Automatic Control Theory

Chapter 2

Fan zichuan School of Computer and Information Science Southwest University

A CH2: Mathematical Models of Systems

Main contents

- Differential Equations of Physical Systems.
- The Transfer function of Linear Systems.
 (The Laplace Transform and Inverse Transform)
- Block Diagram.
- Block Diagram Reduction (Mason's gain formula)

A CH2: Mathematical Models of Systems

Review

- 1. The concept of transfer function only applies to the LTI system.
- 2. Transfer function is only determined by the structure and parameter of system.
- 3. The method of the transfer function has some limitation.
 - (1). It only applies to the SISO system.
 - (2). It only can reflect the relationship of input and output.
 - (3). It only can analyze the motion characteristic of zero initial conditions.

what is next

Block Diagram represented by using Transfer function

1. Potentiometer.

2. Potentiometer Bridge.

3. Gear train

$$Gear \ ratio = n = \frac{N_1}{N_2}$$

$$N_2\theta_L = N_1\theta_m, \theta_L = n\theta_m$$

$$\omega_L = n\omega_m$$

4. Armature-controlled DC motor

Inertial = J

Friction = b

$$V_a(s) = (R_a + L_a s)I_a(s) + V_b(s)$$

$$V_b(s) = K_b \omega(s) = K_b s \theta(s)$$

Useful tips!

$$s = \frac{d}{dt} \quad \frac{1}{s} = \int_0^t dt$$

$$I_a(s) = \frac{V_a(s) - K_b \omega(s)}{(R_a + L_a s)}$$

Motor torque

$$T_m(s) = K_m I_a(s)$$

$$T_m(s) = T_L(s) + T_d(s)$$

where $T_L(s)$: load torque $T_d(s)$: disturbance torque

$$T_L(s) = Js^2\theta(s) + bs\theta(s)$$

We can obtain the transfer function (with $T_d(s) = 0$)

$$G(s) = \frac{\theta(s)}{V_a(s)} = \frac{K_m}{s[(R_a + L_a s)(Js + b) + K_b K_m]}$$

1. Signal line:

A line with arrow that indicate the direction of signal transform.

3. Derivation point

(measuring point).

2. Block:

It expresses the transfer function.

4. Synthesis Point

(Comparing point).

$$\begin{array}{c|c}
U(s) & U(s) \pm R(s) \\
 & + \\
\hline
R(s)
\end{array}$$

核心

Laplace Transform

Differential Equations

Block Diagram

Transfer function

续

Block Diagram Reduction!

Homework: Position slave system

Solution:

