Practical no: 9

Problem Statement: : Write a Java program to implement

Banker's Algorithm.

Name: Aditi Dinesh Mulay

Class: T.E. Computer

Subject: SPOS

Div: A

Roll no: 02

PRN No. 71918146B

	Spos Assignment C-2	Aditi Dinesh Mwaj T.E. Wmp Div: A Roll No: 02.
	Aim: Bankers algorithm for	
	Theory:	
o mercera.	o mallet are some starts of has	21 - 21 - 1T -
	Banker's algorithmissila re	
	deadlock avoidance algorithm	that tests for safety
	maximum possible amounts : or	f all resources then
s chally	makes an sistate check to.	post for possible
- 10 - 1	activities, before deciding wh allowed to continue	ether allocation should be
1004,11	allowed to continue	Istati prophesture
	to std. olp. Syntax: Thiorestan	
	Following Data Structures us	
	Algorithm.	PRODUCT (2) A FEB (4)
id and a		of health
a store	Let 'n' be the number of proce	esses in the system &
1.0.21	'm' be the number of resource	es type.
	Available: 11	Change in spirit
_ raint	1) It is a 1-d army of size m'	indicating the no of
	available resources of each ty	ipe:
	2) Available [j] = 17 means there	ace is instances of
02.1	resource type 12j	to the analysis of the Lands
	Louis War and some of the live	an etta ett et
Carlot 9	Max: seeded as many bornie	B AND AND AT
	1) It is a 2-d array of size not	m that defines the
	maximum demand of each pro	ocess in a system
	2> max [i,j] = K means process	Pi may request atmost
- I was also	ix instances of resource type	0:

	Allocation:
	1) It is 2-d array of size 'n+m' that defined the no. o
	resources of each type currently allocated to each
A . 100/27.	process. my zation or has a majorbia militaria
	>> Allocation (1, j) = 15 means process P; is currently
	allocated it instance of resource type Ri
	at mate 14)
	Need:
0	1) It is 2-d array of size in+m: that indicates the
	remaining resource need of each process.
	es Need [i,j) = K means process Pi currently need is
	instances of resource type Rj. for its execution.
	3) Need [i,j] = Max [i,j] - Hlocation [i,j]
	0, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
	Banker's algorithm consist of Safety algorithm &
	Resource request algorithm:
	Parabora bank to deather all a like a collect
	Safety Migorithm : 11
0	Injunctional is Louis a
	1) Let work and Finish be vectors of length in & in re
	Initialize: Work = Available
	Finish[i] = false; for i=1,2,3,4n.
	2) Find an i such that both
	a) Finish (i) = false
	b) Need. < = Worls
	if no such i exists goto step 4
314	3) Work = Work + Alocation (i)
	Fisials 5:3 = thus
	30to step(2)

	40	4) if Finish [i] = true for all i then system is in safe state.									
	1										
ELO.											
	E>	Ex: Considering a system with 5 processes po through & 3 resources type A, B, c. Resource type 14 has 10 instances. B has 5 & Chas 7 instances. At time to.									
	4										
	11										
	A										
	-										
	1						Available.	<u> </u>			
	-	1					A B C				
	+						3 3 2				
	1 10	Pi	2 0	61.04	-	2 2	e metani				
		Pa	3 0	12-	9	0.2	Children	<u>.</u>			
	11	100									
	-	Р3	2 1	- 1		22					
- 4		, p4	. 0 0	. (2)	4	3 (3 -					
8	n	, p4	be th = Maxi	2 c co: Ci,j) x is:	ntec - A	3 3 at of Ne location [ed motrix?	•			
8	n	What will seed [i,j] Need of	0 0 be th = Maxi	e coi Ci,j) x is:	ntec - A	3 3 ht of Ne location [ed motrix?	0			
	n	What will seed [i,j]	be the Matri	e col Ci,j] x is:	ntec - A	3 3 ht of Ne location [ed motrix?	•			
	n	What will seed [i,j]. Need of Proces	be the maxi	e col Ci,j) x is:	ntec - A	3 3 ht of Ne location [ed motrix?	•			
	n	What will seed [i,j] Need of	be the Matri	e con Ci,j) x is: Nee	ntec - A	3 3 ht of Ne location [ed motrix?	•			
	n	What will leed [i,j] Need of Proces Po Pl	be the maxi	e col Ci,j) x is: Nee	ntec - A	3 3 ht of Ne location [ed motrix?				
	n	What will seed [i,j] Need of Proces Po Pi P2	be the matri	e con Ci,j) x is: Nee	4 ntec - A	3 3 ht of Ne location [ed motrix?	0			
	n	What will leed [i,j] Need of Proces Po Pl	be the maxis Matri	e col Ci,j) x is: Nee	- A	3 3 ht of Ne location [ed motrix?				
	n	What will seed [i,j] Need of Proces Po P1 P2 P3	5 Hax 1 1 6 0	2 E COI Ci.j.) X is: Nee 3: 4 2	d C 3 2	3 3 ht of Ne location [ed motrix?				
		What will leed [i,j] Need of Proces Po P1 P2 P3 P4	be th = Max 	2 c con Ci,j) x is: Nec 3. 4 2 0 1	4	3 3 at of Ne location C	ed motrix?				

 Question3. What will happen if process P₁ requests one additional instance of resource type A and two instances of resource type C?

A B C Request,= 1, 0, 2

To decide whether the request is granted we use Resource Request algorithm

Y 10 H
Conclusion:
Thus, we have studied the Banker's Algorithm.
3: 3-3
A STATE OF LIVE STATES PRODUCED.

Program:

```
| Test | Section | West | Get | But | Terminal | Help | Bill | Visual States | Cost | Section | West | Cost | Cost
```