Law and Economics

Review of Economic Concepts

Francisco Poggi

Tort Law

• **Tort Law**: area of the law that is concerned with civil suits. *Mostly* related to accidental injuries.

Examples of accidental torts:

- Some personal injuries.
- Product Liability.
- Workplace Accidents.
- Medical Malpractice.
- Environmental Accidents.
- Risk zero is, generally, not efficient! However, incentives to curb risks are important.

Francisco Poggi Law and Economics FSS 22 1/28

Tort Law

• Examples of intentional torts:

- Battery (act of physical violence),
- Assault,
- Trespass (land, computer, car.)
- Defamation,
- Intentional Infliction of Emotional Distress (e.g. threats).

- Here we focus on unintentional torts.
 - Incentives to mitigate risks.
 - Model of precaution.

Francisco Poggi Law and Economics FSS 22 2/28

Other ways to control risk

- Tools to mitigate risky behavior:
 - Safety & Hygine regulations.
 - Criminal penalties.

Tort law: private remedy that gives the right of accident victims to sue injurers for damages.

 ${\sf Victim} \sim {\sf Plaintiff} \qquad {\sf Injurer} \sim {\sf Defendant}$

Elements of Tort Claim

Enforcement in hands of the victim.

- Burden of the proof? Plaintiff has to show that:
 - She sustained some damages.
 - Defendant was the *cause* of those damages.

Causation

- Self-driving technology example.
 - Self-driving cars are safer than regular cars.
 - However, they produce accidents that would not have happenend otherwise.

"The Coming Collision Between Autonomous Vehicles and the Liability System" by Gary Marchant and Rachel Lindor.

Causation

- Golf driving range next to a parking lot.
 - x height of the safe net.
 - $y \sim F(x)$ height of the ball. (support in [0,1]).
 - D: damage caused if y > x (deterministic).

Who caused the damage? The golfer or the range owner that didn't put a taller net?

6/28

Actions and outcomes

But-for test: but-for the action, would the outcome be different?

- Golf example: two actions combined cause the damage.
 - Both actions pass the but-for test.

- Other cases where two actions *independently* would have generated the damage.
 - Example: firing squad.
 - No single shooter passes the but-for test.

• For now, we consider a single injurer.

Liability Rules

- How damages should be split between the injurer and the victim?
 - No liability: victim bears all damages.
 - Strict liability: injurer bears all damages, independently of the actions.
 - Negligence rule: Injurer is fully liable if he is found to be at fault.
 - Contributory negligence: Injurer is fully liable unless the victim is found to be at fault.

• What does it mean for the injurer or the victim to be at fault?

Tort Law

- Costs of accidents:
 - Damaged suffered by victims.
 - Cost of precautions by potential injurers.
 - Cost of precautions by potential victims.

- In this section we present a *unilateral* model of precaution:
 - only injurers can affect the probability of accident.

Overview

1 The Unilateral Care Model

2 Extensions to the Unilateral Care Model

Model

- x: investment in precaution by injurer.
- a: accident in {0,1}
- $p(x) := \Pr(a = 1|x)$. Probability of accident.
- D: dollar losses suffered by the victim. Conditional distribution F_x .
- Let $D(x) = E_x[D|a = 1]$

Assumption: $p(\cdot)$ and $D(\cdot)$ are decreasing convex functions.

Social Optimum

$$\min_{x\geq 0} \quad E_x[x+D] \quad = \quad \min_{x\geq 0} \quad x+p(x)D(x)$$

Solution x^* .

11 / 28

Care choice by the injurer

- What level of care would the injurer choose?
 - Depends on the liability rule: $\psi(x, D)$.
- Implicit assumption:
 - level of care x is ex-post observable.
 - total damages are ex-post observable.
- Decision problem:

$$\min_{x>0} \quad E_x[x+\psi(x,D)]$$

- Any ψ such that $x^* \in \arg\min_{x>0} E_x[x + \psi(x, D)]$ recovers efficiency.
- What would Coase theorem say about this?

No Liability

$$\psi(x,D)=0$$

$$\min_{x \ge 0} x$$

• Efficiency is not achieved.

Strict Liability

$$\psi(x,D)=D$$

$$\min_{x\geq 0} \quad E_x[x+D]$$

- This achieves efficient care: injurer fully internalizes the costs.
- Advantages: low informational requirements.
- Disadvantages: limited liability $\psi < \bar{\psi}.$

Strict (Expected) Liability

$$\psi(x, D) = a \cdot D(x)$$

$$\min_{x>0} E_x[x + aD(x)] = \min_{x>0} x + p(x)D(x)$$

- This achieves efficient care: injurer fully internalizes the costs.
- Limited liability constraint is more likely to be satisfied.
- How informational requirements compare to Strict Liability? More on this **later**.
- Disadvantages: sometimes $\psi > D$. More on this **later**.

Negligence

$$\psi(x, D) = 1_{\{x < \bar{x}\}} \cdot D(x)$$

$$\min_{x \ge 0} E_x[x + a \cdot 1_{\{x < \bar{x}\}} \cdot D(x)] = \min_{x \ge 0} x + 1_{\{x < \bar{x}\}} p(x)D(x)$$

- Injurer would never choose $x > \bar{x}$.
- If the thinks he is going to be liable, then he chooses x^* .
- We have to compare \bar{x} with x^* .

$$\bar{x}$$
 vs $x^* + p(x^*)D(x^*)$

- Chooses \bar{x} iff $\bar{x} \leq x^* + p(x^*)D(x^*)$.
- Efficient to set $\bar{x} = x^*$.

Comparing liability rules: Informational requirements

- Three rules that can achieve efficiency:
 - strict liability (SL).
 - strict expected liability (SEL).
 - negligence with parameter x^* (N*).
- To implement these rules, different information is required:

	X	$p(\cdot)$	D	$D(\cdot)$
SL	NO	NO	YES	NO
SEL	YES	NO	NO	YES
N^*	YES	YES	NO	YES

Negligence with noisy observation of *x*

- Let $\psi(\tilde{x}, D) = 1_{\{\tilde{x} < x^*\}} \cdot D(\tilde{x})$ with $\tilde{x} = x + \epsilon$.
- Let ϵ be normal with an arbitrarily small variance.
- The injurer will not choose x^* .

$$x^* + a \cdot \Pr(\epsilon > 0) \cdot D(x^*)$$

• Then \bar{x} should be chosen higher than x^* to account for this.

Comparing Liability Rules

Cost of trials:

- Higher informational requirements \Rightarrow costlier trials.
- Negligence trials are the most expensive ones but they don't ocur in equilibrium.
 - Reality might be noisy.
- SL and SEL trials do occur.

Comparing Liability Rules

- How damages are split.
 - With Strict Liability the injurer bears the equilibrium damages,
 - With Negligence the victim does it.

Victim Compensation

Why to compensate victims?

Overview

The Unilateral Care Model

Extensions to the Unilateral Care Model

Activity Levels

 Same model as before, with the difference that the injurer chooses also a quantity.

q: activity level.

$$\max_{x,q} B(q) - q[x + p(x) \cdot D(x)]$$

- We assume diminishing returns (B concave).
- q is not observable ex-post.

Activity Levels

Example: Hunters and Joggers.

Two interpretations of q:

- Frequency.
 - Heterogeneity.

Activity Levels

- Notice that the optimal level of care x^* is independent of q.
- Optimal activity level: $B'(q) = x^* + p(x^*)D(x^*)$.

 For the individual, the optimal activity level depends on the liability rule.

$$\max_{x, q} E_x [B(q) - q(x + a \cdot \psi(x, D))]$$

No Liability and Strict Liability

No liability: excesive activity level (and no precautions)

$$\max_{x,q} B(q) - q \cdot x$$

• Strict liability: efficient activity level and precautions.

$$\max_{x,q} \quad B(q) - q[x + p(x)D(x)]$$

• The injurer internalizes all social costs.

Negligence

• **Negligence** (with $\bar{x} = x^*$): excesive activity level (but optimal precautions)

$$\max_{x,q} B(q) - q[\cdot x + \cdot 1_{\{x < x^*\}} \cdot p(x) \cdot D(x)]$$

• Given optimal precautions,

$$\max_{q} B(q) - q \cdot x^*$$

26 / 28

• One can show that it is always optimal for the injurer to choose x^* .

Proability of Escaping Liability

- Injurers might be able to escape liability for multiple reasons:
 - Conceal their identity.
 - Difficulty in proving specific cause of injuries.
 - Costs of litigation (prevent victims from bringing suits)
 - Limited liability.

 Therefore, even with strict liability, injurers might take too little precautions.

Exogenous Probability of Escaping Liability

Strict Liability:

$$\min_{x} \quad x + p(x) \cdot \alpha \cdot D$$

- $\hat{x} < x^*$.
- Easy fix: $\psi(x, D) = D/\alpha$.
- This, however, generates problems because $\psi > D$.