Wykorzystanie efektów cząsteczkowych w grach

Maciej Stefańczyk

Agenda

» Podstawowe informacje

- » Techniki tworzenia
 - » Najprostsze efekty
 - » Miękkie cząsteczki
 - » Megacząsteczki
 - » Nie tylko fajerwerki
- » Podsumowanie

Podstawowe informacje

strona 3 / 29

Po co?

Ogień, dym, iskry, woda, wybuchy, ślady opon, sierść, włosy, roślinność, gwiazdy, czary, ...

Dlaczego?

- » Efekty trudne do osiągnięcia w inny sposób
- » Niepowtarzalność i losowość

Gdzie?

... wszędzie!

Arkanoid
World of Warcraft
Need for Speed

Podstawowe informacje

Cząsteczka:

- » Pozycja, rozmiar, prędkość, ...
- » Reprezentacja graficzna
- » Wiek, czas życia

System cząsteczkowy:

- » Reguły generowania cząstek
- » Interakcje z innymi obiektami
- » Uproszczona bądź pełna symulacja fizyki
- » Maksymalna ilość jednocześnie aktywnych cząstek

Reprezentacja graficzna:

- » Kolorowe punkty
- » Bilboardy

Generowanie cząstek:

» Losowe parametry początkowe

Symulacja:

- » Zmiana wielkości wraz z upływem czasu
- » Różne opcje mieszania kolorów
- » Proste trajektorie

strona 6 / 29

strona 7 / 29

strona **8** / 29

Zalety:

- » Bardzo proste w implementacji
- » Duża wydajność przy efektach typu wybuchy, fajerwerki (mało cząstek, które szybko znikają)

Wady:

- » Przy dużej liczbie cząstek problemy z wydajnością
- » Artefakty związane z dwuwymiarową naturą cząstek
 - » Problemy z oświetleniem
 - » Ostre przecięcia z geometrią sceny

Problemy z oświetleniem →

← Przecięcia z obiektami

Rozwiązanie problemów?

- » Wydajność → wykorzystanie kilku dużych obiektów
 symulujących cała grupę cząstek zamiast każdej cząstki
 z osobna → megacząsteczki
- » Przecięcia z geometrią → wykorzystanie informacji o głebi do zmiękczenia efektu → miękkie cząsteczki

» Oświetlenie → stosowanie brył zamiast płaskich
 reprezentacji cząsteczek → megacząsteczki

Reprezentacja graficzna:

» Tak samo jak w najprostszym przypadku → bilboardy

Zmiękczanie cząstek:

- » Wykorzystanie mapy głebi podczas renderowania
- » Zwiększanie przezroczystości w pobliżu innych obiektów

strona 13 / 29

Parametry metody:

- » Kształt funkcji zmiany przezroczystości
 - » Liniowa

» Wykładnicza

» Czułość (maksymalna odległość od innych obiektów, dla której nastepuje jeszcze zmiana przezroczystości)

← Funkcja wykładnicza, od 'd' zależy szybkość wygaszania

Porównanie:

Po lewej funkcja liniowa: nadal dość wyraźnie widoczne są efekty przecięcia

Po prawej funkcja wykładnicza: dym gładko wtapia się w otoczenie

strona 16 / 29

strona 17 / 29

Reprezentacja graficzna:

- » Ogólny kształt: bryły (najczęściej kule)
- » Odpowiedni wygląd: postprocessing (rozmycie, szum)

Zalety:

- » Prawidłowe oświetlenie efektów
- » Odpowiednie przecięcia z innymi obiektami
- » Niewielkie obciążenie systemu

Megacząsteczki

Działanie:

- » Symulacja ruchu oraz oświetlenie wykonywane jest na małej ilości dość dużych kul (pełne 3D)
- » Obraz renderowany jest do osobnego bufora
- » Posprocessing
 - » Rozmycie
 - » Szum

- » Przemieszczenia pikseli
- » Mieszanie bufora ze sceną
 - » Mapa głębi
 - » Kanał alpha

Megacząsteczki

Rezultat:

- » Efekt (dym, wybuch) praktycznie w pełni przestrzenny
- » Prawidłowe oświetlenie i rzucanie cieni
- » Prosta i szybka symulacja rozprzestrzeniania

Megacząsteczki

Wady:

- » Prawie pełne 3D
 - » Postprocessing w 2D
- » Trudno symulować interakcje z otoczeniem (odbijanie pojedynczych cząstek)
 - » Zastosowanie raczej do efektów typu dym czy chmury
- » Kłopotliwe nakładanie kilku różnych efektów w jednym miejscu
- » Wymagany rendering w odpowiedniej kolejności (najpierw obiekty,
 Mega

potem cząsteczki)

Mega particles

Nie tylko fajerwerki

Statyczne cząsteczki:

» Zamiast śledzenia samej cząsteczki zapamiętujemy jej trajektorię

» Generowanie efektów w czasie tworzenia postaci bądź lokacji, rzadziej w czasie rzeczywistym

Zastosowanie statycznych cząsteczek:

» Roślinność (gł. trawa)

» Sierść, włosy

Nie tylko fajerwerki

Metakule:

- » Inny sposób prezentacji graficznej cząstek
- » Organiczny wygląd
- » Płynne łączenie obiektów
- » Zdefiniowane jako funkcje matematyczne w n-wym.
 - » Równanie dla n kul w 3 wymiarach: $\sum_{i=1}^{n} metaball_{i}(x,y,z) \le próg$

Metakule:

- » Symulacja płynów
- » Symulacja efektu płynnego metalu
- » Tworzenie organicznych obiektów

More particles

Jedno ze stworzeń z gry *Spore* →

Podsumowanie

Cząsteczki:

- » Punkty
- » Bilboardy
- » Bryły
- » Złożone powierzchnie

Systemy:

- » Prosta generacja, często bez interakcji z otoczeniem
- » Bardziej złożone z dokładniejszą symulacją fizyczną
- » Faza symulacji ruchu oddzielona od fazy renderowania

Podsumowanie

Działanie:

- » W czasie rzeczywistym, podczas gry
- » Podczas przygotowywania zasobów gry

Co i gdzie:

- » Efekty czarów w RPG
- » Dym, ślady opon w grach wyścigowych
- » Efekty specjalne w grach platformowych
- » Iskry, ogień w grach FPP
- » Chmury wolumetryczne w symulatorach lotu

Źródła

- » http://en.wikipedia.org/wiki/Particle system
- » Tristan Lorach, Soft Particles, NVidia 2007
- » http://www.torquepowered.com/
- » http://www.inframez.com/events_volclouds_slide01.htm
- » http://pl.wikipedia.org/wiki/Metaball

Wszystkie strony www dostępne były 6 kwietnia 2010r.

Pytania?

Dziękuję za uwagę.