## Assignment #6 Solutions

due Friday, September 25th, 2020

1

Assume  $x_{ij}$  is the indicator of whether the edge (i, j) is chosen to be part of the route, i.e.,  $x_{ij} = 1$  if it is part of the route and  $x_{ij} = 0$  otherwise.

To reduce the number of variables we can assume that items flow only from a lower node number to a higher node number, i.e., we ignore  $x_{ij}$  if  $i \geq j$ . At the same time, we assume the time taken from node i to note j is  $c_{ij}$ , i < j. Then the model is as follows:

$$\begin{aligned} &\min z = \sum_{i < j} c_{ij} x_{ij} \\ &s.t. \\ &x_{12} + x_{13} + x_{14} = 1 \\ &x_{12} - x_{23} - x_{25} = 0 \\ &x_{13} + x_{23} - x_{34} - x_{36} = 0 \\ &x_{14} + x_{34} - x_{46} = 0 \\ &x_{25} - x_{56} = 0 \\ &x_{56} + x_{36} + x_{46} = 1 \\ &0 \le x_{ij} \le 1, \ i < j, \ i = 1, 2, ..., 6, \ j = 1, 2, ..., 6 \ and \ integer. \end{aligned}$$

## Dijkstra algorithm

- (a) To start, define the permanent set to be the origin, node 1.
- (b) Next, find the shortest path from node 1 to any of its adjacent nodes: In this case, node 2 is the closest to 1, which we will add to the permanent set. Its distance to node 1 is 2.
- (c) Next, we explore all the nodes adjacent to the nodes in the permanent set, i.e, {1,2}. In this case, node 4 is the closest to node 1. Its distance to node 1 is 3.
- (d) Continue with the same manner until all the nodes are in the permanent set, finally we will derive the following answer.

Then we can derive the shortest routes as follows.

Node 1 is adjacent to 2 and 4;

Node 2 is adjacent to 3 and 5;

Node 3 is adjacent to 6;

 $\mathbf{2}$ 

(a) Assume  $x_{ij}$  be the number of units transported through edge (i, j). And we assume the time taken from node i to note j is  $c_{ij}$ . Then the model is as follows:

$$\begin{aligned} &\min z = \sum_{i < j} c_{ij} (x_{ij} + x_{ji}) \\ &s.t. \\ &x_{12} + x_{15} + x_{16} + x_{17} - x_{21} - x_{51} - x_{61} - x_{71} = 9 \\ &x_{12} + x_{42} + x_{32} - x_{21} - x_{23} - x_{24} = 1 \\ &x_{23} + x_{43} - x_{32} - x_{34} = 1 \\ &x_{24} + x_{34} + x_{64} - x_{42} - x_{43} - x_{46} = 1 \\ &x_{15} + x_{75} + x_{85} + x_{10,5} - x_{51} - x_{57} - x_{58} - x_{510} = 1 \\ &x_{16} + x_{46} + x_{76} + x_{96} - x_{61} - x_{64} - x_{67} - x_{69} = 1 \\ &x_{17} + x_{57} + x_{67} + x_{87} + x_{97} - x_{71} - x_{75} - x_{76} - x_{78} - x_{79} = 1 \\ &x_{58} + x_{78} + x_{98} + x_{108} - x_{85} - x_{87} - x_{89} - x_{8,10} = 1 \\ &x_{69} + x_{79} + x_{89} - x_{96} - x_{97} - x_{98} = 1 \\ &x_{5,10} + x_{8,10} - x_{10,5} - x_{10,8} = 1 \\ &x_{ij} \ge 0, \quad i = 1, 2, ..., 10, \quad j = 1, 2, ..., 10 \ and \ integer. \end{aligned}$$

| Shortest route | problem       |                  |      |                  |                   |     |              |      |               |      |            |                    |             |             |             |       |
|----------------|---------------|------------------|------|------------------|-------------------|-----|--------------|------|---------------|------|------------|--------------------|-------------|-------------|-------------|-------|
| One source to  | all other nod | les (undirected) |      |                  |                   |     |              |      |               |      |            |                    |             |             |             |       |
|                |               |                  |      |                  |                   |     |              |      |               |      |            |                    |             |             |             |       |
| Units shipped  | Nodo          | City             | Node | City             | Distance (minutes |     | Units shippe | Nodo | City          | Node | City       | Distance (minutes) |             |             |             |       |
| onits snipped  |               | Inglewood        |      | Westwood         | 25                | , i | OTHES SHIPPE |      | Westwood      |      | Inglewood  | 25                 | Flow constr | ninte:      |             |       |
| 2              |               | Inglewood        |      | Long Beach       | 48                |     | 0            |      | Long Beach    |      | Inglewood  | 48                 | Node        | Network Flo | Constraint  | Value |
| 1              |               | Inglewood        |      | Pasadena         | 50                |     | 0            |      | Pasadena      |      | Inglewood  | 50                 | rioue .     | Networking  | =           | value |
| â              |               | Inglewood        |      | Downey           | 32                |     | 0            |      | Downey        |      | Inglewood  | 32                 |             |             | []_         |       |
| 1              |               | Westwood         |      | San Fermando Va  |                   |     | 0            |      | San Fermande  |      | Westwood   | 35                 |             |             | il <u>-</u> |       |
| 1              |               | Westwood         |      | Burbank          | 18                |     | 0            |      | Burbank       |      | Westwood   | 18                 |             |             | il <u>-</u> |       |
| 0              |               | San Fermando Val |      | Burbank          | 28                |     | 0            |      | Burbank       |      | San Ferman |                    |             |             | il <u>-</u> |       |
| 0              |               | Burbank          |      | Pasadena         | 25                |     | 0            |      | Pasadena      |      | Burbank    | 25                 |             |             |             |       |
| 0              |               | Long Beach       | 7    | Downey           | 20                |     | 0            | 7    | Downey        | 5    | Long Beach | 20                 |             | , :         | ı -         |       |
| 0              |               | Long Beach       | 8    | Anaaheim         | 27                |     | 0            | 8    | Anaaheim      |      | Long Beach | 27                 |             | 3 :         | ı =         |       |
| 1              |               | Long Beach       | 10   | Huntington Beach | 24                |     | 0            | 10   | Huntington Be | 5    | Long Beach | 24                 | 9           | :           | L =         |       |
| 0              | - 6           | Pasadena         | 7    | Downey           | 45                |     | 0            | 7    | Downey        | 6    | Pasadena   | 45                 | 10          | :           | L =         |       |
| 0              | - 6           | Pasadena         | 9    | Pomona           | 36                |     | 0            | 9    | Pomona        | 6    | Pasadena   | 36                 |             |             |             |       |
| 1              | - 3           | Downey           | 8    | Anaheim          | 40                |     | 0            | 8    | Anaheim       | 7    | Downey     | 40                 |             |             |             |       |
| 1              | - 3           | Downey           | 9    | Pomona           | 29                |     | 0            | 9    | Pomona        | 7    | Downey     | 29                 |             |             |             |       |
| 0              | 8             | Anaheim          | 9    | Pomona           | 41                |     | 0            | 9    | Pomona        | 8    | Anaheim    | 41                 |             |             |             |       |
| 0              | 8             | Anaheim          | 10   | Huntington Beach | 17                |     | 0            | 10   | Huntington Be | 8    | Anaheim    | 17                 |             |             |             |       |

Figure 1: One source to all other nodes (undirected graph)

The shortest route are the following:

- $1 \rightarrow 2 \rightarrow 3$
- $1 \rightarrow 2 \rightarrow 4$
- $1 \rightarrow 5 \rightarrow 10$
- $1 \rightarrow 6$
- $1 \rightarrow 7 \rightarrow 8$
- $1 \rightarrow 7 \rightarrow 9$
- (b) Assume  $x_{ij}$  is the indicator of whether the edge (i,j) is chosen to be part of the route, i.e.,  $x_{ij} = 1$  if it is part of the route and  $x_{ij} = 0$  otherwise. And we assume the time taken from node i to note j is  $c_{ij}$ . Then the model is as follows:

$$\begin{aligned} &\min z = \sum_{i < j} c_{ij} x_{ij} \\ &s.t. \\ &x_{12} + x_{15} + x_{16} + x_{17} = 9 \\ &x_{12} - x_{23} - x_{24} = 1 \\ &x_{23} - x_{34} = 1 \\ &x_{24} + x_{34} - x_{46} = 1 \\ &x_{15} - x_{57} - x_{58} - x_{5,10} = 1 \\ &x_{16} + x_{46} - x_{67} - x_{69} = 1 \\ &x_{17} + x_{57} + x_{67} - x_{78} - x_{79} = 1 \\ &x_{58} + x_{78} - x_{89} - x_{8,10} = 1 \\ &x_{69} + x_{79} + x_{89} = 1 \\ &x_{5,10} + x_{8,10} = 1 \\ &0 \le x_{ij} \le 1, \ i < j, \ i = 1, 2, ..., 10, \ j = 1, 2, ..., 10 \ and \ integer. \end{aligned}$$

| Shortest route | problem        |                   |      |                  |                    |              |              |   |       |
|----------------|----------------|-------------------|------|------------------|--------------------|--------------|--------------|---|-------|
| One source to  | all destinatio | on (directed)     |      |                  |                    |              |              |   |       |
| Units shipped  |                | City              | Node | City             | Distance (minutes) |              |              |   |       |
| Units snipped  |                |                   |      |                  |                    |              |              |   |       |
| 3              |                | Inglewood         | _    | Westwood         | 25                 | Flow constru |              |   | -     |
| 2              |                | Inglewood         |      | Long Beach       | 48                 | Node         | Network Flow |   | Value |
| 1              |                | Inglewood         | _    | Pasadena         | 50                 | 1            | . 9          | = |       |
| 3              |                | Inglewood         |      | Downey           | 32                 | 2            | 1            | = |       |
| 1              | 2              | Westwood          | 3    | San Fermando Va  | 35                 | 3            | 1            | = |       |
| 1              | 2              | Westwood          | 4    | Burbank          | 18                 | 4            | 1            | = |       |
| 0              | 3              | San Fermando Vall | 4    | Burbank          | 28                 | 9            | 1            | = |       |
| 0              | 4              | Burbank           | 6    | Pasadena         | 25                 | 6            | 1            | = |       |
| 0              |                | Long Beach        | 7    | Downey           | 20                 | 7            | 1            | = |       |
| 0              |                | Long Beach        | 8    | Anaaheim         | 27                 | 8            | 1            | = |       |
| 1              |                | Long Beach        | 10   | Huntington Beach | 24                 | 9            | 1            | = |       |
| o              |                | Pasadena          |      | Downey           | 45                 | 10           | 1            | = |       |
| o              |                | Pasadena          |      | Pomona           | 36                 |              |              |   |       |
| 1              | 7              | Downey            | 8    | Anaheim          | 40                 |              |              |   |       |
| 1              |                | Downey            | 9    | Pomona           | 29                 |              |              |   |       |
| 0              |                | Anaheim           |      | Pomona           | 41                 |              |              |   |       |
| 0              |                | Anaheim           |      | Huntington Beach |                    |              |              |   |       |
|                |                |                   |      | Total            | 463                |              |              |   |       |

Figure 2: One source to all other nodes (directed graph)

The shortest route are the following:

- $1 \rightarrow 2 \rightarrow 3$
- $1 \rightarrow 2 \rightarrow 4$
- $1 \rightarrow 5 \rightarrow 10$
- $1 \rightarrow 6$
- $1 \rightarrow 7 \rightarrow 8$
- $1 \rightarrow 7 \rightarrow 9$
- (c) Yes, it does matters because the shortest paths from 1 to every other node may change.

3

Assume  $x_{ij}$  is the indicator of whether the edge (i, j) is chosen to be part of the route, i.e.,  $x_{ij} = 1$  if it is part of the route and  $x_{ij} = 0$  otherwise. To reduce the number of variables we can assume that items flow only from a lower node number to a higher node number, i.e., we ignore  $x_{ij}$  if  $i \ge j$ . At the same time, we assume the time taken from node i to note j is  $c_{ij}$ , i < j. Then the model is as follows:

$$\begin{aligned} &\min z = \sum_{i < j} c_{ij} x_{ij} \\ &s.t. \\ &x_{12} + x_{13} + x_{14} + x_{15} - x_{21} + x_{31} + x_{41} + x_{51} = 1 \\ &x_{12} + x_{32} + x_{62} + x_{92} - x_{21} - x_{23} - x_{26} - x_{29} = 0 \\ &x_{13} + x_{23} + x_{43} + x_{63} + x_{73} + x_{83} - x_{31} - x_{32} - x_{34} - x_{36} - x_{37} - x_{38} = 0 \\ &x_{14} + x_{34} + x_{54} + x_{74} - x_{41} + x_{43} - x_{45} - x_{47} = 0 \\ &x_{15} + x_{45} + x_{75} + x_{14,5} - x_{51} - x_{54} - x_{57} - x_{5,14} = 0 \\ &x_{26} + x_{36} + x_{86} + x_{96} - x_{62} - x_{63} - x_{68} - x_{69} = 0 \\ &x_{37} + x_{47} + x_{57} + x_{87} + x_{10,7} - x_{73} - x_{74} - x_{75} - x_{78} - x_{7,10} = 0 \\ &x_{38} + x_{68} + x_{78} + x_{11,8} + x_{12,8} - x_{83} - x_{86} - x_{87} - x_{8,11} - x_{8,12} = 0 \\ &x_{29} + x_{69} + x_{11,9} + x_{13,9} - x_{92} - x_{96} - x_{9,11} - x_{9,13} = 0 \\ &x_{7,10} + x_{12,10} + x_{14,10} - x_{10,7} - x_{10,12} - x_{10,14} = 0 \\ &x_{8,11} + x_{9,11} + x_{12,11} + x_{13,11} - x_{11,8} - x_{11,9} - x_{11,12} - x_{11,13} = 0 \\ &x_{8,12} + x_{10,12} + x_{11,12} + x_{15,12} + x_{16,12} - x_{12,8} - x_{12,10} - x_{12,11} - x_{12,15} - x_{12,16} = 0 \\ &x_{9,13} + x_{15,13} - x_{13,9} - x_{13,15} = 0 \\ &x_{11,15} + x_{12,15} + x_{13,15} + x_{17,15} - x_{15,11} + x_{15,12} + x_{15,13} - x_{15,17} = 0 \\ &x_{12,16} + x_{14,16} + x_{17,16} - x_{16,12} - x_{16,14} - x_{16,17} = 0 \\ &x_{15,17} + x_{16,17} - x_{17,15} - x_{17,16} = 1 \\ &0 \leq x_{ij} \leq 1, \ i < j \ i = 1, 2, \dots, 17, \ j = 1, 2, \dots, 17 \ and \ integer. \end{aligned}$$



Figure 3: Shortest path from George's camp to coast

The shortest route are the following:

$$1 \rightarrow 4 \rightarrow 7 \rightarrow 10 \rightarrow 12 \rightarrow 16 \rightarrow 17$$

The total time from 1 to 17 is 14 days.