

Chargenrückverfolgung in der Fleischwarenindustrie - Konzeption und prototypische Implementierung einer Blockchain Lösung

Masterarbeit

Themensteller: Prof. Dr.-Ing. Jorge Marx Gómez

Betreuer: Stefan Wunderlich (M.Sc.)

Vorgelegt von: Nils Lutz

Erlenweg 5

26129 Oldenburg +49 173 25 28 407

nils.lutz@uni-oldenburg.de

Abgabetermin: 30. April 2017

Inhaltsverzeichnis

Ak	Akronyme				
ΑĿ	bildu	ıngsverzeichnis	V		
Ta	belle	nverzeichnis	V		
1.	1.1. 1.2. 1.3. 1.4.	Motivation	3 4 5		
2.	2.1. 2.2.	Wandte Arbeiten Thunfisch Traceability			
3.		3.1.2. Einordnung in die Wertschöpfungskette 3.1.3. Zentrale vs. dezentrale Ansätze 3.1.4. Dokumentationspflichten 3.1.5. ???Besonderheiten der Fleischwarenindustrie??? Blockchain-Technologie 3.2.1. Definition 3.2.2. Begriffliche Abgrenzung 3.2.3. Arten von Blockchain	9 9 10 12 13 14 14 16 18 21		
4.	4.1. 4.2. 4.3.	SWOT-Analyse der <i>Blockchain-Technologie</i>	22 22 22 22 22		
5.	5.1.		24 24 24		

Lit	eratı	ırverzeichnis	VIII
Α.	Anh	ang	VII
	8.3.	Ausblick	. 28
	8.2.	Reflexion	
		Zusammenfassung	
8.		chlussbetrachtung	27
		7.2.4. Innovationskraft	26
		7.2.3. Datenverfügbarkeit	
		7.2.2. Transaktionsgeschwindigkeit	26
		7.2.1. Transaktionskosten	26
	7.2.	Resultate	
٠.	7.1.	Experimenteller Aufbau	_
7	Eval	uation	26
	6.3.	Zusammenfassung technische Umsetzung	
	6.2.	Smart Contracts	
•	6.1.	Business Netzwerk	_
6.	Tecl	nnische Umsetzung	25
	5.9.	Zusammenfassung Systementwurf	24
	5.8.	Anforderungen Konsensalgorithmus	
	5.7.	Anforderungen Sicherheit	
	5.6.	Anforderungen Business Netzwerk	
	5.5.	Systementwurf gemäß Architekturkonzept	
	5.4.	Rahmenbedingungen und Qualitätsanforderungen	
	5.3.	Prozess der Chargenrückverfolgung im Detail	24

Akronyme

BTC	Bitcoin	14
DLT	Distributed Ledger Technology	15
\mathbf{GBT}	Global Batch Traceability	. 3
ERP	Enterprise Resource Planning	. 3
IDoc	Intermediate Document	. 3
\mathbf{XML}	Extensible Markup Language	. 3
HTTP	Hypertext Transfer Protocol	. 3
LKV	Los-Kennzeichnungs-Verordnung	10
LMKV	$Lebens mittelkennzeich nungsverordnung \dots \dots$	13
LMBG	Lebensmittel- und Bedarfsgegenständegesetz	14
GFSI	Global Food Safety Initiative	14
IFS	International Food Standard	14
BRC	British Retail Consortium	14
HACCP	Hazard Analysis and Critical Control Points	13

Abbildungsverzeichnis

1.	Gartner Hype Cycle 2017	2
2.	Die drei Design Science Zyklen nach Hevner	5
3.	Wertschöpfungskette: Lebensmittelindustrie	1
4.	Transaktionsmodell Blockchain	15
5.	Schichtenmodell Blockchain Begriffe	16
6.	Distributed Ledger Type Matrix	20
7.	Placeholder Half Page	22
8.	Placeholder Half Page	23
sha	Monyorzolchnic	

Tabellenverzeichnis

1. Technische Beschränkungen der *Blockchain* und ihre Ursachen 19

1. Einleitung

1.1. Motivation

"Weltweit ist die Fleischerzeugung zwischen 2002 und 2012 um 23% und in Deutschland um 29% gestiegen. Die globalen Fleischexporte erhöhten sich im gleichen Zeitraum um 60%, in Deutschland sogar um 124%. Deutschland zählt sowohl beim Import als auch beim Export von Fleischund Fleischprodukten zu den bedeutendsten Handelsnationen weltweit."

Efken et al. (2015)

Lebensmittelsicherheit ist ganz offensichtlich strategisch für die Volksgesundheit und das Wohlbefinden der Gesellschaft. Der öffentliche Druck auf Hersteller für eine ausreichende Kennzeichnung von Produkten und ihre Bestandteile wird stetig größer. Jeder Teil der Lieferkette ist in der Verpflichtung im Falle von Kontamination schnellstmöglich reagieren zu können. (Europa Parlament und Europäischer Rat, 2002).

Vom Rohstofflieferanten bis zum Endkunden gibt es allein in Deutschland ein Netz von Marktteilnehmern mit erheblicher Größe. Knapp 150.000 Betriebe für die Rinder Mast und Milchproduktion, etwa 30.000 Betriebe im Bereich der Schweinehaltung und rund 60.000 Unternehmen für die Geflügelhaltung (Efken et al., 2015). Dabei existiert kein Standardverfahren zwischen diesen Marktteilnehmern zum Informationsaustausch für die Chargenrückverfolgung. In der Fleischwarenindustrie beispielsweise existieren weit über 140 unterschiedliche Austauschformate zwischen den Teilnehmern einzelner Lieferketten.

Zum jetzigen Zeitpunkt (Stand 2019) findet eine Chargenrückverfolgung daher fast ausschließlich durch einen Datei-Austausch bzw. eine zentrale Datenbank je Teilnehmer der Lieferkette statt. Dabei müssen Informationen für einen mehrstufigen Produktionsprozess bereitgestellt und verarbeitet werden (Siepermann et al., 2015).

Aus der geringen Umsatzrendite von -1% bis +1,5% und den dadurch entstehnden Druck am Markt bestehen zu bleiben resultieren immer häufiger Unregelmäßigkeiten innerhalb der Lieferkette. Nur Betriebe in Österreich und Spanien können eine langfristige Rentabilität innerhalb des europäischen Marktes aufweisen (Efken et al.,

1.1 Motivation 1 EINLEITUNG

2015). Ein Beispiel für die genannten Unregelmäßigkeiten ist der Pferdefleisch Skandal aus dem Jahr 2013, bei dem Fleischprodukte nachträglich neu etikettiert und dadurch in Produkten wie Lasagne oder Hamburger Patties weiterverarbeitet wurden (Die Grünen, 2013).

Bereits heute gibt es Anwendungen der *Blockchain*, um beispielsweise den Kilometerstand eines Fahrzeugs täglich "in die *Blockchain*" zu schreiben. Die inhärenten Eigenschaften der *Blockchain* ermöglichen es sehr einfach festzustellen, ob ein Kilometerstand nachträglich durch Fremdeinwirkung manipuliert wurde. Ebenfalls ist keine zentrale "Clearing Stelle" mehr nötig, um die Echtheit des hinterlegten Wertes sicherzustellen (carVertical, 2017).

Aktuell ist die *Blockchain* jedoch noch kein industrieller Standard oder verbreitet im Einsatz. Bemessen am jährlich erscheinenden Hype Cycle des Marktforschungsinstituts Gartner, Inc. (*Abb.* 1) hat die Technologie noch fünf bis zehn Jahre Entwicklungszeit vor sich. Erst dann wird sie nach aktueller Einschätzung im produktiven Einsatz sein.

Abbildung 1: Emerging Technologies Hype Cycle 2017(Panetta, 2017)

"Es ist davon auszugehen, dass wir in ein bis zwei Jahrzehnten wirtschaftlich über Mechanismen miteinander interagieren werden, für die wir bislang weder Konzepte noch Begriffe haben" (Platzer, 2014, S. 92). Auch die Deutsche Bundesregierung ist an der *Blockchain-Technologie* interessiert und erwägt den Einsatz in Zukunft für

die unterschiedlichsten Services. In einer der jüngsten Pressemitteilungen hat der *Blockchain* Bundesverband mitgeteilt, dass die Regierung eine umfassende Strategie zum Umgang und Einsatz der Technologie erarbeiten will (Florian Glatz, 2018).

1.2. Problemstellung

Um eine formal korrekte Identitätskette aufzubauen, wird eine verlässliche Basis, grade auch dann, wenn Futtermittel- und Logistik-Informationen unter allen Marktteilnehmern ausgetauscht werden müssen, benötigt. Grundlage dafür ist die EU-Verordnung 178/02 (insbesondere Artikel 18 und 19), welche die Notwendigkeit beschreibt, dass jeder Akteur der Lieferkette dafür verantwortlich ist, nachzuweisen von wem er seine Waren bezogen und an wen er seine Waren geliefert hat (Europa Parlament und Europäischer Rat, 2002).

Als konkretes Beispiel wird beim Praxispartner Westfleisch SCE mbH zur Realisierung einer Chargenrückverfolgung die Software Global Batch Traceability (GBT) vom Hersteller SAP eingesetzt. Mithilfe dieser Software werden die Stammdatenobjekte Charge, Produkt und Geschäftspartner verwaltet und mit dem Enterprise Resource Planning (ERP) System integriert. GBT ist dabei als zentrales System konzipiert, welches über eine Schnittstelle von Akteuren der Lieferkette mit Informationen zu einer Charge beliefert werden kann. Diese Schnittstelle verwendet IDoc¹ bzw. XML² als Austauschformat. Der eigentliche Austausch erfolgt dabei entweder manuell über einen Dateiimport/-export Mechanismus oder über das Internet mittels des HTTP³ Protokolls. Bei diesem Austausch besteht grundsätzlich die Möglichkeit, dass Datensätze vor dem Austausch oder nachträglich verändert werden können ohne das Teilnehmer der Lieferkette hiervon etwas mitbekommen würden.

Aus den beschriebenen Sachverhalten ergibt sich für eine zeitnahe und transparente Rückverfolgung von *Chargen* über den gesamten Verlauf der Wertschöpfungskette in Produktionsnetzwerken mittels *Blockchain-Technologie* folgende Forschungsfrage:

¹Ein Intermediate Document (IDoc) ist ein Container für den Datenaustausch zwischen SAP und Nicht-SAP-Systemen (SAP SE, 2019).

²Die Extensible Markup Language (XML) ist eine Auszeichnungssprache zur Darstellung hierarchisch strukturierter Daten im Format einer Textdatei (Yergeau et al., 2008).

³Hypertext Transfer Protocol (HTTP)

FF1 Wie kann die Rückverfolgbarkeit von *Chargen* in der Fleischwarenindustrie entlang der gesamten Lieferkette mithilfe von *Blockchain-Technologie* realisiert werden?

- FF1.1 Welche Anforderungen an ein System zur Rückverfolgbarkeit von *Chargen* werden seitens der Fleischwarenindustrie gestellt?
- FF1.2 Welche Daten müssen in einer *Blockchain* persistiert werden, um eine Rückverfolgbarkeit zu ermöglichen?
- FF1.3 Welche *Blockchain-Technologie* kommt in Frage um FF1 zu realisieren und den spezifischen Anforderungen der Fleischwarenindustrie gerecht zu werden?
- FF1.4 Welche Systemarchitektur erfüllt die Anforderungen der Fleischwarenindustrie, um eine Chargenrückverfolgung zu realisieren?

1.3. Vorgehen / Methodik

Die in Abschnitt 1.2 beschriebenen Probleme und Herausforderungen sollen gelöst werden mittels der Design Science Methode nach Hevner (2007); Hevner et al. (2004). Dabei konzentriert sich Design Science auf die Entwicklung von (entworfenen) Artefakten mit der Absicht, die funktionale Leistung des Artefakts zu verbessern. Design Science wird in der Regel für Artefakte aus den Kategorien Algorithmen, Mensch-Computer-Schnittstellen und Prozessmodellen verwendet (Kuechler and Vaishnavi, 2008; Peffers et al., 2012). Abbildung 2 stellt die drei Design Science Zyklen nach Hevner (2010) dar.

Im Sinne des Relevanz Zyklus (siehe auch Simon, 1996) soll eine Betrachtung der bisherigen Supply Chain Systeme und der Wertschöpfungskette inklusive ihrer einzelnen Geschäftsprozesse aus technischer Sicht erfolgen. Als Ergebnis dieser Betrachtung sollen Anforderungen an das Artefakt identifiziert werden. Anschließend wird durch den Rigor Zyklus eine wisschenschaftliche Basis erarbeitet, um bereits vorhandene Erkenntnisse in die Arbeit einfließen zu lassen. Durch den Rigor Zyklus soll sichergestellt werden, dass das Artefakt eine Innovation darstellt und nicht bereits erforschte Resultate repliziert werden (Hevner, 2010). Innerhalb des Design Zyklus soll ein möglicher Systementwurf zur Lösung der Probleme aus Abschnitt 1.2

1.4 Ziele 1 EINLEITUNG

Abbildung 2: Die drei Design Science Zyklen nach Hevner (2010) (Trepper, 2015)

erarbeitet werden. Dieser Systementwurf wird als Prototyp implementiert und anschließend einer Evaluation durch Experteninterviews (siehe auch Wilde and Hess, 2007) unterzogen.

1.4. **Ziele**

Der Einsatz von Blockchain-Technologie könnte - für die in Kapitel 1.2 beschriebene Problemstellung - eine Lösung darstellen. Eine Blockchain ist ein dezentrales System zur manipulationssicheren Speicherung von Informationen in sog. Blöcken die untereinander durch kryptographische Methoden verkettet sind - daher auch der Name Blockchain. Eine Blockchain verwendet verschiedenste Verfahren zur Konsensbildung innerhalb des Netzwerks, um sicherzustellen das neue Blöcke und die darin enthaltenen Transaktionen vom gesamten Netzwerk validiert und verifizert werden bevor der Block in die Blockchain geschrieben wird (siehe auch Buterin, 2014; Cardano, 2017; carVertical, 2017; Nakamoto, 2009).

Außerdem kann eine Blockchain durch den Einsatz einer kryptographischen $Has-hfunktion^4$ zur Bildung einer Prüfsumme für jeden Block innerhalb der Blockchain

⁴Spezielle Form einer Hashfunktion, welche kollisionsresistent ist. Es ist praktisch nicht möglich,

1.4 Ziele 1 EINLEITUNG

sicherstellen, dass bereits persistierte Informationen nicht ohne weiteres manipuliert werden können. Im Idealfall ist eine *Blockchain* dezentral konzipiert, was bedeutet, das jeder Teilnehmer eines *Blockchain* Netzwerks eine exakte Kopie des Datenbestands lokal vorhält. Hierdurch soll sichergestellt werden, das auch bei einem Ausfall oder einer Kompromittierung einzelner Teilnehmer das Gesamtsystem weiterhin in seiner Funktion stabil bleibt (Drescher, 2017; Tribis et al., 2018).

Ziel dieser Arbeit ist es, durch Entwicklung und Evaluation eines Prototyps die Möglichkeiten und Grenzen der Blockchain-Technologie im Kontext der Chargenrückverfolgung in der Fleischwarenindustrie zu überprüfen. Dabei sollen die dafür nötigen Daten und Informationen ermittelt und in einen Systementwurf eingearbeitet werden. Außerdem ist angestrebt aus der vielzahl von unterschiedlichen Implementierungen einer Blockchain genau die Ausprägung zu identifizieren, welche für die spezifischen Anforderungen der Fleischwarenindustrie ideal erscheint.

Konkret lassen sich hieraus folgende Ziele und erwartete Ergebnisstypen zu den jeweiligen Forschungsfragen aus Kapitel 1.2 ableiten.

- Identifikation verwandter Arbeiten aus Wissenschaft und Praxis für FF1.1
- Anforderungserhebung und -analyse mit dem Praxispartner für FF1.1
 - Funktional
 - Qualitativ
 - Rahmenbedingungen
- Prozessaufnahme und -analyse für FF1.2
 - Schwachstellenanalyse des *Ist*-Prozess
 - Modellierung eines Soll-Prozess bei Einsatz von Blockchain-Technologie
- SWOT-Analyse als Vorbereitung für eine Nutzwertanalyse zur Klärung von FF1.3
- Ableitung eines Systementwurfs mittels Design Science Research für FF1.4

zwei unterschiedliche Eingabewerte zu finden, die einen identischen Hashwert ergeben (Menezes, 1997).

- Entwicklung eines Prototyps anhand der Ergebnisse von FF1.1-4 für FF1
- Evaluation des Prototyps durch Experteninterview für FF1

Der enstandene Prototyp soll beim Praxispartner Westfleisch SCE mbH als Entscheidungshilfe für eine zukünftige Innovationsstrategie zur Optimierung der Lieferkette dienen.

1.5. Aufbau der Arbeit

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

2. Verwandte Arbeiten

- 2.1. Thunfisch Traceability
- 2.2. Halal Food Chain
- 2.3. Fruchthändler

3. Grundlagen

3.1. Chargenrückverfolgung

3.1.1. Definition Charge

Eine Charge bezeichnet eine Ansammlung eines Produkts, welche unter gleichen Bedingungen produziert wurde. Bei dem Produkt kann es sich beispielsweise um Werkstoffe, Bauteile, Baugruppen oder Endprodukte handeln. Die Begriffe Los oder Partie werden oft als Synonym für Charge verwendet. Einige Branchen sind bei der Produktion auf die Erzeugung definierter Chargen zugeschnitten. Diese Chargenproduktion, die auch diskontinuierliche Produktion genannt wird, zeichnet sich durch einen zeitlich unterbrochenen Materialfluss aus. So kann ein Produktionsgefäß mit unterschiedlichen Rohstoffen befüllt und anschließend verarbeitet werden. In der diskontinuierlichen Produktion versteht man daher unter einer Charge eine Menge eines Erzeugnisses, welche in einem Produktionsgang gefertigt worden ist und identische Kennzeichen in Bezug auf Materialzusammensetzung, Fertigungsprozess und Produktqualität aufweist. Beispiele hierfür finden sich in der Stahlproduktion, der pharmazeutischen und chemischen sowie in der Lebensmittelindustrie (Günther and Tempelmeier, 2012).

Inzwischen wird der Begriff der *Charge* aber auch in der kontinuierlichen Produktion verwendet. Die *Charge* wird dabei durch die Berücksichtigung einer oder mehrerer der folgenden Eigenschaften charakterisiert:

- Herstellung auf einer Fertigungslinie,
- einheitliche Zulieferteile,
- homogene Qualität,
- gleichbleibende Prozesskette,
- identisches Produktionsdatum.

Es bleibt festzuhalten, dass die Parameter in der kontinuierlichen Produktion nicht so eindeutig abgrenzbar sind wie in der diskontinuierlichen Produktion. Zudem können in der kontinuierlichen Produktion Schwankungen durch dynamische Prozesse wie Abnutzung von Werkzeugen auftreten, die innerhalb einer definierten Charge zu deutlichen Qualitätsunterschieden führen können und so die Praxistauglichkeit der Chargenverfolgung in Frage stellen.

In der für die Lebensmittelindustrie wichtigen Los-Kennzeichnungs-Verordnung (LKV) wird unter einem Los "die Gesamtheit von Verkaufseinheiten eines Lebensmittels verstanden, das unter praktisch gleichen Bedingungen erzeugt, hergestellt oder verpackt wurde." (Bundesregierung, 1993). Dagegen bezeichnen laut Code of Federal Regulation Los oder Charge "ein oder mehrere Bauteile oder fertige Geräte eines einzigen Typs, Version, Klasse, Größe, Zusammensetzung oder Software Version, welche im wesentlichen unter gleichen Bedingungen hergestellt werden und die innerhalb spezifizierter Grenzen einheitliche Eigenschaften und Qualität haben sollen." (Food and Drug Administration, 1996). Somit können auch einzelne Produkte eine Charge oder ein Los bilden. Im Hinblick auf eine möglichst genaue Eingrenzung bestimmter Produkte beispielsweise bei einer Rückrufaktion sollte eine kleinstmögliche Chargengröße gewählt werden, die im Idealfall nur ein einzelnes Produkt umfasst.

3.1.2. Einordnung in die Wertschöpfungskette

Die Chargenverfolgung wird innerhalb des Produktionsprozesses für das Upstream Tracing und in dem Distributionsprozess für das Downstream Tracing eingesetzt. Bei einer gut organisierten Chargenverfolgung im Downstream Prozess behält der Hersteller den Überblick, wo seine Produkte wann gelagert, verkauft und eingesetzt werden und ist so in der Lage, gezielt Rückrufe durchzuführen. Durch die Chargenverfolgung im Upstream Prozess können eventuelle Qualitätsprobleme bis zum Vorlieferanten nachverfolgt werden. Abbildung 3 zeigt schematisch die Wertschöpfungskette in der Lebensmittelindustrie. Bei einem optimal eingerichtetem Up- und Downstream Tracing behalten die Hersteller und Konsumenten während der ganzen Wertschöpfung einen Überblick wo sich die Waren aktuell im Einsatz befinden.

Downstream Tracing (Abwärts-Rückverfolgbarkeit)

Als Downstream Tracing wird die Rückverfolgbarkeit ausgehend vom Erzeuger zum Endprodukt bezeichnet. Gegenstand der Rückverfolgung ist typischerweise ein Los

Abbildung 3: Wertschöpfungskette: Lebensmittelindustrie

(*Charge*) oder eine einzelne Einheit eines Produkts. Abhängig vom Grad der Integration innerhalb der Lieferkette lässt sich die Rückverfolgung bis zum Einzelhandel bzw. auch bis zum Endverbraucher durchführen. Zum Einsatz kommt das Downstream Tracing wenn Probleme in Waren zu einem späten Zeitpunkt festgestellt wurden und geprüft werden muss in welchen Endproduktchargen sich hierdurch weitere Probleme ergeben könnten (Trienekens and Beulens, 2001; Zailani et al., 2010). Wegner-Hambloch (2004) beschreibt Downstream Tracing als "Ortsbestimmung von bereits hergestellten Produkten zwecks nachträglichen Rückrufs von gesundheitsgefährdenden Produkten".

Upstream Tracing (Aufwärts-Rückverfolgbarkeit)

Unter Upstream Tracing versteht man die Rückverfolgbarkeit vom Endverbraucher in Richtung des Erzeugers. Tritt ein Problem bei Lebensmittelprodukten auf wird das Upstream Tracing zur Ursachenforschung eingesetzt. So lassen sich Probleme

die beispielsweise vom Konsumenten beim Endprodukt oder bei einer Qualitätskontrolle von Teilprodukten festgestellt wurden zurückverfolgen bis zum Urerzeuger (Trienekens and Beulens, 2001; Zailani et al., 2010). Nach Wegner-Hambloch (2004) ist Upstream Tracing "die Bestimmung der Produktgeschichte vom Endprodukt [...] bis zu den Futtermitteln."

3.1.3. Zentrale vs. dezentrale Ansätze

Unterschied zwischen zentraler Informationssysteme (F-Trace) und dezentraler logischer Systeme (Zugriff auf F-Trace). Letzteres sind nur dem Anschein nach dezentral. Ihre zugrunde liegende Infrastruktur der Informationssysteme ist zentral und wird von einem Intermediär verwaltet und betrieben. Angriffspunkte für Manipulation und Kontrolle eines einzelnen rausarbeiten. (allgemeine fleischer zeitung, 2011; Steins, 2015) Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

3.1.4. Dokumentationspflichten

Für landwirtschaftliche Waren und daraus hergestellte Nahrungsmittel existieren eine Vielzahl von gesetzlichen Regelungen aus denen Bedingungen und Anforderungen zum Thema Rückverfolgbarkeit abgeleitet werden können. Die VO (EG) Nr. 178/02 (Europa Parlament und Europäischer Rat, 2002) wird in diesem Kontext als Basisverordnung gesehen. Darüber hinaus sind die horizontale Lebensmittelhygieneverordnung sowie die vertikalen Hygieneverordnungen für Fleisch und Fleischerzeugnise, Milch- und Milcherzeugnisse, Fisch und Fischerzeugnisse mit der Vorgabe zur Umsetzung betrieblicher Eigenkontrollen oder Einrichtung eines HACCP-Systems⁵ elementare Bestandteile eines wirkungsvollen, innerbetrieblichen Rückverfolgungssystems in Lebensmittelbetrieben. Eine verbindliche fünfjährige Speicherung von Daten der Transaktionen bezüglich der Lieferanten und Abnehmer ist ebenfalls festgelegt.

Weitere Regelungen zur Rückverfolgbarkeit für die EU:

- Rindfleischetikettierungs-VO (EWG) Nr. 1760/2000
- EU-Öko-VO (EWG) 2092/91
- EU-Verordnung über amtliche Futter- und Lebensmittelkontrollen (Vorschlag vom 5. Februar 2003)
- Vermarktungsnormen für Eier 1907/90/EWG

Nationale Regelungen für Deutschland:

- Lebensmittelkennzeichnungsverordnung (LMKV)
- Los-Kennzeichnungs-Verordnung (LKV)
- verschiedene Fleisch- und Geflügelfleisch-Hygienevorschriften
- Weingesetz und Weinwirtschaftsgesetz

⁵Englisch für Hazard Analysis and Critical Control Points (HACCP). Beschreibt ein Qualitätskontrollsystem für den sicheren Umgang mit Lebensmitteln durch strukturierte und präventive Maßnahmen zur Verhinderung von Erkrankungen und Verletzungen des Konsumenten.(Europa Parlament und Europäischer Rat, 2004)

- Handelsklassenrecht
- Lebensmittel- und Bedarfsgegenständegesetz (LMBG)

Über die gesetzlichen Regelungen hinaus gelten verbindliche Standards der Handelsseite, die übergreifend von der Global Food Safety Initiative (GFSI) vorgegeben werden. Der in Deutschland meist gefragte International Food Standard (IFS), der Standard des British Retail Consortium (BRC) für Lieferanten nach England und diverse andere Standards definieren das detaillierte Anforderungsniveau transparenter Warenströme aus Handelssicht für den Hersteller.

3.1.5. ???Besonderheiten der Fleischwarenindustrie???

3.2. Blockchain-Technologie

3.2.1. Definition

Eine Blockchain als Ganzes betrachtet, ist ein System zur Transaktionsabwicklung mit besonderen Eigenschaften. Als erstes beschrieben wurde die Blockchain im Paper von Nakamoto (2009) zur Realisierung der digitalen Währung Bitcoin (BTC). Aus technischer Sicht gehört die Blockchain-Technologie zum Bereich der verteilten Datenbanken. Ein Block in einer Blockchain repräsentiert eine Menge von Datensätzen die in der Blockchain (Datenbank) vorgehalten werden. Jeder Block (Datensatz) widerrum besitzt genau einen Vorgänger und einen Nachfolger. Allerdings werden diese Blöcke nicht wie in klassischen relationalen Datenbanksystemen in Tabellenstrukturen abgelegt und verwaltet. Durch die Vorgänger Information wird jeder neue Datensatz immer an den letzten Datensatz angehangen. Daraus bildet sich eine Kette von Blöcken - daher der Name Blockchain (dt. Blockkette).

Ein Block innerhalb der Kette kann definiert werden als verschlüsseltes Stück Information. Er beinhaltet neben den Transaktionen noch einen Zeitstempel und zwei kryptographische Hashwerte. Der erste Hashwert wird aus dem Block selbst gebildet und der zweite Hashwert ist die Verknüpfung zum Vorgänger (Tschorsch and Scheuermann, 2016). Wird nachträglich ein Wert einer Transaktion verändert oder ein ganzer Block aus der Kette entfernt passt der jeweilige Hashwert des Vorgängers nicht mehr und durch den linearen Aufbau der Blockchain würde diese Manipulation

jederzeit unmittelbar bemerkt werden bei der Validierung von neuen Transaktionen. Die Daten in der *Blockchain* sind somit vor unbefugter Veränderung geschützt. Als dezentrale Datenbank wird auf jedem Knoten des sich aufspannenden Netzwerks aus Teilnehmern der *Blockchain* eine exakte Kopie⁶ des Datenbestands vorgehalten. Diese dezentrale Struktur bedeutet, dass ein *Blockchain* Netzwerk nicht unter der Kontrolle oder Regulierung einer einzelnen Entität steht. Jeder Teilnehmer kann eigenständig im Netzwerk agieren und es ist kein Zwischenhändler nötig (Drescher, 2017).

Wird von einem der Teilnehmer eine Transaktion ausgelöst, wird diese nicht durch einen Intermediär sondern durch das Netzwerk erfasst und verarbeitet (Abbildung 4). Ein neuer Block wird erschaffen und validiert wie es durch das Konsensprotokoll festgelegt wird.

Abbildung 4: Transaktionsmodell Blockchain

Dabei können solche Blockchain Systeme ziemlich unterschiedlich ausgeprägt sein.

⁶Es gibt Ausprägungen von Distributed Ledger Technology (DLT) Systemen bei denen sog. Light Nodes nur einen zeitlichen Abschnitt der Datensätze vorhalten, um neue Transaktionen validieren zu können. In der generellen Definition wird von sog. Full Nodes ausgegangen in denen stets alle Datensätze vorgehalten werden.

Unterscheiden lassen sich diese Systeme zb. an der Art des Zugriffs, also wer darf Transaktionen lesen, wer darf sie schreiben. Außerdem kann der Mechanismus zur Konsensfindung je System anders sein.

3.2.2. Begriffliche Abgrenzung

Die am häufigsten verwendeten Begriffe werden im Folgenden anhand eines Schichtenmodells (Abbildung 5) erklärt und voneinander abgegrenzt.

Abbildung 5: Schichtenmodell Blockchain Begriffe QUELLE

Distributed Ledger

Der Distributed Ledger bildet die Basis des Schichtenmodells. Er ist im Grunde genommen ein klassisches Betandsbuch, das über einen Mechanismus verfügt, es auf alle teilnehmenden Parteien zu verteilen. Distributed Ledger existieren bereits seit längerer Zeit und sind meist auf der technischen Basis einer verteilten Datenbank mit einer Logik auf Programm- oder Datenbankseite versehen, die aus der reinen Datenbank ein Bestandsbuch macht.

Distributed Ledger Technologie wird zunehmend synonym zum bisherigen Gebrauch von *Blockchain* genutzt, um die Entwicklungen nach dem Bitcoin und den Kryptowährungen von eben diesen begrifflich abzugrenzen.

Blockchain-Technologie

Die *Blockchain* ist eine Form, einen *Distributed Ledger* zu organisieren und zu implementieren. Auf die technische Implementierung der *Blockchain* wird in den folgenden Kapiteln näher eingegangen; zur Begriffsbestimmung seien hier die grundlegenden Eigenschaften aufgezählt, die der *Blockchain* in den letzten Jahren die steigende Aufmerksamkeit ermöglich haben:

- Dezentralisiert
- Peer-to-Peer
- Transparenz und Anonymität
- Vertrauen

Blockchain gehört zu den bekanntesten Distributed-Ledger-Technologien. Aus diesem Grund wird die Bezeichnung Blockchain-Technologie in dieser Arbeit synonym für Distributed-Ledger-Technologien benutzt. Auf die technischen Eigenschaften von weiteren Ausprägungen der Distributed-Ledger-Technologien wird in dieser Arbeit daher nicht eingegangen.

Kryptowährungen

Mit der *Blockchain* als Basistechnologie lassen sich darauf aufbauende komplexe Systeme, wie z.B. Währungen abbilden. Wie in Kapitel 3.2.1 erwähnt wurde die Blockchain-Technologie als erstes im Zusammenhang mit einer Kryptowährungen, dem Bitcoin, beschrieben. Die *Blockchain* ist somit ein Nebenprodukt einer technischen Plattform, die eine kryptographische Währung erschuf und gleichzeitig ein System implementierte, um diese Währung zu nutzen und zu handeln.

Neben dem Bitcoin existiert eine Reihe weiterer Kryptowährungen, die sich zum Teil der dem Bitcoin zugrunde liegenden öffentlichen *Blockchain* bedienen. Genannt seien hier z.B. Litecoin oder Dogecoin. Es existieren darüber hinaus Kryptowährungen, die eigene Blockchains zur Basis haben - zum Teil auf einer komplett eigenen technischen Implementierung. Vertreter hierfür sind z.B. Ethereum, Ripple oder Iota (siehe auch Buterin, 2014; carVertical, 2017; J.P.Morgan, 2017).

Bitcoin

Der Bitcoin ist die Kryptowährung, die auf der ursprünglichen *Blockchain* gehandelt wird. Im Rahmen dieser Arbeit wird der Bitcoin und andere Kryptowährungen nicht weiter betrachtet.

3.2.3. Arten von Blockchain

Bei der Auswahl der Art einer Blockchain trifft man auf zwei Widersprüche.

- Transparenz vs. Vertraulichkeit
- Sicherheit vs. Geschwindigkeit

Transparenz vs. Vertraulichkeit

Verwendet man eine *Blockchain* werden Besitzverhältnisse durch die Transaktionshistorie ermittelt. Dabei lässt sie eine *Blockchain* mit einem öffentlichen Register vergleichen. Im Sinne der Übertragung von Eigentum sind Offenheit und Transparenz zwei wesentliche Eigenschaften der Blockchain. Durch diese Offenheit ist jeder Teilnehmer in der Lage alle Transaktionen einzusehen und auf Manipulationen zu prüfen.

Dieses Vorgehen steht Gegensatz zur Vertraulichkeit die in bestimmten Bereichen unabdingbar ist. Durch Vertraulichkeit werden Informationen wie die Transaktionsdaten oder deren Details (beteiligte Konten oder transferierte Menge) vor unbefugter Einsicht geschützt. Hierdurch entsteht der Widerspruch zwischen Transparenz auf der einen Seite und Anforderungen an die Vertraulichkeit auf der anderen Seite (Drescher, 2017).

Sicherheit vs. Geschwindigkeit

Die Datenstruktur einer *Blockchain* sichert die Transaktionshistorie vor Manipulationen und Fälschungen. Jeder neue Block der in der *Blockchain* gespeichert werden soll muss vom Netzwerk durch das Lösen einer kryptographischen Aufgabe erzeugt und der Datenstruktur hinzugefügt werden. Dadurch ist es ziemlich aufwendig die Transaktionshistorie nachträglich zu manipulieren oder zu fälschen. Durch diesen Sicherheitsmechanismus sinkt die Geschwindigkeit mit der ein *Blockchain* Netzwerk

neue Transaktionen verarbeiten kann. Moderne Applikationen erfordern Geschwindigkeit und Skalierbarkeit was im direkten Kontrast zum erwähnten Sicherheitskonzept einer *Blockchain* steht (Drescher, 2017).

Ursachen der Konflikte

Zwei grundlegende Operationen eines *Blockchain* Netzwerks sind Ursache für die beiden beschriebenen Widersprüche - Schreiben und Lesen von Transaktionsdaten. Der Konflikt zwischen Transparenz und Vertraulichkeit ist auf die Lese-Operationen einer *Blockchain* zurückzuführen. Je offener die Leseberechtigungen einer *Blockchain* sind, desto höher ist die Transparenz und desto niedriger ist die Vertraulichkeit der Transaktionsdaten. Die Schreib-Operationen sind für den Widerspruch zwischen Sicherheit und Geschwindigkeit verantwortlich. Je restriktiver die Berechtigungen zum Schreiben innerhalb des *Blockchain* Netzwerks sind, desto höher ist die Geschwindigkeit mit der Transaktionen verarbeitet werden können. In Tabelle 1 werden die technischen Beschränkungen, der Widerspruch und die Operation innerhalb der *Blockchain* zusammengefasst (Drescher, 2017).

Beschränkung	Widerspruch	Blockchain Operation
Keine Vertraulichkeit	Transparenz vs. Vertraulichkeit	Transaktionshistorie lesen
Skalierbarkeit	Sicherheit vs. Geschwindigkeit	Transaktionen schreiben

Tabelle 1: Technische Beschränkungen der Blockchain und ihre Ursachen

Public vs. Private

Betrachtet man die Berechtigungen zum Lesen innerhalb eines *Blockchain* Netzwerks in der einfachsten Form muss das System zwischen Transparenz und Vertraulichkeit entscheiden. Entweder es werden allen Teilnehmern Leseberechtigungen zugeteilt oder nur einer ausgewählten Gruppe von Teilnehmern. Anhand des Kriterium, welcher Teilnehmer im Netzwerk neue Transaktionen erstellen und die Historie lesen kann, lässt sich eine *Blockchain* als öffentliche oder private *Blockchain* charakterisieren (Drescher, 2017).

Permissioned vs. Permissionless

Die Schreibrechte bestimmen für ein Blockchain Netzwerk den Grad der Skalierbarkeit. Werden Schreibrechte in ihrer einfachsten Form zugeteilt und alle Teilnehmer sind berechtigt Schreib-Operationen auszuführen, erhöht sich der Arbeitsaufwand je Teilnehmer der zur Berechnung nötigt wird. Dies ist für die Sicherheit des Netzwerk positiv, wirkt sich aber negativ auf die Geschwindigkeit aus. Durch die Geschwindigkeit wird das Netzwerk in der Skalierbarkeit beschränkt. Teilt man hingegen nur einer Gruppe von Teilnehmern Schreibrechte zu, ist der Arbeitsaufwand im Vergleich niedrig. Hierdurch kann das Netzwerk Transaktionen vergleichsweise schnell verarbeiten und ist dadurch selbst skalierbarer (Drescher, 2017).

Abbildung 6: Distributed Ledger Type Matrix ERSETZEN

3.2.4. Technologischer Aufbau

tl;dr Architektur Modell Abbildung erläutern. In Details einleiten

Peer-to-Peer Netzwerke

Grundlegende Technik dahinter erklären in 1-2 Sätzen. Bekanntester und größter Einsatzzweck Torrent Netzwerk.

Signierte Transaktionen durch Public-Key-Infrastruktur

Was ist Public-Key-Infrastruktur? Beispiel Wallets und Asset X das gehandelt wird.

Kryptographisches Hashing

Unterschied zwischen Hashing und krypt. Hashing aufzeigen. Matheformel :D Evtl. die kleine Bilderreihe mit dem sich verändernden Hash Wert. (Diffie, 1976)

Konsensusprotokolle

Byzantine Fault Tolerance erklären als Einstieg

Aufteilen nach Häufigkeit in der jeweiligen *Blockchain* Art aus 3.2.3. Ausschluss weiterer Betrachtung einiger Algorithmen für den weiteren Verlauf der Arbeit.

Proof-of-X

Redundant Byzantine Fault Tolerance & Plenum

Abbildung 7: Placeholder Half Page

- 4. Lösungskonzept
- 4.1. SWOT-Analyse der Blockchain-Technologie
- 4.2. Nutzwertanalyse
- 4.3. ???
- 4.4. Zusammenfassung Lösungskonzept

Abbildung 8: Placeholder Half Page

5. Systementwurf

- 5.1. Vorgehensweise Anforderungsbeschreibung
- 5.2. Das Ziel: Chargenrückverfolgung innerhalb der Fleischwarenindustrie
- 5.3. Prozess der Chargenrückverfolgung im Detail
- 5.4. Rahmenbedingungen und Qualitätsanforderungen
- 5.5. Systementwurf gemäß Architekturkonzept
- 5.6. Anforderungen Business Netzwerk

Transaktional

Geschwindigkeit

Transparenz

Vertrauen

Unveränderlichkeit

Geschäftsregeln

- 5.7. Anforderungen Sicherheit
- 5.8. Anforderungen Konsensalgorithmus
- 5.9. Zusammenfassung Systementwurf

6. Technische Umsetzung

- 6.1. Business Netzwerk
- 6.2. Smart Contracts
- 6.3. Zusammenfassung technische Umsetzung

7. Evaluation

7.1. Experimenteller Aufbau

- 7.2. Resultate
- 7.2.1. Transaktionskosten
- 7.2.2. Transaktionsgeschwindigkeit
- 7.2.3. Datenverfügbarkeit
- 7.2.4. Innovationskraft

8. Abschlussbetrachtung

Zwei flinke Boxer jagen die quirlige Eva und ihren Mops durch Sylt. Franz jagt im komplett verwahrlosten Taxi quer durch Bayern. Zwölf Boxkämpfer jagen Viktor quer über den großen Sylter Zwei flinke Boxer jagen die quirlige Eva und ihren Mops durch Sylt.

8.1. Zusammenfassung

Falsches Üben von Xylophonmusik quält jeden größeren Zwerg. Heizölrückstoßabdämpfung. Zwei flinke Boxer jagen die quirlige Eva und ihren Mops durch Sylt.
Franz jagt im komplett verwahrlosten Taxi quer durch Bayern. Zwölf Boxkämpfer
jagen Viktor quer über den großen Sylter Deich. Vogel Quax zwickt Johnys Pferd
Bim. Sylvia wagt quick den Jux bei Pforzheim.

Polyfon zwitschernd aßen Mäxchens Vögel Rüben, Joghurt und Quark. "Fix, Schwyz!" quäkt Jürgen blöd vom Paß. Victor jagt zwölf Boxkämpfer quer über den großen Sylter Deich. Falsches Üben von Xylophonmusik quält jeden größeren Zwerg. Heizölrückstoßabdämpfung. Zwei flinke Boxer jagen die quirlige Eva und ihren Mops durch Sylt. Franz jagt im komplett verwahrlosten Taxi quer durch Bayern. Zwölf Boxkämpfer jagen Viktor quer über den großen Sylter Deich. Vogel Quax zwickt Johnys Pferd Bim. Sylvia wagt quick den Jux bei Pforzheim. Polyfon zwitschernd aßen Mäxchens Vögel Rüben, Joghurt und Quark. "Fix, Schwyz!" quäkt Jürgen blöd vom Paß. Victor jagt zwölf

8.2. Reflexion

Zwei flinke Boxer jagen die quirlige Eva und ihren Mops durch Sylt. Franz jagt im komplett verwahrlosten Taxi quer durch Bayern. Zwölf Boxkämpfer jagen Viktor quer über den großen Sylter Deich. Vogel Quax zwickt Johnys Pferd Bim. Sylvia wagt quick den Jux bei Pforzheim. Polyfon zwitschernd aßen Mäxchens Vögel Rüben, Joghurt und Quark.

"Fix, Schwyz" quäkt Jürgen blöd vom Paß. Victor jagt zwölf Boxkämpfer quer über den großen Sylter Deich. Falsches Üben von Xylophonmusik quält jeden größeren Zwerg. Heizölrückstoßabdämpfung. Zwei flinke Boxer jagen die quirlige Eva und ihren Mops durch Sylt. Franz jagt im komplett verwahrlosten Taxi quer durch Bayern.

Zwölf Boxkämpfer jagen Viktor quer über den großen Sylter Deich. Vogel Quax zwickt Johnys Pferd Bim. Sylvia wagt quick den Jux bei Pforzheim. Polyfon zwitschernd aßen Mäxchens Vögel Rüben, Joghurt und Quark. "Fix, Schwyz" quäkt Jürgen blöd vom Paß. Victor jagt zwölf Boxkämpfer quer über den großen Sylter Deich.

8.3. Ausblick

Falsches Üben von Xylophonmusik quält jeden größeren Zwerg. Heizölrückstoßabdämpfung. Zwei flinke Boxer jagen die quirlige Eva und ihren Mops durch Sylt.
Franz jagt im komplett verwahrlosten Taxi quer durch Bayern. Zwölf Boxkämpfer
jagen Viktor quer über den großen Sylter Deich. Vogel Quax zwickt Johnys Pferd
Bim. Sylvia wagt quick den Jux bei Pforzheim.

Polyfon zwitschernd aßen Mäxchens Vögel Rüben, Joghurt und Quark. "Fix, Schwyz" quäkt Jürgen blöd vom Paß. Victor jagt zwölf Boxkämpfer quer über den großen Sylter Deich. Falsches Üben von Xylophonmusik quält jeden größeren Zwerg. Heizölrückstoßabdämpfung. Zwei flinke Boxer jagen die quirlige Eva und ihren Mops durch Sylt. Franz jagt im komplett verwahrlosten Taxi quer durch Bayern. Zwölf Boxkämpfer jagen Viktor quer über den großen Sylter Deich. Vogel Quax zwickt Johnys Pferd Bim. Sylvia wagt quick den Jux bei Pforzheim. Polyfon zwitschernd aßen Mäxchens Vögel Rüben, Joghurt und Quark. "Fix, Schwyz" quäkt Jürgen blöd vom Paß. Victor jagt zwölf

A. Anhang

Weitere Informationen werden im Anhang abgedruckt (z. B. Listings).

10 PRINT "Sales and Distribution" 20 GOTO 10

Literaturverzeichnis

- allgemeine fleischer zeitung (2011). Weg von der Insellösung Tönnies will GS1-Standard in F-Trace einbinden. afz - allgemeine fleischer zeitung, (33).
- Bundesregierung (1993). Los-Kennzeichnungs-Verordnung.
- Buterin, V. (2014). White Paper. http://bit.ly/2KOC6mK. abgerufen am 23.05.2018.
- Cardano (2017). Why we are building Cardano. https://goo.gl/4xcTW1. aufgerufen am 05.04.2018.
- carVertical (2017). Whitepaper. https://www.carvertical.com/carvertical-whitepaper.pdf?updated=20171224. aufgerufen am 05.04.2018.
- Die Grünen (2013). PFERDEFLEISCHSKANDAL: WO BLEIBEN DIE GESETZE?! http://bit.ly/2Do1Lkj. aufgerufen am 09.02.2019.
- Diffie, W.; Hellman, M. E. (1976). New Directions in Cryptography. *IEEE Transactions on Information Theory*, 22(6):644–654.
- Drescher, D. (2017). Blockchain Grundlagen: Eine Einführung in die elementaren Konzepte in 25 Schritten. mitp, Frechen, 1. auflage. edition.
- Efken, J., Deblitz, C., Kreins, P., Krug, O., Kueest, S., Peter, G., and Hass, M. (2015). Stellungnahme zur aktuellen Situation der Fleischerzeugung und Fleischwirtschaft in Deutschland.
- Europa Parlament und Europäischer Rat (2002). Verordnung (EG) Nr. 178/2002 des Europäischen Parlaments und des Rates. https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX:32002R0178. abgerufen am 07.02.2019.
- Europa Parlament und Europäischer Rat (2004). Verordnung (EG) Nr. 852/2004 des Europäischen Parlaments und des Rates. https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=celex:32004R0852. abgerufen am 30.03.2019.
- Florian Glatz, Friederike Ernst, J. L. (2018). Deutsche Regierung setzt auf Blockchain. https://goo.gl/qzFfhE. abgerufen am 05.04.2018.

- Food and Drug Administration (1996). Quality System Regulation, Code of Federal Regulations 21 CFR Part 820, Verordnung zur Einführung von guten Herstellungspraktiken (Good Manufacturing Practice) für die Herstellung, Entwicklung, Validierung, Verpackung, Lagerung und Installation von Medizingeraten.
- Günther, H.-O. and Tempelmeier, H. (2012). Produktion und Logistik.
- Hevner, A. (2007). A three cycle view of design science research. Scandinavian Journal of Information Systems, 19.
- Hevner, A. (2010). Design research in information systems: theory and practice.
- Hevner, A. R., March, S. T., Park, J., and Ram, S. (2004). Design science in information systems research. *MIS Quarterly*, 28(1):75–105.
- J.P.Morgan, I. (2017). Blockchain. https://goo.gl/pQ23Fb. abgerufen am 05.04.2018.
- Kuechler, B. and Vaishnavi, V. (2008). On theory development in design science research: anatomy of a research project. *European Journal of Information Systems*, 17(5):489–504.
- Menezes, A. J. (1997). Handbook of applied cryptography.
- Nakamoto, S. (2009). Bitcoin: A Peer-to-Peer Electronic Cash System. http://bit.ly/2KL3zWM. abgerufen am 23.05.2018.
- Panetta, K. (2017). Top Trends in the Gartner Hype Cycle for Emerging Technologies, 2017. https://goo.gl/acfrrr. abgerufen am 05.04.2018.
- Peffers, K., Rothenberger, M., and Kuechler, B., editors (2012). Design Science Research in Information Systems. Advances in Theory and Practice. Springer Berlin Heidelberg.
- Platzer, J. (2014). Bitcoin: kurz & qut. O'Reilly Verlag, Köln.
- SAP SE (2019). IDocs (SAP Library. http://bit.ly/2tUpZhD. abgerufen am 06.03.2019.

- Siepermann, C., Vahrenkamp, R., Siepermann, M., and Amann, M. (2015). Risi-komanagement in Supply Chains: Gefahren abwehren, Chancen nutzen, Erfolg generieren.
- Simon, H. A. (1996). The sciences of the artificial. MIT Press, 3 edition.
- Steins, M. O. (2015). Nur eine Schnittstelle für alle Kunden und Lieferanten Pilotprojekt zu Traceability in der O+G-Branche GS1 Standards als einheitliche Grundlage. Lebensmittel Zeitung, (5).
- Trepper, T. (2015). Fundierung der Konstruktion agiler Methoden: Anpassung, Instanziierung und Evaluation der Methode PiK-AS. Springer Fachmedien Wiesbaden, Wiesbaden s.l.
- Tribis, Y., Bouchti, A. E., and Bouayad, H. (2018). Supply chain management based on blockchain: A systematic mapping study. *MATEC Web of Conferences*, 200:00020.
- Trienekens, J. and Beulens, A. (2001). The implications of EU food safety legislation and consumer demands on supply chain information systems. In 11th Annual world food and agribusiness forum, Sydney.
- Tschorsch, F. and Scheuermann, B. (2016). Bitcoin and beyond: A technical survey on decentralized digital currencies. *IEEE Communications Surveys & Tutorials*, 18(3):2084–2123.
- Wegner-Hambloch, S. (2004). Rückverfolgbarkeit in der Praxis: Artikel 18 und 19 der VO (EG) Nr. 178/2002 schnell und einfach umgesetzt. Behr's Verlag DE.
- Wilde, T. and Hess, T. (2007). Forschungsmethoden der Wirtschaftsinformatik: Eine empirische Untersuchung. Wirtschaftsinformatik, 49(4).
- Yergeau, F., Sperberg-McQueen, M., Maler, E., Paoli, J., and Bray, T. (2008). Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C recommendation, W3C. http://www.w3.org/TR/2008/REC-xml-20081126/.

Zailani, S., Arrifin, Z., Abd Wahid, N., Othman, R., and Fernando, Y. (2010). Halal traceability and halal tracking systems in strengthening halal food supply chain for food industry in Malaysia (a review). *Journal of food Technology*, 8(3):74–81.

Abschließende Erklärung

Ich versichere hiermit, dass ich meine Masterarbeit selbständig und ohne fremde Hilfe angefertigt habe, und dass ich alle von anderen Autoren wörtlich übernommenen Stellen wie auch die sich an die Gedankengänge anderer Autoren eng anlegenden Ausführungen meiner Arbeit besonders gekennzeichnet und die Quellen zitiert habe.

Oldenburg, den 16. April 2019

Nils Lutz