

## planetmath.org

Math for the people, by the people.

## proof of Kummer theory

Canonical name ProofOfKummerTheory
Date of creation 2013-03-22 18:42:07
Last modified on 2013-03-22 18:42:07

Owner rm50 (10146) Last modified by rm50 (10146)

Numerical id 5

Author rm50 (10146)

Entry type Proof

Classification msc 12F05

*Proof.* Let  $\zeta \in K$  be a primitive  $n^{\text{th}}$  root of unity, and denote by  $\mu_n$  the subgroup of  $K^*$  generated by  $\zeta$ .

(1) Let  $L = K(\sqrt[n]{a})$ ; then L/K is Galois since K contains all  $n^{\text{th}}$  roots of unity and thus is a splitting field for  $x^n - a$ , which is separable since  $n \neq 0$  in K. Thus the elements of Gal(L/K) permute the roots of  $x^n - a$ , which are

$$\sqrt[n]{a}$$
,  $\zeta\sqrt[n]{a}$ ,  $\zeta^2\sqrt[n]{a}$ , ...,  $\zeta^{n-1}\sqrt[n]{a}$ 

and thus for  $\sigma \in \operatorname{Gal}(L/K)$ , we have  $\sigma(\sqrt[n]{a}) = \zeta_{\sigma}\sqrt[n]{a}$  for some  $\zeta_{\sigma} \in \mu_{n}$ . Define a map

$$p: \operatorname{Gal}(L/K) \to \boldsymbol{\mu}_n: \sigma \mapsto \zeta_{\sigma}$$

We will show that p is an injective homomorphism, which proves the result. Since  $\mu_n \subset K$ , each  $n^{\text{th}}$  root of unity is fixed by Gal(L/K). Then for  $\sigma, \tau \in \text{Gal}(L/K)$ ,

$$\zeta_{\sigma\tau}\sqrt[n]{a} = \sigma\tau(\sqrt[n]{a}) = \sigma(\zeta_{\tau}\sqrt[n]{a}) = \zeta_{\tau}(\sigma(\sqrt[n]{a})) = \zeta_{\sigma}\zeta_{\tau}\sqrt[n]{a}$$

so that  $\zeta_{\sigma\tau} = \zeta_{\sigma}\zeta_{\tau}$  and p is a homomorphism. The kernel of the map consists of all elements of  $\operatorname{Gal}(L/K)$  which fix  $\sqrt[n]{a}$ , so that p is injective and we are done.

(2) Note that  $N_{L/K}(\zeta) = 1$  since  $\zeta$  is a root of  $x^n - 1$ , so that by Hilbert's Theorem 90,

$$\zeta = \sigma(u)/u$$
, for some  $u \in L$ 

But then  $\sigma(u) = \zeta u$  so that  $\sigma(u^n) = \sigma(u)^n = \zeta^n u^n = u^n$  and  $a = u^n \in K$  since it is fixed by a generator of  $\operatorname{Gal}(L/K)$ . Then clearly K(u) is a splitting field of  $x^n - a$ , and the elements of  $\operatorname{Gal}(L/K)$  send u into distinct elements of K(u). Thus K(u) admits at least n automorphisms over K, so that  $[K(u):K] \geq n = [L:K]$ . But  $K(u) \subset L$ , so  $K(\sqrt[n]{a}) = K(u) = L$ .

## References

- [1] Dummit, D., Foote, R.M., Abstract Algebra, Third Edition, Wiley, 2004.
- [2] Kaplansky, I., Fields and Rings, University of Chicago Press, 1969.