COMP108 Data Structures and Algorithms

Pseudo code (Part II)

Professor Prudence Wong

pwong@liverpool.ac.uk

2024-25

Developing pseudo code

- Suppose x & y are both +ve integers.
- Write a while loop to output all factors of x which are not factors of y.

Examples of expected results:

				<u> </u>
	X	У	factors of x	output
:	6	3	1, 2, 3, 6	2, 6
	30	9	1, 2, 3, 5, 6, 10, 15, 30	2, 5, 6, 10, 15, 30
	3	6	1, 3	-

Skeleton:

```
    i ← ?
    while ???? do
    begin
    if ??? then
    output ???
    i ← ??
    end
```

Factors of x but not factors of y

Steps:

- Factor of x must be between 1 and x
 - $\begin{aligned} \mathbf{i} &\leftarrow \mathbf{1} \\ \text{while } \mathbf{i} &\leq \mathbf{x} \text{ do} \\ \text{begin} \\ \mathbf{i} &\leftarrow \mathbf{i+1} \\ \text{end} \end{aligned}$
- If x is divisible by i, then i is a factor of x

 if x%i == 0 then
- If y is not divisible by i, then i is not a factor of y if y%i \neq 0 then
- We need both conditions to hold and then we output i

```
if x%i == 0 \text{ AND} y%i \neq 0 then output i
```

Factors of x but not factors of y

Summarizing:

```
\begin{aligned} \mathbf{i} &\leftarrow 1 \\ \text{while } \mathbf{i} &\leq \mathbf{x} \text{ do} \\ \text{begin} \\ \text{if } \mathbf{x}\% \mathbf{i} &== 0 \text{ AND } \mathbf{y}\% \mathbf{i} \neq 0 \text{ then} \\ \text{output } \mathbf{i} \\ \text{i} &\leftarrow \mathbf{i+1} \\ \text{end} \end{aligned}
```

Finding Lowest Common Multiple (LCM)

Suppose 0 < x < y & both are +ve integers.

Write a while loop to output the lowest common multiple lcm of x and y, i.e., the smallest number that is divisible by x and divisible by y.

- So we want
 - Icm%x to be 0
 - Icm%y to be 0
 - Icm to be as small as possible
- Icm cannot be smaller than y and would not be larger than x*y.
 - we can start lcm from y, increase by 1 every time, and then check if lcm is multiple of both x and y
 - we can start lcm from y, increase by y every time, and then check if lcm is multiple of x (we don't need to check if lcm is multiple of y because it is already)
 - once we find the smallest one, we should stop

LCM

 $\begin{array}{l} \text{lcm} \leftarrow \underline{\quad y\quad }, \text{found} \leftarrow \text{false} \\ \text{while lcm} \leq \underline{\quad x^*y\quad } \text{ AND found} \neq \text{true do} \\ \text{begin} \\ \text{if} \underline{\quad \text{lcm}\%x == 0 \text{ AND lcm}\%y == 0 \ } \text{ then} \\ \text{found} \leftarrow \text{true} \\ \text{else lcm} \leftarrow \text{lcm} + \underline{\quad 1\quad } \\ \text{end} \\ \text{output lcm} \end{array}$

```
\begin{array}{l} \text{lcm} \leftarrow \underline{\quad y \quad } \text{, found} \leftarrow \text{false} \\ \text{while lcm} \leq \underline{\quad x^*y \quad } \text{AND found} \neq \text{true do} \\ \text{begin} \\ \text{if} \underline{\quad \text{lcm}\%x == 0 \quad } \text{then} \\ \text{found} \leftarrow \text{true} \\ \text{else lcm} \leftarrow \text{lcm} + \underline{\quad y \quad } \\ \text{end} \\ \text{output lcm} \end{array}
```

Questions

- Is the condition "lcm ≤ x*y" necessary?
- Why do we need to use the flag variable found?
- What happens if we remove the keyword "else"?

More example

Suppose 0 < x < y & both are +ve integers.

Write a while loop to output all numbers each of which is

- a factor of x but not a factor of y, OR
- a factor of y but not a factor of x.

Examples of expected results:

	Х	У	factors of x	factors of y	output
:	3	6	1, 3	1, 2, 3, 6	2,6
	5	7	1, 5	1, 7	5, 7

x%iORi%x?

$i \leftarrow 1$	
while i \leq do	
begin	
if	then
output i	
i ← i+1	
end	

More example

Suppose 0 < x < y & both are +ve integers.

Write a while loop to output all numbers each of which is

- a factor of x but not a factor of y, OR
- a factor of y but not a factor of x.

Examples of expected results:

	Х	У	factors of x	factors of y	output
:	3	6	1, 3	1, 2, 3, 6	2,6
	5	7	1,5	1,7	5, 7

```
\begin{array}{c} \text{i} \leftarrow 1 \\ \text{while i} \leq \underline{\quad y \quad } \text{do} \\ \text{begin} \\ \text{if } \underline{\quad (x\% \text{i==0 AND } y\% \text{i} \neq \text{0}) \quad } \text{OR} \underline{\quad (y\% \text{i==0 AND } x\% \text{i} \neq \text{0}) \quad } \text{then} \\ \underline{\quad \text{output i}} \\ \text{i} \leftarrow \text{i+1} \\ \text{end} \end{array}
```

More example

Suppose 0 < x < y & both are +ve integers. Write a while loop to output all numbers each of which is

- a factor of x but not a factor of y, OR
- a factor of y but not a factor of x.

factor of y	output?
Т	F
F	T
Т	T
F	F
	factor of y T F T

Do you remember what this is? It's XOR.

```
\begin \begin
```

COMP108-02-Pseudo-Code-02

Summary: Developing pseudo code

More Exercises on pseudo code in Weekly Practice Quiz and next week's tutorial

Next: Algorithm Efficiency, Use of Arrays

For note taking