

Foundations of Machine Learning African Masters in Machine Intelligence

Imperial College London

Logistic Regression

Marc Deisenroth

Quantum Leap Africa African Institute for Mathematical Sciences, Rwanda

Department of Computing Imperial College London

♥ @mpd37 mdeisenroth@aimsammi.org

November 5, 2018

Learning Material

- Pattern Recognition and Machine Learning, Chapter 4 (Bishop, 2006)
- Machine Learning: A Probabilistic Perspective, Chapter 8 (Murphy, 2012)

Binary Classification

- ▶ Supervised learning setting with inputs $x_n \in \mathbb{R}^D$ and binary targets $y_n \in \{0,1\}$ belonging to classes C_1, C_2 .
- Objective: Find a decision boundary/surface that separates the two classes as well as possible

▶ Binary classification problem with two classes C_1 , C_2 .

- ▶ Binary classification problem with two classes C_1 , C_2 .
- ▶ Posterior class probability $p(y = 1|x) = p(C_1|x)$:

$$p(\mathcal{C}_1|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x})},$$

$$p(\mathbf{x}) = p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1) + p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)$$

- ▶ Binary classification problem with two classes C_1 , C_2 .
- ▶ Posterior class probability $p(y = 1|x) = p(C_1|x)$:

$$p(C_1|\mathbf{x}) = \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x})},$$

$$p(\mathbf{x}) = p(\mathbf{x}|C_1)p(C_1) + p(\mathbf{x}|C_2)p(C_2)$$

Define the log-ratio of the posteriors (log-odds)

$$a := \log \frac{p(\mathcal{C}_1|\mathbf{x})}{p(\mathcal{C}_2|\mathbf{x})} = \log \frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)}$$

- ▶ Binary classification problem with two classes C_1 , C_2 .
- ▶ Posterior class probability $p(y = 1|x) = p(C_1|x)$:

$$p(C_1|\mathbf{x}) = \frac{p(\mathbf{x}|C_1)p(C_1)}{p(\mathbf{x})},$$

$$p(\mathbf{x}) = p(\mathbf{x}|C_1)p(C_1) + p(\mathbf{x}|C_2)p(C_2)$$

Define the log-ratio of the posteriors (log-odds)

$$a := \log \frac{p(\mathcal{C}_1|\mathbf{x})}{p(\mathcal{C}_2|\mathbf{x})} = \log \frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)}$$

Then

$$\sigma(a) := \frac{1}{1 + \exp(-a)} = ?$$
logistic sigmoid

▶ Discuss with your neighbors

Logistic Sigmoid

$$\begin{split} a := \log \frac{p(\mathcal{C}_1|\mathbf{x})}{p(\mathcal{C}_2|\mathbf{x})} = \log \frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)} \\ \sigma(a) := \frac{1}{1 + \exp(-a)} = p(\mathcal{C}_1|\mathbf{x}) \quad \textbf{Logistic sigmoid} \end{split}$$

Logistic Sigmoid

$$\begin{aligned} a := \log \frac{p(\mathcal{C}_1|\mathbf{x})}{p(\mathcal{C}_2|\mathbf{x})} &= \log \frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)} \\ \sigma(a) := \frac{1}{1 + \exp(-a)} &= p(\mathcal{C}_1|\mathbf{x}) \quad \textbf{Logistic sigmoid} \end{aligned}$$

• Assign the label for C_1 to x if $\sigma(a) = p(C_1|x) = p(y=1|x) \ge 0.5$

Generalization to the Multiclass Setting

▶ Assume we are given *K* classes. Then

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{\sum_{j=1}^{K} p(\mathbf{x}|C_j)p(C_j)}$$

is the generalization of the logistic sigmoid to *K* classes.

Softmax function, Boltzmann distribution, normalized exponential

Assume Gaussian class conditionals

$$p(\mathbf{x}|\mathcal{C}_k) = \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma})$$

where the covariance matrix Σ is shared across all K classes.

Assume Gaussian class conditionals

$$p(\boldsymbol{x}|\mathcal{C}_k) = \mathcal{N}(\boldsymbol{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma})$$

where the covariance matrix Σ is shared across all K classes.

▶ For K = 2 we get (Bishop, 2006)

$$\begin{split} & p(\mathcal{C}_1|\mathbf{x}) = \sigma(\mathbf{\theta}^{\top}\mathbf{x} + \theta_0) \,, \\ & \mathbf{\theta} := \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2) \,, \quad \theta_0 := \frac{1}{2} \Big(\boldsymbol{\mu}_2^{\top}\mathbf{\Sigma}^{-1}\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1^{\top}\mathbf{\Sigma}^{-1}\boldsymbol{\mu}_1 \Big) + \log \frac{p(\mathcal{C}_1)}{p(\mathcal{C}_2)} \end{split}$$

Assume Gaussian class conditionals

$$p(\boldsymbol{x}|\mathcal{C}_k) = \mathcal{N}(\boldsymbol{x} \,|\, \boldsymbol{\mu}_k, \, \boldsymbol{\Sigma})$$

where the covariance matrix Σ is shared across all K classes.

► For K = 2 we get (Bishop, 2006)

$$\begin{split} & p(\mathcal{C}_1|\mathbf{x}) = \sigma(\mathbf{\theta}^{\top}\mathbf{x} + \theta_0) \,, \\ & \mathbf{\theta} := \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2) \,, \quad \theta_0 := \frac{1}{2} \Big(\boldsymbol{\mu}_2^{\top}\mathbf{\Sigma}^{-1}\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1^{\top}\mathbf{\Sigma}^{-1}\boldsymbol{\mu}_1 \Big) + \log \frac{p(\mathcal{C}_1)}{p(\mathcal{C}_2)} \end{split}$$

 \blacktriangleright Argument of the sigmoid is linear in x

Assume Gaussian class conditionals

$$p(\boldsymbol{x}|\mathcal{C}_k) = \mathcal{N}(\boldsymbol{x} \,|\, \boldsymbol{\mu}_k, \, \boldsymbol{\Sigma})$$

where the covariance matrix Σ is shared across all K classes.

► For K = 2 we get (Bishop, 2006)

$$\begin{split} & p(\mathcal{C}_1|\mathbf{x}) = \sigma(\mathbf{\theta}^{\top}\mathbf{x} + \theta_0) \,, \\ & \mathbf{\theta} := \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2) \,, \quad \theta_0 := \frac{1}{2} \Big(\boldsymbol{\mu}_2^{\top} \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_2 - \boldsymbol{\mu}_1^{\top} \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_1 \Big) + \log \frac{p(\mathcal{C}_1)}{p(\mathcal{C}_2)} \end{split}$$

- \rightarrow Argument of the sigmoid is linear in x
- \blacktriangleright Decision boundary is a surface along which the posterior class probabilities $p(\mathcal{C}_k|x)$ are constant
- \blacktriangleright Decision boundary is a linear function of x

Assume Gaussian class conditionals

$$p(\mathbf{x}|\mathcal{C}_k) = \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma})$$

where the covariance matrix Σ is shared across all K classes.

► For K = 2 we get (Bishop, 2006)

$$\begin{split} & p(\mathcal{C}_1|\mathbf{x}) = \sigma(\mathbf{\theta}^{\top}\mathbf{x} + \theta_0) \,, \\ & \mathbf{\theta} := \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2) \,, \quad \theta_0 := \frac{1}{2} \Big(\boldsymbol{\mu}_2^{\top}\mathbf{\Sigma}^{-1}\boldsymbol{\mu}_2 - \boldsymbol{\mu}_1^{\top}\mathbf{\Sigma}^{-1}\boldsymbol{\mu}_1 \Big) + \log \frac{p(\mathcal{C}_1)}{p(\mathcal{C}_2)} \end{split}$$

- \rightarrow Argument of the sigmoid is linear in x
- \blacktriangleright Decision boundary is a surface along which the posterior class probabilities $p(\mathcal{C}_k|x)$ are constant
- \rightarrow Decision boundary is a linear function of x
- ▶ If covariances are not shared: Quadratic decision boundaries

likelihood

► Bernoulli likelihood $y \in \{0,1\}$

$$p(y|x, \theta) = \text{Ber}(y|\mu(x)),$$

$$\mu(\mathbf{x}) = p(\mathbf{y} = 1|\mathbf{x}) = \sigma(\mathbf{\theta}^{\mathsf{T}}\mathbf{x})$$

► Bernoulli likelihood $y \in \{0, 1\}$ $p(y|x, \theta) = \text{Ber}(y|\mu(x))$, $\mu(x) = p(y = 1|x) = \sigma(\theta^{\top}x)$

Label *y* depends on input location *x*, i.e., $\mu(x)$ needs to be a function of *x*

► Bernoulli likelihood $y \in \{0, 1\}$ $p(y|x, \theta) = \text{Ber}(y|\mu(x))$, $\mu(x) = p(y = 1|x) = \sigma(\theta^{\top}x)$

- Label *y* depends on input location *x*, i.e., $\mu(x)$ needs to be a function of *x*
- ▶ Idea: Linear model $\theta^{\top}x$ (as in linear regression)

► Bernoulli likelihood $y \in \{0,1\}$ $p(y|x,\theta) = \text{Ber}(y|\mu(x))$, $\mu(x) = p(y=1|x) = \sigma(\theta^{\top}x)$

- Label *y* depends on input location *x*, i.e., $\mu(x)$ needs to be a function of *x*
- ▶ Idea: Linear model $\theta^{\top}x$ (as in linear regression)
- Ensure $0 \le \mu(x) \le 1$

► Bernoulli likelihood $y \in \{0, 1\}$ $p(y|x, \theta) = \text{Ber}(y|\mu(x)),$ $\mu(x) = p(y = 1|x) = \sigma(\theta^{\top}x)$

- Label *y* depends on input location *x*, i.e., $\mu(x)$ needs to be a function of *x*
- ▶ Idea: Linear model $\theta^{\top}x$ (as in linear regression)
- Ensure $0 \le \mu(x) \le 1$
- Squash the linear combination through a function that guarantees this: $u(x) = \sigma(\theta^{T}x)$

$$\implies p(y|x, \theta) = \operatorname{Ber}(y|\sigma(\theta^{\top}x))$$

• Estimate model parameters θ (MLE or MAP)

- Estimate model parameters θ (MLE or MAP)
- ▶ Likelihood (training data X, y):

- Estimate model parameters θ (MLE or MAP)
- ► Likelihood (training data *X*, *y*):

$$p(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{\theta}) = \prod_{n=1}^{N} \operatorname{Ber}(y_n | \sigma(\boldsymbol{\theta}^{\top} \boldsymbol{x}_n)) = \prod_{n=1}^{N} (\sigma(\boldsymbol{\theta}^{\top} \boldsymbol{x}_n))^{y_n} (1 - \sigma(\boldsymbol{\theta}^{\top} \boldsymbol{x}_n))^{1 - y_n}$$
$$= \prod_{n=1}^{N} \mu_n^{y_n} (1 - \mu_n)^{1 - y_n}$$
$$\mu_n := \sigma(\boldsymbol{\theta}^{\top} \boldsymbol{x}_n)$$

► Negative log likelihood (cross-entropy):

- Estimate model parameters θ (MLE or MAP)
- ► Likelihood (training data *X*, *y*):

$$p(\mathbf{y}|\mathbf{X}, \boldsymbol{\theta}) = \prod_{n=1}^{N} \operatorname{Ber}(y_n | \sigma(\boldsymbol{\theta}^{\top} \mathbf{x}_n)) = \prod_{n=1}^{N} (\sigma(\boldsymbol{\theta}^{\top} \mathbf{x}_n))^{y_n} (1 - \sigma(\boldsymbol{\theta}^{\top} \mathbf{x}_n))^{1 - y_n}$$
$$= \prod_{n=1}^{N} \mu_n^{y_n} (1 - \mu_n)^{1 - y_n}$$
$$\mu_n := \sigma(\boldsymbol{\theta}^{\top} \mathbf{x}_n)$$

► Negative log likelihood (cross-entropy):

$$NLL = -\sum_{n=1}^{N} y_n \log \mu_n + (1 - y_n) \log(1 - \mu_n)$$

▶ Derivative of sigmoid w.r.t. its argument:

$$\sigma(z_n) = \frac{1}{1 + \exp(-z_n)}$$

$$\implies \frac{d\sigma(z_n)}{dz_n} =$$

▶ Derivative of sigmoid w.r.t. its argument:

$$\sigma(z_n) = \frac{1}{1 + \exp(-z_n)}$$

$$\implies \frac{d\sigma(z_n)}{dz_n} = \frac{\exp(-z_n)}{(1 + \exp(-z_n))^2} = \sigma(z_n)(1 - \sigma(z_n))$$

10

▶ Derivative of sigmoid w.r.t. its argument:

$$\sigma(z_n) = \frac{1}{1 + \exp(-z_n)}$$

$$\implies \frac{d\sigma(z_n)}{dz_n} = \frac{\exp(-z_n)}{(1 + \exp(-z_n))^2} = \sigma(z_n)(1 - \sigma(z_n))$$

► Gradient of the negative log-likelihood:

$$\frac{\mathrm{d}NLL}{\mathrm{d}\theta} = -\sum_{n=1}^{N} \left(y_n \frac{1}{\mu_n} - (1 - y_n) \frac{1}{1 - \mu_n} \right) \frac{\mathrm{d}\mu_n}{\mathrm{d}\theta}$$

$$\frac{\mathrm{d}\mu_n}{\mathrm{d}\theta} =$$

10

▶ Derivative of sigmoid w.r.t. its argument:

$$\sigma(z_n) = \frac{1}{1 + \exp(-z_n)}$$

$$\implies \frac{d\sigma(z_n)}{dz_n} = \frac{\exp(-z_n)}{(1 + \exp(-z_n))^2} = \sigma(z_n)(1 - \sigma(z_n))$$

► Gradient of the negative log-likelihood:

$$\frac{\mathrm{d}NLL}{\mathrm{d}\boldsymbol{\theta}} = -\sum_{n=1}^{N} \left(y_n \frac{1}{\mu_n} - (1 - y_n) \frac{1}{1 - \mu_n} \right) \frac{\mathrm{d}\mu_n}{\mathrm{d}\boldsymbol{\theta}}$$
$$\frac{\mathrm{d}\mu_n}{\mathrm{d}\boldsymbol{\theta}} = \frac{\mathrm{d}}{\mathrm{d}\boldsymbol{\theta}} \sigma(\underbrace{\boldsymbol{\theta}^{\top} \boldsymbol{x}_n}_{z_n}) = \frac{\mathrm{d}\sigma(z_n)}{\mathrm{d}z_n} \frac{\mathrm{d}z_n}{\mathrm{d}\boldsymbol{\theta}} = \sigma(z_n) (1 - \sigma(z_n)) \boldsymbol{x}_n^{\top}$$

$$\frac{\mathrm{d}NLL}{\mathrm{d}\theta} = (\mu - y)^{\top} X$$
$$X = [x_1, \dots, x_N]^{\top}$$

- ► No closed-form solution ➤ Gradient descent methods
- Unique global optimum exists

Example

$$p(y|\mathbf{x}, \boldsymbol{\theta}) = \text{Ber}(\sigma(\theta_0 + \theta_1 x_1 + \theta_2 x_2))$$

12

Comments on Maximum Likelihood

- ► If the classes are linearly separable, the decision boundary is not unique and the likelihood will tend to infinity
- Overfitting is a again a problem when we work with features
 φ(x) instead of x
- Maximum a posteriori estimation can address these issues to some degree

MAP Estimation

► Log-posterior:

$$\log p(\theta|X, y) = \log p(y|X, \theta) + \log p(\theta) + \text{ const}$$

14

- ▶ No closed-form solution for θ_{MAP}
 - ▶ Numerical maximization of the log-posterior

Predictive Labels

$$p(y = 1 | \boldsymbol{x}, \boldsymbol{\theta}_{\text{MAP}}) = \text{Ber}(\sigma(\boldsymbol{x}^{\top} \boldsymbol{\theta}_{\text{MAP}}))$$

Bayesian Logistic Regression

Objective

For a given (i.i.d.) dataset $\mathcal{D} := \{(x_1, y_1), \dots, (x_N, y_N)\}$ compute a posterior distribution on the parameters θ

16

Bayesian Logistic Regression

Objective

For a given (i.i.d.) dataset $\mathcal{D} := \{(x_1, y_1), \dots, (x_N, y_N)\}$ compute a posterior distribution on the parameters θ

- Choose Gaussian prior $p(\theta) = \mathcal{N}(\theta | \mathbf{0}, S_0)$
- ► Posterior (via Bayes' theorem):

Bayesian Logistic Regression

Objective

For a given (i.i.d.) dataset $\mathcal{D} := \{(x_1, y_1), \dots, (x_N, y_N)\}$ compute a posterior distribution on the parameters θ

- Choose Gaussian prior $p(\theta) = \mathcal{N}(\theta | \mathbf{0}, S_0)$
- ► Posterior (via Bayes' theorem):

$$p(\boldsymbol{\theta}|\mathcal{D}) = \frac{p(\boldsymbol{\theta})p(\boldsymbol{y}|\boldsymbol{\theta}, \boldsymbol{X})}{p(\boldsymbol{y}|\boldsymbol{X})} = \frac{\mathcal{N}(\boldsymbol{\theta}|\boldsymbol{0}, \boldsymbol{S}_0) \prod_{n=1}^{N} \text{Ber}(\sigma(\boldsymbol{x}_n^{\top}\boldsymbol{\theta}))}{\int \mathcal{N}(\boldsymbol{\theta}|\boldsymbol{0}, \boldsymbol{S}_0) \prod_{n=1}^{N} \text{Ber}(\sigma(\boldsymbol{x}_n^{\top}\boldsymbol{\theta})) d\boldsymbol{\theta}}$$

Bayesian Logistic Regression

Objective

For a given (i.i.d.) dataset $\mathcal{D} := \{(x_1, y_1), \dots, (x_N, y_N)\}$ compute a posterior distribution on the parameters θ

- Choose Gaussian prior $p(\theta) = \mathcal{N}(\theta | \mathbf{0}, S_0)$
- ► Posterior (via Bayes' theorem):

$$p(\boldsymbol{\theta}|\mathcal{D}) = \frac{p(\boldsymbol{\theta})p(\boldsymbol{y}|\boldsymbol{\theta}, \boldsymbol{X})}{p(\boldsymbol{y}|\boldsymbol{X})} = \frac{\mathcal{N}(\boldsymbol{\theta}|\boldsymbol{0}, \boldsymbol{S}_0) \prod_{n=1}^{N} \text{Ber}(\sigma(\boldsymbol{x}_n^{\top}\boldsymbol{\theta}))}{\int \mathcal{N}(\boldsymbol{\theta}|\boldsymbol{0}, \boldsymbol{S}_0) \prod_{n=1}^{N} \text{Ber}(\sigma(\boldsymbol{x}_n^{\top}\boldsymbol{\theta})) d\boldsymbol{\theta}}$$

- ► No analytic solution
 - ▶ Approximations necessary

► Objective: Approximate an unknown distribution

$$p(\mathbf{x}) \propto \exp(-E(\mathbf{x})) =: \tilde{p}(\mathbf{x})$$

with a Gaussian distribution q(x).

► Objective: Approximate an unknown distribution

$$p(\mathbf{x}) \propto \exp(-E(\mathbf{x})) =: \tilde{p}(\mathbf{x})$$

with a Gaussian distribution q(x).

► Idea: Taylor-series expansion of $-\log \tilde{p}(x) = E(x)$ around the mode x^* (MAP estimate)

► Objective: Approximate an unknown distribution

$$p(\mathbf{x}) \propto \exp(-E(\mathbf{x})) =: \tilde{p}(\mathbf{x})$$

with a Gaussian distribution q(x).

► Idea: Taylor-series expansion of $-\log \tilde{p}(x) = E(x)$ around the mode x^* (MAP estimate)

$$-\log \tilde{p}(x) \approx E(x^*) + J(x^*)(x - x^*) + \frac{1}{2}(x - x_*)^{\top} H(x_*)(x - x^*),$$
L: Leobian H: Hessian

J: Jacobian, H: Hessian

► Objective: Approximate an unknown distribution

$$p(\mathbf{x}) \propto \exp(-E(\mathbf{x})) =: \tilde{p}(\mathbf{x})$$

with a Gaussian distribution q(x).

► Idea: Taylor-series expansion of $-\log \tilde{p}(x) = E(x)$ around the mode x^* (MAP estimate)

$$-\log \tilde{p}(x) \approx E(x^*) + J(x^*)(x - x^*) + \frac{1}{2}(x - x_*)^{\top} H(x_*)(x - x^*),$$

17

J: Jacobian, H: Hessian

► $J(x^*) = \mathbf{0}^{\top}$ because x^* is a stationary point (mode) of $\log \tilde{p}$ $\tilde{p}(x) \approx \exp(-E(x^*)) \exp(-\frac{1}{2}(x - x_*)^{\top} H(x_*)(x - x^*))$ $\propto \mathcal{N}(x \mid x^*, H^{-1}) =: q(x)$

Laplace Approximation: Example

Unnormalized distribution:

$$\tilde{p}(x) = \exp(-\frac{1}{2}x^2)\sigma(ax+b)$$

▶ Discuss with your neighbors

Laplace Approximation: Example

Unnormalized distribution:

$$\begin{split} \tilde{p}(x) &= \exp(-\frac{1}{2}x^2)\sigma(ax+b) \\ q(x) &= \mathcal{N}\left(x \mid x^*, \, (1+a^2\mu_*(1-\mu_*))^{-1}\right) \,, \quad \mu_* := \sigma(ax_*+b) \end{split}$$

Logistic Regression Marc Deisenroth @AIMS, Rwanda, November 5, 2018 18

Laplace Approximation: Properties

- Only need to know the unnormalized distribution \tilde{p}
- ► Finding the mode: numerical methods (optimization problem)
- Captures only local properties of the distribution
- Multimodal distributions: Approximation will be different depending on which mode we are in (not unique)

Laplace Approximation: Properties

- Only need to know the unnormalized distribution \tilde{p}
- ► Finding the mode: numerical methods (optimization problem)
- ► Captures only local properties of the distribution
- Multimodal distributions: Approximation will be different depending on which mode we are in (not unique)
- For large datasets, we would expect the posterior to converge to a Gaussian (central limit theorem)
 - >> Laplace approximation should work well in this case

Posterior Approximation

- ► Left: true parameter posterior
- ► Right: Laplace approximation

Posterior Decision Boundary

▶ Parameter samples θ_i drawn from Laplace approximation $q(\theta)$ of posterior $p(\theta|X)$

21

▶ Decision boundary drawn for each θ_i

Predictions

Assume a Gaussian distribution $p(\theta) = \mathcal{N}(\mu, \Sigma)$ on the parameters (e.g., Laplace approximation of the posterior). Then:

$$p(y|x) = \int p(y|x, \theta)p(\theta)d\theta$$
$$= \int \text{Ber}(\sigma(\theta^{\top}x))\mathcal{N}(\theta \mid \mu, \Sigma)d\theta$$
$$= \mathbb{E}_{\theta}[\text{Ber}(\sigma(\theta^{\top}x))]$$

Predictions

Assume a Gaussian distribution $p(\theta) = \mathcal{N}(\mu, \Sigma)$ on the parameters (e.g., Laplace approximation of the posterior). Then:

$$p(y|x) = \int p(y|x, \theta)p(\theta)d\theta$$
$$= \int \text{Ber}(\sigma(\theta^{\top}x))\mathcal{N}(\theta \mid \mu, \Sigma)d\theta$$
$$= \mathbb{E}_{\theta}[\text{Ber}(\sigma(\theta^{\top}x))]$$

▶ Integral intractable

Predictions

Assume a Gaussian distribution $p(\theta) = \mathcal{N}(\mu, \Sigma)$ on the parameters (e.g., Laplace approximation of the posterior). Then:

$$p(y|x) = \int p(y|x, \theta)p(\theta)d\theta$$
$$= \int \text{Ber}(\sigma(\theta^{\top}x))\mathcal{N}(\theta \mid \mu, \Sigma)d\theta$$
$$= \mathbb{E}_{\theta}[\text{Ber}(\sigma(\theta^{\top}x))]$$

▶ Integral intractable

- "Plug-in approximation": use posterior mean (MAP estimate) $\mathbb{E}[\theta|X,y]$
- ▶ Monte Carlo estimate (sampling from $p(\theta)$ is easy)

Predictions (2)

- 1. Samples from Laplace approximation of the posterior
- 2. Monte-Carlo estimate of label prediction

Comparison with MAP Predictions

Predictive labels

Summary

- ► Binary classification problems
- ▶ Linear model with non-Gaussian likelihood
- ► Implicit modeling assumptions
- ► Parameter estimation (MLE, MAP) no longer in closed form
- Bayesian logistic regression with Laplace approximation of the posterior

References I

- [1] C. M. Bishop. Pattern Recognition and Machine Learning. Information Science and Statistics. Springer-Verlag, 2006.
- [2] K. P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge, MA, USA, 2012.