Кратен интегран на Риман

15 января 2017 г.

$$\tau = \{x_i\}_{i=0}^n \qquad a = x_0 < x_1 < \dots < x_n = b$$

$$\xi_i \in [x_{i-1}, x_i] \qquad \sigma(f_i; \xi) = \sum_{i=1}^n f(\xi_i) \Delta x_i$$

$$\Delta x_i = |[x_{i-1}, x_i]| = x_i - x_{i-1} \qquad i \in 1..n$$

$$\delta_\tau = \max \Delta x_i (1 <= i <= n) \qquad \xi = \{\xi_i\}_{i=1}^n$$

Определение: f(x) е интегруема върху интервала [a,b] ако $\exists I \in R : \forall \epsilon > 0 \ \exists \delta = \delta(\epsilon) > 0 \ \forall \tau = \{x_i\}_{i=0}^n, \delta_\tau < \delta, \forall \xi = \{\xi_i\}_{i=1}^n, \xi \in [x_{i-i}, x_i]i = 1..n$

$$=> |I - \sigma_{\tau}(f_i \xi)| < \epsilon$$

I - интеграл на Риман на функцията f(x) върху интервала [a,b]

Нека функцията f(x) е дефинирана върху измеримо по Жордан множесто $\Omega \subset R^n$

$$x = (x_1, ..., x_n)$$
 $\tau = \{G_i\}_{i=1}^n, G_i \subset \Omega \ \forall i = 1..n$

1) $\cup_{i=1}^n G_i = \Omega, G_i$ - измеримо по Жордан

2)
$$G_i \cap G_j = \emptyset \forall i, j = 1..n \ i \neq j$$

3) au - разбиване на Ω $\forall i=1..n \; \xi_i \in G_i$

$$\sigma_{\tau}(f_i\xi) = \sum_{i=1}^n f(\xi_i) m(G_i)$$
 - Сума на Риман

Определени: $\mathbf{U} \subset R^m, \rho$ - метрика. $\mathrm{Diam} \mathbf{U} = \sup \rho(x,y)_{x,y \in U}$ - наричаме диаметър

Определение: Големи на разбирането $\tau - \delta_{\tau} = maxdiam(G)$ 1 <= i <= n Определени: Казваме, че f(x) е ингрируема по Риман върху Ω , ако $\exists I \in R: \forall \epsilon > 0; \ \exists \delta = \delta(\epsilon) < 0: \forall \tau = \{G_i\}_{i=1}^n, \delta_{\tau} < \delta \ \forall \xi = \{\xi_i\}_{i=1}^n, \xi_i \in G_i \qquad i = 1..n \qquad |I - \sigma_{\tau}(f_i \xi)| < \epsilon$

Определение: f(x) е дефинирано върху измеримо по Жордан многжесто $\Omega \subset R^n$: f(x) е съществено ограничена върху Ω ако $\exists G \subset \Omega$ с ЖМ нула, такова че: f(x) е ограничена върху Ω/G

Определение: f(x) е дефинирано върху измеримо по Жордан многжесто $\Omega \subset R^n$: f(x) е съществено неограничена върху Ω ако $\exists G \subset \Omega$ с ЖМ нула, такова че: f(x) е неограничена върху Ω/G

Теорема: Ако f(x) е дефинирана върху измеримо по Жордан множесто Ω и е съществено неограничена върху $\Omega => f(x)$ не е интегрируема върху Ω

Доказателство: Нека f(x)е съществено неограничена върху Ω и интегрируема по Риман върху Ω

От това, че е интегрируема => $\exists I \in R : \forall \epsilon > 0 \exists \delta = \delta_{epsilon} > 0 : \forall \tau = \{G_i\}_{i=1}^n, \delta_\tau < \delta \ \forall \xi = \{\xi_i\}_{i=1}^n, \xi_i \in G_i \qquad i=1..n \qquad |I - \sigma_\tau(f_i \xi)| < \epsilon$

$$\epsilon = 1$$
 $\exists \delta_1 > 0 : \forall \tau = \{G_i\}_{i=1}^n : \delta_\tau < \delta \ \forall \xi = \{\xi_i\}_{i=1}^n, \xi_i \in G_i$ $i = 1..n$

$$|I - \sigma_\tau(f_i \xi)| < 1$$

$$I - 1 <= \sigma_{\tau}(f_i \xi) < I + 1$$

$$I - 1 < \sum_{i=1}^{n} f(\xi_i) m(G_i) < I + 1$$

 $\mathbf{f}(\mathbf{x})$ е съществено неограничена в G => $\exists G_{i_0} \in \tau$ и $m(G_{i_0}) \neq 0$: $\mathbf{f}(\mathbf{x})$ е неограничена върху G_{i_0}

За конкретно $G_{i_0} = G_1$

 $=> \mathrm{f}(\mathrm{x})$ е неограничена върху G_1

$$I - 1 < \sum_{i=1}^{n} f(\xi_i) m(G_i) < I + 1$$

$$I - 1 < f(\xi_1) m(G_1) + \sum_{i=2}^{n} f(\xi_i) m(G_i) < I + 1$$

$$\xi = \{\xi_1, \xi_2^0, \xi_3^0, ..., \xi_n^0\} : \xi_1 \in G_1 ; \xi_i^0 \in G_i$$

$$I - 1 < f(\xi_1) m(G_1) + \sum_{i=2}^{n} f(\xi_i) m(G_i) < I + 1$$

$$\sum_{i=2}^{n} f(\xi_i) m(G_i) = A$$

$$I - A - 1 < f(\xi_1)m(G_1) < I + 1 - A$$
 $\forall \xi_1 \in G_1 : m(G_1) \neq 0$

$$\frac{I - A - 1}{m(G_1)} < f(\xi_1) < \frac{I + 1 - A}{m(G_1)}$$