Kathleen Brewer

Assignment Final_Review_Optional due 08/14/2012 at 01:04pm MST

Brewer_MAT_343_Summer_2012

1. (1 pt) The matrix
$$A = \begin{bmatrix} 0 & 0 & -2 \\ 0 & 2 & 0 \\ 2 & 0 & 4 \end{bmatrix}$$

has one real eigenvalue. Find this eigenvalue and a basis of the eigenspace.

eigenvalue = Correct Answers:

- \(\displaystyle\left.\begin{array}{c}

 $\mbox\{-1\} \cr$

 $\mbox{1} \c$

 $\mbox{1} \cr$

 $\mbox\{-1\}\ \cr$

\mbox{0} \cr

 $\mbox{1} \cr$

\end{array}\right.\)

2. (1 pt) Given that
$$v_1 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$
 and $v_2 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ are eigen-

 $\begin{bmatrix} -3 & -2 \\ 12 & 7 \end{bmatrix}$, determine the correvectors of the matrix A =sponding eigenvalues.

$$\lambda_1 = \underline{\hspace{1cm}}$$
.

$$\lambda_2 = \underline{\hspace{1cm}}$$
.

Correct Answers:

- 1
- 3

3. (1 pt) Let
$$v_1 = \begin{bmatrix} 0 \\ -2 \\ -2 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} -2 \\ 3 \\ 0 \end{bmatrix}$, and $v_3 = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}$

be eigenvectors of the matrix A which correspond to the eigenvalues $\lambda_1 = -3$, $\lambda_2 = 0$, and $\lambda_3 = 2$, respectively, and let

$$v = \begin{bmatrix} -5 \\ 1 \\ -1 \end{bmatrix}.$$

Express v as a linear combination of v_1 , v_2 , and v_3 , and find Av. $-v_1+$ $---v_2+----v_3$.

$$Av = \begin{bmatrix} & & & & \\ & & & & \\ & & & & \end{bmatrix}$$
.

Correct Answers:

- 1
- −1

- 6
- 8

4. (1 pt) Let W be the subspace of \mathbb{R}^3 spanned by the vectors . Find the matrix A of the orthogonal proand -2 jection onto \overline{W} .

$$A = \left[\begin{array}{cccc} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\ & \\ &$$

- 0.666666666666667

- - 0.666666666666667

 - 0.666666666666667

$$A = \begin{bmatrix} 1 & -2 \\ 13 & -9 \end{bmatrix}$$

has complex eigenvalues, $\lambda_{1,2} = a \pm bi$, where $a = \underline{\hspace{1cm}}$ and $b = \underline{\hspace{1cm}}$

The corresponding eigenvectors are $v_{1,2} = c \pm di$, where c = $(__, __)$ and $d = (__, __)$.

Correct Answers:

6. (1 pt) Let
$$A = \begin{bmatrix} -1 & 3 \\ -6 & 8 \end{bmatrix}$$

Find two different diagonal matrices D and the corresponding matrix Ssuch that $A = SDS^{-1}$.

$$D_1 = \begin{bmatrix} - & 0 \\ 0 & - \end{bmatrix} \quad S_1 = \begin{bmatrix} - & - \\ - & - \end{bmatrix}.$$

$$D_2 = \begin{bmatrix} - & 0 \\ 0 & - \end{bmatrix} \quad S_2 = \begin{bmatrix} - & - \\ - & - \end{bmatrix}.$$

Correct Answers:

• 2; 5; 1; -1; 1; -2; 2; 5; 1; -1; 1; -2

7. (1 pt) Given that the matrix A has eigenvalues $\lambda_1 = 4$ with corresponding eigenvector $v_1 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ and $\lambda_2 = -7$ with corresponding eigenvector $v_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$, find A.

$$A = \left[\begin{array}{ccc} & & & \\ & & & \\ \end{array} \right]$$

Correct Answers:

- −18
- −22
- 11
- 15

8. (1 pt) Find the projection of
$$v = \begin{bmatrix} -13 \\ 16 \\ -16 \end{bmatrix}$$
 onto the subspace V of \mathbb{R}^3 spanned by $\begin{bmatrix} -6 \\ 2 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 6 \\ 7 \\ 1 \end{bmatrix}$.

$$\operatorname{proj}_V(v) = \begin{bmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}.$$

Correct Answers:

- -8.36170212765957
- 9.04255319148936
- 4.87234042553191

9. (1 pt) Given the vector x = (2, 1, -1), find

$$||x||_1 =$$

$$||x||_{\infty} =$$

 $||x||_2 =$ _____

Correct Answers:

- 4
- 2
- 2.44948974278318

10. (1 pt) Given $A = \begin{bmatrix} 4 & -1 \\ -2 & -3 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & -4 \\ 3 & 4 \end{bmatrix}$.

Determine the value of each of the following

$$||B||_F =$$
______,

 $\theta_{A,B} =$ ______.

Correct Answers:

- 2
- 5.47722557505166
- 7.54983443527075
- 1.52241236779538

11. (1 pt) If p(x) and q(x) are arbitrary polynomials of degree at most 2, then the mapping

$$< p, q > = p(-1)q(-1) + p(0)q(0) + p(3)q(3)$$

defines an inner product in P_3 .

Use this inner product to find < p, q >, ||p||, ||q||, and the angle θ between p(x) and q(x) for

$$p(x) = 3x^2 + 3x + 5$$
 and $q(x) = 3x^2 - 3x - 6$.

$$< p, q >=$$
 ______,
 $||p|| =$ ______,
 $||q|| =$ ______,

Correct Answers:

- 462
- 41.6052881254294
- 13.4164078649987
- 0.595853233383319

12. (1 pt)

(a) Find the least-squares solution \hat{x} of the system

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} x = \begin{bmatrix} -4 \\ -9 \\ 7 \end{bmatrix}.$$

$$\hat{x} = \begin{bmatrix} - \\ -1 \end{bmatrix}.$$

(b) Determine the projection $p = A\hat{x}$.

$$p = \left[\begin{array}{c} - \\ - \\ - \end{array} \right]$$
 .

Calculate the residual $r(\hat{x}) = b - A\hat{x}$.

$$r(\hat{x}) = \begin{bmatrix} -- \\ -- \end{bmatrix}$$
.

Correct Answers:

- −4
- -9
- -4
- -;
- 0
- 0

13. (1 pt) Use Theorem 5.5.2 to write the vector $v = \begin{bmatrix} -3 \\ 0 \\ -5 \end{bmatrix}$, as linear combination of $u_1 = \begin{bmatrix} -3/\sqrt{29} \\ 2/\sqrt{29} \\ 4/\sqrt{29} \end{bmatrix}$,

$$u_2 = \begin{bmatrix} 4/\sqrt{25} \\ 0/\sqrt{25} \\ 3/\sqrt{25} \end{bmatrix} \text{ and } u_3 = \begin{bmatrix} -6/\sqrt{725} \\ -25/\sqrt{725} \\ 8/\sqrt{725} \end{bmatrix}. \text{ Note that } u_1, u_2$$

and u_3 are orthonormal.

$$v = \underline{\hspace{1cm}} u_1 + \underline{\hspace{1cm}} u_2 + \underline{\hspace{1cm}} u_3$$

Use Parseval's formula to compute $||v||^2$.

$$||v||^2 =$$

Correct Answers:

- -2.04264871994757
- -5.4
- -0.817059487979028
- 34

14. (1 pt) Let
$$A = \begin{bmatrix} -9.5 & -4 \\ 6.5 & 8 \\ -6.5 & -8 \\ 9.5 & 4 \end{bmatrix}$$
.

A singular value decomposition of *A* is as follows:

$$A = \begin{bmatrix} -0.5 & -0.5 & 0.5 & 0.5 \\ 0.5 & -0.5 & -0.5 & 0.5 \\ -0.5 & 0.5 & -0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 & 0.5 \end{bmatrix} \begin{bmatrix} 20 & 0 \\ 0 & 5 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0.8 & 0.6 \\ 0.6 & -0.8 \end{bmatrix}$$

(A) Find the closest (with respect to the Frobenius norm) matrix of rank 1 to A.

$$A1 = \begin{bmatrix} \hline --- & \hline --- \\ \hline --- & \hline --- \\ \hline --- & \hline --- \\ \end{bmatrix}$$

(B) Find the Frobenius norm of A - A1.

$$||A - A1||_F =$$

Correct Answers:

- −8
- -6
- 8

- 5

15. (1 pt) Suppose A is an invertible $n \times n$ matrix and v is an eigenvector of A with associated eigenvalue -7. Convince yourself that v is an eigenvector of the following matrices, and find the associated eigenvalues:

- 1. A^5 , eigenvalue = _____,
- 2. A^{-1} , eigenvalue = _____,
- 3. $A 4I_n$, eigenvalue = ____
- 4. 5*A*, eigenvalue = ____.

Correct Answers:

- −16807
- -0.142857142857143
- −11
- -35

16. (1 pt) Find a 2×2 matrix A such that

$$\begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
 and $\begin{bmatrix} 5 \\ -1 \end{bmatrix}$

are eigenvectors of A, with eigenvalues 2 and -7 respectively.

$$A = \left[\begin{array}{cc} & & & \\ & & & \end{array} \right].$$

Correct Answers:

- -4.92307692307692
- 10.3846153846154
- 1.38461538461538
- -0.0769230769230769

17. (1 pt) The matrix
$$A = \begin{bmatrix} 3 & 0 & 2 \\ 1 & 4 & -2 \\ 0 & 0 & 4 \end{bmatrix}$$

has two real eigenvalues, $\lambda_1 = 4$ of multiplicity 2, and $\lambda_2 = 3$ of multiplicity 1. Find an orthonormal basis for the eigenspace corresponding to λ_1 .

$$\begin{bmatrix} - \\ - \\ - \end{bmatrix}, \begin{bmatrix} - \\ - \\ - \end{bmatrix}$$
.

Correct Answers:

• \(\displaystyle\left.\begin{array}{c}

\mbox{0.894427190999916} \cr

\mbox{0} \cr

\mbox{0.447213595499958} \cr

\end{array}\right.\) ,\(\displaystyle\left.\begin{array}{c

\mbox{0} \cr

 $\mbox{1} \cr$

 $\mbox{0} \c)$

\end{array}\right.\)

18. (1 pt) Find the orthogonal projection of
$$v = \begin{bmatrix} 14\\14\\-8\\-3 \end{bmatrix}$$
 onto
$$\begin{bmatrix} 2\\2 \end{bmatrix} \begin{bmatrix} -4\\2 \end{bmatrix}$$

 $\begin{bmatrix} \text{and} & 2 \\ -4 & \end{bmatrix}$. the subspace V of \mathbb{R}^3 spanned by

$$\operatorname{proj}_V(v) = \begin{bmatrix} & & & & & \\ & & & & & \\ & & & & & \end{bmatrix}$$

Correct Answers:

- 5.635555555556
- 6.3022222222222
- -3.484444444444444
- −12.16

19. (1 pt) Let
$$v_1 = \begin{bmatrix} 0.5 \\ 0.5 \\ 0.5 \\ -0.5 \end{bmatrix}$$
, $v_2 = \begin{bmatrix} 0.5 \\ -0.5 \\ -0.5 \\ -0.5 \end{bmatrix}$, and

$$v_3 = \left[\begin{array}{c} 0.5 \\ -0.5 \\ 0.5 \\ 0.5 \end{array} \right] .$$

Find a vector v_4 in \mathbb{R}^4 such that the vectors v_1 , v_2 , v_3 , and v_4 are orthonormal.

$$v_4 = \begin{vmatrix} --\\-\\-\\-\end{vmatrix}$$
.

Correct Answers:

\(\displaystyle\left.\begin{array}{c}\\mbox{0.5} \cr\\mbox{0.5} \cr\\mbox{-0.5} \cr\\mbox{0.5} \cr\\mbox{0.5} \cr\\mbox{0.5} \cr\\mbox{0.5} \cr\\mbox{0.5} \cr\\mbox{0.7} \cr\\mbox{0.5} \cr\\mbox{0.7} \cr\mbox{0.7} \cr\\mbox{0.7} \cr\mbox{0.7} \cr\m

20. (1 pt) Find the *QR* factorization of $M = \begin{bmatrix} 12 & -12 \\ 6 & 1 \\ 4 & 10 \end{bmatrix}$.

$$M = \left[\begin{array}{ccc} & & & \\ & & & \\ \end{array} \right] \left[\begin{array}{ccc} & & & \\ & & & \end{array} \right].$$

Correct Answers:

- 0.857142857142857
- -0.428571428571429
- 0.428571428571429
- 0.285714285714286
- 0.285714285714286
- 0.857142857142857
- 14
- -7
- 0
- 14

21. (1 pt) Find the *QR* factorization of
$$M = \begin{bmatrix} -2 & -6 & 8 \\ -2 & 0 & 8 \\ -1 & 3 & -5 \end{bmatrix}$$

Correct Answers:

- -0.666666666666667
- -0.666666666666667
- -0.33333333333333333
- -0.66666666666667
- 0.333333333333333
- 0.66666666666667
- -0.333333333333333
- 0.66666666666667
- -0.666666666666667

- 3
- 3
- -9
- 0
- 6
- 0
- 0
- 6

22. (1 pt) Fit a linear function of the form $f(t) = c_0 + c_1 t$ to the data points (-2, -8), (0, -7), (2, 0), using least squares.

 $c_1 =$ _____

Correct Answers:

- −5
- 2

23. (1 pt) Find the singular values $\sigma_1 \ge \sigma_2$ of

$$A = \left[\begin{array}{cc} 1 & 2 \\ 1 & 1 \\ 1 & 2 \end{array} \right].$$

 $\sigma_1 = \frac{\Gamma}{\Gamma}$

$$\sigma_2 =$$
 _____.

Correct Answers:

- 3.43961507945952
- 0.411154600065108

24. (1 pt) Find the singular values $\sigma_1 \ge \sigma_2 \ge \sigma_3$ of

$$A = \left[\begin{array}{ccc} -2 & 0 & -1 \\ 1 & 0 & -2 \end{array} \right]$$

- $\sigma_1 = \underline{}$
- $\sigma_2 = \underline{\hspace{1cm}}$
- $\sigma_3 = \underline{\hspace{1cm}}$

Correct Answers:

- 2.23606797749979
- 2.23606797749979
- 0

25. (1 pt) Let
$$A = \begin{bmatrix} -9.5 & -4 \\ 9.5 & 4 \\ 6.5 & 8 \\ -6.5 & -8 \end{bmatrix}$$

A singular value decomposition of *A* is as follows:

$$A = \begin{bmatrix} -0.5 & -0.5 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0.5 & 0.5 \\ 0.5 & -0.5 & 0.5 & -0.5 \\ -0.5 & 0.5 & 0.5 & -0.5 \end{bmatrix} \begin{bmatrix} 20 & 0 \\ 0 & 5 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0.8 & 0.6 \\ 0.6 & -0.8 \end{bmatrix}$$

Find the least-squares solution of the linear system

$$Ax = b$$
, where $b = \begin{bmatrix} 3 \\ -4 \\ 5 \\ 5 \end{bmatrix}$.

Correct Answers:

- −0.56
- 0.455

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America