Лекции по дискретной математике.

Титилин Александр

1 Вычислительная геометрия.

Задача 1 Есть два вектора p_1p_2 с началом в точке (0,0). Найти направление поврота вектора p_1 по отношению к p_2

$$\vec{p_1} = (x_1, y_1).$$

$$\vec{p_2} = (x_2, y_2).$$

Ищем их векторное произведение

$$\begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} = x_1 y_2 - x_2 y_1.$$

Знак показывает направление (отрицаельный по часовой, иначе против) Если определитель равен нулю, то векторы коллинеарны

Задача 2 Ломанная $\overline{p_1p_2p_3}$ составлена из двух отрезков $\overline{p_1p_2}$ и $\overline{p_2p_3}$. В каком напревление осуществляется поворот при переходе через точку p_2 ?

Считаем векторное произведение $p_1\vec{p}_2$ и $p_1\vec{p}_3$ Дальше как в прошлой задаче

Задача 3 Найти выпуклую оболочку заданную множества точек. (Выпуклый многоугольник внутри которого все точки)

Задача 4 Два отрезка заданы координатами своих концов. Пересекаются ли они?

Сначала для каждого отрезка определим ограничивающий прямоугольник (прямоугольник, у которого данный отрезок является диагональю) Если ограничивающие прямоугольники не пересекаются, то и отрезки не пересекаются. Если пересекаются, то проверяем лежатли p_1p_2 по разные стороны от прямой p_3p_4 , и лежат ли p_3p_4 по разные стороны p_1p_2 . p_3p_4 лежат по разные стороны от p_1p_2 , если $p_1\vec{p}_3$ и $p_1\vec{p}_4$ имеют различную ориентацию относительно $p_1\vec{p}_2$

1.1 Алгоритм Грэхема

- 1. Сначала найдем самую нижную точку (если таких несколько, то самую левую из них)
- 2. Все оставшиеся точки отсортируем по возрастанию полярного угла
- 3. Рассматриваем точки по очереди, начиная с четвертой. Если поворот от предыдущей точки происходил направо, то предыдущую точку исключаем и повторяем проверку.

Алгоритм находит выпуклую оболочку за $O(n \log n)$

1.2 Алгоритм Джарвиса

- 1. тоже смое что в прошлом алгоритме
- 2. На каждом следущем шаге, выбираем из еще не вошедших в оболочку, точку, лежащую в направлении, имеющем минимальный положительный угол по сравнению с предыдущим направлениемю

А Л
горитм джарвиса становится лучше Грэхема, если количество точек оболочки мень
ше $\log n$