(a) Si descrivano le operazioni di zig-zag, zig-zig e zig in uno splay tree di tipo bottom-up.

Quindi si eseguano nell'ordine dato le seguenti operazioni sullo splay tree a lato:

- Search 20, 13
- Insert 17
- Delete 15

(b) Si descrivano le operazioni di zig-zag, zig-zig e zig, nonché l'operazione di assemblaggio finale, in un splay tree di tipo top-down.

SEARCH (20)

SEARCH (13)

DELETE (15)

ESERCIZIO 3 (Splay trees)

Si descrivano le operazioni di zig-zag, zig-zig e zig in uno splay tree di tipo bottom-up.

Quindi si eseguano nell'ordine dato le seguenti operazioni su uno splay tree la cui configurazione iniziale è quella di un albero binario completo contenente le 12 chiavi $\{2i:1\leq i\leq 12\}$:

- Search 14, 2, 24
- Insert 17
- Delete 22
- Search 2

Nota bene: Si ricorda che un albero binario si dice completo quando tutti i suoi livelli, con al più l'eccezione dell'ultimo, sono completi e tutti i nodi nell'ultimo livello si trovano il più a sinistra possibile.

SEARCH (14)

SEARCH (2)

5EARCH (24)

SEARCH (14)

RIASSEMBLAGGIO

RIASSEMBLAGGIO

18

RIASSEMBLAGGIO

- Search 14, 2, 24 Insert 17
- Delete 22
- Search 2

INSGRT (17)

DELETE (22)

SEARCH(2)

RIASSEMBLAGGIO

Utilizzando i tre metodi dell'analisi ammortizzata, si determini il costo ammortizzato per operazione di una sequenza di n operazioni, ove il costo c_i dell'i-esima operazione sia dato da

$$c_i = \begin{cases} 3 \cdot i & \text{se } i \text{ è potenza esatta di 4} \\ 5 & \text{altrimenti.} \end{cases}$$

- (a) Si descrivano le operazioni di zig-zag, zig-zig e zig in uno splay tree di tipo bottom-up, quindi si eseguano nell'ordine dato le seguenti operazioni su uno splay tree inizialmente vuoto:
 - Insert 10, 7, 9, 12, 8, 11
 - Search 9
 - Delete 11
- (b) Si descrivano le operazioni di zig-zag, zig-zig e zig, nonché l'operazione di assemblaggio finale, in un splay tree di tipo top-down.

ESERCIZIO 3

- (a) Si descrivano le operazioni di zig-zag, zig-zig e zig in uno splay tree di tipo bottom-up.
 - Quindi si eseguano nell'ordine dato le seguenti operazioni sullo splay tree a lato:
 - Search 13, 20
 - Insert 17
 - Delete 16
- (b) Si descrivano le operazioni di zig-zag, zig-zig e zig, nonché l'operazione di assemblaggio finale, in un splay tree di tipo top-down.

ESERCIZIO 4 (Splay trees)

- (a) Si descrivano le operazioni di SPLAY, INSERT e DELETE in uno splay tree di tipo bottom-up.
 - Quindi si eseguano, nell'ordine dato, le seguenti operazioni sullo splay tree a lato:
 - Insert 9, 14, 17, 21
 - Delete 16
 - Search 13, 20

ESERCIZIO 2 (Splay trees)

Si descrivano le operazioni di ziq-zaq, ziq-ziq e ziq in uno splay tree di tipo bottom-up.

Quindi si eseguano nell'ordine dato le seguenti operazioni su uno splay tree la cui configurazione iniziale è quella di un albero binario completo contenente le 12 chiavi $\{3i: 1 \le i \le 12\}$:

- Search 21, 3, 36
- Insert 25
- Delete 30
- Search 3

Nota bene: Si ricorda che un albero binario si dice completo quando tutti i suoi livelli, con al più l'eccezione dell'ultimo, sono completi e tutti i nodi nell'ultimo livello si trovano il più a sinistra possibile.

ESERCIZIO 2 (Splay trees)

Si descrivano le operazioni di zig-zag, zig-zig e zig in uno splay tree di tipo bottom-up.

Quindi si eseguano nell'ordine dato le seguenti operazioni su uno splay tree la cui configurazione iniziale è quella di un albero binario completo contenente le 10 chiavi $\{4i: 1 \le i \le 10\}$:

- Search 20, 40
- Delete 24
- Insert 30

Nota bene: Si ricorda che un albero binario si dice completo quando tutti i suoi livelli, con al più l'eccezione dell'ultimo, sono completi e tutti i nodi nell'ultimo livello si trovano il più a sinistra possibile.

ESERCIZIO 5 (Splay trees)

Si descrivano le operazioni di zig-zag, zig-zig e zig in uno splay tree di tipo bottom-up.

Quindi si eseguano nell'ordine dato le seguenti operazioni su uno splay tree la cui configurazione iniziale è quella di un albero binario completo contenente le 10 chiavi 12, 7, 9, 15, 14, 2, 1, 10, 6, 5:

- Search 7, 15
- Delete 10
- Insert 13

Nota bene: Si ricorda che un albero binario si dice completo quando tutti i suoi livelli, con al più l'eccezione dell'ultimo, sono completi e tutti i nodi nell'ultimo livello si trovano il più a sinistra possibile.

Si descrivano le operazioni di zig-zag, zig-zig e zig in uno splay tree di tipo bottom-up.

Quindi si eseguano nell'ordine dato le seguenti operazioni su uno splay tree la cui configurazione iniziale è quella di un albero binario completo contenente le 9 chiavi $\{2i: 1 \le i \le 9\}$:

- Search 6, 14, 10
- Insert 13
- Delete 8
- Search 18

Nota bene: Si ricorda che un albero binario si dice completo quando tutti i suoi livelli, con al più l'eccezione dell'ultimo, sono completi e tutti i nodi nell'ultimo livello si trovano il più a sinistra possibile.