CDFSL

Cross-Domain Few-Shot Learning

AMMAI FINAL PROJECT

r08944004 萬世澤 r08725047 古佳峻

Outline

Motivation

Few-Shot Task

Cross-Domain Few-Shot Task

Conclusion

Motivation

Our consideration

- In addition to leveraging the metric learning methods, we would like to delve into the contents more about manifold learning.
- Especially, learn a real case about how to utilize the manifold structure of data with deep learning techniques actually.

Combine idea

- For few-shot task, we combine the data augmentation and the manifold learning.
- For cross-domain few-shot task, we combine the manifold learning and the domain adaptation tricks.

Few-Shot Task

Our main approach utilizes the transductive propagation network, **TPN**^[1]. Rely on Label Propagation Algorithm^[2]

• Propagate neighbor's label by utilizing the connections in the labeled set (i.e. support set)

Propagate iteratively to determine the unknown labeled set (i.e. query set)

^[1] Learning to Propagate Labels, ICLR 2019

^[2] Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions, ICML 2003

Learning to propagate labels in TPN

Graph Construction

- Measure similarity for edge W using "learnable" Gaussian similarity function.
- The parameter σ is learned in episodic training.

Note. Gaussian Similarity

$$W_{ij} = \exp\left(-\frac{d(\mathbf{x}_i, \mathbf{x}_j)}{2\sigma^2}\right)$$

- σ influences the behavior of label propagation.
- No good way to tune σ in the past!

Few-Shot Learning using manifold structure with transductive inference

Utilize the union of support set (labeled) and query set (unlabeled) to exploit the manifold structure of novel class space.

Our Approach: learning to propagate labels using stylized data

- Randomize texture, contrast and color, while preserving shape and semantic content.
- Style augmentation is only used during meta-training.

Before

After

Experiments

For a fair comparison, we use the same backbone (ResNet10), number of epochs(400), preprocessing tricks (random crop, image jitter, and random horizontal flip) in this task.

		minilmageNet	
	Baseline (TA's)	68.10 ± 0.67	
	ProtoNet (TA's)	66.33 ± 0.65	
	Baseline (Ours)	66.53 ± 0.66	unreproducible
	ProtoNet (Ours)	66.20 ± 0.67	
	ProtoNet + Angular Softmax ^[1] (margin=3)	69.32 +- 0.66	metric learning
	TPN (Liu et al., 2019)	69.43	large-margin methods manifold learning
	TPN (Ours)	67.30 ± 0.65	(unreproducible)
g	Baseline + Style Augment	68.98 ± 0.65	
a/	ProtoNet + Style Augment	69.32 ± 0.68	
	ProtoNet + Angular Softmax + Style Augment	69.64 ± 0.64	May be not robust y against noisy data
	TPN + Style Augment	65.44 ± 0.69 /	points (Stylized dat

May be not robust against noisy data points (Stylized data)

Cross-Domain Few-Shot Task

Unsupervised Cross-Domain Few-Shot Learning

- Assumption: Given an input x and the corresponding label y in the novel class, we assume the novel class input x can be learned with the base class input x jointly in meta-training stage. (Note. novel class label y won't be used!)
- Our goal is to make the feature extractor learn domain-invariant features.
 - Inspired by domain-adversarial training, we apply gradient reversal techniques.

Gradient Reversal

Our Approach: learn to propagate labels using domain-invariant features

Experiments

	EuroSAT	ISIC	
Baseline	76.37 ± 0.69 / 78.95 ± 0.62	44.31 ± 0.58 / 48.87 ± 0.62	
ProtoNet	78.44 ± 0.67 / 82.09 ± 0.63	42.12 ± 0.56 / 46.93 ± 0.58	
TPN	64.41 ± 0.80 / 82.07 ± 0.67	33.86 ± 0.54 / 44.09 ± 0.60	
TPN (minilmageNet->ISIC)	63.23 ± 0.73 / 82.33 ± 0.67	31.93 ± 0.55 / 44.01 ± 0.57	
TPN (minilmageNet->EuroSAT)	58.04 ± 0.67 / 82.61 ± 0.62	32.79 ± 0.50 / 44.38 ± 0.59	

For a fair comparison, we use the same backbone(*ResNet10*), number of epochs(*400*), preprocessing tricks(*random crop, image jitter, and random horizontal flip*) in this task. The result w/o and w/ fine-tuning are splitted by slash.

Conclusion

- 1. Learn about the real case combining manifold learning and deep learning.
- 2. Using style augmentation, large-margin methods and manifold structure is helpful for improving accuracy for few-shot task.
- 3. Combining manifold learning and gradient reversal tricks may not be helpful for cross-domain settings.