$$0 \le \left| \frac{\mathbf{u}}{|\mathbf{u}|} - \frac{\mathbf{v}}{|\mathbf{v}|} \right|^2 = \left(\frac{\mathbf{u}}{|\mathbf{u}|} - \frac{\mathbf{v}}{|\mathbf{v}|} \right) \cdot \left(\frac{\mathbf{u}}{|\mathbf{u}|} - \frac{\mathbf{v}}{|\mathbf{v}|} \right) = \frac{\mathbf{u} \cdot \mathbf{u}}{|\mathbf{u}|^2} - \frac{2\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|} + \frac{\mathbf{v} \cdot \mathbf{v}}{|\mathbf{v}|^2}$$
$$= \frac{|\mathbf{u}|^2}{|\mathbf{u}|^2} - \frac{2\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|} + \frac{|\mathbf{v}|^2}{|\mathbf{v}|^2} = 2 - \frac{2\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}$$

Así, $\frac{2\mathbf{u}\cdot\mathbf{v}}{|\mathbf{u}||\mathbf{v}|} \leq 2$, de manera que $\frac{\mathbf{u}\cdot\mathbf{v}}{|\mathbf{u}||\mathbf{v}|} \leq 1$ y $\mathbf{u}\cdot\mathbf{v} \leq |\mathbf{u}||\mathbf{v}|$. En forma similar, comenzando

 $\text{con } 0 \leq \left| \frac{\mathbf{u}}{|\mathbf{u}|} + \frac{\mathbf{v}}{|\mathbf{v}|} \right|^2, \text{ se llega a } \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|} \geq -1, \text{ o sea, } \mathbf{u} \cdot \mathbf{v} \geq -|\mathbf{u}||\mathbf{v}|. \text{ Con estas dos designal-dades se obtiene}$

$$-|u||v| \le u \cdot v \le |u||v|$$
 o $|u \cdot v| \le |u||v|$

ii) Si $\mathbf{u} = \lambda \mathbf{v}$, entonces $|\mathbf{u} \cdot \mathbf{v}| = |\lambda \mathbf{v} \cdot \mathbf{v}| = |\lambda| |\mathbf{v}|^2 \mathbf{y} |\mathbf{u}| |\mathbf{v}| = |\lambda \mathbf{v}| |\mathbf{v}| = |\lambda| |\mathbf{v}| |\mathbf{v}| = |\lambda| |\mathbf{v}|^2 = |\mathbf{u} \cdot \mathbf{v}|$. Inversamente, suponga que $|\mathbf{u} \cdot \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \cos \mathbf{u} \neq 0 \mathbf{y} \mathbf{v} \neq \mathbf{0}$. Entonces

$$\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|} = 1$$
, de manera que $\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|} = \pm 1$.

Caso 1:
$$\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|} = 1$$
. Entonces

$$\left| \frac{\mathbf{u}}{|\mathbf{u}|} - \frac{\mathbf{v}}{|\mathbf{v}|} \right|^2 = \left(\frac{\mathbf{u}}{|\mathbf{u}|} - \frac{\mathbf{v}}{|\mathbf{v}|} \right) \cdot \left(\frac{\mathbf{u}}{|\mathbf{u}|} - \frac{\mathbf{v}}{|\mathbf{v}|} \right) = 2 - \frac{2\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|} = 2 - 2 = 0$$

Así,

$$\frac{\mathbf{u}}{|\mathbf{u}|} = \frac{\mathbf{v}}{|\mathbf{v}|}$$
 o $\mathbf{u} = \frac{|\mathbf{u}|}{|\mathbf{v}|} \mathbf{v} = \lambda \mathbf{v}$

Caso 2:
$$\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|} = -1$$
. Entonces

$$\left| \frac{\mathbf{u}}{|\mathbf{u}|} - \frac{\mathbf{v}}{|\mathbf{v}|} \right|^2 - 2 + \frac{2\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|} = 2 - 2 = 0$$

de manera que

$$\frac{\mathbf{u}}{|\mathbf{u}|} = -\frac{\mathbf{v}}{|\mathbf{v}|} \quad \mathbf{y} \quad \mathbf{u} = -\frac{\mathbf{u}}{|\mathbf{v}|} \mathbf{v} = \lambda \mathbf{v}$$

RESUMEN 6.1

- Los vectores $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ en \mathbb{R}^n forman un **conjunto ortogonal** si $\mathbf{u}_i \cdot \mathbf{u}_j = 0$ para $i \neq j$. Si además $\mathbf{u}_i \cdot \mathbf{u}_i = 1$ para $i = 1, 2, \dots, k$, se dice que el conjunto es **ortonormal**.
- $|\mathbf{v}| = |\mathbf{v} \cdot \mathbf{v}|^{\frac{1}{2}}$ se llama **longitud** o **norma** de \mathbf{v} .
- Todo subespacio de \mathbb{R}^n tiene una base ortonormal. El **proceso de ortonormalización de Gram-Schmidt** se puede utilizar para construir tal base.
- Una matriz ortogonal es una matriz Q invertible de $n \times n$ tal que $Q^{-1} = Q^{\top}$.