TPPE32 - FINANSIELL RISKHANTERING

Riskmått, Marknadsrisk och Backtesting

Författare: Nikolas Tsigkas Student ID: nikts531

1 Value at Risk och Expected Shortfall

Beräkningarna bygger på en över tiden likaviktad portfölj med innehav i aktierna:

- 1. ABB
- 2. Atlas Copco A
- 3. Astra Zeneca
- 4. Electrolux B
- 5. Ericsson B
- 6. HM B
- 7. Investor B
- 8. Sandvik
- 9. SCA B
- 10. SEB A
- 11. Handelsbanken A
- 12. Skanska B
- 13. SKF B
- 14. SSAB A
- 15. Volvo B

För dessa används historisk veckovis data från 1989-10-20 till 2021-01-29. För denna portfölj kommer främst veckovis Value at Risk, men även Expected Shortfall, att tas fram baserat på olika modeller och fördelningsantaganden. Dessa kommer sedan att backtestas i sektion 2 med syfte att jämföra.

1.1 Varians-kovariansmetoden

Med varians-kovariansmetoden ska Value at Risk beräknas för konfidensnivåerna 95%, 97.5% och 99%. Det görs med nedanstående formler.

$$VaR = \sigma N^{-1}(c)V_p \quad \sigma = \sqrt{\omega^{\mathbf{T}}\mathbf{C}\omega}$$

Där c
 är konfidensnivåerna, V_p är portföljvärdet (10 MSEK i det här fallet). Volatiliteten för avkastningarna beräknas under antagandet att aritmetiska avkastningar är multivariat normalfördelade och ω är vikterna för respektive tillgång som i det här fallet är lika stora. C är kovariansmatrisen för R, som är den stokastiska vektorn av aritmetiska avkastningar. Observationerna för R för varje aktie i beräknades givet datan S som:
 $R_{i,T+1} = \frac{S_{i,T+1} - S_{i,T}}{S_{i,T}}$. Value at Risk estimaten baserat på denna modell presenteras i tabell 1.

c	0.95	0.975	0.99	
VaR_c (SEK)	525 730	626 440	743 550	
VaR_c (%)	5.25	6.26	7.43	

Tabell 1: Value at Risk för konfidensnivåerna 95%, 97,5% och 99%

1.2 Log-avkastningar med EWMA-volatilitet

Framöver så kommer VaR studeras på avkastningarna för den aggregerade likaviktade portföljen, där logaritmiska avkastningar $r_{p,t}$ nu antas vara normalfördelade. Dessa beräknas då som:

$$R_{p,t} = \omega^{\mathbf{T}} \mathbf{R_t}$$
 $r_{p,t} = ln(1 + R_{p,t})$

Då fås VaR_c som:

$$VaR_{c,t} = 1 - e^{-N^{-1}(c)\sigma_{p,t}}$$

Vilket representerar kvantil c i förlustfördelningen. Serien av avkastningar tillåts nu vara heteroskedastisk, och volatiliteten bestäms från en $EWMA(\lambda = 0.94)$ process som:

$$\sigma_{p,t}^2 = 0.94\sigma_{p,t-1}^2 + (1 - 0.94)r_{p,t-1}^2 \quad \sigma_{p,2}^2 = r_{p,1}^2$$

Resulterande veckovisa VaR från 2000-02-04 och framåt baserat på denna modell visas i figur 1.

Figur 1: VaR_{1v} baserat på antaganden om normalfördelade log-avkastningar

1.3 Standard historisk simulering

Vid beräkning av $VaR_{0,95,1v}$ och $VaR_{0,99,1v}$ med historisk simulering tar vi ut respektive percentiler från de 500 senaste observerade portföljavkastningarna. Detta görs med matlab-funktionen pretile(X,p), där X är ett rullande fönster om 500 observationer och p är respektive percentil, i det här fallet 5:e och 1:a percentilen.

Resulterande veckovisa VaR från 2000-02-04 och framåt baserat på denna modell visas i figur 2, där percentilerna har multiplicerats med -1 för att få positiva storheter och vara konsistent med tidigare.

För att beräkna Expected Shortfall, $ES_{0,95,1v}$, beräknas medelvärdet (MEAN() i Matlab) av de 25 största förlusterna, eller ekvivalent de 25 minsta avkastningarna (som fås ut från MINK(R,25)). Vilket ger ett exepcted shortfall på 6.5428%.

Figur 2: VaR_{1v} baserat på historisk simulering utifrån de 500 senaste observationerna

1.4 Historisk simulering med Hull & White

Vid beräkning av $VaR_{0,95,1v}$ och $VaR_{0,99,1v}$ med Hull & Whites metod för historisk simulering så tar vi fram en percentil för de 500 senaste observationerna, likt vanlig historisk simulering, fast denna gång på normerade avkastningar $R_{norm,i} = \frac{R_i}{\sigma_i}$, där volatiliteten åter estimeras med EWMA enligt:

$$\sigma_{p,t}^2 = 0,94\sigma_{p,t-1}^2 + (1-0,94)R_{p,t-1}^2 \quad \sigma_{p,2}^2 = \frac{1}{19}\sum_{t=1}^{20}(R_{p,t}^2 - \bar{R}p_{p,20}^2) \quad \bar{R}p_{p,20} = \frac{1}{20}\sum_{t=1}^{20}R_{p,t}$$

Därefter multipliceras percentilen med den skattade volatiliteten för perioden då varje VaR bestäms. Resulterande veckovisa VaR från 2000-02-04 och framåt baserat på denna modell visas i figur 3.

2 Backtesting av VaR-serierna

2.1 Failiure rate-test

I Failiure rate-testet studeras huruvida sannolikheten att överskrida VaR är lika med dess konfidensnivå. Vi undersöker antal överskridelser genom att definiera $I_t = 1$ om $-R_t > VaR_t$ och $I_t = 0$ annars (då VaR tidigare definierades som en percentil av förlustfördelningen). Under $H_0: p = 1 - c$ gäller:

$$I_t \stackrel{iid}{\sim} Bernoulli(p) \quad X_T = \sum_{1}^{T} I_t \sim Bin(T, p)$$

Där T är antalet observationer. För stora T gäller sedan approximationen $X_T \overset{appr}{\sim} N(Tp, \sqrt{Tp(1-p)})$. Från detta skapas testvariablen $Z = \frac{X_T - Tp}{\sqrt{Tp(1-p)}} \overset{appr}{\sim} N(0,1)$. H_0 förkastas till förmån för $H_1: p \neq 1-c$ på

Figur 3: VaR_{1v} baserat på historisk simulering utifrån de 500 senaste observationerna med justerad volatilitet

konfidensgrad α om: $|Z| > N^{-1}(1 - \frac{\alpha}{2})$. Tabell 2 visar värden för $|Z| - N^{-1}(1 - \frac{\alpha}{2})$, dvs. de serier där H_0 förkastas visar upp positiva storheter.

α	0.05	0.01
$VaR_{b,0.95}$	-1.37	-1.99
$VaR_{b,0.99}$	2.04	1.39
$VaR_{c,0.95}$	-1.93	-2.54
$VaR_{c,0.99}$	-1.03	-1.65
$VaR_{d,0.95}$	-1.51	-2.13
$VaR_{d,0.99}$	-1.03	-1.65

Tabell 2: $|Z| - N^{-1}(1 - \frac{\alpha}{2})$ för de tidigare beräknade VaR-estimaten

Vi kan se att för $VaR_{0.99}$ baserat på normalfördelningsantagandet så förkastas H_0 , vilket tyder på att det är mindre lämpligt än de andra metoderna.

2.2 Seriellt beroende

Vid test av seriellt beroende vill vi undersöka om sannolikheten för att överskrida VaR vid tid t är beroende av huruvida VaR överskreds vid tid t-1 eller inte.

Låt i=1 och i=0 vara tillståndet där förlusterna överskrider respektive inte överskrider VaR. Vi introducerar π_{ij} som sannolikheten att gå från tillstånd i till j. Under nollhypotesen H_0 är $\pi_{01}=\pi_{11}=\pi$ och $\pi_{00}=\pi_{10}=1-\pi$ (dvs sannolikheten att överskrida VaR nästa period är oberoende av huruvida VaR överskreds idag eller inte), medan, under mothypotesen H_1 tillåts $\pi_{01}\neq\pi_{11}$. Om n_{ij} är antal observationer för varje typ av transition blir likelihoodfunktionen för de två modellerna då:

$$\begin{split} L_0 = & (1 - \pi)^{(n_{00} + n_{10})} \pi^{(n_{01} + n_{11})} \\ L_1 = & \pi_{00}^{n_{00}} \pi_{01}^{n_{01}} \pi_{10}^{n_{10}} \pi_{11}^{n_{11}} \end{split}$$

Och transitionssannolikheterna som maximerar likelihoodfunktionerna för de två modellerna ges av:

$$\pi = \frac{\sum n_{i1}}{\sum \sum n_{ij}} \quad \Pi = \begin{pmatrix} \frac{n_{00}}{n_{00} + n_{01}} & \frac{n_{01}}{n_{00} + n_{01}} \\ \frac{n_{10}}{n_{10} + n_{11}} & \frac{n_{11}}{n_{10} + n_{11}} \end{pmatrix}$$

Från likelihood ration $\Lambda = \frac{max(L_0)}{max(L_1)}$ konstrueras testvariabeln $-2ln(\Lambda) \xrightarrow{d} \chi^2(1)$, och H_0 förkastas på konfidensgrad α om testvariabeln $-2ln(\Lambda) > F_{\chi^2}^{-1}(1-\alpha)$. Tabell 3 visar $-2ln(\Lambda) - F_{\chi^2}^{-1}(1-\alpha)$ för de olika VaR-estimaten, dvs. de serier där H_0 förkastas visar upp positiva storheter.

α	0.05	0.01
$VaR_{b,0.95}$	-2.83	-5.63
$VaR_{b,0.99}$	-1.26	-4.05
$VaR_{c,0.95}$	-3.30	-6.09
$VaR_{c,0.99}$	-1.94	-4.74
$VaR_{d,0.95}$	-2.69	-5.48
$VaR_{d,0.99}$	-1.94	-4.74

Tabell 3: $-2ln(\Lambda) - F_{\chi^2}^{-1}(1-\alpha)$ för de tidigare beräknade VaR-estimaten

Vi ser att alla VaR-estimat "klarar" testet, dvs. att vi inte kan förkasta att modellen inte visar upp seriellt beroende på någon av de testade konfidensgraderna.

3 Extremvärdesteori

Från extremvärdesteori följer det att, givet att det existerar en generaliserad extremvärdesfördelning:

$$\lim_{n\to\infty} F_X^n(z) = H(z)$$

för någon "stor" kvantil u att:

$$P(X \le u + y | X \ge u) \approx G(y) = \begin{cases} 1 - (1 + \xi \frac{y}{\beta})^{-1/\xi}, & \xi \ne 0 \\ 1 - e^{-y/\beta}, & \xi = 0 \end{cases}$$

Där G(y) cdf:en för en generaliserad Paretofördelning. För estimering av högersvansen av serien av förluster $-R_t$ studeras den 95e percentilen av dessa. Detta görs både för hela tidsserien och för den turbulenta perioden mellan 2006-2010, där parametrarna ξ och β för den generaliserade Pareto-täthet: $g(y)_{\xi,\beta} = \frac{1}{\beta}(1+\xi\frac{y}{\beta})^{-\frac{\xi+1}{\xi}}$, bestäms med hjälp av Maximum-Likelihood estimering. Log-likelihood funktionen, och bivillkoren ges av:

$$\max_{\xi,\beta} \quad \sum \ln(g_{\xi,\beta}(y_i)) \quad 1 + \xi \frac{y_i}{\beta} > 0 \quad \forall i$$

Där $y_i = x_i - u$, u är den 95e percentilen av observerade förluster och x_i är alla observerade förluster som överstiger u. Resulterande parameter och likelihoodvärden visas i tabel 4. För dessa är också täthetsfunktionen plottad i figur 4, där det kan konstateras att den mer turbulenta (tack vare finanskrisen) perioden mellan 2006-2010 ger upphov till en tjockare svans.

Med fördelningen av svansen kan vi sedan representera sannolikheten att överskrida VaR_c som:

$$1 - c = \frac{n_u}{n} (1 - G(VaR_c - u))$$

Där n_u och n är antalet observationer större än 95e percentilen respektive antal observationer totalt och $\frac{n_u}{n}$ approximerar sannolikheten att överskrida u. Från detta kan VaR_c nu lösas ut som:

	ξ	β	logL
Hela tidsserien	0.1364	0.0203	217.95
2006-2010	0.0363	0.0332	30.78

Tabell 4: Resultat från ML-estimering av parametrarna för den Generaliserade Paretofördelningen

$$VaR_c = u + G^{-1}(1 - (1 - c)\frac{n}{n_u})$$

Med parametervärdena från hela tidsserien fås $VaR_{0.99}$ för nästkommande period som 8.35%. Detta värde överskrider 99% estimaten i (a), (b) vilket är logiskt då vi med GEV-fördelningen tillåts att lägga större tyngd i högersvansen än normalfördelningen, något som stämmer bra överens med finansiella tidsserier. Estimatet är också större än det som fås av den historiska simuleringen i (c), men när Hull & Whites metod används så ger detta ett högre $VaR_{0.99}$ än GEV-fördelningen.

Figur 4: Täthetsfunktionen för g(y) jämfört med observationer i ett histogram

4 Riskfaktormapping

I denna sektion diskuteras riskhantering av optioner på S&P500, genom att linjärisera priset med avseende på ett antal stokastiska faktorer.

4.1 VaR för portfölj av optioner

För en plain-vanilla option med pris P kan förändringen i pris mellan tidpunkt t-1 och t approximeras linjärt (utan hänsyn till time-decay) med hjälp av grekerna $\Delta = \frac{\partial P}{\partial S}, \ \nu = \frac{\partial P}{\partial \sigma}$ och $\rho = \frac{\partial P}{\partial r_f}$ som:

$$\delta P_t \approx \Delta \delta S_t + \nu \delta \sigma_t + \rho \delta r_{f,t}$$

Under antagandet att logaritmiska avkastningar är normalfördelade kan vi vidare approximera $\delta S_t = S_{t-1}(e^{r_t} - 1) \approx S_{t-1}r_t = S_{t-1}\delta(\log(S_t))$. Genom detta kan vi skriva upp uttrycket som:

$$\delta P_t \approx \begin{pmatrix} S_{t-1} \Delta & \nu & \rho \end{pmatrix} \begin{pmatrix} \delta log(S_t) \\ \delta \sigma_t \\ \delta r_{f,t} \end{pmatrix} = \mathbf{g}^{\mathbf{T}} \lambda$$

Där vi under våra antaganden nu har $\lambda \sim N(\mathbf{0}, \mathbf{C}_{\lambda})$, där kovariansmatrisen kan skattas från historisk data på avkastningarna på S&P500 respektive förädringen i VIX-indexet och 3M USDLIBOR-räntan, vilka vi använder som proxy för de implicita volatiliteterna respektive den riskfria räntan. Om vi expanderar detta till en portfölj av tre optioner med samma underliggande (dvs samma λ men olika \mathbf{g}), av vilka vi har h_i stycken av varje, kan portföljförädrningen $\delta V_t = \sum_{1}^{3} h_i \delta P_{t,i}$ approximativt skrivas som:

$$\delta V \approx \begin{pmatrix} h_1 & h_2 & h_3 \end{pmatrix} \begin{pmatrix} \mathbf{g_1}^T \\ \mathbf{g_2}^T \\ \mathbf{g_3}^T \end{pmatrix} \lambda = \mathbf{h}^T \mathbf{G}^T \lambda$$

Portföljvariansen, i USD, fås då av: $V(\delta V) = V(\mathbf{h^T G^T} \lambda) = \mathbf{h^T G^T C_{\lambda} Gh}$, och volatiliteten, i procent på dagsbasis: $\sigma = \frac{1}{V} \sqrt{V(\delta V)}$ där V är det senast observerade portföljvärdet.

Data för de olika optionerna, som alla är av europeisk typ och har S&P500 som underliggande¹, redovisas i tabellen nedan:

Optionstyp	K	Implicit volatilitet (%)	T^2	Р	Δ	ν	ρ	h_i
Call, Mar21	3800	20.895	0.1310	141.33	0.5176	548	240.87	10000
Put, Apr21	3750	22.74	0.2063	155.84	-0.4374	679	-377.49	10000
Call, Sept21	3850	21.955	0.6310	241.33	0.4542	1171.3	944.36	20000

Tabell 5: Optionsdata. Priser och greker bestäms med Black & Scholes

Givet detta fås en daglig volatilitet på 5.59%, vilket ger $VaR_{1d,0.99} = N^{-1}(0.99)\sigma V = 1.014$ MUSD.

4.2 Enskilda bidrag från optioner och riskfaktorer

För att undersöka det marginella bidraget av varje enskild option tas gradienten av volatiliteten m.a.p. innehaven \mathbf{h} som:

$$\nabla_h \sigma = \frac{2 \mathbf{G^T} \mathbf{C}_{\lambda} \mathbf{G} \mathbf{h}}{2 V \sqrt{\mathbf{h^T} \mathbf{G^T} \mathbf{C}_{\lambda} \mathbf{G} \mathbf{h}}} = \frac{\mathbf{G^T} \mathbf{C}_{\lambda} \mathbf{G} \mathbf{h}}{V^2 \sigma}$$

Där vi använder uttrycket för σ som introducerades ovan. Detta ger ett marginellt bidrag på VaR-nivå på: $\nabla_h VaR_{1d,0.99} = N^{-1}(0.99)\nabla_h \sigma V = N^{-1}(0.99)\frac{G^TC_\lambda Gh}{V\sigma} = (4.2534, 38.6184, 29.2775)^T$ Vidare så kan även det marginella bidraget från varje riskfaktor (förändring i S&P500, den implicita vo-

Vidare så kan även det marginella bidraget från varje riskfaktor (förändring i S&P500, den implicita volatiliteten eller den riskfria räntan) bestämmas. "Innehavet" av varje riskfaktor kan formuleras som $\mathbf{h_f} = \mathbf{Gh}$. Genom att skriva om uttrycket för volatiliteten som $\sigma = \frac{1}{V} \sqrt{\mathbf{h_f^T C}_{\lambda} \mathbf{h_f}}$ så kan gradienten beräknas som:

$$\nabla_{h_f} = \frac{2\mathbf{C}_{\lambda}\mathbf{h_f}}{2\sqrt{\mathbf{h_f^T}\mathbf{C}_{\lambda}\mathbf{h_f}}} = \frac{\mathbf{C}_{\lambda}\mathbf{G}\mathbf{h}}{V^2\sigma}$$

Och på samma sätt så blir bidraget på VaR-nivå: $\nabla_{h_f} VaR_{1d,0.99} = N^{-1}(0.99) \nabla_{h_f} \sigma V = N^{-1}(0.99) \frac{C_\lambda Gh}{V\sigma} = 10^{-3}(-8.084, 36.967, 0.033)^T$

 $^{^1\}mathrm{Vi}$ antar $r_f=0.001922$ (kontinuerlig, från 3m USD-LIBOR) och q=0.05

 $^{^2\}mathrm{M\"{a}tt}$ i år från 2021-02-02 baserat på 252 börsdagar och helgdagar på NYSE

5 Kod

5.1 Huvudprogram

```
% Hämta data för portfölj
  data12 = readtable("timeSeries.xlsx", "Sheet", "Problem12");
  time = flip (data12. Timestamp);
  S = flip(table2array(data12(:,2:end))); %seaste observationen sist
  % Avkastningar för enskilda aktier
  R = S(2:end,:)./S(1:end-1,:) - ones(size(S)-[1,0]); % Aritmetiska
  r = log(1+R); \% Log
10
  % Aggregerade avkastningar för likaviktad portfölj
11
_{12}|RP = sum(R,2)/15;
|rP| = \log(1+RP);
14
|w| = ones(15,1)/15; % vikter
16 V T = 10e6; % Portföljvärde idag
17
18 % VaR & ES
  c = [0.95, 0.975, 0.99];
19
  | vol a = sqrt(w*cov(R)*w); %relativ volatilitet
20
  VaR \ a = norminv(c) * vol \ a * V \ T; \% SEK
22
  c = [0.95, 0.99];
23
  EWMA vol b = \frac{\text{ewma}}{\text{ewma}}(0.94, \text{ rP}, \text{ rP}(1)^2);
  EWMA vol b = EWMA \text{ vol } b(501:end);
26
  VaR b = 1 - exp(-norminv(c).*EWMA vol b);
27
  plotVaR(VaR \ b, \ time(503:end), \ "B", \ c, \ rP(502:end));
29
  VaR \ c = HistSim(RP(2:end), 500, c); \% Vanlig Historisk simulering
  plotVaR(VaR \ c, time(503:end), "C", c, RP(502:end));
31
  ES = -mean(mink(RP((end-499):end),25))*100; \% väntevärde av 25 minsta
33
      observationer
34
  EWMA vol d = ewma(0.94, RP, var(RP(1:20)));
36
  VaR d = HistSim(RP(2:end), 500, c, EWMA vol d); % Hull & White
  plotVaR(VaR d, time(503:end), "D", c, RP(502:end));
  Mypotestest - Failiure rate
40
  I b = \max(\text{zeros}(\text{size}(\text{VaR b})), \text{sign}(-\text{VaR b-RP}(502:\text{end}))); \% 1 \text{ vid överskridelse}
41
_{42} | I c = \max(\text{zeros}(\text{size}(\text{VaR c})), \text{sign}(-\text{VaR c-RP}(502:\text{end})));
_{43}|I d = \max(zeros(size(VaR d)), sign(-VaR d-RP(502:end)));
44
  alfa = [0.05, 0.01];
45
  % Positiva värden: förkastar H0
47
48 % Rad: konfidensgrad [5%, 1%]
49 % Kolumn VaR—nivå [95%, 99%]
```

```
_{50} | H0 FR b = FR(I b,c,alfa);
_{51} | H0 FR c = FR(I c, c, alfa);
_{52} H0 FR d = FR(I d,c,alfa);
53
  Mypotestest - Seriellt beroende
  % Positiva värden: förkastar H0
  % Rad: konfidensgrad [5%, 1%]
57 | % Kolumn VaR—nivå [95%, 99%]
  H0 SB b = Christoffersen(I b, alfa);
  HO SB c = Christoffersen(I c, alfa);
  H0 SB d = Christoffersen (I d, alfa);
61
  % EVT
62
  Tail = -mink(RP, ceil(length(RP)*0.05)); % dragningar från g(u+y)
       = Tail(end);
64
  Tail = Tail - u;
  Tail = Tail (1: end -1);
                                              % dragningar från g(y)
66
  % Param1: xi, param2: beta
68
  GEV pdf = @(par, y) \frac{1}{par(2) *(1+par(1) *y/par(2)) .^(-(par(1)+1)/par(1))}; %pdf:
  GEV inv = @(par, y) par(2)/par(1)*((1-y)^(-par(1))-1); \% inversa cdf:en
  GEV logL = @(par, Tail) -1*sum(log(GEV pdf(par, Tail))); % -1 pga max sökes
  GEV con = @(par, Tail) GEV con(par, Tail); % ickelinjära bivillkor
72
73
  [GEV MLparam, logL] = fmincon(@(par) GEV logL(par, Tail), [0.1,0.1],
74
      [],[],[],[],[],[], @(par) GEV_con(par, Tail));
75
  nn_u = length(RP)/length(Tail); % n/n_u: antal observationer/antal
76
      observationer som överskrider u.
  c = 0.99;
77
78
  VaR 2a = u + GEV inv(GEV MLparam, 1 - (1-c)*nn u); \% relativt
80
  18 ML för volatil period
  time GFC = [time(811), time(1071)]; %vald turbulent period
82
  GFCtail = -\min(RP(811:1071), ceil((1071-810)*0.05));
           = GFCtail(end);
84
  GFCtail
           = GFCtail - uGFC;
85
  GFCtail
          = GFCtail(1:end-1); %dragningar från q(y)
86
87
  [GEV GFC ML, GFClogL] = fmincon(@(par) GEV logL(par, GFCtail), [0.1,0.01],
88
      [],[],[],[],[],[], @(par) GEV_con(par,GFCtail));
89
  M Plotta GEV-tätheterna och observationer
91
  X = linspace(0, max(Tail));
92
  histogram (Tail, 12);
  hold on
  plot (X, GEV pdf(GEV MLparam, X), X, GEV pdf(GEV GFC ML, X));
96
  title ("Högersvans för förluster enligt EVT");
  legend ("Förluster i svansen för hela serien", "GPD: Hela tidsserien", "GPD:
      2006 - 2010"
```

```
% Hämta data för optioner
100
   data3factors =
                      flip (readtable ("timeSeries.xlsx", "Sheet", "Problem3")); %
       senaste observationen sist
   data3options = readtable("timeSeries.xlsx", "Sheet", "Problem3 options");
102
103
          = data3factors.USD3MFSR /100;
                                                % 3M-LIBOR: enkel ränta given i %
   rs
104
         = \log(1+rs*0.25)/0.25;
                                                % översätts till kontinuerlig
   rc
105
         = data3factors.x SPX;
                                                % S&P500-kurser
106
         = data3factors.x_VIX/100;
                                                % årlig volatilitet given i %
   VIX
          = data3options. Holdings; % antal av varje option
108
          = 0.05*ones(3,1);
                                       % kontinuerlig utdelning
   \mathbf{q}
109
          = [3800; 3750; 3850];
                                       % Strike price
  Κ
110
         = ["C"; "P"; "C"];
                                       % call eller put
111
   i vol = (data3options.IV Bid + data3options.IV Ask)/200; % implicita "mid"
112
       volatiliteter
113
   today = data3factors.Timestamp(end);
   expiry = ["03/19/2021"; "04/16/2021"; "09/17/2021"]; %3 dje Fre i månad
115
           = wrkdydif(today, expiry, [1;2;5])/252; % 1,2,5 helgdagar på NYSE
116
117
   % Beräkna pris, portföljvärde och greker
118
   P = BSM(S 3(end), K, i vol, rc(end), T, q, type);
119
   V = h' * P;
120
121
   delta = Greeks (S 3(end), K, i vol, rc(end), T, q, type, "delta");
122
   vega = Greeks(S_3(end), K, i_vol, rc(end), T, q, type, "vega");
123
         = Greeks(S 3(end), K, i vol, rc(end), T, q, type, "rho");
124
125
   % Riskfaktormapping
126
   factors = diff([log(S 3),VIX,rc]); % log-avkastningar, delta-vol, delta-RFR
127
   C lamda = cov(factors); % deltaT = 1/252
128
  G
            = [S \ 3(end)*delta, vega, rho]';
129
130
   vol P = \operatorname{sqrt}(h'*G'*C \operatorname{lamda}*G*h)/V; \% \operatorname{relativt}
131
   VaR 3 = V*norminv(0.99)*vol P; \% USD
132
   % Marginellt bidrag
134
   % Bidrag från varje option
135
   \operatorname{grad} \operatorname{VaR} h = \operatorname{norminv}(0.99)*G'*C \operatorname{lamda*G*h}/(V*\operatorname{vol} P);
136
137
  % Bidrag från varje riskfaktor (exponering mot SPX, VIX, LIBOR)
138
  grad VaR hf = \operatorname{norminv}(0.99) * C \operatorname{lamda} * G * h / (V * vol P);
```

5.2 Plottar för VaR

```
function plotVaR(VaR, time, uppg, c, r)
  subplot (4,1,1:3)
  plot(time, VaR*100);
      title (uppg + ") Portfölj-VaR (%)");
      legend("c = " + c(1)*100 + "\%", "c = " + c(2)*100 + "\%", "Location", "
5
          northwest");
      ylabel("Relativa förluster");
6
  subplot (4,1,4)
  plot (time, r*100)
      ylabel("Avkastningar");
9
10
  if exist("save","var") || save
11
      saveas(gcf, uppg, "epsc");
12
  end
13
 end
14
```

5.3 Volatilitetsskattning med EWMA

```
function vol = ewma(lamda, r, init)
vol = zeros(size(r));

vol(1) = init;
for i = 2:length(vol)
    vol(i) = lamda*vol(i-1) + (1-lamda)*r(i-1)^2;
end

vol = sqrt(vol);
vol = vol(2:end);

end
```

5.4 Historisk simulering

```
function [VaR] = HistSim(R, win, c, vol)
  %HISTSIM
2
  %
      Beräknar var från historiska simuleringar
3
  %
      Om vol skickas in körs justering enligt Hull & White
  %
      Annars körs "standard" historisk simulering
5
6
  if ~exist("vol","var")
      vol = ones(size(R));
8
  end
9
10
  start = win + 2; % första perioden för att estimera VaR
11
12
  VaR = zeros(length(R)-win, length(c));
13
  Rnorm = R./vol;
14
  for i = 1:length (VaR)
          VaR(i, :) = -vol(i+win)*prctile(Rnorm(i:(i+win-1)), 100*(1-c));
16
17
  end
18
  end
19
```

5.5 Failiure rate test

5.6 Test för seriellt beroende

```
function [H0] = Christoffersen (I, alfa)
  %CHRISTOFFERSEN
  %
      Genererar elementen n och ML-skattningarna av pi med dessa
3
      Beräknar sedan teststorheten och jämför med chi2(1) på konfidensgrad
  %
5
  % 2st 2x2 matriser (95 & 99% VaR)
  N = zeros(2,2,2);
  for i = 1:(length(I)-1)
10
      N(I(i,1)+1, I(i+1,1)+1,1) = N(I(i,1)+1, I(i+1,1)+1,1) +1;
11
      N(I(i,2)+1, I(i+1,2)+1,2) = N(I(i,2)+1, I(i+1,2)+1,2) +1;
12
  end
13
14
  X = sum(I);
  T = length(I);
16
17
  pi = X/(T-1);
18
  Pi = N./sum(N,2);
20
 L0 = (1-pi).^{(T-1-X).*(pi).^{(X)}}
  L1 = Pi(1,1,:).^{(N(1,1,:)).*}Pi(1,2,:).^{(N(1,2,:)).*}Pi(2,1,:).^{(N(2,1,:)).*}Pi
      (2,2,:).^{(N(2,2,:))};
_{23}|L1 = squeeze(L1)';
24
  test = -2*log(L0./L1);
  H0 = test.*ones(2,2) - chi2inv(1-alfa'.*ones(2,2),1);
26
27
28
  end
```

5.7 Bivillkor för ML-skattning i EVT

```
function [c,ceq] = GEV_con(par, Tail)
%GEV_CON
% Bivillkoren för GEV. minustecken då villkoret är >

c = -1*(1+par(1)*Tail/par(2));
ceq = [];
end
```

5.8 Beräkning av optionspriser

```
function [Price] = BSM(S, K, vol, r, T, q, type)
  BSM
2
  %
      Pris för europeiska calls/puts enligt BSM
3
  Price = zeros(size(type));
5
  for i = 1:length (Price)
6
       Price(i) = blsprice(S,K(i),vol(i),r,T(i),q(i));
       if type(i) = "P"
8
           % PC-parity
9
           Price(i) = Price(i) + K(i) * exp(-r*T(i)) - S*exp(-q(i)*T(i));
10
11
      end
12
  end
13
  end
```

5.9 Beräkning av greker

```
function [greeks] = Greeks(S, K, vol, r, T, q, type, greek type)
  %GREEKS
2
  %
       partiella derivator enligt BSM
3
  d1 = @(S,K, vol, r, T, q) (log(S/K) + (r-q+0.5*vol^2)*T)/(vol*sqrt(T));
  d2 = @(S,K,vol,r,T,q) (d1(S,K,vol,r,T,q)-vol*sqrt(T));
  delta \quad c = @(S,K,vol,r,T,q) \quad exp(-q*T)*normcdf(d1(S,K,vol,r,T,q));
  delta \quad p = @(S,K,vol,r,T,q) - exp(-q*T)*normcdf(-d1(S,K,vol,r,T,q));
10
  vega = @(S,K,vol,r,T,q) S*exp(-q*T)*normpdf(d1(S,K,vol,r,T,q))*sqrt(T);
12
  rho c = @(S,K,vol,r,T,q) \quad K*T*exp(-r*T)*normcdf( d2(S,K,vol,r,T,q));
  rho p = Q(S, K, vol, r, T, q) - K*T*exp(-r*T)*normcdf(-d2(S, K, vol, r, T, q));
14
15
  greeks = zeros(size(type));
16
  for i = 1:length(greeks)
17
       if greek type == "delta"
18
           if type(i) == "C"
19
               greeks(i) = delta c(S,K(i),vol(i),r,T(i),q(i));
20
           else
21
               greeks(i) = delta p(S,K(i),vol(i),r,T(i),q(i));
22
           end
23
       elseif greek type == "vega"
24
           greeks(i) = vega(S,K(i),vol(i),r,T(i),q(i));
25
       else
26
           if type(i) = "C"
27
               greeks(i) = rho_c(S,K(i),vol(i),r,T(i),q(i));
           else
29
               greeks(i) = rho p(S,K(i),vol(i),r,T(i),q(i));
           end
31
      end
32
  end
33
34
  end
```