MAT232 - Lecture 4

 $[\operatorname{Lesson} \, \operatorname{Topic}(s)]$

AlexanderTheMango

Prepared for January 16, 2025

Definitions and Theorems

Straight from the textbook — no fluff, just what we need.

Quick recap before diving into the lecture.

Lecture Title

Note

This template is designed for MAT232 lecture notes. Replace this content with your specific lecture details.

Key Concepts

Definition

A parametric equation is a set of equations that express the coordinates of the points of a curve as functions of a variable, called a parameter.

Examples

Example

Example 1: Consider the parametric equations:

$$x = t, \quad y = t^2, \quad t \in \mathbb{R}.$$

- At t = 0, (x, y) = (0, 0).
- At t = 1, (x, y) = (1, 1).

This describes a parabola.

Figure 1: Sample image illustrating the concept.

Theorems and Proofs

Theorem

Theorem: If x(t) and y(t) are differentiable functions, the slope of the curve is given by:

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}, \text{ provided } \frac{dx}{dt} \neq 0.$$

Figure 2: Graphical representation of the theorem.

Additional Notes

Note

Always check the domain of the parameter t when solving problems involving parametric equations.