統計的学習理論読み(Chapter 2)

松井孝太

名古屋大学大学院医学系研究科 生物統計学分野 matsui.k@med.nagoya-u.ac.jp

Table of contents

- 1. 仮説集合の複雑度
- 1.1 2.1 VC 次元
- 1.2 2.2 ラデマッハ複雑度
- 1.3 2.3 一様大数の法則
- 1.4 補足: カバリングナンバー

導入

本スライドは[4]の第2章のまとめである.

- ▶ 仮説空間の複雑さの指標: VC 次元, ラデマッハ複雑度
 - 時間があればカバリングナンバーも抑えたい(ちょっとだけ入れた)
- ▶ 一様大数の法則による汎化誤差の上界評価

がメイントピック

Table of contents

1. 仮説集合の複雑度

仮説集合の複雑度

仮説集合の複雑度

2.1 VC 次元

問題設定I

設定 & Notation

- ► 2 値判別 (|Y| = 2)
- ▶ $\mathcal{H} := \{h : \mathcal{X} \longrightarrow \mathcal{Y}\} :$ 仮説集合
- ▶ 入力 $\{x_i\}_{i=1}^n \subset \mathcal{X}$ に対して, \mathcal{H} の元で予測されるラベルの組の集合の要素数を考察:

$$\Pi_{\mathcal{H}}(\boldsymbol{x}_1,...,\boldsymbol{x}_n) := \big| \{ (h(\boldsymbol{x}_1),...,h(\boldsymbol{x}_n)) \in \mathcal{Y}^n; h \in \mathcal{H} \} \big|$$

Definition 1 (Growth function, Foundations of Machine Learning Def 3.3)

仮説集合 \mathcal{H} の growth function $\hat{\Pi}_{\mathcal{H}}: \mathbb{N} \longrightarrow \mathbb{N}$ は以下で定義される. $\forall n \in \mathbb{N}, \hat{\Pi}_{\mathcal{H}}(n) := \max_{\{\boldsymbol{x}_1,...,\boldsymbol{x}_n\} \subset \mathcal{X}} \Pi_{\mathcal{H}}(\boldsymbol{x}_1,...,\boldsymbol{x}_n)$

問題設定Ⅱ

$\Pi_{\mathcal{H}}$ の性質

▶ 定義より

$$\Pi_{\mathcal{H}}(\boldsymbol{x}_1,...,\boldsymbol{x}_n) \leq |\mathcal{Y}^n| = 2^n$$

 $ightharpoonup \Pi_{\mathcal{H}}(\boldsymbol{x}_1,...,\boldsymbol{x}_n) = 2^n$

$$\iff \forall \{(\boldsymbol{x}_i, y_i)\}, \ \exists h \in \mathcal{H} \ \text{ s.t. } \ h(\boldsymbol{x}_i) = y_i$$

ラベルの組合せを網羅すれば 100% データを分類する仮説が取れる

- ▶ 一方, data 数 n が増大するとラベルの組合せが膨大となり, \mathcal{H} の元で網羅できなくなる.
 - → この境界を VC 次元という

VC 次元

Definition 2 (VC 次元)

仮説空間 H の VC 次元は以下で定義される

$$VC_{dim}(\mathcal{H}) := \max\{n \in \mathbb{N}; \hat{\Pi}_{\mathcal{H}}(n) = 2^n\}$$

- ▶ 仮説空間 H の元でラベルの組合せを網羅できる最大の data 数 が VC 次元
- lacktriangledown $orall n\in\mathbb{N}$, $\exists m{x}_1,...,m{x}_n\in\mathcal{X}$ s.t. $\Pi_{\mathcal{H}}(m{x}_1,...,m{x}_n)=2^n$ のとき, $VC_{dim}(\mathcal{H})=\infty$ と定義
- ightharpoonup 仮説集合がどんなラベル付にも対応できる ightharpoonup ノイズにも fitting する

<u>cf</u> re-thinking generalization 論文 [ICLR2017]?

VC 次元, 例

▶ \mathcal{H} : 2 次元直線のとき, $VC_{dim}(\mathcal{H})=3$

Sauer's Lemma I

data 数 n が data の次元 d より大きいとき, growth function は d の多項式オーダーになることを保証

Lemma 1 (Sauer's Lemma (Lemma 2.1))

- $\blacktriangleright |\mathcal{Y}| = 2,$
- $\blacktriangleright \mathcal{H} = \{h : \mathcal{X} \to \mathcal{Y}\},\$
- $ightharpoonup VC_{dim}(\mathcal{H}) = d$

このとき, $n \ge d$ に対して

$$\Pi_{\mathcal{H}}(n) \le \left(\frac{en}{d}\right)^d = \mathcal{O}(n^d)$$

Sauer's Lemma II

(proof) Thm 3.5 of Foundations of Machine Learning

$$\Pi_{\mathcal{H}}(\boldsymbol{x}_{1},...,\boldsymbol{x}_{n}) \underbrace{\leq \sum_{i=0}^{d} \binom{n}{i}} \leq \sum_{i=0}^{d} \binom{n}{i} \left(\frac{n}{d}\right)^{d-i} \\
\leq \sum_{i=0}^{n} \binom{n}{i} \left(\frac{n}{d}\right)^{d-i} \\
= \sum_{i=0}^{n} \binom{n}{i} \left(\frac{n}{d}\right)^{d-i} \left(\frac{n}{d}\right)^{i} \left(\frac{d}{n}\right)^{i} \\
= \left(\frac{n}{d}\right)^{d} \underbrace{\sum_{i=0}^{n} \binom{n}{i} \left(\frac{d}{n}\right)^{i}}_{(1+\frac{d}{n})^{n}} \\
= \left(\frac{n}{d}\right)^{d} \left(1+\frac{d}{n}\right)^{n} \\
(::) \left(1+\frac{d}{n}\right)^{n} \to e^{d} \quad \text{as } n \to \infty \to \leq \left(\frac{n}{d}\right)^{d} e^{d} \quad \square$$

11

Sauer's Lemma III

- (\diamond) の証明: n+d に関する帰納法で示す.

 - ▶ n-1, d-1 or d のとき成立つと仮定

Notation

- $S = \{x_1, ..., x_n\}$: fixed sample set with $\hat{\Pi}_{\mathcal{H}}(m)$ dichotomies $(\mathcal{H}$ の元で説明可能なラベル付けの組合せが $\hat{\Pi}_{\mathcal{H}}(m)$ 個存在)
- ▶ $G = \mathcal{H}|_S$: domain を S に制限した仮説集合
- \triangleright $S' = S \setminus \{x_n\} \succeq \bigcup \mathcal{T}$

$$G_1 = G|_{S'}$$
$$G_2 = G \backslash G_1$$

定義から明らかに $G_1 \cup G_2 = G$, $G_1 \cap G_2 = \emptyset$, $|G_1| + |G_2| = |G|$

Sauer's Lemma IV

e.g. $\{x_1, x_2, x_3\}$ のとき, ラベルパターンは 8 通り

Table 1: 8 通りのラベル組合せを 8 つの仮説で実現

	$ x_1 $	$ x_2 $	$ x_3 $
h_1	1	1	1
h_2	0	1	1
h_3	1	0	1
h_4	1	1	0
h_5	0	0	1
h_6	0	1	0
h_7	1	0	0
h_8	0	0	0

Table 2: 仮説を $S' = \{x_1, x_2\}$ 上に制限

	$ x_1 $	$ x_2 $
$h_1 _{S'}$	1	1
$h_2 _{S'}$	0	1
$h_3 _{S'}$	1	0
$h_5 _{S'}$	0	0

例えば, $h_1|_{S'}=h_4|_{S'}$ となるが, こういう場合はどちらか一方を G_1 の元とする

これより $G_1=\{h_1|_{S'},h_2|_{S'},h_3|_{S'},h_5|_{S'}\}$, $G_2=\{h_4|_{S'},h_6|_{S'},h_7|_{S'},h_8|_{S'}\}$ とすると $G=G_1\cup G_2$, $G_1\cap G_2=\emptyset$.

Sauer's Lemma V

 $ightharpoonup VC_{dim}(G_1) \leq VC_{dim}(G) \leq VC_{dim}(\mathcal{H}) \leq d$ より,

$$|G_1| \underbrace{\leq}_{(\sharp)} \hat{\Pi}_{G_1}(n-1) \underbrace{\leq}_{(\sharp\sharp)} \sum_{i=0}^d \binom{n-1}{i}$$

ここで,

- (‡): by def of growth function G_1 の具体形: $G_1 = \{(h(x_1),...,h(x_{n-1})); h \in \mathcal{H}\}$ であり, この要素数の max を取ったものが growth function だった.
 - (出): 帰納法の仮定
- ightharpoonup さらに, $Z \subset S'$ の取りうるラベルの組合せが G_2 で網羅される ("Z は G_2 で shatter される" という) ならば, $Z \cup \{x_n\}$ は G で shatter される.

$$\underline{e.g.}$$
 先の例で, $S'=\{x_1,x_2\}=Z$ とおくと, Z は $G_2=\{h_4,h_6,h_7,h_8\}$ で shatter され, $S=S'\cup\{x_3\}$ は $G=G_1\cup G_2$ で shatter される

Sauer's Lemma VI

従って

$$VC_{dim}(G_2) \le VC_{dim}(G) - 1 = d - 1$$

 $ightharpoons G_2$ が網羅できるラベルの組合せ数は, G が網羅できるラベルの組合せ数より真に小さい.

また, G_1 のときと全く同様の論法で

$$|G_2| \le \hat{\Pi}_{G_2}(n-1) \le \sum_{i=0}^d \binom{n-1}{i}$$

が成立.

Sauer's Lemma VII

以上の議論より,

$$|G| = |G_1| + |G_2| \le \sum_{i=0}^d \binom{n-1}{i} + \sum_{i=0}^{d-1} \binom{n-1}{i}$$
$$= \sum_{i=0}^d \left\{ \binom{n-1}{i} + \binom{n-1}{i-1} \right\}$$
$$= \sum_{i=0}^d \binom{n}{i}$$

より (n,d) の場合が示された. \Box

VC 次元による汎化誤差の一様上界 I

Theorem 1 (Theorem 2.2)

- $\blacktriangleright \mathcal{H} \subset \{h: \mathcal{X} \to \{+1, -1\}\}\$
- $ightharpoonup VC_{dim}(\mathcal{H}) = d < \infty$
- ightharpoonup training data : $(X_i, Y_i) \sim_{i.i.d} \mathcal{D}$
- \triangleright 0 1 loss

 $n \ge d \ \mathcal{O} \ \mathcal{E}$,

$$\left| \sup_{h \in \mathcal{H}} |R_{err}(h) - \hat{R}_{err}(h)| \le 2\sqrt{\frac{2d}{n} \log \frac{en}{d}} + \sqrt{\frac{\log 2/\delta}{2n}} \right| \ge 1 - \delta$$

が成立

以下, Thm 2.2 を用いて学習した仮説の汎化誤差を評価 $(|\mathcal{H}| = \infty$ なる状況も考える)

VC 次元による汎化誤差の一様上界 II

設定

- ► $S = \{(X_i, Y_i)\}_{i=1}^n$: observed data
- $lackbox{lack} h_S = rg \min_{h \in \mathcal{H}} \hat{R}_{err}(h)$: 最小経験誤差を達成する仮説
- ▶ $h_0 \in \mathcal{H}$: \mathcal{H} は Bayes rule を含むと仮定

以下は定義から明らか:

$$\hat{R}_{err}(h_S) \le \hat{R}_{err}(h_0)$$

$$R_{err}(h_0) \le R_{err}(h_S)$$

Q: h_S の汎化誤差 $R_{err}(h_S)$ のバウンド?

 \longrightarrow Thm 2.2 より, 経験誤差 + f(VC 次元, データ数) で押さえられる

VC 次元による汎化誤差の一様上界 Ⅲ

One of the most important results in learning theory

(by Bottou et al. "Optimization Methods for Large-Scale Machine Learning")

$$R_{err}(h_S) \leq R_{err}(h_S) + \underbrace{\hat{R}_{err}(h_0) - \hat{R}_{err}(h_S)}_{\geq 0}$$

$$= R_{err}(h_0) - R_{err}(h_0) + \hat{R}_{err}(h_0) + R_{err}(h_S) - \hat{R}_{err}(h_S)$$

$$\leq R_{err}(h_0) + \sup_{h \in \mathcal{H}} |R_{err}(h) - \hat{R}_{err}(h)|$$

$$+ \sup_{h \in \mathcal{H}} |R_{err}(h) - \hat{R}_{err}(h)|$$

$$= R_{err}(h_0) + 2 \sup_{h \in \mathcal{H}} |R_{err}(h) - \hat{R}_{err}(h)|$$

 $O_p\left(\sqrt{\frac{d}{n}\log\frac{n}{d}}\right)$

$$(Thm2.2 \to) \le R_{err}(h_0) + 2\left(2\sqrt{\frac{2d}{n}\log\frac{en}{d}} + \sqrt{\frac{\log 2/\delta}{2n}}\right)$$

0. 1 - 0

VC 次元による汎化誤差の一様上界 Ⅳ

$$R_{err}(h_S) \le R_{err}(h_0) + O_p\left(\sqrt{\frac{d}{n}\log\frac{n}{d}}\right)$$

- ightharpoonup VC 次元 d fix で data 数 n を増やす ightharpoonup 汎化誤差が減る
- ightharpoonup data 数 n fix で VC 次元 d を増やす ightharpoonup 汎化誤差が増える

VC 次元による汎化誤差の一様上界 V

Example 1 (有限仮説集合)

 $|\mathcal{H}| < \infty$ のとき, $VCdim(\mathcal{H}) (=d) \leq \log_2 |\mathcal{H}|$

(proof) d 個の入力に割り当てられる 2 値ラベルのパターン総数は 2^d .

もし $|\mathcal{H}|<2^d$ とすると, $\exists y_1,...,y_d$ S.t. $\forall h\in\mathcal{H},\ h(x_i)\neq y_i$ とできる. すなわち, \mathcal{H} の元でラベルパターンを網羅できない. よって,

$$VCdim(\mathcal{H}) = \underbrace{\log_2 2^d}_{=d} \le \log_2 |\mathcal{H}|$$

このとき, 汎化誤差のバウンドは

$$R_{err}(h_S) \le R_{err}(h_0) + O_p\left(\sqrt{\frac{d_{\mathcal{H}}}{n}\log\frac{n}{d_{\mathcal{H}}}}\right)$$

$$\le R_{err}(h_0) + O_p\left(\sqrt{\frac{\log_2|\mathcal{H}|}{n}\log\frac{n}{\log_2|\mathcal{H}|}}\right)$$

VC 次元による汎化誤差の一様上界 VI

Example 2 (\mathbb{R}^d 上の線形判別)

- $(x_i, y_i)_{i=1}^{d+1} \subset \mathcal{X} \times \{+1, -1\}$
- ▶ $\mathcal{H} = \{h(\boldsymbol{x}) = \operatorname{sign}(\boldsymbol{w}^{\top}\boldsymbol{x} + b); \boldsymbol{w} \in \mathbb{R}^d, b \in \mathbb{R}\}$:線形判別器

$$A = \begin{pmatrix} x_1 & \cdots & x_{d+1} \\ 1 & \cdots & 1 \end{pmatrix} \in \mathbb{R}^{(d+1) \times (d+1)}$$
 が可逆のとき、 $\begin{pmatrix} w \\ b \end{pmatrix} = A^{-1}y$ とパラメータを取ると、 $y_i = h(x_i)$ が成立:

$$\begin{pmatrix} y_1 \\ \vdots \\ y_{d+1} \end{pmatrix} = A \begin{pmatrix} \mathbf{w} \\ b \end{pmatrix} = \begin{pmatrix} \mathbf{w}^{\top} \mathbf{x}_1 + b \\ \vdots \\ \mathbf{w}^{\top} \mathbf{x}_{d+1} + b \end{pmatrix}$$
$$= \begin{pmatrix} \operatorname{sign}(\mathbf{w}^{\top} \mathbf{x}_1 + b) \\ \vdots \\ \operatorname{sign}(\mathbf{w}^{\top} \mathbf{x}_{d+1} + b) \end{pmatrix} = \begin{pmatrix} h(\mathbf{x}_1) \\ \vdots \\ h(\mathbf{x}_{d+1}) \end{pmatrix}$$

これより, $VCdim(\mathcal{H}) \geq d+1$ が言える.

Radon's Theorem (VC 次元の上界) I

仮説集合の複雑さの upper bound を求めたい

Theorem 2 (Radon's Theorem)

$$\forall S = \{x_1,...,x_{d+2}\} \subset \mathbb{R}^d$$
, $\exists S_1,S_2$: a partition of S (i.e. $S_1 \cup S_2 = S$, $S_1 \cap S_2 = \emptyset$) s.t.

$$\operatorname{conv}(S_1) \cap \operatorname{conv}(S_2) \neq \emptyset$$

ここで conv(A) は A の凸包:

$$\operatorname{conv}(A) := \left\{ \sum_{i=1}^{n} \alpha_i \boldsymbol{x}_i \middle| n \in \mathbb{N}, \sum_{i=1}^{n} \alpha_i = 1, \ \alpha \in [0, 1], \ \boldsymbol{x}_i \in A \right\}$$

Radon's Theorem (VC 次元の上界) II

- 2値判別問題に対して, Radon's thm を使って VC 次元の上界を計算
 - $ightharpoonup S_1, S_2: S = \{x_1, ..., x_{d+2}\} \subset \mathbb{R}^d \mathcal{O}$ Radon partition
 - ► true label :

$$y_i = \begin{cases} +1 & \text{if } \mathbf{x}_i \in S_1 \\ -1 & \text{if } \mathbf{x}_i \in S_2 \end{cases}$$

▶ true label に正答する線形判別器 $h \in \mathcal{H}$ が存在すると仮定:

$$h(\mathbf{x}_i) = \begin{cases} +1 & \text{if } \mathbf{x}_i \in \text{conv}(S_1) \\ -1 & \text{if } \mathbf{x}_i \in \text{conv}(S_2) \end{cases}$$

- ▶ しかし, h は $x \in \text{conv}(S_1) \cap \text{conv}(S_2)$ に対してはどちらのラベルも付与してしまい矛盾
 - ightarrow d+2 個の入力点のラベル付けは線形判別器では網羅できない
 - $\rightarrow VCdim(\mathcal{H}) \leq d+1$
- ▶ 一方, 線形判別器の VC 次元は $VCdim(\mathcal{H}) \ge d+1$ を満たすから, 両者を合わせると $VCdim(\mathcal{H}) = d+1$ を得る

Radon's Theorem (VC 次元の上界) III

Proof of Radon's Theorem

 $\alpha_1, ..., \alpha_{d+2} \in \mathbb{R}$ に関する d+1 個の線形方程式系を考える:

$$\begin{cases} \sum_{i=1}^{d+2} \alpha_i \mathbf{x}_i = 0 \\ \sum_{i=1}^{d+2} \alpha_i = 0 \end{cases} \iff \begin{cases} \alpha_1 x_{11} + \dots + \alpha_{d+2} x_{d+2,1} = 0 \\ \alpha_1 x_{12} + \dots + \alpha_{d+2} x_{d+2,2} = 0 \\ \vdots \\ \alpha_1 x_{1d} + \dots + \alpha_{d+2} x_{d+2,d} = 0 \\ \alpha_1 + \dots + \alpha_{d+2} = 0 \end{cases}$$

d+2 個の未知数に対して方程式の数が d+1 であるから, この系は非自明な解 $\beta_1,...,\beta_{d+2}$ を持つ (i.e. $\exists i$ s.t. $\beta_i \neq 0$)

Radon's Theorem (VC 次元の上界) IV

集合 I_1 , I_2 をそれぞれ

$$I_1 = \{i \in [d+2] \mid \beta_i > 0\}$$

$$I_2 = \{i \in [d+2] \mid \beta_i \le 0\}$$

と定めると, $\sum_{i=1}^{d+2} eta_i = 0$ かつ eta の非自明性から,

$$I_1 \neq \emptyset, \quad I_2 \neq \emptyset$$

であり, S_1 , S_2 を

$$S_1 = \{ x_i \in S \mid i \in I_1 \}$$
$$S_2 = \{ x_i \in S \mid i \in I_2 \}$$

ととると, これらはSの Radon partition をなす (i.e. $S_1 \cup S_2 = S$, $S_1 \cap S_2 = \emptyset$)

26

Radon's Theorem (VC 次元の上界) V

再び $\sum_{i=1}^{d+2} \beta_i = 0$ より,

$$\sum_{i=1}^{d+2} \beta_i = \sum_{i \in I_1} \beta_i + \sum_{i \in I_2} \beta_i = 0 \Longleftrightarrow \sum_{i \in I_1} \beta_i = -\sum_{i \in I_2} \beta_i$$

が成立. いま, 左辺を β をおくと,

$$\sum_{i=1}^{d+2} \beta_i \boldsymbol{x}_i = \sum_{i \in I_1} \beta_i \boldsymbol{x}_i + \sum_{i \in I_2} \beta_i \boldsymbol{x}_i = 0 \iff \sum_{i \in I_1} \frac{\beta_i}{\beta} \boldsymbol{x}_i = \sum_{i \in I_2} \frac{-\beta_i}{\beta} \boldsymbol{x}_i$$

かつ, $rac{eta_i}{eta} \geq 0$ $(i \in I_1)$, $rac{-eta_i}{eta} \geq 0$ $(i \in I_2)$ で,

$$\sum_{i \in I_0} \frac{-\beta_i}{\beta} = \sum_{i \in I_0} \frac{\beta_i}{\beta} = \frac{\beta}{\beta} = 1$$

が成立 (βで割って規格化することで凸結合になってる).

Radon's Theorem (VC 次元の上界) VI

凸包の定義から,

$$\operatorname{conv}(S_1) \ni \sum_{i \in I_1} \frac{\beta_i}{\beta} \boldsymbol{x}_i = \sum_{i \in I_2} \frac{-\beta_i}{\beta} \boldsymbol{x}_i \in \operatorname{conv}(S_2)$$

であり, 特に $\frac{\beta_i}{\beta} x_i \in \text{conv}(S_1) \cap \text{conv}(S_2)$ が言えた. \square

Example 3 ($VCdim(\mathcal{H}) = \infty$ の例)

$$\mathcal{H} = \{h(\boldsymbol{x}) = \operatorname{sign}(\sin(2\pi\theta\boldsymbol{x})) | \theta \in \mathbb{R}\}$$

仮説集合の複雑度

2.2 ラデマッハ複雑度

ラデマッハ複雑度I

ある確率分布に基づいて仮説集合の複雑さを測る.

仮説集合: $\mathcal{G} = \{f : \mathcal{X} \longrightarrow \mathbb{R}\}$

Definition 3 (empirical Rademacher complexity)

- $ightharpoonup S = \{oldsymbol{x}_i\}_{i=1}^n \subset \mathcal{X}$: input set
- $ightharpoonup \sigma_i = \pm 1$ w.p. $\frac{1}{2}$: independent r.v.

このとき, 仮説集合 $\mathcal G$ の empirical Rademacher complexity は以下で定義される

$$\hat{\mathcal{R}}_{S}(\mathcal{G}) := \mathbb{E}_{\sigma_{1},\dots,\sigma_{n}} \left[\sup_{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} g(\boldsymbol{x}_{i}) \right]$$

S 上のランダムなラベル付け (x_i, σ_i) , $1 \le i \le n$ に対して $\mathcal G$ の data への平均的適合度を評価している

ラデマッハ複雑度 II

Definition 4 (Rademacher complexity)

$$S = \{x_i\}_{i=1}^n \sim D$$
 のとき, $\hat{\mathcal{R}}_S(\mathcal{G})$ の D に関する期待値

$$\mathcal{R}_n(\mathcal{G}) := \mathbb{E}_{S \sim D} \left[\hat{\mathcal{R}}_S(\mathcal{G}) \right]$$

を G の Rademacher complexity という

経験ラデマッハ複雑度 $\hat{\mathcal{R}}_S(\mathcal{G})$ の性質

Theorem 3 (経験ラデマッハ複雑度の性質)

$$\mathcal{G},\mathcal{G}_1,...,\mathcal{G}_k$$
: 仮説集合列

- 1. $G_i \subset G_j \Longrightarrow \hat{\mathcal{R}}_S(G_i) \le \hat{\mathcal{R}}_S(G_j)$
- 2. $\forall c \in \mathbb{R}, \hat{\mathcal{R}}_S(c\mathcal{G}) \leq |c|\hat{\mathcal{R}}_S(\mathcal{G})$
- 3. $\hat{\mathcal{R}}_S(\mathcal{G}) = \hat{\mathcal{R}}_S(\text{conv}(\mathcal{G}))$
- 4. (Talagrand's lemma)

$$\phi: \mathbb{R} \to \mathbb{R}: L$$
-Lipschitz $\Longrightarrow \hat{\mathcal{R}}_S(\phi \circ \mathcal{G}) \leq L\hat{\mathcal{R}}_S(\mathcal{G})$

5. (subadditivity)

$$\hat{\mathcal{R}}_S(\sum_{i=1}^k \mathcal{G}_i) \le \sum_{i=1}^k \hat{\mathcal{R}}_S(\mathcal{G}_i)$$

- 6. $\mathcal{G} \subset \{(x,y) \mapsto f(x,y)\}$ に対して $\mathcal{G}_y = \{x \mapsto f(x,y) \mid f \in \mathcal{G}\}$ とおく $\Longrightarrow \hat{\mathcal{R}}_S(\mathcal{G}) \leq \sum_{y \in \mathcal{Y}} \hat{\mathcal{R}}_S(\mathcal{G}_y)$
- 7. $\mathcal{G} = \{ \boldsymbol{x} \mapsto \max\{f_1(\boldsymbol{x}), ..., f_k(\boldsymbol{x})\} \mid f_1 \in \mathcal{G}_1, ..., f_k \in \mathcal{G}_k \}$ とおく $\Longrightarrow \hat{\mathcal{R}}_S(\mathcal{G}) \leq \sum_{\ell=1}^k \hat{\mathcal{R}}_S(\mathcal{G}_\ell)$

経験ラデマッハ複雑度 $\hat{\mathcal{R}}_S(\mathcal{G})$ の性質 \blacksquare

<u>Proof</u>

- 1. \sup の定義から明らか (\mathcal{G}_i より \mathcal{G}_j の方が \sup の範囲が 広いから) \square
- 2. $\forall c \in \mathbb{R}$ に対して, σ_i と $\operatorname{sign}(c)\sigma_i$ は同一分布に従う (いずれも等確率で ± 1 を返す). このとき, 以下が成立:

$$\hat{\mathcal{R}}(c\mathcal{G}) = \mathbb{E}_{\sigma_1, \dots, \sigma_n} \left[\sup_{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^n \sigma_i cg(\mathbf{x}_i) \right]$$

$$= \mathbb{E} \left[\sup_{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^n \sigma_i | \mathbf{c} | \mathbf{sign}(\mathbf{c}) g(\mathbf{x}_i) \right]$$

$$= |c| \mathbb{E} \left[\sup_{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^n \sigma_i \mathbf{sign}(\mathbf{c}) g(\mathbf{x}_i) \right]$$

$$= |c| \mathbb{E} \left[\sup_{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^n \sigma_i g(\mathbf{x}_i) \right] = |c| \hat{\mathcal{R}}_S(\mathcal{G}) \quad \Box$$

経験ラデマッハ複雑度 $\hat{\mathcal{R}}_S(\mathcal{G})$ の性質 III

Proof 続 3.
$$\operatorname{conv}(\mathcal{G}) = \left\{ \sum_{\ell=1}^{k} \alpha_{\ell} g_{\ell} \mid k \in \mathbb{N}, \ \alpha_{\ell} \in [0,1], \ \sum_{\ell=1}^{k} \alpha_{\ell} = 1, \ g_{\ell} \in \mathcal{G} \right\}$$
 より,
$$\sup_{g \in \operatorname{conv}(\mathcal{G})} \sum_{i=1}^{n} \sigma_{i} g(\boldsymbol{x}_{i}) = \sup_{g_{1}, \dots, g_{k}} \sup_{\alpha_{1}, \dots, \alpha_{k}} \sum_{i=1}^{n} \sigma_{i} \sum_{\ell=1}^{k} \alpha_{\ell} g_{\ell}(\boldsymbol{x}_{i})$$

(有限和の順序交換
$$\rightarrow$$
) = $\sup_{g_1,...,g_k} \sup_{\alpha_1,...,\alpha_k} \sum_{\ell=1}^{\kappa} \alpha_\ell \sum_{i=1}^{n} \sigma_i g_\ell(\boldsymbol{x}_i)$

$$(\diamond \rightarrow) = \sup_{g_1, \dots, g_k} \max_{1 \le \ell \le k} \sum_{i=1}^n \sigma_i g_\ell(\boldsymbol{x}_i)$$
$$= \sup_{g \in \mathcal{G}} \sum_{i=1}^n \sigma_i g(\boldsymbol{x}_i)$$

よって両辺で σ について期待値をとれば主張が従う. ◊ は次で示す

経験ラデマッハ複雑度 $\hat{\mathcal{R}}_S(\mathcal{G})$ の性質 IV

Proof 続 3. ◊は,以下の事実から従う:

$$\sup_{\substack{\alpha_1, \dots, \alpha_k \ge 0 \\ \sum_{\alpha_\ell = 1}}} \sum_{\ell=1}^k \alpha_\ell v_\ell = \max_{1 \le \ell \le k} v_\ell, \ \forall \mathbf{v} = (v_1, \dots, v_k)$$

$$(\cdot;\cdot)$$
 (\geq) $\hat{\ell}=rg\max_{\ell}v_{\ell}$ とおくと, 右辺は $\alpha=(0,...,\underbrace{1}_{\hat{\ell}},...,0)$

なる α のとり方をした場合に相当. 左辺はこのとり方を含めた全ての α で \sup を取っているから明らか.

$$(\leq)$$

$$\sum_{\ell=1}^{k} \alpha_{\ell} v_{\ell} \le v_{\hat{\ell}} \underbrace{\sum_{\ell=1}^{k} \alpha_{\ell}}_{=1} = v_{\hat{\ell}}$$

両辺で α について \sup をとれば主張が従う.

経験ラデマッハ複雑度 $\hat{\mathcal{R}}_S(\mathcal{G})$ の性質 V

Proof 続 4. $S = \{x_i\}_{i=1}^n \subset \mathcal{X}$ に対して

$$u_{n-1}(f) := \sum_{i=1}^{n-1} \sigma_i \phi(f(\boldsymbol{x}_i))$$

とおくと,

$$\begin{split} \hat{\mathcal{R}}(\phi \circ \mathcal{G}) &= \mathbb{E}_{\sigma_1, \dots, \sigma_n} \left[\sup_{f \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^n \sigma_i \phi(f(\boldsymbol{x}_i)) \right] \\ &= \frac{1}{n} \mathbb{E}_{\sigma_1, \dots, \sigma_n} \left[\sup_{f \in \mathcal{G}} \left\{ \sum_{i=1}^{n-1} \sigma_i \phi(f(\boldsymbol{x}_i)) + \sigma_n \phi(f(\boldsymbol{x}_n)) \right\} \right] \\ &= \frac{1}{n} \mathbb{E}_{\sigma_1, \dots, \sigma_{n-1}} \left[\mathbb{E}_{\sigma_n} \left[\sup_{f \in \mathcal{G}} \left\{ \sum_{i=1}^{n-1} \sigma_i \phi(f(\boldsymbol{x}_i)) + \sigma_n \phi(f(\boldsymbol{x}_n)) \right\} \right] \right] \end{split}$$

と書ける

経験ラデマッハ複雑度 $\hat{\mathcal{R}}_{\scriptscriptstyle S}(\mathcal{G})$ の性質 $\sf VI$

Proof 続 4. sup の定義より、 $\forall \varepsilon > 0$ 、 $\exists f^{(+)}, f^{(-)} \in \mathcal{G}$ s.t.,

$$\sup_{f \in \mathcal{G}} \left\{ u_{n-1}(f) + \phi(f(\boldsymbol{x}_n)) \right\} \le u_{n-1}(f^{(\pm)}) \pm \phi(f^{(\pm)}(\boldsymbol{x}_n)) + \varepsilon$$

が成立 (復号同順). いま, $s_n = \operatorname{sign}(f^{(+)}(\boldsymbol{x}_n) - f^{(-)}(\boldsymbol{x}_n))$ とお くと.

$$\mathbb{E}_{\sigma_{n}} \left[\sup_{f \in \mathcal{G}} \left\{ u_{n-1}(f) + \sigma_{n} \phi(f(\boldsymbol{x}_{n})) \right\} \right]$$

$$\leq \frac{1}{2} \left\{ u_{n-1}(f^{(+)}) + \phi(f^{(+)}(\boldsymbol{x}_{n})) + u_{n-1}(f^{(-)}) - \phi(f^{(-)}(\boldsymbol{x}_{n})) \right\} + \varepsilon$$

$$\leq \frac{1}{2} \left\{ u_{n-1}(f^{(+)}) + u_{n-1}(f^{(-)}) + \underbrace{\phi(f^{(+)}(\boldsymbol{x}_{n})) - \phi(f^{(-)}(\boldsymbol{x}_{n}))}_{\leq L|f^{(+)}(\boldsymbol{x}_{n}) - f^{(-)}(\boldsymbol{x}_{n})|} \right\}$$

$$\leq \frac{1}{2} \left\{ u_{n-1}(f^{(+)}) + u_{n-1}(f^{(-)}) + Ls_{n}(f^{(+)}(\boldsymbol{x}_{n}) - f^{(-)}(\boldsymbol{x}_{n})) \right\}$$
37

経験ラデマッハ複雑度 $\hat{\mathcal{R}}_S(\mathcal{G})$ の性質 VII

Proof 続

4.

$$\frac{1}{2} \left\{ u_{n-1}(f^{(+)}) + u_{n-1}(f^{(-)}) + Ls_n(f^{(+)}(\boldsymbol{x}_n) - f^{(-)}(\boldsymbol{x}_n)) \right\} + \varepsilon$$

$$= \frac{1}{2} \left\{ u_{n-1}(f^{(+)}) + Ls_n f^{(+)}(\boldsymbol{x}_n) \right\}$$

$$+ \frac{1}{2} \left\{ u_{n-1}(f^{(-)}) - Ls_n f^{(-)}(\boldsymbol{x}_n) \right\} + \varepsilon$$

$$\leq \frac{1}{2} \mathbb{E}_{\sigma_n} \left[\sup_{f} \left\{ u_{n-1}(f) + \sigma_n Ls_n f(\boldsymbol{x}_n) \right\} \right]$$

$$+ \frac{1}{2} \mathbb{E}_{\sigma_n} \left[\sup_{f} \left\{ u_{n-1}(f) + \sigma_n Ls_n f(\boldsymbol{x}_n) \right\} \right] + \varepsilon$$

$$= \mathbb{E}_{\sigma_n} \left[\sup_{f} \left\{ u_{n-1}(f) + \sigma_n Ls_n f(\boldsymbol{x}_n) \right\} \right] + \varepsilon$$

経験ラデマッハ複雑度 $\hat{\mathcal{R}}_S(\mathcal{G})$ の性質 VIII

Proof 続 4. 上記の不等式が $\forall \varepsilon > 0$ で成立つから, $\varepsilon \searrow 0$ とすると,

$$\mathbb{E}_{\sigma_n} \left[\sup_{f \in \mathcal{G}} \left\{ u_{n-1}(f) + \sigma_n \phi(f(\boldsymbol{x}_n)) \right\} \right] \leq \mathbb{E}_{\sigma_n} \left[\sup_{f} \left\{ u_{n-1}(f) + \sigma_n L f(\boldsymbol{x}_n) \right\} \right]$$

が成立 $(\sigma_n \ \ \, \sigma_n s_n \ \,$ が同一の分布を定めることを使う). 次に, n-1 番目に注目して

$$u_{n-2}(f) = \sum_{i=1}^{n-2} \sigma_i \phi(f(\boldsymbol{x}_i)) + \sigma_n L f(\boldsymbol{x}_n)$$

とおき, 同様の議論で

$$\mathbb{E}_{\sigma_{n-1},\sigma_n} \left[\sup_{f \in \mathcal{G}} \left\{ u_{n-2}(f) + \sigma_{n-1} \phi(f(\boldsymbol{x}_{n-1})) \right\} \right]$$

$$\leq \mathbb{E}_{\sigma_{n-1},\sigma_n} \left[\sup_{f} \left\{ u_{n-2}(f) + \sigma_{n-1} Lf(\boldsymbol{x}_{n-1}) \right\} \right]$$

39

経験ラデマッハ複雑度 $\hat{\mathcal{R}}_S(\mathcal{G})$ の性質 \mathbf{IX}

 \underline{Proof} 6. 以上の手続きを σ_1 まで繰り返すと, 結局

$$\hat{\mathcal{R}}_{S}(\phi \circ \mathcal{G}) = \frac{1}{n} \mathbb{E}_{\sigma_{1}, \dots, \sigma_{n}} \left[\sup_{f \in \mathcal{G}} \sum_{i=1}^{n} \sigma_{i} \phi(f(\boldsymbol{x}_{i})) \right]$$

$$\leq \frac{L}{n} \mathbb{E}_{\sigma_{1}, \dots, \sigma_{n}} \left[\sup_{f \in \mathcal{G}} \sum_{i=1}^{n} \sigma_{i} f(\boldsymbol{x}_{i}) \right]$$

$$= L\hat{\mathcal{R}}_{S}(\mathcal{G})$$

を得る 🗆

5. sup の性質

$$\sup(A+B) \le \sup(A) + \sup(B)$$

から従う□

経験ラデマッハ複雑度 $\hat{\mathcal{R}}_S(\mathcal{G})$ の性質 X

Proof 続 6. $S = \{(\boldsymbol{x}_i, y_i)\}_{i=1}^n \subset \mathcal{X} \times \mathcal{Y}$ に対して

$$\begin{split} \hat{\mathcal{R}}_{S}(\mathcal{G}) &= \frac{1}{n} \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{G}} \sum_{i=1}^{n} \sigma_{i} f(\boldsymbol{x}_{i}, y_{i}) \right] \\ &= \frac{1}{n} \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{G}} \sum_{i=1}^{n} \sigma_{i} \sum_{y \in \mathcal{Y}} f(\boldsymbol{x}_{i}, y) \mathbf{1}[y = y_{i}] \right] \\ (\sup \mathcal{O}性質 \rightarrow) &\leq \frac{1}{n} \sum_{y \in \mathcal{Y}} \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{G}} \sum_{i=1}^{n} \sigma_{i} f(\boldsymbol{x}_{i}, y) \mathbf{1}[y = y_{i}] \right] \\ &= \frac{1}{n} \sum_{y \in \mathcal{Y}} \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{G}} \sum_{i=1}^{n} \sigma_{i} f(\boldsymbol{x}_{i}, y) \left(\frac{1}{2} + \frac{2 \times \mathbf{1}[y = y_{i}] - 1}{2} \right) \right] \\ &\leq \frac{1}{2n} \sum_{y \in \mathcal{Y}} \left(\mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{G}} \sum_{i=1}^{n} \sigma_{i} f(\boldsymbol{x}_{i}, y) \right] + \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{G}} \sum_{i=1}^{n} \sigma_{i} (2 \times \mathbf{1}[y = y_{i}] - 1) f(\boldsymbol{x}_{i}, y) \right] \right) \end{split}$$

経験ラデマッハ複雑度 $\hat{\mathcal{R}}_S(\mathcal{G})$ の性質 XI

Proof 続 6.

$$\frac{1}{2n} \sum_{y \in \mathcal{Y}} \left(\mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{G}} \sum_{i=1}^{n} \sigma_{i} f(\boldsymbol{x}_{i}, y) \right] + \mathbb{E}_{\sigma} \left[\sup_{f \in \mathcal{G}} \sum_{i=1}^{n} \sigma_{i} (2 \times \mathbf{1}[y = y_{i}] - 1) f(\boldsymbol{x}_{i}, y) \right] \right)$$

$$= \frac{1}{2} \sum_{y \in \mathcal{Y}} \hat{\mathcal{R}}_{S}(\mathcal{G}_{y}) + \frac{1}{2} \sum_{y \in \mathcal{Y}} \hat{\mathcal{R}}_{S}(\mathcal{G}_{y})$$

$$= \sum_{i=1}^{n} \hat{\mathcal{R}}_{S}(\mathcal{G}_{y})$$

ここで, 最初の等号では σ_i と $\sigma_i(2 \times \mathbf{1}[y=y_i]-1)$ の分布が等しいことを使った. \square

経験ラデマッハ複雑度 $\hat{\mathcal{R}}_S(\mathcal{G})$ の性質 XII

Proof 続 7. k=2 の場合を示す: $\mathcal{G}=\{\max\{f_1,f_2\}\mid f_1\in\mathcal{G}_1,f_2\in\mathcal{G}_2\}.$

$$\begin{split} \hat{\mathcal{R}}_{S}(\mathcal{G}) &= \frac{1}{n} \mathbb{E}_{\sigma} \left[\sup_{f_{1}, f_{2}} \sum_{i=1}^{n} \sigma_{i} \max\{f_{1}(\boldsymbol{x}_{i}), f_{2}(\boldsymbol{x}_{i})\} \right] \\ &= \frac{1}{n} \mathbb{E}_{\sigma} \left[\sup_{f_{1}, f_{2}} \sum_{i=1}^{n} \sigma_{i} \frac{f_{1}(\boldsymbol{x}_{i}) + f_{2}(\boldsymbol{x}_{i})}{2} + \frac{|f_{1}(\boldsymbol{x}_{i}) - f_{2}(\boldsymbol{x}_{i})|}{2} \right] \\ &\qquad \left(\uparrow \max\{z_{1}, z_{2}\} = \frac{z_{1} + z_{2}}{2} + \frac{|z_{1} - z_{2}|}{2} \right) \\ &\leq \frac{1}{2n} \mathbb{E}_{\sigma} \left[\sup_{f_{1}} \sum_{i=1}^{n} \sigma_{i} f_{1}(\boldsymbol{x}_{i}) \right] + \frac{1}{2n} \mathbb{E}_{\sigma} \left[\sup_{f_{2}} \sum_{i=1}^{n} \sigma_{i} f_{2}(\boldsymbol{x}_{i}) \right] \\ &\qquad + \frac{1}{2n} \mathbb{E}_{\sigma} \left[\sup_{f_{1}, f_{2}} \sum_{i=1}^{n} \sigma_{i} |f_{1}(\boldsymbol{x}_{i}) - f_{2}(\boldsymbol{x}_{i})| \right] \\ &= \frac{1}{2} \hat{\mathcal{R}}_{S}(\mathcal{G}_{1}) + \frac{1}{2} \hat{\mathcal{R}}_{S}(\mathcal{G}_{2}) + \frac{1}{2n} \mathbb{E}_{\sigma} \left[\sup_{f_{1}, f_{2}} \sum_{i=1}^{n} \sigma_{i} |f_{1}(\boldsymbol{x}_{i}) - f_{2}(\boldsymbol{x}_{i})| \right] \end{split}$$

経験ラデマッハ複雑度 $\hat{\mathcal{R}}_S(\mathcal{G})$ の性質 XIII

Proof 続

$$\frac{1}{2}\hat{\mathcal{R}}_S(\mathcal{G}_1) + \frac{1}{2}\hat{\mathcal{R}}_S(\mathcal{G}_2) + \frac{1}{2n}\mathbb{E}_{\sigma}\left[\sup_{f_1, f_2} \sum_{i=1}^n \sigma_i |f_1(\boldsymbol{x}_i) - f_2(\boldsymbol{x}_i)|\right]$$

| · | は 1-Lipschitz 連続なので, 本定理の 4 より,

$$\frac{1}{2n} \mathbb{E}_{\sigma} \left[\sup_{f_1, f_2} \sum_{i=1}^n \sigma_i |f_1(\boldsymbol{x}_i) - f_2(\boldsymbol{x}_i)| \right] \leq \frac{1}{2n} \mathbb{E}_{\sigma} \left[\sup_{f_1, f_2} \sum_{i=1}^n \sigma_i (f_1(\boldsymbol{x}_i) - f_2(\boldsymbol{x}_i)) \right] \\
\leq \frac{1}{2} \hat{\mathcal{R}}_{S}(\mathcal{G}_1) + \frac{1}{2} \hat{\mathcal{R}}_{S}(\mathcal{G}_2)$$

結局,

$$\hat{\mathcal{R}}_S(\mathcal{G}) \leq \frac{1}{2}\hat{\mathcal{R}}_S(\mathcal{G}_1) + \frac{1}{2}\hat{\mathcal{R}}_S(\mathcal{G}_2) + \frac{1}{2}\hat{\mathcal{R}}_S(\mathcal{G}_1) + \frac{1}{2}\hat{\mathcal{R}}_S(\mathcal{G}_2) = \hat{\mathcal{R}}_S(\mathcal{G}_1) + \hat{\mathcal{R}}_S(\mathcal{G}_2)$$

k > 3 の場合は以上を帰納的に繰り返す \square

ラデマッハ複雑度と VC 次元の関係

- ▶ 2 値判別
- $ightharpoonup S = \{x_i\}_{i=1}^n$: input data
- ▶ $\mathcal{H} = \{h : \mathcal{X} \to \{+1, -1\}\}$: 仮説集合 with $VCdim(\mathcal{H}) = d$
- $A = \{(h(x_1), ..., h(x_n)) \in \{+1, -1\}^n \mid h \in \mathcal{H}\}$

このとき, $n \ge d$ ならば,

$$|A| = \Pi_{\mathcal{H}}(\boldsymbol{x}_1, ..., \boldsymbol{x}_n) \le \underbrace{\max_{\boldsymbol{x}_1, ..., \boldsymbol{x}_n} \Pi_{\mathcal{H}}(\boldsymbol{x}_1, ..., \boldsymbol{x}_n)}_{growth\ function} \le \underbrace{\left(\frac{en}{d}\right)^a}_{Sauer}$$

が成立. S における \mathcal{H} の経験ラデマッハ複雑度は

$$\hat{\mathcal{R}}_{S}(\mathcal{H}) = \frac{1}{n} \mathbb{E}_{\sigma} \left[\sup_{h \in \mathcal{H}} \sum_{i=1}^{n} \sigma_{i} h(\boldsymbol{x}_{i}) \right] = \frac{1}{n} \mathbb{E}_{\sigma} \left[\sup_{\boldsymbol{z} \in A} \sum_{i=1}^{n} \sigma_{i} z_{i} \right] \leq \sqrt{\frac{2d}{n} \log \frac{en}{d}}$$

最後の不等式は Massart's lemma を使った.

ラデマッハ複雑度と VC 次元の関係 II

Lemma 4 (Massart's lemma)

- $ightharpoonup A \subset \mathbb{R}^m$: finite set
- $ightharpoonup r = \max_{x \in A} ||x||_2$
- $ightharpoonup \sigma_1, ..., \sigma_m \sim_{i.i.d.} \text{Unif}(\{+1, -1\})$

このとき. 以下が成立

$$\mathbb{E}_{\sigma} \left[\frac{1}{m} \sup_{\boldsymbol{x} \in A} \sum_{i=1}^{m} \sigma_{i} x_{i} \right] \leq \frac{r \sqrt{2 \log |A|}}{m}$$

$$x_i \ge \bigcup \mathcal{T} \ z_i \in \{+1, -1\} \ (\|z\| = \sqrt{n}) \ \delta \ge h \ \mathsf{ti},$$

$$\frac{1}{n} \mathbb{E}_{\sigma} \left[\sup_{\mathbf{z} \in A} \sum_{i=1}^{n} \sigma_{i} z_{i} \right] \leq \frac{\sqrt{n} \sqrt{2 \log |A|}}{n} \leq \sqrt{\frac{2}{n} \log \left(\frac{en}{d}\right)^{d}} = \sqrt{\frac{2d}{n} \log \left(\frac{en}{d}\right)}$$

がいえる.

ラデマッハ複雑度と VC 次元の関係 III

Proof of Massart's Lemma $\forall t > 0$ に対して,

$$\exp\left\{\mathbb{E}_{\sigma}\left[t\sup_{\boldsymbol{x}\in A}\sum_{i=1}^{m}\sigma_{i}\boldsymbol{x}_{i}\right]\right\}\underbrace{\leq}_{(\diamond)}\mathbb{E}_{\sigma}\left[\exp\left\{t\sup_{\boldsymbol{x}\in A}\sum_{i=1}^{m}\sigma_{i}\boldsymbol{x}_{i}\right\}\right]$$

$$\underbrace{\leq}_{(\diamond^{2})}\sum_{\boldsymbol{x}\in A}\mathbb{E}_{\sigma}\left[\exp\left\{t\sum_{i=1}^{m}\sigma_{i}\boldsymbol{x}_{i}\right\}\right]$$

$$\underbrace{=}_{(\diamond^{3})}\sum_{\boldsymbol{x}\in A}\prod_{i=1}^{m}\mathbb{E}_{\sigma_{i}}\left[\exp\{t\sigma_{i}\boldsymbol{x}_{i}\}\right]$$

$$\diamond$$
 exp の凸性 + Jensen's inequality $(cvx(\mathbb{E}) \leq \mathbb{E}[cvx])$

- $\diamond^2 \sup_{\boldsymbol{x} \in A} \leq \sum_{\boldsymbol{x} \in A}$
- \diamond^3 和を \exp の外に出して積になった

ラデマッハ複雑度と VC 次元の関係 IV

Proof of Massart's Lemma さらに, Hoeffding's lem より以下が成立.

$$\mathbb{E}_{\sigma_i}\left[\exp\{t\sigma_i \boldsymbol{x}_i\}\right] \le \exp\left\{\frac{t^2(2\boldsymbol{x}_i)^2}{8}\right\}$$

よって,

$$\sum_{\boldsymbol{x}\in A} \prod_{i=1}^{m} \mathbb{E}_{\sigma_i} \left[\exp\{t\sigma_i \boldsymbol{x}_i\} \right] \le \sum_{\boldsymbol{x}\in A} \prod_{i=1}^{m} \exp\left\{ \frac{t^2 (2\boldsymbol{x}_i)^2}{8} \right\}$$

$$\le |A| \exp\left\{ \frac{t^2}{2} \sum_{i=1}^{m} \boldsymbol{x}_i^2 \right\} = |A| \exp\left\{ \frac{t^2 r^2}{2} \right\}$$

upper bound の対数をとって t で割る:

$$\frac{1}{t} \left(\log|A| + \frac{t^2 r^2}{2} \right) = \frac{\log|A|}{t} + \frac{tr^2}{2}$$

ラデマッハ複雑度と VC 次元の関係 V

<u>Proof of Massart's Lemma</u> 最小化した上界を用いて, 以下を得る

$$\exp\left\{\mathbb{E}_{\sigma}\left[t \sup_{\boldsymbol{x} \in A} \sum_{i=1}^{m} \sigma_{i} \boldsymbol{x}_{i}\right]\right\} \leq |A| \exp\left\{\frac{t^{2} r^{2}}{2}\right\}$$

$$\iff \mathbb{E}_{\sigma}\left[\sup_{\boldsymbol{x} \in A} \sum_{i=1}^{m} \sigma_{i} \boldsymbol{x}_{i}\right] \leq \frac{\log|A|}{t} + \frac{t r^{2}}{2}$$

右辺をtについて最小化すると,

$$\frac{d}{dt} \left(\frac{\log |A|}{t} + \frac{tr^2}{2} \right) = \frac{r^2}{2} - \frac{\log |A|}{t^2} = 0 \iff t^2 = \frac{2 \log |A|}{r^2}$$

よって
$$t = \frac{\sqrt{2\log|A|}}{r}$$
 とおくと,

$$\mathbb{E}_{\sigma}\left[\sup_{\boldsymbol{x}\in A}\sum_{i=1}^{m}\sigma_{i}\boldsymbol{x}_{i}\right]\leq\frac{r\sqrt{2\log|A|}}{2}+\frac{r\sqrt{2\log|A|}}{2}=r\sqrt{2\log|A|}$$

より, 両辺を m で割って主張を得る. □

経験ラデマッハ複雑度の例 I: 有限集合

- ▶ $G = \{g_1, ..., g_k\}$: 有限関数集合
- ▶ $A = \{g_{\ell}(z_1), ..., g_{\ell}(z_n) \in \mathbb{R}^n \mid 1 \le \ell \le k\} (\{z_i\}_{i=1}^n$ は fix)
- ▶ $1 \le \forall \ell \le k$ に対して以下が成立:

$$||g_{\ell}||_{\infty} = \sup_{z} |g_{\ell}(z)| \le r \left(\Longleftrightarrow \underbrace{\left(\sum_{i=1}^{n} (g_{\ell}(z_i))^2\right)^{1/2}}_{=||G||, G \in A} \le r \right)$$

このとき,

$$\hat{\mathcal{R}}_{S}(\mathcal{G}) = \mathbb{E}_{\sigma} \left[\max_{1 \leq \ell \leq k} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} g_{\ell}(z_{i}) \right]$$

$$(Massart \to) \leq \max_{1 \leq \ell \leq k} \left(\sum_{i=1}^{n} (g_{\ell}(z_{i}))^{2} \right)^{1/2} \underbrace{\frac{\sqrt{2 \log |A|}}{n}}_{n}$$

$$(|\mathcal{G}| = |A| \to) \leq r \frac{\sqrt{2 \log |\mathcal{G}|}}{n}. \quad \Box$$

経験ラデマッハ複雑度の例 II:線形関数集合 I

線形関数集合 $\mathcal{G}=\{x\mapsto w^{\top}x\mid w\in\mathbb{R}^d,\|w\|\leq\Lambda\}$ の経験ラデマッハ複雑度

$$\hat{\mathcal{R}}_{S}(\mathcal{G}) = \mathbb{E}_{\sigma} \left[\frac{1}{n} \sup_{\|\boldsymbol{w}\| \leq \Lambda} \sum_{i=1}^{n} \sigma_{i} \boldsymbol{w}^{\top} \boldsymbol{x}_{i} \right] = \mathbb{E}_{\sigma} \left[\frac{1}{n} \sup_{\|\boldsymbol{w}\| \leq \Lambda} \boldsymbol{w}^{\top} \left(\sum_{i=1}^{n} \sigma_{i} \boldsymbol{x}_{i} \right) \right]$$

$$\underbrace{=}_{(\diamond)} \frac{1}{n} \mathbb{E}_{\sigma} \left[\Lambda \left\| \sum_{i=1}^{n} \sigma_{i} \boldsymbol{x}_{i} \right\| \right]$$

$$(\diamond)$$
 Claim $\sup_{\|\boldsymbol{x}\| \le r} |\boldsymbol{x}^{\top} \boldsymbol{y}| = r \|\boldsymbol{y}\|$

 $\mathbf{y} \in (\leq)$ Cauchy-Schwartz 不等式より, $|\mathbf{x}^{\top}\mathbf{y}| \leq \|\mathbf{x}\| \|\mathbf{y}\| \leq r \|\mathbf{y}\|$.

$$(\geq)$$
 $x=rac{r}{\|oldsymbol{y}\|}oldsymbol{y}$ ととると, $\|oldsymbol{x}\|\leq r$ で,

$$|oldsymbol{x}^{ op}oldsymbol{y}| = \left|\left(rac{r}{\|oldsymbol{y}\|}oldsymbol{y}
ight)^{ op}oldsymbol{y}
ight| = rrac{\|oldsymbol{y}\|}{\|oldsymbol{y}\|}\|oldsymbol{y}\| = r\|oldsymbol{y}\|$$

が成立 (2 つめの等号は, Cauchy-Schwarz 不等式の等号成立条件 $(\exists \lambda \text{ s.t.} x = \lambda y)$ による). 特に, $|x^{\top}y| > r||y||$.

経験ラデマッハ複雑度の例Ⅱ:線形関数集合Ⅱ

$$\frac{1}{n} \mathbb{E}_{\sigma} \left[\Lambda \left\| \sum_{i=1}^{n} \sigma_{i} \boldsymbol{x}_{i} \right\| \right] = \frac{1}{n} \mathbb{E}_{\sigma} \left[\Lambda \left(\left\| \sum_{i=1}^{n} \sigma_{i} \boldsymbol{x}_{i} \right\|^{2} \right)^{1/2} \right] \\
\underset{(\diamond)}{\underbrace{\leq}} \frac{\Lambda}{n} \left(\mathbb{E}_{\sigma} \left[\left\| \sum_{i=1}^{n} \sigma_{i} \boldsymbol{x}_{i} \right\|^{2} \right] \right)^{1/2} \underset{\diamond^{2}}{\underbrace{=}} \frac{\Lambda}{n} \left(\sum_{i=1}^{n} \|\boldsymbol{x}_{i}\|^{2} \right)^{1/2}$$

(\diamond) concave function $\sqrt{\cdot}$ に対する Jensen 不等式 ($\mathbb{E}[\sqrt{\cdot}] \leq \sqrt{\mathbb{E}[\cdot]}$) による.

$$(\diamond^2)$$
 $n=2$ のとき $(n \ge 3$ のときも同様にクロスタームが消える),

$$\begin{split} \mathbb{E}[\|\sigma_{1}x_{1} + \sigma_{2}x_{2}\|] &= \mathbb{E}[\|\sigma_{1}x_{1}\|^{2} + \|\sigma_{2}x_{2}\|^{2} + \sigma_{1}\sigma_{2}x_{1}^{\top}x_{2}] \\ &= \mathbb{E}[\underbrace{\sigma_{1}^{2}}_{=1}\|x_{1}\|^{2} + \underbrace{\sigma_{2}^{2}}_{=1}\|x_{2}\|^{2} + \sigma_{1}\sigma_{2}x_{1}^{\top}x_{2}] \\ &= \|x_{1}\|^{2} + \|x_{2}\|^{2} + \mathbb{E}[\sigma_{1}\sigma_{2}x_{1}^{\top}x_{2}] \\ (\sigma \, \mathcal{O}独立性 \to) &= \|x_{1}\|^{2} + \|x_{2}\|^{2} + \underbrace{\mathbb{E}[\sigma_{1}]}_{=1}\mathbb{E}[\sigma_{2}]x_{1}^{\top}x_{2} = \|x_{1}\|^{2} + \|x_{2}\|^{2} \end{split}$$

経験ラデマッハ複雑度の例Ⅱ:線形関数集合Ⅲ

結局,

$$\hat{\mathcal{R}}_S \leq \frac{\Lambda}{n} \left(\sum_{i=1}^n \|\boldsymbol{x}_i\|^2 \right)^{1/2}.$$

入力に norm 制約 $||x_i|| \le r$, $1 \le i \le n$ があるとき, 特に

$$\hat{\mathcal{R}}_S \le \frac{r\Lambda}{\sqrt{n}}$$

が成立.

経験ラデマッハ複雑度の例 Ⅲ:線形判別器の集合

- ▶ $\mathcal{G} = \{x \mapsto \operatorname{sign}(w^{\top}x + b) \mid w \in \mathbb{R}^d, b \in \mathbb{R}\}$ の VC 次元は d + 1 (例 2.2 と Radon の定理より).
- ► Massart lemma による 2 値判別問題のラデマッハ複雑度と VC 次元の 関係 (2.1) より,

$$\hat{\mathcal{R}}_S(\mathcal{G}) \le \sqrt{\frac{2(d+1)}{n} \log \frac{en}{d+1}}$$

が成立.

経験ラデマッハ複雑度の例 IV:決定株 I

深さ 1 の決定木. data 点ベクトルの各成分をしきい値 z で分割.

- $ightharpoonup \mathcal{X} \subset \mathbb{R}^d$: input space
- lacktriangledown $s\in\{+1,-1\},$ $k\in[d],$ $z\in\mathbb{R}$: parameters of decision stumps
- ▶ 判別器 (decision stumps): $h(x \mid s, k, z) := s \times \text{sign}(x_k z)$
- ▶ 仮説集合: $\mathcal{G} = \{h(\boldsymbol{x} \mid s, k, z) \mid s = \pm 1, 1 \le k \le d, z \in \mathbb{R}\}$

経験ラデマッハ複雑度を定義より書き下すと,

$$\hat{\mathcal{R}}_S(\mathcal{G}) = rac{1}{n} \mathbb{E}_{\sigma} \left[\sup_{s,k,z} \sum_{i=1}^n \sigma_i h(m{x} \mid s,k,z)
ight]$$

observation

- ▶ 決定株では、軸毎に 2(n+1) 通りのラベルの割り当て方が存在?
- ▶ 全体としては高々 2(n+1)d 通りのラベルの割り当て方を考えれば良い

経験ラデマッハ複雑度の例 IV:決定株 II

$$A \subset \{+1,-1\}^n$$
: stumps で S に割り当てられる binary vectors $\Longrightarrow |A| \leq 2(n+1)d$ このとき.

$$\frac{1}{n} \mathbb{E}_{\sigma} \left[\sup_{s,k,z} \sum_{i=1}^{n} \sigma_{i} h(x_{i} \mid s,k,z) \right] = \frac{1}{n} \mathbb{E}_{\sigma} \left[\sup_{(h_{1},\ldots,h_{n}) \in A} \sum_{i=1}^{n} \sigma_{i} h_{i} \right]$$

$$(\text{Massart } \rightarrow) \leq \sqrt{\frac{2}{n} \log(2(n+1)d)}$$

仮説集合の複雑度

2.3 一様大数の法則

一様大数の法則

Goal: Thm 2.2 の証明

Theorem 5 (一様大数の法則)

- $\blacktriangleright \mathcal{G} \subset \{f : \mathcal{Z} \to [a,b]\}$
- $ightharpoonup Z_1, ..., Z_n, Z \sim_{i.i.d.} D$

このとき, $\forall \delta \in (0,1)$,

$$\Pr_{D^n} \left| \sup_{g \in \mathcal{G}} \left\{ \mathbb{E}[g(Z)] - \frac{1}{n} \sum_{i=1}^n g(Z_i) \right\} \le 2\mathcal{R}_n(\mathcal{G}) + (b-a) \sqrt{\frac{\log \frac{1}{\delta}}{2n}} \right| \ge 1 - \delta$$

が成立 (同様の bound が $\frac{1}{n}\sum_{i=1}^n g(Z_i) - \mathbb{E}[g(Z)]$ に対しても成立). 特に,以下が成立.

$$\Pr_{D^n} \left| \sup_{g \in \mathcal{G}} \left| \mathbb{E}[g(Z)] - \frac{1}{n} \sum_{i=1}^n g(Z_i) \right| \le 2\mathcal{R}_n(\mathcal{G}) + (b-a) \sqrt{\frac{\log \frac{2}{\delta}}{2n}} \right| \ge 1 - \delta$$

一様大数の法則の証明 I

まず必要な補題 (Azuma's inequality, McDiarmid's inequality) を用意

Lemma 2 (Azuma's inequality)

- $ightharpoonup X_i, Z_i, V_i$: r.v. $(1 \le i \le n)$
- $ightharpoonup V_i = V(X_1, ..., X_i) \text{ s.t. } \mathbb{E}[V_i \mid X_1, ..., X_{i-1}] = 0$
- $ightharpoonup Z_i = Z(X_1, ..., X_{i-1}) \text{ s.t. } \exists c_1, ..., c_n, Z_i \le V_i \le Z_i + c_i$

このとき, $\forall \varepsilon > 0$,

$$\Pr\left(\sum_{i=1}^{n} V_{i} \ge \varepsilon\right) \le \exp\left\{-\frac{2\varepsilon^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right\}$$
$$\Pr\left(\sum_{i=1}^{n} V_{i} \le -\varepsilon\right) \le \exp\left\{-\frac{2\varepsilon^{2}}{\sum_{i=1}^{n} c_{i}^{2}}\right\}$$

が成立.

一様大数の法則の証明 Ⅱ

 $\underline{\mathsf{Proof}}$ $S_k = \sum_{i=1}^k V_i$ とおく. 任意の t > 0 に対して,

$$\begin{split} \Pr(S_n \geq \varepsilon) &= \Pr\left(e^{tS_n} \geq e^{t\varepsilon}\right) \\ (\text{Markov inequality} \rightarrow) \leq \frac{1}{e^{t\varepsilon}} \mathbb{E}\left[e^{tS_n}\right] = \frac{1}{e^{t\varepsilon}} \mathbb{E}\left[e^{tS_n + tV_n}\right] = \frac{1}{e^{t\varepsilon}} \mathbb{E}\left[e^{tS_n}e^{tV_n}\right] \\ &= \frac{1}{e^{t\varepsilon}} \mathbb{E}_{X_1, \dots, X_{n-1}}[e^{tS_{n-1}}\underbrace{\mathbb{E}_{X_n}\left[e^{tV_n} \mid X_1, \dots, X_{n-1}\right]}_{\leq e^{t^2c_n^2/8} \; (Hoeffding)} \\ &\leq \frac{1}{e^{t\varepsilon}} \mathbb{E}_{X_1, \dots, X_{n-1}}[e^{tS_{n-1}}]e^{t^2c_n^2/8} \\ &= \frac{1}{e^{t\varepsilon}} \mathbb{E}_{X_1, \dots, X_{n-1}}[e^{tS_{n-2} + tV_{n-1}}]e^{t^2c_n^2/8} \\ &\leq \frac{1}{e^{t\varepsilon}} \mathbb{E}_{X_1, \dots, X_{n-2}}[e^{tS_{n-2}}]e^{t^2\sum_{i=n-1}^n c_i^2/8} \\ &\cdots \\ &\leq \frac{1}{e^{t\varepsilon}}e^{t^2\sum_{i=1}^n c_i^2/8} = \exp\left\{\frac{1}{8}\sum_{i=1}^n c_i^2t^2 - \varepsilon t\right\} \end{split}$$

一様大数の法則の証明 Ⅲ

 \underline{Proof} 最右辺の \exp の中身を t について最小化すると,

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{8} \sum_{i=1}^{n} c_i^2 t^2 - \varepsilon t \right) = \frac{1}{4} \sum_{i=1}^{n} c_i^2 t - \varepsilon = 0$$

$$\iff t = \frac{4\varepsilon}{\sum_{i=1}^{n} c_i^2}$$

これを exp の中身に代入すると,

$$\Pr(S_n \ge \varepsilon) \le \exp\left\{-\frac{2\varepsilon^2}{\sum_{i=1}^n c_i^2}\right\}$$

もう一方も同様. 🗆

一様大数の法則の証明 IV

Lemma 3 (McDiarmid's inequality)

- $ightharpoonup X_1,...,X_n:\mathcal{X}$ -valued independent r.v.
- $lackbox f: \mathcal{X}^n o \mathbb{R}$ に対して、 $\exists c_1,...,c_n$ s.t. $orall x_1,...,x_n,x_i' \in \mathcal{X}$ $(1 \leq i \leq n)$,

$$|f(x_1,...,x_i,...,x_n) - f(x_1,...,x_i',...,x_n)| \le c_i$$

このとき,以下が成立:

$$\Pr\left(f(X_1, ..., X_n) - \mathbb{E}[f(X_1, ..., X_n)] \ge \varepsilon\right) \le \exp\left\{-\frac{2\varepsilon^2}{\sum_{i=1}^n c_i^2}\right\}$$

$$\Pr\left(f(X_1, ..., X_n) - \mathbb{E}[f(X_1, ..., X_n)] \le -\varepsilon\right) \le \exp\left\{-\frac{2\varepsilon^2}{\sum_{i=1}^n c_i^2}\right\}$$

一様大数の法則の証明 V

$$V_k = \mathbb{E}[f(S) \mid X_1, ..., X_k] - \mathbb{E}[f(S) \mid X_1, ..., X_{k-1}]$$

とする (ただし $V_1 = \mathbb{E}[f(S) \mid X_1] - \mathbb{E}[f(S)]$ とする).

Claim 1

 V_k は Azuma's inequality の仮定を満たす.

 $(\cdot \cdot)$

- ▶ 定義より, V_k は $X_1,...,X_k$ の関数
- ▶ 条件付き期待値の性質から,

$$\begin{split} & \mathbb{E}[V_k \mid X_1, ..., X_{k-1}] \\ = & \mathbb{E}[\mathbb{E}[f(S) \mid X_1, ..., X_k] - \mathbb{E}[f(S) \mid X_1, ..., X_{k-1}] \mid X_1, ..., X_{k-1}] \\ = & 0 \end{split}$$

一様大数の法則の証明 VI

▶ f に対する仮定より,

$$\sup_{\boldsymbol{x}} \mathbb{E}[f(S) \mid X_1, ..., X_{k-1}, \boldsymbol{x}] - \inf_{\boldsymbol{x}'} \mathbb{E}[f(S) \mid X_1, ..., X_{k-1}, \boldsymbol{x}']$$

$$= \sup_{\boldsymbol{x}, \boldsymbol{x}'} \{ \mathbb{E}[f(S) \mid X_1, ..., X_{k-1}, \boldsymbol{x}] - \mathbb{E}[f(S) \mid X_1, ..., X_{k-1}, \boldsymbol{x}'] \}$$

$$\leq c_i$$

このとき,

$$\begin{split} Z_k &= \inf_{\boldsymbol{x}} \mathbb{E}[f(S) \mid X_1, ..., X_{k-1}, \boldsymbol{x}] - \mathbb{E}[f(S) \mid X_1, ..., X_k] \\ &\leq \mathbb{E}[f(S) \mid X_1, ..., X_{k-1}, X_k] - \mathbb{E}[f(S) \mid X_1, ..., X_k] \\ &= V_k \leq Z_k + \underbrace{c_k}_{\geq \sup V_k} \end{split}$$

が成立つので, V_k は Azuma's inequality の仮定を満たす. 以上より, $\sum_{i=1}^n V_i = f(S) - \mathbb{E}[f(S)]$ に対して Azuma's inequality を適用すれば OK.

一様大数の法則の証明 VII

Proof of Theorem 2.7

$$A(z_1, ..., z_n) = \sup_{g \in \mathcal{G}} \left\{ \mathbb{E}[g(Z) - \frac{1}{n} \sum_{i=1}^n g(z_i)] \right\}$$

とおく. このとき,

$$\begin{split} &A(z_1,...,z_n) - A(z_1,...,z') \\ &= \sup_{g \in \mathcal{G}} \left\{ \mathbb{E}[g(Z) - \frac{1}{n} \sum_{i=1}^n g(z_i)] \right\} - \sup_{f \in \mathcal{G}} \left\{ \mathbb{E}[f(Z) - \frac{1}{n} \sum_{i=1}^{n-1} f(z_i) + f(z_{n'})] \right\} \\ &= \sup_{g \in \mathcal{G}} \inf_{f \in \mathcal{G}} \left\{ \mathbb{E}[g(Z) - \frac{1}{n} \sum_{i=1}^n g(z_i)] - \mathbb{E}[f(Z) + \frac{1}{n} \sum_{i=1}^{n-1} f(z_i) + f(z_{n'})] \right\} \\ &\leq \sup_{g \in \mathcal{G}} \left\{ \mathbb{E}[g(Z) - \frac{1}{n} \sum_{i=1}^n g(z_i)] - \mathbb{E}[g(Z) + \frac{1}{n} \sum_{i=1}^{n-1} g(z_i) + g(z_{n'})] \right\} \end{split}$$

一様大数の法則の証明 VIII

$$\sup_{g \in \mathcal{G}} \left\{ \mathbb{E}[g(Z) - \frac{1}{n} \sum_{i=1}^{n} g(z_i)] - \mathbb{E}[g(Z) + \frac{1}{n} \sum_{i=1}^{n-1} g(z_i) + g(z_{n'})] \right\}$$

$$= \sup_{g \in \mathcal{G}} \frac{1}{n} (g(z') - g(z_n))$$

$$\leq \frac{b-a}{n} \quad (:) g(z'), g(z) \in [a, b]$$

が成立. 同様に,

$$A(z_1,...,z_{n-1},z') - A(z_1,...,z_n) \le \frac{b-a}{n}$$

も成立つ. 合わせて,

$$|A(z_1,...,z_n) - A(z_1,...,z')| \le \frac{b-a}{n}$$

66

一様大数の法則の証明 IX

McDiarmid's inequality より, $\varepsilon > 0$ に対して

$$\Pr\left(A(Z_1, ..., Z_n) - \mathbb{E}[A(Z_1, ..., Z_n)] \le \varepsilon\right) \ge 1 - \exp\left\{-\frac{2\varepsilon^2}{n \times \frac{(b-a)^2}{n^2}}\right\}$$

が成立するので, 特に
$$\delta = \exp\left\{-rac{2arepsilon^2}{rac{1}{n}(b-a)^2}
ight\}$$
 とおくと,

$$\log \delta = -\frac{2n\varepsilon^2}{(b-a)^2} \iff \varepsilon^2 = (b-a)^2 \times \frac{\log \frac{1}{\delta}}{2n}$$

$$\therefore \varepsilon = (b-a)\sqrt{\frac{\log \frac{1}{\delta}}{2n}}$$

となるので,

$$\Pr\left(A(Z_1, ..., Z_n) - \mathbb{E}[A(Z_1, ..., Z_n)] \le (b - a)\sqrt{\frac{\log \frac{1}{\delta}}{2n}}\right) \ge 1 - \delta$$

一様大数の法則の証明 X

次に, $\mathbb{E}[A(Z_1,...,Z_n)]$ を評価する.

 $Z_1,...,Z_n,Z_1',...,Z_n' \sim_{i.i.d.} P_Z$ とすると, 以下が成立.

$$A(Z_1,...,Z_n)$$
 (標本平均の不偏性 $ightarrow$) = $\sup_{g \in \mathcal{G}} \left\{ \mathbb{E}_{Z_1',...,Z_n'} \left[\frac{1}{n} \sum_{i=1}^n g(Z_i') \right] - \frac{1}{n} \sum_{i=1}^n g(Z_i) \right\}$ (和の $\sup \leq \sup \mathcal{O}$ 和 $ightarrow$) $\leq \mathbb{E}_{Z_1',...,Z_n'} \left[\sup_{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^n (g(Z_i') - g(Z_i)) \right]$

Fact 6

- 1. $g(Z_i') g(Z_i)$ と $g(Z_i) g(Z_i')$ は同一分布に従う (対称性)
- 2. $\sigma_i = \begin{cases} +1 & w.p. & \frac{1}{2} \\ -1 & w.p. & \frac{1}{2} \end{cases}$ とすると, $\sigma_i(g(Z_i') g(Z_i))$ と $g(Z_i') g(Z_i)$ は同一分布に従う

68

一様大数の法則の証明 XI

Fact より,

$$\mathbb{E}_{\sigma,Z}[A(Z_1, ..., Z_n)]$$

$$\leq \mathbb{E}_{\sigma} \left[\mathbb{E}_{Z'_1, ..., Z'_n} \left[\sup_{g \in \mathcal{G}} \frac{1}{n} \sum_{i=1}^n \sigma_i (g(Z'_i) - g(Z_i)) \right] \right]$$

$$\leq \underbrace{\mathbb{E}_{Z'} \left[\mathbb{E}_{\sigma} \sup \frac{1}{n} \sum_{i=1}^n \sigma_i g(Z'_i) \right]}_{=\mathcal{R}_n(\mathcal{G})} + \underbrace{\mathbb{E}_{Z} \left[\mathbb{E}_{\sigma} \sup \frac{1}{n} \sum_{i=1}^n \sigma_i g(Z_i) \right]}_{=\mathcal{R}_n(\mathcal{G})} = 2\mathcal{R}_n(\mathcal{G})$$

これを (2.5) 式に代入すると, 確率 $1-\delta$ で以下が成立.

$$\sup_{g \in \mathcal{G}} \left\{ \mathbb{E}_{Z}[g(Z)] - \frac{1}{n} \sum_{i=1}^{n} g(Z_{i}) \right\} - \mathbb{E}[A(Z_{1}, ..., Z_{n})] \leq (b - a) \sqrt{\frac{\log \frac{1}{\delta}}{2n}}$$

$$\iff \sup_{g \in \mathcal{G}} \left\{ \mathbb{E}_{Z}[g(Z)] - \frac{1}{n} \sum_{i=1}^{n} g(Z_{i}) \right\} \leq 2\mathcal{R}_{n}(\mathcal{G}) + (b - a) \sqrt{\frac{\log \frac{1}{\delta}}{2n}} \quad \Box$$

一様大数の法則の証明 XII

(Proof of Theorem 2.2)

- $ightharpoonup \mathcal{H} \subset \{h: \mathcal{X} \to \{+1, -1\}\}, VCdim(\mathcal{H}) = d$
- $\blacktriangleright \mathcal{G} = \{(\boldsymbol{x}, y) \mapsto \mathbf{1}[h(\boldsymbol{x}) \neq y] \mid h \in \mathcal{H}\}\$

とする. このとき,

$$\Pi_{\mathcal{G}}((\boldsymbol{x}_1, y_1), ..., (\boldsymbol{x}_n, y_n)) = \Pi_{\mathcal{H}}(\boldsymbol{x}_1, ..., x_n)$$

より、 $VCdim(\mathcal{G}) = VCdim(\mathcal{H}) = d$ が成立. よって (2.1) と一様大数の法則から、 $n \geq d$ のとき、

$$\sup_{h \in \mathcal{H}} |R_{err}(h) - \hat{R}_{err}(h)| \le 2\mathcal{R}_n(\mathcal{G}) + \sqrt{\frac{\log \frac{2}{\delta}}{2n}}$$

$$\le 2\sqrt{\frac{2d}{n} \log \frac{en}{d}} + \sqrt{\frac{\log \frac{2}{\delta}}{2n}} \quad \Box$$

一様大数の法則の応用: 2 値判別の例

- ▶ 有限仮説集合 $\mathcal{H} \subset \{h : \mathcal{X} \to \{+1, -1\}\}, h_0 \in \mathcal{H}$
- $\blacktriangleright \mathcal{G} = \{(\boldsymbol{x}, y) \mapsto \mathbf{1}[h(\boldsymbol{x}) \neq y] \mid h \in \mathcal{H}\}$

このとき, $|\mathcal{G}| = |\mathcal{H}|$ だから, 例 2.4 (有限集合のラデマッハ複雑度) より,

$$\mathcal{R}_n(\mathcal{G}) \le \sqrt{\frac{2\log|\mathcal{H}|}{n}}$$

一様大数の法則より,

$$\max_{h} |R_{err}(h) - \hat{R}_{err}(h)| \le 2\sqrt{\frac{2\log|\mathcal{H}|}{n}} + \sqrt{\frac{\log\frac{2}{\delta}}{2n}} \quad w.p. \ 1 - \delta$$

が成立. probabilistic order で書くと,

$$R_{err}(h_S) \le R_{err}(h_0) + \mathcal{O}_p\left(\sqrt{\frac{\log |\mathcal{H}|}{n}}\right) \quad \Box$$

仮説集合の複雑度

補足: カバリングナンバー

カバリングナンバー

ラデマッハ複雑度を上から bound する量

Definition 5 (ε -cover)

 $x_{1:n}=\{x_i\}_{i=1}^n$ を点集合, $V\subset\mathbb{R}^n$ とする. 任意の $f\in\mathcal{H}$ に対して, $v\in V$ が存在して,

$$\left(\frac{1}{n}\sum_{i=1}^{n}|v_i-f(\boldsymbol{x}_i)|^p\right)^{1/p}\leq\varepsilon$$

を満たすとき, V を \mathcal{H} の p-次 ε -cover と呼ぶ

Definition 6 (covering number)

 \mathcal{H} の p-次 covering number は以下で定義される

$$\mathcal{N}_p(\varepsilon, \mathcal{H}, n) = \sup_{x_{1:n}} \min\{|V| \mid V : \mathcal{H} \ \mathcal{O} \ x_{1:n} \ \bot \mathcal{O} \ p$$
-次 ε -cover}

Theorem 1

$$\mathcal{F}\ni f:\mathcal{X}\to[-1,1]$$
 とする. このとき,

$$\hat{\mathfrak{R}}_n(\mathcal{F}) \leq \inf_{\varepsilon} \sqrt{\frac{2 \log \mathcal{N}_1(\varepsilon, \mathcal{F}, x_{1:n})}{n}} + \varepsilon$$

(Proof of Theorem) 半径 ε と minimal cover V を 1 つ固定する.

$$U_{\varepsilon}(v)=\{f\in\mathcal{F}\mid f: \varepsilon\text{-covered by }v\}$$
 とする. このとき, $\cup_{v\in V}U_{\varepsilon}(v)=\mathcal{F}$ より以下が成立.

$$\hat{\mathfrak{R}}_{n}(\mathcal{F}) = \mathbb{E} \left[\sup_{f \in \mathcal{F}} \left(\frac{1}{n} \sum_{i=1}^{n} \sigma_{i} f\left(\boldsymbol{x}_{i}\right) \right) \right]$$

$$= \mathbb{E} \left[\sup_{v \in V} \sup_{f \in U_{\varepsilon}(v)} \left(\frac{1}{n} \sum_{i=1}^{n} \sigma_{i} f\left(\boldsymbol{x}_{i}\right) \right) \right]$$

$$= \mathbb{E} \left[\sup_{v \in V} \sup_{f \in U_{\varepsilon}(v)} \left(\frac{1}{n} \sum_{i=1}^{n} \sigma_{i} v_{i} + \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \left(f\left(\boldsymbol{x}_{i}\right) - v_{i} \right) \right) \right]$$

$$\leq \mathbb{E} \left[\sup_{v \in V} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} v_{i} \right] + \mathbb{E} \left[\sup_{v \in V} \sup_{f \in U_{\varepsilon}(v)} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \left(f\left(\boldsymbol{x}_{i}\right) - v_{i} \right) \right] \right]$$
75

(Proof of Theorem つづき) ヘルダー不等式を右辺第 2 項に適用:

$$\mathbb{E}\left[\sup_{v \in V} \sup_{f \in U_{\varepsilon}(v)} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} \left(f\left(\boldsymbol{x}_{i}\right) - v_{i}\right)\right] \leq \mathbb{E}\left[\sup_{v \in V} \sup_{n \in U_{\varepsilon}(v)} \frac{1}{n} \sum_{i=1}^{n} \left|f\left(\boldsymbol{x}_{i}\right) - v_{i}\right|\right]$$

$$< \varepsilon$$

また、Massart の補題を第1項に適用:

$$\mathbb{E}\left[\sup_{v \in V} \frac{1}{n} \sum_{i=1}^{n} \sigma_{i} v_{i}\right] \leq \frac{\sup_{v \in V} \|v\|_{2} \sqrt{2 \log |V|}}{n}$$

$$\leq \sqrt{\frac{2 \log |V|}{n}}$$

$$= \sqrt{\frac{2 \log \mathcal{N}_{1} (\varepsilon, \mathcal{F}, x_{1:n})}{n}}$$

二行目は, $v_i \in [-1,1]$, i=1,...,n から従う. 以上より, 定理の主張が示された.

Corollary 1

 $\mathcal{F} \ni f: \mathcal{X} \to [-1,1]$ とする. このとき,

$$\mathfrak{R}_n(\mathcal{F}) \le \inf_{\varepsilon} \sqrt{\frac{2 \log \mathcal{N}_1(\varepsilon, \mathcal{F}, n)}{n}} + \varepsilon$$

実際には, covering のスケール ε に関して積分をしたバウンドが用いられる

→ Dudley 積分, Chaining

References

- [1] Olivier Bousquet, Stéphane Boucheron, and Gábor Lugosi. Introduction to statistical learning theory. In *Advanced lectures on machine learning*, pages 169–207. Springer, 2004.
- [2] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning. MIT press, 2012.
- [3] Shai Shalev-Shwartz and Shai Ben-David. *Understanding machine learning:* From theory to algorithms. Cambridge university press, 2014.
- [4] 金森敬文. 統計的学習理論 (機械学習プロフェッショナルシリーズ). 講談社, 2015.