

교육과정 소개

IP 주소란?

1. IP 주소란?

인터넷

※ IP 주소(Internet Protocol address):

네트워크상에서 컴퓨터 장치들이 서로를 인식하고 통신을 하기 위해서 사용하는 특별한 번호

집 주소 서울시 강남구 현대아파트 2004호

> IP 주소 168.126.63.1

방 번호 1번 방 / 동생 방 Port 번호 80 /tcp

※ 내 IP 주소 확인 : 인터넷 검색창에 "내 아이피 주소" 라고입력 (또는 ip Tracker 입력)

1. IP 주소란?

▮ IP 조회(KISA, WHOIS)

https://xn--c79as89aj0e29b77z.xn--3e0b707e/

후이즈검색,한국

WHOIS

국가 인터넷주소관리기관인 한국인터넷진흥원은 안정적인 인터넷주소관리로 세계 최고의 인터넷 환경을 만

off) kisa.or.kr

SEARCH

- 도메인 검색 예시 (.kr/.한국 외 도메인도 검색 가능)
- kisa.or.kr | 한국인터넷진흥원.kr | 한국인터넷진흥원.한국
- 호스트 정보: ns0.kisa.or.kr
- IP주소/AS번호 검색 예시 (국외 IP주소/AS번호도 검색 가능)
 - 202.30.50.51 | 2001:02B8::/32 | AS9700

공지사항 +

인터넷주소센터 네트워크 회선작업 안내((2/10(월), 22… 2020/02/07 인터넷주소센터 시스템 점검 작업(10/28(월)) 2019/10/22 WHOIS 시스템 나주 이전에 따른 서비스 일시 중지 안내 2019/10/16 인터넷주소센터 시스템 점검 작업(09/23(월)) 2019/09/17 인터넷주소센터 시스템 점검 작업(07/25(목)) 2019/07/16 인터넷주소 할당등록정보 검색 서비스(WHOIS) 시스템 I… 2019/07/08

WHOIS 주요서비스

WHOIS	WHOIS	WHOIS	IP주소 추격에
서비스란?	OpenAPI	접근거부 조희	관한 오해
ę.		# <u></u>	₽

국가도메인 부가서비스

1. IP 주소란?

▮ IP 주소로 위치 조회(https://mylocation.co.kr)

교육과정 소개

IP 주소체계

1. IPv4 주소 형식

- 1) 네 자리의 십진수로 되어 있고 중간에 점을 하나씩 찍어 구분
- 2) IP 주소는 2진수로 만듦 (8자리 마다 점을 찍어 표시)
- 3) 한 자리는 0 ~ 255까지 가능

※참고 : 8bit → 1byte (※ 2진수가 32개 → **32bit** → 4byte)

2. IPv4 주소 범위 : Classful Address 체계

A Class \rightarrow B Class \rightarrow C Class \rightarrow D Class \rightarrow E Class

※ A Class 는 사람들에게 가장 많은 IP를 할당 해 줄 수 있다. (클래스의 구분은 IP 주소의 제일 첫 번째 값으로 구분한다)

3. IPv4 구성 요소 : Network ID + Host ID

4. Network ID와 Host ID 를 구별하는 방법

- · Subnet Mask 를 이용하여 Network ID를 계산하여 구별한다.
- ※ Subnet Mask: Network 주소를 식별하기 위해 사용하는 값 IP주소와 Subnet Mask를 bit AND 연산한 결과 값이 Network ID(주소)가 된다.

▶ Class별 Default Subnet Mask

Class	Subnet Mask	
A Class	255.0.0.0	
B Class	255.255.0.0	
C Class	255.255.255.0	

Class A	Netwok	Host	Host	Host
Subnet Mask	255	0	0	0
a				
Class B	Netwok	Network	Host	Host
Subnet Mask	255	255	0	0
Class C	Netwok	Network	Network	Host
Subnet Mask	255	255	255	0

※ 논리 AND연산

◆ AND연산은 양쪽이 둘 다 1인 경우에만 1이 된다.

예) 11001111 AND 11110000

1 1 0 0 0 0 0 0

▮ 논리연산 종류

1.부정(NOT) : 말 그대로 <mark>부정(否定)</mark>이다. 즉, 참과 거짓을 뒤집는다

NOT 연산 결과		
입력 값	반환 값	
0	1	
1	0	

2. 논리곱(AND) : 두 명제가 모두 참이어야 참값을 돌려준다

AND 연산 결과		
입력 값	반환 값	
0, 0	0	
0, 1	0	
1, 0	0	
1, 1	1	

서브넷 마스크 AND 연산 사용

3. 논리합(OR) : 두 명제 중 어느 한 명제만 참이면참값을 돌려준다.

OR 연산 결과		
입력 값 반환 값		
0, 0	0	
0, 1	1	
1, 0	1	
1, 1	1	

4. 배타적 논리합(XOR) : 두 명제의 <mark>참/거짓 여부가 다를 때 참값</mark>을 돌려준다.

XOR 연산 결과		
입력 값	반환 값	
0, 0	0	
0, 1	1	
1, 0	1	
1, 1	0	

▮ PC간 통신

같은 대역 → 통신 가능 다른 대역 → 통신 불가능

■ Classful Address

Class	첫번째 옥텟 의 범위	Network ID의 범위	사용가능한 Network ID의 개수	사용가능한 Host ID의 개수
A Class	1~126	1.0.0.0~126.0.0.0	2 ⁽⁸⁻¹⁾ -2=126	2 ²⁴ -2=16,777,214
B Class	128~191	128.0.0.0~191.255.0.0	2 ⁽¹⁶⁻²⁾ =16,384	2 ¹⁶ -2=65,534
C Class	192~223	192.0.0.0~223.255.255.0	2 ⁽²⁴⁻³⁾ =2,097,152	2 ⁸ -2=254

D class (예약된 멀티캐스트 주소): 224-239 E class (예약된 연구용 주소) : 240-255

Network ID 범위

A Class: $2^(8-1) - 2 = ?$

네트워크 ID 첫 8bit → 첫 번째 자리는 0으로 고정 (8bit 모두 0.0.0.0, 127.0.0.1 루프백 주소는 제외 : -2)

B Class : $2^{(16-2)} = ?$

네트워크 ID 첫 16bit → 첫 2자리는 10으로 고정 =>14bit만 사용

C Class : $2^{(24-3)} = ?$

네트워크 ID 첫 16bit → 첫 3자리는 110으로 고정 =>21bit만 사용

RFC 1918은 사설 주소 (사설 네트워크 내에서의 식별용 주소)로 사용하기 위한 세 개의 IP 주소 블럭을 설정해두었다.

- **10**.0.0.0 ~ 10.255.255.255 (10/8 prefix) - **172.16**.0.0 ~ **172.31**.255.255 (172.16/12 prefix)

- **192.168**.0.0 ~ 192.168.255.255 (192.168/16 prefix)

■ Subnet Mask

- Default Gateway

호스트가 TCP/IP통신을 할 때 가장 먼저 목적지 호스트가 자신과 같은 로컬에 있는지 원격지에 있는지를 판단한다. 이때 원격지에 있는 컴퓨터와 통신하기 위해서는 Default Gateway를 이용해서 통신을 하게 된다.

교육과정 소개

IP 주소현황

3. 전 세계 IPv4 주소 현황

▮ 전 세계 IPv4주소 할당 현황

IPv4 주소	IPv4 주소 수(개)	비율(%)
할당	3,683,104,288	85.8
특수용도	588,514,560	13.7
* 미할당	23,348,448	0.5
합계	4,294,967,296	100

■ 월별 전세계 IPv4주소 할당 추이 (2020.07.01 현재)

3. 전 세계 IPv4 주소 현황

▮ IPv4주소 대역 및 용도

주소 대역	용도
0.0.0/8	자체 네트워크
10.0.0.0/8	사설 네트워크
127.0.0.0/8	루프백(loopback)
169.254.0.0/16	링크 로컬(link local)
172.16.0.0/12	사설 네트워크
192.0.2.0/24	예제 등 문서에서 사용
192.88.99.0/24	6to4 릴레이 애니캐스트
192.168.0.0/16	사설 네트워크
198.18.0.0/15	네트워크 장비 벤치마킹 테스트
224.0.0.0/4	멀티캐스트
240.0.0/4	미래 사용 용도로 예약

3. 전 세계 IPv4 주소 현황

▮ 주요 국가별 IPv4주소 보유 순위

순위	국가	IPv4 주소 수(개)
1위	미국	1,610,091,776
2위	중국	340,633,600
3위	일본	190,010,624
4위	독일	123,782,784
5위	영국	114,643,736
6위	대한민국	112,477,440
7위	브라질	86,766,592
8위	프랑스	82,687,760
9위	캐나다	69,574,656
10위	오스트레일리아	63,235,072
11위	이탈리아	55,008,832
기타국가		834,191,416
특수용도	588,514,560	
* 미할당	23,348,448	
합계		4,294,967,296