• ÇOKLU DOĞRUSAL BAĞLANTI

ÇOKLU DOĞRUSALLIĞIN ANLAMI Çoklu doğrusal bağlantı; Bağımsız değişkenler arasında doğrusal (yada doğrusala yakın) ilişki olmasıdır.

1. $r_{x_i x_j} = 1$ parametreler belirlenemez hale gelir. Her bir parametre için ayrı ayrı sayısal değerler bulmak zorlaşır

2. $r_{x_ix_j}=0$ ise bu değişkenlere ortogonal değişkenler denir ve katsayıların tahmininde çoklu doğrusal bağlantı açısından hiçbir sorun yoktur.

3. $r_{x_i x_i} \neq 1$ ise tam çoklu doğrusal bağlantı yoktur.

Çoklu Doğrusal Bağlantı

$$r_{X_2X_3} = 1$$

Tam Çoklu Doğrusal Bağlantı

ÇOKLU DOĞRUSALLIĞIN NEDENLERİ

- lktisadi değişkenlerin zaman içerisinde birlikte değişme eğiliminde olmaları
- Bazı açıklayıcı değişkenlerin gecikmeli değerlerinin ilişkide ayrı birer etmen olarak kullanılmasıdır.
- 🔲 Genellikle zaman serilerinde görülür.

Çoklu Doğrusal Bağlantı

$$Y = b_1 + b_2 X_2 + b_3 X_3 + u$$

 $y = b_2 x_2 + b_3 x_3 + u$

$$X_3 = 2 X_2$$

$$\sum yx_{2} = \hat{b}_{2} \sum x_{2}^{2} + \hat{b}_{3} \sum x_{2}x_{3}$$

$$\sum yx_{3} = \hat{b}_{2} \sum x_{2}x_{3} + \hat{b}_{3} \sum x_{3}^{2}$$

$$\sum y(2x_{2}) = \hat{b}_{2} \sum x_{2}(2x_{2}) + \hat{b}_{3} \sum x_{3}(2x_{2})$$

$$\sum yx_{2} = \hat{b}_{2} \sum x_{2}^{2} + \hat{b}_{3} \sum x_{3}x_{2}$$

Çoklu Doğrusal Bağlantı

Araba Bakım Masrafları Model Tahminleri

Değişkenler	Model A	Model B	Model C	
Sabit	-626.24 (-5.98)	-796.07 (-5.91)	7.29 (0.06)	
Yas	7.35 (22.16)		27.58 (9.58)	
Km		53.45 (18.27)	-151.15 (-7.06)	
s.d.	55	55	54	
Düzeltilmiş-R ²	0.897	0.856	0.946	

ÇOKLU DOĞRUSALLIĞIN DOĞURDUĞU SONUÇLAR

$$\mathbf{r}_{\mathbf{x}_{i}\mathbf{x}_{j}}=1$$

a) Katsayıları tahminleri belirlenemez.

b)Tahminlerin standart hataları sonsuz büyük olur.

$$Y = b_0 + b_1 X_1 + b_2 X_2 + u$$

$$b_1 = \frac{\left(\sum x_1 y\right)\left(\sum x_2^2\right) - \left(\sum x_2 y\right)\left(\sum x_1 x_2\right)}{\left(\sum x_1^2\right)\left(\sum x_2^2\right) - \left(\sum x_1 x_2\right)^2}$$

$$X_2 = kX_1$$

$$b_{2} = \frac{\left(\sum x_{2}y\right)\left(\sum x_{1}^{2}\right) - \left(\sum x_{1}y\right)\left(\sum x_{1}x_{2}\right)}{\left(\sum x_{1}^{2}\right)\left(\sum x_{2}^{2}\right) - \left(\sum x_{1}x_{2}\right)^{2}}$$

$$b_1 = \frac{k^2 \left(\sum x_1 y\right) \left(\sum x_2^2\right) - k^2 \left(\sum x_2 y\right) \left(\sum x_1 x_2\right)}{k^2 \left(\sum x_1^2\right) \left(\sum x_2^2\right) - k^2 \left(\sum x_1 x_2\right)^2} = \frac{0}{0}$$

$$b_2 = \frac{k(\sum x_2 y)(\sum x_1^2) - k(\sum x_1 y)(\sum x_1 x_2)}{k^2(\sum x_1^2)(\sum x_2^2) - k^2(\sum x_1 x_2)^2} = \frac{0}{0}$$

İspat a)

$$Y = b_0 + b_1 X_1 + b_2 X_2 + u$$

$$X_2 = kX_1$$

$$b_1 = \frac{\left(\sum x_1 y\right)\left(\sum x_2^2\right) - \left(\sum x_2 y\right)\left(\sum x_1 x_2\right)}{\left(\sum x_1^2\right)\left(\sum x_2^2\right) - \left(\sum x_1 x_2\right)^2} \implies b_1 = \frac{k^2\left(\sum x_1 y\right)\left(\sum x_2^2\right) - k^2\left(\sum x_2 y\right)\left(\sum x_1 x_2\right)}{k^2\left(\sum x_1^2\right)\left(\sum x_2^2\right) - k^2\left(\sum x_1 x_2\right)^2} = \frac{0}{0}$$

$$b_2 = \frac{\left(\sum x_2 y\right) \left(\sum x_1^2\right) - \left(\sum x_1 y\right) \left(\sum x_1 x_2\right)}{\left(\sum x_1^2\right) \left(\sum x_2^2\right) - \left(\sum x_1 x_2\right)^2} \\ \Longrightarrow b_2 = \frac{k \left(\sum x_2 y\right) \left(\sum x_1^2\right) - k \left(\sum x_1 y\right) \left(\sum x_1 x_2\right)}{k^2 \left(\sum x_1^2\right) \left(\sum x_2^2\right) - k^2 \left(\sum x_1 x_2\right)^2} = \frac{0}{0}$$

ispat b)

$$var(b_1) = \sigma_u^2 \frac{\sum x_2^2}{\sum x_1^2 \sum x_2^2 - (\sum x_1 x_2)^2}$$

$$var(b_2) = \sigma_u^2 \frac{\sum x_1^2}{\sum x_1^2 \sum x_2^2 - (\sum x_1 x_2)^2}$$

X₂ yerine kX₁ konursa

$$var(b_1) = \sigma_u^2 \frac{k^2 \sum x_2^2}{k^2 \sum x_1^2 \sum x_2^2 - k^2 (\sum x_1 x_2)^2} = \frac{\sigma_u^2 \sum x_1^2}{0} = \infty$$

Çoklu Doğrusal Bağlantının Ortaya Çıkardığı Sonuçlar

- Regresyon Katsayılarının Değerleri Belirsiz Olur,
- Regresyon Katsayılarının Varyansları Büyür,
- •t-istatistikleri azalır,
- •Güven Aralıkları Büyür,
- •R² Olduğundan Büyük Çıkar,
- Katsayı Tahmincileri ve Standart Hataları Verilerdeki Küçük değişmelerden Önemli Ölçüde Etkilenirler,
- Katsayıların işaretleri beklenenlerin aksi çıkabilir.

ÇOKLU DOĞRUSAL BAĞLANTININ VARLIĞININ BELİRLENMESİ

Varyans Büyütme Modeli

Yardımcı Regresyon Modelleri için F testi

Klein – Kriteri

Şartlı Sayı Kriteri

Theil-m Ölçüsü

ÇOKLU DOĞRUSAL BAĞLANTININ BELİRLENMESİ

1. Varyans Büyütme Modeli:

☐ Varyans büyütme faktörü; parametre tahminlerinin ve varyanslarının çoklu doğrusal bağlantı nedeni ile gerçek değerlerinden ne derece uzaklaştığını belirlenir.

$$Var(b_1) = \frac{\sigma_u^2}{\sum (X_i - \overline{X})^2 (1 - R_i^2)}$$

VIF kriteri

$$VIF = \frac{1}{1 - R_i^2}$$

$$Y_i = b_0 + b_1 X_{1t} + b_2 X_{2t} + \dots + b_k X_{kt} + \varepsilon_t \rightarrow R^2_{Y.X_1 X_2 \dots X_k}$$

Çoklu doğrusal bağlantı etkisini araştırabilmek için k tane VIF eğeri

$$VIF_{1} = \frac{1}{1 - R_{X_{1}, X_{2} \dots X_{k}}^{2}}$$

$$VIF_2 = \frac{1}{1 - R_{X_2, X_1, X_3 \dots X_k}^2}$$

•

•

$$VIF_{k} = \frac{1}{1 - R_{X_{k}, X_{1}, X_{2} \dots X_{k-1}}^{2}}$$

5

Çoklu doğrusal bağlantı önemlidir.

$$Y_i = b_0 + b_1 X_{1t} + b_2 X_{2t} + \dots + b_k X_{kt} + \varepsilon_t \rightarrow R^2_{Y.X_1 X_2 \dots X_k}$$

Çoklu doğrusal bağlantı etkisini araştırabilmek için k tane VIF eğeri

$$VIF_1 = \frac{1}{1 - R_{X_1, X_2 \dots X_k}^2}$$

$$VIF_2 = \frac{1}{1 - R_{X_2, X_1, X_3 \dots X_k}^2}$$

•

•

$$VIF_{k} = \frac{1}{1 - R_{X_{k}, X_{1}, X_{2} \dots X_{k-1}}^{2}}$$

Çoklu doğrusal bağlantı önemlisizdir.

ÖRNEK: 1990-2002 dönemi için Türkiye'nin GSMH(milyar TL), Para Arzı(PA, milyar TL), Dış Ticaret Açığı (DT, milyar TL) ve Toptan Eşya Fiyat Endeksi (TEFE,1987=100) değerleri verilmiştir.

Yıllar	GSMH	PA	DT	TEFE
1990	0.397178	0.072425	-0.0244	425.6
1991	0.634393	0.117118	-0.03118	661.6
1992	1.103605	0.190736	-0.05618	1072.5
1993	1.997323	0.282442	-0.15573	1701.6
1994	3.887903	0.630348	-0.15414	3757.4
1995	7.854887	1.256632	-0.64664	7065.2
1996	14.97807	2.924893	-1.66881	12335.4
1997	29.39326	5.6588	-3.40719	22366.1
1998	53.51833	11.4232	-4.96864	38067.2
1999	78.28297	22.40182	-5.94562	58599.1
2000	125.5961	31.9121	-16.7507	89239.7
2001	179.4801	47.24108	-12.3931	144862.2
2002	265.4756	61.87976	-23.4451	216711.5

Varyans Büyütme Faktörü ile çoklu doğrusal bağlantı sorununu araştırınız. Bu verilerden elde edilen model;

$$GSMH_t = 0.6708 + 1.0473PA_t - 1.3636DT_t + 0.00078TEFE_t$$
 $R^2 = 0.9997$

Bağımsız değişkenleri sırası ile bağımlı değişken yaparak diğer bağımsız değişkenlerle regresyon modeli tahmin edilir.

$$PA_{t} = 0.191 - 0.304DT_{t} + 0.000272TEFE_{t}$$
 $R^{2} = 0.987$

$$VIF_1 = \frac{1}{1 - 0.987} = 76.92$$
 > 5 çoklu doğrusal bağlılık önemlidir

$$DT_t = -0.3421 - 0.259PA_t - 0.000028TEFE_t$$
 $R^2 = 0.918$

$$VIF_2 = \frac{1}{1 - 0.918} = 12.195 > 5$$
 çoklu doğrusal bağlılık önemlidir

$$TEFE_{t} = -517.59 - 379.96DT_{t} + 3102.99PA_{t}$$
 $R^{2} = 0.986$

$$VIF_3 = \frac{1}{1 - 0.986} = 71.429 > 5$$
 çoklu doğrusal bağlılık önemlidir

2. Yardımcı Regresyon Modelleri için F testi
Bu yöntemde varyans büyütme faktöründe hesapladığımız belirlilik katsayılarından hesaplanır.
Sırası ile incelenen modelde yer alan her bir bağımsız değişken ayrı ayrı bağımlı değişken olmak üzere kalan diğer bağımsız değişkenlerle regresyona tabi tutulur.
Oluşturulan söz konusu yeni regresyon modellerine <u>yardımcı regresyon modelleri</u> denir.
Oluşturulan yardımcı regresyon modellerinin belirlilik katsayıları hesaplanarak F test istatistiği hesaplanır.
Bu yöntem için temel hipotez bağımsız değişkenler arasında ilişki yoktur şeklindedir.

$$Y_{i} = b_{0} + b_{1}X_{1t} + b_{2}X_{2t} + \dots + b_{k}X_{kt} + \varepsilon_{t}$$

$$X_{1t} = f(X_{2t}, X_{3t},, X_{kt})$$

$$X_{2t} = f(X_{1t}, X_{3t},, X_{kt})$$

•

$$X_{kt} = f(X_{1t,}X_{2t},....,X_{(k-1)t})$$

Test istatistiği yukarıdaki her denklem için hesaplanır.

$$F_{i} = \frac{R_{X_{i},X_{1}X_{2}...X_{k}}^{2}/(k-2)}{(1-R_{X_{i},X_{1}X_{2}...X_{k}}^{2})/(n-k+1)}$$

k: incelenen modelin tahmin edilen katsayı sayısı

UYGULAMA: Aynı örnek için yardımcı regresyon modeli ile çoklu doğrusal bağlantı sorununu inceleyiniz.

1. Aşama: H₀: Çoklu doğrusal bağlantı yoktur.

H₁: Çoklu doğrusal bağlantı yoktur.

2.Aşama:
$$F_{0.05,(k-2),(n-k+1)} = 4.10$$

3.Aşama:
$$PA_t = 0.191 - 0.304DT_t + 0.000272TEFE_t$$
 $R^2 = 0.987$

$$F_{i} = \frac{0.987/(4-2)}{(1-0.987)/(13-4+1)} = 379.62$$

4.Aşama: $F_{hes} > F_{tab} H_0$ reddedilir.

$$DT_{t} = -0.3421 - 0.259PA_{t} - 0.000028TEFE_{t} R^{2} = 0.918$$
$$F_{i} = \frac{0.918/(4-2)}{(1-0.918)/(13-4+1)} = 55.98$$

 $F_{hes} > F_{tab} H_0$ reddedilir.

TEFE_t =
$$-517.59 - 379.96DT_t + 3102.99PA_t$$
 R² = 0.986

$$F_i = \frac{0.986/(4-2)}{(1-0.986)/(13-4+1)} = 352.14$$

 $F_{hes} > F_{tab} H_0$ reddedilir.

Klein – Kriteri:

- ☐ Klein, bağımsız değişkenler arasındaki basit korelasyon katsayılarının modelin genel belirlilik katsayısından büyük olmadığı sürece çoklu doğrusallığın zararlı olmadığını savunmaktadır.
- ☐ Modelde k-1 bağımsız değişken var ise bunlardan herhangi ikisi arasındaki basit korelasyon katsayısı modelin yine belirlilik katsayısı ile karşılaştırılır.

$$r_{X_iX_i}^2 \ge R_{Y,X_1X_2...X_k}^2$$
 Çoklu doğrusal bağlılık zararlıdır.

☐ Klein yukarıdaki kriterine göre küçük bir çoklu doğrusal bağlantı bile parametre tahminlerinde anlamsızlığa yol açabilir.

□Bu durumda

basit korelasyon katsayısı yerine yardımcı regresyon modelleri için F testinde açıklandığı gibi, yardımcı regresyon modelleri tahmin edilir ve bunlardan elde edilecek çoklu belirlilik katsayısı ile karşılaştırılarak karar verilebilir.

UYGULAMA: Aynı örnek için Klein kriteri ile çoklu doğrusal bağlantı sorununu inceleyiniz.

$$GSMH_{t} = 0.6708 + 1.0473PA_{t} - 1.3636DT_{t} + 0.00078TEFE_{t}$$
 $R^{2} = 0.9997$

Elde edilen yardımcı regresyon modelleri

1.
$$PA_t = 0.191 - 0.304DT_t + 0.000272TEFE_t$$
 $R^2 = 0.987$

$$R^2 = 0.987 < R^2 = 0.9997 \qquad \text{ Çoklu doğrusal bağlantı zararlı değildir.}$$

2.
$$DT_t = -0.3421 - 0.259PA_t - 0.000028TEFE_t$$
 $R^2 = 0.918$

$$R^2 = 0.918 < R^2 = 0.9997$$
 Çoklu doğrusal bağlantı zararlı değildir.

3. TEFE_t =
$$-517.59 - 379.96DT_t + 3102.99PA_t$$
 R² = 0.986

$$R^2 = 0.986 < R^2 = 0.9997$$
 Çoklu doğrusal bağlantı zararlı değildir.

Şartlı Sayı Kriteri:

- ☐ Bu kriterin hesaplanması için bu (X'X) matrisinin birim köklerinden (özdeğerlerinden) yararlanılır.
- \square (X'X) matrisinin en büyük birim kökü (λ_1) ve en küçük birim kökü (λ_2) ise şartlı sayı

Şartlı Sayı=
$$\sqrt{\frac{\lambda_1}{\lambda_2}}$$

KARAR:

1. 10 <Şartlı Sayı= $\sqrt{\frac{\lambda_1}{\lambda_2}} < 30$ Çoklu doğrusal bağlantı orta derecedir.

2. Şartlı Sayı=
$$\sqrt{\frac{\lambda_1}{\lambda_2}} > 30$$
 Çoklu doğrusal bağlantı yüksek derecedir.

Örnek: 12 ailenin aylık gelirleri (Y), gıda harcamaları (X_2) ve fert sayısı (X_3) verileri aşağıdaki gibidir:

Aile	Y	X_2	X_3
1	2.2	2.8	3
2	3,0	3.5	6
3	4.1	12.5	4
4	4.7	6.4	2
5	4.2	5.9	5
6	6.3	8,0	8
7	4.6	9.7	3
8	8.8	20.6	7
9	7.3	15.9	4
10	4.4	6.7	1
11	6.9	11.3	2
12	3.5	4.7	3

$$Y_i = 1.8490 + 0.30939X_2 + 0.09161X_3$$

Ortalamadan farklar ile bağımsız değişkenler katsayı matrisi;

$$(X'X) = \begin{bmatrix} \sum (X_2 - \overline{X}_2) & \sum (X_2 - \overline{X}_2) \sum (X_3 - \overline{X}_3) \\ \sum (X_2 - \overline{X}_2) \sum (X_3 - \overline{X}_3) & \sum (X_3 - \overline{X}_3) \end{bmatrix}$$

$$(X'X) = \begin{bmatrix} 310.04 & 34 \\ 34 & 50 \end{bmatrix}$$
 $(X'X) = \begin{bmatrix} 310.04 - \lambda & 34 \\ 34 & 50 - \lambda \end{bmatrix}$

$$(310.04 - \lambda)(50 - \lambda) - (34)^2 = 0$$

$$\lambda^{2} - 360.04\lambda + 14346 = 0$$

$$\lambda_{2} = 91.26$$

KARAR:

Şartlı Sayı=
$$\sqrt{\frac{\lambda_1}{\lambda_2}} = \sqrt{\frac{314.41}{91.26}} = 1.856 < 10$$
 Çoklu doğrusal bağlantı düşük derecededir.

Theil-m Ölçüsü

- Bağımlı değişkenle bağımsız değişkenler arasındaki ilişkiye dayanan bir ölçüdür.
- ☐ Bu ölçü için, modelin genel belirlilik katsayısı ile modelden sırası ile bir tane bağımsız değişkenin çıkarılması ile elde edilecek modellerin çoklu korelasyon katsayıları kullanılır.

$$Y_{t} = \beta_{0} + \beta_{1}X_{t1} + \beta_{2}X_{t2} + ... + \beta_{k}X_{tk} + \varepsilon_{t}$$

☐ Modelde yer alan tüm bağımsız değişkenler sırası ile modelden çıkarılarak

$$Y_{t} = f(X_{t2}, X_{t3}, ..., X_{tk})$$

$$Y_{t} = f(X_{t1}, X_{t3}, ..., X_{tk})$$

•

•

$$Y_{t} = f(X_{t1}, X_{t2}, ..., X_{t(k-1)})$$

Regresyon modelleri tahmin edilir ve her model için çoklu belirlilik katsayıları elde edilir.

Theil-m Ölçüsü

$$m = R^2 - \sum_{i=1}^{k} (R^2 - R_{-i}^2)$$

Olarak hesaplanır. Burada bağırsız değişkenlerden biri çıkartıldıktan sonra bağımlı değişken ile diğer bağımsız değişkenlerin tegresyonu sonucunda tahmin edilen çoklu belirlilik katsayısını ifade eder.

□Theil-m ölçüsü çoklu doğrusal bağlılığın önemli olup olmadığı hakkında bilgi vermediğinden, varyans büyütme faktörü ile şartlı sayı daha çok kullanılan ve daha yarar sağlayan kriterlerdir.

Theil-m Ölçüsü

- "m" ölçüsü her regresyon için ayrı ayrı hesaplanmayan genel bir ölçüdür.
- m ölçüsü negatif çıkabileceği gibi çok yüksek pozitif değer de olabilmektedir.
- ☐ Hesaplanan m ölçüsü sıfıra eşitse bağımsız değişkenler ilişkisizdir.

☐ Slayt 11 de incelediğimiz model için Theil-m ölçüsünü uygulayalım.

$$GSMH_{t} = 0.671 + 1.047PA_{t} - 1.364DT_{t} + 0.00078TEFE_{t}$$
 $R^{2} = 0.9997$

☐ Yardımcı regresyon modellerini oluşturalım.

$$GSMH_t = 0.268 + 3.460PA_t - 1.659DT_t$$
 $R^2 = 0.994$

$$GSMH_t = 1.137 + 1.396PA_t - 0.818TEFE_t$$
 $R^2 = 0.998$

$$GSMH_t = 0.871 - 1.682DT_t - 1.062TEFE_t$$
 $R^2 = 0.9988$

$$m = R^{2} - \left[\left(R^{2} - R_{1}^{2} \right) + \left(R^{2} - R_{2}^{2} \right) + \left(R^{2} - R_{3}^{2} \right) \right]$$

$$= 0.9997 - \left[\left(0.9997 - 0.994 \right) + \left(0.9997 - 0.998 \right) + \left(0.9997 - 0.9988 \right) \right]$$

$$= 0.9914$$

m sıfıra yakın bir değer değildir, çoklu doğrusal bağlılık söz konusudur.

ÇOKLU DĞRUSAL BAĞLANTI PROBLEMİNİ ORTADAN KALDIRMA YOLLARI

1. Ön Bilgi Yöntemi ile;
2. Kesit ve Zaman Serisi Verilerinin Birleştirme Yöntemi ile;
3. Bazı değişkenlerin Modelden Çıkarılması Yöntemi ile;
4. Değişkenleri Dönüştürme Yöntemi ile;
5. Ek veya Yeni Örnek Verisi Temini Yöntemi ile;

1.Ön Bilgi Yöntemi

$$Y = b_1 + b_2 X_2 + b_3 X_3 + b_4 X_4 + u$$

$$b_3 = 0.2b_2$$

$$Y = b_1 + b_2 X_2 + 0.2b_2 X_3 + b_4 X_4 + u$$

$$Y = b_1 + b_2 (X_2 + 0.2 X_3) + b_4 X_4 + u$$

$$Y = b_1 + b_2 X^* + b_4 X_4 + u$$

2.Kesit ve Zaman Serilerinin Birleştirilmesi

$$InY = b_1 + b_2 InP_{tA} + b_3 InI_t + b_4 InP_{tB} + u$$

$$lnY - b_3 lnI_t = b_1 + b_2 lnP_{tA} + b_4 lnP_{tB} + u$$

$$lnY^* = b_1 + b_2 lnP_{tA} + b_4 lnP_{tB} + u$$

3.Bazı Değişkenlerin Modelden Çıkarılması,

Modelden bir bağımsız değişken çıkarılırsa spesifikasyon hatası yapma olasılığı artar:

Katsayı tahminleri gerçek değerinin üstünde veya altında tahmin edilebilir.

4. Değişkenleri Dönüştürme Yöntemi,

Fark denklemi oluşturulur:

$$Y_t = b_1 + b_2 X_{2t} + b_3 X_{3t} + b_4 X_{4t} + u_t$$

$$Y_{t-1} = b_1 + b_2 X_{2,t-1} + b_3 X_{3,t-1} + b_4 X_{4,t-1} + u_{t-1}$$

$$Y_t - Y_{t-1} = b_1 + b_2(X_{2t} - X_{2,t-1}) + b_3(X_{3t} - X_{3,t-1}) + \dots + v_t$$

Dönüşümlü modelde çoklu doğrusal bağlantı önemli ölçüde azalmış olur.

5.Ek veya Yeni Örnek Verisi Temin etme,

6.Diğer Yöntemler.

Ev Talebi Model Tahminleri

Değişkenler	Model A	Model B	Model C	
Sabit	-3812.93	687.90	-1315.75	
	(-2.40)	(1.80)	(-0.27)	
Faiz	400.40	-169.66	-184.75	
	-198.40 (-3.87)	(-3.87)	(-3.18)	
Nüfus	33.82		14.90	
	(3.61)		(0.41)	
GSMH		0.91	0.52	
		(3.64)	(0.54)	
s.d.	20	20	19	
Düzeltilmiş-R ²	0.371	0.375	0.348	

r(GSMH,Nüfus)=0.99

r(GSMH,faiz)=0.88

r(Nüfus,faiz)= 0.91