1. Determine the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n x^n$ where a_n is given by

(a)
$$\frac{n^n}{n!}$$

(b)
$$(\ln n)^{-1} n > 2$$

- 2. Find the Taylor series of the functions $\sin x$, $\cos x$ and e^x , where $x \in \mathbb{R}$. Determine the radius of convergence of each of these series. Use the Taylor series of $\sin x$ to approximate $\sin 10$ correct to 3 decimal places.
- 3. Familiarize yourself with the geometry of \mathbb{R}^3 . Understand the co-ordinate planes, the parametric equation of a line passing through a point (x_0, y_0, z_0) and parallel to a vector (a, b, c), the equation of a line passing through two given points, parametric equation of a plane passing through (x_0, y_0, z_0) and normal to the vector (a, b, c), the equation of a plane passing through three points. We will also assume the knowledge of various forms of equations of a line, plane, the foot of perpendicular of a point on a line, on a plane, distance of a point from a line/plane in \mathbb{R}^3 throughout the course. Consult Chapter 1 of your textbook (Basic Multivariable Calculus by Marsden, Tromba and Weinstein) for practice on these.
- 4. Define a Cauchy sequence in \mathbb{R}^n . Show that a sequence in \mathbb{R}^n is convergent if and only if it is a Cauchy sequence.
- 5. Prove the Bolzano-Weierstrass theorem in \mathbb{R}^n : Suppose that A is a compact set in \mathbb{R}^n . Every sequence in A has a subsequence that converges to a point in A.
- 6. A subset S of \mathbb{R}^n is said to be an open set if for every $\mathbf{x} \in S$, there is an $\epsilon > 0$ (depending on \mathbf{x}) such that $B_{\epsilon}(\mathbf{x}) \subset S$. Write the negation of this statement *i.e.* When is a subset of \mathbb{R}^n not an open set?
- 7. Show that a subset of \mathbb{R}^n is a closed set if and only if its complement is an open set.
- 8. Consider the following subsets of \mathbb{R}^2 . Draw a picture of these subsets in the xy-plane. Choose all the adjectives among: open, closed, bounded, unbounded, compact that apply to these sets. Prove your assertions.
 - (a) $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$
 - (b) $\{(x,y) \in \mathbb{R}^2 : -1 \le y < 1\}$
 - (c) $\{\mathbf{y} \in \mathbb{R}^2 : ||\mathbf{y}|| > 1\}$
 - (d) $\{(x,y) \in \mathbb{R}^2 : x \neq y\}$
 - (e) $\{(x,y) \in \mathbb{R}^2 : x^2 = y\}$
 - (f) The graph of f where $f: \mathbb{R} \to \mathbb{R}$ is the function given by $f(x) = \cos x$.
- 9. Consider the following subsets of \mathbb{R}^3 . Draw a picture of these subsets in the xyz-space. Choose all the adjectives among: open, closed, bounded unbounded, compact that apply to these sets. Prove your assertions.
 - (a) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 < 1\}$
 - (b) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1\}$
 - (c) $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \ge 1\}$
 - (d) $\{(x, y, z) \in \mathbb{R}^3 : x \neq 0, y \neq 0, z \neq 0\}$

ADVANCED

- 10. Find the volume of a regular tetrahedron in \mathbb{R}^3 of side a.
- 11. Let $A = \{(x, y, z) \in \mathbb{R}^3 : x, y, z \in \mathbb{Q}\}$
 - (a) Is the set A a closed subset of \mathbb{R}^3 ? Is it an open subset of \mathbb{R}^3 ?
 - (b) A has the property that, given any point in \mathbb{R}^3 , there exists a sequence contained completely in this set which converges to the given point. Can you think of other subsets of \mathbb{R}^3 , which have this property? Can you give infinitely many examples of such sets? Is it possible to describe all such sets?

Version: 2.741 Page 1 of 1