

Recap from Last Lecture

- Divide-and-conquer
 - Example: Merge Sort, Karatsuba Integer Multiplication
- How did we measure the speed of an algorithm?
 - Count the number of operations
 - How the number scales with respect to the input size
 - Time complexity of computation
 - Karatsuba multiplication scales as n^{1.6}

Goals of This Lecture

- Let us formally formulate the time complexity of computation
- How to formally measure the running time of an algorithm?
 - Big-O, Big- Ω , Big- Θ notations
- General approach of the running time with recursive algorithms
 - The Master theorem

Big-O notation

- What do we mean when we measure runtime?
 - How long does it take to solve the problem, in seconds or minutes or hours?
- The exact runtime is heavily dependent on the programming language, system architecture, etc.
 - But the most factor is the input size (e.g. the number of bits that used in encoding input)
- We want a way to talk about the running time of an algorithm, with respect to the input size

Main idea

• Focus on how the runtime scales with *n* (the input size)

Asymptotic Analysis

- How does the running time scale as n gets large?
- One algorithm is "faster" than another if its runtime scales better with the size of the input
- Pros
 - Abstracts away from hardware- and language-specific issues
 - Makes algorithm analysis much more tractable
- Cons
 - Only makes sense if n is large (compared to the constant factors)
 - 2¹⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰⁰ n
 - is "better" than n²?!?!

Big-O

- Big-O means an upper bound
- Let T(n), g(n) be functions of positive integers
 - Think of T(n) as the running time: positive and increasing in n
- We say that "T(n) = O(g(n))" if g(n) grows at least as fast as T(n), when n gets large
- Formally,

```
T(n) = O(g(n)) \Leftrightarrow
There exist c, n_0 > 0, such that 0 \le T(n) \le c \cdot g(n), for all n \ge n_0
```


•
$$2n^2 + 10 = O(n^2)$$

$$T(n) = O(g(n)) \Leftrightarrow$$
There exist $c, n_0 > 0$, such that $0 \le T(n) \le c \cdot g(n)$, for all $n \ge n_0$

- Choose c = 3, $n_0 = 4$
- Then $0 \le 2n^2 + 10 \le 3n^2$, for all $n \ge 4$

•
$$2n^2 + 10 = O(n^2)$$

$$T(n) = O(g(n)) \Leftrightarrow$$
There exist $c, n_0 > 0$, such that $0 \le T(n) \le c \cdot g(n)$, for all $n \ge n_0$

- Choose c = 7, $n_0 = 2$
- Then $0 \le 2n^2 + 10 \le 7n^2$, for all $n \ge 2$

•
$$n = O(n^2)$$

$$T(n) = O(g(n)) \Leftrightarrow$$
There exist $c, n_0 > 0$, such that $0 \le T(n) \le c \cdot g(n)$, for all $n \ge n_0$

- Choose c = 1, $n_0 = 1$
- Then $0 \le n \le n^2$, for all $n \ge 1$

$\mathsf{Big-Q}$

- Big- Ω means an **lower** bound
- Let T(n), g(n) be functions of positive integers
 - Think of T(n) as the running time: positive and increasing in n
- We say that " $T(n) = \Omega(g(n))$ " if g(n) grows at most as fast as T(n), when n gets large
- Formally,

```
T(n) = \Omega(g(n)) \Leftrightarrow
There exist c, n_0 > 0, such that c \cdot g(n) \le T(n), for all n \ge n_0
```


Big-O

- Big-Θ means a **tight** bound
- Let T(n), g(n) be functions of positive integers
 - Think of T(n) as the running time: positive and increasing in n
- We say that " $T(n) = \Theta(g(n))$ " if g(n) grows tightly as fast as T(n), when n gets large
- Formally,

```
T(n) = \Theta(g(n)) \Leftrightarrow
There exist c, c', n_0 > 0, such that c \cdot g(n) \le T(n) \le c' \cdot g(n), for all n \ge n_0
```


•
$$2n^2 + 10 = O(n^2)$$
, $2n^2 + 10 = O(n^2)$, $2n^2 + 10 = O(n^2)$

•
$$2n + 10 = O(n^2)$$
, $2n + 10 \neq \Omega(n^2)$, $2n + 10 \neq \Theta(n^2)$

•
$$2n^2 + 10 \neq O(n)$$
, $2n^2 + 10 = \Omega(n)$, $2n^2 + 10 \neq \Theta(n)$

Note that if T(n) = O(g(n)) and T(n) = Ω(g(n)), then T(n) = Θ(g(n))
 Why?

- What is the running time T(n) of the following procedure?
- Assume c() requires constant running time

```
public void method(int n) {
   for (int i = 0; i < n; i++) {
      for (int j = 0; j < n; j++) {
        for (int k = 0; k < n; k++) {
           for (int l = 0; l < n; l++) {
                c();
           }
      }
   }
}</pre>
```

• $T(n) = O(n^4)$

- What is the running time T(n) of the following procedure?
- Assume c() requires constant running time

```
public void method(int n) {
    h=1;
    while (h <= n)
    {
        c();
        h = 2*h;
    }
}</pre>
```

- $h = 1, 2, 4, ..., 2^{\log(n)}$
- $T(n) = O(\log n)$

- What is the running time T(n) of the following procedure?
- Assume c() requires constant running time

```
public void method(int n) {
    for (int j = 0; j < n; j++) {
        for (int i = 0; i < j; i++) {
            c();
        }
    }
}</pre>
```

- Each inner for-loop (i) gets j times
- $T(n) = 1+2+...+n = O(n^2)$

Summing Up

- Big-O
 - $T(n) = O(g(n)) \Leftrightarrow$ there exist $c, n_0 > 0$, such that $0 \le T(n) \le c \cdot g(n)$, for all $n \ge n_0$
- Big-Ω
 - $T(n) = \Omega(g(n)) \Leftrightarrow$ there exist $c, n_0 > 0$, such that $c \cdot g(n) \leq T(n)$, for all $n \geq n_0$
- Big-Θ
 - $T(n) = \Theta(g(n)) \Leftrightarrow$ there exist $c, c', n_0 > 0$, such that $c \cdot g(n) \le T(n) \le c' \cdot g(n)$, for all $n \ge n_0$
- But we should always be careful not to abuse it
 - $c = 2^{1000000}$
 - $n \ge n_0 = 2^{1000000}$

- Suppose the *n* is the size of input. Which of the following algorithms are the fastest and slowest?
 - A. Algorithm A with runtime modelled as T(n) = 1.5n + n
 - B. Algorithm B with runtime modelled as T(n) = 2n + 200000
 - C. Algorithm C with runtime modelled as $T(n) = n^{1.1}$
- Which one of the following is INCORRECT?

A.
$$2n^2 + 10000^{10000}$$
 is in O(2 n^2)

B.
$$2n^2 + n + 100$$
 is in $O(n^3)$

C.
$$0.1n^2$$
 is in $O(n \log(n))$

D.
$$2n^2 + 10$$
 is in $O(n^2)$

The Master Theorem

- Recursive integer multiplication
 - T(n) = 4 T(n/2) + O(n)
 - $T(n) = O(n^2)$
- Karatsuba integer multiplication
 - T(n) = 3 T(n/2) + O(n)
 - $T(n) = O(n^{\log(3)}) \approx O(n^{1.6})$
- What's the pattern?
 - A formula that solves recurrences when all of sub-problems are the same size
 - "Generalized" tree method

The Master Theorem

• The master theorem applies to recurrence form:

$$\mathsf{T}(n) = a \cdot \mathsf{T}(n/b) + \mathsf{O}(n^d),$$

where $a \ge 1$, b > 1

- a: number of subproblems
- b: factor by which input size shrinks
- d: need to do n^d work to create all the subproblems and combine their solutions
- Case 1: If $a = b^d$, then $T(n) = O(n^d \log(n))$
- Case 2: If $a < b^d$, then $T(n) = O(n^d)$
- Case 3: If $a > b^d$, then $T(n) = O(n^{\log_b(a)})$

•
$$T(n) = T(n/2) + O(1)$$

•
$$a = 1$$
, $b = 2$, $d = 0 \Rightarrow a = b^d$

• Hence, $T(n) = O(\log(n))$

•
$$T(n) = 2 \cdot T(n/2) + O(1)$$

•
$$a = 2$$
, $b = 2$, $d = 0 \Rightarrow a > b^d$

• Hence, T(n) = O(n)

•
$$T(n) = T(n/2) + O(n)$$

•
$$a = 1, b = 2, d = 1 \implies a < b^d$$

• Hence, T(n) = O(n)

•
$$T(n) = 2 \cdot T(n/2) + O(n)$$

•
$$a = 2$$
, $b = 2$, $d = 1 \Rightarrow a = b^d$

• Hence, $T(n) = O(n \log(n))$

•
$$T(n) = 4 \cdot T(n/2) + O(1)$$

•
$$a = 4$$
, $b = 2$, $d = 0 \implies a > b^d$

• Hence, $T(n) = O(n^2)$

•
$$T(n) = 3 \cdot T(n/2) + O(1)$$

•
$$a = 3$$
, $b = 2$, $d = 0 \Rightarrow a > b^d$

• Hence, $T(n) = O(n^{\log(3)}) \approx O(n^{1.6})$

•
$$T(n) = 4 \cdot T(n/2) + O(n)$$

•
$$a = 4$$
, $b = 2$, $d = 1 \Rightarrow a > b^d$

• Hence, $T(n) = O(n^2)$

•
$$T(n) = 3 \cdot T(n/2) + O(n)$$

•
$$a = 3$$
, $b = 2$, $d = 1 \Rightarrow a > b^d$

• Hence,
$$T(n) = O(n^{\log(3)}) \approx O(n^{1.6})$$

(Karatsuba Multiplication)

• What is the running time T(n) of the following procedure?

```
public void method(int n) {
     c();
     if (n > 0) method(n-1);
}
```

- If n > 0,
 - T(n) = T(n 1) + 1
- Else
 - T(n) = 1
- Hence, T(n) = O(n)

• What is the running time T(n) of the following procedure?

```
public void method(int n) {
      c();
      if (n > 0) method(n/2);
}
```

- If n > 0,
 - T(n) = T(n/2) + 1
- Else
 - T(n) = 1
- Hence, $T(n) = O(\log(n))$

• What is the running time T(n) of the following procedure?

```
public void method(int n) {
      c();
      if (n > 0) { method(n/2); method(n/2);}
}
```

- If n > 0,
 - $T(n) = 2 \cdot T(n/2) + 1$
- Else
 - T(n) = 1
- Hence, T(n) = O(n)

Proof of the Master Theorem

- We'll do the same recursion tree thing we did for multiplication, but be more careful.
- Suppose that $T(n) = a \cdot T(n/b) + c \cdot n^d$
- The hypothesis of the Master Theorem was the extra work at each level was $O(n^d)$
 - That's NOT the same as work $\leq c \cdot n^d$ for some constant c
- That's true ... we'll actually prove a weaker statement that uses this hypothesis instead of the hypothesis that $T(n) = a \cdot T(n/b) + O(n^d)$

$$T(n) = a \cdot T(n/b) + c \cdot n^d$$

1 problem of size *n*

a problems of size n/b

 a^2 problems of size n/b^2

•••••

 a^t problems of size n/b^t

•••••

	,
	lo
,	

Level	# Problems	Size of each problem	Amount of work at this level
0	1	n	c∙n ^d
1	а	n/b	ac∙(n/b) ^d
2	a^2	n/b²	$a^2c\cdot(n/b^2)^d$
•••••	••••	•••••	••••
t	a ^t	n/b ^t	$a^t c \cdot (n/b^t)^d$
•••••	••••	••••	••••
$\log_b(n)$	$a^{\log_b(n)}$	1	$a^{\log_b(n)} \cdot c$

Level	# Problems	Size of each problem	Amount of work at this level
0	1	n	c∙n ^d
1	а	n/b	ac·(n/b) ^d
2	a^2	n/b²	$a^2c\cdot(n/b^2)^d$
••••	••••	•••••	••••
t	a ^t	n/b ^t	$a^t c \cdot (n/b^t)^d$
••••	••••	••••	••••
$\log_b(n)$	$a^{\log_b(n)}$	1	$a^{\log_b(n)} \cdot c$

Total Work =
$$c \cdot n^d \cdot \sum_{t=0}^{\log_b(n)} \left(\frac{a}{b^d}\right)^t$$

The Master Theorem:

• The master theorem applies to recurrence form:

$$\mathsf{T}(n) = a \cdot \mathsf{T}(n/b) + \mathsf{O}(n^d),$$

where $a \ge 1$, b > 1

- a: number of subproblems
- b: factor by which input size shrinks
- d: need to do n^d work to create all the subproblems and combine their solution
- Case 1: If $a = b^d$, then $T(n) = O(n^d \log(n))$
- Case 2: If $a < b^d$, then $T(n) = O(n^d)$
- Case 3: If $a > b^d$, then $T(n) = O(n^{\log_b(a)})$

Closer Look at All the Cases

- Total Work = $c \cdot n^d \cdot \sum_{t=0}^{\log_b(n)} \left(\frac{a}{b^d}\right)^t$,
 - where $\sum_{t=0}^{\log_b(n)} \left(\frac{a}{b^d}\right)^t$ is a sum of geometric sequence

• If
$$\frac{a}{b^d} = 1$$
, then $T(n) = c \cdot n^d \cdot \sum_{t=0}^{\log_b(n)} \left(\frac{a}{b^d}\right)^t = O(n^d \log(n))$

• If
$$\frac{a}{b^d} < 1$$
, then $T(n) = c \cdot n^d \cdot \sum_{t=0}^{\log_b(n)} \left(\frac{a}{b^d}\right)^t = O(n^d)$

• If
$$\frac{a}{b^d} > 1$$
, then $T(n) = c \cdot n^d \cdot \sum_{t=0}^{\log_b(n)} \left(\frac{a}{b^d}\right)^t = O(n^{\log_b(a)})$

The Eternal Struggle

- Branching causes the number of problems to explode!
 - The most work is at the bottom of the tree!
- The problems lower in the tree are smaller!
 - The most work is at the top of the tree!

(Case 1)
$$T(n) = 2 \cdot T(n/2) + O(n)$$

•
$$a = 2$$
, $b = 2$, $d = 1 \Rightarrow a = b^d$

(Case 2)
$$T(n) = T(n/2) + O(n)$$

•
$$a = 1, b = 2, d = 1 \implies a < b^d$$

(Case 3)
$$T(n) = 4 \cdot T(n/2) + O(n)$$

•
$$a = 4$$
, $b = 2$, $d = 1 \implies a > b^d$

(Case 1)
$$T(n) = 2 \cdot T(n/2) + O(n)$$

•
$$a = 2$$
, $b = 2$, $d = 1 \Rightarrow a = b^d$

- The branching just balances out the amount of work
- The same amount of work is done at every level
- $T(n) = (number of levels) \cdot (work per level)$ = $log(n) \cdot O(n) = O(n log(n))$

1 problem of size *n*

4 problems of size n/4

a^t problems of size n/a^t

(Case 2)
$$T(n) = T(n/2) + O(n)$$

•
$$a = 1, b = 2, d = 1 \implies a < b^d$$

- The amount of work done at the top (the biggest problem) swamps the amount of work done anywhere else
- T(n) = T(work at top) = O(n)

1 problem of size *n*

1 problems of size n/4

1 problems of size $n/2^t$

1 problems of size 1

(Case 3)
$$T(n) = 4 \cdot T(n/2) + O(n)$$

•
$$a = 4$$
, $b = 2$, $d = 1 \Rightarrow a > b^d$

- There are a HUGE number of leaves, and the total work is dominated by the time to do work at these leaves
- T(n) = O(work at bottom)= $O(4^{depth of tree}) = O(n^2)$

1 problem of size *n*

4 problems of size n/2

 4^2 problems of size n/4

•••••

 4^t problems of size $n/2^t$

•••••

4^{depth of tree} problems of size 1

Exercise

A.
$$T(n) = T(n/2) + O(1)$$

B.
$$T(n) = 5 T(n/6) + O(n)$$

C.
$$T(n) = 2 T(n/3) + O(1)$$

D.
$$T(n) = 10 T(n/30) + O(n^{1.1})$$

E.
$$T(n) = T(0.5n) + O(n^2)$$

F.
$$T(n) = T(n-1) + T(n-2) + O(1)$$

Summary

- Asymptotic Analysis: Big-O, Big- Ω , Big- Θ
- The "Master Theorem" is a powerful tool
 - It is a systematic approach to calculate general recurrence relations from scratch

• The **master theorem** applies to recurrence form:

$$\mathsf{T}(n) = a \cdot \mathsf{T}(n/b) + \mathsf{O}(n^d),$$

where $a \ge 1$, b > 1

- *a*: number of subproblems
- *b*: factor by which input size shrinks
- d: need to do n^d work to create all the subproblems and combine their solution
- Case 1: If $a = b^d$, then $T(n) = O(n^d \log(n))$
- Case 2: If $a < b^d$, then $T(n) = O(n^d)$
- Case 3: If $a > b^d$, then $T(n) = O(n^{\log_b(a)})$

