٧

F

Lógica CC

	1º Teste A 25 de novembro de 2020 -		duração: 2 horas		
Nome:				Número:	
		Grupo I			

Este grupo é constituído por 6 questões. Em cada questão, deve dizer se a afirmação indicada é verdadeira (V) ou falsa (F), assinalando o respetivo quadrado. Em cada questão, a cotação atribuída será 1 valor, -0,25 valores ou 0 valores, consoante a resposta esteja certa, errada, ou não seja assinalada resposta, respetivamente. A cotação total neste grupo é no mínimo 0 valores.

- 1. Para qualquer fórmula φ com n subfórmulas, qualquer sequência de formação da \Box fórmula $\varphi \wedge p_1$ tem pelo menos n+2 subfórmulas.
- 2. Seja $\varphi = p_0 \vee p_1$ e $\psi = \neg p_2 \wedge p_1$. Então, $var(\varphi[\psi/p_1]) = var(\varphi) \cup var(\psi)$.
- 3. Para qualquer tautologia φ e para qualquer valoração v, se v satisfaz $\varphi \to p_1$, então \Box v satisfaz $(\varphi \to p_1) \to p_1$.
- 4. Seja X o conjunto de conetivos $\{\neg, \lor, \leftrightarrow\}$. Para qualquer forma normal conjuntiva \Box φ , existe uma fórmula ψ tal que $\psi \Leftrightarrow \varphi$ e os conetivos de ψ pertencem a X.
- 5. Existe um conjunto de fórmulas Γ que contém $\{p_1 \leftrightarrow (p_2 \leftrightarrow p_0), p_1 \land \neg p_2\}$ e é \square semanticamente consistente.
- 6. Seja $\Gamma = \{p_1 \to p_2, \neg p_2 \lor p_1\}$. Então, $\Gamma \models p_1 \lor p_2$.

Grupo II

Nas questões 1(a), 1(c), 2 e 3, responda no espaço disponibilizado a seguir à questão.

- 1. Seja \mathcal{F} o conjunto das fórmulas proposicionais definido indutivamente pelas seguintes regras:
 - (i) $p_i \in \mathcal{F}$, para todo $i \in \mathbb{N}_0$;
 - (ii) se $\varphi \in \mathcal{F}$, então $\neg \neg \varphi \in \mathcal{F}$, para todo $\varphi \in \mathcal{F}^{CP}$;
 - (iii) se $\varphi \in \mathcal{F}$, então $\varphi \lor \bot \in \mathcal{F}$, para todo $\varphi \in \mathcal{F}^{CP}$;
 - (iv) se $\varphi \in \mathcal{F}$, então $\varphi \wedge \varphi \in \mathcal{F}$, para todo $\varphi \in \mathcal{F}^{CP}$;
 - (v) se $\varphi \in \mathcal{F}$, então $(\neg \bot) \to \varphi \in \mathcal{F}$, para todo $\varphi \in \mathcal{F}^{CP}$;
 - (a) Sem justificar, dê exemplo de uma fórmula pertencente a F na qual cada um dos conetivos no conjunto {∧,→} ocorra exatamente uma vez.
 Resposta:
 - (b) Mostre por indução estrutural que, para todo $\varphi \in \mathcal{F}$, existe $i \in \mathbb{N}_0$ tal que $\varphi \Leftrightarrow p_i$.

(c)	Sem justificar, defina por recursão estrutural em $\mathcal F$ a função $f:\mathcal F\longrightarrow\mathbb N_0$ tal que, para todo
	$\varphi \in \mathcal{F}$, $f(\varphi)$ é o número de ocorrências do conetivo \neg .
	Resposta:

2. Apresente uma forma normal disjuntiva logicamente equivalente à fórmula $p_1 \to (p_2 \leftrightarrow p_3)$. Justifique. Resposta:

- 3. Considere as seguintes afirmações acerca de dois pássaros e duas gaiolas.
 - (i) O pássaro 2 está numa das gaiolas se o pássaro 1 também está.
 - (ii) O pássaro 1 não está em nenhuma das gaiolas, mas o pássaro 2 está na gaiola 1.
 - (a) Representando por p_1 e p_2 as afirmações atómicas "o pássaro 1 está na gaiola 1" e "o pássaro 1 está na gaiola 2", respetivamente, e por p_3 e p_4 as afirmações "o pássaro 2 está na gaiola 1" e "o pássaro 2 está na gaiola 2", respetivamente, indique (sem justificar) fórmulas do Cálculo Proposicional φ_1 e φ_2 que representem as afirmações (i) e (ii), respetivamente.

Resposta:
$$arphi_1 = \ arphi_2 = \$$

(b) Diga se as afirmações (i) e (ii) são consistentes? Justifique. Resposta:

- 4. Sejam $\varphi, \psi \in \mathcal{F}^{CP}$ e $\Gamma \subseteq \mathcal{F}^{CP}$. Mostre que: se $\varphi \to \psi$ é tautologia e $\Gamma \models \varphi$, então $\Gamma \models \varphi \land \psi$.
- 5. Construa uma demonstração D em DNP da fórmula $(\neg p_2 \land p_0) \rightarrow \neg (p_2 \lor \neg p_0)$ e, caso exista, indique uma subderivação de D cuja conclusão seja \bot .

Cotações	I	II.1	II.2	II.3	II.4	II.5
Cotações	6	$1,\!25\!+\!2\!+\!1,\!75$	2	$1,\!5\!+\!1,\!5$	1,75	$2,\!25$