Considering Turbofan Operability in Hybrid Electric Aircraft Propulsion System Design

Jeffryes Chapman

NASA Glenn Research Center, Cleveland, OH

AIAA SciTech Forum and Exposition, 23-27 January 2023

This material is a work of the U.S. Government and is not subject to copyright protection in the United States.

Introduction

Electrified aircraft propulsion (EAP) engine design:

Concepts using a turbofan to produce a large proportion of:

- > Thrust
- Power

- Generally, an engine is designed to produce thrust or power. When the engine is expected to produce large amounts of both a design dichotomy is created resulting in.
 - Operability issues (overspeed, surge margin)
 - Sizing issues (fan vs. electric machines)
 - Power generation vs. Thrust.

Engine

Engine baseline make use of the NASA gFan+ concept:

Highly advanced dual spool Turbofan engine

High Bypass : 12 BPR

• TIT: 3440 degR

Thrust: 22000 lbf

TSFC: 0.486 lbm/hr/lbf

Engine MDP design

Multipoint engine design

- ➤ Makes use of Numeric Propulsion Simulation System (NPSS) wrapped within OpenMDAO.
- ➤ Top of climb (TOC) is the engine sizing point sets speeds.
- ➤ Cruise (CRZ) is used to set bypass ratio
- ➤ Rolling take off (RTO) sizes air, fuel, and cooling flows.
- ➤ Sea level static (SLS) is run for comparison purposes

MDP Baseline Design

Map locations for MDP design

- Baseline engine with 0 power extraction and insertion
- > Starting point for design space explortation

Engine Lapse Rate

Total engine power changes with operational point and is function of air density

- Altitude
- Mach number

Total engine power output is combination of:

- > Thrust
- Power extraction or insertion (electrical power)

Thrust and power extraction/insertion are not independent and must be coordinated as the engine is throttled or operating point changed

Study overview

Two main studies are completed:

- Cruise thrust assist : power extraction (PEX)
 - > Assumed distributed propulsion system will use power from engine to operate electrically driven propulsors
 - Power is extracted at cruise from low pressure spool
 - > Power extraction beyond cruise point level is undesirable due to increased size of electric machines
- Take-off thrust assist : power injection (PIN)
 - Electrical power is used to boost engine during high power output reducing the size of the engine and allowing it to run at a higher more efficient power level at cruise
 - Power is injected at rolling take off from low pressure spool
 - Cruise operates with no power insertion

Cruise Assist

Engine designed with increasing LPS power extraction applied to all operating points:

- At RTO and SLS, LPC surge margin and HPC speed decrease
- > At CRZ, LPC surge margin and HPC speed increase
- Limits observed must be observed in surge margin and HPC speed.

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

8

CA Mitigating operability issues, additional power

Balance operation by adding additional power extraction when engine total power output is higher than at cruise

- Increasing RTO and SLS power extraction
- At RTO and SLS, LPC surge margin and HPC speed increase
- At CRZ, increase in LPC surge margin and HPC speed
- > Requires increasing the size of the electric machines

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

CA Mitigating operability issues, power split

Balance operation by unloading high-pressure compressor

- Adding HPS power extraction at TOC and CRZ, then removing this power extraction at SLS and RTO
- At RTO and SLS, LPC surge margin and HPC speed increase
- At CRZ, increase in LPC surge margin and HPC speed
- Requires adding electric machines to the HP shaft

Take off assist

Engine designed with increasing LPS power insertion applied at RTO and SLS points:

- > At RTO and SLS, LPC surge margin and HPC speed decrease
- Limits observed must be observed in surge margin and HPC speed.

Engine performance with Take off assist

Key performance parameters with varying amounts of thrust assist (LPS power insertion at RTO and SLS)

- Take off assist shrinks core and increases bypass ratio
- Cruise thrust specific fuel consumption reduces
- Cruise and top of climb points operate at higher turbine inlet temperatures

TA Mitigating operability issues, HPS power insertion

Replacing LPS power insertion with HPS power insertion:

- > At RTO and SLS, LPC surge margin and HPC speed increase
- Thrust specific fuel consumption benefits much less than those developed with LPS power insertion

TA Mitigating operability issues, TOC power insertion

Increasing power insertion at TOC to build margin in RTO and SLS limits:

- At RTO and SLS, LPC surge margin and HPC speed increase
- At CRZ, LPC surge margin and HPC speed decreases
- > Thrust specific fuel consumption benefits much less than those developed with LPS power insertion.

14

SHADING THE FUTURE OF AFFORMACE

TA combining method

Making use of LPS power insertion, HPS power insertion and TOC power insertion allows the most power to be inserted onto the engine:

- Making use of LPS power insertion is the most efficient method of inserting power to gain cruise efficiency
- Using LPS and HPS power insertion allows for much more power (nearly 2x) to be added to the engine, but the efficiency is less
- TOC offset increases the power moderately, but is much less efficient

	Baseline	LPS PIN	with HPS offset	with LPS
		at RTO		TOC offset
LPS PIN, hp	0	3470	5100	4512
HPS PIN, hp	0	0	1200	0
Total PIN at RTO, hp	0	3470	6300	4512
TSFC at CRZ, lbm/hr/lbf	0.486	0.471	0.4608	0.4696
TSFC reduction from baseline, %	None	3.09%	5.19%	3.37%
CRZ TSFC reduction per total PIN at	None	0.89%	0.82%	0.75%
RTO, %/(hp/1000)				

Summary and Conclusions

Designs of a turboshaft engine were completed with varying levels of power augmentation

- Two main studies
 - Cruise Assist (distributed propulsion system): Power extraction at cruise to enable high efficiency distributed propulsion concepts
 - > Take off Assist: Power insertion at high power points to increase engine efficiency
- System designs demonstrate issues with LPC surge margin and HPC overspeed
- Operability issue mitigation
 - for cruise assist: increase RTO and SLS power extraction or update HPS/LPS power split
 - For take off assist: update HPS/LPS power split or increase TOC power insertion
- Take off assist shown to decrease cruise TSFC by over 5%

Acknowledgments

Funding for this Work:

➤ NASA's Advanced Air Transport Technology (AATT) project

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS