

10 – Pesquisa: Interrupções

Rafael Corsi

rafael.corsi@insper.edu.br

29 de março de 2017

Matheus Marotzke

Engenharia da Computação – INSPER – 2017

EMBARCADOS

Questão. 2.1: NMI vs IRQ

Qual a diferença entre as exceções NMI e IRQ?

IRQ é o *maskeble interrupt,* assim, pode-se utilizar o bit de masking para mascarar uma interrupção impedindo-a de ocorrer.

Já o **NMI** é o *non-maskable interrupt*, ou seja, como não possui bit de mask nunca pode ser ignorada pelo core. Dessa forma é utilizada para funções mais críticas do hardware, como watchdogtimer (estudado anteriormente).

Portando, uma diferença essencial no fato de possuir máscara.

INTERRUPÇÃO

Questão. 3.1: IRQ vs ISR

Qual a diferença entre as exceções IRQ e ISR?

IRQ é o *maskeble interrupt,* é um tipo de interrupção, enquanto o *Interrupt Service Routine* – **ISR** é um handler, ou seja, diferentemente do IRQ, é uma rotina de tratamento da ocorrência de interrupções.

Questão. 3.2: SAME70

No ARM que utilizamos no curso, quantas são as interrupções suportadas e qual a sua menor prioridade?

256 níveis de interrupções distintos. Menor prioridade igual a 256.

Questão. 3.3: FIQ

Descreva o uso do FIQ.

O **FIQ** ou *Fast Interruption Routine* são utilizados para aplicações que exigem uma resposta instantânea. Então, respondem como baixa latência. Como o digitar do teclado e o movimento do mouse.

Questão. 3.4: IRQ vs FIQ

No diagrama anterior, quem possui maior prioridade IRQ ou FIQ?

FIQ possui maior prioridade já que assume execução na segunda vez em que há uma interrupção do tipo **IRQ** no diagrama.

Questão. 3.5: SAME70 identificador (ID) da interrupção dos periféricos

Busque a informação e liste o ID dos seguintes periféricos:

• PIOA: 10

• PIOC: 12

• TC0: 23

Questão. 3.6: Limpando interrupção

O que aconteceria caso não limpemos a interrupção?

O processador ficaria preso em um loop, chamando sempre a interrupção como se ela nunca tivesse sido tratada.

Questão. 3.7: Latência da interrupção.

O que é latência na resolução de uma interrupção, o que é feito nesse tempo? (Interrupt latency).

Interrupt latency é o tempo que leva de uma interrupção até seu tratamento. Esse processo pode ocorrer devido ao design do processador e velocidade do clock. Mas é necessário armazenar e manipular as instruções que estavam sendo executadas antes de fazer o handle da próxima.

PIO - INTERRUPÇÃO

Questão. 5.1: PIO - Interrupção Botão

Qual deve ser a configuração para operarmos com interrupção no botão do kit SAME70-EK2?

Após setar o pio do botão como input. Devem ser utilizados comandos de interrupt enable e ativar o NVIC.

```
pio_enable_interrupt(BUT_PIO, BUT_PIN_MASK);
pio_handler_set(BUT_PIO, BUT_PIO_ID, BUT_PIN_MASK,PIO_IT_FALL_EDGE, but_Handler);
NVIC_EnableIRQ(BUT_PIO_ID);
NVIC_SetPriority(BUT_PIO_ID, 1);
```

Questão. 5.2: PIO - Interrupção

Com base no texto anterior e nos diagramas de blocos descreva o uso da interrupção e suas opções.

Figura 3: PIO interrupção SAME70 Datasheet

O diagrama acima indica as diferentes entradas que podem produzir interrupções.

Existem duas formas de se produzi interrupções, ou através do I/O line ou através de uma mudança de nível. No caso do nível e borda, é utilizado o PIO_IER para ativar, PIO_IDR para desativar.

Questão. 5.3: Registradores Interrupção

Descreva as funções dos registradores:

- PIO_IER / PIO_IDR

Ativar e desativar as interrupções do PIO específico;

- PIO_AIMER / PIO_AIMDR

Controla modos adicionais de registradores (Additional Interrupt Modes Enable Register). Como:

- Rising edge detection
- Falling edge detection
- Low-level detection
- High-level detection

– P IO_ELSR

Escolha do tipo de interrupção. De Nível para Borda, e vice-versa.

– P IO_FRLHSR

É o estado da seleção entre borda de descida, subida, alto ou baixo quando tratando do tipo de interrupção selecionado.