

SEMINÁRIO/TRABALHO DE SIMULAÇÕES DOS TESTES. CEL040-ELETRÔNICA DE POTÊNCIA

Aluno: Dylan Soares de Vasconcelos Moreno - 202169003B.

SUMÁRIO

INT	TRODUÇÃO:	7
TE	STE 1:	7
2.1.	QUESTÃO 1:	7
TE	STE 2:	16
3.1.	QUESTÃO 3:	16
Let	tra a)	17
Let	tra b)	26
Let	tra c)	33
Let	tra d)	35
Let	tra e)	36
TE	STE 3:	41
l.1.	QUESTÃO 4:	41
TE	STE 4:	44
5.1.	QUESTÃO 2:	44
5.2.	QUESTÃO 3:	53
_etra	a a)	55
_etra	a c)	59
_etra	a d)	60
_etra	a e) e Letra f)	62
	TE 2.1. TE 3.1. Le Le Le TE 1.1. TE 5.1. Letra Letra	~

LISTA DE ILUSTRAÇÕES

Figura 1: Dados e problemas da questão 01	7
Figura 2: Parâmetros do controle de simulação para as simulaçõe	s dessa
questão	7
Figura 3: Circuito Simulado do Teste 01.	8
Figura 4: Formas de ondas da corrente I0 e tensão Vs	8
Figura 5: Potência Ativa Média na fonte Vs	9
Figura 6: Formas de Ondas da corrente I0 e tensão Vs2	9
Figura 7: Potência Ativa Média na fonte de Vs2	10
Figura 8: Formas de Ondas da corrente I0 e Vs3	10
Figura 9: Potência Ativa Média na fonte Vs3	10
Figura 10: Formas de ondas corrente I0 e tensão Vcc	11
Figura 11: Potência ativa média na fonte Vcc	11
Figura 12: Formas de ondas corrente I0 e tensão VR	12
Figura 13:Potência ativa média no Resistor.	12
Figura 14: Formas de ondas corrente I0 e tensão VL	12
Figura 15: Potência ativa média no indutor	13
Figura 16: Formas de ondas corrente I0 e tensão V1	13
Figura 17: Potência ativa média na fonte V1	13
Figura 18: Questão 01 parte I.	14
Figura 19: Questão 01 parte II.	15
Figura 20: Questão 01 parte III.	16
Figura 21: Perguntas e dados da questão 03	16
Figura 22: Parâmetros do controle de simulação	17
Figura 23: Circuito Boost.	17
Figura 24: Circuito de Controle do Chaveamento	18
Figura 25: Circuito Completo.	18
Figura 26: Tensão e Corrente na Chave 12V, D=0.4	19
Figura 27: Tensão VL.	19
Figura 28: Corrente IL.	20
Figura 29: IL médio	20

Figura 30: Delta IL	21
Figura 31: Corrente Id.	21
Figura 32: Id médio	22
Figura 33: Tensão de Saída V0	22
Figura 34: Corrente IC	22
Figura 35: Corrente IR	23
Figura 36: Corrente I0 médio	23
Figura 37: Cálculos realizados na 3 letra a	24
Figura 38: Gráficos de Tensão de entrada e indutor, correntes o	la fonte do
indutor	24
Figura 39: Tensão vd ,vc e correntes id e ic	25
Figura 40: Corrente Média IR	25
Figura 41: Circuito com a novo valor do resistor	26
Figura 42: Tensão e Corrente na Chave ,12V D=0.4	27
Figura 43: Tensão VL	27
Figura 44: Corrente do indutor	28
Figura 45: Valor médio da corrente no Indutor	28
Figura 46: Tensão Vd	29
Figura 47: Corrente no diodo	29
Figura 48: Valor médio da corrente no diodo	30
Figura 49: Tensão de Saída	30
Figura 50: Corrente no capacitor	31
Figura 51: Corrente no resistor	31
Figura 52: Valor médio da corrente no resistor	32
Figura 53: delta IL	32
Figura 54: Letra b do teste	33
Figura 55: Resolução da letra c do teste 2	33
Figura 56: Circuito com a resistência de 138.88 Ω	34
Figura 57: Corrente do indutor no modo condução contínua	34
Figura 58: Resolução da letra d	35
Figura 59: Circuito utilizado na simulação	35
Figura 60: Forma de onda na corrente do indutor em CCM	36

Figura 61: Resolução da letra e do teste 2	36
Figura 62: Circuito Simulado 9V.	37
Figura 63: Forma de onda indutor em CCM 9V.	37
Figura 64: Potência em 9V.	38
Figura 65: Gráfico de Tensão e Corrente na chave 9V, D=0.55	38
Figura 66: Circuito simulado 15V	39
Figura 67: Forma de onda do indutor em CCM 15V	39
Figura 68: Potência em 15V	40
Figura 69: Tensão e Corrente na Chave 15V D=0.25	40
Figura 70: Dados e parâmetros da questão	41
Figura 71: Circuito e controle de chaveamento.	41
Figura 72: Parâmetros do controle de simulação utilizados	41
Figura 73: Resolução da questão 4 do teste 3	42
Figura 74: Forma de onda da corrente na carga	42
Figura 75: THDi da corrente fundamental	43
Figura 76: Forma de onda da tensão na carga	43
Figura 77: Dados da questão 2 do teste 4.	44
Figura 78: Circuito Simulado.	44
Figura 79: Controle de simulação	45
Figura 80: Forma de onda da tensão e corrente da carga	45
Figura 81: Forma de onda da corrente Is.	46
Figura 82: Valor da corrente Is RMS	46
Figura 83: Forma de onda da corrente do diodo D2	47
Figura 84: Forma de onda da corrente do diodo D3	47
Figura 85: Forma de onda da corrente do diodo D4	48
Figura 86: Forma de onda da corrente do diodo D5	48
Figura 87: Formas de onda da tensão e corrente na fonte	49
Figura 88: Fator de Potência	49
Figura 89: Potência ativa do lado CC	50
Figura 90: Potência ativa do lado CA	50
Figura 91: Resolução da questão 2 do teste 4 parte I	51
Figura 92: Resolução da questão 2 do teste 4 parte II	51

Figura 93: Resolução da questão 2 do teste 4 parte III	52
Figura 94: Corrente Is1 de pico na FFT	52
Figura 95: Potência Aparente da carga	53
Figura 96: Dados da questão 3 do teste 4.	53
Figura 97: Circuito Simulado	54
Figura 98: Parâmetros de simulação	54
Figura 99: Resolução da questão 3 do teste 4, letra a)	55
Figura 100: Forma de onda da tensão Vd	55
Figura 101: Forma de onda da corrente de linha la	56
Figura 102: Forma de onda da corrente de linha lb	56
Figura 103: Forma de onda da corrente de linha lc	56
Figura 104: Formas de onda das correntes dos diodos D1, D3 e D5	57
Figura 105: Formas de onda das correntes dos diodos D2, D4 e D6	57
Figura 106: Formas de onda das correntes dos diodos D1, D2, D3, D4	I, D5
e D6	58
e D6 Figura 107: Resolução da questão 3 do teste 4, letra b)	
	58
Figura 107: Resolução da questão 3 do teste 4, letra b)	58 58
Figura 107: Resolução da questão 3 do teste 4, letra b) Figura 108: Valor médio simulado da tensão Vd	58 58
Figura 107: Resolução da questão 3 do teste 4, letra b) Figura 108: Valor médio simulado da tensão Vd Figura 109:Resolução da questão 3 do teste 4, letra c)	58 58 59
Figura 107: Resolução da questão 3 do teste 4, letra b)	58 58 59
Figura 107: Resolução da questão 3 do teste 4, letra b)	58 59 59 60
Figura 107: Resolução da questão 3 do teste 4, letra b)	58 59 60 61
Figura 107: Resolução da questão 3 do teste 4, letra b)	58 59 60 61
Figura 107: Resolução da questão 3 do teste 4, letra b)	58 59 60 61 61
Figura 107: Resolução da questão 3 do teste 4, letra b)	58 59 60 61 61 62
Figura 107: Resolução da questão 3 do teste 4, letra b)	58 59 60 61 61 62 62

1. INTRODUÇÃO:

O trabalho tem como o objetivo utilizar o aplicativo PSIM para simular os testes realizados durante o período. Para isso é necessário o conhecimento dos conteúdos relacionados à conceitos básicos de potência, conversores CC-CC (com foco no conversor boost), inversores de ponte completa e retificadores não controlados trifásicos. Através das simulações serão obtidas as ondas referentes as questões dos testes e comparado aos testes enviados ao longo do semestre, verificando se os resultados obtidos estão de acordo com o esperado ou não.

2. TESTE 1:

2.1. QUESTÃO 1:

Questão 1

Na Figura 1 a tensão que alimenta o circuito é dada por $v_s(t) = 50 + 10\cos(4\pi60t) + 5\cos(8\pi60t)$. Determine a potência ativa média absorvida por cada elemento. Simule o circuito no PSIM e compare os resultados.

Figura 1: Circuito questão 1

Figura 1: Dados e problemas da questão 01.

Figura 2: Parâmetros do controle de simulação para as simulações dessa questão.

Figura 3: Circuito Simulado do Teste 01.

Para fins de comparação foi colocado os voltímetros no simulador PSIM de forma a atender as resoluções feitas no teste.

Figura 4: Formas de ondas da corrente I0 e tensão Vs.

Figura 5: Potência Ativa Média na fonte Vs.

Figura 6: Formas de Ondas da corrente I0 e tensão Vs2.

Figura 7: Potência Ativa Média na fonte de Vs2.

Figura 8: Formas de Ondas da corrente 10 e Vs3.

Figura 9: Potência Ativa Média na fonte Vs3.

Figura 10: Formas de ondas corrente I0 e tensão Vcc.

Figura 11: Potência ativa média na fonte Vcc.

Figura 12: Formas de ondas corrente I0 e tensão VR.

Figura 13:Potência ativa média no Resistor.

Figura 14: Formas de ondas corrente I0 e tensão VL.

Figura 15: Potência ativa média no indutor.

Figura 16: Formas de ondas corrente I0 e tensão V1.

Figura 17: Potência ativa média na fonte V1.

A seguir será apresentado as contas realizadas durante o Teste 1, sendo feito pelo método de superposição para a questão 01:

Figura 18: Questão 01 parte I.

Percebe-se que nas Figuras 17 e 18 há um erro ao calcular-se a corrente visto que ambas calculam seu fasor porém no momento de calcular a potência é esquecido de usar seu valor RMS (Root Means Square).

Figura 19: Questão 01 parte II.

Assim, a superposição com a frequência de $\omega=4\pi60\frac{rad}{s}$, sendo a nomenclatura $P_{Vs1}=P_{V1}$ acima, deveria apresentar as potências como:

$$P_{Vs} = -\frac{6,06}{2}\cos(137^{\circ}) = 2,21 \text{ W},$$

 $P_{V1} = \frac{6,06}{2}\cos(167^{\circ}) = -2.95 \text{ W},$
 $P_{R} = \frac{4*0,367236}{2} = 0,734 \text{W}.$

Figura 20: Questão 01 parte III.

Na frequência de $\omega = 8\pi 60 \ rad/s$ ocorre o mesmo erro ao serem utilizados os valores de pico.

$$P_{VS} = \frac{1,602}{2}\cos(-75^{\circ}) = -0,207 \text{ W},$$

$$P_{R} = \frac{4*0,1026}{2} = 0,205 \text{ W}$$

A partir das simulações, percebe-se que os valores obtidos são muito próximos dos calculados nos testes, esses quando estão calculados corretamente sem correção, além disso, levando em consideração aos valores corrigidos percebe-se que estão em paridade com a simulação.

3. TESTE 2:

3.1. QUESTÃO 3:

Questão 3

Um conversor boost com indutância $L=25~\mu H$ e capacitor grande o suficiente para garantir uma tensão de saída sem ondulações significativas, opera em estado permanente nas seguintes condições: $V_{in}=12~{\rm V},~D=0,4,~P_o=25~{\rm W}$ e $f_r=400~{\rm kHz}.$

- a) Calcule e desenhe as fomas de onda de tensão e corrente em cada elemento do circuito.
- b) Desenhe as formas de onda de tensão e corrente no indutor se $P_o = 15$ W. Compare com as formas de onda da letra (a).
- c) Calcule o valor crítico de P_o para a operação no modo de condução contínuo.
- d) Calcule o valor mínimo de L para que o conversor opere em CCM para $P_o = 5~$ W.
- e) A tensão de entrada varia em uma faixa de 9 a 15 V, para cada valor de entrada o ciclo de trabalho é ajustado para manter a tensão de saída no valor nominal. Calcule o valor mínimo de L para que o conversor opere em CCM para todo os valores de entrada e $P_o = 40$ W.

Figura 21: Perguntas e dados da questão 03.

Em todas as simulações dessa questão o controle de simulação foi feito com as seguintes especificações:

Figura 22: Parâmetros do controle de simulação

Letra a)

Aqui é necessário obter todas as formas de onda a partir dos dados fornecidos na questão.

Figura 23: Circuito Boost.

Figura 24: Circuito de Controle do Chaveamento.

Figura 25: Circuito Completo.

Figura 26: Tensão e Corrente na Chave 12V, D=0.4

Figura 27: Tensão VL.

Figura 28: Corrente IL.

Figura 29: IL médio.

Figura 30: Delta IL.

Figura 31: Corrente Id.

Figura 32: Id médio.

Figura 33: Tensão de Saída V0.

Figura 34: Corrente IC

Figura 35: Corrente IR.

Figura 36: Corrente I0 médio.

Abaixo segue a questão 3, letra a, feita no teste:

Figura 37: Cálculos realizados na 3 letra a.

Figura 38: Gráficos de Tensão de entrada e indutor, correntes da fonte do indutor.

Figura 39: Tensão vd ,vc e correntes id e ic

Figura 40: Corrente Média IR.

A partir dos gráficos apresentados, percebe-se que a corrente do indutor não está calculada corretamente, pois não foi levado em consideração a tensão de entrada e sim a tensão de saída resultando em 1,49 A como pico e não 2,08A como deveria ser.

Letra b)

Com a Potência de saída com o valor de 15 W é calculado o novo valor do resistor, sendo obtido R = 26,6 Ω .

Figura 41: Circuito com a novo valor do resistor.

Figura 42: Tensão e Corrente na Chave ,12V D=0.4.

Figura 43: Tensão VL.

Figura 44: Corrente do indutor.

Figura 45: Valor médio da corrente no Indutor.

Figura 46: Tensão Vd.

Figura 47: Corrente no diodo.

Figura 48: Valor médio da corrente no diodo.

Figura 49: Tensão de Saída.

Figura 50: Corrente no capacitor.

Figura 51: Corrente no resistor.

Figura 52: Valor médio da corrente no resistor.

Figura 53: delta IL.

Percebe-se que as formas de onda de tensão não alteraram, assim na letra b do teste não foi refeito essas ondas, visto que já estavam contidas na letra a.

Figura 54: Letra b do teste.

Ao analisar a resposta simulada com o gráfico traçado é visto que foi propagado o erro de calcular a corrente do indutor a partir da corrente média do resistor, visto que deveria ser levado em consideração a tensão de entrada e assim calculado a corrente do indutor.

$$\bar{I}_L = \frac{15}{12} = 1,25 \text{ A}.$$

Assim seu pico estaria em 1,49 A e seu menor valor em 1,01 A, esses valores representados no gráfico de simulação.

Não foram traçados os gráficos de corrente do diodo e do resistor, pois ambos seriam apenas deslocados do valor médio da corrente do resistor, como mostrado na simulação.

Letra c)

Nessa questão é necessário obter o valor crítico de potência para estar conduzindo em CCM (Modo de Condução Contínua).

Figura 55: Resolução da letra c do teste 2.

Como vamos simular, é preciso calcular a resistência, a qual chegamos 138,88 Ω .

Figura 56: Circuito com a resistência de 138.88 Ω

Figura 57: Corrente do indutor no modo condução contínua.

Letra d)

d)
$$i_{1} = \overline{J}_{1} - \Delta i_{2}$$
 λt
 λ

Figura 58: Resolução da letra d.

Analisando a imagem de resolução acima percebe-se que foi confundido o Duty cycle de 0,4 com 0,6 assim o certo da indutância mínima seria de 14,4uH e como é necessário um resistor para simular com a Potência de saída com 5 W teríamos uma corrente de saída de 0,25 A e um resistor de 80 Ω .

Figura 59: Circuito utilizado na simulação.

Figura 60: Forma de onda na corrente do indutor em CCM.

Figura 61: Resolução da letra e do teste 2.

A partir da resolução acima percebe-se que o valor de indutância mínima a ser escolhida é de 1,76uH, assim para simulação utilizaremos um resistor de $10~\Omega$, e será representado os circuitos e a forma de onda do indutor em CCM para os valores 9V e 15V de entrada.

Figura 62: Circuito Simulado 9V.

Figura 63: Forma de onda indutor em CCM 9V.

Figura 64: Potência em 9V.

Figura 65: Gráfico de Tensão e Corrente na chave 9V, D=0.55.

Figura 66: Circuito simulado 15V.

Figura 67: Forma de onda do indutor em CCM 15V.

Figura 68: Potência em 15V.

Figura 69: Tensão e Corrente na Chave 15V D=0.25.

4. TESTE 3:

4.1. QUESTÃO 4:

Questão 4

Projete um inversor que tenha uma saída PWM e alimenta um carga RL série, sendo $R=10\,\Omega$ e $L=20\,\mathrm{mH}$. A componente fundamental da tensão na saída deve ser de $120\,\mathrm{V}$ rms e $60\,\mathrm{Hz}$ e a distorção harmônica total da corrente na carga deve ser menor que 8%. Especifique a tensão CC de entrada, a taxa de modulação da amplitude m_a e a frequência de chaveamento.

Figura 70: Dados e parâmetros da questão.

Figura 71: Circuito e controle de chaveamento.

Figura 72: Parâmetros do controle de simulação utilizados.

S3

Figura 73: Resolução da questão 4 do teste 3.

Na resolução acima foi omitido alguns passos, como o cálculo da corrente de pico que seria calculado a partir do valor de tensão RMS sobre o módulo da impedância multiplicado pela raiz de 2 garantindo a corrente acima, também foi omitido como encontrou-se o Vcc, sendo a aplicação do $\frac{169}{0.9}$ = 189 V

aproximadamente. Com isso foi obtido a corrente Imf sendo a multiplicação do THDi pelo pico da corrente fundamental e a tensão Vmf para encontrar o valor necessário de mf. A partir da impedância Zmf, nota-se que mf deve ser maior do que 16,4 o qual deve possuir apenas valores inteiros ímpares, com isso na simulação foi escolhido o mf = 21, pois ao calcular o Zmf estamos considerando apenas uma componente a mf, assim desconsiderando as outras e propagando erros, ao considerar um mf maior podemos chegar no THDi < 8%. Um resultado semelhante seria possível ao considerar 0,8, como apresentado nos slides das aulas, o qual chegaríamos em um mf>21 no caso seria escolhido o 23.

Figura 74: Forma de onda da corrente na carga.

Figura 75: THDi da corrente fundamental.

Figura 76: Forma de onda da tensão na carga.

5. TESTE 4:

5.1. QUESTÃO 2:

Questão 2

Considere o circuito retificador a diodo monofásico ilustrado na Figura 2. O valor eficaz da tensão da rede é $V_s = 230~V$, 50~Hz. Assuma que a carga é representada por uma fonte cc constante, $I_d = 10~A$.

- a) Esboce a tensão CC de saída.
- b) Encontre uma equação para o valor médio da tensão CC.
- c) Esboce a corrente da rede $i_s(t)$ indicando qual diodo está conduzindo em função do tempo.
- d) Calcule a valor eficaz da corrente da rede i_s .
- e) Prove que o valor eficaz da fundamental da corrente da rede
é $I_{s1}=\frac{4}{\sqrt{2}\pi}I_{d}.$
- f) Prove que o fator de potência para esse retificador é 0,9.
- g) Calcule a potência ativa no lado CC e no lado CA.
- h) Por que a potência aparente é maior que a potência ativa mesmo quando a componente fundamental da corrente está em fase com a tensão da rede?

Figura 1: Circuito questão 2.

Figura 77: Dados da questão 2 do teste 4.

Figura 78: Circuito Simulado.

Figura 79: Controle de simulação.

Figura 80: Forma de onda da tensão e corrente da carga.

Figura 81: Forma de onda da corrente Is.

Figura 82: Valor da corrente Is RMS.

Figura 83: Forma de onda da corrente do diodo D2.

Figura 84: Forma de onda da corrente do diodo D3.

Figura 85: Forma de onda da corrente do diodo D4.

Figura 86: Forma de onda da corrente do diodo D5.

Figura 87: Formas de onda da tensão e corrente na fonte

Ao analisar os gráficos de diodos com o gráfico da corrente na carga percebe-se que o diodo fica alternando entre o D2 e D4 para D3 e D5 em condução.

Figura 88: Fator de Potência.

Figura 89: Potência ativa do lado CC.

Figura 90: Potência ativa do lado CA.

Figura 91: Resolução da questão 2 do teste 4 parte I

Figura 92: Resolução da questão 2 do teste 4 parte II.

Figura 93: Resolução da questão 2 do teste 4 parte III.

Measure	
Frequency	5.0000050e+001
ls	1.2732460e+001

Figura 94: Corrente Is1 de pico na FFT.

Figura 95: Potência Aparente da carga

Acima é mostrado a corrente Is1 dividindo-a por raiz de 2 obtêm-se o valor de RMS 9 A, comprovando a solução da letra e). Com as simulações e o teste digitalizado acima pode-se notar que os resultados estão em concordância, podendo concluir que estão corretos.

5.2. QUESTÃO 3:

Questão 3

O retificador trifásico a diodo mostrado na Figura 3 alimenta uma máquina CC com uma carga de torque constante T=100~Nm. O fluxo é mantido constante e $K_a\phi=1$. Isto significa uma corrente de armadura $I_d=100~A$. A indutância da armadura da máquina, L_a , é grande o suficiente para que a corrente seja considerada constante. A tensão da rede de linha é igual a 230 V.

- a) Esboce a tensão de armadura $v_d(t)$ e as correntes de linha $i_a(t)$, $i_b(t)$ e $i_c(t)$. Indique quais diodos estão conduzindo.
- b) Calcule o valor médio da tensão CC ,V_d.
- c) Calcule a valor eficaz da corrente da fase a.
- d) Calcule a corrente eficaz da componente fundamental da fase $a,\,I_{a1}.$
- e) Prove que para uma forma de onda n\u00e3o senoidal o seu valor eficaz \u00e9 sempre maior que o valor eficaz da componente fundamental.
- f) Liste algumas vantagens do retificador trifásico se comparado com o monofásico.

Figura 2: Circuito questão 3.

Figura 96: Dados da questão 3 do teste 4.

Figura 97: Circuito Simulado.

Figura 98: Parâmetros de simulação.

Letra a)

Figura 99: Resolução da questão 3 do teste 4, letra a).

Figura 100: Forma de onda da tensão Vd.

Figura 101: Forma de onda da corrente de linha la.

Figura 102: Forma de onda da corrente de linha lb.

Figura 103: Forma de onda da corrente de linha lc.

Figura 104: Formas de onda das correntes dos diodos D1, D3 e D5.

Figura 105: Formas de onda das correntes dos diodos D2, D4 e D6.

Figura 106: Formas de onda das correntes dos diodos D1, D2, D3, D4, D5 e D6.

Figura 107: Resolução da questão 3 do teste 4, letra b).

Figura 108: Valor médio simulado da tensão Vd.

Figura 109:Resolução da questão 3 do teste 4, letra c).

Figura 110: Valor da corrente ia RMS.

Figura 111: Resolução da questão 3 do teste 4, letra d).

Figura 112: FFT da corrente ia em escala linear.

Figura 113: Valor da corrente la1 simulada.

Figura 114: FFT da Tensão Vd em escala linear.

Letra e) e Letra f)

65 una tempo prividica de a serra de	
v(t) = v(t) + v(t), o valor vm de v(t) 1 d	
co Considers on comp a comparent fundament	of the ame of some do
demois components bouncinca	
Vario = 1 (N1+N2) 29 => 1 (102 + Rains +0	²)at
Vrmp = 1 502 dt + 2 500 dt + 1 50 dt	
V10002 = 1 501dt V2 = 1 502dt	
Vrmo: Virmo + Varmo (omo Varmo >0	
Verno > Virno	
a singlet reposition also downed from the (1	moiss.
A terroso de ripple u' menon, ja que a distant	se roman e notro ao utre oc
comparada a manafásica dos faz com que a tor	de privipa maio projutra de

Figura 115: Resolução da questão 3 do teste 4, letra e) e a letra f).

Figura 116: Formas de Onda de Van e la

Figura 117: Potência Ativa média de Van.

Figura 118: Formas de onda da tensão Vd e corrente ld.

Figura 119: Potência Ativa média da carga.

Após a análise de todos os gráficos das simulações é perceptível que o teste realizado tem paridades à simulação, o que confirma as respostas obtidas durante os cálculos. Sobre as questões discursivas, o da tensão eficaz é perceptível pela FFT da tensão Vd, e a questão da potência pode ser vista nos gráficos de potência ativa média da fonte Van em comparação com a carga de tensão Vd, sendo três vezes maior do que da fase.