Fórmulas de Derivadas.

Sean f,g funciones; k,a constantes y n número entero.($n\in\mathbf{Z}^*)$

Función.	Derivada.
$f(x) = k.$ $f(x) = x.$ $f(x) = g(x) \pm h(x).$ $f(x) = k \cdot g(x).$	f'(x) = 0. f'(x) = 1. $f'(x) = g'(x) \pm h'(x).$ $f'(x) = k \cdot g'(x).$
$y = g(x) \cdot f(x).$	$y' = g(x) \cdot f'(x) + f(x) \cdot g'(x).$
$y = [g(x)]^n.$	$y' = n \cdot [g(x)]^{n-1} \cdot g'(x).$
$y = x^n$.	$y' = n \cdot x^{n-1}.$
$y = \frac{f(x)}{g(x)}.$	$y' = \frac{g(x) \cdot f'(x) - f(x) \cdot g'(x)}{[g(x)]^2}.$
$y = \cos f(x).$	$y' = -f'(x) \cdot \sin f(x).$
$y = \sin f(x).$	$y' = f'(x) \cdot \cos f(x).$
$y = \tan f(x).$	$y' = f'(x) \cdot \sec^2 f(x).$
$y = \cot f(x).$	$y' = -f'(x) \cdot \csc^2 f(x).$
$y = \sec f(x).$	$y' = f'(x) \cdot \sec f(x) \cdot \tan f(x).$
$y = \csc f(x).$	$y' = -f'(x) \cdot \csc f(x) \cdot \cot f(x).$
$y = \ln(f(x)).$	$y' = \frac{f'(x)}{f(x)}.$
$y = \log f(x).$	$y' = \frac{\log e \cdot f'(x)}{f(x)}.$
$y = e^{f(x)}.$	$y' = f'(x) \cdot e^{f(x)}.$
$y = a^{f(x)}.$	$y' = a^{f(x)} \cdot \ln a \cdot f'(x).$
$y = f(x)^{g(x)}$	$y' = f(x)^{g(x)} \left[g'(x) \cdot \ln f(x) + \frac{g(x) \cdot f'(x)}{f(x)} \right].$

Tabla de Integrales.

Sean u, v funciones y a = cte.

(a)
$$\int (du \pm dv) = \int du \pm \int dv$$

(m)
$$\int \csc v \cot v dv = -\csc v + C$$

(b)
$$\int a dv = a \int dv$$

(n)
$$\int \tan v dv = -\ln \cos v + C = \ln \sec v + C$$

(c)
$$\int dx = x + C$$

(o)
$$\int \cot v dv = \ln \sin v + C$$

(d)
$$\int v^n dv = \frac{v^{n+1}}{n+1} + C, \quad n \neq -1$$

(p)
$$\int \sec v dv = \ln(\sec v + \tan v) + C$$

(e)
$$\int \frac{dv}{v} = \ln v + C$$

(q)
$$\int \csc v dv = \ln(\csc v - \cot v) + C$$

(f)
$$\int a^v dv = \frac{a^v}{\ln a} + C$$

(r)
$$\int \frac{dv}{v^2 + a^2} = \frac{1}{a} \arctan \frac{v}{a} + C$$

(g)
$$\int e^v dv = e^v + C$$

(s)
$$\int \frac{dv}{v^2 - a^2} = \frac{1}{2a} \ln \frac{v - a}{v + a} + C \quad (v^2 > a^2)$$

(h)
$$\int \sin v dv = -\cos v + C$$

(t)
$$\int \frac{dv}{a^2 - v^2} = \frac{1}{2a} \ln \frac{a + v}{a - v} + C \quad (v^2 < a^2)$$

(i)
$$\int \cos v dv = \sin v + C$$

(u)
$$\int \frac{dv}{\sqrt{a^2 - v^2}} = \arcsin \frac{v}{a} + C$$

$$(j) \int \sec^2 v dv = \tan v + C$$

(v)
$$\int \frac{dv}{\sqrt{v^2 \pm a^2}} = \ln(v + \sqrt{v^2 \pm a^2}) + C$$

(k)
$$\int \csc^2 v dv = -\cot v + C$$

(w)
$$\int \sqrt{a^2 - v^2} dv = \frac{v}{2} \sqrt{a^2 - v^2} + \frac{a^2}{2} \arcsin \frac{v}{a} + C$$

(1)
$$\int \sec v \tan v dv = \sec v + C$$

(x)
$$\int \sqrt{v^2 \pm a^2} dv = \frac{v}{2} \sqrt{v^2 \pm a^2} \pm \frac{a^2}{2} \ln(v + \sqrt{v^2 \pm a^2}) + C$$