INFERÊNCIA EM MODELOS LINEARES GENERALIZADOS

ANÁLISE DE DEVIANCE

- A análise de deviance é uma generalização, para modelos lineares generalizados, da análise de variância.
- No caso de modelos lineares, utiliza-se a chamada "extra soma de quadrados" para avaliar a significância de termos incluídos ao modelo;
- Em MLG, de forma semelhante, é de interesse testar a significância da inclusão de novos termos. Neste sentido, usaremos com frequência a expressão *modelos encaixados*;
- Dizemos que dois modelos são encaixados se um modelo é obtido a partir do outro impondo alguma restrição aos valores dos parâmetros (é usual assumir valor zero aos parâmetros, caso se deseje investigar a hipótese de nulidade dos mesmos);
- Na sequência são apresentados os preditores lineares de diferentes modelos lineares generalizados para avaliarmos se configuram modelos encaixados.

o Caso 1:

Modelo 1 –
$$g(\mu_{\mathbf{x}}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4$$
 – Modelo 2 – $g(\mu_{\mathbf{x}}) = \beta_0 + \beta_1 x_1 + \beta_3 x_3$ – Modelos encaixados!

A comparação dois modelos apresentados no par 1 poderia fundamentar o teste da hipótese:

$$H_0: \beta_2 = \beta_4 = 0,$$

contra a alternativa que os parâmetros sob teste não são conjuntamente nulos.

o Caso 2:

Modelo 1 –
$$g(\mu_{\mathbf{x}}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4$$
 – Modelo 8 – $g(\mu_{\mathbf{x}}) = \beta_0 + 2x_1 - x_3 + \beta_4 x_4$ – Modelo 8 encaixados!

A comparação dois modelos apresentados no par 2 poderia fundamentar o teste da seguinte hipótese:

$$H_0: \beta_1 = 2; \beta_2 = 0; \beta_3 = -1.$$

o Caso 3:

Modelo 1 –
$$g(\mu_{\mathbf{x}}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$$
 – Modelos encaixados!
Modelo 2 – $g(\mu_{\mathbf{x}}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$ – Modelos encaixados!

A comparação dois modelos apresentados no par 3 poderia fundamentar o teste da seguinte hipótese:

$$H_0: \beta_3 = 0.$$

Repare que, mediante este par de hipóteses, estaríamos testando a existência de interação entre x_1 e x_2 .

o Caso 4:

Modelo 1 –
$$g(\mu_{\mathbf{x}}) = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \beta_3 x_1^3$$
 – Modelos encaixados!
Modelo 2 – $g(\mu_{\mathbf{x}}) = \beta_0 + \beta_1 x_1$

A comparação dois modelos apresentados no par 4 poderia fundamentar o teste da seguinte hipótese:

$$H_0: \beta_2 = 0, \beta_3 = 0.$$

Repare que, mediante este par de hipóteses, estaríamos testando a existência de efeito cúbico ou quadrático de x_1 em y.

Nota – Note que em qualquer um dos quatro exemplos apresentados, a hipótese nula representa o modelo restrito e a hipótese alternativa o modelo não restrito. No contexto de teste de hipóteses, a rejeição de H_0 corresponde à diferença dos ajustes dos dois modelos, sendo que se deve optar, nesses casos, pelo modelo não restrito (com mais parâmetros).

o Caso 5:

$$\begin{array}{ll} \textit{Modelo} 1 - & g(\mu_{\mathbf{x}}) = \beta_0 + \beta_1 \, x_1 + \beta_2 \, x_2 + \beta_3 \, x_3 \\ \textit{Modelo} \, 2 - & g(\mu_{\mathbf{x}}) = \beta_0 + \beta_1 \, x_1 + \beta_4 \, x_4 \end{array} \text{ - Modelos não encaixados! }$$

o Caso 6:

$$\begin{array}{ll} \textit{Modelo} 1 - & g(\mu_{\mathbf{x}}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 \\ \textit{Modelo} 2 - & g(\mu_{\mathbf{x}}) = \beta_0 + \beta_1 x_1 + \beta_2 \ln(x_2) \end{array} \text{ - Modelos não encaixados!}$$

Teste da razão de verossimilhanças (TRV) em MLG

• O teste da razão de verossimilhanças é amplamente utilizado em MLG para testar a nulidade conjunta de (ou alguma outra restrição envolvendo) parâmetros de modelos lineares generalizados.

• Seja M_p um MLG com p parâmetros e M_q um modelo encaixado a M_p , a partir de uma restrição a p-q parâmetros, restando q < p parâmetros não fixados (irrestritos).

• Considere D_p e D_q , respectivamente, os desvios de M_p e M_q . A estatística é uma medida de diferença dos ajuste de M_p e M_q , que pode ser entendida como o ganho de ajuste decorrente da inclusão de p-q parâmetros ao modelo mais simples.

• A estatística do teste da razão de verossimilhanças para comparação dos dois modelos fica dada por:

$$\xi_{RV} = \frac{D_q - D_p}{\phi} = 2\phi^{-1} \left\{ l(\hat{\boldsymbol{\mu}}_p; \mathbf{y}) - l(\hat{\boldsymbol{\mu}}_q; \mathbf{y}) \right\} = 2\phi^{-1} \left\{ ln \left[\frac{L(\hat{\boldsymbol{\mu}}_p; \mathbf{y})}{L(\hat{\boldsymbol{\mu}}_q; \mathbf{y})} \right] \right\},$$

que, sob a hipótese nula de que as restrições são válidas, tem **assintoticamente** distribuição χ^2_{p-q} .

• Caso a hipótese nula seja de nulidade de p-q parâmetros e o resultado do teste indique a não rejeição de H_0 , isso pode justificar a eliminação dos termos (covariáveis, fatores...) associados aos p-q parâmetros 'nulos'.

Nota – O teste da razão de verossimilhanças pode ser aplicado a um único parâmetro (Exemplo: $H_0: \beta_k = 0 \text{ vs } H_1: \beta_k \neq 0$), sendo que neste caso, sob $H_0: \xi_{RV}$ tem, assintoticamente, distribuição χ_1^2 .

Nota – Podemos testar a significância do modelo ajustado considerando a hipótese nula $H_0: \beta_1 = \beta_2 = ... = \beta_{p-1} = 0$, ou seja, comparando o ajuste do modelo com p parâmetros ao do modelo nulo (só com intercepto).

No R:

```
ajuste1=glm(...)### "Modelo maior"
ajuste2=glm(...)### "Modelo menor"
anova(ajuste2,ajuste1,test='Chisq')
```

Procedimento geral para o teste da razão de verossimilhanças em Modelos Lineares Generalizados

- 1. Formular as hipóteses de interesse e estabelecer adequadamente os modelos restrito (M_q) e não restrito (M_p) correspondentes;
- 2. Ajustar os dois modelos aos dados e extrair os correspondentes desvios (D_q e D_p);
- 3. Calcular a estatística do teste da razão de verossimilhanças (ξ_{RV});
- 4. Com base no valor de ξ_{RV} , testar a hipótese nula de que a restrição considerada é válida. Por exemplo, para um nível de significância α , rejeitamos H_0 se ξ_{RV} exceder o quantil $(1-\alpha)$ da distribuição χ^2_{p-q} .

Teste F para o caso em que ϕ é desconhecido

- Para as distribuições em que o parâmetro de dispersão é desconhecido (Normal, Gama e Normal Inversa, por exemplo), pode-se utilizar uma estimativa e considerar como alternativa o uso do teste F, ao invés de χ^2 .
- A estatística do teste *F* é definida por:

$$\xi_{RV} = \frac{(D_q - D_p)/(p - q)}{D_p/(n - p)},$$

que, sob a hipótese nula de que as restrições impostas em H_0 são válidas, tem **assintoticamente** distribuição $F_{p-q,n-p}$.

Nota – Pode-se substituir $D_p/(n-p)$ no denominador da estatística F por alguma estimativa consistente de ϕ .

No R:

```
ajuste1=glm(...)### "Modelo maior"
ajuste2=glm(...)### "Modelo menor"
anova(ajuste2,ajuste1,test='F')
```

Análise de deviance desvio (Tabela ANODEV)

• A análise de deviance configura uma extensão da análise de variância para os modelos lineares generalizados.

- Baseia-se na comparação das deviances avaliadas para modelos encaixados, permitindo testar o efeito de sucessivas inclusões inclusão (ou exclusões) de variáveis, fatores e interações a um modelo corrente.
- A Tabela Anodev é a representação de uma sequência de TRVs para um modelo linear generalizado, em que os termos do preditor linear são acrescentados sucessivamente ao modelo (começando pelo modelo nulo), e a significância de suas inclusões avaliadas via TRV.

- A título de ilustração, considere um MLG qualquer, com quatro variáveis no preditor linear (X_1, X_2, X_3, X_4) . Então, na tabela Anodev serão apresentados os desvios, as diferenças de deviances, os correspondentes graus de liberdade e os testes de razão de verossimilhança para:
 - $\circ~$ Inclusão de X_1 ao modelo que contém apenas o intercepto;
 - o Inclusão de X_2 ao modelo que contém X_1 ;
 - o Inclusão de X_3 ao modelo que contém X_1 e X_2 ;
 - o Inclusão de X_4 ao modelo que contém X_1 , X_2 e X_3 .

Notas-

1. A ordem de inclusão das variáveis é determinada pelo usuário e, exceto em casos bem específicos,

vai alterar a significância das variáveis;

2. A ordem de inclusão de termos ao modelo, quando na ocorrência de interações, deve obedecer ao

principio hierárquico. Ou seja, se temos no modelo $X_1, X_2 e X_1 \times X_2$, primeiramente inserimos ao

modelo X_1 e X_2 (na ordem que bem se entender) para **depois** inserir o termo correspondente à

interação. O mesmo vale para modelos polinomiais, em que os termos de menor ordem são os

primeiros a serem inseridos.

No R: Comando anova.

- Uma forma alternativa de se fazer a análise do desvio é avaliando a significância de uma variável quando inserida ao modelo que contém todas as demais variáveis, exceto a variável em questão.
- A título de ilustração, considere um MLG qualquer, com quatro variáveis no preditor linear (X_1, X_2, X_3, X_4) . Então, na tabela Anodev serão apresentados os desvios, as diferenças de deviances, os correspondentes graus de liberdade e os testes de razão de verossimilhança para:
 - o Inclusão de X_1 ao modelo que contém X_2 , X_3 e X_4 ;
 - o Inclusão de X_2 ao modelo que contém X_1 , X_3 e X_4 ;
 - o Inclusão de X_3 ao modelo que contém X_1 , X_2 e X_4 ;
 - o Inclusão de X_4 ao modelo que contém X_1 , X_2 e X_3 .

No R: Comando Anova, pacote car.

Teste de Wald

• O teste de Wald baseia-se na distribuição assintótica normal dos estimadores de máxima verossimilhança dos parâmetros do modelo.

• Seja $\hat{\beta}_j$ o estimador de máxima verossimilhança de β_j , um particular parâmetro de um MLG. Conforme discutido anteriormente, para $n \to \infty$,

$$\hat{\boldsymbol{\beta}}_{j} \sim Normal(\boldsymbol{\beta}_{j}, Var(\hat{\boldsymbol{\beta}}_{j})),$$

em que $Var(\hat{\beta}_j)$ é estimada através do correspondente termo da diagonal da matriz de covariâncias $\hat{Var}(\hat{\beta}) = (\mathbf{X'\hat{W}X})^{-1}\hat{\phi}$. Vamos denotar por $ep(\hat{\beta}_j) = \sqrt{\hat{Var}(\hat{\beta}_j)}$ o erro padrão de $\hat{\beta}_j$.

- Embora possam ser aplicados ao teste de hipóteses de dois ou mais parâmetros, o uso mais frequente do teste de Wald contempla apenas um parâmetro por vez. Em situações envolvendo mais parâmetros, é mais usual aplicar o teste da razão de verossimilhanças.
- Considere então o seguinte par de hipóteses:

$$H_0: \beta_j = \beta_j^{(0)},$$

 $H_1: \beta_j \neq \beta_j^{(0)},$

em que $\beta_j^{(0)}$ é algum valor postulado para β_j (é comum tomarmos $\beta_j^{(0)} = 0$, a fim de testarmos a nulidade de β_j). Então, o teste de Wald baseia-se na seguinte estatística-teste:

$$Z_{t} = \frac{\hat{\beta}_{j} - \beta_{j}^{(0)}}{ep(\hat{\beta}_{j})},$$

que, sob a hipótese nula, tem assintoticamente distribuição Normal padrão.

• Para um nível de significância α , rejeitaremos H_0 caso $|Z_t| > z_{1-\alpha/2}$, em $z_{1-\alpha/2}$ representa o quantil $1-\alpha/2$ da distribuição Normal padrão.

• Nos casos em que ϕ é desconhecido, pode-se usar a distribuição t – Student com n-p graus de liberdade, rejeitando H_0 , para um nível de significância α , se $|Z_t| > t_{n-p;1-\alpha/2}$.

No R: A estatística e o teste de Wald são apresentados no próprio summary de um MLG.

Nota – A função waldtest, do pacote lmtest permite aplicar o teste de Wald para hipóteses envolvendo $p \ge 2$ parâmetros, baseado numa distribuição assintótica χ^2_{n-p} .

Intervalos de confiança

• Dentre os métodos disponíveis para obtenção de intervalos de confiança em Modelos Lineares Generalizados, serão destacados os intervalos baseados na razão de verossimilhanças e na estatística de Wald. Mais adiante discutiremos o uso de simulação (bootstrap) para a obtenção dos intervalos.

Intervalos de confiança baseados na razão de verossimilhanças

• Um intervalo com nível de confiança assintótico $1-\alpha$ para β_j , baseado na razão de verossimilhanças, contém todos os valores $\beta_j^{(0)}$ para os quais a hipótese nula $H_0: \beta_j = \beta_j^{(0)}$ não seria rejeitada pelo TRV, ao nível de significância α .

• Para fins de ilustração, considerando um nível de confiança (assintótico) de 95%, o intervalo de confiança para β_i conteria todo $\beta_i^{(0)}$ para o qual a hipótese $H_0: \beta_i = \beta_i^{(0)}$ produzisse:

$$\xi_{RV} = \frac{D_0 - D_1}{\phi} = 2\phi^{-1} \left\{ \ln \left[\frac{L(\hat{\mathbf{\mu}}_1; \mathbf{y})}{L(\hat{\mathbf{\mu}}_0; \mathbf{y})} \right] \right\} \le \chi_{0,95;1}^2 = 3,84,$$

sendo D_0 o desvio avaliado considerando $\beta_j = \beta_j^{(0)}$ e D_1 o desvio avaliado no modelo sem restrição para β_j .

No R: Função confint.

Intervalos de confiança baseados na estatística de Wald

• Uma vez que, assintoticamente:

$$\frac{\hat{\beta}_{j} - \beta_{j}}{ep(\hat{\beta}_{j})} \sim Normal(0,1),$$

pode-se determinar quantis $z_{\alpha/2}$ e $z_{1-\alpha/2}$ tais que:

$$P\left(z_{\alpha/2} < \frac{\hat{\beta}_j - \beta_j}{ep(\hat{\beta}_j)} < z_{1-\alpha/2}\right) \approx 1 - \alpha, \ 0 < \alpha < 1.$$

• Isolando β_i no centro da desigualdade, temos:

$$P(\hat{\beta}_{j}-z_{1-\alpha/2}ep(\hat{\beta}_{j})<\beta_{j}<\hat{\beta}_{j}+z_{1-\alpha/2}ep(\hat{\beta}_{j}))\approx 1-\alpha.$$

• Assim, um intervalo de confiança $1-\alpha$ (assintótico) para β_j fica dado por:

$$IC(\beta_j;1-\alpha) = (\hat{\beta}_j \pm z_{1-\alpha/2} ep(\hat{\beta}_j)).$$

 $No\ R$: confint.default(ajuste).

Intervalo de confiança para a resposta média em $x = x_0$

• A estimativa pontual da resposta média para um vetor de covariáveis $\mathbf{x}' = \mathbf{x}_0' = (1, x_{01}, x_{02}, ..., x_{0p-1}),$ $\mu_0 = E[y \mid \mathbf{x}_0]$, baseada no ajuste de um modelo linear generalizado, é dada por:

$$\hat{\mu}_0 = g^{-1} (\mathbf{x}_0' \hat{\boldsymbol{\beta}}),$$

onde g é a função de ligação do modelo e $\hat{\beta}$ a estimativa de máxima verossimilhança de β .

• Seja $\hat{\eta}_0 = \mathbf{x}_0'\hat{\boldsymbol{\beta}}$ a estimativa do preditor linear calculada em \mathbf{x}_0 . A variância assintótica de $\hat{\eta}_0$ fica dada por:

$$Var(\hat{\eta}_0) = Var(\mathbf{x_0'}\hat{\boldsymbol{\beta}}) = \mathbf{x_0'}Var(\hat{\boldsymbol{\beta}})\mathbf{x_0}.$$

• Como $\hat{\eta}_0 = \mathbf{x}_0', \hat{\boldsymbol{\beta}}$ é uma combinação linear dos $\hat{\boldsymbol{\beta}}'s$, temos que, assintoticamente:

$$\hat{\eta}_0 \sim Normal(\mathbf{x}_0'\boldsymbol{\beta}, \mathbf{x}_0'Var(\hat{\boldsymbol{\beta}})\mathbf{x}_0).$$

• Assim, um intervalo de confiança $1-\alpha$ assintótico para $\eta_0 = \mathbf{x_0'}\boldsymbol{\beta}$ fica dado por:

$$IC(\eta_0, 1-\alpha) = \mathbf{x_0'}\hat{\boldsymbol{\beta}} \pm z_{\alpha/2} \cdot \sqrt{\left(\mathbf{x_0'}V\hat{a}r(\hat{\boldsymbol{\beta}})\mathbf{x_0}\right)},$$

sendo $z_{\alpha/2}$ o quantil $\alpha/2$ da distribuição Normal padrão. Apenas para efeito de notação, vamos representar o intervalo de confiança para η_0 por $(\eta_{0L}; \eta_{0U})$.

• Assim, um intervalo de confiança assintótico $1-\alpha$ para μ_0 fica dado por:

$$IC(\mu_0, 1-\alpha) = (g^{-1}(\eta_{0L}); g^{-1}(\eta_{0U})),$$

se g for estritamente crescente e

$$IC(\mu_0, 1-\alpha) = (g^{-1}(\eta_{0U}); g^{-1}(\eta_{0L}))$$

se g for estritamente decrescente.

No R: p1=predict(ajuste, type='link', newdata=x0, se.fit=T)

x0 é um dataframe com os dados para os quais se quer estimar a resposta.

O argumento se.fit=T é para retornar os erros padrões das estimativas.

estimat=p1\$fit

errpad=p1\$se.fit

ic=exp(estimat+c(-1.96,1.96)*errpad) ### Vale se a ligação for logarítmica.

Se for outra, basta trocar exp() pela inversa da ligação usada.