

Contents

- 1 PL drawbacks
- 2 > Predicate
- 3 Quantifiers
- 4 First order logic (FOL)
- 5 Reasoning in FOL

PL drawbacks

PL can not deal with variables

The assertion "x is greater than 1", where x is a variable, is not a proposition because you can not tell whether it is true or false unless you know the value of x. Thus the propositional logic can not deal with such sentences.

PL can not represent all logical patterns

The pattern involved in the following logical equivalences can not be captured by the propositional logic, <u>EX</u>:

"Not all birds fly" is equivalent to "Some birds don't fly"

PL drawbacks

- * To solve PL drawbacks we introduce two new features into PL:
 - **✓ Predicates**
 - **✓ Quantifiers**

Predicate

- ❖ A predicate: is a verb phrase template that describes a property of objects, or a relationship among objects represented by variables , EX:
 - The sky is blue
 - The cover of book is blue
- The phrase "is blue" is a predicate and it describes the property of being blue.
 - blue(sky)
 - ♦b(book's cover)

Predicate

- ❖ A predicate: is a verb phrase template that describes a property of objects, or a relationship among objects represented by variables , EX:
 - Ahmed is the parent of Ali
 - Ahmed give book to Ali
- The phrase "parent" and the phrase "give " are predicates describe a relationship between objects
 - parent(ahmed, ali)
 - ❖give(ahmed, book, ali)

Predicate

A predicate with variables called an atomic formula. P(X)

Every atomic formula has a degree (arity).

Predicates with Connectives

john is not a Freshman

neither john nor tom is a Freshman

¬ Fresh(john)&¬Fresh(tom)

- The universe of discourse is the set of objects of interest
- The universe is the domain of the (individual) variables
- It can be the set of real numbers, the set of integers, the set of all cars on a parking lot, the set of all students in a classroom, etc..

Universal Quantifier

- **The expression:** $\forall x P(X)$, denotes the universal quantification of the atomic formula P(X)
- **❖ ∀** is called the universal quantifier,
- \diamond \forall x means all the objects x in the universe.
- It mean that P(X) is true for every object x in the universe.

Universal Quantifier Vs. & (and)

❖ If all the elements in the universe of discourse can be listed then the universal quantification ∀x P(X) is equivalent to the conjunction:

$$P(x_1) \& P(x_2) \& P(x_3) \& ... P(x_n)$$

Existential Quantifier

- **The expression:** $\exists xP(X)$, denotes the existential quantification of the atomic formula P(X).
- ❖ ∃ is called the existential quantifier,
- \Rightarrow $\exists x$ means at least one object x in the universe.
- It mean that P(X) is true for at least one object x of the universe.

Existential Quantifier Vs. v (OR)

❖ If all the elements in the universe of discourse can be listed, then the existential quantification ∃xP(X) is equivalent to the disjunction:

$$P(x_1) \lor P(x_2) \lor P(x_3) \lor \dots P(x_n)$$

How to read quantified formulas

P(X) denote: "x is Perfect"

- $\Rightarrow \forall x P(X)$ translated to:
 - □ "For every object *x*: *x* is perfect
 - ☐ "Every thing is perfect"
- ❖ ∃x P(X) translated to:
 - ☐ "For some object x: x is perfect
 - □ "Some thing is perfect"
- **⋄** ∀ x¬P(X) translated to:

" Every things is not perfect"

How to read quantified formulas

P(X) denote: "x is Perfect"

 $\Rightarrow \neg \forall x P(X)$ translated to:

"Not every thing is perfect"

P(book) translated to:

"this book is perfect"

How to read quantified formulas

L(X,Y) denote: "X likes Y"

⋄ ∀x ∀y L(X, Y) translated to:

"Every one Like every one"

❖ ∀x L(X, ali) translated to:

"Every one Like ali"

⋄ ∀x ∃y L(X, Y) translated to:

" Every one Like some one"

How to read quantified formulas

" Ahmed like every one who Ali like "

$$\forall x [L(ali,X) \rightarrow L(ahmed,X)]$$

* " Ahmed like every one who like him"

$$\forall x [L(X,ahmed) \rightarrow L(ahmed,X)]$$

" Ahmed like some one who like him"

First Order Logic (FOL) Predicate Logic

FOL syntax rules:

- 1. Every atomic formula is wff
- 2. If α is a well-formed formula, then so is $[\alpha]$
- 3. If α is a well-formed formula, then so is $\neg \alpha$
- 4. If α and β are well-formed formulas, then:

$$\alpha \& \beta$$
 , $\alpha \lor \beta$, $\alpha \to \beta$, $\alpha \leftrightarrow \beta$: are wffs.

5. If x is a variable and α is well-formed formula, then: $\forall x \alpha, \exists x \alpha$ are wffs

6. Nothing else is a wff

First order logic (FOL) Semantic

Evaluation

- Suppose we have two predicates p(x), q(x,y), and the universe of discourse is the set {a,b}
- Suppose the following truth assignment:

```
p(a): T p(b): F
q(a,a): T q(b,b): F
q(a,b): F q(b,a): T
```

The truth assignment for the wff: $\forall x [p(X) \rightarrow q(X,X)]$ is:

```
[p(a)\rightarrow q(a,a) \& p(b) \rightarrow q(b,b)]
[(T \rightarrow T) \& (F \rightarrow F)]
[T \& (F \rightarrow F)]
[T \& T]
T
```

First order logic (FOL) Semantic

Evaluation

- Suppose we have two predicates p(x), q(x,y), and the universe of discourse is the set $\{a,b\}$
- Suppose the following truth assignment:

```
p(a): T p(b): F
q(a,a): T q(b,b): F
q(a,b): F q(b,a): T
```

 \diamond The truth assignment for the wff: $\forall x \exists y \ q(X,Y)$ is:

First order logic (FOL) Semantic

Satisfaction

- \diamond Suppose we have two predicates p(x), q(x), and the universe of discourse is the set $\{a,b\}$.
- The truth table for the wffs:

Truth table size:

$$2^{m*n^k}$$

p(a)	p(b)	q(a)	q(b)	$p(a) \vee p(b)$	$\forall x. (p(x) \Rightarrow q(x))$	$\exists x.q(x)$
1	1	1	1	1	1	1
1	1	1	0	1	0	1
1	1	0	1	1	0	1
1	1	0	0	1	0	0
1	0	1	1	1	1	1
1	0	1	0	1	1	1
1	0	0	1	1	0	1
1	0	0	0	1	0	0
0	1	1	1	1	1	1
0	1	1	0	1	0	1
0	1	0	1	1	1	1
0	1	0	0	1	0	0
0	0	1	1	0	1	1
0	0	1	0	0	1	1
0	0	0	1	0	1	1
0	0	0	0	0	1	0

First order logic (FOL)

- A wff is said to be satisfiable if there exists at least one assignment makes it true.
- A wff is valid if it is true for all possible assignments.
- A wff is unsatisfiable if it is false for all possible assignments.

Axioms of predicate logic

- Universal Instantiation (UI)
- Universal Generalization (UG)
- Existential Instantiation (EI)
- Existential Generalization (EG)
- Negation of quantified statement

Axioms of predicate logic

1. Universal Instantiation (UI):

 $\forall_{x P(x)}$

P(c)

where c is some arbitrary element of the universe.

Axioms of predicate logic

2. Universal Generalization (UG):

P(c)

₩x P(x)

where P(c) holds for every element c of the universe of discourse.

Axioms of predicate logic

3. Existential Instantiation: (EI):

 $\exists x P(x)$

P(c)

where c is some element of the universe of discourse. It is not arbitrary but must be one for which P(c) is true.

Axioms of predicate logic

4. Existential Generalization: (EG):

where c is an element of the universe.

Axioms of predicate logic

Negation of quantified statement

- $\neg \forall x P(x) \leftrightarrow \exists x \neg P(x)$
- $\neg \exists x P(x) \leftrightarrow \forall x \neg P(x)$

Prove the validity for the following argument:

$$\forall x[P(X)\&G(X)]$$

$$\forall xP(X) \& \forall x G(X)$$

*** Predicates:**

- P(x): x is Positive
- G(x): x is greater than zero
- The universe is the set {1,2,3}

∀x[P(X)&G(X)] ∀xP(X) & ∀x G(X)

1)
$$\forall x[P(X)\&G(X)]$$

- 3) P(1)
- 4) G(1)
- $5) \forall x P(X)$
- 6) ∀x G(X)
- 7) $\forall x P(X) \& \forall x G(X)$

Premise

3 UI

2 Simpl.

2 Simpl.

3 UG

4 UG

5,6 Conj #

consider the following argument:

C(this _check)
$$\neg T(this _check)$$

$$\forall x [[C(X)\& \neg T(X)] \rightarrow V(X)]$$

$$\forall x [[C(X)\&V(X)] \rightarrow \neg S(X)]$$

$$\exists x [C(X)\& \neg S(X)]$$

Predicates:

- C(x): x is a check.
- T(x): x has been cashed within 30 days.
- V(x): x is void.
- S(x): x can be cashed.

 $\exists x [C(X)\& \neg S(X)]$

1) C(this_check)	Premise
2) ¬T(this_check)	Premise
3) $\forall x [[C(X)\& \neg T(X)] \rightarrow V(X)]$	Premise
4) $\forall x [[C(X)\&V(X)] \rightarrow \neg S(X)]$	Premise
5) C(this_check) &¬T(this_check)	1,2 Conj.
6) [C(this_check)& ¬T(this_check)] → V(this_check)	3 UI
7) V(this_check)	5,6 MP
8) C(this_check) & V(this_check)	1,7 Conj.
9) C(this_check)& V(this_check) → ¬S(this_check)	4 UI
10) ¬S(this_check)	9,8 MP
11) C(this_check) & ¬S(this_check)	1,10 Conj.
12) ∃x [C(X)& ¬S(X)]	11 EG #

Assignment_3

Consider this initial configuration for Sukoshi game:

	4		1
2			
			3
		4	

Suppose we have predicates:

- Cell(X_coordinate, Y_coordinate, Value): to define the value in a given cell
- Same(X, Y) : to state that X is the same as Y

Use predicate logic syntax to formalize the following:

- a) The Initial configuration for the game.
- b) Every cell must contain at least one value.
- c) No numeral is repeated in any row or column.

