

COURS #8

NAT, DHCP & protocoles L7

Introduction aux réseaux 2025 (Bloc 2) Corentin Badot-Bertrand

PREAMBULE

Rappels & mise en contexte

Quelques rappels sur le cours précédent avant de commencer

Dans l'épisode précédent

- Couche Transport (L4)
- Limites de la couche L3
- Protocoles TCP & UDP
- Cas d'usages

7. Application

6. Presentation

5. Session

4. Transport

3. Network

2. Data Link

1. Physical

Que signifie un « port » d'un point de vue réseau?

Concept de ports

Une « boite aux lettres » virtuelle pour contacter un processus

- Chaque paquet dans un segment de la couche OSI L4
- ... contient un port source & destination
- Un processus peut écouter sur le réseau via un port
- Les ports entre 0 et 1023 nécessitent des droits

Quelles sont les différences entre TCP & UDP?

TCP vs UDP

Quelques différences entre les protocoles de la couche L4

	Protocole TCP	Protocole UDP	
Connexion	3-way handshake	Sans connexion	
Fiabilité de livraison	Très fiable	Non-fiable	
Gestion des erreurs	Complète (garantie d'intégrité,)	Minime (checksum basique,)	
Vitesse	Lent	Rapide	
Ordre	Garanti	Non-garanti	

PARTIE #1

Réseaux privés & technique NAT

Network Address Translation, la traduction d'adresses IPv4

Deux adresses différentes pour une machine... Pourquoi?

Contexte d'un réseau local

Dans un réseau local standard IPv4 (domestique, école, ...)

- Chaque machine possède une IPv4 privée
 - 10.0.0.0/8
 - 172.16.0.0/12
 - 192.168.0.0/16
- Les machines peuvent communiquer en interne
- Les adresses IP privées ne sortent pas du réseau local
- Vous recevez une IPv4 publique pour communiquer au-delà

Network Address Translation (NAT)

Le routeur remplace l'adresse IP privée par une adresse IP publique

- Conçu entre autres pour apporter une réponse au manque d'IPv4
- Plusieurs appareils partagent la même adresse IPv4
- 3 catégories
 - NAT statique
 - NAT dynamique
 - NAT overlay

NAT statique (one-to-one)

Chaque adresse IP privée est reliée à une adresse IP publique statique

NAT dynamique

Chaque connexion sortante est associée dynamiquement à une IP publique

(de façon temporaire et partagée entre les machines locales)

NAT overlay (Port Address Translation)

Utilise les ports (TCP/UDP) pour partager une même adresse IPv4

Port Forwarding

Autoriser du trafic entrant vers une machine via une règle NAT statique

Port Forwarding

Risque de sécurité pour votre réseau domestique

Parental Control Firewall Remote Access **Portmapping** Port Map Rules External External Remote Internal host Description Enable Service Protocol Lan port start host end On Off **UPNP** UDP 192.168.1.3 0.0.0.0 57669 57669 57669 Teredo External External Internal Remote Enable Service Protocol Lan port Description start end host host • Create new portmap

PARTIE #2

Découverte des protocoles OSI L7

Les protocoles de la couche applicative qui reposent sur TCP & UDP

Introduction

Présentation des protocoles « applicatifs » les plus répandus

- On parle souvent de protocoles L7 Application
- ... car ils se reposent sur les autres couches réseau
- Les couche L5 Session & L6 Presentation sont trop théoriques
- ... et ne seront pas abordées dans ce cours (cf. TCP/IP)

	7. Application	Couche d'interaction machine-humain
Application	6. Presentation	Vérifie le format et le chiffrement
	5. Session	Garde une connexion avec la machine
Transport	4. Transport	Segmente les données et gère les flux
Internet	3. Network	Définition du parcours à travers le réseau
Network Access Layer	2. Data Link	Gestion d'erreurs, de vitesse,
	1. Physical	Encodage physique des données

. . .

.

	7. Application	Couche d'interaction machine-humain
Application	6. Presentation	Vérifie le format et le chiffrement
	5. Session	Garde une connexion avec la machine
Transport	4. Transport	Segmente les données et gère les flux
Internet	3. Network	Définition du parcours à travers le réseau
Network Access Layer	2. Data Link	Gestion d'erreurs, de vitesse,
	1. Physical	Encodage physique des données

. . . .

.

.

Liste de ports TCP & UDP (bases)

Port	Protocole	ТСР	UDP	Description
21	FTP			Transfert de fichiers (non-sécurisé)
22	SSH			Secure Shell & transfert de fichiers (sécurisé)
23	Telnet			Communications textuelles (non-sécurisé)
25	SMTP			Protocole d'envoi email (non-sécurisé)
53	DNS			Domain Name System
67/68	DHCP			Configuration de réseau dynamique
80	HTTP			Hypertext Transfer Protocol (non-sécurisé)
110	POP3			Protocole de réception email (non-sécurisé)

Liste de ports TCP & UDP (bases)

Port	Protocole	ТСР	UDP	Description
123	NTP			Network Time Protocol, synchronisation du temps
143	IMAP			Protocole de réception email (non-sécurisé)
443	HTTPS			Hypertext Transfer Protocol (sécurisé, TLS/SSL)
465	SMTP (s)			Protocole d'envoi email (sécurisé, TLS/SSL)
993	IMAP (s)			Protocole de réception email (sécurisé, TLS/SSL)
995	POP3 (s)			Protocole de réception email (sécurisé, TLS/SSL)
3306	MySQL			Base de données MySQL
5432	PostgreSQL			Base de données PostgreSQL

PARTIE #3

Protocole DHCP

Configuration dynamique de votre réseau local

Le réseau devient opérationnel...

Nous avons maintenant

- Plusieurs machines connectées (>100)
- De la commutation (L2)
- Du routage (L3)
- Du transfert fiable (L4)
- Une façon de partager une même IP publique

Comment est-ce que les machines reçoivent une IPv4 privée ?

DHCP

Dynamic Host Configuration Protocol

- Fournit automatiquement une adresse IP dans un réseau
- Propose également d'autres informations (network mask, default gateway, ...)
- Serveur DHCP gère un « pool » d'adresses disponibles
- Une adresse « expire » au bout d'un certain délais (bail)
- Permet de faire une attribution statique pour certains clients (imprimantes, ...)

DHCP, le déroulement

L'obtention d'une adresse IP se déroule en 4 phases

192.168.1.5

192.168.1.5

192.168.1.6

192.168.1.5

192.168.1.6

192.168.1.5

192.168.1.6

DHCP

Options DHCP

DHCP fournit – en plus d'une IPv4 - aux clients également des options

- Masque réseau
- Route par défaut (router)
- Serveur NTP
- Serveur DNS
- Configuration personnalisée

PARTIE #4 Protocole DNS

La conversion entre noms & adresses IP, pour un réseau plus agréable

DNS

Domain Name System

- Effectue de la résolution de noms vers des adresses IP
- Permet d'organiser les machines avec une nomenclature logique
- Principalement UDP, fonctionne également en TCP (pour transfert de zone)
- Registre mondial qui peut être requeté

Résolution DNS

Les types de serveur DNS

Serveurs DNS

- Résolveur récursif : premier point de contact, gère appels DNS & cache
- ... par exemple 1.1.1.1 (CloudFlare) ou 8.8.8.8 (Google)
- Root server : 13 serveurs, connu de tous résolveurs redirigent vers TLD
- TLD server: contient toutes les informations des top-level domains
- ... par exemple .com, .be, .fr mais ne fais pas autorité
- Authoritative server : contient informations spécifiques au nom de domaine
- ... il possède donc les enregistrements DNS

Résolution DNS

Enregistrements DNS

Туре	Signification
Α	Adresse <mark>IPv4</mark>
AAAA	Adresse IPv6
CNAME	Alias de domaine
NS	Serveur DNS (enfant, backup,)
MX	Serveur <mark>mail</mark> relié au domaine
TXT	Informations <mark>textuelles</mark>

Load balancing DNS

Le load balancing est une technique de répartition de charge

- L'objectif est d'offrir de la résilience et de soulager l'infrastructure
- Le DNS peut servir de load balancer
- Via l'assignation de plusieurs cibles A/AAAA sur un même domaine
- Attention à la mise en cache DNS

Exemple de load balancing (cloud AWS)

Windows possède un client « nslookup » (« dig » sous Linux)

nslookup -type=a aws.com

Exemple de load balancing (cloud AWS)

