Qn. 1 (20 marks) Choose a correct option for each question. No justification is required. Each correct answer is worth 2 marks (no deduction for wrong answers).

(1)	Let $A\mathbf{x} = \mathbf{b}$ be a linear system	with 20 equations,	15 variables,	and 10 basic	variables.	Then
	$\dim \operatorname{Row} A$ is:					

(A) 0

(B) 5

 $(C)^* 10$

(D) 15

(E) 20

(2) Let A be a $p \times q$ matrix with rank A = q. Consider the statements:

(I) $\mathbf{x} \mapsto A\mathbf{x}$ is a one-to-one transformation.

(II) $\mathbf{x} \mapsto A\mathbf{x}$ is an onto transformation.

(III) $\mathbf{x} \mapsto A^T \mathbf{x}$ is a one-to-one transformation.

(IV) $\mathbf{x} \mapsto A^T \mathbf{x}$ is an onto transformation.

The correct statements are:

(A) I, III only

(B)* I, IV only

(C) II, III only

(D) II, IV only

(E) I, II, III, IV

(3) Let A, B, E be $n \times n$ matrices and let E be invertible. Consider the relations:

(I) A = EB

(II) A = BE

(III) EA = B

(IV) AE = B

The relation(s) that guarantee(s) A being row-equivalent to B is/are:

(A) I only

(B) II only

 $(C)^*$ I, III only

(D) II, IV only

(E) I, II, III, IV

(4) Let $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ be a linearly independent set in \mathbb{R}^3 . Which of the following 3×3 matrices is having zero determinant?

(A) $[2\mathbf{v}_1 \ 3\mathbf{v}_2 \ 4\mathbf{v}_3].$

(B) $[\mathbf{v}_1 \ \mathbf{v}_1 + \mathbf{v}_2 \ \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3].$

(C) $[\mathbf{v}_1 + \mathbf{v}_2 \ \mathbf{v}_2 + \mathbf{v}_3 \ \mathbf{v}_3 + \mathbf{v}_1].$

(D)* $[\mathbf{v}_1 - \mathbf{v}_2 \ \mathbf{v}_2 - \mathbf{v}_3 \ \mathbf{v}_3 - \mathbf{v}_1].$

(E) None of the above.

(5) Which of the following sets is a subspace of $M_{3\times3}$ (the vector space of 3×3 matrices)?

 $(A)^* S = \{A \in M_{3\times 3} : \operatorname{Nul} A \text{ contains } \mathbf{e}_1\}.$

(B) $S = \{A \in M_{3\times 3} : \det A = 0\}.$

(C) $S = \{ A \in M_{3 \times 3} : A^T A = I_3 \}.$

(D) $S = \{A \in M_{3\times 3} : A \text{ is diagonalizable}\}.$

(E) None of the above.

... to be continued

(6) Let A be an $m \times n$ matrix with rank $A = n < m$. Which of the following statements is correct?
(A) $\dim \operatorname{Row} A > \dim \operatorname{Col} A$.
$(B)^* \dim \operatorname{Row} A > \dim \operatorname{Nul} A.$
(C) $\dim \operatorname{Nul} A > \dim \operatorname{Col} A$.
(D) $\dim \operatorname{Nul} A = \dim \operatorname{Col} A$.
(E) None of the above.
(7) Let A be an $n \times n$ matrix. Which of the following subspaces, if non-zero, must be an eigenspace of A ?
$(A)^* (\operatorname{Row} A)^{\perp}$ (B) $\operatorname{Row} A$ (C) $(\operatorname{Col} A)^{\perp}$ (D) $\operatorname{Col} A$ (E) none of the previous.
(8) Let A, B be $n \times n$ matrices similar to each other. Which of the following statements is INCORRECT?
(A) A, B have the same determinant.
(B) A, B have the same rank.
(C) A, B have the same nullity.
(D) A, B have the same collection of eigenvalues.
$(E)^*$ A, B have the same collection of eigenvectors.
(9) Let W be a subspace of \mathbb{R}^n and let $\mathbf{u} \in \mathbb{R}^n$. Consider the statements:
(I) $\operatorname{proj}_W \mathbf{u} \perp (\mathbf{u} - \operatorname{proj}_W \mathbf{u}).$
(II) $\operatorname{proj}_{(W^{\perp})}\mathbf{u} \perp (\mathbf{u} - \operatorname{proj}_{(W^{\perp})}\mathbf{u}).$
(III) $\operatorname{proj}_W \mathbf{u} \perp \operatorname{proj}_{(W^{\perp})} \mathbf{u}$.
(IV) $(\mathbf{u} - \operatorname{proj}_W \mathbf{u}) \perp (\mathbf{u} - \operatorname{proj}_{(W^{\perp})} \mathbf{u}).$
The correct statements are:
(A) I, II, III only (B) I, II, IV only (C) I, III, IV only (D) II, III, IV only (E)* I, II, III, IV

(10) Let A be an $m \times n$ matrix and let \mathbf{v} be the orthogonal projection of a vector $\mathbf{u} \in \mathbb{R}^m$ onto

(A) $A^T \mathbf{u} = \mathbf{0}$.

(B) $A^T \mathbf{v} = \mathbf{0}$.

(C) $A^T(\mathbf{u} + \mathbf{v}) = \mathbf{0}$.

 $(D)^* A^T(\mathbf{u} - \mathbf{v}) = \mathbf{0}.$

(E) None of the above.

 $\operatorname{Col} A$. Which of the followings is correct?

Qn. 2 (10 marks) Let

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

(a) Find A^{-1} . [4 marks]

(b) Find the matrix X such that $AXA^{-1} = B$.

[6 marks]

Solution:

(a) We perform EROs on the combined matrix $[A \mid I_4]$:

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 1 & 0 & 0 & 0 \\ 0 & 2 & 3 & 4 & 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 4 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 4 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow[-r_3 + r_2]{-r_3 + r_2} \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 4 & 0 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}r_2} \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & \frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & \frac{1}{4} \end{bmatrix}$$

Hence:

$$A^{-1} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & \frac{1}{4} \end{bmatrix}.$$

(b) Since $AXA^{-1} = B \Rightarrow X = A^{-1}BA$, so we compute:

$$X = A^{-1}BA = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & \frac{1}{4} \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 0 & \frac{1}{4} \end{bmatrix} A$$
$$= \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & 0 & \frac{1}{4} \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 9 & 16 \\ 0 & 1 & 3 & 6 \\ 0 & 0 & 1 & \frac{8}{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

OR:

$$X = A^{-1}BA = A^{-1} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 3 & 4 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 0 & 4 \end{bmatrix} = A^{-1} \begin{bmatrix} 1 & 6 & 18 & 40 \\ 0 & 2 & 9 & 24 \\ 0 & 0 & 3 & 12 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} & -\frac{1}{3} \\ 0 & 0 & 0 & \frac{1}{4} \end{bmatrix} \begin{bmatrix} 1 & 6 & 18 & 40 \\ 0 & 2 & 9 & 24 \\ 0 & 0 & 3 & 12 \\ 0 & 0 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 9 & 16 \\ 0 & 1 & 3 & 6 \\ 0 & 0 & 1 & \frac{8}{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Qn. 3 (10 marks) Consider a linear system $A\mathbf{x} = \mathbf{b}$ where:

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ -1 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

(a) Check that $A\mathbf{x} = \mathbf{b}$ is inconsistent.

[2 marks]

(b) Find a least squares solution \mathbf{x}_0 to the system $A\mathbf{x} = \mathbf{b}$.

[4 marks]

(c) Find the distance of \mathbf{b} to $\operatorname{Col} A$.

[4 marks]

Solution:

(a) Perform EROs on the augmented matrix:

$$\begin{bmatrix} A \mid \mathbf{b} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ -1 & 1 & 1 \end{bmatrix} \xrightarrow{\begin{array}{c} -2r_1 + r_2 \\ r_1 + r_3 \end{array}} \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & -1 \\ 0 & 3 & 2 \end{bmatrix} \xrightarrow{3r_2 + r_3} \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{bmatrix}$$

Since the last column of the augmented matrix contains a pivot position, the system $A\mathbf{x} = \mathbf{b}$ is inconsistent.

(b) The least squares solution \mathbf{x}_0 is determined by the normal equation $A^T A \mathbf{x}_0 = A^T \mathbf{b}$. So we compute:

$$A^{T}A = \begin{bmatrix} 6 & 7 \\ 7 & 14 \end{bmatrix}, \quad A^{T}\mathbf{b} = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$$
 and
$$[A^{T}A \mid A^{T}\mathbf{b}] = \begin{bmatrix} 6 & 7 & 2 \\ 7 & 14 & 6 \end{bmatrix} \xrightarrow{\frac{1}{7}r_{2}} \begin{bmatrix} 1 & 2 & \frac{6}{7} \\ 6 & 7 & 2 \end{bmatrix} \xrightarrow{-6r_{1}+r_{2}} \begin{bmatrix} 1 & 2 & \frac{6}{7} \\ 0 & -5 & -\frac{22}{7} \end{bmatrix} \xrightarrow{-\frac{1}{5}r_{2}} \begin{bmatrix} 1 & 0 & -\frac{2}{5} \\ 0 & 1 & \frac{22}{75} \end{bmatrix}.$$

Hence
$$\mathbf{x}_0 = \begin{bmatrix} -\frac{2}{5} \\ \frac{22}{35} \end{bmatrix}$$
.

(c) The distance is given by $||\mathbf{b} - A\mathbf{x}_0||$. So we compute:

$$\mathbf{b} - A\mathbf{x}_0 = \begin{bmatrix} 1\\1\\1 \end{bmatrix} - \begin{bmatrix} 1 & 2\\2 & 3\\-1 & 1 \end{bmatrix} \begin{bmatrix} -\frac{2}{5}\\\frac{22}{35} \end{bmatrix} = \begin{bmatrix} 1\\1\\1 \end{bmatrix} - \begin{bmatrix} \frac{6}{7}\\\frac{38}{35}\\\frac{36}{35} \end{bmatrix} = \begin{bmatrix} \frac{1}{7}\\-\frac{3}{35}\\-\frac{1}{35} \end{bmatrix}$$

Hence distance =
$$||\mathbf{b} - A\mathbf{x}_0|| = \sqrt{\frac{1}{35}}$$
.

[Note: $A\mathbf{x}_0$ is exactly the orthogonal projection of \mathbf{b} onto $\operatorname{Col} A$.]

Qn. 4 (15 marks) Consider \mathbb{P}_2 , the vector space of polynomials with degree at most 2. Let:

$$\mathcal{B} = \{1 + t, t + t^2, t^2 + 1\}, \quad p(t) = 1 + t + t^2, \quad q(t) = 2 + t - t^2.$$

(a) Verify that \mathcal{B} is a basis for \mathbb{P}_2 . [4 marks]

(b) Find the coordinate vectors of p(t), q(t) relative to basis \mathcal{B} . [6 marks]

(c) Let $[r(t)]_{\mathcal{B}} = \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}^T$. Find the polynomial r(t).

(d) Does the r(t) in (c) belong to Span $\{p(t), q(t)\}$? Why or why not? [3 marks]

Solution:

(a) (i) Check that \mathcal{B} is linearly independent: Consider the vector equation:

$$c_1(1+t) + c_2(t+t^2) + c_3(t^2+1) = 0(t) \quad \leftrightarrow \quad (c_1+c_3) \cdot 1 + (c_1+c_2) \cdot t + (c_2+c_3) \cdot t^2 = 0(t).$$

By equating coefficients of $1, t, t^2$, we get:

$$\begin{cases} c_1 + c_3 = 0 \\ c_1 + c_2 = 0 \\ c_2 + c_3 = 0 \end{cases} \Rightarrow \begin{cases} c_1 = 0 \\ c_2 = 0 \\ c_3 = 0 \end{cases}$$

So \mathcal{B} is linearly independent by definition.

(ii) Check that Span $\mathcal{B} = \mathbb{P}_2$: For any polynomial $a + bt + ct^2 \in \mathbb{P}_2$, we try to solve:

$$x_1(1+t) + x_2(t+t^2) + x_3(t^2+1) = a + bt + ct^2$$

$$\leftrightarrow (x_1 + x_3) \cdot 1 + (x_1 + x_2) \cdot t + (x_2 + x_3) \cdot t^2 = a + bt + ct^2$$

By equating coefficients of $1, t, t^2$, we get:

$$\begin{cases} x_1 + x_3 = a \\ x_1 + x_2 = b \\ x_2 + x_3 = c \end{cases} \Rightarrow \begin{cases} x_1 = \frac{1}{2}(a+b-c) \\ x_2 = \frac{1}{2}(-a+b+c) \\ x_3 = \frac{1}{2}(a-b+c) \end{cases}$$

which is always consistent. So \mathcal{B} can span \mathbb{P}_2 .

As \mathcal{B} is both linearly independent, spanning \mathbb{P}_2 , it will form a basis for \mathbb{P}_2 .

[Note: (i) or (ii) can be replaced by checking number of vectors in $\mathcal{B} = \dim \mathbb{P}_2 = 3$.]

(b) To find coordinate vectors relative to basis \mathcal{B} , we need to determine the coordinates x_1, x_2, x_3 in the linear combination:

$$x_1(1+t) + x_2(t+t^2) + x_3(t^2+1) = p(t)$$
 or $q(t)$.

By (a)(ii), we have the solutions immediately:

$$[p(t)]_{\mathcal{B}} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}, \quad [q(t)]_{\mathcal{B}} = \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$$

(c) By definition, the vector r(t) should be given by:

$$[r(t)]_{\mathcal{B}} = \begin{bmatrix} 1\\2\\1 \end{bmatrix} \quad \leftrightarrow \quad r(t) = 1 \cdot (1+t) + 2 \cdot (t+t^2) + 1 \cdot (t^2+1) = 2 + 3t + 3t^2.$$

(d) Using the \mathcal{B} -coordinate mapping, the problem can be transformed into the same query on the corresponding coordinate vectors:

Is
$$[r(t)]_{\mathcal{B}} \in \operatorname{Span} \{ [p(t)]_{\mathcal{B}}, [q(t)]_{\mathcal{B}} \}$$
? i.e. Is $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \in \operatorname{Span} \{ \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix} \}$?

We check the consistency of the corresponding augmented matrix:

$$\begin{bmatrix}
\frac{1}{2} & 2 & 1 \\
\frac{1}{2} & -1 & 2 \\
\frac{1}{2} & 0 & 1
\end{bmatrix}
\xrightarrow{r_1 \leftrightarrow r_3}
\begin{bmatrix}
\frac{1}{2} & 0 & 1 \\
\frac{1}{2} & -1 & 2 \\
\frac{1}{2} & 2 & 1
\end{bmatrix}
\xrightarrow{-r_1 + r_2}
\begin{bmatrix}
\frac{1}{2} & 0 & 1 \\
0 & -1 & 1 \\
0 & 2 & 0
\end{bmatrix}
\xrightarrow{2r_2 + r_3}
\begin{bmatrix}
\frac{1}{2} & 0 & 1 \\
0 & -1 & 1 \\
0 & 0 & 2
\end{bmatrix}$$

which is inconsistent. So we can conclude that $r(t) \notin \text{Span}\{p(t), q(t)\}.$

OR, using the standard representations of the three polynomials, we are asking the consistency of:

$$2 + 3t + 3t^{2} = a(1 + t + t^{2}) + b(2 + t - t^{2}) \quad \leftrightarrow \quad \begin{cases} a + 2b = 2 \\ a + b = 3 \\ a - b = 3 \end{cases}$$

Again, the system is inconsistent.

Qn. 5 (15 marks) Let:

$$A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}.$$

(a) Diagonalize A, namely, find invertible matrices P, P^{-1} and a diagonal matrix D such that $A = PDP^{-1}$.

(b) Find a general formula of A^n .

[5 marks]

Solution:

(a) First we solve the characteristic equation of A for eigenvalues:

$$0 = \det(A - \lambda I) = \det \begin{bmatrix} 2 - \lambda & 0 & 1 \\ 0 & 2 - \lambda & 0 \\ 1 & 0 & 2 - \lambda \end{bmatrix} = (2 - \lambda) \det \begin{bmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{bmatrix}$$
$$= (2 - \lambda)[(2 - \lambda)^2 - 1] = (2 - \lambda)(1 - \lambda)(3 - \lambda).$$

So the eigenvalues of A are $\lambda_1 = 1$, $\lambda_2 = 2$, $\lambda_3 = 3$.

Next, for each eigenvalue, we find a basis for the corresponding eigenspace:

(i) $\lambda_1 = 1$: We solve $(A - I)\mathbf{x} = \mathbf{0}$.

$$A - I = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

A basis for the eigenspace of $\lambda_1 = 1$ is:

$$\left\{ \begin{bmatrix} -1\\0\\1 \end{bmatrix} \right\}.$$

(ii) $\lambda_2 = 2$: We solve $(A - 2I)\mathbf{x} = \mathbf{0}$.

$$A - 2I = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

A basis for the eigenspace of $\lambda_2 = 2$ is:

$$\left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}.$$

(iii) $\lambda_3 = 3$: We solve $(A - 3I)\mathbf{x} = \mathbf{0}$.

$$A - 3I = \begin{bmatrix} -1 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

A basis for the eigenspace of $\lambda_3 = 3$ is:

$$\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}.$$

Hence we can construct the matrices P and D, and compute the matrix P^{-1} as:

$$P = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}, \quad P^{-1} = \begin{bmatrix} -\frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}.$$

Then $A = PDP^{-1}$.

(b) Since $A^n = PD^nP^{-1}$, so we compute:

$$A^{n} = PD^{n}P^{-1} = \begin{bmatrix} -1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2^{n} & 0 \\ 0 & 0 & 3^{n} \end{bmatrix} \begin{bmatrix} -\frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & 0 \\ \frac{1}{2} & 0 & \frac{1}{2} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{1}{2}(3^{n} + 1) & 0 & \frac{1}{2}(3^{n} - 1) \\ 0 & 2^{n} & 0 \\ \frac{1}{2}(3^{n} - 1) & 0 & \frac{1}{2}(3^{n} + 1) \end{bmatrix}.$$

Qn. 6 (15 marks) Let:

$$A = \begin{bmatrix} 4 & 0 & 0 & 1 \\ 0 & 4 & 1 & 0 \\ 0 & 1 & 4 & 0 \\ 1 & 0 & 0 & 4 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}.$$

- (a) Show that \mathbf{v} , \mathbf{w} are both eigenvectors of A. Write down also their eigenvalues. [4 marks]
- (b) Find an orthonormal basis for the eigenspace of A containing (i) \mathbf{v} (ii) \mathbf{w} respectively. [Note: Your orthonormal basis should start with the vector \mathbf{v} (or \mathbf{w}).] [8 marks]
- (c) Find an orthogonal matrix P such that $D = P^T A P$ is a diagonal matrix. Write down also the diagonal matrix D.

Solution:

(a) By direct checking:

$$A\mathbf{v} = \begin{bmatrix} 4 & 0 & 0 & 1 \\ 0 & 4 & 1 & 0 \\ 0 & 1 & 4 & 0 \\ 1 & 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{5}{2} \\ \frac{5}{2} \\ \frac{5}{2} \\ \frac{1}{2} \end{bmatrix} = 5\mathbf{v}, \quad A\mathbf{w} = \begin{bmatrix} 4 & 0 & 0 & 1 \\ 0 & 4 & 1 & 0 \\ 0 & 1 & 4 & 0 \\ 1 & 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{3}{2} \\ \frac{3}{2} \\ -\frac{3}{2} \\ -\frac{3}{2} \end{bmatrix} = 3\mathbf{w},$$

so \mathbf{v} is an eigenvector of A corresponding to eigenvalue 5, and \mathbf{w} is an eigenvector of A corresponding to eigenvalue 3.

(b) (i) For eigenspace corresponding to eigenvalue 5, we consider:

$$A - 5I = \begin{bmatrix} -1 & 0 & 0 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

So dim Nul (A-5I) = 2 and it has a basis $\{(1,0,0,1)^T, (0,1,1,0)^T\}$. To fulfill the requirement of the question, we switch to another basis $\{\mathbf{v}, (1,0,0,1)^T\}$ and apply Gram-Schmidt process:

$$\mathbf{u}_{1} = \mathbf{v} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}, \quad \mathbf{u}_{2} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} - \frac{\begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}}{\|\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}\|^{2}} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} - \frac{1}{1} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \end{bmatrix}.$$

Note that $||\mathbf{u}_1|| = 1 = ||\mathbf{u}_2||$, so an orthonormal basis (containing \mathbf{v}) for the eigenspace $\mathrm{Nul}(A-5I)$ can be chosen as:

$$\left\{ \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \right\}.$$

(ii) Similarly, for eigenspace corresponding to eigenvalue 3, we consider:

$$A - 3I = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

So dim Nul (A-3I)=2 and it has a basis $\{(-1,0,0,1)^T,(0,-1,1,0)^T\}$. To fulfil the requirement of the question, we switch to another basis $\{\mathbf{w},(-1,0,0,1)^T\}$ and apply Gram-Schmidt process:

$$\mathbf{u}_{1}' = \mathbf{w} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}, \quad \mathbf{u}_{2}' = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} - \frac{\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}}{\|\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}\|^{2}} \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix} - \frac{1}{1} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}.$$

Note that $||\mathbf{u}_1'|| = 1 = ||\mathbf{u}_2'||$, so an orthonormal basis (containing \mathbf{w}) for the eigenspace $\mathrm{Nul}(A-3I)$ can be chosen as:

$$\left\{ \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}, \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \right\}.$$

(c) Since A is symmetric, the required orthogonal matrix P can be formed by putting the unit vectors in the orthonormal bases in (b) column by column:

$$P = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \quad \Rightarrow \quad D = P^T A P = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}.$$

Qn. 7 (15 marks) Let:

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 2 & 1 & 1 & 2 \end{bmatrix}, \quad U = \text{Row } A, \quad W = \text{Nul } A, \quad \mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}.$$

(a) Find $\operatorname{proj}_{U}\mathbf{v}$. [6 marks]

(b) Find $\operatorname{proj}_{W}\mathbf{v}$.

(c) Let B denote the standard matrix of the orthogonal projection transformation proj_U , and let C denote the standard matrix of the orthogonal projection transformation proj_W .

Find B + C. [5 marks]

Solution:

(a) To compute $\operatorname{proj}_U \mathbf{v}$, we need an orthogonal basis for $U = \operatorname{Row} A$. Take $\{(1,2,2,1)^T, (2,1,1,2)^T\}$ as a basis for U and apply the Gram-Schmidt process:

$$\mathbf{u}_{1} = \begin{bmatrix} 1\\2\\2\\1 \end{bmatrix}, \quad \mathbf{u}_{2} = \begin{bmatrix} 2\\1\\1\\2 \end{bmatrix} - \frac{\begin{bmatrix} 2\\1\\2\\2\\1 \end{bmatrix}}{\begin{bmatrix} 1\\2\\2\\2\\1 \end{bmatrix}} \begin{bmatrix} 1\\2\\2\\2\\1 \end{bmatrix} = \begin{bmatrix} 2\\1\\1\\2 \end{bmatrix} - \frac{8}{10} \begin{bmatrix} 1\\2\\2\\2\\1 \end{bmatrix} = \begin{bmatrix} \frac{6}{5}\\-\frac{3}{5}\\-\frac{3}{5}\\\frac{6}{5} \end{bmatrix}.$$

May take $\{\mathbf{u}_1, \frac{3}{5}\mathbf{u}_2\}$ and an orthogonal basis for U, namely:

$$\{\mathbf{u}_1',\mathbf{u}_2'\} = \{ \begin{bmatrix} 1\\2\\2\\1 \end{bmatrix}, \begin{bmatrix} 2\\-1\\-1\\2 \end{bmatrix} \}.$$

Using the orthogonal basis for U, we compute:

$$\operatorname{proj}_{U}\mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{u}_{1}'}{||\mathbf{u}_{1}'||^{2}}\mathbf{u}_{1}' + \frac{\mathbf{v} \cdot \mathbf{u}_{2}'}{||\mathbf{u}_{2}'||^{2}}\mathbf{u}_{2}' = \frac{15}{10} \begin{bmatrix} 1\\2\\2\\1 \end{bmatrix} + \frac{5}{10} \begin{bmatrix} 2\\-1\\-1\\2 \end{bmatrix} = \begin{bmatrix} \frac{5}{2}\\\frac{5}{2}\\\frac{5}{2}\\\frac{5}{2} \end{bmatrix}.$$

(b) Since $W = \text{Nul } A = (\text{Row } A)^{\perp} = U^{\perp}$, and the orthogonal decomposition of \mathbf{v} w.r.t. U is actually $\text{proj}_U \mathbf{v} + \text{proj}_{(U^{\perp})} \mathbf{v}$, so we get:

$$\operatorname{proj}_{W}\mathbf{v} = \operatorname{proj}_{(U^{\perp})}\mathbf{v} = \mathbf{v} - \operatorname{proj}_{U}\mathbf{v} = \begin{bmatrix} -\frac{3}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \\ \frac{3}{2} \end{bmatrix}.$$

(Or by direct computation...)

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 2 & 1 & 1 & 2 \end{bmatrix} \to \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}.$$

So an orthogonal basis for W = Nul A can be chosen as $\{\mathbf{w}_1, \mathbf{w}_2\} = \{(0, -1, 1, 0)^T, (-1, 0, 0, 1)^T\}$. Hence:

$$\operatorname{proj}_{W} \mathbf{v} = \frac{\mathbf{v} \cdot \mathbf{w}_{1}}{||\mathbf{w}_{1}||^{2}} \mathbf{w}_{1} + \frac{\mathbf{v} \cdot \mathbf{w}_{2}}{||\mathbf{w}_{2}||^{2}} \mathbf{w}_{2} = \frac{1}{2} \begin{bmatrix} 0 \\ -1 \\ 1 \\ 0 \end{bmatrix} + \frac{3}{2} \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{3}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \\ \frac{3}{2} \end{bmatrix}.$$

(c) Since for every $\mathbf{x} \in \mathbb{R}^4$, we have $\mathbf{x} = \mathrm{proj}_U \mathbf{x} + \mathrm{proj}_W \mathbf{x}$, so the standard matrix of the sum of orthogonal projection transformations $\mathrm{proj}_U + \mathrm{proj}_W$ is just the same as the identity transformation. Hence we must have $B + C = I_4$.

(Or by direct computation...)

$$B = \begin{bmatrix} \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 & \frac{1}{2} \end{bmatrix}, \quad C = \begin{bmatrix} \frac{1}{2} & 0 & 0 & -\frac{1}{2} \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & -\frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & 0 & 0 & \frac{1}{2} \end{bmatrix}.$$

Thus $B + C = I_4$.