Computer Science II L1: SSA

Marco S. Nobile, Ph.D.

Bachelor's Degree in Engineering Physics
Ca' Foscari University of Venice
A.Y. 2022-2023

Today

• Estendere la funzione combinatoria h di SSA

- Implementare e simulare i seguenti modelli:
 - Cinetica enzimatica Michaelis-Menten
 - Il modello di Schlögl
 - Il modello di Lotka-Volterra

Estendere la funzione combinatoria h

- Nel codice presente su Moodle c'è una funzione chiamata _get_h(index)
 - La funzione prende come argomento l'indice della reazione e determina l'ordine della reazione sulla base della stechiometria dei reagenti di quella reazione
- Ora supporta solo reazioni di ordine 0 (ad es., $\emptyset \to S_j$) o ordine 1 (ad es., $S_j \to S_k$)
- Implementate reazioni di ordine superiore sulla base della tabella:

*
$$\rightarrow$$
 reaction products, $h_{\mu} = 1$, $S_{j} \rightarrow$ reaction products, $h_{\mu} = X_{j}$, $h_{\mu} = X_{j}X_{k}$, $S_{j} + S_{k} \rightarrow$ reaction products, $h_{\mu} = X_{j}X_{k}$, $h_{\mu} = X_{j}(X_{j} - 1)/2$, $h_{\mu} = X_{j}(X_{j} - 1)/2$, $S_{i} + S_{j} + S_{k} \rightarrow$ reaction products $(i \neq j \neq k \neq i)$ $h_{\mu} = X_{i}X_{j}X_{k}$, $S_{j} + 2S_{k} \rightarrow$ reaction products $(j \neq k)$, $h_{\mu} = X_{j}X_{k}(X_{k} - 1)/2$, $h_{\mu} = X_{j}(X_{j} - 1)(X_{j} - 2)/6$

Modello di Michaelis-Menten

• L'abbiamo già visto a lezione. Sono tre reazioni e quattro specie chimiche:

$$R_{1}: S + E \xrightarrow{c_{1}=0.025} ES$$

$$R_{2}: ES \xrightarrow{c_{2}=0.1} S + E$$

$$R_{3}: ES \xrightarrow{c_{3}=5.0} E + P$$

• Implementate il modello e simulatelo utilizzando questo stato iniziale: S=500, E=100, ES=0, P=0

Modello di Schlögl

- Implementate e simulate il modello 50 volte
- Infine, plottate la dinamica della specie X in tutte simulazioni
- NB: le specie A e B devono mantenere costante il loro valore (come si fa? modificate il codice opportunamente)

3 The Schlögl system

The Schlögl system [3,4] is one of the simplest prototypes of chemical systems presenting a bistable dynamical behavior, i.e., the capacity of switching between two different stable steady states in response to some chemical signaling (see, e.g., [5-7] and references therein). The Schlögl model consists of 4 chemical reactions and 3 molecular species, listed in Table 4. The initial molecular amounts used in this work are given in Table 5.

Table 4. The Schlögl model

No.	Reactants	Products	Stochastic constant
r_1	A+2X	3X	$3 \cdot 10^{-7}$
r_2	3X	A+2X	$1 \cdot 10^{-4}$
r_3	B	X	$1 \cdot 10^{-3}$
r_4	X	B	3.5

Table 5. Initial molecular amounts in the Schlögl model

Molecular species	Initial amount
A	$*1 \cdot 10^{5}$
B	$*2 \cdot 10^{5}$
X	250

^{*}The amounts of species A, B are kept constant during the execution of simulations. All molecular amounts are expressed as number of molecules.

Lotka-Volterra

- Il modello Lotka-Volterra è anche noto come preda-predatore
 - è un modello di un ecosistema in cui interagiscono solo due specie animali: un predatore (coyote) e la sua preda (tradizionalmente, coniglietti)
 - Assunzioni: i predatori possono solo nutrirsi delle prede; la quantità di cibo consumata dai predatori è proporzionale al numero possibile di incontri (=mass-action!); i predatori muoiono dopo un po'
- Implementate il modello Lotka-Volterra:

•
$$R_1: y_1 + x \xrightarrow{c_1=10} 2y_1 + x$$
 Initial conditions: $x = 1, y_1 = y_2 = 1000$

•
$$R_2: y_1 + y_2 \xrightarrow{c_2 = 0.01} 2y_2$$

•
$$R_3: y_2 \xrightarrow{c_3=10} \emptyset$$

Diagramma delle fasi

 Plottate la dinamica di Lotka-Volterra mettendo sull'asse delle x il numero di coniglietti e sull'asse delle y il numero di coyote

