实验四 RC、RLC 电路的暂态响应

实验日志

电路参数:

直流电源: Us = 5V

电阻 R = 1k Ω

电容 C=1kµF

放电:

 $Uc(t_0) = 386 \text{mV}$

 $Uc(t_0 + \tau) = 142mV$

T = 1.02s

充电:

US = -64mV, $Uc(t_0) = -169mV$

 $Uc(t_0+\tau) = -102.2 mV$, T = 1.06s

二、方波激励下三种情况的波形

1. 1kHz, 5V, $0.1 \mu F$, 100Ω

2. 1kHz, 5V, 0.1μ F, $1k\Omega$

3. 1kHz, 5V, $0.1 \mu F$, $5.1k\Omega$

峰峰值: $V_S = 512 \text{mV}$, $V_C = 52 \text{mV}$, $V_R = 552 \text{mV}$

三、同时测量阶跃和冲激响应

电路参数:

电源: 3V, 400Hz, 方波

 $R1 = 20\Omega$, $R2 = 2k\Omega$

四、 测量二阶电路欠阻尼的状态轨迹,通过测量计算衰减系数、振荡角频率,并与理论 值比较

电路参数:

信号源 U_m = 5V,方波 f= 200Hz,L= 20mH(10+10 串联),C=0.1 μ F,电阻 R=100 Ω 理论值 α $_0$ = R/2L = 2500, ω $_0$ = 1/sqrt(LC)= 22360 rad/s 测量得 h1 = 256mV,h2 = 68mV, T_d = 292 μ s, ω_d = 2 π / T_d = 21517 rad/s 计算得 α $_1$ = $(1/T_d)$ *ln (h1/h2) = 4539 ω_d * α = α = α = α = 21895 rad/s,与 α = α & α = α =

分析:

 α_1 与理论值 α_0 相差很大,经分析认为是在计算理论值时,分子中的"R"没有包含电感的内阻和信号源的内阻。结合上次实验结果,上次 4 个 10mH 的电容串联等效电阻为 90.72Ω ,本次实验中记 $R_L=45\Omega$,信号源内阻 $R_S=48\Omega$ 。

若将理论值修正为 $α'=(R+R_L+R_S)/2L=4825$,则其与实际测量值计算得到的 $α_1$ 较为接近。由此可以推断, $α_1$ 与 $α_0$ 的较大误差是电感和信号源内阻产生的。

数据:

h1 = 256mV

h2 = 68mV

 $T_d = 292 \mu s$

李萨如图形

五、 实验中遇到的问题

在实验中我和边上一位同学都遇到了这样的问题:在任务一中,若采用 roll 模式,在利用光标 cursor 测量纵坐标 Y 时,当时基调到约 50ms 以上时,Y 的读数就会显示****,但 X 不受影响。我在多次重启示波器后在某一次测量中把通道 1 改成通道 2 测量可以用了,但是那位同学的解决不了。