Modern Physics F3241

An overview of what we will cover in each lecture

Lily Asquith

September 2019

Lecture 0 Module Info Monday 30 Sep

"Reality is merely an illusion, albeit a very persistent one." - Albert Einstein

Lectures (22): MON 3PM & FRI 3PM (JMS BLT)

Classes (10): MON 6PM (JMS BLT)
Workshops (10): TUE 6PM (PEV1-2A12)

Assessment: Two assignments (10% each) in weeks 8 and 11

Unseen exam (80%)

Web: canvas

Attendance : get an account polleverywhere sign register: ilovephysics

Books: Tipler & Llewellyn

Watch: Voyage into the world of atoms:

Read: The pdf of this document has hyperlinks in blue and is available on github

Lecture 1

Key formulae:

Newton's 2^{nd} law: $F = \frac{mv^2}{r}$ Electric force: $F = g \mathcal{E}$

Magnetic force: F = qvB

Faraday's constant: $F = N_A e$

Charge $e\approx 1.60\times 10^{-19}~\text{C}$

Watch:

Thomson's cathode ray experiment 🛗

Millikan's oil drop experiment 🛗

Read: Chapter 3.1 of Tipler & Llewellyn

Electricity is made up of particles, and they are tiny compared to 'atoms'.

Wein's displacement law: $\lambda_m T \approx 2.90 \times 10^{-3} m \cdot K$

Stefan-Boltzmann law: $P = \sigma T^4 W \cdot m^{-2}$

Rayleigh-Jeans equation: $U(\lambda) = \frac{8\pi}{\lambda^4} k_B T$

Watch: Blackbodies 🛗

Read:

Chapter 3.2 pages 119-121

This is a nice explanation of colour

- **V** Everything emits radiation.
- $holdsymbol{\widehat{V}}$ The intensity and λ of blackbody radiation depends only on its temperature.
- © Classical theory predicts short wavelength radiation should be emitted in vast quantities, which is not observed.

Quantisation of energy: $E_n = nhf = nh\frac{c}{\lambda}J$

Planck's radiation law: $U(\lambda) = \frac{8\pi hc}{\lambda^5} \frac{1}{e^{hc/\lambda kT} - 1}$

Planck's constant: $h \approx 6.63 \times 10^{-34} J \cdot s$

Watch: Planck's contributions

Read: Chapter 3.2 Planck's law

 $\$ UV catastrophe goes away if energies of 'oscillators' can only take particular values: quanta.

We never realised this before because the values are so very close together.

Lecture 4 The Photoelectric effect Monday 14 Oct

Key formulae:

Photoelectric effect: $eV_0 = hf = KE_{max} + \Phi$

Watch:

Hertz's radio 🛗

Read: Chapter 3.3 The Photoelectric effect

- At the electron scale, EM radiation does not behave as a wave should.
- $\label{eq:continuous}$ The intensity of the EM radiation is ineffectual in releasing electrons if λ is not of a certain value
- ♀ Different materials have different maximum KE thresholds for emitted electrons.

Lecture 5 The Compton Effect Friday 18 Oct

Key formulae:

Bragg condition: $2d \sin \theta = m\lambda$

Compton effect: $\Delta \lambda = \frac{h}{mc} (1 - \cos \theta)$

Watch:

Discovery of x-rays

Read: Chapter 3.4 X-rays and the Compton effect

- Some EM radiation can pass right through solids.
- eals Wavelength so tiny that crystals must be used for diffraction grating
- ♀ Scattering x-rays from crystals changes their wavelength.

Balmer's empirical formula: $\lambda_n = 364.6 \frac{n^2}{n^2 - 4}$ nm

Rydberg-Ritz formula: $\frac{1}{\lambda_{mn}} = R\left(\frac{1}{m^2} - \frac{1}{n^2}\right)$ for n > m

Watch:

Sodium absorption lines 🛗

Read: Chapter 4.1 Atomic spectra

♦ There are gaps in the EM spectrum at different wavelengths when burning metals.

Coulomb potential: $V = -\frac{kZe^2}{r}$

Centripetal force: $F = \frac{kZe^2}{r^2} = \frac{mv^2}{r}$

Total energy: $E = \frac{1}{2}mv^2 + \left(-\frac{kZe^2}{r}\right) \sim -\frac{1}{r}$

Watch:

Discovery of the nucleus:

The T ('skin'tillation) : 🛗

Read: Chapter 4.2 150-153

 $holdsymbol{\widehat{V}}$ Firing lpha particles at a gold foil occasionally results in massive deflections.

The positive charge in an atom is concentrated at its centre: a nucleus.

V The nucleus is much smaller than the atom, and is different for different atoms.

Planck's theory:
$$hf = E_i - E_f$$

Angular momentum:
$$L = mvr = n\hbar$$
 for $n = 1, 2, 3, ...$

Radii of stationary orbits:
$$r_n = \frac{n^2 \hbar^2}{mkZe^2} = \frac{n^2 a_0}{Z}$$

Bohr radius:
$$a_0 = \frac{\hbar^2}{mke^2} = 0.529 \mathring{A}$$

Allowed energies:
$$E_n = -\frac{Z^2 E_0}{n^2}$$
 for $n = 1, 2, 3, ...$

Binding energy of H:
$$E_0 = \frac{mk^2e^2}{2\hbar^2} = 13.6 \text{ eV}$$

Watch:

Atomic energy levels: Read: Chapter 4.3 159-163

♀ Bohr modelled the nuclear atom as a little solar system.

Plectrons don't fall into nucleus if they are in certain stable orbits

§ EM radiation results from electrons moving between stable orbits.

De Broglie relations:
$$f = \frac{E}{h}$$
 and $\lambda = \frac{h}{p}$

Wave equation:
$$\frac{d^2y}{dx^2} = \frac{1}{v^2}\frac{d^2y}{dt^2}$$
 Phase (wave) velocity:
$$v_\phi = f\lambda = \frac{\omega}{k}$$

Phase (wave) velocity:
$$v_{\phi} = f \lambda = \frac{\omega}{k}$$

Group (packet) (particle) velocity:
$$v_g = \frac{d\omega}{dk} = v_\phi + k \frac{dv_\phi}{dk}$$

Watch:

The double slit experiment:

Read: Chapter 5.1

- The wave-particle nature of photons could be applied to all particles.
- Electrons and even molecules are observed to behave like waves

Probability: $P(x)dx = |\Psi|^2 dx$

Uncertainty principle: $\Delta E \Delta t \geq \frac{\hbar}{2}$ and $\Delta x \Delta p \geq \frac{\hbar}{2}$

Particle in a box : $ar{E} \geq rac{\hbar^2}{2mL^2}$

Read: Chapter 5.5

Watch:

Animation of wavefunction:

Decoherence and entanglement:

Quantum Mechanics is an embarrassment:

Lecture 11 The Nucleus and radioactivity Friday 8 Nov

Key formulae:

Mass number: A = 7 + N

Mean radius: $R = (1.07 \pm 0.02)A^{1/3}$ fm; ($\sim 1-10$ fm)

Binding energy: $B_{nuclear} = (ZM_H + Nm_n - M_A)c^2$

Nuclear force range: $R = c\Delta t = c\hbar/\Delta E = \hbar/m_{\pi}c$; (< 3fm)

 $R = -\frac{dN}{dt} = \lambda N_0 e^{-\lambda t} = R_0 e^{-\lambda t}$ Decay rate:

Half life: $t_{1/2} = \frac{\ln 2}{2} = 0.693\tau$

 $\alpha(^4He)$; $\beta(e^{-/+})$; γ Radioactivity:

Read:

Is the whole the sum of its parts?

Chapter 11.3

Watch:

Discovery of radioactivity:

Lecture 12 Fission & Fusion Monday 11 Nov

Read: Chapter 11.8

Watch:

Fusion:

Fission:

Lecture 13 Elementary Particles Friday 15 Nov

- Mhat are nucleons made of?
- Mhat holds a nucleon together?
- Can particles have negative energy?
- My do most elementary particles not form matter?
- How can quarks interact with leptons?
- Mow can we explain nuclear instability in terms of elementary particles?

Lecture 14 The Cutting Edge Monday 18 Nov

- What are we looking for with the ATLAS experiment at CERN?
- Mhat are we looking for with the NOvA experiment at Fermilab?
- ⚠ What are we looking for with the SNO+ experiment at SNOlab?
- Mhat are we doing to look for Dark Matter?

- A review of the important things we have covered
- How this course links to your future studies

Lectures 16 - 22: Special Relativity with Stephen Wilkins

Check canvas!