

Eletrônica Digital I

- Aula 3 -

Professora: Ma. Luciana Menezes Xavier de Souza e-mail: luciana.xavier@ifsc.edu.br

Conteúdo

- Sistema de numeração;
- Exercícios.

Vantagens técnicas digitais

Entradas e saídas analógicas, quatro passos devem ser seguidos:

1º Converter a variável física em um sinal elétrico (analógico).

2º Converter as entradas elétricas (analógicas) do mundo real no formato digital.

3º Realizar o processamento (operação) da informação digital.

4º Converter as saídas digitais de volta ao formato analógico.

Sistemas de Numeração e Codificação

- O homem, através dos tempos, sentiu a necessidade da utilização de sistemas numéricos.
- Existem vários sistemas numéricos, dentre os quais se destacam: o sistema decimal, o binário, o octal e o hexadecimal.
- Para os humanos o sistema decimal é o mais utilizado e sem dúvida, o mais importante dos sistemas numéricos.
- Os sistemas: binário, octal e hexadecimal são muito importantes na área de técnicas digitais e computação.

- O sistema de numeração decimal (base 10), composto pelos símbolos de 0 a 9, é um sistema posicional.
- Em um sistema posicional, pode-se representar um número por uma soma de produtos do valor de cada dígito pelo seu peso.

- MSD (most significant digit): dígito com maior peso.
- LSD (least significant digit): dígito com o menor peso.
- Com N dígitos, pode-se contar 10^N números diferentes, começando de 0 até 10^N -1.

Sistema Binário

- Sistema posicional que utiliza alfabeto com dois símbolos: 0 e 1 (base 2).
- Trabalham internamente com dois estados (ligado/desligado, verdadeiro/falso, aberto/fechado).
- Na figura a seguir, os estados das diversas chaves representam 10010₂.

1 Fechado 0 Aberto

Sistema Binário

Exemplo 1: 1011,101₂ converta o número binário para o sistema decimal a fim de identificar seu valor nesta unidade.

Sistema hexadecimal

- Sistema de numeração muito utilizado na programação de microprocessadores.
- Sistema com 16 símbolos diferentes (base 16): os números de 0 a 9 (decimal) e as letras de A a F (hexa). As posições dos dígitos recebem pesos como potências de 16.

 $\dots 16^4 \ 16^3 \ 16^2 \ 16^1 \ 16^0, \ 16^{-1} \ 16^{-2} \ 16^{-3} \dots$

Decimal	Binary
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111
	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Sistema hexadecimal

Exemplo 2: 1BC2₁₆ seria igual a quantos em decimal?

$$1BC2_{16} = (1 \times 16^{3}) + (B \times 16^{2}) + (C \times 16^{1}) + (2 \times 16^{0})$$

$$1BC2_{16} = 4096 + 2816 + 192 + 2$$

$$1BC2_{16} = 7106_{10}$$

Sistema Octal

- O sistema octal foi muito utilizado no mundo da computação, como uma alternativa mais compacta do sistema binário.
- Sistema que possui alfabeto com **oito símbolos** (base 8): 0, 1, 2, 3, 4, 5, 6 e 7.
- Os pesos de cada dígito são:

$$\dots 8^4 \quad 8^3 \quad 8^2 \quad 8^1 \quad 8^0, \quad 8^{-1} \quad 8^{-2} \quad 8^{-3} \dots$$

Sistema Octal

Octal Digit	0	1	2	3	4	5	6	7
Binary Equivalent	000	001	010	011	100	1 01	110	111

Exemplo 3: 372₈ seria igual a quantos em decimal?

$$372_8 = (3 \times 8^2) + (7 \times 8^1) + (2 \times 8^0)$$

 $372_8 = (3 \times 64) + (7 \times 8) + (2 \times 1)$
 $372_8 = 192 + 56 + 2$
 $372_8 = 250_{10}$

Conversões entre Sistemas de Numeração

a) Conversão de <u>Binário para Decimal</u> → Qualquer número binário pode ser convertido para seu equivalente decimal pela soma dos pesos das posições em que o número binário possuir um bit 1.

Exemplo:

$$1010_2 = (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (0 \times 2^0)$$

$$1010_2 = 8 + 0 + 2 + 0$$

$$1010_2 = \mathbf{10}_{10}$$

$$1010,11_{2} = (1 \times 2^{3}) + (0 \times 2^{2}) + (1 \times 2^{1}) + (0 \times 2^{0}) + (1 \times 2^{-1}) + (1 \times 2^{-2})$$

$$1010,11_{2} = 8 + 0 + 2 + 0 + 0,5 + 0,25$$

$$1010,11_{2} = 10,75_{10}$$

Conversão binário Decimal

b) Conversão de Decimal para Binário → Realizar divisões sucessivas por 2 até que um quociente zero seja obtido. O resultado é dado pelos restos da divisão na ordem inversa que foram obtidos.

Exemplos:

b) Conversão de Decimal para Binário → realizar divisões sucessivas por 2 até que um quociente zero seja obtido. O resultado é dado pelos restos da divisão na ordem inversa que foram obtidos.

Exemplos:

b) Conversão de Decimal para Binário (outra possibilidade) Exemplos:

c) Conversão de Hexadecimal para Decimal

- Um número hexa pode ser convertido em seu equivalente decimal pelo fato da **posição de cada dígito hexa** ter um **peso** que é uma potência de 16.
- O LSD tem um peso de 16^0 = 1; o dígito da próxima posição superior tem um peso de 16^1 = 16; o próximo tem um peso de 16^2 = 256, e assim por diante.

$$356_{16} = 3 \times 16^{2} + 5 \times 16^{1} + 6 \times 16^{0}$$

= $768 + 80 + 6$
= 854_{10}

$$2AF_{16} = 2 \times 16^2 + 10 \times 16^1 + 15 \times 16^0$$

= 512 + 160 + 15
= 687₁₀

A conversão de **Decimal para Hexa**, usam-se divisões sucessivas por 16 similar à conversão de decimal para binário.

i) Converta 423 para hexa

ii) Converta 214 para hexa

$$\frac{214}{16} = 13 + \text{o resto } 6$$
 $\frac{13}{16} = 0 + \text{o resto } 13$
 $214_{10} = D 6_{16}$

d) Conversão com Hexadecimal para Binário → é realizada pela troca de cada dígito hexa pelo seu equivalente binário com 4 bits.

i) Converta 9F2₁₆ para binário

$$9F2_{16} = 9$$
 F 2
 $\downarrow \qquad \downarrow \qquad \downarrow$
 $= 1001111110010_{2}$

d) Conversão com Binário para Hexa → A conversão de binário em hexa consiste, simplesmente, em fazer o inverso do processo anterior. O número binário é **disposto em grupos de quatro bits**, e cada grupo é convertido no dígito hexa equivalente.

i) Converta 1110100110₂ para hexadecimal

Os zeros (sombreados) são acrescentados, quando necessário, para completar um grupo de 4 bits.

$$1110100110_{2} = \underbrace{00111}_{3} \underbrace{1010}_{A} \underbrace{0110}_{6}$$
$$= 3A6_{16}$$

OBS: A conversão envolvendo números octais é similiar aos números hexadecimais.

Codificações

 Codificação é uma representação de letras, números ou palavras por um conjunto especial de símbolos.

a) Código BCD (*Binary Coded Decimal*): codificação na qual cada dígito de um número decimal é representado por seu equivalente binário de 4 bits.

Exemplo: Para ilustrar o uso do código BCD, pegue um número decimal, por exemplo, 874 e converta.

Exemplo: Converta o número decimal 943 para o código BCD.

OBS:O código BCD representa, então, cada dígito de um número decimal por um número binário de 4 bits.

Decimal	Binário	Hexadecimal	BCD
0	0	0	0000
1	1	1	0001
2	10	2	0010
3	11	3	0011
4	100	4	0100
5	101	5	0101
6	110	6	0110
7	111	7	0111
8	1000	8	1000
9	1001	9	1001
10	1010	А	0001 0000
11	1011	В	0001 0001
12	1100	С	0001 0010
13	1101	D	0001 0011
14	1110	Е	0001 0100
15	1111	F	0001 0101

 As combinações 1010 a 1111 não são usadas, pois representam números decimais maiores que 9, portanto de dois dígitos.

$$137_{10} = 10001001_2$$
 (binário puro)
 $137_{10} = 0001 \ 0011 \ 0111$ (BCD)

b) Código Gray: É uma codificação na qual somente um bit muda entre dois números sucessivos na sequência de números. Conversão entre o sistema binário e o código Gray.

Decimal	Binário	GRAY
0	0	0000
1	1	0001
2	10	0011
3	11	0010
4	100	0110
5	101	0111
6	110	0101
7	111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

c) Código ASCII (American Standard Code for Information Interchange): codificação alfanumérica, utilizada para representar letras, números e outros símbolos.

O código ASCII padrão usa 7 bits, 128 combinações possíveis. A versão estendida utiliza 8 bits, 256 combinações.

Caractere	HEX	Decimal
Α	41	65
В	42	66
С	43	67
D	44	68
E	45	69
F	46	70
G	47	71
Н	48	72
I	49	73
J	4A	74
K	4B	75
L	4C	76
M	4D	77
N	4E	78
0	4F	79
Р	50	80
Q	51	81
R	52	82
S	53	83
Т	54	84
U	55	85
V	56	86
W	57	87
х	58	88
Υ	59	89
7	5A	90

Caractere	HEX	Decimal
Space	20	32
į.	21	33
ш	22	34
#	23	35
\$	24	36
%	25	37
&	26	38
•	27	39
(28	40
)	29	41
*	2A	42
+	2B	43
,	2C	44
-	2D	45
	2E	46
1	2F	47
0	30	48
1	31	49
2	32	50
3	33	51
4	34	52
5	35	53

Exemplo: Converta de Decimal para ASCII a seguinte codificação.

86 79 85 80 65 83 83 65 82 69 77 68 73 71 73 84 65 76