

Algorithmie Avancée Mise en Contexte / Mise en Oeuvre

Année 2020-2021 par Prof. Nicolas Loménie Sur la base du cours de Prof. Etienne Birmelé (2016-2020)

De Königsberg à Barasàbi

1735 : en Prusse Orientale, Léonard Euler

1959 – 1968 : Erdös et Rényi, Graphes aléatoires (Random trees/graphs)

« Un mathématicien est une machine à transformer le café en théorèmes ».

1999 : Barabàsi-Albert, Science des Réseaux (Scale-Free Networks)

Generalization of the small-world effect on a model approaching the Erdős–Rényi random graph by Benjamin F. Maier in https://www.nature.com/articles/s41598-019-45576-3 (Feb 2020)

De Königsberg à Barasàbi

Science

May 5, 2008

Mapping the Human 'Diseasome'

Researchers created a map linking different diseases,

represented by circles, to the genes they have in common,

represented by squares. Related Article: Redefining Disease, Genes and All

Sources: Marc Vidal; Albert-Laszlo Barabasi; Michael Cusick

Théorie des Graphes 3

AlgoAvanceeParE_Birmele.pdf

Support de cours de Prof. Etienne Birmelé

Planche 33 à 63 (BFS DFS)

Exemple

Tableau dynamique d'arêtes

Ci-dessous, un extrait du tableau des arêtes :

	X	У	poids
1	1	2	5
2	1	3	1
3	2	4	2
4	3	2	4
5	4	3	1
6	4	5	7
7	5	3	9
8	5	4	1

Avantages:

Inconvénients:

Exemple

1 2 3 4 5 1 0 1 1 0 0 2 0 0 0 1 0 3 0 1 0 0 0 4 0 0 1 0 1 5 0 0 1 1 0 La matrice d'adjacences

Avantages:

Inconvénients:

Matrice d'adjacence

Avantages:

Inconvénients:

Diagramme de classes 1 (⇒ modélisation par liste de successeurs)

Diagramme de classes 2 (⇒ modélisation par liste d'arêtes)

Matrice d'adjacence

a. Adjacency matrix

$$A_{ij} = \begin{array}{ccccc} A_{11} & A_{12} & A_{13} & A_{14} \\ A_{21} & A_{22} & A_{23} & A_{24} \\ A_{31} & A_{32} & A_{33} & A_{34} \\ A_{41} & A_{42} & A_{43} & A_{44} \end{array}$$

b. Undirected network

C. Directed network

$$A_{ij} = \begin{array}{cccc} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}$$

$$k_2 = \sum_{j=1}^4 A_{2j} = \sum_{i=1}^4 A_{i2} = 3$$
 $k_2^{\text{in}} = \sum_{j=1}^4 A_{2j} = 2$, $k_2^{\text{out}} = \sum_{i=1}^4 A_{i2} = 1$

$$A_{ii} = A_{ii} \qquad A_{ii} = 0 \qquad A_{ij} \neq A_{ii} \qquad A_{ii} = 0$$

$$A_{ii} \neq A_{ii}$$
 $A_{ii} = 0$

$$L = \frac{1}{2} \sum_{i,j=1}^{N} A_{ij}$$

$$L = \sum_{i,j=1}^{N} A_{ij}$$

$$L = \sum_{i,j=1}^{N} A$$

$$\langle k \rangle = \frac{2L}{N}$$

$$\langle k^{\text{in}} \rangle = \langle k^{\text{out}} \rangle = \frac{L}{N}$$

The Adjacency Matrix

- (a) The labeling of the elements of the adjacency matrix.
- (b) The adjacency matrix of an undirected network. The figure shows that the degree of a node (in this case node 2) can be expressed as the sum over the appropriate column or the row of the adjacency matrix. It also shows a few basic network characteristics, like the total number of links, L, and average degree, <k>, expressed in terms of the elements of the adjacency matrix.
- (c)The same as in (b) but for a directed network.

The real networks are sparse :-)

Compléxité et Structure de données

Opérations	Liste d'adjacence	Matrice d'adjacence
Retirer une arête	O(d) avec d le degré du nœud	O(1)
Ajouter une arête	<i>O</i> (1)	O(1)
Itérer sur les voisins d'un nœud	O(d) avec d le degré du nœud	O(N)
Tester si deux nœuds sont voisins	O(d) avec d le degré du nœud	O(1)
Complexité mémoire	O(N+A)	$O(N^2)$

	Liste d'ajacence	Matrice d'adjacence	Matrice d'incidence
Créer le graphe	O(V + E)	$O(V ^2)$	$O(V \cdot E)$
Ajouter un sommet	O(1)	$O(V ^2)$	$O(V \cdot E)$
Ajouter une arête	O(1)	O(1)	$O(V \cdot E)$
Supprimer un sommet	O(E)	$O(V ^2)$	$O(V \cdot E)$
Supprimer une arête	O(V)	O(1)	$O(V \cdot E)$
Test d'adjacence entre deux sommets	O(V)	O(1)	O(E)
Remarques	Lent dans la suppression parce qu'il faut trouver les sommets ou arêtes	Lent dans l'adjonction ou suppression de sommets parce que la matrice doit être reformatée	Lent dans l'adjonction ou suppression de sommets ou d'arêtes parce que la matrice doit être reformatée

Compléxité et Structure de données

The Adjacency Matrix is Sparse
The adjacency matrix of the yeast protein-protein interaction network, consisting of 2,018 nodes, each representing a yeast protein. A dot is placed on each position of the adjacent matrix for which $A_{ij} = 1$, indicating the presence of an interaction. There are no dots for $A_{ij} = 0$. The small fraction of dots illustrates the sparse nature of the protein-protein interaction network.