

Today's Keywords

- Greedy Algorithms
- Choice Function
- Prefix-free code
- Compression
- Huffman Code

CLRS Readings

• Chapter 16

Homeworks

- HW6 Due Friday April 13 (Spooky!)
 - Written (use latex)
 - DP and Greedy

Sam Morse

Engineer and artist

Message Encoding

- Problem: need to electronically send a message to two people at a distance.
- Channel for message is binary (either on or off)

How can we do it?

wiggle, wiggle like a gypsy queen wiggle, wiggle, wiggle all dressed in green

 Take the message, send it over character-by character with an encoding

Characte	r		
Frequenc	СУ	Encoding	5
a: 2		0000	
d: 2		0001	
e: 13		0010	
g: 14		0011	
i: 8		0100	
k: 1		0101	
l: 9		0110	
n: 3		0111	
p: 1		1000	
q: 1		1001	
r: 2		1010	
s: 3		1011	
u: 1		1100	
w: 6		1101	
y: 2		1110	
		i	

How efficient is this?

wiggle wiggle like a gypsy queen wiggle wiggle wiggle all dressed in green

Each character requires 4 bits

$$\ell_c = 4$$

Cost of encoding:

$$B(T, \{f_c\}) = \sum_{character \ c} \ell_c f_c = 68 \cdot 4 = 272$$

Better Solution: Allow for different characters to have different-size encodings (high frequency → short code)

Encoding Character Table Frequency 0001 a: 2 d: 2 0010 e: 13 0011 g: 14 0100 i: 8 0101 k: 1 0110 1:9 0111 n: 3 1000 p: 1 1001 q: 1 1010 r: 2 1011 1100 s: 3 u: 1 1101 w: 6 1110 11,11 y: 2

More efficient coding

Morse Code

International Morse Code

- 1. The length of a dot is one unit.
- 2. A dash is three units.

Problem with Morse Code

International Morse Code

- 1. The length of a dot is one unit.
- 2. A dash is three units.
- 3. The space between parts of the same letter is one unit.
- 4. The space between letters is three units.
- 5. The space between words is seven units.

Ambiguous Decoding

Prefix-Free Code

• A prefix-free code is codeword table T such that for any two characters c_1, c_2 , if $c_1 \neq c_2$ then $code(c_1)$ is not a prefix of $code(c_2)$

```
g 0 11110111100011010
e 10 w i gg l e
l 110
i 1110
w 11110
```

Binary Trees = Prefix-free Codes

- I can represent any prefix-free code as a binary tree
- I can create a prefix-free code from any binary tree

Goal: Shortest Prefix-Free Encoding

- Input: A set of character frequences $\{f_c\}$
- Output: A prefix-free code T which minimizes

$$B(T, \{f_c\}) = \sum_{character c} \ell_c f_c$$

Huffman Coding!!

Greedy Algorithms

- Require Optimal Substructure
 - Solution to larger problem contains the solution to a smaller one
 - Only one subproblem to consider!
- Idea:
 - 1. Identify a greedy choice property
 - How to make a choice guaranteed to be included in some optimal solution
 - 2. Repeatedly apply the choice property until no subproblems remain

 Choose the least frequent pair, combine into a subtree

Subproblem of size n-1!

 Choose the least frequent pair, 68 combine into a subtree 41 0 G:14 E:13 24 0 1 14 10 L:9 1:8 W:6 6 4 N:3 **S:3** 4 4 23 R:2 Y:2 A:2 D:2 U:1 K:1 P:1

Exchange argument

- Shows correctness of a greedy algorithm
- Idea:
 - Show exchanging an item from an arbitrary optimal solution with your greedy choice makes the new solution no worse
 - How to show my sandwich is at least as good as yours:
 - Show: "I can remove any item from your sandwich, and it would be no worse by replacing it with the same item

from my sandwich"

Showing Huffman is Optimal

Overview:

- Show that there is an optimal tree in which the least frequent characters are siblings
 - Exchange argument
- Show that making them siblings and solving the new smaller sub-problem results in an optimal solution
 - Proof by contradiction

Showing Huffman is Optimal

 First Step: Show any optimal tree is "full" (each node has either 0 or 2 children)

T' is a "better" tree than T, because all codes in red subtree are shorter in T', without creating any longer codes

Huffman Exchange Argument

- Claim: if c_1, c_2 are the least-frequent characters, then there is an optimal prefix-free code s.t. c_1, c_2 are siblings
 - i.e. codes for c_1, c_2 are the same length and differ only by their last bit

Case 1: Consider some optimal tree T_{opt} . If c_1 , c_2 are siblings in this tree, then claim holds

Huffman Exchange Argument

- Claim: if c_1, c_2 are the least-frequent characters, then there is an optimal prefix-free code s.t. c_1, c_2 are siblings
 - i.e. codes for c_1, c_2 are the same length and differ only by their last bit

Case 2: Consider some optimal tree T_{opt} , in which c_1 , c_2 are not siblings

Let a, b be the two characters of lowest depth that are siblings (Why must they exist?)

Idea: show that swapping c_1 with a does not increase cost of the tree.

Similar for c_2 and b

Assume: $f_{c1} \leq f_a$ and $f_{c2} \leq f_b$

Case 2: c_1 , c_2 are not siblings in T_{opt}

• Claim: the least-frequent characters (c_1, c_2) , are siblings in some optimal tree

$$a, b = lowest-depth siblings$$

Idea: show that swapping c_1 with a does not increase cost of the tree.

Assume: $f_{c1} \leq f_a$

Case 2: c_1 , c_2 are not siblings in T_{opt}

• Claim: the least-frequent characters (c_1, c_2) , are siblings in some optimal tree

a, b = lowest-depth siblings

 $B(T_{opt}) = C + f_{c1}\ell_{c1} + f_a\ell_a$

Idea: show that swapping c_1 with a does not increase cost of the tree.

Assume: $f_{c1} \leq f_a$

$$\geq 0 \Rightarrow T' \text{ optimal}$$

$$B(T_{opt}) - B(T') = C + f_{c1}\ell_{c1} + f_{a}\ell_{a} - (C + f_{c1}\ell_{a} + f_{a}\ell_{c1})$$

$$= f_{c1}\ell_{c1} + f_{a}\ell_{a} - f_{c1}\ell_{a} - f_{a}\ell_{c1}$$

$$= f_{c1}(\ell_{c1} - \ell_{a}) + f_{a}(\ell_{a} - \ell_{c1})$$

$$= (f_{a} - f_{c1})(\ell_{a} - \ell_{c1})$$

 $B(T') = C + f_{c1}\ell_a + f_a\ell_{c1}$

Case 2: c_1 , c_2 are not siblings in T_{opt}

• Claim: the least-frequent characters (c_1, c_2) , are siblings in some optimal tree

a, b = lowest-depth siblings

Idea: show that swapping c_1 with a does not increase cost of the tree.

Assume: $f_{c1} \leq f_a$

$$B(T_{opt}) = C + f_{c1}\ell_{c1} + f_{a}\ell_{a}$$

$$B(T') = C + f_{c1}\ell_{a} + f_{a}\ell_{c1}$$

$$T'$$

$$C_{2}$$

$$B(T_{opt}) - B(T') = (f_{a} - f_{c1})(\ell_{a} - \ell_{c1})$$

$$\geq 0 \qquad \geq 0$$

$$a \qquad b \qquad T' \text{ is also optimal!}$$

$$B(T') = C + f_{c1}\ell_{a} + f_{a}\ell_{c1}$$

$$T'$$

Case 2:Repeat to swap c_2 , b!

• Claim: the least-frequent characters (c_1, c_2) , are siblings in some optimal tree

$$a, b = lowest-depth siblings$$

Idea: show that swapping c_2 with b does not increase cost of the tree.

Assume:
$$f_{c2} \leq f_b$$

$$B(T') = C + f_{c2}\ell_{c2} + f_{b}\ell_{b}$$

$$B(T'') = C + f_{c2}\ell_{b} + f_{b}\ell_{c2}$$

$$T''$$

$$B(T'') = (f_{b} - f_{c2})(\ell_{b} - \ell_{c2})$$

$$\geq 0 \qquad \geq 0$$

$$B(T') - B(T'') \geq 0$$

$$T'' \text{ is also optimal! Claim holds!}$$

Showing Huffman is Optimal

Overview:

- Show that there is an optimal tree in which the least frequent characters are siblings
 - Exchange argument
- Show that making them siblings and solving the new smaller sub-problem results in an optimal solution
 - Proof by contradiction

Finishing the Proof

- Show Optimal Substructure
 - Show treating c_1, c_2 as a new "combined" character gives optimal solution

Why does solving this:

Give an optimal solution to this?:

 c_1 c_2

Optimal Substructure

• Claim: An optimal solution for F involves finding an optimal solution for F', then adding c_1, c_2 as children to σ

Optimal Substructure

• Claim: An optimal solution for F involves finding an optimal solution for F', then adding c_1, c_2 as children to σ

If this is optimal

Then this is optimal

$$B(T') = B(T) - f_{c1} - f_{c2}$$

Optimal Substructure

• Claim: An optimal solution for F involves finding an optimal solution for F', then adding c_1, c_2 as children to σ Toward contradiction

Optimal Substructure

• Claim: An optimal solution for F involves finding an optimal solution for F', then adding c_1, c_2 as children to σ

Contradicts optimality of T', so T is optimal!

Entire Huffman Derivation Follows

Not covered in class, just for your review

 Huffman Algorithm
 Choose the least frequent pair, combine into a subtree

 Huffman Algorithm
 Choose the least frequent pair, combine into a subtree

 Huffman Algorithm
 Choose the least frequent pair, combine into a subtree

 Huffman Algorithm
 Choose the least frequent pair, combine into a subtree 68 41 0 G:14 17 E:13 24 0 1 14 10 L:9 1:8 W:6 6 4 N:3 **S:3** 4 4 55 R:2 Y:2 A:2 D:2 U:1 K:1 P:1