

7

Applications of Derivatives

The average rate of change = $\frac{\Delta y}{\Delta t}$.

When Limit $\Delta t \rightarrow 0$ is applied, the rate of change becomes instantaneous and we get the rate of change of y w.r.t. time at an instant.

i.e.,
$$\lim_{\Delta t \to 0} \frac{\Delta y}{\Delta t} = \frac{dy}{dt}$$
.

$$\left(\frac{dy}{dx}\right)_P = \tan\theta = \text{slope of tangent at } P.$$

Equation of Tangent and Normal

Tangent at (x_1, y_1) is given by $(y - y_1) = f'(x_1)(x - x_1)$; when, $f'(x_1)$ is real.

And normal at (x_1, y_1) is $(y - y_1) = -\frac{1}{f'(x_1)}(x - x_1)$, when $f'(x_1)$ is nonzero real.

Note:

1. If tangent is parallel to x-axis, $\theta = 0^{\circ} \implies \tan \theta = 0$

$$\therefore \left(\frac{dy}{dx}\right)_{(x_1,y_1)} = 0$$

2. If tangent is perpendicular to x-axis (or parallel to y-axis) then $\theta = 90^{\circ} \implies \tan \theta \rightarrow \infty \quad \text{or} \quad \cot \theta = 0$

$$\therefore \left(\frac{dy}{dx}\right)_{(x_1,y_2)} = \infty$$

Equation of tangent and normal in parametric form

Let the equation of the curve be expressed in the parameteric form x = g(t) and $y = \phi(t)$ where t is the parameter.

The equation of the tangent at a point P(t),

$$y - \phi(t) = \frac{\phi'(t)}{g'(t)} [x - g(t)]$$
 and

the equation of normal is $y - \phi(t) = \frac{-g'(t)}{\phi'(t)} [x - g(t)]$

Tangent from an External Point

Given a point P(a, b) which does not lie on the curve y = f(x), then the equation of possible tangents to the curve passing through (a, b) can be found by solving for the point of contact Q.

$$f'(h) = \frac{f(h) - b}{h - a}$$

$$Q(h, f(h))$$

$$v = f(x)$$

$$P(a, b)$$

And equation of tangent is $y - b = \frac{f(h) - b}{h - a}(x - a)$

Length of Tangent, Normal, Subtangent, Subnormal at P(h,k)

1.
$$PT = |k| \sqrt{1 + \frac{1}{m^2}} = \text{Length of Tangent}$$

2.
$$PN = |k| \sqrt{1 + m^2} = \text{Length of Normal}$$

3.
$$TM = \left| \frac{k}{m} \right| = \text{Length of subtangent}$$

4.
$$MN = |km| = Length of subnormal.$$

Angle Between the Curves

Angle between two intersecting curves is defined as the acute angle between their tangents (or normals) at the point of intersection of two curves.

$$tan \ \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

If $\theta = \pi/2$, then the two curves are said to cut each other orthogonally and the condition for this to happen is:

$$m_1 \times m_2 = -1 \Rightarrow f'(x_0) \times g'(x_0) = -1$$

Shortest Distance between two Curves

Shortest distance between two non-intersecting differentiable curves is always along their common normal. (Wherever defined)

Errors and Approximations

1. Errors: Let y = f(x)

From definition of derivative, $\lim_{N\to 0} \frac{\Delta y}{\Delta t} = \frac{dy}{dx}$

 $\frac{\Delta y}{\Delta x} = \frac{dy}{dx}$ approximately or $\Delta y = \left(\frac{dy}{dx}\right)$. Δx approximately

Definition:

- (i) Δx is known as **absolute error** in x.
- (ii) $\frac{\Delta x}{x}$ is known as **relative error** in x.
- (iii) $\frac{\Delta x}{2} \times 100\%$ is known as **percentage error** in x.
- 2. Approximations: From definition of derivative,

As Derivative of f(x) at (x = a) = f'(a)

or
$$f'(a) = \lim_{\delta x \to 0} \frac{f(a + \delta x) - f(a)}{\delta x}$$

or
$$\frac{f(a+\delta x)-f(a)}{\delta x} \to f'(a)$$
 (approximately)

$$f(a + \Delta x) - f(a) \rightarrow \Delta x f'(a)$$
 (approximately).

Properties of Monotonic Functions

- 1. If f(x) is strictly increasing function on an interval [a, b], then f^{-1} exists and it is also a strictly increasing function.
- 2. If f(x) is strictly increasing function on an interval [a, b] such that it is continuous, then f^{-1} is continuous on [f(a), f(b)].
- 3. If f(x) and g(x) both are monotonically (or strictly) increasing (or decreasing) functions on [a, b], then gof(x) is a monotonically (or strictly) increasing (in either case) function on [a, b].
- **4.** If one of the two functions f(x) and g(x) is strictly (or monotonically) increasing and other a strictly (monotonically) decreasing, then gof(x) is strictly (monotonically) decreasing (in either case) on [a, b].
- 5. If f(x) is increasing function then $\frac{1}{f(x)}$ is decreasing function
- 6. If a function is invertible it has to be either increasing or decreasing.

Rolle's Theorem

If a function f defined on [a, b] is

- **1.** Continuous on [a, b]
- **2.** derivable on (a, b) and
- **3.** f(a) = f(b).

Then there exists at least one c (a < c < b) such that f'(c) = 0.

Lagrange's Mean Value Theorem (LMVT)

If a function f defined on [a, b] is

- 1. continuous on [a, b] is
- **2.** derivable on (a, b)
- 3. f(a) = f(b),

then there exists at least one real numbers between a and b (a < c < b) such

that
$$\frac{f(b)-f(a)}{b-a} = f'(c).$$

Special Points

- 1. Critical points: The points of domain for which f'(x) is equal to zero or doesn't exist are called critical points.
- 2. Stationary points: The stationary points are the points of domain where f'(x) = 0.

Note: Every stationary point is a critical point but vice-versa is not true.

Significance of the Sign of 2nd order Derivative and Point of Inflection

If $f''(x) > 0 \ \forall \ x \in (a, b)$ then graph of f(x) is concave upward in (a, b). Similarly if $f''(x) < 0 \ \forall \ x \in (a, b)$ then graph of f(x) is concave downward in (a, b).

Useful Formulae of Mensuration to Remember

- **1.** Volume of a cuboid = ℓbh .
- **2.** Surface area of cuboid = $2(\ell b + bh + h\ell)$.
- 3. Volume of cube = a^3 .
- **4.** Surface area of cube = $6a^2$.
- 5. Volume of a cone = $\frac{1}{2}\pi r^2 h$.
- **6.** Curved surface area of cone = $\pi r \ell$ (ℓ = slant height).
- 7. Curved surface area of a cylinder = $2\pi rh$.
- **8.** Total surface area of a cylinder = $2\pi rh + 2\pi r^2$.
- 9. Volume of a sphere = $\frac{4}{3}\pi r^3$.
- 10. Surface area of a sphere = $4\pi r^2$.
- 11. Area of a circular sector = $\frac{1}{2}r^2\theta$, when θ is in radians.
- 12. Volume of a prism = (area of the base) \times (height).
- 13. Lateral surface area of a prism = (perimeter of the base) ×
- 14. Total surface area of a prism = (lateral surface area) + 2 (area of the base).

(Note that lateral surfaces of a prism are all rectangle.)

- 15. Volume of a pyramid = $\frac{1}{2}$ (area of the base) × (height).
- 16. Curved surface area of a pyramid = $\frac{1}{2}$ (perimeter of the base) × (slant height).

(Note that slant surfaces of a pyramid are triangles).