# Detección de anomalías mecánicas basada en modelos dinámicos lineales







#### Índice

- 1. Descripción del problema
  - 1.1. Variables mecánicas
- 2. Etapas del proyecto
  - 2.1. Análisis exploratorio
  - 2.2. Pre-procesamiento de datos
  - 2.3. Creación del DLM
  - 2.4. Desarrollo del DLM en Python
  - 2.5. Estrategia de alarmas de anomalías con DLMs

## 1. Descripción del problema

#### ICMAT DataLab







#### 2. Etapas del proyecto

#### 2.1. Análisis exploratorio

2.2. Pre-procesamiento de datos

2.3. Creación del DLM

2.4. Desarrollo del DLM en Python

2.5. Pruebas del DLM



#### ICMAT DataLab





| Descripción | Unidad        |     |  |  |  |  |
|-------------|---------------|-----|--|--|--|--|
| X1          | Movimiento de | %   |  |  |  |  |
| X2<br>X3    | motores       | %   |  |  |  |  |
| X3          | motores       | %   |  |  |  |  |
| X4          | Consumo motor | %   |  |  |  |  |
| X5          | Tomporatura   | ōС  |  |  |  |  |
| X6          | Temperatura   | ōС  |  |  |  |  |
| X7          | Vibración     | %   |  |  |  |  |
| X8          |               | bar |  |  |  |  |
| X9          | Presión       | bar |  |  |  |  |
| X10         | FIESIOII      | bar |  |  |  |  |
| X11         |               | bar |  |  |  |  |

**X1** 

**X2** 

Х3

**X4** 



X11

X10

|       | <i>7</i>      | <b>/-</b>     |               | <i>~</i> ··   | 7.5           | ,,,           |               | 7.0           | 7.5           | <i></i>       |               |
|-------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| count | 215915.000000 | 215915.000000 | 215915.000000 | 215915.000000 | 215915.000000 | 215915.000000 | 215915.000000 | 215915.000000 | 215915.000000 | 215915.000000 | 215915.000000 |
| mean  | 0.039897      | 64.481537     | 71.195639     | 4.162363      | 3.857426      | 1.106942      | 3.793132      | 1.080024      | 21.584738     | 20.124800     | 3.589309      |
| std   | 0.774543      | 1102.798860   | 814.437613    | 5.883037      | 7.602475      | 1.019219      | 7.301029      | 1.002475      | 2.859568      | 1.956780      | 4.499519      |
| min   | 0.000000      | 0.000000      | 0.000000      | 0.000000      | -0.015673     | -0.079555     | -0.004973     | -0.078530     | 17.603616     | 17.553840     | 0.054253      |
| 25%   | 0.000000      | 4.000000      | 29.620690     | 1.175439      | -0.003617     | -0.053168     | 0.003961      | -0.057834     | 18.857520     | 19.661457     | 0.896171      |
| 50%   | 0.000000      | 13.000000     | 38.000000     | 5.000000      | 0.680333      | 1.572587      | 0.810185      | 1.539817      | 21.108217     | 19.661457     | 1.025469      |
| 75%   | 0.000000      | 13.000000     | 38.000000     | 5.000000      | 0.802117      | 2.104011      | 0.919308      | 2.026522      | 23.947483     | 19.661457     | 5.008001      |
| max   | 47.758065     | 22593.000000  | 16705.000000  | 172.045455    | 52.783881     | 2.757538      | 52.746356     | 2.754326      | 36.042389     | 32.088184     | 47.025101     |

**X5** 

X6

**X7** 

X8

**X9** 



Variables en periodos de 100

150140





**Autocorrelación de variables** 



#### 2.2. Pre-procesamiento

- Editar y procesar los archivos.
- Unir diferentes archivos de datos en un solo repositorio.
- Unir datos con la misma información temporal.
- Eliminar valores negativos y ceros.
- Eliminar valores extremos y outliers.
- Modificar los datos en la misma cantidad de decimales (3).
- Transformar los datos, en su caso.

#### 2.2. Pre-procesamiento





Histogramas logaritmos sin ceros

100000

35000

60000

PresionEntradaBajaPresionTaladrina

0.2 0.4 0.6 0.8 1.0 1.2 1.4

TemperaturaBridaAnteriorHusillo

Modelo admite la representación alternativa

Ecuación de observación

$$Y_t = F_t'\theta_t + v_t, v_t \sim N(0, V_t)$$

Ecuación de sistema

$$\theta_t = G_t \theta_{t-1} + \omega_t, \omega_t \sim N(0, W_t)$$

Información inicial

$$\theta_0|D_0 \sim N(m_0, C_0)$$

 Mostramos el procedimiento de actualización y predicción con un modelo dinámico lineal (DLM). Tras el análisis realizado se han procesado los modelos de la siguiente forma:

$$\theta^{j}|D_{t} \sim N(m_{t}^{j}, C_{t}^{j}), j = 1..., 11$$
 (1)

donde  $\theta^j$  representa las variables de estado del modelo j-ésimo,  $D_t$  los datos disponibles hasta el instante t y  $m_t^j$  y  $C_t^j$  el vector de medias y la matriz de covarianzas para las variables de estado j-ésimas en el instante t. Estas serán las que se ponen en producción como distribución a priori para tal fase. Previamente hacemos una breve discusión sobre avisos y niveles críticos.



- Actualmente,  $\theta_{t-1}|y_{1:t-1} \sim \mathcal{N}(m_{t-1}, C_{t-1})$
- Estado de la densidad predictiva un paso hacia adelante, normal

$$a_t = E(\theta_t | y_{1:t-1}) = G_t m_{t-1},$$
  
 $R_t = Var(\theta_t | y_{1:t-1}) = G_t C_{t-1} G'_t + W_t$ 

Densidad predictiva, normal

$$f_t = E(Y_t|y_{1:t-1}) = F_t a_t,$$
  
 $Q_t = Var(Y_t|y_{1:t-1}) = F_t R_t F'_t + V_t$ 

Densidad de filtrado, normal

$$m_{t} = E(\theta_{t}|y_{1:t}) = a_{t} + R_{t}F'_{t}Q_{t}^{-1}e_{t}, \qquad e_{t} = Y_{t} - f_{t}$$

$$C_{t} = Var(\theta_{t}|y_{1:t}) = R_{t} - R_{t}F'_{t}Q_{t}^{-1}F_{t}R_{t}$$

- Principio de superposición
- Estrategia de modelización por bloques
  - Bloque tendencia
  - Bloque estacional
  - Bloque regresión dinámica
  - Bloque autorregresivo

#### 2.4. Desarrollo del DLM en Python



- Para el desarrollo del DLM fue necesario un conjunto de librerías de Python:
  - Numpy
  - Pandas
  - Matplotlib
  - Pybats (Dinamyc Lineal Model)



#### 2.4. Desarrollo del DLM en Python



#### 2.4. Desarrollo del DLM en Python









# 2.5. Estrategia de alarmas para anomalías con el DLM

- Para cada instante t
  - Leer  $(Y_t^1, ..., Y_t^{11})$  %Variables mecánicas
  - Calcular predicciones  $(f_t(1), ..., f_t(11), Q_t(1), ..., Q_t(11))$
  - Para cada variable mecánica Y
  - Si  $Y_t^i > f_t^i + \lambda_{\alpha} \sqrt{Q_t^i}$ 
    - Alarma de Tipo 1
  - Si  $C_i < f_t^i + \lambda_{\alpha} \sqrt{Q_t^i}$ 
    - Alarma de tipo 2
  - Si  $W_i < f_t^i(h) + \lambda_{\alpha} \sqrt{Q_t^i(h)}$ 
    - Alarma tipo 3

Imprimir Anomalías

t=t+1



#### 2.5 Pruebas DLM

```
----- REVISIÓN #40175-----
              Fecha Variable Descripcion Valor TipoAlerta
0 2023-02-07 15:41:59.099502 LoadX Actual 37.170213
   ------ REVISIÓN #401/6----
              Fecha Variable Descripcion Valor TipoAlerta
 2023-02-07 15:41:59.941344 LoadX Actual 22.425 Anormal
   Empty DataFrame
Columns: []
Index: []
   ------ REVISIÓN #40178------
  Variable
              Fecha
 2023-02-07 15:51:34.681953 PresionEntradaBajaPresionTaladrina
   Descripcion Valor TipoAlerta
  Predicho k=19 1.625
                Anormal
```