

MAT422: Theory of Numbers

Lecture notes
Last updated on February 15, 2025

Preface

These notes summarize key concepts from the MAT422: Theory of Numbers course taught by Arnab Chakraborty at BRAC University in Spring 2025. They provide a structured and precise version of the material discussed in class but do not serve as an exact transcription of the lectures. While every effort has been made to ensure accuracy, errors or omissions may still be present. If you identify any inaccuracies, please feel free to reach out via email: nafisanazlee3@gmail.com

Nafisa Karim Nazlee

References

- An Introduction to the Theory of Numbers, by Ivan Niven, Herbert S. Zuckerman, Hugh L. Montgomery
- A Classical Introduction to Modern Number Theory, by Kenneth F. Ireland and Michael Wayne Rosen

Contents

1	Preliminaries	
	1.1 Sets of Numbers	
	1.2 Well-Ordering Principle	
	1.3 Number Theory	
2	Divisibility	
	2.1 Basics	
	2.2 Primes	

1

Preliminaries

1.1 Sets of Numbers

The most familiar set of numbers is the set of natural numbers, denoted as

$$\mathbb{N} = \{1, 2, 3, 4, \dots\}.$$

The set of natural numbers, \mathbb{N} , is sufficient for counting, but it lacks the ability to represent differences. For instance, the equation

$$3 + x = 1$$

has no solution in \mathbb{N} , necessitating the introduction of negative numbers, forming the set of integers, \mathbb{Z} . By considering the negation of \mathbb{N} , we extend our number system to include the *integers*, forming the set

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}.$$

However, even \mathbb{Z} is not sufficient. Consider the equation

$$2x = 5$$

This equation has no solution in \mathbb{Z} , leading to the need for fractions or *rational numbers*, defined as

$$\mathbb{Q} = \left\{ \frac{p}{q} \mid p, q \in \mathbb{Z}, q \neq 0, \gcd(p, q) = 1 \right\}.$$

For example,

$$\mathbb{Q} = \left\{ -\frac{3}{4}, 0, \frac{1}{2}, 2, \frac{5}{3}, \dots \right\}.$$

It can also be expressed as

$$\mathbb{Q}=\mathbb{Z}\times\mathbb{Z}/\sim$$

where \sim is the equivalence relation given by $\frac{a}{b} = \frac{c}{d}$ if and only if ad = bc. Despite this, \mathbb{Q} is still not sufficient.

Theorem 1.1.1

There is no rational number whose square is 2.

Proof. If x were rational, we could write $x = \frac{p}{q}$ with $p, q \in \mathbb{Z}$ and gcd(p, q) = 1. Substituting, we get

$$\left(\frac{p}{q}\right)^2 = 2 \quad \Rightarrow \quad p^2 = 2q^2.$$

This implies p^2 is even, so p must also be even, say p = 2k. Substituting.

$$(2k)^2 = 2q^2 \implies 4k^2 = 2q^2 \implies 2k^2 = q^2.$$

Thus, q^2 is also even, meaning q is even. But this contradicts our assumption that gcd(p,q) = 1, proving that no rational number satisfies $x^2 = 2$.

This leads to the discovery of *irrational numbers*, numbers that cannot be expressed as a fraction of integers. To accommodate such numbers, we construct the real number system, \mathbb{R} . The rationals \mathbb{Q} form a subset of the *real numbers*, \mathbb{R} , which is obtained as the *completion* of \mathbb{Q} using *Cauchy sequences*. The real numbers include both rationals and irrationals, such as

$$\mathbb{R} = \left\{ -\sqrt{5}, -1, 0, \frac{1}{2}, \pi, e, \sqrt{2}, \dots \right\}.$$

Even \mathbb{R} is not enough to solve all equations. Consider

$$x^2 + 1 = 0$$
.

Rearranging,

$$x^2 = -1$$
.

There is no real number whose square is negative. To resolve this, we introduce a new number i, called the imaginary unit, defined by

$$i^2 = -1$$
.

We then extend our number system further by introducing the *complex numbers*, denoted as \mathbb{C} , which include all numbers of the form

$$\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}, i^2 = -1\}.$$

Examples include

$$\mathbb{C} = \{2 + 3i, -1 - i, \pi + i, 0, \dots\}.$$

The hierarchy of number sets follows the subset relation:

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$
.

However, complex numbers are not the end. Beyond \mathbb{C} , we encounter the *quaternions*, denoted as \mathbb{H} , which extend the number system further. But for now, we conclude our

discussion here.

1.2 Well-Ordering Principle

The Well-Ordering Principle states that every non-empty subset of the natural numbers \mathbb{N} has a least element. That is, if S is a non-empty subset of \mathbb{N} , then there exists an element $m \in S$ such that for all $s \in S$, we have $m \leq s$. Formally:

$$\forall S \subseteq \mathbb{N}, (S \neq \emptyset) \Rightarrow \exists m \in S \text{ such that } \forall s \in S, m \leq s$$

This principle implies that the natural numbers are well-ordered, as every subset of \mathbb{N} has a minimum. The Well-Ordering Principle is closely related to the *Axiom of Choice* in axiomatic set theory, and in fact, it can be derived from it.

1.3 Number Theory

Number Theory is loosely the study of the properties of the natural numbers \mathbb{N} and integers \mathbb{Z} . It is one of the oldest branches of mathematics, focusing on the relationships between numbers, particularly concerning their divisibility, primality, and arithmetic properties. Key topics in number theory include the study of prime numbers, divisibility, congruences, Diophantine equations, and number-theoretic functions. Number theory also explores more advanced subjects like quadratic forms, modular forms, and the distribution of prime numbers.

2

Divisibility

2.1 Basics

Definition 2.1.1: Divisibility

We say that an integer a divides another integer b, written as $a \mid b$, $a, b \in \mathbb{Z}$ with $a \neq 0$, if $\exists x \in \mathbb{Z}$ such that

$$b = ax$$
.

We then say that a is a divisor of b.

$$Div(b) = a \in \mathbb{Z} : a \mid b$$

In another words, $a \mid b \implies \exists$ a solution x to the equation ax - b = 0 over \mathbb{Z} .

Theorem 2.1.1

- 1. $\forall x \in \mathbb{N}, x \mid 0$.
- $2. \ a \mid b \& b \mid c \implies a \mid c.$
- 3. $a \mid b \& b \mid c \implies a \mid (bx + cy) \forall x, y \in \mathbb{Z}$

Proof. 1. By definition, $x \mid 0$ means there exists $k \in \mathbb{Z}$ such that 0 = xk. Choosing k = 0, we get $0 = x \cdot 0$, which holds for all $x \in \mathbb{N}$.

- 2. Since $a \mid b$, there exists $m \in \mathbb{Z}$ such that b = am. Similarly, since $b \mid c$, there exists $n \in \mathbb{Z}$ such that c = bn. Substituting b = am into c = bn, we get c = a(mn), implying $a \mid c$.
- 3. Since $a \mid b$, we write b = am for some $m \in \mathbb{Z}$. Similarly, $a \mid c$ implies c = an for some $n \in \mathbb{Z}$. Then,

$$bx + cy = (am)x + (an)y = a(mx + ny),$$

where $mx + ny \in \mathbb{Z}$, so $a \mid (bx + cy)$.

Theorem 2.1.2: The Division Algorithm

Given $a, b \in \mathbb{Z}$ with a > 0, there exist unique integers $q, r \in \mathbb{Z}$ such that

$$b = aq + r$$
, $0 \le r < a$.

Proof. Consider a set

$$S = b + ka : k \in \mathbb{Z}, b + ka > 0$$

if b > 0, k = 0 & S is non-empty.

If b < 0, add a enough times to set b + ka > 0. By Well-Ordering Principle (WOP), S has a smallest element r = b + ka, for some k.

If we set q = -k, then we have:

$$r = b - qa \implies b = aq + r$$

Obviously, $r \ge 0$ since $r \in S$. Also, r < a, as otherwise, b + (k-1)a > 0 but b + (k-1)a < r, and therefore contradicts minimality of r.

$$\therefore 0 \le r \le a$$

2.2 Primes

Definition 2.2.1: Prime Number

An element $p \in \mathbb{N}$, p > 1, is prime if $q \mid p \implies q = 1$ or q = p. Equivalently,

$$Div(p) = \{\pm 1, \pm q\}$$

Example.

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43 - how many primes are there? The biggest prime found till now is $2^{136,279,841} - 1$. Mersenne primes are primes of the form $2^p - 1$, where p is also a prime.

Theorem 2.2.1: Prime Factorization

Every positive integer greater than 1 can be written as a product of primes.

Proof. Let S to be the set of positive integers that cannot be written as a product of primes. Let N be the smallest element, N > 1, and N is not prime. $\therefore N = mn$ for some 1 < m, n < N.

Since m, n < N, they have to be prime, as otherwise they contradict the minimality of N.

$$n = (-1)^{\varepsilon(n)} \prod_{p} p^{a(p)}$$

Where,
$$\varepsilon(n) = \begin{cases} 1 & \text{if } n < 0 \\ 0 & \text{if } n > 0 \end{cases}$$

 $a(p) = \text{order of } n \text{ at } p. \ a \text{ is the smallest non-negative integer such that } p^a \mid n \text{ but } p^{a+1} \nmid n.$

Theorem 2.2.2: Bézout's Identity

For any integers a and b, there exist integers x and y such that

$$ax + by = \gcd(a, b).$$

We will use this theorem for the next lemma.

Lemma 2.2.1

If p is prime and $p \mid ab$, then $p \mid a$ or $p \mid b$.

Proof. Assume $p \nmid a$. g = gcd(a, p). Since p is a prime, g = 1 or p. But if g = p, then $p \mid a$, which is so g = 1.

From Theorem 2.2.2, $\exists x, y \in \mathbb{Z} : ax + py = 1$

$$\implies b = bax + pby$$

We have that $p \mid (bax + pby)$. Since $p \mid ab : p \mid b$

Corollary 2.2.1

If p is a prime and $p \mid a_1 a_2 \dots a_n$, then $p \mid a_i$ for some i.