Université d'Évry Val d'Essonne 2011-2012

M63 algèbre et géométrie

Feuille 9 — Formes quadratiques

Exercice 1. On considère la forme quadratique q_1 et la forme bilinéaire symétrique φ_2 définies respectivement par

$$q_1(x) = x_1^2 + x_2^2 + x_1 x_3$$

$$\varphi_2(x, y) = x_1 y_2 + x_2 y_1 + 3x_1 y_3 + 3x_3 y_1$$

Donner la forme polaire φ_1 de q_1 et la forme quadratique q_2 associée à φ_2 . Faire ensuite l'étude complète de chacune d'entre elles : matrice dans la base canonique, rang, signature, noyau, cône isotrope, base orthogonale pour cette forme, matrice dans la base obtenue et formule de changement de base.

Exercice 2. 1. Montrer que toute forme quadratique définie est non-dégénérée. La réciproque est-elle vraie?

- 2. Montrer que toute forme quadratique sur \mathbb{C}^n pour $n \geq 2$ admet un vecteur isotrope.
- 3. Montrer que toute forme quadratique sur \mathbb{R}^n pour $n \ge 2$ qui n'est ni positive ni négative admet un vecteur isotrope.
- 4. Une base orthogonale peut-elle contenir un vecteur isotrope?

Exercice 3. Soit E un espace vectoriel muni d'une forme quadratique q, et F et G deux sous-espaces vectoriels.

- 1. Si E est de dimension finie, montrer que $(F^{\perp})^{\perp} = F + \ker q$.
- 2. Montrer que $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$.
- 3. Si E est de dimension finie et q est non-dégénérée, montrer que $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$.

Exercice 4. On note E le plan muni que la forme quadratique q dont la matrice dans la base canonique est $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

- 1. Déterminer le rang, la signature, le noyau et le cône isotrope de q.
- 2. Déterminer les matrices des q-isométries.
- 3. Montrer que SO(q) est isomorphe à K^{\times} .

Exercice 5. On désigne par α et β deux réels tels que $\alpha^2 + \beta^2 = 1$. Discuter suivant les valeurs de α et β le rang et la signature de la forme quadratique sur \mathbf{R}^3 dont la matrice dans la base canonique est

$$\begin{pmatrix}
1 & \alpha & 0 \\
\alpha & 1 & \beta \\
0 & \beta & \alpha + \beta
\end{pmatrix}$$

(On utilisera le procédé d'orthogonalisation de Gauss et on distinguera les cas où $\beta=0$). Représenter graphiquement sur le cercle $\alpha^2+\beta^2=1$ les différents cas.