

Luiz Celso Gomes-Jr/UTFPR

DETECÇÃO DE ANOMALIAS

Implementação

無

Detecção de Anomalias 10 ERBD 2019 - Chapecó/SC 10101010 10 Luiz Celso Gomes-Jr0011101011001 gomesjr@dainf.ct.utfpr.edu.br

Agenda

- Outliers de ponto
- Múltiplas dimensões
- Contexto
- Redução de Dimensionalidade
- Outliers em Texto
- Outliers em Grafos

Tarefa

- Identificar anomalias no número de atendimentos de saúde (Curitiba)
 - Dias com maior procura
 - Detecção de epidemias
- Detecção de anomalias é um bom exemplo de tarefa de Ciência de Dados, portanto consideraremos o workflow típico

Ciência de Dados

Ferramentas

- Pandas structured data operations and manipulations
- NumPy Numerical Python
- Matplotlib/Seaborn plotting graphs
- Scikit Learn machine learning

pandas

$$y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}$$

- Used for structured data operations and manipulations. It is extensively used for data munging and preparation.
- Have been instrumental in boosting Python's usage in data scientist community.

- The most powerful feature of NumPy is ndimensional array.
- This library also contains basic linear algebra functions, Fourier transforms, advanced random number capabilities and tools for integration with other low level languages like Fortran, C and C++
- Efficient processing

- Scikit-learn is a free software machine learning library for the Python programming language
- Features various classification, regression and clustering algorithms including support vector machines, random forests, gradient boosting, kmeans and DBSCAN
- Designed to interoperate with NumPy and SciPy

- For plotting vast variety of graphs, starting from histograms to line plots to heat plots..
- You can use Pylab feature in Jupyter notebook (ipython notebook –pylab = inline) to use these plotting features inline.
- You can also use Latex commands to add math to your plot.
- Alternatives: Bokeh, Seaborn

Obtenção e Tratamento dos Dados

- Portal Dados Abertos de Curitiba
- Atendimentos de saúde entre 2016-06-01 e 2017-05-31

```
df = pd.read_csv('dadoslimpos.csv', encoding='latin-1', sep=';', low_memory=False)
```

id	Data do Atendimento	Data de Nascimento	Sexo	Código do Procedimento	Código do CID	Desencadeou Internamento
616666	2016-06-01	1920-11-12	F	301060029	Z0	Nao
200151	2016-06-01	1927-10-27	F	301010072	R4	Nao
179894	2016-06-01	1927-12-20	F	301060029	R5	Sim

Obtenção e Tratamento dos Dados

```
#Cria faixas etárias
df['Faixa'] = np.nan
df.loc[df['Idade'] < 14, 'Faixa'] = 'Crianca'</pre>
df.loc[df['Idade'] >= 14, 'Faixa'] = 'Adulto'
df.loc[df['Idade'] >= 60, 'Faixa'] = 'Idoso'
#Converte Internamento (Sim/Nao) em binário
df['Internamento'] = 0
df.loc[df['Desencadeou Internamento'] == 'Sim', 'Internamento'] = 1
#Converte data para tipo DateTime
df['Data'] = pd.to datetime(df['Data do Atendimento'])
#Retira códigos CID errados
df = df.loc[df.loc[:,'Código do CID'].str.contains(r'^[a-zA-Z][0-9]+$')]
#Mantém apenas o prefixo:
df['Código do CID'] = df['Código do CID'].str.slice(0, 2)
```

- Contagem de atendimentos por dia
- Exibição da Série Temporal

```
#Contagem de atendimentos por dia
df_count = df.groupby(by="Data").size().reset_index(name='Total')
df_count.head()
```

	Data	Total
0	2016-06-01	743
1	2016-06-02	659
2	2016-06-03	688
3	2016-06-04	600
4	2016-06-05	563

```
sns.lineplot(x = 'Data', y = 'Total', ax=ax, data=df_count.query
```


Detecção de anomalias inicial - BoxPlot

```
sns.boxplot(x=df_count["Total"])
```


Detecção de Anomalias

- Detecção de anomalias inicial Z-Scores
- Pontos com z-score maior que 2 sigmas são considerados anomalias

```
df['z_score'] = np.abs(stats.zscore(df['Total']))
df['z_predic'] = df['z_score'].apply(lambda x: -1 if x >= 2 else 1)
```

Detecção de Anomalias

Ciência de Dados

Data Science Process

- Verificar se existe padrão de volume de atendimento por dia da semana
- Extrair também mês e timestamp

```
#Extrai dia da semana
df['Dia_Semana'] = df['Data'].dt.weekday

#Extrai mês
df['Mes'] = df['Data'].dt.month_name()

#Extrai TimeStamp
df['ts'] = df[['Data']].apply(lambda x: x['Data'].timestamp(), axis=1).astype(int)
```

	Data	Total	ts	Dia_Semana	Mes
184	2016-12-02	1408	1480636800	4	December
185	2016-12-03	1132	1480723200	5	December
186	2016-12-04	1283	1480809600	6	December

```
sns.scatterplot(x="Data", y="Total",
    hue="Dia_Semana", s=150, data=df_analysis, legend='full')
```


Contexto

- Claramente a detecção do que é ou não anomalia neste caso depende do contexto
- Um pico de atendimento numa segundafeira é normal, enquanto num domingo seria anômalo
- Estratégia: transformar em detecção multivariada usando LOF (Local Outlier Factor)

Dimensões: Atendimentos X Dia Semana

```
df analysis a = df analysis[['Total', 'Dia Semana']]
 df analysis a = get LOF scores(df analysis a, n neighbors=10, contamination=0.05)
def get LOF scores(df, n neighbors=10, contamination=0.05):
    np.random.seed(42)
    # fit the model for outlier detection (default)
    clf = LocalOutlierFactor(n neighbors=n neighbors, contamination=contamination)
    # use fit predict to compute the predicted labels of the training samples
    # (when LOF is used for outlier detection, the estimator has no predict,
    # decision function and score samples methods).
    y pred = clf.fit predict(df)
    X scores = clf.negative outlier factor
    df['LOF score'] = X scores
    df['LOF predictions'] = y pred
    return df
```

Dimensões: Atendimentos X Dia Semana

Outlier Scores: Dia Semana

Modelo LOF - Escala

Modelo LOF - Escala

Modelo LOF - Normalização

Modelo LOF - Normalização

Variáveis Categóricas

- Variáveis categóricas precisam ser tratadas a parte
- Casos claros são as variáveis código da doença e faixa etária, que precisam ser transformadas em um números reais
- Outros casos a se considerar são dia da semana e mês
- Estratégia: obter variáveis dummies

Variáveis Categóricas

```
df_mes = df_analysis[['Mes', 'Data']].set_index('Data').sample(8)
df_dummies = pd.get_dummies(df_mes)
```

	Mes		Mes_April	Mes_December	Mes_February	Mes_March	Mes_May
Data		Data					
2016-12-29	December	2016-12-29	0	1	0	0	0
2016-12-15	December	2016-12-15	0	1	0	0	0
2017-04-26	April	2017-04-26	1	0	0	0	0
2016-12-31	December	2016-12-31	0	1	0	0	0
2017-03-18	March	2017-03-18	0	0	0	1	0
2017-05-27	May	2017-05-27	0	0	0	0	1
2017-02-23	February	2017-02-23	0	0	1	0	0
2017-05-05	May	2017-05-05	0	0	0	0	1

Modelo Final

- Variáveis: mês, dia da semana, código CID, faixa etária, internamento
- Totais de atendimentos por dia calculados agrupando por código CID, faixa etária, internamento
- Normalizados e com respectivas dummies
- Modelo final com 96 dimensões!
- Algoritmo escolhido: SOM

Modelo Final Processamento dos Dados

	Data	Categoria	Total
0	2016-06-01	A0-Adulto-0	18
1	2016-06-01	A0-Crianca-0	10
2	2016-06-01	A0-Idoso-0	4
3	2016-06-01	A2-Adulto-0	1
4	2016-06-01	A5-Adulto-0	1

Modelo Final Processamento dos Dados

```
# Reorganiza o DataFrame para ter categorias como colunas
df_final = df_final.pivot(index='Data', columns='Categoria', values='Total')
df_final = df_final.fillna(0)
```

Categoria	Data	A0- Adulto- 0		A0- Crianca- 0	A0- Crianca- 1				A1- Adulto- 1	A1- Idoso- 0
0	2016- 06-01	18.0	0.0	10.0	0.0	4.0	0.0	0.0	0.0	0.0
1	2016- 06-02	17.0	0.0	8.0	0.0	2.0	0.0	0.0	0.0	0.0
2	2016- 06-03	18.0	2.0	11.0	0.0	3.0	0.0	0.0	0.0	0.0
3	2016- 06-04	7.0	0.0	9.0	0.0	5.0	0.0	0.0	0.0	0.0
	0040									

Modelo Final Processamento dos Dados

```
#Obtenção das dummies
df_s = pd.get_dummies(df_final['Data'].dt.day_name().astype(str))
df_m = pd.get_dummies(df_final['Data'].dt.month_name())

df_dummies = pd.concat([df_s, df_m, df_final], axis=1)

df_f = df_dummies.drop('Data', axis=1)

#Normalização
df_f = pd.DataFrame(MinMaxScaler().fit_transform(df_f), index = df_f.index, columns=df_f.column
```

Modelo Final Processamento dos Dados

			1							
e	March	May	November	October	September	A0- Adulto-0		A0- Crianca- 0		
0	0.0	0.0	0.0	0.0	0.0	0.133333	0.0	0.200000	0.0	0.4
0	0.0	0.0	0.0	0.0	0.0	0.122222	0.0	0.155556	0.0	0.2
0	0.0	0.0	0.0	0.0	0.0	0.133333	1.0	0.222222	0.0	0.3
0	0.0	0.0	0.0	0.0	0.0	0.011111	0.0	0.177778	0.0	0.5
0	0.0	0.0	0.0	0.0	0.0	0.044444	0.0	0.311111	0.0	0.1
0	0.0	0.0	0.0	0.0	0.0	0.244444	0.0	0.133333	0.0	0.1

Modelo Final Mapa SOM

Modelo Final

Modelo Final

Obs: valores da variável A3-Adulto-0 (total de atendimentos de adultos com diagnósticos de CID A2 sem internamento)

Ciência de Dados

Data Science Process

Detecção de Anomalias em Texto usando Grafos

- Cenário: Corpus de notícias falsas
- Objetivo: Identificar mudanças no discurso das notícias ao longo do tempo e comparar com evento reais
- Estratégia: Representar notícias como grafos

Texto → Grafo

...**Moro** investiga **Lula** na loperação **Lava-Jato**...

...Lula se reúne com Dilma para tratar...

Grafos de janelas de tempo

Grafos de janelas de tempo

Identificação de tópicos

- Algoritmo de agrupamento em grafos (Modularidade)
- Agrupamentos representam entidades frequentemente co-citadas
- Agrupamentos usados como representantes de tópicos

Agrupamentos/Tópicos

Estratégias

- Detecção de anomalias na distribuição dos tópicos (agrupamentos)
- Detecção de anomalias sobre a evolução dos grafos

Anomalias nas Distribuições dos Tópicos

 Cálculo de LOF para os percentuais dos 5 tópicos ao longo do tempo

80 -

60 -

40 -

20 -

0 -

Cluster Prevalence (%)

Anomalias na evolução dos grafos

- Conversão dos grafos em matrizes de adjacência
- Cálculo de SVD para prever crescimento
- Grau de anomalia para o janela é a norma da diferença das matrizes reais e previstas

Anomalias na evolução dos grafos

```
from scipy.linalg import svd
import networkx as nx
M1 = nx.to_pandas_adjacency(G1)
M2 = nx.to pandas adjacency(G2)
# Singular-value decomposition
U, s, VT = svd(M1)
# create n x n Sigma matrix
Sigma = diag(s)
## Reduzir dimensionalidade (varia de caso a caso)
# reconstruct matrix
M1f = U.dot(Sigma.dot(VT))
#Calcula distância/grau de anormalidade usando norma Frobenius
distancia = np.linalg.norm(M2 - M1f)
```

