MATH223 - Linear Algebra (class notes)

Sandrine Monfourny-Daigneault

McGill University

Contents

1	January 7th 2019			
	1.1	Motivation	2	
	1.2	Complex numbers	2	
2	January 9th 2019			
	2.1	Complex numbers as points in R^2	4	
	2.2	Equations with complex numbers	4	
	2.3	Vector spaces (Ch 4)	6	
3	January 11th 2019 6			
	3.1	Geometric vectors ('arrows')	6	
	3.2	Definition of a vector space	7	
	3.3	Examples of vector spaces	8	

1 January 7th 2019

Should know how to solve a linear system and calculate a determinant... things like that.

• Written assignments (5): 10%

• Webwork assignments (5):5%

• Midterm : 20%

• Final: 65%

Textbook: Schaum's Outline - Linear Algebra.

1.1 Motivation

We have linear systems, with two equations, like such:

$$3x - 2y + z = 2$$
$$x - y + z = 1$$

There is an algebraic way of seeing this, but we can also see this, from the geometric standpoint, as the intersection of the two planes in \mathbb{R}^3 . Linear algebra has to do with things that are "flat", like a plane. As soon as we add in exponents to these equations, we get some curvature, and the techniques to solve these are different.

- Linear equations are the simplest kind, so you *must* understand them. Also, you *can* understand 'everything' about them.
- Theory used to describe solutions, etc.
- Linear equations are often used to approximate or model more complicated equations/situations.
- In applications, linear systems are often quite big (10000 equations/variables)

1.2 Complex numbers

Def: Let i be a symbol. We declare $i^2 = -1$.

Now, what we'd like to do is take this symbol i and combine it with the usual real numbers that we are familiar with. We set, for example,

$$3i$$

$$i - 4$$

$$3i - \pi$$

$$\sqrt{i} + 21$$

Def: The field of complex numbers C consists of all expressions of the form a + bi, where $a, b \in R$.

Def: Addition (subtraction) and multiplication of complex numbers is defined by the following rules:

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

(ii)
$$(a+bi)(c+di) = ac + adi + bci + bdi^{2}$$
$$= ac + adi + bci - bd$$
$$= (ac - bd) + (ad + bc)i$$

Notation:

• 0 + bi = bi

• a + 0i = a (a real number)

• 0 + 0i = 0

Ex: If $z_1 = 2 - i$, $z_2 = 5i$, then

$$z_1 + z_2 = 2 + 4i$$

and

$$z_1 z_2 = (2 - i)(5i) = 10i - 5i^2 = 5 + 10i$$

Def: Let $z = a + bi \in C$

(i) $\bar{z} = a - bi$, called the *complex conjugate* of z

(ii) $|z| = \sqrt{a^2 + b^2}$, called the absolute value or modulus

Def: If $z = a + bi \in C$ and $z \neq 0$ (ie $z \neq 0 + 0i$), then the number

$$z^{-1} = \frac{\bar{z}}{|z|^2}$$
$$= \frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2}i$$

is called the (multiplicative) inverse of z. It has the property $zz^{-1}=1=z^{-1}z$.

Proof. We have

$$zz^{-1} = (a+bi)\left(\frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i\right)$$

$$= \frac{a^2 - abi + abi - b^2i^2}{a^2+b^2}$$

$$= \frac{a^2 + 0 + b^2}{a^2+b^2}$$

$$= 1$$

Note: Since $z \neq 0 + 0i$, $a^2 + b^2 \neq 0$

Def: If $z, w \in C$ and $z \neq 0$ then

$$\frac{w}{z} = wz^{-1}$$

Ex: If z = 1 + 2i, w = 3 - i then

$$\begin{split} \frac{w}{z} &= wz^{-1} \\ &= (3-i)(\frac{1}{5} - \frac{2}{5}i) \\ &= \frac{3}{5} - \frac{6}{5}i - \frac{i}{5} + \frac{2}{5}i^2 \\ &= \frac{3}{5} - \frac{2}{5} - \frac{7}{5}i \\ &= \frac{1}{5} - \frac{7}{5}i \end{split}$$

Or,

$$\frac{3-i}{1+2i} \cdot \frac{(1-2i)}{(1-2i)} = \frac{3-6i-i+2i^2}{1-2i+2i-4i^2}$$
$$= \frac{1-7i}{5}$$

2 January 9th 2019

2.1 Complex numbers as points in R^2

You can view a + bi as a point $(a, b) \in \mathbb{R}^2$. The usefulness of this is that we can consider, say, (3 + 2i) and (3 - i) as vectors in \mathbb{R}^2 , and they will conserve the same properties (addition of complex numbers corresponds to vector addition in \mathbb{R}^2). For the interpretation of multiplication to make sense, it's necessary to use polar coordinates.

2.2 Equations with complex numbers

Fact: Every real number $a \neq 0$ has two square roots:

- if a > 0, roots $\pm \sqrt{a}$
- if a < 0, two roots are $\pm i\sqrt{|a|}$, since:

$$(\pm i\sqrt{|a|}) = i^2(\sqrt{|a|})^2$$

$$= -1 \cdot |a|$$

$$= a \qquad \text{(since } a < 0\text{)}$$

Fact: Quadratic equation $ax^2 + bx + c = 0$ has solution

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

which may be in C.

Ex: Solve $x^2 - 2x + 3 = 0$, and factor $x^2 - 2x + 3$. **Sol:**

$$x = \frac{-2 \pm \sqrt{4 - 4(1)(3)}}{2}$$

$$= \frac{2 \pm \sqrt{-8}}{2}$$

$$= \frac{2 \pm i\sqrt{8}}{2}$$

$$= \frac{2 \pm i2\sqrt{2}}{2}$$

$$= 1 \pm i\sqrt{2}$$

Note: If $ax^2 + bx + c$ has $a, b, c \in R$ has a non-real root, say z, its other root is \bar{z} $(z = a + bi, \bar{z} = a - bi)$. This is not necessarily true if $a, b, c \in C$.

Back to problem. Factor $x^2 - 2x + 3 = (x - (1 + i\sqrt{2}))(x - (1 - i\sqrt{2}))$.

Caution: -1 has two roots, namely $\pm i$, so you may write $i = \sqrt{-1}$, but be careful:

$$-1 = i^{2}$$

$$= i \cdot i$$

$$= \sqrt{-1} \cdot \sqrt{-1}$$

$$= \sqrt{(-1)(-1)}$$
 (this step doesn't quite work)
$$= \sqrt{1}$$

$$= 1$$

Theorem: (Fundamental Theorem of Algebra) If

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 n^0$$

is a polynomial with $a_n \neq 0$, and $a_n, a_{n-1}, \ldots, a_0 \in C$, then p(x) factors into linear factors,

$$p(x) = a_n \cdot (x - r_1) \cdot (x - r_2) \cdot \dots \cdot (x - r_n)$$

for some complex numbers r_1, r_2, \ldots, r_n . Some r_i 's may be equal.

Corollary: Every such polynomial has at least one root, and at most n distinct roots.

Note: Finding the roots is, in general, quite difficult.

Ex: Factor $2x^3 + 2x$ (over C). Sol:

$$2(x^{3} + x) = 2(x - 0)(x^{2} + 1)$$
$$= 2(x - 0)(x^{2} - i^{2})$$
$$= 2(x - 0)(x - i)(x + i)$$

Ex: Solve $x^2 - i = 0$

Sol: $x^2 = i$ so $x = \pm \sqrt{i}$. Want \sqrt{i} in format a + bi, $a, b \in R$.

 $a = \pm \frac{1}{\sqrt{2}} = b$

$$\sqrt{i} = a + bi$$

$$i = (a + bi)^2$$

$$= a^2 + 2abi + b^2i^2$$

$$0 + i = (a^2 - b^2) + 2abi$$

$$0 = a^2 - b^2$$

$$1 = 2ab$$

$$a = \pm b$$

$$ab = \frac{1}{2}$$
(so a=b both + or both -)
$$a^2 = \frac{1}{2}$$

Two solutions, $\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$ and $-\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}i$.

2.3 Vector spaces (Ch 4)

Def. The sets R and C (and also Q, rational numbers, although we won't go into details of this) are called *fields* (or *fields of scalars*). In this class, "a field of K" means that K is either R or C.

3 January 11th 2019

Last time: Field K is R or C (for this class).

3.1 Geometric vectors ('arrows')

You can add two vectors (arrows).

Observation: $\vec{u} + \vec{v} = \vec{v} + \vec{u}$. You can rescale a vector:

Observation: $a(b\vec{u}) = (ab)\vec{u}$.

Also: $1\vec{u} = \vec{u}$

Question: What properties are interesting? What other objects obey the same

properties?

Abstraction: Focus on properties more than on the objects.

3.2 Definition of a vector space

Let V be a set, called set of "vectors", and let K be a field (R or C) (elements of K called scalars). Assume that we have already defined two operations:

- (1) One called *addition*, which takes two vectors $\vec{u}, \vec{v} \in V$ and produces another vector denoted $\vec{u} + \vec{v} \in V$.
- (2) One called scalar multiplication which takes a vector $\vec{u} \in V$ and a scalar $a \in K$ and produces another vector denoted $a\vec{u} \in V$

Then if, for all vectors $\vec{u}, \vec{v}, \vec{w} \in V$ and all scalars $a, b \in K$, the following 8 properties are true, then V is called a *vector space* (over K).

- (A1) (u+v) + w = u + (v+w)
- (A2) There exists a vector in V, named zero vector and denoted 0 (or $\vec{0}$) such that for all $u \in V$, u + 0 = u
- (A3) For each $u \in V$, there is a vector in V, called the (additive) inverse of u and denoted -u, having the property u + (-u) = 0 (where 0 is the zero vector defined in A2)
- (A4) u + v = v + u (commutative laws)
- (S1) a(u+v) = au + av (distributive laws)

- (S2) (a+b)u = au + bu
- (S3) a(bu) = (ab)u
- (S4) $1u = u \ (1 \in R \text{ or } C)$

These are called the vector space axioms.

3.3 Examples of vector spaces

Some examples:

(1) $K^n = \{(a_1, a_2, \dots, a_n) | a_1, a_2, \dots, a_n \in K\}$, with addition defined by

$$(a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n) = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$$

and scalar multiplication by

$$c(a_1, a_2, \dots, a_n) = (ca_1, ca_2, \dots, ca_n)$$

where $c \in K$ (and K = set of scalar).

Proof that K^n is a vector space

Need to prove all 8 properties. We will do 2, the rest are exercises.

(A4) To prove for all $u, v \in V$, u + v = v + u.

Proof concept: To prove "for all $x \in A$, something", say "let $x \in A$ " (means x is an arbitrary element of A, ie you only know $x \in A$). Then, prove something for that x.

Proof: Let $u, v \in K^n$. This means $u = (a_1, a_2, ..., a_n), v = (b_1, b_2, ..., b_n)$ for some $a_1, a_2, ..., a_n, b_1, b_2, ..., b_n \in K$. Then

$$\begin{aligned} u+v &= (a_1,\ldots,a_n) + (b_1,\ldots,b_n) \\ &= (a_1+b_1,\ldots,a_n+b_n) & \text{(definition of addition in } K^n) \\ &= (b_1+a_1,\ldots,b_n+a_n) & \text{(since } a+b=b+a \text{ for } R \text{ and } C) \\ &= (b_1,\ldots,b_n) + (a_1,\ldots,a_n) & \text{(definition of addition in } K^n) \\ &= v+u \end{aligned}$$

(A2) *Proof concept:* To prove "there exists" something, one method is to describe the thing directly.

Define 0 = (0, 0, ..., 0) (which is in K^n). To prove for all $u \in K^n$, u + 0 = u, let $u \in K^n$. This means $u = (a_1, a_2, ..., a_n)$, so

$$u + 0 = (a_1, a_2, \dots, a_n + (0, 0, \dots, 0))$$

$$= (a_1 + 0, a_2 + 0, \dots, a_n + 0)$$

$$= (a_1, a_2, \dots, a_n)$$

$$= u$$

(2) In the vector space C^2 , $(2+3i,5-7i) \in C^2$ is an example of a vector and $2i \in C$ is a scalar, so an example of scalar mult is:

$$2i(u) = 2i(2+3i, 5-7i)$$

$$= (4i+6i^2, 10i-14i^2)$$

$$= (-6+4i, 14+10i)$$