Matemática Aplicada

Professor: Me. Miguel Albuquerque Ortiz

Apresentação - Introdução à Teoria dos Conjuntos

Nesta aula iremos aprender:

- A noção primitiva de Conjunto.
- A relação de pertinência.
- Como representar um conjunto.
- Utilizar o diagrama de Venn-Euler.
- Tipos de conjuntos e subconjuntos.
- Conjunto das Partes.
- Operações entre conjuntos: União, Interseção e Diferença.
- Conjuntos Numéricos.

Apresentação - Introdução à Teoria dos Conjuntos

Na segunda parte:

- Intervalos Reais;
- Produto Cartesiano;
- Relação Binária;

O que é um conjunto?

O que é um conjunto?

Definição ingênua de conjunto

Um conjunto é qualquer **coleção de objetos**, concretos ou abstratos.

• Conjunto de vogais, $A = \{a, e, i, o, u\}$.

- Conjunto de vogais, $A = \{a, e, i, o, u\}$.
- Conjunto de números primos, $B = \{2, 3, 5, 7, 11, 13, 17, 19, \dots\}.$

- Conjunto de vogais, $A = \{a, e, i, o, u\}$.
- Conjunto de números primos, $B = \{2, 3, 5, 7, 11, 13, 17, 19, \dots\}.$
- Conjunto dos números pares, $C = \{2, 4, 6, 8, 10, 12, 14, \dots\}.$

- Conjunto de vogais, $A = \{a, e, i, o, u\}$.
- Conjunto de números primos, $B = \{2, 3, 5, 7, 11, 13, 17, 19, \dots\}.$
- Conjunto dos números pares, $C = \{2, 4, 6, 8, 10, 12, 14, \dots\}.$
- Conjunto de livros de Matemática
 D = {Livros de Matemática}.

- Conjunto de vogais, $A = \{a, e, i, o, u\}$.
- Conjunto de números primos, $B = \{2, 3, 5, 7, 11, 13, 17, 19, \dots\}.$
- Conjunto dos números pares, $C = \{2, 4, 6, 8, 10, 12, 14, \dots\}.$
- Conjunto de livros de Matemática $D = \{\text{Livros de Matemática}\}.$
- Conjunto dos anagramas da palavra SOL E = {SOL, SLO, OSL, OLS, LOS, LSO}.

Conjunto dos Números Naturais;

$$\mathbb{N} = \{1, 2, 3, 4, 5, 6, \dots\}$$

Conjunto dos Números Naturais;

$$\mathbb{N} = \{1, 2, 3, 4, 5, 6, \dots\}$$

Conjunto dos Números Inteiros;

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

Conjunto dos Números Naturais;

$$\mathbb{N} = \{1, 2, 3, 4, 5, 6, \dots\}$$

Conjunto dos Números Inteiros;

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

Conjunto dos Números Racionais;

$$\mathbb{Q} = \{x = \frac{a}{b}, a \in \mathbb{Z} \text{ e } b \in \mathbb{Z}^*\}$$

Conjunto dos Números Irracionais;

$$\mathbb{I} = \mathbb{Q}^{C}$$

Conjunto dos Números Irracionais;

$$\mathbb{I} = \mathbb{Q}^C$$

Conjunto dos Números Reais;

Conjunto dos Números Irracionais;

$$\mathbb{I} = \mathbb{Q}^C$$

Conjunto dos Números Reais;

$$\mathbb{R}=\mathbb{I}\cup\mathbb{Q}$$

Observe que,

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$$

Exercícios

Classifique as seguintes afirmações em Verdadeiro (V) ou Falso (F).

• Todo número natural é um número real.

Exercícios

Classifique as seguintes afirmações em Verdadeiro (V) ou Falso (F).

Todo número natural é um número real. (V)

Exercícios

- Todo número natural é um número real. (V)
- Todo número real é um número natural.

Exercícios

- Todo número natural é um número real. (V)
- Todo número real é um número natural. (F)

Exercícios

- Todo número natural é um número real. (V)
- Todo número real é um número natural. (F)
- Todo número inteiro é um número racional.

Exercícios

- Todo número natural é um número real. (V)
- Todo número real é um número natural. (F)
- Todo número inteiro é um número racional. (V)

Exercícios

- Todo número natural é um número real. (V)
- Todo número real é um número natural. (F)
- Todo número inteiro é um número racional. (V)
- Todo número racional é um número real.

Exercícios

- Todo número natural é um número real. (V)
- Todo número real é um número natural. (F)
- Todo número inteiro é um número racional. (V)
- Todo número racional é um número real. (V)

Exercícios

- Todo número natural é um número real. (V)
- Todo número real é um número natural. (F)
- Todo número inteiro é um número racional. (V)
- Todo número racional é um número real. (V)
- Todo número inteiro é um número natural.

Exercícios

- Todo número natural é um número real. (V)
- Todo número real é um número natural. (F)
- Todo número inteiro é um número racional. (V)
- Todo número racional é um número real. (V)
- Todo número inteiro é um número natural. (F)

Exercícios

- Todo número natural é um número real. (V)
- Todo número real é um número natural. (F)
- Todo número inteiro é um número racional. (V)
- Todo número racional é um número real. (V)
- Todo número inteiro é um número natural. (F)
- Todo número natural é um número inteiro.

Exercícios

- Todo número natural é um número real. (V)
- Todo número real é um número natural. (F)
- Todo número inteiro é um número racional. (V)
- Todo número racional é um número real. (V)
- Todo número inteiro é um número natural. (F)
- Todo número natural é um número inteiro. (V)

Em qualquer aplicação da teoria dos conjuntos, os elementos de todos os conjuntos considerados pertencem a algum conjunto maior, conhecido como **conjunto universo**.

Em qualquer aplicação da teoria dos conjuntos, os elementos de todos os conjuntos considerados pertencem a algum conjunto maior, conhecido como **conjunto universo**.

Exemplo

Em qualquer aplicação da teoria dos conjuntos, os elementos de todos os conjuntos considerados pertencem a algum conjunto maior, conhecido como **conjunto universo**.

Exemplo

 No estudo de populações, o conjunto universo compõe-se de todas as pessoas do mundo;

Em qualquer aplicação da teoria dos conjuntos, os elementos de todos os conjuntos considerados pertencem a algum conjunto maior, conhecido como **conjunto universo**.

Exemplo

- No estudo de populações, o conjunto universo compõe-se de todas as pessoas do mundo;
- No lançamento único de um dado com seis faces, o conjunto universo é dado por {1, 2, 3, 4, 5, 6};

Em qualquer aplicação da teoria dos conjuntos, os elementos de todos os conjuntos considerados pertencem a algum conjunto maior, conhecido como conjunto universo.

Exemplo

- No estudo de populações, o conjunto universo compõe-se de todas as pessoas do mundo;
- No lançamento único de um dado com seis faces, o conjunto universo é dado por $\{1, 2, 3, 4, 5, 6\};$
- No lançamento de uma moeda, o conjunto universo é dado por { Cara, Coroa};

O conjunto universo geralmente é indicado pelo símbolo:

U

Conjunto vazio é um conjunto que não possui elementos. Esse conjunto é indicado pelo seguinte símbolo:

Exemplos

Exemplos

$$x^2 - 4 = 0 (1)$$

Exemplos

$$x^2 - 4 = 0 (1)$$

O conjunto solução da equação (1) será:

$$S = \{2, -2\}$$

Exemplos

Agora considere a seguinte equação:

Exemplos

Agora considere a seguinte equação:

$$x^2 + 4 = 0 (2)$$

Exemplos

Agora considere a seguinte equação:

$$x^2 + 4 = 0 (2)$$

O conjunto solução da equação (2) será:

Exemplos

Agora considere a seguinte equação:

$$x^2 + 4 = 0 (2)$$

O conjunto solução da equação (2) será:

$$S = \emptyset$$

Exemplos

Agora considere a seguinte equação:

$$x^2 + 4 = 0 (2)$$

O conjunto solução da equação (2) será:

$$S = \emptyset$$

Quando a equação não apresenta solução o conjunto solução será sempre vazio.

Exemplos

 $A = \{Números que são divisíveis por zero\}$

Exemplos

 $A = \{Números que são divisíveis por zero\}$

$$A = \emptyset$$

Outra maneira para representar os Conjuntos

Em algumas situações, uma maneira mais conveniente para representar o conjunto é através da identificação de alguma **propriedade**.

Outra maneira para representar os Conjuntos

Em algumas situações, uma maneira mais conveniente para representar o conjunto é através da identificação de alguma **propriedade**.

Exemplos

Outra maneira para representar os Conjuntos

Em algumas situações, uma maneira mais conveniente para representar o conjunto é através da identificação de alguma **propriedade**.

Exemplos

- Conjunto dos números pares, $P = \{x \in \mathbb{N} \mid x = 2n, \text{ com } n \in \mathbb{N}\}$
- Conjunto dos números ímpares $I = \{x \in \mathbb{N} \mid x = 2n 1, \text{ com } n \in \mathbb{N} \}$

Como existem muitas notações diferentes à respeito desse assunto, quando não quisermos listar os elementos de um conjunto, representando-o a partir de sua propriedade, usaremos o seguinte modelo:

Como existem muitas notações diferentes à respeito desse assunto, quando não quisermos listar os elementos de um conjunto, representando-o a partir de sua propriedade, usaremos o seguinte modelo:

$$A = \{x \in U | x \text{ tem a propriedade } P\}$$

Como existem muitas notações diferentes à respeito desse assunto, quando não quisermos listar os elementos de um conjunto, representando-o a partir de sua propriedade, usaremos o seguinte modelo:

$$A = \{x \in U | x \text{ tem a propriedade } P\}$$

lê-se: x pertence ao conjunto universo tal que x tem a propriedade P.

Exemplo

Exemplo

Quero definir o conjunto dos torcedores do São Paulo.

Exemplo

Quero definir o conjunto dos torcedores do São Paulo.

Solução:

Seja $U = \{\text{torcedores de times de futebol}\}.$

Assim, o conjunto que representa os torcedores do São Paulo, será:

 $T = \{x \in U \mid x \text{ \'e torcedor do S\~ao Paulo}\}$

Exemplo

Quero definir o conjunto dos torcedores do São Paulo.

Solução:

Seja $U = \{\text{torcedores de times de futebol}\}.$

Assim, o conjunto que representa os torcedores do São Paulo, será:

 $T = \{x \in U \mid x \text{ \'e torcedor do S\~ao Paulo}\}$

Outra maneira para representar o conjunto B seria:

$$T = \{\text{torcedores do São Paulo}\}\$$

Exercícios Básicos

Exercícios Básicos

- Defina o conjunto das consoantes do nosso alfabeto.
- Defina o conjunto das vogais do nosso alfabeto.

• Se x é elemento de um conjunto A, escrevemos:

• Se x é elemento de um conjunto A, escrevemos:

$$x \in A$$

• Se x é elemento de um conjunto A, escrevemos:

$$x \in A$$

lê-se: x pertence ao conjunto A.

• Se x não é um elemento de A, escrevemos:

• Se x é elemento de um conjunto A, escrevemos:

$$x \in A$$

lê-se: x pertence ao conjunto A.

• Se x não é um elemento de A, escrevemos:

$$x \notin A$$

lê-se: x não pertence ao conjunto A.

Exemplo

• $A = \{1, 2, 3, 4, 5\}$

Exemplo

•
$$A = \{1, 2, 3, 4, 5\}$$

$$2 \in A$$

Exemplo

•
$$A = \{1, 2, 3, 4, 5\}$$

$$2 \in A$$

Exercício Básico

Exercício Básico

Seja o conjunto A = {1, 2, 3, {3}, {4}, {2, 5}}.
 Classifique as afirmações em verdadeiras (V) ou falsas (F).

Exercício Básico

- Seja o conjunto $A = \{1, 2, 3, \{3\}, \{4\}, \{2, 5\}\}$. Classifique as afirmações em verdadeiras (V) ou falsas (F).
- $2 \in A$?

Exercício Básico

- Seja o conjunto $A = \{1, 2, 3, \{3\}, \{4\}, \{2, 5\}\}$. Classifique as afirmações em verdadeiras (V) ou falsas (F).
- $2 \in A$? (V)

- Seja o conjunto $A = \{1, 2, 3, \{3\}, \{4\}, \{2, 5\}\}$. Classifique as afirmações em verdadeiras (V) ou falsas (F).
- $2 \in A$? (V)
- $\{2\} \in A$?

- Seja o conjunto $A = \{1, 2, 3, \{3\}, \{4\}, \{2, 5\}\}$. Classifique as afirmações em verdadeiras (V) ou falsas (F).
- $2 \in A$? (V)
- $\{2\} \in A$? (F)

- Seja o conjunto A = {1, 2, 3, {3}, {4}, {2, 5}}.
 Classifique as afirmações em verdadeiras (V) ou falsas (F).
- $2 \in A$? (V)
- $\{2\} \in A$? (F)
- 3 ∈ A?

- Seja o conjunto $A = \{1, 2, 3, \{3\}, \{4\}, \{2, 5\}\}$. Classifique as afirmações em verdadeiras (V) ou falsas (F).
- $2 \in A$? (V)
- $\{2\} \in A$? (F)
- $3 \in A$? (V)

- Seja o conjunto $A = \{1, 2, 3, \{3\}, \{4\}, \{2, 5\}\}$. Classifique as afirmações em verdadeiras (V) ou falsas (F).
- $2 \in A$? (V)
- $\{2\} \in A$? (F)
- $3 \in A$? (V)
- {3} ∈ *A*?

- Seja o conjunto $A = \{1, 2, 3, \{3\}, \{4\}, \{2, 5\}\}$. Classifique as afirmações em verdadeiras (V) ou falsas (F).
- $2 \in A$? (V)
- $\{2\} \in A$? (F)
- $3 \in A$? (V)
- $\{3\} \in A$? (V)

- Seja o conjunto $A = \{1, 2, 3, \{3\}, \{4\}, \{2, 5\}\}$. Classifique as afirmações em verdadeiras (V) ou falsas (F).
- $2 \in A$? (V)
- $\{2\} \in A$? (F)
- $3 \in A$? (V)
- $\{3\} \in A$? (V)
- 4 ∈ A?

- Seja o conjunto $A = \{1, 2, 3, \{3\}, \{4\}, \{2, 5\}\}$. Classifique as afirmações em verdadeiras (V) ou falsas (F).
- $2 \in A$? (V)
- $\{2\} \in A$? (F)
- $3 \in A$? (V)
- $\{3\} \in A$? (V)
- $4 \in A$? (F)
- $\{4\} \in A$?

- Seja o conjunto $A = \{1, 2, 3, \{3\}, \{4\}, \{2, 5\}\}$. Classifique as afirmações em verdadeiras (V) ou falsas (F).
- $2 \in A$? (V)
- $\{2\} \in A$? (F)
- $3 \in A$? (V)
- $\{3\} \in A$? (V)
- $4 \in A$? (F)
- $\{4\} \in A$? (V)

- Seja o conjunto A = {1, 2, 3, {3}, {4}, {2, 5}}.
 Classifique as afirmações em verdadeiras (V) ou falsas (F).
- $2 \in A$? (V)
- $\{2\} \in A$? (F)
- $3 \in A$? (V)
- $\{3\} \in A$? (V)
- $4 \in A$? (F)
- $\{4\} \in A$? (V)
- $5 \in A$?

- Seja o conjunto A = {1, 2, 3, {3}, {4}, {2, 5}}.
 Classifique as afirmações em verdadeiras (V) ou falsas (F).
- $2 \in A$? (V)
- $\{2\} \in A$? (F)
- $3 \in A$? (V)
- $\{3\} \in A$? (V)
- $4 \in A$? (F)
- $\{4\} \in A$? (V)
- $5 \in A$? (F)

Diagrama de Venn-Euler

O diagrama de Venn-Euler é um recurso visual que ajuda na compreensão de operações e relações de pertinência entre conjuntos.

Diagrama de Venn-Euler

Exemplo

Considere $A = \{a, b, c\}$ e um elemento d tal que $d \notin A$. Assim, no diagrama de Venn-Euler teremos a seguinte representação:

Diagrama de Venn-Euler

Exemplo

Considere $A = \{a, b, c\}$ e um elemento d tal que $d \notin A$. Assim, no diagrama de Venn-Euler teremos a seguinte representação:

Figura: Exemplo de aplicação do Diagrama de Venn-Euler

Sejam A e B dois conjuntos. Se todo elemento de A é também elemento de B, dizemos que A é um subconjunto de B e indicamos da seguinte maneira:

Sejam A e B dois conjuntos. Se todo elemento de A é também elemento de B, dizemos que A é um subconjunto de B e indicamos da seguinte maneira:

$$A \subset B$$

Sejam A e B dois conjuntos. Se todo elemento de A é também elemento de B, dizemos que A é um subconjunto de B e indicamos da seguinte maneira:

$$A \subset B$$

lê-se: A está contido em B.

Sejam A e B dois conjuntos. Se todo elemento de A é também elemento de B, dizemos que A é um subconjunto de B e indicamos da seguinte maneira:

$$A \subset B$$

lê-se: A está contido em B.

Figura: Conjunto A contido em B

Figura: Conjunto A contido em B

Figura: Conjunto A contido em B

Em notação matemática, temos:

$$A \subset B \Leftrightarrow (\forall x)(x \in A \Rightarrow x \in B)$$

Figura: Conjunto A contido em B

Em notação matemática, temos:

$$A \subset B \Leftrightarrow (\forall x)(x \in A \Rightarrow x \in B)$$

Lê-se: A está contido em B se, e somente se, para todo x, se x pertence a A então x pertence a B.

Exemplos

Exemplos

Considere o conjuntos $A = \{1, 2, 3, 4\}$ e $B = \{1, 2\}$.

Exemplos

Considere o conjuntos $A = \{1, 2, 3, 4\}$ e $B = \{1, 2\}$. Como $1 \in A$ e $2 \in A$, ou seja, todos os elementos de B pertencem também ao conjunto A, logo, B é um subconjunto de A, isto é:

Exemplos

Considere o conjuntos $A = \{1, 2, 3, 4\}$ e $B = \{1, 2\}$. Como $1 \in A$ e $2 \in A$, ou seja, todos os elementos de B pertencem também ao conjunto A, logo, B é um subconjunto de A, isto é:

$$B \subset A$$

Considere o conjuntos $A = \{1, 2, 3, 4\}$ e $B = \{1, 2\}$.

Considere o conjuntos $A = \{1, 2, 3, 4\}$ e $B = \{1, 2\}$. Será que A está contido em B?

Considere o conjuntos $A = \{1, 2, 3, 4\}$ e $B = \{1, 2\}$. Será que A está contido em B? Solução:

Considere o conjuntos $A = \{1, 2, 3, 4\}$ e $B = \{1, 2\}$. Será que A está contido em B?

Solução:

Como $3 \in A$ e $3 \notin B$ temos:

Considere o conjuntos $A = \{1, 2, 3, 4\}$ e $B = \{1, 2\}$. Será que A está contido em B? Solução:

Como $3 \in A$ e $3 \notin B$ temos:

 $A \not\subset B$

Considere o conjuntos $A = \{1, 2, 3, 4\}$ e $B = \{1, 2\}$. Será que A está contido em B?

Solução:

Como $3 \in A$ e $3 \notin B$ temos:

 $A \not\subset B$

Em notação matemática, temos:

Considere o conjuntos $A = \{1, 2, 3, 4\}$ e $B = \{1, 2\}$.

Será que A está contido em B?

Solução:

Como $3 \in A$ e $3 \notin B$ temos:

$$A \not\subset B$$

Em notação matemática, temos:

$$A \not\subset B \Leftrightarrow (\exists x)(x \in A \ e \ x \notin B)$$

Considere o conjuntos $A = \{1, 2, 3, 4\}$ e $B = \{1, 2\}$. Será que A está contido em B? Solução:

Como $3 \in A$ e $3 \notin B$ temos:

$$A \not\subset B$$

Em notação matemática, temos:

$$A \not\subset B \Leftrightarrow (\exists x)(x \in A \ e \ x \notin B)$$

Lê-se: A não está contido em B se, e somente se, existe x que pertence ao conjunto A mas não pertence ao conjunto B.

Subconjunto - "Aperitivo de Lógica"

Exemplos

Todo paulista é brasileiro, mas nem todo brasileiro é paulista.

Subconjunto - "Aperitivo de Lógica"

Exemplos

Todo paulista é brasileiro, mas nem todo brasileiro é paulista.

Esta afirmação é verdadeira?

Exemplos

Todo paulista é brasileiro, mas nem todo brasileiro é paulista.

Esta afirmação é verdadeira? Prove!

Exemplos

Todo paulista é brasileiro, mas nem todo brasileiro é paulista.

Esta afirmação é verdadeira? Prove! Solução:

Exemplos

Todo paulista é brasileiro, mas nem todo brasileiro é paulista.

Esta afirmação é verdadeira? Prove! Solução:

A afirmação é verdadeira.

Exemplos

Todo paulista é brasileiro, mas nem todo brasileiro é paulista.

Esta afirmação é verdadeira? Prove!

Solução:

A afirmação é verdadeira.

Considere $A = \{x \in A | x \text{ \'e brasileiro}\}$ e

$$B = \{x \in B | x \text{ \'e paulista}\}.$$

Exemplos

Todo paulista é brasileiro, mas nem todo brasileiro é paulista.

Esta afirmação é verdadeira? Prove!

Solução:

A afirmação é verdadeira.

Considere $A = \{x \in A | x \text{ \'e brasileiro}\}$ e

 $B = \{x \in B | x \text{ \'e paulista}\}.$

Como todo paulista é brasileiro, logo:

$$B \subset A$$

Como existem brasileiros que não são paulistas, temos:

Como existem brasileiros que não são paulistas, temos:

 $A \not\subset B$

Como existem brasileiros que não são paulistas, temos:

$$A \not\subset B$$

Dessa forma, B é um subconjunto de A, portanto a afirmação é verdadeira.

Como existem brasileiros que não são paulistas, temos:

$$A \not\subset B$$

Dessa forma, B é um subconjunto de A, portanto a afirmação é verdadeira.

Figura: Diagrama que representa os paulistas e brasileiros

Exercício

Todos os meus amigos são músicos. João é meu amigo. Nenhum dos meus vizinhos é músico. João é meu vizinho?

Exercício

Todos os meus amigos são músicos. João é meu amigo. Nenhum dos meus vizinhos é músico. João é meu vizinho? Justifique!

O símbolo \subset estabele um relacionamento entre dois conjuntos.

O símbolo \subset estabele um relacionamento entre dois conjuntos.

O símbolo ∈ estabelece uma relação entre um elemento e um conjunto.

O símbolo \subset estabele um relacionamento entre dois conjuntos.

O símbolo ∈ estabelece uma relação entre um elemento e um conjunto.

Exemplo

Exemplo

Considere o conjunto $A = \{1, 2, 3, \{3\}, \{4\}, \{2, 5\}\}.$

• 3 ⊂ *A*?

Exemplo

Considere o conjunto $A = \{1, 2, 3, \{3\}, \{4\}, \{2, 5\}\}.$

• 3 ⊂ *A*? (F)

Exemplo

- 3 ⊂ *A*? (F)
- {3} ⊂ *A*?

Exemplo

- 3 ⊂ *A*? (F)
- {3} ⊂ *A*? (V)

Exemplo

- 3 ⊂ *A*? (F)
- $\{3\} \subset A$? (V)
- $\{2,5\} \subset A$?

Exemplo

- $3 \subset A$? (F)
- $\{3\} \subset A$? (V)
- $\{2,5\} \subset A$? (F)

Exemplo

- 3 ⊂ *A*? (F)
- $\{3\} \subset A$? (V)
- $\{2,5\} \subset A$? (F)
- $\{\{2,5\}\}\subset A$?

Exemplo

- 3 ⊂ *A*? (F)
- $\{3\} \subset A$? (V)
- $\{2,5\} \subset A$? (F)
- $\{\{2,5\}\}\subset A?$ (V)

Exemplo

- 3 ⊂ *A*? (F)
- $\{3\} \subset A$? (V)
- $\{2,5\} \subset A$? (F)
- $\{\{2,5\}\}\subset A?$ (V)
- $\{1, 2, 3\} \subset A$?

Exemplo

- $3 \subset A$? (F)
- $\{3\} \subset A$? (V)
- $\{2,5\} \subset A$? (F)
- $\{\{2,5\}\}\subset A?$ (V)
- $\{1,2,3\} \subset A$? (V)

Exemplo

- $3 \subset A$? (F)
- $\{3\} \subset A$? (V)
- $\{2,5\} \subset A$? (F)
- $\{\{2,5\}\}\subset A?$ (V)
- $\{1,2,3\} \subset A$? (V)

Sejam A e B dois conjuntos. Dizemos que A é **igual** a B se, e somente se:

$$A = B \Leftrightarrow A \subset B \in B \subset A$$

lsto é,

Sejam A e B dois conjuntos. Dizemos que A é **igual** a B se, e somente se:

$$A = B \Leftrightarrow A \subset B \in B \subset A$$

lsto é,

Dois conjuntos são iguais quando ambos possuem exatamente os mesmos elementos.

$$A = \{2,4\}, B = \{4,2\}, C = \{2,2,2,4,4,2\}.$$

$$A = \{2,4\}, B = \{4,2\}, C = \{2,2,2,4,4,2\}.$$

 $A = B$ pois,

Exemplos

$$A = \{2,4\}, B = \{4,2\}, C = \{2,2,2,4,4,2\}.$$

$$A = B$$
 pois,

 $2 \in A$ e $2 \in B$, assim como, $4 \in A$ e $4 \in B$, logo:

$$A = \{2, 4\}, B = \{4, 2\}, C = \{2, 2, 2, 4, 4, 2\}.$$

$$A = B$$
 pois,

$$2 \in A$$
 e $2 \in B$, assim como, $4 \in A$ e $4 \in B$, logo:

$$A \subset B$$

Exemplos

$$A = \{2,4\}, B = \{4,2\}, C = \{2,2,2,4,4,2\}.$$

 $A = B$ pois.

 $2 \in A$ e $2 \in B$, assim como, $4 \in A$ e $4 \in B$, logo:

$$A \subset B$$

Analogamente, conseguimos provar que $B \subset A$, assim:

$$A = B$$

Exemplos - Continuação

$$A = \{2,4\}, B = \{4,2\}, C = \{2,2,2,4,4,2\}.$$

Exemplos - Continuação

$$A = \{2,4\}, B = \{4,2\}, C = \{2,2,2,4,4,2\}.$$

 $A = C$?

Exemplos - Continuação

$$A = \{2,4\}, B = \{4,2\}, C = \{2,2,2,4,4,2\}.$$

 $A = C$?

Observe que $C \subset A$, pois $2 \in C$ e $2 \in A$, assim como, $4 \in C$ e $4 \in A$.Logo:

$$C \subset A$$

Exemplos - Continuação

$$A = \{2,4\}, B = \{4,2\}, C = \{2,2,2,4,4,2\}.$$

 $A = C$?

Observe que $C \subset A$, pois $2 \in C$ e $2 \in A$, assim como, $4 \in C$ e $4 \in A$.Logo:

$$C \subset A$$

Analogamente, provamos que

$$A \subset C$$

Exemplos - Continuação

$$A = \{2,4\}, B = \{4,2\}, C = \{2,2,2,4,4,2\}.$$

 $A = C$?

Observe que $C \subset A$, pois $2 \in C$ e $2 \in A$, assim como, $4 \in C$ e $4 \in A$.Logo:

$$C \subset A$$

Analogamente, provamos que

$$A \subset C$$

Como $A \subset C$ e $C \subset A$ concluímos que A = C.

 Dado um conjunto A, podemos construir um novo conjunto formado a partir de todos os subconjuntos (partes) de A. Esse novo conjunto chama-se conjunto das partes (ou conjunto dos subconjuntos) de A e é indicado por P(A).

- Dado um conjunto A, podemos construir um novo conjunto formado a partir de todos os subconjuntos (partes) de A. Esse novo conjunto chama-se conjunto das partes (ou conjunto dos subconjuntos) de A e é indicado por P(A).
- Informação importante: O conjunto vazio é subconjunto de qualquer conjunto.

Exemplos

Encontre o conjunto das partes dos seguintes conjuntos:

$$A = \{2, 4, 6\}$$

Exemplos

Encontre o conjunto das partes dos seguintes conjuntos:

$$A = \{2, 4, 6\}$$

Exemplos

Encontre o conjunto das partes dos seguintes conjuntos:

$$A = \{2, 4, 6\}$$

$$\mathbb{P}(A) = \{\emptyset, A, \{2\}, \{4\}, \{6\}, \{2, 4\}, \{2, 6\}, \{4, 6\}\}\$$

Exemplos

Encontre o conjunto das partes dos seguintes conjuntos:

$$A = \{2,4,6\}$$

Solução:
 $\mathbb{P}(A) = \{\varnothing,A,\{2\},\{4\},\{6\},\{2,4\},\{2,6\},\{4,6\}\}$
 $B = \{a,b\}$

Exemplos

Encontre o conjunto das partes dos seguintes conjuntos:

$$A = \{2, 4, 6\}$$

Solução:

$$\mathbb{P}(A) = \{\emptyset, A, \{2\}, \{4\}, \{6\}, \{2, 4\}, \{2, 6\}, \{4, 6\}\}\}$$

$$B = \{a, b\}$$

Exemplos

Encontre o conjunto das partes dos seguintes conjuntos:

$$A = \{2, 4, 6\}$$

Solução:

$$\mathbb{P}(A) = \{\emptyset, A, \{2\}, \{4\}, \{6\}, \{2, 4\}, \{2, 6\}, \{4, 6\}\}\$$

$$B = \{a, b\}$$

$$\mathbb{P}(B) = \{\varnothing, B, \{a\}, \{b\}, \}$$

Exemplos

Encontre o conjunto das partes dos seguintes conjuntos:

$$A = \{2, 4, 6\}$$

Solução:

$$\mathbb{P}(A) = \{\emptyset, A, \{2\}, \{4\}, \{6\}, \{2, 4\}, \{2, 6\}, \{4, 6\}\}\$$

$$B = \{a, b\}$$

$$\mathbb{P}(B) = \{\varnothing, B, \{a\}, \{b\}, \}$$

Número de Elementos do Conjunto das Partes

Número de Elementos do Conjunto das Partes

Se um conjunto A tem n elementos então o conjunto das partes $\mathbb{P}(A)$ terá 2^n elementos.

Número de Elementos do Conjunto das Partes

Se um conjunto A tem n elementos então o conjunto das partes $\mathbb{P}(A)$ terá 2^n elementos.

Exemplo

Número de Elementos do Conjunto das Partes

Se um conjunto A tem n elementos então o conjunto das partes $\mathbb{P}(A)$ terá 2^n elementos.

Exemplo

 $A = \{1, 2, 3\}$ o conjunto A possui 3 elementos, assim o conjunto $\mathbb{P}(A)$ terá $2^3 = 8$ elementos.

Número de Elementos do Conjunto das Partes

Se um conjunto A tem n elementos então o conjunto das partes $\mathbb{P}(A)$ terá 2^n elementos.

Exemplo

 $A=\{1,2,3\}$ o conjunto A possui 3 elementos, assim o conjunto $\mathbb{P}(A)$ terá $2^3=8$ elementos. De fato,

Número de Elementos do Conjunto das Partes

Se um conjunto A tem n elementos então o conjunto das partes $\mathbb{P}(A)$ terá 2^n elementos.

Exemplo

 $A = \{1, 2, 3\}$ o conjunto A possui 3 elementos, assim o conjunto $\mathbb{P}(A)$ terá $2^3 = 8$ elementos. De fato.

$$\mathbb{P}(A) = \{\emptyset, A, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}\$$

Conjunto Complementar

Considere um conjunto universo U e um conjunto A, tal que $A \subset U$. Definimos como conjunto complementar de A o conjunto A^c . Tal que,

Conjunto Complementar

Considere um conjunto universo U e um conjunto A, tal que $A \subset U$. Definimos como conjunto complementar de A o conjunto A^c . Tal que,

$$A^c = \{x \in U | x \notin A\}$$

Conjunto Complementar

Considere um conjunto universo U e um conjunto A, tal que $A \subset U$. Definimos como conjunto complementar de A o conjunto A^c . Tal que,

$$A^c = \{x \in U | x \notin A\}$$

Pelo diagrama, temos,

Figura: Conjunto A e o seu complementar A^c

União de Conjuntos

União de Conjuntos

A união (ou reunião) dos conjuntos A e B é o conjunto formado por todos os elementos que pertencem a A ou a B.

União de Conjuntos

A união (ou reunião) dos conjuntos A e B é o conjunto formado por todos os elementos que pertencem a A ou a B.

Representa-se por $A \cup B$.

União de Conjuntos

A união (ou reunião) dos conjuntos A e B é o conjunto formado por todos os elementos que pertencem a A ou a B.

Representa-se por $A \cup B$.

lsto é,

União de Conjuntos

A união (ou reunião) dos conjuntos A e B é o conjunto formado por todos os elementos que pertencem a A ou a B.

Representa-se por $A \cup B$.

lsto é,

$$A \cup B = \{x | x \in A \text{ ou } x \in B\}$$

União entre Conjuntos

Observe, abaixo, o diagrama que representa a união entre os conjuntos A e B:

União entre Conjuntos

Observe, abaixo, o diagrama que representa a união entre os conjuntos A e B:

Figura: Diagrama que representa a operação $A \cup B$

Exemplos

Exemplos

Considere os conjuntos $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{5, 6, 7, 8, 9, 10\}$ e $C = \{-1, -2, 0, 11\}$ determine:

Exemplos

Considere os conjuntos $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{5, 6, 7, 8, 9, 10\}$ e $C = \{-1, -2, 0, 11\}$ determine:

 \bullet $A \cup B$.

Exemplos

Considere os conjuntos $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{5, 6, 7, 8, 9, 10\}$ e $C = \{-1, -2, 0, 11\}$ determine:

 \bullet $A \cup B$.

Resposta: $A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

Exemplos

Considere os conjuntos $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{5, 6, 7, 8, 9, 10\}$ e $C = \{-1, -2, 0, 11\}$ determine:

- $A \cup B$. Resposta: $A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- \bullet $A \cup C$.

Exemplos

- $A \cup B$. Resposta: $A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- $A \cup C$. Resposta:

Exemplos

- $A \cup B$. Resposta: $A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- $A \cup C$. Resposta: $A \cup C = \{-1, -2, 0, 1, 2, 3, 4, 5, 6, 7, 11\}$

Exemplos

- $A \cup B$. Resposta: $A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- $A \cup C$. Resposta: $A \cup C = \{-1, -2, 0, 1, 2, 3, 4, 5, 6, 7, 11\}$
- *B* ∪ *C*.

Exemplos

- $A \cup B$. Resposta: $A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- $A \cup C$. Resposta: $A \cup C = \{-1, -2, 0, 1, 2, 3, 4, 5, 6, 7, 11\}$
- $B \cup C$. Resposta:

Exemplos

- $A \cup B$. Resposta: $A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- $A \cup C$. Resposta: $A \cup C = \{-1, -2, 0, 1, 2, 3, 4, 5, 6, 7, 11\}$
- B∪C. Resposta:

$$B \cup C = \{-1, -2, 0, 5, 6, 7, 8, 9, 10, 11\}$$

Exemplos

- $A \cup B$. Resposta: $A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- $A \cup C$. Resposta: $A \cup C = \{-1, -2, 0, 1, 2, 3, 4, 5, 6, 7, 11\}$
- B∪C. Resposta:

$$B \cup C = \{-1, -2, 0, 5, 6, 7, 8, 9, 10, 11\}$$

Exercícios

• Considere os conjuntos $A = \{2,3\}$, $B = \{4,5,6\}$, $C = \{2,3,4\}$ e $D = \{3,4,5\}$.

Exercícios

• Considere os conjuntos $A = \{2,3\}$, $B = \{4,5,6\}$, $C = \{2,3,4\}$ e $D = \{3,4,5\}$. Determine:

Exercícios

- Considere os conjuntos $A = \{2,3\}$, $B = \{4,5,6\}$, $C = \{2,3,4\}$ e $D = \{3,4,5\}$. Determine:
- A ∪ B
- A ∪ C
- \bullet $A \cup D$
- B ∪ D

Intersecção de Conjuntos

Intersecção de Conjuntos

A intersecção dos conjuntos A e B é o conjunto formado por todos os elementos que pertencem, simultaneamente, a A e a B.

Intersecção de Conjuntos

A intersecção dos conjuntos A e B é o conjunto formado por todos os elementos que pertencem, simultaneamente, a A e a B. Representa-se por $A \cap B$.

Intersecção de Conjuntos

A intersecção dos conjuntos A e B é o conjunto formado por todos os elementos que pertencem, simultaneamente, a A e a B. Representa-se por $A \cap B$. Isto é.

Intersecção de Conjuntos

A intersecção dos conjuntos A e B é o conjunto formado por todos os elementos que pertencem, simultaneamente, a A e a B. Representa-se por $A \cap B$.

Isto é,

$$A \cap B = \{x | x \in A \ e \ x \in B\}$$

Intersecção entre Conjuntos

Observe, abaixo, o diagrama que representa a intersecção entre os conjuntos A e B:

Intersecção entre Conjuntos

Observe, abaixo, o diagrama que representa a intersecção entre os conjuntos A e B:

Figura: Diagrama que representa a operação $A \cap B$

Exemplos

Exemplos

Exemplos

Considere os conjuntos $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{5, 6, 7, 8, 9, 10\}$ e $C = \{-1, -2, 0, 10, 11\}$ determine:

 \bullet $A \cap B$.

Exemplos

Considere os conjuntos $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{5, 6, 7, 8, 9, 10\}$ e $C = \{-1, -2, 0, 10, 11\}$ determine:

• $A \cap B$. Resposta: $A \cap B = \{5, 6, 7\}$

Exemplos

- $A \cap B$. Resposta: $A \cap B = \{5, 6, 7\}$
- $A \cap C$.

Exemplos

- $A \cap B$. Resposta: $A \cap B = \{5, 6, 7\}$
- $A \cap C$. Resposta:

Exemplos

- $A \cap B$. Resposta: $A \cap B = \{5, 6, 7\}$
- $A \cap C$. Resposta: $A \cap C = \emptyset$

Exemplos

- $A \cap B$. Resposta: $A \cap B = \{5, 6, 7\}$
- $A \cap C$. Resposta: $A \cap C = \emptyset$
- $B \cap C$.

Exemplos

- $A \cap B$. Resposta: $A \cap B = \{5, 6, 7\}$
- $A \cap C$. Resposta: $A \cap C = \emptyset$
- B ∩ C.Resposta:

Exemplos

- $A \cap B$. Resposta: $A \cap B = \{5, 6, 7\}$
- $A \cap C$. Resposta: $A \cap C = \emptyset$
- $B \cap C$. Resposta: $B \cap C = \{10\}$

Exemplos

- $A \cap B$. Resposta: $A \cap B = \{5, 6, 7\}$
- $A \cap C$. Resposta: $A \cap C = \emptyset$
- $B \cap C$. Resposta: $B \cap C = \{10\}$

Operações com Conjuntos - Interseção

Exercícios

Considere os conjuntos $A = \{1, 2, 3\}$, $B = \{2, 3, 4\}$, $C = \{2, 3\}$, $D = \{1, 2, 3, 4\}$, $E = \{2, 4\}$ e $F = \{3, 5, 7\}$.

Operações com Conjuntos - Interseção

Exercícios

Considere os conjuntos $A = \{1, 2, 3\}$, $B = \{2, 3, 4\}$, $C = \{2, 3\}$, $D = \{1, 2, 3, 4\}$,

$$E = \{2, 4\}$$
 e $F = \{3, 5, 7\}$. Determine:

- \bullet $A \cap B$
- $C \cap D$
- E ∩ F
- \bullet $A \cap F$

Diferença entre Conjuntos

Diferença entre Conjuntos

A diferença entre os conjuntos A e B é o conjunto formado por todos os elementos que pertencem a A e não pertencem a B.

Diferença entre Conjuntos

A diferença entre os conjuntos A e B é o conjunto formado por todos os elementos que pertencem a A e não pertencem a B.

Representa-se por $A \setminus B$ ou, simplesmente, A - B.

Diferença entre Conjuntos

A diferença entre os conjuntos A e B é o conjunto formado por todos os elementos que pertencem a A e não pertencem a B.

Representa-se por $A \setminus B$ ou, simplesmente, A - B. Isto é,

Diferença entre Conjuntos

A diferença entre os conjuntos A e B é o conjunto formado por todos os elementos que pertencem a A e não pertencem a B.

Representa-se por $A \setminus B$ ou, simplesmente, A - B. Isto é,

$$A \backslash B = \{x | x \in A \ e \ x \notin B\}$$

Diferença entre Conjuntos

Observe, abaixo, o diagrama que representa a diferença entre os conjuntos A e B:

Diferença entre Conjuntos

Observe, abaixo, o diagrama que representa a diferença entre os conjuntos A e B:

Figura: Diagrama que representa a operação $A \setminus B$

Exemplos

Exemplos

Considere os conjuntos $A = \{1, 2, 3, 4, 5, 6, 7\}$ e $B = \{5, 6, 7, 8, 9, 10\}$, determine: • $A \setminus B$.

Exemplos

Considere os conjuntos $A = \{1, 2, 3, 4, 5, 6, 7\}$ e $B = \{5, 6, 7, 8, 9, 10\}$, determine:

 \bullet $A \backslash B$.

Resposta: $A \setminus B = \{1, 2, 3, 4\}$

Exemplos

Considere os conjuntos $A = \{1, 2, 3, 4, 5, 6, 7\}$ e $B = \{5, 6, 7, 8, 9, 10\}$, determine:

- $A \setminus B$. Resposta: $A \setminus B = \{1, 2, 3, 4\}$
- B\A.

Exemplos

Considere os conjuntos $A = \{1, 2, 3, 4, 5, 6, 7\}$ e $B = \{5, 6, 7, 8, 9, 10\}$, determine:

- $A \setminus B$. Resposta: $A \setminus B = \{1, 2, 3, 4\}$
- $B \setminus A$. Resposta:

Exemplos

Considere os conjuntos $A = \{1, 2, 3, 4, 5, 6, 7\}$ e $B = \{5, 6, 7, 8, 9, 10\}$, determine:

- $A \setminus B$. Resposta: $A \setminus B = \{1, 2, 3, 4\}$
- B\A.
 Resposta: B\A = {8, 9, 10}

Operações entre Conjuntos - Subtração

Exercícios

Considere os conjuntos $A = \{0, 1, 2, 3\}$, $B = \{0, 2\}$, $C = \{1, 2, 3\}$ e $D = \{2, 3, 4\}$,

Operações entre Conjuntos - Subtração

Exercícios

Considere os conjuntos $A = \{0, 1, 2, 3\}$, $B = \{0, 2\}$, $C = \{1, 2, 3\}$ e $D = \{2, 3, 4\}$, determine:

- A − B
- B A
- *A* − *C*
- \bullet C-D

Dado um conjunto A com n elementos, indicaremos o número de elementos do conjunto A com a seguinte notação:

Dado um conjunto A com n elementos, indicaremos o número de elementos do conjunto A com a seguinte notação:

$$\#(A) = n$$

Dado um conjunto A com n elementos, indicaremos o número de elementos do conjunto A com a seguinte notação:

$$\#(A) = n$$

Exemplo

Determine o número de elementos do conjunto $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}.$

Dado um conjunto A com n elementos, indicaremos o número de elementos do conjunto A com a seguinte notação:

$$\#(A) = n$$

Exemplo

Determine o número de elementos do conjunto $A = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}.$ Solução:

$$\#(A) = 10$$

$$A \cap B = \varnothing \Rightarrow \#(A \cup B) = \#(A) + \#(B)$$

$$(A - B) = \#(A) - \#(A \cap B)$$

$$A \cap B = \varnothing \Rightarrow \#(A \cup B) = \#(A) + \#(B)$$

Considere o conjunto $A = \{a, e, i, o, u, w, x\}$ e $B = \{x, w, z, s\}$. Determine o número de elementos do conjunto $A \cup B$.

Considere o conjunto $A = \{a, e, i, o, u, w, x\}$ e $B = \{x, w, z, s\}$. Determine o número de elementos do conjunto $A \cup B$. Solução:

Considere o conjunto $A = \{a, e, i, o, u, w, x\}$ e $B = \{x, w, z, s\}$. Determine o número de elementos do conjunto $A \cup B$. Solução:

Figura: Conjunto A união com B

Considere o conjunto $A = \{a, e, i, o, u, w, x\}$ e $B = \{x, w, z, s\}$. Determine o número de elementos do conjunto $A \cup B$.

Considere o conjunto $A = \{a, e, i, o, u, w, x\}$ e $B = \{x, w, z, s\}$. Determine o número de elementos do conjunto $A \cup B$.

Solução:

Observe que $\#(A) = 7, \#(B) = 4, \#(A \cap B) = 2.$

Considere o conjunto $A = \{a, e, i, o, u, w, x\}$ e $B = \{x, w, z, s\}$. Determine o número de elementos do conjunto $A \cup B$.

Solução:

Observe que $\#(A) = 7, \#(B) = 4, \#(A \cap B) = 2.$ Logo,

$$\#(A \cup B) = \#(A) + \#(B) - \#(A \cap B) = 7 + 4 - 2 = 9$$

lsto é,

$$\#(A \cup B) = 9$$

Considere o conjunto $A = \{a, e, i, o, u, w, x\}$ e $B = \{x, w, z, s\}$. Determine o número de elementos do conjunto A - B.

Considere o conjunto $A = \{a, e, i, o, u, w, x\}$ e $B = \{x, w, z, s\}$. Determine o número de elementos do conjunto A - B.

Solução:

Observe que #(A) = 7 e $\#(A \cap B) = 2$.

Considere o conjunto $A = \{a, e, i, o, u, w, x\}$ e $B = \{x, w, z, s\}$. Determine o número de elementos do conjunto A - B.

Solução:

Observe que #(A) = 7 e $\#(A \cap B) = 2$. Logo,

$$\#(A - B) = \#(A) - \#(A \cap B) = 7 - 2 = 5$$

Considere o conjunto $A = \{a, e, i, o, u, w, x\}$ e $B = \{x, w, z, s\}$. Determine o número de elementos do conjunto A - B.

Solução:

Observe que #(A) = 7 e $\#(A \cap B) = 2$. Logo,

$$\#(A - B) = \#(A) - \#(A \cap B) = 7 - 2 = 5$$

Isto é,

$$\#(A - B) = 5$$

Considere o conjunto $A = \{a, e, i, o, u, w, x\}$ e $B = \{a, e, i\}$. Determine o número de elementos do conjunto A - B.

Considere o conjunto $A = \{a, e, i, o, u, w, x\}$ e $B = \{a, e, i\}$. Determine o número de elementos do conjunto A - B.

Solução:

Observe que $B \subset A$, #(A) = 7 e #(B) = 3 logo:

Considere o conjunto $A = \{a, e, i, o, u, w, x\}$ e $B = \{a, e, i\}$. Determine o número de elementos do conjunto A - B.

Solução:

Observe que $B \subset A$, #(A) = 7 e #(B) = 3 logo:

$$\#(A - B) = \#(A) - \#(B) = 7 - 3 = 4$$

Considere o conjunto $A = \{a, e, i, o, u, w, x\}$ e $B = \{a, e, i\}$. Determine o número de elementos do conjunto A - B.

Solução:

Observe que $B \subset A$, #(A) = 7 e #(B) = 3 logo:

$$\#(A - B) = \#(A) - \#(B) = 7 - 3 = 4$$

Observe que neste caso, como $B \subset A$, temos que $A \cap B = B$.

Considere o conjunto $A = \{a, e, i, o, u, w, x\}$ e $B = \{a, e, i\}$. Determine o número de elementos do conjunto A - B.

Solução:

Observe que $B \subset A$, #(A) = 7 e #(B) = 3 logo:

$$\#(A - B) = \#(A) - \#(B) = 7 - 3 = 4$$

Observe que neste caso, como $B \subset A$, temos que $A \cap B = B$.

Isto é, como B é um subconjunto de A temos que a interseção de A com B é o próprio B.

Para dois conjuntos A e B, o número de elementos de A - B é 30, de $A \cap B$ é 10 e de $A \cup B$ é 48. O número de elementos de B - A é:

Para dois conjuntos A e B, o número de elementos de A - B é 30, de $A \cap B$ é 10 e de $A \cup B$ é 48. O número de elementos de B - A é:

- (A) 8
- (B) 18
- (C) 10
- (D) 12
- (E) 30

Para dois conjuntos A e B, o número de elementos de A - B é 30, de $A \cap B$ é 10 e de $A \cup B$ é 48. O número de elementos de B - A é:

- (A) 8
- (B) 18
- (C) 10
- (D) 12
- (E) 30

Resposta:

Alternativa A.

Em uma classe, há 20 alunos que praticam futebol, mas não praticam vôlei, e há 8 alunos que praticam vôlei, mas não praticam futebol. O total dos alunos que praticam vôlei é 15. Ao todo, existem 17 alunos que não praticam futebol. O número de alunos na classe é:

Número de Elementos de um Conjunto -Exercício

Em uma classe, há 20 alunos que praticam futebol, mas não praticam vôlei, e há 8 alunos que praticam vôlei, mas não praticam futebol. O total dos alunos que praticam vôlei é 15. Ao todo, existem 17 alunos que não praticam futebol. O número de alunos na classe é:

- (A) 30
- (B) 35
- (C) 37
- (D) 42
- (E) 44

Número de Elementos de um Conjunto -Exercício

Em uma classe, há 20 alunos que praticam futebol, mas não praticam vôlei, e há 8 alunos que praticam vôlei, mas não praticam futebol. O total dos alunos que praticam vôlei é 15. Ao todo, existem 17 alunos que não praticam futebol. O número de alunos na classe é:

- (A) 30
- (B) 35
- (C) 37
- (D) 42
- (E) 44 Resposta: Alternativa E.

O Conjunto dos números reais é formado pela união do conjunto dos números irracionais com o conjunto dos números racionais.

O Conjunto dos números reais é formado pela união do conjunto dos números irracionais com o conjunto dos números racionais.

lsto é.

O Conjunto dos números reais é formado pela união do conjunto dos números irracionais com o conjunto dos números racionais.

lsto é,

$$\mathbb{R}=\mathbb{I}\cup\mathbb{Q}$$

Geometricamente, o conjunto dos números reais é representado por uma reta, onde cada ponto da reta representa um dos elementos de \mathbb{R} .

Geometricamente, o conjunto dos números reais é representado por uma reta, onde cada ponto da reta representa um dos elementos de \mathbb{R} .

Essa reta tem o nome de **reta real** porquê representa com fidelidade e rigor o conjunto \mathbb{R} .

Reta Real x

Os intervalos reais são subconjuntos dos Reais.

Os intervalos reais são subconjuntos dos Reais. Assim, podem ser representados por **semirretas** ou **segmentos de retas** da Reta Real.

Os intervalos reais são subconjuntos dos Reais. Assim, podem ser representados por **semirretas** ou **segmentos de retas** da Reta Real.

Exemplo

Os intervalos reais são subconjuntos dos Reais. Assim, podem ser representados por **semirretas** ou **segmentos de retas** da Reta Real.

Exemplo

Considere o conjunto $A = \{x \in \mathbb{R} | 0 \le x \le 1\}$,

Os intervalos reais são subconjuntos dos Reais. Assim, podem ser representados por **semirretas** ou **segmentos de retas** da Reta Real.

Exemplo

Considere o conjunto $A = \{x \in \mathbb{R} | 0 \le x \le 1\}$, assim a representação geométrica do conjunto A será:

Os intervalos reais são subconjuntos dos Reais. Assim, podem ser representados por **semirretas** ou **segmentos de retas** da Reta Real.

Exemplo

Considere o conjunto $A = \{x \in \mathbb{R} | 0 \le x \le 1\}$, assim a representação geométrica do conjunto A será:

Figura: Representação geométrica do conjunto A

Os intervalos reais são subconjuntos dos Reais. Assim, podem ser representados por **semirretas** ou **segmentos de retas** da Reta Real.

Exemplo

Considere o conjunto $A = \{x \in \mathbb{R} | 0 \le x \le 1\}$, assim a representação geométrica do conjunto A será:

Figura: Representação geométrica do conjunto A

Outra forma de representação do conjunto A é dada pela notação:

Outra forma de representação do conjunto A é dada pela notação:

$$A = [0, 1]$$

Exemplo

Exemplo

Represente geometricamente o conjunto

$$B = \{x \in \mathbb{R} | 0 \leqslant x < 3\}.$$

Exemplo

Represente geometricamente o conjunto

$$B = \{x \in \mathbb{R} | 0 \leqslant x < 3\}.$$

Solução:

Exemplo

Represente geometricamente o conjunto

$$B = \{x \in \mathbb{R} | 0 \leqslant x < 3\}.$$

Solução:

0

3

Figura: Representação geométrica do conjunto B

Outra forma de representação do conjunto B é dada pela notação:

Outra forma de representação do conjunto B é dada pela notação:

$$B = [0, 3[$$

•
$$C = \{x \in \mathbb{R} | -1 < x < 5\}$$

•
$$C = \{x \in \mathbb{R} | -1 < x < 5\}$$

Figura: Representação geométrica do conjunto C

Exemplos Diversos

Exemplos Diversos

Outra forma de representação do conjunto ${\it C}$ é dada pela notação:

Exemplos Diversos

Outra forma de representação do conjunto C é dada pela notação:

$$C =]-1,5[$$

•
$$D = \{x \in \mathbb{R} | x \leq 6\}$$

•
$$D = \{x \in \mathbb{R} | x \le 6\}$$

6

Figura: Representação geométrica do conjunto D

Outra forma de representação do conjunto D é dada pela notação:

Outra forma de representação do conjunto D é dada pela notação:

$$D =]-\infty, 6]$$

•
$$E = \{x \in \mathbb{R} | x > 4\}$$

•
$$E = \{x \in \mathbb{R} | x > 4\}$$

4

Figura: Representação geométrica do conjunto E

Outra forma de representação do conjunto E é dada pela notação:

Outra forma de representação do conjunto E é dada pela notação:

$$E =]4, +\infty[$$

Exercícios

Exercícios

Dados os intervalos:

$$A = \{x \in \mathbb{R} | -1 \le x < 3\}$$

$$B = \{x \in \mathbb{R} | x > 1\}$$

$$C =] -\infty, 2]$$

Exercícios

Dados os intervalos:

$$A = \{x \in \mathbb{R} | -1 \le x < 3\}$$

$$B = \{x \in \mathbb{R} | x > 1\}$$

$$C =] -\infty, 2]$$

Exercícios

Dados os intervalos:

$$A = \{x \in \mathbb{R} | -1 \le x < 3\}$$

$$B = \{x \in \mathbb{R} | x > 1\}$$

$$C =] - \infty, 2]$$

$$\bullet$$
 $A \cap B$

Exercícios

Dados os intervalos:

$$A = \{x \in \mathbb{R} | -1 \le x < 3\}$$

$$B = \{x \in \mathbb{R} | x > 1\}$$

$$C =] -\infty, 2]$$

Determine:

• $A \cap B$ Resposta: $A \cap B = \{x \in \mathbb{R} | 1 < x < 3\};$

Exercícios

Dados os intervalos:

$$A = \{x \in \mathbb{R} | -1 \le x < 3\}$$

 $B = \{x \in \mathbb{R} | x > 1\}$
 $C =] - \infty, 2]$

- $A \cap B$ Resposta: $A \cap B = \{x \in \mathbb{R} | 1 < x < 3\};$
- \bullet $A \cap C$

Exercícios

Dados os intervalos:

$$A = \{x \in \mathbb{R} | -1 \le x < 3\}$$

 $B = \{x \in \mathbb{R} | x > 1\}$
 $C =] - \infty, 2]$

- $A \cap B$ Resposta: $A \cap B = \{x \in \mathbb{R} | 1 < x < 3\};$
- $A \cap C$ Resposta: $A \cap C = [-1, 2]$;

Exercícios

Dados os intervalos:

$$A = \{x \in \mathbb{R} | -1 \le x < 3\}$$

$$B = \{x \in \mathbb{R} | x > 1\}$$

$$C =] -\infty, 2]$$

- $A \cap B$ Resposta: $A \cap B = \{x \in \mathbb{R} | 1 < x < 3\};$
- $A \cap C$ Resposta: $A \cap C = [-1, 2]$;
- B ∩ C

Exercícios

Dados os intervalos:

$$A = \{x \in \mathbb{R} | -1 \le x < 3\}$$

$$B = \{x \in \mathbb{R} | x > 1\}$$

$$C =] -\infty, 2]$$

- $A \cap B$ Resposta: $A \cap B = \{x \in \mathbb{R} | 1 < x < 3\};$
- $A \cap C$ Resposta: $A \cap C = [-1, 2]$;
- $B \cap C$ Resposta: $B \cap C = [1, 2]$;

Exercícios

Dados os intervalos:

$$A = \{x \in \mathbb{R} | -1 \le x < 3\}$$

 $B = \{x \in \mathbb{R} | x > 1\}$
 $C =] - \infty, 2]$

- $A \cap B$ Resposta: $A \cap B = \{x \in \mathbb{R} | 1 < x < 3\};$
- $A \cap C$ Resposta: $A \cap C = [-1, 2]$;
- $B \cap C$ Resposta: $B \cap C =]1, 2];$
- $A \cap B \cap C$

Exercícios

Dados os intervalos:

$$A = \{x \in \mathbb{R} | -1 \le x < 3\}$$

$$B = \{x \in \mathbb{R} | x > 1\}$$

$$C =] -\infty, 2]$$

- $A \cap B$ Resposta: $A \cap B = \{x \in \mathbb{R} | 1 < x < 3\};$
- $A \cap C$ Resposta: $A \cap C = [-1, 2]$;
- $B \cap C$ Resposta: $B \cap C =]1, 2];$
- $A \cap B \cap C$ Resposta: $A \cap B \cap C = \{x \in \mathbb{R} | 1 < x \leq 2\};$

Exercícios

Dados os intervalos:

$$A = \{x \in \mathbb{R} | -1 \le x < 3\}$$

 $B = \{x \in \mathbb{R} | x > 1\}$
 $C =] - \infty, 2]$

- $A \cap B$ Resposta: $A \cap B = \{x \in \mathbb{R} | 1 < x < 3\};$
- $A \cap C$ Resposta: $A \cap C = [-1, 2]$;
- $B \cap C$ Resposta: $B \cap C =]1, 2];$
- $A \cap B \cap C$ Resposta: $A \cap B \cap C = \{x \in \mathbb{R} | 1 < x \leq 2\};$
- A ∪ B

Exercícios

Dados os intervalos:

$$A = \{x \in \mathbb{R} | -1 \le x < 3\}$$

 $B = \{x \in \mathbb{R} | x > 1\}$
 $C =] - \infty, 2]$

- $A \cap B$ Resposta: $A \cap B = \{x \in \mathbb{R} | 1 < x < 3\};$
- $A \cap C$ Resposta: $A \cap C = [-1, 2]$;
- $B \cap C$ Resposta: $B \cap C =]1, 2];$
- $A \cap B \cap C$ Resposta: $A \cap B \cap C = \{x \in \mathbb{R} | 1 < x \leq 2\};$
- $A \cup B$ Resposta: $A \cup B = [-1, +\infty[;$

Exercícios

Dados os intervalos:

$$A = \{x \in \mathbb{R} | -1 \le x < 3\}$$

 $B = \{x \in \mathbb{R} | x > 1\}$
 $C =] - \infty, 2]$

- $A \cap B$ Resposta: $A \cap B = \{x \in \mathbb{R} | 1 < x < 3\};$
- $A \cap C$ Resposta: $A \cap C = [-1, 2]$;
- $B \cap C$ Resposta: $B \cap C =]1, 2];$
- $A \cap B \cap C$ Resposta: $A \cap B \cap C = \{x \in \mathbb{R} | 1 < x \leq 2\};$
- $A \cup B$ Resposta: $A \cup B = [-1, +\infty[;$
- B ∪ C

Exercícios ¹

Dados os intervalos:

$$A = \{x \in \mathbb{R} | -1 \le x < 3\}$$

$$B = \{x \in \mathbb{R} | x > 1\}$$

$$C =] - \infty, 2]$$

- $A \cap B$ Resposta: $A \cap B = \{x \in \mathbb{R} | 1 < x < 3\};$
- $A \cap C$ Resposta: $A \cap C = [-1, 2]$;
- $B \cap C$ Resposta: $B \cap C =]1, 2];$
- $A \cap B \cap C$ Resposta: $A \cap B \cap C = \{x \in \mathbb{R} | 1 < x \leq 2\};$
- $A \cup B$ Resposta: $A \cup B = [-1, +\infty[;$
- $B \cup C$ Resposta: $B \cup C = \mathbb{R}$;

Exercícios

Exercícios

Sejam
$$A = [-3, 1], B = \left[\frac{1}{10}, \frac{3}{2} \right] e$$

 $C = [-1, +\infty[$.Represente cada conjunto abaixo por meio de uma propriedade característica.

Exercícios

Sejam
$$A = [-3, 1], B = \left[\frac{1}{10}, \frac{3}{2} \right] e$$

 $C = [-1, +\infty[$.Represente cada conjunto abaixo por meio de uma propriedade característica.

a)
$$A \cap B$$

Exercícios

Sejam
$$A = [-3, 1], B = \left[\frac{1}{10}, \frac{3}{2}\right] e$$

 $C = [-1, +\infty[$.Represente cada conjunto abaixo por meio de uma propriedade característica.

- a) $A \cap B$
- $b) B \cap C$
- c) A B
- d) C A
- e) $A \cup B \cup C$
- f) $A (B \cup C)$
- g) $A \cap B \cap C$
- h) B-C

Gabarito

Gabarito

a)
$$A \cap B = \left\{ x \in \mathbb{R} | \frac{1}{10} < x \le 1 \right\}$$

b) $B \cap C = \left\{ x \in \mathbb{R} | \frac{1}{10} < x \le \frac{3}{2} \right\}$
c) $A - B = \left\{ x \in \mathbb{R} | \frac{1}{10} < x \le \frac{1}{10} \right\}$
d) $C - A = \left\{ x \in \mathbb{R} | x > 1 \right\}$
e) $A \cup B \cup C = \left\{ x \in \mathbb{R} | x \ge -3 \right\}$
f) $A - (B \cup C) = \left\{ x \in \mathbb{R} | -3 \le x < -1 \right\}$
g) $A \cap B \cap C = \left\{ x \in \mathbb{R} | \frac{1}{10} < x \le -1 \right\}$
h) $B - C = \emptyset$

Dados dois conjuntos, $A \in B$, chama-se **produto cartesiano** de A por B e indica-se $A \times B$ ao conjunto formado por **todos** os pares ordenados (x, y) com $x \in A$ e $y \in B$.

Dados dois conjuntos, $A \in B$, chama-se **produto cartesiano** de A por B e indica-se $A \times B$ ao conjunto formado por **todos** os pares ordenados (x, y) com $x \in A$ e $y \in B$.

Exemplos

Dados dois conjuntos, $A \in B$, chama-se **produto cartesiano** de A por B e indica-se $A \times B$ ao conjunto formado por **todos** os pares ordenados (x, y) com $x \in A$ e $y \in B$.

Exemplos

Se
$$A = \{2,3\}$$
 e $B = \{0,1,2\}$ então:

Dados dois conjuntos, $A \in B$, chama-se **produto cartesiano** de A por B e indica-se $A \times B$ ao conjunto formado por **todos** os pares ordenados (x, y) com $x \in A$ e $y \in B$.

Exemplos

Se
$$A = \{2,3\}$$
 e $B = \{0,1,2\}$ então:

a)
$$A \times B =$$

Dados dois conjuntos, $A \in B$, chama-se **produto cartesiano** de A por B e indica-se $A \times B$ ao conjunto formado por **todos** os pares ordenados (x, y) com $x \in A$ e $y \in B$.

Exemplos

Se
$$A = \{2,3\}$$
 e $B = \{0,1,2\}$ então:

a)
$$A \times B = \{(2,0), (2,1), (2,2), (3,0), (3,1), (3,2)\}$$

Dados dois conjuntos, $A \in B$, chama-se **produto cartesiano** de A por B e indica-se $A \times B$ ao conjunto formado por **todos** os pares ordenados (x, y) com $x \in A$ e $y \in B$.

Exemplos

a)
$$A \times B = \{(2,0), (2,1), (2,2), (3,0), (3,1), (3,2)\}$$

b)
$$B \times A =$$

Dados dois conjuntos, $A \in B$, chama-se **produto cartesiano** de A por B e indica-se $A \times B$ ao conjunto formado por **todos** os pares ordenados (x, y) com $x \in A$ e $y \in B$.

Exemplos

a)
$$A \times B = \{(2,0), (2,1), (2,2), (3,0), (3,1), (3,2)\}$$

b)
$$B \times A = \{(0,2), (0,3), (1,2), (1,3), (2,2), (2,3)\}$$

Dados dois conjuntos, $A \in B$, chama-se **produto cartesiano** de A por B e indica-se $A \times B$ ao conjunto formado por **todos** os pares ordenados (x, y) com $x \in A$ e $y \in B$.

Exemplos

a)
$$A \times B = \{(2,0), (2,1), (2,2), (3,0), (3,1), (3,2)\}$$

b)
$$B \times A = \{(0,2), (0,3), (1,2), (1,3), (2,2), (2,3)\}$$

c)
$$A \times A =$$

Dados dois conjuntos, $A \in B$, chama-se **produto cartesiano** de A por B e indica-se $A \times B$ ao conjunto formado por **todos** os pares ordenados (x, y) com $x \in A$ e $y \in B$.

Exemplos

a)
$$A \times B = \{(2,0), (2,1), (2,2), (3,0), (3,1), (3,2)\}$$

b)
$$B \times A = \{(0,2), (0,3), (1,2), (1,3), (2,2), (2,3)\}$$

c)
$$A \times A = \{(2,2), (2,3), (3,2), (3,3)\}$$

Exercícios

Exercícios

Se
$$A = \{1, 2, 3\}$$
 e $B = \{a, b\}$, determine:
a) $A \times B$;

Exercícios

Se $A = \{1, 2, 3\}$ e $B = \{a, b\}$, determine: a) $A \times B$; Resposta: $A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$

Exercícios

- a) $A \times B$; Resposta: $A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$
- b) $B \times A$;

Exercícios

- a) $A \times B$; Resposta: $A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$
- b) $B \times A$; Resposta: $B \times A = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$

Exercícios

- a) $A \times B$; Resposta: $A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$
- b) $B \times A$; Resposta: $B \times A = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$
- c) $B \times B$

Exercícios

- a) $A \times B$; Resposta: $A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$
- b) $B \times A$; Resposta: $B \times A = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$
- c) $B \times B$ Resposta: $B \times B = \{(a, a), (a, b), (b, a), (b, b)\}$

Exercícios

- a) $A \times B$; Resposta: $A \times B = \{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$
- b) $B \times A$; Resposta: $B \times A = \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$
- c) $B \times B$ Resposta: $B \times B = \{(a, a), (a, b), (b, a), (b, b)\}$

Como o produto cartesiano sempre forma um conjunto com pares ordenados, podemos representar geometricamente o produto $A \times B$ através de dois eixos perpendiculares. Sendo que os elementos de A pertencem ao eixo horizontal e os elementos de B pertencem ao eixo vertical.

Como o produto cartesiano sempre forma um conjunto com pares ordenados, podemos representar geometricamente o produto $A \times B$ através de dois eixos perpendiculares. Sendo que os elementos de A pertencem ao eixo horizontal e os elementos de B pertencem ao eixo vertical.

Os elementos do conjunto $A \times B$ serão representados por pontos no plano.

Exemplo

Exemplo 1

Sendo
$$A = \{0, 1, 2\}$$
 e $B = \{3\}$,

Exemplo

Sendo
$$A = \{0, 1, 2\}$$
 e $B = \{3\}$, sabemos que $A \times B = \{(0, 3), (1, 3), (2, 3)\}$.

Exemplo

Sendo $A = \{0, 1, 2\}$ e $B = \{3\}$, sabemos que $A \times B = \{(0, 3), (1, 3), (2, 3)\}$. Logo a representação geométrica do produto cartesiano $A \times B$, será:

Figura: Representação do produto cartesiano $A \times B$

Exercício

Exercício

Sendo $A = \{-1, 0, 2\}$ e $B = \{-2, 0, 1\}$, determine:

Exercício

Sendo $A = \{-1, 0, 2\}$ e $B = \{-2, 0, 1\}$, determine:

- a) $A \times B$.
- b) Faça um esboço da representação geométrica do produto cartesiano $A \times B$.

Se fizermos o produto cartesiano $\mathbb{R} \times \mathbb{R}$, teremos um conjunto com uma quantidade infinita de pares ordenados.

Se fizermos o produto cartesiano $\mathbb{R} \times \mathbb{R}$, teremos um conjunto com uma quantidade infinita de pares ordenados.

Todos esses pares são pontos no plano.

Se fizermos o produto cartesiano $\mathbb{R} \times \mathbb{R}$, teremos um conjunto com uma quantidade infinita de pares ordenados.

Todos esses pares são pontos no plano. Assim, o conjunto $\mathbb{R} \times \mathbb{R} = \{x \in \mathbb{R}, y \in \mathbb{R} | (x,y) \in \mathbb{R} \times \mathbb{R} \}$ geometricamente é representado por todos os pontos do plano xy, também conhecido como plano \mathbb{R}^2 .

Se fizermos o produto cartesiano $\mathbb{R} \times \mathbb{R}$, teremos um conjunto com uma quantidade infinita de pares ordenados.

Todos esses pares são pontos no plano. Assim, o conjunto $\mathbb{R} \times \mathbb{R} = \{x \in \mathbb{R}, y \in \mathbb{R} | (x,y) \in \mathbb{R} \times \mathbb{R} \}$ geometricamente é representado por todos os pontos do plano xy, também conhecido como plano \mathbb{R}^2 . Isto é, o plano cartesiano representa com fidelidade e rigor o conjunto $\mathbb{R} \times \mathbb{R}$.

Se fizermos o produto cartesiano $\mathbb{R} \times \mathbb{R}$, teremos um conjunto com uma quantidade infinita de pares ordenados.

Todos esses pares são pontos no plano. Assim, o conjunto $\mathbb{R} \times \mathbb{R} = \{x \in \mathbb{R}, y \in \mathbb{R} | (x,y) \in \mathbb{R} \times \mathbb{R} \}$ geometricamente é representado por todos os pontos do plano xy, também conhecido como plano \mathbb{R}^2 . Isto é, o plano cartesiano representa com fidelidade e rigor o conjunto $\mathbb{R} \times \mathbb{R}$.

Abaixo, a representação do conjunto $\mathbb{R} \times \mathbb{R}$:

Relação Binária

Relação Binária

Dados dois conjuntos A e B, chama-se **relação binária** de A em B a qualquer subconjunto f de $A \times B$.

Dados dois conjuntos A e B, chama-se **relação binária** de A em B a qualquer subconjunto f de $A \times B$.

Em notação matemática:

Dados dois conjuntos A e B, chama-se **relação binária** de A em B a qualquer subconjunto f de $A \times B$.

Em notação matemática:

f é uma relação binária de A em $B \Leftrightarrow f \subset A \times B$

Lê-se: f é uma relação binária de A em B se, e somente se, o conjunto f está contido no conjunto $A \times B$.

Se
$$A = \{1, 2, 4\}$$
 e $B = \{2, 3\}$ e $f = \{(x, y) \in A \times B | x < y\}$. Determine:

Se
$$A = \{1, 2, 4\}$$
 e $B = \{2, 3\}$ e $f = \{(x, y) \in A \times B | x < y\}$. Determine: • $A \times B$

Exemplo

Se
$$A = \{1, 2, 4\}$$
 e $B = \{2, 3\}$ e $f = \{(x, y) \in A \times B | x < y\}$. Determine:

• $A \times B$ Resposta: $A \times B = \{(1, 2), (1, 3), (2, 2), (2, 3), (4, 2), (4, 3)\}$

Se
$$A = \{1, 2, 4\}$$
 e $B = \{2, 3\}$ e $f = \{(x, y) \in A \times B | x < y\}$. Determine:

- $A \times B$ Resposta: $A \times B = \{(1,2), (1,3), (2,2), (2,3), (4,2), (4,3)\}$
- f

Se
$$A = \{1, 2, 4\}$$
 e $B = \{2, 3\}$ e $f = \{(x, y) \in A \times B | x < y\}$. Determine:

- $A \times B$ Resposta: $A \times B = \{(1,2), (1,3), (2,2), (2,3), (4,2), (4,3)\}$
- fResposta: $f = \{(1,2), (1,3), (2,3)\}$

Se
$$A = \{1, 2, 4\}$$
 e $B = \{2, 3\}$ e $f = \{(x, y) \in A \times B | x < y\}$. Determine:

- $A \times B$ Resposta: $A \times B = \{(1,2), (1,3), (2,2), (2,3), (4,2), (4,3)\}$
- fResposta: $f = \{(1,2), (1,3), (2,3)\}$
- f é uma relação binária de A em B?Justifique!


```
Se A = \{1, 2, 4\} e B = \{2, 3\} e f = \{(x, y) \in A \times B | x < y\}. Determine:
```

- $A \times B$ Resposta: $A \times B = \{(1,2), (1,3), (2,2), (2,3), (4,2), (4,3)\}$
- fResposta: $f = \{(1,2), (1,3), (2,3)\}$
- f é uma relação binária de A em B?Justifique!
 Resposta: Sim, f ⊂ A × B, logo f é uma relação binária de A em B.

Exercício

Considere os conjuntos

$$A = \{1, 2, 3, 4\}, B = \{2, 4, 6, 8\}$$
 e
 $f = \{(x, y) \in A \times B | y = 2x\}.$

Exercício

Considere os conjuntos

$$A = \{1, 2, 3, 4\}, B = \{2, 4, 6, 8\}$$
e $f = \{(x, y) \in A \times B | y = 2x\}.$

• Liste os elementos do conjunto $A \times B$.

Exercício

Considere os conjuntos

$$A = \{1, 2, 3, 4\}, B = \{2, 4, 6, 8\}$$
 e $f = \{(x, y) \in A \times B | y = 2x\}.$

• Liste os elementos do conjunto $A \times B$. Resposta: $A \times B = \{(1,2), (1,4), (1,6), (1,8), (2,2), (2,4), (2,6)\}$

$$(2,8), (3,2), (3,4), (3,6), (3,8), (4,2), (4,4), (4,6), (4,8)$$

• Liste os elementos do conjunto f.

Exercício

Considere os conjuntos

$$A = \{1, 2, 3, 4\}, B = \{2, 4, 6, 8\}$$
 e $f = \{(x, y) \in A \times B | y = 2x\}.$

• Liste os elementos do conjunto $A \times B$.

Resposta:
$$A \times B = \{(1,2), (1,4), (1,6), (1,8), (2,2), (2,4), (2,6), (2,8), (3,2), (3,4), (3,6), (3,8), (4,2), (4,4), (4,6), (4,8)\}$$

• Liste os elementos do conjunto f. Resposta: $f = \{(1, 2), (2, 4), (3, 6), (4, 8)\}$

Exercício

Considere os conjuntos

$$A = \{1, 2, 3, 4\}, B = \{2, 4, 6, 8\}$$
 e
 $f = \{(x, y) \in A \times B | y = 2x\}.$

• Liste os elementos do conjunto $A \times B$. Resposta: $A \times B = \{(1, 2), (1, 4), (1, 6), (1, 8), (2, 2), (2, 4), (2, 6)\}$

$$\{(1,2),(1,4),(1,6),(1,8),(2,2),(2,4),(2,6),(2,8),(3,2),(3,4),(3,6),(3,8),(4,2),(4,4),(4,6),(4,8)\}$$

- Liste os elementos do conjunto f. Resposta: $f = \{(1,2), (2,4), (3,6), (4,8)\}$
- f é uma relação binária de A em B?Justifique!

Fim dos SLIDES

Fim dos SLIDES

Bons estudos!

