Analys Problem 1

Robin Boregrim

October 2, 2017

Innehållsförteckning

1	Uppgiften			
2	2 Lösning		2	
	2.1	Observationer	2	
	2.2	Uträkningar	2	
	2.3	Svar	4	

1 Uppgiften

Beräkna gränsvärdet av

$$x_n = \frac{\sqrt{1+2n} - 3}{\sqrt{n} - 2}$$

när n går mot oändligheten.

2 Lösning

2.1 Observationer

Om vi observerar gränsvärdet för \boldsymbol{x}_n

$$\lim_{n \to \infty} \left(\frac{\sqrt{1+2n} - 3}{\sqrt{n} - 2} \right) \tag{1}$$

ser vi att den är ett gränsvärde av typen " $\frac{\infty}{\infty}$ " eftersom

$$\sqrt{1+2n}-3\to\infty$$

 och

$$\sqrt{n}-2\to\infty$$
.

Detta betyder att vi inte bara kan räkna ut gränsvärdet direkt eftersom " $\frac{\infty}{\infty}$ " kan bli vad som helst. Vi måste därför skriva om (1) så man kan räkna ut gränsvärdet.

2.2 Uträkningar

Vi börjar med att dela täljaren i (1) men nämnaren så långt som det går, då får vi:

$$\lim_{n\to\infty} \bigg(\sqrt{\frac{1}{n}+2} + \frac{2\cdot\sqrt{\frac{1}{n}+2}-3}{\sqrt{n}-2}\bigg).$$

Vi vet att när $n \to \infty$ så

$$\frac{1}{n} \to 0 \tag{2}$$

och

$$\sqrt{n} \to \infty.$$
 (3)

Av (2) följer att när $n \to \infty$

$$\sqrt{\frac{1}{n} + 2} \to \sqrt{0 + 2} = \sqrt{2}$$

och av (2) och (3) följer att när $n\to\infty$

$$\frac{2 \cdot \sqrt{\frac{1}{n} + 2} - 3}{\sqrt{n} - 2} \to \frac{2\sqrt{2} - 3}{\infty} = 0.$$

Detta betyder att

$$\lim_{n \to \infty} \left(\sqrt{\frac{1}{n} + 2} + \frac{2 \cdot \sqrt{\frac{1}{n} + 2} - 3}{\sqrt{n} - 2} \right) = \sqrt{2} + 0 = \sqrt{2}.$$

2.3 Svar

Gränsvärdet av

$$x_n = \frac{\sqrt{1+2n} - 3}{\sqrt{n} - 2}$$

när $n \to \infty$ är

$$\sqrt{2}$$
.