INTRODUCCIÓN MATEMÁTICA A DESCARTES

Departamento de Geometría y Topología Universidad Complutense de Madrid

Objetivos del trabajo

Descartes y la Unificación del Álgebra y la Geometría

- 1.1 La Geometría de Descartes
- 1.2 Problemas clásicos de Apolonio y Pappus
- 1.3 Generalizaciones
- 1.4 Algebraización del problema geométrico
- 1.5 Lugares geométricos
- 1.6 Introducción a las curvas algebraicas planas
- 1.7 Cónicas y cúbicas
- 1.8 Propiedades fundamentales y clasificación
- 1.9 Nacimiento de la geometría analítica

1.1 La Geometría de Descartes

Consideremos la ecuación algebraica de grado *n*:

$$P(x) \equiv a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 = 0$$

donde los coeficientes a_k son reales y $a_n \neq 0$

1.1 La Geometría de Descartes

Consideremos la ecuación algebraica de grado n:

$$P(x) \equiv a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 = 0$$

donde los coeficientes a_k son reales y $a_n \neq 0$

Teorema Fundamental del Álgebra Toda ecuación algebraica de grado n tiene n raíces reales o complejas, contadas según su multiplicidad

$$P(\xi) = P'(\xi) = P''(\xi) = \dots = P^{s-1}(\xi) = 0$$

 $P^{s}(\xi) \neq 0$

Teorema Si los coeficientes de la ecuación algebraica son reales, sus raíces son reales o conjugadas a pares, es decir, si $\xi = \alpha + \mathrm{i}\beta$, $\alpha, \beta \in \mathbb{R}$ es raíz de P(x), también lo es $\bar{\xi} = \alpha - \mathrm{i}\beta$

Corolario Una ecuación algebraica de grado impar con coeficientes reales tiene al menos una raíz real

Teorema de Newton Si para x = c > 0 el polinomio P(x) y todas sus derivadas P'(x), P''(x), ..., $P^{n)}(x)$ son no negativas

$$P^{k)}(c) \geqslant 0 \quad (k = 0, 1, 2, \dots, n)$$

y $P^{n}(c) = n!a_n > 0$, entonces R = c puede tomarse como frontera superior de las raíces positivas de la ecuación P(x) = 0

$$P^{k)}(c) \geqslant 0 \quad (k = 0, 1, 2, \dots, n)$$

y $P^{n)}(c)=n!a_n>0$, entonces R=c puede tomarse como frontera superior de las raíces positivas de la ecuación P(x)=0

Demostración Si x>c, por la fórmula de Taylor, $P(x)=P(c)+P'(c)(x-c)+\cdots+\frac{P^n}{n!}(x-c)^n>0$ y así todas las raíces positivas x^+ satisfacen $x^+\leqslant c$

En las aplicaciones prácticas del Teorema de Newton se utiliza el sistema de tanteo (por ejemplo, mediante el esquema de Hörner) para hallar una secuencia monótona creciente de números positivos

$$0 < c_1 \leqslant c_2 \leqslant \cdots \leqslant c_{n-1} \leqslant c_n$$

para los cuales se cumplan las desigualdades

$$P^{n-1}(c_1) \ge 0$$

$$P^{n-2}(c_2) \ge 0$$

$$\cdots$$

$$P'(c_{n-1}) \ge 0$$

$$P(c_{n-1}) \geqslant 0$$
 $P(c_n) \geqslant 0$

Tales números existen siempre, pues si $a_n > 0$,

$$P^{k}(x) \xrightarrow{x \to \infty} \infty \quad (k = 0, 1, 2, \dots, n-1)$$

y podemos tomar $c = c_n$

En efecto, como $P^{n}(x) = n!a_n > 0$, la función $P^{n-1}(x)$ es creciente, y así

$$P^{n-1}(x) > P^{n-1}(c_1) \ge 0$$

En efecto, como $P^{(n)}(x) = n!a_n > 0$, la función $P^{(n-1)}(x)$ es creciente, y así

$$P^{n-1}(x) > P^{n-1}(c_1) \ge 0$$

Así de nuevo, $P^{n-2}(x)$ es creciente en el intervalo $[c_1, \infty)$, y por tanto, para $x > c_2 \geqslant c_1$,

$$P^{n-2}(x) > P^{n-2}(c_2) \ge 0$$

En efecto, como $P^{(n)}(x) = n!a_n > 0$, la función $P^{(n-1)}(x)$ es creciente, y así

$$P^{n-1}(x) > P^{n-1}(c_1) \ge 0$$

Así de nuevo, $P^{n-2}(x)$ es creciente en el intervalo $[c_1, \infty)$, y por tanto, para $x > c_2 \geqslant c_1$,

$$P^{n-2}(x) > P^{n-2}(c_2) \ge 0$$

Iterando este razonamiento, llegamos a que P(x) es creciente en el intervalo $[c_{n-1}, \infty)$, y para $x > c_n \geqslant c_n$

$$P(x) > P(c_n) \geqslant 0$$

con lo que $x^+ \leqslant c_n$

Ejemplo Sea

$$P(x) = 2x^5 - 100x^2 + 2x - 1$$

Ejemplo Sea

$$P(x) = 2x^5 - 100x^2 + 2x - 1$$

En este caso,

$$P'(x) = 10x^{4} - 200x + 2$$

$$P''(x) = 40x^{3} - 200$$

$$P'''(x) = 120x^{2}$$

$$P^{4}(x) = 240x$$

$$P^{5} = 240$$

$$P'''(x) > 0$$
, $P^{4)}(x) > 0$, $P^{5)}(x) > 0$ para $x > 0$

También

$$P''(x) = 40(x^3 - 5) > 0$$
 para $x \ge 2$

Supondremos $c_1 = c_2 = c_3 = 2$

También

$$P''(x) = 40(x^3 - 5) > 0$$
 para $x \ge 2$

Supondremos $c_1 = c_2 = c_3 = 2$

$$P'(2) = -238 < 0$$
, pero $P'(3) = 212 > 0$ así que tomamos $c_4 = 3$

$$P'''(x) > 0$$
, $P^{4)}(x) > 0$, $P^{5)}(x) > 0$ para $x > 0$

También

$$P''(x) = 40(x^3 - 5) > 0$$
 para $x \ge 2$

Supondremos $c_1 = c_2 = c_3 = 2$

$$P'(2) = -238 < 0$$
, pero $P'(3) = 212 > 0$ así que tomamos $c_4 = 3$

P(3) = -409 < 0, pero P(4) = 455 > 0 así que tomamos $c_5 = 4$, y R=4 es frontera superior de las raíces positivas de esta ecuación [Espirales Clásicas]

- Si P(a)P(b) < 0, en el intervalo (a,b) existe un número impar de raíces de P(x) (contando multiplicidades)
- Si P(a)P(b)>0, en el intervalo (a,b) existe un número par (o nulo) de raíces de P(x)

$$N(a,b) = N(a) - N(b)$$

$$N(a,b) = N(a) - N(b)$$

Corolario 1 Si $P(0) \neq 0$, los números N_+ y N_- de raíces positivas y negativas del polinomio P(x) son

$$N_{+} = N(0) - N(+\infty)$$
 $N_{-} = N(-\infty) - N(0)$

$$N(-\infty) - N(+\infty) = n$$

De este modo, si $a_n > 0$, todas la raíces serán reales si y sólo si

- lacksquare la secuencia de Sturm tiene un número máximo de elementos n+1, esto es, m=n
- $oldsymbol{2}$ son ciertas las desigualdades $P_k(+\infty)>0$, es decir, los coeficientes dominantes de todas las funciones de Sturm $P_k(x)$ son positivos

Ejemplo Determinar el número de raíces positivas y negativas de la ecuación

$$x^4 - 4x + 1 = 0$$

$$x^4 - 4x + 1 = 0$$

Solución La secuencia de Sturm es de la forma

$$P(x) = x^4 - 4x + 1$$

$$P_1(x) = x^3 - 1$$

$$P_2(x) = 3x - 1$$

$$P_3(x) = 1$$

de donde

$$N(-\infty) = 2$$
 $N(0) = 2$ $N(+\infty) = 0$
 $N_{+} = 2 - 0 = 2$ $N_{-} = 2 - 2 = 0$

con lo que P(x) tiene dos raíces positivas y ninguna negativa (y por tanto dos raíces complejas)

1.2 Problemas clásicos de Apolonio y Pappus

1.3 Generalizaciones

1.4 Algebraización del problema geométrico

1.6 Introducción a las curvas algebraicas planas

1.7 Cónicas y cúbicas

1.8 Propiedades fundamentales y clasificación

1.9 Nacimiento de la geometría analítica

- 2.1 La geometrización de problemas físicos
- 2.2 Intentos de unificación
- 2.3 La óptica cartesiana y problemas de geométricos
- 2.4 Antecedentes
- 2.5 La óptica de Kepler
- 2.6 La "Dióptrica" de Descartes
- 2.7 Ley de refracción
- 2.8 Teoría de la luz de Hobbes
- 2.9 Crítica y experimento
- 2.10 El principio de Fermat

2.1 La geometrización de problemas físicos

2.2 Intentos de unificación

2.4 Antecedentes

2.6 La "Dióptrica" de Descartes

2.7 Ley de refracción

2.8 Teoría de la luz de Hobbes

2.10 El principio de Fermat

3. Fuerza e inercia: Descartes y Newton

- 3.1 El movimiento y su cuantificación
- 3.2 Caída de objetos
- 3.3 Concepto e inferencia según Descartes y Beeckman
- 3.4 Fuerzas e inercia
- 3.5 Leyes del movimiento y principios de conservación
- 3.6 Contexto geométrico
- 3.7 Caída libre y gravitación
- 3.8 Experimentos de Galileo
- 3.9 Mecánica newtoniana

3.1 El movimiento y su cuantificación

3.2 Caída de objetos

3.3 Concepto e inferencia según Descartes y Beeckman

3.4 Fuerzas e inercia

3.5 Leyes del movimiento y principios de conservación

3.6 Contexto geométrico

3.7 Caída libre y gravitación

3.8 Experimentos de Galileo

3.9 Mecánica newtoniana

4. La teoría de poliedros según Descartes

- 4.1 Propiedades elementales de polígonos y poliedros
- 4.2 Característica de Euler
- 4.3 Complejos simpliciales en el plano y el espacio
- 4.4 Propiedades topológicas
- 4.5 Teorema de Descartes
- 4.6 Relación con el teorema de Gauss-Bonnet
- 4.7 Dualidad en poliedros
- 4.8 Teorema de Descartes dual
- 4.9 Números poligonales

4.1 Propiedades elementales de polígonos y poliedros

4.2 Característica de Euler

4.3 Complejos simpliciales en el plano y el espacio

4.4 Propiedades topológicas

4.5 Teorema de Descartes

4.6 Relación con el teorema de Gauss-Bonnet

4.7 Dualidad en poliedros

4.8 Teorema de Descartes dual

4.9 Números poligonales

