Operator evolution notes

A. J. Tropiano¹

¹Department of Physics, The Ohio State University, Columbus, OH 43210, USA (Dated: September 23, 2019)

A. Building SRG unitary transformations

Diagonalize initial and evolved Hamiltonians which we will call H(0) and H(s), respectively. This gives $\psi_{\alpha}(0)$ and $\psi_{\alpha}(s)$ for each eigenvalue indexed by α . Then the SRG unitary transformation can be computed by taking a sum over outer products of the evolved and initial wave functions:

$$U(s) = \sum_{\alpha=1}^{N} |\psi_{\alpha}(s)\rangle \langle \psi_{\alpha}(0)|, \qquad (1)$$

where N is the dimension of the Hamiltonian matrix. Here the weights are factored into the wave functions, thus U(s) is unitless.

To evolve operators, we simply apply U(s):

$$O(s) = U(s)O(0)U^{\dagger}(s), \tag{2}$$

where O(0) is the bare operator.

B. Momentum projection operator: $a_q^{\dagger}a_q(k,k')$

Applying $a_q^{\dagger}a_q(k,k')$ to a wave function $\psi(k)$ returns $\psi(q)$. For the discrete case, $\psi(k_i)$ is an $N \times 1$ vector and $a_q^{\dagger}a_q(k_i,k_j)$ is an $N \times N$ matrix where $i,j=1\cdots N$. Then $a_q^{\dagger}a_q(k,k')$ acting on $\psi(k)$ is a matrix multiplication, implying a continuous integration over $d^3k/(2\pi)^3 = 2/(\pi k^2 dk)$ in spherical coordinates. Therefore, we include a factor of $\pi/(2k_ik_j\sqrt{w_iw_j})$ in $a_q^{\dagger}a_q(k_i,k_j)$ where w represents the momentum weights. In matrix form,

$$a_q^{\dagger} a_q(k_i, k_j) = \frac{\pi \delta_{k_i q} \delta_{k_j q}}{2k_i k_j \sqrt{w_i w_j}},\tag{3}$$

which has units fm³. To evolve operators, we apply U(s) at this point. For mesh-independent figures, we must divide by an additional factor of $k_i k_j \sqrt{w_i w_j}$. This operator is inherently mesh-dependent based off discretizing $\delta_{k_i q} \delta_{k_j q}$ above.

C. Momentum distribution function: $\phi^2(k)$

We diagonalize the Hamiltonian for eigenvectors ψ_{α} . In the ${}^{3}S_{1}$ - ${}^{3}D_{1}$ coupled channel, the S-component is given by $\psi_{\alpha}[:N]$ and the D-component by $\psi_{\alpha}[N:]$ where N is the length of

the momentum mesh. Then the momentum distribution of the state α is given by,

$$|\phi_{\alpha}(k)|^{2} = |\psi_{\alpha}[:N]|^{2} + |\psi_{\alpha}[N:]|^{2}.$$
(4)

This satisfies the normalization condition $\sum_{i=1}^{N} |\phi(k_i)|^2 = 1$, implying that the factor $k^2 dk$ (or in the discrete case, $k_i^2 w_i$) is factored into the wave function. For mesh-independent figures, divide by $k_i^2 w_i$.