

PL1167

单片低功耗高性能 2.4GHz 无线射频收发芯片

芯片概述:

PL1167是一款工作在 2.4~2.5GHz 世界通用 ISM频 段的单片低功耗高性能 2.4GHz无线射频收发芯片。

该单芯片无线收发器集成包括: 频率综合器、功率放大器、晶体振荡器、调制解调器等模块。

输出功率、信道选择与协议等可以通过 SPI或 I2C接口进行灵活配置。

支持跳频以及接收强度检测等功能, 抗干扰性能强, 可以适应各种复杂的环境并达到优异的性能。

内置地址及 FEC、CRC校验功能。

内置自动应答及自动重发功能。

芯片发射功率最大可以达到 5.5dBm,接收灵敏度可以达到-88dBm。

内置电源管理功能,掉电模式和待机模式下待机电流可以减小到接近 1uA。

管脚分布图:

V1.0 © 2012

主要特点:

- ψ 低功耗高性能2.4GHz无线射频收 发芯片
- ψ 无线速率: 1Mbps
- ν 内置硬件链路层
- ψ 内置接收强度检测电路
- ψ 支持自动应答及自动重发功能
- ψ 内置地址及FEC、CRC校验功能
- ψ 极短的信道切换时间,可用于跳频
- w 使用微带线电感和双层PCB板
- ψ 低工作电压: 1.9~3.6V
- ψ 封装形式: QFN16/TSSOP16
- Ψ QFN16仅支持SPI接口
- Ψ TSSOP16可支持SPI与I2C接口

应用:

- Ψ 无线鼠标,键盘,游戏机操纵杆
- w 无线数据通讯
- Ψ 无线门禁
- ν 无线组网
- ψ 安防系统
- ψ 遥控装置
- ψ 遥感勘测
- ψ 智能运动设备
- ψ 智能家居
- Ψ 工业传感器
- Ψ 工业和商用近距离通信
- Ψ IP电话,无绳电话
- ν 玩具

1概要

PL1167 是一款工作在 2.4~2.5GHz 世界通用 ISM频段的单片低功耗高性能 2.4GHz无线射 频收发芯片。

该单芯片无线收发器集成包括: 频率综合器、功率放大器、晶体振荡器、调制解调器等模块。

输出功率、信道选择与协议等可以通过 SPI 或 I2C接口进行灵活配置。

支持跳频以及接收强度检测等功能, 抗干扰

性能强,可以适应各种复杂的环境并达到优异的性能。

内置地址及 FEC、CRC校验功能。

内置自动应答及自动重发功能。

芯片发射功率最大可以达到 5.5dBm,接收 灵敏度可以达到-88dBm。

内置电源管理功能,掉电模式和待机模式下 待机电流可以减小到接近 1uA。

2特性

- て 低功耗高性能2.4GHz无线射频收发芯片
- ζ 无线速率: 1Mbps
- ζ 内置硬件链路层
- ζ 内置接收强度检测电路
- て 支持自动应答及自动重发功能
- ζ 内置地址及FEC、CRC校验功能

- て 极短的信道切换时间, 可用于跳频
- ζ使用微带线电感和双层PCB板
- ζ 低工作电压: 1.9~3.6V
- ζ 封装形式: QFN16/TSSOP16
- ζ OFN16仅支持SPI接口
- ζ TSSOP16可支持SPI与I2C接口

3快速参考数据

参数	数值	单位
最低工作电压	1.9	V
最大发射功率	5.5	dBm
数据传输速率	1	Mbps
发射模式功耗@OdBm	16	mA
接收模式功耗	17	mA
工作温度范围	-40 to +85	$^{\circ}$ C
接收灵敏度	-88	dBm
掉电模式功耗	1	uA

4管脚分布图

QFN16 管脚分布图如下:

说明: MODE 管脚在芯片内连接到 VSS, 因此 QFN16 仅支持 SPI接口。

TSSOP16 管脚分布图如下:

5管脚描述

Pin(QFN16)	管脚名	类型	描述
1	ANTB	天线	天线接口
2	ANT	天线	天线接口
3,8,17	VSS	电源	接地(0V)
4,5	N/C	悬空	悬空不接
6	PKT	数字输出	发射/接收包状态指示位
7	RSTB	数字输入	复位脚,低电平有效
9	SCSB	数字输入	SPI接口从模式使能信号,低电平有效 从SLEEP模式唤醒芯片
10	SCK	数字输入	SPI接口时钟输入
11	SDI	数字输入	SPI接口数据输入
12	SDO	数字输出	SPI接口数据输出(无效时为三态)
13	VCC	电源	电源(3.3V)
14	VDDO	电源	1.8V内部LDO输出,外接电容
15	XOUT	模拟输出	晶振输出
16	XIN	模拟输入	晶振输入

Pin(TSSOP16) 管	脚名	类型	描述
1	AVSS	电源	接地(0V)
2	N/C	悬空	悬空不接
3	PKT	数字输出	发射/接收包状态指示位
4	RSTB	数字输入	复位脚,低电平有效
5	DVSS	电源	接地(0V)
6	SCSB	数字输入	SPI: SPI接口从模式使能信号,低电平有效 从SLEEP模式唤醒芯片 I2C: 从SLEEP模式唤醒芯片
7	SCK/SCL 数	字输入	SCK: SPI接口时钟输入 SCL: I2C接口时钟输入
8	SDI/A4	数字输入	SDI: SPI接口数据输入 A4: I2C接口地址位4
9	SDO/SDA	数字输出 数字I/O	SDO: SPI接口数据输出(无效时为三态) SDA: I2C接口数据输入输出I/O
10	MODE	数字输入	接口模式选择:

Pin(TSSOP16) 管	脚名	类型	描述
		VSS:选择SPI接口	
			VCC:选择I2C接口
11	VCC	电源	电源(3.3V)
12	VDDO	电源	1.8V内部LDO输出,外接电容
13	XOUT	模拟输出	晶振输出
14	XIN	模拟输入	晶振输入
15	ANTB	天线	天线接口
16	ANT	天线	天线接口

6结构框图

7最大额定值

参数	符号	范围	单位
VCC供电电压	VCC	-0.3 to +3.6	V

参数	符号	范围	单位
VDDO供电电压	VDDO	-0.3 to +2.5	٧
输入电压	Vin	-0.3 to (VCC+0.3)	٧
输出电压	Vout	-0.3 to (VCC+0.3)	
工作温度	Тор	-40 to +85	$^{\circ}\!\mathbb{C}$
仓储温度	Тѕт	-40 to +125	$^{\circ}$

注释:超过最大额定值可能损毁器件;超过推荐工作范围的芯片功能特性不能保证;长时间工作于最大额定条件下可能会影响器件的稳定性。

8电气特性

(VCC=+3V, VSS=0V, TA= -40° C to +85 $^{\circ}$ C)

符号	参数(条件)	说明	最小值	典型	最大值	单位
*	工作条件	100	92		80	80
VCC	VCC供电电压		1.9	3.3	3.6	V
Тор	工作温度		-40		85	°C
	数字输入管脚		150		No.	160
VIH	高电平输入电压		0.8VCC		1.2VCC	V
VIL	低电平输入电压		0		0.2VCC	V
	数字输出管脚					
Vон	高电平输出电压		0.8VCC		VCC	V
Vol	低电平输出电压		0	100	0.2VCC	V
3	常规射频条件		-			
fop	工作频段		2400	1	2482	MHz
fxtal	晶振频率			12		MHz
△f1м	频率偏移@1Mbps			280		KHz
Rgfsk	数据传输速率			1		Mbps
FCHANNEL	信道间隔			1		MHz
	发射操作					200
P _{RF}	最大输出功率			0	5.5	dBm
Prfc	射频功率控制范围		18	20	22	dB
P _{RF1}	第一临近信道发射功率				-20	dBm
P _{RF2}	第二临近信道发射功率		9		-50	dBm
Ivcc_н	高增益时功耗		9	16	10	mA
Ivcc_L	低增益时功耗		9	12		mA
	接收操作					
lvcc	接收功耗			17	8	mA
RXsens	0.1% BER时接收灵敏度			-88	8	dBm

9 SPI接口

9.1 SPI接口说明

PL1167收发芯片提供简单的 MCU接口 SPI模式,芯片的 SPI接口只支持从模式。

SPI接口包含 7个相关信号,如下表:

管脚	描述
RSTB	复位脚,低电平有效
MODE	模式选择,为 0时选择 SPI模式
SCSB	SPI接口从模式使能信号,低电平有效 从SLEEP模式唤醒芯片
CCIV	
SCK	SPI接口时钟输入
SDI	SPI接口数据输入
SDO	SPI接口数据输出
PKT	发射/接收包状态指示位

9.2 SPI命令格式

符号	最小	典型	最大	描述
T _{SSH}	250ns			两次 SPI命令时间间隔

符号	最小 典	型 最大	描述
T _{SSF} ,T _{SSR}	41.5ns		SCSB与 SCK时间间隔
T _{A2D}	*1		地址与数据时间间隔
$T_{ m H2L}$	*1		高低字节数据时间间隔
T _{R2R}	*1		两个寄存器数据时间间隔
Tsck	83ns		SCK时钟周期

注: *1—在读 FIFO数据时,至少需要 450ns等待时间; 其它寄存器时 T3min = 41.5ns。

10 I2C接口

10.1 I2C接口说明

管脚	描述
RSTB	复位脚,低电平有效
MODE	模式选择,为 1时选择 I2C模式
SCSB	从 SLEEP模式唤醒芯片
SCL	I2C接口时钟输入
SDA	I2C数据输入输出 I/O
A4	I2C接口地址位 4

10.2 I2C支持特性

I2C从模式选择	支持与否
标准模式- 100 kbps	是
快速模式 - 400 kbps	是
增强型快速模式 - 1000 kbps	是
高速模式 - 3200 kbps	否
时钟展宽	否
10位从地址	否
广呼方式地址	否
软件复位	否
器件 ID	否

10.3 I2C命令格式

10.4 I2C器件地址

A6	A5	A4	A3	A2	A 1	A0	R/W
0	1	A4 Pin	1	0	0	0	Read=1
							Write=0

11控制寄存器

最新的推荐控制寄存器值参考《用户手册》,请联系供应商索取。

12典型应用

13封装

QFN16 封装

QFN16(4x4mm, 0.65mm pitch, Thinner) 封装尺寸

TSSOP16 封装

TSSOP16封装尺寸

14注意事项

为了持续改进产品的可靠性、功能或设计,保留随时更新修改的权利,并不另行通知客户。客户在下单前请确认所使用的是最新的完整版说明书。