Summer school on quasi-hereditary algebras, 2016 8/26 - 8/30.

レジュメ: Cellular 代数 和田堅太郎 (信州大学理学部)

cellular 代数についてより詳しく書いたノートを
http://math.shinshu-u.ac.jp/~wada/cellular.pdf
で公開しています。興味のある人はそちらも御覧ください。

この講演では、体 F 上の有限次元代数について考える。(可換環上の代数についても 適用できる部分もあるが、簡単のため、体上のもののみ考えることにする。)

§ 1. CELLULAR 代数

quasi-hereditary 代数は, heredity chain と呼ばれる両側イデアルの列が存在する代数であった。cellular 代数とは, cell chain と呼ばれる両側イデアルの列が存在する代数のことである。そこで, 次のような条件 (*) をみたす有限次元代数を出発点としよう。

条件 (*): 体 \mathbb{F} 上の有限次元代数 \mathscr{A} に対し, ある左 \mathscr{A} -加群の族 $\{\Delta_i | 1 \leq i \leq m\}$ と右 \mathscr{A} - 加群の族 $\{\Delta_i^{\sharp} | 1 \leq i \leq m\}$ が存在し, さらに, \mathscr{A} の両側イデアルの列

$$\mathcal{A} = \mathcal{J}_1 \supset \mathcal{J}_2 \supset \cdots \supset \mathcal{J}_m \supset \mathcal{J}_{m+1} = 0$$

で、各iに対し、(\mathscr{A} , \mathscr{A})-両側加群として、

$$(1.2) \mathcal{J}_i/\mathcal{J}_{i+1} \cong \Delta_i \otimes_{\mathbb{F}} \Delta_i^{\sharp}$$

となるものが存在する。

条件 (*) をみたす代数のことを standardly based 代数 という ([DuRu])。条件 (*) はちょっと特殊な条件のように思われるかもしれないが,実はそうでもないということが,以下の命題より分かる。

命題 1. \mathbb{F} が代数的閉体であるとき, 任意の \mathbb{F} 上の有限次元代数 \mathscr{A} は条件 (\star) をみたす。

注意. 有限次元代数 ℳ に対し, 条件 (*) をみたす左 (右)-加群の族と両側イデアルの列は一意的とは限らない。

補題 2. 体 \mathbb{F} 上の有限次元代数 \mathscr{A} の両側イデアル \mathscr{J} に対し, ある左 \mathscr{A} -加群 Δ と右 \mathscr{A} -加群 Δ^{\sharp} が存在して, $(\mathscr{A},\mathscr{A})$ -両側加群として $\mathscr{J} \cong \Delta \otimes_{\mathbb{F}} \Delta^{\sharp}$ であるとする。このとき, 以下の (i), (ii) のいずれかが必ず成り立つ。

- (i) $\mathcal{J}^2 = 0$.
- (ii) \mathcal{J} は \mathscr{A} の heredity イデアル. さらに, ある原始ベキ等元 $e \in \mathscr{A}$ が存在し, $\mathcal{J} = \mathscr{A} e \mathscr{A}$, 左 \mathscr{A} -加群として $\Delta \cong \mathscr{A} e$, 右 \mathscr{A} -加群として $\Delta^{\sharp} \cong e \mathscr{A}$ となる。

補題 2 より, 条件 (*) をみたす代数 $\mathscr A$ の両側イデアルの列が heredity chain となるための必要十分条件が得られる。

命題 3. 体 ℙ 上の有限次元代数 ৶ が条件 (*) をみたす時,

Ø の両側イデアルの列 (1.1) が heredity chain \Leftrightarrow 全ての i に対し, $(\mathcal{J}_i/\mathcal{J}_{i+1})^2 \neq 0$.

体 $\mathbb F$ 上の有限次元代数 $\mathscr A$ が条件 (\star) をみたすとする。 $\Lambda=\{1,2,\ldots,m\}$ とおき、 Λ 上に自然な順序関係を考える。 $\Lambda_0=\{i\in\Lambda|(\mathcal J_i/\mathcal J_{i+1})^2\neq 0\}$ とおき、 $i\in\Lambda_0$ に対し、 $L_i:=\Delta_i/\operatorname{rad}\Delta_i$ とおく。補題 2 より、 L_i は既約 $\mathscr A$ -加群となる。このとき、以下のことが成り立つ。

定理 4 (cf. [DuRu, Theorem 2.4.1, Proposition 2.4.4]). 体 F 上の有限次元代数 ⋈ が条件 (★) をみたすとする。

- (i) $\{L_i \mid i \in \Lambda_0\} = \{simple \mathscr{A} module\}/\cong$.
- (ii) $i \in \Lambda$, $j \in \Lambda_0$ に対し, $[\Delta_i : L_j] \neq 0 \Rightarrow i \geq j$. さらに, $i \in \Lambda_0$ のとき, $\text{Top } \Delta_i = L_i$ かつ, $[\text{rad } \Delta_i : L_j] \neq 0 \Rightarrow i > j$.
- (iii) $i \in \Lambda_0$ に対し, P_i を L_i の射影被覆とする。このとき, P_i の部分加群の列

$$P_i \supset K_i = M_1 \supset M_2 \supset \cdots \supset M_k \supset M_{k+1} = 0$$

で, $P_i/K_i \cong \Delta_i$, $M_j/M_{j+1} \cong \Delta_{i_j}$ s.t. $i_j > i$ $(1 \le j \le k)$ をみたすものが存在する。

系 5. 条件 (*) をみたす代数 Ø に対し,

 \mathscr{A} -mod が $\{\Delta_i \mid 1 \leq i \leq m\}$ を standard 加群とする最高ウェイト圏である $\Leftrightarrow \Lambda = \Lambda_0$.

命題 3 (系 5) より, 条件 (\star) をみたす代数 \mathscr{A} が, (1.1) を heredity chain とする quasi-hereditary 代数となるには, $\Lambda = \Lambda_0$ となることが必要十分な条件であることが分かった。 (逆に, \mathscr{A} が quasi-hereditary 代数で $\mathbb F$ が代数的閉体のとき, 長さ最大の heredity chain と standard 加群は条件 (\star) を満たす。) この条件を放棄する代わりに, 各 i に対し, 条件 (\star) における左加群 Δ_i と右加群 Δ_i^{\sharp} とを入れ替えるような \mathscr{A} の anti-involution の存在を仮定したものが cellular 代数である。きちんと定義すると以下のようになる。

定義 6 ([KX1]). \mathscr{A} を条件 (*) をみたす代数とする。各 i に対し,ある $\mathscr{A}/\mathcal{J}_{i+1}$ の左イデアル $\Delta_i' \subset \mathcal{J}_i/\mathcal{J}_{i+1}$ が存在し, \mathscr{A} の反自己同型 $\iota: \mathscr{A} \to \mathscr{A}$ で $\iota^2 = \mathrm{Id}_\mathscr{A}$ をみたすもので (anti-involution),さらに,

$$\iota(\mathcal{J}_i) = \mathcal{J}_i, \quad \Delta_i \cong \Delta_i', \quad \Delta_i^{\sharp} \cong \iota(\Delta_i') \quad (1 \le i \le m)$$

であり, 図式

$$\Delta_{i}' \otimes_{\mathbb{F}} \iota(\Delta_{i}') \xrightarrow{\cong} \mathcal{J}_{i}/\mathcal{J}_{i+1}$$

$$x \otimes \iota(y) \mapsto y \otimes \iota(x) \downarrow \qquad \qquad \downarrow \iota$$

$$\Delta_{i}' \otimes_{\mathbb{F}} \iota(\Delta_{i}') \xrightarrow{\cong} \mathcal{J}_{i}/\mathcal{J}_{i+1}$$

が可換になるようなものが存在する時, \mathscr{A} は $\operatorname{cellular}$ 代数 であるという。また, このとき両側イデアルの列 (1.1) を \mathscr{A} の cell chain といい, $\Delta_i'\cong\Delta_i$ $(resp. \ \iota(\Delta_i')\cong\Delta_i^\sharp)$ $(1\leq i\leq m)$ を cell 加群 $(resp. \ \operatorname{cell}$ 加群) という。

 \mathscr{A} を (1.1) を cell chain とする cellular 代数とする。 $\Lambda = \{1, 2, \ldots, m\}$ とし、各 $i \in \Lambda$ に対し、 $\{c_{\mathfrak{t}} | \mathfrak{t} \in \mathcal{T}(i)\}$ を Δ_i の基底とする $(\mathcal{T}(i))$ は添え字集合)。定義より、 $\{\iota(c_{\mathfrak{t}}) | \mathfrak{t} \in \mathcal{T}(i)\}$ は $\Delta_i^{\sharp} = \iota(\Delta_i)$ の基底となる。 $(\mathscr{A}, \mathscr{A})$ -両側加群の準同型

$$\beta_i: \mathcal{J}_i \twoheadrightarrow \mathcal{J}_i/\mathcal{J}_{i+1} \xrightarrow{(1.2)} \Delta_i \otimes_{\mathbb{F}} \iota(\Delta_i)$$

を考え、 $\mathfrak{s},\mathfrak{t}\in\mathcal{T}(i)$ に対し、 $c_{\mathfrak{s}\mathfrak{t}}^{(i)}\in\beta_i^{-1}(c_{\mathfrak{s}}\otimes\iota(c_{\mathfrak{t}}))$ で $\iota(c_{\mathfrak{s}\mathfrak{t}}^{(i)})=c_{\mathfrak{t}\mathfrak{s}}^{(i)}$ をみたすもの $(\operatorname{char}\mathbb{F}=2)$ のときは, $\iota(c_{\mathfrak{st}}^{(i)}) \equiv c_{\mathfrak{ts}}^{(i)} \mod \mathcal{J}_{i+1}$ をみたすもの) を 1 つ取る (定義 6 の可換図式より,そ のようなものが取れる)。定義より、

- (i) $\mathcal{C} = \{c_{\mathfrak{st}}^{(i)} \mid \mathfrak{s}, \mathfrak{t} \in \mathcal{T}(i), i \in \Lambda\}$ は 🛭 の基底である。
 (ii) $c_{\mathfrak{st}}^{(i)} \in \mathcal{C}$ に対し、 $\iota(c_{\mathfrak{st}}^{(i)}) = c_{\mathfrak{ts}}^{(i)}$ (char $\mathbb{F} = 2$ のときは、 $\iota(c_{\mathfrak{st}}^{(i)}) \equiv c_{\mathfrak{ts}}^{(i)} \mod \mathcal{J}_{i+1}$)で
- (iii) $a \in \mathcal{A}, c_{\mathfrak{s}\mathfrak{t}}^{(i)} \in \mathcal{C}$ に対し,

$$(1.3) a \cdot c_{\mathfrak{st}}^{(i)} \equiv \sum_{\mathfrak{u} \in \mathcal{T}(i)} r_{\mathfrak{u}}^{(a,\mathfrak{s})} c_{\mathfrak{ut}}^{(i)} \mod \mathcal{J}_{i+1} \quad (r_{\mathfrak{u}}^{(a,\mathfrak{s})} \in \mathbb{F})$$

となる。ここで、 $r_{\mathfrak{u}}^{(a,\mathfrak{s})}$ は $\mathfrak{t}\in\mathcal{T}(i)$ の取り方に依らずに定まる。 また, $\mathcal{J}_{i+1} = \langle c_{s't'}^{(j)} | \mathfrak{s}', \mathfrak{t}' \in \mathcal{T}(j), j > i \rangle_{\mathbb{F}\text{-span}}$ である。

上記の (i), (ii), (iii) をみたす 🖋 の基底 C のことを 🖋 の cellular 基底 という。 このとき, $i \in \Lambda$ に対し, $\mathfrak{t} \in \mathcal{T}(i)$ を1つ固定して,

$$\Delta_{\mathfrak{t}}(i) := \langle c_{\mathfrak{s}\mathfrak{t}}^{(i)} + \mathcal{J}_{i+1} \, | \, \mathfrak{s} \in \mathcal{T}(i) \rangle_{\mathbb{F}\text{-span}} \subset \mathcal{J}_i / \mathcal{J}_{i+1}$$

とおけば、 Δ_t が与えられれば、 となる。 (よって、cellular 基底が与えられれば、 cell 加群を構成できる。)

実際には、cellular 基底を持つような代数を cellular 代数と呼ぶというのが、[GL] によ る celular 代数のオリジナルな定義である。ここで、[GL] によるオリジナルな定義を与え ておこう。

定義 7 ([GL]). $\mathscr A$ を体 $\mathbb F$ 上の有限次元代数とする。ある有限半順序集合 (Λ, \geq) と有限 集合 $\mathcal{T}(\lambda)$ ($\lambda \in \Lambda$) に対し、 \mathscr{A} の基底 $\mathcal{C} = \{c_{\mathfrak{s}\mathfrak{t}}^{\lambda} | \mathfrak{s}, \mathfrak{t} \in \mathcal{T}(\lambda), \lambda \in \Lambda\}$ が存在し、以下の (i),(ii) をみたすとき, \mathscr{A} は \mathscr{C} を cellular 基底とする cellular 代数であるという:

- (i) \mathscr{A} 上の anti-involution $\iota: \mathscr{A} \to \mathscr{A}$ で, $\iota(c_{\mathfrak{s}\mathfrak{t}}^{\lambda}) = c_{\mathfrak{t}\mathfrak{s}}^{\lambda}$ (char $\mathbb{F} = 2$ のとぎは, $\iota(c_{\mathfrak{s}\mathfrak{t}}^{\lambda}) \equiv$ $c_{ts}^{\lambda} \mod \mathscr{A}(>\lambda)$) をみたすものが存在する。
- (ii) $a \in \mathcal{A}, c_{\mathfrak{s}\mathfrak{t}}^{\lambda} \in \mathcal{C}$ に対し,

$$a \cdot c_{\mathfrak{st}}^{\lambda} \equiv \sum_{\mathfrak{u} \in \mathcal{T}(\lambda)} r_{\mathfrak{u}}^{(a,\mathfrak{s})} c_{\mathfrak{ut}}^{\lambda} \mod \mathscr{A}(>\lambda) \quad (r_{\mathfrak{u}}^{(a,\mathfrak{s})} \in \mathbb{F})$$

が成り立つ。ここで, $r_{\mathfrak{u}}^{(a,\mathfrak{s})}$ は $\mathfrak{t}\in\mathcal{T}(\lambda)$ の取り方に依らずに定まる。

(i), (ii) において, $\mathscr{A}(>\lambda) = \langle c_{s't'}^{\lambda'} | \mathfrak{s}', \mathfrak{t}' \in \mathcal{T}(\lambda), \lambda' \in \Lambda \text{ s.t. } \lambda' > \lambda \rangle_{\mathbb{F}\text{-span}}$ である。

定理 8 ([KX1]). 定義 6 と定義 7 は同値な定義である。

例 9.

- (i) \mathscr{A} を体 \mathbb{F} 上の $n \times n$ 行列のなす行列環 $\mathrm{Mat}_{n \times n}(\mathbb{F})$ とする。 $\Lambda = \{\lambda\}, \, \mathcal{T}(\lambda) = \{1, 2, \ldots, n\}$ とし、 c_{ij}^{λ} を (i, j)-成分が 1 で他は全て 0 である行列とすると、 \mathscr{A} は $\mathcal{C} = \{c_{ij}^{\lambda} \mid i, j \in \mathcal{T}(\lambda)\}$ を cellular 基底とする cellular 代数となる。このとき、列ベクトル (resp. 行ベクトル) が 左 (resp. 右)cell 加群を与える。

$$c_{11}^{\lambda_0} = \alpha_1 \beta_1, \quad \begin{bmatrix} c_{11}^{\lambda_i} & c_{12}^{\lambda_i} \\ c_{21}^{\lambda_i} & c_{22}^{\lambda_i} \end{bmatrix} = \begin{bmatrix} e_i & \alpha_i \\ \beta_i & \beta_i \alpha_i \end{bmatrix} \quad (i = 1, 2), \quad c_{11}^{\lambda_3} = e_3$$

とおけば、 \mathscr{A} は $\mathcal{C} = \{c_{ij}^{\lambda} \mid i, j \in \mathcal{T}(\lambda), \lambda \in \Lambda\}$ を cellular 基底とする cellular 代数となる。このとき、

$$\mathcal{J}(\lambda_i) = \langle c_{ij}^{\lambda_k} \mid i, j \in \mathcal{T}(\lambda_k), \, \lambda_k \ge \lambda_i \rangle_{\mathbb{F}\text{-span}} \quad (0 \le i \le 3)$$

とおけば、 $\mathscr{A} = \mathcal{J}(\lambda_3) \supset \mathcal{J}(\lambda_2) \supset \mathcal{J}(\lambda_1) \supset \mathcal{J}(\lambda_0) \supset 0$ は \mathscr{A} の cell chain となる。このとき、 $\mathcal{J}(\lambda_0)^2 = 0$ であるので、 \mathscr{A} は quasi-hereditary 代数ではない。

(iii) $\mathscr{A} = \mathbb{F}\left(0 \xrightarrow[\beta_0]{\alpha_0} 1 \xrightarrow[\beta_1]{\alpha_1} 2 \xrightarrow[\beta_2]{\alpha_2} 3\right) / \langle \alpha_0 \beta_0, \, \alpha_i \alpha_{i+1}, \, \beta_{i+1} \beta_i, \, \beta_i \alpha_i - \alpha_{i+1} \beta_{i+1} \, | \, i = 0, 1 \rangle_{\text{ideal}}$ とする。 $\Lambda = \{\lambda_0, \lambda_1, \lambda_2, \lambda_3\}$ とし、 Λ 上の順序関係を $\lambda_0 > \lambda_1 > \lambda_2 > \lambda_3$ によって 定める。 また、 $\mathcal{T}(\lambda_0) = \mathcal{T}(\lambda_1) = \mathcal{T}(\lambda_2) = \{1, 2\}, \, \mathcal{T}(\lambda_3) = \{1\}$ とし、

$$\begin{bmatrix} c_{11}^{\lambda_i} & c_{12}^{\lambda_i} \\ c_{21}^{\lambda_i} & c_{22}^{\lambda_i} \end{bmatrix} = \begin{bmatrix} e_i & \alpha_i \\ \beta_i & \beta_i \alpha_i \end{bmatrix} \quad (i = 0, 1, 2), \quad c_{11}^{\lambda_3} = e_3$$

とおけば、 \mathscr{A} は $\mathcal{C} = \{c_{ij}^{\lambda} \mid i, j \in \mathcal{T}(\lambda), \lambda \in \Lambda\}$ を cellular 基底とする cellular 代数となる。このとき、

$$\mathcal{J}(\lambda_i) = \langle c_{ij}^{\lambda_k} \mid i, j \in \mathcal{T}(\lambda_k), \, \lambda_k \ge \lambda_i \rangle_{\mathbb{F}\text{-span}} \quad (0 \le i \le 3)$$

とおけば、 $\mathscr{A} = \mathcal{J}(\lambda_3) \supset \mathcal{J}(\lambda_2) \supset \mathcal{J}(\lambda_1) \supset \mathcal{J}(\lambda_0) \supset \mathcal{J}(\lambda_{-1}) = 0$ は \mathscr{A} の cell chain となる。このとき、 $\mathcal{J}(\lambda_i)/\mathcal{J}(\lambda_{i-1})$ $(0 \le i \le 3)$ はそれぞれ 0 でないべキ等元を含むので、 $(\mathcal{J}(\lambda_i)/\mathcal{J}(\lambda_{i-1}))^2 \ne 0$ である。よって、 \mathscr{A} は quasi-hereditary 代数である。

さらに、 $(e_1+e_2+e_3)$ $\mathscr{A}(e_1+e_2+e_3)$ は (ii) の代数と同型であり、(iii) の代数は (ii) の代数の quasi-hereditary cover となる。

定義6より、以下のことはすぐに分かる。

補題 10. \mathscr{A} を ι を anti-involution とする cellular 代数とすると, 以下のことが成り立つ。

- (i) $\mathscr{A} = \mathcal{J}_1 \supset \mathcal{J}_2 \supset \cdots \supset \mathcal{J}_m \supset \mathcal{J}_{m+1} = 0$ を \mathscr{A} の cell chain とすると, 商代数 $\mathscr{A}/\mathcal{J}_k$ $(2 \leq k \leq m)$ も cellular 代数である。
- (ii) $e \in \mathcal{A}$ を $\iota(e) = e$ であるべキ等元とすると, $e \mathcal{A} e$ も cellular 代数である。

また, 森田同値における cellular 構造の不変性について, 以下のことが知られている。

定理 11 ([KX2, Theorem 8.1, Proposition 8.2]). \mathscr{A} を体 \mathbb{F} (char $\mathbb{F} \neq 2$) 上の有限次元代数とすると、以下のことが成り立つ。

- (i) \mathscr{A} が ι を anti-involution とする cellular 代数であるとき, \mathscr{A} の原始ベキ等元の 各同値類の中に, ι で不変なものが必ず存在する。特に, \mathscr{A} の basic 代数は \mathscr{A} の cellular 構造を引き継ぐ。
- (ii) 🖋 が cellular 代数であることと 🖋 の basic 代数が cellular 代数であることとは 同値である。

演習問題 1.
$$\mathscr{A}=\mathrm{Mat}_{2\times 2}(\mathbb{F})=\left\{\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a,b,c,d\in\mathbb{F}\right\}$$
 とおく。

- (i) 🛮 の原始ベキ等元を全て求めよ。
- (ii) $\Lambda = \{\lambda\}, \mathcal{T}(\lambda) = \{\mathfrak{s},\mathfrak{t}\}, \mathcal{C} = \left\{c_{\mathfrak{s}\mathfrak{s}}^{\lambda} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, c_{\mathfrak{s}\mathfrak{t}}^{\lambda} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, c_{\mathfrak{t}\mathfrak{s}}^{\lambda} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, c_{\mathfrak{t}\mathfrak{t}}^{\lambda} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}\right\}$ とおくと、 \mathscr{A} は \mathscr{C} を cellular 基底とする cellular 代数であることを示せ。(この cellular 基底は、例 9 (i) で与えた cellular 構造とは異なる cellular 構造を与えていることに注意。)
- (iii) ι を (ii) で定めた cellular 基底 $\mathcal C$ によって定まる $\mathscr A$ の anti-involution とする。 char $\mathbb F=2$ であるとき, ι で不変となる $\mathscr A$ の原始べキ等元は存在しないことを示せ。

§ 2. CELLULAR 代数の表現論

この節では、 \mathscr{A} を体 \mathbb{F} 上の ι を anti-involution とする cellular 代数とし、その表現論について述べる。 $\mathscr{A}=\mathcal{J}_1\supset\mathcal{J}_2\supset\cdots\supset\mathcal{J}_m\supset\mathcal{J}_{m+1}=0$ を cell chain とする。また、 Δ_i $(i\in\Lambda=\{1,\ldots,m\})$ を 左 cell-加群とし、 $\{c_{\mathbf{t}}\,|\,\mathbf{t}\in\mathcal{T}(i)\}$ を Δ_i の基底とする。さらに、 $\mathcal{C}=\{c_{\mathfrak{st}}^{(i)}\,|\,\mathfrak{s},\mathbf{t}\in\mathcal{T}(i),\,i\in\Lambda\}$ を付随する \mathscr{A} の cellular 基底とする。(1.3) の $a\in\mathscr{A}$ を $\iota(a)$ に置き換えてから、 ι を施すと、

(2.1)
$$c_{\mathfrak{ts}}^{(i)} \cdot a \equiv \sum_{\mathfrak{u} \in \mathcal{T}(i)} r_{\mathfrak{u}}^{(\iota(a),\mathfrak{s})} c_{\mathfrak{tu}}^{(i)} \mod \mathcal{J}_{i+1}$$

を得る。ここで、 $r_{\mathfrak{u}}^{(\iota(a),\mathfrak{s})}\in\mathbb{F}$ は $\mathfrak{t}\in\mathcal{T}(i)$ の取り方に依らない。 $(1.3),\,(2.1)$ に注意すれば、 $\mathfrak{s},\mathfrak{t},\mathfrak{u},\mathfrak{v}\in\mathcal{T}(i)$ に対し、

$$c_{\mathfrak{u}\mathfrak{s}}^{(i)}c_{\mathfrak{t}\mathfrak{p}}^{(i)} \equiv r_{\mathfrak{s}\mathfrak{t}}c_{\mathfrak{u}\mathfrak{v}}^{(i)} \mod \mathcal{J}_{i+1}$$

となる $r_{\mathfrak{st}} \in \mathbb{F}$ が $\mathfrak{u}, \mathfrak{v} \in \mathcal{T}(i)$ の取り方に依らずに定まる。そこで, cell 加群 Δ_i 上の双線形形式 $\langle , \rangle : \Delta_i \times \Delta_i \to \mathbb{F}$ を

(2.2)
$$c_{\mathfrak{u}\mathfrak{s}}^{(i)}c_{\mathfrak{t}\mathfrak{v}}^{(i)} \equiv \langle c_{\mathfrak{s}}, c_{\mathfrak{t}}\rangle c_{\mathfrak{u}\mathfrak{v}}^{(i)} \mod \mathcal{J}_{i+1} \quad (\mathfrak{s}, \mathfrak{t}, \mathfrak{u}, \mathfrak{v} \in \mathcal{T}(i))$$

によって定める。定義より, $x, y, \in \Delta_i$, $a \in \mathcal{A}$ に対し,

$$\langle x, y \rangle = \langle y, x \rangle, \quad \langle a \cdot x, y \rangle = \langle x, \iota(a) \cdot y \rangle$$

となる。 $\operatorname{rad}_{\langle,\rangle}\Delta_i:=\{x\in\Delta_i\,|\,\langle x,y\rangle=0 \text{ for all }y\in\Delta_i\}$ とおくと (2.3) より, $\operatorname{rad}_{\langle,\rangle}\Delta_i$ は Δ_i の部分 \mathscr{A} -加群となる。また, (2.2) より,

$$\Lambda_0 = \{ i \in \Lambda \mid (\mathcal{J}_i/\mathcal{J}_{i+1})^2 \neq 0 \} = \{ i \in \Lambda \mid \Delta_i \neq \operatorname{rad}_{\langle,\rangle} \Delta_i \}$$

を得る。

命題 12. $i \in \Lambda_0$ に対し, $\operatorname{rad}_{\langle,\rangle} \Delta_i$ は Δ_i の一意的な極大部分 \mathscr{A} -加群である。よって, $\operatorname{rad}_{\langle,\rangle} \Delta_i = \operatorname{rad} \Delta_i$ である $(\operatorname{rad} \Delta_i$ は Δ_i の Jacobson 根基)。

 $L_i := \Delta_i/\operatorname{rad}\Delta_i \ (i\in \Lambda_0)$ は絶対既約である。よって、 $\operatorname{End}_{\mathscr{A}}(L_i)\cong \mathbb{F}$ となる。さらに、 $\{L_i\,|\,i\in\Lambda_0\}=\{simple\,\mathscr{A}\text{-module}\}_{\cong}$ である。

左 \mathscr{A} -加群 M に対し, $\operatorname{Hom}_{\mathbb{F}}(M,\mathbb{F})$ 上に \mathscr{A} の左作用を

$$(a \cdot \varphi)(x) = \varphi(\iota(x) \cdot x) \quad (a \in \mathscr{A}, \ \varphi \in \operatorname{Hom}_{\mathbb{F}}(M, \mathbb{F}), \ x \in M)$$

によって定めることによって, $\operatorname{Hom}_{\mathbb{F}}(M,\mathbb{F})$ は左 \mathscr{A} -加群となる。これを M^{\circledast} と表すと, 完全反変関手 \circledast : \mathscr{A} -mod $\to \mathscr{A}$ -mod $(M \mapsto M^{\circledast})$ を得る。 ι が \mathscr{A} の anti-involution であることに注意すれば, $\circledast \circ \circledast \cong \operatorname{Id}_{\mathscr{A}\text{-mod}}$ を得る。また, $i \in \Lambda$ に対し, $\nabla_i := \Delta_i^{\circledast}$ とおく。

 $i \in \Lambda_0$ に対し, $L_i := \Delta_i / \operatorname{rad}_{\langle , \rangle} \Delta_i$ 上の双線形形式 $\langle \, , \, \rangle_{L_i} L_i \times L_i \to \mathbb{F}$ が

$$\langle \overline{x}, \overline{y} \rangle_{L_i} = \langle x, y \rangle \quad (\overline{x} = x + \operatorname{rad} \Delta_i, \ \overline{y} = y + \operatorname{rad} \Delta_i \in L_i)$$

によって定まる。定義より, $\langle \, , \, \rangle_{L_i}$ は非退化なので,

$$L_i \to L_i^{\circledast} \text{ s.t. } \overline{x} \mapsto \langle \overline{x}, - \rangle$$

は左 ৶-加群の同型写像を与える((2.3)に注意)。さらに、次のことが成り立つ。

命題 13.

- (i) $i \in \Lambda$ に対し、左 \mathscr{A} -加群として、 $\operatorname{Hom}_{\mathbb{F}}(\Delta_i^{\sharp}, \mathbb{F}) \cong \nabla_i$.
- (ii) $i \in \Lambda_0$ に対し、左 \mathscr{A} -加群として、 $L_i^{\circledast} \cong L_i$.
- (iii) $i \in \Lambda$, $j \in \Lambda_0$ に対し, $[\nabla_i : L_j] = [\Delta_i : L_j]$.
- (iv) $i, j \in \Lambda_0$ に対し、 \mathbb{F} -線形空間として $\operatorname{Ext}_{\mathscr{A}}^k(L_i, L_j) \cong \operatorname{Ext}_{\mathscr{A}}^k(L_j, L_i)$ $(k \geq 0)$.

演習問題 2. anti-involution を持った (cellular 代数ではない) 有限次元代数 $\mathscr A$ で, 既約 $\mathscr A$ -加群 L に対し, $L^{\circledast} \not\cong L$ となる例を挙げよ。

cellular 代数 \mathscr{A} に対し, $[\Delta_i:L_j]$ $(i\in\Lambda,\ j\in\Lambda_0)$ を \mathscr{A} の**分解定数**という。また, $i\in\Lambda_0$ に対し, P_i を L_i の射影被覆とし,

$$\mathbf{D} := ([\Delta_i : L_j])_{i \in \Lambda, j \in \Lambda_0}, \quad \mathbf{C} := ([P_i : L_j])_{i,j \in \Lambda_0}$$

とおき, D を \mathscr{A} の分解行列, C を \mathscr{A} の Cartan 行列という。

定理 14 ([GL], [KX3]). cellular 代数 Ø に対し, 以下のことが成り立つ。

- (i) $\{L_i \mid i \in \Lambda_0\} = \{simple \ \mathscr{A} module\}/\cong$.
- (ii) $i \in \Lambda$, $j \in \Lambda_0$ に対し, $[\Delta_i : L_j] \neq 0 \Rightarrow i \geq j$. さらに, $i \in \Lambda_0$ のとき, $\text{Top } \Delta_i = L_i$ かつ, $[\text{rad } \Delta_i : L_j] \neq 0 \Rightarrow i > j$.
- (iii) \mathscr{A} : 半単純 \Leftrightarrow 全ての $i \in \Lambda$ に対し, $\Delta_i = L_i$.
- (iv) $i \in \Lambda_0$ に対し, P_i を L_i の射影被覆とする。このとき, $i,j \in \Lambda_0$ に対し,

$$[P_i:L_j] = \sum_{k \in \Lambda} [\Delta_k:L_i][\Delta_k:L_j].$$

よって, $\mathbf{C} = \mathbf{D}^T \mathbf{D}$ となる。ここで, \mathbf{D}^T は \mathbf{D} の転置行列である。

- (v) e を \mathscr{A} の原始べキ等元とするとき, e と $\iota(e)$ は同値である。
- (vi) \mathscr{A} の Cartan 行列 \mathbf{C} の行列式 $\det \mathbf{C}$ は正の整数である。 さらに, $\det \mathbf{C} = 1 \Leftrightarrow \Lambda = \Lambda_0$ が成り立つ。

注意. 定理 14 の (i)-(iii) は, 定理 4 より従う。よって, 条件 (*) をみたす一般の有限次元代数に対して成り立つ主張である。一方で, 定理 14 の (iv)-(vi) の証明には, 命題 13 を使い, 命題 13 には, cellular 構造を定める anti-involution を用いている。

cellular 代数 🛭 が quasi-hereditary 代数となるための条件として, 以下を得る。

定理 15 ([KX3]). 体 F 上の cellular 代数 𝒜 に対し, 以下のことは全て同値である。

- (i) Ø は quasi-hereditary 代数である。
- (ii) 🖋 の任意の cell chain は heredity chain である。
- (iii) $\mathscr{A} = \mathcal{J}_1 \supset \mathcal{J}_2 \supset \cdots \supset \mathcal{J}_m \supset \mathcal{J}_{m+1} = 0$ を \mathscr{A} の cell chain とすると, 全ての i に対し, $(\mathcal{J}_i/\mathcal{J}_{i+1})^2 \neq 0$ である。
- (iv) $\Lambda = \Lambda_0$.
- (v) Ø の Cartan 行列 C に対し, det C = 1 である。
- (vi) ≠ の大域次元は有限である。

§ 3. 有限表現型である対称 CELLULAR 代数の分類

この節では、代数的閉体 \mathbb{F} (char $\mathbb{F} \neq 2$) 上の有限次元代数に対し、有限表現型である対称代数の中で、さらに cellular 代数となるものを考える。

まず、『上の有限表現型である対称代数の分類については、以下のことが知られている。

定理 16 (cf. [S]). **F** 上の有限次元代数 𝒜 が有限表現型である対称代数ならば, 以下のいずれかと森田同値である。

- (i) 重複度 $m \ge 1$ の例外的頂点 S を持つ Brauer tree T_S^m に付随した Brauer tree 代数 $A(T_S^m)$.
- (ii) 重複度 2 の例外的頂点 S をグラフの端に持つ $Brauer\ tree\ T_S^2$ に付随した変形 $Brauer\ tree\$ 代数 $D(T_S^2)$.
- (iii) Dynkin型の tilted 代数 \mathcal{B} の trivial extension $T(\mathcal{B})$.

そこで、以下の方針で、有限表現型である対称 cellular 代数を分類する。

- Theorem 11 より、 ゑ が cellular 代数ならば、その basic 代数も cellular 構造を引き継ぐので、Theorem 16 の分類に現れる代数の中で、cellular 代数であるものを分類すれば良い。
- Theorem 16 の分類に現れる代数の中で, cellular 代数になるものには, cellular 基底を具体的に与える。
- *𝒜* が cellular 代数であるとすると, §1, §2 より,
 - (a) 任意の既約加群 L, L' に対し, $\operatorname{Ext}_{\mathscr{A}}^k(L, L') \cong \operatorname{Ext}_{\mathscr{A}}^k(L', L)$ $(k \ge 0)$.
 - (b) \mathscr{A} の分解行列 \mathbf{D} , Cartan 行列 \mathbf{C} に対し, $\det \mathbf{C} > 0$ かつ $\mathbf{C} = \mathbf{D}^T \mathbf{D}$ となる。 特に, Cartan 行列 \mathbf{C} に対し, $\mathbf{C} = \mathbf{D}^T \mathbf{D}$ となる非負整数を成分とする行列 \mathbf{D} が存在する。さらに, $\mathbf{D} = (d_{ij})_{i \in \Lambda, j \in \Lambda_0}$ とすると, $d_{ij} \neq 0 \Rightarrow i \geq j$ である。
 - (c) $\mathscr A$ が basic 代数であるとき, 任意のベキ等元 $e \in \mathscr A$ に対し, $e\mathscr A e$ も cellular 代数である。

が成り立つ。よって、Theorem 16 の分類に現れる代数の中で、上のいずれかが成り立たないものは cellular 代数ではない。

以上の方針に従って調べると、以下の結果を得る。

定理 17 ([大松]). 有限表現型である対称 cellular 代数は, Brauer tree

$$T_S^m = \circ$$
 — \circ —

に付随した Brauer tree 代数 $A(T_S^m)$ と森田同値である。

演習問題 3. ((i)-(iii) のヒント: 上の方針の中の (a)-(c) のいずれかに矛盾することを使う)

- (i) Cartan 行列が $\begin{pmatrix} 2 & k \\ k & 2 \end{pmatrix}$ $(k \ge 2)$ となる cellular 代数は存在しないことを示せ。
- (ii) Cartan 行列が $\begin{pmatrix} 4 & 2 & 0 \\ 2 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$, $\begin{pmatrix} 2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 1 & 0 & 2 \end{pmatrix}$, $\begin{pmatrix} 2 & 1 & 0 & 1 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 1 & 0 & 1 & 2 \end{pmatrix}$ であるような cellular

代数は存在しないことを示せ。

- (iii) 分岐をもった Brauer tree に付随する Brauer tree 代数は cellular 代数でないことを示せ。
- (iv) 直線の Brauer tree (例外的頂点 S 及び重複度 m は任意) に付随した Brauer tree 代数は cellular 代数であることを示せ。

§ 4. CELLULAR 代数であることが知られている代数のリスト

(注意) 以下のリストのうちで、cellular 代数であるために若干の条件が必要なものもあります。

- 対称群の群環, 及び, 対称群に付随した Iwahori-Hecke 代数.
- Schur 代数, 及び, q-Schur 代数.
- Coxeter 群に付随した Iwahori-Hecke 代数.
- Ariki-Koike 代数.
- cyclotomic q-Schur 代数.
- generalized q-Schur 代数.
- Brauer 代数.
- Birman-Murakami-Wenzl 代数.
- cyclotomic Birman-Murakami-Wentzl 代数.
- Temperley-Lieb 代数.
- cyclotomic Temperley-Lieb 代数.
- Jones 代数.
- Partition 代数.
- Cyclotomic Nazarov-Wenzl 代数.
- U_q-tilting 加群の自己準同型環.
- A型の cyclotomic Khovanov-Lauda-Rouquier 代数.
- Khovanov's diagram 代数.
- quiver Schur 代数.
- graded Temperley-Lieb 代数.

REFERENCES

- [DuRu] J.Du and H.Rui, Based algebras and standard bases for quasi-hereditary algebras, Trans. A.M.S. **350** (1998), 3207-3235.
- [GL] J.J.Graham and G.I.Lehrer, Cellular algebras, Invent. Math. 123 (1996), 1-34.
- [KX1] S.König and C.C.Xi, On the structure of cellular algebras, Canadian Math. Soc. Conference Proceedings vol. 24 (1998), 365-386.
- [KX2] S.König and C.C.Xi, Cellular algebras: inflations and Morita equivalences, J. London Math. Soc. 60 (1999), 700-722.
- [KX3] S.König and C.C.Xi, When is a cellular algebra quasi-hereditary?, Math. Ann.315 (1999), 281-
- [大松] 大松 美咲, 有限表現型である対称 cellular 代数の分類, 修士論文 (2014).
- [S] A.Skowroński, Selfinjective algebras: finite type and tame type, Contemporary Math. 406 (2006), 169-238.