Package 'binomCI'

October 2, 2023

Type Package

Title Confidence Intervals for a Binomial Proportion

Version 1.1
Date 2023-10-02
Author Michail Tsagris [aut, cre]
Maintainer Michail Tsagris <mtsagris@uoc.gr></mtsagris@uoc.gr>
Depends R (>= $4.3.0$)
Imports stats
Description Twelve confidence intervals for one binomial proportion or a vector of binomial proportions are computed. The confidence intervals are: Jeffreys, Wald, Wald corrected, Wald, Blyth and Still, Agresti and Coull, Wilson, Score, Score corrected, Wald logit, Wald logit corrected, Arcsine and Exact binomial. References include, among others: Vollset, S. E. (1993). "Confidence intervals for a binomial proportion". Statistics in Medicine, 12(9): 809-824. <doi:10.1002 sim.4780120902="">.</doi:10.1002>
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2023-10-02 05:40:02 UTC
R topics documented:
binomCI-package 2 binomCI 3 binomCIs 5
Index 7

2 binomCI-package

binomCI-package

Confidence Intervals for a Binomial Proportion.

Description

Functions to compute 12 confidence intervals for a binomial proportion.

Details

Package: binomCI
Type: Package
Version: 1.1

Date: 2023-10-02 License: GPL-2

Maintainers

Michail Tsagris <mtsagris@uoc.gr>.

Note

I would like to express my acknowledgements to Marc Girondot for spotting an error in the "Wilson" method in two extreme cases, when x=1 and when n-x=1. He also proposed a modification that exists in the package "Hmisc" and the relevant paper to cite is Agresti & Coull (1998).

Author(s)

Michail Tsagris <mtsagris@uoc.gr>.

References

Agresti, A. & Caffo, B. (2000). Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures. The American Statistician, 54(4), 280–288.

Agresti, A. & Coull, B. A. (1998). Approximate is better than "exact" for interval estimation of binomial proportions. The American Statistician, 52(2): 119–126.

Brown, L. D., Cai, T. T. & DasGupta, A. (2001). Interval estimation for a binomial proportion. Statistical Science, 16(2): 101-133.

Brown, L. D., Cai, T. T. & DasGupta, A. (2002). Confidence intervals for a binomial proportion and asymptotic expansions. The Annals of Statistics, 30(1): 160-201.

Cameron, E. (2011). On the estimation of confidence intervals for binomial population proportions in astronomy: the simplicity and superiority of the Bayesian approach. Publications of the Astronomical Society of Australia, 28(2): 128–139.

binomCI 3

Newcombe, R. G. (1998). Two-sided confidence intervals for the single proportion: comparison of seven methods. Statistics in Medicine, 17(8): 857–872.

Pan, W. (2002). Approximate confidence intervals for one proportion and difference of two proportions. Computational statistics & Data Analysis, 40(1): 143-157.

Pires, A. M. & Amado, C. (2008). Interval estimators for a binomial proportion: Comparison of twenty methods. REVSTAT-Statistical Journal, 6(2): 165-197.

Ranucci, G. (2009). Binomial and ratio-of-Poisson-means frequentist confidence intervals applied to the error evaluation of cut efficiencies. arXiv preprint arXiv:0901.4845.

Sauro, J. & Lewis, J. R. (2005, September). Estimating completion rates from small samples using binomial confidence intervals: comparisons and recommendations. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 49, No. 24, pp. 2100-2103). Sage CA: Los Angeles, CA: SAGE Publications.

Somerville, M. C. & Brown, R. S. (2013). Exact likelihood ratio and score confidence intervals for the binomial proportion. Pharmaceutical Statistics, 12(3): 120-128.

Thulin, Mans. The cost of using exact confidence intervals for a binomial proportion. (2014): 817-840. Electronic Journal of Statistics 8(1): 817-840.

Vollset, S. E. (1993). Confidence intervals for a binomial proportion. Statistics in Medicine, 12(9): 809-824.

binomCI

Confidence Intervals for a Binomial Proportion.

Description

Confidence Intervals for a Binomial Proportion.

Usage

```
binomCI(x, n, a = 0.05)
```

Arguments

x The number of successes.

n The number of trials.

a The significance level to compute the $(1 - \alpha)\%$ confidence intervals.

Details

The confidence intervals are:

Jeffreys:

$$[F(\alpha/2; x+0.5, n-x+0.5), F(1-\alpha/2; x+0.5, n-x+0.5)],$$

where $F(\alpha, a, b)$ denotes the α quantile of the Beta distribution with parameters a and b, Be(a, b).

Wald:

$$\left[\hat{p} - Z_{1-\alpha/2} \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} - Z_{1-\alpha/2} \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right],$$

where $\hat{p} = \frac{x}{n}$ and $Z_{1-\alpha/2}$ denotes the $1-\alpha/2$ quantile of the standard normal distribution. If $\hat{p} = 0$ the interval becomes $(0, 1 - e^{\frac{1}{n}\log(\alpha^2)})$ and if $\hat{p} = 1$ the interval becomes $(e^{\frac{1}{n}\log(\alpha^2)}, 1)$.

Wald corrected:

$$\left[\hat{p} - Z_{1-\alpha/2} \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} - \frac{0.5}{n}, \hat{p} - Z_{1-\alpha/2} \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} + \frac{0.5}{n} \right],$$

and if $\hat{p} = 0$ or $\hat{p} = 1$ the previous (Wald) adjustment applies.

Wald BS:

$$\left[\hat{p} - Z_{1-\alpha/2} \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n - Z_{1-\alpha/2} - 2Z_{1-\alpha/2}/n - 1/n}} - \frac{0.5}{n}, \hat{p} - Z_{1-\alpha/2} \times \sqrt{\frac{\hat{p}(1-\hat{p})}{n - Z_{1-\alpha/2} - 2Z_{1-\alpha/2}/n - 1/n}} + \frac{0.5}{n} \right],$$

and if $\hat{p} = 0$ or $\hat{p} = 1$ the previous (Wald) adjustment applies.

Agresti and Coull:

$$\left[\hat{\theta} - Z_{1-\alpha/2} \times \sqrt{\frac{\hat{\theta}(1-\hat{\theta})}{n+4}}, \hat{p} - Z_{1-\alpha/2} \times \sqrt{\frac{\hat{\theta}(1-\hat{\theta})}{n+4}}\right],$$

where $\hat{\theta} = \frac{x+2}{n+4}$.

Wilson:

$$\left[\frac{x_b}{n_b} - \frac{Z_{1-\alpha/2}\sqrt{n}}{n_b} \times \sqrt{\hat{p}(1-\hat{p}) + Z_{1-\alpha/2}/4}, \frac{x_b}{n_b} + \frac{Z_{1-\alpha/2}\sqrt{n}}{n_b} \times \sqrt{\hat{p}(1-\hat{p}) + Z_{1-\alpha/2}/4}\right],$$

where $x_b = x + Z_{1-\alpha/2}^2/2$ and $n_b = n + Z_{1-\alpha/2}^2$.

Score:

$$\left[\frac{x+Z_{1-\alpha/2}^2-c}{n+Z_{1-\alpha/2}^2}, \frac{x+Z_{1-\alpha/2}^2+c}{n+Z_{1-\alpha/2}^2}\right],$$

where $c = Z_{1-\alpha/2} \sqrt{x - x^2/n + Z_{1-\alpha/2}^2/4}$.

Score corrected:

$$\left[\frac{\ell_1}{n+Z_{1-\alpha/2}}, \frac{\ell_2}{n+Z_{1-\alpha/2}}\right],$$

where $\ell_1=b_1+0.5Z_{1-\alpha/2}^2-Z_{1-\alpha/2}\sqrt{b_1-b_1^2/n+0.25Z_{1-\alpha/2}^2},\ \ell_2=b_2+0.5Z_{1-\alpha/2}^2+Z_{1-\alpha/2}\sqrt{b_2-b_2^2/n+0.25Z_{1-\alpha/2}^2}$ and $b_1=x-0.5,\ b_2=x+0.5.$

Wald-logit:

$$[1-(1+e^{b-c})^{-1}, 1-(1+e^{b+c})^{-1}]$$

where $b = \log(\frac{x}{n-x})$ and $c = \frac{Z_{1-\alpha/2}}{\sqrt{n\hat{p}(1-\hat{p})}}$. If $\hat{p} = 0$ or $\hat{p} = 1$ the previous (Wald) adjustment applies.

binomCIs 5

Wald-logit corrected:

$$[1-(1+e^{b-c})^{-1}, 1-(1+e^{b+c})^{-1}],$$

where $b = \log(\frac{\hat{p}_b}{\hat{q}_b})$, $\hat{p}_b = x + 0.5$, $\hat{q}_b = n - x + 0.5$ and $c = \frac{Z_{1-\alpha/2}}{\sqrt{(n+1)\frac{\hat{p}_b}{n+1}(1-\frac{\hat{p}_b}{n+1})}}$.

Arcsine:

$$\left\{ \sin^2 \left[\sin^{-1}(\sqrt{\hat{p}}) - 0.5 \frac{Z_{1-\alpha/2}}{\sqrt{n}} \right], \sin^2 \left[\sin^{-1}(\sqrt{\hat{p}}) + 0.5 \frac{Z_{1-\alpha/2}}{\sqrt{n}} \right] \right\}.$$

If $\hat{p} = 0$ or $\hat{p} = 1$ the previous (Wald) adjustment applies.

Exact binomial:

$$\left[(1 + \frac{a_1}{d_1})^{-1}, (1 + \frac{a_2}{d_2})^{-1} \right],$$

where $a_1 = n - x + 1$, $a_2 = a_1 - 1$, $d_1 = x - F(\alpha/2, 2x, 2a_1)$, $d_2 = (x+1)F(1-\alpha/2, 2(x+1), 2a_2)$ and $F(\alpha, a, b)$ denotes the α quantile of the F distribution with degrees of freedom a and b, F(a, b).

Value

A list including:

prop The proportion.

ci A matrix with 12 rows containing the 12 different $(1-\alpha)\%$ confidence intervals.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

See Also

binomCIs

Examples

binomCI(45, 100)

binomCIs

Confidence Intervals for many Binomial Proportions.

Description

Confidence Intervals for many Binomial Proportions.

Usage

binomCIs(x, n, a = 0.05)

6 binomCIs

Arguments

- x A vector with the number of successes.
- n A vector with the number of trials.
- a The significance level to compute the $(1-\alpha)\%$ confidence intervals.

Value

A list with the the first element being the vector with the proportions and the rest 12 items contain the $(1-\alpha)\%$ confidence intervals.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

See Also

binomCI

Examples

```
x <- sample(40, 10)
n <- rep(40, 10)
binomCIs(x, n)</pre>
```

Index

binomCI, 3, 6
binomCI-package, 2
binomCIs, 5, 5