Lattice HQET Calculation of the Isgur-Wise Function

Joseph Christensen*, Terrence Draper and Craig McNeile^{† a ‡}

^aDepartment of Physics and Astronomy, University of Kentucky, Lexington, KY 40506

We calculate the Isgur-Wise function on the lattice, simulating the light quark with the Wilson action and the heavy quark with a direct lattice implementation of the heavy-quark effective theory. Improved smearing functions produced by a variational technique, MOST, are used to reduce the statistical errors and to minimize excited-state contamination of the ground-state signal. Calculating the required matching factors, we obtain $\xi'(1) = -0.64(13)$ for the slope of the Isgur-Wise function in continuum-HQET in the $\overline{\rm MS}$ scheme at a scale of 4.0 GeV.

1. The Tadpole-Improved Simulation

The Isgur-Wise function is the form factor of a heavy-light meson in which the heavy quark is taken to be much heavier than the energy scale, $m_Q \gg \Lambda_{\rm QCD}$. This calculation adds perturbative corrections to the simulation results of Draper & McNeile [1]. The Isgur-Wise function is calculated using the action first suggested by Mandula & Ogilvie [2]:

$$iS = \sum_{x} \left\{ v_0 \left[\psi^{\dagger}(x) \psi(x) - \psi^{\dagger}(x) \frac{U_t(x)}{u_0} \psi(x + \hat{t}) \right] \right.$$

$$\left. + \sum_{j=1}^{3} \frac{-iv_j}{2} \left[\psi^{\dagger}(x) \frac{U_j(x)}{u_0} \psi(x + \hat{j}) \right. \right.$$

$$\left. - \psi^{\dagger}(x) \frac{U_j^{\dagger}(x - \hat{j})}{u_0} \psi(x - \hat{j}) \right] \right\}$$

This leads to the evolution equation:

$$\begin{split} G(x+\hat{t}) &= \frac{U_t^\dagger(x)}{u_0} \left\{ G(x) \right. \\ &\left. - \sum_{j=1}^3 \frac{i \tilde{v}_j}{2} \left[\frac{U_j(x)}{u_0} G(x+\hat{j}) - \frac{U_j^\dagger(x-\hat{j})}{u_0} G(x-\hat{j}) \right] \right\} \end{split}$$

where $\tilde{v}_j = \frac{v_j}{v_0}$ and $G(\vec{x}, t = 0) = \frac{1}{v_0} f(\vec{x})$. Better results can be obtained when a smeared source is used in place of a point source. The smearing function, $f(\vec{x})$, was calculated from a static simulation $(v_j = 0)$ via the smearing technique MOST (Maximal Operator Smearing Technique [3]).

2. The Isgur-Wise Function

The Isgur-Wise function was extracted from the lattice simulation as a ratio of three-point functions which was suggested by Mandula & Ogilvie [2]. $\left|\xi_{\rm unren}^{\rm lat}(v\cdot v')\right|^2$ is the large Δt limit of

$$\frac{4v_0v_0'}{(v_0+v_0')^2} \frac{C_3^{vv'}(\Delta t)C_3^{v'v}(\Delta t)}{C_3^{vv}(\Delta t)C_3^{v'v'}(\Delta t)}$$

where Δt is the time separation between the current operator and each *B*-meson interpolating field.

Draper & McNeile have presented [1] the non-tadpole-improved unrenormalized slope of the lattice Isgur-Wise function to demonstrate the efficacy of the computational techniques.

3. Tadpole Improvement for HQET

Tadpole improvement grew from the observation that lattice links, U, have mean field value, $u_0 \neq 1$. Therefore, it is better to use an action written as a function of $\binom{U}{u_0}$. In the Wilson action, each link has a coefficient κ ; u_0 can be paired with κ to easily tadpole improve a posteriori any previous non-tadpole-improved calculation.

^{*}Presented by J. Christensen at Lattice '97, Edinburgh, Scotland.

 $^{^\}dagger \text{Currently}$ at Department of Physics, University of Utah, Salt Lake City, UT 84112.

[‡]This work is supported in part by the U.S. Department of Energy under grant numbers DE-FG05-84ER40154 and DE-FC02-91ER75661, and by the University of Kentucky Center for Computational Sciences. The computations were carried out at NERSC.

In the HQET, there is no common coefficient (analogous to κ) for both U_t and U_j . Correspondence between tadpole-improved and non-tadpole-improved HQET actions with $v^2=1$ cannot be made via a simple rescaling of parameters, as is done for the Wilson action with κ .

Fortunately, the evolution equation $\underline{\operatorname{can}}$ be written (as noticed by Mandula & Ogilvie [4]) such that the u_0 is grouped with \tilde{v}_j . Thus, tadpole-improved Monte-Carlo data can be constructed from the non-tadpole-improved data by replacing $v^{\operatorname{nt}} \to v^{\operatorname{tad}}$ and by including two overall multiplicative factors:

$$G^{\rm tad}(t; \tilde{v}^{\rm tad}, v_0^{\rm tad}) = u_0^{-t} \frac{v_0^{\rm nt}}{v_0^{\rm tad}} G^{\rm nt}(t; \tilde{v}^{\rm nt}, v_0^{\rm nt}) \quad (1)$$

In addition to the multiplicative factors u_0^{-t} and $v_0^{\text{nt}}/v_0^{\text{tad}}$, the tadpole-improvement of the simulation requires adjusting the velocity according to $\tilde{v}^{\text{tad}} = u_0 \tilde{v}^{\text{nt}}$, subject to $(v^{\text{tad}})^2 = 1$ and $(v^{\text{nt}})^2 = 1$. Thus,

$$\begin{array}{lll} v_0^{\rm tad} & = & v_0^{\rm nt}[1+(1-u_0^2)(v_j^{\rm nt})^2]^{-1/2} \\ v_j^{\rm tad} & = & u_0v_j^{\rm nt}[1+(1-u_0^2)(v_j^{\rm nt})^2]^{-1/2} \end{array}$$

4. Tadpole-Improved Renormalization

By comparing the unrenormalized propagator

$$\left[v_0^b \left(\frac{e^{ik_4}}{u_0} - 1\right) + \frac{v_z^b}{u_0} \sin(k_z) + M_0^b - \Sigma(k, v)\right]^{-1}$$

to the renormalized propagator

$$iH(k,v) = Z_Q \left[v_0^r(ik_4) + v_z^r(k_z) + M^r \right]^{-1}$$

at $O(k^2)$ and using $(v^r)^2 = (v^b)^2 = 1$, the perturbative renormalizations can be obtained. Aglietti [5] has done this for a different non-tadpole-improved action, for the special case $\vec{v} = v_z \hat{z}$.

With momentum shift, $p \rightarrow p' = \langle p_4 + i \ln(u_0), \vec{p} \rangle$ [6], with $\frac{1}{u_0} \exp(ik_4) = \exp(i(k_4 + i \ln(u_0)))$ and with $X_{\mu} \equiv \frac{\partial}{\partial p_{\mu}} \Sigma(p)|_{p=0}$, the tadpole-improved perturbative renormalizations are found to be

$$\delta M = -\Sigma(0) - v_0 \ln(u_0)$$

$$\delta Z_Q = Z_Q - 1 = -iv_0 X_4 - u_0 \sum_{j=1}^3 v_j X_j$$

$$\delta \frac{v_i}{u_0} = -iv_0 \frac{v_i}{u_0} X_4 - (1 + v_i^2) X_i - v_i \sum_{j \neq i} v_j X_j$$

$$\delta v_0 = -i \sum_{i=1}^3 v_j^2 X_4 - u_0 v_0 \sum_{i=1}^3 v_j X_j$$

 u_0 is the perturbative expansion and ⁴

$$\begin{split} v_j^{r,\mathrm{tad}} &= v_j^{b,\mathrm{tad}} Z_{v_j}^{\mathrm{tad}} \quad , \quad v_0^{r,\mathrm{tad}} &= v_0^{b,\mathrm{tad}} Z_{v_0}^{\mathrm{tad}} \\ Z_{v_j}^{\mathrm{tad}} &\equiv \frac{1}{u_0} \left(1 + \frac{\delta_{u_0}^{\underline{v_j}}}{\frac{v_j}{u_0}} \right) \quad , \quad Z_{v_0}^{\mathrm{tad}} &\equiv 1 + \frac{\delta v_0}{v_0} \end{split}$$

If one fits to $\exp\{-t\}$ rather than $\exp\{-(t+1)\}$, the tadpole-improved wave-function renormalization is reduced to $\delta Z_Q' = \delta Z_Q + (\delta M^{\rm tad} + v_0 \ln(u_0))/v_0$. Thus the $\ln(u_0)$ term cancels explicitly and, as in the static case [6], tadpole-improvement has no effect on $\delta Z_Q'$, to order α .

5. Perturbative Renormalizations

We will present our computations of the renormalization factors elsewhere, but include this comment: Although the tadpole-improved functions include factors of $u_0|_{\rm pt}$ [7], these effects are higher order in α and are dropped. Only the velocity renormalization is explicitly affected by the perturbative expansion of u_0 :

$$Z_{v_j}^{\text{tad}} = \left(1 + \frac{\delta_{u_0}^{v_j}}{\frac{v_j}{u_0}} - \frac{g^2 C_F}{16\pi^2} (-\pi^2)\right)$$

The perturbative renormalizations favor a scale of $q^*a = 1.9(1)$ for α , which yields $\alpha \approx 0.19(1)$.

6. Velocity Renormalization

Mandula & Ogilvie [4] consider the perturbative velocity renormalization expanded in orders of \tilde{v} . Our numbers for the velocity renormalization agree with theirs.

Another option is to consider, as did both Mandula & Ogilvie and Hashimoto & Matsufuru [8], the non-perturbative renormalization of the velocity. From Hashimoto's & Matsufuru's graph, we estimate their $Z_{v,\mathrm{np}}^{\mathrm{tad}} \approx 1.05(5)$. From Mandula & Ogilvie's result, we notice that $Z_{\bar{v},\mathrm{np}}^{\mathrm{nt}} =$

⁴Note:
$$(v^2 = 1) \Rightarrow \left(v_0 \delta v_0 = u_0^2 \sum_j \frac{v_j}{u_0} \delta \frac{v_j}{u_0}\right)$$
.

 $u_0 \times 1.01(1)$. This is very close to the effect of tadpole-improving, and implies $Z_{\tilde{v}}^{\rm tad} = 1.01(1)$. We therefore use $Z_v^{\rm tad} \approx 1$ as the non-perturba-

We therefore use $Z_v^{\rm tad} \approx 1$ as the non-perturbative velocity renormalization in our calculation to renormalize the slope of the Isgur-Wise function.

7. Renormalization of $\xi'(v \cdot v')$

We claim that we can convert our Monte-Carlo data into tadpole-improved results and can calculate a renormalized tadpole-improved slope for the Isgur-Wise function.

We use the notation $Z'_{\xi}=1+\delta Z'_{\xi}$ for the renormalization of the Isgur-Wise function, with $\delta Z'_{\xi}$:

$$\frac{g^2}{12\pi^2} \left[2 \left(1 - v \cdot v' r(v \cdot v') \right) \ln(\mu a)^2 - f'(v, v') \right]$$

with $r(v \cdot v')$ defined in [9] and primes on Z and f to indicate the "reduced value."

For simplicity, we use the local current, which is not conserved on the lattice; $Z'_{\xi}(1) \neq 1$. However, the construction in §2 guarantees that the extracted renormalized Isgur-Wise function is properly normalized, $\xi_{\rm ren}(1) = 1$.

8. Conclusions

After renormalization of our tadpole-improved results, we obtain $\xi'_{\rm ren}(1) = -0.64(13)$ for the slope of the Isgur-Wise function in continuum HQET in the $\overline{\rm MS}$ scheme at a scale of 4.0 GeV. Without renormalization, the slope is $\xi'_{\rm unren}(1) = -0.56(13)$. Without tadpole-improvement, the slope is $\xi'_{\rm unren}(1) = -0.43(10)$.

We found that the tadpole-improved action (and therefore the tadpole-improved data) cannot be obtained from the non-tadpole-improved action (or data) by a simple rescaling of any parameter. However, the form of the evolution equation allows the *construction* of the tadpole-improved Monte-Carlo data from the non-tadpole-improved data as described in §3. After tadpole improvement, non-perturbative corrections to the velocity are negligible. Furthermore, tadpole improvement greatly reduces the perturbative corrections to the slope of the Isgur-Wise function.

Unrenormalized Isgur-Wise Slope

Not Tadpole Improved						
Δt	0.154	0.155	0.156	κ_c		
2	0.38^{+1}_{-1}	0.38^{+1}_{-1}	0.38^{+1}_{-1}	0.39^{+1}_{-1}		
3	0.42^{+2}_{-2}	0.41^{+2}_{-2}	0.41^{+2}_{-2}	0.41^{+2}_{-2}		
4	0.50^{+8}_{-9}	0.48^{+8}_{-9}	$0.45^{+\bar{9}}_{-10}$	$0.43^{+\bar{1}0}_{-10}$		
		J	10	10		
	Ta	dpole Im	10	10		
Δt	Ta 0.154		10	κ_c		
$\frac{\Delta t}{2}$		dpole Im	proved	10		
	0.154	dpole Im 0.155	proved 0.156	κ_c		

Renormalized Isgur-Wise Slope

Tadpole Improved							
Δt	0.154	0.155	0.156	κ_c			
2	0.57^{+1}_{-1}	0.57^{+1}_{-1}	0.58^{+1}_{-1}	0.58^{+1}_{-1}			
3	0.62^{+3}_{-2}	0.62^{+3}_{-2}	0.61^{+3}_{-2}	0.61^{+3}_{-3}			
4	$0.72^{+\bar{1}2}_{-11}$	$0.71^{+\bar{1}1}_{-11}$	$0.67^{+\bar{1}3}_{-11}$	0.64^{+13}_{-13}			

Table 1

The negative of the slope at the normalization point, $\xi'(1)$, from both the unrenormalized and the renormalized ratio of three-point functions. This ratio gives the (un)-renormalized Isgur-Wise function $\xi(v \cdot v')$ at asymptotically-large times Δt .

REFERENCES

- T. Draper and C. McNeile, Nucl. Phys. B (Proc. Suppl.) 47, 429 (1996).
- J.E. Mandula and M.C. Ogilvie, Phys. Rev. D 45, R2183 (1992).
- T. Draper and C. McNeile, Nucl. Phys. B (Proc. Suppl.) 34, 453 (1994).
- J.E. Mandula and M.C. Ogilvie, hep-lat/9602004, hep-lat/9703020.
- 5. U. Aglietti, Nucl. Phys. **B421**, 191 (1994).
- C. Bernard, Nucl. Phys. B (Proc. Suppl.) 34, 47 (1994).
- G. P. Lepage and P. B. Mackenzie, Phys. Rev. D 48, 2250 (1993).
- S. Hashimoto and H. Matsufuru, Phys. Rev. D 54, 4578 (1996).
- A. F. Falk, H. Georgi, B. Grinstein, and M. B. Wise, Nucl. Phys. **B343**, 1 (1990).