A NOTE ON PRESENTABLE ∞-CATEGORIES

KEIMA AKASAKA

Abstract. We summarize key concepts and results on presentable ∞ -categories, focusing on their foundational aspects.

Contents

1. I	Introduction	1
2.	Yoneda's Lemma	1
2.1.	Preliminaries	1
2.2.	The Yoneda embedding	2
3. I	Presentable ∞ -Categories	3
3.1.	Filtered ∞ -Categories	3
3.2.	Compact Objects	4
3.3.	Ind-Objects	4
3.4.	Accessible ∞ -Categories	6
3.5.	Presentable ∞ -Categories	7
3.6.	Compactly Generated ∞ -Categories	8
References		8

1. Introduction

We summarize key concepts and results on presentable ∞ -categories, focusing on their foundational aspects. We primarily refer to [HTT], but we also make use of [KNP24; kerodon; Gal23].

2. Yoneda's Lemma

2.1. **Preliminaries.** From here all categories are assumed to be ∞ -categories. Let κ be a regular cardinal.

Notation 2.1. We let

- An denote the category of anima.
- CAT denote the category of (not necessarily small) categories.
- Pr^L denote the category of presentable categories with left adjoint functors.

We recall the size conditions of categories.

Definition 2.2. Let K be a simplicial set. We will say that K is κ -small if the collection of non-degenerate simplices of K is κ -small as a set. We will say that K is small if it is κ -small for some κ .

Definition 2.3 ([HTT] Definition.5.4.1.3). Let \mathcal{C} be a category. We will say that \mathcal{C} is essentially κ -small if there exist a κ -small category \mathcal{C}' and an equivalence of categories $\mathcal{C}' \to \mathcal{C}$. We will say that \mathcal{C} is essentially small if it is essentially κ -small for some κ .

Definition 2.4 ([HTT] Section.5.4.1). Let \mathcal{C} be a category. We will say that \mathcal{C} is *locally* κ -small if, for every pair of objects X and Y of \mathcal{C} , the mapping anima $\operatorname{Map}_{\mathcal{C}}(X,Y)$ is essentially κ -small. We will say that \mathcal{C} is *locally small* if it is locally κ -small for some κ .

Definition 2.5 ([HTT] Definition.1.2.13.4). Let \mathcal{C} be a category, and let $f: K \to \mathcal{C}$ be a diagram of simplicial sets. We will refer to an initial object in the category $\mathcal{C}_{f/}$ as a *colimit* for f. Dually, we will refer to a final object in the category $\mathcal{C}_{/f}$ as a *limit* for f. If K is κ -small, then a colimit for f is called κ -small.

Definition 2.6 ([HTT] Definition.5.1.5.7). Let \mathcal{C} be a category, and let \mathcal{C}' be a full subcategory of \mathcal{C} . We will say that \mathcal{C}' is *stable under colimits* if, for every small diagram $f: K \to \mathcal{C}$ which admits a colimit $\overline{f}: K^{\triangleright} \to \mathcal{C}$, then the map \overline{f} factors through \mathcal{C}' .

Let \mathcal{C} be a category with small colimits, and let S be a collection of objects of \mathcal{C} . We will say that S generates \mathcal{C} under colimits if the following condition is satisfied: For every full subcategory \mathcal{C}' of \mathcal{C} containing all elements of S, if \mathcal{C}' is stable under colimits, then \mathcal{C}' is equal to \mathcal{C} .

Let $f: S \to \mathcal{C}$ be a functor between categories. We will say that f generates \mathcal{C} under colimits if its image f(S) generates \mathcal{C} under colimits.

2.2. The Yoneda embedding. Recall that there exists the adjunction between the 1-category sSet of simplicial sets and the 1-category Cat_{Δ} of sSet-enriched 1-categories:

$$\mathfrak{C}: \mathrm{sSet} \rightleftarrows \mathrm{Cat}_{\Delta}: \mathrm{N}_{\Delta}$$

where \mathfrak{C} is the rigidification functor and N_{Δ} is the simplicial nerve or (homotopy) coherent nerve.

Construction 2.7. Let K be a simplicial set. We have a simplicial functor

$$\mathfrak{C}[K]^{\mathrm{op}} \times \mathfrak{C}[K] \to \mathrm{Kan} : (X,Y) \mapsto \mathrm{Sing}|\mathrm{Map}_{\mathfrak{C}[K]}(X,Y)|$$

where Kan is the 1-category of anima. The functor \mathfrak{C} , in general, does not commute with products, but there is a natural map

$$\mathfrak{C}[K^{\mathrm{op}} \times K] \to \mathfrak{C}[K]^{\mathrm{op}} \times \mathfrak{C}[K].$$

Thus we can obtain a simplicial functor

$$\mathfrak{C}[K^{\mathrm{op}} \times K] \to \mathfrak{C}[K]^{\mathrm{op}} \times \mathfrak{C}[K] \to \mathrm{Kan}.$$

Using the adjunction $\mathfrak{C} \dashv N_{\Delta}$ and the fact that $An \simeq N_{\Delta}(Kan)$, we get a map of simplicial sets

$$K^{\mathrm{op}} \times K \to \mathrm{An}.$$

By further using the adjunction $(K^{\text{op}} \times -) \dashv \text{Fun}(K^{\text{op}}, -)$, we have a map

$$\sharp: K \to \operatorname{Fun}(K^{\operatorname{op}}, \operatorname{An}).$$

We will refer to the functor \sharp constructed above (or more generally, to every functor equivalent to j) as the (contravariant) Yoneda embedding. Similarly, we can define the (covariant) Yoneda functor $\sharp : K^{\mathrm{op}} \to \mathrm{Fun}(K, \mathrm{An})$.

From here we let $\mathcal{L}: \mathcal{C} \to \operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, \operatorname{An})$ denote the Yoneda embedding.

Proposition 2.8 ([HTT] Proposition.5.1.3.1). Let \mathcal{C} be a category. Then the functor \mathcal{L} is fully faithful.

Proposition 2.9 ([HTT] Proposition.5.1.3.2). Let \mathcal{C} be a small category. Then the functor \sharp preserves small limits which exist in \mathcal{C} .

For a category \mathcal{C} , the category $\operatorname{Fun}(\mathcal{C}^{\operatorname{op}},\operatorname{An})$ is freely generated by the functor $\mbox{$\sharp$}$ under small colimits.

Theorem 2.10 ([HTT] Theorem.5.1.5.6). Let \mathcal{C} be a small category, and let \mathcal{D} with small colimits. Then the functor \mathcal{L} induces an equivalence of categories

$$\operatorname{Fun}^{\operatorname{colim}}(\operatorname{Fun}(\mathcal{C}^{\operatorname{op}},\operatorname{An}),\mathcal{D}) \to \operatorname{Fun}(\mathcal{C},\mathcal{D}).$$

The inverse is given by a left Kan extension along \sharp .

$$\begin{array}{c|c} \operatorname{Fun}(\mathcal{C}^{\operatorname{op}},\operatorname{An}) \\ & \downarrow & \qquad \operatorname{Lan}_{\, \sharp} f \\ & \stackrel{}{\operatorname{\mathbb{C}}} \xrightarrow{f} \mathcal{D} \end{array}$$

3. Presentable ∞-Categories

3.1. Filtered ∞ -Categories.

Definition 3.1 ([HTT] Definition.5.3.1.7). Let \mathcal{I} be a category. We will say that \mathcal{I} is κ -filtered if, for every κ -small simplicial set K and every diagram $f: K \to \mathcal{I}$, there exists a map $\overline{f}: K^{\triangleright} \to \mathcal{I}$ extending f.

$$K \xrightarrow{f} \mathfrak{I}$$

$$i \downarrow \qquad \qquad \downarrow^{\pi}$$

$$K^{\triangleright}$$

We will say that \mathcal{C} is *filtered* if it is ω -filtered. If a category \mathcal{I} is κ -filtered, then a diagram $\mathcal{I} \to \mathcal{C}$ is called κ -filtered. Similarly, in this case, a colimit for $\mathcal{I} \to \mathcal{C}$ is called κ -filtered.

Remark 3.2 ([HTT] Remark.5.3.1.9). Let C be a category. The following conditions are equivalent:

- (1) The category \mathcal{C} is κ -filtered.
- (2) For every diagram $f: K \to \mathfrak{C}$ where K is a κ -small simplicial set, the category $\mathfrak{C}_{f/}$ is not empty.

Let $q: \mathcal{C} \to \mathcal{C}'$ be a categorical equivalence. It is obvious that $\mathcal{C}_{p/}$ is not empty if and only if $\mathcal{C}_{qp/}$ is not empty. Consequently, \mathcal{C} is κ -filtered if and only if \mathcal{C}' is κ -filtered.

We provide a characterization of κ -filtered categories using colimit diagrams.

Definition 3.3 ([HTT] Definition.5.3.3.1). Let \mathcal{C} be a category. We will say that \mathcal{C} is κ -closed if every diagram $p: K \to \mathcal{C}$ where K is a κ -small simplicial set, admits a colimit $\overline{p}: K^{\triangleright} \to \mathcal{C}$.

If a category \mathcal{C} is κ -closed, we can construct κ -small colimits functionally.

Construction 3.4. Let \mathcal{C} be a category, and let K be a simplicial set. Suppose that every diagram $p:K\to\mathcal{C}$ admits a colimit in \mathcal{C} . We let \mathcal{D} denote the full subcategory of $\operatorname{Fun}(K^{\triangleright},\mathcal{C})$ spanned by the colimit diagrams. [HTT] Proposition.4.3.2.15 implies that the restriction $\mathcal{D}\to\operatorname{Fun}(K,\mathcal{C})$ is a trivial fibration. Thus it has a section $s:\operatorname{Fun}(K,\mathcal{C})\to\mathcal{D}$. Let $\operatorname{ev}_{\infty}:\operatorname{Fun}(K^{\triangleright},\mathcal{C})\to\mathcal{C}$ be a functor defined by evaluation at the cone point of K^{\triangleright} . We will refer to the composition

$$\operatornamewithlimits{colim}_K: \operatorname{Fun}(K, \mathfrak{C}) \xrightarrow{s} \mathcal{D} \subseteq \operatorname{Fun}(K^{\triangleright}, \mathfrak{C}) \xrightarrow{\operatorname{ev}_{\infty}} \mathfrak{C}$$

as a *colimit functor* for p.

Proposition 3.5 ([HTT] Proposition.5.3.3.3). Let \mathcal{I} be a category. The following conditions are equivalent:

- (1) The category \mathcal{I} is κ -filtered.
- (2) The colimit functor colim: Fun($\mathfrak{I}, \mathrm{An}$) \to An preserves κ -small limits.

3.2. Compact Objects.

Definition 3.6 ([HTT] Definition.5.3.4.5). Let \mathcal{C} with κ -filtered small colimits, and let $f:\mathcal{C}\to \mathcal{D}$ be a functor of categories. We will say that f is κ -continuous if it preserves κ -filtered colimits. Let \mathcal{C} be a category with κ -filtered colimits, and let X be an object of \mathcal{C} . We will say that X is κ -compact if the functor $\mathcal{L}_X:\mathcal{C}\to \mathcal{A}$ n is κ -continuous. We will say that X is compact if it is ω -compact.

Remark 3.7. In [KNP24], they define a κ -compact object X as follows: We will say that X is κ -compact if the canonical map

$$\operatorname{colim}_{i \in \mathcal{I}} \operatorname{Map}_{\mathcal{C}}(X, Y_i) \to \operatorname{Map}_{\mathcal{C}}(X, \operatorname{colim}_{i \in \mathcal{I}} Y_i)$$

is an equivalence for every κ -filtered small diagram $Y: \mathcal{I} \to \mathcal{C}$.

Notation 3.8 ([HTT] Notation.5.3.4.6). Let \mathcal{C} be a category with κ -filtered colimits. We let \mathcal{C}^{κ} denote the full subcategory of \mathcal{C} spanned by the κ -compact objects of \mathcal{C} .

Proposition 3.9 ([HTT] Corollary.5.3.4.15). Let \mathcal{C} be a category with small κ -filtered colimits. Then \mathcal{C}^{κ} is stable under the κ -small colimits which exist in \mathcal{C} . That is, a κ -small colimit of the κ -compact objects is κ -compact.

Proof. Let $Y: \mathcal{I} \to \mathcal{C}$ be a κ -filtered small diagram, and let $X: \mathcal{J} \to \mathcal{C}$ be a κ -small diagram of κ -compact objects. We want to show that a map

$$\operatorname{colim}_{i \in \mathbb{J}} \operatorname{Map}_{\mathcal{C}}(\operatorname{colim}_{j \in \mathcal{J}} X_j, Y_i) \to \operatorname{Map}_{\mathcal{C}}(\operatorname{colim}_{j \in \mathcal{J}} X_j, \operatorname{colim}_{i \in \mathbb{J}} Y_i)$$

is an equivalence. We may write

$$\begin{split} \operatorname*{colim}_{i \in \mathbb{J}} \operatorname{Map}_{\mathfrak{C}}(\operatorname*{colim}_{j \in \mathcal{J}} X_{j}, Y_{i}) &\simeq \operatorname*{colim}_{i \in \mathbb{J}} \lim_{j \in \mathcal{J}} \operatorname{Map}_{\mathfrak{C}}(X_{j}, Y_{i}) \\ &\simeq \lim_{j \in \mathcal{J}} \operatorname*{colim}_{i \in \mathbb{J}} \operatorname{Map}_{\mathfrak{C}}(X_{j}, Y_{i}) \\ &\simeq \lim_{j \in \mathcal{J}} \operatorname{Map}_{\mathfrak{C}}(X_{j}, \operatorname*{colim}_{i \in \mathbb{J}} Y_{i}) \\ &\simeq \operatorname{Map}_{\mathfrak{C}}(\operatorname*{colim}_{j \in \mathcal{J}} X_{j}, \operatorname*{colim}_{i \in \mathbb{J}} Y_{i}). \end{split}$$

3.3. **Ind-Objects.** We showed that the category $\operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, \operatorname{An})$ is freely generated by the functor \sharp under small colimits (theorem 2.10). We next consider the analogue situation only under κ -filtered small colimits.

Definition 3.10 ([HTT] Section.5.3.5). Let \mathcal{C} be a small category. We define $\operatorname{Ind}_{\kappa}(\mathcal{C})$ as the smallest full subcategory of $\operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, \operatorname{An})$ which contains the image of \mathcal{L} and is stable under κ -filtered colimits. When $\kappa = \omega$, we will write $\operatorname{Ind}(\mathcal{C})$ for $\operatorname{Ind}_{\kappa}(\mathcal{C})$. We will refer to $\operatorname{Ind}(\mathcal{C})$ as the category of $\operatorname{Ind}\operatorname{-objects}$ of \mathcal{C} .

If a category \mathcal{C} admits κ -small colimits, we can easily characterize the category $\operatorname{Ind}_{\kappa}(\mathcal{C})$.

Proposition 3.11 ([HTT] Corollary.5.3.5.4). Let \mathcal{C} be a small category with κ -small colimits, and let $F: \mathcal{C}^{op} \to An$ be a functor. The following conditions are equivalent:

- (1) The functor F belongs to $\operatorname{Ind}_{\kappa}(\mathcal{C})$.
- (2) The functor F preserves κ -small limits.

In particular, if \mathcal{C} admits κ -small colimits, $\operatorname{Ind}_{\kappa}(\mathcal{C})$ admits small limits.

Proposition 3.12 ([HTT] Proposition.5.3.5.5). Let \mathcal{C} be a small category, and let $\mathcal{L}: \mathcal{C} \to \operatorname{Ind}_{\kappa}(\mathcal{C})$ be the Yoneda embedding. Then for every object X of \mathcal{C} , $\mathcal{L}X$ is κ -compact of $\operatorname{Ind}_{\kappa}(\mathcal{C})$.

Proof. Let $Y: \mathcal{I} \to \operatorname{Fun}(\mathcal{C}^{\operatorname{op}}, \operatorname{An})$ be a κ -filtered small diagram. We may write

$$\begin{aligned} \operatorname*{colim}_{i \in \mathbb{J}} \operatorname{Map}_{\operatorname{Ind}_{\kappa}(\mathfrak{C})}(\mathop{\not\downarrow} X, Y_i) &\simeq \operatorname*{colim}_{i \in \mathbb{J}} \operatorname{Map}_{\operatorname{Fun}(\mathfrak{C}^{\operatorname{op}}, \operatorname{An})}(\mathop{\not\downarrow} X, Y_i) \\ &\simeq \operatorname*{colim}_{i \in \mathbb{J}} (Y_i(X)) \\ &\simeq (\operatorname*{colim}_{i \in \mathbb{J}} Y_i)(X) \\ &\simeq \operatorname{Map}_{\operatorname{Fun}(\mathfrak{C}^{\operatorname{op}}, \operatorname{An})}(\mathop{\not\downarrow} X, \operatorname*{colim}_{i \in \mathbb{J}} Y_i) \\ &\simeq \operatorname{Map}_{\operatorname{Ind}_{\kappa}(\mathfrak{C})}(\mathop{\not\downarrow} X, \operatorname*{colim}_{i \in \mathbb{J}} Y_i). \end{aligned}$$

We show that the category $\operatorname{Ind}_{\kappa}(\mathcal{C})$ is freely generated by \mathcal{C} under κ -filtered colimits.

Proposition 3.13 ([HTT] Proposition.5.3.5.10). Let \mathcal{C} be a small category, and let \mathcal{D} be a category with small κ -filtered colimits. Then the functor $\mathcal{L}: \mathcal{C} \to \operatorname{Ind}_{\kappa}(\mathcal{C})$ induces an equivalence of categories

$$\operatorname{Fun}^{\operatorname{colim}_{\kappa\text{-filt}}}(\operatorname{Ind}_{\kappa}(\mathcal{C}), \mathcal{D}) \to \operatorname{Fun}(\mathcal{C}, \mathcal{D}).$$

The inverse is given by a left Kan extension ([HTT] Lemma.5.3.5.8).

We will refer to this inverse as the $\operatorname{Ind}_{\kappa}$ -extension $F: \operatorname{Ind}_{\kappa}(\mathcal{C}) \to \mathcal{D}$ of the functor $f: \mathcal{C} \to \mathcal{D}$.

The following proposition will be useful throughout this paper.

Proposition 3.14 ([HTT] Proposition.5.3.5.11). Let $f: \mathcal{C} \to \mathcal{D}$ be a functor between categories. Suppose that \mathcal{D} admits small κ -filtered colimits. Let $F: \operatorname{Ind}_{\kappa}(\mathcal{C}) \to \mathcal{D}$ be the $\operatorname{Ind}_{\kappa}$ -extension of f. Then

- (1) If the functor f is fully faithful and its essential image consists of κ -compact objects of \mathcal{D} , then F is fully faithful.
- (2) If additionally to (1), the image of f generate $\mathcal D$ under κ -filtered colimits, then F is an equivalence.

Proof. (1): Let X and Y be objects of $\operatorname{Ind}_{\kappa}(\mathcal{C})$. From the definition of $\operatorname{Ind}_{\kappa}(\mathcal{C})$, X and Y are of the form

$$X \simeq \underset{i \in \mathcal{I}}{\operatorname{colim}} \ \sharp X_i, \ \ \text{and} \ Y \simeq \underset{j \in \mathcal{J}}{\operatorname{colim}} \ \sharp Y_j$$

for some filtered diagrams $\mathcal{I} \to \mathcal{C}$ and $\mathcal{J} \to \mathcal{C}$. We want to show that a map

$$\operatorname{Map}_{\operatorname{Ind}_{\kappa}(\mathcal{C})}(X,Y) \to \operatorname{Map}_{\mathbb{D}}(F(X),F(Y))$$

is an equivalence. We may write

$$\begin{aligned} \operatorname{Map}_{\operatorname{Ind}_{\kappa}(\mathfrak{C})}(X,Y) &\simeq \operatorname{Map}_{\operatorname{Ind}_{\kappa}(\mathfrak{C})}(\operatorname{colim}_{i \in \mathfrak{I}} \sharp X_{i}, \operatorname{colim}_{j \in \mathfrak{J}} \sharp Y_{j}) \\ &\simeq \lim_{i \in \mathfrak{I}} \operatorname{colim}_{j \in \mathfrak{J}} \operatorname{Map}_{\operatorname{Ind}_{\kappa}(\mathfrak{C})}(\sharp X_{i}, \sharp Y_{j}) \\ &\simeq \lim_{i \in \mathfrak{I}} \operatorname{colim}_{j \in \mathfrak{J}} \operatorname{Map}_{\mathfrak{C}}(X_{i}, Y_{j}) \\ &\simeq \lim_{i \in \mathfrak{I}} \operatorname{colim}_{j \in \mathfrak{J}} \operatorname{Map}_{\mathfrak{D}}(f(X_{i}), f(Y_{j})) \\ &\simeq \operatorname{Map}_{\mathfrak{D}}(\operatorname{colim}_{i \in \mathfrak{I}} f(X_{i}), \operatorname{colim}_{j \in \mathfrak{J}} f(Y_{j})) \\ &\simeq \operatorname{Map}_{\mathfrak{D}}(\operatorname{colim}_{i \in \mathfrak{I}} F(\sharp X_{i}), \operatorname{colim}_{j \in \mathfrak{J}} F(\sharp Y_{j})) \\ &\simeq \operatorname{Map}_{\mathfrak{D}}(F(\operatorname{colim}_{i \in \mathfrak{I}} \sharp X_{i}), F(\operatorname{colim}_{j \in \mathfrak{J}} \sharp Y_{j})) \\ &\simeq \operatorname{Map}_{\mathfrak{D}}(F(X), F(Y)). \end{aligned}$$

(2): The essential image of F contains the image of f and is stable under small κ -filtered colimits. Thus F is essentially surjective.

Proposition 3.15 ([HTT] Proposition.5.3.5.14). Let \mathcal{C} be a small category with κ -small colimits. Then the functor $\mathcal{L}: \mathcal{C} \to \operatorname{Ind}_{\kappa}(\mathcal{C})$ preserves κ -small colimits which exist in \mathcal{C} .

Proof. Let $X: \mathcal{I} \to \mathcal{C}$ be a κ -small diagram. We want to show that a map

$$\operatorname{colim}_{i \in \mathcal{I}} \sharp X_i \to \sharp \operatorname{colim}_{i \in \mathcal{I}} X_i$$

is an equivalence. By Yoneda's lemma, it is enough to show that a map

$$\operatorname{Map}_{\operatorname{Ind}_{\kappa}(\mathcal{C})}(\sharp \operatorname{colim}_{i \in \mathcal{I}} X_i, F) \to \operatorname{Map}_{\operatorname{Ind}_{\kappa}(\mathcal{C})}(\operatorname{colim}_{i \in \mathcal{I}} \sharp X_i, F)$$

is an equivalence for every functor $F: \mathcal{C}^{\mathrm{op}} \to \mathrm{An}$. We have equivalences

$$\begin{aligned} \operatorname{Map}_{\operatorname{Ind}_{\kappa}(\mathfrak{C})}(\, \sharp \, \operatornamewithlimits{colim}_{i \in \mathfrak{I}} X_i, F) &\simeq F(\operatornamewithlimits{colim}_{i \in \mathfrak{I}} X_i) \\ \operatorname{Map}_{\operatorname{Ind}_{\kappa}(\mathfrak{C})}(\operatornamewithlimits{colim}_{i \in \mathfrak{I}} \sharp X_i, F) &\simeq \lim_{i \in \mathfrak{I}} \operatorname{Map}_{\operatorname{Ind}_{\kappa}(\mathfrak{C})}(\, \sharp X_i, F) &\simeq \lim_{i \in \mathfrak{I}} F(X_i). \end{aligned}$$

Since F preserves κ -small limit from proposition 3.11, these are equivalent.

Corollary 3.16 ([HTT] Example.5.3.6.8). Let \mathcal{C} be a small category with κ -small colimits. Then $\operatorname{Ind}_{\kappa}(\mathcal{C})$ admits small colimits. Moreover, for every category \mathcal{D} with small colimits, the restriction along \sharp induces an equivalence of categories

$$\operatorname{Fun}^{\operatorname{colim}}(\operatorname{Ind}_{\kappa}(\mathcal{C}), \mathcal{D}) \to \operatorname{Fun}^{\operatorname{colim}_{\kappa\text{-filt}}}(\mathcal{C}, \mathcal{D}).$$

Proof. Every small colimit can be written as a κ -filtered colimit of κ -small colimits. It follows from the definition of $\operatorname{Ind}_{\kappa}(\mathcal{C})$ and proposition 3.15.

3.4. Accessible ∞ -Categories.

Definition 3.17 ([HTT] Definition.5.4.2.1). Let \mathcal{C} be a category. We will say that \mathcal{C} is κ -accessible if there exist a small category \mathcal{C}^0 and an equivalence of categories

$$\operatorname{Ind}_{\kappa}(\mathcal{C}^0) \to \mathcal{C}.$$

We will say that \mathcal{C} is *accessible* if it is κ -accessible for some κ .

Definition 3.18 ([HTT] Definition.5.4.2.5). Let $f: \mathcal{C} \to \mathcal{D}$ be a functor between categories. We will say that f is *accessible* if it is κ -continuous for some κ .

We can characterize accessible categories as follows:

Proposition 3.19 ([HTT] Proposition.5.4.2.2). Let C be a category. Then C is accessible if and only if the following conditions are satisfied:

- (1) The category \mathcal{C} is locally small, and the category \mathcal{C}^{κ} is essentially small.
- (2) The category \mathcal{C} admits κ -filtered small colimits.
- (3) The category \mathcal{C}^{κ} generates \mathcal{C} under κ -filtered small colimits.

3.5. Presentable ∞ -Categories.

Definition 3.20 ([HTT] Definition.5.5.0.1). Let \mathcal{C} be a category. We will say that \mathcal{C} is *presentable* if \mathcal{C} is accessible and admits small colimits.

Theorem 3.21 ([HTT] Theorem.5.5.1.1). Let C be a category. The following conditions are equivalent:

- (1) The category C is presentable.
- (2) The category \mathbb{C} is accessible, and the full subcategory \mathbb{C}^{κ} admits κ -small colimits for every regular cardinal κ .
- (3) There exists a regular cardinal κ such that \mathfrak{C} is κ -accessible, and \mathfrak{C}^{κ} admits κ -small colimits.
- (4) There exist a regular cardinal κ , a small category $\mathfrak D$ which admits κ -small colimits, and an equivalence of categories $\operatorname{Ind}_{\kappa}(\mathfrak D) \to \mathfrak C$.
- (5) There exists a small category \mathbb{D} such that \mathbb{C} is an accessible localization of Fun(\mathbb{D}^{op} , An).

Remark 3.22. Let C be a presentable category. It follows from proposition 3.11 and theorem 3.21 that C admits small limits.

The following theorem is the adjoint functor theorem in the setting of ∞ -categories.

Theorem 3.23 ([HTT] Corollary.5.5.2.9). Let $F: \mathcal{C} \to \mathcal{D}$ be a functor between presentable categories. Then

- (1) The functor F has a right adjoint if and only if F preserves small colimits.
- (2) The functor F has a left adjoint if and only if F is accessible and preserves small limits.

Theorem 3.23 suggests that an appropriate concept of morphisms between presentable categories are described by pairs of adjoint functors.

Definition 3.24 ([HTT] Definition.5.5.3.1). Let $Pr^{L} \subseteq CAT$ denote the (very big) category whose objects are presentable categories and whose morphisms are left adjoint (or colimit-preserving) functors.

The next results imply that the category Pr^L is stable under various categorical constructions.

Example 3.25. The category An is presentable.

If C is a small category, then the category $Fun(C^{op}, An)$ is presentable ([HTT] Proposition.5.5.3.6).

If \mathcal{C} is a small category, then the categories $\mathcal{C}_{/f}$ and $\mathcal{C}_{f/}$ are presentable for every diagram $f: K \to \mathcal{C}$, where K is a small simplicial set. ([HTT] Proposition.5.5.3.10, 5.5.3.11).

Proposition 3.26 ([HTT] Proposition.5.5.3.6). Let \mathcal{C} be a small category, and let \mathcal{D} be a presentable category. Then the category Fun(\mathcal{C} , \mathcal{D}) is presentable.

Proposition 3.27 ([HTT] Proposition.5.5.3.8). Let \mathcal{C} and \mathcal{D} be presentable categories. Then the category Fun^{colim}(\mathcal{C}, \mathcal{D}) is presentable.

Proposition 3.27 implies that the category $\operatorname{Fun}^{\operatorname{colim}}(\mathcal{C}, \mathcal{D})$ can be regarded as an internal mapping object in $\operatorname{Pr}^{\operatorname{L}}$. We can show that there exists a *tensor product* \otimes left adjoint to this functor. The operation \otimes endows a symmetric monoidal structure on $\operatorname{Pr}^{\operatorname{L}}$. Proposition 3.27 shows that this symmetric monoidal structure is closed.

Proposition 3.28 ([HTT] Proposition.5.5.3.13). The category Pr^{L} admits small colimits, and the inclusion $Pr^{L} \subseteq CAT$ preserves small limits.

3.6. Compactly Generated ∞ -Categories.

Definition 3.29 ([HTT] Definition.5.5.7.1). Let \mathcal{C} be a category. We will say that \mathcal{C} is κ -compactly generated if \mathcal{C} is presentable and κ -accessible. We will say that \mathcal{C} is compactly generated if it is ω -compactly generated.

Proposition 3.30 ([HTT] Section.5.5.7). Let C be a category. The following conditions are equivalent:

- (1) The category \mathcal{C} is κ -compactly generated.
- (2) There exist a small category \mathcal{D} which admits κ -small colimits and an equivalence $\operatorname{Ind}_{\kappa}(\mathcal{D}) \to \mathcal{C}$. Moreover, we can choose \mathcal{D} to be the full subcategory \mathcal{C}^{κ} of κ -compact objects of \mathcal{C} .

Proposition 3.31 ([HTT] Proposition.5.5.7.2). Let \mathfrak{C} and \mathfrak{D} be categories with κ -filtered colimit, and $L:\mathfrak{C} \rightleftarrows \mathfrak{D}:R$ be an adjunction. Then

- (1) If the functor R is κ -continuous, then the functor L preserves κ -compact objects.
- (2) If \mathcal{C} is κ -accessible and the functor L preserves κ -compact objects, then the functor R is κ -continuous.

References

- [Gal23] Martin Gallauer. ∞-categories: a first course. 2023. URL: https://homepages.warwick.ac.uk/staff/Martin.Gallauer/teaching/23icats/icats.pdf.
- [HTT] Jacob Lurie. Higher Topos Theory. 2009. URL: https://people.math.harvard.edu/~lurie/papers/highertopoi.pdf.
- [kerodon] Jacob Lurie. Kerodon. https://kerodon.net. 2024.
- [KNP24] Achim Krause, Thomas Nikolaus, and Phil Pützstück. Sheaves on Manifolds. 2024. URL: https://www.uni-muenster.de/IVV5WS/WebHop/user/nikolaus/Papers/sheaves-on-manifolds.pdf.