Final_project

Edgar Rosales,

2023-12-10

library(caret)

```
## Loading required package: ggplot2
## Loading required package: lattice
```

Part 1:data importing and pre-processing

house_data, which originated from house_sales.csv and imported through the read.csv function, provides a dataset that consists of 21,613 ojbects and 21 different variables. These variables consist of numerics (int & num) and character strings.

```
house_data <- read.csv("house_sales.csv", na.strings = "")
str(house_data)</pre>
```

```
## 'data.frame':
                  21613 obs. of 21 variables:
##
   $ id
                        7.13e+09 6.41e+09 5.63e+09 2.49e+09 1.95e+09 ...
                  : num
                         "20141013T000000" "20141209T000000" "20150225T000000" "20141209T000000" ...
##
   $ date
                 : chr
##
   $ price
                        221900 538000 180000 604000 510000 ...
                  : num
##
   $ bedrooms
                : num 3 3 2 4 3 4 3 3 3 3 ...
   $ bathrooms
                  : num 1 2.25 1 3 2 4.5 2.25 1.5 1 2.5 ...
   $ sqft_living : num
                        1180 2570 770 1960 1680 ...
##
   $ sqft lot
                        5650 7242 10000 5000 8080 ...
##
                  : num
  $ floors
##
                 : num 1 2 1 1 1 1 2 1 1 2 ...
   $ waterfront : int 0 0 0 0 0 0 0 0 0 ...
##
   $ view
                 : int
                        0 0 0 0 0 0 0 0 0 0 ...
##
   $ condition
                : int
                        3 3 3 5 3 3 3 3 3 3 ...
  $ grade
                : int 77678117777...
##
##
   $ sqft above : int 1180 2170 770 1050 1680 3890 1715 1060 1050 1890 ...
                        0 400 0 910 0 1530 0 0 730 0 ...
   $ sqft_basement: int
##
                 : int 1955 1951 1933 1965 1987 2001 1995 1963 1960 2003 ...
##
   $ yr_built
  $ yr_renovated : int  0 1991 0 0 0 0 0 0 0 0 ...
##
  $ zipcode
                        98178 98125 98028 98136 98074 98053 98003 98198 98146 98038 ...
                 : int
## $ lat
                  : num
                        47.5 47.7 47.7 47.5 47.6 ...
                  : num -122 -122 -122 -122 -122 ...
##
   $ long
   $ sqft_living15: int 1340 1690 2720 1360 1800 4760 2238 1650 1780 2390 ...
   $ sqft_lot15
                : int 5650 7639 8062 5000 7503 101930 6819 9711 8113 7570 ...
```

taking care of missing data

```
colSums(is.na(house_data))
##
              id
                           date
                                                    bedrooms
                                                                  bathrooms
                                         price
##
               0
                              0
                                                         1134
                                                                        1068
##
                                                                       view
     sqft living
                       sqft lot
                                                  waterfront
                                        floors
##
                           1044
                                             0
            1110
                                                                          0
##
       condition
                          grade
                                    sqft_above sqft_basement
                                                                   yr_built
##
                              0
                                             0
                                                            0
                                                                           0
##
    yr_renovated
                        zipcode
                                           lat
                                                         long sqft_living15
##
               0
                              0
                                             0
                                                            0
##
      sqft_lot15
##
house_data_clean <- na.omit(house_data)</pre>
colSums(is.na(house data clean))
##
              id
                           date
                                         price
                                                    bedrooms
                                                                  bathrooms
##
               0
                              0
                                                                          0
##
                       sqft_lot
                                                                       view
     sqft_living
                                        floors
                                                  waterfront
##
               0
                              0
                                             0
                                                                          0
##
                          grade
       condition
                                   sqft_above sqft_basement
                                                                   yr_built
##
               0
                              0
                                             0
                                                            0
                                                                           0
##
    yr_renovated
                        zipcode
                                           lat
                                                        long sqft_living15
##
                                             0
                                                            0
               0
                              0
                                                                          0
##
      sqft_lot15
##
               0
checking for any duplicated rows
#Checking for duplicated rows
duplicates <- house_data_clean[duplicated(house_data_clean), ]</pre>
#Display the duplicated rows
print(duplicates)
##
   [1] id
                       date
                                     price
                                                    bedrooms
                                                                   bathrooms
## [6] sqft_living
                       sqft_lot
                                                    waterfront
                                     floors
                                                                   view
## [11] condition
                       grade
                                      sqft_above
                                                    sqft basement yr built
## [16] yr_renovated zipcode
                                     lat
                                                    long
                                                                   sqft_living15
## [21] sqft lot15
## <0 rows> (or 0-length row.names)
# Convert 'date' to Date format
house_data_clean$date <- as.Date(house_data_clean$date, format="%Y%m%dT%H%M%S")
str(house_data_clean)
## 'data.frame':
                    17618 obs. of 21 variables:
## $ id
                    : num 7.13e+09 6.41e+09 5.63e+09 2.49e+09 1.95e+09 ...
## $ date
                    : Date, format: "2014-10-13" "2014-12-09" ...
                    : num 221900 538000 180000 604000 510000 ...
## $ price
```

```
## $ bedrooms
                 : num 3 3 2 4 3 4 3 3 3 3 ...
## $ bathrooms
                 : num 1 2.25 1 3 2 4.5 2.25 1.5 1 2.5 ...
## $ sqft_living : num 1180 2570 770 1960 1680 ...
## $ sqft_lot
                 : num 5650 7242 10000 5000 8080 ...
                 : num 1 2 1 1 1 1 2 1 1 2 ...
##
   $ floors
## $ waterfront : int 0 0 0 0 0 0 0 0 0 ...
## $ view
                : int 0000000000...
##
   $ condition
                : int 3 3 3 5 3 3 3 3 3 3 ...
                 : int 77678117777...
##
   $ grade
## $ sqft_above : int 1180 2170 770 1050 1680 3890 1715 1060 1050 1890 ...
  $ sqft_basement: int 0 400 0 910 0 1530 0 0 730 0 ...
               : int 1955 1951 1933 1965 1987 2001 1995 1963 1960 2003 ...
##
   $ yr_built
##
   $ yr_renovated : int  0 1991 0 0 0 0 0 0 0 0 ...
## $ zipcode
                : int 98178 98125 98028 98136 98074 98053 98003 98198 98146 98038 ...
## $ lat
                 : num 47.5 47.7 47.7 47.5 47.6 ...
##
   $ long
                 : num -122 -122 -122 -122 -122 ...
## $ sqft_living15: int 1340 1690 2720 1360 1800 4760 2238 1650 1780 2390 ...
                : int 5650 7639 8062 5000 7503 101930 6819 9711 8113 7570 ...
## $ sqft lot15
## - attr(*, "na.action")= 'omit' Named int [1:3995] 11 13 19 24 25 27 32 33 38 39 ...
    ..- attr(*, "names")= chr [1:3995] "11" "13" "19" "24" ...
```

handling outliers

Here we are showing an example of what our data looks like before we handle outliers

```
# Boxplot for every numeric variable
par(mfrow = c(1, 4))  # Set the layout for multiple plots, adjust based on the number of variables
for (i in 1:ncol(house_data_clean)) {
   if (is.numeric(house_data_clean[, i])) {
      boxplot(house_data_clean[, i], main = names(house_data_clean)[i], col = "skyblue", border = "black"
   }
}
```


here we are showing the changes in boxblots after adjusting for outliers

```
#Specify the constant multiplier for outlier detection
k < -1.5
# Loop through each numeric variable
for (col in names(house_data_clean)) {
  if (is.numeric(house_data_clean[[col]])) {
    # Calculate Q1, Q3, and IQR for the current variable
    Q1 <- quantile(house_data_clean[[col]], 0.25)
    Q3 <- quantile(house_data_clean[[col]], 0.75)
    IQR <- Q3 - Q1
    #Identify outliers for the current variable
    outliers <- house_data_clean[[col]] < Q1 - k * IQR | house_data_clean[[col]] > Q3 + k * IQR
    #Remove outliers from the dataset
    house_data_clean <- house_data_clean[!outliers, ]</pre>
  }
}
par(mfrow = c(1, 4))
for (i in 1:ncol(house_data_clean)) {
  if (is.numeric(house_data_clean[, i])) {
    boxplot(house_data_clean[, i], main = names(house_data_clean)[i], col = "skyblue", border = "black"
}
```

}

Here we use the aggregate function to group taverage house value per zipcode

```
zip_prices <- aggregate(house_data$price, by = list(zipcode = house_data$zipcode), FUN = mean)
colnames(zip_prices) <- c("zipcode", "mean_price")
head(zip_prices)

## zipcode mean_price</pre>
```

```
98001
               280804.7
## 1
               234284.0
       98002
## 2
       98003
## 3
               294111.3
       98004
              1355927.1
## 4
## 5
       98005
               810164.9
       98006
## 6
               859684.8
```

```
ggplot(zip_prices, aes(x = factor(zipcode), y = mean_price)) +
  geom_bar(stat = "identity", fill = "skyblue") +
  labs(title = "Average House Price by Zipcode", x = "Zipcode", y = "Average Price") +
  theme(axis.text.x = element_text(angle = 90, vjust = .5, hjust=2))
```

Average House Price by Zipcode


```
house_data_clean$decade_built <- 10 * (house_data_clean$yr_built %/% 10) # Create a decade category
avg_price_by_decade <- aggregate(house_data_clean$price, by = list(decade_built = house_data_clean$deca
colnames(avg_price_by_decade) <- c("decade_built", "avg_price")

barplot(avg_price_by_decade$avg_price, names.arg = avg_price_by_decade$decade_built, col = "skyblue", m
```

Average House Prices by Decade of Year Built

#Aggregate average house prices by bedrooms and bathrooms avg_price_bed_bath <- aggregate(house_data_clean\$price, by = list(bedrooms = house_data_clean\$bedrooms,</pre> colnames(avg_price_bed_bath) <- c("bedrooms", "bathrooms", "avg_price")</pre> #new column with formatted labels avg_price_bed_bath\$label <- paste(avg_price_bed_bath\$bedrooms, "BR, ", avg_price_bed_bath\$bathrooms, "B. #Get unique values of 'bedrooms' unique_bedrooms <- unique(avg_price_bed_bath\$bedrooms)</pre> #separate bar charts for each unique number of bedrooms for (bedroom_value in unique_bedrooms) { #Subset data for the current number of bedrooms subset_data <- subset(avg_price_bed_bath, bedrooms == bedroom_value)</pre> #new column with formatted labels subset_data\$label <- paste(subset_data\$bedrooms, "BR, ", subset_data\$bathrooms, "BA")</pre> # Bar chart barplot(subset_data\$avg_price, beside = TRUE, names.arg = subset_data\$label, col = "lightgreen", main = paste("Average House Prices by Bedrooms and Bathrooms (", bedroom_value, " Bedrooms)") xlab = "Bedrooms and Bathrooms", ylab = "Average Price (USD)") }

Average House Prices by Bedrooms and Bathrooms (2 Bedrooms

Bedrooms and Bathrooms

Average House Prices by Bedrooms and Bathrooms (4 Bedrooms

Average House Prices by Bedrooms and Bathrooms (3 Bedrooms

Average House Prices by Bedrooms and Bathrooms (5 Bedrooms

Bedrooms and Bathrooms

feature construction

```
house_data_clean$age <- 2023 - house_data_clean$yr_built

house_data_clean$bed_bath_ratio <- house_data_clean$bedrooms / house_data_clean$bathrooms

house_data_clean$total_sqft <- house_data_clean$sqft_living + house_data_clean$sqft_lot

house_data_clean$month_sold <- as.numeric(substr(house_data_clean$date, 5, 6))

house_data_clean$price_per_sqft <- house_data_clean$price / house_data_clean$sqft_living
```

Normalizing

```
#Function to perform Min-Max scaling
min_max_scaling <- function(x) {
   return((x - min(x)) / (max(x) - min(x)))
}

#Columns to normalize
columns_to_normalize <- c("age", "bed_bath_ratio", "total_sqft", "month_sold", "price_per_sqft")

#Min-Max scaling to selected columns
house_data_clean[columns_to_normalize] <- lapply(house_data_clean[columns_to_normalize], min_max_scaling)</pre>
```

```
#summary statistics of normalized features
summary(house_data_clean[columns_to_normalize])
```

```
month_sold
##
                   bed_bath_ratio
                                      total_sqft
        age
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000
## 1st Qu.:0.1652 1st Qu.:0.09722
                                    1st Qu.:0.2501 1st Qu.:1.0000
## Median :0.3826 Median :0.14881
                                    Median :0.3740 Median :1.0000
## Mean :0.3892 Mean :0.16406 Mean :0.3706
                                                   Mean :0.7777
## 3rd Qu.:0.5565
                   3rd Qu.:0.18750
                                    3rd Qu.:0.4773 3rd Qu.:1.0000
## Max. :1.0000
                   Max. :1.00000 Max. :1.0000 Max. :1.0000
## price_per_sqft
## Min. :0.0000
## 1st Qu.:0.1261
## Median :0.2208
## Mean :0.2404
## 3rd Qu.:0.3223
## Max. :1.0000
\# Calculate correlation matrix
correlation_matrix <- cor(house_data_clean[columns_to_normalize])</pre>
# Create a heatmap of the correlation matrix
library(ggplot2)
library(reshape2)
# Melt the correlation matrix for visualization
correlation_melted <- melt(correlation_matrix)</pre>
# Create the heatmap
ggplot(data = correlation_melted, aes(x = Var1, y = Var2, fill = value)) +
 geom_tile() +
 theme_minimal() +
 labs(title = "Correlation Heatmap")
```

Correlation Heatmap

Part2
Identify categorical, ordinal and numerical veriables

Display the structure of the dataframe str(house_data_clean)

```
11263 obs. of 27 variables:
  'data.frame':
   $ id
##
                   : num 7.13e+09 5.63e+09 2.49e+09 1.95e+09 1.32e+09 ...
##
  $ date
                   : Date, format: "2014-10-13" "2015-02-25" ...
##
   $ price
                          221900 180000 604000 510000 257500 ...
                   : num
##
   $ bedrooms
                          3 2 4 3 3 3 3 3 2 3 ...
                   : num
##
                          1 1 3 2 2.25 1.5 1 2.5 1 1.75 ...
   $ bathrooms
                   : num
##
   $ sqft_living : num
                          1180 770 1960 1680 1715 ...
##
   $ sqft_lot
                   : num
                          5650 10000 5000 8080 6819 ...
##
   $ floors
                   : num
                          1 1 1 1 2 1 1 2 1 1 ...
##
  $ waterfront
                          0 0 0 0 0 0 0 0 0 0 ...
                   : int
##
  $ view
                   : int
                          0 0 0 0 0 0 0 0 0 0 ...
                          3 3 5 3 3 3 3 3 4 4 ...
##
   $ condition
                   : int
##
   $ grade
                   : int
                          767877777...
## $ sqft above
                   : int
                          1180 770 1050 1680 1715 1060 1050 1890 860 1370 ...
                          0 0 910 0 0 0 730 0 300 0 ...
## $ sqft_basement : int
   $ yr built
                   : int
                          1955 1933 1965 1987 1995 1963 1960 2003 1942 1977 ...
##
   $ yr_renovated : int
                          0 0 0 0 0 0 0 0 0 0 ...
                          98178 98028 98136 98074 98003 98198 98146 98038 98115 98074 ...
  $ zipcode
                   : int
                   : num 47.5 47.7 47.5 47.6 47.3 ...
##
   $ lat
```

```
: num -122 -122 -122 -122 -122 ...
## $ sqft_living15 : int 1340 2720 1360 1800 2238 1650 1780 2390 1330 1370 ...
## $ sqft lot15 : int 5650 8062 5000 7503 6819 9711 8113 7570 6000 10208 ...
## $ decade_built : num 1950 1930 1960 1980 1990 1960 1960 2000 1940 1970 ...
                   : num 0.522 0.713 0.435 0.243 0.174 ...
## $ bed bath ratio: num 0.3229 0.1875 0.0972 0.1198 0.0972 ...
                 : num 0.28 0.488 0.287 0.434 0.37 ...
## $ total sqft
                   : num 0 1 0 1 1 1 1 1 1 0 ...
## $ month sold
   $ price_per_sqft: num  0.1426 0.2075 0.3131 0.3066 0.0888 ...
## - attr(*, "na.action")= 'omit' Named int [1:3995] 11 13 19 24 25 27 32 33 38 39 ...
   ..- attr(*, "names")= chr [1:3995] "11" "13" "19" "24" ...
# Assuming 'house_data' is your data frame
categorical_vars <- c("waterfront", "view", "zipcode")</pre>
# Checking the unique values in each categorical variable
sapply(house data clean[categorical vars], function(x) unique(x))
## $waterfront
## [1] 0
##
## $view
## [1] 0
##
## $zipcode
## [1] 98178 98028 98136 98074 98003 98198 98146 98038 98115 98107 98019 98103
## [13] 98133 98092 98002 98112 98052 98027 98117 98058 98056 98119 98007 98148
## [25] 98105 98042 98166 98122 98144 98001 98034 98125 98008 98116 98118 98059
## [37] 98023 98102 98168 98029 98006 98109 98177 98030 98126 98040 98155 98053
## [49] 98031 98024 98108 98106 98032 98072 98033 98055 98011 98005 98075 98188
## [61] 98004 98010 98199 98022 98065 98077 98014 98070 98039
categorical_vars
## [1] "waterfront" "view"
                                 "zipcode"
Identifying N
# Assuming 'house_data' is your data frame
ordinal_vars <- c("condition", "grade")</pre>
# Checking the unique values in each ordinal variable
sapply(house_data_clean[ordinal_vars], function(x) unique(x))
##
        condition grade
## [1,]
                3
## [2,]
                      6
                5
## [3,]
                4
                      8
## [4,]
                2
                     9
```

```
# Assuming 'house_data_clean' is your data frame
numerical_vars <- sapply(house_data_clean, is.numeric)
numerical_vars</pre>
```

```
##
                id
                                              price
                                                           bedrooms
                                                                           bathrooms
                               date
##
              TRUE
                             FALSE
                                               TRUE
                                                                TRUE
                                                                                TRUE
##
                                             floors
      sqft_living
                          sqft_lot
                                                         waterfront
                                                                                view
##
              TRUE
                               TRUE
                                               TRUE
                                                                TRUE
                                                                                TRUE
##
        condition
                             grade
                                        sqft_above
                                                      sqft_basement
                                                                            yr_built
##
              TRUE
                              TRUE
                                               TRUE
                                                                TRUE
                                                                                TRUE
##
     yr_renovated
                           zipcode
                                                lat
                                                                long
                                                                      sqft_living15
##
              TRUE
                              TRUE
                                               TRUE
                                                                TRUE
                                                                                TRUE
##
       sqft_lot15
                      decade_built
                                                age bed_bath_ratio
                                                                          total_sqft
##
              TRUE
                                                                TRUE
                                                                                TRUE
                              TRUE
                                               TRUE
##
       month_sold price_per_sqft
##
              TRUE
                               TRUE
```

Measures of centrality and distribution

```
# Assuming 'house_data_clean' is your data frame
numerical_vars <- sapply(house_data_clean, is.numeric)
numerical_vars <- names(numerical_vars[numerical_vars])

# Display summary statistics for numerical variables
summary_stats <- summary(house_data_clean[numerical_vars])

# Print summary statistics
print(summary_stats)</pre>
```

```
##
          id
                             price
                                                bedrooms
                                                                bathrooms
##
    Min.
           :2.800e+06
                         Min.
                                : 82000
                                            Min.
                                                    :2.000
                                                                     :0.500
                         1st Qu.: 295000
    1st Qu.:2.290e+09
                                            1st Qu.:3.000
                                                              1st Qu.:1.500
    Median :3.999e+09
                         Median: 399500
                                            Median :3.000
                                                              Median :2.000
##
    Mean
           :4.684e+09
                         Mean
                                 : 428819
                                            Mean
                                                    :3.221
                                                              Mean
                                                                     :1.938
    3rd Qu.:7.338e+09
                         3rd Qu.: 535000
                                             3rd Qu.:4.000
                                                              3rd Qu.:2.500
                                 :1125000
                                                    :5.000
                                                                     :4.000
##
    Max.
           :9.895e+09
                         Max.
                                            Max.
                                                              Max.
##
     sqft_living
                       sqft_lot
                                         floors
                                                        waterfront
                                                                         view
##
                                             :1.000
    Min.
           : 560
                    Min.
                           : 520
                                     Min.
                                                      Min.
                                                              :0
                                                                    Min.
                                                                            :0
    1st Qu.:1320
                    1st Qu.: 4560
                                     1st Qu.:1.000
                                                      1st Qu.:0
                                                                    1st Qu.:0
##
    Median:1690
                    Median : 6976
                                     Median :1.000
                                                      Median:0
                                                                    Median:0
##
    Mean
           :1746
                    Mean
                           : 6801
                                     Mean
                                            :1.455
                                                      Mean
                                                              :0
                                                                    Mean
##
    3rd Qu.:2130
                                     3rd Qu.:2.000
                                                      3rd Qu.:0
                                                                    3rd Qu.:0
                    3rd Qu.: 8750
##
    Max.
           :3930
                    Max.
                           :17859
                                     Max.
                                             :3.500
                                                      Max.
                                                              :0
                                                                    Max.
                                                                            :0
##
      condition
                         grade
                                        sqft above
                                                      sqft basement
                                                                            yr built
##
    Min.
           :2.000
                     Min.
                            :6.000
                                      Min.
                                             : 480
                                                      Min.
                                                              :
                                                                  0.0
                                                                        Min.
                                                                                :1900
    1st Qu.:3.000
                     1st Qu.:7.000
                                      1st Qu.:1120
                                                      1st Qu.:
                                                                  0.0
                                                                        1st Qu.:1951
##
   Median :3.000
                     Median :7.000
                                      Median:1400
                                                      Median :
                                                                  0.0
                                                                        Median:1971
##
    Mean
           :3.433
                     Mean
                            :7.328
                                      Mean
                                              :1524
                                                      Mean
                                                              : 221.6
                                                                        Mean
                                                                                :1970
##
                                                      3rd Qu.: 440.0
    3rd Qu.:4.000
                     3rd Qu.:8.000
                                      3rd Qu.:1830
                                                                        3rd Qu.:1996
   Max.
##
           :5.000
                     Max.
                             :9.000
                                      Max.
                                              :3090
                                                      Max.
                                                              :1200.0
                                                                        Max.
                                                                                :2015
##
                                         lat
                      zipcode
                                                                       sqft_living15
     yr_renovated
                                                          long
##
                          :98001
                                    Min.
                                           :47.19
    Min.
           :0
                   Min.
                                                     Min.
                                                            :-122.5
                                                                       Min.
```

```
1st Qu.:0
                  1st Qu.:98033
                                   1st Qu.:47.46
                                                    1st Qu.:-122.3
                                                                      1st Qu.:1410
##
    Median :0
                  Median :98074
                                   Median :47.57
                                                    Median :-122.3
                                                                      Median:1670
                          :98082
##
    Mean
           :0
                  Mean
                                           :47.56
                                                    Mean
                                                           :-122.2
                                                                      Mean
                                                                             :1741
                                                    3rd Qu.:-122.2
##
    3rd Qu.:0
                  3rd Qu.:98119
                                   3rd Qu.:47.68
                                                                      3rd Qu.:2030
##
    Max.
           :0
                  Max.
                          :98199
                                           :47.78
                                                    Max.
                                                            :-121.9
                                                                              :2990
##
      sqft lot15
                      decade built
                                                      bed bath ratio
                                          age
                            :1900
                                                      Min.
                                                              :0.00000
##
           : 659
                    Min.
                                    Min.
                                            :0.0000
    1st Qu.: 4668
                    1st Qu.:1950
                                                      1st Qu.:0.09722
##
                                    1st Qu.:0.1652
##
    Median: 7102
                    Median:1970
                                    Median :0.3826
                                                      Median :0.14881
           : 6698
##
    Mean
                    Mean
                            :1966
                                    Mean
                                            :0.3892
                                                      Mean
                                                             :0.16406
    3rd Qu.: 8535
                    3rd Qu.:1990
                                    3rd Qu.:0.5565
                                                      3rd Qu.:0.18750
                            :2010
##
    Max.
           :14482
                                            :1.0000
                                                             :1.00000
                    Max.
                                    Max.
                                                      Max.
##
      total_sqft
                       month_sold
                                       price_per_sqft
           :0.0000
                             :0.0000
                                       Min.
                                               :0.0000
##
    Min.
                      Min.
##
    1st Qu.:0.2501
                      1st Qu.:1.0000
                                       1st Qu.:0.1261
##
    Median :0.3740
                      Median :1.0000
                                       Median :0.2208
##
    Mean
           :0.3706
                             :0.7777
                                               :0.2404
                      Mean
                                       Mean
##
    3rd Qu.:0.4773
                      3rd Qu.:1.0000
                                       3rd Qu.:0.3223
    Max.
           :1.0000
                      Max.
                             :1.0000
                                       Max.
                                               :1.0000
##
# Create histograms for numerical variables
par(mfrow = c(2, 2)) # Set up a 2x2 grid for subplots
```


2e+05 6e+05 1e+06 price

2.0 2.5 3.0 3.5 4.0 4.5 5.0

bedrooms

Histogram of bathrooms

Histogram of price

Histogram of sqft_living

500 1500 2500 3500 sqft_living

Histogram of sqft_lot

Histogram of floors

Histogram of waterfront

Histogram of view

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 view

Histogram of condition

Histogram of grade

Histogram of sqft_above

Histogram of sqft_basement

0 200 600 1000 sqft_basement

Histogram of yr_built

Histogram of yr_renovated

Histogram of zipcode

Histogram of lat

A7.2 47.4 47.6 47.8

Histogram of long

Histogram of sqft_living15

Histogram of sqft_lot15

Histogram of decade_built

1900 1940 1980 decade_built

Histogram of age

Histogram of bed_bath_ratio

Histogram of total_sqft

Histogram of month_sold

Histogram of price_per_sqft


```
correlation_matrix <- cor(house_data_clean[, sapply(house_data_clean, is.numeric)])

## Warning in cor(house_data_clean[, sapply(house_data_clean, is.numeric)]): the

## standard deviation is zero

library(caret)
nearZeroVarCols <- nearZeroVar(house_data_clean, saveMetrics = TRUE)

library(caret)

# Assuming 'house_data_clean' is your data frame
nearZeroVarCols <- nearZeroVar(house_data_clean, saveMetrics = TRUE)

# Extract the names of near-zero variance columns
nearZeroVarNames <- names(house_data_clean)[nearZeroVarCols$nzv]

# Exclude near-zero variance variables from the dataset
filtered_data <- house_data_clean[, !names(house_data_clean) %in% nearZeroVarNames]

# Assuming 'filtered_data' is your dataset without near-zero variance variables

# Select numeric variables for correlation analysis
numeric_variables <- filtered_data[, sapply(filtered_data, is.numeric)]</pre>
```

```
# Compute the correlation matrix for numeric variables
correlation_matrix_filtered <- cor(numeric_variables)

# Visualize the correlation matrix using a heatmap
library(corrplot)</pre>
```

corrplot 0.92 loaded

corrplot(correlation_matrix_filtered, method = "color")

