

Speech Recognition

Sajad Dadgar

Topics

- Introduction
- Audio Signal
- Feature Extraction
- Convolutional Neural Network
- Implementation

Introduction

Introduction

History

Speech Recognition were limited to a single speaker and had limited vocabularies of about a dozen words. Revolution in voice recognition with google's DNN-based voice search, apple's siri, microsoft's Cortana. Usable voice recognition running on powerful hardware.

1950 1980 2010

understanding that speech is accompanied by noise and distractors.

What is an Audio Signal?

Parameters of an Audio Signal

Amplitude

Crest & Trough

Wave Length

Frequency

Cycle

Audio Signal Amplitude

Audio Signal Crest & Trough

Audio Signal Wave Length

Frequency & Cycle

Time Domain

Frequency Domain

Spectrogram

Time

- Mel Frequency Cepstrum Coefficient (MFCC)
 - Frame the signal into short frames.
 - For each frame calculate the periodogram estimate of the power spectrum.
 - Apply the Mel Filterbank to the power spectra

$$M = 2595 \log_{10} \left(1 + \frac{f}{700} \right)$$
$$f = 700 \left(10^{\frac{m}{2595}} - 1 \right)$$

- Take the DCT of the filterbank energies.

Mel Frequency Cepstrum Coefficient (MFCC)

MFFC

Speech Recognition using MFCC

https://pdfs.semanticscholar.org/3439/454a00ef811b3a244f2b0ce770e80f7bc3b6.pdf

Website:

https://wiki.aalto.fi/display/ITSP/Cepstrum+and+MFCC

- Convolution
- Pooling
- Flattening
- Full Connection

Convolution

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Filter

Feature map

Convolution

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Input image

Filter

Feature map

Convolution

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

Filter

Feature map

Convolution

$$(0 \times 0) + (0 \times 0) + (0 \times 1) + (1 \times 1) + (0 \times 0) + (0 \times 0) + (0 \times 0) + (0 \times 1) + (1 \times 1) = 2$$

0	0	0	0	0	0	0
0	1	0	0	0	1	0
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	1	0	0	0	1	0
0	0	1	1	1	0	0
0	0	0	0	0	0	0

	0	0	1
AND REPORT	1	0	0
THE NAME OF	0	1	1
	A DESCRIPTION	DIE KATER	10 (E) (E) (E) (E)

0	1	0	0	0
0	1	1	1	0
1	0	1	2	

Input image

Filter

Feature map

Convolution

(0	0	0	0	0	0	0
(0	1	0	0	0	1	0
(0	0	0	0	0	0	0
(0	0	0	1	0	0	0
(0	1	0	0	0	1	0
(0	0	1	1	1	0	0
(0	0	0	0	0	0	0

Filter

0	1	0	0	0
0	1	1	1	0
1	0	1	2	1
1	4	2	1	0
0	0	1	2	1

Feature map

Convolution

ě	П	П	П		İП	19	П	Р
ш	ш	μ	ч	-	ш	Ш	ч	u
							9	

Filter

Convolution

Black: Negative

White: Positive

Rectifier

Convolution

Understanding Convolutional Neural Network with A Mathematical Model (2016):

http://arxiv.org/pdf/1609.04112.pdf

Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification (2015):

https://arxiv.org/pdf/1502.01852.pdf

- Pooling
 - Max Pooling
 - Sum Pooling

Mean Pooling

Pooling

0	1	0	0	0
0	1	1	1	0
1	0	1	2	1
1	4	2	1	0
0	0	1	2	1

Feature map

Max Pooling

1	1	0
4	2	1
0	2	1

Pooled Feature map

Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition (2010):

http://ais.uni-bonn.de/papers/icann2010_maxpool.pdf

1	1	0
4	2	1
0	2	1

Flattening

Pooled Feature map

Spectrum

Convolutional	Neural	Network

	0	1	2	3	4	5	6	7	8	9	10
0	-361.992615	-405.032532	-475.916138	-474.601990	-219.070480	-126.130203	-110.430977	-116.034714	-174.682404	-289.293854	-397.126434
1	-7.637213	9.353251	42.000008	46.531158	-1.405969	-33.400826	-63.382504	-54.208649	-12.167704	40.837433	44.729530
2	-24.234180	-15.422884	3.619861	4.348600	-59.652428	-61.829826	-60.735481	-57.085793	-54.226746	-46.676994	-17.773731
3	40.104313	38.911865	31.736929	27.395123	-33.264832	-32.979980	-16.765451	-26.616055	-40.216705	-21.145844	14.714356
4	25.392010	24.452545	21.378672	21.765610	36.428406	36.001221	37.056084	28.337475	27.251358	18.827328	23.066151
5	15.977909	14.637233	10.945372	9.916015	2.611271	-3.192318	-7.471964	-4.011388	-5.241780	-12.166206	-1.595258
6	-6.490936	-4.946122	-1.252912	1.259649	-33.483894	-33.408649	-38.812881	-35.919350	-28.600630	-17.644415	-7.998960
7	-0.035998	-1.053053	-2.966421	0.803960	18.655209	20.120529	12.922794	3.066458	1.023172	-0.859061	1.314217
8	-20.433775	-17.959461	-6.152930	-0.006574	13.367506	12.462053	8.854969	-5.131057	-1.511046	-12.831343	-12.740799
9	-2.187109	-2.966935	-4.177238	0.965661	18.014763	23.689003	28.637028	14.016478	14.406263	19.055923	14.605883
10	-2.920375	-3.410037	-4.789925	0.592175	-3.507984	4.487298	18.063095	17.231956	7.911976	16.273443	9.207804
11	7.404638	4.040385	-2.479623	0.170477	5.154094	7.558239	25.796463	54.420250	56.189331	37.366901	14.789932
12	-8.467812	-9.011234	-3.876231	-1.872407	-5.948402	-11.022078	-18.616035	8.646656	22.599117	19.059601	7.079203
13	3.804636	0.560930	-6.087071	-1.061637	-10.845011	-12.256536	-25.573631	-26.359543	-8.764282	-0.256127	4.249427
14	-0.827087	-1.336115	-7.228782	-8.151159	4.856355	5.809890	-2.585980	-27.451038	-31.905766	-25.919701	-5.083817
15	-2.071603	-2.954080	1.253370	-0.004242	-11.712537	-4.995994	9.089638	7.634851	3.053438	-8.671313	-6.971725
16	2.583647	3.968423	6.897946	4.984236	0.230353	-2.489114	-2.903225	2.311339	9.004272	-0.200183	-4.441242
17	-1.631444	-1.092217	2.786597	4.939474	4.947609	1.798677	-17.657579	-34.046059	-24.189425	-5.123381	-4.178518
18	1.557062	1.416171	-0.270457	0.434201	34.311932	42.772415	40.547852	9.943402	-6.470910	-9.476925	0.937829
19	7.575624	5.664735	0.325512	3.050874	-0.694569	8.311014	29.684641	34.127159	17.127417	4.865802	2.211671

MFCC

Implementation

Download Data

https://www.kaggle.com/c/tensorflow-speech-recognition-challenge