

~
ے'
-
=
to
=
\subseteq
=
:=
C)
=
_
C
\sim
Ų
=
9
Ω
_

	EG3IN.PRO	FUSEQIN.PRO	GLIOIN.PRO	ACRHYPO.PRO	ASPKAWA1.PRC	ASPACU1.PRO	HUMIN.PRO	11AG8IN.PRO	ERWCARIN.PRC	GLI0314.PRO	GLIO3HYP.PRO	HGRIS.PRO	RHMARIN.PRO	SLIVIN.PRO	PENNOT.PRO	PHANHYPO.PRC	F42HYPO.PRO	EMDESHYP.PRC	MYCINS.PRO	CHBRAS.PRO	,
	-	2	8	4	5	9	_	8	6	10		12	13	14	15	16	17	18	19	20	
20	46.1	42.3	44.7	29.2	49.0	47.1	61.5	18.3	22.1	49.5	33.0	61.5	15.4	15.4	50.0	31.0	35.7	46.0	81.5		20
19	88.9	88.9	85.2	22.2	81.5	85.2	74.1	22.2	37.0	85.2	44.4	70.4	33.3	22.2	74.1	33.3	25.9	44.4		18.5	19
18	36.0	34.0	33.0	33.7	40.0	47.0	41.0	20.0	20.0	37.0	50.0	42.0	14.0	15.0	40.6	41.4	56.0	変	41.7	48.5	18
17	36.9	34.5	34.5	28.6	36.9	41.7	28.6	14.3	16.7	34.5	45.2	28.6	10.7	14.3	35.7	44.0	Y	40.2	57.9	61.4	17
16	39.1	40.2	40.2	33.3	41.4	44.8	35.6	16.1	16.1	41.4	72.4	34.5	12.6	13.8	47.1	A878	54.4	51.8	35.7	62.8	16
15	50.0	55.2	50.0	28.1	59.4	8.69	49.0	14.6	20.8	55.2	41.7	47.9	11.5	13.5		44.0	58.5	48.9	13.0	48.4	15
14	14.7	13.5	12.6	16.9	12.7	15.7	14.4	66.3	21.2	14.6	16.0	14.4	21.2	TA SE	84.9	83.5	83.3	78.7	72.0	74.2	14
13	16.7	15.4	16.5	12.4	11.8	13.7	19.2	24.0	23.8	17.5	16.0	18.3		72.0	81.6	79.5	87.2	77.5	55.6	75.5	13
12	42.2	41.3	41.7	31.5	39.2	44.1	98.1	21.2	17.3	44.7	34.0	のでは	73.4	74.2	49.5	58.1	68.7	52.5	29.6	38.5	12
=	37.0	37.0	38.0	34.8	38.0	46.0	34.0	21.0	19.0	40.0	A. 17.	54.5	6.97	6.97	47.8	27.6	56.0	42.9	37.5	57.6	-
10	55.9	54.4	68.9	22.5	51.0	52.0	45.6	19.4	22.3	1000000	53.1	53.4	72.3	77.4	45.3	51.8	59.0	56.1	14.8	48.5	10
6	18.6	21.2	22.3	20.2	22.5	24.5	19.2	24.0		72.7	71.9	75.8	69.5	73.1	73.9	74.7	81.9	69.1	51.9	73.7	6
8	17.6	15.4	15.5	18.0	12.7	16.7	21.2	部等	68.3	72.0	70.3	71.0	67.0	33.7	7.97	74.7	80.8	75.3	68.0	71.0	8
7	43.1	43.3	41.7	31.5	40.2	46.1	10 (C. 1)	71.0	73.7	52.4	54.5	1.9	72.3	74.2	48.4	57.0	68.7	53.5	25.9	38.5	7
9	56.9	55.9	49.0	31.5	65.7		48.5	72.8	71.4	45.5	47.9	50.5	77.4	80.4	27.4	50.6	55.6	45.8	14.8	49.5	9
5	49.0	47.1	42.2	25.8	1.38.7	34.3	52.5	77.2	77.6	46.5	55.2	53.5	9.08	81.5	37.9	55.4	59.3	51.0	18.5	45.5	2
4	27.0	22.5	21.3	200	63.1	61.9	60.5	80.0	78.6	68.2	58.8	60.5	79.7	81.2	0.09	61.2	67.5	59.5	57.1	61.6	4
3	52.9	48.5		70.6	53.5	46.5	56.3	76.3	73.7	31.1	55.1	56.3	74.5	76.3	48.4	54.1	61.4	58.2	14.8	53.4	9
2			48.5	66.3	51.0	41.2	50.5	77.7	71.0	43.7	53.1	52.4	75.8	81.9	41.7	54.1	56.6	56.1	=	52.4	7
		43.1	42.6	66.7	44.6	36.6	54.5	75.0	73.5	45.6	55.2	55.4	73.1	80.4	46.3	54.2	55.6	51.0	=	50.5	-
	-	2	က	4	2	9	7	8	6	2	Ξ	12	13	14	15	16	17	18	19	20	

FIGURE 4

DNA Sequence of EGIII Without Introns

ATGAAGTTCCTTCAAGTCCTCCCTGCCCTCATACCGGCCGCCCTGGCCCAAACCAGCTGTGA
CCAGTGGGCAACCTTCACTGGCAACGGCTACACAGTCAGCAACAACCTTTGGGGAGCATCAG
CCGGCTCTGGATTTGGCTGCGTGACGGCGGTATCGCTCAGCGGCGGGGCCTCCTGGCACGCA
GACTGGCAGTGGTCCGGCGGCCAGAACAACGTCAAGTCGTACCAGAACTCTCAGATTGCCAT
TCCCCAGAAGAGGACCGTCAACAGCATCAGCAGCATGCCCACCACTGCCAGCTGGAGCTACA
GCGGGAGCAACATCCGCGCTAATGTTGCGTATGACTTGTTCACCGCAGCCAACCCGAATCAT
GTCACGTACTCGGGAGACTACGAACTCATGATCTGGCTTGGCAAATACGGCGATATTGGGCC
GATTGGGTCCTCACAGGGAACAGTCAACGTCGGTGGCCAGACCTGACCAACTACTATGGCT
ACAACGGAGCCATGCAAGTCTATTCCTTTGTGGCCCAGACCAACACTACCAACTACAGCGGA
GATGTCAAGAACTTCTTCAATTATCTCCGAGACAATAAAGGATACAACGCTGCAGGCCAATA
TGTTCTTAGCTACCAATTTGGTACCGAGCCCTTCACGGGCAGTCGAACTCTGAACGTCGCAT
CCTGGACCGCATCTATCAAC

FIGURE 5