සබරගමුව පළාත් අධනාපන දෙපාර්තමේන්තුව சபரகமுவ மாகாண கல்வித் திணைக்களம் Sabaragamuwa Provincial Department of Education

දෙවන වාර පරීක්ෂණය - 2018 ජූලි இரண்டாம் தவணைப் பரீட்சை 2018 Second Term Test – 2018 July

10 ලේණිය தரம் - 10

9) D - 10

Grade - 10

ගණිතය I සණෝதம் I Mathematics I

පැය දෙකයි 2 ගණിத்தியாலம 2 Hours

A - කොටස

- පුශ්න සියල්ලටම පිළිතුරු මෙම පතුයේම සපයන්න.
- $\mathbf{01.}\ \sqrt{56}\$ හි අගය පිහිටන්නේ කුමන පූර්ණ සංඛාහ දෙක අතර ද?
- **02.** රූපයේ දක්වා ඇති අර්ධ වෘත්තාකාර ආස්තරයේ අරය 14 cm නම්, එහි පරිමිතිය සොයන්න.

03. ABC හා PQR තුිකෝණ දෙකෙහි AB = PQ ද, $A\hat{B}C = P\hat{Q}R$ වේ. මෙම තුිකෝණ දෙක අංගසම වීම සඳහා සමාන විය යුතු අංග යුගලයක් තුිකෝණ තුළින් නම් කර තුිකෝණ දෙක අංගසම වන අවස්ථාව ද ලියන්න.

04. පහත දී ඇති කේන්දික ඛණ්ඩයේ අරය $7~{
m cm}$ කේන්දු කෝණය $45~^{\circ}$ ද වේ. වර්ගඵලය සොයන්න.

 $\overline{\bf 05.} \ 6a^2 \ , 4a^2b^2$ යන පද වල කුඩා පොදු ගුණාකාරය සොයන්න.

06. රූපයේ අඳුරු කර ඇති කොටසේ වර්ගඵලය රූපයේ වර්ගඵලයෙන් භාගයක් ලෙස දක්වන්න.

07. රූපයේ දී ඇති තොරතුරු ඇසුරින් x හි අගය සොයන්න.

- $08. \ \ x^2 + 6x + 5$ හි සාධක සොයන්න.
- 09. රූප සටහන මත දී ඇති තොරතුරු ඇසුරෙන් සමාන පාද යුගලය නම් කරන්න.

- 10. $a^{\mathbf{x}} = \mathbf{y}$ පුකාශනය ලසුගණක ආකාරයෙන් දක්වන්න.
- 11. සුළු කරන්න.

$$\frac{6}{5x} - \frac{1}{x}$$

12. දී ඇති තොරතුරු අනුව AB සරල රේඛාවේ,

(ii) අනුකුමණය සොයන්න.

- 13. පතුලේ වර්ගඵලය $4m^2$ වූ ඒකාකාර හරස්කඩක් ඇති ටැංකියක මීටර 2 ක් උසට ජලය පිරීමට පැය $\frac{1}{2}$ ක් ගත වේ. ටැංකියට ජලය ගලා එන සීගුතාවය මිනිත්තුවට ඝන මීටර වලින් සොයන්න.
- 14. කාණුවක් කැපීමට මිනිසුන් 8 දෙනෙකුට දින 9 ක් ගත වේ. එම කාර්යය දින 6 කින් නිම කිරීමට මිනිසුන් කී දෙනෙකු අවශාද?
- 15. ABCD සමාන්තරාසුයකි.

 ${\bf A}\hat{B}{\bf D}=35^\circ$ ද, ${\bf A}\hat{D}{\bf C}=80^\circ$ කි. ${\bf D}\hat{B}{\bf C}$ හි අගය සොයන්න.

16. රූප සටහනේ දක්වෙන තොරතුරු අනුව,

 ${
m A}\hat{{\cal C}}{
m B}$ කෝණයෙහි විශාලත්වය සොයන්න.

17. ABCD සමාන්තරාසුයකි. $\hat{CBE} = 70^\circ$ නම්,

 $A\widehat{D}\mathrm{C}$ හි විශාලත්වය කොපමණද?

- $18. \ \frac{3}{2a} + \frac{5}{a} = \frac{1}{2}$ විසඳන්න.
- **19.** PQRS සමාන්ත5ාසුයේ PR = $24~{\rm cm}$, SQ = $10~{\rm cm}$ වේ නම්, POQ තිකෝණයේ පරිමිතිය සොයන්න.

20. පහත දක්වෙන සමාන්තරාසුයේ EH හා FG පාද අතර සම්බන්ධතා 2 ක් ලියන්න.

- 21. පන්තියක සිටින සිසුන් පිරිසකගෙන් එක් එක් සිසුවා වඩාත් ම කැමති කී්ඩාව සම්බන්ධව ලබාගත් තොරතුරු දක්වෙන වට පුස්තාරයක් පහත දක්වේ. අත්පන්දු කීඩාවට කැමති පිරිස 8 ක් නම්, පාපන්දු කීඩාවට කැමති සිසුන් ගණන පෙන්වන්න.
- **22.** (x-3)(x+2)=0 විසදන්න.

23. දී ඇති වෙන් රූපය මත $(A \cup B)$ අංකනයෙන් දක්වෙන පෙදෙස අඳුරු කර දක්වන්න.

24. ABCD සෘජුකෝණාසුයකි. එහි පළළ ඒකක x නම්, අඳුරු කර ඇති අර්ධ වෘත්තයේ වර්ගඵලය සඳහා π හා x ඇසුරෙන් පුකාශනයක් ලියන්න.

25.

 $\varepsilon = \{$ බහු අසු $\}$

 $A = \{$ වතුරසු $\}$

 $\mathbf{B}=\{$ සමාන්තරාසු $\}$ නම්,

B කුලකය වෙන් රූපය තුළ නිරූපණය කරන්න.

B - කොටස

- **01.** දික් කුඹුර මහා විදහලයේ 10 ශේුණියේ සිසුන්ගෙන් $\frac{1}{4}$ ක් තොරතුරු තාක්ෂණය හදාරති. ඉතිරියෙන් $\frac{1}{2}$ ක් සෞඛා හදාරති.
 - (i) සෞඛා හදාරණ සිසුන් පුමාණය මුළු පිරිසෙන් කොපමණ භාගයක් ද?
 - (ii) ඉතිරි සිසුන් ගෘහ විදහාව හදාරයි නම්, ගෘහ විදහාව හදාරණ සිසුන් පුමාණය භාගයක් ලෙස දක්වන්න.

ගෘහ විදාහව හදාරමින් සිටි සිසුන්ගෙන් 1/3 ක් පසුව කෘෂිකර්මය හැදෑරීමට තීරණය කරන ලදී. විෂයයන් මාරු වූ පසු,

- (iii) කෘෂිකර්මය හැදෑරීමට යොමු ව සිසුන් ගණන මුළු පිරිසෙන් කොපමණ භාගයක්ද?
- (iv) කෘෂිකර්මය හැදෑරීමට යොමු වූ සිසුන් ගණන 30 නම්, ගෘහ විදහාව හා තොරතුරු තාක්ෂණය හදාරණ සිසුන් ගණන අතර වෙනස සොයන්න.

- **02.** මෝටර් රථයක ආනයනික මිල රුපියල් $500\ 000$ වන අතර එය මෙරටට ගෙන ඒමේදී $20\ \%$ ක තීරු බද්දක් අය කරයි.
 - (i) මෝටර් රථය සඳහා අය කරනු ලබන තීරු බදු මුදල සොයන්න.
 - (ii) එම මෝටර් රථය මෙරටට ගෙන්වීමෙන් පසු වටිනාකමින් 15 % ක වැට් මුදලක් වෙළෙඳ ආයතනය මඟින් වැය කරනු ලබයි. වැය කළ වැට් මුදල කොපමණද?
 - (iii) තීරු බදු සහ වැට් බදු ගෙවීමෙන් පසු වළෙඳ ආයතනය විසින් රුපියල් $50\,000\,$ ක ලාභයක් ලැබෙන සේ මෝටර් රථයේ මිල ලකුණු කරයි නම්, මෝටර් රථයේ ලකුණු කළ මිල දක්වන්න.

(iv) මෝටර් රථයේ ලියාපදිංචිය සහ වෙනත් වියදම් වෙනුවෙන් රුපියල් $30\ 000$ ක මුදලක් වැය වේ නම්, මෝටර් රථය මිලදී ගැනීම සඳහා වැය වන මුළු මුදල සොයන්න.

(v) රුපියල් 500 000 ක මුදලක් 10 % ක සුළු පොළියක් ගෙවන බැංකුවක අවුරුදු 3 ක් සඳහා තැන්පත් කර තිබූ පුසන්නට එම කාලසීමාව තුළ ඉහත මෝටර් රථයේ මිල වෙනස් නොවූයේ නම්, ඉහත මෝටර් රථය මිලදී ගැනීම සඳහා තව කොපමණ මුදලක් අවශා වෙයිද?

03. ABCD තුැපීසියමක හැඩැති මල් වවා ඇති ඉඩමක,
AEB අර්ධ වෘත්තාකාර කොටසේ රෝස මල් ද, අඳුරු
කර ඇති කොටසේ ඇන්තුරියම් මල් ද වගා කර ඇත.

(ii) AEB අර්ධ වෘත්තාකාර මායිම දිගේ කණු දෙකක් අතර පරතරය සමාන වන සේ සිහිත් කණු 12 ක් සිටුවා ඇත්තේ A සහ B ස්ථානවල ද, කණු දෙකක් පිහිටන පරිදි ය. කණු දෙකක් අතර පරතරය සොයන්න.

(iii) AEB රෝස මම් වවා ඇති කොටසට වර්ගඵලයෙන් සමාන වන පරිදි සහ AB එක් මායිමක් වන පරිදි තුැපීසියම හැඩැති ඉඩමට පිටතින් ABPQ සෘජුකෝණාසාකාර කොටසක විසිතුරු පැළ වගා කර ඇත. විසිතුරු පැළ වගා කර ඇති කොටසේ දළ රූප සටහන් මිනුම් සහිතව දී ඇති රූපයට ඇතුළත් කරන්න.

04. පාසලක ශිෂාන් 720 දෙනෙකුගෙන් ඔවුන් වඩාත් කැමති විනෝදාංශය පිළිබඳ විමසීමේදී ලද තොරතුරු නිරූපණය කරන වට පුස්තාරය පහත දක්වේ. එහි රූපවාහිනිය නැරඹීමට කැමති පිරිස දක්වෙන කේන්දික ඛණ්ඩයේ කෝණය 70° ක් ද, මුද්දර එකතු කිරීමට කැමති පිරිස දක්වෙන කේන්දික ඛණ්ඩයේ කෝණය 150° ක් ද වන ලෙස ලකුණු කර ඇත.

(i) රූපවාහිනි නැරඹීමට කැමති ළමුන් ගණන කොපමණද?

(ii) කීඩා කිරීමට කැමති ළමුන් ගණන මුළු ළමුන් පිරිසෙන් ½ ක් නම්, කීඩා කිරීමට කැමති ළමුන් ගණන සොයා ඊට අදාළ කේන්දික ඛණ්ඩයේ කෝණය රූප සටහන මත දක්වන්න.

(iii) පොත් කියවීමට කැමති ළමුන් ගණන නිරූපණය කරන කේන්දික කෝණය සොයන්න.

- (iv) පොත් කියවීමට කැමති ළමුන් ගණන සොයන්න.
- (v) පොත් කියවීමට කැමති ළමුන් ගණනට වඩා රූපවාහිනී නැරඹීමට කැමති ළමුන් ගණන සොයන්න.

- 05. (a) සමීක්ෂණයක් සඳහා අවශා තොරතුරු රැස් කිරීමට, තම නිවස ඉදිරිපිට මාර්ගයේ පැයක කාලයක් තුළ ගමන් කළ වාහන සංඛාාව පිළිබඳව නිමල් විසින් රැස් කරගත් තොරතුරු පහත දක්වේ.
 - පැයක කාලය තුළ මාර්ගයේ ගමන් කළ මුළු වාහන සංඛ්යාව 60 කි.
 - ඉන් 28 ක් වෑන් රථ වූ අතර සුදු පැහැති වාහන 25 ක් විය.
 - වෑන් රථ නොවන සුදු පැහැ වූ වාහන 15 කි.
 - (i) ඉහත දී ඇති තොරතුරු පහත දක්වෙන වෙන් රූපයේ ලකුණු කරන්න.

- (ii) එම කාලය තුළ ධාවනය වූ සුදු හැර වෙනත් පාට වෑන් රථ සංඛ්‍යාව කොපමණද?
- $(iii) \ (A \cup B)'$ දක්වෙන පුදේශය වෙන් රූපයේ අඳුරු කර දක්වා එමඟින් නිරූපණය කෙරෙන පුදේශය වචනයෙන් විස්තර කර ලියන්න.
- (b) $\varepsilon = \{1 සිට 20 හෙක් ගණින සංඛාහ \}$

 $B = \{1 සිට 20 තෙක් වූ හතරේ ගුණාකාර\}$

A හා B කුලකවල අවයව ඇසුරින් $A\cap B'$ කුලකය ලියා දක්වන්න.

සබරගමුව පළාත් අධනාපන දෙපාර්තමේන්තුව சபரகமுவ மாகாண கல்வித் திணைக்களம் Sabaragamuwa Provincial Department of Education

දෙවන වාර පරීක්ෂණය - 2018 ජූලි இரண்டாம் தவணைப் பரீட்சை 2018 Second Term Test – 2018 July

10 ලේණිය தரம் - 10

Grade - 10

ගණිතය II கணிதம் II Mathematics II

පැය දෙක හමාරයි $2\frac{1}{2}$ ගණා්ජුන්யාහග $2\frac{1}{2}$ Hours

lacktriangle A කොටසින් පුශ්න 5 කට ද, B කොටසින් පුශ්න 5 කට ද පිළිතුරු සපයන්න.

 ${f A}$ – කොටස

01. (a) $y = x^2 - 4$ ශිුතයේ පුස්තාරය ඇඳීම සඳහා සකස් කරන ලද අසම්පූර්ණ අගය වගුවක් පහත දැක්වේ.

X	-3	-2	-1	0	1	2	3
у	5	0	-3		-3	0	5

- (i) x = 0 වන විට y හි අගය සොයන්න.
- (ii) x අක්ෂය දිගේ කුඩා කොටු 10 ක් ඒකක 1 ක් ලෙස ද, y අක්ෂය දිගේ කුඩා කොටු 10 ක් ඒකක 1 ක් ලෙස ද ගෙන ශුිතයේ පුස්තාරය අඳින්න.

ඔබේ පුස්තාරය ඇසුරෙන්,

(b) (i) ශිුතයේ අවම අගය සොයන්න.

(ලකුණු 01)

- (ii) ශිුතයේ අගය සෘණ වන x හි අගය පරාසය සොයන්න.
- (iii) $x^2 4 = 0$ සමීකරණයේ මූල සොයන්න.
- (iv) ශූතය y අක්ෂය දිගේ ඒකක 2 ක් ඉහළට විස්ථාපනය කළ විට නව ශූිතයේ සමීකරණය ලියන්න.
- 02. අශේන් තම ස්ථාවර ගිණුම ඇපයට තබා නිවසේ අලුත්වැඩියාවක් සඳහා රු. 150 000 ක් 14 % වාර්ෂික සුළු පොළී අනුපාතිකයක් යටතේ ණයට ගත්තේ ය. වසර දෙකකට පසු රු. 175 000 ක් ආපසු ගෙවූ අතර ගෙවීමට ඉතිරිව තිබූ මුදල ද සමඟ තවත් මුදලක් එම පොළී අනුපාතිකයට ම ණයට ගෙන තවත් වසරකින් රු. 142 500 ක් ගෙවා මුළු ණය මුදල අවසන් කළේ ය. මුල් වසර දෙක අවසන් වූ පසු ණයට ගත් මුදල කීයද?
- 03. බිත්තියක නිර්මාණය කරන සෘජුකෝණාසාකාර චිතුයක පරිමිතිය 190 cm කි. එහි දිග පළල මෙන් තුන් ගුණයකට වඩා 5 cm අඩු ය. දිග x ද, පළල y ද ලෙස ගෙන සමගාමී සමීකරණ යුගලයක් ගොඩනගා එය විසඳීමෙන් චිතුයේ දිග හා පළල සොයන්න. එමඟින් චිතුයේ 250 cm² ක් නිර්මාණය කිරීම සඳහා රු. 400.00 ක් වැය වේ නම්, එම චිතුය නිර්මාණය සඳහා රු. 3000.00 ක් වැය වන බව සුනිල් පවසයි. ඔහුගේ පුකාශයේ සතා අසතානාවය පැහැදිළි කරන්න.

04. (i) a(a+2), (a^2-4) හි කුඩා පොදු ගුණාකාරය සොයන්න.

- (ලකුණු 02)
- (ii) බස් නැවතුම්පළකින් A, B, C නම් බස් රථ 3 ක් පෙ.ව. 7.00 ට එකවර පිටත් වේ.

A බස් රථය සෑම මිනිත්තු 15~(a+2) කාලයකට වරක් ද,

 ${
m B}$ බස් රථය සෑම මිනිත්තු $20~({
m a}^2$ - 4) කාලයකට වරක් ද,

C බස් රථය සෑම මිනිත්තු $(a-2)^2$ කාලයකට වරක් ද,

නැවත බස් නැවතුම්පළට පැමිණේ.

මෙම බස් රථ තුනම නැවත එකවර බස් නැවතුම්පොළට පැමිණෙන්නේ කොපමණ කාලයකට පසුවද?

(ලකුණු 03)

(iii) සෘජුකෝණාසාකාර රෙදි කැබැල්ලක දිග 3 m ක් ද පළල 1 m ද වේ. මෙම රෙදි කැබැල්ලේ දිග පැත්ත කැබලි 2x + 4 කට ද පළල පැත්ත කැබලි $x^2 - 4$ කට ද වෙන් කර කුඩා සෘජුකෝණාසාකාර රෙදි කැබලි කපාගෙන ඇත. කුඩා රෙදි කැබැල්ලේ දිග හා පළල වීජීය භාග ලෙස ලියන්න.

(ලකුණු 02)

(iv) කුඩා රෙදි කැබැල්ලක පරිමිතිය සඳහා පුකාශනයක් ලියා සුළු කරන්න.

(ලකුණු 03)

- **05.** (a) (i) $(2x + y)^2$ පුසාරණය කරන්න.
 - (ii) රු. x බැඟින් වූ තේ පැළ y පුමාණයක් මිලදී ගැනීමට සිතූ පෙරේරා මහතා ඒ බව පැළ තවාන් අයිතිකරුට පැවසූ විට තවත් පැල 50 ක් මිලදී ගත්තේ නම්, පැළයක මිල රුපියලකින් අඩු කළ හැකි බව අයිතිකරු පෙරේරා මහතාට පැවසීය. ඒ අනුව තවත් පැළ 50 ක් මිලදී ගත්තේ නම් පෙරේරා මහතාට තේ පැළ මිලදී ගැනීමට වැයවන මුදල ද්විපද පුකාශනයකින් දක්වා එය සුළු කරන්න.
 - (b) සාධක සොයන්න.
 - (i) $3a^2 + 4ab + b^2$
 - (ii) $(2x-1)^2-6^2$
- 06. (a) එක්තරා පාසලක නිවාසාන්තර කී්ඩා උළෙලක මුදිතා නිවාසයේ සිසුන්ට පැළදීමට සකස් කරන ලද නිවාස ලාංඡනයේ හැඩය තිුකෝණාකාර වූ අතර එහි දළ සටහනක් පහත දක්වේ.

ABC තිකෝණාකාර ආස්තරයේ BC ආධාරක පාදයේ දිග ඒකක x වන අතර, එම පාදයට A සිට ඇඳි ලම්භකයේ උස, BC ආධාරක පාදයේ දිගට වඩා ඒකක දෙකකින් වැඩිය.

- (i) ඉහත තොරතුරු ඇසුරින් තිුකෝණාකාර ආස්තරයේ වර්ගඵලය සඳහා x අඩංගු පුකාශනයක් ලියන්න. (ලකුණු 02)
- (ii) x-4 සහ x+2 සංඛාහ දෙකෙහි ගුණිතය ශුනා බව සිසුවෙකු පවසයි. ඒ සඳහා සම්බන්ධතාවය ලියා දක්වන්න. (ලකුණු 02)
- (iii) එය විසදීමෙන් x සඳහා ගත හැකි අගයන් සොයන්න. (ලකුණු 03)
- (b) $U = \sqrt{V^2 2as}$ සූතුයේ s උක්ත කරන්න. (ලකුණු 03)

B – කොටස

- f 07. f ABC තිකෝණයේ f BAC හි සමච්ජේදකය f AD වේ.
 - D සිට AB හා AC ට ඇඳි ලම්භ පිළිවෙළින් DP හා DQ වේ.
 - (i) දී ඇති රූප සටහන පිළිතුරු පතුයේ පිටපත් කරගෙන අදාළ දත්ත ලකුණු කරන්න.
 - (ii) $APD \Delta \equiv AQD \Delta$ බව සාධනය කරන්න.
 - (iii) BD = DC නම්, $BDP \Delta \equiv CDQ \Delta$ බව සාධනය කරන්න.
 - (iv) AB = AC බව සාධනය කරන්න.

- $\mathbf{08.}$ PQR තිකෝණයේ PQ = PR වේ.
 - QPR කෝණයේ සමච්ජේදකය QR මත S හිදී ජේදනය වේ.
 - ST = TR වනසේ T ලක්ෂාය PR මත පිහිටයි.
 - (i) දී ඇති රූප සටහන පිළිතුරු පතුයේ පිටපත් කරගෙන දී ඇති දත්ත එහි ඇතුළත් කරන්න.
 - (ii) PQ හා TS සමාන්තර බව පෙන්වා PTS සමද්විපාද තුිකෝණයක් බව සාධනය කරන්න.

- $oldsymbol{09}$. ABCD සමාන්තරාසුයකි. එහි DB විකර්ණයට A සිට AE ලම්භකය ද C සිට CE ලම්භකය ද ඇඳ ඇත.
 - (i) ඉහත තොරතුරු ඇතුළත් දළ රූප සටහනක් අඳින්න.
 - (ii) AE//CF බව පෙන්වන්න.
 - (iii) AC සහ BD විකර්ණ O හිදී ජේදනය වේ නම් AOE සහ COF තුිකෝණ අංගසම බව සාධනය කරන්න.
 - (iv) CF = FG වන සේ CF රේඛාවේ G තෙක් දික් කරනු ලැබේ නම්, AEFG සෘජුකෝණාසුයක් බව සාධනය කරන්න.

 ${f 10.}$ දී ඇති රූප සටහනේ ${f KL}={f LM}$ හා ${f XL}={f XZ}$ වේ.

 $L\widehat{M}\,K=x^\circ$ නම්, හේතුව ද සඳහන් කර පහත සඳහන් කෝණ x ඇසුරින් සොයන්න.

- (i) $L\widehat{K}Y$
- (ii) $X\hat{L}M$
- (iii) MÂY
- (iv) KŶX
- (\mathbf{v}) $\mathbf{x}=35^\circ$ නම්, $\mathbf{K}\hat{X}\mathbf{Y}$ කෝණයේ අගය 40° පෙන්වන්න.

- 11. (a) A හා B යනු සරල රේඛීය මාර්ගයක 175 km ක පරතරයක් ඇතිව පිහිටි නගර දෙකකි. A සිට $50~{\rm kmh}^{-1}$ ක ඒකාකාර වේගයෙන් ලොරි රථයක් B දෙසට ගමන් කළ අතර ඊට පැයකට පසු A සිට $75~{\rm kmh}^{-1}$ ක ඒකාකාර වේගයෙන් ජීප් රථයක් B දෙසට ගමන් කරයි. ජීප් රථය ලොරි රථය පසු කරන විට ලොරි රථය A නගරයේ සිට කොපමණ දුරකින් පිහිටයිද?
 - (b) පතුලේ වර්ගඵලය $2m^2$ වන ඝනකාභ හැඩැති ටැංකියක $200\ l$ ක් පිරී ඇති අවස්ථාවක මිනිත්තුවට ලීටර් 40 ක සීඝුතාවයකින් ජලය ගලා එන නළයකින් එය සම්පූර්ණයෙන් ම පිරවීම සඳහා මිනිත්තු 20 ක් ගත වේ. ටැංකියේ ඇතුළත උස සෙන්ටිමීටරවලින් සොයන්න.
- 12. ලසු ගණක වගු භාවිතා නොකොට,
 - (i) $\log_{x} 243 = 5$ x හි අගය සොයන්න.
 - (ii) $\log_3 20 + \log_3 x = \log_3 60 + \log_3 9$

සුළු කරන්න.

(iii) ලසු ගණක වගු භාවිත කොට අගය සොයන්න.

$$\frac{5.432 \times 878.2}{83.8}$$

සබරගමුව පළාත් අධනපන දෙපාර්තමේන්තුව දෙවන වාර පරීක්ෂණය - 2018

ගණිතය

10 ශේණිය

පිළිතුරු පතුය

I – පතුය (A - කොටස)

පුශ්	න	විස්තරය		ලකුණු		වෙනත්
భండ	ා ය					
01		7 හා 8	එක් පි	ළිතුරකට	ලකුණු 1	
			බැඟින්			
02		$C = \frac{1}{4} \times 2\pi r \times 14 \times 2$	1			
		$= \frac{1}{4} \times 2 \times \frac{22}{7} \times 14 + 28$	1			
		=22+28				
		= 50				
03		BC = QR - (1) පා, කෝ, පා හෝ	1			
		$\mathbf{B}\hat{\mathcal{C}}\mathbf{A} = \mathbf{Q}\hat{R}\mathbf{P} - (1)$ කෝ, කෝ, පා හෝ	1			
0.4		$\hat{CAB} = \hat{RPQ} - (1)$ කෝ, කෝ, පා වර්ගඵලය $= \frac{22}{7} \times 7 \times 7 \times \frac{45}{360}$	1			
04			1			
		$= 19.25 \text{ cm}^2$	1			
05		$6a^2 = 2 \times 3 \times a^2$				
		$4a^2b^2 = 2^2 \times a^2 \times b^2$				
		කු.පො.ගු. = $2^2 \times 3 \times a^2 \times b^2$				
		$=12a^2b^2$	2			
06		$\frac{1}{8}$				
07		50°				
08		$x^2 + x + 5x + 5$				
		(x+5)(x+1)				
09		AB = AC				
10		$log_b 5 = x$				
11		$\frac{6}{5x} - \frac{1}{x}$				
		6-5 1				
		$\frac{3}{5x} = \frac{1}{5x}$				

12	(i)	$\frac{(0-2)}{(0-(-2))} = m$		
		$\frac{2}{2} = m$		
	·••	m = 1		
13	(ii)	$2 = c$ $4 \times 2 = 8 \text{ m}^3$		
14		$\frac{8\times 9}{6} = 12$		
15		10 + 8 + 6 = 24 cm		
16		$A\hat{C}B = 180^{\circ} - 132^{\circ}$		
17		$\widehat{ADC} = 180^{\circ} - 70^{\circ}$		
		= 110°		
18		$\frac{3}{2a} + \frac{5}{a} = \frac{1}{2}$		
		$\left \frac{3+10}{2a} = \frac{1}{2} \right $		
		2a = 26		
		a = 13		
19		PO = 12 cm		
		OQ = 5 cm		
		POQ ∆ යේ පරිමිතිය = 13 cm + 12 cm + 5 cm		
		= 30 cm		
20		EH//FG		
		EH = FG		
21				
22				
23				
24				
25		n(A') = 7		

I – පතුය (B - කොටස)

පුශ්න (අංකය	විස්තරය		ලකු	%	වෙනත්
01.	(i)	$\frac{3}{4} \not \text{as} \frac{1}{2} = \frac{3}{8}$	1	2		
	(ii)	$1 - \left(\frac{1}{4} + \frac{3}{8}\right)$ $1 - \frac{5}{8}$ $\frac{3}{8}$	1 1	2		
	(iii)	$\frac{\frac{3}{8}}{8}$ $\frac{1}{3}$ $\frac{1}{8}$	1 1	2		
	(iv)	$\frac{1}{8} = 30$	1	4		
		$rac{3}{8} = 90$ තොරතුරු තාක්ෂණය $=rac{1}{4} = 60^\circ$ වෙනස $= 30^\circ$	1 1 1			
02.	(i)	තීරු බදු මුදල = රු. $500\ 000 \times \frac{20}{100}$ = රු. $100\ 000$	1 1			
	(ii)	නීරු බදු ගෙවූ පසු මුදල = රු. $500\ 000 + 100\ 000$ $\therefore 270 මුදල = 600\ 000 \times \frac{15}{100}$ $= 90\ 000$	1			
	(iii)	වැට් මුදල ගෙවූ පසු මුදල = රු. 600 000 + 90 000 = රු. 690 000 ∴ලකුණු කළ මිල = රු. 690 000 + 50 000 = රු. 740 000	1			
	(iv)	මුළු මුදල = රු. 740 000 + 30 000 = රු. 770 000	1			
	(v)	අවුරුදු 3 ට පොළිය $=$ රු. $500\ 000 \times \frac{10}{100} \times 3$ $=$ රු. $150\ 000$ අවුරුදු 3 ට මුළු මුදල $=$ රු. $5000\ 000 + 150\ 000$ $=$ රු. $650\ 000$ \therefore අවශා වන මුදල $=$ රු. $770\ 000 - 650\ 000$ $=$ රු. $120\ 000$	1 1 1			
03.						

04.		(i)	$\frac{70}{360} \times 720 = 140$	1		
			$\frac{1}{360}$ × 720 = 140			
		(ii)	$720 \times \frac{1}{4} = 180^{\circ}$	1		
			$\frac{180}{720} \times 360 = 90^{\circ}$	1		
			720 රූපයේ දැමීමට	1		
		(iii)	$360 - (150 + 70 + 90) = 50^{\circ}$	2		
		(iv)	$\frac{50}{360} \times 720 = 100^{\circ}$	2		
		(v)	140 - 100 = 40	1		
05.	(a)	(i)	A — 7 111 29 33 B	3		
		(ii)	69	2		
		(iii)	A B	2		
	(b)		A ∩ B = { } අභිශූනෳ කුලකය			

පිළිතුරු පතුය II – පතුය (A - කොටස)

පු	ශ්න අං	කය	විස්තරය			ලකුණු		
01.	(a)	(i)	y = -4					
		(ii)	රූපයට					
	(b)	(i)	-4					
		(ii)	-2 < x < 2					
		(iii)	x = -2 හා x = 2					
		(iv)	$y = x^2 + 1$					
02.			වර්ෂයකට පොලි	ස = රු. $150\ 000 \times \frac{14}{100}$	1			
				= ♂ ₇ .21 000	1			
			වසර දෙකකට	$=$ $\sigma_7.21~000 \times 2$	1			
				= 6.42000	1			
			මුළු මුදල	= $60.150000 + 42000$	1			
				= 6.192000	1			
			ඉතිරි මුදල	$=$ $\sigma_7.192\ 000 - 175\ 000$				
				$= \mathcal{O}_{\bar{i}}.17~000$	1			
			ණයට ගත් මුදල	$= \mathcal{O}_{0}.142500 \times \frac{100}{114}$	1			
				= 57.125 000	1			
			ලැබුණු මුදල	$=$ $67.125\ 000 - 17\ 000$	1			
				= 6.108000	1			

	1	1				1	
03.		1	2x + 2y = 190 - (1)	1			
			$\begin{array}{cccc} 2x + 2y & = 190 - (1) \\ x & = 3y - 5 - (2) \\ (1) \times 2 & 2x - 6y & = -10 - (3) \\ (1) - (3) & 8y & = 200 \end{array}$	1			
			$(1) \times 2 2x - 6y \qquad = -10 - (3)$	1			
			(1) - (3) 8y = 200	1			
			y = 25	1			
			$x = (25 \times 3) - 5$				
			x = 70	1			
			දිග 70 cm පළල 25 cm				
			චිතුයේ වර්ගඵලය $= 70 \times 25$				
			1550 2	1			
			$= 1750 \text{ cm}^2$				
			වියදම $=\frac{1750}{250} \times 100$	1			
			$= 7 \times 400$				
			$= \phi_7. 2800$	1			
			2800 < 3000	1			
			රු. 3000 ක් වැය නොවේ.	1			
			ට්. 3000 කි වැසි නොවෙ.	1			
04.		(i)	$a (a + 2), a^2 - 4$				
04.		(1)	· · · · · · · · · · · · · · · · · · ·	1			
			a(a+2), $(a-2)(a+2)$				
		(**)	කු.පො.ගු. a(a + 2) (a - 2)	1			
		(ii)	$A = 15(a + 2) = 3 \times 5 (a + 2)$	1			
			$B = 20 (a^2 - 4) = 2 \times 2 \times 5 (a - 2) (a + 2)$	1			
			$C = (a - 2)^{2}$				
			කු.පො.ගු. = 2 × 2 × 3 × 5 (a - 2) (a + 2)				
			=60 (a-2) (a+2)	1			
			මෙම බස් රථ තුනම මිනිත්තු $60(a-2)$ $(a+2)$				
		(iii)	ත්වෙක්ට පසුව බස් නැවතුමට පැමණෙ. $\xi \sigma = \frac{3}{2x+4} m \qquad \text{පළල} = \frac{1}{x^2-4} m$ $ = \delta \delta \delta \sigma = \frac{3}{2x+4} \times 2 + \frac{1}{x^2-4} \times 2$ $ = \frac{6}{x+4} + \frac{2}{x^2-4}$ $ = \frac{6}{2(x+12)} + \frac{2}{(x-2)(x+2)}$	1 + 1			
		(iv)	පරිමිතිය = $\frac{3}{2x+4} \times 2 + \frac{1}{x^2-4} \times 2$	1			
			$=\frac{6}{x+4}+\frac{2}{x^2-4}$				
			$=\frac{6}{2(x+12)}+\frac{2}{(x-2)(x+2)}$				
			$=\frac{1}{(x+2)}+(x-2)(x+2)$				
			$= \frac{3(x-2)+2}{(x+2)(x-2)}$ $= \frac{3x-6+2}{(x+2)(x-2)} = \frac{3x-4}{(x+2)(x-2)}$	1			
			$= \frac{3x-6+2}{(x+2)(x-2)} = \frac{3x-4}{(x+2)(x-2)}$	1			
05.	(a)	(i)	$[2x + y]^2 = 4x^2 + 4xy + y^2$	2			
		(ii)	(x-1)(y+50)	2			
		` '	= xy + 50x - y - 50	1			
	(b)	(i)	$3a^2 + 4ab + b^2$				
	· /	1.	= (3a + b) (a + b)	2			
		(ii)	$(2x-1)^2-6^2$	_			
		(==)	(2x-1) = 0 (2x-1-6)(2x-1+6)	2			
			(2x-1-6)(2x-1+6) (2x-1)(2x+5)	1	-		
		1	(4A - 1) (4A + 3)	1			

06.	(a)	(i)	$\frac{1}{2} \times x \times (x+2) = \frac{1}{2} (x^2 + 2x)$	2		
		(**)	$\frac{1}{2}$ $\frac{2}{2}$ $\frac{2}$	2		
		(ii)	(x+3)(x-5)=0	2		
		(iii)	$\begin{vmatrix} x = -3 \\ x = 5 \end{vmatrix}$			
	(b)		$u = \sqrt{v^2 - 2as}$ $u^2 = v^2 - 2as$		3	
			$u^2 = v^2 - 2as$	1		
			$2as = v^2 - u^2$	1		
			$2as = v^2 - u^2$ $S = \frac{v^2 - u^2}{2a}$	1		
			$S = {2a}$			
07.		(i)				
			P Q C BAD = CAD මහර	1		
			DP හා DQ ලම්භ සඳහා	1		
		(ii)		තුනම		
		(11)	ADP Δ so AQDΔ ee	නිවැරදි		
			$P\hat{A}D = Q\hat{A}D$ (දක්කය)	නම් 2,		
			$D\hat{P}A = D\hat{Q}A = 90^{\circ}$	එකක් නිවැරදි		
			AD පොදුයි	නම් 1		
			∴ADP ∆≡AQD∆(ලකා්.ලකා්.පා. අවස්ථාව)	අවස්ථා වට ලකුණු 1		
		(iii)	BDP Δ හා CQD Δ වල	-		
			$\mathrm{DP} = \mathrm{DQ} \; (\equiv \Delta \; \mathrm{DO} \; \mathrm{අනුරු } \mathcal{B} \; \mathrm{අංග})$	1		
			$\mathbf{B}\hat{\mathbf{P}}\mathbf{D} = \mathbf{C}\hat{\mathbf{Q}}\mathbf{D} (90^{\circ})$	1		
			BD = DC (දක්තය)			
			∴BDP ∆≡AQD DCQ∆(කර්ණ පා. අවස්ථාව)	අවස්ථා		
				වට		
				ලකුණු 1		
		(iv)	AP = AQ	1		
			BP = CQ			
			AP + BP = AQ + CQ	1		
			AB = AC හෝ			
			AB = AC (ABD = ACD සමාන්තර Δවල	1+1		
			සම්මුඛ පාද)			

	(4)	Ta = 222		1	1	
	(i)	S හා T පිහිටීම ලකුණු කිරීම	1			
08.		දත්ත ලකුණු කිරීමට	1			
		P				
		/ \				
		\(\) \(\) \(\) \(\) \(\) \(\) \(\) \(\)				
		/ / * *				
		$O \longrightarrow R$				
		S				
	(ii)	$P\hat{Q}R = P\hat{R}Q$ ($PQ = PR$ හෝ සමාන පාදවලට	1			
		සම්මුඛ කෝණ සමානයි.)				
			1			
		$TSR = T\hat{R}S$ ($TS = SR$ ඉහා සමාන පාදවලට	1			
		සම්මුඛ කෝණ සමානයි.)				
		\therefore PQR = TSR	හේතු 1			
			ක් හෝ සිටුරුදි			
			නිවැරදි නම් 1			
		· DS // TS (made and a second	1			
		∴PS // TS (අනුරූප කෝණ සමාන නිසා)	1			
		$Q\widehat{P}S = P\widehat{S}T$ (ඒකාන්තර කෝණ $PQ//TS$)				
		$Q\widehat{P}S = S\widehat{P}T$ (දක්තය)	1			
		$\therefore P\hat{S}T = S\hat{P}T$	1			
			1			
		∴PT = TS (සමාන කෝණවල සම්මුඛ පාද)	1			
09.	(i)					
		$A_{\wedge} \longrightarrow B$				
		f F				
		/				
		E \				
		DC				
		සමාන්තරාසුයට	1			
		ලම්භකවලට	1			
	(ii)	සාධනය :				
	()	$A\widehat{E}F=C\widehat{F}E$ (සෘජු කෝණ)	1			
			1			
		නමුත් A \hat{E} F සහ C \hat{F} E ඒකාන්තර කෝණ වේ.	1			
		∴ AE //CF				
	(iii)	A > -				
	` ´	$A \longrightarrow B$				
		$A \hat{O} E = C \hat{O} F$ (පුතිමුඛ කෝණ)	1			
		$A\widehat{E}O=C\widehat{F}O$ (සෘජු කෝණ)	1			
		AC = OC (විකර්ණ සම වීම)	1			
	(*)		1			
	(iv)	AE = FG (AE = FC සහ FG = CF නිසා)	1			
		AE //FG (දත්තය)	1			
		එක් කෝණයක් සෘජු කෝණාසුයක් නිසා AEFG	1			
		සෘජුකෝණයකි.				
		1	1	1	1	1

200000000000000000000000000000|

10.		(i)				
10.		(1)	/X			
			//			
			amar [®] ®®® 1			
			පෙන්වීමට 1 පිළිතුරට 1			
			7			
			/ / *			
			K Y M			
		(ii)	${ m L}\widehat{K}{ m M}={ m x}$ ° (සමාන පාදවලට සම්මුඛ කෝණ)	1 + 1		
		(ii)	$X\widehat{L}M=2x^\circ$ (බාහිර කෝණ $=$ අභාන්තර සම්මුඛ	1 + 1		
		(222)	කෝණ 2 කෙහි එකතුවට)	1 . 1		
		(iii)	$\hat{XLZ} = \hat{XZL} = 2x (XL = XZ \text{ soc})$	1 + 1		
			$X\hat{Z}L=M\hat{Z}Y$ (පුතිමුඛ කෝණ) $M\hat{X}Y=2x^{\circ}$			
		(iv)	$\mathbf{K}\hat{\mathbf{Y}}\mathbf{X} = \mathbf{x} + 2\mathbf{x}$ (බාහිර කෝණ = අභාවන්තර	1 + 1		
		(41)	සම්මුඛ කෝණ 2 කෙහි එකතුව)			
			=3x			
		(v)	$K\hat{X}Y = 180 - 4x$	1 + 1		
			(තිුකෝණයේ කෝණවල එකතුව) $180-4\times35^\circ=40^\circ$ $180^\circ-140^\circ=40^\circ$			
			160 - 4 × 33 = 40 180 - 140 = 40			
11.	(a)					
	(4)		X			
			$A \xrightarrow{\begin{array}{c} X \\ \end{array}} B$			
			වාහන දෙක හමුවන විට ලොරි රථය ගිය දුර x			
			නම් ලොරි රථය ගමන් කළ කාලය $\frac{x}{50}$ - (1)			
			ජීප් රථය ගමන් කළ කාලය $\frac{x}{75}$ - (1)			
			$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
			$\frac{x}{50} = \frac{x}{75} + 1 - (1)$			
			3x - 2x = 1			
			$\frac{3x - 2x}{150} = 1 - (1)$			
	(b)		x = 150 km මිනිත්තු 20 කදී නලයෙන් පිටවන ජල පුමාණය			
	(D)		$= 40 \times 20 = 800 l$	1		
			\therefore භාජනයේ ධාරිතාවය $800 + 200 = 1000 \ l$	1		
			$= 1 \text{ m}^3$			
			භාජනයේ උස $=\frac{1}{2} m$	1		
			$=$ $\frac{2}{50}$ cm	1		
				1		
12.	(a)	(i)	5 242		1	
14.	(a)	(1)	$x^{5} = 243$ $x^{5} = 3^{5}$	1		
			$\begin{array}{c} x = 3 \\ x = 3 \end{array}$	1	-	
		(ii)	$\log_3(20 \times x) = \log_3(60 \times 9)$	1		
		(/	$X = \frac{60 \times 9}{20}$	1		
			$x = \frac{x - \frac{1}{20}}{x = 27}$		-	
	(b)			1	-	
	(0)		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	-	
			= 3.6786 – 1.9232	1		
			= antilog 1.7554	1		
			= 56.94	1		