Homework 3

Kailong Wang

November 16, 2023

Q1: Polar Cone Operations. Problems 3.4(a) - (c)

Grade:

Show the following:

(a) For any nonempty cones $C_i \subset \mathbb{R}^{n_i}$, i = 1, 2, ..., m, we have

$$(C_1 \times C_2 \times \cdots \times C_m)^* = C_1^* \times C_2^* \times \cdots \times C_m^*.$$

(b) For any collection of nonempty cones $\{C_i \mid i \in I\}$, we have

$$(\cup_{i\in I}C_i)^* = \cap_{i\in I}C_i^*.$$

(c) For any two nonempty cones C_1 and C_2 , we have

$$(C_1 + C_2)^* = C_1^* \cap C_2^*.$$

Hint: to show $C^* = K$, the simplest general strategy is usually to show that $\langle x, y \rangle \leq 0$ for all $x \in C$ and $y \in K$, establishing $K \subseteq C^*$, and then show that if $z \notin K$, then there exists some $x \in C$ with $\langle x, z \rangle > 0$, implying that $z \notin C^*$, and thus $C^* = K$ since $z \notin K$ was arbitrary.

Solution

- (a) *Proof.* Let $C = (C_1 \times C_2 \times \cdots \times C_m)^*$ and $C' = C_1^* \times C_2^* \times \cdots \times C_m^*$. We will show that C = C' by showing that $C \subseteq C'$ and $C' \subseteq C$.
 - (i) Let $x \in C$. Then for all $y \in C_1 \times C_2 \times \cdots \times C_m$, we have $\langle x, y \rangle \leq 0$. Equivalently, that is $\sum_{i=1}^m x_i y_i \leq 0$ where $y_i \in C_i$ for all $i \in \{1, 2, \dots, m\}$. Since C_i are cones and 0 belongs to their closure, then $\langle x_i, y_i \rangle \leq 0$ for all $i \in \{1, 2, \dots, m\}$ by letting all $y_k \to 0$, $i \neq k$. Thus $x_i \in C_i^*$ for all $i \in \{1, 2, \dots, m\}$. Therefore, $x \in C'$ and then $C \subseteq C'$.
 - (ii) Let $x \in C'$. Then $x = (x_1, x_2, ..., x_m)$ where $x_i \in C_i^*$ for all $i \in \{1, 2, ..., m\}$. Let $y \in C_1 \times C_2 \times ... \times C_m$. Then $y = (y_1, y_2, ..., y_m)$ where $y_i \in C_i$ for all $i \in \{1, 2, ..., m\}$. Then $\langle x_i, y_i \rangle \leq 0$ for all $i \in \{1, 2, ..., m\}$. Thus $\langle x, y \rangle \leq 0$. Therefore, $x \in C$ and then $C' \subseteq C$.
- (b) *Proof.* Let $C = (\bigcup_{i \in I} C_i)^*$ and $C' = \bigcap_{i \in I} C_i^*$. We will show that C = C' by showing that $C \subseteq C'$ and $C' \subseteq C$.
 - (i) Let $x \in C$. Then for all $y \in \bigcup_{i \in I} C_i$, we have $\langle x, y \rangle \leq 0$. Equivalently, that is $\langle x, y_i \rangle \leq 0$ where $y \in C_i$ for all $i \in I$. Thus, $x \in C_i^*$ for all $i \in I$. Therefore, $x \in C'$ and then $C \subseteq C'$.
 - (ii) Let $x \in C'$. Then $x \in C_i^*$ for all $i \in I$. Let $y \in \bigcup_{i \in I} C_i$. Then $y_i \in C_i$ for $i \in I$. Then $\langle x, y_i \rangle \leq 0$. Thus $\langle x, y \rangle \leq 0$. Therefore, $x \in C$ and then $C' \subseteq C$.

П

- (c) Proof. Let $C = (C_1 + C_2)^*$ and $C' = C_1^* \cap C_2^*$. We will show that C = C' by showing that $C \subseteq C'$ and $C' \subseteq C$.
 - (i) Let $x \in C$. Then for all $y \in C_1 + C_2$, we have $\langle x, y \rangle \leq 0$. Equivalently, that is $\langle x, y_1 + y_2 \rangle \leq 0$ where $y_1 \in C_1$ and $y_2 \in C_2$. Thus, $\langle x, y_1 \rangle + \langle x, y_2 \rangle \leq 0$. Since C_1 and C_2 are cones and 0 belongs to their closure, following the same logic in (a), $\langle x, y_1 \rangle \leq 0$ and $\langle x, y_2 \rangle \leq 0$. Thus $x \in C_1^*$ and $x \in C_2^*$. Therefore, $x \in C'$ and then $C \subseteq C'$.
 - (ii) Let $x \in C'$. Then $x \in C_1^*$ and $x \in C_2^*$. Let $y \in C_1 + C_2$. Then $y = y_1 + y_2$ where $y_1 \in C_1$ and $y_2 \in C_2$. Then $\langle x, y_1 \rangle \leq 0$ and $\langle x, y_2 \rangle \leq 0$. Thus $\langle x, y_1 + y_2 \rangle \leq 0$. Therefore, $\langle x, y \rangle \leq 0$. Therefore, $x \in C$ and then $C' \subseteq C$.

I didn't follow the hint. Please let me know my mistakes if this proof doesn't work. Thanks!

Q2: Cone Separation

Grade:

Suppose $K \in \mathbb{R}^n$ is a nonempty closed convex cone. Show that if $z \in \mathbb{R}^n$ and $z \notin K$, then there exists $a \in K^*$ with $\langle a, z \rangle > 0$.

Solution

Proof. Using **Separating Hyperplane Theorem**, if K is a nonempty closed convex cone and $z \notin K$, then by the theorem, there exists a hyperplane that can separate z from K. This means there exists $a \neq 0$ such that $\langle a, x \rangle \leq 0$ for all $x \in K$ and $\langle a, z \rangle > 0$. By definition of polar cone, $a \in K^*$. Thus, there exists $a \in K^*$ with $\langle a, z \rangle > 0$.

Q3: Sums of Convex Cones

Grade:

Show that if $C_1, C_2 \subseteq \mathbb{R}^n$ are convex cones, then $C_1 + C_2$ is a convex cone.

Solution

Proof. We will show that $C_1 + C_2$ is a convex cone by showing that $C_1 + C_2$ is a cone and $C_1 + C_2$ is convex.

- (a) Convexity. Let $x, y \in C_1 + C_2$ and $\theta \in [0, 1]$. Then $x = x_1 + x_2$ and $y = y_1 + y_2$ where $x_1, y_1 \in C_1$ and $x_2, y_2 \in C_2$. Then $\theta x + (1 \theta)y = \theta x_1 + (1 \theta)y_1 + \theta x_2 + (1 \theta)y_2$. Since C_1 and C_2 are convex, $\theta x_1 + (1 \theta)y_1 \in C_1$ and $\theta x_2 + (1 \theta)y_2 \in C_2$, which implies $\theta x + (1 \theta)y \in C_1 + C_2$. Therefore, $C_1 + C_2$ is convex.
- (b) Coneness. Let $x \in C_1 + C_2$ and $\theta \ge 0$. Then $x = x_1 + x_2$ where $x_1 \in C_1$ and $x_2 \in C_2$. Then $\theta x = \theta x_1 + \theta x_2$. Since C_1 and C_2 are cones, $\theta x_1 \in C_1$ and $\theta x_2 \in C_2$, which implies $\theta x \in C_1 + C_2$. Therefore, $C_1 + C_2$ is a cone.

Q4 Grade:

Show that if $C_1, C_2 \mathbb{R}^m$ are closed convex cones, then $(C_1 \cap C_2)^* = \operatorname{cl}(C_1^* + C_2^*)$.

Note: this is the main result of problem 3.4(d).

Hint: to show that $z \notin cl(C_1^* + C_2^*)$ implies $z \notin (C_1 \cap C_2)^*$, use problem 2, problem 1(c), and the polar cone theorem.

Solution

Proof. We need to show that $\operatorname{cl}(C_1^* + C_2^*) \subseteq (C_1 \cap C_2)^*$ and $z \notin \operatorname{cl}(C_1^* + C_2^*)$ implies $z \notin (C_1 \cap C_2)^*$.

(i) For any $y \in \text{cl}(C_1^* + C_2^*)$, there exists $y_1 \in C_1^*$ and $y_2 \in C_2^*$ such that for any $\epsilon > 0$, $||y - (y_1 + y_2)|| < \epsilon$. Let

П

П

 $x \in C_1 \cap C_2$, we have $\langle y, x \rangle = \langle y_1 + y_2, x \rangle + \langle y - (y_1 + y_2), x \rangle$. Because y_1 is in the polar of C_1 and y_2 is in the polar of C_2 , $\langle y_1, x \rangle \leq 0$ and $\langle y_2, x \rangle \leq 0$, which implies $\langle y_1 + y_2, x \rangle \leq 0$. Using Cauchy-Schwarz inequality, $\langle y - (y_1 + y_2), x \rangle \leq \|y - (y_1 + y_2)\|\|x\| < \epsilon \|x\|$. Since ϵ is arbitrary, $\langle y - (y_1 + y_2), x \rangle \leq 0$. Thus, $\langle y, x \rangle \leq 0$. Therefore, $y \in (C_1 \cap C_2)^*$ and then $\operatorname{cl}(C_1^* + C_2^*) \subseteq (C_1 \cap C_2)^*$.

(ii) If $z \notin cl(C_1^* + C_2^*)$, by the cone separation theorem, there exists an x such that

$$\langle x, z \rangle > 0, \qquad \langle x, p \rangle \le 0$$

for all $p \in \text{cl}(C_1^* + C_2^*)$. The second condition implies that $x \in (\text{cl}(C_1^* + C_2^*))^* = (C_1^* + C_2^*)^* = C_1^{**} \cap C_2^{**} = C_1 \cap C_2$. Then the first condition implies, $z \in C_1 \cap C_2$ which means $z \notin \text{cl}(C_1 \cap C_2)^*$.

Thus we complete the proof.

Q5 Grade:

Let A be an $m \times n$ real matrix, and $C \subseteq \mathbb{R}^m$ be a closed convex cone. Define

$$K = \{ x \in \mathbb{R}^n \mid Ax \in C \} \qquad P = \{ A^\mathsf{T} y \mid y \in C^* \}.$$

- (a) Show that *K* is a closed convex cone.
- (b) Show that $K^* = \operatorname{cl} P$. Hint: to show that $z \notin \operatorname{cl} P$ implies $z \notin K^*$, use problem 2.
- (c) Show that $P^* = K$ (by using the polar cone theorem).

Solution

- (a) *Proof.* To show that K is a closed convex cone, we need to prove the convexity, closedness and coneness of K.
 - (i) Coneness. Given any $x \in K$, $Ax \in C$, and $\lambda \ge 0$, since C is a cone, $A\lambda x = \lambda Ax \in C$. Thus, $\lambda x \in K$ and K is a cone
 - (ii) Convexity. Given $x_1, x_2 \in K$, $Ax_1, Ax_2 \in C$, since C is a convex set, for any $\lambda \in [0, 1]$, we have

$$\lambda A x_1 + (1 - \lambda) A x_2 = A(\lambda x_1 + (1 - \lambda) x_2) = A \cdot \lambda x_1 + A \cdot (1 - \lambda) x_2.$$

Thus, $\lambda x_1 + (1 - \lambda)x_2 \in K$ and K is a convex set.

- (iii) Closedness. Since C is a closed set, Ax is a continuous function. Thus, $K = A^{-1}Ax$ is a closed set.
- (b) *Proof.* Given $z \in K^*$, for all $x \in K$, we have

$$\langle z, x \rangle \le 0, \quad \forall x, s.t. Ax \in C.$$

By definition of polar cone C^* , $y \in C^*$ if and only if $\langle y, Ax \rangle \leq 0$. Hence, for the same x,

$$\langle A^{\mathsf{T}} y, x \rangle \leq 0.$$

If z is an element in $A^Ty \in P$. Since P is not necessarily closed, we have $z \in \operatorname{cl} P$, which is $K^* \subseteq \operatorname{cl} P$. If $z \notin \operatorname{cl} P$, by the cone separation theorem, there exists $x \in (\operatorname{cl} P)^* = P^*$ such that $\langle x, z \rangle > 0$, and $\langle x, p \rangle \leq 0$ for all $p \in \operatorname{cl} P$. Given that $P = \{A^Ty \mid y \in C^*\}$, we can write the second condition as $\langle x, A^Ty \rangle \leq 0$ for all $y \in C^*$. This is equivalent to $\langle y, Ax \rangle \leq 0$. This implies $Ax \in C$ and $x \in K$. Since $\langle x, z \rangle > 0$ and $x \in K$, we have $z \in K$ and so the $z \notin K^*$. Then the proof is completed by the hint.

(c) *Proof.* The polar cone theorem states that for a convex cone C, $C^{**} = C$ and $(\operatorname{cl} C)^* = C^*$. From (b), $K^* = \operatorname{cl} P \Rightarrow (K^*)^* = P^* \Rightarrow K = P^*$. Thus, $P^* = K$.

Q6 Grade:

A cone *K* is called *self-dual* if $K^* = -K$. Show that the following cones are self-dual:

- (a) The non-negative orthant $\{x \in \mathbb{R}^n \mid x \ge 0\}$.
- (b) The *Lorentz cone* (also called the "ice cream cone") in \mathbb{R}^{n+1} , defined as follows:

$$K = \{ (x, w) \in \mathbb{R}^n \times \mathbb{R} \mid w \ge ||x|| \}.$$

Solution

- (a) *Proof.* Let $K = \{x \in \mathbb{R}^n \mid x \ge 0\}$. Then $K^* = \{y \in \mathbb{R}^n \mid \langle x, y \rangle \le 0, \forall x \in K\}$. Since $x \ge 0$, $\langle x, y \rangle \le 0$ for all $y \le 0$. Thus, $K^* = \{y \in \mathbb{R}^n \mid y \le 0\}$. Therefore, $K^* = -K$ and K is self-dual.
- (b) *Proof.* Let $K = \{(x, w) \in \mathbb{R}^n \times \mathbb{R} \mid w \ge ||x|| \}$. Then $K^* = \{(y, z) \in \mathbb{R}^n \times \mathbb{R} \mid \langle (x, w), (y, z) \rangle \le 0, \forall (x, w) \in K \}$. If x = 0, then $w \ge ||x|| = 0$ and $\langle (x, w), (y, z) \rangle = x^T y + wz \le 0$ implies $z \le 0$. If $x \ne 0$, let $u = \frac{x}{||x||}$ be unit vector, $\langle (x, w), (y, z) \rangle = x^T y + wz \le 0 \Rightarrow u^T y + z \le 0$. To make the inequality hold, there must be y = 0 and $z \le 0$ since u represents all directions. Thus, $K^* = \{(0, z) \in \mathbb{R}^n \times \mathbb{R} \mid z \le 0\}$. Therefore, $K^* = -K$ and K is self-dual. \square