Verilog Size Checking

Set-Based Typing Rules

The statement $\Gamma, \xi \vdash e : n$ mean:

In the variable context Γ and the size context ξ , the size of the expression e is n.

So we have:

- $\Gamma: \mathcal{O} \to \mathbb{N}$ a mapping from operand to their size, with \mathcal{O} the set of operands,
- $\xi \in \mathbb{N} \cup \{*\}$ a size context (with * for the empty one).
- $e \in \mathcal{E}$, with \mathcal{E} the set of expressions,
- $n \in \mathcal{N}$, the size of the expression.

We use the following notations:

•

ctx	${\cal E}$	\rightarrow	$\mathbb{N} \cup \{*\}$	
	x	\mapsto	$\Gamma(x)$	
	$a\oplus b$	\mapsto	$\max(\operatorname{ctx}(a),\operatorname{ctx}(b))$	$\oplus \in \{+,-,*,/,\%,\&, ,,,-,-,-^{}\}$
	$\oplus a$	\mapsto	$\operatorname{ctx}(a)$	$\oplus \in \{+, -, ++,, \sim\}$
	$a\oplus$	\mapsto	$\operatorname{ctx}(a)$	$\oplus \in \{++,\}$
	$\oplus(a)$	\mapsto	?	$\oplus \in \{\texttt{\$signed}, \texttt{\$unsigned}, \texttt{signed'}, \texttt{unsigned'}\}$
	$a\oplus b$	\mapsto	*	⊕ ∈ {===, !==, ==?, !=?, ==, !=,>,>=,<,<=}
	$a\oplus b$	\mapsto	*	$\oplus \in \{\&\&, , ->, <->\}$
	$\oplus a$	\mapsto	*	$\oplus \in \{\&, \text{-}\&, \text{-}, \text{-}, \text{-}, \text{-}, \text{-}, !\}$
	$a\oplus b$	\mapsto	$\operatorname{ctx}(a)$	⊕ ∈ {>>, <<, **, >>>, <<<}
	$a\oplus b$	\mapsto	$\Gamma(a)$	$\oplus \in \{\texttt{=}, \texttt{+=}, \texttt{-=}, \texttt{*=}, \texttt{/=}, \texttt{\%=}, \texttt{\&=}, \texttt{ =}, \texttt{^=}\}$
	$a\oplus b$	\mapsto	$\Gamma(a)$	⊕ ∈ {<<=,>>=, <<<=,>>>=}
	$a\oplus b$	\mapsto	?	
	$a\oplus b$	\mapsto	?	
	$a\oplus b$	\mapsto	?	
	$a\oplus b$	\mapsto	?	
	$a\oplus b$	\mapsto	?	

Base case

$$\frac{n = \Gamma(x) \bowtie \xi}{\Gamma, \xi \vdash x : n}$$

Operators

$$\bigoplus \{+,-,*,/,\%,\&, |, \smallfrown, \smallfrown, \smallfrown, \smallfrown \rbrace \} \qquad \frac{\Gamma,\xi \vdash a : n \quad \Gamma,\xi \vdash b : n}{\Gamma,\xi \vdash a \oplus b : n}$$

$$\bigoplus \{+,-,++,--, \sim \} \qquad \frac{\Gamma,\xi \vdash e : n}{\Gamma,\xi \vdash e : n}$$

$$\bigoplus \{++,--\} \qquad \frac{\Gamma,\xi \vdash e : n}{\Gamma,\xi \vdash e \oplus : n}$$

$$\bigoplus \{\$ \text{signed},\$ \text{unsigned'}, \text{unsigned'}\} \qquad \frac{\zeta = \max^* (\text{ctx}\,(e)) \quad \Gamma,\zeta \vdash e : k \quad n = k \bowtie \xi}{\Gamma,\xi \vdash \oplus (e) : n}$$

$$\bigoplus \{===,!==,==?,!=?,==,!=,0>,>=,<,=\} \qquad \frac{\zeta = \max^* (\text{ctx}\,(a) \cup \text{ctx}\,(b)) \quad \Gamma,\zeta \vdash a : k \quad \Gamma,\zeta \vdash b : k \quad n = k \bowtie \xi}{\Gamma,\xi \vdash a \oplus b : n}$$

Equivalence-Based Typing Rules

The statement $\Gamma \mid n \vdash e : \tau, X$ mean:

In the variable context Γ and the size context n, the size of the expression e is the value of the variable τ , with X the size-tagged set of equivalence classes of size variables.

So we have:

- $\Gamma: \mathcal{O} \to \mathbb{N}$ a mapping from operand to their size, with \mathcal{O} the set of operands,
- $n \in \mathbb{N} \cup \{*\}$ a size context (with * for the empty one),
- $e \in \mathcal{E}$, with \mathcal{E} the set of expressions,
- $\tau \in \mathcal{V}$, with \mathcal{V} the set of size variable,
- X=(S,f) with $S\in 2^{\mathcal{V}}$ the set of equivalence classes and $f:S\to\mathbb{N}$ a size valuation for each equivalence class.

We use the following notations:

•

$$\bowtie : \left\{ \begin{array}{ccc} \mathbb{N} \times (\mathbb{N} \cup \{*\}) & \to & \mathbb{N} \\ (m,*) & \mapsto & m \\ (m,n) & \mapsto & \max(m,n) \end{array} \right.$$

- $\Delta_X : \mathcal{V} \to \mathbb{N}$ the function that given a size variable x returns its size in the environment X = (S, f). We have $\Delta_X(x) = f([x]_S)$ with $[x]_S$ the equivalence class of x in S.
- $\{v := s\}$: the declaration of a *fresh* size variable v.

• $X/\alpha \sim \beta$ the operation that combines two classes. For the newly created class, the valuation function gives the maximum of the previous classes:

$$\begin{split} (S,f)/\alpha \sim \beta &= (S',f') \\ S' &= \left\{ [\alpha]_S \sqcup [\beta]_S \right\} \sqcup S \setminus \left\{ [\alpha]_S, [\beta]_S \right\} \\ f' &= \left\{ \begin{array}{ccc} S' & \to & \mathbb{N} \\ c & \mapsto & f(c) & \text{if } c \in S \setminus \left\{ [\alpha]_S, [\beta]_S \right\} \\ c & \mapsto & \max \left(f \left([\alpha]_S \right), f \left([\beta]_S \right) \right) & \text{if } c = [\alpha]_S \text{ or } c = [\beta]_S \\ \end{array} \right. \end{split}$$

Base case

$$\frac{\Gamma(x) = m}{\Gamma \mid n \vdash x : \upsilon, \{\upsilon \coloneqq m \bowtie n\}}$$