Multi layer percepton

```
In [1]: import pandas as pd
    import matplotlib.pyplot as p
    from sklearn.model_selection import train_test_split
    from sklearn import metrics
    from sklearn.neural_network import MLPClassifier
```

```
In [2]: dataset = pd.read_csv('wifi_localization.csv', sep='\t', header=0)
dataset
```

Out[2]:

	atb1	atb2	atb3	atb4	atb5	atr6	atb7	lable
0	-64	-56	-61	-66	-71	-82	-81	1
1	-68	-57	-61	-65	-71	-85	-85	1
2	-63	-60	-60	-67	-76	-85	-84	1
3	-61	-60	-68	-62	-77	-90	-80	1
4	-63	-65	-60	-63	-77	-81	-87	1
1995	-59	-59	-48	-66	-50	-86	-94	4
1996	-59	-56	-50	-62	-47	-87	-90	4
1997	-62	-59	-46	-65	-45	-87	-88	4
1998	-62	-58	-52	-61	-41	-90	-85	4
1999	-59	-50	-45	-60	-45	-88	-87	4

2000 rows × 8 columns

```
In [3]: |#dataset.head()
        #dataset.shape
        #dataset.info()
        #print(dataset['t'])
        #y=(dataset['t'])
        #x=dataset[['a','b','c','d','e','f','g','h','i','j','k','l']]
        #print(x)
        #print(y)
        #dataset.hist(bins=50, figsize=(20,15))
        #p.show()
        train_set, test_set = train_test_split(dataset, test_size=0.2, random_state=40
        #train_set.shape
        #test set.shape
        #train set.head
        train_set_att = train_set.drop(['lable'], axis=1)
        train_set_t = train_set['lable']
        test_set_att = test_set.drop(['lable'], axis=1)
        test_set_t = test_set['lable']
        print("x_train: ",train_set_att.shape)
        print("x_test: ",test_set_att.shape)
        print("y_train: ",train_set_t.shape)
        print("y_test: ",test_set_t.shape)
        from sklearn.neural_network import MLPClassifier
        mlp = MLPClassifier(hidden layer sizes=(10, 10, 10), max iter=1000)
        mlp.fit(train_set_att, train_set_t.values.ravel())
        y_pred = mlp.predict(test_set_att)
        print("Accuracy:",metrics.accuracy_score(test_set_t, y_pred))
        x_train: (1600, 7)
```

x_train: (1600, 7 x_test: (400, 7) y_train: (1600,) y_test: (400,) Accuracy: 0.99