Cox PH Model Deviance and Schoenfeld residuals Martingale residuals · Martingale residuals are defined as $r_{M,i} = \delta_i - r_{CS,i} = \delta_i - \widehat{H}(t_i \mid Z_i)$ • The martingale residuals take values in $(-\infty, 1)$. • The distribution of martingale residuals are quite skewed (to left). This skewed distribution makes it hard to identify outliers. A technique for creating symmetric, normalized residuals that is widely used in generalized linear modeling is to construct "Deviance Residuals". Deviance residuals Deviance residual is a transformation of martingale residual to make it symmetric and normalized. $r_{D,i} = sign(r_{M,i}) \sqrt{-2[r_{M,i} + \delta_i \log(\delta_i - r_{M,i})]}$ Deviance residuals behave like residuals from ordinary linear regression - Symmetric around zero, with approximated sd=1. - positive value \Rightarrow more events than expected (live shorter). negative value ⇒ less events than expected (live longer). - Either too large positive or negative values (outside (-3,3)) can be regarded as outliers.

An example Mystoms Study Mystoms S

Deviance residuals

To identify outliers

- Fit a Cox PH model
- Plot deviance residuals against the linear predictors $\left\{Z_i^T\beta\right\}_{i=1}^n$
- Detect any data points that is outside of (-3,3) as outliers

Schoenfeld residuals

- Proposed by Schoenfeld (1982) to assess proportional hazard assumption in Cox PH model
 - Schoenfeld D. Residuals for the proportional hazards regresssion model. *Biometrika* 1982, 69(1):239-241
- Instead of a single residual for each individual, there is a separate residual for each event time for each covariate
- It is not defined for censored individuals.

Schoenfeld residuals

• The Schoenfeld residual for variable Z_l and subject $k \in D(t_i)$ who had event at t_i is defined as

$$Z_{kl} - \bar{Z}_{il}$$

- $-\,\bar{Z}_{il}$ i $\,$ the expected value of the lth covariate at time t_i
- Then the Schoenfeld residual for variable \boldsymbol{Z}_l at event time t_i is defined as

$$r_{S,li} = \sum_{k \in D(t_i)} [Z_{kl} - \overline{\mathbf{Z}}_{il}]$$

Schoenfeld residuals

- Schoenfeld residuals are differences between observed and expected values of each covariate at each event time.
- If the residuals exhibit a random pattern, then the effect of covariate does not change over time and PH assumption is satisfied.
- If there is a systematic pattern, then effect of covariate changes over time, and PH assumption is not satisfied.

Schoenfield residuals

- Check proportional hazard assumption for covariate Z_I.
 - $-\operatorname{plot}\left\{r_{S,li}\right\}_{i=1}^{D}$ against $\{t_{i}\}_{i=1}^{D}$ and examine trends
 - If the residuals exhibit a random pattern, then it indicates that the covariate effect is not changing with respect to time. That is it supports the proportional hazard assumption.
 - Any pattern in the residual plot suggests that the PH assumption is questionable.

SAS Example

proc phreg data=whas500;
class gender;
model lenfol*fstat(0) = gender|age
bmi|bmi hr;
output out=schoen ressch=schgender
schage schgenderage
schbmi schbmibmi schhr;
run;

• Output Schoenfield residuals for each variable.

SAS Example

proc loess data = schoen; model schage=lenfol / smooth=(0.2 0.4 0.6 0.8); run;

The smooths appear mostly flat at 0, suggesting that the coefficient for age does not change over time and that proportional hazards holds for this covariate.

S	u	m	۱r	n	a	ry
J	u				u	·y

- Diagnosis of model assumptions
 - Functional form: Martingale residuals
 - PH assumption: Schoenfeld residuals
- Outliers: Deviance residuals.

•		