Fonctions à valeurs vectorielles

Dans tout ce chapitre, les fonctions considérées sont des fonctions définies sur un **intervalle** I de \mathbb{R} à valeurs dans un \mathbb{K} -espace vectoriel normé E de dimension finie ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$).

1 Dérivabilité

1.1 Définition

Définition 1.1 Dérivabilité en un point

Soit $f: I \to E$. On dit que f est **dérivable** en $a \in I$ si $t \mapsto \frac{f(t) - f(a)}{t - a}$ admet une limite en a. Dans ce cas, cette limite est notée f'(a).

Proposition 1.1 Dérivabilité et continuité

Soit $f: I \to E$. Si f est dérivable en $a \in I$, alors f est continue en a.

Définition 1.2 Négligeabilité

Soient f une fonction à valeurs dans E et g une fonction à valeurs dans \mathbb{K} , toutes deux définies sur un voisinage de a (éventuellement non définies en a). On dit que f est **négligeable** devant g en a si $\lim_a \frac{f}{g} = 0$. On note alors f = o(g).

Proposition 1.2 Dérivabilité et développement limité

Une fonction $f: I \to E$ est dérivable en $a \in I$ si et seulement si f admet un développement limité d'ordre 1 en a. Dans ce cas, ce développement limité est

$$f(t) = f(a) + f'(a)(t - a) + o(t - a)$$

Proposition 1.3 Dérivabilité et fonctions coordonnées

Soit $(e_1, ..., e_n)$ une base de E. Alors $f: I \to E$ est dérivable en $a \in I$ si et seulement si pour tout $i \in [1, n]$, $f_i = e_i^* \circ f$ est dérivable en a. Dans ce cas,

$$f'(a) = \sum_{i=1}^{n} f_i'(a)e_i$$

Remarque. Le fait que $f_i = e_i^* \circ f_i$ pour tout $i \in [1, n]$ signifie que :

$$\forall t \in I, \ f(t) = \sum_{i=1}^{n} f_i(t)e_i$$

Définition 1.3 Dérivabilité à gauche, à droite

Soit $f: I \to E$.

Alors f est **dérivable à droite** en $a \in I$ si $t \mapsto \frac{f(t) - f(a)}{t - a}$ admet une limite à droite en a.

De même, f est **dérivable à gauche** en $a \in I$ si $t \mapsto \frac{f(t) - f(a)}{t - a}$ admet une limite à gauche en a.

1.2 Opérations sur les fonctions dérivables

Proposition 1.4 Combinaison linéaire

Soient f et g deux fonctions de I dans E dérivables en $a \in I$ (resp. sur I). Alors pour tout $(\lambda, \mu) \in \mathbb{K}^2$, $\lambda f + \mu g$ est dérivable en a (resp. sur I) et $(\lambda f + \mu g)' = \lambda f' + \mu g'$.

Proposition 1.5

Soient $f: I \to E$ et $\lambda: I \to K$ dérivables en $a \in I$ (resp. sur I). Alors λf est dérivable en a (resp. sur I) et $(\lambda f)' = \lambda' f + \lambda f'$.

Proposition 1.6 Composition par une application linéaire

Soit $f: I \to E$ dérivable en $a \in I$ (resp. sur I) et $f \in \mathcal{L}(E, F)$. Alors $L \circ f$ est dérivable en a (resp. sur I). De plus, $(L \circ f)' = L \circ f'$.

Proposition 1.7 Dérivabilité et application bilinéaire

Soient $f: I \to E$ et $g: I \to F$ dérivables en $a \in I$ (resp. sur I). Soit $B: E \times F \to G$ une application **bilinéaire**. Alors B(f,g) est dérivable en a (resp. sur I). De plus, B(f,g)' = B(f',g) + B(f,g').

REMARQUE. E et F sont deux K-espaces vectoriels normés de dimension finie.

Exercice 1.1

Soit A: I $\to \mathcal{M}_n(\mathbb{K})$ une application dérivable. Montrer que si A(t) et A'(t) commutent pour tout $t \in I$, alors pour tout $n \in \mathbb{N}$, Aⁿ est dérivable sur I et que (Aⁿ)' = nA'Aⁿ⁻¹ = nAⁿ⁻¹A'.

Corollaire 1.1

Soient E un espace euclidien, $f: I \to E$ et $g: I \to E$ deux fonctions dérivables en $a \in I$ (resp. sur I). Alors $\langle f, g \rangle$ est dérivable en a (resp. sur I) et $\langle f, g \rangle' = \langle f', g \rangle + \langle f, g' \rangle$.

Exemple 1.1

Si E est un espace euclien et $f: I \to E$ est une fonction dérivable sur I **ne s'annulant pas sur** I, alors ||f|| est dérivable sur I et $||f||' = \frac{\langle f', f \rangle}{||f||}$.

Proposition 1.8 Dérivabilité et application multilinéaire

Soient $f_1: I \to E_1, ..., f_p: I \to E_p$ dérivables en $a \in I$ (resp. sur I). Soit M: $\prod_{i=1}^p E_i \to F$ une application **multilinéaire**. Alors $M(f_1, ..., f_p)$ est dérivable en a (resp. sur I). De plus,

$$M(f_1, ..., f_p)' = M(f_1', f_2, ..., f_p) + M(f_1, f_2', ..., f_p) + ... + M(f_1, ..., f_{p-1}, f_p')$$

Remarque. E_1, \ldots, E_n sont des \mathbb{K} -espaces vectoriels normés de dimension finie.

Corollaire 1.2

Soient $\mathcal B$ une base de E et f_1,\ldots,f_p des applications de I dans E dérivables en $a\in I$ (resp. sur I). Alors $\det_{\mathcal B}(f_1,\ldots,f_p)$ est dérivable en a (resp. sur I) et

$$\det_{\mathcal{B}}(f_1, \dots, f_p)' = \det_{\mathcal{B}}(f_1', f_2, \dots, f_p) + \det_{\mathcal{B}}(f_1, f_2', \dots, f_p) + \dots + \det_{\mathcal{B}}(f_1, \dots, f_{p-1}, f_p')$$

Proposition 1.9 Composition

Soient I et J deux intervalles de \mathbb{R} , $\varphi: I \to J$ dérivable sur I et $f: J \to E$ dérivable sur J. Alors $f \circ \varphi$ est dérivable sur I et $(f \circ \varphi)' = \varphi' \times (f' \circ \varphi)$.

1.3 Fonctions de classe C^k

Définition 1.4 Fonction de classe C^k

Soient $f: I \to E$ et $k \in \mathbb{N}$. On dit que f est de classe \mathcal{C}^k sur I si f est dérivable k fois sur I et si $f^{(k)}$ est continue sur I. On dit que f est de classe \mathcal{C}^{∞} si f est indéfiniment dérivable sur I.

Notation 1.1

On note $\mathcal{C}^k(I, E)$ l'ensemble des fonctions de classe \mathcal{C}^k sur I à valeurs dans E.

Proposition 1.10 Combinaison linéaire

Soit $(f,g) \in \mathcal{C}^k(I,E)^2$, où $k \in \mathbb{N} \cup \{\infty\}$. Alors pour tout $(\lambda,\mu) \in \mathbb{K}^2$, $\lambda f + \mu g \in \mathcal{C}^k(I,E)^2$. De plus, si $k \in \mathbb{N}$, $(\lambda f + \mu g)^{(k)} = \lambda f^{(k)} + \mu g^{(k)}$.

Remarque. Ceci signifie que $\mathcal{C}^k(I, E)$ est un \mathbb{K} -espace vectoriel et, plus précisément, un sous-espace vectoriel de E^I .

Proposition 1.11 Composition par une application linéaire

Soit $f \in \mathcal{C}^k(I, E)$, où $k \in \mathbb{N} \cup \{\infty\}$, et $f \in \mathcal{L}(E, F)$. Alors $L \circ f \in \mathcal{C}^k(I, F)$. De plus, si $k \in \mathbb{N}$, $(L \circ f)^{(k)} = L \circ f^{(k)}$.

Proposition 1.12 Composition

Soient I et J deux intervalles de \mathbb{R} , $\varphi \in \mathcal{C}^k(I, J)$ et $f \in \mathcal{C}^k(J, E)$, où $k \in \mathbb{N} \cup \{\infty\}$. Alors $f \circ \varphi \in \mathcal{C}^k(I, E)$.

2 Intégration

2.1 Définition et propriétés générales

Définition 2.1 Fonctions continues par morceaux

Une fonction $f: [a,b] \to E$ est dite **continue par morceaux** si ses coordonnées dans une base de E le sont. Une fonction $f: I \to E$ est dite **continue par morceaux** si elle est continue par morceaux sur **tout segment** de I.

REMARQUE. La continuité par morceaux ne dépend pas de la base choisie.

Notation 2.1

On notera $\mathcal{C}_m(I, E)$ l'ensemble des fonctions continues par morceaux sur un intervalle I à valeurs dans E

Définition 2.2 Intégrale d'une fonction vectorielle

Soient $f \in \mathcal{C}_m([a,b], \mathcal{E})$ et (e_1, \dots, e_n) une base de \mathcal{E} . La quantité

$$\sum_{k=1}^{n} \left(\int_{a}^{b} e_{k}^{*} \circ f(t) \, dt \right) e_{k}$$

est indépendante de la base de E choisie. On la note $\int_a^b f(t) dt$, $\int_{[a,b]} f$ ou $\int_a^b f$.

Les propriétés des intégrales des fonctions à valeurs **vectorielles** sont quasiment les mêmes que celles des intégrales à valeurs **numériques**.

Proposition 2.1 Linéarité de l'intégrale

Soit $(f,g) \in \mathcal{C}_m([a,b], E)^2$. Pour tout $(\lambda, \mu) \in \mathbb{K}^2$,

$$\int_{a}^{b} (\lambda f(t) + \mu g(t)) dt = \lambda \int_{a}^{b} f(t) dt + \mu \int_{a}^{b} g(t) dt$$

Remarque. Ceci signifie que l'application $f \mapsto \int_a^b f(t) dt$ est une **application linéaire** de $\mathcal{C}_m([a,b], E)$ dans E.

Exercice 2.1

Soit E un espace vectoriel de dimension finie, $L \in \mathcal{L}(E, F)$ et $f \in \mathcal{C}_m([a, b], E)$. Montrer que

$$L\left(\int_{a}^{b} f(t) dt\right) = \int_{a}^{b} L(f(t)) dt$$

Proposition 2.2 Relation de Chasles

Soient a, b, c trois réels tels que $a \le c \le b$ et f continue par morceaux sur [a, b] à valeurs dans E. Alors

$$\int_a^b f(t) dt = \int_a^c f(t) dt + \int_c^b f(t) dt$$

Remarque. On en déduit notamment que $\int_b^a f(t) dt = -\int_a^b f(t) dt$.

Proposition 2.3 Inégalité triangulaire

Soit $f \in \mathcal{C}_m([a,b], E)$. Alors

$$\left\| \int_a^b f(t) \, \mathrm{d}t \right\| \le \int_a^b \|f(t)\| \, \mathrm{d}t$$

ATTENTION! L'ordre des bornes importe. On doit avoir $a \le b$.

2.2 Sommes de Riemman

Définition 2.3 Somme de Riemann

Soit $f \in \mathcal{C}_m([a,b], \mathbb{E})$. On appelle somme de Riemann de f l'une des deux sommes suivantes :

$$R_n(f) = \frac{b-a}{n} \sum_{k=0}^{n-1} f(a_k)$$

$$R'_n(f) = \frac{b-a}{n} \sum_{k=1}^n f(a_k)$$

où $a_k = a + k \frac{b-a}{n}$ pour tout $k \in [0, n]$ et n est un entier non nul.

Proposition 2.4 Convergence des sommes de Riemann

Soit $f \in \mathcal{C}_m([a,b], \mathbf{E})$. Alors les suites $(\mathbf{R}_n(f))$ et $(\mathbf{R}'_n(f))$ convergent vers $\int_a^b f(t) \ \mathrm{d}t$.

Remarque. L'ordre des bornes n'est pas important.

2.3 Théorème fondamental de l'analyse et conséquences

Définition 2.4 Primitive

Soit $f \in \mathcal{C}(I, E)$. On dit que $F: I \to E$ est une **primitive** de f sur I si F est dérivable sur I et F' = f.

Théorème 2.1 Théorème fondamental de l'analyse

Soient $f \in \mathcal{C}(I, E)$ et $a \in E$. Alors $F_a : x \mapsto \int_a^x f(t) dt$ est l'**unique primitive de** f **sur** I **s'annulant en** a.

Corollaire 2.1

Soit $f \in \mathcal{C}([a,b], E)$. Si F est une **primitive** de f sur [a,b], alors

$$\int_{a}^{b} f(t) dt = F(b) - F(a)$$

Corollaire 2.2 Inégalité des accroissements finis

Soit $f \in \mathcal{C}^1(I, E)$. Si $||f'|| \le K$ sur I, alors

$$\forall (a, b) \in I^2, ||f(b) - f(a)|| \le K|b - a|$$

Remarque. Il est essentiel que I soit un **intervalle**.

Remarque. Ceci signifie que f est K-lipschitzienne sur I.

Remarque. Si f est de classe \mathcal{C}^1 sur un **segment** [a,b], ||f'|| est continue sur [a,b] à valeurs dans \mathbb{R} : elle y admet donc un maximum M. f est alors M-lipschitzienne.

Techniques de calcul

Puisque l'intégrale d'une fonction vectorielle est définie à l'aide des intégrales de ses coordonnées dans une base (i.e. des intégrales de fonctions numériques), les techniques de calcul vues en première année s'appliquent encore :

- intégration par parties ;
- · changement de variable.

3 Formules de Taylor

Proposition 3.1 Formule de Taylor avec reste intégral

Soit $f \in \mathcal{C}^{n+1}([a,b], E)$. Alors

$$f(b) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^k + \int_a^b \frac{(b-t)^n}{n!} f^{(n+1)}(t) dt$$

Remarque. L'ordre de a et b n'importe pas.

Proposition 3.2 Inégalité de Taylor-Lagrange

Soit $f \in \mathcal{C}^{n+1}([a,b], E)$. Alors

$$\left\| f(b) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (b-a)^{k} \right\| \le \frac{|b-a|^{n+1}}{(n+1)!} \cdot \max_{[a,b]} \left\| f^{(n+1)} \right\|$$

Remarque. L'ordre de a et b n'importe pas.

Remarque. $||f^{(n+1)}||$ admet bien un maximum sur le **segment** [a,b] puisqu'elle y est **continue**.

Proposition 3.3 Formule de Taylor-Young

Soient $f \in \mathcal{C}^n(I, E)$ et $a \in I$. Alors f admet un développement limité d'ordre n en a donné par

$$f(t) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (t-a)^k + o((t-a)^n)$$

4 Suites et séries de fonctions

4.1 Suites de fonctions

Théorème 4.1 Interversion limite / primitive

Soient (g_n) une suite de fonctions continues sur un **intervalle** I à valeurs dans E at $a \in I$. On suppose que (g_n) converge uniformément sur tout segment de I vers une fonction g. On pose

$$\forall n \in \mathbb{N}, \ G_n : x \in I \mapsto \int_a^x g_n(t) \ dt$$
 et $G : x \in I \mapsto \int_a^x g(t) \ dt$

Alors (G_n) converge uniformément vers la fonction G sur tout segment de I.

Corollaire 4.1 Interversion limite / intégration

Soit (f_n) une suite de fonctions continues sur un **segment** [a,b] à valeurs dans E convergeant **uniformément** sur [a,b] vers une fonction f. Alors

$$\lim_{n \to +\infty} \int_a^b f_n(t) dt = \int_a^b f(t) dt$$

Théorème 4.2 Interversion limite / dérivation

Soit (f_n) une suite de fonctions **de classe** \mathcal{C}^1 sur un intervalle I à valeurs dans E. Si

- (f_n) converge **simplement** vers une fonction f sur I;
- (f'_n) converge **uniformément** vers une fonction g sur tout segment de I.

Alors

- (f_n) converge **uniformément** vers f sur tout segment de I;
- f est de **classe** \mathcal{C}^1 sur I ;
- f' = g.

Corollaire 4.2

Soit (f_n) une suite de fonctions de classe \mathcal{C}^k sur un intervalle I à valeurs dans E. Si

- pour tout $j \in [\![0,k-1]\!], (f_n^{(j)})$ converge simplement sur I ;
- $(f_n^{(k)})$ converge uniformément sur tout segment de I.

Alors

- la limite simple f de (f_n) est de classe \mathcal{C}^k sur I;
- pour tout $j \in [0, k]$, la suite $(f_n^{(j)})$ converge uniformément vers $f^{(j)}$ sur tout segment de I.

4.2 Séries de fonctions

Théorème 4.3 Interversion série / primitive

Soient $\sum_{n\in\mathbb{N}} f_n$ une série de fonctions continues sur un **intervalle** I à valeurs dans E et $a\in I$. On suppose que $\sum_{n\in\mathbb{N}} f_n$ converge uniformément sur tout segment de I. On pose

$$\forall n \in \mathbb{N}, \ F_n : x \in I \mapsto \int_a^x f_n(t) dt$$
 et $F : x \in I \mapsto \int_a^x \sum_{n=0}^{+\infty} f_n(t) dt$

Alors $\sum_{n\in\mathbb{N}} F_n$ converge uniformément vers la fonction F sur tout segment de I.

Corollaire 4.3 Interversion série / intégration

Soit $\sum_{n\in\mathbb{N}} f_n$ une série de fonctions continues sur un **segment** [a,b] à valeurs dans E convergeant **uniformément** sur [a,b].

$$\sum_{n=0}^{+\infty} \int_{a}^{b} f_n(t) dt = \int_{a}^{b} \sum_{n=0}^{+\infty} f_n(t) dt$$

Théorème 4.4 Interversion série / dérivation

Soit $\sum_{n\in\mathbb{N}} f_n$ une série de fonctions **de classe** \mathcal{C}^1 sur un intervalle I à valeurs dans E. Si

- $\sum_{n\in\mathbb{N}} f_n$ converge **simplement** sur I;
- $\sum_{n\in\mathbb{N}} f'_n$ converge **uniformément** sur tout segment de I.

Alors

- $\sum_{n\in\mathbb{N}} f_n$ converge **uniformément** sur tout segment de I ;
- $\sum_{n=0}^{+\infty} f_n$ est de classe \mathcal{C}^1 sur I;
- $\bullet \left(\sum_{n=0}^{+\infty} f_n\right)' = \sum_{n=0}^{+\infty} f_n'.$

Proposition 4.1

- Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors l'application $\varphi : t \in \mathbb{R} \mapsto \exp(tA)$ est de classe \mathcal{C}^1 sur \mathbb{R} et $\forall t \in \mathbb{R}$, $\varphi'(t) = A \exp(tA) = \exp(tA)A$.
- Soit $u \in \mathcal{L}(E)$ où E est un \mathbb{K} -espace vectoriel de **dimension finie**. Alors l'application $\varphi : t \in \mathbb{R} \mapsto \exp(tu)$ est de classe \mathcal{C}^1 sur \mathbb{R} et $\forall t \in \mathbb{R}$, $\varphi'(t) = u \circ \exp(tu) = \exp(tu) \circ u$.

Corollaire 4.4

Soit $\sum_{n\in\mathbb{N}} f_n$ une série de fonctions de classe \mathcal{C}^k sur un intervalle I à valeurs dans E. Si

- pour tout $j \in [\![0,k-1]\!], \sum_{n \in \mathbb{N}} f_n^{(j)}$ converge simplement sur I ;
- $\sum_{n\in\mathbb{N}} f_n^{(k)}$ converge uniformément sur tout segment de I.

Alors

- $\sum_{n=0}^{+\infty} f_n$ est de classe C^k sur I;
- pour tout $j \in [0, k]$, la série $\sum_{n \in \mathbb{N}} f_n^{(j)}$ converge uniformément vers $\left(\sum_{n=0}^{+\infty} f_n\right)^{(j)}$ sur tout segment de I.

Exercice 4.1

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Montrer que $t \in \mathbb{R} \mapsto \exp(tA)$ est de classe \mathcal{C}^{∞} sur \mathbb{R} et calculer ses dérivées successives.

4.3 Approximation uniforme

Théorème 4.5 Approximation uniforme d'une fonction continue par morceaux par des fonctions en escalier

Soit f une fonction **continue par morceaux** sur un **segment** [a,b] à valeurs dans F. Alors il existe une suite (φ_n) de fonctions **en escalier** sur [a,b] à valeurs dans F **convergeant uniformément** vers f.

Remarque. Si on note $\mathcal{C}_m([a,b], F)$ l'ensemble des fonctions continues par morceaux sur [a,b] à valeurs dans F et $\mathcal{E}([a,b], F)$ l'ensemble des fonctions en escalier sur [a,b] à valeurs dans F, ceci signifie que $\mathcal{E}([a,b], F)$ est **dense** dans $\mathcal{C}_m([a,b], F)$ pour la norme uniforme.