Kraken 2

Improved metagenomic analysis with Kraken 2 Derrick E. Wood, Jennifer Lu & Ben Langmead Genome Biol 20, 257 (2019)

https://doi.org/10.1186/s13059-019-1891-0

Konstantin Schütze
Advanced Bioinformatics 1
2021-09-15

Metagenomic Sequence Classification

Reads + Reference Genomes → Taxonomic assignment

Illumina HiSeq 4000

A taxomy https://doi.org/10.1038/s41598-018-30297-w Taxonomic distribution of saliva microbiome (kraken 1)

Why do we even need that?

 Wild rat microbiome improves lab rat health https://doi.org/10.1016/j.cell.2017.09.016

Zika virus evolution

https://doi.org/10.1038/nature22402

• Finding the source of Pseudomonas aeruginosa infections in a hospital http://dx.doi.org/10.1136/bmjopen-2014-006278

Rat Microbiome Diversity

Methods

- BLAST: Search entire read
 - o "Classic"
 - accurate
 - slow
- 2. **k-mers**: Split read into k-mers
 - faster
 - near-BLAST accuracy
- 3. marker genes: DB with only few genes (16S)
 - very fast
 - less accurate

Kraken 1

- 1. Build fast mapping reference genomes k-mers -> taxonomy id
 - Minimizer
 - Offset table
- 2. Query all k-mers from read
- 3. Assign read by majority assignment of k-mers

Minimizer (I-mer)

```
Minimizer: Lexicographically smallest I-mer inside the k-mer
ATGATCGTGCATCCATCAGTCATCAGTA <- initial k-mer
ATGATCGTGCATCCATCAGTCA
 TGATCGTGCATCCATCAGTCAT
  TATCGTGCATCCATCAGTCATC
   ATCGTGCATCCATCAGTCATCA <- minimizer¹ (l-mer)
    TCGTGCATCCATCAGTCATCAG
     CGTGCATCCATCAGTCATCAGT
      GTGCATCCATCAGTCATCAGTA
```

¹ignoring XOR low complexity masking

Kraken 1

- Group k-mers by minimizers
- Minimizer offset array
 - \circ 8 × 4^I bytes for I-mers
- Good for CPU caching

Can we compress k-mers even more?

Spaced k-mers

Mask *s* positions in I-mers (default: *s*=7)

AGTATCGTGCATCGATCAGTA <-

<- original k-mer

TCGTGCATCGATCAGTCATCA

<- initial minimizer

TCGTGCATCGATCAG-C-T-A

<- spaced minimizer

Kraken 2

- Spaced k-mers
- k-mers share minimizers -> store only distinct minimizers
 - o all k-mers -> few l-mers
- Only store hash of minimizer
- Defaults: k=35 l=31

Textbook Hash Maps

Compact Hash Table and Linear Probing

Load: 45% Load: 73%

Kraken 2: Memory Usage

- 4 bytes per entry: 15 bits hash, 17 bytes taxonomy id
- 70% load factor and D distinct minifier: **4D/0.7** bytes
- 85% less memory and 5x faster than Kraken 1

Building the Database

- When two minimizers collide we set them to the Lowest Common Ancestor (LCA) of both source species
- Example: Insulin in human and chimp -> LCA is Primate

NM_001008996.	1 AGCCCTCCAGGACAGGCTGCATCAGAAGAGGCCATCAAGCAGATCACTGT	50
NM_000207.3	1 AGCCCTCCAGGACAGGCTGCATCAGAAGAGGCCCATCAAGCAGATCACTGT	50
NM_001008996.	51 CCTTCTGCCATGGCCCTGTGGATGCGCCTCCTGCCCCTGCTGGTGCTGCT	100
NM_000207.3		100
NM_001008996.	101 GGCCCTCTGGGGACCTGACCCAGCCTCGGCCTTTGTGAACCAACACCTGT	150
NM_000207.3		150
NM_001008996.	151 GCGGCTCCCACCTGGTGGAAGCTCTCTACCTAGTGTGCGGGGAACGAGGC	200
NM_000207.3	.	200

k-mer classification -> read classification

Sequence classified as belonging to leaf of classification (highest-weighted RTL) path

Evaluation

Туре	Classifier	Memory Required	Time Required	Reference		
DNA	CLARK-S	170 Gb	40 min	Ounit and Lonardi, 2016		
	Kraken	190 Gb	1 min	Wood and Salzberg, 2014		
	Kraken2	36 Gb	1 min	Wood and Salzberg, 2014		
	KrakenUniq	200 Gb	1 min	Breitwieser et al., 2018		
Protein	DIAMOND	110 Gb (varies)	10 min	Buchfink et al., 2015		
	MMseqs2	85 Gb (varies)	9 h	Steinegger and Söding, 2017		
Markers	MetaPhlAn2	2 Gb	1 min	Truong et al., 2015		

Benchmarking Metagenomics Tools for Taxonomic Classification, Ye et al. 2019 https://doi.org/10.1016/j.cell.2019.07.010

High similarity between Kraken 1 and Kraken 2

System Requirements and Colab

- 100 GB of disk space
- 29 GB of RAM
- "strongly suggest against using NFS storage"
- Use viral genomes instead

https://colab.research.google.com/drive/1DHLljov7hSTg1fliDOCErUvl2dW-EM6X?usp=sharing

~End~

Kraken 2

Kraken 1

 $k = 35, \ell = 31$

 $k = 31, \ell = 15$

Hash Collisions? Not a Problem

Load Factor										
		10%	20%	30%	40%	50%	60%	70%	80%	90%
	26	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%
	25	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%
	24	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%
	23	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%
	22	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.001%
Bits	21	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.001%	0.002%
Truncated Hash Code Storage Bi	20	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.001%	0.005%
	19	0.000%	0.000%	0.000%	0.000%	0.000%	0.001%	0.001%	0.002%	0.008%
	18	0.000%	0.000%	0.000%	0.000%	0.001%	0.001%	0.001%	0.005%	0.017%
	17	0.000%	0.000%	0.000%	0.000%	0.001%	0.002%	0.004%	0.009%	0.037%
	16	0.000%	0.000%	0.001%	0.001%	0.002%	0.004%	0.008%	0.017%	0.074%
	15	0.000%	0.001%	0.002%	0.003%	0.005%	0.009%	0.016%	0.036%	0.150%
Ŧ	14	0.000%	0.002%	0.004%	0.006%	0.009%	0.017%	0.032%	0.073%	0.296%
ate	13	0.001%	0.003%	0.007%	0.012%	0.019%	0.032%	0.063%	0.145%	0.587%
Ĕ	12	0.002%	0.006%	0.012%	0.022%	0.038%	0.067%	0.123%	0.286%	1.145%
Ë	11	0.005%	0.013%	0.025%	0.044%	0.074%	0.129%	0.245%	0.555%	2.207%
	10	0.012%	0.026%	0.049%	0.086%	0.150%	0.260%	0.480%	1.101%	4.030%
	9	0.022%	0.052%	0.100%	0.174%	0.297%	0.505%	0.941%	2.132%	6.860%
	8	0.045%	0.105%	0.195%	0.345%	0.574%	0.992%	1.820%	3.966%	10.895%
	7	0.091%	0.216%	0.397%	0.686%	1.124%	1.931%	3.448%	6.936%	15.927%
	6	0.182%	0.430%	0.783%	1.341%	2.183%	3.647%	6.216%	11.358%	21.765%

Why do we even need that?

Antibiotics can harm stem cell transplantation recipients
 https://doi.org/10.1126/scitranslmed.aaf2311

Simple taxonomy with tax Ids

Insertions

Insert 8-bit minimizer hash with 0011 as least-sig bits, 0101 as most-sig (01010011), and 4 as taxon of origin. Immediately find empty slot.

(e)

0011

0101

0 0 0

0 0

0 0

0

0

as taxon of origin.

Insert 11000011, with 7 as Insert 10001100, with 8 taxon of origin. Scan as taxon of origin. Immediately find empty forward 1 row before finding match for 1100. slot. Note: this is a hash table collision. Set value = LCA(5, 7) = 1.

Insert 01010011, with 6 as Insert 11000100, with 5 taxon of origin. Immediately find empty Immediately find slot with matching most-sig bits, set value = LCA(4, 6) = 2.

Insert 11001101, with 9 as taxon of origin. Immediately find empty slot.

Queries

Query 8-bit minimizer hash 10001100. Find 8, the correct answer for that hash.

Query 01010011. Find 2, the LCA of the taxa for the two identical hashes we inserted in steps b and d.

Query 11000100. Find 1, the LCA of the taxa for two hashes, one matching the query and one (11000011) not. These were added in steps c and e.

Query 11000011. Scan forward 1 row before finding matching least-sig bits. Find 1, the LCA of the taxa for two hashes, one matching the query and one (11000100) not. These were added in steps c and e.

Query 11001100. Scan forward 1 row before finding matching least-sig bits. This yields the LCA 9, which is spurious because this query hash was never inserted.