Моделирование с использованием генераторов случайных чисел

Анализ сложности алгоритмов Логинов Сергей НФИмд-01-22

Случайные числа

Главные свойства:

- Нельзя предсказать число до генерации
- Число не связано с другими числами последовательности и не зависит от них
- Числа распределены равномерно (или почти равномерно)

1- график функции плотности распределения вероятностей 2 - гистограмма

Области применения:

- Математическое и имитационное моделирование
- Математическая статистика
- Криптография
- Иные направления защиты информации
- Тестирование алгоритмов
- Сетевые протоколы

Генераторы случайных чисел

Характеристика	ГИСЧ	ГПСЧ		
Отсутствие периодичности	Да	Нет		
Непредсказуемость	Да	Условная		
Независимость значений	Да	Условная		
Уровень криптостойкости	Высокий	Условный		
Скорость генерации	Низкая	Высокая		
Воспроизводимость	Нет	Да		
Простота генерации	Нет	Да		
Стоимость генерации	Высокая	Низкая		

Генераторы истинных случайных чисел (ГИСЧ)

- Радиоактивный распад атомов
- Дробовой шум
- Тепловой шум
- Атмосферный шум

Генераторы псевдослучайных чисел (ГПСЧ)

- Линейный конгруэнтный метод
- Метод перемешивания
- Метод квадратичных вычетов
- Blum Blum Shub
- ANSI X9.17
- PGP
- Аддитивные генераторы (последовательность Фибоначчи)
- Генераторы на базе клеточного автомата
- Генераторы, основанные на нечеткой логике
- Генераторы, основанные на обратной функции

Свойства псевдослучайных последовательностей:

- Непредсказуемость
- Неотличимость статистических свойств от истинно-случайных последовательностей
- Большой период
- Возможность эффективной программной реализации

Линейный конгруэнтный метод (ЛКМ)

$$X_{n+1} = (aX_n + c) \bmod m,$$

$$(0 < m < 2^{31} - 1), (0 \le a \le m), (0 \le c \le m)$$

Алгоритм перемешивания

R = 8 bit

$$R_0^* = 10010001_2 = 145_{10}$$

 $R_0^{**} = 10100001_2 = 161_{10}$
 $R_0^* + R_0^{**} = 100110010_2 = 306_{10}$
 R_1 (MSB/LSB) = 00110010₂ = 50₁₀

Проверка ГСЧ на равномерность

$$m_r \approx 0.5$$
, $D_r \approx 0.0833$, $\sigma_r \approx 0.2887$

$$\chi_{\text{ЭКСП}}^{2} = \sum_{i=1}^{k} \frac{(n_{i} - p_{i} * N)^{2}}{p_{i} * N} = \frac{1}{N} \sum_{i=1}^{k} \left(\frac{n_{i}^{2}}{p_{i}}\right) - N$$

Проверка ГСЧ на независимость

Проверка частоты появления цифры:

- 1. $x_1 = 0.2463389991$, $x_2 = 0.5467766618$.
- 2. X = [2,4,6,3,3,8,9,9,9,1,5,4,6,7,7,6,6,6,1,8]
- 3. $p_{i \text{ Teop}} = 0.1, i \in [0, 9]$
- 4. $p_{i \rightarrow KCII}$ считается по частоте
- 5. $\chi^2_{\mathfrak{I}_{\mathsf{SKCII}}}$

Пакет статистических тестов NIST STS

- 1. Частотный тест
- 2. Частотный тест внутри блока
- 3. Проверка накопленных сумм
- 4. Проверка серий
- 5. Проверка максимальной длины серии в блоке
- 6. Проверка ранга двоичной матрицы
- 7. Спектральный тест на основе дискретного преобразования Фурье
- 8. Проверка перекрывающихся шаблонов

- 9. Универсальный тест Маурера
- 10. Энтропийный тест
- 11. Проверка случайных отклонений
- 12. Проверка случайных отклонений (вариантный)
- 13. Тест на подпоследовательности
- 14. Проверка неперекрывающихся шаблонов
- 15. Проверка линейной сложности

Выводы о прохождении теста

$$\left[(1-\alpha)-3\sqrt{\frac{\alpha(1-\alpha)}{m}},\qquad (1-\alpha)+3\sqrt{\frac{\alpha(1-\alpha)}{m}}\right], m-\text{объем выборки}$$

$$\chi^2 = rac{\sum_{i=1}^k \! \left(v_i - {m/_k}
ight)^2}{{m/_k}}$$
, v_i — количество p $value$ на i — ом интервале

Запуск тестового скрипта на тестовых данных

```
(base) lalogin@MacBook-Air-Sergej sts-2.1.2 % ./assess 100000
          GENERATOR SELECTION
   [0] Input File
                                 [1] Linear Congruential
   [2] Quadratic Congruential I [3] Quadratic Congruential II
   [4] Cubic Congruential
                                 [5] XOR
   [6] Modular Exponentiation
                                 [7] Blum-Blum-Shub
   [8] Micali-Schnorr
                                 [9] G Using SHA-1
  Enter Choice: 0
               User Prescribed Input File: data/data.pi
               STATISTICAL TESTS
   [01] Frequency
                                       [02] Block Frequency
   [03] Cumulative Sums
                                       [04] Runs
   [05] Longest Run of Ones
                                       [06] Rank
                                       [08] Nonperiodic Template Matchings
   [07] Discrete Fourier Transform
   [09] Overlapping Template Matchings [10] Universal Statistical
   [11] Approximate Entropy
                                       [12] Random Excursions
   [13] Random Excursions Variant
                                       [14] Serial
   [15] Linear Complexity
        INSTRUCTIONS
           Enter 0 if you DO NOT want to apply all of the
           statistical tests to each sequence and 1 if you DO.
```

Enter Choice: 1

```
Parameter Adjustments
   [1] Block Frequency Test - block length(M):
                                                     128
   [2] NonOverlapping Template Test - block length(m): 9
   [3] Overlapping Template Test - block length(m):
                                                     9
   [4] Approximate Entropy Test - block length(m):
                                                     10
   [5] Serial Test - block length(m):
                                                     16
   [6] Linear Complexity Test - block length(M):
                                                     500
  Select Test (0 to continue): 0
  How many bitstreams? 10
  Input File Format:
   [0] ASCII - A sequence of ASCII 0's and 1's
   [1] Binary - Each byte in data file contains 8 bits of data
  Select input mode: 0
    Statistical Testing In Progress......
    Statistical Testing Complete!!!!!!!!!!
(base) lalogin@MacBook-Air-Sergej sts-2.1.2 %
```

Начальные данные и результаты

			dat	a.pi		
					01011	
					01100	
					11000	
					11011	
					10111	
					01001 :	
					01110	
					01111	
					01010	
					11101:	
					10001	
					00101	
					10101	
					11110	
					11001	
					10111	
					10000	
					00110	
					10101	
					00010	
					00011	
					10110	
					00111	
					00000	
					10111:	
					10110	
					11110	
					01111	
					00110	
000	1111	1010	1111	<u>1101</u>	10101	000

RESU	LTS	FOR	THE	UNIF	ORMI	TY 0	 F P-		JES A	ND THE PR	OPORTION OF	PASSING SEQUENCES
g	ener	ator	is	<dat< td=""><td>a/da</td><td>ta.p</td><td>i></td><td></td><td></td><td></td><td></td><td></td></dat<>	a/da	ta.p	i>					
C1	C2	С3	C4	C5	C6	С7	C8	C9	C10	P-VALUE	PROPORTION	STATISTICAL TEST
1	1	3	0	0	2	1	0	1	1	0.534146	10/10	Frequency
1	2	1	0	2	2	1	0	1	0	0.739918	10/10	BlockFrequency
1	1	1	2	1	0	0	2	1	1	0.911413	10/10	CumulativeSums
1	2	0	1	1	1	1	2	1	0	0.911413		CumulativeSums
0	4	1	1	0	2	0	1	0	1	0.122325	10/10	Runs
0	1	0	4	1	0	1	1	1	1	0.213309		LongestRun
1	1	0	1	1	1	2	1	0	2	0.911413	10/10	Rank
2	1	0	0	2	1	1	1	2	0	0.739918	10/10	FFT
1	2	1	0	2	2	1	1	0	0	0.739918	10/10	NonOverlappingTemplate
1	3	0	0	3	3	0	0	0	0	0.035174	10/10	NonOverlappingTemplate
3	1	1	0	0	1	0	3	0	1	0.213309	10/10	NonOverlappingTemplate
2	0	1	2	1	0	1	2	1	0	0.739918	10/10	NonOverlappingTemplate
0	2	1	1	0	2	1	1	2	0	0.739918	10/10	NonOverlappingTemplate
1	1	1	1	0	1	0	2	2	1	0.911413	10/10	NonOverlappingTemplate
0	2	1	1	1	2	1	0	1	1	0.911413	10/10	NonOverlappingTemplate
2	1	1	1	1	0	1	3	0	0	0.534146	10/10	NonOverlappingTemplate
1	0	1	1	1	2	1	0	2	1	0.911413	9/10	NonOverlappingTemplate
0	0	2	1	0	1	1	4	1	0	0.122325	10/10	NonOverlappingTemplate
0	2	0	2	0	1	2	1	1	1	0.739918		NonOverlappingTemplate
2	1	1	1	1	1	0	0	2	1	0.911413	10/10	NonOverlappingTemplate
1	1	3	1	0	1	1	1	1	0	0.739918	10/10	NonOverlappingTemplate
4	0	1	0	0	1	1	1	0	2	0.122325	9/10	NonOverlappingTemplate
1	2	1	0	1	2	1	0	0	2	0.739918		NonOverlappingTemplate
3	0	1	1	1	1	0	2	1	0	0.534146		NonOverlappingTemplate
2	1	0	0	2	1	1	2	0	1	0.739918		NonOverlappingTemp∛ate
0	0	1	3	1	2	0	1	1	1	0.534146	10/10	NonOverlappingTemplate

ГСЧ в моделировании

- Метод Монте-Карло
- Имитация случайных событий
- Моделирование полной группы несовместных событий
- Моделирование случайных величин
- Моделирование нормального распределения
- Моделирование потоков случайных событий
- Моделирование марковских процессов

ГСЧ в методе Монте-Карло

Использование метода Монте-Карло для исследования систем со случайными параметрами

Имитация случайных событий

Моделирование полной группы несовместных событий ¹

Моделирование случайных величин

Моделирование нормального распределения

Получить последовательность X вида $Norm(m_X, \sigma_X)$

- 1. Генерация n случайных чисел r_i , образующих ряд S,где $m_S = \frac{n}{2}$, $\sigma_S = \sqrt{\frac{n}{12}}$
- 2. z-стандартизация: $z_i = \frac{s_i m_S}{\sigma_S}$
- 3. Сдвиг и масштабирование до требуемого распределения: $x_i = z_i * \sigma_x + m_x$

Моделирование потоков случайных событий

$$P_{m} = \frac{a^{m}e^{-a}}{m!}$$

$$\lambda(t) = const$$

$$P_{m} = \frac{(\lambda \tau)^{m}e^{-\lambda \tau}}{m!}$$

$$P_{m} = \frac{(\lambda \tau)^{0}e^{-\lambda \tau}}{m!}$$

$$P_{0} = \frac{(\lambda \tau)^{0}e^{-\lambda \tau}}{0!} = e^{-\lambda \tau}$$

$$P_{m>0} = 1 - P_{0} = 1 - e^{-\lambda \tau}$$

Алгоритм моделирования потока случайных событий

1.
$$t = 0, N = 0$$

2. Получить r из ГСЧ

3.
$$\tau = -\frac{1}{\lambda} \ln(r)$$

4.
$$t = t + \tau$$

5.
$$N = N + 1$$

6.
$$t \leq T$$
?

7. Да — возврат к шагу 2, нет — конец

Моделирование марковских процессов

Интервалы
$$P_{i1}$$
, P_{i2} , P_{i3} , ... $(P_{i1} + P_{i2} + P_{i3} + ... = 1)$

Пример моделирования марковского процесса

	S ₀	S ₁	S ₂
S ₀	0.45	0.4	0.15
S ₁	0	0.45	0.55
S ₂	0	0	1

Вектор начальных состояний $P_0 = (1, 0, 0)$

Последовательность переходов:

1.
$$r = 0.27, S_0$$

2.
$$r = 0.49, S_1$$

3.
$$r = 0.34, S_1$$

4.
$$r = 0.78, S_2$$