Analyzing Visa Applicant Demographics

Created By: Nirvan Silswal NetID: ns318 Email: nirvan.silswal@duke.edu

##Load Library Packages

```
library(tidyverse)
```

```
## -- Attaching packages
## v tibble 3.0.3
                       v purrr
                                 0.3.4
## v tidyr
            1.1.1
                       v dplyr
                                 1.0.1
## v readr
            1.3.1
                       v forcats 0.5.0
## -- Conflicts -----
## x lubridate::as.difftime() masks base::as.difftime()
## x lubridate::date()
                            masks base::date()
## x dplyr::filter()
                             masks stats::filter()
## x readr::guess_encoding() masks rvest::guess_encoding()
## x lubridate::intersect() masks base::intersect()
## x dplyr::lag()
                             masks stats::lag()
## x purrr::pluck()
                             masks rvest::pluck()
## x lubridate::setdiff()
                             masks base::setdiff()
## x lubridate::union()
                             masks base::union()
library(readxl)
VisaData <- read_excel("DIIG F20 Data Challenge #2.xlsx")</pre>
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Coercing text to numeric in 0146963 / R146963C15: '45870'
## Warning in read_fun(path = enc2native(normalizePath(path)), sheet_i = sheet, :
## Coercing text to numeric in 0164631 / R164631C15: '76700'
```

In this dataset we have data on 167,278 different visa applications each with 16 different attributes associated with the application.

During this analysis I want to answer two major questions:

- 1. What variables makes an application more likely to get approved and what variables make an application less likely to get approved.
- 2. How do Job wages compare across locations?

Lets look at question 1 first:

To start off, we should look at where are applicants who get certified apply from, and where applicants who are denied apply from.

```
ggplot(data = VisaData, mapping =
    aes(x = (WORK_STATE_ABBREVIATION), fill = CASE_STATUS)) +
    geom_bar(position = "fill") + scale_x_discrete(guide=guide_axis(n.dodge=10))
```



```
labs(y = "proportion")
```

```
## $y
## [1] "proportion"
##
## attr(,"class")
## [1] "labels"
```

Certification Rate = the percentage of applicants who were Certified by the Visa office.

While most states hover around and 80% Certification rate, it is interesting to note that the US territory of the Northern Marina Islands (MP) has a Certification rate of less than 50%. This is likely due to the fact that MP is a US territory and not a state - inticing Visa offices to approve less applicants from there.

For the most part, for those applying from a US state, there is no significant difference between Visa certifiaciton rate between states.

It might be more beneficial to analyze certification rates based on the job an applicant has. Lets take a look at that now:

```
ggplot(data = VisaData, mapping =
    aes(x = (JOB_TITLE_SUBGROUP), fill = CASE_STATUS)) +
    geom_bar(position = "fill") + scale_x_discrete(guide=guide_axis(n.dodge=10))
```



```
labs(y = "proportion")
```

```
## $y
## [1] "proportion"
##
## attr(,"class")
## [1] "labels"
```

Based on the data, there doesn't appear to be a significant difference regarding the occupation an applicant holds and their probability of being approved. All the jobs here seem to fluctuate between a 75% - 92% Certification rate. It is worth noting that almost every job had a certification rate of about 92% except for Asistant professors and attorney's - those were closer to the 75% Certification rate.

Finally, we can take a look at how the Visa Class applied for influences the certification rate for an applicant.

```
ggplot(data = VisaData, mapping =
    aes(x = (VISA_CLASS), fill = CASE_STATUS)) +
    geom_bar(position = "fill") + scale_x_discrete(guide=guide_axis(n.dodge=10))
```


labs(y = "proportion")

```
## $y
## [1] "proportion"
##
## attr(,"class")
## [1] "labels"
```

Here we can clearly see that applicants who applied for a Greencard were certified at a rate of about 60% -much lower than the other Visa Classes. Furthermore H-1B1 applicants from Singapore were approved at the highest Certification Rate - almost 90%.

In summary:

Now lets look at how we can answer question 2:

To analyze wages lets first construct a plot of all the different jobs in the dataset

```
ggplot(data = VisaData, mapping = aes(x = JOB_TITLE_SUBGROUP)) + scale_x_discrete(guide=guide_axis(n.doc
geom_bar()
```


Now lets look at the locations where these visa applicants live:

```
ggplot(data = VisaData, mapping = aes(x = WORK_STATE_ABBREVIATION)) + scale_x_discrete(guide=guide_axis
geom_bar()
```


It's clear to see that the overwhelming majority of Visa-Applicants in this dataset are residing in California. This is important to note as California is a hub for software development jobs. Lets take a look at how many people who applied for a Visa in California also have a software related job.

```
ggplot(data = VisaData, mapping = aes(x = (WORK_STATE = "California"), fill = JOB_TITLE_SUBGROUP)) + sc
geom_bar()
```


An overwhelming majority of the applicants from California are working some sort of software job. This is important to note as these software related jobs typically pay much more than say a teacher.

To further analyze this we should look at average wages in each state:

```
WageMean <- aggregate( PAID_WAGE_PER_YEAR ~ WORK_STATE, VisaData, mean )
WageMean <- WageMean[order(WageMean$PAID_WAGE_PER_YEAR,decreasing=T),]
WageMean</pre>
```

##		WORK_STATE	PAID_WAGE_PER_YEAR
##	55	West Virginia	109426.87
##	5	California	103571.11
##	54	Washington	102176.68
##	35	New York	91601.76
##	4	Arkansas	90270.75
##	1	Alabama	87326.28
##	24	Massachusetts	86610.73
##	43	Pennsylvania	83889.44
##	9	District of Columbia	81968.36
##	27	Mississippi	81950.75
##	41	Oregon	81530.55
##	19	Kansas	81031.78
##	20	Kentucky	80146.98
##	7	Connecticut	79578.57
##	23	Maryland	79153.98
##	31	Nevada	79152.48
##	17	Indiana	78722.99
##	18	Iowa	78219.47

##	56	Wisconsin	77728.96
##	32	New Hampshire	77434.66
##	50	Utah	77240.40
##	16	Illinois	77113.75
##	33	New Jersey	76371.10
##	28	Missouri	75495.05
##	26	Minnesota	75386.05
##	6	Colorado	75155.24
##	53	Virginia	74920.77
##	2	Alaska	74792.22
##	39	Ohio	74777.45
##	36	North Carolina	74667.46
##	45	Rhode Island	74113.52
##	25	Michigan	73812.99
##	49	Texas	72765.87
##	30	Nebraska	72600.09
##	51	Vermont	72542.18
##	10	Florida	72338.71
##	11	Georgia	72287.96
##	8	Delaware	71830.13
##	14	Hawaii	71223.47
##	22	Maine	71180.42
##	3	Arizona	70963.94
##	48	Tennessee	70046.77
##	40	Oklahoma	68444.30
##	15	Idaho	68073.61
##	37	North Dakota	67486.34
##	21	Louisiana	67124.28
##	57	Wyoming	66189.39
##	29	Montana	65990.60
##	47	South Dakota	61421.45
##	46	South Carolina	61375.78
##	42	Palau	60000.00
##	34	New Mexico	56641.53
##	44	Puerto Rico	53040.66
##	13	Guamam	48557.00
##	52	Virgin Islands	41972.36
##	12	Guam	39784.83
##	38	Northern Mariana Islands	18932.39