

ICLR 2024 Potpourri

Mert Kilickaya

Website

ICLR 2024 received **7500** submissions on 28th September

Pre-filtering: ~200 papers Post-filtering: ~20 papers

Three Topics: LLM & Efficiency & Foundation Models

Not depth-first, but breadth-first discussion

a) LLM

Figure 1: Our straightforward method of using a *frozen* transformer block from *pre-trained* LLMs as a visual encoder layer. Visualized with an example of ViT (Dosovitskiy et al., 2021). (a) Our design simply appends a frozen transformer block (pink) on top of the regular visual encoder (gray). Only two trainable linear layers (green) are added to align the feature dimensions. (b) Pytorch-style pseudo-code shows the simplicity of our approach.

Model	ImageNet	ImageNet-C	ImageNet-A	ImageNet-SK	ImageNet-R
ViT-T	72.1	43.9	7.7	19.6	32.3
ViT-T-LLaMA	73.2	45.8	8.7	20.6	33.8
ViT-S	80.1	57.2	20.5	28.9	42.1
ViT-S-LLaMA	80.7	58.7	22.7	30.5	42.8
ViT-B*	78.9	58.1	21.6	29.3	40.5
ViT-B-LLaMA	80.6	60.6	24.6	30.4	40.9

Inclusion of LLM robustifies the model -But- the improvement is not significant (~1-2%)

Method

Figure 2: Architecture of MiniGPT-v2. The model takes a ViT visual backbone, which remains frozen during all training phases. We concatenate four adjacent visual output tokens from ViT backbone and project them into LLaMA-2 language model space via a linear projection layer.

Results on Visual Question Answering

Method	Grounding	OKVQA	GQA	VSR (zero-shot)	TextVQA (zero-shot)	IconVQA (zero-shot)	VizWiz (zero-shot)	HM (zero-shot)
Flamingo-9B	X	44.7	-	31.8	-	-	28.8	57.0
BLIP-2 (13B)	×	45.9	41.0	50.9	42.5	40.6	19.6	53.7
InstructBLIP (13B)	×	-	49.5	52.1	50.7	44.8	33.4	57.5
MiniGPT-4 (13B)	×	37.5	30.8	41.6	19.4	37.6	- 1	1 - 9
LLaVA (13B)	×	54.4	41.3	51.2	38.9	43.0	2	22
Shikra (13B)	/	47.2	-	-	1-	-	-	-
Ours (7B)	/	56.9	60.3	60.6	51.9	47.7	30.3	58.2
Ours (7B)-chat	1	55.9	58.8	63.3	52.3	49.4	42.4	59.5

Table 3: Results on multiple VQA tasks. We report top-1 accuracy for each task. Grounding column indicates whether the model incorporates visual localization capability. The best performance for each benchmark is indicated in **bold**.

The model leads to a significant boost across many vision-and-language tasks.

1 Frozen-LLM

5

2 MiniGPT-V2

Figure 2: Architecture of MiniGPT-v2. The model takes a ViT visual backbone, which remains frozen during all training phases. We concatenate four adjacent visual output tokens from ViT backbone and project them into LLaMA-2 language model space via a linear projection layer.

3 MiniGPT-V4

- 4 PLANTING A SEED OF VISION IN LARGE LANGUAGE MODEL
 - LINGUISTIC IMAGE UNDERSTANDING

b-1) Efficient ViT

Figure 3: Overview of the FasterViT architecture. We use a multi-scale architecture with CNN and transformer-based blocks in stages 1, 2 and 3, 4, respectively. Best viewed in color.

CT Init: Carrier token initialization

Figure 5: Attention map comparison for a feature map of size $H \times H \times d$. \square - no attention, \blacksquare - normal token attention, \blacksquare - carrier token attention, \blacksquare - random token attention. Full attention (a) has complexity of $O(H^4d)$, windowed attention significantly reduces it to $O(k^2H^2d)$ but lacks global context.

Hierarchical attention extends windowed attention via carrier tokens to pool from distinct windows.

Figure 1: Comparison of image throughput and mageNet-1K Top-1 accuracy. For all models, hroughput is measured on A100 GPU with batch ize of 128.

Model	Throughput	FLOPs (G)	IoU(ss/ms
Swin-T Liu et al. (2021)	350	945	44.5/45.8
ConvNeXt-T Liu et al. (2022b)	363	939	- /46.7
FasterViT-2	377	974	47.2/48.4
Twins-SVT-B Chu et al. (2021a)	204	-	47.7/48.9
Swin-S Liu et al. (2021)	219	1038	47.6/49.5
ConvNeXt-S Liu et al. (2022b)	234	1027	- /49.6
FasterViT-3	254	1076	48.7/49.7
Twins-SVT-L Chu et al. (2021a)	164	-	48.8/50.2
Swin-B Liu et al. (2021)	172	1188	48.1/49.7
ConvNeXt-B Liu et al. (2022b)	189	1170	- /49.9
FasterViT-4	202	1290	49.1/50.3

Table 4: Semantic segmentation on ADE20K Zhou et al. (2017) with UPerNet Xiao et al. (2018).

FasterViT yields the highest accuracy-efficiency tradeoff for classification/segmentation tasks (ADE20K).

EFFICIENT MODULATION FOR VISION NETWORKS

(c) Our EfficientMod block

Model	Top-1(%)		cy (ms)	Params	FLOPs	Size.	
	- (/c)	GPU	CPU	(M)	(G)		
MobileNetV2×1.0 (2018)	71.8	2.1	3.8	3.5	0.3	224^{2}	
FasterNet-T0 (2023)	71.9	2.5	6.8	3.9	0.3	224^{2}	
EdgeViT-XXS (2022)	74.4	8.8	15.7	4.1	0.6	224^{2}	
MobileOne-S1 (2023)	74.6 (75.9)	1.5	6.9	4.8	0.8	224^{2}	
MobileViT-XS (2022)	74.8	4.1	21.0	2.3	1.1	256^{2}	
EfficientFormerV2-S0 (2023b)	73.7 (75.7)	3.3	10.7	3.6	0.4	224^{2}	
EfficientMod-xxs	76.0	3.0	10.2	4.7	0.6	224^{2}	
MobileNetV2×1.4 (2018)	74.7	2.8	6.0	6.1	0.6	224^{2}	
DeiT-T (2021a)	74.5	2.7	16.5	5.9	1.2	224^{2}	
FasterNet-T1 (2023)	76.2	3.3	12.9	7.6	0.9	224^{2}	
EfficientNet-B0 (2019)	77.1	3.4	10.9	5.3	0.4	224^{2}	
MobileOne-S2 (2023)	- (77.4)	2.0	10.0	7.8	1.3	224^{2}	
EdgeViT-XS (2022)	77.5	11.8	21.4	6.8	1.1	224^{2}	
MobileViTv2-1.0 (2023)	78.1	5.4	30.9	4.9	1.8	256^{2}	
EfficientFormerV2-S1 (2023b)	77.9 (79.0)	4.5	15.4	6.2	0.7	224^{2}	
EfficientMod-xs	78.3	3.6	13.4	6.6	0.8	224^{2}	
PoolFormer-s12 (2022a)	77.2	5.0	22.3	11.9	1.8	224^{2}	
FasterNet-T2 (2023)	78.9	4.4	18.4	15.0	1.9	224^{2}	
EfficientFormer-L1 (2022)	79.2	3.7	19.7	12.3	1.3	224^{2}	
MobileFormer-508M (2022b)	79.3	13.4	142.5	14.8	0.6	224^{2}	
MobileOne-S4▲ (2023)	- (79.4)	4.8	26.6	14.8	3.0	224^{2}	
MobileViTv2-1.5 (2023)	80.4	7.2	59.0	10.6	4.1	256^{2}	
EdgeViT-S (2022)	81.0	20.5	34.7	13.1	1.9	224^{2}	
EfficientFormerV2-S2 (2023b)	80.4 (81.6)	7.3	26.5	12.7	1.3	224^{2}	
EfficientMod-s	81.0	5.5	23.5	12.9	1.4	224^{2}	

b-2) Efficient Fine-tuning

The authors freeze SAM, adds few trainable modules (Conv-LORA) for efficient fine-tuning.

MoE-Conv consists of few experts, each processing different feature scales.

MoE-Conv Structure

CONVOLUTION MEETS LORA: PARAMETER EFFICIENT FINETUNING FOR SAM

	#Params (M) /	(M) / Medical						Natural Images				Agriculture		Remote Sensing	
Method	Ratio (%)	Kvasir		CVC-612		ISIC	ISIC 2017		CAMO		SBU	Leaf		Road	
		S_{α}	$E_{\phi} \uparrow$	$S_{\alpha} \uparrow$	$E_{\phi}\uparrow$	Jac ↑	Dice ↑	$S_{\alpha} \uparrow$	$E_{\phi}\uparrow$	$F^{\omega}_{\beta}\uparrow$	BER↓	IoU ↑	Dice ↑	IoU↑	Dice ↑
Domain Specific	* / 100%	90.9	94.4	92.6	95.5	80.1	87.5	80.8	85.8	73.1	3.56	62.3	74.1	59.1	73.0
decoder-only	3.51 / 0.55%	86.5	89.5	85.5	89.9	69.7	79.5	78.5	83.1	69.8	14.58	50.8	63.8	48.6	65.1
BitFit	3.96 / 0.62%	90.8 ±	: 0.57 93.8 ± 0.98	89.0 ± 0.4	91.6 ± 0.98	76.4 ± 0.4	s 84.7 ± 0.35	86.8 ± 0.3	3 90.7 ± 0.28	8 81.5 ± 0.19	3.16 ± 0.128	71.4 ± 1.15	81.7 ± 1.01	60.6 ± 0.19	5 75.2 ± 0
Adapter	3.92 / 0.61%	91.2 ±	0.23 94.0 ± 0.16	89.3 ± 0.4	3 92.0 ± 0.63	76.7 ± 0.6	66 85.0 ± 0.56	87.7 ± 0.10	91.3 ± 0.40	82.8 ± 0.35	2.84 ± 0.093	72.1 ± 0.47	82.4 ± 0.36	61.5 ± 0.17	75.9 ± 0
VPT	4.00 / 0.62%	91.5 ±	: 0.23 94.3 ± 0.06	91.0 ± 0.9	4 76.9 ± 0.94	76.9 ± 0.9	4 85.1 ± 0.75	87.4 ± 0.6	91.4 ± 0.68	8 82.1 ± 0.75	2.70 ± 0.055	73.6 ± 0.26	83.8 ± 0.26	60.2 ± 1.85	74.9 ± 1
LST	11.49 / 1.77%	89.7 ±	: 0.25 93.3 ± 0.37	89.4 ± 0.3	7 92.4 ± 0.54	76.4 ± 1.0	s 84.9 ± 0.79	83.3 ± 0.2	8 88.0 ± 0.2	3 77.1 ± 0.02	3.18 ± 0.012	70.2 ± 0.87	81.1 ± 0.82	60.2 ± 0.20	5 74.9 ± 6
SAM-Adapter	3.98 / 0.62%	89.6 ±	0.24 92.5 ± 0.10	89.6 ± 0.2	2 92.4 ± 1.06	76.1 ± 0.4	s 84.6 ± 0.37	85.6 ± 0.2	6 89.6 ± 0.55	5 79.8 ± 0.89	3.14 ± 0.063	71.4 ± 0.20	82.1 ± 0.10	60.6 ± 0.00	575.2 ± 6
SSF	4.42 / 0.69%	91.3 ±	: 0.87 93.9 ± 1.49	89.6 ± 0.3	7 91.9 ± 0.79	76.6 ± 0.1	9 85.0 ± 0.14	87.5 ± 0.1	91.4 ± 0.16	6 82.6 ± 0.12	3.19 ± 0.046	71.5 ± 0.63	81.8 ± 0.44	61.6 ± 0.00	76.0 ±
LoRA	4.00 / 0.62%	91.2 ±	: 0.28 93.8 ± 0.22	90.7 ± 0.0	4 92.5 ± 0.41	76.6 ± 0.2	3 84.9 ± 0.22	88.0 ± 0.2	4 91.9 ± 0.42	2 82.8 ± 0.16	2.74 ± 0.079	73.7 ± 0.20	83.6 ± 0.13	62.2 ± 0.2	76.5 ±
Conv-LoRA	4.02 / 0.63%	92.0 ±	0.15 94.7 ± 0.16	91.3 ± 0.6	9 94.0 ± 0.78	77.6 ± 0.5	7 85.7 ± 0.36	88.3 ± 0.4	92.4 ± 0.31	84.0 ± 0.34	2.54 ± 0.081	74.5 ± 0.39	84.3 ± 0.34	62.6 ± 0.36	76.8 ±

Conv-LORA leads to some improvement over the strong competitor LORA on few-labeled tasks.

2 ZEST: ZEROSHOT SPARSE FINE-TUNING

HOW TO FINE-TUNE VISION MODELS
WITH SGD

	ID accuracy	OOD accuracy
SGD	90.0%	67.9%
AdamW	(+2.1%)	(+8.1%)
SGD (freeze-embed)	(+2.1%)	(+8.0%)
SGD (freeze-embed, no mom.)	(+2.2%)	(+9.0%)

(b) Performance of different fine-tuning methods on a CLIP ViT-B/16 averaged over 5 distribution shift datasets.

4 LESS IS MORE: SELECTIVE LAYER FINE-TUNING WITH SUBTUNING

c) Foundation Models

UNIVIS: A UNIVERSAL FRAMEWORK FOR COMPUTER VISION TASKS

Perform many different vision tasks (segmentation, denoising, generation) by differing the instruction.

UNIVIS: A UNIVERSAL FRAMEWORK FOR COMPUTER VISION TASKS

The model builds upon Stable Diffusion, and generates unified input-output prompts for different tasks.

Figure 1: **SLiMe.** Using just one user-annotated image with various granularity (as shown in the leftmost column), **SLiMe** learns to segment different unseen images in accordance with the same granularity (as depicted in the other columns).

SLIME can learn to segment objects at different granularity from a single image, interactively.

BIOCLIP: A VISION FOUNDATION MODEL FOR THE TREE OF LIFE

4

YOLOV6: OBJECT DETECTION FOR INDUSTRY

(a) Treemap of the different phyla in TREEOFLIFE-10M. Different colors are different phyla; nested boxes represent classes, orders, etc.

Train with (a) RepVGG & Infer with (c) RepConv.

5 LEARNING TO PROMPT SAM

6 SAM-CLIP: MERGING CLIP and SAM

Other Interesting Papers

1 THE ALL-SEEING PROJECT: TOWARDS PANOPTIC VISUAL RECOGNITION AND UNDERSTANDING OF THE OPEN WORLD

2 IN DEFENSE OF SEMI-SUPERVISED LEARNING: SELF SUPERVISION IS NOT ALL YOU NEED

- 3 SIMPLIFYING SELF-SUPERVISED OBJECT DETECTION PRETRAINING
- 4 LARGE LANGUAGE MODELS AS OPTIMIZERS
- 5 IMAGE COMPRESSION IS AN EFFECTIVE OBJECTIVE FOR VISUAL REPRESENTATION LEARNING

6 AUTOVP: AN AUTOMATED VISUAL PROMPTING FRAMEWORK AND BENCHMARK

Code Repositories

Paper	Code
FROZEN TRANSFORMERS IN LANGUAGE MODELS ARE EFFECTIVE VISUAL ENCODER LAYERS	<u>Link</u>
MiniGPT-V2	Link
MiniGPT-V4	<u>Link</u>
PLANTING A SEED OF VISION IN LARGE LANGUAGE MODEL	<u>Link</u>
FASTERVIT: FAST VISION TRANSFORMERS WITH HIERARCHICAL ATTENTION	<u>Link</u>
EFFICIENT MODULATION FOR VISION NETWORKS	<u>Link</u>
SLIME: SEGMENT LIKE ME	<u>Link</u>
YOLOV6: OBJECT DETECTION FOR INDUSTRY	<u>Link</u>

Discussion

~Model Interactivity~

Soon, will most models become interactive (with the help of an LLM)?

Can vision annotations turn into human language form rather than spatial (e.g. bounding box)?

~Model Efficiency~

Replace FC blocks with Convs for faster ViT variants → Can this be automated?

~Training Efficiency~

How to find the best (few) layers to optimize for our downstream tasks and data?

Thanks! Questions?