MATH-331 Introduction to Real Analysis
Homework 02

LEE'AN BENDER (25450782) Fall 2021

Due date: $20-09-2021 \ 1:20pm$ Total: /70.

Exercise	1	2	3	4	5	6	7	8	9	10
	(10)	(5)	(5)	(5)	(5)	(10)	(5)	(10)	(5)	(10)
Score										

Table 1: Scores for each exercises

Instructions: You must answer all the questions below and send your solution by email (to parisepo@hawaii.edu). If you decide to not use LATEX to hand out your solutions, please be sure that after you scan your copy, it is clear and readable. Make sure that you attached a copy of the homework assignment to your homework. No late homework will be accepted. No format other than PDF will be accepted. Name your file as indicated in the syllabus.

For each of the following problems, you will be asked to write a clear and detailed proof. You will have the chance to rewrite your solution in your semester project after receiving feedback from me.

Exercise 1. (10 pts)

- a) Let $\{[a_n, b_n] : n \ge 1\}$ be a family of closed intervals such that $[a_1, b_1] \supset [a_2, b_2] \supset [a_3, b_3] \supset \cdots$. Show that there is a $c \in \mathbb{R}$ such that $c \in [a_n, b_n]$ for all $n \ge \mathbb{N}$. Follow the following steps to prove it:
 - (i) Prove that for any $n, m \ge 1$, $a_n \le b_m$. [hint: put $M := \max\{n, m\}$.]
 - (ii) Show that $\sup\{a_n : n \ge 1\}$ exists.
 - (iii) Show that $c = \sup\{a_n : n \ge 1\}$ satisfies the requirement.
- **b)** Use this last result to prove that the set \mathbb{R} is uncountable. [Hint: Show that any function $f: \mathbb{N} \to \mathbb{R}$ can't be surjective. To do so, construct a sequence of closed intervals such that $f(n) \notin [a_n, b_n]$ with $a_n < b_n$.]

Solution: -

- **a**)
- b)

Exercise 2. (5 pts) Prove that if $a_n \to A$, then $|a_n| \to |A|$.

Solution: If $A_n \to A$, then $|a_n| \to |A|$. We want to prove that $||a_n| - |A|| < \epsilon$. Assume $\epsilon > 0$ is arbitrary. $\exists \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } n \geq N \Rightarrow ||a_n| - |A|| < \epsilon$ Let $\epsilon = \epsilon$ $||a_n| - |A|| \leq |a_n - A| < \epsilon$ From the definition of convergence, we know $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } n \geq N \Rightarrow |a_n - A| < \epsilon$ Therefore, $||a_n| - |A|| \leq |a_n - A|$ $||a_n| - |A|| \leq \epsilon$ Since ϵ was arbitrary, $|a_n| \to |A|$

Exercise 3. (5 pts) Let (a_n) , (b_n) , and (c_n) be sequences of real numbers. Prove that if $a_n \to L$, $b_n \to L$, and $a_n \le c_n \le b_n$, then $c_n \to L$.

Solution: If $a_n \to L$, $b_n \to L$, and $a_n \le c_n \le b_n \Rightarrow c_n \to L$ Assume that $c_n \to C$ We know that if $a_n \to L$, $c_n \to C$, and $a_n \le c_n \Rightarrow L \le C$ This is also true for $b_n \to L$, $c_n \to C$, and $c_n \le b_n \Rightarrow C \le L$ This means that $L \le C \le L$

If C < L there is a contradiction because C > L, and if C > L there is a contradiction because C < L. Because it is both \geq and \leq , assuming > or < contradicts its opposite, which means that C = L

Since
$$c_n \to C = L, c_n \to L$$
.

Exercise 4. (5 pts) Prove that if $a_n \to A$ and $a_n \ge 0$ for all $n \ge 1$, then $\sqrt{a_n} \to \sqrt{A}$. Follow the following steps to prove it:

- 1. Consider the case A=0.
- 2. Suppose that $A \neq 0$. Show that there is a $N_1 \in \mathbb{N}$ such that if $n \geq N_1$, then $\sqrt{a_n} \geq \sqrt{|A|/2}$. [Hint: use the definition of convergence of $(a_n)_{n\geq 0}$ with a clever choice of ε and use the properties of the absolute value.]
- 3. Use the convergence of (a_n) again to find a N_2 such that $|a_n A| < \frac{3}{4} \frac{\varepsilon}{\sqrt{|A|}}$.
- 4. Express $\sqrt{a_n} A$ as $\frac{a_n A}{\sqrt{a_n} + \sqrt{A}}$ and put $N = \max\{N_1, N_2\}$. Conclude.

Solution: -

Exercise 5. (5 pts) For each sequence $(a_n)_{n=1}^{\infty}$, define the sequence $(\sigma_n)_{n=1}^{\infty}$ by

$$\sigma_n := \frac{a_1 + a_2 + \dots + a_n}{n} \quad (n \ge 1).$$

Prove that if $a_n \to A$, then $\sigma_n \to A$. Find an example of a divergent sequence (a_n) such that $(\sigma_n)_{n=1}^{\infty}$ converges.

Solution: If $a_n \to A$, then $\sigma_n \to A$.

 $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ s.t. } \forall n \geq N, \Rightarrow |a_n - A| < \epsilon$ $\sigma_n := \frac{a_1 + a_2 + \dots + a_n}{n}, \forall n \geq 1$

$$\sigma_n := \frac{a_1 + a_2 + \dots + a_n}{n}, \forall n \ge 1$$

Because $a_n \to A$, $\lim_{n\to\infty} a_n = A$.

This then means that $\lim_{n\to\infty} \sigma_n := \frac{a_1+a_2+...+A+A+...}{n} \Rightarrow \frac{m+\infty(A)}{\infty}$ where m is an arbitrary sum of the first $n, (\forall n \leq N)$ numbers of a_n .

Simplifying, we get

$$\frac{m}{\infty} + \frac{\infty(A)}{\infty}$$

$$\stackrel{\infty}{=} 0 + \stackrel{\infty}{(A)} = A$$

Therefore, $\sigma_n \to A$.

Exercise 6. (10 pts) Use the definition of convergence to prove that each of the following sequences converges.

- a) $(a_n)_{n=1}^{\infty}$ given by $a_n = 5 + 1/n$ for $n \ge 1$.
- **b)** $(a_n)_{n=1}^{\infty}$ given by $a_n = \frac{3n}{2n+1}$ for $n \ge 1$.

Solution: .

- a) $\lim_{n\to\infty} (5 + \frac{1}{n})$ = $5 + \frac{1}{\infty}$ = 5 + 0 = 5 $a_n \to 5$
- **b)** $\lim_{n \to \infty} \left(\frac{3n}{2n+1}\right)$ $= \frac{3(\infty)}{2(\infty)+1}$ $= \frac{3}{2}$

Exercise 7. (5 pts) Prove that the sequence $(a_n)_{n=1}^{\infty} = \left(\frac{2n+1}{n}\right)_{n=1}^{\infty}$ is a Cauchy sequence.

Solution: If $a_n \to A$, then the sequence is a Cauchy sequence.

$$\lim_{n\to\infty} \left(\frac{2n+1}{n}\right)$$

$$= \frac{2(\infty)+1}{\infty}$$

$$= 2$$

Therefore, $a_n \to 2$.

Since a_n converges to a number (2), then that means it is a Cauchy sequence.

Exercise 8. (10 pts) Prove that each of the following sequence diverges.

a)
$$(a_n)_{n=1}^{\infty} = ((-1)^n)_{n=1}^{\infty}$$
.

b)
$$(a_n)_{n=1}^{\infty} = (\sin(\frac{4n+1}{2}\pi))_{n=1}^{\infty}.$$

Solution: a) A sequence diverges if $\forall \epsilon > 0, \exists N \in \mathbb{N}$, such that $\forall n \geq N, |a_n - A| > \epsilon$, OR if it does not converge.

Let $\epsilon > 0$. Assume toward a contradiction that $\forall \epsilon > 0, \exists N \in \mathbb{N}$, such that $\forall n \geq N, |a_n - A| < \epsilon$

$$|(-1)^n - A| < \epsilon$$

 $||(-1)^n| - |A|| \le |(-1)^n - A| < \epsilon$
 $|1 - A| < \epsilon$

Exercise 9. (5 pts) Give an examples of two sequences (a_n) and (b_n) such that (a_n) and (b_n) don't converge, but $(a_n + b_n)$ converge.

Solution: .

$$(a_n)_{n=1}^{\infty} = (-n)_{n=1}^{\infty}$$

$$(b_n)_{n=1}^{\infty} = (n)_{n=1}^{\infty}$$

$$a_n \text{ and } b_n \text{ both diverge, but } (a_n + b_n) \to 0$$

Exercise 10. (10 pts) With the limit operations and the writing problems, find the limit of the following sequence with general term

a)
$$\frac{n^2+4n}{n^2-5}$$
.

b)
$$\frac{n}{n^2-3}$$
.

c) $\frac{\cos n}{n}$. [You can use what you know on the cosine function.]

d)
$$(\sqrt{4-\frac{1}{n}}-2)n$$
.

Solution: a) $\lim_{n\to\infty} \left(\frac{n^2+4n}{n^2-5}\right) = 1$

b)
$$\lim_{n\to\infty} (\frac{n}{n^2-3}) = 0$$

c)
$$\lim_{n\to\infty} \left(\frac{\cos(n)}{n}\right) = 0$$

d)
$$\lim_{n\to\infty} (\sqrt{4-\frac{1}{n}}-2)n) = 0$$