CLASE 5

Robótica

CONCEPTOS BASICOS DE ROBOTICA

- 3.2.3 Ejercicio Matriz Homogénea
 - 3.3 Método de Denavit Hartenberg (DH)
- 3.3.1 Convenciones para DH
 - Parámetros de DH
- 3.3.2 Matrices de transformación
- 3.3.3 Procedimiento
- 3.3.4 Tabla de datos DH
- 3.3.5 Matriz DH

Matriz de transformación homogénea

Matriz de transformación homogénea

$$A_1 \triangleq \begin{bmatrix} c\theta_1 & -s\theta_1 & 0 & l_1c\theta_1 \\ s\theta_1 & c\theta_1 & 0 & l_1s\theta_1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad A_2 \triangleq \begin{bmatrix} c\theta_2 & -s\theta_2 & 0 & l_2c\theta_2 \\ s\theta_2 & c\theta_2 & 0 & l_2s\theta_2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Convenciones para DH

- El eje Z implica un movimiento:
 Rotación para una junta de revolución (R)
 Traslación para una junta prismática (P)
- El eje X es orthogonal e intersecta siempre al eje Z
- Para la asignación de signos, se utiliza la regla de la mano derecha
- El número de sistemas de referencia depende del número de juntas dentro de la cadena cinemática
- Para mecanismos planos, Z apunta hacia el observador

Parámetros de DH

 a_{i-1} es la longitud del eslabón o la distancia entre Z_{i-1} y Z_i , sobre el eje X_i

 \propto_{i-1} es el ángulo entre Z_{i-1} y Z_i , alrededor del eje X_i

 d_i es la distancia entre X_{i-1} y X_i , sobre el eje Z_i

 θ_i es el ángulo entre X_{i-1} y X_i , alrededor del eje Z_i

Parámetros de DH

 a_{i-1} es la longitud del eslabón o la distancia entre Z_{i-1} y Z_i , sobre el eje X_i

 \propto_{i-1} es el ángulo entre Z_{i-1} y Z_i , alrededor del eje X_i

 d_i es la distancia entre X_{i-1} y X_i , sobre el eje Z_i

 θ_i es el ángulo entre X_{i-1} y X_i , alrededor del eje Z_i

Parámetros de DH

Procedimiento DH

- 1. Identificar los ejes de las articulaciones e imaginar (o dibujar) líneas infinitas a lo largo de ellos. Para los pasos 2 al 5, considerar dos de estas líneas vecinas (en los ejes i e i+1).
- 2. Identificar la perpendicular común entre ellos o el punto de intersección. En el punto de intersección, o en el punto donde la perpendicular común se encuentra con el eje i, asignar el origen del marco de enlace.
- 3. Asignar el eje \hat{Z}_i a lo largo del eje de la articulación i.
- 4. Asignar el eje \hat{X}_i apuntando a lo largo de la perpendicular común o, si los ejes se intersectan, asignar \hat{X}_i de manera que sea normal al plano que contiene ambos ejes.
- 5. Asignar el eje \hat{Y}_i para completar un sistema de coordenadas con la regla de la mano derecha.
- 6. Asignar {0} para coincidir con {1} cuando la primera variable de la articulación sea cero. Para {N}, elegir libremente la ubicación del origen y la dirección de \hat{X}_N , pero generalmente de manera que la mayor cantidad posible de parámetros del mecanismo se reduzcan a cero.

Tabla de datos DH

Matriz DH

Referencias

- 1. Chapter 3, Introduction to Robotics, Craig
- 2. Chapter 2, Section 2.12 Denavit-Hartenberg Representation of Forward Kinematic Equations of Robots, Introduction to robotics: Analysis, control, applications, Saeed B Niku
- 3. Chapter 2, Section 2.8.2 Denavit—Hartenberg Convention, Robotics Modelling, Planning and Control, Bruno Siciliano