Final Prjoect 108061151 陳均豪

Fully differential two-stage operation amplifier with Miller compensation and common-mode feedback

(a) Please identify the constant gm, start-up, two-stage amplifier, Miller compensation, and common-mode feedback in Fig.1 1.

Figure 1: THD analysis for Von

(b) How the constant gm function if we choose $(W/L)_{17} = 4(W/L)_{16}$? If a target gm is given, how do you decide the bias current of the constant gm?

If we choose $(W/L)_{17} = 4(W/L)_{16}$, we can derive two equation,

$$\begin{cases} I_{16} = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L} \right) (V_{GS,M_{16}} - V_{TH})^2 & \cdots (1) \\ I_{17} = \frac{1}{2} \mu_n C_{ox} \left(\frac{4W}{L} \right) (V_{GS,M_{17}} - V_{TH})^2 & \cdots (2) \end{cases}$$

Since M_{14} and M_{15} is current mirror,

$$I = I_{16} = I_{17} \cdots (3)$$

And that,

$$V_{GS,M_{16}} - V_{GS,M_{17}} = I \cdot R_b \quad \cdots (4)$$

We can derive a equation from (1), (2), (3),

$$V_{GS,M_{16}} - V_{TH} = 2(V_{GS,M_{17}} - V_{TH}) \cdot \cdot \cdot (5)$$

By (1), (2), (4), (5), we can get,

$$\sqrt{\frac{2I}{\mu_n C_{OX}\left(\frac{W}{L}\right)}} + V_{TH,M16} = \sqrt{\frac{2I}{\mu_n C_{OX}\left(\frac{4W}{L}\right)}} + V_{TH,M17} + I \cdot R_b$$

Since the source of M_{16} and M_{17} both connect to ground, the body effect doesn't exist, hence I assume their threshold voltage is same, then we can get,

$$\sqrt{\frac{2I}{\mu_n C_{OX}\left(\frac{W}{L}\right)}} \left(1 - \frac{1}{\sqrt{4}}\right) = I \cdot R_b$$

From this, we can get the current I,

$$I = \frac{2}{\mu_n C_{OX} \left(\frac{W}{L}\right)} \frac{1}{R_b^2} \left(1 - \frac{1}{\sqrt{4}}\right)^2$$

And we know that,

$$g_m = \sqrt{2\mu_n C_{OX} \left(\frac{W}{L}\right) I_D} \quad \cdots (6)$$

We can finally find the relationship between $(W/L)_{17} = 4(W/L)_{16}$ and g_m by inserting I into (6).

$$g_m = \sqrt{2\mu_n C_{OX} \left(\frac{W}{L}\right) \frac{2}{\mu_n C_{OX} \left(\frac{W}{L}\right)} \frac{1}{R_b^2} \left(1 - \frac{1}{\sqrt{4}}\right)^2}$$

$$= \frac{2}{R_b} \left(1 - \frac{1}{\sqrt{4}}\right)$$

$$= \frac{1}{R_b}$$

So if gm is given, we can derive the I immediately with,

$$I = \frac{1}{\mu_n C_{ox} \left(\frac{W}{L}\right)} \frac{1}{R_b^2}$$

(c) Why do we need a start-up circuit? Please explain the functionality of the start-up circuit. How do you design the size of the transistor to improve the power efficiency after startup?

Apply initial condition (.IC) and run the trasient analysis with Hspice to verify the functionality of the start-up circuit.

Since the initial condition in circuit is unknown, if there doesn't exist start-up circuit, it is possible hat all of the transistors carry no current when the supply is turned on. Therefore we introduce start-up circuit.

To design a more power efficiency start-up circuit, the idea is making them carry no current after start-up. Therefore, I make the aspect ratio of M_{19} larger and M_{20} smaller. If design properly, I expect that M_{20} will get into subth region to reduce the power consumption and $V_{DS,M19}$ is small which make itself get into triode region carrying as small current as possible.

Figure 2: Transient analysis to verify the functionality of the start-up circuit Upper part: Vertical axis: Vdd(V) Horizontal axis: time(s) Middle part: Vertical axis: $V_{gs,M19}(V)$ Horizontal axis: time(s) Bottom part: Vertical axis: $V_{gs,M20} = V_{ds,M19}(V)$ Horizontal axis: time(s)

From figure, we can find that at the time that supply turn on M_{20} turn on immediately, force the current run through M_{13} . Then since M_{12} and M_{13} is current mirror, this step will make whole constant gm part active. As long as the constant gm part active, $V_{DS,M19}$ start to drop, gradually close M_{20} . At the time 125ns, M_{20} get into triode region and eventually shut down(get into subth region). Finally, $V_{GS,M19}$ stable at about 440.8622mV and $V_{GS,M19}$ stable at about 46.7429mV. Start-up Complete!

(d) A simplified two-stage amplifier is shown in Fig. 3, the Miller effect can decrease -3dB bandwidth while moving the non-dominant pole up in frequency (pole splitting). However, the Miller compensation technique also introduces a right half-plane (RPH) zero, therefore a nulling resistor R_z is added to remove the RPH zero. Apply KCL and KVL, find the DC gain, Pole₁, Pole₂, unity-gain bandwidth ω_u and Zero₁ with the symbols are shown in Fig. 3.

Assume $R_z = 0$ first to make the analysis easier and compensate it latter. By KCL, we can derive two equation,

$$\begin{cases} g_{m1}V_{\text{in}} + \left(\frac{1}{R_1} + s(C_1 + C_c)\right)V_A - (sC_c)V_{\text{out}} = 0\\ g_{m2}V_A + (sC_c)(V_{\text{out}} - V_A) + V_{\text{out}}\left(\frac{1}{R_2} + sC_2\right) = 0 \end{cases}$$

Solving using Cramer's rule and we can get the relationship between $V_{\rm out}$ and $V_{\rm in}$

$$\frac{V_{\text{out}}(s)}{V_{\text{in}}(s)} = \frac{g_{m1}(g_{m2} - sC_c)}{\frac{1}{R_1 R_2} + s \left(\frac{1}{R_2}(C_1 + C_2) + \frac{1}{R_1}(C_2 + C_c) + g_{m2}C_c\right) + s^2(C_1C_2 + C_cC_1 + C_cC_2)}$$

$$= \frac{A_0(1 - s(C_c/g_{m2}))}{1 + s(R_1(C_1 + C_2) + R_2(C_2 + C_c) + g_{m2}R_1R_2C_c) + s^2(R_1R_2(C_1C_2 + C_cC_1 + C_cC_2))} \quad \cdots (7)$$

where $A_0 = g_{m1}g_{m2}R_1R_2$ which also is DC gain.

Then we can rewrite the denominator of (7) as,

$$D(s) = \left(1 - \frac{s}{\omega_{p_1}}\right) \left(1 - \frac{s}{\omega_{p_2}}\right) = 1 - s\left(\frac{1}{\omega_{p_1}} + \frac{1}{\omega_{p_2}}\right) + \frac{s^2}{\omega_{p_1}\omega_{p_2}} \cdots (8)$$

Assume the "dominant pole" condition exists, then $|\omega_{p_1}| \ll |\omega_{p_2}|$, we can make some approximation on (8),

$$D(s) \approx 1 - \frac{s}{\omega_{p_1}} + \frac{s^2}{\omega_{p_1}\omega_{p_2}}$$

Then calculate the value of ω_{p_1} , ω_{p_2} and ω_z by comparing (7)

$$\frac{V_{\text{out}}(s)}{V_{\text{in}}(s)} = \frac{A_0 \left(1 - \frac{s}{w_z}\right)}{1 - \frac{s}{\omega_{p_1}} + \frac{s^2}{\omega_{p_1}\omega_{p_2}}} = (7)$$

Then we can get,

$$\begin{cases} \omega_{p_1} = \frac{-1}{R_1(C_1 + C_2) + R_2(C_2 + C_c) + g_{m2}R_1R_2C_c} \approx \frac{-1}{g_{m2}R_1R_2C_c} \\ \omega_{p_2} = \frac{-(R_1(C_1 + C_2) + R_2(C_2 + C_c) + g_{m2}R_1R_2C_c)}{R_1R_2(C_1C_2 + C_cC_1 + C_cC_2)} \approx \underbrace{\frac{-g_{m2}C_c}{C_1C_2 + C_cC_1 + C_cC_2}}_{\text{Consider } C_2 > C_c > C_1} \approx \frac{-g_{m2}C_c}{C_2} \\ \omega_z = \frac{g_{m2}}{C_c} \end{cases}$$

With $R_z \neq 0$ lead compensation,

$$\omega_z' = \frac{-1}{C_c \left(\frac{1}{g_{m2}} - R_z\right)}$$

By Reference 1., the unity gain bandwidth can be approximate as

$$\omega_u \cong A_0 \omega_{p_1}$$
 where $A_0 = g_{m1} g_{m2} R_1 R_2$
 $\cong \frac{-g_{m1} g_{m2} R_1 R_2}{g_{m2} R_1 R_2 C_c} = \frac{-g_{m1}}{C_c}$

Summary above,

$$\begin{cases} DC \text{ gain} = g_{m1}g_{m2}R_1R_2\\ \omega_{p_1} = \frac{-1}{g_{m2}R_1R_2C_c} \text{ (Pole_1)}\\ \omega_{p_2} = \frac{-g_{m2}}{C_2} \text{ (Pole_2)}\\ \omega_z = \frac{-1}{C_c\left(\frac{1}{g_{m2}} - R_z\right)} \text{ (Zero_1)}\\ \omega_u = \frac{-g_{m1}}{C_c} \text{ (unity-gain bandwidth)} \end{cases}$$

(e) What is the function of M_{10} and M_{11} ? How do you design the aspect ratio of M_{10} and M_{11} ?

The presence of zero is able to increase the phase shift and the speed of reducing the gain and cause the circuit to be instability. To eliminate this phenomenon, we add M_{10} and M_{11} with miller capacitor. Then the zero should be moved to remove the effect of the first non-dominant pole. Note: We use M_{10} and M_{11} in triode region to act as resistor.

Since we know that,

$$\omega_z = \frac{-1}{C_c \left(\frac{1}{g_{m2}} - R_z\right)} \quad (\text{Zero}_1)$$

And,

$$R_z = \frac{1}{\mu_n C_{OX} \left(\frac{W}{L}\right) V_{ov}}$$

So, if we want to get larger ω_z just need to increase the aspect ratio of M_{10} and M_{11} , but when I design, if we increase the aspect ratio too much, the phase margin will drop. After trading off, I design $\frac{W}{L} = \frac{22\mu}{0.4\mu}$, m = 1.

Working Item	Specification	Your Work	
Technology	chnology		
Supply Voltage	1.8V		
V_{icm}, V_{ocm}	0.9V, 0.9V		
Supply Current	<3mA	$1.8845 \mathrm{mA}$	
Loading	5pF @ each output	node	
Compensation C_{c1}, C_{c2}	<5pF	$4.95 \mathrm{pF}$	
	Open-loop Simulation		
DC Gain	> 65dB, as large as possible	67.1714dB	
Unity Gain Bandwidth ω_u	> 130MHz, as large as possible	264.0032MHz	
Phase Margin (P.M.)	> 65°	66.775°	
CMRR @ 10KHz	> 90dB	98.1005dB	
PSRR+ @ 10KHz	> 100dB	113.4948dB	
PSRR- @ 10KHz	> 100dB	113.0792dB	
C	Losed-loop Simulation		
Closed-loop Gain	> -0.1dB	-9.0409mdB	
S.R.+ $(10\% \sim 90\%)$	$> 35V/\mu S$	$40.1V/\mu S$	
S.R $(10\% \sim 90\%)$	$> 35V/\mu S$	$42.5V/\mu S$	
THD @ 100KHz	< -55dB	-55.65922213dB	
Settling Time $+$ (to 0.5%)	$0.1 \mu s$	71.6378ns	
Settling Time - (to 0.5%)	$0.1 \mu s$	56.9055 ns	

Table. Summary table.

(a) Redraw the schematic of your circuit, mark each active device dimension, passive component value, node voltage, and branch current on it.

Figure 3: MOS parameters part.I

Figure 4: MOS parameters part.II

Figure 5: MOS parameters part.III

(b) Print all the small-signal parameters of each device from .op command in the report.

subckt	xop	xop	xop	xop	xop	xop
element		1:mm2				1:mm21
model	0:n_18.1	0:n_18.1	0:p_18.1	0:p_18.1	0:n_18.1	0:n_18.1
region	Saturation	Saturation	Saturation	Saturation	Saturation	Saturation
id	255.9368u	255.9368u	-255.9368u	-255.9368u	511.8736u	76.1157u
ibs	-2.8904f	-2.8904f	2.526e-20	2.526e-20	-7.659e-20	-849.5919a
ibd	-10.0120f	-10.0120f	1.6867f	1.6867f	-12.8804f	-2.2935f
vgs	552.8390m	552.8390m	-873.1025m	-873.1025m	440.6822m	554.8263m
vds	855.3825m	855.3825m	-597.4565m	-597.4565m	347.1610m	586.6688m
vbs	-347.1610m	-347.1610m	0.	0.	0.	-345.1737m
vth	448.6412m	448.6412m	-494.6111m	-494.6111m	385.6758m	450.4259m
vdsat	125.3580m	125.3580m	-337.4606m	-337.4606m	90.6945m	125.7061m
vod	104.1978m	104.1978m	-378.4914m	-378.4914m	55.0064m	104.4003m
beta	35.3819m	35.3819m	3.9755m	3.9755m	160.4409m	10.6161m
	516.3753m		557.0846m	557.0846m	507.4460m	516.3280m
gm	3.4877m	3.4877m	1.1932m	1.1932m	8.8971m	1.0386m
gds	42.9921u	42.9921u	17.9128u	17.9128u	112.6442u	13.5374u
gmb	579.4164u	579.4164u	377.8621u	377.8621u	1.8375m	173.9770u
cdtot	138.9303f	138.9303f	71.3296f	71.3296f	735.3143f	43.2764f
cgtot	758.3272f	758.3272f	388.9380f	388.9380f	3.2820p	227.5243f
cstot	822.7516f	822.7516f	455.6880f	455.6880f		246.9647f
cbtot	367.3700f	367.3700f	218.0692f	218.0692f	1.9711p	111.7232f
cgs	660.2272f	660.2272f	343.5523f	343.5523f	2.7593p	198.2657f
cgd	39.2098f	39.2098f	22.1263f	22.1263f	186.3213f	11.8013f

Figure 6: Operation part.I

subckt	xop	хор	хор	хор	хор	хор
element	1:mm22	1:mm23	1:mm24	1:mm25	1:mm6	1:mm7
model	0:n_18.1	0:p_18.1	0:p_18.1	0:n_18.1	0:p_18.1	0:p_18.1
region	Saturation	Saturation	Saturation	Saturation	Saturation	Saturation
id	77.9256u	-76.1157u	-77.9256u	154.0413u	-595.0252u	-595.0252u
ibs	-849.5922a	7.318e-21	7.492e-21	-2.290e-20	5.584e-20	5.584e-20
ibd	-2.2814f	714.3265a	718.3953a	-3.8169f	13.0898f	13.0898f
vgs	556.6208m	-868.1575m	-873.1025m	440.6822m	-597.4565m	-597.4565m
vds	581.7237m	-868.1575m	-873.1025m	345.1737m	-898.2055m	-898.2055m
vbs	-345.1737m	0.	0.	0.	0.	0.
vth	450.4705m	-494.5748m	-494.5748m	385.5609m	-513.9539m	-513.9539m
vdsat	126.9196m	-332.9571m	-336.8832m	90.8745m	-127.6099m	-127.6099m
vod	106.1503m	-373.5827m	-378.5277m	55.1214m	-83.5026m	-83.5026m
beta	10.6162m	1.1959m	1.1944m	48.1350m	88.7577m	88.7577m
gam eff	516.3280m	557.0846m	557.0846m	507.4460m	557.0846m	557.0846m
gm	1.0539m	360.8018u	364.5188u	2.6761m	8.4081m	8.4081m
gds	13.7868u	3.3095u	3.3773u	33.9731u	83.8989u	83.8989u
gmb	176.4910u	114.0237u	115.2993u	552.7880u	2.4990m	2.4990m
cdtot	43.3142f	19.8724f	19.8578f	220.5964f	355.6356f	355.6356f
cgtot	227.7113f	116.2135f	116.2106f	984.6501f	723.4272f	723.4272f
cstot	247.1996f	136.2977f	136.2983f	1.0870p	948.6906f	948.6906f
cbtot	111.7464f	64.0940f	64.0594f	591.2404f	731.3671f	731.3671f
cgs	198.4981f	102.7859f	102.8021f	827.8736f	555.4281f	555.4281f
cgd	11.8023f	6.4360f	6.4362f	55.9077f	115.8975f	115.8975f

Figure 7: Operation part.II

subckt	xop	хор	xop	хор	хор	хор
element	1:mm8	1:mm9	1:mm10	1:mm11	1:mm12	1:mm13
model	0:n 18.1	0:n 18.1	0:p_18.1	0:p_18.1	0:p_18.1	0:p_18.1
region	Saturation	Saturation	Linear	Linear	Saturation	Saturation
id	595.0252u	595.0252u	594.7128f	595.3573f	-4.8048u	-4.8821u
ibs	-8.895e-20	-8.895e-20	601.4045a	601.4045a	6.566e-22	6.672e-22
ibd	-34.9212f	-34.9212f	601.4045a	601.4045a	65.0348a	102.2677a
vgs	440.6822m	440.6822m	-1.1642	-1.1642	-778.2511m	-778.2511m
vds	901.7945m	901.7945m	370.9786p	371.3805p	-494.9126m	-778.2511m
vbs	Θ.	0.	597.4565m	597.4565m	Θ.	0.
vth	381.4668m	381.4668m	-663.1167m	-663.1167m	-502.1469m	-502.1469m
vdsat	93.1365m	93.1365m	-472.0165m	-472.0165m	-262.3673m	-262.3686m
vod	59.2154m	59.2154m	-501.0386m	-501.0386m	-276.1041m	-276.1041m
beta	167.5594m	167.5594m	3.4709m	3.4709m	131.6082u	131.6082u
gam eff	507.4460m	507.4460m	553.2683m	553.2683m	557.0846m	557.0846m
gm	10.0907m	10.0907m	1.0084p	1.0095p	30.5959u	31.1714u
gds	106.9659u	106.9659u	1.6036m	1.6036m	358.3614n	219.6953n
gmb	2.0573m	2.0573m	321.6738f	322.0224f	9.3986u	9.5790u
cdtot	689.1711f	689.1711f	84.0788f	84.0788f	2.5747f	2.3885f
cgtot	3.4601p	3.4601p	74.4375f	74.4375f	13.0136f	12.9872f
cstot	3.8318p	3.8318p	92.6021f	92.6021f	15.3891f	15.3976f
cbtot	1.9847p	1.9847p	49.0398f	49.0398f	7.7158f	7.5794f
cgs	2.9169p	2.9169p	35.3755f	35.3755f	11.3562f	11.3458f
cgd	192.6136f	192.6136f	39.1573f	39.1573f	745.4775a	722.5252a

Figure 8: Operation part.III

subckt	хор	xop	хор	хор	xop	хор	xop
element	1:mm14	1:mm15	1:mm16	1:mm17	1:mm18	1:mm19	1:mm20
model	0:p_18.1	0:p_18.1	0:n_18.1	0:n_18.1	0:p_18.1	0:n_18.1	0:n_18.1
region	Saturation	Saturation				Linear	Subth
id	-4.8048u	-4.8821u	4.8048u	4.8821u	-18.8011u	18.8011u	7.4670p
ibs	65.0361a	102.2691a	-8.458e-22	-8.594e-22	3.428e-21	-2.853e-21	-2.531e-27
ibd	178.6246a	231.4892a	-171.4005a	-67.0314a	153.6661a	-102.2892a	-146.4371a
vgs	-912.4532m	-983.3607m	440.6822m	392.6341m	-1.3593	440.6822m	46.7429m
vds	-864.4051m	-983.3607m	392.6341m	38.3882m	-1.7533	46.7429m	1.0217
vbs	494.9126m	778.2511m	0.	0.	0.	0.	0.
vth	-631.0408m	-694.8524m	388.7396m	391.4189m	-510.3566m	388.2263m	338.2859m
vdsat	-277.8949m	-288.2456m	87.8748m	63.7366m	-751.1921m	89.0418m	35.2955m
vod	-281.4124m	-288.5083m	51.9427m	1.2152m	-848.9611m	52.4559m	-291.5430m
beta	119.6995u	114.0150u	1.6019m	6.3995m	57.6098u	9.3315m	58.6832u
gam eff	553.8606m	552.2711m	507.4460m	507.4459m			507.4459m
gm	30.0566u	29.8351u	84.6632u	91.9492u	39.5594u	268.4339u	271.9087p
gds	191.8508n	172.5438n	1.0201u	74.9430u	434.3584n	258.9520u	1.1234p
gmb	7.6082u	7.1116u	17.4481u	19.5392u	13.3774u	56.5775u	62.5221p
cdtot	2.1984f	2.1035f	7.3741f	42.4301f	1.1117f	90.4944f	1.3626f
cgtot	12.8243f	12.7627f	32.6076f	100.5480f	6.4414f	204.9955f	10.1604f
cstot	14.4712f	14.1874f	35.9684f	97.2299f	7.7736f	208.3912f	1.6980f
cbtot	6.3329f	5.8592f	19.8492f	82.5740f	3.7017f	120.5093f	11.6663f
cgs	11.3132f	11.3485f	27.3313f	68.5174f	5.7011f	159.8389f	389.1781a
cgd	721.3162a	720.0517a	1.8582f	11.7124f	359.7971a	28.7018f	388.2985a

Figure 9: Operation part.IV

(d) Simulation and Calculations

1. Open-loop differential mode AC response

Figure 10: AC magnitude and phase responses of differential-mode gain Upper part: Vertical axis: Vm(Vop, Von)(V) Horizontal axis: frequency(Hz) Bottom part: Vertical axis: Phase(Vop, Von)(°) Horizontal axis: frequency(Hz)

```
**** small-signal transfer characteristics

v(vop,von)/vinn = -2.2833k
input resistance at vinn = 1.000e+20
output resistance at v(vop,von) = 9.4852k
```

Figure 11: Gain and impedance

```
*****
           pole/zero analysis
   input = 0:vinn
                            output = v(vop, von)
Output first 10 Poles, (total 17)
Use .option pz_num = NUM to control output number, (default:10)
     poles (rad/sec)
                                      poles (hertz)
real
                                real
              imag
                                                imag
                                -45.8698k
-288.208k
               0.
                                                0.
-7.05096x
               0.
                                -1.12220x
                                                0.
-76.7465x
               263.217x
                                                41.8922x
                               -12.2146x
-76.7465x
               -263.217x
                               -12.2146x
                                                -41.8922x
-400.626x
               0.
                                -63.7616x
                                                0
-447.507x
               0.
                                -71.2230x
                                                0.
-921.642x
               0.
                                -146.684x
                                                0.
                -944.924x
-1.17093g
                                -186.359x
                                                -150.389x
-1.17093g
                944.924x
                                -186.359x
                                                150.389x
-1.34801g
                -863.513x
                                -214.543x
                                                -137.432x
Output first 10 Zeros, (total 17)
Use .option pz_num = NUM to control output number, (default:10)
      zeros (rad/sec)
                                      zeros ( hertz)
real
               imag
                                real
                                                imag
-7.05099x
                                -1.12220x
-80.6943x
               -267.930x
                                -12.8429x
                                                -42.6425x
-80.6943x
               267.930x
                                -12.8429x
                                                42.6425x
-386.415x
               0.
                                -61.4998x
                                                0.
-402.587x
               0.
                                -64.0737x
                                                0.
-448.103x
               0.
                                -71.3178x
                                                0.
-921.649x
               0.
                                -146.685x
               -846.985x
-1.31708g
                                -209.619x
                                                -134.802x
```

***** constant factor = 730.546m

846.985x

Figure 12: Poles and zeros

-209.619x

-261.613x

134.802x

Dis. d-1

By (d) we derive above, we know that,

-1.31708g

-1.64376g

$$\begin{cases} R_1 = r_{o,M2} || r_{o,M4} = \frac{1}{42.9942\mu + 17.9128\mu} = 16418.47407 \\ R_2 = r_{o,M6} || r_{o,M8} = \frac{1}{83.8989\mu + 106.9659\mu} = 5239.310758 \\ C_2 = C_L = 5pF \\ \text{Gain} = g_{m1}g_{m6}(r_{o2} || r_{o4})(r_{o6} || r_{o8}) = 2522.574141 \\ R_z = \frac{1}{g_{m,M10}V_{ov,M10}} = \frac{1}{3.4709m \cdot (1.1642 - 663.1167m)} = 574.9736864 \\ \omega_{p_1} = \frac{1}{g_{m2}R_1R_2C_c} = \frac{8.4081m \cdot 16418.47407 \cdot 5239.310758 \cdot 4.95p} = -44453.92523(Hz) \\ \omega_{p_2} = \frac{-g_{m2}}{C_2} = \frac{-8.4081m}{5p} = -267638135.4(Hz) \\ \omega_z = \frac{-1}{C_c \left(\frac{1}{g_{m2}} - R_z\right)} = \frac{-1}{4.95p \cdot \left(\frac{1}{8.4081m} - 574.9736864\right)} = -70503597.69(Hz) \end{cases}$$

Comparison Table

Working Item	Simulation	Hand calculation	Error
ω_{p_1}	-45.8698kHz	-44.45392523kHz	$\approx -3.18\%$
ω_{p_2}	-254.7866823MHz	-267.6381354MHz	$\approx -4.8\%$
ω_z	-71.3178MHz	-70.50359769MHz	$\approx 1.15\%$

Comment:

The error is small enough to ignore.

By the formula we use, we can see that after compensation, the zero will be moved the right-half-plane zero into the left-half-plane zero to cancel the nondominant pole ω_{p2} . But the poles seems not to move as zero does.

2. Open-loop differential mode DC sweep

Figure 13: Test circuit schematic

Figure 14: Differential and single-ended outputs

Upper part: Vertical axis: V(vop, von)(V) Horizontal axis: DC voltage(V) Middle part: Vertical axis: V(von)(V) Horizontal axis: DC voltage(V) Bottom part: Vertical axis: V(vop)(V) Horizontal axis: DC voltage(V)

Compare it with the AC response, see the below table, they are almost the same.

Comparison Table

Working Item	AC	DC	Error
Gain	2.2833k	2.27k	$\approx -0.58\%$

Comment:

The error is small enough to ignore.

3. Open-loop common-mode AC response

Figure 15: Test circuit schematic

Figure 16: Magnitude response of common-mode gain Vertical axis: V(vop)(dB) Horizontal axis: Frequency(Hz)

Figure 17: Gain and impedance

```
Output first 10 Poles, (total 17)
Use .option pz_num = NUM to control output number, |(default:10)
```

poles	(rad/sec)	poles	(hertz)
real	imag	real	imag
-288.208k	0.	-45.8698k	0.
-7.05096x	0.	-1.12220x	0.
-76.7465x	-263.217x	-12.2146x	-41.8922x
-76.7465x	263.217x	-12.2146x	41.8922x
-400.626x	0.	-63.7616x	0.
-447.507x	0.	-71.2230x	0.
-921.642x	0.	-146.684x	0.
-1.17093g	944.924x	-186.359x	150.389x
-1.17093g	-944.924x	-186.359x	-150.389x
-1.34801g	863.513x	-214.543x	137.432x

Output first 10 Zeros, (total 24)
Use .option pz_num = NUM to control output number, (default:10)

zeros	(rad/sec)	zeros (hertz)
real	imag	real	imag
-358.084k	-11.2068k	-56.9909k	-1.78362k
-358.084k	11.2068k	-56.9909k	1.78362k
-408.003k	-252.193k	-64.9357k	-40.1378k
-408.003k	252.193k	-64.9357k	40.1378k
-801.769k	-28.4416	-127.606k	-4.52661
-801.769k	28.4416	-127.606k	4.52661
1.19484x	2.17908x	190.165k	346.811k
1.19484x	-2.17908x	190.165k	-346.811k
-1.36706x	-915.517k	-217.575k	-145.709k
-1.36706x	915.517k	-217.575k	145.709k

Figure 18: Poles and zeros

Dis. d-3

Figure 19: CMFB Topology and First-stage small-signal model

To calculate common mode gain, calculate the CM gain without CMFB first: For the first stage CM gain, we can derive it from the small-signal model,

$$\begin{cases} V_i = V_1 + V_2 \\ V_2 = (g_{m1}V_1 + g_{mb1}(-V_2))2r_{o5} \\ V_o = -(g_{m1}V_1 - g_{mb1}V_2)(r_{o1} \mid\mid r_{o3}) \end{cases}$$

Solving using Cramer's rule and we can get the relationship between V_o and V_i

$$\frac{V_o 1}{V_i} = \frac{-r_{o1} \mid\mid r_{o3}}{2r_{o5}} \cdot \frac{1}{1 + \frac{1 + g_{mb1} 2r_{o5}}{g_{m1}}}$$

For the second stage, we can easily get

$$\frac{V_o c}{V_o 1} = -g_{mb}(r_{o_6} \mid\mid r_{o_8})$$

Then the transfer function of second stage is,

$$\frac{V_o 1}{V_{\rm in}} = \frac{-g_{m6}}{\frac{1}{r_{o6}} + \frac{1}{r_{o8}}}$$

Finally, the total open-loop gain of two amplifier is,

$$A_{cm} = \left(\frac{-r_{o1} \mid\mid r_{o3}}{2r_{o5}} \cdot \frac{1}{1 + \frac{1 + g_{mb1}2r_{o5}}{g_{m1}}}\right) \left(\frac{-g_{m6}}{\frac{1}{r_{o6}} + \frac{1}{r_{o8}}}\right)$$

Then calculate the error amplifier gain,

$$A_{cms} = g_{m22}(2g_{m22}r_{o22}r_{o25} \mid\mid \frac{1}{g_{m24}} \mid\mid r_{o24})$$

And then calculate A_{cmc} ,

$$A_{cmc} = g_{m3}(r_{o3} \mid\mid g_{m1}r_{o1}r_{o5})g_{mb1}(r_{o6} \mid\mid r_{o8})$$

Finally get,

$$\frac{V_{oc}}{V_{ic}} = \frac{A_{cm}}{1 - A_{cmc}A_{cms}} = 23.7199m$$
 (By Excel)

Comparison Table

Working Item	Simulation	Calculation	Error
Common-mode gain	28.4149m	23.7199m	$\approx 19.79\%$

Comment:

There exists some error, I think the error is come from some approximation when derive the transfer function.

For low frequency zero,

$$\omega_{z,\text{low frequency}} = \frac{1}{(r_{o6} \mid\mid r_{o8})C_L} = 6.075MHz \quad \text{(By Excel)}$$

4. Open-loop power supply+ AC response

Figure 20: Test circuit schematic

Figure 21: Magnitude response of power supply+ gain Vertical axis: V(vop)(dB) Horizontal axis: Frequency(Hz)

5. Open-loop power supply- AC response

Figure 22: Test circuit schematic

Figure 23: Magnitude response of power supply+ gain Vertical axis: V(vop)(dB) Horizontal axis: Frequency(Hz)

6. Closed-loop differential mode AC response

Figure 24: Test circuit schematic

Figure 25: AC magnitude and phase response of differential-mode gain Upper: Vertical axis: Vdb(vop, von)(dB) Horizontal axis: Frequency(Hz) Bottom: Vertical axis: Vp(vop, von)(°) Horizontal axis: Frequency(Hz)

```
***** operating point information tnom=
                                        25.000 temp= 25.000 *****
****** operating point status is all
                                          simulation time is
  node
          =voltage
                        node
                                =voltage
                                             node
                                                     =voltage
          = 900.0000m 0:test2
                                = 900.0000m 0:vdd
                                                         1.8000
+0:test1
          = 900.9102m 0:vinp
                               = 900.9102m 0:vocm
                                                     = 900.0000m
+0:vinn
+0:von
          = 901.8203m 0:vop
                                = 901.8203m 0:vss
                                                         0.
+1:net11
         = 901.8203m 1:net12 = 345.1846m 1:net1x
                                                         1.3051
              1.2025 1:net2x
                                    1.0217 1:net32
                                                     = 347.9228m
+1:net2
+1:net3x
         = 392.6341m 1:net53
                                    1.2025 1:net9
                                                     = 931.8778m
+1:net_cm = 926.8616m 1:net_comp=
                                   38.3882m 1:net ref = 440.6822m
+1:net s
          = 46.7428m 1:net seco=
                                    1.2025 1:net seco=
                                                         1.2025
```

Figure 26: Input and output node voltages

-3dB bandwidth of closed-loop is,

$$\omega_{-3dB,\text{closed}} = (1 + KA)\omega_{-3dB,\text{open}}$$

And we know K = 1,

$$A = g_{m1}g_{m6}(r_{o2} \mid\mid r_{o4})(r_{o6} \mid\mid r_{o8}) = 2522.574141$$

Figure 27: Open-loop -3dB bandwidth

Then we can calculate -3dB closed-loop bandwidth,

$$(1 + 2522.574141) \cdot 45.2k = 114.065551MHz$$

Comparison Table

Working Item	Simulation	Calculation	Error
-3dB Bandwidth(closed-loop)	44.3MHz	114.065551MHz	$\approx -61\%$

Comment:

The error is very big, I think that was caused by lots of poles and zeros in it which makes the formula fault.

**** small-signal transfer characteristics

v(vop,von)/vinp = 998.9586m input resistance at vinp = 33.5061k output resistance at v(vop,von) = 8.3022

Figure 28: Small-signal transfer characteristics

Dis. d-6(v)

The Closed-loop gain is,

$$A_{v,\text{closed}} = \frac{A_{v,\text{open}}}{1 + A_{v,\text{open}}} = 0.9996$$

Comparison Table

Working Item	Simulation	Calculation	Error
Closed-loop gain	0.9989586	0.9996	$\approx -6.42 \times 10^{-4}$

Comment:

The error is small enough to ignore.

7. Closed-loop differential mode DC sweep

Figure 29: Test circuit schematic

Figure 30: Single-ended and differential outputs for inputs with differential signals. Upper: Vertical axis: Vdb(vop, von)(dB) Horizontal axis: Frequency(Hz) Middle: Vertical axis: Vdb(von)(dB) Horizontal axis: Frequency(Hz) Bottom: Vertical axis: Vdb(vop)(dB) Horizontal axis: Frequency(Hz)

Compare it with the AC response, see the below table, they are almost the same.

Comparison Table

Working Item	AC	DC	Error
Gain	998.9586m	999m	$\approx 0\%$

Comment:

The error is small enough to ignore.

8. Closed-loop distortion simulation

Figure 31: Test circuit schematic

Figure 32: Single-ended and differential outputs for 100KHz sinusoidal inputs Upper: Vertical axis: V(vop, von)(V) Horizontal axis: Frequency(Hz) Middle: Vertical axis: V(von)(V) Horizontal axis: Frequency(Hz) Bottom: Vertical axis: V(vop)(V) Horizontal axis: Frequency(Hz)

fourier components of transient response v(vop, von) dc component = -143.5401n

```
harmonic frequency fourier
                              normalized phase
                                                   normalized
no
        (hz)
                   component component (deg)
                                                    phase (deg)
                                         -90.1273
1
         100.0000k 498.0022m 1.0000
                                                      0.
         200.0000k 733.3971n
2
                                 1.4727u -121.0818
                                                     -30.9544
3
         300.0000k
                    90.4375u 181.6007u -32.4198
                                                     57.7076
4
         400.0000k 352.9208n 708.6732n 168.7104
                                                    258.8377
                               1.0045m 100.6176
5
         500.0000k 500.2514u
                                                    190.7450
6
         600.0000k 799.3956n
                                 1.6052u
                                         -49.1175
                                                     41.0099
7
         700.0000k 313.2334u 628.9800u -12.2261
                                                     77.9012
8
         800.0000k
                      1.4949u
                                 3.0018u
                                          67.2315
                                                     157.3589
9
         900.0000k 563.2578u
                                 1.1310m -163.8669
                                                     -73.7396
```

total harmonic distortion = 0.16483 percent

Figure 33: THD analysis for differential

fourier components of transient response v(vop) dc component = 901.8198m

harmonic	frequency	fourier	normalized	phase	normalized
no	(hz)	component	component	(deg)	phase (deg)
1	100.0000k	249.0011m	1.0000	-90.1273	0.
2	200.0000k	312.4916n	1.2550u	-1.0012	89.1261
3	300.0000k	45.2188u	181.6008u	-32.4197	57.7076
4	400.0000k	179.0609n	719.1170n	172.0671	262.1945
5	500.0000k	250.1257u	1.0045m	100.6176	190.7450
6	600.0000k	400.1813n	1.6071u	-48.7876	41.3398
7	700.0000k	156.6167u	628.9800u	-12.2261	77.9012
8	800.0000k	751.4805n	3.0180u	66.6682	156.7955
9	900.0000k	281.6289u	1.1310m	-163.8669	-73.7396

total harmonic distortion = 0.16483 percent

Figure 34: THD analysis for Vop

fourier components of transient response v(von) dc component = 901.8199m

harmonic	frequency	fourier	normalized	phase	normalized
no	(hz)	component	component	(deg)	phase (deg)
1	100.0000k	249.0011m	1.0000	89.8727	Θ.
2	200.0000k	930.1937n	3.7357u	42.0185	-47.8542
3	300.0000k	45.2187u	181.6005u	147.5802	57.7076
4	400.0000k	174.4824n	700.7294n	-14.7346	-104.6072
5	500.0000k	250.1256u	1.0045m	-79.3824	-169.2550
6	600.0000k	399.2277n	1.6033u	130.5519	40.6792
7	700.0000k	156.6167u	628.9800u	167.7739	77.9013
8	800.0000k	743.5167n	2.9860u	-112.1991	-202.0718
9	900.0000k	281.6289u	1.1310m	16.1331	-73.7396

total harmonic distortion = 0.164831 percent

Figure 35: THD analysis for Von

We can see that all THD are less than $-55dB \approx 0.001778$

9. Closed-loop step response

Figure 36: Test circuit schematic

Figure 37: Single-ended and differential outputs for 1.0V differential step inputs.

Upper: Vertical axis: V(vop)(V) Horizontal axis: time(s) Middle: Vertical axis: V(von)(V) Horizontal axis: time(s)

Bottom: Vertical axis: V(vop, von)(V) Horizontal axis: time(s)

Figure 38: SLew rate and settling time

Upper: Vertical axis: V(vop)(V) Horizontal axis: time(s) Middle: Vertical axis: V(von)(V) Horizontal axis: time(s) Bottom: Vertical axis: V(vop, von)(V) Horizontal axis: time(s)

Slew rate =
$$\frac{dV_{\text{out}}}{dt}|_{\text{max}}$$
. For Vop,

Slew rate =
$$\frac{I_{D5}}{C(vop)} = \frac{511.8736\mu}{10.9948} \approx 46.56$$

For Von,

Slew rate =
$$\frac{I_{D5}}{C(von)} = \frac{511.8736\mu}{10.9948} \approx 46.56$$

Comparison Table

Working Item	Simulation	Hand	Error
Slew rate vop	40.1	46.56	$\approx -13.87\%$
Slew rate von	42.5	46.56	$\approx -8.72\%$

Comment:

This is very approximate estimation, but I think the error is still acceptable.

Figure 39: Common-mode sensing node Vertical axis: V(sense node)(V) Horizontal axis: time(s)

Dis. d-9(v)

The common-mode feedback is very important for settling time. As we can see, if the gain of error amplifier is too large, the waveform will start to oscillate. But if the gain of error amplifier is too small, the settling time will be very long. How to balance the size of error amplifier is very import. Here I have some trick, if the error amplifier size is proportional to the size of first stage amplifier, it works not so back. And if the current density of error amplifier adjust will, the settling time can be very small. Here I get I think is not so bad!

(f)

- (1)I think ω_u is a very important SPEC. From Internet, I get a formula from Internet $\omega_u = \frac{g_{m,M1,2}}{2\pi C_c}$, then I decide the $g_{m,M1}$ first.
- (2)Select a good ratio for $\frac{g_{m,M1,2}}{I_{D,M1,2}}$, I choose 14. Then I get $I_{D,M1,2}=224.62\mu A$ and run the simulation to get a proper aspect ratio $(\frac{W}{L})_{1,2}=\frac{22.58\mu}{1\mu}$, m=5

(3) Select ratio for
$$\frac{g_{m,M3,4}}{I_{D,M3,4}} = 5$$
, then get $(\frac{W}{L})_{3,4} = \frac{11.9\mu}{1\mu}, m = 5$

(4)Select ratio for
$$\frac{g_{m,M5}}{I_{D,M5}} = 18$$
, then get $(\frac{W}{L})_5 = \frac{51.58\mu}{1\mu}, m = 10$

(5) Another formula $\frac{g_{m,M6,7}}{2\pi C_L} = 2 \cdot \omega_u$. Then I get get $I_{D,M6,7} = 583.4 \mu A$ and run the simulation to get a proper aspect ratio $(\frac{W}{L})_{6,7} = \frac{32.3 \mu}{0.3 \mu}, m = 10$

(6) Select ratio for
$$\frac{g_{m,M8,9}}{I_{D,M8,9}} = 17$$
, then get $(\frac{W}{L})_{8,9} = \frac{53.88\mu}{1\mu}$, $m = 10$

- (7)Set Error amplifier size to 1/5 as first stage of amplifier.
- (8)Set constant gm circuit to make stage one has correct current which I calculated.

Repeat $(1)\sim(8)$, adjust gm/ID ratio, and find the trend, then I get a differential amplifier achieve all the SPEC and make some optimization.

(9) Setup start-up circuit last since it is not so important to SPEC or anything.

(g)

This design is harder than any homework before. After analysis the circuit, it seems not so hard as I image before. In this project, I try a new gm-ID method, it is very surprising and work very well. With that method, I get all MOSs into saturation region very fast(only try two or three times). But after that, the SPEC has a little bit high, I slow down to examine how the whole circuit work and finally find the direction to adjust it. I think that Phase Margin is the hardest part since the move of pole and zero is very hard to image. In fact, I didn't find the write way to adjust it very well, just feeling. The interesting part is this work is error amplifier, which control the feedback, careful adjust the size of it will make the waveform very beautiful. Yeah, so tired.

(h)

In this course, I learn lots of thing about analogy circuit design. Basically Amplifier, no wonder someone say "No gain no life". We are no gain no score. The suggestion is that The circuit design is not so easy, but we learn from the course is just theory. Maybe, can we have opportunity to have a circuit design hour to teach us how to better design a circuit not just "Monkey?" At the end of the class, have a happy winter vaction.

Reference:

1. Sadeqi, Abolfazl and Rahmam, Javad and Habibifar, Saeed and Ammar Khan, Muhammad and Mudassir Munir, Hafiz, "Design method for two-Stage CMOS operational amplifier applying load/miller capacitor compensation", Munich Personal RePEc Archiv, MPRA Paper NO. 102931, 12 June 2020