Contents

1 algebra			1	
	1.1	wallace	9	1
		1.1.1	distributive property	1
		1.1.2	slope	1
		1.1.3	properties of exponents	2
		1.1.4	scientific notation	2
		1.1.5	ways to factor	2
		1.1.6	factoring special products	2
		1.1.7	factoring strategy	2
		1.1.8	cross product	3
		1.1.9	definition of radicals	3
		1.1.10	properties of radicals	3
		1.1.11	radicals of mixed index	3
		1.1.12	definition of rational exponents	3
			definition of imaginary numbers	3
			cyclic property of powers of $i \ldots \ldots \ldots \ldots$	3
		1.1.15	odd root property	4
		1.1.16	even root property	4
2	geoi	metry		4

1 algebra

1.1 wallace

1.1.1 distributive property

$$a(b+c) = ac + bc$$

1.1.2 slope

$$m = \frac{\mathbf{rise}}{\mathbf{run}} = \frac{y_2 - y_1}{x_2 - x_1}$$

1.1.3 properties of exponents

$$a^{m}a^{n} = a^{m+n} \quad (ab)^{m} = a^{m}b^{m} \quad \frac{a^{m}}{a^{n}} = a^{m-n}$$

$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m} \qquad a^{-m} = \frac{1}{a^m} \qquad \frac{1}{a^{-m}} = a^m$$

$$(a^m)^n = a^{mn} a^0 = 1 \left(\frac{a}{b}\right)^{-m} = \frac{b^m}{a^m}$$

1.1.4 scientific notation

$$a \times 10^b$$
 where $1 \leqslant a < 10$

1.1.5 ways to factor

- GCF
- Grouping
- Trinomials where a=1
 - multiply to $a \times c$
 - add to b
- Trinomials where $a \neq 1$
- Factoring Special Products

1.1.6 factoring special products

difference of square
$$a^2 - b^2 = (a - b)(a + b)$$

sum of squares $a^2 + b^2 = \text{Prime}$
perfect square $a^2 + 2ab + b^2 = (a + b)^2$

sum of cubes
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

difference of cubes
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

1.1.7 factoring strategy

- GCF FIRST
- 2 terms: sum of diffs of squares or cubes

- 3 terms: ac method, watch for perfect squares
- 4 terms: grouping
- 1.1.8 cross product

if
$$\frac{a}{b} = \frac{c}{d}$$
, then $ad = bc$

1.1.9 definition of radicals

$$\sqrt[m]{a} = b$$
, if $b^m = a$

1.1.10 properties of radicals

$$a^{m}a^{n} = a^{m+n}$$
 $(ab)^{m} = a^{m}b^{m}$ $a^{-m} = \frac{1}{a^{m}}$
$$\frac{a^{m}}{a^{n}} = a^{m-n}$$
 $\left(\frac{a}{b}\right)^{m} = \frac{a^{m}}{b^{m}}$ $\frac{1}{a^{-m}} = a^{m}$
$$(a^{m})^{n} = a^{mn}$$
 $a^{0} = 1$ $\left(\frac{a}{b}\right)^{-m} = \frac{b^{m}}{a^{m}}$

always rationalize denominator

- 1.1.11 radicals of mixed index
- 1.1.12 definition of rational exponents

$$a^{\frac{n}{m}} = (\sqrt[m]{a})^n$$

1.1.13 definition of imaginary numbers

$$i^2 = -1$$
 (thus $i = \sqrt{-1}$)

1.1.14 cyclic property of powers of i

$$i^{0} = 1$$

$$i = i$$

$$i^{2} = -1$$

$$i^{3} = -i$$

Example

 i^{35} divide exponent by 4

8R3 use remainder as exp of i

 i^3 Simplify

-i Solution

when solving a radical problem with an even index: check answers

1.1.15 odd root property

if $a^n = b$, then $a = \sqrt[n]{b}$ when n is odd

1.1.16 even root property

if $a^n = b$, then $a = \pm \sqrt[n]{b}$ when n is even

2 geometry