Таблицы истинности.

Логическая функция F задаётся выражением $(x \lor \neg y \lor \neg z) \land (\neg x \lor y)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z?

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы

	?	?	ç.	F
1	0	0	0	1
2	0	0	1	0
3	0	1	0	1
4	0	1	1	1
5	1	0	0	1
6	1	0	1	0
7	1	1	0	0
8	1	1	1	1

Логическая функция F задаётся выражением $(\neg z) \land x \lor x \land y$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z?

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы (сначала — буква, соответствующая 1-му столбцу; затем — буква, соответствующая 2-му столбцу; затем — буква, соответствующая 3-му столбцу). Буквы в ответе пишите подряд, никаких разделителей между буквами ставить не нужно.

?	?	?	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Александра заполняла таблицу истинности для выражения F. Она успела заполнить лишь небольшой фрагмент таблицы:

Каким выражением может быть F?

- 1) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land x6 \land \neg x7 \land \neg x8$
- 2) $x1 \lor x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor \neg x8$
- 3) $\neg x1 \land x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land \neg x7 \land \neg x8$
- 4) $x1 \lor \neg x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor \neg x8$

x1	x2	х3	x4	x5	х6	x7	x8	F
	0						1	0
1			0					1
			1				1	1

Логическое противоречие

- 1) Если в конъюнкции есть 0, то она не может равняться 1.
- 2) Если в дизъюнкции есть 1, то она не может быть 0.

1)	Символом F обозначено одно из указанных ниже логических выражений от трех	X	Y	Z	F
	аргументов: Х, Ү, Z. Дан фрагмент таблицы истинности выражения F (см. таблицу	1	1	1	1
	справа). Какое выражение соответствует F?	1	1	0	1
	1) $X \lor \neg Y \lor Z$ 2) $X \land Y \land Z$ 3) $X \land Y \land \neg Z$ 4) $\neg X \lor Y \lor \neg Z$	1	0	1	1
		9	75.00		100.5
2)	Символом F обозначено одно из указанных ниже логических выражений от трех	X	Y	Z	F
	аргументов: Х, Y, Z. Дан фрагмент таблицы истинности выражения F (см. таблицу	0	1	0	0
	справа). Какое выражение соответствует F?	1	1	0	1
		1	0	1	0
	1) $\neg X \lor Y \lor \neg Z$ 2) $X \land Y \land \neg Z$ 3) $\neg X \land \neg Y \land Z$ 4) $X \lor \neg Y \lor Z$	_		_	
		V	V	7	Г
3)	Символом F обозначено одно из указанных ниже логических выражений от трех	X	Y	Z	F
	аргументов: Х, Ү, Z. Дан фрагмент таблицы истинности выражения F (см. таблицу	0	0	0	1
	справа). Какое выражение соответствует F?	0	0	1	0
	1) $X \wedge Y \wedge Z$ 2) $\neg X \wedge \neg Y \wedge Z$ 3) $X \wedge Y \wedge \neg Z$ 4) $\neg X \wedge \neg Y \wedge \neg Z$	0	1	0	0
4)	Символом F обозначено одно из указанных ниже логических выражений от трех	X	Y	Z	F
	аргументов: Х, Ү, Z. Дан фрагмент таблицы истинности выражения F (см. таблицу	0	0	0	1
	справа). Какое выражение соответствует F?	0	0	1	0
	1) $\neg X \land \neg Y \land Z$ 2) $\neg X \lor \neg Y \lor Z$ 3) $X \lor Y \lor \neg Z$ 4) $X \lor Y \lor Z$	0	1	0	1
		_	-	-	_

3)4

4)3

1)1

2)2

46) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	х4	x5	х6	F
1	0	0	0	0	1	0
0	1	1	0	0	1	0
0	0	0	0	1	1	0

Какое выражение соответствует F?

- 1) x1 \ x5 \ x2 \ x4 \ x6 \ x3
- 2) x1 \ x3 \ x2 \ x5 \ x6 \ x4
- 3) x1 \ x4 \ x3 \ x5 \ x6 \ x2
- 4) x1 \ x2 \ x3 \ x4 \ x6 \ x5

47) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	x4	x5	х6	F
1	1	0	0	0	1	0
1	0	1	0	0	1	0
1	1	0	1	0	0	0

Какое выражение соответствует F?

- 1) x1 \ x2 \ x3 \ x4 \ x5 \ x6
- 2) x1 \ x3 \ x4 \ x5 \ x6 \ x2
- 3) x1 \ x4 \ x2 \ x5 \ x6 \ x3
- 4) x1 \ x5 \ x2 \ x3 \ x6 \ x4

48) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	x4	x5	хб	х7	F
1	1	0	1	1	1	1	1
1	0	1	0	1	1	0	0
0	1	0	1	1	0	1	0

Какое выражение соответствует F?

- 1) x1 v ¬x2 v x3 v ¬x4 v ¬x5 v x6 v ¬x7
- 2) x1 \(\sigma \pi x2 \cdot x3 \cdot \sigma x4 \cdot x5 \cdot x6 \cdot \sigma x7
- 3) x1 \ x2 \ \ \ x3 \ \ x4 \ \ x5 \ \ x6 \ \ x7
- 4) ¬x1 ∨ x2 ∨ ¬x3 ∨ x4 ∨ ¬x5 ∨ x6 ∨ ¬x7

49) Дан фрагмент таблицы истинности выражения F.

x1	x2	х3	x4	x5	х6	x7	F
1	1	0	1	1	1	1	0
1	0	1	0	1	1	0	1
0	1	0	1	1	0	1	0

Какое выражение соответствует F?

- 1) x1 \(\sigma x2 \cdot x3 \sigma \sigma x4 \cdot x5 \cdot x6 \sigma \sigma x7
- 2) x1 v ¬x2 v x3 v ¬x4 v ¬x5 v x6 v ¬x7
- 3) ¬x1 v x2 v ¬x3 v x4 v ¬x5 v ¬x6 v x7
- 4) $\neg x1 \land x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land x7$

70) Дан фрагмент таблицы истинности для выражения F:

x1	x2	хЗ	x4	x5	х6	х7	х8	F
		0			311	1		0
1	. 3	36		2	0		1	0
2		0				1		1

Каким выражением может быть F?

- 1) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land x6 \land x7 \land \neg x8$
- 2) x1 v x2 v x3 v ¬x4 v ¬x5 v ¬x6 v x7 v x8
- 3) $\neg x1 \land x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land x7 \land \neg x8$
- 4) x1 v ¬x2 v ¬x3 v ¬x4 v ¬x5 v ¬x6 v x7 v ¬x8

71) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	x4	x5	х6	х7	х8	F
		0			1	1		1
1		0			1			0
			1				0	1

Каким выражением может быть F?

- 1) $x1 \land \neg x2 \land x3 \land \neg x4 \land x5 \land x6 \land \neg x7 \land \neg x8$
- 2) $\neg x1 \lor x2 \lor x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor x8$
- 3) $\neg x1 \land x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land \neg x7 \land \neg x8$
- 4) ¬x1 ∨ ¬x2 ∨ ¬x3 ∨ ¬x4 ∨ ¬x5 ∨ ¬x6 ∨ ¬x7 ∨ ¬x8

72) Дан фрагмент таблицы истинности для выражения F:

x1	x2	х3	x4	x5	хб	x7	x8	F
		0				1		0
1		0			1			1
		6	1				0	0

Каким выражением может быть F?

- 1) x1 \ ¬x2 \ ¬x3 \ ¬x4 \ x5 \ x6 \ ¬x7 \ ¬x8
- 2) ¬x1 ∨ x2 ∨ x3 ∨ ¬x4 ∨ ¬x5 ∨ ¬x6 ∨ ¬x7 ∨ x8
- 3) $x1 \land x2 \land \neg x3 \land x4 \land x5 \land \neg x6 \land \neg x7 \land \neg x8$
- 4) $\neg x1 \lor \neg x2 \lor \neg x3 \lor \neg x4 \lor \neg x5 \lor \neg x6 \lor \neg x7 \lor \neg x8$

114) Логическая функция F задаётся выражением $(\neg a) \lor b \land (\neg c)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a, b, c.

?	?	?	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

В ответе напишите буквы a, b, c в том порядке, в котором идут соответствующие им столбцы.

115) Логическая функция F задаётся выражением $a \wedge b \vee a \wedge (\neg c)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	?	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

В ответе напишите буквы a, b, c в том порядке, в котором идут соответствующие им столбцы.

121) Логическая функция F задаётся выражением $(\neg x \land y \land z) \lor (\neg x \land y \land \neg z) \lor (\neg x \land \neg y \land \neg z)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий **все наборы** аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных x, y, z.

?	?	?	F
0	0	0	1
1	0	0	1
1	0	1	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

122) Логическая функция F задаётся выражением $(\neg x \land y \land z) \lor (\neg x \land \neg y \land z) \lor (\neg x \land \neg y \land \neg z)$. На рисунке приведён фрагмент таблицы истинности функции F, содержащий **все наборы** аргументов, при которых функция F истинна. Определите, какому столбцу таблицы истинности функции F соответствует каком из переменных x, y, z.

?	?	?	F
0	0	0	1
1	0	0	1
1	0	1	1

121)yxz 122)zxy

125) **(М.В. Кузнецова)** Логическая функция F задаётся выражением $(x \lor y) \land (\neg x \lor y \lor \neg z)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных

?	?	?	F
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

В ответе напишите буквы x, y, z в том порядке, в котором идут соответствующие им столбцы.

126) **(М.В. Кузнецова)** Логическая функция F задаётся выражением $(a \lor \neg c) \land (\neg a \lor b \lor c)$. Определите, какому столбцу таблицы истинности функции F соответствует каждая из переменных a,b,c.

?	?	?	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1