## Canada\_leading\_causes\_of\_death

Scarlet Ruoxian Wu

## Introduction

## Methods

The study utilized a cleaned dataset, which included data on the leading causes of death in Canada. The data was sourced from a comprehensive database containing records from 2000 to 2022. The causes of death were categorized according to the ICD-10 classification system. The dataset was filtered to focus on the data from the year 2022, and the top nine causes of death by rank were selected for in-depth analysis.

## Result

```
top_10 <-
  data |>
  filter(
    ref_date == 2022,
    rank <= 10)

top_10 |>
  kable(
    col.names = c("Year", "Cause", "Deaths", "Rank", "Years"),
    align = c("l", "r", "r", "r"),
    digits = 0, booktabs = TRUE, linesep = ""
  )
```

Table 1: Top-ten causes of death in Canada in 2022

| Year | Cause                          | Deaths | Rank | Years |
|------|--------------------------------|--------|------|-------|
| 2022 | Malignant neoplasms [C00-C97]  | 82412  | 1    | 23    |
| 2022 | Major cardiovascular diseas    | 76639  | 2    | 23    |
| 2022 | Diseases of heart [I00-I09,    | 57357  | 3    | 23    |
| 2022 | Ischaemic heart diseases [I    | 34830  | 4    | 23    |
| 2022 | Dementia [F010-F019, F03]      | 25994  | 5    | 6     |
| 2022 | Unspecified dementia [F03]     | 23896  | 6    | 6     |
| 2022 | Other forms of chronic isch    | 20126  | 7    | 23    |
| 2022 | COVID-19 [U07.1, U07.2, U10.9] | 19716  | 8    | 3     |
| 2022 | Malignant neoplasms of trac    | 19151  | 9    | 23    |
| 2022 | Other heart diseases [I26-I51] | 18913  | 10   | 23    |

```
top_nine <-
  data |>
 filter(
    ref_date == 2022,
          ) |>
        slice_max(order_by = desc(rank), n = 9) |>
        pull(cause_of_death_icd_10)
top_9 <-
  data |>
  filter(cause_of_death_icd_10 %in% top_nine)
short_names <-
  c("Malignant neoplasms [COO-C97]" = "Malignant Neoplasms",
    "Diseases of heart [I00-I09,..." = "Diseases of Heart",
    "Malignant neoplasms of trac..." = "Respiratory Malignant Neoplasms",
    "Dementia [F010-F019, F03]" = "Dementia",
    "COVID-19 [U07.1, U07.2, U10.9]" = "COVID-19",
    "Major cardiovascular diseas..." = "Major Cardiovascular Diseases",
    "Ischaemic heart diseases [I..." = "Ischaemic Heart Diseases",
    "Unspecified dementia [F03]" = "Unspecified Dementia",
    "Other forms of chronic isch..." = "Other Chronic Ischaemic Heart Diseases"
top_9 <- top_9 %>%
  mutate(cause_of_death_icd_10 = recode(cause_of_death_icd_10, !!!short_names))
```

Table 2: Summary statistics of the number of yearly deaths, by cause, in Canada

|       | Min   | Mean  | Max   | SD    | Var       | N   |
|-------|-------|-------|-------|-------|-----------|-----|
| value | 14466 | 42831 | 82822 | 22480 | 505344387 | 153 |

```
top_9 |>
  ggplot(aes(x = ref_date, y = value, color = cause_of_death_icd_10)) +
  geom_line() +
  theme_minimal() +
  scale_color_brewer(palette = "Set1") +
  labs(x = "Year", y = "Annual number of deaths in Canada") +
  facet_wrap(~cause_of_death_icd_10, dir = "v", ncol = 1, scales = "free_y") +
  theme(legend.position = "none") +
  scale_y_continuous(
  labels = scales::comma, # This formats the labels with commas for thousands
    breaks = scales::pretty_breaks(n = 5) # This creates 5 evenly spaced breaks
)

ggsave("leading_ning_plot.png", plot = last_plot(), width = 10, height = 8, units = "in")
```

```
poisson_summary <- summary(cause_of_death_poisson)</pre>
neg_binomial_summary <- summary(cause_of_death_neg_binomial)</pre>
tidy poisson <- tidy(cause of death poisson)</pre>
tidy_neg_binomial <- tidy(cause_of_death_neg_binomial)</pre>
combined_summary <- bind_rows(</pre>
  mutate(tidy_poisson, model = "Poisson"),
  mutate(tidy_neg_binomial, model = "Negative Binomial")
)
coef_short_names <-</pre>
  c("cause_of_death_icd_10Malignant Neoplasms"
    = "Malignant Neoplasms",
    "cause_of_death_icd_10Diseases of Heart"
    = "Diseases of Heart",
    "cause of death icd 10Respiratory Malignant Neoplasms"
    = "Respiratory Malignant Neoplasms",
    "cause_of_death_icd_10Dementia [F010-F019, F03]"
```



```
= "Dementia",
    "cause_of_death_icd_10COVID-19"
    = "COVID-19",
    "cause_of_death_icd_10Major Cardiovascular Diseases"
    = "Major Cardiovascular Diseases",
    "cause_of_death_icd_10Ischaemic Heart Diseases"
    = "Ischaemic Heart Diseases",
    "cause_of_death_icd_10Unspecified Dementia"
    = "Unspecified Dementia",
    "cause_of_death_icd_100ther Chronic Ischchaemic Heart Diseases"
    = "Other Chronic Ischchaemic Heart Diseases"
combined_summary$term <-</pre>
  ifelse(combined_summary$term %in% names(coef_short_names),
    coef_short_names[combined_summary$term],
    combined_summary$term)
models_list <- list(</pre>
  Poisson = cause_of_death_poisson,
  `Negative Binomial` = cause_of_death_neg_binomial
modelsummary(models list, coef map = coef short names)
pp_check(cause_of_death_poisson) +
  theme(legend.position = "bottom")
pp_check(cause_of_death_neg_binomial) +
  theme(legend.position = "bottom")
poisson <- loo(cause_of_death_poisson, cores = 2)</pre>
neg_binomial <- loo(cause_of_death_neg_binomial, cores = 2)</pre>
loo_compare(poisson, neg_binomial)
                             elpd_diff se_diff
```

0.0

1748.0

0.0

-14125.2

cause\_of\_death\_neg\_binomial

cause\_of\_death\_poisson

Table 3: Modeling the most prevalent cause of deaths in Canada, 2001-2020

|                                 | Poisson    | Negative Binomial |
|---------------------------------|------------|-------------------|
| Malignant Neoplasms             | 1.479      | 1.472             |
|                                 |            | (0.082)           |
| Diseases of Heart               | 1.137      | 1.129             |
|                                 |            | (0.083)           |
| Respiratory Malignant Neoplasms | 0.123      | 0.116             |
|                                 |            | (0.082)           |
| Major Cardiovascular Diseases   | 1.450      | 1.443             |
|                                 |            | (0.085)           |
| Ischaemic Heart Diseases        | 0.770      | 0.761             |
|                                 |            | (0.083)           |
| Unspecified Dementia            | 0.259      | 0.253             |
|                                 |            | (0.096)           |
| Num.Obs.                        | 153        | 153               |
| Log.Lik.                        | -14947.833 | -1463.624         |
| ELPD                            | -15593.5   | -1468.3           |
| ELPD s.e.                       | 1752.0     | 7.1               |
| LOOIC                           | 31186.9    | 2936.6            |
| LOOIC s.e.                      | 3504.0     | 14.3              |
| WAIC                            | 31838.1    | 2936.3            |
| RMSE                            | 3153.30    | 3153.84           |



Figure 2: Comparing posterior prediction checks for Poisson and negative binomial models