Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Институт информационных технологий и анализа данных

наименование института Отделение прикладной математики и информатики наименование отделения Отчет по дисциплине «Вычислительная математика» по теме: «Решение обыкновенных дифференциальных уравнений» Выполнил студент группы Арбакова А.В. Подпись И.О. Фамилия Проверил преподаватель И.А. Огнёв

Отчет по НИР защищен с оценкой _____

И.О. Фамилия

Подпись

ЗАДАНИЕ

Вариант: 6

Условия задания:

Численно решить дифференциальное уравнение y' = f(x,y) с начальным условием y0 = y(x0) на отрезке [x0, b] с шагом h = 0,2 методом Эйлера, модифицированным методом Эйлера и методом Рунге-Кутта. Найти аналитическое решение y = y(x) заданного уравнения и сравнить значения точного и приближенных решений в точке x = b. Вычислить абсолютную и относительную погрешности в этой точке для каждого метода. Вычисления вести с четырьмя десятичными знаками.

Задания варианта:

6.
$$y' = 3\frac{y}{x} + 1$$
 $y(1)=0,5$ $x \in [1,2]$

Рисунок 1 – Задание варианта.

Алгоритм метода вычислений:

Рисунок 2 - Метод Эйлера.

Рисунок 3 – Модифицированный метод Эйлера.

Рисунок 4 – Метод Рунге-Кутта.

Программа:

Из $y' = 3 \times \frac{y}{x} + 1$ выводим, что $y = C1x^3 - \frac{x}{2}$. Решаем аналитически и получаем таблицу значений на рис. 5.

Аналитическое решение						
i	x _i y _i					
0	1	0,5				
1	1,2	1,128				
2	1,4	2,044				
3	1,6	3,296				
4	1,8	4,932				
5	2	7				

Рисунок 5 – Аналитическое решение.

На рисунке 6 представлено решение методом Эйлера. Метод Эйлера является явным, одношаговым методом первого порядка точности. Он основан на аппроксимации интегральной кривой кусочно-линейной функцией, так называемой ломаной Эйлера.

Метод Эйлера								
i	Xi	$x_i y_i f(x_i, y_i)$		Δy_i				
0	1	0,5	2,5	0,5				
1	1,2	1	3,5	0,7				
2	1,4	1,7	4,64286	0,92857				
3	1,6	2,62857	5,92857	1,18571				
4	1,8	3,81429	7,35714	1,47143				
5	2	5,28571	8,92857	1,78571				

Рисунок 6 – Метод Эйлера.

На рисунке 7 представлено решение модифицированным методом Эйлера. Для повышения точности корректирующую итерацию можно повторить. Модифицированный метод Эйлера с пересчетом имеет второй порядок точности, однако для его реализации необходимо, как минимум, дважды вычислять f(x,y).

Модифицированный метод Эйлера									
i	Xi	y i	$f(x_i, y_i)$	X _{i+1/2}	y _{i+1/2}	(x _{i+1/2} ,y _{i+1/2})	Δy_{i}		
0	1	0,5	2,5	1,1	0,75	3,04545	0,60909		
1	1,2	1,10909	3,77273	1,3	1,48636	4,43007	0,88601		
2	1,4	1,9951	5,27522	1,5	2,52263	6,04525	1,20905		
3	1,6	3,20416	7,00779	1,7	3,90494	7,89106	1,57821		
4	1,8	4,78237	8,97061	1,9	5,67943	9,96752	1,9935		
5	2	6,77587	11,1638	2,1	7,89225	12,2746	2,45493		

Рисунок 7 – Модифицированный метод Эйлера.

На рисунке 8 представлен метод Рунге-Кутта. Метод Эйлера и его модифицированная версия относятся к классу методов Рунге, которые представляют собой соответственно методы первого и второго порядка точности. Самое большое распространение получил классический метод Рунге-Кутты, который представляет метод четвертого порядка точности.

Метод Рунге-Кутта								
i	Xi	y _i		K ⁽ⁱ⁾	Δy _i			
0	1	0,5	2,5	0,5	0,5			
	1,1	0,75	3,045455	0,609091	1,218182			
	1,1	0,804545	3,194215	0,638843	1,277686			
	1,2	1,138843	3,847107	0,769421	0,769421			
					0,627548			
1	1,2	1,127548	3,818871	0,763774	0,763774			
	1,3	1,509435	4,483312	0,896662	1,793325			
	1,3	1,575879	4,636645	0,927329	1,854658			
	1,4	2,054877	5,403308	1,080662	1,080662			
					0,915403			
2	1,4	2,042951	5,377753	1,075551	1,075551			
	1,5	2,580727	6,161453	1,232291	2,464581			
	1,5	2,659097	6,318193	1,263639	2,527277			
	1,6	3,30659	7,199856	1,439971	1,439971			
					1,25123			
3	1,6	3,294181	7,17659	1,435318	1,435318			
	1,7	4,01184	8,079718	1,615944	3,23188			
	1,7	4,102153	8,239094	1,647819	3,295638			
	1,8	4,942	9,236667	1,847333	1,847333			
					1,635029			
4	1,8	4,929211	9,215351	1,84307	1,84307			
	1,9		11,69308	2,338615	4,67723			
	1,9	6,772281 7,267826	12,47551	2,495103	4,990206			
	2	7,424314	12,13647	2,427294	2,427294			
					2,066666			
5	2	6,995876	11,49381	2,298763	2,298763			

Рисунок 8 – Метод Рунге-Кутта.

На рисунке 9 построен график на основе значений, полученных из аналитического решения, а также методов Эйлера, его модифицированной версии и Рунге-Кутта. Как можно сделать вывод, метод Эйлера является самым не точным, поэтому и относится к методу первого порядка точности. Модифицированный метод Эйлера и метод Рунге-Кутта близки к аналитическому решению.

Рисунок 9 – График.

На рисунке 10 представлена сравнительная таблица точности решений. Метод Эйлера (метод первого порядка точности) дает относительную погрешность 24,49%, что относит его к неэффективным методам. Модифицированный метод Эйлера (метод второго порядка точности) уже дает 3,2%. Самую большую точность 0,059% дает метод Рунге-Кутта (метод четвертого порядка точности).

	Сравнительная таблица точности решений								
ı	x _i	1	1,2	1,4	1,6	1,8	2	Абс.погр.	Отн. Погр.
	AP	1	1,128	2,044	3,296	4,932	7		
	МЭ	1	1	1,7	2,628571	3,814286	5,285714	1,714286	24,49%
	ММЭ	1	1,109091	1,995105	3,204156	4,782368	6,775872	0,224128	3,20%
	МРК	1	1,127548	2,042951	3,294181	4,929211	6,995876	0,004124	0,059%

Рисунок 10 – Сравнительная таблица точности решений.

Вывод:

В ходе практической работы, мы научились решать дифференциальные уравнения типа y' = f(x,y) имеющих начальное условие $y_0 = y(x_0)$ на отрезке $[x_0, b]$ с шагом h различными методами, как: метод Эйлера, модифицированный метод Эйлера и метод Рунге-Кутта. В ходе работы я вывела следующие выводы: метод Эйлера выполняется быстро и просто; его модифицированная версия чуть сложнее, но имеет меньшую погрешность в вычислениях; метод Рунге-Кутта дает наименьшую погрешность, но вычисления с помощью данного метода являются самыми долгими и сложными среди перечисленных методов.