物理演習【5月21日】

番 氏名

1 密度と太さが一様な長さ $1 \, \text{m}$ の棒の一端に質量 $2 \, \text{kg}$ のおもり A をつるしたところ, $0.4 \, \text{m}$ の位置でつりあった(図 1)。もう一端に別のおもり B をつるしたところ,この端から $0.4 \, \text{m}$ のところでつり合った(図 2)。おもり B の質量はいくらか。重力加速度の大きさを $9.8 \, \text{m/s}$ とする。

- ② 長さ L の一様でまっすぐな棒 AB が,台の上にその一部がはみだして置かれている。このとき,A 端から長さ ℓ だけ離れた点 P が台の端に当たっている。棒の A 端にばね定数 k のばねをつけて鉛直上方に引っ張ると,ばねが a だけ伸びたとき点 P が台の端を離れた。ただし,台の上の面は十分に粗くて棒は台に対してすべらないものとする。また重力加速度の大きさを g とし, ℓ < $\frac{1}{2}$ L とする。
 - (1) 棒の質量 m を求めよ。また,点 P が台の端を離れるとき,棒が台から受ける垂直抗力 N を求めよ。また,点 P が台の端を離れるとき,棒が台から受ける垂直抗力を求めよ。
 - (2) 次にばねを A 端からはずし、B 端につけかえて鉛直上方に引っ張ると、ばねがbだけ伸びたときに B 端が台から離れた。b は a の何倍か。

- 図のように,長さ ℓ ,質量 m の一様な棒 AB の B 端に,質量 2m の小球を取り付け, A に軽い糸を結び点 P からつるす。小球に水平方向のカ F を加えたところ,糸 PA および棒 AB と鉛直線のなす角度がそれぞれ α および β となってつり合った。重力加速度の大きさを g とする。
 - (1) 棒と小球全体の重心 G はどこになるか。 A からの距離を求めよ。
 - (2) 糸の張力を T として,水平方向および鉛直方向での力のつり合いの式をそれぞれ記せ。
 - (3) Aのまわりの力のモーメントのつり合いの式を記せ。
 - (4) $\tan \alpha$ と $\tan \beta$ および T を、それぞれ m、g、F を用いて表せ。

 $oxed{4}$ 長さが ℓ で質量がMの一様な棒ABをA端を鉛直な粗い壁面に押し当て,B端を糸で結 び,糸の他端をC点に固定する。B端に質量MのおもりMをつり下げた状態で,棒は A 点で壁に垂直になっている。A BC と棒 AB のなす角度は 30° であり、重力加速度の大 きさを g とする。

A まわりの力のモーメントのつり合いより、糸の張力は ア である。また、A 点での 垂直抗力は イ であり、静止摩擦力は ウ である。

 $\overline{\mathbf{M}}$ をつり下げる位置を \mathbf{B} 点から \mathbf{A} の方にゆっくりと移動していくと, \mathbf{M} が \mathbf{B} 点から x離れた P の位置に来たとき棒の A 端がすべり始めた。壁面と棒の間の静止摩擦係数を μ 壁面の垂直抗力を N とすると,棒がすべり出す直前では,棒の $\mathrm B$ まわりでの力のモーメン トのつり合いから,糸の張力は N, M, ℓ , x, g, μ を用いて表すと, $\frac{1}{2}Mg\ell+$ \square =0

となる。この式と水平方向での力のつり合いから,糸の張力は M , ℓ , x , g , μ を用いて と表される。そして,PB 間の

距離 x は ℓ , μ を用いて表すと, \Box である。

5 粗い水平な床となめらかで鉛直な壁に,質量 M,長さ ℓ の一様な棒 AB を,床から角 θ だけ傾けて立てかけた。そして棒の中点に質量 m の小物体 P を置いたところ,棒の表面が粗いため,P は棒の上で静止し,棒も静止したままであった。A 点で棒が床から受ける摩擦力の大きさはP である。ただし,重力加速度の大きさを g とする。

また,棒と床との静止摩擦係数を μ とすると,棒が静止していることから $\mu \ge \boxed{ 1}$ の条件が成り立っている。P の位置を少しずつ変えていくと,A 点からの距離が x の位置に置いたとき棒がすべらずに静止する限界となった。 $x = \boxed{ \ \ \ \ \ \ \ \ \ \ \ }$ である。

