Лабораторная работа №2. Интерполяция в MatLab

1. Запускаем приложение splinetool	>> splinetool
------------------------------------	---------------

2а. Интерполяция табличных функций

Создаем массивы со значениями табличной	$>> x = [-4 -1.7 \ 0 \ 0.2 \ 0.7 \ 0.9 \ 1.1];$
функции	>> y=[-1.66 -1.36 0 0.42 1.26 1.97 2.24];

Кнопка *Import your own data*, в окне *Please provide data* указываем х и у.

2б. Интерполяция непрерывных функций

Создаем массив равномерно распределенных	>> x = linspace(a, b, 11)
точек на СВОЕМ отрезке [a,b]	
Создаем т-функцию в текущей папке	function y=f(x)
	y=sin(x); % здесь нужна СВОЯ функция
	end

Из среды Spline Tool: File \rightarrow Import Data..., в окне Please provide data указываем \times (или без массива, сразу linspace..) и функцию f

3. Окно Spline Tool

<u></u>	
окно List of approximations (список приближений)	по одним данным можно построить приближения
	разным способом
окно Approximation method (способ приближения)	Cubic Spline Interpolant (интерполяционный
	кубический сплайн)
окно Data, breaks/knots, weights (Данные, точки	Изменение данных в отдельных точках
разрыва веса	
меню Tools	Установка (скрытие) сетки, легенды
меню View	Вывод графика первой, или второй производных
	сплайна, или ошибки (по умолчанию)

4. Выбор граничных условий (А и В – это числовые значения производных, і и ј – это числа 1 или 2)

1. Bhoop Traini max yearshin (11 ii B of o mesicalia in in inputsion, 1 ii) of o mesical initial 2)				
>> csape(x, y, `not-a-knot')				
Почему третья производная сплайна непрерывна во второй и предпоследней точках?				
>> csape(x, y, 'variational')				
>> csape(x,[0 y 0],[2,2])				
>> csape(x,y)				
<pre>>> csape(x,y,'periodic'])</pre>				
periodic (периодические) >> csape(x,y,'periodic')Что означают эти условия?				
<pre>>> csape(x,[A y B],`complete')</pre>				
>> csape(x,[A y B],[1,1])				
>> csape(x,[A y B], 'second')				
>> csape(x,[A y B],[2,2])				
>> csape(x,[A y B],[i,j])				

5. Экспорт сплайна в рабочую среду. $File \rightarrow Export\ Spline...$, в окне $Copy\ spline\ to\ workspace\ задаем\ имя\ s.$ Теперь s – это структура с полями form, breaks, coefs, pieces, order, dim).

form: 'pp' – форма представления (кусочно-полиномиальная, pp – сокращение от piecewise-polynomial)

breaks: [1x10 double] – точки разрыва или все узлы

coefs: [9x4 double] – массив коэффициентов

pieces: 9 - число кубических полиномов

order: 4 – порядок сплайна (степень плюс 1)

dim: 1 – размерность (одномерный, т.к. данные одномерны)

После этого можем работать со сплайном в Командном окне

Смотрим на коэффициенты			>> s.coefs		
Вычисление	значения	сплайна	В	заданных	>> f = fnval(s,pi/2) % в одной точке
точках					$>> x = [-pi/2 \ 0 \ pi/2];$
					>> f = fnval(s, x) $%$ в нескольких точках

Построение графика сплайна	>> fnplt(s)
Вычисление производной от сплайна	>> dsdx = fnder(s)
Почему coefs 9x3 и order = 3?	
Вычисление неопределенного интеграла от	>> ints = fnint(s)
сплайна	
Почему coefs 9 на 5 и order $= 5$?	

- 6. **Построить** графики сплайна, его первой, второй и третьей производных и объяснить, почему они такие. Проверить значения первой и второй производной сплайна на границах отрезка интерполирования.
- 7. Построить на одних осях графики кубических полиномов, из которых состоит сплайн различными цветами.

координаты точек разрыва	>> br = s.breaks
коэффициенты всех кубических полиномов	>> C = s.coefs
точки на 1ом интервале	>> x = linspace(br(1), br(2), 30);
значения 1ого полинома в них	\Rightarrow y = C(1,1)*(x-br(1)).^3+C(1,2)*
	$(x-br(1)).^2+C(1,3)*(x-br(1))+C(1,4);$
рисование 1ого полинома красной линией	>>plot(x, y, 'r')

8. **Построить** графики зависимости ошибки (модуля максимального уклонения) **естественного кубического сплайна** для своей функции на своем отрезке и для функции $\sin x$ на отрезке $[0, \pi]$ в зависимости от шага h равномерной сетки. Почему для функции $\sin x$ ошибка убывает как $O(h^4)$? Как и почему убывает ошибка для своей функции?

1. создать равномерную сетку из n+1 узла	linspace
2. вычислить значения функции в этих узлах	λ=
3. создать структуру кубического сплайна по этим данным	csape
4. создать равномерную сетку из 10n+1 узла	linspace
5. вычислить максимальный модуль разности между функцией и сплайном по новой сетке	max, abs
6. записать шаг и ошибку в массив	h, error
7. шаги с 1 по 6 объединить в цикл по числу узлов. На каждом шаге число узлов	forend
увеличивать в 2 раза	
8. после цикла построить в двойных логарифмических координатах зависимость ошибки	loglog
от шага и линию h^4	

- 9. Для вычисления корней табличных функций при помощи интерполяции
 - 1) интерполировать функцию сплайном при помощи функций сѕаре
- 2) найти корни сплайна при помощи функции fnzeros, в ее входном аргументе задается сплайн. В общем случае функция fnzeros выводит матрицу из двух строк

$$\begin{bmatrix} a_1 & a_2 & \dots & a_k \\ b_1 & b_2 & \dots & b_k \end{bmatrix}.$$

Если $a_i \approx b_i$, то это корень, а если $a_i \neq b_i$, то на всем $[a_i, b_i]$ сплайн тождественно равен нулю.

Пример: Вводим данные и строим сплайн (какой?) и отображаем их графически.

пример. вводим данные и строим сплаин	(какои:) и отооражаем их графически.
Массивы данных	>> x = [-4.4 -3.8 -2.7 -1.3 0.4 1.8 2.9];
	>> y = [-2.2 -1.8 -0.3 0.6 0.7 1.2 1.7];
Создание структуры сплайна	>> s = csape(x, y)
Построение графика сплайна	>> fnplt(s); hold on
Отмечаем узлы	>> plot(x, y, 'og')
Находим корни и получаем	>> r = fnzeros(s)
Наносим корень маркером на график	>> plot(r(1), 0, 'or')

Вычислить корни кубического сплайна построенного по полиному (из своего варианта)