

深圳市汉昇实业有限公司

SHENZHEN HANSHENG INDUSTRAIL CO.LTD.,

HS20S010B 规格书

DATASHEET

汉昇	制作	审核	批准
以升 HS			
	17	-(6)	

版本:	VER 1.0	1,413	

深圳市汉昇实业有限公司

地址: 深圳市南山区西丽镇牛成村 208 栋亿莱工业大厦 5 楼

电话: 0755-86114312/86114313/86114313

传真: 0755-86114314 网址: www.hslcm.com

]	۱.	概述	
2	2.	特点	
ç	3.	外形及	接口引脚功能3
4	1.	基本原	理······.5
5	5.	技术参	数
6	3.	时序特位	性······.6
		指令功	

Revised History

Part Number	Revisio	Revision Content	Revised on '"'
""""""J U42U232D	Ą		2018-03-21
,			7
		麦克斯 & 技术 广东 深圳	支持加微信
8//			

Contents

Revision History Contents

- 1. General Description
- 2. Mechanical Drawing
- 3. Pin Description
- 4. Electrical Characteristics
- 5. Optical Characteristics
- 6. Reliability
- 7. Package Specifications
- 8. Incoming Inspection standards
- 9. Precautions When Using These TFT Display Modules
- 10. Warranty
- 11. Notice

1. General Description

1.1 Description

HS20S010B is a 240RGBX320 dot-matrix TFT LCD module. This module is composed of a TFT LCD Panel, driver ICs, FPC and a Backlight unit.

1.2 Features

NO.	Item	Contents	Unit
1	LCD Size	2.0	inch
2	Display Mode	Normally black	
3	Resolution	240(H)RGB x320(V)	pixels
4	Pixel pitch	0.1275(H) x 0.1275(V)	mm
5	Active area	30.6(H) x 40.8(V) mm	mm
6	Module size	35.7(H) x 51.2(V) x2.2(D) mm	mm
7	Pixel arrangement	RGB Vertical stripe	-
8	Interface	4 Line SPI	-
9	Display Colors	65K	colors
10	Drive IC	ST7789V2	-
11	FONT IC	GT30L32S4W	
12	Luminance(cd/m2)	400 (TYP)	Cd/m2
13	Viewing Direction	All View	Best image
14	Backlight	4 White LED Parallel	-
15	Operating Temp.	-20°C∼ + 70°C	C
16	Storage Temp.	-30°C~+ 80°C	C
17	Weight	11	g

3. Pin Definition

Symbol	Symbol	Description
1	GND	Power Ground.
2	VCC	Power Supply for Analog 3.3V
3	SCL	This pin is used to be serial interface clock.
4	SDA	SPI interface input/output pin.
5	RES	This signal will reset the device, Signal is active low.
6	DC	Display data/command selection pin in 4-line serial interface.
7	CS	LCD Chip selection pin, Low enable, High disable
8	BLK	Backlight control switch, backlight on by default, low level off backlight
9	FS0	Font database data output
10	FCS	FONT IC Chip selection pin, Low enable, High disable

4. Electrical Characteristics

4.1 Absolute Maximum Ratings

Parameter	Symbol	Min	MAX	Unit	Notes
Supply Voltage (I/O)	VDD	-0.3	4.6	V	
Analog Supply Voltage	VDDIO	-0.3	4.6	V	
Logic Input Voltage	VIN	-0.3	VDDIO+0.5	V	
Operation Temperature	Тор	-20	70	${\mathbb C}$	
Storage Temperature	Tst	-30	80	${\mathbb C}$	

4.2 Operating Conditions

T.E Operating Containions			/ / /		-	
Parameter	Symbol	Min	TYP	MAX	Unit	Notes
System Voltage	VDD	2.5	2.8	3.3	V	
Gate Driver High Voltage	VGH	12.2		14.97	V	
Gate <i>Driver Low</i> Voltage	VGL	-12.5		-7.16	V	
Operating Current for V _{DD}	I _{DD}	-	8	10	mA	
Sleep_In Mode VDD	I _{dd}	+///	15	30	uA	
Sleep_In Mode VDDIO	l _{ddio}	/ - · //	5	10	uA	

4.3 Backlight Unit

4.3 Backlight Unit						
Parameter	Symbol	Min	TYP	MAX	Unit	Notes
Voltage for LED backlight	VLED	2.9	3.0	3.1	V	
Current for LED backlight	ILED	5	80	120	mA	4 LED
Power Consumption	Pbl	-	240	372	mW	1
Brightness	L _{br}	350	400	-	cd/m ²	2
LED Life time	12	20000	-	-	hr	3

Note:

- 1. Where ILED =80mA , VLED=3.0V , Pbl= ILED x VLED
- 2. Uniform measure condition:
 - a:Measure 9 point ,Measure location is show below:
 - b:Uniform=(Min brightness/Max brightness)x100%
 - c:Best Contrast.

3. The environmental conducted under ambient air flow ,at Ta=25±2°C,60%RH±5%

4.4 Backlight Recommended Circuit

Motherboard driver backlight is need constant current circuit , if threated voltage screen after light brightness difference . Current and power consumption of the machine are inconsistent , so recommend a backlight driving circuit is best rated current . It is recommended to use IC (AW9364) . The reference circuit is as follows:

4.5 AC Timing Characteristic of The LCD

Serial interface Characteristics(4-line serial):

Signal	Symbol	Parameter	MIN	MAX	Unit	Description
	Toss	Chip select setup time (write)	15		ns	
	Тоэн	Chip select hold time (write)	15		ns	
CSX	Tcss	Chip select setup time (read)	60		ns	
	Tacc	Chip select hold time (read)	65		ns	
	T _{CHW}	Chip select "H" pulse width	40		ns	
	Tacycw	Serial clock cycle (Write)	16		ns	
	Тэни	SCL "H" pulse width (Write)	7		ns	-write command & data ram
	Tsuv	SCL "L" pulse width (Write)	7		ns	ram
SCL	TSCYCR	Serial clock cycle (Read)	150		ns	
	TSHR	SCL "H" pulse width (Read)	60		ns	-read command & data
6	Tour	SCL "L" pulse width (Read)	60		ns	ram
D/CX	Tocs	D/CX setup time	10	1	ns	
DICX	Трон	D/CX hold time	10		ns	
SDA	Tapa	Data setup time	7		ns	
(DIN)	Тэрн	Data hold time	7		ns	
	TACC	Access time	10	50	ns	For maximum CL=30pF
DOUT	Тон	Output disable time	15	50	ns	For minimum CL=8pF

5. OPTICAL CHARACTERISTICS

Item	Symbol	Measu Cond	ring litions	Min.	Тур.	Max.	Unit	Remark
	θ	φ = 0°	25 °C	-	80	-		
Viewing Angle		φ =180°	25 °C	-	80	-	Dog	Note 1
Viewing Angle	θ	φ = 90°	25 °C	-	80	-	Deg	Note1
		φ =270°	25 °C	-	80	-		
Brightness	L_{br}		-	350	400	-	Cd/m2	
Luminance Uniformity	ΔL		-	70	75	-//	>> ~(1
Contrast Ratio	CR		25 °C	640	800	117	(5)	Note2
Response Time	Tr+Tf	$\phi = 0_{o}$ $\theta = 0_{o}$	25 °C	-	30	40	ms	Note3
	White	Х	°C 25 °C	1	0.296			
		Υ	25 °C		0.325	1		
	Red	X	25 °C	* ///	0.647			
Color of	ixeu	Y	25 °C	0.00	0.329	. 0. 00		DM 74
CIE Coordinate	0	Х	25 °C	-0.03	0.279	+0.03		BM-7A
Coordinate	Green	Y	25 °C		0.550			
	Blue	X	25 °C	^	0.134			
	Diue	Y	25 °C		0.123			
Transmittance (with polarizer)	{1	X- ~		-	4.5	-	%	

Note 1 Definition of Viewing Angle:

Note 2:Definition of Contrast Ratio (CR) : measured at the center point of panel

CR = Luminance with all pixels white

Luminance with all pixels black

Note 3: Definition of Response Time : Sum of $\ensuremath{\mathsf{Tr}}$ and $\ensuremath{\mathsf{Tf}}$:

6. Reliability

Contents of Reliability Tests

No.	Item	Conditions	Note
1	High Temperature Operation	70°C±2°C, 120 hrs	
2	Low Temperature Operation	-20°C±2°C, 120 hrs	
3	High Temperature Storage	80°C±2°C, 120 hrs	
4	Low Temperature Storage	-30°C±2°C, 120 hrs	
5	High Temperature /Humidity Operation	60°C±2°C, 90% RH, 120 hrs	
6	Temperature Cycling	-10°C→25°C→60°C→25°C→-10°C 30min 5min 30min 5min 30min 10 cycle.	
7	Vibration Test	Total fixed amplitude:1.5mm. Vibration Frequerncy:10~55Hz One cycle 60 seconds to 3 direction of X,Y,Z each 15 minutes.	
8	ESD Test	Air Discharge:Apple ±4KV with 5 times. Contact Discharge:Apple ±2KV with 5 times.	
9	Drop Test	To be measured after dropping from 60cm high on the concrete surface in packing state. Dropping method corner dropping: A corner: Once edge dropping.	

Note:

No charge on display and in operation under the following test condition.

Please note that the reliability test project requires the use of virgin samples

Condition: Unless otherwise specified ,tests will be conducted under the following condition.

Temperature:20°C±5°C.

Humidity:65±5%RH.

Tests will be not conducted under functioning state.

7. Package Specifications

Item		Quantity	
Module		300 per Primary Box	
Holding Trays	(A)	15	per Primary Box
Total Trays	(B)	16 per Primary Box (Including 1 Empty Tray)	
Primary Box	(C)	1~4 per Carton (4 as Major / Maximum)	

8. Incoming Inspection Standards

8.1. Inspection and Environment Conditions

8.1.1. Inspection Conditions:

(1) Inspection Distance:35 cm±5cm

(2) View Angle: Light-on Inspection Angle: ±5°

Cosmetic Inspection Angle: ±45°

(perpendicular to LCD panel surface)

8.1.2 Environment Conditions:

Ambient Temperature		23 ℃±5℃	
Ambie	nt Humidity	55±10%RH	
Ambient Illumination	Cosmetic Inspection	More than 600 Lux	
	Functional Inspection	300~500 Lux	

8.1.3 Sampling Conditions:

- (1) Lot Size:Quantity of shipment lot per model
- (2) Sampling Method:

	18		MIL-STD-105E		
	Sampling Plan		Normal Inspection, Single Sampling		
			Level II		
	AQL	Major Defect	0.65%		
	AQL	Minor Defect	1.5%		

8.1.4 Inspection Criteria

8.1.4.1 Cosmetic Inspection(Panel):

Check Item	Classification	Criteria(Unit: mm)			
Black / White spot Foreign material (Round type) Pinholes Stain Particles inside cell.	Minor	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
Black and White line Scratch Foreign material (Line type)	Minor	$Length \qquad Width \qquad Acc. \ Qty$ $W \le 0.03 \qquad Ignore$ $L \ge 2 \qquad 0.03 < W \le 0.05 \qquad 1$ $0.05 < W \qquad 0$ $Total \qquad 1$ Distance between 2 defects should more than 5mm apart. Scratches not viewable through the back of the display are acceptable.			
Glass Crack Glass Chipping Pad	Minor	LCD with extensible crack line is unacceptable(When press the cracked LCD Area, the line will expand,we define it is extensible crack line)			
Area	Minor	Length and Width Acc. Qty c < 5.0, b< 0.4 Ignore			

Check Item	Classification	Criteria(Unit: mm)			
Glass Chipping Rear		Length and Width Acc. Qty			
Of Pad Area		c > 3.0, b< 1.0			
	Minor	c< 3.0, b< 1.0 2			
		c< 3.0, b< 0.5			
633		a <glass td="" thickness<=""></glass>			
Glass Chipping					
Except Pad Area					
<u>~</u>		Length and Width Acc. Qty			
	Minor	$c \le 0.6, b < 5.0$ Ignore			
***************************************		a <glass td="" thickness<=""></glass>			
a f					
Glass Corner Chipping		Length and Width Acc. Qty			
\ //	Minor	c < 2.0, b < 1.5 Ignore			
	Minor	c < 1.5, b< 2 Ignore			
b33		a <glass td="" thickness<=""></glass>			
Glass Burr		WX "			
		Glass burr don't affect assemble and module dimension.			
	Minor	Length Acc. Qty			
<u> </u>	17	F < 0.5 Ignore			
	11				
FPC Defect					
a— <u>-</u> ≛_ ≛		1.Dent , pinhole width a <w 2.<="" td=""></w>			
	Minor	(W:circuitry width)			
		2.Open circuit is unacceptable.			
a		3.No oxidation, contamination and distortion.			
		Diameter Acc. Qty			
CX		$\phi \leq 0.15$ Ignore			
Bubble on Polarizer	Minor	$0.15 < \varphi \le 0.20$ 2			
		0.20 <φ≤0.30 1			
		$0.3 < \varphi$ None			
		'			

Check Item	Classification	Criteria(Unit: mm)			
			Diameter	Acc. Qty	
			φ≤0.15	Ignore	
Dent on Polarizer	Minor		0.15 <φ≤0.20	2	
			0.20 <φ≤0.30	1	
			0.3 < φ	None	
Screen deformation	γ	•			
H	1	Test for insertion of plug gauge at highest warping point: H≤0.25mm The client has special requirements, according to drawing.			
Bezel	1	1.No rust, distortion on the Bezel. 2.No visible fingerprints, stains or other contamination.			
	Parameter and an annual community and an annual commun	D:Diameter W: width L: length			
		1.Spot: D≤0.2 is acceptable 0.2 <d≤0.3, 2dots="" acceptable="" and="" are="" between="" conditions="" defects<="" distance="" environment="" inspection="" td="" the=""></d≤0.3,>			
		Should more than 5mm. D>0.3 is unacceptable 2.Dent: D>0.3 is unacceptable. 3.Scratch: W≤0.03,L≤10 is acceptable,			
Touch Panel	1				
	(÷, Y)				
-	T.C	0.03 <w≤0.1, acceptable="" and="" conditions<="" environment="" inspection="" l≤10,="" td=""></w≤0.1,>			
		Distance between 2 defects should more than 5 mm.			
	1/1/	W>0.1 is unacceptable.			e.
		1.No distortion or contamination on PCB terminals.			
DOD		2.All components on PCB must sam		ne as documented on the	
PCB	/	BOM/coi	BOM/component layout.		
M		3.Follow IPC-A-600F.			
Soldering	1	Follow IPC-A-610C standard.			
Leak	/	Yellow light, OK。White light, According to the limit sample			