Point Masses

defus
$$\vec{p} = m\vec{v}$$

$$\vec{p} = \vec{F}$$

$$\vec{H}_o = \vec{r}_{op} \times \vec{F}$$

$$\vec{F}_i = \vec{F}_i \times applied \text{ at } P.$$

$$\vec{M}_o = \vec{H}_o$$

Momentum formulas:
$$\vec{F} = 0$$
 (no net external force) $\vec{p} = 0 \implies \vec{p}$ constant.

also
$$\tilde{H}_0 = 0$$
 (no net external moment)
 $\Rightarrow \tilde{H}_0 = 0 \Rightarrow \tilde{H}_0 = constant$.

when is
$$\vec{M}_o = 0$$
?

Tadial force

Zero

Moment.

Sun Mat O Earth mat P

Moment due to gravity $\vec{H}_{s} = \vec{r}_{op} \times \vec{F}$ $= \vec{r}_{op} \times \left(-\frac{CM_{m}}{r_{op}^{2}} \hat{r}_{op} \right)$ = 0

for gravity, Ho = constant.

 $a = \|a \times b\|$

ah P

dA is the area covered in the at

 $dA = -\vec{r} \cdot - dt\vec{v}$ $= \frac{1}{2} ||\vec{r} \times dt\vec{v}||$ $= \frac{dt}{2m} ||\vec{r} \times m\vec{v}||$ $dA = \frac{1}{2} ||\vec{r} \times m\vec{v}||$

 $A = \frac{dA}{dt} = \frac{1}{2m} ||\overrightarrow{H_o}|| = constant.$

the area sweep rate of a planet is constant. - Kepler's 2nd law.

ex lauch to orbit.

Sun vises in the E.

ra = ignore

ng / F= Frêr + Foês

M(r-r02)er + m(r0+2r0)es = mger + Frêr + Foes

 $m\ddot{r} - mr\ddot{\theta}^2 = -mg + Fr$ $mr\ddot{\theta} + 2m\ddot{r}\dot{\theta} = F_{\theta}$