# Monocular Visual-Inertial-Pressure SLAM for Underwater Localization and 3D Mapping Soutenance de thèse

#### Maxime Ferrera

Encadrants : Julien Moras, Pauline Trouvé-Peloux (DTIS - IVA)

Directeur de thèse : Vincent Creuze (LIRMM - Université de Montpellier)

12 Décembre 2019













### Introduction

#### **Underwater Archaeology**

- Many sites below 100 meters deep
- Not human-friendly environnements





Credit: DRASSM



### Introduction

#### Robots to the rescue

- ROV: Remotely Operated Vehicles
- ROVs are used for deep surveys













## Introduction

# Manual navigation is hard!



Credit: DRASSM





#### Introduction

#### Accurate localization in real-time is highly beneficial

- Assistance for efficient and safe piloting
- Autonomous navigation
- 3D reconstruction





#### Introduction

#### Accurate localization in real-time is highly beneficial

- Assistance for efficient and safe piloting
- Autonomous navigation
- 3D reconstruction

#### **Underwater localization is tough**

- GNSS-denied
- No easy access
- Requires 3D localization → 3D Orientation + 3D Position (Pose)



#### Context

#### **ROVs for underwater archaeology**

- Small / Lightweight ROVs
- Cost constraints





Maxime Ferrera

#### Context

#### **ROVs for underwater archaeology**

- Small / Lightweight ROVs
- Cost constraints



#### **Existing technologies**

- ► Accoustic sensors: USBL / SBL / LBL, Doppler Velocity Logs, Sonars
- ▶ Inertial Navigation Systems : high-end gyroscopes and accelerometers







#### Context

#### **ROVs for underwater archaeology**

- Small / Lightweight ROVs
- Cost constraints



#### **Existing technologies**

- ► Accoustic sensors: USBL / SBL / LBL, Doppler Velocity Logs, Sonars
- ► Inertial Navigation Systems : high-end gyroscopes and accelerometers
- Bulky and expensive







Localization from Vision

#### **Localization from visual sensors**

- Very popular in aerial / land robotics and AR / VR
- Cameras are cheap, lightweight and very informative





Maxime Ferrera

#### **Localization from visual sensors**

- Very popular in aerial / land robotics and AR / VR
- Cameras are cheap, lightweight and very informative

#### Monocular Visual SLAM

Localization from Vision

SLAM: Simultaneous Localization And Mapping





# Localization from Vision

#### Localization from visual sensors

- Very popular in aerial / land robotics and AR / VR
- Cameras are cheap, lightweight and very informative

#### Monocular Visual SLAM

- SLAM: Simultaneous Localization And Mapping
- Visual SLAM: Use pixel correspondences between images





### Localization from Vision

#### Single Image





Maxime Ferrera 12 Décembre 2019

8 / 80

### Localization from Vision

### **Multi-view**





9 / 80

#### Localization from Vision

#### **SLAM by Structure-from-Motion**



#### From pixel correspondences:

- $lue{}$  Localization ightarrow 3D map
- 3D map → Localization

ONERA



#### Localization from Vision

#### **SLAM by Structure-from-Motion**



#### From pixel correspondences:

- $lue{}$  Localization ightarrow 3D map
- $\blacksquare$  3D map  $\rightarrow$  Localization

► Good features tracking is critical!



#### State-of-the-art

#### **Monocular Visual SLAM**

■ PTAM (KLEIN et al., 2007): Use of keyframes for efficient optimization





Maxime Ferrera 12 Décembre 2019

11 / 80

#### State-of-the-art

#### **Monocular Visual SLAM**

- PTAM (KLEIN et al., 2007): Use of keyframes for efficient optimization
- ORB-SLAM (Mur-Artal et al., 2015): Use of descriptors for loop closure





Maxime Ferrera 12 Décembre 2019

#### State-of-the-art

#### Monocular Visual SLAM

- PTAM (KLEIN et al., 2007): Use of keyframes for efficient optimization
- ORB-SLAM (Mur-Artal et al., 2015): Use of descriptors for loop closure
- LSD-SLAM (ENGEL et al., 2014) / SVO (FORSTER et al., 2014) / DSO (ENGEL et al., 2017): Joint tracking and pose estimation from the minimization of a photometric cost

ONERA



#### State-of-the-art

#### **Monocular Visual SLAM**

- PTAM (KLEIN et al., 2007): Use of keyframes for efficient optimization
- ORB-SLAM (Mur-Artal et al., 2015): Use of descriptors for loop closure
- LSD-SLAM (ENGEL et al., 2014) / SVO (FORSTER et al., 2014) / DSO (ENGEL et al., 2017): Joint tracking and pose estimation from the minimization of a photometric cost
- Not designed for underwater environments



#### State-of-the-art

#### **Underwater Monocular Localization**

- Use of a camera as a complementary sensor for loop detections (KIM et al., 2013)
- Visual Mosaicking (GARCIA et al., 2001; NICOSEVICI et al., 2009; SINGH et al., 2004)
- EKF based Visual SLAM (Burguera et al., 2015)
- Fusion with IMU and pressure sensor: EKF-based (SHKURTI et al., 2011), incremental positioning (CREUZE, 2017)



12 / 80

#### State-of-the-art

#### **Underwater Monocular Localization**

- Use of a camera as a complementary sensor for loop detections (KIM et al., 2013)
- Visual Mosaicking (GARCIA et al., 2001; NICOSEVICI et al., 2009; SINGH et al., 2004)
- EKF based Visual SLAM (Burguera et al., 2015)
- Fusion with IMU and pressure sensor : EKF-based (SHKURTI et al., 2011), incremental positioning (CREUZE, 2017)
- ▶ Few works on keyframe-based 3D SLAM for underwater environments



# Thesis proposal

#### SLAM from a monocular vision-based system

- Convenient : double use of the ROV's camera
- ▶ Small size
- Low-cost
- > 3D Reconstruction capability

ONERA



Maxime Ferrera

13 / 80

# Thesis proposal

#### SLAM from a monocular vision-based system

- Convenient : double use of the ROV's camera
- Small size
- Low-cost
- > 3D Reconstruction capability

#### Monocular only

- ▶ No metric scale
- ► Fails if no visual information





Maxime Ferrera

#### Set of sensors







Camera

MEMS-IMU

Pressure Sensor

- Monochromatic Camera
- 20 Hz

- Inertial meas.
- 200 Hz
- High drift

- 5-10 Hz





# **Designed Systems**



Size : 33.4  $\times$  11.4 cm Depth rated : 100 m



- $\rightarrow$  Autonomous and independent
- → No bandwidth issue





Size : 25.8  $\times$  8.9 cm Depth rated : 500 m

- Compact
- Low-cost : < 2.5 k€</p>

ONERA



#### **Dataset**

#### AQUALOC Dataset: http://www.lirmm.fr/aqualoc/



FIGURE - ROV Dumbo (DRASSM / LIRMM)



FIGURE - ROV Perseo (Copetech SM - Credit : DRASSM / F. Osada)

- 17 sequences
- Synchronized measurements
- Harbor & Archaeological sites
- Comparative baselines from offline photogrammetry





#### **Problem Statement**

- Underwater Features Tracking
- 2 Robust Underwater Monocular Visual SLAM
- **3 Multi-Sensors SLAM**
- Monocular Dense 3D Mapping





Maxime Ferrera

#### **Problem Statement**

- Underwater Features Tracking
- Robust Underwater Monocular Visual SLAM
- **3 Multi-Sensors SLAM**
- Monocular Dense 3D Mapping







#### **Problem Statement**

- Underwater Features Tracking
- 2 Robust Underwater Monocular Visual SLAM
- Multi-Sensors SLAM
- 4 Monocular Dense 3D Mapping







#### **Problem Statement**

- Underwater Features Tracking
- 2 Robust Underwater Monocular Visual SLAM
- **3 Multi-Sensors SLAM**
- Monocular Dense 3D Mapping





Maxime Ferrera

# 1. Underwater Features Tracking







# **Underwater Features Tracking**

t 1







Maxime Ferrera

# **Underwater Features Tracking**





Maxime Ferrera 12 Décembre 2019

# **Underwater Features Tracking**





Maxime Ferrera 12 Décembre 2019

# **Underwater Features Tracking**

#### **Challenging Imaging Conditions**



Credit: DRASSM





# **Underwater Features Tracking**

#### **Direct methods**

■ Tracking by searching for photometric minima





# **Underwater Features Tracking**

#### **Direct methods**

- Tracking by searching for photometric minima
- Optical Flow (KLT):

$$\mathop{\mathsf{arg\,min}}_{\mathit{du},\mathit{dv}} \sum_{\mathit{u}} \sum_{\mathit{v}} \left( \mathbf{I_1}(\mathit{u},\mathit{v}) - \mathbf{I_2}(\mathit{u} + \mathit{du},\mathit{v} + \mathit{dv}) \right)^2$$



ONERA



Maxime Ferrera

# **Underwater Features Tracking**

#### **Indirect methods**

- Use descriptors (vectors)
- Similarity score between descriptors
- Descriptors : BRIEF, BRISK, FREAK, ORB, SURF, SIFT, ...



ONERA



Maxime Ferrera 12 Décembre 2019

22 / 80

# **Underwater Features Tracking**

## **Evaluation of robustness to turbidity**





# **Underwater Features Tracking**

#### Evaluation of tracking efficiency on a real sequence





# **Underwater Features Tracking**

#### Conclusion

- ▶ Optical Flow (KLT) is very efficient
- ▶ Descriptors get too ambiguous for efficient tracking









26 / 80

- UW-VO: Keyframe-based monocular VSLAM
- Frame-to-frame features tracking from KLT
- Retracking mechanism





Maxime Ferrera 12 Décembre 2019

#### **Problem Statement**

- Estimate the pose of the camera at each new image
- Pose :  $X_i = (R, t) \in \mathbb{SE}(3)$  |  $R \in \mathbb{SO}(3)$   $t \in \mathbb{R}^3$
- $\blacksquare$  Estimate the position of 3D landmarks :  $\textbf{lm_i} \in \mathbb{R}^3$

ONERA



Maxime Ferrera

#### Robust Underwater Monocular Visual SLAM

#### Tracking / Mapping: Two threads for efficient computation



12 Décembre 2019

#### Robust Underwater Monocular Visual SLAM



Pre-processing: Contrast Local Adaptive Histogram Equalization (CLAHE)







Features tracking:
Frame-to-frame KLT







Features tracking:
Frame-to-frame KLT



KLT not robust to occlusions



31 / 80

# Robust Underwater Monocular Visual SLAM

# Many short occlusions due to moving fishes



Credit: DRASSM





# Robust Underwater Monocular Visual SLAM

#### **Retracking mechanism**

- Store the most recent images + lost features
- Multi-frame KLT retracking





#### Robust Underwater Monocular Visual SLAM



#### Pose estimation :

■ Use 2D / 3D observations



34 / 80

# Robust Underwater Monocular Visual SLAM

#### **Keyframe selection decision**







35 / 80

#### **Keyframe selection decision**

■ Enough motion since last keyframe







## Robust Underwater Monocular Visual SLAM



#### **Mapping thread**

 Triangulation of new 3D points from 2D / 2D features between previous and current keyframes



37 / 80

#### Robust Underwater Monocular Visual SLAM



#### **Mapping thread**

- Triangulation of new 3D points from 2D / 2D features between previous and current keyframes
- Detection of new 2D features to track (for next triangulation)



#### Robust Underwater Monocular Visual SLAM



## **Mapping thread**

- Triangulation of new 3D points from 2D / 2D features between previous and current keyframes
- Detection of new 2D features to track (for next triangulation)
- Optimization of the 3D map : Bundle Adjustment



# Robust Underwater Monocular Visual SLAM

# **Bundle Adjustment**

Triangulation from two views not accurate because of noise





#### Robust Underwater Monocular Visual SLAM

#### **Bundle Adjustment**

- Triangulation from two views not accurate because of noise
- Apply multi-view constraints for trajectory and 3D map optimization



ONERA



Maxime Ferrera

#### Robust Underwater Monocular Visual SLAM

#### **Bundle Adjustment**

- Triangulation from two views not accurate because of noise
- Apply multi-view constraints for trajectory and 3D map optimization





#### Robust Underwater Monocular Visual SLAM

#### **Bundle Adjustment**

- Triangulation from two views not accurate because of noise
- Apply multi-view constraints for trajectory and 3D map optimization



lacktriangle Factor Graph ightarrow Maximum Likelihood Estimation



#### **Bundle Adjustment: Maximum Likelihood Estimation**

Minimization of reprojection errors :

$$\chi^* = \operatorname*{arg\,min}_{\chi}\left( rac{ extsf{E}_{ extsf{visual}}}{\chi}(\chi) 
ight) \quad \chi = \left[ extsf{X}_{ extsf{KF}_i} \quad extsf{lm}_j 
ight]^{ extsf{T}}$$

■ Non-linear optimization solved with Levenberg-Marquardt



### Robust Underwater Monocular Visual SLAM

#### **Bundle Adjustment: Maximum Likelihood Estimation**



► Full problem not tractable in real-time



#### Robust Underwater Monocular Visual SLAM

#### **Local Adaptive Windowed BA**

- Optimize most recent keyframes and 3D landmarks only
- Monocular setup : scale unobservable ⇒ fix at least two keyframes



## Robust Underwater Monocular Visual SLAM

#### **Experimental Results**

- Evaluation of UW-VO against ORB-SLAM, LSD-SLAM and SVO
- Video sequences acquired on a shipwreck (300 meters) by the DRASSM
- Monocular SLAM ⇒ scaling w.r.t. groundtruth





# Robust Underwater Monocular Visual SLAM

#### **Experimental Results**

|        |          |                    |                     | Absolute Trajectory Error RMSE (in %) |          |      |       |
|--------|----------|--------------------|---------------------|---------------------------------------|----------|------|-------|
| Seq. # | Duration | Turbidity<br>Level | Short<br>Occlusions | LSD-SLAM                              | ORB-SLAM | SVO  | UW-VO |
| 1      | 4'       | Low                | Few                 | Х                                     | 1.67     | 1.63 | 1.76  |
| 2      | 2'30"    | Medium             | Some                | Χ                                     | 1.91     | 2.45 | 1.73  |
| 3      | 22"      | High               | Many                | Χ                                     | Χ        | 1.57 | 1.04  |
| 4      | 4'30"    | Low                | Many                | Χ                                     | 1.13     | Χ    | 1.58  |
| 5      | 3'15"    | Medium             | Many                | X                                     | 1.94     | Χ    | 1.88  |

TABLE - Sequences taken on a shipwreck (300 meters deep).







Sequence #2





Maxime Ferrera

## Robust Underwater Monocular Visual SLAM

#### **Experimental Results**

|       |          |                    |                     | Absolute Trajectory Error RMSE (in %) |          |      |       |
|-------|----------|--------------------|---------------------|---------------------------------------|----------|------|-------|
| Seq.# | Duration | Turbidity<br>Level | Short<br>Occlusions | LSD-SLAM                              | ORB-SLAM | SVO  | UW-VO |
| 1     | 4'       | Low                | Few                 | Х                                     | 1.67     | 1.63 | 1.76  |
| 2     | 2'30"    | Medium             | Some                | Χ                                     | 1.91     | 2.45 | 1.73  |
| 3     | 22"      | High               | Many                | Χ                                     | X        | 1.57 | 1.04  |
| 4     | 4'30"    | Low                | Many                | Χ                                     | 1.13     | X    | 1.58  |
| 5     | 3'15"    | Medium             | Many                | X                                     | 1.94     | Х    | 1.88  |

TABLE - Sequences taken on a shipwreck (300 meters deep).



Sequence #1



Sequence #2





Maxime Ferrera

# Robust Underwater Monocular Visual SLAM

## **UW-VO for localization during shipwreck exploration**



ONERA DIE

#### Conclusion

- Robust to underwater imaging conditions
- Accurate localization
- Real-time





#### Conclusion

- Robust to underwater imaging conditions
- Accurate localization
- Real-time
- ▶ Monocular ⇒ No scale





Maxime Ferrera

# 3. Multi-sensors SLAM





Tight Fusion: Insert other measurement modalities within the factor graph







#### Tight Fusion: Insert other measurement modalities within the factor graph

#### Fusion from Maximum Likelihood Estimation

$$\chi^{*} = \operatorname*{arg\,min}_{\chi}\left(\mathsf{E}_{\mathit{visual}}\left(\chi\right) + \mathsf{E}_{\mathit{depth}}\left(\chi\right) + \mathsf{E}_{\mathit{IMU}}\left(\chi\right)\right)$$

- Evisual: Energy term based on visual measurements
- E<sub>depth</sub>: Energy term based on pressure measurements
- *E*<sub>IMU</sub>: Energy term based on inertial measurements







#### **Visual-Pressure Setup**



- Pressure measurements : pressure (Pa) \( \precedex \) depth (m)
- Depth variation from starting point :

$$ilde{d}_i = {}_{\mathsf{raw}} ilde{d}_i - {}_{\mathsf{raw}} ilde{d}_0$$

ONERA



### Strategy 1: Integration of absolute depth measurements

■ Depth error term :  $E_{depth}(\mathbf{X}_i) = \| ilde{d}_i - \hat{\mathbf{t}}^2_{Wc_i}\|_{\sigma^2_{depth}}^2$ 



CHERA

#### **Visual-Pressure Fusion**

► Misalignement issue!



■ Linear error along  $z^W$ :  $\overline{d}_i = \overline{t^z}_{c_0c_i} \cdot \cos(\alpha)$ 

$$\overline{d}_i = \overline{t^z}_{c_0 c_i} \cdot \cos(\alpha)$$



#### Strategy 2: Integration of relative depth measurements

Relative depth:

$$E_{depth}\left(\boldsymbol{X}_{k},\boldsymbol{X}_{i}\right) = \left(\|\left(\tilde{\boldsymbol{d}}_{i}-\tilde{\boldsymbol{d}}_{k}\right)-\left(\hat{\boldsymbol{t}}^{2}_{Wc_{i}}-\hat{\boldsymbol{t}}^{2}_{Wc_{k}}\right)\|_{\left(2\cdot\boldsymbol{\sigma}_{depth}\right)^{2}}^{2}\right)$$





ONERA



### Visual-Pressure SLAM

#### **Experimental Results**

■ Init. Only: UW-VO with scale factor estimation from 1<sup>st</sup> meas. only

$$\chi^* = \operatorname*{arg\,min}_{\chi}\left( \mathit{E}_{\mathit{visual}}\left(\chi
ight) 
ight)$$

■ **UW-VP**: Strategy 1 vs Strategy 2

$$\chi^* = \operatorname*{arg\,min}_{\chi}\left(\mathsf{E}_{\mathit{visual}}\left(\chi\right) + \mathsf{E}_{\mathit{depth}}\left(\chi\right)\right)$$

- Dataset : sequences from AQUALOC
  - 7 sequences in a harbor
  - 2 sequences on a shipwreck (400 meters)

ONERA



## **Experimental Results**

TABLE - Absolute trajectory errors (RMSE in m).

|      |            | Absolute Trajectory Error (m) |          |          |
|------|------------|-------------------------------|----------|----------|
|      |            | Init. Only                    | UW-VP    |          |
| Seq. | Length (m) | UW-VO                         | Strat. 1 | Strat. 2 |
| #1   | 39.3       | 1.01                          | 0.55     | 0.53     |
| # 2  | 75.6       | 1.70                          | 1.23     | 0.40     |
| #3   | 23.6       | 0.52                          | 0.30     | 0.26     |
| # 4  | 55.8       | Χ                             | Χ        | Χ        |
| # 5  | 28.5       | 0.96                          | 0.19     | 0.11     |
| #6   | 19.5       | 0.17                          | 0.11     | 0.06     |
| #7   | 32.9       | Χ                             | Χ        | Χ        |
| # A  | 41.2       | 0.96                          | 0.58     | 0.52     |
| # B  | 65.4       | 1.3                           | 0.99     | 0.90     |



## Visual-Pressure SLAM

#### Conclusion

- ▶ Recovery of the scale factor
- Improved localization accuracy





### Visual-Pressure SLAM

#### Conclusion

- Recovery of the scale factor
- Improved localization accuracy
- ▶ Misalignement issue has to be taken care of!





Maxime Ferrera 12 Décembre 2019

### Visual-Pressure SLAM

#### Conclusion

- Recovery of the scale factor
- Improved localization accuracy
- ▶ Misalignement issue has to be taken care of!
- Still fully dependent on vision









57 / 80

#### Low-cost MEMS-IMU Model

Angular Velocity measurements :

$$ilde{\omega}_{\scriptscriptstyle B}(t) = \omega_{\scriptscriptstyle B}(t) + \mathbf{b}^g(t) + \int\limits_{}^g$$

Linear Acceleration measurements:

$$ilde{oldsymbol{a}}_{\mathcal{B}}(t) = oldsymbol{R}_{\mathit{WB}}(t)^{\mathsf{T}} \cdot \left(oldsymbol{a}_{\mathit{W}}(t) - oldsymbol{g}_{\mathit{W}}
ight) + oldsymbol{b}^{\mathit{a}}(t) + \int\limits_{0}^{a}$$

ONERA



#### Low-cost MEMS-IMU Model

Angular Velocity measurements :

$$ilde{\omega}_{\scriptscriptstyle B}(t) = \omega_{\scriptscriptstyle B}(t) + \mathbf{b}^g(t) + \int\limits_{}^g$$

Linear Acceleration measurements:

$$ilde{\mathbf{a}}_{B}(t) = \mathbf{R}_{WB}(t)^{\mathsf{T}} \cdot \left(\mathbf{a}_{W}(t) - \mathbf{g}_{W}\right) + \mathbf{b}^{a}(t) + \int\limits_{0}^{a}$$

 Measurements corrupted by time-varying biases and zero-mean gaussian noise



#### **IMU Measurements**

■ Motion estimations from IMU meas. ⇒ **R**<sub>WBi</sub>, **v**<sub>WBi</sub>, **p**<sub>WBi</sub>





#### **IMU Measurements**

- Motion estimations from IMU meas. ⇒ **R**<sub>WBi</sub>, **v**<sub>WBi</sub>, **p**<sub>WBi</sub>
- ▶ Motion information at high rates (200 Hz)





#### **IMU Measurements**

- Motion estimations from IMU meas.  $\Rightarrow$   $\mathbf{R}_{WBi}$ ,  $\mathbf{v}_{WBi}$ ,  $\mathbf{p}_{WBi}$
- ▶ Motion information at high rates (200 Hz)
- ▶ But big drift because of varying biases and noise





### Visual-Inertial-Pressure SLAM

#### **IMU Preintegration**

Summarize intra-keyframe IMU measurements as one measurement :



- Relative motion measurements :  $\Delta \tilde{\mathbf{R}}_{BiBi}$ ,  $\Delta \tilde{\mathbf{p}}_{BiBi}$ ,  $\Delta \tilde{\mathbf{v}}_{BiBi}$
- Easy insertion in the Factor Graph formulation



## Visual-Inertial-Pressure SLAM

#### New state to estimate:

$$\mathbf{X}_i = \begin{bmatrix} \mathbf{R}_{WBi} & \mathbf{p}_{WBi} & \mathbf{v}_{WBi} & \mathbf{b}_i^g & \mathbf{b}_i^a \end{bmatrix}^T$$



#### New state to estimate:

$$\mathbf{X}_i = \begin{bmatrix} \mathbf{R}_{WBi} & \mathbf{p}_{WBi} & \mathbf{v}_{WBi} & \mathbf{b}_i^g & \mathbf{b}_i^a \end{bmatrix}^T$$

#### **IMU Preintegration : Relative errors between keyframes**

$$\begin{array}{ll} \mathbf{e}_{\Delta \mathbf{R}_{BiBj}} = \hat{\mathbf{R}}_{BiBj} \boxminus \Delta \tilde{\mathbf{R}}_{BiBj} \\ \mathbf{e}_{\Delta \mathbf{p}_{BiBj}} = \hat{\mathbf{p}}_{BiBj} - \Delta \tilde{\mathbf{p}}_{BiBj} \\ \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} = \hat{\mathbf{v}}_{BiBj} - \Delta \tilde{\mathbf{v}}_{BiBj} \\ \end{array} \qquad \begin{array}{ll} \mathbf{e}_{\Delta \mathbf{b}_{BiBj}^g} = \hat{\mathbf{b}}_{Bj}^g - \hat{\mathbf{b}}_{Bi}^g \\ \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} = \hat{\mathbf{v}}_{BiBj} - \Delta \tilde{\mathbf{v}}_{BiBj} \\ \end{array} \qquad \begin{array}{ll} \mathbf{e}_{\Delta \mathbf{b}_{BiBj}^g} = \hat{\mathbf{b}}_{Bj}^g - \hat{\mathbf{b}}_{Bi}^g \\ \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} = \hat{\mathbf{v}}_{BiBj} - \Delta \tilde{\mathbf{v}}_{BiBj} \\ \end{array} \qquad \begin{array}{ll} \mathbf{e}_{\Delta \mathbf{b}_{BiBj}^g} = \hat{\mathbf{v}}_{BiBj} - \hat{\mathbf{v}}_{BiBj} \\ \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} = \hat{\mathbf{v}}_{BiBj} - \Delta \tilde{\mathbf{v}}_{BiBj} \\ \end{array} \qquad \begin{array}{ll} \mathbf{e}_{\Delta \mathbf{b}_{BiBj}^g} = \hat{\mathbf{v}}_{BiBj} - \hat{\mathbf{v}}_{BiBj} \\ \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} = \hat{\mathbf{v}}_{BiBj} - \hat{\mathbf{v}}_{BiBj} \\ \end{array} \qquad \begin{array}{ll} \mathbf{e}_{\Delta \mathbf{b}_{BiBj}^g} = \hat{\mathbf{v}}_{BiBj} - \hat{\mathbf{v}}_{BiBj} \\ \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} = \hat{\mathbf{v}}_{BiBj} - \hat{\mathbf{v}}_{BiBj} \\ \end{array} \qquad \begin{array}{ll} \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} - \hat{\mathbf{v}}_{BiBj} \\ \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} = \hat{\mathbf{v}}_{BiBj} - \hat{\mathbf{v}}_{BiBj} \\ \end{array} \qquad \begin{array}{ll} \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} - \hat{\mathbf{v}}_{BiBj} - \hat{\mathbf{v}}_{BiBj} \\ \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} - \hat{\mathbf{v}}_{BiBj} - \hat{\mathbf{v}}_{BiBj} \\ \end{array} \qquad \begin{array}{ll} \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} - \hat{\mathbf{v}}_{BiBj} - \hat{\mathbf{v}}_{BiBj} \\ \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} - \hat{\mathbf{v}}_{BiBj} - \hat{\mathbf{v}}_{BiBj} - \hat{\mathbf{v}}_{BiBj} \\ \end{array} \qquad \begin{array}{ll} \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} - \hat{\mathbf{v}}_{BiBj} - \hat{\mathbf{v}}_{BiBj} \\ \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} - \hat{\mathbf{v}}_{BiBj} - \hat{\mathbf{v}}_{BiBj} - \hat{\mathbf{v}}_{BiBj} \\ \end{array} \qquad \begin{array}{ll} \mathbf{e}_{\Delta \mathbf{v}_{BiBj}} - \hat{\mathbf{v}}_{BiBj} -$$



# New state to estimate :

$$\mathbf{X}_i = \begin{bmatrix} \mathbf{R}_{WBi} & \mathbf{p}_{WBi} & \mathbf{v}_{WBi} & \mathbf{b}_i^g & \mathbf{b}_i^a \end{bmatrix}^T$$

#### IMU Preintegration: Relative errors between keyframes

$$\begin{array}{ll} \mathbf{e}_{\Delta\mathbf{R}_{BiBj}} = \hat{\mathbf{R}}_{BiBj} \boxminus \Delta \tilde{\mathbf{R}}_{BiBj} \\ \mathbf{e}_{\Delta\mathbf{p}_{BiBj}} = \hat{\mathbf{p}}_{BiBj} - \Delta \tilde{\mathbf{p}}_{BiBj} \\ \mathbf{e}_{\Delta\mathbf{p}_{BiBj}} = \hat{\mathbf{p}}_{BiBj} - \Delta \tilde{\mathbf{v}}_{BiBj} \\ \mathbf{e}_{\Delta\mathbf{v}_{BiBj}} = \hat{\mathbf{v}}_{BiBj} - \Delta \tilde{\mathbf{v}}_{BiBj} \end{array} \qquad \begin{array}{ll} \mathbf{e}_{\Delta\mathbf{b}_{BiBj}^g} = \hat{\mathbf{b}}_{Bj}^g - \hat{\mathbf{b}}_{Bi}^g \\ \mathbf{e}_{\Delta\mathbf{v}_{BiBj}} = \hat{\mathbf{v}}_{BiBj} - \Delta \tilde{\mathbf{v}}_{BiBj} \\ \end{array}$$

#### **IMU Energy term**

$$E_{IMU}\left(\boldsymbol{\chi}\right) = \sum_{\boldsymbol{\alpha} *} \left(\mathbf{e}_{imu}(\mathbf{X}_i, \mathbf{X}_j)^{\mathsf{T}} \cdot \boldsymbol{\Sigma}_{\mathsf{B}iBj}^{imu^{-1}} \cdot \mathbf{e}_{imu}(\mathbf{X}_i, \mathbf{X}_j)\right)$$

$$\mathbf{e}_{\textit{imu}}(\mathbf{X}_{\textit{i}},\mathbf{X}_{\textit{j}}) = \begin{bmatrix} \mathbf{e}_{\Delta \mathbf{R}_{\textit{BiBj}}} & \mathbf{e}_{\Delta \mathbf{p}_{\textit{BiBj}}} & \mathbf{e}_{\Delta \mathbf{v}_{\textit{BiBj}}} & \mathbf{e}_{\Delta \mathbf{b}_{\textit{BiBj}}^{\textit{g}}} & \mathbf{e}_{\Delta \mathbf{b}_{\textit{BiBj}}^{\textit{g}}} \end{bmatrix}^T$$

#### **Visual-Inertial-Pressure Optimization**



ONERA

0 0

#### **Visual-Inertial-Pressure Optimization**



ONERA

© 0

#### **Visual-Inertial-Pressure Optimization**



ONERA

0 0

#### **Experimental Results**

TABLE - Absolute trajectory errors (RMSE in m).

|      |            | Absolute Trajectory Error (m) |        |  |
|------|------------|-------------------------------|--------|--|
| Seq. | Length (m) | UW-VP                         | UW-VIP |  |
| # 1  | 39.3       | 0.49                          | 0.42   |  |
| # 2  | 75.6       | 0.36                          | 0.37   |  |
| #3   | 23.6       | 0.25                          | 0.26   |  |
| # 4  | 55.8       | Χ                             | 1.56   |  |
| # 5  | 28.5       | 0.13                          | 0.09   |  |
| # 6  | 19.5       | 0.04                          | 0.06   |  |
| # 7  | 32.9       | Χ                             | 1.16   |  |
| # A  | 41.2       | 0.34                          | 0.36   |  |
| # B  | 65.4       | 0.72                          | 0.69   |  |



## Visual-Inertial-Pressure SLAM

#### **UW-VIP** for localization with short loss of visual information





#### Conclusion

Robust to short loss of visual information







#### Conclusion

- Robust to short loss of visual information
- ► Factor graph formulation could be used to fuse even more sensors!







# 4. Monocular Dense 3D Mapping







## Monocular Dense 3D Mapping

#### **Dense 3D Mapping**

- Densify the sparse 3D measurements
- Make use of optimized states : keyframes + 3D landmarks





## Monocular Dense 3D Mapping

### **Depth Map Densification**

■ Find 3D features nearest-neighbors from 2D Delaunay triangulation



•: pixels with known depth





## Monocular Dense 3D Mapping

#### **Depth Map Densification**

- Find 3D features nearest-neighbors from 2D Delaunay triangulation
- Depth value interpolation from Delaunay triangles



•: pixels with known depth

2D Delaunay triangulation





Maxime Ferrera 12 Décembre 2019

## Monocular Dense 3D Mapping

### **Depth Map Densification**

- Find 3D features nearest-neighbors from 2D Delaunay triangulation
- Depth value interpolation from Delaunay triangles



(a) 2D Delaunay triangulation.



(b) 2D densified depth map.





## Monocular Dense 3D Mapping

#### **Online 3D Reconstruction**





Maxime Ferrera 12 Décembre 2019

72 / 80

## Monocular Dense 3D Mapping

#### **Online 3D Reconstruction in Complex Environment**



## Monocular Dense 3D Mapping

#### Conclusion

- ▶ Dense 3D reconstruction from monocular camera
- Real-time dense 3D reconstruction (but delayed)





## Conclusion





#### Conclusion

#### **Contributions**

- KLT is well suited for VSLAM tasks on underwater images
- Robust underwater monocular VSLAM method: UW-VO
- Tight fusion framework for Visual-Inertial-Pressure SLAM
- Dense 3D reconstruction module for monocular setup





#### Conclusion

#### **Experimental Validation**

- Algorithms validated on the Tegra TX2
- All the methods run in real-time
- Release of a public dataset : AQUALOC







#### Conclusion

#### **Perspectives**

- ▶ Add loop closure for drift reduction and relocalization
  - ightarrow Online Bag of Words (ANGELI et al., 2008; GARCIA-FIDALGO et al., 2018; NICOSEVICI et al., 2012)
- ► Binocular SLAM extension
  - $\rightarrow$  increased robustness
- ▶ Integration of the SLAM estimates in ROV's command :
  - Servoing
  - Autonomous navigation
  - Automatic photogrammetry

ONERA



Maxime Ferrera 12 Décembre 2019

### Conclusion

#### Publications & Dépôt logiciel

#### **Journal Papers**

Maxime Ferrera, Vincent Creuze, Julien Moras et Pauline Trouvé-Peloux (2019a). "AQUALOC: An Underwater Dataset for Visual-Inertial-Pressure Localization.". In: The International Journal of Robotics Research

Maxime FERRERA, Julien Moras, Pauline Trouvé-Peloux et Vincent Creuze (2019b). "Real-Time Monocular Visual Odometry for Turbid and Dynamic Underwater Environments". In: Sensors. T. 19. 3

#### **International Conference Papers**

Maxime FERRERA, Julien Moras, Pauline TROUVÉ-PELOUX, Vincent CREUZE et Denis DÉGEZ (2018a). "The Aqualoc Dataset: Towards Real-Time Underwater Localization from a Visual-Inertial-Pressure Acquisition System". In: IROS Workshop - New Horizons for Underwater Intervention Missions: from Current Technologies to Future Applications

#### **National Conference Papers**

Maxime Ferrera, Julien Moras, Pauline Trouvé-Peloux et Vincent Creuze (2018b). "Odométrie Visuelle Monoculaire en Environnement Sous-Marin". In : Reconnaissance des Formes, Image, Apprentissage et Perception (RFIAP)

Maxime Ferrera, Julien Moras, Pauline Trouvé-Peloux et Vincent Creuze (2017). "Localisation autonome basée vision d'un robot sous-marin et cartographie de précision". In : ORASIS

ONERA

Maxime Ferrera 12 Décembre 2019

79 / 80

## Conclusion

Thank you for your attention!







ANGELI, Adrien, David FILLIAT, Stéphane Doncieux et Jean-Arcady Meyer (2008). "A fast and incremental method for loop-closure detection using bags of visual words". In: IEEE Transactions on Robotics, p. 1027-1037.



BURGUERA, A., F. BONIN-FONT et G. OLIVER (2015). "Trajectory-Based Visual Localization in Underwater Surveying Missions". In: Sensors. T. 15. 1, p. 1708-1735.



CREUZE, Vincent (2017). "Monocular Odometry for Underwater Vehicles with Online Estimation of the Scale Factor". In: IFAC 2017 World Congress.



ENGEL, J., T. SCHOPS et D. CREMERS (2014). "LSD-SLAM: Large-Scale Direct Monocular SLAM". In: European Conference on Computer Vision (ECCV). Zurich, Switzerland, p. 834-849.



ENGEL, Jakob, Vladlen Koltun et Daniel Cremers (2017). "Direct sparse odometry". In: IEEE transactions on pattern analysis and machine intelligence 40.3, p. 611-625.



FERRERA, Maxime, Julien Moras, Pauline Trouvé-Peloux et Vincent Creuze (2017). "Localisation autonome basée vision d'un robot sous-marin et cartographie de précision". In: ORASIS.



FERRERA, Maxime, Julien Moras, Pauline Trouvé-Peloux, Vincent Creuze et Denis DÉGEZ (2018a). "The Aqualoc Dataset: Towards Real-Time Underwater Localization from a Visual-Inertial-Pressure Acquisition



- System". In: IROS Workshop New Horizons for Underwater Intervention Missions: from Current Technologies to Future Applications.
- FERRERA, Maxime, Julien Moras, Pauline Trouvé-Peloux et Vincent Creuze (2018b). "Odométrie Visuelle Monoculaire en Environnement Sous-Marin". In: Reconnaissance des Formes, Image, Apprentissage et Perception (RFIAP).
- FERRERA, Maxime, Vincent CREUZE, Julien MORAS et Pauline TROUVÉ-PELOUX (2019a). "AQUALOC: An Underwater Dataset for Visual-Inertial-Pressure Localization.". In: The International Journal of Robotics Research.
  - FERRERA, Maxime, Julien MORAS, Pauline TROUVÉ-PELOUX et Vincent CREUZE (2019b). "Real-Time Monocular Visual Odometry for Turbid and Dynamic Underwater Environments". In: Sensors. T. 19. 3.
  - FORSTER, C., M. PIZZOLI et D. SCARAMUZZA (2014). "SVO: Fast semi-direct monocular visual odometry". In: 2014 IEEE International Conference on Robotics and Automation (ICRA).
- GARCIA, Rafael, Xevi Cufi et Marc Carreras (2001). "Estimating the motion of an underwater robot from a monocular image sequence". In:

  Proceedings 2001 IEEE/RSJ International Conference on Intelligent
  Robots and Systems. Expanding the Societal Role of Robotics in the the
  Next Millennium (Cat. No. 01CH37180). T. 3. IEEE, p. 1682-1687.





GARCIA-FIDALGO, Emilio et Alberto ORTIZ (2018). "iBoW-LCD: An Appearance-Based Loop-Closure Detection Approach Using Incremental Bags of Binary Words". In: IEEE Robotics and Automation Letters 3.4, p. 3051-3057. DOI: 10.1109/LRA.2018.2849609.



KIM, Ayoung et Ryan M EUSTICE (2013). "Real-time visual SLAM for autonomous underwater hull inspection using visual saliency". In: IEEE Transactions on Robotics 29.3, p. 719-733.



KLEIN, G. et D. MURRAY (2007). "Parallel Tracking and Mapping for Small AR Workspaces". In: IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR). Nara, Japan, p. 225-234.



Mur-Artal, R., J. M. M. Montiel et J. D. Tardós (2015). "ORB-SLAM: A Versatile and Accurate Monocular SLAM System". In: IEEE Transactions on Robotics (T-RO). T. 31. 5, p. 1147-1163.



NICOSEVICI, Tudor, Nuno GRACIAS, Shahriar NEGAHDARIPOUR et Rafael GARCIA (2009). "Efficient three-dimensional scene modeling and mosaicing". In: booktitle of Field Robotics.



NICOSEVICI, Tudor et Rafael GARCIA (2012). "Automatic visual bag-of-words for online robot navigation and mapping". In: IEEE Transactions on Robotics 28.4, p. 886-898.



SHKURTI, Florian, Ioannis REKLEITIS, Milena SCACCIA et Gregory DUDEK (2011). "State estimation of an underwater robot using visual and inertial

information". In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, p. 5054-5060.



SINGH, Hanumant, Jonathan Howland et Oscar Pizarro (2004). "Advances in large-area photomosaicking underwater". In: IEEE Journal of Oceanic Engineering 29.3, p. 872-886.

ONERA



80 / 80