Analyse numérique

Table des matières

1. Rappels / Compléments d'analyse.

1. Rappels / Compléments d'analyse.

Lemme 1.1 (Rolle généralisé): Soit $f: \mathbb{R} \to \mathbb{R}$ ayant une dérivée n-1—ième continue sur [a,b] et n fois dérivable sur]a,b[avec f(a)=f(b) et $\forall j\in\{1,-,n-1\}, f^j(a)=0$ Alors il existe $c\in]a,b[$ tel que $f^n(c)=0$.

Démonstration: récurrence.

Théorème 1.1 (formule de Taylor): Soit $f: \mathbb{R} \to \mathbb{R}$ ayant une dérivée (n-1) —ième continue sur [a,b] et n fois dérivable sur [a,b]. Alors il existe $c \in]a,b[$ tel que

$$f(b) = f(a) + \sum_{k=1}^{n-1} \frac{(b-a)^k}{k!} f^k(a) + \frac{(b-a)^n}{n!} f^n(c)$$

Démonstration: Basée sur le Lemme.

Définition 1.1 (convexité): Soit $f: I \to \mathbb{R}$ une fonction. On dit que f est **convexe** si

$$\forall x, y \in I, \forall t \in [0, 1], f(tx + (1 - t)y) \le tf(x) + (1 - t)f(y).$$

Définition 1.2 (concavité): Soit $f:I \to \mathbb{R}$ une fonction. On dit que f est **concave** si

$$\forall x, y \in I, \forall t \in [0, 1], f(tx + (1 - t)y) \ge tf(x) + (1 - t)f(y).$$