2. The Bisection Method

Background. The bisection method is one of the bracketing methods for finding roots of equations. **Implementation.** Given a function f(x) and an interval which might contain a root, perform a predetermined number of iterations using the bisection method.

Theorem (Bisection Theorem). Assume that $f \in C[a, b]$ and that there exists a number $r \in [a, b]$ such that f(r) = 0.

If f(a) and f(b) have opposite signs, and $\{c_n\}$ represents the sequence of midpoints generated by the bisection process, then

$$| r - c_n | \le \frac{b - a}{2^{n+1}}$$
 for $n = 0, 1, ...,$

and the sequence $\{c_n\}$ converges to the zero x = r.

That is,
$$\lim_{k \to \infty} c_n = r$$
.

Example 1. Find all the real solutions to the cubic equation $x^3 + 4x^2 - 10 = 0$. Solution 1.

Concise Program for the Bisection Method

Example 2. Convergence Find the solution to the cubic equation $x^3 + 4x^2 - 10 = 0$. Use the starting

interval [a, b] = [-1, 2]. Solution 2.

Example 3. Not a root located Find the solution to the equation Tan[x] = 0. Use the starting interval [a, b] = [0, 2]. Solution 3.

Example 1. Find all the real solutions to the cubic equation $x^3 + 4x^2 - 10 = 0$. Solution 1.

Plot the function.

$$y = f[x] = -10 + 4x^{2} + x^{3}$$

There appears to be only one real root which lies in the interval [1,2].

$$y = f[x] = -10 + 4x^2 + x^3$$

Call the Bisection subroutine on the interval [1,2] using 10 iterations

k	$\mathbf{a_k}$	C _k	$b_{\mathbf{k}}$	f[c _k]
0	1.	1.5	2.	2.375
1	1.	1.25	1.5	-1.796875
2	1.25	1.375	1.5	0.162109375

3	1.25	1.3125	1.375	-0.848388671875
4	1.3125	1.34375	1.375	-0.350982666015625
5	1.34375	1.359375	1.375	-0.0964088439941406
6	1.359375	1.3671875	1.375	0.03235578536987305
7	1.359375	1.36328125	1.3671875	-0.03214997053146362
8	1.36328125	1.365234375	1.3671875	0.00007202476263046265
9	1.36328125	1.3642578125	1.365234375	-0.01604669075459242
10	1.3642578125	1.36474609375	1.365234375	-0.007989262812770903

c = 1.36474609375 $\Delta c = \pm 0.000488281$ f[c] = -0.007989262812770903

After 10 iterations, the interval has been reduced to [a,b] where

a = 1.3642578125
b = 1.365234375
[a, b] = [1.36426, 1.36523]

The root lies somewhere in the interval [a,b] the width of which is

b-a = 0.0009765625

The reported root is alleged to be

c = 1.36474609375

The accuracy we can guarantee is one half of the interval width.

 $\frac{b-a}{2} = 0.00048828125$

Is this the desired accuracy you want? If not, more iterations are required.

Remember. The bisection method can only be used to find a real root in an interval [a,b] in which f[x] changes sign.

Example 2. Convergence Find the solution to the cubic equation $x^3 + 4x^2 - 10 = 0$. Use the starting interval [a, b] = [-1, 2]. Solution 2.

k	$a_{\mathbf{k}}$	C _k	$b_{\mathbf{k}}$	$f[c_k]$
0	-1.	0.5	2.	-8.875
1	0.5	1.25	2.	-1.796875
2	1.25	1.625	2.	4.853515625
3	1.25	1.4375	1.625	1.236083984375
4	1.25	1.34375	1.4375	-0.350982666015625
5	1.34375	1.390625	1.4375	0.4245948791503906
6	1.34375	1.3671875	1.390625	0.03235578536987305
7	1.34375	1.35546875	1.3671875	-0.1604211926460266
8	1.35546875	1.361328125	1.3671875	-0.06431024521589279
9	1.361328125	1.3642578125	1.3671875	-0.01604669075459242
10	1.3642578125	1.36572265625	1.3671875	0.00813717267010361
11	1.3642578125	1.364990234375	1.36572265625	-0.003959101522923447
12	1.364990234375	1.3653564453125	1.36572265625	0.002087949806082179
13	1.364990234375	1.36517333984375	1.3653564453125	-0.000935847281880342
14	1.36517333984375	1.365264892578125	1.3653564453125	0.000575983403933833
15	1.36517333984375	1.365219116210937	1.365264892578125	-0.0001799489032272561
16	1.365219116210937	1.365242004394531	1.365264892578125	0.0001980130092538168
17	1.365219116210937	1.365230560302734	1.365242004394531	9.03099274296437×10 ⁻⁶
18	1.365219116210937	1.365224838256836	1.365230560302734	-0.0000854592203092253
19	1.365224838256836	1.365227699279785	1.365230560302734	-0.00003821418005012234
20	1.365227699279785	1.36522912979126	1.365230560302734	-0.00001459161022010491
21	1.36522912979126	1.365229845046997	1.365230560302734	-2.780312880368285×10 ⁻⁶
22	1.365229845046997	1.365230202674866	1.365230560302734	3.125338895682006×10 ⁻⁶
23	1.365229845046997	1.365230023860931	1.365230202674866	1.725127489748957×10 ⁻⁷
24	1.365229845046997	1.365229934453964	1.365230023860931	-1.30390013053372×10 ⁻⁶
25	1.365229934453964	1.365229979157448	1.365230023860931	-5.65693706988668×10 ⁻⁷
26	1.365229979157448	1.36523000150919	1.365230023860931	-1.965904834477783×10 ⁻⁷
27	1.36523000150919	1.36523001268506	1.365230023860931	-1.203886768053053×10 ⁻⁸
28	1.36523001268506	1.365230018272996	1.365230023860931	8.02369402030934×10 ⁻⁸

29 1.36523001268506 1.365230015479028 1.365230018272996 3.409903603923681×10⁻⁸

30 1.36523001268506 1.365230014082044 1.365230015479028 1.103008440139774×10⁻⁸

c = 1.365230014082044

 $\Delta c = \pm 1.39698 \times 10^{-9}$

 $f[c] = 1.103008440139774 \times 10^{-8}$

Example 3. Not a root located Find the solution to the equation Tan[x] = 0. Use the starting interval [a, b] = [0, 2]. Solution 3.

k	a_k	$c_{\mathbf{k}}$	$\mathtt{b}_{\mathbf{k}}$	f[ck]
0	0.	1.	2.	1.557407724654902
1	1.	1.5	2.	14.10141994717172
2	1.5	1.75	2.	-5.52037992250933
3	1.5	1.625	1.75	-18.43086276236962
4	1.5	1.5625	1.625	120.5325057225426
5	1.5625	1.59375	1.625	-43.55836040673973
6	1.5625	1.578125	1.59375	-136.4479038428448
7	1.5625	1.5703125	1.578125	2066.855189746604
8	1.5703125	1.57421875	1.578125	-292.1894914044914
9	1.5703125	1.572265625	1.57421875	-680.5965439242681
10	1.5703125	1.5712890625	1.572265625	-2029.48539899437
11	1.5703125	1.57080078125	1.5712890625	-224494.3493165802
12	1.5703125	1.570556640625	1.57080078125	4172.12215991226
13	1.570556640625	1.5706787109375	1.57080078125	8502.2548619161
14	1.5706787109375	1.57073974609375	1.57080078125	17673.87074864176
15	1.57073974609375	1.570770263671875	1.57080078125	38368.38735496419

c = 1.570770263671875 $\Delta c = \pm 0.0000305176$ f[c] = 38368.38735496419

Note. The bisection method located a pole of f[x] = Tan[x]. This is where the graph has a vertical asymptote.

$$\left\{\left\{\mathbf{x}\rightarrow\frac{\pi}{2}\right\}\right\}$$