Fondamenti di Elettronica - Ing. AUTOMATICA e INFORMATICA - AA 2006/2007

24 Novembre 2006

Indicare chiaramente la domanda a cui si sta rispondendo. Ad esempio 1a) ...

Esercizio 1. Si consideri l'amplificatore a due stadi in Fig.1.

- a) Polarizzare il circuito (suggerimento: polarizzare prima lo stadio 1 e poi il 2);
- b) Calcolare i guadagni di piccolo segnale $G_1 = V_{D1}/V_{in}$ e $G_2 = V_{out}/V_{in}$ a media frequenza (C_{in} in cortocircuito);
- c) Si immagini adesso di inserire in parallelo a R_{D2} una capacità C₁ di 5 pF. Calcolare in questo caso il guadagno a 160 MHz.
- d) Aumentando a media frequenza l'ampiezza di ingresso, quale transistore uscirà per primo dalla zona di saturazione? (Giustificare la risposta)

Esercizio 2. Al MOS in Fig.2 è applicato, all'istante t=0, un gradino al gate, da V_{DD} a 0 Volt.

- a) Sapendo che il condensatore è inizialmente scarico, per quale valore di $V_{out}(t)$ il transistore entra in zona triodo?
- b) Quanto tempo (t₁) occorre al MOS per entrare in zona triodo?
- Assumendo che t₂=100 ps, quanta energia viene dissipata dal MOS nell'intervallo di tempo 0 - t₂?
- d) Quanta energia è dissipata nel MOS alla fine del transitorio ? Come cambierebbe questo valore raddoppiando il (W/L) del transistore ?

Esercizio 3. Si consideri il circuito di fig.3.

- a) Disegnare in un diagramma temporale quotato V_{out}(t) (al solito, considerare 0.7 la tensione di on del diodo).
- b) Disegnare in un diagramma temporale quotato $V_{\text{out}}(t)$ quando l'ampiezza del segnale in ingresso è di 10 Volt.
- c) Calcolare in questo secondo caso il picco di potenza dissipata nel diodo.
- d) Considerando la caratteristica reale del diodo, viene dissipata potenza nel diodo stesso, durante la semionda negativa del segnale di ingresso? (giustificare la risposta)

Esercizio 4.

Si consideri un MOS in zona di saturazione.

- a) Cosa è la transconduttanza gm? Definirla e ricavarne l'espressione.
- b) Volendo raddoppiare la gm, a pari corrente e lunghezza di canale L, come deve variare la W del MOS?
- c) In questo caso, come varierebbe la capacità di ingresso del MOS stesso?
- d) In generale conviene utilizzare MOS di tipo n o di tipo p? (giustificare la risposta)

18)
$$V_{G_1} = \frac{V_{00}}{R_1 + R_2} \cdot R_2 = \frac{5 \cdot 20}{50} = 2V = V_{GS_1} > V_{th}$$
 (1) eccess

VD1 = VD0 - IO1 RO1 = 5-2 = 3V = VOS1

Essendo Vosz > Vas, - Vrn, il MOS(De in saturazione

9m1 = 2 4 VOD = 4 mA/V

Vg2 = Vos1 = 3 V

| VGS2 = 2V > | VED => MOS(2) accesso

ID2 = K (| Vas2 | - | Vtp |)2 = 1 mA

VD2 = VOUT = 2 V = |VD12 |

Enemolo |Vissz | > |Vasz | - |Vtp | il MOS@ e'm soluroreme

9m2 = 4mA/V

4b) $G_1 = \frac{V_{01}}{V_{in}} = \frac{g_m R_{01}}{R_{S} + R_i / | R_2} = \frac{4\sqrt{.2.10^3}}{50.10 + 20.30}$

= - 8.8 . 600 - 1100 - 4.36

G2 = G1. Vout = -4.36. (-9mRoz) = -4.36 (-8)=34.8

1c) W_{polo} downto a $C_1 = \frac{1}{R_{D_2} \cdot C_1} = \frac{1}{2 \cdot 10^3 \cdot 5 \cdot 10^{-12}} = \frac{10^{+9} - 10^8}{10}$ $+ \frac{W_{polo}}{2\pi} = \frac{W_{polo}}{2\pi} = \frac{10^9}{6.28} = 15.92 \text{ MHz}$

Enendo 160 MHz = 10 fpolo, el quadaque a 160 MHz ni reduce di un fettore 10 riyetto a 16 MHz, quiroli rata di 3.5

- 1 d) Il MOS (D: la Vos è mfatti la storra (n modulo) per i due MOS, quindi, recevendo il MOS (D) un repuele amplificato di un fettere G1, rera il primo a more dalla zona di naturamente.
- 2a) Il pMOS entra in zona trusdo quando |Vos| < |Vas| |Vtp|
 Enendo |Vas| = Voo, avremo |Vos| = Voo |Vtp|
 In tal caso Vont = Voo |Vos| = |Vtp| = 1V
- 2 b) Prime di entrere in 20 me trodo il 1405 lavora in saturazione e invelta in C una comente cortante pari a

2 C) Nell'intervallo $0-t_2$ il MOS è saturo e carrica C a comente D = 0.8 mA contante. La vanarune di terriora D = 0.8 mA contante. La vanarune di terriora D = 0.8 mA C vale $D = \frac{t_2 \cdot J_0}{C} = \frac{100 \cdot 10^{-12}}{0.3 \cdot 10^{-12}} = 0.267 \text{ V}$

cui conisponde una energia inmagaminata nel condensatre $C_C = \frac{1}{2} C \Delta V^2 = \frac{1}{2} .0.3 io^{-12} .0.267^2 = 0.01 pJ$

Nell'intervalle 0-t2 il generatore Vos eroga una potenza contombe

Pare = Vos . Is, cui cominande una energia Egen = Pan . t2 = 4000.

2008-1000 - 3.0.8.100.100 = 0,24 pJ

L'energie domipte del MOS e le différence tre l'energie mera del generative e quelle inmagemente nel condouratore $C: E_{HOS} = E_{Gen} - E_{C} = 0.23 pJ$ Si averiva al medenino rincltato re ri onerve de la potenza istantanea dismipate del MOS e $p(t) = \pm 0$. $|V_{OS}(t)|$ olore $|V_{OS}(t)| = V_{OS} - V_{C}(t)$. Enendo poi $dE_{HOS} = p(t)_{HOS}^{-1} dt$, beste volutivise e ubequere tre $O = C_{C}$.

dove (til) è la comente de pana nel MS (e che coriea ande c). l'energia dissilate in un infinite nome dt vale durque

dE = Pros(t) dt = i(t).(Von-Velt))dt

e l'energie totale si trova integnando tre o e a.

$$E = \int_{0}^{\infty} i(t) \left(V_{0D} - V_{c}(t) \right) dt = \int_{0}^{\infty} i(t) db_{D} dt - \int_{0}^{\infty} i(t) V_{c}(t) dt$$

= Vool it) dt - S = Vool duck

Il promo integrale formisce la carica nel condensatore a fine transtorio, quando la tensione ai moi capi vale Vas. Brandi Il recondo integrale e - 1 c Vc (energee un grande dal condensatore) Dennadi

 $E = Q V_{00} - \frac{1}{2} C V_{00}^{2} = \frac{1}{2} C V_{00} = 1,35 \text{ pJ}.$ $Q = C V_{00}$

L'anergie dinipeta è la storme di quelle accommelate nel me.

Comboundo W non cambre nulla.

30) Vont von rappinge man la temme menenina a lar accordence de dirolo. Infatti Vont = Vim. Rz = 1 vin, de è rempe minore di 0,7 V.

3b) the In questo caso vin ruesce ad accendence el diodo folato nel remipeiodo fontus cle Votontura birebbre arruere a 0.8 V re um in lone el diodo). Nel remiperado negotivos vivere non vience a mandere

Colcolians il tempo tx

$$\frac{\pm \text{ Wotx} = \text{ arecord 0.77}}{628.10^3} = \frac{(39.65^{\circ})}{628.10^2} = \frac{(39.65^{\circ})}{628.10^2} = \frac{(39.65^{\circ})}{628.10^2} = \frac{(39.65^{\circ})}{628.10^2} = \frac{(39.65^{\circ})}{4000} = \frac{(39.65^{\circ})}{4000} = \frac{(39.65^{\circ})}{4000} = \frac{(39.65^{\circ})}{628.10^2} = \frac{(39.65^{\circ})}{4000} =$$

3 (Vale il blanco di conenti

dense
$$J_{R_1 max} = \frac{10 - 0.7}{10 \, \text{K}}$$
 $J_{R_2 max} = \frac{V_0}{R_2} = \frac{0.7}{1 \, \text{K}}$

Quadi Joma = 0,33 - 0.7 = 0,23 mA

Puncy = 0.23-0,7 = 0.161 mW

For E_0 (e V_{th} -1)

refferme de les Vo es to =- To \$0 Quandi n'he une repper probe potence desipte dorate elle conente avene to de ancola nel diodo.

40) Definime di transconduttansa

 $g_{ni} = \frac{\partial I_0}{\partial V_{GS}} \quad (a V_{NS} = cost)$ essends $I_0 = u \quad (V_{GS} - V_T)^2 V_{pr} \cdot (a MOS in solvenore), 2 ha$ $g_{ni} = 2u \quad (V_{GS} - V_T)^2 V_{pr} \cdot (a MOS in solvenore), 2 ha$ $g_{ni} = 2u \quad (V_{GS} - V_T) = 2u \quad V_{OD} = \frac{2I_D}{V_{OD}} = 2V_R V_{ID}$

- 46) Dalle gm = 2 VR VID, sicordando che L = W, (a jordi di coneute e di L) trediamo de per reddopure gm dobbiamo quadruplicare U, quindi dobbiamo quadruplicare W.
- 4 C) hanne le capacità del HDS vale C = C'ox. W.L dove C'ox è le capacità ser unità di area, quadruplicando W ni quadruplice C
- 4d) Conviene utilisme 1408 di tipo n, dato de a souta di une este necessitamo di un Wininose esprone alle anapprove mobiletà depli elettroni resetto alle lacure.