DIC: RETHINKING CONV3X3 DESIGNS IN DIFFUSION MODELS

TL;DR: Fully 3x3 Convolutional Diffusion Models WORK!

CVPR//ashville JUNE 11-15, 2

Yuchuan Tian*, Jing Han*, Chengcheng Wang, Yuchen Liang, Chao Xu, Hanting Chen

SIST Peking University, BUPT, Noah's Ark Lab

Current Trend: Diffusion Transformers

SongUNet

DiT

PixArt

All of the models above have self-attention...

- Low latency
- $O(N^2)$ Complexity

=> SLOW

Self-Attention X

MAKE CONVS
GREAT AGAIN
In Diffusion!

Conv 3x3

Our Aim: A Conv3x3 Diffusion Model

Conv3x3 Denoisers could match the performance of DiTs while maintaining a speed advantage.

Macro & Micro-level design improvements

Improvements on Conv3x3 "Basic Blocks"

Starting from a "Basic Block" from U-Net:

- Two Conv3x3s
- Residual Connection
- Removal of Attn

Macro Level

➤ Architecture Arena
U-Net arch
performs the best

Performance

Outstanding performance compared with DiT models!

Reduce the number of Skips

Micro Level

- Conditioning
 Improvements
- > Activations

High Throughput (TP) eNet 256×256, 400K

Performance & Speed Advantages

ImageNet 256×256, 400K				
Model	FLOPs (G)	TP	$\text{FID}{\downarrow}$	IS↑
U-ViT-XL [1]	113.0	72.6	18.35	76.59
DiT-XL/2 [30]	118.6	66.8	20.05	66.74
PixArt- α -XL/2 [2]	118.4	64.1	24.75	52.24
DiffiT-XL/2 [17]	118.5	64.1	36.86	35.39
DiT-LLaMA* [5]	118.6	65.2	20.22	70.10
DiC-XL (Ours)	116.1 (57.2)	313.7	13.11	100.15
DiC-H (Ours)	204.4 (97.2)	160.8	11.36	106.52

ImageNet 256×256 Scale Un, w/o.cfg

ImageNet 256×256, Scale Up, w/o cfg					
Model	Training Steps	FID↓	IS↑		
DiT-XL/2	2.4M	10.67	-		
DiT-XL/2	7 M	9.62	-		
DiC-H	400K	11.36	106.52		
DiC-H	600K	9.73	118.57		
DiC-H	800K	8.96	124.33		

Advantages on Larger Images

ImageNet 512×512, 3M, cfg=1.5				
Model	G FLOPs (Wino.)	TP	FID↓	IS↑
DiT-XL/2	524.7	16.2	3.04	240.82
DiC-XL DiC-H	464.3 (228.7) 817.2 (388.4)	84.2 53.3	3.04 2.96	271.77 293.54

Good Potential with Advanced Training "

SDE

ImageNet 256>	ImageNet 256×256, Scale Up, w/ cfg						
Model	TP	BS×Iter		FID↓			
DiT-XL/2	66.8	25	6×7M	2.27			
U-ViT-H	63.9	1024	4×500K	2.29			
DiC-H (Ours)	160.8	25	6×2M	2.25			
ImageNet 256×256, REPA							
Model	Training	; iter	Sampling	FID			

DiC-XL+U-REPA

DiC-XL+U-REPA

