

Schletter, Inc.		30° Tilt w/ Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-10	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	2000 mm	Height =	1900 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 30°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
g _{MIN} =	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

	30.00 psf	Ground Snow Load, P_g =
(ASCE 7-10, Eq. 7.4-1)	16.49 psf	Sloped Roof Snow Load, P_s =
	1.00	I _s =
	0.73	$C_s =$
	0.90	$C_e =$

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	115 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 20.76 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.150	
Cf+ BOTTOM	=	1.150 1.850 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel
Cf- TOP, OUTER PURLIN	=	-2.600	testing done by Ruscheweyh Consult. Coefficients are located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-2.000 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.100	

2.4 Seismic Loads

S _S =	2.50	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	1.67	$C_S = 0.8$	may be used to calculate the base shear, C_s , of
$S_1 =$	1.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	1.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
T _a =	0.07	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.0W + 0.5S $0.9D + 1.0W^{M}$ 1.54D + 1.3E + 0.2S R 0.56D + 1.3E R 1.54D + 1.25E + 0.2S O

1.2D + 1.6S + 0.5W

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S1.0D + 0.6W1.0D + 0.75L + 0.45W + 0.75S $0.6\mathsf{D} + 0.6\mathsf{W}^{\ M}$ (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E O 1.1785D + 0.65625E + 0.75S ° 0.362D + 0.875E O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	<u>Location</u>	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	<u>Location</u>			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	<u>116.24</u>	<u>5876.99</u>	k
Compressive Load =	3748.48	<u>4848.90</u>	k
Lateral Load =	<u>435.65</u>	<u>3669.35</u>	k
Moment (Weak Axis) =	0.87	0.34	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (2) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 159225.8 in-lbs Resisting Force Required = 2226.93 lbs A minimum 143in long x 35in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 3711.56 lbs to resist overturning. Minimum Width = Weight Provided = 7559.64 lbs Sliding 846.28 lbs Force = Use a 143in long x 35in wide x 18in tall Friction = 0.4 Weight Required = 2115.69 lbs ballast foundation to resist sliding. Resisting Weight = 7559.64 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 846.28 lbs Cohesion = 130 psf Use a 143in long x 35in wide x 18in tall 34.76 ft² Area = ballast foundation. Cohesion is OK. Resisting = 3779.82 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

	Ballast Width			
	<u>35 in</u>	<u>36 in</u>	37 in	38 in
$P_{ftg} = (145 \text{ pcf})(11.92 \text{ ft})(1.5 \text{ ft})(2.92 \text{ ft}) =$	7560 lbs	7776 lbs	7992 lbs	8208 lbs

ASD LC		1.0D ·	+ 1.0S		1.0D + 0.6W			1.0D + 0.75L + 0.45W + 0.75S			0.6D + 0.6W					
Width	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in	35 in	36 in	37 in	38 in
FA	1398 lbs	1398 lbs	1398 lbs	1398 lbs	1211 lbs	1211 lbs	1211 lbs	1211 lbs	1811 lbs	1811 lbs	1811 lbs	1811 lbs	-42 lbs	-42 lbs	-42 lbs	-42 lbs
F _B	1394 lbs	1394 lbs	1394 lbs	1394 lbs	1987 lbs	1987 lbs	1987 lbs	1987 lbs	2391 lbs	2391 lbs	2391 lbs	2391 lbs	-2702 lbs	-2702 lbs	-2702 lbs	-2702 lbs
F _V	207 lbs	207 lbs	207 lbs	207 lbs	1546 lbs	1546 lbs	1546 lbs	1546 lbs	1295 lbs	1295 lbs	1295 lbs	1295 lbs	-1693 lbs	-1693 lbs	-1693 lbs	-1693 lbs
P _{total}	10352 lbs	10568 lbs	10784 lbs	11000 lbs	10757 lbs	10973 lbs	11189 lbs	11405 lbs	11762 lbs	11978 lbs	12194 lbs	12410 lbs	1791 lbs	1921 lbs	2051 lbs	2180 lbs
M	3663 lbs-ft	3663 lbs-ft	3663 lbs-ft	3663 lbs-ft	2954 lbs-ft	2954 lbs-ft	2954 lbs-ft	2954 lbs-ft	4578 lbs-ft	4578 lbs-ft	4578 lbs-ft	4578 lbs-ft	5108 lbs-ft	5108 lbs-ft	5108 lbs-ft	5108 lbs-ft
е	0.35 ft	0.35 ft	0.34 ft	0.33 ft	0.27 ft	0.27 ft	0.26 ft	0.26 ft	0.39 ft	0.38 ft	0.38 ft	0.37 ft	2.85 ft	2.66 ft	2.49 ft	2.34 ft
L/6	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft	1.99 ft							
f _{min}	244.8 psf	244.0 psf	243.3 psf	242.6 psf	266.7 psf	265.3 psf	264.1 psf	262.8 psf	272.1 psf	270.6 psf	269.1 psf	267.8 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	350.9 psf	347.2 psf	343.7 psf	340.4 psf	352.3 psf	348.6 psf	345.0 psf	341.7 psf	404.7 psf	399.5 psf	394.6 psf	389.9 psf	131.8 psf	129.4 psf	127.9 psf	126.9 psf

Maximum Bearing Pressure = 405 psf Allowable Bearing Pressure = 1500 psf Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Seismic Design

Overturning Check

 $M_0 = 2695.9 \text{ ft-lbs}$

Resisting Force Required = 1848.62 lbs S.F. = 1.67

Weight Required = 3081.03 lbs Minimum Width = 35 in in Weight Provided = 7559.64 lbs A minimum 143in long x 35in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1.238D + 0.875E			1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width	35 in				35 in			35 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	350 lbs	720 lbs	226 lbs	899 lbs	2344 lbs	803 lbs	145 lbs	211 lbs	23 lbs		
F _V	244 lbs	238 lbs	251 lbs	177 lbs	174 lbs	198 lbs	246 lbs	239 lbs	248 lbs		
P _{total}	9708 lbs	10079 lbs	9585 lbs	9808 lbs	11253 lbs	9712 lbs	2882 lbs	2947 lbs	2760 lbs		
М	969 lbs-ft	953 lbs-ft	990 lbs-ft	718 lbs-ft	722 lbs-ft	784 lbs-ft	969 lbs-ft	950 lbs-ft	977 lbs-ft		
е	0.10 ft	0.09 ft	0.10 ft	0.07 ft	0.06 ft	0.08 ft	0.34 ft	0.32 ft	0.35 ft		
L/6	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft	0.49 ft		
f _{min}	222.0 psf	233.6 psf	217.2 psf	239.7 psf	281.0 psf	233.1 psf	25.5 psf	28.6 psf	21.6 psf		
f _{max}	336.7 psf	346.4 psf	334.4 psf	324.7 psf	366.5 psf	325.8 psf	140.3 psf	141.0 psf	137.2 psf		

Maximum Bearing Pressure = 366 psf Allowable Bearing Pressure = 1500 psf

Use a 143in long x 35in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 143in long x 29in wide x 18in tall ballast foundation and fiber reinforcing with (2) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	2.883 k	Maximum Axial Load =	3.948 k
M12 Bolt Capacity =	12.808 k	M12 Bolt Capacity =	12.808 k
Strut Bearing Capacity =	7.421 k	Strut Bearing Capacity =	7.421 k
Utilization =	<u>39%</u>	Utilization =	<u>53%</u>
Diagonal Strut			
Maximum Axial Load =	2.486 k		
M12 Bolt Shear Capacity =	12.808 k	Bolt and bearing capacities are accounting for	r double shear.
Strut Bearing Capacity =	7.421 k	(ASCE 8-02, Eq. 5.3.4-1)	
Utilization =	<u>34%</u>		
	4	Chryste yanday acamayacaina aya	
1 - 1	0	Struts under compression are	snown to demon

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\label{eq:main_main} \begin{array}{ll} \text{Mean Height, h}_{\text{sx}} = & 60.93 \text{ in} \\ \text{Allowable Story Drift for All Other} \\ \text{Structures, } \Delta = \{ & 0.020 h_{\text{sx}} \\ \text{1.219 in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.996 \text{ in} \\ \hline 0.996 \leq 1.219, \text{OK.} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 120 \text{ in}$$

$$J = 0.432$$

$$331.976$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$

Weak Axis:

3.4.14

$$\begin{split} \mathsf{L_b} &= & 120 \\ \mathsf{J} &= & 0.432 \\ &= & 211.117 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} &= & 1701.56 \\ \varphi \mathsf{F_L} &= & \varphi b [\mathsf{Bc-1.6Dc*} \sqrt{((\mathsf{LbSc})/(\mathsf{Cb*} \sqrt{(\mathsf{lyJ})/2}))]} \\ \varphi \mathsf{F_I} &= & 28.6 \end{split}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 25.1 \text{ ksi}$$

 $\phi F_1 = 27.4 \text{ ksi}$

3.4.16

b/t = 37.0588

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 23.1 \text{ ksi}$$

3.4.16.1

Rb/t =

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi F cy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr - mDbr^* h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

25.1 ksi

2.155 in⁴

1.335 in³

2.788 k-ft

 $lx = 897074 \text{ mm}^4$

y = 41.015 mm

3.4.18

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

$$x = 45.5 \text{ mm}$$

Sy=

 $M_{max}Wk =$

0.599 in³

1.152 k-ft

Sx=

 $M_{max}St =$

 $\varphi F_L St =$

Compression

3.4.9

b/t = 32.195
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c[Bp-1.6Dp^*b/t]$$

 $\phi F_L = 25.1 \text{ ksi}$
b/t = 37.0588
S1 = 12.21
S2 = 32.70
 $\phi F_L = (\phi ck2^*\sqrt{(BpE))}/(1.6b/t)$
 $\phi F_L = 21.9 \text{ ksi}$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: **3.4.14** L_b =

$$L_b = 104.56 \text{ in}$$
 $J = 1.08$
 179.85

$$S1 = \left(\frac{Bc - \frac{r}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

S2 = 1/01.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 29.0 \text{ ksi}$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

 $\varphi F_L = 31.6 \text{ ksi}$

3.4.14

$$L_{b} = 104.56$$

$$J = 1.08$$

$$190.335$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{c}\right)^{2}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\begin{split} \phi F_L &= \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}] \\ \phi F_I &= 28.9 \end{split}$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi F Cy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^{\frac{1}{2}}$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = \phi b [Bt-Dt^* \sqrt{(Rb/t)}]$$

31.1 ksi

 $\phi F_L =$

h/t =

S1 =

m =

 $C_0 =$

Cc =

Bbr -

3.4.18
$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.0 \text{ ksi}$$

$$k = 984962 \text{ mm}^4$$

$$2.366 \text{ in}^4$$

$$y = 43.717 \text{ mm}$$

$$S1 = 34.18$$

$$0.51 = 0.51$$

$$0.52 = 0.52$$

$$0.53 = 0.52$$

$$0.54 = 0.52$$

$$0.54 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.55 = 0.52$$

$$0.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3 \varphi F Cy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L Wk = 33.3 \text{ ksi}$$

$$\varphi F_L Wk = 32.2 \text{ ksi}$$

$$\varphi F_L Wk = 33.3 \text{ ksi}$$

$$\varphi F_L Wk = 32.2 \text{ ksi}$$

$$\varphi F_L Wk = 33.3 \text{ ksi}$$

$$\varphi F_L Wk = 32.2 \text{ ksi}$$

$$\varphi F_L Wk = 32.$$

16.2

36.9

0.65

40

 $\frac{\theta_y}{2}$ 1.3Fcy

Compression

 $M_{max}St =$

Sx =

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$ $\varphi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\varphi F_L =$ 33.3 ksi

1.375 in³

3.323 k-ft

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\varphi F_L = \varphi c[Bt-Dt^* \sqrt{(Rb/t)}]$$

$$\varphi F_L = 31.09 \text{ ksi}$$

$$\varphi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

1.88 in² 58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = **55x55**

Strong Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 24.8 \text{ in} \\ \mathsf{J} = & 0.942 \\ & 38.7028 \\ S1 = & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ S2 = & \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \mathsf{\phiF_L} = & \mathsf{\phib[Bc-1.6Dc*}\sqrt{((\mathsf{LbSc})/(\mathsf{Cb*}\sqrt{(\mathsf{lyJ})/2}))]} \end{array}$$

Weak Axis:

3.4.14

$$\begin{split} L_b &= & 24.8 \\ J &= & 0.942 \\ & 38.7028 \\ S1 &= & \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ S1 &= & 0.51461 \\ S2 &= & \left(\frac{C_c}{1.6}\right)^2 \\ S2 &= & 1701.56 \\ \phi F_L &= & \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}] \\ \phi F_L &= & 31.4 \end{split}$$

3.4.16

$$\begin{split} b/t &= 24.5 \\ S1 &= \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp} \\ S1 &= 12.2 \\ S2 &= \frac{k_1 Bp}{1.6Dp} \\ S2 &= 46.7 \\ \phi F_L &= \phi b [Bp-1.6Dp^*b/t] \\ \phi F_L &= 28.2 \text{ ksi} \end{split}$$

 $\phi F_L = 31.4 \text{ ksi}$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used
Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$
S1 = 1.1
$$S2 = C_t$$
S2 = 141.0
$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$S.4.18$$

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\varphi F_L St = 28.2 \text{ ksi}$$

$$k = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

27.5 mm

0.621 in³

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$V = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$V = 27.5 \text{ mm}$$

 $Sy = 0.621 \text{ in}^3$

 $M_{max}Wk = 1.460 \text{ k-ft}$

y = Sx =

 $M_{max}St = 1.460 \text{ k-ft}$

SCHLETTER

Compression

3.4.7 $\lambda = 0.57371$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\varphi cc = 0.87952$ $\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$ $\varphi F_L = 28.0279 \text{ ksi}$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \end{array}$$

3.4.10

 $\varphi F_L =$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 28.03 \text{ ksi}$
A = 663.99 mm²
1.03 in²

28.85 kips

28.2 ksi

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

 $P_{max} =$

Strong Axis:	Weak Axis:
3.4.14	3.4.14
$L_b = 98.03 \text{ in}$	$L_b = 98.03$
J = 0.942 152.985	J = 0.942 152.985
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$	$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$
$\varphi F_L = 29.4 \text{ ksi}$	$\varphi F_L = 29.4$

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\varphi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

$$\begin{array}{ccc} \phi F_L W k = & 28.2 \text{ ksi} \\ l y = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ S y = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

$$\begin{array}{lll} \lambda = & 2.26776 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.89749 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 6.10803 \text{ ksi} \end{array}$$

3.4.9

$$b/t = 24.5$$

 $S1 = 12.21$ (See 3.4.16 above for formula)
 $S2 = 32.70$ (See 3.4.16 above for formula)
 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$
 $\phi F_L = 28.2 \text{ ksi}$
 $b/t = 24.5$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 6.11 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

6.29 kips $P_{max} =$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis:

3.4.14
$$L_b = 78.35 \text{ in}$$

$$J = 0.942$$

$$122.273$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2))}]}$$

$$\phi F_L$$
= 29.8 ksi

Weak Axis:

$$L_b = 78.35$$
 $J = 0.942$
 122.273

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

S2 = 1701.56

$$\varphi F_L = \varphi b[Bc-1.6Dc^* \sqrt{(LbSc)/(Cb^* \sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.8$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

S2 =
$$\frac{46.7}{\phi}F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = \frac{12.2}{1.2}$$

$$S1 = \frac{k_1 Bp}{1.6Dp}$$

$$32 = \frac{1.6Dp}{1.6Dp}$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used
$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

S2 = 141.0 ϕF_L = 1.17 $\phi y F_C y$ ϕF_L = 38.9 ksi

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

 $\phi F_L = 1.3 \phi y F c y$

 $\phi F_L = 43.2 \text{ ksi}$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

24.5

3.4.18

h/t =

$$\begin{array}{lll} \phi F_L St = & 28.2 \text{ ksi} \\ \text{lx} = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ \text{y} = & 27.5 \text{ mm} \\ \text{Sx} = & 0.621 \text{ in}^3 \\ \text{M}_{\text{max}} St = & 1.460 \text{ k-ft} \end{array}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$0.672 \text{ in}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

$$M_{max} W k = 1.460 \text{ k-ft}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.8125 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.83375 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 8.88278 \text{ ksi} \end{array}$$

b/t = 24.5
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi c [Bp-1.6Dp^*b/t]$$

 $\phi F_L = 28.2 \text{ ksi}$
b/t = 24.5
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp^*b/t]$
 $\phi F_L = 28.2 \text{ ksi}$

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF$Cy} \\ \text{$\phi$F}_L &= & 33.25 \text{ ksi} \\ \text{ϕF}_L &= & 8.88 \text{ ksi} \\ \text{A} &= & 663.99 \text{ mm}^2 \\ & & 1.03 \text{ in}^2 \\ \text{P}_{\text{max}} &= & 9.14 \text{ kips} \end{aligned}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(MeS	Surface(
1	Dead Load, Max	DĽ		-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL			.8			8		

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-9.843	-9.843	0	0
2	M14	Υ	-9.843	-9.843	0	0
3	M15	Υ	-9.843	-9.843	0	0
4	M16	Υ	-9.843	-9.843	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-5.454	-5.454	0	0
2	M14	Υ	-5.454	-5.454	0	0
3	M15	Υ	-5.454	-5.454	0	0
4	M16	Υ	-5.454	-5.454	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-46.866	-46.866	0	0
2	M14	Υ	-46.866	-46.866	0	0
3	M15	Υ	-46.866	-46.866	0	0
4	M16	Υ	-46 866	-46 866	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-78.344	-78.344	0	0
2	M14	٧	-78.344	-78.344	0	0
3	M15	V	-126.031	-126.031	0	0
4	M16	V	-126.031	-126.031	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	177.125	177.125	0	0
2	M14	٧	136.25	136.25	0	0
3	M15	V	74.938	74.938	0	0
4	M16	У	74.938	74.938	0	0

Member Distributed Loads (BLC 6 : Seismic - Lateral)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Ζ	7.874	7.874	0	0
2	M14	Ζ	7.874	7.874	0	0
3	M15	Ζ	7.874	7.874	0	0
4	M16	Ζ	7.874	7.874	0	0
5	M13	Z	0	0	0	0
6	M14	Ζ	0	0	0	0
7	M15	Z	0	0	0	0
8	M16	Z	0	0	0	0

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:__

Load Combinations

	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa	
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	723.523	2	1162.435	2	.907	1	.004	1	0	1	0	1
2		min	-904.921	3	-1398.546	3	-42.055	5	258	4	0	1	0	1
3	N7	max	.046	9	1128.189	1	-1.082	12	002	12	0	1	0	1
4		min	205	2	-56.004	5	-335.112	4	666	4	0	1	0	1
5	N15	max	.01	9	2883.445	1_	0	3	0	3	0	1	0	1
6		min	-2.219	2	-89.419	3	-313.733	4	635	4	0	1	0	1
7	N16	max	2643.083	2	3729.925	2	0	3	0	12	0	1	0	1
8		min	-2822.578	3	-4520.76	3	-41.821	5	261	4	0	1	0	1
9	N23	max	.057	14	1128.189	1	18.723	1	.036	1	0	1	0	1
10		min	205	2	4.738	3	-321.68	5	644	4	0	1	0	1
11	N24	max	723.523	2	1162.435	2	065	12	0	12	0	1	0	1
12		min	-904.921	3	-1398.546	3	-42.968	5	261	4	0	1	0	1
13	Totals:	max	4087.5	2	10794.667	1	0	2						
14		min	-4632.51	3	-7397.795	3	-1088.44	4						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	108.07	1	427.854	1	-10.809	12	0	3	.304	1	0	4
2			min	6.492	12	-644.122	3	-211.501	1	015	2	.018	12	0	3
3		2	max	108.07	1	299.072	1	-8.49	12	0	3	.159	4	.61	3
4			min	6.492	12	-453.342	3	-162.278	1	015	2	.008	12	404	1
5		3	max	108.07	1	170.29	1	-6.17	12	0	3	.088	5	1.007	3
6			min	6.492	12	-262.562	3	-113.054	1	015	2	057	1	665	1
7		4	max	108.07	1	41.508	1	-3.851	12	0	3	.047	5	1.193	3
8			min	6.492	12	-71.783	3	-63.831	1	015	2	155	1	782	1
9		5	max	108.07	1	118.997	3	-1.323	10	0	3	.009	5	1.167	3
10			min	6.492	12	-87.274	1	-36.036	4	015	2	199	1	757	1
11		6	max	108.07	1	309.777	3	34.616	1	0	3	01	12	.929	3
12			min	2.71	15	-216.056	1	-28.301	5	015	2	188	1	588	1
13		7	max	108.07	1	500.556	3	83.839	1	0	3	007	12	.479	3
14			min	-8.777	5	-344.838	1	-24.771	5	015	2	122	1	277	1
15		8	max	108.07	1	691.336	3	133.063	1	0	3	.002	2	.178	1
16			min	-21.889	5	-473.62	1	-21.241	5	015	2	082	4	184	3
17		9	max	108.07	1	882.115	3	182.286	1	0	3	.174	1	.776	1
18			min	-35.001	5	-602.402	1	-17.711	5	015	2	101	5	-1.058	3

Schletter, Inc. HCV

Model Name Standard PVMax Racking System Nov 4, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]									
19		10	max	108.07	1	731.183	_1_	-10.065	12	.004	<u>14</u>	.404	1	1.517	1
20			min	6.492	12	-1072.895	3	-231.51	1	015	2	.015	12	-2.144	3
21		11	max	108.07	1	602.402	_1_	-7.746	12	.015	2	.174	1	.776	1
22			min	6.492	12	-882.115	3	-182.286	1	0	3	.005	12	-1.058	3
23		12	max	108.07	1	473.62	1_	-5.427	12	.015	2	.08	4	.178	1
24			min	6.492	12	-691.336	3	-133.063	1	0	3	004	3	184	3
25		13	max	108.07	1	344.838	1	-3.107	12	.015	2	.036	5	.479	3
26			min	6.492	12	-500.556	3	-83.839	1	0	3	122	1	277	1
27		14	max	108.07	1	216.056	1	788	12	.015	2	002	15	.929	3
28			min	6.492	12	-309.777	3	-41.785	4	0	3	188	1	588	1
29		15	max	108.07	1	87.274	1	14.607	1	.015	2	009	12	1.167	3
30			min	-2.122	5	-118.997	3	-29.662	5	0	3	199	1	757	1
31		16	max	108.07	1	71.783	3	63.831	1	.015	2	006	12	1.193	3
32		'	min	-15.233	5	-41.508	1	-26.132	5	0	3	155	1	782	1
33		17	max	108.07	1	262.562	3	113.054	1	.015	2	0	3	1.007	3
34			min	-28.345	5	-170.29	1	-22.602	5	0	3	111	4	665	1
35		18		108.07	1	453.342	3	162.278	1	.015	2	.096	1	.61	3
		10	max		5	-299.072	1		5		3		5	404	1
36		40	min	<u>-41.457</u>				-19.072	_	0		119	_		
37		19	max	108.07	1	644.122	3	211.501	1	.015	2	.304	1	0	1
38	N 4 4	1	min	<u>-54.568</u>	5	-427.854	1_	-15.542	5	0	3	138	5	0	3
39	M14	1	max	62.465	4	465.758	1	-11.16	12	.011	3	.354	1	0	4
40			min	3.254	12	-513.31	3	-219.068	1	013	2	.021	12	0	3
41		2	max	58.59	1	336.976	1_	-8.841	12	.011	3	.234	4	.49	3
42			min	3.254	12	-367.947	3	-169.844	1	013	2	.01	12	446	1
43		3	max	58.59	1_	208.194	_1_	-6.522	12	.011	3	.133	5	.818	3
44			min	3.254	12	-222.584	3	-120.621	1_	013	2	024	1	749	1
45		4	max	58.59	1	79.412	<u>1</u>	-4.202	12	.011	3	.072	5	.984	3
46			min	3.254	12	-77.221	3	-71.397	1	013	2	13	1	909	1
47		5	max	58.59	1	68.142	3	-1.883	12	.011	3	.015	5	.989	3
48			min	-3.498	5	-49.37	1	-55.532	4	013	2	182	1	925	1
49		6	max	58.59	1	213.505	3	27.05	1	.011	3	009	12	.833	3
50			min	-16.61	5	-178.152	1	-45.619	5	013	2	179	1	799	1
51		7	max	58.59	1	358.868	3	76.273	1	.011	3	007	12	.515	3
52			min	-29.721	5	-306.934	1	-42.089	5	013	2	122	1	529	1
53		8	max	58.59	1	504.231	3	125.496	1	.011	3	0	10	.035	3
54			min	-42.833	5	-435.715	1	-38.558	5	013	2	137	4	13	2
55		9	max	58.59	1	649.594	3	174.72	1	.011	3	.157	1	.439	1
56			min	-55.945	5	-564.497	1	-35.028	5	013	2	172	5	606	3
57		10	max	90.43	4	693.279	1	-9.714	12	.011	3	.378	1	1.138	1
58		10	min	3.254	12	-794.957	3	-223.943	1	013	2	.014	12	-1.408	3
59		11	max	77.319	4	564.497	1	-7.395	12	.013	2	.234	4	.439	1
60			min	3.254	12	-649.594	3	-174.72	1	011	3	.004	12	606	3
61		12	max	64.207	4	435.715	<u> </u>	-5.075	12	.013	2	.13	4	.035	3
62		14	min	3.254	12	-504.231	3	-125.496		011	3	01	1	13	2
63		13		58.59	1	306.934	<u> </u>	-2.756	12	.013	2	.068	5	13 .515	3
64		13	max	3.254	_	-358.868	3	-2.756 -76.273	1		3	122	1		1
		4.4	min		12					011			_	<u>529</u>	_
65		14	max	58.59	1	178.152	1	436	12	.013	2	.011	5	.833	3
66		4.5	min	3.254	12	-213.505	3	-56.692	4	011	3	179	12	799	1
67		15	max	58.59	1	49.37	1	22.174	1	.013	2	008	12	.989	3
68		40	min	3.254	12	-68.142	3	-45.895	5	011	3	182	1	925	1
69		16	max	58.59	1	77.221	3	71.397	1	.013	2	005	12	.984	3
70			min	-2.043	5	-79.412	1_	-42.365	5	011	3	13	1	909	1
71		17	max	<u>58.59</u>	1_	222.584	3	120.621	1	.013	2	.002	3	.818	3
72			min	-15.155	5	-208.194	1_	-38.834	5	011	3	144	4	749	1
73		18	max	58.59	1	367.947	3	169.844	1	.013	2	.138	1_	.49	3
74			min	-28.266	5	-336.976	1_	-35.304	5	011	3	177	5	446	1
75		19	max	58.59	1	513.31	3	219.068	1	.013	2	.354	1	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:_

76 min 41.378 5 -465.758 1 -31.774 5 -011 3 -214 5 0 3 -777 M15 1 max 101.605 5 625.02 2 -11.086 12 -014 2 424 4 0 2 2 78 min 62.846 1 -283.776 3 -218.993 1 -0.009 3 0.02 12 0 3 -2.009 3 -2.00		Member	Sec		Axial[lb]		y Shear[lb]								_	
The color of the	76			min	-41.378	5	-465.758	_1_	-31.774	5	011	3	214	5	0	3
Post		<u>M15</u>	1													
Bit				min		•									_	
B1			2	max		5				12						3
B2	80			min	-62.846	1	-206.538	3	-169.77	1	009	3	.009	12	597	2
B3	81		3	max	75.382	5	273.649	2	-6.448	12	.014	2	.172	5	.459	3
B4	82			min	-62.846	1	-129.299	3	-120.547	1	009	3	024	1	999	2
B4	83		4	max	62.27	5	97.964	2	-4.128	12	.014	2	.096	5	.56	3
B5	84			min	-62.846	1	-52.061	3	-84.265	4	009	3	131	1	-1.205	2
B6			5			5								5		
B8														1		
B88			6											12		
89																
90			7													
91																
93			Ω							_				_		
94										_						
94			0													
95			9									_		_		
96			40			•										
98			10											_		
98			4.4													
99			11													
100						•										
101			12													
102				min		•										_
103			13	max		12				12	.009	_	.09	5		3
104	102			min	-62.846	1					014	2	122	1	653	2
105	103		14	max	-3.845	12	253.407	2	511	12	.009	3	.018	5	.504	3
106	104			min	-62.846	1	-102.416	3	-70.566	4	014	2	18	1	-1.032	2
107	105		15	max	-3.845	12	77.721	2	22.1	1	.009	3	008	12	.575	3
107				min		4		3	-59.656	5		2		1		
108			16	max		12				1	.009	3		12	.56	
109																
110			17													
111 18 max -3.845 12 206.538 3 169.77 1 .009 3 .137 1 .272 3 112 min -114.027 4 -449.335 2 -49.066 5 014 2 232 5 597 2 113 19 max -3.845 12 283.776 3 218.993 1 .009 3 .353 1 0 2 114 min -127.139 4 -625.02 2 -45.536 5 014 2 -284 5 0 5 115 M16 1 max 96.069 5 587.27 2 -10.588 12 .012 1 .317 4 0 2 116 min -121.63 1 -254.408 3 -211.992 1 012 3 .017 12 .03 117 2 max 82.957 5 <																
112			18							_				_		
113 19 max -3.845 12 283.776 3 218.993 1 .009 3 .353 1 0 2 114 min -127.139 4 -625.02 2 -45.536 5 014 2 284 5 0 5 115 M16 1 max 96.069 5 587.27 2 -10.588 12 .012 1 .317 4 0 2 116 min -121.63 1 -254.408 3 -211.992 1 012 3 .017 12 0 3 117 2 max 82.957 5 411.584 2 -8.269 12 .012 1 .206 4 .24 3 118 min -121.63 1 -177.17 3 -162.769 1 012 3 .007 12 -5555 2 119 3 3max			10													
114 min -127.139 4 -625.02 2 -45.536 5 014 2 284 5 0 5 115 M16 1 max 96.069 5 587.27 2 -10.588 12 .012 1 .317 4 0 2 116 min -121.63 1 -254.408 3 -211.992 1 012 3 .017 12 0 3 117 2 max 82.957 5 411.584 2 -8.269 12 .012 1 .206 4 .24 3 118 min -121.63 1 -177.17 3 -162.769 1 012 3 .007 12 -555 2 119 3 max 69.846 5 235.899 2 -5.949 12 .012 1 .122 5 .394 3 120 4 max			10												_	$\overline{}$
115 M16 1 max 96.069 5 587.27 2 -10.588 12 .012 1 .317 4 0 2 116 min -121.63 1 -254.408 3 -211.992 1 012 3 .017 12 0 3 117 2 max 82.957 5 411.584 2 -8.269 12 .012 1 .206 4 .24 3 118 min -121.63 1 -177.17 3 -162.769 1 012 3 .007 12 555 2 119 3 max 69.846 5 235.899 2 -5.949 12 .012 1 .122 5 .394 3 120 min -121.63 1 -99.931 3 -113.545 1 012 3 055 1 915 2 121 4 max <td></td> <td></td> <td>13</td> <td></td> <td>_</td> <td></td> <td></td>			13											_		
116 min -121.63 1 -254.408 3 -211.992 1 012 3 .017 12 0 3 117 2 max 82.957 5 411.584 2 -8.269 12 .012 1 .206 4 .24 3 118 min -121.63 1 -177.17 3 -162.769 1 012 3 .007 12 555 2 119 3 max 69.846 5 235.899 2 -5.949 12 .012 1 .122 5 .394 3 120 min -121.63 1 -99.931 3 -113.545 1 012 3 055 1 915 2 121 4 max 56.734 5 60.213 2 -3.63 12 .012 1 .068 5 .462 3 122 min -121.63		M16	4												_	
117 2 max 82.957 5 411.584 2 -8.269 12 .012 1 .206 4 .24 3 118 min -121.63 1 -177.17 3 -162.769 1 012 3 .007 12 555 2 119 3 max 69.846 5 235.899 2 -5.949 12 .012 1 .122 5 .394 3 120 min -121.63 1 -99.931 3 -113.545 1 012 3 055 1 915 2 121 4 max 56.734 5 60.213 2 -3.63 12 .012 1 .068 5 .462 3 122 min -121.63 1 -22.693 3 -64.322 1 012 3 154 1 -1.079 2 123 5 max 43.		IVITO														
118 min -121.63 1 -177.17 3 -162.769 1 012 3 .007 12 555 2 119 3 max 69.846 5 235.899 2 -5.949 12 .012 1 .122 5 .394 3 120 min -121.63 1 -99.931 3 -113.545 1 012 3 055 1 915 2 121 4 max 56.734 5 60.213 2 -3.63 12 .012 1 .068 5 .462 3 122 min -121.63 1 -22.693 3 -64.322 1 012 3 154 1 -1.079 2 123 5 max 43.622 5 54.546 3 -1.311 12 .012 1 .018 5 .444 3 124 min -121.63 <			2													
119 3 max 69.846 5 235.899 2 -5.949 12 .012 1 .122 5 .394 3 120 min -121.63 1 -99.931 3 -113.545 1 012 3 055 1 915 2 121 4 max 56.734 5 60.213 2 -3.63 12 .012 1 .068 5 .462 3 122 min -121.63 1 -22.693 3 -64.322 1 012 3 154 1 -1.079 2 123 5 max 43.622 5 54.546 3 -1.311 12 .012 1 .018 5 .444 3 124 min -121.63 1 -115.472 2 -47.686 4 012 3 198 1 -1.048 2 125 6 max 30.511 5 131.784 3 34.125 1 .012 1 009 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																
120 min -121.63 1 -99.931 3 -113.545 1 012 3 055 1 915 2 121 4 max 56.734 5 60.213 2 -3.63 12 .012 1 .068 5 .462 3 122 min -121.63 1 -22.693 3 -64.322 1 012 3 154 1 -1.079 2 123 5 max 43.622 5 54.546 3 -1.311 12 .012 1 .018 5 .444 3 124 min -121.63 1 -115.472 2 -47.686 4 012 3 198 1 -1.048 2 125 6 max 30.511 5 131.784 3 34.125 1 .012 1 009 12 .341 3 126 min -121.63																
121 4 max 56.734 5 60.213 2 -3.63 12 .012 1 .068 5 .462 3 122 min -121.63 1 -22.693 3 -64.322 1 012 3 154 1 -1.079 2 123 5 max 43.622 5 54.546 3 -1.311 12 .012 1 .018 5 .444 3 124 min -121.63 1 -115.472 2 -47.686 4 012 3 198 1 -1.048 2 125 6 max 30.511 5 131.784 3 34.125 1 .012 1 009 12 .341 3 126 min -121.63 1 -291.157 2 -39.726 5 012 3 188 1 823 2 127 7 max 1			3													
122 min -121.63 1 -22.693 3 -64.322 1 012 3 154 1 -1.079 2 123 5 max 43.622 5 54.546 3 -1.311 12 .012 1 .018 5 .444 3 124 min -121.63 1 -115.472 2 -47.686 4 012 3 198 1 -1.048 2 125 6 max 30.511 5 131.784 3 34.125 1 .012 1 009 12 .341 3 126 min -121.63 1 -291.157 2 -39.726 5 012 3 188 1 823 2 127 7 max 17.399 5 209.023 3 83.348 1 .012 1 007 12 .151 3 128 min -121.63						_								_		
123 5 max 43.622 5 54.546 3 -1.311 12 .012 1 .018 5 .444 3 124 min -121.63 1 -115.472 2 -47.686 4 012 3 198 1 -1.048 2 125 6 max 30.511 5 131.784 3 34.125 1 .012 1 009 12 .341 3 126 min -121.63 1 -291.157 2 -39.726 5 012 3 188 1 823 2 127 7 max 17.399 5 209.023 3 83.348 1 .012 1 007 12 .151 3 128 min -121.63 1 -466.843 2 -36.196 5 012 3 122 1 401 2 129 8 max 4.287 5 286.261 3 132.572 1 .012 1 .001 10 .215 2 130 min -121.63 1 -642.528 2 -32.665 5 012 3 <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>			4									_				
124 min -121.63 1 -115.472 2 -47.686 4 012 3 198 1 -1.048 2 125 6 max 30.511 5 131.784 3 34.125 1 .012 1 009 12 .341 3 126 min -121.63 1 -291.157 2 -39.726 5 012 3 188 1 823 2 127 7 max 17.399 5 209.023 3 83.348 1 .012 1 007 12 .151 3 128 min -121.63 1 -466.843 2 -36.196 5 012 3 122 1 401 2 129 8 max 4.287 5 286.261 3 132.572 1 .012 1 .001 10 .215 2 130 min -121.63 1 -642.528 2 -32.665 5 012 3 112 4																
125 6 max 30.511 5 131.784 3 34.125 1 .012 1 009 12 .341 3 126 min -121.63 1 -291.157 2 -39.726 5 012 3 188 1 823 2 127 7 max 17.399 5 209.023 3 83.348 1 .012 1 007 12 .151 3 128 min -121.63 1 -466.843 2 -36.196 5 012 3 122 1 401 2 129 8 max 4.287 5 286.261 3 132.572 1 .012 1 .001 10 .215 2 130 min -121.63 1 -642.528 2 -32.665 5 012 3 112 4 124 3 131 9 max -5.809 15 363.5 3 181.795 1 .012 1 .172 1 1.026 2			5			<u>5</u>						_				
126 min -121.63 1 -291.157 2 -39.726 5 012 3 188 1 823 2 127 7 max 17.399 5 209.023 3 83.348 1 .012 1 007 12 .151 3 128 min -121.63 1 -466.843 2 -36.196 5 012 3 122 1 401 2 129 8 max 4.287 5 286.261 3 132.572 1 .012 1 .001 10 .215 2 130 min -121.63 1 -642.528 2 -32.665 5 012 3 112 4 124 3 131 9 max -5.809 15 363.5 3 181.795 1 .012 1 .172 1 1.026 2														_		
127 7 max 17.399 5 209.023 3 83.348 1 .012 1 007 12 .151 3 128 min -121.63 1 -466.843 2 -36.196 5 012 3 122 1 401 2 129 8 max 4.287 5 286.261 3 132.572 1 .012 1 .001 10 .215 2 130 min -121.63 1 -642.528 2 -32.665 5 012 3 112 4 124 3 131 9 max -5.809 15 363.5 3 181.795 1 .012 1 .172 1 1.026 2			6			5								12		
128 min -121.63 1 -466.843 2 -36.196 5 012 3 122 1 401 2 129 8 max 4.287 5 286.261 3 132.572 1 .012 1 .001 10 .215 2 130 min -121.63 1 -642.528 2 -32.665 5 012 3 112 4 124 3 131 9 max -5.809 15 363.5 3 181.795 1 .012 1 .172 1 1.026 2				min		1				5		3		1		
128 min -121.63 1 -466.843 2 -36.196 5 012 3 122 1 401 2 129 8 max 4.287 5 286.261 3 132.572 1 .012 1 .001 10 .215 2 130 min -121.63 1 -642.528 2 -32.665 5 012 3 112 4 124 3 131 9 max -5.809 15 363.5 3 181.795 1 .012 1 .172 1 1.026 2			7	max	17.399	5		3	83.348	1	.012	1		12	.151	
129 8 max 4.287 5 286.261 3 132.572 1 .012 1 .001 10 .215 2 130 min -121.63 1 -642.528 2 -32.665 5 012 3 112 4 124 3 131 9 max -5.809 15 363.5 3 181.795 1 .012 1 .172 1 1.026 2	128			min	-121.63	1	-466.843	2	-36.196	5	012	3	122	1	401	2
130 min -121.63 1 -642.528 2 -32.665 5 012 3 112 4 124 3 131 9 max -5.809 15 363.5 3 181.795 1 .012 1 .172 1 1.026 2			8			5		3		_1	.012	_1	.001	10	.215	
131 9 max -5.809 15 363.5 3 181.795 1 .012 1 .172 1 1.026 2										5		3				
			9			15		3				1		1		
														_		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		Axial[lb]						Torque[k-ft]					LC
133		10	max	-6.917	12	993.899	2	-10.286	12	.012	1	.402	1_	2.033	2
134			min	-121.63	_1_	-440.738	3	-231.019	1	012	3	.016	12	932	3
135		11	max	-5.497	<u> 15</u>	818.214	2	-7.967	12	.012	3	.211	4	1.026	2
136			min	-121.63	1	-363.5	3	-181.795	1	012	1	.006	12	485	3
137		12	max	-6.917	12	642.528	2	-5.647	12	.012	3	.11	4	.215	2
138			min	-121.63	1	-286.261	3	-132.572	1	012	1	003	3	124	3
139		13	max	-6.917	12	466.843	2	-3.328	12	.012	3	.053	5	.151	3
140			min	-121.63	1	-209.023	3	-83.348	1	012	1	122	1	401	2
141		14	max	-6.917	12	291.157	2	-1.009	12	.012	3	.002	5	.341	3
142			min	-121.63	1	-131.784	3	-53.224	4	012	1	188	1	823	2
143		15	max	-6.917	12	115.472	2	15.099	1	.012	3	009	12	.444	3
144			min	-121.63	1	-54.546	3	-41.052	5	012	1	198	1	-1.048	2
145		16	max	-6.917	12	22.693	3	64.322	1	.012	3	006	12	.462	3
146		'	min	-121.63	1	-60.213	2	-37.522	5	012	1	154	1	-1.079	2
147		17	max	-6.917	12	99.931	3	113.545	1	.012	3	001	12	.394	3
148		- ' '	min	-121.63	1	-235.899	2	-33.992	5	012	1	144	4	915	2
149		18	max	-6.917	12	177.17	3	162.769	1	.012	3	.098	1	.24	3
150		10		-129.875	4	-411.584	2	-30.462	5	012	1	165	5	555	2
		10	min		12		3		1		3		1		
151		19	max	-6.917		254.408		211.992		.012		.307	_	0	2
152	MO	4		-142.987	4_	-587.27	2	-26.931	5	012	1	<u>197</u>	5	0	5
153	M2	1		1017.512	1_	2.056	4	.605	1	0	12	0	3	0	1
154			min	-1221.565	3	.498	15	-37.161	4	0	4	0	1	0	1_
155		2		1018.042	_1_	1.985	4	.605	1	0	12	0	1	0	15
156			_	-1221.168	3	.481	15	-37.623	4	0	4	013	4	0	4
157		3		1018.571	_1_	1.914	4	.605	1	0	12	0	1	0	15
158			min	-1220.771	3	.464	15	-38.084	4	0	4	027	4	001	4
159		4	max	1019.1	_1_	1.843	4	.605	1_	0	12	0	1_	0	15
160			min	-1220.374	3	.448	15	-38.545	4	0	4	041	4	002	4
161		5	max	1019.63	_1_	1.772	4	.605	1	0	12	0	1	0	15
162			min	-1219.977	3	.431	15	-39.006	4	0	4	055	4	003	4
163		6	max	1020.159	1	1.701	4	.605	1	0	12	.001	1	0	15
164			min	-1219.581	3	.414	15	-39.467	4	0	4	069	4	003	4
165		7	max	1020.688	1	1.63	4	.605	1	0	12	.001	1	0	15
166			min	-1219.184	3	.398	15	-39.929	4	0	4	083	4	004	4
167		8	max	1021.217	1	1.559	4	.605	1	0	12	.002	1	001	15
168			min	-1218.787	3	.381	15	-40.39	4	0	4	097	4	005	4
169		9		1021.747	1	1.488	4	.605	1	0	12	.002	1	001	15
170			min	-1218.39	3	.364	15	-40.851	4	0	4	112	4	005	4
171		10		1022.276	1	1.417	4	.605	1	0	12	.002	1	001	15
172		- 10		-1217.993	3	.348	15	-41.312	4	0	4	127	4	006	4
173		11		1022.805	1	1.345	4	.605	1	0	12	.002	1	001	15
174			min		3	.331	15	-41.774	4	0	4	142	4	006	4
175		12		1023.335	1	1.274	4	.605	1	0	12	.002	1	002	15
176		14		-1217.199	3	.314	15	-42.235	4	0	4	157	4	002	4
177		13		1023.864	_ <u>3_</u> 1	1.203	4	.605	1	0	12	.003	1	007	15
178		13		-1216.802	3	.297	15	-42.696	4	0	4	172	4	002	4
179		14	_	1024.393	<u>ა</u> 1	1.132		.605	1		12	.003	1	007	15
		14		-1216.405	3		<u>4</u> 12		4	0	4		-		
180		15				.277		-43.157			_	187	4	007	4
181		15		1024.922	1	1.061	4	.605	1	0	12	.003	1	002	15
182		40		-1216.008	3	.249	12	-43.618	4	0	4	203	4	008	4
183		16		1025.452	1_	.99	4	.605	1	0	12	.003	1	002	15
184			min	-1215.611	3	.222	12	-44.08	4	0	4	<u>219</u>	4	008	4
185		17		1025.981	_1_	.919	4	.605	1	0	12	.003	1	002	15
186				-1215.214	3	.194	12	-44.541	4	0	4	234	4	009	4
187		18	max		_1_	.848	4	.605	1	0	12	.004	1_	002	15
188			min	-1214.817	3	.166	12	-45.002	4	0	4	251	4	009	4
189		19	max	1027.04	_1_	.777	4	.605	1	0	12	.004	1	002	15

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC		LC		LC	Torque[k-ft]	LC		LC	z-z Mome	<u>LC</u>
190			min	-1214.42	3	.139	12	-45.463	4	0	4	267	4	009	4
191	M3	1	max	639.39	2	8.9	4	1.931	4	0	12	0	1	.009	4
192			min	-801.565	3	2.103	15	.027	12	0	4	029	4	.002	15
193		2	max	639.219	2	8.031	4	2.536	4	0	12	0	1	.005	4
194			min	-801.693	3	1.899	15	.027	12	0	4	028	4	.001	12
195		3	max	639.049	2	7.162	4	3.141	4	0	12	0	1	.002	2
196			min	-801.821	3	1.695	15	.027	12	0	4	026	4	0	3
197		4	max		2	6.293	4	3.746	4	0	12	.001	1	0	15
198			min	-801.948	3	1.49	15	.027	12	0	4	025	4	002	3
199		5	max	638.708	2	5.424	4	4.351	4	0	12	.001	1	0	15
200		5	min	-802.076	3	1.286	15	.027	12	0	4	023	4	004	6
		6									12		_	004	
201		6	max		2	4.555	4	4.956	4	0		.002	1		15
202		-	min	-802.204	3	1.082	15	.027	12	0	4	021	5	007	6
203		7	max	638.367	2	3.686	4	5.561	4	0	12	.002	1	002	15
204			min	-802.332	3	.878	15	.027	12	0	4	<u>018</u>	5	009	6
205		8	max		2	2.818	4	6.166	4	0	12	.002	1	002	15
206			min	-802.459	3	.673	15	.027	12	0	4	016	5	01	6
207		9	max		2	1.949	4	6.771	4	0	12	.002	1	003	15
208			min	-802.587	3	.469	15	.027	12	0	4	013	5	011	6
209		10	max	637.856	2	1.08	4	7.377	4	0	12	.002	1	003	15
210			min	-802.715	3	.265	15	.027	12	0	4	009	5	012	6
211		11	max	637.686	2	.283	2	7.982	4	0	12	.003	1	003	15
212			min	-802.843	3	084	3	.027	12	0	4	006	5	012	6
213		12	max	637.516	2	144	15	8.587	4	0	12	.003	1	003	15
214			min	-802.97	3	659	6	.027	12	0	4	002	5	012	6
215		13	max		2	348	15	9.192	4	0	12	.003	1	003	15
216		10	min	-803.098	3	-1.528	6	.027	12	0	4	0	12	012	6
217		14	max		2	552	15	9.797	4	0	12	.007	4	003	15
218		17	min	-803.226	3	-2.397	6	.027	12	0	4	0	12	011	6
219		15	max	637.005	2	756	15	10.402	4	0	12	.012	4	002	15
220		13	min	-803.354	3	-3.266	6	.027	12	0	4	0	12	002	6
221		16	max		2	961	15	11.007	4	0	12	.017	4	002	15
		10						.027	12				12		
222		47	min	-803.482	3	-4.135	6			0	4	0		008	6
223		17	max	636.664	2	-1.165	15	11.612	4	0	12	.022	4	001	15
224		10	min	-803.609	3	-5.003	6	.027	12	0	4	0	12	006	6
225		18	max		2	-1.369	15	12.217	4	0	12	.028	4	0	15
226		10	min	-803.737	3	-5.872	6	.027	12	0	4	0	12	003	6
227		19	max		2	-1.573	15	12.822	4	0	12	.034	4	0	1
228			min	-803.865	3	-6.741	6	.027	12	0	4	0	12	0	1
229	<u>M4</u>	1		1125.123	_1_	0	1_	-1.082	12	0	1	.027	4	0	1
230				-57.435	5	0	1	-334.056		0	1	0	12	0	1
231		2		1125.293	1	0	1	-1.082	12	0	1	.001	1	0	1_
232			min	-57.356	5	0	1	-334.204	4	0	1	011	4	0	1
233		3	max	1125.464	1	0	1	-1.082	12	0	1	0	12	0	1
234			min	-57.276	5	0	1	-334.352	4	0	1	05	4	0	1
235		4	max	1125.634	1	0	1	-1.082	12	0	1	0	12	0	1
236					5	0	1	-334.499	4	0	1	088	4	0	1
237		5		1125.804	1	0	1	-1.082	12	0	1	0	12	0	1
238			min	-57.117	5	0	1	-334.647	4	0	1	126	4	0	1
239		6		1125.975	1	0	1	-1.082	12	0	1	0	12	0	1
240			min	-57.038	5	0	1	-334.795		0	1	165	4	0	1
241		7		1126.145	1	0	1	-1.082	12	0	1	<u>105</u> 0	12	0	1
241						0	1	-334.942		0	1	-	4	0	1
		0	min	-56.958	5		•					203			
243		8		1126.315	1	0	1	-1.082	12	0	1	0	12	0	1
244			min	<u>-56.879</u>	5	0	1_	-335.09	4	0	1	242	4	0	1
245		9		1126.486	1	0	1	-1.082	12	0	1	0	12	0	1
246			min	-56.799	5	0	1	-335.238	4	0	1	28	4	0	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		Axial[lb]								y-y Mome		_	1
247		10		1126.656	_1_	0	1	-1.082	12	0	1	0	12	0	1
248			min	-56.72	5	0	1	-335.385	4	0	1	319	4	0	1
249		11	max	1126.826	_1_	0	1	-1.082	12	0	1	001	12	0	1
250			min	-56.64	5	0	1	-335.533	4	0	1	357	4	0	1
251		12	max	1126.997	_1_	0	1	-1.082	12	0	1	001	12	0	1
252			min	-56.561	5	0	1	-335.68	4	0	1	396	4	0	1
253		13	max	1127.167	1	0	1	-1.082	12	0	1	001	12	0	1
254			min	-56.481	5	0	1	-335.828	4	0	1	434	4	0	1
255		14	max	1127.337	1	0	1	-1.082	12	0	1	001	12	0	1
256			min	-56.402	5	0	1	-335.976	4	0	1	473	4	0	1
257		15	max	1127.508	1	0	1	-1.082	12	0	1	002	12	0	1
258			min	-56.322	5	0	1	-336.123	4	0	1	511	4	0	1
259		16	max	1127.678	1	0	1	-1.082	12	0	1	002	12	0	1
260			min	-56.243	5	0	1	-336.271	4	0	1	55	4	0	1
261		17		1127.848	1	0	1	-1.082	12	0	1	002	12	0	1
262			min	-56.163	5	0	1	-336.419	4	0	1	589	4	0	1
263		18		1128.019	1	0	1	-1.082	12	0	1	002	12	0	1
264			min	-56.084	5	0	1	-336.566		0	1	627	4	0	1
265		19		1128.189	1	0	1	-1.082	12	0	1	002	12	0	1
266			min	-56.004	5	0	1	-336.714	4	0	1	666	4	0	1
267	M6	1		3222.393	1	2.223	2	0	1	0	1	0	4	0	1
268	IVIO		min	-3948.092	3	.311	12	-37.604	4	0	4	0	1	0	1
269		2		3222.922	1	2.168	2	0	1	0	1	0	1	0	12
270			min	-3947.696	3	.283	12	-38.065	4	0	4	014	4	0	2
271		3		3223.452	1	2.112	2	0	1	0	1	0	1	0	12
272			min	-3947.299	3	.256	12	-38.526	4	0	4	027	4	002	2
273		4		3223.981	1	2.057	2	0	1	0	1	0	1	0	12
274			min	-3946.902	3	.228	12	-38.987	4	0	4	041	4	002	2
275		5	max		1	2.001	2	0	1	0	1	0	1	0	12
276			min	-3946.505	3	.2	12	-39.449	4	0	4	055	4	003	2
277		6		3225.039	1	1.946	2	0	1	0	1	0	1	0	12
278			min	-3946.108	3	.173	12	-39.91	4	0	4	07	4	004	2
279		7		3225.569	1	1.891	2	0	1	0	1	0	1	0	12
280			min	-3945.711	3	.137	3	-40.371	4	0	4	084	4	004	2
281		8		3226.098	1	1.835	2	0	1	0	1	0	1	0	12
282			min	-3945.314	3	.096	3	-40.832	4	0	4	098	4	005	2
283		9		3226.627	1	1.78	2	0	1	0	1	0	1	0	12
284			min		3	.054	3	-41.293	4	0	4	113	4	006	2
285		10		3227.157	1	1.725	2	0	1	0	1	0	1	0	12
286			min		3	.013	3	-41.755	4	0	4	128	4	006	2
287		11		3227.686	1	1.669	2	0	1	0	1	0	1	0	12
288			min		3	029	3	-42.216	4	0	4	143	4	007	2
289		12		3228.215	1	1.614	2	0	1	0	1	0	1	0	3
290		· -	min		3	07	3	-42.677	4	0	4	158	4	008	2
291		13		3228.745	1	1.559	2	0	1	0	1	0	1	0	3
292			min		3	112	3	-43.138	4	0	4	174	4	008	2
293		14		3229.274	1	1.503	2	0	1	0	1	0	1	0	3
294			min		3	153	3	-43.6	4	0	4	189	4	009	2
295		15		3229.803	1	1.448	2	0	1	0	1	0	1	0	3
296				-3942.535	3	195	3	-44.061	4	0	4	205	4	009	2
297		16		3230.332	1	1.393	2	0	1	0	1	0	1	0	3
298			min		3	236	3	-44.522	4	0	4	221	4	01	2
299		17		3230.862	1	1.337	2	0	1	0	1	0	1	0	3
300			min		3	278	3	-44.983	4	0	4	237	4	01	2
301		18		3231.391	1	1.282	2	0	1	0	1	0	1	0	3
302		'	min	-3941.344	3	319	3	-45.444	4	0	4	253	4	011	2
303		19		3231.92	1	1.227	2	0	1	0	1	0	1	0	3
			mux	J201.02		1.661									

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
304			min	-3940.947	3	361	3	-45.906	4	0	4	27	4	011	2
305	M7	1	max	2388.904	2	8.909	6	1.399	4	0	1	0	1	.011	2
306			min	-2483.887	3	2.091	15	0	1	0	4	029	4	0	3
307		2	max	2388.734	2	8.04	6	2.004	4	0	1	0	1	.008	2
308			min	-2484.015	3	1.887	15	0	1	0	4	028	4	002	3
309		3	max	2388.564	2	7.171	6	2.609	4	0	1	0	1	.005	2
310			min	-2484.142	3	1.683	15	0	1	0	4	027	4	004	3
311		4	max	2388.393	2	6.302	6	3.215	4	0	1	0	1	.002	2
312			min	-2484.27	3	1.479	15	0	1	0	4	026	4	005	3
313		5	max	2388.223	2	5.433	6	3.82	4	0	1	0	1	0	2
314			min	-2484.398	3	1.274	15	0	1	0	4	024	4	007	3
315		6	max	2388.053	2	4.564	6	4.425	4	0	1	0	1	002	15
316			min	-2484.526	3	1.07	15	0	1	0	4	022	4	008	3
317		7	max	2387.882	2	3.695	6	5.03	4	0	1	0	1	002	15
318			min	-2484.653	3	.866	15	0	1	0	4	02	4	009	4
319		8	max	2387.712	2	2.826	6	5.635	4	0	1	0	1	002	15
320			min	-2484.781	3	.662	15	0	1	0	4	017	4	01	4
321		9	max	2387.542	2	1.992	2	6.24	4	0	1	0	1	003	15
322			min	-2484.909	3	.386	12	0	1	0	4	015	4	011	4
323		10	max	2387.371	2	1.315	2	6.845	4	0	1	0	1	003	15
324			min	-2485.037	3	.01	3	0	1	0	4	011	4	012	4
325		11	max	2387.201	2	.638	2	7.45	4	0	1	0	1	003	15
326			min	-2485.164	3	498	3	0	1	0	4	008	4	012	4
327		12	max	2387.031	2	039	2	8.055	4	0	1	0	1	003	15
328			min	-2485.292	3	-1.006	3	0	1	0	4	004	4	012	4
329		13	max	2386.86	2	359	15	8.66	4	0	1	0	1	003	15
330			min	-2485.42	3	-1.518	4	0	1	0	4	0	4	012	4
331		14	max	2386.69	2	564	15	9.265	4	0	1	.004	4	003	15
332			min	-2485.548	3	-2.387	4	0	1	0	4	0	1	011	4
333		15	max	2386.52	2	768	15	9.87	4	0	1	.008	4	002	15
334			min	-2485.675	3	-3.256	4	0	1	0	4	0	1	009	4
335		16	max	2386.349	2	972	15	10.475	4	0	1	.013	4	002	15
336			min	-2485.803	3	-4.125	4	0	1	0	4	0	1	008	4
337		17	max	2386.179	2	-1.176	15	11.08	4	0	1	.018	4	001	15
338			min	-2485.931	3	-4.994	4	0	1	0	4	0	1	006	4
339		18	max	2386.009	2	-1.381	15	11.686	4	0	1	.023	4	0	15
340			min	-2486.059	3	-5.863	4	0	1	0	4	0	1	003	4
341		19	max	2385.838	2	-1.585	15	12.291	4	0	1	.029	4	0	1
342			min	-2486.186	3	-6.732	4	0	1	0	4	0	1	0	1
343	M8	1	max	2880.379	_1_	0	1	0	1	0	1	.023	4	0	1
344			min		3	0	1	-317.409	4	0	1	0	1	0	1
345		2	max	2880.549	_1_	0	1	0	1	0	1	0	1	0	1
346			min		3	0	1	-317.556	4	0	1	013	4	0	1
347		3	max		_1_	0	1	0	1	0	1	0	1	0	1
348			min	-91.463	3	0	1	-317.704		0	1	05	4	0	1
349		4	max	2880.89	_1_	0	1	0	1	0	1	0	1	0	1
350			min		3	0	1	-317.852	4	0	1	086	4	0	1
351		5		2881.06	_1_	0	1	0	1	0	1	0	1	0	1
352			min		3	0	1	-317.999		0	1	123	4	0	1
353		6		2881.231	_1_	0	1	0	1	0	1	0	1	0	1
354			min	-91.08	3	0	1	-318.147	4	0	1	159	4	0	1
355		7	max	2881.401	_1_	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	-318.295	4	0	1	196	4	0	1
357		8	max	2881.571	_1_	0	1	0	1	0	1	0	1	0	1
358			min		3	0	1	-318.442	4	0	1	232	4	0	1
359		9		2881.742	_1_	0	1	0	1	0	1	0	1	0	1
360			min	-90.696	3	0	1	-318.59	4	0	1	269	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		Axial[lb]						Torque[k-ft]		1 -	LC	_	
361		10		2881.912	1_	0	1	0	1	0	1	0	1	0	1
362		4.4	min	-90.569	3	0	1_	-318.738	4	0	1_	305	4	0	1
363		11		2882.082	1_	0	1	0	1	0	1	0	1	0	1
364		40	min		3	0	1	-318.885	4	0	1_	342	4	0	1
365		12		2882.253	1	0	1	0	1_	0	1_	0	1	0	1
366		40	min		3_	0	1_	-319.033	4	0	1_	379	4	0	1
367		13		2882.423	1_	0	1	0	1	0	1	0	1	0	1
368		4.4	min	-90.185	3	0	1_	-319.18	4	0	1_	415	4	0	1
369		14		2882.593	1	0	1	0	1	0	1	0	1	0	1
370		4.5	min	-90.058	3	0	1_	-319.328	4	0	1_	452	4	0	1
371		15		2882.764	1_	0	1	0	1	0	1	0	1	0	1
372		10	min	-89.93	3	0	1	-319.476	4	0	1	489	4	0	1
373		16		2882.934	_1_	0	1	0	1_	0	1	0	1	0	1
374			min		3	0	1	-319.623	4	0	1	525	4	0	1
375		17	_	2883.104	1_	0	1	0	_1_	0	_1_	0	1	0	1
376			min		3	0	1	-319.771	4	0	1_	562	4	0	1
377		18		2883.275	_1_	0	1	0	_1_	0	1	0	1	0	1
378			min	-89.547	3	0	1	-319.919	4	0	1_	599	4	0	1
379		19		2883.445	_1_	0	1	0	_1_	0	1_	0	1	0	1
380			min	-89.419	3	0	1	-320.066	4	0	1_	635	4	0	1
381	M10	1		1017.512	_1_	1.99	6	034	12	0	_1_	0	4	0	1
382			min	-1221.565	3	.453	15	-37.53	4	0	5	0	3	0	1
383		2		1018.042	_1_	1.919	6	034	12	0	_1_	0	10	0	15
384				-1221.168	3	.437	15	-37.992	4	0	5	014	4	0	6
385		3	max	1018.571	_1_	1.848	6	034	12	0	_1_	0	12	0	15
386			min	-1220.771	3	.42	15	-38.453	4	0	5	027	4	001	6
387		4	max	1019.1	1	1.777	6	034	12	0	1	0	12	0	15
388			min	-1220.374	3	.403	15	-38.914	4	0	5	041	4	002	6
389		5	max	1019.63	1	1.706	6	034	12	0	1	0	12	0	15
390			min	-1219.977	3	.387	15	-39.375	4	0	5	055	4	003	6
391		6	max	1020.159	1	1.634	6	034	12	0	1	0	12	0	15
392			min	-1219.581	3	.37	15	-39.836	4	0	5	069	4	003	6
393		7	max	1020.688	1	1.563	6	034	12	0	1	0	12	0	15
394			min	-1219.184	3	.353	15	-40.298	4	0	5	084	4	004	6
395		8	max	1021.217	1	1.492	6	034	12	0	1	0	12	0	15
396			min	-1218.787	3	.337	15	-40.759	4	0	5	098	4	004	6
397		9	max	1021.747	1	1.421	6	034	12	0	1	0	12	001	15
398			min	-1218.39	3	.32	15	-41.22	4	0	5	113	4	005	6
399		10	max	1022.276	1	1.35	6	034	12	0	1	0	12	001	15
400			min	-1217.993	3	.303	15	-41.681	4	0	5	128	4	005	6
401		11	max	1022.805	1	1.279	6	034	12	0	1	0	12	001	15
402			min	-1217.596	3	.286	15	-42.143	4	0	5	143	4	006	6
403		12	max	1023.335	1	1.208	6	034	12	0	1	0	12	001	15
404			min	-1217.199	3	.27	15	-42.604	4	0	5	158	4	006	6
405		13		1023.864	1	1.137	6	034	12	0	1	0	12	002	15
406				-1216.802	3	.253	15	-43.065	4	0	5	173	4	007	6
407		14	max	1024.393	1	1.066	6	034	12	0	1	0	12	002	15
408				-1216.405	3	.236	15	-43.526	4	0	5	189	4	007	6
409		15		1024.922	1	.995	6	034	12	0	1	0	12	002	15
410				-1216.008	3	.22	15	-43.987	4	0	5	205	4	007	6
411		16		1025.452	1	.928	2	034	12	0	1	0	12	002	15
412			min	-1215.611	3	.203	15	-44.449	4	0	5	221	4	008	6
413		17		1025.981	1	.873	2	034	12	0	1	0	12	002	15
414				-1215.214	3	.186	15	-44.91	4	0	5	237	4	008	6
415		18	max		1	.817	2	034	12	0	1	0	12	002	15
416		10	min		3	.166	12	-45.371	4	0	5	253	4	002	6
417		19		1027.04	1	.762	2	034	12	0	1	0	12	002	15
111		- 10	mux	1021.04		02		.00-	- 1 -						

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:__

	Member	Sec	1	Axial[lb]						Torque[k-ft]	LC		LC	z-z Mome	
418			min	-1214.42	3	.139	12	-45.832	4	0	5	269	4	009	6
419	M11	1	max	639.39	2	8.849	6	1.645	5	0	1_	0	12	.009	6
420			min	-801.565	3	2.069	15	472	1	0	4	029	4	.002	15
421		2	max	639.219	2	7.98	6	2.251	5	0	1	0	12	.005	2
422			min	-801.693	3	1.865	15	472	1	0	4	028	4	.001	12
423		3	max	639.049	2	7.112	6	2.856	5	0	1	0	12	.002	2
424			min	-801.821	3	1.661	15	472	1	0	4	027	4	0	3
425		4	max	638.878	2	6.243	6	3.461	5	0	1	0	12	0	2
426			min	-801.948	3	1.457	15	472	1	0	4	025	4	002	3
427		5	max		2	5.374	6	4.066	5	0	1	0	12	001	15
428			min	-802.076	3	1.252	15	472	1	0	4	023	4	005	4
429		6	max		2	4.505	6	4.671	5	0	1	0	12	002	15
430			min		3	1.048	15	472	1	0	4	021	4	007	4
431		7	max		2	3.636	6	5.276	5	0	1	0	12	002	15
432			min	-802.332	3	.844	15	472	1	0	4	019	4	009	4
433		8	max		2	2.767	6	5.881	5	0	1	0	12	003	15
434			min	-802.459	3	.64	15	472	1	0	4	016	4	01	4
435		9	max		2	1.898	6	6.486	5	0	1	0	12	003	15
436		9	min	-802.587	3	.435	15	472	1	0	4	014	4	012	4
437		10			2	1.029	6	7.091	5	-	1	0	12	003	15
438		10	max	637.856 -802.715	3	.231	15	472	1	0	4	01	4	012	4
		11	min				2		5				_		_
439		11	max		2	.283		7.696	1	0	1_1	0	12	003	15
440		40	min		3	084	3	472		0	4_	007	4	012	4
441		12	max		2	177	15	8.301	5	0	1_	0	12	003	15
442		40	min	-802.97	3	709	4	472	1	0	4_	003	4	012	4
443		13	max		2	382	15	8.906	5	0	1	.002	5	003	15
444			min	-803.098	3	-1.578	4	472	1_	0	4	003	1_	012	4
445		14	max		2	586	15	9.511	5	0	_1_	.006	5	003	15
446			min	-803.226	3	-2.447	4	472	1_	0	4	003	1_	011	4
447		15	max		2	79	15	10.116	5	0	_1_	.011	5	002	15
448			min	-803.354	3	-3.316	4	472	1	0	4	004	1	01	4
449		16	max		2	994	15	10.722	5	0	_1_	.015	5	002	15
450			min		3	-4.185	4	472	1	0	4	004	1	008	4
451		17	max		2	-1.199	15	11.327	5	0	1_	.021	5	001	15
452			min	-803.609	3	-5.054	4	472	1	0	4	004	1	006	4
453		18	max	636.494	2	-1.403	15	11.932	5	0	_1_	.026	5	0	15
454			min	-803.737	3	-5.923	4	472	1	0	4_	004	1	003	4
455		19	max		2	-1.607	15	12.537	5	0	_1_	.032	5	0	1
456			min	-803.865	3	-6.792	4	472	1	0	4	004	1	0	1
457	M12	1	max	1125.123	1	0	1	19.319	1	0	1	.026	5	0	1
458			min	2.438	3	0	1	-322.21	4	0	1	004	1	0	1
459		2	max	1125.293	1	0	1	19.319	1	0	1	0	12	0	1
460			min	2.566	3	0	1	-322.357	4	0	1	012	4	0	1
461		3	max	1125.464	1	0	1	19.319	1	0	1	0	1	0	1
462			min	2.694	3	0	1	-322.505	4	0	1	049	4	0	1
463		4		1125.634	1	0	1	19.319	1	0	1	.003	1	0	1
464			min	2.822	3	0	1	-322.653		0	1	086	4	0	1
465		5		1125.804	1	0	1	19.319	1	0	1	.005	1	0	1
466			min	2.949	3	0	1	-322.8	4	0	1	123	4	0	1
467		6		1125.975		0	1	19.319	1	0	1	.008	1	0	1
468			min	3.077	3	0	1	-322.948		0	1	16	4	0	1
469		7		1126.145		0	1	19.319	1	0	1	.01	1	0	1
470		+	min	3.205	3	0	1	-323.096		0	1	197	4	0	1
		8			<u> </u>		1		1		1	.012			_
471 472		Ŏ		1126.315		0	1	19.319		0	1		1	0	1
		0	min	3.333	3	0	_	-323.243		0	_	234	4	0	-
473		9		1126.486	1	0	1	19.319	1	0	1	.014	1	0	1
474			min	3.46	3	0	1	-323.391	4	0	1_	271	4	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
475		10	max	1126.656	_1_	0	1	19.319	1	0	1	.016	_1_	0	1
476			min	3.588	3	0	1	-323.539	4	0	1	309	4	0	1
477		11	max	1126.826	1	0	1	19.319	1	0	1	.019	1	0	1
478			min	3.716	3	0	1	-323.686	4	0	1	346	4	0	1
479		12	max	1126.997	1	0	1	19.319	1	0	1	.021	1	0	1
480			min	3.844	3	0	1	-323.834	4	0	1	383	4	0	1
481		13	max	1127.167	1	0	1	19.319	1	0	1	.023	1	0	1
482			min	3.971	3	0	1	-323.981	4	0	1	42	4	0	1
483		14	max	1127.337	1	0	1	19.319	1	0	1	.025	1	0	1
484			min	4.099	3	0	1	-324.129	4	0	1	457	4	0	1
485		15		1127.508	1	0	1	19.319	1	0	1	.028	1	0	1
486			min	4.227	3	0	1	-324.277	4	0	1	495	4	0	1
487		16		1127.678	1	0	1	19.319	1	0	1	.03	1	0	1
488		1	min	4.355	3	0	1	-324.424	4	0	1	532	4	0	1
489		17		1127.848	1	0	1	19.319	1	0	1	.032	1	0	1
490			min	4.482	3	0	1	-324.572	4	0	1	569	4	0	1
491		18			1	0	1	19.319	1	0	1	.034	1	0	1
492		10	min	4.61	3	0	1	-324.72	4	0	1	606	4	0	1
493		19		1128.189	1	0	1	19.319	1	0	1	.036	1	0	1
494		13	min	4.738	3	0	1	-324.867	4	0	1	644	4	0	1
495	M1	1	max		1	644.063	3	54.5	5	0	1	.304	1	0	3
496	1011		min	-15.542	5	-425.462	1	-107.852	1	0	3	138	5	015	2
497		2	max	212.352	1	642.969	3	55.961	5	0	1	.237	1	.25	1
498			min	-15.149	5	-426.921	1	-107.852	1	0	3	104	5	399	3
499		3	max	515.686	3	496.491	1	21.5	5	0	3	.17	1	.506	1
500		-	min	-314.597	2	-477.659	3	-107.58	1	0	1	069	5	786	3
501		4	max	516.318	3	495.032	1	22.96	5	0	3	.103	1	.198	1
502		+	min	-313.755	2	-478.753	3	-107.58	1	0	1	055	5	489	3
503		5	max	516.95	3	493.573	1	24.42	5	0	3	.036	1	005	15
504		-	min	-312.913	2	-479.848	3	-107.58	1	0	1	041	5	192	3
505		6	max	517.582	3	492.114	1	25.88	5	0	3	002	12	.107	3
506			min	-312.07	2	-480.942	3	-107.58	1	0	1	032	4	439	2
507		7	max	518.213	3	490.655	1	27.341	5	0	3	006	15	.405	3
508			min	-311.228	2	-482.036	3	-107.58	1	0	1	097	1	744	2
509		8	max	518.845	3	489.196	1	28.801	5	0	3	.009	5	.705	3
510			min	-310.385	2	-483.13	3	-107.58	1	0	1	164	1	-1.047	2
511		9	max	536.351	3	45.382	2	71.407	5	0	9	.101	1	.823	3
512		1 3	min	-218.769	2	.439	15	-166.241	1	0	3	172	5	-1.199	2
513		10	max		3	43.923	2	72.867	5	0	9	0	12	.803	3
514		10	min	-217.927	2	004	5	-166.241	1	0	3	129	4	-1.227	2
515		11		537.614	3	42.464	2	74.327	5	0	9	006	12	.784	3
516			min		2	-1.791	4	-166.241	1	0	3	106	4	-1.253	2
517		12		554.999	3	318.507	3	186.806	5	0	2	.161	1	.684	3
518		12		-125.454	2	-582.534	2	-103.48	1	0	3	291	5	-1.111	2
519		13		555.631	3	317.413	3	188.266	5	0	2	.096	1	.487	3
520		13		-124.612	2	-583.993	2	-103.48	1	0	3	175	5	749	2
521		14		556.263	3	316.318	3	189.726	5	0	2	.032	1	.29	3
522		14	min		2	-585.452	2	-103.48	1	0	3	058	5	388	1
523		15		556.894		315.224	3	191.186	5	0	2	.061	<u>5</u>	.094	3
		15			<u>3</u> 2						3		<u> </u>		1
524 525		16	min	-122.927 557.526		<u>-586.911</u>	2	-103.48 192.646	5	0	2	032 .18	•	051 .343	2
		16			3	314.13 -588.37	3	-103.48	1	0	3	096	<u>5</u> 1	101	3
526 527		17	min	558.158	<u>2</u> 3	313.035	3	194.106	5	0	2	.3	5	.708	2
		17		-121.242				-103.48	1	0	3	16	<u> </u>		3
528		40			2	-589.829 590.649	2			0			•	296	
529 530		Ιδ	max	26.537 -212.828	<u>5</u> 1	589.648 -253.436	3	-6.918 -144.597	12	0	<u>5</u>	.268 231	<u>5</u> 1	.355	3
		10								0			_	145	
531		19	max	26.931	_5_	588.189	2	-6.918	12	0	5	.197	5	.012	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	v-v Mome	LC	z-z Mome	LC
532			min	-211.985	1	-254.531	3	-143.137	4	0	2	307	1	012	1
533	M5	1	max	463.003	1	2145.622	3	111.683	5	0	1	0	1	.031	2
534			min	20.132	12	-1449.995	1_	0	1	0	4	301	4	0	3
535		2	max	463.846	1_	2144.528	3	113.143	5	0	1	0	1	.928	1
536			min	20.553	12	-1451.455	1_	0	1	0	4	232	4	-1.331	3
537		3	max	1637.099	3	1450.993	1	83.441	4	0	4_	0	1	1.798	1
538			min	-1084.019	2	-1499.333	3	0	1	0	1_	162	4	-2.622	3
539		4		1637.731	3_	1449.534	1	84.901	4	0	4	0	1_	.898	1
540		_	min	-1083.177	2	-1500.427	3	0	1_	0	1_	109	4	-1.691	3
541		5		1638.363 -1082.334	3_	1448.075	1	86.361	4	0	4	0	1	.024	9
542		6	min		2	-1501.521	3	07.024	1_4	0	1_1	056	4	76	3
543 544		6	min	1638.994 -1081.492	<u>3</u> 2	1446.616 -1502.616	3	87.821 0	<u>4</u> 1	0	<u>4</u> 1	002	5	.173 953	2
545		7		1639.626	3	1445.157	1	89.281	4	0	4	.053	4	1.105	3
546				-1080.65	2	-1503.71	3	09.201	1	0	1	0	1	-1.844	2
547		8		1640.258	3	1443.698	1	90.741	4	0	4	.109	4	2.039	3
548			min		2	-1504.804	3	0	1	0	1	0	1	-2.734	2
549		9		1669.765	3	152.057	2	238.981	4	0	1	0	1	2.348	3
550			min	-890.017	2	.445	15	0	1	0	1	262	4	-3.121	2
551		10		1670.397	3	150.597	2	240.442	4	0	1	0	1	2.274	3
552			min	-889.175	2	.005	15	0	1	0	1	114	4	-3.215	2
553		11		1671.029	3	149.138	2	241.902	4	0	1	.036	4	2.202	3
554			min	-888.333	2	-1.458	6	0	1	0	1	0	1	-3.308	2
555		12	max	1700.778	3	979.504	3	265.718	4	0	1	0	1	1.933	3
556			min	-698.57	2	-1740.553	2	0	1	0	4	426	4	-2.958	2
557		13	max	1701.41	3	978.41	3	267.178	4	0	1	0	1	1.325	3
558			min	-697.728	2	-1742.012	2	0	1	0	4	26	4	-1.877	2
559		14	max	1702.042	3	977.316	3	268.638	4	0	1_	0	1_	.718	3
560			min	-696.886	2	-1743.471	2	0	1	0	4	094	4	817	1
561		15	max	1702.674	3	976.221	3	270.098	4	0	_1_	.073	4	.287	2
562			min	-696.043	2	-1744.93	2	0	1	0	4	0	1	0	13
563		16		1703.305	3	975.127	3	271.558	4	0	1_	.241	4	1.371	2
564			min	-695.201	2	-1746.389	2	0	1_	0	4_	0	1	493	3
565		17		1703.937	3_	974.033	3	273.018	4	0	1_	.41	4	2.455	2
566		40		-694.358	2	-1747.848	2	0	1_	0	4_	0	1	-1.098	3
567		18	max	-20.993	12	1993.746	2	0	1	0	4	.429	4	1.258	2
568		40	min		1_	-881.045	3	-28.098	5	0	1_	0	1	572	3
569		19	max	-20.571	12	1992.287	2	0	1	0	<u>4</u> 1	.413	1	.023	1
570 571	M9	1	min	-462.051 211.509	<u>1</u> 1	-882.14 644.063	3	-26.638 107.852	<u>5</u> 1	0	3	018	12	025 0	3
572	IVIS			10.808	12	-425.462	1	6.491	12	0	4	304	1	015	2
573		2	max		1	642.969	3	107.852	1	0	3	014	12	.25	1
574			min	11.23	12	-426.921	1	6.491	12	0	4	237	1	399	3
575		3		515.686	3	496.491	1	107.58	1	0	1	01	12	.506	1
576				-314.597	2	-477.659	3	6.456	12	0	3	17	1	786	3
577		4		516.318	3	495.032	1	107.58	1	0	1	006	12	.198	1
578				-313.755	2	-478.753	3	6.456	12	0	3	103	1	489	3
579		5		516.95	3	493.573	1	107.58	1	0	1	002	12	005	15
580				-312.913	2	-479.848	3	6.456	12	0	3	055	4	192	3
581		6		517.582	3	492.114	1	107.58	1	0	1	.031	1	.107	3
582				-312.07	2	-480.942	3	6.456	12	0	3	021	5	439	2
583		7		518.213	3	490.655	1	107.58	1	0	1	.097	1	.405	3
584				-311.228	2	-482.036	3	6.456	12	0	3	.003	15	744	2
585		8		518.845	3	489.196	1	107.58	1	0	1	.164	1	.705	3
586				-310.385	2	-483.13	3	6.456	12	0	3	.01	12	-1.047	2
587		9		536.351	3	45.382	2	166.241	1	0	3	006	12	.823	3
588			min	-218.769	2	.454	15	9.702	12	0	9	212	4	-1.199	2

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:_

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
589		10	max	536.983	3	43.923	2	166.241	1	0	3	.002	1	.803	3
590			min	-217.927	2	.013	15	9.702	12	0	9	127	4	-1.227	2
591		11	max	537.614	3	42.464	2	166.241	1	0	3	.105	1	.784	3
592			min	-217.084	2	-1.676	6	9.702	12	0	9	066	5	-1.253	2
593		12	max	554.999	3	318.507	3	229.476	4	0	3	009	12	.684	3
594			min	-125.454	2	-582.534	2	5.865	12	0	2	357	4	-1.111	2
595		13	max	555.631	3	317.413	3	230.936	4	0	3	006	12	.487	3
596			min	-124.612	2	-583.993	2	5.865	12	0	2	214	4	749	2
597		14	max	556.263	3	316.318	3	232.396	4	0	3	002	12	.29	3
598			min	-123.769	2	-585.452	2	5.865	12	0	2	07	4	388	1
599		15	max	556.894	3	315.224	3	233.857	4	0	3	.074	4	.094	3
600			min	-122.927	2	-586.911	2	5.865	12	0	2	.002	12	051	1
601		16	max	557.526	3	314.13	3	235.317	4	0	3	.22	4	.343	2
602			min	-122.084	2	-588.37	2	5.865	12	0	2	.005	12	101	3
603		17	max	558.158	3	313.035	3	236.777	4	0	3	.367	4	.708	2
604			min	-121.242	2	-589.829	2	5.865	12	0	2	.009	12	296	3
605		18	max	-11.01	12	589.648	2	121.836	1	0	2	.36	4	.355	2
606			min	-212.828	1	-253.436	3	-97.887	5	0	3	.013	12	145	3
607		19	max	-10.589	12	588.189	2	121.836	1	0	2	.317	4	.012	3
608			min	-211.985	1	-254.531	3	-96.427	5	0	3	.017	12	012	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.001	1	.179	2	.01	3	1.231e-2	2	NC	1	NC	1
2			min	-1.035	4	036	3	005	2	-2.55e-3	3	NC	1	NC	1
3		2	max	0	1	.269	3	.051	1	1.381e-2	2	NC	5	NC	2
4			min	-1.035	4	01	9	031	5	-2.552e-3	3	786.813	3	4783.007	1
5		3	max	0	1	.516	3	.121	1	1.53e-2	2	NC	5	NC	3
6			min	-1.035	4	143	1	037	5	-2.554e-3	3	434.739	3	1997.736	1
7		4	max	0	1	.666	3	.181	1	1.679e-2	2	NC	5	NC	3
8			min	-1.035	4	216	1	027	5	-2.557e-3	3	341.823	3	1335.082	1
9		5	max	0	1	.701	3	.211	1	1.829e-2	2	NC	5	NC	5
10			min	-1.035	4	213	1	007	5	-2.559e-3	3	325.636	3	1144.394	1
11		6	max	0	1	.623	3	.202	1	1.978e-2	2	NC	5	NC	5
12			min	-1.035	4	138	1	.009	15	-2.561e-3	3	364.007	3	1191.545	1
13		7	max	0	1	.456	3	.158	1	2.127e-2	2	NC	5	NC	10
14			min	-1.035	4	016	9	.01	10	-2.563e-3	3	487.428	3	1528.119	1
15		8	max	0	1	.244	3	.091	1	2.276e-2	2	NC	1	NC	10
16			min	-1.035	4	.005	15	0	10	-2.566e-3	3	856.281	3	2679.09	1
17		9	max	0	1	.315	2	.038	4	2.426e-2	2	NC	4	NC	1
18			min	-1.035	4	.009	15	009	10	-2.568e-3	3	1759.262	2	6252.889	4
19		10	max	0	1	.375	2	.031	3	2.575e-2	2	NC	3	NC	1
20			min	-1.035	4	035	3	021	2	-2.57e-3	3	1225.058	2	NC	1
21		11	max	0	12	.315	2	.032	3	2.426e-2	2	NC	4	NC	1
22			min	-1.035	4	.009	15	024	5	-2.568e-3	3	1759.262	2	NC	1
23		12	max	0	12	.244	3	.091	1	2.276e-2	2	NC	1	NC	4
24			min	-1.035	4	.005	15	023	5	-2.566e-3	3	856.281	3	2679.09	1
25		13	max	0	12	.456	3	.158	1	2.127e-2	2	NC	5	NC	5
26			min	-1.035	4	016	9	007	5	-2.563e-3	3	487.428	3	1528.119	1
27		14	max	0	12	.623	3	.202	1	1.978e-2	2	NC	5	NC	5
28			min	-1.035	4	138	1	.01	15	-2.561e-3	3	364.007	3	1191.545	1
29		15	max	0	12	.701	3	.211	1	1.829e-2	2	NC	5	NC	10
30			min	-1.035	4	213	1	.019	10	-2.559e-3	3	325.636	3	1144.394	1
31		16	max	0	12	.666	3	.181	1	1.679e-2	2	NC	5	NC	3
32			min	-1.035	4	216	1	.017	10	-2.557e-3	3	341.823	3	1335.082	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC			(n) L/y Ratio			
33		17	max	00	12	.516	3	.121	1	1.53e-2	2	NC	5_	NC	3
34			min	-1.035	4	143	1	.01	10	-2.554e-3	3	434.739	3	1997.736	
35		18	max	0	12	.269	3	.052	4	1.381e-2	2	NC	5	NC	2
36			min	-1.035	4	01	9	.002	10	-2.552e-3	3	786.813	3	4527.551	4
37		19	max	0	12	.179	2	.01	3	1.231e-2	2	NC	1_	NC	1
38	B.4.4		min	<u>-1.035</u>	4	036	3	005	2	-2.55e-3	3	NC	1_	NC	1
39	M14	1_	max	0	1	.34	3	.009	3	7.131e-3	2	NC	1	NC NC	1
40		<u> </u>	min	748	4	<u>552</u>	2	005	2	-5.151e-3	3	NC NC	1_	NC NC	1
41		2	max	0	1	.672	3	.034	1	8.413e-3	2	NC 704 040	5_	NC F460 007	2
42		2	min	<u>748</u>	4	889	2	046	5	-6.197e-3	3	701.943	1_	5462.987	5
43		3	max	740	1	.957	3	.095	1	9.694e-3	2	NC 074 040	<u>15</u>	NC OFCE 007	3
44		1	min	748	4	-1.184	2	0 <u>55</u>	5		3	374.243	1_	2565.837	1
45		4	max	0	1	1.163	3	.152	1	1.098e-2	2	9324.955	<u>15</u>	NC	3
46		-	min	748	4	-1.411	2	038	5	-8.291e-3	3	276.343	1_	1593.772	1
47		5	max	0	1	1.273	3	.184	1	1.226e-2	2	8068.611	<u>15</u>	NC 1010.10	3
48			min	748	4	-1.552	2	007	5	-9.337e-3	3	238.135	1_	1312.18	1
49		6	max	0	1	1.289	3	.182	1	1.354e-2	2	7732.605	<u>15</u>	NC	3
50		-	min	<u>748</u>	4	<u>-1.608</u>	2	.015		-1.038e-2	3	226.909	1_	1331.482	
51		7	max	0	1	1.224	3	.144	1	1.482e-2	2	7999.255	15	NC 1070 000	10
52			min	<u>748</u>	4	-1.589	2	.009	10	-1.143e-2	3	231.625	2	1676.388	1
53		8	max	0	1	1.109	3	.088	4	1.61e-2	2	8740.244	<u>15</u>	NC 0700 F40	3
54			min	<u>748</u>	4	<u>-1.519</u>	2	0	10	-1.248e-2	3	248.194	2	2703.512	4
55		9	max	0	1	.993	3	.058	4	1.738e-2	2	9734.342	<u>15</u>	NC 1000 100	1
56		1.0	min	748	4	-1.439	2	008		-1.352e-2	3	270.824	2	4068.488	
57		10	max	0	1	.938	3	.027	3	1.866e-2	2	NC	<u>15</u>	NC	1
58		1.4	min	748	4	<u>-1.398</u>	2	<u>019</u>	2	-1.457e-2	3	283.904	2	NC	1
59		11	max	0	12	.993	3	.029	3	1.738e-2	2		<u>15</u>	NC Too	1
60			min	748	4	<u>-1.439</u>	2	045	5	-1.352e-2	3	270.824		5580.726	
61		12	max	0	12	1.109	3	.084	1_	1.61e-2	2	8740.14	15	NC NC	3
62		10	min	<u>748</u>	4	-1.519	2	<u>051</u>	5	-1.248e-2	3	248.194	2	2893.471	1
63		13	max	0	12	1.224	3	.144	1	1.482e-2	2	7999.085	<u>15</u>	NC 1070.000	4
64			min	748	4	-1.589	2	033	5	-1.143e-2	3	231.625	2	1676.388	1
65		14	max	0	12	1.289	3	.182	1	1.354e-2	2	7732.367	<u>15</u>	NC 100	3
66			min	748	4	-1.608	2	0		-1.038e-2	3	226.909	_1_	1331.482	1
67		15	max	0	12	1.273	3	.184	1	1.226e-2	2	8068.287	<u>15</u>	NC	3
68		1.0	min	748	4	-1.552	2	.017		-9.337e-3	3	238.135	1_	1312.18	1
69		16	max	0	12	1.163	3	.152	1	1.098e-2	2	9324.488	<u>15</u>	NC	3
70			min	748	4	-1.411	2	.014		-8.291e-3	3	276.343	_1_	1593.772	1
71		17	max	0	12	.957	3	.095	1	9.694e-3	2	NC	15	NC	3
72		1.0	min	748	4	<u>-1.184</u>	2	.008	10	-7.244e-3	3	374.243	1_	2551.469	
73		18	max	0	12	.672	3	.061		8.413e-3		NC	5		2
74		1.0	min	<u>748</u>	4	889	2	0	10			701.943	1_	3898.992	
75		19		0	12	34	3	.009	3	7.131e-3	2	NC		NC NC	1
76			min	748	4	552	2	005	2	-5.151e-3	3	NC	1_	NC	1
77	M15	1	max	0	12	.348	3	.008	3	4.384e-3	3	NC	_1_	NC	1
78		_	min	592	4	<u>551</u>	2	004	2	-7.419e-3	2	NC	1_	NC	1
79		2	max	0	12	.573	3	.034	1	5.277e-3	3	NC	5	NC	2
80			min	592	4	972	2	<u>061</u>	5	-8.759e-3	2	570.247	2	4055.39	5
81		3	max	0	12	.771	3	.095	1	6.17e-3	3_	NC	<u>15</u>	NC OFFO OFFO	3
82			min	<u>592</u>	4	<u>-1.336</u>	2	074	5	-1.01e-2	2	305.787	2	2552.953	
83		4	max	0	12	.925	3	.152	1	7.062e-3	3_	9340.673	<u>15</u>	NC 4507.000	3
84		-	min	<u>592</u>	4	<u>-1.604</u>	2	054	5	-1.144e-2	2	228.002	2	1587.623	
85		5	max	0	12	1.026	3	.185	1	7.955e-3	3_	8083.857	<u>15</u>	NC 1007.057	3
86			min	<u>592</u>	4	<u>-1.755</u>	2	014	5	-1.278e-2	2	199.348		1307.657	
87		6	max	0	12	1.07	3	.182	1	8.848e-3	3_	7749.439	<u>15</u>	NC	3
88			min	<u>592</u>	4	<u>-1.789</u>	2	.016	_	-1.412e-2	2	193.912	2	1326.795	
89		7	max	00	12	1.066	3	.145	1_	9.741e-3	3	8019.811	15	NC	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:_

91	00	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r					
93	90		_	min	592	4	-1.723	2	.01	10 -1.546e-2	2	204.798	2	1669.256	
94			8												
94			_												
96			9												
96			40												
98			10												
98			4.4												
99			11												
100			40												
101			12			-									
102			40			_									
103			13												
104			4.4												
105			14												
106			4.5												
107			15												
108			10												•
109			16												
110			l		_										
111			17			_									
112															
113			18												
114															
115			19										_1_		1
116													1_		1
117		<u>M16</u>	1										_		
118											•		•		-
119			2		_										
120											•				
121			3_												_
122						_									
123			4												
124															
125			5		-										3
126											•				1
127 7 max 0 12 .002 13 .159 1 1.528e-2 3 NC 5 NC 3 128 min 149 4 162 2 .012 10 -1.734e-2 1 748.571 2 1517.771 1 129 8 max 0 12 .093 1 .092 1 1.65e-2 3 NC 4 NC 3 130 min 149 4 161 3 .003 10 -1.848e-2 1 2126.129 2 2629.811 1 131 9 max 0 12 .258 1 .048 4 1.772e-2 3 NC 4 NC 2 132 min 149 4 248 3 006 10 -1.962e-2 1 1845.921 3 4951.718 4 133 10 max 0 1			6												
128 min 149 4 162 2 .012 10 -1.734e-2 1 748.571 2 1517.771 1 129 8 max 0 12 .093 1 .092 1 1.65e-2 3 NC 4 NC 3 130 min 149 4 161 3 .003 10 -1.848e-2 1 2126.129 2 2629.811 1 131 9 max 0 12 .258 1 .048 4 1.772e-2 3 NC 4 NC 2 132 min 149 4 248 3 006 10 -1.962e-2 1 1845.921 3 4951.718 4 133 10 max 0 1 .332 1 .096-2 1 1416.902 1 NC 1 134 min 149 4 248 3															
129 8 max 0 12 .093 1 .092 1 1.65e-2 3 NC 4 NC 3 130 min 149 4 161 3 .003 10 -1.848e-2 1 2126.129 2 2629.811 1 131 9 max 0 12 .258 1 .048 4 1.772e-2 3 NC 4 NC 2 132 min 149 4 248 3 006 10 -1.962e-2 1 1845.921 3 4951.718 4 133 10 max 0 1 .332 1 .022 3 1.894e-2 3 NC 5 NC 1 134 min 149 4 286 3 017 2 -2.076e-2 1 1416.902 1 NC 1 135 11 max 0 1			7		_										
130											•				•
131 9 max 0 12 .258 1 .048 4 1.772e-2 3 NC 4 NC 2 132 min 149 4 248 3 006 10 -1.962e-2 1 1845.921 3 4951.718 4 133 10 max 0 1 .332 1 .022 3 1.894e-2 3 NC 5 NC 1 134 min 149 4 286 3 017 2 -2.076e-2 1 1416.902 1 NC 1 135 11 max 0 1 .258 1 .026 1 1.772e-2 3 NC 4 NC 2 136 min 149 4 248 3 034 5 -1.962e-2 1 1845.921 3 7327.546 5 137 12 max 0 1 .093 1 .092			8							1 1.65e-2		NC		NC NC	3
132 min 149 4 248 3 006 10 -1.962e-2 1 1845.921 3 4951.718 4 133 10 max 0 1 .332 1 .022 3 1.894e-2 3 NC 5 NC 1 134 min 149 4 286 3 017 2 -2.076e-2 1 1416.902 1 NC 1 135 11 max 0 1 .258 1 .026 1 1.772e-2 3 NC 4 NC 2 136 min 149 4 248 3 034 5 -1.962e-2 1 1845.921 3 7327.546 5 137 12 max 0 1 .093 1 .092 1 1.65e-2 3 NC 4 NC 3 138 min 148 4 16															
133 10 max 0 1 .332 1 .022 3 1.894e-2 3 NC 5 NC 1 134 min 149 4 286 3 017 2 -2.076e-2 1 1416.902 1 NC 1 135 11 max 0 1 .258 1 .026 1 1.772e-2 3 NC 4 NC 2 136 min 149 4 248 3 034 5 -1.962e-2 1 1845.921 3 7327.546 5 137 12 max 0 1 .093 1 .092 1 1.65e-2 3 NC 4 NC 3 138 min 148 4 161 3 035 5 -1.848e-2 1 2126.129 2 2629.811 1 139 13 max 0 1			9												
134 min 149 4 286 3 017 2 -2.076e-2 1 1416.902 1 NC 1 135 11 max 0 1 .258 1 .026 1 1.772e-2 3 NC 4 NC 2 136 min 149 4 248 3 034 5 -1.962e-2 1 1845.921 3 7327.546 5 137 12 max 0 1 .093 1 .092 1 1.65e-2 3 NC 4 NC 3 138 min 148 4 161 3 035 5 -1.848e-2 1 2126.129 2 2629.811 1 139 13 max 0 1 .002 13 .159 1 1.528e-2 3 NC 5 NC 3 140 min 148 4 16															
135 11 max 0 1 .258 1 .026 1 1.772e-2 3 NC 4 NC 2 136 min 149 4 248 3 034 5 -1.962e-2 1 1845.921 3 7327.546 5 137 12 max 0 1 .093 1 .092 1 1.65e-2 3 NC 4 NC 3 138 min 148 4 161 3 035 5 -1.848e-2 1 2126.129 2 2629.811 1 139 13 max 0 1 .002 13 .159 1 1.528e-2 3 NC 5 NC 3 140 min 148 4 162 2 015 5 -1.734e-2 1 748.571 2 1517.771 1 141 max 0 1 .02			10												
136 min 149 4 248 3 034 5 -1.962e-2 1 1845.921 3 7327.546 5 137 12 max 0 1 .093 1 .092 1 1.65e-2 3 NC 4 NC 3 138 min 148 4 161 3 035 5 -1.848e-2 1 2126.129 2 2629.811 1 139 13 max 0 1 .002 13 .159 1 1.528e-2 3 NC 5 NC 3 140 min 148 4 162 2 015 5 -1.734e-2 1 748.571 2 1517.771 1 141 14 max 0 1 .023 3 .203 1 1.406e-2 3 NC 5 NC 3 142 min 148 4 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>															
137 12 max 0 1 .093 1 .092 1 1.65e-2 3 NC 4 NC 3 138 min 148 4161 3035 5 -1.848e-2 1 2126.129 2 2629.811 1 139 13 max 0 1 .002 13 .159 1 1.528e-2 3 NC 5 NC 3 140 min 148 4162 2015 5 -1.734e-2 1 748.571 2 1517.771 1 141 14 max 0 1 .023 3 .203 1 1.406e-2 3 NC 5 NC 3 142 min 148 4332 2 .01 15 -1.621e-2 1 489.189 2 1189.145 1 143 15 max 0 1 .076 3 .21 1 .284e-2 3 NC 5 NC 3 144 min 148 4423 2 .018 12 -1.507e-2 1 412.643 2 1145.523 1 145 16 max 0 1 .085 3 .18 1 1.162e-2 3 NC 5 NC 3			11												
138 min 148 4 161 3 035 5 -1.848e-2 1 2126.129 2 2629.811 1 139 13 max 0 1 .002 13 .159 1 1.528e-2 3 NC 5 NC 3 140 min 148 4 162 2 015 5 -1.734e-2 1 748.571 2 1517.771 1 141 14 max 0 1 .023 3 .203 1 1.406e-2 3 NC 5 NC 3 142 min 148 4 332 2 .01 15 -1.621e-2 1 489.189 2 1189.145 1 143 15 max 0 1 .076 3 .21 1 1.284e-2 3 NC 5 NC 3 144 min 148 4 -															
139 13 max 0 1 .002 13 .159 1 1.528e-2 3 NC 5 NC 3 140 min 148 4 162 2 015 5 -1.734e-2 1 748.571 2 1517.771 1 141 14 max 0 1 .023 3 .203 1 1.406e-2 3 NC 5 NC 3 142 min 148 4 332 2 .01 15 -1.621e-2 1 489.189 2 1189.145 1 143 15 max 0 1 .076 3 .21 1 1.284e-2 3 NC 5 NC 3 144 min 148 4 423 2 .018 12 -1.507e-2 1 412.643 2 1145.523 1 145 16 max 0 1 .085 3 .18 1 1.162e-2 3 NC 5 NC 3			12								3_				3
140 min 148 4 162 2 015 5 -1.734e-2 1 748.571 2 1517.771 1 141 14 max 0 1 .023 3 .203 1 1.406e-2 3 NC 5 NC 3 142 min 148 4 332 2 .01 15 -1.621e-2 1 489.189 2 1189.145 1 143 15 max 0 1 .076 3 .21 1 1.284e-2 3 NC 5 NC 3 144 min 148 4 423 2 .018 12 -1.507e-2 1 412.643 2 1145.523 1 145 16 max 0 1 .085 3 .18 1 1.162e-2 3 NC 5 NC 3				min	148	4	161				1_		2		
141 14 max 0 1 .023 3 .203 1 1.406e-2 3 NC 5 NC 3 142 min 148 4 332 2 .01 15 -1.621e-2 1 489.189 2 1189.145 1 143 15 max 0 1 .076 3 .21 1 1.284e-2 3 NC 5 NC 3 144 min 148 4 423 2 .018 12 -1.507e-2 1 412.643 2 1145.523 1 145 16 max 0 1 .085 3 .18 1 1.162e-2 3 NC 5 NC 3			13			-					3		5_		3
142 min 148 4 332 2 .01 15 -1.621e-2 1 489.189 2 1189.145 1 143 15 max 0 1 .076 3 .21 1 1.284e-2 3 NC 5 NC 3 144 min 148 4 423 2 .018 12 -1.507e-2 1 412.643 2 1145.523 1 145 16 max 0 1 .085 3 .18 1 1.162e-2 3 NC 5 NC 3				min		_					•				
143 15 max 0 1 .076 3 .21 1 1.284e-2 3 NC 5 NC 3 144 min 148 4 423 2 .018 12 -1.507e-2 1 412.643 2 1145.523 1 145 16 max 0 1 .085 3 .18 1 1.162e-2 3 NC 5 NC 3			14	max						1 1.406e-2					
144 min 148 4 423 2 .018 12 -1.507e-2 1 412.643 2 1145.523 1 145 16 max 0 1 .085 3 .18 1 1.162e-2 3 NC 5 NC 3				min	148	4					1	489.189	2		
145 16 max 0 1 .085 3 .18 1 1.162e-2 3 NC 5 NC 3			15	max		1	.076				3		5		
				min	148	4					1		2		
			16	max		1					3		5		
146 min148 4413 2 .015 12 -1.393e-2 1 419.943 2 1340.012 1	146			min	148	4	413	2	.015	12 -1.393e-2	1	419.943	2	1340.012	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
147		17	max	0	1	.05	3	.12	1	1.04e-2	3	NC	5	NC	3
148			min	148	4	298	2	.011	12	-1.28e-2	_1_	524.856	2	2011.974	
149		18	max	.001	1	.002	13	.065	4	9.178e-3	3_	NC	5_	NC	2
150		40	min	148	4	096	2	.003	10	-1.166e-2	1_	941.106	2	3644.517	4
151		19	max	.001	1	.163	1	.007	3	7.957e-3	3	NC NC	1_1	NC NC	1
152	MO	1	min	148	4	118	3	004	2	-1.052e-2	1_	NC NC	<u>1</u> 1	NC NC	2
153	M2	1	max	.008	3	.009	3	.014	1 4	2.699e-3 -3.329e-4	5	8490.823	2		4
154 155		2	min	009 .007	1	015 .008	2	964 .013	1	2.762e-3	<u>1</u> 5	NC	1	80.364 NC	2
156			max min	009	3	015	3	886	4	-3.16e-4	1	NC NC	1	87.484	4
157		3	max	.009	1	.006	2	.012	1	2.824e-3	5	NC NC	1	NC	2
158		-	min	008	3	014	3	808	4	-2.991e-4	1	NC	1	95.936	4
159		4	max	.006	1	.005	2	.011	1	2.886e-3	5	NC	1	NC	2
160		1	min	008	3	014	3	731	4	-2.822e-4	1	NC	1	106.065	4
161		5	max	.006	1	.003	2	.01	1	2.948e-3	5	NC	1	NC	2
162			min	007	3	013	3	655	4	-2.653e-4	1	NC	1	118.345	4
163		6	max	.006	1	.002	2	.008	1	3.01e-3	5	NC	1	NC	2
164			min	007	3	013	3	581	4	-2.484e-4	1	NC	1	133.425	4
165		7	max	.005	1	.001	2	.007	1	3.072e-3	5	NC	1	NC	1
166			min	006	3	012	3	509	4	-2.315e-4	1	NC	1	152.232	4
167		8	max	.005	1	0	2	.006	1	3.134e-3	5	NC	1	NC	1
168			min	006	3	012	3	44	4	-2.146e-4	1	NC	1	176.113	4
169		9	max	.004	1	0	15	.005	1	3.198e-3	4	NC	1	NC	1
170			min	005	3	011	3	374	4	-1.977e-4	1	NC	1	207.094	4
171		10	max	.004	1	001	15	.005	1	3.266e-3	4	NC	1	NC	1
172			min	005	3	011	3	312	4	-1.807e-4	1	NC	1	248.338	4
173		11	max	.003	1	001	15	.004	1	3.334e-3	4	NC	1_	NC	1
174			min	004	3	01	3	254	4	-1.638e-4	1_	NC	1_	305.014	4
175		12	max	.003	1	001	15	.003	1	3.402e-3	4_	NC	_1_	NC	1
176			min	004	3	009	3	201	4	-1.469e-4	_1_	NC	_1_	386.048	4
177		13	max	.003	1	001	15	.002	1	3.47e-3	_4_	NC	_1_	NC	1
178			min	003	3	008	3	<u>153</u>	4	-1.3e-4	1_	NC	1_	507.975	4
179		14	max	.002	1	001	15	.002	1	3.538e-3	4_	NC		NC 704.05	1
180		4.5	min	003	3	007	3	11	4	-1.131e-4	1_	NC NC	1_	704.35	4
181		15	max	.002	1	001	15	.001	1	3.606e-3	4_	NC NC	1_	NC	1
182		4.0	min	002	3	006	3	074	4	-9.62e-5	1_	NC NC	1_	1052.271	4
183		16	max	.001	3	0	15	0	1	3.674e-3 -7.929e-5	4_	NC NC	1	NC	1
184		17	min	002	1	004	15	044	1	3.742e-3	1_		1	1763.875	1
185 186		17	max min	0 001	3	003	6	0 021	4	-6.238e-5	<u>4</u> 1	NC NC	1	NC 3620.01	4
187		1Ω	max	<u>001</u> 0	1	003 0	15	<u>021</u> 0	1	3.81e-3		NC NC	1	NC	1
188		10	min	0	3	002	6	007	4	-4.547e-5	1	NC	1	NC	1
189		19	max	0	1	0	1	<u>007</u> 0	1	3.878e-3	4	NC	1	NC	1
190		13	min	0	1	0	1	0	1	-2.856e-5	1	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1	5.412e-6	1	NC	1	NC	1
192	IVIO	•	min	0	1	0	1	0	1	-8.42e-4	4	NC	1	NC	1
193		2	max	0	3	0	15	.021	4	4.177e-5	1	NC	1	NC	1
194			min	0	2	003	6	0	1	-2.535e-5	5	NC	1	NC	1
195		3	max	0	3	001	15	.04	4	8.114e-4	4	NC	1	NC	1
196			min	0	2	006	6	0	1	4.375e-6	12	NC	1	7954.73	5
197		4	max	.001	3	002	15	.058	4	1.638e-3	4	NC	1	NC	1
198			min	001	2	009	6	0	1	6.383e-6	12	NC	1	6002.957	5
199		5	max	.002	3	003	15	.074	4	2.465e-3	4	NC	1	NC	1
200			min	001	2	012	6	0	1	8.391e-6		8520.357	6	5157.93	5
201		6	max	.002	3	003	15	.089	4	3.292e-3	4	NC	5	NC	1
202			min	002	2	015	6	0	1	1.04e-5	12	6904.454	6	4794.105	5
203		7	max	.003	3	004	15	.103	4	4.118e-3	4	NC	5	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:_

204	Member	Sec	min	x [in] 002	LC 2	y [in] 017	LC	z [in]	LC 1	x Rotate [r 1.241e-5	LC 12	(n) L/y Ratio 5931.236	LC 6	(n) L/z Ratio	LC 5
205		8	max	.002	3	017 004	15	.116	4	4.945e-3	4	NC	5	NC	1
206			min	002	2	019	6	0	12	1.442e-5		5331.006	6	4876.016	
207		9	max	.003	3	005	15	.128	4	5.772e-3	4	NC	5	NC	1
208			min	003	2	021	6	0	12	1.642e-5		4976.818	6	5272.409	
209		10	max	.004	3	005	15	.139	4	6.599e-3	4	NC	5	NC	1
210			min	003	2	021	6	0	12	1.843e-5	12	4807.129	6	5978.494	5
211		11	max	.004	3	005	15	.15	4	7.425e-3	4	NC	5	NC	1
212			min	003	2	021	6	0	12	2.044e-5	12	4796.991	6	7159.244	5
213		12	max	.005	3	005	15	.161	4	8.252e-3	4	NC	5	NC	1
214			min	004	2	021	6	0	12	2.245e-5	12	4948.492	6	9186.08	5
215		13	max	.005	3	004	15	.171	4	9.079e-3	4	NC	5	NC	1
216			min	004	2	019	6	0	12	2.446e-5	12	5292.785	6	NC	1
217		14	max	.006	3	004	15	.182	4	9.905e-3	4	NC	5	NC	1
218			min	005	2	017	6	0	12	2.646e-5	12	5906.173	6	NC	1
219		15	max	.006	3	003	15	.193	4	1.073e-2	4	NC	3	NC	1
220			min	005	2	015	6	0	12	2.847e-5		6957.519	6	NC	1
221		16	max	.007	3	002	15	.204	4	1.156e-2	_4_	NC	_1_	NC	1
222			min	005	2	012	6	0	12	3.048e-5	12	8855.603	6	NC	1
223		17	max	.007	3	002	15	.217	4	1.239e-2	4	NC	_1_	NC NC	1
224		40	min	006	2	008	1	0	12	3.249e-5	12	NC	1_	NC	1
225		18	max	.007	3	0	15	.231	4	1.321e-2	4	NC NC	1	NC	2
226		40	min	006	2	005	1	0	12	3.45e-5	12	NC NC	1_	9285.541	1
227		19	max	.008	3	0	5	.247	4	1.404e-2	4	NC NC	1	NC	2
228 229	M4	1	min	006 .003	1	002 .006	2	<u> </u>	12	3.65e-5	12	NC NC	1	7746.938 NC	3
230	IVI4		max	.003	5	008	3	247	4	2.336e-4 -6.414e-4	<u>1</u> 5	NC NC	1	100.619	4
231		2	min max	.003	1	.006	2	<u>247</u> 0	12	2.336e-4	<u> </u>	NC NC	1	NC	3
232			min	0	5	008	3	227	4	-6.414e-4	5	NC NC	1	109.447	4
233		3	max	.002	1	.005	2	0	12	2.336e-4	1	NC	1	NC	3
234			min	0	5	007	3	207	4	-6.414e-4	5	NC	1	119.95	4
235		4	max	.002	1	.005	2	0	12	2.336e-4	1	NC	1	NC	3
236		Ė	min	0	5	007	3	187	4	-6.414e-4	5	NC	1	132.565	4
237		5	max	.002	1	.005	2	0	12	2.336e-4	1	NC	1	NC	3
238			min	0	5	006	3	168	4	-6.414e-4	5	NC	1	147.885	4
239		6	max	.002	1	.004	2	0	12	2.336e-4	1	NC	1	NC	3
240			min	0	5	006	3	149	4	-6.414e-4	5	NC	1	166.729	4
241		7	max	.002	1	.004	2	0	12	2.336e-4	1	NC	1	NC	3
242			min	0	5	005	3	13	4	-6.414e-4	5	NC	1	190.265	4
243		8	max	.002	1	.004	2	0	12	2.336e-4	1	NC	1	NC	3
244			min	0	5	005	3	113	4	-6.414e-4	5	NC	1	220.191	4
245		9	max	.001	1	.003	2	0	12	2.336e-4	<u>1</u>	NC	_1_	NC	2
246			min	0	5	004	3	096	4	-6.414e-4	5	NC	1_	259.067	4
247		10	max	.001	1	.003	2	0	12	2.336e-4	_1_	NC	_1_	NC	2
248			min	0	5	004	3	08	4	-6.414e-4	5	NC	1_	310.894	4
249		11	max	.001	1	.003	2	0	12	2.336e-4	_1_	NC	_1_	NC	2
250		10	min	0	5	004	3	065	4	-6.414e-4	5	NC	1_	382.217	4
251		12	max	.001	1	.002	2	0	12	2.336e-4	_1_	NC	1	NC 404.057	2
252		40	min	0	5	003	3	051	4	-6.414e-4	5	NC NC	1_	484.357	4
253		13	max	0	1	.002	2	0	12	2.336e-4	<u> </u>	NC NC	1	NC COO COO	1
254		1.4	min	0	5	003	3	039	4	-6.414e-4	5	NC NC	1	638.328	4
255		14	max	0	5	.002	2	0	12	2.336e-4		NC NC	<u>1</u> 1	NC	1
256 257		15	min	0		002 001	2	028	12	-6.414e-4	5	NC NC	<u>1</u> 1	886.881 NC	1
258		15	max min	0	5	.001 002	3	0 019	12	2.336e-4 -6.414e-4	1	NC NC	1	1328.564	
259		16		0	1	002 0	2	<u>019</u> 0	12	2.336e-4	<u>5</u> 1	NC NC	1	NC	1
260		10	max min	0	5	001	3	011		-6.414e-4	5	NC NC	1	2235.791	4
200			1111111	U	J	001	J	011	4	-0.4146-4	J	INC		2233.791	4

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
261		17	max	0	1	0	2	0	12	2.336e-4	1	NC	1	NC	1
262			min	0	5	0	3	005	4	-6.414e-4	5	NC	1	4618.582	4
263		18	max	0	1	0	2	0	12	2.336e-4	1	NC	1	NC	1
264			min	0	5	0	3	002	4	-6.414e-4	5	NC	1	NC	1
265		19	max	0	1	0	1	0	1	2.336e-4	1	NC	1	NC	1
266			min	0	1	0	1	0	1	-6.414e-4	5	NC	1	NC	1
267	M6	1	max	.024	1	.034	2	0	1	2.864e-3	4	NC	3	NC	1
268			min	029	3	047	3	975	4	0	1	2272.567	2	79.483	4
269		2	max	.023	1	.031	2	0	1	2.923e-3	4	NC	3	NC	1
270			min	028	3	044	3	896	4	0	1	2503.6	2	86.525	4
271		3	max	.021	1	.028	2	0	1	2.983e-3	4	NC	3	NC	1
272			min	026	3	042	3	817	4	0	1	2784.337	2	94.885	4
273		4	max	.02	1	.025	2	0	1	3.042e-3	4	NC	3	NC	1
274			min	025	3	039	3	739	4	0	1	3129.521	2	104.904	4
275		5	max	.019	1	.022	2	0	1	3.102e-3	4	NC	3	NC	1
276			min	023	3	037	3	662	4	0	1	3559.991	2	117.049	4
277		6	max	.017	1	.019	2	0	1	3.161e-3	4	NC	3	NC	1
278			min	021	3	034	3	587	4	0	1	4105.998	2	131.966	4
279		7	max	.016	1	.016	2	0	1	3.221e-3	4	NC	1_	NC	1
280			min	02	3	032	3	515	4	0	1	4812.837	2	150.568	4
281		8	max	.015	1	.013	2	0	1	3.28e-3	4	NC	_1_	NC	1
282			min	018	3	029	3	445	4	0	1	5750.891	2	174.188	4
283		9	max	.013	1	.011	2	0	1	3.34e-3	4	NC	_1_	NC	1
284			min	016	3	027	3	378	4	0	1	7034.583	2	204.83	4
285		10	max	.012	1	.009	2	0	1	3.399e-3	4	NC	_1_	NC	1
286			min	015	3	024	3	315	4	0	1_	8860.617	2	245.624	4
287		11	max	.011	1	.007	2	0	1	3.459e-3	4	NC	_1_	NC	1
288			min	013	3	021	3	257	4	0	1_	NC	1_	301.68	4
289		12	max	.009	1	.005	2	0	1	3.518e-3	4	NC	1_	NC	1
290			min	011	3	019	3	203	4	0	1_	NC	1_	381.826	4
291		13	max	.008	1	.003	2	00	1	3.578e-3	4	NC	_1_	NC	1
292			min	01	3	016	3	154	4	0	<u>1</u>	NC	_1_	502.412	4
293		14	max	.007	1	.002	2	0	1	3.637e-3	4	NC	_1_	NC	1
294			min	008	3	014	3	111	4	0	1_	NC	1_	696.619	4
295		15	max	.005	1	0	2	0	1	3.697e-3	4	NC	1	NC	1
296			min	007	3	011	3	074	4	0	1_	NC	1_	1040.675	4
297		16	max	.004	1	0	2	0	1	3.756e-3	_4_	NC	1	NC	1
298			min	005	3	008	3	044	4	0	1_	NC	_1_	1744.301	4
299		17	max	.003	1	0	2	0	1	3.816e-3	4	NC	_1_	NC	1
300		10	min	003	3	005	3	022	4	0	1_	NC	_1_	3579.28	4
301		18	max	.001	1	0	2	0	1	3.875e-3	4_	NC		NC	1
302		40	min	002	3	003	3	007	4	0	1_1	NC NC	1_	NC NC	1
303		19	max	0	1	0	1	0	1	3.935e-3	4_	NC NC	1_	NC NC	1
304	N 47		min	0	1	0	1	0	1	0	1_	NC NC	1_	NC NC	1
305	M7	1_	max	0	1	0	1	0	1	0	1	NC	1	NC NC	1
306			min	0	1	0	1	0	1	-8.549e-4	4	NC	1_	NC NC	1
307		2	max	.001	3	0	15	.021	4	0	1_1	NC NC	1	NC NC	1
308			min	001	2	004	3	0	1	-5.615e-5	4	NC	1_	NC NC	1
309		3	max	.003	3	001	15	.041	4	7.426e-4	4	NC	1_4	NC 7074 046	1
310		4	min	003	2	007	3	0.50	1	1 5410 2	1_1	NC NC	1	7071.216	
311		4	max	.004	3	002	15	.059	4	1.541e-3	4	NC NC	1	NC F202 025	1
312		-	min	004	2	01	3	0.75	1	0	1_1	NC NC	1	5282.925	4
313		5	max	.005	3	003	15	.075	4	2.34e-3	4	NC 9537.356	1	NC	1
314		_	min	005	2	013	3	0	1	0 2 4200 2	1_1	8537.256	3	4486.358	4
315		6	max	.007	3	004	15	.09	1	3.139e-3	4	NC 6045 504	4	NC 4112.418	1
316		7	min	006		016	3	104		2 0270 2	1_4	6945.504			
317		7	max	.008	3	004	15	.104	4	3.937e-3	4	NC	2	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		_	LC	(n) L/y Ratio			
318			min	008	2	018	3	0	1	0	_1_	5963.694	4	3981.329	
319		8	max	.009	3	005	15	.117	4	4.736e-3	_4_	NC	2	NC	1
320			min	009	2	02	3	0	1	0	1_	5358.103	4_	4029.738	
321		9	max	.011	3	005	15	.129	4	5.535e-3	4	NC	5	NC	1
322			min	01	2	021	4	0	1	0	1_	5000.5	4	4246.099	4
323		10	max	.012	3	005	15	.14	4	6.334e-3	_4_	NC	5_	NC	1
324			min	012	2	022	4	0	1	0	1_	4828.695	4	4655.653	4
325		11	max	.014	3	005	15	.15	4	7.132e-3	4	NC	5_	NC	1
326			min	013	2	022	4	0	1	0	1	4817.411	4	5327.218	4
327		12	max	.015	3	005	15	.16	4	7.931e-3	4	NC	5_	NC	1
328			min	014	2	021	4	0	1	0	1_	4968.599	4	6404.114	4
329		13	max	.016	3	005	15	.17	4	8.73e-3	4	NC	5	NC	1
330			min	016	2	02	4	0	1	0	1_	5313.43	4	8188.28	4
331		14	max	.018	3	004	15	.179	4	9.528e-3	4	NC	5	NC	1
332			min	017	2	018	3	0	1	0	1	5928.411	4	NC	1
333		15	max	.019	3	004	15	.189	4	1.033e-2	4	NC	1	NC	1
334			min	018	2	017	3	0	1	0	1	6982.947	4	NC	1
335		16	max	.02	3	003	15	.199	4	1.113e-2	4	NC	1	NC	1
336			min	019	2	014	3	0	1	0	1	8887.199	4	NC	1
337		17	max	.022	3	002	15	.21	4	1.192e-2	4	NC	1	NC	1
338			min	021	2	012	3	0	1	0	1	NC	1	NC	1
339		18	max	.023	3	001	15	.222	4	1.272e-2	4	NC	1	NC	1
340			min	022	2	009	3	0	1	0	1	NC	1	NC	1
341		19	max	.024	3	0	10	.236	4	1.352e-2	4	NC	1	NC	1
342		1	min	023	2	006	3	0	1	0	1	NC	1	NC	1
343	M8	1	max	.007	1	.023	2	0	1	0	1	NC	1	NC	1
344	11.10		min	0	3	025	3	236	4	-8.699e-4	4	NC	1	105.252	4
345		2	max	.006	1	.021	2	0	1	0	1	NC	1	NC	1
346			min	0	3	024	3	217	4	-8.699e-4	4	NC	1	114.505	4
347		3	max	.006	1	.02	2	0	1	0.0330 4	1	NC	1	NC	1
348		<u> </u>	min	0	3	022	3	198	4	-8.699e-4	4	NC	1	125.514	4
349		4	max	.006	1	.019	2	0	1	0.0336-4	1	NC	1	NC	1
350		-	min	0	3	021	3	179	4	-8.699e-4	4	NC	1	138.736	4
351		5	max	.005	1	.018	2	179	1	0.0996-4	1	NC	1	NC	1
352		5		0	3	019	3	16	4	-8.699e-4	4	NC	1	154.79	4
353		6	min	.005	1	.019	2	<u>16</u> 0	1	0	_ 4 _	NC NC	1	NC	1
		-	max		3					_			1		
354		7	min	0		018	3	142	4	-8.699e-4	4	NC NC		174.538 NC	4
355		7	max	.005	3	.015	2	0	1	0	1_1		1		1
356			min	0		017	3	125	4	-8.699e-4	4	NC		199.201	4
357		8	max	.004	1	.014	2	0	1	0 000 4	1	NC NC	1	NC 220 FC4	1
358			min	0	3	015	3	<u>108</u>	4	-8.699e-4	4	NC NC	1	230.561	4
359		9	max	.004	1	.013	2	0	1	0 000- 4	1	NC NC	1_	NC 074.0	1
360		40	min	0	3	014	3	091	4	-8.699e-4	4_	NC NC	1_	271.3	4
361		10	max	.003	1	.011	2	0	1	0	1	NC	1	NC 005.044	1
362		4.4	min	0	3	013	3	076	4	-8.699e-4	4	NC NC	1_	325.611	4
363		11	max	.003	1	01	2	0	1	0	1	NC	1	NC NC	1
364			min	0	3	011	3	062	4	-8.699e-4	4_	NC	1_	400.354	4
365		12	max	.003	1	.009	2	0	1	0	1	NC	1	NC	1
366			min	0	3	01	3	049	4	-8.699e-4	4	NC	1_	507.394	4
367		13	max	.002	1	.008	2	0	1	0	1	NC	1	NC	1
368			min	0	3	008	3	037	4	-8.699e-4	4	NC	1_	668.757	4
369		14	max	.002	1	.006	2	0	1	0	_1_	NC	1	NC	1
370			min	0	3	007	3	027	4	-8.699e-4	4	NC	1_	929.253	4
371		15	max	.002	1	.005	2	0	1	0	1	NC	1	NC	1
372			min	0	3	006	3	018	4	-8.699e-4	4	NC	1	1392.179	4
373		16	max	.001	1	.004	2	0	1	0	1	NC	1	NC	1
374			min	0	3	004	3	011	4	-8.699e-4	4	NC	1	2343.1	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

0.0	1	.003	2	0	1	0	1	NC		NIC.	
376 min 0 3					_	_		NC	1_	NC	1
		003	3	005	4	-8.699e-4	4	NC	1_	4840.86	4
	1	.001	2	0	1	0	1_	NC	1_	NC	1
		001	3	002	4	-8.699e-4	4	NC	1_	NC	1
0.0	1	0	1	0	1	0	1	NC NC	1_	NC NC	1
000	1	0	1	0	1	-8.699e-4	4	NC NC	1_	NC NC	1
33	3	.009	2	0	12	2.857e-3	4	NC 0400 000	1	NC 70.05	2
	<u>3</u> 1	015	2	973	4	2.088e-5		8490.823 NC	1	79.65	2
	3	.008	3	0	12	2.915e-3 1.982e-5	<u>4</u> 12	NC NC	1	NC 96 707	
	<u>3</u> 1	<u>015</u> .006	2	894 0	12	2.972e-3	4	NC NC	1	86.707 NC	2
		014	3	815	4	1.876e-5	12	NC NC	1	95.084	4
	1	.005	2	0	12	3.03e-3	4	NC	1	95.064 NC	2
		014	3	737	4	1.771e-5	12	NC NC	1	105.126	4
	1	.003	2	0	12	3.088e-3	4	NC	1	NC	2
	•	013	3	661	4	1.665e-5	12	NC	1	117.298	4
	1	.002	2	0	12	3.145e-3	4	NC	1	NC	2
		013	3	586	4	1.559e-5	12	NC	1	132.248	4
	1	.001	2	0	12	3.203e-3	4	NC	1	NC	1
	3	012	3	514	4	1.454e-5	12	NC	1	150.892	4
	1	0	2	0	12	3.261e-3	4	NC	1	NC	1
	3	012	3	444	4	1.348e-5	12	NC	1	174.566	4
	1	0	2	0	12	3.318e-3	4	NC	1	NC	1
	3	011	3	377	4	1.242e-5	12	NC	1	205.28	4
399 10 max .004 1	1	002	2	0	12	3.376e-3	4	NC	1	NC	1
	3	011	3	315	4	1.136e-5	12	NC	1	246.17	4
		002	15	0	12	3.433e-3	4	NC	1	NC	1
402 min004 3	3	01	3	256	4	1.031e-5	12	NC	1	302.362	4
12 11167 1000		002	15	0	12	3.491e-3	4	NC	1_	NC	1
		009	3	202	4	9.25e-6	12	NC	1	382.706	4
		002	15	0	12	3.549e-3	4	NC	1_	NC	1
		008	3	154	4	8.193e-6	12	NC	1_	503.602	4
		002	15	0	12	3.606e-3	4	NC	1_	NC	1
		007	4	111	4	7.135e-6	12	NC	1_	698.331	4
100 111001 1002		002	15	0	12	3.664e-3	4	NC NC	1_	NC 4040,000	1
		006	4	074	4	6.078e-6	12	NC NC	1_	1043.366	
10 11001		001	15	0	12	3.722e-3	4	NC	1_	NC	1
		005	4	044	4	5.021e-6	12	NC NC	1_	1749.167	4
110 111000	1	0	15	0	12	3.779e-3	4	NC NC	1	NC 2500 501	1
	3 1	004 0	4 15	022 0	4	3.964e-6 3.837e-3	12	NC NC	1	3590.591 NC	1
		002	4	007	4	2.907e-6	12	NC NC	1	NC NC	1
	1	0	1	00 <i>1</i>	1	3.895e-3	4	NC	1	NC	1
	1	0	1	0	1	1.849e-6	12	NC	1	NC	1
110	1	0	1	0	1	-3.591e-7	12	NC	1	NC	1
	1	0	1	0	1	-8.452e-4	4	NC	1	NC	1
	3	0	15	.021	4		12	NC	1	NC	1
		003	4	0	12	-4.177e-5	1	NC	1	NC	1
		002	15	.04	4	7.668e-4	5	NC	1	NC	1
		006	4	0	12	-7.813e-5	1	NC	1	7454.887	4
		002	15	.058	4	1.568e-3	4	NC	1	NC	1
	2	01	4	0	12	-1.145e-4	1	NC	1	5599.909	4
		003	15	.074	4	2.372e-3	4	NC	1	NC	1
		013	4	0	12	-1.508e-4	1	8243.393	4	4785.446	_
		004	15	.089	4	3.177e-3	4	NC	5	NC	1
		016	4	0	12	-1.872e-4	1	6699.357	4	4418.855	4
	3	004	15	.103	4	3.981e-3	4	NC	5	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	I C	(n) I /v Ratio	1 C	(n) I /z Ratio	IC
432			min	002	2	018	4	0	10	-2.236e-4	1	5768.609	4	4315.447	4
433		8	max	.003	3	005	15	.116	4	4.786e-3	4	NC	5	NC	1
434			min	002	2	02	4	0	1	-2.599e-4	1	5194.924	4	4414.291	4
435		9	max	.003	3	005	15	.128	4	5.59e-3	4	NC	5	NC	1
436			min	003	2	022	4	0	1	-2.963e-4	1	4857.653	4	4712.604	4
437		10	max	.004	3	006	15	.139	4	6.394e-3	4	NC	5	NC	1
438			min	003	2	022	4	001	1	-3.326e-4	1	4698.434	4	5254.193	4
439		11	max	.004	3	006	15	.149	4	7.199e-3	4	NC	5	NC	1
440			min	003	2	023	4	002	1	-3.69e-4	1	4693.931	4	6146.438	4
441		12	max	.005	3	005	15	.159	4	8.003e-3	4	NC	5	NC	1
442			min	004	2	022	4	002	1	-4.053e-4	1	4846.893	4	7619.194	4
443		13	max	.005	3	005	15	.169	4	8.808e-3	4	NC	5	NC	1
444			min	004	2	021	4	003	1	-4.417e-4	1	5188.366	4	NC	1
445		14	max	.006	3	005	15	.179	4	9.612e-3	4	NC	5	NC	1
446			min	005	2	019	4	004	1	-4.78e-4	1	5793.604	4	NC	1
447		15	max	.006	3	004	15	.189	4	1.042e-2	4	NC	3	NC	1
448			min	005	2	016	4	006	1	-5.144e-4	1	6828.716	4	NC	1
449		16	max	.007	3	003	15	.2	4	1.122e-2	4	NC	1_	NC	1
450			min	005	2	013	4	007	1	-5.508e-4	1	8695.476	4	NC	1
451		17	max	.007	3	002	15	.212	4	1.203e-2	4	NC	1_	NC	1_
452			min	006	2	01	4	009	1	-5.871e-4	1_	NC	1	NC	1
453		18	max	.007	3	002	15	.224	4	1.283e-2	4	NC	_1_	NC	2
454			min	006	2	006	4	011	1	-6.235e-4	1_	NC	1_	9285.541	1
455		19	max	.008	3	0	10	.238	4	1.363e-2	4	NC	_1_	NC	2
456			min	006	2	002	1	013	1	-6.598e-4	1_	NC	1_	7746.938	1
457	M12	1	max	.003	1	.006	2	.013	1	-1.341e-5	12	NC	_1_	NC	3
458			min	0	3	008	3	238	4	-7.454e-4	4	NC	1_	104.017	4
459		2	max	.003	1	.006	2	.012	1	-1.341e-5	12	NC	_1_	NC	3
460			min	0	3	008	3	219	4	-7.454e-4	4	NC	1	113.151	4
461		3	max	.002	1	.005	2	.011	1	-1.341e-5	12	NC	_1_	NC	3
462			min	0	3	007	3	2	4	-7.454e-4	4	NC	1	124.019	4
463		4	max	.002	1	.005	2	.01	1	-1.341e-5	12	NC	_1_	NC	3
464			min	0	3	007	3	181	4	-7.454e-4	4	NC	1_	137.072	4
465		5	max	.002	1	.005	2	.009	1	-1.341e-5	12	NC	_1_	NC	3
466			min	0	3	006	3	162	4	-7.454e-4	4	NC	1_	152.923	4
467		6	max	.002	1	.004	2	.008	1	-1.341e-5	12	NC	_1_	NC	3
468			min	0	3	006	3	144	4	-7.454e-4	4_	NC	_1_	172.42	4
469		7	max	.002	1	.004	2	.007	1	-1.341e-5	12	NC	1	NC	3
470			min	0	3	005	3	126	4	-7.454e-4	4	NC	1_	196.77	4
471		8	max	.002	1	.004	2	.006	1	-1.341e-5	12	NC	_1_	NC	3
472			min	0	3	005	3	109	4	-7.454e-4		NC	1_	227.732	4
473		9	max	.001	1	.003	2	.005	1	-1.341e-5	12	NC	1	NC	2
474		4.0	min	0	3	004	3	093	4	-7.454e-4	4_	NC	_1_	267.955	4
475		10	max	.001	1	.003	2	.004	1	-1.341e-5	12	NC		NC	2
476		4.4	min	0	3	004	3	<u>077</u>	4	-7.454e-4	4_	NC	1_	321.577	4
477		11	max	.001	1	.003	2	.004	1	-1.341e-5	12	NC	1	NC 005.07	2
478		10	min	0	3	004	3	063	4	-7.454e-4	4_	NC NC	1_	395.37	4
479		12	max	.001	1	.002	2	.003	1	-1.341e-5	12	NC	1	NC FOA 040	2
480		10	min	0	3	003	3	05	4	-7.454e-4	4	NC NC	1_	501.049	4
481		13	max	0	1	.002	2	.002	1	-1.341e-5	12	NC	1_	NC CCC OFF	1
482		4.4	min	0	3	003	3	038	4	-7.454e-4	4	NC NC	1_	660.358	4
483		14	max	0	1	.002	2	.002	1	-1.341e-5	12	NC	1	NC 047.500	1
484		4.5	min	0	3	002	3	027	4	-7.454e-4	4_	NC NC	1_	917.533	4
485		15	max	0	1	.001	2	.001	1	-1.341e-5	12	NC	1	NC 4074 545	1
486		40	min	0	3	002	3	018	4	-7.454e-4	4	NC NC	1_	1374.545	
487		16	max	0	1	0	2	0	1	-1.341e-5	12	NC	1_	NC 0040,000	1
488			min	0	3	001	3	011	4	-7.454e-4	4	NC	1	2313.286	4

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r			LC		LC
489		17	max	0	1	00	2	00	1	-1.341e-5	12	NC	_1_	NC	1
490			min	0	3	0	3	005	4	-7.454e-4	4	NC	1_	4778.943	4
491		18	max	0	1	0	2	00	1	-1.341e-5	12	NC	_1_	NC	1
492			min	0	3	0	3	002	4	-7.454e-4	4	NC	1_	NC	1
493		19	max	0	1	0	1	0	1	-1.341e-5	<u>12</u>	NC	_1_	NC	1
494			min	0	1	0	1	0	1	-7.454e-4	4_	NC	1_	NC	1
495	M1	1	max	.01	3	.179	2	1.035	4	1.372e-2	_1_	NC	_1_	NC	1
496			min	005	2	036	3	0	12	-2.373e-2	3	NC	1_	NC	1
497		2	max	.01	3	.086	2	1	4	1.033e-2	_4_	NC	_5_	NC	1
498			min	005	2	016	3	<u>01</u>	1	-1.178e-2	3	1471.082	2	8154.439	5
499		3	max	.01	3	.015	3	.964	4	1.769e-2	4_	NC	5	NC	2
500		-	min	005	2	012	2	<u>014</u>	1	-2.966e-4	1_	709.941	2	4499.566	5
501		4	max	.01	3	.066	3	.926	4	1.536e-2	4_	NC 170	<u>15</u>	NC	2
502		_	min	005	2	123	2	013	1	-4.825e-3	3	449.456	2	3267.96	5
503		5_	max	.01	3	.131	3	.887	4	1.303e-2	4_	9888.605	<u>15</u>	NC	1
504			min	005	2	238	2	009	1	-9.53e-3	3	324.998	2	2649.039	
505		6	max	.009	3	.201	3	.847	4	1.445e-2	1_	7801.805	<u>15</u>	NC	1
506		-	min	00 <u>5</u>	2	35	2	004	1	-1.424e-2	3	256.312	2	2272.759	5
507		7	max	.009	3	.267	3	.807	4	1.937e-2	1_	6571.235	15	NC 1000 050	1
508		_	min	005	2	449	2	<u> </u>	3	-1.894e-2	3	215.724	2	1998.653	4
509		8	max	.009	3	.323	3	.765	4	2.429e-2	1	5843.791	<u>15</u>	NC	1
510			min	005	2	528	2	700	12	-2.365e-2	3	191.704	2	1791.765	4
511		9	max	.009	3	.359	3	.722	4	2.705e-2	2	5463.678	<u>15</u>	NC 4054.540	1
512		10	min	005	2	578	2	0	1	-2.397e-2	3	179.183	2	1654.548	
513		10	max	.009	3	.373	3	.675	4	2.91e-2	2	5347.623	<u>15</u>	NC	1
514		4.4	min	004	2	595	2	0	12	-2.137e-2	3	175.51	2	1613.544	4
515		11	max	.008	3	.364	3	.624	4	3.116e-2	2	5463.429	<u>15</u>	NC	1
516		40	min	004		<u>578</u>	2	0	12	-1.877e-2	3	179.804	2	1648.407	4
517		12	max	.008	3	.333	3	.569	1	3.002e-2	2	5843.207	<u>15</u>	NC 4700 0F0	1
518 519		13	min	004 .008	3	<u>526</u> .284	3	001 .508	4	-1.594e-2 2.41e-2	2	193.563 6570.101	<u>2</u> 15	1766.253 NC	1
520		13	max	004	2	443	2	<u>.506</u>	1	-1.275e-2	3	220.188	2	2097.599	4
521		14	min	.008	3	.221	3	.442	4	1.818e-2	2	7799.724	15	NC	1
522		14	max	004	2	34	2	<u>.442</u> 0	12	-9.558e-3	3	265.774	2	2833.175	4
523		15	max	.007	3	.15	3	.374	4	1.226e-2	2	9884.782	15	NC	1
524		15	min	00 <i>1</i>	2	226	2	<u>.374</u>	12	-6.369e-3	3	344.336	2	4587.604	
525		16	max	.007	3	.076	3	.309	4	1.079e-2	4	NC	15	NC	1
526		10	min	004	2	112	2	<u>.509</u>	12	-3.181e-3	3	489.912	2	NC	1
527		17	max	.007	3	.005	3	.248	4	1.208e-2	4	NC	5	NC	2
528		17	min	004	2	006	2	0	12	8.211e-6	3	799.172	1	9540.251	1
529		18	max	.007	3	.083	1	.194		1.002e-2		NC	5	NC	1
530		10	min	004	2	058	3	0	12	-3.686e-3	3	1685.099	1	NC	1
531		19	max	.007	3	.163	1	.148	4	1.991e-2	2	NC	1	NC	1
532		10	min	004	2	118	3	001	1	-7.503e-3	3	NC	1	NC	1
533	M5	1	max	.031	3	.375	2	1.035	4	0	1	NC	1	NC	1
534	1010	•	min	021	2	035	3	0	1	-9.747e-6	4	NC	1	NC	1
535		2	max	.031	3	.18	2	1.008	4	9.078e-3	4	NC	5	NC	1
536			min	021	2	012	3	0	1	0	1	700.569	2	6030.126	_
537		3	max	.031	3	.048	3	.974	4	1.795e-2	4	NC	15	NC	1
538		Ĭ	min	022	2	04	2	0	1	0	1	329.007	2	3566.54	4
539		4	max	.03	3	.174	3	.935	4	1.462e-2	4	6861.793	15	NC	1
540			min	021	2	302	2	0	1	0	1	201.152	2	2787.746	4
541		5	max	.029	3	.347	3	.893	4	1.13e-2	4	4786.947	15	NC	1
542			min	021	2	587	2	0	1	0	1	141.345	2	2422.273	_
543		6	max	.029	3	.541	3	.85	4	7.976e-3	4	3676.477	15	NC	1
544			min	02	2	871	2	0	1	0	1	109.1	2	2200.009	
545		7	max	.028	3	.73	3	.806	4	4.652e-3	4	3036.624	15	NC	1
		•							•						

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio L			LC
546			min	02	2	-1.128	2	0	1	0	1		2	2016.93	4
547		8	max	.028	3	.888	3	.764	4	1.328e-3	4_		15	NC	1
548			min	019	2	-1.335	2	0	1	0	1_		2	1822.187	4
549		9	max	.027	3	.991	3	.722	4	0	1	2475.004 1	15	NC	1
550			min	019	2	-1.466	2	0	1	-5.859e-6	5	73.925	2	1648.279	4
551		10	max	.026	3	1.028	3	.674	4	0	1		15	NC	1
552			min	019	2	-1.51	2	0	1	-5.651e-6	5	72.289	2	1626.409	4
553		11	max	.026	3	1.002	3	.623	4	0	1	2475.104 1	15	NC	1
554			min	018	2	-1.466	2	0	1	-5.443e-6	5	74.201	2	1672.588	4
555		12	max	.025	3	.915	3	.571	4	8.441e-4	4	2665.589 1	15	NC	1
556			min	018	2	-1.329	2	0	1	0	1			1730.609	4
557		13	max	.024	3	.775	3	.51	4	2.958e-3	4	3037.136 1	15	NC	1
558			min	018	2	-1.112	2	0	1	0	1		2	2048.764	4
559		14	max	.024	3	.598	3	.441	4	5.072e-3	4	3677.495 1	15	NC	1
560			min	018	2	842	2	0	1	0	1		2	2935.086	4
561		15	max	.023	3	.402	3	.369	4	7.186e-3	4		15	NC	1
562			min	017	2	55	2	0	1	0	1			5797.712	4
563		16	max	.022	3	.202	3	.299	4	9.3e-3	4		15	NC	1
564			min	017	2	266	2	0	1	0	1		1	NC	1
565		17	max	.022	3	.016	3	.237	4	1.141e-2	4		15	NC	1
566			min	017	2	02	2	0	1	0	1		1	NC	1
567		18	max	.022	3	.174	1	.186	4	5.773e-3	4		5	NC	1
568			min	017	2	143	3	0	1	0	1		1	NC	1
569		19	max	.022	3	.332	1	.149	4	0	1		1	NC	1
570		1	min	017	2	286	3	0	1	-5.737e-6	4		1	NC	1
571	M9	1	max	.01	3	.179	2	1.035	4	2.373e-2	3		1	NC	1
572			min	005	2	036	3	001	1	-1.372e-2	1		1	NC	1
573		2	max	.01	3	.086	2	1.006	4	1.178e-2	3		5	NC	1
574			min	005	2	016	3	0	12	-6.608e-3	1			6427.583	_
575		3	max	.01	3	.015	3	.972	4	1.789e-2	4		5	NC	2
576			min	005	2	012	2	0	12	1.134e-6	10			3737.116	
577		4	max	.01	3	.066	3	.934	4	1.4e-2	5		15	NC	2
578		·	min	005	2	123	2	0	12	-4.722e-3	2			2866.034	4
579		5	max	.01	3	.131	3	.893	4	1.055e-2	5		15	NC	1
580			min	005	2	238	2	0	12	-9.536e-3	1			2445.319	4
581		6	max	.009	3	.201	3	.85	4	1.424e-2	3		15	NC	1
582			min	005	2	35	2	0	12	-1.445e-2	1			2189.304	4
583		7	max	.009	3	.267	3	.807	4	1.894e-2	3		15	NC	1
584			min	005	2	449	2	0	1	-1.937e-2	1			1993.452	4
585		8	max	.009	3	.323	3	.764	4	2.365e-2	3		15	NC	1
586			min		2	528	2	001	1	-2.429e-2	1			1808.153	4
587		9	max	.009	3	.359	3	.722	4	2.397e-2	3		15	NC	1
588			min	005	2	578	2	0	12	-2.705e-2	2		2	1648.572	
589		10	max	.009	3	.373	3	.675	4	2.137e-2	3		15	NC	1
590			min	004	2	595	2	0	1	-2.91e-2	2			1614.715	
591		11	max	.008	3	.364	3	.623	4	1.877e-2	3		15	NC	1
592			min	004	2	578	2	0	1	-3.116e-2	2			1656.189	4
593		12	max	.008	3	.333	3	.57	4	1.594e-2	3		15	NC	1
594			min	004	2	526	2	0	12	-3.002e-2	2			1750.403	_
595		13	max	.008	3	.284	3	.508	4	1.275e-2	3		15	NC	1
596		'	min	004	2	443	2	0	12	-2.41e-2	2			2097.986	
597		14	max	.008	3	.221	3	.44	4	9.558e-3	3		15	NC	1
598		1 7	min	004	2	34	2	003	1	-1.818e-2	2			2942.447	5
599		15	max	.007	3	.15	3	.369	4	6.832e-3	5		15	NC	1
600		'	min	004	2	226	2	008	1	-1.226e-2	2			5191.418	
601		16	max	.007	3	.076	3	.301	4	9.198e-3	5		15	NC	1
602			min	004	2	112	2	012	1	-6.334e-3	2		2	NC	1
002					_		_	1012		3.00 10 0	_	1001012	_		

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Nov 4, 2015

Checked By:_

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
603		17	max	.007	3	.005	3	.239	4	1.159e-2	4	NC	5	NC	2
604			min	004	2	006	2	013	1	-8.505e-4	1	799.172	1	9540.251	1
605		18	max	.007	3	.083	1	.189	4	5.527e-3	5	NC	5	NC	1
606			min	004	2	058	3	009	1	-1.002e-2	2	1685.099	1	NC	1
607		19	max	.007	3	.163	1	.149	4	7.503e-3	3	NC	1	NC	1
608			min	004	2	118	3	0	12	-1.991e-2	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method: ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			•

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	-40 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1020.0	27.0	565.0	565.6	
Sum	1020.0	27.0	565.0	565 6	

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1020

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_t)$	Nc / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4))			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247.75	0.967	1.00	1.000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

rt-term K _{sat} τ _{k,cr} (psi)
0 1.00 1035
. D-16f)
(in) h_{ef} (in) N_{a0} (lb)
0 6.000 9755
Ψ _{ed,Na} Ψ _{p,Na} N _{a0} (Sec. D.4.1 & Eq. D-16a)
$\Psi_{\text{ed},Na}$ $\Psi_{\text{p},Na}$

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	4/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:					

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	7.00	6947			
$\phi V_{cby} = \phi (A_V)$	/c / A vco) \(\mathcal{P}_{ed, V} \(\mathcal{P}_{c, V} \)	$ \sqrt{\Psi_{h,V}V_{by}} $ (Sec.	D.4.1 & Eq. D-2	1)				
A_{Vc} (in ²)	A_{Vco} (in ²)	$arPsi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)	
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934	

 V_{bx} (lb)

8282

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/c$	$(d_a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}$				
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	
4.00	0.50	1.00	2500	7.87	

 $\phi V_{cbx} = \phi (A_{Vc}/A_{Vco}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{bx}$ (Sec. D.4.1 & Eq. D-21)

Avc (in ²)	Avco (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f_c c_{a1}}^{1.5} \text{ (Eq. D-24)}$ $\frac{I_e \text{ (in)} \qquad d_a \text{ (in)} \qquad \lambda \qquad \qquad f'_c \text{ (psi)} \qquad c_{a1} \text{ (in)} \qquad V_{by} \text{ (lb)}}{4.00 \qquad 0.50 \qquad 1.00 \qquad 2500 \qquad 7.00 \qquad 6947}$ $\phi V_{cbx} = \phi (2) (A_{Vc}/A_{Vc}) \Psi_{ed,V} \Psi_{c,V} \Psi_{h,V} V_{by} \text{ (Sec. D.4.1, D.6.2.1(c) \& Eq. D-21)}$

$\varphi \mathbf{v} \cos \varphi \left(\frac{2}{3} \right) (11)$	ωχ ψ (2)(11νε) 11νεο) 1 εα, ν 1 ε, ν 1 η, ν ν μ (333. Β. π. η, Β.3.2. η (3) α Ε η. Β Σ 1)						
Avc (in ²)	$Av\infty$ (in ²)	$\varPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a \; ; \; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \, \Psi_{ed,Na} \, \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc}/A_{Nco}) \, \Psi_{ed,N} \, \Psi_{c,N} \, \Psi_{cp,N} N_b| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{p,Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
Anc (in²)	Ανω (in²)	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ	$\phi V_{c ho}$ (lb)
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	5/5		
Project:	Standard PVMax - Worst Case, 14-40 Inch Width				
Address:					
Phone:					
E-mail:			_		

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1020	6071	0.17	Pass
Concrete breakout	1020	5710	0.18	Pass
Adhesive	1020	5365	0.19	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	566	3156	0.18	Pass (Governs)
T Concrete breakout y+	565	3934	0.14	Pass
T Concrete breakout x+	27	3018	0.01	Pass
Concrete breakout y+	27	8508	0.00	Pass
Concrete breakout x+	565	6875	0.08	Pass
Concrete breakout, combined	-	-	0.14	Pass
Pryout	566	12298	0.05	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rat	io Permissible	Status
Sec. D.7.1 0.1	9 0.00	19.0 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	8/1/2016		
Engineer:	HCV	Page:	1/5		
Project:	Standard PVMax - Worst Case, 21-31 Inch Width				
Address:					
Phone:					
E-mail:					

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2 Load combination: not set

Seismic design: No

Anchors subjected to sustained tension: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

Ψ_{c,V}: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	8/1/2016					
Engineer:	HCV	Page:	2/5					
Project:	Standard PVMax - Worst Case, 21	Standard PVMax - Worst Case, 21-31 Inch Width						
Address:								
Phone:								
E-mail:								

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	8/1/2016
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21-	-31 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2495.5	1558.5	0.0	1558.5
2	2495.5	1558.5	0.0	1558.5
Sum	4991.0	3117.0	0.0	3117.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4991

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)	
8095	0.75	6071	

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

<i>k</i> _c	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_c)$	Nc / A Nco) $\Psi_{ec,N}$ Ψ_{ec}	$_{I,N} \varPsi_{c,N} \varPsi_{cp,N} N_{b}$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324.00	1.000	0.972	1.00	1.000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f short-term	K _{sat}	τ _{k,cr} (psi)
1.00	1.00	1035
nef (Eq. D-16f)		
d _a (in)	h _{ef} (in)	N _{a0} (lb)
0.50	6.000	9755
	1.00 nef (Eq. D-16f) de (in)	1.00 1.00 nef (Eq. D-16f) d _a (in) h _{ef} (in)

 $\phi N_{ag} = \phi \left(A_{Na} / A_{Na0} \right) \varPsi_{ed,Na} \varPsi_{g,Na} \varPsi_{ec,Na} \varPsi_{\rho,Na} N_{a0} \left(\text{Sec. D.4.1 \& Eq. D-16b} \right)$

A_{Na} (in ²)	A_{Na0} (in ²)	$arPsi_{\sf ed,Na}$	$arPsi_{g,Na}$	$arPsi_{\sf ec,Na}$	$arPsi_{p,Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)	
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093	

Company:	Schletter, Inc.	Date:	8/1/2016				
Engineer:	HCV	Page:	4/5				
Project:	Standard PVMax - Worst Case, 21-31 Inch Width						
Address:							
Phone:							
E-mail:							

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ extit{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

l _e (in)	d _a (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	12.00	15593			
$\phi V_{cbgx} = \phi (A$	Avc / Avco) Yec, v Ye	$_{ed,V} \varPsi_{c,V} \varPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
Avc (in ²)	$Av \infty$ (in ²)	$\Psi_{ec,V}$	$\mathscr{\Psi}_{ed,V}$	$arPsi_{ extsf{c}, extsf{V}}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbgx} (Ib)
378.00	648.00	1.000	0.836	1.000	1.000	15593	0.70	5323

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

le (in)	da (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (Ib)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cpg} = \phi \min |k_{cp} N_{ag} \; ; \; k_{cp} N_{cbg}| = \phi \min |k_{cp} (A_{Na} / A_{Nao}) \; \Psi_{ed,Na} \; \Psi_{g,Na} \; \Psi_{ec,Na} \; \Psi_{p,Na} N_{a0} \; ; \; k_{cp} (A_{Nc} / A_{Nco}) \; \Psi_{ed,N} \; \Psi_{e,N} \; \Psi_{c,N} \;$

,			(,	-, 3,,	μ, ,μ (,	,,,	(-1)
<i>k</i> _{cp}	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A_{Nc} (in ²)	A _{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	N _{cb} (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2496	6071	0.41	Pass
Concrete breakout	4991	9208	0.54	Pass
Adhesive	4991	8093	0.62	Pass (Governs)
Shear	Factored Load, Vua (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1559	3156	0.49	Pass
T Concrete breakout x+	3117	5323	0.59	Pass (Governs)

Company:	Schletter, Inc.	Date:	8/1/2016	
Engineer:	HCV	Page:	5/5	
Project:	Standard PVMax - Worst Case, 21-31 Inch Width			
Address:				
Phone:				
E-mail:				

Concrete break	out y- 1559	12241	0.	13	Pass (Governs)	
Pryout	3117	19833	0.	16	Pass	
Interaction check	Nua/φNn	Vua/ ϕ Vn	Combined Ratio	Permissible	Status	
Sec. D.7.3	0.62	0.59	120.2 %	1.2	Pass	

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.