AE 12: Categorical Predictors

Pee-to-Peer Loans

Important

- Open RStudio and create a subfolder in your AE folder called "AE-12".
- Go to the Canvas and locate your AE-12 assignment to get started.
- Upload the ae-12.qmd file into the folder you just created. The .qmd and PDF responses are due in Canvas. You can check the due date on the Canvas assignment.

Packages + data

```
library(tidyverse)
library(ggformula)
library(mosaic)
library(broom)
library(knitr)
library(openintro)

loan50 <- loan50 |>
    mutate(annual_income_k = annual_income / 1000)
```

The data for this AE is a sample of 10,000 loans made through a peer-to-peer lending club. The data is in the loan50 data frame in the openintro R package.

Variables

- annual_income_k: Annual income in \$1,000's
- verified_income: Whether borrower's income source and amount have been verified (Not Verified, Source Verified, Verified)

Response: interest_rate: Interest rate for the loan

Analysis goal

- Predict interest_rate using the categorical variable verified_income as a predictor
- Include other quantitative variables and understand how they interact with verified_income

Exercise 1

Generate side-by-side boxplots of interest_rate vs. verified_income. Does it appear that there is a relationship between the two variables?

Exercise 2

Based on the output of the code below, what do you think would be the best predictions for the interest rate of a borrow with Not Verified, Source Verified, and Verified income, respectively.

verified_income	min	Q1	median	Q3	max	mean	sd	n	missing
	NA	NA	NA	NA	NA	NaN	NA	0	0
Not Verified	5.31	7.9600	9.44	9.9300	18.45	9.541429	2.984269	21	0
Source	6.08	7.8075	10.91	16.2875	19.42	11.765500	4.270998	20	0
Verified									
Verified	5.32	11.9800	14.08	21.4500	26.30	15.853333	7.694652	9	0

Exercise 3

Fit a linear model predicting interest_rate from verified_income. What is the reference level for verified_income?

Exercise 4

WITHOUT WRITING ANY CODE except for addition, subtraction, multiplication, and addition, what would the model predict the average interest_rate for each of the three levels of verified_income? How do these answers compare to your answers from Exercise 2?

Exercise 5

The linear model below predicts interest_rate from annual_income_k. Add verified_income as a predictor to this model. Do not include an interaction term. Be prepared to discuss how and why the plot changes when you add in verified_income.

```
ex5_model <- lm(interest_rate ~ annual_income_k, data = loan50)
ex5_model |>
  tidy() |>
  kable()
```

term	estimate	std.error	statistic	p.value
(Intercept)		1.2851395		
annual_income_k	-0.016561	0.0124397	-1.331308	0.1893763

plotModel(ex5_model) # nifty function from the mosaic package

Exercise 6

How do you think the plot above will change if you add in an interaction term between verified_income and interest_rate? AFTER thinking about it, add in an interaction term between verified_income and annual_income_k.

```
ex6_model <- lm(interest_rate ~ annual_income_k, data = loan50)
ex6_model |>
  tidy() |>
  kable()
```

term	estimate	std.error	statistic	p.value
(Intercept) annual_income_k		$\begin{array}{c} 1.2851395 \\ 0.0124397 \end{array}$		

plotModel(ex6_model) # nifty function from the mosaic package

Exercise 7

Based on the model above (and the equation on the slides):

- Write the equation of the model to predict interest rate for applicants with *Not Verified* income.
- Write the equation of the model to predict interest rate for applicants with *Verified* income.
- Our degrees of freedom will be n-p-1. What is p in this case? Hint: it isn't 2.

To submit the AE

! Important

- $\bullet\,$ Render the document to produce the PDF with all of your work from today's class.
- Upload your QMD and PDF files to the Canvas assignment.