Regression Analysis: Predicting Medical Expenses

By Ambati Yaswanth & Rajeev Kumar

April 19, 2025

Introduction

- Understanding the factors that influence healthcare care costs is crucial for:
 - Insurance companies
 - Healthcare providers
 - Policymakers
 - Individuals
- Primary factors examined: smoking status, BMI, sex, and age.

Research Objectives

- Estimate future healthcare costs based on individual characteristics.
- Identify and quantify key risk factors that affect medical expenses.
- Provide insights for targeted cost-management interventions.

Data Description

Variable	Description
age	Age of the individual
sex	Gender (0=Female, 1=Male)
bmi	Body Mass Index
smoker	Smoking status (0=Non-smoker, 1=Smoker)
expenses	Medical expenses in USD (target variable)

age	sex	bmi	smoker	expenses
19	0	27.9	1	16884.92
18	1	33.8	0	1725.55
28	1	33.0	0	4449.46
33	1	22.7	0	21984.47
32	1	28.9	0	3866.86

Table: Sample of the dataset

Methodology

Data Preprocessing

- Encoding categorical variables
- Data cleaning and outlier removal
- Feature selection

Exploratory Data Analysis(EDA)

- Descriptive statistics
- Correlation analysis

Statistical Modeling

- Multiple linear regression
- Model evaluation metrics

Multiple Linear Regression Model

The general form of our regression model:

Expenses =
$$\beta_0 + \beta_1 \times Age + \beta_2 \times Sex + \beta_3 \times BMI + \beta_4 \times Smoker + \varepsilon$$
 (1)

- β_0 is the intercept (constant term)
- $\beta_1, \beta_2, \beta_3, \beta_4$ are the coefficients for the predictors
- ullet represents the error term

Model Evaluation Metrics	Formula		
R^2 (Coefficient of Determination)	$R^2 = 1 - rac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}$ $MSE = rac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$		
MSE (Mean Squared Error)	$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$		

Correlation Analysis

	Age	Sex	ВМІ	Smoker	Expense
Age	1.00	-	-	-	0.30
Sex	-	1.00	-	-	0.06
BMI	-	-	1.00	-	√ St o թ նն c
Smoker	-	-	-	1.00	0.79
Expenses	0.30	0.06	0.20	0.79	1.00

• Key findings:

- **Smoking** has the strongest relationship with expenses (0.79)
- **Age** shows moderate correlation (0.30)
- BMI displays weak correlation (0.20)
- Sex has minimal correlation (0.06)

Model Results: Individual Feature Contributions

Feature	R^2	MSE	Unbiased σ^2
Sex	0.0033	1.46×10^{8}	1.46×10^{8}
Age	0.0894	1.33×10^{8}	$1.34 imes 10^8$
BMI	0.0394	$1.41 imes 10^8$	$1.41 imes 10^8$
Smoker	0.6198	5.57×10^{7}	5.58×10^{7}
Combined Model	0.7475	3.70×10^{7}	3.71×10^7

$$R^2$$
: 0.003 (Sex)

Expenses vs. Smoking Status

- Smokers have substantially higher medical expenses
- Difference of approximately \$23,616 between smokers and non-smokers
- Smoking status alone explains 62% of variance in expenses

Expenses vs. Age

Expenses (\$)

- Weak positive relationship between age and expenses
- Each additional year of age associated with \$257.72 increase in expenses
- Age explains approximately 9% of variance in medical expenses

Expenses vs. BMI

Expenses (\$) y = 394.33x + 1178.18 $R^2 = 0.04$

Weak positive relationship between BMI and expenses

17.4

- Each unit increase in BMI associated with \$394.33 increase in expenses
- BMI explains only 4% of variance in medical expenses

42.1

Expenses vs. Sex

- Almost no relationship between sex and medical expenses
- Minimal difference in average expenses between males and females
- ullet Sex alone explains less than 1% of variance in expenses

Combined Model

- Combined model explains 74.75% of variance in medical expenses
- Smoking status contributes most to the predictive power (62%)
- Age (9%) and BMI (4%) provide additional explanatory power
- Sex has minimal contribution (0.3%)
- About 25% of variance remains unexplained

Key Insights

- Smoking Status: Primary predictor of medical expenses
 - Smokers incur approximately \$23,616 higher expenses than non-smokers
- Age: Secondary predictor with moderate influence
 - Each additional year associates with \$257.72 increase in expenses
- BMI: Weak but measurable impact
 - Each unit increase associates with \$394.33 higher expenses
- **Sex:** Minimal influence on medical expenses
 - Gender alone is not a meaningful predictor of healthcare care costs

Practical Applications

For Insurance Companies:

- Develop more accurate and equitable premium structures
- Focus on smoking status as primary risk factor
- Consider age and BMI as secondary factors
- Avoid gender-based premium differentials

For Policymakers:

- Target smoking cessation programs for cost-effective interventions
- Develop obesity prevention initiatives

For Individuals:

- Understand personal risk factors affecting healthcare costs
- Make informed lifestyle decisions (particularly regarding smoking)

Conclusion

- Our regression analysis provides clear evidence on the factors that influence medical expenses:
 - Smoking is the dominant predictor (62% of variance)
 - Age and BMI provide additional predictive power
 - Sex has minimal impact on expenses
- The combined model explains approximately 75% of variance
- The findings can inform more equitable insurance pricing and targeted health interventions
- Future research should explore additional variables and causal mechanisms

Thank You

Thank You!

By Ambati Yaswanth & Rajeev Kumar