Introduction to Machine Learning

QLS 612

By Nikhil Bhagwat

McGill University
July 2022

Objectives

- Define machine-learning nomenclature
- Describe basics of the "learning" process
- Explain model design choices and performance trade-offs
- Introduce model selection and validation frameworks
- Explain model performance metrics

Say, currently we have a population with 1% covid prevalence. We train a simple machine-learning model to identify COVID patients using their biometry.

Our model is 91% accurate! Then we also calculate.

- 90% sensitivity (i.e. probability that prediction is positive if patient has COVID)
- 91% specificity (i.e. probability that prediction is negative if patient doesn't have COVID)

What are my chances that I have COVID, if my test is positive?

- A) 9 in 10 B) 1 in 2 C) 1 in 10 D) 1 in 100

Say, currently we have a population with 1% covid prevalence. We train a simple machine-learning model to identify COVID patients using their biometry.

Our model is 91% accurate! Then we also calculate,

- 90% sensitivity (i.e. probability that prediction is positive if patient has COVID)
- 91% specificity (i.e. probability that prediction is negative if patient doesn't have COVID)

What are my chances that I have COVID, if my test is positive?

A) 9 in 10 B) 1 in 2 C) 1 in 10 D) 1 in 100

Later we train a fancy deep learning model to identify COVID patients using their chest CT! This model has accuracy of 99%! We calculate

- 80% sensitivity
- 99% specificity

Which model is better?

A) Simple B) Fancy

Training a machine-learning model

Training a machine-learning model

Machine-learning - what, why, and when?

- What is Machine learning (ML)?
 - ML is the study of computer algorithms that improve automatically through experience and by the use of data.

Machine-learning - what, why, and when?

- What is Machine learning (ML)?
 - ML is the study of computer algorithms that improve automatically through experience and by the use of data.
- Why is it useful especially in life sciences?
 - Biology, Medicine, Environmental sciences comprise phenomenons (e.g. a disease) with large number of variables.
 - We want to model complex relationships within these variables and make accurate predictions.

Machine-learning - what, why, and when?

- What is Machine learning (ML)?
 - ML is the study of computer algorithms that improve automatically through experience and by the use of data.
- Why is it useful especially in life sciences?
 - Biology, Medicine, Environmental sciences comprise phenomenons (e.g. a disease) with large number of variables.
 - We want to model complex relationships within these variables.
- When do I use it?
 - You are interested in 1) prediction tasks or 2) low-dimensional representation.
 - You have sufficient data.

Terminology

Types of ML Algorithms

Types of ML Algorithms

 Goal: Learn parameters (or weights) of a model (M) that maps X to y

- Goal: Learn parameters (or weights) of a model (M) that maps X to y
- Example models:
 - Linear / Logistic regression

Linear Regression

- Goal: Learn parameters (or weights) of a model (M) that maps X to y
- Example models:
 - Linear / Logistic regression
 - Support vector machines

- Goal: Learn parameters (or weights) of a model (M) that maps X to y
- Example models:
 - Linear / Logistic regression
 - Support vector machines
 - Tree-ensembles: random forests, gradient boosting

Tree-ensembles

- Goal: Learn parameters (or weights) of a model (M) that maps X to y
- Example models:
 - Linear / Logistic regression
 - Support vector machines
 - Tree-ensembles: random forests, gradient boosting
 - Artificial Neural networks

Linear Regression

Tree-ensembles

- How do we learn the model weights?
 - o Example: Linear regression

• Model:
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

- Loss function: $MSE = -\frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
- o Optimization: Gradient descent

- Gradient descent with a single input variable and n samples
 - Start with random weights (β_0 and β_1)
 - Compute loss (i.e. MSE)
 - Update weights based on the gradient

$$\hat{\mathbf{y}}_{i} = \beta_{0} + \beta_{1} \mathbf{x}_{i}$$

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

- Gradient descent for complex models with non-convex loss functions
 - Start with random weights (β_0 and β_1)
 - Compute loss
 - Update weights based on the gradient

 Can we control this fitting process to get a model with specific characteristics?

- Can we control this fitting process to get a model with specific characteristics?
 - We have strong prior beliefs about what is a plausible model
 - e.g. I believe this symptom can be predicted with handful of genes.
 - Practical reasons
 - Prevent overfitting (n_features >> n_samples)

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_{\rho-1} x_{\rho-1} + \beta_{\rho} x_{\rho}$$

- Can we control this fitting process to get a model with specific characteristics?
 - We have strong prior beliefs about what is a plausible model
 - e.g. I believe this symptom can be predicted with handful of genes.
 - Practical reasons
 - Prevent overfitting (n_features >> n_samples)

○ Yes! → Model regularization

Model Fitting: Regularization

- o How do we do it?
 - Modify the loss function
 - Constrain the learning process

- Examples:
 - L1 i.e. Lasso
 - L2 i.e. Ridge

 L1/Lasso: constrains parameters to be sparse

MSE =
$$\sum_{i=1}^{n} (y_i - [\beta_0 + \sum_{j=1}^{\rho} x_{ij} \beta_j])^2 + \lambda \sum_{j=1}^{\rho} |\beta_j|$$

2) L2/Ridge: constrains parameters to be *small*

MSE =
$$\sum_{i=1}^{n} (y_i - [\beta_0 + \sum_{j=1}^{\rho} x_{ij} \beta_j])^2 + \lambda \sum_{j=1}^{\rho} \beta_j^2$$

Model Fitting: Scikit-learn syntax

```
# import
from sklearn import linear_model, svm
# data
X = [[0, 0], [1, 1]]
y = [0, 1]
# pick a model
model = linear_model.Lasso(alpha=0.1) # model = svm.SVC()
# fit the model with data
model.fit(X, y)
# predict on new data
```

 $y_pred = model.predict([[1, 0]])$

o Is the model generalizable?

How do we sample train and test sets?

o How do we select a model?

- o Is the model generalizable?
- How do we sample train and test sets?
- How do we select a model?

- Train performance ≠ Test performance
 - Model: Underfitting vs Overfitting
 - Errors: Bias Variance tradeoff
 - Regression example

- Train performance ≠ Test performance
 - Model: Underfitting vs Overfitting
 - Errors: Bias Variance tradeoff
 - Regression example

Train set

Test set

- Train performance ≠ Test performance
 - Model: Underfitting vs Overfitting
 - Errors: Bias Variance tradeoff
 - Classification example

OTrain class_1

X Train class_2

- Train performance ≠ Test performance
 - Model: Underfitting vs Overfitting
 - Errors: Bias Variance tradeoff
 - Classification example

o Is the model generalizable?

How do we sample train and test sets?

How do we select a model?

Model Evaluation: Cross-Validation (Outer loop)

- How do we sample train and test sets?
 - Train set: learn model parameters
 - Test set (a.k.a held-out sample): Evaluate model performance

Model Evaluation: Cross-Validation (Outer loop)

- How do we sample train and test sets?
 - Train set: learn model parameters
 - Test set (a.k.a held-out sample): Evaluate model performance
 - Repeat for different Train-Test splits
 - k-fold, shuffle-split
 - Report performance statistics over all test folds

CV outer loop

Model Evaluation

o Is the model generalizable?

How do we sample train and test sets?

o How do we select a model?

Model Evaluation: Cross-Validation (Inner loop)

- o How do we select a model?
 - Tune *hyper-parameters* of a model
 - Compare several different model architectures
 - Select / transform raw features
- This repeats for all train-test splits in the outer loop

CV inner loop

Model Evaluation: Hyper-parameters

- Hyper-parameter ≠ parameter (or weights)
 - Parameters are **learned**; hyper-parameters are **chosen**!

Model Evaluation: Hyper-parameters

- Hyper-parameter ≠ parameter (or weights)
 - Parameters are **learned**; hyper-parameters are **chosen**!
- Examples:
 - Degree of model (eg. linear vs quadratic)
 - Kernels
 - Number of trees
 - Number of layers, filters, batch-size, learning-rate in ANNs

Model Evaluation: Hyper-parameters

- Hyper-parameter ≠ parameter (or weights)
 - Parameters are **learned**; hyper-parameters are **chosen**!
- Examples:
 - Degree of model (eg. linear vs quadratic)
 - Kernels
 - Number of trees
 - Number of layers, filters, batch-size, learning-rate in ANNs
- o How do we choose them?
 - \blacksquare Prior beliefs \rightarrow eg. cortical thickness and age have quadratic relationship.
 - Arbitrarily → we gotta start with something!
 - \blacksquare Trial and error \rightarrow do a computationally feasible grid-search.

Performance Scores

- Loss functions → computationally well-suited metrics
 - May / need not completely capture performance metrics of interest
- Scores → practically useful metrics
 - Binary classification

Confusion Matrix		Ground Truth	
		POSITIVE	NEGATIVE
Predi ction	POSITIVE	TP	FP
	NEGATIVE	FN	TN

Type I Error You're pregnant!

False Positive

False Negative

Performance Scores

- ML model that detects Covid from chest CTs. Current Covid prevalence ~ 1%.
 - FP: model predicts *Covid* when person is *healthy*
 - FN: model predicts *healthy* when person has *Covid*
- What happens if we build model that predicts everyone as healthy?
 - i.e. zero FPs!

Performance Scores

- ML model that detects Covid from chest CTs. Current Covid prevalence ~ 1%.
 - FP: model predicts *Covid* when person is *healthy*
 - FN: model predicts *healthy* when person has *Covid*
- What happens if we build model that predicts everyone as healthy?

Score	Formula	Null	What does it tell us?	When do I use it?
Accuracy	(TP+TN) / (TP+FP+FN+TN)	0.99	How many people did we correctly predict out of all the people scanned?	FNs & FPs have similar costs
Precision (i.e. PPV)	TP/(TP+FP)	NaN	How many of those who we predicted as "covid" do actually have "covid"?	If you want to be more confident of your TPs
Recall (aka Sensitivity)	TP/(TP+FN)	0	Of all the people who have covid, how many of those did we correctly predict?	If you prefer FPs over FNs.
Specificity	TN/(TN+FP)	1	Of all the people who are healthy, how many of those did we correctly predict?	If you prefer FNs over FPs.
F1	2*(Recall * Precision) / (Recall + Precision)	NaN	Harmonic mean(average) of the precision and recall.	When you have an uneven class distribution

Pop Quiz Answers

We train a simple machine-learning model to identify COVID patients using their biometry, in a population with 1% covid prevalence. Our model is 91% accurate! Then we also calculate.

- 90% sensitivity (i.e. probability that prediction is positive if patient has COVID)
- 91% specificity (i.e. probability that prediction is negative if patient doesn't have COVID)

What are my chances that I have COVID if my test is positive?

(Imagine a sample of 1000 individuals \rightarrow 10 COVID patients \rightarrow 9 TP & 89 FP)

A) 9 in 10 B) 1 in 2 C) 1 in 10 D) 1 in 100

Later we train a fancy deep Learning model to identify COVID patients using their chest CT! This model has accuracy of 99%! We calculate

- 80% sensitivity
- 99% specificity

Which model is better? (We want to avoid FN to reduce the spread \rightarrow we want high-sensitivity)

B) Fancy A) Simple

Performance Curves

- \circ Receiver Operating Characteristic (ROC) \rightarrow Want high area-under-the-curve (AUC)
- \circ Precision-Recall \rightarrow Want high AUC or high Average precision (AP)

Deep-learning

- o Why the buzz?
 - Works amazing on structured input
 - Highly flexible → universal function approximator
- What are the challenges?
 - Large number of parameters → data hungry
 - Large number of hyper-parameters → difficult to train
- o When do I use it?
 - If you have highly-structured input, eg. medical images.
 - You have a lot of data and computational resources.

ANN for handwritten-digit images (gif source: 3b1b)

Pitfalls and Challenges

- Models do not generalize even after good CV performance
 - Implicit double-dipping
 - Dataset biases (eg. North-American demographics)
 - Noisy labels (eg. diagnosis definitions)
 - Data distribution shifts (eg. assay, scanner upgrades)

Pitfalls and Challenges

- Models do not generalize even after good CV performance
 - Implicit double-dipping
 - Dataset biases (eg. North-American demographics)
 - Noisy labels (eg. diagnosis definitions)
 - Data distribution shifts (eg. assay, scanner upgrades)

- Unnecessary complexity
 - Do I really need a giant deep-net or a simple linear model would do?

ML Novice Checklist

Data

- What is my n_features and n_samples?
- Am I <u>encoding</u> categorical data correctly?
- Am I using information (e.g. mean) from test set to preprocess (eg. zscore) the data?

ML Novice Checklist

Data

- What is my n_features and n_samples?
- Am I <u>encoding</u> categorical data correctly?
- Am I using information (e.g. mean) from test set to preprocess (eg. zscore) the data?

Model

- Do my performance metrics capture the practical use-case of interest?
- What is the null / dummy model performance?
 - Classification: Predict majority class all the time
 - Regression: Predict the median value all the time
- Am I interpreting model parameters (i.e. weights) correctly?

Takeaways

- Supervised models are useful for predictions
 - eg. image segmentation, prognosis, drug development
- Our job is to ensure generalizability of these models
 - Multitude of validations
 - Understanding model biases and limitations

- Food for thought: *engineering tools* vs *scientific discovery*
 - Interpretability and explainability
 - Causality, reliability, fairness

Explainable AI