

COMPLEMENTOS

FUNDAMENTOS DE DISEÑO DIGITAL OPTATIVA I. ISISA

Los complementos se usan en la Electrónica Digital para diferentes manipulaciones lógicas, como la sustracción.

Cualquier cantidad en un sistema numérico base 'b', puede tener dos complementos:

- Complemento a la base
- Complemento a la base-1

Complemento a la base

comp a b= $(b^n)_{10}$ - Nb

Donde:

b: base

n: número de elementos enteros

m: número de elementos fraccionarios

Nb: cantidad

Complemento a la (base-1)

comp a (b-1)=
$$(b^n - b^{-m})_{10} - Nb$$

Donde:

b: base

n: número de elementos enteros

m: número de elementos fraccionarios

Nb: cantidad

Complementos en el sistema binario

•comp a 1: comp a (b-1)= comp a (2-1)=comp a 1

cambiar 0's x 1's cambiar 1's x 0's

•comp a 2 : comp a b= comp a 2

sumar un '1' al bmp del comp a 1 de la cantidad original

Representación de cantidades con signo

Existen principalmente dos sistemas que permiten representar cantidades lógicos con signo:

• Sistema signo-magnitud: se agrega un bit a la a la izquierda del BMP de la cantidad que indica el signo de la misma.

BIT DE SIGNO: '0' representa signo positivo (+)

'1' representa signo negativo (-)

-45

Representación de cantidades con signo

- Sistema de complemento a 2: sistema más empleado para representar cantidades negativas que trabaja de la siguiente manera:
 - * Si el número es positivo:

* Si el número es negativo:

SUMADOR/RESTADOR DE 4 BITS

FUNDAMENTOS DE DISEÑO DIGITAL OPTATIVA I. ISISA

PRACTICA 3

- •Diseñe un circuito lógico que sume o reste dos números binarios de 4 bits, a través de una entrada de control se decidirá si se suman o restan.
- •Describa en VHDL el circuito anterior.
- •Implemente el circuito en una GAL22V10

SUMADOR DE 4 BITS

Medio sumador

$$S = \sum m(1,2)$$

$$CF=\sum m(3)$$

SUMADOR DE 4 BITS

Sumador completo

В	CI	S	CF
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1
0	0	1	0
0	1	0	1
1	0	0	1
1	1	1	1
	0 0 1 1 0	0 0 0 1 1 0 1 1 0 0	0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0 1 0

$S=\sum m($	(1,2,4,7)
	(·) — , · , · <i> </i>

$$CF = \sum m(3,5,6,7)$$

SUMADOR DE 4 BITS

RESTADOR DE 4 BITS

Método de resta por complemento a 2

Considerando la resta de dos números binarios el *minuendo* y el *sustraendo*, se tiene:

- 1. Obtenga el comp a 2 del sustraendo.
- 2. Sume el minuendo al comp a 2 del sustraendo.

Este método permite encontrar resultados negativos, los cuales estarán representados en complemento a 2.

NOTA: Es necesario que ambos números tengan el mismo número de bits.

RESTADOR DE 4 BITS Α0 **→** S0 \sum O B0 C1 comp a 2 A1 **>**S1 C3 C2 $\sum 1$ **B**1 **A3** A2 A1 A0 + A2 **B3**' **B1**' **B0**′ **← B2**' **S**2 \sum 2 B2 CF S3 S2 S1 S0 C3 C3 C2 C1 АЗ **→** S3 comp a 1 **∑**3 **B**3

PRACTICA 3

CONTROL XOR

Si A=0 F=B Si A=1 F=B'

