Варианты краевых условий

00 · ·	10 · ·	01 · ·	11 · ·	
u(0) = u(1) = 0	u'(0) = u(1) = 0	u(0) = u'(1) = 0	u'(0) = u'(1) = 0	
Варианты сеток.				

00	⋯ 10	⋯ 01	·· 11
$x_0 = 0,$	$x_0 = -h/2,$	$x_0 = 0,$	$x_0 = -h/2,$
$x_N = 1,$	$x_N = 1,$	$x_N = 1 + h/2,$	$x_N = 1 + h/2,$
h = 1/N	h = 1/(N - 0.5)	h = 1/(N - 0.5)	h = 1/(N-1)

Задание 1d.

- 1) Для функции $u(x) \in C^{\infty}[0,1]$, удовлетворяющей указанным краевым условиям, выписать тригонометрический ряд Фурье и сформулировать теорему сходимости.
- 2) На заданной сетке выписать дискретный тригонометричекий ряд Фурье. Найти дискретное скалярное произведение, сохраняющее ортогональность базисных функций. Нормировать базисные функции.
- 3) Для некоторой тестовой функции из указанного класса численно найти порядок скодимости её дискретного ряда Фурье.

Задание 2d.

- 1) Для функции $u(x,y) \in C^{\infty}[0,1] \times [0,1]$, удовлетворяющей указанным краевым условиям, выписать двукратный тригонометрический ряд Фурье и сформулировать теорему сходимости.
- 2) На заданной сетке выписать дискретный тригонометричекий ряд Фурье. Найти дискретное скалярное произведение, сохраняющее ортогональность базисных функций. Нормировать базисные функции.
- 3) Для некоторой тестовой функции из указанного класса численно найти порядок скодимости её дискретного ряда Фурье.