

Licenciatura Engenharia Informática e Multimédia Instituto Superior de Engenharia de Lisboa Ano letivo 2022/2023

Sensores e Atuadores

Relatório: Trabalho Lab02

Turma: 11D Grupo: 0

Nome: Daniel Silva Número: 50781

Nome: João Ramos Número: 50730

Nome: Miguel Alcobia Número: 50746

Data: 10 de Outubro 2022

Objetivo:

Esta experiência teve em vista os alunos saberem trabalhar com o equipamento disponível no laboratório, assim como conseguirem analisar e interpretar os resultados obtidos.

Material:

- · Breadboard,
- · Resistências,
- · Fonte dc da bancada,
- · Multímetro da bancada,
- · Interruptores,
- · Cabos

Preparação teórica

Figura 1- Esquema do circuito montado pelo grupo.

1-

S1/S2 abertos:

$$U_{1/0} = 5.00V$$

$$R_{1/0} = R_1 = 1.00 \text{ k}\Omega$$

$$I_{1/0} = 5.00 \text{ mA}$$

$$P_{1/0} = 25.00 \text{ mW}$$

$$U_{R1} = 5.00 \text{ V}$$

$$R_1 = 1.00 \text{ k}\Omega$$

$$I_{R1}$$
 = 5.00 mA

$$P_{R1}$$
 = 25.00 mW

S1/S2 fechados

$$U_{1/0} = 5.00V$$

$$R_{1/0}=0.688~k\Omega$$

$$I_{1/0} = 7.27 \text{ mA}$$

$$P_{1/0} = 36.4 \text{ mW}$$

$$U_{R1} = U_{1/0} = 5.00V$$

$$R_1 = 1.00 \text{ k}\Omega$$

$$I_{R1}$$
 = 5.00 mA

$$P_{R1} = 25.00 \text{ mW}$$

$$U_{R2} = U_{1/0} = 5.00 \text{ V}$$

$$R_2$$
 = 2.20 $k\Omega$

$$I_{\rm R2}\text{=}2.27~\text{mA}$$

$$P_{\rm R2} = 11.4~mW$$

S1 fechado/S2 aberto:

$$U_{1/0} = 5.00V$$

$$R_{1/0}=0.944~k\Omega$$

$$I_{1/0} = 5.30 \text{ mA}$$

$$P_{1/0} = 26.5 \text{ mW}$$

$$U_{R1} = 5.00 \text{ V}$$

$$R_1 = 1.00 \text{ k}\Omega$$

$$I_{R1} = 5.00 \text{ mA}$$

$$P_{R1} = 25.0 \text{ mW}$$

$$U_{R2} = 0.615 \text{ V}$$

$$R_2 = 2.20 \text{ k}\Omega$$

$$I_{R2} = 0.296 \text{ mA}$$

$$P_{R2} = 0.192 \text{ mW}$$

$$U_{R3} = 1.39 \text{ V}$$

$$R_3 = 4.70 \text{ k}\Omega$$

$$I_{R3} = I_{R2} = 0.296 \text{ mA}$$

$$P_{R3} = 0.411 \text{ mW}$$

$$U_{R4} = 2.95 \text{ V}$$

$$R_4 = 10.0 \text{ k}\Omega$$

$$I_{R4} = I_{R2} = 0.296 \text{ mA}$$

$$P_{R4} = 0.873 \text{ mW}$$

<u>Lei dos nós:</u> $\sum I = 0$

S1/S2 abertos = S1 aberto/S2 fechado

Nó 1 -
$$\sum$$
 I = 0 (=) I_V = I_{R1} (=) I_V - I_{R1} = 0 \rightarrow 5.00-5.00 = 0.00mA

S1/S2 fechados

Nó 1-
$$\sum I = 0$$
 (=) $I_V = I_{R1} + I_{R2}$ (=) $I_V - I_{R1} - I_{R2} = 0 \rightarrow 7.27 - 5.00 - 2.27 = 0.00 mA$

Nó 2 -
$$\Sigma$$
 I = 0 (=) I_{R2} = I_{R2} (=) I_{R2} - I_{R2} = 0 \rightarrow 2.27-2.27 = 0.00mA

Nó 3 -
$$\Sigma$$
 I = 0 (=) I_{R2} = I_{S2} (=) I_{R2} - I_{S2} = 0 \rightarrow 2.27-2.27 = 0.00mA

Nó 4-
$$\sum$$
 I = 0 (=) i_4 = 0 (=) I_{R3} + I_{R4} = 0

Nó 5-
$$\sum I = 0$$
 (=) $I_{S2} + I_{R1} = I_1$ (=) $I_1 - I_{S2} - I_{R1} = 0 \rightarrow 7.27 - 5.00 - 2.27 = 0.00 mA$

S1 fechado/S2 aberto

Nó 1-
$$\sum I = 0$$
 (=) $I_V = I_{R1} + I_{R2}$ (=) I_V - I_{R1} - I_{R2} =0 $\rightarrow 5.30$ - 5.00 - 0.296 = 0.00 mA

Nó 2-
$$\Sigma$$
 I = 0 (=) I_{R2} = I_{R2} (=) I_{R2} - I_{R2} =0 \rightarrow 0.296-0.296 = 0.00mA

Nó 3-
$$\Sigma$$
 I = 0 (=) IR2 = IR3 (=) IR2-IR3 =0 \rightarrow 0.296-0.296 = 0.00mA

Nó 4-
$$\sum$$
 I = 0 (=) IR4 = IR4 (=) IR4-IR4=0 \rightarrow 0.296-0.296 = 0.00mA

Nó 5-
$$\sum$$
 I = 0 (=) IV = IR1+IR4 (=) IV-IR1-IR4=0 \rightarrow 5.30-5.00-0.296 = 0.00mA

<u>Lei das malhas:</u> $\sum V = 0$

S1/S2 abertos = S1 aberto/S2 fechado

Malha 1 -
$$\sum$$
 V = 0 (=) $V_{VDC} = V_{R1}$ (=) V_{VDC} - $V_{R1} = 0 \rightarrow 5.00$ -5.00 = 0.00V

S1/S2 fechados

Malha 1-
$$\Sigma$$
 V = 0 (=) $V_{VDC} = V_{R1}$ (=) V_{VDC} - $V_{R1} = 0 \rightarrow 5.00-5.00 = 0.00V$

Malha 2 -
$$\sum$$
 V = 0 (=) $V_{R1} = V_{R2}$ (=) V_{R1} - $V_{R2} = 0 \rightarrow 5.00$ - $5.00 = 0.00$ V

Malha 3 - Não tem tensão

S1 fechado/S2 aberto

Malha 1-
$$\sum V = 0$$
 (=) $V_{VDC} = V_{R1}$ (=) V_{VDC} - $V_{R1} = 0 \rightarrow 5.00$ -5.00 = 0.00V

Malha 2 -
$$\sum$$
 V = 0 (=) $V_{R1} = V_{R2} + V_{R3} + V_{R4}$ (=) $V_{R1} - V_{R2} - V_{R3} - V_{R4} = 0 \rightarrow 5.00 - 0.615 - 1.39 - 2.95 = 0.00V$

Lei da conservação de energia: $\sum P = 0$

S1/S2 abertos = S1 aberto/S2 fechado

$$\sum P = 0$$
 (=) $P_{VDC} = P_{R1}$ (=) $P_{VDC} - P_{R1} = 0 \rightarrow 25.00 - 25.00 = 0.00 \text{mW}$

S1/S2 fechados

$$\sum P = 0$$
 (=) $P_{VDC} = P_{R1} + P_{R2}$ (=) $P_{VDC} - P_{R1} - P_{R2} = 0 \rightarrow 36.4 - 25.00 - 11.4 = 0.00 \text{mW}$

S1 fechado/S2 aberto

Tarefas:

2-

S1/S2 abertos	Valores enunciados	V(V)	I (mA)	P (mW)
VDC	5V	4,96	4,99	24,8
R1	1k	4,95	4,99	24,7

S1/S2 fechados	Valores enunciados	V(V)	I (mA)	P (mW)
VDC	5V	4,96	7,22	35,8
R1	1k	4,95	4,96	24,6
R2	2k2	4,95	2,26	11,2

S1 fechado / S2 aberto	Valores enunciados	V(V)	I (mA)	P (mW)
VDC	5V	4,96	5,27	26,1
R1	1k	4,95	5,27	26,1
R2	2k2	0,637	2,6	1,66
R3	4k7	1,38	1,43	1,97
R4	10k	2,94	1,13	3,32

3-

S1/S2 abertos	V _{teórico} (V)	V _{experimental} (V)	I _{teórico} (mA)	I _{experimental} (mA)	P _{teórico} (mW)	P _{experimental} (mW)
VDC	5,00	4,96	5,00	4,99	25,00	
R1	5,00	4,95	5,00	4,99	25,00	24,7

S1/S2 fechados	V _{teórico} (V)	V _{experimental} (V)	I _{teórico} (mA)	I _{experimental} (mA)	P _{teórico} (mW)	P _{experimental} (mW)
VDC	5,00	4,96	7,27	7,22	36.4	
R1	5,00	4,95	5,00	4,96	25,00	24,6
R2	5,00	4,95	2,27	2,26	11,4	11,2

S1 fechado/ S2 aberto	V _{teórico} (V)	V _{experimental} (V)	I _{teórico} (mA)	I _{experimental} (mA)	P _{teórico} (mW)	P _{experimental} (mW)
VDC	5,00	4,96	5,30	5,27	26,4	26,1
R1	5,00	4,95	5,00	4,98	25,0	24,7
R2	0,615	0,637	0,296	0,292	0,192	0,186
R3	1,39	1,38	0,296	0,292	0,411	0,403
R4	2,95	2,94	0,296	0,292	0,873	0,858

Como é possível ver nos valores apresentados na tabela, os valores obtidos não diferem muito dos valores enunciados, estando no intervalo desejado, levando em conta o erro de leitura do equipamento.

Conclusão:

A experiência cumpriu o seu propósito, pois o grupo conseguiu compreender como trabalhar com o equipamento laboratorial, efetuando as medidas e a montagem do circuito. Além disso, os resultados teóricos conseguidos em laboratório demonstraram-se coerentes.