Definición

El $\log_b N = a$, es el exponente a, al que se eleva la base b para obtener el argumento N.

$$\log_b N = a \iff N = b^a$$

Con N y b números reales positivos y b diferente de 1

EJEMPLOS -

• Emplea la definición de logaritmo para transformar las siguientes expresiones a su forma exponencial:

Forma logarítmica

Forma exponencial

1.
$$\log_3 243 = 5$$

$$243 = 3^5$$

2.
$$\log_{\frac{1}{2}} \frac{1}{64} = 6$$

$$\frac{1}{64} = \left(\frac{1}{2}\right)^6$$

3.
$$\log_{2} \frac{1}{8} = -3$$

$$2^{-3} = \frac{1}{8}$$

4.
$$\log_{\frac{1}{3}} \frac{1}{27} = 3$$

$$\left(\frac{1}{3}\right)^3 = \frac{1}{27}$$

2 ••• Transforma las siguientes expresiones exponenciales en expresiones logarítmicas:

Forma exponencial

Forma logarítmica

1.
$$N = \left(\sqrt{2}\right)^3$$

$$\log_{\sqrt{2}} N = 3$$

$$2. \quad \frac{1}{125} = 5^{-3}$$

$$\log_5 \frac{1}{125} = -3$$

3.
$$\left(\sqrt{5}\right)^4 = 25$$

$$\log_{\sqrt{5}} 25 = 4$$

4.
$$x^p = y$$

$$\log_x y = p$$

EJERCICIO 140

Convierte a su forma exponencial los siguientes logaritmos:

1.
$$\log_2 8 = 3$$

4.
$$\log_6 \frac{1}{36} = -2$$
 7. $\log_a \sqrt{6} = \frac{1}{2}$ 10. $\log_{(x-1)} 128 = 7$ 5. $\log_{\sqrt{3}} 9 = 4$ 8. $\log_3 (x-1) = 2$ 11. $\log_{3x} 243 = 5$ 6. $\log_7 343 = x$ 9. $\log_w 625 = 4$ 12. $\log_{(2x-1)} 256 = 8$ pica las siguientes expresiones:

7.
$$\log_a \sqrt{6} = \frac{1}{2}$$

10.
$$\log_{(x-1)} 128 = 7$$

2.
$$\log_{x} 16 = 4$$

5.
$$\log_{5} 9 = 4$$

8.
$$\log_{2}(x-1)=2$$

11.
$$\log_2 243 = 5$$

3.
$$\log_3 81 = 4$$

6
$$\log 343 = 3$$

9
$$\log 625 - 4$$

12.
$$\log_{(2x-1)} 256 = 8$$

Transforma a su forma logarítmica las siguientes expresiones:

13.
$$17^2 = a$$

16.
$$\frac{1}{16} = N^2$$

19.
$$2^x = 256$$

22.
$$\frac{1}{81} = 3^{-4}$$

14.
$$625 = 5^4$$

17.
$$\left(\frac{2}{3}\right)^2 = \frac{4}{9}$$
 20. $(x-2)^3 = 8$ 23. $5^{-3x} = 125$

20.
$$(x-2)^3 = 8$$

23.
$$5^{-3x} = 125$$

15.
$$64^{\frac{1}{3}} = 4$$

18.
$$(x+3)=2^4$$

21.
$$x^{w} = x^{w}$$

24.
$$441 = (3x + 2)^2$$

▼ Verifica tus resultados en la sección de soluciones correspondiente

Aplicación de la definición de logaritmo

En los siguientes ejemplos se aplica la definición de logaritmo para encontrar el valor de la incógnita.

EJEMPLOS -

•• Encuentra el valor de a en la expresión: $\log_a 216 = 3$.

Solución

Se escribe el logaritmo en su forma exponencial y se despeja la incógnita:

$$\log_{a} 216 = 3$$
 \rightarrow $216 = a^{3}$ \rightarrow $\sqrt[3]{216} = a$ \rightarrow $6 = a$

Por consiguiente, el resultado es: a = 6

2 ••• Encuentra el valor de m en $\log_{10} m = 3$.

Solución

Se transforma a su forma exponencial la expresión y se desarrolla el exponente:

$$\log_{\sqrt{2}} m = 3 \qquad \rightarrow \qquad m = \left(\sqrt{2}\right)^3 = \left(\sqrt{2}\right)^2 \sqrt{2} = 2\sqrt{2}$$

Por tanto, el resultado es: $m = 2\sqrt{2}$

3 ••• Determina el valor de x en la expresión: $\log_3 \frac{1}{729} = x$.

La expresión se transforma a la forma exponencial.

$$\log_3 \frac{1}{729} = x \qquad \rightarrow \qquad 3^x = \frac{1}{729}$$

El número 729 se descompone en factores primos y la ecuación se expresa como:

$$3^x = \frac{1}{729} \rightarrow 3^x = \frac{1}{3^6} \rightarrow 3^x = 3^{-6}$$

De la última igualdad se obtiene: x = -6

EJERCICIO 141

Encuentra el valor de las incógnitas en las siguientes expresiones:

1.
$$\log_x 25 = 2$$

6.
$$\log_a 49 = \frac{2}{3}$$

1.
$$\log_{27} w = \frac{1}{3}$$

6.
$$\log_a 49 = \frac{2}{3}$$
 11. $\log_{27} w = \frac{1}{3}$ 16. $\log_{32} \frac{1}{4} = a$

2.
$$\log_{x} 64 = 3$$

7.
$$\log_3 x = 4$$

12.
$$\log_{\frac{3}{2}} x = -2$$

2.
$$\log_x 64 = 3$$
 7. $\log_3 x = 4$ 12. $\log_{\frac{3}{2}} x = -2$ 17. $\log_{\sqrt{3}} \frac{1}{27} = x$

3.
$$\log_{10} 81 = 4$$

8.
$$\log_2 m = 3$$

3.
$$\log_y 81 = 4$$
 8. $\log_2 m = 3$ 13. $\log_{32} b = 0.2$

18.
$$\log_{16} 0.5 = y$$

4.
$$\log_b 3125 = -5$$

9
$$\log v =$$

14.
$$\log_8 x = 0.333$$
.

4.
$$\log_b 3125 = -5$$

9. $\log_{0.5} y = 5$
13. $\log_{32} v = 0.2$
14. $\log_8 x = 0.333...$
19. $\log_{\frac{1}{8}} 512 = x$

5.
$$\log_x 32 = \frac{5}{2}$$
 10. $\log_4 N = \frac{3}{2}$

10.
$$\log_4 N = \frac{3}{2}$$

15.
$$\log_6 216 = x$$

▼ Verifica tus resultados en la sección de soluciones correspondiente —

Propiedades

Para cualquier M, N, b > 0 y $b \ne 0$, se cumple que:

1.
$$\log_b 1 = 0$$

5.
$$\log_b MN = \log_b M + \log_b N$$

$$2. \quad \log_b b = 1$$

6.
$$\log_b \frac{M}{N} = \log_b M - \log_b N$$

3.
$$\log_b M^n = n \log_b M$$

7.
$$\log_e M = \ln M$$
, $\ln = \log \arctan y \ e = 2.718281...$

$$4. \quad \log_b \sqrt[n]{M} = \frac{1}{n} \log_b M$$

Importante: las siguientes expresiones no son igualdades.

$$\log_b(M+N) \neq \log_b M + \log_b N$$

$$\log_b\left(\frac{M}{N}\right) \neq \frac{\log_b M}{\log_b N}$$

Demostraciones de las propiedades de los logaritmos:

1.
$$\log_b 1 = 0$$

Demostración:

Sea $\log_b 1 = a$, esta expresión se transforma a su forma exponencial:

$$\log_b 1 = a \quad \to \quad 1 = b^a$$

Para que $b^a = 1$, se debe cumplir que a = 0, entonces, al sustituir este resultado se determina que:

$$\log_{b} 1 = a = 0$$

$$2. \quad \log_b b = 1$$

Demostración:

Sea $\log_b b = a$, se aplica la definición de logaritmo y la expresión exponencial es la siguiente:

$$\log_b b = a \rightarrow b = b^a$$

Pero $b = b^1$, por consiguiente $b^1 = b^a$ y a = 1

Al sustituir este resultado se obtiene: $\log_b b = a = 1$

$$3. \quad \log_b M^n = n \log_b M$$

Demostración:

Sea $x = \log_b M$, su forma exponencial es $b^x = M$, al elevar esta expresión a la enésima potencia se determina que:

$$(b^x)^n = M^n \longrightarrow b^{nx} = M^n$$

La forma logarítmica de esta expresión: $\log_h M^n = nx$

Se sustituye $x = \log_b M$, y se obtiene: $\log_b M^n = n \log_b M$

$$4. \quad \log_b \sqrt[n]{M} = \frac{1}{n} \log_b M$$

Demostración:

Sea $x = \log_b M$, su forma exponencial es $b^x = M$, se extrae la raíz enésima en ambos miembros de la igualdad:

$$\sqrt[n]{b^x} = \sqrt[n]{M}$$

El primer miembro de esta igualdad se expresa como: $b^{\frac{x}{n}} = \sqrt[n]{M}$

Ahora esta nueva igualdad se transforma a su forma logarítmica: $\log_b \sqrt[n]{M} = \frac{x}{n}$

Se sustituye $x = \log_b M$, y se determina que: $\log_b \sqrt[n]{M} = \frac{1}{n} \log_b M$

5. $\log_b MN = \log_b M + \log_b N$

Demostración:

Sea $x = \log_h M$ y $y = \log_h N$, ésta es la forma exponencial de ambas expresiones:

$$b^x = M \ ; \ b^y = N$$

Al multiplicar estas expresiones se obtiene: $(b^x)(b^y) = MN$ $\rightarrow b^{x+y} = MN$ Se transforma a su forma logarítmica: $\log_b MN = x + y$ Se sustituye $x = \log_b M$ y $y = \log_b N$, éste es el resultado:

$$\log_b MN = \log_b M + \log_b N$$

6.
$$\log_b \frac{M}{N} = \log_b M - \log_b N$$

Demostración:

Sea $x = \log_b M$ y $y = \log_b N$, ésta es su forma exponencial:

$$b^x = M : b^y = N$$

Se divide la primera expresión entre la segunda:

$$\frac{b^x}{b^y} = \frac{M}{N} \longrightarrow b^{x-y} = \frac{M}{N}$$

Además se transforma a su forma logarítmica la última expresión:

$$\log_b \frac{M}{N} = x - y$$

Al final se sustituye $x = \log_b M$ y $y = \log_b N$ y resulta que:

$$\log_b \frac{M}{N} = \log_b M - \log_b N$$

Aplicación de las propiedades para el desarrollo de expresiones

El logaritmo de una expresión algebraica se representa de forma distinta mediante sus propiedades y viceversa; una expresión que contiene varios logaritmos se transforma a otra que contenga un solo argumento.

EJEMPLOS

ullet Con la aplicación de las propiedades de los logaritmos desarrolla esta expresión: $\log_3 x^{12}$.

Solución

La base x se encuentra afectada por el exponente 12, por tanto se aplica la propiedad 3 y se obtiene:

$$\log_3 x^{12} = 12 \log_3 x$$

2 •• Desarrolla la siguiente expresión: $\log_2 3x^4 \sqrt{y}$.

Solución

Se aplica la propiedad para el logaritmo de un producto (propiedad 5):

$$\log_2 3x^4 \sqrt{y} = \log_2 3 + \log_2 x^4 + \log_2 \sqrt{y}$$

Se aplican las propiedades 3 y 4 y la expresión queda así:

$$= \log_2 3 + 4\log_2 x + \frac{1}{2}\log_2 y$$

3 ••• Desarrolla a su forma más simple la expresión: $\log_{y} \sqrt[4]{(x-5)^3}$.

Solución

Se aplica la propiedad 4 para el radical:

$$\log_y \sqrt[4]{(x-5)^3} = \frac{1}{4} \log_y (x-5)^3$$

Ahora al aplicar la propiedad 3, se determina que:

$$= \frac{1}{4} \left[3 \log_y(x-5) \right] = \frac{3}{4} \log_y(x-5)$$

4 •••¿Cuál es el desarrollo de la expresión $\log_a \frac{(x+y)^3}{(x-y)^2}$?

Solución

Se aplica la propiedad para la división (propiedad 6):

$$\log_a \frac{(x+y)^3}{(x-y)^2} = \log_a (x+y)^3 - \log_a (x-y)^2$$

Para obtener la expresión que muestre el desarrollo final se aplica la propiedad 3:

$$=3\log_a(x+y)-2\log_a(x-y)$$

5 ••• Desarrolla la siguiente expresión: $\ln \left[\frac{e^{3x}(x+1)}{2x^2} \right]^3$.

Solución

Se aplican las propiedades de los logaritmos y se simplifica al máximo, para obtener:

$$\ln\left[\frac{e^{3x}(x+1)}{2x^2}\right] = 3\left[\ln\frac{e^{3x}(x+1)}{2x^2}\right]$$

Enseguida se aplica la propiedad del cociente y el producto (propiedades 5 y 6).

$$= 3 \left[\ln e^{3x} + \ln(x+1) - \ln 2x^2 \right]$$

En el sustraendo se aplica nuevamente la propiedad del producto, y resulta que:

$$= 3 \left[\ln e^{3x} + \ln(x+1) - \left(\ln 2 + \ln x^2 \right) \right]$$

Finalmente, se aplica la propiedad del exponente y se eliminan los signos de agrupación:

$$= 3 [3x \ln e + \ln(x+1) - \ln 2 - 2\ln x] = 9x + 3\ln(x+1) - 3\ln 2 - 6\ln x$$

6 •• Desarrolla la siguiente expresión: $\log \sqrt[3]{\frac{3x^4}{2y^5}}$.

Solución

Se aplica la propiedad para la raíz de un número (propiedad 4):

$$\log \sqrt[3]{\frac{3x^4}{2y^5}} = \frac{1}{3}\log \frac{3x^4}{2y^5}$$

Después se aplica la propiedad para el logaritmo de un cociente (propiedad 6):

$$= \frac{1}{3} (\log 3x^4 - \log 2y^5)$$

Al aplicar la propiedad para el logaritmo de una multiplicación se obtiene:

$$= \frac{1}{3} \left[\left(\log 3 + \log x^4 \right) - \left(\log 2 + \log y^5 \right) \right]$$

Se aplica también la propiedad 3 para exponentes:

$$= \frac{1}{3} \Big[\Big(\log 3 + 4 \log x \Big) - \Big(\log 2 + 5 \log y \Big) \Big]$$

Se cancelan los signos de agrupación y éste es el desarrollo de la expresión:

$$= \frac{1}{3} \left[\log 3 + 4 \log x - \log 2 - 5 \log y \right]$$
$$= \frac{1}{3} \log 3 + \frac{4}{3} \log x - \frac{1}{3} \log 2 - \frac{5}{3} \log y$$

7 •• Escribe como logaritmo la siguiente expresión: $\log x + \log y - \log z$.

Solución

La suma de 2 logaritmos de igual base, se expresa como el logaritmo del producto de los argumentos:

$$\log x + \log y - \log z = \log xy - \log z$$

La diferencia de logaritmos de igual base, se expresa como el logaritmo del cociente de los argumentos:

$$\log xy - \log z = \log \frac{xy}{z}$$

Por tanto:

$$\log x + \log y - \log z = \log \frac{xy}{z}$$

8 ••• Expresa como logaritmo: $2 + 3 \log_a(a+1) - \frac{1}{4} \log_a(a-1)$.

Solución

Se sabe que $\log_a a = 1$, entonces:

$$2 + 3\log_a(a+1) - \frac{1}{4}\log_a(a-1) = 2\log_a a + 3\log_a(a+1) - \frac{1}{4}\log_a(a-1)$$

(continúa)

(continuación)

Los coeficientes representan los exponentes de los argumentos:

$$= \log_a a^2 + \log_a (a+1)^3 - \log_a (a-1)^{\frac{1}{4}}$$

Se aplican las propiedades de los logaritmos para la suma y diferencia:

$$= \log_a \frac{a^2 (a+1)^3}{(a-1)^{\frac{1}{4}}} = \log_a \frac{a^2 (a+1)^3}{\sqrt[4]{a-1}}$$

Por consiguiente:

$$2 + 3 \log_a(a+1) - \frac{1}{4} \log_a(a-1) = \log_a \frac{a^2(a+1)^3}{\sqrt[4]{a-1}}$$

9 ••• Escribe como logaritmo la siguiente expresión: $\frac{1}{3} \log(x+1) + \frac{1}{3} \log(x-2) - 2\log x - 3\log(x+3)$.

Solución

Al aplicar las propiedades de los logaritmos y simplificar se obtiene:

$$= \log(x+1)^{\frac{1}{3}} + \log(x-1)^{\frac{1}{3}} - \log x^{2} - \log(x+3)^{3}$$

$$= \log(x+1)^{\frac{1}{3}} + \log(x-1)^{\frac{1}{3}} - \left[\log x^{2} + \log(x+3)^{3}\right]$$

$$= \log(x+1)^{\frac{1}{3}} (x-1)^{\frac{1}{3}} - \log x^{2} (x+3)^{3}$$

$$= \log\frac{(x+1)^{\frac{1}{3}} (x-1)^{\frac{1}{3}}}{x^{2} (x+3)^{3}} = \log\frac{((x+1)(x-1))^{\frac{1}{3}}}{x^{2} (x+3)^{3}}$$

$$= \log\frac{\sqrt[3]{x^{2}-1}}{x^{2} (x+3)^{3}}$$

10 ••• Expresa como logaritmo: $x-3+\frac{2}{3}\ln(x-2)-\frac{1}{3}\ln(x+1)$.

Solución

Se sabe que $\ln e = 1$, entonces:

$$x-3+\frac{2}{3}\ln(x-2)-\frac{1}{3}\ln(x+1)=(x-3)\ln e+\frac{2}{3}\ln(x-2)-\frac{1}{3}(x+1)$$

Al aplicar las propiedades de los logaritmos, se tiene que:

$$\ln e^{(x-3)} + \ln(x-2)^{\frac{2}{3}} - \ln(x+1)^{\frac{1}{3}} = \ln \frac{(x-2)^{\frac{2}{3}}e^{(x-3)}}{(x+1)^{\frac{1}{3}}} = \ln \sqrt[3]{\frac{(x-2)^2 e^{3(x-3)}}{x+1}}$$

Por consiguiente:

$$x-3+\frac{2}{3} \ln (x-2) - \frac{1}{3} \ln (x+1) = \ln \sqrt[3]{\frac{(x-2)^2 e^{3(x-3)}}{x+1}}$$

EJERCICIO 142

Utiliza las propiedades de los logaritmos para desarrollar las siguientes expresiones:

1.
$$\log_a 7^4$$

2.
$$\log_6 3^{-\frac{3}{2}}$$

$$3. \log_e \sqrt[3]{e^7 x}$$

$$4. \log 5xy^2$$

$$5. \log_3 x^3 y^2 z$$

6.
$$\ln(3e^4x^2)^2$$

7.
$$\log(x+y)^3(x-z)$$

8.
$$\log_{\frac{1}{2}} \frac{7}{x^2}$$

9.
$$\ln \frac{xy^2}{e^3z^4}$$

10.
$$\log_5 \frac{3x^3(1-2x)^6}{2x^y(x^2-y^2)}$$

11.
$$\log_4 \sqrt{3x^2y^4}$$

12.
$$\log \sqrt{(x+y)^4 z^5}$$

13.
$$\log \frac{\sqrt[3]{x}}{\sqrt{y}}$$

$$14. \log \frac{\sqrt{a^3b}}{\sqrt[3]{c^2d}}$$

15.
$$\log_2 \frac{\sqrt{x+y}}{(x-y)^4}$$

16.
$$\log \frac{x^2}{\sqrt[3]{x-3}(x+z)^2}$$

17.
$$\log \sqrt{\frac{(x+3)(y-5)}{(x+6)^4}\sqrt{y-2}}$$

18.
$$\ln \sqrt[3]{\frac{e^2 \sqrt{(x+1)^4 (x-1)^3}}{e^x \sqrt[5]{(x^2-1)^4}}}$$

Aplica las propiedades de los logaritmos para expresar los siguientes logaritmos como el logaritmo de un solo argumento:

19.
$$2 \ln 5 + 2 \ln x$$

20.
$$3\log m - 2\log n$$

21.
$$\frac{1}{2}\log_7 x + \frac{1}{3}\log_7 y$$

22.
$$\ln 8 + 4x$$

$$23. \ \frac{2}{5}\log m + 4\log n$$

24.
$$2x + \log_2 3$$

25.
$$-\frac{2}{3}\log_b(x+1) - \frac{1}{4}\log_b(x+2)$$

26.
$$\log 3 + \log y - \log x$$

27.
$$\log_2 x - \log_2 y - \log_2 z$$

28.
$$1 - \log_4(m-1) - \log_4(m+1)$$

29.
$$\frac{1}{8}\log x + \frac{1}{3}\log y - \frac{1}{4}\log z$$

30.
$$\ln 5 + 1 + \ln y - 7 \ln x$$

31.
$$2-x+3\ln(x+y)-3\ln(x-y)$$

32.
$$\frac{2}{3}\log(x-2) - \frac{4}{5}\log(x+2) + 2\log(x+1)$$

33.
$$\frac{1}{2} + 7\log_2 x - \frac{3}{2}\log_2 y$$

34.
$$\frac{1}{3}\log(x+1) + \frac{1}{2}\log(x-1) - \frac{1}{6}\log x - 1$$

35.
$$x^2 + x + 1 - 2\log x + 3\log(x+1)$$

36.
$$2 \ln 9 + 4 \ln m + 2 \ln p - 2 \ln 7 - 2 \ln x - 6 \ln y$$

Ecuaciones logarítmicas

En estas ecuaciones las incógnitas se encuentran afectadas por logaritmos, su solución se obtiene al aplicar las propiedades y la definición de logaritmo.

EJEMPLOS

soldma

Resuelve la siguiente ecuación: $\log_{5}(2x+1) = 2$.

Solución

Al aplicar la definición de logaritmo, la expresión $\log_{5}(2x+1)=2$ se convierte en:

$$2x+1=5^2$$

Ahora al resolver esta ecuación, se obtiene:

$$2x+1=5^{2} \rightarrow 2x+1=25$$

$$2x=24$$

$$x=12$$

2 •••¿Cuáles son los valores de x que satisfacen la ecuación $\log(x+2) + \log(x-1) = 1$?

Solución

Se aplica la propiedad 5 para expresarla en término de un solo logaritmo:

$$\log(x+2) + \log(x-1) = 1$$
 $\rightarrow \log(x+2)(x-1) = 1$ $\rightarrow \log(x^2 + x - 2) = 1$

Se aplica la definición de logaritmo y se resuelve factorizando la ecuación que resulta:

$$\log(x^{2} + x - 2) = 1 \qquad \rightarrow \qquad x^{2} + x - 2 = 10^{1}$$

$$x^{2} + x - 2 - 10 = 0$$

$$x^{2} + x - 12 = 0$$

$$(x + 4)(x - 3) = 0$$

$$x + 4 = 0 \quad \text{y} \quad x - 3 = 0$$

Por consiguiente, los valores que satisfacen las igualdades son: x = -4 y x = 3, y el valor que satisface la ecuación es x = 3

3 •••Resuelve: $\log_3(4x-5) = \log_3(2x+1)$.

Solución

Se agrupan los logaritmos en el primer miembro de la igualdad y se aplica la propiedad 6:

$$\log_3(4x-5) = \log_3(2x+1) \rightarrow \log_3(4x-5) - \log_3(2x+1) = 0 \rightarrow \log_3\frac{4x-5}{2x+1} = 0$$

Se aplica la definición de logaritmo y se resuelve la ecuación que resulta:

$$\frac{4x-5}{2x+1} = 3^{0} \qquad \rightarrow \qquad \frac{4x-5}{2x+1} = 1 \qquad \rightarrow \qquad 4x-5 = 2x+1$$

$$2x = 6$$

$$x = 3$$

4 ••Resuelve la ecuación: $\log_2 \sqrt{3x-1} = 1 - \log_2 \sqrt{x+1}$.

Solución

Se agrupan los logaritmos en un solo miembro de la igualdad:

$$\log_2 \sqrt{3x - 1} + \log_2 \sqrt{x + 1} = 1$$

Se aplica la propiedad 5 para expresar la suma de logaritmos como el logaritmo de un producto:

$$\log_2\left(\sqrt{3x-1}\right)\left(\sqrt{x+1}\right) = 1$$

Se transforma la expresión a su forma exponencial y se multiplican los factores:

$$(\sqrt{3x-1})(\sqrt{x+1}) = 2^1 \rightarrow \sqrt{3x^2 + 2x - 1} = 2$$

Para eliminar la raíz se elevan al cuadrado ambos miembros de la igualdad:

$$\left(\sqrt{3x^2 + 2x - 1}\right)^2 = (2)^2 \rightarrow 3x^2 + 2x - 1 = 4$$

Se resuelve la ecuación resultante:

$$3x^{2} + 2x - 1 = 4 \qquad \rightarrow \qquad 3x^{2} + 2x - 1 - 4 = 0 \qquad \rightarrow \qquad 3x^{2} + 2x - 5 = 0$$

$$3x^{2} + 5x - 3x - 5 = 0$$

$$x(3x + 5) - 1(3x + 5) = 0$$

$$(3x + 5)(x - 1) = 0$$

$$x = -\frac{5}{3}, x = 1$$

Por consiguiente, los valores de la incógnita son: $-\frac{5}{3}$ y 1, el valor que satisface la ecuación logarítmica es x = 1

5 ••• Resuelve la ecuación: $\ln(x+5) = 2 + \ln x$.

Solución

Los logaritmos se colocan de un solo lado de la igualdad:

$$\ln(x+5) - \ln x = 2$$

Se aplica la propiedad de división de argumentos:

$$\ln \frac{x+5}{x} = 2$$

Se transforma a su forma exponencial y se resuelve la ecuación resultante:

$$e^{2} = \frac{x+5}{x}$$
 $xe^{2} = x+5$ $xe^{2} - x = 5$ $x(e^{2} - 1) = 5$

EJERCICIO 143

Resuelve las siguientes ecuaciones logarítmicas:

1.
$$\log_2(x+3) = 2$$

2.
$$\log_4(4-3x)=3$$

3.
$$\log_6(5x-9)^2 = 4$$

4.
$$\log_4 \sqrt{15x+1} = 2$$

5.
$$\log \sqrt{x^2 + 64} = 1$$

6.
$$\log_3 81 - \log_3 (x - 4) = 2$$

7.
$$\log_{7}(x+9) + \log_{7} 49 = 4$$

8.
$$\log_5 25 - \log_5 (x+100) = -1$$

9.
$$\log(x+3)^2 = 1 + \log(3x-11)$$

10.
$$\log_3 x + \log_3 (2x - 3) = 3$$

11.
$$\log(x + 2) = -1 + \log(3x - 14)^2$$

12.
$$\log_5 (4-x)^3 = \log_5 (6+x)^3$$

13.
$$\log(2x+10)^2 - \log(1-x) = 2$$

14.
$$\log_8(x-4) + \log_8(x-1) = \log_8 5x - \log_8 3$$

15.
$$\log_6 \sqrt[3]{3x+1} = \log_6 \sqrt[3]{10} + \log_6 \sqrt[3]{x-2}$$

16.
$$\log(8x+4) + \log(7x+16) = \log(x-2)^2 + 2$$

17.
$$\log_2(x-1) - \log_2(3x+1) = 3 - \log_2(6x+2)$$

18.
$$\log_{\sqrt{2}}(x-3) + \log_{\sqrt{2}}(x+2) = 4 + \log_{\sqrt{2}}x$$

19.
$$\log_2(x+1) + \log_2(3x-5) = \log_2(5x-3)+2$$

20.
$$\log_{\sqrt{3}}(\sqrt{x}+1) = 1 + \log_{\sqrt{3}}\sqrt{x-1}$$

21.
$$\ln(x+1) = 1 + \ln(x-1)$$

22.
$$\ln x + \ln (x - 3e) = \ln 4 + 2$$

23.
$$\ln(x-2) = \ln 12 - \ln(x+2)$$

24.
$$\ln(x-1) - \ln(x-2) = \frac{1}{2}$$

25.
$$\ln(2x-3) - \ln(x+1) = e$$

26.
$$\ln(x^2 + x) + \ln e = \ln(x + 1)$$

Verifica tus resultados en la sección de soluciones correspondiente

Ecuaciones exponenciales

Las ecuaciones que tienen la incógnita en el exponente se llaman ecuaciones exponenciales y su solución se obtiene al aplicar los siguientes métodos:

- 1. Si el argumento o resultado se puede expresar como potencia de la base, sólo se igualan exponentes.
- 2. Se aplican las propiedades de los logaritmos para encontrar el valor de la incógnita.

EJEMPLOS

••• Encuentra el valor de la incógnita en la ecuación: $2^{x+1} = 32$.

Solución

Se expresa a 32 como 2⁵, se sustituye en la ecuación:

$$2^{x+1} = 32 \rightarrow 2^{x+1} = 2^5$$

En la ecuación resultante las bases son iguales, entonces, también los exponentes:

$$x + 1 = 5$$

Al resolver esta ecuación, se determina que: x = 4

2 ••• Obtén el valor de la incógnita en la ecuación: $9^{x-1} = 81^x$.

Solución

El resultado 81^x se expresa como 9^{2x} , al sustituir la equivalencia:

$$9^{x-1} = 81^x \rightarrow 9^{x-1} = 9^{2x}$$

Para que la igualdad se cumpla, tanto bases como exponentes deben ser iguales, entonces:

$$x - 1 = 2x$$

Se resuelve la ecuación y resulta que: x = -1

3 •••Resuelve la siguiente ecuación: $4^{x-2} = 8^{1-x}$.

Solución

Ambas bases se descomponen en sus factores primos y la ecuación se expresa como:

$$4^{x-2} = 8^{1-x} \rightarrow (2^2)^{x-2} = (2^3)^{1-x} \rightarrow 2^{2(x-2)} = 2^{3(1-x)}$$

Se eliminan las bases y se igualan los exponentes, para obtener la ecuación:

$$2(x-2) = 3(1-x)$$

Finalmente se resuelve la ecuación y se determina el valor de la incógnita:

$$2(x-2) = 3(1-x)$$
$$2x-4 = 3-3x$$
$$2x+3x = 3+4$$
$$5x = 7$$
$$x = \frac{7}{2}$$

Otra forma de resolver una ecuación exponencial es aplicar logaritmos, como ilustran los siguientes ejemplos:

EJEMPLOS

1

Resuelve la siguiente ecuación: $5^x = 625^2$.

Solución

Se aplican logaritmos a los dos miembros de la igualdad:

$$\log 5^x = \log 625^2$$

Se aplica la propiedad 3 para despejar a x y se efectúan las operaciones:

$$x \log 5 = 2 \log 625$$

$$x = \frac{2\log 625}{\log 5} = \frac{2(2.7959)}{0.6989} = 8$$

Por tanto, x = 8

2 •••¿Cuál es el valor de la incógnita en la siguiente ecuación: $3^{2x-1} = 7$?

Solución

Se aplican logaritmos en ambos miembros de la igualdad,

$$\log 3^{2x-1} = \log 7$$

Se aplica la propiedad 3, se despeja x y se obtiene como resultado:

$$(2x-1)\log 3 = \log 7 \to 2x - 1 = \frac{\log 7}{\log 3}$$
$$x = \frac{\frac{\log 7}{\log 3} + 1}{2} = 1.3856$$

3 •• ¿Cuál es el valor de x en la ecuación $3^{2x} - 5(3^x) + 6 = 0$?

Solución

Esta ecuación se expresa como una ecuación de segundo grado, de la forma:

$$(3^x)^2 - 5(3^x) + 6 = 0$$

Se factoriza y se resuelven las ecuaciones resultantes:

$$3^{x} - 3 = 0$$

$$3^{x} = 3$$

$$\log 3^{x} = \log 3$$

$$x \log 3 = \log 3$$

$$x = \frac{\log 3}{\log 3} = \frac{0.4771}{0.4771} = 1$$

$$(3^{x} - 3)(3^{x} - 2) = 0$$

$$3^{x} - 2 = 0$$

$$3^{x} = 2$$

$$\log 3^{x} = \log 2$$

$$x \log 3 = \log 2$$

$$x = \frac{\log 2}{\log 3} = \frac{0.3010}{0.4771} = 0.6309$$

Por consiguiente, las soluciones de la ecuación son: 1 y 0.6309

4 ••• Resuelve la ecuación: $\frac{e^{2y} + 4}{e^{2y}} = 3$.

Solución

La ecuación se expresa de la siguiente manera:

$$e^{2y} + 4 = 3e^{2y}$$

Se despeja el término e^{2y} :

$$e^{2y} - 3e^{2y} = -4$$

$$-2e^{2y} = -4$$

En ambos miembros de la igualdad se aplica el logaritmo natural y se obtiene:

$$\ln e^{2y} = \ln 2$$

$$2y \ln e = \ln 2$$

$$2y(1) = \ln 2$$

$$2y = \ln 2$$

$$y = \frac{1}{2} \ln 2$$

$$y = \ln \sqrt{2}$$

EJERCICIO 144

Resuelve las siguientes ecuaciones exponenciales:

1.
$$5^x = 625$$

8.
$$7^{3x-3} = 343$$

15.
$$5^x = 625^{3+x}$$

2.
$$3^x = 8$$

9.
$$3^{2x+3} = 3$$

16.
$$49^{1-2x} = 7^x$$

3.
$$9^{2x} = 9^0$$

10.
$$4^{x+1} = 16^{x-1}$$

17.
$$25^{x-2} = 5^{1-x}$$

4.
$$64^x = 8$$

11.
$$5^{2x-3} = 4$$

18.
$$3^x = 243^{x-2}$$

5.
$$(2.37)^x = 2.83$$

12.
$$3^x = 0.15$$

19.
$$2^{-(x+3)} = 32^x$$

6.
$$(2.4)^x = 5.76$$

13.
$$(0.125)^x = 128$$

20.
$$3^{x^2} = 729$$

7.
$$5^{x-1} = 25$$

14.
$$2^{3x+1} = 256$$

21.
$$2^{x^2-2x} = 8$$

22.
$$25^{x} + 5^{x+1} = 750$$

23. $6^{2x+5} - 36 = 0$

$$27. \left(\frac{3}{4}\right)^{x-1} = \sqrt[4]{\frac{16}{81}}$$

32.
$$e^{2x} - e^{x+2} = e^{x+1} - e^3$$

23.
$$6^{2x+5} - 36 = 0$$

28.
$$12^{x^2-2x+3} = 1728$$

33.
$$\frac{4e^{3x}-5}{e^{3x}-1}=3$$

$$24. \ 4^{x^2+3x} = \frac{1}{16}$$

24.
$$4^{x^2+3x} = \frac{1}{16}$$
 29. $5(7^{2x-1}) = 7(5^{x+2})$

34.
$$\frac{e^x}{e^x - 2} - \frac{3}{e^x + 2} = \frac{6}{e^{2x} - 4}$$

25.
$$7(3)^{x+1} - 5^{x+2} = 3^{x+4} - 5^{x+3}$$
 30. $2^{-2x} + 2^{-x} = 2$

$$30 \quad 2^{-2x} + 2^{-x} = 2$$

$$e^{-2} e^{+2} = -2$$
35. $e^{2x} + 2\sqrt{e^{2x+1}} = 1 - e$

26.
$$\log_2(9^{x-1}+7) = \log_2(3^{x-1}+1)^2$$
 31. $\frac{e^y-1}{2-3e^y} = \frac{2}{7}$

31.
$$\frac{e^{y}-1}{2}=\frac{2}{7}$$

$$36. \ \frac{e^x + e^{-x}}{e^x - e^{-x}} = \frac{3}{2}$$

▼ Verifica tus resultados en la sección de soluciones correspondiente

PROBLEMAS Y EJERCICIOS DE APLICACIÓN

Los logaritmos son una herramienta excelente para la solución de problemas propios de las ciencias, a continuación se ejemplifica su uso:

✗ Química

En química los logaritmos se emplean para calcular la acidez de las soluciones.

$$pH = -\log[H^+]$$

Donde:

pH = acidez de una solución.

[H⁺] = concentración de iones de hidrógeno en iones-gramo equivalente por litro.

1 Determina el pH de una solución, que tiene una concentración de iones de hidrógeno de 10⁻⁸ iones-g/lt.

Solución

La concentración de iones de hidrogeno en la solución es de:

$$[H^+] = 10^{-8} iones-g/lt$$

Se sustituye este valor en la fórmula y se obtiene:

pH =
$$-\log[H^+]$$

pH = $-\log[10^{-8}]$ se aplica la propiedad 3
pH = $-(-8)\log[10] = (8)(1)$
pH = 8

2 Encuentra la concentración de iones de hidrógeno de una solución, si su pH es de 7.

Se sustituye pH = 7 en la fórmula y se despeja $\left[H^{+} \right]$

$$pH = -\log\left[H^{+}\right]$$

$$7 = -\log\left[H^{+}\right]$$

$$-7 = \log\left[H^{+}\right]$$
anti $\log\left(-7\right) = \left[H^{+}\right]$

Por consiguiente, la concentración de iones de hidrógeno de una solución es:

$$\left[H^{+} \right] = 10^{-7} \text{ iones-g/lt}$$

✗ Sismología

En sismología los logaritmos se emplean para calcular la intensidad de un sismo por medio del siguiente modelo matemático:

$$I_R = \log \frac{A}{t}$$

Donde:

 I_R = intensidad del sismo (escala Richter)

A =amplitud (micrómetros)

t = periodo (tiempo en segundos que dura una oscilación)

3 Cuál es la intensidad de un sismo en la escala Richter si su amplitud es de 8 000 micrómetros y su periodo de 0.09 segundos?

Solución

Se sustituye $A = 8\,000$ micrómetros y P = 0.09 segundos en la fórmula:

$$I_R = \log \frac{A}{t}$$
 $I_R = \log \frac{8000}{0.09}$ $= \log (88888.89)$ $= 4.95$

Por tanto, el sismo tiene una intensidad de 4.95 grados en la escala Richter.

4 Un sismo tiene una intensidad de 5.7 grados en la escala Richter, si la amplitud del movimiento es de 9 021.37 micrómetros, ¿cuál es su periodo?

Solución

Se despeja la amplitud de la fórmula:

$$I_R = \log \frac{A}{t} \rightarrow \text{anti} \log I_R = \frac{A}{t}$$

$$t = \frac{A}{\text{anti} \log I_R}$$

Se sustituye en esta última fórmula $I_R = 5.7$ y A = 9 021.37 micrómetros:

$$t = \frac{9021.37}{\text{antilog 5.7}}$$
$$= \frac{9021.37}{501187.23} = 0.0179$$

Por consiguiente, el periodo de una oscilación es de 0.0179 segundos.

▶ Decaimiento radiactivo

Otra aplicación de los logaritmos se lleva a cabo en el decaimiento radiactivo. El decaimiento radiactivo de un material está dado por la fórmula:

$$C = C_0 \left(2\right)^{-\frac{t}{n}}$$

Donde:

C = cantidad de material radiactivo después de cierto tiempo

t =antigüedad del material

 C_0 = cantidad presente cuando t = 0

n = vida media del material

5 • El tiempo de vida media de un material es de 25 años, ¿cuánto de dicho material queda después de haber transcurrido 15 años?

Solución

Se sustituye en la fórmula n = 25 y t = 15 años:

$$C = C_0(2)^{-\frac{t}{n}} \to C = C_0(2)^{-\frac{15}{25}}$$

$$C = C_0(2)^{-0.6}$$

$$C = C_0(0.659) = 0.659C_0$$

Por consiguiente, queda $0.659C_0$ o 65.9% del material inicial.

6 ¿Cuál es la antigüedad de una figura de madera que tiene la cuarta parte de su contenido original de carbono 14, si la vida media del material es de 5 900 años?

Solución

Con las propiedades de los logaritmos se despeja t:

$$C = C_0(2)^{-\frac{t}{n}} \longrightarrow \frac{C}{C_0} = (2)^{-\frac{t}{n}} \longrightarrow \log\left(\frac{C}{C_0}\right) = \log(2)^{-\frac{t}{n}}$$
$$\log\left(\frac{C}{C_0}\right) = -\frac{t}{n}\log(2) \longrightarrow -\frac{n\log\left(\frac{C}{C_0}\right)}{\log 2} = t$$

Se sustituye $C = \frac{1}{4}C_0$ y n = 5 900 en la última fórmula:

$$t = -\frac{\left(5900\right)\log\left(\frac{\frac{1}{4}C_0}{C_0}\right)}{\log 2} = -\frac{\left(5900\right)\log\left(0.25\right)}{\log 2} = -\frac{\left(-3552.15\right)}{0.3010} = 11\,801.16\,\text{años}$$

Por tanto, la antigüedad de la pieza es de 11 801.16 años.

7 • La desintegración de cierta sustancia radiactiva se rige por el modelo matemático:

$$p = p_0 e^{-0.0072 t}$$

Donde p_0 es la cantidad inicial de sustancia y t es el tiempo en años. ¿Calcula el tiempo de vida media de la sustancia?

Solución

El tiempo de vida media es el tiempo necesario para que la mitad de la sustancia se desintegre, es decir $p = \frac{1}{2}p_0$, entonces, se despeja t de la fórmula:

$$p = p_0 e^{-0.0072t} \qquad \frac{p}{p_0} = e^{-0.0072t} \qquad \ln \frac{p}{p_0} = \ln e^{-0.0072t}$$

$$\ln \frac{p}{p_0} = -0.0072t \ln e \qquad -\frac{\ln \frac{p}{p_0}}{0.0072} = t$$

Se sustituye $p = \frac{1}{2}p_0$ y se realizan las operaciones:

$$t = -\frac{\ln\frac{p}{p_0}}{0.0072}$$

$$t = -\frac{\ln\frac{\frac{1}{2}p_0}{p_0}}{0.0072} = -\frac{\ln 0.5}{0.0072} = 96.27$$

Por consiguiente, el tiempo de vida media de dicha sustancia es de 96.27 años.

Población

El crecimiento de población está determinado por la fórmula:

$$N = N_a e^{kt}$$

Donde:

N = número de habitantes de una población en determinado tiempo

 N_0 = número de habitantes en una población inicial, cuando t = 0

K = constante

t = tiempo

8 El modelo matemático que rige el crecimiento de una población es:

$$N = 3500e^{0.025t}$$

Calcula el número de habitantes que habrá en 20 años.

Solución

Se sustituye el valor de t = 20 en la fórmula:

$$N = 3500e^{0.025(20)}$$
$$= 3500e^{0.5} = 5770.52$$

Por tanto, en 20 años habrá aproximadamente 5 770 habitantes.

9 • El siguiente modelo muestra el crecimiento de una población de insectos:

$$N = 850(3)^{0.094t}$$

Donde N es el número de insectos y t el tiempo en días. ¿En qué tiempo la población será de 10 200 insectos?

Solución

Se despeja *t* de la fórmula:

$$N = 850(3)^{0.094 t} \qquad \frac{N}{850} = (3)^{0.094 t} \qquad \ln \frac{N}{850} = 0.094 t \ln(3) \qquad \frac{\ln \frac{N}{850}}{0.094 \ln(3)} = t$$

Se sustituye N = 10 200 en la última fórmula:

$$t = \frac{\ln \frac{10200}{850}}{0.094 \ln(3)} = \frac{\ln 12}{0.094 \ln(3)} = \frac{2.4849}{0.1032} = 24.07 \text{ días}$$

Por consiguiente, deben transcurrir 24.07 días para que se incremente la población de insectos a 10 200.

10 En un cultivo de laboratorio las bacterias aumentaron de una población inicial de 480 a 1 200 en cinco horas. ¿Cuánto tardará la población en aumentar a 8 000?

Solución

Se determina el valor de k para la población inicial, donde $N_0 = 480$, N = 1200, t = 5,

$$N = No e^{kt}$$
 \rightarrow 1 200 = 480 $e^{k(5)}$ \rightarrow $\frac{1200}{480} = e^{5k}$ \rightarrow $e^{5k} = 2.5$

Se aplica logaritmo natural para despejar *k*:

$$\ln (e^{5k}) = \ln 2.5 \quad \rightarrow \quad 5k \ln (e) = \ln 2.5 \quad \rightarrow \quad k = \frac{\ln 2.5}{5} = \frac{0.9162}{5} = 0.183$$

Entonces, el modelo matemático se expresa como: $N = N_o e^{0.183 t}$ Se sustituye en la fórmula $N = 8\,000$ y $N_o = 480$

$$8\ 000 = 480e^{(0.183)}$$

Para despejar t se aplican logaritmos naturales:

$$\frac{8000}{480} = e^{0.183t} \rightarrow \ln \frac{8000}{480} = \ln e^{0.183t} \rightarrow \ln \frac{8000}{480} = 0.183t \rightarrow t = \frac{\ln \frac{8000}{480}}{0.183} = 15.37$$

Por tanto, en 15.37 horas o en 15 horas 22 minutos 12 segundos, las bacterias aumentarán de 480 a 8 000

Con esta ley se obtiene la temperatura T de un cuerpo en función del tiempo t; donde T' es la temperatura ambiente, el modelo matemático que la rige es:

$$T = T' + Ce^{kt}$$

Donde:

T' = temperatura del ambiente

T = temperatura del cuerpo después de cierto tiempo, además T < T'

C y k = constantes

Se sustituye el valor de $C = 218^{\circ}$ C en la ley:

11 Una barra de metal se extrae de un horno cuya temperatura es de 250°C. Si la temperatura del ambiente es de 32°C y después de 10 minutos la temperatura de la barra es de 90°C, ¿cuál es su temperatura después de 30 minutos?

Solución

La temperatura del ambiente es T' = 32°C, la temperatura de la barra al momento de sacarla del horno es de T = 250°C y t = 0. Al sustituir estos valores en la ley del enfriamiento de Newton.

$$T = T + Ce^{kt}$$
 $250 = 32 + Ce^{k(0)}$ $250 = 32 + C$ $250 - 32 = C$ $218 = C$

210

$$T = 32 + 218e^{kt}$$

Se sustituye t = 10 minutos y T = 90°C en la ley y se despeja $e^{k(10)}$

$$90 = 32 + 218e^{k(10)} \qquad \frac{90 - 32}{218} = e^{k(10)} \qquad 0.2660 = e^{10k}$$

En la última igualdad se aplica logaritmo natural a ambos miembros para despejar a k:

$$\ln 0.2660 = \ln e^{10k} \qquad \qquad \ln 0.2660 = 10k \ln e \qquad \qquad \frac{\ln 0.2660}{10} = k$$
$$-0.1324 = k$$

Al sustituir este valor se obtiene que la ley del enfriamiento para la barra es:

$$T = 32 + 218e^{-0.1324t}$$

Finalmente, se sustituye t = 30 minutos en la fórmula anterior:

$$T = 32 + 218e^{-0.1324(30)}$$
 $T = 32 + 218e^{-3.972}$
= $32 + 218(0.01883)$
= $32 + 4.1049$
= 36.1049 °C

Por consiguiente, la temperatura de la barra después de 30 minutos es de: 36.1049 °C

EJERCICIO 145

Resuelve los siguientes problemas:

- 1. Obtén el pH de una solución, cuya concentración es de 1.90×10^{-5} iones de hidrógeno/lt.
- 2. La concentración de una conserva de vinagre de iones de hidrógeno es de 6×10^{-4} . Determina su pH.
- 3. ¿Cuál es la concentración de iones de hidrógeno de una sustancia, cuyo pH es de 9?
- 4. Un sismo se presenta con 6 000 micrómetros de amplitud y un periodo de 0.3 segundos. Determina la intensidad del movimiento sísmico en la escala Richter.
- 5. Encuentra el periodo de un sismo de 90 000 micrómetros con intensidad de 5 grados en la escala Richter.
- 6. Un sismo tiene un periodo 0.35 segundos de duración y alcanza 4 grados en la escala Richter. ¿Cuál es su amplitud?
- 7. El tiempo de vida media de un material es de 40 años. ¿Cuánto de dicho material queda después de 30 años?
- 8. La vida media del tritio es de 12.5 años. ¿Cuánto tardará en desintegrarse 30% de una muestra de este metal?
- 9. La desintegración de una sustancia radiactiva está dada por el siguiente modelo:

$$V = V_0 e^{-0.005t}$$

Donde V_0 es la cantidad inicial de material y t es el tiempo. ¿Cuál es el tiempo de vida media de dicho material?

10. El modelo que rige el crecimiento poblacional de una ciudad es:

$$N = 15 \ 000e^{0.02t}$$

Donde N es el número de habitantes y t el tiempo en años. ¿Cuántos habitantes habrá dentro de 10 años?

- 11. En un cultivo de laboratorio las bacterias aumentaron de una población inicial de 150 a 830 en 2 horas. ¿Cuánto tardarán en llegar a 3 000?
- 12. La población actual de ratas en una ciudad es de 40 000; si se duplican cada 8 años, ¿cuándo habrá 500 000 roedores?
- 13. Del horno de una estufa se saca una rosca, cuya temperatura es de 180°C. Si la temperatura del ambiente es de 25°C, y después de 8 minutos la temperatura de la rosca es de 100°C, ¿cuál es su temperatura después de 15 minutos?

- 14. La temperatura del ambiente una tarde es de 21°C. Si se sirve agua para café con una temperatura de 95°C, y después de 4 minutos la temperatura del agua es de 80°C, ¿cuál es su temperatura después de 20 minutos?
- 15. Una barra de aluminio se encuentra a una temperatura de 400°C y la temperatura ambiental es de 28°C. Si después de 30 minutos la temperatura de la barra es de 300°C, ¿cuántos minutos deben transcurrir para que su temperatura sea de 120°C?

▼ Verifica tus resultados en la sección de soluciones correspondiente	
vernica tus resultados en la sección de soluciones correspondiente	