

Лаборатория сорбционных методов молекулярной диагностики

Конкурс при поддержке Биотех центра АГНИ

Научный руководитель

Марина Князева

Образование

2020 – ИФХЭ РАН Физическая химия Аспирантура (ожидаемая защита в 2023)

2016 – РХТУ Химия, Магистр (с отличием)

2014 – РХТУ

Химическая технология, Инженер

- Научный сотрудник ИФХЭ РАН, Лаборатория сорбционных процессов им. М.М. Дубинина
- Заместитель руководителя (направление МОК), Научно-технический центр "Адсорбционные технологии"

Ключевые индикаторы

10+	Статей WOS , <i>h</i> -индекс 5			
30+	Тезисов докладов и участия в конференциях и конкурсах			
10+	Разработанных методик синтеза новых МОК			
7	Заявок на международные и российские патенты			
5	Студентов, аспирантов и			

сотрудников лаборатории

обучены методам синтеза МОК

Навыки и обязанности

- Фундаментальные и прикладные научные исследования (адсорбция, пористые материалы, металлорганические каркасы, сенсоры)
- Руководство научной группой синтеза МОК
- Обучение младших сотрудников
- Написание статей, участие в конференциях, семинарах
- Член оргкомитета конференции "Актуальные проблемы адсорбции и пористых материалов"

Металлорганические каркасы (МОК) и их свойства

Свойства пористых металлорганических каркасов (МОК)

топология

Разнообразие химического состава и геометрии структур

ВЫДАЮЩИЕСЯ СВОЙСТВА

Высокая удельная площадь поверхности S_{BET} Объем микропор W_0 Энергия адсорбции E_0

РЕГУЛЯРНОСТЬ

Узкое распределение пор по размерам

ПОДВИЖНОСТЬ

Гибкость и адаптивность каркасной конструкции

Материалы на основе МОК в качестве новых адсорбционных сенсоров

Эффекты в сенсорах МОК при адсорбции анализируемых веществ

Реализация технологии адсорбционных сенсоров

Сорбционные сенсоры для портативного анализа сахарного диабета

Преимущества

- ✓ Неинвазивный метод подразумевает анализ выдыхаемого пациентом воздуха
- Возможность отслеживать динамику течения заболевания
- ✓ Электронная обработка формирование цифровых баз данных диабетиков
- ✓ Перспективы распространения технологий в области других социально значимых заболеваний

Направление и главные задачи

Цель

Разработка адсорбционных методов молекулярной диагностики для создания новых сенсорных элементов с высокой чувствительностью к маркерам социально значимых заболеваний с использованием управляемых данными и численных квантовых подходов к организации научной деятельности

Задачи лаборатории

- Разработка требований к структуре и методам работы с реляционными базами данных, содержащими информацию о МОК, методах их синтеза и сенсорных свойствах.
- Наполнение баз данных, их масштабирование и вовлечение новых участников в их разработку
- Разработка безмодельных алгоритмов прогнозирования на основе методов машинного обучения с использованием сгенерированных баз данных
- Разработка прогностических моделей проявления сенсорных свойств МОК на основе численных методов молекулярной динамики и квантово-химических методов
- Синтез и функционализация МОК с заданными свойствами для задач point-of-care молекулярной диагностики.

Ожидаемый результат

• Ускорение процесса получения МОК с заданными свойствами • Возможность масштабирования накопленного опыта для других научных областей

• Создание нового рынка сенсорных элементов

Data Driven R&D

Требования к технологическому процессу

«Реверс исследования"

Deep Learning (DL) машина

Готовый продукт для реализации

Построение, верификация процесса и масштабирование

Функционализация, эксперимент, верификация

Материал с индивидуальной пористой структурой

Экспериментальная часть

Проектная группа и кадровая политика

НРКнязева М.К.

- Базы данных и средства обработки DL
- Прогнозирующее моделирование

Направление разработок методов синтеза прецизионных материалов

Экспериментальное и инженерное направление

Наставники

ЛСП ИФХЭ РАН

Илья Меньщиков (к.х.н.)

Андрей Чугреев (д.ф.-м.н.) .

Андрей Школин (к.х.н)

Принципы и политика в области управления персоналом

- Меритократия идей
- Максимальная мобильность персонала
- Мониторинг развития
- Поощряется рост и выделение дополнительных средств
- Ротация в отрасли и наоборот
- Новые лица в качестве студентов/стажеров

План проекта

		1 год	2 год	3 год
Команда		4 – основных исполнителя (HP + 3 студента) 3 – наставника	5 – основных исполнителя (HP + 4 студента) 2 – наставника	6 – основных исполнителя (HP + 4 студента + 1 инженер) 2 – наставника
Задачи		 Разработка баз данных и методов deep learning (DL) Квантовая химия, методы молекулярной динамики (МД) для определения свойств МОК (DL Функция 1) 	 Методы искусственного интеллекта (ИИ) (DL Функция 2) Синтез МОК с чувствительными свойствами Эксп. исследования сенсорных свойств МОК 	 Выбор МОК для МVР Функционализация МОК Разработка первого прототипа адсорбционного сенсора
Инфраструктура		2 оборудованных постоянных рабочих места, компьютеры	 +1 экспериментальная установка на рабочем месте (синтез МОК) 	+1 рабочее местоэксп. установка + инжиниринг
КПЭ	публикацииконференциипрочее	 2 (Q1-Q2) 2 База данных, методы обработки данных (квантовая химия, МД + ИИ), заявка на БД 	 3 (Q1-Q2) 3 Новые методы искусственного интеллекта для технологии МОК, заявка на программу БД 	 3 (Q1-Q2) 3 MVP (сенсоры на основе МОК), заявка на изобретение
Финансы	грантыгос. грантыкоммерческие	4 млн. руб.--	• 6 млн. руб • -	6 млн. руб.2 млн. руб. (в целом, например, грант РНФ, комм. проект)
Сотрудничество		ИФХЭ РАН	ИФХЭ РАН	ИФХЭ РАН + 1 новая (биомедицинская отрасль)

Дорожная карта на 1-й год реализации проекта

Старт проекта!

- организация рабочих мест
- постановка задач
- распределение обязанностей
- стажировка в ЛСП ИФХЭ РАН для студентов АГНИ

Декабрь 2022

Октябрь-Ноябрь 2022

Развитие проекта!

- создание уникальной базы данных
- методы обработки данных

Моделирование сорбострикционных свойств МОК

Завершение 1 года проекта! -

Июль-Август

2023

Квантово-химическое моделирование магнитных и оптических свойств МОК

Разработка методов молекулярной динамики для определения сорбционных свойств МОК

Презентация Proof of Concept в рамках Rock Science Conference

Январь-Февраль

2023

подготовка научных статей в журналы Q1-Q2

отчет по первым результатам группы

Изучение, применение и разработка новых методов скрининга МОК (применительно к задачам биомедицины) Разработка протоколов синтеза

Разработка протоколов синтеза и измерения свойств МОК

Образ результата/proof of concept к декабрю 2022 года

- □ Запуск проекта и организация работы команды Лаборатории сорбционных методов молекулярной диагностики
- Разработка протоколов синтеза и измерения свойств МОК
- □ Начало формирования базы данных (БД)
- □ Проверка работы БД в первом приближении, определение проблем и пути решения при их наличии
- □ Освоение методов скрининга и моделирования (первичные результаты)
- □ План публикаций и участия в конференциях

Экспериментальный выбор

Цифровая машина (DL)

Три фактора определяют будущее – искусственный интеллект, биотехнологии и нанотехнологии.

М. Каку

Стань частью лаборатории будущего!

Контакты

Email: knyazeva.mk@phyche.ac.ru

Web: http://sorptionlab.ru/ - M.M. Dubinin Laboratory of sorption processes

https://adsorbtech.ru/_ - Engineering & Technical Center