Machine Learning Introduction

Tuesday, January 14, 2020 12:40

How M works fundamentally

ex. suppose traing example

input vector $\vec{x} \in X = \mathbb{R}^d$, d-dimensional adjust vector $\vec{y} \in Y = \hat{\chi}_{-1}$, $+ i\hat{\chi}_{-1}$

Hypothesis H: h: Rd - 2-1, +1}
we can use a weighted som
and compare us theashold value (+)

$$\forall \boldsymbol{x} \in \mathcal{R}^d, \ \boldsymbol{y} = h(\boldsymbol{x}) = \begin{cases} +1, & \text{if } \sum_{i=1}^d w_i x_i \geq t \\ -1, & \text{if } \sum_{i=1}^d w_i x_i < t \end{cases}$$
 Simplified to $\widetilde{\boldsymbol{w}}^T \widetilde{\boldsymbol{x}}$ Sign $\left(\sum_{i=1}^d w_i x_i + b\right)$ to define the perception prepared (1) to input $\widetilde{\boldsymbol{x}} \left(\widetilde{\boldsymbol{x}} = \underbrace{2}_{1}, x_0, x_1, \dots \underbrace{3}_{n}\right)$

prepend (1) to input
$$\vec{x}$$
 ($\vec{x} = \{1, x_0, x_1, ..., \}$)
then start from $i=0$:

$$y = h(x) = sign\left(\sum_{i=0}^{d} w_i x_i\right)$$

we've free to choose the weights (w) so that M(x) fils the training dota

ex. 0=2 (20 linear estimation)

Then
$$\vec{X} = (x_1, x_2)$$

Then $\vec{X} = (x_1, x_2)$

Then using algorithm from prevexample.

$$y = siyn(\sum_{i=0}^{d} w_i x_i)$$

$$= w_0 + w_1 x_1 + w_2 x_2$$

transformation of Variables / Keuvell Trick.

Instead of using x1, x2 directly, we can use a function of x1, x2. In this case, we can square the inputs.

Transformed to

this is an example of <u>supervised learning</u>