4.2.4. Метод простых итераций (МПИ)

Теперь рассмотрим более общий итерационный метод уточнения корней. Для этого представим исходное уравнение (1.1) в равносильном виде

$$x = \phi(x)$$
.

Пусть нам известно начальное приближение к корню x_0 ($x_0 \in [a, b]$). Подставив его в правую часть, получим новое приближение $x_1 = \phi(x_0)$, затем аналогичным образом получим $x_2 = \phi(x_1)$. Продолжая данный процесс, получаем последовательность чисел

$$x_{k+1} = \phi(x_k).$$

При определенных свойствах функции $\phi(x)$ последовательность $\{x_1, x_2, ..., x_k, ...\}$ сходится к корню уравнения f(x) = 0. Необходимо установить при каких условиях итерационный процесс будет сходящимся.

Рассмотрим графически процесс получения приближенного решения в методе простых итераций. При решении необходимо отыскать точку пересечения кривой $y = \phi(x)$ и прямой y = x являющейся биссектрисой координатного угла.

На рис. 33–39 представлены разные варианты кривой $y = \phi(x)$, которая может представлять собой любую функцию.

Рис. 33 — Процесс получения решения с помощью метода простых итераций — вариант 1

Рис. 34 — Процесс получения решения с помощью метода простых итераций — вариант 2

Рис. 35 — Расходящийся процесс решения методом простой итерации — вариант 3

Рис. 36 — Расходящийся процесс решения методом простой итерации — вариант 4

Рис. 37 — Расходящийся процесс решения методом простой итерации — вариант 5

Рис. 38 — Сходящийся процесс получения решения с помощью метода простых итераций — вариант 6

Рис. 39 — Сходящийся процесс получения решения с помощью метода простых итераций — вариант 7.

Пусть $x=x^*$ — корень уравнения. Выберем начальное приближение в точке x_0 . Следующее приближении x_1 , в соответствии с уравнением, будет равно $\phi(x_0)$. Для того, чтобы отобразить x_1 на графике можно провести через точку $(x_0, \phi(x_0))$ прямую, параллельную оси абсцисс, до пересечения с прямой y=x, а затем в точке пересечения этих прямых опустить перпендикуляр на ось абсцисс, который и отметит положение точки x_1 . Аналогично получаются все последующие приближения. Из рис. 33, 34, 38, 39 видно, что итерационный процесс сходятся к искомому корню x^* , а на рис. 35–37 с каждой новой итерацией получаемое решение удаляется от искомого решения, т.е. итерационный процесс является расходящимся.

Математически условие сходимости можно установить следующим образом. Представим k и k+1 приближения в форме

$$x_k = x * + \varepsilon_k,$$

$$x_{k+1} = x * + \varepsilon_{k+1}.$$

где ε_{k} и ε_{k+1} – отклонения приближений от корня.

Функцию φ (x) вблизи точки x^* приближенно заменим первыми двумя членами ряда Тейлора. Тогда итерационная формула примет вид

$$x^* + \varepsilon_{k+1} \approx \phi(x^*) + \varepsilon_k \phi'(x^*)$$
.

Но поскольку x^* является корнем уравнения, то первые слагаемые в правой и левой части этого выражения тождественно равны и, следовательно

$$\varepsilon_{k+1} \approx \varepsilon_k \phi'(x^*).$$

Для сходимости итерационного процесса необходимо, чтобы погрешность на каждом шаге убывала, т.е.

$$\left|\varepsilon_{k+1}\right| < \left|\varepsilon_{k}\right|$$
,

откуда следует, что в окрестности корня должно выполняться условие

$$|\phi'(x)| < 1$$
.

Таким образом, для того чтобы итерационный процесс был сходящимся, необходимо, чтобы абсолютная величина производной $\phi'(x)$ в окрестности корня была меньше единицы. Если это условие выполняется на отрезке [a, b] на котором локализован корень, то в качестве начального приближения можно взять любую точку из этого отрезка $x_0 \in [a, b]$. Скорость сходимости зависит от абсолютной величины производной $|\phi'(x)|$: чем меньше $|\phi'(x)|$ вблизи корня, тем быстрее сходится процесс.

На рис. 40 выделены области **I** и **III**, в которых итерационный процесс сходится и области **II** и **IV**, где он расходится. Процесс приближения к корню может сходиться либо в виде монотонных приближений (ломаная линия в виде ступеньки рис. 39) реализуется, если $\phi'(x) > 0$, либо двухсторонних (ломаная линия в виде спирали рис. 33, 34 и 38) при $\phi'(x) < 0$.

Рис. 40 – Области сходимости метода простой итерации

Пример. Уточнить решение нелинейного уравнения

$$x^3 - \frac{x^2 + x}{5} = 1,2$$

с помощью метода простых итераций на интервале [1; 1,5] с точностью $\varepsilon = \delta = 10^{-3}$.

<u>Решение.</u> Перед запуском итерационного процесса по методу простых итераций необходимо выполнить преобразование исходного уравнения к итеративному виду:

$$x = \phi(x)$$
.

Заданное уравнение возможно представить в итеративном виде тремя способами:

1) выражаем неизвестное *x*, стоящее в первой степени, тогда результирующее выражение имеем вид

$$x = 5x^3 - x^2 - 6$$
;

 выписываем неизвестное x из члена во второй степени и получаем следующее равенство

$$x = \sqrt{5x^3 - x - 6}$$
;

 записываем неизвестное x как кубический корень в следующем виде

$$x = \sqrt[3]{1,2 + \frac{x^2 + x}{5}} \ .$$

После приведения исходного уравнения к итеративному виду необходимо проверить сходимость итерационного процесса. Для выполнения этого требования необходимо найти выражение для первой производной и провести вычисление значений производных на границах локализованного интервала. Проведем данное исследование для правых частей каждого из трех представленных способов получения итеративного выражения.

1) Первая производная имеет вид

$$\phi'(x) = 15x^2 - 2x.$$

Проводя подстановку в качестве неизвестного x левую a и правую b границу интервалов локализации, получаем следующие значения:

$$\phi'(a) = 15 \cdot 1^2 - 2 \cdot 1 = 13,$$

$$\phi'(b) = 15 \cdot 1, 5^2 - 2 \cdot 1, 5 = 30, 75.$$

Как видно из представленных результатов условие сходимости не выполняется на обеих границах, следовательно, первый способ представления итеративного выражения является не применимым.

 Вычисленная производная итеративной формулы для второго случая определяется как

$$\phi'(x) = \frac{15x^2 - 1}{2\sqrt{5x^3 - x - 6}}$$
.

$$\phi'(a) = \frac{15 \cdot 1^2 - 1}{2\sqrt{5 \cdot 1^3 - 1 - 6}} = \frac{7}{\sqrt{-2}},$$

$$\phi'(b) = \frac{15 \cdot 1, 5^2 - 1, 5}{2\sqrt{5 \cdot 1}, 5^3 - 1, 5 - 6} = 5, 21.$$

Полученные результаты показывают, что условие сходимости не выполняется, таким образом, второй вариант итеративного выражения также не приводит к сходимости к искомому решению.

 Производная правой части третьего итеративного выражения записывается следующим образом:

$$\phi'(x) = \frac{2x+1}{15 \cdot \sqrt[3]{\left(1,2 + \frac{x^2 + x}{5}\right)^2}}.$$

В полученное выражение производится подстановка значений границ интервала:

$$\phi'(a) = \frac{2 \cdot 1 + 1}{15 \cdot \sqrt[3]{\left(1, 2 + \frac{1^2 + 1}{5}\right)^2}} = 0,146,$$

$$\phi'(b) = \frac{2 \cdot 1, 5 + 1}{15 \cdot \sqrt[3]{\left(1, 2 + \frac{1, 5^2 + 1, 5}{5}\right)^2}} = 0,171.$$

Результаты расчетов показывают, что условие сходимости выполняется на двух границах, поэтому выражение, представленное третьим способом, позволяет приблизиться к решению с заданной точностью.

После получения итерационного выражения, удовлетворяющего условиям сходимости, переходим к расчету первого приближения. Для запуска итерационного процесса необходимо задать начальное значение x_0 , по аналогии с предыдущими примерами полагаем $x_0 = b$ и вычисляем значение функции $\phi(x)$ в этой точке

$$\phi(1,5) = \sqrt[3]{1,2 + \frac{1,5^2 + 1,5}{5}} = 1,24933.$$

Вычисленное значение используются для определения координаты точки x_1 , согласно выражения $x_1 = \phi(x_0)$, то есть

$$x_1 = 1,24933$$
.

Полученное значение x_1 сравнивается с x_0 и проверяется на достижение заданной точности

$$|1,24933-1,5| = 0,25067 < 0,001$$
.

Как видно, точность полученного результата после первой итерации не достигла требуемого значения, следовательно, итерационный процесс продолжается.

На второй итерации вычисляется значения функции в найденной точке x_1

$$\phi(1,24933) = \sqrt[3]{1,2 + \frac{1,24933^2 + 1,24933}{5}} = 1,20783.$$

Найденное значение функции является новым решением

$$x_2 = \phi(x_1) = 1,20783$$
.

Повторно поводится процедура сравнения координаты найденной и предыдущей точки

$$|1,21364-1,26033|=0,04669<0,001.$$

Как видно, погрешность уменьшилась, но требуемая точность не достигнута, т.е. итерационный процесс необходимо продолжить. Последующие итерации метода простых итераций представлены в табл. 14.

Анализируя данные в табл. 14 видно, что после пятой итерации получено решение, удовлетворяющее заданной точности

$$|1,20003-1,20019| = 0,00016 < 0,001.$$

Отметим, что достаточное условие сходимости по значению исходной функции f(x) было выполнено еще на предыдущей (четвертой) итерации.

Таблица 14 – Уточнение решения нелинейного уравнения методом простых итераций

x

1.5

 $\varphi(x)$

1.24933

f(x)

1,425

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	,
1	1,24933	1,20783	0,18797
2	1,20783	1,20123	0,02870
3	1,20123	1,20019	0,00449
4	1,20019	1,20003	0,00071
5	1,20003	1,20001	0,00011
Ответ. Полученное численное решение заданного нелиней-			

Ответ. Полученное численное решение заданного нелинейного уравнения методом простой итерации с точностью 10^{-3} было достигнуто после пятой итерации и равно x=1,20003.