Introducción a Optimización Clase 14

Investigación Operativa UTN FRBA 2020

Curso: I4051

Docente: Martín Palazzo

Equipo: Rodrigo Maranzana, Milagros Bochor, Gabriel Boso, Juan Piro

Investigación Operativa: optimizacion

La optimización matemática (o programacion matematica) consiste en poder encontrar y seleccionar de un segmento de múltiples alternativas disponibles el mejor elemento con respecto a un criterio.

El estudio de la optimización se desarrolla desde la comunidad de matemática aplicada y encuentra usos en los campos de ciencias de la computación, ingeniería industrial, biología y economía.

Spoiler: El backend de la optimización

Para poder realizar optimización debemos manipular funciones y ecuaciones matematicas.

Introducción a la Optimización

El término **optimización** implica en **decidir** por la mejor combinación de variables de un sistema partiendo de un conjunto de posibles alternativas con el fin de obtener el **mejor** sistema.

Obtener el mejor sistema va a depender del contexto e implica **maximizar** o **minimizar** una función objetivo de interés. Esa variable será el resultado de computar una función gobernada por variables incógnita o **variables de decisión**. Por ejemplo:

- Decidir por infraestructura industrial que minimice los accidentes y la distancia de circulación entre distintos puestos de trabajo.
- Si tuviéramos que decidir por diseños de Ads en web-apps podríamos maximizar el % CTR (click through rate)
- Si pudiéramos optar por distintos diseños de interfaz de usuario en una aplicación móvil optariamos por el que maximice la retention de un usuario.

Optimización Ejemplo: Click through rate

Optimización Ejemplo: layout de planta

Decision 1a Decision 2a Decision 3a

.

Decision Na

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i = 30$$

..... Decision Nb

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i = \boxed{25}$$

Optimización Ejemplo: user interface

BREAKOUT ROOMS

Pensemos en 3 minutos algún caso donde hayas observado un problema que requiera de optimización.

Determinar que función objetivo se quiso optimizar y que decisiones de entrada fueron tomadas.

Elementos centrales de un problema de optimización

Soluciones factibles: valores de la variable de decisión que satisfacen las restricciones.

Restricciones: conjunto de todas las soluciones factibles.

Solucion optima: conjunto de soluciones factibles que generan el valor máximo/mínimo de la función objetivo.

Elementos centrales de un problema de optimización

$$x_1, x_2, ..., x_i, ..., x_n$$

Variables de decision

$$f(x) = c_i x_i + \dots + c_j x_j$$

Función objetivo a minimizar o maximizar

$$g(x) = a_i x_i + \dots + a_j x_j \le b$$

Restricciones con desigualdad

$$q(x) = a_i x_i + \dots + a_j x_j = d$$

Restricciones con igualdad

Ejemplo MKT online

Optimización de Ads

- Un analista de marketing debe definir la estrategia de growth en una software factory y desea encontrar el Ad que obtenga la mayor cantidad de impresiones para publicitar la plataforma. Se busca que el Ad tenga un cost-per-click menor a 0,1 USD, que incluya imágenes y por limitaciones de la Ad-network que tenga entre 20 y 30 caracteres.
- Cual debe elegir?
- Función objetivo: ?

Ad ID	Caracteres	Imagen	Cost per Click	Impressions
1	18	Si	0,02	416
2	31	No	0,04	991
3	12	Si	0,03	966
4	28	Si	0,09	749
5	8	No	0,01	522
6	21	Si	0,05	286
7	8	Si	0,13	232
8	21	No	0,13	601
9	14	No	0,19	999
10	16	Si	0,14	194
11	22	Si	0,04	599
12	9	Si	0,06	44

BREAKOUT ROOMS

Determinar el mejor Ad, las restricciones observadas y el conjunto de soluciones posibles y las variables de decisión para encontrar la mejor alternativa.

Variables de decision

Restricciones

- Imagen = True
- 20 < Caracteres < 30
- CPC < 0,1

Conjunto de Soluciones factibles

Ad ID	Caracteres	Imagen	Cost per Click	Impressions
1	18	Si	0,02	416
2	31	No	0,04	991
3	12	Si	0,03	966
4	28	Si	0,09	749
5	8	No	0,01	522
6	21	Si	0,05	286
7	8	Si	0,13	232
8	21	No	0,13	601
9	14	No	0,19	999
10	16	Si	0,14	194
11	22	Si	0,04	599
12	9	Si	0,06	44

Ad ID	Caracteres	Imagen	Cost per Click	Impressions
1	18	Si	0,02	416
2	31	No	0,04	991
3	12	Si	0,03	966
4	28	Si	0,09	749
5	8	No	0,01	522
6	21	Si	0,05	286
7	8	Si	0,13	232
8	21	No	0,13	601
9	14	No	0,19	999
10	16	Si	0,14	194
11	22	Si	0,04	599
12	9	Si	0,06	44

Función objetivo: Impresiones

Ad ID	Caracteres	Imagen	Cost per Click	Impressions
1	18	Si	0,02	416
2	31	No	0,04	991
3	12	Si	0,03	966
4	28	Si	0,09	749
5	8	No	0,01	522
6	21	Si	0,05	286
7	8	Si	0,13	232
8	21	No	0,13	601
9	14	No	0,19	999
10	16	Si	0,14	194
11	22	Si	0,04	599
12	9	Si	0,06	44

Valor óptimo de la función objetivo

ID/punto de la solución óptima

Encontrando el optimo

¿Cuál es el punto que optimiza la función graficada?

Optimización matemática Minimo o maximo?

La solución buscando el mínimo.

La solución buscando el máximo.

Maximización vs minimización

Maximizar:

- Buscamos encontrar la solución que genere el valor más alto de la función objetivo
- Cuanto mayor sea el resultado de la función objetivo -> mejor
- Ejemplos: retorno, ganancia, premios.

Minimizar:

- Buscamos encontrar la solución que genere el valor más bajo de la función objetivo.
- Cuanto menor sea el resultado de la función objetivo -> mejor.
- Ejemplos: costo, riesgo, distancia recorrida, tiempo de duración de un proyecto.

Argmin, Argmax, Max, Min

Supongamos la siguiente función objetivo con la variable de decisión X. Cuál es su punto óptimo? Cuál es el valor óptimo de la función objetivo?

Max, Argmax

Vamos a distinguir dos elementos importantes de la optimización:

- El argumento máximo **argmax** indica que combinacion/valores de las variables de decisión generan el valor máximo de la función objetivo.
- El máximo **max** indica cual es valor máximo de la función objetivo en el **argmax**
- El argmax estará relacionado a las variables de decisión y el max a la función objetivo.
- Siempre que resolvamos un problema de optimización debemos reportar el max y el argmax.

Qué relaciones existen entre una función y su negativa a la hora de optimizar?

Argmin, Argmax, Max, Min

Observamos que

- argmax f(x) = argmin f(x)
- $\max f(x) = -\min (-f(x))$

Maximo/minimo global vs Maximo/minimo local

La funcion objetivo presentara un maximo global y en distintas regiones del dominio X dependiendo de su topologia podra presentar maximos locales (aplica de igual manera al minimo).

Ejemplo argmax, argmin, max, min

$$f(x) = \frac{\sin x}{x}$$
$$f(0) := \lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

$$f(x) = \frac{\sin x}{x}$$

$$(0) := \lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

$$\operatorname{argmax} f(x) = 0$$
$$\operatorname{max} f(x) = 1$$

$$-f(x) = -\frac{sin(x)}{x}$$
$$-f(0) := -\lim_{x \to 0} \frac{sin(x)}{x} = -$$

$$-f(x) = -\frac{\sin(x)}{x}$$

$$-f(0) := -\lim_{x \to 0} \frac{sin(x)}{x} = -1$$

 $\underset{\text{min } -f(x) = 0}{\operatorname{argmin}} - f(x) = 0$

$$\underset{-\min}{\operatorname{argmin}} - f(x) = \underset{-\min}{\operatorname{argmax}} f(x)$$

Casos particulares en Optimización

Siempre llegamos a un óptimo?

Multiples optimos

$$-f(x) = -\frac{\sin(x)}{x}$$
$$-f(0) := -\lim_{x \to 0} \frac{\sin(x)}{x} = -$$

¿Cuántos máximos globales podemos observar en esta función? ¿cuantos argumentos máximos observamos?

Multiples optimos

$$-f(x) = -\frac{\sin(x)}{x}$$
$$-f(0) := -\lim_{x \to 0} \frac{\sin(x)}{x} = -$$

¿Cuántos máximos globales podemos observar en esta función? ¿cuantos argumentos máximos observamos?

Inexistencia de óptimo: función no acotada

En el caso propuesto encontrar el máximo de x**2 para cualquier valor positivo de X implica que siempre existirá un valor de X que maximice más la función objetivo. En este caso el conjunto de soluciones posibles **no está acotado**, por ende el problema **no tiene solución**.

Inexistencia de óptimo????

$$\begin{array}{ccc}
\max & x^2 \\
x & \geq 10 \\
x & < -10
\end{array}$$

¿Qué observaciones se pueden hacer del problema de optimización propuesto?

Inexistencia de óptimo: conjunto de soluciones factibles nulo

$$\begin{array}{ccc}
\max & x^2 \\
x & \geq 10 \\
x & \leq -10
\end{array}$$

Se observa que no existe un conjunto de soluciones factibles. Las restricciones son incompatibles e imposible de poder ser satisfechas para cualquier valor de **X**.

Programación Lineal

Optimización con funciones lineales.

Clasificación de Problemas de optimización

Clasificación según las funciones

- **Programación Lineal:** funciones objetivo f(x) y restricciones g(x) -> lineales
- Programación No Lineal: funciones objetivo f(x) y/o restricciones g(x) ->
 no lineales

Clasificación según las variables de decisión

- Programacion continua: las variables de decision X son continuas
- Programacion entera: las variables de decision X son enteras

Programación Lineal

Un problema genérico de optimización a ser resuelto por programación lineal se estructura matricial y vectorialmente de la siguiente forma:

$$\mathbf{c}^T \mathbf{x} = \mathbf{z} \longrightarrow \text{Max/min}$$
 $A \mathbf{x} \leq \mathbf{b}$
 $\mathbf{x} \geq 0$

Donde **c** es un vector [n,1] de 'n' coeficientes, **x** es un vector [n,1] de 'n' variables de decisión, **A** es una matriz [r,n] de coeficientes (tecnológicos) sobre las 'n' variables de decisión **x** en las 'r' restricciones **b**. Tanto **c**, **b** y **A** son conocidos mientras que **x** es la incógnita multidimensional a averiguar. Notar que cuando n>3 nos encontramos con un problema de alta dimensión que no puede ser resuelto por el método gráfico.

Estructura de un problema de Programación Lineal

Función objetivo f(x)

Restricciones g(x)

$$c_{1}x_{1} + c_{2}x_{2} = z$$

$$a_{11}x_{1} + a_{12}x_{2} \le b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} \le b_{2}$$

$$a_{31}x_{1} + a_{32}x_{2} \ge b_{3}$$

$$a_{41}x_{1} + a_{42}x_{2} = b_{4}$$

$$x_{1}, x_{2} \ge 0$$

Programación Lineal

En caso que n = 2 y r = 2 el planteo del problema tendría la siguiente forma:

$$c_{1}x_{1} + c_{2}x_{2} = \mathbf{z}$$

$$a_{11}x_{1} + a_{12}x_{2} \leq b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} \leq b_{2}$$

$$x_{1}, x_{2} \geq 0$$

Figura https://services.math.duke.edu/

Donde el área azul contiene las soluciones básicas factibles (SBF) limitadas por las 2 restricciones **ax** =< **b** y por las condiciones de no-negatividad. La recta roja representa a la función objetivo **z** a optimizar y su valor estará en función de cuàn lejos del origen se encuentre. Los puntos en fucsia representan la soluciones en los vértices del área de SBF.

Ejercicio WorldLight

La compañía WorldLight produce dos dispositivos para lámparas (productos 1 y 2) que requieren partes de metal y componentes eléctricos.

La administración desea determinar cuántas unidades de cada producto debe fabricar para maximizar la ganancia.

- Por cada unidad del producto 1 se requieren 1 unidad de partes de metal y 2 unidades de componentes eléctricos.
- Por cada unidad del producto 2 se necesitan 3 unidades de partes de metal y 2 unidades de componentes eléctricos.
- La compañía tiene 200 unidades de partes de metal y 300 de componentes eléctricos
- Cada unidad del producto 1 da una ganancia de 1 peso y cada unidad del producto 2, hasta 60 unidades, da una ganancia de 2 pesos.
- Cualquier exceso de 60 unidades del producto 2 no genera ganancia, por lo que fabricar más de esa cantidad está fuera de consideración.

Se solicita:

- Formule un modelo de programación lineal (función objetivo, restricciones, variables de decision)
- Utilice el método gráfico para resolver este modelo. ¿Cuál es la ganancia total que resulta?