Foreword

Usage

• Notes are presented in two columns: main notes on the left, and sidenotes on the right. Main notes will have a larger margin.

• The following is the color code for the notes:

Blue Definitions

Red Important points

Yellow Points to watch out for / comment for incompletion

Green External definitions, theorems, etc.

Light Blue Regular highlighting
Brown Secondary highlighting

• The following is the color code for boxes, that begin and end with a line of the same color:

Blue Definitions
Red Warning

Yellow Notes, remarks, etc.

Brown Proofs

Magenta Theorems, Propositions, Lemmas, etc.

Hyperlinks are underlined in magenta. If your PDF reader supports it, you can follow the links to either be redirected to an external website, or a theorem, definition, etc., in the same document.
 Note that this is only reliable if you have the full set of notes as a single document, which you can find on:

https://japorized.github.io/TeX_notes

13 Lecture 13 May 30 2018

13.1 Isomorphism Theorems (Continued)

13.1.1 Quotient Groups (Continued)

Proposition 35

Let $K \triangleleft G$ and write $G/K = \{Ka : a \in G\}$ for the set of cosets of K.

- 1. G_K is a group under the operation KaKb = Kab.
- 2. The mapping $\phi: G \to G/K$ given by $\phi(a) = Ka$ is a surjective homomorphism.
- 3. If [G:K] is finite, then $\left|\frac{G}{K}\right|=[G:K]$. In particular, if |G| is finite, then $\left|\frac{G}{K}\right|=\frac{|G|}{|K|}$.

Proof

1. By Lemma 34, the operation is well-defined, and ${}^G/_K$ is closed under the operation. The identity of ${}^G/_K$ is K = K(1) since $\forall Ka \in {}^G/_K$,

$$KaK(1) = Ka = K(1)Ka$$
.

Also, since

$$KaKa^{-1} = K(1) = Ka^{-1}Ka$$

the inverse of Ka is Ka^{-1} . Finally, by associativity of G, we have that

$$Ka(KbKc) = Kabc = (KaKb)Kc.$$

It follows that G_K is a group.

Exercise 13.1.1

Is φ injective?

Solution

We know that we cannot uniquely express a coset, since for $a,b \in Ka$ such that $a \neq b$, we have that Ka = Kb.

2. Clearly, ϕ is surjective. For $a, b \in G$,

$$\phi(ab) = Kab = KaKb = \phi(a)\phi(b).$$

Thus ϕ is a surjective homomorphism.

3. If [G:K] is finite, then by definition of the index [G:K], we have that $[G:K] = \left| \frac{G}{K} \right|$. Also, if |G| is finite, then by Theorem 23,

$$\left| \frac{G}{K} \right| = [G:K] = \frac{|G|}{|K|}.$$

Definition 26 (Quotient Group)

Let $K \triangleleft G$. The group G/K of all cosets of K in G is called the *quotient* group of G by K. Also, the mapping

$$\phi: G \to G/K$$
 defined by $a \mapsto Ka$

is called the coset (pr quotient) map.

13.1.2 Isomorphism Theorems

Definition 27 (Kernel and Image)

Let $\alpha: G \to H$ be a group homomorphism. The kernel of α is defined by

$$\ker \alpha := \{ g \in G : \alpha(g) = 1_H \} \subseteq G$$

and the image of α is defined by

$$\operatorname{im} \alpha := \alpha(G) = {\alpha(g) : g \in G} \subseteq H.$$

Proposition 36

Let $\alpha: G \to H$ be a group homomorphism.

- 1. $\lim \alpha$ is a subgroup of H
- 2. $\ker \alpha \triangleleft G$

Proof

1. Note that $1_H=\alpha(1_G)\in\alpha(G)$ (i.e. the identity is in im α). Also, for $h_1 = \alpha(g_1)$ and $h_2 = \alpha(g_2)$ in $\alpha(G)$ and $h_1, h_2 \in H$, we have

$$h_1h_2 = \alpha(g_1)\alpha(g_2) = \alpha(g_1g_2) \in \alpha(G).$$

(i.e. im α i closed under its operation). By Proposition 20, $\alpha(g)^{-1} =$ $\alpha(g^{-1}) \in \alpha(G)$ (i.e. the inverse of an element is also in im α). Thus by the Subgroup Test, we have that im α is a subgroup of H.

2. For $\ker \alpha$, $\alpha(1_G) = 1_H$. For $k_1, k_2 \in \ker \alpha$, we have

$$\alpha(k_1k_2) = \alpha(k_1)\alpha(k_2) = 1 \cdot 1 = 1.$$

Also,

$$\alpha(k_1^{-1}) = \alpha(k_1)^{-1} = 1^{-1} = 1.$$

By the Subgroup Test, $\ker \alpha$ is a subgroup of G.

If $g \in G$ *and* $k \in \ker \alpha$ *, then*

$$\alpha(gkg^{-1})=\alpha(g)\alpha(k)\alpha(g^{-1})=\alpha(g)\alpha(g^{-1})=1.$$

Thus by Proposition 27, $\ker \alpha \triangleleft G$.

Example 13.1.1

Consider the determinant map

$$\det: GL_n(\mathbb{R}) \to \mathbb{R}^*$$
 defined by $A \mapsto \det A$.

Then $\ker \det = SL_n(\mathbb{R})$. Then $SL_n(\mathbb{R}) \triangleleft GL_n(\mathbb{R})$, as proven before.

Example 13.1.2

Define the sign of a permutation $\sigma \in S_n$ by

$$\operatorname{sgn}(\sigma) = \begin{cases} 1 & \text{if } \sigma \text{ is even;} \\ -1 & \text{if } \sigma \text{ is odd.} \end{cases}$$

Then the sign mapping, $\operatorname{sgn}: S_n \to \{\pm 1\}$ defined by $\sigma \mapsto \operatorname{sgn}(\sigma)$ is a homomorphism.² Also, $\operatorname{ker} \operatorname{sgn} = A_n$. Thus, we have $A_n \triangleleft S_n$, as proven before.

² Think about why. It's quite straightforward using the defintion.

Proposition 37 (Normal Subgroup as the Kernel)

If $K \triangleleft G$, then $K = \ker \phi$ where $\phi : G \rightarrow G/K$ is the coset map.

Proof

Recall that $\phi: G \to G/K$ is defined by $g \mapsto Kg$, $\forall g \in G$, and is a group homomorphism. By Proposition 22, we have

$$Kg = K = K1 \iff g \in K.$$

Thus $K = \ker \phi$.

Theorem 38 (First Isomorphism Theorem)

Let $\alpha: G \to H$ be a group homomorphism. We have

$$G_{\ker \alpha} \cong \operatorname{im} \alpha$$

Proof

Let $K = \ker \alpha$. Since $K \triangleleft G$ (by Proposition 36), G/K is a group. Let³

$$\bar{\alpha}: {}^{G}/_{K} \to \operatorname{im} \alpha$$
 be defined by $Kg \mapsto \alpha(g)$

Note that

$$Kg = Kg_1 \iff gg_1^{-1} \in K \iff \alpha(gg_1^{-1}) = 1 \iff \alpha(g) = \alpha(g_1).$$

Thus $\bar{\alpha}$ is well-defined and injective. Clearly, $\bar{\alpha}$ is surjective. It remains to

³ We must check that the function is well-defined, since cosets are not uniquely represented and so it is likely that a constructed mapping is not well-defined.

show that $\bar{\alpha}$ is a group homomorphism. $\forall g,h \in G$, we have

$$\bar{\alpha}(KgKh) = \bar{\alpha}(Kgh) = \alpha(gh) = \alpha(g)\alpha(h) = \bar{\alpha}(Kg)\bar{\alpha}(Kh).$$

Therefore, we have that $\bar{\alpha}$ is an isomorphism and hence $G_{\ker\alpha}\cong\operatorname{im}\alpha$ as desired. \Box