cu sui 2.0 s, dropi face) ^[19, 32]	1 s) $^{[14,76]}$, 238 (10 s) $^{[14]}$, 236 (15 s) $^{[14]}$, 234 (1. s) $^{[76]}$, 242 (Wood's metal bath, 40 mg) $^{[83]}$ (s) (25 mg sample, ignition or deflagration, 285/1.45, 269/2.22, 264/no action $^{[30]}$, 210 (0.5 g sample, heating rate 20 °C/min) $^{[19,32]}$, $^{[16]}$, 187 (bath heating rate @ 5 °C/min) $^{[26]}$, rface) $^{[19,32]}$, 280 (1.1 s, dropping on hot ping on hot Cu surface) $^{[19,32]}$, 236 (6.2 s, explosion times for confined samples (25 mg neter submerged in hot Wood's metal bath) $^{[19]}$:	
	T(°C)	Time to ex	(plosion (s		
	360	0.325			
	346	0.425			
	329	0.582			
	285	1.45			
	269	2.22			
	264	Does not detonate			
5 s ignition T [°C]	257 (ignites	257 (ignites, USA value) ^[14, 28, 60, 76] , 190–257 (ignites, Russian value) ^[28] , 267 ^[76]			
Ignition T [°C]	180 (in 40 s) ^[32] , 196 (heated form 100 °C @ 20 °C/min) ^[48] , 187 (heated form 100 °C @ 5 °C/min) ^[48] , 180 ^[50] , 175 (calorimetric measurement) ^[60] , 190–194 ^[cited in 60] , 257 (5 s) ^[9] , 238 (10 s) ^[76]				
Detonation T [°C]	T (°) and exp	olosion time	e (s), 25 mg	g sample ^[65] :	
	T (°C)	Time (s)	T(°C)	Time (s)	
	360	0.325	285	1.45	
	346	0.425	269	2.22	
	329	0.582	264	No explosion	
	314	1.45			
	~234 ^[66]				
100 °C heat test [% mass loss]	0.1% loss ii	n first 48 h ^{[1}	^{4]} , 0.0% los	ss in second 48 $h^{[14]}$, no explosion in 100 $h^{[14]}$	
75 °C Int. heat test	0.01% loss	in 48 h ^[14]			

Abel heat test time (min)	<30 (recryst. Tet 16.5 (recryst. Te 1% 2,4,6-trinitra and 1% 2,4,6-tr (recryst. Tetryl w 20 min after hea	etryl with 1% 2,4 panisole) ^[44] , 7 (I initroanisole) ^[44] vith 1% Shellac)	,6-trinitroresord recryst. Tetryl wi , 18 (recryst. Tet ^[44] , Tetryl withst	cinol) ^[44] , 11 (rec th 1% 2,4,6-trin tryl with 0.1% S	ryst. Tetryl with itroresorcinol hellac) ^[44] , 11.5
LLNL reactivity test	0.036 cm³ gas e	volved per 0.25	g sample in 12	h @ 120 °C ^[23]	
Thermal stability	Prolonged heati cannot be stored $T(^{\circ}\text{C})$ of sample 232/5.87 (explo 0.36% mass los Withstands stor 100 h ^[69] , 75 °C f for 20 years ^[69] , term storage un- for 320 days ^[75] ,	d >125 °C ^[19] @ ignition/time osion), 214/5.27 s @ 120 °C, 48 age without sign for 6 months ^[69] , completely stab der normal conc	of heating bath 7 (explosion) ^[31] h (TG) ^[61] , no ser nificant decrease 65 °C for 12 mo le @ T<120 °C ^[9] litions ^[75] , 0.3%	after it reached ious dec. if store e in stability at: onths ^[69] , magazi , sufficient stab mass loss on he	100 °C (min) ^[31] : ed at RT ^[66] 100 °C for ne temperature fility for long- lating @ 75 °C
Vacuum stability test	0.3 cc/40 h @ 1 0.14 cc gas/48 l Less stable than 1.10 mL/5 g @ 3 Tetryl) ^[44] , 0.15 c produced @ 100 and bubbles obs VST data for yell (aged samples v	h/g @ 100 °C ^[85] 1 TNT ^[19] , 0.4–1.0 120 °C, 48 h ^[61] , 1 m ³ gas produce 0 °C (recryst. Tet served) ^[44] ow and orange	, >30 cc gas/h/g D mL/g of gas ev 0.16 cm³ gas pr d @ 100 °C (rec ryl and Shellac ! Tetryl aged @ 12	g @ 260 °C ^[85] olved after 48 h oduced @ 100 ° ryst. Tetryl) ^[44] , 1 50%, sample me	@ 120 °C ^[21] , PC (recryst. .1.08 cm ³ gas elted during test
	Tetryl As received Low-aging Medium High aging (0 days @ (4 days @ aging (4 days @ 115 °C) (11 days @ 115 °C)				
	Yellow Tetryl	0.29	0.36	0.97	3.48
	Orange Tetryl	0.39	0.49	1.20	4.11
Vapor pressure [atm. @ °C]	5.7 × 10 ⁻⁹ Torr @ 25 °C ^[71]	⊋ 25 °C ^[45] , 5.69	× 10 ⁻⁹ Torr @ 2	5 °C ^[64] , 5.69 × 1	.0 ⁻⁹ mm Hg @
Volatility	0.00 @ 25 °C ^[14]				

Burn	rate
[mm/	/sl

Flammable and burns readily^[66]

Mass burning rate of volatile explosives, data from [78]:

		m	, gm cm ⁻² s	-1		
1 atm.	10 atm.	40 atm.	100 atm.	200 atm.	400 atm.	1,000 atm.
0.067	0.312	0.815	1.55	2.49	4.60	11.4

Burn rate and equilibrium combustion temperature^[78]: T_e = 2,775 K^[78], m = 1.55 g cm⁻² s⁻¹ (100 atm.)^[78]

Dependence of mass burning rate of volatile explosives on the relative density of the charge $^{[78]}$:

			m(δ)			
p, atm.	δ	0.49	0.54	0.56	0.62	0.64
1	<i>m</i> , gm cm ⁻² s ⁻¹	0.060 0.065	0.065	0.062	0.066	0.064

Solubility [g/mL]

Solubility of Tetryl (g) in 100 g (%) solvent, data from $^{[14]}$:

W	ater		bon nloride	Et	her	95% <i>F</i>	Alcohol
°C	%	°C	%	°C	%	°C	%
0	0.0050	0	0.007	0	0.188	0	0.320
20	0.0075	20	0.015	10	0.330	10	0.425
40	0.0110	40	0.058	20	0.418	20	0.563
80	0.0810	60	0.154	30	0.493	30	0.76
100	0.184					50	1.72
						75	5.33
Chlo	roform	Carbon	disulfide	Ethylene dichloride		Acetone	
°C	%	°C	%	°C	%	°C	%
0	0.28	0	0.009	25	4.5	20	75
20	0.39	10	0.015	75	45	30	95
40	1.20	20	0.021			40	116
60	2.65	30	0.030			50	138

Trichloro	ethylene	Ethyl a	cetate	Ben	zene	Tolu	ene
°C	%	°C	%	°C	%	°C	%
0	0.07	20~40	20	7.8	20	8.5	
20	0.12			30	10.0		
40	0.26			40	12.5		
60	0.67			50	16.0		
80	1.50						
86	1.76						

Xyl	ene	TN	Т
°C	%	°C	%
20	3.3	80	82
30	4.4	100	149
40	5.4	120	645
50	6.0		

Crude Tetryl is washed with water then recryst. from benzene or acetone $^{[21]}$, 80 mg/L H₂O $^{[45]}$, aqueous solubility = 80 mg/L @ 25 °C $^{[64]}$, 75 mg/L H₂O @ 25 °C $^{[71]}$

g Tetryl/100 g solvent @ various temperatures^[21]:

Solvent	@ 20 °C	@ 50 °C	@ 60 °C	@ 70 °C
Water	0.0075	0.0195	0.035	0.066
EtOH (95% vol.)	0.563	1.72	2.64	5.33
CCl ₄	0.025	0.095	0.154	0.297
CHCl ₃	0.57	1.78	2.65	_
Ethylene chloride	3.8	12.0	18.8	45.0
CS ₂	0.021	-	-	_
Et ₂ O	0.418	-	-	-

Solubility of Tetryl (g) in 100 g solvent^[48]:

T(°C)	H ₂ O	95% Alcohol	CCl ₄	CHCl₃	CS ₂	Et ₂ O
0	0.0050	0.320	0.007	0.28	0.0090	0.188
5	0.0058	0.366	0.011	0.33	0.0120	0.273
10	0.0065	0.425	0.015	0.39	0.01246	0.330
15	0.0072	0.496	0.020	0.47	0.0177	0.377
20	0.0075	0.563	0.025	0.57	0.0208	0.418
25	0.0080	0.65	0.031	0.68	0.0244	0.457
30	0.0085	0.76	0.039	0.79	0.0296	0.493
35	0.0094	0.91	0.048	0.97	0.0392	-
40	0.0110	1.12	0.058	1.20	0.0557	-
45	0.0140	1.38	0.073	1.47	0.0940	_
50	0.0195	1.72	0.095	1.78	_	_
55	0.0270	2.13	0.124	2.23	-	-
60	0.0350	2.64	0.154	2.65	-	-
65	0.0440	3.33	0.193	-	_	-
70	0.0535	4.23	0.241	-	_	_
75	0.0663	5.33	0.297	-	_	_
80	0.0810	_	_	_	_	_
85	0.0980	-	-	-	-	-
90	0.1220	_	_	-	_	_
95	0.1518	_	_	_	-	_
100	0.1842	_	_	_	_	_

Very soluble in acetone^[66], slightly soluble in EtOH and benzene^[66], practically insoluble in water, CCl₄, Et₂O, CS₂ and trichloroethylene^[69], slightly soluble in hot EtOH and CHCl₃^[69], readily soluble in acetone, ethyl acetate, benzene, toluene, xylene and ethylene dichloride^[69], readily soluble in conc. nitric acid^[19], moderately soluble in other mineral acids^[19], forms eutectic mixture with 76.5% trinitro-*m*-xylene^[19], forms eutectic mixture with 29.5% trinitroanisole^[19]

Data from ^[19] :												
Solvent					9	Tetryl/10	g Tetryl/100 g solvent	int				
	J ₀ 0	10 °C	20 °C	30 °C	7° 04	20 °C	J₀ 09	20 °C	ე。08	J ₀ 06	100 °C	120 °C
Water	0.0050		0.0075		0.0110				0.810		0.184	
CCI ₄	0.007		0.015		0.058		0.154					
Et ₂ 0	0.188	0.330	0.418	0.493								
95% ЕtОН	0.320	0.425	0.563	0.76		1.72		5.33 @ 75 °C				
СНСІз	0.28		0.39		1.20		2.65					
CS ₂	0.009	0.015	0.021	0:030								
Ethylene dichloride			4.5 @ 25 °C					45 @ 75 °C				
Acetone			75	95	116	138						
Trichloroeth- ylene	0.007		0.12		0.26				1.50	1.76 @ 86 °C		
Ethyl acetate			40 approx.									
Toluene			8.4									
Xylene			3.3	4.4	5.4	6.0						
TNT									82		149	165

Super-solubility values for Tetryl in benzene (more Tetryl is soluble in benzene if a benzene soln. with solid Tetryl present is cooled to a specific temperature rather than a benzene soln. of Tetryl with solid Tetryl present is heated to the same specific temperature)^[19]:

T (°C)	Supersolubility (g Tetryl/100 g benzene)	Subsolubility (g Tetryl/100 g benzene)
15	10.2	3.9
25	12.2	5.5
35	14.9	7.4
45	18.25	9.7
55	22.5	13.25

Very slightly soluble in water: 0.019% @ 50 °C and 0.184% @ 100 °C $^{[75]}$

Solubility data from^[75]:

Т		g	Tetryl diss	olving in 10	00 cm ³ of	solvent		
(°C)	Water	Benzene	Acetone	Dichlo- roethane	Alcohol	CCl ₄	Ether	CS ₂
0	0.005	3.45		1.5	0.32	0.007	0.188	0.009
17	0.007				0.49	0.020		0.017
20	0.008	9.99	45.82	3.8	0.56	0.025	0.418	0.021
30	0.008				0.76	0.039	0.493	0.029
40	0.011			7.7	1.12	0.058		0.056
45	0.014				1.38	0.073		0.094
50	0.019		111.85		1.72	0.095		
60	0.035			18.8	2.64	0.154		
70	0.053	2.86			4.23	0.241		
75	0.066				5.33	0.297		
80	0.081	42.43		64.5				
100	0.184							

Hygroscopicity

0.04% @ 30 °C with 90% RH $^{[14]}$, slightly hygroscopic $^{[9, 66]}$, nonhygroscopic $^{[75]}$

Photosensitivity Aqueous solns. photolyzed almost completely within 20 days in sunlight^[64], turns yellow color when exposed to sunlight^[66], colorless (highly purified) but rapidly becomes yellow when exposed to light^[69]

Radiation sensitivity

Fairly resistant to dec. by γ -radiation^[19], sample exposure to 1.4 × 10⁷ R passed 120 °C VST^[19], sample exposed to 1.2 × 10⁸ R passed 100 °C VST but failed 120 °C VST^[19] increase in mass loss on increasing exposure from 1.3 × 10⁸ R to ×10⁹ R^[19], IS, VoD and explosion T only minimally affected by exposure to γ -radiation^[19], exposure to × 10⁴ Curie Co⁶⁰ source (γ -rays emitted @ 1.173 and 1.332 million eV) produces unreliable results^[19]

Effects of reactor irradiation, ^aaverage reactor exposure rates: fast neutrons $\phi > 0.18 \text{ MeV } 1.4 \times 10^{13} \text{ n/cm}^2 \text{ s, thermal neutron } \phi > 0.17 \text{ eV } 8.6 \times 10^{13} \text{ n/cm}^2 \text{ s, gamma } 4.0 \times 10^8 \text{ R/h } (3.38 \times 10^{10} \text{ ergs/g(C)(h gamma)}^{[89]}$:

Irradia- tion time	Total neutron dose		Total gamma	Weight	loss	150° avg. gas	DTA peak exo-	5 s explo-
(min)	Fast (n/ cm²)	Thermal (n/cm²)	(R)	(%)	on TGA (°C)	evolu- tion (ml/g/h)	therm @ 20 °C/ min (°C)	sion T (°C)
0								
25	2.2 × 10 ¹⁶	1.2 × 10 ¹⁷	1.9 × 10 ⁸	2.14				
125	10.0 × 10 ¹⁶		8.8 × 10 ⁸			Sample ignited		

Tetryl irradiated at ambient T using 0.41 MeV $^{198}_{79}$ Au γ -rays; volumes of gas produced measured during and after irradiation, amount of gas evolved as function of gamma dose $^{[89]}$:

x 10 ⁷ R	Gas evolved (ml/g) @ STP
1	<0.1
2	0.1
3	2
4	3
5	0.5
6	0.6
7	0.8
8	1.0
9	1.4

Data obtained from explosives after exposure to gamma radiation^[76]:

Weight of sample (g)				
Vol. of gas produced (ml/g) in following times (days)				
10	0.10			
20	0.20			
30	0.35			
40	0.48			
50	0.66			
90	1.40			
Total irradiation time (days)	90			
Melting points, corrected (°C)				
Original material	128.8			
Irradiated material	127.8			
IS (B.M. apparatus) (cm)*				
Original material	25			
Irradiated material	26			
Sand test, 200 g bomb, $\it g$ of sand crushed when sample was initiated by 0.30 g LA				
Original material	56.4			
Irradiated material	56.0			

Data from^[93]:

Exposure	Total dose	Vacuum stability test				
rate (R/h)	(R)	100 °C (cc/g/40 h)	120 °C (cc/g/40 h)	200 °C (cc/.2 g/2 h)		
8.5 × 10 ⁵	Control		2.39	Deflagrated (8 min)		
	1.4 × 10 ⁷	0.45	5.77	Deflagrated (3 min)		
	1.2 × 10 ⁸	3.08	11 + (16 h)	Deflagrated (3 min)		
	1.0 × 10 ⁹	11+(10 h), 6.98				

DTA for irradiated explosives @ 20 °C/min^[93]:

Total	Endotherms				Exotherms			
dose (R)	First		Second		First		Second	
	Onset (°C)	Peak (°C)	Onset (°C)	Peak (°C)	Onset (°C)	Peak (°C)	Onset (°C)	Peak (°C)
0	120	128			157	220	230	268
1.4×10^7	120	128			173	219	235	270
1.2 × 10 ⁸	120	127			145	220	230	270
1.05 × 10 ⁹	93	117			145	195	199	210
1.44 × 10 ⁹	75	109			150	164	170	203

TGA for irradiated explosives^[93]:

Total dose (R)	Heating rate (°C/min)	Weight (mg)	Start of dec (°C)	10% weight loss <i>T</i> (°C)	Total weight loss (%)	Remarks
0	20	9.8	180	-	7 @ 215 °C	Detonated @ 214 °C
1.4 × 10 ⁷	20	9.7	180	-	8 @ 216 °C	Detonated @ 216 °C
1.2 × 10 ⁸	20	10.0	140	-	7 @ 212 °C	Detonated @ 212 °C

Effect of gamma radiation on the mpt. and color^[93]:

Total dose (R)	mpt. (°C)	Color
0	129	Yellow
1.4 × 10 ⁷	129	Dark yellow
1.2 × 10 ⁸	128	Brownish yellow
1.0 × 10 ⁹		Brownish yellow

IS for irradiated explosives, 50% fire height in inches, Bruceton method (P.A. apparatus, 2 kg mass)[93]:

Total Co ⁶⁰ gamma dose (R)	$ar{X}$ mean (in)	σ std. dev. (in)
0	17.3	0.96
1.4 × 10 ⁷	16.2	0.81
1.2 × 10 ⁸	19.5	0.86
1.0 × 10 ⁹	18.25	3.28

Effect of gamma radiation on explosion T (5 s explosion T in $^{\circ}$ C) and activation energy (kcal/mol) $^{[93]}$:

Total dose (R)	5 s explosion T(°C)	Apparent activation energy (kcal/mol)
0	243	14.18
1.2 × 10 ⁸	236	13.52

Effect of gamma radiation on rates of detonation^[93]:

Total dose (R)	Density (g/cc)	Density after irradiation (g/cc)	Rate of detonation (m/s)	Detonation pressure (kbar)
0	1.69	_	7,540	240
1.1 × 10 ⁷	1.69	1.69	7,515	239
1.3 × 10 ⁸	1.65	1.62	7,400	222
1.0 × 10 ⁹	1.62	1.47	7,010	181

Compatibility

Hydrolyzed by boiling aqueous sodium carbonate^[48], turns gray when graphite added as lubricant^[66], not adversely affected by moisture^[66], corrodes steel when wet or $dry^{[66]}$, reacts slightly with iron, zinc and brass in presence of moisture^[66], slight corrosion of steel and zinc in presence of 0.5% moisture but no significant effect on other metals^[69], no effect on metals coated with acid-proof black paint, baked oil, NRC compound or Shellac^[69], highly resistant to attack by dil. mineral acids^[19], reacts with concentrated or weak basic solns.^[19], no dec. on prolonged boiling in sulfuric acid^[19], reacts with aniline in benzene soln. @ RT^[19], compatible with many glues/resins (e.g., Adhesive EC 1099, Dapon resin, Delrin, Epoxy 907, Galvanoplast, conductive paint, Glastimat No. 1, Lexan, Loctite 404, Molylube No.

18, Permacel tape, Polyesters, polysulfide rubber sealant, polyurethane vulcanizing rubbers, Silastic, Silicones and urea formaldehyde as well as Adiprene and Eastman adhesives) $^{[19]}$, heavily corrodes steel $^{[19]}$, slightly corrodes Fe, Zn, Zn plated steel, Sn plated steel, parkerized steel, brass and Monel $^{[19]}$, Tetryl does not corrode Cu, Sn, bronze, Ni, Pb, Cu plated steel, stainless steel, Cd, Al, Ag and Ti $^{[19]}$, compatible with graphite, stearic acid or magnesium stearate and black powder $^{[19]}$, does not react with metals $^{[9]}$, does not react with metals $^{[75]}$, reacts with alkalis, Na $_2$ CO $_3$ and K $_2$ CO $_3$ $^{[75]}$, slow dec. on heating in water $^{[75]}$

A = no reaction, B = slight reaction, C = reacts readily, D = reacts to form sensitive materials, H = heavy corrosion of metals, VS = very slight corrosion of metals, S = slight corrosion of metals, N = no corrosion, data from $^{[76]}$:

Aluminum	А	N
Zinc	В	VS
Iron	В	S
Steel	С	Н
Tin	А	N
Cadmium	А	
Copper	А	N
Nickel	А	N
Lead	А	N
Cadmium plated steel	Α	N
Copper plated steel	Α	VS
Nickel plated steel	Α	N
Zinc plated steel	А	N
Tin plated steel	В	VS
Brass	В	VS
Bronze	А	VS
18–8 stainless steel	Α	N
Titanium		N
Silver		N

Wedge test [mm]	0.26 mm (LANL) ^[47] Data from ^[21] :						
	Density Distance, x^* and time t^* to detonation Pressure range (GPa)						
	1.70	$\log P = (0.79 \pm 0.01) - (0.42 \pm 0.00)$ $\log P = (0.55 \pm 0.01) - (0.39 \pm 0.00)$	2.22 < P < 8.53				
	1.60	$\log P = (0.73 \pm 0.01) - (0.65 \pm 0.01)$ $\log P = (0.4 \pm 0.01) - (0.55 \pm 0.01)$	1.08 <p<8.02< td=""></p<8.02<>				
	1.50	$\log P = (0.75 \pm 0.01) - (0.81 \pm 0.00)$ $\log P = (0.35 \pm 0.01) - (0.64 \pm 0.00)$		0.62 < P < 7.09			
	1.40	$\log P = (0.84 \pm 0.01) - (0.99 \pm 0.02) \log x^* $ $\log P = (0.35 \pm 0.01) - (0.75 \pm 0.01) \log t^*$ $0.51 < P < 6.84$					
	1.30	$\log P = (0.87 \pm 0.05) - (1.11 \pm 0.07) \log x^*$ $\log P = (0.33 \pm 0.02) - (0.83 \pm 0.03) \log t^*$ 0.37 < P < 86.91					
	where P = p	ressure in GPa					
Minimum priming charge test [mg]	$W_{50} = 1.5 \text{ mg XTX } 8003 \text{ @ } 1.682 \text{ g cm}^{-3[21]}, 2 \text{ mg (LANL)}^{[47]}$						
Bullet test [f/s]	2,130 (LANL) ^[47]						
Rifle bullet test	More sensitive than $TNT^{[19,69]}$, easily detonated by penetration of a rifle $bullet^{[9]}$						
Rifle bullet impact test	13% explosions, 54% partials, 10% burned and 23% unaffected in trials $^{[14,76]}$						
Thermal conductivity [W°C ⁻¹ m ⁻¹]	$5.81 \times 10^{-4} \text{ cal/s/cm/}^{\circ}\text{C} @ 1.394 \text{ g cm}^{-3[14]}, 6.83 \times 10^{-4} \text{ cal/s/cm/}^{\circ}\text{C} @ 1.528 \text{ g cm}^{-3[14]}, 6.83 \times 10^{-4} \text{ cal/s/cm/}^{\circ}\text{C} (@ 1.53 \text{ g cm}^{-3})^{[19, 21]}, \\ 5.81 \times 10^{-4} \text{ cal/s/cm/}^{\circ}\text{C} (@ 1.39 \text{ g cm}^{-3})^{[21]}$						
	Obtained using MDSC apparatus (modulated DSC) ^[52] :						
	T(°C)	K (W°C ⁻¹ m ⁻¹) (nonisothermal)	K (W°C ⁻¹ m ⁻	¹) (isothermal)			
	-3	0.171	0.186				
	17	0.165 (0.084-0.286, nonisothermal, lit. value)	0.186 (0.084–0.2 lit. value)	86, isothermal,			
	47	0.154	0.189				

Specific heat capacity	Values from ^[14] :				
[J/g °C]	T(°C)	Specific heat (cal/	Specific heat (cal/g/°C)		
	-100	0.182			
	-50	0.200			
	0	0.212			
	50	0.223			
	100	0.236			
	Values from ^{[5:}	2].		_	
	T(°C)	C _p (J/g°C) (Nonisothermal)		J/g°C) othermal)	
	-3	0.812	0.8	0	
	+17	0.863	0.8	44	
	+47	0.939	0.9	10	
		$^{\circ}$ C @ 20 $^{\circ}$ C[75], C_{p}^{298} = 100< T <100 $^{\circ}$ C (heat of			
Bourdon manometer	0.81 mL/g @ 120 °C, 48 h ^[61]				
ARC [min]	Isothermal ARC data for depth charge Tetryl, 1 g sample, @ 135 °C ^[62] :				
	Tetryl sample Time to noticeable dec. (min)				ble dec. (min)
	As-received	, recrystallized Tetryl		159 (lowest), 24	41 (highest)
	As-received	depth-charge		159, 141	
	Highly aged depth-charge Tetryl (15 days @ 115 °C)			127, 150	
Heat of fusion [cal/g]	22.2 ^[14] , 5.9 kcal/mol ^[19] , 22.2 (latent heat of melting) ^[21] , 21.6 ^[64] , $\Delta H_{\text{melt}} = 5.48 \pm 0.09 \text{ kcal/mol}^{[84]}$, $\Delta H_{\text{melt}} = 6.18 \pm 0.07 \text{ kcal/mol}^{[84]}$, $\Delta H_{\text{melt}} = 5.9 \text{ kcal/mol}^{[84]}$				
Heat of vaporiza- tion [kcal/mol]	26 ^[19]				
Diffusion coef- ficient [cm²/s]	0.059 (air) ^[64] , 5.99 × 10 ⁻⁶ (water) ^[64]				
Coefficient of thermal expansion	$0.32 \times 10^{-3} \text{per degree}^{[19]}$				
Log K _{ow}	1.65 ^[64] , 2.04	[71]			

Log Koc	1.69 ^[64]				
Biodegradation	Very slow hydrolysis with extrapolated $t_{1/2}$ = ~ 302 ± 76 days @ 20 °C, pH 6.8 ^[64]				
Plate dent test	Method A, pressed, confined, ρ = 1.50 g cm ⁻³ , brisance = 116% TNT ^[14] , method B, pressed, not confined, ρ = 1.59 g cm ⁻³ , brisance = 115% TNT ^[14] , Method B, pressed, not confined, ρ = 1.36 g cm ⁻³ , brisance = 96% TNT ^[14] , 115% TNT ^[19] , charge diameter = 41.3 mm, ρ = 1.681 g cm ⁻³ , dent depth = 8.10 mm, charge height = 203 mm ^[21]				
Booster sensitivity test		in wax for 50% detona cm^{-3} , 50% Gap = 2.01 in		58 g cm ^{-3[14, 76]} , pressed	
Fragmentation tests	Data from ^[14] :				
	90 mmHE, M71	projectile, lot WC-91:			
	Density (g/cc)		1.58		
	Charge wt. (lb)		2.052		
	Total no. of frag	ments:			
	For TNT		703		
	For Tetryl				
		projectile, lot KC-5	1.62		
	Density (g/cc)		1.62		
	Charge wt. (lb) 0.848				
	Total no. of fragments:				
	For Tetryl		605		
			1 003	l	
	121% TNT ^[19]				
Hardness		scratch hardness) ^[19]			
Refractive index Dielectric constant	1.546 (α) ^[19] , 1.632 (β) ^[19] , 1.74 (γ) ^[19] Values from ^[19] :				
Constant	Density (g/cc) Dielectric constant measured at 35 giga cycles				
	0.9	2.059 2.163			
	1.0				
	1.4	2.782			
	1.5	2.905			
	1.6	3.097			
	1.7 3.304				

Laser ignition	No ignition on direct exposure to laser beam ^[19] , ignition observed if Tetryl $(\rho = 1.08~{\rm g~cm^{-3}})$ is coated with thin metal film ^[19] , no initiation observed if Tetryl $(\rho \ge 1.08~{\rm g~cm^{-3}})$ is coated with thin metal film ^[19] , successful detonation if Tetryl sample compressed against glass plate (Ruby laser $(6,943~{\rm \AA})$ both in free running and Q-switch modes) ^[76]							
Copper cylinder compression test	117–125% TNT ^[19]							
Lead block compression test	112% TNT	112% TNT ^[19]						
USA Small- Scale Cookoff Bomb test (SCB test)		Pressed Tetryl, heater voltage = 110, cookoff temperature = 215 °C, cookoff time = 14.5 min, cookoff reaction = detonation ^[73]						
Heat of decomposition [cal/g]	191 (est.) ^[74]							
Flash point [°C]	190 ^[75]							
Hess brisance	19 mm ^[75]							
Critical air gap	0.184 in (0.2 in diameter) ^[76]							
Critical Lucite gap	50% gap = 0.434 in, DBg = 3.63 (donor = RDX, 1 in long, 0.2 in diameter, pressed in steel @ 10 kpsi) ^[76]							
100 kg drop test	10% firing, 2.8 ft height, cast ρ = 1.57 g cm ⁻³ (cast), partially exploded ^[76]							
Laser sensitivity	Examples of heat/shock reactions in experimental detonation systems; detonation conditions using laser-produced heat and shock ^[77] :							
	Density or pressing force	Detonator type	Nominal wave- length (nm)	Spot diameter (microns)	Power or energy (J)	Function time (ms)	Laser type	Pulse duration (ms)
	1.08 g/cc	Confined	694	<3,000	4	5.58	Q- switched ruby	1.45
Combustion T[K]	Burn rate and equilibrium combustion temperature ^[78] : $T_e = 2,775 \text{ K}^{[78]}$, $m = 1.55 \text{ g cm}^{-2} \text{ s}^{-1} (100 \text{ atm.})^{[78]}$							
Detonation failure thickness	$L_{95} = 0.079$ mm, failure thickness = 0.267 mm @ 1.684 g cm ^{-3[21]}							

bomb	4,684 kg/cm² (@ 0.3 g cm³, manometric bomb) ^[48] , 2,423 kg/cm² (@ 0.20 g cm³, manometric bomb) ^[48] , 3,243 kg/cm² (@ 0.25 g cm³,
	manometric bomb) ^[48]

	Tetryl ^{[19, 20, 38]†}	Tetryl ^[21]
Chemical formula	$C_7H_5N_5O_8$	$C_7H_5N_5O_8$
Molecular weight [g mol ⁻¹]	287.14	287.14
Crystal system	Monoclinic	Monoclinic
Space group	P 2 ₁ / c (no. 14)	
a [Å]	14.1290 ± 0.0019	14.129
<i>b</i> [Å]	7.3745 ± 0.0013	7.374
c [Å]	10.6140 ± 0.0020	10.614
α [°]	90	90
β [°]	95.071 ± 0.017	95.07
γ [°]	90	90
<i>V</i> [ų]		
Z	4	4
$\rho_{\rm calc}$ [g cm ⁻³]	1.731	
<i>T</i> [K]	295	

[†] Tetryl forms the solid crystalline hydrate $C_7H_5N_5O_8\bullet^1/_4$ H_2O when H_2O is added to an acetone soln. of Tetryl [38]

- S. Zeman, A Study of Chemical Micro-Mechanisms of Initiation of Organic Polynitro Compounds, Ch. 2 in Energetic Materials, Part 2: Detonation, Combustion, P. A. Politzer, J. S. Murray (eds.), Theoretical and Computational Chemistry, Vol. 13, 2003, Elsevier, pp. 25–60.
- [2] S. Zeman, V. Pelikán, J. Majzlík, Central Europ. J. Energ. Mat., 2006, 3, 27-44.
- [3] Explosives, Section 2203 in Chemical Technology, F. H. Henglein, Pergamon Press, Oxford, 1969, pp. 718–728.
- [4] J. P. Lu, Evaluation of the Thermochemical Code CHEETAH 2.0 for Modelling Explosives

 Performance, DSTO Aeronautical and Maritime Research Laboratory, August 2011, AR-011-997.
- [5] M. H. Keshavarz, M. Hayati, S. Ghariban-Lavasani, N. Zohari, ZAAC, 2016, 642, 182–188.
- [6] M. H. Keshavarz, J. Haz. Mat., 2009, 166, 762-769.
- [7] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2012**, *37*, 489–497.
- [8] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2008**, *33*, 448–453.
- [9] Ordnance Technical Intelligence Agency, Encyclopedia of Explosives: A Compilation of Principal Explosives, Their Characteristics, Processes of Manufacture and Uses, Ordnance Liaison Group-Durham, Durham, North Carolina, 1960.

- [10] B.M. abbreviation for Bureau of Mines apparatus; P. A. abbreviation for Picatinny Arsenal apparatus.
- [11] A. Koch, Propellants, Explosives, Pyrotechnics, 2002, 27, 365–368.
- [12] R. Weinheimer, *Properties of Selected High Explosives*, Abstract, 27th International Pyrotechnics Seminar, 16th–21st July **2000**, Grand Junction, USA.
- [13] Determined using the Explosive Research Laboratory (ERL) apparatus.
- [14] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.
- [15] B. M. Dobratz, P. C. Crawford, LLNL Explosives Handbook Properties of Chemical Explosives and Explosive Simulants, Lawrence Livermore National Laboratory, January 31st 1985.
- [16] M. L. Hobbs, M. R. Baer, Calibrating the BKW-EOS with a Large Product Species Data Base and Measured C-J Properties, in Proceedings of the 10th International, Detonation Symposium, Office of Naval Research ONR 33395-12, 1993, pp. 409–418.
- [17] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [18] A. Mustafa, A. A. Zahran, J. Chemical and Engineer. Data, 1963, 8, 135–150.
- [19] Military Explosives, Department of the Army Technical Manual, TM 9-1300-214, Headquarters, Department of the Army, September 1984.
- [20] H. H. Cady, Acta Cryst., 1967, 23, 601-609.
- [21] LASL Explosive Property Data, T. R. Gibbs, A. Popolato (eds.), University of California Press, Berkeley, 1980.
- [22] A. Smirnov, O. Voronko, B. Korsunsky, T. Pivina, Huozhayo Xuebao, 2015, 38, 1-8.
- [23] B. M. Dobratz, Properties of Chemical Explosives and Explosive Simulants, UCRL-5319, LLNL, December 15th 1972.
- [24] G. T. Afanas'ev, T. S. Pivina, D. V. Sukhachev, *Propellants, Explosives, Pyrotechnics*, 1993, 18, 309–316.
- [25] D. Price, The Detonation Velocity Loading Density Relation for Selected Explosives and Mixtures of Explosives, NSWC TR-82-298, 23rd August 1982.
- [26] S. M. Kaye, Encyclopedia of Explosives and Related Items, Vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1978.
- [27] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, *Vol. 2*, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [28] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, Vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1969**.
- [29] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, *Vol. 5*, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1972**.
- [30] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, Vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1974.
- [31] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, *Vol. 7*, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1975**.
- [32] S. M. Kaye, Encyclopedia of Explosives and Related Items, Vol. 9, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1980.
- [33] S. Zeman, Propellants, Explosives, Pyrotechnics, 2000, 25, 66-74.
- [34] H.-H. Licht, *Propellants, Explosives, Pyrotechnics*, **2000**, *25*, 126–132.
- [35] R. K. Wharton, J. A. Harding, J. Energet. Mater., 1993, 11, 51–65.
- [36] D. E. Bliss, S. L. Christian, W. S. Wilson, J. Energet. Mater., 1991, 9, 319–348.
- [37] E. G. Kayser, J. Energet. Mater., 1983, 1:3, 251-273.

- [38] G. R. Miller, A. N. Garroway, A Review of the Crystal Structures of Common Explosives Part I: RDX, HMX, TNT, PETN and Tetryl, NRL/MR/6120—01-8585, Naval Research Laboratory, October 15th 2001.
- [39] A. Koch, B. Arnold, M. Estermann, Propellants, Explosives, Pyrotechnics, 2002, 27, 365–368.
- [40] J. Bogdanov, Z. Bajić, R. Jeremić, R. Dimitrijević, M. Ugrčić, Prediction of High Explosives' Detonation Characteristics Using a Simplified Thermochemical Approach, NTREM 17, 9th–11th April 2014, pp. 572–577.
- [41] J. R. Stine, J. Energet. Mater., 1990, 8, 41-73.
- [42] L. R. Rothstein, R. Petersen, Propellants and Explosives, 1979, 4, 56-60.
- [43] D. J. Edwards, J. O. Erkman, D. Price, *The Measurement of Particle Velocity in Pressed Tetryl*, NOLTR 72–83, Naval Ordnance Laboratory, Maryland, USA, 3rd August **1972**.
- [44] M. Ashcroft, R. Tunnell, D. Tod, *Thermal Degradation of Tetryl Characterised By Liquid Chromatography Tandem Mass Spectrometry*, ICT **2011**, pp. 11-1–11-2.
- [45] S. Thiboutot, G. Ampleman, P. Dubé, J. Hawari, T. F. Jenkins, M. E. Walsh, Protocol for the Characterization of Explosives-Contaminated Sites, ICT 1998, Karlsruhe, Germany, pp. 127-1-127-14.
- [46] P. Politzer, J. S. Murray, High-Performance, Low Sensitivity: The Impossible (or Possible) Dream? in Energetic Materials From Cradle to Grave, M. K. Shukla, V. M. Boddu, J. A. Steevens, R. Damavarapu, J. Leszczynski (eds.), Springer Verlag, 2017, pp. 1–22.
- [47] R. Petersen, Susceptibility Index of Explosives to Accidental Initiation, NWSY TR 81–6, Naval Weapons Station, Virginia, USA, October 1981.
- [48] T. L. Davis, The Chemistry of Powder and Explosives, vol. 1, 1941, John Wiley and Sons Inc., New York.
- [49] T. L. Davis, The Chemistry of Powder and Explosives, vol. 2, 1943, John Wiley and Sons Inc., New York.
- [50] P. A. Davies, J. Hazard. Mater., 1994, 38, 75-88.
- [51] S. Ye, K. Tonokura, M. Koshi, *Comb. and Flame*, **2003**, *132*, 240–246.
- [52] R. K. Weese, Thermal Conductivity of Tetryl by Modulated Differential Scanning Calorimetry, UCRL-JC-143532, Lawrence Livermore National Laboratory, July 28th 2003.
- [53] R. K. Wharton, D. Chapman, Propellants, Explosives, Pyrotechnics, 1997, 22, 71-73.
- [54] F. Volk, H. Bathelt, Propellants, Explosives, Pyrotechnics, 2002, 27, 136-141.
- [55] A. A. Kotomin, S. A. Dushenok, A. S. Kozolov, D. A. Barannik, N. P. Shirokova, M. A. Il'yushin, Russ. J. Appl. Chem., 2016, 89, 793–799.
- [56] P. Politzer, J. S. Murray, Computational Studies of Energetic Organic Molecules, AD-A274 726, ONR Technical Report, December 27th 1993.
- [57] A. Smirnov, M. Kuklja, M. Makhov, V. Pepkin, *Methodical Problems of Experimental Definition of Heat Of Explosive Transformation*, ICT **2017**, Karlsruhe, Germany, pp. 15-1–15-11.
- [58] D. Price, Critical Parameters For Detonation Propagation and Initiation of Solid Explosives, NSWC TR 80-339, Naval Surface Weapons Center, Maryland, USA, 10th September 1981.
- [59] M. Sućeska, M Rajic, Analytical Application of Thermal Methods in the Field of Explosive Materials, ICT 2000, Karlsruhe, Germany, pp. 84-1–84-15.
- [60] V. B. Zabrodin, Y. A. Kulagin, P. N. Stolyarov, P. A. Vlasov, *Devices for Analyzing Explosion Hazards*, ICT **2002**, Karlsruhe, Germany, pp. 69-1–69-13.
- [61] Q. Hu, Z. Lu, *The Discussion of Explosive Thermal Decomposition and its Sensitivity*, ICT **2002**, Karlsruhe, Germany, pp. 155-1–155-8.
- [62] R. Tunnell, M. Ashcroft, D. Tod, M. Sloan, E. Henderson, Defining a Reliable Testing Regime for Tetryl, ICT 2018, Karlsruhe, Germany, pp. 74-1–74-13.
- [63] W.-P. Lai, P. Lian, B.-Z. Wang, Z.-X. Ge, J. Energet. Mater., 2010, 28, 45–76.

- [64] E. P. Burrows, D. H. Rosenblatt, W. R. Mitchell, D. L. Parmer, Organic Explosives and Related Compounds: Environmental and Health Considerations, Technical Report 8901, US Army Biomedical Research and Development Laboratory, Frederick, MD, USA, March 1989.
- [65] L. W. Collins, L. D. Haws, Thermochim. Acta, 1977, 21, 1-38.
- [66] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [67] L. R. V. Clark, Industrial and Engineering Chemistry, 1934, 26, 554-557.
- [68] S. Fordham, High Explosives and Propellants, 2nd edn., Pergamon Press, 1980, p. 20.
- [69] Handbook of Foreign Explosives, U. S. Materiel Command, US Army Foreign Science and Technology Center, Washington, D. C., USA, October 1965.
- [70] W. B. Cybulski, W. Payman, D. W. Woodhead, Proc. Royal Soc. A, 1949, 51-72.
- [71] T. Jenkins, C. Vogel, Department of Defense Operational Range Sustainability Through Management of Munitions Constituents, SERDP ESTCP Technical Report, 04/01/2014.
- [72] M. Sućeska, Propellants, Explosives, Pyrotechnics, 1991, 16, 197-202.
- [73] J. M. Pakulak, *USA Small-Scale Cookoff Bomb (SCB) Test*, in vol. 1, *Minutes of the Explosives Safety Seminar (21st)*, AD-P004 844, Houston, Texas, USA, 28th–30th August **1984**.
- [74] J. Wenograd, The Thermal Sensitivity of Explosives and Propellants, US Naval Ordnance Laboratory, White Oak, Maryland, USA, NOLTR 61-97, 1st September 1961.
- [75] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part II, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [76] Engineering Design Handbook, Explosives Series, Explosive Trains, AMC Pamphlet AMCP 706–179, Headquarters, US Army Materiel Command, Alexandria, Virginia, USA, 15th January 1974.
- [77] S. S. Cooper, P. G. Malone, S. W. Bartholomew, W. J. Necker, *Light-Initiated Detonation Systems*, GL-86-28, Department of the Army, Washington D. C., USA, September 1986.
- [78] N. N. Bakhman, A. F. Belyaev, Combustion of Heterogeneous Condensed Systems, translated from Gorenje Geterogennykh Kondensirovannykh Sistem, Institute of Chemical Physics, Academy of Science, U.S.S.R. Moscow, Nauka Publication (1967) by C. A. J. Elphinston, M. Goyer, I. C. Graham, G. A. Heath, G. R. Ramsden, R.P.E. Translation No. 19, Ministry of Technology, London, November 1967.
- [79] J. N. Ayres, L. J. Montesi, R. J Bauer, Small Scale Gap Test (SSGT) Data Compilation: 1959–1972. Volume I. Unclassified Explosives, AD-773 743, Naval Ordnance Laboratory, Maryland, USA, 26th October 1973.
- [80] D. Price, A. R. Clairmont, J. O. Erkman, The NOL Large Scale Gap Test. III. Compilation of Unclassified Data and Supplementary Information for Interpretation of Results, AD-780 429, Naval Ordnance Laboratory, White Oak, Maryland, USA, 8th March 1974.
- [81] Services Textbook of Explosives, JSP 333, Procurement Executive, Ministry of Defence, UK, March 1972.
- [82] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, *ZAAC*, **2015**, *641*, 2446–2451.
- [83] E. E. Gilbert, W. E. Voreck, *Propellants, Explosives, Pyrotechnics*, **1989**, 14, 19–23.
- [84] G. Krien, H. H. Licht, J. Zierath, *Thermochim. Acta*, **1973**, *6*, 465–472.
- [85] F. Taylor, D. J. Glover, Heat Resistant Explosives VII. Synthesis and Analysis of Potassium-2,2'4,4',6,6'-Hexanitrodiphenylamine, NAVORD Report 6641, US Naval Ordnance Laboratory, White Oak, Maryland, USA, 8th May 1959.
- [86] A. Smirnov, O. Voronko, B. Korsunsky, T. Pivina, Chinese J. Expl. Prop., 2015, 38, 1-8.

- [87] H. J. Jackson, A Study of the Electrical Characteristics of Some Explosives and Explosive Mixtures, Technical Memorandum 1288, Feltman Research Laboratories, Picatinny Arsenal, New Jersey, USA, October 1963.
- [88] T. E. Larson, P. Dimas, C. E. Hannaford, *Electrostatic Sensitivity Testing of Explosives at Los Alamos*, 9th Int. Symp. on Detonation, Portland, Oregon, USA, vol. II, August 28th–1st September **1989**, pp. 1076–1083.
- [89] L. Avrami, J. Haberman, Sensitivity to Heat and Nuclear Radiation, Ch. 6 in Energetic Materials 2: Technology of the Inorganic Azides, H. D. Fair, R. F. Walker (eds.), Plenum Press, 1977.
- [90] R. J. Spear, L. Montelli, An Investigation of the Material Hazard of Some Insensitive High Explosives, MRL-TR-91-22, Materials Research Laboratory DSTO, Maribyrnong, Australia, 1991.
- [91] Summary Technical Report of Division 8, NDRC, Volume 1, The Preparation and Testing of Explosives, Office of Scientific Research and Development, National Defense Research Committee, Washington D. C., USA, 1946.
- [92] G. Stegeman, Heat of Combustion of Explosive Substances, OSRD No. 5306, Division 8 National Defense Research Committee of the Office of Scientific Research and Development, USA, 4th July 1945.
- [93] L. Avrami, H. J. Jackson, M. S Kirshenbaum, *Radiation-Induced Changes in Explosive Materials*, AD-775 371, Picatinny Arsenal, Dover, New Jersey, USA, December **1973**.

2,4,6-Triamino-3,5-dinitropyridine

Name [German, acronym]: Triaminodinitropyridine [2,4,6-triamino-3,5-

dinitropyridin, TADNP]

Main (potential) use: Possible thermally stable explosive^[1]

Structural formula:

	TADNP			
Formula	C ₅ H ₆ N ₆ O ₄			
Molecular mass [g mol ⁻¹]	214.14			
Appearance at RT				
IS [J]				
FS [N]				
ESD [J]				
N [%]	39.25			
Ω(CO ₂) [%]	-67.25			
T _{m.p.} [°C]				
T _{b.p.} [°C]				
T _{phase transition} [°C]				
T _{dec.} [°C]				
$ ho$ [g cm $^{-3}$]	1.82			
Heat of formation	-38.9 kJ/mol			
Heat of combustion				
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	3493			
T _{ex} [K]	2555			

p _{C-J} [kbar]	224	
VoD [m s ⁻¹]	7749	
V ₀ [L kg ⁻¹]	725	

[1] S. R. Ahmad, M. Cartwright, *Laser Ignition of Energetic Materials*, John Wiley and Sons Ltd., **2015**.

Triaminoguanidinium 1-aminotetrazol-5-oneate

Name [German, acronym]: Triaminoguanidinium 1-aminotetrazol-5-oneate

[ATO-TAG]

Main (potential) use: Secondary (high) explosive

	ATO · TAG				
Formula	C ₂ H ₁₁ N ₁₁ O				
Molecular mass [g mol ⁻¹]	205.22				
Appearance at RT	Yellow powder ^[1]				
IS [J]	>40 ^[1]				
N [%]	75.09				
Ω(CO ₂) [%]	-50.73				
T _{m.p.} [°C]	154.5 (DSC-TG @ 10 °C/min) ^[1]				
T _{dec.} [°C]	214.5 (DSC-TG @ 10 °C/min) ^[1]				
$ ho$ [g cm $^{-3}$]	1.569 (@ 296 K) ^[1]				
Heat of formation	743.27 kJ/mol ($\Delta H_{\rm f}^{\rm o}$) ^[1] , 3,622 kJ/kg ($\Delta H_{\rm f}^{\rm o}$) ^[1]				
	Calcd. (EXPLO5 6.04) Lit. values Exptl.				
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	5,343				
T _{ex} [K]	3,025				
p _{C-J} [GPa]	31.8	31.0 (calcd., K-J) ^[1]			
VoD [m s ⁻¹]	9,492 (@ 1.509 g cm ⁻³ , $\Delta_f H = 743.27 \text{ kJ mol}^{-1}$)	8,720 (calcd., K-J) ^[1]			
V_0 [L kg ⁻¹]	977				

	ATO-TAG ^[1]
Chemical formula	C ₂ H ₁₁ N ₁₁ O
Molecular weight [g mol ⁻¹]	205.22
Crystal system	Orthorhombic
Space group	<i>Pbca</i> (no. 61)
a [Å]	12.8237(6)
<i>b</i> [Å]	6.7049(3)
c [Å]	20.2018(10)
α [°]	90
β [°]	90
γ [°]	90
V [ų]	1,736.98(14)
Z	8
$ ho_{ m calc}$ [g cm ⁻³]	1.569
τ[K]	296

^[1] X. Yin, J.-T. Wu, X. Jin, C.-X. Xu, P. He, T. Li, K. Wang, J. Qin, J.-G. Zhang, *RSC Adv.*, **2015**, *5*, 60005–60014.

Triaminoguanidinium dinitramide

Name [German, acronym]: Triaminoguanidinium dinitramide

[triaminoguanidinium dinitramid, TAGDN, [TAG][DN]]

Main (potential) use: gas generant

	TAGDN					
Formula	CH ₉ N ₉ O ₄					
Molecular mass [g mol ⁻¹]	211.14					
Appearance at RT	Colorless rod crystals ^[2]	, colorless needles (from	hot EtOH) ^[3]			
IS [J]	2 kg mass, up-down me	s, up-down method) ^[1] , 1 ethod) ^[1] , 2 (75–125 µm g ^{3]} , 5 (95% TAGDN, 5% wax	rain size) ^[3] , 4.5 (97%			
FS [N]		7% prob., ¹ / ₆ trials) ^[1] , 24 (ıx, BAM) ^[3] , 50 (95% TAGD				
ESD [J]	200 mJ (OZM apparatus	200 mJ (OZM apparatus) ^[3]				
N [%]	59.7		,			
Ω(CO ₂) [%]	-18.94		,			
T _{m.p.} [°C]	85 (onset, DSC @ 10 K/pierced Al container) ^[3]	85 (onset, DSC @ 10 K/min, Al cup, pierced lid) ^[1] , 80 (DSC @ 5 °C/min, pierced Al container) ^[3]				
T _{dec.} [°C]	150–160 (onset, DSC @ 10 K/min, Al cup, pierced lid) ^[1] , 180 (DSC @ 5 °C/min, pierced Al container) ^[3]					
$ ho$ [g cm $^{-3}$]	1.57 ^[1] , 1.628 (X-ray @ 100 K) ^[3]					
Heat of formation	184 kJ mol ^{-1[1]} , 59.6 kca	al/mol ($\Delta H_{\rm f}^{\rm o}$ (s)) ^[3] , 251 kJ	/mol (Δ <i>H</i> _f °) ^[3]			
Heat of combustion	-2,027 kJ/mol ^[3]		'			
			'			
	Calcd. (EXPLO5 5.02)	Lit. values	Exptl.			
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	5,902 ^[3]					
<i>T</i> _{ex} [K]	3,986 ^[3]					
p _{C-J} [kbar]	299 ^[3]					

VoD [m s ⁻¹]	8,796 ^[3]		
V₀ [L kg ⁻¹]	932 ^[3]		
Solubility [g/mL]	Recryst. from hot EtOH ^{[3}	[3]	
Koenen test	≥10 mm (hole width of s	iteel sleeve) ^[3]	

	TAGDN ^[2, 3]
Chemical formula	CH ₉ N ₉ O ₄
Molecular weight [g mol ⁻¹]	211.17
Crystal system	Orthorhombic
Space group	Pbca (61)
<i>a</i> [Å]	12.5217(3)
<i>b</i> [Å]	8.1036(2)
c [Å]	16.9859(4)
α [°]	90
β [°]	90
γ [°]	90
<i>V</i> [ų]	1,723.57(7)
Z	8
$ ho_{ m calc}$ [g cm $^{-3}$]	1.628
<i>T</i> [K]	100
	Recryst. from hot EtOH ^[3]

^[1] N. Wingborg, N. V Latypov, *Propellants, Explosives, Pyrotechnics.*, **2003**, *28*, 314–318.

^[2] T. M. Klapötke, J. Stierstorfer, *PhysChemChemPhys*, **2008**, *10*, 4340–4346.

^[3] J. Stierstorfer, Advanced Energetic Materials Based on 5-Aminotetrazole – Synthesis, Characterization and Scale-Up, PhD Thesis, LMU München, Munich, 2009.

Triaminoguanidinium nitrate

Name [German, acronym]: Triaminoguanidine nitrate [triaminoguanidinnitrat,

TAGN]

Ingredient for LOVA gun propellants^[6], ingredient Main (potential) use:

in some gun propellants^[15], often added to RDX propellant formulations to increase the burning rate and particularly important in LOVA propellant formulations^[17, 19], can be added to solid propellant to increase its burning rate^[18], gas generators^[19], tested as a component of gun propellants with nitramines, organic nitric acid esters and polymeric binders^[20], as an additive to double-base propellants or as a dual-system with azidopolymers^[20], possible future

component of gas-generator systems^[20]

$$H_2N^{-1}N$$

	TAGN
Formula	CH ₉ N ₇ O ₃
Molecular mass [g mol ⁻¹]	167.10
Appearance at RT	colorless crystals/white powder $^{[15]}$, colorless crystals $^{[17]}$, pink discoloration indicates impurity $^{[19]}$
IS [J]	4 Nm $^{[6, 20]}$, 23 cm (ERL, type 12) $^{[7]}$, 11 in (2 kg mass, P.A.) $^{[8]}$, 5.5 Nm $^{[10]}$, 13 Nm (75% TAGN, 10% PU, 15% TA) $^{\star [20]}$, 6.5 Nm (80% TAGN, 10% CA, 10% TA) $^{\star [20]}$
FS [N]	>120 ^[6] , 120 ^[20] , 216 (75% TAGN, 10% PU, 15% TA)* ^[20] , 216 (80% TAGN, 10% CA, 10% TA)* ^[20]
ESD [J]	Spark test (3 mil foil) >1.0 ^[7]
N [%]	58.67
Ω(CO ₂) [%]	-33.5
T _{phase transition} [°C]	LT (-10 °C) polymorph is <i>Pbca</i> and RT polymorph is <i>Pbcm</i> ^[16] , -28.4 (endo, onset), -10.0 (endo, peak max) (DSC @ 20 °C/min, $\Delta H = 0.483$ kJ/mol, second order) ^[17, 18]
T _{m.p.} [°C]	216–220 $^{[1]}$, 216 $^{[6,8]}$, 215 (endo, DTA, nonreactive quartz sample containers, @ 5–30 $^{\rm o}$ C/min) $^{[11]}$, 215 $^{[14]}$

			1			
T _{glass transition} [°C]	-65 (75% TAGN, 10)% PU, 15% TA)* ^[20]				
T _{dec.} [°C]	TG, nonreactive qua process; stage 1 = 0 2 = between 27% w 3 = 92% (@ 300 °C) after the mpt. and re	eight loss @ 225°C and 92% v –100% (@ 550°C) weight loss eaches a maximum @~232°C	°C/min: 3 stage weight loss 7% weight loss @ 225 °C; stage veight loss @ 300 °C; stage [¹¹¹ , dec. begins immediately (DSC @ 10 °C/min) ^[19]			
ρ [g cm ⁻³]	1.5 ^[6, 20] , 1.594 (@ 2 1.59 ^[15]	293 K) ^[2] , 1.536, 1.630 (measu	ıred crystals) ^[9] , 1.54 ^[14] ,			
Heat of formation	$\begin{array}{l} -287.9 \text{ kJ/kg (enthalpy of form., ICT thermochemical code)}^{[3,6]}, -69 \text{ cal/g}^{[4]}, \\ -72.0 \text{ kcal/kg (enthalpy of form.)}^{[12]}, -12.01 \text{ kcal/mol } (\Delta H^o_{\mathfrak{f}}, \text{ exptl.)}^{[13]}, \\ -11.42 \text{ kcal/mol } (\Delta H^o_{\mathfrak{f}}, \text{ calcd.)}^{[13]}, -68.8 \text{ kcal/kg } (\Delta H_{\mathfrak{f}})^{[14]}, 11.71 \text{ kcal/mol } (Q_{\mathfrak{f}})^{[8]}, \\ -280 \text{ J/g } (\Delta H_{\mathfrak{f}})^{[11]}, -11.5 \text{ kcal/mol } (\Delta H_{\mathfrak{f}}(s), @ 298 \text{ K, bomb calorimetry)}^{[7]}, \\ -48.1 \text{ kJ/mol (enthalpy of form.)}^{[15]}, -280 \text{ kJ/kg}^{[20]}, -48.1 \text{ kJ/mol (enthalpy of form., exptl.)}^{[21]}, -35.2 \text{ kJ/mol (enthalpy of form., calcd., emp.)}^{[21]}, -69.2 \text{ kJ/mol (enthalpy of form., calcd., S-D method)}^{[21]} \end{array}$					
Heat of combustion	2,334 cal/g (Q _c) ^[8]					
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.			
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	4,237	3,974 (calcd., ICT-code) ^[3]	3,974 [H₂O (l)] ^[6]			
		943 kcal/kg (@ 1.570 g cm ⁻³ , calcd.) [H ₂ O vapor] ^[12]	3,492 [H ₂ O (g)] ^[6]			
		7.2 00.3	920.98 cal/g ^[8]			
	944 kcal/kg (@ 1.570 g cm ⁻ [H ₂ O vapor] ^[12]					
			3,490 [H ₂ O (g)] ^[15]			
<i>T</i> _{ex} [K]	2,707	2,593 (calcd., ICT-code) ^[3]				
p _{C-J} [kbar]	279	132.1 MPa (calcd., ICT-code) ^[3]				
VoD [m s ⁻¹]	8,893 (@ TMD)	8,048 (@ 1.47 g cm ⁻³) ^[10]	5,300 (@ 0.95 g cm ⁻³) ^[6, 15]			
			7,930 (@ 1.46 g/cc) ^[8]			
			5,350 (@ 1.00 g cm ⁻³) ^[8]			
V_0 [L kg ⁻¹]	1,034		1,163 ^[5, 6]			
			1,206 ^[8]			

Trauzl test [cm³, % TNT]	350 cc (10 g sample) ^[8]
Sand test [g]	34.9 g sand crushed (200 g bomb) ^[8]
Gap test	18 kbar, charge ρ = 1.49 g cm ^{-3[10]} , 0 mm H ₂ O column (75% TAGN, 10% PU, 15% TA)* ^[20]
5 s explosion T[°C] Explosion T[°C] Deflagration T[°C] Autoignition T[°C]	225 (DTA/TG @ 6 °C/min) ^[10] , 260 ^[8] 227 ^[8, 19] , 277 ^[20] 238 (75% TAGN, 10% PU, 16% TA @ 20 °C/min)* ^[20] , 237 (80% TAGN, 10% CA, 10% TA, @ 20 °C/min)* ^[20]
100 °C heat test [% mass loss]	0.15% mass loss in first 48 h, 2.73% mass loss in second 48 h, no explosion in 100 $h^{\rm [8]}$
Vacuum stability test [cm³/h]	1.06 cc/g @ 120 °C ^[8] , 0.07 mL/g (40 h/100 °C, 75% TAGN, 10% PU, 16% TA @ 20 °C/min)* ^[20] , 0.32 mL/g (40 h/100 °C, 80% TAGN, 10% CA, 10% TA, @ 20 °C/min)* ^[20]
Thermal stability	Colored (usually pink) crystals are found during synthesis/storage/processing of TAGN ^[19] , propellants made from pink discolored TAGN show decrease in ballistic properties cf. propellants made from nondiscolored TAGN ^[19] , metal ion contamination should be avoided and fast solvent removal are necessary ^[19] , pink color can be removed by washing with deionized water – the pink color is suggested to be due to liquid trapped inside TAGN crystals ^[19]

Burn rate [mm/s]	Extremely fast ^[18]						
	Burning propert	ties of TAG	N gas gen	erator for	nulation	s, data	from ^[20] *:
	Burning prope $r = A \bullet p^n$	erties	75% TAGN PU/TA	80% TAGN CA/TA	70% T PU/ BDNPI		70% TAGN GAP/ BDNPF/A
	Burn rates, r	−30 °C	3.0	-	-		-
	@ 7 MPa in mm/s	+20 °C	3.5	5.1	6.1		9.2
	mm/s	+50 °C	4.8	6.0	-		-
	Pressure	−30 °C	0.42	-	-		-
	exponent, n	+20 °C	0.54	0.45	0.65		0.56
		+50 °C	0.59	-	-		_
	A-value	−30 °C	0.504	-	-		_
		+20 °C	0.353	0.754	0.385		0.852
		+50 °C	0.391				
		+50 °C	0.591	_	-		
	Data from [20]*:	+50 °C	0.391	TAGN	l-conten	t	
	Data from ^[20] *:	+50 °C		TAGI	V-conten		
		+50 °C	80%		75		
	TAGN/PU-GG		80%	(759	%	lkg
	TAGN/PU-GG Burning T, T _c		80% 1,325 k	(ol/kg	75° 1,2 55.	% 60 K	
	TAGN/PU-GG Burning T, T _c Yield of gases	, n _m	80% 1,325 k 57.0 m	ol/kg	75° 1,2 55.	% 60 K 8 mol/	1 ³

stability of the TAGN propellant, but addition of Ascardite (stabilizer) can

minimize the loss in stability of NC/TAGN propellants^[19]

Heat capacity	Heat capacity is relatively constant from $-100-55$ °C, but increases in the temperature range $-55-60$ °C, DSC @ 20 °C/min, $5-10$ mg sample ^[17] :					
	T (°C)	Hea	t capacity	7		
		J/kg	Cal/kg	7		
	-70	1,326	0.315	7		
	-60	1,336	0.319	7		
	-60	1,364	0.325			
	-45	1,386	0.331	7		
	40	1,413	0.338	7		
	-35	1,441	0.344			
	-30	1,466	0.358			
	-25	1,495	0.357			
	-20	1,525	0.364	7		
	-15	1,543	0.369	7		
	-10	1,610	0.385	7		
	-5	1,570	0.375	7		
	0	1,534	0.367	7		
	5	1,559	0.373	7		
	10	1,586	0.379			
	20	1,634	0.391			
	30	1,688	0.403			
	40	1,738	0.414			
	50	1,781	0.426			
	60	1,811	0.433			
	70	1,842	0.440			
	80	1,881	0.450			
	90	1,943	0.456	7		
	100	1,959	0.466	7		

^{*}PU, viscoelastic polyester urethane polymers; TA, triacetin; CA, thermoplastic cellulose acetate

0.57% (8–72 h/105 °C, 80% TAGN, 10% CA, 10% TA, @ 20 °C/min)* $^{[20]}$

	TAGN ^[2, 16]	TAGN ^[9]	TAGN[16, 17]	TAGN ^[18]	TAGN ^[18]
		(Neutron)	LT-polymorph	LT-polymorph	Above –10 °C the LT-polymorph transforms into this polymorph
Chemical formula	CH ₉ N ₇ O ₃	CH ₉ N ₇ O ₃	CH ₉ N ₇ O ₃	CH ₉ N ₇ O ₃	CH ₉ N ₇ O ₃
Molecular weight [g mol ⁻¹]	167.10	167.10	167.10	167.13	167.13
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic	Orthorhombic
Space group	Ръст	Pbcm	Pbca	Pbca	Pbcm
a [Å]	8.389(7)	8.389	33.07(1)	33.058(10)	8.366(2)
<i>b</i> [Å]	12.684(8)	12.684	12.581(4)	12.573(2)	12.649(2)
c [Å]	6.543(5)	6.543	6.518(3)	6.541(4)	6.556(1)
α [٥]	06	06	90	06	06
β [º]	06	06	90	06	06
γ [⁰]	06	06	90	06	06
V [ų]	696.2	696.215	2,711.8	2,718.7	
Z	7	4		16	4
$ ho_{ m calc}$ [g cm $^{-3}$]	1.594	1.594		1.63	1.60
7 [K]	295	295	–100 °C	169 (–104 °C)	23 °C

Lattice parameters as a function of temperature (a transition temperature is close to -10 o C; b the a axis and volume above the transition temperature are 1 /4 the values given in the table below)[17]:

T(°)		Paran	neters	
	a (Å)	b (Å)	c (Å)	V (Å)
-100	33.07(1)	12.581(4)	6.518(3)	2,711.8
-64	33.199(4)	12.594(4)	6.537(4)	2,732.2
-51	33.245(7)	12.603(3)	6.544(4)	2,741.5
-27	33.344(8)	12.622(4)	6.548(2)	2,755.5
-26	33.344(9)	12.619(4)	6.546(2)	2,754.8
-13	33.408(9)	12.635(3)	6.550(3)	2,764.8
a				
-5	33.444(9) ^b	12.641(4)	6.552(5)	2,770.0 ^b
15	33.47(1) ^b	12.659(5)	6.559(3)	2,779.0 ^b
23	8.366(2)	12.649(2)	6.556(1)	693.8

TAGN crystals are hollow cylinders and the pink color of impure TAGN is suggested to be due to liquid being trapped inside the hollow cylinders; pure TAGN is a colorless crystalline substance^[19]

- [1] V. V. Serushkin, V. P. Sinditskii, V. Y. Viacheslav, S. A. Filatov, *Propellants, Explosives, Pyrotechnics*, **2013**, *38*, 345–350.
- [2] A.-J. Bracuti, Acta Cryst., 1979, 35B, 760-761.
- [3] F. Volk, H. Bathelt Propellants, Explosives, Pyrotechnics, 2002, 27, 136-141.
- [4] https://engineering.purdue.edu/~propulsi/propulsion/comb/propellants.html
- [5] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [6] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 351–352.
- [7] K.-Y. Lee, M. M. Stinecipher, *Propellants, Explosives, Pyrotechnics*, 1989, 14, 241–244.
- [8] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 9, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1980.
- [9] C. S. Choi, E. Prince, Acta Cryst., 1979, B35, 761–763.
- [10] H.-H. Licht, *Propellants, Explosives, Pyrotechnics*, **2000**, *25*, 126–132.
- [11] N. Kubota, N. Hirata, S. Sakamoto, Propellants, Explosives, Pyrotechnics, 1988, 13, 65-68.
- [12] A. Smirnov, M. Kuklja, M. Makhov, V. Pepkin, *Methodical Problems of Experimental Definition of Heat Of Explosive Transformation*, ICT **2017**, Karlsruhe, Germany, pp. 15-1–15-11.
- [13] Y. N. Matyushin, *Estimation Method of Enthalpies of Formation of Salt Compounds*, ICT **2008**, Karlsruhe, Germany, pp. 44-1-44-15.

- [14] K. Menke, G. Gunser, M. Schnoering, J. Boehlein-Mauß, V. Weiser, *Burning Rate Enhancement of AN-Propellants by TAGN and GZT*, ICT **2003**, Karlsruhe, Germany, pp. 22-1–22-19.
- [15] K. L. Kosanke, B. J. Kosanke, B. T. Sturman, R. M. Winokur, *Encyclopedic Dictionary of Pyrotechnics (and Related Subjects), Part 3 P to Z*, Pyrotechnic Reference Series No.5, Journal of Pyrotechnics Inc., Whitewater, Colorado, USA, **2012**, pp. 1143–1144.
- [16] J. Bernstein, Polymorphism in High Energy Materials, Ch. 9 in Polymorphism in Molecular Crystals, IUCr Monographs on Crystallography No. 14, Oxford Science Publications, Clarendon Press, Oxford, 2002.
- [17] A. J. Bracuti, J. K. Salo, Discovery of a Low Temperature Form of TAGN, Technical Report ARAED-TR-88009, US Army ARDEC, Picatinny, New Jersey, USA, July 1988.
- [18] A. J. Bracuti, *Molecular Structure of Low Temperature Form of Triaminoguanidinium Nitrate (TAGN)*, Technical Report ARAED-TR-93012, US Army ARDEC, Picatinny, New Jersey, USA, September **1993**.
- [19] P. J. Kaste, F. Volk, R. Jacob, F. Nagel, B. Schon, T. Wohlhaupter, *Decomposition and Stability Studies of TAGN*, US Army Laboratory Command, Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland, USA, December 1988.
- [20] S. Eisele, F. Volk, K. Menke, Propellants, Explosives, Pyrotechnics, 1992, 17, 155-160.
- [21] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248–258.

Triaminoguanidinium nitroformate

Name [German, acronym]: Triaminoguanidinium nitroformate

[triaminoguanidiniumnitroformat, TAGNF]

Main (potential) use: academic

	TAGNF				
Formula	C ₂ H ₉ N ₉ O ₆				
Molecular mass [g mol ⁻¹]	255.18	255.18			
Appearance at RT		,	'		
IS [J]	2 (BAM) ^[1]				
FS [N]	20 ^[1]		'		
N [%]	49.4				
Ω(CO ₂) [%]	-15.7				
T _{m.p.} [°C]	84 (DSC @ 2 °C/min) ^[1]				
T _{dec.} [°C]	105 (DSC @ 2 °C/min) ^{[1}]			
$ ho$ [g cm $^{-3}$]	1.689 ^[1]	1.689[1]			
Heat of formation	59.1 kcal mol ⁻¹ (Δ _f H°) ^[1]				
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	6,274 ^[1]				
T _{ex} [K]	4,358 ^[1]	4,358[1]			
p _{C-J} [kbar]	330 ^[1]				
VoD [m s ⁻¹]	8,982 (@ 1.689 g cm ⁻³) ^[1]				
V_0 [L kg ⁻¹]	885 ^[1]				

	TAGNF ^[1]
Chemical formula	C ₂ H ₉ N ₉ O ₆
Molecular weight [g mol ⁻¹]	255.18
Crystal system	Triclinic
Space group	P-1 (no. 2)
a [Å]	8.020(2)
<i>b</i> [Å]	8.347(2)
c [Å]	8.515(2)
α [°]	105.49(2)
β[°]	95.03(2)
γ [°]	111.10(2)
<i>V</i> [Å ³]	501.7
Z	2
$ ho_{ m calc}$ [g cm $^{-3}$]	1.689
τ[K]	200

^[1] M. Göbel, T. M. Klapötke, ZAAC, 2007, 633, 1006–1017.

1,3,5-Triamino-2,4,6-trinitrobenzene

Name [German, acronym]: Main (potential) use:

[Triamino trinitrobenzene, triamino trinitrobenzol, TATB] Booster in nuclear weapons^[18], plastic explosives, explosives mixture with TNT, warheads, missiles, thermoresistant insensitive explosive^[76], deep oil well exploration^[76]

$$\begin{array}{c|c} & NH_2 \\ O_2N & NO_2 \\ H_2N & NH_2 \end{array}$$

	ТАТВ
Formula	$C_6H_6N_6O_6$
Molecular mass [g mol ⁻¹]	258.15
Appearance at RT	Yellow solid ^[14] , yellow solid which turns slightly green on exposure to light which then turns brown on prolonged exposure to sunlight or UV radiation ^[19] , yellow polycrystalline solid ^[20] , lemon yellow microcrystalline powder after recryst. from sulfuric acid ^[68] , fine yellow powder (average crystal size = 25–300 μ m, received TATB) ^[68] , yellow crystalline solid ^[79] , pale yellow solid ^[85]
IS [J]	$120.17^{[5]}, 50 \text{Nm}^{[6,18]}, 5.48 (11 \text{in}, 2 \text{kg mass}, 7 \text{mg sample}, P.A.)^{[14]}, >86.8 (5 \text{kg}, 12 \text{tool})^{[16]}, >78.5 (2.5 \text{kg}, 12 \text{tool})^{[16]}, >78.5 (2.5 \text{kg}, 12 \text{bool})^{[16]}, >78.5 (2.5 \text{kg}, 12 \text{bool})^{[16]}, 800 \text{cm} (50\% \text{detonations}, 2.5 \text{kg mass}, ERL \text{apparatus})^{[19]}, 11 \text{in} (7 \text{mg sample}, P.A.)^{[19]}, \text{no} \text{detonation height} = 200 \text{cm} (2.5 \text{kg mass}, \text{type} 12 \text{tool}, \text{no grit}, ERL \text{apparatus})^{[19]}, \\ H_{50} > 320 \text{cm} (\text{tool type} 12)^{[20]}, H_{50\%} = ~800 \text{cm} (2.5 \text{kg mass}, \text{type} 12 \text{tool}, \text{no grit}, \\ ERL \text{apparatus})^{[19]}, H_{50} > 320 \text{cm} (\text{tool type} 12 \text{B})^{[20]}, S_{L1} = 2.0 \text{m}^{[21]}, S_{A50} = 10 \text{m}^{[21]}, \\ H_{50} \ge 111.6^{[24]}, 22.2 \text{in} (\text{P.A.})^{[22]}, \text{drop weight} > 25 \text{Nm} (\text{BAM})^{[23]}, H_{50} \ge 100 (5 \text{kg mass}, \text{tool type} 12)^{[29]}, H_{50\%} \ge 200 \text{cm} (\text{B.M.}, \text{type} 12 \text{tool}, 2.5 \text{kg mass}, 35 \text{mg sample}, \\ \text{garnet paper})^{[30]}, \text{Rotter Fol} = \textit{ca}. 150^{[32]}, > 165 \text{cm} (\text{US drop-hammer})^{[32]}, \\ > 320 \text{cm} (\text{NEDED})^{[43]}, > 320 \text{cm} (\text{NOL})^{[43]}, > 320 \text{cm} (\text{LANL})^{[43]}, H_{50} > 111.6^{[45]}, \\ (H_{50}W_g)^{-1} \ge 40 \text{Nm}^{[47]}, H_{50\%} \ge 320 \text{cm}^{[49,50]}, H_{50} = 490 \text{cm} (120)^{[51]}, 320 \text{cm} (\text{Bruceton method}, \text{type} 12 \text{tool}, 2.5 \text{kg mass}, 40 \text{mg sample}, 5/0 \text{sandpaper}, 25 \text{trials})^{[52]}, \\ > 325 \text{cm} (2.5 \text{kg mass})^{[56]}, > 50 (\text{BAM})^{[67]}, 0\% \text{explosion probability} @ 25 \text{cm} (10 \text{kg} \text{mass}, 50 \text{mg powder}, \text{WL-1 type apparatus})^{[69]}, H_{50} = 150 - 170 \text{cm} (\text{FOI} = 204 - 224, \text{PG-TATB}, \text{Bruceton method})^{[73]}, H_{50} = 89 - 138 \text{cm} (\text{FOI} = 109 - 169, \text{UF-TATB}, \text{Bruceton method})^{[73]}, H_{50} = 490 \text{cm} (2.5 \text{kg mass})^{[105]} = 2.505 (K$

UF-TATB, H_{50} = height of explosion with 2 kg dropweight; *= KOH was used during synthesis; # = relative humidity = 45%, T = 306 K^[73]:

Sample	Impact test#	
	H ₅₀ (cm)	Figure of insensitivity (FOI)
1*	138	169
2*	100	122
3	103	126
4	102	150
5	89	109
PG-TATB	150-170	204-224
CE (Tetryl, standard)	57	-

Rotter impact data: TATB type A, 27 mg sample, Bruceton method/25 drop run to obtain $H_{50\%}$; initiation criteria = 1 mL gas evolved or 0.5 mL accompanied by smoke or evidence of burning in the sample, data from^[103]:

Rotte	er impact data	US dat	a
FofI	Gas evolved (ml)	NSWC/NOL, ERL type 12	NWC B.M. type 12
>200	0.5	> 320 (est. 500)	> 200

FS [N]

360, 353^[6], $P_{\rm fr,LL}$ = 800 MPa^[21, 98], $P_{\rm fr,50\%}$ = 1,300 MPa^[21, 98], $F_{\rm 50}$ > 36 kgf^[24], $F_{\rm 50}$ > 35 (BAM)^[67], 0% explosion probability (WM-1 type apparatus)^[69], > 36 kg (PG-TATB, Julius-Peter apparatus)^[73], > 36 kg (UF-TATB, Julius-Peter apparatus)^[73]

UF-TATB, * = KOH was used during synthesis^[73]:

Sample	Insensitive to friction (kg)
1*	36
2*	36
3	36
4	36
5	36
PG-TATB	36
CE (Tetryl, standard)	-

ESD [J]	17.75 ^[5, 7, 9] , 293.3 mJ ^[7] , $E_{50} = 11.886$ (@ 293 K) ^[24] , $E_{50} = 13.518$ (@ 333 K) ^[24] , $E_{50} = 11.886$ ($T_{50} = 13.518$ (% 333 K) ^[24] , $E_{50} = 13.518$ (% 333 K) ^[45] , $E_{50} = 2.56 \pm 0.07$ (Bruceton method) ^[46] , $E_{50} = 4.25$ (LANL using 0.008 cm Pb foil confinement) ^[46] , $V_{50} = 34.12$ kV (JGY-50 type apparatus) ^[69] , $E_{50} = 17.75$ (JGY-50 type apparatus) ^[69] .				
	Material	5	0% point energy	' (J)	
		3-mil foil	10-mil foil	% expl.	
	TATB (X-398)	4.25	18.14	0	
N [%]	32.56				
Ω(CO ₂) [%]	-55.78				
T _{m.p.} [°C]	$>365^{[1]}$, $480^{[13]}$, $452^{[13]}$, $330^{[14]}$, $360^{[14]}$, $448-449$ (hot bar melting apparatus) ^[20] , $>370^{[33]}$, $>360^{[33,54]}$, ~ 450 (dec.) ^[33] , $449^{[34]}$, 374.5 (mpt. with dec., DSC, sample in sealed cell) ^[45] , 450 (dec.) ^[49,50,54] , >370 (Thomas Hoover Capillary Melting Point Apparatus @ 2 °C/min) ^[54] , $320^{[58]}$, did not melt <593 K (PG-TATB) ^[73] , did not melt <593 K (UF-TATB) ^[73] , $544-549$ K (101)				
T _{b.p.} [°C]	711.6 K (est., T _{nbp} , Stein-Brown method) ^[101]				
T _{dec.} [°C]	384, 330 (DTA @ 10 °C/min) ^[22] , rapid dec. >320 ^[19, 22] , 330, 350 (exotherms, DSC @ 10 °C/min) ^[19] , 450–451 (instantaneous, hot-bar) ^[19, 22] , ~ 450 ^[33] , 397 (exo peak max., DSC @ 20 °C/min) ^[34] , 375 (onset, TATB from trichlorobenzene, DSC @ 10 K/min) ^[22] , 353 (onset, TATB from trinitrobenzene/TMHI by VNS, DSC @ 10 K/min) ^[22] , 374.5 (dec., DSC, sample in sealed cell) ^[45] , 510 (5 s dec. T, 100 mg sample) ^[49] , ~ 450 (dec. of one crystal @ 2–3 °C/min heating rate from sudden exposure ~ 440 °C) ^[49] , 375.5 (onset, DSC @ 10 K/min, TATB from trichlorobenzene, 125 μm particle size) ^[62] , 374.5 (onset, DSC @ 10 K/min, TATB from tripropoxytrinitrobenzene, 103 μm particle size) ^[62] , 388.8 (exo, onset) 391.88 (exo, peak max, DSC @ 20 °C/min, 1.5 mg sample, TATB synthesized with gas-jet expansion method) ^[64] , 370.6 (DTA exo peak) ^[66] , 384.7 (exo peak max, DSC) ^[76] , 356 (DTA, exotherm onset) ^[82] , ~ 360 (no dec.) ^[85] , 235 (exo, onset), 360 (exo, peak max) (DTA) ^[100]				
	$T_{\rm db} = 290 {\rm ^{\circ}C}, T_{\rm idb} =$	DTA @ 6 °C/min (T_{db} = dec. begin, T_{idb} = intensive dec. beginning): T_{db} = 290 °C, T_{idb} = 350 °C ^[68] , DTA @ 6 °C/min, sample recryst. from sulfuric acid: T_{db} = ~ 180–210 °C, T_{idb} = ~ 330–350 °C ^[68]			

TATB after recryst. from DMSO, monocrystals, DTA/TGA @ 6 °C/min^[68]:

Mass of raw TATB (g)	Vol. of DMSO (mL)	Max. T of soln. (°C)	T _{db} (°C) (TGA)	T _{idb} (°C) (DTA)
1	300	145	290	350-355
0.44	150	135	2% under 260–270	360
0.32	150	130	290	360
0.2	150	110	2% under 260–270	360

Influence of crystallization, TGA @ 6 °C/min^[68]:

Sample	Average size of crystals (μm)	T _{db} (°C), (TGA @ 6 °C/min)	T _{idb} (°C) (TGA @ 6 °C/min)	ρ (g cm ⁻³)
Raw TATB	8	290	350	1.927
After recryst. from aq. H ₂ SO ₄	3–30	180-210	330-340	-
After recryst. from DMSO	25-300	230-290	350-360	1.937
TATB (monocrystals)				1.938

652 ± 10 K (exo, DSC, @ 10 K/min, N_2 purge, 1–2 mg sample, PG-TATB)^[73], 658 K (exo, DSC, @ 10 K/min, N_2 purge, 1–2 mg sample, UF-TATB)^[73], 653 ± 4 K (exo, 80–90% mass loss, onset = 528 ± 10 K, DTA, @ 20 K/min, N_2 atmosphere, 1 mg sample, UF-TATB)^[73], 644 K (exo, 97% mass loss, DTA, @ 20 K/min, N_2 atmosphere, 1 mg sample, PG-TATB)^[73]

Characterization of UF-TATB by STA (DTA/TGA @ 20 K/min, N_2 atmosphere, 1 mg sample)^[73]:

Sample	DTA-exotherm peak (K)	Initial <i>T</i> of dec. (K)	Wt. loss on dec. (%)
1	656	525	89.67
2	651	537	80.97
3	657	523	90.02
PG-TATB	643	524	97.64

Heating rate of 8 °C/min: $T_{\rm idb}$ = 342.5^[26], $T_{\rm w}$ = 354.9^[26], $T_{\rm max}$ = 356.0^[26] Heating rate of 16 °C/min: $T_{\rm idb}$ = 351.9^[26], $T_{\rm w}$ = 366.3^[26], $T_{\rm max}$ = 368.2^[26], $T_{\rm cr.}$ = 331–332^[26]

	1		·	
ρ [g cm ⁻³]	1.93 (@ 293 K) ^[2] , 1.937 ^[13] , 1.98 ^[16] , 1.938 (crystal) ^[25] , 1.93 (crystal observed) ^[14, 22, 76] , 1.937 (calcd. from X-ray data) ^[22] , 1.938 (crystal) ^[50] , 1.94 (@ TMD) ^[45] , 1.938 (TMD) ^[49, 87] , 1.802 (exptl. ρ , 95% TMD) ^[49, 50] , 1.80 (@ 50,000 lb/in ²) ^[19] , 1.89 (pressed TATB, 97.6% TMD, loading pressure = 64,000 psi) ^[19, 49] , 1.84 ^[58] , 1.937 (@ 298 K) ^[67] , 1.927 (raw TATB) ^[68] , 1.937 ± 0.005 (after recryst. from DMSO, pycnometry) ^[68] , 1.938 (monocrystals) ^[68] , 1.80 @ 50,000 psi ^[14] , 1.937 (@ TMD) ^[19] , 1.88 (nominal) ^[19] , 1.94 ^[99] , 1.938 ^[99] , 1.937 (crystal ρ , X-ray determined, @ 23 °C) ^[20] , 1.93 ± 0.01 (direct measurement, crystal, @ 23 °C) ^[20] , 1.860 (pressed TATB powder @ 120 °C @ 30,00 psi) ^[20] Data from ^[85] : 1.915 (pressed, 22 °C) ^[85] , 1.915 ± 0.006 (flotation with Ba(ClO ₄) ₂) ^[85] , 1.925 (99.4% TMD, He gas pycnometry) ^[85] , 1.935 (He gas pycnometry) ^[85] , 1.937 ± 0.004 (X-ray crystallography) ^[85]			
Heat of formation	thermochemica $(\Delta H_{\rm f})^{[41]}$, -14236.85 kcal/m	$-33.4 \text{ kcal mol}^{-1} (\Delta H_{\rm f}^{\rm o})^{[20,85]}, -74.7 \text{ kJ/mol} (\Delta_{\rm f} H^{\rm o} \text{ (s)})^{[15]}, -541.4 \text{ kJ/kg (ICT thermochemical database)}^{[3]}, -541.3 \text{ kJ/kg (enthalpy of form.})^{[18]}, -139.5 \text{ kJ/mol} (\Delta H_{\rm f})^{[41]}, -142.7 \text{ kcal/kg} (\Delta H_{\rm f})^{[45]}, -154.0 \text{ kcal/kg (enthalpy of form.})^{[53]}, -36.85 \text{ kcal/mol}^{[49,50]}, -0.7 \text{ kcal/mol (enthalpy of form., calcd., @ 298.15 K)}^{[76]}, -33.4-36.85 \text{ kcal/mol}^{[19]}, -154 \text{ kJ/mol} (\Delta_{\rm f} H)^{[67]}, -154.2 \text{ kJ/mol}^{[87]},$		
Heat of combustion	$\Delta H_{\rm c}^{\circ} = -735.9$	kcal/mol ^[25] , -735.9 kcal/mol ^[19]	$_{c}\Delta H^{o}_{c} = -735.9 \text{ kcal/mol}^{[20]}$	
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	3,866	4,807 (calcd., K-J) ^[15]	3,062 [H ₂ O (I)] ^[12, 18, 76]	
		2,280 (calcd., K-W) ^[15]	2,831 cal/g ^[14, 19]	
		829 cal/g (@ 1.802 g cm ⁻³) ^[49, 50]	1,018 cal/g (@ 1.87 g cm ⁻³) [H ₂ O (g)] ^[19]	
		857 cal/g (@ 1.6 g cm ⁻³ , calcd. Halford–Kistiakowsky equation of state) ^[50]	2,831 cal/g (@ 1.87 g cm ⁻³) $[H_2O(l)]^{[19]}$	
		3,062 (calcd., ICT-code) ^[3]	949 kcal/kg (@ 1.854 g cm ⁻³) [H ₂ O vapor] ^[53]	
		922 kcal/kg (@ 1.854 g cm^{-3} , calcd.) [H_2O vapor] ^[53]	920 kcal/kg (@ 1.84 g cm ⁻³ , $Q_{\rm exp}$) ^[71]	
		1,136.4 kJ/mol (Δ _{ex} H) ^[67]	829 cal/g (@ 1.80 g cm ⁻³ , based on watershock	
		4.402 kJ g ⁻¹ ($\Delta_{ex}H$) ^[67]	measurements) ^[76]	

		3,992 MJ•kg ⁻¹ (Q_{real} , calcd., semi-empirical Pepekin method) ^[82] 1,018 ± 10 cal/g (heat of detonation) ^[85] 1,076 cal/g (heat of detonation) ^[85] $-\Delta H_{\text{det}} = 4.49 \text{ kJ/g}^{[99]}$ Heat of det. = -5.02 MJ/kg ^[99]	808 cal/g (@ 1.50 g cm ⁻³ , based on watershock measurements) ^[76]
<i>T</i> _{ex} [K]	2,760	2,574 (@ 1.6 g cm ⁻³ , calcd. Halford–Kistiakowsky equation of state) ^[50] 2,218 (calcd., ICT-code) ^[3] 1,887 (@ 1.895 g cm ⁻³ , calcd., <i>Mader</i> , BKW) ^[76] 1,890 (@ 1.895 g cm ⁻³ , calcd., <i>Borg</i> , SDA FOR code) ^[76] 2,393 (@ 1.937 g cm ⁻³ , $\Delta H_{\rm f} = -140$ kJ/mol, calcd., JAGUAR) ^[97] 2,550 (@ 1.88 g cm ⁻³ , calcd. BKWR) ^[17] 3,250 (@ 1.85 g cm ⁻³ , calcd. BKWR) ^[17] 3,260 (@ 1.85 g cm ⁻³ , calcd. BKWR) ^[17] 3,260 (@ 1.85 g cm ⁻³ , calcd. BKWR) ^[17]	
p _{C-J} [kbar]	283	287 (calcd., K-J) ^[15] 282 (calcd., K-W) ^[15] 270 (@ 1.847 g cm ⁻³ , calcd., CHEETAH 2.0) ^[8] 283 (calcd., K-J) ^[25]	259 (@ 1.847 g cm ⁻³) ^[8] 326 (@ 1.895 g cm ⁻³) ^[13] 255.6 (@ 1.847 g cm ⁻³) ^[13] 172 (@ 1.5 g cm ⁻³) ^[13]

		259 (@ 1.802 g cm ⁻³) ^[49, 50]	259 (@ 1.85 g cm ⁻³) ^[17]
		171.2 (@ 1.6 g cm ⁻³ , calcd. Halford–Kistiakowsky	315 ^[15]
		equation of state) ^[50]	313 (@ crystal ρ) ^[19]
		96.1 MPa (calcd., ICT-code) ^[3]	25.2 GPa (@ 1.83 g cm ⁻³) ^[38]
		0.326 MPa (@ 1.895 g cm ⁻³ , calcd., <i>Mader</i> , BKW) ^[76]	25.9 GPa (@ 1.847 g cm ⁻³) ^[20]
		0.325 MPa (@ 1.895 g cm ⁻³ ,	17.5 GPa (@ 1.50 g cm ⁻³) ^[20]
		calcd., <i>Borg</i> , SDA FOR code) ^[76]	259.4 (@ 1.80 g cm ⁻³ , based on watershock
		31.8 GPa (@ 1.937 g cm ⁻³ , ΔH _f = -140 kJ/mol, calcd.,	measurements) ^[76]
		JAGUAR) ^[97]	174.6 (@ 1.50 g cm ⁻³ , based on watershock
		328 (@ 1.88 g cm ⁻³ , calcd. BKWR) ^[17]	measurements) ^[76]
		314 (@ 1.85 g cm ⁻³ , calcd. BKWR) ^[17]	
		285 (@ 1.88 g cm ⁻³ , calcd. BKWS) ^[17]	
		271 (@ 1.85 g cm ⁻³ , calcd. BKWR) ^[17]	
VoD [m s ⁻¹]	8,327	7,930 (@ 1.895 g cm ⁻³ , calcd., K-J) ^[15]	8,000 (@ 1.937 g cm ⁻³) ^[19]
			7.99 km/s (@ 1.938 g cm ⁻³) ^[25]
		7,850 (@ 1.895 g cm ⁻³ , calcd., K-W) ^[15]	7,660 (@ 1.847 g cm ⁻³) ^[8]
		7,814 (@ 1.847 g cm ⁻³ , calcd., CHEETAH 2.0) ^[8]	7,760 (@ 1.88 g cm ⁻³) ^[10, 12, 17]
		8,000 (@ 1.94 g cm ⁻³ ,	7,660 (@ 1.85 g cm ⁻³) ^[10, 12, 17]
		calcd., K-J) ^[29]	7,940 (@ 1.95 g cm ⁻³) ^[11]
		7,950 (@ 1.938 g cm ⁻³ , calcd., K-J) ^[25]	7,666 (@ 1.847 g cm ⁻³) ^[13]
		7,980 (@ 1.94 g cm ⁻³ (TMD),	8,411 (@ 1.895 g cm ⁻³) ^[13]
		calcd., K-J) ^[36]	7,500 (@ 1.80 g cm ⁻³ , 0.5 in charge diameter, pressed, no
		8,340 (@ 1.94 g cm ⁻³ (TMD), calcd., <i>Aizenshtadt</i>) ^[36]	confinement) ^[14]

		7,870 (@ 1.94 g cm ⁻³ (TMD), calcd., R-P method) ^[36]	5,380 (@ 1.290 g cm ⁻³) ^[14]
		7,539 (@ 1.86 g cm ⁻³) ^[37, 44]	5,628 (@ 1.345 g cm ⁻³) ^[14]
		7,658 (@ 1.802 g cm ⁻³) ^[49, 50]	6,550 (@ 1.675 g cm ⁻³) ^[14]
		7,055 (@ 1.6 g cm ⁻³ , calcd.	6,575 (@ 1.675 g cm ⁻³) ^[14]
		Halford–Kistiakowsky equation of state) ^[50]	7,035 (@ 1.882 g cm ⁻³) ^[14]
		8,411 (@ 1.895 g cm ⁻³ ,	7,220 (@ 1.835 g cm ⁻³) ^[14]
		calcd., <i>Mader</i> , BKW) ^[76]	7,619 ± 0.001 (@ 1.860 g cm ⁻³ , Cu tube,
		8,365 (@ 1.895 g cm ⁻³ , calcd., <i>Borg</i> , SDA FOR code) ^[76]	25.35 mm charge diameter, confined) ^[20]
		7,920 (@ TMD, calcd., K-J) ^[82]	7,660 (@ 1.847 g cm ⁻³) ^[20]
		8,310 (@ 1.937 g cm ⁻³ , $\Delta H_{\rm f} = -140$ kJ/mol, calcd.,	7,510 (@ 1.84 g cm ⁻³) ^[22]
		JAGUAR) ^[97]	7,570 (@ 1.80 g cm ⁻³) ^[38]
		8,280 (@ 1.88 g cm ⁻³ , calcd. BKWR) ^[17]	7,660 (@ 1.85 g cm ⁻³) ^[38]
		8,180 (@ 1.85 g cm ⁻³ , calcd.	7,860 (@ 1.90 g cm ⁻³) ^[38]
		BKWR) ^[17]	7,640 (@ 1.83 g cm ⁻³) ^[38]
		8,190 (@ 1.88 g cm ⁻³ , calcd. BKWS) ^[17]	7,658 (@ 1.80 g cm ⁻³ , based on watershock measurements) ^[76]
		8,070 (@ 1.85 g cm ⁻³ , calcd. BKWR) ^[17]	6,555 (@ 1.50 g cm ⁻³ , based on watershock measurements) ^[76]
			7,350 (@ 1.80 g cm ⁻³) ^[82]
			See additional values at end of section
V ₀ [L kg ⁻¹]	676	0.4906 cm ³ /g (@ 1.6 g cm ⁻³ , calcd. Halford–Kistiakowsky equation of state) ^[50]	

Detonation velocities of TATB, values from^[50]:

Charge no.	Diameter (cm)	Length (cm)	Confinement	ρ (g cm ⁻³)	VoD (m/s)
1 (boostered	Conical	0.64	None	1.880	-
by 75/25 cyclotol) [†]	0.64	1.27	None	1.881	-
Cyclotoly	1.27	1.32	None	1.874	7,610
	1.27	1.35	None	1.879	7,610
	1.27	1.35	None	1.880	7,610
	1.27	1.32	None	1.878	7,614
	2.54	2.57	None	1.882	7,772
	2.54	2.57	None	1.875	7,772
2 (boostered	Conical		None	1.864	7,650
by Tetryl) [‡]	1.27	2.54	None	1.863	7,650
	2.54	2.54	None	1.860	7,745
	2.54	2.54	None	1.864	7,745
	5.08	5.08	None	1.862	7,745
	5.08	5.08	None	1.864	7,745
3	5.08	5.08	Glass	1.802	7,658
4	4.45	15.24	Glass	1.508	6,555

 $^{^{\}dagger}$ tapered to 0.31 cm from 0.64 cm over 0.64 cm length. Detonation did not propagate into 0.64 cm diameter section $^{[50]}$

Chapman–Jouguet pressure, energy and isentropic exponent from H₂O-shock measurements^[19, 50]:

ρ (g cm ⁻³)	VoD (m/s)	U _{H20} (m/s)	u _{H20} (m/s)	P _{H20} @ HE•H ₂ O interface (kb)	р _{С-Ј} (kb)	k	Q (cal/g)
1.80	7,658	6,071	2,685	163.0	259.4	3.07	829
1.50	6,555	5,519	2,303	126.9	174.6	2.71	808

[‡] tapered to 0.64 diameter from 1.27 cm diameter over 1.9 cm length^[50]

Summary of experimental copper cylinder wall velocity data, PETN with a density of 1.763 g/cm^3 is the reference explosive, data from [87]:

Initial density (g/cm³)	Inner diameter (mm)	Wall thickness (mm)	Wall velocity (mm/µs) at 25.4 mm diameter for R-R ₀ equal to			with PE	r-squared cf. TN for the sa ration, % co ual to	me
			6 mm 12.5 mm 19 mm		6 mm	12.5 mm	19 mm	
1.83	50.81	5.207	1.300	1.403	1.453	-30.6	-32.3	-34.1

Summary of code calculations with measure detonation velocities and detonation energies derived from JWL's^[87]:

1	PETN-adj LLNL libra	usted BKW ary, $\theta = 1.8$	0 ,	JCZ3, LLNL library, v		CHEQ V2.4, at v			
(g/cm ³)	2.2 mm	4.1 mm	6.5 mm	2.2 mm	4.1 mm	6.5 mm	2.2 mm	4.1 mm	6.5 mm
1.83	3	1	3	6	6 4 4		8	7	9

Derivation of the total energy of detonation, E_0 from the measured heat of detonation. The final state is assumed to be at one atmosphere for all gaseous products including water at 298 K. Code calculated energies with the 1,800 K freeze are also included, data from [87]:

Measured	Measured	Density	Heat of	Energy o	f detonat	ion, E ₀ (kJ/	cm³)		
density (g/cm³)	confined heat of	from ^[87]	detonation using density from ^[87]	1		From	Freeze at 1,800 K		
(3, 5)	detonation (kJ/cm³)			heat of detonation	Tiger BKWR	Tiger JCZ3	CHEQ		
1.87	-7.96	1.86	-7.92	-7.5	-6.8	-7.0	-7.7		

JWL cylinder coefficients data from^[87]:

Initial density, ρ_0 (g/cm ³)	velocity, D		CJ pressure (GPa)	A (GPa)	B (GPa)	C (GPa)	R ₁	R ₂	ω	γсј
1.83	7.58	-7.30	26.0	686.8140	7.811448	0.877917	4.958	1.20	0.30	3.044

Critical diameter [cm]

Critical diameter = 7.94 ± 1.6 mm; $\rho = 1.71$ g cm^{-3[35]}, critical diameter = 13 mm; $\rho = 1.80 - 1.84 \text{ g cm}^{-3[35]}$, critical diameter = 4 mm; $\rho = 1.86 - 1.88 \text{ g cm}^{-3[35]}$

Critical diameters for pressed TATB^[48]: 6.35 mm $< d_c < 9.53$ mm (60 μ m particle size, $\rho = 1.6 - 1.7 \text{ g cm}^{-3}$, $(82.6 - 87.7\% \text{ TMD}))^{[48]}$, <6.35 mm (20 µm particle size, $\rho = 1.6 - 1.7 \text{ g cm}^{-3} (82.6 - 87.7\% \text{ TMD}))^{[48]}, d_c = 13 \text{ mm} (@ 1.802 \text{ g cm}^{-3}, 92.7\%)$ TMD, pressed TATB)^[55]

 $d_c = 13 \text{ mm} @ 93\% \text{ TMD TATB, fine})^{[83]}$

Failure diameter = 4.0 mm (TATB pressed to ρ = 1.860 g cm⁻³)^[20]

Data from[94]:

ρ_0 (g/cc)	% TMD	$d_{\rm c}$ (cm)	Gap test no.	50% point			
				ρ ₀ (g/cc)	% TMD	no. cards	P _g (kbar)
1.802	92.7	1.3	499	1.82	94.6	78	64

Critical T[°C]

331–332 (exptl.)^[57,78], 334 (calcd.)^[57,78], 913 K^[76], 912.7 K (est., Joback-Stein method)^[101], 1,189.0 K (Valderrama-Alveraz method)^[101], 347 $(T_m)^{[20]}$

Critical *T* of TATB measured by various methods, values from^[85]:

Type of TATB	Pressed thickness (mm)	T _c (°C)	Test
Recryst. from DPE	0.65	354	Henkin (LANL)
Cordova	0.67	355	Henkin (LANL)
Hercules	0.63	358	Henkin (LANL)
Recryst. from DMSO	0.68	345	Henkin (LANL)
Rocketdyne	0.55	357	Henkin (LANL)
Recryst. from H ₂ SO ₄	0.61	354	Henkin (LANL)
TATB		352	Henkin (LANL)
TATB-d ₆	0.61	366	Henkin (LANL)
TATB		312	Gilding metal
TATB	0.66	331-332	Al cell
Recryst. from dmso	~0.8	345-355	Al cell
Cordova	~ 0.8	345-355	Al cell
TATB		256	ODTX, $\rho = 0.284 \text{ cm}$
TATB		230	ODTX, $\rho = 0.635 \text{ cm}$

Critical pressure [bar]	56.5 ^[76] , 56.45 (est., method) ^[101]	, Joback-Stein metho	od) ^[101] , 31.14 (Valde	rrama-Al	veraz	
Critical pressure of explosion initiation [GPa]	$P_{\rm cr} = 1.25 \pm 0.04^{[63]}$, $P_{\rm cr} = 1.11^{[71]}$, $\sigma_{\rm ult} = 102 \text{ MPa}^{[71]}$						
Trauzl test [cm³, % TNT]	175 ^[96]						
Sand test [g]	42.9 g (200 g bomb) ^[14, 19] , 90% TNT ^[19]					
Initiation efficiency	0.30 g LA minimum	detonating charge ^{[1}	4, 19]				
Plate dent test [mm]	l	5.87 crater depth (@ 1.86 g cm ⁻³) ^[44] , plate dent = 4.42 mm @ 1.753 g cm ⁻³ , 41.3 mm diameter samples, est. p_{C-J} = 245 kbar ^[85] Data from ^[20] :					
	Charge diameter (mm)	Density (g/cm³)	Dent depth (mm) Charge				
	41.3	1.87	8.31		203		
Gap test	Gap test >50 kbar, c $\rho = 1.63 \text{ g cm}^{-3}$ (cas $G_{50} = 27.92 \text{ mm}$ (@ Los Alamos standar $\rho = 1.870 \text{ g cm}^{-3}$, ca $\rho = 1.876 \text{ g cm}^{-3}$) ^[77]	t TATB) ^[23] , gap test x 1.87 g cm ⁻³ , 96.4% d gap test (pressure lculation based on l	50 kbar, charg TMD) ^[65] s from calibrat	ge <i>ρ</i> =	1.86 g cn	n ^{-3[44]} , ple	
	Gap (mm)		14.4	20.6	5		
	Pressures (GPa): Dural gap		23.2	19.0)		
	Induced in sa	ample					
	Calcula	ation	23.5	13.5	5		
	Indepe	endence match	16.3	13.0)		
	Run distance (mm)						
	Pop plot		3	6			
	Calculation		7	-			
	Exptl. 50% gap (m	m)	21	.9			

SSGT results for TATB^[19]:

	Density (g/cm³)	% voids	Sensitivity (mm)	
PX gap test	1.883 (pressed)	•	Approx. 5.3	
	1.861 (pressed)	4.0	5.61	
	1.700 (pressed)	12.3	14.10	
	1.03 (bulk)	-	102-16.3	

L = LSGT (41.275 mm), M = PGXT (24.5 mm), S = SSGT (12.7 mm), ** μ = particle size, ** blm = ball milled, data from^[85]:

Density (g/ cm³)	Voids (%)	50% point (mm)	Test	Ref.	Comments
1.7		0-0.025	S	LANL	50 μ**
1.7		0.042	S	LANL	20 μ
1.7		0.025- 0.051	S	LANL	5 μ
1.881	2.9	22.78	L	LANL	
1.883		5.17	М	LANL	
1.865	3.8	0.127	S	LANL	Prod
1.750	9.7	0.36	S	LANL	1.5% Cl superfine
1.700		0.38	S	LANL	13 μ
1.700		0.36	S	LANL	0.2% Cl
1.700		0.38	S	LANL ~ 20 μ, 0.15% Cl	
1.700		0.05	S	LANL	Fine
1.600	17.4	0.36	S	LANL	1.5% Cl superfine
1.200	38.1	0.20	S	LANL	1.5% Cl superfine
1.000	48.4	0.13	S	LANL	Superfine
0.777	60.0	0.13	S	LANL	Superfine

NOL LSGT

20 mm (78 cards) (50% probability point)^[42], $P_{50} = 6.58 \text{ GPa}$ (@ 1.82 g cm⁻³)^[67]

LANL LSGT ²	LANL LSGT d	LANL LSGT data from ^[19] :								
	Density (g		%	Voids		Sens	itiv	ity (mm)		
	1.786 (pre	ssed)		2.	8		41.6	41.68		
	1.705 (pre	ssed)		7.	2		45.3	6		
	0.81 (bulk)		56	,		49.3			
	21.92 mm ((@ 1.86-	-1.88 g (cm ⁻³) ^[35]					
LSGT [cm]		= 78 in	× 10 ² (@	ð 1.8	82 g cm	⁻³ , 94.6%	6 TMD	, pr	$t^{(NOL)^{[43]}}$, 18 mm essed TATB, NSWC $t^{(39)}$:	
	Material	ρ_0	(g cm ⁻³)	IHE (5	0% gap,	in)	LS	GGT (in × 10 ²)	
	TATB	1.	83		0.92			78	3-84	
	Conversion			o LS	GT valu					,
	ρ_0 (g/cc)	% TME	-	50% point			<u> </u>			
			DB			SSGT, F	eg (kba	ır)	LSGT, P _g (kbar)	
	1.519	78.38				43.2			33.7	
	1.645	84.88	_			52.5			39.3	
	1.762	90.92	9.6	53		74.1			48.8	
	1.840	94.94	11	.10		117.5			62.5	
	1.887	97.37	13	.47		162.2			83.0	
		ım ^[88] , T	MD = 1.9	38	g cm ⁻³ ,	exptl. ρ =	= 1.83	g cı	y-12A1, m ⁻³ , 94.2% TMD, ure ($P_{\rm g}$) = 64.0 kba	ır ^[94]
SSGT [cm]	Data from ^{[19}	l:								
	Dens			y (g	/cm ³)	% Void	ls	7	Sensitivity (mm)	
	NSWC SSG	iT	1.887			2.2		1	1.12	
			1.519			21.3		1	4.12	
	LANL SSGT	-	1.872			3.4		(0.13	

 $G_{50} = 0.127 \text{ mm}, L_{95} = 0.10 \text{ mm} \otimes 1.872 \text{ g cm}^{-3[20]}, 1.0 \text{ mm (NOL)}^{[43]},$ P_{90} = 46.20 kbar (P_{90} = pressure to 90% of TMD, NSWC small-scale gap test)^[52]

Conversion of SSGT values to LSGT values, TATB X335^[83]:

$\rho_0 (g/cc)$	% TMD	50% point				
		DBG	SSGT, Pg (kbar)	LSGT, P _g (kbar)		
1.519	78.38	7.92	43.2	33.7		
1.645	84.88	8.56	52.5	39.3		
1.762	90.92	9.63	74.1	48.8		
1.840	94.94	11.10	117.5	62.5		
1.887	97.37	13.47	162.2	83.0		

TATB TMD = 1.93, all samples loaded under vacuum^[92]:

Loading	Density (g/cm³)		% TMD	Sensitivity (DBG)			
pressure (kpsi)	AVG.	S		AVG.	g	S _m	N
4	1.519	0.010	78.7	7.918	0.0291	0.0316	20
8	1.645	0.008	85.2	8.573	0.0657	0.0390	20
16	1.762	0.005	91.3	9.626	0.0596	0.0358	20
32	1.840	0.003	95.3	11.091	0.0599	0.0415	20
64	1.887	0.004	97.8	13.606	0.2150	0.1277	20

TATB, TMS = 1.93 g cm⁻³, no mixed response zone^[92]:

Loading pressure	Density (g/cm³)		% TMD	Sensitivity (DBG))	
(kpsi)	AVG.	S		AVG.	g	Sm	N
8	1.727	0.0025	89.5	9.352	-	-	20

 $\rho_0 = 1.82 \text{ g/cc}$, 93.9% TMD, 50% pressure (P_g) = 102 kbar (nominal value, beyond range of calibration)^[94], 16.5 GPa (@ 98% TMD, NSWC)^[99]

Underwater SSGT (USGT)

 L_c (critical length) = 1 mm^[24, 45]

Small-scale gap (booster) sensitivity test

Pressed TATB^[49]:

@ !	93% TMD	@ 95% TMD		
DBg	Lucite gap (mils)	DBg	Lucite gap (mils)	
10.1	98	11.1	78	

5 s explosion	520 ^[19]						
T[°C] Explosion T [°C]	373 (DTA/TG @ 6 °C/min) ^[23]						
[[C]	Temperature	e (°C) and tim	e (s) to explos	sion (ODT	X) ^[85] :		
	Temperatu	re (°C)	Time (s)				
	215		22,680				
	216		21,744				
	215		24,624				
	Henkin time and Lee plug	gs, 80 mg sai	n for various l mple size ^[85] : 	ots of TAT	B at 368 °C	, Al blasting	
	TATB			Cl (%)	explo- sion (s)	numl	
		% < 20 μm	%<44 μm			Of samples	Of tests
	Pantex	13	43	0.68	149	3	4
	Cordova	19	39	0.63	133	2	4
	Teledyne	94	16	3.45	39	1	4
Ignition T[K]	No ignition <	623 K (PG-TA	TB) ^[73] , no ign	ition <62	3 K (UF-TATE	3) ^[73] , 355 ^[82]	
Autoignition point [°C]	320-325 ^[19]						
Thermal stability [no. moles gas per mole TATB/no. hours]		34/>416 ^[34] ,	, @ 220 °C: 0, 2cc/g/h for 2				
Thermal stability		0.06% mass loss @ 120 °C, 48 h $^{[66]}$, 245 °C (threshold of thermal stability) $^{[82]}$, ~ 11% mass loss after 2 weeks @ 204 °C $^{[85]}$					
Heat test	explosions i @ 200 °C: 0 @ 220 °C: 2 @ 260 °C: 1	n 100 h ^[14] .5 cm³ gas ev .3 cm³ gas ev .2 cm³ gas ev	first 48 h ^[14] , (volved in 48 h volved in 48 h volved in 1 h ^{[1}	[19] [19] 9]	s in second	l 24 h ^[14] , no	

Vacuum stability test [cm³/time]

 $0.36 \text{ cc}/40 \text{ h} @ 100 \, ^{\circ}\text{C}^{[14]}, 0.0-0.2 \text{ mL/g} \text{ of gas evolved after } 48 \text{ h} @ 120 \, ^{\circ}\text{C}^{[20]},$ 0.10 mL/5 g @ 120 °C, 48 h^[66]

@ 150 °C: 0.2/2 days, 0.3/7 d, 0.3/14 d, 0.4/21 d, 0.4/28 d, 0.4/35 d, 0.4/42 d, 0.4/49 d, 0.5/56 d, 0.5/63 d, 0.5/70 d, 0.5/77 d, 0.6/84 d^[31]

@ 175 °C: 0.3/2 days, 0.4/7 d, 0.4/14 d, 0.5/21 d, 0.6/28 d, 0.7/35 d, 0.8/42 d, 0.9/49 d, 1.0/56 d, 1.1/63 d, 1.2/70 d, 1.4/77 d, 1.5/84 d, 1.6/91 d^[31]

@ 200 °C: 0.3/2 days, 0.9/7 d, 2.1/14 d, 4.1/21 d, 7.2/28 d, 11.1/35 d, 15.8/42 d[31]

@ 200 °C (TATB recryst. from DMSO): 1.0/2 days, 4.7/7 d, 12.5/14 d, 20.0/21 d[31]

@ 120 °C (TATB from tripropoxytrinitrobenzene): 0.0–0.2 cm³/40 h^[22], @ 120 °C (TATB from trichlorobenzene): $0.2 \text{ cm}^3/40 \text{ h}^{[22]}$, @ 100 °C: $0.0 \text{ cc/g}/48 \text{ h}^{[49]}$, @ 260 °C: $0.7 \text{ cc/g}/48 \text{ h}^{[49]}$ cc/g/h (average for 2 h exposure)^[49], @ 280 °C: 2.0 cc/g/h (average for 2 h exposure)^[49], @ $100 \,^{\circ}\text{C}$: $0.1 \,^{\circ}\text{cm}^3/\text{g}/48 \,^{[50]}$, @ $260 \,^{\circ}\text{C}$: $0.8 \,^{\circ}\text{cm}^3/\text{g}/\text{h}$ (average for $2 \,^{\circ}\text{h}$ exposure)^[50] @ 280 °C: 4.5 cm³/g/h (average for 2 h exposure)^[50], 0.2 cm³ (@ 120 °C, 40 h, TATB from trichlorobenzene, 125 µm particle size)^[62], 0.0-0.2 cm³ (@ 120 °C, 40 h, TATB from tripropoxytrinitrobenzene, 103 µm particle size)[62], 0.206 mL/5 g @ 94 °C for 48 $h^{[100]}$

VTS/CRT data from[85]:

Gas evolution (cm ³ /g/h/°C)	Test used
0.36/48 h/100 °C	CRT
6.0/2 h/260 °C	CRT (ρ = 1.934)
11.5/0.5 h/300 °C	CRT
0.0-0.5/48 h/120 °C	VTS
0.2/48 h/150 °C	VTS
0.3/168 h/150 °C	VTS
0.3/48 h/175 °C	VTS
0.36/48 h/200 °C	VTS
0.9/168 h/200 °C	VTS
1.0/48 h/200 °C	VTS (DMSO recryst.)
4.7/168 h/200 °C	VTS (DMSO recryst.)
0.5/48 h/200 °C	VTS
2.3/48 h/220 °C	VTS
18.9/34 h/240 °C	VTS
0.0/2 h/200 °C	VTS (fine)
0.2/2 h/225 °C	VTS
1.1/2 h/250 °C	VTS
1.8/2 h/275 °C	VTS
19.8/2 h/300 °C	VTS
92.8/1 h/320 °C	VTS

Chemical reactivity tests

Data from^[85]:

Gas evolution (cm³/g/h/°C)	Test used
0.36/48 h/100 °C	CRT
6.0/2 h/260 °C	CRT ($\rho = 1.934 \text{ g cm}^{-3}$)
11.5/0.5 h/300 °C	CRT

Vapor pressure [mm Hg × 10⁷]

 $\begin{array}{l} 10^{-7}\,\text{Torr} \, @ \, 131.4 \, ^{\circ}\text{C}^{[19]}, \, 10^{-5}\,\text{Torr} \, @ \, 171.3 \, ^{\circ}\text{C}^{[19]}, \, 4.06-4.10 \, @ \, 129.3 \, ^{\circ}\text{C}^{[20]}, \\ 6.36-6.50 \, @ \, 129.3 \, ^{\circ}\text{C}^{[20]}, \, 10.41-11.02 \, @ \, 150.0 \, ^{\circ}\text{C}^{[20]}, \, 29.00-29.28 \, @ \\ 161.4 \, ^{\circ}\text{C}^{[20]}, \, 42.09 \, @ \, 166.4 \, ^{\circ}\text{C}^{[20]}, \, 49.16 \, @ \, 177.3 \, ^{\circ}\text{C}^{[20]}, \, 6.46 \times 10^{-12}\,\text{Torr} \, @ \\ 66 \, ^{\circ}\text{C}^{[28]}, \, 3.6 \times 10^{-9} \, \text{ppb}_{v} \, (\text{equilibrium vapor pressure} \, @ \, 300 \, \text{K})^{[80]}, \, 7.6 \times 10^{-2} \\ \text{ppb}_{v} \, (\text{equilibrium vapor pressure} \, @ \, 400 \, \text{K})^{[80]}, \, 1.34 \times 10^{-11} \, \text{mm Hg} \, @ \, 25 \, ^{\circ}\text{C}^{[84]} \end{array}$

Values from^[76]:

T (°C)	Vapor pressure (x 10 ⁷ Torr)	T (°C)	Vapor pressure (x 10 ⁷ Torr)
129.3	0.740	166.4	45.8
136.2	1.88	177.3	167.0
150.0	9.82	175.0	240.0
161.4	32.35	200.0	2,100.0

Values from^[81]:

T (°C)	Vapor pressure (x 10 ⁷ Torr)	Wt. loss (g × 10 ³)	Time (s)	Area (cm²)
129.3	0.733	4.06	845,280	1.403
129.3	0.746	4.10	845,280	1.392
136.2	1.83	6.36	315,000	2.38
136.2	1.93	6.50	315,000	2.31
150.0	10.3	11.02	172,800	1.355
150.0	9.42	10.41	172,800	1.403
150.0	9.73	10.67	172,800	1.392
161.4	32.2	29.28	86,400	2.34
161.4	32.3	29.00	86,400	2.31
166.4	45.8	42.09	86,400	2.38
177.3	167.0	49.16	28,440	2.34

	1.93 @ 136.2 (LANL) ^[85] , 10. (LANL) ^[85] , 45.8 @ 166.4 (LAI 10±0.2 @ 150 (Knudsen me	Vapor pressure, v_p (×10 ⁷ Torr @ °C) ^[85] : 0.733, 0.746 @ 129.3 (LANL) ^[85] , 1.83, 1.93 @ 136.2 (LANL) ^[85] , 10.3, 9.42, 9.73 @ 150 (LANL) ^[85] , 32.2, 32.3 @ 161.4 (LANL) ^[85] , 45.8 @ 166.4 (LANL) ^[85] , 167.0 @ 177.3 (Langmuir method) ^[85] , 10 ± 0.2 @ 150 (Knudsen method) ^[85] , 240 ± 0.2 @ 175 (Knudsen method) ^[85] , 2,100 ± 0.1 @ 200 (Knudsen method) ^[85]					
Burn rate [mm/s]	2.0 @ 100 atm. pressure ^[59] , 1 pressure ^[59] , TATB does not sus deflagration is an order of mag	stain self-def	lagration @ pressure ≤10.3	34 MPa ^[85] , self-			
Solubility [g/mL]	Solubility > 20% by wt. per vo acid, chlorosulfonic acid, flu acid ^[19]		•				
	Solubility data from ^[19] :						
	Solvent	Solubility (ppm)	Solvent	Solubility (ppm)			
	Methanesulfonic acid	820	<i>N</i> -Methylformamide	6			
	Hexamethylphosphortri- amide	150	Methyl methanesulfonate	5			
	Ethanesulfonic acid	120	Trimethylphosphite	4			
	DMSO	70	Acetone	3			
	Hexafloroacetone sesquihydrate	68	Dimethyl carbamoyl chloride	3			
	N-Methyl-2-pyrrolidinone	58	Acetonitrile	3			
	N-N-Dimethylacetamide	33	Acetic anhydride	3			
	DMF	27	Trifluoroacetic acid	3			
	Tetramethylurea	26	Acetic acid	1			
	Dimethyl methylphosphonate	22	Hexamethyldisilazane	Less than 1			
	N,N- Dimethylproprionamide	16	Trifluoroacetic anhydride	Less than 1			
	Bis(dimethylamino) phosphochloridate	14	Hexafluorobenzene	Less than 1			
	Gamma butyrolactone	14	Pentafluoropyridine	Less than 1			
	Conc. nitric acid	14	Perfluoro-2- butyltetrahydrofuran	Less than 1			

Solvent	Solubility (ppm)	Solvent	Solubility (ppm)
3-Methylsulfolane	13		
Pyridine	12	Basic solvents:	
Trimethylphosphate	11	Tetramethylguanidine	485
Dimethylcyanamide, vinyl sulfone	8	Bu ₄ NOH, 25% in MeOH	390
Methyl dichlorophosphate		N,N,N,N'- Tetramethylglycinamide	67

Practically insoluble in all common organic solvents $^{\![20]}\!$, soluble in some superacids $^{\![20]}\!$

Solubility in selected solvents, T not reported^[20]:

Solvent	Solubility (ppm)	
Methanesulfonic acid	820	
Hexamethylphosphoric triamide	150	
Ethanesulfonic acid	120	
DMSO	100	
Hexafluoroacetone sesquihydrate	68	
N-Methyl-2-pyrrolidinone	58	
N,N,Dimethylacetamide	27	
DMF	26	

Solubility in sulfuric acid/water mixtures, max. quantities of TATB dissolved^[20]:

Acid (vol. %)	g TATB/100 mL solvent	
50	< 0.02	
66.7	< 0.02	
80	0.24	
85	0.32	
87.5	>1.28	
90	3.84	
100	> 24.0	

Insoluble or poorly soluble in most common organic solvents^[73], soluble in DMF in presence of inorganic base (e.g. NaOH/KOH)^[73], insoluble in DMF in presence of inorganic base^[73], insoluble in 6 M aq. NaOH soln. @ RT^[73], max. solubility of PG-TATB (production grade) in alkaline DMSO = 25 g/L @ 303 $K^{[73]}$, soluble in sulfuric acid^[76], 32 mg/L in H₂O @ 25 °C^[84] Solubility, ppm @ 298.15 K^[76]: 820 in methanesulfonic acid, 150 in hexamethylphosphortriamide, 120 in ethanesulfonic acid, 70 in DMSO, 68 in hexafluoroacetone sesquihydrate, 58 in N-methyl-2-pyrrolidinone, 33 in N,N-dimethylacetamide, 27 in DMF, 26 in tetramethylurea, 22 in dimethyl methylphosphonate, 16 in N,N-dimethyl propionamide, 14 in conc. nitric acid, 13 in 3-methylsulfone, 12 in pyridine, 11 in trimethylphosphate, 3 in acetone,

Solubility in aqueous sulfuric acid^[76]:

H ₂ SO ₄ :H ₂ O	Acid (vol.%)	g TATB/100 mL H ₂ O
1:1	50	>0.02
2:1	66.7	<0.02
7:1	87.5	>1.28
Conc.	100	>24.0

1 in CH₃CN, acetic anhydride, 1 in trifluoracetic acid, acetic acid^[76]

Soluble in nitrobenzene and aniline^[79], insoluble in EtOH, Et₂O, CHCl₃, benzene, and glacial acetic acid^[79], nearly insoluble in water, EtOH, Et₂O, benzene, CHCl₃ or glacial acetic acid^[85], soluble in aniline, strong sulfuric acid or nitrobenzene^[85]

Solubility of TATB in sulfuric acid:water mixtures[85]:

H ₂ SO ₄ :H ₂ O	Acid (vol.%)	Maximum amount dissolved (g TATB/100 mL)
1:1	50	>0.02
2:1	66.7	<0.02
4:1	80	~ 0.24
5.67:1	85	~0.32
7:1	87.5	>1.28
9:1	90	~3.84
Concentrated	100	>24.0

[&]quot;It's unlikely to find a common organic solvent in which TATB is more soluble than 0.1% (w/v)"; exceptions are the superacids in which TATB solubility is >20% (w/v)[86]

Data (estimated from absorbance measurements) from [86]:

Solvent	Solubility (ppm)	Solvent	Solubility (ppm)
Methanesulfonic acid	820	N-Methylformamide, tetrahydrofurn (unin- hibited)	6
Hexamethylphosphor- tramide	150	Methyl methanesul- fonate	5
Ethanesulfonic acid	120	Trimethylphosphite	4
DMSO	70	Acetone	3
Hexafloroacetone sesquihydrate	68	Dimethyl carbamoyl chloride	3
N-Methy l-2-pyrrolidinone	58	Acetonitrile	3
N, N-Dimethylacetamide	33	Acetic anhydride	3
DMF	27	Trifluoroacetic acid	3
Tetramethylurea	26	Acetic acid	1
Dimethyl methylphos- phonate	22	Hexamethyldisilazane	<1
<i>N,N</i> - Dimethylproprionamide	16	Trifluoroacetic anhy- dride	<1
Bis(dimethylamino) phosphochloridate	14	Hexafluorobenzene < 1	
Gamma butyrolactone	14	Pentafluoropyridine	<1
Conc. nitric acid	14	Perfluoro-2-butyltet- rahydrofuran	<1
3-Methylsulfolane	13	Water	<1
Pyridine	12	MeOH	<1
Trimethylphosphate	11		
Dimethylcyanamide, vinyl sulfone	8		
Methyl dichlorophos- phate	7		

Apparent solubility of TATB in basic solvents[86]:

Solvent	Solubility, ppm
Ethylenediamine	2,195
Tetrymethylguanidine	485
Bu ₄ NOH, 25% in MeOH	390
N,N,N',N'-Tetramethylglycinamide	67

Solubility > 20% (w/v) in conc. sulfuric acid $^{[86]}$, chlorosulfonic acid $^{[86]}$, fluorosulfonic acid^[86] and trifluoromethanesulfonic acid^[86]

Solubility of TATB (g/100 g solvent) after 5 min stirring^[90]:

Solvent	25 °C	98 °C
Dimethylsulfoxide	<0.1	0.5
N-Methylpyrrolidone	<0.1	0.8
Aniline	<0.1	
Sulfuric acid	14	18
Trifluoroacetic acid	< 0.1	

 $0.16 \text{ g/L in H}_2\text{O} \ @ \ 298.15 \text{ K (est., Klopman method)}^{[101]}, \ 0.197 \text{ g/L in H}_2\text{O}$ @ 298.15 K (est., COSMOtherm)[101]

Hygroscopicity

Effect of oven drying of TATB samples, average % moisture content of TATB after drying at 100 °C[85]:

Process	Drying time (h)				
	0 24 48 72				
Water-aminated	3	0.12	0.09	0.06	
Dry-aminated	2.9	0.12	0.09	0.06	
Emulsion-aminated	0.16	0.10	0.09	0.09	

Moisture content of TATB mixtures^[85]:

Sample	Total moisture content (wt. %)
TATB/Kel-F (90/10)	<0.0021
TATB/Estane (94/6)	0.0102
TATB/Viton A (91/9)	0.0165

Photosensi- tivity	Yellow solid which turns slightly green on exposure to light which then turns brown on prolonged exposure to sunlight or UV radiation ^[19] , turns green on exposure to sunlight of UV, with prolonged exposure turns brown-black ^[20]						
Radiation sensitivity	Effects of gan	nma radiation	on TATB ^{[19, 85}	·			
	Amount of cobalt 60 radia- tion R	Density before irradiation in g/cm ³	Density after kv irradia- tion in g/ cm ³	Detona- tion velocity in m/s	Detona- tion pressure in kbar	Explosion Tin °C	
	Control	1.84	-	7,510	260	403	
	1.0 × 10 ⁷	1.84	1.84	7,520	260	394	
	9.0 × 10 ⁷	1.85	1.84	7,525	261	370	
	7.4 × 10 ⁸	1.82	1.81	7,435	250	345	
	visible, UV, el caused by for chemical spe green to deep Data from ^[104]	mation of an cies (i.e. deco green or bro	electronically mposition p	/ excited state roduct). Shade	e rather than es of green fr	by a new om yellow-	
	Exposure	Total dose	dose Vacuum stability test				
	rate (R/h)	(R)	200 °C (cc/2 g/2 h) 0.41				
	6.4×10^5	Control			_		
		1.0×10^{7}	0.46	0.46			
		9.0 × 10 ⁷	0.57				
		7.4 × 10 ⁸	0.96				
		2.8 × 10 ⁹	4.65				

DTA for irradiated explosives @ 20 °C/min^[104]:

Total dose (R)	Exotherms			
	First			
	Onset (°C) Peak (°C)			
0	325	384		
1.0 × 10 ⁷	340	377		
9.0 × 10 ⁷	320	372		
7.4 × 10 ⁸	305	369		
2.8 × 10 ⁹	300	363		

TGA for irradiated explosives^[104]:

Total dose (R)	Heating rate (°C/min)	Weight (mg)	Start of dec (°C)	10% weight loss T (°C)	Total weight loss (%)	Remarks
0	20	9.6	285	353	83 @ 420 °C	_
1.0×10^{7}	20	6.9	280	341	80 @ 400 °C	-
9.0×10^{7}	20	8.8	250	327	80 @ 385 °C	_
7.4×10^{8}	20	9.6	250	329	77 @ 405 °C	-
2.8 × 10 ⁹	20	8.6	125	303	52 @ 345 °C	Detonated @ 345 °C
7.0 × 10 ⁹	20	8.3	125	299	52% @ 342 °C	Detonated @ 342 °C

Effect of gamma radiation on the mpt. and $color^{[104]}$:

Total dose (R)	mpt. (°C)	Color
0	400 dec.	Yellow
1.0 × 10 ⁷	400 dec.	Yellow green
9.0 × 10 ⁷	400 dec.	Green
7.4 × 10 ⁸	400 dec.	Dark green
2.8 × 10 ⁹	400 dec.	Blackish green

IS for irradiated explosives, 50% fire height in inches, Bruceton method (P.A. apparatus, 2 kg mass) $^{[104]}$:

Total Co ⁶⁰ gamma dose (R)	$ar{X}$ mean (in)	σ std. dev. (in)
0	22.16	3.19
1.0 × 10 ⁷	17.6	1.28
9.0 × 10 ⁷	18.39	0.93
7.4 × 10 ⁸	17.1	3.12

Effect of gamma radiation on explosion T (5 s explosion T in °C) and activation energy (kcal/mol)^[104]:

Total dose (R)	5 s explosion T(°C)	Apparent activation energy (kcal/mol)
0	403	19.30
1.0 × 10 ⁷	394	18.91
9.0 × 10 ⁷	370	16.18
7.4 × 10 ⁸	345	29.28

Effect of gamma radiation on rates of detonation^[104]:

Total dose (R)	Density (g/cc)	Density after irradiation (g/cc)	Rate of detonation (m/s)	Detonation pressure (kbar)
0	1.84	-	7,510	260
1.1 × 10 ⁷	1.84	1.84	7,520	260
1.3 × 10 ⁸	1.85	1.84	7,525	261
1.1 × 10 ⁹	1.82	1.81	7,435	250

Compatibility

Influence of humidity and exposure time on the SSA (specific surface area) of nano-TATB $^{\rm [40]}$:

Period	Relative humidity (%)					
(days)	93	76	65	33	12	
0	20.4	20.4	20.4	20.4	20.4	
25	16.0	16.2	17.0	19.6	20.7	
123	14.3	-	14.1	17.2	20.3	
175	14.3	_	_	16.5	20.2	
250	14.8	-	-	15.8	20.2	

Data from[85]: A detectable exothermic reaction occurs between TATB and Cu. Fe or Zn at temperatures between 400 and 500 °C in DTA/TGA with a 40 °C/min heating rate. Iron accelerates the TATB dec. rate more than Cu or Zn does, while Al and SiO₂ do not affect the rate^[85].

TATB mixtures with three binders (i) Estane 5702-F1, (ii) Kel-F 800 or (iii) Viton A were maintained at 120 °C for 1, 2 or 4 months. Physical changes were observed but no significant chemical changes were detected using chemical analyses. The mixtures with Estane and Viton A were concluded to be suitable for long-term service, however the formulation with Kel-F 800 was not conclusively determined to show long-term stability[85].

Data from [85]: "coupon" tests on TATB and X-0290 in close proximity to stainless steel, Al, uranium alloys and similar materials showed the metals underwent some corrosion but suffered no effects from the chlorine impurities. Stress and strain were greater at higher test temperatures. The coupon stacks were placed in sealed canisters and aged for 6, 12 and 18 months at elevated temperatures. The canisters were gas-sampled using CRT and the samples tested for mechanical strength at the end of the test series. The test temperatures were in the 50-100 °C range^[85]

Dipole moment [D]

0.78 (calcd.)[56]

Minimum priming charge test [mg]

>15,300 (LANL)[43]

Results of minimum-priming tests, (primer XTX-8003 = PETN/Sylgard (80/20) @ density = 1.53 g cm⁻³) data from [85]:

Explosive	Density	Amount of XTX		Result
	(g/cm³)	g	L95	
TATB/HMX/Estane, 2/95/3	1.840	0.023	±0.093	Detonation
TATB/Kel-F 800, 90/10	1.920	4.825		No detonation
		5.012		No detonation

Minimum priming charge data from [20]:

Density (g/cm³)	W ₆₀ (mg of XTX 8003)	Remarks
1.876	>1.53 × 10 ⁴	Pressed charge

Wedge test

Values with * indicate 30° -wedge, max. thickness = $3.10 \text{ cm}^{[50]}$:

Sheet no	Brass thick- ness (cm)	Initial shock veloc- ity of H.E. (m/s)	Initial par- ticle veloc- ity (m/s)	Initial shock pres- sure H.E. (kbar)	Initial compression H. E. (V/V_0)	$ ho_0$ H.E. (g cm ⁻³)	D (final) (m/s)
1	2.54	4,612	976	83.7	0.788	1.862	Failed to deto- nate
2	1.27	5,140	1,140	109.1	0.778	1.862	
3	1.27	5,200	1,129	109.3	0.783	1.863	
4*	1.27	5,200	1,129	106.0	0.783	1.800	6,200

Data from^[85]:

Density (g/cm³)	Initial shock parameters				Coordinates for high order detonation	
	P ₀ (kbar)	U _{p0} (km/s)	<i>U</i> _{s0} (km/s)	1/2b (km/s)	x* (mm)	<i>t</i> * (µs)
1.876	67.4	0.858	4.186	0.049	<< 12.65	<< 2.92
1.876	94.2	1.063	4.723	0.111	≥12.74	≥ 2.44
1.876	130.3	1.340	5.184	0.425	5.80	1.02
1.876	162.2	1.471	5.879	0.684	3.23	0.52

Hugoniot parameters for TATB $^{[85]}$:

Initial density (g/cm³)	Pressure (GPa)	Velocity		Distance to detonation (mm)	Time to detonation (µs)
		U _s shock U _p particle (km/s)			
	Standar	d-grind TATB	using plane-v	vave booster	
1.806	9.42	4.675	1.116	5.37	1.02
1.806	7.95	4.465	0.985	6.54	1.33
1.806	5.12	3.770	0.752	19.6	4.82
1.806	3.34	3.215	0.575	> 25.4	>8.0

Superfine TATB using short-duration-shock flyer and wedge							
1.801	17.4	5.8	1.66	1.77	0.283		
1.801	22.9	6.2	2.04	1.23	0.222		
	Standard-grind undried TATB using wedge						
1.84	12.9			3.0	0.54-0.55		
		Pure TATB (using wedge				
1.842	9.0			6.9	1.40		
1.842	11.8			3.8	0.72		

Explosive drive, streak camera wedge experiment: distance to detonation = 5.6-0.5 mm for 10-28 GPa pressures^[85]

Data from^[20]:

Density (g/cm³)	Distance, x* and time t* to detonation (mm and µs)	Pressure range (GPa)
1.714	$\log P = (1.09 \pm 0.02) - (0.41 \pm 0.17) \log x^*$ $\log P = (0.8 \pm 0.07) - (0.32 \pm 0.12) \log t^*$	3.27 < P < 5.64
1.841	$\log P = (1.39 \pm 0.07) - (0.52 \pm 0.07) \log x^*$ $\log P = (1.01 \pm 0.02) - (0.46 \pm 0.05) \log t^*$	5.93 < P < 16.5
1.876	$\log P = (1.42 \pm 0.02) - (0.40 \pm 0.03) \log x^*$ $\log P = (1.11 \pm 0.01) - (0.36 \pm 0.03) \log t^*$	11.4 <p<16.22< td=""></p<16.22<>

where P = pressure in GPa

Thermal
conductivity
[cal
$cm^{-1}s^{-1} \circ C^{-1}$

 $1.3 \times 10^{-3[20]}$, $0.00191^{[58]}$, 5.4×10^{-3} W m $^{-1}$ K $^{-1[67]}$, 8.0×10^{-3} J/cm s $^{\circ}$ C $^{[76]}$, 1×10^{-3} cal/cm s ${}^{\circ}$ C^[99]

Thermal conductivity $(10^{-4} \text{ cal/s-cm-}^{\circ}\text{C})^{[85]}$: 10.55, $\rho = 1.8268 \text{ g/cm}^{3[85]}$, 11.1, $\rho = 1.849 \text{ g/cm}^{3[85]}, 13.0, \rho = 1.892 \text{ g/cm}^{3} \text{ (LANL)}^{[85]}, 19.1 (20 °C)^{[85]}, 12.4$ (100 °C, LLNL)^[85], 9.12 (100 °C, LLNL)^[85], 6.09 (150 °C, LLNL)^[85], 14.2 (160 °C)^[85], 12.80 (ρ = 1.891 g/cm³ @ 38 °C, pressed into cylinder)^[85]

Specific heat [cal/g-°C]

 $0.26^{[58]}$

Heat capacity, $C_{\rm p} [{\rm J g^{-1} K^{-1}}]$	0.215 + 1.324 × 10 ⁻³ T cal/g-°C ^[20] , 1.038 ^[67] , 1.38 J/g °C @ 293 K ^[76] , 1.09 ^[76] Calcd. C_p in T range 300–5,000 K ^[76] :								
	T (K)	T(K) 300 400 500 600 800 1,000 1,500							
	C_p^0 (cal mol ⁻¹ K ⁻¹)	60.3	74.8	86.1	94.9	106.9	114.7	125.4	
	<i>T</i> (K)	2,000	2,500	3,000	350	4,000	4,500	5,000	
	C _p ⁰ (cal mol ⁻¹ K ⁻¹)	130.5	133.3	134.9	136.0	136.7	137.1	137.5	
	Heat capacity/specific heat C_p (cal/g °C) data from ^[85] : $0.215 + 1.32 \times 10^{-3}$ T– 2.0×10^{-6} T ² (LANL) ^[85] , $0.243 + 0.00063$ T (37–137 °C) ^[85] , 0.26 (20 °C) ^[85] , 0.293 (50 °C, LLNL) ^[85] , 0.336 (100 °C, LLNL) ^[85] , 0.402 (200 °C, LLNL) ^[85] , 0.429 (275 °C, LLNL) ^[85] , 0.43 (350 °C) ^[85]								
Bourdon manometer	0.49 mL/g @ 120 °C, 48 h ^[66]								
Susan test	Projectile velocity = 152 m/s, rel. energy release [in %] = $0^{[66]}$, projectile velocity = 218 m/s, rel. energy release = $0.2^{[66]}$, projectile velocity = 310 m/s, rel. energy release = $0.6^{[66]}$, projectile velocity = 448 m/s, rel. energy release = $2.9^{[66]}$, no reaction @ velocity <152 mm/s ^[85] , impact projectile velocity = 500 m/s, relative energy release = threshold for reaction ^[20]								
Longitudinal wave velocity c _L [m s ⁻¹]	2,470 (PBX-9502 @ 1.88 g cm ⁻³) ^[67]								
ARC [°C]	>240 ^[67]								
ODTX [°C/s]	370/70 ^[67]								
ΔH _{sub} [kJ/mol]	$ 155.7 \text{ cal/g (heat of sublimation)}^{[19]}, 40.21 \text{ kcal/mol (latent heat of sublimation)}^{[20]}, 168.2 \text{ (exptl.)}^{[70, 76]}, 182.6 \text{ (calcd., QSPR)}^{[70]}, 180.3^{[76]}, \\ 168.1^{[76]}, 40.21 \text{ kcal (molar heat of sublimation)}^{[81]}, 155.7 \text{ cal/g (specific heat of sublimation)}^{[81]}, \text{ heat of sublimation} = 40.21 \text{ kcal/mol}^{[85]}, \text{ heat of sublimation} = 43.1 \text{ kcal/mol}^{[85]} $								
Enthalpy of fusion [kJ/mol]	43.0 ^[76] , 43.0 (est.) ^[101]								

Average particle size [µm]

UF = Ultra Fine TATB, PG = Production Grade TATB, D [4,3] = volume-weighted mean diameter, D [3,2] = surface weighted mean diameter, D [0,5] = mass median diameter^[73]:

Sample	Average particle size (µm)					
	D [4,3]	span				
UF-TATB-1	3.08	1.78	2.67	1.80		
UF-TATB-2	2.89	1.73	2.47	1.73		
UF-TATB-3	3.38	1.84	2.78	2.07		
PG-TATB	89.8	47.2	66.6	2.43		

 $\label{eq:effect} \mbox{Effect of ultrasound on average particle size of UF-TATB, USP = ultrasonic probe} \mbox{$^{[73]}$:}$

Sample	Average p	Average particle size (μm)			
	D [4,3]	D [3,2]	D [0,5]	Span	
No USP	2.51	1.40	2.13	1.97	
1 min USP @ energy level 2.5	2.28	1.30	1.92	1.96	
2 min USP @ energy level 2.5	2.20	1.27	1.86	1.95	
5 min USP @ energy level 10.0	1.54	1.09	1.39	1.54	

Median particle size = $60-90 \mu m PG-TATB^{[73]}$, median particle size = $1.5-50 \mu m$ UF-TATB^[73]

Particle size distributions for the various types of TATB from^[85]:

Class	NH ₄ Cl (wt. %)	Sieve opening (microns)	Weight % passing
Regular (dry-aminated)		20	15-35
	1	45	60 median
Regular (wet-aminated)		20	15-50
	0.1	45	75 maximum
Regular (damp-aminated, micronized)		~ 20	
Superfine (dry-aminated)		20	70 minimum
		< 45	95 minimum
Fine (emulsion-aminated)		0.5-5	
Fine (wet-aminated)		20	
Ultrafine		<20	
Crash-precipitated		20	20-25

Log K _{ow}		$0.7^{[84]}$, -1.5 (est., Bruto method) ^[101] , -0.44 (est., <i>Ghose</i>) ^[101] , 4.74 (est. COSMOtherm) ^[101]							
Coefficient of thermal expansion [10 ⁻⁶ mm/ mm-°C]	expansion a the <i>b</i> -axis ^[8]	Thermal expansion of TATB occurs mainly along the c -axis, the relative expansion along the c -axis is $\sim 40 \times$ that along the a -axis and $12 \times$ that along the b -axis ^[85] , volumetric expansion is $\sim 3 \times$ that of the linear expansion ^[85] Data from ^[85] :							
	Crystal for	m	Measur	rement	Trang	ge (°C)	Linear exp	oansion	
	Triclinic		X-ray d	iffraction	214-	377	101		
	Monoclini	С	X-ray d	iffraction	216-	380	95		
	Powdered ρ = 1.866		Dilaton	neter	223-	343	50		
	Single cry	stal			01	10	66		
						0	125		
	Micronized				-50 -	-5010		110	
					40-7	0	142		
Short-shock detonation	Short-shock	detonatio	on and Hu	goniot exp	eriment	s with T	ATB ^[85] :		
and Hugoniot experiments	Explosive	Flyer	Pulse duration (ns)	Pressure (GPa)	Velocity		Distance to deto-	Time to detona-	
		velocity (km/s)		(GPa)	Shock (km/s)	1	nation	ation (µs)	
	TATB			9.42	4.675	1.116	5.37	1.02	
	standard grind			7.95	4.465	0.985	6.54	1.33	
				5.27	3.913	0.746	22.7	5.38	
				3.34	3.125	0.575	>25.4	>8.0	
	TATB superfine	2.62	170	17.4	5.8	1.66	1.77	0.283	
	(averages)	3.26	74	22.9	6.2	2.04	1.23	0.222	
Gas-gun experiments		Superfine TATB (@ 1.80 g cm ⁻³), embedded manganin gauges: distance to detonation = ~ 10 mm with 7.65 GPa input shock ^[85]							
Electrical breakdown voltage [V/mm]	5,750 (pressed TATB) ^[85]								
Skid test	Unreactive ^[85] , TATB/HMX formulations with > 40% TATB did not react ^[85]								
Sled test	No reaction @ velocity <152 mm/s ^[85]								

Cylinder test	LLNL cylinder-te	LLNL cylinder-test data from ^[85] :						
	Formulation	Density		R-R ₀ (mm)		Velocity (km/s)		
		g/cm ³	3	% TMD			Wall	Detonation
	TATB	1.800)	92.88	5		1.2828	7.478
					19		1.4674	
		1.860)		5		1.49	7.76
	Data from ^[20] :							
	Density (g/cm	³)		Cylinder	wall vel	ocity	(mm/µs) @	
			R-	$R_0 = 5 \text{ mm}$		R-R) = 19 mm	
	1.860		1.2	268		1.44	46	
Cook-off test	Pressed TATB @ temperature = 5 off reaction = co	90 °C, f	ractı	ure scenario			-	
USA Small-Scale Cookoff Bomb test (SCB test)	Flake TATB, loos cook-off time = 2							= 388 °C,
Bullet impact test	Pressed TATB @ velocity = 741 m type = no reaction	ı/s, frac						
Jet sensitivity test	Pressed TATB @ 1.70 g cm ⁻³ (90% TMD), critical jet characteristics: X50 (steel plate thickness) = 47.5 mm, V_j (jet velocity) = 5.0 mm/ μ s, d (jet diameter) = 1.9 mm, V^2 jd = 47.5 mm ³ / μ m ^{2[88]}					•		
BIC test	<dp dt=""> = 7.2 ps</dp>	$\langle dp/dt \rangle = 7.2 \text{ psi/}\mu\text{s}, \langle E \rangle = 10.7 \text{ J/g}^{[95]}$						
Refractive index	TATB crystals are	e pleoch	roic	(colorless p	arallel	to x-a	xis, yellow in	ı y-z plane) ^[20]

ODTX data from^[91]:

Fig. 18: ODTX results of ANPZ and TATB, HMX, RDX and PETN $^{[91]}$.

	TATB ^[4, 19, 20, 22, 72, 76, 85]	TATB ^[27, 85]	TATB ^[27, 85]
Chemical formula	C ₆ H ₆ N ₆ O ₆	C ₆ H ₆ N ₆ O ₆	C ₆ H ₆ N ₆ O ₆
Molecular weight [g mol ⁻¹]	258.15	258.15	258.15
Crystal system	Triclinic	Monoclinic	Triclinic
Space group	P-l (no. 2)		
a [Å]	9.010±0.003	13.386(3)	4.599(1)
<i>b</i> [Å]	9.028 ± 0.003	9.039(3)	6.541(2)
c [Å]	6.812±0.003	8.388(2)	7.983(1)
α [°]	108.59 ± 0.02	90	103.81(2)
β [°]	91.82±0.03	118.75(2)	92.87(1)
γ [°]	119.97 ± 0.01	90	116.95(2)
<i>V</i> [Å ³]	442.524	889.803	204.374
Z	2		
$ ho_{ m calc}$ [g cm ⁻³]	1.937		
<i>T</i> [K]	295	295	295

Measured cell constants for triclinic form TATB at various temperatures, data from $^{[27]}$:

T(°C)	a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)	Volume (ų)	No. of reflections
-59±3	9.007(4)	9.023(3)	6.713(3)	108.75(4)	92.03(4)	119.98(3)	434.5	13
-45 ± 3	9.013(5)	9.032(4)	6.727(5)	108.78(5)	91.96(6)	119.99(4)	436.2	13
-36 ± 1	9.007(3)	9.029(3)	6.734(3)	108.74(3)	92.04(3)	119.97(2)	436.3	13
-26 ± 1	9.007(4)	9.033(3)	6.748(2)	108.75(2)	91.98(3)	119.96(3)	437.4	13
-13±3	9.007(4)	9.030(3)	6.762(2)	108.64(3)	92.04(3)	119.93(3)	438.7	13
-1 ± 1	8.989(5)	9.033(5)	6.776(6)	108.69(7)	92.07(7)	119.90(4)	438.8	13
11 ± 2	9.015(3)	9.033(3)	6.797(2)	108.66(2)	91.88(2)	119.96(2)	441.6	13
23 ± 1	9.017(5)	9.031(3)	6.815(2)	108.63(3)	91.90(3)	119.95(3)	442.9	13
35 ± 1	9.018(4)	9.047(3)	6.856(5)	108.39(5)	92.04(5)	119.95(3)	447.0	10
44 ± 1	9.014(3)	9.045(5)	6.857(7)	108.43(7)	92.04(4)	119.94(3)	446.7	10
54 ± 1	9.016(2)	9.046(6)	6.872(6)	108.49(7)	91.97(4)	119.95(4)	447.7	10
65 ± 1	9.016(5)	9.049(4)	6.891(9)	108.40(7)	91.99(8)	119.93(4)	449.5	10
76 ± 1	9.015(5)	9.050(4)	6.923(8)	108.41(7)	91.97(7)	119.89(4)	451.9	10
83 ± 1	9.019(5)	9.054(3)	6.943(6)	108.41(5)	91 .99(6)	119.90(4)	453.4	10
94 ± 1	9.014(6)	9.052(4)	6.963(8)	108.39(7)	91.96(8)	119.87(5)	454.7	10
104 ± 1	9.016(8)	9.054(5)	6.980(9)	108.39(8)	91.90(10)	119.86(6)	456.2	10
23 ± 1*	9.019(2)	9.033(4)	6.810(3)	108.54(5)	91.96 (3)	119.98(3)	442.8	10

^{*} Determined after low- and high-temperature data

Measured cell constants for C-centered monoclinic form of TATB at various temperatures, data from [27]:

T(°C)	a (Å)	b (Å)	c (Å)	β (°)	Volume (ų)	No. of reflections
-57 ± 1	13.217(4)	9.034(2)	8.313(2)	118.15(2)	875.2	12
-47 ± 3	13.217(5)	9.028(3)	8.312(3)	118.19(2)	874.1	12
-34 ± 2	13.249(3)	9.027(3)	8.329(3)	118.27(2)	877.3	12
-23 ± 2	13.267(4)	9.030(3)	8.335(2)	118.38(2)	878.5	12
-12 ± 1	13.278(3)	9.031(3)	8.344(1)	118.39(1)	880.2	12
1 ± 1	13.313(4)	9.032(2)	8.359(2)	118.52(2)	883.0	12

12±1	13.344(4)	9.034(2)	8.369(2)	118.64(2)	885.5	12
23 ± 1	13.386(3)	9.039(3)	8.388(2)	118.75(2)	889.8	12
35±1	13.431(7)	9.049(4)	8.418(7)	118.97(4)	895.1	12
45 ± 1	13.456(9)	9.043(5)	8.433(8)	119.10(6)	896.7	12
57 ± 2	13.498(10)	9.042(6)	8.442(9)	119.24(6)	899.1	12
67 ± 1	13.514(9)	9.048(7)	8.453(7)	119.30(5)	901.4	12
76±1	13.540(10)	9.041(7)	8.466(9)	119.39(6)	903.0	12
86 ± 1	13.590(19)	9.049(9)	8.476(7)	119.38(7)	908.3	12
95±1	13.702(10)	9.022(20)	8.523(15)	120.16(10)	910.9	12
107 ± 1	13.713(20)	9.055(9)	8.534(12)	119.94(9)	918.2	12
23 ± 1*	13.365(18)	9.044(7)	8.380(5)	118.91(7)	886.8	12

Cell constants between 214 and 377 K show a volume change of $+5.1\%^{[19]}$, expansion is almost entirely due to a 4% increase in the c axis $^{[19]}$

Cell parameters of TATB undergoing thermal cycling process from 30 to 240 °C and from 240 to 30 °C, XRD data, particle size $\sim 20 \,\mu m$, >99% purity^[72]:

T (°C)	a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)	Volume (ų)
30	9.016	9.033	6.827	108.68	91.77	119.97	443.70
60	9.022	9.037	6.860	108.64	91.73	119.97	446.66
90	9.020	9.034	6.888	108.61	91.69	119.98	448.40
120	9.025	9.041	6.925	108.58	91.66	119.97	451.63
150	9.029	9.042	6.959	108.55	91.61	119.98	454.29
180	9.029	9.047	6.993	108.55	91.56	119.98	456.91
210	9.035	9.051	7.033	108.52	91.53	119.99	460.08
240	9.036	9.049	7.068	108.53	91.50	119.97	462.43
240	9.036	9.052	7.067	108.54	91.49	120.01	462.36
210	9.037	9.051	7.031	108.52	91.54	119.99	460.12
180	9.034	9.049	6.995	108.56	91.56	119.98	457.35
150	9.028	9.044	6.962	108.57	91.59	119.98	454.49
120	9.023	9.039	6.922	108.60	91.63	119.97	451.22
90	9.019	9.035	6.890	108.60	91.67	119.99	448.52
60	9.021	9.038	6.861	108.65	91.71	119.98	446.63
30	9.015	9.032	6.827	108.68	91.76	119.97	443.67

Exptl. determined cell volumes of TATB (Triclinic and Monoclinic forms) from 214 to 377 K XRD data^[76]:

Triclin	ic form	C-centered m	onoclinic form
T (°C)	Vol (ų)	T (°C)	Vol (ų)
-59±3	434.5	-57 ± 1	875.2
-45±3	436.2	-47 ± 2	874.1
-36 ± 1	436.3	-34 ± 2	877.3
-26 ± 1	437.4	-23 ± 2	878.5
-13±3	438.7	-12±1	880.2
11 ± 2	441.6	1 ± 1	883.0
23±1	442.9	12 ± 1	885.5
35±1	447.0	23 ± 1	889.8
44 ± 1	446.7	35 ± 1	895.1
54±1	447.7	45 ± 1	896.7
65±1	449.5	57 ± 2	899.1
76±1	451.9	67 ± 1	901.4
83±1	453.4	76 ± 1	903.0
94±1	454.7	86 ± 1	908.3
104 ± 1	456.2	95 ± 1	910.9

- [1] R. L. Atkins, R. A. Hollins, W. S. Wilson, J. Org. Chem., 1968, 51, 3261-3266.
- [2] R. Hansen, Verfahren zur Herstellung von Grobkoernigem Triaminotrinitrobenzol, German Patent DE 3,101,783 A1, 1982.
- [3] F. Volk, H. Bathelt *Propellants, Explosives, Pyrotechnics*, **2002**, *27*, 136–141.
- [4] H. H. Howard, H. Cady, A. C. Larson, Acta Cryst., 1965, 18, 485–496.
- [5] S. Zeman, A Study of Chemical Micro-Mechanisms of Initiation of Organic Polynitro Compounds, Ch. 2 in Energetic Materials, Part 2: Detonation, Combustion, P. A. Politzer, J. S. Murray (eds.), Theoretical and Computational Chemistry, Vol. 13, 2003, Elsevier, pp. 25–60.
- [6] H. H. Krause, *New Energetic Materials*, Ch. 1 in *Energetic Materials*, U. Teipel (ed.), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, **2005**, pp. 1–26.
- [7] S. Zeman, J. Majzlík, Central Europ. J. Energ. Mat., 2007, 4, 15-24.
- [8] J. P. Lu, Evaluation of the Thermochemical Code CHEETAH 2.0 for Modelling Explosives Performance, DSTO Aeronautical and Maritime Research Laboratory, August 2011, AR-011-997.
- [9] M. H. Keshavarz, Z. Keshavarz, ZAAC, 2016, 642, 335-342.
- [10] M. H. Keshavarz, J. Haz. Mat., 2009, 166, 762–769.
- [11] M. H. Keshavarz, Propellants, Explosives, Pyrotechnics, 2012, 37, 489-497.
- [12] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2008**, *33*, 448–453.

- [13] R. Weinheimer, *Properties of Selected High Explosives*, Abstract, 27th International Pyrotechnics Seminar, 16th–21st July **2000**, Grand Junction, USA.
- [14] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.
- [15] P. Politzer, J. S. Murray, Centr. Eur. J. Energ. Mater., 2014, 11, 459-474.
- [16] B. M. Dobratz, P. C. Crawford, LLNL Explosives Handbook Properties of Chemical Explosives and Explosive Simulants, Lawrence Livermore National Laboratory, January 31st 1985.
- [17] M. L. Hobbs, M. R. Baer, Calibrating the BKW-EOS with a Large Product Species Data Base and Measured C-J Properties, in Proceedings of the 10th International, Detonation Symposium, Office of Naval Research ONR 33395-12, 1993, pp. 409–418.
- [18] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 352.
- [19] Military Explosives, Department of the Army Technical Manual, TM 9-1300-214, Headquarters, Department of the Army, September 1984.
- [20] LASL Explosive Property Data, T. R. Gibbs, A. Popolato (eds.), University of California Press, Berkeley, USA, 1980.
- [21] A. Smirnov, D. Voronko, B. Korsunsky, T. Pivina, Huozhayo Xuebao, 2015, 38, 1–8.
- [22] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 9, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1980.
- [23] H.-H. Licht, Propellants, Explosives, Pyrotechnics, 2000, 25, 126–132.
- [24] F. Hosoya, K. Shiino, K. Itabaschi, *Propellants, Explosives, Pyrotechnics*, **1991**, *16*, 119–122.
- [25] P. E. Rouse, J. Chem. Engineering Data, 1976, 21, 16-20.
- [26] A. A. Gidaspov, E. V. Yurtaev, Y. V. Moschenskiy, V. Y. Andeev, The Correlations Between the High Explosives' Critical Temperature of Thermal Explosion with the Flash Point and Decomposition Temperatures, NTREM 17, 9th-11th April 2014, pp. 658-661.
- [27] J. R. Kolb, H. F. Rizzo, *Propellants and Explosives*, **1979**, 4, 10–16.
- [28] C. S. Gorzynski, J. N. Maycock, *Explosives and Pyrotechnic Propellants for Use in Long Term Deep Space Missions*, NASA-CR-132373, **1974**.
- [29] B. M. Dobratz, Properties of Chemical Explosives and Explosive Simulants, UCRL-5319, LLNL, December 15th 1972.
- [30] D. E. Bliss, S. L. Christian, W. S. Wilson, J. Energet. Mater., 1991, 9, 319–348.
- [31] J. F. Baytos, *High-Temperature Vacuum Thermal Stability Tests of Explosives*, LA-5829-MS, LANL, January **1975**.
- [32] D. M. Williamson, S. Gymer, N. E. Taylor, S. M. Walley, A. P. Jardine, C. L. Leppard, S. Wortley, A. Glauser, *Optical Diagnostics to Study Impact Initiation Mechanisms in Modern Energetic Materials*, NTREM 17, 9th–11th April 2014, pp. 243–252.
- [33] E. G. Kayser, J. Energet. Mater., 1983, 1:3, 251–273.
- [34] J. C. Oxley, J. L. Smith, E. Rogers, X. X. Dong, J. Energet. Mater., 2000, 18, 97-121.
- [35] D. Price, J. Energet. Mater., 1985, 3:3, 239–254.
- [36] L. R. Rothstein, R. Petersen, *Propellants and Explosives*, 1979, 4, 56-60.
- [37] A. J. Bellamy, S. J. Ward, P. Golding, Propellants, Explosives, Pyrotechnics, 2002, 27, 49-58.
- [38] A. Smirnov, S. Smirnov, V. Balalaev, T. Pivina, *Calculation of Detonation Velocity and Pressure of Individual and Composite Explosives*, NTREM 17, 9th–11th April **2014**, pp. 24–37.
- [39] D. Price, *Gap Tests and How They Grow*, from Ministries of the Explosives Safety Seminar (22nd), vol. 1, AD-A181 274, Anaheim, California, 26th–28th August **1986**.
- [40] Y. Chen, X. Fang, Z. Qiao, G. Zeng, *Influence on the Storage Conditions on the Specific Surface Area of Nano-TATB*, ICT, Karlsruhe, **2011**, pp. 42-1–42-8.
- [41] P. Marecek, J. Pokorna, P. Vavra, A Study of Some Insensitive Explosives, ICT 1998, Karlsruhe, Germany, paper 52-1–52-5.

- [42] M. Liljedahl, J. Ritums, H. Östmark, Fox-12: From Synthesis to IM-Application, ICT 2017, Karlsruhe, Germany, pp. 22-1–22-19.
- [43] R. Petersen, Susceptibility Index of Explosives to Accidental Initiation, NWSY TR 81–6, Naval Weapons Station, Virginia, USA, October 1981.
- [44] H. H. Licht, S. Braun, M. Schäfer, B. Wanders, H. Ritter, *Nitrotriazoles: Chemical Structure and Explosive Properties*, ICT **1998**, Karlsruhe, Germany, 47-1–47-15.
- [45] F. Hosoya, K. Shiino, K. Itabashi, Propellants, Explosives, Pyrotechnics, 1991, 116, 119–122.
- [46] D. Skinner, D. Olson, A. Block-Bolten, Propellants, Explosives, Pyrotechnics, 1997, 23, 34-42.
- [47] S. Ye, K. Tonokura, M. Koshi, Comb. and Flame, 2003, 132, 240-246.
- [48] R. J. Spear, M. G. Wolfson, Determination of Detonation Parameters of Booster Explosives at Small Charge Diameters, MRL Technical Report, MRL-TR-89-45, DSTO Materials Research Laboratory, Australia, 1990.
- [49] M. F. Murphy, N. L. Coleburn, A Preliminary Investigation of TACOT, A New Heat Resistant Explosive, NOLTR 61–155, US Naval Ordnance Lab, USA, 1961.
- [50] N. L. Coleburn, B. E. Drimmer, *The Explosive Properties of the Amino-Substituted Symmetrical Trinitrobenzenes (U)*, NOLTR 63–81. US Naval Ordnance Lab, USA, May **1963**.
- [51] P. Politzer, J. S. Murray, *Some Perspectives on Sensitivity to Initiation of Detonation*, Ch. 3 in *Green Energetic Materials*, T. Brinck (ed.), Wiley, **2014**, p. 48.
- [52] P. Politzer, J. S. Murray, Computational Studies of Energetic Organic Molecules, AD-A274 726, ONR Technical Report, December 27th 1993.
- [53] A. Smirnov, M. Kuklja, M. Makhov, V. Pepkin, *Methodical Problems of Experimental Definition of Heat of Explosive Transformation*, ICT **2017**, Karlsruhe, Germany, pp. 15-1–15-11.
- [54] E. G. Kayser, Analysis Methods For Explosive Materials I. Polynitro Compounds, NSWC TR 81–123, Naval Surface Weapons Center, Maryland, USA, 3rd March 1962.
- [55] D. Price, Critical Parameters For Detonation Propagation and Initiation of Solid Explosives, NSWC TR 80–339, Naval Surface Weapons Center, Maryland, USA, 10th September 1981.
- [56] P. Politzer, Computational Studies of Polynitroaromatic Molecules and the Development of Sensitivity Relationships, AFATL-TR-90-66, Air Force Armament Laboratory, Florida, USA, October 1990.
- [57] R. Petersen, L. R. Rothstein, J. H. Smith, Thermochemistry and the Demilitarization of Explosives, NWSY TR 76–2, Naval Weapons Station, Virginia, USA, July 1976.
- [58] D. A. Jones, R. P. Parker, Simulation of Cookoff Results in a Small Scale Test, DSTO-TR-0090, Department of Defence, Melbourne, Australia, October 1994.
- [59] R. L. Simmons, C. M. Walsh, *Designing Advanced Gun Propellants with Improved Energy Release*, ICT **2001**, Karlsruhe, Germany, pp. 43-1–43-11.
- [60] G. T. Afanas'ev, L. N. Akimova, Common Shape of Dependence of Critical Diameter of Detonation on Density for TATB Example, ICT 2000, Karlsruhe, Germany, pp. 79-1-79-4.
- [61] E. Francois, V. E. Sanders, J. Lloyd, J. Mong, Shock Sensitivity of Diaminoazoxy Furazan (DAAF) Using an Instrumental Small Scale Gap Test, ICT 2009, Karlsruhe, Germany, pp. 17-1–17-10.
- [62] A. J. Bellamy, P. Golding, S. J. Ward, Amination of 1,3,5-Trialkoxy-2,4,6-Trinitrobenzene; Formation of TATB vs ADAP (Ammonium 3,5-Diaminopicrate), ICT 2002, Karlsruhe, Germany, pp. 1-1-10.
- [63] V. A. Teselkin, Impact Sensitivity of TATB, ICT 2002, Karlsruhe, Germany, pp. 103-1–103-7.
- [64] B.-Z. Li, H.-B. Li, Synthesis of TATB by Gas-Jet Expansion, ICT 2002, Karlsruhe, Germany, pp. 36-1–36-6.
- [65] T. Yepeng, The Effect of NQ and TATB to the Insensitivity of HMX, ICT 2002, Karlsruhe, Germany, pp. 54-1–54-7.
- [66] Q. Hu, Z. Lu, The Discussion of Explosive Thermal Decomposition and its Sensitivity, ICT 2002, Karlsruhe, Germany, pp. 155-1–155-8.

- [67] E. C. Koch, Nitroguanidine (NQ) An Underestimated Insensitive Energetic Material for High Explosives and Propellants, ICT **2018**, Karlsruhe, Germany, pp. 3-1–3-13.
- [68] V. P. Filin, N. V. Garmasheva, I. V. Chemagina, N. P. Taybinov, V. T. Timofeev, N. Y. Filippova, M. B. Kazakova, B. G. Loboiko, Features of Thermal Stability of TATB Microcrystals, ICT 2006, Karlsruhe, Germany, pp. 97-1–97-6.
- [69] H. Cai, L. Tian, B. Huang, J. Sun, H. Huang, *Host-Guest Insensitive Energetic Materials*, ICT **2013**, Karlsruhe, Germany, pp. 85-1–85-6.
- [70] H. W. Lee, K. H. Chung, S. G. Cho, B. S. Lee, C. K. Kim, *Predictive Studies on Various Physicochemical Properties of Explosive Molecules*, ICT **2006**, Karlsruhe, Germany, pp. 177-1–177-12.
- [71] Y. N. Matyushin, G. T. Afanas'ev, V. P. Lebedev, M. N. Mahov, V. I. Pepekin, TATB and Fox-7: Thermochemistry, Performance, Detonability, Sensitivity, ICT 2003, Karlsruhe, Germany, pp. 1119-1-119-13.
- [72] J. Sun, B. Kang, C. Xue, Y. Liu, Y. Xia, X. Liu, W. Zhang, J. Energet. Mater., 2010, 28, 189-201.
- [73] A. K. Nandi, S. M. Kasar, U. Thanigaivelan, M. Ghosh, A. K. Mandal, S. C. Bhattacharyya, J. Energet. Mater., 2007, 25, 213–231.
- [74] W. P. Lai, P. Lian, B. Z. Wang, Z. X. Ge, J. Energet. Mater., 2010, 28, 45–76.
- [75] N. R. Badders, C. Wei, A. A. Aldeeb, W. J. Rogers, M. S. Mannan, J. Energet. Mater., 2006, 24, 17–33
- [76] D. S. Viswanath, T. K. Ghosh, V. M. Boddu, 1,3,5-Triamino-2,4,6-Trinitrobenzene (TATB), Ch. 9 in Emerging Energetic Materials: Synthesis, Physicochemical, and Detonation Properties, Springer, 2018.
- [77] A. L. Bowman, C. A. Forest, J. D. Kershner, C. L. Mader, G. H. Pimbley, *Numerical Modeling of Shock-Sensitivity Experiments*, 7th Symposium (International) on Detonation, LA.UR-81-695, LANL, USA.
- [78] L. W. Collins, L. D. Haws, *Thermochim. Acta*, **1977**, *21*, 1–38.
- [79] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [80] J. I. Steinfeld, J. Wormhoudt, Annu. Rev. Phys. Chem., 1998, 49, 203-232.
- [81] J. M. Rosen, C. Dickinson, J. Chem. Engineering Data, 1969, 14, 120–124.
- [82] S. Zeman, Z. Friedl, M. Roháč, Thermochim. Acta, 2006, 451, 105-114.
- [83] D. Price, J. O. Erkman, A. R. Clairmont, D. J. Edwards, Explosive Behavior of Dinitrotoluene, NOLTR 69–92, US Naval Ordnance Laboratory, Maryland, USA, 10th July 1969.
- [84] T. Jenkins, C. Vogel, Department of Defense Operational Range Sustainability Through Management of Munitions Constituents, SERDP ESTCP Technical Report, 04/01/2014.
- [85] B. M. Dobratz, The Insensitive High Explosive Triaminotrinitrobenzene (TATB): Development and Characterization – 1888 to 1994, LA-13014-H History, UC-741, Los Alamos National Laboratory, New Mexico, USA, August 1995.
- [86] W. Selig, How to Estimate the Solubility of an Insoluble Compound 1,3,5-Triamino-2,4,6-Trinitrobenzene (TATB), Lawrence Livermore National Laboratory, California, USA, April 1977.
- [87] P. C. Souers, J. W. Kury, *Propellants, Explosives, Pyrotechnics*, **1993**, *18*, 175–183.
- [88] Y. Zhang, J. Zhang, L. Mi, L. Ying, Explosive Charges Safety Tests, in vol. III. Minutes of the Twenty-Fifth Explosives Safety Seminar, Anaheim, California, USA, 18th–20th August 1992.
- [89] J. M. Pakulak, *USA Small-Scale Cookoff Bomb (SCB) Test*, in vol. 1, *Minutes of the Explosives Safety Seminar (21st)*, AD-P004 844, Houston, Texas, USA, 28th–30th August **1984**.
- [90] M. E. Sitzmann, S. Foti, C. C. Misener, Solubilities of High Explosives Removal of High Explosive Fillers From Munitions by Chemical Dissolution, AD-773 078, Naval Ordnance Laboratory, White Oak, Maryland, USA, 21st November 1973.

- [91] P. C. Hsu, G. Hust, M. McClelland, M. Gresshoff, One-Dimensional Time to Explosion (Thermal Sensitivity) of ANPZ, LLNL-TR-667280, Lawrence Livermore National Laboratory, California, USA, 25th April 1994.
- [92] J. N. Ayres, L. J. Montesi, R. J Bauer, Small Scale Gap Test (SSGT) Data Compilation: 1959–1972. Volume I. Unclassified Explosives, AD-773 743, Naval Ordnance Laboratory, Maryland, USA, 26 October 1973.
- [93] T. P. Liddiard, D. Price, The Expanded Large Scale Gap Test, NSWC TR 86–32, Naval Surface Weapons Center, Maryland, USA, March 1987.
- [94] D. Price, A. R. Clairmont, J. O. Erkman, The NOL Large Scale Gap Test. III. Compilation of Unclassified Data and Supplementary Information for Interpretation of Results, AD-780 429, Naval Ordnance Laboratory, White Oak, Maryland, USA, 8th March 1974.
- [95] C. S. Coffey, V. F. Devost, Impact Testing of Explosives and Propellants, AD-A267 391, Naval Surface Warfare Center, Maryland, USA, June 1992.
- [96] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [97] P. Samuels, K. Spangler, D. Iwaniuk, R. Cornell, E. L. Baker, L. I. Stiel, *Detonation Performance Analyses for Recent Energetic Molecules*, AIP Conf. Proc., 1979, 15003-1-150033-5.
- [98] A. Smirnov, O. Voronko, B. Korsunsky, T. Pivina, Chinese J. Expl. Prop., 2015, 38, 1-8.
- [99] C. B. Storm, J. R. Travis, Molecular Composition, Structure, and Sensitivity of Explosives, in Structure and Properties of Energetic Materials, D. H. Liebenberg, R. W. Armstrong, J. J. Gilman, (eds.), Symposium, Boston, Massachusetts, USA, 30th November 2nd December 1992, Materials Research Society Symposium Proceedings, 1993, vol. 296, Materials Research Society, Pittsburg, Pennsylvania, USA, pp. 25–34.
- [100] A. K. Sikder, G. M. Bhokare, D. B. Sarwade, J. P. Agrawal, *Propellants, Explosives, Pyrotechnics*, **2001**, *26*, 63–68.
- [101] V. M. Boddu, S. W. Maloney, R. K. Toghiani, H. Toghiani, Prediction of Physicochemical Properties of Energetic Materials for Identification of Treatment Technologies for Waste Streams, ERDC/CERL TR-10-27, US Army Corps of Engineers, Engineer Research and Development Center (ERDC), Champaign, USA, November 2010.
- [102] T. E. Larson, P. Dimas, C. E. Hannaford, *Electrostatic Sensitivity Testing of Explosives at Los Alamos*, 9th Int. Symp. on Detonation, Portland, Oregon, USA, vol. II, August 28th–1st September **1989**, pp. 1076–1083.
- [103] R. J. Spear, L. Montelli, An Investigation of the Material Hazard of Some Insensitive High Explosives, MRL-TR-91-22, Materials Research Laboratory DSTO, Maribyrnong, Australia, 1991.
- [104] L. Avrami, H. J. Jackson, M. S Kirshenbaum, Radiation-Induced Changes in Explosive Materials, AD-775 371, Picatinny Arsenal, Dover, New Jersey, USA, December 1973.
- [105] C. K. Kim, S. G. Cho, J. Li, C. K. Kim, H. W. Lee, Bull. Korean Chem. Soc., 2011, 32, 4341–4346.

Triazidopentaerythrite-acetate

Name [German, acronym]: Triazidopentaerythrite-acetate [TAP-Ac]

Main (potential) use: Potential new plasticizer^[1, 2]

	TAP-Ac					
Formula	C ₇ H ₁₁ N ₉ O ₂	$C_7H_{11}N_9O_2$				
Molecular mass [g mol ⁻¹]	253.23					
Appearance at RT						
IS [J]	1 Nm ^[1] , H_{50} = 29.9 cm (2 kg mass, 30 mg sample) ^[2]			
FS [N]	54 ^[1] , 8% (66° swing an	gle, 2.45 MPa) ^[2]				
N [%]	49.78					
Ω(CO ₂) [%]	-110.57					
T _{glass transition} [°C]	-8683 ^[1] , -73.86 ^[2]					
T _{dec.} [°C]	241.36 (DSC, peak max @ 10 °C/min) ^[2]	x) ^[1] , 208 (onset), 251.9 (e	xo peak max) (DSC			
$ ho$ [g cm $^{-3}$]	1.244 ^[1] , 1.25 ^[2]					
Heat of formation						
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.			
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]						
T _{ex} [K]						
p _{C-J} [kbar]						
VoD [m s ⁻¹]						

V_0 [L kg $^{-1}$]		
Refractive index, η_{D}^{20}	1.5092 ^[1]	

- [1] G. Unkelbach, T. Keicher, H. Krause, *Synthesis and Characterization of New Triazido-Plasticizers*, ICT **2005**, Karlsruhe, Germany, pp. 49-1–49-8.
- [2] Y.-J. Liu, Y.-L. Wang, W- X. Liu, B. Chen, T.-T. Lu, H.-Y. Jiang, *Chinese J. Propellants Explosives*, **2019**, *42*, 32–36.

Triazidopivalic-acid-ethylester

Name [German, acronym]: Triazidopivalic-acid-ethylester [TAPE-E]

Main (potential) use: Potential new plasticizer^[1]

Structural formula:

	TAPE-E					
Formula	C ₇ H ₁₁ N ₉ O ₂	$C_7H_{11}N_9O_2$				
Molecular mass [g mol ⁻¹]	253.23					
Appearance at RT	Pale yellow oil ^[1]					
IS [J]	1 Nm ^[1]					
FS [N]	64 ^[1]					
N [%]	49.78					
Ω(CO ₂) [%]	-110.57					
T _{glass transition} [°C]	-9492 ^[1]					
T _{dec.} [°C]	221.76 (DSC, peak r	max) ^[1]				
$ ho$ [g cm $^{-3}$]	1.218 ^[1]					
Heat of formation						
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.			
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]						
T _{ex} [K]						
p _{C-J} [kbar]						
VoD [m s ⁻¹]						
V ₀ [L kg ⁻¹]						
Refractive index, ${\eta_{D}}^{20}$	1.4990 ^[1]					

[1] G. Unkelbach, T. Keicher, H. Krause, *Synthesis and Characterization of New Triazido-Plasticizers*, ICT **2005**, Karlsruhe, Germany, pp. 49-1–49-8.

1,3,5-Triazido-2,4,6-trinitrobenzene

Name [German, acronym]: Trinitro-triazidobenzene, triazidotrinitrobenzol

[TATNB, TNTAB]

Main (potential) use: Initiating explosive, high explosive in compound

detonators^[15], ingredient of primer mix^[6, 16], priming

compositions^[17]

$$N_3$$
 NO_2 N_3 NO_2 NO_2

	TATNB								
Formula	C ₆ N ₁₂ O ₆	C ₆ N ₁₂ O ₆							
Molecular mass [g mol ⁻¹]	336.14								
Appearance at RT	Greenish-yellow c solid ^[14] , greenish-	,	· ,	w crystals ^[13] , br	ight yellow				
IS [J]	dropped from 60 of (2 kg mass, B.M.) ¹ (2.5 (50% prob., 5) (100% prob., 2 kg	4.9 (≤25 cm, 2 kg mass, 20 mg sample, B.M.) ^[6] , explodes if 250 g mass dropped from 60 cm ^[2] , explodes if 5 kg mass dropped from 60 cm ^[2] , 25 cm 2 kg mass, B.M.) ^[11, 17] , FI = 6% of PA ^[11] , $H_{60\%}$ = 30 cm (Wöhler apparatus) ^[11] , 2.5 (50% prob., 500 g hammer, 50 cm) ^[13] , 2 (0% prob., 2 kg hammer) ^[13] , 3.9 100% prob., 2 kg hammer) ^[13] , 5 (ignition) ^[13] , >1.5 (250 g hammer, 60 cm) ^[13] on fluence of grit on IS ^[19] :							
	Grit	Hardness	mpt. (°C)	Explosion effici	ency (45 g, 30 cm)				
		(mols.)		No.	%				
	Nil	_	_	0/15	0				
	Silver nitrate	2-3	212	0/5	0				
	Silver bromide	2-3	434	0/5	0				
	Lead nitrate	2-3	470	0/10	0				
	Lead chloride 2–3 501 2/20 10								
	Borax	Borax 3-4 560 5/5 100							
	Bismuthinite	2-2.5	685	5/5	100				
	Chalcocite	3-3.5	1,100	5/5	100				

ESD [J]	Explodes if subjected to ESD of 20 kv ^[2]			
N [%]	50.00			
Ω(CO ₂) [%]	-28.56			
T _{m.p.} [°C]	$131^{[1,13,17]}$, 131 (dec.) ^[6,11,15] , $128-130$ (dec.) ^[2] , 130 (dec.) ^[18] , melting can occur at T as low as 120 °C if the sample is kept for 6 min at this $T^{[18]}$			
ρ [g cm ⁻³]	$ 1.80 \ (@\ 293\ K)^{[1]}, 1.81 \ (crystal)^{[6]}, 1.805 \ (crystal)^{[11]}, 1.75 \ (pressed\ @\ 42,000\ psi)^{[6,11]}, \\ 1.7509 \ (@\ 3,000\ kg/cm^2)^{[11]}, 1.7526 \ (@\ 5,000\ kg/cm^2)^{[11]}, 1.805 \ (pycnometric)^{[13]}, \\ 1.84 \ (X-ray)^{[13]}, sp.\ gr. = 1.8054 \ (crystals)^{[15]}, 1.7509 \ (blocks\ under\ 3,000\ kg/cm^2\ pressure)^{[15]}, 1.7526 \ (blocks\ under\ 5,000\ kg/cm^2\ pressure)^{[15]}$			
Heat of formation	765.8 kJ/mol (Δ _f H°)	^[2] , 270 kcal/mol ^[7] , 2,278.0 kJ	/kg (Δ _f H°) ^[2]	
Heat of combustion	$\Delta H_c = -3,232 \text{ kJ/mg}$ $cal/g^{[6, 11, 12]}, 3,200$	ol (Parr bomb calorimeter) ^[2] , 8 kJ/mol (exptl.) ^[13]	840 kcal(mol (Q _c ^{V)[11]} , 2,254	
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\rm o} [{\rm kJ} {\rm kg}^{-1}]$	6,195		5,397 [H ₂ O (g)] ^[9]	
T _{ex} [K]	4,912	4,600 (@ 1.74 g cm ⁻³ , calcd. BKWR) ^[7] 5,640 (@ 1.74 g cm ⁻³ ,		
		calcd. BKWS) ^[7]		
p _{C-J} [kbar]	355	18.4 GPa (calcd., K-J) ^[2] 321 (@ 1.74 g cm ⁻³ , calcd. BKWR) ^[7] 312 (@ 1.74 g cm ⁻³ ,		
		calcd. BKWS) ^[7]		
VoD [m s ⁻¹]	9,065 (@ 1.80 g cm ⁻³)	8,100 (calcd., K-J) ^[2] 7,200 (@ 1.50 g cm ⁻³) ^[13]	8,100 ^[2] 8,580 (@ 1.74 g cm ⁻³) ^[3, 5, 7]	
		7,500 (@ 1.54 g cm ⁻³) ^[13]	9,030 (@ 1.81 g cm ⁻³) ^[4]	
		8,100 (@ 1.70 g cm ⁻³) ^[13]	7,300 (@ 1.71 g cm ⁻³) ^[10]	
		8,440 (@ 1.74 g cm ⁻³ , calcd. BKWR) ^[7]		
		8,390 (@ 1.74 g cm ⁻³ , calcd. BKWS) ^[7]		
V ₀ [L kg ⁻¹]	739		755 ^[8]	

Trauzl test [cm³, % TNT]	179% TNT (@ 1.0 g cm^{-3}) ^[11] , $165-171\%$ TNT ^[11] , 150% TNT ^[13] , 179% TNT ^[13] , 90% PETN ^[6, 15, 17]					
Ballistic mortar test	147% TNT ^[11]					
Initiation efficiency	49 MPa) ^[13] 500 kg/cm 0.62 g of Ta	0.02 g for TNT (TNT pressed @ 49 MPa) ^[13] , 0.01 g for Tetryl (Tetryl pressed @ 49 MPa) ^[13] , 1 g TNT compressed in No. 8 detonator shell under pressure of 500 kg/cm ² with TATNB compressed on top of it under 300 kg/cm ² required 0.62 g of TATNB for complete detonation ^[15] , did not explode when initiated unconfined in thin layers by hot wire ^[19]				
Dead-pressing		sed @ ~ 42,00 ad-pressed @		nce rapidly d	ecreases @ p	oressures>29
5 s explosion T [°C] 10 s explosion T [°C] 10 s ignition T [°C]	150 ^[6] 150 ^[11, 13] 150 ^[12]					
Thermal stability	Dependence of weight loss of TATNB on temp. and time ^[13] :					
	T(°C)	Time (days)	Weight loss (%)	T (°C)	Time (days)	Weight loss (%)
	20	~ 50	~ 0	35	~ 25	~0.2
		~ 190	~ 0.1]	~ 75	~ 1
		~ 400	~ 0.2		~ 250	~ 2
		~ 590	~ 0.4		~ 625	~ 4.4
		~ 900	~ 0.6	50	~ 25	~ 0.5
		~ 1,050	~ 0.8		~ 50	~ 0.2
		~ 1,150	~0.9		~ 150	~ 9.5
					~ 200	~ 13
	Complete dec. observed after 14 h @ 100 °C ^[13] , 0.665% dec. in 3 years @ 20 °C ^[15] , 2.43% dec. in 1 year @ 35 °C ^[15] , 0.65% dec. in 10 days @ 50 °C ^[15] , 100 % dec. in 14 h @ 100 °C ^[15]					
Volatility	Not appred	Not appreciably volatile @ 35–50 °C ^[15]				
Burn rate [mm/s]	0.65 cm/s $^{[6]}$, 0.03 (0.5 mm thick layer) $^{[13]}$, 0.05 (single crystal) $^{[13]}$, burns with greenish flame $^{[15]}$, 3 cm/s (unconfined) $^{[19]}$					

Solubility [g/mL]	Qualitative solubilities at room temperature ^[6] :		
	Solvent	Solubility	
	Acetone	Readily soluble	
	Chloroform	Moderately soluble	
	Alcohol	Sparingly soluble	
	Water	Insoluble	
	in H ₂ O ^[13, 15, 16] ,	readily soluble in acetor	ly soluble in alcohols ^[13, 16] , insoluble ne ^[15] , moderately soluble in CHCl ₃ ^[15, 16] , oluble in acetone ^[16] , can be recryst.
Hygroscopicity	0.00% @ 30 °C with 90% RH ^[6] , nonhygroscopic ^[13, 15] , absorbs 1.35 wt. % H ₂ O within 40 days exposure to moist air (slightly hygroscopic) ^[13] , nonhygroscopic ^[17]		
Photosensitivity	Light sensitive ^[13] , darkens superficially on exposure to light ^[15]		
Compatibility	Wet TATNB does not attack Fe, steel or copper ^[6] , quantitative dec. in boiling acetic acid ^[14] , does not react with common metals such as Fe, steel, Cu or brass ^[17] , stable in H_2O : no change in 3.5 years under $H_2O^{[13]}$		

	TATNB ^[2]
Chemical formula	C ₆ N ₁₂ O ₆
Molecular weight [g mol ⁻¹]	336.18
Crystal system	Monoclinic
Space group	P 2 ₁ /c
a [Å]	5.4256(4)
<i>b</i> [Å]	18.5515(13)
c [Å]	12.1285(10)
α[°]	90
β [°]	94.907(10)
γ [°]	90
V [ų]	1,216.30(16)
Z	4
$\rho_{\rm calc}$ [g cm ⁻³]	1.836
T[K]	200

- [1] G. B. Manelis, G. M. Nazin, V. G. Prokudin, Dokl. Phys. Chem., 2006, 411, 335-338.
- [2] D. Adam, K. Karaghiosoff, T. M. Klapötke, G. Holl, M. Kaiser, *Propellants, Explosives, Pyrotechnics*, **2002**, *27*, 7–11.
- [3] M. H. Keshavarz, J. Haz. Mat., 2009, 166, 762-769.
- [4] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2012**, *37*, 489–497.
- [5] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2008**, *33*, 448–453.
- [6] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.
- [7] M. L. Hobbs, M. R. Baer, Calibrating the BKW-EOS with a Large Product Species Data Base and Measured C-J Properties, in Proceedings of the 10th International, Detonation Symposium, Office of Naval Research ONR 33395-12, 1993, pp. 409–418.
- [8] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [9] W. C. Lothrop, G. R. Handrick, Chem. Revs., 1949, 44, 419-445.
- [10] P. W. Cooper, Explosives Engineering, Wiley-VCH, New York, 1996.
- [11] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [12] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1969**.
- [13] R. Matyáš, J. Pachman, Primary Explosives, Springer-Verlag, 2013.
- [14] S. V. Chapyshev, Molecules, 2015, 20, 19142–19171.
- [15] T. L. Davis, The Chemistry of Powder and Explosives, vol. 2, 1943, John Wiley and Sons Inc., New York, pp. 436–438.
- [16] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [17] Encyclopedia of Explosives A Compilation of Principal Explosives, Their Characteristics, Processes of Manufacture and Uses, Ordnance Technical Intelligence Agency, Durham, North Carolina, USA, 13th May 1960.
- [18] A. D. Yoffe, Proc. Royal Soc. A, 1951, 208, 188-199.
- [19] F. P. Bowden, H. T. Williams, *Proc. R. Soc.*, *Lond. A*, **1951**, *208*, 176–178.

Triethyleneglycol dinitrate

Name [German, acronym]: Triethylene glycol dinitrate, 2,2-ethylenedioxydiethyl-

dinitrate, dinitroethylene glycol, nitrotriglycol, dinitrotriglycol, triglycol dinitrate [triglykoldinitrat,

TEGN, TEGDN]

Main (potential) use: Ingredient of double-base propellants, rocket

propellants^[5, 7, 17], component of liquid explosives,^[10] gelatinizing agent for NC in propellants,^[10] plasticizer in pyrotechnic flares^[10], plasticizer in fabrication of flexible explosive sheets^[10], best plasticizing ability toward NC amongst the polyhydric alcohols^[22]

	TEGN
Formula	$C_6H_{12}N_2O_8$
Molecular mass [g mol ⁻¹]	240.17
Appearance at RT	Light yellow, oily liquid ^[8, 10] , oily liquid ^[13, 22]
IS [J]	$100 + \text{cm } (2 \text{ kg mass, } 20 \text{ mg sample, B.M.})^{[5,17]}, 43 \text{ in } (2 \text{ kg mass, P.A.})^{[5,17]}, \\ 12.7 \text{ Nm}^{[7]}, 100 \text{ cm } (2 \text{ kg mass})^{[6]}, > 100 \text{ cm } (20 \text{ mg sample, B.M.})^{[8]}, 43 \text{ in } \\ (P.A.)^{[8]}, 43 \text{ in } (P.A., 1 \text{ lb mass})^{[9]}, > 100 \text{ cm } (B.M.)^{[10]}, 109 \text{ cm } (P.A.)^{[10]}, 100 \text{ cm } \\ (2 \text{ kg mass, B.M.})^{[9]}, 100 \text{ cm}^{[15]}, 66 \text{ cm } (\text{median height, Rotter apparatus})^{[19]}, \\ 100 \text{ cm } (2 \text{ kg dropping hammer})^{[22]}$
FS [N]	Unaffected by steel shoe (friction pendulum test) $^{[5, 8, 10]}$, unaffected by fiber shoe (friction pendulum test) $^{[5, 8, 10]}$
N [%]	11.66
Ω(CO ₂) [%]	-66.62
T _{m.p.} [°C]	$-40^{[6]}$, $-19^{[8, 10, 15, 17]}$ (commercial products with DEGDN impurities freeze @ -57 °C) $^{[9]}$, $-23^{[21]}$, -40 (freezing point) $^{[22]}$
T _{dec.} [°C]	195 (DSC @ 5 °C/min), ~ 110 (onset, DSC) ^[16]
ρ [g cm ⁻³]	$ \begin{array}{l} 1.344 \ (@\ 293\ K)^{[1]},\ 1.348 \ (@\ 293\ K)^{[4]},\ 1.33 \ (@\ 20\ ^{\circ}C)^{[5,9]},\ 1.32 \ (@\ 25\ ^{\circ}C)^{[5]}, \\ 1.335^{[8,10,22]},\ sp.\ gr. = 1.335^{[13]},\ d_{16}^{\ 16} = 1.3291^{[14]},\ 1.33^{[15,21]}, \\ d^{16}_{\ \ 16} = 1.3291^{[22]} \end{array} $

Heat of formation Heat of combustion	$-656.9 \text{ kJ/mol } (\Delta_i H^o (s))^{[2]}, -603.8 \text{ kJ/mol } (\Delta_i H^o (s))^{[2]}, -2,619 \text{ kJ/kg} $ (enthalpy of form., ICT thermochemical database)^{[3,7]}, -654 cal/g ^[4] , -181.6 kcal/mol (ΔH_f , @ 25 °C) ^[9] , -576.6 kcal/kg (@ C°) ^[8] , -603.7 kcal/kg (@ C°) ^[8] , -603.7 kcal per mol ^[10] , -2,619 J/g (ΔH_f) ^[15] , -629 kJ/mol (enthalpy of form.) ^[21] , -99.4 kcal/mol ^[23] , -656.9 kJ/mol (enthalpy of form., exptl.) ^[24] , -605.8 kJ/mol (enthalpy of form., calcd., emp.) ^[24] $3,428 \text{ kcal/kg}^{[5,11]}, 3,428 \text{ cal/g } (@ 18 \text{ mm})^{[8]}, 819.2 \text{ kcal/mol } (@ \text{ constant pressure})^{[8]}, 836.60 \text{ kcal/mol } (Q_c^V, \text{liq. } H_20)^{[8]}, \Delta H_c = 14,343 \text{ J/g}^{[15]}, 3,428 $		
	cal/g (@ C ^p) ^[10] , Δ _c F Calcd. (EXPLO5 6.03)	f° (I) = -3,440 kJ/mol ^[2] , $\Delta_c H^{\circ}$ (Lit. values	l) = -3,500.4 kJ/mol ^[2] Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	4,177	357 kcal/kg ^[11] 750 kcal/kg (heat of det.) ^[13] 3,317 J/g (calcd., ICT-code) ^[3] 3,318 J/g (ΔH _e) ^[15] 3.14 MJ/kg (heat of explosion) ^[18] 3,320 [H ₂ O (I)] ^[21] 3,138 (heat of explosion) ^[22] 2,510.4 (explosion heat @ constant volume) ^[22]	357 cal/g ^[5] 3,138 J/g ^[6] 2,629 J/g (of constant volume) ^[6] 3,317 [H ₂ O (I)] ^[7] 750 cal/kg (@ const. pressure) ^[8] 725 kcal/kg ^[10]
T _{ex} [K]	2,880	2,025 (calcd., ICT-code) ^[3] 2,100 ^[22]	2,100 ^[6]
p _{C-J} [kbar]	16.3	102.5 MPa (calcd., ICT-code) ^[3] 189 (@ 1.38 g cm ⁻³ , calcd. BKWR) ^[23] 183 (@ 1.38 g cm ⁻³ , calcd. BKWS ^[23]	

VoD [m s ⁻¹]	6,608	7,080 (@ 1.38 g cm ⁻³ , calcd. BKWR) ^[23] 7,190 (@ 1.38 g cm ⁻³ , calcd. BKWS) ^[1]	Fails (@ 1.33 g cm ⁻³ , 1.25 in charge diameter, liquid, Shelby steel confinement) ^[5] No detonation (@ 1.44 g cm ⁻³ , rel. light steel tubing, 3.175 cm diameter) ^[10] <2,000 (heavily confined) ^[10] <2,000 (under heavy confinement, ρ not specified) ^[8] No. det. under mild confinement (steel, @ 1.33 g cm ⁻³ , diameter = 1.25 in) ^[8]	
			6,760 (@ 1.38 g cm ⁻³) ^[23]	
V ₀ [L kg ⁻¹]	837	1,214 mL/g [H ₂ O (l)]	1,065 ^[7]	
			851 ^[5]	
Trauzl test [cm³, % TNT]	320 cc ^[8, 20, 22]			
Sand test [g]		14.7 g sand crushed (200 g bomb, cf. 48.0 g for TNT) $^{[5,8]}$, 14.7 g (30.6% TNT, 200 g bomb) $^{[10]}$, 14.7 g (200 g bomb) $^{[17]}$		
5 s explosion	223 ^[5, 17] , 225 ^[10] , 22	25 (0.02 g sample) ^[8]		
T [°C] Explosion T [°C] 5 s ignition T [°C] Deflagration T [°C]	245 ^[22] 223 ^[11] , 225 ^[8] 195 ^[8, 10]			
100 °C heat test [% mass loss]	1.8% mass loss in first 48 h (0.6 g sample) $^{[5,8,10]}$, 1.6% mass loss in second 48 h @ 100 °C (0.6 g sample) $^{[5,8,10]}$, no explosions in test period (0.6 g sample) $^{[5,8,10]}$			
Vacuum stability test [cm³/h]	0.45 cc/40 h @ 100 °C ^[5] , 0.8 cc/16 h @ 120 °C ^[5] , 45 mL gas evolved in 40 h @ 100 °C ^[10] , 0.8–0.99 mL gas evolved in 8 h @ 120 °C ^[10] @ 100 °C: 0.45 cc/40 h ^[8] , 0.7–0-9 cc/g/8 h ^[8]			
Vapor pressure [atm. @ °C]	<0.001 mm Hg @ 25 °C ^[5, 8, 10]			
Volatility	40 mg/cm ² /h @ 60	${}^{\circ}C^{[5, 8, 10]}$, lower than ${\sf NG}^{[15]}$, 1	/5 th - ¹ /6 th NG value ^[22]	

Viscosity [cP]	13.2 Poises (@ 20 °C) ^[5, 8, 10] , 0.257 Poises @ 6.0 °C ^[14] , 0.119 Poises @ 20.3 °C ^[14] , 0.015 Poises @ 54.2 °C ^[14] , 2.5 times that of NG @ 20 °C ^[22] Viscosity values (no units given) from ^[22] :		
	T(°C)	Viscosity, η	
	6.0	0.257	
	20.3	0.119	
	54.2	0.015	
Solubility [g/mL]	$ \begin{array}{c} 0.55 \text{ g/100 g H}_2\text{O} @ 25 \text{ °C}^{[5]}, 0.68 \text{ g/100 g H}_2\text{O} @ 60 \text{ °C}^{[5]}, 0.7 \text{ g/100 g H}_2\text{O} \\ @ 20 \text{ °C}^{[22]}, \text{soluble in Et}_2\text{O}, \text{acetone, acetic acid}^{[22]}, \text{insoluble in EtOH}^{[22]} \\ \\ \text{TEGN has a high plastic solubility for NC}^{[22]} \\ \\ \text{Solubility (g/100 g solvent) at } 25 \text{ °C}^{[5]}; \text{Et}_2\text{O} = \text{w}^{[5]}, \text{alcohol} = \text{w}^{[5]}, 2:1 \\ \\ \text{ether:alcohol} = \text{w}^{[5]}, \text{acetone} = \text{w}^{[5]}, \text{very soluble in acetone, Et}_2\text{O}, \text{Et}_2\text{O}/\\ \\ \text{EtOH (2:1)}^{[10]}, \text{soluble in CS}_2^{[10]}, \text{slowly soluble in water}^{[10]}, 7,400 \text{mg/L H}_2\text{O} \\ @ 25 \text{ °C}^{[12]}, \text{very soluble in acetone, ether, 2:1 Et}_2\text{O/EtOH}^{[8]}, \text{soluble in CS}_2^{[8]}, \\ \\ \text{slightly soluble in water}^{[8]} \\ \end{array}$		
Hygroscopicity	0.144 @ relative humidity of 65, similar to DEGN ^[22]		
Compatibility	Hydrolysis: 10 days @ 22 °C, 0.032% acid ^[5] , 5 days @ 60 °C, 0.029% acid ^[5]		
Refractive index	$n^{\rm D}_{20} = 1.4540^{[5, 10]}, n_{\rm D}^{21.2} = 1.4542^{[22]}$		
Batch sorption experiments	$K_{ow} = 6.23 \pm 0.11^{[12]}$, K_d (DRDC-08) = 0.09 ± 0.03 L/kg ^[12] , K_d (WCL) = 0.78 ± 0.08 L/kg ^[12]		
Abel test	>40 min @ 72 °C ^[22]		

- [1] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© **1994–2017** ACD/Labs).
- [2] P. J. Linstrom, W. G. Mallard, *NIST Chemistry WebBook*, NIST Standard Reference Database Number 69, July 2001, National Institute of Standards and Technology, Gaithersburg, MD, **2014**, 20899, webbook.nist.gov.
- [3] F. Volk, H. Bathelt, *Propellants, Explosives, Pyrotechnics*, **2002**, *27*, 136–141.
- [4] https://engineering.purdue.edu/~propulsi/propulsion/comb/propellants.html
- [5] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.
- [6] J. Liu, Liquid Explosives, Springer-Verlag, Heidelberg, 2015.
- [7] R. Meyer, J. Köhler, A. Homburg, *Explosives*, 7th edn., Wiley-VCH, Weinheim, **2016**, pp. 354–355.
- [8] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 9, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1980.
- [9] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1978.

- [10] Military Explosives, Department of the Army Technical Manual, TM 9-1300-214, Headquarters, Department of the Army, September 1984.
- [11] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1969**.
- [12] P. Brousseau, S. Brochu, M. Brassard, G. Ampleman, S. Thiboutot, F. Côté, L. S. Lussier,
 E. Diaz, V. Tanguay, I. Poulin, M. Beauchemin, *Munitions with a Lower Environmental Impact: The Right Track Project*, ICT **2010**, Karlsruhe, Germany, pp. 3-1–3-12.
- [13] T. Urbański, Ch. 5 in Chemistry and Technology of Explosives, vol. II, 1965, Pergamon Press, Oxford.
- [14] T. Urbański, Ch. 1 in Chemistry and Technology of Explosives, vol. II, 1965, Pergamon Press, Oxford.
- [15] B. Wang, F. Chen, X. Liao, Z. Wang, B. Xu, D. Zhu, *RDX Based High-Energy TEGDN/NG Propellant For Tank Guns*, ICT **2015**, Karlsruhe, Germany, pp. 97-1–97-11.
- [16] S. Yan, C. Kou Y. Li, Y. Cheng, J. Energet. Mater., 2012, 30, 169–182.
- [17] Encyclopedia of Explosives A Compilation of Principal Explosives, Their Characteristics,
 Processes of Manufacture and Uses, Ordnance Technical Intelligence Agency, Durham, North
 Carolina, USA, 13th May 1960.
- [18] N. Kubota, Propellants and Explosives Thermochemical Aspects of Combustion, Wiley-VCH, 2002.
- [19] Services Textbook of Explosives, JSP 333, Procurement Executive, Ministry of Defence, UK, March 1972.
- [20] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [21] K. L. Kosanke, B. J. Kosanke, B. T. Sturman, R. M. Winokur, *Encyclopedic Dictionary of Pyrotechnics (and Related Subjects), Part 3 P to Z*, Pyrotechnic Reference Series No.5, Journal of Pyrotechnics Inc., Whitewater, Colorado, USA, **2012**, p. 1145.
- [22] J. Liu, Nitrate Esters Chemistry and Technology, Springer, 2019.
- [23] M. L. Hobbs, M. R. Baer, Calibrating the BKW-EOS with a Large Product Species Data Base and Measured C-J Properties, in Proceedings of the 10th International, Detonation Symposium, Office of Naval Research ONR 33395-12, 1993, pp. 409–418.
- [24] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248–258.

Trimethylammonium nitrate

Name [German, acronym]: Trimethylamine nitrate [trimethylaminnitrat, TMAN]

Main (potential) use: Component in castable charges^[3]

	Trimethylammonium ni	trate		
Formula	$C_3H_{10}N_2O_3$			
Molecular mass [g mol ⁻¹]	122.12			
Appearance at RT				
N [%]	22.94			
Ω(CO ₂) [%]	-104.81			
T _{phase transition} [°C]	86, 136 (DTA, Al cups, a Hg pressure) ^[5]	tm. pressure) ^[5] , 90, 134	(DTA, Al cups, 0.5 mm	
T _{m.p.} [°C]	428 K ^[1] , 153 ^[4] , 157 ^[4] , DSC (Pt cups, atm. pressure): 86 (endo), 136 (endo), 157 (endo), 202 (exo) ^[5] , DSC (Pt cups, 0.5 mm Hg pressure): 90 (endo), 134 (endo), 155 (endo), 163 (exo) ^[5]			
T _{dec.} [°C]	DSC (Pt cups, atmospheric pressure): 202 (exo) ^[5] , DSC (Pt cups, 0.5 mm Hg pressure): 163 (exo) ^[5] , TG inflection point = 186 (weight loss = 97%) ^[5]			
$ ho$ [g cm $^{-3}$]	1.25-1.28 ^[1] , 1.50 ^[3]	1.25-1.28 ^[1] , 1.50 ^[3]		
Heat of formation	-343.6 kJ/mol (enthalpy of form., exptl.) ^[2] , -313.0 kJ/mol (enthalpy of form., calcd.) ^[2] , -2,816.2 kJ/kg (enthalpy of form.) ^[3] , -562 kcal/kg (energy of form.) ^[4] , -598 kcal/kg (enthalpy of form.) ^[4]			
	Calcd. (EXPLO5 5.04)	Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	3,428	834 kcal/kg (Q _e) ^[4]	2,140 [H ₂ O (l)] ^[3]	
<i>T</i> _{ex} [K]	2,144			
p _{C-J} [kbar]	144			
VoD [m s ⁻¹]	6,841 (@ 1.23 g cm ⁻³ , $\Delta_{\rm f}H = -313$ kJ mol ⁻¹)			
V ₀ [L kg ⁻¹]	977	1,102 (on det.) ^[4]	1,244 ^[3]	

5 s explosion T[°C]	
Initiation T[°C]	202 (deflagration) ^[4]

- K. Salo, J. Westerlund, P. U. Andersson, C. Nielsen, B. D'Anna, M. Hallquist, J. Phys. Chem. A, 2011, 115, 11671–11677.
- [2] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R Ghaedsharafi, H. R. Pouretedal, *Fluid Phase Equilib.*, **2016**, *408*, 248–258.
- [3] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 355.
- [4] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 9, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1980.
- [5] S. R. Jain, M. V. Rao, V. R. P. Verneker, *Propellants and Explosives*, **1978**, *3*, 83–87.

Trimethyleneglycol dinitrate

Name [German, acronym]: Trimethyleneglycol dinitrate, 1,3-propanediol dinitrate,

1,3-propylene glycol dinitrate, nitropropylene glycol

[trimethylenglykoldinitrat]

Main (potential) use: Initiating explosive

$$O_2N$$
 O NO_2

	Trimethyleneglycol din	itrate		
Formula	C ₃ H ₆ N ₂ O ₆			
Molecular mass [g mol ⁻¹]	166.09			
Appearance at RT	Oily liquid ^[5, 8] , water-w	hite very mobile liquid ^[7]		
IS [J]	100 cm (2 kg mass) ^[4] , 1	100 cm (2 kg mass) fails to ini	tiate explosion ^[5, 8]	
N [%]	16.87			
Ω(CO ₂) [%]	-28.90			
T _{b.p.} [°C]	180 (@ 10 mm Hg) ^[5, 8] ,	180 (@ 10 mm Hg, without d	ec.) ^[7]	
T _{dec.} [°C]	225 (DSC @ 5 °C/min)	225 (DSC @ 5 °C/min)		
ρ [g cm ⁻³]	1.4053 (@ 289 K) ^[1] , 1.393 (@ 20 °C) ^[4] , sp. gr. = 1.393 (@ 20 °C) ^[5, 8] , d ¹⁶ ₁₆ = 1.4053 ^[6] , d ₄ ²⁰ = 1.3952 ^[6] , sp. gr. (20°/4°) = 1.393 @ 20 °C ^[7]			
Heat of formation	-224.0 kJ/mol (Δ _f H°) ^[2]			
		1		
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\circ}$ [kJ kg ⁻¹]	5,587	1,138.5 kcal/kg [H_2O (vapor)] ^[5] 4,763.5 (explosion heat) [H_2O vapor] ^[8]	4,763.5 J/g [H ₂ O (g)] ^[4]	
<i>T</i> _{ex} [K]	3,854			
p _{C-J} [kbar]	212			
VoD [m s ⁻¹]	7,373		7,340 (@ 1.5 g cm ⁻³) ^[3]	
V_0 [L kg ⁻¹]	863			

Trauzl test [cm³, % TNT]	540 cc (~90% NG, 10 g sample, H_2O tamping) ^[5, 7, 8] , 470 cm ³ (93% blasting gelatin cf. 80% that of NG blasting gelatin) ^[8]
5 s explosion T[°C] Explosion T[°C]	225 ^[5, 8] , ~ 225 (deflagrates on slow heating) ^[7]
Thermal stability	No dec. @ 75 °C for 25 days ^[5] , no dec. after heating at 75 °C for 600 h ^[8]
Volatility	Higher than that of NG ^[8]
Solubility [g/mL]	Miscible with same solvents as NG ^[5]
Viscosity [P]	η_{20} = 5.8 cP ^[6] , 0.0940 @ 6.3 °C ^[6] , 0.0550 @ 20.2 °C ^[6] , 0.0275 @ 54.2 °C ^[6] , lower than that of NG ^[8]
Dielectric constant, $arepsilon_{20}$	18.97 ^[6]

- [1] J. Boileau, M. Thomas, *Meml. Poudres.*, **1951**, *33*, 155–157.
- [2] G. M. Khrapkovskii, T. F. Shamsutdinov, D. V. Chachkov, A. G. Shamov, J. Mol. Struct. (THEOCHEM), 2004, 686, 185–192.
- [3] W. C. Lothrop, G. R. Handrick, Chem. Revs., 1949, 44, 419-445.
- [4] J. Liu, Liquid Explosives, Springer-Verlag, Heidelberg, 2015.
- [5] T. Urbański, Ch. 5 in Chemistry and Technology of Explosives, vol. II, 1965, Pergamon Press, Oxford.
- [6] T. Urbański, Ch. 1 in Chemistry and Technology of Explosives, vol. II, 1965, Pergamon Press, Oxford
- [7] T. L. Davis, *The Chemistry of Powder and Explosives*, vol. 2, **1943**, John Wiley and Sons Inc., New York, pp. 233–234.
- [8] J. Liu, Nitrate Esters Chemistry and Technology, Springer, 2019.

Trinitroaniline

Name [German, acronym]: 2,4,6-Trinitroaniline, 1-amino-2,4,6-trinitrobenzene,

picramide [picramid, TNA]

 $\mbox{Main (potential) use:} \qquad \mbox{High-temperature heat-resistant explosive}^{[8]}$

$$O_2N$$
 NH_2
 NO_2

	TNA
Formula	$C_6H_4N_4O_6$
Molecular mass [g mol ⁻¹]	228.12
Appearance at RT	Yellow ^[8] , deep yellow crystals ^[27] , orange-red crystals ^[28, 42] , yellow needle-like solid ^[30] , yellow crystalline ^[44]
IS [J]	23 in (2 kg mass, 20 mg sample, P.A.) ^[8] , 15 Nm ^[13] , $\log H_{50\%} = 2.25^{[11]}$, $35.25^{[12]}$, $H_{50} = 177$ cm ^[14, 30] , $H_{50\%} = 177$ cm ^[16, 26] , FI = 111% PA ^[17] , FI = 122% PA ^[17] , 50% point = 36 cm (10 kg mass, French method) ^[17] impact work for 50% explosions = 10.4 kg/cm ² (2 kg mass) ^[17] , 177 cm ^[30] , $H_{50} = 141$ cm (34.5)) ^[32] , 177 cm (Bruceton method, type 12 tool, 2.5 kg mass, 40 mg sample, 5/0 sandpaper, 25 trials) ^[33] , 177 cm (2.5 kg mass) ^[36] , 137.8 cm (5 kg mass, AFATL) ^[36] , $H_{50} = 141$ cm (2.5 kg mass, type 12 tool) ^[38] , $\log(H_{50}) = 2.248$ (Kamlet/Adolph) ^[39] , $H_{50\%} = 141$ cm (2.5 kg mass) ^[48]
FS [N]	353[13]
ESD [J]	6.85 ^[5, 12]
N [%]	24.56
Ω(CO ₂) [%]	-56.11
<i>T</i> _{m,p.} [°C]	$188^{[1,18,30]},189-190^{[8]},461\mathrm{K}^{[14]},189-192^{[17]},192^{[19,40]},190^{[28]},186^{[28]},\\ 188\mathrm{(ThomasHooverCapillaryMeltingPointApparatus@2^{\circ}\mathrm{C/min})^{[35]},}\\ 186-188^{[42]},192-195^{[44]},187-188^{[49]},185-189\mathrm{(crude,lowerpurity,recryst.fromacetonegavempt.of188-189^{\circ}\mathrm{C})^{[49]}}$
T _{b.p.} [°C]	Dec. before boiling point ^[8]

T _{dec.} [°C]	346 (DSC @ 5 °C/min), 387 (exo peak max., DSC @ 20 °C/min) ^[19]			
$ ho$ [g cm $^{-3}$]	1.762 (@ 293 K) ^[3, 13] , 1.76 (crystal) ^[8] , 1.76 (@ 20 °C) ^[17] , 1.773 (crystal) ^[15] , 1.773 ^[24] , 1.762 (crystal) ^[30] , 1.74 (exptl. ρ) ^[30] , 1.72 (loading ρ @ 50,000 psi) ^[8] , 1.76 ^[47] , 1.760 ^[14]			
Heat of formation	-72.8 kJ/mol ($\Delta_f H^o$ (s)) ^[4] , -115.9 kJ/mol ($\Delta_f H^o$ (s)) ^[4] , 21.6 kcal mol ⁻¹ (Q_f average) ^[17] , 131 cal/g ^[8] , -78 cal/g ($\Delta_f H^o$) ^[14] , -17.4 kcal/mol (ΔH_f (s)) ^[24] , -20.07 kcal/mol ^[30] , -368.1 kJ/kg (ΔH_f , ICT thermochemical database) ^[31] , -78.0 kcal/kg (enthalpy of form.) ^[34] , 57.5 kcal/kg ^[43] , -71.1 kJ/mol (ΔH_f) ^[47]			
Heat of combustion	678 kcal mol ⁻¹ $(Q_c^P \text{ average})^{[17]}$, 680 kcal mol ⁻¹ $(Q_c^V \text{ average})^{[17]}$, heat of combustion = 2,962 cal/g ^[8] , 3,008 kcal/kg (@ CY) ^[43] , $\Delta_c H^o$ (s) = -2,860.1 kJ/mol ^[4] , $\Delta_c H^o$ (s) = -2,816.87 kJ/mol ^[4]			
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	4,331	1,018 cal/g ^[23]	3,589 [H ₂ O (l)] ^[7, 13]	
		1.26 kcal/g (Q_{max} , calcd.) ^[24]	564 cal/g ^[8]	
		827 cal/g (det. energy) ^[30]	4.263 kJ g ^{-1[14]}	
		903 cal/g (calcd. det. energy, Q , using $\Delta H_{\rm f}$ values for	3,488 [H ₂ O (g)] ^[13]	
		explosive and dec. products) ^[30]	1,019 kcal/kg [H ₂ O (g)] ^[10]	
		903 (@ 1.6 g cm ⁻³ , calcd. Halford–Kistiakowsky equation of state) ^[30]	191.2 kcal mol ⁻¹ $(Q_e)^{[17]}$	
		3,589 (calcd., ICT-code) ^[31]	1,019 kcal/kg (@ 1.720 g cm ⁻³) [H ₂ O vapor] ^[34]	
		1,023 kcal/kg (@ 1.720 g cm ⁻³ , calcd.) [H ₂ O vapor] ^[34]	990 kcal/kg ^[44]	
		$-\Delta H_{\text{det}} = 5.24 \text{ kJ/g}^{[47]}$		
<i>T</i> _{ex} [K]	3,203	2,839 (@ 1.6 g cm ⁻³ , calcd. Halford–Kistiakowsky equation of state) ^[30]	~3,700 °C ^[17]	
		2,663 (calcd., ICT-code) ^[31]		

p _{C-J} [kbar]	225	232 (@ 1.72 g cm ⁻³ , <i>Xiong</i>) ^[23]	24.7 GPa ^[14]		
		251 (@ 1.773 g cm ⁻³ , calcd.) ^[24]			
		241 (calcd.) ^[30]			
		179.8 (@ 1.6 g cm ⁻³ , calcd. Halford–Kistiakowsky equation of state) ^[30]			
		109.6 (calcd., ICT-code) ^[31]			
VoD [m s ⁻¹]	7,442 (@ 1.76 g/cc)	7,490 (@ 1.76 g cm ⁻³ (TMD), calcd., R-P method) ^[22]	7,300 (@ 1.72 g cm ⁻³ , 0.5 in charge diameter, pressed, no		
		7,720 (@ 1.76 g cm ⁻³ (TMD), calcd., <i>Aizenshtadt</i>) ^[22]	confinement) ^[8]		
		7,480 (@ 1.76 g cm ⁻³ (TMD), calcd., K-J) ^[22]	7,300 (@ 1.72 g cm ⁻³) ^[13, 23, 24]		
		7,373 (@ 1.72 g cm ⁻³ , <i>Xiong</i>) ^[22]	7,420 (@ 1.76 g cm ⁻³) ^[6]		
		7,550 (@ 1.773 g cm ⁻³ , calcd.) ^[24]	7,600 (@ 1.7 g cm ⁻³) ^[20]		
		7,440 (@ 1.74 g cm ⁻³) ^[30]	7,000 (@ 1.5 g cm ⁻³ , compressed TNA in cardboard cartridges,		
		7,055 (@ 1.6 g cm $^{-3}$, calcd. Halford–Kistiakowsky eqn. of state) $^{[30]}$	30 mm diameter, 3 mm thick) ^[17]		
			see additional values in the table at the end of this section		
V ₀ [L kg ⁻¹]	648	0.4839 cm ³ /g (@ 1.6 g cm ⁻³ , calcd. Halford–Kistiakowsky equation of state) ^[30]	838 ^[9, 13] 724 ^[44]		
Critical diameter [cm]	0.3 cm ^[30]	oquation of state)	· - ¬		
Trauzl test [cm³, % TNT]	107% TNT ^[8, 20] , 92% PA ^[17] , 98% TNT ^[17] , 296 cc ^[44] , 310 ^[46]				
Sand test [g]	48.1 g (200 g bomb) ^[8]				
Ballistic mortar test	100% TNT ^[8]				
Initiation efficiency	0.30 g LA minimum detonating charge ^[8]				
Plate-push value	2,347 ft/s (@ 93% crystal ρ, for TNA/Zytel 95:5 PBX) ^[30]				

SSGT [cm]	4.0 mm (NOL) ^[27] , $P_{90} = 27.91$ kbar ($P_{90} = P_{90}$ pressure to 90% of TMD, NSWC small-scale gap test) ^[33] Picramide, TMD = 1.76, data from ^[45] :							
	Loading pressure (kpsi)	Density	y (g/cm³			Sensitivit	ty (DBG)	
		AVG.	s		AVG.	g	S _m	N
	4	1.389	0.0033	3 78.9	5.549	0.0173	0.0169	20
	8	1.469	0.0037	7 83.5	5.941	0.0218	0.0183	20
	16	1.562	0.0034	4 88.8	6.470	0.0173	0.0167	20
	32	1.646	0.0052	93.5	6.985	0.0320	0.0255	20
	64	1.719	0.0028	3 97.7	7.783	0.0370	0.0324	20
Thermal stability				ole TNA/no.				
Vacuum stability test [cm³/h]	0.9 cc/40 h @ 100 °C ^[8] , comparable values to TNT @ 140 °C ^[17] , 0.0 cm ³ /g/48 h @ 100 °C ^[30]							
Vapor pressure [atm. @ °C]	1.74 × 10 ⁻⁶ Torr @ 66 °C ^[21] Values from ^[41] :							
	T (°C) Vapor pressure Wt. loss Time (s) Area (cm ²) (g × 10 ³)							
	55.7	5.48		4.82	235,0	080 0.	770	
	55.7	5.37		4.62	235,0	080 0.	753	
	55.7	4.80		10.60	322,2	200 1.	410	
	55.7	4.92		19.50	322,2	200 2.	.53	
	62.6 10.80 13.25 331,200 0.770							
	62.6	11.10		13.84	331,2	200 0.	783	
	78.2	68.0		18.86	76,68	30 0.	770	
	78.2	65.6		18.11	76,68		766	
	78.2	68.3		18.54	76,68	_	753	
	85.3	163		125.20	65,16		.53	
	97.6	628		52.60	23,76		770	
	97.6	625		53.19	23,76	0.	783	

Solubility [g/mL]	Insoluble in water ^[8] , slightly soluble in EtOH and $\rm Et_2O^{[8]}$, soluble in hot glacial acetic acid, hot ethyl acetate, in benzene and acetone ^[8] , poorly soluble in EtOH and $\rm Et_2O^{[27]}$, soluble in hot acetone, benzene and ethyl acetate ^[27] , recryst. from acetone ^[49]
Hygroscopicity	Hygroscopic ^[44]
Dipole moment [D]	2.31 (calcd.) ^[36]
ΔH _{sub} [kJ/mol]	125.3 (exptl.) $^{[37]}$, 127.0 (calcd., QSPR) $^{[37]}$, 27.71 kcal (molar heat of sublimation) $^{[41]}$, 121.5 cal/g (specific heat of sublimation) $^{[41]}$
Closed cylinder test	Gas pressure by exploding sample in small bomb; pressure measured by piston and obturator: loading $\rho=0.20~{\rm g~cm^{-3}}$, pressure = 2,080 kg/cm ^{2[25, 29]} , loading $\rho=0.25~{\rm g~cm^{-3}}$, pressure = 2,885 kg/cm ^{2[25, 29]} , loading $\rho=0.30~{\rm g~cm^{-3}}$, pressure = 3,970 kg/cm ^{2[25]} , loading $\rho=0.30~{\rm g~cm^{-3}}$, pressure = 3,940 kg/cm ^{2[29]}

Detonation velocities of TNA (exptl. values)[30]:

Charge no.	Diameter (cm)	Length (cm)	Confinement	ρ (g/cm ³)	VoD (m/s)
1 [†]	Conical [‡]	2.34	None	1.726	-
	0.64	1.34	None	1.726	7,345
	1.27	1.34	None	1.746	7,310
	1.27	2.76	None	1.750	7,310
	2.54	2.76	None	1.737	7,560
	2.54	2.74	None	1.746	7,560
	2.54	2.74	None	1.744	7,560
	2.54	2.77	None	1.728	7,560
2	4.43	15.24	Cu	1.485	6,800

 $^{^{\}dagger}$ charge 1 was in the form of a pyramid consisting of 1 conical and 3 cylindrical sections

 $^{^{\}mbox{\tiny $\frac{1}{2}$}}$ diameter uniformly decreased from 0.63 to 0.32 cm over 2.34 cm length

	TNA ^[3]	TNA ^[15]
Chemical formula	C ₆ H ₄ N ₄ O ₆	C ₆ H ₄ N ₄ O ₆
Molecular weight [g mol ⁻¹]	228.13	228.13
Crystal system	Monoclinic	Monoclinic
Space group	P2 ₁ /c (no. 14)	P2 ₁ /c (no. 14)
a [Å]	5.9722(1)	6.137 ± 0.003
<i>b</i> [Å]	9.1789(1)	9.217 ± 0.007
c [Å]	15.2935(2)	15.323 ± 0.007
α [°]	90	90

β [°]	99.073(1)	99.67 ± 0.02
γ [°]	90	90
<i>V</i> [ų]	827.87(2)	
Z	4	4
$ ho_{\rm calc}$ [g cm ⁻³]	1.830	1.773
T[K]	100	

- [1] G. Leandri, A. Tundo, Ann. Chim., 1954, 44, 479-488.
- [2] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994–2017 ACD/Labs).
- [3] I. V. Fedyanin, K. A. Lyssenko, Cryst. Eng. Comm., 2013, 15, 10086–10093.
- [4] P. J. Linstrom, W. G. Mallard, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, July 2001, National Institute of Standards and Technology, Gaithersburg, MD, 2014, 20899, webbook.nist.gov.
- [5] M. H. Keshavarz, Z. Keshavarz, ZAAC, 2016, 642, 335-342.
- [6] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2012**, *37*, 489–497.
- [7] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2008**, *33*, 448–453.
- [8] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.
- [9] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [10] A. Smirnov, M. Kuklja, On the Use of Heat of Explosion for Blast Action Estimate. Individual Explosives and Their Mixtures, in Proceedings of the 20th Seminar on New Trends in Research of Energetic Materials, Pardubice, April 26th–28th, 2017, pp. 381–392.
- [11] H. Nefati, J.-M. Cense, J.-J. Legendre, J. Chem Inf. Comput. Sci., 1996, 36, 804–810.
- [12] N. Zohari, S. A. Seyed-Sadjadi, S. Marashi-Manesh, Central Eur. J. Energ. Mater., 2016, 13, 427–443.
- [13] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 230-233.
- [14] T. B. Brill, K. J. James, Kinetics and Mechanisms of Thermal Decomposition of Nitroaromatic Explosives, WL-TR-93-7058, December 1993.
- [15] J. R. Holden, C. Dickinson, C. M. Bock, J. Phys. Chem., 1972, 76, 3597-3602.
- [16] M. J. Kamlet, H. G. Adolph, *Propellants and Explosives*, **1979**, 4, 30–34.
- [17] B. T. Fedoroff, H. A. Aaronson, E. F. Reese, O. E. Sheffield, G. D. Clift, Encyclopedia of Explosives and Related Items, vol. 1, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1960.
- [18] E. G. Kayser, J. Energet. Mater., 1983, 1:3, 251–273.
- [19] J. C. Oxley, J. L. Smith, E. Rogers, X. X. Dong, J. Energet. Mater., 2000, 18, 97–121.
- [20] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [21] C. S. Gorzynski, J. N. Maycock, *Explosives and Pyrotechnic Propellants for Use in Long Term Deep Space Missions*, NASA-CR-132373, **1974**.
- [22] L. R. Rothstein, R. Petersen, Propellants and Explosives, 1979, 4, 56-60.
- [23] W. Xiong, J. Energet. Mater., 1985, 3:4, 263-277.
- [24] J. R. Stine, J. Energet. Mater., **1990**, 8, 41–73.
- [25] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1974**.

- [26] P. Politzer, J. S. Murray, High-Performance, Low Sensitivity: The Impossible (or Possible) Dream? in Energetic Materials From Cradle to Grave, M. K. Shukla, V. M. Boddu, J. A. Steevens, R. Damavarapu, J. Leszczynski (eds.), Springer-Verlag, 2017, pp. 1–22.
- [27] R. Petersen, Susceptibility Index of Explosives to Accidental Initiation, NWSY TR 81–6, Naval Weapons Station, Virginia, USA, October 1981.
- [28] T. Urbański, Ch. 17 in Chemistry and Technology of Explosives, vol. 1, 1964, Pergamon Press, Oxford.
- [29] T. L. Davis, The Chemistry of Powder and Explosives, vol. 1, 1941, John Wiley and Sons Inc., New York.
- [30] N. L. Coleburn, B. E. Drimmer, *The Explosive Properties of the Amino-Substituted Symmetrical Trinitrobenzenes (U)*, NOLTR 63–81, US Naval Ordnance Laboratory, USA, May **1963**.
- [31] F. Volk, H. Bathelt, Propellants, Explosives, Pyrotechnics, 2002, 27, 136–141.
- [32] P. Politzer, J. S. Murray, *Some Perspectives on Sensitivity to Initiation of Detonation*, Ch. 3 in *Green Energetic Materials*, T. Brinck (ed.), Wiley, **2014**, p. 48.
- [33] P. Politzer, J. S. Murray, Computational Studies of Energetic Organic Molecules, AD-A274 726, ONR Technical Report, December 27th 1993.
- [34] A. Smirnov, M. Kuklja, M. Makhov, V. Pepkin, *Methodical Problems of Experimental Definition of Heat of Explosive Transformation*, ICT **2017**, Karlsruhe, Germany, pp. 15-1–15-11.
- [35] E. G. Kayser, *Analysis Methods For Explosive Materials I. Polynitro Compounds*, NSWC TR 81–123, Naval Surface Weapons Center, Maryland, USA, 3rd March **1962**.
- [36] P. Politzer, Computational Studies of Polynitroaromatic Molecules and the Development of Sensitivity Relationships, AFATL-TR-90-66, Air Force Armament Laboratory, Florida, USA, October 1990.
- [37] H. W. Lee, K.-H. Chung, S. G. Cho, B.-S. Lee, C. K. Kim, *Predictive Studies on Various Physicochemical Properties of Explosive Molecules*, ICT **2006**, Karlsruhe, Germany, pp. 177-1–177-12.
- [38] W.-P. Lai, P. Lian, B.-Z. Wang, Z.-X. Ge, J. Energet. Mater., 2010, 28, 45–76.
- [39] N. R. Badders, C. Wei, A. A. Aldeeb, W. J. Rogers, M. S. Mannan, J. Energet. Mater., 2006, 24, 17-33.
- [40] J. P. Agrawal, Centr. Eur. J. Energet. Mater., 2012, 9, 273-290.
- [41] J. M. Rosen, C. Dickinson, J. Chem. Engineering Data, 1969, 14, 120–124.
- [42] J. Bebie, Manual of Explosives, Military Pyrotechnics and Chemical Warfare Agents, Composition, Properties, Uses, MacMillan Co., 1943.
- [43] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part III, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [44] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part II, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [45] J. N. Ayres, L. J. Montesi, R. J Bauer, Small Scale Gap Test (SSGT) Data Compilation: 1959–1972. Volume I. Unclassified Explosives, AD-773 743, Naval Ordnance Laboratory, Maryland, USA, 26 October 1973.
- [46] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [47] C. B. Storm, J. R. Travis, Molecular Composition, Structure, and Sensitivity of Explosives, in Structure and Properties of Energetic Materials, D. H. Liebenberg, R. W. Armstrong, J. J. Gilman, (eds.), Symposium, Boston, Massachusetts, USA, 30th November–2nd December 1992, Materials Research Society Symposium Proceedings, 1993, vol. 296, materials Research Society, Pittsburg, Pennsylvania, USA, pp. 25–34.
- [48] C. K. Kim, S. G. Cho, J. Li, C. K. Kim, H. W. Lee, Bull. Korean Chem. Soc., 2011, 32, 4341-4346.
- [49] E. Y. Spencer, G. F. Wright, Can. J. Res., 1946, 24B, 204–207.

Trinitroanisole

Name [German, acronym]: Trinitroanisole, 2-methoxy-1,3,5-trinitrobenzene,

2,4,6-trinitroanisole, 2,4,6-trinitrophenylmethylether, methylpicrate, nitrolite, 1-methoxy-2,4,6-trinitrobenzene

[piktrinsäuremethylether, TNAN, TNAs]

Main (potential) use: Used to lower the melting points of other explosives

but poor stability in presence of moisture, booster

charge component, used in World War I as mixture with

HNDPS in bombs^[17]

$$O_2N$$
 NO_2 NO_2

	Trinitroanisole
Formula	$C_7H_5N_3O_7$
Molecular mass [g mol ⁻¹]	243.13
Appearance at RT	White needles ^[16] , pale yellow leaflets on recryst. from MeOH ^[17] , white crystals separate from anhydrous solvents ^[17] , white crystalline solid (pure) or pale yellow crystalline solid ^[24] , yellow crystals ^[25] , crystalline substance ^[27]
IS [J]	$\begin{split} H_{50} &= 192~\text{cm}^{[8]}, 48^{[9]}, 20~\text{Nm}^{[10]}, 15-16~\text{in}~(2~\text{kg mass}, \text{P.A.})^{[11]}, 19~\text{cm}~(\text{max.}) \\ \text{value for no explosion, 5~kg mass})^{[11]}, \text{Fl} &= 120-124\%~\text{PA}^{[11]}, 20.20~\text{(drop energy, Julius-Peters app.})^{[12]}, \\ H_{50\%} &= 192~\text{cm}^{[13]}, \text{ less sensitive than PA}^{[16]}, \\ 124-129\%~\text{PA}^{[16]}, \text{H}_{20\%} &= 100~\text{cm}~(5~\text{kg mass})^{[17]}, \text{H}_{30\%} &= 110~\text{cm}~(5~\text{kg mass})^{[17]}, \\ 192~\text{cm}~(\text{Bruceton method, type 12 tool, 2.5~kg mass, 40~mg sample, 5/0} \\ \text{sandpaper, 25 trials})^{[20]}, 79.3~\text{cm}~(5~\text{kg mass, AFATL})^{[21]}, 192~\text{cm}~(2.5~\text{kg mass})^{[21]}, \\ H_{50} &= 192~\text{cm}~(2.5~\text{kg mass, type 12 tool})^{[22]}, \log(H_{50}) = 2.283~\\ (\textit{Kamlet/Adolph})^{[23]} \end{split}$
FS [N]	353 ^[10]
ESD [J]	28.59 ^[9, 29]
N [%]	17.28
Ω(CO ₂) [%]	-62.52
T _{m.p.} [°C]	$68^{[1,10]}, 68.4^{[11,27]}, 68(\alpha\text{-TNAs})^{[11]}, 57.5(\beta\text{-TNAs})^{[11]}, 67^{[16]}, 67-68^{[17,25]}, 66-68^{[24]}$

T _{dec.} [°C]	285 (DSC @ 5 °C/min), 482 K (DTA onset) ^[19]			
ρ [g cm ⁻³]	$1.61^{[2]}, 1.408 \text{ (molten)}^{[10]}, 1.4 \text{ (cast)}^{[11]}, 1.7 \text{ (@ max. loading pressure)}^{[11]}, $ sp. gr. = $1.408^{[16]}$			
Heat of formation	–187.2 kJ/mol (Δ _f H° (s)) [[]	^{3]} , – 630.1 kJ/kg (enthalpy	of form.) ^[10] , 132.0 kcal/kg ^[26]	
Heat of combustion	$\Delta_c H^o \text{ (s)} = -3,310.1 \pm 3.3 \text{ kJ/mol}^{[3]}, \Delta_c H^o = -3,281.93 \text{ kJ/mol}^{[3]}, 792.1 \text{ kcal/mol}$ $(Q_c^{\text{V}} \text{ (average)})^{[11]}, 784.4 \text{ kcal/mol} (Q_c^{\text{P}} \text{ (average)})^{[11]}, 3,269 \text{ kcal/kg} (@ C^{\text{V}})^{[26]}$			
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	4,321	4.62 MJ/kg (heat of explosion) ^[28]	3,777[H ₂ O (l)] ^[5, 10]	
		explosion	2,469 [H ₂ O (g)] ^[7]	
			3,656 [H ₂ O (g)] ^[10]	
T _{ex} [K]	3,284	2,366 (calcd.) ^[11]		
p _{C-J} [kbar]	182			
VoD [m s ⁻¹]	6,720 (@ 1.57 g cm ⁻³)	7,150 (@ 1.59-	6,800 (@ 1.57 g cm ⁻³) ^[10]	
		1.7 g cm ⁻³ , average value from lit.) ^[15]	6,300 (@ 1.5 g cm ⁻³) ^[7]	
		7,640 (@ 1.60 g cm ⁻³ , max. VoD) ^[16]	6,800 (@ 1.61 g cm ⁻³) ^[4]	
		max. vou),	6,600 (@ 1.59 g cm ⁻³) ^[11]	
			7,000 (@ 1.59 g cm ⁻³) ^[15]	
			7,166 (calcd. based on sand expt.) ^[15]	
V ₀ [L kg ⁻¹]	670		844 ^[6, 10]	
			740 ^[27]	

Trauzl test [cm³, % TNT]	98% PA ^[11] , 112% TNT ^[11] , 104–108% TNT ^[15]
Sand test [g]	110% TNT ^[11] , 100–110% TNT ^[15] , 41.7 g sand crushed (1,700 g bomb) ^[15]
Ballistic mortar test	106% TNT ^[11] , 106–108% TNT ^[15]

Initiation efficiency	Smallest amount of primary explosive necessary (g) to cause detonation of TNA: 0.1 g cadmium azide ^[18] , 0.26 g silver azide ^[18] , 0.28 g LA ^[18] , 0.375 g cuprous azide ^[18] , 0.55 mercurous azide ^[18] , 0.23 g silver fulminate ^[18] , 0.26 g cadmium fulminate ^[18] , 0.32 g copper fulminate ^[18] , 0.37 g mercury fulminate ^[18]
5 s explosion T [°C] Explosion T [°C] 5 s ignition T [°C] Detonating T [°C]	165-296 ^[11] , 225 ^[11] , 279-500 ^[11] 290-296 ^[14] ~165 ^[24]
Thermal stability	No change on heating @ 95 °C for 24 h ^[16]
Solubility [g/mL]	Recryst. from MeOH $^{[17]}$, very poorly soluble in H $_2$ O $^{[16]}$, 0.02 g /100 mL H $_2$ O $^{(16]}$, 0.137 g/100 mL H $_2$ O $^{(16)}$, sparingly soluble in CS $_2$, CCl $_4$ $^{[16]}$, soluble in EtOH $^{[16]}$, very soluble in Et $_2$ O, benzene, CHCl $_3$ and ethyl acetate $^{[16]}$, soluble in benzene, CHCl $_3$, ethyl acetate, acetic acid and acetone $^{[24]}$
Hygroscopicity	Reacts slowly with moisture ^[17] , slightly hygroscopic ^[24]
Compatibility	Reacts slowly with moisture ^[17] , does not react with metals ^[24] , exposure to moisture produces PA which reacts with metals ^[24] , does not react with metals if moisture is not present ^[25]
Dipole moment [D]	2.12 (calcd.) ^[21]
Fugacity	314 cc ^[27]
Manometric bomb	Pressure (max. theoretical) if exploded in own volume and without loss of heat = 9,235 kg/cm ² @ 1.5 g cm ^{-3[11]} , 2,145–2,222 kg/cm ² (@ 0.20 g cm ⁻³ , manometric bomb) ^[16,17] , 2,850 kg/cm ² (@ 0.25 g cm ⁻³ , manometric bomb) ^[16,17]

- [1] R. E. Damschroeder, R. L. Shriner, J. Am. Chem. Soc., 1937, 59, 931–933.
- [2] J. Sarlauskas, Cent. Eur. J. Energ. Mater., 2010, 7, 313-324.
- [3] P. J. Linstrom, W. G. Mallard, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, July 2001, National Institute of Standards and Technology, Gaithersburg, MD, 2014, 20899, webbook.nist.gov.
- [4] M. H. Keshavarz, Propellants, Explosives, Pyrotechnics, 2012, 37, 489-497.
- [5] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2008**, *33*, 448–453.
- [6] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [7] W. C. Lothrop, G. R. Handrick, Chem. Revs., 1949, 44, 419–445.
- [8] C. B. Storm, J. R. Stine, J. F. Kramer, Sensitivity Relationships in Energetic Materials, NATO Advanced Study Institute on Chemistry and Physics of Molecular Processes in Energetic Materials, LA-UR—89-2936.
- [9] N. Zohari, S. A. Seyed-Sadjadi, S. Marashi-Manesh, Central Eur. J. Energ. Mater., 2016, 13, 427–443.
- [10] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 357–348.

- [11] B. T. Fedoroff, H. A. Aaronson, E. F. Reese, O. E. Sheffield, G. D. Clift, Encyclopedia of Explosives and Related Items, vol. 1, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA. 1960.
- [12] S. Zeman, M. Krupka, Propellants, Explosives, Pyrotechnics, 2003, 28, 249-255.
- [13] M. J. Kamlet, H. G. Adolph, *Propellants and Explosives*, **1979**, 4, 30–34.
- [14] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1969**.
- [15] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [16] T. Urbański, Ch. 16 in Chemistry and Technology of Explosives, vol. 1, 1964, Pergamon Press, Oxford.
- [17] T. L. Davis, The Chemistry of Powder and Explosives, vol. 1, 1941, John Wiley and Sons Inc., New York.
- [18] T. L. Davis, *The Chemistry of Powder and Explosives*, vol. 2, **1943**, John Wiley and Sons Inc., New York, p. 412.
- [19] S. Zeman, Propellants, Explosives, Pyrotechnics, 2003, 28, 308-313.
- [20] P. Politzer, J. S. Murray, Computational Studies of Energetic Organic Molecules, AD-A274 726, ONR Technical Report, December 27th 1993.
- [21] P. Politzer, Computational Studies of Polynitroaromatic Molecules and the Development of Sensitivity Relationships, AFATL-TR-90-66, Air Force Armament Laboratory, Florida, USA, October 1990.
- [22] W.-P. Lai, P. Lian, B.-Z. Wang, Z.-X. Ge, J. Energet. Mater., 2010, 28, 45-76.
- [23] N. R. Badders, C. Wei, A. A. Aldeeb, W. J. Rogers, M. S. Mannan, J. Energet. Mater., 2006, 24, 17-33.
- [24] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [25] J. Bebie, Manual of Explosives, Military Pyrotechnics and Chemical Warfare Agents, Composition, Properties, Uses, MacMillan Co., 1943.
- [26] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part III, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [27] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part II, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [28] N. Kubota, Propellants and Explosives Thermochemical Aspects of Combustion, Wiley-VCH, 2002.
- [29] L. Turker, Electrostatic Discharge and Energetic Materials, To Chemistry Journal, 2019, 2, 72-114.

Trinitroazetidine

Name [German, acronym]: Main (potential) use:

1,3,3-Trinitroazetidine [trinitroazetidin, TNAZ] LOVA $^{[31]}$, melt-castable explosive $^{[31]}$, explosive suitable for casting alone or as a casting matrix for other explosives $^{[26]}$, possible application as a castable explosive, plasticizer or "high-energy TNT replacement" $^{[18]}$

	TNAZ
Formula	$C_3H_4N_4O_6$
Molecular mass [g mol ⁻¹]	192.09
Appearance at RT	Clear, colorless crystals ^[17] , colorless microcrystalline solid ^[36]
IS [J]	6 Nm ^[5] , 6.90 ^[4] , 21 cm (2.5 kg hammer) ^[9] , $H_{50\%}$ = 45–47 cm (3 kg mass, NOL apparatus) ^[13] , FOI = 110 (rel. to RDX (FOI = 80), Rotter apparatus) ^[12] , 86 cm (2.5 kg, tool type 12A, 35 mg sample, pressed pellets, Gen-Corp Aerojet sample) ^[14] , 29 cm (2.5 kg, tool type 12A, 35 mg pressed pellets, Elgin Air Force Base sample, ≥99.8% purity) ^[14] , 28 cm (2.5 kg mass, tool type 12A, 35 mg pressed pellets, recrystallized sample) ^[14] , H_{50} = 26 cm (2 kg hammer) ^[23] , H_{50} = 29 cm ^[24] , H_{50} = 26 cm (2 kg hammer, E_{d50} = 5.2 J) ^[28] , A_{d2} = 10%, LL = 0.7 m, $A_{50\text{ d1}}$ = 2.0 m ^[34]
FS [N]	324 ^[5] , 110 ^[7] , 160 (BAM) ^[12] , 36 kg (NOL apparatus) ^[13] , 5.4 kg (BAM, Gen- Corp Aerojet sample) ^[14] , 8.0 kg (BAM, Elgin Air Force Base sample, ≥99.8% purity) ^[14] , 11.6 kg (recrystallized sample) ^[14]
ESD [J]	2.49 ^[4] , 8.76 ^[6] , 78.3 mJ ^[6] , 4.5 ^[12] , 1 J with 510 Ω = no reaction with Gen-Corp Aerojet sample ^[14] , 1 J with 510 Ω = no reaction with Elgin Air Force Base sample, \geq 99.8% purity ^[14] , 1 J with 510 Ω = no reaction with recrystallized sample ^[14]
N [%]	29.17
Ω(CO ₂) [%]	-16.66

T _{m.p.} [°C]	101 ^[1,8,11,13,18,30] , 101 (DSC @ 10 °C/min) ^[13] , 99 (onset, DSC) ^[12] , 99.45 (max. peak, DSC @ 10 °C/min, Gen-Corp Aerojet sample) ^[14] , 99.36 (max. peak, DSC @ 10 °C/min, Elgin Air Force Base sample, ≥99.8% purity) ^[14] , 96.83 (max. peak, DSC @ 10 °C/min, recrystallized sample) ^[14] , 99.4−100.4 (TNAZ purified by sublimation) ^[14] , 99 (DSC @ 10 °C/min, open pan sample) ^[15] , 99 (DSC @ 10 °C/min, pierced pan sample) ^[15] , 99 (DSC @ 10 °C/min, closed pan sample) ^[15] , 103−104 ^[17] , 101 (onset @ 97; max. @ 102, sealed glass capillary, DSC @ 20 °C/min) ^[21] , 105−165 (vaporization, broad peak, DSC (@ 10 °C/min, open pan sample) ^[15] , 145−205 (vaporization, broad peak, DSC (@ 10 °C/min, pierced pan sample) ^[15] , 100.61 (endo, DSC @ 5 °C/min, 9.0 mg sample, hermetic Al pans, Ar atmosphere, first cycle through 30−175 °C) ^[27] , 99.9 (endo peak max, DSC @ 5 K/min, pierced Al pan) ^[18] , 99.5 (endo peak max, DSC @ 5 K/min, sealed Al pan) ^[18] , 100.59 ± 0.21 ^[30] , 101−102 ^[35] , 98−99 (microcrystalline, uncorrected) ^[36]				
	40-205 °C) ^{[2}		as a function of thermal apt. = 98.2 (100.1); cycle		
T _{b.p.} [°C]	252 ^[30]				
T _{dec.} [°C]	>240 (DSC @ 5 °C/min) ^[2] , 185 (DTA) ^[12] , 232 (onset, DSC @ 10 °C/min, Gen-Corp Aerojet sample) ^[14] , 243 (onset, DSC @ 10 °C/min, Elgin Air Force Base sample, ≥99.8% purity) ^[14] , 245 (onset, DSC @ 10 °C/min, recrystallized sample) ^[14] , 220–290 (DSC @ 10 °C/min, closed pan sample) ^[15] , 278 (exo peak max., DSC @ 20 °C/min) ^[20] , >240 ^[18] , – (sublimation occurs above mpt. @ 99.9 °C, DSC @ 5 K/min, pierced Al pan) ^[18] , 251.2 (exo peak max, DSC @ 5 K/min, sealed Al pan) ^[18]				
ρ [g cm ⁻³]	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
	120	1.522			
Heat of formation	2.81 kcal mol $^{-1}$ ($\Delta H_{\rm f}$, exptl.) $^{[14]}$, 8.7 kcal mol $^{-1}$ ($\Delta H_{\rm f}$) $^{[14]}$, 189.50 kJ/kg (enthalpy of form.) $^{[3,\ 11]}$, 280 kJ/kg $^{[18]}$, 8.70 kcal/mol ($\Delta H_{\rm f}$ (s)) $^{[24]}$, 189.5 kJ/kg ($\Delta H_{\rm f}$, ICT thermochemical database) $^{[25]}$, 30.7 kcal/mol (enthalpy of form.) $^{[30]}$, 8.7 kcal/mol (enthalpy of form.) $^{[30]}$, 2.81 kcal/mol (enthalpy of form.) $^{[30]}$, 36.4 kJ/mol (enthalpy of form., exptl.) $^{[37]}$, 62.2 kJ/mol (enthalpy of form., calcd., S-D method) $^{[37]}$				
	Calcd. (EXPLO5 6.03)	Lit. values		Exptl.	

$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	6,229	6,110 ^[10]	6,343 [H ₂ O (l)] ^[11]
		5,733 (calcd. LOTUSES) ^[13]	6,024 [H ₂ O (g)] ^[11]
		1.63 kcal/g (Q_{max} , calcd.) ^[24]	-ΔH _{det.}
		6,343 (calcd., ICT-code) ^[25]	(exptl.) = 6,130 J/g (TNAZ purity≥99.8%, detonation
		1,900 (heat of explosion) ^[18]	calorimetry) ^[14]
		1,731 cal/g (enthalpy of explosion) ^[30]	
		$-\Delta H_{\text{det.}}$ (calcd. from products @ 298 K, [H ₂ O (I)]) = 6,364 J/g ^[14]	
<i>T</i> _{ex} [K]	4,115	4,263 (calcd., ICT-code) ^[25]	
		4,659 ^[30]	
		4,224 (@ 1.832 g cm ⁻³ , $\Delta H_f = 11.8 \text{ kJ/}$ mol, calcd., JAGUAR) ^[32]	
p _{C-J} [kbar]	365	390 ^[10]	343 ^[8]
		34.25 GPa (calcd. LOTUSES) ^[13]	33.5 GPa (@ 1.84 g cm ⁻³) ^[22]
		364 (@ 1.84 g cm ⁻³ , calcd.) ^[24]	(@ 110 / 3 0)
		151–5 MPa (calcd., ICT-code) ^[25]	
		35.68 GPa ^[30]	
		35.1 GPa (@ 1.832 g cm ⁻³ , $\Delta H_{\rm f} = 11.8 \text{ kJ/mol, calcd., JAGUAR})^{[32]}$	
VoD [m s ⁻¹]	8,947	8,860 (@ 1.841 g cm ⁻³) ^[10]	8,680 (@ 1.76 g cm ⁻³) ^[8]
		8,860 (@ 1.76 g cm ⁻³) (calcd. LOTUSES) ^[13]	8,730 (@ 1.84 g cm ⁻³) ^[22]
		8,730 (@ 1.83 g cm ⁻³) ^[19]	8,620 (@ 1.84 g cm ⁻³) ^[22]
		9,056 (@ 1.83 g cm ⁻³ , calcd., BKWR) ^[19]	
		8,977 (@ 1.83 g cm ⁻³ , calcd., BKWS) ^[19]	
		9,000 (@ 1.84 g cm ⁻³ , calcd.) ^[24]	
		8,730 (@ 1.832 g cm ⁻³ , $\Delta H_f = 11.8$ kJ/mol, calcd., JAGUAR) ^[32]	

<i>V</i> ₀ [L kg ⁻¹]	729						
Critical T [°C]	Far above its	mpt. ^[33]					
Thermal stability	Moles of gas produced per mole TNAZ/no. of h ^[20] : @ 120 °C: 0/22, 0/72 ^[20] @ 220 °C: 3.01/22, 3/72 ^[20] @ 320 °C: 3.46/22, 3.77/72 ^[20] % conversion (η) of TNAZ in <i>m</i> -DNB (% conc. of TNAZ in <i>m</i> -DNB) and in gasphase over time (min), approx. values from graph ^[35] :						
	Time (min)	e (min) TNAZ in (g) 5% 60% 80% 100% (molten				(molten TNAZ)	
	50	20	25	35	35	65	
	100	35 43 70 65 93 45 60 90 85 98		93			
	150						
	% conversion (η) of TNAZ in melt over time (min), approx. values from gra Time (min) @ 170 °C @ 180 °C @ 190 °C @ 210 °C				es from graph ^[35] :		
	Time (min)	@ 170 °C		180 °C		0 'C	60
	100	5	10		40		60
	200	10	20		95		-
	300	15	40		100		-
	400	18	60		-		-
	500	22	85				-
Vacuum stability test [cm³/h]	0.95 mL gas evolved after 48 h @ 100 °C ^[12] , 0.01 cm ³ @ 110 °C, 20 h, $\rho_{(\text{TNAZ})}$ = 1.84 g cm ^{-3[23, 26, 28]}						
Volatility	Highly volatile	Highly volatile and is partially evaporated in a closed system ^[35]					
Solubility [g/mL]	g (TNAZ)/mL (solvent) ^[30] : 0.436 in ethyl acetate, 0.055 in EtOH, 0.026 in isopropanol, 0.442 in acetone, 0.038 in toluene, 0.014 in <i>iso</i> -octane ^[30]						
Hygroscopicity	Nonhygrosco	pic ^[31]					

$ \begin{array}{c} \text{Compatibility} & \text{Compatibility investigated using vacuum test, } 110 ^{\circ}\text{C}, 20 \text{h}^{[26]}; \text{RDX/TNAZ} \\ & (60/40), \rho = 1.78, \text{vol. of gas} = 0.10 \text{cm}^{3[26]}, \text{HMX/TNAZ} (60/40), \rho = 1.85, \text{vol. of gas} = 0.04 \text{cm}^{3[26]}, \text{TNAZ/Hyt/DOA} (98/1/1), \text{vol. of gas} = 0.03 \text{cm}^{3[}, \text{HNIW/TNAZ} (60/40), \rho = 1.92, \text{vol. of gas} = 0.25 \text{cm}^{3[28]}, \text{NTO/TNAZ} (60/44), \rho = 1.86, \text{vol. of gas} = 0.02 \text{cm}^{3[28]}, \text{addition of 3 wt. } \% \text{PA into the melt increases TNAZ dec. by 4 times}^{[29]}, \text{addition of 0.6 wt. } \% \text{hexamethylene tetrammine into the melt increases TNAZ dec. by 50 times}^{[29]}, \text{compatible with Al, steel, brass and glass}^{[31]}, 3\% \text{picric acid accelerates TNAZ dec. for fold}^{[35]}, 0.6\% \text{hexamethylene accelerates TNAZ dec. 50-fold}^{[35]} \\ \text{Detonation calorimetry} & 96\% \text{energy of HMX}^{[26]}, 150\% \text{energy of TNT}^{[26]} \\ \text{ARC (accelerating rate calorimetry)} & 46.6 (@ 160 - 280 ^{\circ}\text{C}, \text{closed vessel, } 0.2 - 0.3 \text{mg sample})^{[29]}, 40.3 \text{(in solr activation energy} \\ \text{[kcal/mol]} & 46.6 (@ 160 - 280 ^{\circ}\text{C}, \text{closed vessel, } 0.2 - 0.3 \text{mg sample})^{[29]}, 40.3 \text{(in solr activation energy} \\ \text{[kgl/mol]} & 95^{[30]}, 63.22^{[30]} \\ \text{Enthalpy of sublimation} & 95^{[30]}, 63.22^{[30]} \\ \text{Enthalpy of vaporization} & 66^{[30]} \\ \text{Enthalpy of fusion [kcal/mol]} & 6.714 \pm 0.115^{[30]}, 6.7 - 7.2^{[30]} \\ \text{Enthalpy of fusion [kcal/mol]} & 6.714 \pm 0.115^{[30]}, 6.7 - 7.2^{[30]} \\ \text{Enthalpy of fusion [kcal/mol]} & 6.714 \pm 0.115^{[30]}, 6.7 - 7.2^{[30]} \\ \text{Enthalpy of fusion [kcal/mol]} & 6.714 \pm 0.115^{[30]}, 6.7 - 7.2^{[30]} \\ \text{Enthalpy of fusion [kcal/mol]} & 6.714 \pm 0.115^{[30]}, 6.7 - 7.2^{[30]} \\ \text{Enthalpy of fusion [kcal/mol]} & 6.714 \pm 0.115^{[30]}, 6.7 - 7.2^{[30]} \\ \text{Enthalpy of fusion [kcal/mol]} & 6.714 \pm 0.115^{[30]}, 6.7 - 7.2^{[30]} \\ \text{Enthalpy of fusion [kcal/mol]} & 6.714 \pm 0.115^{[30]}, 6.7 - 7$
calorimetry ARC (accelerating rate calorimetry) Adiabatic self-heating only @ ~ 180 °C[18] Decomposition activation energy [kcal/mol] $46.6 \text{ (@ 160-280 °C, closed vessel, 0.2-0.3 mg sample)}^{[29]}, 40.3 \text{ (in solr 1% in benzene)}^{[29]}, 133 \text{ kJ/mol (DSC)}^{[29]}, 161.3 \text{ kJ/mol (Ozawa method)}^{[29]}$ Enthalpy of sublimation [kJ/mol] $95^{[30]}, 63.22^{[30]}$ Enthalpy of vaporization [kJ/mol] $66^{[30]}$ Enthalpy of $6.714 \pm 0.115^{[30]}, 6.7 - 7.2^{[30]}$
rate calorimetry) Decomposition activation energy [kcal/mol] Enthalpy of sublimation [k]/mol] Enthalpy of vaporization [k]/mol] Enthalpy of subcomposition $66^{[30]}$ Enthalpy of vaporization [k]/mol] Enthalpy of $6.714 \pm 0.115^{[30]}, 6.7 - 7.2^{[30]}$
activation energy [kcal/mol] 1% in benzene) $^{[29]}$, 133 kJ/mol (DSC) $^{[29]}$, 161.3 kJ/mol (Ozawa method) $^{[29]}$ Enthalpy of sublimation [kJ/mol] $66^{[30]}$ Enthalpy of vaporization [kJ/mol] $6.714 \pm 0.115^{[30]}$, $6.7-7.2^{[30]}$
sublimation [kJ/mol] Enthalpy of vaporization [kJ/mol] Enthalpy of 6.714 ± 0.115 ^[30] , 6.7–7.2 ^[30]
vaporization [k]/mol] Enthalpy of 6.714 ± 0.115 ^[30] , 6.7–7.2 ^[30]
1 ''
1
pK _a -15.72 ± 0.20 (pH 1–10, calcd.) ^[30]
K _{oc} 33.7 (pH 1–10, calcd.) ^[30]
Biodegradation Half-life in soil is <24 h for several soil types ^[30]
Slow and fast cook-off test Detonation @ 198-214 ^[16]
Wedge test TNAZ wedges neat-pressed @ 420,000 psi @ 97 °C to final wedge shape @ 99.1–99.4% TMD (TMD = 1.840 g cm ⁻³) ^[33] :
$\rho_0 (g/cm^3)$ $P_0 (GPa)$ $u_p (km/s)$ $U_s (km/s)$ $x^* (mm)$ $t^* (\mu s)$
1.825 2.9 0.47 3.42 8.18 2.36
1.826 3.9 0.57 3.80 3.73 1.08
18.26 5.0 0.70 3.95 2.80 0.69
1.828 7.6 0.93 1.06 0.34

	TNAZ-I ^[17]	TNAZ-II ^[18]
	Stable, higher p	Unstable, lower p
Chemical formula	C ₃ H ₄ N ₄ O ₆	C ₃ H ₄ N ₄ O ₆
Molecular weight [g mol ⁻¹]	192.06	192.06
Crystal system	Orthorhombic	
Space group	<i>P b c a</i> (no. 61)	
a [Å]	5.733(1)	
<i>b</i> [Å]	11.127(2)	
c [Å]	21.496(4)	
α[°]	90	
β [°]	90	
γ [°]	90	
<i>V</i> [ų]	1,371.3(3)	
Z	8	
$ ho_{ m calc}$ [g cm $^{-3}$]	1.861 $(\rho = 1.84 \text{ g cm}^{-3} @ 20 \text{ °C})$	
<i>T</i> [K]	−30 °C	
	Recryst. from CCl ₄	

- [1] A. Singh, N. Sikder, A. K. Sikder, *Indian J. Chem.*, **2005**, 44B, 2560–2563.
- [2] S. Iyer, K. Velicky, O. Sandus, J. Alster, *U.S. Army Armament Research, Development and Engineering Centre, Technical Report ARAED-TR-89010*, June **1989**.
- [3] F.Volk, H. Bathelt Propellants, Explosives, Pyrotechnics, 2002, 27, 136–141.
- [4] S. Zeman, A Study of Chemical Micro-Mechanisms of Initiation of Organic Polynitro Compounds, Ch. 2 in Energetic Materials, Part 2: Detonation, Combustion, P. A. Politzer, J. S. Murray (eds.), Theoretical and Computational Chemistry, Vol. 13, 2003, Elsevier, pp. 25–60.
- [5] H. H. Krause, *New Energetic Materials*, Ch. 1 in *Energetic Materials*, U. Teipel (ed.), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, **2005**, pp. 1–26.
- [6] S. Zeman, V. Pelikán, J. Majzlík, Central Europ. J. Energ. Mat., 2006, 3, 27-44.
- [7] M. H. Keshavarz, M. Hayati, S. Ghariban-Lavasani, N. Zohari, *ZAAC*, **2016**, *642*, 182–188.
- [8] M. Nita, R. Warchol, Journal of the Military Academy of Land Forces, 47, 2015, 69–80.
- [9] M. Pospíšil, P. Vávra, Study of Electron Density of Molecules, Intermolecular Forces and Impact Sensitivity of Explosives, in Final Proceedings for New Trends in Research of Energetic Materials, S. Zeman (ed.), NTREM 7, 20th–22nd April 2004, Pardubice, pp. 600–605.
- [10] A. Smirnov, O. Voronko, D. Lempert, T. Pivina, Forecast of Possibility for Practical Application of Energetic Materials, in Proceedings of New Trends in Research of Energetic Materials, NTREM 18, Pardubice, 15th–17th April 2015, p. 34–51.
- [11] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 230–233.

- [12] D. S. Watt, M. D. Cliff, Evaluation of 1,3,3-Trinitroazetidine (TNAZ) A High Performance Melt-Castable Explosive, DSTO-TR-1000, DSTO Aeronautical and Maritime Research Laboratory, PO Box 4331, Melbourne, Australia, July 2000.
- [13] H. S. Jadhav, M. B. Talawar, D. D. Dhavale, S. N. Asthana, V. N. Krishnamurthy, *Indian J. Chem. Technol.*, 2006, 13, 41–46.
- [14] R. L. Simpson, R. G. Garza, M. F. Foltz, D. L. Ornellas, P. A. Urtiew, Characterization of TNAZ, Energetic Materials Center, Lawrence Livermore National Laboratory, December 14th, 1994.
- [15] G. T. Long, C. A. Wright, J. Phys. Chem., 2002, 106B, 2791–2795.
- [16] Z. Jalový, S. Zeman, M. Sućeska, P. Vávra, K. Dudek, M. Rajić, J. Energet. Mater., 2001, 19, 219–239.
- [17] T. G. Archibald, R. Gilardi, K. Baum, C. George, J. Org. Chem., 1990, 55, 2920-2924.
- [18] K. Schmid, D. Kaschmieder, *Synthesis and Properties of TNAZ*, in *Proc. 31st Ann. Conf. ICT Karlsruhe*, Germany, June **2000**, pp. 10-1–10-12.
- [19] N. V. Kozyrev, Centr. Eur. J. Energet. Mater., 2015, 12, 651-669.
- [20] J. C. Oxley, J. L. Smith, E. Rogers, X. X. Dong, J. Energet. Mater., 2000, 18, 97–121.
- [21] J. Oxley, J. Smith, W. Zheng, E. Rogers, M. Coburn, J. Phys. Chem., 1997, 101A, 4375–4383.
- [22] A. Smirnov, S. Smirnov, V. Balalaev, T. Pivina, Calculation of Detonation Velocity and Pressure of Individual and Composite Explosives, NTREM 17, 9th-11th April 2014, pp. 24-37.
- [23] K. Dudek, P. Mareček, P. Vávra, Laboratory Testing of HNIW Mixtures, ICT 2000, Karlsruhe, Germany, pp. 110-1–110-6.
- [24] P. Politzer, J. S. Murray, High-Performance, Low Sensitivity: The Impossible (or Possible) Dream? in Energetic Materials From Cradle to Grave, M. K. Shukla, V. M. Boddu, J. A. Steevens, R. Damavarapu, J. Leszczynski (eds.), Springer Verlag, 2017, pp. 1–22.
- [25] F. Volk, H. Bathelt, Propellants, Explosives, Pyrotechnics, 2002, 27, 136-141.
- [26] P. Mareček, K. Dudek, P. Vávra, Laboratory Testing of TNAZ Mixtures, ICT 2001, Karlsruhe, Germany, pp. 90-1–90-8.
- [27] R. D. Chapman, J. W. Fronabarger, W. B. Sanborn, G. Burr, S. Knueppel, *Phase Behavior in TNAZ-Based and Other Explosive Formulations*, TPL-FR-2049, US Army Armament Research, Development and Engineering Center, Picatinny Arsenal, USA, September **1984**.
- [28] K. Dudek, P. Mareček, Z. Jalovy, Some Properties of Cast TNAZ Mixtures, ICT 2002, Karlsruhe, Germany, pp. 53-1–53-7.
- [29] V. V. Nedelko, B. L. Korsounskii, N. V. Chukanov, T. S. Larikova, N. N. Makhova, I. V. Ovchinnikov, *Thermal Decomposition of 1,3,3-Trinitroazetidine in Gas, Solution and Melt*, ICT **2006**, Karlsruhe, Germany, pp. 154-1–154-12.
- [30] D. S. Viswanath, T. K. Ghosh, V. M. Boddu, 1,3,3-Trinitroazetidine (TNAZ), Ch. 11 in Emerging Energetic Materials: Synthesis, Physicochemical, and Detonation Properties, Springer, 2018.
- [31] J. P. Agrawal, Propellants, Explosives, Pyrotechnics, 2005, 30, 316–328.
- [32] P. Samuels, K. Spangler, D. Iwaniuk, R. Cornell, E. L. Baker, L. I. Stiel, *Detonation Performance Analyses for Recent Energetic Molecules, AIP Conf. Proc.*, **1979**, 15003-1-150033-5.
- [33] L. G. Hill, W. L. Seitz, J. F. Kramer, D. M. Murk, R. S. Medina, Wedge Test Data for Three New Explosives: LAX112, 2,4-DNI and TNAZ, 1995 APS Topical Conference on "Shock Compression of Condensed Matter", Seattle, Washington, USA, August 13th–18th 1995.
- [34] A. Smirnov, O. Voronko, B. Korsunsky, T. Pivina, Chinese J. Expl. Prop., 2015, 38, 1-8.
- [35] V. V. Nedel'ko, B. L. Korsounskii, N. N. Makhova, N. V. Chukanov, T. S. Larikova, I. V. Ovchinnikov, V. A. Tartakovsky, Russ. Chem. Bull., Int. Ed., 2009, 58, 2028–2034.
- [36] A. P. Marchand, D. Rajagopal, S. G. Bott, T. G. Archibald, J. Org. Chem., 1995, 60, 4943-4946.
- [37] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248–258.

2,4,6-Trinitrobenzamide

Name [German, acronym]: 2,4,6-Trinitrobenzamide, trinitrobenzamide

Main (potential) use: explosive

	Trinitrobenzamide					
Formula	C ₇ H ₄ N ₄ O ₇					
Molecular mass [g mol ⁻¹]	256.13					
Appearance at RT	yellow crystals fro	yellow crystals from acetone/petroleum ether/benzene ^[2]				
IS [J]	62.8 cm (5 kg mas	62.8 cm (5 kg mass, AFATL) ^[3]				
N [%]	21.87		'			
Ω(CO ₂) [%]	-56.22	-56.22				
T _{m.p.} [°C]	264 (dec.) ^[2]	264 (dec.) ^[2]				
T _{dec.} [°C]						
ρ [g cm ⁻³]						
Heat of formation			,			
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.			
$-\Delta_{\rm ex}U^{\rm o}$ [k] kg ⁻¹]						
T _{ex} [K]						
p _{C-J} [kbar]						
VoD [m s ⁻¹]						
V ₀ [L kg ⁻¹]						
Dipole moment [D]	2.52 (calcd.) ^[3]					

	2,4,6-Trinitrobenzamide ^[1]
Chemical formula	$C_7H_4N_4O_7$
Molecular weight [g mol ⁻¹]	256.13
Crystal system	Orthorhombic
Space group	<i>Pbca</i> (no. 61)
a [Å]	9.248(3)
<i>b</i> [Å]	14.377(6)
c [Å]	17.729(4)
α[°]	90
β [°]	90
γ [°]	90
V [ų]	1,958(1)
Z	8
$ ho_{ m calc}$ [g cm ⁻³]	1.737
T[K]	295

- [1] A. L. Rheingold, C. J. Baldacchini, C. W. Grote, J. Crystallogr. Spectroscop. Res., 1989, 19, 25–37.
- [2] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, *vol. 2*, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [3] P. Politzer, Computational Studies of Polynitroaromatic Molecules and the Development of Sensitivity Relationships, AFATL-TR-90-66, Air Force Armament Laboratory, Florida, USA, October 1990.

Trinitrobenzene

Name [German, acronym]: 1,3,5-Trinitrobenzene, 2,4,6-trinitrobenzene,

sym-trinitrobenzene [trinitrobenzol, TNB, sym-TNB]

Main (potential) use: Stable secondary explosive with good performance but

economically not viable^[15], used in naval Ap shells in

World War I^[50]

Structural formula:*

* 3 isomers of TNB are known, most values given are for 1,3,5-TNB (in addition, 1,3,5-TNB exists in two isomorphic forms)^[34]:

1,3,5-Trinitrobenzene (sym-trinitrobenzene)

1,2,4-Trinitrobenzene

1,2,3-Trinitrobenzene

	TNB
Formula	$C_6H_3N_3O_6$
Molecular mass [g mol ⁻¹]	213.11
Appearance at RT	1,3,5-TNB: pale yellow crystals ^[34] , greenish-yellow leaflet crystals ^[35] , yellow cryst. solid ^[38] , 1,2,4-TNB: pale yellow crystals ^[34] , 1,2,3-TNB: pale yellow crystals ^[34] , 1,3,5-TNB exists in two isomorphic forms @ RT ^[34] , white platelets ^[50] , recryst. from EtOH as white platelets of rhombic shape ^[53] , orthorhombic bipyramidal plates from glacial acetic acid ^[60]
IS [J]	$ 24.52^{[4]}, 5.90 \text{ (first reaction)}^{[7]}, 24.64 \text{ (sound)}^{[7]}, 5.89^{[14]}, 17.40^{[14]}, \\ 11 \text{ in (P.A.)}^{[16]}, \text{FI} = 109\% \text{ PA}^{[16]}, H_{50\%} = 100 \text{ cm}^{[19, 32]}, H_{50} = 100 \text{ cm}^{[20]}, \\ 5.70 \text{ (Julius-Peters app.)}^{[21]}, 0.75 \text{ kp/m}^{[22]}, H_{50\%} = 100 \text{ cm}^{[22]}, \\ 24.64 \text{ (Bruceton method)}^{[30, 51]}, 50\% \text{ explosions require impact energy} \\ \text{of } 12.1 \text{ kg/cm}^{2[34]}, \text{ less impact sensitive than TNT}^{[35]}, H_{50\%} = 150 \text{ cm} \\ \text{(5 kg mass, contained in small iron 0.2 mm thick cap covered with} $

	small iron disc) ^[35] , 100 cm (50% initiation height) ^[37, 38] , 103 cm ^[38] , $H_{50} = 71$ cm $(17 \text{ J})^{[39]}$, 100 cm (Bruceton method, type 12 tool, 2.5 kg mass, 40 mg sample, 5/0 sandpaper, 25 trials) ^[40] , 100 cm (2.5 kg mass) ^[43] , 49.8 cm (2.5 kg mass, AFATL) ^[43] , $H_{50} = 71$ cm (2.5 kg mass, type 12 tool) ^[46] , $\log(H_{50}) = 2.000$ ($Kamlet/Adolph$) ^[47] , 1,610 mm (dropheight, Rotter impact test) ^[49] , 986 mm (dropheight, Rotter impact test +5% DETA) ^[49] , 46 cm (2 kg mass) ^[53] , $A_{d1} = 24\%$, $A_{d2} = 4\%$, $A_{50 d1} = 4.0$ m, $A_{50 d2} = 7.0$ ^[58] , $H_{50\%} = 71$ cm (2.5 kg mass) ^[62]			
FS [N]	$353^{[15]}$, $P_{fr.LL} = 650 \text{ MPa}^{[18, 58]}$, $P_{fr.50\%} = 900 \text{ MPa}^{[18, 58]}$			
ESD [J]	6.31 ^[4-6, 14, 63] , 108.2 r	nJ ^[5]		
N [%]	19.72			
Ω(CO ₂) [%]	-56.30			
T _{m.p.} [°C]	$121-122^{[1,35]}, 121-122.5 \text{ (stable form)}^{[16]}, 61 \text{ (unstable form)}^{[16]}, 120-122 \text{ (commercial TNB, mainly sym-TNB)}^{[16]}, 121^{[23,37,38]}, 121.3^{[23,42]}, 122.5^{[31,60]}, 122 (1,3,5-TNB)^{[34]}, 62 (1,2,4-TNB)^{[34]}, 127.5 (1,2,3-TNB)^{[34]}, 122.5 (1,3,5-TNB, isomorph 1)^{[34]}, 106.3 (1,3,5-TNB, isomorph-2)^{[34]}, 121 (Thomas Hoover Capillary Melting Point Apparatus @ 2 °C/min)^{[42]}, 122^{[48]}, 123-125 \text{ (freezing point)}^{[53]}$			
T _{b.p.} [°C]	315 ^[31] , 350 ^[33, 51] , 175 (@ 2 mm Hg) ^[36] , 250 (@ 50 mm Hg) ^[36] , 315 \pm 10 (@ 760 mm Hg) ^[36]			
T _{dec.} [K]	580 (DTA) ^[7, 21]			
ρ [g cm ⁻³]	1.69–1.73 (@ 293 K) ^[2] , 1.76 ^[15, 32] , 1.688 (@ 20 °C) ^[16] , ρ of compressed pellets ^[35] :			
	Pressure (kg/cm²)	ρ (g/cm ³)	Pressure (kg/cm²)	ρ (g/cm³)
	275	1.343	2,060	1.641
	685	1.523	2,750	1.654
	1375	1.620	3,435	1.662
	1.668 (crystal) ^[38] , 1.64 (exptl.) ^[37, 38] , 1.69 (100.0% TMD, pressed, @ loading pressure of 64,000 psi) ^[37] , 1.688 (TMD) ^[37] , 1.63 ^[48] , sp. gr. = 1.69 ^[53] , ρ practically attainable by pressing = 1.65 ^[53] , 1.68 ^[59] , d ²⁰ ₄ = 1.76 ^[60] , d ¹⁵² ₄ = 1.4775 ^[60]			
Heat of formation	$ -37.2 \text{ kJ/mol } (\Delta_{\rm f} H^{\rm o} (\rm s))^{[10]}, -204.2 \text{ kJ/kg } (\Delta_{\rm f} H^{\rm o} (\rm s), \text{ ICT thermochemical code})^{[3]}, -9.0 \text{ kcal/mol}^{[13]}, -8.9 \text{ kcal/mol } (\Delta_{\rm f} H (\rm s))^{[32]}, 21.1 \text{ kcal/mol } (1,3,5\text{-TNB})^{[34]}, 23.0 \text{ kcal/mol } (1,3,5\text{-TNB})^{[34]}, 10.8 \text{ kcal/mol } (1,2,4\text{-TNB})^{[34]}, -11.40 \text{ (exo) kcal/mol } (135\text{-TNB})^{[37,38]}, 23.5 \text{ kcal/kg}^{[52]}, -42.0 \text{ kcal/kg (enthalpy of form.})^{[41]}, -37.2 \text{ kJ/mol } (\Delta H_{\rm f})^{[59]} $			
Heat of combustion	665.6 kcal/mol $(Q_c)^{[16]}$ 665.6 kcal/mol $(1,3,5)$ 675.9 kcal/mol $(1,2,4)$	5-TNB) ^[34] , 667.	$(Q_{\rm c}^{\rm V})^{[16]}$, 3,099 kcal/k 1 kcal/mol (1,3,5-TNE	g (@ C ^V) ^[52] , 3) ^[34] ,

	Calcd.	Lit. values	Exptl.
	(EXPLO5 6.03)		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	4,701	5,682 (calcd., K-J) ^[10]	3,964 [H ₂ O (l)] ^[9, 15]
		2,937 (calcd., K-W) ^[10]	3,876 cal/kg [H ₂ O (g)] ^[13]
		3,862 (calcd. mod. K-W) ^[10]	1,100 cal/kg [H ₂ O (g)] ^[13]
		$Q_{\text{real}} = 4,540 \text{ MJ kg}^{-1[30]}$	1,063 cal/g ^[16]
		1.36 kcal/g (Q_{max} , calcd.) ^[32]	811 cal/g (Q, det. energy from aquarium
		1,065 kcal/kg (@ 1.63 g cm ⁻³) ^[34]	measurements)[38]
		(@ 1.05 g cm)	1,100 kcal/kg
		766 cal/g (@ 1.640 g cm ⁻³ , 92.7% TMD) ^[37]	(@ 1.660 g cm ⁻³) [H ₂ O vapor] ^[41]
		937 cal/g (calcd. based on heat of formation of TNB and detonation products) ^[38]	1,104 kcal/kg ^[53]
		937 cal/g (@ 1.6 g cm ⁻³ , calcd., Halford– Kistiakowsky– Wilson equation of state) ^[38]	
		3,963 (calcd., ICT-code) ^[3]	
		1,071 kcal/kg (@ 1.660 g cm ⁻³ , calcd.) [H ₂ O vapor] ^[41]	
		4,540 MJ•kg ⁻¹ (Q _{real} , calcd., semiempirical Pepekin method) ^[51]	
		5.34 MJ/kg (heat of explosion) ^[54]	
		$-\Delta H_{\text{det}} = 5.85 \text{ kJ/g}^{[59]}$	

T [V]	3 52/	3,540 °C (@ 1.63 g cm ⁻³) ^[34]	3,549 (max.) ^[16]
T _{ex} [K]	3,524	2,950 (@ 1.6 g cm ⁻³ , calcd., Halford– Kistiakowsky– Wilson equation of state) ^[38]	5,549 (IIIdX., ^ر)
	222	3,017 (calcd., ICT-code) ^[3]	219 ^[10, 27]
p _{C-J} [kbar]	220	215 (@ 1.64 g cm ⁻³ , calcd., K-J) ^[10] 228 (@ 1.64 g cm ⁻³ , calcd., K-W) ^[10] 228 (@ 1.64 g cm ⁻³ , calcd., mod. K-W) ^[10] 248 (@ 1.76 g cm ⁻³ , calcd.) ^[32]	219.2 ^[24]
		214 (@ 1.640 g cm ⁻³ , 92.7% TMD) ^[37] 181.4 (@ 1.6 g cm ⁻³ , calcd., Halford– Kistiakowsky– Wilson equation of state) ^[38] 119.6 MPa (calcd., ICT-code) ^[3]	
VoD [m s ⁻¹]	7,304 (@ 1.71)	7,170 (@ 1.64 g cm ⁻³ , calcd., K-J) ^[10] 7,380 (@ 1.64 g cm ⁻³ , calcd., K-W) ^[10] 7,390 (@ 1.64 g cm ⁻³ , calcd., mod. K-W) ^[10] 6,970 (@ 1.65 g cm ⁻³ , calcd., K-J) ^[25] 7,160 (@ TMD) ^[27] 7,400 (@ 1.65 g cm ⁻³ , average value from lit.) ^[16]	7,330 (@ 1.71 g cm ⁻³) ^[15] 7,270 (@ 1.64 g cm ⁻³) ^[8, 10] 7,450 (@ 1.60 g cm ⁻³) ^[12] 7,000 (@ 1.64 g cm ⁻³) ^[16] 7,350 (@ 1.60 g cm ⁻³ , in 20 mm diameter paper cartridge) ^[16] 7,350 (@ 1.66 g cm ⁻³) ^[16]

7,270 (@ TMD, calcd. R-P method) ^[26] 7,510 (@ TMD, calcd., K-J) ^[30] 7,530 (@ 1.76 g cm ⁻³ , calcd.) ^[32] 7,270 (@ TMD) 3,990 (@ 0.7 g cm ⁻³) ^[34] 7,270 (@ TMD) 3,990 (@ 0.7 g cm ⁻³) ^[34] 7,287 (calcd. b sand test) ^[16] 7,082 (@ 1.6 g cm ⁻³ , calcd., Halford– Kistiakowsky– Wilson equation of state) ^[38] 7,347 (column pellets, 20 mm weighing 8 g e 1.641 or 1.662 paper cartridge initiator = MF a dynamite, Dau	
calcd., K-J) ^[30] measured as fu of charge ρ , Da method) ^[35, 38] 7,270 (@ TMD) 3,990 (@ 0.7 g cm ⁻³), 287 (calcd. b sand test) ^[16] 7,269 (@ 1.640 g cm ⁻³ , 92.7% TMD) ^[37, 38] 7,269 (@ 1.6 g cm ⁻³ , calcd., Halford– Kistiakowsky– Wilson equation of state) ^[38] 7,347 (column pellets, 20 mm weighing 8 g e 1.641 or 1.662 paper cartridge initiator = MF a	
7,530 (@ 1.76 g cm ⁻³ , calcd.) ^[32] 3,990 (@ 0.7 g cm ⁻³) ^[34] 7,287 (calcd. b sand test) ^[16] 7,082 (@ 1.6 g cm ⁻³ , calcd., Halford– Kistiakowsky– Wilson equation of state) ^[38] 7,347 (column pellets, 20 mm weighing 8 g e 1.641 or 1.662 paper cartridge initiator = MF a	function
3,990 (@ 0.7 g cm ⁻³)[³⁴] 7,287 (calcd. b 7,269 (@ 1.640 g cm ⁻³ , 92.7% TMD)[^{37, 38}] 7,269 (@ 1.644 7,082 (@ 1.6 g cm ⁻³ , calcd., Halford— Kistiakowsky— Wilson equation of state)[³⁸] 7,347 (column pellets, 20 mm weighing 8 g e 1.641 or 1.662 paper cartridge initiator = MF a	
7,269 (@ 1.640 g cm ⁻³ , 92.7% TMD) ^[37, 38] 7,269 (@ 1.640 g cm ⁻³ , 269 (@ 1.644 7,082 (@ 1.6 g cm ⁻³ , calcd., Halford— Kistiakowsky— Wilson equation of state) ^[38] 7,347 (column pellets, 20 mm weighing 8 g e 1.641 or 1.662 paper cartridge initiator = MF a)) ^[27]
92.7% TMD) ^[37, 38] 7,269 (@ 1.644 7,082 (@ 1.6 g cm ⁻³ , calcd., Halford— Kistiakowsky— Wilson equation of state) ^[38] 7,347 (column pellets, 20 mm weighing 8 g e 1.641 or 1.662 paper cartridge initiator = MF a	based on
7,082 (@ 1.6 g cm ⁻³ , calcd., Halford— Kistiakowsky— Wilson equation of state) ^[38] 7,300 (@ 1.71 g 7,347 (column pellets, 20 mm weighing 8 g e 1.641 or 1.662 paper cartridge initiator = MF a	
calcd., Halford— Kistiakowsky— Wilson equation of state) ^[38] 7,300 (@ 1.71 g 7,347 (column pellets, 20 mm weighing 8 g e 1.641 or 1.662 paper cartridge initiator = MF a	14 g cm ⁻³) ^[24]
state) ^[38] 7,347 (column pellets, 20 mm weighing 8 g e 1.641 or 1.662 paper cartridge initiator = MF a	5 g cm ⁻³) ^[22]
7,347 (column pellets, 20 mm weighing 8 g e 1.641 or 1.662 paper cartridge initiator = MF a	g cm ⁻³) ^[30, 51]
weighing 8 g e 1.641 or 1.662 paper cartridge initiator = MF a	
1.641 or 1.662 paper cartridge initiator = MF a	
initiator = MF a	
	•
see extra table section	e at end of
$V_0 \text{ [L kg}^{-1]}$ 637 670 (@ 1.63 g cm ⁻³) ^[34] 805 ^[11, 15]	
0.4837 cm³/g (@ 1.6 g cm⁻³, calcd., Halford–Kistiakowsky– Wilson equation of state) ^[38]	

Critical diameter [cm]	Data from ^[56] :					
	ρ_0 (g/cc)	% TMD	d _c (cm)			
	1.64	97.2≤0.3	≤0.3			
Trauzl test [cm³, % TNT]	111% TNT ^[16] , 108% PA ^[16] , 330 cc ^[28, 34] , 108–111% PA ^[34] , 325 cc/10 g ^[22] , 105–120% TNT ^[16] , 480 cc (15 g TNB) ^[35] , 325 ^[57] , 386 ^[57]					
Sand test [g]	110% TNT ^[16] ,	43.2 g sand crı	ushed (1,700	g bomb, 0.4 g TNB) ^[16]		

Ballistic mortar test	105–117% TNT ^[16] , more powerful, more brisant than TNT ^[35]								
SSGT [cm]	P_{90} = 14.96 kbar (P_{90} = pressure to 90% of TMD, NSWC small-scale gap test) ^[40] TNB TMD = 1.69, (1) = no mixed response zone, (2) = experimental error, data from ^[45] :								
	Loading	Density (g/cm³)	% TM	D		Sensitiv	ity (DBG)	
	pressure (kpsi)	AVG.	S			AVG.	g	S _m	N
	4	1.239	0.007	73.3		3.587	_	_	19 (1)
	8	1.390	0.008	82.2		3.848	0.2588	0.1648	20
	16	1.547	0.005	91.5		5.118	0.0094	0.0075	20
	32	1.647	0.003	97.5		6.102	0.0888	0.0502	20
	64	1.692 (2)	0.003	100.1 8.646 0.1600 0.092			0.0925	29	
Small-scale gap (booster)	Pressed TNB, values from ^[37] , $DB_g = 30-10 \log (\text{test gap/ref. gap})^{[37]}$:						:		
sensitivity test		@ 93%]	ΓMD				@ 95%	TMD	
	DBg	Lucite	gap (mils)	D	Bg	Lucite	gap (mil	s)
	5.2	303			5.	.7	269		
5 s explosion T [°C] Explosion T [°C] 5 s ignition T [°C] Ignition T [°C]	520 ^[16, 38] 550 ^[24, 44] 347 (calcd. based on exptl. bpt.) ^[30, 51] , 363 (calorimetric measured) ^[44]								
Thermal stability [°C]	283 (threshold of thermal stability) $^{[51]}$, can be sublimed on careful heating but explodes if rapidly heated $^{[60]}$								
Vacuum stability test [cm³/h]	0.046 cc/5 g in 48 h @ 120 °C ^[16] , <0.10 cc/g/h (average for 2 h exposure) @ 260 °C ^[37] , 0.0 cm ³ /g/48 h @ 100 °C ^[38] , <0.10 cm ³ /g/h @ 260 °C (2 h exposure) ^[38]								
Vapor pressure [atm. @ °C]	2.2 × 10 ⁻¹⁴	⁴ Torr @ 20	°C ^[31] , 3.	03 × 10	-6 T	orr @ 2	5 °C ^[48]		

Solubility [g/mL]

34 mg/L H_2O @ 20 °C^[31], moderately soluble in hot EtOH^[35], more soluble in acetone, Et₂O, benzene^[35], aqueous solubility = ~ 385 mg/L @ 25 °C^[48]

Solubility (g) of sym-TNB in 100 g solvent[34]:

Solvent		<i>T</i> (°C)	,
	17	50	100
MeOH	3.76	7.62	-
EtOH	2.09	4.57	-
Et ₂ O	1.70	2.72 (@ 32 °C)	-
Acetone	59.11	160.67	-
CS ₂	0.24	0.44 (@ 33 °C)	-
CHCl ₃	6.24	18.42	-
Benzene	6.18	25.70	-
Toluene	11.86	46.31	-
Pyridine	112.60	194.23	-
Ethyl acetate	29.83	52.40	-
H ₂ O	0.03	0.10	0.50

Best solvents for TNB are pyridine and acetone^[53]

Solubility of TNB (g) in 100 g solvent @ $T({}^{\circ}C)^{[53]}$:

Solvent	Solubili	ty of TNB (g) in 100 g	solvent
	17 °C	50 °C	100 °C
Pyridine	112.60	194.23	_
Acetone	59.11	160.67	_
Ethylacetate	29.83	52.40	_
Toluene	11.86	46.31	_
Benzene	6.18	25.70	-
Chloroform	6.24	18.42	_
Methanol	3.76	7.62	_
Ethanol	2.09	4.57	_
Ether	1.70	2.72 @ 32 °C	-
Carbon disulfide	0.24	0.44 @ 33 °C	-
Water	0.03	0.10	0.50

	Solubility of TNB in sulfuric acid ^[53] :					
	T (°C)	% Solu	bility of TNB	in sulfuric aci	d (strength	in %)
		70%	70% 80%		10	0%
	25	0.5	1.05	7.8	21	.5
	40	0.75	1.75	8.6	24	.0
	50	0.9	1.9	11.3	26	.5
	60	1.15	2.3	11.65	28	.0
	70	1.2	2.95	12.05	32	.0
	80	1.5	3.75	14.75	34	.3
	90	2.0	4.15	17.75	37	.0
	100	25	5.90	21.30	42	.4
Compatibility	MeOH ^[60] , 1.9 ether ^[60] , free Does not rea of bases ^[53] , 1	100 g solvent D in EtOH ^[60] , 1 ely soluble in d ct with metals reduction by S zers to PA ^[53] , r	.5 in Et ₂ O ^[60] , lilute Na ₂ SO ₃ or oxides the n in hydroch	0.25 in CS ₂ ^[60] soln. ^[60] ereof ^[53] , react loric acid occu	o.05 in p s with alco	etrol holic solns.
Dipole moment [D]	-	[43], 0.00 (expt		aseous Nn ₃ @	Liver	
Plate push value	2,946 ft/s @ 2,841 ft/s @	98% TMD (ca 93% TMD (ca eter < 0.3 cm ^[37]	lcd. from mea			
Wedge test		ck TNB pellets o				
	Brass thickness (cm)	Initial shock velocity H.E. (m/s)	Initial particle velocity H.E. (m/s)	Initial shock pressure H.E. (<i>V</i> , <i>V</i> ₀)	$ ho_0$ H.E. (g/cm^3)	D (final) (m/s)
	1.27	(Only reactive shock was observed) 1.372 6,400				
ΔH _{sub} [kJ/mol]	107.3 (exptl.) ^[45] , 99.2 (cal	cd., QSPR) ^[45]			
Diffusion coefficient [cm ² /s]	0.68 (air) ^[48] , 7.20 × 10 ⁻⁶ (water) ^[48]					
Heat of fusion [cal/g]	16.0 ^[48]					

Log K _{ow}	1.18 ^[48]	1.18 ^[48]					
Log K _{oc}	1.30 ^[48]						
Biodegradation	TNB found to persist in soils and wastewater lagoon sediments years after a production facility became redundant ^[48] , under certain conditions TNB found to be not biodegradable ^[48]						
Fugacity	325 cc ^[53]						
Brisance (Kast)	4.7 mm ^[53]						
Closed vessel test	by piston and 2,205 kg/cm loading $\rho = 0$. Pressure = 3,	Gas pressure (exptl.) by explosions in small bomb, pressure measured by piston and obturator ^[29, 35] : loading ρ = 0.20 g cm ⁻³ , pressure = 2,205 kg/cm ^{2[29, 35]} , loading ρ = 0.25 g cm ⁻³ , pressure = 3,050 kg/cm ^{2[29, 35]} , loading ρ = 0.30 g cm ⁻³ , pressure = 4,105 kg/cm ^{2[29, 35]} Pressure = 3,925 kg/cm ² (@ 0.3 g cm ⁻³ , manometric bomb) ^[35] Explosion T = 2,356 °C (@ 0.3 g cm ⁻³ , manometric bomb) ^[35]					
Radiation sensitivity	Data from ^[61] :			_			
	Exposure	Tota	l dose (R)	L	Vacuum st		
	rate (R/h)			ı	00 °C c/g/40 h)	200 °C (cc/.2 g/2 h)	
	9.2 × 10 ⁵	Cont	rol	0.	46	0.08	
		1.5	< 10 ⁷	0.	24	0.22	
		1.3	< 10 ⁸			0.39	
		1.0 >	< 10 ⁹	4.	10	1.45	
	DTA for irradiated explosives @ 20 °C/min ^[61] :						
	Total dose (R)			End	otherms	
					rst	Se	cond
		Onset (°C		<u> </u>	Peak (°C)	Onset (°C)	Peak (°C)
	0	110			121	325	352
	1.5 × 10 ⁷		100		119	337	347, 351
	1.3 × 10 ⁸		100		120	325	356, 361
	1.0 × 10 ⁹		90		112	300	345

TGA for irradiated explosives^[61]:

Total dose (R)	Heating rate (°C/min)	Weight (mg)	Start of dec (°C)	10% weight loss T (°C)	Total weight loss (%)
0	20	6.2	155	218	97 @ 285 °C
1.5 × 10 ⁷	20	8.3	155	208	95 @ 265 °C
1.3 × 10 ⁸	20	8.5	150	209	97 @ 275 °C
1.0 × 10 ⁹	20	7.4	125	180	97 @ 245 °C
0	10	8.3	130	188	94 @ 245 °C
1.5 × 10 ⁷	10	8.2	135	192	97 @ 247 °C
1.3 × 10 ⁸	10	8.75	130	189	99 @ 250 °C
0	50	8.0	175	248	95% @ 325 ℃
1.5 × 10 ⁷	50	8.2	160	236	98 @ 305 °C
1.3 × 10 ⁸	50	8.1	160	232	96 @ 300 °C
0	80	9.2	195	267	96 @ 355 °C
1.5 × 10 ⁷	80	8.7	175	251	97 @ 330 °C
1.3 × 10 ⁸	80	7.9	170	242	95 @ 320 °C

Effect of gamma radiation on the mpt. and color^[61]:

Total dose (R)	mpt. (°C)	Color
0	120	Pale yellow
1.5 × 10 ⁷	120	Yellow
1.3 × 10 ⁸	120	Yellow
1.0 × 10 ⁹	113	Brown

IS for irradiated explosives, 50% fire height in inches, Bruceton method (P.A. apparatus, 2 kg mass) $^{[61]}$:

Total Co ⁶⁰ gamma dose (R)	\bar{X} mean (in)	σ std. dev. (in)
0	23.26	4.58
1.5 × 10 ⁷	18.5	2.96
1.3 × 10 ⁸	20.5	1.89
1.0 × 10 ⁹	32.5	4.15

Effect of gamma radiation on explosion T (5 s explosion T in $^{\circ}$ C) and activation energy (kcal/mol)^[61]:

Total dose (R)	5 s explosion T (°C)	Apparent activation energy (kcal/mol)
0	452	24.86
0.5 × 10 ⁷	434	42.28
1.3 × 10 ⁸	458	19.47

Effect of gamma radiation on rates of detonation^[61]:

Total dose (R)	Density (g/cc)	Density after irradiation (g/cc)	Rate of detonation (m/s)	Detonation pressure (kbar)	
0	1.65	-	7,150	211	
1.0 × 10 ⁷	1.65	1.63	7,115	206	
1.0 × 10 ⁸	Pellets crumbled				

	TNB ^[2]	TNB ^[2]	TNB ^[2]	TNB ^[17]
Chemical formula	C ₆ H ₃ N ₃ O ₆	C ₆ H ₃ N ₃ O ₆	C ₆ H ₃ N ₃ O ₆	C ₆ H ₃ N ₃ O ₆
Molecular weight [g mol ⁻¹]	213.11	213.11	213.11	213.11
Crystal system	Orthorhombic	Orthorhombic	Monoclinic	Orthorhombic
Space group	<i>P b c a</i> (no. 61)	P c a 2 ₁ (no. 29)	P2 ₁ /c (no. 14)	<i>P b c a</i> (no. 61)
a [Å]	12.587(11)	9.2970(19)	12.896(5)	9.78(1)
<i>b</i> [Å]	9.684(9)	18.730(4)	5.723(2)	26.94(1)
c [Å]	26.86(2)	9.6330(19)	11.287(5)	12.82(1)
α [°]	90	90	90	90
β [°]	90	90	98.190(8)	90
γ[°]	90	90	90	90
<i>V</i> [Å ³]	3,274(5)	1,677.4(6)	824.5(6)	3,377.73
Z	16	8	4	16

$ ho_{ m calc}$ [g cm ⁻³]	1.729	1.688	1.717	1.676
<i>T</i> [K]	183	120	183	295
				Neutron diffraction

- [1] R. L. Atkins, A. T. Nielsen, C. Bergens, J. Org. Chem., 1984, 49, 503–507.
- [2] P. K. Thallapally, R. K. R. Jetti, A. K. Katz, H. L. Carell, K. Singh, K. Lahiri, S. Kotha, R. Boese, G. R. Desiraju, *Angew. Chem. Int. Ed.*, 2004, 43, 1149–1155.
- [3] F. Volk, H. Bathelt *Propellants, Explosives, Pyrotechnics*, **2002**, *27*, 136–141.
- [4] S. Zeman, A Study of Chemical Micro-Mechanisms of Initiation of Organic Polynitro Compounds, Ch. 2 in Energetic Materials, Part 2: Detonation, Combustion, P. A. Politzer, J. S. Murray (eds.), Theoretical and Computational Chemistry, Vol. 13, 2003, Elsevier, pp. 25–60.
- [5] S. Zeman, J. Majzlík, Central Europ. J. Energ. Mat., 2007, 4, 15-24.
- [6] M. H. Keshavarz, Z. Keshavarz, ZAAC, 2016, 642, 335-342.
- [7] S. Zeman, Study of the Impact Reactivity of Polynitro Compounds Part IV. Allocation of Polynitro Compounds on the Basis of Their Impact Sensitivities, in Proceedings of New Trends in Research of Energetic Materials, NTREM 5, April 24th–25th 2002, pp. 435–443.
- [8] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2012**, *37*, 489–497.
- [9] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2008**, *33*, 448–453.
- [10] P. Politzer, J. S. Murray, Centr. Eur. J. Energ. Mater., 2014, 11, 459-474.
- [11] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [12] P. W. Cooper, Explosives Engineering, Wiley-VCH, New York, 1996.
- [13] A. Smirnov, M. Kuklja, On the Use of Heat of Explosion for Blast Action Estimate. Individual Explosives and their Mixtures, in Proceedings of the 20th Seminar on New Trends in Research of Energetic Materials, Pardubice, April 26th–28th, 2017, pp. 381–392.
- [14] N. Zohari, S. A. Seyed-Sadjadi, S. Marashi-Manesh, *Central Eur. J. Energ. Mater.*, **2016**, *13*, 427–443.
- [15] R. Meyer, J. Köhler, A. Homburg, *Explosives*, 7th edn., Wiley-VCH, Weinheim, **2016**, pp. 358–360.
- [16] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1962.
- [17] C. S. Choi, J. E. Abei, Acta Cryst., 1972, B28, 193–201.
- [18] A. Smirnov, O. Voronko, B. Korsunsky, T. Pivina, Huozhayo Xuebao, 2015, 38, 1-8.
- [19] M. J. Kamlet, H. G. Adolph, *Propellants and Explosives*, 1979, 4, 30–34.
- [20] T. B. Brill, K. J. Jones, *Kinetics and Mechanisms of Thermal Decomposition of Nitroaromatic Explosives*, WL-TR-93-7058, December **1993**.
- [21] S. Zeman, M. Krupka, Propellants, Explosives, Pyrotechnics, 2003, 28, 249-253.
- [22] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 9, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1980.
- [23] E. G. Kayser, J. Energet. Mater., 1983, 1:3, 251-273.
- [24] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1969.
- [25] B. M. Dobratz, Properties of Chemical Explosives and Explosive Simulants, UCRL-5319, LLNL, December 15th 1972.
- [26] L. R. Rothstein, R. Petersen, *Propellants and Explosives*, 1979, 4, 56–60.

- [27] L. R. Rothstein, R. Petersen, Predicting High Explosive Detonation Velocities From Their Composition and Structure, NWSY TR 78–3, September 1978.
- [28] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 7, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1975**.
- [29] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1974**.
- [30] S. Zeman, M. Roháč, Chinese J. Energet. Mater., 2006, 14, 361-366.
- [31] S. Thiboutot, G. Ampleman, P. Dubré, J. Hawari, T. F. Jenkins, M. E. Walsh, Protocol for the Characterization of Explosives-Contaminated Sites, ICT 1998, Karlsruhe, Germany, pp. 127-1–127-14.
- [32] P. Politzer, J. S. Murray, High-Performance, Low Sensitivity: The Impossible (or Possible) Dream? in Energetic Materials From Cradle to Grave, M. K. Shukla, V. M. Boddu, J. A. Steevens, R. Damavarapu, J. Leszczynski (eds.), Springer-Verlag, 2017, pp. 1–22.
- [33] S. Zeman, M. Roháč, Chinese J. Energet. Mater., 2006, 14, 361-366.
- [34] T. Urbański, Ch. 7 in Chemistry and Technology of Explosives, vol. 1, 1964, Pergamon Press, Oxford.
- [35] T. L. Davis, The Chemistry of Powder and Explosives, vol. 1, 1941, John Wiley and Sons Inc., New York.
- [36] T. L. Davis, The Chemistry of Powder and Explosives, vol. 2, 1943, John Wiley and Sons Inc., New York.
- [37] M. F. Murphy, N. L. Coleburn, *A Preliminary Investigation of TACOT, A New Heat Resistant Explosive*, NOLTR 61–155, US Naval Ordnance Laboratory, USA, May **1961**.
- [38] N. L. Coleburn, B. E. Drimmer, *The Explosive Properties of the Amino-Substituted Symmetrical Trinitrobenzenes*, NOLTR 63–81, US Naval Ordnance Laboratory, USA, May **1961**.
- [39] P. Politzer, J. S. Murray, *Some Perspectives on Sensitivity to Initiation of Detonation*, Ch. 3 in *Green Energetic Materials*, T. Brinck (ed.), Wiley, **2014**, p. 48.
- [40] P. Politzer, J. S. Murray, Computational Studies of Energetic Organic Molecules, AD-A274 726, ONR Technical Report, December 27th 1993.
- [41] A. Smirnov, M. Kuklja, M. Makhov, V. Pepkin, *Methodical Problems of Experimental Definition of Heat Of Explosive Transformation*, ICT **2017**, Karlsruhe, Germany, pp. 15-1–15-11.
- [42] E. G. Kayser, *Analysis Methods For Explosive Materials I. Polynitro Compounds*, NSWC TR 81–123, Naval Surface Weapons Center, Maryland, USA, 3rd March **1962**.
- [43] P. Politzer, Computational Studies of Polynitroaromatic Molecules and the Development of Sensitivity Relationships, AFATL-TR-90-66, Air Force Armament Laboratory, Florida, USA, October 1990.
- [44] V. B. Zabrodin, Y. A. Kulagin, P. N. Stolyarov, P. A. Vlasov, *Devices for Analyzing Explosion Hazards*, ICT 2002, Karlsruhe, Germany, pp. 69-1–69-13.
- [45] H. W. Lee, K.-H. Chung, S. G. Cho, B.-S. Lee, C. K. Kim, *Predictive Studies on Various Physicochemical Properties of Explosive Molecules*, ICT **2006**, Karlsruhe, Germany, pp. 177-1–177-12.
- [46] W.-P. Lai, P. Lian, B.-Z. Wang, Z.-X. Ge, J. Energet. Mater., 2010, 28, 45–76.
- [47] N. R. Badders, C. Wei, A. A. Aldeeb, W. J. Rogers, M. S. Mannan, J. Energet. Mater., 2006, 24, 17–33.
- [48] E. P. Burrows, D. H. Rosenblatt, W. R. Mitchell, D. L. Parmer, Organic Explosives and Related Compounds: Environmental and Health Considerations, Technical Report 8901, US Army Biomedical Research and Development Laboratory, Frederick, MD, USA, March 1989.
- [49] J. Connor, Chemical Sensitization in Nitro, Nitramine and Nitrate Explosives, in Chemistry and Physics of Energetic Materials, NATO ASI Series, Kluwer Academic Publishers, vol. 309, Suraya N. Bulusu (ed.), 1990.

- [50] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [51] S. Zeman, Z. Friedl, M. Roháč, Thermochim. Acta, 2006, 451, 105-114.
- [52] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part III, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [53] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part II, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [54] N. Kubota, Propellants and Explosives Thermochemical Aspects of Combustion, Wiley-VCH, 2002.
- [55] J. N. Ayres, L. J. Montesi, R. J Bauer, Small Scale Gap Test (SSGT) Data Compilation: 1959–1972. Volume I. Unclassified Explosives, AD-773 743, Naval Ordnance Laboratory, Maryland, USA, 26th October 1973.
- [56] D. Price, A. R. Clairmont, J. O. Erkman, The NOL Large Scale Gap Test. III. Compilation of Unclassified Data and Supplementary Information for Interpretation of Results, AD-780 429, Naval Ordnance Laboratory, White Oak, Maryland, USA, 8th March 1974.
- [57] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [58] A. Smirnov, O. Voronko, B. Korsunsky, T. Pivina, Chinese J. Expl. Prop., 2015, 38, 1-8.
- [59] C. B. Storm, J. R. Travis, Molecular Composition, Structure, and Sensitivity of Explosives, in Structure and Properties of Energetic Materials, D. H. Liebenberg, R. W. Armstrong, J. J. Gilman, (eds.), Symposium, Boston, Massachusetts, USA, 30th November–2nd December 1992, Materials Research Society Symposium Proceedings, 1993, vol. 296, Materials Research Society, Pittsburg, Pennsylvania, USA, pp. 25–34.
- [60] The Merck Index An Encyclopedia of Chemicals and Drugs, 9th edn., M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig (eds.), Merck and Co. Inc., Rahway, New Jersey, USA, 1976.
- [61] L. Avrami, H. J. Jackson, M. S Kirshenbaum, *Radiation-Induced Changes in Explosive Materials*, AD-775 371, Picatinny Arsenal, Dover, New Jersey, USA, December **1973**.
- [62] C. K. Kim, S. G. Cho, J. Li, C. K. Kim, H. W. Lee, Bull. Korean Chem. Soc., 2011, 32, 4341–4346.
- [63] L. Turker, Electrostatic Discharge and Energetic Materials, To Chemistry Journal, 2019, 2, 72–114.

Trinitrobenzoic acid

Name [German, acronym]: 2,4,6-Trinitrobenzoic acid [trinitrobenzoesäure, TNBA]

Main (potential) use: salts as primary explosives

$$O_2N$$
 NO_2
 NO_2

	Trinitrobenzoic acid
Formula	$C_7H_3N_3O_8$
Molecular mass [g mol ⁻¹]	257.11
Appearance at RT	Orthorhombic crystals from water ^[22]
IS [J]	10 Nm ^[9] , 26.82 ^[4] , 8.28 (first reaction) ^[5, 12, 16] , 26.82 (sound) ^[5, 16] , log $H_{50\%} = 2.04^{[8]}$, comparable to TNT ^[10] , $H_{50\%} = 109$ cm ^[12, 13, 15] , 109 cm (Bruceton method, type 12 tool, 2.5 kg mass, 40 mg sample, 5/0 sandpaper, 25 trials) ^[17] , 109 cm (2.5 kg mass) ^[18] , 91.4 cm (2.5 kg mass, AFATL) ^[18] , $H_{50} = 109$ cm (2.5 kg mass, type 12 tool) ^[19] , $\log(H_{50}) = 2.037$ (Kamlet/Adolph) ^[20]
FS [N]	353 ^[9]
N [%]	16.34
Ω(CO ₂) [%]	-46.67
T _{m.p.} [°C]	228.7 ^[1, 22] , 228.5–229 (dec.) ^[10]
T _{dec.} [°C]	504 K (DTA onset) ^[16]
ρ [g cm ⁻³]	1.870 (@ 293 K) ^[2] , 1.786 ^[15]
Heat of formation	$-409.7 \text{ kJ/mol } (\Delta_f H^o (s))^{[3]}, -1,567 \text{ kJ/kg (enthalpy of form.)}^{[9]}, 95.1 \text{ kcal/mol } (Q_f^V)^{[10]}, -97.9 \text{ kcal/mol } (\Delta_f H (s))^{[15]}$
Heat of combustion	–2,773.7 kJ/mol (Δ _c H°) ^[3]

	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	4,110	1.15 kcal/g (<i>Q_{max}</i> , calcd.) ^[15]	667.7 kcal mol ⁻¹ $(Q_e^{\text{v}})^{[10]}$ 3,008 [H ₂ O (I)] ^[6, 9] 2,929 [H ₂ O (g)] ^[9]
T _{ex} [K]	3,139		
p _{C-J} [kbar]	241	239 (@ 1.786 g cm ⁻³ , calcd.) ^[15]	
VoD [m s ⁻¹]	7,558 (@ TMD)	7,350 (@ 1.786 g cm ⁻³ , calcd.) ^[15]	
V ₀ [L kg ⁻¹]	593		809 ^[7]

Trauzl test [cm³, % TNT]	283 cm ^{3[21]}
Ballistic mortar test	98% TNT ^[10]
Thermal stability	Sublimes with dec. ^[22]
Solubility [g/mL]	2.05% w/w in H_2O @ $25^{o[22]},26.6\%$ w/w in EtOH @ $25^{o[22]},14.7\%$ w/w in Et_2O @ $25^{o[22]},soluble$ in acetone, MeOH $^{[22]},slightly$ soluble in benzene $^{[22]}$
Dipole moment [D]	1.15 (calcd.) ^[18]

	TNBA ^[14]
Chemical formula	$C_7H_3N_3O_8$
Molecular weight [g mol ⁻¹]	257.11
Crystal system	Orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a [Å]	6.553(1)
<i>b</i> [Å]	11.405(2)
c [Å]	12.796(2)
α [°]	90
β [°]	90

γ[°]	90
<i>V</i> [Å ³]	956.334
Z	4
$ ho_{ m calc}$ [g cm $^{-3}$]	1.786
τ[K]	295

- [1] L. Desvergnes, Monit. Sci. Doct. Quesneville, 1926, 16, 201–208.
- [2] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© **1994–2017** ACD/Labs).
- [3] P. J. Linstrom, W. G. Mallard, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, July 2001, National Institute of Standards and Technology, Gaithersburg, MD, 2014, 20899, webbook.nist.gov.
- [4] S. Zeman, A Study of Chemical Micro-Mechanisms of Initiation of Organic Polynitro Compounds, Ch. 2 in Energetic Materials, Part 2: Detonation, Combustion, P. A. Politzer, J. S. Murray (eds.), Theoretical and Computational Chemistry, Vol. 13, 2003, Elsevier, pp. 25–60.
- [5] S. Zeman, Study of the Impact Reactivity of Polynitro Compounds Part IV. Allocation of Polynitro Compounds on the Basis of their Impact Sensitivities, in Proceedings of New Trends in Research of Energetic Materials, NTREM 5, April 24th–25th 2002, pp. 434–443.
- [6] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2008**, *33*, 448–453.
- [7] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [8] H. Nefati, J.-M. Cense, J.-J. Legendre, J. Chem Inf. Comput. Sci., 1996, 36, 804–810.
- [9] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 360.
- [10] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [11] S. Zeman, M. Krupka, Propellants, Explosives, Pyrotechnics, 2003, 28, 249–255.
- [12] M. J. Kamlet, H. G. Adolph, Propellants and Explosives, 1979, 4, 30-34.
- [13] S. M. Kaye, *Encyclopedia of Explosives and Related Items*, vol. 9, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1980**.
- [14] A. L. Rheingold, C. J. Baldacchini, C. W. Grote, J. Crystallogr. Spectroscopic Res., 1989, 19, 25-37.
- [15] P. Politzer, J. S. Murray, High-Performance, Low Sensitivity: The Impossible (or Possible) Dream? in Energetic Materials From Cradle to Grave, M. K. Shukla, V. M. Boddu, J. A. Steevens, R. Damavarapu, J. Leszczynski (eds.), Springer Verlag, 2017, pp. 1–22.
- [16] S. Zeman, *Propellants, Explosives, Pyrotechnics*, **2003**, *28*, 308–313.
- [17] P. Politzer, J. S. Murray, Computational Studies of Energetic Organic Molecules, AD-A274 726, ONR Technical Report, December 27th 1993.
- [18] P. Politzer, Computational Studies of Polynitroaromatic Molecules and the Development of Sensitivity Relationships, AFATL-TR-90-66, Air Force Armament Laboratory, Florida, USA, October 1990.
- [19] W.-P. Lai, P. Lian, B.-Z. Wang, Z.-X. Ge, J. Energet. Mater., 2010, 28, 45-76.
- [20] N. R. Badders, C. Wei, A. A. Aldeeb, W. J. Rogers, M. S. Mannan, J. Energet. Mater., 2006, 24, 17–33.
- [21] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [22] The Merck Index An Encyclopedia of Chemicals and Drugs, 9th edn., M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig (eds.), Merck and Co. Inc., Rahway, New Jersey, USA, **1976**.

2,4,6-Trinitrobenzyl nitrate

Name [German, acronym]: Main (potential) use:

Structural formula:

2,4,6-Trinitrobenzyl nitrate [TNBzIN]

high explosive

	TNBzIN			
Formula	C ₇ H ₄ N ₄ O ₉	$C_7H_4N_4O_9$		
Molecular mass [g mol ⁻¹]	288.13	288.13		
Appearance at RT				
IS [J]	Less sensitive th	an PETN ^[1]		
FS [N]	Less sensitive th	an RDX ^[1]		
N [%]	19.44			
Ω(CO ₂) [%]	-38.9			
T _{m.p.} [°C]	118.5-119.5[1]		'	
T _{dec.} [°C]				
$ ho$ [g cm $^{-3}$]	1.5 (cryst.) ^[1]	1.5 (cryst.) ^[1]		
Heat of formation	27.8 kcal/mol (Δ	27.8 kcal/mol $(\Delta_l H)^{[1]}$		
Heat of combustion	769.8 kcal/mol (769.8 kcal/mol (Δ _c H) ^[1]		
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]			272.6 kcal/mol ^[1]	
T _{ex} [K]			3,885 ^[1]	
p _{C-J} [kbar]				
VoD [m s ⁻¹]				
V_0 [L kg ⁻¹]				

Trauzl test [cm³ / % TNT]	- /135 ^[1]
Ballistic mortar test [% TNT]	126-127 ^[1]
5 s explosion T [°C] Ignition T [°C]	~340 ^[1]
100 °C heat test [% mass loss]	No explosion in >300 min ^[1]

[1] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, *vol. 2*, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.

Trinitrochlorobenzene

Name [German, acronym]: Trinitrochlorobenzene, 1-chloro-2,4,6-trinitrobenzene,

picryl chloride [trinitrochlorbenzol, TNCB, CTB]

Main (potential) use: Used as high explosive filler in ammunition in past

$$O_2N$$
 NO_2
 NO_2

	Picryl chloride
Formula	$C_6H_2N_3O_6CI$
Molecular mass [g mol ⁻¹]	247.55
Appearance at RT	
IS [J]	16 Nm ^[2] , 11.0 ^[7] , 99% of TNT (2 kg mass) ^[9] , FI = 111–127% PA ^[9] , 79 cm (Bruceton method, type 12 tool, 2.5 kg mass, 40 mg sample, $5/0$ sandpaper, 25 trials) ^[15] , 79 cm (2.5 kg mass) ^[16] , 72.5 (5 kg mass AFATL) ^[16]
FS [N]	>353 ^[2]
ESD [J]	6.71 ^[3, 4, 7, 19] , 101.0 mJ ^[3]
N [%]	16.97
Ω(CO ₂) [%]	-45.24
T _{m.p.} [°C]	83 ^[1,9] , 81.5–83 ^[14]
T _{dec.} [°C]	395-400 (DSC @ 5 °C/min)
$ ho$ [g cm $^{-3}$]	1.797 (@ 293 K) $^{[2, 9]}$, sp. gr. = 1.76 (molten and then solidified) $^{[14]}$
Heat of formation	108.2 kJ/kg (enthalpy of form.) $^{[2]}$, -36.2 kcal/kg $^{[17]}$, 20.8 kJ/mol (enthalpy of form., exptl.) $^{[18]}$, -51.5 kJ/mol (enthalpy of form., calcd., emp.) $^{[18]}$
Heat of combustion	643 kcal/mol ^[9] , 2,609 kcal/kg (@ C ^V) ^[17]

	Calcd. (EXPLO5 6.03)	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	4,466	2,845 [H ₂ O (g)] ^[5]
T _{ex} [K]	3,817	3,370 (calcd.) ^[9]
p _{C-J} [kbar]	233	
VoD [m s ⁻¹]	7,368 (@ 1.74 g/cc)	6,855 (@ 1.70-1.71 g cm ⁻³) ^[9]
		7,130 (@ 1.74–1.75 g cm ⁻³) ^[9]
		7,347 (@ 1.77 g cm ⁻³) ^[9]
		7,200 (@ 1.74 g cm ⁻³) ^[2, 6]
		6,450 (@ 1.5 g cm ⁻³) ^[5]
		7,130 (@ 1.75 g cm ⁻³) ^[10]
		6,930 (@ 1.68 g cm ⁻³) ^[11]
V ₀ [L kg ⁻¹]	644	620 ^[9]

Trauzl test [cm³, % TNT]	103-110% TNT ^[10] , 97-102% PA ^[9]		
Solubility [g/mL]	Sparingly soluble in $H_2O^{[14]}$, 0.0178 parts per 100 parts H_2O @ 15 °C ^[14] , 0.346 parts per 100 parts H_2O @ 100 °C ^[14] Solubility (g) per 100 g solvent ^[14] :		
	Solvent	@ 17 °C	@ 50 °C
	MeOH	10.24	34.8
	EtOH (abs.)	4.48	15.1
	Et ₂ O	7.23	10.6 (@ 31 °C)
	Ethyl acetate	91.5	238.55
	Acetone	212.0	546.4
	CHCl₃	12.36	233.4
	CCl ₄	0.56	2.45
	Benzene	36.39	428.1
	Toluene	89.44	321.1

Compatibility	Undergoes partial hydrolysis in hot H ₂ O ^[14]
Dipole moment [D]	0.85 (calcd.) ^[16]

	Picryl chloride ^[8]	Picryl chloride ^[12]	Picryl chloride ^[13]
Chemical formula	C ₆ H ₂ N ₃ O ₆ Cl	C ₆ H ₂ N ₃ O ₆ Cl	C ₆ H ₂ N ₃ O ₆ Cl
Molecular weight [g mol ⁻¹]	247.55	247.55	247.55
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	P2 ₁ /a	P2 ₁ /a	I2/m
a [Å]	11.020(4)	11.10	24.88
<i>b</i> [Å]	6.795(1)	6.83	6.80
c [Å]	14.964(4)	12.62	11.00
α[°]	90	90	90
β [°]	124.15(2)	102.50	102.68
γ [°]	90	90	90
<i>V</i> [ų]	927.308	934.081	1,815.64
Z	4	4	8
$ ho_{ m calc}$ [g cm $^{-3}$]	1.773	1.76	1.811
<i>T</i> [K]	295	163	295

- [1] Hazardous Substances Data Bank, obtained from the National Library of Medicine (US).
- [2] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 361.
- [3] S. Zeman, J. Majzlík, Central Europ. J. Energ. Mat., 2007, 4, 15-24.
- [4] M. H. Keshavarz, Z. Keshavarz, ZAAC, 2016, 642, 335–342.
- [5] W. C. Lothrop, G. R. Handrick, Chem. Revs., 1949, 44, 419–445.
- [6] P. W. Cooper, Explosives Engineering, Wiley-VCH, New York, 1996.
- [7] N. Zohari, S. A. Seyed-Sadjadi, S. Marashi-Manesh, *Central Eur. J. Energ. Mater.*, **2016**, *13*, 427–443.
- [8] J. S. Willis, J. M. Stewart, H. L. Amman, H. S. Preston, R. E. Gluyas, P. M. Harris, *Acta Cryst.*, 1971, B27, 786–793.
- [9] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 3, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1966.
- [10] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [11] A. Smirnov, S. Smirnov, V. Balalaev, T. Pivina, *Calculation of Detonation Velocity and Pressure of Individual and Composite Explosives*, NTREM 17, 9th–11th April **2014**, pp. 24–37.
- [12] G. A. Gol'der, G. S. Zhdanov, M. M. Umanskij, Doklady Akademii Nauk SSSR, 1953, 92, 311-314.
- [13] E. Hertel, G. H. Römer, Z. für Physikalische Chemie (Leipzig), 1933, B22, 267–279.
- [14] T. Urbański, Ch. 12 in Chemistry and Technology of Explosives, vol. 1, 1964, Pergamon Press, Oxford.

- [15] P. Politzer, J. S. Murray, Computational Studies of Energetic Organic Molecules, AD-A274 726, ONR Technical Report, December 27th 1993.
- [16] P. Politzer, Computational Studies of Polynitroaromatic Molecules and the Development of Sensitivity Relationships, AFATL-TR-90-66, Air Force Armament Laboratory, Florida, USA, October 1990.
- [17] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part III, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [18] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248–258.
- [19] L. Turker, *Electrostatic Discharge and Energetic Materials*, *To Chemistry Journal*, **2019**, 2, 72–114.

2,4,6-Trinitrocresol

Name [German, acronym]: 2,4,6-Trinitrocresol, 2,4,6-trinitro-*m*-cresol, 3-Methyl-

2,4,6-trinitrophenol, cresylite, 3-methylpicric acid

[trinitrometakresol, Kresylit, TNCr]

Main (potential) use: Used as grenade filler in the past^[9], and as a bursting

charge in projectiles, ammonium salt has been used in explosive mixtures^[18], not used on its own but used in

alloys with PA (e.g. in Cresolite)[25]

$$O_2N$$
 NO_2
 NO_2

	2,4,6-Trinitrocresol
Formula	$C_7H_5N_3O_7$
Molecular mass [g mol ⁻¹]	243.13
Appearance at RT	Yellow needles (if recryst. from $H_2O)^{[18]}$, bright yellow crystalline substance ^[25]
IS [J]	12 Nm ^[9] , 9.40 (first reaction) ^[4, 19] , 47.00 (sound) ^[4, 19] , slightly more sensitive than PA ^[10] , $H_{50\%} = 191$ cm ^[11] , similar to that of PA ^[17] , $H_{50} = 191$ cm (2.5 kg mass, type 12 tool) ^[21] , $\log(H_{50}) = 2.281$ (<i>Kamlet/Adolph</i>) ^[22]
FS [N]	353 ^[9]
ESD [J]	5.21 ^[3, 27]
N [%]	17.28
Ω(CO ₂) [%]	-62.52
T _{m.p.} [°C]	$105-108^{[1]}, 106.5-110^{[10]}, 107-107.5^{[17]}, 107^{[18]}, 109^{[23]}, 109.5^{[25]}$
T _{dec.} [°C]	210 (DSC @ 5 °C/min), 468 K (DTA) ^[4] , ~ 200 ^[17] , 488 (DTA) ^[19] , 200 (dec. begins) ^[25]
$ ho$ [g cm $^{-3}$]	$1.740 \ (@\ 293\ K)^{[2]}, 1.68^{[8]}, 1.69^{[10]}, 1.64 \ (by pressing and pouring)^{[25]}$
Heat of formation	252.3 kJ/mol ($\Delta_i H$) ^[5] , $-1,038$ kJ/kg (enthalpy of form.) ^[9] , 226.7 kcal/kg ^[24] , -54.1 kcal/mol (heat of form., ΔH_f) ^[17] , -248.0 kcal/kg (enthalpy of form.) ^[20]
Heat of combustion	771 cal/mol (C ^V) ^[10] , 3,175 kcal/kg (@ C ^V) ^[24]

	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	4,117	925 kcal/kg ^[17]	3,370 [H ₂ O (l)] ^[5, 9]
		942 kcal/kg (@ 1.580 g cm ⁻³ ,	3,248 [H ₂ O (g)] ^[9]
		calcd.) [H ₂ O vapor] ^[20]	912 kcal/kg [H ₂ O (g)] ^[8]
			912 kcal/kg (@ 1.580 g cm ⁻³) [H ₂ O (vapor)] ^[20]
			912 kcal/kg ^[25]
T _{ex} [K]	3,110	2,700° (calcd.) ^[10]	
		2,700 °C ^[17]	
p _{C-J} [kbar]	180		
VoD [m s ⁻¹]	6,763 (@ 1.62 g cm ⁻³)	6,800 (@ TMD, calcd., R-P method) ^[14]	22,400 ft/s (@ 1.6 g cm ⁻³) ^[6]
		6,850 (max. VoD) ^[17]	6,850 (@ 1.62 g cm ⁻³) ^[7, 9, 12]
		,	6,620 (@ 1.52 g cm ⁻³) ^[10]
			6,850 (@ 1.68 g cm ⁻³) ^[10]
			22,400 ft/s (@ 1.6 g/ml) ^[23]
V ₀ [L kg ⁻¹]	657	675 ^[17]	844 ^[9]
			675 ^[25]

Trauzl test [cm³, % TNT]	86–99% TNT ^[12] , 85% TNT ^[10] , 90% PA ^[10] , 275 cc ^[15] , 275 cm ³ (i.e., 90% PA) ^[17] , 384 cc (15 g sample) ^[18] , 290 cc ^[25] , 285 ^[26]
Ballistic mortar test	94% TNT ^[12]
5 s explosion T [°C] Explosion T [°C] 5 s ignition T [°C]	405 ^[10, 23] , 252–255 (heating rate = 10 °C/min) ^[10] , 275 ^[17] 270–276 ^[13]

Solubility [g/mL]	Less soluble in H_2O than $PA^{[17]}$, 0.15 g dissolves in 100 g H_2O @ $6^{\circ}C^{[17]}$, 0.2 g dissolves in 100 g H_2O @ $15^{\circ}C^{[17]}$, 1.83 g dissolves in 100 g H_2O @ $100^{\circ}C^{[17]}$, 9.2 g dissolves in 100 g benzene @ $6^{\circ}C^{[17]}$, 13 g dissolves in 100 g benzene @ $15^{\circ}C^{[17]}$, readily soluble in EtOH, acetone, $Et_2O^{[17,18]}$, yellow needles recryst. from $H_2O^{[18]}$, soluble in 449 parts H_2O @ $20^{\circ}C^{[18]}$, soluble in 123 parts H_2O @ $100^{\circ}C^{[18]}$, 0.15 parts dissolve per 100 parts H_2O (by wt.) @ $6^{\circ}C^{[25]}$, 0.20 parts dissolve per 100 parts H_2O (by wt.) @ $25^{\circ}C^{[25]}$, 1.83 parts dissolve per 100 parts H_2O (by wt.) @ $100^{\circ}C^{[25]}$, dissolves readily in EtOH, Et_2O , benzene and acetone $E^{[25]}$
Flash point [°C]	27(?)5 (unclear in original lit.) ^[25]
Brisance	4.2 mm (according to <i>Kast</i>) ^[25]
Manometric bomb	Gas pressure (exptl.) by exploding samples in small bombs, pressure measured by piston and obturator ^[16] : loading $\rho=0.20~{\rm g~cm^{-3}}, {\rm pressure}=1,760~{\rm kg/cm^{2[16]}}, {\rm loading}$ $\rho=0.25~{\rm g~cm^{-3}}, {\rm pressure}=2,480~{\rm kg/cm^{2[16]}}, {\rm loading}$ $\rho=0.30~{\rm g~cm^{-3}}, {\rm pressure}=3,360~{\rm kg/cm^{2[16]}}$

- [1] F. H Westheimer, E. Segel, R. Schramm, J. Am. Chem. Soc., 1947, 69, 773-785.
- [2] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994–2017 ACD/Labs).
- [3] M. H. Keshavarz, Z. Keshavarz, ZAAC, 2016, 642, 335-342.
- [4] S. Zeman, Study of the Impact Reactivity of Polynitro Compounds Part IV. Allocation of Polynitro Compounds on the Basis of their Impact Sensitivities, in Proceedings of New Trends in Research of Energetic Materials, NTREM 5, April 24th-25th 2002, pp. 434-443.
- [5] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2008**, *33*, 448–453.
- [6] EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, Department of the Army Technical Manual, TM9-1385-211, Headquarters, Department of the Army, January 1969.
- [7] P. W. Cooper, Explosives Engineering, Wiley-VCH, New York, 1996.
- [8] A. Smirnov, M. Kuklja, On the Use of Heat of Explosion for Blast Action Estimate. Individual Explosives and Their Mixtures, in Proceedings of the 20th Seminar on New Trends in Research of Energetic Materials, Pardubice, April 26th–28th, 2017, pp. 381–392.
- [9] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 362.
- [10] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 3, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1966**.
- [11] M. J. Kamlet, H. G. Adolph, *Propellants and Explosives*, **1979**, 4, 30–34.
- [12] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [13] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, *vol.* 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1969**.
- [14] L. R. Rothstein, R. Petersen, *Propellants and Explosives*, 1979, 4, 56–60.
- [15] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 7, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1975**.
- [16] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1974.

- [17] T. Urbański, Ch. 15 in Chemistry and Technology of Explosives, vol. 1, 1964, Pergamon Press, Oxford.
- [18] T. L. Davis, *The Chemistry of Powder and Explosives*, vol. 1, **1941**, John Wiley and Sons Inc., New York, p. 169.
- [19] S. Zeman, Propellants, Explosives, Pyrotechnics, 2003, 28, 308–313.
- [20] A. Smirnov, M. Kuklja, M. Makhov, V. Pepkin, *Methodical Problems of Experimental Definition of Heat Of Explosive Transformation*, ICT **2017**, Karlsruhe, Germany, pp. 15-1–15-11.
- [21] W.-P. Lai, P. Lian, B.-Z. Wang, Z.-X. Ge, J. Energet. Mater., 2010, 28, 45-76.
- [22] N. R. Badders, C. Wei, A. A. Aldeeb, W. J. Rogers, M. S. Mannan, J. Energet. Mater., 2006, 24, 17–33.
- [23] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [24] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part III, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [25] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part II, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [26] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [27] L. Turker, Electrostatic Discharge and Energetic Materials, To Chemistry Journal, 2019, 2, 72–114.

2,2,2-Trinitroethyl formate

Name [German, acronym]: Trinitroethylformal, 2,2,2-trinitroethyl formate,

trinitroethyl orthoformate, tri-2,2,2-trinitroethanol methane, tris(2,2,2-trinitroethyl)orthoformate [TNEF*,

TTNEF, TNEOF]

 $\mbox{Main (potential) use:} \qquad \mbox{Oxidizer, possible future chlorine-free oxidizer}^{[6]}$

Structural formula:

$$(O_2N)_3C O C(NO_2)_3$$

*TNEF is also used in the literature as the abbreviation for Trinitroethyl formal, $C_5H_5N_6O_{14}$

	TNEF
Formula	$C_7H_7N_9O_{21}$
Molecular mass [g mol ⁻¹]	553.2
Appearance at RT	Colorless rod-like crystals $^{[5]}$, crude product is creamy colored $^{[6,7]}$, colorless crystals from dichloromethane $^{[6,7]}$, hexagonal rod crystals from dichloromethane $^{[6]}$
IS [J]	5 (BAM) ^[1,6] , $H_{50\%}$ = 7 cm ^[2] , 5 (BAM, 50% initiation probability) ^[5] , 5.4 (BAM, crystals, 50% initiation probability) ^[6] , 4.6 (BAM, raw TTNEF) ^[7] , 7.8 (BAM, recryst. TTNEF) ^[7]
FS [N]	96 (BAM) ^[1, 6] , H _{50%} = 8 cm (2.5 kg mass) ^[3] , 95 (BAM, 50% initiation probability) ^[5] , 92 (raw TTNEF, BAM) ^[7] , 106 (recryst. TTNEF BAM) ^[7]
ESD [J]	0.2[1]
N [%]	22.8
Ω(CO ₂) [%]	+10.1
T _{m.p.} [°C]	128 ^[3] , 127.1 (DSC @ 5 °C/min, ~ 3 mg sample) ^[4] , 126.7 (small endo, DSC @ 5 °C/min) ^[5] , 122.7 (endo, onset), 127.1 (endo peak max) (DSC @ 5 K/min) ^[7]
T _{dec.} [°C]	192 (DSC @ 5 °C/min) ^[1] , 210.1 (DSC @ 5 °C/min, ~ 3 mg sample) ^[4] , 210.2 (exo, DSC @ 5 °C/min) ^[5] , 189.6 (exo, onset), 210.1 (exo, peak max), 223.0 (end of dec.) (DSC @ 5 K/min) ^[7]

Data from^[4, 5]:

β (°C/min)	TG curve			DTG peak	
	T _{ot} (°C)	T _i (°C)	<i>T</i> _p (°C)	T _{oe} (°C)	
2.0	168.66	180.37	99.62	197.87	205.46
4.0	174.27	187.41	99.14	203.46	218.57
8.0	181.11	194.16	98.53	209.78	231.28
16.0	189.96	203.75	97.98	216.21	246.94

 $T_{\rm e}$ = onset $T_{\rm dec.}$, $T_{\rm i}$ = initial $T_{\rm dec.}$, $T_{\rm p}$ = peak T, $T_{\rm oe}$ = onset T of the end decomposition

Data from^[6]:

β (K/min)	TG curve		DTG	peak
	T _o (°C) Mass loss (%)		<i>T</i> _p (°C)	T _e (°C)
1.0	169.0	98.79	186.6	196.1
3.0	184.5	97.67	200.3	211.8
5.0	188.8	99.54	206.2	217.8
7.0	192.1	97.06	209.6	221.0

 $T_{\rm o}$ = onset $T_{\rm dec.}$, $T_{\rm i}$ = initial $T_{\rm dec.}$, $T_{\rm p}$ = peak T, $T_{\rm e}$ = onset T of the end decomposition, $T_{\rm p}$ = peak T of mass loss rate; mass loss from initial T to end T of DTG peak (first) first dec. peak, (second) second dec. peak

Data from^[7]:

β (K/min)	TG curve			DTG peak	
	$T_{\rm ot}$ (°C) $T_{\rm i}$ (°C) Mass loss (%)			<i>T</i> _p (°C)	T _{oe} (°C)
1.0	170.8	182.3	98.6	186.6	188.9
3.0	184.9	193.5	96.8	200.3	205.1
5.0	190.7	202.6	99.1	206.2	210.9
7.0	195.3	206.8	95.0	209.6	218.3

 $T_{\rm e}$ = onset $T_{\rm dec.}$, $T_{\rm i}$ = initial $T_{\rm dec.}$, $T_{\rm p}$ = peak T, $T_{\rm oe}$ = onset T of the end decomposition

$ ho$ [g cm $^{-3}$]	1.81 (@ 298 K) ^[1, 4] , 1.83 (crystal) ^[3]
Heat of formation	$-1,021$ kJ/kg $^{[1]}$, -140 kcal/mol (calcd.) $^{[3]}$, -938.2 kJ/kg (enthalpy of form., ΔH) $^{[4]}$

	Calcd. (EXPLO5 6.03)	AP for comparison
I _{sp} [s] (neat) ^a	228	-
I _{sp} [s] (neat) ^b	288	-
I _{sp} [s] ^{a,c} (71% oxidizer)	243	256
I _{sp} [s] ^{b,c} (71% oxidizer)	307	330

 $^{^{\}rm a}$ 70 bar/1 bar, isobaric combustion, equilibrium to throat and frozen to exit

^c 15% Al; 6% polybutadiene acrylic acid, 6% polybutadiene acrylonitrile and 2% bisphenol A ether)

Burn rate [mm/s]	2.86 (TTNEF/H	2.86 (TTNEF/HTPB cf. 2.70 for AP/HTPB) ^[6]					
Solubility [g/mL]	Can be recryst	Can be recrystallized from dichloromethane $^{[6]}$, soluble in acetone, CHCl $_3$ and CH $_3$ CN $^{[7]}$					
Activation energy to decomposition [kJ/mol]	nonisotherma values, noniso varied from st method) ^[6] , 13	198.4 (nonisothermal TGA, Kissinger method) ^[4] , 192.6 (mean value, nonisothermal, Ozawa Flynn-Wall, OFW method) ^[5] , 193–198 \pm 0.4 (range of values, nonisothermal OFW method) ^[6] , 146.4 (TG-DTG, Kissinger method) ^[6,7] , varied from step to step of conversion, mean value = 132.1 kJ/mol (OFW method) ^[6] , 131.5 \pm 3.8 (KAS method) ^[7] Modified KAS method, data from ^[6,7] :					
	α reacted	α reacted E_a $\log A$ r					
	0.1	123.8	12.08	0.9993			
	0.2	124.7	11.98	0.9989			
	0.3	127.3	12.15	0.9991			
	0.4	129.6	12.31	0.9986			
	0.5	131.6	12.45	0.9994			
	0.6						
	0.7						
	0.8	136.0	12.71	0.9991			
	0.9 135.5 12.55 0.9984						
	Mean	131.5	12.45				

^b 70 bar, 1 mbar, isobaric combustion, equilibrium to throat and frozen to exit

- [1] T. M. Klapötke, B. Krumm, R. Moll, S. F. Rest, Z. Anorg. Allg. Chem. 2011, 637, 2103–2110.
- [2] G. T. Afanas'ev, T. S. Pivina, D. V. Sukhachev, *Propellants, Explosives, Pyrotechnics*, **1993**, *18*, 309–316.
- [3] O. H. Johnson, *Plasticized High Explosive and Solid Propellant Compositions*, US Patent 3,389,026, June 18th **1968**.
- [4] M. Abd-Elghany, T. M. Klapötke, A. Elbeih, *Int. J. Energet. Mater. Chem. Propul.*, **2018**, *17*, 349–357.
- [5] M. Abd-Elghany, T. M. Klapötke, B. Krumm, A. Elbeih, ChemPlusChem, 2018, 83, 128-131.
- [6] M. Abd-Elghany, T. M. Klapötke, A. Elbeih, RSC Adv., 2018, 8, 11771–11777.
- [7] M. Abd-Elghany, A. Elbeih, T. M. Klapötke, J. Analyt. Appl. Physics, 2018, 133, 30–38.

2,2,2-Trinitroethyl nitrocarbamate

Name [German, acronym]: 2,2,2-Trinitroethyl nitrocarbamate [TNC-NO₂, NTNC]

Main (potential) use: Halogen-free oxidizer

$$O_2N$$
 N
 O
 $C(NO_2)_3$

	TNC-NO ₂		
Formula	$C_3H_3N_5O_{10}$		
Molecular mass [g mol ⁻¹]	269.1		
Appearance at RT			
IS [J]	10 ^[1, 4]		
FS [N]	96 ^[1, 4]		
ESD [J]	0.1 ^[1]		
N [%]	26.0		
Ω(CO ₂) [%]	+14.9		
<i>T</i> _{m.p.} [°C]	109 ^[1] , 111.1 (endo, DSC @ 5 K/min) ^[4] , 111.4 (endo, DSC @ 10 K/min) ^[4] , 111.9 (endo, DSC @ 15 K/min) ^[4] , 111.7 (endo, DSC @ 20 K/min) ^[4]		
T _{dec.} [°C]	153 (DSC @ 5 °C/min) ^[1] , 157.8 (endo, DSC @ 5 K/min) ^[4] , 165.8 (endo, DSC @ 10 K/min) ^[4] , 173.2 (endo, DSC @ 15 K/min) ^[4] , 176.1 (endo, DSC @ 20 K/min) ^[4]		
ρ [g cm ⁻³]	1.73 (@ 298 K) ^[1]		
Heat of formation	−366 kJ/mol (Δ _f H°) ^[1] , −1,277 kJ/kg ((Δ _f H°) ^[1]	
	Calcd. (EXPLO5 6.03)	AP for comparison	
I _{sp} [s] (neat) ^a	226		
I _{sp} [s] (neat) ^b	284		
I _{sp} [s] ^{a,c} (71% oxidizer)	255	256	
I _{sp} [s] ^{b,c} (71% oxidizer)	327	330	

^a 70 bar/1 bar, isobaric combustion, equilibrium to throat and frozen to exit

^b 70 bar, 1 mbar, isobaric combustion, equilibrium to throat and frozen to exit

^c 15% Al; 6% polybutadiene acrylic acid, 6% polybutadiene acrylonitrile, and 2% bisphenol A ether)

Critical temperature of thermal explosion (T_b) [K]	479.54 ^[4]
Solubility [g/mL]	Soluble in CCl ₄ ^[4]
Compatibility	$\Delta T_{\rm p}$ (dec. peak): NTNC/RDX = 2.1 °C < pure NTNC (good compatibility) ^[4] , $\Delta T_{\rm p}$ (dec. peak): NTNC/DNAN = 25.0 °C < pure NTNC (bad compatibility) ^[4] , $\Delta T_{\rm p}$ (dec. peak): NTNC/HTPB = 81.9 °C < pure NTNC (bad compatibility) ^[4] , NTNC reacts with centralite on grinding ^[4] Compatibility: NTNC/boron (good) > NTNC/AP (good) > NTNC/NC (good) > NTNC/TNT (good) > NTNC/AP (good) > NTNC/RDX (good) > NTNC/NC + NG (moderate) > NTNC/CL-20 (poor) > NTNC/HMX (poor) > NTNC/Fox-7 (poor) > NTNC/DNAN (bad) > NTNC/HTPB

	TNC-NO ₂ ^[1]
Chemical formula	C ₃ H ₃ N ₅ O ₁₀
Molecular weight [g mol ⁻¹]	269.08
Crystal system	Monoclinic
Space group	P2 ₁ /c (no. 14)
a [Å]	10.784(2)
<i>b</i> [Å]	11.527(2)
c [Å]	8.752(2)
α [°]	90
β [°]	108.20(2)
γ [°]	90
V [ų]	1,033.5(7)
Z	4
$ ho_{ m calc}$ [g cm ⁻³]	1.730(2)
T[K]	243

- [1] Q. J. Axthammer, T. M. Klapötke, B. Krumm, R. Moll, S. F. Rest, *Z. Anorg. Allg. Chem.*, **2014**, 640, 76–83.
- [2] Q. J. Axthammer, B. Krumm, T. M. Klapötke, J. Org. Chem., 2015, 80, 6329–6335.
- [3] T. M. Klapötke, M. Kettner, *Chemical Rocket Propulsion A Comprehensive Survey of Energetic Materials*, part II, L. DeLuca (ed.), Springer, **2017**, pp. 63–88.
- [4] Y. Li, H. F. Huang, X. Y. Lin, R. M. Peng, J. Yang, *Thermal Behavior of 2,2,2-Trinitroethyl Nitrocarbamate*, ICT **2016**, Karlsruhe, Germany, pp. 98-1–98-8.

Trinitroethyltrinitrobutyrate

Name [German, acronym]: 2,2,2-Trinitroethyl-4,4,4-trinitrobutyrate, butanoic acid

4,4,4-trinitro-, 2,2,2-trinitroethyl ester, 2,2,2-trinitroethyl

4,4,4-trinitrobutanoate [TNETB]

Main (potential) use: Melt-castable high explosive^[1], too sensitive to

mechanical shock to be used as military explosive on its own^[2], high oxygen content explosive^[3], ingredient

of composite explosives^[9]

	TNETB
Formula	$C_6H_6N_6O_{14}$
Molecular mass [g mol ⁻¹]	386.14
Appearance at RT	Colorless solid ^[2] , white crystalline solid ^[3] , colorless crystalline solid ^[7]
IS [J]	$H_{50\%} = 20 \text{ cm}^{[3]}$, 18 cm (50% point, type 12 tool, 2.5 kg mass, sandpaper) ^[4] , 30 (<100 µm grain size, BAM) ^[7] , $H_{50} = 18 \text{ cm}^{[10]}$
FS [N]	240 (<100 μm grain size, BAM) ^[7]
ESD [J]	0.1 (100 μ m grain size, BAM) $^{[7]}$
N [%]	21.76
Ω(CO ₂) [%]	-4.2
T _{m.p.} [°C]	$93^{[1,3]}$, 92.5–93 (form II) ^[3] , 92 (DSC @ 5 °C/min) ^[7] , 93.50 (endo, DSC @ 5 °C/min) ^[9]
T _{phase transition} [°C]	89 (form I \rightarrow form II, solid \rightarrow solid transition, irreversible @ 89 °C) ^[3] , RT (form II \rightarrow form I, several hours) ^[3] , form III is stable over a very narrow temperature range (~0.2 \rightarrow 0.3 °C) @ approx. 92.5 °C ^[3]

T _{dec.} [°C]	155 (DSC @ 5 °C/min) ^[7] , 204 (exo, peak max., DSC @ 5 °C/min) ^[9] Data from ^[9] :				
	β (K/min)	β (K/min) T_{o} (K) T_{e} (K)			
	2.09	401.15	419.15	468.15	1
	5.24	411.15	429.15	477.15	1
	10.77	423.15	441.15	491.15	٦
	22.14	437.15	454.15	504.95	
ρ [g cm ⁻³]		783 (loading densi liquid @ 99 °C) ^[3] , 1		, 1.677 (loading density l) ^[9]	/,
Heat of formation	(enthalpy of form.	307 cal/g ^[3] , -496.2 kJ/mol (enthalpy of form.) ^[6] , -421.7 kJ/mol (enthalpy of form., calcd., emp.) ^[6] , -530.3 kJ/mol (enthalpy of form., calcd. S-D method) ^[6] , 118.6 kcal/mol ^[8] , -495.80 kJ/mol (standard enthalpy of form. (Q_f)) ^[9]			
Heat of combustion	1,685 cal/g ^[3] , 1.620 kcal/g ^[8] , -2 ,722.75 \pm 0.79 kJ/mol (standard combustion enthalpy, $\Delta_c H^{\circ}_{\rm m})^{[9]}$, -2 ,743.82 \pm 0.79 kJ/mol (standard combustion energy, $\Delta_c U)^{[9]}$				
	Calcd. (EXPLO5 6.02)	Lit. values		Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	-6,121	Heat of detonati 1.45 kcal/g ^[8]	on =		
T _{ex} [K]	4,277				
p _{C-J} [kbar]	335				
VoD [m s ⁻¹]	8,616	5,960 (@ 1 g cm		5,610 (@ 1 g cm ⁻³) ^[1]	
		calcd., Kamlet m		7,800 (@ 1.6 g cm ⁻³) ^[1]]
		7,990 (@ 1.6 g o		7,760 (@ 1.60 g cm ⁻³) ^{[3}	3]
		5,410 (@ 1 g cm calcd., Urizar me		8,290 (@ 1.76 g cm ⁻³) ^{[3}	3]
		7,760 (@ 1.6 g o			
		8,362 (@ 1.774	g cm ⁻³) ^[9]		
V ₀ [L kg ⁻¹]	719				

I _{sp} [s]	258 (pure TNETB, 70.0 bar chamber pressure, isobaric combustion conditions (1 bar), equilibrium expansion) 263 (TNETB with 15% Al, 70.0 bar chamber pressure, isobaric combustion conditions (1 bar), equilibrium expansion) 255 (71% TNETB, 15% Al, 14% binder (6% polybutadiene acrylic acid, 6% polybutadiene acrylonitrile, 2% bisphenol A ether 70.0 bar chamber pressure, isobaric combustion conditions (1 bar), equilibrium expansion)							
Critical T of thermal explosion, T_b [K]		426.05 ^[9] , 478.47 ^[9] , 422.49 ^[9] , 476.79 ^[9] , 426.02 ^[9] , 477.88 ^[9] , 426.17 ^[9] , 478.13 ^[9] , 408.90 ^[9] , 406.24 ^[9]						
Ballistic mortar test	136% TNT							
LSGT [cm]	$\rho = 1.64 \text{ g}$	/cm³ (cas	st), 92.6%	TMD, 50%	6 point =	= 277 card	ls ^[5]	
SSGT [cm]	· -	$\rho = 1.64 \text{ g/cm}^3 \text{ (cast)}, 92.6\% \text{ TMD, } 50\% \text{ point} = 277 \text{ cards}^{[5]}$ (1) = no mixed response zone, data from ^[4] :						
	Loading pressure (kpsi)	pressure		% TMD	Sensitivity (DBG)			
		AVG.	s		AVG.	g	s _m	N
	8	1.563	0.0088	87.3	3.042	-	-	23(1)
	16	1.698	0.0046	94.9	4.193	0.0530	0.0306	23
	32	1.776	0.0023	99.2	5.497	0.0016	0.0022	23
5 s explosion T[°C]	225 (50%	point, Al	hot bar) ^[3]					
Vacuum stability test [cm³/h]	0.60 cc/48	0.60 cc/48 h @ 100 °C ^[3]						
Vapor pressure [atm. @ °C]	Values from	Values from ^[3] :						
	T (°C)		mm Hg					
	65		3.3 × 10 ⁻¹	5				
	75 1.3 × 10 ⁻⁴							
	100		2.3 × 10 ⁻³	3				
	120 1.4 × 10 ⁻²							
Viscosity [Poises]	Absolute viscosity = 0.173 Poises @ 98.9 $^{\circ}$ C ^[3] , absolute viscosity = 0.138 Poises @ 106.5 $^{\circ}$ C ^[3]							

Solubility [g/mL]	Insoluble in H_2O , n -hexane and $CCl_4^{[2]}$, very soluble in nitromethane, glacial acetic acid and ethyl acetate ^[2] , recryst. from water/MeOH or $CHCl_3^{[7]}$, recryst. from nitromethane ^[9] Solubility at room temperature ^[3] :		
	Solvent	Solubility	
	Water	Insoluble	
	n-Hexane	Insoluble	
	CCl ₄	Insoluble	
	EtOH	5 g/100 g solvent	
	CHCl ₃	5 g/100 g solvent	
	Benzene	10 g/100 g solvent	
	Nitromethane	Very soluble	
	Glacial acetic acid	Very soluble	
	Ethyl acetate	Very soluble	
	TNETB forms eutectics with the following: TNT 57 ^[3] , BTNES (bis(trinitroe succinate) 80 + ^[3] , BTNEN (bis(trinitroethyl) nitramine) 68.5 ^[3] , TNB (trinitrobenzene) 65 ^[3] , trinitroethyl trinitrobenzoate (27%) 80.5 ^[3]		
Hygroscopicity	0% @ 75 °C, 90% RH, 5 months ^[3]		
Refractive index	Form I, crystal axis α $n^{D}_{20} = 1.518^{[3]}$, crystal axis β $n^{D}_{20} = 1.527^{[3]}$, crystal axis γ $n^{D}_{20} = 1.546^{[3]}$		
ΔH _{sub} [cal/g]	Heat of sublimation = 804 (est.) ^[3]		
Bruceton safety test results	Mean and standard deviation of lengths of 0.300 diameter cylinder across which initiation is possible for 50% certainty: $TNT = 0.391 \pm 0040^{[3]}, RDX Comp \ B = 0.381 \pm 0.042^{[3]},$ $TNETB = 0.920 \pm 0.059^{[3]}$		
Specific heat capacity, C_p	1.10 J (g K ⁻¹) (calcd.) ^[9]		
Thermal conductivity, λ	0.2218 W (m K) ^{-1[9]}		
Self-accelerating decomposition T , $T_{SADT}[K]$	410.92 ^[9]		

	TNETB ^[7]
Chemical formula	C ₆ H ₆ N ₆ O ₁₄
Molecular weight [g mol ⁻¹]	386.14
Crystal system	Monoclinic
Space group	P2 ₁ /n (14)
a [Å]	5.7264(3)
<i>b</i> [Å]	21.6530(11)
c [Å]	11.0910(6)
α [°]	90
β [°]	93.555(4)
γ[°]	90
V [ų]	1,372.57(12)
Z	4
$ ho_{ m calc}$ [g cm ⁻³]	1.869
τ[K]	100
	Recryst. from CHCl ₃

^{*3} polymorphic crystalline forms have been observed

- D. Price, The Detonation Velocity-Loading Density Relation For Selected Explosives and Mixtures of Explosives, NSWC TR 82–298, Naval Surface Weapons Center, Maryland, USA, 26th August 1982.
- [2] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [3] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.
- [4] J. N. Ayres, L. J. Montesi, R. J Bauer, Small Scale Gap Test (SSGT) Data Compilation: 1959–1972. Volume I. Unclassified Explosives, AD-773 743, Naval Ordnance Laboratory, Maryland, USA, 26th October 1973.
- [5] D. Price, A. R. Clairmont, J. O. Erkman, The NOL Large Scale Gap Test. III. Compilation of Unclassified Data and Supplementary Information for Interpretation of Results, AD-780 429, Naval Ordnance Laboratory, White Oak, Maryland, USA, 8th March 1974.
- [6] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharifi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248–258.
- [7] Q. J. Axthammer, T. M. Klapötke, B. Krumm, R. Scharf, C. C. Unger, *Dalton Trans.*, 2016, 45, 18909–18920.
- [8] C. C. Matle, E. M. Fisher, T. O. Anderson, The Contribution of Afterburning to the Airblast from Aluminized Explosives, NOLTR 61–178, United States Naval Ordnance Laboratory, Maryland, USA, 22nd June 1967.
- [9] R.-Z. Hu, H.-X. Ma, F.-Q. Zhao, H.-X. Gao, H. Zhang, E.-G. Yao, H.-A. Zhao, *Chinese J. Explosives Propellants*, **2013**, *36*, 8–15.
- [10] G.-D. Wang, Y.-C. Liu, Chinese J. Energet. Mater., 2008, 16, 167–174.

1,3,5-Trinitrohexahydropyrimidine

Name [German, acronym]: 1,3,5-Trinitrohexahydropyrimidine [TNP]

Main (potential) use: academic

	TNP			
Formula	$C_4H_7N_5O_6$			
Molecular mass [g mol ⁻¹]	221.1			
Appearance at RT	Sparkling white pla	te crystals ^[2]		
IS [J]	H _{50%} >100 cm ^[2]			
FS [N]	Insensitive up to 36	s kg load ^[2]		
N [%]	31.67			
Ω(CO ₂) [%]	-39.8			
T _{m.p.} [°C]	DSC (@ 10 °C/min: endo dip directly before exotherm @ 147 °C) $^{[1]}$, 140–142 $^{[2]}$			
T _{dec.} [°C]	DTA (@ 10 °C/min, static air atmosphere): 144–163 (exo, peak max. @ 149 °C), broad exo max. @ 272 °C ^[1] , DTA (@ 10 °C/min, N ₂ atmosphere): 146–178 (exo, exo peak max @ 168 °C) ^[1] , DSC (@ 10 °C/min): exo one stage dec. @ 147–163 (peak max @ 155, onset = 149) ^[1] , isoDTA: dominant sharp exo @ $120^{[1]}$, $142-160$ (75% wt. loss) and $160-500$ (14% wt. loss) (2 stage dec., TG) ^[2]			
$ ho$ [g cm $^{-3}$]	1.78 ^[2]			
Heat of formation	40.08 kJ/mol ($\Delta H_{\rm f}$) ^I	40.08 kJ/mol (Δ <i>H</i> _f) ^[2]		
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]				
T _{ex} [K]				
p _{C-J} [kbar]		30.02 (@ 1.78 g o calcd., LOTUSES) [[]		

VoD [m s ⁻¹]		8,091 (@ 1.78 g cm ⁻³ , calcd., LOTUSES) ^[2]	
V₀ [L kg ⁻¹]		1,068 (@ 1.78 g cm ⁻³ , calcd., LOTUSES) ^[2]	
Thermal stability	weight loss in range 150 TG (dynamic nitrogen): 0 146–171 °C ^[1] IsoTG (under static air): weight loss in 290 min 0 115 °C, 35.5% weight lo	ght loss in range $142-150$ 0- 448 °C ^[1] change in weight = 71% in no weight loss in 400 min @ 109 °C, 18% weight losos in 320 min @ 118 °C; in 80 min a sudden weight	n range n <108 °C, 6.1% ss in 260 min @ @ 120 °C

	TNP ^[1]
Chemical formula	$C_4H_7N_5O_6$
Molecular weight [g mol ⁻¹]	221.1
Crystal system	Hexagonal
Space group	
a [Å]	18.818±0.005
<i>b</i> [Å]	18.818±0.005
c [Å]	4.867 ± 0.005
α[°]	
β [°]	
γ [°]	
V [ų]	
Z	
$ ho_{ m calc}$ [g cm ⁻³]	
T[K]	
	Powder diffraction

^[1] K. V. Prabhakaran, S. R. Naidu, E. M. Kurian, *Propellants, Explosives, Pyrotechnics*, **1995**, *20*, 238–244.

^[2] H. S. Jadhav, M. B. Talawar, R. Sivabalan, D. D. Dhavale, S. N. Asthana, V. N. Krishnamurthy, *Indian J. Engineering Materials Sci.*, **2006**, *13*, 80–86.

Trinitromethane

Name [German, acronym]: Main (potential) use: Structural formula: Trinitromethane, nitroform Starting material for HEDOs

$$O_2N$$
 NO_2

	Nitroform
Formula	CHN ₃ O ₆
Molecular mass [g mol ⁻¹]	151.03
Appearance at RT	Brown, volatile liquid $^{[8]}$, colorless crystalline $^{[9]}$, colorless crystalline substance with characteristically sharp odor $^{[10]}$, colorless nitroform turns yellow on absorption of moisture $^{[10]}$, dry crystals are white $^{[11]}$
IS [J]	$H_{50\%} = 218 \text{ cm } (1 \text{ kg mass, BRL apparatus})^{[5]}$
N [%]	27.82
Ω(CO ₂) [%]	+37.08
T _{m.p.} [°C]	$25.4^{[1]}, 22^{[4,8]}, 26.3^{[5]}, 26.4^{[9]}, 23-25^{[10]}, 15^{[11]}, 50$ (unstable <i>aci</i> form) ^[11]
T _{b.p.} [°C]	48 ^[8] , 45-47 (@ 22 mm Hg) ^[10]
T _{dec.} [°C]	dec. >25° ^[11]
ρ [g cm ⁻³]	$ \begin{array}{c} 1.806^{[2]}, 1.479^{[4]}, 1.5967 (\textcircled{@} 24.3 ^{\circ}\text{C})^{[5]}, 1.59^{[8]}, \text{sp. gr.} \\ d^{25^{\circ}}_{ 4^{\circ}} = 1.61^{[10]}, d^{25}_{ 4} (\text{liq.}) = 1.469^{[11]} \end{array} $
Heat of formation	$ \begin{array}{l} -68.0\pm3.1 \text{ kJ/mol } (\Delta_i H^o (\text{liq.}))^{[3]}, -32.1 \text{ kJ/mol } (\Delta_i H^o (\text{liq.}))^{[3]}, \\ -77.95 \text{ kJ/mol } (\Delta_i H^o (\text{liq.}))^{[3]}, -48.0\pm2.0 \text{ kJ/mol } (\Delta_i H^o (\text{s}))^{[3]}, \\ -38.58 \text{ kJ/mol } (\text{standard heat of form.})^{[4]}, -255.46 \text{ kJ/kg} \\ (\text{standard heat of form.})^{[4]}, 4.2 \text{ kcal/mol } (\Delta H_i(g)^o, \text{ calcd., ccCA-P})^{[12]}, \\ 1.2 \text{ kcal/mol } (\Delta H_i(g)^o, \text{ calcd., ccCA-S3})^{[12]}, 2.7 \text{ kcal/mol } (\Delta H_i(g)^o, \text{ calcd., ccCA-PS3})^{[12]}, \\ \text{ccCA-PS3})^{[12]}, 0.6 \text{ kcal/mol } (\Delta H_i(g)^o, \text{ calcd., G3})^{[12]}, 5.4 \text{ kcal/mol } (\Delta H_i(g)^o, \text{ calcd., G3})^{[12]}, \\ (\Delta H_i(g)^o, \text{ calcd., G3}, \text{G3})^{[12]}, -5.7\pm0.3 \text{ kcal/mol } (\Delta H_i(g)^o, \text{ exptl.})^{[12]} \\ \end{array}$
Heat of combustion [cal/g]	$\begin{split} & \Delta_c H^o \ (l) = -\ 504.30 \ kJ/mol^{[3]}, \ \Delta_c H^o \ (l) = -\ 458.48 \ kJ/mol^{[3]}, \ \Delta_c H^o \ (s) = \\ & -\ 488.0 \pm 13.0 \ kJ/mol^{[3]}, \ heat \ of \ comb. = 746 \ cal/g^{[11]} \end{split}$

	Calcd. (EXPLO5 6.03)	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	3,009	3,120 ^[4]
T _{ex} [K]	2,839	
p _{C-J} [kbar]	215	
VoD [m s ⁻¹]	7,486	
V ₀ [L kg ⁻¹]	764	

Trauzl test [cm³, % TNT]	~100% TNT ^[6]
Ballistic mortar test	125-137% TNT ^[5]
Initiation efficiency	Can be detonated by shock or a capsule ^[10]
5 s explosion T[°C]	Explodes on rapid heating ^[10]
Thermal stability	Explodes on rapid heating ^[10, 11] , can be distilled without dec. ^[10]
Solubility [g/mL]	Forms azeotropic mixture with nitric acid ^[8] , readily soluble in water and common organic solvents ^[10] , solns. of nitroform in H_2O , EtOH, acetic acid and aqueous Et_2O are yellow ^[10] , solns. in benzene, CHCl ₃ , CS ₂ , ligroin, Et_2O and in conc. hydrochloric or sulfuric acids are colorless ^[10] , soluble in water forming an intensely yellow soln. ^[11]
Hygroscopicity	Readily absorbs moisture and turns yellow ^[10]
ΔH _{sub} [kJ/mol]	45.2 (exptl.) ^[7] , 71.5 (calcd., QSPR) ^[7]
Acidity	Very strong acid ^[10]
Dipole moment	2.61 (benzene) ^[11]

	Nitroform ^[2]
Chemical formula	CHN ₃ O ₆
Molecular weight [g mol ⁻¹]	151.05
Crystal system	Cubic
Space group	<i>Pa-3</i> (no. 205)
a [Å]	10.3580(10)
<i>b</i> [Å]	10.3580(10)
c [Å]	10.3580(10)
α[°]	90

β[°]	90
γ [°]	90
<i>V</i> [Å ³]	1,111.3
Z	8
$ ho_{ m calc}$ [g cm ⁻³]	1.806
τ[K]	200

- [1] M. Göbel, T. M. Klapötke, P. Mayer, Huozhayao Xuebao, 2006, 632, 1043–1050.
- [2] H. Schödel, R. Dienelt, H. Bock, Acta Cryst., 1994, C50, 1790-1792.
- [3] P. J. Linstrom, W. G. Mallard, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, July 2001, National Institute of Standards and Technology, Gaithersburg, MD, 2014, 20899, webbook.nist.gov.
- [4] J. Liu, Liquid Explosives, Springer-Verlag, Heidelberg, 2015.
- [5] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1978.
- [6] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [7] H. W. Lee, K.-H. Chung, S. G. Cho, B.-S. Lee, C. K. Kim, *Predictive Studies on Various Physicochemical Properties of Explosive Molecules*, ICT **2006**, Karlsruhe, Germany, pp. 177-1–177-12.
- [8] P. S. Dendage, D. B. Sarwade, S. N. Asthana, H. Singh, J. Energet. Mater., 2001, 19, 41-78.
- [9] Handbook of Foreign Explosives, U. S. Materiel Command, US Army Foreign Science and Technology Center, Washington, D. C., USA, October **1965**.
- [10] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part II, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [11] The Merck Index An Encyclopedia of Chemicals and Drugs, 9th edn., M. Windholz, S. Budavari, L. Y. Stroumtsos, M. N. Fertig (eds.), Merck and Co. Inc., Rahway, New Jersey, USA, 1976
- [12] K. R. Jorgensen, G. A. Oyedepo, A. K. Wilson, J. Hazard. Mater., 2011, 186, 583–589.

Trinitronaphthalene

Name [German, acronym]: Trinitronaphthalene, naphtite [trinitronaphthalin,

trinal, TN, TNN]

Main (potential) use: Was used in mixtures with other explosives in the

past^[8], filling shells, usually in fusible mixtures

with TNT^[16]

Structural formula:*

* The crude and commercial products usually contain a mixture of the three isomers shown above^[16]; Commercial trinitronaphthalene is a mixture of the 1,3,5-, 1,4,5- and 1,3,8- isomers – the ratio of the isomers depends on the temperature and nitrating agent used^[18]

	TNN
Formula	C ₁₀ H ₅ N ₃ O ₆
Molecular mass [g mol ⁻¹]	263.17
Appearance at RT	Very fine crystalline solid, light brownish-gray ^[16] , brownish solid (commercial) ^[18] , glittering yellow platelet crystals (1,4,5-) ^[20]
IS [J]	19 Nm ^[8] , 9.52 (drop energy, Julius-Peters, 1,4,5-isomer) ^[9] , similar to TNT (1,3,8-isomer) ^[10]
ESD [J]	10.97 ^[5] , 210.0 mJ ^[5] , 10.97 (1,4,5-TNN) ^[6,22] , 9.25 cal (1,4,5-, calcd.) ^[18]
N [%]	15.97
Ω(CO ₂) [%]	-100.32
T _{m.p.} [°C]	$ 120\ (1,3,5\text{-TNN})^{[1]},\ 217\ (1,3,8\text{-TNN})^{[1]},\ 148\ (1,4,5\text{-TNN})^{[1]},\ 122-123\ (1,3,5\text{-TNN})^{[10]},\ 223\ (1,3,8\text{-TNN})^{[10]},\ 147-149\ (1,4,5\text{-TNN})^{[10]},\ 123\ (1,3,5\text{-TNN})^{[16]},\ 218\ (1,3,8\text{-TNN})^{[16]},\ 147\ (1,4,5\text{-TNN})^{[16]},\ 115-160\ (crude product, mixture of isomers)^{[16]},\ 115\ (softening of the isomer mixture begins)^{[8]},\ 115\ (commercial)^{[18]},\ 218\ (1,3,5\text{-})^{[20]},\ 147\ (1,4,5\text{-})^{[20]},\ 218\ (1,3,8\text{-})^{[20]},\ 112-113\ (1,2,5\text{-})^{[20]}$
T _{dec.} [°C]	1,3,5-TNN explodes @ 364 °C when heated in glass tube ^[10]

$ ho$ [g cm $^{-3}$]		1.654 (@ 293 K, 1,3,5-TNN) ^[2] , 1.72–1.75 (@ 293 K, 1,3,8-TNN) ^[3] , 1.42 (crystal) ^[10] , 1.654 (@ 293 K, 1,4,5-TNN) ^[2]				
Heat of formation	-11 cal/g (Q_f^V , 1,3,8-TNN (1,4,5-) ^[19] , -8.49 kJ/mc 9.7 kJ/mol (enthalpy of	$-8.49 \text{ kJ/mol } (\Delta_i H^o \text{ (s), 1,3,8-TNN)}^{[4]}, -27 \text{ cal/g } (Q_f^P, 1,3,8-TNN)^{[10]}, \\ -11 \text{ cal/g } (Q_f^V, 1,3,8-TNN)^{[10]}, -44.7 \text{ kcal/kg } (1,3,8-)^{[19]}, -55.5 \text{ kcal/kg } (1,4,5-)^{[19]}, -8.49 \text{ kJ/mol (enthalpy of form., exptl., 1,3,8-)}^{[21]}, \\ 9.7 \text{ kJ/mol (enthalpy of form., calcd., emp., 1,3,8-)}^{[21]}, 30.0 \text{ kJ/mol (enthalpy of form., calcd., S-D method, 1,3,8-)}^{[21]}$				
Heat of combustion	$-4,641.23 \text{ kJ/mol } (1,3,6) (1,4,5-\text{TNN})^{[4]}, -1,190 \text{ k} \\ \text{cal/g } (Q_c^{\ \ \ \ \ }; 1,3,8-\text{TNN})^{[10]}$	$\begin{split} & \Delta_c H^o \text{ (s)} = -4,673.9 \pm 4.6 \text{ kJ/mol } (1,3,8\text{-TNN})^{[4]}, \Delta_c H^o \text{ (s)} = \\ & -4,641.23 \text{ kJ/mol } (1,3,8\text{-TNN})^{[4]}, \Delta_c H^o \text{ (s)} = -4,686.1 \pm 4.6 \text{ kJ/mol } \\ & (1,4,5\text{-TNN})^{[4]}, -1,190 \text{ kcal } \text{mol}^{-1} \left(Q_c^{\text{ P}}; 1,3,8\text{-TNN})^{[10]}, -4,223.9 \\ & \text{cal/g } \left(Q_c^{\text{ V}}; 1,3,8\text{-TNN})^{[10]}, -1,122.7 \text{ kcal/mol } \left(Q_c^{\text{ P}}; 1,4,5\text{-TNN})^{[10]}, \\ & 4,259 \text{ kcal/kg } (1,3,8\text{-}, \textcircled{O}^{\text{ V}})^{[19]}, 4,270 \text{ kcal/kg } (1,4,5\text{-}, \textcircled{O}^{\text{ V}})^{[19]} \end{split}$				
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.			
	1,3,8-TNN	1,3,8-TNN				
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	3,734		3,521 [H ₂ O (l)] ^[7,8] 3,425 [H ₂ O (g)] ^[8] 923 kcal/kg (isomer not specified) ^[20] 3,521 kJ/mol (1,3,5-, heat of detonation) ^[18]			
T _{ex} [K]	2,780					
p _{C-J} [kbar]	160		19.32 GPa (1,4,5-) ^[18]			
VoD [m s ⁻¹]	6,371 (@ 1.75 g cm ⁻³ , $\Delta_t H = -8.49 \text{ kJ mol}^{-1}$)	5,690 (@ TMD, calcd., R-P method) ^[15] 5,140 (max. VoD) ^[16]	6,000 (no density given) ^[8]			
V ₀ [L kg ⁻¹]	548	548 723 ^[8]				

Trauzl test [cm³, % TNT]	166 cc (15 g sample) ^[17]
Ballistic mortar test	83% TNT (1,3,8-TNN) ^[11]
5 s explosion T [°C] Deflagration T [°C]	350 (commercial) ^[18]

Thermal stability	1,3,5-TNN @ 135 °C: no fumes after 30 min $^{[10]}$, no explosion <360 °C $^{[10]}$
Vacuum stability test [cm³/h]	1,3,8-TNN: 0.46 cc gas evolved per 5 mL sample in 48 h @ 120 $^{\circ}$ C[10]
Solubility [g/mL]	Sparingly soluble in common organic solvents ^[16] , 1,3,5-poorly soluble in EtOH ^[16] , 1,3,8- soluble in hot 70% EtOH ^[16] , 1,4,5- insoluble in 70% EtOH ^[16] , soluble in acetic acid, CHCl ₃ and EtOH (1,3,5-) ^[20] , soluble in EtOH (1,3,8-) ^[20] , weakly soluble in Et ₂ O and CHCl ₃ (1,3,8-) ^[20] , readily soluble in benzene (1,4,5-) ^[20] , weakly soluble in Et ₂ O, EtOH and CHCl ₃ (1,4,5-) ^[20] , readily soluble in EtOH (1,2,5-) ^[20]
Manometric bomb	Gas pressure (exptl.) by exploding samples in small bombs, pressure measured by piston and obturator ^[12] : loading ρ = 0.25 g cm ⁻³ , pressure = 2,045 kg/cm ^{2[12]} , loading ρ = 0.30 g cm ⁻³ , pressure = 2,670 kg/cm ^{2[12]}

Explosive properties of mixtures of trinitronaphthalene from $^{[20]}$:

formula	*Sensitivity Trauzl (weight = 10 kg, height = 25 cm) (TNT, No. 8		Brisance (no. 8 cap) in mm		Detonation velocity (m/s)	Pilling density (g/cm³)
	in % explosions	cap) in cc	Kast	Hess		
Technical TNN (mpt. = 150°)	12	228	2.16	_		1.43
16.3% TNN & 83.7% AN	18	106	3.95	7.6	5,610	1.6, 0.74
33% TNN & 66.4% AN	21	374	-	7.5	-	0.74 Hess test
35% TNN & 65% TNT (freezing point = *)	4	285	3.11		-	1.58
15% TNN & 85% TNT (freezing point = 74°)	1*	*	3.28		_	*
40% TNN & 60% trinitrophenol (freezing point = 82°)	1*	200	3.39	-	-	1.62
20% TNN & 80% trinitrophenol (freezing point = 105°)	12	312	3.72	_	-	1.63

^{* =} illegible in original report

	1,3,5-TNN ^[14, 20]	1,3,8-TNN ^[3]	1,3,8-TNN ^[13]
Chemical formula	C ₁₀ H ₅ N ₃ O ₆	C ₁₀ H ₅ N ₃ O ₆	C ₁₀ H ₅ N ₃ O ₆
Molecular weight [g mol ⁻¹]	263.17	263.17	263.17
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group		P2 ₁ /n (no. 14)	P2 ₁ /n (no. 14)
a [Å]		16.19	8.4353(13)
<i>b</i> [Å]		7.60	7.7114(14)
c [Å]		8.42	16.250(6)
α [°]		90	90
β [°]		99.27	99.57(3)
γ [°]		90	90
V [Å ³]		1,022.5	1,042.3(5)
Z		4	4
$ ho_{ m calc}$ [g cm $^{-3}$]		1.71	1.677
T[K]		295	297

- [1] T. Bausinger, U. Dehner, J. Preuß, *Chemosphere*, **2004**, *57*, 821–829.
- [2] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© **1994–2017** ACD/Labs).
- [3] G. A. Gol'der, M. M. Umanskii, Zh. Fiz. Khim., 1994, 25, 555–556.
- [4] P. J. Linstrom, W. G. Mallard, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, July 2001, National Institute of Standards and Technology, Gaithersburg, MD, 2014, 20899, webbook.nist.gov.
- [5] S. Zeman, J. Majzlík, Central Europ. J. Energ. Mat., 2007, 4, 15–24.
- [6] M. H. Keshavarz, Z. Keshavarz, ZAAC, 2016, 642, 335–342.
- [7] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2008**, *33*, 448–453.
- [8] R. Meyer, J. Köhler, A. Homburg, *Explosives*, 7th edn., Wiley-VCH, Weinheim, **2016**, pp. 363–364.
- [9] S. Zeman, M. Krupka, *Propellants, Explosives, Pyrotechnics*, **2003**, *28*, 249–255.
- [10] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1978.
- [11] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [12] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1974**.
- [13] G. W. Horn, C. Hansch, S. F. Wolkins, F. R. Fronczek, CSD Communication, 2015.
- [14] S. M. Tsang, W. C. McCrone, Anal. Chem., 1954, 26, 1096–1097.
- [15] L. R. Rothstein, R. Petersen, *Propellants and Explosives*, 1979, 4, 56–60.
- [16] T. Urbański, Ch. 11 in Chemistry and Technology of Explosives, vol. 1, 1964, Pergamon Press, Oxford.

- [17] T. L. Davis, The Chemistry of Powder and Explosives, vol. 1, 1941, John Wiley and Sons Inc., New York.
- [18] L. Türker, S. Varis, A Review of Polycyclic Aromatic Energetic Materials, in Polycyclic Aromatic Compounds, 2009, 29, 228–266.
- [19] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part III, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [20] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part II, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [21] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248–258.
- [22] L. Turker, Electrostatic Discharge and Energetic Materials, To Chemistry Journal, 2019, 2, 72–114.

Trinitrophenoxyethyl nitrate

Name [German, acronym]: 2-(2,4,6-Trinitrophenoxy)ethylnitrate,

trinitrophenoxyethyl-ω-nitrate, β-2,4,6-trinitrophenoxyethyl nitrate [trinitrophenylglykolethernitrat, TNPON]

Main (potential) use: melt-cast

	Trinitrophenoxyethyl nitrate
Formula	$C_8H_6N_4O_{10}$
Molecular mass [g mol ⁻¹]	318.15
Appearance at RT	White crystalline powder ^[10] , white powder ^[11] , yellow-white crystals ^[7]
IS [J]	7.9 Nm ^[7]
N [%]	17.61
Ω(CO ₂) [%]	-45.26
T _{m.p.} [°C]	104 ^[1] , 104.5 ^[7,10,11]
T _{dec.} [°C]	>300
ρ [g cm ⁻³]	1.723 ^[2] , 1.68 ^[7]
Heat of formation	$-277.4 \text{ kJ/mol } (\Delta_i H^o)^{[4]}, -871.9 \text{ kJ/kg (enthalpy of form.)}^{[7]}, -277.3 \text{ kJ/mol (enthalpy of form., exptl.)}^{[13]}, -246.7 \text{ kJ/mol (enthalpy of form., calcd., emp.)}^{[13]}, -286.6 \text{ kJ/mol (enthalpy of form., calcd., S-D method)}^{[13]}$

	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	4,892		3,911 [H ₂ O (l)] ^[4]
			3,473 [H ₂ O (g)] ^[6]
			3,792 [H ₂ O (g)] ^[7]
T _{ex} [K]	3,530		
p _{C-J} [kbar]	241		
VoD [m s ⁻¹]	7,561	7,290 (@ TMD, calcd., R-P method) ^[9]	7,600 (@ 1.68 g cm ⁻³) ^[3]
		,	7,600 (@ 1.65 g cm ⁻³) ^[7]
V ₀ [L kg ⁻¹]	662		878 ^[5, 7]

Trauzl test [cm³, % TNT]	122% TNT ^[8] , 350 cm ^{3[12]} , 350 cm ³ (10 g sample) ^[7]
	Soluble in acetone ^[7, 10] , insoluble in $H_2O^{[7, 11]}$, readily soluble in acetone ^[11] , soluble in toluene ^[7]

- [1] J. J. Blanksma, P. G. Fohr, Recl. Trav. Chim. Pays-Bas Belg., 1946, 65, 711–721.
- [2] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© 1994–2017 ACD/Labs).
- [3] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2012**, *37*, 489–497.
- [4] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2008**, *33*, 448–453.
- [5] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [6] W. C. Lothrop, G. R. Handrick, Chem. Revs., 1949, 44, 419-445.
- [7] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 364.
- [8] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1962.
- [9] L. R. Rothstein, R. Petersen, *Propellants and Explosives*, 1979, 4, 56-60.
- [10] T. Urbański, Ch. 8 in Chemistry and Technology of Explosives, vol. II, 1965, Pergamon Press, Oxford.
- [11] T. L. Davis, *The Chemistry of Powder and Explosives*, vol. 2, **1943**, John Wiley and Sons Inc., New York, p. 227.
- [12] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [13] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248–258.

2,4,6-Trinitrophenylnitraminoethyl nitrate

Name [German, acronym]: 2,4,6-Trinitrophenylnitraminoethyl nitrate,

2-(2',4',6'-trinitro-*N*-nitroanilino)ethanol nitrate,

2,4,6-trinitro-1-(β -nitroxyethylnitroamino)-

benzene, trinitrophenylethanolnitramine nitrate [trinitrophenylethanolnitraminnitrat, pentryl]

Proposed as a base charge in detonators^[8]

Main (potential) use: Structural formula:

	Pentryl
Formula	C ₈ H ₆ N ₆ O ₁₁
Molecular mass [g mol ⁻¹]	362.17
Appearance at RT	Yellowish crystals ^[3] , yellowish, nearly white crystals ^[8]
IS [J]	4 Nm ^[3] , $H_{50\%} = 0.75$ m (2 kg mass) ^[4] , FI = 61% PA ^[4] , 0.26 m (5 kg mass, $H_{56\%}$) ^[4] , max. drop heights for no explosion = 30 cm (2 kg mass) ^[4, 7] , 0.02 g exploded by 2 kg dropped from 30 cm ^[5]
N [%]	23.21
Ω(CO ₂) [%]	-35.34
T _{m.p.} [°C]	129 ^[1] , 128 ^[3, 8] , 126–129 ^[4] , 126 ^[6]
T _{dec.} [°C]	Explosion @ 235 °C (20 °C/min heating rate) ^[4] , explosion @ 230 °C (20 °C/min heating rate) ^[4]
$ ho$ [g cm $^{-3}$]	1.858 ^[2] , 1.75 ^[3] , 1.82 (absol.) ^[4, 5] , 0.45 (apparent) ^[4, 5] , 1.73 (max by compression) ^[4] , 0.74 (apparent ρ when compressed in detonator shell @ 3,400 lb/in ²) ^[5] , sp. gr. = 1.82 ^[8]
Heat of formation	24.84 kcal/mol ($-\Delta H_{\rm f}$, heat of form. @ standard conditions) ^[10]

Heat of combustion	Exptl. heat of combustion data ^[10] :				
	$-\Delta U_{\rm B/M}$ (cal/g)	-ΔU _B (kcal/mol)	@ 1	U _R (kcal/mol I atm. and estant vol.)	$-\Delta H_R$ (kcal/mol @ 1 atm. and constant pressure)
	2,600.70 ± 1.2	2 941.05	940).05	935.91
	Calcd. (EXPLO5 5.04)	Lit. values		Exptl.	
$-\Delta_{\rm ex}U^{\rm o}[{\rm kJ}{\rm kg}^{-1}]$		372.4 kcal/m $(Q_e^{\ v}, \text{calcd.})^{[3]}$			
T _{ex} [K]					
p _{C-J} [kbar]					
VoD [m s ⁻¹]				5,000 (@ 0.80 g cm ⁻³ in light Pb tube, >0.5 m length, 0.5 in) ^[4]	
				$5,254 \ (@\ 1.0\ g\ cm^{-3},\ confined in\ ^3/_{16}\ in\ glass\ tube)^{[4]}$	
				5,330 (@ 0.90 g cm ⁻³ , cardboard cartridges, 30 mm diameter, initiated by 1.5 g MF) ^[4]	
				5,560 (@ 0.99 g cm ⁻³ , cardboard, 30 mm, 1.5 g MF) ^[3]	
				7,340 (@ 1.65 g cm ⁻³ , cardboard, 30 mm, 1.6 g MF) ^[3]	
				17,250 ft/s (@ 1.0 g/mL) ^[6]
				5,000 (@ 0.8	3 g cm ⁻³) ^[8]
V_0 [L kg ⁻¹]					

Trauzl test [cm³, % TNT]	15.8 cc (small Trauzl test) ^[5, 7] , rel. strength cf. TNT = $1.30^{[7, 8]}$, rel. strength cf. Tetryl = $1.15^{[8]}$, rel. strength cf. PA = $1.27^{[8]}$, 450 cm ³ (9) 450 cm ³ (10 g sample) ^[3]	
Lead block test	18.5 mm shortening of block (50 g Pentryl) ^[5]	
Sand test [g]	129% $TNT^{[3]}$, 67.5 g (amount of sand crushed finer than 30 mesh, by total charge consisting of base charge of 0.50 g Pentryl and 0.30 g priming charge of MF) ^[7] , 55.8 g (amount of sand crushed finer than 30 mesh, by base charge of 0.50 g Pentryl) ^[7] , rel. strength cf. $TNT = 1.28^{[7]}$	
Initiation efficiency	Minimum weight of priming charge which causes complete detonation of the base charge ^[7] : $0.095 \text{ g DDNP}^{[7]}$, $0.150 \text{ g MF}^{[7]}$, $0.025 \text{ g LA}^{[7]}$	
5 s explosion T [°C] 3 s explosion T [°C] Explosion T [°C]	235 ^[5] 235 (ignition in 3 s, Wood's preheated bath) ^[3] , 250 (2 s) ^[3] , 270–280 (1.5 s) ^[3] , 235 ^[6, 8]	
Thermal stability	Storage at moderately elevated T causes no loss in power ^[6] , storage under water causes no loss in power ^[6]	
Burn rate [mm/s]	Burns without explosion when ignited without confinement ^[6]	
Solubility [g/mL]	Some solubility in most common organic solvents ^[5] , readily soluble in NG ^[5] , soluble in NG ^[3] , soluble in water ^[3] , sparingly soluble in common organic solvents ^[3]	
Compatibility	Storage underwater causes no loss in power ^[6]	

- [1] K. F. Waldkotter, Recl. Trav. Chim. Pays-Bas Belg., 1938, 57, 1294-1310.
- [2] Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02 (© **1994–2017** ACD/Labs).
- [3] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 364–365.
- [4] B. T. Fedoroff, H. A. Aaronson, E. F. Reese, O. E. Sheffield, G. D. Clift, *Encyclopedia of Explosives and Related Items*, *vol. 1*, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1960**.
- [5] T. L. Davis, The Chemistry of Powder and Explosives, vol. 1, 1941, John Wiley and Sons Inc., New York, pp. 229–232.
- [6] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [7] L. R. V. Clark, Industrial and Engineering Chemistry, 1934, 26, 554–557.
- [8] J. Bebie, Manual of Explosives, Military Pyrotechnics and Chemical Warfare Agents, Composition, Properties, Uses, MacMillan Co., 1943.
- [9] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [10] G. Stegeman, *Heat of Combustion of Explosive Substances*, OSRD No. 5306, Division 8 National Defense Research Committee of the Office of Scientific Research and Development, USA, 4th July **1945**.

1,3,5-Trinitro-2-(prop-2-yn-1-yloxy)benzene

Name [German, acronym]: 1,3,5-Trinitro-2-(prop-2-yn-1-yloxy)benzene [PiPE] Main (potential) use: Investigated as possible TNT replacement^[1]

$$O_2N$$
 O_2 O_2N O_2 O_2N O_2

	PiPE				
Formula	C ₉ H ₅ N ₃ O ₇	C ₉ H ₅ N ₃ O ₇			
Molecular mass [g mol ⁻¹]	267.15				
Appearance at RT					
IS [J]	56.7 cm ^[1]				
FS [N]	>360 ^[1]				
ESD [J]	0.2113 ^[1]				
N [%]	15.73				
Ω(CO ₂) [%]	-80.85				
T _{m.p.} [°C]	100 ^[1]	100 ^[1]			
T _{dec.} [°C]					
$ ho$ [g cm $^{-3}$]	1.612 ^[1]	1.612 ^[1]			
Heat of formation	227.4 (no units	227.4 (no units given) ^[1]			
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.		
−Δ _{ex} U° [kJ kg ⁻¹]					
<i>T</i> _{ex} [K]					
p _{C-J} [kbar]	21.96 GPa (calcd., Cheetah 7.0 ^[1]				
VoD [m s ⁻¹]		6,929 (@ 1.612 g cm ⁻³ , calcd., Cheetah 7.0) ^[1]			
V_0 [L kg ⁻¹]					

Vacuum stability test [cm³/h]	STANAG 4147 test 1B, total gas evolved after 40 h @ 100 °C, values in cc): $2.8188^{[1]}$
Compatibility	VTS compatibility (STANAG 4147 test 1B, 2.5 g of compound 1 mixed with 2.5 g of compound 2, total gas evolved after 40 h @ 100 °C, values in cc) ^[1] : 1.5223 (DNGU), 1.7547 (LLM-105), – (HK-56), 1.3033 (HMX) concluding that DNGU, LLM-105, HK-56 and HMX are compatible with PiPE ^[1]

[1] D. Price, *GrIMEx: Development of a Novel, Green IM Comp B Replacement*, Oral presentation, 2016 Insensitive Munitions and Energetic Materials Technology Symposium, Nashville, Tennessee, USA, **2016**.

Trinitropyridine

Name [German, acronym]: Trinitropyridine [trinitropyridin, TNPy]

Main (potential) use: high explosive

	TNPy					
Formula	C ₅ H ₂ N ₄ O ₆	C ₅ H ₂ N ₄ O ₆				
Molecular mass [g mol ⁻¹]	214.09					
Appearance at RT	Pale yellow prism	crystals ^[7] , yellow needles ^{[8}	3]			
IS [J]	4.5-6.5 Nm ^[1, 8] , 60)% ^[7]				
FS [N]	>353 ^[8] , 4% ^[7]					
N [%]	26.17	'				
Ω(CO ₂) [%]	-37.37	'				
T _{m.p.} [°C]		162 (sublimation) ^[1, 8] , 164 (recryst.) ^[7] , 162–163 (endo, DTA @ 15 $^{\circ}$ C/min) ^[7] , 164.1 (endo, DSC) ^[7]				
7 _{dec.} [°C]	444–445 (exo, DTA 372 °C, DSC) ^[7]	444–445 (exo, DTA @ 15 °C/min) ^[7] , 321.5 (first exo, second exo @ 372 °C, DSC) ^[7]				
$ ho$ [g cm $^{-3}$]	1.77 ^[1, 8] , 1.74 (cry	1.77 ^[1, 8] , 1.74 (crystal) ^[7]				
Heat of formation	368.5 kJ/kg (entha	368.5 kJ/kg (enthalpy of form.) ^[8]				
	Calcd. (EXPLO5 6.04)	The state of the s				
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	4,418 [H ₂ O (I)] ^[3, 4]					
<i>T</i> _{ex} [K]						
p _{C-J} [kbar]						
VoD [m s ⁻¹]	7,645 ± 15 (@ 1.686 g cm ⁻³) ^[7] 7,470 (@ 1.66 g cm ⁻³) ^[8]					
V_0 [L kg ⁻¹]			818 ^[5, 8]			

5 s explosion T [°C] Explosion T [°C]	Minimal T of explosion = 413 °C ^[7]			
Thermal stability	Thermal stability heated @ constant $T^{[7]}$:			
	T (°C) Time (h) Weight degression (%)			
	100 20 0.00			
	120 48 0.85			
	120 120 1.03			
Solubility [g/mL]	Easily soluble in acetone, DMSO, dioxane, nitromethane, ethyl acetate, dil. nitric acid $^{[7]}$, insoluble in benzene, 1,2-dichloroethane, $\mathrm{Et_2O^{[7]}}$			
Compatibility	Stable to hydrochloric acid and water ^[7]			
ΔH _{sub} [kJ/mol]	101.7 (exptl.) ^[6] , 108.7 (calcd., QSPR) ^[6]			

	TNPy ^[2]
Chemical formula	$C_5H_2N_4O_6$
Molecular weight [g mol ⁻¹]	214.11
Crystal system	Orthorhombic
Space group	Pbcn
a [Å]	28.573(6)
<i>b</i> [Å]	9.7394(19)
c [Å]	8.7566(18)
α [°]	90
β[°]	90
γ [°]	90
V [ų]	2,436.8(8)
Z	12
$\rho_{\rm calc}$ [g cm ⁻³]	1.751
τ[K]	293(2)

- [1] H. H. Licht, H. Ritter, *Propellants, Explosives, Pyrotechnics*, **1988**, *13*, 25–29.
- [2] J.-R. Li, J.-M. Zhao, H.-S. Dong, J. Chem. Crystallogr., 2005, 35, 943-948.
- [3] L. R. Rothstein, R. Petersen, *Propellants, Explosives, Pyrotechnics*, **1979**, 4, 56–60.
- [4] M. H. Keshavarz, Propellants, Explosives, Pyrotechnics, 2008, 33, 448-453.
- [5] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, **2015**, *22*, 701–706.
- [6] H. W. Lee, K.-H. Chung, S. G. Cho, B.-S. Lee, C. K. Kim, *Predictive Studies on Various Physicochemical Properties of Explosive Molecules*, ICT **2006**, Karlsruhe, Germany, pp. 177-1–177-12.
- [7] W. Daozheng, Chinese Sci. Bull. (Kexue Tongbao), 1986, 31, 1034–1037.
- [8] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 366.

Trinitropyridine-N-oxide

 $Name \ [German, acronym] : \quad Tripyridine-\textit{N}-oxide \ [trinitropyridin-\textit{N}-oxid, TNPyOX]$

Main (potential) use: Used as intermediate in the production of

trinitropyridine^[7]

	TNPyOx			
Formula	C ₅ H ₂ N ₄ O ₇	C ₅ H ₂ N ₄ O ₇		
Molecular mass [g mol ⁻¹]	230.09			
Appearance at RT	yellow crystals ^[7]			
IS [J]	1.5-3.0 Nm ^[1, 7] , $H_{50} = 2$	0 cm ^[6, 8]		
FS [N]	157 ^[7]			
N [%]	24.35			
Ω(CO ₂) [%]	-27.82			
T _{m.p.} [°C]	170 (dec.) ^[7]			
T _{dec.} [°C]	170 ^[1]	170 ^[1]		
$ ho$ [g cm $^{-3}$]	1.86 ^[1,7] , 1.875 ^[8]			
Heat of formation	98.7 kJ/mol $(\Delta_i H)^{[4]}$, 428.9 kJ/kg (enthalpy of form.) ^[7] , 24.40 kcal/mol $(\Delta H_i(s))^{[8]}$, 98.6 kJ/mol (enthalpy of form., exptl.) ^[10] , 16.8 kJ/mol (enthalpy of form., calcd., emp.) ^[10] , -18.5 kJ/mol (enthalpy of form., calcd., S-D method) ^[10] , 102.10 ± 1.30 kJ/mol $(\Delta_i H^o_{solid})^{[11]}$			
Heat of combustion	-2,355.60 ± 1.30 kJ/mo	$-2,355.60 \pm 1.30 \text{ kJ/mol } (\Delta_c H^{\circ}_{\text{solid}})^{[11]}$		
	Calcd. Lit. values Exptl. (EXPLO5 6.04)			
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	5,912	1.58 kcal/g (Q_{max} , calcd.) ^[8]	3,533 [H ₂ O (l)] ^[4]	
			5,320 [H ₂ O (l)] ^[7]	

T _{ex} [K]	4,298		
p _{C-J} [kbar]	337	333 (@ 1.875 g cm ⁻³ , calcd.) ^[8]	
VoD [m s ⁻¹]	8,615 (@ 1.875 g cm ⁻³ , $\Delta_i H = 98.7 \text{ kJ mol}^{-1}$)	8,560 (@ 1.875 g cm ⁻³ , calcd.) ^[8] 8,369 (@ TMD, R-P method) ^[3]	7,770 (1.72 g cm ⁻³) ^[7]
V ₀ [L kg ⁻¹]	667		777 ^[5, 7]

ΔH_{sub} [kJ/mol]	106.3 (exptl.) ^[9] , 108.7 (calcd., QSPR) ^[9] , 106.30 ± 2.90 @ 390 K ^[11]
logP _{octanol/water}	0.04 ^[11]

	TNPy ^[2]
Chemical formula	C ₅ H ₂ N ₄ O ₇
Molecular weight [g mol ⁻¹]	299.99
Crystal system	Orthorhombic
Space group	Pnma
a [Å]	9.6272(19)
<i>b</i> [Å]	14.128(3)
c [Å]	5.9943(12)
α [°]	90
β [°]	90
γ [°]	90
<i>V</i> [ų]	815.3(3)
Z	4
$ ho_{calc}$ [g cm ⁻³]	1.875
T[K]	293

- [1] H. H. Licht, H. Ritter, *Propellants, Explosives, Pyrotechnics*, **1988**, *13*, 25–29.
- [2] J.-R. Li, J.-M. Zhao, H.-S. Dong, J. Chem. Crystallogr., 2005, 35, 943–948.
- [3] L. R. Rothstein, R. Petersen, *Propellants, Explosives, Pyrotechnics*, **1979**, 4, 56–60.
- [4] M. H. Keshavarz, Propellants, Explosives, Pyrotechnics, 2008, 33, 448-453.
- [5] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, **2015**, *22*, 701–706.

- [6] C. B. Storm, J. R. Stine, J. F. Kramer, Sensitivity Relationships in Energetic Materials, NATO Advanced Study Institute on Chemistry and Physics of Molecular Processes in Energetic Materials, LA-UR—89-2936, 1990.
- [7] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, p. 366.
- [8] P. Politzer, J. S. Murray, High-Performance, Low Sensitivity: The Impossible (or Possible) Dream? in Energetic Materials From Cradle to Grave, M. K. Shukla, V. M. Boddu, J. A. Steevens, R. Damavarapu, J. Leszczynski (eds.), Springer Verlag, 2017, pp. 1–22.
- [9] H. W. Lee, K.-H. Chung, S. G. Cho, B.-S. Lee, C. K. Kim, *Predictive Studies on Various Physicochemical Properties of Explosive Molecules*, ICT **2006**, Karlsruhe, Germany, pp. 177-1–177-12.
- [10] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248–258.
- [11] 2,4,6-Trinitropyridine 1-oxide Datasheet: https://www.chemeo.com/cid/33-744-9/2%2C4%2C6-Trinitropyridine%201-oxide

2,4,6-Trinitro-2,4,6,8-tetraazabicyclo[3.3.0]-octane-3-one

Name [German, acronym]: 2,4,6-Trinitro-2,4,6,8-tetraazabicyclo[3.3.0]-octane-3-one

[HK-55]

Main (potential) use: high explosive

	HK-55					
Formula	C ₄ H ₅ N ₇ O ₇	$C_4H_5N_7O_7$				
Molecular mass [g mol ⁻¹]	263.13					
Appearance at RT	White powder	^[3] , white microcryst	als (recryst. fror	m CH ₃ CN) ^[3]		
IS [J]	$DH_{50} = 61 \text{ cm}^{[1]}$	[]] , 61 cm (cf. 32 cm f	or HMX) ^[3]			
	Data from ^[2] :					
	% purity	% purity Holston % purity Holston impact (cm)				
	~99.5	~99.5 ~25 99.4 ~20				
	99.2	99.2 ~20-25 95.8 ~20-25				
	99.7	~ 20	~ 98–99	~ 20–25		
	98.9	~ 20–25	~ 98–99	~15-20		
N [%]	37.26					
Ω(CO ₂) [%]	-21.28					
T _{m.p.} [°C]	196[1], 196-1	196 ^[1] , 196–197 ^[3]				
T _{dec.} [°C]						
$ ho$ [g cm $^{-3}$]	1.905 ^[1, 3]	1.905 ^[1, 3]				
Heat of formation						

	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]			
T _{ex} [K]			
p _{C-J} [kbar]			
VoD [m s ⁻¹]			
V ₀ [L kg ⁻¹]			
		-	
Solubility [g/mL]	Recryst. from CH ₃ CN ^[3]	-	

- [1] P. F. Pagoria, G. S. Lee, A. R. Mitchell, R. D. Schmidt, Thermochim. Acta, 2002, 384, 187-204.
- [2] D. Price, J. Morris, S. Haedrick, N. Tucker, R. Uy, *Energetic Ingredients Synthesis*, BAE systems presentation, Holston Army Ammunition Plant, October **2013**.
- [3] P. F. Pagoria, A. R. Mitchell, E. S. Jessop, *Propellants, Explosives, Pyrotechnics*, **1996**, *21*, 14–18.

2,4,6-Trinitrotoluene

Name [German, acronym]: 2,4,6-Trinitrotoluene, 1,3,5-trinitro-2-methylbenzene,

tritol, triton, tritone, trotol, trilite, trotyl [2,4,6-trinitrotoluol, trinitrotoluol, tri, trotyl, tutol, trinol, Füllpulver 1902, Sprengmunition 02,

TNT, Fp02][†]

Main (potential) use: Secondary (high) explosive, melt cast, demolition

compressed (in demolition charges)^[88], cast TNT in shells and demolition charges^[88], large caliber armor-

piercing shells^[88]

$$O_2N$$
 NO_2
 NO_2

[†] Commercial TNT for military purposes is the 2,4,6-TNT isomer $(\alpha$ -TNT)^[88]; there are different standards in different countries for different grades of TNT^[88]. Crude TNT (de Beule) has the following composition: 95.1% α -TNT, 1.36% β -TNT, 2.69% γ -TNT, 0.002% δ -TNT, 0.009% ζ -TNT and dinitrotoluene isomers by nitration of m-nitrotoluene^[88]; Values below given for α -TNT (2,4,6-TNT) unless otherwise indicated

	2,4,6-TNT
Formula	$C_7H_5N_3O_6$
Molecular mass [g mol ⁻¹]	227.13
Appearance at RT	Light yellow solid ^[23] , yellow, crystalline solid ^[27] , crystallizes as small columns or needles ^[88] , all isomers $(\alpha$ -, β -, γ -, δ -, ζ -) are pale yellow crystalline solids ^[88] , straw yellow–yellow-brown flaked, granular or crystalline material – color depends on purity ^[142] , colorless or light yellow rhombohedral crystals $(\alpha$ -TNT) ^[149] , white substance which becomes yellow in light and has two polymorphic forms ^[163]
IS [J]	15 Nm ^[1,8] , 39.24 ^[6] , 35.86 (first reaction) ^[13,106] , 39.24 (sound) ^[13,106] , 18.64–19.62 (95–100 + cm, 2 kg mass, 20 mg sample, B. M.) ^[17,18,23] , 6.98–7.48 (14–15 in, 2 kg mass, 17 mg sample, P. A.) ^[17,18,23,165] , IS _{LL} = 5.0 m ^[26] , IS _{A50} = 6.5 m ^[26] , H_{50} = 212 cm (tool type 12, flake TNT) ^[25] , H_{50} > 320 cm (tool type 12B, flake TNT) ^[25] , H_{50} > 320 cm (tool type 12B, granular TNT) ^[25] ,

 $H_{50} > 111.6^{[29]}$, $H_{50\%} = 200$ cm (US NOL app.)^[28], $H_{50\%} = 200$ cm (35 mg sample, 2.5 kg mass, US NOL app.) [91], $H_{50\%} = 160 \text{ cm}^{[46]}$, 197 cm (media height, 5 kg mass, 30 mg sample, Rotter app.)^[44], $H_{50} = 80$ cm (tool type 12, 5 kg mass)^[51], $H_{50} \ge 177$ cm (tool type 12B, 5 kg mass)^[51], >29.43 (Julius-Peters app.)^[53], $Ed_{min} = 25-35$ (BAM, 5 kg mass, max. level at which six negative results obtained)^[54], $H_{50\%}$ = 98 cm (B.M., type 12 tool, 2.5 kg mass, 35 mg sample, garnet paper)^[55], 88.3 cm^[73], $H_{50} = 60$ cm $(5 \text{ kg hammer})^{[78]}$, $H_{50} = 160 \text{ cm}^{[81]}$, 94 cm (pressed TNT, NEDED)^[85], 210 cm (pressed TNT, NOL)^[85], 148 cm (pressed TNT, LANL)^[85], 94 cm (cast TNT, NEDED)[85], 210 cm (cast TNT, NOL)[85], 148 cm (cast TNT, LANL)[85], $H_{50} > 111.6 \text{ J}^{[86]}$, molten TNT is more sensitive to impact than cryst. TNT^[88], $H_{50\%} = 160 - 200 \text{ cm} \text{ (TNT powder, 0.5 kg hammer)}^{[91]}, H_{50\%} \ge 200 \text{ cm}$ $(0.5 \text{ kg hammer})^{[91]}$, $(H_{50}W_g)^{-1} = 15 \text{ Nm}^{[95]}$, $60-180 \text{ cm} (2 \text{ kg mass})^{[93]}$, $H_{50\%} = 150 - 215 \text{ cm}^{[96]}, H_{50\%} = 110 \text{ cm}$ (5 kg mass, several decigrams sample contained in 0.2 mm thickness small iron cup covered with iron disc of same thickness)^[93], 8.4 J/s \times 10⁻⁴ (threshold above which initiation occurs)^[102], $H_{50\%} = 200 \text{ cm}^{[104]}$, 160 cm (Bruceton method, type 12 tool, 2.5 kg mass, 40 mg sample, 5/0 sandpaper, 25 trials)^[107], 160 cm (2.5 kg mass)^[111], 105.4 cm (2.5 kg mass, AFATL)[111], 61.7 cm (5 kg mass, AFATL)[111], $H_{50} = 110$ cm (2.5 kg mass, Bruceton method, NOL machine, type 12 tool, $35 \pm 2 \text{ mg sample}$, $5/0 \text{ sandpaper})^{[127]}$, $33.8^{[128]}$, $15 \text{ (BAM)}^{[130]}$, $Ed_{\text{min}} = 25-35$ (BAM, 5 kg mass, RT)^[131], $H_{50} = 98$ cm (2.5 kg mass, type 12 tool)^[136], $log(H_{50}) = 2.196 (Kamlet/Adolph)^{[137]}, 1,570 \text{ mm (dropheight, Rotter})$ impact test)[139], 1,006 mm (dropheight, Rotter impact test, +5% DETA)[139], >100 cm (max dropheight for 0 explosions in 5 trials, 2,000 g mass, 0.02 g sample, B.M. small impact device)[145], >200 cm (TNT powder, 0.5 kg)[146], $H_{50\%} = 160 \text{ cm} (2.5 \text{ kg mass, type } 12 \text{ tool, ERL method})^{[161]}, 95 \text{ cm}$ (B.M.)^[165], 227 cm (50% point, type 12 tool, 2.5 kg mass, sandpaper)^[168], $A_{d1} = 8\%$, $A_{d2} = 0\%$, LL = 5.0 m, $A_{50 d1} = 6.5$ m, $A_{50 d2} = 14.0^{[176]}$, 35.6 cm (P.A.)^[181], >95 cm (B.M.)^[181]

P.A. apparatus (@°C): 8.47(@ -40 °C), 6.98 (@ RT), 3.49 (@ 80 °C), 1.50 (@ 90 °C) $^{[23]}$ Large impact apparatus; pressed @ 1.60 g cm $^{-3}$ = 34.9 $^{[23]}$; cast @ 1.60 g cm $^{-3}$ = 12.96 $^{[23]}$

IS (2 kg mass, P.A. apparatus @ different temperatures)[23, 27, 33]:

T (°C)	inches
-40	17
RT	14
80	7
90	3
105	2 (5 explosions from 20 trials)

Max. fall for $^0/_6$ shots >60 cm (2 kg mass, Lenze-Kast apparatus) $^{[30]}$, max. fall for $^0/_6$ shots >24 cm (10 kg mass, Lenze-Kast apparatus) $^{[30]}$, min. fall for $^6/_6$ shots >60 cm (2 kg mass, Lenze-Kast apparatus) $^{[30]}$, min. fall for $^6/_6$ shots >24 cm (2 kg mass, Lenze-Kast apparatus) $^{[30]}$, similar @ 90 °C to that of PA @ RT $^{[88]}$, 197 cm (median height, 5 kg mass, 30 mg sample, FoI = 152 cf. RDX = 80, Rotter apparatus) $^{[181]}$

Powdered samples: $H_{50\%}$ = 157 cm (NOL app.)^[44], 154 cm (LASL app.)^[44], 183 cm (B.M. app. @ ERL)^[44], $H_{10\%}$ = 98 cm (B.M. app. @ P.A.)^[44], $H_{10\%}$ = 15 in (P.A.)^[44]

Max. no-fire height in cm, 2 kg mass, 2 mg ground samples^[101]:

Sample	Uncycled	Cycled 1 × to 150 °C @ 5 °C/min	Cycled 2 × to 150 °C @ 5 °C/min	Ambient -200 °C @ 40 °C/min, hold for 30 min.
Virgin TNT	42	58	56	84
	42	52	64	60
Reclaimed	50	58	54	-
flake TNT	52	64	60	_

Piston apparatus, 100 trials per height^[88]:

T (°C)	% Explosions @ height (cm)		
	25 cm	30 cm	50 cm
18	-	24	54
20	11	-	-
80	13	-	-
81	-	31	59
90	-	48	75
100	25	63	89
110	43	-	-
120	62	-	-

Variation of IS with temperature^[165]:

T(°C)	50% point (in)
30	23.6
50	22.0
70	17.0
75	14.2
85	4.73
90	5.12
110	3.54
130	3.15

Rotter impact data: 27 mg sample, Bruceton method/25 drop run to obtain $H_{50\%}$; initiation criteria = 1 mL gas evolved or 0.5 mL accompanied by smoke or evidence of burning in the sample; data from^[184]:

Rotter impact data		US d	ata
FofI	F of I Gas evolved (mL)		NWC B.M. type 12
150-200	2,157	157	74, 98

FS [N]

 $353^{[1,8]}$, unaffected by steel shoe (friction pendulum test) $^{[23]}$, unaffected by fiber shoe (friction pendulum test) $^{[23]}$, unaffected by pendulum friction test $^{[27,149]}$, $P_{\rm fr.LL}=600~{\rm MPa}^{[26,176]}$, $P_{\rm fr.50\%}=850~{\rm MPa}^{[26,176]}$, $F_{\rm 50}=8~(^1/_6)~{\rm kgf}^{[29]}$, mean FOF (figure of friction) >8.2 (Rotter FS) $^{[36]}$, >360 (mean limiting load, BAM) $^{[36]}$, $G_{\rm min} \ge 360$ (Julius-Peters, max. level at which six negative results obtained) $^{[54]}$, $168^{[73]}$, 50% value $\ge 360~{\rm (BAM)}^{[76]}$, $F_{\rm 50}=8~{\rm kgf}~(^1/_6)^{[86]}$, very low, but is higher when TNT is molten $^{[88]}$, Rotter FoF = 5.8 $^{[92]}$, Rotter FoF = 6 $^{[92]}$, 360 (BAM, limiting load) $^{[92]}$, 36 KPa × 10 $^{-4}$ @ 2.4 m/s (threshold above which initiation occurs) $^{[102]}$, 1,100 $^{[128]}$, 10% go @ 353 (Julius Peter apparatus) $^{[130]}$, $G_{\rm min} \ge 360~{\rm (BAM Julius Peters, max level with six consec. negative runs)}^{[131]}$, unaffected by Picatinny Arsenal friction test $^{[181]}$

Torpedo friction = 80–120 cm (1 kg @ 80 °C, 0.5 m/s)^[91, 146], Torpedo friction = 100–120 cm (TNT powder, 1 kg @ 80 °C, 0.5 m/s)^[91], friction wheel ≥50 kg (1 kg @ 80 °C, 0.5 m/s)^[91, 146]

Mallet friction test: steel on steel = $0\%^{[36]}$, nylon on steel = $0\%^{[36]}$, wood on softwood = $0\%^{[36, 171]}$, wood on hardwood = $0\%^{[36, 171]}$, wood on Yorkstone = $0\%^{[36, 171]}$

ESD [J]

 $6.85^{[6.9,12]}$, 111.8 mJ^[9], 0.06 (100 mesh, unconfined)^[23,48], 4.4 (100 mesh, unconfined)^[23,48], spark sensitivity = 0.46 (brass electrode, 3 mil Pb foil thickness)^[25], 2.75 (brass electrode, 10 mil Pb foil thickness)^[25], 0.19 (steel electrode, 1 mil Pb foil thickness)^[25], 4.00 (steel electrode, 10 mil Pb foil thickness)^[25], 0.06 (unconfined, 100 mesh)^[27], 4.4 (confined, 100 mesh)^[27], $E_{50} = 8.576$ (@ 293 K)^[29], $E_{50} = 5.470$ (@ 333 K)^[29], $E_{50\%} = 8.576$ ($T_0 = 293$ K)^[86], $T_{50\%} = 0.57 \pm 0.13$ (Bruceton equation)^[94], $T_{50\%} = 0.57 \pm 0.13$ (Bruceton equat

Highest energy (J) for zero ignition probability^[178]:

Results from ^[178]	Bureau of Mines, 1943	Bureau of Mines, 1946
0.036	0.077	0.062

Highest electrostatic discharge energy (J) @ 5,000 V for zero ignition probability[31]:

	Highest E (J) for zero ignition probability				gnition
	Unconfined	Confined	Unconfined	Confined	
TNT granular	>11.0	4.68	None	Deton.	
TNT granular through 100 mesh	0.062	4.38	Deflag.	Deton.	

Data from^[180]:

Material	50% point energy (J)		
	3-mil foil	10-mil foil	% expl.
TNT (Impact Std)	0.46	3.75	0

	Mallet FS,	Mallet FS, % ignitions ^[181] :				
	Mild steel mallet on anvils of		Standard	l wood mallet	on anvils of	
	Mild steel	Naval brass	Aluminum bronze	York stone	Hardwood	Softwood
	0	0	0	0	0	0
	Pendulum	FS: passed	l fiber shoe ^{[187}	^{1]} , passed s	steel shoe ^[181]	
N [%]	18.5					
Ω(CO ₂) [%]	-74.0					
T _{phase transitions} [°C]	No reversible phase transitions in contrast to observations from calorimetric measurements [41], calorimetric measurements suggests orthorhombic TNT undergoes phase transformation possibly to monoclinic form @ 343 K ^[156] , monoclinic TNT stable from ambient temperature until mpt. [156], monoclinic orthorhombic transformation occurs @ ambient temperature over long periods of time [156] ~70 (small endo, orthorhombic orthorhombic, DSC @ 1-10 K/min (followed by endo @ 81 °C corresponding to monoclinic mpt.)) [41] 354 K (small peak, orthorhombic) [35], orthorhombic is stable under ambient conditions and transforms to monoclinic over time [177], orthorhombic orm is stable up to mpt. of 354 K [177]					
T _{glass transition} [°C]	–15 (glass is metastable <–15°C, formed by very rapid quenching of molten TNT @ 64 °C/min) ^[35] , –14 – –8 (glass transforms to crystalline solid) ^[35]					
<i>T</i> _{m.p.} [°C]	$81^{[23,33,96,104]}$, $80-82^{[21]}$, $80.9^{[25],[33]}$, $80.6^{[30,130]}$, $80.6-80.85^{[33]}$, $80.75\pm0.05^{[33]}$, $81.5^{[33]}$, 81.5 (annealed TNT, DTA @ 10° C/min) ^[34] , $79.5-80.5$ (melt-quenched TNT, DTA @ 10° C/min) ^[34] , 81 (endo, monoclinic TNT, DSC @ $1-10$ K/min) ^[41] , $80^{[47,73,76,120]}$, $80.7^{[48,171]}$, $80.8^{[48][109]}$, $75-100$ (endo, 20 mg sample, DTA @ 10° C/min) ^[33] , 355 K (monoclinic, DSC) ^[35] , 354 K (mpt. of sample after orthorhombic converted to monoclinic) ^[35] , $80.1-81.6^{[77]}$, 81.6 (DSC, sample in sealed cell) ^[86] , various values reported: $80.6, 80.65, 80.0$ 80.85, $80.66^{[88]}$, 112 (β-TNT, $2,3,4$ -TNT) ^[93] , 104 (γ-TNT, $2,4,5$ -TNT) ^[93] , 79.5 (ζ-TNT, $2,3,6$ -TNT, only trace quantities of this isomer have been synthesized) ^[93] , 80.66 (DSC, 5 mg sample, Al pan, Al cover without crimping, 5° C/min, under N_2 flow, mean value of 7 measurements with a standard deviation of $0.099)^{[97]}$, 80.7 (Thomas Hoover Capillary Melting Point Apparatus @ 2° C/min) ^[109] , 79.93 (endo, onset, DSC @ 10° C/min, $1-10$ mg sample, unsealed but covered Al pans) ^[112] , 80.63					

(endo, onset, 92.12 J/g, DSC @ 10 °C/min, 1–10 mg sample, unsealed but covered Al pans) $^{[112]}$, $80.75^{[138,149]}$, $80-81^{[27,142]}$, $80.1^{[152]}$, no dec. on melting with no dec. observed on melting and solidifying >60 times $^{[27]}$, 345 K (monoclinic crystal) $^{[156]}$, 81 (cast) $^{[165]}$, 79 (uncycled) and 78 (cycled TNT) $^{[167]}$

79 (TGA/DTA, 10 mg sample, in air, open Al pans)[99]

Effect of prolonged heating on mpt.[88]:

Conditions before mpt. measured	mpt. (°C)	Conditions before mpt. measured	mpt. (°C)
18 h heating @ 145–150 °C	80.66	127 h heating @ 145–150 °C	80.20
42 h heating @ 145–150°	80.55	158 h heating @ 145–150 °C	80.13
80 h heating @ 145-150 °C	80.25	177 h heating @ 145–150 °C	79.90

Effect of prolonged heating on mpt. [88]: mpt. = 78 °C (after heating @ 180 °C for 290 min) [88], mpt. = 17 °C (after heating @ 201 °C for 180 min) [88], mpt. = 59 °C (after heating @ 217.5 °C for 45 min) [88]

mpt. decreases from 80.0 to 79.5 °C after 2 weeks sunlight irradiation $(Kast)^{[88]}$, mpt. decreases from 80 to 74 °C after exposure to sunlight in the open for 3 months^[88], TNT irradiated in absence of air in vacuum showed no change in mpt.^[88]

112 (β -TNT, 2,3,4-TNT)^[88], 104 (γ -TNT, 2,4,5-TNT)^[88], 137 (δ -TNT, 3,4,5-TNT)^[88], 97.5 (ϵ -TNT, 2,3,5-TNT)^[88], 111 (ζ -TNT, 2,3,6-TNT)^[88]

T_{freezing point} [°C]

80^[163], 85^[163]

Effect of moisture on freezing point of TNT^[27]:

% Water	Freezing point (°C)
0	80.59
0.1	80.35
0.2	80.20
0.3	79.99
0.5	79.78
1.0	79.09
2.5	77.93

	Removal of moisture from TNT; effect of moisture on freezing point, water content = 0.3% before drying ^[27] :				
	Hours of heating at 100 °C	freezing point of sample (°C)			
	0	79.99			
	2	80.30			
	3.5	80.46			
	5	80.55			
	6	80.59			
T _{b.p.} [°C]	240 (explodes) ^[77] , can be distilled off @ 210–212 @ 10–12 mm Hg without visible dec. ^[88] , 190 @ 2 mm Hg ^[88, 89] , 245–250 @ 50 mm Hg ^[88, 89] , extrapolated value @ normal pressure = $300 \pm 10^{\circ}$ C ^[88, 89] , direct determination of bpt. not possible since it is close to the initiation temperature of TNT ^[88] , 345 (@ 760 mm Hg, condensation T of TNT vapors) ^[88] , 232 (@ 30 mm Hg, condensation T of TNT vapors) ^[88] , 232 (@ 30 mm Hg ^[93] , 345 (@ atmospheric pressure) ^[27] , 190 (@ 2 Torr) ^[27] , 210 (@ 10–12 Torr) ^[27] , 245–250 °C (@ 50 Torr) ^[27]				
T _{dec.} [°C]	190 (@ 2 Torr) ^[27] , 210 (@ 10–12 Torr) ^[27] , 245–250 °C (@ 50 Torr) ^[27] 290 (DSC @ 5 °C/min), 526 K (DTA) ^[13, 106] , 260–310 (exo, 20 mg sample, DTA @ 10 °C/min) ^[33] , 328 (exo peak max., DSC @ 20 °C/min) ^[47] , 190 (TG onset) ^[76] , 250–300 (exo peak, DSC, 5 mg sample, Al pan, Al cover without crimping, 5 °C/min, under N_2 flow) ^[97] , 274.47 (exo, onset, DSC @ 10 °C/min, 1–10 mg sample, unsealed but covered Al pans) ^[112] , 209 (ARC, heat-wait-search procedure, T raised from RT to 100 °C then from 100 °C onward in 5 °C steps, at each step system was maintained adiabatic, exotherm was defined as a self-heating rate exceeding 0.02 °C/min, Ar atmosphere) ^[117] , 294.8 (exo peak, DTA) ^[124] , 225 (deflagration T, determined using 2 lb slabs heated @ 100 °C/min on one surface) ^[96] TGA/DTA (10 mg sample, in air, open Al pans): 125 (start of mass loss), 161 (3% mass loss), 180 (endothermic sublimation) ^[99] DSC (closed Al pans, 1 K/min): 315.3 (exo peak onset), 324.0 (exo peak max) ^[99] @ 8 °C/min: T_{idb} = 269.4, T_w = 279.3, T_{max} = 282.9 ^[56] @ 16 °C/min: T_{idb} = 309.1, T_w = 318.3, T_{max} = 323.1 ^[56]				

Thermal o	dec. induction	periods ((s) ^[101] :
-----------	----------------	-----------	------------------------

Sample	@ 255 °C	@ 260 °C	@ 265 °C	@ 270 °C	@ 275 °C	@ 280°C
Flake, uncycled	725	526	469	394	344	300
Flake TNT cycled 1x @ 150°C @ 5°C/min	537	488	444	412	313	281
Flake TNT cycled 2x @ 150 °C @ 5 °C/min	785	463	382	288	250	213
Flake TNT held @ 200 °C for 20 min	719	513	375	388	269	256

 ρ [g cm⁻³]

1.713 (@ 100 K), 1.47 (molten)^[1], 1.648 (@ 298 K), 1.65 (crystal)^[23, 44, 165], 1.652, 1.653^[21], 1.654 (@ 25 °C)^[30], 1.654 (crystal, by flotation)^[33], 1.648 (cast, gas comparison pycnometer technique)^[33], 1.654 (@ TMD)^[33, 153], up to 1.64 (pressed)^[33], 1.59 (cast)^[44], 1.654^[81], 1.65 (TMD)^[86], 1.54–1.62 (compressed under pressure varying from 1,450 to 4,350 kg/cm²)^[88], 1.62 (pressed TNT, 97.5% TMD, loading pressure = 10,000 psi (75 °C))^[96], 1.651 (cast TNT, TMD)^[96], 1.619 (cast TNT, exptl. value, 98.1% TMD)^[96], 1.651 (crystal)^[104], 1.619 (exptl. ρ)^[104], 1.65^[138, 171], 1.654 (crystal)^[27, 149], 1.56 (cast)^[149], 1.55 (pressed @ 20,000 psi)^[149], 1.5–1.6 (cast)^[27], 1.63–1.64 (max. pressed)^[27], sp. gr. = 1.663^[163], sp. gr. = 1.467 (fuzed material @ 82 °C)^[163], gravimetric density = 0.9–1.0 (crystalline)^[163], 1.54 (pressed @ 1,450 kg/cm²)^[163], 1.60 (pressed @ 4,350 kg/cm²)^[163], 1.59 (cast)^[165]

Density (g/cc) values from^[23]:

°C	State	g/cc
27-70	Flaked	1.65
80	Flaked	1.64
82	Liquid	1.48
87	Liquid	1.48
95	Liquid	1.47

 ρ of air saturated TNT^[33]: 1.4718 @ 72.3 °C^[33], 1.4652 @ 79.2 °C^[33], 1.4588 @ 86.2 °C^[33], 1.4538 @ 92.4 °C^[33]

Pressure (kpsi)	Loading $ ho$ (g cm ⁻³)
3	1.34 ^[27, 44, 165]
5	1.40 ^[27, 44, 165]
10	1.47 ^[27, 44, 165]
12	1.49 ^[27, 44, 165]
15	1.52 ^[27, 44, 165]
20	1.55 ^[27, 44, 165]

Loading density (g/cc), cast = 1.58–1.59, pressed psi \times 10^{3[23]}:

Pressure (psi x 10 ³)	3	5	10	15	20	30	50
ρ (g cm ⁻³)	1.35	1.40	1.45	1.52	1.55	1.59	1.6

Average densities of loading depending on the pressure applied^[88]:

Pressure applied (kg/cm²)	ρ (g cm ⁻³)	Pressure applied (kg/cm²)	ρ (g cm ⁻³)
215	1.320	2,750	1.599
685	1.456	3,435	1.602
1375	1.558	4,125	1.610
2,000	1.584		

Solidifying molten TNT under pressure^[88]:

Pressure (kg/cm²)	Mean <i>ρ</i> (g cm ⁻³)	Pressure (kg/cm²)	Mean <i>ρ</i> (g cm ⁻³)
1	1.54	4	1.616
2	1.58	5	1.620
3	1.60		

sp. gr. = 1.654–1.663 (crystals)^[88], sp. gr. = 1.467 (molten product @ 82 °C)^[88], sp. gr. = 1.57 (α -TNT allowed to slowly solidify after being melted)^[88], sp. gr. = 1.59–1.61 (α -TNT rapidly cooling with stirring from being molten)^[88]

Density of solid and liquid TNT at various temperatures^[162]:

Temperature (°C)	Specific gravity	Specific volume	Aggregate condition
25	1.6407	0.6095	Solid
40	1.6369	0.6109	Solid
50	1.6318	0.6128	Solid
55	1.6305	0.6133	Solid
60	1.6299	0.6135	Solid
65	1.6274	0.6145	Solid
70	1.6242	0.6157	Solid
72	1.6151	0.6192	Solid
75	1.5671	0.6381	Solid
78	1.5149	0.6601	Solid
79.5	1.4982	0.6672	Solid
81	1.4638	0.6832	Liquid
82	1.4634	0.6833	Liquid
88	1.4584	0.6857	Liquid
93	1.4516	0.6889	Liquid

Values from^[25]:

Method of	.		Density (g/cm³)	
determination			Monoclinic	Orthorhombic
X-ray data	Solid	21	1.653	1.646
Direct measurement	Solid	21	1.654	-
Direct measurement	Liquid	83–120	1.545-1.016 × 10 ⁻³ T(°C)	

Pressed charges, compression without application of vacuum to remove residual air^[25]:

Pressure (psi)	Density (g/cm³)	
3,000	1.35	
5,000	1.40	
10,000	1.45	
15,000	1.52	
20,000	1.55	
50,000	1.60	

1.63–1.64 @ 20,000 psi pressure, @ 70 °C powder temperature (compaction with residual air removed and TNT preheated to 70 °C) $^{[25]}$

Cast charges, ρ varies depending on melt, cast and solidifying procedures; open melt = TNT melted at atmospheric conditions; vacuum melt = molten TNT subjected to vacuum of ~ 20 mm Hg for a few minutes^[25]:

Р	Density (g/cm³)		
Melting	Casting	Solidification	
Open	100% liquid	Ambient	1.56-1.59
Open	75% liquid	Ambient	1.59-1.61
Vacuum	50-75% liquid	Ambient	1.61-1.62

Heat of formation

 $-17.8 \text{ kcal mol}^{-1[74]}$, $-15.1 \text{ kcal/mol} (\Delta H_{\rm f}(s))^{[81]}$, $-75.3 \text{ kl mol}^{-1} (\Delta H_{\rm f})^{[82]}$. $-74.52 \text{ kJ/mol}^{[153]}$, -295.3 kJ/kg (enthalpy of form.)^[1], -295.3 kJ/mol(ICT thermochemical database)^[105], $-48 \text{ cal/g}^{[7]}$, $79 \text{ cal/g}^{[7]}$, $78.5 \text{ kcal/kg}^{[23, 28]}$, $-37.81 \text{ kcal/mol}^{[104]}$, 44.6 kcal/kg (heat of form. (Q))^[162], -63.0 kcal/g (enthalpy of form.)^[108], $-15.1 \text{ kcal/mol} (\Delta H_f^{\circ}, \text{liq. or crystal})^{[33]}, -19.25$ $\pm 0.74 \text{ kcal/mol } (\Delta H_f^{\circ})^{[33]}, 16.03 \pm 0.65 \text{ kcal/mol } (\Delta H_f^{\circ})^{[33]}, -70.5 \text{ kcal/kg}$ $(\Delta H_{\rm f})^{[86]}$, -1.76 kcal/mol $(\Delta H_{\rm f}^{\rm o}, {\rm gas})^{[33]}$, 50.92 ± 0.83 kcal/mol $(\Delta G_{\rm f}^{\rm o}, {\rm free})$ energy of formation for crystal)^[33], 17.81 kcal/mol ($-\Delta H_f$ (heat of form. @ standard conditions))^[185], $-12.0 \text{ kcal/mol} (\Delta H^{\circ}_{i})^{[25]}$, 29.1 kcal/mol (calcd. from measured heat of combustion, assuming Camorph.)[88], 128.2 kcal/kg (for C_{diamond})^[88], 10.2 kcal/mol (for C_{diamond})^[88], 16.0 kcal/mol (*Kast*)^[88], 7.7 kcal/mol (Bichel)^[88], 5.9 kcal/mol (Koehler)^[88], -17.82 kcal/mol^[96], 10-19.99 kcal/mol (heat of formation for liquid or crystal)[27] Heat of formation (for amorphous C): 16.0 kcal/mol (β-TNT)^[88], 24.2 kcal/mol $(\gamma - TNT)^{[88]}$, 21.7 kcal/mol $(\delta - TNT)^{[88]}$, 26.0 kcal/mol $(\epsilon - TNT)^{[88]}$, 24.5 kcal/mol $(\eta - TNT)^{[88]}$

Heat of combustion	3,620 kcal/kg ^[23, 28] , 822.5 cal/mol (@ C', exptl. value, calorimetric bomb) ^[88] , $-\Delta H_c$ (crystal) = 809.90 kcal/mol ^[33] , $-\Delta H_c$ (crystal) = 817.2 kcal/mol ^[33] , ΔH_c = 14,080 kJ/kg ^[76] , heat of combustion for the crystal = 809.18–817.2 kcal/mol ^[27] , heat of combustion = 3,620 cal/g (cast TNT) ^[165] , Heat of combustion (@ C' with correction for nitric acid): 834.1 kcal/mol (β -TNT) ^[88] , 827.4 kcal/mol (γ -TNT) ^[88] , 829.9 kcal/mol (δ -TNT) ^[88] , 825.6 kcal/mol (δ -TNT) ^[88] , 827.1 kcal/mol (δ -TNT) ^[88] , 3,596 kcal/kg @ C' ^[162] , ΔH^o_c = -817.2 kcal/mol ^[25]					
	$-\Delta U_{\rm B/M} ({\rm cal/g}) \qquad -\Delta U_{\rm B} ({\rm kcal/mol}) \qquad -\Delta U_{\rm R} ({\rm kcal/mol}) \qquad -\Delta H_{\rm R} ({\rm kcal/mol}) \qquad -\Delta H_{\rm R} ({\rm kcal/mol}) \qquad (\text{@ 1 atm. and constant vol.}) \qquad (\text{@ 1 atm. and constant pressure})$					
	3,598.67 ± 3.18	817.38	816.2	3	814.30	
	Calcd. Lit. values Exptl. (EXPLO5 6.03)					
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	5,033	4,587 (ZMWCyw) ^[20]]	4,564 [H ₂	O (l)] ^[1, 16]	
		3,975 ^[10]		3,646 [H ₂	O (g)] ^[1]	
		1.29 kcal/g (Q_{max} , calcd.)[81] 1,080 kcal/kg ^[23, 28, 33]				
		692 cal/g			1.53 g cm ⁻³) [H ₂ O imetric heat of	
		$(@ 1.619 g cm^{-3})^{[10}$	4]		ellas method, 25 g ample, 1,2 cm	
		3,766 (calcd., ICT-co	ode) ^[105]	cylinder sample, 1.2 cm diameter, detonated in isothermal calorimetry bomb		
		840 kcal/kg (@ 1.000 g cm ⁻³ , ca [H ₂ O vapor] ^[108]	alcd.)	under 65 Pa vacuum) ^[87] 1.) 780 cal/g (@ 1.69 g cm ⁻³ ,		
		cast TNT) ^[96]				
		990 kcal/kg (@ 1.600 g cm ⁻³ , calcd.) 4,350 J/g (@ 1.632 g [H ₂ O vapor] ^[108] det. energy, cylinder				
		$E_0 = 7.0 \text{ GPa}^{[114]}$.0 GPa ^[114] 860 kcal/kg (@ 1.000 g cm [H ₂ O vapor] ^[108]			
		1.41 kcal/g (max. c value) $[H_2O(l)]^{[27]}$	alcd.	[1.25 ναρο	.1	

		1.27 kcal/g (max. calcd. value) [H ₂ O (g)] ^[27] 5.26 MJ/kg (calcd., SD method) ^[164]	1,030 kcal/kg (@ 1.600 g cm ⁻³ , calcd.) [H ₂ O vapor] ^[108] 4,576 J/g (@ 1.533 g cm ⁻³ , heat of det., heavily confined charge) [H ₂ O (I)] ^[100] 4,382 J/g (@ 1.533 g cm ⁻³ , heat of det., heavily confined
			charge) [H ₂ O (g)] ^[100] $E_0 = 6,830 \text{ MJ/m}^3$ (detonation energy est. based on cylinder test, @ 1.59 g cm ⁻³) ^[113] $E_0^{\text{cal}} = 6.50 \text{ GPa (calcd. from cylinder test data)}^{[114]}$
			1,030 kcal/kg (@ 1.60 g cm ⁻³ , $Q_{\rm exp}$) ^[134] 1.09 kcal/g (@ 1.54 g cm ⁻³) [H ₂ O (I)] ^[27]
			1.02 kcal/g (@ 1.54 g cm ⁻³) [H ₂ O (g)] ^[27]
			1,010 kcal/kg ^[163] 1,080 cal/g (cast TNT) ^[165]
T _{ex} [K]	3,462	3,000 (@ 1.0 g cm ⁻³) ^[27]	2,820 ^[10]
		3,450 (@ 1.59 g cm ⁻³) ^[27]	2,800 °C ^[49]
		4,417 (@ 1.5 g cm ⁻³) ^[28]	3,000 (@ 1.0 g cm ⁻³) ^[27]
		2,757 (@ 1.650 g cm ⁻³ , calcd.) ^[28]	3,450 (@ 1.59 g cm ⁻³) ^[27]
		2,736 (@ 1.65 g cm ⁻³ , calcd.) ^[28]	3,100 °C ^[163]
		3,563 (@ 1.64 g cm ⁻³ , calcd.) ^[74]	
		2,512 (calcd., ICT-code) ^[105]	

		3,238 (@ 100% TMD, calcd., Cheetah-6) ^[133]	
		2,937 (@ 1.60 g cm ⁻³ , $\Delta H_{\rm f}^{ 0} = -26.5 \text{ kJ/kg},$ calcd., FORTRAN BKW) ^[154]	
		3,175 (@ 1.061 g cm ⁻³ , $\Delta H_f^0 = -26.5 \text{ kJ/kg},$ calcd., FORTRAN BKW) ^[154]	
		3,080 (@ 0.732 g cm ⁻³ , $\Delta H_{\rm f}^{0} = -26.5$ kJ/kg, calcd., FORTRAN BKW) ^[154]	
		3,647 K (calcd., SD method) ^[164]	
		3,092 (@ 1.654 g cm ⁻³ , $\Delta H_{\rm f} = -63 \text{ kJ/mol, calcd.,}$ JAGUAR) ^[174]	
р _{с-J} [kbar]	206	192 (@ 1.64 g cm ⁻³) (CHEETAH 2.0) ^[11]	190 (@ 1.64 g cm ⁻³) ^[11, 27]
			187 (@ 1.61 g cm ⁻³) ^[11]
		183 (@ 1.61 g cm ⁻³) (CHEETAH 2.0) ^[11]	202 (@ 1.59 g cm ⁻³) ^[27]
		207 (@ 1.654 g cm ⁻³ , calcd., K-J) ^[50]	190 (@ 1.63 g cm ⁻³) ^[27]
		154 (@ 1.59 g cm ⁻³ ,	222 (@ 1.65 g cm ⁻³) ^[27]
		calcd.) ^[28]	18.91 ± 0.1 GPa (@ 1.637 g cm ⁻³) ^[25]
		187.2 (@ 1.622 g cm ⁻³ , calcd.) ^[28]	202 (@ 1.59 g cm ⁻³ , pressed) ^[28]
		225 (@ 1.640 g cm ⁻³ , calcd.) ^[28]	190 (@ 1.640 g cm ⁻³ , pressed) ^[28]
		222 (@ 1.65 g cm ⁻³ , calcd.) ^[28]	189 × 10 ³ atm. (@ 1.64 g cm ⁻³) ^[28]
		166 (@ 1.63–1.64 g cm ⁻³ , calcd., R-P method) ^[59]	178 (@ 1.64 g cm ⁻³) ^[33]
		45 (@ 0.73 g cm ⁻³ , calcd., BKW) ^[60]	182 (@ 1.64 g cm ⁻³ , @ 93 °C, liq.) ^[44]
		19.4 GPa (@ TMD, calcd., CHEETAH 2.0) ^[61]	205 ^[59]

64 (@ 0.95 g cm ⁻³ ,	62.2 (@ 0.95 g cm ⁻³) ^[63]
calcd., K-J) ^[63]	
72 (@ 1.0 g cm ⁻³ , calcd.,	76.3 (@ 1.0 g cm ⁻³) ^[63]
K-J) ^[63]	179.0 (@ 1.59 g cm ⁻³) ^[63]
193 (@ 1.59 g cm ⁻³ , calcd., K-J) ^[63]	94 (@ 1.14 g cm ⁻³) ^[63]
	123 (@ 1.30 g cm ⁻³) ^[63]
96 (@ 1.14 g cm ⁻³ , calcd., K-J) ^[63]	162 (@ 1.45 g cm ⁻³) ^[63]
127 (@ 1.30 g cm ⁻³ , calcd., K-J) ^[63]	177 (@ 1.63 g cm ⁻³) ^[63]
	210 (@ 1.62 g cm ⁻³) ^[63]
159 (@ 1.45 g cm ⁻³ , calcd., K-J) ^[63]	225 (@ 1.63 g cm ⁻³) ^[63]
214 (@ 1.63 g cm ⁻³ , calcd., K-J) ^[63]	115 (@ 1.051 g cm ⁻³) ^[63]
	40.5 (@ 0.8 g cm ⁻³) ^[64]
201 (@ 1.62 g cm ⁻³ , calcd., K-J) ^[63]	63.4 (@ 1.0 g cm ⁻³) ^[64]
204 (@ 1.63 g cm ⁻³ , calcd., K-J) ^[63]	71.8 (@ 1.061 g cm ⁻³) ^[64]
	124.7 (@ 1.36 g cm ⁻³) ^[64]
80 (@ 1.051 g cm ⁻³ , calcd., K-J) ^[63]	144.6 (@ 1.45 g cm ⁻³) ^[64]
36.4 (@ 0.8 g cm ⁻³ , calcd., thermochem.) ^[64]	182.4 (@ 1.59 g cm ⁻³) ^[64]
	197.1 (@ 1.64 g cm ⁻³) ^[64]
62.5 (@ 1.0 g cm ⁻³ , calcd., thermochem.) ^[64]	192 (@ 1.69 g cm ⁻³ , cast TNT) ^[96]
110 (@ 1.061 g cm ⁻³ ,	
calcd., thermochem.) ^[64]	1,840 kg/cm ² (@ 0.20 g cm ⁻³ loading ρ ,
122.2 (@ 1.36 g cm ⁻³ ,	measured by piston and
calcd., thermochem.) ^[64]	obturator) ^[93]
142 (@ 1.45 g cm ⁻³ ,	2,625 kg/cm ²
calcd., thermochem.) ^[64]	(@ 0.25 g cm^{-3} loading ρ , measured by piston and
176.5 (@ 1.59 g cm ⁻³ ,	obturator) ^[93]
calcd., thermochem.) ^[64]	

190 (@ 1.64 g cm ⁻³ , calcd., thermochem.) ^[64]	3,675 kg/cm ² (@ 0.30 g cm ⁻³ loading ρ , measured by piston and obturator) ^[93]
19.6 GPa (@ 1.64 g cm ⁻³ , CHEETAH, 1998) ^[54]	20.5 GPa (@ 1.632 g cm ⁻³) ^[100]
20.75 GPa (@ 1.654 g cm ⁻³ , calcd., CHEETAH 3) ^[73]	21.0 GPa (@ 1,630 kg/m³, cylinder test) ^[114]
163.4 (@ 1.64 g cm ⁻³ , calcd.) ^[74]	19.0 GPa (@ 1.60 g cm ⁻³) ^[154]
207 (@ 1.654 g cm ⁻³ , calcd.) ^[81]	11.0 GPa (@ 1.061 g cm ⁻³) ^[154]
187 (@ 1.619 g cm ⁻³) ^[104]	5.9 GPa (@ 0.732 g cm ⁻³) ^[154]
103.3 MPa (calcd., ICT-code) ^[105]	20.5 GPa (@ 1.632 g cm ⁻³) ^[155]
19.6 GPa (@ 1.640 g cm ⁻³ , $\Delta H^{\circ}_{f} = -59.4 \text{ kJ/mol},$ calcd., Cheetah) ^[131]	0.177 Mbar (@ 1.64 g cm ⁻³) ^[165]
198 (@ 100% TMD, calcd., Cheetah-6) ^[133]	0.177 Mbar (@ 1.58 g cm ⁻³) ^[165]
20.6 GPa (@ 1.60 g cm ⁻³ , $\Delta H_{\rm f}^{0} = -26.5 \text{ kJ/kg},$ calcd., FORTRAN BKW) ^[154]	0.170 Mbar ^[165]
8.5 GPa (@ 1.061 g cm ⁻³ , $\Delta H_f^0 = -26.5 \text{ kJ/kg},$ calcd., FORTRAN BKW) ^[154]	
4.5 GPa (@ 0.732 g cm ⁻³ , $\Delta H_{\rm f}^{0} = -26.5 \text{ kJ/kg},$ calcd., FORTRAN BKW) ^[154]	
0.2066 Mbar (@ 1.64 g cm ⁻³ , calcd. empirical eqn.) ^[165]	
0.190 Mbar (@ 1.58 g cm ⁻³ , calcd. empirical eqn.) ^[165]	

		0.026 Mbar (@ 0.0624 g cm ⁻³ , calcd. empirical, eqn.) ^[165]	
		19.8 GPa (@ 1.654 g cm ⁻³ , $\Delta H_f = -63 \text{ kJ/mol, calcd.,}$ JAGUAR) ^[174]	
VoD [m s ⁻¹]	7,224	6,700 (@ 1.57 g cm ⁻³) ^[10]	6,950 (@ 1.64 g cm ⁻³) ^[11, 15]
		6,843 (@ 1.64 g cm ⁻³) (CHEETAH 2.0) ^[11]	6,780 (@ 1.61 g cm ⁻³) ^[11]
		6,752 (@ 1.61 g cm ⁻³)	6,930 (@ 1.64 g cm ⁻³) ^[14]
		(CHEETAH 2.0)[11]	6,500 (@ 1.45 g cm ⁻³) ^[14]
		6,970 (@ 1.60 g cm ⁻³ , average value from lit.) ^[43]	6,200 (@ 1.36 g cm ⁻³) ^[14]
			5,000 (@ 1.0 g cm ⁻³) ^[14]
		7,020 (@ 1.654 g cm ⁻³ , calcd., K-J) ^[50]	4,340 (@ 0.8 g cm ⁻³) ^[14]
		7,290 (@ 1.65 g cm ⁻³ , calcd.) ^[28]	6,640 (@ 1.56 g cm ⁻³ , cast) ^[17]
		6,825 (@ 1.56 g cm ⁻³ , calcd.) ^[33]	6,824 (@ 1.72 g cm ⁻³ , pressed) ^[17]
		6,670 (@ 1.65 g cm ⁻³ (TMD), calcd., R-P	6,860 (@ 1.63 g cm ⁻³) ^[19, 65]
		method) ^[59]	6,825 (@ 1.56 g cm ⁻³ ,
		7,230 (@ 1.65 g cm ⁻³	1.0 in charge diameter, pressed, unconfined) ^[23]
		(TMD), calcd., Aizenshtadt) ^[59]	6,640 (@ 1.56 g cm ⁻³ , 1.0
		6,990 (@ 1.65 g cm ⁻³ (TMD), calcd., K-J) ^[59]	in charge diameter, cast, unconfined) ^[23]
		4,500 (@ 0.73 g cm ⁻³ , calcd., BKW) ^[60]	6,633 (@ 1.462 g cm ⁻³ , @ 81 °C, liquid TNT) ^[25]
			6,942±16
		6,900 (@ TMD, calcd., CHEETAH 2.0) ^[61]	(@ 1.637 g cm ⁻³) ^[25]
			6,940 (@ 1.59 g cm ⁻³ ,
		7,192 (@ TMD, calcd., CHEETAH v8.0) ^[62]	pressed) ^[28]

4,340 (@ 0.8 g cm ⁻³ , calcd., thermochem.) ^[64]	6,950 (@ 1.640 g cm ⁻³ , pressed) ^[28]
5,100 (@ 1.0 g cm ⁻³ , calcd., thermochem.) ^[64]	6,790 (@ 1.622 g cm ⁻³ , pressed) ^[28]
5,254 (@ 1.061 g cm ⁻³ , calcd., thermochem.) ^[64]	7,361 (@ 1.640 g cm ⁻³ , pressed) ^[28]
6,200 (@ 1.36 g cm ⁻³ , calcd., thermochem.) ^[64]	6,970 (@ 1.59 g cm ⁻³ (cast)) ^[43]
6,500 (@ 1.45 g cm ⁻³ , calcd., thermochem.) ^[64]	6,700 (@ 1.60 g cm ⁻³) ^[49]
6,940 (@ 1.59 g cm ⁻³ , calcd., thermochem.) ^[64]	7,128 (calcd. based on sand experiment) ^[43]
6,950 (@ 1.64 g cm ⁻³ , calcd., thermochem.) ^[64]	6,950 (@ 1.64 g cm ⁻³ , @ 93 °C, liq.) ^[44]
6,886 (@ 1.64 g cm ⁻³ , CHEETAH 1998) ^[54]	6,990 (est. LASEM method) ^[62]
7,236 (@ 1.654 g cm ⁻³ , calcd., CHEETAH 3) ^[73]	7,026 (@ TMD, measured using large-scale detonation test) ^[62]
7,060 (@ 1.64 g cm ⁻³ , calcd.) ^[74]	3,910 (@ 0.76 g cm ⁻³ , aquarium test data, clay pipe, 10 cm, TNT flakes) ^[60]
7,010 (@ 1.654 g cm ⁻³ , calcd.) ^[81]	4,290 (@ 0.85 g cm ⁻³ , aquarium test data, clay
6,700 (@ 1.619 g cm ⁻³) ^[104]	pipe, 10 cm, TNT flakes) ^[60]
5,110 (@ 1 g cm ⁻³ , calcd., Kamlet method) ^[110]	4,542 (@ 0.8 g cm ⁻³) ^[64]
6,840 (@ 1.6 g cm ⁻³ ,	512 (@ 1.0 g cm ⁻³) ^[64]
calcd., Kamlet method) ^[110]	5,282 (@ 1.061 g cm ⁻³) ^[64]
4,910 (@ 1 g cm ⁻³ , calcd., Urizar method) ^[110]	6,124 (@ 1.36 g cm ⁻³) ^[64]
6,960 (@ 1.6 g cm ⁻³ ,	6,382 (@ 1.45 g cm ⁻³) ^[64]
calcd., Urizar method)[110]	6,774 (@ 1.59 g cm ⁻³) ^[64]

	6,886 (@ 1.640 g cm ⁻³ , $\Delta H^{\circ}_{f} = -59.4 \text{ kJ/mol},$	6,918 (@ 1.64 g cm ⁻³) ^[64]
	$\Delta n_f = -59.4 \text{ K}/\text{IIIot},$ calcd., Cheetah)[131]	6,940 (@ 1.64 g cm ⁻³) ^[74]
	6,480 (@ 1.50 g cm ⁻³ , K-W eqn.) ^[146]	7,000 (@ 1.615 g cm ⁻³ , Dautriche method, loaded in Cu tubes, 10 mm diameter,
	6,950 (@ 1.60 g cm ⁻³ , $\Delta H_f^0 = -26.5 \text{ kJ/kg},$ calcd., FORTRAN BKW) ^[154]	compressed under pressure of 2,500 kg/cm ²) ^[89]
	5,339 (@ 1.061 g cm ⁻³ , $\Delta H_1^0 = -26.5 \text{ kJ/kg},$	6,780 (@ 1.69 g cm ⁻³ , cast TNT) ^[96]
	calcd., FORTRAN BKW) ^[154]	4,450 (@ 0.90 g cm ⁻³ , half-meter lengths, extra
	4,511 (@ 0.732 g cm ⁻³ , $\Delta H_f^0 = -26.5 \text{ kJ/kg},$ calcd., FORTRAN BKW) ^[154]	light Pb tubing, 5 in internal dimeter, 12 ounces per foot) ^[89]
	0.695 cm/μs	7,028 (cast TNT) ^[93]
	(@ 1.64 g cm ⁻³ , calcd., empirical eqn.) ^[165]	4,961 (compressed, @ 0.909 g cm ⁻³) ^[93]
	6,890 (@ 1.654 g cm ⁻³ , $\Delta H_{\rm f} = -63$ kJ/mol, calcd., JAGUAR) ^[174]	7,140 (max. VoD, @ 1.60 g cm ⁻³ , 10 pellets, paper cartridge, exploded by primer of 0.5 g fulminate and 25 g Dynamite) ^[93]
		6,913 (@ 1.60 g cm ⁻³) ^[98]
		7,070 (@ 1.632 g cm ⁻³) ^[100]
		5,940 (@ 1.34 g cm ⁻³ , charges of 21 mm diameter, initiated by 2 g detonator in the open) ^[88]
		6,400 (@ 1.45 g cm ⁻³ , charges of 21 mm diameter, initiated by 2 g detonator in the open) ^[88]
		6,590 (@ 1.50 g cm ⁻³ , charges of 21 mm diameter, initiated by 2 g detonator in the open) ^[88]

	6,680 (@ 1.60 g cm ⁻³ , charges of 21 mm diameter, initiated by 2 g detonator in the open) ^[88]
	2,385 (@ 0.25 g cm^{-3} , metal pipe, $10-15 \text{ mm}$ diameter) ^[88]
	3,100 (@ 0.56 g cm^{-3} , metal pipe, $10-15 \text{ mm}$ diameter) ^[88]
	4,100 (@ 0.83 g cm^{-3} , metal pipe, $10-15 \text{ mm}$ diameter) ^[88]
	4,720 (@ 1.21 g cm ⁻³ , metal pipe, $10-15$ mm diameter) ^[88]
	6,990 (@ 1.62 g cm^{-3} , metal pipe, $10-15 \text{ mm}$ diameter) ^[88]
	4,720 (@ 1.21 g cm ⁻³ , charges in bakelite pipe of 4.5–8.2 mm internal diameter) ^[88]
	5,900 (@ 1.40 g cm ⁻³ , charges in bakelite pipe of 4.5–8.2 mm internal diameter) ^[88]
	7,400 (@ 1.52 g cm ⁻³ , charges in bakelite pipe of 4.5–8.2 mm internal diameter) ^[88]
	5,250 (@ 1.10 g cm^{-3} , charges in steel pipe, $31.7 \text{ mm diameter})^{[88]}$
	6,930 (@ 1.62 g cm ⁻³ , charges in steel pipe, 31.7 mm diameter) ^[88]

5,060 (@ 1 g cm ⁻³) ^[110]
6,970 (@ 1.6 g cm ⁻³) ^[110]
6,910 (@ 1.59 g cm ⁻³) ^[113]
6,930 (@ 1,630 kg/m³, cylinder test) ^[114]
7,090 (@ 1.65 g cm ⁻³) ^[120]
6,910 (@ 1.590 g cm ⁻³ , cylinder test, impulse X-ray apparatus, 300 mm long tube, 25 mm internal diameter, 2.5 mm wall thickness) ^[129]
6,900 (@ 1.6 g cm ⁻³) ^[130]
22,500 ft/s (@ 1.6 g/mL) ^[142]
6,700 (@ 1.50 g cm ⁻³) ^[146]
6,900 (@ 1.56 g cm ⁻³) ^[149]
6,950 (@ 1.60 g cm ⁻³) ^[154]
5,254 (@ 1.061 g cm ⁻³) ^[154]
4,200 (@ 0.732 g cm ⁻³) ^[154]
7,070 (@ 1.632 g cm ⁻³) ^[155]
7,000 (@ 1.62 g cm ⁻³) ^[163]
6,574 (@ 1.46 g cm ⁻³ , D _i) (D _i = ideal detonation velocity) ^[164]
6,510 (@ 1.46 g cm ⁻³ , D_f) (D_f = detonation velocity for critical detonation diameter) ^[164]
0.695 cm/µs (@ 1.64 g cm ⁻³) ^[165]

			0.688 cm/µs (@ 1.58 g cm ⁻³) ^[165] 0.380 cm/µs (@ 0.624 g cm ⁻³) ^[165] 6,950 (@ 1.57 g cm ⁻³) ^[171]
V ₀ [L kg ⁻¹]	634	717 (ZMWCyw) ^[20]	730 ^[23, 163]
		690 (@ 0 °C) ^[10]	825 ^[1, 24]
			684 (@ 1.62 g cm ⁻³) ^[27]
			690 (@ 1.64 g cm ⁻³) ^[27]
			610 [H ₂ O (l)] (ρ = 1.5 g cm ⁻³ , Dolgov bomb) ^[31, 32]
			750 [H ₂ O (g)] (p = 1.5 g cm ⁻³ , Dolgov bomb) ^[31, 32]
			690 (@ 0 °C, 760 mm Hg) ^[49]
			730 (cast TNT) ^[165]

Plate push value @ 98% TMD = 2,930 ft/s (cast TNT)^[96], plate push value @ 93% TMD = 2,830 ft/s (measured with cast TNT powder pressed to 93% TMD)^[96], failure diameter = 2.69 cm (cast TNT)^[96], failure diameter of pressed TNT @ 98% TMD is 1 10th this value^[96]

Effect of temperature on rate of detonation^[23]:

T of charge (°C)	-54	21	60	60
Hours at T	16	16	24	72
Density, g/cc	1.63	1.62	1.64	1.64
Rate (m/s)	6,700	6,820	6,770	6,510

Calculated using hydrodynamic theory of detonation equations (Caldirola)[28]:

ρ of charge (g cm ⁻³)	Detonation pressure (kg/cm²)	Detonation temp. (K)
1.00	68,700	3,210
1.29	132,800	3,610
1.46	178,000	3,860
1.59	216,200	4,020

Exptl. values (Mason and Gibson)[28]:

 $\rho = 0.70 \text{ g cm}^{-3}$, temp. of detonation = no detonation^[28]

 $\rho = 1.5 \text{ g cm}^{-3}$, temp. of detonation = 4,417 K^[28]

Exptl. values (radiation method)[28]:

 $\rho = 0.70 \text{ g cm}^{-3}$, temp. of detonation = 3,650 K^[28]

 $\rho = 1.15 \text{ g cm}^{-3}$, temp. of detonation = 4,350 K^[28]

 $\rho = 1.5 \text{ g cm}^{-3}$, temp. of detonation = 4,750 K^[28]

Calcd. (based on hydrodynamic theory)[28]:

Loading $\rho = 1.50 \text{ g cm}^{-3}$, temp. of detonation = 3,600 °C, pressure (10 atm.) = 1.10, VoD = 6,480 m/s [28]

T of detonation by radiation method for TNT powders (exptl. values)[28]:

Average particle diameter (microns)	ρ / g cm ⁻³	Average T (K)
5	0.75	4,610
5	1.55	4,960
800 (20 mesh)	1.54	5,320

Luminosity method (exptl.), radiation slit width = 1 m, unsheathed explosions in air[28]:

TNT loading $\rho = 1.29 \text{ g cm}^{-3}$, Average $T_{\text{det.}} = 4,850 \text{ K}^{[28]}$

TNT loading $\rho = 1.56 \text{ g cm}^{-3}$, Average $T_{\text{det.}} = 5,500 \text{ K}^{[28]}$

Radiation T observed without slit aperture, for interval after detonation of 18 ms: loading $\rho = 1.56 \, \mathrm{g \ cm^{-3}}$, average $T = 4,840 \, \mathrm{K}^{[28]}$

Exptl. VoD values using sweep trace of cathode ray tube by electrical signals (separation of signal stations = 10 cm, station 1 located 5 cm from detonator, charge diameter = 1.92 cm)^[28]:

Average particle diameter (microns)	ρ (g cm ⁻³)	VoD (m/s)
5	0.75	3,660
5	1.55	6,630
800 (20 mesh)	0.97	Incomplete detonation
800	1.54	6,700

Exptl. VoD values after storing TNT (charges = sticks of $1^{-1}/_{8}$ in in diameter, 18 in long, drum camera apparatus)^[28]:

Cast TNT, 16 h storage @ -65° F, $\rho = 1.63$ g cm $^{-3}$, det. rate = 6,700 m/s $^{[28]}$ Cast TNT, 16 h storage @ $+70^{\circ}$ F, $\rho = 1.62$ g cm $^{-3}$, det. rate = 6,820 m/s $^{[28]}$ Cast TNT, 24 h storage @ $+140^{\circ}$ F, $\rho = 1.64$ g cm $^{-3}$, det. rate = 6,770 m/s $^{[28]}$ Cast TNT, 72 h storage @ $+140^{\circ}$ F, $\rho = 1.64$ g cm $^{-3}$, det. rate = 6,510 m/s $^{[28]}$

Exptl. determined VoD of compressed charges of TNT (@ different ρ and different diameter sizes (no units given))^[28]:

ρ (g/cc)	VoD (m/s)		
	0.75	1.0	1.75
1.53	6,830	6,920	7,000
1.40	6,350	6,450	6,510
1.34	6,150	6,180	6,210

Exptl. determined VoD for TNT in different confining vessels^[28]:

Charge ρ (g/cc)	Vessel type	Diameter of charge (mm)	Wall thickness (mm)	VoD (m/s)
0.250 (TNT powder)	Glass	25	1	2,363
0.250(TNT powder)	Steel	27	4	2,478
0.832(TNT powder)	Glass	16	0.8	3,308
0.832(TNT powder)	Copper	15	1	4,100

1.6 (TNT cast)	Steel	21	3	6,650
1.6 (TNT cast)	Steel	29	10	6,700
1.6 (TNT cast)	Steel	160	25	6,690
1.6 (TNT cast)	Steel	300	50	6,710

Exptl. determined VoD at different temperatures (ρ = 0.90 g cm⁻³, powdery samples in thin-walled Pb tubes with 12.5 mm diameter)^[28]:

VoD @ 25 °C (m/s)	VoD @ -80 °C (m/s)	VoD @ -180 °C (m/s)
4,310	4,800	4,550
4,460	4,230	4,570
4,580	4,250	4,800
Av. value = 4,450	Av. value = 4,430	Av. value = 4,640

Exptl. determined values [32]: detonation pressure = 220 kbar, bulk specific gravity = 1.64, VoD = 6,930 m/s, heat of detonation = 1,102 cal/ $g^{(32)}$

Exptl. determined gas pressures (by exploding samples in small bombs, pressure measured by piston and obturator)^[32]:

Loading $\rho = 0.20 \text{ g cm}^{-3}$, $P = 1,840 \text{ kg/cm}^{2[32]}$ Loading $\rho = 0.25 \text{ g cm}^{-3}$, $P = 2,625 \text{ kg/cm}^{2[32]}$

Loading $\rho = 0.30 \text{ g cm}^{-3}$, $P = 3,675 \text{ kg/cm}^{2[32]}$

VoD = 6.91 m/s (@ 1.60 ± 0.01 g cm⁻³, granular TNT, 90% passes through a no. 50 screen, average particle size = $200\,\mu$, batch pressed isostatically @ 30,000 psi); VoD value is within 0.02 mm/ μ s of all generally accepted infinite diameter values^[68]

Detonation parameters of cast and pressed TNT (exptl. determined using oscilloscope)^[68]:

	Pressed TNT	Cast TNT
ρ (g/cc)	1.60 ± 0.01	1.62 ± 0.01
VoD (mm/µs)	6.91	6.85
C-J particle velocity (mm/µs)	1.72	1.60
p _{C-J} (kbar)	190	178
Reaction time, r_{CJ} (ns)	141	300

Comparison of detonation parameters for pressed TNT^[68]:

Parameter	Results from ^[68]	Dremin values ^[68]	Craig values ^{[68]†}		
			First break	Second break	
ρ (g/cc)	1.60	1.59	1.63	1.63	
VoD (mm/µs)	(6.91)	6.91	(6.94)‡	(6.94)‡	
U _{CJ} (mm/μs)	1.72 ± 0.05	1.62 ± 0.08	(1.84)	(1.63)	
P _{CJ} (kbar)	190	178	208.5	184.5	
$r_{\rm CJ}$ (ns)	141 ± 30	<100			

[†] = results for 50.8 mm diameter; [‡] = calculated from equations

For essentially voidless materials of \geq 95% TMD, the VoD @ critical conditions (D_c) is less than the ideal detonation velocity (D_i), but it is only slightly less @ high % TMD^[70], however, high porosity, granular charges show much lower D_c/D_i values^[70]:

Pressed-TNT @ 98% TMD, $D_c/D_i = 0.95^{[70]}$ Cast-TNT @ 98% TMD, $D_c/D_i = 0.94^{[70]}$

Granular TNT @ 50% TMD, $D_c/D_i = 0.65^{[70]}$

Calorimetric heat of det., Ornellas method, 25 g cylinder sample, 1.2 cm diameter, detonated in isothermal calorimetry bomb under 65 Pa vacuum)^[87]:

ρ (g cm ⁻³)	J/g (25 °C, H ₂ O (l))	J/cm³	J/cm³ (TMD)
1.53	4,561	6,987	7,544

Chapman–Jouguet pressure, energy and isentropic exponent from H₂O-shock measurements^[104]:

ρ (g cm ⁻³)	D (m/s)	<i>U</i> _{H2O} (m/s)	u _{H2O} (m/s)	P _{H20} @ HE•H ₂ O interface (kb)	p _{C-J} (kb)	k	Q (cal/g)
1.62	6,790	5,532	2,312	127.6	187.2	2.99	692

Variation of VoD with cartridge diameter, TNT powder^[146]:

Diameter (cm)	VoD (m/s)	Diameter (cm)	VoD (m/s)
1.9	3,190	10.2	4,560
3.2	3,680	12.7	-
5.1	4,060	15.2	4,815
6.4	4,030	21.6	-
7.6	4,100		

Exptl. VoD of pressed TNT charges (with ρ close to that of the single crystal), * in the series of expts. with ρ_0 = 1.63 – 1.645 g cm⁻³, quenching of the detonation was observed, quenching of detonation also observed when detonation initiated by intermediate pressed TNT detonators with d = 8 mm, h = 15 mm and ρ_0 = 1.6 g cm⁻³; † indicates failure to detonate^[148]:

d (mm)	$ ho_0$ (g cm ⁻³)	D (m/s)	n	$\sigma_{\rm i}({\rm m/s})$	d (mm)	$ ho_0$ (g cm ⁻³)	D (m/s)	n	$\sigma_{\rm i}$ (m/s)
13	1.59	6,850	5	+100 -40	8	1.62- 1.63	6,670	3	+40 -60
13	1.6	6,870	4	+30 -40	8*	1.63- 1.64	6,480	3	+70 -50
13	1.61	6,870	4	+20 -90	8*	1.639- 1.641	6,350	1	
13	1.62	6,900	4	+25 -35	8*	1.644- 1.645	6,450		
13	1.64	6,950	3	+30 -50	8 [†]	1.645- 1.65			
13	1.65	6,800	3	+50 -40	8 [†]	1.642- 1.644		1	
10	1.61	6,790	3	+60 -90	8 [†]	1.640- 1.65		1	
10	1.62	6,830	3	+25 -61	8 [†]	1.64- 1.645		2	

10	1.64	6,790	3	+50 -100	8 [†]	1.64- 1.645	1	
10	1.642- 1.646	6,725	1	-	8 [†]	1.65- 1.659	1	
10	1.647- 1.65	6,730	1	-	6	1.63- 1.64		
8	1.61-1.62	6,650	3	+30				

Exptl. VoD of pressed TNT charges (with ρ close to that of the single crystal) as a function of the diameter of the pressed TNT charges^[148]:

$ ho_0 ({ m g cm^{-3}})$	d (mm)	D (m/s)	
1.625	8	6,670	
	10	6,830	
	13	6,910	
	8	6,580	
1.630	10	6,830	
	13	6,930	
	8	6,480	
1.635	10	6,820	
	13	6,945	

VoD of cylindrical charges, cellophane tube of 3.17 cm diameter, 30 cm long, unconfined, TNT powder (98.5% purity), 98% passed through no. 25 BSS sieve and remained on no. 120, cartridges primed with 7 g Tetryl pellet and No. 6 copper detonator, $\rho = 1.00$ g cm⁻³, no. of shots fired = 12, measured VoD values (m/s)^[150]: 4,675, 4,660, 4,656, 4,651, 4,646, 4,644, 4,644, 4,643, 4,642, 4,639, 4,638, 4,632, mean value = 4,650 m/s ^[150]

VoD of cast TNT: (i) poured clear, (ii) poured cloudy and (iii) creamed. Charges of 3.17 cm diameter, 40 cm long, unconfined. Poured-cloudy cast TNT always detonated under conditions used, creamed castings always detonated under conditions used but poured-clear castings could only be detonated without confinement only in some cases. A 7 g Tetryl primer was used for creamed castings and a 28 g Tetryl primer for poured-cloudy^[150]:

TNT	Batch A		Batch C		
	Set point = 80.3	2 °C	Set point = 80.45 °C		
Casting method	Poured-clear	Creamed	Poured-cloudy	Creamed	
ρ (g cm ⁻³)	1.605	1.625	1.620	1.625	
Mean VoD (m/s)	6,430	6,850	6,880	6,880	
No. of determinations	5	6	6	12	
Range	630	61	50	50	
Standard deviation	-	23	18	15	
Standard error	-	9	7	4	

VoD for various batches of TNT, creamed castings, 3.17 cm diameter, 40 cm long, $\rho = 1.625$ g cm^{-3[150]}:

Batch	А	В	С	D	E	F
Set point (°C)	80.32	80.40	80.45	80.50	80.66	80.86
Purity (approx. %)	98.8	99.0	99.1	99.2	99.5	99.8
Mean VoD (m/s)	6,850	6,850	6,880	6,900	6,940	6,950
No. determinations	14	10	24	18	6	6
Range	61	94	62	35	42	59
Standard deviation	18	27	17	12	16	22
Standard error	5	9	4	3	7	9

Different diameters of cast TNT: poured-clear, poured-cloudy and creamed, set point 80.50 °C; unconfined, length = 50 cm, *= $40 \text{ cm} \log^{[150]}$:

Charge diameter (cm)	1.26	1.66	1.90	2.20	2.54	3.17*
TNT poured-clear						No detonation
TNT poured-cloudy;						
Density (g/cm³) Measured					1.615	1.620
velocities (m/s)				No	6,698	6,919
				detonation	6,681	6,915
					6,681	6,910
					6,637	6,905
					6,562	6,898
					6,560	6,890
Mean velocity					6,640	6,910
Range					138	29
Standard deviation					62	11
Standard error					25	4
TNT creamed						
Density (g/cm³) Measured	No	1.605	1.610	1.615	1.615	1.620
velocities (m/s)	detonation	6,522	6,754	6,854	6,904	6,919
		6,507	6,748	6,846	6,891	6,911
		6,482	6,742	6,814	6,884	6,909
		6,455	6,741	6,812	6,883	6,894
		6,454	6,738	6,810	6,876	6,888
		6,406	6,719	6,801	6,874	6,884
Mean velocity		6,470	6,740	6,820	6,890	6,900
Range		116	35	53	30	35
Standard deviation		42	12	22	11	14
Standard error		17	5	9	4	6

Bare and confined charges of creamed TNT, set point 80.45 °C, 3.17 cm in diameter, 40 cm long, density = $1.625 \text{ g cm}^{-3[150]}$:

	Ва	are	Confined in steel tube, 0.32 cm wall thickness		
No. of shots fired	1	2	12		
Measured velocities (m/s)	6,918	6,875	6,916	6,887	
	6,897	6,870	6,902	6,883	
	6,893	6,869	6,902	6,879	
	6,885	6,869	6,901	6,861	
	6,884	6,869	6,900	6,860	
	6,877	6,868	6,895	6,856	
Mean velocity	6,880		6,890		
Range	50 (0.73)		60 (0.87)		
Standard deviation	15 (0.22)		19 (0.27)		
Standard error	4 (0.06)		5 (0.08)		

Effect of confinement in steel tubes of various diameters: poured-clear and creamed TNT, set point $80.50 \, ^{\circ}$ C, length = $50 \, \text{cm}$; * = tubes preheated to $75 \, ^{\circ}$ C for poured-clear and to $50 \, ^{\circ}$ C for creamed TNT; $t = 40 \, \text{cm} \, \text{long}^{[150]}$:

Steel tube internal diameter (cm)	0.94*	0.99	1.29	1.	65	2.26	3.17†
Steel tube wall thickness (cm)	0.23	0.18	0.20	0.23	0.08	0.20	0.32
TNT poured clear:							
Density, g/cc	1.590	1.610	1.605	1.605		1.590	1.600
Measured velocities, m/s	6,383	6,794	6,783	6,855		6,867	6,839
	6,343	6,794	6,774	6,835		6,846	6,838
	6,335	6,786	6,769	6,826		6,837	6,825
	6,288	6,781	6,764	6,821		6,817	6,823
	6,225	6,774	6,745	6,817		6,815	6,816
	6,208	6,771	6,742	6,800		6,791	6,809
		6,770	6,736				
		6,768	6,727				
		6,765	6,721				
		6,725	6,700				

Mean velocity	6,300	6,770	6,750	6,830		6,830	6,830
Range	175	60	83	55		76	30
Standard deviation	69	20	26	18		27	12
Standard error	28	6	8	7		11	5
TNT creamed:							
Density, g/cm ³	1.600		1.605	1.605	1.605	1.610	
Measured velocities, m/s	6,659		6,788	6,871	6,804	6,915	
	6,641		6,775	6,866	6,790	6,913	
	6,634		6,773	6,856	6,787	6,913	
	6,630		6,772	6,847	6,782	6,902	
	6,620		6,760	6,822	6,779	6,890	
	6,591		6,735	6,820	6,755	6,887	
	6,630		6,770	6,850	6,780	6,900	
Range	68		53	51	49	28	
Standard deviation	23		18	22	16	12	
Standard error	9		7	9	7	6	

Limit data of diameters and velocities of detonation of cast TNT, set point 80.50 ${}^{\circ}C^{[150]}$:

Casting		Poure	Poured-clear		Poured-cloudy		Creamed	
		Bare	Confined	Bare	Confined	Bare	Confined	
Boundary	Diameter (cm)	-	>0.9	2.5	-	1.7	>0.9	
	Velocity (m/s)	-	6,300	6,400	-	6,470	6,600	
Limiting	Diameter (cm)	-	1.7	~3.0	-	2.7	2.2	
	Velocity (m/s)	-	6,830	6,900	6,900	6,900	6,900	

Summary of experimental copper cylinder wall velocity data, PETN with a density of 1.763 g/cm 3 is the reference explosive, data from $^{[153]}$:

Initial density (g/cm³)	Inner diameter (mm)	Wall thickness (mm)	Wall velocity (mm/µs) at 25.4 mm diameter for R-R ₀ equal to			Velocity-squared cf. with PETN for the same configuration, % comparison R-R ₀ equal to			
			6 mm	12.5 mm	19 mm	6 mm	12.5 mm	19 mm	
1.632	50.85	5.186	1.210	1.355	1.410	-39.8	-36.8	-38.0	

Summary of code calculations with measure detonation velocities and detonation energies derived from JWL's^[153]:

	PETN-adjusted BKWR Tiger, LLNL library, $\theta = 1,850$ K, at v		JCZ3, LLNL library, v			CHEQ V2.4, at v			
(g/cm³)	2.2 mm	4.1 mm	6.5 mm	2.2 mm	4.1 mm	6.5 mm	2.2 mm	4.1 mm	6.5 mm
1.632	3	-1	-1	5	-1	-3	0	-3	-3

Derivation of the total energy of detonation, E_0 from the measured heat of detonation. The final state is assumed to at one atmosphere for all gaseous products including water at 298 K. Code calculated energies with the 1,800 K freeze are also included, data from [153]:

Measured	Measured	Density Heat of		Energy of detonation, E ₀ (kJ/cm ³)					
density (g/cm³)	confined heat of detonation	from ^[87]	rom ^[87] detonation using density from ^[87]	From heat of detonation	Freeze at 1,800 K				
(3/ 5)	(kJ/cm³)				Tiger BKWR	Tiger JCZ3	CHEQ		
1.533	-7.01	1.632	-7.46	-7.1	-7.8	-6.1	-7.2		

JWL cylinder coefficients data from^[153]:

density,		Energy of detonation, E_0 (kJ/cm ³)	pressure	(B (GPa)	C (GPa)	R ₁	R ₂	ω	У сј
1.632	7.07	-7.10	20.5	524.4089	4.900052	0.626131	4.579	0.85	0.23	2.979

Comparison of measured "CJ" temperatures using optical pyrometry [153]:

Experimental	Max.	C	alculated CJ T (I	K)	Wavelength	
density (g/cm³)	measured T(K)	Tiger BKWR	Tiger JCZ3	CHEQ	(μm)	
1.51	3,800-4,000	2,800	3,100	3,800	0.85-0.95	
1.2	3,700	2,900	3,200	3,900	0.85-0.95	

Critical diameter [cm]

Critical charge diameter influenced by initial ρ , grain size, initial T, crystallinity[27]

Critical heights and diameters^[70]: pressed TNT: ρ_0 = 1.63 g cm⁻³; wedge height, h_c = 2.16 mm (value for TNT pressed @ 65 °C), d_c = 2.62 mm, d_c (lit. value) = 14, d_c/h_c = 1.2^[70], pressed TNT @ 1.62–1.654 g cm⁻³ d_c = 2.62 ± 0.56 mm^[70], cast TNT @ 1.625 g cm⁻³ (98.2% TMD) d_c = 22.0–25.4^[70], cast TNT @ 1.625 g cm⁻³ (98.2% TMD) d_c = 26.9 ± 0.1 mm^[70], d_c = 2.62 ± 0.56 mm (@ 1.62 g cm⁻³, 97.9% TMD)^[70]

 d_c = ~ 3.25 mm (pressed TNT, 140 μm particle size, ρ = 1.62 g cm⁻³ (98.0% TMD))^[90], d_c = ~ 2.5 mm (pressed TNT, 30 μm particle size, ρ = 1.60 g cm⁻³ (97.0% TMD))^[90]

Effect of different casting techniques on d_c (creamed = melt stirred until it becomes milky due to the formation of small crystals; at this point it is poured into the mold)^[70]:

Casting method	d _c (cm)
Poured, clear	3.17 < d _c
Creamed	2.20 < d _c < 2.54
Creamed plus 10% fines	1.26 < d _c < 1.66

Effect of temperature (critical T) on d_c (granular TNT, $\rho = 1.0$ g cm⁻³, + = steady detonation, - = detonation failure)^[70]:

T (°C)	d _c (cm)
-193	10+,~10.5+,~9.1-,~9.4-,~9.7-
~30	~6.5+,~6.1+,~6.0-
75	~ 6.0 +, ~ 5.3-

Detonation fa	ilure l	imit (curves ^[70] :
---------------	---------	--------	--------------------------

Particle size (µ)	d _c (mm)	% TMD	Particle size (μ)	d _c (mm)	% TMD
10-50	~ 4.5	54	70-200	~10	56
10-50	~ 4.0	58	70-200	~ 9	61
10-50	~ 3.5	63	70-200	~8	66
10-50	~ 3.0	68	70-200	~ 7	71
	,		70-200	~ 6	76
			70-200	~ 5	82
			70-200	~ 4	87
			70-200	~ 3	93

Failure diameter = 0.25 cm^[104]

Critical diameters of various forms of TNT, values from [143]:

Form of cha	arges	ρ_0 , g/cc	% TMD	$d_{\rm c}$, mm
Pressed at	25 °C			
<i>ca</i> . 140 μ		1.18	71.5	7.5, 6.4, 7.0
		1.62	98.0	2.0, 1.8, 2.5
ca. 30 µ		1.18	71.5	2.5
		1.60	97.0	ca. 2.5
Pressed at	62-76 °C	1.64	99.2	7.8
Castings				
Poured	Cooling rate			
Clear	Rapid	1.62	98.0	14
Creamed	Moderate	1.61	97.5	24, 27
Clear	Moderate	1.62	98.0	30
Clear	Very slow	1.61	97.5	>38
Perfect sin	gle crystal	1.65	100	-

Shock sensitivity and detonability of TNT; * higher P on crystal than on liquid is necessary to reach same shocked temperature. This takes into account the lower initial temperature, lower compressibility and lower specific heat of the crystal; † It is assumed that single crystal will have $d_c \ge$ than that of any casting and also that the confinement of the gap test produces an effective diameter of about 76 mm. A special TNT casting was prepared with very slow cooling of the melt. This casting was not detonable in the gap test. Hence the estimate for single crystal TNT^[151]:

Description	P (kbar)	d _c (mm)
Pressed 70–200 μ, 65% TMD, 25 °C	10	8
Pressed 70–200 μ, 99% TMD, 25 °C	23	<2
Cast, 25 °C	26-46	27 -> 32
Liquid, 81–83 °C	~110	68
Single crystal, 25 °C	>110*	>76†

TNT @ 81–83 °C, ρ_0 = 1.47 g/cc, P_i = ~ 110 kbar, d_c = 68 mm^[151], 60 mm @ 100 °C (liq.)^[164]

Data from^[170]:

HE	Particle size (μ)	$ ho_0$	Approx. d_c (mm)
TNT	20-70	1.60	3.25
TNT	400-800	1.57	3.30

Detonation failure thickness values^[25]:

Density (g/cm³)	Failure thickness (mm)	Remarks
1.568	1.82	Pressed @ 65 °C
1.627	2.16	Pressed @ 65 °C
1.629	1.76	Pressed @ 65 °C
1.631	2.00	Pressed @ 72 °C
1.635	2.59	Pressed @ 72 °C

Failure diameter	1 in ^[165]
Critical pressures of explosion initiation [GPa]	$\begin{split} P_{\rm cr} = & \sim 1.1 \text{ (TNT, impact)}^{[119]}, \ \sigma_{\rm ult} = 36 \text{ MPa (TNT, impact)}^{[119]}, \ P_{\rm cr} = 1.30 \pm 0.03 \\ \text{(TNT, DT)}^{[119]}, \ P_{\rm cr} = 1.08 \pm 0.03 \text{ (recryst. TNT, impact)}^{[119]}, \ \sigma_{\rm ult} = 39 \text{ MPa} \\ \text{(recryst. TNT, impact)}^{[119]}, \ P_{\rm cr} = 1.27 \pm 0.03 \text{ (recryst. TNT, DT)}^{[119]}, \\ P_{\rm cr} = 1.40^{[134]}, \ \sigma_{\rm ult} = 47 \text{ MPa}^{[134]} \end{split}$
Critical T [°C]	287–289 (exptl.) ^[125, 141] , 291 (calcd.) ^[125, 141] , 970 K (explosion in 250 ms) ^[161] , 288 $(T_m)^{[25]}$

Trauzl test [cm³, % TNT]	285-300 cc ^{[4} 12.2 cc (small	rd, $100\%^{[23]}$, $285-305$ cn $^{4]}$, $260-310$ cm 3 (i.e. 94- ll Trauzl test) $^{[89, 145]}$, 285 cc, 285 cc $^{[163, 172]}$, 1.07 (cyc $^{172]}$	-98% PA) ^[88] , 4 cm³ (10 g sam	452 cc (15 g sample) ^[93] , ple, sand tamping) ^[89] ,		
Lead block test		rtening (small lead block on top of lead cylinder 6	,	test, 50 g TNT, exploded		
Sand test [g]	sample) ^[43] , 4 crushed finer 0.50 g TNT ar	s bomb) ^[17, 23] , 41.2 g sand 8.0 g sand crushed ^[33] , 99 than 30 mesh, by total c nd 0.30 g priming charge than 30 mesh, by base c	5% PA ^[88] , 55. harge consist of MF) ^[145] , 43	3 g (amount of sand ing of base charge of 3.6 g (amount of sand		
Ballistic mortar test	TNT = standa	rd, 100% ^[23] , 90% PA ^[88]				
Initiation efficiency	prevents deta	oe detonated by No. 6 ele onation by No. 6 electric l arges of fulminate:chlorat f TNT and TNT/Tetryl mixt	blasting cap ^{[2} te (90:10) ned	7]		
	TNT-Tetryl Weight of initiator (g) TNT-Tetryl Weight of initiator (g) 100-0 0.25 80-20 0.21					
	90-10	0.22	50-50	0.20		
	0.04 g cadmi cuprous azid 0.095 g silve fulminate ^[89] , LA = 0.27 g ^[16] Minimum init detonation of detonator ca	iating charge (g) of prima f 0.4 g TNT (TNT and primosule under 1,000 lb/in²) g HMTD (with reinforcing	r azide ^[89] , 0.0 azide ^[89] , 0.33 Imium fulmina e ^[89] , minimun ary explosive ary explosive I: 0.26 g fulmi	9 g LA ^[89] , 0.095 g 5 g thallium azide ^[89] , ate ^[89] , 0.15 g copper n detonating charge of necessary to cause compressed in inate (with reinforcing		
	detonation (C initiator adde	ciating charge of primary 0.4 g TNT loaded into deto ed, covered with short rei y ^[89] : 0.10 g cyanuric azid	nator capsul nforcing cap,	e, pressed down, pressed with		

Minimum initiating charge of primary explosive necessary to cause detonation (0.5 g TNT loaded into No. 8 detonator capsule, with reinforcing cap, pressed with 3,400 lb/in²): 0.240 g MF^[89], 0.163 g DDNP^[89], 0.16 g LA^[89]

Can be detonated by No. 6 blasting cap if in crystalline or granular form^[142], can be detonated by No. 8 blasting cap if in highly pressed form^[142], booster required for consistent detonation if in cast form^[142], can be detonated by No 6 electric blasting cap^[149]

Minimum weight of priming charge which causes complete detonation of the base charge^[145]: 0.163 g DDNP^[145], 0.240 g MF^[145], 0.16 g LA^[145]

Limit of initiation charge of MF for TNT = $0.36 \, \mathrm{g}^{[163]}$, cast TNT is less sensitive to detonation^[163], cannot be detonated by No. 8 detonating cap^[163]

0.27 minimum detonating charge of LA required to shock initiate TNT^[181], 270 mg dextrinated LA required^[183], 70 mg silver azide required^[183]

US NOL gap test

Gap thickness = 4.90 cm @ 1.569 g cm⁻³ (pressed TNT)^[28, 91] Gap thickness = 3.50 cm @ 1.60 g cm⁻³ (cast TNT)^[28, 91] 34 mm (133 cards) (cast TNT, 50% probability point)^[84] 45 mm (175 cards) (pressed TNT, 50% probability point)^[84]

Confined/unconfined NOL LSGT /TNT-c = cast TNT)[69]:

Material	ρ_0 (g cm ⁻³)	50% gap	(in. × 10²)
		Confined	Unconfined
TNT-c	1.61-1.62	135	73

Comparison of NOL LSGT results with those of IHE gap test, TNT-c = cast TNT, $TNT-p = pressed TNT^{[69]}$:

Material	$ ho_0$ (g cm ⁻³)	IHE (50% gap, in.)	LSGT (in × 10 ²)
TNT-c	1.61	1.30	124-135
TNT-p	1.57	1.92	193–198

Form of charges	Si	β(g/cc) %	% (;	Unconfi	Unconfined (d = 3.81 cm)	1 cm)		Confined $(d_c \sim 7.6 \text{ cm})$	~ 7.6 cm)	
		TWD			50% point			50% point	oint	
				Gap (mm)	P _k (kbar)	P _i (kbar)	Gap (mm)	P _k (kbar)	P _i (kbar)	d/d _c
Pressed at 25 °C	٥,	1.18	71.5	(50.3	18	13)	63.7	11	∞	10
		1.62	98.0	(29.7	43	(64)	45.2	22	25	35
Castings										
Poured	Cooling rate									
Clear	Rapid	1.57	95.0	24.9	50	61	(40.2	28	32)	5
Creamed	Moderate	1.615	97.75	18.5	62	74	34.3	37	43	3
Cleart	Moderate	1.62	98.0	*2.6	87.5*	104*	(20.6	58	(69)	3
Clear	Very slow	1.61	97.5	Subcritical [§]			#0 <			
Perfect single crystal	crystal	1.65	100						>125#	m

	^a = relationshi ^b = standard LS unconfined ch	SGT confi						
	ρ_0 (g cm ⁻³)	$d_{\rm e}$ (cm)		50	0% point		Slope ^a	
			Gap (ir	× 10 ²)	P _g (kbar)	P _i (kbar)	$\Delta P/\Delta d^{-1}$ (kbar-cm)	
	1.62	3.81	73		66.2	79.5		
	1.61	7.62 ^b	135		43.9	52.0	210	
	TNT Pressed Cast	Burnir 22 kb 22 kb	<u> </u>					
LASL LSGT ²	TNT-c (cast): ρ LSGT ² = 29.30 diameter = 23 ρ = 1.63 g cm ⁻¹ cast TNT @ 1.6 1.595 g cm ⁻³ , pressed TNT @ 75 °C) ^[70] , pres (pressed @ 72	mm ^[57] , Tl .7 ± 1.7 m .3, critical 615 g cm ⁻¹ 96.4% TN 0 1.627 g ssed TNT (NT-cream m, LASL diamete 3 , 97.6% MD, $L_{g} = 2$ cm $^{-3}$, 98	ned cast ³ LSGT ² = $ $ r = 2.62 $ TMD, L_g04 in. ×.4% TMI$	": ρ = not given [57] mm, LASL L! = 111 in. × 10 ² (presse D, L _g = 194 i	ven, critical , TNT-p (pre SGT ² = 51.7 $10^{2[70]}$, presed @ 25 °C) n × 10 ² (preserved)	essed): '9 mm ^[57] , ssed TNT @ ^[70] , essed @	

LSGT [cm]	Shock sensitivity data for various forms of TNT ^[67] :	various forms	of TNT ^[67] :							
	Form of charges	ρ_0 (g cm ⁻³)	% TMD	Unconfined	Unconfined ($d = 3.81 \text{ cm}$), 50% point	, 50% point	Confine	Confined ($d_{\rm e} \sim 7.6$ cm = 50% point	.m = 50% pc	int
				Gap (mm)	P _g (kbar)	P _i (kbar)	Gap (mm)	P _g (kbar)	P _i (kbar)	$d_{\rm e}/d_{\rm c}$
	Pressed @ 25 °C	1.18	71.5	50.3 ^b	18 ^b	13 ^b	63.7	11	8	10
		1.62	0.86	29.7 ^b	43 _b	46 _p	45.2	22	25	35
	Perfect single crystal	1.65	100					-	>125 ^f	3
	Castings									
	Poured/cooling rate									
	Clear/rapid	1.57	95.0	24.9	50	61	40.2 ^b	28 ^b	32 ^b	5
	Creamed/moderate	1.615	97.75	18.5	62	74	34.3	37	43	3
	Clear ^a /moderate	1.62	98.0	9.7€	87.5°	104€	20.6 ^b	28 _p	69 _p	3
	Clear/very slow	1.61	97.5	Subcritical			>0 _e			
	a = vacuum cast, b = not measured values, c = tested @ d = 5.08 cm because d _c = 3.81 cm, e = only 1 shot @ zero gap, measured VoD = 6.9 mm/µs, f = est. value $^{[67]}$	easured value value ^[67]	s, ^c = tested	@ d=5.08 c	m because d	= 3.81 cm, ^e :	= only 1 shot	@ zero gap	, measured	

46 mm (pressed TNT, NOL) $^{[85]}$, 30 mm (pressed TNT, LANL) $^{[85]}$, 30 (cast TNT, NOL) $^{[85]}$, 27 (cast TNT, LANL) $^{[85]}$

Cast TNT , NSWC @ 1.61 g cm⁻³, 97.3% TMD, $L_{\rm g}$ = 133 in × 10^{2[70]}, Pressed TNT @ 1.60 g cm⁻³, 97.1% TMD, $L_{\rm g}$ = 183 in × 10^{2[70]}, Pressed TNT @ 1.64 g cm⁻³, 99.0% TMD, $L_{\rm g}$ = 175 in × 10² (isostatically pressed; water @ 88 °C)^[70], $G_{\rm 50}$ = 21.86 mm^[124]

Gap test results for TNT[27]:

	Density (g/cc)	% Voids	Sensitivity (mm)
LANL LSGT	0.87 (flake)	47.4	37.1
	0.73 (granular)	55.9	60.8

Pressed TNT @ 1.58 g cm⁻³ (96% TMD), gap material = Ly-12A1, $G_{50} = 42.5 \text{ mm}^{[157]}$, no positive test @ 50 cards for a slurry of TNT and DMF containing a 50% excess of TNT cf. the amount of TNT required to give a saturated soln. in DMF @ 25 °C (NOL LSGT)^{[160]}, 282 cards (TNT @ 65% TMD, NOL LSGT)^{[160]}, 224 cards (TNT @ 80.6% TMD, NOL LSGT)^{[160]}, 193 cards (TNT @ 95.7% TMD, NOL LSGT)^{[160]}, 133 cards (TNT @ 96.6% TMD, NOL LSGT)^{[160]}, cast TNT, TMD = 1.654 g cm⁻³, expt. ρ = 1.62 g cm⁻³, 98.1% TMD, gap = 108 cards (only one cast TNT in the literature showed a value below 120 cards)^[169], ρ_0 = 1.35 g/cc, 81.8% TMD, 50% pressure (P_g) = 14.9 kbar (interpolated)^[170], critical initiating pressure (P_i) from LSGT^[170]: ρ_0 = ~ 1.60 g/cc, 50% point = 133 cards, P_g = 44.4 kbar, critical pressure, P_i = 52.7 kbar, TNT Hugoniot used^[170]

Data from^[170]:

Der	nsity	50% p	oint	Particle	Remarks
g/cm ³	% TMD	Cards	kbar	size (µm)	
1.07P	65.0	262	10		
1.25H	75.8	239	14		
1.321	80.2	234	15	200	Coarse TNT (retained on 200 mesh screen)
1.331	80.4	231	15	100	Fine TNT (through 200 mesh screen)
1.33H	80.6	224	(16)		Granular TNT from Yorktown
1.421	85.8	213	17		
1.491	90.5	208	18		

1.581	95.7	193	(22)	Granular TNT from Yorktown
1.581	95.7	198	20	Granular TNT from Dupont
1.601	97.1	183	24	
1.641	99.0	175	26	Water heated to 88 °C during pressing; no evidence of melting on surface of charge; density varied between 1.63 and 1.64
1.62C	98.1	124	47	
1.610	97.5	124	47	Repacked
1.60C	97.1	162	31	Repacked, difference from test above attributed to difference in casting or in sample taken from different box of this lot
1.610	97.3	133	(44)	Granular TNT from Yorktown
1.610	97.3	135	44	Flake TNT from Yorktown
1.62C	98.1	73	66	Flake TNT from Yorktown, unconfined
1.58C	96.0	145	39	Granular TNT from Holston, recryst.
1.59C	96.6	133	44	Granular TNT from DuPont
1.62C	98.1	108E	52	
1.62C	98.1	121	48	Granular TNT from DuPont, cast Pentolite witness
1.56C	94.8	96	57	Stand cast, 2 in diam. bare charges, for Dahlgren
1.56C	94.8	98	56	Stand cast, 1–1/2 in diam bare charges, for Dahlgren
1.620	98.1	38	88	Vac cast, 2 in diam. bare charges, for Dahlgren
1.62C	98.1	47	81	Vac cast, 1–1/2 in diam. bare charges

C = cast, I = isostatic press, H = hydraulic press, p = packed by hand; at 0 card gap X, G and Q indicate no go, go and questionable (X = flat plate, G = hole in plate and Q = plate damage but no hole); type of test = regular unless listed as E (extended) or M (modified); all charges are conditioned and fired at 25 °C except where noted.

Data from^[25]:

Density (g/cm³)	G ₅₀ (mm)	L ₉₅ (mm)	Remarks
	Large	scale	
0.800	61.49	0.38	Bulk density flake
1.024	61.54	0.20	Pressed
1.220	56.26	0.08	Pressed
1.356	55.02	0.25	Pressed
1.505	54.92	0.30	Pressed
1.551	54.46	0.28	Pressed
1.595	52.53	0.18	Pressed
1.631	46.43	0.30	Pressed
1.615	28.30	0.64	Cast

SSGT [cm]

Gap test results for $TNT^{[27]}$:

	Density (g/cc)	% Voids	Sensitivity (mm)
NSWC SSGT	1.651	0	3.96
	1.561	5.5	6.25
	1.353	18.0	7.90
LANL SSGT	1.633	1.3	0.33
	0.84	49.2	No go
	0.77	53.4	4.11

Data from^[25]:

	Sr	nall scale*	
0.77	4.11	0.08	Granular at bulk density
0.84	No go at zero gap		Flake at bulk density
1.628	0.33	0.05	Pressed @ 65 °C

^{*}The failure diameter of cast TNT is 14.5 mm, so it cannot be initiated in the small-scale gap test

Underwater: critical length, $L_c = 6 \text{ mm}^{[29, 86]}$, 5.7 mm (pressed TNT, NOL)^[85], 0.4 mm (pressed TNT, LANL)^[85], $G_{50} = 5.66 \text{ mm}^{[124]}$

Small-scale gap (booster) sensitivity test (pressed TNT)[96]:

@	93% TMD	@	95% TMD
DBg	Lucite gap (mils)	DBg	Lucite gap (mils)
5.7	269	60	251

 $DBg = 30-10 \log (test gap/ref. gap)^{[96]}$

 P_{90} = 17.72 kbar (P_{90} = pressure to 90% of TMD, NSWC small-scale gap test) $^{[107]}$

TNT, TMD = 1.651 g cm^{-3} , data from [168]:

Loading	Density	(g/cm³)	% TMD		Sensitivit	y (DBG)	
pressure (kpsi)	AVG.	s		AVG.	g	S _m	N
7.0	1.413	0.0041	85.6	5.255	0.0237	0.0107	46
11.0	1.489	0.0068	90.2	5.523	0.1428	0.0493	46
19.0	1.568	0.0039	95.0	6.130	0.0429	0.0176	46

TNT, TMD = 1.651 g cm^{-3} , data from^[168]:

Loading	Density	(g/cm³)	% TMD		Sensitivit	y (DBG)	
pressure (kpsi)	AVG.	s		AVG.	g	S _m	N
4	1.353	0.0130	82.0	5.067	0.0321	0.0274	18
8	1.446	0.0079	87.6	5.316	0.0338	0.0277	18
16	1.549	0.0024	93.8	5.877	0.0645	0.0366	18
32	1.623	0.0019	98.3	6.703	0.0434	0.0321	18
64	1.651	0.0025	100.0	8.066	0.0710	0.0446	18

TNT, TMD = 1.651 g cm^{-3} , data from [168]:

Loading	Density	(g/cm³)	% TMD		Sensitivit	y (DBG)	
pressure (kpsi)	AVG.	s		AVG.	g	s _m	N
6.2	1.386	0.0066	83.9	4.551	0.0495	0.0317	53
19	1.561	0.0064	94.5	6.095	0.1186	0.0539	42

 $\rho_0 = 1.35 \text{ g/cc}$, 81.8% TMD, 50% pressure (P_g) = 17.5 kbar^[170]

Gap test

Comparison of values from gap tests and steel bullet $tests^{[66]}$

Material	From gap	test	Velocity for diameter p	
	Initial pressure (kbar)	Cyl. vol. (ft/s)	Cylinders (ft/s)	Spheres (ft/s)
Cast TNT	37.3	2,296	3,720 (est.)	6,924
Pressed TNT $(\rho = 1.32 \text{ g cm}^{-3})$	(14.7)	(1,050)	2,346 (est.)	2,913

Low impulse reactions^[66]:

Material	Witness	50% Gap	Initiating pressure
	system	(no. cards)	(kbar)
TNT	Steel plate	141 ± 1	36.7

	LSGT results for cast TNT (ρ = 1.62 g cm ⁻³), 50% values, both values corrected to pentolite donor ^[69] : NOL LSGT L, cards = 129, LANL LSGT L = 29.30 mm ^[69] Gap = 61 mm (detonation), Gap = 62 mm (no detonation) ^[72] , Gap test \geq 50 kbar (cast) ^[98]		
	Scale I (detonator = standard commercial No. 8 Briska type, donor = 2×20 g pellets of Tetryl pressed to $\rho = 1.5$ g/ml, each 10 g in weight, gap = stack of cards, 3 in square and 0.050 in thick, charge case = 6 in length of mild steel electrical conduit of 27 mm inner diameter and 31 mm outer diameter, faced end is sealed with Durofix cement, cast TNT) critical card value = $9^{[159]}$		
5 s explosion T[°C]	300-310 ^[28] , 475 ^[23, 149] , 475 (de	c., cook-off) ^[165] , 475 (dec.) ^[181]	
Explosion T[°C]	570 (0.1 s, no cap used) ^[23] , 520 (1 s) ^[23, 165] , 465 (10 s) ^[23] , 240 ^[43] , 321 (bath heating rate @ 20 °C/min) ^[30] , 304 (bath heating rate @ 5 °C/min) ^[30] , 346 (after 42.5 s) ^[33] , 430 (after 14.5 s) ^[33] , 328 (50 s., 50 mg sample) ^[33] , 475 (unconfined TNT) ^[27] , 275–295 (depends on sample purity) ^[27] , 320–325 (closed glass capillary tube) ^[27] , 570 (0.1 s) ^[165] , 465 (dec., 10 s) ^[165]		
5 s ignition T [°C]	475 (dec., USA value) ^[28, 123, 165] ,	310, 475 (dec.) (Russian values) ^[28]	
Ignition T [°C]	248 (11.55 minutes heating time after bath reached 100 °C) $^{[44]}$, 276 (19.87 minutes heating time after bath reached 100 °C) $^{[44]}$, 284 (39.58 minutes heating time after bath reached 100 °C) $^{[44]}$, 200 (~38 h, autoignition) $^{[33]}$, 240 $^{[91]}$, 277 (calorimetric measurement) $^{[123]}$, 295–300 $^{[123]}$		
Ignition/ Explosion T[°C]	Confined samples: 275, 295, 287–289 ^[33] , 295–300 ^[89] Unconfined samples: 475 ^[33] Heating in closed glass capillary: 320–335 ^[33] TNT is difficult to ignite, if directly heated in flame melting occurs; ignition occurs only at high temperature (T ~ 300 °C) ^[88] True ignition @ 295–330 (<i>Kast</i>) ^[88] , true ignition @ 281–286 (<i>Verola</i>) ^[88] , true ignition @ 312–316 (<i>Micewicz</i>) ^[88] , TNT ignites in 30 min @ 240 °C (<i>Kast</i>) ^[88] 321 °C (heated from 100 °C @ 20 °C/min) ^[93] , 304 °C (heated from 100 °C @ 5 °C/min) ^[93] 290 (α -TNT, 2,4,6-TNT) ^[88] , 302 (β -TNT, 2,3,4-TNT) ^[88] , 291 (γ -TNT, 2,4,5-TNT) ^[88] , 313 (δ -TNT, 3,4,5-TNT) ^[88] , 332 (ϵ -TNT, 2,3,5-TNT) ^[88] , 335 (ζ -TNT, 2,3,6-TNT) ^[88]		
Initiation T [°C] Deflagration T [°C]	465 (10 s) ^[91] , 520 (1 s) ^[91] , 306 ^[130] 225 (determined using 2 lb slabs heated @ 100 °C/min on one surface) ^[96]		
Detonation T[°C]	465 ^[142]		
Explosion <i>T</i> [°C]	Explosion temperature vs TNT initial temperature ^[23] :		
	TNT temperature, initial (°C)	Explosion temperature (°C)	
	Room	470 (dec)	
	105–100	480 (dec)	
	•		

	Explosion temperature vs confinement ^[23] :			
	Confinement	Explosion tem	perature (°C)	
	Unconfined	470 (dec)		
	Sealed in glass capillary	320-335 (exp	lodes)	
Autoignition T [°C]	After 38 h @ 200 °C ^[27]			
100 °C heat test [% mass loss]	0.2% loss in first 48 h ^[23] , 0.2	2% loss in second 48 h ^{[2}	^{3]} , no explosion	s in 100 h ^[23]
75 °C Int. heat test	0.04% loss in 48 h ^[23]			
Vacuum stability test [cm³/h]	0.10 cc/40 h @ 100 °C ^[23] , 0.23 cc/40 h @ 120 °C ^[23,165] , 0.44 cc/40 h @ 135 °C ^[23] , 0.65 cc/40 h @ 150 °C ^[23] , 0.2 mL/g gas evolved after 48 h @ 120 °C ^[25] , 0.1 cm ³ /g/48 h @ 100 °C ^[33] , 0.01 cm ³ @ 110 °C/20 h (ρ TNT = 1.65 g cm ⁻³) ^[78,115,122] , <0.1 cc/g/48 h @ 100 °C ^[96,104] , 0.3 mL/5 g @ 120 °C, 48 h ^[124] , @ 175 °C: 8.0 cm ³ /2 days, 45.0 cm ³ /7 days ^[52] , @ 150 °C: 0.3 cm ³ /2 days, 0.7 cm ³ /7 days, 1.3 cm ³ /14 days, 2.7 cm ³ /21 days, 7.0 cm ³ /28 days, 18.1 cm ³ /35 days ^[52] , 0.23 mL after 40 h @ 120 °C ^[181]			
Thermal stability	TNT pellets pressed from flakes show substantial decrease in rate of detonation and sensitivity to initiation after storing for 7 days @ 65 °C ^[27] , no decomposition after 20 years storage in a magazine ^[27, 33, 149] , no decomposition after storing as a liquid @ 85 °C ^[27, 33] , TNT vapor shows no decomposition between 250 and 301 °C @ 35–500 mm Hg ^[33] , small amount of dec. after 40 h @ 150 °C ^[27] , slow dec. occurs >150 °C ^[27] , TNT vapor undergoes dec. @ 250–301 °C @ 35–500 Torr ^[27] , extensive dec. @ 357 °C but no explosion ^[27]			
	No. of moles of gas produced per mole TNT/no. $h^{[47]}$: @ 120 °C: 0/22, 0/72 ^[47] , @ 220 °C: 1.83/22, 2.18/72 ^[47] , @ 120 °C: 2.68/22, 3.23/72 ^[47] No dec. after heating @ 130 °C for 100 $h^{[88]}$, no gaseous dec. products after heating @ 150 °C for 4 $h^{[88]}$, gaseous dec. products start being produced @ 160 °C ^[88] , TNT ignites in 30 min @ 240 °C (<i>Kast</i>) ^[88] , exothermic dec. @ 270 °C (<i>Kast</i>) ^[88] , true ignition @ 295–330 (<i>Kast</i>) ^[88] , true ignition @ 281–286 (<i>Verola</i>) ^[88] , true ignition @ 312–316 (<i>Micewicz</i>) ^[88] , slow dec. on heating @ 180–200 °C (gas evolved @ 180 °C but no obvious dec. @ 150 °C) ^[93]			
	Values from ^[99] :			
	Storage time @ 65.5 °C	K-F value (mass %)	Mass loss af	ter storage
	None	0.01	-	
	4 months 0.09 0.09%			
	0.65% mass loss @ 120 °C, 48 h ^[124]			

Thermal
conductivity, λ

Thermal conductivity, cal/s/cm/°C^[23]:

Density (g/cc)	Thermal conductivity (cal/s/cm/°C)
1.19	5.28 × 10 ⁻⁴
1.51	7.12 × 10 ⁻⁴
1.54	5.6 × 10 ⁻⁴
1.67	12.21 × 10 ⁻⁴

Thermal conductivity data from^[25]:

Density (g/cm³)	Conductivity (cal/s-cm-°C)	Trange (°C)
1.59	6.22 × 10 ⁻⁴	10 < T < 45
1.59	5.89 × 10 ⁻⁴	45 < T < 75

0.00043 @ 125 °C $^{[88]}$, 4.61 × 10 $^{-4}$ cal/s/cm/°C $^{[104]}$

Heat conductivity [cal/s/cm³ °C]

 $0.00055 \ @\ 25\ ^{\circ}C^{_{[163]}}$

Heat capacity [cal/g °C]

Data from^[25]:

Heat capacity @ constant pressure (cal/g-°C)	Trange (°C)
0.254 + 7.5 × 10 ⁻⁴ T (°C)	17 < T < 67
0.309 + 5.5 × 10 ⁻⁴ T (°C)	97 < <i>T</i> < 150

Values within ± 0.015, 30 mg samples^[101]:

T(°C)	Flake TNT (uncycled)	Flake TNT cycled to 150 °C @ 5 °C/min	Virgin TNT (uncycled)	Virgin TNT cycled to 150 °C @ 5 °C/min
20	0.247	0.255	0.270	0.278
30	0.257	0.266	0.280	0.290
40	0.265	0.274	0.289	0.299
50	0.276	0.286	0.300	0.311
60	0.286	0.296	0.311	0.321
120	0.359	0.372	0.386	0.392
130	0.361	0.374	0.388	0.395
140	0.367	0.381	0.396	0.402
150	0.369	0.384	0.398	0.404
160	0.375	0.387	0.405	0.411

Specific heat [cal/g/°C]

Values from^[23]:

T (°C)	Specific heat (cal/g/°C)
0	0.309
20	0.328
50	0.353
80	0.374

0.264[104]

Values from^[27]:

<i>T</i> (K)	Specific heat (J/mol/K)	<i>T</i> (K)	Specific heat (J/mol/K)
10	3.116	170	162.84
30	32.71	190	177.15
50	60.41	210	191.24
70	82.52	230	205.09
90	101.70	250	218.72
110	118.76	270	232.12
130	133.54	300	251.80
150	148.30		

Change in specific heat of TNT with temperature $^{[162]}$:

T (°C)	0	20	50	80
Specific heat (cal/g/°C)	0.309	0.328	0.353	0.374

Vapor pressure [atm. @ °C]

Values from^[23]:

T (°C)	Vapor pressure (mm Hg)
80	0.042
85	0.053
90	0.067
95	0.085
100	0.106

Data from^[25]:

T (°C)	Vapor pressure (mm Hg)
60.1	5.43 × 10 ⁻⁴
78.5	6.44 × 10 ⁻³
80.2	7.16 × 10 ⁻³
82.4	7.96 × 10 ⁻³
99.5	4.07 × 10 ⁻²
110.6	8.26 × 10 ⁻²
131.1	3.48 × 10 ⁻¹
141.4	6.21 × 10 ⁻¹

 6.63×10^{-3} Torr @ $66\,^{\circ}\mathrm{C}^{[45]},\,7.7$ ppb (measured @ $25\,^{\circ}\mathrm{C})^{[58]},\,9.4$ ppb (v/v, calcd. based on exptl. values, @ $25\,^{\circ}\mathrm{C})^{[58]},\,1.1\times10^{-6}$ Torr @ $20\,^{\circ}\mathrm{C}^{[77]},\,25$ mm Hg @ $183\,^{\circ}\mathrm{C}^{[88]},\,5.51\times10^{-6}$ Torr @ $25\,^{\circ}\mathrm{C}$ (est.) $^{[138]},\,8.02\times10^{-6}$ Torr @ $25\,^{\circ}\mathrm{C}$ (est.) $^{[138]},\,3.7\times10^{-6}$ Torr @ $25\,^{\circ}\mathrm{C}^{[138]},\,13$ ppb $_{v}$ (equilibrium vapor pressure @ $300\,$ K) $^{[147]},\,4.7\times10^{5}$ ppb $_{v}$ (equilibrium vapor pressure @ $400\,$ K) $^{[147]},\,1.99\times10^{-6}$ mm Hg @ $20\,^{\circ}\mathrm{C}^{[152]}$

Calculated parameters of TNT adsorbed on the cantilever^[71]:

T (°C)	35	45	55	75
Partial pressure (Torr)	3.221 × 10 ⁻⁵	1.087 × 10 ⁻⁴	3.408 × 10 ⁻⁴	2.750 × 10 ⁻³
Sublimation rate (g/s)	6.1217 × 10 ⁻⁶	2.461 × 10 ⁻⁴	4.863 × 10 ⁻⁴	0.09928

Values by Menzies et al.[88]:

T (°C)	Vapor pressure (cm Hg)	T (°C)	Vapor pressure (cm Hg)
60.1	5.43 × 10 ⁻⁵	99.5	4.07×10^{-3}
78.5	6.44 × 10 ⁻⁴	110.6	8.26 × 10 ⁻³
80.2	7.16 × 10 ⁻⁴	131.1	3.48 × 10 ⁻²
82.4	7.96 × 10 ⁻⁴	141.4	6.21 × 10 ⁻²

	Specific vapor pro	Specific vapor pressure of TNT ^[162] :								
	<i>T</i> (°C)		85		100	190	245-250			
	Vapor pressure	(mm Hg)	0.0)53	0.106	5 2	50			
	5.50 × 10 ⁻⁶ Torr @	@ 25 °C ^{[175}	^{5]} , 2.31 × 1	0 ⁻³ Toı	rr @ 70	°C ^[175] , 5.7	7 × 10 ⁻² Torr @			
Volatility	Zero @ 30 °C ^[23]									
Heat of sublimation [kJ/mol]	23.2–33.7 kcal/n 28.3 kcal/mol (lat									
Heat of evaporation [kJ/mol]	22.7 kcal/mol ^[88] , $\Delta H_{\text{vap}} = 114.1^{[175]}$	22.7 kcal/mol ^[88] , 17.5 kcal/mol ^[88] , heat of vaporization = 17–22.7 kcal/mol ^[27] , $\Delta H_{\rm vap}$ = 114.1 ^[175]								
Enthalpy of melting [J/g]	93.47 ± 2.01 (7 measurement average) ^[97] , 99.5 ^[97] , 103.2 ^[97] , 98.51 ^[97]									
Heat of fusion [kJ/mol]	$\Delta H_{\text{fusion}} = 22.34^{[12]}$ 20.2-25.2 cal/g s 23.53 cal/g (5.35)	values rep	orted ^[27] , l	atent l	neat of	fusion = 21				
Heat of crystallization [kcal/mol]	5.6 ^[163]									
Burn rate [mm/s]	Burns completely	y without d	letonation	when	ignited	d in open ai	r ^[27, 149]			
	Mass burning rate	e of volati	le explosiv	es, TN	T ^[166] :					
	Material			n (g	cm ⁻² s	⁻¹)				
		40 atm.	100 atm.	200	atm.	400 atm.	1,000 atm.			
	Trotyl (TNT)	0.326	0.756	1.47	, <u> </u>	2.90	7.20 6.65			
		Burn rate and equilibrium combustion temperature ^[166] : $T_e = 1,980 \text{ K}^{[166]}$, m = 0.756 g cm ⁻² s ⁻¹ (100 atm.) ^[166]								

Dependence of burning rate of volatile explosives on pressure^[166]:

Substance	$\delta = \rho/\rho_{\text{max}}$	Coeffi	cients in for	mulae	Pressure (atm.)		
		а	В	v			
Trotyl (TNT), ρ_{max} =	~ 1.0	0.04	0.00716	1.0	20-950		
1.66 g/cm ³		_	0.022	0.75	35-100		
		_	0.007	1.0	100-950		
	0.98	_	0.025	0.77	28-105		
		-	0.0065	1.0	500-4,000		

Solubility [g/mL]

Solubility of TNT g/100 g solvent (%)^[23]:

٧	Vater	Acetone		Ber	izene	Toluene		
°C	%	°C	%	°C	%	°C	%	
0	0.0100	0	57	0	13	0	28	
20	0.0130	20	109	20	67	20	153	
40	0.0285	40	228	40	180	60	367	
60	0.0675	60	600	60	478	80	>1,700	
				80	2,000			
	arbon chloride	Ether		Chloroform		Trichloroethylene		
°C	%	°C	%	°C	%	°C	%	
0	0.20	0	1.73	0	6	25	3.5	
0	0.65	20	3.29	20	19	55	60	
40	1.75			40	66			
60	6.90			60	302			
70	17.34							
75								

Pyi	ridine	Methyl a	icetate	Ethylene dichloride			xyethyl tate
°C	%	°C	%	°C	%	°C	%
20	140	20	73	20	34	20	29.5
40	250	40	135	40	123	40	49
60	640	50	280	60	460	50	96
70	1,250						
Tetrachl	oroethane	Anili	ine		ropyl ohol	Etha	anol
°C	%	°C	%	°C	%	°C	%
20	18	10	6.1	20	0.76	0	0.62
40	50	30	11.5	40	1.96	20	1.25
50	100	50	29	50	2.95	40	2.85
		70	74			60	8.4
		80	130			70	15
Isobut	yl alcohol	Carb disul		Chlorob	enzene		
°C	%	°C	%	°C	%		
0	0.20	0	0.14	20	35		
20	0.61	20	0.44	30	51		
40	1.41	40	1.4	40	79		
50	2.35			50	116		

131 mg/L H_2O @ 25 °C^[75], 130 mg/L H_2O @ 20 °C^[77], very low solubility in $H_2O^{[88]}$, dissolves in conc. H_2SO_4 and conc. $HNO_3^{[88]}$, very soluble in dil. $HNO_3^{[88]}$, readily soluble in common organic solvents such as acetone, benzene, toluene^[88], 0.4 parts dissolve in 100 parts CS_2 @ 15 °C^[88], 2.7 parts soluble in 100 parts CS_2 @ 46 °C^[88], all isomers (α -, β -, γ -, δ -, ζ -) are soluble in most common organic solvents^[88], all isomers are insoluble in $H_2O^{[88]}$, aqueous solubility = 150 mg/L @ 25 °C^[138], soluble in acetone, EtOH, benzene and $CCl_4^{[142]}$, 0.10 g/L in H_2O @ 25 °C^[144], practically insoluble in water^[149], slightly soluble in Et₂O, CCl_4 , CS_2 and EtOH^[149], readily soluble in acetone, $CHCl_3$, ethylene chloride, benzene, toluene, aniline and other solvents^[149], 130 mg/L H_2O @ 25 °C^[152], 1.5 × 10^{-1} @ 25 °C^[175]

Solubility of α -TNT in 100 g nitric acid^[88]:

Conc. HNO ₃ (%)	T(°C)	Solubility (g)	Conc. HNO ₃ (%)	T (°C)	Solubility (g)
78.2	48	100	84.7	33	100
	53	150		41	150
	56	200		46	200
	59	250		54	300
	61	300			
80.4	44	100	91.8	26	150
	50	150		34	200
	54	200		45	300
	56	250		55	500
82.5	38	100	97	34	235
	46	150		47	376
	50	200		52	458
	54	250		57	650
	56	300		61	830

Solubility of α -TNT in 100 g solvent^[88]:

T (°C)	H ₂ O	CCl ₄	Benzene	Toluene	Acetone	95% EtOH	CHCl₃	Et ₂ O
0	0.0100	0.20	13	28	57	0.65	6	1.73
5	0.0105	0.25	24	32	66	0.75	8.5	2.08
10	0.0110	0.40	36	38	78	0.85	11	2.45
15	0.0120	0.50	50	45	92	1.07	15	2.85
20	0.0130	0.65	67	55	109	1.23	19	3.29
25	0.0150	0.82	88	67	132	1.48	25	3.80
30	0.0175	1.01	113	84	156	1.80	32.5	4.56
35	0.0225	1.32	144	104	187	2.27	45	-
40	0.0285	1.75	180	130	228	2.92	66	-
45	0.0360	2.37	225	163	279	3.70	101	-
50	0.0475	3.23	284	208	346	4.61	150	_
55	0.0570	4.55	361	272	449	6.08	218	-
60	0.0675	6.90	478	367	600	8.30	302	_
65	0.0775	11.40	665	525	843	11.40	442	-
70	0.0875	17.35	1,024	826	1,350	15.15	_	_

75	0.0975	24.35	2,028	1,685	2,678	19.50	_	_
80	0.1075	-	-	-	-	-	-	_
85	0.1175	-	-	-	-	-	-	_
90	0.1275	-	_	_	_	_	_	-
95	0.1375	-	_	_	_	_	_	-
100	0.1475	-	_	_	_	_	-	-

Values from [27]:

Solvent		Solubi	lity in §	g per 1	00 g s	solvent a	at °C	
	0	20	25	30	40	50	60	75
Ethanol (95%)	0.65	1.23	1.48	1.80	_	4.61	-	19.5
Ether	1.73	3.29	3.80	4.56	-	-	-	-
Acetone	57	109	132	156	-	346	-	-
CCl ₄	0.20	0.65	0.82	1.01	-	3.23	-	24.35
CHCl ₃	6	19	25	32.5	-	150	_	_
Ethylene chloride	-	18.7	22	29	-	97	-	_
Benzene	13	67	88	113	-	284	-	_
Toluene	28	55	67	84	_	208	_	_
CS ₂	0.14	0.48	0.63	0.85	_	-	_	_
Methyl acetate	_	72.1	80	99	_	260	_	_
Triacetin	_	-	37.7	-	_	-	_	_
Butyl carbitol acetate	-	24	_	-	_	_	-	-
Sulfuric acid	_	4	_	_	_	_	_	_
N,N-DMF	90	119 @ 150 °C	142	-	-	-	-	-
DMSO	_	-	128	-	_	-	_	-
1-Methyl-2- pyrrolidinone	-	-	118	-	-	-	-	-
Pyridine	-	137	-	-	_	-	-	_
Chlorobenzene	-	33.9	_	-	_	-	_	_

1,2-Dichloroethane	-	18.7	-	-	-	-	-	-
Et ₂ O	_	3.29	_	1	ı	-	ı	_
Trichloroethylene	_	3.04	_	1	ı	-	ı	_
MeOH	_	-	-	-	9.5	-	31.6	_

Solubility of TNT in binary solvent mixtures at 25 °C (g/100 g solvent after 5 min stirring) $^{[160]}$:

Solvent	TNT
DMSO	128
NMP	118
NMP 79.2%	120
DMSO 20.8%	
DMF	142
DMF 71.7%	142
DMSO 28.3%	

Solubility of TNT in DMF (g/100 g solvent) after 5 min stirring $^{[160]}$:

Explosive	0 °C	15 °C	25 °C
TNT	90	119	142

Solubility of TNT isomers (g) in 100 g alcohol $^{[162]}$:

T(°C)	Tr	initrotoluene isome	ers
	α- (2,4,6-)	γ- (2,4,5-)	β- (2,3,4-)
25	1.5	1.4	1.9
30	1.8	1.7	2.4
35	2.3	2.1	2.9
40	2.9	2.7	3.5
45	3.7	3.4	4.5
50	1.6	4.2	5.4
55	6.1	5.9	6.9
60	8.3	7.3	8.5
65	11.4	8.5	11.0
70	15.5	12.7	14.7

Solubility of TNT isomers (g) in 100 g of benzene and alcohol mixtures at 25 $^{\circ}$ Cl¹⁶²]:

Benzene:alcohol ratio	1:1	1:2	1:3	1:9
2,4,6-TNT	20.4	8.7	5.3	2.5
2,4,5-TNT	12.2	6.6	4.7	2.3
2,3,4-TNT	9.5	6.4	4.7	2.9

Solubility of isomers of TNT (g) in 100 g toluene at 35 °C^[162]:

TNT isomer	2,4,6-TNT	2,4,5-TNT	2,3,4-TNT
Solubility	67.0	23.2	13.7

Solubility of isomers of TNT in various solvents^[162]:

TNT isomer	Solvent	T of soln. (°C)	Solubility (%)
1,3,8-	Dichloroethane	19	0.60
1,2,5-	Dichloroethane	19	3.72
1,3,8-	65% HNO ₃	19	0.07
1,2,5-	65% HNO ₃	19	0.25
1,2,5-	Chloroform	19	2.01
1,3,8-	Acetone	19	2.99
1,2,5-	Acetone	19	25.42
1,3,8-	95% Alcohol	19	0.02
1,2,5-	95% Alcohol	19	0.43
1,4,5-	Gasoline	55	0.07
1,2,5-	Gasoline	65	0.06
1,3,5-	Acetic acid	80	0.73
1,4,5-	Acetic acid	Boiling point	Insoluble
1,2,5-	Carbon disulfide	Boiling point	Insoluble
1,3,8-	Carbon disulfide	Boiling point	Insoluble
1,3,8-	Water	Boiling point	Insoluble
1,2,5-	Water	Boiling point	0.04

low solubility in $H_2O^{[163]}$, 0.02 parts dissolve in 100 parts H_2O @ 15 °C^[163], 0.15 parts dissolve in 100 parts H_2O @ 100 °C^[163], best solvents for TNT are pyridine, acetone, benzene, toluene and CHCl₃^[163], poorly soluble in CS₂ and Et₂O^[163]

7(°C)				solubili	ty of α-TNT (g	solubility of $\alpha\text{-TNT}\left(g\right)$ in 100 g solvent				
	Water	Pyridine	Toluene	Acetone	Benzene	Dichloroethane	CCI⁴	95% EtOH	Et ₂ 0	CS ₂
0	0.01	ı	28	25	13	-	0.2	9.0	ı	-
15	0.012	ı	45	92	20	-	0.5	1.1	2.8	0.3
20	0.013	-	55	100	29	1	-	1.2	3.3	0.5
25	0.015	158	29	132	88	20	8.0	1.5	ı	-
30	0.017	ı	84	156	113	100	ı	1.8	4.6	0.8
35	0.022	215	104	187	144	1	1.3	2.3	ı	-
50	0.047	370	206	376	284	300	3.2	4.6	ı	ı
09	0.067	009	367	009	478	1	6.9	8.3	ı	-
70	0.087	1,250	826	1,350	1,024	ı	17.3	15.1	ı	ı
75	0.097	2,460	1,685	2,676	2,028	1	24.3	19.5	ı	-
100	0.147	ı	ı	ı	ı	ı	ı	ı	ı	ı

% solubility of α-TNT in Sulfuric acid of various % strengths^[163]:

T (°C)	% So	lubility of	TNT in su	lfuric acid	of differe	ent % stre	ngths
	70	75	80	85	90	95	100
0	-	0.30	0.40	0.6	2.0	3.5	13.0
10	-	0.30	0.45	0.7	2.2	4.0	13.5
20	-	0.30	0.50	0.8	2.5	4.8	15.0
25	-	0.32	0.55	0.9	2.6	5.2	15.5
30	-	0.35	0.60	1.0	2.7	6.0	16.5
40	0.2	0.40	0.65	1.3	3.0	7.0	18.0
50	0.2	0.45	0.70	1.7	3.5	8.5	21.0
60	0.22	0.50	1.00	2.3	5.2	11.0	24.0
70	0.35	0.70	1.60	3.3	7.0	13.5	29.0
80	0.60	1.30	2.40	4.8	10.0	18.0	36.5

very Soluble in nitric acid, even in dil. nitric acid^[163]:

% Strength HNO ₃	T(°C)	Solubility (g) of α-TNT in 100 g HNO ₃
78.2	48	100
	53	150
	56	200
	59	250
	61	300
80.4	44	100
	50	150
	54	250
	56	300
82.5	38	100
	46	150
	50	200
	54	250
	56	300

	Data from ^[25] :				
	Solvent	g TN	T dissolved/100) g solvent	
		20 °C	40 °C	60 °C	
	Acetone	109.0	228.0	600.0	
	Benzene	67.0	180.0	478.0	
	Butyl carbinol acetate	24.0	_	-	
	Carbon disulfide	0.48	1.53	-	
	Carbon tetrachloride	0.65	1.75	6.90	
	Chlorobenzene	33.9	_	-	
	Chloroform	19.0	66.0	302	
	Diethyl ether	3.29	-	-	
	Ethanol (95%)	1.23	2.92	8.30	
	Ethylene chloride	18.7	-	_	
	Hexane	0.16	-	_	
	Methyl acetate	72.1	-	-	
	Toluene	55.0	130.0	367.0	
	Trichloroethylene	3.04	-	_	
	Water	0.0130	0.0285	0.0675	
Viscosity	13.90 mPa s (@ 358 K) ^[83] , 0.139 Poise @ 85 °C ^[23, 27, 149] , 0.095 Poise @ 100 °C ^[23, 27] Data from ^[25] :				
	T(°C)	Viscosity (cP)			
	85	12.0-13.7			
	90	10.6-11.8			
	95	9.4-10.2			
	100				
Hygroscopicity	absorbed when expose $(\alpha-, \beta-, \gamma-, \delta-, \zeta-)$ are nor	0.03% @ 30 °C with 90% RH ^[23] , nonhygroscopic ^[88, 142] , 0.05% H ₂ O absorbed when exposed to air saturated with water @ RT ^[88] , all isomers $(\alpha-,\beta-,\gamma-,\delta-,\zeta-)$ are nonhygroscopic ^[88] , \sim 0.05% and therefore does not require storage in an airtight container ^[163]			

Photosensitivity

Photolysis of aqueous solns. of TNT results in the formation of pink water [27], solid TNT decomposes on exposure to light [27], mpt. decreases from 80.0 to 79.5 °C after 2 weeks sunlight irradiation (Kast) [88], mpt. decreases from 80 to 74 °C after exposure to sunlight in the open for 3 months [88], TNT irradiated in absence of air in vacuum showed no change in mpt. [88, 93], TNT exposed to light forms a product insoluble in benzene and H_2O [88], exposure to sunlight in open tubes = slow dec. [93], all isomers (α -, β -, γ -, δ -, ζ -) are light sensitive and turn brown on exposure to sun [88] complex mixtures formed on photolysis of TNT in dilute aqueous solutions using medium pressure mercury lamp and pyrex filter to eliminate λ <280 nm [138], rate of phototransformation of TNT is inversely proportional to pH [138], rate enhancement of 10–100 fold observed for TNT photolysis in natural waters probably due to presence of humic acids [138], exposure to sunlight or UV radiation causes progressive discoloration and dec. shown by increasing impact sensitivity [149]

Effect of light on freezing point and sensitivity of 2,4,6-TNT^[162]:

Exposure time (h)	Freezing point (°C)	Shock sensitivity (p = 10 kg, h = 25 cm) of sample in % Explosions	Deflagration Τ(°C)
0	80.1	10	295–298
65	79.3	6	295–298
165	78.7	20	293-295
300	78.3	21	293-295
450	76.7	32	285-290
512	76.4	30	280-285

Sunlight causes TNT to darken and affects the freezing temperature, but less effect on the flash point $^{[163]}$, photoisomerization of TNT proposed to occur on exposure to sunlight $^{[163]}$

Radiation sensitivity

Properties of a saturated aq. TNT solution and its photolysates after treatment in continuous flow system $^{[80]}$:

UV exposure (h)	рН	Color/clarity of solution	GC results TNT (ppm)	TLC results (TNT/no. of conversion products)
0	6.0	Colorless/clear	90	TNT/0
1	-	Rusty/turbid	1	TNT/5
3	_	Amber/slightly turbid	0	Trace of TNT/3
4	ı	Yellow/clear	0	0/1 ^f
6.5	ı	Straw/clear	0	0/1 ^f
10	ı	Straw/clear	0	0/1 ^f
22.5	ı	Colorless/clear	0	0/1 ^f
25	-	Colorless/clear	0	0/0
27	-	Colorless/clear	0	0/0
29	3.3	Colorless/clear	0	0/0

 $f = fluorescent \ product \ (375 \ nm)^{[80]}$

Properties of a saturated aq. TNT soln. and its photolysates after UV treatment in the continuous flow system (24 h) $^{[80]}$:

UV exposure (h)	рН	Appearance of soln.	GC results TNT (ppm)	TLC results/ no. of conversion products
0	6.0	Colorless, clear	109.5	TNT
2	3.2	Rusty, turbid	0	Trace TNT/3
4	3.1	Amber, clear	0	0
6	3.2	Straw, clear	0	0
24	3.3	Colorless, clear	0	0

UV continuous flow treatment of TNT solutions with varied acetone concentrations (average concentration of TNT samples at exposure time = 0 h is 107.6 ppm)^[80]:

% Acetone	Exposure time (h)			
	0.5	2.5	~ 5	21.5
		TNT (p _l	pm)	
0.01	25.8	0.14	0.02	0
0.02	38.0	0.16	0.20	0
0.05	25.9	0.09	0.42	0
0.10	15.1	0.50	0	0
0.20	15.0	0.15	0	0
0.25	7.5	0.02	0	0
0.50	7.8	0.03	0	0
1.00	6.6	0.10	0	0

Effect of peroxide concentration on TNT elimination with different UV exposure times in the continuous flow system (average concentration of TNT samples at exposure time = 0h is 95 ppm)^[80]:

% H ₂ O ₂	UV exposure time						
	10 min	15 min	1 h	2 h	3 h	4 h	5 h
			TNT conc	entration	(ppm)		
2.0	52.9	-	10.2	8.0	5.4	3.5	-
1.5	-	56.6	7.3	2.1	0.6	0.5	0.4
1.0	-	35.5	6.2	3.5	0.8	0.1	0
0.5	60.4	-	6.4	1.8	-	0	0
0.05	35.1	-	0	0	0	-	0
0.02	-	33.0	0.18	0	-	0	0
0.01	-	28.0	0.30	0.1*	_	0	0

^{*}sample taken at 2.5 h and not 2 h

No drop in chemical stability after exposure to γ -rays with intensity of 3×10^4 Roentgens/h administering doses of 0.5–20 megaroentgens with total exposure times of 15–660 h (cobalt-60 source)^[149]

Data obtained from explosives after exposure to gamma radiation^[165]:

	T -		
Weight of sample (g)	5		
Vol. of gas produced (mL/g) in follow	ring times (days)		
10	0.02		
20	0.04		
30	0.06		
40	0.08		
50	0.11		
90	0.20		
Total irradiation time (days)	90		
Purity of sample by chemical analysi	s (%)		
Original material	-		
Irradiated material	-		
Melting points, corrected (°C)			
Original material	82.1		
Irradiated material	80.9		
IS (P.A. apparatus) (in)			
Original material	13		
Irradiated material	12		
IS (B.M. apparatus) (cm)*			
Original material	95		
Irradiated material	95		
Sand test, 200 g bomb, g of sand crublack powder fuse only	ished when sample was ignited by		
Original material	-		
Irradiated material	-		
Sand test, 200 g bomb, g of sand cru 0.30 g LA	ished when sample was initiated by		
Original material	48.9		
Irradiated material	50.1, explosion 1 out of 10 trials		

TNT irradiated at ambient T using 0.41 MeV $^{198}_{79}$ Au γ -rays; volumes of gas produced measured during and after irradiation, amount of gas evolved as function of gamma dose $^{[182]}$:

Gamma energy absorbed, 10 ⁷ R	Gas evolved (ml/g) @ STP
1	<0.1
2	<0.1
3	<0.1
4	<0.1
9	0.1

Effect of 60 MeV electron irradiation on explosives, a = sample tested at 100 cm with NOL apparatus^[182]:

Weight (mg)	Dose (R)	Dose rate (R/s)		Color change	Test	Results
8.0	1.14 × 10 ⁹	1.7 × 10 ⁶	None	Caramel	Impacta	Explosion

Data from[186]:

Exposure Total rate (R/h) dose (R)		Vacuum stability test		
	dose (R)	100 °C (cc/g/40 h)	120 °C (cc/g/40 h)	
6.4 × 10 ⁵	Control	0.10	0.46	
	1.0 × 10 ⁷	0.14		
	1.0 × 10 ⁸	1.16		
	1.0 × 10 ⁹	4.22		

DTA for irradiated explosives @ 20 $^{\rm oC/min^{[186]}}$:

Total dose (R)	Endotherms		Exotherms	
	First		First	
	Onset (°C) Peak (°C)		Onset (°C)	Peak (°C)
0	77	81	290	324
1.0×10^{7}	77	81	280	321
1.0 × 10 ⁸	70	77, 79	260	315
1.0 × 10 ⁹	20	71	245	290

TGA for irradiated explosives^[186]:

Total dose (R)	Heating rate (°C/min)	Weight (mg)	Start of dec (°C)	10% weight loss T(°C)	Total weight loss (%)
0	20	7.4	135	190	99 @ 250 °C
1.0 × 10 ⁷	20	7.4	135	190	96 @ 255 °C
1.0 × 10 ⁸	20	8.7	115	185	95 @ 255 °C
1.0 × 10 ⁹	20	7.1	110	173	86 @ 235 °C
0	50	8.4	150	212	97 @ 275 °C
0	80	9.6	160	224	98 @ 300 °C

Effect of gamma radiation on the mpt. and color^[186]:

Total dose (R)	mpt. (°C)	Color
0	81.5	Light yellow
1.0 × 10 ⁷	80.5	Yellow
1.0 × 10 ⁸	78.5	Dark yellow
1.0 × 10 ⁹		Brownish yellow

IS for irradiated explosives, 50% fire height in inches, Bruceton method (P.A. apparatus, 2 kg mass)^[186]:

Total Co ⁶⁰ gamma dose (R)	$ar{X}$ mean (in)	σ std. dev. (in)	
0	25.5	7.48	
1.0×10^7	26.5	8.41	
1.0 × 10 ⁸	-	_	
1.0 × 10 ⁹	30.11	5.55	

Effect of gamma radiation on explosion T (5 s explosion T in °C) and activation energy (kcal/mol)^[186]:

Total dose (R)	5 s explosion T (°C)	Apparent activation energy (kcal/mol)
0	396	21.70
1.0 × 10 ⁷	389	15.05
1.0 × 10 ⁸	394	18.37
1.0 × 10 ⁹	345	19.23

	Effect of gamma radiation on rates of detonation ^[186] :						
	Total dose (R)	Density (g/cc)	Density after irradiation (g/cc)	Rate of detonation (m/s)	Detonation pressure (kbar)		
	0	1.60	-	6,875	189		
	1.0×10^{7}	1.60	1.60	6,875	189		
	1.0 × 10 ⁸	1.59	1.55	6,850	182		
	1.0 × 10 ⁹	1.57	1.45	6,395	143		
Compatibility	VST @ 110 °C, 20 h: RDX/TNT (60/40), @ 1.72 g cm ⁻³ , 99.0% TMD, vol. of gas = 0.13 cm ^{3[115]} , not adversely affected by moisture ^[142] , does not react with metals except in presence of dil. nitric acid ^[142] , reacts readily with alkaline solns. such as NH ₃ , NaOH, Na ₂ CO ₃ ^[142] , alkalies, alkoxides and ammonia react with TNT to form dangerous compounds ^[149] , solid TNT and KOH mixture bursts into flames on heating to 80 °C ^[149] , reacts with potassium methylate to form an explosive compound ^[149] , moisture has no effect on stability of TNT ^[149] , may cause slight corrosion of lead but has no corrosive effect on other metals, Shellac, acid-proof black paint or Bakelite ^[149] , unaffected by moisture ^[27] , unaffected by immersion in sea water ^[27] , reacts with EtOH @ 50 °C ^[27] , does not react with sulfuric acid @ RT but undergoes oxidation at elevated T ^[163] , strong mixed acid oxidizes TNT @ 115–130 °C ^[163] , reacts with alkaline solns. ^[163] , reacts with aqueous ammonia ^[163]						
Wedge test [mm]	run length (x _s): pressure = 75 l	= 6.07 mm, <i>x</i> , kbar, run leng	cast TNT $\rho_0 = \infty$ $s^{-1} = 0.165 \text{ mm}^{[1]}$ th $(x_s) = 18.6 \text{ mr}$ is well establish	$^{70]}$, cast TNT ρ_0 = m (chosen beyon	= ~ 1.60 g/cc, nd plateau		
	Density (g/cm³)	Distance, 2	x* and time <i>t</i> * to is)	detonation	Pressure range (GPa)		
	1.1.62-1.634	1 ,	$\log P = (1.40 \pm 0.03) - (0.32 \pm 0.03) \log x^{*}$ $\log P = (1.16 \pm 0.03) - (0.31 \pm 0.05) \log t^{*}$ 91.7 < P < 17.3				
	where P = pres	sure in GPa					
	$\rho = 1.654 \text{ g cm}^{-3}, a = 0.2109 \text{ cm}/\mu\text{s}, b = 2.337, P_1 = 120 \text{ kbar,}$ slope = $3.125^{[173]}$						

Minimum priming charge test [mg]	Data from ^[25] :					
	Density (g/cm³)	W ₅₀ (mg of XTX 8003)	Comments			
	1.59	394	Pressed @ 65 °C			
	1.63	1,260	Pressed @ 65 °C			
	375 (pressed TNT, LA	NL) ^[85]				
Bullet test [f/s]	4,700 (pressed TNT, LANL) ^[85]					
Steel bullet test	Comparison of values	s from gap tests and steel bu	ıllet tests ^[66]			
	Material Velocity for 0.5 in diameter projectiles					
		Cylinders (ft/s)	Spheres (ft/s)			
	Cast TNT	3,720 (est.)	6,924			
	Pressed TNT $(\rho = 1.32 \text{ g cm}^{-3})$	2,346 (est.)	2,913			
Rifle bullet impact test	Rifle bullet impact sensitivity vs. temperature of confinement ^[23] : Room temperature 105–110 °C					
	Standard iron bomb		1 12 1 1			
	No air space	·				
	Trials	10	10			
	Explosions	1 very low order	7			
	Air space	· · ·				
	Trials	10	10			
	Explosions	0	0			
	Tin or cardboard bo	mbs:	•			
	With or without air	space				
	Trials	10	10			
	Explosions 0 0					
	Insensitive to rifle bullet impact if unconfined or confined in iron, tin or cardboard bombs ^[27] , insensitive to rifle bullet impact in tin or cardboard bombs or in iron bomb with an airspace @ 105–110 °C ^[27] , an iron bomb with no airspace showed explosion in 70% of trials ^[27] , 4% explosions, 0% partials, 0% burned, 6% unaffected in trials ^[23] , explodes in 2% trials ^[149] , 40% explosion, 0% partially exploded, 0% burned, 60% unaffected ^[165]					

Bullet impact test	Pressed TNT @ $1.58 \mathrm{g} \mathrm{cm}^{-3}$ (96% TMD), bullet caliber = $7.82 \mathrm{mm}$, bullet velocity = $741 \mathrm{m/s}$, fracture scenario of metal case = ruptured in lids, reaction type = combustion ^[157]						
Susan V-50 test [f/s]	425 (cast TNT, NWL/D) ^[85]						
Susan LVR test [f/s]	1,220 (cast TNT, NWL/D) ^[85]						
Plate dent test	Data from ^[23] :						
	Plate dent test m	nethod	А	Α		В	
	Condition		Cast	Pre	ssed	Cast	
	Confined		Yes	Yes		No	
	Density, g/cc		1.61	1.5	0	1.61	
	Brisance, % TNT		100	100)	100	
	Data from ^[25] :						
	Charge diameter (mm)	Density (g/cm³)	Dent depth	Dent depth (mm)		Charge height (mm)	
	12.7	1.63	1.57		12.7		
			1.70		16.9		
			1.93		84.59-508		
			2.90		203.0		
	25.4	1.631	1.73		12.7		
			2.90		25.4		
			3.20		31.7		
			4.04		42.4		
			4.19		50.8		
			4.27		63.5		
			4.14		72.6		
			4.19 84.6				
			4.09 101.6				
			4.11	4.11			
			4.14		169.4		
			4.06		254.0		
			4.09		508.0		

	1.626	6.73	63.5
		7.01	101.6
		6.60	169.4
		7.01	203.0
	1.640	6.88	203.0
41.3	1.626	3.02	16.9
		4.01	25.4
		4.67	31.8
		5.41	42.4
		6.05	50.8
		6.90	63.5
		7.06	72.6
		7.14	76.2
		7.18	101.6
		7.06	127.0
		6.81	169-203
		6.93	254.0
		6.78	304.8
		6.96	508.0
		6.99	1,016.0

0.205 mm crater depth $^{[27]}$, 5.51 mm crater depth $^{[98]}$

Measured dent areas, dent volumes and dent depths^[135]:

Diameter (mm)	Area (mm²)	Volume (mm³)	Depth (mm)
74.98	6,439.29	36,844.76	13.37
74.79	6,801.88	38,652.68	13.43
74.8	6,518.61	37,364.75	12.95
50.42	2,832.78	10,238.27	8.46
50.62	2,825.25	10,239.24	8.70
50.42	2,826.32	10,239.98	8.39

Plate push value [ft/s]

2,830 (@ 93% crystal ρ) $^{[104]}$, 2,930 (@ 98% crystal ρ) $^{[104]}$

Blast characteristics	Blast wave peak overpressure $P_{\text{max}} = 5.1 \text{ kPa (mean value)}^{[103]}$, blast wave positive phase impulse $I^* = 0.73 \text{ Pa s (mean value)}^{[103]}$							wave	
Plastic properties	Properties of material ^[88] , brittle → pl	35-40	°C (@ 4	5-47 °C					
Dipole moment [D]	1.17 (calcd.) ^[111] , 1.3	37 (exp1	t l.) ^[111]					
Cylinder velocity	Exptl. and c	alcd. vel	ocities	of cylind	ler, Cu cy	/linder	, TNT @ 1	.76 g cm	-3[116]:
	Source				R-R ^o	(mm)			
			4	5	7	10	12	15	
	Exptl. valu	ıe	1.17	1.23	1.29	1.35	1.38	1.41	
	Calcd. val	ue	1.19	1.24	1.30	1.36	1.38	1.42	
	R ₀ = initial v of cylinder	alue of c	outer ra	dius of c	ylinder;	R = cui	rrent value	e of oute	r radius
LAVA	Vol. of gas r 100 °C ^[123] ,							.1 cm³/g	@
Bourdon manometer	0.03 mL/g (@ 120°(C, 48 h ^{[1}	124]					
Sled test	Values from	[124]							
	ρ (g cm ⁻³)	Height (m)	Overp (kPa)	ressure	Strike (mm²)		Reaction grade	Exptl. phenoi	mena
	1.64	4.3	0		29		0	No read	ction
	1.64	6.1	0		32		2.2	Obviou marks target a charge and sm	and ; fire
Adiabatic self- heating	Values from	[125]							
	Sample $T \text{ range (°C)}$ Depth of conversion as °C selfheating $E_a \text{ (kcal/mol)}$							al/mol)	
	Pure TNT		145-	196	0-51		20.60	43.0	
	Remelted	TNT	150-	160	51-61		15.46	31.3	
	Re-remelt	ed TNT	126-	144	61-79		13.51	27.2	

Gurney energy [kJ/kg]	2,795 (@ 1.590 g cm ⁻³ , cylinder test, impulse X-ray apparatus, 300 mm long tube, 25 mm internal diameter, 2.5 mm wall thickness) ^[129]				
Gurney velocity [m/s]	2,364 (@ 1.590 g cm ⁻³ , cylinder test, impulse X-ray apparatus, 300 mm long tube, 25 mm internal diameter, 2.5 mm wall thickness) ^[129]				
Diffusion coefficient (air) [cm²/s]	0.064 (est.) ^[138]		·		
Diffusion coefficient (water) [cm ² /s]	6.71 × 10 ⁻⁶ (est.) ^[138]				
Thermal diffusivity	Values from ^[27] :				
	Thermal diffusivity (cm²/s ×	10⁴) @ 25 °C	ρ (g/cc)		
	19.7		0.64		
	15.0		0.783		
	12.1		0.980		
Log K _{ow}	2.99 ^[138] , 1.86 ^[138] , 1.84 ^[138] , 1.86	5−2.00 @ 25 °C	^[144] , 1.6 ^[152] , K _{ow} =	= 100 ^[175] , 2.0 ^[175]	
Log K _{oc}	$2.72^{[138, 175]}, K_{oc} = 524^{[175]}$				
Shock sensitivity	Sample weight = 36.4 mg, taper diameter = 0.153 in (initial), taper diameter = 0.165 in (final) taper angle = 3.9° (exploding foil slapper technique, 2 mil mylar disk driven by Al plasma; constant stunning voltage of 12 kV; taper angle = angle the inclined face of taper makes with the vertical) ^[140] , Sample weight = 36.8 mg, taper diameter = 0.153 in (initial), taper diameter = 0.167 in (final) taper angle = 4.4° (exploding foil slapper technique, 2 mil mylar disc driven by Al plasma; constant stunning voltage of 12 kV; taper angle = angle the inclined face of taper makes with the vertical) ^[140] , Sample weight = 37.1 mg, taper diameter = 0.154 in (initial), taper diameter = 0.167 in (final) taper angle = 4.1° (exploding foil slapper technique, 2 mil mylar disc driven by Al plasma; constant stunning voltage of 12 kV; taper angle = angle the inclined face of taper makes with the vertical) ^[140]				
Refractive index	$n^{\rm D}_{20} = 1.5430 \ (\alpha -)^{[23, 27]}, \ n^{\rm D}_{20} =$	1.6742 (β-) ^{[23,}	^{27]} , 1.717 (γ-) ^[27]		
Booster sensitivity test	Values from ^[23] :				
	Condition Pressed Cast				
	Tetryl, g	100	100		
	Wax, in for 50% detonation	1.68	0.82		
	Wax, g				
	Density, g/cc	1.55	1.60		

	Pressed TNT, $\rho = 1.55 \text{ g cm}^{-3}$, 50% Gap = 1.68 in ^[165] , cast TNT, $\rho = 1.60 \text{ g cm}^{-3}$, 50% Gap = 0.82 in ^[165]					
Coefficient of expansion	Values from ^[23] :	Values from ^[23] :				
	Linear, %/°C	-40-60 °C	5.4 × 10 ⁻⁵			
		-40-60 °C	6.7 × 10 ⁻⁵			
	Volume, %/°C	27-80 °C	16 × 10 ⁻⁵			
		16-70 °C	26.3 × 10 ⁻⁵			
	$5.0 \times 10^{-5} + 7.8 \times 10^{-1}$	O ⁻⁸ T (1/°C, @ T	range –40< T < <i>6</i>	60 °C) ^[25]		
Hardness	1.4 (Moh's scale) ^{[23,}	27]				
Compressive strength	13,800-14,000 lb/	in^2 , $\rho = 1.62 g/c$	c ^[23] :			
Armor plate impact test	Values from ^[23] : 60 mm mortar proje 500 lb general purp		velocity ≥1,100) ft/s ^[23]		
	Plate thickness (in) Trials	% inert			
	1	0				
	11/4	0		_		
	11/2	4	100			
	13/4	4	50			
Bomb drop test	T7, 2,000 lb semi-armor-piercing bomb vs concrete: max safe drop = 5,000-6,000 ft ^[23] 500-lb general purpose bomb vs concrete ^[23] :					
		No seal		Seal		
	Height, ft	4,000		4-5,000		
	Trials	26		20		
	Unaffected	24		20		
	Low order	2		0		
	High order	0		0		

	1,000-lb general purpose bomb vs concrete ^[23] :						
			No se	al		S.	eal
	Height, ft		5,000			_	000
	Trials		21			26	
	Unaffected		18			22	
	Low order		0			0	
	High order		3			4	
						4	
100 kg drop test	10% firing: heig	ht = 6.5 f	t, cast ,	0 = 1.5	54 g cm ^{-3[165]}		
Fragmentation effects	Fragmentation e	ffects of	TNT, va	lues fr	om ^[27] :		
	Density (g/cc)	Pressed	l/cast		age no. of nents produc	ed	Average velocity of fragments (m/s)
	1.54	Pressed	l	1,07	0		3,620
	1.58	Cast		1,85	0		3,570
Fragmentation test	Values from ^[23] :						
	90 mm HE, M7	1 projecti	ile, Lot	WC-91	l:		
	Density (g/cc)				1.60		
	Charge wt. (lb)				2.104		
	Total no. of frag	gments		703			
	3 in HE, M42A1	l projecti	le, Lot	KC-5:			
	Density (g/cc)				1.60		
	Charge wt. (lb)				0.848		
	Total no. of frag	gments			514		
Fragment velocity	Fragment velocit $\rho = 1.5 \text{ g/cc}^{[23]}$	y: ft/s ^{[23}	[]] : 260 (@ 9 ft,	ρ = 1.5 g/cc [[]	[23]	236 @ 25 ¹ / ₂ ft,
Surface tension	Surface tension	of liquid	TNT ^[27] :				
	T(°C)	Surfa	ce tens	ion (d	ynes/cm)		
	80	47.07	47.07				
	85	46.63	46.63				
	87.6	46.36	5				
	90	46.04	į.				
	95	45.62	2				
		•					

Cylinder compression tests	3.5 mm compression (Cu cylinder) ^[27] , 16 mm compression (Pb cylinder) ^[27]
Fire fast cook-off test	Pressed TNT @ 1.58 g cm $^{-3}$ (96% TMD), cook-off time = 360 s, cook-off temperature = 620 °C, fracture scenario of metal case = ruptured into block, cook-off reaction = deflagration $^{[157]}$
Jet sensitivity test	Pressed TNT @ 1.58 g cm ⁻³ (96% TMD), critical jet characteristics: X50 (steel plate thickness) = 97.2 mm, Vj (jet velocity) = 3.6 mm/ μ s, d (jet diameter) = 1.4 mm, V ² jd = 18.1 mm ³ / μ m ^{2[157]}
Small-Scale Cookoff Bomb test (SCB test)	Flake TNT, loose fill, heater voltage = 110, cookoff time = 11 min, cookoff reaction = detonation ^[158] , cast TNT, cookoff temperature ≥400 °C, cookoff time = 6.1 min, cookoff reaction = detonation ^[158]
Flash point [°C]	290 ^[163]
Shock sensitivity	4-8% explosions (@ 10 kg, h = 25 cm, 0.05 g sample, explodes on dropping a 2 kg mass from 100 cm height) ^[163]
Critical Lucite gap	Pressed TNT: 50% gap = 0.281 in, DBg = 5.52 (donor = RDX, 1 in long, 0.2 in diameter, pressed in steel @ 10 kpsi) ^[165] , cast TNT: 50% gap = 0.021 in, DBg = 16.7 (donor = RDX, 1 in long, 0.2 in diameter, pressed in steel @ 10 kpsi) ^[165]
Small-scale Lucite gap test	Cast TNT @ 1.5746 g cm ⁻³ loading ρ , sensitivity = 16.5 DBg ^[165] , TNT @ 1.4078 g cm ⁻³ loading ρ , loading pressure = 6.2 kpsi, sensitivity = 4.635 DBg ^[165] , TNT @ 1.5835 g cm ⁻³ loading ρ , loading pressure = 19.0 kpsi, sensitivity = 6.114 DBg ^[165]
60 mm proj. against armor	1,100 ft/s [165]
T7 bomb max safe drop	5,000 ft ^[165]
Setback critical pressure	86.0 kpsi ^[165]
Combustion T [K]	Burn rate and equilibrium combustion temperature ^[166] : $T_e = 1,980 \text{ K}^{[166]}$, $m = 0.756 \text{ g cm}^{-2} \text{ s}^{-1} (100 \text{ atm.})^{[166]}$
Taliani test	100 °C bath temperature, 1.00 g Eastman TNT sample or 1.01 g military TNT sample, tube volume = 17.1 mL (Eastman TNT, sample no. 1), 17.3 mL (Eastman TNT, sample no. 2), 17.3 mL (military TNT, sample no. 3) or 17.5 mL (military TNT, sample no. 4), volume of gas evolved (cm 3) @ STP/g sample $^{[167]}$:

Time (h)		Volume of gas	evolved (cm³)	'
	Eastman TNT (sample no.1)	Eastman TNT (sample no. 2)	Military TNT (sample no. 3)	Military TNT (sample no. 4)
0	0.0	0.0	0.0	0.0
1/6	0.1344	0.1335	0.0	0.0
1/2	0.1344	0.1500	0.0	0.0
1	0.1344	0.1670	0.0	0.0
2	0.1344	0.1670	0.0	0.0
5.5	0.1344	0.1670	0.0	0.0
16	0.1680	0.1835	0.0167	0.0168
17.5	0.2019	0.2170	0.0334	0.0336
18.5	0.2019	0.2170	0.0501	0.0504
19.5	0.2019	0.2170	0.0501	0.0504
20.5	0.2019	0.2170	0.0501	0.0504
22.5	0.2019	0.2170	0.0501	0.0504
24	0.2019	0.2170	0.0501	0.0504
40	0.2019	0.2170	0.0501	0.0504
42	0.2019	0.2170	0.0501	0.0504
48	0.2019	0.2170	0.0501	0.0504

100 °C bath temperature, 1.00 g TNT (cycled) sample, tube volume = 21.3 mL, volume of gas evolved (cm 3) @ STP/g sample^[167]:

Time (h)	Volume of gas evolv	ed (cm³)
	TNT (cycled)	TNT (cycled)
1/2	0.0710	0.0304
16 ¹ / ₄	0.1055	0.0446
23	0.0913	0.0507
136	0.1602	0.0792

Cylinder test

Data from^[25]:

Density (g/cm³)		Cylinder wall ve	elocity (mm/µs) at
	velocity (mm/µs)	$R-R_0 = 5 \text{ mm}$	$R - R_0 = 19 \text{ mm}$
1.630	6.940	1.18	1.40

	TNT ^[37]	TNT ^[38]	TNT ^[39]	TNT ^[40]	TNT ^[5]	TNT ^[41]	TNT ^[41]	TNT ^{[27} , 163]	TNT ^[27, 163]
Chemical formula	$C_7H_5N_3O_6$	C ₇ H ₅ N ₃ O ₆	C ₇ H ₅ N ₃ O ₆	C ₇ H ₅ N ₃ O ₆	C ₇ H ₅ N ₃ O ₆	C ₇ H ₅ N ₃ O ₆	C ₇ H ₅ N ₃ O ₆	C ₇ H ₅ N ₃ O ₆	C ₇ H ₅ N ₃ O ₆
Molecular weight [g mol ⁻¹]	227.13	227.13	227.13	227.13	227.13	227.13	227.13	227.13	227.13
Crystal system	Monoclinic	Monoclinic	Orthorhombic	Monoclinic	Orthorhombic	Monoclinic	Orthorhombic	Monoclinic	Orthorhombic
Space group	<i>P</i> 2 ₁	<i>C</i> 2/ <i>c</i> (no. 15)		<i>P</i> 2 ₁ / <i>c</i> (no. 14)		P2 ₁ /a	<i>P c a</i> 2 ₁ (no. 29)	<i>P</i> 2 ₁ / <i>c</i> (no. 14)	Ртса
a [Å]	20.2	40.5	14.85	21.230(14)	40.0	14.9113(1)	14.910(2)	21.35 ± 0.05	20.07 ± 0.08
<i>b</i> [Å]	6.2	6.19	39.5	6.081(2)	14.89	6.0340(1)	6.031(2)	6.05±0.03	6.09 ± 0.04
<i>c</i> [Å]	7.7	15.2	5.96	14.958(5)	60.9	20.8815(3)	19.680(4)	14.96±0.05	15.03 ± 0.07
α [⁰]	90	06	06	96	06	96	06	06	90
β [°]	90.0*	90.52	96	110.12(2)	90	110.365(1)	96	111.15	90
γ [°]	90	06	06	96	06	96	06	06	90
V [ų]	964.348	3,810.41	3,495.99	1,813.23	3,627.2	1,761.37(4)	1,770.6(7)		
Z	4	16	16	8		8	8	8 (assumed)	8 (assumed)
$ ho_{ m calc}$ [g cm $^{-3}$]	1.564	1.584	1.726	1.664		1.713	1.704	1.673 (based on Z = 8)	1.642 (based on Z=8)
<i>T</i> [K]	295	295	295	295	295	100	123		
					Crystals obtained from			Vacuum sublimation	Dropping an acetone/TNT soln.
					soln. of TNT in			on surface	into Et ₂ O or EtOH
					benzene			maintained	@ acetone/dry ice
								℃ 28 °C	bath temperature

* Stated in the literature as monoclinic

Form-III is probably a mix of Form-I and Form-II^[41]. Twinning is so prevalent in TNT that large unit cells have been erroneously postulated in the past^[41]. Orthorhombic-TNT can remain stable for >12 months @ ambient temperature with transforming^[41]. According to ^[33], at least 7 morphological types of TNT have been identified^[33].

Crystal type obtained: sublimation onto condensing surface @ 78 °C forms monoclinic crystals^[33]; freezing melts close to mpt. forms monoclinic crystals^[33], recrystallization from solvents @ RT mainly forms monoclinic crystals^[33], strongly super-cooled melts form mainly monoclinic crystals^[33]; recrystallization from organic solvents @ low T forms orthorhombic crystals^[33].

	TNT ^[5]	TNT ^[25]	TNT ^[5]
Chemical formula	C ₇ H ₅ N ₃ O ₆	$C_7H_5N_3O_6$	C ₇ H ₅ N ₃ O ₆
Molecular weight [g mol ⁻¹]	227.13	227.13	227.13
Crystal system	Orthorhombic	Orthorhombic*	Monoclinic
Space group	P2 ₁ ca		P2 ₁ /b
a [Å]	20.041(20)	15.007	21.407(20)
<i>b</i> [Å]	15.013(8)	20.029	15.019(8)
c [Å]	6.0836(5)	6.098	56.0932(5)
α [°]	90	90	90
β [°]	90	90	90
γ [°]	90	90	111.00(20)
<i>V</i> [ų]	1,830.45		1,828.86
Z	8		8
$\rho_{\rm calc}$ [g cm ⁻³]	1.647	1.646	1.648
T[K]	295		295
	Crystals obtained from gas-phase		Crystals grown from dichloromethane

^{*} Controversial: may be a disordered monoclinic polymorph^[25]

TNT exists in two main crystalline forms^[35]:

- (i) Monoclinic form which is stable @ RT up to the mpt. of 81 °C (usually shows extensive twinning)
- (ii) Orthorhombic form which is metastable @ RT, but which undergoes a solid-solid phase transition >70 °C before melting @ 81 °C. An orthorhombic → monoclinic phase transition can be observed in crystals^[35]

In each polymorph there are two types of TNT molecule present: four type-A molecules and four type-B molecules. Both types have three different types of – NO₂ groups^[35].

	TNT ^[35]	TNT ^[35]	TNT ^[35]	TNT ^[35]	TNT ^[35]
	Monoclinic forms	forms	Orthorhombic forms	c forms	
Chemical formula	C ₇ H ₅ N ₃ O ₆	C ₇ H ₅ N ₃ O ₆	C ₇ H ₅ N ₃ O ₆	C ₇ H ₅ N ₃ O ₆	$C_7H_5N_3O_6$
Molecular weight [g mol ⁻¹]	227.13	227.13	227.13	227.13	227.13
Crystal system	Monoclinic	Monoclinic	Orthorhombic	Orthorhombic	Orthorhombic
Space group	<i>P</i> 2 ₁ / <i>c</i> (no. 14)	<i>P</i> 2 ₁ / <i>c</i> (no. 14)	Pb21a	P2 ₁ ca	
a [Å]	21.275	21.407	15.005	20.041	40.0
<i>b</i> [Å]	6.093	15.019	20.024	15.013	14.89
<i>c</i> [Å]	15.025	6.0932	6.107	6.0836	6.09
α [⁰]	06	06	06	06	06
[ο] θ	110.23	111.00	06	06	06
γ [^o]	06	06	06	06	06
V [ų]					
Z	8	8	8	8	
$ ho_{ m calc}$ [g cm $^{-3}$]					
7 [K]					
Authors	Duke in Gallagher et al.	Golovina et al.	Duke in Gallagher et al.	Golovina et al.	Golovina et al.

Comparison of some of	of the crystallographic	constants reported for T	NT. data from[179]:

	Carper et al. (1982)	Golovina et al. (1994)	Duke (1981) ^b
Orthorhombic form			
a (Å)	14.991(2)	20.041(20)	15.005(2)
b (Å)	6.077(1)	15.013(8)	20.024(4)
c (Å)	20.017(2)	6.084(5)	6.107(3)
Space group	Pca2 ₁	P2 ₁ ab	Pb2₁a
R-factor	0.057	0.055	0.043
Monoclinic form			
a (Å)		21.407(20)	21.275(2)
b (Å)		15.019(8)	6.093(3)
c (Å)		6.0932(5)	15.025(1)
Monoclinic angle (°)		(γ) 111.00(2)	(β) 110.14
Space group		P2 ₁ /b	P2 ₁ /c
R-factor		0.061	0.049

TNT crystallizes in two basic polymorphic forms: Orthorhombic $Pb2_1a$ (a=15.005 Å, b=20.024 Å, c=6.107 Å) and monoclinic $P2_1/c$ (a=21.275 Å, b=6.093 Å, c=15.025 Å, $\beta=110.23^{\circ})^{[177]}$ and depending on the crystallization conditions, TNT may form crystals of the separate phases or form complex mixed phase crystals obtained form solvents are either monoclinic, orthorhombic or twinned monoclinic depending on the solvent which is used^[177]

Orthorhombic and monoclinic TNT have been isolated^[25]; monoclinic obtained from annealing cast TNT^[25], crystallization from most common organic solvents results in complex mixed-phases and (usually) disordered twinned crystals^[25], monocrystals obtained from cyclohexanone^[25], orthorhombic polymorph is controversial and may only be a disordered version of the monoclinic polymorph^[25]: Monoclinic, a = 21.275 Å, b = 6.093 Å, c = 15.025 Å, $\beta = 110.14^{\circ}$, $Z = 8^{[25]}$, Orthorhombic, a = 15.007 Å, b = 20.029 Å, c = 6.098 Å^[25]

The influence of crystallization solvent on the morphology of TNT crystals[177]:

Solvent	Habit	Color	Polymorph	Twinned
Ethylacetate	Lozenge	Faint yellow	Monoclinic	Yes/no
Methanol	Needles, rods, plates	Dark amber	Monoclinic	Yes
Toluene	Plates	Yellow	Monoclinic	Yes
Acetone	Needles, rods, plates	Amber	Monoclinic	Yes
Ethanol	Needles, rods, plates	Amber	Orthorhombic	-
Cyclohexanol	Needles, rods, plates	Amber	Orthorhombic	-

Crystal types obtained (hot solution of TNT in methanol is introduced into a different $medium)^{[88]}$:

TNT/MeOH soln. is poured into	Average dimensions of crystals formed (μ)	Limits of dimensions of crystals formed (µ)	Ratio of axes length/ width
Solid CO ₂	29	3.5430	9.6
H ₂ O	25	6.60	3.0

Crystallization data for $TNT^{[156]}$:

Solvent	Habit	Size (mm³)	Color	Polymorph	Twinned
Ethylacetate	Coffin-like	47 × 10 × 3	Faint yellow	Monoclinic	Yes/no
Methanol	Needles, rods, plates	5 × 4 × 1	Dark amber	Monoclinic	Yes
Toluene	Plates	10 × 10 × 2	Yellow	Monoclinic	Yes
Acetone	Needles, rods, plates	5 × 4 × 1	Amber	Monoclinic	Yes
Ethanol	Needles, rods, plates	2 × 1 × 0.25	Amber	Monoclinic and orthorhombic	Yes
Cyclohexanol	Needles	2 × 0.5 × 0.5	Amber	Orthorhombic	Yes

Failure diameters of lead and booster explosives $^{[165]}$:

Explosive	Bare, in	Confinement, in		
		Fabric detonating cord	Lucite	Heavy brass or steel
TNT (granular)	0.50-0.70	<0.63	0.50	<0.10
TNT (25 μ)			<0.10	_

The charge preparation method affects the infinite-diameter detonation velocity and failure diameter of unconfined cylindrical charges as follows^[25]:

Method of charge preparation	Charge density (g/cm³)	Detonation velocity at infinite "D" (mm/µs)	Critical diameter (mm)
Vacuum melting	_	_	_
Creaming and casting	1.615	6.942 ± 0.028	14.6 ± 2.0
Vacuum melting and casting	1.620	6.999±0.011	14.5 ± 0.5
Pressing	1.620	7.045 ± 0.170	2.6 ± 0.6
Liquid	1.443	6.574±0.001	62.6 ± 2.6

Effect of charge radius: detonation velocity varies with charge radius and preparation procedure as follows^[25]:

Method of charge preparation	Density (g/cm³)	Effect of charge radius on detonation velocity (mm/μs)
Creaming and casting	1.615	D(R) = $6.942 [(1-5.67 \times 10^{-2}/R) - 4.2 \times 10^{-1}/R]$ (R - 7.41)]
Vacuum melting and casting	1.620	D(R) = 6.999 [(1-1.3 × 10^{-2} /R) - 6.2 × 10^{-1} /R (R - 5.5)]
Pressing	1.620	D(R) = 7.045 [$(1-6.1 \times 10^{-2}/R) - 3.5 \times 10^{-2}/R$ (R - 0.57)]
Liquid	1.443	D(R) = 6.574 (1-0.291/R)

- [1] R. Meyer, J. Köhler, A. Homburg, *Explosives*, 7th edn., Wiley-VCH, Weinheim, **2016**, pp. 347–349.
- [2] A. E. D. M. Van der Heijden, Current Topics in Crystal Growth Research, 1998, 4, 99–114.
- [3] G. R. Miller, A. N. Garroway, A Review of the Crystal Structures of Common Explosives Part I: RDX, HMX, TNT, PETN and Tetryl, NRL/MR/6120—01-8585, Naval Research Laboratory, October 15th 2001.
- [4] H. G. Gallagher, K. J. Roberts, J. N. Sherwood, L. A. Smith, J. Mater. Chem., 1997, 7, 229-235.
- [5] N. I. Golovina, A.N. Titkov, A. V. Raevskii, L. O. Atovmyan, J. Solid State Chem., 1994, 113, 229–238.
- [6] S. Zeman, A Study of Chemical Micro-Mechanisms of Initiation of Organic Polynitro Compounds, Ch. 2 in Energetic Materials, Part 2: Detonation, Combustion, P. A. Politzer, J. S. Murray (eds.), Theoretical and Computational Chemistry, Vol. 13, 2003, Elsevier, pp. 25–60.
- [7] https://engineering.purdue.edu/~propulsi/propulsion/comb/propellants.html

- [8] H. H. Krause, New Energetic Materials, Ch. 1 in Energetic Materials, U. Teipel (ed.), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005, pp. 1–26.
- [9] S. Zeman, J. Majzlík, Central Europ. J. Energ. Mat., 2007, 4, 15-24.
- [10] Explosives, Section 2203 in Chemical Technology, F. H. Henglein, Pergamon Press, Oxford, 1969, pp. 718–728.
- [11] J. P. Lu, Evaluation of the Thermochemical Code CHEETAH 2.0 for Modelling Explosives Performance, DSTO Aeronautical and Maritime Research Laboratory, August 2011, AR-011-997.
- [12] M. H. Keshavarz, Z. Keshavarz, ZAAC, 2016, 642, 335-342.
- [13] S. Zeman, Study of the Impact Reactivity of Polynitro Compounds Part IV. Allocation of Polynitro Compounds on the Basis of their Impact Sensitivities, in Proceedings of New Trends in Research of Energetic Materials, NTREM, April 24th–25th 2002, pp. 434–443.
- [14] M. H. Keshavarz, J. Haz. Mat., 2009, 166, 762-769.
- [15] M. H. Keshavarz, Propellants, Explosives, Pyrotechnics, 2012, 37, 489-497.
- [16] M. H. Keshavarz, Propellants, Explosives, Pyrotechnics, 2008, 33, 448-453.
- [17] Ordnance Technical Intelligence Agency, Encyclopedia of Explosives: A Compilation of Principal Explosives, Their Characteristics, Processes of Manufacture and Uses, Ordnance Liaison Group-Durham, Durham, North Carolina, 1960.
- [18] B.M. abbreviation for Bureau of Mines apparatus; P. A. abbreviation for Picatinny Arsenal apparatus.
- [19] A. Koch, Propellants, Explosives, Pyrotechnics, 2002, 27, 365-368.
- [20] D. Buczkowski, Centr. Eur. J. Energet. Mater., 2014, 11, 115-127.
- [21] R. Weinheimer, Properties of Selected High Explosives, Abstract, 27th International Pyrotechnics Seminar, 16th–21st July 2000, Grand Junction, USA.
- [22] Determined using the Bureau of Mines (B.M.) or Picatinny Arsenal (P.A.) or Explosive Research Laboratory (ERL) apparatus.
- [23] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.
- [24] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [25] LASL Explosive Property Data, T. R. Gibbs, A. Popolato (eds.), University of California Press, Berkeley, USA, 1980.
- [26] A. Smirnov, O. Voronko, B. Korsunsky, T. Pivina, Huozhayo Xuebao, 2015, 38, 1-8.
- [27] Military Explosives, Department of the Army Technical Manual, TM 9-1300-214, Headquarters, Department of the Army, September 1984.
- [28] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1969**.
- [29] F. Hosoya, K. Shiino, K. Itabashi, Propellants, Explosives, Pyrotechnics, 1991, 16, 119-122.
- [30] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 8, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1978.
- [31] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 5, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1972**.
- [32] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1974.
- [33] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 9, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1980.
- [34] D. G. Grabar, F. C. Rausch, A. J. Fanelli, J. Phys. Chem., 1969, 73, 2514–3518.

- [35] G. R. Miller, A. N. Garroway, A Review of the Crystal Structures of Common Explosives Part I: RDX, HMX, TNT, PETN and Tetryl, NRL/MR/6120—01-8585, Naval Research Laboratory, October 15th 2001.
- [36] R. K. Wharton, J. A. Harding, J. Energet. Mater., 1993, 11, 51–65.
- [37] Gol'der, Zhurnal Fizicheskoi Khimii, 1952, 26, 1259.
- [38] E. Hertel, G. H. Romer, Z. Physikalische Chemie (Leipzig), 1930, B11, 77.
- [39] Hultgren, J. Chem. Phys., 1936, 4, 84.
- [40] H.-C. Chang, C.-P. Tang, Y.-J. Chen, C.-L. Chang, *Molecular Structures of 2,4,6-Ttrinitrotoluene* (TNT) and 2,2',4,4',6,6'-Hexanitrostilbene (HNS), in Int. Ann. Conf. Fraunhofer Inst. Chemische Technologie, ICT 1987, 18, Karlsruhe, pp. 51-1–51-13.
- [41] R. M. Vrcelj, J. N. Sherwood, A. R. Kennedy, H. G. Gallagher, T. Gelbrich, Crystal Growth and Design, 2003, 3, 1027–1032.
- [42] L. A. Burkhardt, J. J. Bryden, Acta Cryst., 1954, 7, 135–137.
- [43] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [44] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 7, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1975**.
- [45] C. S. Gorzynski, J. N. Maycock, Explosives and Pyrotechnics Propellants for Use in Long-Term Deep Space Missions, NASA-CR-132373, 1974.
- [46] M. J. Kamlet, H. G. Adolph, *Propellants and Explosives*, 1979, 4, 30–34.
- [47] J. C. Oxley, J. L. Smith, E. Rogers, X. X. Dong, J. Energet. Mater., 2000, 18, 97–121.
- [48] E. G. Kayser, J. Energet. Mater., 1983, 1:3, 251-273.
- [49] B. T. Fedoroff, O. E. Sheffield, Encyclopedia of Explosives and Related Items, vol. 3, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1966.
- [50] P. E. Rouse, J. Chem. Engineering Data, 1976, 21, 16-20.
- [51] B. M. Dobratz, Properties of Chemical Explosives and Explosive Simulants, UCRL-5319, LLNL, December 15th 1972.
- [52] J. F. Baytos, High-Temperature Vacuum Thermal Stability Tests of Explosives, LA-5829-MS, LANL, January 1975.
- [53] S. Zeman, M. Krupka, *Propellants, Explosives, Pyrotechnics*, **2003**, *28*, 249–255.
- [54] S. Ek, K. Dudek, S. Johansson, N. Latypov, Scale-Up and Characterisation of 3(5),4-Dinitropyrazole (DNP) for its Use as a Melt-Cast Matrix, NTREM 17, 9th–11th April 2014, pp. 180–188.
- [55] D. E. Bliss, S. L. Christian, W. S. Wilson, J. Energet. Mater., 1991, 9, 319-348.
- [56] A. A. Gidaspov, E. V. Yurtaevm Y. V. Moschenskiy, V. Y. Avdeev, The Correlations Between the High Explosives' Critical Temperature of Thermal Explosion with the Flash Point and Decomposition Temperatures, NTREM 17, 9th-11th April 2014, pp. 658-661.
- [57] D. Price, J. Energet. Mater., **1985**, 3:3, 239–254.
- [58] B. C. Dionne, D. P. Rounbehler, E. K. Achter, J. R. Hobbs, D. H. Fine, J. Energet. Mater., 1986, 4, 447–472.
- [59] L. R. Rothstein, R. Petersen, *Propellants and Explosives*, **1979**, 4, 56–60.
- [60] J. N. Johnson, C. L. Mader, S. Goldstein, *Propellants and Explosives*, **1983**, *8*, 8–18.
- [61] H. Östmark, U. Bemm, H. Bergman, A. Langlet, *Thermochim. Acta*, **2002**, *384*, 253–259.
- [62] J. L. Gottfried, T. M. Klapötke, T. G. Wirkowski, Propellants, Explosives, Pyrotechnics, 2017, 42, 353–359.
- [63] R. Gill, L. Asaoka, E. Baroody, J. Energet. Mater., 1987, 5, 287–307.

- [64] J. Bogdanov, Z. Bajić, R. Jeremić, R. Dimitrijević, M. Ugrčić, Prediction of High Explosives' Detonation Characteristics Using a Simplified Thermochemical Approach, NTREM 17, 9th–11th April 2014, pp. 572–577.
- [65] A. Koch, B. Arnold, M. Estermann, Propellants, Explosives, Pyrotechnics, 2002, 27, 365–368.
- [66] D. Price, Safety Information from Propellant Sensitivity Studies (U), NOLTR 62–41, US Naval Ordnance Laboratory, Maryland, USA, 20th March 1962.
- [67] D. Price, Shock Sensitivity, A Property of Many Aspects, NOLTR 70–73, US Naval Ordnance Laboratory, Maryland, USA, 15th July 1970.
- [68] D. J. Edwards, J. O. Erkman, D. Price, *The Measurement of Particle Velocity in Pressed TNT*, NOLTR 72–82, Naval Ordnance Laboratory, Maryland, USA, 18th August **1972**.
- [69] D. Price, *Gap Tests and How They Grow*, from Ministries of the Explosives Safety Seminar (22nd), vol. 1, AD-A181 274, Anaheim, California, 26th–28th August **1986**.
- [70] D. Price, Critical Parameters for Detonation Propagation and Initiation of Solid Explosives, NSWC TR80-339, NSWC, Maryland, USA, 10th September 1981.
- [71] K. Cheng, X. Liu, T. Xu, Y. Luo, F. He, Sublimation Rate of TNT at Different Temperature, ICT 2011, Karlsruhe, Germany, pp. 108-1–108-9.
- [72] W. A. Trzciński, S. Cudziło, Z. Chyłek, L. Szymańczyk, Investigation of Detonation Characteristics and Sensitivity of DADNE-Based Phlegmatized Explosives, ICT 2010, Karlsruhe, Germany, pp. 101-1–101-15.
- [73] P. Sanchez, R. Duddu, R. Damavarapu, *Novel Melt Cast Materials: Synthesis and Thermochemical Properties*, ICT **2010**, Karlsruhe, Germany, pp. 57-1–57-5.
- [74] V. I. Pepekin, Y. N. Matyushin, A. V. Inozemtsev, Energetic Characteristic of Furazanotetrazendioxide, ICT 2010, Karlsruhe, Germany, pp, 54-1-54-7.
- [75] P. Brousseau, S. Brochu, M. Brassard, G. Ampleman, S. Thiboutot, F. Cŏté, L.-S- Lussier,
 E. Diaz, V. Tanguay, I. Poulin, M. Beauchemin, *Munitions With a Lower Environmental Impact: The Right Track Project*, ICT 2010, Karlsruhe, Germany, pp. 3-1–3-12.
- [76] H. W. R. Sabel, E. Schonewille, Extrusion Trials with a TSK045 Twin Screw Extruder, ICT 1998, Karlsruhe, Germany, pp. 96-1–96-11.
- [77] S. Thiboutot, G. Ampleman, P. Dubé, J. Hawari, T. F. Jenkins, M. E. Walsh, Protocol for the Characterization of Explosives-Contaminated Sites, ICT 1998, Karlsruhe, Germany, pp. 127-1–127-14.
- [78] K. Dudek, P. Mareček, P. Vávra, Laboratory Testing of HNIW Mixtures, ICT 2000, Karlsruhe, Germany, pp. 110-1–110-6.
- [79] W. M. Hikal, J. T. Paden, B. L. Weeks, Talanta, 2011, 87, 290-294.
- [80] C. C. Andrews, J. L. Osmon, The Effects of UV Light on TNT and Other Explosives in Aqueous Solution, WQEC/C-77-32, Naval Weapons Support Center, Crane, Indiana, USA, December 1976.
- [81] P. Politzer, J. S. Murray, High-Performance, Low Sensitivity: The Impossible (or Possible) Dream? in Energetic Materials From Cradle to Grave, M. K. Shukla, V. M. Boddu, J. A. Steevens, R. Damavarapu, J. Leszczynski (eds.), Springer-Verlag, 2017, pp. 1–22.
- [82] P. Marecek, J. Pokorna, P. Vavra, A Study of Some Insensitive Explosives, ICT 1998, Karlsruhe, Germany, pp. 52-1–52-5.
- [83] W. Qian, X. Chen, Y. Zhou, The Interfacial Interaction and Diffusion Mechanism of Molten DNAN on High-Energetic Crystals: A Theoretical Investigation, ICT 2016, Karlsruhe, Germany, pp. 44-1-44-12.
- [84] M. Liljedahl, J. Ritums, H. Östmark, Fox-12: From Synthesis to IM-Application, ICT 2017, Karlsruhe, Germany, pp. 22-1–22-19.
- [85] R. Petersen, Susceptibility Index of Explosives to Accidental Initiation, NWSY TR 81-6, Naval Weapons Station, Virginia, USA, October 1981.
- [86] F. Hosoya, K. Shiino, K. Itabashi, Propellants, Explosives, Pyrotechnics, 1991, 116, 119–122.

- [87] R. L. Simpson, P. A. Urtiew, D. L. Ornellas, G. L. Moody, K. J. Scribner, D. M. Hoffman, Propellants, Explosives, Pyrotechnics, 1997, 22, 249–255.
- [88] T. Urbański, Ch. 8 in Chemistry and Technology of Explosives, vol. 1, 1964, Pergamon Press, Oxford.
- [89] T. L. Davis, The Chemistry of Powder and Explosives, vol. 2, 1943, John Wiley and Sons Inc., New York, p. 283.
- [90] R. J. Spear, M. G. Wolfson, Determination of Detonation Parameters of Booster Explosives at Small Charge Diameters, MRL Technical Report, MRL-TR-89-45, DSTO Materials Research Laboratory, Australia, 1990.
- [91] P. A. Davies, J. Hazard. Mater., 1994, 38, 75-88.
- [92] R. K. Wharton, D. Chapman, *Propellants, Explosives, Pyrotechnics*, 1997, 22, 71–73.
- [93] T. L. Davis, The Chemistry of Powder and Explosives, vol. 1, 1941, John Wiley and Sons Inc., New York.
- [94] D. Skinner, D. Olson, A. Block-Bolten, Propellants, Explosives, Pyrotechnics, 1997, 23, 34-42.
- [95] S. Ye, K. Tonokura, M. Koshi, *Comb. and Flame*, **2003**, *132*, 240–246.
- [96] M. F. Murphy, N. L. Coleburn, A Preliminary Investigation of TACOT, A New Heat Resistant Explosive, NOLTR 61–155, US Naval Ordnance Laboratory, USA, 1961.
- [97] M. Sućeska, M. Rajić, R. Čuljak, Characterisation and Quantitative Determination of Trinitrotoluene in Mixtures with Hexogen by Differential Scanning Calorimetry, ICT 1998, Karlsruhe, Germany, pp. 144-1–144-12.
- [98] H. H. Licht, S. Braun, M. Schäfer, B. Wanders, H. Ritter, Nitrotriazoles: Chemical Structure and Explosive Properties, ICT 1998, Karlsruhe, Germany, pp. 47-1-47-15.
- [99] M. A. Bohn, H. Pontius, S. Löbbecke, S. Wilker, G. Pantel, Investigation on the Stability and Reactivity of Pure NTO and Mixtures of NTO-TNT and NTO-RDX to Assess Their Safe Use, ICT 1998, Karlsruhe, Germany, pp. 147-1–147-33.
- [100] M. Sućeska, Calculation of Detonation Heat by EXPLO5 Computer Code, ICT 1999, Karlsruhe, Germany, pp. 50-1–50-14.
- [101] D. S. Ellison, R. A. Alcorn, E. Neal, J. Hazard. Mater., 1980, 4, 57-75.
- [102] F. T. Kristoff, M. L. Griffith, W. T. Bolleter, J. Hazard. Mater., 1983, 7, 199-210.
- [103] L. V. De Yong, G. Campanella, J. Hazard. Mater., 1989, 21, 125-133.
- [104] N. L. Coleburn, B. E. Drimmer, *The Explosive Properties of the Amino-Substituted Symmetrical Trinitrobenzenes*, NOLTR 63–81, US Naval Ordnance Laboratory, USA, May **1961**.
- [105] F. Volk, H. Bathelt, Propellants, Explosives, Pyrotechnics, 2002, 27, 136–141.
- [106] S. Zeman, Propellants, Explosives, Pyrotechnics, 2003, 28, 308–313.
- [107] P. Politzer, J. S. Murray, Computational Studies of Energetic Organic Molecules, AD-A274 726, ONR Technical Report, Dec. 27th 1993.
- [108] A. Smirnov, M. Kuklja, M. Makhov, V. Pepkin, *Methodical Problems of Experimental Definition of Heat of Explosive Transformation*, ICT **2017**, Karlsruhe, Germany, pp. 15-1–15-11.
- [109] E. G. Kayser, *Analysis Methods For Explosive Materials I. Polynitro Compounds*, NSWC TR 81–123, Naval Surface Weapons Center, Maryland, USA, 3rd March **1962**.
- [110] D. Price, The Detonation Velocity-Loading Density Relation For Selected Explosives and Mixtures of Explosives, NSWC TR 82–298, Naval Surface Weapons Center, Maryland, USA, 26th August 1982.
- [111] P. Politzer, Computational Studies of Polynitroaromatic Molecules and the Development of Sensitivity Relationships, AFATL-TR-90-66, Air Force Armament Laboratory, Florida, USA, October 1990.
- [112] M. Sućeska, M Rajic, Analytical Application of Thermal Methods in the Field of Explosive Materials, ICT **2000**, Karlsruhe, Germany, pp. 84-1–84-15.
- [113] S. Cudzillo, W. A Trzciński, *A Study on the Detonation Characteristics of Pressed NTO*, ICT **2000**, Karlsruhe, Germany, pp. 77-1–77-14.

- [114] W. A Trzciński, Use of a Cylinder Test for Determining Some Characteristics of Explosives, ICT 2001, Karlsruhe, Germany, pp. 64-1-64-14.
- [115] P. Mareček, K. Dudek, P. Vávra, Laboratory Testing of TNAZ Mixtures, ICT 2001, Karlsruhe, Germany, pp. 90-1–90-8.
- [116] M. N. Makhov, V. I. Arkhipov, Evaluation of the Acceleration Ability of High Explosives, ICT 2007, Karlsruhe, Germany, pp. 125-1–125-12.
- [117] S. Singh, Q. S. M. Kwok, C. M. Badeen, B. Acheson, R. Turcotte, P. Brousseau, *Compatibility of CL-20 With TNT and GAP-Based ETPE*, ICT **2007**, Karlsruhe, Germany, pp. 131-1–131-12.
- [118] T. S. Fischer, A. Kessler, P. Gerber, V. Weisser, T. Klahn, S. Kelzenberg, G. Langer, Characterization of Explosives with Enhanced Blast Output in Detonation Chamber and Free Field Experiments, ICT 2009, Karlsruhe, Germany, pp. 39-1–39-17.
- [119] V. A. Teselkin, Some Aspects of Explosion Initiation of Highly Explosive Materials Under Mechanical Actions, ICT **2008**, Karlsruhe, Germany, pp. 96-1–96-12.
- [120] V. F. Korvarov, G. V. Sakovich, N. V. Boyarinova, P. I. Kalmykov, N. V. Bychin, *Interaction of CL-20 with Molten Explosives*, ICT **2009**, Karlsruhe, Germany, pp. 109-1–109-5.
- [121] D. E. G. Jones, P. D. Lightfoot, R. C. Fouchard, A. M. Turcotte, Z. Abel-Qader, Q. S. M. Kwok, R. Bowes, Comparative Studies of the Thermal Properties of Aluminium Nanopowders, ICT 2002, Karlsruhe, Germany, pp. 13-1-13-14.
- [122] K. Dudek, P. Mareček, Z. Jalovy, *Some Properties of Cast TNT Mixtures*, ICT **2002**, Karlsruhe, Germany, pp. 53-1–53-7.
- [123] V. B. Zabrodin, Y. A. Kulagin, P. N. Stolyarov, P. A. Vlasov, *Devices for Analyzing Explosion Hazards*, ICT **2002**, Karlsruhe, Germany, pp. 69-1-69-13.
- [124] Q. Hu, Z. Lu, *The Discussion of Explosive Thermal Decomposition and Its Sensitivity*, ICT **2002**, Karlsruhe, Germany, pp. 155-1–155-8.
- [125] R. Petersen, L. R. Rothstein, J. H. Smith, *Thermochemistry and the Demilitarization of Explosives*, NWSY TR 76–2, Naval Weapons Station, Virginia, USA, July **1976**.
- [126] S. A. Shackelford, J. A. Menapace, J. F. Goldman, *Thermochim. Acta*, 2007, 464, 42–58.
- [127] M. Chaykovsky, H. G. Adolph, *Synthesis and Preparation of Trisubstituted Trinitrobenzenes, TATB Analogs*, NSWC TR 83–22, NSWC Maryland, USA, March 1983.
- [128] N. V. Latypov, C. Oscarson, M. Liljedahl, P. Goede, *Evaluation of DETRA-D as a Melt-Cast Matrix*, ICT **2013**, Karlsruhe, Germany, pp. 3-1–3-8.
- [129] W. A. Trzcinski, S. Cudzilo, Z. Chylek, L. Szymanczyk, *Investigation of Sensitivity and Detonation Properties of Fox-7*, ICT **2006**, Karlsruhe, Germany, pp. 57-1–57-10.
- [130] C. Coulouarn, R. Aumasson, P. Lamy-Bracq, S. Bulot, *Energetic Binders: DNAN vs TNT.*Evaluation of Melt-Cast Explosive Compositions Based on TNT and DNAN, ICT **2014**, Karlsruhe, Germany, pp. 1-1–1-13.
- [131] J. Ritums, C. Oscarson, M. Liljedahl, P. Goede, K. Dudek, U. Heiche, *Evaluation of* 3,(5),4-Dinitropyrazole (DNP) as a New Melt Cast Matrix, ICT 2014, Karlsruhe, Germany, pp. 2-1–2-12.
- [132] H. W. Lee, K.-H. Chung, S. G. Cho, B.-S. Lee, C. K. Kim, Predictive Studies on Various Physicochemical Properties of Explosive Molecules, ICT 2006, Karlsruhe, Germany, pp. 177-1–177-12.
- [133] A. L. Kuhl, Emission Properties of Various High Explosive Charges, ICT 2014, Karlsruhe, Germany, pp. 19-1–19-14.
- [134] Y. N. Matyushin, G. T. Afanas'ev, V. P. Lebedev, M. N. Mahov, V. I. Pepekin, TATB and Fox-7: Thermochemistry, Performance, Detonability, Sensitivity, ICT 2003, Karlsruhe, Germany, pp. 119-1–119-13.
- [135] J. P. Lu, M. D. Franson, M. D. Cliff, Evaluating the Effect of Ultrafine Aluminium in Metallised Explosives Using Plate Dent Tests, ICT 2003, Karlsruhe, Germany, pp. 128-1–128-14.
- [136] W.-P. Lai, P. Lian, B.-Z. Wang, Z.-X. Ge, J. Energet. Mater., 2010, 28, 45–76.

- [137] N. R. Badders, C. Wei, A. A. Aldeeb, W. J. Rogers, M. S. Mannan, J. Energet. Mater., 2006, 24, 17–33.
- [138] E. P. Burrows, D. H. Rosenblatt, W. R. Mitchell, D. L. Parmer, Organic Explosives and Related Compounds: Environmental and Health Considerations, Technical Report 8901, US Army Biomedical Research and Development Laboratory, Frederick, MD, USA, March 1989.
- [139] J. Connor, Chemical Sensitization in Nitro, Nitramine and Nitrate Explosives, in Chemistry and Physics of Energetic Materials, NATO ASI Series, Kluwer Academic Publishers, vol. 309, Suraya N. Bulusu (ed.), 1990.
- [140] A. P. Marchand, P. Annapurna, B. E. Arney, V. R. Gadgil, D. Rajapaksa, G. V. M. Sharma, R. Sharma, U. R. Zope, Synthesis and Explosive Performance Characteristics of Polynitropolycyclic Cage Explosives, in Advances in Analysis and Detection of Explosives, J. Yinon (ed.), Kluwer Academic Press, 1993.
- [141] L. W. Collins, L. D. Haws, *Thermochim. Acta*, **1977**, *21*, 1–38.
- [142] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [143] D. Price, Shock Sensitivity, A Property of Many Aspects, in Proceedings (International) on Detonation (5th), Pasadena, California, USA, 18th–21st August 1970.
- [144] K. Dontsova, S. Taylor, High Explosives and Propellant Energetics: Their Dissolution and Fate in Soils, in Energetic Materials From Cradle to Grave, M. K. Shukla, V. M. Boddu, J. A. Steevens, R. Damavarapu, J. Leszczynski, Springer, 2017.
- [145] L. R. V. Clark, Industrial and Engineering Chemistry, 1934, 26, 554-557.
- [146] S. Fordham, High Explosives and Propellants, 2nd edn., Pergamon Press, 1980.
- [147] J. I. Steinfeld, J. Wormhoudt, Annu. Rev. Phys. Chem., 1998, 49, 203-232.
- [148] G. G. Rempel, Zhurnal Prikladnoi Mekhaniki I Tekhnicheskoi Fiziki, 1969, 10, 83-86.
- [149] *Handbook of Foreign Explosives*, U. S. Materiel Command, US Army Foreign Science and Technology Center, Washington, D. C., USA, October **1965**.
- [150] W. B. Cybulski, W. Payman, D. W. Woodhead, Proc. Royal Soc. A, 1949, 51-72.
- [151] D. Price, J. O. Erkman, A. R. Clairmont, D. J. Edwards, Explosive Behavior of Dinitrotoluene, NOLTR 69–92, US Naval Ordnance Laboratory, Maryland, USA, 10th July 1969.
- [152] T. Jenkins, C. Vogel, Department of Defense Operational Range Sustainability Through Management of Munitions Constituents, SERDP ESTCP Technical Report, 04/01/2014.
- [153] P. C. Souers, J. W. Kury, Propellants, Explosives, Pyrotechnics, 1993, 18, 175–183.
- [154] M. Sućeska, Propellants, Explosives, Pyrotechnics, 1991, 16, 197-202.
- [155] M. Sućeska, Propellants, Explosives, Pyrotechnics, 1999, 24, 280-285.
- [156] J. N. Sherwood, H. G. Gallagher, The Influence of Lattice Imperfections on the Chemical Reactivity of Solids. The Growth and Perfection of TNT Single Crystals, AD A140408, European Research Office of the U. S. Army, London, February 1984.
- [157] Y. Zhang, J. Zhang, L. Mi, L. Ying, Explosive Charges Safety Tests, in vol. III. Minutes of the Twenty-Fifth Explosives Safety Seminar, Anaheim, California, USA, 18th–20th August 1992.
- [158] J. M. Pakulak, USA Small-Scale Cookoff Bomb (SCB) Test, in vol. 1, Minutes of the Explosives Safety Seminar (21st), AD-P004 844, Houston, Texas, USA, 28th–30th August 1984.
- [159] R. Pape, E. G. Whitbread, Sensitiveness of Solid and Liquid Explosives, Part 3: The Application of the Gap Test to Liquid Explosives, Technical Memorandum No. 21/M/52, Ministry of Supply Explosives Research and Development Establishment, Essex, U.K., March 1953.
- [160] M. E. Sitzmann, S. Foti, C. C. Misener, Solubilities of High Explosives Removal of High Explosive Fillers from Munitions by Chemical Dissolution, AD-773 078, Naval Ordnance Laboratory, White Oak, Maryland, USA, 21st November 1973.
- [161] J. Wenograd, The Thermal Sensitivity of Explosives and Propellants, US Naval Ordnance Laboratory, White Oak, Maryland, USA, NOLTR 61–97, 1st September 1961.

- [162] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part III, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [163] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part I, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [164] G. D. Kozak, Combust. Expl. Shock Waves, 1998, 34, 581-586.
- [165] Engineering Design Handbook, Explosives Series, Explosive Trains, AMC Pamphlet AMCP 706–179, Headquarters, US Army Materiel Command, Alexandria, Virginia, USA, 15th January 1974.
- [166] N. N. Bakhman, A. F. Belyaev, Combustion of Heterogeneous Condensed Systems, translated from Gorenje Geterogennykh Kondensirovannykh Sistem, Institute of Chemical Physics, Academy of Science, U.S.S.R. Moscow, Nauka Publication (1967) by C. A. J. Elphinston, M. Goyer, I. C. Graham, G. A. Heath, G. R. Ramsden, R.P.E. Translation No. 19, Ministry of Technology, London, November 1967.
- [167] D. A. Pitt, Explosives for Supersonic Munitions (U), AFATL- TR-66-94, Air Force Armament Laboratory, Elgin Air Force Base, Florida, USA, October **1966**.
- [168] J. N. Ayres, L. J. Montesi, R. J Bauer, Small Scale Gap Test (SSGT) Data Compilation: 1959–1972. Volume I. Unclassified Explosives, AD-773 743, Naval Ordnance Laboratory, Maryland, USA, 26th October 1973.
- [169] T. P. Liddiard, D. Price, The Expanded Large Scale Gap Test, NSWC TR 86–32, Naval Surface Weapons Center, Maryland, USA, March 1987.
- [170] D. Price, A. R. Clairmont, J. O. Erkman, The NOL Large Scale Gap Test. III. Compilation of Unclassified Data and Supplementary Information for Interpretation of Results, AD-780 429, Naval Ordnance Laboratory, White Oak, Maryland, USA, 8th March 1974.
- [171] Services Textbook of Explosives, JSP 333, Procurement Executive, Ministry of Defence, UK, March 1972.
- [172] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [173] E. Lundstrom, Design of Ordnance to Pass the Golden Fragment Test, NAWCWPNS TP 8149, Ordnance Development Division, Naval Air Warfare Center Weapons Division, China Lake, USA, August 1994.
- [174] P. Samuels, K. Spangler, D. Iwaniuk, R. Cornell, E. L. Baker, L. I. Stiel, *Detonation Performance Analyses for Recent Energetic Molecules*, *AIP Conf. Proc.*, **1979**, 15003-1-150033-5.
- [175] R. A. Pesce-Rodriguez, L. B. Blaudeau, Experimental Determination of Physical Properties of DNGU, TNBA, LLM-105, HK-56, and DNP, ARL-TN-0788, US Army Research Laboratory, Aberdeen Proving Ground, Maryland, USA, September 2016.
- [176] A. Smirnov, O. Voronko, B. Korsunsky, T. Pivina, *Chinese J. Expl. Prop.*, **2015**, *38*, 1–8.
- [177] H. H. Gallagher, J. N. Sherwood, *The Growth and Perfection of Single Crystals of Trinitrotoluene (TNT)*, in *Structure and Properties of Energetic Materials*, D. H. Liebenberg, R. W. Armstrong, J. J. Gilman, (eds.), Symposium, Boston, Massachusetts, USA, 30th November–2nd December 1992, *Materials Research Society Symposium Proceedings*, 1993, *vol. 296*, Materials Research Society, Pittsburg, Pennsylvania, USA, pp. 215–219.
- [178] H. J. Jackson, A Study of the Electrical Characteristics of Some Explosives and Explosive Mixtures, Technical Memorandum 1288, Feltman Research Laboratories, Picatinny Arsenal, New Jersey, USA, October 1963.
- [179] J. Bernstein, Polymorphism in High Energy Materials, Ch. 9 in Polymorphism in Molecular Crystals, IUCr Monographs on Crystallography No. 14, Oxford Science Publications, Clarendon Press, Oxford, 2002.

- [180] T. E. Larson, P. Dimas, C. E. Hannaford, *Electrostatic Sensitivity Testing of Explosives at Los Alamos*, 9th Int. Symp. on Detonation, Portland, Oregon, USA, vol. II, August 28th–1st September 1989, pp. 1076–1083.
- [181] L. Avrami, R. Hutchinson, The Sensitivity to Impact and Friction, Ch. 4 in Energetic Materials 2: Technology of the Inorganic Azides, H. D. Fair, R. F. Walker (eds.), Plenum Press, 1977.
- [182] L. Avrami, J. Haberman, Sensitivity to Heat and Nuclear Radiation, Ch. 6 in Energetic Materials 2: Technology of the Inorganic Azides, H. D. Fair, R. F. Walker (eds.), Plenum Press, 1977.
- [183] W. Voreck, N. Slagg, L. Avrami, The Role of Azides in Explosive Trains, Ch. 7 in Energetic Materials 2: Technology of the Inorganic Azides, H. D. Fair, R. F. Walker (eds.), Plenum Press, 1977
- [184] R. J. Spear, L. Montelli, An Investigation of the Material Hazard of Some Insensitive High Explosives, MRL-TR-91-22, Materials Research Laboratory DSTO, Maribyrnong, Australia, 1991.
- [185] G. Stegeman, Heat of Combustion of Explosive Substances, OSRD No. 5306, Division 8 National Defense Research Committee of the Office of Scientific Research and Development, USA, 4th July 1945.
- [186] L. Avrami, H. J. Jackson, M. S Kirshenbaum, Radiation-Induced Changes in Explosive Materials, AD-775 371, Picatinny Arsenal, Dover, New Jersey, USA, December 1973.

Trinitroxylene

Name [German, acronym]: Trinitroxylene, 1,3-dimethyl-2,4,6-trinitrobenzene,

2,4,6-trinitro-*m*-xylene, xylyl, 2,4,6-trinitroxylene

[trinitroxylol, TNX⁺]

Main (potential) use: Component in bursting charges, component of AN

explosives^[19], was used in hand grenades, mines and shells^[19], component of dynamites^[13], additive to fusible

explosive compositions^[14]

Structural formula:

$$O_2N$$
 NO_2

[†] 2,4,6-Trinitro-*m*-xylene is the main component of commercial TNX, only insignificant quantities of the 4,5,6-TNX isomer are present in addition to 2,4,5-TNX.

	TNX
Formula	$C_8H_7N_3O_6$
Molecular Mass [g mol ⁻¹]	241.16
Appearance at RT	large colorless needles if recryst. from benzene ^[13] , white crystals ^[14] , fine white or slightly yellowish crystalline solid (technical) ^[19]
IS [J]	10.46 ^[3] , 9.90 (first reaction) ^[5, 16] , 10.46 (sound) ^[5, 16] , more sensitive than PA (i.e. if PA assigned sensitivity = 100, then TNX = 120) ^[14] , 75.0 cm (2.5 kg mass, AFATL) ^[17]
ESD [J]	11.10 ^[3] , 11.1 ^[4, 21]
N [%]	17.42
Ω(CO ₂) [%]	-89,57
<i>T</i> _{m.p.} [°C]	$180.2^{[1]}, 187^{[9]}, 182.3^{[13]}, 120-125 \ (partial melting, commercial TNX)^{[14]}, \\ 160-177 \ (complete melting, commercial TNX)^{[14]}, 160-162 \ (solidification, commercial TNX)^{[14]}, 170 \ (grade I TNX)^{[14]}, 160-162 \ (grade II TNX)^{[14]}, 182 \ (chemically pure)^{[14]}, 182 \ (2,4,6-TNX)^{[14]}, 90 \ (2,4,5-TNX)^{[14]}, 125 \ (4,5,6-TNX)^{[14]}, 170-176 \ (purified technical product, freezing point)^{[19]}, 170-180 \ (melts without dec.)^{[19]}$
T _{dec.} [°C]	521 K (DTA @ 5 °C/min) ^[5, 16] , 351 (exotherm peak max, DSC @ 20 °C/min) ^[9]
ρ [g cm ⁻³]	$1.623^{[2]}$, $1.69^{[8]}$, sp. gr. = $1.65^{[19]}$, gravimetric density = $0.6^{[19]}$

Heat of formation	-102.6 kJ/mol $^{[6]}$, -425.6 kJ/kg (enthalpy of form.) $^{[8]}$, 18.3 kcal/mol ($\Delta H_{\rm f}$) $^{[14]}$		
	Calcd. (EXPLO5 6.04)	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	4,050	3,533 [H ₂ O (l)] ^[6, 8]	
		3,391 [H ₂ O (g)] ^[8]	
<i>T</i> _{ex} [K]	2,876		
p _{C-J} [kbar]	164		
VoD [m s ⁻¹]	6,527 (@ 1.623 g cm ⁻³ , $\Delta_i H = -102.6 \text{ kJ mol}^{-1}$)	6,600 (@ 1.51 g cm ⁻³ , average lit. value) ^[10, 14]	
	·	6,613 (calcd., based on sand expts.) ^[10]	
V ₀ [L kg ⁻¹]	649	843 ^[7, 8]	

Trauzl test [cm³, % TNT]	93% TNT ^[10] , 270 mL ^[14, 19, 20]			
Sand test [g]	84% TNT ^[10] , 34.5 g sand crushed (1,700 g bomb, 0.4 g TNX) ^[10]			
Initiation efficiency	Amount (g) of primary explosive necessary to cause detonation of TNX ^[15] : 0.25 g silver azide ^[15] , 0.40 g cuprous azide ^[15] , 0.50 g mercurous azide ^[15] , 0.30 g silver fulminate ^[15] , 0.35 g cadmium fulminate ^[15] , 0.43 g copper fulminate ^[15] , 0.40 g mercury fulminate ^[15]			
5 s explosion T [°C] 5 s ignition T [°C] Initiation T [°C] Detonation point [°C]	315-330 ^[11] 315-330 ^[11] 330 ^[14] ~330 °C ^[19]			
Thermal stability	No. of moles gas produced per mole TNX/no. $h^{[9]}$: @ 120 °C: 0/22, $0/72^{[9]}$, @ 220 °C: 1.01/22, 1.660/ $72^{[9]}$, @ 320 °C: 2.13/22, 2.22/ $72^{[9]}$			
Sublimation	Can be purified by sublimation @ 150–170 °C ^[14]			
Solubility [g/mL]	Slightly soluble in conc. $H_2SO_4^{[14]}$, 0.024 g dissolves in 100 mL 95% EtOH @ 8 °C ^[14] Solubility (g) of TNX in 100 mL solvent ^[14] :			
	Solvent	@ RT	@ bpt. of solvent	
	Benzene	0.5	7.5	
	Toluene	0.5	20.5	
	Alcohol	0.05	0.55	

	Solubility (g) of TNX in 100 mL benzene/alcohol mixed solvent ^[14] :			
	Composition of the solvent (parts per volume)		Solubility (g)	
	Benzene	Alcohol	@8°C	@ 20 °C
	1	0.5	Ī-	0.71
	1	1	0.32	0.45
	1	1.5	0.24	0.29
	1	2	-	0.2
	Virtually insoluble in water ^[19] , poorly soluble in EtOH and EtOH/benzene mixtures ^[19] , good solubility in benzene and acetone ^[19] Volumetric ratio of solubility of xylyl at various temperatures ^[19] :			n benzene and
	Alcohol	Benzene		T (°C)
			20	80
	0.5	1	0.71	_
	1.0	1	0.15	0.32
	1.5	1	0.29	0.21
	2.0	1	0.2	_
Compatibility	Does not react with metal ^[19] , reacts with alcoholic bases ^[19] , does not react with gaseous $\mathrm{NH_3}^{[19]}$, low T and moisture facilitate reaction with $\mathrm{NH_3}^{[19]}$			
Dipole moment [D]	1.27 (calcd.) ^[17]			
Closed vessel test	Gas pressure (exptl.) by exploding samples in small bombs, pressure measured by piston and obturator ^[12] : loading $\rho = 0.20 \text{ g cm}^{-3}$, pressure = 1,635 kg/cm ^{2[12]} , loading $\rho = 0.25 \text{ g cm}^{-3}$, pressure = 2,340 kg/cm ^{2[12]} , loading $\rho = 0.30 \text{ g cm}^{-3}$, pressure = 2,980 kg/cm ^{2[12]}			

	TNX ^[2]
Chemical formula	C ₈ H ₇ N ₃ O ₆
Molecular weight [g mol ⁻¹]	241.16
Crystal system	Orthorhombic

Space group	Pbcn
a [Å]	5.749(2)
<i>b</i> [Å]	15.043(3)
c [Å]	11.415(2)
α [°]	90
β[°]	90
γ[°]	90
V [Å ³]	987.2(3)
Z	4
$ ho_{ m calc}$ [g cm ⁻³]	1.623
τ[K]	

- [1] N. N. Efremov, A. M. Tikhomirova, Izv. Inst. Fiz.-Khim. Anal., Akad. Nauk SSSR, 1928, 4, 65–91.
- [2] J.Guo, T. Zhang, J. Zhang, Y. Liu, *Huozhayao Xuebao*, **2006**, *29*, 58–62.
- [3] S. Zeman, A Study of Chemical Micro-Mechanisms of Initiation of Organic Polynitro Compounds, Ch. 2 in Energetic Materials, Part 2: Detonation, Combustion, P. A. Politzer, J. S. Murray (eds.), Theoretical and Computational Chemistry, Vol. 13, 2003, Elsevier, pp. 25–60.
- [4] M. H. Keshavarz, Z. Keshavarz, ZAAC, 2016, 642, 335-342.
- [5] S. Zeman, Study of the Impact Reactivity of Polynitro Compounds Part IV. Allocation of Polynitro Compounds on the Basis of their Impact Sensitivities, in Proceedings of New Trends in Research of Energetic Materials, NTREM, April 24th–25th 2002, pp. 434–443.
- [6] M. H. Keshavarz, *Propellants, Explosives, Pyrotechnics*, **2008**, *33*, 448–453.
- [7] M. Jafari, M. Kamalvand, M. H. Keshavarz, A. Zamani, H. Fazeli, *Indian J. Engineering and Mater. Sci.*, 2015, 22, 701–706.
- [8] R. Meyer, J. Köhler, A. Homburg, Explosives, 7th edn., Wiley-VCH, Weinheim, 2016, pp. 366–367.
- [9] J. C. Oxley, J. L. Smith, E. Rogers, X. X. Dong, J. Energet. Mater., 2000, 18, 97–121.
- [10] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [11] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 4, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1969**.
- [12] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 6, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1974**.
- [13] T. L. Davis, The Chemistry of Powder and Explosives, vol. 1, 1941, John Wiley and Sons Inc., New York.
- [14] T. Urbański, Ch. 10 in Chemistry and Technology of Explosives, vol. 1, 1964, Pergamon Press, Oxford.
- [15] T. L. Davis, The Chemistry of Powder and Explosives, vol. 2, 1943, John Wiley and Sons Inc., New York.
- [16] S. Zeman, Propellants, Explosives, Pyrotechnics, 2003, 28, 308–313.
- [17] P. Politzer, Computational Studies of Polynitroaromatic Molecules and the Development of Sensitivity Relationships, AFATL-TR-90-66, Air Force Armament Laboratory, Florida, USA, October 1990.

- [18] Encyclopedia of Explosives A Compilation of Principal Explosives, Their Characteristics, Processes of Manufacture and Uses, Ordnance Technical Intelligence Agency, Durham, North Carolina, USA, 13th May 1960.
- [19] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part II, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [20] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, *ZAAC*, **2015**, *641*, 2446–2451.
- [21] L. Turker, Electrostatic Discharge and Energetic Materials, To Chemistry Journal, 2019, 2, 72–114.

Tripentaerythritol octanitrate

Name [German, acronym]: Tripentaerythritol octanitrate, pentaerythrit-3-ol

octanitrate, tripentylerythritol [TPEON, TriPEON]

Main (potential) use: High explosive, possible plasticizer for nitrocellulose^[1, 10],

since it can be melted and poured it can be used for

coating and sensitizer for $\bar{AN}^{[5, 10]}$

$$\begin{array}{c|ccccc} & CH_2ONO_2 & CH_2ONO_2 & CH_2ONO_2 \\ & & & & & \\ O_2NOH_2C & CCH_2OCH_2-CCH_2OCH_2-C & CH_2ONO_2 \\ & & & & & \\ & & & & \\ CH_2ONO_2 & CH_2ONO_2 & CH_2ONO_2 \end{array}$$

	TPEON
Formula	C ₁₅ H ₂₄ N ₈ O ₂₆
Molecular mass [g mol ⁻¹]	732
Appearance at RT	White crystals ^[8] , irregularly-shaped agglomerates (crude product prepared from aqueous, acetone or alcohol soln.) ^[11] , clear-cut prism crystals obtained from hot CHCl ₃ ^[11] , needles (recrystl. from hot EtOH) ^[12] , granular prism crystals (recryst. from CHCl ₃) ^[12]
IS [J]	9 in (2 kg mass, 24 mg sample, P.A.) ^[1,8] , 10 in (2 kg mass, 12 mg sample, P.A.) ^[8] , 20 cm (2 kg hammer) ^[6] , 23 cm (lower limit, 2 kg mass, P.A.) ^[10] , 40 cm (2 kg mass, detonation) ^[11] , 26 ± 0.02 cm (type $12A$) ^[12] , 28 ± 0.10 cm (type $12B$) ^[12]
FS [N]	Unaffected by steel shoe or fiber shoe (friction pendulum test) ^[1]
N [%]	15.31
Ω(CO ₂) [%]	-34.97
T _{phase transition} [°C]	Four polymorphs identified using hot stage microscopy ^[9] , 4 crystalline morphologies ^[10] , crystal I is stable ^[10]
T _{m.p.} [°C]	$82-84^{[1,3,11]}$, $71-74$ (crude TPEON) ^[3] , $82-83^{[5]}$, four polymorphs identified with following mpts.: 83.3 (form I), 72.1 (form II), 74.6 (form III), 69.0 (form IV) ^[9] , $79-80$ (clusters of needles by recrystallization from hot EtOH) ^[12] , $81-82$ (granular prism crystals from CHCl ₃) ^[12]

	mpt. (°C) of different crystal types of TPEON ^[10] :					
	I	II	III	IV		
	83	76-77	68-70	64-65		
	83.3	74.6	72.1	69.0		
T _{dec.} [°C]	215-250 (DSC @	5 °C/min) [1]				
ρ [g cm ⁻³]	1.58 (crystal) ^[1] , 1 (crystal I) ^[10]	.58 (abs.) ^[3] , 1.565	(loading $ ho$ (@ 60,000 psi) ^[3, 11] , 1.5	8	
Heat of formation	−1,705 kJ/kg (∆ _f F	o, ICT thermochem	ical databas	se) ^[7]		
Heat of combustion	2,632 cal/g (C ^V) ^{[1}	, 3]				
		1		T		
	Calcd. (EXPLO5 6.03)	Lit. values		Exptl.	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]		1,400 ^[6]		1,058 cal/g ^[1, 3]		
		6,306 J/g (calcd. code) ^[7]	, ICT-			
		1,085 kcal/kg ^[10]				
<i>T</i> _{ex} [K]		3,900 (units not given) ^[6]				
		3,953 (calcd., IC	T-code) ^[7]			
p _{C-J} [kbar]		12,000 kg/cm ² (spressure) ^[6]	specific			
		133.3 MPa (calcd., ICT-code) ^[7]				
VoD [m s ⁻¹]		7,340 (@ 1.58 g cm ⁻³ (TMD), calcd., R-P method) ^[4]		7,650 (@ 1.56 g cm ⁻ 0.5 in charge diameter, pressed, n		
		8,340 (@ 1.7 g cm ⁻³) ^[6] confinement) ^[1, 3]				
		7,650 (@ 1.56 g	cm ⁻³) ^[10]	7,710 ^[2]		
<i>V</i> ₀ [L kg ^{−1}]		780 (specific gas volume, N _L /kg) ^[6]		762 cc/gm ^[1, 3]		

Trauzl test [cm³, % TNT]	515 (cf. TNT = 285) ^[6]					
Sand test [g]	58.9 g sand crushed (cf. 48.0 g by TNT, 200 g sand bomb test) ^[3]					
Initiation efficiency	0.30 g LA minim	0.30 g LA minimum detonating charge ^[1]				
5 s explosion T [°C] Detonation T [°C]	225 ^[1, 3, 10] 215 ^[6]	1 ==-				
Thermal induction periods for initiation $[T(^{\circ}C)/time(s)]$	210/0 ^[3] , 215/9.	210/0 ^[3] , 215/9.3 ^[3] , 220/6.5 ^[3] , 230/4.1 ^[3] , 240/2.6 ^[3] , 250/2.0 ^[3]				
100 °C heat test [% mass loss]	1.15 in first 48 h 100 h ^[1, 3]	^[1, 3] , 0.	75 in se	cond 48 h ^[1, 3]	^l , no explosio	n in
Vacuum stability test [cm³/h]	2.45 cc/40 h @ 100 °C (pure) ^[1, 10] , 1.94 cc/40 h @ 120 °C (specially purified) ^[1, 10] , @ 100 °C: 6.24 mL gas evolved/40 h (5 g sample, crude TPEON) ^[3] , @ 100 °C: 2.45 mL gas evolved/40 h (5 g sample, pure TPEON) ^[3] , @ 120 °C: 1.94 mL gas evolved/40 h (5 g sample, specially purified TPEON) ^[3]					
Solubility [g/mL]	Solubility data fr	om ^[1] :				
	Solvent		Solubi	lity		
	Water		Insolu	ble		
	Alcohol Soluble					
	Chloroform		Solubl	e		
	Acetone, hot		Very so	oluble		
	Benzene, hot		Very s	oluble	_	
Hygroscopicity	Readily soluble in hot benzene and acetone ^[5,8] , soluble in EtOH, CHCl ₃ ^[5,8] , insoluble in H ₂ O ^[5,8] , recryst. from CHCl ₃ possible ^[1] , insoluble in water ^[10,11] , soluble in EtOH, CHCl ₃ ^[10] , easily soluble in hot benzene and acetone ^[10,11] , soluble in CHCl ₃ ^[11] , recryst. from EtOH or CHCl ₃ ^[12] Hygroscopicity, gain or loss in wt. % ^[1] :					insoluble enzene
		· 				i
	Time, h % RH @ 30 °C					
	40 70 90			 		
			+0.04			
	48 -0.02 -0.01 +0.02					
	144 -0.04 -0.03 -0.02					
	192 -0.04 -0.02 -					
	216	-0.0	04	-0.01	+0.03	

Specific impulse	240 lb-sec/lb (calcd.) ^[1]
Heat of fusion [cal/g]	18 (form I) ^[9] , 13 (form II) ^[9] , 13.1 (form III) ^[9] , \sim 10.5 (form IV) ^[9]

- [1] AMC Pamphlet Engineering Design Handbook: Explosive Series Properties of Explosives of Military Interest, Headquarters, U.S. Army Materiel Command, January 1971.
- [2] H. Muthurajan, R. Sivabalan, M. B. Talawar, S. N. Asthana, J. Hazard. Mater., 2004, A112, 17–33.
- [3] S. M. Kaye, *Encyclopedia of Explosives and Related Items*, vol. 9, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1980**.
- [4] L. R. Rothstein, R. Petersen, *Propellants and Explosives*, **1979**, 4, 56–60.
- [5] T. Urbański, Ch. 8 in Chemistry and Technology of Explosives, vol. II, 1965, Pergamon Press, Oxford.
- [6] F. A. Henglein, *Chemical Technology*, Pergamon Press, Oxford, **1969**, p. 719.
- [7] F. Volk, H. Bathelt, Propellants, Explosives, Pyrotechnics, 2002, 27, 136-141.
- [8] Department of the Army Technical Manual, EOD Information for Solid and Liquid Propellants, Conventional Explosives, and Other Dangerous Materials, TM 9-1385-211, Headquarters, Department of the Army, USA, January 1969.
- [9] J. Bernstein, Polymorphism in High Energy Materials, Ch. 9 in Polymorphism in Molecular Crystals, IUCr Monographs on Crystallography No. 14, Oxford Science Publications, Clarendon Press, Oxford, 2002.
- [10] J. Liu, Nitrate Esters Chemistry and Technology, Springer, 2019.
- [11] J. A. Wyler, *Preparation of Tripentaerythritol Octanitrate*, US Patent 2,389,228, November 20th **1945**.
- [12] J. Sandoval, W. T. Quinlin, *PETN Homologs*, MHSMP-72-26, U.S. Atomic Energy Commission, Albuquerque,, New Mexico, USA, February **1972**.

Tripentanone triperoxide

Name [German, acronym]: 1,2,4,5,7,8-Hexaoxacyclononane,3,3,6,6,9,9-hexaethyl,

3,3,6,6,9,9-hexaethyl-1,2,4,5,7,8-hexaoxo-nonane, 3,3,6,6,9,9-hexaethyl-1,2,4,5,7,8-hexaoxacyclononane, 1,1,4,4,7,7-hexaethyl-1,4,7-cyclononatriperoxane, diethyl

ketone peroxide [TPTP, DEKTP]

Main (potential) use: Possible lower-risk training substitute for TATP

	ТРТР
Formula	C ₁₅ H ₃₀ O ₆
Molecular mass [g mol ⁻¹]	306.40
Appearance at RT	White, needle-like solid ^[1, 3] , colorless needle crystals ^[2]
IS [J]	Fol = <10 (Rotter impact test, 5 kg mass, 30 mg) ^[1, 3]
FS [N]	<5 (BAM) ^[1, 3]
ESD [J]	Initiation @ 4.5 but not @ 0.45 J (DSTO apparatus)[1, 3]
N [%]	0.00
Ω(CO ₂) [%]	-203.66
T _{m.p.} [°C]	332 ^[2]
T _{dec.} [°C]	
ρ [g cm ⁻³]	1.115 (crystal @ 296 K, X-ray) ^[2]
Heat of formation	

	Calcd. (EXPLO5 6.04)	Lit. values	Exp	tl.
$-\Delta_{\rm ex}U^{\rm o} [{\rm kJ} {\rm kg}^{-1}]$				
T _{ex} [K]				
p_{C-J} [kbar]				
VoD [m s ⁻¹]				
V ₀ [L kg ⁻¹]				
5 s explosion T [°C] Ignition T [°C]	153 (violent explosi	on) ^[1, 3]		
Thermal stability	Less stable than TAT	P in soln. ^[3]		
Volatility	Extremely slow subl to atmosphere @ an drying in vacuo @~	nbient <i>T</i> for 30	days ^[3] , no sublimat	
Solubility [g/mL]	Soluble in warm Me	OH ^[3] , NMR reco	orded in CDCl ₃ ^[3]	
Hygroscopicity	Samples remained a conditions ^[3]	as loose crystal	line powders after s	tring at ambient
Compatibility	Degraded by hydroc		ucing agents ^[3] :	
	Compound	Degradation	Compound	Degradation
	Molybdenum hydrogen bronze	N	ZnS	N
	Cu(l) Cl.Neocuproine ₂	N	K₃Fe(CN) ₆	N
	Cu(II)Salen	N	Na ₂ SO ₃	N
	Sc ₂ (SO ₄) ₃	N	$Na_2S_2O_3$	N
	FeCl ₂	N	<i>p</i> -Aminophenol	N
	CuCl ₂	N	Diethylenetriamin	e N
	MnO ₂	N	Triphenylphosphi	ne N
	MnCl ₂	N	Hydroquinone	N
	Zn powder	N	<i>p</i> -Tolylhydrazine hydrochloride	N

Co(NO ₃) ₂	N	Hydroxylamine hydrochloride	N
Li ₂ B ₄ O ₇	N	Thiourea	N
Ethanox 330	N	Ferrocene	N
Antioxidant 425	N	B(OH)₃	N
Montmorillonite K10	N	<i>p</i> -Quinone dioxime	N
Montmorillonite K10.ammonia	N	Semicarbazide hydrochloride	N
TiO ₂	N	Trimethyl phosphite	N
ZnCl ₂	N		

	Diethyl ketone peroxide ^[2]
Chemical formula	C ₁₅ H ₃₀ O ₆
Molecular weight [g mol ⁻¹]	306.39
Crystal system	Monoclinic
Space group	P2 ₁ /c
a [Å]	10.4545(12)
<i>b</i> [Å]	10.859(3)
c [Å]	32.168(5)
α[°]	90
β[°]	91.796(10)
γ[°]	90
V [Å ³]	3,650.0(12)
Z	8
$ ho_{ m calc}$ [g cm ⁻³]	1.115
τ[K]	296

- [1] M. S. Bali, D. Armitt, L. Wallace, A. I. Day, J. Forensic Sci., 2014, 59, 936-942.
- [2] J. Cerna, S. Bernès, A. Cañizo, N. Eyler, *Acta Cryst.*, **2009**, *C65*, o562–o564.
- [3] M. S. Bali, Novel Strategies for the Safe Chemical Degradation of Organic Peroxide Explosives: A Mechanistic Investigation, PhD Thesis, School of Physical, Environmental and Mathematical Sciences, The University College, UNSW Canberra, November 2014.

1,3,5-Tripicrylbenzene

Name [German, acronym]: 1,3,5-Tripicrylbenzene, tripicrylbenzene, 2-[3,5-bis(2,4,6-

trinitrophenyl)phenyl]-1,3,5-trinitrobenzene [TNTPB,

TPB]

Main (potential) use: Detonator, primary explosive; secondary explosive

patented for use in booster cups and exploding bridge

wire EBW) detonators^[4]

	1,3,5-Tripicrylbenzene
Formula	C ₂₄ H ₉ N ₉ O ₁₈
Molecular mass [g mol ⁻¹]	711.38
Appearance at RT	
IS [J]	
FS [N]	
ESD [J]	
N [%]	17.72
Ω(CO ₂) [%]	-77.60
T _{m.p.} [°C]	386[1]
T _{phase transition} [°C]	215 (endotherm, DTA) ^[4]
T _{dec.} [°C]	>400 (crude product) ^[4] , 372 (exotherm, DTA, recryst.) ^[4]
$ ho$ [g cm $^{-3}$]	1.670 ^[3]
Heat of formation	–62.1 kcal mol $^{-1}$ (static bomb calorimetry) $^{[3]},$ –62.1 (standard heat of formation, $\Delta H_f^o)^{[5]}$
Heat of combustion	$-2,502.6$ kcal mol ⁻¹ ($\Delta_c H^o$, static bomb calorimetry) ^[3] , $-2,501.6$ kcal/mol (standard heat of combustion, ΔH_c^o) ^[5]

	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]					
<i>T</i> _{ex} [K]		2,877 (units not specified) (@ 1.67 g cm ⁻³ , BKW TNT param.) ^[6]			
p _{C-J} [kbar]		187 (calcd., K-J) ^[3]			
		197 (@ 1.67 g cm ⁻³ , BKW RDX param.) ^[6]			
		189 (@ 1.67 g cm ⁻³ , BKW TNT param.) ^[6]			
VoD [m s ⁻¹]		6,640 (@ 1.670 g cm ⁻³ , calcd. K-J) ^[3]			
		6,896 (@ 1.67 g cm ⁻³ , BKW RDX param.) ^[6]			
		6,646 (@ 1.67 g cm ⁻³ , BKW TNT param.) ^[6]			
V ₀ [L kg ⁻¹]					
Brisance	% brisance with hours @ 500°F: 96% @ 100 h, 90% @ 200 h, 71% @ 300 h, 40% @ 400 h ^[4]				
Gap test	50% card gap = 30 cards ^[4]				
Vacuum stability test [cm³/days]	@ 200 °C: 0.1/2, 0.1/7, 0.2/14, 0.2/21, 0.3/28, 0.3/35, 0.3/42, 0.4/49, 0.4/56, 0.4/63, 0.5/70, 3.2/77, 7.0/84, 9.5/91 ^[2] @ 175 °C: 0.1/2, 0.1/7, 0.1/14, 0.1/21, 0.1/28, 0.1/35, 0.2/42, 0.2/49, 0.2/56, 0.2/63, 0.2/70, 0.2/77, 0.3/84, 0.3/91 ^[2]				
Solubility [g/mL]	Soluble in acetor	ne ^[4]			

^[1] C. S. Gorzynski, J. N. Maycock, *Explosives and Pyrotechnic Propellants for Use in Long-Term Deep Space Missions*, NASA-Cr-132373, August 17th **1973**.

^[2] J. F. Baytos, *High-Temperature Vacuum Thermal Stability Tests of Explosives*, LA-5829-MS, LANL, January **1975**.

^[3] P. E. Rouse, J. Chem. Engineering Data, 1976, 21, 16–20.

^[4] R. S. Riggs, 1,3,5-Trinitro-2,4,6-tripicrylbenzene, US Patent no. 4861924A, August 29th 1989.

^[5] LASL Explosive Property Data, T. R. Gibbs, A. Popolato (eds.), University of California Press, Berkeley, 1980.

^[6] C. L. Mader, Numerical Modelling of Explosives and Propellants, CRC Press, 2008, p. 37.

N^2 , N^4 , N^6 -Tripicrylmelamine

Name [German, acronym]: Tripicrylmelamine, *N,N',N''*-tripicrylmelamine,

2,4,6-tris-picrylamino-s-triazine [TPM]

Main (potential) use: Patented for possible use as heat-resistant explosive^[1]

	Tripicrylmelamine
Formula	C ₂₁ H ₉ N ₁₅ O ₁₈
Molecular mass [g mol ⁻¹]	759.39
Appearance at RT	Crystalline solid ^[9]
IS [J]	Insensitive ^[1] , 320 cm (2.5 kg mass) ^[1] , 200 cm ^[4] , 200 cm (2.5 kg mass, type 12 apparatus cf. $H_{50\%} = 156$ cm for TNT) ^[6] , $H_{50\%} = 37$ cm (5 kg mass, sandpaper, type 12 apparatus) ^[6] , $H_{50\%} = 54$ cm (AFX-511: 95 wt.% TPM, 5 wt.% Kel-F 800 @ 1.69 g cm ⁻³ (96.5% TMD); 5 kg mass, sandpaper, type 12 apparatus) ^[6] , 320 cm ^[9] , $H_{50} \ge 320$ cm (type 12, ERL apparatus) ^[10] , $H_{50} \ge 320$ cm (type 12B, ERL apparatus) ^[10] , $H_{50} \ge 161 \pm 0.25$ cm (type 12B, ERL apparatus) ^[10]
FS [N]	Inert over the range of the LASL friction test ^[6]
N [%]	27.67
Ω(CO ₂) [%]	-60.04
T _{m.p.} [°C]	316 ^[4] , 316 (dec.) ^[6] , >300 (dec.) ^[9]
T _{dec.} [°C]	325 (exotherm, DTA) ^[1, 9] , 300 (DTA) ^[4, 6] , 290 (slow onset of exo) 316 (melting endo), rapid dec. after TPM melts (DTA @ 20 °C/min) ^[6] , stable to 290 °C (DTA @ 20 °C/min) ^[6] , 601.4 K (DSC) ^[8]
$ ho$ [g cm $^{-3}$]	1.75 (crystal) ^[1] , 1.74 (crystal) ^[4,6] , 1.75 ^[9]

Heat of formation						
	Calcd. (EXPLO5 6.03)	Lit. valı	ies	Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]						
<i>T</i> _{ex} [K]						
p _{C-J} [kbar]		240 (@ calcd.) [[]	1.75 g cm ⁻³ ,			
		23.8 GI	Pa ^[4, 6]			
VoD [m s ⁻¹]		7,420 (@ 1.75 g cm ⁻³ , calcd.) ^[1] 7,420 (@ crystal density, calcd.) ^[6]		7,180 (AFX-511: 95 wt.% TPM, 5 wt.% Kel-F 800 @ 1.69 g cm ⁻³ (96.5% TMD)) ^[6] 7,400 (AFX-511: 95 wt.% TPM, 5 wt.% Kel-F 800; value obtained by extrapolating to 100% TMD) ^[6]		
<i>V</i> ₀ [L kg ⁻¹]						
Critical T [°C]	316 ± 2 (ρ = 1.66 g	cm ⁻³) ^[10]				
SSGT [cm]	LASL SSGT on AFX- (96.5% TMD) ^[6] : 50 1.633 g cm ⁻³) ^[6]					
Thermal stability	No physical change signal observed ^[7]	es in neat	sample observed	up to 250	°C and no EPR	
Vacuum stability test [cm³/h]		@ 200 °C, terminated after 27 days, total gas evolved (cm³/g) @ STP, residue = darker than original sample, moderate amount of sublimate ^[2] :				
	Gas evolved (cm ³	s evolved (cm³/g) Time of exposure (days)				
	0.8	.8 2				
	4.2		7			
	7.7		14			
	11.7		21			
	15.6		28			

[cal/cm-s-°C]

		gas evolved (cm³/g) limate detected visib		darker than original		
	Gas evolved (cm³/g)	Time of exposure (days)	Gas evolved (cm ³ /g)	Time of exposure (days)		
	1.5	2	4.1	49		
	2.0	7	4.5	56		
	2.3	14	4.9	63		
	2.6	21	5.2	70		
	2.9	28	5.5	77		
	3.3	35	5.9	84		
	3.7	42	6.7	91		
		gas evolved (cm³/g) ample, no sublimate o				
	Gas evolved (cm ³ /g)	Time of exposure (days)	Gas evolved (cm³/g)	Time of exposure (days)		
	1.0	2	1.3	49		
	1.1	7	1.3	56		
	1.1	14	1.3	63		
	1.2	21	1.3	70		
	1.2	28	1.4	77		
	1.2	35	1.4	84		
	1.2	42	1.5	91		
		n @ 200 °C ^[6] , 1.5 cm ³ h @ 120 °C (AFX-511 5.5% TMD)) ^[6]				
Solubility [g/mL]	Soluble in acetone ^[1, 6] , recryst. from CH ₃ CN/EtOH ^[1] , soluble in THF ^[6] , less soluble in methyl ethyl ketone and ethyl acetate ^[6]					
Compatibility	50/50 mixture of TPM and TNT showed a characteristic but accelerated TNT EPR spectrum after \sim 3 min @ 168 °C ^[7]					
ΔH _{dec} [J/g]	$Q_{\text{dec}} = 3,366 \text{ kJ/mol (DSC)}^{[8]}$					
Plate dent test [mm]	3.40 (AFX-511: 9 1.27 cm diamet	95 wt.% TPM, 5 wt.% er, confined) ^[6]	Kel-F 800 @ 1.69	9 g cm ⁻³ (96.5% TMD,		
Thermal conductivity	5 × 10 ⁻⁴ (@ der	nsity = 1.75 g cm^{-3}) ^[10]	0]			

Large TPM crystals can be obtained by diluting a saturated soln. of TPM in acetone with an equal volume of MeOH followed by slow evaporation of the solvents.^[6]

- [1] M. D. Coburn, N^2 , N^4 , N^6 -Tripicrylmelamine, US Patent 3,414,570, 3rd December **1968**.
- [2] J. F. Baytos, *High-Temperature Vacuum Thermal Stability Tests*, LA-5829-MS, Los Alamos Scientific Laboratory, New Mexico, USA, January **1975**.
- [3] S. R. Ahmad, M. Cartwright, *Laser Ignition of Energetic Materials*, John Wiley and Sons Ltd., **2015**.
- [4] M. D. Coburn, B. W. Harris, K.-Y. Lee, M. M. Stinecipher, H. H. Hayden, *Ind. Eng. Chem. Prod. Res. Dev.*, 1986, 25. 68–72.
- [5] W. Yang, R. A. Parrott, L. A. Behrmann, W. E. Voreck, P. Kneisel, *High Temperature Explosives for Downhole Well Applications*, US Patent US 2002/0129940 A1, 19th September **2002**.
- [6] M. D. Coburn, D. J. Hufnagle, D. L. Loverro, Development of AXF-511 and AFX-521, Two New Thermally Stable Explosives, LA-8115-MS Interim Report, LANL New Mexico, USA, February 1980
- [7] S. R. Bosco, R. C. Dorey, Final Report on Research into the Thermal Decomposition of Selected Energetic Material Candidates (Project Order ATL-2-094), FJSRL Technical Report 83–0018, Air Force Systems Command, United States Air Force, Colorado, USA, December 1983.
- [8] H. Rongzu, K. Bing, *Thermochim. Acta*, **1995**, *256*, 473–475.
- [9] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 9, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1980.
- [10] LASL Explosive Property Data, T. R. Gibbs, A. Popolato (eds.), University of California Press, Berkeley, 1980.

2,4,6-Tripicryl-s-triazine

Name [German, acronym]: 2,4,6-Tripicryltriazine, 2,4,6-tris(2,4,6-trinitrophenyl)-

1,3,5-triazine [TPT, TPTA]

Main (potential) use: Patented as a thermally stable explosive^[4], component

of perforators or detonators in downhole well applications, possible spacecraft applications^[6], possible thermally stable explosive^[12], heat resistant explosive with promise for use in mild detonating cords

and flexible liner-shaped charges^[13]

	2,4,6-Tripicryl-s	2,4,6-Tripicryl-s-triazine						
Formula	C ₂₁ H ₆ N ₁₂ O ₁₈							
Molecular mass [g mol ⁻¹]	717.42							
Appearance at RT			white crystalline s ne solvent of crystal					
IS [J]	320 cm (2.5 kg I		^{i]} , 22.85 (Bruceton) ^{[7} Ipaper) ^[12]	$^{7,10]}, H_{50\%} = 74 \text{ cm}$				
ESD [J]	Volt potential, 0	.0 mfD capacita	noke, burning and/once ^[12]	, -				
	Cap. (mfd)		TPT					
		m/m	m/r					
	1.0	4,500	_					
	0.1	4,500	4,000					
	0.01	7,500*	6,500					
	0.001	0.001 7,500* 7,500*						

N [%]	23.53						
Ω(CO ₂) [%]	-63.53	-63.53					
<i>T</i> _{m.p.} [°C]	1		350–351 (cryst., dec.) ^[4] , 351 (crystals obtained from				
T _{dec.} [°C]		set, DTA, (s)) ^[7] , 340 (DTA, ^[0] , 359 (onset, DTA) ^[7]	onset, exotherm) ^[10] , 320 (DTA,				
$ ho$ [g cm $^{-3}$]	from acetone whi (average value us	ch are heated to remove s	st.) $^{[2]}$, 1.67 (crystals obtained solvent of cryst.) $^{[13]}$, 1.724 s.) $^{[13]}$, 1.637 (TPT-acetone perchlorate soln.) $^{[13]}$				
Heat of formation	7.56 + 0.99 kcal/	7.56 kcal mol ⁻¹ (combusti mol ($\Delta H_{\rm f}^{ m o}$, combustion cal athalpy of form., Pt-lined l	lorimetry) ^[14] , 70.87 ±				
Heat of combustion	-2,253.2 kcal mo	l ^{-1[1]} , -2,256 kcal/mol ^[2]					
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.				
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]		4,324 MJ•kg ⁻¹ (Q_{real}) ^[7] 4,324 MJ•kg ⁻¹ (Q_{real} , calcd., semi-empirical Pepekin method) ^[10]					
T _{ex} [K]		,					
p _{C-J} [kbar]		212 (calcd., K-J) ^[1]					
VoD [m s ⁻¹]		7,080 (@ 1.67 g cm ⁻³ , calcd. K-J) ^[1] 7,080 (@ TMD, calcd., K-J) ^[7, 10]	7,420 (@ 1.75 g cm ⁻³) ^[2] ~5,500 (@ ~ 1.15 g cm ⁻³ , 0.2 in column diameter, values est. from graph) ^[12] ~5,950 (@ ~ 1.28 g cm ⁻³ , 0.2 in column diameter, values est. from graph) ^[12] ~5,850 (@ ~ 1.28 g cm ⁻³ , 0.2 in column diameter, values est. from graph) ^[12] ~6,550 (@ ~ 1.48 g cm ⁻³ , 0.2 in column diameter, values est. from graph) ^[12]				

-7,050 (@ ~1.68 g cm ~3, 0.2 in column diameter, values est. from graph) ^[1:2] -5,700 (@ ~1.30 g cm ~3, 0.1 in column diameter, values est. from graph) ^[1:2] -6,000 (@ ~1.33 g cm ~3, 0.1 in column diameter, values est. from graph) ^[1:2] -7,050 (@ ~1.65 g cm ~3, 0.1 in column diameter, values est. from graph) ^[1:2] -7,000 (@ ~1.65 g cm ~3, 0.1 in column diameter, values est. from graph) ^[1:2] -6,250 (@ ~1.40 g cm ~3, 0.3 in column diameter, values est. from graph) ^[1:2] -6,250 (@ ~1.40 g cm ~3, 0.3 in column diameter, values est. from graph) ^[1:2] -7,050 (@ ~1.70 g cm ~3, 0.3 in column diameter, values est. from graph) ^[1:2] -7,050 (@ ~1.70 g cm ~3, 0.3 in column diameter, values est. from graph) ^[1:2] V ₀ [L kg ~1] TPT shock sensitivity similar to that of HNS, data from [1:2]: Loading pressure (kpsi)									
in column diameter, values est. from graph) ^[12] -6,000 (@ ~ 1.33 g cm ⁻³ , 0.1 in column diameter, values est. from graph) ^[12] -7,050 (@ ~ 1.65 g cm ⁻³ , 0.1 in column diameter, values est. from graph) ^[12] -7,000 (@ ~ 1.70 g cm ⁻³ , 0.1 in column diameter, values est. from graph) ^[12] -6,250 (@ ~ 1.40 g cm ⁻³ , 0.3 in column diameter, values est. from graph) ^[12] -6,900 (@ ~ 1.78 g cm ⁻³ , 0.3 in column diameter, values est. from graph) ^[12] -7,050 (@ ~ 1.70 g cm ⁻³ , 0.3 in column diameter, values est. from graph) ^[12] -7,050 (@ ~ 1.70 g cm ⁻³ , 0.3 in column diameter, values est. from graph) ^[12] -7,050 (@ ~ 1.70 g cm ⁻³ , 0.3 in column diameter, values est. from graph) ^[12] -7,050 (@ ~ 1.70 g cm ⁻³ , 0.3 in column diameter, values est. from graph) ^[12] -7,050 (@ ~ 1.70 g cm ⁻³ , 0.3 in column diameter, values est. from graph) ^[12] -7,050 (@ ~ 1.70 g cm ⁻³ , 0.3 in column diameter, values est. from graph) ^[12] -7,050 (@ ~ 1.70 g cm ⁻³ , 0.3 in column diameter, values est. from graph) ^[12] -7,050 (@ ~ 1.58 g cm ⁻³ , 0.3 in column diameter, values est. from graph) ^[12] -7,050 (@ ~ 1.58 g cm ⁻³ , 0.3 in column diameter, values est. from graph) ^[12] -7,050 (@ ~ 1.58 g cm ⁻³ , 0.3 in column diameter, values est. from graph) ^[12] -7,050 (@ ~ 1.70 g cm ⁻³ , 0.3 in column diameter, values est. from graph) ^[12] -7,050 (@ ~ 1.70 g cm ⁻³ , 0.3 in column diameter, values est. from graph) ^[12] -7,050 (@ ~ 1.58 g cm ⁻³ , 0.3 in column diameter, values est. from graph) ^[12] -7,050 (@ ~ 1.70 g cm ⁻³ , 0.3 in column diameter, values est. from graph) ^[12] -7,050 (@ ~ 1.70 g cm ⁻³ , 0.3 in column diameter, values est. from graph) ^[12] -7,050 (@ ~ 1.70 g cm ⁻³ , 0.3 in column diameter, values est. from graph) ^[12] -7,050 (@ ~ 1.70 g cm ⁻³ , 0.3 in column diameter, values est. from graph) ^[12] -7,050 (@ ~ 1.70 g cm ⁻³ , 0.3 in column diameter, values est. from graph) ^[12] -7,050 (@ ~ 1.70 g cm ⁻³ , 0.3 in column diameter, values est. from graph) ^[12] -7,050 (@ ~ 1.70 g cm ⁻³ , 0.3 in column diameter, v						in col	ımn diam	eter, va	
in column diameter, values est. from graph) ^[12] -7,050 (@ - 1.65 g cm ⁻³ , 0.1 in column diameter, values est. from graph) ^[12] -7,000 (@ - 1.70 g cm ⁻³ , 0.1 in column diameter, values est. from graph) ^[12] -6,250 (@ - 1.40 g cm ⁻³ , 0.3 in column diameter, values est. from graph) ^[12] -6,900 (@ - 1.58 g cm ⁻³ , 0.3 in column diameter, values est. from graph) ^[12] -7,050 (@ - 1.70 g cm ⁻³ , 0.3 in column diameter, values est. from graph) ^[12] V ₀ [L kg ⁻¹] SSGT [cm] TPT shock sensitivity similar to that of HNS, data from ^[12] : Loading pressure (kpsi)						in col	ımn diam	eter, va	
in column diameter, values est. from graph) ^[1:2] -7,000 (@ ~ 1.70 g cm ⁻³ , 0.1 in column diameter, values est. from graph) ^[1:2] -6,250 (@ ~ 1.40 g cm ⁻³ , 0.3 in column diameter, values est. from graph) ^[1:2] -6,900 (@ ~ 1.58 g cm ⁻³ , 0.3 in column diameter, values est. from graph) ^[1:2] -7,050 (@ ~ 1.70 g cm ⁻³ , 0.3 in column diameter, values est. from graph) ^[1:2] V ₀ [L kg ⁻¹] TPT shock sensitivity similar to that of HNS, data from ^[1:2] : Loading pressure (kpsi)						in col	umn diam	eter, va	
In column diameter, values est. from graph) ^[12] -6,250 (@ ~ 1.40 g cm -3, 0.3 in column diameter, values est. from graph) ^[12] -6,900 (@ ~ 1.58 g cm -3, 0.3 in column diameter, values est. from graph) ^[12] -7,050 (@ ~ 1.70 g cm -3, 0.3 in column diameter, values est. from graph) ^[12] -7,050 (@ ~ 1.70 g cm -3, 0.3 in column diameter, values est. from graph) ^[12] V ₀ [L kg -1]						in col	ımn diam	eter, va	
$\begin{array}{c} \text{ in column diameter, values} \\ \text{ est. from graph})^{[12]} \\ \sim 6,900 \ (@ \sim 1.58 \ \text{g cm}^{-3}, 0.3 \ \text{in column diameter, values} \\ \text{ est. from graph})^{[12]} \\ \sim 7,050 \ (@ \sim 1.70 \ \text{g cm}^{-3}, 0.3 \ \text{in column diameter, values} \\ \text{ est. from graph})^{[12]} \\ \sim 7,050 \ (@ \sim 1.70 \ \text{g cm}^{-3}, 0.3 \ \text{in column diameter, values} \\ \text{ est. from graph})^{[12]} \\ \hline V_0 \ [\text{L kg}^{-1}] \\ \hline \\ \text{ SSGT [cm]} \\ \hline \\ \text{ TPT shock sensitivity similar to that of HNS, data from}^{[12]} : \\ \hline \\ \text{ Loading pressure (kpsi)} \\ \hline \\ \text{ Avg.} \\ \text{ Sensitivity (DBG)} \\ \hline \\ \text{ Avg.} \\ \text{ Sensitivity (DBG)} \\ \hline \\ \text{ Avg.} \\ \text{ Sensitivity (DBG)} \\ \hline \\ \text{ 4} \\ \text{ 1.193} \\ \text{ 0.0557} \\ \text{ 4.800} \\ \text{ 0.0414} \\ \text{ 0.0281} \\ \text{ 20} \\ \hline \\ \text{ 8} \\ \text{ 1.242} \\ \text{ 0.0214} \\ \text{ 4.753} \\ \text{ 0.0312} \\ \text{ 0.0205} \\ \text{ 20} \\ \hline \\ \text{ 32} \\ \text{ 1.444} \\ \text{ 0.0268} \\ \text{ 5.423} \\ \text{ 0.0798} \\ \text{ 0.0430} \\ \text{ 20} \\ \hline \end{array}$						in col	ımn diam	eter, va	
						in col	ımn diam	eter, va	
In column diameter, values est. from graph)						in col	ımn diam	eter, va	
TPT shock sensitivity similar to that of HNS, data from 12 12 13 14 14 14 14 14 14 14						in col	ımn diam	eter, va	
Loading pressure (kpsi) Density (g/cm³) Sensitivity (DBG) 4 1.193 0.0557 4.800 0.0414 0.0281 20 8 1.242 0.0214 4.753 0.0312 0.0205 20 16 1.325 0.0496 5.059 0.0384 0.0257 20 32 1.444 0.0268 5.423 0.0798 0.0430 20	V_0 [L kg ⁻¹]								
Loading pressure (kpsi) Density (g/cm³) Sensitivity (DBG) 4 1.193 0.0557 4.800 0.0414 0.0281 20 8 1.242 0.0214 4.753 0.0312 0.0205 20 16 1.325 0.0496 5.059 0.0384 0.0257 20 32 1.444 0.0268 5.423 0.0798 0.0430 20									
pressure (kpsi) Avg. s Avg g s _m N 4 1.193 0.0557 4.800 0.0414 0.0281 20 8 1.242 0.0214 4.753 0.0312 0.0205 20 16 1.325 0.0496 5.059 0.0384 0.0257 20 32 1.444 0.0268 5.423 0.0798 0.0430 20	SSGT [cm]	TPT shock	sensitivi	ty similar to	that of HI	NS, data f	rom ^[12] :		
(kpsi) Avg. S Avg y Sm N 4 1.193 0.0557 4.800 0.0414 0.0281 20 8 1.242 0.0214 4.753 0.0312 0.0205 20 16 1.325 0.0496 5.059 0.0384 0.0257 20 32 1.444 0.0268 5.423 0.0798 0.0430 20			Densit	ty (g/cm³)		Sensitivit	y (DBG)		
8 1.242 0.0214 4.753 0.0312 0.0205 20 16 1.325 0.0496 5.059 0.0384 0.0257 20 32 1.444 0.0268 5.423 0.0798 0.0430 20			Avg.	S	Avg	g	s _m	N	
16 1.325 0.0496 5.059 0.0384 0.0257 20 32 1.444 0.0268 5.423 0.0798 0.0430 20		4	1.193	0.0557	4.800	0.0414	0.0281	20	
32 1.444 0.0268 5.423 0.0798 0.0430 20		8	1.242	0.0214	4.753	0.0312	0.0205	20	
		16	1.325	0.0496	5.059	0.0384	0.0257	20	
64 1.658 0.0111 7.217 0.0988 0.0530 20		32	1.444	0.0268	5.423		0.0430	20	
		64	1.658	0.0111	7.217	0.0988	0.0530	20	

5 s explosion T [°C] Ignition T [°C]	350–360 ^[7, 10] , 359 (lit. cited in ^[7, 10])						
Thermal stability	283 (thres	hold of ther	mal stability) ^{[7, 1}	0]			
Vacuum stability test [cm³/h]	@ 200 °C, 0.2/2, 0.2/ 0.7/63, 0.9	0.4/g/h @ 300 °C (for 2 h period) ^[4] @ 200 °C, total gas evolved (cm ³ /g) @ STP/time of exposure (days) ^[9, 11] : 0.2/2, 0.2/7, 0.4/14, 0.4/21, 0.4/28, 0.4/35, 0.5/42, 0.5/49, 0.6/56, 0.7/63, 0.9/70, 1.0/77, 1.0/84, 1.1/91 ^[9, 11] Data from ^[12] :					
	T (°C)	20 m	in surge (cc/g)	2 h period (cc/	g/h)		
	280	0.29		0.10			
	300	0.37		0.29			
	315	315 0.50 1.20					
Vapor pressure	1 -	, @ 250 °C, lum ^[12]		after heat treatm T in residue after			
[atm. @ °C]	T (°C)	Δt (s)	Surface area (cm²)	Wt. loss (g)	Vapor pressure (Torr)		
	277.8	55,500	6.3	0.1268	4.77(10 ⁻⁶)		
	247.6	157,380	5.1	0.0227	4.26(10 ⁻⁷)		
	247.6	236,100	5.1	0.0303	3.70(10 ⁻⁷)		
	206.9 239,400 5.1 0.0024 2.73		2.73(10 ⁻⁸)				
	206.9	768,900	5.1	0.0041 1.48(10 ⁻⁸)			
	98.9 149,040 5.1 Indeterminate						
Solubility [g/mL]	Recryst. from acetone or acetone/MeOH, m -dinitrobenzene ^[13] , TLC performed in $C_6H_6^{[8]}$, NMR recorded in DMSO ^[8]						

Vacuum stability and compatibility test data from ^[12] :	stable compatible @ 280 °C @ 315 °C	20 min gas 2 h 20 min gas 2 h 20 min gas 2 h surge (cc/g) (ml/g/h) surge (cc/g) (ml/g/h) surge (cc/g) (ml/g/h)	V 0.29 0.10 0.37 0.29 0.50 1.20	V 0.63 0.19 1.27 0.68 1.09 3.28	50/50 V 0.31 0.11 0.31 0.15 0.49 0.64	50/50 V 0.23 0.12 0.34 0.20 0.51 0.62	50/50 V 0.19 0.10 0.26 0.14 0.31 0.55	50/50 V 0.31 0.16 0.34 0.33 0.47 0.78		1
compatibility t			^	>						
uum stability and	Sample		TPT	тРТ/РРQ, 90/10	TPT/Ag 50/50	TPT/Al 50/50	TPT/Pb+ 50/50 Sb, 94/6	TPT/ 50/50 stainless	steel	
Compatibility Vac	<u> </u>		<u> </u>	T	<u> </u>	<u> </u>	다.	TP St.	st	

Bright yellow crystals obtained by recryst. from acetone or acetone/MeOH solns. are 1:1 solvates with acetone, solvent of crystallization can be removed by heating crystals @ T≥140 °C which produces opaque, white solid^[13]

- [1] P. E. Rouse, J. Chem. Engineering Data, 1976, 21, 16–20.
- [2] S. M. Kaye, Encyclopedia of Explosives and Related Items, vol. 9, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, 1980.
- [3] E. G. Kayser, J. Energet. Mater., 1983, 1:3, 251-273.
- [4] J. Dacons, 2,4,6-Tripicryl-s-triazine, US Patent no. US 3,755,321A, August 28th 1973.
- [5] The Development of Spacecraft Explosives for the Lyndon B. Johnson Space Center, NASA-CR-147547, 1st July 1974–31st December 1975.
- [6] S. Zeman, M. Roháč, Z. Friedl, A. Růžička, A. Lyčka, Propellants, Explosives, Pyrotechnics, 2010. 35, 130–135.
- [7] S. Zeman, M. Roháč, *Chinese J. Energet. Mater.*, **2006**, *14*, 361–366.
- [8] E. G. Kayser, Analysis Methods For Explosive Materials I. Polynitro Compounds, NSWC TR 81–123, Naval Surface Weapons Center, Maryland, USA, 3rd March 1982.
- [9] J. F. Baytos, *High-Temperature Vacuum Stability Tests of Explosives*, LA-5829-MS, LANL, USA, January **1975**.
- [10] S. Zeman, Z. Friedl, M. Roháč, *Thermochim. Acta*, 2006, 451, 105–114.
- [11] W. Yang, R. A. Parrott, L. A. Behrmann, W. E. Voreck, P. Kneisel, *High Temperature Explosives for Downhole Well Applications*, US Patent US 2002/0129940 A1, 19th September **2002**.
- [12] E. E. Kilmer, A Characterization Study of Several Heat Resistant Explosives, Technical Report NOLTR 74–177, Naval Ordnance Laboratory, Maryland, USA, 4th October 1974.
- [13] J. C. Dacons, 2,4,6-Tripicryl-s-Triazine, TPT; Its Crystallization and Crystal Density Determination, NSWC/WOL/TR 76–16, Naval Surface Weapons Center, Maryland, USA, 8th March 1976.
- [14] E. E. Kilmer, A Characterization Study of Several Heat Resistant Explosives in Mild Detonating Cords, NSWC/WOLTR 76–43, Naval Surface Weapons Center, Maryland, USA, 30th August 1975.
- [15] E. E. Baroody, G. A. Carpenter, J. Chem. Eng. Data, 1976, 21, 253–255.

2,4,6-Tris(3',5'-diamino-2',4',6'-trinitrophenylamino)-1,3,5-triazene

Name [German, acronym]: 2,4,6-Tris(3,5-diamino-2,4,6-trinitrophenylamino)-1,3,

5-triazine [PL-1]

Main (potential) use: Thermally stable, insensitive explosive^[1]

	PL-1
Formula	$C_{21}H_{15}N_{21}O_{18}$
Molecular mass [g mol ⁻¹]	849.48
Appearance at RT	Yellow solid ^[3]
IS [J]	170 cm ^[2] , H _{50%} = 170 cm (2 kg mass) ^[3]
FS [N]	≈36 kg (Julius-Peters apparatus) ^[3]
N [%]	34.63
Ω(CO ₂) [%]	-59.36
T _{m.p.} [°C]	336 ^[2] , 336 (dec., @ 2 °C/min, uncorrected) ^[3] , ~ 336 ^[1, 7]
T _{dec.} [°C]	336 (@ 2 °C/min, uncorrected) ^[3] , 335 (DSC @ 10 °C/min) ^[3] , 325 (T_0), 335 (T_m) (DTA, exotherm) ^[3] , 338.7 (DTA @ 5 °C/min) ^[3] , 348.7 (DTA @ 10 °C/min) ^[3] , 355.1 (DTA @ 15 °C/min) ^[3] , 360.3 (DTA @ 20 °C/min) ^[3] , 363.5 (DTA @ 25 °C/min) ^[3] , 335 (DTA @ 10 °C/min) ^[5]
ρ [g cm $^{-3}$]	$2.02^{[1, 2, 5]}$, 2.02 (density bottle method) ^[3] , 2.02 (crystal) ^[6] , 1.893 (calcd., <i>EDPHT 2.0</i>) ^[6] , 1.840 (calcd., <i>Ammon</i>) ^[6] , $\sim 2.02^{[7]}$
Heat of formation	427.6 kJ/mol (calcd., isodesmic) ^[4] , 24.2 kcal/mol (condensed phase, calcd. empirical method) ^[5] , 225 kcal/mol (gas-phase heat of form., calcd.) ^[5]

	1	,					
	Calcd. (EXPLO5 6.03)	Lit. values	Exptl.				
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]		Heat of det. = 2.5 kJ/g (calcd.) ^[5]					
<i>T</i> _{ex} [K]		3,467 (calcd.) ^[5]					
p _{C-J} [kbar]		312 (@ 2.02 g cm ⁻³ , calcd.) ^[3]					
		35.5 GPa (based on heat of form. = 427.6 kJ/mol, calcd., K-J) ^[4]					
		307 (based on predicted heat of form. of 27.2 kcal/mol, calcd., empirical method) ^[5]					
VoD [m s ⁻¹]		7,861 (@ 2.02 g cm ⁻³ , calcd.) ^[3]					
		8,500 (based on heat of form. = 427.6 kJ/mol, calcd., K-J) ^[4]					
V_0 [L kg ⁻¹]							
SSGT [cm]	$P_{90} = 86.6 \text{ kbar (calcd., } @ 90\% \text{ TMD)}^{[5]}, P_{95} = 132.9 \text{ kbar (calcd., } @ 95\% \text{ TMD)}^{[5]}, P_{99} = 168.3 \text{ kbar (calcd., } @ 90\% \text{ TMD)}^{[5]}$						
Solubility [g/mL]	Poorly soluble in organ	Poorly soluble in organic solvents ^[3]					

- [1] J. P. Agrawal, High Energy Materials, Wiley-VCH Verlag GmbH and Co., Weinheim, 2010.
- [2] J. P. Agrawal, *Propellants, Explosives, Pyrotechnics*, **2005**, *30*, 316–328.
- [3] V. K. Bapat, A. K. Sikder, Mehilal, B. G. Polke, J. P. Agrawal, Centr. Eur. J. Energet. Mater., 2000, 18, 299-309.
- [4] X.-H. Ju, Z.-Y. Wang, J. Energet. Mater., 2009, 27, 51–62.
- [5] M. H. Keshavarz, H. R. Pouretedal, A. Shokrolahi, A. Zali, H. R. Hafizi, J. Azarniamehraban, A. Semnani, Phys. Chem. an Indian J., 2008, 3, 31-34.
- [6] M. H. Keshavarz, H. Motamedoshariati, R. Moghayadnia, M. Ghanbarzadeh, J. Azarniamehraban, *Propellants, Explosives, Pyrotechnics*, **2013**, *38*, 95–102.
- [7] T. M. Klapötke, J. M. Short, Energetics in the Rest of the World, ch. 4 in Topics in Energetics -Research and Development, CALCE Press, University of Maryland, Maryland, USA, 2013.

Tris-hydrazinenickel(II) nitrate

Name [German, acronym]: Nickel hydrazine nitrate, nickel hydrazinium nitrate

[nickelhydrazinnitrat, NHN, NiHN]

Main (potential) use: Possible future Pb-free primary explosive^[1, 4, 7],

possible applications in smoke-free fireworks^[2], possible future replacement for LA as an intermediate charge in commercial detonators^[5], investigated as potential component of squib compositions for igniting propellants and explosives^[7], possible future safe

alternative to LS and possible partial replacement

for LA^[8]

$$\begin{bmatrix} & & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\$$

	NiHN
Formula	H ₁₂ N ₈ NiO ₆
Molecular mass [g mol ⁻¹]	278.84
Appearance at RT	Purple-colored solid ^[7] , purple-violet solid ^[10] , pink, square crystals ^[8]
IS [J]	Equivalent to that of LA ^[1] , 96 cm ^[4] , 26 cm (100% fire height); 21 cm (100% no-fire height) (400 g hammer, 20 mg sample) ^[5] , 9 cm (ball drop, 500 g, 50% explosion) ^[6] , $H_{50\%}$ = 84 cm ^[7] , 21 cm (400 g mass, 20 mg sample, 50% explosion) ^[10] , $H_{50\%}$ = 96 cm (2 kg mass) ^[8]
FS [N]	Same as that of $AgN_3^{[1]}$, 1 $kg^{[4]}$, 12% (explosion percentage of 25 samples under 588.40 kPa and 80° swing angle) ^[5] , insensitive up to 10 $N^{[7]}$, 1.6 $kgf^{[10]}$, 1.0 kg (friction insensitiveness) ^[8]
ESD [J]	Same as that of $\mathrm{AgN_3}^{[1]}$, 5 (spark insensitivity) ^[4, 8] , 0.02 (minimum energy) ^[5] , 0.02 ^[10]
N [%]	40.18
Ω(CO ₂) [%]	
T _{m.p.} [°C]	

T _{dec.} [°C]	220 (onset, DTA/TG) ^[1] , 232 (DTA) ^[2] , 247–259 (NHN coated with WPU, DTA) ^[2] , 220 (DTA @ 10 °C/min, air, Pt cup, 10 mg sample) ^[6] , 210 (exo, onset), 220 (exo, peak max) (DSC @ 5 °C/min) ^[7] , 215–235 (rapid mass loss, total mass loss = 92.5%, TG) ^[7] , 220 (violent reaction followed by explosion, DSC) ^[7] , 505.7 K (onset), 506.5 K (peak) (rapid single-stage exothermic dec.) ^[10]						
ρ [g cm ⁻³]	2.129 ^[1] , 1.55 (pressed under 20–40 MPa) ^[1] , ~ 1.70 (pressed under 60–80 MPa) ^[1] , 2.129 (@ 25 °C, pycnometric method in 95% EtOH) ^[5] , 0.85 – ~ 0.95 (free ρ , volumetric method) ^[5] , 0.85–0.90 (bulk ρ) ^[7] , 2.1 (crystal ρ) ^[10] , 2.12 ^[10] , 1.2 (bulk density, after addition of additives such as 1% dextrin and dioctyl succinate during synthetic process) ^[8] , 0.85–0.90 (bulk density without additives) ^[8] Pressure/density curve values ^[5] :						
	P (MPa)	0	20	40	60	80	
	ρ (g/cm ³)	0.9108	1.5464	1.5631	1.6984	1.7133	
	\sum_{z}	0.0194	0.0054	0.0096	0.0077	0.0056	
			ļ.	0.0070	0.0077	0.0030	
Heat of formation	-449 kJ/mol (e:						
Heat of combustion	5,225 kJ/kg (ex	ptl. value) ^{[1}	.0]				
	Calcd. (EXPLO5 6.03)	Lit. val	lues		Exptl.		
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]					Q _{ex} = 1,014 (in 1 atm. ai		
					Heat of expl 4,390 kJ/kg		
T _{ex} [K]		2,342	(theoretical	value) ^[10]			
p _{C-J} [kbar]			iPa (theoret @ 1.7 g cm				
VoD [m s ⁻¹]		7,000	(@ 1.7 g cn	ı ⁻³) ^[10]	7,000 (@ 1.	7 g cm ⁻³) ^[1, 5]	
			3,600 (@ tap density of 0.8 g cm ⁻³ , flash X-ray technique) ^[8]				
					6,900 (load of 1.7 g cm ⁻ consolidatio 150 MPa pr	⁻³ after on under	

V ₀ [L kg ⁻¹]	8	84 (theoretical value) [[]	[10]				
	1						
Initiation ability	0.15 g (minimal charge in a No. 8 detonator toward PETN) ^[1] , 150 mg (minimum priming charge to PETN under the initiating of safety fuse and 120 mg of Nonel's tube (quantity of NHN used as initial charge, minimum priming charge test: 30 MPa to NHN, 15 MPa to PETN booster charge)) ^[5] NHN with different water ratios initiated directly using blasting caps ^[5] :						
	Water ratio (%)	Explosion (%)					
	40	0					
	35	20					
	25	80					
		H and then sucked to se and deflagrated rap	dryness on filter could be oidly ^[5]				
5 s explosion T[°C] 5 s ignition T[°C] Explosion T[°C]	283 (det.) ^[3] , 167 (20 disruption of containi ~167 ^[1] 219 (heating rate of 5		etal bath, extensive				
Thermal stability			(rapid single-stage 95%) followed by appearance				
Burn rate [mm/s]	Burns smoke-free ^[2]						
Solubility [g/mL]	Insoluble in H ₂ O, EtOI	H, acetone ^[1]					
	Data @ RT from ^[5] :						
	Solvent	g/100 mL solvent	(g)				
	Water	< 0.0042					
	EtOH	OH <0.033					
	Acetone	Acetone < 0.039					
	MeOH	< 0.009					
	Et ₂ O	<0.010					

Hygroscopicity	Nonhygroscopic ^[1] , hydrolytically stable ^[5] , 0.34% (moisture content @ 333 K for 10 min) ^[10] Moisture absorption rate of NHN and coated (WPU) NHN ^[2] :					
	Sample		Moisture ab	sorption (%)		
		2 h	4 h	6 h	8 h	
	NHN	2.0	3.7	5.1	8.0	
	Coated NHN	2.2	4.1	5.2	8.3	
Photosensitivity	Unaffected by sunligh exposure to sunlight ^{[5}		e in its chara	cteristics on	prolonged	
Compatibility	Ignited by conc. sulfur with Al, Cu, Fe and sta its initiation ability on unaffected by stirring dec. with weakly acidi acid ^[5] , reacts mildly w 8 years in the presenc action of 96% sulfuric gentle dec. ^[5]	inless steel (r addition of 4 with distilled c solns. but b ith 10% NaOH e of Al, Fe, sta	no reaction af 0% H ₂ O ^[1] , hy water for 1 w urns on conta d ^[5] , negligibl inless steel o	ter 8 years @ drolytically s reek @ 60°C act with 96% e reactivity @ or Cu ^[5] , burn	PRT) ^[1] , loses stable – ^[5] , gentle sulfuric PRT after s on	
ΔH _{dec} [J/g]	241.2 (DTA) ^[2] , 251.6-	289.3 (NHN o	coated by WP	PU, DTA) ^[2]		
Flame test	flame sensitivity≥30 o	cm ^[3]				
Dead pressing	Overpressing occurs (consolidated @ 30 MI pressed @ higher pre	Pa to produce		_	t get dead	
Radiation sensitivity	Unaffected by X-ray radiation ^[1] , sensitive to IR radiation – can be ignited by the beam of a pulsed CO_2 laser with energy density of ~ 12.0 J/cm ^{2[1, 5]} , no change in its characteristics on prolonged exposure to X-ray radiation ^[5]					
Underwater detonation test	Max. pressure cf. valu 105.0% TNT, 84.5% H			$S: P_{\text{max}} = 83.6$	% RDX,	
Miscellaneous	Pressure of gaseous explosion products = 105% that of TNT of equivalent charge ^[1]					
Witness plate test	Performance evaluation hydrazinium nitrate, L composition = service 32.5%) and Al (2.5%).	A = lead azid lead azide (S	e, SA = silver SLA, 65%), le	azide, ASA ad styphnato	e (LS,	

	Composition Quantity in mg in ()		Puncture on witness plate* Diameter of the hole (mm)		Remarks
	NHN (150) + LA/S	NHN (150) + LA/SA (200)			Initiated
	NHN (175) + LA/S	A (175)	9		Initiated
	NHN (200) + LA/S	A (150)	9		Initiated
	NHN (225) + LA/S	A (125)	9		Initiated
	NHN (250) + LA/S	A (100)	9		Initiated
	NHN (275) + LA/S	A (75)	9		Initiated
	NHN (300) + LA/S.	A (50)	9		Initiated
	NHN (325) + LA/S	A (25)	9		Initiated
	NHN (350)	NHN (350)		uncture	Dent on witness plate
	NHN (325), LA (25) and Tetryl/PETN (550)		9		Initiated
	ASA composition	(standard)	9		Initiated
Explosive trains	Results of functioning of explosive train initiated with NHN based detonator No. 10 (* 16 g RDX/wax perforated booster was assembled in main charge, number of trials carried out in each experiment = 5, in all experiments NHN/BNCP was pressed at 30 MPa and CE was at 10 MPa pressure) ^[8] :				
	Composition Charge wt. (mg)	*RDX/TNT Charge weig	ght (g)	Initiation method	Observation
	NHN:CE 350:550	700		Safety fuse	Explosive train
	NHN:CE 350:550	300		Safety fuse	Functioned
	NHN:CE 500:400	300		LFCN based General squib	Witness plate damaged
	NHN 900	300		Safety fuse	
	NCP:BNCP:CE 50:300:550	300		Safety fuse	Explosive train functioned, witness plate damaged

Effect of different quality of WPU (waterborne polyurethane emulsion) on initiation pressure and 50% sparking distance of the nickel hydrazine nitrate^[2]:

Pressure (MPa)	L ₅₀ (cm)
55	2.45
190	2.30
225	2.05
310	1.95

Detonation characteristics: relationship between pressure and function^[5]:

Pressure (MPa)	Detonation	Deflagration
<50	5	0
60	5	0
70	3	2
80	2	3

Mean diameter of spheroidal crystals ≥80 μm^[1]; coating NHN with WPU does not change the unit cell dimensions^[2], polycrystal crystal shape^[5]

- [1] M. A. Ilyushin, I. V. Tselinsky, I. V. Shugalei, *Centr. Eur. J. Energet. Mater.*, **2012**, *9*, 293–327.
- [2] W.-W. Zhou, Y. Cheng, Q.-C. Liu, Z.-Q. Wu, W. Liu, *Chinese J. Explosives, Propellants*, **2015**, *38*, 90–94.
- [3] Y. Chen, S.-G. Zhu, *The Research and Development of Primary Explosives in Chinese Industrial Detonators*, presentation.
- [4] U. R. Nair, S. N. Asthana, A, S. Rao, B. R. Gandhe, Defence Sci. J., 2010, 60, 137-151.
- [5] Z. Shunguan, W. Youchen, Z. Wenyi, M. Jingyan, *Propellants, Explosives, Pyrotechnics*, 1997, 22, 317–320.
- [6] K. C. Patil, C. Nesamani, V. R. P. Verneker, Synth. React. Inorg. Met. Org. Chem., 1982, 12, 383–395.
- [7] J. S. Chhabra, M. B. Talawar, P. S. Makashir, S. N. Asthana, H. Singh, J. Hazard. Mater., 2003, A99, 225–239.
- [8] M. B. Talawar, A. P. Agrawal, J. S. Chhabra, C. K. Ghatak, S. N. Asthana, K. U. B. Rao, J. Sci. Ind. Res., 2004, 63, 677–681.
- [9] J. Bełzowski, A. Wojewódka, Chemik, 2010, 64, 23-24.
- [10] B. Hariharanath, K. S. Chandrabhanu, A. G. Rajendran, M. Ravindran, C. B. Kartha, *Defence Sci. J.*, **2006**, *56*, 383–389.

2,4,6-Tris(2,2,2-trinitroethylamino)-1,3,5-triazine

Name [German, acronym]: 2,4,6-Tris(2,2,2-trinitroethylnitramino)-1,3,5-triazine

[TTET]

Main (potential) use: Potential future component of solid rocket fuel

compositions^[2]

	TTET			
Formula	C ₉ H ₉ N ₁₅ O ₁₈			
Molecular mass [g mol ⁻¹]	615.26			
Appearance at RT	Orange solid ^[1]			
IS [J]	21.5 (Bruceton method	, type 12 tool) ^[1]		
N [%]	34.15	34.15		
Ω(CO ₂) [%]	-11.7			
T _{m.p.} [°C]	160 ^[1] , 159–160 ^[2]			
T _{dec.} [°C]	186 ^[1]			
$ ho$ [g cm $^{-3}$]	1.886 (@ RT, gas pycnometer) ^[1]			
Heat of formation	1,175.90 kJ/mol (molar enthalpy of form., calcd., isodesmic) ^[1]			
	Calcd. (EXPLO5 6.04)	Lit. values	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]				
T _{ex} [K]				

p _{C-J} [kbar]		37.64 GPa (@ 1.886 g cm ⁻³ , calcd., K-I) ^[1]	
VoD [m s ⁻¹]		9,000 (@ 1.886 g cm ⁻³ , calcd., K-J) ^[1]	
V ₀ [L kg ⁻¹]			
Solubility [g/mL]	Soluble in isopropyl alcohol ^[2]		

- [1] S. Li, W. Zhang, Y. Wang, X. Zhao, L. Zhang, S. Pang, J. Energet. Mater., 2014, 32, S33–S40.
- [2] A. G. Korepin, A. V. Shastin, N. M. Glushakova, V. P. Kosilko, V. S. Malygina, G. V. Lagodzinskaya, V. P. Lodygina, Russ. Chem. Bull., 2019, 68, 610-613.

Uronium nitrate

Name [German, acronym]: Main (potential) use:

Uronium nitrate, urea nitrate [harnstoffnitrat, UN] Improvised explosive, stabilizer in smokeless powders, used in explosive mixtures to lower the explosion temperature

	Uronium nitrate
Formula	$CH_5N_3O_4$
Molecular mass [g mol ⁻¹]	123.068
Appearance at room temperature (RT)	Solid ^[10] , white monoclinic prisms ^[12] , colorless crystals ^[15]
IS [J]	>40 (500–1,000 µm), \leq 49 Nm ^[1, 5] , H_{50} >61 inches (Langley one-shot method) ^[6] , insensitive ^[11] , up to 49 Nm without reaction ^[2]
FS [N]	>360 (500–1,000 $\mu m)$, >353 $^{[1]}$, up to 36 kp pistol load without reaction $^{[2]}$
ESD [J]	>1.5 (500–1,000 μm)
N [%]	34.14
Ω(CO ₂) [%]	-6.50
7 _{m.p.} [°C]	155 ^[8] , 140 ^[1] , 157–159 (DSC @ 10 °C/min) ^[3] , 161.5 ^[6] , 152 (dec.) ^[12] , 152.8 (DSC @ 5 °C/min, open alumina cup, dissociation of urea nitrate) ^[13] , 161 (onset, endo), 166 (endo peak max) (DSC @ 20 °C/min) ^[9] , 155 (with dec.) ^[15]
T _{dec.} [°C]	159 (DSC @ 5 °C/min), ~160 (DSC @ 20 °C/min) ^[3] , 157–160 ^[10, 14] , 160 (exo, onset), 172 (exo, peak max) 378 (exo, onset), 409 (exo, peak max) (DSC @ 20 °C/min) ^[9]
$ ho$ [g cm $^{-3}$]	1.744 (@ 100 K), 1.59 ^[1] , 1.655 (@ 298 K, gas pycnometer), 1.67 ^[3, 10, 14] , 1.50 (under pressure of 1,500 kg/cm ³) ^[11]
Heat of formation	-546.7 kJ/mol (enthalpy of form.) ^[10, 14] , 1,090 kcal/kg (ΔH_t) ^[2] , -562.5 kJ/mol (enthalpy of form., exptl.) ^[19] , -551.0 kJ/mol (enthalpy of form., calcd., emp.) ^[19] , -593.5 kJ/mol (enthalpy of form., calcd., S-D method) ^[19]

Heat of combustion	552.24 kJ/mol ^[10,14] , 1,071.7 kcal/kg (@ C ^V) ^[2,16]	
	Calcd. (EXPLO5 6.03)	Exptl.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	3,348	639 kcal/kg ^[2]
		3,211 [H ₂ O (l)] ^[1]
		2,455 [H ₂ O (g)] ^[1]
<i>T</i> _{ex} [K]	2,499	
p _{C-J} [kbar]	236	
VoD [m s ⁻¹]	7,958	3,400 (@ 0.85 g cm ⁻³ , 30 mm diameter paper tube, driven by 1.5 g MF) ^[2, 9, 11]
		4,700 (@ 1.2 g cm ⁻³) ^[15]
		4,700 (@ 1.2 g cm ⁻³ , 30 mm steel tube, driven by 1.5 g MF) ^[2, 9, 11]
V ₀ [L kg ⁻¹]	916	910 ^[1]
		896 ^[2]

Trauzl test [cm³, % TNT]	91% $TNT^{[7]}$, 270 cc (10 g UN) comparable sensitivity with that of $TNT^{[7]}$, 260 cm ³ (<i>Kast</i>) ^[11] , 270 cm ³ (<i>Urbanski</i>) ^[11] , 79.6% PA (<i>Médard</i>) ^[11] , 80% PA ^[15] , 272 ^[17] , 270 cc (10 g sample) ^[2]
Ballistic mortar test	92% TNT ^[2, 7]
Initiation efficiency	Incomplete detonation with No. 8 detonator ^[11]
100 °C heat test [% mass loss]	No acid and no explosion in 300 min $^{[2]}$, acid in 30 min but no explosion in 300 min @ 135 $^{\circ}$ C $^{[2]}$
Thermal stability	0.2% weight loss after 14 days @ 75 $^{\circ}$ C ^[11] , 1% mass loss after 100 h @ 85 $^{\circ}$ C ^[15] , satisfactory storage stability when dry ^[2]
Vapor pressure [atm @ °C]	3.94 × 10 ⁻⁵ Pa @ 25 °C ^[8]

Hygroscopicity	Stable, not deliquescent ^[12] , acts corrosively acidic in presence of moisture ^[12] , +0.76% @ 90% RH @ 25 $^{\circ}$ C ^[2] , +23.2% @ 100% RH, 25 $^{\circ}$ C ^[2]
Compatibility	Acts corrosively acidic in presence of moisture ^[12]
Heat of melting [J/g]	90 (DSC @ 20 °C/min) ^[9]
Heat of dec. [J/g]	564 (first exotherm, DSC @ 20 °C/min) ^[9] , 634 (second exotherm, DSC @ 20 °C/min) ^[9]
Koenen test	Limiting diameter = <1.0, result = negative ^[18]
Time/pressure test	Maximum pressure >2,070 kPa, time for a pressure rise from 690 to 2,070 kPa = 400 ms ^[18]

	Urea nitrate ^[4]	Urea nitrate ^[5]
		Neutron diffraction
Chemical formula	CH ₅ N ₃ O ₄	CH ₅ N ₃ O ₄
Molecular weight [g mol ⁻¹]	123.07	123.07
Crystal system	Monoclinic	Monoclinic
Space group	P 2 ₁ / c (no. 14)	P 2 ₁ / c (no. 14)
a [Å]	9.527(7)	9.543(1)
<i>b</i> [Å]	8.203(5)	8.201(1)
c [Å]	7.523(6)	7.498
α [°]	90	90
β [°]	124.37(5)	124.25(1)
γ [°]	90	90
V [ų]	485.28	485.051
Z	4	4
$ ho_{ m calc}$ [g cm $^{-3}$]	1.684	1.685
<i>T</i> [K]	295	295

- [1] R. Meyer, J. Köhler, A. Homburg, *Explosives*, 7th edn., Wiley-VCH, Weinheim, **2016**, pp. 371–372.
- [2] S. M. Kaye, *Encyclopedia of Explosives and Related Items*, vol. 10, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1983**.
- [3] J. C. Oxley, J. L. Smith, S. Vadlaroannati, A. C. Brown, G. Zhang, D. S. Swanson, J. Canino, *Propellants, Explosives, Pyrotechnics*, **2013**, *38*, 335–344.
- [4] S. Harkema, D. Feil, Acta Cryst., 1969, B25, 589-591.
- [5] J. E. Warsham, J. L. Smith, J. Brady, S. Naik, *Propellants, Explosives, Pyrotechnics*, **2010**, *35*, 278–283.

- [6] W. M. Sherrill, Synthesis, Characterization, and Sensitivity Analysis of Urea Nitrate (UN), ARL-TR-7250, ARL US Army Research Laboratory, April 2015.
- [7] B. T. Fedoroff, O. E. Sheffield, *Encyclopedia of Explosives and Related Items*, vol. 2, US Army Research and Development Command, TACOM, Picatinny Arsenal, USA, **1962**.
- [8] J. Oxley, J. L. Smith, J. Brady, S. Naik, Propellants, Explosives, Pyrotechnics, 2010, 35, 278–2839.
- [9] J. C. Oxley, J. L. Smith, S. Naik, J. S. Moran, J. Energet. Mater., 2009, 27, 17–39.
- [10] J. Quaresma, T. Keicher, M. Piñeiro, L. Deimling, J. Campos, H. Krause, *Deflagration-Detonation Experiments of Sensitized Mixtures of Ammonium or Urea Nitrates and an Energetic Thermoplastic Elastomer*, ICT **2015**, Karlsruhe, Germany, pp. 25-1–25-16.
- [11] T. Urbański, Ch. 19 in Chemistry and Technology of Explosives, vol. II, 1965, Pergamon Press, Oxford.
- [12] T. L. Davis, *The Chemistry of Powder and Explosives*, vol. 2, **1943**, John Wiley and Sons Inc., New York, pp. 372–373.
- [13] J. Quaresma, J. Campos, J. Marques, M. Piñeiro, J. C. Gois, L. Duraes, *Flame Velocity Measurements of Heterogeneous Mixtures Based in Ammonium or Urea Nitrates*, ICT **2013**, Karlsruhe, Germany, pp. 20–1–20-17.
- [14] J. Quaresma, T. Keicher, M. Piñeiro, J. Campos, H. Krause, *Deflagration and Detonation of Mixtures of Ammonium or Urea Nitrates With an Energetic Thermoplastic Elastomer*, ICT 2014, Karlsruhe, Germany, pp. 20-1–20-16.
- [15] Handbook of Foreign Explosives, U. S. Materiel Command, US Army Foreign Science and Technology Center, Washington, D. C., USA, October **1965**.
- [16] Y. Y. Orlova, The Chemistry and Technology of High Explosives, Part III, translated by the Technical Documents Liaison Office, Wright Patterson Air Force Base, Ohio, Technical AD261783, Armed Services Technical Information Agency, Virginia, USA, 23rd June 1961.
- [17] M. Jafari, M. Kamalvand, M. H. Keshavarz, S. Farrashi, ZAAC, 2015, 641, 2446-2451.
- [18] Recommendations on the Transport of Dangerous Goods Manual of Tests and Criteria, 4th revised edn., United Nations Publication, United Nations, 2003.
- [19] B. Nazari, M. H. Keshavarz, M. Hamadanian, S. Mosavi, A. R. Ghaedsharafi, H. R. Pouretedal, Fluid Phase Equilibria, 2016, 408, 248–258.

Urotropinium dinitrate

Name [German, acronym]: Urotropine dinitrate [UDN]

Main (potential) use: Improvised explosive, HMX precursor

	UDN		
Formula	C ₆ H ₁₄ N ₆ O ₆		
Molecular mass [g mol ⁻¹]	265.21		
Appearance at RT			
IS [J]	15 (<100 μm)		
FS [N]	240 (<100 μm)		
ESD [J]	1.3 (<100 μm)		
N [%]	31.57		
Ω(CO ₂) [%]	-78.43		
T _{m.p.} [°C]	160		
T _{dec.} [°C]	164 (DSC @ 5 °C/min)		
$ ho$ [g cm $^{-3}$]	1.711 (@ 173 K), 1.663 (@ 298 K, gas pycnometer)		
Heat of formation	-470 kJ/mol (Δ _f H°), −1,645 kJ/kg (Δ _f U°)		
	Calcd. (EXPLO5 6.03)	Exptl.	
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]	3,222		
T _{ex} [K]	2,239		
p _{C-J} [kbar]	210		
VoD [m s ⁻¹]	7,726		
V_0 [L kg ⁻¹]	860		

Xylitol pentanitrate

Name [German, acronym]: 1,2,3,4,5-Pentakis-nitrooxy-pentane [XPN]

Main (potential) use: Previously proposed as possible candidate for use in

solid rocket propellant formulations, but later shown to

be a sensitive primary explosive^[2]

$$O_2NO$$
 ONO_2
 ONO_2
 ONO_2

	XPN
Formula	$C_5H_7N_5O_{15}$
Molecular mass [g mol ⁻¹]	377.13
Appearance at room temperature	Colorless solid ^[1] , white crystalline solid ^[2]
IS [J]	Detonated under hammer ^[1] , FoI = 25 (average gas evolution = 6 mL, Rotter impact analysis, cf. RDX FoI = 80) ^[2]
FS [N]	18 (faint cracking sound, 10 mg sample, Julius-Peters apparatus, BAM) ^[2]
ESD [J]	4.5 but not at 0.45 (DSTO apparatus) ^[2]
N [%]	18.57
Ω(CO ₂) [%]	6.36
T _{m.p.} [°C]	37-40 ^[1] , 45.5 (DSC @ 10 °C/min) ^[2] , 40 ^[4]
T _{dec.} [°C]	169.5 (exo, onset) 185.8 (exp, peak max) (DSC @ 10 °C/min) ^[2] , 174.8 (exo, onset), 184.8 (exo, peak max) (DSC @ 10 K/min) ^[4, 5]

	Data from ^[4, 5] :							
	β/K min ⁻¹	T _{ei} (°C)	T _i (°C)	Mass loss (%)		L _{max} /% Min ⁻¹	T _p (°C)	T _{oe} (°C)
				Stage 1	Residue (%)			
	5.0	156.9	131.9	99.7	0.12	-21.28	170.0	191.3
	7.0	161.9	132.1	96.7	1.32	-29.13	173.7	194.8
	10.0	165.7	132.6	94.8	1.65	-41.97	177.7	197.8
	15.0	169.0	132.9	97.8	1.23	-65.15	182.5	205.8
ρ [g cm ⁻³]	1.94 (ca	alcd.) ^[3] ,	1.75 (ex	ptl.) ^[3, 4] , 1	852 (X-ray @	150 K) ^[2]		
Heat of formation	-500.4	$-500.48 \text{ kJ/mol } (\Delta_f H^o_{(s, molecule)}, calcd.)^{[2]}, -489.85 \text{ kJ/mol } (calcd.)^{[3]}$						
Heat of combustion	2,409.7	2,409.7 kJ/mol (heat of comb., ΔH_c) ^[4]						
	Calcd. (EXPLO	5 6.03)	Lit. va	lues			Expt	l.
$-\Delta_{\rm ex}U^{\rm o}$ [kJ kg ⁻¹]								
T _{ex} [K]								
p _{C-J} [kbar]			32.6 GPa (@ 1.852 g cm ⁻³ , $\Delta_i H^o = -500.48$, calcd., CHEETAH 7.0) ^[2]					
			32.3 GPa (@ 1.750 g cm ⁻³ , calcd.) ^[2]					
			32.32 GPa (@ 1.750 g cm ⁻³ , calcd., K-J) ^[3]					
VoD [m s ⁻¹]			8,780 (@ 1.852 g cm ⁻³ , $\Delta_{\rm f} H^{\rm o} = -500.48$, calcd., CHEETAH 7.0) ^[2]					
			8,610 (@ 1.750 g cm ⁻³ , calcd.) ^[2] 8,610 (@ 1.750 g cm ⁻³ , calcd. K-J) ^[3]					
			7,100	(@ 1.580	g cm ⁻³ , calcd.	, K-J) ^[5]		
V_0 [L kg ⁻¹]								
<i>I</i> _s [s]	0.983 (cf. HMX)	[3]					
5 s explosion								
T[°C] Ignition T[°C]	T of I expt.: 50 mg sample, @ 5 °C/min did not noticeably produce gas or show any energetic decomposition up to temperatures of 250 °C, however sample was shown to have undergone dec. to form a dark viscous liquid ^[2] , repeating expt. using 100 mg showed dark vapor evolved at 163 °C with explosive cracking sound @ 167 °C ^[2]							

Thermal stability	No dec. observed after storing for 3 years @ 0–5 °C in desiccator $^{[1]}$, critical T for thermal dec. = 140.1 °C $^{[4]}$
Solubility [g/mL]	Recryst. from toluene $^{[1]}$, recryst. from EtOH/H $_2$ O $^{[2]}$
Compatibility	Dec. in pyridine ^[1]
ΔH _{dec} [J/g]	353 (DSC @ 10 °C/min) ^[2] , 208.9 kJ/mol ^[4] , 661.0 (DSC @ 10 K/min) ^[5]
Heat capacity, C° _{p,m} [J•mol ⁻¹]	273.24 @ 200 °C (calcd.) ^[3] , 358.85 @ 298,15 °C (calcd.) ^[3] , 360.39 @ 300 °C (calcd.) ^[3] , 436.72 @ 400 °C (calcd.) ^[3] , 498.15 @ 500 °C (calcd.) ^[3] , 546.10 @ 600 °C (calcd.) ^[3] , 583.56 @ 700 °C (calcd.) ^[3] , 613.19 @ 800 °C (calcd.) ^[3]
Activation energy to thermal dec. [kJ/mol]	159 (liquid, SMM) ^[4] , 140 ± 1.9 (@ 131–213 °C, TG) ^[4, 5] , 146.9 kJ/mol ^[5]

	XPN ^[2]
Chemical formula	$C_5H_7N_5O_{10}$
Molecular weight [g mol ⁻¹]	377.16
Crystal system	Monoclinic
Space group	P2 ₁ /c
a [Å]	8.0945(3)
<i>b</i> [Å]	15.9392(6)
c [Å]	10.4903(5)
α [°]	90
β [°]	91.684(3)
γ[°]	90
V [ų]	1,352.87(10)
Z	4
$ ho_{ m calc}$ [g cm $^{-3}$]	1.852
T[K]	150
	Recryst. from EtOH/H ₂ O by slow evaporation

- [1] G. Wright, L. D. Hayward, Can. J. Chem., 1960, 38, 316-319.
- [2] K.-A. S. Stark, J. F. Alvino, K. P. Kirkbride, C. J. Sumby, G. F. Metha, C. E. Lenehan, M. Fitzgerald, C. Wall, M. Mitchell, C. Prior, *Propellants, Pyrotechnics, Explosives*, 2019, in press.
- [3] G.-X. Wang, X.-D. Gong, H.-C. Du, Y. Liu, H.-M. Xiao, J. Phys. Chem. A, 2011, 115, 795-804.
- [4] J. Dong, Q.-L. Yan, P.-J. Liu, W. He, X.-F. Qi, S. Zeman, J. Therm. Anal. Calorim., 2018, 131, 1391–1403.
- [5] Q.-L. Yan, M Künzel, S. Zeman, R. Svoboda, M. Bartošková, *Thermochim. Acta*, 2013, 566, 137–148.