PMTH212 ASSIGNMENT 4

MARK VILLAR

(1) (a)
$$f(x,y) = (x-y)^{\frac{1}{2}} = \sqrt{x-y} \implies x-y > 0 \equiv y < x$$

(1) (a)
$$f(x,y) = (x-y)^{\frac{1}{2}} = \sqrt{x-y} \implies x-y > 0 \equiv y < x$$

(b) $f(x,y) = \cos\left(\frac{xy}{1+x^2+y^2}\right) \implies 1+x^2+y^2 \neq 0$

Since $1 + x^2 + y^2 \ge 1$ for all x, y then \mathbb{R}^2 is the domain of f. We also conclude that f is continuous over its entire domain since

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$$

(2) (a) We simplify the function and observe continuity over its entire domain \mathbb{R}^2 . Hence the limit is simply the value of the function at (0,0).

$$\lim_{(x,y)\to(0,0)} \frac{x^4 - 16y^4}{x^2 + 4y^2} = \lim_{(x,y)\to(0,0)} x^2 - 4y^2 = 0 - 0 = 0$$

(b) Let $z = x^2 + y^2$ and $z \to 0$ if $(x, y) \to (0, 0)$.

$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2} = \lim_{z\to 0} \frac{\sin z}{z} = 1$$

(3) (a) $C_m: y = mx$ or x = t, y = mt. Let $(x, y) \to (0, 0)$ along C_m . Since $m \neq 0$,

$$\lim_{(x,y)\to(0,0)} \frac{x^3y}{2x^6+y^2} = \lim_{t\to 0} \frac{t^3(mt)}{2t^6+(mt)^2} = \lim_{t\to 0} \frac{mt^2}{2t^4+m^2} = 0$$

 $C_k: y = kx^2$ or $x = t, y = kt^2$. Let $(x, y) \to (0, 0)$ along C_k . Since $k \neq 0$,

$$\lim_{(x,y)\to(0,0)} \frac{x^3y}{2x^6+y^2} = \lim_{t\to 0} \frac{t^3(kt^2)}{2t^6+(kt^2)^2} = \lim_{t\to 0} \frac{kt}{2t^2+k^2} = 0$$

(b) $C_r: y=rx^3$ or $x=t,\ y=rt^3$. Let $(x,y)\to (0,0)$ along C_r . Since $r\neq 0$,

$$\lim_{(x,y)\to(0,0)} \ \frac{x^3y}{2x^6+y^2} = \lim_{t\to 0} \ \frac{t^3(rt^3)}{2t^6+(rt^3)^2} = \lim_{t\to 0} \ \frac{r}{2+r^2}$$

By choosing different values for r we obtain different limits along C_r , implying that the limit does not exist. Moreover, since the limits along C_m and C_k are different to the limit along C_r , we conclude that the function does not have a limit as $(x, y) \to (0, 0)$.

(4)
$$f(x,y,z) = z \ln(x^2 y \cos z) = z(2 \ln x + \ln y + \ln \cos z)$$
$$f_x = \frac{2z}{x}, \quad f_y = \frac{z}{y}, \quad f_z = \ln \cos z - z \tan z$$

Note:

$$w = \ln u, \ u = \cos z$$

$$\frac{dw}{dz} = \frac{dw}{du} \cdot \frac{du}{dz} = \frac{1}{u} \cdot (-\sin z)$$

$$= -\frac{\sin z}{\cos z} = -\tan z$$

(5) (a)
$$f(x,y) = \ln(x^2 + y^2)$$

$$\frac{\partial f}{\partial x} = \frac{2x}{x^2 + y^2}, \qquad \frac{\partial f}{\partial y} = \frac{2y}{x^2 + y^2}$$

$$\frac{\partial^2 f}{\partial x^2} = -\frac{2(x^2 + y^2) - 2x(2x)}{(x^2 + y^2)^2} = \frac{2(y^2 - x^2)}{(x^2 + y^2)^2}$$

$$\frac{\partial^2 f}{\partial y^2} = -\frac{2(x^2 + y^2) - 2y(2y)}{(x^2 + y^2)^2} = \frac{2(x^2 - y^2)}{(x^2 + y^2)^2}$$

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \frac{2(y^2 - x^2)}{(x^2 + y^2)^2} + \frac{2(x^2 - y^2)}{(x^2 + y^2)^2} = \frac{2(y^2 - x^2) + 2(x^2 - y^2)}{(x^2 + y^2)^2} = 0$$

(b)
$$u(x,y) = e^x \cos y$$
, $v(x,y) = e^x \sin y$
$$\frac{\partial u}{\partial x} = e^x \cos y$$
,
$$\frac{\partial v}{\partial y} = e^x \cos y$$
,
$$\frac{\partial v}{\partial y} = e^x \sin y$$
,
$$\frac{\partial v}{\partial x} = e^x \sin y$$

Hence, $\partial u/\partial x=\partial v/\partial y\;\;{\rm and}\;\;\partial u/\partial y=-\partial v/\partial x$

(6)
$$f(x,y) = (x^2 + y^2)^{2/3}$$

$$f(x,0) = (x^2 + 0)^{2/3} = x^{4/3}$$

$$f_x(x,0) = \frac{4}{3}x^{1/3}$$

$$f_x(0,0) = \frac{4}{3}(0) = 0$$