Лабораторная №3

1. Выборочный коэффициент корреляции

Цель: научиться рассчитывать линейные коэффициенты корреляции, проверять их значимость и строить интервальные оценки, интерпретировать параметры связи.

Постановка задачи

В 12 анализах крови здоровых пациентов определяли содержание гемоглобина (в %) и оседание эритроцитов крови за 24 часа (в мм).

Гемоглобин %	24	44	62	65	73	82	74	83	79	83	82	85
Оседание Эритроцитов, мм	9	19	25	27	28	29	30	30	31	33	34	36

Требуется найти выборочный коэффициент корреляции и проверить его значимость, т.е. ответить на вопрос: является зависимость оседания эритроцитов от гемоглобина статистически значимой? Распределение случайных величин X и Y предполагается нормальным. Уровень значимости α составляет 0,05.

2. Частный и множественный коэффициенты корреляции

По данным 12 машиностроительных предприятий методами корреляционного анализа исследуется взаимосвязь между следующими показателями:

- x_1 рентабельность, %;
- x_2 премии и вознаграждения на одного работника, млн руб.;
- x_3 фондоотдача, представленными в таблице:

№ п/п	x_1	x_2	<i>X</i> ₃
1	12,06	1,25	1,35
2	11,26	1,14	1,25
3	13,26	1,23	1,45
4	10,16	1,04	1,30
5	13,72	1,80	1,37
6	12,82	0,43	1,65
7	10,63	0,88	1,91
8	9,12	0,57	1,68
9	25,83	1,72	1,94
10	23,39	1,70	1,89
11	14,68	0,84	1,94
12	10,05	0,60	2,06

Требуется:

- а) рассчитать векторы средних и средних квадратических отклонений, матрицу парных коэффициентов корреляции (\overline{x}, S, R) ;
- б) проверить при $\alpha = 0.05$ значимость парного коэффициента корреляции ρ_{12} и найти его интервальную оценку с доверительной вероятностью $\gamma = 0.95$;
- в) по корреляционной матрице R рассчитать частный коэффициент корреляции ${\bf r}_{12/3}$;
- г) проверить при $\alpha = 0.05$ значимость частного коэффициента корреляции $\rho_{12/3}$ и определить его интервальную оценку при $\gamma = 0.95$;
- д) по корреляционной матрице R вычислить оценку множественного коэффициента корреляции $r_{1(2,3)}$ и при $\alpha=0,05$ проверить гипотезу H_0 : $r_{1(2,3)}{=}0$.