8/6/24, 10:14 PM Online Degree

Х

About (/about) | Notifications \bigcirc (/mynotifications) | 23113110286@sastra.ac.in \checkmark (/profile)

SASTRA » Numerical & Statistical Analysis

≡

Unit 1 - UNIT - I: Transcendental Polynomial & Simultaneous equations and Interpolations

Course outline	Assessment 3	
UNIT - I : Transcendental	The due date for submitting this assignment has passed. Due on 2023-04-16, 2	2.50 IST
Polynomial &	As per our records you have not submitted this assignment.	3.39 131.
Simultaneous	Interpolation is the process of computing	1 point
equations and	the values outside the interval	•
☐ Interpolations ()	intermediate values of a function	
Lecture 1: Squaring	O both (a) and (b)	
method for complex	onone of the above	
roots - Muller, Birge-	No, the answer is incorrect.	
Vieta method (week 1)	Score: 0	
(unit?unit=1&lesson=2)	Accepted Answers: intermediate values of a function	
Lecture 2 Squaring method for complex	2) If interpolation is required near the middle values of the table, we use	1 point
roots - Graeffe's Root	Stirling's interpolation formula	
squaring method (week	Bessel's interpolation formula	
1) (unit?	Both (a) and (b)	
unit=1&lesson=3)	O Newton's backward formula	
CLecture 3 - Muller, Birge	No, the answer is incorrect. Score: 0	
Vieta and Graeffe's root	Accepted Answers:	
squaring method (week	Stirling's interpolation formula	
1) (unit? unit=1&lesson=4)	3) Find ▼(29) given (3,7);(4,11);(5,16);(6,22) and (7,29)	1 point
,	○ 4	•
Quiz: Assessment 1	05	
(assessment? name=16)	○ 6	
,	O 7	
Lecture 4 : Solution of simultaneous	No, the answer is incorrect. Score: 0	
equations - Gauss	Accepted Answers:	
Jacobi I method (week	<i>'</i>	
2) (unit? unit=1&lesson=5)	4) Find Δ(7) given (3,7);(4,11);(5,16);(6,22) and (7,29)	1 point
	O 4	
Lecture 5 - Solution of	○ 5	
simultaneous	○ 6	
equations - Gauss Seidel method (week 2)	07	
(unit?unit=1&lesson=6)	No, the answer is incorrect. Score: 0	
,	Accepted Answers:	
Lecture 6 : Problems in Gauss Jacobi and	4	
Gauss seidel methods	5) Find the values of viet vi 04 and vi 00 from the following data (/00) 0.040 (/00) 0.0007 (/00) 0.4004 (/00)	
(week 2) (unit?	5) Find the values of y at $x = 21$ and $x = 28$ from the following data. $y(20) = 0.342$, $y(23) = 0.3907$, $y(26) = 0.4384$, $y(29) = 0.4848$	1 point
unit=1&lesson=7)		
Lecture 7 : Finite	y(21) = 0.3583, y(28) = 0.4695	
difference operator –	○ y(21) = 0.3538, y(28) = 0.4596 ○ y(21) = 0.5383, y(28) = 0.6495	
Relation between	y(21) = 0.3583, $y(20) = 0.0495y(28) = 0.3583$, $y(21) = 0.4695$	
operators (week 2)	No, the answer is incorrect.	
(unit?unit=1&lesson=8)	Score: 0	
Lecture 8 : Finite	Accepted Answers:	
Difference operator -	y(21) = 0.3583, y(28) = 0.4695	

ŗ	problems (week 2)	6) Newton forward interpolation formula is used when the interval of difference is	1 point
(unit?unit=1&lesson=9)	O varies	
00	Quiz: Assessment 2	constant	
(assessment?	ovaries or constant	
r	name=17)	onone of the above	
0	ecture 9 : Interpolation	No, the answer is incorrect. Score: 0	
	Introduction (week 3)	Accepted Answers:	
(unit?	constant	
ι	ınit=1&lesson=10)	7) Newton backward interpolation formula is used when the interval of differencing is	1 point
0	ecture 10 :Newton's	varies	
f	orward and backward	© constant	
	nterpolation (week 3)	ovaries or constant	
,	unit?	O none of the above	
	ınit=1&lesson=11)	No, the answer is incorrect.	
	ecture 11:	Score: 0 Accepted Answers:	
	nterpolation - problems	constant	
	week 3) (unit? ınit=1&lesson=12)	8) Lagranges interpolation formula is used when the interval of differencing is	d
		, , , , , , , , , , , , , , , , , , , ,	1 point
	Quiz: Assessment – 3	ovaries constant	
	assessment?	varies or constant	
ı	name=18)	one of the above	
	UNIT - II :	No, the answer is incorrect.	
	Numerical	Score: 0	
	differentiation and	Accepted Answers: varies	
\oplus	Integration ()		
		The following function(s) can be used for interpolation	1 point
	UNIT - III :	trigonometricpolynomial	
	Numerical Solutions of ODE	© exponential	
\oplus	()	All of the above	
	V	No, the answer is incorrect.	
	UNIT - IV :	Score: 0	
	Statistical	Accepted Answers: All of the above	
	distributions and		
	Test of hypothesis	10) Find the parabola passing through the points (0, 1), (1, 3), (3, 55) using Lagrange's interpolation formula.	1 point
\oplus	0	\bigcirc y = 8x^2 - 6x - 1	
		$y = 8x^2 + 6x + 1$	
	Unit V : Non-	$y = 8x^2 + 6x - 1$	
	parametric	\bigcirc y = 8x^2 6x + 1	
	statistical methods & Time	No, the answer is incorrect. Score: 0	
\oplus	series analysis ()	Accepted Answers:	
Ü	series unarysis ($y = 8x^2 - 6x + 1$	
		11) The function y=2x^2+3x+1 passes through (1,6);(3,28) and (10,231). The process of finding y when x=2 is called	1 point
		○ interpolation	. ,
		extrapolation	
		guessing	
		regression	
		No, the answer is incorrect.	
		Score: 0 Accepted Answers:	
		interpolation	
		12) Given n points and the function y=f(x) passing through all the data points. If the value of f(x) is required for a value of x	1 point
		outside the range of the given data, the procedure is called	-
		interpolation extrapolation	
		guessing	
		o regression	

13) Find y(35) using Stirling's formula. y(20) = 512, y(30) = 439, y(40) = 346, y(50) = 243.

395

No, the answer is incorrect. Score: 0 Accepted Answers: extrapolation

1 point

8/6/24, 10:14 PM Online Degree

390	
400	
○ 385	
No, the answer is incorrect. Score: 0	
Accepted Answers: 395	
14) Using central difference formula find $y(1.22)$ given $y(1) = 0.84147$, $y(1.1) = 0.89121$, $y(1.2) = 0.93204$, $y(1.3) = 0.96356$, $y(1.4) = 0.98545$, $y(1.5) = 0.99749$.	1 point
0.9553	
0.9391	
0.8889	
0.9139	
No, the answer is incorrect. Score: 0	
Accepted Answers: 0.9391	
15) Using Lagrange's formula find y(19) given that y(11) = 14646, y(17) = 83526, y(21) = 194486, y(23) = 279846.	1 point
O 130198	
O 130189	
O 130891	
O 130981	
No, the answer is incorrect. Score: 0	
Accepted Answers:	
130198	

FOLLOW US

(https://www.facebook.com/swayammoocs/)

Privacy Policy (/privacy_policy) | Terms of Use (/terms_of_use) | Honor Code (/honor_code)

© 2024 SWAYAM. All rights reserved. Initiative by : MHRD (Govt of India)