# Rappels de seconde et compléments



tableaux de signe

# A.1 Généralités sur les fonctions

Exercice 1 — À partir d'une représentation graphique.



Soit la fonction f définie par la représentation graphique ci-dessus :

- a) Donner le domaine de f.
- b) Déterminer graphiquement f(-2) et f(2).
- c) Déterminer graphiquement l'image de 0 et les antécédents de 0.
- d) Résoudre graphiquement l'équation f(x) = -2. Laisser les traces sur le graphique.
- e) Résoudre graphiquement l'inéquation  $f(x) \leq -2$ .
- f) Compléter le tableau de variation de la fonction f:

| x    |  |
|------|--|
| f(x) |  |

g) Compléter le tableau de signe de f(x) en fonction de x.

| x               |  |
|-----------------|--|
| signe de $f(x)$ |  |

**Exercice 2** On considère une fonction f dont le tableau de variations est le suivant :

| a  | c   | -10 | $-\frac{7}{2}$ | 1 | 2  | $\frac{17}{3}$ | 8 |
|----|-----|-----|----------------|---|----|----------------|---|
| f( | (x) | -2  | _5             |   | -3 |                | 4 |

- a) Quel est le domaine de f?
- b) Complétez:

c) Complétez (sans justifier) par < ou >. Si la comparaison n'est pas possible écrire X.

$$f(0) \dots f(2)$$
  $f(-1) \dots f(6)$   $f(5) \dots -3$   $f(5) \dots f(-3)$ 

- e) Donner pour chaque solution de l'équation f(x) = -1 un encadrement le plus précis possible. .

.....

**Exercice 3** Soit les fonctions f et g définies par les représentations ci-dessous :



# A.2 Fonctions affines

 $^1$  à lire : « qui à tout réel x associe y=f(x) »

**Définition A.1** La fonction  $f: \mathbb{R} \to \mathbb{R}$  1 est **affine** 

$$x \mapsto y = f(x)$$

s'il existe deux nombres réels m et p tel que

pour tout 
$$x \in \mathbb{R}$$
  $f(x) = mx + p$ 

**Proposition A.1** Les écarts sur la variable image y sont proportionnels aux écarts sur la variable initiale x.

Plus précisément il existe  $m \in \mathbb{R}$  tel que :

Pour tout 
$$x_A$$
 et  $x_B \in \mathbb{R}$   $f(x_A) - f(x_B) = m(x_A - x_B)$ 

Le réel m est appelé **coefficient directeur** de f.

Si  $y_A = f(x_A)$  et  $y_B = f(x_B)$  alors:

$$m = \frac{y_A - y_B}{x_A - x_B} \qquad x_A \neq x_B$$



Figure A.1 – Graphiquement, m est le rapport de l'augmentation verticale sur l'augmentation horizontale. p=f(0) est l'ordonnée à l'origine

A.2 Fonctions affines 5

**Proposition A.2** Si m > 0 alors f est strictement croissante.

Si m < 0 alors f est une fonction strictement décroissante.

■ Exemple A.1 m représente un taux d'accroissement de  $x_A$  à  $x_B$ :

$$m = \frac{f(x_A) - f(x_B)}{x_A - x_B}$$

Il est constant pour une fonction affine.

- a) Si f(x) est le coût total de x objets. m est le coût marginal moyen d'un objet supplémentaire lorsqu'on la production passe de  $x_A$  à  $x_B$  objets.
- b) Si f(x) est la position d'un objet sur un axe (em mètres) au bout de x minutes. Alors m représente la **vitesse moyenne** en mètres par minutes entre les instants  $x_A$  et  $x_B$ . Cette vitesse est constante.

Point méthode Pour déterminer l'expression réduite d'une fonction affine f tel que  $y_A = f(x_A)$  et  $y_B = f(x_B)$ :

- On calcule m à l'aide du taux de variation entre x<sub>A</sub> et x<sub>B</sub>.
  On remarque que si y = f(x) alors y y<sub>A</sub> = m(x x<sub>A</sub>)
  y = m(x x<sub>A</sub>) + y<sub>A</sub>

- **Exemple A.2** Soit f fonction affine tel que f(12) = 17 et f(16) = 1725. Trouvez la forme réduite :

On calcule le taux de variation de 12 à 16 :

$$m = \frac{f(12) - f(16)}{12 - 16} = \frac{17 - 25}{12 - 16} = \frac{-8}{-4} = 2$$

Pour tout  $x \in \mathbb{R}$ 

$$f(x) - f(12) = m(x - 12)$$

$$f(x) = 2(x - 12) + f(12)$$

$$= 2x - 24 + 17$$

$$f(x) = 2x - 7$$

#### **Exercices: Fonction affines et applications**



fonction f affine de taux m et  $\beta$  =  $f(\alpha)$ .

pour tout x:

$$f(x) - \beta = m(x - \alpha)$$
$$f(x) = m(x - \alpha) + \beta$$



Exercice 1 Complétez et retrouvez l'expression réduite des fonctions affines représentées ci-dessous :







$$f(x) - \dots = \dots (x - \dots \dots) \qquad f(x) - \dots = \dots (x - \dots \dots) \qquad f(x) - \dots \dots = \dots (x - \dots \dots)$$

$$f(x) = \qquad \qquad f(x) = \qquad \qquad f(x) = \qquad \qquad f(x) = \dots m + \dots$$

$$f(x) = \dots m + \dots$$

$$f(x) - \dots = \dots (x - \dots)$$
$$f(x) =$$

$$f(x) = \dots m + \dots$$







$$f(x) - \dots = \dots (x - \dots \dots)$$

$$f(x) = \dots = \dots (x - \dots \dots)$$

$$f(x) = \dots = \dots = \dots = \dots$$

$$f(x) = \dots = \dots = \dots = \dots$$

$$f(x) = \dots = \dots = \dots = \dots$$

$$f(x) - \dots = \dots (x - \dots \dots x)$$
$$f(x) = \dots m + \dots$$

$$f(x) - \dots = \dots (x - \dots)$$
$$f(x) = \dots$$
$$f(x) = \dots m + \dots$$

A.2 Fonctions affines 7

**Exercice 2** Déterminer l'expression réduite de la fonction affine f dans les cas suivants.

- 1) le taux d'accroissement vaut  $\frac{2}{3}$  et f(15) = 3
- 2) le taux d'accroissement vaut  $\frac{-1}{2}$  et  $f(-16)=\frac{11}{2}$
- 3) f(-1) = 4 et f(2) = 3.
- 4) f(2) = -5 et f(7) = 3.
- 5) sa courbe représentative passe par A(-2;3) et B(3;-1).
- 6) sa courbe représentative passe par A(3, -2) et B(-1, 3).
- 7) f est linéaire et f(-8) = 12.
- 8) f est linéaire et sa courbe représentative passe par A(-7, -21).

Exercice 3 Complétez les tableaux de variation et de signe des fonctions affines suivantes.

a) 
$$f_1(x) = 3x + 2$$

| x                               |  |
|---------------------------------|--|
| variation $\mathrm{de}\ f_1(x)$ |  |
| signe de $f_1(x)$               |  |

b) 
$$f_2(x) = -9x + 5$$

| x                     |  |
|-----------------------|--|
| variation de $f_2(x)$ |  |
| signe de $f_2(x)$     |  |

**Exercice 4** Détérminez le signe des fonctions suivantes selon les valeurs de x.

$$(I_1): f_1(x) = 7(x+2)(x-3)$$

$$(I_3): f_3(x) = -3(5x - 4)(-3x - 8)$$
  
 $(I_4): f_4(x) = -2(4x + 3)(3x + 5)$ 

$$(I_2): f_2(x) = 5(-3x+1)(2x+3)$$

$$(I_4): f_4(x) = -2(4x+3)(3x+5)$$

| x | $-\infty$ | $+\infty$ | x | $-\infty$ | $+\infty$ |
|---|-----------|-----------|---|-----------|-----------|
|   |           |           |   |           |           |
|   |           |           |   |           |           |
|   |           |           |   |           |           |
|   |           |           |   |           |           |
| x | $-\infty$ | $+\infty$ | x | $-\infty$ | $+\infty$ |
|   |           |           |   |           |           |
|   |           |           |   |           |           |
|   |           |           |   |           |           |
|   |           |           |   |           |           |

#### A.3 Fonction carré

**Définition A.2** La fonction carré est la fonction définie sur  $\mathbb{R}$  par  $f(x) = x^2$ 

Un carré est toujours positif ou nul : pour tout  $x \in \mathbb{R}$  on a  $x^2 \ge 0$ .

**Proposition A.3** — sens de variation. La fonction carré est strictement décroissante sur  $]-\infty;0]$  et strictement croissante sur  $[0;-\infty[$ :

- Si  $a < b \le 0$  alors  $a^2 > b^2 \ge 0$
- Si  $0 \le a < b$  alors  $0 \le a^2 < b^2$

 $x \qquad -\infty \qquad 0 \qquad +\infty$   $f(x) = x^2 \qquad +\infty$ Signe de f(x)  $\qquad + \qquad 0 \qquad +$ 

**Figure A.2** – Tableau de variation de la fonction carré

Démonstration. Exigible en fin de seconde





A.3 Fonction carré 9



Figure A.4 – Les solutions de l'équation  $x^2 = k$  inconnue x, selon les valeurs de k.



**Figure A.5** – Les solutions de l'inéquation  $f(x) \leq k$  inconnue x.

**Exemple A.3** En isolant  $x^2$ , résoudre dans  $\mathbb{R}$  les équations et inéquations suivantes d'inconnue x:

- a)  $5x^2 = 15$
- | b)  $x^2 5 < 11$  | c)  $12 > 2x^2 2 > 7$  | d)  $1 5x^2 \ge 2$

#### **Exercices: Fonction carré**

Exercice 1 — calculer les images et antécédents par une fonction carré.

f est la fonction carré définie dans  $\mathbb{R}$  par  $f(x) = x^2$ 

- a) Sans calculatrice. Calculer (et simplifier) les images de  $-\sqrt{6}$ ,  $10^{-2}$ ,  $\frac{7}{12}$  et  $1-\sqrt{2}$ .
- b) Quels sont les antécédents éventuels de 10? de 0? de -4?

**Exercice 2** — Révisions. Résoudre dans  $\mathbb{R}$  les inéquations suivantes en isolant  $x^2$ .

- a)  $x^2 = 9$

- b)  $3x^2 = 5$  | c)  $2x^2 5 = 3$  | d)  $1 4x^2 = 5$  | e)  $3x^2 5 = 13$

Exercice 3 — Résoudre des inéquations de la forme f(x) < k. En s'aidant éventuellement de la courbe de la fonction carré, donner les solutions des inéquations suivantes d'inconnues x:

a)  $x^2 \ge 9$ 

b)  $x^2 > 3$ 

g)  $12 < x^2 < 18$ h)  $0 \le x^2 < 27$ i)  $-5 < x^2 \le 2$ 

c)  $-2 < x^2$ 

- d)  $x^2 < -5$ e)  $x^2 > -5$ f)  $5 \le x^2 \le 7$

Exercice 4 — Utiliser le sens de variation de la fonction carré. Comparer et encadrer si possible  $a^2$  et  $b^2$  dans les cas suivants :

- a) Si  $0 \ge a > b$  alors  $\dots a^2 \dots b^2 \dots$
- b) Si a < b < -2 alors ......  $a^2 ... b^2 .....$

#### ■ Exemple A.4 — Utiliser le sens de variation de la fonction carré.

Soit a un nombre réel. En s'aidant éventuellement de la courbe de la fonction carré ou de son tableau de variation, encadrer au mieux  $a^2$  dans chaque cas suivant :

$$2\sqrt{3} < a \leqslant 4$$

$$-5 < a < 3$$

**Exercice 5** Mêmes consignes

a) 
$$a > 3\sqrt{2}$$

c) 
$$-5 \le a < -2$$

a) 
$$a > 3\sqrt{2}$$
  
b)  $-2 < a \le 0$   
c)  $-5 \le a < -2$   
d)  $0 < a < 2\sqrt{7}$   
e)  $3\sqrt{2} < a < 2\sqrt{7}$   
f)  $a < -5$   
g)  $-5 < a < 0$   
h)  $-5 < a$ 

g) 
$$-5 < a < 0$$

b) 
$$-2 < a \le 0$$

d) 
$$0 < a < 2\sqrt{7}$$

f) 
$$a < -5$$

h) 
$$-5 < a$$

A.4 Fonction cube

# A.4 Fonction cube

Théorème A.4 — Identités remarquables avec des cubes.

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

 $D\'{e}monstration.$ 

Théorème A.5 — Identités remarquables avec des cubes.

$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

$$a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$$

 $D\'{e}monstration.$ 

**Définition A.3** La fonction cube est la fonction f définie sur  $\mathbb{R}$  d'expression  $f(x) = x^3$ 

**Proposition A.6** — sens de variation. La fonction cube est strictement croissante sur  $\mathbb{R}$ .



**Figure A.6** – Tableau de variation de la fonction cube

| x               | $-\infty$ | 0   | $+\infty$             |
|-----------------|-----------|-----|-----------------------|
| $f(x) = x^3$    | $-\infty$ | 0   | $\rightarrow +\infty$ |
| Signe de $f(x)$ | -         | - 0 | +                     |

**Théorème A.7** — équation  $x^3=k$  d'inconnue x. Pour tout  $k\in\mathbb{R}$ , l'équation  $x^3=k$  admet une unique solution notée  $k^{\frac{1}{3}}=\sqrt[3]{k}$ .

■ Exemple A.5 Résoudre l'inéquation  $x^3 > 2$  d'inconnue x

#### **Exercices: Fonction cube**

Exercice 1 — calculer les images et antécédents par une fonction cube.

f est la fonction cube définie dans  $\mathbb{R}$  par  $f(x) = x^3$ 

- a) Sans calculatrice. Calculer (et simplifier) les images de 2, -3, 4 et -5.
- b) Quels sont les antécédents éventuels de -8? de 125? de 9? de -9?
- **Exemple A.6** Résoudre équations et inéquations en isolant  $x^3$ .

$$x^3 > 27$$

$$3x^3 + 12 \geqslant 204$$

$$-3x^3 + 15 \ge 207$$

**Exercice 2** Résoudre dans  $\mathbb{R}$  les équations suivantes en isolant  $x^3$ .

$$(E_1) \ x^3 = 9$$

$$(E_2) 10x^3 + 8 = -632 (E_3) -9x^3 - 1 = 575 (E_4) 3x^3 = 5$$

**Exercice 3** Résoudre dans  $\mathbb{R}$  les inéquations suivantes en isolant  $x^3$ .

$$(I_1) \ x^3 > 9$$

$$(I_3) 3x^3 > 375$$

$$(I_5) -9x^3 - 1 < 575$$

$$(I_2) \ x^3 \leqslant 27$$

$$(I_4)$$
  $2x^3 - 14 > -30$ 

**Exercice 4** — Utiliser le sens de variation de la fonction cube. Soit a un nombre réel. En s'aidant éventuellement de la courbe de la fonction carré ou de son tableau de variation, encadrer au mieux  $a^3$ dans chaque cas suivant:

a) 
$$a \geqslant -5$$

c) 
$$-3 \le a < 2$$

e) 
$$2 \leqslant a \leqslant 5$$

g) 
$$-5 < 2a \le 1$$

b) 
$$a < 2$$

$$d) -2 < a \leqslant 5$$

f) 
$$-2 > a \ge -5$$

**Exercice 5** — Comparer  $x^3$ ,  $x^2$  et x pour différentes valeurs de  $x \in \mathbb{R}$ .

- a) Résoudre dans  $\mathbb{R}$  l'inéquation  $x^3 > x^2$ .
- b) Si x > 1, ranger dans l' ordre croissant :0, x, 1,  $x^3$ et  $x^2$ .
- c) Si 0 < x < 1, ranger dans l' ordre croissant 0, x, 1,  $x^3$  et  $x^2$ .
- d) Ci-contre les représentations graphiques des fonctions  $f: x \mapsto x^2$ ,  $q: x \mapsto x$  et  $h: x \mapsto x^3$ . Associer chaque courbe à la fonction correspondante.



# A.5 Fonction valeur absolue

Définition A.4 La fonction valeur absolue est la fonction définie  $\operatorname{sur} \mathbb{R} \operatorname{par} f \colon \mathbb{R} \to \mathbb{R}$ 

$$x\mapsto y=|x|=\begin{cases}x&\text{si }x\geqslant 0\\-x&\text{si }x<0\end{cases}$$
 La fonction valeur absolue est **strictement décroissante**

sur  $]-\infty;0]$  et strictement croissante sur  $[0;\infty[$ 



Théorème A.8 — équation |x| = k d'inconnue x.

Si k<0, l'équation |x|=k n'a pas de solutions Si k=0, l'équation |x|=0 a pour unique solution x=0. Si k>0, l'équation |x|=k admet 2 solutions x=k et x=-k.

**Exemple A.7** Résoudre graphiquement l'équation |x| > 3 d'inconnue x

■ Exemple A.8 — rappel. Résoudre l'équation |2x-3| > 3 d'inconnue x

# A.6 Fonction racine carrée

**Définition A.5** La fonction racine carrée est la fonction définie sur  $[0; +\infty[$  par  $f: [0; +\infty[$   $\to \mathbb{R}$ 

$$x \mapsto y = \sqrt{x}$$

Sa représentation graphique est la courbe «  $\mathscr{C}$  :  $y = \sqrt{x}$  »

Proposition A.9 — sens de variation. La fonction racine carrée est strictement croissante sur  $[0; +\infty[$ .

Si 
$$0 \le a < b$$
 alors  $0 \le \sqrt{a} < \sqrt{b}$ 

Démonstration. Exigible en fin de seconde

| x                 | $0 + \infty$ |
|-------------------|--------------|
| $f(x) = \sqrt{x}$ |              |
| Signe de $f(x)$   |              |

**Figure A.7** – Tableau de variation de la fonction racine carrée



# Exercices : racine carrée, valeurs aboslues

rappels des propriétés des racines carrées, quelques manipulations d'égalités.

A.7 Fonction inverse

#### A.7 Fonction inverse

**Définition A.6** La fonction inverse est définie sur  $\mathbb{R} \setminus \{0\} = ]-\infty; 0[\cup]0; -\infty[$  par

$$f \colon \mathbb{R} \setminus \{0\} \to \mathbb{R}$$
 
$$x \mapsto y = \frac{1}{x}$$

**Théorème A.10** Pour  $x \neq 0$ , l'image de x par f est aussi l'antécédent de x par f. En effet f(f(x)) = x.

**Proposition A.11** — sens de variation. f est strictement décroissante sur chacun des intervalles  $]0; -\infty[$  et  $: ]-\infty; 0[$  :

Si 
$$a < b < 0$$
 alors  $\frac{1}{b} < \frac{1}{a} < 0$ 

Si 
$$0 < a < b$$
 alors  $0 < \frac{1}{b} < \frac{1}{a}$ 

Démonstration. Exigible en fin de seconde

| x               | $-\infty$ (                 | ) +∞        |
|-----------------|-----------------------------|-------------|
| f(x)            | $0 \longrightarrow -\infty$ | $+\infty$ 0 |
| signe de $f(x)$ | _                           | +           |

**Figure A.8** – Tableau de variation de la fonction inverse



**Figure A.9** – La courbe représentative de la fonction inverse dans un repère orthonormé est l'**hyperbole** d'équation  $\mathscr{C}\colon y=\frac{1}{x}$  (on peut aussi dire  $\mathscr{C}\colon xy=1$ )

■ Exemple A.9 Résoudre graphiquement les inéquation  $\frac{1}{x} > 2$  et  $\frac{1}{x} > -3$  d'inconnue x

| x        | $-\infty$ | +∞ |
|----------|-----------|----|
| signe de |           |    |
| signe de |           |    |
| signe de |           |    |

#### **Exercices: Fonction inverse**

Exercice 1 — calculer les images et antécédents par une fonction inverse.

f est la fonction inverse définie dans  $\mathbb{R} \setminus \{0\}$  par  $f(x) = \frac{1}{x}$ 

- a) Sans l'aide de la calculatrice, exprimer l'image par la fonction inverse de chacun des nombres réels suivants sans laisser de racine carrée au dénominateur :  $2\sqrt{3}$ ,  $-\sqrt{2}$ ,  $\frac{\sqrt{3}}{2}$  et  $\frac{1+\sqrt{5}}{2}$ .
- b) Exprimer l'antécédent des nombres suivants par la fonction inverse sous la forme d'un entier ou d'une fraction d'entiers :  $\frac{2}{3}$ ,  $-\frac{3}{2}$ ,  $10^{-2}$ , 0,001,  $-10^3$  et  $-10^{-4}$ .
- Exemple A.10 Résoudre équations et équations en isolant  $\frac{1}{x}$ .

$$\frac{1}{x} = 12$$

$$\frac{3}{x} = -11$$

$$\frac{1}{x} + 8 = \frac{10}{13}$$

$$40 - \frac{14}{r} = 20$$

**Exercice 2** Résoudre dans  $\mathbb{R}$  les équations suivantes en isolant  $\frac{1}{x}$ .

$$(E_1) \frac{1}{x} = 2$$

$$(E_1)$$
  $\frac{1}{x} = \frac{-1}{7}$ 

$$(E_3)$$
  $\frac{15}{x} = \frac{-5}{17}$ 

$$(E_3) \frac{15}{x} = \frac{-5}{17}$$

$$(E_4) \frac{2}{x} = 26$$

$$(E_5) \frac{-7}{m} = 2$$

$$(E_5) \frac{-7}{x} = 2$$

$$(E_6) \frac{1}{x} - 11 = \frac{10}{23}$$

■ Exemple A.11 — Résoudre équations et inéquations en isolant  $\frac{1}{x}$ .

$$\frac{1}{x} > 5$$

$$\frac{1}{x} \leqslant 2$$

$$\frac{1}{x} \leqslant -3$$

$$\frac{1}{x} \geqslant -\frac{1}{2}$$

**Exercice 3** Résoudre dans  $\mathbb{R}$  les inéquations suivantes en isolant  $\frac{1}{x}$ .

$$(I_1)$$
  $\frac{1}{x} \geqslant 7$ 

$$(I_3)$$
  $\frac{1}{x} > -$ 

$$\left| \begin{array}{cc} (I_5) & \frac{1}{x} \leqslant 2 \\ (I_6) & \frac{1}{x} \leqslant \frac{2}{5} \end{array} \right|$$

$$(I_2)^{\frac{1}{x}} < -\frac{3}{2}$$

$$(I_3) \frac{1}{x} > -2$$

$$(I_4) \frac{1}{x} > -\frac{2}{5}$$

$$(I_6) \ \frac{1}{x} \leqslant \frac{2}{5}$$

Exercice 4 — Utiliser le sens de variation de la fonction inverse. En s'aidant de la courbe de la fonction inverse ou de son tableau de variation donner un encadrement de  $\frac{1}{x}$  dans chaque cas :

- a) x > 3
- d)  $2 \le x < 5$
- g)  $-4 \le x < 0$
- j)  $-4 \le x < 0$

- b)  $x > \frac{2}{3}$

- $\begin{array}{c} \mathbf{k} \ ) \ -4 < x \\ \mathbf{l} \ ) \ x < 0 \end{array}$

- c) 3 > x > 0
- e)  $\frac{2}{5} < x \le \frac{7}{8}$ h)  $x \le -8$ f)  $-5 \le x < -2$ i)  $x \le -\frac{2}{3}$