

Demostración del resultado principal

QUINTIN MESA ROMERO 2° DGIIM

ÍNDICE

- Enunciado del resultado
- Demostración

ENUNCIADO

Sea $I \subset \mathbb{R}$ un intervalo acotado no trivial, $y \{f_n\}$ una sucesión de funciones de I en \mathbb{R} . Supongamos que f_n es derivable en I para todo $n \in \mathbb{N}$, y que la sucesión $\{f_n'\}$ converge uniformemente en I a una función $g: I \to \mathbb{R}$. Si $\{f_n\}$ converge en un punto $a \in I$, entonces $\{f_n\}$ converge uniformemente en I, a una función $f: I \to \mathbb{R}$, que es derivable en I con f'(x) = g(x) para todo $x \in I$.

DEMOSTRACIÓN (I)

Dado $\varepsilon > 0$, como la sucesión $\{f_n'\}$ es uniformemente de Cauchy en I, si $\lambda > 0$ es la longitud de I, tenemos $m_1 \in \mathbb{N}$ tal que

$$p, q \in \mathbb{N}, \quad p, q \geqslant m_1 \implies \left| f_p'(t) - f_q'(t) \right| < \frac{\varepsilon}{2\lambda} \qquad \forall t \in I$$
 (9)

Por otra parte, como $\{f_n(a)\}$ es una sucesión de cauchy en \mathbb{R} , existe $m_2 \in \mathbb{N}$ tal que

$$p, q \in \mathbb{N}, \quad p, q \geqslant m_2 \implies \left| f_p(a) - f_q(a) \right| < \frac{\varepsilon}{2}$$
 (10)

DEMOSTRACIÓN (II)

Tomando $m = \max\{m_1, m_2\}$, fijamos $p, q \in \mathbb{N}$ con $p, q \geqslant m$ y un punto $x \in I$. Si $x \neq a$, el intervalo cerrado de extremos a y x está contenido en I, donde la función $f_p - f_q$ es derivable, luego podemos usar el teorema del valor medio para obtener un punto $t \in I$ que verifica

$$f_p(x) - f_q(x) = f_p(a) - f_q(a) + (f_p'(t) - f_q'(t))(x - a)$$

Puesto que $|x-a| \le \lambda$, usando (9) y (10) deducimos claramente que

$$|f_p(x) - f_q(x)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2\lambda} |x - a| \le \varepsilon$$

y para x = a la misma desigualdad se deduce de (10). Esto prueba que $\{f_n\}$ es uniformemente de Cauchy en I, luego converge uniformemente en I a una función $f: I \to \mathbb{R}$.

DEMOSTRACIÓN (III)

Queda ahora comprobar que f es derivable en I, con derivada g. Fijado un punto $b \in I$, para cada $n \in \mathbb{N}$ consideramos la función $\Phi_n : I \to \mathbb{R}$ definida por

$$\Phi_n(x) = \frac{f_n(x) - f_n(b)}{x - b} \quad \forall x \in I \setminus \{b\}$$
 y $\Phi_n(b) = f'_n(b)$

Con un razonamiento similar al usado para $\{f_n\}$, probaremos que $\{\Phi_n\}$ es uniformemente de Cauchy en I.

Dado $\varepsilon > 0$, usamos de nuevo que $\{f_n'\}$ es uniformemente de Cauchy en I, con lo que obtenemos un $k \in \mathbb{N}$ tal que

$$p, q \in \mathbb{N}, \quad p, q \geqslant k \implies \left| f_p'(t) - f_q'(t) \right| < \varepsilon \quad \forall t \in I$$
 (11)

DEMOSTRACIÓN (IV)

Fijamos ahora $p, q \in \mathbb{N}$ con $p, q \geqslant k$, y un punto $x \in I$. Si $x \neq b$, usando de nuevo el teorema del valor medio, obtenemos $t \in I$ verificando que

$$f_p(x) - f_q(x) = f_p(b) - f_q(b) + (f_p'(t) - f_q'(t))(x-b)$$

de donde, usando (11) deducimos claramente que

$$|\Phi_p(x) - \Phi_q(x)| = |f_p'(t) - f_q'(t)| < \varepsilon$$

En el caso x = b, tenemos en (11) la misma desigualdad, ya que

$$|\Phi_p(b) - \Phi_q(b)| = |f_p'(b) - f_q'(b)| < \varepsilon$$

DEMOSTRACIÓN (V)

En resumen, para cada $\varepsilon > 0$, hemos encontrado $k \in \mathbb{N}$ tal que, para $p,q \geqslant k$, y para todo $x \in I$, se tiene $|\Phi_p(x) - \Phi_q(x)| < \varepsilon$. Esto significa que $\{\Phi_n\}$ es uniformemente de Cauchy en I, luego converge uniformemente en I a una función $\Phi : I \to \mathbb{R}$.

Ahora bien, como $\{f_n\}$ converge puntualmente a f en I, para todo $x \in I \setminus \{b\}$ se tiene que

$$\Phi(x) = \lim_{n \to \infty} \Phi_n(x) = \lim_{n \to \infty} \frac{f_n(x) - f_n(b)}{x - b} = \frac{f(x) - f(b)}{x - b}$$

y por otra parte, vemos también que

$$\Phi(b) = \lim_{n \to \infty} \Phi_n(b) = \lim_{n \to \infty} f_n'(b) = g(b)$$

DEMOSTRACIÓN (VI)

Finalmente observamos que, para cada $n \in \mathbb{N}$ se tiene

$$\lim_{x \to b} \Phi_n(x) = \lim_{x \to b} \frac{f_n(x) - f_n(b)}{x - b} = f'_n(b) = \Phi_n(b)$$

luego Φ_n es continua en el punto b. Como $\{\Phi_n\}$ converge uniformemente a Φ en I, deducimos que Φ también es continua en el punto b. Por tanto, se tiene que

$$g(b) = \Phi(b) = \lim_{x \to b} \Phi(x) = \lim_{x \to b} \frac{f(x) - f(b)}{x - b}$$

Esto significa que f es derivable en el punto b con f'(b) = g(b). Como $b \in I$ era arbitrario, hemos probado que f es derivable en I con f' = g, como se quería.