Questions

- 1. Convert the following numbers into the number system indicated
 - (a) $(1010.011)_2$ to decimal
 - (b) $(FA)_{16}$ to decimal
 - (c) $(101110101101)_2$ into hexadecimal
 - (d) $(FA)_{16}$ to binary

#ns1. (a)
$$(1010.011)_2$$

$$= (1 \times 2^{\frac{3}{2}}) + (0 \times 2^{\frac{3}{2}}) + (1 \times 2^{\frac{3}{2}}) + (0 \times 2^{\frac{3}{2}}) + (0 \times 2^{\frac{3}{2}}) + (1 \times 2^{\frac{3}{2}})$$

2. Convert the decimal number 27.25 into a binary number.

Ans 2.		27	remainder		
	2	13	1		
	2	6	1	27 = 11011	
	2	3	0		
	2	I	1	0.25	
	2	0	1	0. 5 X2	:. 0.25 = (.01) ₂
				1. 0 X2	(")2
					j.
(27.2	5)10	= (1101	1.01)2	Ϊ Ţ	

3. What is the largest decimal number that you can represent using 8bits? How many bits are required to represent decimal numbers less than or equal to 10⁶?

Ans 3 dargest benowy number that can be supresented using 8 bits is
$$(111111111)_2 = 2.55$$

Let the number of bits be n. The lawyest binary number using these 8 bits is

 $2^{n-1} + 2^{n-2} + 2^{n-3} + \dots + 2^{i} + 1$
 $= 2^n - 1$ (Sum of a GP)

From the given condition,

 $2^n - 1 \ge 10^6$
 $\therefore n \ge \log_2(10^6 + 1)$
 $\therefore n = 2.0$

- 4. Determine the number system in which the following arithmetic operations have been carried out. Give justifications for your answer.
 - (a) 24+17=40

(a)
$$24+17=40$$

Let the number system be x .

$$2x^{2} + 4x^{2} + 1xx^{2} + 7x^{2} = 4x^{2} + 0$$

$$\Rightarrow 11 = 4x - 3x$$

(b)
$$22 \times 5 = 132$$

(b)
$$22 \times 5 = 132$$

Let the number system be a.

$$(2x^{1}+2x^{2})(5x^{2})=(1x^{2}+3x^{1}+2x^{2})$$

$$\Rightarrow (2x+2)(5) = (x^2 + 3x + 2)$$

$$\Rightarrow 10x + 10 = x^2 + 3x + 2$$

$$\Rightarrow \chi(\chi-8)+1(\chi-8)=0$$

$$\Rightarrow$$
 $(x+1)(x-8)=0$

$$\alpha = -1$$
 is inadmissible.

$$\therefore \quad \alpha = 8$$

- 5. Obtain 1's and 2's complement of the following binary numbers:
 - (a) 10000000
 - (b) 10101010
 - (c) 01110101
 - (d) 10011100

(a) 10000000

l's complement: 01111111

2's complement: 10000000

(b) 10101010

1's complement: 01010101

2's complement: 01010110

(c) 01110101

1's complement: 10001010

2's complement: 10001011

(d) 10011100

1's complement: 01100011

2's complement: 01100100

6. (a) What is the minimum number of bits required to represent -32 in 2's complement form?

 $4n46 \cdot (a) (32)_{10} = (100000)_2 = (100000)_2 - 15 \text{ for sign.}$

For -32, take 2's complement of +32

 $(-32)_{10} = (0100000)_2$ - Six lists

(b) 11011111 is a number in 2's complement. Is it positive or negative? What is its magnitude?

7. Carry out the following four operations using 8bit 2's complement representation:

$$\pm 24 \pm 32$$

Verify that operations have been properly carried out.

8. Show that the Boolean expression $x + \overline{x}$. y is equivalent to x + y using basic postulates and theorems of Boolean algebra.

$$x + \overline{x}y$$

$$= (x + \overline{x}) \cdot (x + y)$$

$$= 1 \cdot (x + y)$$

$$= x + y$$

9. Reduce the following expressions to a minimum number of literals using basic postulates and theorems of Boolean algebra.

(a)
$$f = (x + y).(\overline{y} + \overline{x})$$

(b)
$$f = ABCD + \overline{A}BD + AB\overline{C}D$$

$$(a) f=(x+y).(xy+x)$$

$$\Rightarrow f = xy+x.x+y.y+y.x$$

$$\Rightarrow f = xy+yx$$

(b)
$$f = ABCD + \overline{A}BD + AB\overline{C}D$$

 $\Rightarrow f = ABD(C+\overline{C}) + \overline{A}BD$
 $\Rightarrow f = ABD + \overline{A}BD$
 $\Rightarrow f = BD(A + \overline{A})$
 $\Rightarrow f = BD$

10. Consider four-input function F(A, B, C, D) that outputs 1 whenever an odd number of its inputs are 1, (a) construct the truth table (b) write down the Boolean expressions, present an implementation of the function using two-input XOR gate

Α	В	С	D	F
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

11. Four switches operate a lamp as follows: the lamp lights up if switches 1,3 and 4 are closed and switch 2 is open, or if 2, 4 are closed and 3 is open, or if all the switches are kept closed. Express this as a boolean function in a standard sum of product form and solve it using k- map. (Use bit '1' when switch is closed and bit '0' when switch is open).

12. Obtain the truth table for the following function: (x.y+z)(y+x.z) and write it as sum of products (SOP) and product of sums (POS).

SOP:
$$f = \overline{\alpha}yz + \alpha \overline{y}z + \alpha y\overline{z} + \alpha yz$$

POS: $f = (\alpha + y + z)(\alpha + y + \overline{z})(\alpha + \overline{y} + \overline{z})(\overline{\alpha} + y + \overline{z})$

13. Simplify the following 4-variable functions into sum-of-products form using K-map.

a. $\sum (1,5,6,7,14)$

\sum (1,5,6,7,14)

there are two answers possible.

b. $\sum (0,4,6,8)$

$\sum (0,4,6,8)$

c. $\sum (0,1,4,6,8,9,14)$

\sum (0,1,4,6,8,9,14)

		$\bar{C}\bar{D}$	ĒD	CD	$C\overline{D}$
		00	01	11	10
$ar{A}ar{B}$	00	1_0	1	3	2
$\bar{A}B$	01_	1	5	7	1 6
AB	11	12	13	15	1,4
$A\bar{B}$	10	1 8	1 ,	11	10
	$\bar{B}\bar{C} + \bar{A}B\bar{D} + BC\bar{D}$				
	BC + ABD + BCD				
	$\bar{B}\bar{C} + \bar{A}\bar{C}\bar{D} + BC\bar{D}$				

d. $\sum (1,4,7,11,13,14)$

		$\bar{C}\bar{D}$	ĒD	CD	$C\overline{D}$
		00	01	11	10
$ar{A}ar{B}$	00	0	1 1	3	2
$\bar{A}B$	01	1 4	5	1 7	6
AB	11	12	1 ₁₃	15	1,4
$A\bar{B}$	10	8	9	1,11	10

 $ar{A}ar{B}ar{C}D + ar{A}Bar{C}ar{D} + ar{A}BCD + Aar{B}CD + ABCar{D}$

This cannot be minimized any further.

14. Simplify the following 4-variable functions into product-of-sums form using K-map a. $\Pi(1,3,5,7,13,15)$

$$F = (\alpha_1 + \overline{\alpha_4})(\overline{\alpha_2} + \overline{\alpha_4})$$

b. Π(1,3,6,9,11,12,14)

$$x_1x_2$$
 x_3x_4 x_1x_2 x_2 x_3x_4 x_1x_2 x_2 x_3 x_4 x_1 x_2 x_4 x_2 x_4 x_1 x_2 x_4 x_2 x_4 x_2 x_4 x_1 x_2 x_4 x_2 x_4 x_2 x_4 x_1 x_2 x_4 x_2 x_4 x_1 x_2 x_4 x_2 x_4 x_4 x_1 x_2 x_4 x_2 x_4 x_4 x_4 x_4 x_4 x_4 x_4 x_4 x_5 x_4 x_4 x_5 x_4 x_5 x_4 x_5 x_4 x_4 x_5 x_4 x_5 x_4 x_5 x

c. $\Pi(1,3,5,7,9,11,12,13,14,15,)$

- 15. Design a combinational circuit with 3 inputs and 1 output
 - (a) The output is 1 when the binary value of the inputs is less than 3. The output is 0 otherwise

(b) The output is 1 when the binary value of inputs is an odd number.

n	y	8	f
0	0	0	0
0	0	1	١
0	١	0	0
0	1	١	١
1	O	o	0
	0	1	ı
ι	}	0	-0
	1	J	1

