Hoja 2 complementaria

1. Resuelve por eliminación Gaussiana los sistemas que siguen. En cada caso, indique los valores de los multiplicadores y de los pivotes. Si se fija, puede usar en el segundo sistema la mayor parte de los cálculos hechos para el primero.

$$2x_1 + 2x_2 + 2x_3 + 2x_4 = 20,$$

$$4x_1 + 6x_2 + 6x_3 + 6x_4 = 58,$$

$$6x_1 + 14x_2 + 16x_3 + 16x_4 = 146,$$

$$10x_3 + 12x_4 = 78.$$

$$2x_1 + 2x_2 + 2x_3 + 2x_4 = 0,$$

$$4x_1 + 6x_2 + 6x_3 + 6x_4 = 2,$$

$$6x_1 + 14x_2 + 16x_3 + 16x_4 = 10,$$

$$10x_3 + 12x_4 = 12.$$

2. Considerar el sistema

$$2x_1 + 2x_2 + 2x_3 + 2x_4 = 20,$$

$$4x_1 + 6x_2 + 6x_3 + 6x_4 = 58,$$

$$6x_1 + 14x_2 + 16x_3 + 16x_4 = 146,$$

$$2x_1 + 2x_2 + 12x_3 + 12x_4 = 90$$

- a) Intentar resolverlo por eliminación Gaussiana. Concluir que la matriz tiene rango 3, que sus tres primeras filas son independientes pero la cuarta es combinación lineal de las tres primeras y lo mismo ocurre con las columnas.
- b) Concluir también que el sistema es compatible y que se puede fijar arbitrariamente el valor de x_4 .
- c) Finalmente hallar la solución que tiene $x_4 = 4$.
- 3. Se considera el sistema lineal Ax=b con $A\in\mathbb{R}^{3\times3}$ no singular. Estudiar la convergencia de los métodos iterativos de Jacobi y Gauss-Seidel cuando la matriz A es:

$$A_1 = \begin{bmatrix} 7 & 6 & 9 \\ 4 & 5 & -4 \\ -7 & -3 & 8 \end{bmatrix}, \quad A_2 = \begin{bmatrix} -3 & 3 & 6 \\ -4 & 7 & -8 \\ 5 & 7 & -9 \end{bmatrix}, \quad A_3 = \begin{bmatrix} 4 & 1 & 1 \\ 2 & -9 & 0 \\ 0 & -8 & -6 \end{bmatrix}.$$

Estudiar también, cuando ambos métodos converjan, cuál lo hace más rápido

4. Sea

$$C = \left[\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right].$$

Escribir las iteraciones de Jacobi y Gauss-Seidel para resolver el sistema Cx=y y demostrar que Jacobi converge si y solamente si Gauss-Seidel converge. ¿Se puede establecer alguna relación entre sus velocidades de convergencia?

5. Se consideran las matrices

$$A = \left[\begin{array}{ccc} 1 & 1 & 1 \\ \alpha & 1 & 1 \\ \beta & \gamma & 1 \end{array} \right] \,, \quad M = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right] \,, \quad N = \left[\begin{array}{ccc} 0 & 0 & 0 \\ \alpha & 0 & 0 \\ \beta & \gamma & 0 \end{array} \right]$$

donde $\alpha, \beta, \gamma \in \mathbb{R}$. Para resolver el sistema Ax = b se usa el siguiente método iterativo:

$$Mx^{(k+1)} + Nx^{(k)} = b,$$

- a) Encontrar condiciones sobre α, β y γ que garanticen la convergencia de la sucesión de iteradas $\{x^{(k)}\}_{k=0}^{\infty}$ para todo $x^{(0)}$ y para todo b.
- b) Si $\alpha = \beta = \gamma = -1$ ¿qué sucede?
- c) Si $\alpha=\gamma=0$ ¿es cierto que se necesitan tan sólo tres iteraciones para calcular la solución? Razonar la respuesta.
- 6. Calculemos

$$\mathbf{y} = A^{-1}(B\mathbf{z} + \mathbf{u}) + \mathbf{x},$$

donde A y B son matrices $d \times d$ conocidas y $\mathbf{u}, \mathbf{x}, \mathbf{z}$ vectores d-dimensionales conocidos.

- a) Explique cómo disponer los cálculos para no tener que invertir A.
- b) ¿Cuáles son los costos de proceso sugerido por usted y del obvio $B\mathbf{z}$, $B\mathbf{z}+\mathbf{u}$, $A^{-1}(B\mathbf{z}+\mathbf{u})$, \mathbf{y} ?
- 7. **Examen Mayo 2012.** Lleve a cabo la eliminación gaussiana con pivotaje parcial por filas en la matriz

$$A = \begin{pmatrix} 1/4 & -1/4 & -19/4 \\ 1 & 3 & 1 \\ -1/6 & 3/2 & -1/6 \end{pmatrix}$$

Escriba una matriz de permutación P, una matriz L triangular inferior con unos en la diagonal y una matriz U triangular superior de modo que PA = LU. Explique la relación entre las matrices B = PA y A. ¿Qué ocurre si se hace eliminación gaussiana con pivotaje parcial sobre la matriz B?

- 8. Sea $P \in \mathbb{R}^{n \times n}$ y sea $T_P : \mathbb{R}^n \to \mathbb{R}^n$ la transformación asociada $(T_P(x) = Px)$:
 - a) Demostrar que

$$T_P$$
 es una proyección ortogonal \iff $P^T = P$ y $P^2 = P$.

- b) Demostrar que si P da lugar a la proyección ortogonal sobre un subespacio V de \mathbb{R}^n entonces I-P representa la proyección ortogonal sobre V^{\perp} .
- c) Sea $U \in \mathbb{R}^{n \times n}$ una matriz ortogonal. Demostrar que $U^2 = I$ si y sólo si U tiene la forma I-2P, donde P es una proyección ortogonal.
- 9. Se considera la matriz

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 5 & 1 \\ 1 & 1 & 1 \\ 1 & 5 & 0 \end{bmatrix}.$$

2

- a) Calcular su factorización QR.
- b) Utilizarla para resolver, en el sentido de los mínimos cuadrados, los sistemas sobredeterminados

$$Ax = b_j$$

donde

$$b_1 = \begin{pmatrix} 1\\10\\2\\11 \end{pmatrix}, \quad b_2 = \begin{pmatrix} 1\\-1\\-1\\1 \end{pmatrix}, \quad b_3 = \begin{pmatrix} 12\\25\\9\\24 \end{pmatrix}.$$

- c) Denotando por x_1 , x_2 , x_3 las respectivas soluciones, calcular los residuos $r_j = b_j Ax_j$, j = 1, 2, 3. ¿A qué se debe la diferencia entre los tres resultados?
- d) Pensando en una matriz A y un dato b generales, ¿En qué caso (para una matriz A y un dato b generales) es nulo el residuo r=b-Ax? ¿Puede suceder que $\|r\|_2>\|b\|_2$? ¿Puede suceder que r=b (es decir, Ax=0)? ¿En qué casos ocurre que r=b/2?
- 10. Sea $b \in \mathbb{R}^m$ y sean A, T matrices de tamaños $m \times n$ y $n \times p$, respectivamente, tales que $\ker A = 0$, $\ker T = 0$. Ponemos $A_1 = AT$. Sean x, x_1 las soluciones de los sistemas lineales Ax = b y $A_1x_1 = b$ en el sentido de mínimos cuadrados.
 - a) Demostrar la siguiente desigualdad para los residuos: $||b Ax||_2 \le ||b A_1x_1||_2$.
 - b) Demostrar que, en el caso n=p, se tiene la igualdad de los residuos.
- 11. (Matlab) La función real f viene dada por su tabla de valores en los puntos $0, 1, \ldots, n$, obtenidos de un experimento. Se pide encontrar su mejor aproximación, en el sentido de mínimos cuadrados, por un polinomio P_m de grado m.
 - a) Escribir un programa que calcula estas aproximaciones y dibuja simultáneamente las gráficas de f y de P_3 , P_5 y P_{10} .
 - b) Aplicar este programa para el caso n=100 y las funciones
 - $f_1(x) = e^{x/10}$
 - $f_2(x) = 1/((x-50)^2+4)$.
- 12. (Mayo 2019) Utilizar la factorización $\mathbf{Q}\mathbf{R}$ mediante transformaciones de HOUSEHOLDER para calcular *en aritmética exacta de números* la función afín $z = \alpha + \beta x + \gamma y$ que ajusta los datos

$$\begin{array}{c|cccc} x_i & y_i & z_i \\ \hline -2 & 1 & 1 \\ -1 & 0 & 2 \\ -1 & -1 & -1 \\ -2 & 0 & 3 \\ \hline \end{array}$$

por el método de mínimos cuadrados.

- 13. (Mayo 2019)
 - i) Calcular por Gramm-Schmidt la factorización ${f A}={f Q}{f R}$ de la matriz *en aritmética exacta*

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 1 & 1 & -3 \\ 0 & 1 & 1 \end{bmatrix}.$$

3

ii) Utilizar la factorización obtenida para resolver los sistemas $\mathbf{A}\mathbf{x}=\mathbf{b}_1$ y $\mathbf{A}\mathbf{x}=\mathbf{b}_2$ cuando

$$\mathbf{b}_1 = \begin{bmatrix} 1, 1, 1, 1 \end{bmatrix}^T, \qquad \mathbf{b}_2 = \begin{bmatrix} 2, 2, -1, 0 \end{bmatrix}^T.$$

- iii) Explicar en qué sentido las soluciones obtenidas satisfacen el sistema.
- 14. (Junio 2019) Mediante transformaciones de HOUSEHOLDER calcular la factorización QR en aritmética exacta de números reales de la matriz

$$\mathbf{A} = \begin{bmatrix} 4 & -3 & 4 \\ 2 & -14 & -3 \\ -2 & 14 & 0 \\ 1 & -7 & 15 \end{bmatrix}.$$