

Hydrophobic Modifications at 1-Phosphate of Inositol 1,4,5-Trisphosphate Analogues Enhance Receptor Binding

Waka Nakanishi,^a Kazuya Kikuchi,^{a,b} Takanari Inoue,^a Kenzo Hirose,^c Masamitsu Iino^c and Tetsuo Nagano^{a,*}

^aGraduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
^bPresto, JST Corporation, Kawaguchi, Saitama, Japan
^cDepartment of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan

Received 19 November 2001; accepted 11 January 2002

Abstract—Inositol 1,4,5-trisphosphate (IP₃) analogues were synthesized in order to investigate the importance of the environment of 1-phosphate of IP₃ for strong binding to the IP₃ receptor. Our results show that hydrophobic modifications of the 1-phosphate moiety enhance the binding affinity, with considerable latitude of substituent structure. © 2002 Elsevier Science Ltd. All rights reserved.

Inositol 1,4,5-trisphosphate (IP₃) is an important second messenger that evokes the release of Ca²⁺ from the intracellular stores through the IP₃ receptor (IP₃R). The Ca²⁺ signals thus generated regulate many aspects of cellular responses, such as secretion, fertilization, muscle contraction, neuronal signaling, cell growth and death. 1-3 Many IP₃ analogues have been synthesized to investigate their structure-activity relationship with respect to IP₃R. The recognition of ligands by IP₃R is stereospecific, the vicinal 4,5-bisphosphate and 6hydroxyl motif being the crucial structural features, and the 1-phosphate further contributing to receptor binding specificity.^{4,5} Most of the IP₃ analogues synthesized showed reduced affinity to IP₃,⁶ though we have reported an IP₃ analogue that has high affinity for IP₃R.⁷ Our analogue carries a hydrophobic and charged moiety located near the 1-phosphate of IP₃. To investigate the importance of the hydrophobicity, the bulkiness and the charge at this location, four analogues modified at the 1-position were newly synthesized and their binding affinity was measured using surface plasmon resonance (SPR). Our results suggest that highly hydrophobic substitution at the 1-phosphate position of IP₃ enhances the affinity to IP₃R, with a wide latitude of substituent structure. Additionally, cationic charge contributes to strong interaction with IP₃R.

Method

Synthesis

1-O-(3-Aminopropyl) ester of IP₃, **2**, was synthesized from DL-*myo*-inositol by the method previously reported. 8–10 Other IP₃ analogues were synthesized by coupling N-hydroxysuccinimide (NHS)-activated substituents with **2**. 1-Naphthoic acid N-hydroxysuccinimide ester (SE) was coupled to produce **3**, 1-pyrenebutyric acid SE to give **4**, leuco malachite green SE to give **5**, and 5-carboxytetramethyl-rhodamine to give **6** (Fig. 1). Enantiomers of **3** (**3**'), **4** (**4**') and **5** (**5**') were synthesized by a similar method. The synthesized compounds were all characterized by ¹H NMR and by MS(FAB).

Spectral data of newly synthesized compounds. 3 1 H NMR (CD₃OD) 1.93 (m, 2H), 3.44–3.53 (m, 3H), 3.88–4.42 (m, 7H), 7.40–7.55 (m, 3H), 7.83 (dd, J=2.0, 7.3 Hz, 1H), 7.85 (d, J=8.1 Hz, 1H), 8.10 (d, J=8.0 Hz, 1H), MS(FAB) 632 (M+1)+; 4 1 H NMR (CD₃OD) 1.77 (m, 2H), 2.05 (m, 2H), 2.28 (t, J=7.3 Hz, 2H), 3.27 (m, 2H), 3.50–4.45 (m, 10H), 7.88–8.32 (m, 9H); MS(FAB) 748 (M+1)+; 5 1 H NMR (D₂O) 1.75 (m, 2H), 3.08 (s, 12H), 3.23–4.21 (11H), 7.03 (d, J=7.8 Hz, 2H), 7.15 (d, J=7.8 Hz, 4H), 7.36 (d, J=7.8 Hz, 4H), 7.52 (d, J=7.8 Hz, 2H), MS(FAB) 834 (M+1)+; 6 1 H NMR (D₂O) 1.92 (m, 2H), 3.03 (s, 12H), 3.46–4.15 (m, 12H), 6.39 (s, 2H), 6.77 (dd, J=10 Hz, 2H), 7.12 (d, J=10 Hz, 2H), 7.60 (d, J=7.8 Hz, 1H), 8.00 (dd, J=7.8 Hz, 1H), 8.10 (s, 1H), MS(FAB) 890 (M)+.

^{*}Corresponding author. Tel.: +81-3-5841-4850; fax: +81-3-5841-4855; e-mail: tlong@mol.f.u-tokyo.ac.jp

Figure 1. Structures of IP₃ (1) and novel (3–6) or reported (2, 7) IP₃ analogues.

IP₃R binding assay

The IP₃-binding domain (IBD) of human IP₃ receptor type 1 was prepared in the same way as previously reported⁷ except for purification using TalonTM Metal Affinity Resin (Clontech). The purity of the protein was confirmed by SDS–PAGE. Measurements of SPR were carried out using **2**-immobilized chips. The dissociation constant (K_d) of each compound was calculated from the SPR signals obtained from a competition assay (Fig. 2).

Calculation of stable conformations

The structures of the substituents of 5, 6 and 7 including the amide group were energy-minimized using MM2 molecular mechanics calculations to find energetically stable conformations. After the energy minimization, the substituents were overlaid to assess their structural similarity (Fig. 3).

We have previously reported a 1-phosphate-modified IP₃ analogue (7) that has high affinity for IBD (170-fold higher affinity than IP₃). Compound 7 has a substitutent with high hydrophobicity and cationic charge (Fig. 1).

To investigate the importance of steric factors and charges, $\mathbf{5}$ was synthesized. The substituent of $\mathbf{5}$ is a reduced form of that of $\mathbf{7}$, and $\mathbf{5}$ was calculated to have a similar conformation to that of $\mathbf{7}$ [Fig. 3(b)]. The major difference between these analogues is that $\mathbf{7}$ has one cationic charge at the substitution site, but $\mathbf{5}$ does not. The binding affinity of $\mathbf{5}$ was estimated to be 90-fold lower than that of $\mathbf{7}$ [Table 1, Fig. 2(b)], indicating that cationic charge is important for the affinity to IP₃R.

Another analogue which has a similar structure [Fig. 3(c)] but has both cationic and anionic charges, **6**, was synthesized. Although **6** has a cationic charge, binding affinity was 300-fold lower than that of **7** (Table 1, Fig. 2(a)]. The reduced affinity might be due to the

electronic repulsion between the anionic charge of **6** and IBD. However, the possibility remains that steric hindrance of oxygen at the bottom rings or the carboxyl moiety at the upper ring of the substituent [Fig. 1 (6)] might have lowered the affinity.

Figure 2. Binding assay of compounds. Dose–response relationship in competition assay of: (a) IP₃ (\bigcirc), 2 (\bigcirc), 3 (\triangle), 4 (\square), 4' (\square) and 1-naphthoic acid (\times); (b) IP₃ (\bigcirc), 5 (\triangle), 5' (\triangle) and 6 (\square). Inhibition of IBD binding to 2-immobilized chip by these compounds is shown. The values are mean \pm SEM of at least three experiments.

Figure 3. Substituent of 7 (a) and comparison of substituents between 7 and 5 (b) or 6 (c). These structures were all energy-minimized using MM2.

In order to analyze the importance of a hydrophobic substituent for increasing the affinity to IP₃R, 3 and 4 were synthesized. Though the modification of 1-phosphate to 1-O-(3-aminopropyl) ester (2) resulted in a 6fold lower affinity than IP3, modification of amine to naphthalene amide restored the affinity to the same level as that of IP₃. A more hydrophobic substituent, for example butyl pyrene, further enhanced the affinity. So far, adenophostins A and B are the most potent agonists to be reported.¹¹ Adenophostins have a bulky hydrophobic moiety at the putative 1-phosphate position. It was suggested that long-range interaction at this position might enhance the activity of adenophostins. Our finding that hydrophobic substitution at 1-phosphate enhanced the affinity for IP₃R supports the above suggestion, and also suggests that there might be a wide hydrophobic pocket proximal to the 1-phosphate site of IP₃R. By modifying the length of the linker, it should be possible to determine the size of the hydrophobic pocket.

Table 1. Dissociation constant of test compounds

Compound	$K_{\rm d}$ (nM)	Relative affinity compared with 2 ^b
1	260±82a	5.8
2	1500 ± 350^{a}	1
3	$160 \pm 47^{\mathrm{a}}$	9.4
3′	$8400 \pm 2700^{\mathrm{a}}$	0.18
4	140 ± 58^{a}	11
4'	2600 ± 720^{a}	0.58
5	170 ± 70^{a}	8.8
5'	3200 ± 510^{a}	0.47
6	$620 \pm 87^{\mathrm{a}}$	2.4
7	1.17	950

^aData are presented as mean±standard error of at least three experiments.

Enantiomers 3′, 4′ and 5′ had about 20- to 50-fold lower affinity than their respective isomers [Table 1, Fig. 2(a) and (b)]. No non-specific interaction with 1-naphthoic acid was seen [Fig. 2(a)]. These results are consistent with highly specific ligand recognition by IP₃R.

In conclusion, linking a hydrophobic moiety to 1-phosphate of IP_3 enhances the binding of IP_3 analogues to IP_3R with considerable latitude of substituent structure. For strong interaction with IP_3R , a cationic charge adjacent to the 1-phosphate of IP_3 is important.

Acknowledgements

We thank Dr. M. Tanabe for her technical assistance and Drs. K. Mikoshiba and T. Furuichi for their kind gift of cDNA of human IP₃ receptor type 1. This work was supported in part by the Ministry of Education, Science, Sports and Culture of Japan.

References and Notes

- 1. Berridge, M. J. Nature 1993, 361, 315.
- 2. Putney, J. W.; Bird, G. S. Cell 1993, 75, 199.
- 3. Clapham, D. E. Cell 1995, 80, 259.
- Nahorski, S. R.; Potter, B. V. Trends Pharmacol. Sci. 1989, 10, 139.
- 5. Potter, B. V. L.; Lampe, D. Angew. Chem., Int. Ed. Engl. 1995, 34, 1933.
- 6. Wilcox, R. A.; Primrose, W. U.; Nahorski, S. R.; Challiss, R. A. J. *Trends Pharmacol. Sci.* **1998**, *19*, 467.
- 7. Inoue, T.; Kikuchi, K.; Hirose, K.; Iino, M.; Nagano, T. Bioorg. Med. Chem. Lett. 1999, 9, 1697.
- 8. Prestwich, G. D.; Marecek, J. F.; Mourey, R. J.; Theibert, A. B.; Ferris, C. D.; Danoff, S. K.; Snyder, S. H. *J. Am. Chem. Soc.* **1991**, *113*, 1822.
- 9. Ozaki, S.; Kondo, Y.; Shiotani, N.; Ogasawara, T.; Watanabe, Y. J. Chem. Soc., Perkin Trans. 1 1992, 729.
- 10. Gigg, J.; Gigg, R.; Payne, S.; Conant, R. J. Chem. Soc., Perkin Trans. 1 1987, 423.
- 11. Takahashi, M.; Tanzawa, K.; Takahashi, S. J. Biol. Chem. **1994**, 269, 369.

 $^{^{\}rm b}(K_{\rm d} \text{ of } \mathbf{2})/(K_{\rm d} \text{ of the compound}).$