LINMA1170 – Numerical Analysis I – Homework 1

Prof.: P. Van Dooren. Teaching assistant: P.-A. Beaufort.

Julien Vaes – 80291100 Louis Regout - mmmm1400

10 octobre 2016

Echauffement

Il nous est demandé de déterminer la suite de Sturm $(f_0(x), f_1(x), \ldots, f_m(x))$ pour le polynôme $f_0(x) = x^4 + 3x^2 + 2$. Pour déterminer ces derniers, il suffit d'appliquer la définition donnée à la page 2 du syllabus c-à-d:

$$f_1(x) = f_0'(x) \tag{1}$$

$$f_i(x) = q_{i+1}(x)f_{i+1}(x) - f_{i+2}(x), \quad i = 0, \dots, m-2;$$
 (2)

$$f_{m-1}(x) = q_m(x)f_m. (3)$$

Ceci nous donne donc $f_1(x) = 4x^3 + 6x$. Pour les termes suivants de la suite il est nécessaire de résoudre l'équation 2. Nous allons illustrer la manière de procéder pour déterminer $f_2(x)$, les termes suivants de la suite se calculent de manière identique. D'après 2, il est nécessaire que $f_2(x)$ satifasse:

$$f_0(x) = q_1(x)f_1(x) - f_2(x) (4)$$

$$x^{4} + 3x^{2} + 2 = (4x^{3} + 6x)(a_{0} + a_{1}x) - (r_{0} + r_{1}x + r_{2}x^{2} + r_{3}x^{3})$$

$$(5)$$

Il est a noter que le reste de la division est d'au moins un degré inférieur à celui de $f_0(x)$. D'autre part, dans cette division ci, $q_1(x)$ est de degré maximum égal à 1. Le quotient et le reste s'obtiennent aisément en appliquant l'algorithme d'Euclide ¹ :

$$\begin{array}{c|ccc} x^4 & +3x^2 & +2 & 4x^3 + 6x \\ \underline{x^4} & +\frac{3}{2}x^2 & & \\ \hline & & \frac{6x^2}{4} & +2 & \end{array}$$

Nous en déduisons donc que $f_2(x) = \frac{-3x^2}{2} - 2$ et $q_1(x) = \frac{x}{4}$. Si on applique la même méthode pour les autres polynômes de la suite de Sturm nous obtenons :

^{1.} la division eulidienne donne f(x) = q(x)d(x) + r(x), or dans la récurrence nous désirons -r(x). Il faut donc inverser le signes du reste.

D'après le théorème de Sturm, $N(\alpha, \beta)$ determine le nombre de racines réelles distinctes du polynôme $f_0(x)$ comprises entre α et β . Dans notre cas $V(-\infty) = 2$ et $V(+\infty) = 2$, nous en concluons que $f_0(x)$ ne possède pas de racines réelles et par conséquent possède deux pairs de racines complexes conjuguées.

Mise en oeuvre

- À l'aide de la fonction algEuclide, nous obtenons que V=0 pour des valeurs de $\alpha=-\infty$ et $\beta=+\infty$. Tout comme dans la partie échauffement, nous pouvons conclure que $f_0(x)$ ne possède pas de racines réelles. Or comme les coefficients du polynôme sont réels, cela implique que les racines de $f_0(x)$ sont complexes conjuguées : $r_{1,2}=a\pm bi$ et $r_{3,4}=c\pm di$.
- Il nous est demandé de caratériser les racines du polynômes $f_0(x) = x^{11} 10x^9 7x^8 + 27x^7 + 70x^6 20x^5 189x^4 + 50x^3 + 140x^2 350$. L'algortihme d'Euclide fournit le polynome suivant : $f_m(x) = 10^6 \cdot (-0.9700x^2 + 4.8502)$. De plus nous avons que $N(-\infty, 0) = 1$ et $N(0, +\infty) = 2$. Nous en déduisons donc que $f_0(x)$ possède trois racines réelles distinctes dont deux sont positives et l'une est négative.

D'autre part, puisque $f_m(x)$ est non constant et qu'il est le pgcd de $f_0(x)$ et $f_1(x)$, toute racine de $f_m(x)$ est au moins une racine double de $f_0(x)$. L'algortihme d'Euclide appliqué à $f_m(x)$ fournit le polynome suivant : $h_m(x) = (-4.8502) \cdot 10^6$. Ainsi comme $h_m(x)$ est un polynôme constant, chaque racine de $f_m(x)$ est simple. De plus, pour $f_m(x)$ nous avons $N(-\infty,0) = 1$ et $N(0,+\infty) = 1$, ce qui implique que $f_m(x)$ possède une racine positive et une négative. Ainsi $f_0(x)$ possède deux racines réelles doubles : une négative et une autre positive.

En conclusion les racines réelles de $f_0(x)$ peuvent être caractérisées de la manière suivante :

Racine	Signe	Multiplicité
1)	-	2
2)	+	1
3)	+	2

Réflexion

Soit le polynôme $f_n(x) = a_n x^n + a_{n-1}^{n-1} + a_{n-2}^{n-2} + \cdots + a_1 x + a_0$ de degré n. Afin de démontrer que le tableau de Routh d'un polynôme peut être généré par l'algorithme d'Euclide : considérons pour cela les polynômes suivants :

$$P_n(x) = a_n x^n - a_{n-2} x^{n-2} + a_{n-4} x^{n-4} - \dots$$
 (6)

$$P_{n-1}(x) = a_{n-1}x^{n-1} - a_{n-3}x^{n-3} + a_{n-5}x^{n-5} - \dots$$
 (7)

(8)

A l'aide de l'algorithme d'Euclide, il est possible de trouver un polynôme $P_{n-2}(x) = b_1 x^{n-2} - b_2 x^{n-4} + \dots$ où

$$P_{n}(x) = Q_{n-1}(x)P_{n-1}(x) - P_{n-2}(x)$$

$$\Leftrightarrow P_{n-2}(x) = \frac{a_{n}}{a_{n-1}}x \cdot P_{n-1}(x) - P_{n}$$

$$\Leftrightarrow P_{n-2}(x) = \frac{a_{n}xP_{n-1}(x) - a_{n-1}P_{n}}{a_{n}}$$

$$(9)$$

Ainsi d'après (9), nous obtenons que $b_1 = \frac{a_{n-2}a_{n-1}-a_na_{n-3}}{a_{n-1}}$, $b_2 = \frac{a_{n-4}a_{n-1}-a_na_{n-5}}{a_{n-1}}$, On en déduit que $b_i = \frac{a_{n-2i}a_{n-1}-a_na_{n-2i-1}}{a_{n-1}}$. Obtenons maintenant le polyôme $P_{n-3}(x) = c_1x^{n-3} - c_3x^{n-5} + \dots$ comme étant le reste de la division de $P_{n-1}(x)$ avec $P_{n-2}(x)$:

$$P_{n-1}(x) = Q_{n-2}(x)P_{n-2}(x) - P_{n-3}(x)$$

$$\Leftrightarrow P_{n-3}(x) = \frac{a_{n-1}}{b_1}x \cdot P_{n-2}(x) - P_{n-1}$$

$$\Leftrightarrow P_{n-3}(x) = \frac{a_{n-1}xP_{n-2}(x) - b_1P_{n-1}}{b_1}$$
(10)

Ce qui nous donne que $c_i = \frac{b_1 a_{n-2i-1} - b_{i+1} a_{n-1}}{b_1}$. De manière identique le polyôme $P_{n-4}(x) = d_1 x^{n-4} - d_2 x^{n-6} + \dots$ est le reste de la division de $P_{n-2}(x)$ avec $P_{n-3}(x)$:

$$P_{n-2}(x) = Q_{n-3}(x)P_{n-3}(x) - P_{n-4}(x)$$

$$\Leftrightarrow P_{n-4}(x) = \frac{b_1}{c_1}x \cdot P_{n-3}(x) - P_{n-2}$$

$$\Leftrightarrow P_{n-4}(x) = \frac{b_1xP_{n-3}(x) - c_1P_{n-2}}{c_1}$$
(11)

Ce qui nous donne que $d_i = \frac{c_1 b_{i+1} - b_1 c_{i+1}}{c_1}$. Et ainsi de suite ...

En conclusion, il est possible de definir facilement le tableau de Routh d'un polynôme à coefficients réels à l'aide de l'algorithme d'Euclide. En effet si nous définissions $P_n(x)$ et $P_{n-1}(x)$ comme precédement et si nous considérons la récurrence $P_i(x) = P_{i-1}(x)Q_{i-1}(x) - P_{i-2}(x)$ pour $i = 0, \ldots, m-2$, nous pouvons affirmer que l'élément $t_{i,j}$ du tableau de Routh est égal à $(-1)^{j+1}\mathbf{a_j}(P_{n-i+1})$ où $\mathbf{a_j}(P_{n-i+1})$ est le $j^{\text{lème}}$ coefficient non nul du polynôme $P_{n-i+1}(x)$ (en regardant les coefficients du degré le plus élévé au moins élevé). Par exemple, $\mathbf{a_2}(P_n) = -a_{n-2}$ ainsi $t_{1,2} = a_{n-2}$.

Performances