

DEVICE AND METHOD FOR REPRODUCING DISK

Publication number: JP10027461 (A)

Also published as:

Publication date: 1998-01-27

JP2857119 (B2)

Inventor(s): KANESHIGE TOSHIHIKO; TOMIDOKORO SHIGERU; KOJIMA TADASHI +

Applicant(s): TOSHIBA CORP; TOSHIBA AVE KK +

Classification:

- **international:** G11B19/02; G11B20/12; G11B27/00; G11B27/10; H04N5/92; G11B19/02; G11B20/12; G11B27/00; G11B27/10; H04N5/92; (IPC1-7): G11B19/02; G11B27/00; H04N5/92

- **European:**

Application number: JP19970078536 19970328

Priority number(s): JP19970078536 19970328; JP19960000986 19960108

Abstract of JP 10027461 (A)

PROBLEM TO BE SOLVED: To shorten the moving distance of a pickup during reproducing to suppress interruption or disturbance of reproduced videos by decoding and outputting necessary data contained in information read from an information recording medium and error-corrected. **SOLUTION:** In a reproducing mode, information recorded in a disk is picked up by a pickup section 103 and demodulated by a demodulation section 201. Demodulated data is error-corrected and then inputted to a demultiplexer 203. Video information, caption and character information, audio information, control information or the like is separated by the demultiplexer 203 and then inputted to a video decoder 206, a sub-picture processing section 207 and audio decoders 211 and 213.; Herein, a buffer memory 220 is provided in the poststage of an error correction section 202, reproduced data is temporarily stored in this buffer memory 220 and then supplied to a multiplexer according to a decoding speed.

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平10-27461

(43)公開日 平成10年(1998)1月27日

(51) Int.Cl. ⁶	識別記号	府内整理番号	F I	技術表示箇所
G 1 1 B 27/00 19/02	5 0 1		G 1 1 B 27/00 19/02	D 5 0 1 D
H 0 4 N 5/92			H 0 4 N 5/92	H
			G 1 1 B 27/00	D

審査請求 有 請求項の数21 O.L (全30頁)

(21)出願番号 特願平9-78536
 (62)分割の表示 特願平9-625の分割
 (22)出願日 平成9年(1997)1月7日
 (31)優先権主張番号 特願平8-986
 (32)優先日 平8(1996)1月8日
 (33)優先権主張国 日本 (JP)

(71)出願人 000003078
 株式会社東芝
 神奈川県川崎市幸区堀川町72番地
 (71)出願人 000221029
 東芝エー・ブイ・イー株式会社
 東京都港区新橋3丁目3番9号
 (72)発明者 兼重 敏彦
 東京都港区新橋3丁目3番9号 東芝エー・ブイ・イー株式会社内
 (72)発明者 富所 茂
 東京都港区新橋3丁目3番9号 東芝エー・ブイ・イー株式会社内
 (74)代理人 弁理士 鈴江 武彦 (外6名)

最終頁に続く

(54)【発明の名称】ディスク再生装置及び方法

(57)【要約】

【課題】複数のストーリーやシーンのデータを記録媒体に記録する場合に、再生時のピックアップの物理的な移動距離が少なくて済み、再生映像のとぎれや乱れが生じるのを抑圧できるようにする。

【解決手段】映像、音声、文字等で構成される映像プログラムであって、前部の幹ストーリーから分岐するための分岐点Xと後部の幹ストーリーに結合するための結合点Yとの間に任意に選択可能な複数の枝ストーリーB0、B1、B2、B3が存在するマルチストーリープログラムが記録される。ここで、分岐点Xと結合点Yとの間の記録状態としては、前記複数の枝ストーリーがそれぞれ複数のセルに分割され、かつ各枝ストーリーのセルが時分割多重された形で記録されている。

【特許請求の範囲】

【請求項1】 映像、音声、文字等で構成される映像プログラムであって、前部の幹シーンから分岐するための分岐点と後部の幹シーンに結合するための結合点との間に任意に選択可能な複数の枝シーンが存在するマルチシーンプログラムが記録されており、前記分岐点と前記結合点との間の記録状態は、前記複数の枝シーンがそれぞれ複数のセルに分割されており、かつ各枝シーンのセルが時分割多重された形で記録されていることを特徴とする情報記録媒体。

【請求項2】 前記セルの内、同一の枝シーンに属するセルは、それぞれ再生したときの再生時間が互いにほぼ等しいことを特徴とする請求項1記載の情報記録媒体。

【請求項3】 前記セルの内、同一の枝シーンに属するセルは、それぞれ符号量が互いにほぼ等しいことを特徴とする請求項1記載の情報記録媒体。

【請求項4】 前記複数の枝シーンは、それぞれセル数が同じになるように分割されていることを特徴とする請求項1記載の情報記録媒体。

【請求項5】 前記セルには、それぞれ自己の識別番号と、次に連続すべきセルの識別番号が付加されていることを特徴とする請求項1記載の情報記録媒体。

【請求項6】 前記セルには、前記セルにて訂正処理が完結する誤り訂正コードが含まれていることを特徴とする請求項1記載の情報記録媒体。

【請求項7】 前記各枝シーンのセルが時分割多重された状態は、単位距離あたり、分割数の多い枝シーンのセルの割合が多くなるように配列されていることを特徴とする請求項1記載の情報記録媒体。

【請求項8】 前記各枝シーンのセルが時分割多重された状態は、第1乃至第nのシーンセルブロックが、順次繰り返し配列されており、それぞれのシーンセルブロックは異なる枝シーンからのセルが持ち込まれ組み合わせられたブロックであることを特徴とする請求項1記載の情報記録媒体。

【請求項9】 前記シーンセルブロックには、前記シーンセルブロックにて完結する誤り訂正コードが含まれていることを特徴とする請求項8記載の情報記録媒体。

【請求項10】 前記シーンセルブロックは、それぞれ同じ符号量であることを特徴とする請求項8記載の情報記録媒体。

【請求項11】 前記セルは、その先頭に少なくともフレーム間相関用いない圧縮の映像データが含まれるように分割されていることを特徴とする請求項1記載の情報記録媒体。

【請求項12】 映像、音声、文字等で構成される映像プログラムであって、前部の幹シーンから分岐するための分岐点と後部の幹シーンに結合するための結合点との間に任意に選択可能な複数の枝シーンが存在するマルチシーンプログラムを記録媒体に記録するために、

前記複数の枝シーンをそれぞれ複数のセルに分割し、かつ各枝シーンのセルを時分割多重して配列する場合、再生装置のピックアップから読み取られた再生セルの映像未再生部分を再生回路で映像再生する実際の再生時間をTpとし、前記再生セルに続く次セルを前記ピックアップがサーチして読み取りまでの読み取り時間をTsとすると、

Tp > Tsとなる関係となる条件を満足するように前記複数のセルが分割され、かつ時分割多重されて配列されていることを特徴とする情報記録方法。

【請求項13】 前記再生装置の再生回路で映像再生する再生時間は、再生信号を蓄積するバッファメモリの容量と、データ量×圧縮率、読み出しクロック周波数で決定し、前記読み取り時間は前記ピックアップの応答速度を主とするパラメータとして決定していることを特徴とする請求項12記載の情報記録方法。

【請求項14】 映像、音声、文字等で構成される映像プログラムであって、前部の幹シーンから分岐するための分岐点と後部の幹シーンに結合するための結合点との間に任意に選択可能な複数の枝シーンが存在するマルチシーンプログラムを記録媒体に記録するために、前記複数の枝シーンをそれぞれm個のセルに分割し、かつ各枝シーンのセルを時分割多重して配列する場合、符号量の少ない順に前記複数の枝シーンをB0、B1、B2、…、Bi、…とし、さらに前記Biの符号量をVi、前記再生装置の読み取りレートをRr、前記再生装置が枝シーンを映像再生する単位時間あたりの最大再生レートをPr、単位時間あたりにジャンプできる符号量をJp、最短シーンB0のセル間の他のセル数をMとすると最短シーンB0のセル間のジャンプ時間TJPは

$$TJP = \sum_{i=1}^{m-1} [(V_i/m) / J_p]$$

最短シーンB0の単位セルの再生時間Tpは

$$(V0/m) / Pr$$

最短シーンB0の単位セルの読み取り時間Trは

$$(V0/m) / Rr$$

であり、再生時間よりも、次セルまでジャンプするジャンプ時間が小さいというTp - Tr > TJPの条件を付けると

$$[(V0/m) / Pr] - [(V0/m) / Rr]$$

$$> \sum_{i=1}^{m-1} [(V_i/m) / J_p] \quad \dots (1)$$

(iはストーリー番号、Mはストーリー数)

を得ることができ、この式(1)に基づいて分割数である前記mが設定されていることを特徴とする情報記録方法。

【請求項15】 前記式(1)を満足する前記mが存在

しない場合には、前記後部の幹シーンの一部を前記各枝シーンに継ぎ足して、修正された複数の枝シーンを作成し、この修正された複数の枝シーンを先のB0、B1、B2、…、Bi、…として、先の式(1)を満足する新たなmを得るようにしたことを特徴とする請求項14記載の情報記録方法。

【請求項16】 映像、音声、文字等で構成される映像プログラムであって、前部の幹シーンから分岐するための分岐点と後部の幹シーンに結合するための結合点との間に任意に選択可能な複数の枝シーンが存在するマルチシーンプログラムが記録されており、前記分岐点と前記結合点との間の記録状態は、前記複数の枝シーンがそれぞれ複数のセルに分割されており、1つのセルは所定の映像再生時間に相当するものであり、また各枝シーンのセルが時分割多重され、かつ連続再生すべきセルは所定符号量の距離内に配置された形で記録されている情報記録媒体と、

この情報記録媒体の情報を再生する装置であって、前記所定符号量の距離をシークするのに要する時間がTs、単位時間当たりのデータ読み取り符号量がRr、単位時間あたりの映像再生に対して消化する最大符号量がPrである再生装置とを有し、

前記Tsと、前記再生装置が1つのセルをデコーダでデコードして映像再生出力を得る時間Tcとは

$$Tc - [(Tc \times Pr) / Rr] > Ts$$

なる関係となるように設定されていることを特徴とする情報再生装置。

【請求項17】 映像、音声、文字等で構成される映像プログラムであって、前部の幹シーンから分岐するための分岐点と後部の幹シーンに結合するための結合点との間に任意に選択可能な複数の枝シーンが存在するマルチシーンプログラムが記録されており、

前記分岐点と前記結合点との間の記録状態は、前記複数の枝シーンがそれぞれ同数のインターリーブユニットに分割されて、各枝シーンのインターリーブユニットが時分割多重され、かつ連続再生すべき2つのインターリーブユニットの間は所定符号量の距離以内となる形で記録されており、前記インターリーブユニットは、複数のセクタの集合であり、各セクタはエラー訂正コードを有するエラー訂正コード(ECC)ブロックである、情報記録媒体と、

この情報記録媒体の情報を再生する装置であって、前記情報記録媒体から読み取った前記セクタをエラー訂正処理を行うエラー訂正処理部と、

前記エラー訂正処理部の出力が供給されるトラックバッファと、

前記トラックバッファからの出力が供給されデコードを行うデコーダとを具備し、

前記インターリーブユニットのサイズ(ILVU SZ)と、前記トラックバッファに前記エラー訂正処理部

から供給されるデータの転送レート(Vr)と、前記トラックバッファから前記デコーダに供給されるデータの転送レート(Vo)と、ピックアップがトラックをシークする時間とそのために付随している必要な時間(latency time)を含むジャンプ時間(Tj)と、1つのECCブロックのデータサイズ(b)との関係は、

$$ILVU SZ \geq \{(Tj \times Vr \times 10^6 + 2b) / (2048 \times 8)\} \times Vo / (Vr - Vo) \text{ (セクタ)}$$

であることを特徴とするディスク再生装置。

【請求項18】 上記トラックバッファのサイズBmは以下のように設定されていることを特徴とする請求項17記載のディスク再生装置。Bmはトラックバッファのサイズ、Tkはキックバック時間(ディスクの1回転時間相当)、Teは1ECCブロック(セクタ)の読み取り時間、Tjはジャンプ時間であり、

トラックシークタイム(tj)+latency time(=Tk)、MAX_Voは、インターリーブユニット(ILVU)の最大読み出しレート、

$$Bm \geq \{(2Tk + tj + 4Te) \times MAX_Vo \times 10^6\} / (2048 \times 8)$$

Bmの単位はセクタ、Tk、tj、Teのそれぞれの単位は[sec]であり、MAX_Voの単位は[Mbps]である。

【請求項19】 前記情報記録媒体には、前記インターリーブユニットが記録されているかどうかを示す属性情報と、前記インターリーブユニットを再生するためのシーケンス情報と、枝シーンの選択切り換え情報が記録されており、

前記再生装置の制御部には、前記属性情報、前記シーケンス情報、前記枝シーンの切り換え情報の検出手段と、操作入力に応答して、前記再生情報、前記シーケンス情報、前記枝シーンの切り換え情報を参照することにより、再生すべきインターリーブユニットのストリームを決定するストリーム決定手段とを有することを特徴とする請求項17記載のディスク再生装置。

【請求項20】 前記複数の枝シーンは、同一対象を異なる角度から撮像したマルチアングルシーンであり、前記ストリーム決定手段は、表示される再生画像の映出アングルを切り換えるための手段であることを特徴とする請求項19記載のディスク再生装置。

【請求項21】 前記複数の枝シーンは、複数のストリームを収録したマルチストリームであり、前記ストリーム決定手段は、表示される再生画像の映出ストリームを切り換えるための手段であることを特徴とする請求項19記載のディスク再生装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】この発明は、光学式ディスク等の記録媒体に映像、音声、副映像等を記録する場合に有効な情報記録方法及びその記録媒体と再生装置に関する。

【0002】

【従来の技術】近年、映像、音声、副映像等を符号化して高密度で記録した光学式ディスク及びその再生装置が開発されている。この光学式ディスクに映画等の情報を記録する場合、同時進行する複数のストーリーのストーリーデータを記録することも考えられている。同時進行する複数のストーリーのストーリーデータとは、例えば兄弟A、Bが成長の過程で途中から別々の道を歩きだし、一方は警察官（第1のストーリー）、他方はギャングの世界を過ごし（第2のストーリー）、大事件の後、再会して一緒に過ごすというストーリーである。

【0003】また、光学式ディスクに映画等の情報を記録する場合、同時進行する同一イベントを複数のアングルから撮影したマルチアングルシーンを記録することも考えられている。同時進行するマルチアングルシーンとは、例えば、海洋を航海している船を陸から見た様子を表す第1のシーンと、同時に当該船から陸を見た様子を表す第2のシーンとの関係をもつような複数のシーンである。

【0004】制作者としては、上記した第1と第2のストーリーの双方を組み立てて視聴者に見せたい場合、第1のストーリーを主にして視聴者に見せたい場合、第2のストーリーを主にして視聴者に見せたい場合等のいくつかの選択の余地があるが、従来の映画制作においてはいずれか1つを選択して制作せざるを得ない。

【0005】また、上記した第1と第2のシーンの場合も同様なことが言える。ここで、第1と第2のストーリーあるいは第1と第2のシーンのいずれかを視聴者が自由に選択可能であるとすると、制作者は、その制作の自由度が高まる。

【0006】そこで、近年の光学式ディスクとその再生装置では、映画等の情報を記録する場合、同時進行する複数のストーリーや複数のシーンを予め記録しておき、この中から、視聴者が自由に選択可能としたものが開発されている。

【0007】

【発明が解決しようとする課題】ここで、複数のストーリーやシーンのデータを光学式ディスクに記録する場合、再生時にデータの扱いが便利となるように記録する方が好ましい。例えば、第1と第2のストーリーのストーリーデータが直列に記録されていた場合を考える。再生時にいずれか一方のストーリーのみを再生するとすると、他方のストーリーの記録エリアへジャンプする必要がある。しかし、他方のストーリーが短時間のものであれば、ピックアップの物理的移動もすくなく問題はないが、他方のストーリーが長時間のものであれば、ピックアップの物理的移動も大きくなり、そのため、再生映像のとぎれや乱れが生じることがある。

【0008】

【課題を解決するための手段】そこでこの発明は、複数

のストーリーやアングルシーンのデータを記録媒体に記録する場合に、再生時のピックアップの物理的な移動距離が少なくて済み、再生映像のとぎれや乱れが生じるのを抑圧できる情報記録媒体とその記録方法及び再生装置を提供することを目的とする。

【0009】上記の目的を達成するためにこの発明では、幹ストーリーの分岐部から複数の枝シーンに分岐することが可能であり、各枝シーンは後続幹ストーリーの結合部に結合するように構成された映像プログラムを記録媒体に記録する場合、前記枝シーンのデータをそれぞれ複数のシーンセルに分割し、各枝シーンの複数のシーンセルを時分割多重して配列して記録することを特徴とするものである。

【0010】このように配列して記録することにより、再生時には同一枝シーンのセルをピックアップしてデータ再生が行われるのであるが、いずれの枝シーンを再生する場合であっても、ピックアップ移動距離が大きくなることはないために、再生映像のとぎれや乱れが生じるのを抑圧することができる。

【0011】

【発明の実施態様】以下、この発明の実施の形態を図面を参照して説明する。図1は、この発明の一実施の形態を説明するために、映像プログラムの流れを時間軸上に示している。この映像プログラムは、先行する前部幹ストーリー（又はシーン）Aと複数の枝ストーリー（又はシーン）B0～B3と、後続する後部幹ストーリー（又はシーン）Cとを有する。枝ストーリーは、前部幹ストーリーAの最終位置である分岐点Xで分岐し、後部幹ストーリーCの開始点である結合点Yで結合するものである。ここで、この映像プログラムの前部幹ストーリー、枝ストーリー、後続幹ストーリーは、それぞれ複数のシーンセルに分割されている。枝ストーリーB0のセルをB0-5、B0-4、…、B0-1というふうに表し、枝ストーリーB1のセルをB1-2、B1-1というふうに表し、枝ストーリーB2のセルをB2-5、B2-4、…、B2-1というふうに表し、枝ストーリーB3のセルをB3-5、B3-4、…、B3-1というふうに表している。

【0012】1つのシーンセルを定義する方法としては以下に述べるような各種の方法が可能である。

【0013】例えば、1つのシーンセルを、記録媒体上のトラックの物理的な長さを単位として定義し、いずれのシーンセルも同じ長さとなるように設定する。また1つのシーンセルを、再生した時の時間長を単位として定義し、いずれのシーンセルも同じ再生時間長となるように設定する。またデータが符号化されている場合、1つのシーンセルを符号量として定義し、いずれのシーンセルも同符号量となるように設定する。いずれの定義においても、それぞれのシーンセルが厳密に同一長さあるいは量となるように設定する必要はなく、ほぼ同一であれ

ばよい。

【0014】上記のように、複数の枝ストーリーがある場合、これを記録媒体に記録するときは、いずれの枝ストーリーも、全体を加算したシーン長に対して同一の割合でシーンセルが現れるように、配列される。図1の例であると、枝ストーリーが4つであり、第0の枝ストーリーは5シーンセル、第1の枝ストーリーは2シーンセル、第2、第3の枝ストーリーは、5シーンセルである。ここで全体を加算したシーン長は17セルである。そこで第0、第2、第3の枝ストーリーはそれぞれ5／17の割合、つまり、ほぼ3.5セルに1回の割合で配分されて配列され、第1の枝ストーリーは2／17の割合、つまり8.5セルに1回の割合で配分されて配列される。

【0015】このような配列にすると、図1の各セルの記録配列に見られるように、特に第1の枝ストーリーを再生する場合のジャンプ間隔は、第2の枝ストーリーを集合させて配列した場合に形成されるジャンプ間隔よりも小さくなる。

【0016】図2Aには、上記した配列パターンとした場合の第0の枝ストーリー（実線矢印）のピックアップ間隔、第3の枝ストーリーのピックアップ間隔（点線矢印）、第1の枝ストーリーのピックアップ間隔（一点鎖線矢印）を示している。

【0017】これに対して図2Bには各枝ストーリーを順次配列した場合例であり、第0の枝ストーリーのピックアップ間隔（実線矢印）、第3の枝ストーリーのピックアップ間隔（点線矢印）、第1の枝ストーリーのピックアップ間隔（一点鎖線矢印）を示している。このようになると、ピックアップ間隔が非常に長くなり、再生映像のとぎれや乱れが生じやすくなる。しかし、本発明の如く配列すると図2Aに示すようなパターンを得ることができ、ピックアップ間隔が狭くなり、再生映像のとぎれや乱れを抑圧することができる。

【0018】次に、各枝ストーリーのシーンセルを決定した後に、シーンセルを具体的に配列する手法について説明する。

【0019】今、図3Aに示すような複数の枝ストーリー（マルチアングルシーンを含む）を有した映像プログラムがあるとする。マルチアングルシーンとは、例えば、コンサート会場において、指揮者のみをアップで撮影した映像と、オーケストラ全体を客席側から撮影した映像のように、別々の角度から撮影した同時進行する複数の映像のことである。

【0020】図3Aにおいて、A0は、前部幹シーンであり、B0は疑似枝ストーリー、B1、B2はそれぞれ内容の異なる枝ストーリーである。この映像プログラムは、例えば図3Bに示すようにシーンセルに分割される。各シーンセルにはデータ容量を記して、かつセル番号を付している。分割点に、黒丸を付しているが、この

点は例えば映像フレームの先頭位置となっている。そして、この例は、各シーンセルのデータを再生したときの時間長が同じとなるように設定されている。またこのデータは、可変圧縮データであるために、各シーンセルの再生時間が同じであっても、各シーンセルのデータ容量が同じとは限らない。図3Bにおいて、B0は1つの黒丸で示されているがこの場合は、疑似ストーリーであり実際のデータはないものとする。

【0021】上記のようにシーンセルを設定すると、図4Aに示すように接続先シーンセルのセル番号を示したテーブルL1が出来上がる。即ち、シーンセル番号A0-1に接続されるシーンセル番号としてはA0-0のみである。セル番号A0-0に接続されるセル番号としては、B1-3、B2-2、C0-0、C1-0のいずれかである。このように接続先のシーンセルを各シーンセルに対応させてまとめると図4Aに示すテーブルL1を得ることができる。

【0022】図4Bは、図4Aのテーブルの情報に基づいて、実際に記録媒体のトラックに各シーンセルを直列に配列するために作成したセル番号のテーブルL2を示している。

【0023】次に、上記の如くシーンセルの接続先が整理された情報に基づいて、実際に記録媒体のトラックに各シーンセルを直列に配列する、つまりテーブルL2の配列を得る場合には、次のような手順で配列順が決定される。

【0024】図5はセル番号配列順を決定するためのアルゴリズムを示している。

【0025】まず、テーブルL1より第1行目のセル番号と容量をテーブルL2の第1行目に書き込む（ステップS1、S2）。また接続先シーンのセル番号も読み取っておく。次に、テーブルL2において、接続完了フラグが付いていないセル番号のうち、当該セル番号の接続先セル番号のすべてが当該セル番号位置に対して前後方向へ最大ジャンプ許容範囲（J_{max}という）内であるかどうかを判断する。最大ジャンプ許容範囲（J_{max}という）は、再生装置のピックアップの応答速度と、再生用の復号データを出力するために一時的にデータを蓄えておく出力バッファの容量（再生時間）によって、決まる値である。

【0026】セル番号A0-1、接続先セル番号A0-0との関係では、上記のJ_{max}（この例では20Mbとしている）を満足するので、テーブルL2のA0-1の行には接続完了フラグが付加される（ステップS4）。次に、テーブルL1からセル番号A0-0と、そのデータ容量が読み取られると共に、接続先セル番号B1-3、B2-2、C0-0、C1-0が読み取られる（ステップS3）。

【0027】そして、接続完了フラグが付いていないセル番号A0-0、B1-3、B2-2、C0-0、C

1-0のうち、当該セル番号の接続先セル番号のすべてが当該セル番号位置に対して前後方向へ最大ジャンプ許容範囲 (J_{max}) 内であるかどうかを判断する。この場合は、A0-0からC0-0と、C1-0までの距離が J_{max} 以上であるためにステップS5を経由してステップS6進む。

【0028】ステップS5、接続完了フラッグが付いていないセル番号は1つのみで、その接続先セル番号は存在しないかどうかを判定しているもので、配列処理が完了した最終的な判断を行うステップである。

【0029】セル番号A0-0を読み取った段階では、配列は完了していないので、ステップS6に進む。ステップS6では、セル番号A0-0と、接続先シーンのセル番号B1-3、B2-2、C0-0、C1-0を用いて、次のような判定を行う。即ち、シーンセル番号を\$ $m-n$ と表すと、まず\$が最小のものを選択する。この例であると、B、CがあるのでBを選択する（この例ではA<B<Cであるものとしている）。さらにnが最大で、mが最小のものを抽出する。つまり、nが大きいということは分割数が多いということであり、mが小さいということは、枝ストーリーに予め付けている優先順位が高いということである。

【0030】上記の例であると、図3Bからも分かるように、A0-0に続くシーンセル番号としては、B1-3ということになる。次に、この抽出したセル番号B1-3の接続先セル番号B1-2をテーブルL2の最終行に仮配列する（ステップS7）。B1-3の次は、B1-2である。したがって、A0-0と、B1-3、B2-2、C0-0、C1-0、B1-2の配列となる。

【0031】次に、抽出したセル番号B1-3以外で、接続未了の各セル番号（B2-2、C0-0、C1-0）のすべての接続先セルを仮配列に後続して配列した場合、接続未了の各セル番号とその接続先セルとの符号量距離はすべて J_{max} (20Mb) 以下かどうかを判定する（ステップS8）。この例であると、B2-2、C0-0、C1-0、B1-2に続いてさらに、B2-1、D0-0、D1-0、D0-0、D1-0と配列されることになる。この場合は、B2-2からB2-1までの距離（符号量）、C0-0からD0-0までの距離、C1-0からD1-0までの距離はすべて J_{max} 以内である。この結果、仮配列は正規なものと判定し、ステップS11を経由して、ステップS3に戻る。

【0032】ステップS3においては、先の仮配列がB1-3、B2-2、C0-0、C1-0、B1-2であり、これらは正規のものとして接続完了フラッグが設けられていることになるから、接続完了フラッグが付いていないものは、B2-1、D0-0、D1-0、D0-0、D1-0が存在することになる。

【0033】次に、B2-1、D0-0、D1-0、D0-0、D1-0に続いて、それぞれの接続先セル番号

を配列するものとする。つまり、B2-1、D0-0、D1-0、D0-0、D1-0、B2-0、E0-0、E1-0、E0-0、E1-0と配列するものとする。そして、ステップS3で、当該セル番号（接続完了フラッグがついていないもの）の接続先セル番号のすべてが当該セル番号位置に対して前後方向へ最大ジャンプ許容範囲 (J_{max} という) 内であるかどうかを判断する。この場合は、すべて J_{max} 以上となるために、ステップS6に移行し、ここではB2-1が抽出され、さらにステップS7でB2-0が取り出され、B2-1、D0-0、D1-0、D0-0、D1-0、B2-0と最終部に配列される。

【0034】次に再度ステップS8において、抽出したセル番号（B2-1）以外で、接続未了の各セル番号（D0-0、D1-0、D0-0、D1-0、B2-0）のすべての接続先セルを仮配列に後続して配列した場合、接続未了の各セル番号とその接続先セルとの符号量距離はすべて J_{max} (20Mb) 以下かどうかを判定する（ステップS8）。つまり（D0-0、D1-0、D0-0、D1-0、B2-0）に続いて、E0-0、E1-0、E0-0、E1-0、C0-0、C1-0を配列した場合、各D0-0、D1-0、B2-0からの接続先セルの距離が20Mb以内であるかどうかを判定する。この例の場合は、B2-0からその接続先セルC0-0、C1-0までに距離が20以上となる。

【0035】よってこの場合は、ステップS9に進む。ここでは、条件を満たさないセル番号が2つ以上あったかどうかの判定を行い、2つ以上のときはエラーがあったものとする。この事例の場合は1つであり、ステップS10に進む。

【0036】ステップS10では、条件を満たさない接続未了のセルの接続先セルをすべて配列し、そのセル番号と符号量を読み取る（この場合はC0-0、C1-0を読み取る）。

【0037】ステップS10から、ステップS6に戻ることになる。ここでは、上述した原則にしたがってセル番号が選択される。つまり、セル番号\$ $m-n$ の\$が最小のもので、nが最大で、mが最小のものを抽出する。そしてステップS7、S8へと進むことになる。

【0038】上記したようにこのアルゴリズムでは、複数の枝ストリームが存在した場合、各枝ストリームを例えば再生時間が等しくなる符号量で分割しておき、次に、ステップS3とS6に示す原則で配列順序を決めていくものである。

【0039】図6には、上記のように配列記録されたディスクにおいて、幾つかの再生例を示すもので、矢印の順序がシーンセルをピックアップする順序である。

【0040】上記の例は1つの例であり、この発明では種々の実施の形態が可能である。

【0041】図3Bに示した分割方法としては各種の実

施の形態が可能である。上記した分割点の決め方は、まず枝ストーリーを複数に分割する場合、全ての枝ストーリーのセルの再生時間が同じになるような符号量で分割し、ピックアップがジャンプする距離が最大ジャンプ量 J_{\max} 以内にあるかどうかを判定する場合、符号量を参照して上述したアルゴリズムにより判定した。

【0042】しかし分割点を決める場合、各枝ストーリーを別々に分割してもよい。

【0043】図7は、3つの枝ストーリーがあり、第1の枝ストーリー、第2の枝ストーリー、第3の枝ストーリーのそれぞれが符号量が等しくなるように3つに等分された例である。即ち、図7Aに示すように、第1の枝ストーリーは、等しい符号量(5Mb)単位のセル番号B0-0、B0-1、B0-2に分離され、第2の枝ストーリーは、等しい符号量(7Mb)単位のセル番号B1-0、B1-1、B1-2に分離され、第3の枝ストーリーは、等しい符号量(6Mb)単位のセル番号B2-0、B2-1、B2-2に分離されている。各枝ストーリーの分割数は同じであり、この例であると3つである。

【0044】このように分割した場合、図7Bに示すようにセル番号B0-0、B1-0、B2-0の集合をシーンセルブロック#0とし、セル番号B0-1、B1-1、B2-1の集合をシーンセルブロック#1とし、セル番号B0-2、B1-2、B2-2の集合をシーンセルブロック#2とすると、各シーンセルブロックの符号量は等しい。

【0045】符号量(データ量)が等しいということは、B0の枝ストリームを再生する場合も、B1の枝ストリームを再生する場合も、B2の枝ストリームを再生する場合も、ジャンプ距離は同じであるということである。

【0046】上記の例は、符号量で分割するとしたが、各枝を均等な再生時間で分割してもよい。

【0047】図8は、4つの枝ストーリーがあり、第1の枝ストーリー、第2の枝ストーリー、第3の枝ストーリー、第4の枝ストーリーのそれぞれが再生時間が等しくなるように3つに等分された例である。即ち、図8Aに示すように、第1の枝ストーリーは、等しい再生時間単位のセル番号B0-0、B0-1、B0-2、B0-3に分離され、第2の枝ストーリーは、等しい再生時間単位のセル番号B1-0、B1-1、B1-2、B1-3に分離され、第3の枝ストーリーは、等しい再生時間単位のセル番号B2-0、B2-1、B2-2、B2-3に分離されている。

【0048】この場合も、図8Bに示すように、シーンセルブロック#0～#3を得ることができる。

【0049】上記の例は、マルチストーリーに関してのセル配列方法を説明したが、マルチアングルについても同様な考え方で配列することが可能である。途中から

異なるアングルの映像を見たいような場合、例えば、コンサート会場において、指揮者のみをアップで撮影した映像をみている途中で、オーケストラ全体を客席側から撮影した映像を見たい場合に、マルチアングルの映像が記録されていた場合は、自由に角度を変えた映像を見ることができる。

【0050】図9Aはマルチアングルの映像情報であり、第1のアングルシーンD0-0～D0-3と第2のアングルシーンD1-0～D1-3とが情報源として存在した場合、例えば図9Bに示すように、シーンセルブロック#0～#3が形成されて配列される。

【0051】図10Aは、マルチストーリーの1つが極端に短い時間で終わるような場合のソースの例を示している。図10Bは、各枝ストーリーを所定の分割数(4)で分割し、セルを得た様子を示している。

【0052】このように極端に1つの枝ストーリーが短いと、単純にストーリーB0のセルを他のストーリーのセルと一緒にして多重化しても、B0のストーリー再生から次のC0のストーリー再生に移行するときのジャンプ間隔が長くなり、条件を満たすことができない場合が生じる。

【0053】そこでこの問題を解決するためには、図11に示すような手法が用いられる。即ち、まず、図11Aに示すように、後部の幹ストーリーC0の一部を各枝ストーリーB0、B1、B2にプラスし、接続点を後方に移行させる。そして、各枝ストーリーを図11Bに示すようにB0(E)、B1(E)、B2(E)とする。そしてこれらの枝ストーリーB0(E)、B1(E)、B2(E)をそれぞれ図11Cに示すように分割し、セル番号を付ける。以後の配列の方法は先に説明した手順と同じである。この例では、各枝ストーリーが3分割されている。

【0054】図12は、上記した各枝ストーリーからセルを1つずつ選択して、セルブロック#0、#1、…を作成して配列した状態を示している。これらのシーンセルブロックには、誤り訂正コードが含まれている。またこの例は、シーンセルブロックがそれぞれ同じ符号量である。さらに全体としてMPEG2方式の圧縮データの場合、セルの先頭には、非圧縮の映像データ、つまりIピクチャー又はフレーム内圧縮データ又は他のフレーム圧縮データを用いないで伸張可能なデータが含まれるように分割されている。これは、圧縮方式の都合上、先頭のセルに非圧縮の映像データがないとすると、後続する圧縮映像データを再現できないからである。

【0055】図13は、マルチストーリーを分割して記録する場合、その分割例を数式により説明するための図である。

【0056】図13Aに示すように、映像、音声、文字等で構成される映像プログラムであって、前部の幹ストーリーAから分岐するための分岐点Xと後部の幹ストー

リーCに結合するための結合点Yとの間に任意に選択可能な複数の枝ストーリーB0、B1、B2が存在するものとする。分岐点Xと結合点Yとの間の記録媒体への記録状態は、図13Bの如く配列されているものとする。今、図13Cに示すように枝ストーリーB0の系統の再生が行われるものとする。すると、再生装置はセル間をジャンプしながら再生しなければならない。實際には、ピックアップはデータを読み取りながら、読み取ったデータを確認しながら処理を行うことになる。

【0057】ここで各枝ストーリーが同じ数mに分割されるものとする。すると、全体で最短のストーリーこの例ではB0の再生間隔（ジャンプ距離）が最も長いことになる。そこで最短のストーリーに着目する。

【0058】B0の全体容量をV0とすると、B0の1セルの容量はV0/mとなる。

【0059】次に、再生装置の単位時間あたりの最大の符号再生レートをPr、再生装置の読み取りレートをRrとすると、B0-0の再生時間Tpは

$$Tp = (V0/m) / Pr$$

B0-0の読み取り時間TrはTr = (V0/m) / Rrである。

【0060】また、B0再生時においてジャンプすべき1回当たりの符号量VJはVJ = $\sum_{i=1}^{M-1} (Vi/m)$ で表され、B0再生時の(iはストーリー番号、Mはストーリー数)

ジャンプ時間TJPはTJP = $\sum_{i=1}^{M-1} (Vi/m) / Jp$ で表される。

【0061】Jpは再生装置が単位時間あたりにジャンプできる符号量である。ここで、再生時間よりも、次のセルまでジャンプするジャンプ時間が小さいというTp - Tr > TJPの条件を付けると

$[(V0/m) / Pr] - [(V0/m) / Rr] > \sum_{i=1}^{M-1} [(Vi/m) / Jp]$ … (1)を得ることができ、この式(1)に基づいて分割数mが設定される。

【0062】上記したセルを得るための分割点は、データの形式に応じて、再生データの乱れが生じないように決められるべきである。したがって、上記の条件のみを満足させて機械的に厳密に分割する必要はない。例えば、圧縮映像データ、圧縮音声データ、圧縮副映像データ等を時分割で有する映像プログラムにおいては、時分割された区切りのよい点をセル分割点とすべきである。また、セルの中には圧縮映像データ、圧縮音声データ、圧縮副映像データが含まれるものである。さらにまたMPEG2方式により圧縮された符号化映像データの場合、分割単位としては0.4~0.5s程度の再生時間をもつグループオブピクチャー単位で分割することが好みしい。

【0063】この発明は上記の説明に限定されるものではなく、各種の実施態様が可能であり、また変形も可能

である。上記の説明はこの発明の基本的な原理の説明である。

【0064】また、上記したセルには、それぞれ自己の識別番号と、次に連続すべきセルの識別番号が付加されていると、再生時に取扱いが便利である。またセルを取り扱うには、セルの再生順序等を設定した管理情報が、再生装置の制御部において利用される。また、セルには、データの信頼性を上げるためにセルにて訂正処理が完結する誤り訂正コードが含まれていてもよい。また、図7、図8の実施例では、各枝シーンのセルが時分割多重された状態は、第1乃至第nのシーンセルブロックが、順次繰り返し配列されており、それぞれのシーンセルブロックは異なる枝シーンからのセルが持ち込まれ組み合わせられたブロックである。この場合、シーンセルブロックには、シーンセルブロックにて完結する誤り訂正コードが含まれていてもよい。

【0065】またこの発明では、複数の枝シーンをそれぞれ複数のセルに分割し、かつ各枝シーンのセルを時分割多重して配列する場合、大まかに述べると以下のようになる。

【0066】即ち、再生装置のピックアップから読み取られた再生セルの映像未再生部分を再生回路で映像再生する実際の再生時間をTpとし、前記再生セルに続く次セルを前記ピックアップがサーチして読み取るまでの読み取り時間をTsとすると、Tp > Tsとなる関係となる条件を満足するように前記複数のセルが分割され、かつ時分割多重されて配列されることになる。この場合、再生装置の再生回路で映像再生する再生時間は、再生信号を蓄積するバッファメモリの容量と、データ量×圧縮率、読み出しクロック周波数で決定し、前記読み取り時間は前記ピックアップの応答速度を主とするパラメータとして決定している。

【0067】また光学ディスクにおいては、前記分岐点と前記結合点との間の記録状態は、複数の枝シーンがそれぞれ複数のセルに分割されており、1つのセルは所定の映像再生時間に相当するものであり、また各枝シーンのセルが時分割多重され、かつ連続再生すべきセルは所定符号量の距離内に配置された形で記録されている。ここで再生装置側においては、所定符号量の距離をシークするのに要する時間がTs、単位時間当たりのデータ読み取り符号量がRr、単位時間あたりの映像再生に対して消化する最大符号量がPrであるとする。すると、前記Tsと、前記再生装置が1つのセルをデコーディングして映像再生出力を得る時間Tcとは

$$Tc - [(Tc \times Pr) / Rr] > Ts$$

なる関係となるように設定されている。

【0068】図14には、上述した情報記録媒体（光ディスク）を再生する再生装置の構成例を示している。

【0069】ディスク100は、ターンテーブル101上に載置され、モータ102により回転駆動される。

今、再生モードであるとすると、ディスク100に記録された情報は、ピックアップ部103によりピックアップされる。ピックアップ部103は、ピックアップドライブ部104により移動制御及びトラッキング制御されている。ピックアップ部103の出力は、復調部201に入力されて復調される。ここで復調された復調データは、エラー訂正部202に入力されて、エラー訂正された後、デマルチプレクサ203に入力される。デマルチプレクサ203は、映像情報、字幕及び文字情報、音声情報、制御情報等を分離して導出する。つまりディスク100には、映像情報に対応して字幕及び文字情報（サブピクチャー）、音声情報等が記録されているからである。この場合、字幕及び文字情報や音声情報としては、各種の言語を選択することができ、これはシステム制御部204の制御に応じて選択される。

【0070】システム制御部204に対しては、ユーザによる操作入力が操作部205を通して与えられる。

【0071】デマルチプレクサ203で分離された映像情報は、ビデオデコーダ206に入力され、表示装置の方式に対応したデコード処理が施される。例えばNTSC、PAL、SECAM、ワイド画面、等に変換処理される。またデマルチプレクサ203で分離されたサブピクチャーはサブピクチャー処理部207に入力され、字幕や文字映像としてデコードされる。ビデオデコーダ206でデコードされたビデオ信号は、加算器208に入力され、ここで字幕及び文字映像（＝サブピクチャー）と加算され、この加算出力は出力端子209に導出される。またデマルチプレクサ203で選択され分離された音声情報は、オーディオデコーダ211に入力されて復調され、出力端子212に導出される。また、オーディオ処理部としては、オーディオデコーダ211の他にオーディオデコーダ213を有し、他の言語の音声を再生して出力端子214に出力することもできる。

【0072】ここで、エラー訂正部202の後段にはバッファメモリ220が設けられており、このバッファメモリ220に再生データが一旦蓄積されてデコード速度に応じてマルチプレクサ203に供給されるようになっている。通常の連続再生においてバッファメモリ220のデータ量が溢れる場合には、システム制御部204は、キックバック処理を行う。キックバック処理は、今まで読み取った所定セクタ分のデータを再度読み取ることであり、バッファメモリ220でデータ溢れが生じても、データ欠落を補償する機能である。

【0073】マルチストーリーを含む光ディスクが再生される場合には、ディスクの管理情報としてマルチストーリーの選択枝が例えばモニタ画面あるいはシステムのサブ表示部にメニューとして表示される。ユーザはそのメニューを見ながらリモコン操作部205を介して枝ストーリーの選択を予め行うことができる。

【0074】ここで選択情報が与えられると、システム

制御部204は、枝ストーリーの識別情報を把握するので、その識別情報がヘッダに付加されているデータをバッファメモリ220から抽出し、デマルチプレクサ203に与える。

【0075】以上説明したようにこの発明によると、複数のストーリーやシーンのデータを記録媒体に記録する場合に、再生時のピックアップの物理的な移動距離が少なくて済み、再生映像のとぎれや乱れが生じるのを抑圧できる。

【0076】次に具体的に本発明が適用された光ディスク再生装置のシステムについて説明する。

【0077】まず、光ディスクには、本発明に関連する情報としてどのような情報が記録されているかを説明する。

【0078】図15は、光学式ディスク100のボリューム空間を示している。図15に示すように、ボリューム空間は、ボリューム及びファイル構成ゾーン、DVDビデオゾーン、他のゾーンからなる。ボリューム及びファイル構成ゾーンには、UDF(Universal Disk Format Specification Revision 1.02) ブリッジ構成が記述されており、所定規格のコンピュータでもそのデータを読み取れるようになっている。DVDビデオゾーンは、ビデオマネージャー(VMG)、ビデオタイトルセット(VTS)を有する。ビデオマネージャー(VMG)、ビデオタイトルセット(VTS)は、それぞれ複数のファイルで構成されている。ビデオマネージャー(VMG)は、ビデオタイトルセット(VTS)を制御するための情報である。図16には、ビデオマネージャー(VMG)とビデオタイトルセット(VTS)の構造をさらに詳しく示している。

【0079】ビデオマネージャー(VMG)は、制御データとしてのビデオマネージャーインフォメーション(VMGI)と、メニュー表示のためのデータとしてのビデオオブジェクトセット(VMGM_VOBS)を有する。また前記VMGIと同一内容であるバックアップ用のビデオマネージャーインフォメーション(VMGI)も有する。

【0080】ビデオタイトルセット(VTS)は、制御データとしてのビデオタイトルセットインフォメーション(VTSI)と、メニュー表示のためのデータとしてのビデオオブジェクトセット(VTSM_VOBS)と、映像表示のためのビデオオブジェクトセットであるビデオタイトルセットのタイトルのためのビデオオブジェクトセット(VTSTT_VOBS)とが含まれる。また前記VMGIと同一内容であるバックアップ用のビデオタイトルセットインフォメーション(VTSI)も有する。

【0081】さらに、映像表示のためのビデオオブジェクトセットである(VTSTT_VOBS)は、複数のセル(Cell)で構成されている。各セル(Cell)

1)にはセルID番号が付されている。

【0082】図17には、上記のビデオオブジェクトセット(VOBS)とセル(Ce11)の関係と、さらにセル(Ce11)の中身を階層的に示している。DVDの再生処理が行われるときは、映像の区切り(シーンチェンジ、アングルチェンジ、ストーリーチェンジ等)や特殊再生に関しては、セル(Ce11)単位またはこの下位の層であるビデオオブジェクトユニット(VOBU)単位、さらにはインターリーブユニット(ILVU)単位で取り扱われるようになっている。

【0083】ビデオオブジェクトセット(VOBS)は、まず、複数のビデオオブジェクト(VOB_IDN1～VOB_IDNj)で構成されている。さらに1つのビデオオブジェクトは、複数のセル(C_IDN1～C_IDNj)により構成されている。さらに1つのセル(Ce11)は、複数のビデオオブジェクトユニット(VOBU)、または後述するインターリーブユニットにより構成されている。そして1つのビデオオブジェクトユニット(VOBU)は、1つのナビゲーションパック(NV_PCK)、複数のオーディオパック(A_PCK)、複数のビデオパック(V_PCK)、複数のサブピクチャーパック(SP_PCK)で構成されている。

【0084】ナビゲーションパック(NV_PCK)は、主として所属するビデオオブジェクトユニット内のデータの再生表示制御を行うための制御データ及びビデオオブジェクトユニットのデータサーチを行うための制御データとして用いられる。

【0085】ビデオパック(V_PCK)は、主映像情報であり、MPEG等の規格で圧縮されている。またサブピクチャーパック(SP_PCK)は、主映像に対して補助的な内容を持つ副映像情報である。オーディオパック(A_PCK)は、音声情報である。

【0086】図18には、プログラムチェーン(PGC)により、上記のセル(Ce11s)がその再生順序を制御される例を示している。

【0087】プログラムチェーン(PGC)としては、データセルの再生順序として種々設定することができるよう、種々のプログラムチェーン(PGC#1、PGC#2、PGC#3...)が用意されている。したがって、プログラムチェーンを選択することによりセルの再生順序が設定されることになる。

【0088】プログラムチェーンインフォメーション(PGCI)により記述されていてるプログラム#1～プログラム#nが実行される例を示している。図示のプログラムは、ビデオオブジェクトセット(VOBS)内の(VOB_IDN#s、C_IDN#1)で指定されるセル以降のセルを順番に指定する内容となっている。プログラムチェーンは、光ディスクの管理情報記録部に記録されており、光ディスクのビデオタイトルセットの読

みとに先行して読み取られ、システム制御部のメモリに格納される情報である。管理情報は、ビデオマネージャー及び各ビデオタイトルセットの先頭に配置されている。

【0089】図19にはビデオオブジェクトユニット(VOBU)と、このユニット内のビデオパックの関係を示している。VOBU内のビデオデータは、1つ以上のGOPにより構成している。エンコードされたビデオデータは、例えばISO/IEC13818-2に準拠している。VOBUのGOPは、Iピクチャー、Bピクチャーで構成され、このデータの連続が分割されビデオパックとなっている。

【0090】次に、マルチアングル情報が記録再生される場合のデータユニットについて説明する。被写体に対する視点の違う複数シーンがディスクに記録される場合、シームレス再生を実現するためには、記録トラック上にインターリーブブロック部が構築される。インターリーブブロック部分は、アングルの異なる複数のビデオオブジェクト(VOB)が、それぞれ複数のインターリーブユニットに分割される。さきに説明したように、シームレス再生が可能なように配列されて記録される。

【0091】なお、先の説明で、複数のストーリーを時分割で多重することの説明をおこなった。そして、その説明では、全て分割されたブロックも名称をセルと呼んだ。しかし、これ以後は、特にインターリーブされたブロックを、インターリーブユニットと呼ぶことにする。

【0092】図20には、インターリーブブロックの配列例を示している。この例は、1～mのビデオオブジェクト(VOB)がそれぞれn個のインターリーブユニットに分割され、配列された例を示している。各ビデオオブジェクト(VOB)は、それぞれ同じ数のインターリーブユニットに分割されている。したがって、さきの説明の図7の例に相当する。:

【0093】図21には、例えば2つの(VOB)、つまりアングル1とアングル2のシーンのビデオオブジェクトがそれぞれ3つのインターリーブユニット(ILVU1-1～ILVU3-1)(ILVU1-2～ILVU3-2)に分割され、1つのトラック上に配列された記録状態と、例えば、アングル1を再生した場合の再生出力例を示している。この場合はアングル2の情報は取り込みされない。

【0094】図22は、図14に示した再生装置を簡素化して示している。上記したようなジャンプ再生が行われる場合には、デコーダ206に対してデータがときれないように供給する必要がある。そのためトランクバッファ220が設けられている。Vrはトランクバッファ220にエラー訂正処理部220から供給されるデータの転送レートであり、Voは、トランクバッファ220からデコーダに供給されるデータの転送レートである。ディスクからのデータの読み取りは、エラー訂正ブ

ロック毎に実行される。1エラー訂正ブロックは16セクタ分に相当する。

【0095】図23は、インターリーブブロックが再生されるときのバッファ220へのデータ入力の増加及び減少が、最悪の場合を示している。このときには、記録トラック上のインターリーブユニットのジャンプと、ジャンプ先のインターリーブユニットデータの読み取り及び再生処理が実行される。

【0096】図において、 V_r はトラックバッファ220にエラー訂正処理部220から供給されるデータの転送レートであり、また、 V_o は、トラックバッファ220からデコーダに供給されるデータの転送レートである。

【0097】 T_j はジャンプ時間であり、トラックをシークする時間とそのために付随している必要な時間(レイテンシータイム latency time)を含む。 b は、1つのECCブロックのデータサイズ(例えば261114ビット)であり、 T_e は1つのECCブロックをバッファに読み込むのに必要な時間である。また B_x は、ジャンプが開始されたとき(時点 t_4)にバッファ220に残っているデータ量である。

【0098】図23のデータ量を示す曲線は、時点 t_2 から傾斜($V_r - V_o$)の蓄積率で、バッファ220にデータがされていくことを示している。また、曲線は、時間 t_6 では、バッファのデータ量が零になったことを示している。このバッファのデータは、時間 t_3 から傾斜 $-V_o$ の減少率で減少し、時間 t_6 で零になっている。

【0099】この曲線から理解できることは、以下のようなことである。即ち、バッファ220から連続してデータが出力される条件、つまりデータがとぎれることなくデコーダへ供給されるための条件は、

$$B_x \geq V_o (T_j + 3 T_e) \dots (2)$$

【0100】またインターリーブユニットのサイズ(I LVU SZ)は、 $I LVU SZ \geq \{(T_j \times V_r \times 10^6 + 2b) / (2048 \times 8)\} \times V_o / (V_r - V_o)$ (セクタ) $\dots (3)$ の条件を導きだせる。

【0101】この式は、式(1)と等価であり、インターリーブユニットの数mが除去されているだけである。

【0102】即ち、

$$[(V_o/m) / P_r] - [(V_o/m) / R_r]$$

$$> \sum_{i=1}^{m-1} (V_i/m) / J_p \dots (1)$$

(1)式の(V_o/m)は、インターリーブユニットのサイズに相当し、 P_r は V_o 、 R_r は V_r に相当する。

【0103】また(1)式の右辺はジャンプ時間であり、(3)式ではこのジャンプ時間に相当するセクタ数を $\{(T_j \times V_r \times 10^6 + 2b) / (2048 \times 8)\}$ として厳密に表している。(1)式を(3)式に近付けるべく変形してみる。

【0104】(V_o/m)をユニットサイズとしてUS

Z とおき、 $P_r = V_o$ 、 $R_r = V_r$ 、(1)式の右辺を T_{jp} とおくと、以下のように変形することができる。

【0105】

$$\begin{aligned} USZ \times (1/V_o) - USZ \times (1/V_r) &\geq T_{jp} \\ USZ \times \{(1/V_o) - (1/V_r)\} &\geq T_{jp} \\ USZ \times \{(V_r - V_o) / (V_o V_r)\} &\geq T_{jp} \\ USZ \geq T_{jp} \times V_r \times \{(V_o) / (V_r - V_o)\} \end{aligned} \dots (4)$$

をことができる。

【0106】この(4)式はディメンジョンがデータ量で表されており、(3)式の 10^6 と $1/(2048 \times 8)$ の要素が省略された形である。 T_{jp} は $T_j + 2b$ に対応する。

【0107】次に、バッファメモリとしてどの程度の容量が必要であるかを検討してみる。バッファメモリの容量は、再生装置がキックバック動作して、続いてインターリーブユニットのジャンプを行っても、メモリ出力データのとぎれがないような容量であることが望ましい。キックバックは、ディスクが一回転する間、ピックアップが読み取りを待っているような状態であり、ディスクが一回転した後に、隣のトラックへ読み取り位置をシークすることである。

【0108】図24は、再生装置においてキックバック動作が行われ、続いて最大級のジャンプ動作が行われた場合の時間と、バッファメモリにおけるデータの低減状況を示している。

【0109】 B_m はトラックバッファのサイズ

T_k はキックバック時間(ディスクの1回転時間相当)

T_e は1ECCブロックの読み取り時間(24ms)

T_j はジャンプ時間

$$= \text{トラックシークタイム}(t_j) + \text{latency time}(=T_k)$$

$\text{MAX } V_o$ は、ILVUの最大読み出しレート

上記の要件を用いて、再生装置においてキックバック動作が行われ、続いて最大級のジャンプ動作が行われた場合に、データの継続を補償するバッファメモリの容量を求めるると、 $B_m \geq \{(2T_k + t_j + 4T_e) \times \text{MAX } V_o \times 10^6\} / (2048 \times 8)$ となる。 B_m はセクタであり、 T_k 、 t_j 、 T_e のそれぞれの単位は[sec]であり、 $\text{MAX } V_o$ の単位は、[Mbps]である。

【0110】上記のことから、必要とされるトラックバッファサイズは、再生装置の T_k 、 t_j 、 T_e に依存し、 t_j はシーク動作の性能に依存する。また T_k 、 T_e は、ディスクの回転速度に依存する。

【0111】図25には、デジタルビデオディスクを再生する再生装置のトラックバッファの最小容量(B_m)と、キックバック及びシーク時間と、ジャンプ距離と、単位時間当たりのトラックバッファからの出力データ量との設計例を示している。

【0112】次に、上記したインターリーブユニット及びこのインターリーブユニットを再生する場合の管理情

報について説明する。

【0113】図26には、ビデオタイトルセット(VTS)の中のビデオタイトルセットインフォーメーション(VTS_I)を示している。ビデオタイトルセットインフォーメーション(VTS_I)の中にビデオタイトルセットプログラムチェーンインフォーメーションテーブル(VTS_PGC_IT)が記述されている。したがって、1つのビデオタイトルセット(VTS)内のビデオオブジェクトセット(VOBS)が再生されるときは、このビデオタイトルセットプログラムチェーンインフォーメーションテーブル(VTS_PGC_IT)で提示される複数のプログラムチェーンの中から製作者が指定した又はユーザが選択したプログラムチェーンが利用される。

【0114】VTS_Iの中には、そのほかに、次のようなデータが記述されている。

【0115】VTS_I_MAT…ビデオタイトルセット情報の管理テーブルであり、このビデオタイトルセットにどのような情報が存在するのか、また、各情報のスタートアドレスやエンドアドレスが記述されている。

【0116】VTS_PTT_SRPT…ビデオタイトルセット パート オブ タイトルサーチポインター テーブルであり、ここでは、タイトルのエントリーポイント等が記述されてる。

【0117】VTSM_PGC_I_UT…ビデオタイトルセットメニュー プログラムチェーンインフォーメーションユニットテーブルであり、ここには、各種の言語で記述されるビデオタイトルセットのメニューが記述されている。したがって、どの様なビデオタイトルセットが記述されており、どのようなスタイルの再生順序で再生できるのか記述されているのかをメニューで確認できる。

【0118】VTS_TMAPT…ビデオタイトルセットタイムマップテーブルであり、このテーブルには、各プログラムチェーン内で管理され、ある一定の秒間隔で指示される各VOBUの記録位置の情報が記述されている。

【0119】VTSM_C_ADT…ビデオタイトルセットメニュー セルアドレステーブルであり、ビデオタイトルセットメニューを構成するセルのスタート及びエンダーアドレス等が記述されている。

【0120】VTSM_VOBU_ADMAP…ビデオタイトルセットメニュー ビデオオブジェクトユニットアドレスマップであり、このマップにはメニュー ビデオオブジェクトユニットのスタートアドレスが記述されている。

【0121】VTS_C_ADT…ビデオタイトルセットセルアドレステーブルであり、このマップにはセルのアドレス情報が記述されている。

【0122】再生装置においては、プログラムチェーンが選択されると、そのプログラムチェーンによりセルの

再生順序が設定される。また再生においては、ビデオオブジェクトユニットに含まれるNV_PCKが参照される。

【0123】NV_PCKは、表示内容、表示タイミングを制御するための情報や、データサーチのための情報を有する。したがって、このNV_PCKテーブルの情報に基づいてV_PCKの取り出しと、デコードが行われる。また他のパックの取り出し及びデコードが行われるが、その場合は、製作者又はユーザが指定しているところの言語のA_PCK、SP_PCKの取り出しが行われる。

【0124】図27には、ビデオタイトルセットプログラムチェーンインフォーメーションテーブル(VTS_PGC_IT)の内容を示している。このテーブルには、ビデオタイトルセットPGC_Iテーブル情報(VTS_PGC_ITI)、ビデオタイトルセットプログラムチェーンインフォーメーションのサーチポインタ(VTS_PGC_I_SRP#1~#n)、具体的なプログラムチェイン情報(VTS_PGC_I)が記述されている。

【0125】(VTS_PGC_ITI)には、サーチポインタの数とこのテーブルのエンドアドレスが記述されている。

【0126】(VTS_PGC_I_SRP#1~#n)には、ビデオタイトルセットプログラムチェーンのカテゴリとして、対象となるビデオタイトルセットのタイトル数、プログラムチェーンが1つのブロックで完結するものであるか、別のブロックのチェーンに続くものであるか等がタイプが記述されている。またビデオタイトルセットプログラムチェーンのスタートアドレスが、このテーブルのスタート位置からの相対アドレスで記述されている。

【0127】図28には、プログラムチェーン情報(PGC_I)の構成を記述している。

【0128】PGC_Iは、プログラムチェーン一般情報(PGC_I_GI)、プログラムチェーンコマンドテーブル(PGC_CMDT)、プログラムチェーンプログラムマップ(PGC_PGMAP)、セルプレイバック情報(C_PBI)、セル位置情報テーブル(C_PO_SIT)を有する。

【0129】PGC_I_GIには、このプログラムチェーンの対象となるプログラム数、セル数が記述されている(この情報はPGCコンテンツ(PGC_CNT)と呼ばれる)。また、このプログラムチェーンの対象とする全ての再生時間が示されている(この情報はPGC再生時間(PGC_PB_TM)と呼ばれる)。また、このプログラムチェーンにより再生されるプログラムは、ユーザの操作が許可されているどうか、例えばアングル切り換えが可能であるかどうかのコードが記述されている(この情報はPGCユーザ操作制御(PGC_UPR_CTL)と呼ばれる)。さらにまた、オーディオスト

リームの切り換えができるかどうか、またどの様なオーディオストリーム（例えリニアPCM、AC-3、MPEG等）に切り換え移行できるかどうかのコードも記述されている（この情報はPGCオーディオストリーム制御テーブル（PGC_AST_CTLT）と呼ばれる）。また、副映像の切り換えができるかどうか、またどの様な副映像（例えば異なるアスペクト比）に切り換え移行できるかどうかのコードも記述されている（この情報はPGC副映像ストリーム制御テーブル（PGC_SPST_CTLT）と呼ばれる）。

【0130】さらにまた、このPGC_I_GIには、次のプログラムチェーンの番号及び先行するプログラムチェーンの番号も記述されている。またこのプログラムチェーンの対象となるプログラムが連続再生用であるか、ランダム再生用であるか、シャッフル用であるかどうかも記述されている（この情報はPGCナビゲーション制御（PGC_NV_CTL）と呼ばれる）。さらにまた、副映像はどの様な色に表示されるべきか色指定も行われている（この情報はPGC副映像パレット（PGC_SP_PLT）と呼ばれる）。

【0131】また、プログラムチェーンコマンドテーブルのスタートアドレス（PGC_CMDT_SA）、プログラムチェーンのプログラムマップのスタートアドレス（PGC_PGMAP_SA）、セル再生情報テーブルのスタートアドレス（CPBIT_SA）、セル位置情報のスタートアドレス（C_POSI_SA）が記述されている。

【0132】プログラムチェーンコマンドテーブルには、当該プログラムチェーンのプリコマンド及びポストコマンド、及びセルコマンドが記述されている。プリコマンドは、プログラムチェーンが実行される前に処理されるべきコマンドであり、ポストコマンドはプログラムチェーンが実行された後に処理されるべきコマンドである。プリコマンド及びポストコマンドはプレーヤ側やディスクの制作者側により予め取り決めたコマンドやパラメータに基づいて、ビデオタイトルやオーディオの再生状態や再生ストリームを規定するのに利用される。またセルコマンドは、セルが再生処理を実行された後に続いて処理されるべきコマンドのことである。プログラムチェーンのプログラムマップのスタートアドレス（PGC_PGMAP）には、当該プログラムチェーンの対象となるプログラムの構成が示されており、存在するプログラムのエントリーセル番号などが記述されている。

【0133】セル再生情報テーブル（C_PBIT）には、当該プログラムチェーンの対象となるセルの再生順序を示す情報が記述されている。

【0134】図29には、セル再生情報（C_PBIT）とセル再生情報の内容を示している。C_CATは、セル属性情報であり、セルブロックのモードを示している。セルブロックのモードとは、第1番目のセルで

あるかどうか、最後のセルであるかどうか示している。またシームレス再生されるものであるかどうかの情報、インターリーブブロックに属するものであるかどうか、シームレスアンダル切り換えに関する情報も含まれている。シームレスアンダル切り換えに関する情報は、シームレスでアンダル切り換えができるのか、ノンシームレスで切り換えができるのかを示している。

【0135】C_PBTMは、セル再生時間を示しており、C_FVOBU_SAは、当該セルの最初のビデオオブジェクトユニット（VOBU）のスタートアドレス、CILVU_EAは、当該セルの最初のインターリーブユニット（ILVU）のエンドアドレス、C_FVOBU_SAは、当該セルの最後のビデオオブジェクトユニット（VOBU）のスタートアドレス、C_FVOBU_EAは、当該セルの最後のビデオオブジェクトユニット（VOBU）のエンドアドレスを示している。上記のアドレスは、当該セルが属するVOBSの最初の論理ブロックからの相対論理ブロック番号で記述される。

【0136】このセル再生情報を参照することにより、現在の再生状態がセルの終りであるかどうかを判定することができる。次のセルを再生する場合には、セル再生情報テーブル内の次のセル再生情報が参照されて、次のセル（またはインターリーブユニット）の最初のVOBUのスタートアドレスが決定することになる。

【0137】図30は、セル位置情報テーブル（C_PSIIT）の内容を示している。セル位置情報としては、当該セルが含まれるビデオオブジェクトのID番号（C_VOB_IDN）と、当該セルのセルID番号（C_IDN）がある。

【0138】上記したように、管理情報には、セル再生情報が記述されおり、その中にはセルの属性情報があり、マルチアングル等のインターリーブユニットが記録されているかどうかが示されている。

【0139】このようにマルチアングルの映像、あるいはマルチストリーミングの映像が記録されている場合、ユーザの操作に応じて再生装置は、再生しているアングルを切り換えるか、また再生しているストーリーを切り換える必要がある。その場合、再生装置は、以下に述べるような情報に基づいて、ユーザの操作に応答することになる。まずパックの構成から説明する。

【0140】図31には、1つのパックとパケットの構成例を示している。1パックは、パックヘッダ、パケットで構成される。パックヘッダ内には、パックスタートコード、システムクロッククリフレンス（SCR）等が記述されている。パックスタートコードは、パックの開始を示すコードであり、システムクロッククリフレンス（SCR）は、再生装置全体に再生経過時間における所在時間を示す情報である。1パックの長さは、2048バイトであり、光ディスク上の1論理ブロックとして規定され、記録されている。

【0141】1パケットは、パケットヘッダとビデオデータまたはオーディオデータ又はサブピクチャーデータまたはナビゲーションデータで構成されてる。パケットのパケットヘッダには、スタッフィングが設けられる場合もある。またパケットのデータ部にはパディングが設けられる場合もある。

【0142】図32には、NV_PCK(図17参照)を取り出して示している。

【0143】NV_PCKは、基本的には表示画像を制御するためのピクチャーコントロールインフォーメーション(PC1)パックと、同じビデオオブジェクト内に存在するデータサーチインフォーメーション(DS1)パックを有する。各パックにはパックヘッダとサブストリームIDが記述され、その後にそれぞれデータが記述されている。各パックヘッダにはストリームIDが記述され、NV_PCKであることを示し、サブストリームIDは、PC1、DS1の識別をおこなっている。また各パックヘッダには、パケットスタートコード、ストリームID、パケット長が記述され、統いて各データが記述されている。

【0144】PC1パケットは、このNVパケットが属するビデオオブジェクトユニット(VOBU)内のビデオデータの再生に同期して表示内容を変更するためのナビゲーションデータである。

【0145】PC1パケットには、一般情報であるPC1ジェネラルインフォーメーション(PC1_GI)と、ノンシームレスアングルインフォーメーション(NSML_ANGLI)と、ハイライトインフォーメーション(HL_I)と、記録情報であるレコーディングインフォーメーション(RECI)が記述されている。

【0146】PC1_GIには、このPC1の一般的な情報であり以下のような情報を記述されている。このナビゲーションパックのアドレスである論理ブロックナンバー(NV_PCK_LBN)、このPC1で管理されるビデオオブジェクトユニット(VOBU)の属性を示すビデオオブジェクトユニットカテゴリー(VOBUCAT)、このPC1で管理されるビデオオブジェクトユニットの表示期間におけるユーザの操作禁止情報であるユーザオペレーションコントロール(VOBU_UOP_CTL)、ビデオオブジェクトユニットの表示の開始時間である(VOBU_S_PT)、ビデオオブジェクトユニットの表示の終了時間である(VOBU_E_PT)を含む。VOBU_S_PTによって指定される最初の映像は、MPEGの規格におけるIピクチャーである。さらにまた、ビデオオブジェクトユニットの最後のビデオの表示時間を示すビデオオブジェクトユニット シーケンス エンド プレゼンテーションタイム(VOBU_SE_EPT)や、セル内の最初のビデオフレームからの相対表示経過時間を示すセル エラップス タイム(C_E1TM)等も記述されている。

【0147】また、NSML_ANGLIは、アングルチェンジがあったときの目的地のアドレスを示している。つまり、ビデオオブジェクトユニットは、異なる角度から撮像した映像をも有する。そして、現在表示しているアングルとは異なるアングルの映像を表示させるためにユーザからの指定があったときは、次に再生を行うために移行するVOBUのアドレスが記述されている。

【0148】HL_Iは、画面内で特定の領域を矩形状に指定し、この領域の輝度やここに表示される副映像のカラー等を可変するための情報である。この情報には、ハイライトジェネラルインフォーメーション(HL_GI)、ユーザにカラー選択のためにボタン選択を行わせるためのボタンカラーアインフォーメーションテーブル(BTN_COLIT)、また選択ボタンのためのボタンインフォーメーションテーブル(BTNIT)が記述されている。

【0149】RECIは、このビデオオブジェクトユニットに記録されているビデオ、オーディオ、サブピクチャーの情報であり、それがデコードされるデータがどのようなものであるかを記述している。例えば、その中には国コード、著作権者コード、記録年月日等である。

【0150】DS1パケットは、ビデオオブジェクトユニットのサーチを実行させるためのナビゲーションデータである。

【0151】DS1パケットには、一般情報であるDS1一般情報(DS1_GI)と、シームレスプレイバックインフォーメーション(SML_PBI)、シームレスアングルインフォーメーション(SML_AGLI)、ビデオオブジェクトユニットサーチインフォーメーション(VOBU_SRI)、同期情報(SYNCI)等が記述されている。

【0152】図33に示すようにDS1_GIには、次のような情報が記述されている。

【0153】NV_PCKのデコード開始基準時間を示すシステムクロックリフレンスであるNV_PCK_SCR、NV_PCKの論理アドレスを示す(NV_PCK_LBN)、このNV_PCKが属するビデオオブジェクトユニットの終了アドレスを示す(VOBU_EA)が記述されている。さらにまた、最初にデコードするための第1の基準ピクチャー(Iピクチャー)の終了アドレス(VOBU1_STREF_EA)、最初にデコードするための第2の基準ピクチャー(Pピクチャー)の終了アドレス(VOBU2_NDREF_EA)、最初にデコードするための第3の基準ピクチャー(Bピクチャー)の終了アドレス(VOBU3_RDREF_EA)が記述されている。さらにまた、このDS1が属するVOBのID番号(VOBU_VOB_IDN)、またこのDS1が属するセルのID番号(VOBU_C_IDN)、セル内の最初のビデオフレームからの相対経過時間を示すセル エラップス タイム(C_E1TM)

も記述されている。

【0154】図34に示すようSML_PB1には、次のような情報が記述されている。

【0155】このDSIが属するVOBUはインターリーブされたユニット(ILVU)であるか、ビデオオブジェクトの接続を示す基準となるプリユニット(PREU)であるかを示すビデオオブジェクトユニットシームレスカテゴリー(VOBUSHML_CAT)がある。またインターリーブユニットの終了アドレスを示す(ILVU_EA)、次のインターリーブユニットの開始アドレスを示す(ILVU_SA)、次のインターリーブユニットのサイズを示す(ILVUSZ)、ビデオオブジェクト(VOB)内でのビデオ表示開始タイムを示す(VOB_V_S_PTM)、ビデオオブジェクト(VOB)内でのビデオ表示終了タイムを示す(VOB_V_E_PTM)、ビデオオブジェクト(VOB)内でのオーディオ停止タイムを示す(VOB_A_STP_PTM)、ビデオオブジェクト(VOB)内でのオーディオギャップ長を示す(VOB_A_GAP_LEN)等がある。

【0156】プリユニット(PREU)は、インターリーブユニットの直前のBOVUの最後のユニットである。

【0157】上記のビデオオブジェクトユニットシームレスカテゴリー(VOBUSHMLCAT)には、さらに、インターリーブユニットがスタート時点におけるユニットであるのか否かを示すフラッグ、また終了時点におけるユニットであるのか否かを示すフラッグの記述されている。

【0158】図35は、シームレスアングル情報(SML_AGLI)の内容を示している。C1~C9はアングル数を示し、最大9つのアングルの情報が存在してもその行き先のインターリーブユニットのアドレス及びサイズを示すことができる。即ち各アングルにおける次に移行目的とするインターリーブユニットのアドレス及びサイズ(SML_AGL_Cn_DSTA)(n=1~9)が記述されている。視聴中にユーザの操作によりアングル変更の操作があった場合はこの情報が参照され、再生装置は、つぎのインターリーブユニットの再生位置を認識できる。図36はVOBUサーチ情報(VOBUSHMRI)であり、特殊再生時等に参照される。

【0159】この情報は、現在のビデオオブジェクトユニット(VOBU)の開始時間よりも(0.5×n)秒前及び後のVOBUの開始アドレスを記述している。即ち、当該DSIを含むVOBUを基準にしてその再生順にしたがってフォワードアドレス(FWDINn)として+1から+20、+60、+120及び+240までのVOBUのスタートアドレス及びそのユニットにビデオパックが存在することのフラッグが記述されている。スタートアドレスは、当該VOBUの先頭の論理セクタ

から相対的な論理セクタ数で記述されている。この情報を利用することにより、再生したいVOBUを自由に選択することができる。

【0160】図37には同期情報を示している。この同期情報には、同期すべき目的オーディオパックのアドレスと、同期すべき目的副映像パックのVOBUスタートアドレスが記述されている。

【0161】上記したような管理情報が光学ディスクに記述される。再生装置のシステム制御部は、ビデオマネージャーのプログラムチェーン情報を参照することにより、セル再生情報を取得する。そしてセルの属性情報を参照することにより、マルチアングルのためのインターリーブユニットブロックが記録されているかどうかを認識する。マルチアングルのためのインターリーブユニットブロックが記録されている場合、再生の途中においてNV_PACのシームレス再生情報、シームレスアングル情報が取得されてバッファメモリにストアされる。そして、ユーザの操作によりアングル切り換え情報が入力すると、シームレスアングル情報が参照される。この参照により、ユーザが希望したアングルのインターリーブユニットの再生が開始される。以後は、取得したNV_PACに含まれるシームレスセル再生情報が参照されて、次に再生すべきインターリーブユニットが認識される。セル再生情報を参照することにより、現在の再生状態がセルの終りであるかどうかを判定することができる。次のセルを再生する場合には、セル再生情報テーブル内の次のセル再生情報が参照されて、次のセル(またはインターリーブユニット)の最初のVOBUのスタートアドレスが決定することになる。

【0162】図14に示した再生装置のシステム制御部204には、上記したような各種の管理情報、プログラムチェーン、ナビゲーションパックなどのデータを処理し、またリモコン操作部205からの操作入力を処理する手段が設けられている。したがって、セル属性情報、セル再生シーケンス情報、枝シーンの切り換え情報(アングル情報等)の検出手段をする。そして、操作入力に応答して、検出手段にストアされている情報を参照することにより、再生すべきインターリーブユニットのストリームを決定している。この場合にピックアップ部103のトラッキング制御部を制御したりエラー訂正部202のデータ取り込みタイミングを制御することにより、キックバック及びジャンプ処理を実現している。

【0163】

【発明の効果】この発明は、マルチメディアにおける光学式ディスクの製造、販売、及び光学式ディスクの記録再生装置の製造、販売に適用できる。そして複数のストリーミングやシーンのデータを記録媒体に記録する場合に、再生時のピックアップの物理的な移動距離が少なくてすみ、再生画像のとぎれや乱れが生じるの抑止できる。

【図面の簡単な説明】

【図1】この発明の情報記録媒体及び記録方法の一実施の形態を説明するための説明図。

【図2】図1のセルの配列例と再生順の例を説明するための説明図。

【図3】この発明の情報記録媒体及び記録方法の他の実施の形態を説明するための説明図。

【図4】図3のセルの接続先及びセルの具体的配列例を説明するための説明図。

【図5】図3のセルの配列アルゴリズムの例を説明するための説明図。

【図6】図3のような配列セルの再生例を説明するための説明図。

【図7】この発明の情報記録媒体及び記録方法のさらに他の実施の形態を説明するための説明図及びセルをトラック上に配列した場合の配列例を示す図。

【図8】この発明の情報記録媒体及び記録方法のさらにまた他の実施の形態を説明するための説明図及びセルをトラック上に配列した場合の配列例を示す図。

【図9】この発明の情報記録媒体及び記録方法のまた他の実施の形態を説明するための説明図及びセルをトラック上に配列した場合の配列例を示す図。

【図10】この発明の情報記録媒体及び記録方法のさらにまた他の実施の形態を説明するための説明図。

【図11】この発明の情報記録媒体及び記録方法のまた他の実施の形態を説明するための説明図。

【図12】図11のセルの配列例を説明するための説明図。

【図13】この発明の記録媒体にマルチストーリーを記録する場合の分割方法をさらに説明するために示した説明図。

【図14】この発明の記録媒体を再生する再生装置の例を示す図。

【図15】この発明が適用された光学式ディスクのボリューム空間を示す説明図。

【図16】ビデオマネージャー(VMG)とビデオタイトルセット(VTS)の構造をさらに詳しく示す説明図。

【図17】ビデオオブジェクトセット(VOBS)とセル(Cell)の関係と、さらにセル(Cell)の中身を階層的に示す説明図。

【図18】プログラムチェーン(PGC)により、セル(Cell)がその再生順序を制御される例を示す説明図。

【図19】ビデオオブジェクトユニット(VOBU)と、このユニット内のビデオパックの関係を示す説明図。

【図20】インターリーブブロックを配列した例を示す説明図。

【図21】アングル1とアングル2のシーンのビデオオブジェクトがそれぞれ3つのインターリーブユニット

(ILVU1-1～ILVU3-1)(ILVU1-2～ILVU3-2)に分割され、1つのトラック上に配列された記録状態と、アングル1を再生した場合の再生出力の例を示す説明図。

【図22】図14に示した光ディスク再生装置を簡素化して示す説明図。

【図23】インターリーブブロックが再生されるときのトラックバッファへのデータ入力の増加及び減少が、最悪の場合を示す説明図。

【図24】再生装置においてキックバック動作が行われ、続いて最大級のジャンプ動作が行われた場合の時間と、バッファメモリにおけるデータの低減状況を示す説明図。

【図25】再生装置のトラックバッファの最小容量(Bm)と、キックバック及びシーク時間と、ジャンプ距離と、単位時間当たりのトラックバッファからの出力データ量との設計例を示す説明図。

【図26】ビデオタイトルセット(VTS)の中のビデオタイトルセットインフォメーション(VTSI)を示す説明図。

【図27】ビデオタイトルセットプログラムチェーンインフォメーションテーブル(VTS_PGCIT)の内容を示す説明図。

【図28】プログラムチェーン情報(PGCI)の構成を示す説明図。

【図29】セル再生情報(C_PBIT)とセル再生情報の内容を示す説明図。

【図30】セル位置情報テーブル(C_PSIT)の内容を示す説明図。

【図31】光学式ディスクに記録されている1つのパックとパケットの構成例を示す説明図。

【図32】NV_PCKを取り出して示す説明図。

【図33】データサーチ一般情報(DS1_GI)に記述されている情報を示す図。

【図34】シームレス再生情報(SML_PBI)に記述されていてる情報を示す図。

【図35】シームレスアングル情報(SML_AGLI)の内容を示す図。

【図36】VOBUサーチ情報(VOBU_SRI)を示す図。

【図37】同期情報を示す図。

【符号の説明】

100…光ディスク

101…ターンテーブル

102…モータ

103…ピックアップ部

104…ピックアップドライブ部

201…復調部

202…エラー訂正部

203…デマルチプレクサ

204…システム制御部
205…リモコン操作部
206…ビデオデコーダ

207…サブピクチャー処理部
211213…オーディオデコーダ
220…バッファメモリ。

【図1】

【図3】

【図2】

【図4】

(A)

シーンセル番号	データ容量(Mb)	接続先シーンセル番号			
A0-1	5	A0-0			
A0-0	7	B1-3	B2-2	C0-0	C1-0
B1-3	4	B1-2			
B1-2	7	B1-1			
B1-1	5	B1-0			
B1-0	4	C0-0	C1-0		
B2-2	6	B2-1			
B2-1	8	B2-0			
B2-0	4	C0-0	C1-0		
C0-0	6	D0-0	D1-0		
C1-0	5	D0-0	D1-0		
D0-0	6	E0-0	E1-0		
D1-0	5	E0-0	E1-0		
E0-0	4	F0-2			
E1-0	7	F0-2			
F0-2	4	F0-1			
F0-1	6	F0-0			
F0-0	5				

(L1)

(B)

シーンセル番号	データ容量(Mb)	接続完了フラグ
A0-1	5	1
A0-0	7	1
B1-3	4	1
B2-2	6	1
C0-0	6	1
C1-0	5	1
B1-2	7	1
B2-1	8	1
B1-1	5	1
D0-0	5	1
D1-0	4	1
B2-0	4	1
B1-0	4	1
C0-0	6	1
C1-0	5	1
E1-0	6	1
E0-0	7	1
F0-2	4	1
F0-1	6	1
F0-0	5	0

(L2)

【図5】

【図6】

【図7】

【図8】

【図9】

【図10】

【図11】

【図19】

【図22】

【図12】

【図13】

(B) 記録ライン上の配列

A	B0 -0	B1 -0	B2 -0	B0 -1	B1 -1	B2 -1	B0 -2	B1 -2	B2 -2	C
---	----------	----------	----------	----------	----------	----------	----------	----------	----------	---

(C) B0が選択された

【図15】

【図14】

【図16】

【図20】

【図17】

【図18】

【図21】

【図23】

【図24】

【図25】

最大MAX_Vo	[Mbps]	8	8	7.5	7
最大ジャンプ距離	[SECTOR]	5,000	10,000	15,000	20,000
最大 (2Tk+1j)	[msec]	209+106	209+146	209+175	209+200
最小 Bn	[SECTOR]	201	221	220	216

【図37】

SYNC1 (同期情報)

A_SYNCA 0 to 7	同期対象のオーディオパックのアドレス
SP_SYNCA 0 to 31	VOBU内の対象の副映像パックの開始アドレス

【図26】

ビデオタイトルセット (VTS)		ビデオタイトルセットインフォメーションマントテーブル (VTSI_MAT)	
ビデオタイトルセトインフォメーション (VTSI)	(Mandatory)	ビデオタイトルセトインフォメーションマントテーブル (VTSI_MAT)	(Mandatory)
ビデオタイトルセトメニュー用ビデオオブジェクトセト (VTSM_VOBS)	(Optional)	ビデオタイトルセトメニュー用ビデオオブジェクトテーブル (VTS_PTT_SRPT)	(Mandatory)
ビデオタイトルセトタブ用ビデオオブジェクトセト (VTSTT_VOBS)	(Mandatory)	ビデオタイトルセトタブ用ビデオオブジェクトテーブル (VTS_PGC1T)	(Mandatory)
ビデオタイトルセトインフォメーション用バッファ (VTSI_BUP)	(Mandatory)	ビデオタイトルセトメニューPGC1マントテーブル (VTSM_PGC1_UT)	(Mandatory)
		ビデオタイトルセトタブマップテーブル (VTS_TMAPT)	(Optional)
		ビデオタイトルセトメニューセトタブマップテーブル (VTS_C_ADT)	(Mandatory)
		ビデオタイトルセトメニューセトタブマップテーブル (VTS_VOBU_ADMAP)	(Mandatory when VTSM_VOBS exists)
		ビデオタイトルセトセトタブマップテーブル (VTS_C_ADT)	(Mandatory when VTSM_VOBS exists)
		ビデオタイトルセトセトタブマップテーブル (VTS_VOBU_ADMAP)	(Mandatory)

【図27】

【図30】

セル位置情報 #1 (C_POS1#1)	C_VOB_IDN
	C_IDN
セル位置情報 #n (C_POS1#n)	

セル位置情報テーブル (C_POS1T)

【図28】

プログラムチェーン情報 (PGCI)	
プログラムチェーン一般情報 (PGC_GI)	
プログラムチェーンコマンドテーブル (PGC_CMDT)	
プログラムチェーンプログラムマップ (PGC_PGM)	
セルブレイバック情報テーブル (C_PBIT)	
セル位置情報テーブル (C_POSIT)	

【図29】

【図31】

【図34】

SML_PBI (シームレス再生情報)

VOBU_SML_CAT	シームレスVOBUのカテゴリ
ILVU_EA	インターフェットエンド終了アドレス
NXT_ILVU_SA	次のインターフェットユニットの開始アドレス
NXT_ILVU_SZ	次のインターフェットユニットのサイズ
VOB_V_S_PTM	VOB内でのビデオ表示開始時間
VOB_V_E_PTM	VOB内でのビデオ表示終了時間
VOB_A_STP_PTM	VOB内でのオーディオ停止時間
VOB_A_GAP_LEN	VOB内でのオーディオギャップ長

【図32】

【図33】

DSI_GI (DSI 一般情報)

NV_PCK_SCR	NVA'ックのSCR
NV_PCK_LBN	NVA'ックのLBN
VOBU_EA	VOBUの終了アドレス
VOBU_1STREF_EA	第1の基準ビ'ケヤの終了アドレス
VOBU_2NDREF_EA	第2の基準ビ'ケヤの終了アドレス
VOBU_3RDREF_EA	第3の基準ビ'ケヤの終了アドレス
VOBU_VOB_IDN	VOBUのID番号
	予約
VOBU_C_IDN	VOBUのセミド番号
C_ELTM	セムの経過時間

【図35】

SML_AGLI (シームレス・アングル情報)

SML_AGL_C1_DSTA	アングルC1の目的ILVUのアドレス及びサイズ
SML_AGL_C2_DSTA	アングルC2の目的ILVUのアドレス及びサイズ
SML_AGL_C3_DSTA	アングルC3の目的ILVUのアドレス及びサイズ
SML_AGL_C4_DSTA	アングルC4の目的ILVUのアドレス及びサイズ
SML_AGL_C5_DSTA	アングルC5の目的ILVUのアドレス及びサイズ
SML_AGL_C6_DSTA	アングルC6の目的ILVUのアドレス及びサイズ
SML_AGL_C7_DSTA	アングルC7の目的ILVUのアドレス及びサイズ
SML_AGL_C8_DSTA	アングルC8の目的ILVUのアドレス及びサイズ
SML_AGL_C9_DSTA	アングルC9の目的ILVUのアドレス及びサイズ

【図36】

【手続補正書】

【提出日】平成9年3月31日

〔手続補正1〕

【補正対象書類名】図面

【補正対象項目名】図3

【補正方法】変更

【補正內容】

(凶3)

【手続補正書】

【提出日】平成9年9月5日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】発明の名称

【補正方法】変更

【補正内容】

【発明の名称】ディスク再生装置及び方法

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】特許請求の範囲

【補正方法】変更

【補正内容】

【特許請求の範囲】

【請求項1】 映像プログラムであって記録トラック上に任意に選択可能な複数のシーンが存在するマルチシーンプログラムが記録されており、その記録状態は、前記複数のシーンがそれぞれ複数のインターリーブユニットに分割されて、各シーンのインターリーブユニットが時分割多重され、かつ連続再生すべき2つのインターリーブユニットの間は所定符号量の距離以内となる形で記録されており、前記インターリーブユニットは、複数のセクタの集合であり、まだ一定数のセクタでエラー訂正コード(ECC)ブロックを構成している情報記録媒体の情報を再生する装置であって、

前記情報記録媒体から読み取った前記ECCブロック単位のエラー訂正処理を行うエラー訂正処理部と、

前記エラー訂正処理部の訂正後の出力のうち必要なデータ部が供給されるトラックバッファと、

前記トラックバッファからの出力が供給されデコードを行うデコーダとを具備したことを特徴とするディスク再生装置。

【請求項2】 前記インターリーブユニットのサイズ($I L V U _ S Z$)と、前記トラックバッファに前記エラー訂正処理部から供給されるデータの転送レート(V_r Mbps)と、前記トラックバッファから前記デコーダに供給されるデータの転送レート(V_o Mbps)と、ピックアップが再生すべき次のインターリーブユニットをサーチする時間とそのために付随している必要な時間(latency time)を含むジャンプ時間(T_j sec)と、1つのECCブロックのデータサイズ(bビット)との関係は、

$$I L V U _ S Z \geq \{(T_j \times V_r \times 10^6 + 2b) / (c)\} \times V_o / (V_r - V_o) \text{ (セクタ)}$$

cは1セクタのデータサイズ(ビット)であることを特徴とする請求項1記載のディスク再生装置。

【請求項3】 上記トラックバッファのサイズBmは以下のように設定されていることを特徴とする請求項2記載のディスク再生装置。Bmはトラックバッファのサイズ、Tkはキックバック時間(ディスクが1回転する間

ピックアップが読み取りを待っている時間に相当)、Teは1ECCブロックの読み取り時間、Tjはジャンプ時間であり、

トラックシークタイム(t_j) + latency time($=Tk$)、
MAX_Voは、インターリーブユニット(ILVU)の最大読み出しレート、
 $B_m \geq \{(2Tk + t_j + 4Te) \times MAX_Vo \times 10^6\} / (c)$
Bmの単位はセクタ、Tk、tj、Teのそれぞれの単位は[sec]であり、MAX_Voの単位は[Mbps]、cは1セクタのサイズ(ビット)である。

【請求項4】 上記ECCブロックは、16個のセクタの集合であることを特徴とする請求項3記載のディスク再生装置。

【請求項5】 上記のエラー訂正処理部には、ジャンプ先のインターリーブユニットの前後の各1ECCブロックも取込まれることを特徴とする請求項1記載のディスク再生装置。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0072

【補正方法】変更

【補正内容】

【0072】ここで、エラー訂正部202の後段にはバッファメモリ220が設けられており、このバッファメモリ220に再生データが一旦蓄積されてデコード速度に応じてデマルチプレクサ203に供給されるようになっている。通常の連続再生においてバッファメモリ220のデータ量が溢れる場合には、システム制御部204は、キックバック処理を行う。キックバック処理は、今まで読み取った所定セクタ分のデータを再度読み取ることであり、バッファメモリ220でデータ溢れが生じても、データ欠落を補償する機能である。

【手続補正4】

【補正対象書類名】明細書

【補正対象項目名】0088

【補正方法】変更

【補正内容】

【0088】プログラムチェーンインフォメーション(PGCI)により記述されているプログラム#1～プログラム#nが実行される例を示している。図示のプログラムは、ビデオオブジェクトセット(VOBS)内の(VOB_IDN #s, CIDN#1)で指定されるセル以降のセルを順番に指定する内容となっている。プログラムチェーンは、光ディスクの管理情報記録部に記録されており、光ディスクのビデオタイトルセットの読み取りに先行して読み取られ、システム制御部のメモリに格納される情報である。管理情報は、ビデオマネージャー及び各ビデオタイトルセットの先頭に配置されている。

【手続補正5】

【補正対象書類名】明細書

【補正対象項目名】0097

【補正方法】変更

【補正内容】

【0097】 T_j はジャンプ時間であり、トラックをシークする時間とそのために付随している必要な時間(レイテンシータイム latency time)を含む。bは、1つのECCブロックのデータサイズ(例えば262144ビット)であり、 T_e は1つのECCブロックをバッファに読み込むのに必要な時間である。また B_x は、ジャンプが開始されたとき(時点 t_4)にバッファ220に残っているデータ量である。

【手続補正6】

【補正対象書類名】明細書

【補正対象項目名】0098

【補正方法】変更

【補正内容】

【0098】図23のデータ量を示す曲線は、時点 t_2 から傾斜($V_r - V_o$)の蓄積率で、バッファ220にデータが蓄積されていくことを示している。また、曲線は、時間 t_6 では、バッファのデータ量が零になったことを示している。このバッファのデータは、時間 t_3 から傾斜 $-V_o$ の減少率で減少し、時間 t_6 で零になっている。

【手続補正7】

【補正対象書類名】明細書

【補正対象項目名】0105

【補正方法】変更

【補正内容】

【0105】

$$USZ \times (1/V_o) - USZ \times (1/V_r) \geq T_j p$$

$$USZ \times \{ (1/V_o) - (1/V_r) \} \geq T_j p$$

フロントページの続き

(72)発明者 小島 正

神奈川県川崎市幸区柳町70番地 株式会社
東芝柳町工場内

$$USZ \times \{ (V_r - V_o) / (V_o V_r) \} \geq T_j p$$

$$USZ \geq T_j p \times V_r \times \{ (V_o) / (V_r - V_o) \}$$

… (4)

を得ることができる。

【手続補正8】

【補正対象書類名】図面

【補正対象項目名】図36

【補正方法】変更

【補正内容】

【図36】

内容	
FWDI VIDEO	ビデオデータを有する次のVOBU
FWDI 240	+240VOBUのストップレコード及びビデオデータが有る旨のマーク
FWDI 120	+60VOBUのストップレコード及びビデオデータが有る旨のマーク
FWDI 20	+20VOBUのストップレコード及びビデオデータが有る旨のマーク
FWDI 15	+15VOBUのストップレコード及びビデオデータが有る旨のマーク
FWDI 14	+14VOBUのストップレコード及びビデオデータが有る旨のマーク
FWDI 13	+13VOBUのストップレコード及びビデオデータが有る旨のマーク
FWDI 12	+12VOBUのストップレコード及びビデオデータが有る旨のマーク
FWDI 11	+11VOBUのストップレコード及びビデオデータが有る旨のマーク
FWDI 10	+10VOBUのストップレコード及びビデオデータが有る旨のマーク
FWDI 9	+9VOBUのストップレコード及びビデオデータが有る旨のマーク
FWDI 8	+8VOBUのストップレコード及びビデオデータが有る旨のマーク
FWDI 7	+7VOBUのストップレコード及びビデオデータが有る旨のマーク
FWDI 6	+6VOBUのストップレコード及びビデオデータが有る旨のマーク
FWDI 5	+5VOBUのストップレコード及びビデオデータが有る旨のマーク
FWDI 4	+4VOBUのストップレコード及びビデオデータが有る旨のマーク
FWDI 3	+3VOBUのストップレコード及びビデオデータが有る旨のマーク
FWDI 2	+2VOBUのストップレコード及びビデオデータが有る旨のマーク
FWDI 1	+1VOBUのストップレコード及びビデオデータが有る旨のマーク
FWDI NEXT	次のVOBUのストップレコード及びビデオデータが有る旨のマーク
BWDI PREV	手前のVOBUのストップレコード及びビデオデータが有る旨のマーク
BWDI 1	-1VOBUのストップレコード及びビデオデータが有る旨のマーク
BWDI 2	-2VOBUのストップレコード及びビデオデータが有る旨のマーク
BWDI 3	-3VOBUのストップレコード及びビデオデータが有る旨のマーク
BWDI 4	-4VOBUのストップレコード及びビデオデータが有る旨のマーク
BWDI 5	-5VOBUのストップレコード及びビデオデータが有る旨のマーク
BWDI 6	-6VOBUのストップレコード及びビデオデータが有る旨のマーク
BWDI 7	-7VOBUのストップレコード及びビデオデータが有る旨のマーク
BWDI 8	-8VOBUのストップレコード及びビデオデータが有る旨のマーク
BWDI 9	-9VOBUのストップレコード及びビデオデータが有る旨のマーク
BWDI 10	-10VOBUのストップレコード及びビデオデータが有る旨のマーク
BWDI 11	-11VOBUのストップレコード及びビデオデータが有る旨のマーク
BWDI 12	-12VOBUのストップレコード及びビデオデータが有る旨のマーク
BWDI 13	-13VOBUのストップレコード及びビデオデータが有る旨のマーク
BWDI 14	-14VOBUのストップレコード及びビデオデータが有る旨のマーク
BWDI 15	-15VOBUのストップレコード及びビデオデータが有る旨のマーク
BWDI 20	-20VOBUのストップレコード及びビデオデータが有る旨のマーク
BWDI 60	-60VOBUのストップレコード及びビデオデータが有る旨のマーク
BWDI 120	-120VOBUのストップレコード及びビデオデータが有る旨のマーク
BWDI 240	-240VOBUのストップレコード及びビデオデータが有る旨のマーク
BWDI VIDEO	手前のVOBUのストップレコード及びビデオデータが有る旨のマーク