#### for loop

- The initialization is executed once, before the loop is entered.
- The condition is checked before each iteration
- The update is executed after each iteration.

$$1 \leftarrow 3 \rightarrow True.$$

$$2 \leftarrow 3 \rightarrow True.$$

$$3 \leftarrow 3 \rightarrow True.$$

$$4 \leftarrow 3 \rightarrow False.$$

$$fact = 1 * 1 = 1$$
 $fact = 1 * 2 = 2$ 
 $fact = 2 * 3 = 6$ 

What is the output of following program (when embedded in a complete program?)

What is the output of following program (when embedded in a complete program?)

for (int 
$$n = 6$$
;  $n > 0$ ;  $n=n-2$ )

cout<<" Hello ";

cout<

GUTPUT

```
-for (inti=1; i <= 5; i ++)

cout << i << endL;

for (int i=1; i <5; i++)

cout << i << endL;

cout << i << endL;

4

2

3

4

4

5
```

TheTun

A ollotte A ollotte S ollotte SWAT OF DE A

Contrataction

- False

```
INPUTS - (20, 30, 40)
                                  20 + 30 + 40 = 90
\frac{90}{3} = 30
```

A Program to calculate the Sum and Average from z integer numbers entered by User.

```
#include <iostream>
using namespace std;
int main()
{
        int counter = 0, input, sum = 0, average;
        cout<<"Enter sequence of integer values:";</pre>
        while (cin>>input)
        {
                                   SUM = 20 + 30 = 50
            sum = sum + input;
                                   SUM = 50+ 40 = 90
            counter++;
        }
       average = sum / counter;
        cout<<"Sum: "<<sum<<" Average: "<<average;</pre>
}
```

## OUTPUT

```
Enter letonice of interen numbers:
                                      30
```



• To compute the largest value in a sequence, keep a variable that stores the largest element that you have encountered, and update it when you find a larger one.

A program to find largest number from 4 integer values entered by the user.

Enter sequence of integer values: 23 78 90 56.

The largest value is; 90 ?

# 10 7 111 pinny poin.

#### **Review on Numbering System**

- The binary number system has base 2.
- The value of digit is determined by its position in the number.
- The two binary digits are: 1 and 0.

Weight structure:

N-1

2

1

2

2

2

Thole number

pant

|     |     |    | Positive<br>(Who      | Powers<br>ole Num |    |                       |    |    | Negative Powers of Two<br>(Fractional Number) |             |              |               |                 |          |
|-----|-----|----|-----------------------|-------------------|----|-----------------------|----|----|-----------------------------------------------|-------------|--------------|---------------|-----------------|----------|
| 28  | 27  | 26 | <b>2</b> <sup>5</sup> | 24                | 23 | <b>2</b> <sup>2</sup> | 21 | 20 | 2-1                                           | $2^{-2}$    | $2^{-3}$     | $2^{-4}$      | 2-5             | $2^{-6}$ |
| 256 | 128 | 64 | 32                    | 16                | 8  | 4                     | 2  | 1  | 1/2<br>0.5                                    | 1/4<br>0.25 | 1/8<br>0.125 | 1/16<br>0.625 | 1/32<br>0.03125 | 1/64     |

#### Example 2: Convert 10.111 to decimal number.

Binary Number: 
$$| 0 \cdot | 1 \cdot |$$

Weights  $| 2 \cdot | 2 \cdot | 2 \cdot |$ 
 $= 0 \cdot 2 \cdot | + 2 \cdot | + 2 \cdot | + 2 \cdot |$ 
 $= 2 \cdot 875$ 

### Converting whole decimal numbers to binary (Sum-of-weights Method)

- Determine the set of binary weights whose sum is equal to the decimal number.
  - Place 1's and 0's on the appropriate weight positions determines the binary number for that decimal number.

Example 1: Convert decimal number 25 to binary using Sum-of-Weights

Method

Weight)

Weight)

Method

$$432100$$
 $2222$ 

Weight)

 $16848+1=25$ 
 $10001$ 

Example 2: Convert decimal number 58 to binary using Sum-of-Weights Method.

#### **Hexadecimal Numbers**

• The hexadecimal number system has sixteen characters; it is used primarily as a compact way of displaying or writing binary numbers because it is very easy to convert between binary and hexadecimal.

| TABLE 2-3                                                              |                                                                                                      |                                                |     |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------|-----|
| Decimal                                                                | Binary                                                                                               | Hexadecimal                                    |     |
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13 | 0000<br>0001<br>0010<br>0011<br>0100<br>0101<br>0111<br>1000<br>1001<br>1010<br>1011<br>1100<br>1101 | 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | IMA |
| 14<br>15                                                               | 1110<br>1111                                                                                         | E F                                            |     |

Convert the following binary numbers to hexadecimal: (a) 1100101010101111

C A 5 7

C A 5716

Determine the binary numbers for the following hexadecimal numbers: (a) 10A4<sub>16</sub>

0001 0000 1010 0100

