



Course > Unit 7: ... > Lec. 16:... > 10. Exe...

## 10. Exercise: Mean squared error

Exercises due Apr 15, 2020 05:29 IST Completed

Exercise: Mean squared error

4.0/4.0 points (graded)

As in an earlier exercise, we assume that the random variables  $\Theta$  and X are described by a joint PDF which is uniform on the triangular set defined by the constraints  $0 \le x \le 1$ ,  $0 \le \theta \le x$ .

a) Find an expression for the conditional mean squared error of the LMS estimator given that X=x, valid for  $x\in[0,1]$ . Express your answer in terms of x using standard notation.

x^2/12 **✓ Answer:** x^2/12

b) Find the (unconditional) mean squared error of the LMS estimator.

1/24 **Answer**: 0.04167

## **STANDARD NOTATION**

## Solution:

- a) We saw that the conditional PDF of  $\Theta$  is uniform on the range [0,x]. Hence, the conditional variance is  $x^2/12$ .
- b) This is given by the integral of the conditional variance, weighted by the PDF of X. The PDF of X is found using the formula for going from the joint to the marginal, and is  $f_X(x)=2x$ , for  $x\in[0,1]$ . Thus, the mean squared error is



$$\int_0^1 rac{x^2}{12} \cdot 2x \, dx = rac{1}{6} \int_0^1 x^3 \, dx = rac{1}{24}.$$

Submit

You have used 3 of 3 attempts

**1** Answers are displayed within the problem

## Discussion

**Hide Discussion** 

**Topic:** Unit 7: Bayesian inference:Lec. 16: Least mean squares (LMS) estimation / 10. Exercise: Mean squared error

| Show all post               | s 🕶                                                                                                                                                                    | by recent activity 🗸 |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| ? Area of                   | triangle<br>ulated the area of triangle as (1/2)*(x)*(Theta) = (1/2) * (Theta^2), then calculate joint P                                                               | 1 new_<br>DF and m   |
| , ,                         | e of Conditional Mean Squared Error of LMS estimator as a function of $x$ ditional MSE of the LMS estimator is a function of $x$ as we got the answer in 4.a The vides | eo mentio            |
| <u>Hint</u> <u>I recomr</u> | nend watching the solved problem: 5. Inference example (unit 7) for this question                                                                                      | 2                    |
|                             | t 4 points!<br>feels amazing. I always overcomplicate shit. Like, too much. For real.                                                                                  | 2                    |
|                             | m I doing wrong?  Ight. For b) my marginal PDF is coming equal to joint PDF since doing an integral from                                                               | 0 to 1. ls t         |
| _                           | ned x was uniform on (0,1)!<br>answer right, because f(x)=2x and f(x)=1/x both give the same answer in this case. But                                                  | I see that           |
|                             | nere of you forgot how to get the marginal<br>ecture 9, Parts 13, 14, 15.                                                                                              | 7                    |
| ? Part A                    | pression case sensitive in part a? I have b correct but not a.                                                                                                         | 3                    |
|                             | the difference between condtional and unconditional mean square error idn't get it. :( Which mean square error was found in lectures? And how can we get one           | 2                    |



© All Rights Reserved

