2024-2025 CSMH

Exercice 1:

3G30-1

Exprimer $tan(\widehat{TVS})$ de deux manières différentes.

Parmi deux triangles, dans le triangle rectangle le plus grand, $\tan(\widehat{TVS}) = \dots$

Parmi deux triangles, dans le triangle rectangle le plus petit, $\tan(\widehat{TVS}) = \dots$

Exprimer $\sin(\widehat{TVS})$ de deux manières différentes.

Parmi deux triangles, dans le triangle rectangle le plus grand, $\sin(\widehat{TVS}) = \dots$

Parmi deux triangles, dans le triangle rectangle le plus petit, $\sin(\widehat{TVS}) = \dots$

Exprimer $\cos(\widehat{TVS})$ de deux manières différentes.

Parmi deux triangles, dans le triangle rectangle le plus grand, $\cos(\widehat{TVS}) = \dots$

Parmi deux triangles, dans le triangle rectangle le plus petit, $\cos(\widehat{TVS}) = \dots$

Exprimer $tan(\widehat{IHF})$ de deux manières différentes.

Parmi deux triangles, dans le triangle rectangle le plus grand, $\tan(\widehat{IHF}) = \dots$

Parmi deux triangles, dans le triangle rectangle le plus petit, $\tan(\widehat{IHF}) = \dots$

Exprimer $\sin(\widehat{IHF})$ de deux manières différentes.

Parmi deux triangles, dans le triangle rectangle le plus grand, $\sin(\widehat{IHF}) = \dots$

Parmi deux triangles, dans le triangle rectangle le plus petit, $\sin(\widehat{IHF}) = \dots$

Exprimer $\cos(\widehat{IHF})$ de deux manières différentes.

Parmi deux triangles, dans le triangle rectangle le plus grand, $\cos(\widehat{IHF}) = \dots$

Parmi deux triangles, dans le triangle rectangle le plus petit, $\cos(\widehat{IHF}) = \dots$

Exercice 2:

3G30-2

- 1. Dans le triangle rectangle GHI, on a : $\sin(43^\circ) = \frac{5,9}{GI}$. Calculer la longueur GI (au dixième près).
- 2. Dans le triangle rectangle LMN, on a : $\cos{(44^\circ)} = \frac{LN}{8,3}$. Calculer la longueur LN (au dixième près).
- 3. Dans le triangle rectangle HIJ, on a : $\tan(\widehat{HIJ}) = \frac{7.8}{11.8}$. Calculer la mesure l'angle \widehat{HIJ} (au degré près).
- 4. Dans le triangle rectangle EFG, on a : $\cos\left(\widehat{EFG}\right) = \frac{6.9}{11.5}$. Calculer la mesure l'angle \widehat{EFG} (au degré près).
- 5. Dans le triangle rectangle TUV, on a : $\sin{(30^\circ)} = \frac{6,5}{TV}$. Calculer la longueur TV (au dixième près).
- 6. Dans le triangle rectangle PQR, on a : $\tan{(39^\circ)} = \frac{PR}{6,2}$. Calculer la longueur PR (au dixième près).

2024-2025

Exercice 3:

3G32-5

1. UY = 10 cm, UX = 6 cm et UW = 3 cm.

CSMH

Calculer la longueur UV et donner une valeur approchée au millimètre près.

2. GK = 6 cm, GJ = 5 cm et GI = 4 cm.

Calculer la longueur GH et donner une valeur approchée au millimètre près.

Exercice 4:

3G31-1 Calculer la mesure de tous les angles de cette figure.

1.

2.

3.

4.

