Are industrial companies in the Czech Republic able to predict the short-term future of the economy?

AMSE 2018

Veronika Ptáčková¹

Lubomír Štěpánek^{(1), 2, 3}

Vít Hanzal⁽¹⁾

¹Department of Economic Statistics Faculty of Informatics and Statistics University of Economics, Prague

²Institute of Biophysics and Informatics First Faculty of Medicine Charles University in Prague

³Department of Biomedical Informatics Faculty of Biomedical Engineering Czech Technical University in Prague

Content

- Introduction
- Data
- Methodology
- Results
- Conclusion

Quick introduction

- short-term statistic and Business Tendency Survey
 - key indicators to assess and monitor the development of the economy
 - results are provided to government institutions, CB, financial institutions
- main question how accurately can companies predict their future?

Data sources – short-term statistics in the industry

- precise quantitative data
- employment the average number of employees of a company registered for a month
- sales economic turnover of a company recorded for a month

Introduction

Data sources – Business Tendency Survey

- employment
 - "The number of employees will ..." (in the next three months)
- sales

Introduction

- "The number of sales will ..." (in the next three months)
- respondents' answers, marked as $o_{t,i,c}$
 - decrease
 - stagnation (remain at the same level)
 - increase

for given indicator $i \in \{\text{employment}, \text{sales}\}$, for given company c linked to months t, t+1, t+2

- thus $o_{t,i,c} \in \{\text{decrease}, \text{stagnation}, \text{increase}\}$
- qualitative data

Data characteristics

- period of 2003—2016
- monthly basis
- the first 400 companies ordered by length of consecutive responding chosen

Data transformation

- transformation of absolute values of the indicators to relative ones using the following metrics
 - mean-to-first, MTF_{t.i.c.}
 - last-to-first, LTF_{t,i,c}
- SO

$$MTF_{t,i,c} = \frac{\frac{1}{3}(x_{t,i,c} + x_{t+1,i,c} + x_{t+2,i,c})}{x_{t,i,c}}$$
$$LTF_{t,i,c} = \frac{x_{t+2,i,c}}{x_{t,i,c}}$$

where $x_{t,i,c}$ is an absolute value of indicator i of company c in month t

Data labeling

- categorization (labeling) of the computed relative values into three levels
- for $MTF_{t,i,c}$ is

$$MTF_{t,i,c}(k) = \begin{cases} \text{decrease,} & MTF_{t,i,c} \in \langle 0, \frac{1}{k} \rangle \\ \text{stagnation,} & MTF_{t,i,c} \in \langle \frac{1}{k}, k \rangle \\ \text{increase,} & MTF_{t,i,c} \in \langle k, +\infty \rangle \end{cases}$$

for given $k \geq 1$, given indicator $i \in \{\text{employment}, \text{sales}\}$, for given company c linked to months t, t+1, t+2

analogously for LTF_{t,i,c}

Cartesian product of labeled metrics and company opinions

• for given $k \ge 1$, given indicator $i \in \{\text{employment}, \text{sales}\}$, given company c linked to months t, t + 1, t + 2 is

$$o_{t,i,c} \in \{\text{decrease}, \text{stagnation}, \text{increase}\}$$

$$MTF_{t,i,c}(k) \in \{\text{decrease}, \text{stagnation}, \text{increase}\}$$

$$LTF_{t,i,c}(k) \in \{\text{decrease}, \text{stagnation}, \text{increase}\}$$

• therefore we got tuples $[o_{t,i,c}, MTF_{t,i,c}(k)], [o_{t,i,c}, LTF_{t,i,c}(k)]$ and

$$o_{t,i,c} \times MTF_{t,i,c}(k) = \{\text{decrease, stagnation, increase}\} \times \{\text{decrease, stagnation, increase}\} \times \{o_{t,i,c} \times LTF_{t,i,c}(k) = \{\text{decrease, stagnation, increase}\} \times \{\text{decrea$$

Confusion matrix

• if we fix indicator i, then we can sum up all products $o_{t,i,c} \times MTF_{t,i,c}(k)$ for all times t and companies c and finally get confusion matrix

$$C_i(k) = \sum_{t} \sum_{c} o_{t,i,c} \times MTF_{t,i,c}(k) = \{n_{jl}\}_{j,l}$$

where $n_{il} \in \{0, 1, 2, \ldots\}$ for each

$$j, l \in \{\text{decrease}, \text{stagnation}, \text{increase}\}$$

is a count of all companies c during the time t which predicted j-th value (of the set {decrease, stagnation, increase}) of indicator i

• analogously for $o_{t,i,c} \times LTF_{t,i,c}(k)$

Confusion matrix & accuracy

Data

• confusion matrix $C_i(k)$ for indicator $i \in \{\text{employment}, \text{sales}\}$ and metrics $MTF_{t,i,c}(k)$ or $LTF_{t,i,c}(k)$ follows the form

		predicted values		
		decrease	stagnation	increase
true values	decrease	$n_{1,1}$	$n_{1,2}$	$n_{1,3}$
	stagnation	$n_{2,1}$	$n_{2,2}$	$n_{2,3}$
	increase	$n_{3,1}$	$n_{3,2}$	$n_{3,3}$

for a given k is

accuracy(k) =
$$\frac{\operatorname{tr} C_i(k)}{\sum C_i(k)} = \frac{\sum_{j=1}^3 n_{jj}}{\sum_{j=1}^3 \sum_{l=1}^3 n_{jl}}$$

Finding lowest k > 1 maximizing accuracy

- we can reformulate the task as finding the lowest $k \geq 1$ "fuzzy" maximizing $\operatorname{accuracy}(k) = \frac{\operatorname{tr} C_i(k)}{\sum C_i(k)}$ for a given indicator $i \in \{\text{employment}, \text{sales}\}\$ and metrics $MTF_{t,i,c}(k)$ or $LTF_{t,i,c}(k)$, $k \in \mathbb{R}$
- formally

$$\underset{k}{\operatorname{arg\,min}} \left\{ \operatorname{fuzzy\,max} \frac{\operatorname{tr} \boldsymbol{C}_i(k)}{\sum \boldsymbol{C}_i(k)} \right\} \quad \text{s. t.}$$

$$k \ge 1$$
 (†)

Results for employment and $MTF_{t,i,c}(k)$

• $k \approx 1.1$ (approx.), accuracy $(k) \approx 0.741$ (approx.)

Introduction

Conclusion

Results for employment and $LTF_{t,i,c}(k)$

• $k \approx 1.2$ (approx.), accuracy $(k) \approx 0.742$ (approx.)

Results for sales and $MTF_{t,i,c}(k)$

• $k \approx 1.6$ (approx.), accuracy $(k) \approx 0.680$ (approx.)

Results for sales and $LTF_{t,i,c}(k)$

• $k \approx 1.7$ (approx.), accuracy $(k) \approx 0.677$ (approx.)

Introduction Data Methodology Results Conclusion

Recap

- metrics give similar ratios
- employment seems to be more sensitive
- calculated ratios recommendation for the respondents
- future research
 - finding ratios for trade, construction and selected services
 - survey on survey

Thank you for your attention!

veronika.ptackova@vse.cz lubomir.stepanek@{|f1.cuni, fbmi.cvut}.cz