### 近世代数 半群和幺半群

任世军

Email: ren\_shijun@163.com

哈尔滨工业大学 计算机学院

January 3, 2019

# 目录

- 1 预备知识
- ② 若干基本概念
- ③ 半群与幺半群的概念
- 4 子半群、子幺半群和理想
- 5 同构、同态

# 近世代数的特点

#### 它有如下几个显著特点:

- 采用集合论的记号:
- 重视运算以及运算规律;
- 使用抽象化和公理化方法。

#### 学好近世代数应该做到

- 必须清楚的掌握每个概念;
- 掌握基本的推理方法,学会运用概念和公理进行正确的逻辑推理;
- 学会把抽象的理论和方法与具体的对象相联系;
- 在课堂多做练习。

## 数学归纳法

# 最小数原理,良序原理,Well-Ordering Principle

正整数集合 Z+ 的每一个非空子集都有一个最小元素。

 $Z^+ = N$  自然数集合

## 数学归纳法

## 最小数原理,良序原理,Well-Ordering Principle

正整数集合 Z+ 的每一个非空子集都有一个最小元素。

#### $Z^+ = N$ 自然数集合

### 第一数学归纳法

设 P(n) 是关于正整数 n 的一个命题,如果下面的两个事实成立:

- (1)P(1)是真的;
- (2)对于每一个正整数 k,如果 P(k) 是真的,那么 P(k+1) 也是真的。 在这种情况下,我们就能够得出结论:对于所有的正整数 n,P(n) 都是 真的。

## 数学归纳法

从数理逻辑的角度,是要证明:

$$\{P(1), (\forall k)(P(k) \rightarrow P(k+1))\} \vdash (\forall n)P(n)$$

下面的序列,说明

$$\{P(1), (\forall k)(P(k) \rightarrow P(k+1))\} \vdash P(n)$$

再使用全称推广定理就得到结论。

1). 
$$(\forall k)(P(k) \rightarrow P(k+1))$$

3). 
$$(\forall k)(P(k) \rightarrow P(k+1)) \rightarrow (P(1) \rightarrow P(2))$$

4). 
$$P(1) \to P(2)$$

6). 
$$(\forall k)(P(k) \rightarrow P(k+1)) \rightarrow (P(2) \rightarrow P(3))$$

7). 
$$P(2) \to P(3)$$

# 数学归纳法(续)

#### 第二数学归纳法

设 P(n) 是关于正整数 n 的一个命题,如果下面的两个事实成立:

- (1)P(1) 是真的;
- (2)对于每一个正整数 m,如果对于所有正整数 k < m,P(k) 是真的,那 么 P(m) 也是真的。

在这种情况下,我们就能够得出结论:对于所有的正整数 n, P(n) 都是真的。

# 练习

### 归纳法的练习

the Fibonacci sequence  $f_1, f_2, f_3, \cdots$  is defined as follows:

$$f_1 = f_2 = 1, f_n = f_{n-1} + f_{n-2}$$
 for all  $n \ge 3$ 

Prove that  $f_{5k}$  is divisible by 5 for every  $k \ge 1$ , that is, 5 divides every 5th member of the sequence.

# 瞒天过海 —— 使用归纳法应注意的问题

## 证明所有的马都有同样的颜色

设 P(n) 是如下的命题:"对于每个由 n 匹马组成的集合来说,集合中所有的马都具有同样的颜色"。我们用归纳法证明对所有的 n,P(n) 成立。

# 瞒天过海 —— 使用归纳法应注意的问题

## 证明所有的马都有同样的颜色

设 P(n) 是如下的命题:"对于每个由 n 匹马组成的集合来说,集合中所有的马都具有同样的颜色"。我们用归纳法证明对所有的 n,P(n) 成立。

显然 P(1) 是真的。假设 P(m) 是真的,我们来证明 P(m+1) 也是真的。设 S 是 m+1 匹马组成的集合, $S=\{h_1,h_2,\cdots,h_{m+1}\}$ ,因为  $h_1,h_2,\cdots,h_m$  是 m 匹马,所有由于 P(m) 成立,所以  $h_1,h_2,\cdots,h_m$  具有同样的颜色,同理  $h_2,h_3,\cdots,h_{m+1}$  是 m 匹马,所以  $h_2,h_3,\cdots,h_{m+1}$  也具有同样的颜色。将这两个论断结合在一起,就有所有的 m+1 匹马都具有同样的颜色(比如,它们都有  $h_2$  的颜色)。

回顾:映射,函数,变换,泛函数.....

回顾:映射,函数,变换,泛函数.....

### 定义 1.1 ——二元代数运算的定义

设 X 是一个集合,一个从  $X \times X$  到 X 的一个映射  $\varphi$  称为 X 上的一个二元代数运算。

回顾:映射,函数,变换,泛函数.....

### 定义 1.1 ——二元代数运算的定义

设 X 是一个集合,一个从  $X \times X$  到 X 的一个映射  $\varphi$  称为 X 上的一个二元代数运算。

二元代数运算的表示,前缀表示与中缀表示

回顾:映射,函数,变换,泛函数.....

### 定义 1.1 ——二元代数运算的定义

设 X 是一个集合,一个从  $X \times X$  到 X 的一个映射  $\varphi$  称为 X 上的一个二元代数运算。

二元代数运算的表示,前缀表示与中缀表示

### 定义 1.2 —— 一元代数运算的定义

一个从集合 X 到集合 Y 的映射称为 X 到 Y 的一个一元代数运算。当 X = Y 时,称此一元代数运算为 X 上的一元代数运算。

回顾:映射,函数,变换,泛函数.....

### 定义 1.1 ——二元代数运算的定义

设 X 是一个集合,一个从  $X \times X$  到 X 的一个映射  $\varphi$  称为 X 上的一个二元代数运算。

二元代数运算的表示,前缀表示与中缀表示

### 定义 1.2 —— 一元代数运算的定义

一个从集合 X 到集合 Y 的映射称为 X 到 Y 的一个一元代数运算。当 X = Y 时,称此一元代数运算为 X 上的一元代数运算。

X上的一元二元代数运算对于运算是封闭的。

# 结合律和交换律

#### 定义 1.3

设"。"是 X 上的二元代数运算,如果对于  $\forall a,b,c \in X$ , 恒有

$$(a \circ b) \circ c = a \circ (b \circ c)$$

则称二元代数运算"。"满足结合律。如果对于  $\forall a,b \in X$ ,恒有

$$a \circ b = b \circ a$$

则称二元代数运算"。"满足交换律。

### 定义 1.4 —— 代数系的定义

设"。"是非空集合 S 上的一个二元代数运算,则称二元组  $(S, \circ)$  为一个 (有一个代数运算的)代数系。

## 定义 1.4 —— 代数系的定义

设"。"是非空集合 S 上的一个二元代数运算,则称二元组  $(S, \circ)$  为一个 (有一个代数运算的)代数系。

类似的可以定义具有多个代数运算的代数系,代数系也称为代数结构。

### 定义 1.4 —— 代数系的定义

设"。"是非空集合 S 上的一个二元代数运算,则称二元组  $(S, \circ)$  为一个 (有一个代数运算的)代数系。

类似的可以定义具有多个代数运算的代数系,代数系也称为代数结构。

#### 定理 1.1

设  $(S, \circ)$  为一个代数系。如果二元代数运算" $\circ$ "满足结合律,则  $\forall a_i \in S, i = 1, 2, \cdots, n, a_1, a_2, \cdots, a_n$  的乘积仅与这 n 个元素及其次序有关而唯一确定。乘法方案数目为  $\frac{1}{n}C_{2n-2}^{n-1}$ .

## 定义 1.4 —— 代数系的定义

设"。"是非空集合 S 上的一个二元代数运算,则称二元组  $(S, \circ)$  为一个 (有一个代数运算的)代数系。

类似的可以定义具有多个代数运算的代数系,代数系也称为代数结构。

### 定理 1.1

设  $(S, \circ)$  为一个代数系。如果二元代数运算" $\circ$ "满足结合律,则  $\forall a_i \in S, i = 1, 2, \cdots, n, a_1, a_2, \cdots, a_n$  的乘积仅与这 n 个元素及其次序有关而唯一确定。乘法方案数目为  $\frac{1}{n}C_{2n-2}^{n-1}$ .

#### 定理 1.2

设  $(S, \circ)$  为一个代数系。如果二元代数运算" $\circ$ "满足结合律和交换律,则  $\forall a_i \in S, i = 1, 2, \cdots, n$ ,  $a_1, a_2, \cdots, a_n$  的乘积仅与这 n 个元素有关而与它们的次序无关。

# 分配律

#### 定义 1.5

设  $(S, \circ, +)$  是具有两个代数运算 " $\circ$ "和"+"的代数系。如果对于  $\forall a, b, c \in S$ ,恒有

$$a \circ (b + c) = a \circ b + a \circ c$$

则称" $\circ$ "对"+"满足左分配律。如果对于  $\forall a,b,c \in S$ , 总有

$$(b+c)\circ a=b\circ a+c\circ a$$

则称"。"对"+"满足右分配律。

# 分配律(续)

#### 定理 1.3

 $(S, \circ, +)$  是具有两个代数运算" $\circ$ "和"+"的代数系。如果 +"满足结合律," $\circ$ "对"+"满足左(右)分配律,则  $\forall a, a_i \in S, i = 1, 2, \cdots, n$ ,我们有

$$\mathbf{a} \circ (\mathbf{a}_1 + \mathbf{a}_2 + \cdots + \mathbf{a}_n) = (\mathbf{a} \circ \mathbf{a}_1) + (\mathbf{a} \circ \mathbf{a}_2) + \cdots + (\mathbf{a} \circ \mathbf{a}_n)$$

$$((\mathbf{a}_1 + \mathbf{a}_2 + \cdots + \mathbf{a}_n) \circ \mathbf{a} = (\mathbf{a}_1 \circ \mathbf{a}) + (\mathbf{a}_2 \circ \mathbf{a}) + \cdots + (\mathbf{a}_n \circ \mathbf{a}))$$

# 单位元 —— 幺元

### 定义 1.6

设  $(S, \circ)$  是一个代数系, 如果存在一个元素  $a_l \in S$ , 使得  $\forall a \in S$  都有

$$a_I \circ a = a$$

则称  $a_l$  为乘法"。"的左单位元素(左幺元)。如果存在一个元素  $a_r \in S$ ,使得  $\forall a \in S$  都有

$$a \circ a_r = a$$

则称  $a_r$  为乘法"。"的右单位元素 (右幺元)。如果存在一个元素  $e \in S$ , 使得  $\forall a \in S$  都有

$$e \circ a = a \circ e = a$$

则称 e 为乘法"o"的单位元素 ( 幺元 )。

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥Q○

# 单位元(续)

#### 定理 1.4

 $(S, \circ)$  是一个代数系。如果二元代数运算" $\circ$ "既有左单位元素  $a_i$ , 又有 右单位元素  $a_r$ ,则  $a_l = a_r$ ,从而有单位元素。

#### 定义 1.7

设  $(S, \circ)$  是一个代数系, 如果存在一个元素  $z \in S$ , 使得  $\forall a \in S$  都有

$$Z \circ a = a \circ Z = Z$$

则称 z 为乘法"o"的零元素。

同样可以定义左零元素和右零元素。

## 一些记号

设  $(S, \circ)$  是一个具有二元代数运算"。"的代数系。 $A, B \subseteq S$ ,则定义

$$A \circ B = \{a \circ b | a \in A, b \in B\}$$

把  $A \circ B$  简单的写成 AB,把  $a \circ b$  写成 ab。

当 
$$A = \{a\}$$
 时, $AB = \{a\}B$ ,简记为  $aB$ 。于是

$$aB = \{a \circ b | b \in B\}$$

$$Ba = \{b \circ a | b \in B\}$$

## 半群与幺半群

## 定义 11.3.1

设  $(S, \circ)$  是一个代数系, 如果" $\circ$ "满足结合律,那么就称 S 对于乘法" $\circ$ "构成一个半群 (Semigroup),记为  $(S, \circ)$ 。

交换半群或者可换半群,有限半群,无限半群。集合 S 上的元素可以是任何类型。

## 半群与幺半群

### 定义 11.3.1

设  $(S, \circ)$  是一个代数系, 如果" $\circ$ "满足结合律,那么就称 S 对于乘法" $\circ$ "构成一个半群 (Semigroup),记为  $(S, \circ)$ 。

交换半群或者可换半群,有限半群,无限半群。集合 S 上的元素可以是任何类型。

### 小集合作为集合的元素

令  $S = \{\{1, 2\}, \{3, 4\}\},$ 定义 S 上的乘法。如下:

(S,∘) 是一个半群。

### 小集合作为集合的元素

令  $S = \{\{1,3\},\{2,4\}\},$ 定义 S 上的乘法。如下:

(**S**, ∘) 是一个半群。

### 小集合作为集合的元素

令  $S = \{\{1,3\},\{2,4\}\},$ 定义 S 上的乘法。如下:

$$\begin{array}{c|cccc} \circ & \{1,3\} & \{2,4\} \\ \hline \{1,3\} & \{1,3\} & \{2,4\} \\ \{2,4\} & \{2,4\} & \{2,4\} \end{array}$$

(S,∘) 是一个半群。

### 小集合作为集合的元素

令  $S = \{\{1, 3, \dots\}, \{2, 4, \dots\}\},$ 定义 S 上的乘法。如下:

$$\begin{array}{c|cccc} \circ & \{1,3,\cdots\} & \{2,4,\cdots\} \\ \hline \{1,3,\cdots\} & \{1,3,\cdots\} & \{2,4,\cdots\} \\ \{2,4,\cdots\} & \{2,4,\cdots\} & \{2,4,\cdots\} \end{array}$$

对于  $Z_3 = \{\{0,3,6,\cdots\},\{1,4,7,\cdots\},\{2,5,8,\cdots\}\}$  定义的加法为:

|                    |                               | $\{1,4,7,\cdots\}$                                                      |                    |
|--------------------|-------------------------------|-------------------------------------------------------------------------|--------------------|
| $\{0,3,6,\cdots\}$ | $\{1,4,7,\cdots\}$            | $\{2, 5, 8, \cdots\}$<br>$\{0, 3, 6, \cdots\}$<br>$\{1, 4, 7, \cdots\}$ | $\{0,3,6,\cdots\}$ |
| $\{1,4,7,\cdots\}$ | $\left\{2,5,8,\cdots\right\}$ | $\{0,3,6,\cdots\}$                                                      | $\{1,4,7,\cdots\}$ |
| $\{2,5,8,\cdots\}$ | $  \{0,3,6,\cdots\}$          | $\{1,4,7,\cdots\}$                                                      | $\{2,5,8,\cdots\}$ |

#### 半群的例子 —— 模 *n* 剩余类

设  $Z_n = \{[0], [1], \cdots, [n-1]\}$  是整数集合 Z 上在模 n 的同余关系之下 的等价类之集合。其中

$$[i] = \{m | m \in \mathbb{Z}, m \equiv i \pmod{n}\} \quad [i] = [n+i]?$$

在  $Z_n$  上定义加法"+"如下: $\forall [i], [i] \in Z_n$ ,

$$[i] + [j] = [i + j]$$

证明加法"+"是  $Z_n$  上的一个二元代数运算。( $Z_n$ , +) 是一个半群。

在  $Z_n$  中定义加法 [i] + [i] = [i+1+i] 是否可行?

|                    | $\{0, 3, 6, \cdots\}$<br>$\{0, 3, 6, \cdots\}$                                                                  |                                                                                                                 | $\{2, 5, 8, \cdots\}$<br>$\{2, 5, 8, \cdots\}$ |
|--------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| $\{1,4,7,\cdots\}$ | $ \begin{cases} (0, 3, 6, \cdots) \\ (0, 3, 6, \cdots) \end{cases} $                                            | $\{1,4,7,\cdots\}$                                                                                              | $\{2, 5, 8, \cdots\}$<br>$\{2, 5, 8, \cdots\}$ |
|                    |                                                                                                                 |                                                                                                                 |                                                |
| +4                 | $\{0,3,6,\cdots\}$                                                                                              | $\{1,4,7,\cdots\}$                                                                                              | $\{2,5,8,\cdots\}$                             |
|                    | $   \begin{cases}     \{0, 3, 6, \cdots\} \\     \{0, 3, 6, \cdots\} \\     \{0, 3, 6, \cdots\}   \end{cases} $ | $   \begin{cases}     \{1, 4, 7, \cdots\} \\     \{0, 3, 6, \cdots\} \\     \{0, 3, 6, \cdots\}   \end{cases} $ |                                                |

#### 集合上的二元关系

集合 A 上的一个二元关系  $\rho$  是笛卡尔乘积  $A \times A$  的一个子集。令  $\mathcal{R}(A)$  表示 A 上的所有二元关系构成的集合。在集合  $\mathcal{R}(A)$  上定义二元代数运算"。"如下:

 $\rho \circ \sigma = \{(\mathbf{X}, \mathbf{Y}) | (\mathbf{X}, \mathbf{Y}) \in \mathbf{A} \times \mathbf{A},$ 存在 $\mathbf{Z} \in \mathbf{A},$ 使得 $(\mathbf{X}, \mathbf{Z}) \in \rho$ 并且 $(\mathbf{Z}, \mathbf{Y}) \in \sigma\}$ 

那么代数系  $(\mathcal{R}(A), \circ)$  形成一个半群。

#### 例 11.3.5

全体偶数的集合 E 对于通常的乘法构成一个可换半群  $(E, \cdot)$ ,它没有单位元。

#### 例 11.3.5

全体偶数的集合 E 对于通常的乘法构成一个可换半群  $(E, \cdot)$ ,它没有单位元。

#### 例 11.3.6

设 5 是一切形如

$$\left(\begin{array}{cc} \mathbf{a} & \mathbf{b} \\ 0 & 0 \end{array}\right), \mathbf{a}, \mathbf{b} \in \mathbf{N}$$

的  $2 \times 2$  矩阵的集合。容易验证 S 对矩阵的乘法。构成一个不可交换半群,并且对于  $\forall d \in N$ ,

$$\left(\begin{array}{cc} 1 & \mathbf{d} \\ 0 & 0 \end{array}\right)$$

是左单位元素。从而  $(S, \circ)$  有无限多个左单位元素。

# 半群中的单位元

#### 定理 11.3.1

如果半群  $(S, \circ)$  中既有左单位元素又有右单位元素,则左单位元素和右单位元素相等,从而有单位元素且单位元素唯一。

### 幺半群

#### 定义 11.3.2

有单位元素 e 的半群  $(S, \circ)$  称为独异点或者称为幺半群。记为  $(S, \circ, e)$ 。 如果 S 是一个有限集合,则称  $(S, \circ, e)$  为有限幺半群,S 的基数称为幺半群  $(S, \circ, e)$  的阶。

### 幺半群

### 定义 11.3.2

有单位元素 e 的半群  $(S, \circ)$  称为独异点或者称为幺半群。记为  $(S, \circ, e)$ 。如果 S 是一个有限集合,则称  $(S, \circ, e)$  为有限幺半群,S 的基数称为幺半群  $(S, \circ, e)$  的阶。

### 例 11.3.7

设 S 是一个非空集合,则  $(2^S, \cup, \phi)$  和  $(2^S, \cap, S)$  都是幺半群。

## 幺半群

### 定义 11.3.2

有单位元素 e 的半群  $(S, \circ)$  称为独异点或者称为幺半群。记为  $(S, \circ, e)$ 。 如果 S 是一个有限集合,则称  $(S, \circ, e)$  为有限幺半群,S 的基数称为幺半群  $(S, \circ, e)$  的阶。

### 例 11.3.7

设 S 是一个非空集合,则  $(2^S, \cup, \phi)$  和  $(2^S, \cap, S)$  都是幺半群。

#### 例 11.3.9

设 S 是一个非空集合, $M(S) = \{f|f: S \to S\}$ ,则 M(S) 对映射的合成构成了一个以  $I_S$  为单位元的幺半群  $(M(S), \circ, I_S)$ 。它是不可交换的幺半群。

### 定理 11.3.2

有限半群  $(S, \circ)$  是一个幺半群当且仅当  $\exists s, t \in S$  使得

$$sS = S, St = S$$

#### 定理 11.3.2

有限半群  $(S, \circ)$  是一个幺半群当且仅当  $\exists s, t \in S$  使得

$$sS = S, St = S$$

证: ⇒显然。

 $\leftarrow$  设  $(S, \circ)$  是一个半群且  $\exists s, t \in S$  使得 sS = S, St = S。令  $\varphi : S \to sS, \forall x \in S, \varphi(x) = s \circ x$ 。于是  $\varphi$  是满射。而由 sS = S 知  $\varphi$  又 是单射。从而  $\varphi$  是双射。由数学归纳法可以证明  $\forall x \in S, \varphi^n(x) = s^n x$ 。



任取  $x \in S$ , 序列 x,  $\phi(x)$ ,  $\phi^2(x)$ ,  $\cdots$ ,  $\phi^n(x)$  中必有两项相同,设  $\phi^p(x) = \phi^q(x)$ , 其中 p < q,  $\phi$  有逆映射  $\phi^{-1}$ , 故  $\phi^{q-p}(x) = x$ 。从而对任 取的 x, 有非负整数  $n_x$ ,使得  $\phi^{n_x}(x) = x$ 。令  $k = lcm\{n_x|x \in S\}$ ,于是  $\phi^k(x) = \phi^{m_x n_x}(x) = \underbrace{(\phi^{n_x} \phi^{n_x} \cdots \phi^{n_x})}_{m_x}(x) = \underbrace{(\phi^{n_x} \phi^{n_x} \cdots \phi^{n_x})}_{m_x-1}(x) = \cdots = \phi^{n_x}(x) = x$ ,从而对  $\forall x \in S$ ,有  $s^k \circ x = \phi^k(x) = x$ , $s^k$  为一个左幺元。





$$c(a, b, c) = (b, c, a)$$

$$\boldsymbol{c}(\boldsymbol{a},\boldsymbol{b},\boldsymbol{c}) = (\boldsymbol{b},\boldsymbol{c},\boldsymbol{a})$$

$$c^2(a,b,c) = c(b,c,a) = (c,a,b)$$
 注意  $c \circ c = a$ 

$$c(a,b,c)=(b,c,a)$$

$$c^2(a,b,c) = c(b,c,a) = (c,a,b)$$
 注意  $c \circ c = a$ 

$$c(a,b,c) = (b,c,a)$$
  
 $c^2(a,b,c) = c(b,c,a) = (c,a,b)$  注意  $c \circ c = a$   
 $c^3(a,b,c) = c(c,a,b) = (a,b,c)$  此时  $c^3 = c \circ c^2 = c \circ a = b$ 

$$c(a,b,c)=(b,c,a)$$
  $c^2(a,b,c)=c(b,c,a)=(c,a,b)$  注意  $c\circ c=a$   $c^3(a,b,c)=c(c,a,b)=(a,b,c)$  此时  $c^3=c\circ c^2=c\circ a=b$ 

## 元素的幂

在半群中 (S, ∘) 可以定义元素的正整数次幂,对  $\forall a \in S$ 

$$a^1 = a, \ a^{n+1} = a^n \circ a \ (n \ge 1)$$

在幺半群  $(S, \circ, e)$  中可以定义元素的非负整数次幂,对于  $\forall a \in S$ ,

$$a^0 = e, \ a^{n+1} = a^n \circ a \ (n \ge 0)$$

#### 定理 11.3.3

设  $(S, \circ, e)$  是一个幺半群,m, n 是任意的非负整数,则对  $\forall a \in S$ ,

$$a^m \circ a^n = a^{m+n}$$
  
 $(a^m)^n = a^{mn}$ 

## 幺半群中的逆元素和群

### 定义 11.3.3

设  $(S, \circ, e)$  是一个幺半群, $a \in S$ 。称 a 有左逆元素,如果存在  $a_l \in S$  使得  $a_l \circ a = e$ ,这时  $a_l$  称为 a 的左逆元素。称 a 有右逆元素,如果存在  $a_r \in S$  使得  $a \circ a_r = e$ ,这时  $a_r$  称为 a 的右逆元素。如果存在  $b \in S$  使得  $a \circ b = b \circ a = e$ ,则称 a 有逆元素,b 称为 a 的逆元素。

# 幺半群中的逆元素和群

#### 定义 11.3.3

设  $(S, \circ, e)$  是一个幺半群, $a \in S$ 。称 a 有左逆元素,如果存在  $a_l \in S$  使得  $a_l \circ a = e$ ,这时  $a_l$  称为 a 的左逆元素。称 a 有右逆元素,如果存在  $a_r \in S$  使得  $a \circ a_r = e$ ,这时  $a_r$  称为 a 的右逆元素。如果存在  $b \in S$  使得  $a \circ b = b \circ a = e$ ,则称 a 有逆元素,b 称为 a 的逆元素。

### 定义 11.3.4

每个元素都有逆元素的幺半群称为群。

## 幺半群中的逆元素和群(续)

#### 定理 11.3.4

如果幺半群  $(S, \circ, e)$  中的元素 a 有左逆元素  $a_l$ ,又有右逆元素  $a_r$ ,则  $a_l = a_r$ 。于是 a 有逆元素并且逆元素唯一。记为  $a^{-1}$ 

### 定理 11.3.5

有限半群  $(S, \circ)$  是一个群当且仅当对于  $\forall s \in S$  有 sS = S 并且  $\exists t \in S$  使得 St = S。

## 习题

#### P343.5

证明:有限半群  $(S, \circ)$  中一定有一个元素  $a \in S$ , 使得  $a \circ a = a$ 。

# 习题

#### P343.5

证明:有限半群  $(S, \circ)$  中一定有一个元素  $a \in S$ , 使得  $a \circ a = a$ 。

#### 以下解法成立否?

任取  $b \in S$ ,于是有序列  $b^{2^0}, b^{2^1}, b^{2^2}, \dots, b^{2^n}, \dots$ ,因 S 有限,故有 m < n. 使得  $b^{2^m} = b^{2^n}$ . 所以  $b^{2^{n}-2^{m}} \circ b^{2^{n}-2^{m}} = b^{2^{n}} \circ b^{2^{n}-2^{m}-2^{m}} = b^{2^{m}} \circ b^{2^{n}-2^{m}-2^{m}} = b^{2^{n}-2^{m}} \circ b^{2^{n}-2^{m}} = b^{2^{n}-2^{m}} \circ b^{2^{n}-2$  $a = b^{2^{n}-2^{m}}$  即为所求。

P343.1

找一个半群,它有有限多个左单位元。

#### P343.1

找一个半群,它有有限多个左单位元。

### 给出乘法表如下:

乘法表又称为 cayley 表。

#### P343.1

找一个半群,它有有限多个左单位元。

### 给出乘法表如下:

将上面表中的元素转置,就得到有 **4** 个右单位元素的半群。

乘法表又称为 cayley 表。

#### P343.1

找一个半群,它有有限多个左单位元。

### 给出乘法表如下:

| 0 | a | b | С             | d |
|---|---|---|---------------|---|
| a | a | b | С             | d |
| b | a | b | $\mathcal{C}$ | d |
| c | a | b | $\mathcal{C}$ | d |
| d | a | b | c             | d |

将上面表中的元素转置,就得到有 **4** 个右单位元素的半群。 将上面表中的元素个数增加,就得到

将上面表中的元素个数增加,就得到 有限多个右单位元素的半群。

乘法表又称为 cayley 表。

### 子半群和子幺半群

#### 定义 11.4.1

设  $(S, \circ)$  是一个半群, $B \in S$  的一个非空子集。如果对于  $\forall a, b \in B$ ,都 有  $a \circ b \in B$ ,则称代数系  $(B, \circ)$  是  $(S, \circ)$  的一个子半群。简称  $B \in S$  的一个子半群。

## 子半群和子幺半群

#### 定义 11.4.1

设  $(S, \circ)$  是一个半群, $B \in S$  的一个非空子集。如果对于  $\forall a, b \in B$ ,都 有  $a \circ b \in B$ ,则称代数系  $(B, \circ)$  是  $(S, \circ)$  的一个子半群。简称  $B \in S$  的一个子半群。

 $(B,\circ)$  的乘法与  $(S,\circ)$  的乘法是一样的,否则,即使 B 是 S 的子集, $(B,\star)$  也不是  $(S,\circ)$  的一个子半群。

## 子半群和子幺半群

#### 定义 11.4.1

设  $(S, \circ)$  是一个半群, $B \in S$  的一个非空子集。如果对于  $\forall a, b \in B$ ,都 有  $a \circ b \in B$ ,则称代数系  $(B, \circ)$  是  $(S, \circ)$  的一个子半群。简称  $B \in S$  的一个子半群。

 $(B,\circ)$  的乘法与  $(S,\circ)$  的乘法是一样的,否则,即使 B 是 S 的子集, $(B,\star)$  也不是  $(S,\circ)$  的一个子半群。

### 定义 11.4.2

设  $(S, \circ, e)$  是一个幺半群, $P \subseteq S$ 。如果  $e \in P$ ,并且 P 是 S 的子半群,则称 P 是 S 的子幺半群。

## 例子

### 例 11.4.1

设  $(Z,\cdot)$  是整数的乘法半群,则  $(\{0,1\},\cdot)$  是子半群和子幺半群。

## 例子

### 例 11.4.1

设  $(Z,\cdot)$  是整数的乘法半群,则  $(\{0,1\},\cdot)$  是子半群和子幺半群。

 $(E,\cdot)$  也是  $(Z,\cdot)$  的一个子半群,但是不是子幺半群。

# 例子

#### 例 11.4.1

设  $(Z,\cdot)$  是整数的乘法半群,则  $(\{0,1\},\cdot)$  是子半群和子幺半群。

 $(E,\cdot)$  也是  $(Z,\cdot)$  的一个子半群,但是不是子幺半群。

### 例 11.4.2

设  $(S, \circ)$  是半群, $a \in S, B = \{a^n | n \ge 1\}$  是  $(S, \circ)$  的子半群。设  $(M, \circ, e)$  是幺半群, $a \in M, P = \{a^n | n \ge 0\}$  是  $(M, \circ, e)$  的子幺半群。设 Q 是  $(M, \circ, e)$  的可逆元素的集合,则  $(Q, \circ, e)$  也是  $(M, \circ, e)$  的子幺半群。

### 有 A 生成的子半群和子幺半群

#### 定理 11.4.1

一个幺半群的任意多个子幺半群的交集仍是子幺半群。

### 有 A 生成的子半群和子幺半群

#### 定理 11.4.1

一个幺半群的任意多个子幺半群的交集仍是子幺半群。

### 定理 11.4.2

设  $(S, \circ)$  是半群, A 是 S 的一个非空子集, 则 S 的一切包含 A 的子半群的交集 Q 也是子半群。

## 有 A 生成的子半群和子幺半群

#### 定理 11.4.1

一个幺半群的任意多个子幺半群的交集仍是子幺半群。

#### 定理 11.4.2

设  $(S, \circ)$  是半群,  $A \in S$  的一个非空子集, 则 S 的一切包含 A 的子半群的交集 Q 也是子半群。

#### 定义 11.4.3

设  $(S, \circ)$  是半群,  $A \in S$  的一个非空子集, 则 S 的一切包含 A 的子半群 的交集称为由 A 生成的子半群, 记为 (A)。设  $(M, \circ, e)$  是幺半群,  $A \in M$  的一个非空子集, 则 M 的一切包含 A 的子幺半群的交集称为由 A 生成的子幺半群, 记为 (A)。

### 理想

### 定义 11.4.4

半群  $(S, \circ)$  的一个非空子集 A 称为 S 的一个左 (f) 理想。如果  $SA \subseteq A(AS \subseteq A)$ 。如果 f 既是 f 的左理想又是 f 的右理想,则称 f 是 f 的理想。

### 理想

### 定义 11.4.4

半群  $(S, \circ)$  的一个非空子集 A 称为 S 的一个左 (f) 理想。如果  $SA \subseteq A(AS \subseteq A)$ 。如果 f 既是 f 的左理想又是 f 的右理想,则称 f 是 f 的理想。

设  $A \neq (S, \circ)$  的一个非空子集,由 A 生成的左(右)理想为所有包含 A 的左(右)理想的交。S 的一切包含 A 的理想的交称为由 A 生成的理想。

### 理想

### 定义 11.4.4

半群  $(S, \circ)$  的一个非空子集 A 称为 S 的一个左 (f) 理想。如果  $SA \subseteq A(AS \subseteq A)$ 。如果 f 既是 f 的左理想又是 f 的右理想,则称 f 是 f 的理想。

设 **A** 是 (S, $\circ$ ) 的一个非空子集,由 **A** 生成的左(右)理想为所有包含 **A** 的左(右)理想的交。**S** 的一切包含 **A** 的理想的交称为由 **A** 生成的理想。

#### 定理 11.4.3

设 A 是半群  $(S, \circ)$  的一个非空子集,则

- **①** 由 A 生成的左理想是  $A \cup SA$ 。
- ② 由 A 生成的右理想是  $A \cup AS$ 。
- **③** 由 *A* 生成的理想是 *A* ∪ *SA* ∪ *AS* ∪ *SAS*.

## 理想(续)

### 定理 11.4.4

设 A 是幺半群  $(M, \circ, e)$  的一个非空子集,则

- ① 由 A 生成的 M 的左理想是 MA。
- ② 由 A 生成的 M 的右理想是 AM。
- 由 A 生成的 M 的理想是 MAM.

## 循环半群

### 定义 11.4.5

一个半群(幺半群)称为循环半群(循环幺半群),如果这个半群(幺半群)是由其中的某个元素生成的半群(幺半群)。由元素 a 生成的循环半群记为(a)。

## 循环半群

### 定义 11.4.5

一个半群(幺半群)称为循环半群(循环幺半群),如果这个半群(幺半群)是由其中的某个元素生成的半群(幺半群)。由元素 a 生成的循环半群记为(a)。

### 例 11.4.3

自然数集合 N 对通常加法的半群 (N, +) 是由 1 生成的循环半群。所有非负整数之集  $N_0 = N \cup \{0\}$  对通常加法构成的幺半群  $(N_0, +)$  是由 1 生成的循环幺半群。

## 循环半群

### 定义 11.4.5

一个半群(幺半群)称为循环半群(循环幺半群),如果这个半群(幺半群)是由其中的某个元素生成的半群(幺半群)。由元素 a 生成的循环半群记为(a)。

#### 例 11.4.3

自然数集合 N 对通常加法的半群 (N, +) 是由 1 生成的循环半群。所有非负整数之集  $N_0 = N \cup \{0\}$  对通常加法构成的幺半群  $(N_0, +)$  是由 1 生成的循环幺半群。

### 定理 11.4.5

循环半群(幺半群)必是可交换半群(幺半群)。

## 同构

### 定义 11.5.1

设  $(S, \circ)$  和 (T, \*) 是两个半群。如果存在一个从 S 到 T 的一一对应  $\varphi$ ,使得  $\forall a, b \in S$  有

$$\varphi(\mathbf{a} \circ \mathbf{b}) = \varphi(\mathbf{a}) * \varphi(\mathbf{b})$$

则称半群  $(S, \circ)$  与 (T, \*) 同构。记为  $(S, \circ) \cong (T, *)$ ,简记为  $S \cong T$ 。 $\varphi$  称 为从 S 到 T 的一个同构 ( 映射 )。

## 同构

### 定义 11.5.1

设  $(S, \circ)$  和 (T, \*) 是两个半群。如果存在一个从 S 到 T 的一一对应  $\varphi$ ,使得  $\forall a, b \in S$  有

$$\varphi(\mathbf{a} \circ \mathbf{b}) = \varphi(\mathbf{a}) * \varphi(\mathbf{b})$$

则称半群  $(S,\circ)$  与 (T,\*) 同构。记为  $(S,\circ)\cong (T,*)$ ,简记为  $S\cong T$ 。 $\varphi$  称 为从 S 到 T 的一个同构 ( 映射 )。

### 定义 11.5.2

设  $(M, \circ, e)$  和 (M', \*, e') 是两个幺半群。如果存在一个从 M 到 M' 的一一对应  $\varphi$ ,使得  $\forall x, y \in M$  有

$$\varphi(\mathbf{e}) = \mathbf{e}', \varphi(\mathbf{x} \circ \mathbf{y}) = \varphi(\mathbf{x}) * \varphi(\mathbf{y})$$

则称幺半群  $(M, \circ, e)$  和 (M', \*, e') 同构。记为  $(M, \circ, e) \cong (M', *, e')$ ,简记为  $M \cong M'$ 。 $\alpha$  称为从 M 到 M'的一个同构(映射)。

任世军(哈尔滨工业大学) 近世代数 半群和幺半群

41 / 51

# cayley 定理

### 定理 11.5.1

( 幺半群的 Cayley 定理 ) 任何幺半群  $(M, \circ, e)$  同构于变换幺半群  $(L(M), \circ, I_M)$ 。

# cayley 定理

#### 定理 11.5.1

( 幺半群的 Cayley 定理 ) 任何幺半群  $(M, \circ, e)$  同构于变换幺半群  $(L(M), \circ, I_M)$ 。

证:  $L(M) = \{ \rho_{a} | \rho_{a} : M \to M, a \in M, \rho_{a}(x) = a \circ x, \forall x \in M \}$ 。在 L(M)上定义乘法" $\circ$ "如下:  $\rho_{a} \circ \rho_{b} = \rho_{a \circ b}, \forall \rho_{a}, \rho_{b} \in L(M)$ 。则  $(L(M), \circ)$  构成一个幺半群。

# cayley 定理

#### 定理 11.5.1

( 幺半群的 Cayley 定理 ) 任何幺半群  $(M, \circ, e)$  同构于变换幺半群  $(L(M), \circ, I_M)$ 。

证:  $L(M) = \{ \rho_a | \rho_a : M \to M, a \in M, \rho_a(x) = a \circ x, \forall x \in M \}$ 。在 L(M)上定义乘法" $\circ$ "如下:  $\rho_a \circ \rho_b = \rho_{a \circ b}, \forall \rho_a, \rho_b \in L(M)$ 。则  $(L(M), \circ)$  构成一个幺半群。

做映射  $\psi: M \to L(M)$ ,使得对  $\forall a \in M, \psi(a) = \rho_a$ 。可以证明  $\psi$  是一个同构映射。

## 同态

### 定义 11.5.3

设  $(S, \circ)$  和 (T, \*) 是两个半群。如果存在一个从 S 到 T 的映射  $\varphi$ ,使得  $\forall a, b \in S$  有

$$\varphi(\mathbf{a} \circ \mathbf{b}) = \varphi(\mathbf{a}) * \varphi(\mathbf{b})$$

则称半群  $(S, \circ)$  与 (T, \*) 是同态的。 $\varphi$  称为从 S 到 T 的一个同态。 $\varphi(S)$  称为同态象。

若  $(M, \circ, e)$  和 (M', \*, e') 是两个幺半群。如果存在一个从 M 到 M' 的映射  $\varphi$ ,使得  $\forall x, y \in M$  有

$$\varphi(\mathbf{e}) = \mathbf{e}', \varphi(\mathbf{x} \circ \mathbf{y}) = \varphi(\mathbf{x}) * \varphi(\mathbf{y})$$

则称幺半群  $(M, \circ, e)$  与 (M', \*, e') 同态。 $\varphi$  称为从 M 到 M' 的一个同态。

- 4 ロ ト 4 団 ト 4 重 ト 4 重 ・ 夕 Q (^)

## 例子

#### 例 11.5.1

设 S 是一个非空集合, $S^S = \{f|f: S \rightarrow S\}$ ,则  $S^S$  对映射的合成形成一个 半群  $(S^{S}, \circ)$ 。若 S 是一个半群,则 S 与  $S^{S}$  同态。

## 例子

#### 例 11.5.1

设 S 是一个非空集合, $S^S = \{f|f: S \to S\}$ ,则  $S^S$  对映射的合成形成一个 半群  $(S^S, \circ)$ 。若 S 是一个半群,则 S 与  $S^S$  同态。

### 例 11.5.2

令  $(M, \circ, e)$  和 (M', \*, e') 是两个幺半群。设  $\varphi: M \to M', \forall x \in M, \varphi(x) = e', 则 \varphi$  是一个同态,但是若  $|M'| > 1, 则 \varphi$  不是满同态。

## 例子

### 例 11.5.1

设 S 是一个非空集合, $S^S = \{f|f: S \to S\}$ ,则  $S^S$  对映射的合成形成一个 半群  $(S^S, \circ)$ 。若 S 是一个半群,则 S 与  $S^S$  同态。

### 例 11.5.2

令  $(M, \circ, e)$  和 (M', \*, e') 是两个幺半群。设  $\varphi: M \to M', \forall x \in M, \varphi(x) = e', 则 <math>\varphi$  是一个同态,但是若  $|M'| > 1, 则 <math>\varphi$  不是满同态。

#### 例 11.5.3

令  $(Z,\cdot,1)$  是整数的乘法幺半群。设  $\varphi:Z\to Z, \forall z\in Z, \varphi(z)=0$ ,则  $\varphi$  不是同态,因为  $\varphi(1)=0\neq 1$ 。

## 几个定理

### 定理 11.5.2

设  $(S, \circ)$  是一个半群,(T, \*) 是一个具有二元代数运算 \* 的代数系。如果存在满映射  $\varphi: S \to T$  使得  $\forall x, y \in S$  有

$$\varphi(\mathbf{X} \circ \mathbf{y}) = \varphi(\mathbf{X}) * \varphi(\mathbf{y})$$

则 (T,\*) 是半群。

## 几个定理

#### 定理 11.5.2

设  $(S, \circ)$  是一个半群,(T, \*) 是一个具有二元代数运算 \* 的代数系。如果存在满映射  $\varphi: S \to T$  使得  $\forall x, y \in S$  有

$$\varphi(\mathbf{X} \circ \mathbf{y}) = \varphi(\mathbf{X}) * \varphi(\mathbf{y})$$

则 (T,\*) 是半群。

### 定理 11.5.3

设  $(S, \circ, e)$  是一个幺半群,(T, \*) 是半群。如果  $\varphi$  是 S 到 T 的满半群同态,则  $\varphi(e)$  是 T 的单位元,从而  $(T, *, \varphi(e))$  是幺半群。

## 几个定理(续)

#### 定理 11.5.4

设  $(M_1, \circ, e_1)$  和  $(M_2, *, e_2)$  是幺半群。如果  $M_1$  到  $M_2$  有一个同态  $\varphi$ ,则  $M_1$  的可逆元素 a 的象  $\varphi(a)$  也可逆并且  $(\varphi(a))^{-1} = \varphi(a^{-1})$ 。

# 几个定理(续)

#### 定理 11.5.4

设  $(M_1, \circ, e_1)$  和  $(M_2, *, e_2)$  是幺半群。如果  $M_1$  到  $M_2$  有一个同态  $\varphi$ ,则  $M_1$  的可逆元素 a 的象  $\varphi(a)$  也可逆并且  $(\varphi(a))^{-1} = \varphi(a^{-1})$ 。

#### 定理 11.5.5

设  $\varphi$  是半群  $(S_1, \circ)$  到  $(S_2, *)$  的同态, $\psi$  是半群  $(S_2, *)$  到  $(S_3, \cdot)$  的同态,则  $\varphi \circ \psi$  是  $(S_1, \circ)$  到  $(S_3, \cdot)$  的同态。

# 由映射诱导出的等价关系

设  $(S, \circ)$  和 (T, \*) 是两个半群。 $\varphi$  是 S 到 T 的同态,则  $\varphi$  确定了 S 上的 一个等价关系  $E_{\varphi}$ :  $\forall x, y \in S$ ,

$$xE_{\varphi}y$$
当且仅当 $\varphi(x) = \varphi(y)$ 

利用 S 上的代数运算"o"可以定义  $S/E_o$  上的一个代数运算"·"如下:

$$\forall [a], [b] \in S/E_{\varphi}, [a] \cdot [b] = [a \circ b]$$

可以证明:"·"满足结合律, $(S/E_{\omega},\cdot)$ 是一个半群。

## 由等价关系确定的等价类之间如何才能建立代数运算



如果能够证明:若 a' 在等价类 [a] 中并且 b' 在等价类 [b] 中,则  $a' \circ b'$  必在等价类  $[a \circ b]$  中,就可以依据半群中的乘法" $\circ$ "建立等价类中的二元代数运算。

## 同态基本定理

### 定义 11.5.5

设  $\cong$  是代数系  $(X, \circ)$  上的等价关系。 $\forall a, a', b, b' \in X$ ,如果  $a' \cong a$  并且  $b' \cong b$ ,则必有  $a' \circ b' \cong a \circ b$ ,那么就称  $\cong$  是代数系 X 上的同余关系。

## 同态基本定理

#### 定义 11.5.5

设  $\cong$  是代数系  $(X, \circ)$  上的等价关系。 $\forall a, a', b, b' \in X$ ,如果  $a' \cong a$  并且  $b' \cong b$ ,则必有  $a' \circ b' \cong a \circ b$ ,那么就称  $\cong$  是代数系 X 上的同余关系。

### 定理 11.5.7

设  $\cong$  是代数系  $(X, \circ)$  上的一个关系, $\forall [a], [b] \in X/\cong$ ,定义

$$[a]\cdot[b]=[a\circ b]$$

则"·"是  $X/\cong$  上的二元代数运算当且仅当  $\cong$  是同余关系。

## 同态基本定理(续)

### 定义 11.5.4

设  $(S, \circ)$  和 (T, \*) 是两个半群。 $\varphi$  是 S 到 T 的同态。半群  $(S/E_{\varphi}, \cdot)$  称为商半群。 $\varphi \gamma : S \to S/E_{\varphi}, \forall a \in S, \gamma(a) = [a]$  则称  $\gamma$  为 S 到商半群  $S/E_{\varphi}$  的自然同态。



## 同态基本定理(续)

#### 定理 11.5.6

(幺半群的同态基本定理)设 $\varphi$ 是幺半群 $(M, \circ, e)$ 到(M', \*, e')的同态,则

- **①** 同态象  $\varphi(M)$  是 M' 的一个子幺半群。
- ② 由  $\varphi$  确定的等价关系是同余关系,即如果  $a'E_{\varphi}a, b'E_{\varphi}b$ ,那么  $a'\circ b'E_{\varphi}a\circ b$ 。于是  $\forall [a], [b]\in M/E_{\varphi}, [a]\cdot [b]=[a\circ b]$  是  $M/E_{\varphi}$  上的二元代数运算,  $(M/E_{\varphi},\cdot,[e])$  是幺半群。
- **③** 存在唯一的  $M/E_{\varphi}$  到 M' 的单同态  $\bar{\varphi}$  使得

$$\varphi=\bar{\varphi}\circ\gamma$$

其中  $\gamma$  是 M 到  $M/E_{\varphi}$  的自然同态。

 $\bullet$  如果  $\varphi$  是满同态,则  $M/E_{\varphi}$  与 M' 同构。

# 同态基本定理(续)

