Theory of Stochastic Interest Rates

Jesse Perla University of British Columbia

1 Simple 2-period Stochastic model

1.1 Basic Setup

• $t = \{0, 1\}$, states= $\{A, B\}$, where state realized at t = 1

Figure 1: 2-period stochastic model

• Preferences (expected utility):

$$\mathbb{E} [u(c_0) + \beta u (c_1(s))]$$

$$= u(c_0) + \beta u (c_1(A)) \pi_A + \beta u (c_1(B)) \pi_B$$
(2)

• Endowment of Consumer (stochastic):

$$- \text{ At } t = 0, y_0$$

$$- \text{ At } t = 1, \begin{cases} y_1(A) \text{ in state A} \\ y_1(B) \text{ in state B} \end{cases}$$

• Commodities:

 $-c_0$: consumption at t=0

 $-c_1(A)$; consumption in state A at t=1

 $-c_1(B)$: consumption in state B at t=1

- Prices:
 - $-q_0$: price of one unit of consumption at t=0 (No risk or uncertainty to resolve)
 - $-q_1(A)$: price of one unit of consumption at t=1 in state A
 - $-q_1(B)$: price of one unit of consumption at t=1 in state B

1.2 Consumer's problem

• For consumer, solve:

$$\max_{\{c_0, c_1(A), c_1(B)\}} u(c_0) + \beta u(c_1(A)) \pi_A + \beta u(c_1(B)) \pi_B$$
(3)

s.t.
$$q_0c_0 + q_1(A)c_1(A) + q_1(B)c_1(B) \le q_0y_0 + q_1(A)y_1(A) + q_1(B)y_1(B) \equiv w_0$$
 (4)

• Form Lagrangian:

$$\mathcal{L} = u(c_0) + \beta u(c_1(A))\pi_A + \beta u(c_1(B))\pi_B + \underbrace{\lambda}_{L.M.} \underbrace{\left[w_0 - q_0c_0 - q_1(A)c_1(A) - q_1(B)c_1(B)\right]}_{\text{Present value of consumption}}$$
(5)

• F.O.N.C:

$$[c_0]: u'(c_0) - \lambda q_0 = 0 \tag{6}$$

$$[c_1(A)] : \beta u'(c_1(A))\pi_A - \lambda q_1(A) = 0$$
(7)

$$[c_1(B)] : \beta u'(c_1(B))\pi_B - \lambda q_1(B) = 0$$
(8)

And budget constraint:

$$w_0 - q_0 c_0 - q_1(A)c_1(A) - q_1(B)c_1(B) = 0 (9)$$

By using (6), (7) and (8), we have:

$$\lambda = \frac{u'(c_0)}{q_0} \tag{10}$$

$$\beta u'(c_1(A))\pi_A = u'(c_0) \cdot \frac{q_1(A)}{q_0} \tag{11}$$

$$\beta u'(c_1(B))\pi_B = u'(c_0) \cdot \frac{q_1(B)}{q_0} \tag{12}$$

where q_0 is an initial price level, just rescales all. Normalize $q_0 = 1$ using (10). Con-

sumer's take prices $q_1(A)$, $q_1(B)$ as given

$$q_{1}(A) = \beta \underbrace{\frac{u'(c_{1}(A))}{u'(c_{0})}}_{\text{Marginal utility of allocation}} \pi_{A}$$

$$q_{1}(B) = \beta \underbrace{\frac{u'(c_{1}(A))}{u'(c_{1}(B))}}_{\text{U'}(c_{0})} \underbrace{\pi_{B}}_{\text{probabilities}}$$

$$(13)$$

This is the Lucas '78 formulas for 2-period. If there is a representative consumer, then $c_1(A) = y_1(A)$, eats full endowment.

• Risk free:

$$q_1^{\text{RF}} = q_1(A) + q_1(B) = \frac{\beta}{u'(c_0)} \left[u'(c_1(A))\pi_A + u'(c_1(B))\pi_B \right]$$
 (15)

$$= \underbrace{\beta \frac{\mathbb{E}\left[u'(c_1(s))\right]}{u'(c_0)}}_{\text{Ratio of average:}}$$
Expected marginal utility to marginal utility to marginal utility today. (16)

where the risk free gross interest rate is: $R^{\text{RF}} = \frac{1}{q_1^{\text{RF}}}$

Does this Extend to Infinite Horizon? Without proof, yes. Assume that the state process $\{s_t\}$ is Markov, with transition probabilities $\pi(s_{t+1}|s_t)$ and $\pi(A|s_t) + \pi(B|s_t) = 1$, then (14) and (16) become

$$q_t(s_{t+1}) = \beta \frac{u'(c_{t+1}(s_{t+1}))}{u'(c_t(s_t))} \underbrace{\frac{\pi(s_{t+1}|s_t)}{\text{Conditional Probability}}}_{\text{Conditional Probability}}$$
(17)

$$q_t^{\text{RF}} = \beta \frac{\mathbb{E}_t \left[u'(c_{t+1}(s_{t+1})) \right]}{u'(c_t(s_t))}$$
(18)

Section Section 2 and beyond will prove this in more generality, for claims on both periodby-period, and time-0 contingent claims.

2 Asset Trees

2.1 Introduction

• Consider a 2-state Markov chain with states $S = \{\bar{s_1}, \bar{s_2}\}$ and transition matrix:

$$P = \begin{bmatrix} p_{11} & p_{12} \\ p_{21} & p_{22} \end{bmatrix}, \text{ where } p_{ij} = \text{Prob}(s_{t+1} = \bar{s_j} \mid s_t = \bar{s_i})$$

$$\text{And } \pi_0 = \begin{pmatrix} \pi_{01} \\ \pi_{02} \end{pmatrix} = \begin{bmatrix} \text{Prob}(s_0 = \bar{s_1}) \\ \text{Prob}(s_0 = \bar{s_2}) \end{bmatrix} \text{ as initial probability distribution over states}$$

$$(20)$$

where
$$\pi_{0,i} \geq 0$$
 and $\sum_{i=1}^{2} \pi_{0,i} = 1$, $p_{i,j} \geq 0$ and $\sum_{j=1}^{2} p_{i,j} = 1$ (i.e. probabilities)

• Denote s_0^t as sequence of states from 0 to t. For example:

$$s_0^t = \{s_0, s_1, \dots s_t\} \text{ for some } s_\tau \in S, \forall \tau = 0, \dots t$$
 (21)

This is an information set, a history.

• Example:

Figure 2: Asset Tree Example given \bar{s}_1 at t = 0

2.2 Probabilities of those jumps:

• In this way, build probabilities over histories s_0 , which is denoted for simplicity as s^t .

Figure 3: Jump Probabilities in Example

• Denote the probability of a particular history as

$$Prob(s_t = \bar{s}^t) \equiv \pi_t(s^t) \text{ (e.g. with Markov chain)}$$
(22)

$$\pi_t \left(\left\{ \bar{s}_i, \bar{s}_j, \bar{s}_k, \bar{s}_\ell, \cdots \right\} \right) = \underbrace{\pi_{0,i}}_{\substack{\text{Probability Jump } i \text{ to } j \text{ Jump } j \text{ to } k}} \underbrace{p_{jk}}_{\substack{\text{Pkl}}} \underbrace{p_{kl} \cdots}_{\substack{\text{Pkl}}}$$

$$(23)$$

• Note that:

$$\sum_{\substack{s^t \text{ probability} \\ \text{sum of all possible} \\ \text{histories} \\ \text{to time } t}} \underline{\pi_t(s^t)} = 1, \forall t, \text{ and } \pi_t(s^t) \ge 0$$
(24)

2.3 Modelling risk

- At time 0, only knows s_0 , does not know s_1, s_2, \cdots but does know that at time t the history s^t might happen, and assigns probability $\pi_t(s^t)$ that it will.
- Consumer's utility for a particular sequence of $\{s_t\}$:

$$\sum_{t=0}^{t} \beta^{t} u(c_{t}(s^{t})), \text{ where } c_{t}(s^{t}) \text{ is consumption at } \underline{t} \text{ for } \underline{\text{history } s^{t}}$$
 (25)

Hence, consumption can depend on a particular history of the state.

• But at time 0, the agent only has probabilities over possible histories. Then consumer's

expected utility at time 0 is:

$$\sum_{t}^{T} \sum_{s^{t}} \underbrace{\beta^{t} u(c_{t}(s^{t}))}_{\text{PDV given}} \underbrace{\pi_{t}(s^{t})}_{\text{Probability}} \underbrace{\pi_{t}(s^{t})}_{\text{Appens}}$$

$$\sum_{t}^{T} \sum_{s^{t}} \underbrace{\beta^{t} u(c_{t}(s^{t}))}_{\text{PDV given}} \underbrace{\pi_{t}(s^{t})}_{\text{Probability}}$$

$$\sum_{t}^{T} \sum_{s} \underbrace{\beta^{t} u(c_{t}(s^{t}))}_{\text{PDV given}} \underbrace{\pi_{t}(s^{t})}_{\text{PDV given}} \underbrace{\pi_{t}(s^{t})}_{\text{PDV given}}$$

$$\sum_{t}^{T} \sum_{s} \underbrace{\beta^{t} u(c_{t}(s^{t}))}_{\text{PDV given}} \underbrace{\pi_{t}(s^{t})}_{\text{PDV given}} \underbrace{\pi_{t}(s^{t})$$

i.e. average discounted utilities: $\beta^t u(c_t(s^t))$ across histories s^t at t, using probabilities $\pi_t(s^t)$ as weights.

- Generalize the notion of the risk-free bond maturing at time t to be: History-Date Contingent Claim on Consumption
- Claim on consumption:

$$\underbrace{c_t}_{\text{time }t} \underbrace{(s^t)}_{\text{history }s^t} \tag{27}$$

for every t every s^t (Huge number of assets)

3 Complete Markets (all assets exist)

3.1 Basic setup

- At time 0, the consumer can <u>buy</u> or <u>sell</u> $c_t(s^t)$ at price $q_t^0(s^t)$, which is the claim to 1 unit of consumption at t given history s^t and there is no return in other states.
 - We could have assets which pay in several states, but they would be spanned by this simple set of assets.
- Consumer faces $\{q_t^0(s^t)\}$ as a price taker.

3.2 Consumer Problem

• Consumers solve:

$$\max_{\{c_t(s^t)\}} \sum_{t=0}^{\infty} \sum_{s^t} \beta^t u(c_t(s^t)) \pi_t(s^t)$$
(28)

s.t.
$$\sum_{t=0}^{\infty} \underbrace{q_t^0(s^t)}_{\text{price}} \underbrace{c_t(s^t)}_{\text{quantity}} \le \underbrace{w_0}_{\text{time 0 wealth}}$$
 (29)

• One budget constraint in a Lagrangian:

$$\mathcal{L} = \sum_{t=0}^{\infty} \sum_{s^t} \beta^t u(c_t(s^t)) \pi_t(s^t) + \lambda \left(w_0 - \sum_{t=0}^{\infty} \sum_{s^t} q_t^0 c_t(s^t) \right)$$
 (30)

where λ is Lagrangian Multiplier, will be the "marginal utility of wealth".

• Take the FONC into $c_t(s^t)$

 $\beta^t u'(c_t(s^t))\pi_t(s^t) = \lambda \underbrace{q_t^0(s^t)}_{\text{given as price taker}}$, where λ is to be determined from budget constraint

(31)

$$\sum_{t=0}^{\infty} \sum_{s^t} \beta^t q_t^0(s^t) c_t(s^t) = w_0 \tag{32}$$

3.3 Example with constant aggregate endowments

- Guess that $q_t^0(s^t) = \beta^t \pi_t(s^t)$
- Then by (31):

$$\beta^t u'(c_t(s^t)) \pi_t(s^t) = \lambda \beta^t \pi_t(s^t) \tag{33}$$

$$\Rightarrow \lambda = u'(c_t(s^t)) \tag{34}$$

$$\Rightarrow q_0^0 = 1 \tag{35}$$

So if $c_t(s^t) = \bar{c}$, constant $\forall t, \forall s^t$

• And from (32):

$$\sum_{t=0}^{\infty} \sum_{s^t} \beta^t \pi_t(s^t) \bar{c} = w_0 \tag{36}$$

$$= \bar{c} \sum_{t=0}^{\infty} \beta^t \underbrace{\left[\sum_{s^t} \pi_t(s^t)\right]}_{\text{must sum to 1}}$$

$$\underbrace{\sum_{since a \text{ probability}}^{\infty} \pi_t(s^t)}_{\text{since a probability}}$$
(37)

$$= \bar{c} \sum_{t=0}^{\infty} \beta^t \tag{38}$$

$$\Rightarrow \left[\bar{c} = w_0 (1 - \beta) \right] \tag{39}$$

which means complete consumption smoothing across time and across history.

• What is price of 1 unit of consumption with certainty at time t?

$$\sum_{s^t} q_t^0(s^t) \equiv \bar{q}_t^0 \tag{40}$$

$$= \sum_{s^t} \beta^t \pi_t(s^t) = \beta^t = \bar{q}_t^0 \tag{41}$$

We can compare this to the risk-free interest rate with constant endowment.

4 Lucas 1978 Model

4.1 Basic setup

• Pure endowment representative agent economy:

$$c_t(s^t) = y_t(s^t)$$
, which is exogenous stochastic (42)

i.e. In equilibrium, the representative consumer will consume the entire endowment as a price taker with $q_t^0(s^t)$ prices. (42) is the <u>feasible</u> condition.

• Substitute (42) into FONC (32):

$$\beta^t u'(y_t(s^t)) \pi_t(s^t) = \lambda q_t^0(s^t) \tag{43}$$

$$q_t^0(s^t) = \frac{1}{\lambda} \beta^t u'(y_t(s^t)) \pi_t(s^t)$$
(44)

So if (44), then FONC hold.

• Budget constraint:

$$\sum_{t=0}^{\infty} \sum_{s^t} q_t^0(s^t) c_t(s^t) \le \sum_{t=0}^{\infty} \sum_{s^t} q_t^0(s^t) y_t(s^t)$$
(45)

this holds immediately for any λ (i.e. price taker)

4.2 Competitive Equilibrium in Lucas 1978

- Given identical agents with exogenous stochastic endowment $y_t(s^t)$ and complete markets.
- A <u>feasible</u> allocation $\{c_t(s^t)\}$:

$$c_t(s^t) \le y_t(s^t), \forall t, s^t \tag{46}$$

and a <u>price system</u> $\{q_t^0(s^t)\}$ is a competitive equilibrium if given $\{q_t^0(s^t)\}$, $\{c_t^0(s^t)\}$ solves the consumer's problem.

4.3 Example

• Two consumers (i = 1, 2) with identical preferences:

$$\sum_{t=0}^{\infty} \sum_{s^t} \beta^t u(c_t^i(s^t)) \pi_t(s^t) \tag{47}$$

Note: no i on β^t , u and $\pi_t(s^t)$. Same probabilities for all consumers.

- $\underline{\text{State}}: S = \{0, 1\}$
- Endowments:

$$y_t^1(s_t) = s_t \text{ and } y_t^2(s_t) = 1 - s_t$$
 (48)

$$y_t^1(s_t) + y_t^2(s_t) = 1, \forall t, s^t \text{ (i.e. No aggregate risk)}$$
 (49)

- Feasible allocation $\{c_t^i(s^t)\}$:

$$c_t^1(s^t) + c_t^2(s^t) \le y_t^1(s^t) + y_t^2(s^t), \forall t, s^t$$
(50)

- Price system $\{q_t^0(s^t)\}$ is same for all i.
- A <u>competitive equilibrium</u> is a <u>price system</u> and <u>feasible allocation</u> such that given the price system, the allocations solve each households problem for each *i*:

$$\max_{\{c_t^i(s^t)\}} \sum_{t=0}^{\infty} \sum_{s^t} \beta^t u(c_t^i(s^t)) \pi_t(s^t)$$
(51)

s.t.
$$\sum_{t=0}^{\infty} \sum_{s=0}^{\infty} s^t q_t^0(s^t) \left(c_t^i(s^t) - y_t^i(s^t) \right)$$
 (52)

- <u>How to solve?</u>
 - Difficult in general. Here, guess and verify:

$$q_t^0(s^t) = \beta^t \pi_t(s^t)$$
 (i.e. Same guess as a representative agent) (53)

- At guess, FONC for i:

$$\beta^t u'(c_t^i(s^t)) \pi_t(s^t) = \lambda_i \beta^t \pi_t(s^t) \tag{54}$$

$$\Rightarrow u'(c_t^i(s^t)) = \lambda_i, \forall i = 1, 2 \tag{55}$$

$$\Rightarrow c_t^i(s^t) = c^i \text{ (Perfect smoothing. LM is } i \text{ independent)}$$
 (56)

- Feasibility:

$$c^1 + c^2 = 1 (57)$$

- From budget constraint:

$$c^{i} \sum_{t=0}^{\infty} \beta^{t} \sum_{s^{t}} \pi_{t}(s^{t}) = \sum_{t=0}^{\infty} \sum_{s^{t}} \beta^{t} y_{t}^{i}(s^{t}) \pi_{t}(s^{t}) \equiv w_{0}^{i}$$
(58)

$$\Rightarrow c^i = (1 - \beta)w_0^i \tag{59}$$

- Note:

$$w_0^1 + w_0^2 = \sum_{t=0}^{\infty} \beta^t \sum_{s^t} \pi(s^t) \underbrace{\left[y_t^1(s^t) + y_t^2(s^t) \right]}_{I}$$
(60)

$$=\sum_{t=0}^{\infty} \beta^t = \frac{1}{1-\beta} \tag{61}$$

This is as far as we can get without specifying a particular $\pi_t(s^t)$ process.

5 Complete vs Incomplete Market

5.1 Compete market

- Assume there exist assets for every possible history, i.e. $q_t(s^t)$, this is <u>complete markets</u>
- Consumer:

$$\max_{\{c_t(s^t)\}} \sum_{t=0}^{\infty} \sum_{s^t} \beta^t u(c_t(s^t)) \cdot \pi_t(s^t)$$
(62)

s.t.
$$\sum_{t=0}^{\infty} \sum_{s^t} q_t^0(s^t) \left[c_t(s^t) - y_t(s^t) \right] = 0$$
 (63)

where y_t is endowment in history s^t

• FONC:

$$\beta^t u'(c_t(s^t)) \pi_t(s^t) = \lambda q_t^0(s^t) \tag{64}$$

Divide for histories at t, t + 1:

$$\frac{q_{t+1}^0(s^{t+1})}{q_t^0(s^t)} = \beta \frac{u'(c_{t+1}(s^{t+1}))}{u'(c_t(s^t))} \cdot \frac{\pi_{t+1}(s^{t+1})}{\pi_t(s^t)}$$
(65)

Note: $\frac{\pi_{t+1}(s^{t+1})}{\pi_t(s^t)} \equiv \pi_{t+1}(s^{t+1} \mid s^t)$, which is the <u>conditional probability</u> of s^{t+1} given s^t .

• Note:

- Conditional probabilities are very easy to calculate here if markov, since it will only depend on <u>last</u> state. i.e. $\pi_{t+1}(s^{t+1} \mid s^t) = \pi(s_{t+1} \mid s_t)$, with markov chain $[\pi_{ij}] = p$, there are just transition probabilities p_{ij}
- For example: $S = \{A, B\}, P = \begin{bmatrix} \pi_{AA} & \pi_{AB} \\ \pi_{BA} & \pi_{BB} \end{bmatrix}$, then:

$$\pi_{t+1}\left(\left\{s^{t+1} = s_2, s^t = s_1, \cdots\right\} \mid \left\{s^t = s_1, \cdots\right\}\right) = \pi_{s_1 s_2}$$
 (66)

- Define:

$$\frac{q_{t+1}^{0}(s^{t+1})}{q_{t}^{0}(s^{t})} \equiv q_{t+1}^{t} \left(s^{t+1} \mid s^{t} \right) \tag{67}$$

as the one-step ahead "pricing kernel". i.e. price at time t of t+1 consumption in state s^{t+1} given state s^t happened. So write pricing equation as:

$$q_{t+1}^{t}\left(s^{t+1} \mid s^{t}\right) \equiv \beta \frac{u'(c_{t+1}(s^{t+1}))}{u'(c_{t}(s^{t}))} \pi_{t+1}\left(s^{t+1} \mid s^{t}\right)$$
(68)

- Price, in history s^t , of a unit of consumption at time t+1 with certainty?
- Buy assets for every possible state

$$\underbrace{\sum_{s^{t+1}\mid s^t} q_{t+1}^t \left(s^{t+1}\mid s^t\right)}_{\text{price at node } s^t \text{ of a risk-free } \text{claim to consumption}}_{\text{of node } s^t \text{ of node } s^t} \equiv \underbrace{\left(R_t(s^t)\right)^{-1}}_{\text{reciprocal of gross one period interest rate of node } s^t} \tag{69}$$

With (68):

$$1 = \beta R_t(s^t) \sum_{s^{t+1}|s^t} \frac{u'(c_{t+1}(s^{t+1}))}{u'(c_t(s^t))} \cdot \pi_t(s^{t+1} \mid s^t)$$
(70)

A little looser notation:

$$1 = \beta R_t \mathbb{E}_t \left[\frac{u'(c_{t+1})}{u'(c_t)} \right] \tag{71}$$

Compare to permanent income hypthothesis with exogenous R. Shows $\beta R = 1$ is the natural solution if the consumer is able to achieve perfect income smoothing.

- Calculating risk free interest rates from the data:
 - Assume representative consumer with aggregate $y_t(s^t)$
 - Determine probabilities for process you believe $y_t(s^t)$ takes, then:

$$\frac{1}{R_t} = \beta \mathbb{E}_t \left[\frac{u'(y_{t+1})}{u'(y_t)} \right] \tag{72}$$

using the process, for y_{t+1} from y_t for expectations.

- Note that for risk neutral consumers:

$$u(c) = c \cdot A \Rightarrow u'(c) = A \tag{73}$$

$$\Rightarrow R\beta = 1$$
, for any stochastic process (74)

• Note that the complete markets pricing kernel have all the above but not vice versa. The above only holds "on average".

5.2 Incomplete Markets

- Motivation:
 - What if not all of the markets exist for all s^t ? Then cannot smooth completely at time 0
 - Extreme version, can only buy a 1-period risk free bond paying interest rate $R_t(s^t)$, holdings $A_t(s^{t-1})$

• For consumer, given assets
$$\underbrace{A_t}_{\text{Asset today}}$$
 · $\underbrace{(s^{t-1})}_{\text{previous history } s^{t-1}}$

$$\max_{\{c_t(s^t), A_{t+1}(s^t)\}} \sum_{t=0}^{\infty} \beta^t \sum_{s^t} u(c_t(s^t)) \pi_t(s^t)$$
(75)

s.t.
$$\underbrace{A_{t+1}(s^t)}_{\text{bond holdings}} = \underbrace{R_t(s^t)}_{\text{interest paid on holding}} \underbrace{y_t(s^t) - c_t(s^t)}_{\text{saving}} + \underbrace{A_t(\underbrace{s^{t-1}}_{\text{previous assets}})}_{\text{previous assets}}$$
 (76)

Note: instead of 1 budget constraint, we have $\lambda_t(s^t)$ possible multipliers.

• Lagrangian:

$$\mathcal{L} = \sum_{t=0}^{\infty} \sum_{s^t} \beta^t u(c_t(s^t)) \pi_t(s^t)$$
(77)

$$+\sum_{t=0}^{\infty} \sum_{s^t} \lambda_t(s^t) \left[A_t(s^{t-1}) + y_t(s^t) - c_t(s^t) - R_t^{-1}(s^t) A_{t+1}(s^t) \right]$$
 (78)

• FONC:

$$[C_t(s^t)]: \beta^t u'(c_t(s^t)) \pi_t(s^t) = \lambda_t(s^t)$$

$$(79)$$

$$[A_{t+1}(s^t)] : -\lambda_t(s^t)R_t^{-1}(s^t) + \sum_{\substack{s^{t+1}|s^t \text{any might show up}}} \lambda_{t+1}(s^{t+1})$$

$$(80)$$

Figure 4: Example Path Conditioned on History s^t

• Substitute (80) to (79)

$$R_t^{-1}(s^t)\beta^t u'\left(c_t(s^t)\right)\pi_t(s^t) = \beta^{t+1} \sum_{s^{t+1}|s^t} u'\left(c_{t+1}(s^{t+1})\right)\pi_{t+1}(s^{t+1})$$
(81)

$$\Rightarrow 1 = \beta R_t(s^t) \sum_{s^{t+1} \mid s^t} \frac{u'(c_{t+1}(s^{t+1}))}{u'(c_t(s^t))} \cdot \pi_{t+1}(s^{t+1} \mid s^t)$$
(82)

$$\Rightarrow 1 = \beta \mathbb{E}_t \left[R_t \frac{u'(c_{t+1})}{u'(c_t)} \right], \text{ same as the risk free calculated under complete market}$$
(83)

5.3 Punchlines:

• Under complete markets, intertemporal marginal rates of substitution:

$$\beta \frac{u'(c_{t+1}(s^{t+1}))}{u'((s^t))} \pi_t(s^{t+1} \mid s^t) \tag{84}$$

are <u>equated</u> for all consumers able to trade at relative prices $q_{t+1}^t\left(s^{t+1}\mid s^t\right)$

• Under incomplete markets with only a risk-free security with gross returns $R_t(s^t)$, only the average intertemporal rates of substitutes.

$$\beta \sum_{s^{t+1} \mid s^t} \frac{u'(c_{t+1}(s^{t+1}))}{u'(c_t(s^t))} \pi_t(s^{t+1} \mid s_1^t)$$
(85)

are equated across consumers

- Permanent Income Hypothesis in Incomplete markets
 - Stochastic $y_t(s^t)$ with incomplete markets:

$$\underbrace{\frac{1}{R_t}}_{\text{interest rate}} = \beta \mathbb{E}_t \left[\underbrace{\frac{u'(y_{t+1}(s^{t+1}))}{u'(y_t(s^t))}}_{\text{can use aggregate endowment}} \right]$$
(86)

 If markets were complete, consumers would eat a constant share of aggregate output.