Analyse en composante principales

Introduction

Véronique Tremblay

Exemple

Ville	Précipi	Température					
	Août			Août		Septembre	
	Neige (cm)	Pluie (mm)	°C	°F	°C	°F	
а	0	104	25	77	22	72	
b	0	97	23	73	21	70	
С	0	96	27	81	22	72	
d	0	107	30	86	28	82	
е	0	82	33	91	31	88	

©Véronique Tremblay 2021 2

L'idée de l'ACP

On cherche une combinaison linéaire des variables qui maximise la variance.

$$Y = a_1 X_1 + a_2 X_2 + a_3 X_3 + a_4 X_4 + a_5 X_5 + a_6 X_6 \\$$

En étudiant les corrélations?

	Précipitations Août		Température					
			Août		Septembre			
	Neige	Pluie	°C	°F	°C	°F		
	X1	X2	X3	X4	X5	X6		
X1	1	NA	NA	NA	NA	NA		
X2	NA	1.00	-0.48	-0.47	-0.45	-0.48		
X3	NA	-0.48	1.00	1.00	0.96	0.96		
X4	NA	-0.47	1.00	1.00	0.95	0.95		
X5	NA	-0.45	0.96	0.95	1.00	1.00		
X6	NA	-0.48	0.96	0.95	1.00	1.00		

©Véronique Tremblay 2021

Pourquoi fait-on l'ACP?

• Explorer un jeu de données de grande dimension

• Faciliter la construction de modèles