

Internet of Things,
Security & Privacy

Dr. Emmanuel Baccelli

Inria — Freie Universität Berlin

Course Format

- No required weekly attendance, but
 - mid-term: intermediate status presentation
 - end of term: final presentation
- Expected output
 - written report (~12 A4 pages, IEEE LaTeX template)
 - presentations
 - (demos, measurements etc. not necessary, but why not?)
 - (optional: publish your paper on arXiv)
- My office hours
 - Email me to setup a (virtual) meeting emmanuel.baccelli@fu-berlin.de

WARNING

- This seminar demands substantial work
 - Comprehensive survey & present academic work in written + oral form
- This seminar is research-oriented
 - Suggestion: plan it as a preliminary for a thesis
- → Contact me later to discuss potentially related thesis topics!

Next Steps

- After 1 week (May 4th): topic selection
- After 2 weeks : deadline to submit initial skeleton + refs
- May. 11th: intermediate presentation of topic + skeleton
- After ~6 weeks : deadline to submit work-in-progress version of the report (June 8th)
- July 3rd: deadline to submit final version of the report
- July 6th: final presentation session

Choosing a Topic

- 1. Choose a field. Suggested fields:
 - IoT crypto primitives
 - IoT privacy mechanisms
 - IoT network security
 - IoT software supply-chain
 - IoT secure software execution
- 2. Specify a topic within chosen field. Potential ideas for topics:
 - see papers in https://github.com/emmanuelsearch/some-iot-and-security-papers
 - Start surveying your topic (after I confirm your topic)

AGENDA

Context

- IoT Attack Vectors
- Inherent Tradeoffs
- IoT Security Trends

Context

- World War III is upon us (online)
 - geopolitically-driven (state-driven)
 - profit-driven (pirates, zero-day attacks)

Personal data-hungry Behemoths are upon Data us

- captive users, walled gardens, not necessarily secure
- EU fightback: General Data Protection Regulation (GDPR)

Context

- Extreme computing power becomes average
 - Now: pooled power, from NSA to botnets & everything in between (e.g. Coinhive covert mining ads)
 - Later: quantum computing?

- Ubiquitous computing & connectivity is upon us
 - Giant cyberphysical robot
 - High-end IoT vs Low-end IoT

IoT Hardware

Microcontrollers e.g. AVR (8-bit) MSP430 (16-bit) Cortex M (32-bit) **MIPS**

Low-end IoT Devices: Polymorphism

- Various vendors
- Various architectures (8-bit, 16-bit, 32-bit)
- Various low-power communication technologies (BLE, 802.15.4, DECT...)

AGENDA

- Context
- IoT Attack Surface
- Inherent Tradeoffs
- IoT Security Trends

Traditional IT Attack Surface

• Human vector

- Misconfiguration, phishing, social engineering
- 95% security incidents involve human error*

Hardware vector

- e.g. Spectre & Meltdown
 vulnerabilities on recent processors: leaks breaking isolation
- ... and backdoors from NSA & co ?

xkcd.com No 1938

Traditional IT Attack Surface

Low-level software vector

- e.g. **EternalBlue** vunerability on Windows
 <10 (NSA exploit turned bad, used in WannaCry)
- e.g. **HeartBleed** OpenSSL (also on Linux!)
- Fatal combination: exploit OS & network stack vulnerabilities to inject malicious code

itsecurityguru.org

High-level software vector

 e.g. malicious PDF exploiting Adobe Reader vulnerabilities

Traditional IT Attack Surface

Software supply-chain vector

- e.g. backdoor hacked into software updates of Ccleaner application*
- attack laced legitimate software with malware (distributed by a security company!!!)

IoT vs Traditional IT Attack Surface

• IoT ~ Machine-to-Machine: the human factor is less important

- Single binary systems (so far)
 - no high-level software

Low-end memory, CPU capacities

- kBytes of memory instead of Gbytes or more
- MHz instead of GHz
- mW or less, instead of W or more

0 4 F

IoT vs Traditional IT Attack Surface

- IoT ~ giant cyberphysical robot: hacked system can cause direct physical harm
 - **⇒** acceptable risks are changed
- Sensors everywhere, all the time
 - ⇒ scope of privacy breaches are changed

John W. Com

- Industrial IoT applications*
 - ⇒ required level of system availability is higher

IoT vs Traditional IT Attack Surface

- Chain reactions
- Extended functionality attacks

In a nutshell

- Humans
- Hardware
- Low-level software
- High-level software
- Software supply-chain

Good news:

attack surface is probably smaller than usual

Bad news:

- harsher contraints & potentially more impactful attacks
- no human in the loop means its harder for some aspects (bootstrap...)

AGENDA

- Context
- IoT Attack Vectors
- Inherent Tradeoffs
- IoT Security Trends

Data Economy vs Privacy

The utility/privacy trade-off

- Companies:
 - Some do not care about privacy,
 - Others need data to provide services
- End-users:
 - want services,
 - but want control of their privacy
- How to go from here (massive data raiding) to there (user-tunable signal)?

Techcrunch.com

(National) Security vs Privacy

From individual surveillance to mass surveillance (and back again?)

- Crippling crypto lets NSA through... but also lets (DIY) pirates through
- **Tracking contacts** prevents epidemics... but also enables Big Brother

Performance vs Security

30s to verify a digital signature?

- Not only does performance suck...
- ... but also: resource exhaustion attack

- Exacerbated on (future legacy) low-end IoT hardware
 - Bottomline: cat & mouse play to remain just above risk threshold
 - Necessary complement: IoT software updates

Bottomline: Functionality vs Risk

- Today's IoT: not an acceptable tradeoff w.r.t. functionalities vs risks
 - B. Schneier: Internet of (Unsecure) Things*
- Dimensions of the work needed to change that?
 - Improving functionality
 - Better IoT hardware
 - Richer IoT software

- Mitigating risks
 - More IoT security

* https://www.rsaconference.com/blogs/bruce-schneier-talks-about-securing-the-world-sized-web-at-rsac-apj-2016

AGENDA

- Context
- IoT Attack Vectors
- Inherent Tradeoffs
- IoT Security Trends

AGENDA

- Context
- IoT Attack Vectors
- Inherent Tradeoffs
- IoT Security Trends
 - Trusted IoT Hardware
 - IoT Cryptography Primitives
 - IoT System Software
 - IoT Network

IoT: The Hardware Vector

- Various categories of attacks
 - invasive hardware attacks
 - reverse engineering attacks
 - side-channel attacks
 - Information gained with timing information, power consumption, electromagnetic leaks, speculative execution, caching...

Related questions:

- ⇒ are there IoT-specific side-channel attacks?
- ⇒ what functionalites can embedded crypto hardware modules provide?

 $\Rightarrow \dots$

Trusted Execution on IoT Hardware

- Principle: secure area of a processor for isolated execution, integrity of trusted applications & confidentiality of their assets
- Sancus* on MSP430 16-bit microcontrollers (OpenMSP430)
 - Prototype isolating software components via memory curtaining
 - Added MMU and crypto HW unit on openMSP430 (open source!)
 - Text/Data/ProgramCounter states monitoring/matching, per software component
 - Remote attestation & authenticates communication with software component
 - HW crypto enables key derivation per software component
 - Sancus2.0 tested in automotive context. Claims only 6% energy overhead
- Similar: TrustZone for popular ARM Cortex-M 32-bit microcontrollers
 - Upcoming Cortex-M33 and Cortex-M23 micro-controllers
 - * J. Noormans et al. 'Sancus 2.0: A Low-Cost Security Architecture for IoT Devices', ACM Transactions on Privacy and Security, 2017

Trusted Execution on IoT Hardware

- TEEP working group at IETF *
 - Context: delete, update applications running in the TEE
 - Goal: communication between the TEE, a relay outside TEE
 & a remote server
 - ⇒ Trusted execution environment protocol (TEEP)

Side note: installing new software in the TEE increases attack surface...

AGENDA

- Context
- IoT Attack Vectors
- Inherent Tradeoffs
- IoT Security Trends
 - Trusted IoT Hardware
 - IoT Cryptography Primitives
 - IoT System Software
 - IoT Network

IoT Crypto Primitives

- Devices deployed now will last for years
 - Maybe decades!
 - MSP430 runs 12 years on an AA battery.
 - Energy harvesting
- Future-proof crypto is thus crucial. Quantum resistance?
 - Trade-off: key & signature size vs speed *
 - ex. ECC 256b key vs McEliece 500kB key
 - ex. ECC 80B signature vs MQDSS 40kB signature

IoT Crypto Primitives

It is nevertheless possible to prepare IoT crypto for post-quantum now

- symmetric crypto needs upgrade but same security =~ double key size
- asymmetric crypto
 - some techniques would break entirely (e.g. RSA?)
 - some techniques are quantum-resistant (hash-based signatures...)

- NIST crypto competition efforts recently launched *
 - Upcoming: new standard cypher suites
 - (Conspiracy theory: baked-in backdoors?)

IoT Crypto Primitives

- IoT Symmetric Crypto
- IoT Asymmetric Crypto
- Operations over Encrypted IoT Data

IoT Symmetric Crypto

Symmetric = same key everywhere.

More flexible primitives:

SHA-3's **sponge construction*** for hashing

- Easy to (re)configure security level
 - Just vary capacity c
- Shared code to provide various functions
 - Pseudo-random number generator
 - Message authentication code (MAC)
 - Stream encryption
 - (more with the duplex construction)
- On-going work experimental work to evaluate this prospect on top of RIOT

G. Van Assche 'Permutation-based cryptography for the IoT,' RIOT Summit, 2017.

* G. Bertoni et al. 'Cryptographic sponge functions', 2011.

IoT Asymmetric Crypto

- Symmetric crypto:
 - communicating entities need a shared secret (the key)
 - ⇒ key distribution problem, Pre-Shared Key (PSK) is norm on IoT
- Asymmetric crypto with public/private keys:
 - Public Key Infrascruture (PKI) solves key distribution
 - Public key allows digital signatures

IoT Asymmetric Crypto

Smaller & faster crypto

- more efficient implementation
 - tweetnacl (Bernstein et al.): Source funnily fits in 100 tweets, using curve25519
- more efficient algorithms
 - uKummer *: Smarter use of algebraic geometry
 - software-only hyperelliptic cryptography on constrained platforms
 - demonstrated on AVR 8-bit and ARM Cortex-M 32-bit
 - up to 70% faster & 80 % smaller compared to using curve25519
 - qDSA **: even smaller stack & code size
- * J. Renes et al. 'µKummer: Efficient hyperelliptic signatures and key exchange on microcontrollers', CHES, 2016.
- ** J. Renes, B. Smith 'qDSA: Small and Secure Digital Signatures with Curve-based Diffie-Hellman Key Pairs', ASIACRYPT 2017.

IoT Asymmetric Crypto

Humans (even if very skilled) make buggy code

Formally verified crypto code

- HACL* library: written in F* programming language,
- F* code formally verified (memory safety, mitigations against timing side-channels, and functional correctness)
- F* code then compiled to readable C code
- Elements of HACL* already in Firefox (Quantum, latest verion)
- Elements of HACL* currently integrated into RIOT

* JK Zinzindohoué et al. 'HACL*: A verified modern cryptographic library,' ACM CCS, 2017

Operations over Encrypted IoT Data

The cloud, or the server hosting IoT database may not be trusted

- ⇒ Nevertheless it may be required to (batch) process IoT data
- Use of partially homomorphic crypto
 - Talos and Pilatus prototype platforms *
 - Allows some operations (range, sum) over encrypted data
 - Using Elliptic-Curve ElGamal crypto-system (instead of Paillier)
 - Encryption by low-end IoT devices themselves (demonstrated on Cortex-M3)

* H. Shafagh et al. 'Secure Sharing of Partially Homomorphic Encrypted IoT Data,' ACM SenSys, 2017

Operations over Encrypted IoT Data

- Body of work on differential privacy in the field of smart metering *
 - Followed seminal work from **Dwork** in 2006
- Principle: add (some) noise to IoT data points
 - Differential guarantee = analysts draws same conclusions about an individual whether the individual includes himself in the dataset or not
 - Still able to extract coarse signal from aggregate data (e.g. mean, average...)
 - No privacy violation in practice

AGENDA

- Context
- IoT Attack Vectors
- Inherent Tradeoffs
- IoT Security Trends
 - Trusted IoT Hardware
 - IoT Cryptography Primitives
 - IoT System Software
 - IoT Network

(IOT) SOFTWARE: EVOLUTION

- Old style: rudimentary, closed-source, vendor-locked OS, <u>no updates</u>
- New trend: real operating systems*, free & open-source, with updates

Trusting IoT Software (a priori)

Providing guarantees on software components of IoT operating systems?

- Tock OS * isolates software faults & manages dynamic memory for applications
 - use of memory protection unit (MPU) of Cortex-M4 and of Rust programming language
 - Rust enables memory-safety & type-safety while providing performance close to C
 - MPU enables isolation of processes from the kernel and from each other
- Proven C code generated from F*
 - Potential use to provide RIOT components other than the HACL crypto library?
- * A. Levy et al. 'Multiprogramming a 64 kB Computer Safely and Efficiently,' ACM SOSP, 2017.

(IOT) SOFTWARE UPDATES: A NECESSITY

- What Internet-age software has taught us:
 - you can't secure what you can't update!
 - software updates are an attack* vector!
- ⇒ Enabling (legitimate) software updates is crucial & difficult
 - enforcing legitimacy can turn bad -- beware of **Treacherous Computing** (R. Stallman)
- ⇒ Even more challenging on microcontroller-based IoT devices

(IOT) SOFTWARE UPDATES: ARCHITECTURE

and boots updates

(IOT) SOFTWARE UPDATES: APPROACHES

✓ Case 1 : monolithic software update, single stakeholder

✓ Case 2 : modular software updates, single stakeholder

✓ Case 3 : modular software updates, multiple stakeholders

LOW-POWER IOT SOFTWARE UPDATES: TYPICALLY, FIRMWARE UPDATES (CASE 1)

You thought you were tight w.r.t. memory?

Memory must be further split:

- Bootloader
 - Minimalistic startup logic
- Several OS Images
 - May need n>2 for roll-back etc.
- Metadata => SUIT*

SUIT = standard metadata & crypto to guarantee authenticity & integrity of IoT software updates

* https://tools.ietf.org/html/draft-ietf-suit-manifest-04

SUIT-COMPLIANT WORKFLOW (IN RIOT*)

MCU memory: 32kB RAM 256kB Flash

loT Device

(Crypto: ed25519 digital signatures, SHA256 hash)

PHASE 0

Commission device

PHASE 1

Build update

Maintainer

(P,S)

PHASE 2

Publish & sign update

(00B: Provision Public Key P)

* K. Zandberg et al. "Secure Firmware Updates for Constrained IoT Devices using Open Standards: A Reality Check," IEEE Access, 2019.

PHASE 3

Fetch update

PHASE 4

Auth.: check sign. Integrity: check hash

PHASE 5

Check OK? Install. (Else: send alert)

LOW-POWER IOT SOFTWARE UPDATES: TOWARDS CASE 3?

The rest of the Internet?

=> Resembles more Case 3!

(modular updates, multiple stakeholders)

Challenges for low-power IoT:

- low-power modularization*
- security & sandboxing of modules
- decentralized supply-chain frameworks **
- ...
- => On-going research

* E. Baccelli et al. "Scripting Over-The-Air: Towards Containers on Low-end Devices in the Internet of Things," IEEE PerCom, 2018.

** K. Nikitin et al. 'CHAINIAC: Proactive Software-Update Transparency via Collectively Signed Skipchains and Verified Builds,' USENIX Security Symposium, 2017.

Emmanuel Baccelli, Inria — FU Berlin, March 2020

AGENDA

- Context
- IoT Attack Vectors
- Inherent Tradeoffs
- IoT Security Trends
 - Trusted IoT Hardware
 - IoT Cryptography Primitives
 - IoT System Software
 - IoT Network

Categories of Protocols

Content Aware

Transport

Routing

Network

Medium Access

Physical

Mechanisms using names, for example: www.blabla.com/picture.jpg

Adapt rate at which data chunks are sent across the global network (& verify chunks went through)

Establish & use paths across the global network

Global network: packet formats & addresses usable across heterogeneous local networks

Local network: transmission of packets over a link shared by n>2 computers

Transmission bit per bit over a communication medium which connects 2 computers

Layers

Categories of Protocols

Content Aware Transport Routing Network **Medium Access Physical**

Protocols

Layers

IoT Communication Protocol Stack

Content Aware Transport Routing Network **Medium Access Physical**

Protocols

Layers

IoT Communication Protocol Stack

- Types of Attacks: (D)DoS, man-in-themiddle attacks...
- ⇒ Need for Authentication, Authorization, Integrity, Confidentiality, Bootstrapping

IoT Communication Protocol Stack

SECURITY

Content Aware

Transport

Routing

Network

Medium Access

Physical

COSE, OSCORE end-to-end encryption, integrity, & replay protection for CoAP (header/payload)

DTLS (over UDP) for confidentiality, integrity, authenticity with public/private keys

(IPsec, routing protocol security...)

Link-layer security sublayer for authentication, confidentiality, typically with symmetric keys

IoT Network Protocol Security

- *IoT link-layer security: filter legit packets HACKER LEXICON: WHAT IS early on
 - Typically AES, 128 bit, in hardware
 - ⇒ HW acceleration helps mitigate DoS attacks (low-end CPU, easily overwhelmed)
- Routing security: avoiding sinkholes
 - e.g. TRAIL routing topology authentication for RPL*

IoT Network Protocols

- Channel security: end-to-end confidentiality, integrity, authenticity
 - From **DTLS** 1.2 to 1.3
 - New handshake: shorter message exchange
 - Removed weak/old crypto
 - https://tools.ietf.org/html/draft-ietf-tls-dtls13
- Object security: end-to-end security beyond TLS
 - **COSE, OSCORE, EDHOC** in-layer security for CoAP over *foo*
 - CoAP and HTTP proxies require (D)TLS to be terminated at the proxy...
 - https://tools.ietf.org/html/draft-ietf-core-object-security-08
 - Information-centric vs machine-centric network architecture
 - Novel paradigm Information-centric networking (ICN) yields natural object security
 - Recent work on named-data networking (NDN) applied to IoT

IoT Network Protocols

- Scalable & secure IoT device on-boarding
 - IoT device bootstrap with zero user interaction, for hundreds of devices?
 - Studies on pairing based on (matching) ambient data *

AGENDA

- Context
- IoT Attack Vectors
- Inherent Tradeoffs
- IoT Security Trends
 - Trusted IoT Hardware
 - IoT Cryptography Primitives
 - IoT System Software
 - IoT Network
 - IoT Testing

IoT Testing

- Decent security requires surviving pentest (penetration tests)
- Standard pentests + framework for low-end IoT devices?
 - Challenges due to market (extreme) fragmentation
 - e.g. for the network attack surface: use of (standard) IPv6 helps, but not much is available for other parts of the stack (6LoWPAN, CoAP...)
 - Metasploit extension* to test 6LoWPAN
 - Some work on fuzzing built on top of Scapy** to test 6LoWPAN

^{*} R. Tomasi et al. 'Meta Exploitation of IPv6 -based WSNs', 2011.

^{**} A. Lahmadi et al. 'A Testing Framework for Discovering Vulnerabilities in 6LoWPAN Networks', 2012.

In a nutshell...

- IoT security has numerous aspects
 - Hardware
 - Algorithmic primitives
 - Software (incl. supply-chain)
 - Network
- IoT security practice:
 - Combination of several mechanisms, working at all layers of the system
 - Each mechanism is necessary but not sufficient...

Reminder: Course Format

- No required weekly attendance, but
 - mid-term: intermediate status presentation
 - end of term: final presentation
- Expected output
 - written report (~12 A4 pages, IEEE LaTeX template)
 - presentations
 - (demos, measurements etc. not necessary, but why not?)
 - (optional: publish your paper on arXiv)
- My office hours
 - Email me to setup (virtual) a meeting emmanuel.baccelli@fu-berlin.de

Reminder: Next Steps

- •After 1 week (May 4th): topic selection
- •After 2 weeks : deadline to submit initial skeleton + refs
- •May. 11th: intermediate presentation of topic + skeleton
- After ~6 weeks : deadline to submit work-in-progress version of the report (June 8th)
- •July 3rd : deadline to submit final version of the report
- July 6th : final presentation session

Reminder: Choosing a Topic

- 1. Choose a field. Suggested fields:
 - IoT crypto primitives
 - IoT privacy mechanisms
 - IoT network security
 - IoT software supply-chain
 - IoT secure software execution
- 2. Specify a topic within chosen field. Ideas for topics:
 - see papers in https://github.com/emmanuelsearch/some-iot-and-security-papers
 - Start surveying your topic (after I confirm your topic)

Now don't forget to

- register on Campus Management System! Else I can't grade you...
- by May 4th send me
 - 2 topics, ordered by preference
 - your GitHub ID and/or a git repository you will use for your work-in-progress report, refs, slides etc.

