10 septembre 2021 CIR 1 et CNB 1

Quiz de rentrée de Mathématiques

Durée : 1 heure. Aucun document n'est autorisé. La calculatrice collège est tolérée.

Veuillez ne pas répondre sur le sujet, mais sur la feuille de réponse prévue à cet effet.

- Les questions peuvent présenter une ou plusieurs réponses valides.
- Une mauvaise réponse enlève des points, une absence de réponse n'a pas d'incidence.
- En cas d'erreur, utilisez du « blanco ».
- Soyez très vigilant, avant de répondre à une question, de cocher la bonne ligne dans la grille.

BON COURAGE!

* * * * * * * * * * * * * * * * *

1. Parmi les expressions suivantes, lesquelles ne sont pas une différence de deux carrés?

 $(a-b)^2$ $(a-b)^2$ $(a-b)^2$ $(a-b)^2$ $(a-b)^2$ $(a-b)^2$ $(a-b)^2$ $(a-b)^2$ aucune des réponses précédentes n'est correcte.

2. Le prix hors taxes d'un objet est 250€. Le montant des taxes sur ce produit est de 49€. Le taux de ces taxes est de :

 $_{(1)}$ □ 5% $_{(2)}$ □ 4,8% $_{(3)}$ ■ 19,6% $_{(4)}$ □ 21,2% $_{(5)}$ □ aucune des réponses précédentes n'est correcte.

3. Cocher les bonnes réponses.

 $\cos \frac{\pi}{2} = 0 \qquad (2)\Box \quad \cos \frac{\pi}{4} = \frac{\sqrt{3}}{2} \qquad (3)\blacksquare \quad \sin \frac{\pi}{6} = \frac{1}{2}$ $(4)\Box \quad \tan a = \frac{\cos a}{\sin a} \qquad (5)\blacksquare \quad \cos(\pi - a) = -\cos(a)$

4. Soit $f(x) = \frac{\sqrt{1-x}}{\sqrt{2-x}}$ et $g(x) = \ln\left(\frac{2+x}{2-x}\right)$. On notera D_f et D_g le domaine de définition de f et g respectivement. Quelles sont les assertions vraies?

(1) \square $D_f = \mathbb{R} \setminus \{2\}$ (2) \square $D_f =]-\infty,1]$ (3) \square $D_g =]-2,2[$ (4) \square $D_g =]0,+\infty[$ (5) \square aucune des réponses précédentes n'est correcte.

- 5. L'inégalité |x+1| < 2 est équivalente à :
 - (1) \square x < -3 (2) \blacksquare -3 < x < 1 (3) \square -1 < x < 3 (4) \square $x \leqslant -3$ ou $x \geqslant 1$ (5) \square aucune des réponses précédentes n'est correcte.
- 6. Que vaut $(a b)^3$?

- 7. Soient a et b deux réels strictement positifs quelconques. Cochez les propositions qui sont toujours vraies.
 - $\frac{\ln a}{\ln b} = \ln a \ln b \qquad (2) \square \qquad \ln(a) \times \ln(b) = \ln(a+b) \qquad (3) \blacksquare \qquad e^{\ln a} \times e^{\ln b} = ab$ $(4) \blacksquare \qquad \ln 1 = 0 \qquad (5) \square \qquad \text{aucune des réponses précédentes n'est correcte.}$
- 8. Cocher les bonnes simplifications.

$$\begin{array}{cccc} {}_{(1)}\Box & e^{\ln 2} \cdot e^{\ln 5} = 7 & {}_{(2)}\Box & e^{-\ln 3} = 3 & {}_{(3)}\blacksquare & e^{\frac{1}{2}\ln 8} = 2\sqrt{2} \\ \\ {}_{(4)}\blacksquare & e^{-3\ln\frac{1}{2}} = 8 & {}_{(5)}\Box & \frac{e^{2+\ln 32}}{e^{3+\ln 8}} = 4e \end{array}$$

9. Évaluer

$$\int_{-1}^{1} x^2 \, \mathrm{d}x$$

- $_{(1)}\square$ $\frac{1}{3}$ $_{(2)}\square$ $-\frac{1}{3}$ $_{(3)}\square$ 0 $_{(4)}\blacksquare$ $\frac{2}{3}$ $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 10. Un sac contient 3 boules bleues et 5 boules vertes identiques. La probabilité de tirer ...
 - une boule bleue est $\frac{3}{8}$ (2) une boule bleue est $\frac{3}{5}$ (3) une boule verte est $\frac{5}{3}$ une boule verte est $\frac{5}{3}$ une boule verte est 0,625 (5) aucune des réponses précédentes n'est correcte.
- 11. Rappeler la formule permettant de développer $\cos(a+b)$:

$$_{(1)}\square$$
 $\cos a \sin b + \sin a \cos b$ $_{(2)}\square$ $\cos a \cos b + \sin a \sin b$

$$_{(3)}\square$$
 $\cos a \sin b - \sin a \cos b$ $_{(4)}\blacksquare$ $\cos a \cos b - \sin a \sin b$

$$_{(5)}\square$$
 $\sin a \cos b - \cos a \sin b$

12. En se basant sur le repère suivant d'origine O, on peut dire que :

(1)
$$\blacksquare AB = \frac{\sqrt{85}}{2}$$
 (2) $\blacksquare CE = \frac{3}{2}\sqrt{2}$

- $_{(3)}$ O, B et C sont alignés. $_{(4)}\Box$ OA=3
- $_{(5)}\square$ aucune des réponses précédentes n'est correcte.
- 13. Quelle est la limite quand $x \to +\infty$ de $\ln\left(\frac{1}{x^2}\right)$? Cocher les affirmations qui sont vraies :

$$\lim_{x\to +\infty} \ln\left(\frac{1}{x^2}\right) = 0 \qquad \text{(2)} \qquad \lim_{x\to +\infty} \ln\left(\frac{1}{x^2}\right) = +\infty \qquad \text{(3)} \blacksquare \quad \lim_{x\to +\infty} \ln\left(\frac{1}{x^2}\right) = -\infty$$

$$\text{(4)} \square \quad \lim_{x\to +\infty} \ln\left(\frac{1}{x^2}\right) = 1 \qquad \text{(5)} \square \quad \text{aucune des réponses précédentes n'est correcte}$$

14. Quelle est la limite quand $x \to \frac{\pi}{3}$ de $\frac{\sin(x) - \frac{\sqrt{3}}{2}}{x - \frac{\pi}{3}}$? Cocher les affirmations qui sont vraies :

$$\lim_{x\to\frac{\pi}{3}}\left(\frac{\sin(x)-\frac{\sqrt{3}}{2}}{x-\frac{\pi}{3}}\right)=0 \qquad \text{(2)} \qquad \lim_{x\to\frac{\pi}{3}}\left(\frac{\sin(x)-\frac{\sqrt{3}}{2}}{x-\frac{\pi}{3}}\right)=1 \qquad \text{(3)} \qquad \lim_{x\to\frac{\pi}{3}}\left(\frac{\sin(x)-\frac{\sqrt{3}}{2}}{x-\frac{\pi}{3}}\right)=\frac{1}{2}$$

$$\text{(4)} \qquad \lim_{x\to\frac{\pi}{3}}\left(\frac{\sin(x)-\frac{\sqrt{3}}{2}}{x-\frac{\pi}{3}}\right)=\frac{\pi}{2\sqrt{3}} \qquad \text{(5)} \qquad \text{aucune des réponses précédentes n'est correcte}$$

15. Soit la fonction $f(x) = (2x+1)^2(2x+1)^{\frac{1}{3}}$ Cocher les affirmations qui sont toujours vérifiées :

$$f(x) = (2x+1)^{\frac{7}{3}} \qquad (2)^{\square} \quad f(x) = (2x+1)^{\frac{2}{3}}$$

$$f(x) = (2x+1)\sqrt[3]{(2x+1)^4} \qquad (4)^{\square} \quad f(x) = (2x+1)^2\sqrt[3]{(2x+1)^2}$$

 $_{(5)}\square$ aucune de ces réponses

16. Quelle est la dérivée de la fonction f(x) de la question précédente?

$$f'(x) = 2(2x+1)^{\frac{4}{3}}$$
 $f'(x) = \frac{7}{3}(2x+1)^{\frac{4}{3}}$ $f'(x) = \frac{7}{3}(2x+1)^{\frac{4}{3}}$ $f'(x) = 12(2x+1)^5$ $f'(x) = \frac{4}{3}(2x+1)^{-\frac{1}{3}}$

(5)■ aucune des réponses précédentes n'est correcte.

17. Soit l'inéquation $x^2 \leq 16$. Elle est vérifiée pour . . .

$$(1)$$
 \square $x\leqslant 4$ (2) \square $0\leqslant x\leqslant 4$ (3) \blacksquare $-4\leqslant x\leqslant 4$ (4) \square $x\geqslant 4$ (5) \square aucune de ces réponses

- 18. Je crée un réseau social basé sur le principe suivant :
 - le premier jour, je suis seul et possède n invitations $(n \neq 1)$;
 - \bullet le lendemain, j'invite n personnes dans mon réseau;
 - \cdot chaque personne invitée reçoit, en tout et pour tout, n invitations, qu'elle doit utiliser obligatoirement le lendemain de son adhésion.

En supposant que personne n'invite quelqu'un qui est déjà membre du réseau, combien ce réseau compte-t-il de personnes le soir du 9° jour?

$ (1)^{\square} n^9 \qquad (2)^{\square} 9^n \qquad (3)^{\square} \frac{n^{10}-1}{n-1} \qquad (4)^{\blacksquare} \frac{n^9-1}{n-1} \qquad (5)^{\square} \frac{9^n}{9} $	(1) \sim (2) \sim 3	(3) $\longrightarrow n-1$	(4) — n-1	(5) - 9-1
--	-------------------------------	-----------------------------	-----------	-----------

19. Une espèce d'oiseaux rares voit sa population diminuer de 3% chaque année. On recense 300 oiseaux de cette espèce en 2020. On modélise le nombre d'oiseaux de cette espèce en l'année 2020 + n par une suite (u_n) Ainsi $u_0 = 300$.

En 2021, la population de oiseaux sera de :

$_{1)}\Box$ 210	(2) ■ 291	$_{(3)}\Box$ 297	$_{(4)}\Box$ 309	$_{(5)}\square$	aucune de ces réponses
-----------------	------------------	------------------	------------------	-----------------	------------------------

- 20. La suite (u_n) de la question précédente est :
 - $_{(1)}\square$ arithmétique de raison -9
 - $_{(2)}\square$ arithmétique de raison -3
 - $_{(3)}\square$ géométrique de raison 1,03
 - géométrique de raison 0,97
 - (5) aucune de ces réponses