1 Logique des propositions

Exercice 1 – Sémantique, d'après Lassaigne & de Rougemont

- 1. Soit $F = (p \land q \land \neg r) \lor (p \land \neg q \land r) \lor (\neg p \land q \land r)$. F et $\neg F$ sont-elles satisfiables? Sont-elles des tautologies? Justifier.
- 2. Trouver une formule G telle que $(F \wedge G) \vee (\neg F \wedge \neg G)$ soit une tautologie.
- 3. Soit F' obtenue en remplaçant p par $\neg p$ (et réciproquement). F' est-elle conséquence de F ? F est-elle conséquence de F ? Justifier.

Solisficiale: $\frac{1}{2}$ interpretation by La formula sol raise. $[-1]^{T} = 0$ $[-1]^{T} = 1$ $[-1]^{T} = [-1]^{T} = [-1]^{T}$ $[-1]^{T} = [-1]^{T} = [-1]^{T}$

F sortsfielde con l'intempretation In défini pour In(p)=1, In(q)=1 et In(r)=0

sodisfail la forme CFJ=1=1.

Hubre ecviture I1 = {p:4? (Interpretation totale).

\$9.72

\$p.74

F sotisficiale >> 7F non valide

F insaksfielde (>) 7F valide

TF satisfiable (>> From valid / neot pao une tautologie.

7F insatisfable (>> Fralide

les des toutologies au Fet ? F sont satisfialles.

G to P=(FAG) v (7FA7G) toutobogge.

och 1 anec injurbustation

& G=F (FAF) V(7FA7F) = FV7F=T

Ter 2 does les frimles.

Comme $CTJ^{\pm}=1$. Hinderpretation, et P=T (qui signific $CPJ^{\pm}=CTJ^{\pm}=1$)

Yest une toutologie.

γ = (FV7F) Λ (FV7G) Λ (GV7F) Λ (GV7G) = ΤΛ (FV7G) Λ (GV7F) ΛΤ

1 → >> toutologie

= (7GUF) ~ (7FVG)

= GSF A FSG

= F -> G

$$F' = (?p \land q \land rr) \lor (?p \land rq \land rr) \lor (p \land q \land rr)$$

$$F \not\models F' \quad \forall interpreta^{\circ} \quad I \quad CFJ^{2} = 1 \quad does \quad CF'J^{2} = 1 \quad \forall IJ[F]I = 13 \subseteq \{IJ[F'JI = 13] \}$$

$$\{p;q\} \quad sotisfail \quad F \quad mais \quad sotisfail \quad pao \quad F' \quad does \quad F \not\models F'$$

$$\{p;q;r\} \quad sotisfail \quad F' \quad mais \quad pao \quad F \quad does \quad F' \not\models F.$$

$$\{p;q;r\} \quad sotisfail \quad F' \quad mais \quad pao \quad F \quad does \quad F' \not\models F.$$

$$\{p;q;r\} \quad sotisfail \quad F' \quad mais \quad pao \quad F \quad does \quad F' \not\models F.$$

$$\{p;q;r\} \quad sotisfail \quad F' \quad mais \quad pao \quad F \quad does \quad F' \not\models F.$$

$$\{p;q;r\} \quad sotisfail \quad F' \quad mais \quad pao \quad F \quad does \quad F' \not\models F.$$

Exercice 2 – Méthode des tableaux sémantiques

Que peut-on dire des formules suivantes en utilisant la méthode des tableaux sémantiques?

- $F_1 = a \land \neg(b \to a)$
- $F_2 = ((a \lor c) \land (b \lor c)) \rightarrow (\neg b \rightarrow ((a \land b) \lor c))$
- $F_3 = \neg((a \to b) \to (\neg b \to \neg a))$ pao soksfolde
- $F_4 = ((a \rightarrow b) \land (b \rightarrow c)) \lor ((c \rightarrow b) \land (b \rightarrow a))$
- $F_5 = (a \rightarrow b) \rightarrow ((b \rightarrow c) \leftrightarrow (a \rightarrow c))$
- $F_6 = ((a \rightarrow b) \land (b \rightarrow c)) \rightarrow (a \rightarrow c)$

donc satisfiable.

$$F_{4} = ((a \rightarrow b) \land (b \rightarrow c)) \lor ((c \rightarrow b) \land (b \rightarrow a))$$

$$(a \rightarrow b) \land (b \rightarrow c)$$

$$(a \rightarrow b) \rightarrow (c \rightarrow c)$$

$$(a \rightarrow c) \rightarrow (a \rightarrow c)$$

$$(a \rightarrow c) \rightarrow (a$$

Exercice 3 – Preuves de Hilbert

1. Justifier chaque étape de la démonstration ci-dessous dans le système formel de Hilbert et identifier le résultat démontré :

F_1	p	[Huge]	Hyp
F_2	$\neg q o r$	[Hyp]	SA
F_3	$\neg \neg p \rightarrow \neg r$	[Hyp]	MP
F_4	$(\neg \neg p \to \neg r) \to (r \to \neg p)$	[8A3]	
F_5	$r \to \neg p$	[MPF]ZFY	
F_6	$(r \to \neg p) \to (\neg q \to (r \to \neg p))$	[SA1]	
F_7	$\neg q \to (r \to \neg p)$	[MP F&F6	
F_8	$(\neg q \to (r \to \neg p)) \to ((\neg q \to r) \to (\neg q \to \neg p))$	[SA2]	
F_9	$(\neg q \to r) \to (\neg q \to \neg p)$	[MPF]F8	
F_{10}	$\neg q \rightarrow \neg p$	MP F2 F9	
F_{11}	$(\neg q \to \neg p) \to (p \to q)$	[SA3]	
F_{12}	$p \rightarrow q$	MP FJOF11	
F_{13}	q	MPF1F12	

2. En utilisant le théorème de la déduction, rappelé ci-dessous :

Si
$$A_1,A_2,\ldots,A_n\vdash B$$
 alors $A_1,A_2,\ldots,A_{n-1}\vdash (A_n\to B)$ établir que $\vdash (A\to B)\to ((B\to C)\to (A\to C))$

F1: A HUP
F2:
$$A \rightarrow B$$
 Hup
F3: $B \rightarrow C$ Hup
F4: B MPF1F2
F5: C MPF3F4

On a map $A \rightarrow B$, $B \rightarrow C$, $A \rightarrow C$. en appliquant ≥ 865 le th. de la déduction, on en deduct $(A \rightarrow B) \rightarrow ((B \rightarrow C) \rightarrow (A \rightarrow C))$

alors $A_1, ..., A_{n-1} \vdash A_n \rightarrow B$

S. Az. Ant B

Exercice 4 – Preuve de Hilbert

Démontrer les théorèmes suivants dans le système formel de Hilbert :

$$\begin{array}{lll} \text{C} & 1. & \vdash \neg B \rightarrow (B \rightarrow C) \\ \text{C} & 2. & \vdash \neg \neg B \rightarrow B \\ \text{C} & 3. & \vdash B \rightarrow \neg \neg B \end{array} \\ \begin{array}{lll} \text{A} \rightarrow (B \rightarrow C) \\ \text{SA2} & (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)) \\ \text{SA3} & (\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B) \\ \text{A. } A \rightarrow B \rightarrow B \\ \text{A. } A \rightarrow B \rightarrow B \\ \end{array}$$

1.
$$f \circ B \rightarrow (B \rightarrow C)$$

F1: $7B \subset Hyp$
 $f_2 : 7B \rightarrow (7C \rightarrow 7B) \subset SA_1$ introduct & variable.

 $f_3 : 7C \rightarrow 7B \subset Hyp \cap F_2$
 $f_4 : (7C \rightarrow 7B) \rightarrow (B \rightarrow C) \subset SA_3$

F5: $f_5 : f_7 \in S$

78-> (7C > 7B) On a provie 7B+B-> C en appliquant le th de la deduction, on en deduct +7B-> (B>C)

On a prome 778+B. On en deduit LTH de la deduction +77B >B

Exercice 5 – Sémantique

Quel est le nombre maximum de formules non équivalentes que l'on peut former avec n variables propositionnelles? Quelles sont-elles pour n = 1?

fomule equivalente = in interpretation.

2º nb d'interpretation lognes de table de venté : nb de sous eus d'un en de condinal n.

nb de firmles quien peut créer pour n raviables: 22º

2 Logique des prédicats du premier ordre (LPPO)

2.1 Représentation

Exercice 6

En utilisant les symboles de prédicats et fonctions suivants

représenter les phrases suivantes par des formules de la LPPO :

- 1. tout Anglais hait quelqu'un
- 2. le pire ennemi de Napoléon est anglais
- 3. tout Anglais hait son pire ennemi
- 4. tout le monde connaît quelqu'un qu'il hait et quelqu'un qu'il ne hait pas
- 5. celui qui connaît son pire ennemi ne le hait pas

1.
$$\forall x, \exists y, A(x) \rightarrow H(x,y)$$
 $\forall x \exists y A(x) \rightarrow \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \land x \exists y H(x,y)$
 $\forall x \exists y A(x) \land x \exists y H(x,y)$
 $\forall x \exists y A(x) \land x \exists y H(x,y)$
 $\forall x \exists y A(x) \land x \exists y H(x,y)$
 $\forall x \exists y A(x) \land x \exists y H(x,y)$
 $\forall x \exists y A(x) \land x \exists y H(x,y)$
 $\forall x \exists y A(x) \land x \exists y H(x,y)$
 $\forall x \exists y A(x) \land x \exists y H(x,y)$
 $\forall x \exists y A(x) \land x \exists y H(x,y)$
 $\forall x \exists y A(x) \land x \exists y H(x,y)$
 $\forall x \exists y A(x) \land x \exists y H(x,y)$
 $\forall x \exists y A(x) \land x \exists y H(x,y)$
 $\forall x \exists y A(x) \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \forall x \exists y H(x,y)$
 $\forall x \exists y A(x) \forall x \exists y H(x,y)$
 $\forall x \exists y A(x,y) \forall x \exists y H(x,y)$
 $\forall x \exists y A(x,y) \forall x \exists y H(x,y)$
 $\forall x \exists y$

forme prenexe: tous les quantificateurs sont au about et appliquée à toute la

Forme normale negative: negation douant les vanicibles et pas devant operateur Exercice 7

On considère le domaine des œuvres littéraires, le domaine des auteurs et le domaine des êtres humains. Les symboles de constantes a, m, s représentent respectivement Alice, "Les mots" et Jean-Paul Sartre. Les prédicats unaires D et R sont tels que D(x) représente "x est un membre du département de littérature" et R(x) "x est un roman", les prédicats binaires E et L tels que E(x,y) représente "x a écrit y" et L(x,y) "x a lu y".

- Représenter les phrases suivantes par des formules de la LPPO
 - (a) Un des membres du département de littérature a lu Les mots.
 - (b) Tous les membres du département de littérature ont lu Les mots.
 - (c) Alice a lu un roman de Sartre

5. $\forall x \left(C(x,e(x)) \rightarrow \gamma H(x,e(x)) \right)$

- (d) Un des membres du département de littérature n'a lu que des romans de Sartre
- (e) Aucun des membres du département de littérature n'a lu tous les romans de Sartre
- (f) Tous les membres du département de littérature qui ont lu Les mots ont lu tous les romans de Sartre.

- $\alpha. \exists x (D(x) \land L(x, m))$
- b. $\forall x (D(x) \rightarrow L(x, m))$
- c. Fx (R(x) NE(s.x) NL(a,x))
- $d. \exists x \forall y \left(D(x) \wedge R(x) \wedge \neg E(x,y) \right) \rightarrow \neg L(x,y))$ $\exists x \left(D(x) \wedge \left(\forall y \ R(y) \wedge L(x,y) \rightarrow E(x,y) \right) \right)$ $\exists x \left(D(x) \wedge \left(\forall y \ R(y) \wedge L(x,y) \rightarrow E(x,y) \right) \right)$ $\exists x \left(D(x) \wedge \left(\forall y \ R(y) \wedge L(x,y) \rightarrow E(x,y) \right) \right)$

If alutous lose of the soutre $\exists x (D(x) \land (\forall y. R(y) \land E(s.v)) \Rightarrow L(x.v))$ If a luter normans que to Soutre $\exists x D(x) \land \forall y L(x.y) \land E(x.y) \Rightarrow R(y)$. Down tout a quit a ly c'est que to remains to Soutre ... $L(x.y) \Rightarrow P(y) \land E(s,y)$.