Do Transformers Really Perform Bad for Graph Representation?

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu

0. Index

- ◆ Introduction
- ◆ Method
- **◆**Evaluation
- **◆**Conclusion

Do <u>Transformers</u> Really Perform Bad for <u>Graph Representation</u>?

Graph Network Task

Node Classification

• Node 의 label 을 예측하는 task

• 예 : 논문의 카테고리 예측

• Node Representation 중요

X : Node → Y : Node label

Link Prediction

• Node 간 Missing Edge 를 예측하는 task

• 예 : Social network 의 친구추천

• Node Representation 중요

• X: Node pair → Y: edge

Graph Classification

• Graph 의 class 를 분류하는 task

• 예 : 분자구조의 화학속성 예측

• Graph Representation 중요

• X: Nodes, edges → Y: graph label

Graph Network Task

Graph Classification

Node 값을 다시 통합하는 과정 필요

- 1) Sum pooling, Mean pooling 2) 대표 Node 를 추출
 - 3) FC layer 를 통해 학습

Graph Network Task

Transformer

Graph를 나타내는 모든 node와 edge를 하나의 Context로 표현

- 그래프의 구조적인 특징을 반영할 수 있는 정보 사용 ✓ 그래프의 구조적 특징이란?
 - 1. 그래프의 노드는 순서가 없다 (절대적인 위치 정보가 없다) 2. Edge를 통한 연결 정보만 있을 뿐, 거리는 없다

Graphormer

- ✓ Transformer 구조에 그래프의 구조적인 특징을 반영할 수 있게 함
- ✓ 기존 GNN은 node 단위 학습이 이루어지고, 1-hop의 정보를 Layer를 쌓으면서 Multi-hop 정보를 받을 수 있음 (Local)
- ✓ Multi-hop 정보를 Self-attention을 통해 한번에 학습

Graph Classification

그래프 자체를 표현할 수 있는 모델을 만들자!

Self attention

They love a song by **taylor**, a **singer** from their hometown.

Q: who is the singer?

Self attention

(유사한 정도의 Softmax)

Q: 귤

Key (K)	Similarity Sim(K, Q)	Value (V)	Sim(K, Q) * V
레몬	0.35	새콤한맛	0.35 * 새콤한맛
오렌지	0.64	달콤한맛	0.64 * 달콤한맛
아보카도	0.01	크레파스맛	0.01 * 크레파스맛

Attention Score

-> 새콤달콤한맛!

Graph Network Task

Centrality Encoding

의미적 유사도와 node의 중요도를 고려한 Attention!

- ✓ Centrality : 그래프 내 중심성을 나타내는 지표
 - **degree**, betweenness, closeness, page rank, etc
- ✓ 그래프에는 허브 node가 존재함
- ✓ 기존의 Self-attention은 Centrality 정보를 충분히 담지 못함
- ✓ Centrality Encoding을 degree 값을 사용한 벡터로 나타낸다.
 (Learnable)
 - 만약 directed graph일 경우, in-degree emb와 out-degree emb
 따로 사용하여, 두개의 합을 Centrality로 정의

Spatial Encoding

그래프의 구조적 정보 학습

- ✓ 고차원에 표현되는 node의 위치 정보를 나타내야 함
- ✓ Edge를 통해 연결된 정보를 기반으로, node간 거리를 측정 (Relative positional encoding)
- ✓ 두 node간 최단거리 계산하는 함수 정의 (Shortest Path)
 - 최단거리 구할때는 Floyd-Warshall 알고리즘 사용
 - 만약 두 node가 연결되어있지 않을 시에는 -1
- ✓ 위 함수에서 구한 값으로 인덱싱되는 scalar b를 두 node간 attention score의 bias 값으로 이용함 (Learnable)

Edge Encoding

유의미한 정보를 가진 Edge Encoding

- ✓ Edge Embedding 값을 통해 node 간의 상관관계 표현
- ✓ 최단거리를 구성하는 Edge의 평균을 통해 두 node의 관계 표현

representation

Special Node

- ✓ 전체 node와 연결되는 가상의 node 생성
- ✓ Bert에서 [CLS] Token과 유사한 역할 수행
- ✓ [Vnode] 는 일반 node처럼 앞선 과정들을 똑같이 수행함 (단, 실존하는 허브 node와는 구별됨)
 -> Spatial Encoding에서 다른 값으로 처리함
- ✓ 학습 시, [Vnode] 값을 통해 Graph Classification을 진행
- ✓ [Vnode] 는 전체 그래프에 대한 정보를 담음
- ✓ self-attention 없이 [Vnode] 사용 시, Over Smoothing 문제 발생

- OGB Large-Scale Challenge
 - OGB-LSC Dataset : 화학결합 데이터셋 -> Graph regression Task
 - VN : [Vnode] 사용 여부 -> 기존 모델에 사용 시 성능 향상이 일어남

method	#param.	train MAE	validate MAE
GCN [26]	2.0M	0.1318	0.1691 (0.1684*)
GIN [50]	3.8M	0.1203	0.1537 (0.1536*)
GCN-vn [26, 15]	4.9M	0.1225	0.1485 (0.1510*)
GIN-vn [50, 15]	6.7M	0.1150	0.1395 (0.1396*)
GINE-VN [5, 15]	13.2M	0.1248	0.1430
DeeperGCN-vn [30, 15]	25.5M	0.1059	0.1398
GT [13]	0.6M	0.0944	0.1400
GT-Wide [13]	83.2M	0.0955	0.1408
Graphormer _{SMALL}	12.5M	0.0778	0.1264
Graphormer	47.1M	0.0582	0.1234

- Graph representation (Pre-train)
 - Pre-train ZINC Dataset -> OGB-LSC Dataset Inference
 - Transformer 기반 방법론이 해당 Task에서 비교적 Transfer 성능이 좋은 것을 알 수 있음

Table 4: Results on ZINC.

method	#param.	test MAE	
GIN [50]	509,549	0.526 ± 0.051	
GraphSage [18]	505,341	0.398 ± 0.002	
GAT [47]	531,345	0.384 ± 0.007	
GCN [26]	505,079	0.367 ± 0.011	
GatedGCN-PE [4]	505,011	0.214 ± 0.006	
MPNN (sum) [15]	480,805	0.145 ± 0.007	
PNA [10]	387,155	0.142 ± 0.010	
GT [13]	588,929	0.226 ± 0.014	
SAN [28]	508, 577	0.139 ± 0.006	
Graphormer _{SLIM}	489,321	0.122 ±0.006	

- Ablation Study
 - 논문에서 제안된 방법론이 의미 있는 결과를 보였음을 알 수 있다.

Node Relation Encoding		Centrality	Edge Encoding		valid MAE	
Laplacian PE[13]	Spatial	Centrality	via node	via Aggr	via attn bias(Eq.7)	valid MAE
-	-	-	-	-	-	0.2276
✓	-	-	-	-	-	0.1483
-	✓	-	-	-	-	0.1427
-	✓	✓	-	-	-	0.1396
-	✓	✓	✓	-	-	0.1328
-1	✓	✓	-	✓	-	0.1327
	✓					0.1304

04. Conclusion

04. Conclusion

- ◆ Graph Classification Task에서 Graph 를 표현하기 위해 Transformer 방법을 적용함
- ◆ Graph Representation Task를 수행할 때, 기존에 GNN 기반 방식에서 사용하던 Readout 과정을 생략
- ◆ Transformer에 그래프의 구조적 정보를 Encoding 하기 위해, 3가지 방법을 적용시킴

Thank You 감사합니다