

Lecture 6: The Elements of Hypothesis Testing

STA261 − Probability & Statistics II

Ofir Harari

Department of Statistical Sciences

University of Toronto

Outline

Introduction

The Statistical Hypothesis Testing Framework

Basic Definitions

Simple Hypotheses

Significance Level and Power Likelihood Ratio Tests and the Neyman–Pearson Lemma

Introduction

- In order to receive the FDA's approval, new drugs must go through Clinical Research, or *Clinical Trials* (specifically: *Treatment Trials*).
- Clinical trials are conducted in phases:
- Phase I and II trials (20–300 patients): evaluating safety, identifying side effects and determining effectiveness.
- Phase III trials (1,000-3,000 patients): confirming effectiveness. We shall focus on this phase.
- Typically there will be (at least) two groups: <u>treatment and control</u>.
- Each group consists of patients (volunteers) with the disease/condition, who
 have met the selection criteria, blindly and randomly allocated to avoid
 research bias.
 i.e. woman more prone to disease..
- In "placebo-controlled" trials, patients in the treatment group receive the drug under investigation, while patients in the control group receive a placebo.
 double blind: both patient and doctor does not know which group peps are in

Introduction

- How do we determine the effectiveness of a treatment?
- Denote:

 $\begin{cases} &n_{\rm tr} - {\rm Number~of~patients~in~the~treatment~group} \\ &n_{\rm pl} - {\rm Number~of~patients~in~the~placebo~group} \\ &p_{\rm tr} - {\rm the~probability~of~being~cured~among~patients~in~the~treatment~group} \\ &p_{\rm pl} - {\rm the~probability~of~being~cured~among~patients~in~the~placebo~group} \\ &X_{\rm tr} - {\rm Number~of~patients~in~the~treatment~group~who~were~cured} \\ &X_{\rm pl} - {\rm Number~of~patients~in~the~placebo~group~who~were~cured} \end{cases}$

Then $X_{\rm tr} \sim {\rm Binom}(n_{\rm tr}, p_{\rm tr})$ and $X_{\rm pl} \sim {\rm Binom}(n_{\rm pl}, p_{\rm pl})$

• To prove the effectiveness of the drug under investigation, the pharmaceutical company must use the data to show that

$$p_\Delta := p_{\rm tr} - p_{\rm pl} > 0$$

beyond a reasonable doubt.

Hypotheses and types of errors

- The data: $X_1, \ldots, X_n \sim f_{\theta}$
- The parameter: θ (in our example $p_{\Delta} := p_{\rm tr} p_{\rm pl}$) publication bias: discard result that does not support alternative hythesis
- The Null Hypothesis \mathcal{H}_0 usually the conservative view ("no effect")
 - In our example: $\mathcal{H}_0: p_{\Delta} \leq 0$ (i.e. the new drug is no better than placebo)
- The Alternative Hypothesis \mathcal{H}_1 usually represents change of reality
 - In our example: $\mathcal{H}_1:p_{\Delta}>0$ (i.e. the new drug IS better than placebo)

rejection rule

- The decision: to reject \mathcal{H}_0 or not to reject \mathcal{H}_0 there is no accept H_1
- Type I Error: incorrectly rejecting \mathcal{H}_0 (i.e. a false discovery)
 - In our example: falsely declaring the medication effective
- Type $\coprod Error$: incorrectly retaining \mathcal{H}_0
 - In our example: failing to approve an authentically effective medication
- * Which type of error would you consider to be more serious? type 1: false discovery is more serious than sparing the world an authentic discovery

Formulating the hypotheses

- The parameter space: Θ all possible values of θ
 - In our example: $\Theta = [-1,1]$ (all possible values of $p_\Delta := p_{\rm tr} p_{\rm pl})$
- The competing hypotheses are typically of the form

$$\begin{cases} \mathcal{H}_0 : \theta \in \Theta_0 \\ \mathcal{H}_1 : \theta \in \Theta_1 \end{cases}$$

- In our example:

theta_0 and theta_1 definitely dont overlap

$$\begin{cases} \mathcal{H}_0: p_{\Delta} \in [-1, 0] \\ \mathcal{H}_1: p_{\Delta} \in (0, 1] \end{cases}$$

• When $\Theta = \{\theta_0, \theta_1\}$, the hypotheses

$$\begin{cases} \mathcal{H}_0 : \theta = \theta_0 \\ \mathcal{H}_1 : \theta = \theta_1 \end{cases}$$

are called simple hypotheses.

A statistical test: a data driven, probabilistic decision rule with regard to \$\mathcal{H}_0\$ (reject/not reject).
 input: sample ==> output: hypothesis

Significance Level and Power

Definition

Suppose that we test the simple hypotheses

$$\begin{cases} \mathcal{H}_0 : \theta = \theta_0, \\ \mathcal{H}_1 : \theta = \theta_1. \end{cases}$$

1. The significance level of the test is the probability of a type I error,

$$\alpha = \mathbb{P} \left(\begin{array}{c} \text{rejecting} \\ \mathcal{H}_0 \end{array} \middle| \theta = \theta_0 \right).$$

not conditional probability, just with given param

2. The power of a statistical test is the probability of NOT making a type Π error, $\pi = 1 - \beta$, where

$$eta = \mathbb{P} \left(egin{array}{c} ext{not rejecting} \ \mathcal{H}_0 \end{array} \middle| heta = heta_1
ight).$$

rejecting H_0 when we should reject it

Example

Example

You just purchased a matchbox. The company states on its website that 10% of their matches are defective, but you have that growing feeling that the true proportion is 50%. The company's customer relations representative proposes that you sample two matches at random, and if at least one turns out to be defective – your claim will be accepted.

- \bullet Denote: X the number of defective matches in a random sample of size 2;
- ullet $X \sim \mathrm{Binom}(2,p)$ specifies probability distribution completely => hence simple hypotheses
- The (simple) hypotheses in this case are -

$$\begin{cases} \mathcal{H}_0: p = 0.1 & \text{null: 10\% defective} \\ \mathcal{H}_1: p = 0.5 & \text{alternative: 50\% defective} \end{cases}$$

• The test: reject \mathcal{H}_0 if X > 1

Example (cont.)

$$\bullet \begin{cases} \mathcal{H}_0: p = 0.1 \\ \mathcal{H}_1: p = 0.5 \end{cases}, \quad \text{reject } \mathcal{H}_0 \text{ if } X \ge 1$$

rejecting H 0 when H 0 is true • The significance level of the test is –

$$\alpha = \mathbb{P} \left(\begin{array}{c} \text{rejecting} \\ \mathcal{H}_0 \end{array} \middle| p = 0.1 \right) = \mathbb{P}(X \ge 1 \middle| p = 0.1)$$

$$= 1 - \mathbb{P}(X = 0 | p = 0.1) = 1 - 0.9^2 = 0.180.19$$

just binom

The probability of a type Π error is – not rejecting H 0 when H 1 is true

$$\beta = \mathbb{P} \left(\begin{array}{c} \text{not rejecting} \\ \mathcal{H}_0 \end{array} \middle| p = 0.5 \right) = \mathbb{P}(X = 0 \middle| p = 0.5)$$

$$=0.5^2=0.25,$$

note here alpha and beta can be calculated before $=0.5^2=0.25,$ observations, with given decision rule, test statistic, and its underlying distribution

and the power of the test is $\pi = 1 - \beta = 0.75$.

The α - β tradeoff

Truth	\mathcal{H}_0 is correct	\mathcal{H}_0 is incorrect	
Not rejecting \mathcal{H}_0	Correct decision $(1 - \alpha)$	Type <mark>II</mark> error (Significance level beta:f	alse negative
Rejecting \mathcal{H}_0	Type $f III$ error (eta)	Correct decision (Power $\pi = 1 - \beta$)	

- Ideally, we would like both α and β to be as small as possible
- Unfortunately, they have conflicting agendas...
- Suppose that we wish to test

$$\begin{cases} \mathcal{H}_0 : \mu = \mu_0 \\ \mathcal{H}_1 : \mu = \mu_1 \end{cases},$$

where $\mu_1 > \mu_0$, based on a sample $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$, where σ^2 is known.

• We reject \mathcal{H}_0 if $\overline{\underline{X}} \geq c$ for some threshold c, and recall that $\overline{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$.

The α - β tradeoff (cont.)

As α decreases...

The α - β tradeoff (cont.)

- The general convention is that type I errors are more dangerous than type II errors, ergo, controlling α is prioritized over controlling β .
- The acceptable practice is thus to focus on tests with significance level α (where α is a small number, typically 0.05 or less), and among those to search for the test with the smallest β .
 - also known as the $\underline{most\ powerful\ test}.$
- But can we search for such a test in a principled way?
- Yes! And (perhaps not so) surprisingly, it involves the likelihood function.

Test Statistics

- Any statistical test is based on a <u>test statistic</u> T(X): a sample statistic whose distribution under H₀ is known.
- In a previous example wished to test

$$\begin{cases} \mathcal{H}_0 : \mu = \mu_0 \\ \mathcal{H}_1 : \mu = \mu_1 \end{cases},$$

where $\mu_1 > \mu_0$, based on a sample $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$, where σ^2 was known.

known by H 0

- The proposed test was: reject \mathcal{H}_0 if $\overline{X} \geq c$, for some c.
- Here $\overline{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$, hence $\overline{X} \stackrel{\mathcal{H}_0}{\sim} \mathcal{N}\left(\mu_0 \frac{\sigma^2}{n}\right)$.
- In this example \overline{X} is our test statistic.

Rejection Regions

$$\begin{cases} \mathcal{H}_0: \mu = \mu_0 \\ \mathcal{H}_1: \mu = \mu_1 \ (> \mu_0) \end{cases}, \quad \text{reject } \mathcal{H}_0 \text{ if } \overline{X} \geq c$$

- Remember that we restrict ourselves to tests with significance level α
- Can we find a value of c for which the probability of a type I error will be α ?
- Recall that under \mathcal{H}_0 (i.e. assuming $\mu = \mu_0$), $\overline{X} \sim \mathcal{N}\left(\mu_0, \frac{\sigma^2}{n}\right)$, thus

$$\alpha = \mathbb{P}\left(\begin{array}{c} \text{rejecting} \\ \mathcal{H}_0 \end{array} \middle| \mu = \mu_0 \right) = \mathbb{P}\left(\overline{X} \ge c \middle| \mu = \mu_0 \right) = 1 - \mathbb{P}\left(\overline{X} \le c \middle| \mu = \mu_0 \right)$$

$$= 1 - \mathbb{P}\left(\frac{\overline{X} - \mu_0}{\sigma/\sqrt{n}} \le \frac{c - \mu_0}{\sigma/\sqrt{n}} \middle| \mu = \mu_0 \right) = 1 - \Phi\left(\frac{c - \mu_0}{\sigma/\sqrt{n}}\right)$$

$$\Longrightarrow \Phi\left(\frac{c - \mu_0}{\sigma/\sqrt{n}}\right) = 1 - \alpha \Longrightarrow \frac{c - \mu_0}{\sigma/\sqrt{n}} = z_{1-\alpha} \Longrightarrow \boxed{c = \mu_0 + \frac{\sigma}{\sqrt{n}} z_{1-\alpha}}$$

Rejection Regions (cont.)

Rejection Regions (cont.)

• We calculated $c = \mu_0 + \frac{\sigma}{\sqrt{n}} z_{1-\alpha}$, hence the test –

"reject
$$\mathcal{H}_0$$
 if $\overline{x} \ge \mu_0 + \frac{\sigma}{\sqrt{n}} z_{1-\alpha}$ "

has significance level α .

• In general, any statistical test that is based on test statistic $T(\underline{X})$ will be of the form

"reject
$$\mathcal{H}_0$$
 if $T(\underline{x}) \in \mathcal{C}$," for some region $\mathcal{C} \subset \mathbb{R}^n$.

We call C the Rejection Region.

• In our example the rejection region was

$$C = \left\{ \underline{x} \in \mathbb{R}^n : \overline{x} \ge \mu_0 + \frac{\sigma}{\sqrt{n}} z_{1-\alpha} \right\}.$$

reject H_0 if x \in rejection region -> gives confidence level of alpha

Rejection Regions (cont.)

• For example, suppose that n = 16, $\sigma^2 = 25$, and we wish to test

$$\begin{cases} \mathcal{H}_0 : \mu = 175 \text{ vs.} \\ \mathcal{H}_0 : \mu = 180 \end{cases}$$

at a 5% level.

• Here the rejection region is

$$C = \left\{ \underline{x} : \overline{x} \ge \mu_0 + \frac{\sigma}{\sqrt{n}} z_{1-\alpha} \right\} = \left\{ \underline{x} : \overline{x} \ge 175 + \frac{5}{4} \underbrace{z_{0.95}}_{1.645} \right\}$$
$$= \left\{ x : \overline{x} \ge 177.06 \right\}.$$

 Congratulations! You just designed your first statistical test. But is it the optimal (i.e. most powerful) test?

The Likelihood Ratio statistic

• Consider again the problem of testing the simple hypotheses

$$\begin{cases} \mathcal{H}_0 : \theta = \theta_0 \\ \mathcal{H}_1 : \theta = \theta_1 \end{cases}$$

based on $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} f_{\theta}$.

• The *Likelihood Ratio* is

$$\lambda(\underline{x}) := \frac{\mathcal{L}(\theta_1)}{\mathcal{L}(\theta_0)} = \frac{f(x_1, \dots, x_n | \theta_1)}{f(x_1, \dots, x_n | \theta_0)}.$$

- Loosely speaking, $\lambda(\underline{x})$ measures how likely \mathcal{H}_1 is to be true compared to \mathcal{H}_0 , with large values supporting the case for rejecting \mathcal{H}_0 .
- It is thus reasonable to consider tests with rejection regions of the form

$$C = \{\underline{x} \in \mathbb{R}^n : \lambda(\underline{x}) \ge c\}.$$

Likelihood Ratio Tests

Definition

A statistical test based on the rejection region

$$C = \left\{ \underline{x} \in \mathbb{R}^n : \lambda(\underline{x}) = \frac{\mathcal{L}(\theta_1)}{\mathcal{L}(\theta_0)} \ge c \right\},$$

for c satisfying $\mathbb{P}\left(\lambda(\underline{x}) \geq c \middle| \theta = \theta_0\right) = \alpha$, is called a likelihood ratio test (LRT) at (significance) level α .

Back to our example:

$$\begin{cases} \mathcal{H}_0: \mu = \mu_0 \\ \mathcal{H}_1: \mu = \underline{\mu_1} \ (> \mu_0) \end{cases}, \ X_1, \dots, X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$$

• Here

$$\lambda(\underline{x}) = \frac{\mathcal{L}(\mu_1)}{\mathcal{L}(\mu_0)} = \frac{\frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu_1)^2\right\}}{\frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu_0)^2\right\}}$$

Likelihood Ratio Tests (cont.)

$$\lambda(\underline{x}) = \frac{\frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left\{-\frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu_1)^2\right\}}{\frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left\{-\frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \mu_0)^2\right\}} = \frac{\exp\left\{-\frac{1}{\sqrt{2}} \sum_{i=1}^n x_i^2 + \frac{n\mu_1}{\sigma^2} \overline{x} - \frac{n\mu_1^2}{2\sigma^2}\right\}}{\exp\left\{-\frac{1}{\sigma^2} \sum_{i=1}^n x_i^2 + \frac{n\mu_0}{\sigma^2} \overline{x} - \frac{n\mu_0^2}{2\sigma^2}\right\}}$$

$$= \exp\left\{\frac{n(\mu_1 - \mu_0)}{\sigma^2} \overline{x} - \frac{n(\mu_1^2 - \mu_0^2)}{2\sigma^2}\right\},$$

therefore

a constant

$$\lambda(\underline{x}) = \geq c \iff \frac{n(\mu_1 - \mu_0)}{\sigma^2} \overline{x} - \underbrace{\begin{pmatrix} n(\mu_1^2 - \mu_0^2) \\ s\sigma^2 \end{pmatrix}}_{\mathbf{x}} \geq c_1$$

$$\iff \underbrace{\frac{n(\mu_1 - \mu_0)}{\sigma^2}}_{\mathbf{x}} \geq c_2 \iff \overline{x} \geq c_3, \text{ (since } \mu_1 > \mu_0)$$

hence

positive constant

$$C = \{ \underline{x} \in \mathbb{R}^n : \lambda(\underline{x}) \ge c \} = \{ \underline{x} \in \mathbb{R}^n : \overline{x} \ge c_3 \}.$$

this is the test we did earlier on normal distribution samples

Likelihood Ratio Tests (cont.)

$$\mathcal{C} = \{ x \in \mathbb{R}^n : \lambda(x) \ge c \} = \{ x \in \mathbb{R}^n : \overline{x} \ge c_3 \}$$

• It now remains to find c_3 such that

$$\alpha = \mathbb{P}\left(\begin{array}{c} \text{Type I} \\ \text{error} \end{array}\right) = \mathbb{P}\left(\underline{X} \in \mathcal{C} \middle| \mu = \mu_0\right) \\ = \mathbb{P}\left(\overline{X} \geq c_3 \middle| \mu = \mu_0\right)$$

 $\bullet\,$ Wait a minute – we've already calculated it! It was

$$c_3 = \mu_0 + \frac{\sigma}{\sqrt{n}} z_{1-\alpha}$$

- It turns out that the test we proposed was a likelihood ratio test all along.
- But is it the most powerful (MP) test at level α ?

The Neyman–Pearson Lemma

Definition

Suppose that we observe $X_1, \ldots, X_n \stackrel{\text{i.i.d.}}{\sim} f_{\theta}$, and consider the simple hypotheses $\mathcal{H}_0: \theta = \theta_0$ vs. $\mathcal{H}_1: \theta = \theta_1$. We say that a test is a <u>most powerful (MP)</u> test at level α if

- 1. the significance level of the test is α , and
- 2. no other test at level α has greater power.

Lemma (Neyman-Pearson Lemma)

The likelihood ratio test, based on the rejection region

$$C = \left\{ \underline{x} \in \mathbb{R}^n : \lambda(\underline{x}) = \frac{\mathcal{L}(\theta_1)}{\mathcal{L}(\theta_0)} \ge c \right\},\,$$

with c satisfying $\mathbb{P}(\lambda(\underline{X}) \geq c) \triangleq a$ is an MP test at level α .

The Neyman-Pearson Lemma (cont.)

Egon Pearson, 1895-1980 Source: swlearning.com

The Neyman–Pearson Lemma (cont.)

Proof for a continuous f_{θ} :

Denote the rejection region of the LRT by C. Note that

$$\alpha = \mathbb{P}(\underline{X} \in \mathcal{C} \big| \theta = \theta_0) = \int_{\mathcal{C}} f(\underline{x} \big| \theta_0) \mathrm{d}\underline{x} = \int_{\mathcal{C}} \mathcal{L}(\theta_0) \mathrm{d}\underline{x}.$$
 rejecting null given null correct

Consider now another test at level α , with rejection region \mathcal{D} . The same

calculations would yield $\alpha = \int_{\Omega} \mathcal{L}(\theta_0) d\underline{x}$, hence prove that C yields higher power when compared to any other region D (i.e. MP)

$$\int_{\mathcal{C}} \mathcal{L}(\theta_0) \mathrm{d}\underline{x} = \int_{\mathcal{D}} \mathcal{L}(\theta_0) \mathrm{d}\underline{x}.$$
 since both equal to alpha

Write $\mathcal{C} = (\mathcal{C} \cap \mathcal{D}) \cup (\mathcal{C} \cap \overline{\mathcal{D}})$ (a disjoint union), we have

$$\int_{\mathcal{C}} \mathcal{L}(\theta_0) \mathrm{d}\underline{x} = \int_{\mathcal{C} \cap \mathcal{D}} \mathcal{L}(\theta_0) \mathrm{d}\underline{x} + \int_{\mathcal{C} \cap \overline{\mathcal{D}}} \mathcal{L}(\theta_0) \mathrm{d}\underline{x}.$$
 by one property of integration

$$\text{Likewise, } \int_{\mathcal{D}} \mathcal{L}(\theta_0) \mathrm{d}\underline{x} = \int_{\mathcal{C} \cap \mathcal{D}} \mathcal{L}(\theta_0) \mathrm{d}\underline{x} + \int_{\overline{\mathcal{C}} \cap \mathcal{D}} \mathcal{L}(\theta_0) \mathrm{d}\underline{x}.$$

The Neyman-Pearson Lemma (cont.)

Proof (cont.):

We have shown so far

$$\int_{\mathcal{C}\cap\mathcal{D}} \mathcal{L}(\theta_0) \mathrm{d}\underline{x} + \int_{\mathcal{C}\cap\overline{\mathcal{D}}} \mathcal{L}(\theta_0) \mathrm{d}\underline{x} = \int_{\mathcal{C}\cap\mathcal{D}} \mathcal{L}(\theta_0) \mathrm{d}\underline{x} + \int_{\overline{\mathcal{C}}\cap\mathcal{D}} \mathcal{L}(\theta_0) \mathrm{d}\underline{x},$$

or simply

$$\int_{\mathcal{C}\cap\overline{\mathcal{D}}} \mathcal{L}(\theta_0) d\underline{x} = \int_{\overline{\mathcal{C}}\cap\mathcal{D}} \mathcal{L}(\theta_0) d\underline{x}.$$

It is now time to recall that for any $\underline{x} \in \mathcal{C}$ we have $\lambda(\underline{x}) = \frac{\mathcal{L}(\theta_1)}{\mathcal{L}(\theta_0)} \geq c$, and for every $\underline{x} \in \overline{\mathcal{C}}$ we have $\frac{\mathcal{L}(\theta_1)}{\mathcal{L}(\theta_0)} < c$, hence

$$c\int_{\mathcal{C}\cap\overline{\mathcal{D}}}\mathcal{L}(\theta_0)\mathrm{d}\underline{x} \leq \int_{\mathcal{C}\cap\overline{\mathcal{D}}}\mathcal{L}(\theta_1)\mathrm{d}\underline{x} \quad \text{and} \quad c\int_{\overline{\mathcal{C}}\cap\mathcal{D}}\mathcal{L}(\theta_0)\mathrm{d}\underline{x} \geq \int_{\overline{\mathcal{C}}\cap\mathcal{D}}\mathcal{L}(\theta_1)\mathrm{d}\underline{x}.$$

Example: Binomial distribution

The Neyman-Pearson Lemma (cont.)

Proof (cont.):

Thus far we have by equality of alpha for region C and D

by definition of region C

$$\int_{\overline{C} \cap \mathcal{D}} \mathcal{L}(\theta_1) d\underline{x} \leq c \int_{\overline{C} \cap \mathcal{D}} \mathcal{L}(\theta_0) d\underline{x} = c \int_{C \cap \overline{\mathcal{D}}} \mathcal{L}(\theta_0) d\underline{x} \leq \int_{C \cap \overline{\mathcal{D}}} \mathcal{L}(\theta_1) d\underline{x}.$$

Let π be the power of the LRT, and let π' be the power of the other test. We have power = reject null when H_1 is true $\pi = \mathbb{P}\left(\underline{X} \in \mathcal{C} \middle| \theta = \theta_1\right) = \int f(\underline{x} \middle| \theta_1) \mathrm{d}\underline{x} = \int \mathcal{L}(\theta_1) \mathrm{d}\underline{x}$

$$\int_{\mathcal{C}} \mathcal{L}(\theta_1) d\underline{x} + \int_{\mathcal{C} \cap \overline{\mathcal{D}}} \mathcal{L}(\theta_1) d\underline{x} \ge \int_{\mathcal{C} \cap \mathcal{D}} \mathcal{L}(\theta_1) d\underline{x} + \int_{\overline{\mathcal{C}} \cap \mathcal{D}} \mathcal{L}(\theta_1) d\underline{x} = \int_{\mathcal{D}} \mathcal{L}(\theta_1) d\underline{x} = \int_{\mathcal{D}} \mathcal{L}(\theta_1) d\underline{x} = \mathbb{P}\left(\underline{X} \in \mathcal{D} \middle| \theta = \theta_1\right) = \pi'.$$

prove that power of LRT > power of any other test

Example: Bernoulli data

Example

Suppose that we wish to test $\mathcal{H}_0: p=p_0$ vs. $\mathcal{H}_1: p=p_1$ (for $p_1>p_0$), based on sequence X_1,\ldots,X_n of Bernoulli trials with an unknown probability of success p. Find an MP test at level α . should be does not exceed alpha.

Solution: just use LRT

Here

note do not use pdf of binomial distribution, just product of bernoulli pdf

$$\begin{split} \lambda(\underline{x}) &= \frac{\mathcal{L}(p_1)}{\mathcal{L}(p_0)} = \frac{p_1^{\sum x_i} (1-p_1)^{n-\sum x_i}}{p_0^{\sum x_i} (1-p_0)^{n-\sum x_i}} = \left(\frac{p_1}{p_0}\right)^{\sum x_i} \left(\frac{1-p_1}{1-p_0}\right)^{n-\sum x_i} \\ &= \left(\underbrace{\frac{p_1}{p_0}}_{>1} \cdot \underbrace{\frac{1-p_1}{p_0}}_{>1}\right)^{\sum x_i} \left(\underbrace{\frac{1-p_1}{1-p_0}}_{}\right)^n = a^{\sum x_i} b, \end{split}$$

where a > 1 and b > 0.

Solution (cont.):

 $\lambda(x) = a^{\sum x_i} b$, where a > 1 and b > 0. monotonic increasing function

Now,

$$\lambda(\underline{x}) \ge c \iff a^{\sum x_i} b \ge c \iff a^{\sum x_i} \ge c_1 \iff \sum x_i \ge c_2,$$

hence, the rejection region of the LRT is

$$C = {\underline{x} : \lambda(\underline{x}) \ge c} = {\underline{x} : \sum x_i \ge c_2}.$$

To find c_2 , recall that $\sum_{i=1}^n X_i \sim \operatorname{Binom}(n,p)$, hence note here how alpha is the upper bound on possible size of test

sible size of test $lpha \geq \mathbb{P}\left(\underline{X} \in \mathcal{C} \middle| p = p_0
ight) = \mathbb{P}\left(\sum_{i=1}^n X_i \geq c_2 \middle| p = p_0
ight)$ rejecting null when null is true

note this is a problem for discrete distribution, where can cant really find size of test to be exact alpha

 $\binom{n}{}$

$$= 1 - \mathbb{P}\left(\sum_{i=1}^{n} X_i < c_2 \middle| p = p_0\right) = 1 - \sum_{k=0}^{\lfloor c_2 \rfloor - 1} \binom{n}{k} p_0^k (1 - p_0)^{n-k}.$$

sum < c SAME AS sum <= c - 1

cdf of binomial

Solution (cont.): take smallest c_2 such that the output <= alpha

So c_2 is the smallest integer satisfying

$$\sum_{k=0}^{c_2-1} \binom{n}{k} p_0^k (1-p_0)^{n-k} \ge 1-\alpha.$$

For example, to test $\mathcal{H}_0: p=0.2$ vs. $\mathcal{H}_1: p=0.3$ at a 5% level with n=50, we need to look for the smallest c_2 satisfying

$$\sum_{k=0}^{c_2-1} {50 \choose k} 0.2^k 0.8^{50-k} \ge 0.95.$$

```
> probs <- pbinom(c(0:50), size=50, prob=.2)
> (c2 <- min(which(probs > .95)))
```

[1] 16

assume that c_2 is integer, because sum of int is int, no point in setting a threshhold that is not int

and the rejection region in this case is $C = \{\underline{x} : \sum_{i=1}^{50} x_i \ge 16\}.$

so reject null if sum of x is >= 16. gives significant level of alpha = 0.05 with smallest beta

Solution (cont.): a conservative test; not exactly 5% because pdf is discrete

* CAUTION: the actual significance level of this test is actually not 5%, but

$$\begin{aligned} & \text{alpha =} & & \mathbb{P}\left(\underline{X} \in \mathcal{C} \middle| p = 0.2\right) \\ & & = \mathbb{P}\left(\sum_{i=1}^{50} X_i \geq 16 \middle| p = 0.2\right) \\ & = 0.031 \end{aligned}$$

(but if we chose the cutoff to be 15 instead, it would be 0.061).

- The Neyman-Pearson Lemma states that no test with greater power exists at the 0.031 level, but there could be a test with a significance level that is closer to 5% and a greater power.
 because pearson lemma states MP test at exactly alpha
- For a large n, Binom $(n, p) \approx \mathcal{N}(np, np(1-p))$. We can then calculate

$$\alpha = \mathbb{P}\left(\underline{X} \in \mathcal{C} \middle| p = p_0\right) = \mathbb{P}\left(\sum_{i=1}^n X_i \ge c_2 \middle| p = p_0\right) \approx 1 - \Phi\left(\frac{c_2 - np_0}{\sqrt{np_0(1 - p_0)}}\right)$$

$$\Longrightarrow c_2 = np_0 + z_{1-\alpha} \sqrt{np_0(1-p_0)}$$

Solution (cont.):

• The rejection region based on the large sample approximation is

$$C' = \left\{ \underline{x} : \sum_{i=1}^{n} x_i \ge np_0 + z_{1-\alpha} \sqrt{np_0(1-p_0)} \right\}$$

• For n = 50, $\alpha = 0.05$ and $p_0 = 0.2$ we get

$$C' = \left\{ \underline{x} : \sum_{i=1}^{50} x_i \ge 50 \times 0.2 + 1.645\sqrt{50 \times 0.2 \times 0.8} \right\}$$

$$= \left\{ \underline{x} : \sum_{i=1}^{50} x_i \ge 14.65 \right\} = \left\{ \underline{x} : \sum_{i=1}^{50} x_i \ge 15 \right\}.$$

in this case, normal approximation is continuous hence able to find c such that P(Type I error) = \alpha. But still since binomial is discrete, c gives to a natural number, whose actual significance level is not 5%, in fact in this case it is 6.1%