THE NUMPY ARANGE FUNCTION

WHAT YOU'LL LEARN

- What the NumPy arange function is
- The syntax of np.arange()
- How to create arrays that contain "ranges" of numbers
 - simple sequences from "start" to "stop"
 - more complex sequences

A QUICK INTRODUCTION TO NUMPY ARANGE

THE NUMPY ARANGE FUNCTION CREATES ARRAYS WITH "RANGES" OF NUMBERS

Sequences that start at 0 and increase up to a stopping point

0 1 2 3

Sequences that start at a specific number and increase

5 6 7 8

Sequences that start at a specific number and increase by a specific step value

10 20 30 40

THE SYNTAX OF NP.ARANGE

THE SYNTAX OF NUMPY ARANGE

THE PARAMETERS OF NUMPY ARANGE

Parameter	What it controls	Default	Required?
start	The starting number of the sequence	O	No
stop	The end point of the sequence (the sequence will <u>not</u> include this number)		Yes
step	The size of the "step" between the values	1	No
dtype	The data type of the output	Inferred	No

EXAMPLES OF NUMPY ARANGE

CREATE A SEQUENCE OF NUMBERS FROM 0 TO 5

You can remove the explicit _____ np.arange(6) parameters and just use the stop number _____ array([0, 1,

This is faster to type, but harder to read ...

```
np.arange(start = 0, stop = 6)
array([0, 1, 2, 3, 4, 5])
array([0, 1, 2, 3, 4, 5])
```

SPECIFY A SPECIFIC START AND STOP POSITION

parameter and the stop parameter to specify the start and stop point of the sequence

```
Here, we're using the start \longrightarrow np.arange(start = 5, stop = 11)
                               array([ 5, 6, 7, 8, 9, 10])
```

SPECIFY A SPECIFIC STEP VALUE FOR THE SEQUENCE

Remember: the stop number is *not* included ... if we want our sequence to go to 40, the stop number must be at least 1 greater

The step parameter indicates that we will increment in steps of 10

```
np.arange(start = 10, stop = 41, step = 10)
array([10, 20, 30, 40])
```

SPECIFY A SPECIFIC OUTPUT DATA TYPE

The dtype parameter enables us to specify the data type of the output

```
np.arange(start = 1, stop = 6, dtype = float)
array([1., 2., 3., 4., 5.])
```

HOW TO CREATE 2-DIMENSIONAL ARRAYS WITH NUMPY ARANGE

How to create a 2-dimensional array with NP. Arange

- Numpy arange does not have a way to create 2-dimensional arrays
- You need to combine multiple NumPy tools
 - np.arange
 - the NumPy reshape method

TO CREATE 2D ARRAYS, COMBINE NP.ARANGE WITH NUMPY RESHAPE

Create the 1-dimensional array with np.arange

Reshape the array into 2-dimensions

np.arange(start = 1, stop = 13).reshape([3,4])

OUT:

1	2	3	4
5	6	7	8
9	10	11	12

RECAP

RECAP OF WHAT WE LEARNED

- The np.arange function creates sequences of numbers
- We can control the sequence with the parameters
 - start
 - stop
 - step

Create 2D sequences by combining np.arange and the reshape method