CSCD 327: Relational Database Systems

Relational Algebra

Instructor: Dr. Dan Li

Formal Relational Query Languages

- Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:
 - Relational Algebra: procedural, tells you how to process a query, very useful for representing execution plans.
 - Relational Calculus: Lets users describe what they want, rather than how to compute it.
 (Non-procedural, <u>declarative</u>.)

Relational Algebra

- Six basic operators
 - select: σ
 - project: ∏
 - union: \cup
 - set difference: –
 - Cartesian product: x
 - rename: ρ
- The operators take one or two relations as inputs and produce a new relation as a result.

Running Example: Schema Diagram for University Database

Select Operation

- Notation: $\sigma_{p}(r)$
- p is called the selection predicate
- Defined as:

$$\sigma_{p}(r) = \{t \mid t \in r \text{ and } p(t)\}$$

Where p is a formula in propositional calculus consisting of **terms** connected by : \land (and), \lor (or), \neg (not) Each **term** is one of:

<attribute> op <attribute> or <constant>

where *op* is one of: =, \neq , >, \geq . <. \leq

Example of selection:

Select Operation – Example

Relation r

A	В	C	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

$$\bullet$$
 $\sigma_{A=B \land D > 5}(r)$

A	В	C	D
α	α	1	7
β	β	23	10

Project Operation

• Notation: $\prod_{A_1, A_2, \dots, A_k} (r)$

where A_1 , A_2 are attribute names and r is a relation name.

- The result is defined as the relation of k columns obtained by erasing the columns that are not listed
- Duplicate rows removed from result, since relations are sets
- Example: To eliminate the dept_name attribute of instructor

 $\prod_{ID, name, salary}$ (instructor)

Project Operation – Example

Relation r:

A	В	C
α	10	1
α	20	1
β	30	1
β	40	2

 \Box $\prod_{A,C} (r)$

\boldsymbol{A}	C	A	C
α	1	α	1
α	1	β	1
β	1	β	2
β	2		L

Union Operation

- Notation: $r \cup s$
- Defined as:

$$r \cup s = \{t \mid t \in r \text{ or } t \in s\}$$

- For $r \cup s$ to be valid.
 - 1. *r*, *s* must have the *same* **arity/degree** (same number of attributes)
 - 2. The attribute domains must be **compatible** (example: 2nd column
 - of r deals with the same type of values as does the 2^{nd} column of s)
- Example: to find all courses taught in the Fall 2009 semester, or in the Spring 2010 semester, or in both

```
\Pi_{course\_id} (\sigma_{semester="Fall" \land year=2009} (section)) \cup \Pi_{course\_id} (\sigma_{semester="Spring" \land year=2010} (section))
```

Union Operation – Example

• Relations *r, s:*

 \square r \cup s:

Set Difference Operation

- Notation r-s
- Defined as:

$$r-s = \{t \mid t \in r \text{ and } t \notin s\}$$

- Set differences must be taken between compatible relations.
 - r and s must have the same arity
 - attribute domains of r and s must be compatible
- Example: to find all courses taught in the Fall 2009 semester, but not in the Spring 2010 semester

$$\prod_{course_id} (\sigma_{semester="Fall" \land year=2009} (section))$$
 –

$$\prod_{course_id} (\sigma_{semester="Spring" \land year=2010} (section))$$

Set difference of two relations

• Relations *r*, *s*:

A	В
α	1
α	2
β	1

A	В
α	2
β	3
р В	3

 \Box r-s

A	В
α	1
β	1

Cartesian-Product Operation

- Notation r x s
- Defined as:

$$r \times s = \{t \mid q \mid t \in r \text{ and } q \in s\}$$

- Assume that attributes of r(R) and s(S) are disjoint. (That is, $R \cap S = \emptyset$).
- If attributes of r(R) and s(S) are not disjoint, then renaming must be used.

Cartesian-Product Operation – Example

Relations *r, s*:

rxs:

A	В	C	D	Ε
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

Composition of Operations Can build expressions using multiple operations

• Example: $\sigma_{A=C}(r \times s)$

rxs

A	В	C	D	Ε
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

• $\sigma_{A=C}(r \times s)$

\boldsymbol{A}	В	C	D	E
α	1	α	10	a
β	2	β	10	a
β	2	β	20	b

Rename Operation

- Allows us to refer to a relation by more than one name.
- Example:

$$\rho_{x}(E)$$

returns the expression E under the name X

 If a relational-algebra expression E has degree n, then

$$\rho_{x(A_1,A_2,\ldots,A_n)}(E)$$

returns the result of expression E under the name X, and with the attributes renamed to A_1 ,

$$A_2,, A_n$$
.

Example Query

- Find the largest salary in the university
 - Step 1: find instructor salaries that are less than some other instructor salary (i.e. not maximum)
 - using a copy of *instructor* under a new name d
 - $\Pi_{instructor.salary}$ ($\sigma_{instructor.salary < d,salary}$ (instructor x ρ_d (instructor)))
 - Step 2: Find the largest salary
 - Π_{salary} (instructor) $\Pi_{instructor.salary}$ ($\sigma_{instructor.salary} < \sigma_{d,salary}$ (instructor x ρ_d (instructor)))

Example Queries

 Find the names of all instructors in the Physics department, along with the course_id of all courses they have taught

```
Query 1
\Pi_{instructor.ID,course\_id} (\sigma_{dept\_name= \text{`Physics''}} (\sigma_{instructor.ID=teaches.ID} (instructor x teaches)))
Query 2
\Pi_{instructor.ID,course\_id} (\sigma_{instructor.ID=teaches.ID} (\sigma_{dept\_name= \text{`Physics''}} (instructor) x teaches))
```

Additional Operations

We define additional operations that do not add any power to the relational algebra, but that simplify common queries.

- Set intersection
- Natural join
- Division
- Assignment

Set-Intersection Operation

- Notation: $r \cap s$
- Defined as:
- $r \cap s = \{ t \mid t \in r \text{ and } t \in s \}$
- Assume:
 - r, s have the same arity
 - attributes of r and s are compatible
- Note: $r \cap s = r (r s)$

Set-Intersection Operation – Example

• Relation r, AB $\begin{array}{c|c}
\alpha & 1 \\
\alpha & 2 \\
\beta & 1
\end{array}$

 A
 B

 α
 2

• $r \cap s$

Natural-Join Operation

- \square Notation: $r \bowtie s$
- Let r and s be relations on schemas R and s respectively. Then, κ s is a relation on schema s obtained as follows:
 - Consider each pair of tuples t_r from r and t_s from s.
 - If t_r and t_s have the same value on each of the attributes in $R \cap S$, add a tuple t to the result, where
 - t has the same value as t_r on r
 - t has the same value as t_s on s
- Example:

$$R = (A, B, C, D)$$

$$S = (E, B, D)$$

- Result schema = (A, B, C, D, E)
- -r s is defined as:

Natural Join Example

• Relations r, s:

В	C	D
1	α	a
2	γ	a
4	β	b
1	γ	a
2	β	b
	1 2 4 1 2	2 γ 4 β 1 γ

В	D	Ε
1	a	α
3	a	β
1	a	γ
2	b	δ
3	b	3
	S	

□ r ⋈s

A	В	C	D	E
α	1	α	a	α
α	1	α	a	γ
α	1	γ	a	α
α	1	γ	a	γ
δ	2	β	b	δ

Another Natural Join Example

- Find the names of all instructors in the Comp. Sci. department together with the course titles of all the courses that the instructors teach
 - $-\prod_{name, \ title} (\sigma_{dept_name="Comp. Sci."} (instructor \bowtie teaches \bowtie course))$
- Natural join is associative
 - (instructor ⋈ teaches)⋈ course is equivalent to instructor ⋈ (teaches ⋈ course)
- Natural join is commutative
 - instruct ⋈ teaches is equivalent to teaches ⋈ instructor

Division Operation

- Notation: $r \div s$
- Suited to queries that include the phrase "for all".
- Let r and s be relations on schemas R and S respectively where

$$- R = (A_1, ..., A_m, B_1, ..., B_n)$$

$$S = (B_1, ..., B_n)$$

The result of $r \div s$ is a relation on schema

$$R - S = (A_1, ..., A_m)$$

A tuple t is in $r \div s$ if and only if both of two conditions hold:

- 1. t is in $\prod_{R-S} (r)$
- 2. For every tuple t_s in S, there is a tuple t_r in R satisfying both of the following:

1.
$$t_r[S] = t_s[S]$$

2.
$$t_r[R-S] = t$$

Division Operation – Example

Relations r, s:

A	В			
α	1			
α	2			
α	3			
β	1			
γ	1			
δ	1			
δ	3			
δ	4			
\in	6			
\in	1			
β	2			
r				

В S

 $r \div s$:

Another Division Example

Relations *r, s*:

Α	В	С	D	E		
α	а	α	а	1		
α	а	γ	а	1		
α	а	γ	b	1		
β	а	γ	а	1		
β	а	γ	b	3		
$eta eta \gamma$	а	γ	а	1		
γ	а	γ	b	1		
γ	а	β	b	1		
r						

D E
a 1
b 1

 $\Gamma : r \div s$:

 $\begin{array}{c|ccc} A & B & C \\ \hline \alpha & a & \gamma \\ \gamma & a & \gamma \end{array}$

Assignment Operation

- The assignment operation (←) provides a convenient way to express complex queries.
 - Write query as a sequential program consisting of
 - a series of assignments
 - followed by an expression whose value is displayed as a result of the query.
 - Assignment must always be made to a temporary relation variable.
- Example: Write $r \cap s$ as

$$temp \leftarrow r - s$$

 $result \leftarrow r - temp$

- The result to the right of the \leftarrow is assigned to the relation variable on the left of the \leftarrow .