Top Equations in Deep Learning

February 15, 2020

	Equation		Use	Citation
1	Stochastic Gradient Descent	$\theta_{i+1} \leftarrow \theta_i - \alpha \sum_{x \in B} \frac{\partial L(x)}{\partial \theta}$	Optimization	
2	Backpropagation	$\frac{\partial L}{\partial \theta} = \frac{\partial L}{\partial z} \frac{\partial z}{\partial \theta}$	Computing Gradients	
3	Linear Layer	y = Wx + b	Base Layer in Deep Learning	
4	Convolutions	$(f * g)[n] = \sum_{m=0}^{K} f[n-m]g[m]$	Image Networks	
5	ReLU	$\operatorname{ReLU}\left(x\right) = \max(0,x)$	Activation Function	
6	Recurrent Cells	$h_{t+1} = \tanh(W_{ih}x_t + b_{ih} + W_{hh}h_t + b_{hh})$	Sequence Modeling	
7	Self Attention	$\operatorname{Attention}\left(Q,K,V\right) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$	Transformers	
8	Generative Adversarial Netowrks	$\min_{G} \max_{D} \underset{x \sim p_{data}(x)}{\mathbb{E}} \left[\log D(x) \right] + \underset{z \sim p_{z}(z)}{\mathbb{E}} \left[\log \left(1 - D(G(z)) \right) \right]$	Generative Modeling	
9	REINFORCE	$\triangle \theta = \alpha r \frac{\partial \log p \left(a \mid \pi^{\theta}(s) \right)}{\partial \theta}$	Reinforcement Learning	
10	(Variational) Auto-Encoder		Liklihood Modeling	
11	Categorical Cross Entropy	$L\left(x,y\right) = -x_y + \log\left(\sum_{j} \exp\left(x_j\right)\right)$	Multiclass Classification	
12	Bellman Equation	$\begin{split} V(s_t) &= \max_{a_t} \left(R(s_t, a_t) + \gamma \sum_{s_{t+1}} p(s_t, a_t, s_{t+1}) V(s_{t+1}) \right) \\ Q(s_t, a_t) &= Q(s_t, a_t) + \alpha \cdot \left(R(s_t, a_t) + \gamma \cdot \max_{a} Q\left(s_{t+1}, a\right) - Q\left(s_t, a_t\right) \right) \end{split}$	Reinforcement Learning	
13	Reparametrization Trick	$\mathop{\mathbb{E}}_{z \sim p(z \theta)}[f(z)] = \mathop{\mathbb{E}}_{\epsilon \sim p(\epsilon)}[f(g(\epsilon,\theta))]$	Differential Sampling	
14	. ℓ_p Norm	$ x _p = \left(\sum_{i=1}^n x_i ^p\right)^{1/p} \qquad A _F \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{ij} ^2}$	Distance, Regression Loss	
15	Batch Normalization	$y = \frac{x - \mathbb{E}\left[x\right]}{\sqrt{\operatorname{Var}\left[x\right] + \epsilon}} * \gamma + \beta$	Regularization	
16	Mutual Information			

Table 1