Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application.

1. (Currently amended) Haloalkyl carboxamides A haloalkyl carboxamide of the formula (I)

$$A \xrightarrow{N} \underset{R^4}{\stackrel{M}{\underset{R^4}{\bigvee}}} \underset{R^3}{\stackrel{R^2}{\underset{R}{\bigvee}}}$$
 (I)

in which

R stands for hydrogen or halogen,

R¹ stands for hydrogen or methyl,

 R^2 stands for methyl, ethyl or C_1 - C_4 haloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms,

 R^3 stands for halogen or C_1 - C_4 haloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms,

R⁴ stands for hydrogen, C₁-C₈ alkyl, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ cycloalkyl; C₁-C₆ haloalkyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃ alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃ alkoxy)carbonyl-C₁-C₃-alkyl halo-(C₁-C₃ alkyl)carbonyl-C₁-C₃-alkyl halo-(C₁-C₃ alkyl)carbonyl-C₁-C₃-alkyl with 1 to 13 fluorine, chlorine and/or bromine atoms in each case; (C₁-C₈ alkyl)carbonyl,

(C₁-C₈ alkoxy)carbonyl, (C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈ cycloalkyl)carbonyl; (C₁-C₆ haloalkyl)carbonyl, (C₁-C₆ haloalkoxy)carbonyl, (halo-C₁-C₄-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈ halocycloalkyl)carbonyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; or -C(=O)C(=O)R⁵, -CONR⁶R⁷ or -CH₂NR⁸R⁹,

 R^5 stands for hydrogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_3 - C_8 cycloalkyl; C_1 - C_6 haloalkyl, C_1 - C_6 haloalkoxy, halo- C_1 - C_4 -alkoxyl- C_4 -alkyl halo- C_1 - C_4 -alkoxyl- C_1 - C_4 -alkyl, C_3 - C_8 halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case,

 R^6 and R^7 stand independently of one another in each case for hydrogen, C_1 - C_8 alkyl, C_4 - C_4 -alkoxyl₁- C_4 -alkyl C_1 - C_4 -alkoxyl- C_1 - C_4 -alkyl, C_3 - C_8 cycloalkyl; C_1 - C_8 haloalkyl, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_3 - C_8 halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case, or

 R^6 and R^7 , together with the nitrogen atom to which they are bound, moreover, form a substituted, saturated heterocycle with 5 to 8 ring atoms, together with the nitrogen atom to which they are bound, with single or multiple, the same or different various substitution by halogen or C_1 - C_4 alkyl, whereby the heterocycle optionally contains can contain 1 or 2 additional, non-adjacent hetero atoms constituted of by oxygen, sulfur or NR^{10} ,

 R^8 and R^9 stand independently of one another for hydrogen, C_1 - C_8 -alkyl, C_3 - C_8 cycloalkyl; C_1 - C_8 haloalkyl, C_3 - C_8 halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case, or

R⁸ and R⁹, together with the nitrogen atom to which they are bound, moreover, form a substituted, saturated heterocycle with 5 to 8 ring atoms, together with the nitrogen atom to which they are bound, with single or multiple, the same or different various substitution by halogen or C₁-C₄ alkyl, whereby the heterocycle optionally contains ean contain 1 or 2 additional, non-adjacent hetero atoms constituted of by oxygen, sulfur or NR¹⁰,

 R^{10} stands for hydrogen or C_1 - C_6 alkyl,

M stands in each case for a phenyl, pyridine or pyrimidine, pyridazine or pyrazine ring with a single substitution by R^{11} , or stands for a thiazole ring substituted by R^{11-A} .

R¹¹ stands for hydrogen, fluorine, chlorine, methyl, isopropyl, methylthio or trifluoromethyl,

R^{11-A} stands for hydrogen, methyl, methylthio or trifluoromethyl,

A stands for the group of the formula (Al)

$$R^{12}$$
 N
 R^{13}
 R^{14}
(A1), in which

 R^{12} stands for hydrogen, cyano, halogen, nitro, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_3 - C_6 cycloalkyl, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy or C_1 - C_4 haloalkylthio, in each case with 1 to 5 halogen atoms, aminocarbonyl or aminocarbonyl- C_1 - C_4 -alkyl,

 R^{13} stands for hydrogen, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy or C_1 - C_4 alkylthio,

 R^{14} stands for hydrogen, C_1 - C_4 alkyl, hydroxy- C_1 - C_4 alkyl, C_2 - C_6 alkenyl, C_3 - C_6 cycloalkyl, C_1 - C_4 -alkylthio- C_1 - C_4 -alkyl, C_1 - C_4 -alkyl in each case with 1 to 5 halogen atoms, or phenyl,

or

A stands for the group of the formula (A2)

 R^{15} and R^{16} stand independently of one another for hydrogen, halogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

 R^{17} stands for halogen, cyano or C_1 - C_4 alkyl, or C_1 - C_4 haloalkyl or C_1 - C_4 haloalkoxy with 1 to 5 halogen atoms in each case,

or

A stands for the group of the formula (A3)

$$R^{19}$$
 (A3), in which

 R^{18} and R^{19} stand independently of one another for hydrogen, halogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

 R^{20} stands for hydrogen, halogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A4)

$$\mathbb{R}^{21}$$
 (A4), in which

 R^{21} stands or hydrogen, halogen, hydroxy, cyano, C_1 - C_6 alkyl, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkylthio in each case with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A5)

$$\mathbb{R}^{23}$$
 \mathbb{N} \mathbb{R}^{22} (A5), in which

 R^{22} stands for halogen, hydroxy, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkylthio or C_1 - C_4 haloalkoxy in each case with 1 to 5 halogen atoms,

 R^{23} stands for hydrogen, halogen, cyano, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy in each case with 1 to 5 halogen atoms, C_1 - C_4 alkylsulfinyl or C_1 - C_4 alkylsulfonyl,

or

A stands for the group of the formula (A6)

$$R^{25}$$
 Q^1 (A6), in which

 R^{24} stands for C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

 R^{25} stands for C_1 - C_4 alkyl,

Q1 stands for S (sulfur), O (oxygen), SO, SO2 or CH2,

p stands for 0, 1 or 2, whereby R^{25} stands for identical or <u>different various</u> groups if p is 2,

or

A stands for the group of the formula (A7)

 R^{26} stands for C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A8)

R²⁷ stands for C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A9)

$$R^{29}$$
 (A9), in which

 R^{28} and R^{29} stand independently of one another for hydrogen, halogen, amino, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

 R^{30} stands for hydrogen, halogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (Al0)

$$R^{32}$$
 R^{33} (A10), in which

 R^{31} and R^{32} stand independently of one another for hydrogen, halogen, amino, nitro, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

 R^{33} stands for hydrogen, halogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (Al1)

$$\mathbb{R}^{34}$$
 (A11), in which

 R^{34} stands for hydrogen, halogen, amino, C_1 - C_4 alkylamino, di-(C_1 - C_4 alkyl)amino, cyano, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

R³⁵ stands for halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A12)

$$\mathbb{R}^{36}$$
 (A12), in which

 R^{36} stands for hydrogen, halogen, amino, C_1 - C_4 alkylamino, di- $(C_1$ - C_4 alkyl)amino, cyano, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

 R^{37} stands for halogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

A stands for the group of the formula (A13)

$$\mathbb{R}^{38}$$
 (A13), in which

 R^{38} stands for halogen, $C_1\text{-}C_4$ alkyl or $C_1\text{-}C_4$ haloalkyl with 1 to 5 halogen atoms,

or

or

A stands for the group of the formula (A14)

$$R^{39}$$
 (A14), in which

R³⁹ stands for hydrogen or C₁-C₄ alkyl,

R⁴⁰ stands for halogen or C₁-C₄ alkyl,

or

A stands for the group of the formula (A15)

$$(A15)$$
, in which

R⁴¹ stands for C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A16)

$$(A16)$$
, in which

R⁴² stands for hydrogen, halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A17)

$$\mathbb{R}^{43}$$
 (A17), in which

R⁴³ stands for halogen, hydroxy, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C1-C4 haloalkyl, C1-C4 haloalkylthio or C1-C4 haloalkoxy with 1 to 5 halogen atoms in each case,

or

A stands for the group of the formula (A18)

$$R^{45}$$
 N
 R^{47}
(A18), in which

R⁴⁴ stands for hydrogen, cyano, C₁-C₄ alkyl, C₁-C₄ haloalkyl with 1 to 5 halogen atoms, C_1 - C_4 -alkoxy- C_1 - C_4 alkyl, hydroxy- C_1 - C_4 alkyl, C_1 - C_4 alkylsulfonyl, $di(C_1$ - C_4 alkyl)aminosulfonyl, C₁-C₆ alkylcarbonyl or in each case <u>optionally</u> possibly substituted phenylsulfonyl or benzoyl,

 R^{45} stands for hydrogen, halogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

 R^{46} stands for hydrogen, halogen, cyano, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

 R^{47} stands for hydrogen, halogen, C_1 - C_4 alkyl or C_1 - C_4 haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A19)

$$R^{48}$$
 (A19), in which

 R^{48} stands for C_1 - C_4 alkyl.

2. (Currently amended) Haloalkyl carboxamides A haloalkyl carboxamide of the formula (I) according to Claim 1, in which

R stands for hydrogen, fluorine, chlorine or bromine,

R¹ stands for hydrogen or methyl,

R² stands for methyl, ethyl or in each case for methyl, ethyl, n- or isopropyl, n-, iso-, see sec- or tert-butyl with single or multiple, the same or different various, substitution by fluorine, chlorine or bromine[[.]],

R³ stands for fluorine, chlorine, bromine, iodine or in each case for methyl, ethyl, n- or isopropyl, n-, iso-, see sec- or tert-butyl with single or multiple, the same or different various, substitution by fluorine, chlorine or bromine[[.]],

- 12 -

R⁴ stands for hydrogen, C₁-C₄ alkyl, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₆ cycloalkyl; C₁-C₄ haloalkyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfonyl, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; formyl, formyl- C_1 - C_3 -alkyl, (C_1 - C_3 alkyl)carbonyl- C_1 - C_3 -alkyl, (C_1 - C_3 alkoxy)carbonyl- C_1 - C_3 alkyl; halo-(C1-C3 alkyl)carbonyl-C1-C3-alkyl, halo-(C1-C3 alkoxy)carbonyl-C1-C3-alkyl with 1 to 13 fluorine, chlorine and/or bromine atoms in each case; (C₁-C₆ alkyl)carbonyl, (C_3-C_6) (C_1-C_4) alkoxy)carbonyl, $(C_1-C_3-alkoxy-C_1-C_3)$ alkyl)carbonyl, $cycloalkyl) carbonyl; \ (C_1-C_4\ haloalkyl) carbonyl, \ (C_1-C_4\ haloalkoxy) carbonyl, \ (halo-C_1-C_4) carbonyl, \ (halo-C_1$ C₃-alkoxy-C₁-C₃-alkyl)carbonyl, (C₃-C₆ halocycloalkyl)carbonyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; or -C(=O)C(=O)R⁵, -CONR⁶R⁷ or $-CH_2NR^8R^9$,

 R^5 stands for hydrogen, C_1 - C_6 alkyl, C_1 - C_4 alkoxy, C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, C_3 - C_6 cycloalkyl; C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy, halo- C_1 - C_3 -alkoxy- C_1 - C_3 -alkyl, C₃-C₆ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case,

R⁶ and R⁷ stand independently of one another in each case for hydrogen, C₁-C₆ alkyl, C1-C3-alkoxy-C1-C3-alkyl, C3-C6 cycloalkyl; C1-C4 haloalkyl, halo-C1-C3-alkoxy-C₁-C₃-alkyl, C₃-C₆ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case, or

R⁶ and R⁷, together with the nitrogen atom to which they are bound, moreover, form a substituted, saturated heterocycle with 5 to 8 ring atoms, together with the nitrogen atom to which they are bound, with single or multiple, the same or different various substitution by halogen or C₁-C₄ alkyl, whereby the heterocycle optionally contains ean contain 1 or 2 additional, non-adjacent hetero atoms constituted of by oxygen, sulfur or NR¹⁰,

R⁸ and R⁹ stand independently of one another for hydrogen, C₁-C₆ alkyl, C₃-C₆ cycloalkyl; C1-C4 haloalkyl, C3-C6 halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case, or

R⁸ and R⁹, together with the nitrogen atom to which they are bound, moreover, form a substituted, saturated heterocycle with 5 to 8 ring atoms, together with the nitrogen atom to which they are bound, with single or multiple, the same or different various substitution by halogen or C₁-C₄ alkyl, whereby the heterocycle optionally contains can contain 1 or 2 additional, non-adjacent hetero atoms constituted of by oxygen, sulfur or NR¹⁰,

 R^{10} stands for hydrogen or C_1 - C_4 alkyl,

M stands for one of the following cyclics

Reply to Office Action of March 24, 2010

- 14 -

whereby the bond marked with an asterisk ("*") is a link with the amide, and the bond marked with "#" is a link with the haloalkyl group,

R¹¹ stands for hydrogen, fluorine, chlorine, methyl or trifluoromethyl,

R^{11-A} stands for hydrogen, methyl or trifluoromethyl,

A stands for the group of the formula (Al)

$$R^{12}$$
 N
 R^{13}
 R^{14}
(A1), in which

R¹² stands for hydrogen, cyano, fluorine, chlorine, bromine, iodine, methyl, ethyl, isopropyl, methoxy, ethoxy, methylthio, ethylthio, cyclopropyl, C1-C2 haloalkyl, C1-C2 haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms, aminocarbonyl, aminocarbonylmethyl or difluoromethylthio, trifluoromethylthio, aminocarbonylethyl,

R¹³ stands for hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl, methoxy, ethoxy, methylthio or ethylthio,

R¹⁴ stands for hydrogen, methyl, ethyl, n-propyl, isopropyl, C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms, hydroxymethyl, hydroxyethyl, cyclopropyl, cyclopentyl, cyclohexyl or phenyl,

or

A stands for the group of the formula (A2)

$$R^{16}$$
 R^{17}
(A2), in which

 R^{15} and R^{16} stand independently of one another for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C_1 - C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

 R^{17} stands for fluorine, chlorine, bromine, cyano, methyl, ethyl, C_1 - C_2 haloalkyl or C_1 - C_2 haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A3)

$$R^{19}$$
 (A3), in which

 R^{18} and R^{19} stand independently of one another for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C_1 - C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

 R^{20} stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C_1 - C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A4)

$$\mathbb{R}^{21}$$
 (A4), in which

 R^{21} stands for hydrogen, fluorine, chlorine, bromine, iodine, hydroxy, cyano, C_1 - C_4 alkyl, C_1 - C_2 haloalkyl, C_1 - C_2 haloalkoxy or C_1 - C_2 haloalkylthio in each case with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A5)

(A5), in which
$$\mathbb{R}^{23}$$

 R^{22} stands for fluorine, chlorine, bromine, iodine, hydroxy, cyano, C_1 - C_4 alkyl, methoxy, ethoxy, methylthio, ethylthio, difluoromethylthio, trifluoromethylthio, C_1 - C_2 haloalkyl or C_1 - C_2 haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms,

 R^{23} stands for hydrogen, fluorine, chlorine, bromine, iodine, cyano, C_1 - C_4 alkyl, methoxy, ethoxy, methylthio, ethylthio, C_1 - C_2 haloalkyl or C_1 - C_2 haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms, C_1 - C_2 alkylsulfinyl or C_1 - C_2 alkylsulfonyl,

or

A stands for the group of the formula (A6)

Amdt. Dated June 24, 2010 Reply to Office Action of March 24, 2010

$$R^{25}$$
 (A6), in which

R²⁴ stands for methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

- 17 -

R²⁵ stands for methyl or ethyl,

Q¹ stands for S (sulfur), SO₂ or CH₂,

p stands for 0 or 1,

or

A stands for the group of the formula (A7)

R²⁶ stands for methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A8)

$$(A8)$$
, in which

R²⁷ stands for methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

- 18 -

A stands for the group of the formula (A9)

$$R^{29}$$
 (A9), in which

R²⁸ and R²⁹ stand independently of one another for hydrogen, fluorine, chlorine, bromine, amino, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R³⁰ stands for hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms, or

A stands for the group of the formula (A10)

$$R^{32}$$
 (A10), in which

R³¹ and R³² stand independently of one another for hydrogen, fluorine, chlorine, bromine, amino, nitro, methyl, ethyl or C1-C2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R³³ stands for hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms, or

A stands for the group of the formula (Al1)

Amdt. Dated June 24, 2010 Reply to Office Action of March 24, 2010

R³⁴ stands for hydrogen, fluorine, chlorine, bromine, amino, C₁-C₄ alkylamino, di(C1-C4 alkyl)amino, cyano, methyl, ethyl or C1-C2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

 R^{35} stands for fluorine, chlorine, bromine, methyl, ethyl or C_1 - C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A12)

$$\mathbb{R}^{36}$$
 (A12), in which

R³⁶ stands for hydrogen, fluorine, chlorine, bromine, amino, C₁-C₄ alkylamino, di(C1-C4 alkyl)amino, cyano, methyl, ethyl or C1-C2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R³⁷ stands for fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A13)

$$R^{38}$$
 (A13), in which

R³⁸ stands for fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A14)

$$\mathbb{R}^{39}$$
 (A14), in which

R³⁹ stands for hydrogen, methyl or ethyl,

R⁴⁰ stands for fluorine, chlorine, bromine, methyl or ethyl,

or

A stands for the group of the formula (A15)

$$(A15)$$
, in which

R⁴¹ stands for methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A16)

$$(A16)$$
, in which

 R^{42} stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C_1 - C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A17)

Amdt. Dated June 24, 2010 Reply to Office Action of March 24, 2010

R⁴³ stands for fluorine, chlorine, bromine, iodine, hydroxy, C₁-C₄ alkyl, methoxy, ethoxy, methylthio, ethylthio, difluoromethylthio, trifluoromethylthio, C1-C2 haloalkyl or C₁-C₂ haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A18)

$$R^{46}$$
 R^{45}
 R^{47}
 R^{47}
(A18), in which

R⁴⁴ stands for hydrogen, methyl, ethyl, C₁-C₂ haloalkyl with 1 to 5 fluorine, C₁-C₄-alkoxy-C₁-C₄-alkyl, hydroxymethyl, bromine atoms, and/or chlorine hydroxyethyl, methylsulfonyl or dimethylaminosulfonyl,

R⁴⁵ stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R⁴⁶ stands for hydrogen, fluorine, chlorine, bromine, iodine, cyano, methyl, ethyl, isopropyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

R⁴⁷ stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A19)

$$\mathbb{R}^{48}$$
 (A19), in which

R⁴⁸ stands for methyl, ethyl, n-propyl or isopropyl.

- 3. (Currently amended) A process for synthesizing <u>a</u> haloalkyl <u>carboxamide</u> earboxamides of the formula (I) according to Claim 1, <u>comprising</u> eharacterized in that
 - a) reacting a carboxylic acid derivative derivatives of the formula (II)

$$A = X^{1}$$
 (II)

in which

A has the meaning specified as defined above in Claim 1 and

X1 stands for halogen or hydroxy,

are reacted with an aniline derivative derivatives of the formula (III)

$$\begin{array}{c|c}
 & M \\
 & M \\
 & R^2 \\
 & R^3
\end{array} (III)$$

in which

R, R¹, R², R³, R⁴ and M have the meanings specified as defined above in Claim 1,

possibly optionally in the presence of a catalyst, possibly optionally in the presence of a condensation agent, possibly optionally in the presence of an acid binder and possibly optionally in the presence of a diluent,

or

b) reacting a hexylcarboxanilide hexylcarboxanilides of the formula (I-a)

in which

R, R^1 , R^2 , R^3 , M and A have the meanings specified <u>as defined above</u> in Claim 1, are reacted with a halide halides of the formula (IV)

$$R^{4-A}X^2$$
 (IV)

in which

X² stands for chlorine, bromine or iodine,

 R^{4-A} stands for C_1 - C_8 alkyl, C_1 - C_6 alkylsulfinyl, C_1 - C_6 alkylsulfonyl, C_4 - C_4 alkoxy- C_1 - C_4 -alkyl, C_3 - C_8 eyeloalkyl C_1 - C_4 alkoxy- C_1 - C_4 alkyl, C_3 - C_8 eyeloalkyl; C_1 - C_6 haloalkyl, C_1 - C_4 haloalkylthio, C_1 - C_4 haloalkylsulfinyl, C_1 - C_4 haloalkylsulfonyl, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_3 - C_8 halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; formyl, formyl- C_1 - C_3 -alkyl, (C_1 - C_3 alkoxy)carbonyl- C_1 - C_3 -alkyl; halo-(C_1 - C_3 alkyl)carbonyl- C_1 - C_3 -alkyl, halo-(C_1 - C_3 alkoxy)carbonyl- C_1 - C_3 -alkyl with 1 to 13 fluorine, chlorine and/or bromine atoms in each case; (C_1 - C_8 alkyl)carbonyl, (C_1 - C_8 alkoxy)carbonyl, (C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl)carbonyl, (C_3 - C_8 cycloalkyl)carbonyl; (C_1 - C_6 haloalkyl)carbonyl, (C_1 - C_6 haloalkoxy)carbonyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; or -C(=O)C(=O) R^5 , -CON R^6 R^7 or -CH₂N R^8 R^9 , whereby R^5 , R^6 , R^7 , R^8 and R^9 have the meanings specified as defined above in Claim 1,

in the presence of a base and in the presence of a dilution medium.

- 24 -

4. (Currently amended) Media A composition for combating undesirable microorganisms, characterized by containing comprising at least one haloalkyl carboxamide of the formula (I) according to Claim 1 together with extenders and/or surface-active materials.

5. (Cancelled)

- 6. (Currently amended) Processes A method for combating undesired microorganisms, characterized in that comprising applying at least one haloalkyl carboxamide earboxamides of the formula (I) according to Claim 1 are applied to the microorganisms and/or their environment. in accordance with Claim 1.
- 7. (Currently amended) Processes A method for preparing a composition synthesizing materials to combat undesired microorganisms, characterized in that comprising mixing at least one haloalkyl carboxamide earboxamides of the formula (I) according to Claim 1 are mixed with extenders and/or surface-active materials. according to Claim 1.
- 8. (Withdrawn-currently amended) Aniline derivatives An aniline derivative of the formula (III)

$$\begin{array}{c|c} & & & \\ & & & \\ HN & & & \\ R^1 & & & \\ R^2 & & & \\ R^3 & & & \\ \end{array} \tag{III)}$$

in which R, R^1 , R^2 , R^3 , R^4 and M have the meanings specified as defined above in Claim 1.