

Herabuculus ayr Cemerunos X u Y merab, eaux F(x,y) = Fx(x) · Fx(y) Th 1) gucup: pij = pxi · prj 2) Herp: f(a, y)= fx(x) · fx(y) (unu ro onp) eau p(x)>0 u D re nply - zabulluse Условные распредыения I. Duckpemnai augrainai bearop
Y= y; P { Y= x · | Y= 11 · P = p; } $P\{X=x_i|Y=y_i\}=P_{Y_i}=EODOgn. Tij]$ X=xi Уш. заион распрх-набор пар (xi, tij), i=1, m Jul. 90. pacop. $f_X(x|Y=y)=P\{X(x|Y=y)\}-gucup$ $f_X(x|Y=y)=f_Y(y)$ $f_X(y)=f_Y(y)$ We sub. f(x)(x)(y-y) = f(x)(x) kenp P {X=x; 1 = y; } = P x = x;}

Was xapaurepuchuku O Mar. omugarell: guerp. MEXI = Z xipi KERP. MEXT = I f(x) > ocdx "boura ba 1º tall P{X=20}=1, TO MX=20 2º MUHETHOUR MEAX+BJ= aMX+B M[X1+X2] = MX1+MX2 3° Eu X1, X2- MEX1X2]= (MX1) (MX2) 4° 1) Eur X-gacup, TO M[q(X)] = 2 q(x;)p; 2) Henp, 4 R > R MEQ(X)] = Sy(x)f(x)dx X~ N(m, 52)=> MX=m 2 Ducrepul DEX7: M[(X-m)2], 2ge m=MX queup: 9x={M[q(x)], rge q(x)=(x-m)2}= 2p:(x-m)2 DY= \$ MEQ(X)7, 298 pex= (X-m)= = 5 (x-m)=fix)dx Henp Charles only Gx = Vex! 5 (2) P(X=x0)=1=> DX=0 2) D[ax+8]= a2px 3) eum xiux2 resab, to D[X1+X2] = QX1+QX2 4) DX=M[X2]-(MX)2

tor(x, x)=ME(x-mi)(x-mi)(x-mi)] mi	J.	Kebanaa	slul												3180		1000	-	70000	1000		T. 014	1223
Bump: $(av(X_1, X_2) + \sum \sum p_1 (X_1, \dots m_1)(2e_1 - n_2)$, $\sum -(\delta_1) \cdot ge \cdot g + m$ $(age \cdot fax_1 \cdot id \cdot f - aun + bo \cdot begar gen At \cdot \delta_1 \cdot auv(X_1, X_2)$ $(age \cdot fax_1 \cdot id \cdot f - aun + bo \cdot begar gen At \cdot \delta_2 \cdot auv(X_1, X_2)$ $(age \cdot fax_1 \cdot id \cdot f - aun + bo \cdot begar gen At \cdot \delta_3 \cdot auv(X_1, X_2)$ $(age \cdot fax_1 \cdot id \cdot f - aun + bo \cdot begar gen At \cdot \delta_4 \cdot auv(X_1, X_2)$ $(age \cdot fax_1 \cdot id \cdot f - aun + bo \cdot begar gen At \cdot \delta_4 \cdot auv(X_1, X_2)$ $(age \cdot fax_1 \cdot id \cdot f - aun + bo \cdot begar gen At \cdot \delta_4 \cdot auv(X_1, X_2)$ $(age \cdot fax_1 \cdot id \cdot f - aun + bo \cdot begar gen At \cdot \delta_4 \cdot auv(X_1, X_2)$ $(age \cdot fax_1 \cdot id \cdot f - aun + bo \cdot begar gen At \cdot \delta_4 \cdot auv(X_1, X_2)$ $(age \cdot fax_1 \cdot id \cdot f - aun + bo \cdot begar gen At \cdot \delta_4 \cdot auv(X_1, X_2)$ $(age \cdot fax_1 \cdot id \cdot f - aun + bo \cdot begar gen At \cdot \delta_4 \cdot auv(X_1, X_2)$ $(age \cdot fax_1 \cdot id \cdot f - aun + bo \cdot begar gen At \cdot \delta_4 \cdot auv(X_1, X_2)$ $(age \cdot fax_1 \cdot id \cdot f - aun + bo \cdot begar gen At \cdot \delta_4 \cdot auv(X_1, X_2)$ $(age \cdot fax_1 \cdot id \cdot f - aun + bo \cdot begar gen At \cdot \delta_4 \cdot auv(X_1, X_2)$ $(age \cdot fax_1 \cdot id \cdot f - auv + bo \cdot begar gen At \cdot \delta_4 \cdot auv(X_1, X_2)$ $(age \cdot fax_1 \cdot id \cdot f - auv + bo \cdot begar gen fave Ave Ave Ave Ave Ave Ave Ave Ave Ave A$		00 V (X1, X2,)=14[(X1-m	1) ()	2-1	nz)	1	6	101			19	909	N		MI	X	1=1)	4/1,	/	(Xn)	
Bump: $(av(X_1, X_2) + \sum \sum p_1 (X_1, \dots m_1)(2e_1 - n_2)$, $\sum -(\delta_1) \cdot ge \cdot g + m$ $(age \cdot fax_1 \cdot id \cdot f - aun + bo \cdot begar gen At \cdot \delta_1 \cdot auv(X_1, X_2)$ $(age \cdot fax_1 \cdot id \cdot f - aun + bo \cdot begar gen At \cdot \delta_2 \cdot auv(X_1, X_2)$ $(age \cdot fax_1 \cdot id \cdot f - aun + bo \cdot begar gen At \cdot \delta_3 \cdot auv(X_1, X_2)$ $(age \cdot fax_1 \cdot id \cdot f - aun + bo \cdot begar gen At \cdot \delta_4 \cdot auv(X_1, X_2)$ $(age \cdot fax_1 \cdot id \cdot f - aun + bo \cdot begar gen At \cdot \delta_4 \cdot auv(X_1, X_2)$ $(age \cdot fax_1 \cdot id \cdot f - aun + bo \cdot begar gen At \cdot \delta_4 \cdot auv(X_1, X_2)$ $(age \cdot fax_1 \cdot id \cdot f - aun + bo \cdot begar gen At \cdot \delta_4 \cdot auv(X_1, X_2)$ $(age \cdot fax_1 \cdot id \cdot f - aun + bo \cdot begar gen At \cdot \delta_4 \cdot auv(X_1, X_2)$ $(age \cdot fax_1 \cdot id \cdot f - aun + bo \cdot begar gen At \cdot \delta_4 \cdot auv(X_1, X_2)$ $(age \cdot fax_1 \cdot id \cdot f - aun + bo \cdot begar gen At \cdot \delta_4 \cdot auv(X_1, X_2)$ $(age \cdot fax_1 \cdot id \cdot f - aun + bo \cdot begar gen At \cdot \delta_4 \cdot auv(X_1, X_2)$ $(age \cdot fax_1 \cdot id \cdot f - aun + bo \cdot begar gen At \cdot \delta_4 \cdot auv(X_1, X_2)$ $(age \cdot fax_1 \cdot id \cdot f - aun + bo \cdot begar gen At \cdot \delta_4 \cdot auv(X_1, X_2)$ $(age \cdot fax_1 \cdot id \cdot f - auv + bo \cdot begar gen At \cdot \delta_4 \cdot auv(X_1, X_2)$ $(age \cdot fax_1 \cdot id \cdot f - auv + bo \cdot begar gen fave Ave Ave Ave Ave Ave Ave Ave Ave Ave A$			m:=M)	Yi i	= 10	130	1	1		123	No.			4			Kol	an	laus	u	are		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				-			6.4	14.		ma	1/1/		n										111
F(X, Y, Y, Y, X, Y, X, Y, X, Y, X, Y,		way.	aris	1, 121	1	5 1	CX			T	14.	N	1021	lores	1 8h	11			0	1		1	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					ly	Jl .	5 X	21	,	4 J		un	00	No St.	97.	AI	0;	1 4	9)	1, /1 X1.	COL	1/Xn	Xn)
LEAP $cov(X_1X_2) = \iint (xx \cdot m_1)(xx \cdot m_2) f(x_1, x_2) dx_1 dx_2$ (b) bu underprogram $f'' cov(X_1X_1) = DX$ $f'' cov(X_1X$						1000	100	- Control	000	Barrier.	DE AR	1	V	4	B	180	2	= L			OX	h	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						1217		11	1	21	12	14)-	N.J.	Je.	H.	The state of the s							1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		unp.	COVOX	(1)	1	17	1- M	1.)/	OV a	m	f	(N)	2/2	by	1/20					Ex.		15	
1° $COV(X,X) = DX$ 2° $D(X+Y) = DX+DY + 2COV(X,Y)$ 3° $COV(a_1X+b_1, a_2X+b_2) = a_1a_2 COV(X,Y)$ 9° $COV(X,Y) = M(XY) - (MX)(MY)$ 5°) $COV(X,Y) = M(X+C+CXX) COV(X,Y) = O$ 6° $COV(X,Y) = COX(X,Y) = COX(X$			00 00	112)-	R ²	la	100	111.	12-	1/12		, ui	NZ,	an	ron	1	1 7 3			233	J P	200	
1° $COV(X,X) = DX$ 2° $D(X+Y) = DX+DY + 2COV(X,Y)$ 3° $COV(a_1X+b_1, a_2X+b_2) = a_1a_2 COV(X,Y)$ 5°) $COV(X,Y) = M(XY) - (MX)(MY)$ 5°) $COV(X,Y) = M(X+C+CXX)(COV(X,Y) = O$ 6° $COV(X,Y) = COX(X,Y) = COX($		16 ba na	bunuaya	///		EXCEL SE	N. Co		T.	1	1)	No	Y		TQ1		1833	10	I I	133	100	1	
2 $\mathcal{D}(X+Y) = 0X+0Y + 200V(X, Y)$ 3 $\mathcal{C}(X+Y) = \mathcal{D}(X+1) + 200V(X, Y)$ 9 $\mathcal{D}(X+Y) = \mathcal{D}(X+1) - (\mathcal{D}(X+1) + \mathcal{D}(X+1))$ 5°) $\mathcal{D}(X+1) = \mathcal{D}(X+1) - (\mathcal{D}(X+1) + \mathcal{D}(X+1) + \mathcal{D}(X+1))$ 6° $\mathcal{D}(X+1) = \mathcal{D}(X+1) + \mathcal{D}(X+1)$			50 mm									W											
3 cav($a_1X_1+b_1$, $a_2X_1+b_2$) = a_1a_2 cov(X_1X_1) 4° cov(X_1X_1) = MEXYI- (MX) (MY) 5°) lum X_1X_1 -negal MEXX-EXXXX cov(X_1X_1) = 0 6° cov(X_1X_1) \leq vo(X_1X_1) = sgn(X_1X_1) = sgn(X_1X_1) \leq vo(X_1X_1) - KO300. KOPP. 1 PXY \leq 1 pm 91qm	100					OUR	July 1	12		111			No.						9				
9° $cov(X,Y) = MEXYI - (MX)(MY)$ 5°) $cou(X,Y) = double MEXYE HEXA cov(X,Y) = 0$ 6° $cov(X,Y) \le vox \cdot oy$ $cov(X,Y) = cov(X,Y)$ cov	20	ELX+Y]	- OX+0)	+ 20	ove	1, 1.)							and a									
9° $cov(X,Y) = MEXYI - (MX)(MY)$ 5°) $cou(X,Y) = double MEXYE HEXA cov(X,Y) = 0$ 6° $cov(X,Y) \le vox \cdot oy$ $cov(X,Y) = cov(X,Y)$ cov	3	cov(a, X+	B1, a2)	(+62))= Q1	102	u)V(1,4	7			100	130			120	181					
5°) when X,Y -result MEXXECTEXA $COV(X,Y) = O$ 6° $COV(X,Y) \le VDX \cdot OY$ $= COV(X,Y) = COV(X,Y)$ $= COV(X,Y) = COV(X,Y) = COV(X,Y) = COV(X,Y) = COV(X,Y)$ $= COV(X,Y) = COV$		4			MA THE			1															
G° $ \omega v(X,Y) \le \partial x \cdot \partial y $ $= \langle - \rangle X u Y class uun zab = \alpha X + b$ $u Torga syn(cov(X,Y)) = sgn(a)$ $ \nabla xy = \nabla x \cdot \partial y - kopop. kopp.$	- 1-															1			1	1/0	N N N		
$= \Leftrightarrow Xu Y \text{ class with 3ab} = \alpha X + 6$ $u \text{ Torga Syn(cov(X,Y)) = sgn(a)}$ $Pxy = \overline{Vpx \cdot py} - \mu o x o p \cdot \mu o p \cdot p.$ $Pxy = 1 \text{ mu } x \cdot p \cdot \mu o x \cdot p \cdot p.$	5)	luce X,	Y-resab	1482	447	34.	18	A	Col	1(1)	Y)	=0			W. I	N		1					
$\begin{array}{c c} & u & Totga & syn(cov(X,Y)) = sgn(a) \\ \hline Pxy & \overline{Vpx \cdot py} & - kosop. kopp. \\ \hline \hline Pxy \leq 1 & mu & 310m \\ \hline \end{array}$	6	I COV(X, Y) \ Vd	2X.0:	7	M	34	PA.	N	No.	4		1/4	990		191							
$\begin{array}{c c} & u & Totga & syn(cov(X,Y)) = sgn(a) \\ \hline Pxy & \overline{Vpx \cdot py} & - kosop. kopp. \\ \hline \hline Pxy \leq 1 & mu & 310m \\ \hline \end{array}$			= (=)	VIII	1 1	ber	.111	14 9	11	-	=0	V.	0	310									
PXY = \(\overline{\text{VDX} \cdot \overline{\text{DY}} \) - \(\overline{\text{VD} \sigma \text{VD}} \). \(\overline{\text{VD}} \) \(\overline{\text{VD}		WE ST		u 7	orgo	û	Seg	na	UV	(X,)	1)=	SQI	6110)	1	Fall.	314						
1 Dxy 51 mu 31 au	Dy	covi	(X, Y) - V		-	-									1								
1 pxx \$1, nnu 3 qu S + 1 <=> Y=ax+6, rge ax Oxx= 1 = 2			KIO				N I	MI				198				KIS.							
10xx= 1 1 = 7 1= axt 6, 1ge ax	lpx	41<1, mu	1 9 au											Fu								134	
DATE TO THE TOTAL OF THE TOTAL	DXY	1 1 =	D YOX+	R 9	je cu	00	3				0	24	AN VAN	1	1	150	133		16				

Cores ou nobs (nonegon rebanuer) Pazueusenue c neb. An = ur. onuy (normgon Gamen) Pasueusenue des not An n' (n-m). W/n) (nopagor bancer) Thenecraerobacu (pazur des nobr us n no n) Pn=n. j=411 The one P(A(B) = P(B) XIXI 11) represpoent 13=13 Lak odurno, reo 6 les u re nu co-ba que A P(A)>0=> P(AB)=P(A)P(B1A) wy ot consulte P(A1-A2. An-1) = P(An)P(A2/A1)P(A3/A1A2) - Superiore bep-4 P(A1+A2)=P(A1)+P(A2)-P(A1A2) P(A1+ +An) = > P(Ain) - > P(Ain Ai2) + > P(Ain Ai2h3) = . + (-1) - P(An Dea coo regal => P(AB) = P(A)P(B) орории. поин. вер. $P(A) = P(A|H_1)P(H_1) + P(A|H_2)P(H_2) + ... + P(A|H_n)P(H_n)$ орории. Байка $P(H_1|A) = P(A|H_1)P(H_1) + ... + P(A|H_n)P(H_n)$ PEL WINGT. DEPREYULU 1) Pn(k) = Cnpqn-k P(A) 3) Palk 21 = 1-9" 2) Pnque Ksh23= = Chpiqn-i 4) Pn(0)=9

Симинара: $\mathbb{D}_{\mathcal{X}_{1}(\chi_{1})} = \int_{\infty}^{+\infty} f(\chi_{1}, \chi_{2}) d\chi_{2} = \sum_{X_{1}} F(\chi_{1}) = \int_{\infty}^{+\infty} f(\chi_{1}) dt$ $F(x_1, \chi_2) = f(x_1, \chi_2) =$ Of $\int_{X_1} (\chi_1) = f(\chi_1, +\infty) = \int_{X_1} f(\chi_1) = f'(\chi_1)$ - npauge 11 F(X1, X2) 02F 0 F f(x, y)=

batt	1) Phyaccomolencus CB - Exercise CB - Wall CB - Marie CB - Ma	The beg-no general $MX=X$ $X \sim \Pi(X)$ $X \sim \Pi(X)$
	2) DUNGULUAUGHUS - KON-BO YONEXOB B OXELLE MONKET. B NCIPALUETP NEN, PE (0,1) PEX=KG= CnpK(1-p) n-k, KE (0,1,, N)	
	3) Feore pure cupe - Low bo were be be be supplied to the present	Now yourna (Bk-u=>X=k-1) $X \sim Geom(p)$ $MX = \frac{q}{p}$
	4) Pabrouepro paeno al benur. f(x) = 10 unare, c= 6-a	$\frac{\cot \theta}{\text{MX}} = \frac{(\theta - a)^2}{12}$
	bep. nponopy. [a, b] => reau, onpegenence bep	N~R[a; B]
	$f(x) = \begin{cases} \lambda exp(-\lambda x), x > 0 \\ f(x) = \begin{cases} 0, x < 0 \\ napowulp \lambda > 0 \end{cases}$ $f(x) = \begin{cases} 0, x < 0 \\ napowulp \lambda > 0 \end{cases}$	$MX = 1/3$ $0X = 1/3^2$ $X \sim Exp(3)$
	6) Hope authorities at θ . $f(x) = \sqrt[4]{2\pi} \cdot \exp\left(-\frac{(x-m)^2}{26^2}\right)$, $x \in \mathbb{R}$ napawer m , $6 > 0$	X~N(m, 0) Tuli Ebilis MX DX NUK
	m-koopy. x yenpa, 6-pajopoc, red & 6. The	

