Become an Open Source Developer

of Geographic Information Systems

With ...

"Si no quieres hacerlo vas a encontrar la excusa, si quieres hacerlo vas a encontrar los medios"

En un camión del transporte público en Mazatlán, México.

Topics

- 1. Who is ...
- 2. Open Source Geospatial Foundation
- 3. Success with OSGeo + GCI
- 4. Success with OSGeo + GSoC
- 5. Free Open Source Software
- 6. pgRouting

Vicky Vergara

Celia Virginia Vergara Castillo

- OSGeo Charter Member
- pgRouting project main developer
- PSC of OSGeoLive project
- Licenciado en Economía
- Maestro en Ciencias de la Computación
- Twitter: <a>@VickyVvergara

Open Source Geospatial Foundation

Empower everyone with open source geospatial

Empower everyone with open source geospatial

- OSGeo is a not-for-profit software foundation
 - Provides projects financial, organizational and legal support
- Outreach and advocacy
 - Promoting global adoption of open source geospatial technology
 - Partnerships on open approach to standards, data and education.
- OSGeo is a volunteer driven
 - Passionate membership of individuals from around the world.

Open Geospatial

Working with our partners:

- Open Source: a collaborative approach to software development.
- Open Data: freely available information to use as you wish
- Open Standards: avoid lock-in with interoperable software
- Open Education: Removing the barriers to learning and teaching

Software Foundation

We are responsible for

- Supporting our great collection of projects
- Fostering new talent and innovation.

OSGeo supports projects

- Technically with community of their peers
- Socially with community building and outreach
- Professionally ensuring each project is governed in a fair and sustainable manner

Success with

Google Code-in

What is Google Code-in?

Online, global contest for 13-17 year old pre-university students

Introduction to open source software development

Students have the opportunity to work with real open source organizations

How does Google Code-in work?

- Orgs create tasks for students to work on
- Students choose tasks that interest them
- Tasks take 3-5 hours to complete
- 1+ mentor assigned to each task
- Student submits work for review
- Mentor reviews work
- If accepted, student can claim another task

Types of Tasks

Generally take 3-5 hours to complete

- Coding
- Documentation/Training
- User Interface
- Outreach/Research
- Quality Assurance

Beginner tasks

Generally take 3-5 hours to complete

- Great way to get started in the contest
- Become familiar with how the org works
- Build confidence
- Students can complete up to 2 beginner tasks

Why should you participate?

Apply skills from class to a real software organization

Learn new skills: creating patches, using version control, distributed development, working collaboratively

Become part of the community

Easy entry, mentors there to help guide you (online) OS software isn't just about coding - variety of types of tasks

See your work being used by thousands, even millions, maybe even become a committer on a project

Success with

Google Summer of Code

Bebroactive

OSGeo Projects

What is your interest?

What will convert you from novice to expert?

What will you enjoy working on?

OSGeoLive

Become familiar with the projects.

Play with the projects.

Contact Project

Read the latest news.

Register to mailing lists.

E-mail a short description.

Start a discussion.

Get feedback.

Make a Calendar

Electronically or on paper.

Adjust to your time zone.

Add GsoC program dates.

Include your region's Holiday.

Know the project

Read the user documentation.

Read the developer documentation.

Read the project wiki.

Read the bug tracker issues.

Coding Language

Get familiar with the code.

C, C++

Java,

Python

JavaScript

Improve your language skills.

Contribute

Learn different repository platforms:

GitHub

SVN

Gogs

Practice contributing code fixes.

Practice contributing documentation fixes.

Proposal

Application Review

Aim for a complete proposal.

OSGeo guidelines.

OSGeo project guidelines.

Guidelines

Listen To Community

Don't reinvent the wheel.

Discuss timeline.

Discuss derivables.

Be Patient

Mentors are also waiting.

Weekly Report

Essential activity of project management.

Your actions or inactions affects all.

Adjust due dates to your time zone.

Research Skills

Gather information about the proposal.

Study your topic.

First write your code in pseudocode.

Infrastructure

Install software.

Install the data.

Participate in project meetings.

Set up your wiki.

coding

Listen To Mentors

Project members faced the same walls.

Ease your way through the project.

Document the code

Let the users know how to use your code.

Developer's documentation.

Helps troubleshooting.

Helps production issues.

Follow Standards

Uniform engineering.

Uniform technical criteria.

Uniform methods.

Uniform processes.

Uniform practices.

OSGeo Links

Main page http://www.osgeo.org/

Twitter: **@OSGeo**

GCI: https://wiki.osgeo.org/wiki/Google_Code_In_2017_Recommendations_for_Students

GSoC:

https://wiki.osgeo.org/wiki/Google_Summer_of_Code_Recommendations_for_Students

Posters:

https://github.com/OSGeo/osgeo/blob/master/marketing/collateral/one-page-info

Google Links

https://developers.google.com/open-source/gci/resources/getting-started

https://google.github.io/gsocguides/student/

Free Open Source Software

Pancho

Using FOSS

Improving FOSS

Using FOSS

Improving FOSS

Using FOSS

Using FOSS

PpgRouting

Proyecto comunitario de OSGeo

De Código Abierto

Que encuentran en GitHub

https://github.com/pgRouting

Usando librerías C++ boost

Como extensión de PostGIS

Para ser usado en PostgreSQL

PostgreSQL

One ways

PpgRouting

osm2pgRouting

pgRoutingLayer

Qué es el proyecto pgRouting?

pgRouting

Crear la base de datos

```
createdb argentina;

psql -c "CREATE EXTENSION postgis" -d argentina

psql -c "CREATE EXTENSION pgrouting" -d argentina
```


Obtener los datos

```
BBOX="-58.44370, -34.57352, -58.43700, -34.57043"
wget --progress=dot:mega \
    -0 "argentinafoss4g.osm" \
    "http://www.overpass-api.de/api/xapi?*[bbox=${BBOX}][@meta]"
```


Importar datos a la Base de datos

```
osm2pgrouting \
    -f argentinafoss4g.osm \
    -d argentina \
    --clean
```


Conectarse a la base de datos

psql argentina

Ejecutar una consulta

```
SELECT * FROM pgr_dijkstra(
'SELECT gid AS
    id,
    source,
    target,
    cost_s AS cost,
    reverse_cost_s AS reverse_cost FROM ways',
    18, 16);
```


Obtener resultados

```
| path seq | node | edge | cost
                                                     agg_cost
                   18
                            | 0.729963776732285 |
  1 |
                         98
  2
                   65 I
                              0.609540796785944 | 0.729963776732285
                        188
  3 |
                  139 I
                         34
                              0.779552735077638
                                                   1.33950457351823
  4
                  15 I
                         67 I
                               12.7287743080311 I
                                                   2.11905730859587
  5 I
                  42 | 36 | 10.6159737661904 | 14.847831616627
  6 I
             6 I
                  16 I
                                                   25.4638053828173
                         -1 I
(6 rows)
```


Abrir QGIS

Instalar pgRouting Layer

Cargar las tablas

Ver el grafo (mapa)

Hacer una ruta

Ver la ruta

contribuciones de estudiantes

Xi'an Jiaotong University

Waognaug Maug

Componentes

Familia de funciones

- pgr connectedComponents Experimental Return the connected components of an undirected graph.
- <u>pgr_strongComponents Experimental</u> Return the strongly connected components of a directed graph.
- <u>pgr_biconnectedComponents Experimental</u> Return the biconnected components of an undirected graph.
- pgr articulationPoints Experimental Return the articulation points of an undirected graph.
- <u>pgr_bridges Experimental</u> Return the bridges of an undirected graph.

Documentación:

http://docs.pgrouting.org/2.5/en/components-family.html

https://github.com/pgRouting/pgrouting/blob/a9fcb12d31070769d1fda68744f499bfcf2cfd85/src/components/src/connectedComponents_driver.cpp

Mira como trabaja

https://www.youtube.com/watch?v=rZ_68kz-oAg

LNM Institute of Information Technology

Aigusu lain

pgr_labelGraph

Transformación de grafos

• <u>pgr_lineGraph - Experimental</u> — Transforms a given graph into its corresponding edge-based graph.

Documentación:

http://docs.pgrouting.org/2.5/en/pgr_lineGraph.html

https://github.com/pgRouting/pgrouting/blob/a9fcb12d31070769d1fda68744f499bfcf2cfd85/src/lineGraph/src/lineGraph_driver.cpp

Mira como trabaja

https://www.youtube.com/watch?v=WBKJYc0keU 0&t

Università degli Studi di Trento

Augres Nargelli

Max Flow

Familia de funciones de Análisis de flujos

- <u>pgr_maxFlow Proposed</u> Only the Max flow calculation using Push and Relabel algorithm.
- pgr boykovKolmogorov Proposed Boykov and Kolmogorov with details of flow on edges.
- pgr_edmondsKarp Proposed Edmonds and Karp algorithm with details of flow on edges.
- pgr_pushRelabel Proposed Push and relabel algorithm with details of flow on edges.
- Applications
 - a. <u>pgr_edgeDisjointPaths Proposed</u> Calculates edge disjoint paths between two groups of vertices.
 - b. <u>pgr_maxCardinalityMatch Proposed</u> Calculates a maximum cardinality matching in a graph.

Documentación:

http://docs.pgrouting.org/2.5/en/flow-family.html

https://github.com/pgRouting/pgrouting/blob/a9fcb12d31070769d1fda68744f499bfcf2cfd85/src/max_flow/src/maximum_cardinality_matching_driver.cpp

International Institute Of Information Technology, Hyderabad

Hyuerus Reddiv

Contraction

Contracción de grafos

• pgr_contractGraph - Experimental - Reduce network size using contraction techniques

Documentación:

http://docs.pgrouting.org/2.5/en/pgr_contractGraph.html

https://github.com/pgRouting/pgrouting/blob/a9fcb12d31070769d1fda68744f499bfcf2cfd85/src/contraction/src/contractGraph_driver.cpp

Let's Have Fun as an

open Source Developer

