12. Feltételes valószínűség és többdimenziós eloszlások

A mostani fejezetben kimondjuk a teljes valószínűség tételének azon verzióját, ahol a feltételben valószínűségi változó szerepel teljes eseményrendszer helyett. Ettől független témaként közelebbről megvizsgálunk néhány valószínűségi vektorváltozóhoz tartozó (ún. többdimenziós) nevezetes eloszlást, különös tekintettel a többdimenziós normális eloszlásra.

12.1. Teljes valószínűség tétele, folytonos eset

Az előző fejezet után maradhatott némi hiányérzet az olvasóban: míg a teljes várható érték tételét többféle formában is kimondtuk (teljes eseményrendszerrel és valószínűségi változó $\{X=x\}$ szinthalmazaival is diszkrét és folytonos esetben), addig a teljes valószínűség tételét csak teljes eseményrendszerre fogalmaztuk meg. Mi a helyzet az utóbbi tétellel akkor, ha a feltétel egy valószínűségi változó (szinthalmaza)?

Ha X diszkrét valószínűségi változó, akkor a teljes valószínűség tétele nem újdonság:

$$\mathbb{P}(A) = \sum_{k \in S_X} \mathbb{P}(A \mid X = k) \cdot \mathbb{P}(X = k),$$

ahol S_X azon k értékek halmaza, ahol $\mathbb{P}(X=k)>0$, és így van értelme a $\mathbb{P}(A\mid X=k)$ feltételes valószínűségről beszélni. Ez az eredeti teljes valószínűség tételének speciális esete. Viszont ha X folytonos, akkor $\mathbb{P}(A \mid X = k)$ értelmetlen. A probléma feloldása ugyanaz, mint a regressziós függvény esetében.

12.1.1. Definíció. Legyen X valószínűségi változó, és A esemény. Ekkor A-nak az X-re vett feltételes valószínűsége az

$$x \mapsto \mathbb{E}(\mathbf{1}_A \mid X = x)$$

regressziós függvény. Jelölése: $\mathbb{P}(A \mid X = x)$.

Itt a regressziós függyényt a 11.2 alfejezet definíciója szerint értjük, vagyis ez az a q függyény, amire $g(X) = \mathbb{E}(\mathbf{1}_A \mid X)$. Az $\mathbb{E}(\mathbf{1}_A \mid X)$ regresszió pedig a (11) egyenlettel definiált. (Mivel $\mathbb{E}(\mathbf{1}_A)$ azaz $\mathbb{P}(A)$ véges, így g létezik a 11.2 alfejezet megjegyzése okán.) Szemléletesen, $\mathbb{E}(\mathbf{1}_A \mid X=x)$ jelentése az Aesemény valószínűsége (avagy precízebben, annak legjobb átlagos közelítése), tudván az X értékét.

Innen a teljes valószínűség tétele már megtippelhető:

12.1.2. Tétel (Teljes valószínűség tétele). Legyen X folytonos valószínűségi változó, és A esemény. Ekkor

$$\mathbb{P}(A) = \int_{-\infty}^{\infty} \mathbb{P}(A \mid X = x) f_X(x) dx,$$

ahol f_X az X sűrűségfüggvénye.

12.1.3. Példa. Jelölje X egy hallgatónak a valószínűségszámítás vizsgára szánt felkészülési idejét. Tegyük fel, hogy X egyenletes eloszlású az $[\varepsilon, 20]$ intervallumon (napban számolva, ahol ε 20-nál kisebb, és őszintén remélem, hogy pozitív valós szám). Feltételezve, hogy x időt szán felkészülésre a hallgató, $\left(\frac{x}{21}\right)^2$ a valószínűsége, hogy ötös érdemjegyet kap. Mi a valószínűsége az ötös vizsgának? Az előző tétel jelölésével: tudjuk, hogy $f_X(x) = \frac{1}{20-\varepsilon}$ ha $\varepsilon \le x \le 20$, illetve 0 egyébként. Továbbá

 $\mathbb{P}(A \mid X = x) = \left(\frac{x}{21}\right)^2$. Tehát

$$\mathbb{P}(A) = \int_{\varepsilon}^{20} \left(\frac{x}{21}\right)^2 \frac{1}{20 - \varepsilon} \mathrm{d}x = \left[\frac{x^3}{3 \cdot 21^2 (20 - \varepsilon)}\right]_{\varepsilon}^{20} = \frac{\varepsilon^2 + 20\varepsilon + 20^2}{3 \cdot 21^2}$$

Ha $\varepsilon = 1$, akkor ez kerekítve 0,3182.

Megjegyzés. A feltételes valószínűség speciális esete a feltételes eloszlásfüggvény:

$$F_{Y|X}(y \mid x) = \mathbb{P}(Y < y \mid X = x).$$

12.2. Többdimenziós eloszlások

Legyen $\underline{X} = (X_1, \dots, X_m)$ valószínűségi vektorváltozó. Az egydimenziós esethez hasonlóan beszélhetünk az \underline{X} eloszlásáról (amit például az együttes eloszlásfüggvény ír le), ahogy ezt tettük is már az együttes eloszlás témakörénél. Nézzünk most néhány gyakrabban előkerülő többdimenziós eloszlást.

Nevezetes diszkrét eloszlás a binomiális. Hogyan általánosítható ez több változóra? Erre van egy kézenfekvő módszer: legyenek X_1, \ldots, X_m együttesen függetlenek, és legyen $X_i \sim B(n; p_i)$ valamilyen $n \in \mathbb{N}$ és $0 < p_i < 1$ számokra $(i = 1, \ldots, m)$. Így értelmes többdimenziós eloszlást kapunk, de a binomiális eloszlás általánosításának nem ez az egyetlen módja.

12.2.1. Példa. Átcímkéztünk egy szabályos dobókockát: egy 1-es, két 2-es és három 3-mas számjegyet írtunk rá. Dobjunk 13-szor a kockával. Jelölje X_i a dobott i számjegyek számát. Mi a valószínűsége, hogy $X_1 = 3$, $X_2 = 4$ és $X_3 = 6$?

A valószínűség kombinatorikus módon meghatározható:

$$\mathbb{P}(X_1 = 3, X_2 = 4, X_3 = 6) = \frac{13!}{3!4!6!} \left(\frac{1}{6}\right)^3 \left(\frac{1}{3}\right)^4 \left(\frac{1}{2}\right)^6 \approx 0,05364,$$

hiszen a 3 db 1-es, 4 db 2-es és 6 db 3-mas lehetséges elhelyezéseinek száma $\frac{13!}{3!4!6!}$ (ismétléses permutáció), és az ilyen esetek valószínűsége $p_1^3p_2^4p_3^6$, ahol az i dobás valószínűsége p_i .

12.2.2. Definíció. Az $\underline{X} = (X_1, \dots, X_m)$ valószínűségi vektorváltozó polinomiális (más néven: multinomiális) eloszlású, $n \in \mathbb{N}$ és $(p_1, p_2, \dots, p_m) \in [0, 1]^m$ paraméterekkel, ha $p_1 + \dots + p_m = 1$ és

$$\mathbb{P}(X_1 = k_1, \dots, X_m = k_m) = \frac{n!}{k_1! k_2! \dots k_m!} p_1^{k_1} \dots p_m^{k_m}$$

minden $0 \le k_i \le n \ (i = 1, ..., m), \sum_{i=1}^m k_i = n$ értékek esetén.

Ha m=2 és $(p_1,p_2)=(p,1-p)$ valamilyen $p\in[0,1]$ esetén, akkor X_1 eloszlása B(n;p) (az X_2 pedig nem hordoz extra információt, hiszen $X_2=n-X_1$).

Világos, hogy az X_i változók nem függetlenek (hiszen például X_1, \ldots, X_{m-1} egyértelműen meghatározza X_m -et), ugyanakkor az \underline{X} peremeloszlásai mind $B(n; p_i)$ binomiális eloszlások. Ez a példa is mutatja, hogy a peremeloszlások nem határozzák meg az együttes eloszlást, továbbá, hogy nem mindig az együttesen független koordináták adják egy eloszlás természetes többváltozós általánosítását.

Egy másik érdekes többdimenziós eloszlás:

12.2.3. Definíció. Legyenek Y_1, Y_2, Y_3 együttesen független valószínűségi változók, ahol $Y_i \sim \text{Exp}(\lambda_i)$, (i=1,2,3). Definiáljuk az $\underline{X} = (X_1, X_2)$ vektorváltozót: $X_1 = \min(Y_1, Y_3)$ és $X_2 = \min(Y_2, Y_3)$. Az \underline{X} eloszlását Marshall–Olkin-féle kétváltozós exponenciális eloszlásnak (röviden Marshall–Olkin-eloszlásnak) hívják. 55

A motiváció a következő: ha X exponenciális eloszlású, akkor teljesíti az örökifjúság feltételét, azaz $\mathbb{P}(X>t+s\mid X>s)=\mathbb{P}(X>t)$ minden s,t>0 esetén. Ennek lehetséges általánosítása a

$$\mathbb{P}(\underline{X} > \underline{t} + \underline{s} \mid \underline{X} > \underline{s}) = \mathbb{P}(\underline{X} > \underline{t})$$

feltétel, ahol $\underline{t}, \underline{s} \in [0, \infty)^2$, és a vektorok közti > reláció akkor teljesül, ha mindkét koordinátában külön-külön teljesül. Ez a fajta örökifjúság meghatároz egy értelmes kétdimenziós eloszlást: azt, aminek a koordinátái független, exponenciális eloszlású valószínűségi változók (vagyis ez nem a fenti Marshall–Olkin-eloszlás). Alternatív általánosítás viszont a következő feltétel:

(12)
$$\mathbb{P}(\underline{X} > t \cdot \underline{1} + \underline{s} \mid \underline{X} > \underline{s}) = \mathbb{P}(\underline{X} > t \cdot \underline{1}),$$

ahol $\underline{s} \in [0, \infty)^2$, $t \ge 0$ és $\underline{1} = (1, 1)$. Ezt a tulajdonságot a független, exponenciális eloszlású koordinátákkal bíró valószínűségi vektorváltozón túl a fenti Marshall–Olkin-eloszlás is teljesíti.

⁵⁵Érdekesség, hogy a Marshall–Olkin-eloszlás nem folytonos, azaz nincs együttes sűrűségfüggvénye. Ennek az az oka, hogy a két koordináta pozitív eséllyel megegyezhet. Lásd A.W. Marshall, I. Olkin, A generalized bivariate exponential distribution, J. Appl. Probab. 4 (1967) 291–302.

12.2.4. Példa. Egy gépben két fontos alkatrész van. Jelölje X_1 és X_2 a két alkatrész (véletlen) élettartamát. Tegyük fel, hogy az alkatrészek kora nem befolyásolja, hogy elromlanak-e t idő alatt, vagyis ha az első alkatrész s_1 idős, a második s_2 idős, akkor annak a valószínűsége, hogy t ideig nem romlik el egyik alkatrész sem, ugyanaz, mintha mindkét alkatrész új lenne. Egyenlettel:

$$\mathbb{P}((X_1, X_2) > (t + s_1, t + s_2) \mid (X_1, X_2) > (s_1, s_2)) = \mathbb{P}((X_1, X_2) > (t, t))$$

tetszőleges $s_1, s_2, t \in [0, \infty)$ esetén. Ez éppen az előző (12) egyenlet, azaz (X_1, X_2) Marshall-Olkineloszlású is lehet, valamilyen $\lambda_1, \lambda_2, \lambda_3$ paraméterekkel. (Szemléletesen, az Y_3 azt a közös hatást reprezentálja, ami mindkét alkatrészt egyszerre elronthatja.)

12.3. Többdimenziós normális eloszlás

Bár számos többdimenziós eloszlásról lehetne beszélni, a legnevezetesebbet nem hagyhatjuk ki, ez a többváltozós normális eloszlás.

Hogyan tudnánk általánosítani a normális eloszlást kétdimenziós eloszlásként? Az egydimenziós normális eloszlás tipikusan egy fizikai mérés eredményének a tényleges érték körüli szóródását (hibáját) írja le. A kétdimenziós általánosítás meghatározásához tekintsünk egy kétdimenziós mérési eredményt, például egy olyan jeladó X szélességi és Y hosszúsági koordinátáit, aminek helyzetét nem ismerjük pontosan, de a jel alapján bemérjük. Idealizált esetben milyen tulajdonságot várnánk ettől az eloszlástól?

Egyrészt feltesszük, hogy az eloszlás folytonos, azaz létezik az $f_{X,Y}$ együttes sűrűségfüggvény. Az egyszerűség kedvéért legyen a jeladó tényleges helye az origó. Természetes feltételezés, hogy az eloszlás forgásszimmetrikus, azaz $f_{X,Y}$ értéke csak (x,y) hosszától függ. Egyenlettel:

(13)
$$f_{X,Y}(x,y) = h(x^2 + y^2)$$

valamilyen h valós függvényre. Másrészt, nem irreális feltétel az sem, hogy X és Y függetlenek, vagyis hogy az x és y koordinátában mért hibák nem befolyásolják egymást. Az X és Y függetlensége ekvivalensen:

(14)
$$f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y) \qquad (\forall x, y \in \mathbb{R}).$$

Megmutatjuk, hogy ezek a feltételek meghatározzák az eloszlást.

12.3.1. Állítás. Ha (X,Y) folytonos valószínűségi vektorváltozó, ami forgásszimmetrikus, és az X,Y koordináták függetlenek, akkor $f_{X,Y}(x,y) = e^{a(x^2+y^2)-c}$ valamilyen $a,c \in \mathbb{R}$ esetén, ahol a < 0.

Bizonyítás. Helyettesítsünk y = 0-t a (13) és (14) egyenletekbe:

$$h(x^2 + 0^2) = f_{X,Y}(x,0) = f_X(x) \cdot f_Y(0),$$

tehát $f_X(x) = \frac{1}{f_Y(0)}h(x^2)$ $(x \in \mathbb{R})$. Közben felhasználtuk, hogy ha $f_Y(0) = 0$ lenne, akkor h azonosan nulla, ami lehetetlen. Hasonlóan, $f_Y(y) = \frac{1}{f_X(0)}h(y^2)$ $(y \in \mathbb{R})$. Visszahelyettesítve,

$$h(x^2 + y^2) = f_X(x) \cdot f_Y(y) = \frac{1}{f_Y(0)} h(x^2) \cdot \frac{1}{f_X(0)} h(y^2).$$

Jelöljük ezt át a következőképp: $u=x^2, v=y^2$ és $c=\ln (f_X(0)f_Y(0))$. Ekkor a fenti egyenlet logaritmusa:

$$\ln h(u+v) = \ln h(u) + \ln h(v) - c.$$

Legyen $G(u) = \ln h(u) - c$. Az utolsó egyenletből c-t levonva mindkét oldalról G(u+v) = G(u) + G(v) adódik. Ez ugyanaz a Cauchy-egyenlet, amiről korábban már beszéltünk. Integrálható megoldása ennek csak a $G(u) = a \cdot u$ függvény, valamilyen $a \in \mathbb{R}$ esetén. Tehát $h(u) = e^{au-c}$, vagyis $f_{X,Y}(x,y) = e^{a(x^2+y^2)-c}$ valamilyen $a, c \in \mathbb{R}$ esetén. Ha $a \geq 0$ lenne, akkor nem lehetne $f_{X,Y}$ integrálja 1.

A paraméterek alkalmas megválasztásával adódik a standard normális eloszlás. Általánosan, n-dimenziós esetben ez a következő.

12.3.2. Definíció. Az $\underline{X} = (X_1, \dots, X_n)$ valószínűségi vektorváltozó n-dimenziós standard normális eloszlású, ha folytonos, és együttes sűrűségfüggvénye:

$$f_{\underline{X}}(x_1, \dots, x_n) = \frac{1}{(2\pi)^{\frac{n}{2}}} e^{-\frac{1}{2} \sum_{i=1}^n x_i^2} \qquad (x_1, \dots, x_n \in \mathbb{R}).$$

Hogyan kapjuk a nem feltétlenül standard, többdimenziós normális eloszlásokat?

12.3.3. Definíció. Az $\underline{Y} = (Y_1, \dots, Y_n)$ valószínűségi vektorváltozó többdimenziós normális eloszlású, ha létezik $\underline{\underline{A}} \in \mathbb{R}^{n \times n}$, $\underline{\mu} \in \mathbb{R}^n$ és \underline{X} n-dimenziós standard normális eloszlású valószínűségi vektorváltozó, amire

$$\underline{Y} = \underline{A} \cdot \underline{X} + \mu,$$

 \underline{X} -et oszlopvektorként kezelve. Az \underline{Y} eloszlása **nemelfajuló**, ha $\underline{\underline{A}}$ válaszható nemelfajuló mátrixnak (azaz $\det(\underline{A}) \neq 0$).

Ez a leírásmód eltér az egydimenziós esetben alkalmazott paraméterezéstől, ahol egy (nem feltétlenül standard) normális eloszlást a várható értékével és a szórásnégyzetével adtunk meg. Vizsgáljuk meg a többdimenziós normális eloszlás hasonló paramétereit.

12.3.4. Definíció. Egy $\underline{Y} = (Y_1, \dots, Y_n)$ valószínűségi vektorváltozó várható érték vektora az $(\mathbb{E}Y_1, \dots, \mathbb{E}Y_n)$ \mathbb{R}^n -beli vektor. Jelölés $\mathbb{E}\underline{Y}$.

A kovarianciamátrix szintén kifejezhető a várható érték vektor segítségével. Ha oszlopvektorokként kezeljük az \underline{Y} és $\underline{\mathbb{E}Y}$ vektorokat, akkor

$$\operatorname{cov}(\underline{Y}) = \mathbb{E}((\underline{Y} - \mathbb{E}\underline{Y}) \cdot (\underline{Y} - \mathbb{E}\underline{Y})^T) \in \mathbb{R}^{n \times n},$$

ahol a szorzás az $n \times 1$ és $1 \times n$ alakú mátrixok mátrix
szorzatát jelöli, illetve a kapott mátrix várható értékét koordinátánként értelmezzük.

12.3.5. Állítás. Legyen $\underline{X} = (X_1, \dots, X_n)$ standard normális eloszlású valószínűségi vektorváltozó, és $\underline{Y} = \underline{\underline{A}} \cdot \underline{X} + \underline{\mu}$. Ekkor $\underline{\mathbb{E}}\underline{Y} = \underline{\mu}$ és $\operatorname{cov}(\underline{Y}) = \underline{\underline{A}} \cdot \underline{\underline{A}}^T$.

Ezekkel a paraméterekkel felírható a többdimenziós normális eloszlás sűrűségfüggvénye is.

12.3.6. Állítás. Legyen \underline{Y} nemelfajuló n-dimenziós normális eloszlású vektorváltozó. Jelölje a várható érték vektorát μ , a kovarianciamátrixát $\underline{\Sigma}$. Ekkor \underline{Y} sűrűségfüggvénye

$$f_{\underline{Y}}(x_1,\ldots,x_n) = \frac{1}{(2\pi)^{\frac{n}{2}} \det(\underline{\Sigma})^{\frac{1}{2}}} e^{-\frac{1}{2}(\underline{x}-\underline{\mu})^T} \underline{\underline{\Sigma}}^{-1}(\underline{x}-\underline{\mu}),$$

ahol $\det(\underline{\underline{\Sigma}})$ a $\underline{\underline{\Sigma}}$ determinánsa, $\underline{\underline{\Sigma}}^{-1}$ pedig az inverz mátrixa.

A kitevőben a szorzat egy hármas mátrixszorzat (vektor, mátrix és megint vektor tagokkal), ami valós számot eredményez. A mátrix tag kétdimenziós esetben:

$$\underline{\underline{\Sigma}} = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \qquad \Rightarrow \qquad \underline{\underline{\Sigma}}^{-1} = \frac{1}{\det\left(\underline{\underline{\Sigma}}\right)} \begin{pmatrix} c & -b \\ -b & a \end{pmatrix} \qquad \det\left(\underline{\underline{\Sigma}}\right) = ac - b^2,$$

ahol $a = \mathbb{D}^2(Y_1), b = \text{cov}(Y_1, Y_2)$ és $c = \mathbb{D}^2(Y_2)$.

Az állítás fontos következménye, hogy egy nemelfajuló normális eloszlást meghatároz a $\underline{\mu}$ várható érték vektora és a $\underline{\underline{\Sigma}}$ kovarianciamátrixa. (Vegyük észre, hogy adott $\underline{\underline{\Sigma}}$ többféle $\underline{\underline{A}}$ mátrixból is előállhat, ezért ez nem nyilvánvaló állítás.) Valójában az elfajuló esettel is ez a helyzet, de ekkor nincs sűrűségfüggvényünk, de ezzel itt részletesebben nem foglalkozunk.

A fentiek miatt értelmes a következő jelölés:

Jelölés. Az n-dimenziós normális eloszlást $N(\underline{\mu}, \underline{\underline{\Sigma}})$ jelöli, ahol $\underline{Y} = \underline{\underline{A}} \cdot \underline{X} + \underline{\mu}, \underline{X}$ n-dimenziós standard normális, és $\underline{\underline{\Sigma}} = \underline{\underline{A}} \cdot \underline{\underline{A}}^T$. Speciálisan, a standard normális eloszlás jelölése $N(\underline{0}, \underline{\underline{I}})$, ahol $\underline{0}$ az n-dimenziós nullvektor, és \underline{I} az \underline{n} -dimenziós egységmátrix.

Vegyük észre, hogy sem a standard, sem az általános esetben nem beszéltünk még az Y_i koordináták eloszlásáról, sőt szóba sem került az egydimenziós normális eloszlás. Kérdés tehát, hogy mik a normális eloszlás marginálisai? A válasz mérsékelten meglepő:

12.3.7. Állítás. Legyen
$$\underline{Y} \sim N(\mu, \underline{\Sigma})$$
, ahol $\mu \in \mathbb{R}^n$ és $\underline{\Sigma} \in \mathbb{R}^{n \times n}$. Ekkor $Y_i \sim N(\mu_i, \Sigma_{i,i})$.

A standard esetben ennél többet is tudunk: mivel a sűrűségfüggvény szorzattá bomlik (hiszen $\frac{1}{(2\pi)^{\frac{n}{2}}}e^{-\frac{1}{2}\sum_{i=1}^n x_i^2} = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x_i^2}),$ így az X_i koordináták együttesen független, egydimenziós standard normális eloszlásúak. Vagyis a normális eloszlásnál teljesül az a szép tulajdonság, ami a polinomiálisnál vagy a Marshall-Olkin-eloszlásnál nem: a természetes többdimenziós általánosítás az egydimenziós eloszlások együttesen független példányai, vektorba rendezve.

A normális eloszlás több egyéb tulajdonsága okán is a "túl szép, hogy igaz legyen" díjas eloszlás első számú jelöltje; ezeket a tulajdonságokat a következő állításban foglaljuk össze:

12.3.8. Következmény. Legyen $(Y_1,Y_2) \sim N(\mu,\underline{\Sigma})$ kétdimenziós normális eloszlású valószínűségi vektorváltozó. Ekkor

- (1) tetszőleges $c_1, c_2 \in \mathbb{R}$ esetén, $c_1Y_1 + c_2Y_2$ egydimenziós normális eloszlású, vagy konstans,
- (2) ha $corr(Y_1, Y_2) = 0$, akkor Y_1 és Y_2 függetlenek,
- (3) az $\mathbb{E}(Y_2 \mid Y_1)$ regresszió megegyezik az Y_2 -nek az Y_1 -re vett lineáris regressziójával, azaz

$$\mathbb{E}(Y_2 \mid Y_1) = \frac{b}{a}Y_1 + \left(\mu_2 - \frac{b}{a}\mu_1\right), \qquad ahol \quad \underline{\mu} = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \quad \underline{\underline{\Sigma}} = \begin{pmatrix} a & b \\ b & c \end{pmatrix}.$$

Az eloszlás vizualizációjáról még érdemes szót ejteni: hogyan is néz ki egy normális eloszlás sűrűségfüggvénye, például kétdimenziós esetben?

A standard esetben egy "domb" az origó körül (ahogy egydimenziós esetben is), ami forgásszimmetrikus, azaz a szintvonalai körök. Nem standard esetben a szintvonalak ellipszisek lesznek. Tehát a nem standard normális eloszlás nem feltétlenül forgásszimmetrikus, de továbbra is tengelyesen szimmetrikus az ellipszis(ek) főtengelyeire. Tekintsük az egyik ilyen ellipszist.

Az egyszerűség kedvéért tegyük fel, hogy $\underline{\mu}=\underline{0},$ vagyis az ellipszis középpontja az origó. Az ellipszis főtengelyei egymásra merőlegesek, így létezik olyan $\underline{U} \in \mathbb{R}^{2 \times 2}$ ortogonális transzformáció, ami a főtengelyeket átviszi a koordinátatengelyekbe. Kiszámolható, hogy ekkor $\underline{U} \cdot \underline{Y} \sim N(\underline{0}, \underline{D})$, ahol \underline{D} diagonális mátrix. A következmény második pontja szerint ekkor $\underline{U} \cdot \underline{Y}$ két koordinátája független. Osszefoglalva, megfelelő koordináta-rendszert választva minden normális eloszlás független, egydimenziós, normális eloszlású valószínűségi változókból áll.

A diagonalizálással kapott független valószínűségi változók szórásai implicit módon korábban is megjelentek a normális eloszlás felírásában: ha D= $\operatorname{diag}(\sigma_1^2, \sigma_2^2)$, akkor a sűrűségfüggvényben megjelenő $\operatorname{det}(\underline{\Sigma})^{\frac{1}{2}}$ éppen $\sigma_1 \cdot \sigma_2$, azaz a szórások szorzata. A kovarianciamátrix determinánsa nem változik ortogonális transzformáció alkalmazása esetén, így mindegy, hogy az eredeti Y vagy a transzformált $\underline{U} \cdot \underline{Y}$ kovarianciamátrixáról beszélünk. Vizuálisabban, ez méri az ellipszis területének az egységkör területéhez viszonyított arányát.

Többdimenziós eloszlások esetén a (teljes) variancia mérésére a kovarianciamátrix determinánsa mellett a $\text{Tr}(\underline{\Sigma})$ nyoma is használatos mennyiség. A diagonalizált változó szórásaival kifejezve $\text{Tr}(\underline{\underline{\Sigma}}) = \sigma_1^2 + \sigma_2^2$. Szemléletesen, ez az \underline{Y} -nak a μ -től való eltérésének az átlagos hossznégyzetét méri.

- J.K. Patel, C.B. Read, Handbook of the Normal Distribution, CRC Press, 1982.
- Y.L. Tong, The Multivariate Normal Distribution, Springer, 1990.

