1. Постановка задачи

Целью данной работы является реализация хеш-таблицы со следующими характеристиками:

- Тип ключа: строковый (вариант 1б)
- Метод хеширования: метод умножения (вариант 2б)
- Разрешение коллизий: метод внешних цепочек (вариант 3а)
- Размер таблицы: 16 элементов (2^4)

2. Теоретические сведения

2.1 Метод умножения для хеширования

Метод умножения использует формулу: $h(k) = □M(kA \mod 1)$ □ где:

- k числовое представление ключа
- A = $(\sqrt{5}-1)/2 \approx 0.6180339887498949$ (золотое сечение)
- M = 16 (размер таблицы)

2.2 Преобразование строкового ключа

Для преобразования строкового ключа в число используется полиномиальная функция: k = sum(ord(символ) * (31^i)) для каждого символа

2.3 Метод внешних цепочек

При возникновении коллизии новый элемент добавляется в связный список, хранящийся в соответствующей ячейке таблицы.

3. Практическая реализация

3.1 Результаты вставки ключей:

Ключ	Хеш-значение	Успех вставки	Коллизии
test1	7	Да	0
test2	13	Да	0
test3	2	Да	0
test4	8	Да	0
test5	14	Да	0
test6	4	Да	0
test7	10	Да	0

test1	7	Да	0
test8	0	Да	0
test2	13	Да	0

3.2 Тестирование поиска:

Ключ	Результат	
test1	Найден по индексу 7, коллизий: 0	
test2	Найден по индексу 13, коллизий: 0	
test9	Не найден	

4. Заключение

В ходе выполнения работы была реализована хеш-таблица с использованием метода умножения для хеширования и метода внешних цепочек для разрешения коллизий.

Тестирование показало, что:

- Реализованный алгоритм успешно обрабатывает как уникальные, так и повторяющиеся ключи
- Коллизии эффективно разрешаются с помощью метода внешних цепочек
- Поиск элементов работает корректно как для существующих, так и для отсутствующих ключей

Реализованная структура данных может быть использована для эффективного хранения и поиска данных со строковыми ключами.