TEMPLATE EXAM

IMPORTANT NOTES

- Topics **NOT** on the final exam:
 - Counting Techniques Lecture5
 - Chi-Squared Test Lecture17
- Students who do well in the final exam will be graded as:
 - Best midterm (15%) + project (10%) + final exam (75%). (otherwise the original scheme stands: 30% + 10% + 60%)
 - Thus, you can still do very well in the module (even if the midterms didn't go your way).
 - In order to do well in the final exam, you must set everything out logically using correct symbols etc. (see points in red below).

MODULE CODE: MA4413 SEMESTER: Autumn 2014

MODULE TITLE: Statistics for Computing DURATION OF EXAM: 2.5 hours

LECTURER: Dr. Kevin Burke GRADING SCHEME: 100 marks

(60% of module)

INSTRUCTIONS TO CANDIDATE

- Attempt four of the six questions (each one carries 25 marks).
- All work must be shown *clearly and logically* using appropriate symbols and probability notation. Failure to do so will *lose marks*.
- Write down the formula you intend to use at each stage *before* filling it in with numbers.
- Formula sheets are provided at the back of this exam paper.
- Statistical tables are available from the invigilators.

- a) Boxplots:
 - Lecture2

- b) Data types:
 - Lecture1
 - Tutorial1 Q2

- c) Identify parameter & statistic / calculate confidence interval:
 - Lecture1
 - Lecture13
 - Tutorial1 Q1, Q2
 - Tutorial7 Q1, Q2, Q3, Q4, Q5

- a) Histogram:
 - Lecture1
 - Tutorial1 Q4
 - Lecture2-Q1
- b) Inference concerning difference in means ($\mu_1 \mu_2$):
 - Lecture13
 - \bullet Lecture 14
 - \bullet Lecture 16
 - Tutorial7 Q5
 - Tutorial8 Q2
 - Tutorial10 Q1, Q2, Q3

- a) Inference concerning one mean (μ) :
 - Lecture13
 - Lecture14
 - Lecture15
 - Tutorial 7 Q2, Q3, Q6, Q7
 - Tutorial9 Q1, Q2, Q3, Q4
- b) Basic probability rules:
 - Lecture3
 - Lecture4
 - Tutorial1 Q6, Q7
- c) Law of total probability:
 - Lecture4
 - Tutorial 2Q2, Q3
 - Tutorial5 Q4
 - Tutorial6 Q2
 - Note: For the exam question you will be told that
 - $X \mid A_1 \sim \text{Normal}(\mu_1, \sigma_1)$ and
 - $X \mid A_2 \sim \text{Normal}(\mu_2, \sigma_2)$.
 - $\Rightarrow \Pr(X > x | A_1)$ and $\Pr(X > x | A_2)$ must be calculated using normal tables.

$Question \ 4 \qquad \qquad {\rm (25 \ Marks)}$

a.`	\mathbf{R}	A	TI)	:
œ.				_	•

- Lecture 3Q3, Q5
- Tutorial1 Q8
- Note: When finding the number of cheap disks required to meet a desired failure probability, you must use logs to solve. (see Lecture 3 Solutions "Q5(e) alternative method")

b) Binomial:

- Lecture7
- Tutorial3 Q4, Q5, Q6

c) Poisson:

- Lecture8
- Lecture (knowledge of exponential distribution is also needed)
- Tutorial4 Q2

- a) Random variable basics:
 - Lecture6
 - Tutorial3 Q1, Q3(a)
- b) Inference concerning one proportion (p):
 - Lecture13
 - Lecture15
 - Tutorial7 Q1, Q4(d)
 - Tutorial9 Q5, Q6, Q7, Q8
- c) Normal distribution:
 - Lecture10
 - Lecture12
 - Tutorial5 Q5, Q6
 - Tutorial6 Q1(a)(b), Q3(c), Q4(a)(b)

$Question \ 6 \hspace{1.5cm} (25 \ {\rm Marks})$

- a) Queueing theory:
 - Lecture9
 - \bullet Tutorial
4 Q5, Q6, Q7
 - Tutorial5 Q1, Q2, Q3
- b) **Huffman coding:**
 - Lecture18
 - \bullet Tutorial 11 Q1, Q2, Q3.

Histogram:

• class width =
$$\frac{\max(x) - \min(x)}{\text{number of classes}}$$

Numerical Summaries:

$$\bullet \quad \bar{x} = \frac{\sum x_i}{n}$$

$$\bullet \quad s^2 = \frac{\sum x_i^2 - n\,\bar{x}^2}{n-1}$$

- Position of Q_k : $\frac{n+1}{4} \times k$
 - $IQR = Q_3 Q_1$
 - $LF = Q_1 1.5 \times IQR$
 - $\bullet \quad UF = Q_3 + 1.5 \times IQR$

Probability:

•
$$\Pr(A^c) = 1 - \Pr(A)$$

•
$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

•
$$\Pr(E_1 \cup E_2 \cup \cdots \cup E_k) = \Pr(E_1) + \Pr(E_2) + \cdots + \Pr(E_k)$$
 (if mutually exclusive)

•
$$Pr(A \cap B) = Pr(A) Pr(B \mid A) = Pr(B) Pr(A \mid B)$$

•
$$\Pr(E_1 \cap E_2 \cap \cdots \cap E_k) = \Pr(E_1) \Pr(E_2) \cdots \Pr(E_k)$$
 (if independent)

•
$$\Pr(A \mid B) = \frac{\Pr(A \cap B)}{\Pr(B)} = \frac{\Pr(A) \Pr(B \mid A)}{\Pr(B)}$$

•
$$\Pr(B) = \Pr(B \cap E_1) + \Pr(B \cap E_2) + \dots + \Pr(B \cap E_k)$$

 $= \Pr(E_1) \Pr(B \mid E_1) + \Pr(E_2) \Pr(B \mid E_2) + \dots + \Pr(E_k) \Pr(B \mid E_k)$
(if E_1, \dots, E_k are mutually exclusive & exhaustive)

Counting Techniques:

•
$$n! = n \times (n-1) \times (n-2) \times \cdots \times 3 \times 2 \times 1$$

$$\bullet \quad \binom{n}{k} = \frac{n!}{k! (n-k)!}$$

Random Variables:

•
$$E(X) = \sum x_i \ p(x_i)$$

$$\bullet \quad E(X^2) = \sum x_i^2 \ p(x_i)$$

•
$$Var(X) = E(X^2) - [E(X)]^2$$

•
$$Sd(X) = \sqrt{Var(X)}$$

Distributions:

- $X \sim \operatorname{Binomial}(n, p)$ $X \sim \operatorname{Poisson}(\lambda)$ $T \sim \operatorname{Exponential}(\lambda)$ $\operatorname{Pr}(X = x) = \binom{n}{x} p^x (1 p)^{n x}$ $\operatorname{Pr}(X = x) = \frac{\lambda^x}{x!} e^{-\lambda}$ $\operatorname{Pr}(T > t) = e^{-\lambda t}$ $x \in \{0, 1, 2, \dots, n\}$ $x \in \{0, 1, 2, \dots, \infty\}$ $t \in [0, \infty)$ E(X) = n p • $E(X) = \lambda$ $E(T) = \frac{1}{\lambda}$ $\operatorname{Var}(X) = n p (1 p)$ $\operatorname{Var}(X) = \lambda$ $\operatorname{Var}(T) = \frac{1}{\lambda^2}$

Note: the normal distribution is shown on the next page

Queueing Theory:

•
$$E(N) = \lambda_a E(T)$$

$$\bullet \quad \rho = \frac{\lambda_a}{\lambda_s}$$

•
$$M/M/1$$
 System: $\lambda_a \longrightarrow \overline{ } \overline{ } \overline{ } \overline{ } \overline{ } \lambda_s$

$$\Rightarrow T \sim \text{Exponential}(\lambda_s - \lambda_a)$$

(where T is the total time in the system)

Normal Distribution:

- $X \sim \text{Normal}(\mu, \sigma)$
 - $E(X) = \mu$
 - $Var(X) = \sigma^2$
- $(1-\alpha)100\%$ of the Normal (μ, σ) distribution lies in $\mu \pm z_{\alpha/2}$ σ

•
$$\Pr(X > x) = \Pr\left(Z > \frac{x - \mu}{\sigma}\right)$$

•
$$\Pr(Z < -z) = \Pr(Z > z)$$

•
$$\Pr(Z > -z) = \Pr(Z < z) = 1 - \Pr(Z > z)$$

• If $X_1 \sim \text{Normal}(\mu_1, \sigma_1)$ and $X_2 \sim \text{Normal}(\mu_2, \sigma_2)$

$$\Rightarrow$$
 Sum: $X_1 + X_2 \sim \text{Normal}\left(\mu_1 + \mu_2, \sqrt{\sigma_1^2 + \sigma_2^2}\right)$

$$\Rightarrow$$
 Difference: $X_1 - X_2 \sim \text{Normal}\left(\mu_1 - \mu_2, \sqrt{\sigma_1^2 + \sigma_2^2}\right)$

• For $X_1, \ldots, X_n \sim$ any distribution with $\mu = E(X)$ and $\sigma = Sd(X) = \sqrt{Var(X)}$

$$\Rightarrow$$
 Sample mean: $\overline{X} \sim \text{Normal}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$ if $n > 30$

Statistics and Standard Errors:

Parameter	Statistic	Standard Error	Samples	Details
μ	\bar{x}	$\frac{s}{\sqrt{n}}$	large / small	$\nu = n - 1$
p	\hat{p}	$\sqrt{\frac{\hat{p}\left(1-\hat{p}\right)}{n}}$	large	confidence interval
		$\sqrt{\frac{p_0\left(1-p_0\right)}{n}}$	large	hypothesis test
$\mu_1 - \mu_2$	$\bar{x}_1 - \bar{x}_2$	$\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	large / small	$\nu = \frac{(a+b)^2}{\frac{a^2}{n_1-1} + \frac{b^2}{n_2-1}}$ $a = \frac{s_1^2}{n_1}, \ b = \frac{s_2^2}{n_2}$
		$\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}$ where $s_p^2 = \frac{(n_1 - 1) s_1^2 + (n_2 - 1) s_2^2}{n_1 + n_2 - 2}$	small	$\nu = n_1 + n_2 - 2$ assuming $\sigma_1^2 = \sigma_2^2$
$p_1 - p_2$	$\hat{p}_1 - \hat{p}_2$	$\sqrt{\frac{\hat{p}_1 (1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2 (1 - \hat{p}_2)}{n_2}}$	large	confidence interval
		$\sqrt{\frac{\hat{p}_c (1 - \hat{p}_c)}{n_1} + \frac{\hat{p}_c (1 - \hat{p}_c)}{n_2}}$ where $\hat{p}_c = \frac{x_1 + x_2}{n_1 + n_2}$	large	hypothesis test

Confidence Intervals:

• Large sample: statistic $\pm z_{\alpha/2} \times$ standard error

Hypothesis Testing:

•
$$z = \frac{\text{statistic - hypothesised value}}{\text{standard error}}$$

• p-value =
$$\begin{cases} 2 \times \Pr(Z > |z|) & \text{if } H_a : \mu \neq \mu_0 \\ \Pr(Z < z) & \text{if } H_a : \mu < \mu_0 \\ \Pr(Z > z) & \text{if } H_a : \mu > \mu_0 \end{cases}$$

•
$$F = \frac{\text{larger variance}}{\text{smaller variance}} = \frac{s_{\text{larger}}^2}{s_{\text{smaller}}^2}$$

 $\nu_1 = n_{\text{top}} - 1, \quad \nu_2 = n_{\text{bottom}} - 1$

Goodness-of-fit: $e_i = \text{total} \times p(x_i), \qquad \nu = n_f - 1 - k$

Independence: $e_{ij} = \frac{r_i \times c_j}{\text{total}}, \quad \nu = (n_r - 1) \times (n_c - 1)$

Information Theory:

•
$$h(x) = -\log_2[p(x)]$$

•
$$H(X) = E[h(X)] = \sum h(x_i) p(x_i)$$

• $l(x_i) = \text{code-length for character } x_i$

•
$$E(L) = \sum l(x_i) p(x_i)$$

$$\bullet \quad e = \frac{H(X)}{E(L)}$$

$$\bullet \quad \sum 2^{-l(x_i)} \le 1$$