Einführung

course on LiaScript

Parameter	Kursinformationen
Veranstaltung:	Eingebettete Systeme
Semester	Wintersemester 2021/22
Hochschule:	Technische Universität Freiberg
Inhalte:	Motivation der Vorlesung "Eingebettete Systeme" und Beschreibung der Organisation der Veranstaltung
Link auf GitHub:	https://github.com/TUBAF-Ifl- LiaScript/VL Softwareentwicklung/blob/master/00 Einfuehrung.md
Autoren	Sebastian Zug, André Dietrich

Zielstellung

Was steht im Modulhandbuch über diesen Kurs?

Qualifikationsziele /Kompetenzen:

Mit der erfolgreichen Teilnahme an der Veranstaltung sollen die Studierenden in der Lage sein:

- die Teilkomponenten eines Rechners ausgehend von der Boolschen Algebra sowie kombinatorischen und sequentiellen Schaltungen zu beschreiben und ausschnitthafte Teilelemente selbstständig entwerfen zu können.
- die Integration der Elemente und die Abläufe bei der Programmabarbeitung in verschiedenen
 Modellrechnern zu beherrschen und die Vor- und Nachteile verschiedener Konfigurationen bewerten zu können,
- < Architekturentwürfe auf reale Controller zu übertragen, die resultierenden Programmierkonzepte zu verstehen und anzuwenden</p>
- die konkrete Realisierung von eingebetteten Systemen in entsprechenden Anwendungen aus den Schaltplänen zu erfassen und die softwareseitigen Realisierungen daraus abzuleiten

Inhalte

Grundlegende Prinzipien der Modellierung digitaler Systeme: Boolsche Algebren und Funktionen, kombinatorische und sequentielle Schaltungen, Herleitung eines Modellrechners und Abbildung von dessen Funktionsweise, Einführung in die Entwicklung eingebetteter Systeme(Sensoren, Aktoren, elektrische Peripherie, Programmierkonzepte), Anwendungsfelder

Software

Und was heißt das nun konkret? Worum geht es?

Nehmen wir an, Sie realisieren ein Arduino Beispielprogramm wie dieses:

Simulation time: 00:11.281

```
byte leds[] = {13, 12, 11, 10};
 2 void setup() {
      Serial.begin(115200);
 3
      for (byte i = 0; i < sizeof(leds); i++) {</pre>
 4 =
 5
        pinMode(leds[i], OUTPUT);
 6
   }
 7
 8
 9 int i = 0;
10 void loop() {
11
      Serial.print("LED: ");
      Serial.println(i);
12
13
      digitalWrite(leds[i], HIGH);
14
      delay(250);
15
      digitalWrite(leds[i], LOW);
      i = (i + 1) \% sizeof(leds);
16
17
```

LLD. V	
LED: 1	
LED: 2	
LED: 3	
LED: 0	
LED: 1	
LED: 2	
LED: 3	
LED: 0	
LED: 1	
LED: 2	
LED: 3	
LED: 0	
LED: 1	
LED: 2	
LED: 3	
LED: 0	
LED: 1	
LED: 2	
LED: 3	
LED: 0	
LED: 1	
LED: 2	
LED: 3	
LED: 0 LED: 1	
LED: 2	
LED: 3	
LED: 0	
LED: 1	
LED: 2	
LED: 3	
LED: 0	
LED: 1	
IFD· 2	