

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

Thus, in any case,

$$(a+b)(a-b) \equiv 0 \text{ (mod. 8)},$$

a and b each belong to one of the types 3k, 3k + 1, 3k + 2.

If either be 3k, then

$$ab \equiv 0, \mod 3$$
.

If both be of type 3k + 1, or 3k + 2, then

$$a-b\equiv 0, \bmod 3.$$

If one be of type 3k + 1 and the other 3k + 2, then

$$a + b \equiv 0$$
, mod. 3.

Thus in any case

$$(a+b)ab(a-b) \equiv 0 \text{ (mod. 24)}.$$

QUESTIONS AND DISCUSSIONS.

EDITED BY U. G. MITCHELL, University of Kansas.

NEW QUESTIONS.

29. While studying the problem of two equal rough bodies, connected by an inelastic wire, resting on an inclined plane, Professor Clifford N. Mills of South Dakota State College met the following interesting expression. If 1/a and 1/a+1 are the coefficients of friction, the tension of the wire when the bodies are about to descend becomes a multiple of 1/a[1/a+1/a+1]. This, when simplified, becomes (2a+1)/2a(a+1). If 2a+1 and 2a(a+1) represent the base and altitude of a right triangle the hypothenuse is $2a^2+2a+1$. Therefore this gives a series of numbers which satisfy the relation $x^2+y^2=z^2$, if a is given any value whatsoever. Professor Mills desires to know if this will give all the integers which satisfy the condition that the sum of the squares of two integers equals the square of an integer.

REPLIES.

23. What should be done with the theory of limits in elementary geometry? Should the recommendation of the National Committee of Fifteen be universally adopted? If not, what better disposition of the subject can be made?

REPLY BY R. M. MATTHEWS, Riverside, California.

In elementary euclidean plane geometry the theory of limits is used at four places. The last of these is for the evaluation of a particular sequence which defines a definite limit π and so is different from the other three which are the theorems fundamental to proportion and the comparison of areas. The first is, "In a circle, central angles are proportional to their intercepted arcs." It depends upon the theorem that equal central angles intercept equal arcs, a relation which is established by congruence. The second is, "A set of parallel lines intercept proportional segments on all transversals." It depends upon the theorem that parallels which intercept equals on any transversal intercept equals on every transversal, a relation also established by congruence. The third is, "Rectangles are proportional to the products of their bases and altitudes"