KHAI PHÁ DỮ LIỆU

Trường Đại học Nha Trang Khoa Công nghệ thông tin Bộ môn Hệ thống thông tin Giáo viên: TS.Nguyễn Khắc Cường

CHỦ ĐỀ 5

PHÂN CỤM

- Phân cụm:
 - Các dữ liệu không biết nhãn
 - Tìm cách gom các dữ liệu "CÓ SỰ TƯƠNG ĐỒNG" lại thành một nhóm (cụm) → unsupervised learning

- Đặc điểm:
 - Không biết trước được số cụm
 - Cùng một dữ liệu, nhưng phương pháp phân cụm khác nhau sẽ tạo thành các kết quả khác nhau
- Một số ứng dụng của phân cụm
 - Image segmentation

- Một số ứng dụng của phân cụm
 - Clustering gene / expression data
 - market research
 - pattern recognition
 - data analysis
 - image processing

• . . .

- Idea để đánh giá các data "tương đồng"
 - Một trong các idea đó là dùng distance
 - Một số các công thức tính distance:

$$d_{euclidean} = \sqrt{\sum_{i=1}^{n} \left(\vec{x}_i - \vec{y}_i\right)^2} \qquad d_{manhattan} = \sum_{i=1}^{n} \left|\vec{x}_i - \vec{y}_i\right|$$

$$d_{minkowski} = \left(\sum_{i=1}^{n} \left|\vec{x}_i - \vec{y}_i\right|^p\right)^{\frac{1}{p}}$$
-mean

- K-mean
 - Quá trình "học"
 - Khởi tạo (tự chọn) số nhóm K
 - Chọn ngẫu nhiên k training data -> làm k "điểm trung tâm"
 - Xét từng training data còn lại

- K-mean
 - Quá trình "học"
 - Gán từng training data vào cùng nhóm với "điểm trung tâm" gần nhất
 - Sau khi xét hết các training data → tính lại "điểm trung tâm" mới của từng cụm (tìm vector trung bình)
 - Xét lại từng training data, gán từng data cho k "điểm trung tâm" mới đó
 - Lặp lại cho đến khi không có sự thay đổi thì dừng lại

Ví dụ K-means với K = 2

Ví dụ K-means với K = 2

→ Kết quả:

Q/A