R₁ is haloalkyl, hydroxyalkyl, haloalkenyl, heterocycloalkyl, unsubstituted phenyl, substituted or unsubstituted phenylamino, unsubstituted benzyl, alkoxyalkyl, poly(alkoxy)alkyl, hydroxyalkoxyalkyl, hydroxypoly(alkoxy)alkyl, haloalkoxyalkyl, halopoly(alkoxy)alkyl, or aminoalkyl.

REMARKS

I. Amendments to Specification

The title has been amended to be more descriptive of the invention to which the claims are directed.

Tables 2 and 3 have been amended to correct an inadvertent typographical error. "R" in the Tables should be "R₁". Support for these amendments is found at page 13, line 12, and at page 14, line 2.

II. Amendment to the Claims

Claim 1 has been amended herein.

III. Conclusion

Should the Examiner have any questions, comments or suggestions that would expedite the prosecution of the present case to allowance, Applicants' representative, Dr. Rose Ann Dabek, earnestly requests a telephone conference at (513) 627-8824.

Respectfully submitted,

w L. norberg

Date: <u>July 18, 2001</u>

Gloria L. Norberg Reg. No. 36,706

Akin, Gump, Strauss, Hauer & Feld, L.L.P. 1900 Frost Bank Building 816 Congress Avenue Austin, Texas 78701

Telephone: (512) 499-6200

<u>ATTACHMENT A</u> VERSION WITH MARKINGS TO SHOW CHANGES MADE

In the Specification:

At page 13, Table 2 is amended, as indicated below:

Table 2

Cpd. No.	[R] <u>R</u> ₁	R ₂	LogP
2-1	-CH ₂ CH ₂ CH ₂ N(CH ₂ CH ₃) ₂	Н	1.098
2-2	-CH ₂ CH ₂ -morpholino	Н	0.018
2-3	-CH(CH ₃)CH ₂ CH ₃	Н	1.606
2-4	-CH ₂ -(2-tetrahydrofuryl)	Н	0.613
2-5	-CH ₂ CH ₂ CH(CH ₃) ₂	Н	1.920
2-6	-CH(CH ₃)CH ₂ CH(CH ₃) ₂	Н	2.333
2-7	-CH ₂ CH ₂ C(CH ₃) ₃	Н	2.353
2-8	-CH ₂ CH(CH ₃)CH ₂ CH ₃	Н	1.992
2-9	-CH (CH ₂ CH ₃) ₂	Н	2.075
2-10	-CH ₂ CH ₂ CH ₂ N(CH ₃) ₂	Н	0.413
2-11	-CH ₂ CH ₂ OCH ₃	H	0.217
2-12	–NH-Ph	Н	1.737
2-13	–Ph(2-OH)	Н	1.779
2-14	-CH ₂ CH ₂ N(CH ₃) ₂	Н	0.361
2-15	-Ph(3-OCH ₃ -4-OCH ₃ -5-OCH ₃)	Н	1.305
2-16	cyclohexyl	CH ₃	2.213
2-17	-CH ₂ CH ₂ CH ₂ CH ₃	CH ₃	1.836
2-18	-CH ₂ CH ₂ CH ₃	CH ₂ CH ₂ CH ₃	2.250

At page 14, Table 3 is amended, as indicated below:

Table 3

Cpd. No.	[R] <u>R</u> ₁	Log P
3-1	-CH ₂ CH ₂ CH ₂ CH ₂ Cl	2.239
3-2	-CH ₂ CH ₂ OCH ₂ CH ₂ Cl	1.571
3-3	-CH ₂ CH=CH ₂	1.772
3-4	-(CH ₂ CH ₂ O) ₂ CH ₂ CH ₃	1.045
3-5	-CH ₂ CH ₂ OCH ₂ CH ₂ OH	0.424
3-6	-CH ₂ CH ₂ CH=CH ₂	2.024
3-7	–CH₂Ph	2.808
3-8	-CH ₂ CH ₂ N(CH ₃) ₂	1.011
3-9	-CH ₂ CH ₂ CH ₂ Cl	1.788
3-10	-CH ₂ CH=CHCH ₂ OH	1.121
3-11	-CH ₂ CH ₂ CH ₂ CH ₂ CH	1.488
3-12	-CH(CH ₂ Cl) ₂	2.510
3-13	-CH ₂ CH(CH ₃)CH ₂ C(CH ₃) ₃	3.802
3-14	-CH ₂ CF ₂ CF ₃	2.841
3-15	-CH(CH ₂ F) ₂	1.423
3-16	-CH(CH ₃)(cyclopropyl)	2.155
3-17	-CH ₂ CH ₂ F	0.542
3-18	-CH(CH ₂ Br) ₂	2.636
3-19	-CH ₂ CH(CH ₃)CH ₂ CH ₃	2.256
3-20	-CH ₂ CH ₂ CH(CH ₃)CH ₂ C(CH ₃) ₃	4.126
3-21	-CH ₂ CH ₂ CH(CH ₃)CH ₂ CH ₂ CH=C(CH ₃) ₂	4.048

In the Claims:

The following claim 1 is amended, as indicated below:

1. (1st Time Amended) A compound of the following formula A-3:

$$R_1$$
 O N H O O

A-3

wherein,

R₁ is haloalkyl, hydroxyalkyl, haloalkenyl, heterocycloalkyl, [substituted or] unsubstituted phenyl, substituted or unsubstituted phenylamino, unsubstituted benzyl, alkoxyalkyl, poly(alkoxy)alkyl, hydroxyalkoxyalkyl, hydroxypoly(alkoxy)alkyl, haloalkoxyalkyl, halopoly(alkoxy)alkyl, or aminoalkyl.