- 47. A 1.0 L reaction vessel contains 0.750 mol of CO(g) and 0.275 mol of $H_2O(g)$. After 1 h, equilibrium is reached according to the equation $CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$. Analysis shows 0.250 mol of CO_2 present at equilibrium. What is K_{eq} for the reaction?
- 48. A 5.0 L reaction vessel was initially filled with 6.0 mol of SO_2 , 2.5 mol of NO_2 and 1.0 mol of SO_3 . After equilibrium was established according to the equation $SO_2(g) + NO_2(g) \Longrightarrow SO_3(g) + NO(g)$, the vessel was found to contain 3.0 mol of SO_3 . What is Key for the reaction?

- 49. Consider the equilibrium $N_2(g) + 3 H_2(g) \iff 2 NH_3(g)$.
 - (a) At a certain temperature 3.0 mol of N_2 and 2.0 mol of H_2 are put into a 5.0 L container. At equilibrium the concentration of N_3 is 0.020 M. Calculate K_{eq} for the reaction.
 - (b) At a different temperature, 6.0 mol of NH $_3$ were introduced into a 10.0 L container. At equilibrium 2.0 mol of NH $_3$ were left. Calculate $K_{\rm eq}$ for the reaction.
- 56. A student obtained the following data at 25°C while studying the equilibrium $2TI^{+}(aq) + Cd(s) \implies 2TI(s) + Cd^{2+}(aq)$.

Volume Moles	TI ⁺ Moles	Cd^{2+}
1.00 L	0.316	0.414
5.00 L	?	0.339

Calculate the number of moles of TI⁺ present in the second data set.