Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico Di Milano

Network Data Analysis Lab Project 9: Traffic Forecasting

Team: Group 8

Presenters: Alexander Stefitz, Enrico Gregorini, Lorenzo Prada

Academic Year: 2022/2023

Introduction

- Network Traffic changes quickly during the day
- Processing and transporting resources can be scaled
- A good traffic prediction may save a lot of resources
- How do we perform a good traffic prediction and how can we use it to save resources?
 - Machine learning algorithms
 - Automatically turn on/off interfaces for traffic allocation based on the predictions

Dataset - Info

- GÉANT is the research network that carries traffic between universities and research institutes in Europe
- GÉANT is composed of 23 routers connected with 38 physical links
- GÉANT uses SONET technology to multiplex traffic with different bitrates into one optical signal
- Channel with the smallest bitrate that can be created in SONET is 50 Mb/s

- Each file in the dataset describes total traffic in kb/s between pairs of routers
- Dataset includes 2941 files: traffic at 15 minutes intervals for 1 month

Dataset – Files

- In total there are 2941 .xml files, each containing the amount of traffic measured in the previous 15 minutes
- The measures has been taken from 01/01/2005 to 31/01/2005 included
- We do not have any topological information about the network
- We cannot assume any other information except the ones provided in the .xml files

```
<IntraTM ASID="20965">
<src id="12">
  <dst id="12">305258.2222</dst>
  <dst id="13">28801.8756</dst>
  <dst id="19">4077.1556</dst>
  <dst id="23">166.9067</dst>
  <dst id="8">1812.3022</dst>
</src>
<src id="13">
  <dst id="12">37182.8622</dst>
  <dst id="19">20624.0267</dst>
  <dst id="23">818.2044</dst>
  <dst id="8">10468.6044</dst>
</src>
</IntraTM>
```

Dataset – Missing Files

- 1 [day] = 24 [h] = 96 [sample a day]
- 31 [days] ⇒ 31*96 = 2976 [expected sample] != 2941 [dataset sample]
- There are 35 missing files
- Not much compared to the amount of data we have
- We filled missing values with NaNs
- All .xml are parsed and handled as NumPy array

```
Missing files: ['IntraTM-2005-01-01-00-00.xml' 'IntraTM-2005-01-01-00-15.xml'
 'IntraTM-2005-01-15-19-00.xml' 'IntraTM-2005-01-15-19-15.xml'
 'IntraTM-2005-01-15-19-30.xml' 'IntraTM-2005-01-15-19-45.xml'
 'IntraTM-2005-01-15-20-00.xml' 'IntraTM-2005-01-15-20-15.xml'
 'IntraTM-2005-01-15-20-30.xml' 'IntraTM-2005-01-15-20-45.xml'
 'IntraTM-2005-01-15-21-00.xml' 'IntraTM-2005-01-15-21-15.xml'
 'IntraTM-2005-01-15-21-30.xml' 'IntraTM-2005-01-15-21-45.xml'
 'IntraTM-2005-01-15-22-00.xml'
                                'IntraTM-2005-01-15-22-15.xml'
 'IntraTM-2005-01-15-22-30.xml'
                                'IntraTM-2005-01-15-22-45.xml'
 'IntraTM-2005-01-15-23-00.xml'
                                'IntraTM-2005-01-15-23-15.xml'
 'IntraTM-2005-01-15-23-30.xml'
                                'IntraTM-2005-01-15-23-45.xml'
 'IntraTM-2005-01-16-00-00.xml' 'IntraTM-2005-01-16-00-15.xml'
 'IntraTM-2005-01-16-00-30.xml' 'IntraTM-2005-01-16-00-45.xml'
 'IntraTM-2005-01-16-01-00.xml' 'IntraTM-2005-01-16-01-15.xml'
 'IntraTM-2005-01-16-01-30.xml'
                                'IntraTM-2005-01-24-02-00.xml'
 'IntraTM-2005-01-24-02-15.xml' 'IntraTM-2005-01-24-02-30.xml'
 'IntraTM-2005-01-28-00-45.xml' 'IntraTM-2005-01-28-03-45.xml'
 'IntraTM-2005-01-28-04-00.xml'
```

Dataset – Missing Data

- The network consists of 23 routers
- This means we have 23x23 feasible pairs such that

$$(i,j):i,j\in[1,23]$$

- Not all the pairs have a significant amount of traffic in the whole month
- For each tuple we checked the numbers of NaNs and plotted it onto a matrix
- Discarded pairs that contain more than 100 NaNs

Data – Corrupted File

- Noticed that there are some huge outliers at a specific point (in the order of 10⁹)
- So, we plotted the traffic trace of pairs containing that data
- They all overlap and overwhelm other data by a significant amount
- Since this is infeasible, especially in 2005, we removed these values and plotted the trace again
- The second graph looks as expected
- Since all that values come from the same file, we decided to classify that file as corrupted and discard it, replacing its values with NaNs

Pairs Selection – Graphical check

- After discard pairs with more than 100 NaNs we have 398 pairs
- We did a graphical check of the time series
- This is useful to get an idea of the traffic shape, the amount of data is too big to decide only on graphical evidence

Pairs Selection – Variance check

- We then checked the variance of the channels, ignoring the NaNs we added
- More than half of pairs have 0 variance, which means constant channels over time
- So, we manually checked the variances of the tuples and decide to discard tuples which have a variance < 0.1
- To decide this threshold we plotted different traffic traces with a known variance and looking at the shape of the graph we concluded the following
- Everything below 0.01 is almost constant traffic, so it can be discarded
- Everything above 1 clearly has a very fluctuant shape
- Looking at the shape of 0.01 graphs and 1 graphs we concluded that 0.1 could be a reasonable threshold
- In the end, 52 remaining candidate pairs, which is a very reasonable amount of traffic for model fitting

Pairs Selection – Filling the NaNs

- The remaining 52 pairs still contains a few NaNs
- We used NumPy.interp() to make a linear interpolation of the missing values
- The heatmap shows the traffic we got after filtering and reshaping for each tuple

Pairs Selection – Overview

Traffic Prediction – ML algorithms

- LSTM Long Short-Term Memory ←
- Feature-based approach:
 - LinReg Linear Regression
 - ANN Artificial Neural Network

LSTM – kb/s Prediction

- We got a subset of source-destination pairs called candidate_pairs
- Each one contains traffic for 31 days
- First 24 days are taken as train set and last 7 as test set
- This is done for each candidate pair and train and test split are concatenated
- Used train set to find scaling parameters, also used them for test data

LSTM – Model Fitting

- In order to find the best model, we tried different parameters combination using a grid search
- We used the model that obtained the highest MSE, MAE and R² score.

LSTM kb/s Best Model			
gap	[16]		
n_epochs	[50]		
n_layers	[7]		
n_neurons	[[18, 15, 12, 12, 9, 6, 3]]		
opti	['adam']		
thinkback	[16]		

	thinkback	gap	n_layers	n_neurons	n_epochs	opti	mse	mae	r2
0	8	8	3	[10, 7, 3]	20	adam	0.000545	0.008714	0.959872
1	8	8	5	[15, 12, 9, 6, 3]	20	adam	0.000554	0.007934	0.959184
2	8	8	7	[18, 15, 12, 12, 9, 6, 3]	20	adam	0.000584	0.007869	0.956979
3	16	16	3	[10, 7, 3]	20	adam	0.000571	0.007928	0.957953
4	16	16	5	[15, 12, 9, 6, 3]	20	adam	0.000590	0.007875	0.956552
5	16	16	7	[18, 15, 12, 12, 9, 6, 3]	20	adam	0.000538	0.008491	0.960400
6	24	24	3	[10, 7, 3]	20	adam	0.000609	0.008478	0.957774
7	24	24	5	[15, 12, 9, 6, 3]	20	adam	0.000597	0.008184	0.958577
8	24	24	7	[18, 15, 12, 12, 9, 6, 3]	20	adam	0.000643	0.008678	0.955434
9	32	32	3	[10, 7, 3]	20	adam	0.000639	0.008296	0.955730
10	32	32	5	[15, 12, 9, 6, 3]	20	adam	0.000602	0.009790	0.958264
11	32	32	7	[18, 15, 12, 12, 9, 6, 3]	20	adam	0.000598	0.007919	0.958545

LSTM – Channels Prediction

- The incoming data in this case are directly the channels
- Best model is obtained in the same way as before (it comes out they are the same)
- Channels required are the prediction's results

LSTM – kb/s vs Channel

LSTM kb/s			
3757			
3057			
2712			
2147			
0,14892			
0,08748			
0,06144			
847213547			
9853			
0,96278			

LSTM Channels			
over	3017		
n_over	2475		
under	3708		
n_under	2811		
incorrect ratio	0,15127		
ratio_over	0,07083		
ratio_under	0,08044		
mse	0,49476		
mae	0,19245		
r2	0,94483		

Traffic Prediction – ML algorithms

- LSTM Long Short-Term Memory
- Feature-based approach: ←
 - LinReg Linear Regression
 - ANN Artificial Neural Network

Features

• These are the features extracted, scaled and used to train the LinReg model

Var name	Туре	Description	
src	int [1,23]	Index of the source node	
dst	int [1,23]	Index of the destination node	
day	int [1,7]	Day of the week	
working	bool	True if it is a working day, else false	
hour	Int [0,24]	Hour of day at which traffic has ben measured	
prev_hour	int	Traffic sample for the previous hour	
prev12_hours	int	Traffic sample for the previous 12 hours	
prev_day	int	Traffic sample for the previous day	

LinReg – kb/s Prediction

- 1. From all the data and the pairs we chosen in the initial part we extract the features and obtain the dataset
- 2. Dataset is split in train (first 24 days) and test (last 7 days) set
- 3. Scale the train and test set using MinMaxScaler
- 4. Fit the Linear Regression model with train set
- 5. Predict the test set
- 6. Unscale the data
- 7. Obtain the prediction in terms of kbit and then converted into channels

LinReg – Channels Prediction

- Build and fit the model with the data referring to channels.
- Only use <u>unscaled</u> dataset.
- The steps are basically the same as before but here the model predicts directly the number of channels required to manage the traffic.

LinReg – kb/s vs Channels

LINREG Kb/s			
over	5939		
n_over	4690		
under	4940		
n_under	3987		
incorrect ratio	0,24831		
ratio_over	0,13421		
ratio_under	0,11410		
mse	0,69966		
mae	0,31133		
r2	0,92199		
mse mae	0,69966 0,31133		

LINREG Channels			
over	5460		
n_over	4129		
under	5167		
n_under	4161		
incorrect ratio	0,23724		
ratio_over	0,11816		
ratio_under	0,11908		
mse	0,69583		
mae	0,30412		
r2	0,92241		

ANN – Hyperparameters Optimization

- ANN hyperparameters are chosen using a grid search over a set of parameters defined in a parameters grid (shown below)
- The best ones in terms of MSE and R2 are chosen in order to predict the traffic of test set
- Finally, the best ANN model is built and fit with 100 epochs in order to obtain better results

ANN parameters grid			
Layers	3, 5, 7		
Neurons	[15,10,5], [21,18,15,12,9], [24,21,18,15,12,9,6]		
Activation	'sigmoid', 'relu'		
Epochs	20		

ANN best parameters			
Layers	7		
Neurons	[24,21,18,15,12,9,6]		
Activation	'relu'		
Epochs	20		

ANN – kb/s Prediction

- 1. From all data and the pairs we chose initially we extract the features and obtain the dataset
- 2. Dataset is split in train (first 24 days) and test (last 7 days) set
- 3. Scale the train and test set using MinMaxScaler
- 4. Optimize the model
- 5. Predict the test set
- 6. Unscale the data
- 7. Obtain the prediction in terms of kbit and then converted into channels

ANN – Channel Prediction

- As we did with linear regression when we build our model with the data referring to channels.
- We only use <u>unscaled</u> dataset.
- The steps are basically the same as before but here the model predicts directly the number of channels required to manage the traffic.

ANN – kb/s vs Channel

ANN kb/s				
over	5452			
n_over	4196			
under	4553			
n_under	3700			
incorrect ratio	0,22596			
ratio_over	0,12008			
ratio_under	0,10588			
mse	0,65714			
mae	0,28632			
r2	0,92673			

ANN Channels				
over	5366			
n_over	4051			
under	5062			
n_under	4227			
incorrect ratio	0,23689			
ratio_over	0,11593			
ratio_under	0,12096			
mse	0,67113			
mae	0,29842			
r2	0,92517			

Comparison: MAE - Incorrect Ratio – R2

- LSTM performs way better than ANN and LinReg
- Difference between predicting kb/s and predicting channels smaller than expected
 - For LSTM and ANN it's better to predict traffic and then convert it to channels
 - For LinReg it is better to predict directly channels

Transfer Learning – Different Approach

- Until now we trained our models using the first 24 days of the time series and used the last 7 to evaluate it (of the whole candidate pairs)
- Now the model will be trained on the entire series of a part of the 52 candidate pairs, and tested on the remaining pairs
- We split the candidate pairs in 2 groups
- Train on low variance couples
- Test on high variance couples
- We do only consider LSTM

Transfer Learning – LSTM Predictions

- It follows more or less the same path
- It performs worse
- It does not predict high values

Transfer Learning – Comparison

- Here: Results are averaged across 12 high-variance source-destination pairs
- For transfer learning only channels-predicting models have been used

Conclusions

- LSTM performs way better than ANN and LinReg
- LSTM took about 10 hours to train and fit, ANN 30 minutes. So, in some cases ANN could be a better choice
- LinReg took some seconds to train and it is the only one that has higher results in predicting directly channels

- In some scenarios where data availability is limited, transfer learning could be a good choice and prove to be very useful.
- While transfer learning may not always deliver exceptional performance, the overall results are acceptable and demonstrate its practical value.