Box #____ Math 65 Section 1 Homework 1 15 May 2018

Collaborators:

Poole 6.1 #28 Determine whether W is a subspace of V.

$$V = M_{22}, \quad W = \left\{ \begin{bmatrix} a & b \\ b & 2a \end{bmatrix} \right\}.$$

Poole 6.1 #34 Determine whether W is a subspace of V.

$$V = \mathscr{P}_2, \quad W = \left\{bx + cx^2\right\}.$$

Poole 6.1 #36 Determine whether W is a subspace of V.

$$V = \mathcal{P}_2, \quad W = \{a + bx + cx^2 : abc = 0\}.$$

Poole 6.1 #38 Determine whether W is a subspace of V.

$$V = \mathscr{F}, \quad W = \{f \text{ in } \mathscr{F} : f(-x) = f(x)\}.$$

Poole 6.1 #46 Let V be a vector space with subspaces U and W. Prove that $U \cap W$ is a subspace of V.

5

Poole 6.1 #48 Let V be a vector space with subspaces U and W. Define the **sum of U and W** to be

$$U + W = \{\mathbf{u} + \mathbf{w} : \mathbf{u} \text{ is in } U, \mathbf{w} \text{ is in } W\}$$

- (a) If $V = \mathbb{R}^3$, U is the x-axis, and W is the y-axis, what is U + W?
- (b) If U and W are subspaces of a vector space V, prove that U + W is a subspace of V.

Poole 6.1 #60 Is M_{22} spanned by $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$?

Poole 6.1 #62 Is \mathscr{P}_2 spanned by $1 + x + 2x^2, 2 + x + 2x^2, -1 + x + 2x^2$?

8