Série N°6: Estruturas recursivas

Exercício 1

Escreva, utilizando PARA, os algoritmos dos códigos seguintes:

1. a)
$$S = \sum_{i=1}^{20} i$$
 b) $S = \sum_{i=1}^{20} i^2$ c) $S = \sum_{i=1}^{20} i^i$

b)
$$S = \sum_{i=1}^{20} i^2$$

c)
$$S = \sum_{i=1}^{20} i^i$$

2. a)
$$P = \prod_{k=1}^{20} k$$
 b) $P = \prod_{k=1}^{20} k^2$ c) $P = \prod_{k=1}^{20} k^k$

b)
$$P = \prod_{k=1}^{20} k^2$$

e)
$$P = \prod_{k=1}^{20} k^k$$

Exercício 2

Escreva algoritmos para calcular as expressões abaixo:

1. a)
$$s = 1^2 - 2^2 + \dots + 19^2 - 20^2$$

b)s =
$$1^1 - 2^2 + \dots + 19^{19} - 20^{20}$$

2. a)
$$s = 1^2 \times (-2)^2 \times \cdots \times 19^2 \times (-20)^2$$
 b) $p = 1^1 \times 2^2 + \cdots + 19^{19} \times 20^{20}$

b)
$$p = 1^1 \times 2^2 + \cdots + 19^{19} \times 20^{20}$$

3. a)
$$s = \sqrt{1} + \sqrt{2} + \dots + \sqrt{19} + \sqrt{20}$$

b)s =
$$\frac{1^1}{\sqrt{2}} + \frac{2^2}{\sqrt{3}} + \dots + \frac{19^{19}}{\sqrt{20}}$$

Exercício 3

Executar o algoritmo ao lado com as entradas na linha 1 do quadro abaixo e completar a linha 2.

Execução 👺	1	2	3	4	5	6
N	7	11	13	25	37	38
р	•••			•••	•••	

Com base nos valores de N e de p, o que representa o valor de p.

()		
_	1:	$p \leftarrow verdade;$
	2:	$i \leftarrow 2;$
	3:	Leia (N)
	4:	repita
	5:	$r \leftarrow Resto(N, i);$
	6:	se(r==0) então
	7:	$p \leftarrow falso$
	8:	fim se
	9:	$i \leftarrow i + 1$
	10:	$at\acute{e}((i >= N-1) \text{ OU } (p == falso))$

Exercício 4

Executar o algorithmo ao lado com as entradas a e b das linhas 1 e 2 da tabela abaixo e complete a linha 3.

Exécution 🖾	1	2	3	4	5	6
а	2	3	13	25	37	16
\overline{b}	4	5	6	12	12	38
q	•••	•••	•••	•••	•••	

Com base nos valores de a, b e de q, o que significa o valor de q?

- a) O máximo de a e b,
- b) O MMC de a e b,
- c) O MDC de a e b.

1: Lea(a,b);
$2: i \leftarrow 2;$
3: se(a <b)então< p=""></b)então<>
4: $temp \leftarrow a$;
5: $a \leftarrow b$;
6: $b \leftarrow temp$;
7: fim se
8: $r \leftarrow Resto(a,b)$;
9: enquanto(r <> 0) faça
10: $a \leftarrow b$;
11: $b \leftarrow r$;
12: $r \leftarrow Resto(a,b)$;
13: fim enquanto
14: $q \leftarrow b$;

Exercício 5

1) Escreva, utilizando uma estrutura de repetição a sua escolha, um algoritmo que calcule o produto seguinte

$$f = \prod_{k=1}^{k=n} k = k! = 1 \times 2 \times \cdots \times (n-1) \times n$$

2) Escreva, utilizando uma estrutura de repetição a sua escolha, um algoritmo que calcule a soma seguinte

$$s = \sum_{q=1}^{q=M} q! = 1! + 2! + \dots + M!$$