Algoritmo per la risoluzione di un sistema lineare.

- 1) Sia $S : A\mathbf{x} = \mathbf{b}$ un sistema lineare in n incognite. Sia A la matrice incompleta di S, e sia $B = [A \mid \mathbf{b}]$ la matrice completa.
- 2) Riduciamo a scala per righe B. Otterremo una matrice B' del tipo $B' = [A' | \mathbf{b}']$ ed A' sara' la riduzione a scala di A. Possiamo interpretare la matrice B' come la matrice completa del sistema lineare S': $A'\mathbf{x} = \mathbf{b}'$. Il sistema lineare S ha le stesse soluzioni del sistema lineare S'.
- 3) Se il rango di B' e' diverso da quello di A' il sistema non ammette soluzioni (infatti in S' appare un'equazione del tipo 0 = 1).
- 4) Se il rango di B' e' uguale a quello di A' allora il sistema e' compatibile. E le soluzioni si trovano come segue. Denotiamo con p il rango di A' (che e' uguale al rango di B, B' ed A). Tale numero si chiama il rango di S. In A' ci saranno esattamente p righe non nulle. Consideriamo le colonne di A' che passano per i pivots di tali righe. **Per semplicita' supponiamo che siano le prime** p **colonne** di A'. Tali colonne corrispondono alle prime p variabili. Le variabili rimanenti, cioe' (nel nostro caso) le variabili x_{p+1}, \ldots, x_n , si chiamano le variabili libere del sistema S. Si osservi che il numero delle variabili libere e' n-p, cioe' e' pari al numero delle incognite meno il rango del sistema. Questa formula deve essere imparata a memoria.
- 5) Individuate le variabili libere, si portano al secondo membro del sistema S', e partendo dall'ultima equazione e procedendo a ritroso si calcolano le variabili non libere x_1, \ldots, x_p in funzione delle variabili libere. Si otterranno espressioni del tipo

$$x_1 = x_1(x_{p+1}, \dots, x_n), x_2 = x_2(x_{p+1}, \dots, x_n), \dots, x_p = x_p(x_{p+1}, \dots, x_n).$$

Quindi la generica soluzione di S si scrive cosi':

$$(x_1(x_{p+1},\ldots,x_n),x_2(x_{p+1},\ldots,x_n),\ldots,x_p(x_{p+1},\ldots,x_n),x_{p+1},\ldots,x_n)^T,$$

al variare liberamente di x_{p+1}, \ldots, x_n in **R**. L'espressione precedente e' la rappresentazione parametrica di Sol(S). La rappresentazione parametrica si puo' anche vedere come un'applicazione biiettiva tra lo spazio \mathbb{R}^{n-p} delle variabili libere, e Sol(S), cioe':

$$\begin{bmatrix} x_{p+1} \\ \vdots \\ \vdots \\ x_n \end{bmatrix} \in \mathbf{R}^{n-p} \to \begin{bmatrix} x_1(x_{p+1}, \dots, x_n) \\ \vdots \\ x_p(x_{p+1}, \dots, x_n) \\ x_{p+1} \\ \vdots \\ \vdots \\ x_n \end{bmatrix} \in Sol(\mathcal{S}).$$

Esempio.

Andiamo a risolvere il seguente sistema lineare:

$$S := \begin{cases} 2x_1 + x_2 + x_3 + x_4 = 1\\ x_1 - x_2 - x_3 + 3x_4 = 0\\ 3x_1 + 4x_4 = 1. \end{cases}$$

Risolvere il sistema lineare significa dare una descrizione di tutte le sue soluzioni, cioe' dare una rappresentazione parametrica di Sol(S). Seguiremo l'algoritmo indicato a lezione.

Innanzitutto ci scriviamo la matrice completa del sistema, che e':

$$B = \begin{bmatrix} 2 & 1 & 1 & 1 & 1 \\ 1 & -1 & -1 & 3 & 0 \\ 3 & 0 & 0 & 4 & 1 \end{bmatrix}.$$

Osserviamo che la sottomatrice di ${\cal B}$ formata dalle prime quattro colonne e' la matrice incompleta

$$A = \begin{bmatrix} 2 & 1 & 1 & 1 \\ 1 & -1 & -1 & 3 \\ 3 & 0 & 0 & 4 \end{bmatrix}.$$

Poi riduciamo a scala per righe B, pervenendo alla matrice

$$B' = \begin{bmatrix} 1 & -1 & -1 & 3 & 0 \\ 0 & 3 & 3 & -5 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Possiamo interpretare B' come la matrice completa di un nuovo sistema lineare

$$S' := \begin{cases} x_1 - x_2 - x_3 + 3x_4 = 0 \\ 3x_2 + 3x_3 - 5x_4 = 1. \end{cases}$$

I sistemi lineari \mathcal{S} e \mathcal{S}' hanno le stesse soluzioni. Quindi risolvere \mathcal{S} equivale a risolvere \mathcal{S}' .

Si osservi che la sottomatrice di B'

$$A' = \begin{bmatrix} 1 & -1 & -1 & 3 \\ 0 & 3 & 3 & -5 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

altro non e' che la riduzione a scala per righe di A. Poiche' A' e B' hanno lo stesso rango (che e' p=2) allora anche A e B hanno lo stesso rango (cioe' p=2) e quindi il sistema S e' compatibile, cioe' ammette soluzioni. Anzi sappiamo che ammette ∞^2 soluzioni (qui 2 = numero incognite - rango = 4 - 2). Cio' significa che possiamo

descrivere Sol(S) tramite due variabili libere (dette anche parametri liberi). Vediamo come si determinano le variabili libere.

Nella matrice A' consideriamo le colonne che passano per i pivots delle righe non nulle: sono la prima e la seconda colonna. Le colonne rimanenti, cioe' la terza e la quarta, corrispondono alle variabili x_3 e x_4 : queste sono le variabili libere. In generale le variabili libere sono le variabili che corrispondono alle colonne di A' che non passano per i pivots delle righe di A'.

Ora nel sistema S' portiamo a destra le variabili libere

$$\begin{cases} x_1 - x_2 = x_3 - 3x_4 \\ 3x_2 = 1 - 3x_3 + 5x_4. \end{cases}$$

Partendo dall'ultima equazione e procedendo a ritroso per sostituzione ci calcoliamo le variabili x_1 e x_2 in funzione delle variabili libere. Cosi' facendo deduciamo che la generica soluzione di \mathcal{S} e':

$$\left(\frac{1}{3} - \frac{4}{3}x_4, \frac{1}{3} - x_3 + \frac{5}{3}x_4, x_3, x_4\right)^T$$

al variare liberamente di x_3 e x_4 in **R**. Questa e' la rappresentazione parametrica per Sol(S).

Un altro modo per scrivere la rappresentazione parametrica consiste nello scrivere la seguente applicazione

$$\begin{bmatrix} x_3 \\ x_4 \end{bmatrix} \in \mathbf{R}^2 \to \begin{bmatrix} \frac{1}{3} - \frac{4}{3}x_4 \\ \frac{1}{3} - x_3 + \frac{5}{3}x_4 \\ x_3 \\ x_4 \end{bmatrix} \in Sol(\mathcal{S}),$$

(si osservi che tale applicazione e' biiettiva), oppure nello scrivere

$$Sol(\mathcal{S}) = \left\{ \begin{bmatrix} \frac{1}{3} - \frac{4}{3}x_4 \\ \frac{1}{3} - x_3 + \frac{5}{3}x_4 \\ x_3 \\ x_4 \end{bmatrix} : x_3, x_4 \in \mathbf{R} \right\}.$$