Cedar

VGA(header) +HDMI + DVI

PCI-EXPRESS EDGE CONNECTOR

+12<u>V_BUS</u>

GND#B80 PRSNT2#B81 RSVD#B82

PRESENCE

(2) Cedar PCIE Interface NOTE: some of the PCIE testpoints will be available through via on traces. PART 1 OF 10 1 PETp0_GFXRp0 1 PETp0 GFXRp0 AE29 AD28 PCIE_RX1P PCIE_RX1N 1 PETp1_GFXRp1 1 PETn1_GFXRn1 GFXTp1_PERp1 GFXTn1_PERn1 AD30 PCIE_RX2P PCIE_RX2N 1 PETp2_GFXRp2 1 PETn2_GFXRn2 AC29 PCIE_RX3P PCIE_RX3N 1 PETp3_GFXRp3 1 PETn3_GFXRn3 GFXTp3_PERp3 GFXTn3_PERn3 PCI-EXPRESS 1 PETp4_GFXRp4 1 PETn4_GFXRn4 GFXTp4_PERp4 GFXTn4_PERn4 1 PETp6_GFXRp6 1 PETn6_GFXRn6 GFXTp6_PERp6 GFXTn6_PERn6 W29 V28 PCIE_RX7P PCIE_RX7N 1 PETp7_GFXRp7 1 PETn7_GFXRn7 GFXTp7_PERp7 GFXTn7_PERn7 V30 PCIE_RX8P PCIE_RX8N 1 PETp8_GFXRp8 1 PETn8_GFXRn8 U29 T28 PCIE_RX9P PCIE_RX9N 1 PETp9_GFXRp9 1 PETn9_GFXRn9 T30 PCIE_RX10P PCIE_RX10N 1 PETp10_GFXRp10 1 PETn10_GFXRn10 1 PETp11_GFXRp11 1 PETn11_GFXRn11 GFXTp11_PERp11 GFXTn11_PERn11 P30 N31 PCIE_RX12P PCIE_RX12N 1 PETp12_GFXRp12 1 PETn12_GFXRn12 GFXTp12_PERp12 1 GFXTn12_PERn12 1 N29 PCIE_RX13P PCIE_RX13N 1 PETp13_GFXRp13 1 PETn13_GFXRn13 M30 L31 PCIE_RX14P PCIE_RX14N 1 PETp14_GFXRp14 X 1 PETn14_GFXRn14 GFXTp14_PERp14 1 GFXTn14_PERn14 1 K30 PCIE_RX15P PCIE_RX15N 1 PETp15_GFXRp15 1 PETn15_GFXRn15 GFXTp15_PERp15 1 GFXTn15_PERn15 1 AK30 PCIE_REFCLKP PCIE_REFCLKN AA22 PCIE_CALRN PCIE_CALRI 1 PCIE_REFCLKP 1 PCIE_REFCLKN Y22 PCIE_CALRP 1.27K AL27 PERSTB 1,22 PERST#_buf >> **AMD** Commerce Valley Drive East Markham, Ontario Tuesday, February 19, 2013

et 2 of 23

Title Cedar DDR3 2GB 8pcs 128Mx16

(06) Cedar TMDP E&F LVTMDP INTERFACE U1G Part 7 of 10 AK24 AJ23 DPF RSVD#6 RSVD#4 AG19 NC_DPF_PVDD –>>T2X5P −>>T2X5M T2X5P_DPF0P 20 20 T2X5M_DPF0N ->>T2X4P ->>T2X4M NC_DPF_PVSS T2X4P DPF1P T2X4M_DPF1N 20 ->>T2X3P ->>T2X3M 20 AG17 DPF_VDD18#2 DPF_VDD18#1 T2X3P_DPF2P T2X3M_DPF2N T2XCFP_DPF3P T2XCFM_DPF3N AM22 AM24 DPF VSSR#4 DPF_VSSR#5 DPF_VSSR#2
DPF_VSSR#1
AF23
AM20 AG23 DPF_VDD10#2 DPF_VDD10#1 DPF_VSSR#3 AL19 AK18 DPE RSVD#7 RSVD#5 ->>T2X2P ->>T2X2M T2X2P_DPE0P T2X2M DPE0N +1.8V AJ17 20 BR1500___ AG18 DPE_PVDD ->>T2X1P ->>T2X1M T2X1P_DPE1P T2X1M_DPE1N C1509 C1502 1uF_6.3V ->>T2X0P ->>T2X0M 20 20 T2X0P_DPE2P T2X0M_DPE2N DPE_PVSS ->>T2XCEP ->>T2XCEM T2XCEP_DPE3P T2XCEM_DPE3N +1.8V DPE_VSSR#3
DPE_VSSR#2
DPE_VSSR#1
AM14
AH14
AG14
AG14
AM16
AM16 DPE_VDD18#2 DPE_VDD18#1 C1510 C1505 1uF_6.3V 100nF AM18 DPE_VSSR#5 +1<u>V</u> CALIBRATION DPE_VDD10#2 DPE_VDD10#1 B1503 _____ BLM15BD121SN1 +DPE_VDD10 AF17 DPEF_CALR 150R R1500 DPEF_CALR C1511+ RV710 A11 HF MVD FT1 BIN1 C1506 4.7uF_6.3V C1508 1uF_6.3V CONFIDENTIAL & PROPRIETARY TO ADVANCED MICRO DEVICES INC CONFIDENTIAL & PROPRIETARY TO ADVANCED MICRO DEVICES IN 2007 Advanced Micro Devices This AMD Board schematic and design is the exclusive property of AMD, and is provided only to entities under a non-disclosure agreement with AMD for evaluation purposes. Further distribution or disclosure is strictly prohibited. Use of this schematic and design for any purpose other than evaluation requires a Board Technology License Agreement with AMD. AMD makes no representations or warranties of any kind regarding this schematic and design, including, not limited to, any implied warranty of merchantifility of thress for a particular purpose, and disclaims responsibly from concequences resulting turns use of the information included herein. Advanced Micro Devices Inc. **AMD** 1 Commerce Valley Drive East Markham, Ontario Date: Tuesday, February 19, 2013 Sheet 6 of

Title Cedar DDR3 2GB 8pcs 128Mx16

(13) Linear Regulators

LDO #1: Vin = 3.00V to 3.60V (3.3V +/- 9%) Vout = +1.8V +/- 2%; lout = 1.6A (TBV) RMS MAX PCB: 50 to 70mm sq. copper area for cooling

Regulators for +5V_VESA

LDO #2: Vin = ± 1.32 V to ± 1.84 VMAX Vout = ± 1.01 V +/- 2% lout = ± 1.7 A (TBV) RMS MAX PCB: 50 to 70mm sq. copper area for cooling

1.0V WORST-CASE REQUIREMENT					
Display Config	Est. Current				
DVI+HDMI+DP	1560mA				

(14) Power Management

Power up/down Sequencing

Power Sequence Circuit to ensure SMPS_EN is released after +12V_BUS and +3.3V_BUS are both in regulation.

Power Play

VDDC Voltage Settings Using GPIOs

		Output Voltage (V)				
PWRCNTL_1 GPIO_20	PWRCNTL_0 GPIO_15	Rf1= Rf2=		Rf1= Rf2=	Rf1= Rf2=	
GF10_20	GF10_15	RIZ-		RL2-	RL2-	
0	0					
0	1					
1	0					
1	1	1	0	1		Power-up Default

MVDD Voltage Settings Using GPIOs

	Output Voltage (V)					
PWRCNTL_2			Rf1=	Rf1=		
GPIO_6	R£2=		Rf2=	Rf2=		
0						
				1		
			_			
1	1	0	1	1	Power-up Default	

11.32k-ohm (3160113200G). Vout = 1.507V

MVDDC_FB 12

R4

R710

R710

R710

R710

R710

R711

CONPIDENTIAL A PROPRIETANT TO ADVANCED MICRO DEVICES NC.
TODAY Advanced Micro Devices
TODAY Advanced Micro Devices
TODAY Advanced Micro Devices
Today Advanced Micro Devices
Today Advanced Micro Micro Micro Micro Micro
And So provided only to entitles under a non-disclosure agreement
with AMAD for advancine proposes. Further dischlosure of destinate
of the first enduration regions is flowed? Technology Literate Agreement
with AMAD. AMD makes no representations or warrested and yet
of a specific place and or depicy, including, not limited to,
purpose, and defining responsibility foreign consequences resulting
Today purpose, and defining responsibility foreign consequences resulting
Today Technology Company Company Company Company
Technology Compa

Advanced Micro Devices Inc.
1 Commerce Valley Drive East
Matriham, Ontario.

10c: Tuesday, February 19, 2013

Rev 2

10ct 14 of 23

Title Cedar DDR3 2GB 8pcs 128Mx16

Doc No.

(19) DAC2 OUTPUT

DAC 2 OUTPUT

20

Place close to Connector

Pseudo differential RGB signals should be routed from the ASIC to the display connector without switching reference plane or running over split plane

SYNC and DDC should be routed from the ASIC to the display connector without switching reference plane or running over split plane

(20) DVI OUTPUT

DPE / DPF OUTPUT

CONFIDENTIAL & PROPRIETANT TO ADVANCED MICRO DEVICES NC.
TOTAL AND Depart behavior and design is the exchance property of AND,
sin AND Development on ord design is the exchance property of AND,
sin AND Development or every development or an extensive property of AND,
sin AND Development or every development or every purpose
sin AND AND Manaters on representation or war-series of any build
represently the schematics and design, handders, on the instead to,
purpose, and disclaims representably invary consequences essenting
from use of the information included house.

Table Cectar DDR3 2GB 8pcs 128MX16

Tele Cectar DDR3 2GB 8pcs 128MX16

