Brouwerian lattice

Let L be a <u>lattice</u>, and $a,b\in L$. Then a is said to be <u>pseudocomplemented</u> relative to b if the set

$$T\left(a,b
ight) :=\left\{ c\in L\mid c\wedge a\leq b
ight\}$$

has a <u>maximal element</u>. The maximal element (necessarily unique) of T(a,b) is called the <u>pseudocomplement</u> of a relative to b, and is denoted by $a \to b$. So, $a \to b$, if exists, has the following property

$$c \wedge a \leq b \text{ iff } c \leq a \rightarrow b.$$

If L has 0, then the pseudocomplement of a relative to 0 is the pseudocomplement of a.

An element $a\in L$ is said to be relatively pseudocomplemented if $a\to b$ exists for every $b\in L$. In particular $a\to a$ exists. Since $T\left(a,a\right)=L$, so L has a maximal element, or $1\in L$.

A lattice L is said to be relatively pseudocomplemented, or Brouwerian, if every element in L is relatively pseudocomplemented. Evidently, as we have just shown, every Brouwerian lattice contains 1. A Brouwerian lattice is also called an *implicative lattice*.

Here are some other properties of a Brouwerian lattice L:

- 1. $b \leq a \rightarrow b$ (since $b \wedge a \leq b$)
- 2. $1 = a \rightarrow 1$ (consequence of 1)
- 3. (Birkhoff-Von Neumann condition) $a \leq b$ iff a o b = 1 (since $1 \wedge a = a \leq b$)
- $4. \ a \wedge (a
 ightarrow b) = a \wedge b$

Proof. On the one hand, by 1, $b \le a \to b$, so $a \land b \le a \land (a \to b)$. On the other hand, by definition, $a \land (a \to b) \le b$. Since $a \land (a \to b) \le a$ as well, $a \land (a \to b) \le a \land b$, and the proof is <u>complete</u>. \blacksquare

- 5. $a=1 \rightarrow a$ (consequence of 4)
- 6. if $a\leq b$, then $(c o a)\leq (c o b)$ (use 4, $c\wedge (c o a)=c\wedge a\leq a\leq b$)
- 7. if $a\leq b$, then $(b\to c)\leq (a\to c)$ (use 4, $a\wedge (b\to c)\leq b\wedge (b\to c)=b\wedge c\leq c$)
- 8. a
 ightharpoonup (b
 ightharpoonup c) = (a
 ightharpoonup b)
 ightharpoonup c = (a
 ightharpoonup b)
 ightharpoonup (a
 ightharpoonup c)

1 of 4

Proof. We shall use property 4 above a number of times, and the fact that x = y iff $x \le y$ and $y \le x$. First equality:

$$egin{aligned} \left(a
ightarrow(b
ightarrow c)
ight)\wedge\left(a\wedge b
ight)=&\left(a\wedge(b
ightarrow c)
ight)\wedge b\ =&\left(b\wedge(b
ightarrow c)
ight)\wedge a\ =&\left(b\wedge c
ight)\wedge a\leq c. \end{aligned}$$

So
$$a \to (b \to c) \le (a \land b) \to c$$
.

On the other hand, $\Big((a\wedge b) o c\Big)\wedge a\wedge b=a\wedge b\wedge c\leq c$, so $\Big((a\wedge b) o c\Big)\wedge a\leq b o c$, and consequently $(a\wedge b) o c\leq a o (b o c).$

Second equality:

$$\Big((a \wedge b) o c\Big) \wedge (a o b) \wedge a = \Big((a \wedge b) o c\Big) \wedge (a \wedge b) = (a \wedge b) \wedge c \leq c$$
 , so $\Big((a \wedge b) o c\Big) \wedge (a o b) \leq a o c$ and consequently $(a \wedge b) o c \leq (a o b) o (a o c).$

On the other hand,

$$egin{aligned} \left((a o b) o (a o c)
ight)\wedge (a\wedge b) = \left((a o b) o (a o c)
ight)\wedge \left(a\wedge (a o c)
ight) &= \left((a o b)\wedge (a o c)
ight)\wedge a \ = (a\wedge b)\wedge (a o c) \ = b\wedge (a\wedge c) \leq c, \end{aligned}$$

so
$$(a o b) o (a o c)\leq (a\wedge b) o c$$
. $lacktriangle$

9. *L* is a <u>distributive lattice</u>.

Proof. By the <u>proposition</u> found in entry <u>distributive inequalities</u>, it is enough to show that

$$a \wedge (b \vee c) \leq (a \wedge b) \vee (a \wedge c)$$
.

To see this: note that $a \wedge b \leq (a \wedge b) \vee (a \wedge c)$, so $b \leq a \rightarrow \Big((a \wedge b) \vee (a \wedge c) \Big)$. Similarly, $c \leq a \rightarrow \Big((a \wedge b) \vee (a \wedge c) \Big)$. So $b \vee c \leq a \rightarrow \Big((a \wedge b) \vee (a \wedge c) \Big)$, or $a \wedge (b \vee c) \leq (a \wedge b) \vee (a \wedge c)$.

If a Brouwerian lattice were a chain, then relative pseudocomplentation can be given by the formula: $a \to b = 1$ if $a \le b$, and $a \to b = b$ otherwise. From this, we see that the real interval $(\infty, r]$ is a Brouwerian lattice if $x \to y$ is defined according to the formula just mentioned (with \vee and \wedge defined in

the obvious way). Incidentally, this lattice has no bottom, and is therefore not a <u>Heyting algebra</u>.

Remarks.

- Brouwerian lattice is named after the Dutch mathematician L. E. J. Brouwer, who rejected <u>classical logic</u> and <u>proof by contradiction</u> in particular. The lattice was invented as the algebraic counterpart to the Brouwerian intuitionistic (or constructionist) logic, in contrast to the <u>Boolean lattice</u>, invented as the algebraic counterpart to the classical <u>propositional logic</u>.
- In the literature, a Brouwerian lattice is sometimes defined to be synonymous as a Heyting algebra (and sometimes even a <u>complete</u> <u>Heyting algebra</u>). Here, we shall distinguish the two related <u>concepts</u>, and say that a Heyting algebra is a Brouwerian lattice with a bottom.
- In the <u>category</u> of Brouwerian lattices, a <u>morphism</u> between a pair of objects is a <u>lattice homomorphism</u> f that preserves relative pseudocomplementation:

$$f\left(a
ightarrow b
ight)=f\left(a
ight)
ightarrow f\left(b
ight).$$

As $f\left(1\right)=f\left(a o a\right)=f\left(a\right) o f\left(a\right)=1$, this morphism preserves the top elements as well.

Example. Let L(X) be the lattice of <u>open sets</u> of a <u>topological space</u>. Then L(X) is Brouwerian. For any open sets $A, B \in X$, $A \to B = (A^c \cup B)^\circ$, the <u>interior</u> of the union of B and the <u>complement</u> of A.

References

- **1** G. Birkhoff, *Lattice Theory*, AMS Colloquium Publications, Vol. XXV, 3rd Ed. (1967).
- **2** R. Goldblatt, *Topoi, The Categorial <u>Analysis</u> of Logic*, Dover Publications (2006).

3 of 4 11/12/2024, 16:07

Title	Brouwerian lattice
Canonical name	BrouwerianLattice
Date of creation	2013-03-22 16:32:59
Last modified on	2013-03-22 16:32:59
Owner	CWoo (3771)
Last modified by	CWoo (3771)
Numerical id	21
Author	CWoo (3771)
Entry type	Definition
Classification	msc 06D20
Classification	msc 06D15
Synonym	relatively pseudocomplemented
Synonym	pseudocomplemented relative to
Synonym	Brouwerian algebra
Synonym	implicative lattice
Related topic	PseudocomplementedLattice
Related topic	Pseudocomplement
Related topic	RelativeComplement
Defines	relative pseudocomplement

Generated on Fri Feb 9 10:00:51 2018 by LATEXML

4 of 4 11/12/2024, 16:07