Rizika, způsob oceňování rizik a vztah k jaderné bezpečnosti

Lidské činnosti

- Doprovázeny riziky
- Mnohá rizika přijímána dobrovolně
 - sporty, motorismus
- Mnohá podstoupena pro zachování existence
 - průmyslová činnost, znečištění životního prostředí a zhoršení životních podmínek

Činnost	Riziko úmrtí na osobu a rok
Dobrovolná rizika	
Kouření /20 cigaret denně/	500 x 10 ⁻⁵
Pití /jedna láhev vína denně/	7,5 x 10 ⁻⁵
Fotbal	4 x 10 ⁻⁵
Automobilové závody	120 x 10 ⁻⁵
Horolezectví	14 x 10 ⁻⁵
Řízení automobilu	17 x 10 ⁻⁵
Jízda na motocyklu	2 000 x 10 ⁻⁵
Používání antikoncepčních pilulek	2 x 10 ⁻⁵
Nedobrovolná rizika	
Přejetí automobilem /USA/	500 x 10 ⁻⁷
Přejetí automobilem /Velká Británie/	600 x 10 ⁻⁷
Povodně /USA/	22 x 10 ⁻⁷
Zemětřesení /Kalifornie/	17 x 10 ⁻⁷
Tornáda /střední západ USA/	22 x 10 ⁻⁷
Bouře /USA/	8 x 10 ⁻⁷
Blesk /Velká Británie/	1 x 10 ⁻⁷
Zřícení letadla /USA/	1 x 10 ⁻⁷
Zřícení letadla /Velká Británie/	0,2 x 10 ⁻⁷
Výbuch tlakových nádob /USA/	0,5 x 10 ⁻⁷
Úniky z jaderných elektráren - na hranici pozemku elektrárny /USA/	1 x 10 ⁻⁷
- ve vzdálenosti l km /Velká Británie,	
Protržení hrází /Holandsko/	1 x 10 ⁻⁷
Kousnutí jedovatými zvířaty /Velká Británie/	2 x 10 ⁻⁷
Přeprava benzínu a chemikálií /USA/	0.5×10^{-7}
Přeprava benzínu a chemikálií /Velká Británie/	0.2×10^{-7}
Leukemie	800 x 10 ⁻⁷
Chřipka	2 000 x 10 ⁻⁷
Meteorit	6 x 10 ⁻¹¹
Kosmické záření z explozí supernov	10 ⁻⁸ až 10 ⁻¹¹

Přípustnost úrovně rizika

- 3 metody
 - Porovnání rizika nově zaváděné technologie s existujícími riziky zavedených technologií
 - Srovnání rizik a užitek z technologií ve stejných jednotkách (penězích)
 - Rozbor efektivnosti nákladů na snížení rizik

Porovnání nových a starých ...

Měřítkem může být četnost smrtelných nehod ve skupině 1000 osob za produktivní dobu jejich života

Britský chemický průmyse	4
Oděvní a obuvnický průmysl	0,15
Vozidla	1,3
Dřevo, nábytek apod.	3
Rovovyropa, stavba lodí	8
Zemědělství	10
Těžba uhlí	12
Železniční posunovači	45
Stavební montéři	67
V domácnosti /muži 16 - 65/	1
Cestování vlakem	5
Cestování autem	57

Srovnání rizik a užitku ...

- Umožňuje volit mezi určitým počtem alternativních řešení
- Neumožňuje stanovit, jak je možné u dané technologie bezpečnost zvýšit

Rozbor efektivnosti nákladů ...

- Výdaje na bezpečnost exponenciální pokles
 - Vysoké riziko je možné podstatně snížit s poměrně malými náklady
 - Čím je riziko nižší, tím více stoupají náklady na jeho snížení
 - Sebevětšími náklady nelze dosáhnout nulového rizika a absolutní bezpečnosti

Rozbor efektivnosti nákladů ...

Vývoj bezpečnostní filosofie JE

Počátky jaderné energetiky

- JE velmi složitý komplexní systém
- Převládá mínění, že stanovení pravděpodobnosti vzniku havárie přesahuje možnosti znalostí
- Úsilí se soustředí na výpočet maximálního ohrožení obyvatelstva
 - Velké hypotetické havárie reaktoru

Počátky jaderné energetiky

- Brzy bylo zřejmé, že důsledky takových havárií jsou velmi závažné
- Chybí podklady pro určení pravděpodobnosti, že k takové havárii nedojde
- □ 70. léta
 - Výpočty důsledků hypotetických havárií
 - Stanovení pravděpodobností výskytu

Základní přístupy k bezpečnosti

- ☐ Historický
- Deterministický
- Prediktivní
- Pravděpodobnostní
- Absolutní

Historický

- ☐ Havárie a nehody
 - Evidence
 - Analýzy
 - Kategorizace

- Umožňuje předvídat
 - budoucí průměrný výskyt nehod
 - možný průběh nehod

Deterministický

- Vychází z předem stanovených hodnot parametrů při havarijní analýze
 - Maximální přípustná teplota povrchu palivových tyčí nesmí překročit 1200°C

Je dána předem definovaná posloupnost událostí

Prediktivní

Neexistuje-li precedenční případ, je nutné vymyslet model havárií

Na základě modelu je možné vypočítat rozsah a důsledky událostí, k nímž by mohlo dojít (dosud nedošlo)

Pravděpodobnostní

Vychází z historické nebo prediktivní metody

Stanovuje spektrum závislostí rizik

Absolutní

- Snaha o dosažení "absolutní" bezpečnosti
- Vyloučení jakéhokoliv rizika
- Nevědecký a "možná" nelogický přístup

- Z historického hlediska první používaná metoda predikce
- První predikce uvolnění 1 až 10% produktů štěpení z AZ
 - Vypracování strategie umísťování reaktorů
- Změna dosavadního pozitivního postoje k rozvoji jaderné energie

- Výzkumná zpráva USAEC WASH-740
 - **1957**
 - Popsány důsledky HYPOTETICKÉ havárie
 - Únik 50% štěpných produktů z AZ do atmosféry
 - □ Nejnepříznivější povětrnostní podmínky
 - Odhady
 - ☐ Ztráty na životech 3400 osob
 - □ Zdravotní poškození 43 000 osob
 - Škody na majetku 7 miliard dolarů

- Nepříznivý ohlas veřejnosti zavedení deterministického přístupu
 - Formulace dohodnutých limitních hodnot
- V nejaderném průmyslu predikce následků hypotetických havárií – zamítány jako nerealistické, neboť k nim ještě nedošlo

- Polovina 60.let nová hlediska na hodnocení bezpečnosti reaktorů
- Rozvoj pravděpodobnostní metody
 - Potřeba shromažďování dat
 - Provozní charakteristiky
 - Poruchy zařízení a systémů
 - Umožňuje použití dat nejen z havárií, ale i z provozních poruch

- Roste význam historického přístupu
 - Narůstá objem informací o nehodách a haváriích
 - Nevýhody
 - Soustřeďuje přílišnou pozornost na nehodu, která se stala
 - Jedná se však pouze o 1 realizovanou událost z velkého počtu potenciálních možností

- ☐ Historické příklady
 - 11. září 2001
 - Hrozba teroristického útoku
 - Dvojitý kontejnment
 - Požadavek na odolání nárazu velkého dopravního letadla
 - Fukushima
 - Důraz na přírodní katastrofy a vypořádání se s následky
 - Katastrofy v ČR ?

Snaha minimalizovat rizika

- Zavedení kontroly nad jaderným oborem
- Organizace
 - SÚJB
 - IAEA (MAAE)
 - EURATOM
 - WANO, WENRA, NEA atd.
- Legaslativa
 - Atomový zákon (zákon č. 18/1997 Sb.)
 - + prováděcí předpisy a vyhlášky
 - □ + návody
 - □ + příručky

Zavedené pojmy

- Jaderná bezpečnost
 - stav a schopnost jaderného zařízení a osob obsluhujících jaderné zařízení zabránit nekontrolovatelnému rozvoji štěpné řetězové reakce nebo nedovolenému úniku radioaktivních látek nebo ionizujícího záření do životního prostředí a omezovat následky nehod
 - Jaderná bezpečnost je jednou z nejvíce regulovaných oblastí z pozice státu a sledovaných oblastí z hlediska mezinárodního. Odtajněním převážné většiny činností spojených s využíváním jaderné energie, se jaderná bezpečnost stala i oblastí sledovanou širokou veřejností.

Zavedené pojmy

- Radiační ochrana
 - systém technických a organizačních opatření k minimalizaci negativních účinků ionizujícího záření na lidský organismus a životní prostředí
 - ALARA (as low as reasonably achievable)
 - postupy k dosažení a udržení takové úrovně radiační ochrany, aby riziko ohrožení života, zdraví osob a životního prostředí bylo tak nízké, jak lze rozumně dosáhnout při uvážení hospodářských a společenských hledisek

Zavedené pojmy

- Bezpečnostní systémy
 - Bezpečnostní systémy slouží k zajištění bezpečného odstavení jaderného reaktoru, k odvodu tepla z aktivní zóny za projektem předpokládaných podmínek a/nebo k omezení důsledků abnormálního provozu a havarijních podmínek
- Havarijní připravenost
 - Havarijní připravenost je schopnost rozpoznat vznik radiační nehody a při jejím vzniku plnit opatření stanovená havarijními plány

Atomový zákon

- □ Zákon č. 18/1997 Sb.
 - "Každý, kdo využívá jadernou energii … je povinen dodržovat takovou úroveň jaderné bezpečnosti, radiační ochrany, fyzické ochrany a havarijní připravenosti, aby riziko ohrožení života, zdraví osob a životního prostředí bylo tak nízké, jak lze rozumně dosáhnout při uvážení hospodářských a společenských hledisek".
- Odpovědnost za jaderné zařízení je ze zákona nepřenositelná a nedělitelná.

Vyhlášky k Atomovému zákonu

□ Vyhláška č. 144/1997 Sb.,

- o fyzické ochraně jaderných materiálů a jaderných zařízení a o jejich zařazování do jednotlivých kategorií
- Vyhláška č. 146/1997 Sb.,
 - stanovující činnosti, které mají bezprostřední vliv na jadernou bezpečnost, a činnosti zvláště důležité z hlediska radiační ochrany, požadavky na kvalifikaci a odbornou přípravu, způsob ověřování zvláštní odborné způsobilosti a udělování oprávnění vybraným pracovníkům a způsob provedení schvalované dokumentace pro povolení k přípravě vybraných pracovníků, ve znění vyhlášky č. 315/2002 Sb.
- Vyhláška č. 132/2008 Sb.
 - nahrazuje vyhlášku č. 214/1997 Sb., o zabezpečování jakosti při činnostech souvisejících s využíváním
 jaderné energie a činnostech vedoucích k ozáření a o stanovení kritérií pro zařazení a rozdělení vybraných
 zařízení do bezpečnostních tříd
- □ Vyhláška č. 215/1997 Sb.,
 - o kritériích na umísťování jaderných zařízení a velmi významných zdrojů ionizujícího záření
- □ Vyhláška č. 106/1998 Sb.,
 - o zajištění jaderné bezpečnosti a radiační ochrany jaderných zařízení při jejich uvádění do provozu a při jejich provozu
- Vyhláška č. 195/1999 Sb.,
 - o požadavcích na jaderná zařízení k zajištění jaderné bezpečnosti, radiační ochrany a havarijní připravenosti
- □ Vyhláška č. 185/2003 Sb.,
 - o vyřazování jaderného zařízení nebo pracoviště III. nebo IV. kategorie z provozu
- □ Vyhláška č. 317/2002 Sb.,
 - o typovém schvalování obalových souborů pro přepravu, skladování a ukládání jaderných materiálů a radioaktivních látek, o typovém schvalování zdrojů ionizujícího záření a o přepravě jaderných materiálů a určených radioaktivních látek (o typovém schvalování a přepravě)
- □ Vyhláška č. 309/2005 Sb.,
 - o zajišťování technické bezpečnosti vybraných zařízení

Působnost SÚJB

povolení podle atomového zákona

Státní dozor nad jadernou bezpečností fyzickou ochranou jaderných zařízení radiační ochranou havarijní připraveností Kontrola v prostorách jaderných zařízení nebo na pracovištích, kde se vyskytují zdroje ionizujícího záření Povolování umísťování a provoz jaderného zařízení a pracovišť s významnými zdroji ionizujícího záření Nastavení pravidel pro nakládání se zdroji ionizujícího záření a radioaktivními odpady Kontrola činností týkajících se přepravy jaderných materiálů a radionuklidových zářičů Schvalování dokumentaci související se zajištěním zákonem stanované jaderné bezpečnosti a radiační ochrany Schvalování limit a podmínek provozu jaderných zařízení Schvalování způsobu zajištění fyzické ochrany Stanovení podmínek a požadavků radiační ochrany obyvatel a lidí pracujících se zdroji ionizujícího záření (limity ozáření, kontrolovaná pásma) Stanovení zóny havarijního plánování a požadavků havarijní připravenosti držitelů

