

STATISTICS OF THE JACOBIANS OF HYPERELLIPTIC CURVES OVER FINITE FIELDS

MAOSHENG XIONG AND ALEXANDRU ZAHARESCU*

ABSTRACT. Let C be a smooth projective curve of genus $g \geq 1$ over a finite field \mathbb{F}_q of cardinality q . In this paper, we first study $\#\mathcal{J}_C$, the size of the Jacobian of C over \mathbb{F}_q in case that $\mathbb{F}_q(C)/\mathbb{F}_q(X)$ is a geometric Galois extension. This improves results of Shparlinski [19]. Then we study fluctuations of the quantity $\log \#\mathcal{J}_C - g \log q$ as the curve C varies over a large family of hyperelliptic curves of genus g . For fixed genus and growing q , Katz and Sarnak showed that $\sqrt{q}(\log \#\mathcal{J}_C - g \log q)$ is distributed as the trace of a random $2g \times 2g$ unitary symplectic matrix. When the finite field is fixed and the genus grows, we find the limiting distribution of $\log \#\mathcal{J}_C - g \log q$ in terms of the characteristic function. When both the genus and the finite field grow, we find that $\sqrt{q}(\log \#\mathcal{J}_C - g \log q)$ has a standard Gaussian distribution.

1. INTRODUCTION

Let C be a smooth projective curve of genus $g \geq 1$ over a finite field \mathbb{F}_q of cardinality q . The Jacobian $\text{Jac}(C)$ is a g -dimensional abelian variety. The set of the \mathbb{F}_q -rational points on $\text{Jac}(C)$, denoted by $\mathcal{J}_C = \text{Jac}(C)(\mathbb{F}_q)$, is a finite abelian group. The group \mathcal{J}_C has been studied extensively, partly because of its importance in the theory of algebraic curves and its surprising applications in public-key cryptography and computational number theory. For example, such groups are extremely useful in primality testing [3] and integer factorization [11, 12]. Statistics of group structures of \mathcal{J}_C , for instance the analogue of the Cohen-Lenstra conjecture over function fields

2000 *Mathematics Subject Classification.* 11G20, 11T55, 11M38.

Key words and phrases. zeta functions of curves, class number, Jacobian, Gaussian distribution.

*The second author was supported by NSF grant number DMS-0901621.

remains an inspiring problem in number theory and provides insight for number fields case. Interested readers may refer to [1, 2, 22] for details and current development. The main purpose of this paper is to study $\#J_C$, the size of the Jacobian over \mathbb{F}_q . This quantity is also the class number of the function field $\mathbb{F}_q(C)$ ([17, Theorem 5.9]), a subject of study with a rich history.

The zeta function of C/\mathbb{F}_q is a rational function of the form

$$Z_C(u) = \frac{P_C(u)}{(1-u)(1-qu)},$$

where $P_C(u) \in \mathbb{Z}[u]$ is a polynomial of degree $2g$ with $P_C(0) = 1$, satisfying the functional equation

$$P_C(u) = (qu^2)^g P_C\left(\frac{1}{qu}\right),$$

and having all its zeros on the circle $|u| = 1/\sqrt{q}$ (the Riemann Hypothesis for curves [23]). Moreover, there is a unitary symplectic matrix $\Theta_C \in \mathrm{USp}(2g)$, defined up to conjugacy, so that

$$P_C(u) = \det(I - u\sqrt{q}\Theta_C).$$

The eigenvalues of Θ_C are of the form $e(\theta_{C,j}), j = 1, \dots, 2g$, where $e(\theta) = e^{2\pi i \theta}$.

It is known that $\#\mathcal{J}_C = P_C(1)$ (see [13, Corollary VIII.6.3]). From this we immediately derive that

$$(q^{1/2} - 1)^{2g} \leq \#\mathcal{J}_C \leq (q^{1/2} + 1)^{2g},$$

which is tight in the case $g = 1$ due to the classical result of Deuring [6]. Many improvements of this bound have been obtained in [15, 16, 19, 20, 21]. In particular in an interesting paper [19], Shparlinski proves that if C is a smooth absolutely irreducible curve of genus g over \mathbb{F}_q with gonality d , then

$$(1) \quad \log \#\mathcal{J}_C = g \log q + O(g \log^{-1}(g/d))$$

as $g \rightarrow \infty$, where the implied constant may depend on q . (The gonality of a curve C is the smallest integer d such that C admits a non-constant map of degree d to the projective line over the ground field \mathbb{F}_q . For example, a hyperelliptic curve is a curve given by an affine model $Y^2 = F(X)$ for some $F \in \mathbb{F}_q[X]$, so the gonality is $d = 2$.) This generalizes and improves similar results of Tsfasman [21].

In this paper, we first prove that in case the function field $\mathbb{F}_q(C)$ is a geometric Galois extension of $\mathbb{F}_q(X)$, a sharper estimate can be obtained. Here “geometric” means that the constant field of $\mathbb{F}_q(C)$ is still \mathbb{F}_q .

Theorem 1. *Let C be a smooth projective curve of genus $g \geq 1$ over \mathbb{F}_q . Assume that the function field $\mathbb{F}_q(C)$ is a geometric Galois extension of the rational function field $\mathbb{F}_q(X)$ with $N = \#\text{Gal}(\mathbb{F}_q(C)/\mathbb{F}_q(X))$. Then*

$$(2) \quad |\log \#\mathcal{J}_C - g \log q| \leq (N-1) \left(\log \max \left\{ 1, \frac{\log(7g/(N-1))}{\log q} \right\} + 3 \right).$$

We remark that in Theorem 1, the inequality (2) is explicit and holds true for any g and q . Moreover, the quantity $\log \#\mathcal{J}_C - g \log q$ is essentially bounded by $O(\log \log g)$, which is significantly smaller than $O(g/\log g)$ implied from (1).

Now assume that q is odd. For each positive integer $d \geq 3$, denote by $\mathcal{H}_{d,q}$ the family of hyperelliptic curves having an affine equation of the form $Y^2 = F(X)$, with $F \in \mathbb{F}_q[X]$ a monic square-free polynomials of degree d . The measure on $\mathcal{H}_{d,q}$ is simply the uniform probability measure on the set of such polynomials. The genus of a curve $C \in \mathcal{H}_{d,q}$ is given by

$$g = g(C) = \left[\frac{d-1}{2} \right],$$

where for $x \in \mathbb{R}$, $[x]$ denotes the largest integer not exceeding x . For any $C \in \mathcal{H}_{d,q}$, since $\mathbb{F}_q(C)/\mathbb{F}_q(X)$ is a geometric Galois extension with Galois group $\mathbb{Z}/2\mathbb{Z}$, Theorem

1 implies that

$$(3) \quad |\log \#\mathcal{J}_C - g \log q| \leq \log \max \left\{ 1, \log \frac{\log(7g)}{\log q} \right\} + 3.$$

The inequality (3) appears to be very sharp, however we will see that for most hyperelliptic curves $C \in \mathcal{H}_{d,q}$, the value $|\log \#\mathcal{J}_C - g \log q|$ is actually much smaller. More precisely we prove the following.

Theorem 2. *For any $\psi \geq 2$, denote*

$$M_\psi := \#\{C \in \mathcal{H}_{d,q} : |\log \#\mathcal{J}_C - g \log q| \geq \psi\}.$$

Then

$$\frac{\#M_\psi}{\#\mathcal{H}_{d,q}} \ll \exp \left(-\frac{\psi}{2} \log(q \log \psi) \right),$$

where the implied constant in “ \ll ” is absolute.

Theorem 2 shows that the ratio $\frac{\#M_\psi}{\#\mathcal{H}_d}$ goes to zero very fast whenever ψ or q goes to infinity. When $q \rightarrow \infty$, this is not surprising. Actually, in this case, much more is known. Writing

$$P_C(u) = \prod_{i=1}^{2g} (1 - \sqrt{q} e(\theta_{C,i}) u),$$

then

$$\log \#\mathcal{J}_C - g \log q = \sum_{i=1}^{2g} \log(1 - q^{-1/2} e(\theta_{C,i})).$$

Katz and Sarnak [9] showed that for fixed genus g , the conjugacy classes $\{\Theta_C : C \in \mathcal{H}_{d,q}\}$ become uniformly distributed in $\mathrm{USp}(2g)$ in the limit $q \rightarrow \infty$. In particular, since

$$\lim_{q \rightarrow \infty} \sqrt{q} (\log \#\mathcal{J}_C - g \log q) = - \sum_{i=1}^{2g} e(\theta_{C,i}),$$

it implies that

(i). When g is fixed and $q \rightarrow \infty$, the value $-\sqrt{q}(\log \#\mathcal{J}_C - g \log q)$ for $C \in \mathcal{H}_{d,q}$ is distributed asymptotically as the trace of a random matrix in $\mathrm{USp}(2g)$.

Furthermore, since the limiting distribution of traces of a random matrix in $\mathrm{USp}(2g)$, as $g \rightarrow \infty$, is a standard Gaussian by a theorem of Diaconis and Shahshahani [7], it also implies that

(ii). If $q \rightarrow \infty$ and then $g \rightarrow \infty$, the value $\sqrt{q}(\log \#\mathcal{J}_C - g \log q)$ is distributed as a standard Gaussian.

Katz and Sarnak's powerful theorem [9] provides an almost complete story, except that in their argument, it is crucial to take the limit that $q \rightarrow \infty$. What happens if $g \rightarrow \infty$ instead? Complementary to (i) and (ii) above, we prove the following.

Theorem 3. (1). *If q is fixed and $g \rightarrow \infty$, then for $C \in \mathcal{H}_{d,q}$, the quantity $\log \#\mathcal{J}_C - g \log q + \delta_{d/2} \log(1 - q^{-1})$ converges weakly to a random variable X , whose characteristic function $\phi(t) = \mathbb{E}(e^{itX})$ is given by*

$$\phi(t) = 1 + \sum_{r=1}^{\infty} \frac{1}{r!} \sum_{\substack{P_1, \dots, P_r \\ \text{distinct}}} \prod_{j=1}^r \frac{(1 - |P_j|^{-1})^{-it} + (1 + |P_j|^{-1})^{-it} - 2}{2(1 + |P_j|^{-1})}, \quad \forall t \in \mathbb{R},$$

where

$$\delta_{\gamma} = \begin{cases} 1 & \gamma \in \mathbb{Z}, \\ 0 & \gamma \notin \mathbb{Z}, \end{cases}$$

and the sum on the right over P_1, \dots, P_r is over all distinct monic irreducible polynomials $P_1, \dots, P_r \in \mathbb{F}_q[X]$ and $|P_j| = q^{\deg P_j}$.

(2). *If both $q, g \rightarrow \infty$, then for $C \in \mathcal{H}_{d,q}$, $\sqrt{q}(\log \#\mathcal{J}_C - g \log q)$ is distributed as a standard Gaussian, that is, for any $\gamma \in \mathbb{R}$, we have*

$$\lim_{\substack{q \rightarrow \infty \\ g \rightarrow \infty}} \frac{1}{\#\mathcal{H}_{d,q}} \# \{C \in \mathcal{H}_{d,q} : \sqrt{q}(\log \#\mathcal{J}_C - g \log q) \leq \gamma\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\gamma} e^{-\frac{t^2}{2}} dt.$$

We remark that first, Theorem 3 is in the spirit of Kurlberg and Rudnick [10] and Faifman and Rudnick [8], who initiated the investigation of such problems. It

is also in the spirit of Bucur, David, Feigon and Lalín [4, 5], who made further important development. The proof of Theorem 3 depends heavily on techniques developed by Rudnick [18] and Faifman and Rudnick [8]. Second, (2) of Theorem 3 is slightly more general than Statement (ii) above as there is no requirement that $q \rightarrow \infty$ first. Finally, instead of averaging over $\mathcal{H}_{d,q}$, the family of hyperelliptic curves arising from monic square-free polynomials of degree d , the proof of Theorem 3 can be easily adapted to the moduli space of hyperelliptic curves of a fixed genus. Interested readers may refer to [4, 5] for terminology and treatment.

We organize this paper as follows. In Section 2 we collect several results which will be used later. Then we prove Theorem 1 in Section 3, Theorem 2 in Section 4 and Theorem 3 in Section 5 respectively. The proofs of Theorem 2 and Theorem 3 rely on Proposition 1–3 which are of technical natural. To emphasize and streamline the main ideas, we deal with these three propositions in Section 6.

2. PRELIMINARIES

In this section we collect several results which will be used later. Interested readers can refer to [17] for more details.

2.1. Zeta functions of function fields. Let $K = \mathbb{F}_q(X)$ be the rational function field over the finite field \mathbb{F}_q and let L/K be a finite geometric Galois extension. Here “geometric” means that the constant field of L is still \mathbb{F}_q . We list several facts about such extensions L/K as follows (see [17, Chapter 9] for more details).

First, the zeta function $\zeta_L(s)$ of L is defined by

$$\zeta_L(s) = \prod_{P \in \mathcal{S}_L} (1 - |P|^{-s})^{-1},$$

where the product is over \mathcal{S}_L , the set of all primes of L , and for each $P \in \mathcal{S}_L$, $|P|$ is the cardinality of the residue field of L at P . For the rational function field K , the

zeta function $\zeta_K(s)$ turns out to be

$$\zeta_K(s) = (1 - q^{-s})^{-1} (1 - q^{1-s})^{-1}.$$

If C is a smooth projective curve of genus $g \geq 1$ over \mathbb{F}_q with function field $\mathbb{F}_q(C) = L$, then $Z_C(q^{-s}) = \zeta_L(s)$, i.e., the zeta function of the curve C coincides with the zeta function of the function field $\mathbb{F}_q(C)$ (see [17, pp. 57, Chap 5] for details).

Let $G = \text{Gal}(L/K)$ be the Galois group of L/K and $\rho : G \rightarrow \text{Aut}_{\mathbb{C}}(V)$ a representation of G , where V is a finite-dimensional vector space over the complex numbers \mathbb{C} of dimension m . One defines the Artin L-series associated to the representation ρ as follows.

If P is a prime of K which is unramified in L and \mathcal{B} is a prime of L lying above P , one defines the local factor $L_P(s, \rho)$ as

$$(4) \quad L_P(s, \rho) = \det(I - \rho((\mathcal{B}, L/K))|P|^{-s})^{-1},$$

where I is the identity automorphism on V and $(\mathcal{B}, L/K) \in G$ is the Frobenius automorphism at \mathcal{B} . Since L/K is Galois, this definition does not depend on the choice of \mathcal{B} over P .

Let $\{\alpha_1(P), \alpha_2(P), \dots, \alpha_m(P)\}$ be the eigenvalues of $\rho((\mathcal{B}, L/K))$. In terms of these eigenvalues, we get another useful expression for $L_P(s, \rho)$:

$$L_P(s, \rho)^{-1} = (1 - \alpha_1(P)|P|^{-s}) (1 - \alpha_2(P)|P|^{-s}) \cdots (1 - \alpha_m(P)|P|^{-s}).$$

We note that these eigenvalues $\alpha_i(P)$ are all roots of unity because $(\mathcal{B}, L/K)$ has finite order.

At a prime P of K which is ramified in L , the local factor $L_P(s, \rho)$ can also be defined. The definition is similar to (4), except that the action $\rho((\mathcal{B}, L/K))$ is restricted to a subspace of V which is fixed by the inertial group $I(\mathcal{B}/P)$. We are contented with the fact that there are only finitely many primes P which are

ramified in L and in either case we can write $L_P(s, \rho)$ as

$$L_P(s, \rho)^{-1} = (1 - \alpha_1(P)|P|^{-s}) (1 - \alpha_2(P)|P|^{-s}) \cdots (1 - \alpha_m(P)|P|^{-s}),$$

where the values $\alpha_i(P)$'s are either roots of unity or zero. The Artin L-series $L(s, \rho)$ is defined by the infinite product

$$L(s, \rho) = \prod_{P \in \mathcal{S}_K} L_P(s, \rho),$$

where \mathcal{S}_K is the set of all primes in $K = \mathbb{F}_q(X)$.

It is known that if $\rho = \rho_0$, the trivial representation, then $L(s, \rho_0) = \zeta_K(s)$, and if $\rho = \rho_{\text{reg}}$, the regular representation, then $L(s, \rho_{\text{reg}}) = \zeta_L(s)$. It is also known that $L(s, \rho)$ depends only on the character χ of ρ , so we can write it as $L(s, \chi)$.

Finally, let L/K be a finite, geometric and Galois extension with Galois group $G = \text{Gal}(L/K)$. Let $\{\chi_1, \chi_2, \dots, \chi_h\}$ be the set of irreducible characters of G . We set $\chi_1 = \chi_0$, the trivial character. Denote by d_i the degree of χ_i , i.e., $d_i = \chi_i(e)$ is the dimension of the representation space corresponding to χ_i . Then using results about group characters and formal properties of Artin L-series, one derives that

$$(5) \quad \zeta_L(s) = \zeta_K(s) \prod_{i=2}^h L(s, \chi_i)^{d_i}.$$

2.2. Averaging over $\mathcal{H}_{d,q}$. Let $\mathcal{H}_{d,q} \subset \mathbb{F}_q[X]$ be the set of all monic square-free polynomials of degree $d \geq 3$.

Lemma 1. *For any Dirichlet character $\chi : \mathbb{F}_q[X] \rightarrow \mathbb{C}$ modulo $f \in \mathbb{F}_q[X]$, we have*

$$\frac{1}{\#\mathcal{H}_{d,q}} \sum_{F \in \mathcal{H}_{d,q}} \chi(F) \leq \frac{2^{\deg f - 1}}{(1 - q^{-1}) q^{d/2}}.$$

Proof. This is [8, Lemma 3.1], which proves the case when $\chi = (\frac{f}{\cdot})$ is a quadratic character. For the general case, the proof follows exactly the same line of argument, so we omit the details here. \square

Lemma 2. *Let $h \in \mathbb{F}_q[X]$ be a monic square-free polynomial. Then*

$$\frac{1}{\#\mathcal{H}_{d,q}} \sum_{\substack{F \in \mathcal{H}_{d,q} \\ \gcd(F,h)=1}} 1 = \prod_{P|h} (1 + |P|^{-1})^{-1} + O(q^{-d/2}\sigma(h)),$$

where $\sigma(h) = \sum_{D|h} 1$.

Proof. This is essentially [18, Lemma 5], which treats the case that $h = P$ is a monic irreducible polynomial. In fact in this case [18, Lemma 5] yields a much stronger error term $O(q^{-d})$. The extra saving is obtained by carefully analyzing the functional equation of the zeta function. To get the error term $O(q^{-d/2}\sigma(h))$, the proof follows a standard procedure which is included [18, Lemma 5]. We also omit details here. \square

3. PROOF OF THEOREM 1

Let C be a smooth projective curve of genus $g \geq 1$ over \mathbb{F}_q . The zeta function $Z_C(u)$ is of the form

$$Z_C(u) = \frac{P_C(u)}{(1-u)(1-qu)},$$

where $P_C(u) \in \mathbb{Z}[u]$ is a polynomial of degree $2g$ with $P_C(0) = 1$, satisfying the functional equation

$$P_C(u) = (qu^2)^g P_C\left(\frac{1}{qu}\right),$$

and having all its zeros on the circle $|u| = 1/\sqrt{q}$. We may write $P_C(u)$ as

$$P_C(u) = \prod_{i=1}^{2g} (1 - \sqrt{q}e(\theta_i)u),$$

where these $\theta_i \in [0, 1)$ and $e(\alpha)$ stands for $e^{2\pi i \alpha}$ for any $\alpha \in \mathbb{R}$.

Since $\#\mathcal{J}_C = P_C(1)$, we have

$$\#\mathcal{J}_C = \prod_{i=1}^{2g} (1 - \sqrt{q}e(\theta_i)) = q^g \prod_{i=1}^{2g} (1 - q^{-1/2}e(\theta_i)) .$$

Taking logarithms on both sides and using the expansion

$$(6) \quad -\log(1 - z) = \sum_{n \geq 1} \frac{z^n}{n}, \quad |z| < 1,$$

we obtain the equation

$$(7) \quad \log \#\mathcal{J}_C - g \log q = \sum_{n \geq 1} q^{-n/2} n^{-1} \sum_{i=1}^{2g} -e(n\theta_i) .$$

Denote $L = \mathbb{F}_q(C)$ and $K = \mathbb{F}_q(X)$. The zeta functions of L and K can be written as

$$\zeta_L(s) = (1 - q^{-s})^{-1} (1 - q^{1-s})^{-1} \prod_{i=1}^{2g} (1 - \sqrt{q}e(\theta_i)q^{-s}) ,$$

and

$$\zeta_K(s) = (1 - q^{-s})^{-1} (1 - q^{1-s})^{-1} .$$

Since L/K is a geometric Galois extension with $G = \text{Gal}(L/K)$ and $\#G = N$, let $\{\chi_1, \chi_2, \dots, \chi_h\}$ be the set of irreducible characters of G with $\chi_1 = \chi_0$, the trivial character and denote by d_i the degree of χ_i . From (5) we find that

$$(8) \quad \prod_{i=2}^h L(s, \chi_i)^{d_i} = \prod_{i=1}^{2g} (1 - \sqrt{q}e(\theta_i)q^{-s}) ,$$

where for each i with $2 \leq i \leq h$, the Artin L-series associated to χ_i can be written as

$$L(s, \chi_i)^{-1} = \prod_P (1 - \alpha_{i,1}(P)|P|^{-s}) (1 - \alpha_{i,2}(P)|P|^{-s}) \cdots (1 - \alpha_{i,d_i}(P)|P|^{-s}) .$$

Here the product is over all monic irreducible polynomials $P \in \mathbb{F}_q(X)$ and $P = \infty$ with $|P| = q^{\deg P}$ ($\deg \infty = 1$ hence $|\infty| = q$) and these $\alpha_{i,j}(P)$'s are either roots of unity or zero.

Taking logarithms on both sides of (8), using the expansion (6) again and equating the coefficients, we obtain for any positive integer n the identity

$$(9) \quad q^{n/2} \sum_{j=1}^{2g} -e(n\theta_i) = \sum_{\deg f=n} \Lambda(f) \sum_{i=2}^h d_i \sum_{j=1}^{d_i} \alpha_{i,j}(f),$$

where the sum on the right side over $\deg f = n$ is over all monic polynomials $f \in \mathbb{F}_q[X]$ with $\deg f = n$, $\Lambda(f) = \deg P$ if $f = P^k$ is a prime power, and $\Lambda(f) = 0$ otherwise.

Let Z be a positive integer which will be chosen later. Denote

$$\epsilon_{1,Z} = \sum_{n \leq Z} q^{-n/2} n^{-1} \sum_{i=1}^{2g} -e(n\theta_i),$$

and

$$\epsilon_{2,Z} = \sum_{n > Z} q^{-n/2} n^{-1} \sum_{i=1}^{2g} -e(n\theta_i).$$

From (7) we can write

$$\log \#\mathcal{J}_C - g \log q = \epsilon_{1,Z} + \epsilon_{2,Z}.$$

If $Z \geq 2$ we have

$$(10) \quad |\epsilon_{2,Z}| \leq \sum_{n \geq Z+1} q^{-n/2} n^{-1} 2g \leq \frac{2g}{Z+1} q^{-(Z+1)/2} (1 - q^{-1/2})^{-1},$$

and if $Z = 1$ we have

$$(11) \quad |\epsilon_{2,Z}| \leq 2g \left(-\log (1 - q^{-1/2}) - q^{-1/2} \right) \leq \frac{2g}{q - \sqrt{q}}.$$

For $\epsilon_{1,Z}$, we use the identity (9). Since $|\alpha_{i,j}| \leq 1$ for all i, j , we obtain the inequality

$$|\epsilon_{1,Z}| \leq \sum_{n \leq Z} q^{-n} n^{-1} \sum_{\deg f = n} \Lambda(f) \sum_{i=2}^h d_i^2.$$

It is known that

$$1 + \sum_{i=2}^h d_i^2 = N = \#G$$

and

$$\sum_{\deg f = n} \Lambda(f) = q^n + 1.$$

Here the extra “1” on the right side in the above equation accounts for $f = \infty^n$.

Hence

$$|\epsilon_{1,Z}| \leq (N-1) \left(\sum_{n \leq Z} \frac{1}{n} + \sum_{n \leq Z} \frac{1}{nq^n} \right).$$

If $Z = 1$, this is

$$(12) \quad |\epsilon_{1,Z}| \leq (N-1) (1 + q^{-1}),$$

and if $Z \geq 2$, we use

$$\sum_{n \leq Z} \frac{1}{n} \leq 1.5 + \log Z - \log 2$$

and

$$\sum_{n \leq Z} \frac{1}{nq^n} \leq -\log (1 - q^{-1}) \leq \frac{1}{q-1}$$

to obtain

$$(13) \quad |\epsilon_{1,Z}| \leq (N-1) \left(1.5 - \log 2 + \frac{1}{q-1} + \log Z \right), \quad Z \geq 2.$$

Case 1: if $2(1 - q^{-1/2})^{-1} g \geq (N-1)q$, we choose

$$Z = \left\lceil \frac{2 \log \frac{2(1 - q^{-1/2})^{-1} g}{N-1}}{\log q} \right\rceil \geq 2.$$

We find from (13) that

$$|\epsilon_{1,Z}| \leq (N-1) \left\{ 1.5 + \frac{1}{q-1} + \log \left(\frac{\log \frac{2(1-q^{-1/2})^{-1}g}{N-1}}{\log q} \right) \right\}$$

and from (10) that

$$|\epsilon_{2,Z}| \leq \frac{N-1}{2}.$$

In this case noticing that $q \geq 2$, we obtain

$$|\log \#\mathcal{J}_C - g \log q| \leq (N-1) \left(\log \left(\frac{\log \frac{7g}{N-1}}{\log q} \right) + 3 \right).$$

Case 2: if $2(1-q^{-1/2})^{-1}g < (N-1)q$, we choose $Z = 1$, and from (12) and (11) we obtain that

$$|\log \#\mathcal{J}_C - g \log q| \leq (N-1) (2 + q^{-1}) < 3(N-1).$$

In either case we conclude that

$$|\log \#\mathcal{J}_C - g \log q| \leq (N-1) \left(\log \max \left\{ 1, \frac{\log(7g/(N-1))}{\log q} \right\} + 3 \right).$$

This completes the proof of Theorem 1. \square

4. PROOF OF THEOREM 2

4.1. Preparation. Let \mathbb{F}_q be a finite field of cardinality q with q odd. Denote

$$\mathcal{H}_{d,q} = \{F \in \mathbb{F}_q[X] : F \text{ is monic, square-free and } \deg F = d\}.$$

For any $F \in \mathcal{H}_{d,q}$, the hyperelliptic curve C_F is given by the affine model

$$C_F : Y^2 = F(X).$$

It has genus

$$g = g_F = \left[\frac{d-1}{2} \right].$$

Suppose that the zeta function $Z_{C_F}(u)$ is of the form

$$Z_{C_F}(u) = \frac{\prod_{i=1}^{2g} (1 - \sqrt{q} e(\theta_{i,F}) u)}{(1-u)(1-qu)},$$

where the $\theta_{i,F}$'s are real numbers. Then

$$\#\mathcal{J}_{C_F} = \prod_{i=1}^{2g} (1 - \sqrt{q} e(\theta_{i,F})) = q^g \prod_{i=1}^{2g} (1 - q^{-1/2} e(\theta_{i,F})).$$

Taking logarithms on both sides we obtain the equation

$$\log \#\mathcal{J}_{C_F} - g \log q = \sum_{n \geq 1} q^{-n/2} n^{-1} \sum_{i=1}^{2g} -e(n\theta_{i,F}).$$

Let Z be a positive integer which will be chosen later. We write

$$(14) \quad \log \#\mathcal{J}_{C_F} - g \log q = \sum_{n \leq Z} q^{-n/2} n^{-1} \sum_{i=1}^{2g} -e(n\theta_{i,F}) + \epsilon_{1,Z}(F),$$

where

$$\epsilon_{1,Z}(F) = \sum_{n > Z} q^{-n/2} n^{-1} \sum_{i=1}^{2g} -e(n\theta_{i,F}).$$

It is easy to see that

$$|\epsilon_{1,Z}(F)| \leq \sum_{n > Z} q^{-n/2} n^{-1} 2g \leq \frac{9g}{Z} q^{-Z/2}.$$

Denote $L = \mathbb{F}_q(C_F)$ and $K = \mathbb{F}_q(X)$. Since L/K is a geometric quadratic extension and the Legendre symbol $\chi := \left(\frac{F}{\cdot}\right)$ generates the Galois group $\text{Gal}(L/K)$, from (5) we have

$$(15) \quad L(s, \chi) = \prod_{i=1}^{2g} (1 - \sqrt{q} e(\theta_{i,F}) q^{-s}),$$

and by definition

$$(16) \quad L(s, \chi) = \prod_P \left(1 - \left(\frac{F}{P} \right) |P|^{-s} \right)^{-1}.$$

Here the product is over all monic irreducible polynomials $P \in \mathbb{F}_q(X)$ and $P = \infty$ with $|P| = q^{\deg P}$ ($\deg \infty = 1$ hence $|\infty| = q$).

Computing $\frac{d}{ds} L(s, \chi)$ in two different ways using (15) and (16) and equating the coefficients we obtain for each positive integer n the identity

$$(17) \quad \sum_{i=1}^{2g} -e(n\theta_{i,F}) = q^{-n/2} \sum_{\deg f=n} \Lambda(f) \left(\frac{F}{f} \right) + q^{-n/2} \delta_{d/2},$$

where the sum over $\deg f = n$ on the right side is over all monic polynomials $f \in \mathbb{F}_q[X]$ with $\deg f = n$, and for any $\gamma \in \mathbb{R}$, $\delta_\gamma = 1$ if $\gamma \in \mathbb{Z}$, and $\delta_\gamma = 0$ if $\gamma \notin \mathbb{Z}$. The extra term $q^{-n/2} \delta_{d/2}$ comes from $f = \infty^n$, noting the fact that $F \in \mathcal{H}_{d,q}$ is monic and

$$\left(\frac{F}{\infty} \right) = \begin{cases} 1 & : \deg F \equiv 0 \pmod{2}, \\ 0 & : \deg F \equiv 1 \pmod{2}. \end{cases}$$

Using the identity (17) in (14) and denoting

$$N_F = \log \#\mathcal{J}_{C_F} - g \log q + \delta_{d/2} \log(1 - q^{-1}),$$

we find that

$$N_F = \Delta_Z(F) + \epsilon_Z(F),$$

where

$$(18) \quad \Delta_Z(F) = \sum_{n \leq Z} q^{-n} n^{-1} \sum_{\deg f=n} \Lambda(f) \left(\frac{F}{f} \right),$$

and

$$(19) \quad |\epsilon_Z(F)| \leq \frac{10g}{Z} q^{-Z/2}.$$

An upper bound for $\Delta_Z(F)$ is given by

$$|\Delta_Z(F)| \leq \sum_{n \leq Z} q^{-n} n^{-1} \sum_{\deg f = n} \Lambda(f) \leq 1 + \log Z,$$

and this can be used to estimate the quantity N_F (as in the proof of Theorem 1). Extra savings can be obtained by taking high moments of N_F and then averaging over the set $\mathcal{H}_{d,q}$.

4.2. The r -th moment Δ_Z . For any function $\chi : \mathcal{H}_d \rightarrow \mathbb{C}$, we denote by $\langle \chi \rangle$ the mean value of χ on $\mathcal{H}_{d,q}$, that is,

$$\langle \chi \rangle := \frac{1}{\#\mathcal{H}_{d,q}} \sum_{F \in \mathcal{H}_{d,q}} \chi(F).$$

Assume that $d \geq 100$. We choose r to be any positive even integer in the range

$$(20) \quad 4 \leq r \leq \log d.$$

We will estimate the r -moment $\langle (\Delta_Z)^r \rangle$ first.

From (18),

$$\Delta_Z(F)^r = \sum_{n_1, \dots, n_r \leq Z} \prod_{i=1}^r q^{-n_i} n_i^{-1} \sum_{\substack{\deg f_i = n_i \\ 1 \leq i \leq r}} \Lambda(f_1) \cdots \Lambda(f_r) \left(\frac{F}{f_1 \cdots f_r} \right),$$

hence

$$\langle (\Delta_Z)^r \rangle = \sum_{n_1, \dots, n_r \leq Z} \prod_{i=1}^r q^{-n_i} n_i^{-1} \sum_{\substack{\deg f_i = n_i \\ 1 \leq i \leq r}} \Lambda(f_1) \cdots \Lambda(f_r) \left\langle \left(\frac{\cdot}{f_1 \cdots f_r} \right) \right\rangle.$$

If $f_1 \cdots f_r$ is not a square in $\mathbb{F}_q[X]$, then $\left(\frac{\cdot}{f_1 \cdots f_r}\right) : \mathbb{F}_q[X] \rightarrow \mathbb{C}$ is a non-trivial Dirichlet character modulo h with $\deg h \leq \sum_{i=1}^r \deg f_i$, by Lemma 1 we find that

$$\left\langle \left(\frac{\cdot}{f_1 \cdots f_r}\right) \right\rangle \leq \frac{2^{n_1 + \cdots + n_r - 1}}{(1 - q^{-1}) q^{d/2}}.$$

The total contribution to $\langle (\Delta_Z)^r \rangle$ from this case is bounded by

$$T_1 \leq \sum_{n_1, \dots, n_r \leq Z} \prod_{i=1}^r q^{-n_i} n_i^{-1} \sum_{\substack{\deg f_i = n_i \\ 1 \leq i \leq r}} \Lambda(f_1) \cdots \Lambda(f_r) \frac{2^{n_1 + \cdots + n_r - 1}}{(1 - q^{-1}) q^{d/2}}.$$

This can be estimated as

$$(21) \quad T_1 \leq \frac{q^{-d/2} 2^{(Z+1)r}}{2(1 - q^{-1})} \leq q^{-d/2} 2^{(Z+1)r}.$$

If $f_1 \cdots f_r$ is a square in $\mathbb{F}_q[X]$, denote $f_1 \cdots f_r = h^2$ and $\tilde{h} = \prod_{P|h} P$, then $\left(\frac{\cdot}{h^2}\right)$ is a trivial character, by Lemma 2 we find that

$$\left\langle \left(\frac{\cdot}{h^2}\right) \right\rangle = \frac{1}{\#\mathcal{H}_{d,q}} \sum_{\substack{F \in \mathcal{H}_{d,q} \\ \gcd(F, \tilde{h}) = 1}} 1 = \prod_{P|\tilde{h}} (1 + |P|^{-1})^{-1} + O\left(q^{-d/2} \sigma(\tilde{h})\right).$$

Since f_i 's are always prime powers, $\sigma(\tilde{h}) \leq 2^r$. The total contribution to $\langle (\Delta_Z)^r \rangle$ from the error term $O\left(q^{-d/2} \sigma(\tilde{h})\right)$ is bounded by

$$T_2 \leq \sum_{n_1, \dots, n_r \leq Z} \prod_{i=1}^r q^{-n_i} n_i^{-1} \sum_{\substack{\deg f_i = n_i \\ 1 \leq i \leq r}} \Lambda(f_1) \cdots \Lambda(f_r) q^{-d/2} 2^r.$$

This can be estimated as

$$(22) \quad T_2 \leq q^{-d/2} 2^r (1 + \log Z)^r.$$

The total contribution from the main term $\prod_{P|\tilde{h}} (1 + |P|^{-1})^{-1}$ is

$$\sum_{n_1, \dots, n_r \leq Z} \prod_{i=1}^r q^{-n_i} n_i^{-1} \sum_{\substack{\deg f_i = n_i \\ 1 \leq i \leq r \\ f_1 \cdots f_r = h^2}} \Lambda(f_1) \cdots \Lambda(f_r) \prod_{P|h} (1 + |P|^{-1})^{-1}.$$

Removing the restrictions that $n_1, \dots, n_r \leq Z$, all terms being non-negative, we can bound the above sums as

$$(23) \quad H(r) = \sum_{n_1, \dots, n_r \geq 1} \prod_{i=1}^r q^{-n_i} n_i^{-1} \sum_{\substack{\deg f_i = n_i \\ 1 \leq i \leq r \\ f_1 \cdots f_r = h^2}} \Lambda(f_1) \cdots \Lambda(f_r) \prod_{P|h} (1 + |P|^{-1})^{-1}.$$

Proposition 2 which we will prove in Section 6 provides us with the estimate

$$H(r) \leq C \left(\frac{4r \log \log r}{\sqrt{q} \log r} \right)^r$$

for any positive integer $r \geq 4$, where $C > 0$ is an absolute constant. Combining it with (21) and (22) we obtain

$$\langle (\Delta_Z)^r \rangle \leq q^{-d/2} 2^{(Z+1)r} + q^{-d/2} 2^r (1 + \log Z)^r + C \left(\frac{r}{\sqrt{q} \log r} \right)^r.$$

Choosing

$$(24) \quad Z = \left\lceil \frac{d}{(\log d)^2} \right\rceil,$$

we find that

$$(25) \quad \langle (\Delta_Z)^r \rangle \leq C \left(\frac{r}{\sqrt{q} \log r} \right)^r$$

for some absolute constant C , where the positive integer r is in the range (20).

4.3. Proof of Theorem 2. Since $N_F = \Delta_Z(F) + \epsilon_Z(F)$, we have

$$\langle (N_F)^r \rangle = \langle (\Delta_Z)^r \rangle + E_{Z,r},$$

where

$$E_{Z,r} = \sum_{l=0}^{r-1} \binom{r}{l} \langle (\epsilon_Z)^{r-l} (\Delta_Z)^l \rangle .$$

Using (19), (20), (24) and (25) we find that

$$E_{Z,r} \leq r^{r+1} \left(\frac{10g}{Z} q^{-Z/2} \right) \langle (\Delta_Z)^{2r} \rangle^{1/2} \leq C \left(\frac{r}{\sqrt{q \log r}} \right)^r$$

for some absolute constant C . Therefore again we obtain

$$\langle (N_F)^r \rangle \leq C \left(\frac{r}{\sqrt{q \log r}} \right)^r ,$$

and the above inequality holds true for any positive even integer r in the range $4 \leq r \leq \log d$ and $d \geq 100$.

For any ψ with $4 \leq \psi \leq \log d$, denote

$$M_\psi = \# \{F \in \mathcal{H}_{d,q} : |N_F| \geq \psi\} .$$

Then for any positive even integer r in the range (20) we have

$$\frac{\#M_\psi}{\#\mathcal{H}_{d,q}} \psi^r \leq \langle (N_F)^r \rangle \leq C \left(\frac{r}{\sqrt{q \log r}} \right)^r .$$

Choosing $r \approx \psi$ we find that

$$\frac{\#M_\psi}{\#\mathcal{H}_{d,q}} \leq C \left(\frac{1}{\sqrt{q \log \psi}} \right)^\psi \ll \exp \left(-\frac{\psi}{2} \log(q \log \psi) \right) .$$

This completes the proof of Theorem 2. \square

5. PROOF OF THEOREM 3

The proof of Theorem 3 is similar to that of Theorem 2, except that in the proof of Theorem 3, we need exact asymptotic formulas for each fixed r -th moment under the limit that $g \rightarrow \infty$ and both $g, q \rightarrow \infty$, instead of upper bounds as in the proof of Theorem 2. We summarize part of the proof of Theorem 2 as follows. From now

on the constants implied by the notation “ \ll ” and “ O ” may depend on the fixed positive integer r .

As $d \rightarrow \infty$ or $d, q \rightarrow \infty$, let $g = \lceil \frac{d-1}{2} \rceil \rightarrow \infty$. Choose

$$(26) \quad Z = \left\lceil \frac{d}{(\log d)^2} \right\rceil.$$

Denote

$$(27) \quad N_F = \log \#\mathcal{J}_{C_F} - g \log q + \delta_{d/2} \log (1 - q^{-1}).$$

Then

$$N_F = \Delta_Z(F) + \epsilon_Z(F),$$

where

$$\Delta_Z(F) = \sum_{n \leq Z} q^{-n} n^{-1} \sum_{\deg f = n} \Lambda(f) \left(\frac{F}{f} \right),$$

and

$$(28) \quad |\epsilon_Z(F)| \leq \frac{10g}{Z} q^{-Z/2}, \quad |\Delta_Z(F)| \ll \log Z.$$

For each positive integer r ,

$$\langle (\Delta_Z)^r \rangle = \sum_{n_1, \dots, n_r \leq Z} \prod_{i=1}^r q^{-n_i} n_i^{-1} \sum_{\substack{\deg f_i = n_i \\ 1 \leq i \leq r \\ f_1 \cdots f_r = h^2}} \Lambda(f_1) \cdots \Lambda(f_r) \prod_{P|h} (1 + |P|^{-1})^{-1} + T_1 + T_2,$$

where

$$|T_1| + |T_2| \leq q^{-d/2} 2^{(Z+1)r} + q^{-d/2} 2^r (1 + \log Z)^r \ll q^{-d/3}.$$

We can write the main term as

$$\sum_h \prod_{P|h} (1 + |P|^{-1})^{-1} |h|^{-2} \sum_{\substack{\deg f_i \leq Z \\ 1 \leq i \leq r \\ f_1 \cdots f_r = h^2}} \frac{\Lambda(f_1) \cdots \Lambda(f_r)}{(\deg f_1) \cdots (\deg f_r)}.$$

Removing the restriction that $\deg f_1, \dots, \deg f_r \leq Z$ results in an error bounded by

$$\sum_{\substack{h \\ \deg h > Z/2}} \prod_{P|h} (1 + |P|^{-1})^{-1} |h|^{-2} \sum_{\substack{f_1, \dots, f_r \\ f_1 \cdots f_r = h^2}} \frac{\Lambda(f_1) \cdots \Lambda(f_r)}{(\deg f_1) \cdots (\deg f_r)}.$$

Noticing that $\frac{\Lambda(f_i)}{\deg f_i} \leq 1$ and f_i 's are all prime powers, the sum over h is actually over all monic polynomials $h \in F[X]$ with $\omega(h) \leq r$ and $\deg h > Z/2$, where $\omega(h)$ is the function counting the number of distinct prime factors of h . If such an h is chosen, the number of choices for each f_i dividing h which is a prime power is less than $2r \deg h$. Hence the error by removing the restriction that $\deg f_1, \dots, \deg f_r \leq Z$ is bounded by

$$T_3 \leq \sum_{\deg h > Z/2} |h|^{-2} (2r \deg h)^r = \sum_{n > Z/2} q^{-n} (2rn)^r \ll q^{-Z/4}.$$

Combining these estimates together we obtain

$$\langle (\Delta_Z)^r \rangle = H(r) + T,$$

where $H(r)$ is the same function given in (23) as in the proof of Theorem 2 and $T \ll q^{-Z/4}$. As in the proof of Theorem 2, we write

$$\langle (N_F)^r \rangle = \langle (\Delta_Z)^r \rangle + E_{Z,r},$$

where

$$E_{Z,r} = \sum_{l=1}^r \binom{r}{l} \langle (\epsilon_Z)^l (\Delta_Z)^{r-l} \rangle \ll q^{-Z/4}.$$

Using (26) and (28) we find that

$$(29) \quad \langle (N_F)^r \rangle = H(r) + O(q^{-Z/4}).$$

If q is fixed and $d \rightarrow \infty$, then for each fixed r ,

$$\lim_{d \rightarrow \infty} \langle (N_F)^r \rangle = H(r).$$

Now suppose that X is a random variable with

$$(30) \quad \mathbb{E}(X^r) = H(r), \quad \forall r \in \mathbb{N}.$$

For any $t \in \mathbb{R}$, the characteristic function $\phi(t)$ of X is given by

$$\phi(t) = \mathbb{E}(e^{itX}).$$

Expanding e^{itX} by using the identity

$$(31) \quad e^x = 1 + \sum_{n=1}^{\infty} \frac{x^n}{n!},$$

using (30) and applying Proposition 1 for $H(r)$ which we will prove in Section 6, we find that

$$\phi(t) = 1 + \sum_{n=1}^{\infty} \frac{(it)^n}{n!} \sum_{r=1}^{\infty} \frac{n!}{2^r r!} \sum_{\substack{\lambda_1 + \dots + \lambda_r = n \\ \lambda_i \geq 1}} \sum_{\substack{P_1, \dots, P_r \\ \text{distinct}}} \prod_{j=1}^r \frac{u_{P_j}^{\lambda_j} + (-1)^{\lambda_j} v_{P_j}^{\lambda_j}}{\lambda_j! (1 + |P_j|^{-1})},$$

where for any $P \in \mathbb{F}_q[X]$,

$$u_P = -\log(1 - |P_j|^{-1}), \quad v_P = \log(1 + |P_j|^{-1}).$$

Changing the order of summation again we obtain

$$\phi(t) = 1 + \sum_{r=1}^{\infty} \frac{1}{2^r r!} \sum_{\substack{P_1, \dots, P_r \\ \text{distinct}}} \prod_{j=1}^r \left(\sum_{\lambda_j=1}^{\infty} \frac{(it)^{\lambda_j} (u_{P_j}^{\lambda_j} + (-1)^{\lambda_j} v_{P_j}^{\lambda_j})}{\lambda_j! (1 + |P_j|^{-1})} \right).$$

The identity (31) implies that

$$\phi(t) = 1 + \sum_{r=1}^{\infty} \frac{1}{2^r r!} \sum_{\substack{P_1, \dots, P_r \\ \text{distinct}}} \prod_{j=1}^r \left(\frac{(1 - |P_j|^{-1})^{-it} + (1 + |P_j|^{-1})^{-it} - 2}{\lambda_j! (1 + |P_j|^{-1})} \right).$$

This completes the proof of (1) of Theorem 3.

For (2) of Theorem 3, assume that both $d, q \rightarrow \infty$. Proposition 3 which we will prove in Section 6 shows that for each fixed positive integer r we have

$$H(r) = \frac{\delta_{r/2} r!}{2^{r/2} (r/2)!} q^{-r/2} + O(q^{-(r+1)/2}).$$

Here the implied constant in the notation “ O ” depends on r . From (29) we find that for any fixed positive integer r

$$\langle (N_F)^r \rangle = \frac{\delta_{r/2} r!}{2^{r/2} (r/2)!} q^{-r/2} + O(q^{-(r+1)/2} + q^{-Z/4}).$$

We rewrite it as

$$\langle (\sqrt{q} N_F)^r \rangle = \frac{\delta_{r/2} r!}{2^{r/2} (r/2)!} + O(q^{-1/2} + q^{-(Z-2r)/4}).$$

Using the definition of N_F in (27), letting $q, d \rightarrow \infty$, also noticing that

$$\lim_{q \rightarrow \infty} \sqrt{q} \log(1 - q^{-1}) = 0,$$

we find that all moments of $\sqrt{q} (\log \#J_{C_F} - g \log q)$ as F varies in \mathcal{H}_d are asymptotic to the corresponding moments of a standard Gaussian distribution, where the odd moments vanish and the even moments are

$$\frac{1}{\sqrt{2\pi}} \int_{\infty}^{\infty} x^{2r} e^{-x^2/2} dx = \frac{(2r)!}{2^r r!}.$$

This implies that as $q, d \rightarrow \infty$ and F varies in the set \mathcal{H}_d , the value $\sqrt{q} (\log \#J_{C_F} - g \log q)$, considered as a random variable on the space \mathcal{H}_d , converges weakly to a standard Gaussian variable. This completes the proof (2) of Theorem 3. \square

6. ANALYSIS OF $H(s)$

6.1. Proposition 1. Let \mathbb{F}_q be a finite field of cardinality q . For any positive integer s , denote

$$H(s) = \sum_{n_1, \dots, n_s \geq 1} \prod_{i=1}^s q^{-n_i} n_i^{-1} \sum_{\substack{\deg f_i = n_i \\ 1 \leq i \leq s \\ f_1 \cdots f_s = h^2}} \Lambda(f_1) \cdots \Lambda(f_s) \prod_{P|h} (1 + |P|^{-1})^{-1}.$$

We first derive another representation of $H(s)$ which is useful in the proofs of Theorems 2 and 3.

Proposition 1. For any positive integer $s \geq 1$ we have

$$H(s) = \sum_{r=1}^s \frac{s!}{2^r r!} \sum_{\substack{\lambda_1 + \cdots + \lambda_r = s \\ \lambda_i \geq 1}} \sum_{\substack{P_1, \dots, P_r \\ \text{distinct}}} \prod_{i=1}^r \frac{u_{P_i}^{\lambda_i} + (-1)^{\lambda_i} v_{P_i}^{\lambda_i}}{\lambda_i! (1 + |P_i|^{-1})},$$

where the sum on the right side is over all positive integers $\lambda_1, \dots, \lambda_r$ such that $\lambda_1 + \cdots + \lambda_r = s$ and over all distinct monic irreducible polynomials $P_1, \dots, P_r \in \mathbb{F}_q[X]$, and

$$(32) \quad u_P = -\log(1 - |P|^{-1}), \quad v_P = \log(1 + |P|^{-1}), \quad \forall P \in \mathbb{F}_q[X].$$

Proof. We rewrite $H(s)$ as

$$H(s) = \sum_h \prod_{P|h} (1 + |P|^{-1})^{-1} |h|^{-2} \sum_{\substack{f_1, \dots, f_s \\ f_1 \cdots f_s = h^2}} \frac{\Lambda(f_1) \cdots \Lambda(f_s)}{(\deg f_1) \cdots (\deg f_s)}.$$

Since f_i 's are prime powers, the sum over h is actually over all monic polynomials $h \in \mathbb{F}_q[X]$ with $\omega(h) \leq r$, where $\omega(h)$ is the number of distinct prime factors of h . Hence

$$(33) \quad H(s) = \sum_{r=1}^s H(s, r),$$

where

$$H(s, r) = \sum_{\substack{h \\ \omega(h)=r}} \prod_{P|h} (1 + |P|^{-1})^{-1} |h|^{-2} \sum_{\substack{f_1, \dots, f_s \\ f_1 \cdots f_s = h^2}} \frac{\Lambda(f_1) \cdots \Lambda(f_s)}{(\deg f_1) \cdots (\deg f_s)}.$$

If $\omega(h) = r$, write explicitly $h = P_1^{a_1} \cdots P_r^{a_r}$ for some distinct primes P_1, \dots, P_r and exponents $a_1, \dots, a_r \geq 1$, then

$$H(s, r) = \frac{1}{r!} \sum_{\substack{P_1, \dots, P_r \\ \text{distinct}}} \sum_{\substack{a_1, \dots, a_r \geq 1 \\ h = P_1^{a_1} \cdots P_r^{a_r}}} \prod_{i=1}^r (1 + |P_i|^{-1})^{-1} |P_i|^{-2a_i} \sum_{\substack{f_1, \dots, f_s \\ f_1 \cdots f_s = h^2}} \frac{\Lambda(f_1) \cdots \Lambda(f_s)}{(\deg f_1) \cdots (\deg f_s)}.$$

Since each f_i is a prime power and $f_1 \cdots f_s = P_1^{2a_1} \cdots P_r^{2a_r}$, there are finitely many ways to assign prime powers to each f_i , according to which we will break $H(s, r)$ into many subsums. With that in mind, for each partition of the set of indexes

$$\{1, 2, \dots, s\} = \bigcup_{i=1}^r A_i, \quad \#A_i = \lambda_i \geq 1, \forall i,$$

it satisfies the property that

$$\sum_{i=1}^r \lambda_i = s.$$

We say (A_1, \dots, A_r) is the type of (f_1, \dots, f_r) with $f_1 \cdots f_r = h^2$, namely whenever $j \in A_i$, then f_j is a power of P_i . Suppose that $f_i = Q_i^{e_i}$ for some prime $Q_i \in \{P_1, \dots, P_r\}$ and exponent $e_i \geq 1$, and the type of (f_1, \dots, f_r) is (A_1, \dots, A_r) , since $f_1 \cdots f_s = P_1^{2a_1} \cdots P_r^{2a_r}$, comparing the exponents of P_j on both sides we find that

$$(34) \quad \sum_{i \in A_j} e_i = 2a_j \quad \forall 1 \leq j \leq r,$$

and

$$\frac{\Lambda(f_1) \cdots \Lambda(f_s)}{(\deg f_1) \cdots (\deg f_s)} = \frac{1}{e_1 \cdots e_s}.$$

Instead of summing over all integers a_1, \dots, a_r , we sum over all positive integers e_1, \dots, e_s which satisfy the conditions (34). Noticing that the value only depends

on the vector of integers $(\lambda_1, \dots, \lambda_r)$ such that

$$\sum_{i=1}^r \lambda_i = s,$$

hence we can write $H(s, r)$ as

$$H(s, r) = \frac{s!}{r!} \sum_{\substack{\lambda_1 + \dots + \lambda_r = s \\ \lambda_i \geq 1}} \sum_{\substack{P_1, \dots, P_r \\ \text{distinct}}} \prod_{i=1}^r \left(\frac{(1 + |P_i|^{-1})^{-1}}{\lambda_i!} \sum_{\substack{a_1 + \dots + a_{\lambda_i} \equiv 0 \pmod{2} \\ a_j \geq 1}} \frac{|P_i|^{-a_1 - \dots - a_{\lambda_i}}}{a_1 \cdots a_{\lambda_i}} \right).$$

For each prime P and positive integer λ , denote

$$\eta(\lambda) = \eta_P(\lambda) := \sum_{\substack{a_1 + \dots + a_{\lambda} \equiv 0 \pmod{2} \\ a_i \geq 1}} \frac{|P|^{-a_1 - \dots - a_{\lambda}}}{a_1 \cdots a_{\lambda}},$$

and

$$\tau(\lambda) = \tau_P(\lambda) := \sum_{\substack{a_1 + \dots + a_{\lambda} \equiv 1 \pmod{2} \\ a_i \geq 1}} \frac{|P|^{-a_1 - \dots - a_{\lambda}}}{a_1 \cdots a_{\lambda}}.$$

Since

$$-\log(1 - x) = \sum_{n \geq 1} \frac{x^n}{n}, \quad |x| < 1,$$

we find

$$(35) \quad \eta(1) = -\frac{1}{2} \log(1 - |P|^{-2}),$$

and

$$(36) \quad \eta(\lambda) + \tau(\lambda) = \sum_{a_1, \dots, a_{\lambda} \geq 1} \frac{|P|^{-a_1 - \dots - a_{\lambda}}}{a_1 \cdots a_{\lambda}} = (-1)^{\lambda} \log^{\lambda}(1 - |P|^{-1}).$$

Combining (35) and (36) we have

$$\tau(1) = -\log(1 - |P|^{-1}) + \frac{1}{2} \log(1 - |P|^{-2}).$$

For $\lambda \geq 2$, we can write

$$\eta(\lambda) = \sum_{\substack{a_2 + \dots + a_\lambda \equiv 0 \pmod{2} \\ a_i \geq 1}} \left(\prod_{i=1}^{\lambda} \frac{|P|^{-a_i}}{a_i} \right) \eta(1) + \sum_{\substack{a_2 + \dots + a_\lambda \equiv 1 \pmod{2} \\ a_i \geq 1}} \left(\prod_{i=1}^{\lambda} \frac{|P|^{-a_i}}{a_i} \right) \tau(1).$$

This shows that

$$(37) \quad \eta(\lambda) = \eta(1)\eta(\lambda-1) + \tau(1)\tau(\lambda-1).$$

Similarly for $\lambda \geq 2$,

$$(38) \quad \tau(\lambda) = \eta(1)\tau(\lambda-1) + \tau(1)\eta(\lambda-1).$$

We can assign the initial values

$$\eta(0) = 1, \quad \tau(0) = 0,$$

so that the recursive relations (37) and (38) hold for any $\lambda \geq 1$. Subtracting these two recursive relations we obtain

$$\eta(\lambda) - \tau(\lambda) = (\eta(1) - \tau(1)) (\eta(\lambda-1) - \tau(\lambda-1)).$$

Applying this relation recursively and using (36) we conclude that

$$\eta(\lambda) = \frac{1}{2} (u_P^\lambda + (-1)^\lambda v_P^\lambda),$$

where

$$u_P = -\log(1 - |P|^{-1}), \quad v_P = \log(1 + |P|^{-1}).$$

Therefore $H(s, r)$ can be written as

$$H(s, r) = \frac{s!}{2^r r!} \sum_{\substack{\lambda_1 + \dots + \lambda_r = s \\ \lambda_i \geq 1}} \sum_{\substack{P_1, \dots, P_r \\ \text{distinct}}} \prod_{i=1}^r \frac{u_{P_i}^{\lambda_i} + (-1)^{\lambda_i} v_{P_i}^{\lambda_i}}{\lambda_i! (1 + |P_i|^{-1})}.$$

Returning to (33) completes the proof of Proposition 1. \square

6.2. Proposition 2. We will prove the following.

Proposition 2. *For any positive integer $s \geq 4$ we have*

$$H(s) \leq C \left(\frac{4s \log \log s}{\sqrt{q} \log s} \right)^s,$$

where $C > 0$ is an absolute constant.

Proof. Denote for each positive integer λ

$$h(\lambda) = \sum_P (u_P^\lambda + (-1)^\lambda v_P^\lambda),$$

where the summation is over all monic irreducible polynomials $P \in \mathbb{F}_q[X]$. An upper bound of $H(s, r)$ is given by

$$(39) \quad G(s, r) = \frac{s!}{2^r r!} \sum_{\substack{\lambda_1 + \dots + \lambda_r = s \\ \lambda_i \geq 1}} \prod_{i=1}^r \frac{h(\lambda_i)}{\lambda_i!}.$$

Lemma 3. *For each positive integer $\lambda \geq 2$, we have*

$$h(2 + \lambda) < h(2)h(\lambda).$$

Proof. We have

$$h(2)h(\lambda) = \sum_{P, Q} (u_P^2 + v_P^2) (u_Q^\lambda + (-1)^\lambda v_Q^\lambda),$$

hence

$$h(2)h(\lambda) > \sum_{P=Q} (u_P^2 + v_P^2) (u_P^\lambda + (-1)^\lambda v_P^\lambda).$$

Since $u_P > v_P > 0$ for any P , we have

$$(u_P^2 + v_P^2) (u_P^\lambda + (-1)^\lambda v_P^\lambda) - (u_P^{2+\lambda} + (-1)^\lambda v_P^{2+\lambda}) = u_P^2 v_P^2 (u_P^{\lambda-2} + (-1)^\lambda v_P^{\lambda-2}) \geq 0,$$

hence

$$h(2)h(\lambda) > \sum_P (u_P^{2+\lambda} + (-1)^\lambda v_P^{2+\lambda}) = h(2+\lambda).$$

This completes the proof of Lemma 3. \square

Lemma 4.

$$h(3) < h(2)^{3/2}.$$

Proof. Since

$$h(2)^3 = \sum_{P,Q,R} (u_P^2 + v_P^2) (u_Q^2 + v_Q^2) (u_R^2 + v_R^2),$$

we have

$$h(2)^3 > \sum_{P,Q=R} (u_P^2 + v_P^2) (u_Q^2 + v_Q^2)^2.$$

Similarly,

$$h(2)^3 > \sum_{P=R,Q} (u_P^2 + v_P^2)^2 (u_Q^2 + v_Q^2).$$

Noting that

$$h(3)^2 = \sum_{P,Q} (u_P^3 - v_P^3) (u_Q^3 - v_Q^3) < \sum_{P,Q} u_P^3 u_Q^3,$$

and

$$u_P^3 u_Q^3 \leq \frac{1}{2} (u_P^2 u_Q^4 + u_P^4 u_Q^2) < \frac{1}{2} \left((u_P^2 + v_P^2) (u_Q^2 + v_Q^2)^2 + (u_P^2 + v_P^2)^2 (u_Q^2 + v_Q^2) \right),$$

summing over all P and Q we find that

$$h(3)^2 < h(2)^3.$$

This completes the proof of Lemma 4. \square

Lemma 5.

$$h(1) < h(2)^{1/2}.$$

Proof. This can be checked explicitly. First

$$h(1) = \sum_P \log \frac{1}{1 - |P|^{-2}} = \log \prod_P (1 - |P|^{-2})^{-1}.$$

From the zeta function of the rational function field $K = \mathbb{F}_q(X)$ we know that

$$\prod_P (1 - |P|^{-2})^{-1} = (1 - q^{-1})^{-1},$$

hence

$$h(1) = -\log(1 - q^{-1}).$$

On the other hand,

$$(40) \quad h(2) = \sum_P \log^2 \left(\frac{1}{1 - |P|^{-1}} \right) + \log^2(1 + |P|^{-1}).$$

The terms with $\deg P = 1$ (there are q of them) already contribute

$$q \left(\log^2 \left(\frac{1}{1 - q^{-1}} \right) + \log^2(1 + q^{-1}) \right) > q \log^2 \left(\frac{1}{1 - q^{-1}} \right)$$

to $h(2)$. This completes the proof of Lemma 5. \square

From Lemma 4 and Lemma 5 we know that

$$h(1)^2 h(3)^2 < h(2) h(2)^3 = h(2)^4,$$

hence

$$(41) \quad h(1) h(3) < h(2)^2.$$

Suppose that s is a positive integer. For any positive integers $\lambda_1, \dots, \lambda_r$ such that

$$\sum_{i=1}^r \lambda_i = s,$$

from Lemma 3–5 and using (41), we find that

$$\prod_{i=1}^r h(\lambda_i) \leq h(2)^{s/2}.$$

Using this in (39) to get an upper bound for $H(r, s)$ and then returning to $H(s)$ in (33), we obtain that for any positive integer s ,

$$H(s) \leq \sum_{r=1}^s \frac{s!h(2)^{s/2}}{2^r r!} \sum_{\substack{\lambda_1 + \dots + \lambda_r = s \\ \lambda_i \geq 1}} \frac{1}{\lambda_1! \dots \lambda_r!}.$$

From definition of $h(2)$ in (40) and using

$$\log(1 + x) \leq x, \quad 0 < x < 1,$$

we find

$$h(2) \leq \sum_P \frac{1}{(|P| - 1)^2} + \frac{1}{|P|^2}.$$

Summing over all monic polynomials $h \in \mathbb{F}_q[X]$ instead of monic irreducible polynomials $P \in \mathbb{F}_q[X]$, we obtain

$$h(2) < \sum_{n=1} q^n \left\{ \frac{1}{(q^n - 1)^2} + \frac{1}{q^{2n}} \right\},$$

hence

$$h(2) < \left((1 - q^{-1})^{-2} + 1 \right) \sum_{n \geq 1} q^{-n} \leq 10q^{-1}.$$

Also from the identity

$$(x_1 + \dots + x_r)^s = \sum_{\substack{\lambda_1 + \dots + \lambda_r = s \\ \lambda_i \geq 0}} \frac{s!}{\lambda_1! \dots \lambda_r!} x_1^{\lambda_1} \dots x_r^{\lambda_r},$$

we find that

$$\sum_{\substack{\lambda_1 + \dots + \lambda_r = s \\ \lambda_i \geq 1}} \frac{s!}{\lambda_1! \dots \lambda_r!} < r^s.$$

Therefore

$$H(s) < \sum_{r=1}^s \frac{1}{2^r r!} \left(\frac{\sqrt{10} r}{\sqrt{q}} \right)^s.$$

To find an upper bound, denote

$$a_r = \frac{r^s}{2^r r!}.$$

Then

$$\frac{a_{r+1}}{a_r} = \frac{1}{2r} \left(1 + \frac{1}{r} \right)^{s-1}.$$

If $s \geq 100$, we choose

$$l_0 = \left\lceil \frac{s \log \log s}{\log s} \right\rceil.$$

We find that

$$\sum_{r=1}^{l_0} \frac{1}{2^r r!} \left(\frac{\sqrt{10} r}{\sqrt{q}} \right)^s \leq \left(\frac{\sqrt{10} s \log \log s}{\sqrt{q} \log s} \right)^s \sum_{r=1}^{\infty} \frac{1}{2^r r!} = e^{1/2} \left(\frac{4s \log \log s}{\sqrt{q} \log s} \right)^s.$$

For the choice of l_0 we have

$$l_0 \log l_0 = s \log \log s (1 + o_s(1)) \geq s,$$

and from it we derive

$$\frac{a_{r+1}}{a_r} \leq \frac{1}{2}, \quad \forall r \geq l_0.$$

Hence

$$\sum_{r=l_0}^s \frac{1}{2^r r!} \left(\frac{\sqrt{10} r}{\sqrt{q}} \right)^s \leq \frac{1}{2^{l_0} l_0!} \left(\frac{\sqrt{10} l_0}{\sqrt{q}} \right)^s (1 + 2^{-1} + 2^{-2} + \dots) \leq \left(\frac{\sqrt{10} s \log \log s}{\sqrt{q} \log s} \right)^s.$$

Therefore

$$H(s) \leq 3 \left(\frac{\sqrt{10} s \log \log s}{\sqrt{q} \log s} \right)^s$$

for any positive integer $s \geq 100$. On the other hand, if $4 \leq s < 100$, we use the trivial estimate

$$H(s) < \left(\frac{\sqrt{10}s}{\sqrt{q}} \right)^s \sum_{r=0}^{\infty} \frac{1}{2^r r!} = e^{1/2} \left(\frac{\sqrt{10}s}{\sqrt{q}} \right)^s,$$

this again is bounded by $C \left(\frac{\sqrt{10}s \log \log s}{\sqrt{q} \log s} \right)^s$ for some absolute constant $C > 0$ for $4 \leq s < 100$. This completes the proof of Proposition 2. \square

6.3. Proposition 3. Finally, we prove the following.

Proposition 3. *If s is a fixed positive integer, then*

$$H(s) = \frac{\delta_{s/2} s!}{2^{r/2} (s/2)!} q^{-s/2} + O_s(q^{-(s+1)/2}),$$

as $q \rightarrow \infty$, where for any $\gamma \in \mathbb{R}$,

$$\delta_{\gamma} = \begin{cases} 1 & \gamma \in \mathbb{Z}, \\ 0 & \gamma \notin \mathbb{Z}. \end{cases}$$

Proof. For any $\lambda \in \mathbb{N}$ and $P \in \mathbb{F}_q[X]$, denote

$$g(\lambda, |P|) = \frac{u_P^\lambda + (-1)^\lambda v_P^\lambda}{1 + |P|^{-1}},$$

where u_P and v_P are given in (32). We use Taylor series expansions of $-\log(1-x)$ and $\log(1+x)$ ($|x| \leq 1/2$) given by

$$-\log(1-x) = x + \frac{x^2}{x} + \frac{x^3}{3} + \dots = x \left(1 + \frac{x}{2} + O(x^2) \right),$$

and

$$\log(1+x) = x - \frac{x^2}{x} + \frac{x^3}{3} + \dots = x \left(1 - \frac{x}{2} + O(x^2) \right)$$

to deduce

$$(42) \quad g(\lambda, |P|) = \begin{cases} 2|P|^{-\lambda} (1 + O(|P|^{-1})) & : \lambda \equiv 0 \pmod{2}, \\ \lambda|P|^{-\lambda-1} (1 + O(|P|^{-1})) & : \lambda \equiv 1 \pmod{2}. \end{cases}$$

For any $n \in \mathbb{N}$, denote

$$\pi_q(n) = \#\{P \in \mathbb{F}_q[X] : P \text{ is monic, irreducible and } \deg P = n\}.$$

It is known ([17]) that

$$(43) \quad \pi_q(n) = \frac{q^n}{n} (1 + O(q^{-n/2})).$$

Fix a positive integer s . For any positive integer $\lambda \leq s$, denote

$$z(\lambda) = \sum_P g(\lambda, |P|) = \sum_{n \geq 1} g(\lambda, q^n) \pi_q(n).$$

If λ is even, from (42)

$$z(\lambda) = \sum_{n \geq 1} \frac{2q^{-n\lambda} (1 + O(q^{-n}))}{1 + q^{-n}} \pi_q(n).$$

For $n = 1$, since $\pi_q(1) = q$, this gives us the value $2q^{-\lambda+1} (1 + O(q^{-1}))$. For $n \geq 2$, using (43) and noting that $\lambda \geq 2$, we find that all such terms added together contribute to a value bounded by $O(q^{-\lambda})$. Hence

$$(44) \quad z(\lambda) = 2q^{-\lambda+1} (1 + O_s(q^{-1})), \quad \text{if } \lambda \equiv 0 \pmod{2}.$$

The notation “ O_s ” in the above formula is to stress that the implied constant may depend on the value s since $1 \leq \lambda \leq s$. Similarly if λ is odd, we obtain that

$$(45) \quad z(\lambda) = \lambda q^{-\lambda} (1 + O_s(q^{-1})), \quad \text{if } \lambda \equiv 1 \pmod{2}.$$

We write

$$(46) \quad H(s) = \sum_{r=1}^s \frac{s!}{2^r r!} \sum_{\substack{\lambda_1 + \dots + \lambda_r = s \\ \lambda_i \geq 1}} f(\lambda_1, \dots, \lambda_r),$$

where

$$f(\lambda_1, \dots, \lambda_r) = \sum_{\substack{P_1, \dots, P_r \\ \text{distinct}}} \prod_{i=1}^r \frac{g(\lambda_i, |P_i|)}{\lambda_i!}.$$

For any positive integers $\lambda_1, \dots, \lambda_r$ with

$$\sum_{i=1}^r \lambda_i = s,$$

denote

$$\{1, 2, \dots, r\} = A \cup B,$$

where

$$A = \{1 \leq i \leq r : \lambda_i \text{ is even}\}, \quad B = \{1 \leq i \leq r : \lambda_i \text{ is odd}\}.$$

Since for any $i \in A$, $\lambda_i \geq 2$, and

$$s = \sum_{i \in A} \lambda_i + \sum_{i \in B} \lambda_i,$$

we check that if $\#B \geq 1$ then $\#A \leq (s-1)/2$, or if there is an $i \in A$ with $\lambda_i \geq 4$, then $\#A \leq (s-2)/2$. In either of these cases, since

$$f(\lambda_1, \dots, \lambda_r) \leq \left(\prod_{i \in A} z(\lambda_i) \right) \left(\prod_{i \in B} z(\lambda_i) \right),$$

using (44) and (45) we obtain

$$f(\lambda_1, \dots, \lambda_r) \ll_s \left(\prod_{i \in A} q^{-\lambda_i+1} \right) \left(\prod_{i \in B} q^{-\lambda_i} \right) = q^{-s+\#A} \leq q^{-(s+1)/2}.$$

The case that is not covered by the above consideration is that $\#B = 0$ and there is no $i \in A$ with $\lambda_i \geq 4$, that is, $\lambda_i = 2$ for any $1 \leq i \leq r$. That means that $s = 2r$ is even. The only term left is

$$(47) \quad f(2, \dots, 2) = \frac{1}{2^r} \sum_{\substack{P_1, \dots, P_r \\ \text{distinct}}} \prod_{i=1}^r g(2, |P_i|) .$$

Since

$$\sum_{\substack{P_1, \dots, P_r \\ \text{not distinct}}} \prod_{i=1}^r g(2, |P_i|) \ll_s \sum_{\substack{P_1, \dots, P_r \\ P_1 = P_2}} \prod_{i=1}^r g(2, |P_i|) = \left(\sum_P g(2, |P|)^2 \right) \left(\sum_P g(2, |P|) \right)^{r-2} ,$$

and we can check easily that

$$\sum_P g(2, |P|)^2 \ll q^{-3} .$$

Using the above and (44) we find that removing the restrictions that P_1, \dots, P_r are distinct in (47) would result in an error bounded by $O_s(q^{-r-1}) = O_s(q^{-(s+1)/2})$.

The main term in (47) is given by

$$\frac{1}{2^r} \left(\sum_P g(2, |P|) \right)^r = q^{-r} (1 + O_s(q^{-1})) = q^{-s/2} (1 + O_s(q^{-1})) .$$

Combining all the above computation together and returning to (46), we conclude that

$$H(s) = \frac{\delta_{s/2} s!}{2^{r/2} (s/2)!} q^{-s/2} + O_s(q^{-(s+1)/2}) ,$$

as $q \rightarrow \infty$. This completes the proof of Proposition 3. \square

REFERENCES

[1] J.D. Achter, *The distribution of class groups of function fields*, J. Pure Appl. Algebra **204** (2006), no. 2, 316–333.

- [2] J.D. Achter, *Results of Cohen-Lenstra type for quadratic function fields*, Computational arithmetic geometry, 1–7, Contemp. Math., **463**, Amer. Math. Soc., Providence, RI, 2008.
- [3] L.M. Adleman, M.A. Huang, “Primality testing and abelian varieties over finite fields”, Lecture Notes in Mathematics, 1512.
- [4] A. Bucur, C. David, B. Feigon, M. Lalín, *Statistics for traces of cyclic trigonal curves over finite fields*, International Mathematics Research Notices (2010), 932–967.
- [5] A. Bucur, C. David, B. Feigon, M. Lalín, *Biased statistics for traces of cyclic p -fold covers over finite fields*, to appear in Proceedings of Women in Numbers, Fields Institute Communications.
- [6] M. Deuring. *Die Typen der Multiplikatorenringe elliptischer Funktionenkörper*, Abh. Math. Sem. Hansischen Univ., **14** (1941), 197–272.
- [7] P. Diaconis, S. Evans, *Linear functionals of eigenvalues of random matrices*, Trans. Amer. Math. Soc. **353** (2001), no. 7, 2615–2633.
- [8] D. Faifman, Z. Rudnick, *Statistics of the zeros of zeta functions in families of hyperelliptic curves over a finite field*, arXiv:0803.3534. To appear in Compositio Math.
- [9] N. M. Katz, P. Sarnak, “Random Matrices, Frobenius Eigenvalues, and Monodromy”, Amer. Math. Soc. Colloq. Publ., vol. 45, American Mathematical Society, Providence, RI, 1999.
- [10] P. Kurlberg, Z. Rudnick, *The fluctuations in the number of points on a hyperelliptic curve over a finite field*, J. Number Theory Vol. 129 **3** (2009), 580–587.
- [11] H. W. Lenstra, Jr., J. Pila, C. Pomerance, *A hyperelliptic smoothness test. I*, Philos. Trans. Roy. Soc. London Ser. A **345** (1993), no. 1676, 397–408.
- [12] H. W. Lenstra, Jr., *Factoring integers with elliptic curves*, Ann. of Math. (2) **126** (1987), no. 3, 649–673.
- [13] D. Lorenzini, “An invitation to arithmetic geometry”, Graduate Studies in Mathematics, 9. American Mathematical Society, Providence, RI, 1996.
- [14] C. Moreno, “Algebraic curves over finite fields”, Cambridge Tracts in Mathematics **97**, Cambridge University Press, 1991.
- [15] H.G. Quebbemann. *Estimates of regulators and class numbers in function fields*, J. Reine Angew. Math., **419** (1991), 79–87.
- [16] M.Y. Rosenbloom, M.A. Tsfasman, *Multiplicative lattices in global fields*, Invent. Math., **101** (1990), 687–696.
- [17] M. Rosen, “Number theory in function fields”. Graduate Texts in Mathematics, **210**. Springer-Verlag, New York, 2002.

- [18] Z. Rudnick, *Traces of high powers of the Frobenius class in the hyperelliptic ensemble*, Acta Arith. **143** (2010), 81–99.
- [19] I. Shparlinski, *On the size of the Jacobians of curves over finite fields*, Bull. Braz. Math. Soc. (N.S.) **39** (2008), no. 4, 587–595.
- [20] A. Stein, E. Teske. *Explicit bounds and heuristics on class numbers in hyperelliptic function fields*, Math. Comp., **71** (2002), 837–861.
- [21] M. Tsfasman, *Some remarks on the asymptotic number of points*, Coding theory and algebraic geometry (Luminy, 1991). Lect. Notes in Math., vol. 1518, Springer, (1992), 178–192.
- [22] A. Venkatesh, S. Ellenberg, *Statistics of number fields and function fields*, Proceedings of the International Congress of Mathematicians Hyderabad, India, 2010.
- [23] A. Weil, *Sur les Courbes Algébriques et les Variétés qui s'en Déduisent*, Publ. Inst. Math. Univ. Strasbourg **7** (1945), Hermann et Cie., Paris, 1948.

MAOSHENG XIONG: DEPARTMENT OF MATHEMATICS, HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY, CLEAR WATER BAY, KOWLOON, P. R. CHINA

E-mail address: mamsxiong@ust.hk

ALEXANDRU ZAHARESCU: INSTITUTE OF MATHEMATICS OF THE ROMANIAN ACADEMY, P.O. BOX 1–764, 70700 BUCHAREST, ROMANIA, AND DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, 273 ALTGELD HALL, MC-382, 1409 W. GREEN STREET, URBANA, IL 61801 USA

E-mail address: zaharesc@math.uiuc.edu