Introduction to AI

Rational Agents

- Percept sequence → action
- Exploitation vs exploration
- Autonomous: learn from itself

Specifying Task Environment

- PEAS: Performance Measure, Environment, Actuators (action), Sensors (percept)
- Fully-observerable?
 Deterministic? Episodic? Static?
 Discrete? Single-agent?

Agent Functions and Programs

- Table-lookup agent: large table, no autonomy
- Simple Reflex Agent: update state from percept (passive)
- Model-based
 - Goal-based: active in achieving goals
 - o Utility-based: maximise utility

Uninformed Search

- Assume env = fully-obs, deterministic, discrete
- Solution = action seq, s₀ to g
 Unique? Optimal?
 - Additive path cost ≥ ε
 - Goal test: s = g? Explicit states or boolean satisfiability
- Tree Search: Frontier = nodes seen, not explored (initial: s₀)
 ○ Explore, add neighbours
 - No search history from s to g
- Graph Search: explored nodes not revisited

Search Strategies

- BFS: Expand shallowest node
- Uniform-Cost Search
 - Expand from least path cost
 - Frontier = Priority queue,Equal step cost → BFS
- DFS: Expand deepest node
- Depth-Limited Search
- DFS with limit I
- Iterative Deepening Search
 DLS, increasing depth
 # nodes generated:

Property	BFS	UCS	DFS	DL5	
Complete	Yes¹	Yes³	No	No	Yes¹
Optimal	No ³	Yes	No	No	No ³
Time	$\mathcal{O}(b^d)$	$O\left(b^{1+\left \frac{C^*}{\varepsilon}\right }\right)$	$O(b^m)$	$\mathcal{O}(b^{\ell})$	$O(b^d)$
Space	$O(b^d)$	$O\left(b^{1+\left \frac{C'}{\varepsilon}\right }\right)$	O(bm)	$O(b\ell)$	O(bd)

Informed Search

- Heuristics: optimise the order of node expansion
- Best-First Search: expand with lowest f(n)
- Admissible: $h(n) \le h^*(n)$
 - o Consider relaxed problems
 - Dominance: $h_2(n) \ge h_1(n)$
 - Dominant → lower cost
- Consistent
 - \circ h(n) \leq d(n, n') + h(n')

Greedy Best-First Search:

- Complete, not optimal
- Time: O(b^m), Space: O(b^m)
- f(n) = h(n)
- BFS: all heuristics ∞ except g

A* Search

- f(n) = g(n) + h(n)
- h(n) admissible → Tree-S opt
- h(n) consistent → Graph-S opt
- Zero-heuristic: only consider g(n) → UCS

Local Hill-Climbing Search

- Irrelevant path to goal
- Local maxima: Sideway moves, random restarts

Adversarial Search

- Utility-maximising opponent
- Zero-sum utility, MAX and MIN
- Complete strategy: defined for every node, even suboptimal

Minimax Strategy (Optimal)

- MAX ↑ payoff, MIN ↓ payoff
- spne; every subtree ne

Complete?	Yes (if game tree is finite)		
Optimal	Yes (optimal gameplay)		
Time	$O(b^m)$		
Enace	Like DES, O(hm)		

α-β Pruning

- Can't expand entire game tree
- Prune if other player can guarantee better outcome
- Perfect ordering: O(b^{m/2})
 - Depends on expansion order heuristics, random = O(b^{3m/4})
- Unknown depth → cutoff limit
 E(utility) using evaluation fn
- Stochastic Games: chance layers

Constraint Satisfaction Problems

- Constraint scope: vars, relatns
- Find complete, consistent (satisfy all constr) assignment

- o Goal test: all vars assigned
- Graph: adjacency → constraint
- All solutions at depth n → DFS
- Large tree size (n!dⁿ) leaves, every level = (n-i)(d)

Backtracking Search

- Each level = assign one variable, order irrelevant
- DFS, inference on the domain of remaining variables
- Most Constrained Variable: minimum-remaining-values (MRV) heuristic
- Most Constraining Variable: degree heuristic (choose highest degree)
- Least Constraining Value
 Forward Checking
- Keep track of remaining legal values for unassigned vars
- Terminate search when any var has no legal values
- Propagates information from assigned → unassigned vars

Inference

Unary constr: node consistency

- Binary constr: arc consistency
 - Directed, binary = two arcs
 - Start with arcs of neighbours which are not assigned
 - o Propagate to neighbours
 - Time complexity O(n²d³)
- Maintaining AC (MAC)
 - o Establish AC at root
 - Assign variable, repeat
 - o Backtrck? Undo domn redux?
- k-consistency → split to binary Local Search
- Arbitrary assignment, change values w/ min-conflicts heuristic (hill-climbing search)
 Tree (no cycles): CSP in O(nd²)

Logical Agents

- Representation in KB
- $\alpha \vDash \beta \Leftrightarrow M(\alpha) \subseteq M(\beta)$
- Inference Algorithm
 Sound: KB ⊨ α
 - Complete: $KB \vdash \alpha$

Propositional Logic

- Sentences = symbols, Model = truth assignment to variables
- Truth table enumeration
 O(2ⁿ) time, O (n) space
- KB $\vDash \alpha \Leftrightarrow$ KB $\land \neg \alpha$ unsatisfiable CNF Resolution: sound, complete
- $(P \lor x) \land (Q \lor \neg x) \rightarrow P \lor Q$ Horn Form: FC, Modus Ponens
- $[A \land (A \rightarrow B)] \rightarrow B$
- Count # symbols in premise
- Complete: every clause in KB is true in model w/ vars assigned

Backward Chaining

- Given q, recursively prove premises to conclude q
- Avoid loops in recursion

DPLL: Complete, backtracking

- Checks if CNF is satisfiable
- Early termination
- Literal true → clause true
- Clause false → CNF unsatisf
- Pure symbols: assign true
 Least constraining value
- Unit clause: assign true
 Most constrained variable

WalkSAT: ↓ # unsatisf clauses

- Incomplete
- Unsatisf clause → random flip/ flip to maximise Φ

First Order Logic

- More expressive w/ objects and relations, sentences = true
- \exists :^, \forall : \rightarrow , equality: same obj.
- KB: percept/ reflex rules

Inference

- Propositionalise: ∃ → Skolem
- Standardising apart: no clash
- Apply resolution
- Entailment: semi-decidable
- Unification: returns θ
 - \circ SUBST(θ , p) = SUBST(θ , q)
 - o Unique MGU upto rename
 - o x appears in Q: cannot unify

GMP

- Under subst, conclusion true
- Sound: universal instantiation
 P ⊨ SUBST(θ, p) ∀θ

FC: sound, complete

- Rule matching expensive
 Conjunct ordering, MRV
- Redundant rule matching
 Incremental FC: premise has new fact from t-1
- Generate irrelevant facts
 BC: incomplete (loops)
- Check against goal stack
- Cache solutions to subgoals

Resolution → CNF

- Drop ∀, Skolemnise ∃ (external ∀: use F(x))
- Under SUBST, p unifies with ¬q
 Resolve under SUBST
- First-order factoring: unify two literals G(a) ∨ G(k) → G(k)

Uncertainty

Probability

- Joint Probability
- Conditional Probability
- Independence

Bayesian Inference

- P(X|Y₁, Y₂...)
- Conditional Independence
 P(A^B|C) = P(A|C) * P(B|C)

Bayesian Networks

- Representing joint distr.
- Conditional Probability Tables
- Variables are only conditionally dependent on parents
- Independent Causes/ Conditionally Independent Effects
- Choose min. set of parents available
- Markov Blanket: node conditionally independent given parents, children, children's parents

Bayesian Networks

d-separation

- Determine conditional independence given known ε
- Conditionally independent \(\Lipha \)
 all undirected paths not active
- Path active ⇔ all triplets active

