Makago® Electronics, Inc. Turning ideas into products!

16980 Via Tazon, Suite 140, San Diego, CA 92127 Phone: (858) 613-8747 Fax: (858) 613-8748

e-mail: wdjansen@makago.com

January 6, 2006

TUV America, Inc. TCB 10040 Mesa Rim Road San Diego, CA 92921

Makago Electronics grants permission to Tanner Racing Products by Mittler Bros. dba Mittler Corporation to use the test report SC502203-08.

By:

William D. Jansen,

President

MEASUREMENT AND TECHNICAL REPORT

MAKAGO ELECTRONICS INCORPORATED 16980 Via Tazan, Suite 140 San Diego, CA 92127

DATE: 13 May 2005

This Report Concerns:	Original Grant: X	: X Class II Change:					
Equipment Type:	Ultimate RF Scal	e Transceiver Boa	ard				
Deferred grant requested per 47 0.457(d)(1)(ii)?	CFR	Yes: Defer until:	No: X				
Company Name agrees to notify Commission by: of the intended date of announc date.		N/A duct so that the g	grant can be issued on that				
Transition Rules Request per 15	.37? Yes:	No: X*					
(*) FCC Part 15, Paragraph(s) 15.1	109(a), 15.209(a),	and 15.249(a)					
Report Prepared b	y:	TÜV AMERICA, INC 10040 Mesa Rim Road San Diego, CA 92121-2912 Phone: 858 678 1400 Fax: 858 546 0364					

TABLE OF CONTENTS

		Pages
1.0	GENERAL INFORMATION	3
	1.1 Product Description	3
	1.2 Related Submittal Grant	3
	1.3 Tested System Details	3
	1.4 Test Methodology	3
	1.5 Test Facility	3
2.0	SYSTEM TEST CONFIGURATION	4
	2.1 Justification	4
	2.2 EUT Exercise Software	4
	2.3 Special Accessories	4
	2.4 Equipment Modifications	4
	2.5 Configuration of Test System	4
3.0	RECEIVER SPURIOUS EMISSIONS EQUIPMENT/DATA	
	RADIATED EMISSIONS EQUIPMENT/DATA	
	RADIATED SPURIOUS EMISSIONS EQUIPMENT/DATA	5 - 7
4.0	ATTESTATION STATEMENT	8

1.0 GENERAL INFORMATION

1.1 Product Description

None

1.2 Related Submittal Grant

None

1.3 Tested System Details

The FCC ID's for all equipment, plus descriptions of all cables used in the tested system are:

None

1.4 Test Methodology

Purpose of Test: To demonstrate compliance with the following tests.

Test Summary									
	Paragraph	,							
Test Description	Number	Low Channel	Mid Channel	High Channel	Pass/Fail				
Radiated Fundamental Field		93.82 dBμV/m pk	92.98 dBμV/m pk	94.51 dBμV/m pk* 91.1					
Strength	15.249(a)	90.8 dB _μ V/m av	91.6 dB _μ V/m av	dB _μ V/m av	Pass				
Radiated Spurious Emissions	15.249(a)/	-0.86 dB @	-0.79 dB @	-0.96 dB @					
(30 MHz to 10 GHz)	15.209(a)	1806 MHz	1830 MHz	1849 MHz	Pass				
Receiver Spurious Emissions	15.109(a)	No emissions detected	No emissions detected	No emissions detected	Pass				

^(*) Quasi Peak results indicate level at 93.7 dBuV/m.

Testing was performed according to the procedures in FCC/ANSI C63.4 and CSA 108.8-M1983.

1.5 Test Facility

The open area test site and conducted measurement data were tested by:

TÜV AMERICA, INC 10040 Mesa Rim Road San Diego, CA 92121-2912 Phone: 858 678 1400 Fax: 858 546 0364

The Test Site Data and performance comply with ANSI C63.4 and are registered with the FCC, 7435 Oakland Mills Road, Columbia Maryland 21046. All Measurement Data is acquired according to the content of FCC Measurement Procedure and ANSI C63.4, unless supplemented with additional requirements as noted in the test report.

2.0 SYSTEM TEST CONFIGURATION

2.1 Justification

The EUT was initially tested for FCC emissions in the following configuration:

See Test Setup Photos Exhibit

2.2 EUT Exercise Software

None

2.3 Special Accessories

None

2.4 Equipment Modifications

None

2.5 Configuration of Test System

See Test Setup Photos Exhibit

Report No. SC502203-08

3.0 RECEIVER SPURIOUS EMISSIONS EQUIPMENT/DATA RADIATED EMISSIONS EQUIPMENT/DATA RADIATED SPURIOUS EMISSIONS EQUIPMENT/DATA

Test Conditions: RECEIVER SPURIOUS EMISSIONS: FCC Part 15.109(a)

RADIATED EMISSIONS: FCC Part 15.209(a)

RADIATED SPURIOUS EMISSIONS: FCC Part 15.249(a)

The following measurements were performed at the San Diego Testing Facility:

☐ - Test not applicable

- - Roof (Small Open Area Test Site)
- - Canyon #1 (10- and 30-Meter Open Area Test Site), Carroll Canyon, San Diego

Test Equipment Used:

Model No.	Prop. No	. Description	Manufacturer	Serial No.	Date Cal'ed
E4440A	7500	Spectrum Analyzer	Hewlett Packard	MY43362168	12/04
8566B	744	Spectrum Analyzer	Hewlett Packard	2618A02913	02/05
AMF-5D-010180-35-	719	Preamplifier	Miteq	549460	VBU*
10P					
FF6548-2	877	2000 MHz High Pass Filter	Sage	005	VBU*
FF6549-1	783	900 MHz High Pass Filter	Sage	800	VBU*
3115	251	Double Ridge Guide Antenna	EMCO	2495	VBU*
3146	244	Log Periodic Dipole Antenna	EMCO	1063	07/04

Remarks: One year calibration cycle for all test equipment and sites. (*) Verified Before Use.

AMERICA

REPORT No	: SC502203	TESTER:	D. Gray	SPEC:	FCC Part,	15 para	15.249	1209
CUSTOMER	: Makago Electron	ics		TEST D	IST: 3	3 Meters		
EUT:	Ultimate RF Scal	e Transceiver I	Board	TEST S	ITE:	Roof		
EUT MODE:	Transmitting on 9	903 MHz		BICONIC	CAL:	491		
DATE:	May 11, 200	05		L	OG:	244		
NOTES:	No other detectal				HER:	251		
			tz for Pk; RBW 1					
	below 1GHz: RBI	W & VBW 100 I	Hz for Pk; RBW	100kHz an	d VBW 10H	z for AVG	_	
	CF = Antenna Fa	ctor + Cable Lo	ss - Preamplifier	Gain + Pre	selector Los	ss		

												v.beta	18	
FREQ (MHz)	(dE	TICAL Suv) av	(di	ZONTAL Buv) av	CF (dB/m)					(dB)	RGIN pk	EUT Rotation	Antenna Height	Notes
903	70.6	67.3	71.1	68.1	22.715	93.82	90.8	114	94	-20.2	-3.19	10	1	
915	69.9	68.8	70.2	68	22.775	92.98	91.6	114	94	-21			1	
927	68.7	66	71.6	68.2	22.905	94.51	91.1	114	94	-19.5	-2.9	0	1	QP result measures 93.728 p
1849	62.5	60.9			-7.857	54 64	53	74	54	10.4	-0.96	00	4.00	
2781	46.1	37.6			-3.8132				54		-20.2			High Channel
1000	-													
1806 2709	61.5 49.5	59.7	63.4	61.3	-8.158	55.24		74	54		-0.86			Low Channel
2709	49.5	40.2			-4.0148	45.49	36.2	74	54	-28.5	-17.8	186	1.15	
1830	62.4	61.2	60.7	59.7	-7.99	54.41	53.2	74	54	-19.6	-0.79	88	1	Mid Channel
2745	48.4	40.7			-3.914	44.49	36.8	74	54		-17.2		1.16	THE CHARGE
												_		
							\dashv				\dashv			
			\rightarrow											
												\dashv		
			T			\equiv						\Box	\Box	
	-													
												\exists		
	 					 -}				\Box		\exists		
					 +					\rightarrow	\rightarrow		$-\!\!\!-\!\!\!\!+$	
	 			\rightarrow			-					_ .	<u></u>	

4.0 ATTESTATION STATEMENT

GENERAL REMARKS:

EUT's transmit and receive is on the same frequency. Results indicated are for both modes.

SUMMARY:

All tests were performed per CFR 47, Part(s) 15.109(a), 15.209(a), and 15.249(a)

■ - Performed

The Equipment Under Test

■ - Fulfills the requirements of CFR 47, Part(s) 15.109(a), 15.209(a), and 15.249(a)

Testing Start Date: 11 May 2005

Testing End Date: 11 May 2005

- TÜV AMERICA, INC. -

Responsible Engineer:

Wail Ufus

David Gray (EMC Engineer)

July 5, 2005

Summary

These test show that changing from SMA connector to reverse SMA connector will (if anything) very slightly reduce the output power.

Test Setup

The normal SMA connector is shown on the left. The reverse SMA connector is shown on the right. The two antennas wires are the same length, 3.25".

The reverse SMA connector's antenna wire will be tested with and without the rubber antenna skin shown far right.

One Ultimate RF Scale's display box will be used to test both antenna connectors.

The masking tape marks the position of the display box on the test bench.

The test bench with the display box and spectrum analyzer.

SMA Connector

The SMA connector attached to display box.

The spectrum analyzer is set to maximum hold. The relative signal strength is -37.81 dBm, shown in both a picture of the spectrum analyzer and a screen print.

Reverse SMA Connector

The reverse SMA connector is used to connect the antenna wire without the rubber antenna skin.

The spectrum analyzer is set to maximum hold. The relative signal strength is -39.00 dBm, shown on the left in a picture of the spectrum analyzer and on the right in a screen print.

The reverse SMA connector is used to connect the antenna wire with the rubber antenna skin.

The spectrum analyzer is set to maximum hold. The relative signal strength is -38.11 dBm, shown on the left in a picture of the spectrum analyzer and on the right in a screen print.

Table of SMA vs. Reverse SMA

Connector	Spectrum Analyzer	Reverse SAM relative to SMA
SMA	-37.81 dBm	
Reverse SMA without rubber antenna skin	-39.00 dBm	-1.19 dBm
Reverse SMA with rubber antenna skin	-38.11 dBm	-0.30 dBm

Conclusion

The original FCC testing done with the SMA connector. These test show that changing from SMA connector to reverse SMA connector with or without the rubber antenna skin will (if anything) very slightly reduce the output power.