МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НОВОСИБИРСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ИНСТИТУТ ИНТЕЛЛЕКТУАЛЬНОЙ РОБОТОТЕХНИКИ

Разработка интерактивного учебного пособия с ответами на естественном языке на основе Retrieval Augmented Generation

Сыренный Илья Игоревич Бакалавриат Курс 4, группа 21930

Научный руководитель: Оглезнев Никита Сергеевич, сотрудник КафИСТИИР, ассистент

Введение

Цель работы:

Разработать систему, использующую подход Retrieval Augmented Generation (RAG) для помощи пользователям в изучении научных статей в формате PDF. Система должна отвечать на вопросы пользователя по загруженному документу, а также предоставлять релевантные фрагменты

Задачи:

Поиск и анализ литературы в рамках изучения предметной области

Проектирование и разработка системы

Разработка способов оценки системы

Retrieval Augmented Generation

Проблема:

Большие текстовые массивы сложно использовать напрямую из-за ограниченного контекста моделей. Это затрудняет извлечение точной и актуальной информации

Решение:

RAG (Retrieval Augmented Generation) сочетает поиск данных и генерацию текста. Поиск (Retrieval) находит релевантные фрагменты текста из базы данных. Генерация (Generation) создает ответ, основываясь на найденных данных

Устройство RAG-пайплайна

Разработка системы

Проектирование:

Для проектирования системы были использованы UML-диаграммы, которые позволили структурировать требования, визуализировать архитектуру и глубже понять функциональность системы

Архитектура

Разработано веб-приложение в виде чата для общения с пользователем, пользователь может загружать документы, задавать вопросы, получать ответы в потоковом режиме

Поисковая система

Для поддержки мультиязычного поиска реализован векторный поиск, учитывающий семантические особенности текста

Пользовательский интерфейс веб-приложения

Работа с PDF-файлами

Индексация

Система загружает PDF-файлы и разбивает их на логические фрагменты в реальном времени. Для восстановления макета документа используется CRF-модель, обученная на разметке научных статей. Затем применяется алгоритм семантического чанкинга для формирования базы знаний

Скорость загрузки документов

Книга "Deep Learning" (Goodfellow et al., ~800 страниц) индексируется за ~7 минут Научная статья (15 стр.) индексируется за ~2 секунды

Система оптимизирована для работы в интерактивном режиме: индексация начинается сразу после загрузки документа

Схема работы этапа индексации

Оценка системы

Датасет: FRAMES

Содержит 824 вопроса, требующих информации из 2-15 статей из Wikipedia. Для каждого вопроса представлен эталонный ответ, а также список релевантных статей из Wikipedia

Метрики: RAGAS

Использованы метрики LLM-as-Judge для оценки качества генерации, а также релевантности найденных для ответа фрагментов

Пилотное тестирование

Приложение было развернуто и передано 6 студентам НГУ для сбора обратной связи о работе системы. Собрана обратная связь по качеству ответов, удобству интерфейса и скорости работы системы

Метрики разных конфигураций

Наименование метрики	Agentic-RAG	RAG	LLM
Релевантность поиска	0.51	0.36	_
Достоверность генерации	0.68	0.54	_
Правильность генерации	0.62	0.48	0.26
Среднее время работы (с)	29	6.5	3

Выводы

В итоге получилась система, которая эффективно работает с большими PDFдокументами и позволяет в реальном времени находить и формировать релевантные ответы на вопросы