5.3.23

SAMYAK GONDANE - AI25BTECH11029

Question

For what value of k, will the following pair of equations have infinitly many solutions

$$2x + 3y = 7$$
 and $(k + 2)x - 3(1 - k)y = 5k + 1$

Given:

$$2x + 3y = 7 \tag{1}$$

$$(k+2)x - 3(1-k)y = 5k + 1 (2)$$

Augmented Matrix

Convert the system to an augmented matrix:

$$\begin{pmatrix} 2 & 3 & | & 7 \\ k+2 & -3+3k & | & 5k+1 \end{pmatrix}$$
 (3)

Let the second row be:

$$R_2 = (a \ b \ | \ c)$$
 where $a = k + 2$, $b = -3 + 3k$, $c = 5k + 1$ (4)

Eliminate First Entry of Row 2

Apply row operation:

$$R_2 \to R_2 - \frac{a}{2}R_1 \tag{5}$$

Compute each entry:

New second entry
$$= b - \frac{a}{2} \cdot 3$$

 $= (-3 + 3k) - \frac{3(k+2)}{2}$
 $= \frac{-6 + 6k - 3k - 6}{2} = \frac{3k - 12}{2}$

New third entry =
$$c - \frac{a}{2} \cdot 7$$

= $(5k+1) - \frac{7(k+2)}{2}$
= $\frac{10k+2-7k-14}{2} = \frac{3k-12}{2}$

So the matrix becomes:

$$\begin{pmatrix} 2 & 3 & | & 7 \\ 0 & \frac{3k-12}{2} & | & \frac{3k-12}{2} \end{pmatrix} \tag{6}$$

Condition for Infinitely Many Solutions

For infinitely many solutions, the second row must reduce to:

$$0x + 0y = 0 \Rightarrow \frac{3k - 12}{2} = 0 \Rightarrow 3k - 12 = 0 \Rightarrow k = 4$$
 (7)

Final Answer

$$\boxed{k=4} \tag{8}$$