Evolutionary Algorithms:Operational Procedures of GAs

March 12, 2013
Prof. Chang Wook Ahn

Sungkyunkwan Evolutionary Algorithms Lab.
School of Info. & Comm. Eng.
Sungkyunkwan University

Contents

Principle of Evolutionary Algorithms

- > Prologue
- > Principle
- > Conventional Approach
- > Operational Concept

• Genetic Algorithms

- > Problem Definition
- > Encoding
- > Fitness Function
- > Genetic Operators
 - ✓ Selection, Crossover, Mutation
- > Overall Procedures

Principle of Evolutionary Algorithms

Prologue (1)

Where are Evolutionary Algorithms placed?

Prologue (2)

• Where to be Applied?

Problems

Unsol vable

Sol vable

Hilbert's 10th Problem Turing's Halt Problem

••• •••

Untractable

Hamiltonian Path Longest Path

NP-Complete

Tractable

Shortest Path Problem Minimum Spanning Tree

Tractable:

- Solve the problems in a polynomial time; $O(n^k)$, not O(n!) or $O(2^n)$

P: Polynomial

NP: Nondeterministic Polynomial

Principle (1)

- What are Evolutionary Algorithms (EAs) ?
 - > An algorithmic abstraction inspired from the theory of biological evolution, usually implemented on computers, which is employed for resolving problems

Principle (2)

Lessons from Biological Evolution

Implications for applying to computing techs.

Multiple

Surviving

Mixing

Generation

Conventional Approach

What's the Problem of Conventional (Search) Approaches? **Gradient** descent, Neural Single nodal case Multiple nodal case networks, etc. 12 12 -10 Error Function Error Function y value Y value **Optimum** Suboptimu

Operational Concept

Main Principle of Evolutionary Algorithms

> Multiple individuals try to cooperatively resolve problems by mimicking evolutionary mechanisms How to implement Mixing Surviving them? Generation Multiple Error Function Suboptima **Optimum**

X value

Y value

Genetic Algorithms (1)

• What's the Target of Interest?

- > Optimization Problems
 - ✓ Can be defined by specifying the set of all feasible candidates.
 - ✓ The goal is to find the best solution(s)

Formal Definition

For a search space Ω

There is a function $g:\Omega\mapsto\Re$

The task is to find $v^* = \arg \max_{v \in \Omega} g$

Here, v is a vector of decision variables, and g is the objective function

Genetic Algorithms (2)

Key Components & Terminology

- > Encoding: variables (phenotype) are encoded into a chromosome (genotype)
- > Population: a set of chromosomes (i.e., individuals or candidate solutions)
- Fitness function: measure the goodness of each candidate solution: it can be mathematical terms, computer simulation, human evaluation
- > Genetic operators: boosting chromosomes up towards the optimum
 - ✓ Selection: realize the survival of the fittest
 - ✓ Crossover: realize the genetic inheritance
 - ✓ Mutation: realize the genetic mutation

Genetic Algorithms (3)

Encoding (Representation)

- > It transforms the phenotypic problem into genotypic form
 - ✓ It determines the difficulty of problem
- > Decision variables (in phenotype) are encoded into a chromosome (in genotype)
 - ✓ Binary: {0, 1} , X-ary: {0, 1, ..., X-1} , Real-coded: {floating point numbers itself}

Genetic Algorithms (4)

Encoding (Representation)

Phenotype Representation

Genotype Representation Nonbinary, X-ary

Sunny

Encoding

00

0

000

Rainy

Decoding

0 1

1

2

Windy

11

3

Thundering

Genetic Algorithms (5)

Fitness Function

- > Interpret the individual in terms of physical representation
- > Evaluate its *fitness* based on desired traits
- > Fully reflect the physical objective of the problem
- > Thus, the definition of fitness function is very crucial!

 $\operatorname{argmax} f(x) = -x^2$

It is the same

Genetic Algorithms (6)

Selection (Reproduction)

- 1. Mimicking the survival of the fittest
- 2. Improving the average quality of population (by copying better individuals into the next generation)
- 3. There are two kinds of selection schemes
 - ❖ Proportional selection e.g., Roulette wheel selection (RWS)
 - ❖ Ordinal selection e.g., Tournament selection

Genetic Algorithms (7)

Selection (Reproduction)

Genetic Algorithms (8)

- Roulette Wheel Selection
 - ❖ The probability of selecting a given chromosome is proportional to its fitness
- Tournament Selection
 - **Combine the fitness proportional concept with the random selection**

Genetic Algorithms (9)

Crossover (Recombination)

- 1. Imitating the genetic inheritance (by recombining segments belonging to the individuals corresponding to parents)
- 2. Ensuring the exploration of search space
- 3. One-point crossover, n-point crossover, Uniform crossover, etc.

Genetic Algorithms (10)

Genetic Algorithms (11)

Mutation

- Realize the self-variation (mutation) of genetics
 (by changing the value of the considered gene into a different value)
- 2. The second way of exploring search space
 - ❖ Its portion must be very small.
 - ❖ But, very crucial for possibly escaping from local optima

Genetic Algorithms (12)

Overall Procedures of GAs

Genetic Algorithms (13)

