

GENERAL CHEMISTRY LAB COMPONENT CHE101L CONTENT: LAB 3

Dissolution Reactions: Heats of Dissociation

N AME		SECTION
STUDENT ID	······································	
DATE & TIME		
NAME OF THE INSTRUCTOR		
SIGNATURE & DATE		
REPORT SUBMISSION DATE		

EXPERIMENT 3

Session 1 (Qualitative)

DISSOLUTION REACTIONS: HEATS OF DISSOCIATION

Heats (exothermic or endothermic) are associated with chemical reactions. Quantity of heat evolved or absorbed is directly proportional to the amount reacted. Consider the reactions below:

Heat could be generated or absorbed in this reaction. When heat is generated/released from a chemical reaction it is called exothermic reaction (you can feel it by touching the reaction container (warmer) and when heat is absorbed the reaction is called endothermic (colder). When reactions occur in a reaction vessel (e.g., Beaker) in aqueous condition, formation and dissociation of chemical bonds occur simultaneously. Bond formation and dissociation involves heat energy of the system which is expressed by the term Q which is called enthalpy.

PROBLEM STATEMENT: Is heat energy related to chemical reactions, how?

This experiment is subdivided into two parts:

- I. QUALITATIVE
- II. QUANTITATIVE

PART I. QUALITATIVE

DATA COLLECTION:

Place about 30 mL of distilled water into a 50 mL beaker. Suspend a thermometer (having 0.1°C division mark) into the beaker using thermometer clamp and ring stand. Please make sure that the thermometer is not touching the bottom of the beaker, as any movement of the beaker could break the thermometer. Record the temperature of water in the beaker in every 30 seconds for 180 seconds.

FIGURE 1: Experimental setup for dissolution reaction

Place a moderate amount (which would be 1 to 3 cm³) of supplied anhydrous magnesium sulfate (MgSO₄) to the beaker. Mix vigorously with the glass rod for 2 minutes. Record your observations. (2 points)

Repeat this procedure with each of the following compounds with two different amounts (roughly 1:2): (2 points)

- a. Sodium Nitrate, NaNO₃
- b. Sodium Chloride, NaCl
- c. Hydrated Calcium Chloride, CaCl₂.2H₂O
- d. Ammonium Nitrate, NH₄NO₃

DATA ANALYSIS:

Compare and contrast the behaviors of these compounds. Identify any generalizations that can be made about the chemical reactions observed. What conclusions can be drawn from the data? (4 points)

SESSION 2(QUANTITATIVE)

PART II. QUANTITATIVE

DATA COLLECTION:

- a. Accurately weigh a 3 to 5 gm sample of MgSO₄ on the analytical balance. Record the exact mass here. For 4 different trials below measure four different weight samples (e.g., 1,2, 4 & 5 grams respectively).
- b. Suspend the thermometer into a polystyrene cup/coffee cup. Make sure of the thermometer is not touching the bottom of the cup. Measure 20 mL of distilled water by a volumetric cylinder into the cup and stir for 240 second. Record the temperature in every 20 seconds. After 240 seconds add MgSO₄ with vigorous mixing while continuing to record data for 5 minutes.
- c. Determine the temperature change, ΔT , for the reaction. This can be done from the difference of the highest temperature minus the slope of the line go through the points from first 240 seconds of data.
- d. Draw a temperature vs. time graph. Draw the best curve through the points and point out what is happing in each part of the curve.
- e. Repeat the whole procedure with NaNO_{3.}

DATA TABLE 1:

TRAILS

(I) Mass of N	/lgSO ₄ _0.5 gm	(II) Mass of N	/lgSO _{4_} 1. <u>0 gm</u>
Time (s)	Temp(⁰ C)	Time(s)	Temp(⁰ C)
20		20	
40		40	
60		60	
80		80	
100		100	
120		120	
140		140	
160		160	
180		180	
200		200	
220		220	
240		240	
260		260	
280		280	
300		300	

(III) Mass of MgSO ₄ _1 <u>.5 gm</u>		(IV) Mass of MgSO ₄ _2.0 gm
Time (s)	Temp(⁰ C)	Time(s) Temp(⁰ C)
20		20
40		40
60		60
80		80
100		100
120		120
140		140
160		160
180		180
200		200
220		220
240		240
260		260
280		280
300		300

DATA TABLE 2: TRAILS

(I) Mass of NaNO₃ _0.5 gm		(II) Mass of Na	aNO ₃ _1.00 gm
Time (s)	Temp(⁰ C)	Time(s)	Temp(⁰ C)
20		20	
40		40	
60		60	
80		80	
100		100	
120		120	
140		140	
160		160	
180		180	
200		200	
220		220	
240		240	
260		260	
280		280	
300		300	

(III) Mass of NaNO ₃ _1 <u>.5 gm</u>		(IV) Mass of N	laNO₃ _2.0 gm
Time (s)	Temp(⁰ C)	Time(s)	Temp(⁰ C)
20		20	
40		40	
60		60	
80		80	
100		100	
120		120	
140		140	
160		160	
180		180	
200		200	
220		220	
240		240	
260		260	
280		280	
300		300	

DATA ANALYSIS

1. What do you understand form both data sets you recorded and from the other trials? (4 points)

2.	Calculate the heat, Q & moles, n, of the reaction both data sets. Take help from the equitation Q = C x M x Δ T. Assume C = 4.18 Joules/gram 0 C and M is the mass of water (take the water density as 1.00 grams/cm 3). (4 points)
3.	Plot the collected data as moles, n vs. Q both sets of data. Number of moles can be calculated as n = (mass of sample in gram) / (molecular weight in grams/mole). Try to find algebraic equations. (4 points)
	FIGURE: plot here

MENTAL MODEL: Use the chemical equation given above to represent the dissolution reaction in this experiment. Draw a picture(s) which describes what is happening in atomic or in molecular level for either MgSO₄ or NaNO₃ system. How heat release or absorbed can be described from these pictures? (5 points)