Section 3.4 Library of Functions; Piecewise-defined Functions

The Square Root Function

Properties of $f(x) = \sqrt{x}$

- 1. The domain and the range are the set of nonnegative real numbers.
- **2.** The x-intercept of the graph of $f(x) = \sqrt{x}$ is 0. The y-intercept of the graph of $f(x) = \sqrt{x}$ is also 0.
- **3.** The function is neither even nor odd.
- **4.** The function is increasing on the interval $(0, \infty)$.
- 5. The function has an absolute minimum of 0 at x = 0.

Graphing the Cube Root Function

- (a) Determine whether $f(x) = \sqrt[3]{x}$ is even, odd, or neither. State whether the graph of f is symmetric with respect to the y-axis or symmetric with respect to the origin.
- (b) Determine the intercepts, if any, of the graph of $f(x) = \sqrt[3]{x}$.
- (c) Graph $f(x) = \sqrt[3]{x}$.
- (a) $f(-x) = \sqrt[3]{-x} = -\sqrt[3]{x} = -f(x)$ This means the function is odd and symmetric with respect to the origin.

This means the function is odd and

(b)	$f(0) = \sqrt[3]{0} = 0$	x and y intercepts are both 0.
-----	--------------------------	----------------------------------

x	$y = f(x) = \sqrt[3]{x}$	(x, y)
0	0	(0, 0)
1	1	$\left(\frac{1}{8},\frac{1}{2}\right)$
8	2	(8'2)
1	1	(1, 1)
2	$\sqrt[3]{2} \approx 1.26$	$(2, \sqrt[3]{2})$
8	2	(8, 2)

Properties of $f(x) = \sqrt[3]{x}$

The Cube Root Function

- 1. The domain and the range are the set of all real numbers.
- 2. The x-intercept of the graph of $f(x) = \sqrt[3]{x}$ is 0. The y-intercept of the graph of $f(x) = \sqrt[3]{x}$ is also 0.
- 3. The graph is symmetric with respect to the origin. The function is odd.
- **4.** The function is increasing on the interval $(-\infty, \infty)$.
- 5. The function does not have any local minima or any local maxima.

Publishing as Prentice Hall.

Graphing the Absolute Value Function

- (a) Determine whether f(x) = |x| is even, odd, or neither. State whether the graph of f is symmetric with respect to the y-axis or symmetric with respect to the origin.
- (b) Determine the intercepts, if any, of the graph of f(x) = |x|.
- (c) Graph f(x) = |x|.

(a)
$$f(-x) = |-x| = |x| = f(x)$$

This means the function is even and symmetric with respect to the *y*-axis.

(b)
$$f(0) = |0| = 0$$
 x and y intercepts are both 0.

x	y = f(x) = x	(x, y)
0	0	(0, 0)
1	1	(1, 1)
2	2	(2, 2)
3	3	(3, 3)

The Absolute Value Function

Properties of f(x) = |x|

- **1.** The domain is the set of all real numbers. The range of f is $\{y|y \ge 0\}$.
- 2. The x-intercept of the graph of f(x) = |x| is 0. The y-intercept of the graph of f(x) = |x| is also 0.
- **3.** The graph is symmetric with respect to the y-axis. The function is even.
- **4.** The function is decreasing on the interval $(-\infty, 0)$. It is increasing on the interval $(0, \infty)$.
- 5. The function has an absolute minimum of 0 at x = 0.

Constant Function

$$f(x) = b$$
, b is a real number

Constant Function

Identity Function

$$f(x) = x$$

Identity Function

Square Function

$$f(x) = x^2$$

Square Function

Cube Function

$$f(x) = x^3$$

Cube Function

Square Root Function

$$f(x) = \sqrt{x}$$

Square Root Function

Cube Root Function

$$f(x) = \sqrt[3]{x}$$

Cube Root Function

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Reciprocal Function

$$f(x) = \frac{1}{x}$$

Reciprocal Function

Absolute Value Function

$$f(x) = |x|$$

Absolute Value Function

Greatest Integer Function

 $f(x) = int(x)^* = greatest integer less than or equal to x$

x	y = f(x) $= int(x)$	(x, y)
-1	-1	(-1, -1)
$-\frac{1}{2}$	-1	$\left(-\frac{1}{2},-1\right)$
$-\frac{1}{4}$	-1	$\left(-\frac{1}{4},-1\right)$
0	0	(0, 0)
1/4	0	$\left(\frac{1}{4},0\right)$
1/2	0	$\left(\frac{1}{2},0\right)$
3 4	0	$\left(\frac{3}{4},0\right)$

Greatest Integer Function

Greatest Integer Function

 $f(x) = int(x)^* = greatest integer less than or equal to x$

$$f(x) = int(x)$$

2 Graph Piecewise-defined Functions

Analyzing a Piecewise-defined Function

The function f is defined as

$$f(x) = \begin{cases} -x + 1 & \text{if } -1 \le x < 1 \\ 2 & \text{if } x = 1 \\ x^2 & \text{if } x > 1 \end{cases}$$

- (a) Find f(0), f(1), and f(2).
- (b) Determine the domain of f.
- (c) Graph f by hand.
- (d) Use the graph to find the range of f.

(a)
$$f(0) = -(0) + 1 = 1$$
 $f(1) = 2$ $f(2) = (2)^2 = 4$

(d) The range of f is $(0,\infty)$.

$$f(2)=(2)^2=4$$

Cost of Electricity

In the summer of 2009, Duke Energy supplied electricity to residences of Ohio for a monthly customer charge of \$4.50 plus 4.2345¢ per kilowatt-hour (kWhr) for the first 1000 kWhr supplied in the month and 5.3622¢ per kWhr for all usage over 1000 kWhr in the month.

- (a) What is the charge for using 300 kWhr in a month?
- (b) What is the charge for using 1500 kWhr in a month?
- (c) If C is the monthly charge for x kWhr, develop a model relating the monthly charge and kilowatt-hours used. That is, express C as a function of x.

(a) Charge =
$$\$4.50 + \$0.042345(300) = \$17.20$$

(b) Charge =
$$\$4.50 + \$0.042345(1000) + \$0.053622(500) = \$73.66$$

Cost of Electricity

In the summer of 2009, Duke Energy supplied electricity to residences of Ohio for a monthly customer charge of \$4.50 plus 4.2345¢ per kilowatt-hour (kWhr) for the first 1000 kWhr supplied in the month and 5.3622¢ per kWhr for all usage over 1000 kWhr in the month.

- (a) What is the charge for using 300 kWhr in a month?
- (b) What is the charge for using 1500 kWhr in a month?
- (c) If C is the monthly charge for x kWhr, develop a model relating the monthly charge and kilowatt-hours used. That is, express C as a function of x.
- (c) Let x represent the number of kilowatt-hours used. If $0 \le x \le 1000$, the monthly charge C (in dollars) can be found by multiplying x times \$0.042345 and adding the monthly customer charge of \$4.50. So, if $0 \le x \le 1000$, then C(x) = 0.042345x + 4.50.

For x > 1000, the charge is 0.042345(1000) + 4.50 + 0.053622(x - 1000), since x - 1000 equals the usage in excess of 1000 kWhr, which costs \$0.053622 per kWhr. That is, if x > 1000, then

$$C(x) = 0.042345(1000) + 4.50 + 0.053622(x - 1000)$$

= 46.845 + 0.053622(x - 1000)
= 0.053622x - 6.777

Cost of Electricity

In the summer of 2009, Duke Energy supplied electricity to residences of Ohio for a monthly customer charge of \$4.50 plus 4.2345¢ per kilowatt-hour (kWhr) for the first 1000 kWhr supplied in the month and 5.3622¢ per kWhr for all usage over 1000 kWhr in the month.

- (a) What is the charge for using 300 kWhr in a month?
- (b) What is the charge for using 1500 kWhr in a month?
- (c) If C is the monthly charge for x kWhr, develop a model relating the monthly charge and kilowatt-hours used. That is, express C as a function of x.

$$C(x) = \begin{cases} 0.042345x + 4.50 & \text{if } 0 \le x \le 1000\\ 0.053622x - 6.777 & \text{if } x > 1000 \end{cases}$$

