	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Jun Chen and Ameenah R. Farhan	NDS 194,3 (2024)	8-Jan-2024

 $Q(\beta^{-}) = -8535 \ 4$; $S(n) = 12761 \ 9$; $S(p) = 7196 \ 6$; $Q(\alpha) = -3570 \ 4$ $Q(\varepsilon)=1275\ 10$, $S(2n)=22824\ 4$, $S(2p)=11378\ 4$ (2021Wa16).

1954Ca03: ⁷⁶Kr produced and identified in spallation reaction: Y(p,X),E=150, 175, 240 MeV from Rochester cyclotron. Measured half-life of 9.7 h 5 for the decay of ⁷⁶Kr. Later studies of decay of ⁷⁶Kr: 1955Th01, 1963Do04, 1973Lo07, 1973Pa02.

Other reactions:

1983Ga19 (also 1984Sn01): 64 Zn(12 C, γ), 58 Ni(18 O, γ),E=42-6 MeV, GDR study. 1993HuZZ: 76 Kr(π^+,π^-),E=294 MeV. Measured $\sigma(\theta)$.

Additional information 1.

Mass measurements: 2008Go23, 2006Ro11, 2005Ch60, 2002He23.

Α

2007Ya06, 2007Ya20: 12 C(76 Kr,X),E \leq 1.05 GeV/nucleon; measured σ ; deduced rms matter radius, Glauber model.

⁷⁶Rb ε+ β ⁺ decay (36.5 s) **F**

⁷⁷Sr εp decay (9.0 s)

⁷⁶Kr Levels

Cross Reference (XREF) Flags

⁷⁸Kr(p,t)

 66 Zn(12 C,2n γ), 58 Ni(24 Mg, α 2p γ)

		C D E	⁴⁰ Ca(⁴⁰ Ca	6 Kr' γ) H 78 Kr(α , 6 He) $_{1}$,4p γ) I Coulomb excitation $_{2}$ 2p γ)					
E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	XREF	Comments					
0.0&	0+	14.79 h 5	ABCDEFGHI	%ε+%β ⁺ =100 RMS charge radius $()^{1/2}$ =4.2020 fm 36 (2013An02 evaluation). T _{1/2} : weighted average of 14.82 h 5 (1963Do04, from parent-daughter separations); 14.7 h 1 (1963Do04, growth-decay curve for annihilation radiation, using 16.2 h half-life for ⁷⁶ Br decay); 14.6 h 2 (1973Pa02, γ-decay curves). 1963Do04 measured decay curves for three prominent γ rays and reported T _{1/2} =14.1 h, 14.2 h, and 14.3 h, with a counting uncertainty of 0.1 h but an overall uncertainty of 0.5 h in each value. Others: 10.5 h (1955Th01), 9.7 h 5 (1954Ca03).					
424.05 ^{&} 7	2+	27.1 ps <i>10</i>	ABCDEFGHI	μ =+0.74 22 (2004Ku11,2005Be61,2020StZV) Q=-0.7 2 (2007Cl02) J^{π} : E2 γ to 0 ⁺ . μ : transient-field technique in Coul. ex. (2004Ku11,2005Be61). Q: from Coulomb excitation (2007Cl02). No value is given in 2021StZZ compilation. $T_{1/2}$: from recommended B(E2)↑=0.758 26 (2016Pr01 evaluation), based on the following measurements: RDDS measurements, mean lifetime τ =41.5 ps 8 (2005Go43), 37.7 ps 30 (1990He04), 36 ps I (1984Wo10) and 35 ps I (1982Ke01). B(E2)↑=0.721 II 0 (2007Cl02, Coul. ex. with incident energy above Coulomb barrier). Other: τ =53 ps I (1974No08) from RDDS seems					
769.94 ^k 9	0+	42 ps 6	A FG I	discrepant. XREF: F(?). J ^{π} : (346 γ)(424 γ)(θ) in ⁷⁶ Br ε decay (1978LiZU). Also L=0 in (p,t). T _{1/2} : from $\beta \gamma$ (t) in ⁷⁶ Rb ε decay. Other: 47.3 ps <i>17</i> (2007Cl02, Coulomb excitation using GOSIA analysis).					
1034.75 9	4+	2.72 ps <i>17</i>	A CDEFG I	Q=-1.7 3 (2007Cl02) B(E2)(from 424,2 ⁺)=0.444 6 (2007Cl02 from Coulomb excitation). J^{π} : ΔJ =2, E2 γ to 2 ⁺ ; rotational band member.					

E(level) [†]	${ m J}^{\pi \#}$	T _{1/2} ‡	XREF	Comments
				T _{1/2} : weighted average of 3.05 ps <i>14</i> (2007Cl02,Coulomb excitation, free fit analysis by GOSIA code), 2.54 ps <i>6</i> (RDDS,2005Go43), 2.08 ps <i>21</i> (RDDS,1998Sk01), 3.4 ps <i>3</i> (RDDS,1984Wo10); 3.5 ps <i>14</i> (DSA,1982Pi01); 2.9 ps <i>7</i> (RDDS,1982WiZS), uncertainty in 2005Go43 was increased to 5%. Others: 5.7 ps <i>16</i> (RDDS,1974No08) seems discrepant; and 4.30 ps <i>14</i> (RDDS,1982Ke01) is effective half-life. Q: from Coulomb excitation (2007Cl02). No value is given in 2021StZZ compilation.
1221.72 ^c 7	2+	1.11 ps 7	A CDEFGHI	Q=-0.7 3 (2007Cl02) J ^π : L(p,t)=2 from 0 ⁺ . T _{1/2} : from Coulomb excitation using GOSIA analysis (2007Cl02). Other: ≈1 ps (RDDS,1982Ke01). Q: from Coulomb excitation (2007Cl02). No value is given in 2021StZZ compilation.
1598.07 8	$(0)^{+}$	<4.7 [@] ps	Α	J^{π} : E2 γ to 2 ⁺ ; possible 828-keV E0 transition to 0 ⁺ .
1687.32 ^k 8	2+	0.326 ps <i>35</i>	A FGHI	Q=+1.0 4 (2007Cl02) J^{π} : L(p,t)=2 from 0 ⁺ . $T_{1/2}$: from Coulomb excitation using GOSIA analysis (2007Cl02). Q: from Coulomb excitation (2007Cl02). Other: <4.8 ps from $\beta\gamma$ (t) in ε decay. No value is given in 2021StZZ compilation.
1733.26 ^d 10	3 ⁺	≈1 ps	A DEF	J^{π} : ΔJ=1, M1+E2 γ to 2 ⁺ , M1,E2 γ to 4 ⁺ . T _{1/2} : from RDDS (1982Ke01).
1859.7 ^{&} 4	6+	0.72 ps 8	DEF I	Q=-2.0 3 (2007Cl02) J^{π} : ΔJ =2, E2 γ to 4 ⁺ ; member of rotational band. $T_{1/2}$: weighted average (NRM) of 0.67 ps 20 (RDDS,2005Go43); 0.55 ps 21 (RDDS,1998Sk01); 0.82 ps 9 (DSA,1989Gr21); 1.04 ps 14 (RDDS,1984Wo10); 0.87 ps 8 (DSA,1982Pi01); 0.55 ps 14 (RDDS,1982WiZS); and 0.568 ps 35 (2007Cl02, Coulomb excitation, free first Carlyant projection (2007Cl03)
1957.4 ^c 3	4+	0.90 ps <i>14</i>	CDEF I	Q: from Coulomb excitation (2007Cl02). J^{π} : $\Delta J=2$, E2 γ to 2 ⁺ ; $\Delta J=1$, M1+E2 γ to 4 ⁺ . $T_{1/2}$: from Coul. ex. (2007Cl02) using GOSIA analysis. Other: <0.90 ps 28 (effective half-life from DSAM in (12 C,2n γ), 1982Pi01).
2091.49 10	$(2)^{+}$	<34 [@] ps	A GH	J^{π} : 1321.6 γ M1,E2 to 0+; L(p,t)=(2,3,4) for a 2079 <i>15</i> group would support 2+.
2104.33 <i>9</i> 2140.17 <i>16</i> 2192.50 <i>12</i>	1 ⁻ (1,2 ⁺)	16 [@] ps 5	A A A	J^{π} : E1 γ to 0 ⁺ . J^{π} : 2140.5 γ to 0 ⁺ .
2227.27 ⁸ 9	2-	25 [@] ps 6	A DEF	J^{π} : log ft =6.2 from 1 ⁻ ; E1(+M2) γ to 2 ⁺ ; 493.8 γ to 3 ⁺ can only be D,E2 from RUL.
2257.55 ^h 9 2332.70 <i>16</i>	3 ⁻ (1 ⁻)	<5.7 [@] ps	A CDEFG A	J^{π} : L(p,t)=3 from 0 ⁺ . J^{π} : 2333.2 γ to 0 ⁺ ; 1270.1 γ M1,E2 from 1 ⁻ .
2452.4 ^d 4	5+	<1.04 ps	DEF	$T_{1/2}$: effective half-life=0.76 ps 28 from DSAM in (12 C,2n γ) (1982Pi01). J^{π} : ΔJ=1, M1+E2 γ to 4 ⁺ ; ΔJ=2, E2 γ to 3 ⁺ .
2571.01 8 2581.12 <i>10</i> 2601 <i>15</i> 2622.0 ^g 4	$ \begin{array}{c} 1^{-} \\ (2^{+}) \\ (3^{-},4^{+}) \\ 4^{(-)} \end{array} $	16 [@] ps 4	A A G DEF	J^{π} : 973.0 γ E1 to 0 ⁺ . J^{π} : γ s to 4 ⁺ and 2 ⁺ ; possible β feeding from 1 ⁻ parent. J^{π} : L(p,t)=(3,4) from 0 ⁺ . J^{π} : ΔJ =2, quadrupole γ to 2 ⁻ ; ΔJ =1, dipole γ s to 4 ⁺ and 3 ⁺ ; band assignment.
2683.7 ^h 5	(5 ⁻)		DEF	J^{π} : $\Delta J=1 \gamma$ to 4^{+} ; band assignment.
2700.16 <i>13</i>	2+	<27 [@] ps	A G	J^{π} : L(p,t)=2 from 0 ⁺ .

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	XREF	Comments
2742.20 ⁱ 21 2763.2 ^c 5	(4 ⁻) (6 ⁺)		A DE DEF I	J^{π} : $\gamma \Delta J=1$ to 3^+ ; band assignment.
2774.94 12	$0^+,1,2$	22 [@] ps 10	A	J^{π} : log ft =6.4 from 1 ⁻ ; 1553.2 γ to 2 ⁺ can only be D,E2 from RUL.
2816.57 <i>18</i>	$(1,2^+)$	<13 [@] ps	A	J^{π} : 2046.5 γ to 0 ⁺ .
2845.1 ^a 5	(4 ⁺)	-	DE	
2872 15	3-	0.21	G	J^{π} : L(p,t)=3 from 0 ⁺ .
2879.4 ^{&} 5	8+	0.21 ps 2	DEF I	J^{π} : $\Delta J=2$, E2 γ to 6 ⁺ ; member of rotaional band. $T_{1/2}$: weighted average of 0.23 ps 2 (DSA,1989Gr21); 0.208 ps 21 (DSA,1982Pi01); 0.22 ps 3 (RDDS,1982WiZS); 0.173 ps 21 (from Coul. ex. using GOSIA analysis, 2007Cl02). Other: 0.31 ps 5 (DSA,1984Wo10, effective half-life).
2926.59 12	$0^-, 1^-, 2^-$	21 [@] ps 5	A	J^{π} : allowed ε decay (log ft =5.8) from 1 ⁻ ; 822.2 γ M1 to 1 ⁻ .
2944.4 ^j 6	(5^{-})	6	DE	
2970.1 <i>3</i>	$(0^+,1,2)$	<39 [@] ps	A	J^{π} : 2546 γ to 2 ⁺ ; possible ε feeding from 1 ⁻ parent.
3024.42 9	(2)-	18 [@] ps 6	Α	J ^{π} : 766.7 γ M1,E2 to 3 ⁻ ; strong ε feeding (log ft =5.9) from 1 ⁻ ; 1291.3 γ to 3 ⁺ .
3096.1 ^b 5	5(+)		DE	J^{π} : 1236y D+Q to 6 ⁺ , 2062y D to 4 ⁺ ; band assignment.
3175.2 ^g 5	6 ⁽⁻⁾		DEF	J ^{π} : 553.1 γ Q, Δ J=2 to 4 ⁽⁻⁾ ; 723.5 γ D, Δ J=1 to 5 ⁺ ; band assignment.
3242.1 3	$(1,2^+)$	<23 [@] ps	A G	J^{π} : ε feeding from 1 ⁻ (log ft =6.5); 3242.3 γ to 0 ⁺ .
3275.90 <i>21</i> 3288.4 ^h <i>5</i>	$(1^+,2)$	1.00 .76 44	A	J ^{π} : possible ε feeding from 1 ⁻ (log f t=6.9); γ to 3 ⁺ .
	(7-)	1.80 ps +76-44	DEF	J ^{π} : ΔJ =2, E2 γ to (5 ⁻) and ΔJ =1 γ to 6 ⁺ ; T _{1/2} : from DSAM in (²⁸ Si,p2n γ) (1999Mu21) (See (¹² C,2n γ) dataset). Other: 0.256 ps 42 (DSAM,1982Pi01).
3296.3 ⁱ 7	$6^{(-)}$		DE	J^{π} : 675 γ Q, ΔJ =2 to 4 ⁽⁻⁾ ; 1436 γ D to 6 ⁺ ; band assignment.
3332.7 ^d 6	7+	<0.92 ps	DEF	J ^{π} : 879.9 γ E2, Δ J=2 to 5 ⁺ ; 1474 γ D+Q to 6 ⁺ . T _{1/2} : effective half-life=0.71 ps 21 from DSAM in (12 C,2n γ) (1982Pi01).
3406.2 ^a 6	(6^+)		DE	
3421.6 5	$(0^+,1,2)$	<24 [@] ps	A	J^{π} : possible ε feedig from 1 ⁻ (log ft=7.1); γ to 2 ⁺ .
3456.1 5	$(0^-,1,2)$		A G	J^{π} : possible ε feedig from 1 ⁻ (log ft =7.2); γ to 2 ⁻ .
3571.2 ^c 8 3573.8 ^j 7	(8 ⁺)		DEF DE	
3602.81 <i>13</i>	(7 ⁻) 1 ⁻	<9.7 [@] ps		J^{π} : E1 γ to 0^+ .
3636.3 <i>3</i>	1,2 ⁽⁺⁾	<9.7 ps	A A G	J^{π} : ε feeding from 1 ⁻ (log ft =6.4); γ to 0 ⁺ .
3672.24 22	(0,1,2)		A	J^{π} : possible ε feeding from 1 ⁻ (log ft =6.8).
3781.9 ^b 8	7 ⁽⁺⁾		DE	J^{π} : 686 γ Q, ΔJ =2 to 5 ⁽⁺⁾ ; 376 γ D, ΔJ =1 to 6 ⁺ ; band assignment.
3900.9 ^g 8	8(-)	1.12 ps +28–19	DEF	J^{π} : E2, $\Delta J = 2 \gamma$ to $6^{(-)}$; 568 γ D, $\Delta J = 1$ to 7^{+} .
3978.0 <i>3</i>	1,2 ⁽⁺⁾	<17 [@] ps	A G	J^{π} : ε feeding from 1 ⁻ (log ft =6.4); 3978.2 γ to 0 ⁺ .
3986.6 <i>3</i>	1,2(+)	27 [@] ps 18	A	J^{π} : ε feeding from 1 ⁻ (log ft =6.3); 3216.3 γ to 0 ⁺ .
4026.72 17	1,2 ⁽⁺⁾	<17 [@] ps	A	J^{π} : ε feeding from 1 ⁻ (log ft =6.1); γ s to 0 ⁺ .
4068.4 11	10 ⁺	0.102 ps <i>14</i>	DEF I	T _{1/2} : from DSA method. Weighted average of 0.097 ps <i>14</i> (1982Pi01); 0.12 ps <i>3</i> (1982WiZS); 0.104 ps <i>21</i> (Coul. ex. using GOSIA analysis, 2007Cl02). Others (effective half-lives): 0.56 ps <i>11</i> (1989Gr21), 0.14 ps <i>4</i> (1984Wo10).
4072.8 ^h 6	(9-)	0.56 ps +9-8	DEF	$T_{1/2}$: from DSAM in (28 Si,p2n γ) (1999Mu21) (See (12 C,2n γ) dataset). Other: 0.35 ps δ (effective half-life, and 0.111 ps 42 from gating above, both from DSAM in (12 C,2n γ),1982Pi01).
4097.75 20	1,2 ⁽⁺⁾	<18 [@] ps	A	J^{π} : ε feeding from 1 ⁻ (log ft =6.0); 3327.6 γ to 0 ⁺ .

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	XREF	Comments
4118.3 ⁱ 12	(8-)		DE	
4217.8 ^a 9 4289.42 22	(8^+)		DE A	J^{π} : ε feeding from 1 ⁻ (log ft =5.8); 686.5 γ M1,E2 to 1 ⁻ .
4289.42 22 4380.1 ^d 8	$(0,1,2)^-$ (9^+)		A D	J. Electing from 1 (log $fi=3.0$), 000.37 M11,E2 to 1.
4403.7 12	(9) (9 ⁺)	<0.36 ps	F	E(level): this level is only from (12 C,2n γ),(24 Mg, α 2p γ) (1982Pi01, 1989Gr21). It is not reported in more recent studies with high statistics: 54 Fe(28 Si, α 2p γ) (1996Do07) and 40 Ca(40 Ca,4p γ) (2005Va09). T _{1/2} : effective half-life=0.29 ps 7 from DSAM in (12 C,2n γ)
1122 06 0	(10+)			(1982Pi01).
4433.8 ^c 9 4469.8 ^j 9	(10^{+})		DE	
4469.8 ⁷ 9 4700.5 ^b 10	(9 ⁻)		DE	
4700.5° 10 4806.48 10	(9^+) (10^-)	0.55 ps +12-16	DE DEF	
5051.3 ^h 9	(11 ⁻)	0.163 ps 27	DEF	$T_{1/2}$: from DSAM in (12 C,2n γ); weighted average of 0.180 ps +35-28 (1999Mu21) and 0.12 ps 5 (1982Pi01).
5106.3 ⁱ 16	(10^{-})		DE	
5240.5 ^a 11	$10^{(+)}$		DE	
5348.4 ^{&} 15	12+	<0.20 ps	DEF	J ^{π} : member of rotational band. T _{1/2} : effective half-life=0.166 ps 35 from DSAM in (12 C,2n γ) (1982Pi01).
5528.8 ^j 14	(11^{-})		DE	
5566.8° 14	(12^{+})		D	
5589.1 ^d 13	(11^{+})		D	
5795.7 ^b 12	11 ⁽⁺⁾		D	
5873.1 ⁸ 11	(12-)	0.173 ps +35-28	DEF	
6218.3 ^{<i>i</i>} 19 6222.3 ^{<i>h</i>} 13	(12-)	0.000	DE	T. C. DOAN: (28g; 2.) (1000M 21) (9. (12g; 2.)
	(13 ⁻)	0.090 ps 28	DEF	$T_{1/2}$: from DSAM in (28 Si,p2n γ) (1999Mu21) (See (12 C,2n γ) dataset). Other: 0.24 ps 6 (effective half-life from DSAM in (12 C,2n γ),1982Pi01).
6390.2 ^a 13	(12^{+})		D	
6605.4 ^e 18	(12 ⁺)		D	77 AT 0
6650.4 ^{&} 18	14+		DEF	J^{π} : $\Delta J=2 \gamma$ to 12 ⁺ ; member of rotational band.
6681.8 ^{<i>j</i>} 17 6937.1 ^{<i>d</i>} 17	(13 ⁻)		DE	
6937.14 17 7032.4 ^b 14	(13^+) (13^+)		D	
7032.4° 14 7034.9° 17	(13 ⁺) (14 ⁺)		D D	
7110.1 ⁸ 15	(14^{-})	<0.19 ps	DEF	
7435.3 ⁱ 21	(14^{-})	1	D	
7554.3 ^a 15	(14^{+})		D	
7583.3 ^h 17	(15^{-})	<0.14 ps	DEF	
7606.4 ^e 21	(14^{+})		D	
$7870.9^{j} 20$	(15-)		D	T . T . T . T . T . T . T . T . T . T .
8000.4 21	16+		DEF	J^{π} : $\Delta J=2 \gamma$ to 14 ⁺ ; member of rotational band.
8432.1 ^d 19 8521.1 ^g 18	(15^+) (16^-)		D DEF	
8666.9 ^c 20	(16) (16 ⁺)		DEF D	
8717.4 ⁱ 24	(16^{-})		D	
8798.5 ^e 23	(16^{+})		D	

E(level) [†]	$J^{\pi \#}$	XREF	Comments
8829.3 ^a 18	(16^+)	D	
9117.4 ^h 20	(17^{-})	DEF	
9217.9 ^j 22	(17^{-})	D	
9400.5 ^{&} 23	18 ⁺	DEF	J^{π} : E2, $\Delta J=2 \gamma$ to 16^{+} ; member of rotational band.
10050.1 ^d 22	(17^{+})	D	, , , , , , , , , , , , , , , , , , ,
10059.18 21	(18^{-})	DEF	
10135 ⁱ 3	(18-)	D	
10139.5 ^e 25	(18^{+})	D	
10470.9 ^c 22	(18^{+})	D	
10640.4 ^h 22	(19^{-})	D F	
10773.9 ^j 24	(19^{-})	D	
10936.5 ^{&} 25	20+	D F	J^{π} : E2, $\Delta J=2 \gamma$ to 18^{+} ; member of rotational band.
11655.1 ^g 23	(20^{-})	D F	
11664 ^e 3	(20^+)	D	
11719 ⁱ 3	(20^{-})	D	
11785.1^{d} 24	(19^+)	D	
12254.4 ^h 24	(21^{-})	D F	
$12397.9^{\circ}24$	(20^+)	D	
12493 ^j 3 12695 ^{&} 3	(21 ⁻)	D D	IT. F2 AI 2 20+
12695 & 3 13352.1 ⁸ 25	22 ⁺ (22 ⁻)	D F D F	J^{π} : E2, $\Delta J=2 \gamma$ to 20^{+} ; member of rotational band.
13352.18 23 13388 ^e 3	(22^{+})	D F D	
$13500^{i} 3$	(22^{-})	D	
13613 ^d 3	(21^+)	D	
14026 ^h 3	(23^{-})	D	
$14020 \ 3$ $14440^{j} \ 3$	(23^{-})	D	
14751 & 3	24+	D F	J^{π} : E2, $\Delta J=2 \gamma$ to 22^{+} ; member of rotational band.
15225 ⁸ 3	(24^{-})	D F	3. L2, L3-2 y to 22, inclined of foldifold balla.
15346 ^e 3	(24^{+})	D	
15503 <i>i</i> 3	(24^{-})	D	
16009 ^h 3	(25^{-})	D	
16650 ^j 3	(25^{-})	D	
17157 <mark>&</mark> 3	26+	D	J^{π} : E2, $\Delta J=2 \gamma$ to 24^{+} ; member of rotational band.
17327 <mark>8</mark> 3	(26^{-})	D	
17550 ^e 4	(26^{+})	D	
17859 ⁱ 4	(26^{-})	D	
18256 ^h 3	(27^{-})	D	
19172 ^j 4	(27^{-})	D	
19741 <i>g</i> 3	(28-)	D	
19950 & 4	28 ⁺	D	J^{π} : E2, $\Delta J=2 \gamma$ to 26^{+} ; member of rotational band.
20045 ^e 4	(28 ⁺)	D	
20538^{i} 4	(28-)	D	
20815 ^h 4 22583 ^g 4	(29^{-})	D	
225838 4 22790 ^e 4	(30^{-}) (30^{+})	D D	
23157 & 4	(30^{+})	D	J^{π} : possible member of rotaional band.
$23737^{h} 4$ $23742^{h} 4$	(30°) (31^{-})	D D	3. possible inclined of fotatolial balla.
23142 4	(31)	ע	

E(level) [†]	$J^{\pi \#}$	XREF	E(level) [†]	$J^{\pi \#}$	XREF
25868 ⁸ 4	(32 ⁻)	D	4847.0+x ^f 20		D
27083 ^h 4	(33^{-})	D	6472.1+x ^f 23		D
$_{\mathbf{X}}f$	(11^{+})	D	8309.1+x ^f 25	(23^{+})	D
966.0+x ^f 10	(13^{+})	D	$10382 + x^{f} 3$	(25^{+})	D
$2097.0+x^{f}$ 15	(15^{+})	D	12696+x ^f 3	(27^{+})	D
3390.0+x ^f 18	(17^{+})	D	15234+x ^f 3	(29^+)	D

[†] From a least squares fit to $E\gamma$ data.

[‡] From DSAM data in (²⁸Si,p²ny) (1999Mu²1) (see (¹²C,2ny) dataset), unless otherwise stated.

[#] For low-spin (J<4), assignments are from ⁷⁶Rb ε decay based on transition multipolarities, log ft values, and decay pattern. For high-spin (J≥4) levels, assignments are based on transition multipolarities from $\gamma(\theta)$ and $\gamma\gamma(\theta)$ (DCO) values, and band structures.

[@] From $\beta \gamma(t)$ data in ⁷⁶Rb ε decay.

[&]amp; Band(A): g.s. band. Terminating state at 30⁺ is proposed (2005Va09) with configuration= $\pi[((g_{9/2})_8^2)((f_{5/2},p_{3/2})_6^6)]_{14}$ $\otimes \nu[((g_{9/2})_{12}^4)((f_{5/2},p_{3/2})_4^8)]_{16}$ and for 26⁺ state: $\pi[((g_{9/2})_8^2)((f_{5/2},p_{3/2})_6^4)]_{12} \otimes \nu[((g_{9/2})_{12}^4)((f_{5/2},p_{3/2})_8^2)]_{14}$. O(transition) decreases from 2.3 to 1.8 from 18⁺ to 30⁺. Band crossings are attributed to alignments of pairs of $g_{9/2}$.

Q(transition) decreases from 2.3 to 1.8 from 18^+ to 30^+ . Band crossings are attributed to alignments of pairs of $g_{9/2}$ protons and neutrons (1989Gr21). Q(intrinsic)=2.90 4 (1989Gr21).

^a Band(B): Band based on $4^+, \alpha=0$.

^b Band(b): Band based on $5^+, \alpha=1$.

^c Band(C): Band based on $2^+, \alpha=0$.

^d Band(c): Band based on $3^+, \alpha=1$.

^e Band(D): Band based on $12^+, \alpha=0$.

^f Band(d): Band based on $11^+, \alpha=1$.

^g Band(E): $\pi 3/2[431] \otimes \pi 3/2[312], \alpha = 0$. Q(transition) decreases from 2.6 to 1.8 from 16⁻ to 30⁻. Terminating state at 32⁻ is proposed (2005 Va09) with configuration= $\pi [((g_{9/2})_{21/2}^3)((f_{5/2},p_{3/2})_{11/2}^5)]_{16} \otimes \nu [((g_{9/2})_{12}^4)((f_{5/2},p_{3/2})_4^6)]_{16}$.

^h Band(e): $\pi 3/2[431] \otimes \pi 3/2[312], \alpha=1$. Q(transition) decreases from 2.9 to 2.2 from 17⁻ to 31⁻.

ⁱ Band(F): $v3/2[301] \otimes v5/2[422], \alpha = 0$.

^j Band(f): $v3/2[301] \otimes v5/2[422], \alpha=1$.

^k Band(G): Band based on 770, 0⁺.

Additional information 2.

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ} #	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.&	δ &	$lpha^\dagger$	$I_{(\gamma+ce)}$	Comments
424.05	2+	424.0 <i>I</i>	100	0.0 0+	E2		0.00535 8		B(E2)(W.u.)=79.3 +30-28 α (K)=0.00473 7; α (L)=0.000529 7; α (M)=8.55×10 ⁻⁵ 12
769.94	0+	345.9 <i>1</i>	100 [@] 3	424.05 2+	E2		0.01045 <i>15</i>		α (N)=8.46×10 ⁻⁶ <i>12</i> B(E2)(W.u.)=141 +24– <i>18</i> α (K)=0.00922 <i>13</i> ; α (L)=0.001049 <i>15</i> ; α (M)=0.0001696 24
		770		0.0 0+	(E0)			0.26	$\alpha(N)=1.666\times10^{-5} 23$ $\rho^2(E0,0^+ \text{ to } 0^+)=0.079 \ 11; \ X(E0/E2)=0.020 \ 1$ (2005Gi17). $q_K^2(E0/E2)=0.203 \ 8, \ X(E0/E2)=0.0188 \ 12,$
1034.75	4+	610.6 <i>1</i>	100	424.05 2+	E2		1.77×10 ⁻³ 3		ρ^2 (E0)=0.077 12 (2022Ki03 evaluation). B(E2)(W.u.)=128.0 +86-75 α (K)=0.001570 22; α (L)=0.0001716 24; α (M)=2.78×10 ⁻⁵ 4 α (N)=2.77×10 ⁻⁶ 4
1221.72	2+	797.6 1	100 [@] 3	424.05 2+	M1+E2	+0.2 1	0.000755 12		B(M1)(W.u.)=0.0222 17; B(E2)(W.u.)=1.9 +22-14 α (K)=0.000671 10; α (L)=7.12×10 ⁻⁵ 11; α (M)=1.153×10 ⁻⁵ 18 α (N)=1.168×10 ⁻⁶ 18 Mult.,δ: from ce data in ⁷⁶ Rb ε decay and γ (θ) in (12 C,2n γ) Large M1 component seems inconsistent with systematics of δ values for second 2 ⁺ to first 2 ⁺ transitions.
		1221.6 <i>I</i>	69 [@] 4	0.0 0+	E2		0.000328 5		B(E2)(W.u.)= $4.00 + 3I - 28$ α (K)= $0.000281 \ 4$; α (L)= $2.98 \times 10^{-5} \ 4$; α (M)= $4.82 \times 10^{-6} \ 7$ α (N)= $4.87 \times 10^{-7} \ 7$; α (IPF)= $1.163 \times 10^{-5} \ 16$
1598.07	(0)+	376.4 1	8.1 @ 4	1221.72 2+	E2		0.00788 11		B(E2)(W.u.)>58 α (K)=0.00696 10; α (L)=0.000786 11; α (M)=0.0001271 18 α (N)=1.252×10 ⁻⁵ 18
		828		769.94 0 ⁺	(E0)			0.0039	$q_K^2(E0/E2)=0.11\ 2$, $X(E0/E2)=0.140\ 26$, $\rho^2(E0)<0.60$ (2022Ki03 evaluation).
		1174.0 <i>1</i>	100 3	424.05 2+	E2		0.000350 5		B(E2)(W.u.)>2.6

γ (⁷⁶Kr) (continued)

						, ·		
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	Ι _γ #	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.&	δ&	α^{\dagger}	Comments
1687.32	2+	466.0 3	4.6 [@] 16	1221.72 2+	[M1,E2]		0.0032 7	$\alpha(K)$ =0.000306 4; $\alpha(L)$ =3.25×10 ⁻⁵ 5; $\alpha(M)$ =5.26×10 ⁻⁶ 7 $\alpha(N)$ =5.31×10 ⁻⁷ 7; $\alpha(IPF)$ =5.02×10 ⁻⁶ 7 $\alpha(K)$ =0.0029 6; $\alpha(L)$ =0.00032 7; $\alpha(M)$ =5.1×10 ⁻⁵ 12 $\alpha(N)$ =5.1×10 ⁻⁶ 12 B(M1)(W.u.)=0.0187 +70-65 if M1, B(E2)(W.u.)=116 +43-41 if E2.
		652.6 1	9.2 [@] 3	1034.75 4+	[E2]		1.47×10 ⁻³ 2	$\alpha(K)$ =0.001303 18; $\alpha(L)$ =0.0001419 20; $\alpha(M)$ =2.296×10 ⁻⁵ 32 $\alpha(N)$ =2.297×10 ⁻⁶ 32 B(E2)(W.u.)=43.1 +57-47
		917.4 <i>1</i>	100 [@] 6	769.94 0+	[E2]		0.000608 9	$\alpha(K)=0.000540 \ 8; \ \alpha(L)=5.79\times10^{-5} \ 8; \ \alpha(M)=9.37\times10^{-6} \ 13$ $\alpha(N)=9.42\times10^{-7} \ 13$ $\alpha(E)=0.000540 \ 8; \ \alpha(L)=5.79\times10^{-5} \ 8; \ \alpha(M)=9.37\times10^{-6} \ 13$
		1263.2 2	21.2 [@] 7	424.05 2+	M1,E2		0.000308 7	$\alpha(K)$ =0.000258 5; $\alpha(L)$ =2.73×10 ⁻⁵ 6; $\alpha(M)$ =4.42×10 ⁻⁶ 9 $\alpha(N)$ =4.47×10 ⁻⁷ 9; $\alpha(IPF)$ =1.73×10 ⁻⁵ 23 B(M1)(W.u.)=0.00433 +57-47 if M1, B(E2)(W.u.)=3.65 +48-40 if E2.
		1687.1 2	28.8 [@] 10	0.0 0+	[E2]		0.000327 5	$\alpha(K)$ =0.0001454 20; $\alpha(L)$ =1.531×10 ⁻⁵ 21; $\alpha(M)$ =2.476×10 ⁻⁶ 35 $\alpha(N)$ =2.506×10 ⁻⁷ 35; $\alpha(IPF)$ =0.0001633 23
1733.26	3+	511.6 2	20 [@] 12	1221.72 2+	[M1,E2]		0.0025 5	B(E2)(W.u.)=1.17 +15-13 α (K)=0.0022 4; α (L)=0.00024 5; α (M)=3.9×10 ⁻⁵ 8 α (N)=3.9×10 ⁻⁶ 8
		698.4 <i>1</i>	8.7 [@] 8	1034.75 4+	M1,E2		0.00111 11	B(M1)(W.u.) \approx 0.026 if M1, B(E2)(W.u.) \approx 1.3×10 ² if E2. α (K)=0.00099 10; α (L)=0.000106 11; α (M)=1.72×10 ⁻⁵ 18 α (N)=1.73×10 ⁻⁶ 18 I_{γ} : 18.2 in ⁴⁰ Ca(⁴⁰ Ca,4p γ).
		1309.3 <i>1</i>	100 4	424.05 2+	M1+E2	+0.38 4	0.000292 4	B(M1)(W.u.)≈0.0044 if M1, B(E2)(W.u.)≈12 if E2. B(M1)(W.u.)≈0.0067; B(E2)(W.u.)≈0.75 α (K)=0.0002381 33; α (L)=2.508×10 ⁻⁵ 35; α (M)=4.06×10 ⁻⁶ 6
1859.7	6+	824.4 7	100	1034.75 4+	E2		0.000792 11	$\alpha(N)=4.11\times10^{-7}$ 6; $\alpha(IPF)=2.39\times10^{-5}$ 4 B(E2)(W.u.)=108 +14-11 $\alpha(K)=0.000703$ 10; $\alpha(L)=7.57\times10^{-5}$ 11; $\alpha(M)=1.225\times10^{-5}$ 17
1957.4	4+	736.0 5	57 6	1221.72 2+	E2		1.06×10 ⁻³ 2	$\alpha(N)=1.230\times10^{-6}\ 17$ B(E2)(W.u.)=46.6 +99-75 $\alpha(K)=0.000942\ 13;\ \alpha(L)=0.0001019\ 14;\ \alpha(M)=1.649\times10^{-5}\ 23$ $\alpha(N)=1.654\times10^{-6}\ 23$
		922.6 5	100 10	1034.75 4+	M1+E2	-0.84 5	0.000570 8	I _y : 81.6 in ⁴⁰ Ca(⁴⁰ Ca,4py). B(M1)(W.u.)=0.0098 +20-15; B(E2)(W.u.)=10.9 +22-18

 ∞

γ (⁷⁶Kr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.&	$lpha^\dagger$	Comments
1957.4	4+	1532.9 5	29 3	424.05 2+	[E2]	0.000295 4	$\alpha(K)=0.000507\ 7;\ \alpha(L)=5.39\times10^{-5}\ 8;\ \alpha(M)=8.73\times10^{-6}\ 13$ $\alpha(N)=8.81\times10^{-7}\ 13$ $B(E2)(W.u.)=0.61\ +14-10$ $\alpha(K)=0.0001755\ 25;\ \alpha(L)=1.851\times10^{-5}\ 26;\ \alpha(M)=2.99\times10^{-6}\ 4$ $\alpha(N)=3.03\times10^{-7}\ 4;\ \alpha(IPF)=9.75\times10^{-5}\ 14$
2091.49	(2)+	403.9 3	20.7 [@] 11	1687.32 2 ⁺	[M1,E2]	0.0049 14	$\alpha(K) = 0.0043 \ 12; \ \alpha(L) = 4.8 \times 10^{-4} \ 14; \ \alpha(M) = 7.8 \times 10^{-5} \ 23$ $\alpha(N) = 7.7 \times 10^{-6} \ 22$ $\alpha(M) = 7.8 \times 10^{-4} \ 14; \ \alpha(M) = 7.8 \times 10^{-5} \ 23$ $\alpha(M) = 7.8 \times 10^{-5} \ 23$
		493.4 1	14 [@] 5	1598.07 (0)+	[E2]	0.00333 5	$\alpha(K)=0.00294$ 4; $\alpha(L)=0.000326$ 5; $\alpha(M)=5.27\times10^{-5}$ 7 $\alpha(N)=5.24\times10^{-6}$ 7 B(E2)(W.u.)>1.3
		870 ^a		1221.72 2+	M1,E2	0.00066 4	$\alpha(K)=0.000584 \ 32; \ \alpha(L)=6.2\times10^{-5} \ 4; \ \alpha(M)=1.01\times10^{-5} \ 6$ $\alpha(N)=1.02\times10^{-6} \ 6$
		1321.6 3	100 [@] 3	769.94 0+	(E2)	0.000300 4	B(E2)(W.u.)>0.096 α(K)=0.0002376 33; α(L)=2.515×10 ⁻⁵ 35; α(M)=4.07×10 ⁻⁶ 6 α(N)=4.11×10 ⁻⁷ 6; α(IPF)=3.27×10 ⁻⁵ 5 Mult.: α(K)exp from 2005Gi17 in ⁷⁶ Rb ε decay gives M1,E2; ΔJ^{π} requires E2.
		1667.6 <i>3</i>	78.7 [@] 6	424.05 2+	[M1,E2]	0.000308 15	$\alpha(K)=0.0001484\ 2I;\ \alpha(L)=1.560\times10^{-5}\ 23;\ \alpha(M)=2.52\times10^{-6}\ 4$ $\alpha(N)=2.56\times10^{-7}\ 4;\ \alpha(IPF)=0.000141\ I4$ B(M1)(W.u.)>4.9×10 ⁻⁵ if M1, B(E2)(W.u.)>0.024 if E2.
2104.33	1-	417.1 <i>I</i>	2.0 2	1687.32 2+	[E1]	1.53×10 ⁻³ 2	$\alpha(K)$ =0.001362 19; $\alpha(L)$ =0.0001447 20; $\alpha(M)$ =2.338×10 ⁻⁵ 33 $\alpha(N)$ =2.349×10 ⁻⁶ 33 B(E1)(W.u.)=4.2×10 ⁻⁶ +20−11
		506.0 9	7 3	1598.07 (0)+	[E1]	0.000944 14	$\alpha(K)$ =0.000839 12; $\alpha(L)$ =8.89×10 ⁻⁵ 13; $\alpha(M)$ =1.437×10 ⁻⁵ 21 $\alpha(N)$ =1.446×10 ⁻⁶ 21
		882.4 2	22 5	1221.72 2+	[E1]	0.000273 4	B(E1)(W.u.)=8.3×10 ⁻⁶ +55-36 α (K)=0.0002430 34; α (L)=2.56×10 ⁻⁵ 4; α (M)=4.13×10 ⁻⁶ 6 α (N)=4.17×10 ⁻⁷ 6
		1334.4 3	6.3 23	769.94 0+	[E1]	0.000261 4	B(E1)(W.u.)=4.9×10 ⁻⁶ +25-15 α (K)=0.0001124 16; α (L)=1.177×10 ⁻⁵ 16; α (M)=1.902×10 ⁻⁶ 27 α (N)=1.926×10 ⁻⁷ 27; α (IPF)=0.0001343 19
		1680.3 2	100 5	424.05 2+	E1	0.000478 7	B(E1)(W.u.)= $4.1\times10^{-7} + 25-17$ B(E1)(W.u.)= $3.2\times10^{-6} + 15-8$ $\alpha(K)=7.68\times10^{-5}$ 11; $\alpha(L)=8.01\times10^{-6}$ 11; $\alpha(M)=1.295\times10^{-6}$ 18
		2104.3 5	16.0 5	0.0 0+	[E1]	0.000761 11	α (N)=1.312×10 ⁻⁷ 18; α (IPF)=0.000391 5 B(E1)(W.u.)=2.6×10 ⁻⁷ +12-7

γ (⁷⁶Kr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	${\rm I}_{\gamma}^{\#}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.&	$\delta^{\&}$	$lpha^\dagger$	Comments
								$\alpha(K)=5.43\times10^{-5} 8$; $\alpha(L)=5.66\times10^{-6} 8$; $\alpha(M)=9.14\times10^{-7} 13$ $\alpha(N)=9.27\times10^{-8} 13$; $\alpha(IPF)=0.000700 10$
2140.17 2192.50	$(1,2^+)$	918.5 <i>7</i> 2140.5 2 1768.4 2	100 <i>33</i> 26 <i>3</i> 100	1221.72 2 ⁺ 0.0 0 ⁺ 424.05 2 ⁺				<i>u</i> (1)=5.27×10 13, <i>u</i> (11)=0.000700 10
2227.27	2-	493.8 7	6.4 [@] 18	1733.26 3 ⁺	[E1]		1.00×10 ⁻³ 1	$\alpha(K)$ =0.000890 13; $\alpha(L)$ =9.44×10 ⁻⁵ 14; $\alpha(M)$ =1.526×10 ⁻⁵ 22 $\alpha(N)$ =1.535×10 ⁻⁶ 22
		540.0 <i>I</i>	2.2 [@] 2	1687.32 2+	[E1]		0.000806 11	B(E1)(W.u.)= $6.3\times10^{-6} +26-21$ $\alpha(K)=0.000717 \ 10; \ \alpha(L)=7.59\times10^{-5} \ 11;$ $\alpha(M)=1.227\times10^{-5} \ 17$ $\alpha(N)=1.235\times10^{-6} \ 17$
		1005.5 1	19.1 [@] 6	1221.72 2+	[E1]		0.0002113 30	B(E1)(W.u.)= $1.65 \times 10^{-6} + 52 - 36$ $\alpha(K)=0.0001881 \ 26; \ \alpha(L)=1.975 \times 10^{-5} \ 28;$ $\alpha(M)=3.19 \times 10^{-6} \ 4$ $\alpha(N)=3.23 \times 10^{-7} \ 5$
		1803.2 <i>1</i>	100 [@] 3	424.05 2+	E1(+M2)	0.33 +18-33	0.000540 23	B(E1)(W.u.)= $2.22 \times 10^{-6} + 67 - 45$ B(E1)(W.u.)= $1.82 \times 10^{-6} + 91 - 56$; B(M2)(W.u.)< 0.79 α (K)= $8.6 \times 10^{-5} 19$; α (L)= $9.0 \times 10^{-6} 20$; α (M)= $1.45 \times 10^{-6} 32$
2257.55	3-	1035.5 1	11.8 [@] 9	1221.72 2+	[E1]		0.0001998 28	$\alpha(N)=1.47\times10^{-7}$ 33; $\alpha(IPF)=0.00044$ 4 $\alpha(K)=0.0001778$ 25; $\alpha(L)=1.867\times10^{-5}$ 26; $\alpha(M)=3.02\times10^{-6}$ 4 $\alpha(N)=3.05\times10^{-7}$ 4 B(E1)(W.u.)>4.2×10 ⁻⁶ E _{γ} : level-energy difference=1035.8, energy uncertaint
		1222.6 6	26 [@] 15	1034.75 4+	[E1]		0.0002066 29	is probably underestimated. $\alpha(K)=0.0001311\ I8;\ \alpha(L)=1.373\times10^{-5}\ I9;$ $\alpha(M)=2.220\times10^{-6}\ 3I$ $\alpha(N)=2.246\times10^{-7}\ 32;\ \alpha(IPF)=5.94\times10^{-5}\ 9$
		1833.6 <i>I</i>	100 [@] 3	424.05 2+	E1(+M2)	0.12 +28-12	0.000577 29	B(E1)(W.u.)>3.1×10 ⁻⁶ B(E1)(W.u.)>6.0×10 ⁻⁶ α (K)=6.9×10 ⁻⁵ 21; α (L)=7.2×10 ⁻⁶ 22; α (M)=1.17×10 ⁻⁶ 35
2332.70	(1-)	1908.5 2 2333.2 <i>4</i>	100 <i>5</i> 31 <i>8</i>	424.05 2 ⁺ 0.0 0 ⁺				$\alpha(N)=1.2\times10^{-7} 4$; $\alpha(IPF)=0.00050 5$

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	$\mathrm{E}_f \qquad \mathrm{J}_{\scriptscriptstyle f}^\pi$	Mult.&	δ&	$lpha^\dagger$	Comments
2452.4	5 ⁺	719.9 10	50	1733.26 3+	E2		1.13×10 ⁻³ 2	B(E2)(W.u.)>37 α (K)=0.000998 <i>14</i> ; α (L)=0.0001082 <i>16</i> ; α (M)=1.751×10 ⁻⁵ <i>25</i>
		1417.2 5	100	1034.75 4+	M1+E2	+4 2	0.000288 5	$\alpha(N)=1.755\times10^{-6} 25$ I_{γ} : from 40 Ca(40 Ca,4p $_{\gamma}$). B(M1)(W.u.)>1.2×10 ⁻⁴ ; B(E2)(W.u.)>2.3 $\alpha(K)=0.0002055 29$; $\alpha(L)=2.170\times10^{-5} 3I$; $\alpha(M)=3.51\times10^{-6} 5$
2571.01	1-	378.5 <i>I</i>	0.70 3	2192.50	M1+E2	0.9 +8-5	0.0057 11	$\alpha(M)=3.51\times 10^{-7}$ 5; $\alpha(IPF)=5.66\times 10^{-5}$ 19 B(M1)(W.u.)=7.8×10 ⁻⁵ +51-43; B(E2)(W.u.)=0.59 +46-42 $\alpha(K)=0.0051$ 10; $\alpha(L)=0.00056$ 12; $\alpha(M)=9.1\times 10^{-5}$ 19 $\alpha(N)=9.1\times 10^{-6}$ 18
		466.9 13	0.3 1	2104.33 1	[M1,E2]		0.0032 7	$\alpha(K)=0.0029 \ 6; \ \alpha(L)=0.00031 \ 7; \ \alpha(M)=5.1\times10^{-5} \ 12$ $\alpha(N)=5.1\times10^{-6} \ 12$ $\alpha(M)=0.00031 \ 7; \ \alpha(M)=0.00031 \ $
		479.5 1	2.25 8	2091.49 (2)+	E1(+M2)	<0.17	0.00117 10	+98-73 if E2. B(E1)(W.u.)=3.8×10 ⁻⁶ +17-11 α (K)=0.00104 9; α (L)=0.000111 10; α (M)=1.80×10 ⁻⁵ 16 α (N)=1.81×10 ⁻⁶ 16
		883.6 <i>1</i>	12.5 4	1687.32 2+	E1		0.000272 4	B(M2)(W.u.)<3.1 upper limit exceeds RUL=1. B(E1)(W.u.)=3.4×10 ⁻⁶ +12-7 α (K)=0.0002423 34; α (L)=2.55×10 ⁻⁵ 4; α (M)=4.12×10 ⁻⁶ 6
		973.0 <i>I</i>	6.1 2	1598.07 (0)+	E1		0.0002251 32	$\alpha(N)=4.16\times10^{-7} 6$ B(E1)(W.u.)=1.24×10 ⁻⁶ +42-26 $\alpha(K)=0.0002004$ 28; $\alpha(L)=2.105\times10^{-5}$ 29; $\alpha(M)=3.40\times10^{-6}$ 5
		1349.3 <i>I</i>	2.22 7	1221.72 2+	[E1]		0.000268 4	$\alpha(N)=3.40 \times 10^{-7} 5$ $\alpha(K)=0.0001103 \ 15; \ \alpha(L)=1.154 \times 10^{-5} \ 16;$ $\alpha(M)=1.866 \times 10^{-6} \ 26$ $\alpha(N)=1.889 \times 10^{-7} \ 26; \ \alpha(IPF)=0.0001437 \ 20$
		2147.2 3	1.39 7	424.05 2+	[E1]		0.000788 11	B(E1)(W.u.)=1.70×10 ⁻⁷ +58-35 α (K)=5.27×10 ⁻⁵ 7; α (L)=5.49×10 ⁻⁶ 8; α (M)=8.87×10 ⁻⁷
		2571.1 2	100 4	0.0 0+	[E1]		1.04×10 ⁻³ 2	$\alpha(N)=8.99\times10^{-8}\ 13;\ \alpha(IPF)=0.000729\ 10$ $B(E1)(W.u.)=2.63\times10^{-8}\ +9I-55$ $\alpha(K)=4.07\times10^{-5}\ 6;\ \alpha(L)=4.23\times10^{-6}\ 6;\ \alpha(M)=6.83\times10^{-7}$ 10

E_i (level)	\mathtt{J}_{i}^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E_f	${\rm J}^\pi_f$	Mult.&	δ&	$lpha^\dagger$	Comments
									$\alpha(N)=6.93\times10^{-8}\ 10;\ \alpha(IPF)=0.000999\ 14$
									B(E1)(W.u.)= $1.10\times10^{-6} +37-22$
2581.12	(2^{+})	1359.4 <i>1</i>	100 4	1221.72	2+				()(,
		1546.1 <i>3</i>	47 19	1034.75					
2622.0	$4^{(-)}$	364		2257.55					E_{γ} : from ⁵⁴ Fe(²⁸ Si, α 2p γ) only.
		395.2 6	26	2227.27		Q			<i>y</i>
		888 <i>1</i>	60	1733.26		Ď			
		1588 <i>1</i>	100	1034.75	4+	D			
2683.7	(5^{-})	426 <i>1</i>	6.7	2257.55	3-				
		1649 <i>1</i>	100	1034.75	4+	D+Q	+0.04 3		
2700.16	2+	1665.6 5	25 [@] 4	1034.75	4+	[E2]		0.000321 5	$\alpha(\rm K){=}0.0001491$ 21; $\alpha(\rm L){=}1.570{\times}10^{-5}$ 22; $\alpha(\rm M){=}2.54{\times}10^{-6}$ 4 $\alpha(\rm N){=}2.57{\times}10^{-7}$ 4; $\alpha(\rm IPF){=}0.0001539$ 22 B(E2)(W.u.)>0.014
		2276.6 4	100 [@] 5	424.05	2+	[M1,E2]		0.000510 28	$\alpha(K)=8.34\times10^{-5}$ 12; $\alpha(L)=8.73\times10^{-6}$ 13; $\alpha(M)=1.412\times10^{-6}$ 20 $\alpha(N)=1.432\times10^{-7}$ 20; $\alpha(IPF)=0.000417$ 28
									$B(M1)(W.u.) > 5.3 \times 10^{-5}$ if M1, $B(E2)(W.u.) > 0.014$ if E2.
2742.20	(4^{-})	483		2257.55	3-				E_{γ} : from 54 Fe(28 Si, α 2p γ) only.
		1009.0 2	100	1733.26	3 ⁺	D			
2763.2	(6^+)	805.7 <i>5</i>	100		4+	Q			
2774.94	$0^+,1,2$	1553.2 <i>I</i>	56 <i>3</i>	1221.72					
		2350.9 <i>4</i>	100 4	424.05					
2816.57	$(1,2^+)$	2046.5 2	30 2	769.94					
		2392.8 4	100 3	424.05	2+				
		2816.6 <i>4</i>	<56	0.0					
2845.1	(4^{+})	223 1	7.7	2622.0					
		1112 <i>I</i>	100	1733.26		D+Q			
2070 4	0.4	1811 <i>I</i>	7.7	1034.75		D		0.000.452.5	D/D2\/W_\ 100 10 11
2879.4	8+	1019.7 2	100	1859.7	ρ,	E2		0.000473 7	B(E2)(W.u.)=128 +13-11
									$\alpha(K) = 0.000421 \text{ 6}; \ \alpha(L) = 4.49 \times 10^{-5} \text{ 6}; \ \alpha(M) = 7.26 \times 10^{-6} 10$
2026.50	0-1-6	255 6 3	100.2	0571.01		1.61/ EG	0.10	0.00404.6	$\alpha(N)=7.32\times10^{-7}\ 10$
2926.59	0-,1-,2-	355.6 <i>1</i>	100 3	2571.01	1-	M1(+E2)	< 0.12	0.00484 8	B(M1)(W.u.)=0.0203 +75-47; B(E2)(W.u.)<4.2
									$\alpha(K)=0.00429\ 7;\ \alpha(L)=0.000464\ 7;\ \alpha(M)=7.52\times10^{-5}\ 12$
									$\alpha(N)=7.58\times10^{-6}\ 12$
		822.2 2	14 4	2104.33	1-	M1		0.000703 10	$\alpha(K)=0.000625$ 9; $\alpha(L)=6.63\times10^{-5}$ 9; $\alpha(M)=1.073\times10^{-5}$ 15
									$\alpha(N)=1.086\times10^{-6} \ 15$
									$B(M1)(W.u.)=2.31\times10^{-4}+95-72$
2944.4	(5^{-})	261 <i>1</i>	39	2683.7	(5^{-})	D			
		987		-,-,.	4+				E_{γ} : from 54 Fe(28 Si, α 2p γ) only.
		1084 <i>I</i>	100			D			
2970.1	$(0^+,1,2)$	2546.0 <i>3</i>	100	424.05	2+				

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.&	δ&	$lpha^\dagger$	Comments
3024.42	(2)-	324.3 1	14.5 8	2700.16 2+	[E1]		0.00299 4	$\alpha(K)=0.00265 \ 4; \ \alpha(L)=0.000283 \ 4; \ \alpha(M)=4.56\times10^{-5} \ 6$ $\alpha(N)=4.57\times10^{-6} \ 6$
		443.3 <i>1</i>	5.0 5	2581.12 (2 ⁺)	[E1]		1.31×10 ⁻³ 2	B(E1)(W.u.)=3.4×10 ⁻⁵ +17-9 α (K)=0.001166 16; α (L)=0.0001238 17; α (M)=2.000×10 ⁻⁵ 28 α (N)=2.010×10 ⁻⁶ 28
		453.5 2	100 4	2571.01 1-	M1(+E2)	0.3 3	0.00282 30	B(E1)(W.u.)= $4.6\times10^{-6} +24-12$ B(M1)(W.u.)= $0.0046 +33-20$; B(E2)(W.u.)< 14 α (K)= $0.00251 \ 26$; α (L)= $0.000270 \ 31$; α (M)= $4.4\times10^{-5} \ 5$ α (N)= $4.4\times10^{-6} \ 5$
		766.7 1	56.6 17	2257.55 3-	M1,E2		0.00089 7	$\alpha(K)$ =0.00079 6; $\alpha(L)$ =8.4×10 ⁻⁵ 7; $\alpha(M)$ =1.36×10 ⁻⁵ 12 $\alpha(N)$ =1.37×10 ⁻⁶ 11 B(M1)(W.u.)=5.8×10 ⁻⁴ +30–15 if M1, B(E2)(W.u.)=1.34 +69–34 if E2.
		920.2 1	16.8 8	2104.33 1	M1,E2		0.000578 27	$\alpha(K)$ =0.000513 24; $\alpha(L)$ =5.47×10 ⁻⁵ 28; $\alpha(M)$ =8.9×10 ⁻⁶ 5 $\alpha(N)$ =8.9×10 ⁻⁷ 4 B(M1)(W.u.)=1.00×10 ⁻⁴ +52-26 if M1, B(E2)(W.u.)=0.159 +82-41 if E2.
		1291.3 3	8.5 13	1733.26 3+	[E1]		0.0002397 34	$\alpha(K)$ =0.0001190 17; $\alpha(L)$ =1.246×10 ⁻⁵ 17; $\alpha(M)$ =2.014×10 ⁻⁶ 28 $\alpha(N)$ =2.039×10 ⁻⁷ 29; $\alpha(IPF)$ =0.0001060 15 B(E1)(W.u.)=3.2×10 ⁻⁷ +17-9
		2600.2 4	61 2	424.05 2+	[E1]		$1.06 \times 10^{-3} \ 2$	$\alpha(K)=4.00\times10^{-5}$ 6; $\alpha(L)=4.16\times10^{-6}$ 6; $\alpha(M)=6.72\times10^{-7}$ 9 $\alpha(N)=6.82\times10^{-8}$ 10; $\alpha(IPF)=0.001016$ 14 $\alpha(M)=6.82\times10^{-7}$ 114–7
3096.1	5 ⁽⁺⁾	252 <i>I</i> 354 <i>I</i> 412 <i>I</i> 1236 <i>I</i> 1363 <i>I</i>	100 20 53 53 13	2845.1 (4 ⁺) 2742.20 (4 ⁻) 2683.7 (5 ⁻) 1859.7 6 ⁺ 1733.26 3 ⁺	D D D D+Q			
3175.2	6 ⁽⁻⁾	2062 <i>I</i> 433 491 553.1 <i>6</i> 723.5 <i>I0</i>	90 100	1034.75 4 ⁺ 2742.20 (4 ⁻) 2683.7 (5 ⁻) 2622.0 4 ⁽⁻⁾ 2452.4 5 ⁺	D Q Q D			E _{γ} : from ⁵⁴ Fe(²⁸ Si, α 2p γ) only. E _{γ} : from ⁵⁴ Fe(²⁸ Si, α 2p γ) only.
3242.1	$(1,2^+)$	2817.3 <i>9</i> 3242.3 <i>3</i>	100 [@] 29 57 [@] 9	424.05 2 ⁺ 0.0 0 ⁺				
3275.90	(1+,2)	1542.6 2 2054.3 5	35 <i>4</i> 100 <i>5</i>	1733.26 3 ⁺ 1221.72 2 ⁺				

γ (⁷⁶Kr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	\mathbf{E}_f	\mathbf{J}_f^π	Mult.&	δ &	$lpha^\dagger$	Comments
3288.4	(7-)	525		2763.2	(6 ⁺)				E_{γ} : from ⁵⁴ Fe(²⁸ Si, α 2p γ) only.
	(,)	604.9 5	85		(5^{-})	E2		1.82×10^{-3} 3	B(E2)(W.u.)=93 +34-30
					(-)				$\alpha(K)=0.001613\ 23;\ \alpha(L)=0.0001763\ 25;$
									$\alpha(M)=2.85\times10^{-5} 4$
									$\alpha(N)=2.85\times10^{-6} \ 4$
		1428.5 5	100	1859.7	6+	(E1(+M2))	0.00 4	0.000308 4	$B(E1)(W.u.)=3.9\times10^{-5} +14-12$; $B(M2)(W.u.)<0.27$
		1120.55	100	1007.7	O	(E1(1112))	0.00 7	0.000500 7	$\alpha(K)=0.0001001 \ 15; \ \alpha(L)=1.047\times10^{-5} \ 16;$
									$\alpha(M)=1.692\times10^{-6}$ 25
									$\alpha(\text{N})=1.092\times10^{-2.5}$ $\alpha(\text{N})=1.714\times10^{-7}$ 26; $\alpha(\text{IPF})=0.0001951$ 28
3296.3	6(-)	554 <i>1</i>	24	2742.20	(4-)	0			$u(N)=1.714\times10$ 20, $u(N)=0.0001931$ 20
3290.3	0.				(4) 4 ⁽⁻⁾	Q			
		675 <i>1</i>	100	2622.0	6 ⁺	Q			
3332.7	7+	1436 <i>I</i> 879.9 <i>5</i>	62 100	1859.7 2452.4	5 ⁺	D E2		0.000673 9	B(E2)(W.u.)>29
3332.1	/	8/9.9 3	100	2432.4	3	EZ		0.000673 9	
									$\alpha(K)$ =0.000598 8; $\alpha(L)$ =6.42×10 ⁻⁵ 9; $\alpha(M)$ =1.038×10 ⁻⁵
									$\alpha(N)=1.044\times10^{-6} \ I5$
		1474 <i>1</i>	72	1859.7	6+	(M1+E2)		0.000280 10	$\alpha(K)=0.0001889\ 28;\ \alpha(L)=1.990\times10^{-5}\ 31;$
						,			$\alpha(M)=3.22\times10^{-6} 5$
									$\alpha(N) = 3.26 \times 10^{-7} 5$; $\alpha(IPF) = 6.8 \times 10^{-5} 8$
									Mult.: D+Q, $\Delta J=1$ from $\gamma\gamma$ (DCO) in (40 Ca, $^{4p}\gamma$);
									$\Delta \pi$ =no from level scheme.
									B(M1)(W.u.)>0.0024 if M1, B(E2)(W.u.)>1.5 if E2.
3406.2	(6^+)	231 <i>I</i>	31	3175.2	$6^{(-)}$				
	, ,	311 <i>I</i>	100	3096.1	5 ⁽⁺⁾	D			
		461 <i>I</i>	31	2944.4	(5^{-})	D			
		561 <i>I</i>	56	2845.1	(4^{+})	Q			
3421.6	$(0^+,1,2)$	2997.5 5	100	424.05	2+				
3456.1	$(0^-,1,2)$	431.7 5	100	3024.42	$(2)^{-}$				
3571.2	(8^{+})	808 <i>I</i>	53	2763.2	(6^{+})	Q			
		1712 <i>I</i>	100	1859.7	6+	Q			
3573.8	(7^{-})	285 1	47	3288.4	(7^{-})				
		630 <i>1</i>	100	2944.4	(5^{-})				54 20
		890		2683.7	(5^{-})				E_{γ} : from ⁵⁴ Fe(²⁸ Si, α 2p γ) only.
3602.81	1-	1270.1 2	4.0 3	2332.70	(1^{-})	M1,E2		0.000306 7	$\alpha(K)=0.000255\ 5;\ \alpha(L)=2.70\times10^{-5}\ 6;\ \alpha(M)=4.37\times10^{-6}\ 9$
									$\alpha(N)=4.42\times10^{-7} 8$; $\alpha(IPF)=1.86\times10^{-5} 25$
									$B(M1)(W.u.)>2.4\times10^{-5}$ if M1, $B(E2)(W.u.)>0.02$ if E2.
		1463.0 2	4.2 9	2140.17	(1.2^+)				
		1498.4 3	3.4 4	2104.33				0.000282 10	$\alpha(K)=0.0001829\ 27;\ \alpha(L)=1.925\times10^{-5}\ 30;$

							, , ,	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.&	$lpha^\dagger$	Comments
								$\alpha(M)=3.11\times10^{-6} 5$ $\alpha(N)=3.15\times10^{-7} 5$; $\alpha(IPF)=7.6\times10^{-5} 8$ $\beta(M1)(W.u.)>1.2\times10^{-5} \text{ if } M1, \beta(E2)(W.u.)>0.0072 \text{ if } E2.$
3602.81	1-	3178.3 2	100 12	424.05	2+	[E1]	1.35×10 ⁻³ 2	$\alpha(K)=3.04\times10^{-5}$ 4; $\alpha(L)=3.16\times10^{-6}$ 4; $\alpha(M)=5.10\times10^{-7}$ 7 $\alpha(N)=5.18\times10^{-8}$ 7; $\alpha(IPF)=0.001313$ 18 $\alpha(M)=5.10\times10^{-7}$ 18 $\alpha(M)=5.10\times10^{-7}$ 18 $\alpha(M)=5.10\times10^{-7}$ 19
		3602.8 <i>10</i>	36 7	0.0	0+	E1	1.54×10 ⁻³ 2	B(E1)(W.u.)>7.4×10 ⁻⁷ B(E1)(W.u.)>1.6×10 ⁻⁷ α (K)=2.58×10 ⁻⁵ 4; α (L)=2.67×10 ⁻⁶ 4; α (M)=4.32×10 ⁻⁷ 6 α (N)=4.38×10 ⁻⁸ 6; α (IPF)=0.001512 21
3636.3	1,2(+)	3214.2 <i>14</i>	100 @ 23	424.05				a(1) 100/11 3, a(111) 01001012 21
3672.24	(0,1,2)	3636.1 <i>3</i> 432.0 <i>9</i> 1567.8 <i>2</i>	44 [@] 8 19 <i>10</i> 100 <i>6</i>	0.0 3242.1 2104.33	$(1,2^+)$			
3781.9	7 ⁽⁺⁾	376 <i>1</i>	100	3406.2	(6^{+})	D		
3900.9	8(-)	686 <i>1</i> 568 <i>1</i>	60 15	3096.1 3332.7	5 ⁽⁺⁾ 7 ⁺	Q (E1)	0.000715 10	$B(E1)(W.u.)=2.39\times10^{-4}+84-72$
3700.7	0	300 1	13	3332.7	,	(21)	0.000713 10	$\alpha(K)=0.000636 \ 9; \ \alpha(L)=6.73\times10^{-5} \ 10; \ \alpha(M)=1.087\times10^{-5} \ 16$ $\alpha(N)=1.095\times10^{-6} \ 16$
		726 1	100	3175.2	6 ⁽⁻⁾	E2	1.10×10 ⁻³ 2	B(E2)(W.u.)=113 24 α (K)=0.000976 14; α (L)=0.0001058 15; α (M)=1.711×10 ⁻⁵ 25 α (N)=1.716×10 ⁻⁶ 25
3978.0	$1,2^{(+)}$	3553.6 <i>4</i>	100 [@] 17	424.05				
	(1)	3978.2 4	93 [@] 14	0.0				
3986.6	$1,2^{(+)}$	3216.3 <i>4</i> 3562.7 <i>4</i>	100 <i>16</i> 93 <i>14</i>	769.94 424.05				
4026.72	1,2 ⁽⁺⁾	2805.5 <i>3</i> 3257.4 <i>5</i> 3602.2 2	32 <i>3</i> 27 9 100 24	1221.72 769.94 424.05	0 ⁺ 2 ⁺			
4068.4	10 ⁺	4026.8 <i>6</i> 1189 <i>1</i>	51 <i>9</i> 100	0.0 2879.4		E2	0.000342 5	B(E2)(W.u.)=122 +19-15
	- ~			//.	-		,	$\alpha(K)=0.000298 \ 4; \ \alpha(L)=3.16\times10^{-5} \ 4; \ \alpha(M)=5.12\times10^{-6} \ 7$ $\alpha(N)=5.16\times10^{-7} \ 7; \ \alpha(IPF)=6.76\times10^{-6} \ 16$
4072.8	(9-)	784.4 <i>4</i>	100	3288.4	(7-)	[E2]	0.000899 13	B(E2)(W.u.)=178 +30-25 α (K)=0.000798 11; α (L)=8.61×10 ⁻⁵ 12; α (M)=1.393×10 ⁻⁵ 20 α (N)=1.398×10 ⁻⁶ 20
4097.75	$1,2^{(+)}$	3327.6 5	13 4	769.94				
		3673.6 2 4098.8 <i>17</i>	100 <i>11</i> 46 8	424.05	2 ⁺ 0 ⁺			

γ (⁷⁶Kr) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	\mathbf{E}_f	\mathbf{J}_f^π	Mult.&	$lpha^\dagger$	Comments
4118.3	(8-)	822 <i>1</i>	100	3296.3	6(-)	Q		
4217.8	(8+)	436 <i>1</i>	100	3781.9	7(+)	D		
	(-)	811 <i>I</i>	91	3406.2		Q		
4289.42	$(0,1,2)^{-}$	686.5 <i>4</i>	14.4 11	3602.81		M1,E2	0.00116 12	$\alpha(K)=0.00103 \ 10; \ \alpha(L)=0.000111 \ 12; \ \alpha(M)=1.80\times10^{-5} \ 20$
								$\alpha(N)=1.81\times10^{-6}\ 19$
		1718.6 <i>4</i>	100 4	2571.01	1-	M1,E2	0.000319 16	$\alpha(K)=0.0001401 \ 20; \ \alpha(L)=1.472\times10^{-5} \ 21; \ \alpha(M)=2.381\times10^{-6} \ 34$
						,		$\alpha(N)=2.413\times10^{-7}$ 34; $\alpha(IPF)=0.000162$ 15
		2185.0 <i>3</i>	55 <i>3</i>	2104.33	1-			
4380.1	(9^+)	1047 <i>1</i>	100	3332.7	7+			
		1501 <i>1</i>	45	2879.4	8+			
4403.7	(9^+)	1071 <i>1</i>	100	3332.7	7+	[E2]	0.000423 6	$\alpha(K)=0.000376\ 5;\ \alpha(L)=4.01\times10^{-5}\ 6;\ \alpha(M)=6.48\times10^{-6}\ 9$
								$\alpha(N)=6.53\times10^{-7} 9$
								B(E2)(W.u.)>58
4433.8	(10^{+})	863 1	54	3571.2				
		1554 <i>1</i>	100	2879.4	8+			54 20
4469.8	(9-)	397		4072.8	(9-)			E_{γ} : from 54 Fe(28 Si, $\alpha ^{2}$ p $\gamma $) only.
4=00=	(0.1)	896 <i>1</i>	100	3573.8	(7^{-})	Q		
4700.5	(9^{+})	483 1	58	4217.8	(8+)	D		
		919 <i>1</i>	100	3781.9	7 ⁽⁺⁾	Q		
4806.4	(10^{-})	905.5 5	100	3900.9	$8^{(-)}$	[E2]	0.000628 9	B(E2)(W.u.)=88 +35-16
								$\alpha(K)=0.000557$ 8; $\alpha(L)=5.98\times10^{-5}$ 8; $\alpha(M)=9.67\times10^{-6}$ 14
								$\alpha(N) = 9.73 \times 10^{-7} 14$
5051.3	(11^{-})	978.5 6	100	4072.8	(9-)	E2	0.000521 7	B(E2)(W.u.)=202 +41-29
								$\alpha(K)=0.000463$ 7; $\alpha(L)=4.95\times10^{-5}$ 7; $\alpha(M)=8.01\times10^{-6}$ 11
7 106 0	(10.)	000 1	100	4440 -	<i>(</i> 0.)			$\alpha(N)=8.07\times10^{-7} II$
5106.3	(10^{-})	988 1	100	4118.3	(8-)	_		
5240.5	$10^{(+)}$	541 <i>I</i>	42	4700.5	(9^+)	D		
5240.4	10±	1022 <i>I</i>	100	4217.8	(8+)	Q	0.000200.4	D/F2\/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
5348.4	12+	1280 <i>1</i>	100	4068.4	10 ⁺	[E2]	0.000309 4	B(E2)(W.u.)>43
								$\alpha(K) = 0.000254 \ 4; \ \alpha(L) = 2.69 \times 10^{-5} \ 4; \ \alpha(M) = 4.36 \times 10^{-6} \ 6$
5500.0	(11=)	1050 1	100	4460.0	(0=)	0		$\alpha(N)=4.40\times10^{-7} \ 6; \ \alpha(IPF)=2.32\times10^{-5} \ 4$
5528.8	(11^{-})	1059 1	100	4469.8	(9^{-})	Q		
5566.8 5589.1	(12^+) (11^+)	1133 <i>I</i> 1209 <i>I</i>	100 100	4433.8 4380.1	(10^+) (9^+)	Q		
5795.7	(11) 11 ⁽⁺⁾	555 <i>1</i>	38	5240.5	10 ⁽⁺⁾	Q D		
3193.1	11` ′	333 <i>I</i> 1095 <i>I</i>	38 100	4700.5	(9^+)	Q Q		
5873.1	(12^{-})	1095 1	100	4806.4	(9) (10^{-})	E2	0.000427 6	B(E2)(W.u.)=124 +24-21
20/2.1	(12)	1000.0 7	100	+000.4	(10)	<u></u>	0.000-27	$\alpha(K)=0.000379 \ 5; \ \alpha(L)=4.04\times10^{-5} \ 6; \ \alpha(M)=6.54\times10^{-6} \ 9$
								$\alpha(N)=6.59\times10^{-7}$ 9
6218.3	(12^{-})	1112 <i>I</i>	100	5106.3	(10^{-})	0		u(11)=0.57\10 7
0210.5	(12)	11121	100	3100.3	(10)	~		

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.&	α^{\dagger}	Comments
6222.3	(13 ⁻)	1171 <i>I</i>	100	5051.3		E2	0.000351 5	B(E2)(W.u.)=149 +68-35 α (K)=0.000308 4; α (L)=3.27×10 ⁻⁵ 5; α (M)=5.29×10 ⁻⁶ 7 α (N)=5.34×10 ⁻⁷ 8; α (IPF)=4.71×10 ⁻⁶ 12 Additional information 3.
6390.2	(12^{+})	596 <i>1</i> 1150 <i>1</i>	25 100	5795.7 5240.5		(D) Q		
6605.4	(12^{+})	1257 <i>1</i>	100	5348.4		D		
6650.4	14+	1302 <i>I</i>	100	5348.4		Q		Additional information 4.
6681.8	(13^{-})	1153 1	100	5528.8		Q		
6937.1 7032.4	(13^+) (13^+)	1348 <i>I</i> 643 <i>I</i>	100 100	5589.1 6390.2	. ,	Q D		
7032.4	(13)	1235 <i>I</i>	40	5795.7		Q		
7034.9	(14^{+})	1468 <i>I</i>	100	5566.8		Q		
7110.1	(14^{-})	1237 <i>1</i>	100	5873.1	(12^{-})	E2	0.000322 5	B(E2)(W.u.)>54
								$\alpha(K)=0.000273 \ 4; \ \alpha(L)=2.90\times10^{-5} \ 4; \ \alpha(M)=4.69\times10^{-6} \ 7$
								$\alpha(N)=4.74\times10^{-7}$ 7; $\alpha(IPF)=1.438\times10^{-5}$ 28
	(4.4-)		400	ć a 10. a	/4.5-X			Additional information 5.
7435.3	(14^{-})	1217 <i>I</i>	100	6218.3	. ,	Q		
7554.3	(14^{+})	521 <i>I</i> 1165 <i>I</i>	38 100	7032.4 6390.2		D Q		
7583.3	(15^{-})	1361 <i>I</i>	100	6222.3	. ,	E2	0.000294 4	B(E2)(W.u.)>45
700010	,		100	022.0	(10)	22	0.00025	$\alpha(K)=0.0002235 \ 3I; \ \alpha(L)=2.364\times10^{-5} \ 33; \ \alpha(M)=3.82\times10^{-6} \ 5$ $\alpha(N)=3.86\times10^{-7} \ 5; \ \alpha(IPF)=4.22\times10^{-5} \ 6$ Additional information 6.
7606.4	(14^{+})	1001 <i>I</i>	100	6605.4				
7870.9	(15^{-})	1189 <i>I</i>	100	6681.8		Q		
8000.4	16+	1350 <i>I</i>	100	6650.4		Q		
8432.1	(15^+)	1495 <i>I</i>	100	6937.1		Q	0.000200.4	(IV) 0.0000075.20 (IV) 2.102.110=5.21 (AV) 2.55.110=6.5
8521.1	(16 ⁻)	1411 <i>I</i>	100	7110.1	, ,	E2	0.000289 4	$\alpha(K)=0.0002075\ 29;\ \alpha(L)=2.192\times10^{-5}\ 31;\ \alpha(M)=3.55\times10^{-6}\ 5$ $\alpha(N)=3.59\times10^{-7}\ 5;\ \alpha(IPF)=5.55\times10^{-5}\ 8$
8666.9	(16^{+})	1632 <i>I</i>	100	7034.9	. ,	Q		
8717.4 8798.5	(16^{-}) (16^{+})	1282 <i>I</i> 1192 <i>I</i>	100 100	7435.3 7606.4		Q		
8798.3 8829.3	(16 ⁺)	1192 <i>1</i> 1275 <i>1</i>	100	7554.3		Q Q		
9117.4	(10^{-})	1534 <i>I</i>	100	7583.3		E2	0.000295 4	$\alpha(K)=0.0001753\ 25;\ \alpha(L)=1.848\times10^{-5}\ 26;\ \alpha(M)=2.99\times10^{-6}\ 4$
	, ,						0.000275 4	$\alpha(N)=3.02\times10^{-7} 4$; $\alpha(IPF)=9.80\times10^{-5} 14$
9217.9	(17^{-})	1347 1	100	7870.9	` /	Q	0.000200 4	(II) 0.0000100 20 (I) 2.200.10=5 21 (A.S. 2.60.10=6.5
9400.5	18+	1400 <i>I</i>	100	8000.4		E2	0.000289 4	$\alpha(K)=0.0002108 \ 30; \ \alpha(L)=2.228\times10^{-5} \ 31; \ \alpha(M)=3.60\times10^{-6} \ 5$ $\alpha(N)=3.64\times10^{-7} \ 5; \ \alpha(IPF)=5.23\times10^{-5} \ 8$
10050.1	(17^{+})	1618 <i>I</i>	100	8432.1	(15^{+})	Q		

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.&	α^{\dagger}	Comments
10059.1	(18-)	1538 <i>I</i>	100	8521.1	(16-)	E2	0.000296 4	$\alpha(K)$ =0.0001744 25; $\alpha(L)$ =1.839×10 ⁻⁵ 26; $\alpha(M)$ =2.97×10 ⁻⁶ 4 $\alpha(N)$ =3.01×10 ⁻⁷ 4; $\alpha(IPF)$ =9.96×10 ⁻⁵ 15 Additional information 7.
10135	(18^{-})	1418 <i>1</i>	100	8717.4	(16^{-})	Q		
10139.5	(18^{+})	1341 <i>1</i>	100	8798.5		Q		
10470.9	(18^{+})	1804 <i>1</i>	100	8666.9				
10640.4	(19-)	1523 <i>I</i>	100	9117.4	. ,	E2	0.000294 4	$\alpha(K)$ =0.0001778 25; $\alpha(L)$ =1.875×10 ⁻⁵ 26; $\alpha(M)$ =3.03×10 ⁻⁶ 4 $\alpha(N)$ =3.07×10 ⁻⁷ 4; $\alpha(IPF)$ =9.37×10 ⁻⁵ 14
10773.9	. ,	1556 <i>1</i>	100	9217.9		(Q)		
10936.5	20+	1536 <i>I</i>	100	9400.5	18 ⁺	E2	0.000295 4	$\alpha(K)$ =0.0001748 25; $\alpha(L)$ =1.844×10 ⁻⁵ 26; $\alpha(M)$ =2.98×10 ⁻⁶ 4 $\alpha(N)$ =3.02×10 ⁻⁷ 4; $\alpha(IPF)$ =9.88×10 ⁻⁵ 14 Additional information 8.
11655.1	(20-)	1596 <i>I</i>	100	10059.1	(18-)	E2	0.000306 4	$\alpha(K)$ =0.0001621 23; $\alpha(L)$ =1.708×10 ⁻⁵ 24; $\alpha(M)$ =2.76×10 ⁻⁶ 4 $\alpha(N)$ =2.79×10 ⁻⁷ 4; $\alpha(IPF)$ =0.0001237 18
11664	(20^+)	1525 <i>1</i>	100	10139.5	(18^{+})	Q		
11719	(20^{-})	1584 <i>1</i>	100	10135		Q		
11785.1	(19^+)	1735 <i>1</i>	100	10050.1				
12254.4	(21-)	1614 <i>I</i>	100	10640.4		E2	0.000310 4	$\alpha(K)=0.0001585 \ 22; \ \alpha(L)=1.670\times10^{-5} \ 23; \ \alpha(M)=2.70\times10^{-6} \ 4$ $\alpha(N)=2.73\times10^{-7} \ 4; \ \alpha(IPF)=0.0001314 \ 19$
12397.9	(20^+)	1927 <i>1</i>	100	10470.9				
12493	(21^{-})	1719 <i>1</i>	100	10773.9				
12695	22+	1759 <i>1</i>	100	10936.5	20+	E2	0.000346 5	$\alpha(K)$ =0.0001343 19; $\alpha(L)$ =1.412×10 ⁻⁵ 20; $\alpha(M)$ =2.284×10 ⁻⁶ 32 $\alpha(N)$ =2.312×10 ⁻⁷ 32; $\alpha(IPF)$ =0.0001952 28 Additional information 9.
13352.1	(22-)	1697 <i>1</i>	100	11655.1	(20-)	E2	0.000329 5	$\alpha(K)=0.0001438\ 20;\ \alpha(L)=1.514\times10^{-5}\ 21;\ \alpha(M)=2.448\times10^{-6}\ 34$ $\alpha(N)=2.478\times10^{-7}\ 35;\ \alpha(IPF)=0.0001677\ 24$
13388	(22^{+})	1723 <i>1</i>	100	11664	(20^+)	Q		
13500	(22^{-})	1781 <i>I</i>	100		(20^{-})	-		
13613	(21^{+})	1828 <i>1</i>	100	11785.1				
14026	(23-)	1772 <i>I</i>	100	12254.4	(21 ⁻)	E2	0.000350 5	$\alpha(K)=0.0001324$ 19; $\alpha(L)=1.392\times10^{-5}$ 20; $\alpha(M)=2.251\times10^{-6}$ 32 $\alpha(N)=2.280\times10^{-7}$ 32; $\alpha(IPF)=0.0002011$ 29
14440	(23^{-})	1947 <i>1</i>	100	12493	(21^{-})			
14751	24+	2055 1	100	12695	22+			E_{γ} : tentative 2049 in ($^{24}Mg_{,}\alpha^2p\gamma$).
15225	(24-)	1873 <i>I</i>	100	13352.1	(22-)	E2	0.000382 5	$\alpha(K)=0.0001193\ 17;\ \alpha(L)=1.253\times10^{-5}\ 18;\ \alpha(M)=2.026\times10^{-6}\ 28$ $\alpha(N)=2.052\times10^{-7}\ 29;\ \alpha(IPF)=0.0002479\ 35$
15346	(24^{+})	1958 <i>I</i>	100	13388	(22^{+})	Q		
15503	(24^{-})	2003 <i>1</i>	100		(22^{-})	-		
16009	(25 ⁻)	1983 <i>1</i>	100	14026	(23-)	E2	0.000421 6	$\alpha(K)$ =0.0001073 15; $\alpha(L)$ =1.126×10 ⁻⁵ 16; $\alpha(M)$ =1.821×10 ⁻⁶ 26 $\alpha(N)$ =1.845×10 ⁻⁷ 26; $\alpha(IPF)$ =0.000301 4

γ (⁷⁶Kr) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ} #	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.&	$lpha^{\dagger}$	Comments
16650	(25^{-})	2210 <i>I</i>	100	14440	(23-)			
17157	26+	2406 <i>1</i>	100	14751	24+	E2	0.000591 8	$\alpha(K)=7.60\times10^{-5}\ II;\ \alpha(L)=7.94\times10^{-6}\ II;\ \alpha(M)=1.285\times10^{-6}\ I8$ $\alpha(N)=1.303\times10^{-7}\ I8;\ \alpha(IPF)=0.000506\ 7$
17327	(26-)	2102 <i>1</i>	100	15225	(24-)	E2	0.000467 7	$\alpha(K) = 9.65 \times 10^{-5} \ 14; \ \alpha(L) = 1.011 \times 10^{-5} \ 14; \ \alpha(M) = 1.636 \times 10^{-6} \ 23$ $\alpha(N) = 1.658 \times 10^{-7} \ 23; \ \alpha(IPF) = 0.000358 \ 5$
17550	(26^+)	2204 <i>1</i>	100	15346	(24^{+})	Q		a(1) 1.050/10 25, a(111) 0.0005505
17859	(26^{-})	2356 <i>1</i>	100	15503	(24^{-})			
18256	(27-)	2247 1	100	16009	(25-)	E2	0.000525 7	$\alpha(K)=8.56\times10^{-5}\ 12;\ \alpha(L)=8.97\times10^{-6}\ 13;\ \alpha(M)=1.450\times10^{-6}\ 20$ $\alpha(N)=1.470\times10^{-7}\ 21;\ \alpha(IPF)=0.000429\ 6$
19172	(27^{-})	2522 1	100	16650	(25^{-})			
19741	(28-)	2414 <i>1</i>	100	17327	(26-)	E2	0.000595 8	$\alpha(K)=7.55\times10^{-5} II; \alpha(L)=7.90\times10^{-6} II; \alpha(M)=1.277\times10^{-6} I8$ $\alpha(N)=1.295\times10^{-7} I8; \alpha(IPF)=0.000510 7$
19950	28+	2793 1	100	17157	26 ⁺	E2	0.000752 11	$\alpha(K)=5.89\times10^{-5} 8$; $\alpha(L)=6.15\times10^{-6} 9$; $\alpha(M)=9.94\times10^{-7} 14$ $\alpha(N)=1.008\times10^{-7} 14$; $\alpha(IPF)=0.000686 10$
20045	(28^+)	2495 <i>1</i>	100	17550	(26^+)			, , , , , , , , , , , , , , , , , , , ,
20538	(28^{-})	2678 <i>1</i>	100	17859	(26^{-})			
20815	(29-)	2558 <i>1</i>	100	18256	(27-)	E2	0.000655 9	$\alpha(K)=6.83\times10^{-5}\ 10;\ \alpha(L)=7.14\times10^{-6}\ 10;\ \alpha(M)=1.155\times10^{-6}\ 16$ $\alpha(N)=1.171\times10^{-7}\ 16;\ \alpha(IPF)=0.000578\ 8$
22583	(30^{-})	2842 <i>1</i>	100	19741	(28^{-})			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
22790	(30^{+})	2745 1	100	20045	(28^{+})			
23157	(30^{+})	3207 <i>1</i>	100	19950	28 ⁺			
23742	(31^{-})	2927 <i>1</i>	100	20815	(29^{-})			
25868	(32^{-})	3285 <i>1</i>	100	22583	(30^{-})			
27083	(33^{-})	3341 <i>1</i>	100	23742	(31^{-})			
966.0+x	(13^{+})	966 <i>1</i>	100	X	(11^{+})			
2097.0+x	(15^{+})	1131 <i>I</i>	100	966.0+x		Q		
3390.0+x	(17^{+})	1293 <i>1</i>	100	2097.0+x		Q		
4847.0+x	(19^+)	1457 <i>1</i>	100	3390.0+x		Q		
6472.1+x	(21^{+})	1625 <i>1</i>	100	4847.0+x		Q		
8309.1+x	(23^{+})	1837 <i>1</i>	100	6472.1+x		Q		
10382+x	(25^{+})	2073 1	100	8309.1+x		Q		
12696+x	(27^{+})	2314 <i>I</i>	100	10382+x	(25^+)			
15234+x	(29^+)	2538 <i>1</i>	100	12696+x	(27^{+})			

[†] Additional information 10. [‡] Values for low-spin (J≤4) states are from ⁷⁶Rb ε decay, whereas data are higher-spin states are from ⁴⁰Ca(⁴⁰Ca,4pγ), ⁵⁴Fe(²⁸Si,α2pγ), and (²⁴Mg,α2pγ), unless otherwise noted. # Detailed intensity data are available for γ rays from low-spin (J \leq 4) states populated in 76 Rb ε decay. Note that for γ rays from some of the levels, more precise

γ (76Kr) (continued)

branching ratios (listed under comments in $^{76}\text{Rb}\ \varepsilon$ decay dataset) are available which are adopted here in place of branching ratios deduced from relative intensity data. For high-spin states, only nominal intensities, without explicitly quoted uncertainties, are available from only $^{40}\text{Ca}(^{40}\text{Ca},4\text{p}\gamma)$ and $(^{12}\text{C},2\text{n}\gamma)$. For the latter dataset, evaluators assigned 10% uncertainty for I γ values taken from (1982Pi01). Intensity data were not provided in $^{54}\text{Fe}(^{28}\text{Si},\alpha2\text{p}\gamma)$ reaction.

- [@] From ⁷⁶Rb ε decay, when a level is also populated in other reactions. Branching ratios listed in comments in ⁷⁶Rb ε decay dataset are used in place of relative intensities.
- *Erom $\gamma(\theta)$ and $\gamma\gamma(\theta)$ in (12 C,2n γ) for high-spin (J>4) states. Transitions with dominant quadrupole content are assumed as E2 from comparison of T1/2(level) and RUL for E2 and M2. For low-spin (J≤4) levels, multipolarity assignments are generally from conversion coefficients deduced from ce data in 76 Rb ε decay.
- ^a Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

 $^{76}_{36}{\rm Kr}_{40}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{76}_{36} \mathrm{Kr}_{40}$

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

 γ Decay (Uncertain)

Band(d): Band based on $11^+, \alpha=1$

 (29^{+}) 15234+x 2538 (27^{+}) 12696+x (25^{+}) 10382+x (23^{+}) 8309.1+x 1837 (21^{+}) 6472.1+x (19^{+}) 4847.0+x 1457 3390.0+x (17^{+}) 1293 2097.0+x (15^{+}) (13⁺) 1131 966.0+x

 (11^{+})

X

Band(e): $\pi 3/2[431] \otimes \pi 3/2[312]$, $\alpha = 1$

Band(G): Band based on 770, 0^+