Report 7

Jiachen Tian

Setup

Setup path to include our files. import them. use autoreload to get changes in as they are made

```
In [150]: import os
   import sys
   import cv2
   from matplotlib import pyplot as plt

# load our code
   sys.path.insert(0, os.path.abspath('../'))
   from tracker import set_tracker, TrackedFrame, Box
   # specific to jupyter notebook
   from jupyter_help import cvplt, cvplt_sub

# load any changes as we make them
   %load_ext autoreload
   %autoreload 2
```

The autoreload extension is already loaded. To reload it, use: %reload ext autoreload

Load

```
In [154]: vid_fname = "../input/run1.mov" # path relative to this document
    frame_number = 200
    frame_jumpto = 250

# read in
    vs = cv2.VideoCapture(vid_fname)
    vs.set(1, frame_number)
    frame = vs.read()[1]
    vs.set(1, frame_jumpto)
    frame_jump = vs.read()[1]
    result_frame = frame_jump

# show in notebook

cvplt_sub([frame, frame_jump],1 ,2)
```



```
In [155]: # intiail bounding box
          #Tune the box until it bounds at the center
          x = 45
          y = 35
          x_direction = 100
          y_direction = 100
          #Pass in for KCF tracker evaluation
          bbox = (x, y, x_direction, y_direction)
          init_box = Box(bbox)
          frame_box = frame.copy() # normally passed by reference.
          #Note, the cv2 plot and kcf plot is defined differently. that's why I pl
          us x with x direction, same for y.
          #Draw the user-defined box for later comparison
          defined = cv2.rectangle(frame box,(x,y),(x+x direction, y+y direction),(
          0,255,0),2)
          #draw rhe circle as well
          defined = cv2.circle(defined,(int(x+x_direction/2), int(y+y_direction/2)
          )), 2, (255,0,0),2)
          #The first self defined box in the first image
          cvplt(defined)
```


Analysis

As shown, those small error points to where the opixel is going. However, due to noise, there are quite a lot of outliers around pupil that causes frustration.

(0.010034550698192035, 0.40364740058646825)

Conclusion

As shown, optical flow only works when the displacement is small, which could be solved by gaussian pyramid. However, even so, the run time would be a big issue.

new optimization exploration needed.