Lezione 12 MSC CCS – sottoclassi di CCS seconda parte (di 2)

Roberto Gorrieri

Syntax

Semantics

BPP: Basic Parallel Processes

 BPP è una estensione sintattica di finite-state CCS, che permette di usare anche il parallelo

$$s ::= \mathbf{0} \mid \mu.p \mid s+s$$

$$p ::= s \mid p \mid p \mid C$$

- Si assume che il parallelo non consenta la sincronizzazione (puro asincrono)
- Come sempre, le costanti sono definite e guardate e per ogni p, Const(p) è finito.
- Sintassi compatta:

$$p ::= \Sigma_{j \in J} \mu_j . p_j \mid C \mid p \mid p$$

BPP - osservazioni

- Sintatticamente: BPP è una superclasse di finite-state CCS, ma non contiene regular CCS perché
 - La restrizione può essere usata da regular CCS
 - Il parallelo può essere usato in definizioni di costanti per BPP (ad es. C = a.0 | b.C)
- Semanticamente: BPP è una superclasse di finite-state CCS/regular CCS perché esprime tutti gli lts finiti e, in aggiunta, molti lts infiniti.

Semi-counter in full CCS

• Definizione in (full) CCS con infinite costanti:

$$SCount_0 \stackrel{def}{=} inc.SCount_1$$

 $SCount_n \stackrel{def}{=} inc.SCount_{n+1} + dec.SCount_{n-1} \quad n > 0$

 SCount_i non può essere equivalente a Scount_{i+1} perché solo il secondo può eseguire la traccia composta da i+1 occorrenze consecutive dell'azione dec; perciò, possiamo concludere che nessun processo finite-state CCS può essere equivalente a SCountO.

Semi-counter in BPP

Usando una sola costante, possiamo definire il processo BPP

$$SC \stackrel{def}{=} inc.(SC | dec.0)$$

- che non genera un lts isomorfo a quello del lucido precedente, ma si può dimostrare che SC e SCount_o sono strong bisimili.
- Esercizio: prova a disegnare un frammento iniziale dell'Its per SC.

SC vs SCount₀ (1)

Now we prove that $SCount_0$ and SC are strongly bisimilar. Consider the relation

$$R = \{(SCount_n, SC | \Pi_{i=1}^n dec. \mathbf{0}) \mid n \geq 0\}.$$

It is not difficult to see that it is a strong bisimulation up to \sim , where we take advantage of the fact that parallel composition is associative ¹⁶, commutative, with **0** as neutral element, with respect to strong bisimilarity \sim . This is proved in Section 4.1.1, Proposition 4.2, on page 162. Moreover, we are also using the fact that \sim is a congruence for parallel composition, i.e., if $p \sim q$, then $p \mid r \sim q \mid r$ for all r; this is proved in Theorem 4.1 on page 178. (For concrete details, see Example 4.2 on page 163.)

First, observe that for n = 0, the pair in R is $(SCount_0, SC|\mathbf{0})$. If R is a bisimulation up to \sim , then $SCount_0 \sim SC|\mathbf{0}$. As $SC|\mathbf{0} \sim SC$, by transitivity we get our expected result: $SCount_0 \sim SC$. Now, let us prove that R is indeed a strong bisimulation up to \sim .

SC vs SCount₀ (2)

One direction:

Assume that $SCount_n \xrightarrow{\alpha} q$. Then either $\alpha = inc$ and $q = SCount_{n+1}$, or n > 0, $\alpha = dec$ and $q = SCount_{n-1}$. In the former case, the matching transition is

$$SC \mid \Pi_{i=1}^n dec. \mathbf{0} \xrightarrow{inc} (SC \mid dec. \mathbf{0}) \mid \Pi_{i=1}^n dec. \mathbf{0}$$

(where the reached state is bisimilar to $SC \mid \Pi_{i=1}^{n+1} dec.\mathbf{0}$) and the pair $(SCount_{n+1}, SC \mid \Pi_{i=1}^{n+1} dec.\mathbf{0}) \in R$.

In the latter case, (one of) the matching dec transition(s) starts from $SC \mid \Pi_{i=1}^n dec.\mathbf{0}$ and reaches $(SC \mid \Pi_{i=1}^{n-1} dec.\mathbf{0}) \mid \mathbf{0}$, which is strongly bisimilar to $SC \mid \Pi_{i=1}^{n-1} dec.\mathbf{0}$, and the pair $(SCount_{n-1}, SC \mid \Pi_{i=1}^{n-1} dec.\mathbf{0}) \in R$.

SC vs SCount₀ (3)

The other direction:

Assume now $SC \mid \Pi_{i=1}^n dec. \mathbf{0} \xrightarrow{\alpha} p$. Then, by inspecting the rules for parallel composition:

- 1. Either $SC \xrightarrow{inc} SC \mid dec.\mathbf{0}$ and thus $\alpha = inc$ and process $p = (SC \mid dec.\mathbf{0}) \mid \Pi_{i=1}^n dec.\mathbf{0}$ (which is bisimilar to $SC \mid \Pi_{i=1}^{n+1} dec.\mathbf{0}$). In such a case, the matching transition is $SCount_n \xrightarrow{inc} SCount_{n+1}$, and the pair $(SCount_{n+1}, SC \mid \Pi_{i=1}^{n+1} dec.\mathbf{0})$ is in R.
- 2. $Or \ n > 0$, $\alpha = dec$ and p is one of the following three processes: $(SC \mid \mathbf{0}) \mid \Pi_{i=1}^{n-1} dec.\mathbf{0}$ or $(SC \mid \Pi_{i=1}^{n-1} dec.\mathbf{0}) \mid \mathbf{0}$ or $(((SC \mid \Pi_{i=1}^{n-k} dec.\mathbf{0}) \mid \mathbf{0}) \mid \Pi_{i=1}^{k-1} dec.\mathbf{0})$ for some $1 \le k < n$.
 - In any case, p is strongly bisimilar to $SC \mid \Pi_{i=1}^{n-1} dec. \mathbf{0}$. The matching transition is $SCount_n \xrightarrow{dec} SCount_{n-1}$ and the pair $(SCount_{n-1}, SC \mid \Pi_{i=1}^{n-1} dec. \mathbf{0})$ is in R.
- And this completes the proof. So, we have shown that a semi-counter can be represented, modulo \sim , by a simple BPP process.

BPP languages

- $L \ge \text{un } BPP \ language$ se esiste un processo BPP p tale che WCTr(p) = L.
- Tutti i linguaggi regolari sono esprimibili da BPP
- Un processo BBP può generare un linguaggio contextfree.
- Le tracce complete di $A \stackrel{def}{=} a.(A \mid b.0) + c.0$, non costituiscono un linguaggio regolare, perché se

non costituiscono un linguaggio regolare, perche se interseco questo linguaggio con a*cb* (che è regolare) non ottengo un linguaggio regolare:

$$CTr(A) \cap a*cb* = \{a^kcb^k \mid k \ge 0\}$$

 Vedremo che non tutti i linguaggi context-free sono inclusi nei linguaggi BPP.

BPP languages (2)

- Un processo BPP può generare linguaggi non context-free.
- Il processo BPP $B \stackrel{def}{=} a.(B|b.0) + c.(B|d.0) + e.0$ è tale che CTr(B) non può essere context-free. Infatti, se fosse libero, allora anche l'intersezione con il linguaggio regolare a*c*b*d*e dovrebbe essere libera; ma tale linguaggio è

$$CTr(B) \cap a*c*b*d*e = \{a^kc^nb^kd^ne | k,n \ge 0\}$$

che è un tipico esempio di linguaggio contextdependent

BPP – bisimulation equivalence is decidable

- Il problema di decidere l'equivalenza per bisimulazione forte su processi BPP è stato dimostrato decidibile (PSPACE-complete)
- L'equivalenza per bisimulazione è l'unica equivalenza decidibile su una classe di sistemi a stati infiniti.
- Per weak bisimilarity ci sono al momento solo risultati parziali (ad esempio, confronto fra processi BPP e processi finite-state CCS)
- Vale decidibilità di branching bisimilarity for normed BPP processes (cioè processi BPP che possono sempre terminare)

Finite-net CCS

 Sintatticamente: Finite-net CCS è una estensione di BPP (permette di usare anche la restrizione, seppur non nel corpo di una costante, e la sincronizzazione) ma non di regular CCS (permette di usare il parallelo nel corpo di una costante, ma regular permette di fare mix di parallelo e restrizione)

$$s ::= 0 \mid \mu.t \mid s+s$$

$$t ::= s \mid t \mid t \mid C$$

$$p ::= t \mid (va)p$$

Alternativamente

$$t ::= \sum_{j \in J} \mu_j . t_j \mid t \mid t \mid C$$

 $p ::= t \mid (va)p$

Finite-net CCS (2)

 Semanticamente: Finite-net CCS è una estensione di BPP, nel senso che ci sono processi finite-net CCS che non possono essere rappresentati attraverso un BPP.

Interesse:

- ad ogni processo di Finite-net CCS si può associare una rete di Petri finita
- ad ogni rete di Petri finita (le cui transizioni hanno al massimo 2 archi in entrata) si può associare un processo finite-net CCS (Representability theorem)

Esempio di rete di Petri

2PC = (v send) ((P|P)|C)

Esempio di rete di Petri (2)

- UPC = (v send)(P|C)
- P = prod.(P|'send.0)
- C = send.cons.C

- UPC è un processo di finite-net CCS
- Osserva che sul posto 'send.0 si possono accumulare un numero illimitato di tokens

Finite-net CCS (3)

- Proprietà decidibili di Finite-net CCS via semantica a reti di Petri:
 - Reachability: dati p e q finite-net CCS processes, posso verificare se q è raggiungibile da p.
 - Strong bisimilarity tra un finite-net CCS process q ed un finite-state CCS process p.
 - Strong regularity: dato un finite-net CCS proccess q, posso verificare se esiste un finite-state CCS process p ad esso strong bisimile.
 - Bisimulation equivalence è però in generale indecidibile fra due processi finite-net p e q (perché così è sulle reti di Petri finite)

Unbounded Producer/Consumer

Produttore illimitato -- BPP

Consumatore – finite-state

C = send.consume.C

- Unbounded Producer/Consumer -- finite-net CCS
 UPC = (v send)(Pr | C)
- Esercizio: dato un buffer illimitato UB = in.(UB|'out.0) dimostra che UPC è weak bisimile a

$$PUBC = (v in out)(P1 | UB) | C1 con$$

P1 = produce.'in.P1 C1 = out.consume.C1

Esempio (1)

 Two-phase-Semi-counter: prima solo inc, poi solo dec (tante quante)

$$2PSC \stackrel{def}{=} (vd)INC$$
 $INC \stackrel{def}{=} inc.(INC | d.dec.\mathbf{0}) + \tau.DEC$
 $DEC \stackrel{def}{=} \overline{d}.DEC$

- Le tracce weak complete sono tutte della forma incⁿdecⁿ per n ≥ 0
- Si può dimostrare che non è possibile trovare un processo BPP weak trace equivalent a 2PSC.

Esempio (2)

• Linguaggio aⁿb^mc^m m≤n

$$ABC \stackrel{def}{=} (vd, e, f)A$$
 $A \stackrel{def}{=} a.(A | d.b.\overline{e}) + \tau.B$
 $B \stackrel{def}{=} \overline{d}.e.(B | f.c.\mathbf{0}) + \tau.C$
 $C \stackrel{def}{=} \overline{f}.C$

Gerarchia di linguaggi

Definition 3.8. (Finite-net CCS language) A language $L \subseteq (\mathcal{L} \cup \overline{\mathcal{L}})^*$ is a *finite-net CCS language* if there exists a finite-net CCS process p such that the set of its weak completed traces is L, i.e., WCTr(p) = L.

Gerarchia di linguaggi (2)

- L_1 is the set CTr(A) for $A \stackrel{def}{=} a.(A \mid b.0) + c.0$, as discussed in Exercise 3.57.
- $L_2 = CTr(B)$ for $B \stackrel{def}{=} a.(B \mid b.0) + c.(B \mid d.0) + e.0$, as discussed in Example 3.13.
- $L_3 = \{a^n c b^n \mid n \ge 0\}$, as discussed in Exercise 3.61 (see also Example 3.15).
- L_4 is the language $\{ww^R \mid w \in \{a,b\}^*\}$, discussed after Exercise 3.62, and realized in finitary CCS in Exercise 3.65.
- L_5 is the context-dependent language $\{a^nb^mc^m \mid 0 \le m \le n\}$ discussed in Example 3.16.

 Il linguaggio L4 è un linguaggio libero non rappresentabile con reti di Petri finite, quindi nemmeno in finite-net CCS.

Finitary CCS

- Sintatticamente: è il più grande sotto-linguaggio di CCS che include tutti gli altri, in particolare finite-net CCS perché permette di usare la restrizione dentro il corpo di una costante.
 - Unico vincolo è che p deve avere un insieme Const(p) finito.

Semanticamente:

- è strettamente più espressivo di finite-net CCS (Counter)
- Dimostreremo che è anche Turing-completo.
- Tuttavia, esistono processi (full) CCS che non hanno nessun processo finitary CCS equivalente.

Counter in full CCS

Contatore, simile a semi-counter, ma può fare test su zero.

$$Counter_0 \stackrel{def}{=} zero.Counter_0 + inc.Counter_1$$

 $Counter_n \stackrel{def}{=} inc.Counter_{n+1} + dec.Counter_{n-1} \quad n > 0$

- Nessun processo finite-net CCS q può essere equivalente a Counter_o perché:
 - Ogni processo finite-net CCS genera una rete di Petri finita,
 - Agerwala ha dimostrato che nessuna rete di Petri finita può fedelmente rappresentare un contatore con test su zero.
 - In conclusione, nessun processo finite-net CCS può rappresentare un counter.

Counter in Finitary CCS

Processo Finitary CCS che usa solo 3 costanti:

$$C \stackrel{def}{=} zero.C + inc.((va)(C_1 | a.C))$$
 $C_1 \stackrel{def}{=} dec.\bar{a}.\mathbf{0} + inc.((vb)(C_2 | b.C_1))$
 $C_2 \stackrel{def}{=} dec.\bar{b}.\mathbf{0} + inc.((va)(C_1 | a.C_2))$

- Si alternano le attivazioni di istanze di C1 (dispari) e C2 (pari), sempre dentro nuove restrizioni create ogni volta che si esegue inc.
- Il numero rappresentato da un termine è dato dal numero di restrizioni "attive" presenti.

Counter in Finitary CCS (2)

Counter₀ e C sono weak bisimili

- Si può vedere che Counter₀ e C sono weak bisimili.
- Definiamo

$$p_0 = C$$
 $p_1 = (va)(x|a.C)$ dove x è un place-holder $p_{2n} = p_{2n-1}[(vb)(x|b.C1)/x]$ per $n > 0$ $p_{2n+1} = p_{2n}[(va)(x|a.C2)/x]$ per $n > 0$

La relazione

$$R = \{(C, Counter_0)\} \\ \cup \{(p_{2n}[C_2/x], Counter_{2n}) \mid n > 0\} \\ \cup \{(p_{2n+1}[C_1/x], Counter_{2n+1}) \mid n \geq 0\} \\ \cup \{(p_{2n+1}[\bar{a}.\mathbf{0}/x], Counter_{2n}) \mid n \geq 0\} \\ \cup \{(p_{2n}[\bar{b}.\mathbf{0}/x], Counter_{2n-1}) \mid n > 0\}.$$

è una weak bisimulation up to ≈.

lezione 12

28

Counter₀ e C sono weak bisimili (2)

- (C, Counter₀) è coppia di bisimulazione. Infatti,
 - se C-zero → C, allora Counter₀-zero → Counter₀ e (C, Counter₀) è in R.
 - se C-inc→(va)(C1 |a.C), allora Counter₀-inc→ Counter₁ e (p₁[C1/x],Counter₁) appartiene al terzo gruppo di R (quando n = 0).
 - Simmetricamente se Counter₀ muove.

Counter₀ e C sono weak bisimili (3)

- Prendiamo le coppie (p_{2n+1}[C1/x], Counter_{2n+1})
 per n ≥ 0 e dimostriamo che sono ok. Infatti,
 - se p_{2n+1} [C1/x]-inc→ p_{2n+1} [(vb)(C2|b.C1)/x] che è proprio p_{2n+2} [C2/x], allora
 - Counter_{2n+2}-inc \rightarrow Counter_{2n+2} e (p_{2n+2}[C2/x], Counter_{2n+2}) appartiene al secondo gruppo in R.
 - se p_{2n+1} [C1/x]-dec→ p_{2n+1} [ā.0/x], allora Counter_{2n+1}-dec→Counter_{2n} e (p_{2n+1} [ā.0/x], Counter_{2n}) appartiene al quarto gruppo in R.
 - Simmetricamente se Counter_{2n+1} muove.

Counter₀ e C sono weak bisimili (4)

- Prendiamo la coppia (p₁[ā.0/x], Counter₀)
- Ora, $p_1[\bar{a}.0/x] = (v a)(\bar{a}.0 | a.C)$
 - Solo una transizione: $p_1[\bar{a}.0/x]$ –tau → (v a)(0 | C)
 - Inoltre (v a)(0 | C) ~ C e
 - Counter₀ =ε=> Counter₀ ≈ Counter₀ e (C, Counter₀) appartiene ad R.
- Da Counter₀ due transizioni:
 - Counter₀-zero→Counter₀, allora $p_1[\bar{a}.0/x]$ -tau→ (v a) (0 | C) -zero→ (v a)(0 | C) ~ C e (C, Counter₀) in R.
 - Counter₀-inc→Counter₁, allora p₁[ā.0/x] -tau→ (v a)(0 | C) -inc→ (v a)(0 | (va)(C1 | a.C)) ~ (va)(C1 | a.C) = p1[C1/x] e la coppia (p₁[C1/x],Counter₁) in R.

Counter₀ e C sono weak bisimili (5)

- Prendiamo le coppie ($p_{2n+1}[\bar{a}.0/x]$, Counter_{2n}) per n > 0 e dimostriamo che sono in R.
- Infatti, $p_{2n+1}[\bar{a}.0/x] \in p_{2n}[(v a)(x | a.C2)/x][\bar{a}.0/x] = p_{2n}[(v a)(\bar{a}.0 | a.C2)/x].$
 - Solo una transizione: $p_{2n}[(v a)(a \bar{\ }.0 \mid a.C2)/x]$ −tau $\rightarrow p_{2n}[(v a)(0 \mid C2)/x]$
 - Inoltre $p_{2n}[(v a)(0 | C2)/x] \sim p_{2n}[C2/x] e$
 - Counter_{2n}=ε=> Counter_{2n} ≈ Counter_{2n} e (p_{2n} [C2/x], Counter_{2n}) appartiene al secondo gruppo in R.
- Se Counter_{2n} muove, allora (altri casi come esercizio)

Full CCS

- Nessun vincolo sintattico sul numero delle costanti.
- Full CCS è più espressivo di Finitary CCS. Infatti:
 - Proposizione: se p è un processo di Finitary CCS, allora l'insieme delle sue azioni eseguibili sort(p) è finito. (perché sort(p) è un sottoinsieme delle azioni che sintatticamente occorrono libere in p)
 - Il processo full CCS A_0 , dove le infinte costanti A_k sono definite così $A_k = a_k.A_{k+1}$ (per $k \ge 0$) è tale che sort(A_0) è infinito = { a_0 , a_1 , a_2 ,}

Finite CCS vs altri sotto-CCS

- Sintatticamente Finite CCS non è contenuto in regular CCS (mentre lo è semanticamente): ad esempio a.(a.0 | b.0) è un processo finite CCS che non è in regular CCS (posso solo applicare il prefisso ad un processo sequenziale in regular CCS)
- Sintatticamente Finite CCS non è contenuto in finite-net CCS (mentre lo è semanticamente): ad esempio a.((va)a.0 | b.0) è un processo finite CCS che non è in finite-net CCS (non posso applicare il prefisso ad un processo con restrizione in finite-net CCS)
- Sintatticamente Regular CCS non è contenuto in finite-net CCS (mentre lo è semanticamente): ad es. a.0 | (va)b.0 è un processo regular (e anche finite) CCS che non è in finite-net CCS.