3.a. Consider the following density

$$f(x) = ce^{-x^2/18}$$
 for $x > 0$.

- (a) Find c.
- (b) Let X be a random variable with pdf f. Find $M_X(t)$ for $-\infty < t < \infty$.
- (c) Use $M_X(t)$ to compute Var(X). [1+2+2]
- 3.b. Let Y_1, \ldots, Y_n be random variables and b_1, \ldots, b_n be positive numbers. Prove that

$$\sum_{i=1}^{n} b_i \sqrt{Var(Y_i)} \le \sqrt{\sum_{i=1}^{n} b_i} \sqrt{\sum_{i=1}^{n} b_i Var(Y_i)}.$$
 [2]

3(a): Given,
$$f_{\chi}(\alpha) = Ce^{-\chi^2/18}$$
, $\chi 70$

$$\int_{0}^{\infty} f_{\chi}(\alpha) d\alpha = 1$$

$$\Rightarrow C \int_{0}^{\infty} e^{-\chi^2/18} d\alpha = 1$$

$$\Rightarrow C = \frac{1}{3} \sqrt{\frac{2}{\pi}} - \left[\frac{1}{1} \right]$$

3(b):
$$M_{X}(t) = \frac{1}{3}\sqrt{\frac{2}{x}}\int_{-\frac{1}{x}}^{\infty} e^{tx-\frac{2^{2}}{18}} dx$$

$$= \frac{1}{3}\sqrt{\frac{2}{x}}e^{\frac{1}{2}}\int_{-\frac{1}{x}}^{\infty} e^{-\frac{1}{2}(\frac{x^{2}}{9}-2\cdot\frac{x}{3}\cdot3t+9t^{2})} dx$$

$$= \frac{1}{3}\sqrt{\frac{2}{x}}e^{\frac{1}{2}}\int_{-\frac{1}{x}}^{\infty} e^{-\frac{1}{2}(\frac{x^{2}}{9}-2\cdot\frac{x}{3}\cdot3t+9t^{2})} dx$$

$$= \frac{1}{3}\sqrt{\frac{2}{x}}e^{\frac{1}{2}}\int_{-\frac{1}{x}}^{\infty} e^{-\frac{1}{2}(\frac{x^{2}}{9}-2\cdot\frac{x}{3}\cdot3t+9t^{2})} dx$$

$$= \sqrt{\frac{2}{x}}e^{\frac{1}{2}}\int_{-\frac{1}{x}}^{\infty} e^{-\frac{1}{2}(\frac{x^{2}}{9}-2\cdot\frac{x}{3}\cdot3t+9t^{2})} dx$$

$$= \sqrt{\frac{2}{x}}e^{\frac{1}{2}}\int_{-\frac{1}{x}}^{\infty} e^{-\frac{1}{2}(\frac{x^{2}}{9}-2\cdot\frac{x}{3}\cdot3t+9t^{2})} dx$$

$$= \sqrt{\frac{2}{x}}e^{\frac{1}{2}}\int_{-\frac{1}{x}}^{\infty} e^{-\frac{1}{2}(\frac{x^{2}}{9}-2\cdot\frac{x}{3}\cdot3t+9t^{2})} dx$$

$$= \sqrt{\frac{2}{x}}e^{\frac{1}{x}}\int_{-\frac{1}{x}}^{\infty} e^{-\frac{1}{x}}\int_{-\frac{1}{x}}^{\infty} e^{-\frac{1}{x}}\int_{-\frac{1}{x}}^{\infty} e^{-\frac{1}{x}}\int_{-\frac{1}{x}}^{\infty} e^{-\frac{1}{x}} dx$$

$$= 2e^{\frac{1}{x}}\int_{-\frac{1}{x}}^{\infty} e^{-\frac{1}{x}}\int_{-\frac{1}{x}}^{\infty} e^{-\frac{1}{x}}\int_{-\frac{1}{x}}^{\infty} e^{-\frac{1}{x}} dx$$

$$= 2e^{\frac{1}{x}}\int_{-\frac{1}{x}}^{\infty} e^{-\frac{1}{x}} dx$$

3(c):
$$\forall_{x}(t) = \log M_{x}(t) = \log_{2} 2 + \frac{9t^{2}}{2} + \log_{2} \frac{1}{2} + \log_{2}$$

Solution 3.6.

Let $X = Y_i$ w.p. pi for $1 \le i \le n$. $\sum_{i=1}^{n} p_i = 1$, $p_i \ne 0$, and $y_i \ne 0$.

Using Jennen's inequality with $f(x) = \sqrt{x}$, $E(\sqrt{x}) \le \sqrt{E(x)}$ $= \sum_{i=1}^{n} \sqrt{y_i} p_i \le \sqrt{\sum_{i=1}^{n} y_i} p_i$ $= \sum_{i=1}^{n} \sqrt{y_i} p_i \le \sqrt{\sum_{i=1}^{n} y_i} p_i$ $= \sum_{i=1}^{n} \sqrt{y_i} p_i \le \sqrt{\sum_{i=1}^{n} y_i} p_i$ $= \sum_{i=1}^{n} \sqrt{y_i} p_i \le \sqrt{\sum_{i=1}^{n} y_i} p_i$

152

Take $y_i = Var(Y_i)$ and $p_i = \frac{b_i}{\sum_{i=1}^{n} b_i}$ $\Rightarrow \sum_{i=1}^{n} b_i \sqrt{Var(Y_i)} \leq \sqrt{\sum_{i=1}^{n} b_i Var(Y_i)}$ $= \sum_{i=1}^{n} b_i$ $= \sum_{i=1}^{n} b_i$

=> = bi NVar(Yi) < NI bi NIBiVar(Yi) _ [Imark]