

液体表面张力系数的测定

理学院物理实验中心 廖飞

背景简介

背景简介

Young's Equation

$$\gamma^{\text{sv}} = \gamma^{\text{sl}} + \gamma^{\text{lv}} \cos \theta$$

$$H = \frac{2\gamma \cos \theta_E}{\rho g \mathsf{R}}$$

1806年 拉普拉斯

$$\ln rac{p}{p_0} = rac{2 \gamma V_{
m m}}{rRT}$$

1859年

1932年诺贝尔奖 朗格缪 表面化学

2007年诺贝尔奖 格哈德•埃特尔 固体表面的化学

实验目的

- 1.学习力敏传感器的定标方法
- 2.观察拉脱法测液体表面张力的物理现象和规律
- 3.测量室温下纯水的表面张力系数

实验原理

1. 表面(surface)概念

①液体表面:液体与气体、固体以及与别的不相混合的液体间的界面(interface)

②表面张力:是表面层内分子相互间作用力的宏观表现

$$f = \alpha L$$

③表面张力系数:是沿液面作用在分界线单位长度上的表面张力

其单位: N/m.大小与液体成分、浓度、纯度及温度有关。

④浸润与不浸润现象

$$\sigma = \left(\frac{\partial G}{\partial A}\right)_{T,p}$$

实验原理

2.拉脱法测液体表面张力系数

①拉脱法:

测量一个已知周长的金属圆环或金属片从 待测液体表面脱离是所需要的拉力,从而 求得该液体表面张力系数的方法称为拉脱 法。所需拉力是由液体表面张力、环的内、 外径及液体性质、纯度等因素决定。

②受力分析:

吊环拉起水柱,最大受力时 $F_1 = G + f$

水柱破裂 $F_2 = G$

$$f = F_1 - G = F_1 - F_2$$

$$f = \alpha \pi (D_1 + D_2)$$

- 1.底座及调节螺丝
- 2.升降调节螺母
- 3.培养皿

- 4.金属片状圆环
- 5.硅压阻式力敏传感器及金属外壳
- 6.数字电压表

液膜拉破前瞬间的受力分析图

实验原理

3. 力敏传感器

$$F = \frac{U}{B}$$
 — 力敏传感器线性测量模型

$$f = F_1 - F_2 = \frac{U_1 - U_2}{B}$$

$$\alpha = \frac{\left(U_1 \quad U_2\right)}{\pi\left(D_1 + D_2\right)B} \longrightarrow \frac{\text{initial}}{B}$$

实验仪器

1.仪器名称:表面张力系数测定仪、游标卡尺

图 2.2.2 FD-NST-I 型液体表面张力系数测定仪装置

- 1.调节螺丝 2.升降螺丝 3.玻璃器皿 4.吊环 5.力敏传感器 6.支架
- 7. 固定螺丝 8. 航空插头 9. 底座 10. 数字电压表 11. 调零旋钮

注意事项:

- (1) 保证测量液体清洁
- (2) 吊环水平要尽量调节好.
- (3) 力敏传感器使用时用力不宜大于
- 0.098N.过大的拉力传感器容易损坏.
 - (4) 测表面张力时,防止操作台受震动.

实验仪器

2.硅压阻式力敏传感器的结构和原理

①传感器:传感器是将感受的物理量、化学量等信息,按一定的规律转换成便于 测量和传输的信号的装置。电信号易于处理,所以大多数的传感器是将物理量等 信号转换成电信号输出的。

③灵敏度:传感器输出量增量与相应输入量增量之比,单位是mv/N。它表示每 增加1N的力,力敏传感器的电压改变量为△Vmv.

 $\Delta U = B \cdot \Delta F$

式中, ΔF : 外力的增量

B: 传感器的灵敏度

△U: 相应的电压改变量

实验内容及步骤

- 1. 开机
- 2. 清洗玻璃器皿
- 3. 用游标卡尺测吊环的内、外径各三次,将数据填入下表

表 2.2.1 测吊环内、外径

- 2-6			47
<i>(</i> == +	☆:	cm	- C
1-	17/ •	$-rr_{\nu}$	1-

and FSS should be	被测量₽				
测量次数↩	D_1 $^{\scriptscriptstyle arphi}$	\overline{D}_1 $^{\scriptscriptstyle ar{\circ}}$	D_2 $^{\circ}$	\overline{D}_2 $^{\wp}$	42
1€	47		4		4
2€	٠	٩	٩	₽	ته
3€	٠		φ.		ته

实验内容及步骤

4. 测定力敏传感器的灵敏度

- (1) 调节底座水平,在力敏传感器上吊上吊环,调节吊环水平,并对电压表清零;
- (2) 将7个质量均为0.5克的片码依次放入吊盘中,分别记下电压表的读数 $\mathbf{1}_{U_0}$

再依次从吊盘中取走片码,记下读数 U_{i} 到 U_{0} , 将各数据记入下表中

(3) 用逐差法处理数据,求力敏 传感器的灵敏度

表 2.2.2	测定力敏传感器的灵敏度	€∻
---------	-------------	----

测量次数₽	砝码质量/g√	增重时读数 $U/mV/arphi$		减重时读数	$U^{'}/mV$ \circ	平均值 $^{\downarrow}$ $\overline{U} = \frac{U + U'}{2} / mV$	- - - -
1€	0. 000₽	$U_{\mathfrak{0}^{ert}}$	47	U_0'	÷	47	₽
2€	0.500₽	U_1 $arphi$	ę3	U_1' $arphi$	٦	43	₽
347	1. 000₽	U_2	43	U_2'	43	43	-₽
44□	1. 5004	U_3 $^{\scriptscriptstyle ar{arphi}}$	42	U_3' \circ	٩	43	₽
5€	2. 0004	U_{4}	ę3	U_4'	43	42	-₽
64⊃	2. 5004	U_5 $^{\wp}$	Ę.	U_5'	ę.	42	₽
7€	3. 0004	U_6 $^{\scriptscriptstyle \phi}$	Ę	U_6'	Ę	₽	-₽
843	3. 500₽	U_{7} $arphi$	Ę.	U_7' 0	÷2	₽	₽

实验内容及步骤

5. 测定水的表面张力

电压表清零 重复使用拉脱法测量6次 计算液体表面张力并与标准值比较, 标准值: T=20°C α=7.2x10-2N/m

表 2.2.3 测定水的表面张力系数型

测量↩	II /mIV	U/mV	A 7.7 / 77 :			- ((1,0=3,15,(-)
次数₽	$U_1 / mV \leftarrow$	0 ₂ /mv +	$\Delta U/mV \leftarrow$	∆U / mV ÷	f / 10 ° N ←	$\frac{\alpha}{\alpha}/(10^{-3}N/m)\varphi$
1€	Ð	ę	₽			€
24□	Ð	٦	₽			€
3€	Ð	ş	Ð	ت.		ب
443	₽	ę	₽			€
543	₽	ą.	÷.			4
643	Ð	Ę.	Ð			¢

讨论及拓展

- 1. 分析拉脱法测量的误差来源。
- 2. 查阅资料,深入学习力学传感器的结构及工作原理。
- 3.设计一个实验,研究测定表面张力系数与温度间的关系。
- 4.分析拉脱法模型的误差及问题,查阅CNKI数据库资料,在此基础上提出修正模型,或新测量模型,给出图或说明。(推荐该题)
- 5.杨氏接触角如何测量或计算

说明:

1-5题中选择2-5个讨论——做在讨论页,写不下的可放在思考题页

思考题按照要求完成