SAYISAL ANALİZ

Doç.Dr. Cüneyt BAYILMIŞ

SAYISAL ANALİZ

2. Hafta

MATLAB İLE GRAFİK ÇİZİMLERİ

İÇİNDEKİLER

- 1. plot Komutu İle Grafik Çizimi
- 2. fplot Komutu İle Grafik Çizimi
- 3. ezplot Komutu İle Grafik Çizimi
- 4. Grafikler Üzerinde Düzenlemeler
- 5. subplot Komutu ile Figür Penceresini Bölme
- 6. Özel Grafikler

plot komutu ile grafik çizme

- □ plot komutunun genel kullanımı
- □ xlabel komutu ile x ekseninin adlandırılması
- ☐ ylabel komutu ile y ekseninin adlandırılması
- ☐ title komutu ile grafiğe isim verilmesi
- ☐ renk, şekil, kalınlık gibi grafiklerin özelliklerinin değiştirilmesi
- □ hold on komutu ile tek bir pencerede birden fazla grafik çizdirilmesi
- ☐ grid komutu ile yatay ve dikey bölümlendirme
- ☐ axis komutu ile eksen ölçeklendirme

plot Komutu ile Grafik Çizimi genel kullanımı

- İki boyutlu grafik çiziminde kullanılır.
- plot(x, y)y eksenine ait vektörel ifade x eksenine ait vektörel ifade

Ornek: $u(t) = 2Sin(\omega t)$ sinyalini 0.01 <u>adımlarla</u>, 0 ile 10 sn zaman dilimi için

çiziniz? Not: $\omega = 1$

plot Komutu ile Grafik Çizimi grafiklere ve eksenlere isim verilmesi

- ☐ Çizdirilen grafiklerin daha anlamlı olması için, grafiklere başlık ve x ile y eksenine de isim verilmesi gerekir.
 - title (' Grafiğin başlığı ')
 - xlabel ('x ekseninin etiketi')
 - ylabel ('y ekseninin etiketi')
- Onceki örnek çizdirilen grafik üzerinde isim verilmesi:

```
Komut penceresi

% Grafik üzerinde eksen açıklamalarının yapılması
>> xlabel ('Zaman (s) ')

>> ylabel (' u(t) ')

% Grafiğe başlık verilmesi
>> title ('u(t)= 2 sin (\omega t)
sinyalinin 10 saniyelik değişimi ')
```


plot Komutu ile Grafik Çizimi

grafik başlık ve eksen isimlerinin boyutlandırılması

- Bazı durumlarda eksen ve başlık isimlerinin daha koyu yazdırılması istenebilir. Bu durumda yazının büyüklük (font) ayarı değiştirilmelidir.
 - fontsize (' istenen punto ')

```
Komut penceresi

% Grafik üzerinde eksen ve başlık açıklamalarının 14 punto yazılması

>> xlabel ('Zaman (s)', 'fontsize', [14])

>> ylabel ('u(t)', 'fontsize', [14])

>> title ('u(t)= 2 sin (\omega t) sinyalinin 10 saniyelik değişimi', 'fontsize', [14])
```


plot Komutu ile Grafik Çizimi grafik çizgi-işaret stillerinin değiştirilmesi

- plot komutu ile grafikler düz çizgi tarzındadır.
- Farklı türde çizgi ve işarete sahip grafik çizdirmek için plot komutu aşağıdaki gibi kullanılmalıdır.

Çizgi çeşitleri

Düz çizgi	-	İki noktalı	:
Kesikli çizgi		Kesikli-noktalı	

İşaret çeşitleri

Nokta	•	Üçgen (aşağı)	V
Artı	+	Üçgen (yukarı)	٨
Yıldız	*	Üçgen (sola)	<
Daire	0	Üçgen (sağa)	>
x-işareti	X	Beş köşeli	p
Kare	S	Altı köşeli	h
Baklava şekli	d		

plot Komutu ile Grafik Çizimi grafik çizgi-işaret stillerinin değiştirilmesi

☐ Örnek: plot komutu ile kesik çizgili ve daire işaretlerine sahip grafik çizimi.

```
Komut penceresi

% 0.1 artışlar ile 0 – 10 sn zaman diliminin tanımlanması

>> t = 0: 0.1 : 10;

% Grafiğin y eksenini oluşturacak u(t) sinyalinin tanımlanması

>> u = 2*sin(t);

% Grafiğin kesik çizgili ve daire işaretleri ile çizdirilmesi

>> plot(t,u, '-- o')
```


plot Komutu ile Grafik Çizimi grafik çizgi renklerinin değiştirilmesi

☐ Renk tanımlamalarında genel olarak, renklere ait ingilizce kelimelerin baş karakterleri kullanılmaktadır. Örneğin kırmızı için red 'r'

Renk	çeşitl	leri
------	--------	------

Kırmızı	r	Beyaz	W
Yeşil	g	Siyah	k
Mavi	b	Çıyan	c
Sarı	y	Maganda	m
Görünmez	i		

- ☐ Standart renk tanımlamalarının dışında [r g b] bir başka değişle [kırmızı yeşil mavi] şeklinde vektörel tanımlamada yapılabilir.
- Vektörel tanımlamadaki sayısal değerler 0 ile 1 arasında olmalıdır. 0 rengin olmayacağını, 1 oluşturulacak renk içerisindeki ana rengi gösterir. 0.4 gibi bir değer ise o renge ait katkı miktarını gösterir.

Vektörel olarak tanımlanmış bazı renk çeşitleri

[1 1 1] Beyaz	[1 0 0] Kırmızı	[1 1 0] Sarı
[0 0 0] Siyah	[0 1 0] Yeşil	[1 0 1] Pembe
	[0 0 1] Mavi	[0 1 1] Açık mavi

plot Komutu ile Grafik Çizimi grafik çizgi-işaret ve renk stillerinin değiştirilmesi

☐ Örnek: plot komutu ile iki noktalı çizgili ve kare işaretlerine sahip kırmızı renkli grafik çizimi.

```
Komut penceresi
% 0.1 artışlar ile 0 – 10 sn zaman diliminin tanımlanması
>> t = 0: 0.1 : 10;

% Grafiğin y eksenini oluşturacak u(t) sinyalinin tanımlanması
>> u = 2*sin(t);

% iki noktalı, kare işaretli ve kırmızı renkte grafik
>> plot(t,u, ': s r ')
```


plot Komutu ile Grafik Çizimi

plot komutunun diğer özellikleri

Edit View Insert Tools Desktop Window Help

u(t) = 5 sin(2t) sinyalinin 0 - 2π zaman dilimindeki değişimi

```
plot(x,y,'LineStyle', '--',...
'Color','r',...
'LineWidth',2,...
'Marker','square',...
'MarkerEdgeColor','k',...
'MarkerFaceColor','g',...
'MarkerSize',10)
```

```
PROGRAM 3.3
       % Grafik çiziminde yer alan u(t) sinyalinin tanımlanması
    - t = 0:pi/18:2*pi;
3
    - u = 5*sin(2*t);
                                                                                 Zaman (s)
4
5
      % Grafik çiziminin plot komutu ile gerçekleştirilmesi
      plot(t,u,'-bs','linewidth',3,'MarkerEdgeColor','[1 0 0]', ...
6
             'MarkerSize',16)
       % Grafik üzerinde eksen açıklamalarının yapılması
    - xlabel ('Zaman (s)', 'fontsize', 14)
9
10
    - ylabel('u(t)','fontsize',14)
    - title('u(t) = 5 sin(2t) sinyalinin 0 - 2\pi zaman dilimindeki ...
11
12
              değişimi', 'fontsize', 14)
```


plot Komutu ile Grafik Çizimi tek bir figürde birden fazla grafik çizimi

☐ Tek bir figure içerisinde farklı özelliklere sahip birden fazla grafik çizdirilmesi istenirse,

plot Komutu ile Grafik Çizimi tek bir figürde birden fazla grafik çizimi

- Ornek: Aşağıda belirtilen işlemleri bir m.file içerisinde yapınız.
 - $ightharpoonup u1(t) = 10\sin(\omega t)$ ve $u2(t) = 7\cos(\omega t)$ iki ayrı sinyali tanımlayınız. $\omega = 2$ rad/sn
 - Sinyallerin iki (2) periyotluk değişimlerini tek bir grafik üzerinde karşılaştırınız.

```
PROGRAM
       % Grafik çiziminde kullanılacak u1(t) ve u2(t) sinyallerinin 2*T'ye göre tanımlanması
                                                                                                                        w = 2;
                                                                                                    T = 2*pi/w;
                                                                               u,(t) ve u,(t) sinyallerinin 2T zaman dilimindeki değişimi
       t = linspace(0, 2*T);
                                                                                                           u_2(t) = 7 \sin(\omega t)
                                                                                          u_1(t) = 10 \sin(\omega t)
      u1 = 10*sin(w*t);
     - u2 = 7*cos(w*t);
                                                                            u_1(t) \text{ ve } u_2(t)
8
       % Grafik çiziminin tek plot komutu ile gerçekleştirilmesi
       plot(t,u1,'-b',t,u2, '-.r', 'linewidth',3)
9
10
11
       % Grafik üzerinde eksen açıklamalarının yapılması
12
       xlabel ('Zaman (s)','fontsize',14)
                                                                               -10 L
13
       ylabel('u_1(t) ve u_2(t)','fontsize',14)
                                                                                                Zaman (s)
14
       title('u_1(t) ve u_2(t) sinyallerinin 2T
                                                            zaman dilimindeki
15
               değişimi', 'fontsize', 14)
```


plot Komutu ile Grafik Çizimi

hold on komutu ile tek bir figürde birden fazla grafik çizimi

- Onceki örnekte elde edilen çizimi sıra ile elde ederek tek bir grafikte gösterelim.
- İlk önce u1(t) sinyali çizdirilir.
- hold on komutu çizdirilmiş grafiğin figür penceresinde tutulmasını sağlar.
- hold on komutu kullanıldıktan sonra çizdirilen grafik aynı figüre eklenir.
- hold on komutunu iptal etmek için hold off kullanılır.

plot Komutu ile Grafik Çizimi

grid komutu ile grafiği yatay ve dikey bölümlendirme

- ☐ Grafiklerin daha rahat okunabilmesi için yatay ve dikey çizgiler ile bölüm oluşturur.
- **grid on çizgileri ekler.**
- grid off çizgileri kaldırır.

```
PROGRAM

1  % Grafik çiziminde kullanılacak u1(t) ve u2(t) sinyallerinin 2*T'ye göre çizimi
2  - w = 2;
3  - T = 2*pi/w;
4  - t = linspace(0,2*T);
5  - u1 = 10*sin(w*t);
6  - u2 = 7*cos(w*t);
7  - plot(t,u1,'-b',t,u2, '-.r', 'linewidth',3)

8  % grid on komutu ile ızgaralamanın oluşturulması

9  % grid on

9  grid on
```


plot Komutu ile Grafik Çizimi axis komutu ile eksen ölçeklendirme

Grafiğe ait eksen ölçeklendirmesini istenilen değerlere göre <u>yeniden</u> <u>düzenler</u>.

axis ([xmin xmak ymin ymak])

plot Komutu ile Grafik Çizimi axis komutu ile eksen ölçeklendirme

Örnek: $u(t) = 2Sin(\omega t)$ sinyalini 0.01 <u>adımlarla</u>, 0 ile 10 sn zaman dilimi için çiziniz? Not: $\omega = 1$

Ardından grafiğin x eksenini 0 - 12, y eksenini ise -3 ile +3 olarak yeniden

ölçeklendiriniz.

fplot komutu ile grafik çizme

- **□ fplot komutunun genel kullanımı**
- □ renk, şekil, kalınlık, çizgi çeşidi gibi grafiklerin özelliklerinin değiştirilmesi

fplot Komutu ile Grafik Çizimi genel kullanımı

- Bir fonksiyona ait grafiğin <u>tanımlanan sınır değerlerine</u> göre (x_1 ve x_2 aralığında) çizimini yapar.
- fplot ('F', [x₁ x₂])

 x ekseninde istenen son sınır değeri
 x ekseninde istenen ilk sınır değeri
 sembolik olarak fonksiyonun tanımlanması
- Örnek: $F(x) = x^3 + 2x + 1$ fonksiyonuna ait 0 5 sn aralığındaki değişimini çizdiren programı yazınız?

```
PROGRAM

1  % F(x) fonksiyonunun tanımlanarak 0-5 saniye arasındaki grafiğinin çizimi
2  - fplot('x^3+2*x+1',[0 5])
3  
4  - xlabel('\it Zaman (s)','fontsize',12)
5  - ylabel('\it F(x)','fontsize',12)
6  - title('{\bf \it F(x) = x^3+2x+1} \it fonksiyonunun...
grafiği','fontsize',12)
```


fplot Komutu ile Grafik Çizimi çizgi çeşidi ve renginin değiştirilmesi

- ☐ Plot komutunda olduğu gibi fplot komutunda çizgi çeşidi ve rengi değiştirilebilir.
- Ayrıca tanımlanan x₁ ve x₂ aralığındaki örnekleme adedinin tanımlanacak bir <u>tolerans</u> değeri ile <u>değiştirilmesine</u> imkan tanır.
- - çizgi çeşidi, rengi ve işaretleme çeşidi tanımlanan tolerans değeri

fplot Komutu ile Grafik Çizimi çizgi çeşidi ve renginin değiştirilmesi

Örnek: $F(x) = x^3 + 2x + 1$ fonksiyonuna ait 0 - 5 sn aralığındaki değişimini düz çizgili, kırmızı renkli ve kare işaretli olarak çizdiren programı yazınız?

```
PROGRAM

1  % F(x) fonksiyonunun tolerans değeri tanımlanmadan elde edilen 0-5 saniye aralığındaki
2  % grafiğinin çizimi (düz çizgi, kırmızı renkli ve kare kutularla işaretleme şekli)
3  - fplot('x^3+2*x+1',[0 5],'-rs')
4  % F(x) fonksiyonunun tolerans değeri 0,1 tanımlandığında elde edilen 0-5 saniye
6  % aralığındaki grafiğinin çizimi (düz çizgi, kırmızı renkli ve kare kutularla işaretleme şekli)
7  - fplot('x^3+2*x+1',[0 5],0.1,'-rs')
```


toleranslı

ezplot komutu ile grafik çizme

- **ezplot** komutunun genel kullanımı
- ☐ Bir örnek uygulama

ezplot Komutu ile Grafik Çizimi genel kullanımı

fplot komutu gibi bir fonksiyona ait grafiğin <u>tanımlanan sınır değerlerine</u> göre (x₁ ve x₂ aralığında) çizimini yapar.

- **fplot**'un kullanımından farklı olarak fonksiyonda kullanılan sembol **syms** komutu ile önceden tanımlanabilir.
 - ✓ **syms** fonksiyondaki değişkene ait sembolik ifade
 - \checkmark ezplot ('F', x_1, x_2)
- veya
 - \checkmark ezplot ('F', [$x_1 x_2$])

ezplot Komutu ile Grafik Çizimi örnek

Örnek: $F(x) = x^3 + 2x + 1$ fonksiyonuna ait 0 - 5 sn aralığındaki değişimini çizdiren programı yazınız?

```
PROGRAM
        % F(x) fonksiyonunun tanımlanarak 0-5 saniye arasındaki grafiğin çizimi
       ezplot('x^3+2*x+1',0,5)
2
3
       % veya
4
6
        \% F(x) fonksiyonunda yer alan x değişkeninin sembolik olarak
        % tanımlanıp 0-5 saniye aralığındaki grafiğinin çizimi
8
        syms x
       ezplot (x^3+2*x+1,0,5)
9
10
11
        % veya
12
13
        ezplot(x^3+2*x+1,[0,5])
```


otomatik olarak

x ekseni açıklaması fonksiyondaki değişken,
grafik başlığı ise tanımlanan fonksiyondur.

grafikler üzerinde düzenlemeler

- ☐ gtext komut ile açıklama ekleme
- ☐ \rm \bf \it ile açıklamaları düzenleme
- legend komutu ile açıklama yazma
- ☐ ginput komutu ile değer okuma
- ☐ semilogx, semilogy ve loglog komutları ile logaritmik grafik

Grafikler Üzerinde Düzenlemeler gtext komutu ile açıklama yazma

- ☐ Grafik penceresi üzerinde açıklama yazılmasını sağlar.
- ☐ gtext ('açıklama metni')

gtext('u(t) = 5 sin (omega t + pi /6)')

17

18

```
PROGRAM
       % u(t) sinyalinin tanımlanması
                                                                                              Edit View Insert Tools Desktop Window Help
       w = 1;
                                                                                            🗅 🚅 🔛 🞒 🖟 🔍 🭳 🥎 🐌 🐙 📘 🔡 🗎 🗆
                                                                                                      u(t)= 5 sin(∞ t + π / 6) sinyalinin değişimi
       T = 2*pi/w;
       t = linspace(0,2*T);
                                                                                                                         u(t) = 5 \sin(\omega t + \pi / 6)
       u = 5*sin(1*w*t+pi/6);
       % Grafik çiziminin plot komutu ile gerçekleştirilmesi
                                                                                              €
       plot(t,u,'-b','linewidth',3)
       hold on
       axis([0 14 -6 6 ])
10
       plot([0 14],[0 0],'-.k')
11
12
       xlabel('Zaman (s)','fontsize',14)
                                                                                                                                   12
                                                                                                                 Zaman (s)
13
       ylabel('u(t)','fontsize',14)
       title('u(t) = 5 sin(\omega t + \pi / 6) sinyalinin değişimi', ...
14
15
               'fontsize',14)
16
       % Grafik üzerine u(t) ifadesinin yazdırılması
```


Grafikler Üzerinde Düzenlemeler

\rm \bf \it ile açıklama ve eksen/başlık yazılarının düzenlenmesi

- ☐ \rm normal ölçüsüne geri dönüşüm yapar (restore normal format)
- \bf yazı tipini kalınlaştırır (boldface)
- \it yazının şeklini italik yapar (italics)
- ☐ Bu komutlar değişiklik yapılacak açıklamanın önünde kullanılır.
- ☐ Bir açıklama içerisinde bu özelliklerden <u>aynı anda birden fazla</u> <u>kullanmak gerekiyorsa</u> ilgili bölümler {...} içerisinde kullanılması daha uygun olur.
- ☐ {...} kullanım sadece kendi içerisindeki değişikliği içerir, dışındakileri etkilemez.
- Aynı zamanda bir açıklamanın hem kalın hem de italik olması istenirse bf ve it ard arda kullanılır.

Grafikler Üzerinde Düzenlemeler

Edit View Insert Tools Desktop Window Help

\rm \bf \it ile açıklama ve eksen/başlık yazılarının düzenlenmesi

_ | U ×

Grafikler Üzerinde Düzenlemeler legend komut ile açıklama ekleme

Tanımlanan konuma göre figür penceresi üzerinde bir kutu açarak <u>çizim</u> sırasına göre ilgili grafiklerde kullanılan çizim şekli ve rengi göstererek açıklama yazılmasını sağlar.

legend ('açıklama 1', 'açıklama 2', konum)
figüre penceresindeki konum
2. grafiğe ait açıklama
1. grafiğe ait açıklama

Konumu belirten sayısal değerler

Konum tanımlaması	Açıklama kutusunun konumu
0	Grafik penceresine otomatik olarak yerleştirilir
1	Grafik penceresinin sağ üst köşesine yerleştirilir
2	Grafik penceresinin sol üst köşesine yerleştirilir
3	Grafik penceresinin sol alt köşesine yerleştirilir
4	Grafik penceresinin sağ alt köşesine yerleştirilir
-1	Grafik penceresinin dışında sağ üst köşeye yerleştirilir

Grafikler Üzerinde Düzenlemeler

legend komut ile açıklama ekleme - Örnek -

```
PROGRAM
       % Grafik çiziminde kullanılacak u1(t) ve u2(t) sinyallerinin 2*T'ye göre çizimi
       w = 2;
       T = 2*pi/w;
     - t = linspace(0, 2*T);
    - u1 = 10*\sin(w*t);
    - u2 = 7*\cos(w*t);
                                                                                                                  _UX
                                                                   Figure 1
     - plot(t,u1,'-b',t,u2, '-.r', 'linewidth',3)
                                                                     Edit <u>View Insert Tools Desktop Window Help</u>
                                                                             lg (역 연 연 영) 🐙 📘 🛅 🗏 🔲
     - hold on
8
                                                                           u₁(t) ve u₂(t) sinyallerinin değişimi
     - plot([0 7],[0 0],'-.k')
10
11
       % legend komutu ile açıklama kutusunun oluşturulması
       legend('u_1(t)','u_2(t)',-1)
12
13
                                                                    Ð
```


Zaman (s)

Grafikler Üzerinde Düzenlemeler ginput komutu ile değer okuma

- ☐ Grafik üzerinde fare vasıtasıyla belirtilen <u>nokta veya noktaların</u> koordinatlarını komut penceresinde sayısal olarak elde etmeyi sağlar.
- Bu komutun kullanılabilmesi için figür penceresinin açık olması gerekir.
- Komutun kullanımı ile figür penceresi üzerinde farenin hareketine göre konum değiştiren eksenlere paralel iki adet doğru parçası görünür. Doğru parçalarının kesişim noktaları istenilen pozisyona getirildiğinde fare vasıtasıyla tıklandığı zaman o noktaya ait koordinatların komut penceresinde sayısal olarak ortaya çıkar.
- ginput (n)
 grafik üzerinde işaretlenecek nokta sayısı

Grafikler Üzerinde Düzenlemeler

ginput komutu ile değer okuma - Örnek -

Komut penceresi % Grafik üzerinde iki adet noktaya ait koordinatların bulunması >> ginput(2) ans = 1.8871 3.3158 5.6290 -0.5088

Grafikler Üzerinde Düzenlemeler

semilogx, semilogy ve loglog komutları ile istenilen ekseni logaritmik çizdirmek

MATLAB KOMUTU	X EKSENİ	Y EKSENİ	GRAFİKSEL SONUÇ
semilogx	logaritmik	doğrusal	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
semilogy	doğrusal	logaritmik	10 ³ 0 100 200 300 400 500 600 700 800 900 1000 Doğrusal
loglog	logaritmik	logaritmik	Logaritmik Logaritmik

subplot komutu ile figür penceresini bölme

- **□** subplot komutunun genel kullanımı
- ☐ Bir örnek uygulama

subplot komutu ile figür penceresini bölme

Figür penceresini istenilen sayıda pencerelere bölerek çizimin yapılacağı pencerenin adreslenmesini sağlar.

- subplot komutunun kullanımı sonucunda <u>figür penceresi</u> m*n adet parçaya bölünmüş olur.
- ☐ Çizimin yapılacağı pencereye ait adres birinci satır birinci sütundaki pencereden başlanılarak satır satır numaralanmak suretiyle ortaya çıkan matris yapıdan elde edilir.

subplot komutu ile figür penceresini bölme

subplot komutu ile figür penceresini bölme

- Örnek: $u_1(t) = 3 \sin(\omega t)$ ve $u_2(t) = 0.5 \cos(\omega t)$ sinyalleri ile bu iki sinyalin toplamını aynı figür penceresi içerisinde çizdiriniz?
- \square ω = 2 rad/s ve sinyallerin değişimi ω 'ye bağlı 2 periyotluk dilim için olacak

```
PROGRAM
      % Grafik çiziminde kullanılacak t zamanının açısal frekansa göre tanımlanması
1
      w = 2i
      T = 2*pi/w;
      t = linspace(0, 2*T);
      % Sinyallerin oluşturulması
      u1 = 3*sin(w*t);
      u2 = 0.5*\cos(10*w*t);
      ut = u1+u2i
10
11
      % Figür penceresinin bölünerek sinyallerin çizimi ve eksen açıklamalarının yapılması
      figure(1); clf
12
      subplot(311); plot(t,u1,'-b','linewidth',3)
13
      ylabel('\bf u 1(t)','fontsize',14)
14
15
      subplot(312); plot(t,u2,'-b','linewidth',3)
      ylabel('\bf u_2(t)','fontsize',14)
16
      subplot(313); plot(t,ut,'-b','linewidth',3)
17
18
      xlabel('\bf Frekans (rad/s)','fontsize',14)
      ylabel('\bf u_t(t)','fontsize',14)
19
20
```


özel grafikler

- □ plot3 komutu ile 3 boyutlu çizgi grafik çizme
- **□** bar komutu ile çubuk grafik çizme
- **□** barh komutu ile yatay çubuk grafik çizme
- **□** bar3 komutu ile 3 boyutlu çubuk grafik çizme
- □ stem komutu ile grafik çizme
- □ stem3 komutu ile 3 boyutlu grafik çizme
- ☐ pie komutu ile pasta grafik çizme
- □ pie3 komutu ile 3 boyutlu pasta grafik çizme
- **□** polar komutu ile kutupsal koordinatlı grafik çizme

Özel Grafikler plot3 komutu ile 3 boyutlu grafik çizdirme

3 boyutlu grafik çizimini sağlar.

Ornek: Aşağıda x ve y eksenlerindeki konumları tanımlayan denklem takımlarının zamana bağlı değişimini 10π saniyelik süre için çizdiriniz?

$$x(t) = \sin(2t) \left(1 - e^{-0.1t}\right)$$
$$y(t) = \cos(2t) \left(1 - e^{-0.1t}\right)$$

$$y(t) = \cos(2t) (1 - e^{-0.1t})$$

plot3 komutu ile 3 boyutlu grafik çizdirme

Komut penceresi

```
% Zaman araliği
>> t=linspace(0,5*2*pi,1000);

% Fonksiyonlara ait hesaplamalar
>> x=sin(2*t).*(1-exp(-t/10));
>> y=cos(2*t).*(1-exp(-t/10));

% Üç boyutlu çizim işlemi
>> plot3(x,y,t)
>> xlabel('x(t)');ylabel('y(t)');zlabel('t (sn)')
>> grid on
```


bar komutu ile çubuk grafik çizdirme


```
PROGRAM

1  % Zaman aralığı
2  - yil = [2005 : 2010];
3  % Yıllara göre satış miktarları
4  - satis= [ 7 11 20 25 21 17 ];
5  % Kırmızı dolgu rengine sahip çubuk grafîk çiz
6  - bar(yil, satis, 'r')
7  - xlabel('Yıl')
8  -
```


barh komutu ile yatay çubuk grafik çizdirme


```
PROGRAM

1  % Zaman aralığı
2  - yil = [2005 : 2010];
3  % Yıllara göre satış miktarları
4  - satis= [ 7 11 20 25 21 17 ];
5  % Yatay çubuk grafik çizdir
6  - barh(yil, satis)
7  - ylabel('Yıl')
8  -
```


bar3 komutu ile 3 boyutlu çubuk grafik çizdirme

 \Box bar3 (\mathbf{Y})

x,y,z koordinat değerlerine sahip matris.

Y'deki her eleman ayrı bir çubuktur.

Özel Grafikler stem komutu ile grafik çizdirme

Özel Grafikler stem3 komutu ile 3 boyutlu grafik çizdirme


```
PROGRAM
       % Zaman aralığı
1
      t = 0 : 0.2 : 10;
2
3
       % x ekseni, y ekseni ve z ekseni
      x = t; y = sin(t); z = t.^1.5;
4
       % 3 boyutlu işaret yerlerinin içi dolu stem grafik
       stem3(x, y, z, 'fill')
       % grid ekle
6
       grid on
       % eksenlere etiket verilmesi
       xlabel('x');
       ylabel ('y');
       zlabel ('y');
```


Özel Grafikler pie komutu ile pasta grafik çizdirme

pie (**x**)

pasta grafikteki her bir dilime ait yüzdeyi içeren matris

```
Komut penceresi

% pasta grafikteki dilimlerin değerlerini tanımla
>> deger = [ 10 18 25 8 3 ];

% pasta grafiği çizdir
>> pie (deger)

% grafiğin başlığı
>> title( 'pasta grafik')
```


Özel Grafikler pie3 komutu ile 3 boyutlu pasta grafik çizdirme

 \Box pie3 (x, explode)

x ile aynı boyutlu vektör. Dilimler arasındaki boşluğu gösterir. pasta grafikteki dilimlere ait değerleri içeren matris

Özel Grafikler hist komutu ile istatistiksel grafik çizdirme

- Veri bloğunun istatiksel dağılımını gösteren istatiksel ölçüler ile ilişkili özel bir grafik çizer.
- Verilerin sıklık (frekans) değerleri hesaplanır ve histogram grafikleri çizilir.
- \Box hist (x)
 - histogramı çizilecek veri grubu (standart olarak 10 çubukta gösterir)

Özel Grafikler polar komutu ile kutupsal koordinatlı grafik çizdirme

- ☐ Kompleks sayılar, sayı büyüklüğü ve açı ile kutupsal koordinat sisteminde gösterilebilir.
- polar (theta , rho)

kutupsal koordinatın açı değeri kutupsal koordinatın büyüklük değeri

```
% Kompleks sayı tanımlama
>> z = 3 + 5i;
% Kompleks sayının açısını hesapla
>> theta=angle(z);
% Kompleks sayının büyüklüğünü hesapla
>> r=abs(z);
% Kutupsal koordinatlarda göster
>> polar( theta, r, 'or')
```


Özel Grafikler polar komutu ile kutupsal koordinatlı grafik çizdirme

Örnek: Sin 2θ nın grafiğini kutupsal olarak çizdiriniz?

```
% açı tanımla
>> theta=linsplace(0,2*pi);
% büyüklük tanımla
>> r=sin(2*theta);
% Kutupsal koordinatlarda göster
>> polar( theta, r )
```


Grafiklere sembol ekleme

\alpha	α	\upsilon	υ	\sim	~
\beta	β.	\phi	ф	\leq	≤
\gamma	γ	\chi	X	\infty	oo
\delta	δ	\psi	Ψ	\clubsuit	*
\epsilon	3	\omega	ω	\diamondsuit	•
\zeta	ζ	\ Gamma	Γ	\heartsuit	•
\eta	η	\Delta	Δ	\spadesuit	*
\theta	θ	\Theta	Θ	\leftrightarrow	\leftrightarrow
\vartheta	Э	\Lambda	Λ	\leftarrow	←
\iota	ι	\Xi	Ξ	\uparrow	1
\kappa	κ	\Pi	П	\rightarrow	\rightarrow
\ lambda	λ	\Sigma	Σ	\downarrow	
\mu	Ч	\Upsilon	Y	\circ	0
\nu	ν	\Phi	Φ	\pm	±
\xi	٠ξ	\Psi	Ψ	\geq	<u>></u>

\pi	π	\ Omega	Ω	\propto	œ
\rho	ρ	\forall	A	\partial	д
\sigma	σ	\exists	3	\bullet	•
\varsigma	ς	\ni	э	\div	÷
\tau	τ	\cong	≅	\neq	≠
\equiv	=	\approx	≈	\aleph	8
\ Im	3	\ Re	R	\wp	P
\otimes	8	\oplus	⊕	\oslash	Ø
\cap	\cap	\cup	U	\supseteq	⊋
\supset	⊃	\subseteq	⊆	\subset	<u>_</u>
\int	ſ	\in	€	10	О
\rfloor		\lceil	Γ	\nabla	V
\lfloor	L	\cdot		\ldots	
\perp	T	\neg	7	\prime	,
\wedge	٨	\times	х	/0	Ø
\rceil	7	\surd	1	\mid	ī
\vee	v	\varpi	ប	\copyright	0
\langle	<	\rangle	>		

4