COMPILANDO CONOCIMIENTO

Probabilidad y Estadística

Matemáticas Estadísticas

Oscar Andrés Rosas Hernandez

Febrero 2018

Índice general

Ι	\mathbf{Pr}	obabi	lidad Clásica	6
1.	Intr	oducci	ión	7
	1.1.	Notaci	ión	8
		1.1.1.	Experimento ε	8
		1.1.2.	Espacio Muestral S, Ω	8
		1.1.3.	Evento A	8
	1.2.	Proba	bilidad $P(A)$	9
		1.2.1.	Propiedades	10
	1.3.	Proba	bilidad Condicional	11
		1.3.1.	Propiedades	12
	1.4.	Evento	os Independientes	13
		1.4.1.	Propiedades	13
		1.4.2.	Teorema de Bayes	14
2.	Con	nbinat	oria	15
	2.1.	Ideas	Clave	16
		2.1.1.	Ordén vs Sin Ordén	16
		2.1.2.	Remplazar vs No Remplazar	16
	2.2.	Permu	utación	17
		2.2.1.	Ejemplos	17
	2.3.	Combi	inación	18
		2.3.1.	Combinaciones y Subconjuntos	18
			Eiemplos	18

		2.3.3.	Propiedades Coheficientes Binomiales	19
II	V	ariabl	les Aleatorias Discretas	20
3.	Vari	iables .	Aleatorias Discretas	21
	3.1.	Variab	eles Aleatorias	22
		3.1.1.	Variables Aleatorias Discretas	22
	3.2.	Funció	on Probabilidad f_X	23
		3.2.1.	Definición	23
		3.2.2.	Uniforme Continua	23
		3.2.3.	Propiedades	23
		3.2.4.	Ejemplos	24
	3.3.	Funció	on P. Acumulada F_X	25
		3.3.1.	Definición	25
		3.3.2.	Propiedades	25
		3.3.3.	Función Fundametal	25
	3.4.	Espera	anza o Media	26
		3.4.1.	Definición	26
		3.4.2.	Propiedades	26
	3.5.	Varian	za	27
		3.5.1.	Definición	27
		3.5.2.	Desvianción Estandar	27
		3.5.3.	Propiedades	28
	3.6.	Covari	anza	30
		3.6.1.	Definición	30
		3.6.2.	Propiedades	30
	3.7.	Mome	ntos Centrales	31
		3.7.1.	Propiedades	31
		3.7.2.	Función Generadora de Momentos	32
		3.7.3.	Propiedades	33

ÍNDICE GENERAL ÍNDICE GENERAL

4.	Dist	ribuci	ones Famosas	3 4
	4.1.	Berno	ulli	35
		4.1.1.	Definición	35
		4.1.2.	Función Probabilidad	36
		4.1.3.	Función P. Acumulada	36
		4.1.4.	Esperanza	37
		4.1.5.	Varianza	37
		4.1.6.	Función Generadora	38
	4.2.	Binom	nial	39
		4.2.1.	Definición	39
		4.2.2.	Función Probabilidad	40
		4.2.3.	Función P. Acumulada	40
		4.2.4.	Función Generadora	41
		4.2.5.	Esperanza	41
		4.2.6.	Varianza	42
	4.3.	Geome	étrica	43
	4.4.	Hiper-	-Geométrica	47
		4.4.1.	Definición	47
		4.4.2.	Función Probabilidad	48
		4.4.3.	Función P. Acumulada	48
		4.4.4.	Esperanza	49
		4.4.5.	Función Generadora	50
	4.5.	Poisso	on	51
		4.5.1.	Función Probabilidad	52
		4.5.2.	Función P. Acumulada	52
		4.5.3.	Función Generadora	53
		4.5.4.	Esperanza	54
		4.5.5.	Varianza	54
		4.5.6.	Relación con la Binomial	55

ΙΙ	I 1	Variables Aleatorias Continuas	56
5.	Var	iables Aleatorias Continuas	57
	5.1.	Variables Aleatorias	58
		5.1.1. Variables Aleatorias Continuas	58
	5.2.	Función Probabilidad f_X	59
		5.2.1. Definición	59
		5.2.2. Probabilidad Puntual	59
	5.3.	Función P. Acumulada F_X	60
		5.3.1. Definición	60
		5.3.2. Propiedades	60
		5.3.3. Uniforme Continua	61
I	/ (CheatSheet - Formulario	62
6.	Che	eatSheet - Formulario	63
	6.1.	Teoría de Conjuntos	64
	6.2.	Combinatoria	65
		6.2.1. Propiedades Coheficientes Binomiales	66
	6.3.	Probabilidad Básica	67
		6.3.1. Propiedades	67
	6.4.	Probabilidad Condicional	68
		6.4.1. Propiedades	68
	6.5.	Eventos Independientes	69
		6.5.1. Propiedades	69
		6.5.2. Teorema de Bayes	69
	6.6.	Variables Aleatorias Discretas	70
		6.6.1. Función Probabilidad f_X	70
		6.6.2. Función P. Acumulada F_X	71
		6.6.3. Esperanza o Media	72
		6.6.4. Varianza	73

ÍNDICE GENERAL ÍNDICE GENERAL

6.6.5.	Covarianza													74
6.6.6.	Momentos Centrales													75

Parte I Probabilidad Clásica

Capítulo 1

Introducción

1.1. Notación

1.1.1. Experimento ε

Decimos que un experimento en probabilidad es cualquier proceso del cual se desconoce con determinación el resultado final.

Generalmente lo denotamos con mayúsculas.

1.1.2. Espacio Muestral S, Ω

Un espacio muestral asociado a un experimento es el conjunto de posibles resultados al momento de realizar el experimento.

Ejemplo:

```
Por ejemplo si \varepsilon_1: Lanzar una moneda. Entonces tenemos que S_1 = \{ Cara, Cruz \} Si \varepsilon_2: Lanzar un dado. Entonces tenemos que S_2 = \{ 1, 2, 3, 4, 5, 6 \}
```

1.1.3. Evento *A*

Un evento es simplemente algún subconjunto del espacio muestral.

Ejemplo:

```
Por ejemplo si \varepsilon_1: Lanzar una moneda. Entonces tenemos que un evento puede ser A_1 = \{ Cara \} Si \varepsilon_2: Lanzar un dado. Entonces tenemos que un evento puede ser A_2 = \{ 1, 2, 4 \}, A_{2.1} = \{ 5 \}
```

1.2. Probabilidad P(A)

Definimos la probabilidad de un evento A como:

$$P(A) = \frac{|A|}{|S|}$$
 Recuerda que A es un evento y S es espacio muestral

Creo que es muy obvio por la manera en que definimos a la probabilidad de un evento es un número real entre 0 y 1.

Por lo tanto:

- NO hay probabilidades negativas
- NO hay probabilidades mayores a uno

Entonces podemos reducir el problema de encontrar la probabilidad de un evento simplemente a dos partes:

- Encontrar la cardinalidad de dicho evento
- Encontrar la cardinalidad del espacio muestral de un experimento

1.2.1. Propiedades

- P(S) = 1
- Si A_1, A_2, \ldots, A_n son eventos mutuamente excluyentes entonces:

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i)$$

- $P(\emptyset) = 0$
- P(A') = 1 P(A)
- Si $A \subseteq B$ entonces $P(A) \le P(B)$
- La probabilidad de la unión de n eventos de puede escribir de manera general como:

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{i< j}^{n} P(A_{i}A_{j}) + \sum_{i< j< k}^{n} P(A_{i}A_{j}A_{k}) + \dots + (-1)^{n+1} P\left(\bigcap_{i=1}^{n} A_{i}\right)$$

• Por consecuencia del caso general tenemos que:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

• Por consecuencia del caso general tenemos que:

$$P(A \cup B \cup C) =$$

$$P(A) + P(B) + P(C)$$

$$- (P(A \cap B) + P(A \cap C) + P(B \cap C))$$

$$+ P(A \cap B \cap C)$$

$$P(A-B) = P(A) - P(A \cap B)$$

1.3. Probabilidad Condicional

La probabilidad de que ocurra el Evento A conociendo que ya paso el Evento B se denota y define como:

$$P(A \mid B) := \frac{P(A \cap B)}{P(B)} = \frac{|A \cap B|}{|B|}$$

Nota que para que todo esto tenga sentido $P(B) \neq 0$

Podemos notar entonces que el evento B tiene muchas interpretaciones como:

- La condición que ya esta dada
- Evento que se sabe que ya ocurrió o que es seguro que ocurra
- Espacio Muestral Reducido

1.3.1. Propiedades

Conservamos Propiedades

La propiedad condicional cumple las propiedades que ya vimos de una propiedad de un evento cualquiera, pero ahora el espacio muestral que antes era S se ha reducido.

- $P(A \mid B) + P(A' \mid B) = 1$
- $P(A \cup B \mid C) = P(A \mid C) + P(B \mid C) P(A \cap B \mid C)$

Definición Alterna

Podemos redefinir a la probabilidad condicional como: $P(A \mid B) = \frac{|A \cap B|}{|B|}$

Demostración:

Esta es sencilla, muy sencilla:

$$P\left(A\mid B\right)=rac{P(A\cap B)}{P(B)}$$
 Por definición de Condicional
$$=rac{|A\cap B|}{|S|}$$
 Por definición de Probabilidad
$$=rac{|A\cap B|}{|B|}$$
 Magia

Regla de Multiplicación

Podemos escribir a $P(A \cap B)$ en terminos de probabilidad condicional.

$$P(A \cap B) = P(A|B) \ P(B) = P(B|A) \ P(A)$$

Demostración:

Mira: S
$$P(A|B)=\frac{P(A\cap B)}{P(B)}$$
entonces $P(A|B)P(B)=P(A\cap B)$
$$P(B|A)=\frac{P(B\cap A)}{P(A)} \text{ entonces } P(B|A)P(A)=P(A\cap B)$$

1.4. Eventos Independientes

Dados 2 eventos que A, B son Independientes si y solo si P(A) = P(A|B) y se escribe: $A \perp B$.

Es decir la ocurrencia de B no influye en nada a la ocurriencia de A, osea que pase o no pase B, a A le da igual.

1.4.1. Propiedades

• Si $A \perp B$ entonces $P(A \cap B) = P(A)P(B)$

Demostración:

Si
$$A \perp B$$
 entonces $B \perp A$ entonces $P(B) = P(B|A)$, por lo tanto $P(B) = \frac{P(B \cap A)}{P(A)}$
Y solo despejas

• Si $A \perp B$ entonces $A' \perp B'$

Demostración:

Esta es clave:

$$P(A' \cap B') = P((A \cup B)')$$

$$= 1 - [P(A) + P(B) + P(A \cap B)]$$

$$= 1 - [P(A) + P(B) + P(A \cap B)]$$

$$= (1 - P(A))(1 - P(B))$$

$$= P(A')P(B')$$

- Si $A \perp B$ entonces $P(A \cap B) \neq 0$
- \blacksquare Si $P(A\cap B)=0$ entonces A,B no son eventos independientes

1.4.2. Teorema de Bayes

Considera un conjunto de eventos $\{A_1, \ldots, A_n\}$ mutuamente excluyentes y tales que $\bigcup_{i=1}^n A_i = S$, es decir son particiones de S.

Entonces podemos escribir la propabilidad de un evento B donde $B\subset S$ como:

$$P(B) = \sum_{i=1}^{n} P(B|A_i) P(A_i)$$

Gracias a esto podemos decir que:

$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)}$$
$$= \frac{P(B|A_i) P(A_i)}{\sum_{i=1}^{n} P(A_i) P(B|A_i)}$$

Capítulo 2

Combinatoria

2.1. Ideas Clave

2.1.1. Ordén vs Sin Ordén

En las muestras que estan ordenadas entonces el ordén de los elementos importa por ejemplo en los dígitos de un teléfono o en las letras de una palabra.

En las muestras que no estan ordenadas el ordén es irrelevante, por ejemplo en los elementos de un conjunto.

2.1.2. Remplazar vs No Remplazar

Las muestras con remplazo entonces estan permitidas, por ejemplo los números de la licencia.

Cuando la repetición no esta permitida, por ejemplo en un conjunto de números de lotería

2.2. Permutación

Una permutación es un arreglo de objetos donde el ordén es importante.

Entonces definimos a $_{n}P_{r}$ a la cantidad de muestras ordenadas de tamaño r sin remplazo de un conjunto de n objetos.

Entonces decimos que:

$$_{n}P_{r} = \frac{n!}{(n-r)!} = (n)(n-1)(n-2)\dots(n-r+1)$$

2.2.1. Ejemplos

Ejemplo 1:

Considera $S = \{a, b, c, d\}$, entonces podemos decir que:

- Hay 4 permutaciones distintas tomando solo una letra a la vez
- Hay 12 permutaciones distintas tomando solo dos letra a la vez
- Hay 24 permutaciones distintas tomando solo tres letra a la vez

Estas se pueden sacar facilmente con esta idea que creo que a todos nos enseñan, por ejemplo veamos como hacer el último punto:

4 3 2 =
$$(4)(3)(2) = 24$$

2.3. Combinación

Una permutación es un arreglo de objetos donde el ordén NO es importante.

Entonces definimos a ${}_{n}C_{r}$ a la cantidad de muestras sin ordenadas de tamaño r sin remplazo de un conjunto de n objetos.

Entonces decimos que:

$$\binom{n}{r} = {}_{n}C_{r} = \frac{{}_{n}P_{r}}{r!} = \frac{n!}{r!(n-r)!} = \frac{(n)(n-1)(n-2)\dots(n-r+1)}{r!}$$

Esto tiene mucho sentido si lo ves desde otro angulo, pues en cuanto a las permutaciones tendremos $(n)(n-1)(n-2)\dots(n-r+1)$, pero resulta que muchas de esas permutaciones son basicamente la misma, solo cambiando el orden, así que si el orden ya no importa, es tan sencillo como dividir entre la cantidad de veces que podemos ordenar esas permutaciones de tamaño r

2.3.1. Combinaciones y Subconjuntos

Resulta ser que hay dos grande problemas clásicos de teoría de conjuntos que podemos resolver con combinaciones:

 \blacksquare El número de subconjuntos de cardinalidad r de un conjunto de n elementos

$$\binom{n}{r}$$

• Número de subconjuntos de un conjunto de n elementos:

$$\sum_{i=0}^{n} \binom{n}{i} = 2^n$$

2.3.2. Ejemplos

Ejemplo 1:

Cuantos equipos se puede formar que incluyan 2 físicos y 1 matemático si se sabe que hay 4 físicos y 3 matemáticos.

Ya que no nos importa el orden esto esta mas sencillo de lo que parece:

$$\binom{4}{2} \binom{3}{1} = \frac{4!}{2!(4-2)!} \frac{3!}{1!(3-1)!} = 18$$

2.3.3. Propiedades Coheficientes Binomiales

Propiedades Simetrícas

$$\binom{n}{k} = \binom{n}{n-k}$$

Casos Especiales

$$\binom{n}{0} = \binom{n}{n} = 1 \qquad \qquad \binom{n}{1} = \binom{n}{n-1} = n$$

■ Teorema del Binomio

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

■ Teorema del Binomio (Caso Especial)

$$\sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k} = 1$$

Parte II Variables Aleatorias Discretas

Capítulo 3

Variables Aleatorias Discretas

3.1. Variables Aleatorias

Una variable aleatoria es una función que asigna a cada elemento $E_i \in S$ en el espacio muestral a un número real $X(E_i) \in \mathbb{R}$, es decir, en español, lo que hace es que es una función que nos da información de una característica de cada elemento del espacio muestral.

Esta se denota con mayúsculas y no es un número, es una función. Para poner a un valor posible de una variable aleatoria lo denotamos con minúsculas.

3.1.1. Variables Aleatorias Discretas

Las variables aleatorias cuyo conjunto de valores posibles es finito o infinito contable entonces decimos que es una variable aleatoria discreta.

Ejemplo:

Por ejemplo considera que vas a lanzar 3 monedas, entonces tenemos que:

$$S = \{ ccc, ccx, cxc, xcc, xcc, xcx, cxx, xxx \}$$

Entonces podemos tener una variable aleatoria como:

Sea X = Número de caras en 3 lanzamientos.

Entonces podemos decir que:

X(ccc) = 3

X(ccx) = 2

X(cxc) = 2

X(xcc) = 2

X(xxc) = 1

X(xcx) = 1

X(cxx) = 1

X(xxx) = 0

Por lo tanto los vales posibles son 0, 1, 2, 3.

3.2. Función Probabilidad f_X

3.2.1. Definición

También se le conoce como función de probabilidad puntual. Es una función que toma todos los posibles valores una variable aleatoria y nos regresa un número real entre el 0 y el 1 dado por la probabilidad de el valor de la variable aleatoria sea x. Es decir:

$$f_X(x) = P(X = x)$$

3.2.2. Uniforme Continua

3.2.3. Propiedades

Es una función de probabilidad, es decir tiene que cumplir que la suma de todos los posibles valores de la variable aleatoria den uno.

Más formalmente tenemos que la función probabilidad es aquella función que cumple que:

- $\forall a \in \mathbb{R} \qquad 0 \le f_X(a) \le 1$
- $\{x \mid f_X(x) \neq 0\}$ es un conjunto finito o numerable

$$\sum_{x} f_X(x) = 1$$

3.2.4. Ejemplos

Ejemplo:

Por ejemplo podemos definir la probabilidad del ejemplo pasado podemos definir la función

$$f_X(x)=\binom{3}{3}\left(\frac{1}{2}\right)^x\left(\frac{1}{2}\right)^{3-x}$$
 para $x\in\{\ 0,1,2,3\ \}$

Entonces tenemos que:

- \bullet La probabilidad de que X=0 (caigan 0 caras) es $\frac{1}{8}$
- La probabilidad de que X = 1 (caigan 1 caras) es $\frac{3}{8}$
- \blacksquare La probabilidad de que X=2 (caigan 2 caras) es $\frac{3}{8}$
- \bullet La probabilidad de que X=3 (caigan 3 caras) es $\frac{1}{8}$

3.3. Función P. Acumulada F_X

3.3.1. Definición

Describimos a la función de probabilidad acumulada como:

$$F_X(x) = \sum_{i \le x} f_X(i)$$

3.3.2. Propiedades

- Una característica muy común es que:
 - $\lim_{x\to-\infty} F_X(x) = 0$
 - $\lim_{x\to\infty} F_X(x) = 1$
- Si $x_1 \leq x_2$ entonces $F_X(x_1) \leq F_X(x_2)$

3.3.3. Función Fundametal

Podemos ver a la acumulada como una función fundamental, tal que podemos escribir a todas las demás:

•
$$P(X = x) = F_X(x) - F_X(x - 1)$$

•
$$P(X < x) = F_X(x - 1)$$

$$P(X \le x) = F_X(x)$$

•
$$P(X > x) = 1 - F_X(x)$$

•
$$P(X \ge x) = 1 - F_X(x - 1)$$

•
$$P(a \le X \le b) = F_X(b) - F_X(a-1)$$

•
$$P(a < X \le b) = F_X(b) - F_X(a)$$

•
$$P(a \le X < b) = F_X(b-1) - F_X(a)$$

$$P(a < X < b) = F_X(b-1) - F_X(a-1)$$

3.4. Esperanza o Media

3.4.1. Definición

Decimos que el valor esperado, esperanza \acute{o} media de la variable X se define como:

$$\mu_X = E(X) = \sum_x x f_X(x) = \sum_x x P(X = x)$$

Representa un promedio ponderado de los valores posibles de la variable basado en sus probabilidades.

Es decir, si se repitiera el experimiento muchísimas veces el promedio de los resultados se iría aproximando a la media.

3.4.2. Propiedades

- Si X puede tomar un número infinito de valores entonces la esperanza de X existe si y solo si $\sum_{x} |x| f_X(x) < \infty$
- Podemos dar una definición al evaular la esperanza sobre una función:

$$E(g(x)) = \sum_{x} g(x) f_X(x)$$

• Es un Operador Lineal, es decir:

$$E(\alpha X + \beta Y) = \alpha E(X) + \beta E(Y)$$

• Si X, Y son independientes entonces:

$$E(XY) = E(X)E(Y)$$

• Si a es una constante, entonces:

$$E(a) = a$$

3.5. Varianza

3.5.1. Definición

Decimos que la varianza de la variable X con $f_X(x)$ se define como:

$$v(X) = E((X - \mu)^2)$$

Podemos decir por su misma definición que la varianza siempre es positiva.

Es decir, este valor nos indica que tan lejos estan en promedio los valores de su misma media, es decir, que tan dispersa o concentrada esta la distribución de los datos.

3.5.2. Desvianción Estandar

Decimos que la desvianción estandar de la variable X con $f_X(x)$ se define como:

$$\sigma(X) = \sqrt{v(X)}$$

Se usa generalmente por las unidades que tiene la varianza, nada mas

3.5.3. Propiedades

$$v(X) = E(X^2) - (E(X))^2$$

Demostración:

Esto esta demasiada sencillo:

$$v(X) = E((X - \mu)^2)$$

$$= E(X^2 - 2x\mu + \mu^2)$$

$$= E(X^2) - E(2x\mu) + E(\mu^2)$$

$$= E(X^2) - 2\mu E(x) + E(\mu^2)$$

$$= E(X^2) - 2\mu^2 + \mu^2$$

$$= E(X^2) - \mu^2$$

•
$$V(a) = 0$$

Demostración:

Sea a = g(X), entonces su $\mu = a$, por lo tanto

$$V(a) = E(a - a)^{2}$$

$$= E(0)^{2}$$

$$= 0$$

$$v(aX) = a^2 v(X)$$

Demostración:

$$V(aX) = E(aX^{2}) - E^{2}(aX)$$

$$= a^{2}E(X^{2}) - a^{2}E^{2}(X)$$

$$= a^{2}[E(X^{2}) - E^{2}(X)]$$

$$= a^{2}[v(X)]$$

$$v(X+Y) = v(X) + v(Y) + 2Cov(X,Y)$$

Demostración:

Esta esta larga:

$$\begin{split} v(X+Y) &= E(X+Y)^2 - (E(X+Y))^2 \\ &= E(X) + E(Y) + 2E(XY) - (E(X+Y))^2 \\ &= E(X) + E(Y) - (E(X) + E(Y))^2 + 2E(XY) \\ &= E(X) + E(Y) - E^2(X) - E^2(Y) + 2E(XY) - 2E(X)E(Y) \\ &= E(X) - E^2(X) + E(Y) - E^2(Y) + 2E(XY) - 2E(X)E(Y) \\ &= v(x) + v(Y) + 2E(XY) - 2E(X)E(Y) \\ &= v(x) + v(Y) + 2Cov(X, Y) \end{split}$$

• v(X - Y) = v(X) - v(Y) - 2Cov(X, Y)

Demostración:

Es lo mismo, que la de arriba :v

• Si X y Y son independientes, entonces v(X+Y) = v(X) + v(Y)

Demostración:

Es lo mismo que la de arriba, solo recuerda que si X,Y son independientes entonces tenemos que Cov(X,Y)=0

• En general si X_1, X_2, \ldots, X_n son variables aleatorias, entonces tenemos que:

$$v\left(\sum_{i=1}^{n} X_{i}\right) = \sum_{i=1}^{n} v(X_{i}) + 2\sum_{i< j}^{n} Cov(X_{i}, X_{j})$$

Demostración:

Es inducción :v

3.6. Covarianza

3.6.1. Definición

Sea X, Y dos variables independientes, entonces definimos a la covarianza como:

$$Cov(X, Y) = E((X - \mu_X)(Y - \mu_Y))$$

Es una manera de medir la dispersión conjunta de ambas variables.

3.6.2. Propiedades

$$Cov(X,Y) = E(XY) - \mu_X \mu_Y$$

Demostración:

Podemos demostrar esto, bien facil:

$$Cov(X,Y) = E((X - \mu_X)(Y - \mu_Y))$$

$$= E(XY - X\mu_Y - \mu_XY - \mu_X\mu_Y)$$

$$= E(XY) - E(X\mu_Y) - E(\mu_XY) + E(\mu_X\mu_Y)$$

$$= E(XY) - \mu_Y E(X) - \mu_X E(Y) + E(\mu_X\mu_Y)$$

$$= E(XY) - \mu_Y \mu_X - \mu_X \mu_Y + E(\mu_X\mu_Y)$$

$$= E(XY) - \mu_Y \mu_X - \mu_X \mu_Y + \mu_X \mu_Y$$

$$= E(XY) - \mu_Y \mu_X$$

• La covarianza de 2 variables independientes es cero

Demostración:

Mira esto:

$$Cov(X,Y) = E(XY) - \mu_Y \mu_X$$
 Si es que son independientes
$$= E(X)E(Y) - \mu_Y \mu_X$$
 Recuerda que $E(X) = \mu_X$
$$= 0$$

3.7. Momentos Centrales

Si X es una variable aleatoria tal que $E(X) = \mu_x$ entonces tenemos que:

• El k-ésimo momento central esta definida como:

$$\mu_k^c = E\left[(X - \mu)^k \right] = \sum_x (x - \mu)^k P(X = x)$$
 (3.1)

■ El k-ésimo momento alrededor del origen esta definida como:

$$\mu_k^0 = E(X^k) = \sum_x x^k P(X = x)$$
 (3.2)

3.7.1. Propiedades

• Ya hemos trabajo con momentos, veamos algunos:

• La Esperanza

Esta se puede ver como el primer momento alrededor del origen $\mu_X = \mu_1^0$

• La Varianza

Esta se puede ver como el primer momento alrededor central

$$v(X) = E[(X - \mu)^2] = \mu_2^c$$

O bien podemos verlo como $v(X)=E(X^2)-\mu^2$ donde $E(X^2)$ es un segundo momento alrededor del origen

3.7.2. Función Generadora de Momentos

La podemos definir como:

$$\Psi_X(t) = E(e^{tX}) = \sum_x e^{tx} P(X = x)$$

Solemos decir que la k-ésima derivada de la función generadora de momentos evaluada en t=0 da como resultado el k-ésimo momento central al origen

Es decir, siguen el siguiente patrón:

- $\Psi'_X(t=0) = E(X)$
- $\Psi_X''(t=0) = E(X^2)$
- $\Psi_X'''(t=0) = E(X^3)$
- $\Psi_X^{(n)}(t=0) = E(X^n)$

3.7.3. Propiedades

- Nota que $\Psi_x(a) = E(e^{aX})$
- Si Y = aX + b entonces tenemos que:

$$\Psi_Y(t) = e^{bt} \Psi_X(at)$$

Demostración:

Esta esta fácil, sea Y = aX + b:

$$\begin{split} \Psi_Y(t) &= E(e^{tY}) \\ &= E(e^{t(aX+b)}) \\ &= E(e^{atX+tb}) \\ &= E(e^{atX}e^{tb}) \\ &= e^{tb}E(e^{atX}) \\ &= e^{tb}\Psi_X(at) \end{split}$$

- $\Psi_X(t=0) = \mu_k$
- $\Psi_X(t=0) = E(X)$
- \blacksquare Nota que si tuvieramos un montón de variables aleatorias X_1,X_2,X_3,\dots,X_n Y decimos que $Y=\sum_{i=1}^n X_i$

Entonces tenemos que:

$$\Psi_Y(t) = \prod_{i=1}^n \Psi_{X_i}(t)$$

Demostración:

Esta también es importante:

$$\Psi_Y(t) = E\left(e^{tY}\right)$$

$$= E\left(e^{t\sum_{i=1}^n X_i}\right)$$

$$= E\left(\prod_{i=1}^n e^{X_i}\right)$$

$$= \prod_{i=1}^n E\left(e^{X_i}\right)$$

$$= \prod_{i=1}^n \Psi_{X_i}(t)$$

Capítulo 4

Distribuciones Famosas

4.1. Bernoulli

4.1.1. Definición

Suponte un experimento en el que solo tienes dos salidas, 0, 1, 0 para el fracaso y 1 para el exito, suponte que la probabilidad de que salga 1 es p y la que salga 0 es q = 1 - p.

Variable Aleatoria

Ahora, nuestra variable aleatoria sera:

X: Resultado del experimento

Ahora, los valores posibles que puede tomar son muy muy sencillos, basicamente porque solo hay 2 opciones, o salio bien, o salio mal, es decir X puede tomar los valores 0, 1. Solemos entonces escribir esta distribución como:

$$X \sim Ber(x; p)$$

donde:

- x: Nuestra variable
- p: Probabilidad de Exito

4.1.2. Función Probabilidad

Esta es clásica:

$$f_X(x) = (p^x)((1-p)^{1-x}) = p^x q^{1-x}$$

Demostración:

Esta esta fácil, podemos hacerla por partes, como parece más natural y ver que:

$$F_X(x) = \begin{cases} q & x = 0 \\ p & x = 1 \end{cases}$$

Podemos extender esta idea de muchas maneras a una expresión la que damos es solo una de ellas.

4.1.3. Función P. Acumulada

Por definición tenemos que:

$$F_X(x) = \begin{cases} 0 & x < 0 \\ q & 0 \le x < 1 \\ p & 1 \le x \end{cases}$$

Y esta conviene mejor dejarla así.

4.1.4. Esperanza

Esta es la distribución con la esperanza más fácil que veras:

$$E(X) = p$$

Demostración:

Nota que por definición tenemos que:

$$\mu_X = \sum_x x P(X = x)$$
$$= 0(q) + 1(p)$$
$$= p$$

4.1.5. Varianza

Esta es igualmente sencilla:

$$v(X) = p(1-p) = p - p^2 = pq$$

Demostración:

Por definición tenemos que:

$$\begin{split} v(X) &= E(x^2) - \mu^2 \\ &= E(x^2) - p^2 \\ &= \sum_x x^2 P(X=x) - p^2 \\ &= 0(q) + 1(p) - p^2 \\ &= p - p^2 \\ &= p(1-p) \\ &= pq \end{split}$$

4.1.6. Función Generadora

Esta igual es muy bonita:

$$\Psi(t) = (q) + e^t(p)$$

Demostración:

Por definición tenemos que:

$$\begin{split} \Psi(t) &= E(e^t X) \\ &= \sum_x e^t x P(X=x) \\ &= e^{0t}(q) + e^{1t}(p) \\ &= (q) + e^t(p) \end{split}$$

4.2. Binomial

4.2.1. Definición

Un experimento binomial consiste en n ensayos Bernoulli independientes, con una probabilidad de exito individual constante.

La variable aleatoria discreta es el número de exitos de los experimentos individuales donde sus posibles valores fueron $X = \{0, 1, ..., n\}$.

Observa que la variable aleatoria se puede ver como la suma de Bernoullis independientes, es decir $X=X_1+X_2+X_3+\cdots+X_n$

Variable Aleatoria

Ahora, nuestra variable aleatoria sera:

X: Número de Exitos en los experimentos

Ahora, los valores posibles que puede tomar son muy muy sencillos, suponte que haremos n experimentos, entonces X tiene que tomar valores entre $0 \dots n$

Solemos entonces escribir esta distribución como:

$$X \sim Bin(x; n, p)$$

donde:

- x: Nuestra variable
- p: Probabilidad de Exito

4.2.2. Función Probabilidad

Esta esta fácil:

$$f_X(x) = \binom{n}{x} p^x q^{n-x}$$

Demostración:

¿Porque? Porque estamos hablando de eventos independientes por lo tanto su probabilidad conjunta es el producto de las individuales, y literlalmente estamos usando la definición de combinación.

4.2.3. Función P. Acumulada

Esta esta fácil:

$$F_X(x) = \sum_{i=0}^{x} \binom{n}{i} p^i q^{n-i}$$

Demostración:

Literalmente es la definición.

4.2.4. Función Generadora

Por definición tenemos que:

$$\Psi(t) = \left(q + e^t p\right)^n$$

Demostración:

Espera, espera, me explico mejor, lo que pasa es la binomial se puede ver como una suma de variables independientes entonces solo basta con recordar que ya demostramos que la función generadora de momentos de una suma de variables independientes es el producto de la función generadora de momentos de cada una.

Es decir:

$$\Psi_X(t) = \prod_{i=1}^n \Psi_{X_i}(t)$$

$$= \prod_{i=1}^n \Psi_{X_i}(t)$$

$$= \prod_{i=1}^n q + e^t p$$

$$= (q + e^t p)^n$$

4.2.5. Esperanza

Esta también es sencilla:

$$E(X) = np$$

Demostración:

Podemos usar que la variable aleatoria se puede ver como la suma de Bernoullis independientes.

Es decir
$$X = \sum_{x} X_i$$

$$\mu_X = E(X)$$

$$= E(\sum_x X_i)$$

$$= \sum_x E(X_i)$$

$$= np$$

4.2.6. Varianza

Esta es bonita también:

$$v(X) = npq$$

Demostración:

Esta la haremos usando propiedades de la varianza, recuerda que son la suma de eventos independientes:

$$v(X) = v\left(\sum_{i=0}^{n} X_i\right)$$
$$= \sum_{i=0}^{n} v(X_i)$$
$$= \sum_{i=0}^{n} pq$$
$$= npq$$

4.3. Geométrica

Supón que se repiten de manera independiente ensayos Bernoulli con una probabilidad de exito constante de p hasta obtener el primer exito.

La variable discreta es el número de experimentos hasta un primer exito donde sus posibles valores fueron $X = \{0, 1, \dots, \}$.

Observa que la variable aleatoria se puede ver como la suma de Bernoullis independientes.

Ahora veamos algunas caracteristicas:

Función Probabilidad

Esta esta fácil $f_X(x) = q^{x-1}p$

Es decir, es la propabilidad de que todos los anteriores sean fracasos y el actual sea el exito.

■ Función Acumulada

$$F_X(x) = 1 - q^x$$

Esta esta fácil:

$$F_X(x) = \sum_{i=1}^x pq^{i-1}$$

$$= p \sum_{i=0}^{x-1} q^i$$

$$= p \frac{1 - q^x}{1 - q}$$

$$= p \frac{1 - q^x}{p}$$

$$= 1 - q^x$$

• Esperanza de X

Esta es muy famosa: $E(X) = \frac{1}{p}$

Demostración:

$$E(X) = \sum_{x=1}^{\infty} x P(X = x)$$

$$= \sum_{x=1}^{\infty} x q^{x-1} p$$

$$= p \sum_{x=1}^{\infty} x q^{x-1}$$

$$= p \frac{d}{dx} \sum_{x=1}^{\infty} x q^{x-1}$$

$$= p \frac{d}{dx} \sum_{x=1}^{\infty} q^x$$

$$= p \frac{d}{dx} \frac{1}{1 - q}$$

$$= p \frac{1}{(1 - q)^2}$$

$$= p \frac{1}{p^2}$$

$$= \frac{1}{p}$$

Varianza

$$v(X) = \frac{1-p}{p^2}$$

$$\begin{split} v(X) &= E(X^2) - \mu^2 \\ &= E(X^2) - \frac{1}{p^2} \\ &= \sum_{x=1}^{\infty} x^2 P(X = x) - \frac{1}{p^2} \\ &= \sum_{x=1}^{\infty} x^2 p q^{x-1} - \frac{1}{p^2} \\ &= p \sum_{x=1}^{\infty} x^2 q^{x-1} - \frac{1}{p^2} \\ &= p \frac{1+q}{(1-q)^3} - \frac{1}{p^2} \\ &= \frac{1+q}{p^2} - \frac{1}{p^2} \\ &= \frac{q}{p^2} \\ &= \frac{1-p}{p^2} \end{split}$$

• Función Genera de Momentos

Por definición tenemos que:

$$\begin{split} \Psi(t) &= E\left(e^{tX}\right) \\ \Psi(t) &= \sum_{x=1}^{\infty} e^{tx} q^{x-1} p \\ \Psi(t) &= p \sum_{x=1}^{\infty} e^{tx} q^{x-1} \\ \Psi(t) &= p \sum_{x=1}^{\infty} e^{tx} q^{x-1} \\ \Psi(t) &= p e^t \sum_{x=1}^{\infty} (q e^t)^x \\ \Psi(t) &= p e^t \frac{1}{1 - q e^t} \\ \Psi(t) &= \frac{p e^t}{1 - q e^t} \end{split}$$

Propiedades

• Sea $P(X > a) = q^a$ con a un natural positivo

Demostración:

$$P(Y>a) = 1 - F_X(a)$$
 Definición de Acumulada
$$= 1 - (1-q^a)$$
 Talacha
$$= q^a$$
 Bingo

 \bullet Sea $P(X>a+b \mid X>a)=P(X>b)$ con a,b un naturales positivos

Demostración:

$$P(X>a+b \mid X>a) = \frac{P(X>a+b \text{ y } X>a)}{P(X>a)} \qquad \text{Definición de Condicional}$$

$$= \frac{P(X>a+b)}{P(X>a)} \qquad \text{Sentido común}$$

$$= \frac{p^{a+b}}{p^a} \qquad \text{Teorema pasado}$$

$$= p^{(a+b)-a} \qquad \text{Exponentes}$$

$$= p^b \qquad \text{Usando teorema pasado}$$

$$= P(X>b)$$

4.4. Hiper-Geométrica

4.4.1. Definición

Supongamos que tenemos una población de tamaño r, ahora esta particionado de 2 maneras, como elementos del tipo r_1 o r_2 .

Ahora vamos a tomar una muestra aleatoria de tama \tilde{n} o n sin reemplazo ni sustitución.

Ahora, solo por notación si es que n, es decir la muestra es menor que nuestra población r la llamamos muestra, pero si n=r entonces decimos que es un censo.

1em

Variable Aleatoria

Ahora, nuestra variable aleatoria sera:

X: Número de elementos del tipo r_1 en una muestra aleatoria de tamaño n

Ahora, los valores posibles que puede tomar es $max(0, n-r_2) \le x \le min(r_1, n)$ Ahora, ¿Porque esos números tan feos? Por un lado tenemos que que lo peor que nos puede pasar son dos cosas, o bien su tu muestra es muy pequeña n compara con todo el espacio r y r_1 entonces entonces bien que puedes tener toda la mala suerte de que todas caigan donde tu no querías por lo tanto, podría pasar que X=0, pero, pero que pasaría que tu n fuera lo suficientemente grande tal que si que si entrará todo tus fragmentos que no quieres entonces lo mínimo que puede entrar es $n-r_2$.

El cálculo para el límite mayor es parecido.

Solemos entonces escribir esta distribución como:

$$X \sim H(x; n, r_1, r_2)$$

donde:

- x: Nuestra variable
- n: Tamaño de la muestra
- r: Tamaño de TODA la población
- r_1 : Tamaño de nuestra población de interes
- $\bullet \ r_2$: Tamaño de la población que no es de interes, sale de $r_2=r-r_1$

4.4.2. Función Probabilidad

Esta esta muy interesante, es:

$$f_X(x) = \frac{\binom{r_1}{x} \binom{r_2}{n-x}}{\binom{r}{n}}$$

Idea de la Demostración:

Antes que nada, mira lo bonito que sale, arriba tienes r_1, r_2 y $r_1 + r_2 = r$ y abajo tienes que n - x, x y n - x + x = n

Ahora, abajo estamos colocando las posibles formas de escojer conjunto de n elementos de una espacio de r elementos, y arriba es la probabilidad conjunta de que primero tengamos x elementos de r_1 y n-x elementos de r_2

4.4.3. Función P. Acumulada

Esta esta muy interesante, es:

$$F_X(x) = P(X \le x) = \frac{1}{\binom{r}{n}} \sum_{i=\max(0,n-r_2)}^{x} \binom{r_1}{i} \binom{r_2}{n-i}$$

Idea de la Demostración:

Es por definición men :v

4.4.4. Esperanza

Esta esta muy interesante:

$$E(X) = n\left(\frac{r_1}{r}\right)$$

Demostración:

Primero que nada porque usando la definición o algo así nos van a salir cosas horribles, así que mejor empecemos por otro lado.

Sea X_i variables aleatorias de Bernoulli, tal que esten definidas por:

$$X_i = \begin{cases} 1 & \text{Si } X_i \text{ es de tipo } r_1 \\ 0 & \text{Si } X_i \text{ no es de tipo } r_1 \end{cases}$$

Ahora, como son variables de Bernoulli, podemos encontrar bien facil su esperanza como $E(X_i) = p = \frac{r_1}{r}$

Ahora, como ya te esperabas, nota que nuestra variable aleatoria hipergeometrica es la suma de las otras $X = \sum_{i=1}^{n} X_i$

Ahora como la esperanza es un bonito operador lineal tenemos que:

$$E(X) = E\left(\sum_{i=1}^{n} X_i\right)$$
$$= \sum_{i=1}^{n} E(X_i)$$
$$= \sum_{i=1}^{n} \frac{r_1}{r}$$
$$= n\left(\frac{r_1}{r}\right)$$

4.4.5. Función Generadora

Esta esta muy interesante, es:

$$\Psi_X(t) = E(e^{tX}) = \frac{1}{\binom{r}{n}} \sum_{i=\max(0,n-r_2)}^{\min(n,r_1)} e^{ti} \binom{r_1}{i} \binom{r_2}{n-i}$$

4.5. Poisson

Variable Aleatoria

La variable aleatoria que cuenta el número de ocurrencías en un periodo de tiempo o espacio físico dado se le llama Poisson.

X: Número de ocurrencias en un periodo de tiempo o espacio dado

Ahora, los valores posibles que puede tomar es $0, 1, 2, \ldots$

Solemos entonces escribir esta distribución como:

$$X \sim P(x; \lambda)$$

donde:

- x: Nuestra variable
- \blacksquare $\lambda :$ Es el número promedio de ocurrencias en el periodo o espacio dado

4.5.1. Función Probabilidad

Esta esta muy interesante, es:

$$f_X(x) = P(X = x) = e^{-\lambda} \frac{\lambda^x}{x!}$$

4.5.2. Función P. Acumulada

Esta esta muy interesante, es:

$$F_X(x) = P(X \le x) = e - \lambda \sum_{i=0}^{x} \frac{\lambda^i}{i!}$$

Idea de la Demostración:

Es por definición men :v

4.5.3. Función Generadora

Esta esta muy interesante, es:

$$\Psi_X(t) = e^{\lambda(e^t - 1)}$$

Demostración:

Usando la función probabilidad puntual tenemos que:

$$\Psi_X(t) = E(e^{tX})$$

$$= \sum_{x=0}^{\infty} e^{tx} P(X = x)$$

$$= \sum_{x=0}^{\infty} e^{tx} e^{-\lambda} \frac{\lambda^x}{x!}$$

$$= e^{-\lambda} \sum_{x=0}^{\infty} e^{tx} \frac{\lambda^x}{x!}$$

$$= e^{-\lambda} \sum_{x=0}^{\infty} \frac{(e^t \lambda)^x}{x!}$$

$$= e^{-\lambda} e^{e^t \lambda}$$

$$= e^{\lambda(e^t - 1)}$$

4.5.4. Esperanza

Esta esta muy interesante:

$$E(X) = \lambda$$

Demostración:

Esta sale o bien por definición o usando la generadora de momentos y dicieno que:

$$\Psi(t=0)' = e^{\lambda(e^t - 1)} \lambda(e^t) \Big|_{t=0}$$
$$= e^0 \lambda(e^0)$$
$$= \lambda$$

4.5.5. Varianza

Esta esta muy interesante:

$$v(X) = \lambda$$

Demostración:

Esta sale o bien por definición o usando la generadora de momentos y dicieno que:

$$\begin{split} \Psi(t=0)'' &= e^{\lambda(e^t-1)}\lambda(e^t) + \lambda(e^t)^2 e^{\lambda(e^t-1)} \,\Big|_{t=0} \\ &= \lambda + \lambda^2 \end{split}$$

Por lo tanto la varianza es $v(X) = \lambda + \lambda^2 - \lambda^2 = \lambda$

4.5.6. Relación con la Binomial

Considera $X \sim Bin(x; n, p)$, entonces cuando más grande sea n más nuestra binomial se va a parecer a una Poisson con $\lambda = np$

Demostración:

Considera $X \sim Bin(x; n, p)$, entonces esta más que claro que por ser una variable aleatoria que se distribuye con una binomial que $P(X = x) = f_X = \binom{n}{x} p^x q^{n-x}$.

Ahora como ya demostramos en las propiedades de la Poisson, vamos a suponer por un minuto que $\lambda = np$, es decir $p = \frac{\lambda}{n}$ entonces tenemos que:

$$P(X = x) = f_X = \binom{n}{x} p^x q^{n-x} = \binom{n}{x} \left(\frac{\lambda}{n}\right)^x \left(1 - \frac{\lambda}{n}\right)^{n-x}$$

Ahora veamos que es lo que pasa cuando tenemos una x muy muy grande, es decir:

$$\begin{split} &\lim_{n\to\infty} P(X=x) = \lim_{n\to\infty} \binom{n}{x} p^x q^{n-x} \\ &= \lim_{n\to\infty} \binom{n}{x} \left(\frac{\lambda}{n}\right)^x \left(1 - \frac{\lambda}{n}\right)^{n-x} \\ &= \lim_{n\to\infty} \frac{n!}{x!(n-x)!} \left(\frac{\lambda}{n}\right)^x \left(1 - \frac{\lambda}{n}\right)^{n-x} \\ &= \lim_{n\to\infty} \frac{n!}{x!(n-x)!} \frac{\lambda^x}{n^x} \left(1 - \frac{\lambda}{n}\right)^{n-x} \\ &= \lim_{n\to\infty} \frac{\lambda^x}{x!} \frac{n!}{n^x(n-x)!} \left(1 - \frac{\lambda}{n}\right)^{n-x} \\ &= \frac{\lambda^x}{x!} \lim_{n\to\infty} \frac{n-x+1}{n} \dots \frac{n-1}{n} \frac{n}{n} \left(1 - \frac{\lambda}{n}\right)^n \frac{1}{(n-\lambda)^x} \\ &= \frac{\lambda^x}{x!} e^{-\lambda} \lim_{n\to\infty} \frac{n-x+1}{n} \dots \frac{n-1}{n} \frac{n}{n} \frac{1}{(n-\lambda)^x} \\ &= \frac{\lambda^x}{x!} e^{-\lambda} \lim_{n\to\infty} (1) \dots (1) \\ &= \frac{\lambda^x}{x!} e^{-\lambda} \end{split}$$

Por lo tanto cuando más grande sea n más nuestra binomial se va a parecer a una Poisson con $\lambda = np$

Parte III Variables Aleatorias Continuas

Capítulo 5

Variables Aleatorias Continuas

5.1. Variables Aleatorias

Una variable aleatoria es una función que asigna a cada elemento $E_i \in S$ en el espacio muestral a un número real $X(E_i) \in \mathbb{R}$, es decir, en español, lo que hace es que es una función que nos da información de una característica de cada elemento del espacio muestral.

5.1.1. Variables Aleatorias Continuas

Las variables aleatorias cuyo conjunto de valores posibles el de los números reales, nos permiten medir un parámetro continuo.

Recuerda que los números reales son densos, eso quiere decir que entre cuales quiera dos reales, podemos encontrar otro real entre ambos.

5.2. Función Probabilidad f_X

5.2.1. Definición

Vamos a definir a la función de probabilidad de una variable aleatoria continua como aquella función $f_X(x)$ para la cual siempre se cumplan 2 cosas:

$$P(a < X < b) = \int_a^b f_X(x) \ dx$$

Recuerda que las probabilidades en el caso continuo se puede ver como áreas bajo la curva delimitada según el interes.

5.2.2. Probabilidad Puntual

También se le conoce como función de probabilidad puntual. Es tecnicamente la misma que en las variables aleatorias discretas, pero al estar hablando de puede tomar cualquier real, entonces decimos que:

$$P(X=x)=0$$

Esto nos lleva una propiedad muy importante que vamos a ocupar a cada rato:

$$P(a < X < b) = P(a < X < b) = P(a < X < b) = P(a < X < b)$$

Demostración:

$$P(a < X \le b) = P(a < X < b) + P(b) = P(a < X < b) + 0 = P(a < X < b)$$

$$P(a \le X < b) = P(a < X < b) + P(a) = P(a < X < b) + 0 = P(a < X < b)$$

$$\bullet \ P(a \leq X \leq b) = P(a < X < b) + P(a) + P(b) = P(a < X < b) + 0 + 0 = P(a < X < b)$$

5.3. Función P. Acumulada F_X

5.3.1. Definición

Vamos a definir a la función de distribución o acumulada como:

$$F_X(x) = P(X \le x) = \int_{-\infty}^x f_X(x) dx$$

Recuerda que las probabilidades en el caso continuo se puede ver como áreas bajo la curva delimitada según el interes.

5.3.2. Propiedades

• $f_X(x) = \frac{d F_X(x)}{dx}$ si es que tiene sentido la derivada en ese punto sino $f_X(x) = 0$

5.3.3. Uniforme Continua

Parte IV CheatSheet - Formulario

Capítulo 6

CheatSheet - Formulario

6.1. Teoría de Conjuntos

Nombre	Propiedad
Operaciones Básicas	
Complemento	$A' = \{ x \mid x \notin X \}$
Intersección	$A \cap B = \{ x \mid x \in A \ y \ x \in B \}$
Unión	$A \cup B = \{ x \mid x \in A \text{ \'o } x \in B \}$
Leyes de Morgan	
Morgan sobre Unión	$(A \cup B)' = A' \cap B'$
Morgan sobre Intersección	$(A \cap B)' = A' \cup B'$
Combinatoria	
Complemento	$A' = \{ x \mid x \notin X \}$
Intersección	$A \cap B = \{ x \mid x \in A \ y \ x \in B \}$
Unión	$A \cup B = \{ x \mid x \in A \text{ ó } x \in B \}$

6.2. Combinatoria

 \blacksquare Número de **permutaciones** de un conjunto de n objetos

n!

■ Número de **muestras ordenadas** de tamaño *r* **con remplazo** de un conjunto de *n* objetos

 n^r

lacktriangle Número de muestras ordenadas de tamaño r sin remplazo de un conjunto de n objetos

$$_{n}P_{r} = \frac{n!}{(n-r)!} = (n)(n-1)(n-2)\dots(n-r+1)$$

• Número de muestras no ordenadas de tamaño r sin remplazo de un conjunto de n objetos

Esto es lo mismo que el número de subconjuntos de cardinalidad r de un conjunto de n elementos

$$\binom{n}{r} = {}_{n}C_{r} = \frac{{}_{n}P_{r}}{r!} = \frac{n!}{r!(n-r)!} = \frac{(n)(n-1)(n-2)\dots(n-r+1)}{r!}$$

 \blacksquare Número de subconjuntos de un conjunto de n elementos:

 2^n

item Las formas de permutar n elementos en un círculo es:

$$(n-1)!$$

6.2.1. Propiedades Coheficientes Binomiales

Propiedades Simetrícas

$$\binom{n}{k} = \binom{n}{n-k}$$

Casos Especiales

$$\binom{n}{0} = \binom{n}{n} = 1 \qquad \qquad \binom{n}{1} = \binom{n}{n-1} = n$$

■ Teorema del Binomio

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

■ Teorema del Binomio (Caso Especial)

$$\sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k} = 1$$

6.3. Probabilidad Básica

Definimos la probabilidad de un evento A como:

$$P(A) = \frac{|A|}{|S|}$$
 Recuerda que A es un evento y S es espacio muestral

6.3.1. Propiedades

- P(S) = 1
- Si A_1, A_2, \ldots, A_n son eventos mutuamente excluyentes entonces:

$$P\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i=1}^{n} P(A_i)$$

- $P(\emptyset) = 0$
- P(A') = 1 P(A)
- Si $A \subseteq B$ entonces $P(A) \le P(B)$
- La probabilidad de la unión de n eventos de puede escribir de manera general como:

$$P\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{i=1}^{n} P(A_{i}) - \sum_{i< j}^{n} P(A_{i}A_{j}) + \sum_{i< j< k}^{n} P(A_{i}A_{j}A_{k}) + \dots + (-1)^{n+1} P\left(\bigcap_{i=1}^{n} A_{i}\right)$$

Por consecuencia del caso general tenemos que:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

• Por consecuencia del caso general tenemos que:

$$P(A \cup B \cup C) =$$

$$P(A) + P(B) + P(C)$$

$$- (P(A \cap B) + P(A \cap C) + P(B \cap C))$$

$$+ P(A \cap B \cap C)$$

$$P(A-B) = P(A) - P(A \cap B)$$

6.4. Probabilidad Condicional

La probabilidad de que ocurra el Evento A conociendo que ya paso el Evento B se denota y define como:

$$P(A \mid B) := \frac{P(A \cap B)}{P(B)} = \frac{|A \cap B|}{|B|}$$

6.4.1. Propiedades

Conservamos Propiedades

La propiedad condicional cumple las propiedades que ya vimos de una propiedad de un evento cualquiera, pero ahora el espacio muestral que antes era S se ha reducido.

- $P(A \mid B) + P(A' \mid B) = 1$
- $P(A \cup B \mid C) = P(A \mid C) + P(B \mid C) P(A \cap B \mid C)$

■ Definición Alterna

Podemos redefinir a la probabilidad condicional como: $P(A \mid B) = \frac{|A \cap B|}{|B|}$

• Regla de Multiplicación

Podemos escribir a $P(A \cap B)$ en terminos de probabilidad condicional.

$$P(A \cap B) = P(A|B) P(B) = P(B|A) P(A)$$

6.5. Eventos Independientes

Dados 2 eventos que A, B son Independientes si y solo si P(A) = P(A|B) y se escribe: $A \perp B$.

6.5.1. Propiedades

- Si $A \perp B$ entonces $P(A \cap B) = P(A)P(B)$
- Si $A \perp B$ entonces $A' \perp B'$
- Si $A \perp B$ entonces $P(A \cap B) \neq 0$
- Si $P(A \cap B) = 0$ entonces A, B no son eventos independientes

6.5.2. Teorema de Bayes

Considera un conjunto de eventos $\{A_1, \ldots, A_n\}$ mutuamente excluyentes y tales que $\bigcup_{i=1}^n A_i = S$, es decir son particiones de S.

Entonces podemos escribir la propabilidad de un evento B donde $B \subset S$ como:

$$P(B) = \sum_{i=1}^{n} P(B|A_i) P(A_i)$$

Gracias a esto podemos decir que:

$$P(A_i|B) = \frac{P(A_i \cap B)}{P(B)}$$
$$= \frac{P(B|A_i) P(A_i)}{\sum_{i=1}^{n} P(A_i) P(B|A_i)}$$

6.6. Variables Aleatorias Discretas

6.6.1. Función Probabilidad f_X

Propieadades

Es una función de probabilidad, es decir tiene que cumplir que la suma de todos los posibles valores de la variable aleatoria den uno.

Más formalmente tenemos que la función probabilidad es aquella función que cumple que:

- $\forall a \in \mathbb{R}$ $0 \le f_X(a) \le 1$
- $\{x \mid f_X(x) \neq 0\}$ es un conjunto finito o numerable
- $\sum_{x} f_X(x) = 1$

6.6.2. Función P. Acumulada F_X

Definición

Describimos a la función de probabilidad acumulada como:

$$F_X(x) = \sum_{i \le x} f_X(i)$$

Propiedades

- Una característica muy común es que:
 - $\lim_{x\to-\infty} F_X(x) = 0$
 - $\lim_{x\to\infty} F_X(x) = 1$
- Si $x_1 \leq x_2$ entonces $F_X(x_1) \leq F_X(x_2)$

Función Fundametal

Podemos ver a la acumulada como una función fundamental, tal que podemos escribir a todas las demás:

•
$$P(X = x) = F_X(x) - F_X(x - 1)$$

■
$$P(X < x) = F_X(x - 1)$$

$$P(X \le x) = F_X(x)$$

•
$$P(X > x) = 1 - F_X(x)$$

•
$$P(X \ge x) = 1 - F_X(x-1)$$

•
$$P(a \le X \le b) = F_X(b) - F_X(a-1)$$

•
$$P(a < X \le b) = F_X(b) - F_X(a)$$

•
$$P(a \le X < b) = F_X(b-1) - F_X(a)$$

•
$$P(a < X < b) = F_X(b-1) - F_X(a-1)$$

6.6.3. Esperanza o Media

Definición

Decimos que el valor esperado, esperanza \acute{o} media de la variable X se define como:

$$\mu_X = E(X) = \sum_x x f_X(x) = \sum_x x P(X = x)$$

Propiedades

- \blacksquare Si X puede tomar un número infinito de valores entonces la esperanza de X existe si y solo si $\sum_x |x| f_X(x) < \infty$
- Podemos dar una definición al evaular la esperanza sobre una función:

$$E(g(x)) = \sum_{x} g(x) f_X(x)$$

• Es un Operador Lineal, es decir:

$$E(\alpha X + \beta Y) = \alpha E(X) + \beta E(Y)$$

• Si X, Y son independientes entonces:

$$E(XY) = E(X)E(Y)$$

• Si a es una constante, entonces:

$$E(a) = a$$

6.6.4. Varianza

Definición

Decimos que la varianza de la variable X con $f_X(x)$ se define como:

$$v(X) = E((X - \mu)^2)$$

Desvianción Estandar

Decimos que la desvianción estandar de la variable X con $f_X(x)$ se define como:

$$\sigma(X) = \sqrt{v(X)}$$

Se usa generalmente por las unidades que tiene la varianza, nada mas

Propiedades

$$v(X) = E(X^2) - (E(X))^2$$

•
$$V(a) = 0$$

$$v(aX) = a^2v(X)$$

$$\quad \bullet \quad v(X+Y) = v(X) + v(Y) + 2Cov(X,Y)$$

$$v(X-Y) = v(X) - v(Y) - 2Cov(X,Y)$$

$$\blacksquare$$
 Si X y Y son independientes, entonces $v(X+Y)=v(X)+v(Y)$

 \blacksquare En general si X_1, X_2, \dots, X_n son variables aleatorias, entonces tenemos que:

$$v\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} X_i + 2\sum_{i< j}^{n} Cov(X_i, X_j)$$

6.6.5. Covarianza

Definición

Sea X, Y dos variables independientes, entonces definimos a la covarianza como:

$$Cov(X,Y) = E\left((X - \mu_X)(Y - \mu_Y)\right)$$

Es una manera de medir la dispersión conjunta de ambas variables.

Propiedades

- $Cov(X,Y) = E(XY) \mu_X \mu_Y$
- La covarianza de 2 variables independientes es cero

6.6.6. Momentos Centrales

Si X es una variable aleatoria tal que $E(X) = \mu_x$ entonces tenemos que:

• El k-ésimo momento central esta definida como:

$$\mu_k^c = E\left[(X - \mu)^k \right] = \sum_x (x - \mu)^k P(X = x)$$
 (6.1)

■ El k-ésimo momento alrededor del origen esta definida como:

$$\mu_k^0 = E(X^k) = \sum_x x^k P(X = x)$$
 (6.2)

Oscar Andrés Rosas 75 Ve al Índice

Función Generadora de Momentos

La podemos definir como:

$$\Psi_X(t) = E(e^{tX}) = \sum_x e^{tx} P(X = x)$$

Solemos decir que la k-ésima derivada de la función generadora de momentos evaluada en t=0 da como resultado el k-ésimo momento central al origen

Es decir, siguen el siguiente patrón:

- $\Psi'_X(t=0) = E(X)$
- $\Psi_X''(t=0) = E(X^2)$
- $\Psi_X'''(t=0) = E(X^3)$
- $\Psi_X^{(n)}(t=0) = E(X^n)$

Propiedades

- Nota que $\Psi_x(a) = E(e^{aX})$
- Si Y = aX + b entonces tenemos que: $\Psi_Y(t) = e^{bt}\Psi_X(at)$
- $\Psi_X(t=0) = \mu_k$
- $\Psi_X(t=0) = E(X)$
- \blacksquare Nota que si tuvieramos un montón de variables aleatorias X_1,X_2,X_3,\ldots,X_n Y decimos que $Y=\sum_{i=1}^n X_i$

Entonces tenemos que:

$$\Psi_Y(t) = \prod_{i=1}^n \Psi_{X_i}(t)$$

Bibliografía

 $[1]\,$ Leticia Cañedo Suárez Probabilidad. ESCOM, 2018