Statystyka matematyczna i ekonometria

Projekt - Auto Sprzedam

Autorzy

Anna Kalitka (255445) Antoni Bezdzietny (249327)

Projekt zaliczeniowy Laboratorium, lato 2023/24

I - Opis bazy danych

Wybrana została baza danych **AutoSprzedam**. Baza pochodzi z zasobów ePortalu.

Zawartość bazy danych

Baza danych składa się z 41034 rekordów, zawierających szczegółowe dane dotyczące sprzedaży samochodów m.in.

	Тур	
Kolumna	danych	Opis
NrOferty	int	Numer oferty sprzedaży samochodu.
CenaPLN	string	Cena samochodu wyrażona w polskich złotych (PLN).
KM	int	Liczba koni mechanicznych samochodu.
Marka	string	Marka samochodu.
Model	string	Model samochodu.
LiczbaDrzwi	string	Liczba drzwi w samochodzie.
PojemnoscSkokowa int		Pojemność skokowa silnika wyrażona w centymetrach sześciennych (cm³).
PrzebiegKm	int	Przebieg samochodu wyrażony w kilometrach.
RodzajPaliwa	string	Rodzaj paliwa używanego przez samochód (benzyna, diesel, hybryda,
		elektryczny itp.).
RokProdukcji	int	Rok produkcji samochodu.
Kolor	string	Kolor samochodu.
KrajPochodzenia	string	Kraj pochodzenia samochodu.
PojazdUszkodzony	string	Informacja czy pojazd jest uszkodzony (Tak/Nie).
SkrzyniaBiegow	string	Typ skrzyni biegów w samochodzie (manualna, automatyczna).

Prezentacja bazy danych

```
# Wczytanie bazy danych
database = read.csv("../database/AutoSprzedam.dat", sep = "\t", dec = ',');
cat("Liczba rekordów:", nrow(database), ", liczba kolumn:", ncol(database), "\n")
## Liczba rekordów: 41034 , liczba kolumn: 14
N = 5:
cat("-", "Przykład ", N, "pierwszych rekordów.\n")
## - Przykład 5 pierwszych rekordów.
head(database, N)
     NrOferty CenaPLN KM
                                   Marka
                                                 Model LiczbaDrzwi PojemnoscSkokowa
## 1
            1
                27900 150
                                    Opel
                                                Vectra
                                                                4/5
            2
## 2
                28000 116
                                  Toyota Corolla Verso
                                                                4/5
                                                                                 2000
## 3
            3
                25500 150
                                   Skoda
                                                                4/5
                                                                                 1781
                                                Superb
                29900 109 Mercedes-Benz
                                                                2/3
## 4
            4
                                                  A 180
                                                                                 1991
## 5
            5
                29800 207
                                 Peugeot
                                                   607
                                                                4/5
                                                                                 2946
##
     PrzebiegKm
                           RodzajPaliwa RokProdukcji
                                                                   Kolor
## 1
          80840 olej napędowy (diesel)
                                                2005
                                                         czarny-metallic
## 2
         166000 olej napędowy (diesel)
                                                2004
                                                                   bialy
## 3
         112000
                            benzyna+LPG
                                                2002
                                                        bordowy-metallic
                                                2005
## 4
          42000 olej napędowy (diesel)
                                                                czerwony
## 5
         169000
                                benzyna
                                                2004 granatowy-metallic
     KrajPochodzenia PojazdUszkodzony SkrzyniaBiegow
##
## 1
              Niemcy
                                   Nie
                                             manualna
## 2
                                   Nie
                                             manualna
              Polska
## 3
              Polska
                                   Nie
                                             manualna
## 4
              Polska
                                   Nie
                                             manualna
## 5
             Francja
                                   Nie
                                             manualna
cat("- ", "Przykład ", N, "ostatnich rekordów.\n")
## - Przykład 5 ostatnich rekordów.
tail(database, N)
##
         NrOferty CenaPLN
                                                 Model LiczbaDrzwi PojemnoscSkokowa
                            KM
                                        Marka
## 41030
            41030 98000.00 220
                                         Opel Insignia
                                                                4/5
                                                                                 1998
## 41031
                                                  S 400
                                                                4/5
                                                                                 3996
            41031 34924.50 184 Mercedes-Benz
                                                                2/3
## 41032
            41032 41175.09 70
                                      Peugeot
                                                    308
                                                                                 1397
                                                                4/5
## 41033
            41033 47900.00 115
                                                  C-MAX
                                                                                 1560
                                         Ford
                                         Ford
## 41034
            41034 14200.00 90
                                                Mondeo
                                                                4/5
                                                                                 1998
##
         PrzebiegKm
                               RodzajPaliwa RokProdukcji
                                                                       Kolor
## 41030
              25500
                                    benzyna
                                                     2010 grafitowy-metallic
## 41031
             162000 olej napędowy (diesel)
                                                     2001
                                                            srebrny-metallic
                                                     2010
## 41032
               9289
                                                            srebrny-metallic
                                    benzyna
## 41033
              45000 olej napędowy (diesel)
                                                     2010
                                                             czarny-metallic
## 41034
             191024 olej napędowy (diesel)
                                                     2003
                                                             czarny-metallic
         KrajPochodzenia PojazdUszkodzony SkrzyniaBiegow
## 41030
                  Polska
                                       Nie
                                                 manualna
## 41031
                                       Nie
                  Czechy
                                             automatyczna
## 41032
                  Niemcy
                                       Nie
                                                  manualna
```

## 41033	Belgia	Nie	manualna
## 41034	Niemcy	Nie	manualna

Przygotowanie bazy danych

Przed przejściem do dalszej pracy z bazą danych postanowiono wprowadzenie zmian w jej strukturze, których celem jest uproszczenie przyszłych prac z danymi.

Pole - SkrzyniaBiegow

W bazie występują 3 rodzaje typów skrzyni biegów: półautomatyczna/sekwencyjna, manualna oraz automatyczna. Udział typu półautomatyczna/sekwencyjna w całej bazie wynosi 1,5%.

W związku z niewielkim udziałem ze skrzynią półautomatyczna/sekwencyjna, typ ten został usunięty z bazy. Dzięki czemu możliwe jest przekształcenie kolumny SkrzyniaBiegow (char), na SkrzyniaBiegowManualna (bool).

```
gear_box_summary = database %>% group_by(database$SkrzyniaBiegow) %>% summarise(liczba = n());
gear_box_summary
## # A tibble: 3 x 2
     `database$SkrzyniaBiegow`
##
                                 liczba
                                   <int>
##
## 1 automatyczna
                                   6941
## 2 manualna
                                  34030
## 3 półautomatyczna/sekwencyjna
                                     63
cat("Udział pojazdów ze skrzynią biegów typu 'półautomatyczna/sekwencyjna'", sum(gear_box_summary[3,2])
## Udział pojazdów ze skrzynią biegów typu 'półautomatyczna/sekwencyjna' 0.1535312 %.
# Remove cars with database$SkrzyniaBiegow == 'półautomatyczna/sekwencyjna'
database = database [database $SkrzyniaBiegow != "półautomatyczna/sekwencyjna",];
# Cast to logical value
database$SkrzyniaBiegow = database$SkrzyniaBiegow == "manualna";
colnames(database)[14] = "SkrzyniaBiegowManualna";
```

Pole PojazdUszkodzony

Domyślnym typem danych dla pola *PojazdUszkodzony* jest (char). Zmienna jest typem logicznym (TAK/NIE). W związku z powyższym kolumna *PojazdUszkodzony* została przekształcona to typu *bool*.

```
database$PojazdUszkodzony = database$PojazdUszkodzony == "Tak"
```

Prezentacja bazy danych - po wprowadzonych zmianach

```
cat("-", "Przykład ", N, "pierwszych rekordów.\n")
## - Przykład 5 pierwszych rekordów.
head(database, N)
##
     NrOferty CenaPLN KM
                                  Marka
                                                 Model LiczbaDrzwi PojemnoscSkokowa
## 1
           1
                27900 150
                                   Opel
                                                Vectra
                                                               4/5
                                                                                1900
## 2
            2
                                  Toyota Corolla Verso
                                                               4/5
               28000 116
                                                                                2000
## 3
            3 25500 150
                                  Skoda
                                                Superb
                                                               4/5
                                                                                1781
```

```
2/3
## 4
                29900 109 Mercedes-Benz
                                                  A 180
                                                                                 1991
## 5
            5
                29800 207
                                 Peugeot
                                                    607
                                                                4/5
                                                                                 2946
##
    PrzebiegKm
                          RodzajPaliwa RokProdukcji
                                                                   Kolor
          80840 olej napędowy (diesel)
## 1
                                                2005
                                                         czarny-metallic
## 2
         166000 olej napędowy (diesel)
                                                 2004
                                                                   bialy
## 3
         112000
                            benzyna+LPG
                                                 2002
                                                        bordowy-metallic
## 4
          42000 olej napędowy (diesel)
                                                 2005
                                                                czerwony
## 5
         169000
                                                 2004 granatowy-metallic
                                benzyna
##
     KrajPochodzenia PojazdUszkodzony SkrzyniaBiegowManualna
## 1
              Niemcy
                                 FALSE
                                                          TRUE
## 2
              Polska
                                 FALSE
                                                          TRUE
                                 FALSE
                                                          TRUE
## 3
              Polska
## 4
                                 FALSE
                                                          TRUE
              Polska
## 5
                                 FALSE
                                                          TRUE
             Francja
cat("- ", "Przykład ", N, "ostatnich rekordów.\n")
```

- Przykład 5 ostatnich rekordów.

```
tail(database, N)
```

##		NrOferty	CenaPl	LN KM	Marka	Model I	LiczbaDrzwi	PojemnoscSkokowa		
##	41030	41030	98000.0	00 220	Opel	Insignia	4/5	1998		
##	41031	41031	34924.5	50 184	Mercedes-Benz	S 400	4/5	3996		
##	41032	41032	41175.0	09 70	Peugeot	308	2/3	1397		
##	41033	41033	47900.0	00 115	Ford	C-MAX	4/5	1560		
##	41034	41034	14200.0	00 90	Ford	Mondeo	4/5	1998		
##		PrzebiegKm RodzajPaliwa RokProdukcji Kolor								
##	41030	25500			benzyna	2010	grafitowy-	-metallic		
##	41031	162000 olej napędowy		owy (diesel)	2001	l srebrny-	-metallic			
##	41032	9289		benzyna 2010		<pre>srebrny-metallic</pre>				
##	41033	4500	00 olej	napędo	owy (diesel)	2010	czarny-	-metallic		
##	41034	19102	24 olej	napędo	owy (diesel)	2003	2003 czarny-metallic			
##		KrajPochodzenia PojazdUszkodzony SkrzyniaBiegowManualna								
##	41030	Polska			FALSE		TRUE			
##	41031	Czechy			FALSE					
##	41032	Niemcy			FALSE		TRUE			
##	41033	Belgia			FALSE		TRUE			
##	41034		Niemcy		FALSE		TRUE			

Wyznaczenie podstawowych statystyk

Pole CenaPLN

Kolumna zawiera informacje o cenie po jakie asmochody zostału sprzedane w PLN.

Dane przed eliminacją danych odstających

```
summarise(database,
    srednia = mean(CenaPLN),
    mediana = median(CenaPLN),
    wariancja = var(CenaPLN),
    odchylenieStd = sd(CenaPLN),
    max = max(CenaPLN),
```

```
min = min(CenaPLN),
)

## srednia mediana wariancja odchylenieStd max min
## 1 40848.35 26000 2636580628 51347.64 1788000 1000

ggplot(data=database) + geom_histogram(aes(x=CenaPLN), bins = 50) + ggtitle("Histogram dla cen sprzedaż
```

Histogram dla cen sprzeda y

ggplot(data=database) + geom_boxplot(aes(x=CenaPLN)) + ggtitle("Wykres pudełko-wąsy dla cen sprzedaży")

IV - Obserwacje odstające

Obserwacja odstająca, element odstający – obserwacja relatywnie odległa od pozostałych elementów próby. Innymi słowy, posiadająca nietypową wartość zmiennej niezależnej (objaśniającej) lub nietypowe wartości obydwu zmiennych – zależnej (objaśnianej) i objaśniającej (objaśniających w analizie regresji wielokrotnej).

Redukcja danych odstających zgodnie z regułą 3 sigma

Redukcja danych zgodnie z regułą 3 sigma.

Identyfikacja danych odstających za pomocą reguły trzech sigm:

- 1. Obliczenie średniej (μ) : Najpierw oblicza się średnią dla danego zbioru danych.
- 2. Obliczenie odchylenia standardowego (σ): Następnie oblicza się odchylenie standardowe, które mierzy, jak bardzo dane rozpraszają się wokół średniej.
- 3. Ustalenie zakresu trzech sigm: Wartości, które znajdują się poza zakresem trzech sigm $(\mu \pm 3\sigma)$, są uznawane za dane odstające.

```
mean_price = mean(database$CenaPLN);
sd_price = sd(database$CenaPLN);
lower_bound <- mean_price - 3 * sd_price;
upper_bound <- mean_price + 3 * sd_price;
cat("Wyznacznowe granice metodą 3 sigma \n")</pre>
```

```
## Wyznacznowe granice metodą 3 sigma
cat("Dolna granica ", lower_bound, ", górna granica ", upper_bound, "\n");
## Dolna granica -113194.6, górna granica 194891.3
cat("Dolna granica wykracza poza osiągane wartości kwot sprzedaży (ujemna wartość). \n")
## Dolna granica wykracza poza osiągane wartości kwot sprzedaży (ujemna wartość).
upper_price_example = database[which(database$CenaPLN >= upper_bound),];
head(upper_price_example[order(upper_price_example CenaPLN, decreasing = TRUE),])
##
         NrOferty CenaPLN KM
                                       Marka
                                                  Model LiczbaDrzwi
## 14353
            14353 1788000 626 Mercedes-Benz
                                                    SLR
                                                                 4/5
## 36278
            36278 1699000 800 Mercedes-Benz
                                               S 63 AMG
                                                                 4/5
## 14159
            14159 1300000 626 Mercedes-Benz
                                                    SLR
                                                                 2/3
            27512 739000 571 Mercedes-Benz SLS 63 AMG
## 27512
                                                                 2/3
## 28662
            28662 730000 563 Mercedes-Benz SLS 63 AMG
                                                                 2/3
## 28663
            28663 725000 563 Mercedes-Benz SLS 63 AMG
                                                                 2/3
##
         PojemnoscSkokowa PrzebiegKm RodzajPaliwa RokProdukcji
                                                                              Kolor
                     5439
## 14353
                                    1
                                           benzyna
                                                            2009
                                                                    czarny-metallic
                     6233
## 36278
                                 1500
                                           benzyna
                                                            2011
                                                                    czarny-metallic
## 14159
                     5439
                                 2098
                                           benzyna
                                                            2007 granatowy-metallic
## 27512
                     6208
                                 5000
                                           benzyna
                                                            2010 grafitowy-metallic
## 28662
                     6208
                                  380
                                           benzyna
                                                            2011
                                                                    czarny-metallic
## 28663
                     6208
                                  520
                                                            2011
                                                                   srebrny-metallic
                                           benzyna
##
           KrajPochodzenia PojazdUszkodzony SkrzyniaBiegowManualna
## 14353
                    Niemcy
                                       FALSE
                                                               FALSE
## 36278
                                       FALSE
                                                               FALSE
                    Niemcy
## 14159
                    Niemcy
                                       FALSE
                                                               FALSE
## 27512
                    Polska
                                       FALSE
                                                               FALSE
## 28662 Stany Zjednoczone
                                       FALSE
                                                               FALSE
## 28663 Stany Zjednoczone
                                       FALSE
                                                               FALSE
database = database (database CenaPLN >= lower_bound & database CenaPLN <= upper_bound,]
```

Redukcja danych odstających regułą odstępu międzykwartylowgo

Metoda redukcji, polega na wykrywaniu i usuwaniu wartości odstających z zestawu danych. Metoda ta opiera się na kwartylach i rozstępie międzykwartylowym.

- 1. Wyznaczenie Q1 (pierwszy kwartyl) oraz Q3 (trzeci kwartyl)
- 2. Wyznaczenie odstępu międzykwartylowego IQR = Q3 Q1
- 3. Wyznaczenie dolnej $Q1 1.5 \times IQR$ oraz górnej $Q1 + 1.5 \times IQR$ granicy.

```
Q1 = quantile(database$PrzebiegKm, 0.25);
Q3 = quantile(database$PrzebiegKm, 0.75);
IQR = Q3-Q1;
lower_bound = Q1 - 1.5*IQR #mniejsze niż
upper_bound = Q3 + 1.5*IQR #większe niż

cat("Wyznacznowe granice metodą odstępu międzykwartylowego sigma \n")
```

Wyznacznowe granice metodą odstępu międzykwartylowego sigma

```
## Dolna granica -47281.25 , górna granica 303568.8
cat("Dolna granica wykracza poza osiągane wartości kwot sprzedaży (ujemna wartość). \n")
## Dolna granica wykracza poza osiągane wartości kwot sprzedaży (ujemna wartość).
database = database {database $PrzebiegKm >= lower_bound & database $PrzebiegKm <= upper_bound,]
database %>% group_by(Marka) %>% summarise(liczbaSprzedanych = n(),
                                                    sredniaCena = mean(CenaPLN),
                                                    medianaCena = median(CenaPLN))
## # A tibble: 11 x 4
##
                    liczbaSprzedanych sredniaCena medianaCena
      Marka
##
      <chr>>
                                <int>
                                            dbl>
                                                        <dbl>
                                           64178.
                                                        46900
##
   1 Audi
                                 3322
## 2 BMW
                                 2217
                                           61711.
                                                       51500
## 3 Fiat
                                 1923
                                           19118.
                                                       14800
## 4 Ford
                                 5393
                                           27389.
                                                       22900
## 5 Mercedes-Benz
                                 2319
                                           62040.
                                                       46000
## 6 Opel
                                 4991
                                           24201.
                                                       22600
## 7 Peugeot
                                 3199
                                           25212.
                                                       22000
## 8 Renault
                                 4714
                                                       17810.
                                           21099.
## 9 Skoda
                                 2928
                                           29156.
                                                        26450
## 10 Toyota
                                                       29900
                                 2669
                                           36048.
## 11 Volkswagen
                                 6120
                                           35673.
                                                       29900
Dane po eliminacją danych odstających
summarise(database,
  srednia = mean(CenaPLN),
 mediana = median(CenaPLN),
 wariancja = var(CenaPLN),
 odchylenieStd = sd(CenaPLN),
 max = max(CenaPLN),
 min = min(CenaPLN),
)
```

max min

ggplot(data=database) + geom_histogram(aes(x=CenaPLN), bins = 50) + ggtitle("Histogram dla cen sprzedaż

29500.75 194800 1000

cat("Dolna granica ", lower_bound, ", górna granica ", upper_bound, "\n");

##

1 34656.67

srednia mediana wariancja odchylenieStd

25900 870294063

Histogram dla cen sprzeda y

ggplot(data=database) + geom_boxplot(aes(x=CenaPLN)) + ggtitle("Wykres pudełko-wąsy dla cen sprzedaży")

Wykres pudełko-w sy dla cen sprzeda y

ggplot(data=database, aes(sample = CenaPLN)) + stat_qq() + stat_qq_line(colour="red") + ylab("Kwantyl T
ggtitle("Wykres QQ dla cen sprzedaży") + theme(axis.text.x = element_blank(), axis.text.y = element_b

Wykres QQ dla cen sprzeda y


```
fuelType = database %>% group_by(database$RodzajPaliwa) %>% summarise(liczba = n());
colnames(fuelType) = c("FuelType", "Count");
fuelType = fuelType[order(fuelType$Count, decreasing = TRUE),]
fuelType
```

```
## # A tibble: 6 x 2
##
     FuelType
                            Count
##
     <chr>
                             <int>
## 1 olej napędowy (diesel) 26980
## 2 benzyna
                            11878
## 3 benzyna+LPG
                              883
## 4 benzyna+CNG
                                23
## 5 hybryda
                                21
## 6 napęd elektryczny
                               10
ggplot(fuelType, aes(x="", y=Count, fill=FuelType)) +
  geom_bar(stat="identity", width=1, color="white") +
  coord_polar("y", start=0) + theme_void();
```


Liczba koni mechanicznych samochodu

```
summarise(database,
  srednia = mean(KM),
 mediana = median(KM),
 wariancja = var(KM),
 odchylenieStd = sd(KM),
 max = max(KM),
 min = min(KM),
##
      srednia mediana wariancja odchylenieStd max min
## 1 116.2776
                  106 2567.881
                                     50.67426 1400
upper_price_example = database[which(database$CenaPLN >= upper_bound),];
head(upper_price_example[order(upper_price_example$CenaPLN, decreasing = TRUE),])
  [1] NrOferty
                               CenaPLN
                                                      LiczbaDrzwi
   [4] Marka
                               Model
##
## [7] PojemnoscSkokowa
                               PrzebiegKm
                                                      RodzajPaliwa
## [10] RokProdukcji
                               Kolor
                                                      KrajPochodzenia
## [13] PojazdUszkodzony
                               SkrzyniaBiegowManualna
## <0 wierszy> (lub 'row.names' o zerowej długości)
ggplot(data=database)+ geom_histogram(aes(x=KM), binwidth = 20) + ggtitle("Histogram dla KM")
```

Histogram dla KM

V - Wyznaczanie prawdopodobieństw dla zmiennej

Rozkłady dyskretne

Dwumianowy

```
#Generowanie próbki
set.seed(42)
N <- 1000
n <- 20
p <- 0.4
X <- rbinom(N, n, p)

#Prawdopodobieństwa
pbinom(8, n, p) - pbinom(7, n, p) # P(X=8) p. punktowe

## [1] 0.1797058
pbinom(10, n, p) # P(X<=10) p. przedziałowe

## [1] 0.8724788

#Wykres gęstości
a <- seq(0, n, by = 1)
b <- dbinom(a, n, p)
plot(a,b, type="h")
```



```
#Wykres dystrybuanty
a <- seq(0, n, by = 1)
b <- pbinom(a, n, p)
plot(a,b)</pre>
```



```
### Rozkład Poissona
#Generowanie próbki
N <- 1000
lambda <- 200
X <- rpois(N, lambda)

#Prawdopodobieństwa
ppois(190, lambda) - ppois(189, lambda) # P(X=190)

## [1] 0.02243432
ppois(190, lambda) #(P<=190)

## [1] 0.2529326

#Wykres gęstości
a <- seq(min(X), max(X), by = 1)
b <- dpois(a, lambda)
plot(a,b, type="h")</pre>
```



```
#Wykres dystrybuanty
a <- seq(min(X), max(X), by = 1)
b <- ppois(a, lambda)
plot(a,b)</pre>
```


Rozkłady ciągłe

Rozkład normalny

```
#Generowanie próbki
N <- 1000
mu <- 7 # średnia
sigma <- 10 # odchylenie standardowe
X <- rnorm(N, mu, sigma)

#Prawdopodobieństwa
#Prawd. punktowe w rozkładzie ciągłym = 0
pnorm(10, mu, sigma) # P(X<=10) p. przedziałowe

## [1] 0.6179114

#Wykres gęstości
a <- seq(min(X), max(X), by = 0.5)
b <- dnorm(a, mu, sigma)
plot(a,b, type="h")</pre>
```



```
#Wykres dystrybuanty
a <- seq(min(X), max(X), by = 0.5)
b <- pnorm(a, mu, sigma)
plot(a,b)</pre>
```


Rozkład Beta

```
#Generowanie próbki
N <- 1000
alpha <- 0.5
beta <- 0.5
X <- rbeta(N, alpha, beta)

#Prawdopodobieństwa
#Prawd. punktowe w rozkładzie ciągłym = 0
pbeta(0.7, alpha, beta) # P(X<=0.7) p. przedziałowe

## [1] 0.6309899

#Wykres gęstości
a <- seq(0, 1, by = 0.02)
b <- dbeta(a, alpha, beta)
plot(a,b, type="h")</pre>
```



```
#Wykres dystrybuanty
a <- seq(0, 1, by = 0.02)
b <- pbeta(a, alpha, beta)
plot(a,b)</pre>
```


VI - Budowa macierzy z bazy danych

Do zbudowanie macierzy wykorzystano wszystkie dostępne numeryczne dane tj. *CenaPLN*, *KM*, *PrzebiegKm*, *RokProdukcji*, *PojemnoscSkokowa*. Dzięki temu możliwe jest wyznaczenie macierzy korelacji pomiędzy danymi.

```
# Select data
vi_database = select(filter(database, PojazdUszkodzony==FALSE & SkrzyniaBiegowManualna == TRUE),
                      c("CenaPLN", "KM", "PrzebiegKm", "RokProdukcji", "PojemnoscSkokowa"))
#Display head
head(vi_database)
     CenaPLN KM PrzebiegKm RokProdukcji PojemnoscSkokowa
##
       27900 150
## 1
                       80840
                                      2005
                                                        1900
## 2
       28000 116
                      166000
                                      2004
                                                        2000
## 3
       25500 150
                      112000
                                      2002
                                                        1781
## 4
       29900 109
                       42000
                                      2005
                                                        1991
## 5
       29800 207
                      169000
                                      2004
                                                        2946
## 6
       21400 122
                      160000
                                      2003
                                                        1800
# Dimension
vi_dim <- dim(vi_database);</pre>
cat("Rozmiar macierzy:", vi_dim[1], "x", vi_dim[2]);
```

```
# Columns mean
vi_means = round(colMeans(vi_database), 3);
cat(paste(names(vi_means), vi_means, sep = " : ", collapse = ",\n"))
## CenaPLN : 29250.103,
## KM : 104.378,
## PrzebiegKm : 127080.842,
## RokProdukcji : 2005.089,
## PojemnoscSkokowa : 1739.627
# Correlation
vi_corr_matrix = cor(vi_database);
print(vi_corr_matrix)
                                      KM PrzebiegKm RokProdukcji PojemnoscSkokowa
##
                       CenaPLN
## CenaPLN
                     1.0000000 0.5096861 -0.3659806
                                                      0.62332163
                                                                        0.38550218
## KM
                     0.5096861 1.0000000
                                         0.1047219
                                                      0.07592120
                                                                        0.73909520
## PrzebiegKm
                    -0.3659806 0.1047219
                                          1.0000000
                                                     -0.57854449
                                                                        0.30351805
## RokProdukcji
                     0.6233216 0.0759212 -0.5785445
                                                       1.0000000
                                                                       -0.09648703
## PojemnoscSkokowa 0.3855022 0.7390952 0.3035180 -0.09648703
                                                                        1.0000000
corrplot(vi_corr_matrix, order = "hclust",
         tl.col = "black", tl.srt = 45)
```


Jak można zaobserwować: - CenaPLN skorelowana jest z RokProdukcji (silnie), KM, PojemnoscSkokowa oraz odwrotnie z PrzebiegKM,

- PojemnoscSkokowa jest silnie skorelowana z ilością KM (większa pojemność -> więcej KM), - PrzebiegKM jest odwrotnie skorelowany z RokProdukcji (starszy samochód -> większy przebieg).

VII - Przedziały ufności

W tej sekcji przedstawione zostaną badania określające przedziały ufności z różnym stopniem 'zaufania'. Oznacza to, że jeśli grupa badana była zgromadzona w sposób losowy to rzeczywisty parametr populacji z z określonym stopniem 'zaufania' znajduje się w tym przedziale.

Zmienna numeryczna

W celu określnenia przedziałów ufności zmiennej numerycznej wybrano cechę *CenaPLN*. Przedział ufności dla średniej:

```
# Meta data
# Confidence level 0.9, 0.95, 0.99
confidence_level = c(0.9, 0.95, 0.99);
# Basic data
vii_price_mean = mean(database$CenaPLN);
vii_price_sd = sd(database$CenaPLN);
n = length(database$CenaPLN);
# Mean confidence function
mean_confidence <- function(mean, sd, n, confidence_level) {</pre>
  alpha = 1 - confidence_level;
 offset = qnorm(1 - alpha / 2) * sd / sqrt(n);
  lower bound = mean - offset;
 upper_bound = mean + offset;
 return(c(lower_bound, upper_bound));
};
# Calculate confidence
mean_confidence_intervals = sapply(confidence_level, function(conf_level) {
  mean_confidence(vii_price_mean, vii_price_sd, n, conf_level)
});
# Create matrix
mean_confidence_intervals = t(mean_confidence_intervals);
rownames(mean_confidence_intervals) = paste0("Poziom ufności: ", confidence_level);
colnames(mean_confidence_intervals) = c("Dolny przedział", "Górny przedział");
# Display
print("Przedziały ufności średniej dla różnych poziomów ufności:");
## [1] "Przedziały ufności średniej dla różnych poziomów ufności:"
print(mean_confidence_intervals);
##
                        Dolny przedział Górny przedział
## Poziom ufności: 0.9
                               34413.42
                                               34899.92
## Poziom ufności: 0.95
                               34366.82
                                               34946.52
## Poziom ufności: 0.99
                               34275.75
                                               35037.59
Przedział ufności dla wariancji:
# Meta data
# Confidence level 0.9, 0.95, 0.99
confidence_level = c(0.9, 0.95, 0.99);
```

```
# SD confidence function
sd_confidence <- function(mean, n, confidence_level) {</pre>
  alpha = 1 - confidence_level;
  offset = qnorm(1 - alpha / 2) / sqrt(2*n);
  lower bound = mean / (1 + offset);
  upper_bound = mean / (1 - offset);
 return(c(lower_bound, upper_bound));
};
# Calculate confidence
sd_confidence_intervals = sapply(confidence_level, function(conf_level) {
  sd_confidence(vii_price_mean, n, conf_level);
});
# Create matrix
sd_confidence_intervals = t(sd_confidence_intervals);
rownames(sd_confidence_intervals) = paste0("Poziom ufności: ", confidence_level);
colnames(sd_confidence_intervals) = c("Dolny przedział", "Górny przedział");
# Display
print("Przedziały ufności odchylenia standardowego dla różnych poziomów ufności:");
## [1] "Przedziały ufności odchylenia standardowego dla różnych poziomów ufności:"
print(sd confidence intervals);
                        Dolny przedział Górny przedział
                               34455.78
## Poziom ufności: 0.9
                                               34859.92
                               34417.56
                                               34899.13
## Poziom ufności: 0.95
## Poziom ufności: 0.99
                                               34976.01
                               34343.11
```

Przedział ufności dla zmiennej jakościowej (frakcyjna)

Do wyznaczenia przedziału ufności dla zmiennej PojazdUszkodzony (rozkład Bernoulliego)

```
# Meta data
# Confidence level 0.9, 0.95, 0.99
confidence_level = c(0.9, 0.95, 0.99);
# Basic data
vii_positive = sum(database$PojazdUszkodzony == TRUE);
          = length(database$PojazdUszkodzony);
vii all
mean_bool_confidence <- function(m, n, confidence_level) {</pre>
  alpha = 1 - confidence_level;
 mn = m / n;
 offset = qnorm(1 - alpha / 2) * sqrt(mn * (1-mn)) / sqrt(n);
 lower_bound = mn - offset;
  upper_bound = mn + offset;
  return(c(lower_bound, upper_bound));
};
# Calculate confidence
confidence_intervals = sapply(confidence_level, function(conf_level) {
 mean_bool_confidence(vii_positive, vii_all, conf_level);
```

```
});
# Create matrix
confidence_intervals = t(confidence_intervals);
rownames(confidence_intervals) = paste0("Poziom ufności: ", confidence_level);
colnames(confidence_intervals) = c("Dolny przedział", "Górny przedział");
print("Przedziały ufności dla frakcji dla różnych poziomów ufności (Udział pojazdów uszkodzonych):");
## [1] "Przedziały ufności dla frakcji dla różnych poziomów ufności (Udział pojazdów uszkodzonych):"
print(confidence_intervals);
                        Dolny przedział Górny przedział
## Poziom ufności: 0.9
                             0.03528564
                                             0.03839196
## Poziom ufności: 0.95
                             0.03498810
                                             0.03868950
## Poziom ufności: 0.99
                             0.03440657
                                             0.03927103
```

VII - Testowanie hipotez

Zmienne jakościowe

Test niezależności

Do testu niezależności wykorzystano dane dotyczące kraju pochodzenia oraz marki. Celem testu jest podtwierdzenie niezależności wyboru marki względem kraju. H0 - zmienne są niezależne, H1 - zmienne nie są niezależne.

print(table(database\$KrajPochodzenia, database\$Marka));

##									
##		Audi	${\tt BMW}$	${\tt Fiat}$	${\tt Ford}$	Mercedes-Benz	Opel	Peugeot	Renault
##	Austria	48	38	41	75	19	67	47	73
##	Belgia	204	154	51	246	86	427	171	264
##	Czechy	123	125	56	254	102	191	147	226
##	Dania	2	1	5	18	2	31	16	6
##	Estonia	0	0	0	1	0	0	0	0
##	Francja	139	102	101	402	117	322	817	1116
##	Grecja	0	0	0	0	0	0	0	0
##	Hiszpania	4	7	3	27	7	34	7	10
##	Holandia	27	28	21	111	21	141	84	140
##	Irlandia	0	0	0	0	1	2	0	0
##	Islandia	0	0	0	0	0	1	0	0
##	Kanada	4	5	0	3	3	0	0	0
##	Luksemburg	14	10	11	14	7	27	19	30
##	Niemcy	2080	1210	400	2096	1150	2119	667	1436
##	Norwegia	0	0	0	0	0	1	0	0
##	Polska	423	301	1133	1842	641	1459	1098	1242
##	Rosja	0	0	0	0	0	0	0	0
##	Rumunia	0	0	0	0	0	0	0	2
##	Slowacja	1	4	0	2	1	0	0	0
##	Stany Zjednoczone	90	64	0	101	72	2	0	0
##	Szwajcaria	55	35	10	36	15	41	19	39
##	Szwecja	5	1	0	3	3	2	1	1

```
##
     Wegry
                            0
                                  0
                                       0
                                             1
                                                            0
                                                                  0
                                                                          1
                                                                                   0
##
     Wielka Brytania
                           29
                                 23
                                       4
                                            15
                                                           15
                                                                17
                                                                         13
                                                                                  19
##
     Wlochy
                           74
                               109
                                      87
                                          146
                                                           57 107
                                                                         92
                                                                                 110
##
##
                         Skoda Toyota Volkswagen
##
                            32
                                    31
     Austria
##
     Belgia
                            88
                                   137
                                               305
                                   142
##
     Czechy
                           953
                                               243
##
     Dania
                             2
                                    36
                                                22
##
     Estonia
                             0
                                     0
                                                 1
##
     Francja
                            81
                                   176
                                               410
                             0
                                                 0
##
     Grecja
                                     1
                             5
                                     7
                                                17
##
     Hiszpania
##
     Holandia
                            29
                                               161
                                    44
##
     Irlandia
                             0
                                     0
                                                 1
##
     Islandia
                             0
                                     0
                                                 0
##
     Kanada
                             0
                                     2
                                                 4
     Luksemburg
##
                             5
                                    12
                                                22
##
                           531
                                   580
                                              3271
     Niemcy
                                     2
##
     Norwegia
                             0
                                                 1
##
     Polska
                          1154
                                  1297
                                              1303
##
     Rosja
                             0
                                     0
                                                 1
##
                                                 0
     Rumunia
                             0
                                     0
##
     Slowacia
                             3
                                     1
                                                 1
                                                73
##
                             0
                                   119
     Stany Zjednoczone
##
     Szwajcaria
                            15
                                    11
                                                30
##
     Szwecja
                             0
                                     1
                                                 6
                             0
                                     0
                                                 0
##
     Wegry
                             7
                                     5
                                                39
##
     Wielka Brytania
                            23
                                    65
##
     Wlochy
                                               101
vii_test = chisq.test(table(database$Marka, database$SkrzyniaBiegowManualna));
print(vii_test)
##
   Pearson's Chi-squared test
##
##
## data: table(database$Marka, database$SkrzyniaBiegowManualna)
```

Test to potwierdza (p-value < 0.05) mamy podstawy do odrzucenia hipotezy zerowej na korzyść hipotezy alternatywnej - istnieje zależność krajem pochodzenia, a marką.

Test proporcji

X-squared = 8406.9, df = 10, p-value < 2.2e-16

Test proprcji w którym wykorzystano liczbę samochodów uszkodzonych oraz kraj pochodzenie. H0 - odsetek samochodów uszkodzonych jest niezależny od kraju pochodzenia.

```
vii_proporcja = database %>% group_by(database$KrajPochodzenia) %>% summarise(liczba = n());
vii_proporcja$uszkodzonych = table(database$KrajPochodzenia, database$PojazdUszkodzony)[,2];
vii_proporcja = vii_proporcja %>% filter(liczba > 500);
vii_test = prop.test(x = vii_proporcja$uszkodzonych, n = vii_proporcja$liczba);
print(vii_test);
```

9-sample test for equality of proportions without continuity correction

```
##
## data: vii_proporcja$uszkodzonych out of vii_proporcja$liczba
## X-squared = 1059.7, df = 8, p-value < 2.2e-16
## alternative hypothesis: two.sided
## sample estimates:
##
      prop 1
                             prop 3
                                        prop 4
                  prop 2
                                                   prop 5
                                                              prop 6
                                                                          prop 7
## 0.06735751 0.05766526 0.00117096 0.11895321 0.02850062 0.02683398 0.02009585
##
       prop 8
                  prop 9
## 0.06333973 0.02265705
```

Zmienne ilościowe

Testowanie normalności względem ceny, test pozwala na potwierdzenie tezy o normalności rozkładu. H0 - doświadczenie ma rozkład normalny.

```
vii_test = ad.test(database$CenaPLN);
print(vii_test);

##
## Anderson-Darling normality test
##
## data: database$CenaPLN
## A = 3123.5, p-value < 2.2e-16
ggplot(database, aes(sample = CenaPLN)) +
    stat_qq() +
    stat_qq_line();</pre>
```


Cena nie jest zmienną o rozkładzie normalnym.

Test Wilcoxona

Ze względu na to, iż cena nie jest zmienną o rozkładzie normalnym. Wykorzystujemy nieparametryczny test Wilcoxona. H0 - średnia jest równa 34656.

```
##
## Wilcoxon signed rank test with continuity correction
##
## data: database$CenaPLN
## V = 277239234, p-value < 2.2e-16
## alternative hypothesis: true location is not equal to 34656</pre>
```

IX - Regresja liniowa i inne

Modele dla jednej zmiennej


```
summary(model);
```

```
##
## Call:
## lm(formula = CenaPLN ~ ., data = ix_database)
## Residuals:
##
     Min
            1Q Median
                           3Q
                                 Max
## -40733 -11549 -3678 6986 152257
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 4.465e+04 2.398e+02 186.17 <2e-16 ***
## PrzebiegKm -1.212e-01 1.706e-03 -71.05
                                            <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 18550 on 32644 degrees of freedom
## Multiple R-squared: 0.1339, Adjusted R-squared: 0.1339
## F-statistic: 5049 on 1 and 32644 DF, p-value: < 2.2e-16
print(model$coefficients);
##
     (Intercept)
                   PrzebiegKm
## 44651.6424984
                   -0.1211948
ix_database = select(filter(database, PojazdUszkodzony==FALSE & SkrzyniaBiegowManualna == TRUE),
                    c("CenaPLN", "PojemnoscSkokowa"))
model = lm(CenaPLN ~ . , data = ix_database)
ix_sample = ix_database[sample(nrow(ix_database), size=1000),]
plot(CenaPLN ~ PojemnoscSkokowa, data=ix_sample, col = 'darkcyan')
abline(model, col="red")
```


summary(model);

##

##

(Intercept) PojemnoscSkokowa

21.14093

-7527.23942

```
##
## Call:
## lm(formula = CenaPLN ~ ., data = ix_database)
##
## Residuals:
       Min
##
                1Q
                   Median
                                3Q
                                       Max
## -106802 -11243
                     -3490
                              6365
                                   159245
##
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    -7527.2394
                                 497.7274
                                          -15.12
                                                    <2e-16 ***
## PojemnoscSkokowa
                                   0.2801
                                            75.49
                                                    <2e-16 ***
                       21.1409
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 18390 on 32644 degrees of freedom
## Multiple R-squared: 0.1486, Adjusted R-squared: 0.1486
## F-statistic: 5698 on 1 and 32644 DF, p-value: < 2.2e-16
print(model$coefficients);
```

Modele dla 2 zmiennych

```
summary(model);
```

```
##
## Call:
## lm(formula = CenaPLN ~ ., data = ix_database)
##
## Residuals:
## Min 1Q Median 3Q Max
## -156582 -8871 -1542 6472 138780
##
## Coefficients:
```

```
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    -5.437e+02 4.200e+02
                                           -1.294
                                                      0.196
## PrzebiegKm
                    -1.762e-01 1.483e-03 -118.785
                                                     <2e-16 ***
## PojemnoscSkokowa 3.000e+01 2.456e-01 122.129
                                                   <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 15370 on 32643 degrees of freedom
## Multiple R-squared: 0.4056, Adjusted R-squared: 0.4055
## F-statistic: 1.114e+04 on 2 and 32643 DF, p-value: < 2.2e-16
print(model$coefficients);
##
        (Intercept)
                          PrzebiegKm PojemnoscSkokowa
##
       -543.7320918
                          -0.1761712
                                           29.9959737
Drzewa decyzyjne
ix_database = select(filter(database, PojazdUszkodzony==FALSE & SkrzyniaBiegowManualna == TRUE),
                     c("CenaPLN", "RokProdukcji", "PojemnoscSkokowa"))
ix_data_split = initial_split(ix_database, prop = 0.75);
ix_train_data <- training(ix_data_split);</pre>
ix_test_data <- testing(ix_data_split);</pre>
tree_spec <- decision_tree() %>%
set_engine("rpart") %>%
set_mode("regression")
tree_fit <- tree_spec %>%
fit(CenaPLN ~ ., data = ix_train_data)
predictions <- tree fit %>%
predict(ix_test_data) %>%
pull(.pred)
metrics <- metric_set(rmse, rsq)</pre>
model_performance <- ix_test_data %>%
mutate(predictions = predictions) %>%
metrics(truth = CenaPLN, estimate = predictions)
print(model_performance)
## # A tibble: 2 x 3
##
     .metric .estimator .estimate
     <chr> <chr>
##
                            <dh1>
## 1 rmse
            standard 11106.
## 2 rsq
             standard
                            0.677
rpart.plot(tree_fit$fit, type = 5, extra = 101, under = TRUE, cex = 0.8, box.palette = "auto")
## Warning: Cannot retrieve the data used to build the model (so cannot determine roundint and is.binar
## To silence this warning:
      Call rpart.plot with roundint=FALSE,
```

or rebuild the rpart model with model=TRUE.

##

