

Настройка гиперпараметров – возможности фреймворка интеллектуальной оптимизации

https://github.com/aimclub/iOpt/

Константин Баркалов, Александр Сысоев, <u>Евгений Козинов</u>, Илья Лебедев ННГУ им. Н.И. Лобачевского Университет ИТМО

Содержание

- □ Настройка гиперпараметров (мета-оптимизация)
- □ Задачи глобальной оптимизации
- □ Методы глобальной оптимизации
- □ Фреймворк iOpt структура и возможности
- □ Сравнение iOpt с другими фреймворками

НАСТРОЙКА ГИПЕРПАРАМЕТРОВ (ГЛОБАЛЬНАЯ ОПТИМИЗАЦИЯ)

Настройка гиперпараметров

Методы машинного обучения

- □ Минимизация функции потерь (на некотором датасете) в зависимости от набора гиперпараметров метода
- □ Используемые алгоритмы:
 - Поиск по равномерной сетке
 - Случайный поиск
 - Байесовская оптимизация
 - Генетические (эволюционные) алгоритмы
- □ Доступные реализации (фреймворки)
 - Hyperopt
 - Optuna
 - Sherpa
 - Scikit-Optimize
 - и т.д.

Методы машинного обучения

- □ Минимизация функции потерь (на некотором датасете) в зависимости от набора гиперпараметров метода
- □ Используемые алгоритмы:
 - Поиск по равномерной сетке
 - Случайный поиск
 - Байесовская оптимизация
 - Генетические (эволюционные) алгоритмы
- □ Доступные реализации (фреймворки)
 - Hyperopt
 - Optuna
 - Sherpa
 - Scikit-Optimize
 - и т.д.

Методы машинного обучения

- □ Минимизация функции потерь (на некотором датасете) в зависимости от набора гиперпараметров метода
- □ Используемые алгоритмы:
 - Поиск по равномерной сетке
 - Случайный поиск
 - Байесовская оптимизация
 - Генетические (эволюционные) алгоритмы
- □ Доступные реализации (фреймворки)
 - Hyperopt
 - Optuna
 - Sherpa
 - Scikit-Optimize
 - и т.д.

Эвристические алгоритмы глобальной и комбинаторной оптимизации

- □ Различные критерии мета-оптимизации
 - минимизация числа поисковых испытаний при заданной точности решения задачи
 - максимизация числа решенных задач некоторого класса
- □ Используемые алгоритмы
 - Поиск по равномерной сетке
 - Случайный поиск
 - Классические методы оптимизации 0-го порядка
 - Байесовская оптимизация
- □ Доступные реализации (фреймворки)
 - Nevergrad
 - ZOOpt
 - SciPy Optimize
 - и т.д.

Задачи глобальной оптимизации

 \square Найти точку глобального минимума y^* функции $\varphi(y)$ $\varphi(y^*) = \min\{\varphi(y): y \in D\}$, $D = y \in R^N$, $a_i \le y_i \le b_i\}$

- $\phi(y^*) = \min\{\phi(y): y \in D, g_j(y) \leq 0, 1 \leq j \leq m\}$ учет функциональных ограничений
- □ Многокритериальная оптимизация $w(y) = (w_1(y), w_2(y), ..., w_s(y)) \rightarrow \min$ Скаляризация, множество Парето $F(x, \lambda) = \max_{1 \le i \le k} (\lambda_i w_i(x)) + \gamma \sum_{i=1}^k \lambda_i w_i(x)$

МЕТОДЫ ГЛОБАЛЬНОЙ ОПТИМИЗАЦИИ

Методы глобальной оптимизации

- □ Детерминированные алгоритмы:
 - одинаковый результат при повторном запуске
 - гарантированный результат в задачах малой (N < 10) размерности
 - практически не применимы к задачам размерности $N \gg 10$
 - **—** ...
- □ Метаэвристические алгоритмы:
 - Неявно основаны на идеях случайного поиска
 - Требуют нескольких запусков для нахождения наилучшего решения
 - Хороший результат в задачах большой ($N\gg 10$) размерности
 - Содержат параметры, которые сильно влияют на получаемое решение

Липшицева оптимизация

- \Box Предположение: ограниченное изменение аргумента Δy порождает ограниченное изменение значений функции $\Delta \varphi$
- □ Математическая модель: условие Липшица $|\varphi(y') \varphi(y'')| \le L||y' y''||, \quad y', y'' \in D$
- □ Липшицева оптимизация:
 - С.А. Пиявский, Ю.Г. Евтушенко, М.А. Посыпкин, Я.Д.Сергеев, J. Pinter, P. Hansen, D. Jones, J. Žilinskas, ...
 - Р.Г. Стронгин Нижегородская школа глобальной оптимизации

Редукция размерности на основе кривых Пеано

Паши методы основаны на использовании кривых Пеано y(x), которые однозначно и непрерывно отображают интервал [0,1] на N-мерную область D $\min_{y \in D} \varphi(y) = \min_{x \in [0,1]} \varphi\left(y(x)\right)$

Редукция размерности на основе кривых Пеано

Реализованы быстрые алгоритмы для построения аппроксимаций кривых Пеано (разверток) с заданной точностью для заданной размерности.

Условию Липшица для $\varphi(y)$ будет соответствовать условие Гельдера для $\varphi(y(x))$

$$|\varphi(y(x_1)) - \varphi(y(x_2))| \le 2L\sqrt{N+3}|x_1 - x_2|^{1/N}$$

где $x_1, x_2 \in [0,1]$

Концепция редукции к базовой задаче

ФРЕЙМВОРК іОРТ

Классы решаемых задач

- □ Задачи липшицевой глобальной оптимизации (2022)
- □ Задачи смешанной дискретной оптимизации (2023)
- □ Задачи многокритериальной оптимизации (2024)

```
License BSD 3-Clause python 3.9 python 3.8 docs passing Build passing
```

Назначение

- □ Выбор значений параметров математических моделей сложных объектов и процессов (методов ИИ и МО, методов дискретной оптимизации, и т.п.)
- □ Интеграция с внешними библиотеками или фреймворками ИИ и МО, а также предметными моделями
- □ Автоматизация предварительного анализа исследуемых моделей, например, выделение разных классов зависимостей модели от разных групп параметров
- □ Визуализация процесса выбора оптимальных параметров

- □ Используется послойная архитектура
 - Уровень данных содержит:
 - Систему классов описания элементов поисковой информации
 - Систему классов для хранения поисковой информации
 - Обеспечивает сохранение и загрузку данных из файла, что позволяет возобновлять процесс вычислений

□ Используется послойная архитектура

- Уровень методов содержит:
 - Классы описания различных методов выбора точек испытаний
 - Method однокритериальные задачи без ограничений
 - IndexMethod однокритериальные задачи с нелинейными ограничениями
 - MixedIntegerMethod однокритериальные задачи с нелинейными ограничениями и дискретными параметрами
 - MCOMethod многокритериальные задачи (планируется в будущем)

- □ Используется послойная архитектура
 - Уровень процесса вычислений содержит:
 - Классы описания процесса вычислений основанного на выбранном методе
 - Определение точек испытания на основе глобального или локального метода поиска
 - Выполнение испытаний
 - Обновление поисковой информации
 - Проверка условий остановки вычислений
 - Генерация событий в процессе вычислений
 - > Начало работы метода
 - > Выполнение итерации метода
 - > Окончание вычислений

- □ Используется послойная архитектура
 - Уровень решателя содержит:
 - Класс описания параметров метода
 - Класс решателя
 - Проверка исходных данных
 - Порождение объектов процесса вычислений и метода на основе параметров
 - Запуск процесса вычислений
 - Получения результатов вычислений

□ Используется послойная архитектура

- Уровень пользовательского интерфейса содержит:
 - Интерфейс определения задач оптимизации
 - Подсистему визуализации процесса вычислений
 - Процесс вычислений может отображаться как в терминале, так и в виде отдельных графиков


```
□ Интерфейс определения задач оптимизации
class Problem(ABC):
    """Базовый класс для задач оптимизации"""
    def init (self):
    """Описание количественных характеристик задачи поиска"""
        self.name: str = ''
        self.numberOfFloatVariables: int = 0
        self.numberOfDisreteVariables: int = 0
        self.numberOfObjectives: int = 0
        self.numberOfConstraints: int = 0
    """Имена оптимизируемых параметров"""
        self.floatVariableNames: np.ndarray(shape=(1), dtype=str) = []
        self.discreteVariableNames: np.ndarray(shape=(1), dtype=str) = []
    """Описание области поиска"""
        self.lowerBoundOfFloatVariables: np.ndarray(shape=(1), dtype=np.double) = []
        self.upperBoundOfFloatVariables: np.ndarray(shape=(1), dtype=np.double) = []
        self.discreteVariableValues: np.ndarray(shape=(1, 1), dtype=str) = []
    """Известное решение (используется для отладки методов)"""
        self.knownOptimum: np.ndarray(shape=(1), dtype=Trial) = []
    """Абстрактный метод проведения испытаний в заданной точке"""
    @abstractmethod
    def Calculate(self, point: Point, functionValue: FunctionValue) -> FunctionValue:
```

```
□ Пример описания задачи предсказания рака молочной железы
class SVC 2D (Problem):
   def init (self, x dataset: np.ndarray, y dataset: np.ndarray,
                 regularization bound: Dict[str, float],
                 kernel coefficient bound: Dict[str, float]):
        11 11 11
                                 входные данные обучающей выборки
        x dataset, y dataset :
        kernel coefficient bound: границы изменения значения параметра регуляризации
        regularization bound:
                                  границы изменения значения коэффициента ядра
                                   (low - нижняя граница, up - верхняя)
        11 11 11
        super(SVC 2D, self). init ()
        self.numberOfFloatVariables = 2
        self.numberOfObjectives = 1
        self.x = x dataset
        self.y = y dataset
        self.floatVariableNames = np.array(["Regularization parameter", "Kernel coefficient"], dtype=str)
        self.lowerBoundOfFloatVariables = np.array([regularization bound['low'],
                                                     kernel coefficient bound['low']],
                                                     dtype=np.double)
        self.upperBoundOfFloatVariables = np.array([regularization bound['up'],
                                                     kernel coefficient bound['up']],
                                                     dtype=np.double)
```

□ Пример описания задачи предсказания рака молочной железы

```
from sklearn.svm import SVC
from sklearn.model selection import cross val score
class SVC 2D(Problem):
    def Calculate(self, point: Point, functionValue: FunctionValue) -> FunctionValue:
        11 11 11
        Метод расчёта значения целевой функции в точке
        point: Точка испытания
        functionValue: объект хранения значения целевой функции в точке
        11 11 11
        cs, gammas = point.floatVariables[0], point.floatVariables[1]
        clf = SVC(C=10 ** cs, gamma=10 ** gammas)
        clf.fit(self.x, self.y)
        functionValue.value = -cross val score(clf, self.x, self.y, scoring='f1').mean()
        return functionValue
```

□ Пример описания задачи предсказания рака молочной железы # Создание объекта задачи x, y = load breast cancer data()regularization value bound = {'low': 1, 'up': 6} kernel coefficient bound = $\{'low': -7, 'up': -3\}$ problem = SVC 2D(x, y, regularization value bound, kernel coefficient bound) # Формируем параметры решателя method params = SolverParameters(r=3.0, itersLimit=100, numberOfParallelPoints=4) # Создаем решатель solver = Solver(problem, parameters=method params) # Добавляем вывод резултатов в консоль cfol = ConsoleOutputListener(mode='result') solver.AddListener(cfol) # Добавляем построение 3D визуализации после решения задачи spl = StaticPainterNDListener("svc2d stat.png", "output", varsIndxs=[0, 1], mode="surface", calc="interpolation") solver.AddListener(spl)

□ Пример поиска оптимального решения

```
# Решение задачи

sol = solver.Solve()

# Пользовательский вывод информации

print(sol.numberOfGlobalTrials)

print(sol.numberOfLocalTrials)

print(sol.solvingTime)

print(sol.bestTrials[0].

functionValues[0].value)
```



```
| Result |
| global iteration count: 101 |
| local iteration count: 0 |
| solving time: 1.513753 |
| solution point: [ 3.42919922 -4.99804688] |
| solution value: -0.97354927 |
| accuracy: 0.05590170 |
```

СРАВНЕНИЕ С ИЗВЕСТНЫМИ ФРЕЙМВОРКАМИ ПРИ РЕШЕНИИ МОДЕЛЬНЫХ ЗАДАЧ

Тестовая инфраструктура

- □ Вычислительные эксперименты проводились на суперкомпьютере «Лобачевский» Нижегородского государственного университета.
 - В экспериментах использовался вычислительный узел с двумя 64-ядерными процессорами AMD EPYC 7742 (всего 128 вычислительных ядра).
 - На узле установлено 512 Gb оперативной памяти.
 - Операционная система CentOS 7.

Решаемые задачи оптимизации

- □ Эффективность фреймворка iOpt проверялась на решении следующих задач:
 - Настройка параметров алгоритма машинного обучения для построения модели предсказания рака молочной железы.
 - Настройка параметров генетического алгоритма при решении задачи коммивояжёра.
 - Настройка параметров XGBoost при построении модели на разных наборах данных.

Построения модели предсказания рака молочной железы

Стандартный датасет breast_cancer

Целевая метрика – f1_score, настройка параметров С и gamma (100 испытаний) График целевой функции

Фреймворк	f1_score		
	0.87		
Scikit-Optimize	0.90		
iOpt	0.94		

Построения модели предсказания рака молочной железы

Стандартный датасет breast_cancer

Целевая метрика – f1_score, настройка параметров С и gamma (1000 испытаний)

 Число процессов	f1_score	Время настройки параметров	Ускорение	График целевой функции
1	0,975	31,199	1	
5	0,975	7,876	4,0	-0.88 -0.89 -0.90
10	0,975	4,775	6,5	-0.91 -0.92
20	0,975	3,251	9,6	-0.93 -0.94
40	0,975	2,002	15,6	
80	0,975	1,616	19,3	

Решении задачи коммивояжёра

- □ Решалась задача a280 из базы «TSPLIB is a library of sample instances for the TSP»
 - <u>http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/</u>
- □ В рамках исследования применялся генетический алгоритм, реализованный в библиотеке scikit-opt
 - https://github.com/guofei9987/scikit-opt
- □ Настраиваемые параметры
 - Вероятность мутации
 - Размер популяции
- Число итераций генетического алгоритма было фиксировано и равно 200

* Картинка взята с сайта https://ru.wikipedia.org/wiki/ Задача_коммивояжёра

Решении задачи коммивояжёра

- □ Длина пути с настройками генетического алгоритма по умолчанию 25835,04
- □ Эффективность параллельной реализации метода число испытаний при настройке параметров 400

Число процессов	Длина пути (лучше меньше)	Время настройки параметров	Ускорение
1	16040,52	1162,5	1
5	16223,25	316,0	3,7
10	16011,50	164,3	7,1
20	16089,76	90,25	12,9
40	16216,21	54,69	21,3
80	15910,54	34,86	33,3

* Картинка взята с сайта https://ru.wikipedia.org/wiki/ Задача_коммивояжёра

Настройка XGBoost

- □ XGBoost одна из реализаций алгоритма градиентного бустинга на деревьях решений.
- □ Метод построения модели классификации
 - На первом шаге модель строилась с параметрами по умолчанию
 - Далее параметры XGBoost оптимизировались и модель строилась вновь
 - Оптимизируемые параметры

```
params = {
  'n_estimators': (int, 10, 200),
  'max_depth': (int, 5, 20),
  'min_child_weight': (int, 1, 10),
  'gamma': (float, 0.01, 0.6),
  'subsample': (float, 0.05, 0.95),
  'colsample_bytree': (float, 0.05, 0.95),
  'learning_rate': (float, 0.001, 0.1)
}
```


вопросы?

konstantin.barkalov@itmm.unn.ru evgeny.kozinov@itmm.unn.ru