Cryptography lecture notes

Javier Silva

Contents

Ι	Introduction to modern cryptography	5
1	Introduction	7
2	Security parameter	9
II	Symmetric cryptography	11
3	Pseudorandom generators	13
4	Block ciphers	15
5	Hash functions	17
6	MACs: message authentication codes	19
II	I Asymmetric cryptography	21
7	Elementary number theory	23
8	Algebraic structures	25
9	Public-key encryption	27
10	The Diffie–Hellman key exchange	29
11	Digital signatures	31

4	CONTENTS
IV Other topics	33
12 Cryptanalysis	35
A Set theory	37
B Code	39

Part I

Introduction to modern cryptography

Introduction

You can label chapter and section titles using {#label} after them, e.g., we can reference Chapter 1. If you do not manually label them, there will be automatic labels anyway.

Figures and tables with captions will be placed in figure and table environments, respectively.

```
par(mar = c(4, 4, .1, .1))
plot(pressure, type = 'b', pch = 19)
```

Reference a figure by its code chunk label with the fig: prefix, e.g., see Figure 1.1. Similarly, you can reference tables generated from knitr::kable(), e.g., see Table 1.1.

```
knitr::kable(
  head(iris, 20), caption = 'Here is a nice table!',
  booktabs = TRUE
)
```

You can write citations, too. For example, we are using the **bookdown** package [@R-bookdown] in this sample book, which was built on top of R Markdown and **knitr** [@xie2015].

Figure 1.1: Here is a nice figure!

Table 1.1: Here is a nice table!

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa
4.6	3.4	1.4	0.3	setosa
5.0	3.4	1.5	0.2	setosa
4.4	2.9	1.4	0.2	setosa
4.9	3.1	1.5	0.1	setosa
5.4	3.7	1.5	0.2	setosa
4.8	3.4	1.6	0.2	setosa
4.8	3.0	1.4	0.1	setosa
4.3	3.0	1.1	0.1	setosa
5.8	4.0	1.2	0.2	setosa
5.7	4.4	1.5	0.4	setosa
5.4	3.9	1.3	0.4	setosa
5.1	3.5	1.4	0.3	setosa
5.7	3.8	1.7	0.3	setosa
5.1	3.8	1.5	0.3	setosa

Security parameter

Part II Symmetric cryptography

Pseudorandom generators

Block ciphers

Hash functions

MACs: message authentication codes

Part III Asymmetric cryptography

Elementary number theory

Algebraic structures

Public-key encryption

The Diffie–Hellman key exchange

Digital signatures

$\begin{array}{c} {\rm Part~IV} \\ {\rm Other~topics} \end{array}$

Cryptanalysis

Appendix A

Set theory

Appendix B

\mathbf{Code}