## 20.06.04 # KUPT 07 < Hypothesis Testing >

### Types errors

- · d = P (reject Hol Ho is true)
- · B= P (accept Hol Ha is true)

#### P-value

- · probability of a result at least as extreme as the result we actually got, assuming Ho to be true.
- · smaller p-values are stronger evidence against the in the favor of tha

#### Power (8)

probability that the test rejects the when true parameter value is  $\theta$  P(reject Hold) And

7 after observation Sample oil प्रसिक्ष प्रह्मा ५३८८ p-value 25
Ha ux+ 25ch

ex) assume 
$$Y \sim N(\mu, q)$$
  
 $H_0: \mu=25 \qquad vs \qquad H_a: \mu < 25$   
 $Y_1, Y_2, Y_3, Y_4 \Rightarrow n=4$   
 $RR: \{ \overline{\gamma} \leq 22.5 \}$ 

a) what is d? 
$$d = P(RR \mid H_0)$$

$$P(\bar{Y} \le 22.5 \mid M=25) = P(\bar{Y}-25 \le \frac{22.5-25}{\sqrt{9/4}} \le \frac{22.5-25}{\sqrt{9/4}})$$

$$= P(Z \le \frac{22.5-25}{3/2})$$

b) Power when 
$$M=23$$
?  $P(RR|H_a) = 1-\theta$ 

$$P(\bar{Y} \le 22.5 | M=23)$$

$$P(\bar{Z} \le \frac{22.5-23}{3/2})$$

c) Suppose we observe 
$$y_1=22$$
,  $y_2=24.5$ ,  $y_3=23$ ,  $y_4=26.5$ 
 $p$ -value of this shape?  $P(Haod 7+75 | Ho)$ 

$$P(\bar{\gamma} \le 24 \mid \mu = 25)$$
  
=  $P(\bar{Z} \le \frac{24-25}{3/2})$ 

· have one observation on discrete y

Ho: 
$$f(y) = f(y)$$
 vs  $f(y) = f(y)$ 

|                                  |   | Ho    | Ha    |                 |  |  |  |  |
|----------------------------------|---|-------|-------|-----------------|--|--|--|--|
|                                  | Y | fo(y) | faly) | fo/fa_          |  |  |  |  |
| •                                | 0 | 0.1   | 0.3   | 1/3             |  |  |  |  |
|                                  | 1 | 0.4   | 0.4   | 1               |  |  |  |  |
|                                  | 2 | 0.2   | 0.1   | 2               |  |  |  |  |
|                                  | 3 | 0.1   | 0.2   | 1/2             |  |  |  |  |
|                                  | 4 | 0.2   | 0     | 00<br>P(Y=31Ha) |  |  |  |  |
| 나 분포가 fa (y)를 따를 때 만흑 3          |   |       |       |                 |  |  |  |  |
| P(Y=1 1Ho) > 분포가 fo(y)를 다를 때 만득값 |   |       |       |                 |  |  |  |  |

fo. (

크면 Honl 가까움 작으면 Hanl 기메을 → regret Ho

| _    | RR          | Y         | d=P(RR Ho)                       | B=P(RRc   Ha)                    | =P(RR Ha)<br>Power at Ha |
|------|-------------|-----------|----------------------------------|----------------------------------|--------------------------|
|      | fo/fa < 3   | {0}:RR    | P(Y=0   Ho) 0.1                  | P(Y=1.2.3.4   Ha)                | 1-0.7                    |
| 2    | fo/fa ≤ 1/2 | {0.3}     | P(Y=0,Y=31 Ho)                   | 0.4+0.1+0.2+0<br>P(Y= 1.2.4 1Ha) | 1-0.5                    |
|      | fo/fe < 1   | {0,3.1}   | P(Y=0, 3, 1   Ho)                | P(Y=2.4 1Ha)                     | [-0-1                    |
|      | - 1         | {0.3.1.2} | 0.1+0.1+0.4<br>P(Y=0.3.1,2   Ho) | 0.1+0<br>P(Y=4   Ha)             | 1-0                      |
| 1.   | , , ,       | 1 /       | 0.1†0.1†0.4                      | 0                                |                          |
| 00 0 | 01-11-11-1  |           | +0.2                             |                                  |                          |

= 1-B

RROI 25CH SHELCH

MP test at d=0.1  $Q(p): 24^{\circ}RR + 342^{\circ} = RR \{Y=0\}$ 

## (LRT)

 $Y_1, \dots, Y_n = \exp(\theta)$   $H_0: \theta=3 \quad H_a: \theta \neq 3$ 

# 

$$L(\theta) = \left(\frac{1}{\theta^n}\right) e^{-\sum y_i/\theta}$$

InL(0)

$$\frac{\partial}{\partial \theta} \ln L(\theta) \stackrel{\text{set}}{=} 0$$
 ,  $\frac{\partial^2}{\partial \theta^2} \ln L(\theta) < 0$ 

$$\hat{\theta}^{MLE} = \frac{\sum \hat{y}_i}{\alpha} = \hat{y}$$

UMP만 강하기: NP lemma 문제

私 性行변型 MY, eY,

以外 (十1) 0

$$\lambda = \frac{L(3)}{L(\overline{y})} = \frac{\frac{1}{3^n}e^{-\sum Y_i^n/y}}{\frac{1}{y^n}e^{-\sum Y_i^n/y}} = \frac{\frac{1}{3^n}e^{-\sum Y_i^n/y}}{\frac{1}{y^n}e^{-\sum Y_i^n/y}} = \frac{1}{2} \left(\frac{1}{3} - \frac{1}{y}\right)$$

$$= \left(\frac{y}{3}\right)^n e^{-\sum Y_i^n/y} = \frac{1}{2} \left(\frac{1}{3} - \frac{1}{y}\right)$$

N-P lemma: increase/decrease  $\frac{3}{3}$ 1|
LRT: g(x)

$$g(\overline{y}) \to g(x) = \left(\frac{x}{3}\right)^n e^{-nx} \left(\frac{x-3}{3x}\right)$$
$$= \left(\frac{x}{3}\right)^n e^{-n} \left(\frac{x-3}{3}\right)$$

9(위)의 개형 실수주의

$$\ln(g(\pi) = n \ln \pi - n \ln 3 - n \left(\frac{x-3}{3}\right)$$

$$\frac{\partial}{\partial x} \ln g(x) = \frac{n}{x} - \frac{n}{3} \stackrel{\text{set}}{=} 0$$
Critical pt  $x=3$ 

$$g(n) \le R$$
  $\frac{9}{4}$   $\frac{4}{4}$   $\frac{$ 

$$\Leftrightarrow$$
  $\{ \sum y_i \leq C_i^* \text{ or } \sum y_i \geq C_i^* \} \text{ ? TH reject Ho}$ 

$$\sum y_i \sim \text{gamma}(n, \theta)$$

$$P(RR|H_0) = \lambda \quad 0|\frac{1}{3} \quad H_0: \theta = 3$$

$$\frac{2}{3} \sum_{i} Y_i \sim gamm \, a(\eta, 2) \quad \chi^2(2n)$$

$$P(\frac{2}{3} \sum_{i} Y_i \leq \frac{2}{3}G_i \quad or \quad \frac{2}{3} \sum_{i} Y_i \geq \frac{2}{3}G_i \quad |H_0) = \lambda$$



$$C_1 = \frac{3}{2} \mathcal{N}^2 (1 - \frac{1}{2}, 2n)$$
  
 $C_2 = \frac{3}{2} \mathcal{N}^2 (\frac{1}{2}, 2n)$