Math 51 Homework 9 Solutions

(2.2) (a)
$$f: \mathbb{R}^n \to \mathbb{R}$$
 $f(\bar{x}) = c$

(e)
$$f: \mathbb{R} \to \mathbb{R}$$
 $f(x) = x^3$

This function has x=0 as its critical point, but x=0 is not a local extremum

(12.8)
$$f(x,y,z) = xy + xz + 2yz + \frac{1}{x}$$

$$Df(x,y,z) = \left[y+z - \frac{1}{x^2} + x + 2z - x + 2y\right]$$

Df = 0 if and only if
$$y + \frac{2}{x^2} = 0$$

$$x + 2z = 0$$

$$x + 2y = 0$$

Replacing $z = \frac{-x}{2}$ and $y = \frac{-x}{2}$ in the first equal $y = \frac{-x}{2}$ in the first equal $y = \frac{-x}{2}$

$$\frac{-x}{2} + \frac{-x}{2} - \frac{1}{x^2} = 0$$

$$() \qquad \qquad X^3 + 1 = 0$$

$$\Rightarrow$$
 $\times = -1$

So f how only one critical point $(-1, \frac{1}{2}, \frac{1}{2})$ Hf = $\begin{bmatrix} -\frac{2}{x^3} & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}$, Hf(-1,\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2} = \begin{bmatrix} -2 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}

To compute the eigenvalues of $Hf(-1, \frac{1}{2}, \frac{1}{2})$, consider

$$\det \begin{bmatrix} \lambda+2 & -1 & -1 \\ -1 & \lambda & -2 \\ -1 & -2 & \lambda \end{bmatrix} = (\lambda+2)\lambda^2 - 4(\lambda+2) + (-\lambda-2) - (\lambda+2)$$

$$= (\lambda+2)(\lambda^2-4)$$

$$= (\lambda+2)^2(\lambda-2)$$

Since the eigenvalues of $Hf(-1,\frac{1}{2},\frac{1}{2})$ are 2 and -2, $Hf(-1,\frac{1}{2},\frac{1}{2})$ is undefinite and therefore the critical point is a saddle point

12.11)
$$f(s,t) = \cos s \sin t$$

$$Df(s,t) = \begin{cases} -\sin s \sin t & \cos s \cos t \end{cases}$$

$$Df(s,t) = 0 \iff \int -\sin s \sin t = 0$$

$$\cos s \cot t = 0$$

$$\cos t = 0 \iff \int \cos t = 0$$

$$\cos t = 0 \iff \int \cos t = 0$$

$$\cos t = 0 \iff \int \cos t = 0$$

$$\cos t = 0 \iff \int \cos t = 0$$

$$\cos t = 0 \iff \int \cos t = 0$$

$$\cos t = 0 \iff \int \cos t = 0$$

$$\cos t = 0 \iff \int \cos t = 0$$

$$\cos t = 0 \iff \int \cos t = 0$$

$$\cos t = 0 \iff \int \cos t = 0$$

$$\cos t = 0 \iff \int \cos t = 0$$

$$\cos t = 0 \iff \int \cot t = 0$$

$$\cos t = 0 \iff \int \cot t = 0$$

$$\cos t = 0 \iff \int \cot t = 0$$

$$\cos t = 0 \iff \int \cot t = 0$$

$$\cos t = 0 \iff \int \cot t = 0$$

$$\cos t = 0 \iff \int \cot t = 0$$

$$\cos t = 0 \iff \int \cot t = 0$$

$$\cos t = 0 \iff \int \cot t = 0$$

$$\cos t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot t = 0 \iff \int \cot t = 0$$

$$\cot$$

Notice that at these critical points $\int_{0}^{\infty} S = k\pi$ $\left\{t = \frac{\pi}{2} + \ell\pi\right\}$

 $f(s,t) = \begin{cases} 1 & \text{if } k-l \text{ is even} \\ -1 & \text{if } k-l \text{ is odd} \end{cases}$, More over, the values

of f are always between -1 and 1. So

 $(k\pi, \frac{\pi}{2} + l\pi)$ is a local maximum when k-l is even, local minimum when k-l is odd.

Consider $Hf(s,t) = \begin{bmatrix} -\cos s \sin t & -\sin s \cos t \\ -\sin s \cos t & -\cos s \sin t \end{bmatrix}$

At $\left(\frac{\pi}{2} + k\pi, l\pi\right)$ of $l\pi$ if k-l is even $Hf\left(\frac{\pi}{2} + k\pi, l\pi\right) = \left\{\begin{bmatrix} 0 & 1\\ -l & 0 \end{bmatrix} \text{ if } k-l \text{ is odd} \right\}$

Either case, both matrices are indefinite and thus $\left(\frac{\pi}{2} + k\pi, l\pi\right)$ is saddle $\forall k, l \in \mathbb{Z}$

(2.20) (a)
$$f(x,y) = (y - x^2)(y - 3x^2)$$

$$Df(x,y) = \left[-2x(y-3x^2) + (y-x^2)(-6x) + (y-3x^2) + (y-x^2) \right]$$

$$Hf(x,y) = \left[-2(y-3x^2) + 12x^2 - 2x(-6x) - 6(y-x^2) - 2x - 6x \right]$$

$$-6x - 2x$$

At
$$(0,0)$$
 Df $(0,0) = [0,0]$
Hf $(0,0) = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}$

(b) First consider the line x = 0. On this line, the function becomes

$$f(y) = y^2$$
 which has local minimum at $y=0$.

Consider the line y = mx. On this line, the function becomes

$$f(x) = (mx - x^{2})(mx - 3x^{2})$$

$$= 3x^{4} - 4mx^{3} + m^{2}x^{2}$$

$$f'(x) = 12x^{3} - 12mx^{2} + 2m^{2}x$$

$$f''(x) = 36x^{2} - 24mx + 4m^{2}$$

$$= (6x + 2m)^{2}$$

$$f''(0) = 4m^2$$

If $m \neq 0$, $f''(0) > 0$ and $so x=0$ is a local min

If m=0, $f(x)=3x^4$ and x=0 is a local min.

In any case, the restriction of f to any line through the origin has a local minimum at (0,0)

(c) Consider the parabola $y=2x^2$. Along this parabola, the restriction of f becomes $f(x) = (2x^2 - x^2)(2x^2 - 3x^2)$

This implies for every $\delta > 0$, (0,0) is not the minimum of f on the disk $\|(x,y)-10,0)\| < \delta$. Therefore, (0,0) is not a local minimum.

(13.1) For each $x \in S$, any small neighborhood at x always contains a point in S, which is \mathbf{S} x itself. If there is some neighborhood at x contained entirely in S, x is an interior point. Otherwise, it is a boundary point.

Let $S = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 < 1\}$ The boundary of S is the circle $x^2 + y^2 = 1$

- a) Not closed, bounded
- 5) Closed, bounded
- c) Closed, not bounded.
- d) Closed, not bounded.
- e) Closed, not bounded
- f) Closed, not bounded
- a) Closed, bounded
- 4) Not closed, bounded.

$$f(x_1y) = x^2 + xy - 2y$$

$$Df(x_1y) = \left[2x + y \quad x - 2\right]$$

$$Df(x,y) = \{0,0\} \iff x = 2 \pmod{n}$$

$$x=2$$
 (not in R

$$y = -4$$

Boundary There are 4 components and 4 corners

Along
$$x = 3$$
 $f(x, y) = 9 + 3y - 2y = y + 9$. has

minimum at
$$(x, y) = (+3, -3)$$
 and maximum at $(x, y) = (3, 3)$

Along
$$x = -3$$
 $f(x, y) = 9 - 3y - 2y = 9 - 5y$

has minimum at
$$(x,y) = (-3,3)$$
 and maximum at $(x,y) = (-3,-3)$

Along
$$y = 3$$
 $f(x, y) = x^2 + 3x - 6$

This function has critical point 3 + 2x = 0

$$X = -\frac{3}{2}$$

It has minimum at $(-\frac{3}{2}, 3)$ and maximum at either

(-3,3) or (+3,3).

Along y = -3 $f(x_1y) = x^2 - 3x + 6$ This function has critical point $x = \frac{3}{2}$. It has minimum at $(\frac{3}{2}, -3)$ and maximum at either (3, -3) or (-3, -3).

In summany, we have 6 candidates for absolute. extrema:

$$(3,3)$$
, $(-3,3)$, $(-3,-3)$, $(-3,-3)$, $(-3,-3)$

$$f(3,3) = 12$$
, $f(-3,3) = -6$, $f(3,-3) = 6$
 $f(-3,-3) = 24$, $f(\frac{3}{2},3) = \frac{-33}{4}$, $f(\frac{3}{2},-3) = \frac{15}{4}$

So absolute max is
$$(-3, -3)$$
 absolute min is $(-\frac{3}{2}, 3)$

$$f(x,y) = x + 2y$$

$$Interior$$

$$Df(x,y) = [1,2]$$

$$No eribical point.$$

Boundary has three components and three corners

Along x = 1 $f(x_1y) = 1 + 2y$. There is no contract

point

Along y=0 f(x,y)=x. There's no critical point

Along the line
$$y = -2x + 6$$
 $f(x,y) = x + 2(-2x + 6)$
= -3x + 12

There is no critical point.

So the absolute extrema occur at the corners of \mathcal{F} (1,0), (3,0) and (1,4). Since f(1,0)=1, f(3,0)=3, f(1,4)=9, the absolute maximum is ad (1,4), the absolute minimum is ad (1,0).

$$f(x,y) = x^2 + xy + y^2$$

$$Df(x,y) = [0,0] \Leftrightarrow x = y = 0$$

Boundary We parametrize the boundary by

$$\begin{cases} X = 2\cos\theta \\ y = 2\sin\theta \end{cases}$$

$$d\theta = f(x_1y) = 4\cos^2\theta + 4\cos\theta\sin\theta + 4\sin^2\theta.$$

$$= 4 + 2\sin(2\theta)$$
We have $g^1(\theta) = 4\cos(2\theta) = 0$

$$\Theta = \frac{\pi}{4} \text{ or } \theta = \frac{3\pi}{4} \text{ or } \theta = \frac{5\pi}{4}$$
or $\theta = \frac{7\pi}{4}$

Since
$$g(\frac{\pi}{4}) = 6$$

 $g(\frac{3\pi}{4}) = 2$
 $g(\frac{5\pi}{4}) = 6$
 $g(\frac{\pi}{4}) = 2$

we obtain the absolute maximum occurs at $(\sqrt{2}, \sqrt{2})$ end $(-\sqrt{2}, -\sqrt{2})$, the absolute minima occur at $(\sqrt{2}, -\sqrt{2})$ and $(-\sqrt{2}, \sqrt{2})$.

(13.17) The domain of xyz we need to consider is x+y+z=24 x>0, y>0, z>0.

Replace z = 24 - x - y we have to maximize f(xy) = xy(24 - x - y) on $R = \{(x,y) \mid x > 0, y > 0$

Since R is not closed, it may happen that f has no absolute maximum because it may occur on the boundary of R (which in this case of is not in R).

On the interior of R, $Df(x,y) = [e4y - 2xy - 4xy^2 + 2xy - 1-x^2] = [0,0]$ $(3) \qquad \begin{cases} 24y - 2xy - 4y^2 = 0 \end{cases}$

 $124x - 2xy - x^2 = 0$

$$(3) \quad y(24-2x-y)=0$$

$$(24-x-2y)=0$$

$$(3) \begin{cases} 24 - 2x - y = 0 \\ 24 - 2y - x = 0 \end{cases}$$

$$(=) \begin{cases} 2x + y = 24 \\ x + 2y = 24 \end{cases}$$

Hence,
$$(8,8,8)$$
 is the only critical point of f .
Since $f>0$ on R and is O on the boundary of R , $(8,8,8)$ must be the absolute maximum.

$$f(x,y,z) = (x-10)^2 + (y-5)^2 + (z-3)^2$$
on $R = \{x^2 + y^2 + z^2 = 1\}$

Consider
$$g(x_1y_1z) = x^2 + y^2 + z^2$$
.
 $\nabla g = \begin{bmatrix} 2x \\ 2y \end{bmatrix} \neq 0$ on R

At the extremum of f on R, we have

(=)
$$\begin{cases} X = \frac{10}{\sqrt{134}}, \ Y = \frac{5}{\sqrt{134}}, \ Z = \frac{3}{\sqrt{134}} \\ 1 - \lambda = \sqrt{134} \end{cases}$$
 or
$$\begin{cases} X = \frac{-10}{\sqrt{134}}, \ Y = \frac{-5}{\sqrt{134}}, \ Z = \frac{-3}{\sqrt{134}} \\ 1 - \lambda = -\sqrt{134} \end{cases}$$

Since
$$f(\frac{10}{\sqrt{134}}, \frac{5}{\sqrt{34}}, \frac{3}{\sqrt{34}}) = (\sqrt{134} - 1)^2$$

 $f(\frac{-10}{\sqrt{134}}, \frac{-5}{\sqrt{134}}, \frac{-3}{\sqrt{134}}) = (\sqrt{134} + 1)^2$

we obtain $\left(\frac{10}{\sqrt{134}}, \frac{5}{\sqrt{134}}, \frac{3}{\sqrt{134}}\right)$ is the absolute

The closest distance is (134-1)2

14.4) Let
$$g(x,y,z) = x^2 + y^2 - 4z^2$$
. Then $S = g^{-1}(0)$.

We have
$$\begin{cases}
\nabla f = \lambda \nabla g & \text{or } \nabla g = 0 \\
X^2 + y^2 - 4z^2 = 0
\end{cases}$$

$$\begin{cases}
10x - 2 \\
6z
\end{cases} = \lambda \begin{bmatrix} 2x \\ 2y \\ -8z
\end{cases}$$
or $x = y = z = 0$

$$\begin{cases}
10x = 2\lambda x \\
-2 = 2\lambda y
\end{cases}$$
or $x = y = z = 0$

$$(2) \begin{cases} -2 = 2\lambda y & \text{or } x = y = z = 0 \\ 6z = -8\lambda z & \text{or } x = y = z = 0 \end{cases}$$

$$2x(\lambda-5)=0$$

$$2\lambda y = -2$$

$$2z(4\lambda+3)=0$$

$$x^{2}+ y^{2}-4z^{2}=0$$

If z = 0 then
$$x^2 + y^2 = 0$$
 ie $x = y = 0$
If z + 0 then $\lambda = \frac{-3}{4}$ Hence $y = \frac{-1}{\lambda} = \frac{4}{3}$

and
$$x=0$$
. So $z^2 = \frac{y^2}{4} = \frac{4}{9}$ i.e $z=\pm\frac{2}{3}$

The pands on S where $\{\nabla f, \nabla g\}$ is dependent one $[0,0,0], (0,\frac{4}{3},\frac{2}{3}), (0,\frac{4}{3},\frac{-2}{3})$

14.5) Lef
$$g_1(x,y,z) = y^2 + z^2$$

 $g_2(x,y,z) = x + y - z$
Then $S = g_1'(1) \cap g_2^{-1}(c)$

We have
$$\{ \nabla f, \nabla g_1, \nabla g_2 \}$$
 is dependent iff
$$\begin{cases} \lambda_1 \nabla f + \lambda_2 \nabla g_1 + \lambda_3 \nabla g_2 = 0 \\ y^2 + 2^2 = 1 \\ x + y - 2 = 0 \end{cases}$$

$$(=) \begin{cases} \begin{bmatrix} \lambda_1 \\ 0 \end{bmatrix} + \begin{bmatrix} \lambda_2 \\ \lambda_2 \\ \lambda_2 \end{bmatrix} + \begin{bmatrix} \lambda_3 \\ \lambda_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\ y^2 + z^2 = 1 \\ x + y - z = 0 \end{cases}$$

$$\begin{array}{c} \lambda_1 + \lambda_3 = 0 \\ \lambda_2 y + \lambda_3 = 0 \\ \lambda_2 z - \lambda_3 = 0 \\ y^2 + z^2 = 1 \\ x + y - z = 0 \end{array}$$

$$\begin{cases}
\lambda_1 = -\lambda_3 \\
\gamma = -\frac{\lambda_3}{\lambda_2}, \quad z = \frac{\lambda_3}{\lambda_2} \quad \text{or} \quad \lambda_1 = \lambda_2 = \lambda_3 = 0 \\
\gamma^2 + z^2 = 1 \\
x + y - z = 0
\end{cases}$$

$$\begin{cases} \lambda_1 = -\lambda_3 \\ y = -\frac{\lambda_3}{R_2}, z = \frac{\lambda_3}{R_2} \end{cases}$$

$$\begin{cases} 2\left(\frac{\lambda_3}{R_2}\right)^2 = 1 \\ 2\left(\frac{\lambda_3}{R_2}\right)^2 = 1 \end{cases}$$

$$\begin{array}{ll}
A_{1} = -\lambda_{3} \\
y = \frac{1}{12}, z = \frac{1}{12}
\end{array}$$

$$\begin{array}{ll}
\lambda_{1} = -\lambda_{3} \\
y = \frac{1}{12}, z = \frac{1}{12}
\end{array}$$

$$\begin{array}{ll}
\lambda_{2} = -\frac{1}{12} \\
\lambda = -\sqrt{2}
\end{array}$$

$$\begin{array}{ll}
\lambda_{3} = -\sqrt{2} \\
x = -\sqrt{2}
\end{array}$$

Therefore, the points where $\{\nabla f, \nabla g_1, \nabla g_2\}$ is dependent are $(\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ and $(-\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$.

(14.6) Let
$$g_1(x,y, z) = 2x^2 + 3y^2 + 4z^2$$

 $g_2(x,y, z) = y + z$
Then $S = g_1^{-1}(1) \cap g_2^{-1}(0)$.

$$\begin{cases} \nabla f, \nabla g_1, \nabla g_2 \end{cases}$$
 is dependent iff
$$\begin{cases} \lambda_1 \nabla f + \lambda_2 \nabla g_1 + \lambda_3 \nabla g_2 = 0 \\ 2x^2 + 3y^2 + 4z^2 = 1 \end{cases}$$

$$\begin{cases} 4z^2 + 3y^2 + 4z^2 = 1 \end{cases}$$

$$\begin{cases} 4z^2 + 3z^2 + 4z^2 = 1 \end{cases}$$

$$2x(\lambda_1 + 2\lambda_2) = 0$$

$$2y(\lambda_1 + 3\lambda_2) + \lambda_3 = 0$$

$$2z(\lambda_1 + 4\lambda_2) + \lambda_3 = 0$$

$$2x^2 + 3y^2 + 4z^2 = 1$$

$$y + z = 0$$

If
$$x = 0$$
 then $3y^2 + 4z^2 = 1$
 $y + z = 0$
 $\Rightarrow y = \frac{1}{7}$ or $y = \frac{1}{7}$
 $\Rightarrow z = \frac{1}{7}$

If
$$x \neq 0$$
 then $\lambda_1 + 2\lambda_2 = 0$

$$\begin{cases} 2\lambda_2 y + \lambda_3 = 0 \\ 4\lambda_2 \neq \lambda_3 = 0 \\ 2x^2 + 3y^2 + 4z^2 = 1 \\ y + z = 0 \end{cases}$$

If $\lambda_2 = 0$ then $\lambda_3 = 0$ and $\lambda_1 = 0$ If $\lambda_2 \neq 0$ then $2\lambda_2 y = -4\lambda_2 \neq 0$ which implies $y = -2 \neq 0$. Combining with y + 2 = 0 yields y = 2 = 0. Hence $x = \pm \frac{1}{\sqrt{2}}$

The points where { VF, Vg1, Vg2} is dependent

are (0, 青, 青), (0, 青, 青), (走,0,0), (是,0,0)

(14.8) As already shown in (13.4), the interior of R has no critical point of f

is the union of 4 (part of) the level sets like

21

$$\{x = -3\}$$
 $\cup \{x = 3\}$ $\cup \{y = -3\}$ $\cup \{y = 3\}$

Consider
$$\{x=-3\}$$
, $g(x,y) = x$, $\nabla g = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \neq 0$.

$$\begin{cases} \nabla f = \lambda \nabla g \\ x = -3 \end{cases} \Leftrightarrow \begin{cases} \begin{bmatrix} 2x+y \\ x-2 \end{bmatrix} = \lambda \begin{bmatrix} 1 \\ 0 \end{bmatrix} \\ x = -3 \end{cases}$$

$$\begin{cases} 2x+y=\lambda \\ x-2=0 & (\text{evan branchisch}m) \\ x=-3 \end{cases}$$

Consider
$$\{x=3\}$$
, $g(x,y)=x$ $\forall g=[0] \neq 0$.

$$\begin{cases} \nabla f = \lambda \nabla g \\ x-2 \end{bmatrix} = \lambda \begin{bmatrix} 0 \\$$

Consider
$$\{y=-3\}$$
 $g(x,y)=y$ $\mathcal{G}=\begin{bmatrix}0\\1\end{bmatrix}\neq0$

$$\begin{cases} \nabla f = \lambda \nabla g \\ y=-3 \end{cases} \qquad \begin{cases} \begin{bmatrix}2x+y\\1\end{bmatrix}=\lambda\begin{bmatrix}0\\1\end{bmatrix}\\ y=-3 \end{cases} \qquad \begin{cases} 2x+y=0\\ x-2=\lambda\\ y=-3 \end{cases}$$

$$(x) \begin{cases} x=\frac{3}{2}, \\ y=-3 \end{cases} \qquad (x) \begin{cases} x=\frac{3}{2}, \\ y=-3 \end{cases}$$

. Consider
$$\{y=3\}$$
 $g(x,y)=y$, $\nabla g=[\hat{i}]\neq 0$

$$\begin{cases} \forall f = \lambda \forall g \\ y = 3 \end{cases} \Rightarrow \begin{cases} \begin{cases} x + 2y \\ x - 2 \end{cases} = \lambda \begin{cases} 0 \\ 1 \end{cases} \\ y = 3 \end{cases} \Rightarrow \begin{cases} x = -\frac{3}{2} \\ y = 3 \end{cases} \end{cases}$$

There are 6 candidales for the global extrema: $(\frac{-3}{2}, 3)$ and $(\frac{3}{2}, 3)$ together with 4 corners (-3, -3),

(-3,3), (3,-3), (3,3). By checking the values of fat these point, we get (-3,-3) is absolute max, (-3,3)is the absolute min.

(14.9) There is no critical point on the interior of R.

The boundary of R contains (part of) the level sets

$$\{y=0\}$$
, $\{x=1\}$, $\{y+2x=6\}$

• Consider
$$\{y=0\}$$
, $g(x,y)=y$, $\nabla g=\begin{bmatrix}0\\1\end{bmatrix}$

$$\begin{cases}
\nabla f = \lambda \nabla g \\
y=0
\end{cases} \begin{cases}
\begin{bmatrix}1\\2\end{bmatrix} = \lambda \begin{bmatrix}0\\1\end{bmatrix} \\
y=0
\end{cases} (contradiction)$$

• Consider
$$\{x=1\}$$
 $g(x_1y)=x_1$ $\nabla g=[0]$

$$\begin{cases}
\nabla f = \lambda \nabla g \\
\begin{cases}
1 \\
2
\end{cases} = \lambda \begin{bmatrix} 1 \\ 2
\end{bmatrix} = \lambda \begin{bmatrix} 1 \\ 0
\end{cases}$$

$$\begin{cases}
(contadiction) \\
\chi = 1
\end{cases}$$

Consider
$$\{2x+y=6\}$$
, $g(x,y)=x+2y$, $\nabla g = \begin{bmatrix}1\\2\end{bmatrix}$

$$\begin{cases}
\nabla f = \lambda \nabla g \\
2x+y=6
\end{cases}$$

$$\begin{cases}
2x+y=6
\end{cases}$$

$$\begin{cases}
2x+y=6
\end{cases}$$

$$\begin{cases}
2x+y=6
\end{cases}$$

It's left to check the worners (1,07, (3,0), (1,4).

By cheeking the values of f at these corners, we get

(1,0) is the absolute minimum and (1,4) is the absolute max

(14.10) The interior of R has
$$(0,0)$$
 as the critical point of f. For the boundary, $g(x_1y) = {2x \choose 2y} \neq 0$ because $(0,0)$ is not in the boundary
$$\begin{cases} 2x+y = 2x \\ x^2 + y^2 = 4 \end{cases}$$

$$\begin{cases} 2x+y = 2x \end{cases}$$

$$\begin{cases} 2x+y = 2x \end{cases}$$

$$\begin{cases} 2x+y = 2x \end{cases}$$

$$(2) \begin{cases} 2x_{+}y = 2\lambda x \\ -x_{+} = 2\lambda y \end{cases} (2-2\lambda)x = -x \\ x^{2} + y^{2} = 4 \end{cases} (2-2\lambda)y = -x \\ x^{2} + y^{2} = 4 \end{cases}$$

If x=0 or y=0 then both home to be 0 (which is not in $\{x^2+y^2=4\}$)

If both $x_1y \neq 0$, then $(2-2\lambda)^2xy=xy$

$$(2-2\lambda)^2 = 1$$

$$\Rightarrow \lambda = \frac{1}{2} \text{ or } \lambda = \frac{3}{2}$$

If
$$\lambda = \frac{1}{2}$$
 then $x = -\gamma$ and thus $x = \sqrt{2}$ or $x = -\sqrt{2}$ $y = -\sqrt{2}$ $y = -\sqrt{2}$ $y = -\sqrt{2}$

If
$$\lambda = \frac{3}{2}$$
 then $1 \times = y$ and thus $1 \times = \sqrt{2}$ Gry $x = -\sqrt{2}$ $1 \times = \sqrt{2}$ $1 \times = \sqrt{2}$ $1 \times = \sqrt{2}$ $1 \times = \sqrt{2}$

By checking the values of f at these points, we have $(\sqrt{2}, \sqrt{2})$ and $(-\sqrt{2}, -\sqrt{2})$ are absolute maximum, and (0, 0) is the absolute minimum.

(14.19) (a) Consider
$$f(x_1, y_1, z_1, x_2, y_2, z_2) = x_1x_2 + y_1y_2 + 3z_2$$

 $g_1(x_1, y_1, z_1, x_2, y_2, z_2) = x_1^2 + y_1^2 + z_1^2$
 $g_2(x_1, y_1, z_1, x_2, y_2, z_2) = x_2^2 + y_2^2 + z_2^2$

$$\nabla f = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \\ x_1 \\ y_1 \\ z_1 \end{bmatrix}, \quad \nabla g_1 = \begin{bmatrix} 2x_1 \\ 2y_1 \\ 2z_1 \\ 0 \end{bmatrix}, \quad \nabla g_2 = \begin{bmatrix} 0 \\ 0 \\ 2x_2 \\ 2y_2 \\ 2z_2 \end{bmatrix}$$

Since $V_{g_1} \neq 0$ and $V_{g_2} \neq 0$ and $\{V_{g_1}, V_{g_2}\}$ can't be linearly dependent, we have equation f(x, y) = f(x, y)

early dependent, we have equation
$$\begin{bmatrix}
x_2 \\
y_2 \\
z_2 \\
x_1
\end{bmatrix} = \lambda_1 \begin{bmatrix}
2x_1 \\
2x_1 \\
2x_1 \\
0
\end{bmatrix} + \lambda_2 \begin{bmatrix}
0 \\
2x_2 \\
2x_2 \\
2x_1 \\
2x_2 \\$$

$$\left(-|x_1^2 + y_1^2 + z_1^2 = a \right) - x_2^2 + y_1^2 + z_2^2 = b$$

In particular
$$\begin{bmatrix} X_1 \\ Y_1 \end{bmatrix}$$
 is parallel to $\begin{bmatrix} X_2 \\ Y_2 \end{bmatrix}$.

To solve for λ_1 , λ_2 , replacing $x_1 = 2\lambda_1 x_1$, $y_1 = 2\lambda_1 y_1$, $z_2 = 2\lambda_1 z_1$ Inho $x_2^2 + y_2^2 + z_2^2 = b$ we get $4\lambda_1^2 \left(x_1^2 + y_1^2 + z_1^2\right) = b^2.$ $\lambda_1 = \frac{b}{2a}, \text{ or } \lambda_1 = -\frac{b}{2a}.$

In the case $\lambda_1 = \frac{b}{2a}$, $f(x_1, y_1, z_1, x_2, y_2, z_2) = x_1 2 \left| \frac{b}{2a} | x_1 + y_1 2 \left| \frac{b}{2a} | y_1 + z_1 - \left| \frac{b}{2a} | z_1 = 2 \left| \frac{b}{2a} | a^2 = c_1 + c_2 \right| \right|$

In the case $2y = -\frac{b}{2a}$, $f(x_1,y_1,z_1,x_2,y_2,z_2) = -ab$

Hence the maximum occurs when $\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \frac{b}{2a} \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$

(i.e parallel). The minimum occurs when $\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = -\frac{5}{2a} \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$

(U.C anti-parallel)

b) Since -ab ≤ r, r2 ≤ ab, we have -1|r,1|r,2| ≤ r, r2 ≤ ||r,1||r,2|| , ie |r,r2| ≤ ||r,1||r,2||

Suppose we want to find local extrema of f on a level set $g^{-1}(c)$. The picture on the left show how the level set $g^{-1}(c)$ (the black curve)

(the dotted curves). At the local extrema, the level set g'(c) must be tangent to the level set of f. If we assume $\nabla g'(c)$ at that point is nonzero, the tangent plane of g'(c) and that level set of f at the local extremum must be the same. In particular, $\nabla f = \lambda \nabla g$.

The punts (x,y) where f, under reshichen do
the blue come, take extreme
values are (-1,0) and
(1,0)

b)
$$f(x, y) = x^2 + y^2 - 2x + 1$$

 $g(x, y) = x^2 + y^2$

 $Vg = \begin{bmatrix} 2x \\ 2y \end{bmatrix} \neq 0$ since (0,0) is not in $[x^2 + y^2 = 1]$ We have the local extrema satisfy

$$\int_{1}^{\infty} \nabla f = \lambda \nabla g$$

$$\int_{1}^{\infty} x^{2} + y^{2} = \int_{1}^{\infty} x^{2} dx$$

$$\begin{cases} \begin{bmatrix} 2x \\ 2y \end{bmatrix} = \lambda \begin{bmatrix} 2x - 2 \\ 2y \end{bmatrix} \\ x^2 + y^2 = 1 \end{cases}$$

 $2y = 2\lambda y$ \Rightarrow either y = 0 or $\lambda = 1$ If y = 0 then $x = \pm 1$ If $\lambda = 1$ then 2x = 2x - 2 (contradiction)

Comparing the values f(1,0) = 0; we get the maximum f(+1,0) = 4

leg at (-1,0) and minimum (5 at (-1,0)

C) Parametrize the circle
$$x = \cos \theta$$

 $y = \sin \theta$
Then $f(\theta) = \cos^2 \theta + \sin^2 \theta - 2\cos \theta + 1$
 $= 1 - 2\cos \theta + 1$
 $= 2 - 2\cos \theta$

 $f'(\theta) = 0$ $\theta = 0$ $\theta = 0$ $\theta = \pi$

There are 2 eritical punts (1,0) and (-1,0)Comparing the values, we get the maximum is at (-1,0)and minimum is at (-1,0)

= $(\lambda - 7)(1 + \lambda - 5) - (\lambda - 7)(-\lambda + 5 - 1) - (\lambda - 7)(\lambda - 5)^2 - 1$

 $= -(\lambda - 7)(-\lambda + 4 - \lambda + 4 - (\lambda - 4)(\lambda - 6))$

$$= (\lambda - 7)(\lambda - 4)(\lambda - 4)$$

$$= (\lambda - 7)(\lambda - 4)^{2}$$

$$3=7$$
 $7Id-A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$

The RREF of this matrix is

So
$$\begin{cases} X-y=0 \\ X=y=2 \end{cases}$$
 parametrize $N(7Id-A)$

which is the eigenspace of A with $\lambda = 7$. In particular the eigenspace is spagned by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

The RREF is

The null space of this makix satisfies

$$\begin{array}{c} X = -Y - \overline{z} \\ \begin{bmatrix} X \\ Y \\ 7 \end{bmatrix} = \begin{bmatrix} Y \\ +1 \\ 0 \end{bmatrix} + \overline{z} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \end{array}$$

The eigenspace for $\lambda = 4$ is spanned by $\begin{bmatrix} -1 \\ 0 \end{bmatrix} & \begin{bmatrix} -1 \\ 0 \end{bmatrix}$

C) An eigenbasis is
$$\{[1], [1], [1], [1]\}$$

$$e_1 = \frac{1}{3}([1] - [1] - [1])$$

$$d) A^{100}e_1 = A^{100} \frac{1}{3}([1] - [1] - [1])$$

$$= \frac{1}{3}([1] - [1] - [1]) - [1]$$
(since $A^{n}v = \lambda^{n}v$ if $Av = \lambda v$)