- 1. Let μ be a finitely additive, nonegative measure on the integers \mathbb{Z} .
 - (a) Prove that the collection of full-measure sets $\{A \subset \mathbb{Z} : \mu(A) = \mu(\mathbb{Z})\}$ is a filter.
 - (b) Prove that if μ is $\{0,1\}$ valued then the collection of full-measure sets is an ultrafilter.
- **2.** Let $X = [0,1]^{[0,1]}$ and consider two topologies on X: the product topology and the topology induced by the sup norm $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$. Prove that topology induced by the sup norm is strictly finer than the product topology.
- **3.** Let X be the pushout in **Top** of the following diagram

where f sends * in the (x, y) summand to $(x, y) \in \mathbb{R}^2$ and the map g, in each summand, sends * to $0 \in \mathbb{R}$. Prove that X is homeomorphic to \mathbb{R}^3 with the lumberjack metric.

- **4.** Let CH be the category of compact Hausdorff spaces (objects are compact Hausdorff spaces morphisms are continuous maps). Prove that every morphism $X \to Y$ factors $X \to Z \to Y$ where the first map is a quotient map and the second map is a closed embedding.
- 5. Consider the surface obtained as a quotient of an octogon where edges are identified according to the following diagram. Cutting along the blue curve results in a surface with two boundary circles. If you cap the two new boundary circles with disks, what new surface do you get?

- **6.** There are only finitely many surfaces that admit an embedding of a 3 regular graph in which every face is a hexagon.
 - (a) Which are they?
 - (b) Pick one and draw an embedding of a 3 regular graph in which every face is a hexagon.
- 7. A compactification of a space X is an embedding of X as a dense subset of a compact Hausdorff space. You can make a category out of compactifications of X by letting the objects be compactifications with morphisms defined as follows: a morphism from a compactification $f_1: X \to K_1$ to a compactification $f_2: X \to K_2$ is a map $g: K_1 \to K_2$ so that $gf_1 = f_2$

Prove that the category of compactifications of X is *thin* meaning that there is at most one morphism between any two compactifications.