化学原理 Chemical Principles

(9)

内容回顾

> 共价键的键型

σ键和π键

配位共价键

化学活泼性 重叠方式 对称情况 重叠程度 键能 σ键 端向重叠 沿链轴呈 大 大 不活泼 圆柱型对称 头碰头 π键 侧向重叠 通过键的 小 活泼 肩并肩 平面对称 易反应

 $C \stackrel{\longleftarrow}{=} O \quad C: 2s^2 2p^2$

 $O: 2s^2 2p^4$

内容回顾

> 轨道杂化理论

- ▶ 定义:不同类型、能量相近杂化成同等数量、能量相同
- ▶ 一般过程:激发、杂化、轨道重叠
- ▶ 杂化轨道的量子力学基础: 能量最低原理

常见的杂化轨道形式: sp、sp²、sp³、sp³d、sp³d²、dsp²、d²sp³

四、轨道杂化理论

内容回顾

- > 等性杂化和不等性杂化
- > 杂化轨道理论的应用

C₂H₄(sp²杂化)

C₂H₂(sp杂化)

离域┰键

> 价层电子对互斥理论

第一规则

第二规则

第三规则

第四规则

2. 配体提供的价电子数 H、CI、F提供1; O、S提供0

CO₃²⁻: 中心原子为C,

价层电子对数: [4+0-(-2)]÷2=3

0和S在与中心原子成键(C)的时候,要形成八隅体构型,需要得到一对电子

碳的一对电子给一号氧

碳从外面得一对电子给三号氧

碳的一对电子给二号氧

F和CI形成配位键的时候是提供价电子的,外层7个价电子,提供一个电子与中心原子成键,成键不一样

第二规则: 孤对电子(LP) 在形成体的球面上所占空间比键合电子(BP) 大,各价层电子对间斥力大小有如下顺序:

孤对电子—孤对电子 > 孤对电子—键合电子 > 键合电子—键 合电子

利用这一规则能够很好地说明某些分子诸如氨分子、水分子的结构和键角:

使价层电子对间的斥力最小,确定孤对电子的位置,推断分子的空间构型。

价电子对间斥力大小的顺序为: 孤对一孤对 >> 孤对一成键 > 成键一成键

第三规则:随着配体电负性增大,键合电子对所占区域逐渐减小,从而引起键角缩小

分子	键角	键角变化情况
NH_3	$\approx 107^{\circ}$	↓减小
NF ₃	102°	
$P\mathbf{F}_3$	98°	↑减小
PCl ₃	100°	
PBr ₃	102°	
AsF ₃	96°	↑减小
AsCl ₃	98°	
AsBr ₃	100°	

第四规则: 多重键所占空间大于单键:

具体: 叁重键 > 双键 > 单键。

2个价层电子对

 $[Ag(NH_3)_2]^+$, $BeCl_2$, Hg_2Cl_2

P-M-P

3个价层电子对

 $SnCl_2$, $PbCl_2$

弯曲型

 BF_3 , $[Hgl_3]$ -, Gal_3

平面三角形

3个价层电子对

 $SnCl_2$, $PbCl_2$

弯曲型

 BF_3 , $[Hgl_3]$ -, Gal_3

平面三角形

4个价层电子对

5个价层电子对

 PCl_5 、 $[SnCl_5]$ -、 $Fe(CO)_5$ $TeCl_4$ 、 SF_4 、 R_2TeCl_2 变形四面体:

CIF₃、BrF₃、C₆H₅ICI₂ 变形T型:

6个价层电子对

 XeF_4 , $[ICl_4]$

平面正方形:

IF₅、XeOF₄

四方锥:

八面体:

当VSEP数分别为7对、8对和 9对时,价层电子对的空间排 布则分别为

- 一面心(单加冠)八面体
- 四方反棱柱体
- 三面心(三冠)三棱柱体

中心原子没有孤对电子

电子对的空间构型即为分子的空间构型

AX₂型 (BeCl₂) 直线型

AX₃型 (BF₃) 平面正三角形

AX₄型 (CH₄) 正四面体

AX₅型 (PCl₅) 双三角锥形

AX₆型 (SF₆) 正八面体型

中心原子有孤对电子

根据斥力规则确定孤对电子的位置,分 子的空间构型为成键电子对的空间构型。 由于孤对电子只受一个原子的吸引,电

子云偏向中心原子,对其它价电子有更强的排斥作用,而使键角和分子构型有所改变。

例:
$$CH_4$$
 $-C -N$: $(2s^22p^3)$... $-0 - (2s^22p^4)$...

表 9-2 各种分子构型

价 层 电子对数	电子对空间排布	分子 类型	孤对电 子对数	分子构型	例
2	直线形	AX ₂	0	直线形 xx	BeCl ₂
3	三角形 120°	AX ₃	0	三角形 X X	BF ₃
		: AX ₂	1	V 形 (弯曲形) X X	SnCl ₂

	四面体	AX4	0	X X—A—X 四面体 X	CCl ₄
4	100	: AX ₃	1	三角锥 X X	NF ₃
5. 0.		∶ÄX₂	2	V形 x → X	H ₂ O
		AX,	0	三角双锥 X X X	PCl ₅

VSEPR理论推断分子几何构型步骤

- 1. 确定中心原子的价电子数
- 2. 配体提供的价电子数

H、CI、F提供1; O、S提供0

- 3. 考虑分子整体带电(负电加,正电减)
- 4. 第一步加第二步加减第三步整体除以二
- 5. 电子对空间构型(第四步直接上) 离子的几何构型(第四步减去第二步)

例题: 试用VSEPR理论推断下列离子的几何构型:

 I_3 , ICl_2 , TII_4 , CO_3 , CIO_3 , SiF_5 , PCl_6

I₃: 中心原子为I,

价层电子对数: [7+2-(-1)]÷2=5

孤对电子数: 5-2=3

电子对空间构型:三角双锥

离子的几何构型:直线型

ICl₂⁺: 中心原子为I,

价层电子对数: [7+2-1)]÷2=4

孤对电子数: 4-2=2

电子对空间构型:四面体

离子的几何构型: V型

TII₄³⁻: 中心原子为TI,

价层电子对数: [3+4-(-3)]÷2=5

孤对电子对数: 5-4=1

电子对空间构型:三角双锥

离子的几何构型:变形四面体

CO₃²·: 中心原子为C,

价层电子对数: [4+0-(-2)]÷2=3

孤对电子对数: 3-3=0

电子对空间构型:三角形

离子的几何构型:三角形

含有0和S的分子或离子, 0和S都按照 零 来计算

这是因为: 它只提供孤对电子 就是没有用来形成共价键的电子对

ClO₃⁻:中心原子为Cl,

价层电子对数: [7+0-(-1)]÷2=4

孤对电子对数: 4-3=1

电子对空间构型:四面体

离子的几何构型:三角锥

SiF₅⁻: 中心原子为Si,

价层电子对数: [4+5-(-1)]÷2=5

孤对电子对数: 5-5=0

电子对空间构型:三角双锥

离子的几何构型:三角双锥

 PCl_6 : 中心原子为P,

价层电子对数: [5+6-(-1)]÷2=6

孤对电子对数: 6-6=0

电子对空间构型:八面体

离子的几何构型:八面体

ClO₃·:中心原子为Cl,

价层电子对数: [7+0-(-1)]÷2=4

孤对电子对数: 4-3=1

电子对空间构型:四面体

离子的几何构型:三角锥

SiF₅⁻: 中心原子为Si,

价层电子对数: [4+5-(-1)]÷2=5

孤对电子对数: 5-5=0

电子对空间构型:三角双锥

离子的几何构型:三角双锥

 PCl_6 : 中心原子为P,

价层电子对数: [5+6-(-1)]÷2=6

孤对电子对数: 6-6=0

电子对空间构型:八面体

离子的几何构型:八面体

价键理论要点小结:

- (1)原子间轨道重叠,共用自旋相反的电子对,共价键具有饱和性和方向性。
- (2) 原子内能量相近的轨道可组合成杂化轨道,使轨道成键能力增大,杂化轨道解释了分子几何构型。
- (3) 共振概念可以解释一些用经典结构式难以解释的问题, 反映了电子的离域性。

价键理论、杂化轨道理论的局限性:

- 1. 缺乏对分子作为一个整体的全面考虑;
- 2. 无法解释一些简单分子的磁性。

分子轨道理论

着重于分子的整体性,把分子作为一个整体来处理。

主要不同点

- 1. 分子轨道是多中心的(多核),原子轨道 只有一个中心(单核)。
- 2. 原子轨道名称用s、p、d、f等表示,分子轨道名称则用 σ 、 π 等表示。

液态氧被磁铁吸引

顺磁性物质分子中具有未成对电子

O₂: :O=O:

价键理论不能解释O2分子为什么具有顺磁性。

六、分子轨道理论

1932年,美国 R. S. Mulliken, F. Hund

1. 分子轨道的概念:

在分子中,电子不再从属于某个特定的原子,而是在整个分子范围内运动,因此分子中电子的运动应用分子轨道波函数(简称分子轨道)来描述。

每个分子轨道 ψ_i 有相应的能量 E_i 和图像,电子的能量就是被它们占据的分子轨道的能量。

2. 分子轨道的形成:

分子轨道是由不同原子间的原子轨道线 性组合而成。分子轨道的数目等于组合前的原 子轨道数目之和。

3. 电子在分子轨道上排布时,仍服从:

保利不相容原理

能量最低原理

洪特规则

4. 原子轨道组合成有效的分子轨道时(三个条件)

① 对称性匹配原则

原子轨道叠加成分子轨道时,只能是 同号叠加或异号叠加,不能既同号叠加又异 号叠加。

b、d、e符合 a、c不符合

② 能量近似原则

只有能量相近的原子轨道才能组合成有效 的分子轨道

同核双原子分子,利用相同的原子轨道组 合。异核双原子分子,利用价层原子轨道组合。

H2O
$$\begin{cases} 1s (H) = -1318 \text{ kJ} \cdot \text{mol}^{-1} \\ 3p (Cl) = -1259 \text{ kJ} \cdot \text{mol}^{-1} \\ 2p (O) = -1322 \text{ kJ} \cdot \text{mol}^{-1} \\ 3s (Na) = -502 \text{ kJ} \cdot \text{mol}^{-1} \end{cases}$$

③ 最大重叠原则

在对称性匹配的条件下,原子轨道的重叠程度越大,组合成的分子轨道能量降低得越多,形成的化学键越稳定。

5. 分子轨道组合方式:

① 分子轨道由两个符号相同的波函数叠加而成

$$\Psi_{I} = c_{a} \psi_{a} + c_{b} \psi_{b}$$

 Ψ_a 、 Ψ_b : 分别为原子 a 和 b 的原子轨道 Ψ_l : 分子轨道

以此种方式形成的分子轨道 Ψ_{\parallel} ,其能量低于原子轨道,在两核间电子云的密度增加,称为成键分子轨道,用 σ_{χ} π_{χ} δ 表示。

②分子轨道由两个符号相反的波函数相加而成

$$\Psi_{II} = c_a' \psi_a - c_b' \psi_b$$

以此方式形成的分子轨道 Ψ_{II} 的能量比原子轨道的能量高,两核间的概率密度减小,称为反键分子轨道,用 σ^* 、 π^* 、 δ^* 表示。

同核双原子分子

s-s原子轨道重叠

 σ_{1s} , σ_{1s} * σ_{2s} , σ_{2s} *

同核双原子分子p-p原子轨道重叠

同核双原子分子p-p原子轨道重叠

$$\sigma_{2px}$$
, σ_{2px}^* π_{2py} , π_{2py}^* π_{2pz} , π_{2pz}^*

*s-p原子轨道重叠

*p-d原子轨道重叠

*d-d原子轨道重叠

5. 同核双原子分子的分子轨道能级排布

分子轨道能级高低取决于:

- 构成分子轨道的原子轨道能级高低
- 原子轨道的重叠程度

第一周期

能

量

第二周期 Li₂

空轨道中能量最低的轨道

Li原子轨道

Li分子轨道

Li原子轨道

HOMO和LUMO加在一起叫前线轨道

第二周期 0₂ F₂ Ne₂

液态氧被磁铁吸引

能量

O原子轨道

O₂分子轨道

O原子轨道

第二周期 B_2 C_2 N_2

 $2s-2p相互作用:由于2s和2p原子轨道能量比较接近,因此可以发生相互作用。作用的结果使得<math>\sigma_{2s}$ 下降, σ_{2p} 上升

结果是: σ_{2p} 到了 π_{2p} 上面

原因:取决于2s和2p的距离

如果2s和2p的太近,能量差太小,就会有2s-2p相互作用,* σ_{2s} σ_{2p} π_{2p} 这三个轨道有相互作用,重新线性组合,上面2 p分子轨道有 s 轨道的特点,下面的 s 轨道也有部分 2 p 轨道的特点

第二周期 B₂ C₂ N₂

 $2s-2p相互作用:由于2s和2p原子轨道能量比较接近,因此可以发生相互作用。作用的结果使得<math>\sigma_{2s}$ 下降, σ_{2p} 上升

为什么0、F、Ne₂不反转,B、C、N要反转?

为什么0、F、Ne没有**2s-2p相 互作用,而**B、C、N有?

N是半满排布,从0开始需要把新电子共享 p 轨道了,两个电子填入一个轨道,会使 2 p 轨道能量上升(电子互斥)

5. 同核双原子分子的分子轨道能级排布

$$\sigma_{1s} < \sigma_{1s} * < \sigma_{2s} < \sigma_{2s} * < \sigma_{2px} < \pi_{2py} = \pi_{2pz} < \pi_{2py} * = \pi_{2pz} * < \sigma_{2px} *$$
 对于 $2s$ 和 $2p$ 能级相差较大的 O 和F成立

$$\sigma_{1s} < \sigma_{1s} * < \sigma_{2s} < \sigma_{2s} * < \pi_{2py} = \pi_{2pz} < \sigma_{2px} < \pi_{2py} * = \pi_{2pz} * < \sigma_{2px} *$$

sp混杂

价层2s和2p_x原子轨道能级相近时(Li、B、C、

N),它们组成的对称性相同的分子轨道进一步相互作用,混杂在一起再次组成新的分子轨道。

图 2.4.1 s-p 混杂对同核双原子分子的价层分子轨道形状和 能级的影响(为清楚起见,用 AO 的图形表示)

第二周期元素双原子分子的分子轨道能级排布

Table 10.5 Properties of Homonuclear Diatomic Molecules of the Second-Period Elements*

没有2p电子

2s2p相互作用

正常的排法

6. 分子轨道理论的应用

(1) 判断分子能否形成及稳定性

键级

- 成键轨道中电子数越多,分子越稳定
- 键级 = 0,分子不能稳定存在

H₂分子

He₂分子