Package 'RAdamant'

July 2, 2011

Type Package

Title Financial Technical Analysis and Risk Management

Version 0.7.1	
Date 2011-07-02	
Author RAdamant Development Team	
Maintainer RAdamant Development Team <team@r-adamant.org></team@r-adamant.org>	
Depends R (>= 2.10.0), utils, grDevices	
Description R-Adamant is a collection of functions and algorithms for processing of Financial Time Series, Risk Management and Econometrics.	
License GPL>=2	
LazyLoad yes	
R topics documented: 3dptelem 3dptpars abi absavdi absrs accuracy acdi	
adi	
adratio	

aroud	. 14
aroup	. 14
asfs	. 15
wer	. 15
pincoef	. 16
polband	. 16
polbandb	. 17
polfib	. 18
poot	. 19
	. 19
oop	
oox3d	. 20
opdlind	. 21
preadth	. 21
promot	. 22
promot2d	. 23
osfml	. 23
osgreeks	. 24
oslmpvol	. 24
osmomt	. 25
osprice	. 26
buypre	. 26
ealeprs	. 27
capm	. 28
	. 28
	. 29
	. 29 . 29
	. 29
chaosacc	
chist	. 31
chvol	. 32
cleanup	. 32
clust	. 33
clv	. 34
emf	. 35
emof	. 36
cofit	. 36
colinprs	. 37
colinred	. 38
combfs	. 38
confmat	. 39
eplot	. 39
eplot3d	
ramv	
erbtree	
croscf	
crosplot	
1	
erscolin	
cumfun	
decimals	
decscal	
lema	
lemark	
dow	1Ω

dgpd	
dma	
dpo	
drawdown	
dropn	
edgefact	
edwdist	
edwprice	
ema	
emat	
eom	
epma	
erf	
erfi	
fact2woe	
factor	
fft	
finplot	
firsthit	
fmeas	
fmlmreg	
forcidx	
frama	
freqwind	
fresvar	
fsevecar	
fulp	
funcomx	
funlent	
garch	
gdema	
getacfci	
getfs	
getlmwgh	
getpred	
gevar	
gevarci	
gevarent	
gevarcst	
gevarg	
gevark	
gevci	
gevcont	
gevlike	
gevmcst	
gevml	
gevrng	
gevsicst	
gevxicst	

gini														•										
gkgamma												 •		•		 •								
gmma .																							•	•
gpdboot																								
gpdci .																								
gpdcnt .																								
gpdes .																								
gpdesci																								
gpdescnt		•																			•	•	•	•
gpdescst																							•	•
gpdesest																						•	•	•
<i>C</i> 1																						•	•	•
gpdesk .																						•	•	•
gpdesml																						•	•	•
gpdesrng	 •	 •				•						 •		•	•	 •	•	•	 •	•	•		•	•
gpdlk .																								
gpdml .																								
gpdrng .																								
gpdsfc .																								
gpdsgcnt																								
gpdvar .																								
gpdvarci																							•	·
gpdvaren																							•	·
gpdvarct																								•
gpdvare																								
gpdvarlk																								
gpdvarml																								
gpdvarsf																								
gpdxicst																								
grad																								
grangcas																								
grautil .																								
heas																								
hhv																								
hill																								
hma												 												
hroi																								
hvar	 •	 •	•	 •	•	•	 •	•	 ·	 •	•	 •	•	•	•	 ٠	•	•	 ·	•	•	•	•	•
ichkh .	 •	 •	•	 •	•	•	 •	•	 •	 •	•	 •	•	•	•	 •	•	•	 •	•	•	•	•	•
impulse																								
in2woe.																								
inertia .																								
invlogit																								
invp																								
irsvecar																								
isfs																								
jbtest																								
jensen .																								
jrbtree .																								
kama																								
kelt																								
kendalt.																								
kri	 •	 •	•	 •	•	•	 •	•	 •	 •	•	 •	•	•	•	 •	•	•	 •	•	•	•	•	•

kurtskew
kvo
lagret
lew
liftgain
ljbgarch
lkegarch
č
lkmgarch
lktgarch
llv
logger
logit
lrbtree
macd
mass
masscum
mcf
mcgind
mcosc
mcplot
mcsi
means
mfind
mflow
mfratio
minmaxs
mma
mndma
mom
moments
movapply
movav
movfunc
mgt
mreg
mse
mstyles
mtacf
mteef
mtfft
mtfs
mtmcf
mtoscil
mtreg
mtunivar
namutil
newsimp
normfit
normlike
objgarch
oby 149

oscil	
ochan	
odfhit	51
perf	51
ofactor	52
ofe	53
ogarch	53
ogev	
ogpd	
ograngas	
phivecar	
olikeci	
blikecnt	
blikerng	
olotkit	
plotmov	
plotmreg	
plotret	
olotroi	
olotsme	
omreg	
ppo	
pptfopt	
orbsar	
oreder	
oredgar	
predmreg	66
predreg	66
oredvear	67
orintvar	68
oro	68
orobhit	69
osme	70
otfbeta	70
otfopt	
otfret	
otfront	
otfutil	
otfvar	
ovecar	
ovt	
ggev	
	
ggpd	
radpkg	
recycle	
relvol	
rema	
gev	
gpd	
roc	
rocplot	
rowmax	82

rschint
·si
runlog
runner
vi
sampmom
scaledf
scorecd
sde
sensan
sensanlm
sensanrg
Sharpe
sinma
sma
sme
somerd
sort
specgram
plitwdw
sssym
starc
statbar
stepmat
strvar
styles
sumdd
sumdens
sumreg
sumscrd
swing
symlkup
ema
high
irlev
low
200
reynor
rf
rsigexp
rsign
tma
yp
ılcer
ıltima
ınivar
var
varptf
vemof
vecar
vhff
/idyaf
•

8 3dptelem

vwma											 									21	7
wad											 								. 2	21	8
weigevid											 									21	9
whvar																					
wildavg											 									22	0
wildsum																					
wma																					
wro																					
zind																					
zlma											 									22	3
zscore											 									22	4

3dptelem

3D Plot Elements

Description

Add elements to 3D Plot

Usage

```
lines3d(x, y, z, pmat = getProjectionMatrix(), ...)
points3d(x, y, z, pmat = getProjectionMatrix(), ...)
rect3d(xrange, yrange, z, pmat = getProjectionMatrix(), ...)
text3d(x, y, z, pmat = getProjectionMatrix(), ...)
```

Arguments

х	X axis
У	Y axis
z	Z axis
pmat	pamt
	Further arguments to or from other methods
xrange	xrange
yrange	yrange

Author(s)

RAdamant Development Team

3dptpars 9

3dptpars

3D Plot Axis Formatting

Description

Add and format labels for 3D Plot

Usage

```
x.axis3d(xlim = NULL, ylim = NULL, zlim = NULL,
pmat = getProjectionMatrix(), at = NULL,
labels = NULL, theme.params = getCurrentTheme(),
show.labels = TRUE, grid = theme.params[["xgrid"]],...)
y.axis3d(xlim = NULL, ylim = NULL, zlim = NULL,
pmat = getProjectionMatrix(), at = NULL,
labels = NULL, theme.params = getCurrentTheme(),
show.labels = TRUE, grid = theme.params[["ygrid"]],...)
z.axis3d(xlim = NULL, ylim = NULL, zlim = NULL,
pmat = getProjectionMatrix(), at = NULL, labels = NULL,
theme.params = getCurrentTheme(), show.labels = TRUE,
grid = theme.params[["zgrid"]], ...)
x.title3d(xlim = NULL, ylim = NULL, zlim = NULL,
pmat = getProjectionMatrix(), title = "",
theme.params = getCurrentTheme(), ...)
y.title3d(xlim = NULL, ylim = NULL, zlim = NULL,
pmat = getProjectionMatrix(), title = "",
theme.params = getCurrentTheme(), ...)
z.title3d(xlim = NULL, ylim = NULL, zlim = NULL,
pmat = getProjectionMatrix(), title = "",
theme.params = getCurrentTheme(), ...)
```

Arguments

```
xlim
               xlim
               ylim
ylim
zlim
               zlim
pmat
               pmat
at
               at
labels
               labels
               title
title
theme.params theme.params
show.labels show.labels
```

10 abi

grid grid

... Further arguments to or from other methods

Author(s)

RAdamant Development Team < team@r-adamant.org>

abi

Absolute Breath Index - ABI

Description

Compute Absolute Breath Index (Technical Analysis)

Usage

```
Abi(X, lag = 5, plot=FALSE, ...)
```

Arguments

X Input numerical series

lag Number of lags

plot LOGICAL. Return plot.

Further arguments to or from other methods

Details

The absolute breadth index (ABI) measures the amount of volatile on the New York Stock Exchange. The indicator is truly a momentum indicator since it only tracks the movement of the issues on the exchange and not their direction. The overall purpose of the indicator is to determine when the market is most volatile, thus providing the greatest opportunity for larger profits due to increased volatility.

Calculation:

 $ABI = |Advancing\ Issues - Declining\ issues|$

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

absavdi 11

absavdi

Absolute average discard

Description

Calculate Absolute average discard for model evaluation

Usage

```
abs_avdi(actual, predicted, pc = FALSE)
```

Arguments

```
actual actual predicted pc pc
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

absrs

Absolute Relative Strenght

Description

Compute Absolute Relative Strenght (Technical Analysis)

Usage

```
absrs(X, lag = 14, na.rm = FALSE, plot = FALSE, ...)
```

Arguments

X
lag INTEGER. Number of lag periods.
na.rm na.rm
plot LOGICAL. If TRUE plot is returned.
... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

12 acdi

y		
---	--	--

Description

Get accuracy measure from the results of a classification model.

Usage

```
accuracy(x, ...)
## S3 method for class 'scorecard'
accuracy(x, th, ...)
```

Arguments

```
\mathbf{x} \mathbf{x} th
```

.. Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

```
acdi Acceleration Deceleration
```

Description

Acceleration Deceleration Technical Indicator

Usage

```
acdi(Close, High = NULL, Low = NULL, Vol = NULL, plot = TRUE, ...)
```

Arguments

```
Close VECTOR. Close price.

High VECTOR. High price.

Low VECTOR. Low price.

Vol VECTOR. Asset traded Volume.

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.
```

adi 13

Details

Acceleration/-Deceleration Technical Indicator (AC) measures acceleration and deceleration of the current driving force.

This indicator will change direction before any changes in the driving force, which, it its turn, will change its direction before the price.

The nought line is basically the spot where the driving force is at balance with the acceleration.

If Acceleration-Deceleration is higher than nought, then it is usually easier for the acceleration to continue the upward movement (and vice versa in cases when it is below nought).

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

adi

Advance-Decline Indicator

Description

Advance-Decline Indicator (Technical Analysis)

Usage

```
ADind(close, high, low, lag = 5)
```

Arguments

close	VECTOR. Close price.
high	VECTOR. high price.
low	VECTOR. Low price.

lag INTEGER. Number of lag periods.

Details

A technical analysis tool that represents the total difference between the number of advancing and declining security prices.

The advance/decline index can provide much more insight into the movements of the market.

In general, rising values of the advance/decline can be used to confirm the likelihood that an upward trend will continue. If the market is up but there are more declining issues than advancing ones, it is usually a sign that the market is losing its breadth and may be getting ready to change direction.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

14 adratio

adrating

Average Directional Rating

Description

Compute Average Directional Rating index (Technical Analysis)

Usage

```
ADrating(close, high, low, lag)
```

Arguments

```
close VECTOR. Close price.
high VECTOR. high price.
low VECTOR. Low price.
```

lag INTEGER. Number of lag periods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

adratio

Advance Decline ratio

Description

Compute Advance Decline ratio (Technical Analysis)

Usage

```
ADratio(X, lag, plot, ...)
```

Arguments

X	X
lag	INTEGER. Number of lag periods.
plot	LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Details

The Advance Decline Ratio is a market breadth indicator that calculates the ratio of advancing amount to declining amount.

advdec 15

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

advdec

Advance Decline issues

Description

Compute Advance Decline issues (Technical Analysis)

Usage

```
AdvDec(X, lag = 5, ret.idx = TRUE, plot = FALSE, ...)
```

Arguments

X X

lag INTEGER. Number of lag periods.

ret.idx ret.idx

plot LOGICAL. If TRUE plot is returned.

. . . Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

ama

General Adaptive Moving Average

Description

General Adaptive Moving Average, computed on each column of the input data X.

Usage

```
ama(X, ar.ord = 1, ma.ord = 1, func = NULL, padding = 0, type = "AMA",
plot = FALSE, ...)
```

16 apo

Arguments

x X
ar.ord ar.ord
ma.ord ma.ord
func func
padding padding
type type

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods

Author(s)

RAdamant Development Team < team@r-adamant.org>

apo

Apo - Absolute price indicator

Description

Apo - Absolute price indicator

Usage

```
apo(X, fast.lag = 10, slow.lag = 30, plot = FALSE, ...)
```

Arguments

X X
fast.lag fast.lag
slow.lag slow.lag
plot LOGICAL.IfT

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Details

An indicator based on the difference between two exponential moving averages, expressed in absolute terms

Also known as the MACD indicator, the APO is calculated by subtracting the longer exponential moving average from the shorter exponential moving average.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

apprais 17

apprais

Appraisal ratio

Description

```
Appraisal: Calculate Jensen index for a portfolio Appraisal. Capm: Get Jensen index from an object of class "Capm".
```

Usage

```
Appraisal(PTF, ...)
## Default S3 method:
Appraisal(PTF, PTF_M, rf = NULL, rfr = 0, ...)
## S3 method for class 'Capm'
Appraisal(PTF, rfr = 0, ...)
```

Arguments

PTF	Input portfolio or an object of class "Capm"
PTF_M	Market/benchmark portfolio
rfr	risk free rate
rf	risk free asset
	Further arguments to or from other methods

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

```
Sharpe, Treynor, Jensen
```

archlm

ARCH-LM test

Description

Compute ARCH-LM test

Usage

```
Archlm(x, lags, std=FALSE, plot.acf=FALSE)
```

Arguments

```
\begin{array}{ll} x & x \\ lags & lags \\ std & std \\ plot.acf & plot.acf \end{array}
```

18 arms

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

armaspc

Arma spectral representation

Description

Spectral representation based on ARMA models

Usage

```
Arma.Spec(X, ar_ord = 1, ma_ord = 1, vfreq = NULL)
```

Arguments

```
{\tt X} ar_ord ar_ord ma_ord ma_ord vfreq vfreq
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

arms

Arms index

Description

Compute Arms index (Technical Analysis)

Usage

```
Arms(X, Volume, lag, plot = FALSE, ...)
```

arodown 19

Arguments

X X

Volume VECTOR. Asset traded Volume.

lag INTEGER. Number of lag periods.

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

arodown Aroon Down oscillator

Description

Compute Aroon Down oscillator (Technical Analysis)

Usage

```
arodown(X, lag = 5, plot = TRUE, ...)
```

Arguments

X

lag INTEGER. Number of lag periods.
plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

20 aroud

aroon

Aroon oscillator

Description

Compute Aroon oscillator (Technical Analysis)

Usage

```
aroon(X, lag = 5, plot = TRUE, ...)
```

Arguments

X X

lag INTEGER. Number of lag periods.
plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

aroud

Aroon Down oscillator

Description

Compute Aroon Down oscillator (Technical Analysis)

Usage

```
aroud(X, lag = 5, plot = TRUE, ...)
```

Arguments

```
\begin{array}{ccc} \textbf{X} & & \textbf{X} \\ \textbf{lag} & & \textbf{lag} \\ \textbf{plot} & & \textbf{plot} \\ & \cdots & & \cdots \end{array}
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

aroup 21

aroup

Aroon Up oscillator

Description

Compute Aroon Up oscillator (Technical Analysis)

Usage

```
aroup(X, lag = 5, plot = TRUE, ...)
```

Arguments

X X

lag INTEGER. Number of lag periods.
plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

asfs

Convert Yahoo! Data into Financial Series object

Description

Convert Yahoo! Data into Financial Series object

Usage

```
as.fs(X, SName = "", Symbol = "")
```

Arguments

X X SName Symbol Symbol

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

22 bincoef

aver

Average error

Description

Calculate Average error for model evaluation

Usage

```
av_er(actual, predicted, pc = FALSE)
```

Arguments

```
actual actual predicted pc pc
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

bincoef

Binomial coefficient

Description

Calculate binomial coefficient

Usage

```
BinCoef(N, n)
```

Arguments

```
N N n n
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

bolband 23

Description

Compute Bollinger Bands (Technical Analysis)

Usage

```
BolBand(Close, High, Low, fact = 2, win.size = 5, plot = FALSE, ...)
```

Arguments

```
Close VECTOR. Close price.

High VECTOR. High price.

Low VECTOR. Low price.
```

fact fact
win.size win.size

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

bolbandb	Bollinger Bands Bandwidth	

Description

Compute Bollinger Bands Bandwidth (Technical analysis)

Usage

```
BolBandB(Close, High, Low, fact=2, win.size=5, plot=FALSE, ...)
```

Arguments

Close	VECTOR. Close price.
High	VECTOR. High price.
Low	VECTOR. Low price.

fact fact win.size

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

24 bolfib

Details

Bollinger Bandwidth is an important indicator derived from John Bollingers original Bollinger Bands indicator.

Bandwidth is a relative measure of the width of the Bollinger Bands.

The Bollinger Bandwidth equation can be constructed as:

Volatility is high when the Bollinger Bands are farther apart and low when the Bollinger Bands are closer together. Based on the assumption that price (and volatility) generally operates in cycles - periods of low volatility inevitably followed by periods of high volatility and so on and so forth - traders can learn to take advantage of these cycles.

The Bollinger Band Width indicator is the distance between the upper and lower Bollinger Bands. It is a measure of volatility. The Band Width value is higher when volatility is high, and lower when volatility is low. High Band Width values indicate that the current trend may be about to end. Low Band Width values indicate that a new trend may be about to start.

Volatility is high when the Bollinger Bandwidth moves to its high levels and volatility. It is low when Bandwidth moves closer to zero. As a rule, a stocks price and volatility moves in cycles - the price moves up and down and periods of low volatility are replaced by periods of high volatility. In general, periods of high volatility can be noted during down-trends and corrections downward. Periods of low volatility can be observed during up-trends and recoveries. With this knowledge a trader can build a trading system that generates signals based on the volatility technical analysis.

The Bollinger Bandwidth can be used to identify the Squeeze - when the Bandwidth is at its lowest low value within n-periods. Bollinger states that Squeeze could occur before a trend reversal, like the calm before the storm. In this case, trading Buy/Sell signals can be generated on the price breakouts following the Squeeze.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

bolfib

Bollinger Bands - Fibonacci ratio

Description

Compute Bollinger Bands - Fibonacci ratio (Technical Analysis)

Usage

```
Bol.Fib(Close, High, Low, win.size = 5, fibo = c(1.618, 2.618, 4.236), plot = FALSE, ...)
```

Arguments

```
Close VECTOR. Close price.

High VECTOR. High price.

Low VECTOR. Low price.
```

win.size win.size

boot 25

```
fibo fibo

plot LOGICAL. If TRUE plot is returned.
... Further arguments to or from other methods.
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

boot General bootstrapping function

Description

General bootstrapping function

Usage

```
boot(X, nboots = 100, func = NULL, init = NULL,
message = "Bootstrapping...", ...)
```

Arguments

```
X X
nboots nboots
func func
init init
message message
... Further arguments to or from other methods.
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team

26 bop

bop	Balance of Power	
-----	------------------	--

Description

Compute Balance of Power (Technical Analysis)

Usage

```
Bop(Close, Open, High, Low, smoothed = TRUE, ...)
```

Arguments

Close	VECTOR. Close price.
Open	VECTOR. Open price.
High	VECTOR. High price.
Low	VECTOR. Low price.
smoothed	smoothed
	Further arguments to or from other methods.

Details

The Balance of Power (BOP) indicator measures the strength of the bulls vs. bears by assessing the ability of each to push price to an extreme level.

The Balance of Power indicator is calculated by the formula:

The resulting Balance of Power value is then typically smoothed by a moving average.

The Balance Of Power indicator can be used to identify the systematic buying (accumulation) and systematic selling (distribution) of stock shares.

BOP does it is a good idea to conceptualize how much and what type of trading activities take place in the marketplace. More specifically think of institutional and individual trading activities and the volume of trading that they do.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

box3d 27

box3d 3D box

Description

Plotting tools

Usage

```
box3d(x, y, z, pmat = getProjectionMatrix(), half = FALSE, ...)
```

Arguments

x X axis
y Y axis
z Z axis
pmat pamt
half half

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

bpdlind BPDL indicator

Description

Compute BPDL indicator (Technical Analysis)

Usage

```
BPDLind(Close, lag = 1, smoothed = TRUE, slag = 5)
```

Arguments

Close VECTOR. Close price.

lag INTEGER. Number of lag periods.

 $\begin{array}{cc} \text{smoothed} & \text{smoothed} \\ \text{slag} & \text{slag} \end{array}$

28 breadth

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

breadth

Breadth trusth indicator

Description

Compute Breadth trusth indicator (Technical Analysis)

Usage

```
Breadth(X, lag = 5, plot = FALSE, ...)
```

Arguments

X	X
lag	INTEGER. Number of lag periods.
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods

Details

The Breadth Thrust indicator is a ten period simple moving average of the Advance/Decline Line Breadth. A Breadth Thrust formation is defined as when the Breadth Thrust indicator moves from below 40 above 61.5 percent within a ten day period. This indicates that the market is rapidly moving from an oversold condition to a strong up trend. A Breadth Thrust formations are rare and are a very good indicator of a bull market.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team

bromot 29

bromot

Browniam motion

Description

Simulate a standard Brownian motion

Usage

```
BroMot(nsim, T, S0 = 0, mi = 0, sigma = 1,
geom = TRUE, same.rnd = TRUE, plot = FALSE, ...)
```

Arguments

nsim	nsim
T	T
S0	S0
mi	mi
sigma	sigma
geom	geom
same.rnd	same.rnd
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

bromot2d

2-dimensional Browniam motion

Description

Simulate a bi-dimensional standard Brownian motion

Usage

```
BroMot2D(nsim, T, S0, mi, sigma, geom = TRUE,
same.rnd = FALSE, laydisp = NULL, plot = TRUE, ...)
```

30 bsfml

Arguments

nsim nsim Τ T **S**0 S0 mi mi sigma sigma geom geom same.rnd same.rnd laydisp laydisp LOGICAL. If TRUE plot is returned. plot Further arguments to or from other methods. . . .

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

bsfml

Black & Scholes formula

Description

Black & Scholes analytical formula

Usage

```
BS.formula(type = c("call", "put"))
```

Arguments

type type

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

bsgreeks 31

bsgreeks

Black & Scholes greeks

Description

Calculate analytically Black & Scholes greeks

Usage

```
BS.greeks(X = NULL, ...)
```

Arguments

X X

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

bslmpvol

Black & Scholes Implied volatility

Description

Calculate Black & Scholes Implied volatility

Usage

```
BS.ImpVol(P, under, strike, rfr, sigma, maty,
yield, interval = c(-20, 20),
calc.type =c("standard", "lognorm", "gammarec"),
opt.type = c("call", "put"))
```

Arguments

```
P
under
                under
strike
                strike
rfr
                rfr
sigma
                sigma
maty
                maty
yield
                yield
interval
                interval
calc.type
                calc.type
opt.type
                opt.type
```

32 bsprice

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

bsmomt

Black & Scholes moments

Description

Calculate first four moments for Black & Scholes

Usage

```
BS.moments(BS = NULL, under, rfr, sigma, yield, maty)
```

Arguments

BS	BS
under	under
rfr	rfr
sigma	sigma
yield	yield
maty	maty

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

bsprice

Black & Scholes price generic

Description

Generic method for Black & Scholes price

Usage

```
BS.price(under, ...)
## Default S3 method:
BS.price(under, strike, rfr, sigma, maty, yield, calc.type =c("standard",
"lognorm", "gammarec"), opt.type = c("call", "put"), ...)
```

buypre 33

Arguments

under Underlying asset price. Strike price. strike rfr Risk free rate. Volatility. sigma maty Maturity. Yield yield calc.type Calculation type. opt.type Option type. Further arguments to or from other methods . . .

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

buypre Buying pressure indicator

Description

Compute Buying pressure indicator (Technical Analysis)

Usage

```
buypre(Close, Low, lag = 5, plot = FALSE, ...)
```

Arguments

Close VECTOR. Close price.

Low VECTOR. Low price.

lag INTEGER. Number of lag periods.

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

34 capm

calcprs

Calculated Pairs

Description

Calculated the number of pairs based on the results of a classification model.

Usage

```
CalcPairs(target, pred, segm_fact = 0.002)
```

Arguments

```
target target
pred pred
segm_fact segm_fact
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

capm

Capm - default method

Description

Default method for CAPM

Usage

```
Capm(PTF, ...)
## Default S3 method:
Capm(PTF, PTF_M, rf = NULL, rfr = NULL, ...)
```

Arguments

PTF	Prtfolio.
PTF_M	Market portfolio.
rf	Risk free asset.
rfr	Risk free rate.
	Further arguments to or from other methods

Note

TO BE COMPLETED

cci 35

Author(s)

RAdamant Development Team <team@r-adamant.org>

cci

Commodity channel index

Description

Compute Commodity channel index (Technical Analysis)

Usage

```
cci(High, Low, Close, lag = 5, plot = FALSE, ...)
```

Arguments

High	VECTOR. High price.
Low	VECTOR. Low price.
Close	VECTOR. Close price.
lad	INTEGER Number of 1

lag INTEGER. Number of lag periods.
plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

cciv2

Commodity channel index v02

Description

Compute Commodity channel index v02 (Technical Analysis)

Usage

```
cci.v2(High, Low, Close, lag = 5, plot = FALSE, ...)
```

Arguments

High	VECTOR. High price.
Low	VECTOR. Low price.
Close	VECTOR. Close price.
lag	INTEGER Number of

lag INTEGER. Number of lag periods.
plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

36 chaikin

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

chaikin

Chaikin oscillator

Description

Compute Chaikin oscillator (Technical Analysis)

Usage

```
chaikin(Close, High = NULL, Low = NULL,
Vol = NULL, fast.lag = 3, slow.lag = 10,
plot = TRUE, ...)
```

Arguments

Close	VECTOR. Close price.
High	VECTOR. High price.
Low	VECTOR. Low price.
Vol	VECTOR. Asset traded Volume.
fast.lag	fast.lag
slow.lag	slow.lag
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team \ \verb|\team@r-adamant.org|| \\$

chaosacc 37

chaosacc

Chaos Accelerator oscillator

Description

Compute Chaos Accelerator oscillator (Technical Analysis)

Usage

```
chaosAcc(X)
```

Arguments

X

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

chist

Custom histogram function

Description

Custom histogram function

Usage

```
chist(x, nclass = min(max(round(NROW(x)/10), 10),
NROW(x)), density = c("kernel", "normal"),
kernel = c("gaussian", "epanechnikov", "rectangular",
"triangular", "biweight", "cosine", "optcosine"),
theme.params = getCurrentTheme(), main = "Histogram and Kernel Density Estimatic
xtitle = NULL, ytitle = NULL, legend = NULL,
show.legend = TRUE, normalised = FALSE, ...)
```

Arguments

38 chvol

```
xtitle     xtitle
ytitle     ytitle
legend     legend
show.legend     show.legend
normalised     normalised
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

chvol

Chaikin volatility indicator

Description

Compute Chaikin volatility indicator (Technical Analysis)

Usage

```
Ch.vol(High, Low, Close, lag = 5, plot = FALSE, ...)
```

Arguments

High	VECTOR. High price.
Low	VECTOR. Low price.
Close	VECTOR. Close price.
lag	INTEGER. Number of lag periods.
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Details

The Chaikin Volatility indicator is the rate of change of the trading range.

The indicator defines volatility as a increasing of the difference between the high and low. A rapid increases in the Chaikin Volatility indicate that a bottom is approaching. A slow decrease in the Chaikin Volatility indicates that a top is approaching.

Note

TO BE COMPLETED

Author(s)

cleanup 39

cleanup

Clean memory

Description

Cleanup environment and (optionally) performs Garbage Collection

Usage

```
cleanup(keep = c(), env = parent.frame(), gc = FALSE)
```

Arguments

keep	CHARACTER. Vector of variables to keep in memory.
env	Environment from which objects are removed. Defaults to the environment from which this function is called.
gc	LOGICAL. If TRUE, garbage collection is performed to release memory. (Default = TRUE)

Value

VOID

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

clust

Time series clusters

Description

Create a simple cluster partition of a time series

```
TSClust(x, ...)
## Default S3 method:
TSClust(x, y=NULL, n_clust=5,
bk.type=c("quantile", "volatility", "uniform", "custom"),
pc_vol=0.1, win.size=10, custom_breaks=NULL,
lab.dig=0, ...)
## S3 method for class 'TSClust'
summary(object, funs = summary, ...)
```

40 clv

```
## S3 method for class 'TSClust'
plot(x, smooth=FALSE, ...)
```

Arguments

x, object Univariate time series or an object of class "TSClust"

У

custom_breaks

custom_breaks

lab.dig lab.dig

funs function to run inside summary. TSClust

smooth smooth
pc_vol pc_vol
win.size win.size

... further arguments accepted by "funs"

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

clv

Close Location value oscillator

Description

Compute Close Location value oscillator (Technical Analysis)

Usage

```
clv(Close, High = NULL, Low = NULL, plot = TRUE, ...)
```

Arguments

Close VECTOR. Close price.

High VECTOR. High price.

Low VECTOR. Low price.

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

cmf 41

Author(s)

RAdamant Development Team < team@r-adamant.org>

cmf

Chaikin Money Flow

Description

Compute Chaikin Money Flow (Technical Analysis)

Usage

```
cmf(Close, Low, High, Volume, plot = FALSE, ...)
```

Arguments

Close VECTOR. Close price.

Low VECTOR. Low price.

High VECTOR. High price.

Volume Volume

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods

Details

Chaikin Money Flow measures the amount of Money Flow Volume over a specific period. Money Flow Volume forms the basis for the Accumulation Distribution Line. Chaikin Money Flow sums Money Flow Volume for a specific look-back period, typically 20 or 21 days. The resulting indicator fluctuates above/below the zero line just like an oscillator. Chartists weigh the balance of buying or selling pressure with the absolute level of Chaikin Money Flow. Chartists can also look for crosses above or below the zero line to identify changes on money flow. The Chaikin Money Flow compares the total volume over the last n time periods to the total of volume times the Closing Location Value (CLV) over the last n time periods. The CLV calculates where the issue closes within its trading range. When the Chaikin Money Flow is above 0.25 it is a bullish signal, when it is below -0.25, it is a bearish signal. If the Chaikin Money Flow remains below zero while the price is rising, it indicates a probable reversal.

Note

TO BE COMPLETED

Author(s)

42 cofit

cmof

Chande Momentum Oscillator

Description

Compute Chande Momentum Oscillator (Technical Analysis)

Usage

```
cmof(X, lag = 5, plot = FALSE, ...)
```

Arguments

X	X
lag	INTEGER. Number of lag periods.
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods

Details

The Chande Momentum Oscillator is a modified RSI. Where the RSI divides the upward movement by the net movement (up / (up + down)), the CMO divides the total movement by the net movement ((up - down) / (up + down)). There are several ways to interpret the CMO. Values over 50 indicate overbought conditions, while values under -50 indicate oversold conditions. High CMO values indicate strong trends. When the CMO crosses above a moving average of the CMO, it is a buy signal, crossing down is a sell signal.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

cofit

Cornish Fisher Transformation

Description

Cornish Fisher Transformation

```
cofit(X, p, k = NULL, s = NULL)
```

colinprs 43

Arguments

p vector of probability threshold (interval [0, 1])

k kurtosis (DEFAULT = NULL -> becomes kurt(X))

s skewness (DEFAULT = NULL -> becomes skew(X))

Value

A matrix length(trsh) by NCOL(X) of computed quantiles

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

colinprs

Co-Linearity analysis

Description

This function performs a Co-Linearity analysis between the columns of X: Correlation factors between columns are computed, and pairs of columns with a correlation factor higher than a specified threshold are returned.

Usage

```
colin.pairs(X_{i} trsh = 0.8)
```

Arguments

 ${\tt X}$ ${\tt X}$ trsh trsh

Note

TO BE COMPLETED

Author(s)

44 combfs

colinred

Co-Linearity reduction

Description

Perform a cross Co-Linearity analysis between the columns of Y and X, and for each Yi returns a reduced set of columns of X obtained after removing those columns of X that are too correlated (one for each co-linear pair). In the removal process, those columns of X that are most correlated to Yi are kept.

Usage

```
colin.reduce(Y, X, max.iter = 100, trsh = 0.85)
```

Arguments

Y Y X X max.iter max.iter trsh trsh

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

combfs

Combine Multiple Financial Series

Description

Combine Multiple Financial Series

Usage

```
combine.fs(..., which = "Close")
```

Arguments

```
which which
```

Note

TO BE COMPLETED

Author(s)

confmat 45

confmat

Confusion matrix

Description

Build confusion matrix based on the results of a classification model.

Usage

```
confusionM(target, ...)
## Default S3 method:
confusionM(target, pred, th, ...)
## S3 method for class 'scorecard'
confusionM(target, th, ...)
```

Arguments

```
\begin{array}{ll} \text{target} & \text{target} \\ \text{pred} & \text{pred} \\ \text{th} & \text{th} \end{array}
```

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

cplot

2-Dimensional Plotting

Description

Workhorse function for automatic plotting

```
cplot(X, base = NULL, xrange = NULL, yrange = NULL, theme.params =
getCurrentTheme(), xtitle = "" , xlabels = NULL , ytitle = "" , ylabels =
NULL , ytitle2 = "" , ylabels2 = NULL, show.xlabels = TRUE , show.ylabels =
TRUE , main = "" , legend = NULL , legend.col = theme.params[["col"]],
show.legend = TRUE , shaded = FALSE, grid = TRUE , overrides = list(...),
new.device = FALSE,append = FALSE, multicolor = FALSE , ...)
```

46 cplot3d

Arguments

X x coordinates of the plotbase y coordinates of the plot

xrange x axis range yrange y axis range

theme.params Retrieve RAdamant graphical theme

xtitle title for the x axis
xlabels labels for x tick marks
ytitle title for the y axis
ylabels labels for y tick marks

ytitle2 title for the right-y axis
ylabels2 labels for right-y tick marks

show.xlabels LOGICAL. Show labels on the x axis show.ylabels LOGICAL. Show labels on the y axis

main Main title for the plot

legend Add the legend

legend.col Colors for the elements in the legend

show.legend LOGICAL. Display the legend in the plot shaded LOGICAL. Insert shaded under the plot

grid LOGICAL. Draw a grid

overrides overrides list

new.device open new.device window append append to existing plot

multicolor multiple colors

... additional arguments for generic funciotn "plot"

Author(s)

RAdamant Development Team < team@r-adamant.org>

cplot3d 3-Dimensional plotting

Description

Workhorse function for 3D automatic plotting

cplot3d 47

Usage

```
cplot3d(x, y, z, fill = c("simple", "colormap", "gradient"),
main = "", xtitle = "", ytitle = "", ztitle = "",
xlim = range(x) + 0.1*diff(range(x))*c(-1, 1),
ylim = range(y) + 0.1*diff(range(y))*c(-1, 1),
zlim = range(z, na.rm = TRUE) + 0.1*diff(range(z, na.rm = TRUE))*c(-1, 1),
xlabels = NULL, ylabels = NULL,
zlabels = NULL, pre = NULL, post = NULL,
theme.params = getCurrentTheme(),
overrides = list(...), new.device = FALSE,
append = FALSE, axis = TRUE,
show.labels = TRUE, show.xlabels = TRUE,
show.ylabels = TRUE, show.zlabels = TRUE
```

Arguments

```
x coordinates for the plot
Х
                y coordinates for the plot
У
                z coordinates for the plot
fill
                fill
main
                main
xtitle
                xtitle
ytitle
                ytitle
                ztitle
ztitle
xlim
                xlim
                ylim
ylim
zlim
                zlim
xlabels
                xlables
ylabels
                ylabels
zlabels
                zlabels
                pre
pre
                post
post
theme.params theme.params
overrides
                overrides
new.device
                new.device
append
                append
axis
                axis
show.labels show.labels
show.xlabels show.xlabels
show.ylabels show.ylabels
show.zlabels show.zlabels
                Further arguments to or from other methods
```

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

48 crbtree

cramv Cramers V

Description

Calculate Cramers V

Usage

```
cramv(x, y)
```

Arguments

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

crbtree

CRR Binomial Tree

Description

Option evaluation with Cox, Rossand and Rubinstein Binomial Tree

Usage

```
CRR.BinTree(Nsteps, under, strike, rfr,
sigma, maty, yield, life, ret.steps = FALSE)
```

Arguments

Nsteps	Nsteps
under	under
strike	strike
rfr	rfr
sigma	sigma
maty	maty
yield	yield
life	life
ret.steps	ret.steps

croscf 49

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

croscf

Cross correlation function

Description

Compute the cross correlation function for each pairs of variables (Yi Xj)

Usage

```
cross.ccf(Y, X, ...)
## Default S3 method:
cross.ccf(Y, X, lag.max = 10, ci = 0.95, plot = TRUE, ...)
```

Arguments

Y	Matrix of data series (one column per variable)
X	Matrix of data series (one column per variable)
lag.max	Max lag to be computed by the cross correlation function (DEFAULT: 10)
ci	Confidence Interval (DEFAULT: 0.95)
plot	LOGICAL. If TRUE, results are plotted.
	additional parameters accepted by the function plot.cross.ccf.

Value

A list of Ny*Nx cross correlation objects of the class "cross.acf"

Author(s)

50 crscolin

crosplot	Cross Plot
CIOSPIOL	Cross I tot

Description

Plot the input dependent variable Y versus each input independent variable X

Usage

```
cross.plot(Y, X, theme.params = getCurrentTheme(),
xlabels = NULL, two.axis = TRUE,
shaded.first = FALSE, overrides = NULL)
```

Arguments

Y	serie of the dependent variable
X	Matrix containing all independent variables (one column per variable)
theme.params	theme parameters (DEFAULT: getCurrentTheme())
xlabels	serie of the lables associated to the rows of X (i.e. Time libels)(DEFAULT: $\mbox{\sc NULL})$
two.axis	LOGICAL. If TRUE, series are plotted on two axis (two scales).
shaded.first	LOGICAL. If TRUE, the variable Y is shaded.
overrides	list of parameters to override the theme. Must match by name the parameters defined by the theme (DEFAULT: $NULL$)

Value

VOID

Author(s)

RAdamant Development Team < team@r-adamant.org>

|--|--|

Description

Perform a cross Co-Linearity analysis between the columns of Y and X: Correlation factors between each column Yi and all columns of X are calculated for different time lags. Also pairs of columns of X with a correlation factor higher than a specified threshold are returned.

```
cross.colin(Y, X, max.lag = 8, trsh = 0.8)
```

cumfun 51

Arguments

Y Y X X max.lag x x trsh

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

cumfun	Cumulative functions	
--------	----------------------	--

Description

Cumulative max / min / Mean / Standard Deviation / Variance / sum on each column of the input matrix

Usage

```
cumMax(X, lag = 0, padding = NA, na.rm = FALSE)
```

Arguments

X	Input matrix/sequence
lag	vector of integer lags. If lag $>= 0$ data are shifted to the right, else to the left. (DEFAULT = 0)
padding	value used to initialise the output matrix (DEFAULT = NA)
na.rm	LOGICAL. If TRUE, N-lag entries are removed from the output. Also NA in the input are replaced by -Inf (DEFAULT = FALSE)

Details

Sequences are treated as one-column matrices

Value

A matrix of cumulative maximums of X. Number of rows depends on the na.rm parameter. Number of columns is NCOL(X)

Author(s)

RAdamant Development Team <team@r-adamant.org>

See Also

lew

52 decscal

decimals

Count decimal

Description

Count decimal

Usage

```
decimals(x, max.digits = 10, ...)
```

Arguments

```
x x max.digits max.digits
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team

decscal

Decimal scale

Description

Compute decimal scale of a vector

Usage

```
Decscal(x, scale = 0.1)
```

Arguments

```
\begin{array}{ccc} \textbf{x} & & \textbf{x} \\ \\ \textbf{scale} & & \textbf{scale} \end{array}
```

Note

TO BE COMPLETED

Author(s)

dema 53

dema Double EMA

Description

Compute multiple Double EMA on the input data, one for each column of X[, i] and window size win.size[j]

Usage

```
dema(X, win.size = NROW(X), plot = FALSE, ...)
```

Arguments

```
    X
    win.size
    plot
    LOGICAL. If TRUE plot is returned.
    ...
    Further arguments to or from other methods.
```

Details

```
For financial time series (class = 'fs'), only 'Close' column is processed. DEMA is a weighted combination of EMA: 2*EMA(X) - EMA(EMA(X)). Smoothing factor: lambda = 2/(win.size+1).
```

Author(s)

RAdamant Development Team <team@r-adamant.org>

See Also

ema

demark DeMark indicator

Description

Compute DeMark indicator (Technical Analysis)

```
demark(High, Low, Close, lag = 5, plot = FALSE, ...)
```

54 dgev

Arguments

High VECTOR. High price.

Low VECTOR. Low price.

Close VECTOR. Close price.

lag INTEGER. Number of lag periods.

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

dgev Generalised Extreme Value (GEV)

Description

Generalised Extreme Value (GEV) - Density function

Usage

```
dgev(X, mu = 0, xi = 0.1, sigma = 1)
```

Arguments

X X mu mu xi xi sigma sigma

Note

TO BE COMPLETED

Author(s)

dgpd 55

dgpd

Generalised Pareto Distribution (GPD)

Description

Generalised Pareto Distribution (GPD) - Density function

Usage

```
dgpd(X, xi = 0.1, sigma = 1, trsh = 0)
```

Arguments

X	X
xi	xi
sigma	sigm
t.rsh	trsh

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

dma

Derivative Moving Averages

Description

Compute multiple Derivative Moving Averages on the input data, one for each column of X[, i] and window size win.size[j].

Usage

```
dma(X, fast.win = 5, slow.win = 28, plot = FALSE, ...)
```

Arguments

X	X
fast.win	fast.win
slow.win	slow.win
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

56 dpo

Details

```
For financial time series (class = 'fs'), only 'Close' column is processed.

Formula: 100 * (movMax(SMA(X, fast.win), slow.win) - movMin(SMA(X, fast.win), slow.win)) / X.
```

Value

A object of class 'ma' with attributes type = "DMA" and 'win.size' as from the corresponding input parameters [fast.win,slow.win]:

- matrix of size NROW(X) by NCOL(X) where each column is the moving average of the corresponding column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

sma

dpo

Detrended price oscillator

Description

Compute Detrended price oscillator (Technical Analysis)

Usage

```
dpo(Close, lag = 5, plot = TRUE, ...)
```

Arguments

Close	VECTOR. Close price.
lag	INTEGER. Number of lag periods.
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Details

The Detrended Price Oscillator removes the trend in prices by subtracting a moving average of the price from the price.

The Detrended Price shows cycles and overbought/oversold conditions. Note that the calculation shifts the results (shift = term / 2 + 1) periods, so the last shift periods will be zero.

Note

TO BE COMPLETED

Author(s)

drawdown 57

drawdown

Financial Drawdown

Description

Drawdown risk analysis

Usage

```
drawdown(x, ...)
## Default S3 method:
drawdown(x, FUN = max, relative = FALSE, plot = FALSE, ...)
```

Arguments

```
 \begin{array}{ccc} \textbf{x} & & \textbf{x} \\ & \textbf{FUN} & & \textbf{FUN} \\ & \textbf{relative} & & \textbf{realtive} \end{array}
```

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

dropn

Drop N Possible Terms to a Linear Regression Model

Description

Drop N Possible Terms to a Linear Regression Model

Usage

```
dropn (mod, N = 1, ...)
```

Arguments

 $\begin{array}{cc} \text{mod} & \text{mod} \\ \text{N} & \text{N} \end{array}$

... Further arguments to or from other methods.

Note

TO BE COMPLETED

58 edwdist

Author(s)

RAdamant Development Team <team@r-adamant.org>

edgefact

Edge Factor (B&S)

Description

Edgeworth adaption factors

Usage

```
EdgeFact(x, s, k)
```

Arguments

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

edwdist

Edgeworth distribution

Description

Simulate empirical Edgeworth distribution

Usage

```
EdgeWorthDist(init, Nsteps, p=0.5)
```

Arguments

```
\begin{array}{ccc} \text{init} & & \text{init} \\ \text{Nsteps} & & \text{Nsteps} \\ \text{p} & & \text{p} \end{array}
```

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

edwprice 59

edwprice	Edgeworth option price	
----------	------------------------	--

Description

Option evaluation with Edgeworth adapted Binomial Tree

Usage

```
Edgeworth.price(init, under, strike, rfr, sigma, maty, yield)
```

Arguments

init	init
under	under
strike	strike
rfr	rfr
sigma	sigma
maty	maty
yield	yiels

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team

ema	Exponential Moving Average	

Description

Compute multiple Exponential Moving Averages on the input data, one for each column of X[, i] and window size win.size[j].

Usage

```
ema(X, win.size = NROW(X), plot = FALSE, ...)
```

Arguments

X	Matrix of data series (one column per variable).
win.size	vector of moving average window sizes (lags) to be applied on the data X . (DE-FAULT = 10).
plot	LOGICAL. Return plot.
	Additional parameters accepted by the function Mmovav.

60 emat

Details

For financial time series (class = 'fs'), only 'Close' column is processed. Smoothing factor: lambda = 2/(win.size+1).

Value

A object of class 'ma' with attributes type = "EMA" and 'win.size' as given by the corresponding input parameter:

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

emat

Trend corrected Exponential Moving Averages

Description

Compute multiple Trend corrected Exponential Moving Averages on the input data, one for each column of X[, i] and window size win.size[j].

Usage

```
emat(X, win.size = NROW(X), alpha = 0.1, plot = FALSE, ...)
```

Arguments

X	Matrix of data series (one column per variable).
win.size	vector of moving average window sizes (lags) to be applied on the data X. (DEFAULT = NROW(X)).
alpha	weight for the trend correction (DEFAULT: 0.1)
plot	LOGICAL. Return plot.
• • •	Additional parameters accepted by function ema.

Details

For financial time series (class = 'fs'), only 'Close' column is processed. EMAT is a dynamic model regulated by the smoothing factors lambda = 2/(win.size+1) and alpha.

Value

A object of class 'ma' with attributes type = "EMAT", 'lambda' and 'alpha':

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

eom 61

See Also

ema

eom

Ease of Movement oscillator

Description

Compute Ease of Movement oscillator (Technical Analysis)

Usage

```
eom(Close, High = NULL, Low = NULL, Vol = NULL, plot = TRUE, ...)
```

Arguments

Close	VECTOR. Close price.
High	VECTOR. High price.
Low	VECTOR. Low price.
Vol	VECTOR. Asset traded Volume.
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

epma

end Point Moving Averages

Description

Computes multiple End-Points Moving Averages on the input data, one for each column of X[, i] and window size win.size[j].

```
epma(X, win.size = 10, plot = FALSE, \dots)
```

62 erf

Arguments

Matrix of data series (one column per variable)
 win.size
 Vector of moving average window sizes (lags) to be applied on the data X. (DE-FAULT = NROW(X)).
 plot
 LOGICAL. Return plot.
 Additional parameters accepted by the function Movay

Details

For financial time series (class = 'fs'), only 'Close' column is processed.

EPMA Weights are given by a win.size-long line with angular coefficient = -3 and intercept = 2*win.size-1

Value

A object of class 'Movav' with attributes type = "EPMA" and 'win.size' as from the corresponding input parameter:

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

Movav

erf Elder Ray force

Description

Compute Elder Ray force (Technical Analysis)

Usage

```
erf(Close, High = NULL, Low = NULL, lag = 13, plot = FALSE, ...)
```

Arguments

```
Close VECTOR. Close price.

High VECTOR. High price.

Low VECTOR. Low price.

lag INTEGER. Number of lag periods.

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.
```

erfi 63

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

erfi

Elder Ray force index

Description

Compute Elder Ray force index (Technical Analysis)

Usage

```
erfi(X, Volume, lag = 13, plot = FALSE, ...)
```

Arguments

X

Volume VECTOR. Asset traded Volume.

lag INTEGER. Number of lag periods.

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

extrbrk

Extract breaks

Description

extract specificied break from an object of class Factorise

Usage

```
extrBreak(var, Factors)
```

Arguments

 $\begin{array}{ccc} \text{var} & & \text{var} \\ \text{Factors} & & \text{Factors} \end{array}$

64 fact2woe

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

extrdd

Maximum / Minimum drawdown

Description

Calculate Mximum / Minimum DrawDown

Usage

```
ExtremeDD(DD, FUN, lag = 1, rolling = FALSE, plot = TRUE, ...)
```

Arguments

DD OBJECT of class "drawdown"

FUN FUN

lag INTEGER. Number of lag periods.

rolling rolling

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

fact2woe

Factor to Weight of Evidence

Description

Transform factorise data to weight of evidence

```
factor2woe(segm, woe)
```

factor 65

Arguments

segm INTEGER / VECTOR. Number of segments to factorise numerical variables.

woe woe

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

factor

Factorise variable

Description

Factorise numerical variables according with defined bins

Usage

```
Factorise(X, nseg,
seg.type = c("freq_equal", "width_equal"),
na.replace = NULL)
```

Arguments

X

nseg INTEGER / VECTOR. Number of segments to factorise numerical variables.

seg.type CHARACTER. Type of segments to create. (Default = "equal frequencies")

na.replace CHARACTER / NUMERIC. Value to replace missing.

If NULL missing values are not considered in the computation.

Note

TO BE COMPLETED

Author(s)

66 finplot

fft

Custom Fast Fourier transformation

Description

Compute Custom Fast Fourier transformation

Usage

```
FFT(x, ...)
## Default S3 method:
FFT(x, Fs = 1, half = FALSE,
window = NULL, plot = TRUE, optimised = TRUE, ...)
```

Arguments

```
x X
Fs Fs
half half
window window
plot LOGICAL. If TRUE plot is returned.
optimised optimised
... Further arguments to or from other methods
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

finplot

Plot financial time series

Description

Plot financial time series

firsthit 67

Usage

```
fin.plot(X, top.vars = c("Close", "High", "Low"),
bottom.vars = "Volume", style = c("default", "candlestick"),
snames = attr(X, "SName"), xlabels = rownames(X),
main = "", main2 = "",
ytitle = "", ytitle2 = "",
theme.top = getCurrentTheme(),
overrides = list(...),
theme.bottom = getCurrentTheme(),
overrides2 = NULL, ...)
```

Arguments

X	X
top.vars	top.vars
bottom.vars	bottom.vars
style	style
snames	snames
xlabels	xlabels
main	main
main2	main2
ytitle	ytitle
ytitle2	ytitle2
theme.top	theme.top
overrides	overrides
theme.bottom	theme.bottom
overrides2	overrides2
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

firsthit

First Hit time barrier (Brownian motion)

Description

Calculate expected time of the First Hitting for a Brownian motion

```
FirstHit(B, S0, mi, geom = FALSE, sigma = NULL)
```

68 fmeas

Arguments

В	В
SO	S 0
mi	mi
geom	geom
sigma	sigma

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

fmeas

Four Measures indexes

Description

Calculate the Four Measures indexes

Usage

```
FourMeasures(PTF, ...)
## Default S3 method:
FourMeasures(PTF, PTF_M, rf = NULL, rfr = 0, ...)
## S3 method for class 'Capm'
FourMeasures(PTF, rfr = 0, ...)
```

Arguments

PTF	Input portfolio or an object of class "Capm"
PTF_M	Market/benchmark portfolio
rfr	risk free rate
rf	risk free asset
	Further arguments to or from other methods

Value

Return a matrix containing the values for the following indexes: Sharpe, Treynor, Jensen and Appraisal

Author(s)

RAdamant Development Team

See Also

```
Sharpe, Treynor, Jensen, Appraisal
```

fmlmreg 69

fmlmreg

Extract formula from regression object

Description

Extract formula from regression ("reg" / "mreg") object

Usage

```
## S3 method for class 'reg'
formula(x, ...)
## S3 method for class 'mreg'
formula(x, ...)
```

Arguments

```
An object of class "reg" / "mreg"Further arguments passed to or from other methods
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

forcidx

Force index

Description

Compute Force index (Technical Analysis)

Usage

```
forcidx(X, Volume, lag = 5, sth = TRUE,
sth.lag = 13, mov = sma, plot = FALSE, ...)
```

Arguments

X	X
Volume	Volume
lag	INTEGER. Number of lag periods.
sth	sth
sth.lag	sth.lag
mov	mov
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from othermethods

70 frama

Details

The Force Index measures the force of bulls behind every rally and of bears behind every decline. The Force Index attempts to quantify the force of every price move according to its direction, distance, and trading volume.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

frama

Fractal Moving Average

Description

Fractal Moving Average, computed on each column of the input data X and for each pair (fast.win[i], slow.win[i]).

Usage

```
frama(X, win.size = 10, tau = 4.6,
keep.lambda = FALSE, keep.ER = FALSE, plot = FALSE, ...)
```

Arguments

X	Matrix of data series (one column per variable).
win.size	vector of window sizes (lags) (DEFAULT = 10).
tau	controls how the smoothing factor lambda is calculated (lambda = $\exp(\tan^* \log(ER))$) (DEFAULT = 4.6).
keep.lambda	LOGICAL. If TRUE, adaptive smoothing factor lambda is returned as an attribute (DEFAULT = FALSE).
keep.ER	LOGICAL. If TRUE, adaptive Efficiency Ratio ER is returned as an attribute (DEFAULT = FALSE).
plot	LOGICAL. Return plot.
	Additional parameters for future development.

Details

For financial time series (class = 'fs'), only 'Close' column is processed.

Value

A object of class 'Movav' with attributes type = "FRAMA", 'lambda' and 'ER' as required and 'win.size' and 'tau' given by the corresponding input parameters:

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of the corresponding column of X.

freqwind 71

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

ema

freqwind

Smoothing windows

Description

barthann: Compute Barthann window bartlet: Compute Bartlet window blackman: Compute Blackman window gauss: Compute Gauss window lanczos: Compute Lanczos window triangle: Compute Triange window hamming: Compute Hamming window hann: Compute Hann window cosine: Compute Cosine window

Usage

```
barthann(N, normalized = TRUE, alpha = 0.38)
bartlet(N, normalized = TRUE)
blackman(N, normalized = TRUE, alpha = 0.16)
cosine(N, normalized = TRUE)
gauss(N, normalized = TRUE, sigma = 0.5)
hamming(N, normalized = TRUE)
hann(N, normalized = TRUE)
kaiser(N, normalized = TRUE, alpha = 3)
lanczos(N, normalized = TRUE)
triangle(N, normalized = TRUE)
```

Arguments

N Window length
normalized LOGICAL. If TRUE, window is normalised to have unitary norm
alpha alpha
sigma sigma

Value

The window samples

Author(s)

72 fsevecar

See Also

FFT

fresvar

Fiited / Residual for VAR

Description

Get Fitted values and Residuals from a VAR model

Usage

```
## S3 method for class 'VecAr'
fitted(object, Coefs, ar.lags, ...)
```

Arguments

object object
Coefs Coefs
ar.lags ar.lags

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

fsevecar

VAR Forecast Standard Error

Description

Compute forecast standard error for VAR model

Usage

```
FSE.VecAr(X, steps, ...)
```

Arguments

 ${\tt X} \hspace{1cm} {\tt X} \hspace{1cm} {\tt steps} \hspace{1cm} {\tt steps}$

... Further arguments to or from other methods.

fulp 73

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

fulp Full price

Description

Compute Full price (Technical Analysis)

Usage

```
fullP(Close, Open, High, Low, plot = FALSE, ...)
```

Arguments

Close	VECTOR. Close price.
Open	VECTOR. Open price.
High	VECTOR. High price.
Low	VECTOR. Low price.
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

funcomx Function comment

Description

Given an input file, this functions created an index based commented version of the file.

Usage

```
func.comment.idx(control.df =
data.frame(FNAME = c(), FCODE = c(),
AREA = c(), SECTION = c(), CLASS = c()),
infile = NULL, incode = NULL, outfile = NULL, max.dgt = 3)
```

74 funcomx

Arguments

control.df	List of function names. See Details
infile	Input file (Full path: Mandatory).
incode	Input code array (Alternative to infile: Mandatory). Each entry is considered to be a line of code.
outfile	Output commented file (Full path: Optional). If provided, an output file is generated.
max.dgt	Controls the number of digits to be used on each section of the comment.

Details

This data frame is a list of function names:

- FNAME = Name of the function
- FCODE = code identifier for the function. (a-Z)(0-9).
- AREA = Macro area (Description) classification for the function.
- SECTION = Section (Description) classification for the function (Sub-AREA)
- CLASS = The class of the returned object.

Value

String array where every entry is a line of code. Each original line of the input code is preceded by a special comment.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

Examples

```
#### EXAMPLE #####

tst = data.frame(FNAME = c("sd", "lm")
, FCODE = c("SD", "LM")
, AREA = c("s5", "s2")
, SECTION = c("s1", "s1")
, CLASS = c("c1", "c2")
);

incode = rbind(paste("sd =", as.character(deparse(args(sd)))[1])
, as.matrix(deparse(body(sd)))
, ""
, ""
, paste("lm =", as.character(deparse(args(lm)))[1])
, as.matrix(deparse(body(lm)))
)
func.comment.idx(tst, incode = incode, max.dgt=3)
```

funlent 75

Description

Given a package name or a list of functions, for each function X in the package or the list it counts the lines of code, the number of subcalls made to any other function Y of the list/package and the number of other functions that make calls to the function X.

Results are plotted if requested.

Usage

```
func.line.cnt(package = NULL, plot = TRUE,
qtz.type = "NONE", qtz.nbins = 10, qtz.cutoff = 30)
```

Arguments

package	CHARACTER. Single name of the package to load or array list of function names.
plot	LOGICAL. If TRUE, results are plotted on bar charts.
qtz.type	CHARACTER. qtz.type = "NONE" "LINEAR" "LOG".
qtz.nbins	INTEGER. Number of bins to be computed. Used only when qtz.type != "NONE". (Default = 10)
qtz.cutoff	Used only when qtz.type = "LOG". (Default = 30)

Details

Parameter "qtz.type" is Case Insensitive. It states the yype of quantizzation to be used to set bin size for the barchart plotting the distribution of lines of code. Values:

- If "NONE", bin size is set to 1.
- If "LINEAR", qtz.nbins equispaced intervarls are computed.
- If "LOG", qtz.nbins log-spaced intervals are computed based on qtz.cutoff.

Parameter "qtz.bins": qtz.nbins equispaced intervals are computed on a $\log(x/\text{qtz.cutoff})$ scale. This creates more intervals in the range 0 < x < qtz.cutoff.

Value

Data frame containing the stats for each function in the input list/package:

- fcn.name = Name of the function
- fcn.lines = Number of lines of code
- fcn.subcalls = Calls made to other functions
- fcn.called = Number of function calling the function

Author(s)

RAdamant Development Team < team@r-adamant.org>

76 garch

fwmovav

Front Weighted Moving Averages

Description

fw1: Computes multiple Front Weighted 32 Day Moving Averages on the input data, one for each column X[, i].

fw2: Computes multiple Front Weighted 18 Day Moving Averages on the input data, one for each column X[, i].

fw3: Computes multiple Front Weighted 2 Day Moving Averages on the input data, one for each column X[, i].

Usage

```
fw1(X, plot = FALSE, ...)
fw2(X, plot = FALSE, ...)
fw3(X, plot = FALSE, ...)
```

Arguments

X Matrix of data series (one column per variable).

plot LOGICAL. Return plot.

. . . Additional parameters accepted by function movav.

Details

For financial time series (class = 'fs'), only 'Close' column is processed.

Value

A object of class 'ma' with attributes type = "FW1/2/3" and 'weights' given by the FW1/2/3 filter weights:

- matrix of size NROW(X) by NCOL(X) where each column is the moving average of the corresponding column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

garch Garch

Description

Estimate Garch models

gdema 77

Usage

```
Garch(x, ...)
## Default S3 method:
Garch(x, Y=NULL, order=c(alpha=1,beta=1), phi=0, delta=0,
type=c("garch", "mgarch", "tgarch", "egarch"), prob=c("norm", "ged", "t"), ...)
```

Arguments

X	Univariate time series, usaully returns	
Υ	Exogenous regressors for the Mean Equation	
order	Garch order	
type	Garch type.	
prob	Probability density for the innovations.	
phi	Phi pars	
delta	Delta pars	
	Further arguments to or from other methods	

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

gdema	Generalised Double EMA	

Description

Compute multiple Generalised Double EMA on the input data, one for each column of X[, i] and window size win.size[j].

Usage

```
gdema(X, win.size = NROW(X), alpha = 0.7, plot = FALSE, ...)
```

Arguments

X	Matrix of data series (one column per variable).
win.size	vector of moving average window sizes (lags) to be applied on the data X . (DE-FAULT = NROW(X)).
alpha	weight in the interval [0, 1]. (DEFAULT: 0.7)
plot	LOGICAL. Return plot.
	Additional parameters accepted by function ema.

78 getacfci

Details

For financial time series (class = 'fs'), only 'Close' column is processed.

GDEMA is a weighted combination of EMA and DEMA: alpha*DEMA(X) + (1-alpha) * EMA(X).

Smoothing factor: lambda = 2/(win.size+1).

Value

A object of class 'ma' with attributes type = "GDEMA" and 'win.size' as given by the corresponding input parameter:

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

ema

getacfci

Normal confidence intervals for correlation

Description

Compute the Normal confidence intervals for correlation and partial autocorrelation data

Usage

```
get.acf.ci(X, ci = 0.95)
```

Arguments

X X ci

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

getfs 79

getfs

Download Financial Series data from Yahoo!

Description

Download Financial Series data from Yahoo!

Usage

```
get.fs(symbol = NULL, SName = NULL,
from = as.Date("1950-01-01"), to = Sys.Date(),
strip.spaces = TRUE, strip.char = ".")
```

Arguments

```
symbol symbol
SName SName
from from
to to
strip.spaces strip.spaces
strip.char strip.char
```

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

getlmwgh

Extract weights percentages of the coefficients of a linear model

Description

Extract weights percentages of the coefficients of a linear model

Usage

```
get.lm.weights(mod, pct = FALSE)
```

Arguments

```
mod mod pct
```

Note

TO BE COMPLETED

80 gevar

Author(s)

RAdamant Development Team <team@r-adamant.org>

getpred

Extract the column names of the regression terms of a linear model

Description

Extract the column names of the regression terms of a linear model

Usage

```
get.predictors(mod)
```

Arguments

mod

mod

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

gevar

GEV - VaR calculation

Description

GEV - VaR calculation

Usage

```
gev.VaR(Xbmax, mu = NULL, xi = NULL, sigma = NULL, prob = 0.01, ...)
```

Arguments

Xbmax	Xbmax
mu	mu
xi	xi
sigma	sigma
prob	prob

... Further arguments to or from other methods.

Note

TO BE COMPLETED

gevarci 81

Author(s)

RAdamant Development Team <team@r-adamant.org>

gevarci

GEV - VaR calculation and Confidence Intervals

Description

GEV - VaR calculation and Confidence Intervals

Usage

```
gev.VaR.ci(Xbmax, VaR = sum(gev.VaR.constraint(parms = c(0, xi, sigma), type = "both", Xbmax = Xbmax, prob = prob))/2, xi = 0.1, sigma = 1, alpha = 0.01, df = 3, prob = alpha[1], ...)
```

Arguments

Xbmax	Xbmax
VaR	VaR
xi	xi
sigma	sigma
alpha	alpha
df	df
prob	prob
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

82 gevarest

gevarcnt

GEV - VaR Joint Confidence Intervals by Profile Likelihood

Description

GEV - VaR Joint Confidence Intervals by Profile Likelihood

Usage

```
gev.VaR.contour(Xbmax,
VaR = sum(gev.VaR.constraint(parms = c(0, xi, sigma),
type = "both", Xbmax = Xbmax, prob = prob))/2, xi = 0.1,
sigma = 1, alpha = 0.01, df = 3, prob = alpha[1], ...)
```

Arguments

Xbmax	Xbmax
VaR	VaR
xi	xi
sigma	sigma
alpha	alpha
df	df
prob	prob
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

gevarcst

GEV - Domain range for the VaR parameter

Description

GEV - Domain range for the VaR parameter

Usage

```
gev.VaR.constraint(parms, type = c("left", "right", "both"),
Xbmax, prob = 0.01, ...)
```

gevarg 83

Arguments

parms parms
type type
Xbmax Xbmax
prob prob

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

gevarg

GEV - VaR range grid for contour calculation

Description

GEV - VaR range grid for contour calculation

Usage

```
gev.VaR.range(Xbmax,
VaR = sum(gev.VaR.constraint(parms = c(0, xi, sigma),
type = "both", Xbmax = Xbmax, prob = prob))/2, xi = 0.1,
sigma = 1, alpha = 0.01, df = 3, prob = alpha[1], ...)
```

Arguments

Xbmax	Xbmax
VaR	VaR
xi	xi
sigma	sigma
alpha	alpha
df	df
prob	prob

Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

84 gevci

gevark

GEV - VaR Log Likelihood

Description

```
GEV - VaR Log Likelihood
```

Usage

```
gev.VaR.like(parms, Xbmax, prob = 0.01, ...)
```

Arguments

```
parms parms
Xbmax Xbmax
prob prob
```

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

gevci

GEV - Distribution fitting and Confidence Intervals

Description

GEV - Distribution fitting and Confidence Intervals

Usage

```
gev.ci(Xbmax, mu = 0, xi = 0.1, sigma = 1, alpha = 0.01, df = 3, ...)
```

Arguments

Xbmax	Xbmax
mu	mu
xi	xi
sigma	sigma
alpha	alpha
df	df

... Further arguments to or from other methods.

gevcont 85

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

gevcont

GEV - Joint Confidence Intervals by Profile Likelihood

Description

GEV - Joint Confidence Intervals by Profile Likelihood

Usage

```
gev.contour(Xbmax, mu = 0, xi = 0.1, sigma = 1, alpha = 0.01, df = 3, ...)
```

Arguments

Xbmax	Xbmax
mu	mu
xi	xi
sigma	sigma
alpha	alpha
df	df
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

86 gevmcst

gevlike

GEV - Log Likelihood

Description

```
GEV - Log Likelihood
```

Usage

```
gev.like(parms, Xbmax, ...)
```

Arguments

parms parms Xbmax

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

gevmcst

GEV - Domain range for the mu parameter

Description

GEV - Domain range for the mu parameter

Usage

```
gev.mu.constraint(parms, type = c("left", "right", "both"), Xbmax, ...)
```

Arguments

parms parms type type Xbmax Xbmax

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

gevml 87

gevml

GEV - Maximum Likelihood Parameters Estimation

Description

GEV - Maximum Likelihood Parameters Estimation

Usage

```
gev.ml(Xbmax, init = c(0, 0.1, 1), ...)
```

Arguments

Xbmax Xbmax init

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

gevrng

GEV - Parameters range grid for contour calculation

Description

GEV - Parameters range grid for contour calculation

Usage

```
gev.range(Xbmax, mu = 0, xi = 0.1, sigma = 1, alpha = 0.01, df = 3, ...)
```

Arguments

Xbmax	Xbmax
mu	mu
xi	xi
sigma	sigma
alpha	alpha
df	df

... Further arguments to or from other methods.

88 gevsicst

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

gevsicst

GEV - Domain range for the sigma parameter

Description

GEV - Domain range for the sigma parameter

Usage

```
gev.sigma.constraint(parms, type = c("left", "right", "both"), Xbmax, parm.type "VaR", "ES"), prob = 0.01, ...)
```

Arguments

```
parms parms

type type

Xbmax Xbmax

parm.type parm.type

prob prob

... Further arguments to or from other methods.
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

gevxicst 89

gevxicst

GEV - Domain range for the xi parameter

Description

GEV - Domain range for the xi parameter

Usage

```
gev.xi.constraint(parms, type = c("left", "right", "both"),
Xbmax, parm.type = c("mu", "VaR", "ES"), prob = 0.01, ...)
```

Arguments

```
parms parms
type type
Xbmax Xbmax
parm.type parm.type
prob prob
...
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

gini

Gini index

Description

Calculate Gini index based on the results of a classification model.

Usage

```
Gini(x, ...)
## Default S3 method:
Gini(x, ...)
## S3 method for class 'scorecard'
Gini(x, glob = TRUE, ...)
```

Arguments

```
x An object of class "scorecard"globalFurther arguments to or from other methods
```

90 gmma

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

gkgamma

GK Gamma

Description

GK Gamma statistic

Usage

```
GKgamma(target, pred, ...)
```

Arguments

target target pred pred

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

gmma

Guppy's Multiple EMA

Description

Compute Guppy's Multiple EMA on the input data, one for each column of X[, i].

Usage

```
gmma(X, plot = FALSE, ...)
```

Arguments

X Matrix of data series (one column per variable).

plot LOGICAL. Return plot.

... Additional parameters accepted by function ema.

gpdboot 91

Details

GMMA is two sets (short and long window sizes) of six EMA:

- Short Windows: 3, 5, 8, 10, 12, 15
- Long Windows: 30, 35, 40, 45, 50, 60.

Value

A object of class 'ma' with attributes type = "GMMA" and 'win.size' as given by the corresponding input parameter:

- matrix of size NROW(X) by NCOL(X)*12 with twelve moving averages for each column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

ema

gpdboot

GPD - parameters bootstrapping

Description

GPD - parameters bootstrapping

Usage

```
gpdboot(Xtail, trsh = 0, xi = NULL, sigma = NULL, nboots = 100, ...)
```

Arguments

Xtail	Xtail
trsh	trsh
xi	xi
sigma	sigma
nboots	nboots
	E 41

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team \ \verb|\claim= adamant.org>|$

92 gpdcnt

gpdci

GPD - Distribution fitting and Confidence Intervals

Description

GPD - Distribution fitting and Confidence Intervals

Usage

```
gpd.ci(Xtail, trsh = 0, xi = 0.1, sigma = 1, alpha = 0.01, df = 2, ...)
```

Arguments

```
Xtail Xtail
trsh trsh
xi xi
sigma sigma
alpha alpha
df df
```

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

gpdcnt

GPD - Joint Confidence Intervals by Profile Likelihood

Description

GPD - Joint Confidence Intervals by Profile Likelihood

Usage

```
gpd.contour(Xtail, trsh = 0, xi = 0.1, sigma = 1, alpha = 0.01, df = 2, ...)
```

Arguments

```
Xtail Xtail
trsh trsh
xi xi
sigma sigma
alpha alpha
df df
```

... Further arguments to or from other methods.

gpdes 93

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

gpdes

GPD - Expected Shortfall (ES) calculation

Description

GPD - Expected Shortfall (ES) calculation

Usage

```
gpd.ES(Xtail, trsh = 0, xi = NULL, sigma = NULL, N, prob = 0.01, ...)
```

Arguments

Xtail Xtail
trsh trsh
xi xi
sigma sigma
N N
prob prob
...

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

94 gpdescnt

gpdesci

GPD - ES calculation and Confidence Intervals

Description

GPD - ES calculation and Confidence Intervals

Usage

```
gpd.ES.ci(Xtail, trsh = 0, ES = trsh + 10^-5, xi = 0.1, alpha = 0.01, df = 2, N, prob = alpha[1], ...)
```

Arguments

Xtail	Xtail
trsh	trsh
ES	ES
xi	xi
alpha	alpha
df	df
N	N
prob	prob

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

gpdescnt

GPD - ES Joint Confidence Intervals by Profile Likelihood

Description

GPD - ES Joint Confidence Intervals by Profile Likelihood

Usage

```
gpd.ES.contour(Xtail, trsh = 0, ES = trsh + 10^-5, xi = 0.1, alpha = 0.01, df = 2, N, prob = alpha[1], ...)
```

gpdescst 95

Arguments

Xtail Xtail trsh trsh ES ES хi хi alpha alpha df df N Ν prob prob Further arguments to or from other methods. . . .

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

gpdescst GPD - Domain range for the ES parameter

Description

GPD - Domain range for the ES parameter

Usage

```
gpd.ES.constraint(parms, type = c("left", "right", "both"), trsh = 0, ...)
```

Arguments

```
parms parms
type type
trsh trsh
...
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team

96 gpdesk

gpdesfce

GPD - Log Likelihood 3D surface as a function of Expected Shortfall

Description

GPD - Log Likelihood 3D surface as a function of Expected Shortfall

Usage

```
gpd.ES.surface(ES = NULL, xi = NULL, Xtail,
trsh = 0, N, prob = 0.01, grid.size = 100, alpha = 0.01, ...)
```

Arguments

ES	ES
xi	xi
Xtail	Xtail
trsh	trsh
N	N
prob	prob
grid.size	grid.size
alpha	alpha
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

gpdesk

GPD - ES Log Likelihood

Description

```
GPD - ES Log Likelihood
```

Usage

```
gpd.ES.like(parms, Xtail, trsh = 0, N, prob = 0.01, ...)
```

gpdesml 97

Arguments

parms parms

Xtail Xtail

trsh trsh

N N

prob prob

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

gpdesml

GPD - Maximum Likelihood ES Estimation

Description

GPD - Maximum Likelihood ES Estimation

Usage

```
gpd.ES.ml(Xtail, trsh = 0, N, init = c(1, 0.1), ...)
```

Arguments

Xtail Xtail
trsh trsh
N N
init init

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

98 gpdlk

gpdesrng

GPD - ES range grid for contour calculation

Description

GPD - ES range grid for contour calculation

Usage

```
gpd.ES.range(Xtail, trsh = 0, ES = trsh + 10^-5, xi = 0.1, alpha = 0.01, df = 2, N, prob = alpha[1], ...)
```

Arguments

Xtail	Xtail
trsh	trsh
ES	ES
xi	xi
alpha	alpha
df	df
N	N
prob	prob
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

gpdlk

GPD - Log Likelihood

Description

```
GPD - Log Likelihood
```

Usage

```
gpd.like(parms, Xtail, trsh = 0, ...)
```

Arguments

parms	parms
Xtail	Xtail
trsh	trsh

... Further arguments to or from other methods.

gpdml 99

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

gpdml

GPD - Maximum Likelihood Parameters Estimation

Description

GPD - Maximum Likelihood Parameters Estimation

Usage

```
gpd.ml(Xtail, trsh = 0, init = c(0.1, 1), ...)
```

Arguments

Xtail Xtail
trsh trsh
init init

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

gpdrng

GPD - Parameters range grid for contour calculation

Description

GPD - Parameters range grid for contour calculation

Usage

```
gpd.range(Xtail, trsh = 0, xi = 0.1, sigma = 1, alpha = 0.01, df = 2, \dots)
```

100 gpdsfc

Arguments

Xtail
trsh
xi
xi
sigma sigma
alpha alpha
df
...
Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

gpdsfc

GPD - Log Likelihood 3D surface

Description

GPD - Log Likelihood 3D surface

Usage

```
gpd.surface(xi = NULL, sigma = NULL, Xtail,
trsh = 0, grid.size = 100, alpha = 0.01, ...)
```

Arguments

xi xi
sigma sigma
Xtail Xtail
trsh trsh
grid.size grid.size
alpha alpha

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

gpdsgcnt 101

gpdsgcnt

GPD - Domain range for the sigma parameter

Description

GPD - Domain range for the sigma parameter

Usage

```
gpd.sigma.constraint(parms, type = c("left", "right", "both"), Xtail, trsh = 0, ...)
```

Arguments

parms	parms
type	type
Xtail	Xtail
trsh	trsh

. . . Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

gpdvar

GPD - VaR calculation

Description

GPD - VaR calculation

Usage

```
gpd.VaR(Xtail, trsh = 0, xi = NULL, sigma = NULL, N, prob = 0.01, ...)
```

Arguments

```
\begin{array}{cccc} \text{Xtail} & & \text{Xtail} \\ \text{trsh} & & \text{trsh} \\ \text{xi} & & \text{xi} \\ \text{sigma} & & \text{sigma} \\ \text{N} & & \text{N} \\ \text{prob} & & \text{prob} \end{array}
```

... Further arguments to or from other methods.

102 gpdvarci

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

gpdvarci

GPD - VaR calculation and Confidence Intervals

Description

GPD - VaR calculation and Confidence Intervals

Usage

```
gpd.VaR.ci(Xtail, trsh = 0, VaR = trsh + 10^-5, xi = 0.1, alpha = 0.01, df = 2, N, prob = alpha[1], ...)
```

Arguments

Xtail	Xtail
trsh	trsh
VaR	VaR
xi	xi
alpha	alpha
df	df
N	N
prob	prob
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

gpdvarcn 103

gpdvarcn

GPD - VaR Joint Confidence Intervals by Profile Likelihood

Description

GPD - VaR Joint Confidence Intervals by Profile Likelihood

Usage

```
gpd.VaR.contour(Xtail, trsh = 0, VaR = trsh + 10^-5, xi = 0.1, alpha = 0.01, df = 2, N, prob = alpha[1], ...)
```

Arguments

Xtail	Xtail
trsh	trsh
VaR	VaR
xi	xi
alpha	alpha
df	df
N	N
prob	prob
	Further argumen

Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

gpdvarct

GPD - Domain range for the VaR parameter

Description

GPD - Domain range for the VaR parameter

Usage

```
gpd.VaR.constraint(parms, type = c("left", "right", "both"), trsh = 0, ...)
```

Arguments

```
\begin{array}{ll} \text{parms} & \text{parms} \\ \text{type} & \text{type} \\ \text{trsh} & \text{trsh} \end{array}
```

... Further arguments to or from other methods.

104 gpdvarg

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

gpdvarg

GPD - VaR range grid for contour calculation

Description

GPD - VaR range grid for contour calculation

Usage

```
gpd.VaR.range(Xtail, trsh = 0, VaR = trsh + 10^-5, xi = 0.1, alpha = 0.01, df = 2, N, prob = alpha[1], ...)
```

Arguments

Xtail	Xtail
trsh	trsh
VaR	VaR
xi	xi
alpha	alpha
df	df
N	N
prob	prob
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

gpdvarlk 105

gpdvarlk

GPD - VaR Log Likelihood

Description

```
GPD - VaR Log Likelihood
```

Usage

```
gpd.VaR.like(parms, Xtail, trsh = 0, N, prob = 0.01, ...)
```

Arguments

parms	parms
Xtail	Xtail
trsh	trsh
N	N
prob	prob
	Further arguments to or

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

gpdvarml

GPD - Maximum Likelihood VaR Estimation

Description

GPD - Maximum Likelihood VaR Estimation

Usage

```
gpd.VaR.ml(Xtail, trsh = 0, N, init = c(1, 0.1), \ldots)
```

Arguments

```
\begin{array}{ccc} \text{Xtail} & & \text{Xtail} \\ \text{trsh} & & \text{trsh} \\ \text{N} & & \text{N} \\ \text{init} & & \text{init} \end{array}
```

... Further arguments to or from other methods.

106 gpdvarsf

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

gpdvarsf

GPD - Log Likelihood 3D surface as a function of VaR

Description

GPD - Log Likelihood 3D surface as a function of VaR

Usage

```
gpd.VaR.surface(VaR = NULL, xi = NULL, Xtail,
trsh = 0, N, prob = 0.01, grid.size = 100, alpha = 0.01, ...)
```

Arguments

VaR	VaR
xi	xi
Xtail	Xtail
trsh	trsh
N	N
prob	prob
grid.size	grid.size
alpha	alpha
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

gpdxicst 107

gpdxicst

GPD - Domain range for the xi parameter

Description

GPD - Domain range for the xi parameter

Usage

```
gpd.xi.constraint(parms, type = c("left", "right", "both"),
Xtail, trsh = 0, N, parm.type = c("sigma", "VaR", "ES"),
prob = 0.01, ...)
```

Arguments

parms	parms
type	type
Xtail	Xtail
trsh	trsh
N	N
parm.type	parm.type
prob	prob
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

grad

Compute numerical gradient of a function

Description

Plotting tools

Usage

```
grad(func = NULL, x, scalar = TRUE, eps = sqrt(.Machine$double.neg.eps), ...)
```

108 grautil

Arguments

func func x x scalar eps eps

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

grangcas

Granger Causality test

Description

Perform Granger causality test for parameters of VAR model

Usage

```
## S3 method for class 'VecAr'
GrangCas(X, cause = NULL, ...)
```

Arguments

 ${\tt X}$ cause cause

Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

grautil

RAdamant Graphical utilities

Description

Graphical utilities used by the plotting functions

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

heas 109

heas

Heikin - Ashi techniques

Description

Compute Heikin - Ashi techniques (Technical Analysis)

Usage

```
he_as(Close, Open, High, Low, plot = FALSE, ...)
```

Arguments

Close	VECTOR. Close price.
Open	VECTOR. Open price.
High	VECTOR. High price.
Low	VECTOR. Low price.
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Details

A type of candlestick chart that shares many characteristics with standard candlestick charts, but differs because of the values used to create each bar.

The Heikin-Ashi technique is used by technical traders to identify a given trend more easily. Hollow candles with no lower shadows are used to signal a strong uptrend, while filled candles with no higher shadow are used to identify a strong downtrend.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

hhv

Highest high

Description

Compute Highest high (Technical Analysis)

Usage

```
hhv(X, lag, na.rm = TRUE)
```

110 hill

Arguments

X X

lag INTEGER. Number of lag periods.

na.rm na.rm

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

Hill function

hill

Description

Hill function: Approximated gamma parameter of the Generalised Pareto distribution

Usage

```
Hill(X, trsh)
```

Arguments

X Input matrix/sequence. Sequences are treated as one column matrices.

 $\ \ \, \text{vector of probability threshold (interval } [0,1])$

Value

A matrix length(trsh) by NCOL(X) of computed quantiles

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

hma 111

hma Hull Moving Averages	Hull Moving Averages
--------------------------	----------------------

Description

Compute multiple Hull Moving Averages on the input data, one for each column of X[, i] and window size win.size[j].

Usage

```
hma(X, win.size = NROW(X), plot = FALSE, ...)
```

Arguments

X	Matrix of data series (one column per variable)
win.size	vector of moving average window sizes (lags) to be applied on the data X . (DEFAULT = NROW(X)).
plot	LOGICAL. Return plot.
	Further arguments to or from other methods

Details

```
For financial time series (class = 'fs'), only 'Close' column is processed. HMA is a combination of WMA: WMA(2*WMA(X, win.size/2) - wma(X, win.size), sqrt(win.size)).
```

Value

A object of class 'ma' with attributes type = "HMA" and 'win.size' as from the corresponding input parameter:

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

wma

112 hvar

hroi

Historical Returns on Investments

Description

Historical Returns on Investments

Usage

```
hroi(X, lag = 1, mode = c("auto", "range", "selected"),
autolag.start = 1, range.step = 1, log = TRUE,
VaR.type = "norm", p = 0.05, ...)
```

Arguments

 \mathbf{X} lag $\mathbf{I}\mathbf{N}$

lag INTEGER. Number of lag periods.

autolag.start

range.step range.step

log log

VaR.type VaR.type

p p

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

hvar

Historical Value at Risk

Description

Compute historical VaR on each column of the input matrix

Usage

```
hVaR(X, p = 0.05, centered = FALSE)
```

ichkh

Arguments

Input matrix/sequence. Sequences are treated as one column matrices.

p vector of probabilities (DEFAULT = 0.05)

centered LOGICAL. If TRUE, input data are standardised

Value

A matrix length(p) by NCOL(X) of computed quantiles

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

ichkh

Ichimoku Kinko Hyo

Description

Compute Ichimoku Kinko Hyo (Technical Analysis)

Usage

```
Ichkh(Close, High, Low, plot = FALSE, ...)
```

Arguments

Close close
High high
Low low

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

in2woe

impulse

Unitary impulse

Description

Generates an impulse sequence of specified length

Usage

```
impulse(N, value = 1)
```

Arguments

N Length of the impulse

value value of the impulse (Default = 1)

Value

Impulse sequence of specified length

Author(s)

RAdamant Development Team <team@r-adamant.org>

in2woe

Data to Weight of Evidence

Description

Transform input data according to weight of evidence

Usage

```
input2woe(data, nseg, woe, na.replace,
seg.type = c("freq_equal", "width_equal"))
```

Arguments

```
data data
nseg nseg
woe woe
na.replace na.replace
seg.type seg.type
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

inertia 115

inertia

Inertia oscillator

Description

Compute Inertia oscillator (Technical Analysis)

Usage

```
Inertia(X, lag, ...)
```

Arguments

X X

lag INTEGER. Number of lag periods.

Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

invlogit

Inverse Logit transformation

Description

Inverse Logit transformation

Usage

```
inv.logit(y)
```

Arguments

у у

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

116 irsvecar

invp

Peizer-Pratt Inversion formula

Description

Peizer-Pratt Inversion formula

Usage

```
InvPP(z, n)
```

Arguments

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

irsvecar

VAR Impulse response

Description

Compute and plot Impulse response function calculated for VAR model

Usage

```
IRS.VecAr(X, imp, resp = NULL, steps = 5, cum = TRUE, ortho = FALSE, ...)
```

Arguments

... Further arguments to or from other methods.

Note

TO BE COMPLETED

isfs 117

Author(s)

 $RA damant \ Development \ Team \ \verb|\team@r-adamant.org|| \\$

isfs

Check for inheritance from Financial Series class

Description

Check for inheritance from Financial Series class

Usage

```
is.fs(X)
```

Arguments

Χ

X

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

jbtest

Jaques-Brera normality test

Description

Compute Jaques-Brera normality test for each column of X

Usage

```
JB.test(X, plot.hist=FALSE)
```

Arguments

X Matrix of data series (one column per variable)

plot.hist LOGICAL. Return histogram.

Value

Matrix of Jaques-Brera scores and P-Value

Author(s)

RAdamant Development Team <team@r-adamant.org>

See Also

kurt, skew

jrbtree jrbtree

jensen Jensen index

Description

```
Jensen: Calculate Jensen index for a portfolio
Jensen. Capm: Get Jensen index from an object of class "Capm".
```

Usage

```
Jensen(PTF, ...)
## Default S3 method:
Jensen(PTF, PTF_M, rf = NULL, rfr = 0, ...)
## S3 method for class 'Capm'
Jensen(PTF, rfr = 0, ...)
```

Arguments

PTF	Input portfolio or an object of class "Capm"
PTF_M	Market/benchmark portfolio
rfr	risk free rate
rf	risk free asset
	Further arguments to or from other methods

Author(s)

RAdamant Development Team <team@r-adamant.org>

See Also

```
Sharpe, Treynor, Appraisal
```

jrbtree

JR Binomial Tree

Description

Option evaluation with Jarrow and Rudd Binomial Tree

Usage

```
JR.BinTree(Nsteps, p, under, strike, rfr, sigma,
maty, yield, life, ret.steps = FALSE)
```

kama 119

Arguments

Nsteps	Nsteps
р	p
under	under
strike	strike
rfr	rfr
sigma	sigma
maty	maty
yield	yield
life	life
ret.steps	ret.steps

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team

kama Kauffman Adaptive Moving Average

Description

Kauffman Adaptive Moving Average, computed on each column of the input data X and for each pair (fast.win[i], slow.win[i]).

Usage

```
kama(X, fast.win = 2, slow.win = 30, lag = 5,
keep.lambda = FALSE, keep.ER = FALSE, plot = FALSE, ...)
```

Arguments

X	Matrix of data series (one column per variable).
fast.win	vector of fast window sizes (fast lags) (DEFAULT = 2)
slow.win	vector of slow window sizes (slow lags) (DEFAULT = 30)
lag	vector of lags used to compute Kauffman efficiency ratio (DEFAULT = 5). Recycled to be of equal length as fast and slow lags if necessary
keep.lambda	LOGICAL. If TRUE, adaptive smoothing factor lambda is returned as an attribute (DEFAULT = FALSE)
keep.ER	LOGICAL. If TRUE, adaptive Efficiency Ratio ER is returned as an attribute (DEFAULT = FALSE)
plot	LOGICAL. Return plot.
	Further arguments to or from other methods.

120 kelt

Details

For financial time series (class = 'fs'), only 'Close' column is processed.

Value

An object of class 'Movav' with attributes type = "KAMA", 'lambda' and 'ER' as required and 'fast.win', 'slow.win' and 'lag' given by the corresponding input parameters:

- matrix of size NROW(X) by NCOL(X)*length(fast.win) where each column is the moving average of the corresponding column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

ama

kelt Keltner channel

Description

Compute Keltner channel (Technical Analysis)

Usage

```
kelt(Close, High, Low, mult = 2, plot = FALSE, ...)
```

Arguments

```
Close VECTOR. Close price.

High VECTOR. High price.

Low VECTOR. Low price.

mult mult

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

kendalt 121

kendalt

KendallTau

Description

Calculate KendallTau statistic

Usage

```
KendallTau(target, pred, ...)
```

Arguments

target target pred pred

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

kri

Kairi Relative Index

Description

Compute Kairi Relative Index (Technical Analysis)

Usage

```
kri(X, lag1 = 10, lag2 = 20, plot = FALSE, ...)
```

Arguments

 $egin{array}{lll} X & X & \\ lag1 & lag1 \\ lag2 & lag2 \\ \end{array}$

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

122 kvo

kurtskew

Kurtosis and Skewness

Description

```
\label{eq:kurt:Compute the excess kurtosis} \ for each \ column \ of \ X \\ \text{skew: Compute the skewness for each column of } X
```

Usage

```
kurt(X, pval = FALSE)
skew(X, pval = FALSE)
```

Arguments

X Matrix of numeric data series (one column per variable).

pval LOGICAL. Return P-Value.

Value

Matrix of Excess Kurtosis / Skewness and P-Value

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

JB.test

kvo

Klinger oscillator

Description

Compute Klinger oscillator (Technical Analysis)

Usage

```
kvo(Close, High = NULL, Low = NULL,
Vol = NULL, cumulative = FALSE, plot = TRUE, ...)
```

Arguments

Close	VECTOR. Close price.
High	VECTOR. High price.
Low	VECTOR. Low price.

Vol VECTOR. Asset traded Volume.

cumulative cumulative

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

lagret 123

Details

The Klinger Oscillator is a volume- and price-based oscillator intended to measure both short- and long-term money flows into and out of a security.

The Klinger Volume Oscillator measures trends of money flows based on volume.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

lagret

Time Series Operators

Description

Ret: Compute N-points Returns on each column of the input matrix.

Lag: Compute lag on each column of the input matrix.

Diff: Compute lagged difference on each column of the input matrix.

MDiff: Compute Multiple lagged differences on each column of the input matrix. \ cr MLag: Compute Multiple lags on each column of the input matrix

Usage

```
Ret(X, lag = 1, log = FALSE, na.rm = FALSE, plot = FALSE, ...)
Lag(X, lag = 1, na.rm = FALSE, padding = NA)
Diff(X, lag = 1, padding = NA, na.rm = FALSE)
MDiff(X, lag = 1, padding = NA, mode = c("auto", "range", "selected"), na.rm = FALSE)
MLag(X, lag = 1, na.rm = FALSE, padding = NA, mode = c("auto", "range", "selected"), autolag.start = 1)
```

Arguments

X	Input data (i.e. matrix/vector of prices)
lag	number of lags
log	BOOLEAN: compute log-returns
na.rm	BOOLEAN: remove NAs
plot	BOOLEAN: return plot
padding	value to replace removed observations
mode	mode
autolag.star	
	autolag.start

... Further arguments to or from other methods

124 lew

Details

Sequences are treated as one-column matrices.

Author(s)

RAdamant Development Team <team@r-adamant.org>

lew Moving window

Description

Apply a given function to an extending window of the lagged data series of the input matrix, each column separately.

Usage

```
lew(X, lag = 0, padding = NA, na.rm = FALSE,
func = NULL, is.cumulative = TRUE, ...)
```

Arguments

X	Input matrix/sequence
lag	vector of integer lags. If lag $>= 0$ data are shifted to the right, else to the left. (DEFAULT = 0)
padding	value used to initialise the output matrix (DEFAULT = NA)
na.rm	LOGICAL. If TRUE, N-lag entries are removed from the output (DEFAULT = FALSE)
func	function applied to the extending data window (DEFAULT = NULL)
is.cumulative	
	LOGICAL. If TRUE it the function provided must be cumulative by itself (like cummax, cummin, etc) (DEFAULT = TRUE)
	Additional parameters accepted by the function 'func'

Details

Sequences are treated as one-column matrices

Value

A matrix where func has been applied on increasing data windows for each column of X. Number of rows depends on the na.rm parameter. Number of columns is NCOL(X)

Author(s)

RAdamant Development Team <team@r-adamant.org>

See Also

```
cumSum, cumMin, cumMax, cumSd, cumVar
```

liftgain 125

liftgain

Lift and Gain plot

Description

Plot cumulative Gain and Lift chart for a classification model

Usage

```
Gain(x, ...)
Lift(x, ...)
## S3 method for class 'scorecard'
Gain(x, pc = 0.1, ...)
## S3 method for class 'scorecard'
Lift(x, pc = 0.1, ...)
```

Arguments

f x f pc f pc

Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

ljbgarch

Ljung-Box test

Description

Perform Ljung-Box test for residual correlation

Usage

```
LjungBox(x, lags, plot.acf = FALSE)
```

Arguments

x Residual series or object of class "Garch"

lags Number of lags to calculate the autocorrelation function

plot.acf LOGICAL. Plot ACF.

126 lkgarch

lkegarch

EGARCH likelihood function

Description

Calculate EGARCH likelihood function

Usage

```
like.egarch(theta, ee, x, Y,
order = c(alpha = 1, beta = 1), prob = c("norm", "ged", "t"))
```

Arguments

theta	theta
ee	ee
X	X
Y	Y
order	order
prob	prob

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

lkgarch

GARCH likelihood function

Description

Calculate GARCH likelihood function

Usage

```
like.garch(theta, ee, x, Y, order, prob = c("norm", "ged", "t"), r)
```

Arguments

```
theta theta
ee ee
x x
Y Y
order order
prob prob
r r
```

lkmgarch 127

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

lkmgarch

MGARCH likelihood function

Description

Calculate MGARCH likelihood function

Usage

```
like.mgarch(theta, x, Y, order, prob=c("norm", "ged", "t"))
```

Arguments

theta	theta
Х	X
Y	Y
order	order
prob	prob

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

lktgarch

TGARCH likelihood function

Description

Calculate TGARCH likelihood function

Usage

```
like.tgarch(theta, ee, x, Y, order, prob = c("norm", "ged", "t"))
```

128

Arguments

theta theta
ee ee
x x
Y Y
order order
prob prob

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team

llv Lowest low

Description

Compute Lowest low (Technical Analysis)

Usage

```
llv(X, lag, na.rm = TRUE)
```

Arguments

X X

lag INTEGER. Number of lag periods.

na.rm na.rm

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

logger 129

logger

Main logging function

Description

Create Log for the functions contained in the package

Usage

```
Logger(message = "", from = deparse(sys.call(sys.parent())),
level = 1, line = NA, env = getOption("RAdamant"),
console = .getConsoleLogging(env = env),
logfile = .getLogFile(env = env))
```

Arguments

message	Message printed.
from	from
level	Log depth level, minimum = 1
line	line
env	environment
console	console logging
logfile	log file

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

logit

Logit transformation

Description

Logit transformation

Usage

```
logit(x, adjust = 5e-05)
```

Arguments

```
\mathbf{x} adjust adjust
```

130 Irbtree

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

lrbtree

LR Binomial Tree

Description

Option evaluation with Leinsen and Reimer Binomial Tree

Usage

```
LR.BinTree(Nsteps, under, strike, rfr,
sigma, maty, yield, life, ret.steps = FALSE)
```

Arguments

Nsteps	Nsteps
under	under
strike	strike
rfr	rfr
sigma	sigma
maty	maty
yield	yield
life	life
ret.steps	ret.steps

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

macd 131

macd Moving Average Convergence / Divergen	ce
--	----

Description

Compute Moving Average Convergence / Divergence (Technical Analysis)

Usage

```
macd(X, fast.lag = 12, slow.lag = 26, signal.lag = 14, plot = TRUE, ...)
```

Arguments

```
X
fast.lag fast.lag
slow.lag slow.lag
signal.lag
plot LOGICAL. If TRUE plot is returned.
... Further arguments to or from other methods.
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

Description

Compute Mass indicator (Technical Analysis)

Usage

```
mass(High, Low, Close = NULL, lag = 9, plot = FALSE, ...)
```

Arguments

High	VECTOR. High price.
Low	VECTOR. Low price.
Close	VECTOR. Close price.
lag	INTEGER. Number of lag periods.
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

mcf

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

masscum

Mass indicator cumulative

Description

Compute Mass indicator cumulative (Technical Analysis)

Usage

```
mass.cum(High, Low, Close = NULL, lag = 9, plot = FALSE, ...)
```

Arguments

High	VECTOR. High price.
Low	VECTOR. Low price.
Close	VECTOR. Close price.
lag	INTEGER. Number of lag periods.
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

mcf

Auto-Correlation and Partial Auto-Correlation

Description

Compute auto-correlation and partial auto-correlation function on a matrix

Usage

```
mcf(X, lag.max = 10, ci = 0.95, plot=TRUE, ...)
```

mcgind 133

Arguments

X	Matrix of data series (one column per variable)
lag.max	Max lag to be computed by the cross correlation function (DEFAULT: 10)
ci	Confidence Interval (DEFAULT: 0.95)
plot	LOGICAL. If TRUE, results are plotted.
	additional parameters accepted by the function plot.cross.ccf.

Value

A list with two entries:

- ACF: list of Auto-Correlation Functions (one for each column of X)
- PACF: list of Partil Auto-Correlation Functions (one for each column of \boldsymbol{X})

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

```
cross.ccf
```

mcgind	McGinley Dynamic Indicator
	· · · · · · · · · · · · · · · · · ·

Description

Compute McGinley Dynamic Indicator (Technical Analysis)

Usage

```
mcgind(X, lag = 12, plot = FALSE, ...)
```

Arguments

X	X
lag	INTEGER. Number of lag periods.
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

134 mcplot

mcosc

McClellan Oscillator

Description

Compute McClellan Oscillator (Technical Analysis)

Usage

```
mcosc(X, fast.lag = 19, slow.lag = 39, hist.lag = 9, plot = TRUE, ...)
```

Arguments

```
X
fast.lag fast.lag
slow.lag
hist.lag
plot
LOGICAL. If TRUE plot is returned.
...
Further arguments to or from other methods.
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

mcplot

Muliple correlation plot

Description

Multiple correlation plot

Usage

```
mcplot(X, hist.nclass = 10, theme.params = getCurrentTheme(),
coLin = TRUE,
main = ifelse(coLin, "Co-Linearity Analysis", "Multi-Correlation Analysis"),
new.device = FALSE, ...)
```

mcsi 135

Arguments

X X
hist.nclass hist.nclass
theme.params theme.params
coLin coLin
main main
new.device new.device

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

mcsi

McClellan Summation Index

Description

Compute McClellan Summation Index (Technical Analysis)

Usage

```
mcsi(matr, nr, nc, lag1, lag2, plot = FALSE, ...)
```

Arguments

 $\begin{array}{ccc} \text{matr} & \text{matr} \\ \text{nr} & \text{nr} \\ \text{nc} & \text{nc} \\ \text{lag1} & \text{lag1} \\ \text{lag2} & \text{lag2} \end{array}$

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

mfind mfind

means

Geometric and Harmonic means

Description

```
gmean: Compute the geometric mean for each column of \boldsymbol{X} hmean: Compute the harmonic mean for each column of \boldsymbol{X}
```

Usage

```
gmean(X, ...)
hmean(X, ...)
```

Arguments

X Matrix of data series (one column per variable)

. Additional parameters accepted by the function sum (i.e. na.rm)

Value

Matrix of harmonic / geometric means

Author(s)

RAdamant Development Team <team@r-adamant.org>

mfind

Money flow indicator

Description

Compute Money flow indicator (Technical Analysis)

Usage

```
Mflow.ind(Close, High, Low, Volume, plot = FALSE, ...)
```

Arguments

```
Close VECTOR. Close price.

High VECTOR. High price.

Low VECTOR. Low price.
```

Volume VECTOR. Asset traded Volume.
plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

mflow 137

Author(s)

RAdamant Development Team <team@r-adamant.org>

mflow Money flow

Description

Compute Money flow (Technical Analysis)

Usage

```
Mflow(Close, High, Low, Volume, plot = FALSE, ...)
```

Arguments

Close	VECTOR. Close price.
High	VECTOR. High price.
Low	VECTOR. Low price.

Volume VECTOR. Asset traded Volume.
plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

mfratio Money flow ratio

Description

Compute Money flow ratio (Technical Analysis)

Usage

```
Mflow.ratio(Close, High, Low, Volume, plot = FALSE, ...)
```

Arguments

Close	VECTOR. Close price.
High	VECTOR. High price.
Low	VECTOR. Low price.

Volume VECTOR. Asset traded Volume. plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

138 mma

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

minmaxs

Mini/Max Scale

Description

Compute minimum / maximum scale of a vector

Usage

```
Minmaxscal(x, tmin = 0, tmax = 1)
```

Arguments

```
tmin tmin
tmax tmax
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

mma

Modified EMA

Description

Compute multiple Modified EMA on the input data, one for each column of X[, i] and window size win.size[j].

Usage

```
mma(X, win.size = NROW(X), plot = FALSE, ...)
```

Arguments

X	Matrix of data series (one column per variable).
win.size	vector of moving average window sizes (lags) to be applied on the data X . (DE-FAULT = NROW(X)).
plot	LOGICAL. Return plot.
	Additional parameters accepted by function ema.

mndma 139

Details

For financial time series (class = 'fs'), only 'Close' column is processed. MMA is a EMA with smoothing factor: lambda = 1/win.size.

Value

A object of class 'ma' with attributes type = "MMA" and 'win.size' as given by the corresponding input parameter:

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

ema

mndma

Modified N-Day Moving Averages

Description

Computes multiple Modified N-Day Moving Averages on the input data, one for each column of X[, i] and window size win.size[j].

Usage

```
mndma(X, win.size = 50, plot = FALSE, ...)
```

Arguments

X	Matrix of data series (one column per variable)
win.size	Vector of moving average window sizes (lags) to be applied on the data X . (DE-FAULT = NROW(X)).
plot	LOGICAL. Return plot.
	Additional parameters accepted by the function sma

Details

For financial time series (class = 'fs'), only 'Close' column is processed.

Value

A object of class 'Movav' with attributes type = "MNDMA" and 'win.size' as from the corresponding input parameter:

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

140 moments

Author(s)

RAdamant Development Team

See Also

sma

mom

Momentum oscillator

Description

Compute Momentum oscillator (Technical Analysis)

Usage

```
mom(X, lag = 5, plot = TRUE, ...)
```

Arguments

X X

lag INTEGER. Number of lag periods.
plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

moments

Main Moments

Description

Calculate sample moments on each columns of X

Usage

```
moments(X)
```

Arguments

Χ

Matrix of data series (one column per variable)

movapply 141

Value

Matrix of moments

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

```
JB.test, skew, kurt
```

movapply

Moving Apply function

Description

Applies a given function to a sliding window of the input data

Usage

```
movApply(X, win.size = 1, padding = NA, rm.transient = FALSE, func = NULL, ...)
```

Arguments

X	Matrix of data series (one column per variable).
win.size	vector of data window sizes that will be passed to the given function "func" (DEFAULT = 1).
padding	Padding value to fill transient of result (output data rows from 1 to win.size-1). (DEFAULT = NA)
rm.transient	transient: LOGICAL. If TRUE, transient is removed, otherwise func is applied to the transient. (DEFAULT = FALSE)
func	Function to be run
	Additional parameters accepted by the function func

Details

For financial time series (class = 'fs'), only 'Close' column is processed.

Value

A matrix of size NROW(X) by NCOL(X)*length(win.size). func is applied to each sliding window SWi (given by win.size[i]) and each column of X.

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

142 movav

movav

Generic 8Multiple) Moving Average

Description

Generic Multiple Moving Average (MA filter). Compute multiple FIR filtering on each column of the input data

Usage

```
Movav(X, ...)
## Default S3 method:
Movav(X, win.size = NULL,
func = NULL, type = "MA", desc = "Moving Average",
plot= FALSE, ...)
```

Arguments

X	Matrix of data series (one column per variable).
win.size	vector of lengths of the FIR filters to be applied on the data X . (DEFAULT = NULL).
func	function accepting an integer N and returning an N-long set of filter coefficients.
type	Charachter attribute attached to the result (DEFAULT: "MA").
desc	desc
plot	LOGICAL. Return plot.
	Further arguments to or from other methods

Details

For financial time series (class = 'fs'), only 'Close' column is processed.

Value

A object of class 'Movav' with attributes 'type' and 'win.size' as given by the corresponding input parameters:

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

movfunc 143

movfunc

Moving Base Functions

Description

Applies the function "Max", "Min", "Standard Deviation" or "Variance" to a sliding window of the input data

Usage

```
movMax(X, win.size = 1, ...)
movMin(X, win.size = 1, ...)
movSd(X, win.size = 1, ...)
movVar(X, win.size = 1, ...)
```

Arguments

```
    Matrix of data series (one column per variable).
    win.size vector of data window sizes that will be used for the calculations (DEFAULT = 1).
    Additional parameters accepted by the function movApply
```

Details

For financial time series (class = 'fs'), only 'Close' column is processed.

Value

A matrix of size NROW(X) by NCOL(X)*length(win.size). max is applied to each sliding window SWi (given by win.size[i]) and

Author(s)

RAdamant Development Team <team@r-adamant.org>

See Also

```
movApply
```

mqt

Multiple t quantile

Description

Compute quantiles from Students T distribution for multiple degrees of freedom values

Usage

```
mqt(p, df, ...)
```

144 mreg

Arguments

```
    Vector of probabilities (DEFAULT = 0.05)
    Vector of degrees of freedom
    Further arguments to and from other methods
```

Value

A matrix length(p) by length(df) of computed quantiles

Author(s)

RAdamant Development Team < team@r-adamant.org>

mreg

Multiple regressions

Description

Multiple regressions

Usage

```
mreg(Y, X, xlabels = NULL, tick.step = 1, backtest = 0,
stress.idx = c(), type = "simple",
model = "lm", ci = 0.95, max.vars = NCOL(X),
intercept = TRUE, family = gaussian, weights = NULL,
plot = TRUE, scope = NULL, trace = FALSE, ...)
```

Arguments

```
Y
Υ
                X
Χ
                xlabels
xlabels
tick.step
                tisck.step
backtest
                backtest
stress.idx
                stress.idx
type
                type
model
                model
ci
                ci
max.vars
                max.vars
intercept
                intercepts
family
                family
weights
                weights
                LOGICAL. If TRUE plot is returned.
plot
                trace
trace
                scope
scope
                Further arguments to or from other methods
. . .
```

mse 145

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

mse

Mean squared error

Description

Calculate Mean squared error for model evaluation

Usage

```
mse(actual, predicted)
```

Arguments

```
actual actual predicted predicted
```

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

 ${\tt mstyles}$

Multiple Style analysis (Portfolio)

Description

Perform Style analysis for multiple time periods

Usage

```
Multi.Styles(FUND, IND, W, n_clust = 5, lower = NULL, upper = NULL, ...)
```

Arguments

FUND	FUND
IND	IND
W	W
n_clust	n_clust
lower	lower
upper	upper

... Further arguments to or from other methods.

146 mtacf

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

mtacf

Cool.Acf methods

Description

Plot and Print methods for class 'cool.acf'

Usage

```
## S3 method for class 'cool.acf'
print(x, ...)
## S3 method for class 'cool.acf'
plot(x, theme.params = getCurrentTheme(), xtitle = "Lag", ytitle =
expression(rho), overrides = list(...), ...)
```

Arguments

```
x Instance of class 'cool.acf'
theme.params Theme parameters (DEFAULT: getCurrentTheme())
xtitle Title for the x-axis (DEFAULT: "Lag")
ytitle Title for the y-axis (DEFAULT: expression(rho))
overrides List of parameters to override the theme. Must match by name the parameters defined by the theme (DEFAULT: NULL)
... Further arguments to or fromother methods
```

Value

Void

Author(s)

mtccf 147

mtccf

Cross.ccf functions

Description

Methods for class 'cross.ccf'

Usage

```
## S3 method for class 'cross.ccf'
print(x, ...)
## S3 method for class 'cross.ccf'
plot(x, theme.params = getCurrentTheme(), xtitle = "Lag", ytitle =
expression(rho), overrides = list(...), ...)
```

Arguments

Value

Void

Author(s)

RAdamant Development Team <team@r-adamant.org>

mtfft

Plot and Print FFT

Description

Plot and Print methods for class 'FFT'

```
## S3 method for class 'FFT'
print(x, ...)

## S3 method for class 'FFT'
plot(x, theme.params = getCurrentTheme(),
overrides = list(...), shaded = TRUE,
show.periodicity = FALSE, show.legend = FALSE,
zoom = 100, semilog = FALSE, new.device = FALSE, ...)
```

148 mtfs

Arguments

```
Х
               X
theme.params theme.params
overrides
               overrides
shaded
               shaded
show.periodicity
               show.periodicity
show.legend show.legend
zoom
               zoom
               semilog
semilog
new.device
               new.device
               Further arguments to or fromother methods
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

mtfs

Methods for Financial Series class

Description

Plot and Print methods for Financial Series class

Usage

```
## S3 method for class 'fs'
plot(x, ...)
## S3 method for class 'fs'
plot(x, ...)
```

Arguments

X

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

mtmcf 149

mtmcf

Mcf methods

Description

Plot and Print method for class 'mcf'

Usage

```
## S3 method for class 'mcf'
print(x, ...)

## S3 method for class 'mcf'
plot(x, theme.params = getCurrentTheme(),
xtitle = "Lag", ytitle = expression(rho),
overrides = NULL, ...)
```

Arguments

X	Instance of class 'mcf'
theme.params	Theme parameters (DEFAULT: getCurrentTheme())
xtitle	Title for the x-axis (DEFAULT: "Lag")
ytitle	Title for the y-axis (DEFAULT: expression(rho))
overrides	List of parameters to override the theme. Must match by name the parameters defined by the theme (DEFAULT: $NULL$)
	Further arguments to or fromother methods

Value

Void

Author(s)

RAdamant Development Team <team@r-adamant.org>

mtoscil

Plot function for Oscillators

Description

Plot and Print method for Oscillators (Technical Analysis)

```
## S3 method for class 'oscil'
print(x, digits = 5, ...)

## S3 method for class 'oscil'
plot(x, Y = NULL, main = "",
show.trsh = NULL, xlabels = rownames(Y),
theme.params =getTheme(1), overrides = NULL, ...)
```

150 mtreg

Arguments

```
Х
                X
                Y
Υ
main
                main
                show treshold
show.trsh
xlabels
                xlabels
theme.params them.params
                overrides
overrides
digits
                digits
                Further arguments to or from other methods
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

mtreg Methods for reg

Description

Plot, Print ND Summary method for "reg"

Usage

```
## S3 method for class 'reg'
print(x, ...)
## S3 method for class 'reg'
summary(object, ...)
## S3 method for class 'reg'
plot(x, mode = c("response", "link"),
title = ifelse(x$model.type == "lm", "LS Regression", "GLM Regression"),
theme.params = getCurrentTheme(),
overrides = list(...), ...)
```

Arguments

```
x, object x
mode mode
title title
theme.params theme.params
overrides overrides
... Further arguments to or from other methods
```

mtunivar 151

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

mtunivar

Methods for univariate analysis

Description

Print, Plot and Summary methods for class 'univar'

Usage

```
## S3 method for class 'univar'
summary(object, ...)
## S3 method for class 'univar'
plot(x, theme.params = getCurrentTheme(), overrides = NULL, ...)
## S3 method for class 'univar'
print(x, ...)
```

Arguments

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

univar

152 newsimp

namutil

Get column and row names

Description

Retrieve column / row names from a matrix.

Usage

```
get.col.names(X, default = "X")
get.row.names(X, default = "")
```

Arguments

X Input matrix.

default LOGICAL vector. Each entry determines the sort direction of the respective

column of X. Recycled if necessary. (DEFAULT = FALSE).

Details

Sequences are treated as one column matrices.

Default names are given if input has missing names.

Value

A character sequence containing the column names of X, or a default set of names if X has no column names

Author(s)

RAdamant Development Team <team@r-adamant.org>

newsimp

News impact curve

Description

Compute News impact curve

```
newsimp(x, ...)
## S3 method for class 'Garch'
newsimp(x, plot = TRUE, ...)
## Default S3 method:
newsimp(x, theta, order,
type=c("garch", "mgarch", "egarch", "tgarch"),
plot=FALSE, ...)
```

normfit 153

Arguments

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

normfit

Fit normal distribution

Description

Fit normal distribution

Usage

```
norm.fit(x, n = 200, range = NULL, ...)
```

Arguments

 ${\tt x}$ ${\tt n}$ ${\tt n}$ range ${\tt range}$

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

154 objgarch

normlike

Normal Distribution - Log Likelihood function

Description

Normal Distribution - Log Likelihood function

Usage

```
norm.like(parms, X, ...)
```

Arguments

```
\begin{array}{ccc} \text{parms} & & \text{parms} \\ \text{X} & & X \end{array}
```

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

objgarch

Garch objects

Description

Extract objects from Garch model (class "Garch")

Usage

```
## S3 method for class 'Garch'
coef(object, names=TRUE, ...)
## S3 method for class 'Garch'
logLik(object, ...)
## S3 method for class 'Garch'
vcov(object, ...)
```

Arguments

object An object of class "Garch"

names Return names

... Further arguments to or from other methods

Note

TO BE COMPLETED

obv 155

Author(s)

RAdamant Development Team < team@r-adamant.org>

obv

On Balance Volume oscillator

Description

Compute On Balance Volume oscillator (Technical Analysis)

Usage

```
Obv(Close, Volume)
```

Arguments

Close VECTOR. Close price.

Volume VECTOR. Asset traded Volume.

Details

The On Balance Volume (OBV) is a cumulative total of the up and down volume. When the close is higher than the previous close, the volume is added to the running total, and when the close is lower than the previous close, the volume is subtracted from the running total.

To interpret the OBV, look for the OBV to move with the price or precede price moves. If the price moves before the OBV, then it is a non-confirmed move. A series of rising peaks, or falling troughs, in the OBV indicates a strong trend. If the OBV is flat, then the market is not trending.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

oscil

Oscillator default method

Description

Compute Oscillator (Technical Analysis)

```
oscil(X, ...)
## Default S3 method:
oscil(X, Y, pc = FALSE, type = "oscil", ...)
```

pchan pchan

Arguments

X
Y
Y
pc
pc
type
type

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

pchan Price channel

Description

Compute Price channel (Technical Analysis)

Usage

```
Pchan(CLose, High, Low, lag = 20, na.rm = TRUE, plot = FALSE, ...)
```

Arguments

CLose

High VECTOR. High price.

Low VECTOR. Low price.

lag INTEGER. Number of lag periods.

na.rm na.rm

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

pdfhit 157

pdfhit Density of Hitting probability

Description

Density for the First Hitting time

Usage

```
PDFHit(t, B = 0, S0 = 0, mi, sigma, cumul = FALSE, plot = FALSE, ...)
```

Arguments

```
t t
B B B
S0 S0
mi mi sigma sigma
cumul cumul
plot LOGICAL. If TRUE plot is returned.
... Further arguments to or from other methods.
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

perf Performance indicator

Description

Compute Performance indicator (Technical Analysis)

Usage

```
Perf(X, ini.per = 1, cut = TRUE, plot = FALSE, ...)
```

Arguments

```
X X
ini.per ini.per
cut cut
plot LOGICAL. If TRUE plot is returned.
... Further arguments to or from other methods.
```

158 pfactor

Details

The Performance indicator displays the percentage difference between the price today and the price at the start of the data series. It is also known as a normalized price. It can be useful for comparing the performance of two securities or a security and an index.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

pfactor

Print "factorise"

Description

Print method for "factorise"

Usage

```
## S3 method for class 'Factorise'
print(x, ...)
```

Arguments

x OBJECT of class "Factorise".

Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

pfe 159

pfe

Polarized fractal efficiency

Description

Compute Polarized fractal efficiency (Technical Analysis)

Usage

```
pfe(X, lag = 9, corr_fact = 200, plot = FALSE, ...)
```

Arguments

X X

lag INTEGER. Number of lag periods.

corr_fact corr_fact

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

pgarch

Print Garch

Description

Print function for Garch model

Usage

```
## S3 method for class 'Garch'
print(x, digits = 5, ...)
```

Arguments

```
x x digits digits
```

Note

TO BE COMPLETED

160 pgpd

Author(s)

RAdamant Development Team < team@r-adamant.org>

pgev

 $Generalised\ Extreme\ Value\ (GEV)\ -\ Probability\ function$

Description

Generalised Extreme Value (GEV) - Probability function

Usage

```
pgev(X, mu = 0, xi = 0.1, sigma = 1)
```

Arguments

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

pgpd

Generalised Pareto Distribution (GPD) - Probability function

Description

Generalised Pareto Distribution (GPD) - Probability function

Usage

```
pgpd(Q, xi = 0.1, sigma = 1, trsh = 0)
```

Arguments

Q	Q
xi	xi
sigma	sigma
trsh	trsh

pgrangas 161

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

pgrangas

Print Granger test

Description

Print function for Granger test

Usage

```
## S3 method for class 'GrangCas'
print(x, ...)
```

Arguments

x OBJECT of class "GrangCas".

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

phivecar

VAR - PHI

Description

Estimate PHI matrix for MA (Wold) representation of VAR model

Usage

```
PHI.VecAr(X, steps, ortho = FALSE, ...)
```

Arguments

X	OBJECT of class "VecAR"
steps	INTEGER. Number of steps ahead.
ortho	LOGICAL. If TRUE matrix is orthogonal
	Further arguments to or from other methods

162 plikeci

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

plikeci

Likelihood confidence intervals calculation

Description

General function for profile likelihood confidence intervals calculation

Usage

```
plike.ci(ML.init = c(), flike = NULL, alpha = 0.01, df = NULL, frange = list(),
NULL, ...)
```

Arguments

```
ML.init

flike
flike
flike
alpha
df
df
frange
par.names
par.names
...

Further arguments to or from other methods.
```

Note

TO BE COMPLETED

Author(s)

plikecnt 163

plikecnt

Likelihood joint confidence intervals contour

Description

General function for profile likelihood joint confidence intervals contour

Usage

```
plike.contour(ML.init = c(), flike = NULL,
alpha = 0.01, df = NULL, frange = list(),
par.names = NULL, grid.size = 100, ...)
```

Arguments

```
ML.init

flike
flike
flike
alpha
df
frange
frange
par.names
grid.size
grid.size
further arguments to or from other methods.
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

plikerng

Range grid for contour calculation

Description

General range grid for contour calculation

```
plike.range(ML.init = c(), flike = NULL,
alpha = 0.01, df = NULL, frange = list(), par.names
= NULL, grid.size = 100, max.iter = 100, tol = 10^-5, ...)
```

164 plotkit

Arguments

```
ML.init
                ML.init
flike
                flike
                alpha
alpha
df
                df
frange
                frange
par.names
                par.names
grid.size
                grid.size
max.iter
                max.iter
tol
                Further arguments to or from other methods.
. . .
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

plotkit Plotting Tools

Description

Utilities functions used for Plotting

```
draw.grid(X, base = NULL, theme.params = getCurrentTheme())

draw.legend(legend = "", theme.params = getCurrentTheme(),
    overrides = list(...), ...)

draw.projections(X, Y, Y.fit,
    col = getCurrentTheme()[["projection.col"]][1],
    type = getCurrentTheme()[["projection.type"]][1],
    lty = getCurrentTheme()[["projection.lty"]][1])

draw.x.axis(X, base = NULL, xlabels = NULL,
    theme.params = getCurrentTheme(), show.labels = TRUE)

draw.x.title(xtitle = "", theme.params = getCurrentTheme())

draw.y.axis(X, ylabels = NULL, theme.params = getCurrentTheme(),
    side = 1, show.labels = TRUE)

draw.y.title(ytitle = "", theme.params = getCurrentTheme(), side = 1)
```

plotmov 165

Arguments

Χ X Y Υ base base theme.params theme.params overrides overrides legend legend xlabels xlabels ylabels ylabels xtitle xtitle ytitle ytitle show.labels show.labels Y.fit Y.fit col col type type lty lty side side

... Further arguments to or from other methods.

Author(s)

RAdamant Development Team < team@r-adamant.org>

plotmov Plot Moving Average

Description

Plot method for object of class 'Movav' (Moving Average)

Usage

```
## S3 method for class 'Movav'
plot(x, fs = NULL, main = attr(x, "desc"), ...)
```

Arguments

Х	instance of class 'Movav'
fs	Matrix containing the original data series (one column per variable). For financial time series (class = 'fs'), only 'Close' column is processed.
main	Main title of the plot
	Additional parameters accepted by the functions cplot and fin.plot

166 plotmreg

Details

If the original data series is an instance of class 'fs', then the plot will have two panels:

- plot of fs and x on the top;
- histogram of the Volume data of the financial series X.

Value

VOID

Author(s)

RAdamant Development Team <team@r-adamant.org>

See Also

cplot

Examples

```
\# Compute Exponentiaal Moving Average and plot results x = ema\,(\texttt{rnorm}\,(100)\,,\ 10) plot(x)
```

plotmreg

Plot function for mreg

Description

Plot function for class 'mreg'

Usage

```
## S3 method for class 'mreg' plot(x, ...)
```

Arguments

```
x OBJECT of class "mreg".
```

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

plotret 167

plotret Plot Returns

Description

Plot function for Returns

Usage

```
## S3 method for class 'ret'
plot(x, style = c("line", "bar"), xlabels = rownames(x), theme.params =
getCurrentTheme(), ...)
```

Arguments

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

plotroi

Plot Return on Investment objects

Description

Plotting function for Return on Investment objects

Usage

```
## S3 method for class 'roi'
plot(x, main = "Historical Return on Investment", xtitle = "Lag", ...)
```

Arguments

168 pmreg

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

plotsme

Plot Sample Mean Excess class

Description

Plotting function for Sample Mean Excess class

Usage

```
## S3 method for class 'sme'
plot(x, main = attr(x, "desc"), xtitle = get.col.names(attr(x, "data")), ...)
```

Arguments

```
x OBJECT of class "sme".
main main
xtitle xtitle
... Further arguments to or from other methods
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

pmreg

Print function for mreg

Description

Print function for class 'mreg'

Usage

```
## S3 method for class 'mreg'
print(x, ...)
```

Arguments

```
OBJECT of class "mreg".
```

... Further arguments to or from other methods

ppo 169

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

ppo

Percentage Price oscillator

Description

Compute Percentage Price oscillator (Technical Analysis)

Usage

```
ppo(X, fast.lag = 10, slow.lag = 30, plot = TRUE, ...)
```

Arguments

```
X X
fast.lag fast.lag
slow.lag
plot LOGICAL. If TRUE plot is returned.
... Further arguments to or from other methods.
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

pptfopt

Print Optimum Portfolio

Description

Print function for Optimum Ptf

```
## S3 method for class 'PtfOpt'
print(x, ...)
```

170 prbsar

Arguments

x OBJECT of class "PrfOpt".

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

prbsar

Parabolic Stop and Reverse (PSAR)

Description

Compute Parabolic Stop and Reverse (PSAR) (Technical Analysis)

Usage

```
prbsar(Close, High, Low, accel = c(0.02, 0.2), plot = FALSE, ...)
```

Arguments

Close VECTOR. Close price.

High VECTOR. High price.

Low VECTOR. Low price.

accel accel

 ${\tt plot} \qquad \qquad {\tt LOGICAL.} \ {\tt If} \ {\tt TRUE} \ {\tt plot} \ {\tt is} \ {\tt returned}.$

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

preder 171

preder

Prediction error

Description

Calculate Prediction error for model evaluation

Usage

```
pred_error(actual, predicted, pc = FALSE)
```

Arguments

```
\begin{array}{ll} \text{actual} & \text{actual} \\ \text{predicted} & \text{predicted} \\ \text{pc} & \text{pc} \end{array}
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

predgar

Predict Garch model

Description

Predict Garch model

Usage

```
## S3 method for class 'Garch'
predict(object, plot = TRUE, ...)
```

Arguments

```
object OBJECT of class "Garch".

plot LOGICAL. If TRUE plot is returned.
... Further arguments to or from other methods
```

Note

TO BE COMPLETED

Author(s)

172 predreg

predmreg

Predict method for Multiple regressions

Description

Predict function for class 'mreg'

Usage

```
## S3 method for class 'mreg'
predict(object, ...)
```

Arguments

```
object OBJECT of class "mreg".
... Further arguments to or from other methods
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

predreg

Predict method for regression

Description

Predict method for class 'reg'

```
## S3 method for class 'reg'
predict(object, newdata = NULL, ci = 0.95, mode = c("response", "link"),
plot = FALSE, shaded = FALSE, xlabels = NULL, main = "Linear Model Prediction",
getThemeAttr("col", exact = TRUE)[c(1, 2, 2)],
shade.stripes = 1, shade.col = getThemeAttr("col", exact = TRUE)[2],
shade.density = 40, shade.angle = 30, legend = NULL, ...)
```

predvear 173

Arguments

object OBJECT of class "reg".

newdata newdata

ci ci mode mode

plot LOGICAL. If TRUE plot is returned.

shaded shaded xlabels main main col color shade.stripes

shade.stripes

shade.col shade.col

shade.density

shade.density

shade.angle shade.angle legend

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

predvear VAR predictions

Description

Predict VAR model

Usage

```
## S3 method for class 'VecAr'
predict(object, steps = 5, CI = 0.95, viewby = c("vars", "step"), ...)
```

Arguments

object OBJECT of class "VecAr".

 $\begin{array}{ccc} \text{steps} & & \text{steps} \\ \text{CI} & & \text{CI} \\ \text{viewby} & & \text{viewby} \end{array}$

... Further arguments to or from other methods

174 pro

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

printvar

Print VaR results

Description

Print method for class 'VaR'

Usage

```
## S3 method for class 'VaR'
print(x, ...)
```

Arguments

x Instance of class 'VaR'

... Further arguments to and from other methods

Value

Void

Author(s)

RAdamant Development Team <team@r-adamant.org>

pro

Price oscillator

Description

Compute Price oscillator (Technical Analysis)

Usage

```
pro(Close, fast.lag = 5, slow.lag = 10, plot = TRUE, ...)
```

Arguments

```
Close VECTOR. Close price.
```

fast.lag fast.lag slow.lag

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

probhit 175

Details

The Price Oscillator Percent shows the percentage difference between two moving averages. A buy signal is generate when the Price Oscillator Percent rises above zero, and a sell signal when the it falls below zero.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

probhit

Probability of first hit (Brownian motion)

Description

Calcualte probability to Hit a barrier

Usage

```
ProbHit(B = 0, S0 = 0, mi, sigma)
```

Arguments

В	В
SO	S 0
mi	mi
sigma	sigma

Note

TO BE COMPLETED

Author(s)

176 ptfbeta

psme

Print Sample Mean Excess class

Description

Printing function for Sample Mean Excess class

Usage

```
## S3 method for class 'sme'
print(x, ...)
```

Arguments

x OBJECT of class "sme".

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

ptfbeta

Portfolio Beta

Description

Get portfolio Beta

Usage

```
PtfBeta(beta, w = NULL, glob = TRUE)
```

Arguments

beta	beta
W	W
glob	glob

Note

TO BE COMPLETED

Author(s)

ptfopt 177

ptfopt

Mean-Variance optimum portfolio

Description

Calculate mean-variance efficient portfolio

Usage

```
PtfOpt(ret = NULL, ptf = NULL, mi = NULL, SIGMA = NULL, volatility = TRUE, ...)
```

Arguments

```
ret ret
ptf ptf
mi mi
SIGMA SIGMA
volatility volatility
... Further arguments to or from other methods
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team

ptfret

Portfolio returns

Description

Calculate portfolio returns

Usage

```
PtfRet(PTF, w = NULL, glob = TRUE, calc.ret = FALSE, ...)
```

Arguments

```
PTF PTF w w glob glob calc.ret calc.ret ...
```

178 ptfront

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

ptfront Portfolio efficient frontier

Description

Compute / Simulate portfolio mean-variance efficient frontier

Usage

```
PtfFront(PTF = NULL, ret = NULL, SIGMA = NULL, mi = NULL, n_sim = 10,
volatility = TRUE, plot = TRUE, main = paste("Frontier Simulation:",
ifelse(is.null(mi), n_sim, length(mi)), "points"), xtitle = ifelse(volatility,
expression(sigma), expression(sigma^2)), ytitle = expression(mu), xlab.srt =
0, ytitle.srt = 0, type = "o", legend = "Mean-Variance Frontier", ...)
```

Arguments

```
PTF
                PTF
ret
                ret
SIGMA
                SIGMA
mi
                mi
n_sim
                n sim
volatility
                volatility
plot
                plot
main
                main
                xtitle
xtitle
                ytitle
ytitle
xlab.srt
                xlab.srt
ytitle.srt
                ytitle.srt
type
                type
                legend
legend
                Further arguments to or from other methods
. . .
```

Note

TO BE COMPLETED

Author(s)

ptfutil 179

ptfutil	Portfolio	Utility

Description

Calculate utility and plot for efficient portfolio

Usage

```
PtfUtility(PTF = NULL, W, R = NULL, SIGMA = NULL,
af = 3, plot = TRUE, plot.mv = FALSE,
plot.mu = FALSE, ...)
```

Arguments

PTF	PTF
\overline{W}	W
R	R
SIGMA	SIGMA
af	af
plot	LOGICAL. If TRUE plot is returned.
plot.mv	plot.mv
plot.mu	plot.mu
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

ptfvar Portfolio variance

Description

Calculate portfolio variance

```
PtfVar(PTF, w = NULL, glob = TRUE,
vol = FALSE, calc.ret = FALSE, ...)
```

180 pvecar

Arguments

```
PTF PTF

w w
glob glob

vol vol

calc.ret calc.ret
... Further arguments to or from other methods.
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

pvecar Print VAR

Description

Print method for VAR

Usage

```
## S3 method for class 'VecAr'
print(x, ...)
```

Arguments

x OBJECT of class "VecAr".

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

pvt 181

pvt

Price Volume trend indicator

Description

Compute Price Volume trend indicator (Technical Analysis)

Usage

```
pvt(Close, Volume, lag = 5, plot = FALSE, ...)
```

Arguments

Close	VECTOR. Close price.
Volume	VECTOR. Asset traded Volume.
lag	INTEGER. Number of lag periods.
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Details

Price Volume Trend combines percentage price change and volume to confirm the strength of price trends or through divergences, warn of weak price moves. Unlike other price-volume indicators, the Price Volume Trend takes into consideration the percentage increase or decrease in price, rather than just simply adding or subtracting volume based on whether the current price is higher than the previous days price.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

qgev

Generalised Extreme Value (GEV) - Quantile function

Description

Generalised Extreme Value (GEV) - Quantile function

Usage

```
qgev(P, mu = 0, xi = 0.1, sigma = 1)
```

182 radpkg

Arguments

```
\begin{array}{ccc} \textbf{P} & & \textbf{P} \\ \textbf{mu} & & \textbf{mu} \\ \textbf{xi} & & \textbf{xi} \\ \textbf{sigma} & & \textbf{sigma} \end{array}
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

qgpd

Generalised Pareto Distribution (GPD) - Quantile function

Description

Generalised Pareto Distribution (GPD) - Quantile function

Usage

```
qgpd(P, xi = 0.1, sigma = 1, trsh = 0)
```

Arguments

```
\begin{array}{ccc} \text{P} & & \text{P} \\ \text{xi} & & \text{xi} \\ \text{sigma} & & \text{sigma} \\ \text{trsh} & & \text{trsh} \end{array}
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

radpkg

Financial Technical Analysis and Risk Management

Description

R-Adamant is a collection of functions and algorithms for processing of Financial Time Series, Risk Management and Econometrics.

Details

recycle 183

Package: RAdamant
Type: Package
Version: 0.7.1
Date: 2011-06-25
License: GPL>=2
LazyLoad: yes

Author(s)

RAdamant Development Team Maintainer: RAdamant Development Team team@r-adamant.org

References

Farewell friend, I was a thousand times more evil than thou...

recycle

Recycle function for time series

Description

Recycle an input sequence X to get a new sequence of the specified length V

Usage

```
recycle(X, V = length(X))
```

Arguments

Note

TO BE COMPLETED

Author(s)

184 rema

Description

Compute Relative Volatility oscillator (Technical Analysis)

Usage

```
RelVol(Close, sdlag = 9, lag = 5)
```

Arguments

Close VECTOR. Close price.

sdlag sdlag

lag INTEGER. Number of lag periods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

rema	Regularised Exponential Moving Averages

Description

Compute multiple Regularised Exponential Moving Averages on the input data, one for each column of X[, i] and window size win.size[j].

Usage

```
rema(X, win.size = NROW(X), alpha = 0.5, plot = FALSE, ...)
```

Arguments

X	Matrix of data series (one column per variable).
win.size	vector of moving average window sizes (lags) to be applied on the data X . (DE-FAULT = NROW(X)).
alpha	weight in the interval [0, 1]. (DEFAULT: 0.7).
plot	LOGICAL. Return plot.
	Additional parameters for future development.

rgev 185

Details

For financial time series (class = 'fs'), only 'Close' column is processed.

REMA is a second order IIR filter with the two coefficients are regulated by the smoothing factors lambda and alpha.

Smoothing factors: lambda = 2/(win.size+1) and alpha.

Value

A object of class 'ma' with attributes type = "REMA", 'lambda' and 'alpha':

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

ema

rgev

Generalised Extreme Value (GEV) - Random Numbers Generator

Description

Generalised Extreme Value (GEV) - Random Numbers Generator

Usage

```
rgev(N, mu = 0, xi = 0.1, sigma = 1)
```

Arguments

N	N
mu	mu
xi	xi
sigma	sigma

Note

TO BE COMPLETED

Author(s)

186 roc

rgpd

Generalised Pareto Distribution (GPD) - Random Numbers Generator

Description

Generalised Pareto Distribution (GPD) - Random Numbers Generator

Usage

```
rgpd(n, xi = 0.1, sigma = 1, trsh = 0)
```

Arguments

```
\begin{array}{lll} & & n & \\ & xi & \\ & sigma & \\ & trsh & trsh \end{array}
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

roc

Rate of Change index

Description

Compute Rate of Change index (Technical Analysis)

Usage

```
roc(X, lag = 5, pc = TRUE, plot = TRUE, ...)
```

Arguments

X	X
lag	INTEGER. Number of lag periods.
pc	pc
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

rocplot 187

Details

The Rate of Change function measures rate of change relative to previous periods. The function is used to determine how rapidly the data is changing. The factor is usually 100, and is used merely to make the numbers easier to interpret or graph. The function can be used to measure the Rate of Change of any data series, such as price or another indicator. When used with the price, it is referred to as the Price Rate Of Change, or PROC.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

rocplot

ROC analysis

Description

Plot ROC curve

Usage

```
ROCplot(x, ...)
## S3 method for class 'scorecard'
ROCplot(x, ...)
```

Arguments

x y

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

188 rschint

rowmax

Maximum / Minimum by row

Description

```
\begin{tabular}{ll} $\tt rowMax: Compute parallel max across the rows of $X$ \\ $\tt rowMin: Compute parallel min across the rows of $X$ \\ \end{tabular}
```

Usage

```
rowMax(X)
rowMin(X)
```

Arguments

Χ

Input matrix/sequence

Value

A matrix NROW(X) by one, where each row is the max / min of the rows of X).

Author(s)

RAdamant Development Team < team@r-adamant.org>

rschint

Interval for uniroot function

Description

Compute a proper search interval for uniroot function

Usage

```
root.search.interval(from, func = NULL,
type = c("left", "both", "right"), max.iter = 500,
show.warnings = FALSE, debug = FALSE, ...)
```

Arguments

```
from from
func func
type type
max.iter max.iter
show.warnings
show.warnings
debug debug
```

... Further arguments to or from other methods.

rsi 189

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

rsi

Relative strength indicator

Description

Compute Relative strength indicator (Technical Analysis)

Usage

```
rsi(X, lag, plot = FALSE, ...)
```

Arguments

X	X
lag	INTEGER. Number of lag periods.
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Details

The Relative Strength Index (RSI) is an oscillator that measures current price strength in relation to previous prices.

The RSI is a versatile tool, it can be used to generate buy and sell signals, show overbought and oversold conditions, confirm price movement and warn of potential price reversals through divergences.

Note

TO BE COMPLETED

Author(s)

190 runner

runlog

Error Handling and Log with runner

Description

```
write.log: Simple function to write/append log to file (csv format). error.handling: Error handling function
```

Usage

```
write.log(log = matrix(NA, nrow = 0, ncol = 0), logfile = "runlog.log")
error.handling(err)
```

Arguments

log Matrix containing logging information.

logfile Filename of the log

err List containing the status code of the error.

Details

Function error.handling is to be called ONLY inside a tryCatch statement.

It assigns three variables:

- log.status = "Failed": the status of the execution is set to "Failed"
- log.message: The error message generated inside the tryCatch
- res = NA: the result is set to NA

Value

VOID

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

run, multirun

runner

Runner and Multirunner

Description

Wrapper function to execute any function.

Run single or multiple functions and provide a list of results.

runner 191

Usage

```
run(func = NULL, args = list(), writelog = TRUE,
logfile = "runlog.log", check.input = TRUE,
output = c("console", "sing.file"))

multirun(func.array = character(0), args.list = list(),
writelog = TRUE, logfile = "runlog.log",
output = c("console", "sing.file", "multi.file"))
```

Arguments

func	Name of the function to run
func.array	Array of function names to execute
args	Named list of parameters of the function. Each entry is of the form: args[["PARAM.NAME"]] = VALUE.
args.list	Array of named list of parameters of the function. Each entry is a list of parameters, as required by the wrapper function "run".
writelog	LOGICAL. If TRUE, execution log is written to file.
logfile	Filename of the log
check.input	LOGICAL. If TRUE, basic checks are performed on input data, and stop code execution in case of wrong data.
output	Choose wether to return the results in the console or export the to text file.

Details

When called the function multirun the elements of the argument args.list can be specified with or without names. If the names are specified the arguments can be put in a different order from the array function.

If writelog = TRUE a log containing information about submitted computation is saved in the current working directory. If output = "sing.file", a text file containing all the results is saved in current working directory.

The file will be named "Run_time_date.txt" If output = "sing.file", a text for each called function is saved in a text file.

The files will be named "Function Name_time_date.txt"

Value

The object returned depends on the function being called.
multirun returns a list of results, One entry for each function being executed.

Author(s)

RAdamant Development Team <team@r-adamant.org>

See Also

```
write.log, error.handling
```

192 rvi

Examples

```
# Run Exponential Moving Average and Simple Moving Average.
# For each function a list of parameters has been specified
multirun(c("ema","sma")
,list(list(rnorm(150), 5), list(rnorm(100), 10))
, writelog = TRUE
)
# Specifies names in the list of arguments
multirun(func.array=c("ema","sma")
,args.list=list(sma=list(rnorm(150), 5), ema=list(rnorm(100), 30))
, TRUE
)
# Output to text file
multirun(func.array=c("ema","sma")
,args.list=list(sma=list(rnorm(150), 5), ema=list(rnorm(100), 30))
, output = "multi.file"
)
```

rvi

Relative Vigor indicator

Description

Compute Relative Vigor indicator (Technical Analysis)

Usage

```
rvi(Close, High = NULL, Low = NULL, Open = NULL, plot = TRUE, ...)
```

Arguments

Close	VECTOR. Close price.
High	VECTOR. High price.
Low	VECTOR. Low price.
Open	VECTOR. Open price.
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Details

An indicator used in technical analysis that measures the conviction of a recent price action and the likelihood that it will continue. The RVI compares the positioning of a security closing price relative to its price range, and the result is smoothed by calculating an exponential moving average of the values.

Note

TO BE COMPLETED

Author(s)

sampmom 193

sampmom	Sample moments	(Brownian motion)
Bampmom	Semple moments	(Diominion intolion)

Description

Calculate sample moments of a Brownian motion

Usage

```
SampMom(P, X, moms = 1:2)
```

Arguments

P	Р
X	X
moms	moms

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

scaledf

 $Apply \ functions \ on \ a \ scaled \ window$

Description

```
\label{eq:scalapply: Applies a given function to the pairs $(X[n,i],X[n-lag,i])$. $$scalMax: Scaled max on each column of the input matrix. $$scalMin: Scaled min on each column of the input matrix
```

Usage

```
scalApply(X, lag = 0, padding = NA, na.rm = FALSE, func = NULL, ...)
scalMax(X, lag = 1, padding = -Inf, na.rm = FALSE, func = NULL)
scalMin(X, lag = 1, padding = Inf, na.rm = FALSE, func = NULL)
```

Arguments

X	Input matrix/sequence
lag	vector of integer lags. If lag $>= 0$ data are shifted to the right, else to the left. (DEFAULT = 0)
padding	value used to initialise the output matrix (DEFAULT = NA)
na.rm	LOGICAL. If TRUE, N-lag entries are removed from the output (DEFAULT = FALSE)
func	function applied to the data (DEFAULT = NULL)
	Additional parameters accepted by the function 'func'

194 scorecd

Details

Sequences are treated as one-column matrices.

Value

A matrix where func / max / min has been applied on each pair (X[n, i], X[n-lag, i]) for each column i of X. Number of rows depends on the na.rm parameter. Number of columns is NCOL(X)

Author(s)

RAdamant Development Team < team@r-adamant.org>

scorecd

Score Card

Description

Create Credit Score Card based on Logistic Regression

Usage

```
Score.card(Y, X, nseg = 2)
```

Arguments

Y VECTOR. Target variable in 0-1 format.

X DATA.FRAME / MATRIS of regressors.

nseg INTEGER / VECTOR. Number of segments to factorise numerical variables.

Details

For the moment only numerical variables! Work in progress...

Note

TO BE COMPLETED

Author(s)

sde 195

sde

Error standard deviation

Description

Calculate Error standard deviation for model evaluation

Usage

```
sde(actual, predicted)
```

Arguments

```
actual actual predicted predicted
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

sensan

Sensitivity analysis default method

Description

Sensitivity analysis default method

Usage

```
sensAnalysis(X, ...)
## Default S3 method:
sensAnalysis(X, win.size = length(coef(X)), plot = FALSE, ...)
```

Arguments

```
{\tt X} win.size win.size plot LOGICAL. If TRUE plot is returned.
```

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

196 sensanrg

sensanlm

Sensitivity analysis method for lm

Description

Sensitivity analysis method for lm

Usage

```
## S3 method for class 'lm'
sensAnalysis(X, ...)
```

Arguments

X OBJECT of class "lm".

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

sensanrg

Sensitivity analysis method for reg

Description

Sensitivity analysis method for reg

Usage

```
## S3 method for class 'reg'
sensAnalysis(X, ...)
```

Arguments

X OBJECT of class "reg".

Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team

sharpe 197

sharpe Sharpe index

Description

```
Sharpe: Calculate Sharpe index for a portfolio.

Sharpe.Capm: Get Sharpe index from an object of class. "Capm"
```

Usage

```
Sharpe(PTF, ...)
## Default S3 method:
Sharpe(PTF, rfr = 0, ...)
## S3 method for class 'Capm'
Sharpe(PTF, rfr = 0, ...)
```

Arguments

PTF	Input portfolio or an object of class "Capm"
rfr	risk free rate
	Further arguments to or from other methods

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

```
Treynor, Jensen, Appraisal
```

sinma

(Normalised) Sine Weighted Moving Averages

Description

Compute multiple (Normalised) Sine Weighted Moving Averages on the input data, one for each column of X[, i] and window size win.size[j].

Usage

```
sinma(X, win.size = 10, plot = FALSE, ...)
```

Arguments

```
    Matrix of data series (one column per variable).
    win.size vector of moving average window sizes (lags) to be applied on the data X. (DE-FAULT = 10).
    plot LOGICAL. Return plot.
    ... Further arguments to or from other methods
```

198 sma

Details

```
For financial time series (class = 'fs'), only 'Close' column is processed. Weights: sin(pi * (1:win.size)/(win.size+1))
```

Value

A object of class 'ma' with attributes type = "SINMA" and 'win.size' as from the corresponding input parameter:

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

Movav

sma

Simple Moving Average

Description

Compute multiple Simple Moving Averages on the input data, one for each column of X[, i] and window size win.size[j]

Usage

```
sma(X, win.size = 10, plot = FALSE, ...)
```

Arguments

X	Matrix of data series (one column per variable).
win.size	vector of moving average window sizes (lags) to be applied on the data X . (DE-FAULT = 10).
plot	LOGICAL. Return plot.
• • •	Additional parameters accepted by the function Mmovav.

Details

For financial time series (class = 'fs'), only 'Close' column is processed.

Value

A object of class 'ma' with attributes type = "SMA" and 'win.size' as given by the corresponding input parameter:

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

sme 199

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

ema

sme

Sample Mean Excess function

Description

Sample Mean Excess function

Usage

```
sme(X, plot = TRUE, ...)
```

Arguments

```
X X plot plot
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

somerd

Somers D

Description

Calculate Somers d statistic

Usage

```
SomerD(target, pred, ...)
```

Arguments

target target pred pred

... Further arguments to or from other methods.

200 specgram

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

sort

Sort matrix

Description

Sort each column of the input matrix X independently

Usage

```
SORT(x, decreasing = FALSE, ...)
```

Arguments

```
x Input matrix.
```

decreasing LOGICAL. Decreasing order.

Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

specgram

Spectrogram

Description

Create spectrogram for FFT

Usage

```
specgram(X, win.size = max(1, NROW(X)/20), plot = TRUE, ...)
```

Arguments

```
X X
```

win.size win.size

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

splitwdw 201

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

splitwdw

Sliding windows

Description

Sliding windows

Usage

```
splitWindow(N, direction = c("forward", "backward"),
mode = c("EW", "SW"), from = NULL,
win.size = 1, by = 1, labels = 1:N, ...)
```

Arguments

```
N direction direction mode mode from from win.size by by labels labels ...
```

Note

TO BE COMPLETED

Author(s)

202 sssym

sssym State Space system simulation

Description

Generic function for State Space system simulation. The system can be either linear or non linear.

Usage

```
ss.sym(X, F = NULL, G = NULL, H = NULL, D = NULL,
init = 0, SLen = ifelse(is.function(F), NA,
NROW(F)), YLen = ifelse(is.function(H), NA, NROW(H)), ...)
```

Arguments

X	Matrix of data series (one column per variable).
F	[State -> State] transition matrix or [(State, Input) -> State] function ($F = function(S, X, n,)$ returning the new state vector S _new based on the current State S and the data S at time period S _new based on the current State S _new based on the
G	[Input -> State] transition matrix. Only for linear models (DEFAULT = NULL)
Н	[State -> Output] transition matrix or [(State, Input) -> Output] function (H = function(S, X, n,) returning the new output vector Y[, n] based on the new state S[, n] and the data
	X at time period n) (DEFAULT = NULL -> converted in diag(SLen))
D	[Input -> Output] transition matrix. Only for linear models (DEFAULT = NULL -> converted to a zero matrix SLen by NCOL(X))
init	Initial values for the state vactor S (DEFAULT = 0, recycled to length SLen if necessary)
SLen	Length of the state vector S. (DEFAULT = ifelse(is.function(F), NA, NROW(F)))
YLen	Number of columns of the output vector Y. (DEFAULT = ifelse(is.function(H), NA, NROW(H)))
	Additional parameters accepted by the functions F and H

Details

For financial time series (class = 'fs'), only 'Close' column is processed.

Value

A object of class 'ss' with attributes 'F', 'G', 'H', 'D' as given by the corresponding input parameters:

- matrix of size NROW(X) by YLen, result of the symulation of the given dynamic system subject to input 'X' and initial condition 'init'.

Author(s)

starc 203

starc

Stoller Starc bands

Description

Compute Stoller Starc bands (Technical Analysis)

Usage

```
starc(Close, High = NULL, Low = NULL, atr.mult = 2, lag = 5, atr.lag =
14, mov = c("sma", "ema", "wma"), plot = FALSE, ...)
```

Arguments

Close VECTOR. Close price.

High VECTOR. High price.

Low VECTOR. Low price.

atr.mult atr.mult

lag INTEGER. Number of lag periods.

atr.lag atr.lag mov mov

 ${\tt plot} \qquad \qquad {\tt LOGICAL.} \ {\tt If} \ {\tt TRUE} \ {\tt plot} \ {\tt is} \ {\tt returned}.$

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

statbar Status bar

Description

Interactive status bar for console logging

Usage

```
statusbar(message = "Computing..", status = 0, n = 1, N = 1, step = 0.01)
```

204 stepmat

Arguments

message message status n n n N Step step

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

stepmat

Step matrix for binomial tree

Description

Simulate binomial path of a binomial tree

Usage

```
StepMat(init, n_step, up, down)
```

Arguments

init

n_step

up

down

init

n_step

down

Note

TO BE COMPLETED

Author(s)

strvar 205

strvar

Structural Vector Autoregressive model

Description

Estimate Structural Vector Autoregressive model

Usage

```
Strvar.VecAr(X, A = NULL, B = NULL, inter = FALSE, ...)
```

Arguments

X X A A B B inter inter

Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

styles

Styles analysis (portfolio)

Description

Perform Style analysis

Usage

```
Styles (FUND, IND, W, lower = NULL, upper = NULL, ...)
```

Arguments

FUND FUND
IND IND
W W
lower lower
upper upper

... Further arguments to or from other methods.

206 sumdens

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

sumdd

Summary drawdown

Description

Summary function for drawdown

Usage

```
SummaryDD (DD)
```

Arguments

DD

OBJECT of class "drawdown"

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

sumdens

Plot summary information

Description

Plot summary information of a vector with its density

Usage

```
Sum.dens(x, ...)
```

Arguments

x VECTOR. Input series.

... further arguments for "plot" function

Author(s)

RAdamant Development Team

sumreg 207

sumreg

Summary method for mreg

Description

Summary method for mreg

Usage

```
## S3 method for class 'mreg'
summary(object, ...)
```

Arguments

object OBJECT of class "mreg"

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

sumscrd

Summary Scorecard

Description

Summary method for "Scorecard" object

Usage

```
## S3 method for class 'scorecard'
summary(object, plot = FALSE, ...)
```

Arguments

object OBJECT of class "scorecard".

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods

Note

TO BE COMPLETED

Author(s)

208 symlkup

swing Swing Index

Description

Calculate Swing index (Technical Analysis)

Usage

```
Swing(Close, High, Low, Open, ret_cum = FALSE, plot = FALSE, ...)
```

Arguments

Close VECTOR. Close price.

High VECTOR. High price.

Low VECTOR. Low price.

Open VECTOR. Open price.

ret_cum ret_cum

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

symlkup

Lookup Stock Symbol from Yahoo!

Description

Lookup Stock Symbol from Yahoo!

Usage

```
symbol.lookup(what = "")
```

Arguments

what

what

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

tema 209

Description

Compute multiple Triple EMA on the input data, one for each column of X[, i] and window size win.size[j].

Usage

```
tema(X, win.size = NROW(X), plot = FALSE, ...)
```

Arguments

X	Matrix of data series (one column per variable).
win.size	vector of moving average window sizes (lags) to be applied on the data X . (DE-FAULT = NROW(X)).
plot	LOGICAL. Return plot.
	Additional parameters accepted by function ema.

Details

For financial time series (class = 'fs'), only 'Close' column is processed. TEMA is a weighted combination of EMA: 3*EMA(X) - 3*EMA(EMA(X)) + EMA(EMA(EMA(X))). Smoothing factor: lambda = 2/(win.size+1).

Value

A object of class 'ma' with attributes type = "TEMA" and 'win.size' as given by the corresponding input parameter:

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

RAdamant Development Team <team@r-adamant.org>

See Also

ema

210 tirlev

thigh True High oscillator

Description

Compute True High oscillator (Technical Analysis)

Usage

```
thigh (Close, High = NULL, lag = 5, plot = TRUE, ...)
```

Arguments

Close	VECTOR. Close price.
High	VECTOR. High price.
lag	INTEGER. Number of lag periods.
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team \ \verb|\claim= adamant.org>|$

tirlev Trione levels

Description

Compute Trione levels (Technical Analysis)

Usage

```
tirLev(High, Low, Close, lag = 5, plot = FALSE, ...)
```

Arguments

High	VECTOR. High price.
Low	VECTOR. Low price.
Close	VECTOR. Close price.
lag	INTEGER. Number of lag periods.
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

tlow 211

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

tlow

True Low oscillator

Description

Compute True Low oscillator (Technical Analysis)

Usage

```
tlow(Close, Low = NULL, lag = 5, plot = TRUE, ...)
```

Arguments

Close	VECTOR. Close price.
Low	VECTOR. Low price.
lag	INTEGER. Number of lag periods.
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

tma

Triangular Moving Averages

Description

Compute multiple Triangular Moving Averages on the input data, one for each column of X[, i] and window size win.size[j]

Usage

```
tma(X, win.size = 10, plot = FALSE, \dots)
```

212 treynor

Arguments

Matrix of data series (one column per variable).
 win.size
 vector of moving average window sizes (lags) to be applied on the data X. (DE-FAULT = 10).
 plot
 LOGICAL. Return plot.
 Additional parameters accepted by the function Mmovav.

Details

For financial time series (class = 'fs'), only 'Close' column is processed.

Value

A object of class 'ma' with attributes type = "TMA" and 'win.size' as given by the corresponding input parameter:

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

Movav

treynor Treynor index

Description

```
Treynor: Calculate Treynor index for a portfolio
Treynor.Capm: Get Treynor index from an object of class "Capm"
```

Usage

```
Treynor(PTF, ...)
## Default S3 method:
Treynor(PTF, PTF_M, rfr = 0, rf = NULL, ...)
## S3 method for class 'Capm'
Treynor(PTF, rfr = 0, ...)
```

Arguments

PTF	Input portfolio or an object of class "Capm"
PTF_M	Market/benchmark portfolio
rfr	risk free rate
rf	risk free asset
	Further arguments to or from other methods

trf 213

Author(s)

RAdamant Development Team <team@r-adamant.org>

See Also

```
Jensen, Sharpe, Appraisal
```

trf

(Average) True range

Description

Compute (Average) True range (Technical Analysis)

Usage

```
trf(Close, High = NULL, Low = NULL, lag = 1,
average = TRUE, avg.lag = 14, plot = FALSE, ...)
```

Arguments

Close	VECTOR. Close price.
High	VECTOR. High price.
Low	VECTOR. Low price.
lag	INTEGER. Number of lag periods.
average	average
avg.lag	avg.lag
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

214 trsign

trsigexp

Exponential track signal

Description

Calculate Exponential track signal for model evaluation

Usage

```
track_sign_exp(actual, predicted, beta = 0.1)
```

Arguments

```
actual actual predicted beta beta
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

trsign

Track signal

Description

Calculate Track signal for model evaluation

Usage

```
track_sign(actual, predicted)
```

Arguments

```
actual actual predicted predicted
```

Note

TO BE COMPLETED

Author(s)

ttma 215

	T3 EMA	ttma
--	--------	------

Description

Compute multiple T3 EMA on the input data, one for each column of X[, i] and window size win.size[j].

Usage

```
ttma(X, win.size = NROW(X), alpha = 0.7, plot = FALSE, ...)
```

Arguments

X	Matrix of data series (one column per variable).
win.size	vector of moving average window sizes (lags) to be applied on the data X . (DE-FAULT = NROW(X)).
alpha	weight in the interval [0, 1]. (DEFAULT: 0.7).
plot	LOGICAL. Return plot.
	Additional parameters accepted by function ema.

Details

For financial time series (class = 'fs'), only 'Close' column is processed.

T3 EMA is a three times application of GDEMA: GDEMA(GDEMA(GDEMA(X, alpha), alpha), alpha).

Smoothing factor: lambda = 2/(win.size+1).

Value

A object of class 'ma' with attributes type = "TTMA" and 'win.size' as given by the corresponding input parameter:

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

ema, gdema

216 ulcer

typ

Typical price

Description

Compute Typical price (Technical Analysis)

Usage

```
tyP(Close, High, Low, plot = FALSE, ...)
```

Arguments

```
Close VECTOR. Close price.

High VECTOR. High price.

Low VECTOR. Low price.

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

ulcer

Ulcer index

Description

Compute Ulcer index (Technical Analysis)

Usage

```
ulcer(X, lag, plot = FALSE, ...)
```

Arguments

```
X
lag INTEGER. Number of lag periods.
plot LOGICAL. If TRUE plot is returned.
... Further arguments to or from other methods.
```

Note

TO BE COMPLETED

ultima 217

Author(s)

RAdamant Development Team <team@r-adamant.org>

Description

Compute Ultima oscillator (Technical Analysis)

Usage

```
ultima(Close, High = NULL, Low = NULL, lag = 1, win1 = 7, win2 = 14, win3 = 28, \dots)
```

Arguments

Close	VECTOR. Close price.
High	VECTOR. High price.
Low	VECTOR. Low price.
lag	INTEGER. Number of lag periods.
win1	win1
win2	win2
win3	win3
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

218 univar

univar	Univariate analysis
--------	---------------------

Description

Perform univariate analisys of the dependent variable Y versus each independent variable X, plotting the results

Usage

```
univar(Y, X, stress.period.idx = c(),
Y.logit = FALSE, Y.logit.adj = 5e-05,
theme.params = getCurrentTheme(),
plot = TRUE, overrides = list(...), ...)
```

Arguments

Υ	serie of the dependent variable
X	Matrix containing all independent variables (one column per variable)
stress.period	vector of positions specifing the stress regime. If provided, the system will run a modified LS to capture the two regimes
Y.logit	LOGICAL. If TRUE, the dependent variable is transformed using the Logit transform. The results are retransformed using the inverse Logit. (DEFAULT: FALSE)
Y.logit.adj	Cut-off value. The range of the Y variable is restricted within the interval [Y.logit.adj, 1-Y.logit.adj] (DEFAULT: 0.00005)
theme.params	Theme parameters (DEFAULT: getCurrentTheme())
plot	list of parameters to override the theme. Must match by name the parameters defined by the theme (DEFAULT: $NULL$)
overrides	LOGICAL. If TRUE, results are plotted.
	Further arguments to or from other methods

Author(s)

RAdamant Development Team

See Also

```
plot.univar, print.univar
```

var 219

var Value at Risk

Description

General VaR, computed on each column of the input matrix

Usage

```
VaR(X, ...)
## Default S3 method:
VaR(X, p = 0.05, probf = c("norm","t","cofi"),
df = max(4, (kurt(X)+3)), params = FALSE, ...)
```

Arguments

X	Input matrix/sequence. Sequences are treated as one column matrices.
р	vector of probabilities (DEFAULT = 0.05)
probf	probability dristribution, see Details
df	Degrees of freedom for the Student T distribution (DEFAULT = $max(4, (kurt(X)+3)))$
params	additional parameter for future development
	Additional parameters accepted by the function cofit

Details

Accepted probability distributions:

- "norm" = Normal distribution
- "t" = Students T distribution
- "cofi" = Cornish-Fischer distribution

Value

General VaR, computed on each column of the input matrix

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team

220 varptf

varptf	Portfolio Value at Risk	

Description

General VaR, computed for an input portfolio

Usage

```
VaRPtf(X, p = 0.05, weights = rep(1/NCOL(X), NCOL(X)), probf = c("norm", "t"), df(x) = (1/NCOL(X), NCOL(X)), probf = (1/NCOL(X), NCOL(X), NCOL(X), NCOL(X)), probf = (1/NCOL(X), NCOL(X), N
```

Arguments

X Input matrix/sequence. Sequences are treated as one column matrices.

p vector of probabilities (DEFAULT = 0.05)

probf probability dristribution, see Details

weights portfolio weights (DEFAULT = rep(1/NCOL(X), NCOL(X)))

df D egrees of freedom for the Student T distribution (DEFAULT = 4)

. . . Additional parameters for future development

Details

Accepted probability distributions:

- "norm" = Normal distribution
- "t" = Students T distribution
- "cofi" = Cornish-Fischer distribution

Value

A matrix length(p) by 1 of computed portfolio VaRs

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

vcmof 221

vcmof

Variable Chande Momentum Oscillator

Description

Compute Variable Chande Momentum Oscillator (Technical Analysis)

Usage

```
vcmof(X, lag = 5, plot = FALSE, ...)
```

Arguments

```
X
lag INTEGER. Number of lag periods.
plot LOGICAL. If TRUE plot is returned.
... Further arguments to or from other methods.
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

vecar

Vector Autoregressive model

Description

Estimate Vector Autoregressive model

Usage

```
VecAr(X, ...)
## Default S3 method:
VecAr(X, ar.lags = 1:2,
type = c("const", "trend", "constrend", "none"),
exog = NULL, ...)
```

Arguments

X	Input matrix of time series. N.B. The first column is taken as dependent variable	
ar.lags	Number (or vector) of lags for the AR components	
type	Type of deterministic regressor(s) to be included in the model	
exog	matrix of exogenous variables (Default = NULL)	
• • •	Further arguments to or from other methods	

vhff

Value

An object list of class "VecAr". The list contains the following elements:

- Results of the estimation ("lm" object)
- Nunmber of Observations
- Number of Variables
- Number of Parameters
- LogLikelihood value
- AIC information criteria
- BIC information criteria

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

```
Strvar. VecAr, fitted. VecAr
```

vhff

Vertical Horizontal Filter

Description

Compute Vertical Horizontal Filter (Technical Analysis)

Usage

```
vhff(X, lag = 9, plot = FALSE, ...)
```

Arguments

 \mathbf{X}

lag INTEGER. Number of lag periods.
plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

vidyaf 223

	-	_
777	UZ.	7 A 🕇
v	OL y	· u ·

Variable Index Dynamic Average

Description

Compute Variable Index Dynamic Average (Technical Analysis)

Usage

```
vidyaf(X, lag = 5, plot = FALSE, ...)
```

Arguments

X	X
lag	INTEGER. Number of lag periods.
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

vwma

Volume Weighted Moving Averages

Description

Compute multiple Volume Weighted Moving Averages on the input data, one for each column of X[,i] and window size win.size[j].

Usage

```
vwma(X, Vol = NULL, win.size = 10, plot = FALSE, ...)
```

Arguments

Χ	Matrix of data series (one column per variable).
Vol	Matrix of volumes (one column per variable).
win.size	vector of moving average window sizes (lags) to be applied on the data X . (DE-FAULT = 10).
plot	LOGICAL. If TRUE plot is returned.
	Further arguments to or from other methods

224 wad

Details

For financial time series (class = 'fs'), only 'Close' column is processed. If X is a financial time series (class = 'fs'), and Vol = NULL then Vol = X[, 'Volume'] (DEFAULT = NULL).

Value

A object of class 'ma' with attributes type = "VWMA" and 'win.size' as from the corresponding input parameter:

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

sma

wad

Williams Advance Decline

Description

Compute Williams Advance Decline (Technical Analysis)

Usage

```
wad(Close, High = NULL, Low = NULL, lag = 5, na.rm = FALSE, plot = TRUE, ...)
```

Arguments

```
Close VECTOR. Close price.

High VECTOR. High price.

Low VECTOR. Low price.
```

lag INTEGER. Number of lag periods.

na.rm na.rm

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.

Note

TO BE COMPLETED

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

weigevid 225

weigevid	Weight of Evidence
weigevid	Weight of Evidence

Description

Calculate weight of evidence for a matrix with target variable

Usage

```
WeightEvid(data, target, nseg, missing = FALSE, na.replace = NULL)
```

Arguments

```
data data
target target
nseg nseg
missing missing
na.replace na.replace
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

whvar	Weighted Historical Value at Risk	
-------	-----------------------------------	--

Description

Compute Weighted historical VaR on each column of the input matrix

Usage

```
whVaR(X, p = 0.05, lambda = 0.9, centered = FALSE)
```

Arguments

X Input matrix/sequence. Sequences are treated as one column matrices.

p vector of probabilities (DEFAULT = 0.05)

lambda $\frac{\text{controls the exponential window lambda}}{((NROW(X)-1):0)}$ (DEFAULT = 0.9)

centered LOGICAL. If TRUE, input data are standardised

Value

A matrix length(p) by NCOL(X) of computed quantiles

226 wildsum

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team <team@r-adamant.org>

wildavg

Wilder Moving Average

Description

Compute Wilder Moving Average (Technical Analysis)

Usage

```
wildAvg(X, lag = 5, plot = FALSE, ...)
```

Arguments

```
\begin{array}{ccc} \textbf{X} & & \textbf{X} \\ \textbf{lag} & & \textbf{lag} \\ \textbf{plot} & & \textbf{plot} \\ & \cdots & & \cdots \end{array}
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

wildsum

Wilder Summation

Description

Compute Wilder Summation (Technical Analysis)

Usage

```
wildSum(x, lag = 5)
```

Arguments

x x lag

wma 227

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

wma

Weighted Moving Averages

Description

Compute multiple Weighted Moving Averages on the input data, one for each column of X[, i] and window size win.size[j]

Usage

```
wma(X, win.size = 10, plot = FALSE, ...)
```

Arguments

Matrix of data series (one column per variable).
 win.size vector of moving average window sizes (lags) to be applied on the data X. (DE-FAULT = 10).
 plot LOGICAL. Return plot.

... Additional parameters accepted by the function Mmovav.

Details

For financial time series (class = 'fs'), only 'Close' column is processed.

Value

A object of class 'ma' with attributes type = "WMA" and 'win.size' as given by the corresponding input parameter:

- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.

Author(s)

 $RA damant \ Development \ Team < \texttt{team@r-adamant.org} >$

228 zind

wro Williams R

Description

Compute Williams R (Technical Analysis)

Usage

```
wro(Close, High = NULL, Low = NULL, lag = 5, plot = TRUE, ...)
```

Arguments

```
Close VECTOR. Close price.

High VECTOR. High price.

Low VECTOR. Low price.

lag INTEGER. Number of lag periods.

plot LOGICAL. If TRUE plot is returned.

... Further arguments to or from other methods.
```

Note

TO BE COMPLETED

Author(s)

RAdamant Development Team < team@r-adamant.org>

zind Zindex

Description

Compute the Z-score of X (Standardize each column of X)

Usage

```
Zind(x, sigma = 1, mi = 2)
```

Arguments

```
{\tt x} {\tt x} sigma sigma mi mi
```

Note

TO BE COMPLETED

zlma 229

Author(s)

RAdamant Development Team <team@r-adamant.org>

zlma

Zero lag Moving Average

Description

Compute multiple Zero-Lag Exponential Moving Averages on the input data, one for each column of X[, i] and window size win.size[j].

Usage

```
zlma(X, win.size = NROW(X), plot = FALSE, ...)
```

Arguments

X	Matrix of data series (one column per variable).
win.size	vector of moving average window sizes (lags) to be applied on the data X. (DE-FAULT = $NROW(X)$).
plot	LOGICAL. Return plot.
	Additional parameters accepted by function ema.

Details

```
For financial time series (class = 'fs'), only 'Close' column is processed. ZLMA is a combination of EMA: EMA(X) + EMA(X - EMA(X)).
```

Value

```
A object of class 'ma' with attributes type = "EMAT" and lambda = 2/(\text{win.size}+1):
- matrix of size NROW(X) by NCOL(X)*length(win.size) where each column is the moving average of length win.size[i] of the corresponding column of X.
```

Author(s)

RAdamant Development Team < team@r-adamant.org>

See Also

ema

zscore zscore

zscore ZScore

Description

Compute the Z-score of X (Standardize each column of X)

Usage

```
Zscore(X, means = NULL, sigma = NULL)
```

Arguments

X Matrix of data series (one column per variable)

means Mean value

sigma Standard deviation

Value

Matrix of standardised variables

Author(s)

RAdamant Development Team <team@r-adamant.org>