

Bagging vs Random Forest

1. What is Bagging?

- Full name: Bootstrap Aggregating.
- Idea: Train multiple models (usually Decision Trees) on different random subsets of the training data (with replacement).
- Final prediction: Average (for regression) or Majority vote (for classification).
- Purpose: **Reduce variance** and improve stability.
- Bagging only ensures diversity through different data samples.

2. What is Random Forest?

- Random Forest = **Bagging + Extra Randomness**.
- Uses **Decision Trees** as base models, but adds an extra twist:
 - o At each split in a tree, instead of considering all features, it considers a random subset of features.
- This makes trees less correlated and further reduces variance.
- Random Forest = Bagging + Random Feature Selection.

3. Key Differences

Aspect	Bagging	Random Forest
Base Model	Any model (but often Decision	Always Decision Trees.
	Trees).	
Data Sampling	Bootstrap samples (with	Bootstrap samples (same as
	replacement).	Bagging).
Feature Selection	Uses all features at each split.	Uses a random subset of
		features at each split.
Correlation Among	Trees may be highly correlated	Trees are decorrelated
Trees	(since all use same features).	(different features used at
		splits).
Variance	Good, but limited.	Even better (due to extra
Reduction		randomness).
Accuracy	Improves stability, but can still	Generally higher accuracy &
	overfit with correlated trees.	robustness.

Interpretability	Easier (closer to bagged trees).	Harder (extra randomness
		makes trees more diverse).

4. Analogy (Easy to Remember)

- Bagging: Imagine you ask 10 people the same question, but they all use the same book to answer. → Their answers may be similar.
- Random Forest: You ask 10 people, but each can only use a random subset of books. → Their answers are more diverse → final vote is more reliable.

5. When to Use?

- Bagging:
 - 1. Works well when you want to reduce variance of unstable models (like decision trees).
 - 2. Simpler, but might not maximize accuracy.
- Random Forest:
 - 1. Almost always preferred over Bagging with trees.
 - 2. Better accuracy, robustness, and generalization.

© Key Takeaway

- Bagging = Multiple trees trained on random subsets of data.
- Random Forest = Bagging + random subsets of features at each split.
- Random Forest is basically a smarter Bagging that reduces correlation among trees, leading to stronger performance.