Übungsblatt 10

Abgabetermin: 29.06.2017, 9:20 Uhr.

Aufgabe 1 $(1+2+2 = 5 \ Punkte)$

- a) Bestimmen Sie mit dem euklidischen Algorithmus einen größten gemeinsamen Teiler der Zahlen 7854 und 4746 in \mathbb{Z} .
- b) Zeigen Sie, dass die Menge $\mathbb{Z}[i] = \{a + bi | a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$ zusammen mit den von \mathbb{C} vererbten Operationen und der Normabbildung $\delta(a + bi) = a^2 + b^2$ einen euklidischen Ring bildet.
- c) Bestimmen Sie mit dem euklidischen Algorithmus einen größten gemeinsamen Teiler der Elemente 85 und 1 + 13i in $\mathbb{Z}[i]$.

Aufgabe 2 $(2+2+1 = 5 \ Punkte)$

- a) Sei R ein faktorieller Ring und seien $x, a, b \in R$ und $k \in \mathbb{N}$ so dass $a \cdot b = x^k$ gilt. Angenommen, $GGT(a, b) = R^*$, dann existiert eine Einheit u und ein Element $z \in R$ so dass $a = u \cdot z^k$.
- b) Zeigen Sie, dass $a, b \in \mathbb{Z}$ existieren so dass $5 + i\sqrt{2} = (a + bi\sqrt{2})^3$ gilt. (Sie dürfen ohne Beweis benutzen, dass $\mathbb{Z}[i\sqrt{2}] = \{u + vi\sqrt{2} | u, v \in \mathbb{Z}\}$ einen euklidischen Ring bezüglich der Normabbildung $\delta(u + vi\sqrt{2}) = u^2 + 2v^2$ bildet.)
- c) Seien a,b,c Elemente eines faktoriellen Ringes. Zu zeigen ist: Für eine Wahl von Elementen
 - $k_{a,b} \in KGV(a,b), k_{a,c} \in KGV(a,c), k_{b,c} \in KGV(b,c),$
 - $g_{a,b} \in GGT(a,b), g_{a,c} \in GGT(a,c), g_{b,c} \in GGT(b,c),$

gilt: $GGT(k_{a,b}, c) = KGV(g_{a,c}, g_{b,c})$ und $KGV(g_{a,b}, c) = GGT(k_{a,c}, k_{b,c})$.

Aufgabe 3 $(1+1+2 = 4 \ Punkte)$

Sei R ein euklidischer Ring und $m, n, r, \ell \in \mathbb{N}$.

- a) Sei $A \in M((m+r) \times n, R)$ und sei $B \in M(m \times n, R)$ die Matrix, die aus den ersten m Zeilen von A besteht. Zeigen Sie: $\mathrm{Fit}_{\ell+r}(A) \subseteq \mathrm{Fit}_{\ell}(B)$.
- b) Sei $A \in M(m \times n, R)$, dann gilt $\operatorname{Fit}_{\ell+r}(A) \subseteq \operatorname{Fit}_{\ell}(A) \cdot \operatorname{Fit}_{r}(A)$.

c) Sei $A \in M(m \times m, R), B \in M(n \times n, R)$ und $C = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$ die aus A und B zusammengesetzte Blockmatrix, d.h. $C \in M((m+n) \times (m+n), R)$. Dann gilt

$$\operatorname{Fit}_{\ell}(C) = \sum_{0 \le r \le \ell} \operatorname{Fit}_{r}(A) \cdot \operatorname{Fit}_{\ell-r}(B).$$

(Für eine Matrix $D \in M(m \times n, R)$ benutzen wir die Konventionen $\mathrm{Fit}_0(D) = R$ und $\mathrm{Fit}_\ell(D) = (0)$ falls $\ell > \min(m, n)$. Das Produkt zweier Ideale I, J in einem Ring ist definiert als $I \cdot J = \{\sum_{k=1}^m i_k \cdot j_k | m \in \mathbb{N}, i_k \in I, j_k \in J\}$. Sie dürfen ohne Beweis verwenden dass dies wieder ein Ideal definiert.)

Aufgabe 4 $(2+2 = 4 \ Punkte)$

Bestimmen Sie die Elementarteiler der folgenden Matrizen mit dem Gauß-Verfahren:

a)
$$A = \begin{pmatrix} 2 & 4 & 4 \\ -6 & 6 & 12 \\ 10 & -4 & -16 \end{pmatrix} \in M(3 \times 3, \mathbb{Z}).$$

b)
$$B = \begin{pmatrix} 1-t & -1 & 2 \\ -1 & -t & 3 \\ 0 & -1 & 3-t \end{pmatrix} \in M(3 \times 3, \mathbb{C}[t]).$$