The Retracing Boomerang Attack Orr Dunkelman, Nathan Keller, Eyal Ronen, Adi Shamir EUROCRYPT 2020

Gautam Singh

Indian Institute of Technology Hyderabad

July 30, 2025

- Introduction
- 2 Preliminaries
- 3 The Retracing Boomerang Attack
- 4 Retracing Boomerang Attack on Five Round AES

Introduction

Broke the record for 5-round AES when it was published.

Introduction

- Broke the record for 5-round AES when it was published.
- **2** Brings the attack complexity down to $2^{16.5}$ encryptions.

Introduction

- Broke the record for 5-round AES when it was published.
- \odot Brings the attack complexity down to $2^{16.5}$ encryptions.
- Uncovers a hidden relationship between boomerang attacks and two other cryptanalysis techniques: yoyo game and mixture differentials.

The Yoyo Game¹

1 Similar to boomerang, starts by encrypting (P_1, P_2) to (C_1, C_2) , then modifying them to (C_3, C_4) and decrypting them.

¹Sondre Rønjom, Navid Ghaedi Bardeh, and Tor Helleseth. Yoyo Tricks with AES. 2017. URL: https://eprint.iacr.org/2017/980 (visited on 04/14/2025).

Pre-published.

The Yoyo Game

The Yoyo Game¹

- Similar to boomerang, starts by encrypting (P_1, P_2) to (C_1, C_2) , then modifying them to (C_3, C_4) and decrypting them.
- 2 Unlike the boomerang attack, this continues in the yoyo game.

The Yoyo Game

The Yoyo Game¹

- Similar to boomerang, starts by encrypting (P_1, P_2) to (C_1, C_2) , then modifying them to (C_3, C_4) and decrypting them.
- 2 Unlike the boomerang attack, this continues in the yoyo game.
- 3 All pairs of intermediate values (X_{2l+1}, X_{2l+2}) satisfy some property (such as zero difference in some part).

The Yoyo Game

The Yoyo Game¹

- Similar to boomerang, starts by encrypting (P_1, P_2) to (C_1, C_2) , then modifying them to (C_3, C_4) and decrypting them.
- Unlike the boomerang attack, this continues in the yoyo game.
- 3 All pairs of intermediate values (X_{2l+1}, X_{2l+2}) satisfy some property (such as zero difference in some part).
- OPProbabilities are low with large I. Still, the yoyo technique has been used to attack AES reduced to 5 rounds.

Mixture Differentials

Mixture

Definition 1 (Mixture)

Suppose $P_i \triangleq (\rho_1^i, \rho_2^i, \dots, \rho_t^i)$. Given a plaintext pair (P_1, P_2) , we say (P_3, P_4) is a *mixture counterpart* of (P_1, P_2) if for each $1 \leq j \leq t$, the quartet $(\rho_j^1, \rho_j^2, \rho_j^3, \rho_j^4)$ consists of two pairs of equal values or of four equal values. The quartet (P_1, P_2, P_3, P_4) is called a *mixture*.

Mixture

Definition 1 (Mixture)

Suppose $P_i \triangleq (\rho_1^i, \rho_2^i, \dots, \rho_t^i)$. Given a plaintext pair (P_1, P_2) , we say (P_3, P_4) is a *mixture counterpart* of (P_1, P_2) if for each $1 \leq j \leq t$, the quartet $(\rho_j^1, \rho_j^2, \rho_j^3, \rho_j^4)$ consists of two pairs of equal values or of four equal values. The quartet (P_1, P_2, P_3, P_4) is called a *mixture*.

• If (P_1, P_2, P_3, P_4) is a mixture, then XOR of the intermediate values (X_1, X_2, X_3, X_4) is zero.

Mixture

Definition 1 (Mixture)

Suppose $P_i \triangleq (\rho_1^i, \rho_2^i, \dots, \rho_t^i)$. Given a plaintext pair (P_1, P_2) , we say (P_3, P_4) is a *mixture counterpart* of (P_1, P_2) if for each $1 \leq j \leq t$, the quartet $(\rho_j^1, \rho_j^2, \rho_j^3, \rho_j^4)$ consists of two pairs of equal values or of four equal values. The quartet (P_1, P_2, P_3, P_4) is called a *mixture*.

- If (P_1, P_2, P_3, P_4) is a mixture, then XOR of the intermediate values (X_1, X_2, X_3, X_4) is zero.
- ② $X_1 \oplus X_3 = \gamma \implies X_2 \oplus X_4 = \gamma$. Hence, for $\gamma \xrightarrow{q} \delta$ in E_1 , $C_1 \oplus C_3 = C_2 \oplus C_4 = \delta$ with probability q^2 .

Mixture Differentials

The SimpleSWAP Algorithm²

Algorithm 1 is a primitive used to generate mixture counterparts.

Algorithm 1 Swaps the first word where texts are different and returns one word.

1: **function** SIMPLESWAP(x^0 , x^1)

 $\triangleright x^0 \neq x^1$

- 2: $x'^0, x'^1 \leftarrow x^0, x^1$
- 3: **for** *i* from 0 to 3 **do**
- 4: if $x_i^0 \neq x_i^1$ then
- 5: $x_i^{0}, x_i^{1} \leftarrow x_i^{1}, x_i^{0}$
- 6: **return** x'^0, x'^1

Figure 1: The retracing boomerang attack.

The Retracing Boomerang Attack

1 Consists of a shifting type and a mixing type.

The Retracing Boomerang Attack

- 1 Consists of a shifting type and a mixing type.
- Although the additional split looks restrictive, it applies for a wide class of block ciphers such as SASAS constructions.

The Retracing Boomerang Attack

- 1 Consists of a *shifting* type and a *mixing* type.
- Although the additional split looks restrictive, it applies for a wide class of block ciphers such as SASAS constructions.
- **(3)** It is assumed that E_{12} can be split into two parts of size b and n-b bits, call these functions E_{12}^L and E_{12}^R , with characteristic probabilities q_2^L and q_2^R respectively.

The Shifting Retracing Attack

The Shifting Retracing Boomerang Attack

• Check if $C_1^L \oplus C_2^L = 0$ or δ_L . Discard all pairs not satisfying this relation. This is a (b-1)-bit filtering.

- Check if $C_1^L \oplus C_2^L = 0$ or δ_L . Discard all pairs not satisfying this relation. This is a (b-1)-bit filtering.
- 2 δ -shift is performed on the filtered ciphertext pairs to get (C_3, C_4) . This ensures $\{C_1^L, C_3^L\} = \{C_2^L, C_4^L\}$.

The Shifting Retracing Attack

- **1** Check if $C_1^L \oplus C_2^L = 0$ or δ_L . Discard all pairs not satisfying this relation. This is a (b-1)-bit filtering.
- 2 δ -shift is performed on the filtered ciphertext pairs to get (C_3, C_4) . This ensures $\{C_1^L, C_3^L\} = \{C_2^L, C_4^L\}$.
- § If one of these pairs satisfies $\delta_L \xrightarrow{q_L^L} \mu_L$, the other pair will too!. Increases the probability of the boomerang distinguisher by $(q_2^L)^{-1}$.

- **1** Check if $C_1^L \oplus C_2^L = 0$ or δ_L . Discard all pairs not satisfying this relation. This is a (b-1)-bit filtering.
- 2 δ -shift is performed on the filtered ciphertext pairs to get (C_3, C_4) . This ensures $\{C_1^L, C_3^L\} = \{C_2^L, C_4^L\}$.
- § If one of these pairs satisfies $\delta_L \xrightarrow{q_L^L} \mu_L$, the other pair will too!. Increases the probability of the boomerang distinguisher by $(q_2^L)^{-1}$.
- 4 Higher signal to noise ratio (SNR) and lower data complexity due to filtering.

The Shifting Retracing Attack

Figure 2: A shifted quartet (dashed lines indicate equality).

The Mixing Retracing Boomerang Attack

1 In shifting attack, $\{C_1^L, C_2^L\} = \{C_3^L, C_4^L\}$ forced using a δ -shift.

- **1** In shifting attack, $\{C_1^L, C_2^L\} = \{C_3^L, C_4^L\}$ forced using a δ -shift.
- **2** Here, each ciphertext shifted by $(C_1^L \oplus C_2^L, 0)$, thus

$$C_3 = (C_3^L, C_3^R) = (C_1^L \oplus (C_1^L \oplus C_2^L), C_1^R) = (C_2^L, C_1^R), \tag{1}$$

$$C_4 = (C_4^L, C_4^R) = (C_2^L \oplus (C_1^L \oplus C_2^L), C_2^R) = (C_1^L, C_2^R).$$
 (2)

The Mixing Retracing Boomerang Attack

- **1** In shifting attack, $\{C_1^L, C_2^L\} = \{C_3^L, C_4^L\}$ forced using a δ -shift.
- **2** Here, each ciphertext shifted by $(C_1^L \oplus C_2^L, 0)$, thus

$$C_3 = (C_3^L, C_3^R) = (C_1^L \oplus (C_1^L \oplus C_2^L), C_1^R) = (C_2^L, C_1^R), \tag{1}$$

$$C_4 = (C_4^L, C_4^R) = (C_2^L \oplus (C_1^L \oplus C_2^L), C_2^R) = (C_1^L, C_2^R).$$
 (2)

3 Hence, $\{C_1^L, C_2^L\} = \{C_3^L, C_4^L\}, C_1^R = C_3^R$ and $C_2^R = C_4^R$.

- **1** In shifting attack, $\{C_1^L, C_2^L\} = \{C_3^L, C_4^L\}$ forced using a δ -shift.
- **2** Here, each ciphertext shifted by $(C_1^L \oplus C_2^L, 0)$, thus

$$C_3 = (C_3^L, C_3^R) = (C_1^L \oplus (C_1^L \oplus C_2^L), C_1^R) = (C_2^L, C_1^R), \tag{1}$$

$$C_4 = (C_4^L, C_4^R) = (C_2^L \oplus (C_1^L \oplus C_2^L), C_2^R) = (C_1^L, C_2^R).$$
 (2)

- **3** Hence, $\{C_1^L, C_2^L\} = \{C_3^L, C_4^L\}, C_1^R = C_3^R \text{ and } C_2^R = C_4^R.$
- 4 Additional gain of $(q_2^R)^{-2}$ for total probability of $(pq_1)^2q_2^L$, better than shifting!

- **1** In shifting attack, $\{C_1^L, C_2^L\} = \{C_3^L, C_4^L\}$ forced using a δ -shift.
- **2** Here, each ciphertext shifted by $(C_1^L \oplus C_2^L, 0)$, thus

$$C_3 = (C_3^L, C_3^R) = (C_1^L \oplus (C_1^L \oplus C_2^L), C_1^R) = (C_2^L, C_1^R), \tag{1}$$

$$C_4 = (C_4^L, C_4^R) = (C_2^L \oplus (C_1^L \oplus C_2^L), C_2^R) = (C_1^L, C_2^R).$$
 (2)

- **3** Hence, $\{C_1^L, C_2^L\} = \{C_3^L, C_4^L\}, C_1^R = C_3^R \text{ and } C_2^R = C_4^R.$
- 4 Additional gain of $(q_2^R)^{-2}$ for total probability of $(pq_1)^2 q_2^L$, better than shifting!
- 5 Similar to the core step used in the yoyo attack on AES.

Figure 3: A mixture quartet of ciphertexts (dashed lines indicate equality).

Brief Description of AES

Description of AES³

1 Byte ordering shown after SB in Figure 4 (column major).

Figure 4: An AES round.

³National Institute of Standards and Technology. Advanced Encryption Standard (AES). Federal Information Processing Standard (FIPS) 197. U.S. Department of Commerce, May 9, 2023. DOI: 10.6028/NIST.FIPS.197-upd1. URL: https://csrc.nist.gov/pubs/fips/197/final (visited on 04/14/2025).

Description of AES³

- Byte ordering shown after SB in Figure 4 (column major).
- 2 The *I*-th shifted column (resp. *I*-th inverse shifted column) refers to application of SR (resp. SR^{-1}) to the *I*-th column.

Figure 4: An AES round.

³National Institute of Standards and Technology, *Advanced Encryption Standard* (AES).

Description of AES³

- Byte ordering shown after SB in Figure 4 (column major).
- The *I*-th shifted column (resp. *I*-th inverse shifted column) refers to application of SR (resp. SR^{-1}) to the I-th column.
- Round subkeys are k_{-1}, k_0, \ldots

Figure 4: An AES round.

³National Institute of Standards and Technology, Advanced Encryption Standard (AES).

The Yoyo Attack on Five Round AES

Summary of Yoyo Attack on Five Round AES

① Decomposes AES as $E = E_{12} \circ E_{11} \circ E_0$ where E_0 is the first 2.5 rounds, E_{11} is the MC of round 2 and E_{12} is the last 2 rounds.

Summary of Yoyo Attack on Five Round AES

- **1** Decomposes AES as $E = E_{12} \circ E_{11} \circ E_0$ where E_0 is the first 2.5 rounds, E_{11} is the MC of round 2 and E_{12} is the last 2 rounds.
- ② Truncated differential characteristic for E_0 : zero input difference in three inverse shifted columns and zero output difference in a single shifted column with probability $4 \cdot 2^{-8} = 2^{-6}$.

Summary of Yoyo Attack on Five Round AES

- **1** Decomposes AES as $E = E_{12} \circ E_{11} \circ E_0$ where E_0 is the first 2.5 rounds, E_{11} is the MC of round 2 and E_{12} is the last 2 rounds.
- ② Truncated differential characteristic for E_0 : zero input difference in three inverse shifted columns and zero output difference in a single shifted column with probability $4 \cdot 2^{-8} = 2^{-6}$.
- **3** Attack inverse shifted columns of k_{-1} . Friend pairs used to get more information.

Meet in the Middle Improvement on Yoyo Attack

① Denote the value of byte m before MC operation of round 0 by W_m and the corresponding output by Z_m . Then,

$$Z_0 = 02_x \cdot W_0 \oplus 03_x \cdot W_1 \oplus 01_x \cdot W_2 \oplus 01_x \cdot W_3. \tag{3}$$

Meet in the Middle Improvement on Yoyo Attack

① Denote the value of byte m before MC operation of round 0 by W_m and the corresponding output by Z_m . Then,

$$Z_0 = 02_x \cdot W_0 \oplus 03_x \cdot W_1 \oplus 01_x \cdot W_2 \oplus 01_x \cdot W_3. \tag{3}$$

2 Adversary guesses $k_{-1,\{0,5\}}$ by computing the following for j=1,2,3 and storing the concatenated 24-bit value in a hash table (each j represents a friend pair).

$$02_{x} \cdot ((W_{3}^{j})_{0} \oplus (W_{4}^{j})_{0}) \oplus 03_{x} \cdot ((W_{3}^{j})_{1} \oplus (W_{4}^{j})_{1})$$
(4)

Similarly, the other half of the right hand side of (3) is computed and a collision is checked.

Meet in the Middle Improvement on Yoyo Attack

① Denote the value of byte m before MC operation of round 0 by W_m and the corresponding output by Z_m . Then,

$$Z_0 = 02_x \cdot W_0 \oplus 03_x \cdot W_1 \oplus 01_x \cdot W_2 \oplus 01_x \cdot W_3. \tag{3}$$

② Adversary guesses $k_{-1,\{0,5\}}$ by computing the following for j=1,2,3 and storing the concatenated 24-bit value in a hash table (each j represents a friend pair).

$$02_{x} \cdot ((W_{3}^{j})_{0} \oplus (W_{4}^{j})_{0}) \oplus 03_{x} \cdot ((W_{3}^{j})_{1} \oplus (W_{4}^{j})_{1})$$
(4)

Similarly, the other half of the right hand side of (3) is computed and a collision is checked.

§ $Z_0 = 0$ needed for the characteristic. To narrow down candidates for k_{-1} , the following is done.

Meet in the Middle Improvement on Yoyo Attack

① Denote the value of byte m before MC operation of round 0 by W_m and the corresponding output by Z_m . Then,

$$Z_0 = 02_x \cdot W_0 \oplus 03_x \cdot W_1 \oplus 01_x \cdot W_2 \oplus 01_x \cdot W_3. \tag{3}$$

2 Adversary guesses $k_{-1,\{0,5\}}$ by computing the following for j=1,2,3 and storing the concatenated 24-bit value in a hash table (each j represents a friend pair).

$$02_{x} \cdot ((W_{3}^{j})_{0} \oplus (W_{4}^{j})_{0}) \oplus 03_{x} \cdot ((W_{3}^{j})_{1} \oplus (W_{4}^{j})_{1})$$
(4)

Similarly, the other half of the right hand side of (3) is computed and a collision is checked.

- § $Z_0 = 0$ needed for the characteristic. To narrow down candidates for k_{-1} , the following is done.
 - Specific choice of plaintexts based on DDT of AES S-boxes.

Meet in the Middle Improvement on Yoyo Attack

① Denote the value of byte m before MC operation of round 0 by W_m and the corresponding output by Z_m . Then,

$$Z_0 = 02_x \cdot W_0 \oplus 03_x \cdot W_1 \oplus 01_x \cdot W_2 \oplus 01_x \cdot W_3. \tag{3}$$

2 Adversary guesses $k_{-1,\{0,5\}}$ by computing the following for j=1,2,3 and storing the concatenated 24-bit value in a hash table (each j represents a friend pair).

$$02_{x} \cdot ((W_{3}^{j})_{0} \oplus (W_{4}^{j})_{0}) \oplus 03_{x} \cdot ((W_{3}^{j})_{1} \oplus (W_{4}^{j})_{1})$$
(4)

Similarly, the other half of the right hand side of (3) is computed and a collision is checked.

- § $Z_0 = 0$ needed for the characteristic. To narrow down candidates for k_{-1} , the following is done.
 - Specific choice of plaintexts based on DDT of AES S-boxes.
 - Eliminating key bytes using friend pairs.

Specific Choice of Plaintexts

$$02_{x} \cdot ((W_{1})_{0} \oplus (W_{2})_{0}) \oplus 03_{x} \cdot ((W_{1})_{1} \oplus (W_{2})_{1}) = 0.$$
 (5)

Specific Choice of Plaintexts

① Choose plaintexts with non-zero difference only in bytes 0 and 5. Here, $(Z_1)_0 = (Z_2)_0$ leaves 2^8 candidates for $k_{-1,\{0,5\}}$, given by

$$02_{x} \cdot ((W_{1})_{0} \oplus (W_{2})_{0}) \oplus 03_{x} \cdot ((W_{1})_{1} \oplus (W_{2})_{1}) = 0.$$
 (5)

2 Constrain $(P_1)_5 \oplus (P_2)_5 = 01_x$ to detect right key bytes efficiently.

$$02_{x} \cdot ((W_{1})_{0} \oplus (W_{2})_{0}) \oplus 03_{x} \cdot ((W_{1})_{1} \oplus (W_{2})_{1}) = 0.$$
 (5)

- **2** Constrain $(P_1)_5 \oplus (P_2)_5 = 01_x$ to detect right key bytes efficiently.
- § DDT row of AES S-box for input difference 01_x along with input pair(s) for each output difference computed and stored in memory.

$$02_{x} \cdot ((W_{1})_{0} \oplus (W_{2})_{0}) \oplus 03_{x} \cdot ((W_{1})_{1} \oplus (W_{2})_{1}) = 0.$$
 (5)

- **2** Constrain $(P_1)_5 \oplus (P_2)_5 = 01_x$ to detect right key bytes efficiently.
- **3** DDT row of AES S-box for input difference 01_x along with input pair(s) for each output difference computed and stored in memory.
- 4 For each (P_1, P_2) and for each guess of $k_{-1,0}$, use (5) to compute the output difference of the SB operation in byte 5.

$$02_{x} \cdot ((W_{1})_{0} \oplus (W_{2})_{0}) \oplus 03_{x} \cdot ((W_{1})_{1} \oplus (W_{2})_{1}) = 0.$$
 (5)

- **2** Constrain $(P_1)_5 \oplus (P_2)_5 = 01_x$ to detect right key bytes efficiently.
- **3** DDT row of AES S-box for input difference 01_x along with input pair(s) for each output difference computed and stored in memory.
- ① For each (P_1, P_2) and for each guess of $k_{-1,0}$, use (5) to compute the output difference of the SB operation in byte 5.
- **6** Lookup to find inputs that can lead to this difference and retrieve possible values of $k_{-1.5}$ corresponding to the guessed $k_{-1.0}$.

$$02_{x} \cdot ((W_{1})_{0} \oplus (W_{2})_{0}) \oplus 03_{x} \cdot ((W_{1})_{1} \oplus (W_{2})_{1}) = 0.$$
 (5)

- 2 Constrain $(P_1)_5 \oplus (P_2)_5 = 01_x$ to detect right key bytes efficiently.
- DDT row of AES S-box for input difference 01_x along with input pair(s) for each output difference computed and stored in memory.
- 4 For each (P_1, P_2) and for each guess of $k_{-1,0}$, use (5) to compute the output difference of the SB operation in byte 5.
- 6 Lookup to find inputs that can lead to this difference and retrieve possible values of $k_{-1.5}$ corresponding to the guessed $k_{-1.0}$.
- **6** Obtain 2^8 candidates for $k_{-1,\{0.5\}}$ in about 2^8 operations per pair.

Eliminating Key Bytes Using Friend Pairs

• To reduce the number of candidates for $k_{-1,\{10,15\}}$, the boomerang process is used to return multiple friend pairs (P_3^j, P_4^j) .

- ① To reduce the number of candidates for $k_{-1,\{10,15\}}$, the boomerang process is used to return multiple friend pairs (P_3^j, P_4^j) .
- 2 Choose one such pair for which

$$(P_3^j)_{10} \oplus (P_4^j)_{10} = 0 \quad \text{or} \quad (P_3^j)_{15} \oplus (P_4^j)_{15} = 0.$$
 (6)

Eliminating Key Bytes Using Friend Pairs

- **1** To reduce the number of candidates for $k_{-1,\{10,15\}}$, the boomerang process is used to return multiple friend pairs (P_j^i, P_A^j) .
- 2 Choose one such pair for which

$$(P_3^j)_{10} \oplus (P_4^j)_{10} = 0 \quad \text{or} \quad (P_3^j)_{15} \oplus (P_4^j)_{15} = 0.$$
 (6)

3 If equality holds in byte 10, then $k_{-1,15}$ is isolated for a fixed $k_{-1,\{0,5\}}$ and has only 2^8 possible values.

- **1** To reduce the number of candidates for $k_{-1,\{10,15\}}$, the boomerang process is used to return multiple friend pairs (P_j^i, P_A^j) .
- Choose one such pair for which

$$(P_3^j)_{10} \oplus (P_4^j)_{10} = 0 \quad \text{or} \quad (P_3^j)_{15} \oplus (P_4^j)_{15} = 0.$$
 (6)

- § If equality holds in byte 10, then $k_{-1,15}$ is isolated for a fixed $k_{-1,\{0,5\}}$ and has only 2^8 possible values.
- 4 Requires 2^9 simple operations and leaves 2^8 candidates for $k_{-1,\{0,5,15\}}$.

- **1** To reduce the number of candidates for $k_{-1,\{10,15\}}$, the boomerang process is used to return multiple friend pairs (P_j^i, P_A^j) .
- 2 Choose one such pair for which

$$(P_3^j)_{10} \oplus (P_4^j)_{10} = 0 \quad \text{or} \quad (P_3^j)_{15} \oplus (P_4^j)_{15} = 0.$$
 (6)

- 3 If equality holds in byte 10, then $k_{-1,15}$ is isolated for a fixed $k_{-1,\{0,5\}}$ and has only 2^8 possible values.
- 4 Requires 2^9 simple operations and leaves 2^8 candidates for $k_{-1,\{0,5,15\}}$.
- **6** Similar MITM procedure followed with another friend pair to obtain the unique value of $k_{-1,\{0.5,10.15\}}$ by isolating $k_{-1,10}$.

- To reduce the number of candidates for $k_{-1,\{10,15\}}$, the boomerang process is used to return multiple friend pairs (P_j^i, P_A^j) .
- Ohoose one such pair for which

$$(P_3^j)_{10} \oplus (P_4^j)_{10} = 0 \quad \text{or} \quad (P_3^j)_{15} \oplus (P_4^j)_{15} = 0.$$
 (6)

- 3 If equality holds in byte 10, then $k_{-1,15}$ is isolated for a fixed $k_{-1,\{0,5\}}$ and has only 2^8 possible values.
- 4 Requires 2^9 simple operations and leaves 2^8 candidates for $k_{-1,\{0,5,15\}}$.
- **6** Similar MITM procedure followed with another friend pair to obtain the unique value of $k_{-1,\{0.5,10,15\}}$ by isolating $k_{-1,10}$.
- **6** Perform 2^8 operations for each pair (P_1, P_2) and for each value of I. Total time complexity of about 2^{16} operations.

- 1 To reduce the number of candidates for $k_{-1,\{10,15\}}$, the boomerang process is used to return multiple friend pairs (P_j^i, P_A^j) .
- Ohoose one such pair for which

$$(P_3^j)_{10} \oplus (P_4^j)_{10} = 0 \quad \text{or} \quad (P_3^j)_{15} \oplus (P_4^j)_{15} = 0.$$
 (6)

- **3** If equality holds in byte 10, then $k_{-1,15}$ is isolated for a fixed $k_{-1,\{0,5\}}$ and has only 2^8 possible values.
- 4 Requires 2^9 simple operations and leaves 2^8 candidates for $k_{-1,\{0,5,15\}}$.
- **6** Similar MITM procedure followed with another friend pair to obtain the unique value of $k_{-1,\{0.5,10.15\}}$ by isolating $k_{-1,10}$.
- **6** Perform 2^8 operations for each pair (P_1, P_2) and for each value of I. Total time complexity of about 2^{16} operations.
- 7 Each pair requires 2⁷ friend pairs to find one that satisfies (6) with high probability. Total data complexity is increased to about 2¹⁵.

Attack Algorithm

1 Precomputation: Compute DDT row of AES S-box for input difference 01_x , along with actual inputs for each output difference.

- **1 Precomputation:** Compute DDT row of AES S-box for input difference 01_x , along with actual inputs for each output difference.
- **Online Phase:** Take 64 pairs (P_1, P_2) with $(P_1)_5 = 00_x$, $(P_2)_5 = 01_x$, $(P_1)_0 \neq (P_2)_0$ and all other corresponding bytes equal.

- **1 Precomputation:** Compute DDT row of AES S-box for input difference 01_x , along with actual inputs for each output difference.
- **Online Phase:** Take 64 pairs (P_1, P_2) with $(P_1)_5 = 00_x$, $(P_2)_5 = 01_x$, $(P_1)_0 \neq (P_2)_0$ and all other corresponding bytes equal.
- **6)** For each plaintext pair, create 2^7 friend pairs (P_1^j, P_2^j) such that for each j, $P_1^j \oplus P_2^j = P_1 \oplus P_2$ and $(P_1^j)_{\{0,5,10,15\}} = (P_1)_{\{0,5,10,15\}}$.

4 For each plaintext pair (P_1, P_2) and for each $l \in \{0, 1, 2, 3\}$, do the following. (l = 0 taken below)

- 4 For each plaintext pair (P_1, P_2) and for each $l \in \{0, 1, 2, 3\}$, do the following. (l = 0 taken below)
 - ① Use (5) to compute and store all 2^8 candidates for $k_{-1,\{0,5\}}$ in a table.

- 4 For each plaintext pair (P_1, P_2) and for each $l \in \{0, 1, 2, 3\}$, do the following. (l = 0 taken below)
 - ① Use (5) to compute and store all 2^8 candidates for $k_{-1,\{0,5\}}$ in a table.
 - 2 Use the boomerang process to obtain pairs (P_3, P_4) and (P_3^j, P_4^j) .

- 4 For each plaintext pair (P_1, P_2) and for each $l \in \{0, 1, 2, 3\}$, do the following. (l = 0 taken below)
 - ① Use (5) to compute and store all 2^8 candidates for $k_{-1,\{0,5\}}$ in a table.
 - 2 Use the boomerang process to obtain pairs (P_3, P_4) and (P_3^j, P_4^j) .
 - § Find a j for which (6) is satisfied. Perform an MITM attack on column 0 of round 0 using (P_3^j, P_4^j) to obtain 2^8 candidates for $k_{-1,\{0,5,15\}}$.

- 4 For each plaintext pair (P_1, P_2) and for each $l \in \{0, 1, 2, 3\}$, do the following. (l = 0 taken below)
 - Use (5) to compute and store all 2^8 candidates for $k_{-1,\{0,5\}}$ in a table.
 - 2 Use the boomerang process to obtain pairs (P_3, P_4) and (P_3^j, P_4^j) .
 - 3 Find a j for which (6) is satisfied. Perform an MITM attack on column 0 of round 0 using (P_3^j, P_4^j) to obtain 2^8 candidates for $k_{-1,\{0,5,15\}}$.
 - 4 Perform another MITM attack on column 0 of round 0 using two plaintext pairs $(P_3^{j'}, P_4^{j'})$. This gives a possible value for $k_{-1,\{0,5,10,15\}}$.

- For each plaintext pair (P_1, P_2) and for each $l \in \{0, 1, 2, 3\}$, do the following. (I = 0 taken below)
 - ① Use (5) to compute and store all 2^8 candidates for $k_{-1,\{0.5\}}$ in a table.
 - 2 Use the boomerang process to obtain pairs (P_3, P_4) and (P_3^j, P_4^j) .
 - Find a j for which (6) is satisfied. Perform an MITM attack on column 0 of round 0 using (P_3^j, P_4^j) to obtain 2^8 candidates for $k_{-1,\{0.5,15\}}$.
 - Perform another MITM attack on column 0 of round 0 using two plaintext pairs $(P_3^{j'}, P_4^{j'})$. This gives a possible value for $k_{-1,\{0,5,10,15\}}$.
 - 6 If contradiction, go to the next value of I. If contradiction for all I, discard this pair and go to the next pair.

- 4 For each plaintext pair (P_1, P_2) and for each $l \in \{0, 1, 2, 3\}$, do the following. (l = 0 taken below)
 - ① Use (5) to compute and store all 2^8 candidates for $k_{-1,\{0,5\}}$ in a table.
 - 2 Use the boomerang process to obtain pairs (P_3, P_4) and (P_3^j, P_4^j) .
 - § Find a j for which (6) is satisfied. Perform an MITM attack on column 0 of round 0 using (P_3^j, P_4^j) to obtain 2^8 candidates for $k_{-1,\{0,5,15\}}$.
 - ② Perform another MITM attack on column 0 of round 0 using two plaintext pairs $(P_3^{j'}, P_4^{j'})$. This gives a possible value for $k_{-1,\{0,5,10,15\}}$.
 - **(5)** If contradiction, go to the next value of *I*. If contradiction for all *I*, discard this pair and go to the next pair.
- ⑤ Using a pair (P_1, P_2) for which no contradiction occurred, perform MITM attacks on columns 1, 2 and 3 of round 0 using the fact that $Z_3 \oplus Z_4$ equals 0 in the *I*-th inverse shifted column to recover k_{-1} .

Attack Analysis

• Attack succeeds if data contains a pair that satisfies the truncated differential characteristic of E_0 and if a friend pair has zero difference in either byte 10 or 15.

- Attack succeeds if data contains a pair that satisfies the truncated differential characteristic of E_0 and if a friend pair has zero difference in either byte 10 or 15.
- ② Increasing the number of initial pairs and friend pairs per initial pair boosts success probability. With 64 pairs and 128 friend pairs per initial pair, the probability of success is $(1 e^{-1})^2 \approx 0.4$

- **1** Attack succeeds if data contains a pair that satisfies the truncated differential characteristic of E_0 and if a friend pair has zero difference in either byte 10 or 15.
- ② Increasing the number of initial pairs and friend pairs per initial pair boosts success probability. With 64 pairs and 128 friend pairs per initial pair, the probability of success is $(1 e^{-1})^2 \approx 0.4$
- 3 Another way to boost succees probability is to find other ways to cancel terms in (3). For instance, if there exist j, j' such that $\{(P_3^j)_{10}, (P_4^j)_{10}\} = \{(P_3^{j'})_{10}, (P_4^{j'})_{10}\}$, we can take the XOR of (3) to cancel the effect of $k_{-1,10}$, thus increasing the success probability even when there is no pair that satisfies (6).

Attack Analysis

① Data complexity is $2 \cdot 2^6 \cdot 2^7 = 2^{14}$ chosen plaintexts and 2^{14} adaptively chosen ciphertexts.

- ① Data complexity is $2 \cdot 2^6 \cdot 2^7 = 2^{14}$ chosen plaintexts and 2^{14} adaptively chosen ciphertexts.
- 5 Structures reduce the data complexity to slightly above 2¹⁴ adaptively chosen ciphertexts and plaintexts, but success probability slightly reduced due to additional dependencies between analyzed pairs.

- ① Data complexity is $2 \cdot 2^6 \cdot 2^7 = 2^{14}$ chosen plaintexts and 2^{14} adaptively chosen ciphertexts.
- Structures reduce the data complexity to slightly above 2¹⁴ adaptively chosen ciphertexts and plaintexts, but success probability slightly reduced due to additional dependencies between analyzed pairs.
- 6 Memory complexity of the attack remains at 29, like yoyo attack.

- ① Data complexity is $2 \cdot 2^6 \cdot 2^7 = 2^{14}$ chosen plaintexts and 2^{14} adaptively chosen ciphertexts.
- Structures reduce the data complexity to slightly above 2¹⁴ adaptively chosen ciphertexts and plaintexts, but success probability slightly reduced due to additional dependencies between analyzed pairs.
- **6** Memory complexity of the attack remains at 2⁹, like yoyo attack.
- 7 Time complexity dominated by MITM attacks that take 2^{16} operations each. Taking one AES operation equivalent to 80 S-box lookups and adding it to the number of queries gives us a total of $2^{16.5}$ encryptions.