MATH 16600 Practice Final Exam, Version 3

1 Given a one-to-one function $f(x) = 1 + 4x + \sin x$, $-\infty < x < \infty$. find $f^{-1}(1)$ and $(f^{-1})'(1)$.

 ${f 2}$ The mass of a radio-active material is reduced to 30% of the original quantity in 30 years. What is the half-life?

3 Find the limit. $\lim_{x \to \pi/4} \frac{x - \pi/4}{\sin x - \cos x}$.

4 Evaluate the integral $\int \frac{x+1}{x(x-2)} dx$

5 Evaluate the integral. $\int 2xe^x dx$.

6 Let $f(x) = \ln \sqrt{\frac{x+1}{x^2+1}}$. Use the properties of logarithmic functions to decompose f(x) completely then find f'(x).

7 Evaluate the integral. $\int x\sqrt{x^2-9} \ dx$.

8 Set up an integral that represents the length of the curve $y = x + \frac{1}{x}$, $1/2 \le x \le 2$.

9 Determine whether the improper integral $\int_0^5 \frac{1}{(5-x)^3} dx$ is convergent or divergent. Evaluate the integral if it is convergent.

$$\int_{0}^{5} \frac{1}{(5-x)^{3}} dx = \lim_{t \to 5^{-}} \int_{0}^{t} (5-x)^{-3} dx$$

$$\lim_{t \to 5^{-}} \left[\frac{(5-x)^{-3}}{2} dx \right] = \frac{(5-t)^{-2}}{2} = \frac{(5-t)^{-2}}{2} = \frac{1}{4(5-t)^{2}} = \frac{1}{2}$$
Alternatively
$$\lim_{t \to 5^{-}} \left[\frac{1}{4(5-t)^{2}} - \frac{1}{50} \right] = \frac{1}{2(50)^{2}} = \frac{1}{50}$$

$$\lim_{t \to 5^{-}} \left[\frac{1}{4(5-t)^{2}} - \frac{1}{50} \right] = \frac{1}{2(50)^{2}} = \frac{1}{50}$$

$$\lim_{t \to 5^{-}} \left[\frac{1}{4(5-t)^{2}} - \frac{1}{50} \right] = \infty$$

$$\lim_{t \to 5^{-}} \left[\frac{1}{4(5-t)^{2}} - \frac{1}{50} \right] = \infty$$

10 Find an equation of the tangent line to the curve at the point corresponding to the given value of the parameter. $x = 2\sin t$, $y = \cos t$, $t = \pi/4$.

11 Find the area of the shaded region

$$r = 3 - 2\cos\theta$$

12 Determine whether the series $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2+1}$ is convergent or divergent.

13 Determine whether the series $\sum_{n=1}^{\infty} \frac{4^n}{2^n + 3^n}$ is convergent or divergent.

14 Determine whether the series $\sum_{n=1}^{\infty} \frac{2^n}{n!}$ is convergent or divergent.

17 Find the radius of convergence and interval of convergence of the series $\sum_{n=0}^{\infty} (n+1) \frac{x^n}{3^n}$.

18 Determine whether the series $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}$ is absolutely convergent, conditionally convergent, or divergent.