REWOD PIT RM

R code for FOR REWOD PIT

last modified on Nov 2018 by David

SETUP

```
# Set working directory
analysis_path <- '~/rewod/DATABASES/'# for this to work the script needs to be sourced
setwd(analysis path)
# open dataset
REWOD_PIT <- read.delim(file.path(analysis_path, 'REWOD_PIT.txt'), header = T, sep ='') # read in datase
## subsetting into 3 differents tasks
REWOD_PIT.all <- REWOD_PIT</pre>
REWOD_RIM <- subset (REWOD_PIT.all,task == 'Reminder')</pre>
REWOD_PE <- subset (REWOD_PIT.all,task == 'Partial_Extinction')</pre>
REWOD_PIT <- subset (REWOD_PIT.all,task == 'PIT')</pre>
# define factors
REWOD_RIM$trial
REWOD_RIM$task
                            <- factor(REWOD RIM$id)
                           <- factor(REWOD_RIM$trial)</pre>
                             <- factor(REWOD_RIM$task)</pre>
REWOD_RIM$session <- factor(REWOD_RIM$sess
REWOD_RIM$reward <- factor(REWOD_RIM$reward)
                            <- factor(REWOD_RIM$session)</pre>
REWOD_PE$id
                           <- factor(REWOD_PE$id)</pre>
REWOD_PE$trial
                          <- factor(REWOD_PE$trial)</pre>
REWOD_PE$task
                            <- factor(REWOD_PE$task)</pre>
REWOD_PE$session
                      <- factor(REWOD_PE$sess
<- factor(REWOD_PE$reward)</pre>
                           <- factor(REWOD_PE$session)
REWOD_PE$reward
REWOD_PIT$id
                             <- factor(REWOD_PIT$id)
#REWOD_PIT$trial
                              <- factor(REWOD_PIT$trial)
REWOD_PIT$task
                              <- factor(REWOD_PIT$task)
REWOD_PIT$session
                             <- factor(REWOD_PIT$session)
```

PLOTS

plot (non-averaged per participant)

```
#n_grips RIM
boxplot(REWOD_RIM$n_grips ~ REWOD_RIM$trial, las = 1)
```



```
#n_grips PE
boxplot(REWOD_PE$n_grips ~ REWOD_PE$trial, las = 1)
```



```
#n_grips PIT
boxplot(REWOD_PIT$n_grips ~ REWOD_PIT$trial, las = 1)
```


plot overall effect

```
# get means by trial
RIM.bt = ddply(REWOD_RIM, .(trial), summarise, n_grips = mean(n_grips, na.rm = TRUE))
PE.bt = ddply(REWOD_PE, .(trial), summarise, n_grips = mean(n_grips, na.rm = TRUE))
PIT.bt = ddply(REWOD_PIT, .(trial), summarise, n_grips = mean(n_grips, na.rm = TRUE))
# get means by trial & condition
PIT.bct = ddply(REWOD_PIT, .(condition, trial), summarise, n_grips = mean(n_grips, na.rm = TRUE))
# get means by participant
RIM.bs = ddply(REWOD_RIM, .(id, trial), summarise, n_grips = mean(n_grips, na.rm = TRUE)) #not condition
PE.bs = ddply(REWOD_PE, .(id, trial), summarise, n_grips = mean(n_grips, na.rm = TRUE)) #not condition
PIT.bs = ddply(REWOD_PIT, .(id, condition, trial), summarise, n_grips = mean(n_grips, na.rm = TRUE))
# ngrips average per trial
boxplot(RIM.bt$n_grips ~ RIM.bt$trial, las = 1)
```


boxplot(PE.bt\$n_grips ~ PE.bt\$trial, las = 1)

boxplot(PIT.bt\$n_grips ~ PIT.bt\$trial, las = 1)

plot n_grips to see the trajectory of learning (overall average by trials)

```
ggplot(PIT.bt, aes(x = trial, y = n_grips, fill = I('royalblue1'), color = I('royalblue4'))) +
geom_point() + geom_line(group=1) +
guides(color = "none", fill = "none") +
guides(color = "none", fill = "none") +
theme_bw() +
labs(
   title = "number of grips by time",
   x = "Trial",
   y = "number of grips"
)
```

number of grips by time

plot n_grips to see the trajectory of learning (overall average by trials) by conditions

number of grips By Time By condition

plot number of grips by time by condition with regression lign
ggplotRegression(lm(n_grips ~ trial*condition, data = PIT.bct)) +
facet_wrap(~condition)

ANALYSIS

1. number of grips: are participants gripping more on the CSplus condition?

```
#factorise trial
REWOD_PIT$trial
                          <- factor(REWOD_PIT$trial)
#contrasts
REWOD_PIT$cvalue[REWOD_PIT$condition== 'CSplus']
REWOD_PIT$cvalue[REWOD_PIT$condition== 'CSminus']
REWOD_PIT$cvalue[REWOD_PIT$condition== 'Baseline']
REWOD_PIT$cvalue
                      <- factor(REWOD_PIT$cvalue)
# lmer analyis ~ condition
main.n_grips = lmer(n_grips ~ cvalue + (1+cvalue|id) + (1|trial), data = REWOD_PIT, REML = FALSE)
anova(main.n_grips)
## Type III Analysis of Variance Table with Satterthwaite's method
         Sum Sq Mean Sq NumDF DenDF F value
                                                Pr(>F)
## cvalue 264.67 264.67
                            1 24.003 14.259 0.0009257 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
# quick check with classical anova (! this is not reliable)
summary(aov(n_grips ~ cvalue + Error(id / (cvalue)), data = REWOD_PIT))
##
## Error: id
##
            Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 23 28814
                         1253
##
## Error: id:cvalue
            Df Sum Sq Mean Sq F value Pr(>F)
## cvalue
            1 4896 4896
                                13.65 0.0012 **
## Residuals 23
                 8252
                          359
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Error: Within
##
              Df Sum Sq Mean Sq F value Pr(>F)
## Residuals 1032 19208
                         18.61
# model comparison
main.n_grips.0 = lmer(n_grips ~ (1|id) + (1|trial), data = REWOD_PIT, REML = FALSE)
anova(main.n_grips.0, main.n_grips, test = 'Chisq')
## Data: REWOD_PIT
## Models:
## main.n_grips.0: n_grips ~ (1 | id) + (1 | trial)
## main.n_grips: n_grips ~ cvalue + (1 + cvalue | id) + (1 | trial)
                              BIC logLik deviance Chisq Chi Df Pr(>Chisq)
                       AIC
                 Df
## main.n_grips.0 4 6857.1 6877.0 -3424.5
                                            6849.1
## main.n grips
                7 6405.4 6440.3 -3195.7
                                            6391.4 457.71
                                                               3 < 2.2e-16
## main.n_grips.0
## main.n_grips
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
\#sentence \Rightarrow main.n\_grips is significantly better than the null model
```