Assessment Schedule – 2016

Chemistry: Demonstrate understanding of bonding, structure, properties and energy changes (91164)

Evidence Statement

Q	Evidence	Achievement	Merit	Excellence
ONE (a)	Endothermic The temperature decreased OR heat / energy has been absorbed.	Correct term with relevant reason in (a) OR (b).		
(b)	Exothermic. The enthalpy of the reaction is negative / energy has been released.			
(c)(i) (ii)	Energy is required to change pentane from a liquid to a gas. The energy / heat is used to break weak intermolecular forces / bonds / attraction between pentane molecules. Exothermic Reaction Reactants heat is released AH is negative	 Identifies energy / heat is required / absorbed / taken in. Diagram correctly drawn, but not labelled. 	 Explains that energy / heat is required / absorbed for breaking (intermolecular) forces / bonds / attractions. Diagram correctly drawn, but not fully labelled. 	Explains that energy / heat is required / absorbed for breaking (intermolecular) forces / bonds / attractions. AND Diagram correctly drawn and fully
(iii)	Reaction proceeds $n \text{ (pentane)} = 125 \text{ g} / 72.0 \text{ g mol}^{-1} = 1.74 \text{ mol}$ $n \text{ (hexane)} = 125 \text{ g} / 86.0 \text{ g mol}^{-1} = 1.45 \text{ mol}$ If 1 mole of pentane releases 3509 kJ energy, then 1.74 mol of pentane $1.74 \times 3509 = 6106 \text{ kJ}$ energy released. If 2 moles of hexane releases 8316 kJ energy, then 1 mole of hexane releases 4158 kJ energy. So 1.45 mol of hexane $1.45 \times 4158 = 6029 \text{ kJ}$ energy releases. So pentane releases more energy (77.0 kJ) than hexane, per 125 g of fuel.	Amount (moles) of pentane or hexane correct.	Pentane or hexane calculation correct.	 Both pentane and hexane calculations with units are correct, and identifies pentane as releasing more energy (link back to question) per 125 g of fuel.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1a	2a	3a	4a	2m	3m	1e	2e

Q		Eviden	ce		Achievement	Merit	Excellence
TWO (a)	Substance	Type of substance	Type of particle	Attractive forces between particles	One row or one column correct.		
	ZnCl ₂ (s) (zinc chloride)	ionic	ions	ionic			
	C(s) (graphite)	covalent network	atoms	covalent			
	CO ₂ (s) (carbon dioxide / dry ice)	molecular	molecules	intermolecular			
(b)	Electrical conductivity depending Graphite is a covalent network carbon atoms. This leaves on These electrons are free to move ZnCl ₂ is an ionic compound the particles are fixed in place in bonds between the ions break particles / ions free to move, and the particles is a simple of the particles of the particles in the particles is a simple of the particles of the particles in the particles is a covalent network of the particles in the particles is a covalent network of the particles in the particles is a covalent network of the particles in the particles in the particles is a covalent network of the particles in the particle is a covalent network of the particles in the particle is a covalent network of the particles in the particle is a covalent network of the particle in the particle is a covalent network of the particle in the particle is a covalent network of the particle in the particle is a covalent network of the particle in the particle is a covalent network of the particle in the particle is a covalent network of the particle in the particle is a covalent network of the particle in the particle is a covalent network of the particle in the particle is a covalent network of the particle in the particle is a covalent network of the particle in the particle is a covalent network of the particle in the particle in the particle is a covalent network of the particle in the parti	k substance made up of e valence non-bonded / ove and so graphite is a that cannot conduct elec- n a 3D lattice structure a t, so the ions are free to	f carbon atoms covaler delocalised electron fi ble to conduct electric stricity when solid becand unable to move. We move in the molten lie	ntly bonded to 3 other rom each carbon atom. ity. ause the ions (charged Then molten, the ionic	 Identifies that charged particles which are free to move are required for electrical conductivity. Identifies ZnCl₂(s) as not having ions / charges particles that are free to move OR identifies ZnCl₂(l) does have ions / charged particles that are free to move OR Identifies C(s) does have electrons / charged particles that are free to move. 	Explains conductivity by linking particles, structures, and bonding to either the conductivity of C (graphite) OR ZnCl ₂ in both solid and liquid (molten) states.	Justifies conductivity by relating particles, structures, and bonding to the conductivity of C (graphite) AND ZnCl ₂ in both solid and liquid (molten) states.

Polar water molecules attract the ions in zinc chloride's 3-D lattice strongly enough to separate and dissolve them. The negative charges on the oxygen ends of the water molecules are attracted to the positive Zn²⁺ ions, and the positive hydrogen ends of the water molecules are attracted to the negative Cl⁻ ions, forming hydrated ions that can spread out through the solution.

are needed between water and the substance for it to be soluble.

• Identifies attractions

• Links relative strengths of attractions of the substance to water for the solubility of ONE of the substances.

• Justifies solubility by linking particles, structure, and bonding for both ZnCl₂ and CO₂.

The polar water molecules are unable to interact with the non-polar carbon dioxide molecules strongly enough to break the intermolecular forces between the carbon dioxide molecules.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1a	2a	3a	4a	1m	2m	1e	2e

Q	Evidence	Achievement	Merit	Excellence
THREE (a)(i)	$H: \ddot{O}: H$ OR $H - \ddot{O} - H$ bent / v-shaped linear	Two Lewis structures (electron dot diagrams) correct. AND Two shapes correct.		
	H:P:H OR H-P-H trigonal pyramid H H			
(ii)	Bond angle is determined by the number of electron clouds / areas of negative charge around the central atom, which are arranged to minimise repulsion / are arranged as far apart from each other as possible (maximum separation). Both $\rm H_2O$ and $\rm PH_3$ have 4 electron clouds / areas of negative charge around the central atom, so the bond angle is that of a tetrahedral arrangement of 109.5°, whereas there are only 2 electron clouds / areas of negative charge around the central atom in $\rm CS_2$, which means minimum repulsion is at 180°, resulting in $\rm CS_2$'s shape being linear. The shapes of $\rm H_2O$ and $\rm PH_3$ differ despite having the same tetrahedral arrangement because water has two non-bonding pairs of electrons around the central atom, while phosphine only has one non-bonding pair. The resulting shapes are bent or v-shaped for $\rm H_2O$, while $\rm PH_3$ is trigonal pyramid.	Identifies the numbers of electron clouds / regions of negative charge around the central atoms for TWO molecules. OR Identifies non-bonding pairs and bonding pairs of electrons on the central atoms for TWO molecules.	Links areas of negative charge around the central atom to minimise repulsion (maximum separation) and bond angles for TWO molecules.	Compares and contrasts the bond angle and shapes of all three molecules by referring to electron repulsion, areas of negative charge / electron clouds and bonding / non- bonding electrons.
(b)	Each N-H bond in NH ₃ is polar / forms a dipole because the N and H atoms have different electronegativities. The shape of the molecule (due to the presence of one non-bonding electron pair) is trigonal pyramidal which is asymmetrical, so the dipoles / bond polarities do not cancel. The resulting NH ₃ molecule is polar. Each B-H bond in BH ₃ is polar / forms a dipole because the B and H atoms have different electronegativities. The shape of the molecule is trigonal planar which is symmetrical, so the dipoles / bond polarities cancel. The resulting BH ₃ molecule is non-polar.	Identifies that the atoms within the bonds have different electronegativities.	Links bond polarity to electronegativity differences between atoms for one molecule OR Uses symmetry to link molecule polarity to bond dipoles cancelling / not cancelling for 1 molecule.	Justifies polarity of ammonia and borane referring to differences in electronegativity, dipoles, and symmetry (shape) of molecules.

C–C × C–H × H–H		1038 4140 5178 kJ mol ⁻¹	bonds broken (C = C and H – H).	minor errors. Identifies which bonds are broken and which bonds are formed.	correct sign and unit.
$\Delta_{\rm r}H^{\circ} =$	Bond breaking – bond making 5054 kJ mol ⁻¹ – 5178 kJ mol ⁻¹ –124 kJ mol ⁻¹				
Bond b $C=C$ $H-H$ 1 $\Delta_{r}H^{\circ} =$	$C-H \times 2$	346			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1a	2a	3a	4a	2m	3m	2e	3e

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
0 – 6	7 – 13	14 – 19	20 - 24