MA50260 Statistical Modelling

Lecture 17: Generalised Mixed Effects Models (GLMMs) - Introduction

Ilaria Bussoli

April 16, 2024

The Story So Far

What are the assumptions of the different types of models?

How would you model...?

Decide which of the introduced models may be best for modelling

- a. 5-year survival rate for a cancer treatment
- b. Daily temperatures across multiple UK cities
- c. Covid-19 vaccine effectiveness across countries

The Next Step

Philosophy of Statistical Modelling

Recap: The Exponential Family

A random variable Y has a distribution in the exponential family if

$$f(y \mid \theta, \phi) = \exp\left\{\frac{y\theta - d(\theta)}{a(\phi)} + c(y, \phi)\right\},$$

where θ and $\phi > 0$ are parameters; $a(\cdot)$, $d(\cdot)$ and $c(\cdot)$ are functions.

The exponential family includes:

- ▶ Normal (μ, σ^2)
- Poisson(μ)
- ightharpoonup Binomial(m, p)

Generalised Linear Mixed Models (GLMMs)

Suppose we have I groups and J observations per group.

A GLMM generally comprises three components:

- ▶ Linear predictor $\eta_{i,j} = \mathbf{x}_{i,j}^{\mathrm{T}} \underline{\beta} + \mathbf{z}_{i,j}^{\mathrm{T}} \mathbf{b}$
- ▶ Link function $g(\mu_{i,j}) = \eta_{i,j}$ linking $\eta_{i,j}$ to $\mu_{i,j} = \mathbb{E}(Y_{i,j})$
- ▶ Probability distribution $Y_{i,j} \sim F(\mu_{i,j})$ from the exponential family

Let's again consider Covid-19 vaccine effectiveness across countries.

How would we define a GLMM for this response?

Let's again consider Covid-19 vaccine effectiveness across countries.

How would we define a GLMM for this response?

3. The probability distribution is

$$Y_{i,j} \sim \mathrm{Bernoulli}(\mu_{i,j})$$

Let's again consider Covid-19 vaccine effectiveness across countries.

How would we define a GLMM for this response?

1. In the absence of any patient information, the linear predictor is

$$\eta_{i,j} = \beta_1 + b_i$$

3. The probability distribution is

$$Y_{i,j} \sim \text{Bernoulli}(\mu_{i,j})$$

Let's again consider Covid-19 vaccine effectiveness across countries.

How would we define a GLMM for this response?

1. In the absence of any patient information, the linear predictor is

$$\eta_{i,j} = \beta_1 + b_i$$

2. A possible link function is

$$g(\mu_{i,j}) = \ln\left(\frac{\mu_{i,j}}{1 - \mu_{i,j}}\right) = \eta_{i,j}$$

3. The probability distribution is

$$Y_{i,j} \sim \text{Bernoulli}(\mu_{i,j})$$

Example 2 - Seed Germination (I)

In a study, 20 seeds were planted on each of 10 plates, and the number of germinated seeds is counted.

##		Plate	${\tt Germinated}$	Total	NotGerminated
##	1	1	6	20	14
##	2	2	3	20	17
##	3	3	10	20	10
##	4	4	11	20	9
##	5	5	16	20	4
##	6	6	5	20	15
##	7	7	9	20	11
##	8	8	9	20	11
##	9	9	4	20	16
##	10	10	10	20	10

Example 2 - Seed Germination (II)

A suitable probability distribution is

Example 2 - Seed Germination (II)

A suitable probability distribution is

$$Y_{i,j} \sim \mathsf{Bernoulli}(p_i)$$

If we assume $p_1 = \cdots = p_{10}$, the maximum likelihood estimate for np_i is

```
mean( seeds$Germinated )
```

```
## [1] 8.3
```

Example 2 - Seed Germination (II)

A suitable probability distribution is

$$Y_{i,j} \sim \text{Bernoulli}(p_i)$$

If we assume $p_1 = \cdots = p_{10}$, the maximum likelihood estimate for np_i is

```
mean( seeds$Germinated )
```

```
## [1] 8.3
```

This suggests that the variance is about $n\hat{p}(1-\hat{p})=4.9$.

But:

```
var( seeds$Germinated )
```

```
## [1] 15.12222
```

Example 2 - Seed Germination (III)

Let's define a GLMM with

$$Y_{i,j} \sim \mathsf{Bernoulli}(p_i)$$

and

$$\log\left(\frac{p_i}{1-p_i}\right)=\beta_1+b_i \qquad (i=1,\ldots,I).$$

To complete the model, we define

$$\mathbf{b} = (b_1, \dots, b_{10}) \sim \text{MVN}_{10} \left(0, \sigma_b^2 \mathbf{I}_{10} \right).$$

Properties of GLMMs

- ► Conditional on **b**, $Y_{i,j}$ is independently distributed with mean $\mu_{i,j}$ and variance ϕ $V(\mu_{i,j})$.
- ► The marginal variance is

$$Var(Y_{i,j}) = \mathbb{E}\{Var(Y_{i,j} \mid \mathbf{b})\} + Var\{\mathbb{E}(Y_{i,j} \mid \mathbf{b})\}$$

= $\phi \mathbb{E}\{V(\mu_{i,j})\} + Var(\mu_{i,j}).$

- The random effects b are usually assumed to be normally distributed for computational tractability.
- Random contributions to the predictor are no longer strictly additive.