CEDCP: The Collection of Experimental Data on Composite Properties.

Table of Contents

Electrical conductivity data	1
Dielectric constant data	5
References	8

Electrical conductivity data

Data has been converted to S/m

	Reference	Matrix material	Filler material	Aspect ratio	File name
1	Agari (1991) [1]	Polyethylene, 2.5·10 ⁻¹⁴ S/cm	Carbon fiber, 3.3-6.3·10 ² S/cm	1.0	Agari1991Fig4 Curv1.inp
2	Agari (1991) [1]	Polyethylene, 2.5·10 ⁻¹⁴ S/cm	Carbon fiber, 3.3-6.3·10 ² S/cm	6.0	Agari1991Fig4 Curv2.inp
3	Agari (1991) [1]	Polyethylene, 2.5·10 ⁻¹⁴ S/cm	Carbon fiber, 3.3-6.3·10 ² S/cm	21.6	Agari1991Fig4 Curv3.inp
4	Agari (1991) [1]	Polyethylene, 2.5·10 ⁻¹⁴ S/cm	Carbon fiber, 3.3-6.3·10 ² S/cm	45.3	Agari1991Fig4 Curv4.inp
5	Aribou (2019) [2]	Diglycidylic Ether of Bisphenol F, 1.4·10 ⁻¹⁶ S/cm	Carbon black Raven 2000, 6.56 S/cm	1.0	Aribou2019Fig 3a.inp
6	Aribou (2019) [2]	Diglycidylic Ether of Bisphenol F, 1.4·10 ⁻¹⁶ S/cm	Carbon black Raven 7000, 3.50 S/cm	1.0	Aribou2019Fig 3b.inp
7	Landauer (1952) [3]	Bismuth, 7.7·10 ⁵ S/m	Tin, 9.1·10 ⁶ S/m	1.0	Landauer1952Fi g5.inp
8	Wu (1997) [4]	Boron nitride, 1.0 ⁻¹⁴ S/m, 2.381 ⁻¹³ S/m	Graphite powder, 833.333 S/m, 34722.222 S/m	1.0	WuMcLachlan1 997Fig1a.inp
9	Wu (1997) [4]	Boron nitride, 1.0 ⁻¹⁴ S/m, 2.381 ⁻¹³ S/m	Graphite powder, 833.333 S/m, 34722.222 S/m	1.0	WuMcLachlan1 997Fig1b.inp
10	Wu (1997) [4]	Boron nitride, 1.0 ⁻¹⁴ S/m, 2.381 ⁻¹³ S/m	Graphite powder, 833.333 S/m, 34722.222 S/m	1.0	WuMcLachlan1 997Fig3.inp
11	Sanchez	Chitosan	Hydroxyapatite	1.0	Sanchez2018Fi

	(2018) [5]		nanoparticles		g7a.inp
12	Janget (2015) [6]	Polydimethylsiloxane (PDMS), 2.5e-14 S/m	multi-walled CNT, 100 S/m?	1250	Jang2015Fig8C ond.inp
13	Wang (2012) [7]	PVDF	Fe3O4	1.0	Wang2012Fig4 Cond100Hz.inp
14	Chiarello (2005) [8]	Portland cement (type I, 52.5 R),	Carbon fiber	750.0	Chiarello2005Fi g6mm6.inp
15	Chiarello (2005) [8]	Portland cement (type I, 52.5 R),	Carbon fiber	375.0	Chiarello2005Fi g6mm3.inp
16	Chiarello (2005) [8]	Portland cement (type I, 52.5 R),	Carbon fiber	0.5	Chiarello2005Fi g6um4.inp
17	Mamunya (2002) [9]	PVC, 1e-13.5 S/m	Cu, 1e+5.8 S/m	1.0	mamunya2002F ig6Curv1.inp
18	Mamunya (2002) [9]	Epoxy resin, 1e-12.8 S/m	Cu, 1e+5.2 S/m	1.0	mamunya2002F ig6Curv2.inp
19	Mamunya (2002) [9]	PVC, 1e-13.5 S/m	Ni, 1e+4.5 S/m	1.0	mamunya2002F ig6Curv3.inp
20	Mamunya (2002) [9]	Epoxy resin, 1e-12.8 S/m	Ni, 1e+4.8 S/m	1.0	mamunya2002F ig6Curv4.inp
21	Kim (2005) [10]	Epoxy resin	Multiwalled carbon nanotubes	2000.0	Kim2005Fig5a.i np
22	Kim (2005) [10]	Epoxy resin	Multiwalled carbon nanotubes	2000.0	Kim2005Fig5b.
23	Barrau (2003) [11]	Epoxy resin, 7.9×10 ⁻¹⁶ S/cm	Carbon nanotubes	7500.0	Barrau2003Fig2 a.inp
24	Barrau (2003) [11]	Epoxy resin, 7.9×10 ⁻¹⁶ S/cm	Carbon nanotubes	7500.0	Barrau2003Fig2 b.inp
25	Clingerman (2002) [12]	Nylon 6,6 (Zytel 101 NC010), 10 ⁻¹⁵ S/cm	3.175-mm chopped PAN carbon fiber	13.678	Clingerman200 2Fig1AN.inp
26	Clingerman (2002) [12]	Polycarbonate (Lexan HF1110-111N) 10 ⁻¹⁷ S/cm	3.175-mm chopped PAN carbon fiber	19.442	Clingerman200 2Fig1AP.inp
27	Clingerman (2002) [12]	Nylon 6,6 (Zytel 101 NC010), 10 ⁻¹⁵ S/cm	200-mm milled PAN carbon fiber	9.546	Clingerman200 2Fig1BN.inp
28	Clingerman (2002) [12]	Polycarbonate (Lexan HF1110-111N) 10 ⁻¹⁷ S/cm	200-mm milled PAN carbon fiber	10.751	Clingerman200 2Fig1BP.inp
29	Clingerman (2002) [12]	Nylon 6,6 (Zytel 101 NC010), 10 ⁻¹⁵ S/cm	ThermocarbTM Specialty Graphite	1.0	Clingerman200 2Fig1FN.inp
30	Clingerman (2002) [12]	Polycarbonate (Lexan HF1110-111N) 10 ⁻¹⁷ S/cm	ThermocarbTM Specialty Graphite	1.0	Clingerman200 2Fig1FP.inp
31	Clingerman	Nylon 6,6 (Zytel 101	Ni-coated PAN carbon fiber	23.821	Clingerman200

	(2002) [12]	NC010), 10 ⁻¹⁵ S/cm			2Fig1GN.inp
32	Clingerman (2002) [12]	Polycarbonate (Lexan HF1110-111N) 10 ⁻¹⁷ S/cm	Ni-coated PAN carbon fiber	17.412	Clingerman200 2Fig1GP.inp
33	Mamunya (1996) [13]	Polypropylene	Carbon black	1.0	mamunya1996F ig2PP.inp
34	Mamunya (1996) [13]	Polyethylene	Carbon black	1.0	mamunya1996F ig2PE.inp
35	Mamunya (1996) [13]	Polystyrene	Carbon black	1.0	mamunya1996F ig2PS.inp
36	Mamunya (1996) [13]	Poly(methyl)methacrylate	Carbon black	1.0	mamunya1996F ig2PMMA.inp
37	Mamunya (1996) [13]	Polyamide	Carbon black	1.0	mamunya1996F ig2PA.inp
38	Mamunya (1996) [13]	Polypropylene	carbon black	1.0	mamunya1996F ig3PP1.inp
39	Mamunya (1996) [13]	Polyethylene	carbon black	1.0	mamunya1996F ig3PE1.inp
40	Gojny (2006) [14]	DGEBA-based epoxy resin	Carbon black	1.0	Gojny2006Fig3 CB.inp
41	Gojny (2006) [14]	DGEBA-based epoxy resin	SWCNT Elicarb	5000.0	Gojny2006Fig3 SWCNT.inp
42	Gojny (2006) [14]	DGEBA-based epoxy resin	DWCNT	3571.4	Gojny2006Fig3 DWCNT.inp
43	Gojny (2006) [14]	DGEBA-based epoxy resin	DWCNT-NH2 (~1%)	1428.6	Gojny2006Fig3 DWCNT- NH2.inp
44	Gojny (2006) [14]	DGEBA-based epoxy resin	MWCNT	3333.3	Gojny2006Fig3 MWCNT.inp
45	Gojny (2006) [14]	DGEBA-based epoxy resin	MWCNT-NH2 (~1%)	266.7	Gojny2006Fig3 MWCNT- NH2.inp
46	Maiti (2013) [15]	Polycarbonate and acrylonitrile butadiene styrene	MWCNT	157.9	Maiti2013Fig2a .inp
47	Yousefi (2012) [16]	Polyurethane	Reduced graphene oxide	10000.0	Yousefi2012Fig 9.inp
48	Stankovich (2006) [17]	Polystyrene	Graphene sheets	1000.0	Stankovich2006 Fig3.inp
49	Zhang (2010) [18]	Polyethylene terephthalate	Graphene nanosheets	146.0	Zhang2010Fig5 gn.inp

50	Zhang (2010) [18]	Polyethylene terephthalate	Graphite flake	36.0	Zhang2010Fig5 gt.inp
51	Prokhorov (2023) [20]	Chitosan	Graphene oxide sheets, water 24%	150.0	Prokhorov2023 Fig5aW24.inp
52	Prokhorov (2023) [20]	Chitosan	Graphene oxide sheets, water 9%	150.0	Prokhorov2023 Fig5aW24.inp
53	Prokhorov (2019) [22]	Chitosan	Copper nanocomposites	1.0	Prokhorov2023 Fig6a.inp
54	Sanches (2019) [23]	Chitosan	non-functionalized MWCNT	666.7	Sanches2019Fig 7nf.inp
55	Sanches (2019) [23]	Chitosan	MWCNTs functionalized by chemical oxidation in HNO3	666.7	Sanches2019Fig 7HNO3.inp
56	Sanches (2019) [23]	Chitosan	carboxyl-terminated MWCNTs	666.7	Sanches2019Fig 7carb.inp
57	Li (2008) [26]	Polyvinylidene fluoride (PVDF)	Multi-walled carbon nanotubes (MWCN)	2000.0	Li2008Fig5a.in p
58	Li (2008) [26]	Polyvinylidene fluoride (PVDF)	MWCN, carboxylic functionalized	500.0	Li2008Fig5b.in p
59	Li (2008) [26]	Polyvinylidene fluoride (PVDF)	MWCN, ester functionalized	500.0	Li2008Fig5c.in p
60	Fan (2012) [27]	Polyvinylidene fluoride (PVDF)	Graphene sheets	100. No data.	Fan2012Fig8.in p
61	Wang (2005) [33]	polyvinylidene fluoride (PVDF)	multiwall carbon nanotubes (MWNT)	500 No data.	Wang2005Fig1a .inp
62	Dang (2007b) [34]	polyvinylidene fluoride (PVDF)	Functionalized multiwalled carbon-nanotube	500.0	Dang2007bFig3 a.inp
63	Sedlakova (2014) [42]	Ethylene-octene copolymer	multiwall carbon nanotubes MWCNT	200.0	Sedlakova2014 MWCNT.inp
64	Sedlakova (2014) [42]	Ethylene-octene copolymer	carbon fibers (CF)	66.7	Sedlakova2014 CF.inp
65	Jang (2020) [43]	IN2 Epoxy Infusion Resin	carbon nanotube (CNT)	7000.0	Jang2020Fig2a. inp

Dielectric constant data

	Reference	Matrix material	Filler material	Aspect ratio	File name
66	Sanchez (2018) [5]	Chitosan	Hydroxyapatite nanoparticles	1.0	Sanchez2018Fig 7b.inp
67	Wang (2012) [7]	PVDF	Fe3O4	1.0	Wang2012Fig4P ermit100Hz.inp
68	Castillo (2022) [19]	Chitosan (CS)	Titanium dioxide nanoparticles	1.0	Castillo2022Fig6 .inp
69	Prokhorov (2023) [20]	Chitosan	Graphene oxide sheets, water 24%	150.0	Prokhorov2023F ig5bW24.inp
70	Prokhorov (2023) [20]	Chitosan	Graphene oxide sheets, water 9%	150.0	Prokhorov2023F ig5bW24.inp
71	Prokhorov (2020) [21]	Chitosan	Zinc oxide nanoparticles	1.0	Prokhorov2020F ig4b.inp
72	Chen (2007) [24]	β-polyvinylidene fluoride	Acetylene black	1.0	Chen2007Fig2.in p
73	Dang (2003) [25]	Polyvinylidene fluoride	BaTiO₃ particles	1.0	Dang2003Fig2.i
74	Dang (2003) [25]	Polyvinylidene fluoride and BaTiO ₃ particles at 0.2 vol. fraction	Multi-walled carbon nanotubes	700.0	Dang2003Fig3.i np
75	Li (2008) [26]	Polyvinylidene fluoride (PVDF)	Multi-walled carbon nanotubes (MWCN)	2000.0	Li2008Fig8a.inp
76	Li (2008) [26]	Polyvinylidene fluoride (PVDF)	MWCN, carboxylic functionalized	500.0	Li2008Fig8b.inp
77	Li (2008) [26]	Polyvinylidene fluoride (PVDF)	MWCN, ester functionalized	500.0	Li2008Fig8c.inp
78	Fan (2012) [27]	Polyvinylidene fluoride (PVDF)	Graphene sheets	100. No data	Fan2012Fig9.inp
79	Yu (2012) [28]	biodegradable poly(butylene succinate)	Natural graphite mineral	1000.0	Yu2012Fig4.inp
80	Min (2013) [29]	Bisphenol type epoxy resin	Graphite nanoplatelets	500.0?	Min2013Fig4a.in
81	Tang (2011) [30]	Polyvinylidene fluoride (PVDF)	Zirconate titanate nanowires	13.75	Tang2011Fig4N W.inp
82	Tang (2011) [30]	Polyvinylidene fluoride (PVDF)	Zirconate titanate nanorods	3.0	Tang2011Fig4N R.inp

83	Yao (2007) [31]	ferroelectric polyvinylidene fluoride (PVDF)	Multiwall carbon nanotube (MWNT)	62.0	Yao2007Fig2a1.i np
84	Yao (2007) [31]	ferroelectric polyvinylidene fluoride (PVDF)	Multiwall carbon nanotube (MWNT)	116.0	Yao2007Fig2a2.i np
85	Yao (2007) [31]	ferroelectric polyvinylidene fluoride (PVDF)	Multiwall carbon nanotube (MWNT)	437.0	Yao2007Fig2a3.i
86	Yao (2007) [31]	ferroelectric polyvinylidene fluoride (PVDF)	Multiwall carbon nanotube (MWNT)	833.0	Yao2007Fig2a4.i np
87	Dang (2007a) [32]	ferroelectric polyvinylidene fluoride (PVDF)	Upright carbon fiber (CF)	12.0	Dang2007aFig2.i np
88	Wang (2005) [33]	polyvinylidene fluoride (PVDF)	multiwall carbon nanotubes (MWNT)	500 No data	Wang2005Fig2a. inp
89	Dang (2007b) [34]	polyvinylidene fluoride (PVDF)	Functionalized multiwalled carbon- nanotube	500.0	Dang2007bFig3 b.inp
90	Obrzut (2001) [35]	poly(ethylene glycol) diacrylate (PEGDA)	BaTiO ₃	1.0	Obrzut2001Fig2 PEGDA.inp
91	Obrzut (2001) [35]	Trimethylolpropane triacrylate (TMPTA)	BaTiO ₃	1.0	Obrzut2001Fig2 TMPTA.inp
92	Hu (2007) [36]	thermoplastic cyclic olefin copolymer (COC)	barium strontium titanate (BST), micrometer-size	1.0	Hu2007Fig2a.in
93	Hu (2007) [36]	thermoplastic cyclic olefin copolymer (COC)	barium strontium titanate (BST), nanometer-size	1.0	Hu2007Fig2b.in
94	Castles (2016) [37]	acrylonitrile butadiene styrene (ABS)	BaTiO ₃	1.0	Castles2016Fig4 a.inp
95	Chen (2005) [38]	epoxy resin	carbonyl-iron-particles (CIPs)	1.0	Chen2005Fig3a.i
96	Rao (2000) [39]	comercial epoxy resin (Shipley photoepoxy (ε =3))	Lead magnesium niobate- lead titanate (PMN-PT) ceramic particles	1.0	Rao2000comp1.i
97	Rao (2000) [39]	in-house developed epoxy $(\varepsilon=4)$	Lead magnesium niobate- lead titanate (PMN-PT) ceramic particles	1.0	Rao2000comp2.i
98	Fu (20022) [40]	High Temp UV resin	A1 ₂ O ₃ large particles	1.0	Fu2022Fig7cAL L.inp
99	Fu (20022) [40]	High Temp UV resin	A1 ₂ O ₃ small particles	1.0	Fu2022Fig7cAL S.inp
100	Fu (20022) [40]	High Temp UV resin	BaTiO₃ large particles	1.0	Fu2022Fig7cBT L.inp

101	Fu (20022) [40]	High Temp UV resin	BaTiO₃ small particles	1.0	Fu2022Fig7cBT S.inp
102	Fu (20022) [40]	High Temp UV resin	SrTiO₃ large particles	1.0	Fu2022Fig7cST L.inp
103	Fu (20022) [40]	High Temp UV resin	SrTiO₃ small particles	1.0	Fu2022Fig7cST S.inp
104	Agrawal (2014) [41]	Thermoset resin epoxy LY 556	micro-sized aluminium nitride (AlN) particles	1.0	Agrawal2014Fig 8a.inp
105	Agrawal (2014) [41]	Polypropylene (PP)	micro-sized aluminium nitride (AlN) particles	1.0	Agrawal2014Fig 8b.inp

References

- 1. Agari, Y., Ueda, A., & Nagai, S. (1991). Thermal conductivity of a polyethylene filled with disoriented short-cut carbon fibers. Journal of Applied Polymer Science, 43(6), 1117-1124.
- 2. Aribou, N., Nioua, Y., Bouknaitir, I., El Hasnaoui, M., Achour, M. E., & Costa, L. C. (2019). Prediction of filler/matrix interphase effects on AC and DC electrical properties of carbon reinforced polymer composites. Polymer Composites, 40(1), 346-352.
- 3. Landauer, R. (1952). The electrical resistance of binary metallic mixtures. Journal of applied physics, 23(7), 779-784.
- 4. Wu, J., & McLachlan, D. S. (1997). Percolation exponents and thresholds obtained from the nearly ideal continuum percolation system graphite-boron nitride. Physical review B, 56(3), 1236.
- 5. Sanchez, A. G., Prokhorov, E., Luna-Barcenas, G., Mora-García, A. G., Kovalenko, Y., Rivera-Muñoz, E. M., ... & Buonocore, G. (2018). Chitosan-hydroxyapatite nanocomposites: Effect of interfacial layer on mechanical and dielectric properties. Materials Chemistry and Physics, 217, 151-159.
- 6. Jang, S. H., & Yin, H. (2015). Effective electrical conductivity of carbon nanotube-polymer composites: a simplified model and its validation. Materials Research Express, 2(4), 045602.
- 7. Wang, X., Li, W., Luo, L., Fang, Z., Zhang, J., & Zhu, Y. (2012). High dielectric constant and superparamagnetic polymer-based nanocomposites induced by percolation effect. Journal of applied polymer science, 125(4), 2711-2715.
- 8. Chiarello, M., & Zinno, R. (2005). Electrical conductivity of self-monitoring CFRC. Cement and Concrete Composites, 27(4), 463-469.
- 9. Mamunya, Y. P., Davydenko, V. V., Pissis, P., & Lebedev, E. V. (2002). Electrical and thermal conductivity of polymers filled with metal powders. European polymer journal, 38(9), 1887-1897.
- 10. Kim, Y. J., Shin, T. S., Do Choi, H., Kwon, J. H., Chung, Y. C., & Yoon, H. G. (2005). Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon, 43(1), 23-30.
- 11. Barrau, S., Demont, P., Perez, E., Peigney, A., Laurent, C., & Lacabanne, C. (2003). Effect of palmitic acid on the electrical conductivity of carbon nanotubes—epoxy resin composites. Macromolecules, 36(26), 9678-9680.
- 12. Clingerman, M. L., King, J. A., Schulz, K. H., & Meyers, J. D. (2002). Evaluation of electrical conductivity models for conductive polymer composites. Journal of Applied Polymer Science, 83(6), 1341-1356.
- 13. Mamunya, E. P., Davidenko, V. V., & Lebedev, E. V. (1996). Effect of polymer-filler interface interactions on percolation conductivity of thermoplastics filled with carbon black. Composite Interfaces, 4(4), 169-176.

- 14. Gojny, F. H., Wichmann, M. H., Fiedler, B., Kinloch, I. A., Bauhofer, W., Windle, A. H., & Schulte, K. (2006). Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer, 47(6), 2036-2045.
- 15. Maiti, S., Shrivastava, N. K., & Khatua, B. B. (2013). Reduction of percolation threshold through double percolation in melt-blended polycarbonate/acrylonitrile butadiene styrene/multiwall carbon nanotubes elastomer nanocomposites. Polymer composites, 34(4), 570-579.
- 16. Yousefi, N., Gudarzi, M. M., Zheng, Q., Aboutalebi, S. H., Sharif, F., & Kim, J. K. (2012). Self-alignment and high electrical conductivity of ultralarge graphene oxide—polyurethane nanocomposites. Journal of Materials Chemistry, 22(25), 12709-12717.
- 17. Stankovich, S., Dikin, D. A., Dommett, G. H., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., ... & Ruoff, R. S. (2006). Graphene-based composite materials. Nature, 442(7100), 282-286.
- 18. Zhang, H. B., Zheng, W. G., Yan, Q., Yang, Y., Wang, J. W., Lu, Z. H., ... & Yu, Z. Z. (2010). Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer, 51(5), 1191-1196.
- 19. Castillo, B. E., Prokhorov, E., Luna-Bárcenas, G., & Kovalenko, Y. (2022). Potential Use of Chitosan-TiO2 Nanocomposites for the Electroanalytical Detection of Imidacloprid. Polymers, 14(9), 1686.
- 20. Prokhorov, Y., Luna-Barcenas, G., & Kovalenko, Y. (2023). Interphase percolation phenomena in chitosan-graphene oxide nanocomposites, the role of water content. Express Polymer Letters, 17(1).
- 21. Prokhorov, E., Luna-Bárcenas, G., Yáñez Limón, J. M., Gómez Sánchez, A., & Kovalenko, Y. (2020). Chitosan-ZnO nanocomposites assessed by dielectric, mechanical, and piezoelectric properties. Polymers, 12(9), 1991.
- 22. Prokhorov, E., España-Sánchez, B. L., Luna-Bárcenas, G., Padilla-Vaca, F., Cruz-Soto, M. E., Vázquez-Lepe, M. O., ... & Elizalde-Peña, E. A. (2019). Chitosan/copper nanocomposites: Correlation between electrical and antibacterial properties. Colloids and Surfaces B: Biointerfaces, 180, 186-192.
- 23. Sánchez, A. G., Prokhorov, E., Luna-Barcenas, G., Kovalenko, Y., Rivera-Muñoz, E. M., Raucci, M. G., & Buonocore, G. (2019). Effect of Chemical Oxidation Routes on the Properties of Chitosan-MWCNT Nanocomposites. Current Nanoscience, 15(6), 618-625.
- 24. Chen, Q., Du, P., Jin, L., Weng, W., & Han, G. (2007). Percolative conductor/polymer composite films with significant dielectric properties. Applied Physics Letters, 91(2).
- 25. Dang, Z. M., Fan, L. Z., Shen, Y., & Nan, C. W. (2003). Dielectric behavior of novel three-phase MWNTs/BaTiO3/PVDF composites. Materials Science and Engineering: B, 103(2), 140-144.
- 26. Li, Q., Xue, Q., Hao, L., Gao, X., & Zheng, Q. (2008). Large dielectric constant of the chemically functionalized carbon nanotube/polymer composites. Composites Science and Technology, 68(10-11), 2290-2296.

- 27. Fan, P., Wang, L., Yang, J., Chen, F., & Zhong, M. (2012). Graphene/poly (vinylidene fluoride) composites with high dielectric constant and low percolation threshold. Nanotechnology, 23(36), 365702.
- 28. Yu, L., Zhang, Y., Tong, W., Shang, J., Shen, B., Lv, F., & Chu, P. K. (2012). Green dielectric materials composed of natural graphite minerals and biodegradable polymer. RSC advances, 2(23), 8793-8796.
- 29. Min, C., Yu, D., Cao, J., Wang, G., & Feng, L. (2013). A graphite nanoplatelet/epoxy composite with high dielectric constant and high thermal conductivity. Carbon, 55, 116-125.
- 30. Tang, H., Lin, Y., Andrews, C., & Sodano, H. A. (2011). Nanocomposites with increased energy density through high aspect ratio PZT nanowires. Nanotechnology, 22(1), 015702.
- 31. Yao, S. H., Dang, Z. M., Jiang, M. J., Xu, H. P., & Bai, J. (2007). Influence of aspect ratio of carbon nanotube on percolation threshold in ferroelectric polymer nanocomposite. Applied Physics Letters, 91(21).
- 32. Dang, Z. M., Wu, J. P., Xu, H. P., Yao, S. H., Jiang, M. J., & Bai, J. (2007). Dielectric properties of upright carbon fiber filled poly (vinylidene fluoride) composite with low percolation threshold and weak temperature dependence. Applied Physics Letters, 91(7).
- 33. Wang, L., & Dang, Z. M. (2005). Carbon nanotube composites with high dielectric constant at low percolation threshold. Applied physics letters, 87(4).
- 34. Dang, Z. M., Wang, L., Yin, Y. I., Zhang, Q., & Lei, Q. Q. (2007). Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Advanced Materials, 19(6), 852-857.
- 35. Obrzut, J., Noda, N., & Nozaki, R. (2001, October). Broadband dielectric metrology for polymer composite films. In 2001 Annual Report Conference on Electrical Insulation and Dielectric Phenomena (Cat. No. 01CH37225) (pp. 269-272). IEEE.
- 36. Hu, T., Juuti, J., Jantunen, H., & Vilkman, T. (2007). Dielectric properties of BST/polymer composite. Journal of the European Ceramic Society, 27(13-15), 3997-4001.
- 37. Castles, F., Isakov, D., Lui, A., Lei, Q., Dancer, C. E., Wang, Y., ... & Grant, P. S. (2016). Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites. Scientific reports, 6(1), 22714.
- 38. Chen, P., Wu, R. X., Zhao, T., Yang, F., & Xiao, J. Q. (2005). Complex permittivity and permeability of metallic magnetic granular composites at microwave frequencies. Journal of Physics D: Applied Physics, 38(14), 2302.
- 39. Rao, Y., Qu, J., Marinis, T., & Wong, C. P. (2000). A precise numerical prediction of effective dielectric constant for polymer-ceramic composite based on effective-medium theory. IEEE Transactions on Components and Packaging Technologies, 23(4), 680-683.

- 40. Fu, Y., Li, W., Xu, M., Wang, C., Zhang, L. and Zhang, G., 2022. Dielectric Properties and 3D-Printing Feasibility of UV-Curable Resin/Micron Ceramic Filler Composites. Advances in Polymer Technology, 2022.
- 41. Agrawal, A., & Satapathy, A. (2014). Effects of aluminium nitride inclusions on thermal and electrical properties of epoxy and polypropylene: an experimental investigation. Composites Part A: Applied Science and Manufacturing, 63, 51-58.
- 42. Sedláková, Z., Clarizia, G., Bernardo, P., Jansen, J. C., Slobodian, P., Svoboda, P., ... & Izak, P. (2014). Carbon nanotube-and carbon fiber-reinforcement of ethylene-octene copolymer membranes for gas and vapor separation. Membranes, 4(1), 20-39.
- 43. Jang, S. H., & Li, L. Y. (2020). Self-sensing carbon nanotube composites exposed to glass transition temperature. Materials, 13(2), 259.