# R: A Hitchhikers Guide to Reproducible Research

- My favourite mistake

Brendan Palmer,

Clinical Research Facility - Cork & School of Public Health



@B\_A\_Palmer





### Some of my best friends use spreadsheets

Ziemann et al. Genome Biology (2016) 17:177 DOI 10.1186/s13059-016-1044-7

Genome Biology

COMMENT Open Access



# Gene name errors are widespread in the scientific literature

Mark Ziemann<sup>1</sup>, Yotam Eren<sup>1,2</sup> and Assam El-Osta<sup>1,3\*</sup>

#### Abstract

The spreadsheet software Microsoft Excel, when used with default settings, is known to convert gene names to dates and floating-point numbers. A programmatic scan of leading genomics journals reveals that approximately one-fifth of papers with supplementary Excel gene lists contain erroneous gene name conversions.

frequently reused. Our aim here is to raise awareness of the problem.

We downloaded and screened supplementary files from 18 journals published between 2005 and 2015 using a suite of shell scripts. Excel files (.xls and.xlsx suffixes) were converted to tabular separated files (tsv) with ssconvert (v1.12.9). Each sheet within the Excel file was converted to a separate tsv file. Each column of data in the tsv file was screened for the presence of gene sym-

## \*cough\* We've known for a long time \*cough\*

### **BMC Bioinformatics**



Correspondence



Mistaken Identifiers: Gene name errors can be introduced inadvertently when using Excel in bioinformatics

Barry R Zeeberg<sup>†1</sup>, Joseph Riss<sup>†2</sup>, David W Kane<sup>3</sup>, Kimberly J Bussey<sup>1</sup>, Edward Uchio<sup>4</sup>, W Marston Linehan<sup>4</sup>, J Carl Barrett<sup>2</sup> and John N Weinstein<sup>\*1</sup>

2004

|           | & &   | - National | de de lord | d | 20      | rate of      | day design | gal | æ 8       | , de los | not defeat |
|-----------|-------|------------|------------|---|---------|--------------|------------|-----|-----------|----------|------------|
| 9         | e e e | Pale.      | Sale.      |   | aene ex | cel.gene2dat | te.xls     |     | de dadie  | Pale.    | Bale.      |
| <b>\$</b> | A     | В          | C          | D | E       | F            | G          | Н   | 1         | J        | K          |
| 1         | APR-1 | 35885      | 1-Apr      |   | OCT-1   | 36068        | 1-Oct      |     | SEP2      | 36039    | 2-Sep      |
| 2         | APR-2 | 35886      | 2-Apr      |   | OCT-2   | 36069        | 2-0ct      |     | SEP3      | 36040    | 3-Sep      |
| 3         | APR-3 | 35887      | 3-Apr      |   | OCT-3   | 36070        | 3-0ct      |     | SEP4      | 36041    | 4-Sep      |
| 4         | APR-4 | 35888      | 4-Apr      |   | OCT-4   | 36071        | 4-Oct      |     | SEP5      | 36042    | 5-Sep      |
| 5         | APR-5 | 35889      | 5-Apr      |   | OCT-6   | 36073        | 6-Oct      |     | SEP6      | 36043    | 6-Sep      |
| 6         | DEC-1 | 36129      | 1-Dec      |   | OCT1    | 36068        | 1-Oct      |     | SEPT1     | 36038    | 1-Sep      |
| 7         | DEC-2 | 36130      | 2-Dec      |   | OCT11   | 36078        | 11-0ct     |     | SEPT2     | 36039    | 2-Sep      |
| 8         | DEC1  | 36129      | 1-Dec      |   | OCT2    | 36069        | 2-0ct      |     | SEPT3     | 36040    | 3-Sep      |
| 9         | DEC2  | 36130      | 2-Dec      |   | OCT3    | 36070        | 3-0ct      |     | SEPT4     | 36041    | 4-Sep      |
| 10        | MAR1  | 35854      | 1-Mar      |   | OCT4    | 36071        | 4-Oct      |     | SEPT5     | 36042    | 5-Sep      |
| 11        | MAR2  | 35855      | 2-Mar      |   | OCT6    | 36073        | 6-Oct      |     | SEPT6     | 36043    | 6-Sep      |
| 12        | MAR3  | 35856      | 3-Mar      |   | OCT7    | 36074        | 7-0ct      |     | SEPT7     | 36044    | 7-Sep      |
| 13        | NOV1  | 36099      | 1-Nov      |   | SEP-1   | 36038        | 1-Sep      |     | SEPT8     | 36045    | 8-Sep      |
| 14        | NOV2  | 36100      | 2-Nov      |   | SEP-2   | 36039        | 2-Sep      |     | SEPT9     | 36046    | 9-Sep      |
| 15        |       |            |            |   | SEP1    | 36038        | 1-Sep      |     |           |          |            |
| 16        |       | et1 Sheet2 |            |   |         |              |            |     |           |          | )4 1       |
| Rea       | dy    |            |            |   |         | Sum=0        |            | 05  | CRL OCAPS | ● NUM    |            |

### Excel also frequently gets clipboard amnesia



The answer, unfortunately, is **no**, you can't stop this from happening.



As described by Joel Spolsky, developer and program manager for excel:





The official reason is that Excel doesn't really have cut and paste, it has move and copy. That's necessary because Excel automatically does reference fix up. For example, if cell A2 is defined as =A1, and you move cell A1 to A3, cell A2 will be updated to =A3.

If Excel actually cut things to the clipboard you would somehow need to have a reference pointing >into< the clipboard which is bizarre and for which there is no reasonable syntax. In other words, Excel doesn't want to leave you with dangling references during a move operation and isn't confident that it would be able to fix them up correctly when you completed the move by selecting "Paste."

Joel Spolsky 3/9/2004

#### source

What this means is that because of the difficulty inherent in the way excel maintains *references*, at the time of development there was no good way to store these references outside of excel and have them remain dynamic to be re-inserted. Once you change *focus* excel's ability to retain your original references is lost.

Unfortunately, MS does not consider this a bug.

### But it doesn't end there

### Date and time expressed according to ISO 8601 [refresh]

**Date** 2019-10-15

Date and time in 2019-10-15T19:49:52+00:00

UTC

2019-10-15T19:49:52Z

20191015T194952Z

Week 2019-W42

Date with week 2019-W42-2

number

**Date without** --10-15<sup>[1]</sup>

year

Ordinal date 2019-288

- YYYY-MM-DD or YYYYMMDD
- Type this into Excel



- And hit return

| 1 | А          | В |
|---|------------|---|
| 1 | 15/10/2019 |   |
| 2 |            |   |

- DD/MM/YYYY

### Excel is intuitive to use





## But a breeding ground for errors



|   |         | - i > | < 4   | fx       |             |
|---|---------|-------|-------|----------|-------------|
| 4 | Α       | В     | С     | D        | Е           |
| 1 | Patient | Age   | Group | t.test   |             |
| 2 | 1       | 24    | Α     |          |             |
| 3 | 2       | 23    | Α     |          |             |
| 4 | 3       | 21    | Α     |          |             |
| 5 | 4       | 45    | В     |          |             |
| 6 | 5       | 36    | В     |          |             |
| 7 | 6       | 68    | В     | 0.0596   |             |
| 8 |         |       |       | 0.023871 | <b>////</b> |
| 9 |         |       |       | 0.051999 |             |

|    |         | - : > | < 🗸   | <i>f</i> x =T.T | EST(B2:B4                                         | ,B5:B6, 1, 1           |     |                 |   |      |             |              |     |
|----|---------|-------|-------|-----------------|---------------------------------------------------|------------------------|-----|-----------------|---|------|-------------|--------------|-----|
|    | Α       | В     | С     | D               | E                                                 | F                      | G   | Н               | 1 | J    | K           | L            | М   |
| 1  | Patient | Age   | Group | t.test          |                                                   |                        |     |                 |   |      |             |              |     |
| 2  | 1       | 24    | Α     |                 |                                                   |                        |     |                 |   |      |             |              |     |
| 3  | 2       | 23    | Α     |                 |                                                   |                        |     |                 |   |      |             |              |     |
| 4  | 3       | 21    | Α     |                 |                                                   |                        |     |                 |   |      |             |              |     |
| 5  | 4       | 45    | В     |                 |                                                   |                        |     |                 |   |      |             |              |     |
| 6  | 5       | 36    | В     |                 |                                                   |                        |     |                 |   |      |             |              |     |
| 7  | 6       | 68    | В     | =T.TEST(B       | 2:B4,B5:B6                                        | , 1, 1                 |     |                 |   |      |             |              |     |
| 8  |         |       |       | T.TEST(aı       | rray1, array2                                     | , tails, <b>type</b> ) | red |                 |   | T.TE | ST performs | a paired t-T | est |
| 9  |         |       |       |                 |                                                   |                        |     | ual variance (h |   | l l  |             |              |     |
| 10 |         |       |       |                 | 3 - Two-sample unequal variance (heteroscedastic) |                        |     |                 |   |      |             |              |     |

|   |         | ·     > | < 4   | fx       |              |
|---|---------|---------|-------|----------|--------------|
| 4 | А       | В       | С     | D        | Е            |
| 1 | Patient | Age     | Group | t.test   |              |
| 2 | 1       | 24      | Α     |          |              |
| 3 | 2       | 23      | Α     |          |              |
| 4 | 3       | 21      | Α     |          |              |
| 5 | 4       | 45      | В     |          |              |
| 6 | 5       | 36      | В     |          |              |
| 7 | 6       | 68      | В     | #N/A     |              |
| 8 |         |         |       | 0.007552 | <b>/////</b> |
| 9 |         |         |       | 0.073071 |              |





### The workbook you opened contains automatic links to information in another workbook.

Do you want to update this workbook with changes made to the other workbook?

- To update all linked information, click Update. You must have access to all of the linked workbooks.
- . To keep the existing information, click Ignore Links.
- To open your workbook and receive more options to which links get updated, click Edit Links.

Edit Links

Update

Ignore Links





## Taking small steps to achieve big changes

THE AMERICAN STATISTICIAN 2018, VOL. 72, NO. 1, 2–10 https://doi.org/10.1080/00031305.2017.1375989







### **Data Organization in Spreadsheets**

Karl W. Broman<sup>a</sup> and Kara H. Woo<sup>b</sup>

<sup>a</sup>Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI; <sup>b</sup>Information School, University of Washington, Seattle, WA

#### **ABSTRACT**

Spreadsheets are widely used software tools for data entry, storage, analysis, and visualization. Focusing on the data entry and storage aspects, this article offers practical recommendations for organizing spreadsheet data to reduce errors and ease later analyses. The basic principles are: be consistent, write dates like YYYY-MM-DD, do not leave any cells empty, put just one thing in a cell, organize the data as a single rectangle (with subjects as rows and variables as columns, and with a single header row), create a data dictionary, do not include calculations in the raw data files, do not use font color or highlighting as data, choose good names for things, make backups, use data validation to avoid data entry errors, and save the data in plain text files.

#### **ARTICLE HISTORY**

Received June 2017 Revised August 2017

#### KEYWORDS

Data management; Data organization; Microsoft Excel; Spreadsheets

### Our real life experiment...



- UV light has potential to change the secondary metabolite composition (colour) of bronze/red lettuce
- Experimental setup:
  - 3 lettuce varieties
  - 3 UV filter conditions
  - 3 week duration

## Real data comes with real problems







| 4    | Α           | В              | С          | D         | E            | F          | G       | Н       | 1          | J           | K     |
|------|-------------|----------------|------------|-----------|--------------|------------|---------|---------|------------|-------------|-------|
| 1 id | ł           | week_no        | filter_nam | treatment | replicate_no | flavonoids | biomass | variety | date       | investigate | or    |
| 2    | 1           | 0              | ptp        | nofilter  | 1            | 1.061      | 0.39    | cos     | 2019/04/01 | Darren Da   | hly   |
| 3    | 2           | 0              | ptp        | nofilter  | 2            | 1.1805     | 0.42    | cos     | 2019/04/01 | Darren Da   | hly   |
| 4    | 3           | 0              | ptp        | nofilter  | 3            | 1.0345     | 0.62    | cos     | 2019/04/01 | Darren Da   | hly   |
| 5    | 4           | 0              | ptp        | nofilter  | 4            | 1.094      | 0.63    | cos     | 2019/04/01 | Brendan P   | almer |
| 6    | 5           | 0              | my         | nofilter  | 1            | 1.061      | 0.39    | cos     | 2019/04/01 | Brendan P   | almer |
| 7    | 6           | 0              | my         | nofilter  | 2            | 1.1805     | 0.42    | cos     | 2019/04/01 | Brendan P   | almer |
| В    | 7           | 0              | my         | nofilter  | 3            | 1.0345     | 0.62    | cos     | 2019/04/01 | Brendan P   | almer |
| 9    | 8           | 0              | my         | nofilter  | 4            | 1.094      | 0.63    | cos     | 2019/04/01 | Brendan P   | almer |
| 0    | 9           | 0              | ca         | nofilter  | 1            | 1.061      | 0.39    | cos     | 2019/04/01 | Brendan P   | almer |
| 1    | 10          | 0              | ca         | nofilter  | 2            | 1.1805     | 0.42    | cos     | 2019/04/01 | Brendan P   | almer |
| 2    | 11          | 0              | ca         | nofilter  | 3            | 1.0345     | 0.62    | cos     | 2019/04/01 | Brendan P   | almer |
| 3    | 12          | 0              | ca         | nofilter  | 4            | 1.094      | 0.63    | cos     | 2019/04/01 | Darren Da   | hly   |
| 4    | 13          | 1              | ptp        | filter    | 1            | 0.87       | 0.76    | cos     | 2019/04/08 | Darren Da   | hly   |
| 5    | 14          | 1              | ptp        | filter    | 2            | 0.847      | 0.95    | cos     | 2019/04/08 | Darren Da   | hly   |
| 6    | 15          | 1              | ptp        | filter    | 3            | 1.022      | 0.95    | cos     | 2019/04/08 | Darren Da   | hly   |
| 7    | 16          | 1              | ptp        | filter    | 4            | 0.916      | 0.95    | cos     | 2019/04/08 | Darren Da   | hly   |
| 8    | 17          | 1              | my         | filter    | 1            | 1.119      | 1.55    | cos     | 2019/04/08 | Darren Da   | hly   |
| 9    | 18          | 1              | my         | filter    | 2            | 0.845      | 3.16    | cos     | 2019/04/08 | Darren Da   | hly   |
| 0    | 19          | 1              | my         | filter    | 3            | 1.299      | 4.9     | cos     | 2019/04/08 | Brendan P   | almer |
| 1    | 20          | 1              | my         | filter    | 4            | 1.149      | 5.5     | cos     | 2019/04/08 | Brendan P   | almer |
| 2    | 21          | 1              | ca         | filter    | 1            | 0.716      | 5.5     | cos     | 2019/04/08 | Brendan P   | almer |
| 3    | 22          | 1              | ca         | filter    | 2            | 0.881      | 7.94    | cos     | 2019/04/08 | Brendan P   | almer |
| 4    | 23          | 1              | ca         | filter    | 3            | 0.586      | 8.71    | cos     | 2019/04/08 | Brendan P   | almer |
| 5    | 24          | 1              | ca         | filter    | 4            | 0.561      | 8.71    | cos     | 2019/04/08 | Brendan P   | almer |
| 6    | 25          | 2              | ptp        | filter    | 1            | 0          | 14.45   | cos     | 2019/04/15 | Brendan P   | almer |
| 7    | 26          | 2              | ptp        | filter    | 2            | 1.006      | 2.14    | cos     | 2019/04/15 | Brendan P   | almer |
| 8    | 27          | 2              | ptp        | filter    | 3            | 1.236      | 1.86    | cos     | 2019/04/15 | Brendan P   | almer |
| 9    | 28          | 2              | ptp        | filter    | 4            | 1.206      | 1.2     | cos     | 2019/04/15 | Brendan P   | almer |
| n    | 20          |                | mv         | filter    | 1            | 1 545      | 2.45    | cos     | 2019/04/15 | Brendan P   | almer |
| 4    | <b>&gt;</b> | <b>data</b> di | ctionary   | values    | +            |            |         |         | 1          |             |       |

| 1 id | \  | week no | filter_nam     | tre  | eatr | ment  | replicate | no f | avono  | ids bio | omass  | variety | date        |     | investigator           |                                                                |
|------|----|---------|----------------|------|------|-------|-----------|------|--------|---------|--------|---------|-------------|-----|------------------------|----------------------------------------------------------------|
| 2    | 1  |         |                |      | £:14 |       |           | 4    | 4.0    |         |        |         |             | /n= | Darran Dakki           |                                                                |
| 3    | 2  |         | ptp            | -    | 4    | 4     | Α         |      | В      |         | C      |         | D           |     | Е                      |                                                                |
| 4    | 3  |         | ptp            | ne   | 1    | field | l_name    | data | _type  | data_   | forma  | t       | example     |     | standard_units         | description                                                    |
| 5    | 4  | 0       | ptp            | ne   | 2    | id    |           | num  | eric   | integ   | er     |         |             |     | NA                     | Unique identifier applied to each observation                  |
| 6    | 5  | 0       | my             | ne   | 3    | wee   | k_no      | num  | eric   | integ   | er     |         |             | 1   | NA                     | Week number, 1 = 7 days exposure, 2 = 14 days exposure         |
| 7    | 6  | 0       | my             | ne   | 4    | filte | r_name    | char | acter  | NA      |        |         | my          |     | NA                     | 3 filter types; 'ptp' = polytunnel plastic blocks all UV light |
| 8    | 7  | 0       | my             | n    | 5    | trea  | tment     | char | acter  | NA      |        |         | filter      |     | NA                     | Presence or absence of a filter at the time of sampling        |
| 9    | 8  | 0       | my             | n    | 6    | repl  | icate_no  | num  | eric   | intege  | er     |         |             | 1   | NA                     | The number of replicates in each treatement                    |
| 0    | 9  | 0       | ca             | ne   | 7    | flav  | onoids    | num  | eric   | doub    | le     |         | 0.342       | 1   | parts per million (ppm | Leaf disc taken from the tip of the most mature leaf at t      |
| 1    | 10 | 0       | ca             | n    | 8    | bion  | nass      | num  | eric   | doub    | le     |         |             |     | gram (g)               | Above ground biomass on the day of harvest                     |
| 2    | 11 | 0       | ca             | n    | 9    | vari  | ety       | char | acter  | NA      |        |         | cos         |     | NA                     | 3 commerical varieties of red lettuce used; 'cos' = Cos D      |
| 3    | 12 | 0       | ca             | n    | 10   | date  | 9         | date |        | YYYY    | /MM/D  | D       | 2019/06/2   | 8   | ISO 8601               | Experiment date                                                |
| 4    | 13 | 1       | ptp            | fil  | 11   | inve  | stigator  | char | acter  | Firstn  | ame La | stname  | Aoife Coffe | у   | NA                     | Primary researcher who performed the experiment                |
| 5    | 14 | 1       | ptp            | fil  | 12   |       |           |      |        |         |        |         |             |     |                        |                                                                |
| 6    | 15 | 1       | ptp            | fil  | 13   |       |           |      |        |         |        |         |             |     |                        |                                                                |
| 7    | 16 | 1       | ptp            | fil  | 14   |       |           |      |        |         |        |         |             |     |                        |                                                                |
| 8    | 17 | 1       | my             | fil  | 15   |       |           |      |        |         |        |         |             |     |                        |                                                                |
| 9    | 18 | 1       | my             | fil  | 16   |       |           |      |        |         |        |         |             |     |                        |                                                                |
| 0    | 19 | 1       | my             | fil  | 17   |       |           |      |        |         |        |         |             |     |                        |                                                                |
| 1    | 20 | 1       | my             | fil  | 18   |       |           |      |        |         |        |         |             |     |                        |                                                                |
| 2    | 21 | 1       | ca             | fil  | 19   |       |           |      |        |         |        |         |             |     |                        |                                                                |
| 3    | 22 | 1       | ca             | 4 ii | 20   |       |           |      |        |         |        |         |             | +   |                        |                                                                |
| 4    | 23 | 1       | ca             | TIL  | 21   |       |           |      |        |         |        |         |             | +   |                        |                                                                |
| 5    | 24 | 1       | ca             | fil  | 22   |       |           |      |        |         |        |         |             | -   |                        |                                                                |
| 6    | 25 | 2       | ptp            | fil  | 22   |       |           |      |        |         |        |         |             | +   |                        |                                                                |
| 7    | 26 | 2       | man.           | £:1  | 23   |       |           |      |        |         |        |         |             | -   |                        |                                                                |
| 8    | 27 | 2       | ptp            | fil  | 24   |       |           |      |        |         |        |         |             | -   |                        |                                                                |
| 9    | 28 | 2       | ptp            | fil  | 25   |       |           |      |        |         |        |         |             | -   |                        |                                                                |
| n    |    |         | mv<br>stienanv |      | 26   |       |           |      |        |         |        |         |             | -   |                        |                                                                |
| ( )  |    | ata Ol  | ctionary       |      | 27   |       |           |      |        |         |        |         |             | 4   |                        |                                                                |
|      |    |         |                |      | 28   |       |           |      |        |         |        |         |             | 4   |                        |                                                                |
|      |    |         |                |      | 29   |       |           |      |        |         |        |         |             | 4   |                        |                                                                |
|      |    |         |                |      | 30   |       |           | ata  | dictio |         | valu   |         | +           |     |                        |                                                                |





### Resources are being wasted by not doing this



What data scientists spend the most time doing

- Building training sets: 3%
- Cleaning and organizing data: 60%
- Collecting data sets; 19%
- Mining data for patterns: 9%
- Refining algorithms: 4%
- Other: 5%

### Tidy data is clean data



## Journal of Statistical Software

MMMMMM YYYY, Volume VV, Issue II.

http://www.jstatsoft.org/

### Tidy Data

Hadley Wickham RStudio

- Each variable forms a column
- Each observation forms a row
- Each cell contains a value



### The need for greater research reproducibility



Data and computer code should be made publicly available at an early stage - or else ... esarastudillo

Print



Sadly, these are not the first mistakes of this size and nature when handling data. So what on Earth went wrong, and can we fix it?

Harvard's <u>Carmen Reinhart</u> and <u>Kenneth Rogoff</u> are two of the most respected and influential academic economists active today.