Problem: Information Theory and Capacity

Prof. Sundeep Rangan

- 1. Entropy of an exponential. Find the relative entropy of an exponential distributed X with $\mathbb{E}(X) = 1/\lambda$.
- 2. Mutual information on a discrete set. Suppose that X is discrete uniform on $\{0, 1, ..., N-1\}$ for some N > 0. Let Y = X + W where

$$P(W = 1) = 1 - P(W = 0) = p$$

for some p > 0.

- (a) Given Y = y for y > 0, we know X = y or y 1. Find P(X = y | Y = y) and P(X = y 1 | Y = y).
- (b) Find the conditional entropy H(X|Y=y) for y>0.
- (c) Find the conditional entropy H(X|Y=y) for y=0.
- (d) Find the conditional entropy H(X).
- (e) Find the mutual information I(X;Y).
- 3. AWGN Capacity. Suppose that a signal is transmitted on a bandwidth $B=100\,\mathrm{MHz}$, transmit power $P_t=30\,\mathrm{dBm}$, path loss $L=103\,\mathrm{dB}$, and noise PSD (including noise figure) of $N_0=-170\,\mathrm{dBm/Hz}$.
 - (a) What is the SNR per Hz, γ_s ?
 - (b) What is the Shannon capacity C?
 - (c) Suppose that the system achieves a rate R = 0.5C. What is the E_b/N_0 in dB.
- 4. Mutual information with a binary modulated exponential. Suppose that $X \in \{0,1\}$ is an equiprobable bit and we observe Y that has a conditional exponential distribution

$$p(y|X=i) = \lambda_i \exp(-\lambda_i y), \quad y \ge 0,$$

for values λ_0 and λ_1 with $\lambda_0 > \lambda_1$. We wish to compute the mutual information I(X;Y).

- (a) Find the conditional entropy h(Y|X). You can the results from Problem 1.
- (b) Find the PDF of Y, p(y).
- (c) Find an expression for the relative entropy h(Y) and the mutual information I(Y;X). This expression will have an integral. You do not need to evaluate it.

Bits (c_1, c_2)	TX symbol s
00	$s_1 = -B$
01	$s_2 = -A$
11	$s_3 = A$
10	$s_4 = B$

Table 1: Problem: Bit to symbol mapping.

- (d) Use MATLAB to compute and plot I(X;Y) for $\lambda_0 = 1$ and $\lambda_1 = \lambda_0/\gamma$ where γ is in the range $\gamma \in [1,50]$. You can interpret γ as a SNR since it is the ratio of the two exponential levels. To perform the numerical integration, you can use the MATLAB function integral. Although the integral is over $y \in [0,\infty)$, you may need to run it over a finite range to obtain good results.
- 5. Numerically computing mutual information for a discrete channel. In this problem, we show how to compute the mutual information numerically. As a completely toy example, suppose that $X \in \{0, 1, ..., N_x 1\}$ is uniform and $Y \in \{0, 1, ..., N_y 1\}$ with conditional PMF

$$P(y|x) = \frac{1}{Z(x)} exp(-\lambda |y - x|)$$

for some λ . The constant Z(x) is for normalization. Complete the following MATLAB code to numerically compute and plot H(Y), H(Y|X) and I(X;Y) for $N_x = 32$, $N_y = 128$, and $\lambda \in [0.5, 4]$.

```
% Parameters
nx = 32;
ny = 128;
lamTest = linspace(0.5,4,10);
nlam = length(lamTest);

for i = 1:nlam
    lam = lamTest(i);
    % TODO:
    % Hyx = ...
    % Hy = ...
    % mi(i) = ...
end
```

- 6. Bitwise LLR. Suppose two bits (c_1, c_2) are mapped to one of four real symbol $s \in \{s_1, \ldots, s_4\}$ as shown in Table 1 for some B > A > 0. Assume the bits are equiprobable. The symbol s is transmitted through a real AWGN channel r = s + w where $w \sim \mathcal{N}(0, \sigma^2)$.
 - (a) What is the posterior probability of $P(s = s_i|r)$ for any of the symbols $s = s_i$? Leave your answer as an expression in terms of the r, σ^2 and the values s_j .
 - (b) What are the bit-wise LLRs for c_1 and c_2 :

$$L_1(r) = \log \frac{p(r|c_1 = 1)}{p(r|c_1 = 0)}, \quad L_2(r) = \log \frac{p(r|c_2 = 1)}{p(r|c_2 = 0)}.$$

(c) Use MATLAB to plot $L_1(r)$ and $L_2(r)$ vs. r for $r \in (-6,6)$ with $A=1,\ B=4$ and $\sigma^2=4$.