

Politechnika Wrocławska

Wydział Elektroniki, Fotoniki i Mikrosystemów

Sterowanie Procesami Ciągłymi

Sprawozdanie nr 1 Charakterystyki czasowe

Prowadzący: dr hab. inż. Grzegorz Mzyk

> Wykonała: Zuzanna Mejer, 259382

> > Termin zajęć: czwartek TP, 9:15

Spis treści

1	Cel	ćwicze	enia	2
2	Badanie systemów z czasem ciągłym			2
	2.1	Położenie biegunów a odpowiedź skokowa układu		2
		2.1.1	Bieguny rzeczywiste, ujemne	2
		2.1.2	Bieguny rzeczywiste o przeciwnych znakach	3
		2.1.3	Bieguny zespolone z ujemną częścią rzeczywistą	4
		2.1.4	Bieguny zespolone z dodatnią częścią rzeczywistą	5
	2.2	Identyfikacja systemów z czasem ciągłym na podstawie odpowiedzi skokowej		6
		2.2.1	Bieguny rzeczywiste, ujemne	6
		2.2.2	Bieguny rzeczywiste o przeciwnych znakach	6
		2.2.3	Bieguny zespolone z ujemną częścią rzeczywistą	6
		2.2.4	Bieguny zespolone z dodatnią częścią rzeczywistą	6
		2.2.5	Porównanie wyników identyfikacji z rzeczywistymi wartościami	6
3	Badanie systemów z czasem dyskretnym		6	
4	Podsumowanie i wnioski		6	
5	Bibliografia		6	

1 Cel ćwiczenia

Celem ćwiczenia jest zapoznanie się z charakterystykami czasowymi systemów. Ćwiczenie można podzielić na dwie części - badanie systemu z czasem ciągłym oraz dyskretnym. Zapoznano się z zależnością charakterystyki skokowej od położenia biegunów transmitancji układów zarówno z czasem ciągłym jak i dyskretnym. Podjęta została także próba identyfikacji systemów z czasem ciągłym i dyskretnym na podstawie charakterystyk skokowych.

2 Badanie systemów z czasem ciągłym

Rozpatrywany jest system ciągły o transmitancji w postaci:

$$K(s) = \frac{1}{s^2 + as + b},\tag{1}$$

którą można przedstawić również jako:

$$K(s) = \frac{1}{(s+b_1)(s+b_2)},\tag{2}$$

gdzie b_1 oraz b_2 to bieguny. W zależności od ich położenia badano odpowiedź skokową układu.

2.1 Położenie biegunów a odpowiedź skokowa układu

2.1.1 Bieguny rzeczywiste, ujemne

Przyjmując wartości biegunów:

$$\begin{cases} b_1 = -3 \\ b_2 = -2 \end{cases}$$

Transmitancja systemu to:

$$K(s) = \frac{1}{(s - (-3))(s - (-2))} = \frac{1}{(s+3)(s+2)} = \frac{1}{s^2 + 5s + 6}$$
 (3)

Wygenerowano odpowiedź skokową systemu:

Rysunek 1: Odpowiedź skokowa układu o transmitancji, której obydwa bieguny są rzeczywiste i ujemne

tutaj z matlaba

Układ jest stabilny (stabilizuje się na wartości jakiej) oraz nie ma oscylacji.

2.1.2 Bieguny rzeczywiste o przeciwnych znakach

Przyjmując wartości biegunów:

$$\begin{cases} b_1 = -1 \\ b_2 = 2 \end{cases}$$

Transmitancja systemu to:

$$K(s) = \frac{1}{(s - (-1))(s - (2))} = \frac{1}{(s + 1)(s - 2)} = \frac{1}{s^2 - s - 2}$$
(4)

Wygenerowano odpowiedź skokową systemu: tutaj z matlaba

Rysunek 2: Odpowiedź skokowa układu o transmitancji, której bieguny mają przeciwne znaki Układ nie jest stabilny oraz nie ma oscylacji.

2.1.3 Bieguny zespolone z ujemną częścią rzeczywistą

Przyjmując wartości biegunów:

$$\begin{cases} b_1 = \frac{-0.1 + j\sqrt{3.99}}{2} \\ b_2 = \frac{-0.1 - j\sqrt{3.99}}{2} \end{cases}$$

Transmitancja systemu to:

$$K(s) = \frac{1}{\left(s - \left(\frac{-0,1 - j\sqrt{3,99}}{2}\right)\right)\left(s - \left(\frac{-0,1 - j\sqrt{3,99}}{2}\right)\right)} = \frac{1}{s^2 + 0, 1s + 1}$$
 (5)

Wygenerowano odpowiedź skokową systemu: tutaj z matlaba

Rysunek 3: Odpowiedź skokowa układu o transmitancji, której bieguny są zespolone a ujemną częścią rzeczywistą

Układ jest stabilny (stabilizuje się na wartości jakiej) oraz ma oscylacje.

2.1.4 Bieguny zespolone z dodatnią częścią rzeczywistą

Przyjmując wartości biegunów:

$$\begin{cases} b_1 = \frac{0.1 + j\sqrt{3.99}}{2} \\ b_2 = \frac{0.1 - j\sqrt{3.99}}{2} \end{cases}$$

Transmitancja systemu to:

$$K(s) = \frac{1}{\left(s - \left(\frac{0,1 - j\sqrt{3,99}}{2}\right)\right)\left(s - \left(\frac{0,1 - j\sqrt{3,99}}{2}\right)\right)} = \frac{1}{s^2 - 0, 1s + 1}$$
 (6)

Wygenerowano odpowiedź skokową systemu: tutaj z matlaba

Rysunek 4: Odpowiedź skokowa układu o transmitancji, której bieguny są zespolone z dodatnią częścia rzeczywista

Układ nie jest stabilny oraz ma oscylacje.

2.2 Identyfikacja systemów z czasem ciągłym na podstawie odpowiedzi skokowej

2.2.1 Bieguny rzeczywiste, ujemne

Odpowiedź skokowa wygląda następująco:

- 2.2.2 Bieguny rzeczywiste o przeciwnych znakach
- 2.2.3 Bieguny zespolone z ujemną częścią rzeczywistą
- 2.2.4 Bieguny zespolone z dodatnią częścią rzeczywistą
- 2.2.5 Porównanie wyników identyfikacji z rzeczywistymi wartościami

3 Badanie systemów z czasem dyskretnym

4 Podsumowanie i wnioski

5 Bibliografia

1.