### يسم الله الرحمن الرحيم

نظریه زبانها و ماشینها

جلسه ۷

مجتبی خلیلی دانشکده برق و کامپیوتر دانشگاه صنعتی اصفهان



۰ دو زبان زیر را در نظر بگیرید:

$$L_1 = \{x \in \{a, b\}^* \mid aa \text{ is not a substring of } x\}$$
  
 $L_2 = \{x \in \{a, b\}^* \mid x \text{ ends with } ab\}$ 







○ DFA متناظر با L1 U L2 را مطابق آنچه بیان شد بیابید.





○ DFA متناظر با L1 U L2 را مطابق آنچه بیان شد بیابید.





DFA متناظر با L1 ∩ L2 را مطابق آنچه بیان شد بیابید.





اثبات ۲: فرض کنید A1 و A2 دو زبان منظم روی یک الفبا باشند. ماشینهای A1 متناظر آنها را به A1 ترتیب A1 و A1 مینامیم. چنانچه بتوانیم یک A1 به نام A1 بسازیم که زبان A1 را تشخیص دهد به هدف خود رسیدهایم (proof by construction).





اثبات ۲: فرض کنید A1 و A2 دو زبان منظم روی یک الفبا باشند. ماشینهای A1 متناظر آنها را به A1 ترتیب A1 و A1 مینامیم. چنانچه بتوانیم یک A1 به نام A1 بسازیم که زبان A1 را تشخیص دهد به هدف خود رسیدهایم (proof by construction).





ایده (ادامه اثبات): اجرای هر دوی N1 و N2 به صورت موازی روی ورودی یکسان. برای یک ورودی، چنانچه یکی/دوتا از ماشینها در حالت پذیرش بود، آنگاه بپذیر.















Let 
$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize  $A_1$ , and  $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$  recognize  $A_2$ .

Construct  $N = (Q, \Sigma, \delta, q_0, F)$  to recognize  $A_1 \cup A_2$ .

- به زبان ریاضی:
- 1.  $Q = \{q_0\} \cup Q_1 \cup Q_2$ . The states of N are all the states of  $N_1$  and  $N_2$ , with the addition of a new start state  $q_0$ .
- **2.** The state  $q_0$  is the start state of N.
- 3. The set of accept states  $F = F_1 \cup F_2$ . The accept states of N are all the accept states of  $N_1$  and  $N_2$ . That way, N accepts if either  $N_1$  accepts or  $N_2$  accepts.
- **4.** Define  $\delta$  so that for any  $q \in Q$  and any  $a \in \Sigma_{\varepsilon}$ ,

$$\delta(q,a) = egin{cases} \delta_1(q,a) & q \in Q_1 \ \delta_2(q,a) & q \in Q_2 \ \{q_1,q_2\} & q = q_0 ext{ and } a = oldsymbol{arepsilon} \ \emptyset & q = q_0 ext{ and } a 
eq oldsymbol{arepsilon}. \end{cases}$$

## الحاق



○ Concatenation:  $A \circ B = \{ vw \mid v \in A \text{ and } w \in B \}$ 

**THEOREM 1.47** 

The class of regular languages is closed under the concatenation operation.



## الحاق

○ ایده اثبات: شبیه اجتماع









Let 
$$N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
 recognize  $A_1$ , and  $N_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$  recognize  $A_2$ .

به زبان ریاضی:

Construct  $N = (Q, \Sigma, \delta, q_1, F_2)$  to recognize  $A_1 \circ A_2$ .

- 1.  $Q = Q_1 \cup Q_2$ . The states of N are all the states of  $N_1$  and  $N_2$ .
- **2.** The state  $q_1$  is the same as the start state of  $N_1$ .
- **3.** The accept states  $F_2$  are the same as the accept states of  $N_2$ .
- **4.** Define  $\delta$  so that for any  $q \in Q$  and any  $a \in \Sigma_{\varepsilon}$ ,

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q, a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q, a) \cup \{q_2\} & q \in F_1 \text{ and } a = \varepsilon \\ \delta_2(q, a) & q \in Q_2. \end{cases}$$





 $L_1=?$ 0 شروع و خاتمه با

$$L_2 = ?$$

شروع و خاتمه با 1





$$L_1L_2 = ?$$



○ Star: 
$$A^* = \{ w_1 ... w_k \mid k \ge 0 \text{ and each } w_i \in A \}$$
  
=  $\{ \epsilon \} \cup A \cup AA \cup AAA \cup AAAA \cup ...$ 

THEOREM 1.49 -----

The class of regular languages is closed under the star operation.



ایده اثبات:





#### ایده اثبات:





ایده اثبات:





**PROOF** Let  $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  recognize  $A_1$ . Construct  $N = (Q, \Sigma, \delta, q_0, F)$  to recognize  $A_1^*$ .

c به زبان ریاضی:

- 1.  $Q = \{q_0\} \cup Q_1$ . The states of N are the states of  $N_1$  plus a new start state.
- **2.** The state  $q_0$  is the new start state.
- 3.  $F = \{q_0\} \cup F_1$ . The accept states are the old accept states plus the new start state.
- **4.** Define  $\delta$  so that for any  $q \in Q$  and any  $a \in \Sigma_{\varepsilon}$ ,

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \text{ and } q \notin F_1 \\ \delta_1(q, a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q, a) \cup \{q_1\} & q \in F_1 \text{ and } a = \varepsilon \\ \{q_1\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & q = q_0 \text{ and } a \neq \varepsilon. \end{cases}$$

## مكمل



○ Complement:  $\overline{L} = \{ w \mid w \notin L \}$ 

DFA: 
$$M = (Q, \Sigma, \delta, q_0, F)$$

$$\widehat{M} = (Q, \Sigma, \delta, q_0, Q - F)$$

L

$$\overline{L}$$





 $L = \{w \mid w \text{ ends with } 00\}$ 





 $L = \{w \mid w \text{ ends with } 00\}$ 



L

# اشتراک



○ Intersection: L1  $\cap$  L2 = { w | w  $\in$  L1 and w  $\in$  L2 }

به کمک دمورگان:

$$L_1 \cap L_2 = \overline{\overline{L}_1 \cup \overline{L}_2}$$