Lab4 x

задание для самостоятельного выполнения

Плата для аппаратной отладки проекта

Аппаратная отладка проекта может быть ориентирована как на плату NeeK 10, так и на плату MiniDiLaB-CIV

NeeK 10: Микросхема FPGA - **10M50DAF484C6GES**, семейство MAX10. Вход тактового сигнала (50M Γ μ) — V9 MiniDiLaB-CIV: Микросхема - **EP4CE6E22C8**, Вход тактового сигнала (25M Γ μ) — 23.

Описание проекта Lab4 1

Имя проекта – lab4 1. Имя модуля верхнего уровня – lab4_1. Файл с описанием – Lab4_1.v. Рабочая папка Lab4_1.

На языке Verilog опишите без знаковый делитель с повышенной точностью (4 знака после запятой). Разрядность чисел – параметр N.

Выводы модуля:

- Входы
 - CLK тактовый вход
 - ENA вход разрешения работы
 - RST вход асинхронного сброса всех регистров проекта.
 - о [N-1:0] D Делимое
 - o [N-1:0] DD Делитель
- Выходы
 - o [N-1:0] RES
 - o [3:0] REM

Требования к модулю.

На входах и выходах данных должны быть использованы регистры с входами сброса и разрешения работы. Входы ENA и RST должны быть синхронизированы (использовать два последовательно включенных триггера).

Моделирование:

- Значение параметра N = 8
- Разработать тест класса 1 (tb1_Lab4_1.v) и провести моделирование.
 - значения входов, выходов и время записывать в файл используя любую команду, данные должны быть отформатированы для удобного чтения. Имя файла tb1_lab4_1.dat
- Разработать тест класса 2 входные и ожидаемые данные хранятся во внешних файлах (tb2_Lab4_1.v) и провести моделирование.

Отладка

Значение параметра N=8

С помощью In System Source and Probe и Signal Tap II провести отладку на плате, зафиксировать результаты, продемонстрировать преподавателю. Для синхронизации Signal Tap II использовать удвоенную частоту CLK.

Реализация

Не требуется.

Описание проекта Lab4 2

Имя проекта – lab4_2. Имя модуля верхнего уровня – lab4_2. Файл с описанием – Lab4_2.v. Рабочая папка Lab4_2.

На языке Verilog опишите устройство сортировки 4-х чисел (числа N-разрядные, знаковые). Разрядность чисел N – параметр.

Выводы модуля:

- Входы
 - CLK тактовый вход
 - ENA − вход разрешения работы
 - RST вход асинхронного сброса регистров проекта.
 - o [N:0] D [3:0] входные данные
- Выходы
 - o [N:0] RES [3:0] входные данные (большее число в слове [N:0] RES [3])

Требования к модулю.

На входах и выходах данных должны быть использованы регистры с входами сброса и разрешения работы. Входы ENA и RST должны быть синхронизированы (использовать два последовательно включенных триггера).

Моделирование:

- Значение параметра N = 16
- Разработать тест класса 1 (tb1_Lab4_2.v) и провести моделирование.
 - о значения входов, выходов и время записывать в файл используя любую команду, данные должны быть отформатированы для удобного чтения. имя файла tb1_lab4_2.dat
- Разработать тест класса 2 входные и ожидаемые данные хранятся во внешних файлах (tb2_Lab4_2.v) и провести моделирование.

Отладка

Значение параметра N = 16

С помощью In System Source and Probe и Signal Tap II провести отладку на плате, зафиксировать результаты, продемонстрировать преподавателю. Для синхронизации Signal Tap II использовать удвоенную частоту CLK.

Реализация

Не требуется

Требования для получения зачета по этапу КП

Для получения отметки о выполнении по Lab4_х необходимо:

- 1. Продемонстрировать преподавателю этапы (по его выбору) из программы работы.
- 2. Загрузить в DL отчет, включающий отображение всех этапов из программы работы
 - а. Отчет должен иметь титульный лист; содержание (собираемое автоматически); список рисунков (собираемый автоматически); задание; разделы (для Lab4_1 и Lab4_2 отдельные разделы) отражающие этапы программы работы; заключение (выводы).
 - b. Все страницы д.б. пронумерованы.
 - с. Все рисунки должны иметь подписи и ссылки на них.
 - d. Ко всем рисункам д.б. пояснения в тексте.
 - е. Отчет должен быть в редактируемом формате (doc; docx).
- 3. Загрузить в DL архив с рабочими папками.