DAA PRESENTATION

KNAPSACK PROBLEM

Shreyash, Sonali, Kimaya, Sneha, Sanjali

WHAT WILL BE COVERED?

- 1. What is Dynamic Programming
- 2. Knapsack Problem
- 3. Approaches to Knapsack problem
- 4.0/1 Knapsack Problem
- 5. Example 1
- 6. Example 2
- 7. Conclusion ---> Comparison

CONCEPT OF DYNAMIC PROGRAMMING

- Dynamic programming to solve optimisation problems
- Two main properties of a problem suggest that the given problem can be solved using Dynamic Programming.
- These properties are overlapping sub-problems and optimal substructure.
- Dynamic Programming algorithm solves each subproblem just once and then saves its answer in a table, thereby avoiding the work of re-computing the answer every time

KNAPSACK PROBLEM

- The knapsack problem is an optimization problem used to illustrate both problem and solution.
- It derives its name from a scenario where one is constrained in the number of items that can be placed inside a fixed-size knapsack.
- Given a set of items with specific weights and values, the aim is to get as much value into the knapsack as possible given the weight constraint of the knapsack.
- The problem can be tackled using various approaches: brute force, top-down with memoization and bottom-up are all potentially viable approaches to take.
- The latter two approaches (top-down with memoization and bottom-up) make use of Dynamic Programming

APPROACHES TO KNAPSACK PROBLEM

There are two ways to approach Knapsack problem:

- 1. Dynamic Approach(0/1 Knapsack): In this case, items are not divisible, i.e., you either take an item or not.
- 2. Greedy Approach (Fractional Knapsack): In this case, you can take any fraction of an item.

0/1 KNAPSACK PROBLEM

- 1. Given a knapsack with maximum capacity W, and a set S consisting of n items
- 2. Each item i has some weight wi and benefit value bi (all wi, bi and W are integer values)

Problem: How to pack the knapsack to achieve maximum total value of packed items?

0-1 Knapsack problem: a picture

	Items	Weight $\mathbf{w_i}$	Benefit value b_i
		2	3
This is a knapsack		3	4
Max weight: $W = 20$		4	5
W = 20		5	8
		9	10

- ♦ Problem, in other words, is to find $\max \sum_{i \in T} b_i$ subject to $\sum_{i \in T} w_i \le W$
- ◆ The problem is called a "0-1" problem, because each item must be entirely accepted or rejected.
- ◆ In the "Fractional Knapsack Problem," we can take fractions of items.

COMPARISON BETWEEN THE APPROACHES OF KNAPSACK PROBLEM

- 1.In the dynamic approach, you can either take the object or not. Whereas in greedy approach, you can take fraction of every object.
- 2. In dynamic approach, in each progression we always choose an object which is optimal and in greedy approach we calculate the ration value/weight of each item and sort them in descending order to choose the items.
- 3. The dynamic approach is slower than the greedy approach.

SOLVED EXAMPLE 1

Recursive Formula

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

- lacktriangle The best subset of S_k that has the total weight w, either contains item k or not.
- ◆ First case: w_k>w. Item k can't be part of the solution, since if it was, the total weight would be > w, which is unacceptable.
- ♦ Second case: $w_k \le w$. Then the item k can be in the solution, and we choose the case with greater value.

7

Example

Let's run our algorithm on the following data:

n = 4 (# of elements) W = 5 (max weight) Elements (weight, benefit): (2,3), (3,4), (4,5), (5,6)

\W	0	1	2	3	4	5
)	0	0	0	0	0	0
676		23			2	
33.	÷	<u> </u>		S :	3.0	
-	13	38		8: 1		
	(3	3		8 0		

for
$$w = 0$$
 to W

$$B[0,w] = 0$$

i\W	0	1	2	3	4	5
)	0	0	0	0	0	0
	0	1 30		80	6) 8	
2	0			a		
3	0			40		25 65
1	0	20		96		

for
$$i = 1$$
 to n
B[i,0] = 0

Example (4)

3: (4,5) i\W i=14: (5,6) 0 0 . 0 $b_i=3$ 0 $w_i=2$ 0 w=10 $W-W_{i} = -1$

if w, <= w // item i can be part of the solution if $b_i + B[i-1,w-w_i] > B[i-1,w]$ $B[i,w] = b_i + B[i-1,w-w_i]$ B[i,w] = B[i-1,w]else B[i,w] = B[i-1,w] $// w_i > w$

Example (5)

Items:

1: (2,3)

2: (3,4)

3: (4,5) i\W i=10 $b_i=3$ 0 0 $w_i = 2$ 0 w=23 0 $W-W_i = 0$ 0 if w, <= w // item i can be part of the solution

 $if b_i + B[i-1,w-w_i] > B[i-1,w]$ $B[i,w] = b_i + B[i-1,w-w_i]$ B[i,w] = B[i-1,w]else $B[i,w] = B[i-1,w] // w_i > w$

Items:

1: (2,3) 2: (3,4)

4:(5,6)

Example (6)

3

0

0

i\W 0 0 0 0 3

i=1 $b_i=3$ $w_i=2$ W=3 $W-W_i = 1$

if w; <= w // item i can be part of the solution if $b_i + B[i-1,w-w_i] > B[i-1,w]$ $B[i,w] = b_i + B[i-1,w-w_i]$ else B[i,w] = B[i-1,w]else $B[i,w] = B[i-1,w] // w_i > w$

Items:

1: (2,3)

2:(3,4)

3: (4,5)

4:(5,6)

Example (7)

i\W

0

0

0

0

0

0

0

0

3

1:(2,3)

i=10 $b_i=3$ $w_i=2$ W=4

 $W-W_i = 2$

if w, <= w // item i can be part of the solution if b, +B[i-1,w-w,] > B[i-1,w] $B[i,w] = b_i + B[i-1,w-w_i]$ else B[i,w] = B[i-1,w]else $B[i,w] = B[i-1,w] // w_i > w$

3

Items:

2:(3,4)

3:(4,5)

4:(5,6)

Example (8) 2: (3,4) i=14: (5,6)

i\W 0 0 0 $b_i=3$ 0 0 3 $w_i=2$ 2 0 w=53 0 $W-W_i = 3$ 0

if $w_i \le w //$ item i can be part of the solution if $b_i + B[i-1,w-w_i] > B[i-1,w]$ $B[i,w] = b_i + B[i-1,w-w_i]$ else B[i,w] = B[i-1,w]else $B[i,w] = B[i-1,w] // w_i > w$

Items:

1: (2,3)

3:(4,5)

if w, <= w // item i can be part of the solution $if b_i + B[i-1,w-w_i] > B[i-1,w]$

 $B[i,w] = b_i + B[i-1,w-w_i]$

0

3

0

3

B[i,w] = B[i-1,w]

Example (10)

i\W 0 0 0 0 0 0 3 3 3 0 0 0 0 0

Items: 1: (2,3)

2: (3,4)

3: (4,5)

i=24: (5,6)

 $b_i=4$

 $W_i = 3$ w=2

 $W-W_i = -1$

if w, <= w // item i can be part of the solution if $b_i + B[i-1, w-w_i] > B[i-1, w]$ $B[i,w] = b_i + B[i-1,w-w_i]$ else B[i,w] = B[i-1,w]else $B[i,w] = B[i-1,w] // w_i > w$

Example (11)

i\W i=20 0 0 0 0 0 0 $b_i=4$ 0 3 3 3 3 $W_i=3$ 2 0 3 0 W=33 0 0

if $w_i \le w /\!\!/$ item i can be part of the solution if $b_i + B[i-1, w-w_i] > B[i-1, w]$ $B[i,w] = b_i + B[i-1,w-w_i]$ else B[i,w] = B[i-1,w]else $B[i,w] = B[i-1,w] // w_i > w$

Items:

1:(2,3)

2: (3,4) 3: (4,5)

4: (5,6)

 $W-W_i = 0$

Example (12)

Example (9)

i\W

0

0

0

0

0

0

3

if w; <= w // item i can be part of the solution if $b_i + B[i-1,w-w_i] > B[i-1,w]$

$$B[i,w] = b_i + B[i-1,w-w_i]$$
else

B[i,w] = B[i-1,w]else $B[i,w] = B[i-1,w] // w_i > w$ Items:

1:(2,3)2: (3,4)

3: (4,5)

i=24: (5,6)

 $b_i=4$

 $W_i = 3$ w=1

 $W-W_{i} = -2$

0

3

0

else

0

▼0

else $B[i,w] = B[i-1,w] // w_i > w$

Items:

1:(2,3)2:(3,4)

3: (4,5)

i=24: (5,6)

 $b_i=4$

 $W_i=3$

W=4

 $w-w_i = 1$

Example (13)

1: (2,3)

2:(3,4)

i\W 0 0 0 3 0 0 2 0 0 0

i=24:(5,6)

 $b_i=4$ $W_i = 3$ W=5

 $W-W_i = 2$

if w_i <= w // item i can be part of the solution $if b_i + B[i-1,w-w_i] > B[i-1,w]$ $B[i,w] = b_i + B[i-1,w-w_i]$ else

B[i,w] = B[i-1,w]else $B[i,w] = B[i-1,w] // w_i > w$

Items:

3:(4,5)

Example (14)

w = 1..3

if w_i <= w // item i can be part of the solution

if $b_i + B[i-1,w-w_i] > B[i-1,w]$ $B[i,w] = b_i + B[i-1,w-w_i]$

B[i,w] = B[i-1,w]else $B[i,w] = B[i-1,w] // w_i > w$

Items:

1:(2,3)

2: (3,4) 3:(4,5)

i=34:(5,6)

 $b_i=5$

 $W_i = 4$

Example (15)

0

0

0

0

i\W

0

3

3: (4,5) i=34: (5,6) 0 $b_i = 5$ 3 $w_i=4$ w=4

 $W-W_i=0$

Items:

1: (2,3)

2: (3,4)

if w, <= w // item i can be part of the solution $if b_i + B[i-1,w-w_i] > B[i-1,w]$

0

3

0

3

4

 $B[i,w] = b_i + B[i-1,w-w_i]$

0

3

else

B[i,w] = B[i-1,w]else $B[i,w] = B[i-1,w] // w_i > w$

Example (16)

i\W	0	1	2	3	4	5
)	0	0	0	0	0	0
9 2	0	0	3	3	3	3
	0	0	3	4	4	7
	0	0	3	4	5	* 7
	0					774

1: (2,3) 2: (3,4) 3:(4,5)

i=34:(5,6)

 $W_i = 4$

w=5

if w, <= w // item i can be part of the solution if $b_i + B[i-1,w-w_i] > B[i-1,w]$ $B[i,w] = b_i + B[i-1,w-w_i]$ else B[i,w] = B[i-1,w]

else $B[i,w] = B[i-1,w] // w_i > w$

Items:

 $b_i=5$

 $w-w_i=1$

Example (17)

i\W	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	,4	5	7
4	0	▼ 0	† 3	* ₄	† 5	2

if w, <= w // item i can be part of the solution if $b_i + B[i-1,w-w_i] > B[i-1,w]$ $B[i,w] = b_i + B[i-1,w-w_i]$ else B[i,w] = B[i-1,w]else $B[i,w] = B[i-1,w] // w_i > w$

Items:

1: (2,3)

3: (4,5)

4: (5,6)

 $b_i = 6$ $W_i = 5$

i=4

w = 1..4

2: (3,4) **Example (18)**

i\W 0 5 0 0 0 0 0 3 0 0 3 3 4 0 3 0 4 3

if w, <= w // item i can be part of the solution if $b_i + B[i-1,w-w_i] > B[i-1,w]$ $B[i,w] = b_i + B[i-1,w-w_i]$ else B[i,w] = B[i-1,w]else $B[i,w] = B[i-1,w] // w_i > w$

Items: 1: (2,3 2: (3,4

3: (4,5

i=4 4: (5,6

 $b_i = 6$

 $W_i = 5$

w=5 $W-W_i=0$

Items: 1: (2,3) Finding the Items (3) 2: (3,4) 3: (4,5) i\W i=34: (5,6) 0 0 0 0 0 0 k=53 3 3 $b_i = 6$ 0 3 0 $w_i=4$ 3 0 0 B[i,k] = 70 0 3 5 B[i-1,k] = 70 3 0 i=n, k=W while i,k > 0if $B[i,k] \neq B[i-l,k]$ then mark the ith item as in the knapsack i = i - 1, k = k - w,else i = i-1

1:(2,3)Finding the Items (4) 2: (3,4) 3: (4,5) i\W i=24: (5,6) 0 0 0 0 0 k=5 $b_i=4$ 0 3 4 0 2 $w_i=3$ 3 0 B[i,k] = 73 0 0 B[i-l,k] = 33 5 0 0 $k - w_i = 2$ i=n, k=W while i,k > 0if $B[i,k] \neq B[i-1,k]$ then mark the ith item as in the knapsack

Finding the Items (5)


```
i=n, k=W

while i,k > 0

if B[i,k] \neq B[i-1,k] then

mark the i<sup>th</sup> item as in the knapsack

i = i-1, k = k-w_i

else

i = i-1
```

Finding the Items (6)

Items:

1: (2,3)

2:(3,4)

3: (4,5)

4: (5,6)

i=1

k=2

 $b_i=3$

 $W_i=2$

B[i,k] = 3

 $k - w_i = 0$

B[i-l,k]=0

i\W	0	1	2	3	4	5
0	0	0	0	0	0	0
\bigcirc	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4	0	0	3	4	5	7

```
i=n, k=W

while i,k > 0

if B[i,k] \neq B[i-l,k] then

mark the n^{\text{th}} item as in the knapsack

i = i-l, k = k-w_i

else

i = i-l
```

Items:

1: (2,3) 2: (3,4)

3: (4,5)

3. (4,3)

i=0 4: (5,6) k=0

The optimal knapsack should contact {1, 2}

Finding the Items (7)

else

 $i = i - l, k = k - w_i$

i = i - 1

i=n, k=W while i,k > 0 if $B[i,k] \neq B[i-l,k]$ then mark the n^{th} item as in the knapsack i = i-l, $k = k-w_i$ else i = i-l Items:

1: (2,3)

Items:

2: (3,4)

3: (4,5)

4: (5,6)

The optimal knapsack should contain {1, 2}

EXAMPLE 2

Given:

$$B[k, w] = \begin{cases} B[k-1, w] & \text{if } w_k > w \\ \max\{B[k-1, w], B[k-1, w-w_k] + b_k\} & \text{else} \end{cases}$$

Where:

B: Matrix

k: No. of itemsw: Total weight

wk: weight of kth item

bk: benefit value of kth item/given profit of kth item

		k , w	0	1	2	3	4	5	6	7	8
bk	Wk	0									
2	3	1									
3	4	2									
4	5	3									
1	6	4									

		k, M	0	1	2	3	4	5	6	7	8
bĸ	Wk	0	0	0	0	0	0	0	0	0	0
2	3	1	0								
3	4	2	0								
4	5	3	0								
1	6	4	0								

		k w.	0	1	2	3	4	5	6	7	8
bk	Wk	0	0	0	0	0	0	0	0	0	0
2	3	1	0	0	0						
3	4	2	0								
4	5	3	0								
1	6	4	0								

		k , w	0	1	2	3	4	5	6	7	8
bk	Wk	0	0	0	0	0	0	0	0	0	0
2	3	1	0	0	0	2					
3	4	2	0								
4	5	3	0								
1	6	4	0								

Since
$$w_k \le w$$
,
Formula: $B[k,w] = \max\{B[k-1, w], (B[k-1, w-w_k]+b_k)\}$
Here, $k=1,w=3, w_k=3, b_k=2$
 $B[1,3] = \max\{B[1-1, 3], (B[1-1, 3-3]+2)\}$
 $= \max\{B[0,3], (B[0,0]+2)\}$
 $= \max\{0, (0+2)\}$
 $= \max\{0,2\}$
 $= 2$

		k ↓ W	0	1	2	3	4	5	6	7	8
bk	Wk	0	0	0	0	0	0	0	0	0	0
2	3	1	0	0	0	2	2				
3	4	2	0								
4	5	3	0								
1	6	4	0								

```
Since w<sub>k</sub><=w,

Formula: B[k,w] = max{B[k-1, w], (B[k-1, w-w<sub>k</sub>]+b<sub>k</sub>)}

Here, k=1,w=4, w<sub>k</sub>=3, b<sub>k</sub>=2

B[1,4] = max{B[1-1, 4], (B[1-1, 4-3]+2)}
=max{B[0,4], (B[0,1] + 2)}
=max{0, (0+2)}
=max{0,2}
=2
```

		k , w	0	1	2	3	4	5	6	7	8
bk	Wk	0	0	0	0	0	0	0	0	0	0
2	3	1	0	0	0	2	2	2	2	2	2
3	4	2	0								
4	5	3	0								
1	6	4	0								

		k , w	0	1	2	3	4	5	6	7	8
bk	Wk	0	0	0	0	0	0	0	0	0	0
2	3	1	0	0	0	2	2	2	2	2	2
3	4	2	0	0							
4	5	3	0								
1	6	4	0								

Since wk>w,

Formula: B[k,w] = B[k-1, w]

Here, $k=2,w=1,w_k=4$

$$B[2,1] = B[2-1,1]$$

=B[1,1]
=0

		k , w	0	1	2	3	4	5	6	7	8
bk	Wk	0	0	0	0	0	0	0	0	0	0
2	3	1	0	0	0	2	2	2	2	2	2
3	4	2	0	0	0	2					
4	5	3	0								
1	6	4	0								

		k↓ w	0	1	2	3	4	5	6	7	8
bk	Wk	0	0	0	0	0	0	0	0	0	0
2	3	1	0	0	0	2	2	2	2	2	2
3	4	2	0	0	0	2	3				
4	5	3	0								
1	6	4	0								

Since
$$w_k \le w$$
,
Formula: $B[\underline{k}.\underline{w}] = \max\{B[k-1, w], (B[k-1, w-w_k]+b_k)\}$
Here, $k=2,w=4, w_k=4, b_k=3$
 $B[2,4] = \max\{B[2-1, 4], (B[2-1, 4-4]+3)\}$
 $= \max\{B[1,4], (B[1,0]+3)\}$
 $= \max\{2, (0+3)\}$
 $= \max\{2,3\}$
 $= 3$

		k ↓ W	0	1	2	3	4	5	6	7	8
bk	Wk	0	0	0	0	0	0	0	0	0	0
2	3	1	0	0	0	2	2	2	2	2	2
3	4	2	0	0	0	2	3	3	3	5	5
4	5	3	0								
1	6	4	0								

		k , W	0	1	2	3	4	5	6	7	8
bk	Wk	0	0	0	0	0	0	0	0	0	0
2	3	1	0	0	0	2	2	2	2	2	2
3	4	2	0	0	0	2	3	3	3	5	5
4	5	3	0	0	0	2	3				
1	6	4	0								

Since w_k<=w, Formula: B[k,w] = max{B[k-1, w], (B[k-1, w-w_k]+b_k)} Here, k=2,w=7, w_k=4, b_k=3 B[2,7] = max{B[2-1, 7], (B[2-1, 7-4]+3)} =max{B[1,7], (B[1,3] + 3)} =max{2, (2+3)} =max{2,5} =5

```
Since w<sub>k</sub>>w,

Formula: B[k,w] = B[k-1, w]

Here, k=3,w=1,w<sub>k</sub>=5

B[3,1] = B[3-1,1]

=B[2,1]
=0
```

		k , W	0	1	2	3	4	5	6	7	8
bĸ	Wk	0	0	0	0	0	0	0	0	0	0
2	3	1	0	0	0	2	2	2	2	2	2
3	4	2	0	0	0	2	3	3	3	5	5
4	5	3	0	0	0	2	3	4			
1	6	4	0								

Since wk<=w,
Formula: $B[k,w] = max\{B[k-1, w], (B[k-1, w-w_k]+b_k)\}$
Here, $k=3,w=5, w_k=5, b_k=4$
$B[3,5] = \max\{B[3-1, 5], (B[3-1, 5-5]+4)\}$ $= \max\{B[2,5], (B[2,0]+4)\}$ $= \max\{3, (0+4)\}$ $= \max\{3,4\}$ $= 4$

		k ↓ w	0	1	2	3	4	5	6	7	8
bk	Wk	0	0	0	0	0	0	0	0	0	0
2	3	1	0	0	0	2	2	2	2	2	2
3	4	2	0	0	0	2	3	3	3	5	5
4	5	3	0	0	0	2	3	4	4	5	6
1	6	4	0								

```
Since wk<=w,

Formula: B[k.w] = max{B[k-1, w], (B[k-1, w-wk]+bk)}

Here, k=3,w=6, wk=5, bk=4

B[3,6] = max{B[3-1, 6], (B[3-1, 6-5]+4)}
=max{B[2,6], (B[2,1] + 4)}
=max{3, (0+4)}
=max{3,4}
=4
```

		k , w	0	1	2	3	4	5	6	7	8
bĸ	Wk	0	0	0	0	0	0	0	0	0	0
2	3	1	0	0	0	2	2	2	2	2	2
3	4	2	0	0	0	2	3	3	3	5	5
4	5	3	0	0	0	2	3	4	4	5	6
1	6	4	0	0	0	2	3	4			

		k , w	0	1	2	3	4	5	6	7	8
bk	Wk	0	0	0	0	0	0	0	0	0	0
2	3	1	0	0	0	2	2	2	2	2	2
3	4	2	0	0	0	2	3	3	3	5	5
4	5	3	0	0	0	2	3	4	4	5	6
1	6	4	0	0	0	2	3	4	4		

```
Since wk<=w,

Formula: B[k,w] = max{B[k-1, w], (B[k-1, w-wk]+bk)}

Here, k=4,w=6, wk=6, bk=1

B[3,5] = max{B[4-1, 6], (B[4-1, 6-6]+1)}
=max{B[3,6], (B[3,0] + 1)}
=max{4, (0+1)}
=max{4,1}
=4
```

		k ↓ W	0	1	2	3	4	5	6	7	8
bk	Wk	0	0	0	0	0	0	0	0	0	0
2	3	1	0	0	0	2	2	2	2	2	2
3	4	2	0	0	0	2	3	3	3	5	5
4	5	3	0	0	0	2	3	4	4	5	6
1	6	4	0	0	0	2	3	4	4	5	6

		k , W	0	1	2	3	4	5	6	7	8
bk	Wk	0	0	0	0	0	0	0	0	0	0
2	3	1	0	0	0	2	2	2	2	2	2
3	4	2	0	0	0	2	3	3	3	5	5
4	5	3	0	0	0	2	3	4	4	5	6
1	6	4	0	0	0	2	3	4	4	5	6

		k W	0	1	2	3	4	5	6	7	8
bĸ	Wk	0	0	0	0	0	0	0	0	0	0
2	3	1	0	0	0	2	2	2	2	2	2
3	4	2	0	0	0	2	3	3	3	5	5
4	5	3	0	0	0	2	3	4	4	5	6
1	6	4	0	0	0	2	3	4	4	5	6

		k W	. 0	1	2	3	4	5	6	7	8	
Pk	Wk	0	0	0	0	0	0	0	0	0	0	
2	3	1	0	0	0	2	2	2	2	2	2	
3	4	2	0	0	0	2	3	3	3	5	5	←
4	5	3	0	0	0	2	3	4	4	5	6	
1	6	4	0	0	0	2	3	4	4	5	6	

Total maximum profit = 6Profit of 3^{rd} item = 4

Therefore, Remaining profit = 2

		k w	. 0	1	2	3	4	5	6	7	8	
Pk	Wk	0	0	0	0	0	0	0	0	0	0	
2	3	1	0	0	0	2	2	2	2	2	2	
3	4	2	0	0	0	2 🗸	3	3	3	5	5	•—
4	5	3	0	0	0	2	3	4	4	5	6	
1	6	4	0	0	0	2	3	4	4	5	6	

		k w	. 0	1	2	3	4	5	6	7	8	
Pk	Wk	0	0	0	0	0	0	0	0	0	0	
2	3	1	0	0	0	2	_ 2	2	2	2	2	
3	4	2	0	0	0	2	3	3	3	5	5	←
4	5	3	0	0	0	2	3	4	4	5	6	
1	6	4	0	0	0	2	3	4	4	5	6	

The maximum profit that we have got is: 6

The items that have been selected are: 1st and 3rd items i.e, items with the weight 3kg and 5kg

Weights = {3,4,5,6} Items selected = {1,0,1,0}