Assignment 2 Skin Lesion Classification

Tahsin Reasat

VUID: reasatt

Task - Multi Class Classification

Network Architecture

ISIC Challenge 2018 Leaderboards						
TASK 1: LESION BOUNDARY SEGMENTATION		TASK 2: LESION ATTRIBUTE DETECTION	TASK 3: LI			
Rank <140 total>↑	Team (Submitter User) <77 unique teams>	Approach Name	Manuscript			
1	MetaOptima Technology Inc. (Jordan Yap)	Top 10 Models Averaged	Ê			
2	MetaOptima Technology Inc. (Jordan Yap)	Meta Ensemble	Ê			
3	MetaOptima Technology Inc. (Jordan Yap)	Best Single Model	Ê			

TABLE II MODELS USED IN ENSEMBLE

Model	Input Size	Loss	Balanced Accuracy
DPN-92(5k)	224×224	0.331	0.787
DPN-92(5k)	224×224	0.333	0.786
Resnet-152	224×224	0.333	0.770
Densenet-161	224×224	0.334	0.771
Inceptionv3	299×299	0.334	0.770
Inceptionv3*	299×299	0.359	0.757
seresneXt-50	224×224	0.345	0.774
ResNet-50	224×224	0.350	0.772
ResNet-34	224×224	0.356	0.762
ResNet-34	224×224	0.358	0.759
ResNet-50**	224×224	0.364	0.766
seresneXt-50†	224×224	0.366	0.793
seresneXt-50†	224×224	0.372	0.801
seresnet-50	224×224	0.393	0.720
ResNet-18	224×224	0.381	0.736
ResNet-50	224×224	0.437	0.721
ResNet-18‡	224×224	0.438	0.774
Squeezenet1.1	224×224	0.558	0.555
histogram	NA	0.797	0.323

Network Architecture - Dual Path Network (DPN)

(a) Residual Network (b) The residual path implicitly reuses features, but it is not good at exploring new features.

(b) Densely Connected Network

The densely connected network keeps exploring new features but suffers from higher redundancy.

(c) Densely Connected Network (with shared connections)

Paper: https://arxiv.org/abs/1707.01629

(d) Dual Path Architecture

Pretrained model:

https://github.com/Cadene/pretrained-models.pvtorch

Handling Imbalance

Train Set Statistics

MEL, count: 887, 9.84%
NV, count: 6130, 68.00%
BCC, count: 480, 5.32%
AKIEC, count: 317, 3.52%
BKL, count: 972, 10.78%
DF, count: 101, 1.12%
VASC, count: 128, 1.42%

- a) Sampling:
- 1) Undersampling
- 2) Oversampling

Balanced Mini Batch

Batch size 7, 14, or 21 etc.

b) Weighted loss

$$-w_0 y log(p) - w_1(1-y) log(1-p)$$

Color Constancy

What would the image look like if it was taken under white light (Under Gray World Assumption)

https://ieeexplore.ieee.org/document/6866131

Augmentations

- HorizontalFlip(),
- RandomRotate90(),
- RandomBrightnessContrast(

```
brightness_limit= [-0.2, 0.2],
contrast limit=[-0.2, 0.2] ),
```

- RandomCrop(400, 400, p=0.5),
- Resize(256, 256),
- Normalize() (mean and std taken from imagenet)

Training parameters

Epoch number : 10
Batch size: 21-24

Learning rate: 0.00001

Loss function: (Weighted) Cross EntropyLoss weights: [0.8, 0.2, 1.0, 1.0, 0.8, 1.0, 1.0]

Optimizer: adam

Network depth: 92 trainable layers

Input number of channels: 3Output number of channels: 7

OS: WindowsGPU: RTX 2070

Loss Plot

Results - (Accuracy)

Sampling → Random (RS), Balanced Sampling (BS)

Color → Original Color (OC), Color Constancy (CC)

Loss → Weighted Loss(WL), Unweighted Loss (UL)

RS+WL+	BS+UL+	RS+WL+	BS+UL+
OC	OC	CC	CC
0.8200	0.8260	0.8280	0.7880

Accuracy measured at minimum test loss

Metrics

Accuracy: 0.8280

Recall: 0.7820

Precision: 0.7720

Confusion matrix

Conclusion

A few duplicate images in the train set.

Better Hyper parameter tuning

Exploring more architectures

More advance techniques, few shot learning or meta learning can be explored for rare diseases.

Duplicates