Reinforcement Learning Training 2025

Model-Free Approach

Motivation

Recall in policy iteration

$$v_{k+1}(s) \leftarrow \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_k(s')\right]$$

- ullet To make this work, we need to know the model dynamics or p(s',r|s,a).
- However, we do now know p.
- Instead, we will resort to sampling.
 - Collecting experience by following some policy in the real world or running the agent through a policy in simulation.

Model-Free Learning

- Monte Carlo (MC) methods
- Temporal difference (TD) methods

Monte Carlo

- We use the law of large numbers (LLN) from statistics.
 - Average of samples is a good estimate for the actual unknown quantity.
 - This estimate becomes better and better as the number of trials of the experiment (samples) increases.

Monte Carlo

Re call that We want to calculate

$$v_\pi(s) = \mathtt{E}_\pi[G_t|S_t=s]$$

- We let the agent start from this state $S_t=s$, follow the policy π to take actions, and keep doing so until termination.
 - We call one round of actions an episode.
- We record the total sum of rewards for each episode.
- ullet We average the rewards to get an estimate of $v_\pi(s)$ for the policy π .

MC methods replaces expected returns with the average of sample returns.

Worked Example

RL Training 2025

Note

8

Solution

Sampling

• We simulate 4 episodes.

Episode	Path	Reward from \boldsymbol{A}
1	$A \rightarrow C$	G_1 = 1
2	$A\toB\toC$	G_2 = 0 + 2 = 2
3	$A\toB\toC$	G_3 = 0 + 2 = 2
4	$A \rightarrow C$	G_4 = 1

Results

Monte Carlo estimates the value function v(A) as the average return observed after visiting A.

$$v(A) = rac{G_1 + G_2 + G_3 + G_4}{4} = rac{1 + 2 + 2 + 1}{4} = rac{6}{4} = 1.5$$

Episode	Path	Actions at ${\cal A}$	Reward from Action at \boldsymbol{A}
1	$A \rightarrow C$	a_2	$G_1=1$
2	$A\toB\toC$	a_1	$G_2=0+2$
3	$A\toB\toC$	a_1	$G_3=0+2$
4	$A \to C$	a_2	$G_4=1$

RL Training 2025