Aproksymacja Laboratorium 5

Jakub Ciszewski, Wiktor Smaga

3 czerwca 2024

1 Wstęp

Celem ćwiczenia jest zapoznanie się metodami aproksymacji.

2 Zadanie 1.

2.1 Opis

Przeprowadzono aproksymację średniokwadratową dla populacji Stanów Zjednoczonych w latach 1900-1980 z odstępami dziesięcioletnimi dla wielomianów stopni od 0 do 6. Następnie przeprowadzono ekstrapolację dla roku 1990 i porównano otrzymane wyniki z wartością rzeczywistą wynoszącą 248 709 873 oraz obliczono błędy względne dla każdego stopnia.

Następnie obliczono kryterium Akaikego AIC_c ze składnikiem korygującym wzorem:

$$AIC = 2k + n \ln(\frac{\sum_{i=1}^{n} (y(x_i) - \hat{y}(x_i))^2}{n})$$
$$AIC_c = AIC = \frac{2k(k+1)}{n-k-1}$$

dla każdego ze stopni wielomianu oraz porównano czy wynik współczynnika pokrywa się z błędami względnymi.

2.2 Ekstrapolacja

Stopień wielomianu	Wartość ekstrapolacji	Błąd względny[%]
0	143369177	42.35
1	235808109	5.19
2	2547129457	2.41
3	261439380	5.12
4	243106971	2.25
5	220442802	11.37
6	255044185	2.55

Tabela 1: Zestawienie stopnia wielomianu z wartością ekstrapolacji i błędem względnym

Wykres 1: Błąd względny ekstrapolacji dla roku 1990 dla poszczególnych stopni wielomianu

Najmniejszy błąd względny jest osiągany dla wielomianu stopnia 4.

2.3 Kryterium Akaikego.

Stopień wielomianu	Wartość współczynnika Akaikego
0	321.01
1	289.06
2	279.45
3	284.88
4	290.93
5	311.26
6	381.27

Tabela 2: Zestawienie stopnia wielomianu ze współczynnikiem Akaikego

Wykres 2: Wartość kryterium Akaikego w zależności od stopnia wielomianu

Najmniejsza wartość kryterium Akaikego jest przyjmowana dla wielomianu 2 stopnia co nie pokrywa się z błędem względnym, który był najmniejszy dla wielomianu stopnia 4. Jednak wartość kryterium dla wielomianu stopnia 2 jest zbliżona do wartości dla stopnia 4.

3 Zadanie 2.

3.1 Opis

Wykonano aproksymację średniokwadratową ciągłą dla funkcji $f(x) = \sqrt{x}$ na przedziale [0, 2] dla wielomianu 2 stopnia, używając wielomianów Czebyszewa pierwszego rodzaju.

Funkcja wagowa:

$$w(t) = \frac{1}{\sqrt{1 - x^2}}$$

Wielomian Czebyszewa 2-iego rodzaju stopnia k:

$$T_k(x) = \cos(k \arccos(x))$$

Funkcja ϕ :

$$\phi(k) = \begin{cases} \frac{\pi}{2}, & k = 0\\ \pi, & k \neq 0 \end{cases}$$

Współczynnik wielomianu c_k :

$$c = \frac{\int_0^2 T_k(x)\sqrt{x}w(x)dx}{\phi(k)}$$

3.2 Aproksymacja

Porównanie aproksymacji funkcji pierwiastkowej z funkcją pierwiastkową

Wykres 3: Porównanie aproksymacji funkcji pierwiastkowej z funkcją pierwiastkową

Błąd aproksymacji w metryce L2:

$$\int_0^2 (y - \hat{y})^2 dx = 0.002697050979671388$$

Wykres 4: Wykres funkcji wagowej \boldsymbol{w}

4 Wnioski

- Kryterium Akaikego pozwala nam względnie dobrze określić najlepszy stopień wielomianu do aproksymacji danej funkcji.
- Małe wartości funkcji wagowej mogą być przyczyną większej niedokładności aproksymacji ciągłej.