Baze podataka

Modeli podataka

Specifikacija šeme baze podataka

- Pojam modela podataka
- Strukturalna komponenta MP
- Integritetna komponenta MP
- Operacijska komponenta MP
- Modeli podataka

Model podataka (MP)

- matematička apstrakcija
- putem koje se gradi šema baze podataka,
 - koja treba da predstavlja
 - model baze podataka informacionog sistema
 - model posmatranog dela realnog sistema
- služi za predstavljanje
 - logičkih struktura obeležja (LSO) realnog sistema
 - ograničenja u odnosima između podataka o stanjima realnog sistema
 - dinamike izmene stanja realnog sistema, putem operacija nad podacima

it

Model podataka

- Model podataka (MP)
 - trojka

(S, I, O)

- S strukturalna komponenta
 - omogućava modeliranje LSO, kao statičke strukture šeme BP
- I integritetna komponenta
 - omogućava modeliranje ograničenja nad podacima u BP
- O operacijska komponenta
 - modeliranje dinamike izmene stanja
 - podataka u BP i
 - same šeme BP

it

Model podataka

Nivoi apstrakcije

- određeni modelom podataka
- nivo intenzije (konteksta)
 - nivo tipa
 - npr. nivo logičke strukture obeležja šeme
- nivo ekstenzije (konkretizacije)
 - nivo pojave tipa
 - npr. nivo logičke strukture podataka
- Primer 1:
 - nivo intenzije: tip entiteta N
 - nivo ekstenzije: skup pojava tipa entiteta SP(N)
- Primer 2:
 - nivo intenzije: tip entiteta
 - nivo ekstenzije: tip entiteta N

Nivoi apstrakcije

- u oblasti modelovanja sistema pa i sistema BP,
 - prema Unified Modeling Language (UML)

Koncept tipa i pojave (nečega)

Meta Level 3 Nivo tipova, pojava i MOF

Meta Level 2
Nivo koncepata i MP

Pojava konkretnog tipa entiteta N, p(N)

Koncept tip entiteta

Meta Level 1 Nivo LSO i šeme BP

Konkretni tip entiteta N

Meta Level 0 Nivo LSP i FSP, BP

- Pojam modela podataka
- Strukturalna komponenta MP
- Integritetna komponenta MP
- Operacijska komponenta MP
- Modeli podataka

Koncept

- apstraktna (i formalna) predstava jedne klase pojmova
 - kojima se modeluju delovi realnog sveta

Primitivni (atomični) koncept

- uvodi se i postoji "per se"
 - percipira se njegova semantika u realnom svetu
- ne može se dalje dekomponovati na koncepte nižeg reda
 - primitivni pojam, za koji najčešće nije moguće uvesti formalnu definiciju

- Strukturalna komponenta sadrži
 - skup primitivnih koncepata
 - sa skupom datih osobina svakog koncepta,
 - skupom pravila (definicija i šablona) za njihovo korišćenje i
 - opisanom mogućom semantikom
 - skup formalnih pravila za kreiranje složenih koncepata
 - polazeći od primitivnih koncepata ili prethodno definisanih složenih koncepata
 - omogućava proširivanje inicijalno definisanog MP
 - skup unapred kreiranih složenih koncepata
 - sa skupom datih osobina svakog koncepta,
 - skupom pravila (definicija i šablona) za njihovo korišćenje i
 - opisanom mogućom semantikom

- Skup primitivnih i složenih koncepata jednog MP
 - za opis LSO (nivo intenzije) i LSP (nivo ekstenzije)

Nivo intenzije

- Domen
- Obeležje
- Tip entiteta
- Tip poveznika
- Šema BP

Nivo ekstenzije

- Vrednost
- Podatak
- Pojava tipa entiteta
- Pojava tipa povez.
- Baza podataka

- Primer pravila za izgradnju složenih koncepata
 - tip poveznika
 - formira se korišćenjem koncepata
 - tip entiteta
 - niz tipova
 - rekurzivna struktura
 - skup obeležja
 - skup ograničenja
 - naziv tipa
 - i pravila
 - $N(N_1, ..., N_m, Q, C)$
 - sa mogućom semantikom
 - tip poveznika služi da modeluje veze između klasa realnih entiteta ili prethodno uspostavljenih poveznika

- Pojam modela podataka
- Strukturalna komponenta MP
- Integritetna komponenta MP
- Operacijska komponenta MP
- Modeli podataka

- Integritetna komponenta sadrži
 - skup tipova ograničenja (uslova integriteta) sa
 - skupom datih osobina svakog tipa ograničenja, koje uključuju pravila
 - formalnog specificiranja i
 - interpretacije (validacije, provere zadovoljenja)
 - skupom pravila (definicija i šablona) za njihovo korišćenje i
 - opisanom mogućom semantikom
 - skup formalnih pravila za izvođenje zaključaka o važenju ograničenja
 - skup formalnih pravila za kreiranje novih tipova ograničenja
 - polazeći od poznatih koncepata
 - omogućava proširivanje inicijalno definisanog MP

- Pomoću tipova ograničenja iskazuju se konkretna ograničenja koja se odnose na
 - moguće vrednosti obeležja (podataka)
 - moguće odnose između pojava povezanih tipova
 - moguće odnose između pojava i vrednosti obeležja

Primeri

- ograničenje ključa (integritet entiteta)
 - Radnik({MBR, PRZ, IME, JMBG}, {MBR, JMBG})
- ograničenje domena
 - $Dom(OCENA) ::= \{d \in \mathbb{N} | d \ge 5 \land d \le 10\}$
- Kardinalitet tipa poveznika
 - jedan nastavnik može predavati najviše jedan predmet
 - student iz jednog predmeta ima najviše jednu ocenu

- Validacija ograničenja provera važenja ograničenja
 - može se ugraditi u
 - transakcione programe, ili
 - specifikaciju šeme baze podataka, sa implementacijom u okviru SUBP
 - tako da SUBP vrši automatsku proveru zadovoljenja
 - Rešenje kojem se može težiti
 - sva ograničenja podataka ugraditi u šemu BP i prepustiti proveru SUBP-u
 - pojedina ograničenja ugraditi i u transakcione programe
 - u cilju poboljšanja udobnosti rada korisnika
 - kada je UI transakcionog programa sposoban da "trenutno" odreaguje na pokušaj narušavanja ograničenja

- Pojam modela podataka
- Strukturalna komponenta MP
- Integritetna komponenta MP
- Operacijska komponenta MP
- Modeli podataka

- Operacijska komponenta
 - modeliranje dinamike izmene stanja u sistemu BP
 - skup tipova operacija sa
 - skupom datih osobina svakog tipa operacije, koje uključuju pravila
 - formalnog specificiranja i
 - izvršenja nad podacima
 - skupom pravila (definicija i šablona) za njihovo korišćenje i
 - opisanom mogućom semantikom

definiše

- upitni jezik / jezike
- jezik / jezike za manipulisanje podacima i
- jezik / jezike za definiciju podataka

Upitni jezik

- Query Language (QL)
- tipovi operacija za iskazivanje upita (selekcije podataka) nad BP
- Jezik za manipulisanje podacima
 - Data Manipulation Language (DML)
 - tipovi operacija za izmenu stanja BP (ažuriranje)
 - u cilju praćenja izmena stanja podataka u realnom sistemu

- Jezik za definiciju podataka
 - Data Definition Language (DDL)
 - tipovi operacija za kreiranje i modifikaciju specifikacija
 - šeme BP
 - fizičke strukture BP
 - prava pristupa i zaštite BP
 - novih tipova operacija (programa) za upravljanje podacima

- Specifikacija operacije sadrži komponente
 - aktivnost
 - specifikacija akcije nad podacima u BP
 - selekcija
 - specifikacija dela BP (u DML i QL) ili dela šeme BP (u DDL), nad kojim se sprovodi specificirana aktivnost

- Primer operacije u DML ili QL
 - moguće aktivnosti
 - definisanje indikatora aktuelnosti (CURRENCY)
 - čitanje
 - upis
 - brisanje
 - modifikacija
 - mogući načini selekcije
 - pomoću logičkog mesta u strukturi podataka, na osnovu indikatora aktuelnosti
 - putem odnosa između podataka
 - putem vrednosti obeležja

Primer (mrežni MP)

"Prikaži predmete i ocene tekuće pojave tipa entiteta STUDENT"

- indikator aktuelnosti
 - FIND
 - READ NEXT
- odnos između podataka

- Selekcija putem vrednosti obeležja
 - asocijativno adresiranje
 - iskazuje se putem logičkih izraza
 - moguća upotreba logičkih operatora (AND, OR, NOT)
 - moguća upotreba relacionih izraza i operatora
 - {<, >, =, >=, <=, <>}
 - specijalizovanih operatora (IN, NOT IN, EXISTS,...)
 - moguća upotreba numeričkih, alfanumeričkih (string), logičkih i datumskih izraza, funkcija i operatora
 - moguća upotreba obeležja kao operanada

- Primer:
 - TE Radnik({MBR, IME, PRZ, ZAN}, {MBR})
 - selekcioni izraz
 - IME = 'Ivo' AND ZAN IN ['Inž', 'Eko']
 - primer u jeziku SQL

SELECT MBR, PRZ, IME, ZAN
FROM Radnik
WHERE PRZ LIKE 'Petr%' AND MBR > 100

- Operacijska komponenta može biti
 - proceduralna (navigaciona)
 - selekcija vrši izbor jednog objekta iz BP
 - selekcija se vrši putem indikatora aktuelnosti, ili putem odnosa između podataka
 - proceduralnost sa programskim petljama i uslovnim grananjima
 - definiše se ŠTA i KAKO
 - specifikaciona (deklarativna)
 - selekcija vrši izbor skupa objekata iz BP
 - selekcija se vrši na osnovu vrednosti obeležja
 - neproceduralnost
 - definise se samo ŠTA

- Pojam modela podataka
- Strukturalna komponenta MP
- Integritetna komponenta MP
- Operacijska komponenta MP
- Modeli podataka

- Model tipova entiteta i poveznika (ER)
- Mrežni model
- Hijerarhijski model
- Relacioni model
- Logički i verovatnosni (fuzzy) logički modeli
- Objektno orijentisani model
- Objektno relacioni model
- XML model

- Model tipova entiteta i poveznika (ER)
 - semantički model podataka
 - modifikacija
 - Prošireni model tipova entiteta i poveznika (EER)
 - MP konceptualnog nivoa "bliži" korisniku po vrsti primenjenih koncepata
 - nastao na osnovama starijih modela
 - Semantičke hijerarhije (Smith i Smith)
 - Semantički model (Hammer i Mcleod)

- Hijerarhijski model
 - IBM, kraj 1950-ih
 - implementacioni model podataka
 - tipične strukture šeme BP
 - strukture stabla nad tipovima slogova
 - operacijska komponenta proceduralna
 - tipičan predstavnik: IBM DL/I sa programskim jezikom PL/I
 - konceptualno baziran organizaciji papirnih dokumenata – sistem kabineta i fascikli
 - svaki tip sloga je imao samo jednog vlasnika i pristup je išao preko njega
 - ne postoji veza M:N

- Hijerarhijski model
 - prednost: očuvana logika poslavanja prethodnog sistema

Hierarchical Data Model

it

- Mrežni model
 - IBM, kasne 1960-e
 - implementacioni model podataka
 - tipične strukture šeme BP
 - strukture mreže nad tipovima slogova, korišćenje tipova setova
 - operacijska komponenta proceduralna
 - CODASYL DBTG standard
 - tipični predstavnici: IDMS, IDS-II sa programskim jezikom Cobol
 - omogućena veza M:N

Mrežni model - primer

- Relacioni model
 - implementacioni model podataka
 - tipične strukture šeme BP
 - strukture tabela slogova relacija, kao skupova n-torki
 - operacijska komponenta deklarativna
 - ANSI SQL standard
 - tipični predstavnici RDBMS: Oracle, MS SQL Server, Ingres,
 Informix, Sybase, DB2, sa programskim jezikom SQL

- Logički i verovatnosni (fuzzy) logički modeli
 - dalja nadgradnja relacionog modela
 - uvođenje dedukcije u baze podataka
 - baza podataka činjenica i baza pravila rezonovanja
 - pridruživanje verovatnoća podacima u bazi
 - rezonovanje u svetu rasplinute logike, na intervalu [0, 1]

it

- Objektno orijentisani model
 - zasnovanost na
 - mrežnom i semantičkim modelima
 - objektno orijentisanoj paradigmi i programskim jezicima
 - koncepti klase, tipa, operacije i interfejsa
 - objedinjeno posmatranje struktura podataka i operacija nad podacima
 - operacijska komponenta proceduralna (C++, Java)
- Objektno relacioni model
 - implementacioni model podataka
 - kombinuje sve osobine relacionog i OO modela podataka
 - savremeni ORDBMS nastaju evolucijom RDBMS i nasleđuju sve osobine RDBMS

XML model

- zasnovanost na
 - XML jezicima i tehnologijama
 - paradigmi analognoj hijerarhijskom modelu podataka i tzv.
 "logičkim vezama"
- implementacioni model podataka
 - tipične strukture šeme BP
 - strukture stabla nad elementima i atributima
 - šema BP se opisuje putem XML Schema jezika
 - operacijska komponenta deklarativna
 - ANSI SQL:2006 standard
 - XPath i XQuery jezici

XML model – primer

```
<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="shiporder">
 <xs:complexType>
  <xs:sequence>
   <xs:element name="orderperson" type="xs:string"/>
   <xs:element name="shipto">
    <xs:complexType>
     <xs:sequence>
       <xs:element name="name" type="xs:string"/>
       <xs:element name="address" type="xs:string"/>
       <xs:element name="city" type="xs:string"/>
       <xs:element name="country" type="xs:string"/>
     </xs:sequence>
    </xs:complexType>
   </xs:element>
```


XML model – primer

```
<xs:element name="item" maxOccurs="unbounded">
    <xs:complexType>
      <xs:sequence>
       <xs:element name="title" type="xs:string"/>
       <xs:element name="note" type="xs:string" minOccurs="0"/>
       <xs:element name="quantity" type="xs:positiveInteger"/>
       <xs:element name="price" type="xs:decimal"/>
      </xs:sequence>
    </xs:complexType>
   </xs:element>
  </xs:sequence>
  <xs:attribute name="orderid" type="xs:string" use="required"/>
 </xs:complexType>
</xs:element>
</xs:schema>
```


XML model – primer

```
<shiporder orderid="889923"</p>
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="shiporder.xsd">
     <orderperson>John Smith/orderperson>
     <shipto>
          <name>Ola Nordmann</name>
          <address>Langgt 23</address>
          <city>4000 Stavanger</city>
          <country>Norway</country>
     </shipto>
     <item>
           <title>Empire Burlesque</title>
          <note>Special Edition</note>
          <quantity>1</quantity>
          <price>10.90</price>
      </item>
      <item>
            <title>Hide your heart</title>
            <quantity>1</quantity>
            <price>9.90</price>
      </item>
</shiporder>
```


Sadržaj

- Pojam modela podataka
- Strukturalna komponenta MP
- Integritetna komponenta MP
- Operacijska komponenta MP
- Modeli podataka

Literatura

- Pavle Mogin, Ivan Luković: Principi baza podataka
 - Glava 1

Pitanja i komentari

Baze podataka

Modeli podataka

Specifikacija šeme baze podataka