Step-1

Multiply $Aq_j = b_{j-1}q_{j-1} + a_jq_j + b_jq_{j+1}$ throughout by q_j^T . Since, the vectors q_i are orthogonal,

$$q_i^T q_j = 1 \text{ if } i = j$$

 $q_i^T q_j = 0 \text{ if } i \neq j$

Thus, we get

$$\begin{split} q_{j}^{\mathsf{T}} \Big(A q_{j} \Big) &= q_{j}^{\mathsf{T}} \Big(b_{j-1} q_{j-1} + a_{j} q_{j} + b_{j} q_{j+1} \Big) \\ &= q_{j}^{\mathsf{T}} b_{j-1} q_{j-1} + q_{j}^{\mathsf{T}} a_{j} q_{j} + q_{j}^{\mathsf{T}} b_{j} q_{j+1} \\ &= b_{j-1} q_{j}^{\mathsf{T}} q_{j-1} + a_{j} q_{j}^{\mathsf{T}} q_{j} + b_{j} q_{j}^{\mathsf{T}} q_{j+1} \\ &= a_{j} \end{split}$$

Therefore, the formula for a_i is $a_j = q_j^T A q_j$.

Step-2

Consider again $Aq_j = b_{j-1}q_{j-1} + a_jq_j + b_jq_{j+1}$. Let us express this equation in the matrix form. As $q_0 = 0$, we need not consider a_0 and b_0 .

We get

$$A \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ \vdots \\ q_n \end{bmatrix} = \begin{bmatrix} a_1 & b_1 & 0 & 0 & \dots & 0 \\ b_1 & a_2 & b_2 & 0 & \dots & 0 \\ 0 & b_2 & a_3 & b_3 & \dots & 0 \\ 0 & 0 & b_3 & . & . & . & . \\ 0 & 0 & . & . & . & . & . \\ 0 & 0 & . & . & . & . & a_n \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \\ q_3 \\ \vdots \\ q_n \end{bmatrix}$$

Step-3

$$T = \begin{bmatrix} a_1 & b_1 & 0 & 0 & \dots & 0 \\ b_1 & a_2 & b_2 & 0 & \dots & 0 \\ 0 & b_2 & a_3 & b_3 & \dots & 0 \\ 0 & 0 & b_3 & \dots & \ddots & \ddots \\ 0 & 0 & \dots & \dots & \dots & \ddots \\ 0 & 0 & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots \\ 0 & \dots & \dots & \dots \\ 0 & \dots & \dots \\ 0 & \dots & \dots & \dots \\ 0 & \dots & \dots \\ 0 & \dots & \dots & \dots \\ 0 &$$

If we write $\begin{bmatrix} 0 & 0 & \dots & a_n \end{bmatrix}$, then we get the following:

The equation $Aq_j = b_{j-1}q_{j-1} + a_jq_j + b_jq_{j+1}$ can be expressed as AQ = QT, where T is a symmetric matrix.