

Střední průmyslová škola a Vyšší odborná škola, Písek, Karla Čapka 402, Písek $18\text{-}20\text{-}\mathrm{M}/01 \; \mathrm{Informační} \; \mathrm{technologie}$

Maturitní práce

Dálkové ovládání zásuvek NETIO

Téma číslo 12

autor:

Milan Jiříček, B4.I

vedoucí maturitní práce:

Ing. Břetislav Bakala

Písek 2020/2021

Anotace

Maturitní práce se zaměřuje na porovnání platforem ESP8266 a ESP32. Cílem je vytvořit ovladač pro ovládání zásuvek značky NETIO s webovou aplikací pro konfiguraci a zjistit, která platforma je vhodná pro realizaci funkčního vzorku z hlediska spotřeby energie a reakční doby.

Annotation

The graduation thesis focuses on the comparison of the ESP8266 and ESP32 platforms. The goal is to create a driver for controlling NETIO sockets with a web application for configuration and to find out which platform is suitable for the implementation of a functional sample in terms of energy consumption and response time.

Poděkování Chtěl bych poděkovat panu učiteli Ing. Břetislavovi Bakalovi za odborné vedení práce a cenné rady, které mi pomohly tuto práci zkompletovat. Rád bych také poděkoval Ing. Břetislavovi Bakalovi za cenné rady, věcné připomínky a vstřícnost při konzultacích a vypracování bakalářské práce. V neposlední řadě chci poděkovat Mgr. Haně Maříkové a Mgr. Vladimíře Špirhanzlové za pomoc při gramatické a stylistické kontrole.

Obsah

1	Úvo	od			4
2	Základní informace				
	2.1	Zásuv	ka NETIO		5
	2.2	Platfo	orma ESP		5
		2.2.1	ESP8266		5
		2.2.2	ESP32		6
3	Tvo	rba we	ebové stránky		7
4	Měi	ření sp	ootřeby a času		8
	4.1	ESP82	266		8
		4.1.1	Klidové stavy		8
		4.1.2	WiFi připojení		10
		4.1.3	Odeslání HTTP requestu s připojenou WiFi		13
5	Záv	ěr			16
Ρì	ʻílohy	y			18
Α	A Příloha				19

 $\acute{\mathbf{U}}\mathbf{vod}$

Základní informace

2.1 Zásuvka NETIO

2.2 Platforma ESP

ESP jsou rodina mikročipů od společnosti Espressif Systems z Čínské Shangaje.

2.2.1 ESP8266

Historie

ESP8266 je levný mikročip, který umí využívat WiFi. První chip, který se dostal na světlo světa byl v modulu **ESP-01**. Tento modul dokázal připojit se na WiFi síť a provádět jednoduché TCP/IP spojení. Získal si velkou oblibu u skupinek hackerů díky nízké ceně.

Specifikace

ESP8266 nabízí:

- 32 bitový mikroprocesor RISC architektury založen na Tensilica Xtensa Diamond L106
- 16 Mb flash paměť a 36 KB RAM
- IEEE 802.11 b/g/n, integrované zabezpečení WEP a WPA/WPA2
- podporu I^2C a I^2S
- 16 GPIO pinů

2.2.2 ESP32

Tvorba webové stránky

Měření spotřeby a času

4.1 ESP8266

4.1.1 Klidové stavy

ESP běží kontinuálně

Klidový stav byl měřen za podmínek:

- ESP8266 čeká na zmáčknutí tlačítka na pinu GPIO5
- ESP je neustále zapnuté, probíhá loop funkce pro kontrolu zmáčknutí
- Je připojeno k WiFi, je zaplý soft AP, běží webserver

Při klidovém stavu byl naměřen eletrický proud průměrně 96.81 mA viz. obr. 4.1. Měření probíhalo 50 s. Vypočítame příkon:

$$P = 0.09681 \,\mathrm{A} \times 3.3 \,\mathrm{V}$$

Dle rovnice se příkon rovná 0.3195 W

ESP8266 vykoná 160 miliónů cyklů za sekundu. Pro výpočet energie:

$$E = 0.3195 \,\mathrm{W} \times 1.7361 \times 10^{-12} \mathrm{h}$$

Spotřeba energie 1 řídícího cyklu je 54.4864×10^{-12} Wh.

ESP vypnuté přes ENABLE pin

Měření proběhlo za podmínek:

• Napájeno z USB

Obrázek 4.1: ESP8266 měření klidového stavu kontinualního režimu

Obrázek 4.2: Měření klidového režimu enable případu

- Měřeno pomocí úbytku napětí na rezistoru o velikosti $10\,\Omega$
- pin enable byl připojen manuálně
- Napětí bylo měřeno Analog Discovery 2

Po připojení ESP8266 proud nevzrostl a drží se stále na 240 μ A, což neodpovídá teoretickým hodnotám, které by se měly pohybovat okolo 3 μ A viz. obr. 4.2. Pro výpočet bude jako průměrný odebraný proud použita hodnota uvedena v datasheetu což je 3 μ A. Víme, že napětí je 3.3 V takže jsme schopni spočítat eletrický příkon:

$$P = 3 \times 10^{-6} \text{A} \times 3.3 \text{ V}$$

což je $9.9\times 10^{-6} \mathrm{W}$ Dále zjistíme energii za 1 řídící cyklus:

$$E = 9.9 \times 10^{-6} \text{W} \times 1.7361 \times 10^{-12} \text{h}$$

Spotřeba 1 řídícího cyklu je 17.1874 × 10^{-18} Wh.

	Kontinuální	Enable	Deep Sleep
Reakční doba	$196\mathrm{ms}$	$3100\mathrm{ms}$	$967\mathrm{ms}$
Spotřeba cyklu	$54.4864 \times 10^{-12} \text{Wh}$	$17.1874 \times 10^{-18} \text{Wh}$	$114.59 \times 10^{-18} \text{Wh}$

Tabulka 4.1: Porovnání klidových stavů ESP8266

Deep sleep režim

Kvůli citlivosti Analog Discovery 2 nejsme schopni změřit spotřebu deep sleep režimu, je nutné změřit microampérmetrem. Pro výpočet spotřebované energie dosadíme za průměrný elektrický proud hodnotu z datasheetu, která odpovídá 20 μA. Spočítáme elektrický příkon:

$$P = 20 \times 10^{-6} \text{A} \times 3.3 \text{ V}$$

Ten v této situaci odpovídá hodnotě $66\times 10^{-6} \rm W$ a dále vypočítáme spotřebovanou energii za 1 řídící cyklus:

$$E = 66 \times 10^{-6} \text{W} \times 1.7361 \times 10^{-12} \text{h}$$

Spotřeba 1 řídícího cyklu je 114.59×10^{-18} Wh.

Shrnutí výsledků

Reakční doba byla změřena pomocí kamery. K tlačítku jsem připojil LED, místnost jsem izoloval od světla a zmáčknutí tlačítka a reakci zásuvky jsem natočil ve zpomaleném režimu s 240 snímky za sekundu. Dále jsem zjistil rozdíl mezi rozsvícení LED u tlačítka a LED zabudované v zásuvce, signalizující sepnutí.

Nejrychlejší reakce byla pokud ESP8266 bylo neustále zapnuto. Nejpomalejší naopak bylo pokud ESP8266 bylo nutné zapnout, je to z důvodu načtení sketche do operační paměti, načtení konfigurace WiFi a následnému připojení.

4.1.2 WiFi připojení

Cílem měření je zjistění rychlostí připojení různými způsoby k přístupovému body, spotřeby a následné porovnání případů.

Obrázek 4.3: Měření dynamického připojení k AP

Dynamické přidělení IP adresy

Měření proběhlo za použití DHCP protokolu, kde by přístupový pod měl zvolit IP adresu pro zařízení. Bylo provedeno za podmínek:

- Napájeno z USB
- Měřeno pomocí úbytku napětí na rezistoru o velikosti $0.7\,\Omega$
- Přístupový bod nebyl zabezpečen
- Přístupový bod se nachází 3.5 m od zařízení

Měření bylo provedeno 5x. Průměrný čas se pohybuje okolo 4.7s. Jak je možno vidět na grafu, tak dvě WiFi připojení trvaly o 2 sekundy kratší dobu. Toto chování přisuzuji rozmanitému provozu na Přístupovém bodu, který zárověň probíhá s měřením. viz. obr. 4.3

Statické přidělení IP adresy

Použita byla statická adresa, která byla přidělena ESP8266 před připojením na AP. Bylo provedeno za podmínek:

- Napájeno z USB
- Měřeno pomocí úbytku napětí na rezistoru o velikosti $0.7\,\Omega$
- Přístupový bod nebyl zabezpečen
- Přístupový bod se nachází 3.5 m od zařízení

Obrázek 4.4: Měření statického připojení k AP

Obrázek 4.5: Měření zabezpečeného připojení k AP

Měření proběhlo 5x. Průměrný čas byl $3.7\,\mathrm{s}.$

viz. obr. 4.4

Zabezpečený AP

Připojení na access point je šifrované. Bylo provedeno za podmínek:

- Napájeno z USB
- Měřeno pomocí úbytku napětí na rezistoru o velikosti $0.7\,\Omega$
- IP adresa je nastavena staticky
- \bullet Přístupový bod se nachází $3.5\,\mathrm{m}$ od zařízení
- Bylo použito zabezpečení WPA2-PSK

Průměrný čas byl 4.7 s.

viz. obr. 4.5

Pořadí	Dynamické	Statické	Zabezpečení
1.	$5.3385\mathrm{s}$	$3.589\mathrm{s}$	$4.733\mathrm{s}$
2.	$5.3445\mathrm{s}$	$3.583\mathrm{s}$	$4.733\mathrm{s}$
3.	$3.619\mathrm{s}$	$3.631\mathrm{s}$	$4.733\mathrm{s}$
4.	$5.333\mathrm{s}$	$3.481\mathrm{s}$	$4.733\mathrm{s}$
5.	$3.627\mathrm{s}$	$3.613\mathrm{s}$	$4.733\mathrm{s}$
Průměr	$4.6524\mathrm{s}$	$3.5794\mathrm{s}$	$4.709\mathrm{s}$

Tabulka 4.2: Porovnání reakční doby naměřené připojením k WiFi

Závěr

Z výsledků měření je nejrychlejší připojení pomocí statické IP adresy, nicméně je velice náročné nastavit IP adresu, masku a bránu pro běžného uživatele. Připojení s DHCP je pomalejší průměrně o 1 s než případ se statickou IP adresou. DHCP vyniká jednoduchostí použití pro běžného uživatele. K zabezpečené WiFI trvá stejně dlouho jako s DHCP. viz tabulka 4.2

4.1.3 Odeslání HTTP requestu s připojenou WiFi

Cílem měření je zjistit čas odesílání HTTP requestu a následné odpovězení zásuvky NE-TIO. Pokus byl proveden za podmínek:

- Napájeno z USB
- Měřeno pomocí úbytku napětí na rezistoru o velitosti $0.7\,\Omega$
- ESP8266 zkontroluje připojení k WiFi a pokud není navázáno, pokusí se ho navázat
- Načtení uložené konfigurace WiFi trvá 300 ms
- ESP ukončí reakci, pokud dostane zpětnou vazbu od zásuvky

Jelikož ESP přestane reagovat až po odpovězení zásuvky, dokážeme zjistit celkový čas včetně zapnutí, zkontrolování WiFi připojení, sestavení a odeslání HTTP requestu, reakce

Pořadí	připojené k WiFi
1.	$778.9\mathrm{ms}$
2.	$743\mathrm{ms}$
3.	$772.9\mathrm{ms}$
4.	$744.5\mathrm{ms}$
5.	$623.1\mathrm{ms}$
Průměr	$732.48\mathrm{ms}$

Tabulka 4.3: Čas odeslání HTTP requestu a reakce zásuvky

Operace	reakční doba	spotřeba
Dynamické připojení	$4.6524\mathrm{s}$	$385.19\mu\mathrm{Wh}$
Statické připojení	$3.5794\mathrm{s}$	$295.59\mu\mathrm{Wh}$
Zabezpečené připojení	$4.709\mathrm{s}$	$393.15\mu\mathrm{Wh}$
HTTP komunikace	$0.73248\mathrm{s}$	$67.75\mu\mathrm{Wh}$

Tabulka 4.4: Spotřeba jednotlivých akcí

zásuvky a zpracování HTTP zprávy.

viz tabulka 4.3

Spotřeba jednotlivých operací ESP8266 byla spočítána: $E=U\times I\times t$

Závěr

Seznam tabulek

4.1	Porovnání klidových stavů ESP8266	10
4.2	Porovnání reakční doby naměřené připojením k WiFi	13
4.3	Čas odeslání HTTP requestu a reakce zásuvky	14
4.4	Spotřeba jednotlivých akcí	14

Seznam obrázků

4.1	ESP8266 měření klidového stavu kontinualního režimu	9
4.2	Měření klidového režimu enable případu	9
4.3	Měření dynamického připojení k AP	11
4.4	Měření statického připojení k AP	12
4.5	Měření zabezpečeného připojení k AP	12

Příloha A

Příloha

Literatura

- [1] ESPRESSIF SYSTEMS, . WT8266-S1 WiFi Module datasheet. Shangai, Čína: Espressif Systems, 2015. ISBN ISBN.
- [2] ESP8266. In: Wikipedia: the free encyclopedia [Online]. San Francisco (CA): Wikimedia Foundation, 2021 [cit.2021–01–21]. Dostupné z: https://en.wikipedia.org/w/index.php?title=ESP8266