```
import pandas as pd
import numpy as np
{\tt import\ matplotlib.pyplot\ as\ plt}
import seaborn as sns
from google.colab import files
uploaded = files.upload()
    Choose Files Cleaned_Al...Dataset.csv

    Cleaned_Algerian_Forest_Fires_Dataset.csv(text/csv) - 15094 bytes, last modified: 27/6/2025 - 100% done

     Saving Claamad Alganian Foract Finac Datacat cov to Claamad Alganian Foract Finac Datacat (3) cov
df=pd.read_csv('Cleaned_Algerian_Forest_Fires_Dataset.csv')
df.head()
₹
                                                                                                           \blacksquare
         day
             month year Temperature RH Ws Rain FFMC DMC
                                                                    DC ISI BUI FWI Classes Region
      0
                  6 2012
                                     29
                                         57
                                             18
                                                   0.0
                                                                    7.6
                                                                              3.4
                                                                                   0.5
                                                        65.7
                                                              3.4
                                                                         1.3
                                                                                         not fire
                                                                                                      0
           2
                  6 2012
                                     29 61 13
                                                   1.3
                                                        64.4
                                                             4.1
                                                                    7.6
                                                                         1.0
                                                                              3.9
                                                                                   0.4
                                                                                         not fire
                                                                                                      0
      2
                  6 2012
                                     26 82 22
                                                  13.1
                                                        47.1
                                                              2.5
                                                                    7.1
                                                                         0.3
                                                                              2.7
                                                                                   0.1
                                                                                                      0
                                                                                         not fire
      3
                  6 2012
                                     25 89 13
                                                   2.5
                                                        28.6
                                                              1.3
                                                                    6.9
                                                                         0.0
                                                                                         not fire
                                                                                                      0
      4
           5
                  6 2012
                                     27 77 16
                                                   0.0
                                                        64.8 3.0
                                                                  14.2
                                                                        1.2
                                                                              3.9
                                                                                   0.5
                                                                                         not fire
                                                                                                      0
 Next steps:
              Generate code with df
                                     View recommended plots
                                                                   New interactive sheet
df.columns
dtype='object')
df.drop(['day', 'month', 'year'],axis=1,inplace=True)
df.head()
\overline{\Rightarrow}
                                                  DC ISI BUI FWI Classes Region
                                                                                        \overline{\Pi}
         Temperature RH
                         Ws Rain FFMC
                                          DMC
      0
                      57
                          18
                                0.0
                                     65.7
                                           3.4
                                                 7.6
                                                      1.3
                                                           3.4
                                                                                    0
                                                                0.5
                                                                      not fire
                                                                                         Ш
      1
                  29 61
                          13
                                1.3
                                     64.4
                                           4.1
                                                 7.6
                                                      1.0
                                                          3.9
                                                                0.4
                                                                       not fire
                                                                                    0
      2
                  26 82
                          22
                               13.1
                                     47.1
                                           2.5
                                                 7.1
                                                      0.3
                                                          2.7
                                                                0.1
                                                                      not fire
                                                                                    0
      3
                  25 89
                          13
                                2.5
                                     28.6
                                           1.3
                                                 6.9
                                                      0.0
                                                          1.7
                                                                0.0
                                                                       not fire
                                                                                    0
                  27 77
                                0.0
                                                14.2
                                                      1.2
                                                                0.5
                          16
                                     64.8
                                           3.0
                                                           3.9
                                                                      not fire
                                                                                    0
 Next steps: (
              Generate code with df

    View recommended plots

                                                                   New interactive sheet
df['Classes'].value_counts()
\overline{2}
               count
      Classes
        fire
                 131
       not fire
                 101
        fire
                   4
        fire
                   2
       not fire
                   2
       not fire
       not fire
                   1
       not fire
```

df.head()

Next steps: Generate code with df

View recommended plots

New interactive sheet

df.tail()

₹		Temperature	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	FWI	Classes	Region	
	238	30	65	14	0.0	85.4	16.0	44.5	4.5	16.9	6.5	1	1	ılı
	239	28	87	15	4.4	41.1	6.5	8.0	0.1	6.2	0.0	0	1	
	240	27	87	29	0.5	45.9	3.5	7.9	0.4	3.4	0.2	0	1	
	241	24	54	18	0.1	79.7	4.3	15.2	1.7	5.1	0.7	0	1	
	242	24	64	15	0.2	67.3	3.8	16.5	1.2	4.8	0.5	0	1	

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 243 entries, 0 to 242 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	Temperature	243 non-null	int64
1	RH	243 non-null	int64
2	Ws	243 non-null	int64
3	Rain	243 non-null	float64
4	FFMC	243 non-null	float64
5	DMC	243 non-null	float64
6	DC	243 non-null	float64
7	ISI	243 non-null	float64
8	BUI	243 non-null	float64
9	FWI	243 non-null	float64
10	Classes	243 non-null	int64
11	Region	243 non-null	int64
1.0	C1 1 C 4 / 7) :-+C4(F)	

dtypes: float64(7), int64(5)

memory usage: 22.9 KB

df.describe()

_		Temperature	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	FWI	Class
	count	243.000000	243.000000	243.000000	243.000000	243.000000	243.000000	243.000000	243.000000	243.000000	243.000000	243.0000
	mean	32.152263	62.041152	15.493827	0.762963	77.842387	14.680658	49.430864	4.742387	16.690535	7.035391	0.5637
	std	3.628039	14.828160	2.811385	2.003207	14.349641	12.393040	47.665606	4.154234	14.228421	7.440568	0.4969
	min	22.000000	21.000000	6.000000	0.000000	28.600000	0.700000	6.900000	0.000000	1.100000	0.000000	0.0000
	25%	30.000000	52.500000	14.000000	0.000000	71.850000	5.800000	12.350000	1.400000	6.000000	0.700000	0.0000
	50%	32.000000	63.000000	15.000000	0.000000	83.300000	11.300000	33.100000	3.500000	12.400000	4.200000	1.0000
	75%	35.000000	73.500000	17.000000	0.500000	88.300000	20.800000	69.100000	7.250000	22.650000	11.450000	1.0000
	max	42.000000	90.000000	29.000000	16.800000	96.000000	65.900000	220.400000	19.000000	68.000000	31.100000	1.0000

Independent And dependent features X=df.drop('FWI',axis=1)

y=df['FWI']

X.head()

Next steps: Generate code with X View recommended plots

New interactive sheet

У

243 rows × 1 columns

dtune: floot64

242 0.5

#Train Test Split

 $from \ sklearn.model_selection \ import \ train_test_split \\ X_train, X_test, y_train, y_test=train_test_split(X,y,test_size=0.25, random_state=42)$

 $X_{train.shape}, X_{test.shape}$

→ ((182, 11), (61, 11))

 $\begin{tabular}{ll} $\#\#$ Feature Selection based on correlation $$X_{train.corr()}$ \end{tabular}$

	Temperature	RH	Ws	Rain	FFMC	DMC	DC	ISI	BUI	Classes	Region	
Temperature	1.000000	-0.656095	-0.305977	-0.317512	0.694768	0.498173	0.390684	0.629848	0.473609	0.542141	0.254549	
RH	-0.656095	1.000000	0.225736	0.241656	-0.653023	-0.414601	-0.236078	-0.717804	-0.362317	-0.456876	-0.394665	
Ws	-0.305977	0.225736	1.000000	0.251932	-0.190076	0.000379	0.096576	-0.023558	0.035633	-0.082570	-0.199969	
Rain	-0.317512	0.241656	0.251932	1.000000	-0.545491	-0.289754	-0.302341	-0.345707	-0.300964	-0.369357	-0.059022	
FFMC	0.694768	-0.653023	-0.190076	-0.545491	1.000000	0.620807	0.524101	0.750799	0.607210	0.781259	0.249514	
DMC	0.498173	-0.414601	0.000379	-0.289754	0.620807	1.000000	0.868647	0.685656	0.983175	0.617273	0.212582	
DC	0.390684	-0.236078	0.096576	-0.302341	0.524101	0.868647	1.000000	0.513701	0.942414	0.543581	-0.060838	
ISI	0.629848	-0.717804	-0.023558	-0.345707	0.750799	0.685656	0.513701	1.000000	0.643818	0.742977	0.296441	
BUI	0.473609	-0.362317	0.035633	-0.300964	0.607210	0.983175	0.942414	0.643818	1.000000	0.612239	0.114897	
Classes	0.542141	-0.456876	-0.082570	-0.369357	0.781259	0.617273	0.543581	0.742977	0.612239	1.000000	0.188837	
Region	0.254549	-0.394665	-0.199969	-0.059022	0.249514	0.212582	-0.060838	0.296441	0.114897	0.188837	1.000000	

Checking for multicollinearity
plt.figure(figsize=(10,8))
corr=X_train.corr()

sns.heatmap(corr,annot=True)


```
col_corr=set()
 corr_matrix=dataset.corr()
 for i in range(len(corr_matrix.columns)):
   for j in range(i):
     if abs(corr_matrix.iloc[i,j])>threshold:
       colname=corr_matrix.columns[i]
       col_corr.add(colname)
 return col_corr
## Threshold Value (Determined by domain expert)
corr_features=correlation(X_train,0.85)
## Dropping those features with correlation more than 0.85
X_train.drop(corr_features,axis=1,inplace=True)
X_test.drop(corr_features,axis=1,inplace=True)
X_train.shape,X_test.shape
→ ((182, 9), (61, 9))
X_train.columns,X_test.columns
'Region'l.
           dtype='object'),
     Index(['Temperature',
                         'RH', 'Ws', 'Rain', 'FFMC', 'DMC', 'ISI', 'Classes',
            'Region'],
           dtype='object'))
```

Feature Scaling (Standardization)

```
from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()
X_train_scaled=scaler.fit_transform(X_train)
X_test_scaled=scaler.transform(X_test)
```

Box Plots To understand the Effect Of Standard Scaler

```
plt.subplots(figsize=(25, 10))
plt.subplot(1, 2, 1)
sns.boxplot(data=X_train)
plt.title('X_train Before Scaling')
plt.subplot(1, 2, 2)
sns.boxplot(data=X_train_scaled)
plt.title('X_train After Scaling')
```


Linear Regression Model

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import r2_score
lin_reg=LinearRegression()
lin_reg.fit(X_train_scaled,y_train)
y_pred=lin_reg.predict(X_test_scaled)
mae=mean_absolute_error(y_test,y_pred)
score=r2_score(y_test,y_pred)
print("Mean absolute error", mae)
print("R2 Score", score)
plt.scatter(y_test,y_pred)
```

Mean absolute error 0.5468236465249986 R2 Score 0.9847657384266951

<matplotlib.collections.PathCollection at 0x7aadeaffb810>

Lasso Regression

from sklearn.linear_model import Lasso
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import r2_score
lasso_reg=Lasso()
lasso_reg.fit(X_train_scaled,y_train)
y_pred=lasso_reg.predict(X_test_scaled)
mae=mean_absolute_error(y_test,y_pred)
score=r2_score(y_test,y_pred)
print("Mean absolute error", mae)
print("R2 Score", score)
plt.scatter(y_test,y_pred)

Mean absolute error 1.133175994914409
R2 Score 0.9492020263112388

<matplotlib.collections.PathCollection at 0x7aadeb7f0950>

Cross Validation Lasso

from sklearn.linear_model import LassoCV
lassocv=LassoCV(cv=5)
lassocv.fit(X_train_scaled,y_train)


```
p.float64(0.05725391318234408)
```

lassocv.alphas_

```
→ array([7.05853002, 6.58280872, 6.13914944, 5.72539132, 5.33951911,
           4.97965339, 4.64404142, 4.33104857, 4.03915039, 3.76692517,
           3.51304702, 3.27627941, 3.05546914, 2.84954075, 2.65749124,
           2.47838523, 2.31135036, 2.15557308, 2.01029467, 1.87480753,
           1.74845178, 1.63061198, 1.52071419, 1.41822315, 1.32263965,
           1.23349817, 1.15036452, 1.0728338 , 1.00052839, 0.93309613,
           0.87020857, 0.81155943, 0.75686304, 0.705853 , 0.65828087,
           0.61391494, 0.57253913, 0.53395191, 0.49796534, 0.46440414,
           0.43310486, 0.40391504, 0.37669252, 0.3513047, 0.32762794,
           0.30554691, 0.28495408, 0.26574912, 0.24783852, 0.23113504,
           0.21555731, 0.20102947, 0.18748075, 0.17484518, 0.1630612 ,
           0.15207142, 0.14182231, 0.13226397, 0.12334982, 0.11503645,
           0.10728338, 0.10005284, 0.09330961, 0.08702086, 0.08115594,
           0.0756863 , 0.0705853 , 0.06582809, 0.06139149, 0.05725391,
           0.05339519, 0.04979653, 0.04644041, 0.04331049, 0.0403915,
           0.03766925, 0.03513047, 0.03276279, 0.03055469, 0.02849541,
           0.02657491, 0.02478385, 0.0231135 , 0.02155573, 0.02010295,
           0.01874808, 0.01748452, 0.01630612, 0.01520714, 0.01418223,
           0.0132264 , 0.01233498, 0.01150365, 0.01072834, 0.01000528,
           0.00933096, 0.00870209, 0.00811559, 0.00756863, 0.00705853])
```

lassocv.mse path


```
 \hbox{\tt [1.29190414, 2.35586563, 6.24396657, 2.88962691, 0.94446421],} 
                                         2.84193587,
 1.26432775, 2.30322922, 6.29839177,
                                                      0.94587808],
[ 1.23978001, 2.25555322, 6.35084178,
                                         2.79951289,
                                                      0.94833447],
[ 1.21631899, 2.21233117, 6.39529714,
                                         2.76173546,
                                                      0.9516149],
                                                      0.95553494],
 1.18452807, 2.16000042,
                            6.42643862,
                                         2.72805794,
                                         2.69761451,
                                                      0.95595979],
[ 1.15701368, 2.11158527, 6.45636883,
 1.13320995, 2.06862134, 6.48638494,
                                         2.67077799.
                                                      0.939821061.
[ 1.11260173, 2.03047905, 6.51570208, 2.6467804 ,
                                                       0.9267394 ],
 1.09481028, 1.9965441, 6.54418839, 2.62528895,
                                                      0.92156967],
 1.07943936, 1.96633625, 6.57175064, 2.60556754,
                                                      0.91819477],
 1.06616655, 1.93941688, 6.60120289,
                                         2.58826543.
                                                      0.916004981.
[ 1.05471212, 1.91540122, 6.66074506,
                                         2.53939631.
                                                      0.914925361.
                                                      0.91475751],
 1.04483316, 1.89395167, 6.72040081,
                                         2.49354558,
                                                      0.91533073],
 1.03631885, 1.87477186, 6.77985049, 2.45183158,
                                         2.41402473,
                                                      0.91650002],
 1.02898619, 1.85760147, 6.8386118,
                                         2.37952566,
                                                      0.91817465],
 1.02267637, 1.84221172, 6.89546904,
[ 1.0172516 , 1.81986019, 6.95182997, 2.34943959,
                                                       0.92100746],
 1.01259234, 1.7874912, 7.00657253, 2.30905785,
                                                       0.91090128],
 0.99291676, 1.75813753, 7.05952508, 2.26689771,
                                                       0.888127431.
 0.96711245, 1.73133215, 7.11055395, 0.94404465, 1.70754321, 7.15957739,
                                         2.22965179,
                                                      0.86893338],
                                         2.19646
                                                       0.852512591.
 0.91746069, 1.68586828, 7.21115863,
                                         2.16644165,
                                                      0.83841802],
 0.89121876, 1.66666838, 7.26823916, 2.14003416,
                                                      0.82646203],
                                                      0.81629395],
 0.86783937, 1.64937312, 7.32193772,
                                         2.11642121,
                                                      0.80766048],
                                         2.09528441,
 0.84703112, 1.6337788, 7.37194387,
 0.82845196, 1.619701 , 7.42070575, 0.81184328, 1.6069769 , 7.46783924,
                                         2.07634166,
                                                      0.80034774],
                                         2.05934486,
                                                       0.79417047],
 0.79697877, 1.59523036, 7.51171241, 2.04379341,
                                                       0.78898574],
 0.78366252, 1.58481658, 7.5533042, 2.03007893, 0.77340653, 1.57536934, 7.59178479, 2.01773193,
                                                      0.78514158],
                                                       0.78410497],
 0.76437368, 1.56730639, 7.62890427, 2.00633629,
                                                      0.78327866],
 0.75641103, 1.56014926, 7.66385201, 1.99569195,
                                                      0.783092951,
 0.74929762, 1.55377904, 7.69675973, 1.98581272,
0.7431075, 1.54808751, 7.72772336, 1.97708583,
                                                      0.78325254],
                                                      0.78348718],
                                         1.9690422 ,
                                                      0.78415382],
 0.73764056, 1.5428574 , 7.75701245,
                                                      0.78479522],
 0.73271889, 1.5383076, 7.78098988, 1.96195515,
 0.72844826, 1.53422868, 7.80009362, 1.95555728, 0.72457927, 1.53042136, 7.81782859, 1.94960372,
                                                      0.78577592],
                                                       0.78686385],
 0.72121402, 1.5271394, 7.83584096, 1.94420011,
                                                      0.78886011],
 0.71854269, \quad 1.52403047, \quad 7.8521645 \quad , \quad 1.93945512,
 0.71624922, 1.52137747, 7.86797141, 1.93532188,
                                                       0.790089171.
 0.71419505, 1.51882628, 7.8824946,
                                        1.93156393,
                                                      0.7910736 ],
 0.71283686, 1.51649634, 7.89597341, 1.92813104,
                                                      0.79328236],
                                                      0.7959553 ],
 0.7117556 , 1.51454548, 7.90862683, 1.92492966,
                                                      0.79869912],
 0.71078691, 1.5128162,
                           7.92077339, 1.92207644,
                                                      0.80158876],
 0.71003406, 1.51137977, 7.93211766, 1.9195065,
 0.7094272 , 1.51017923, 7.94254787,
                                         1.9171673 ,
                                                      0.80451499],
 0.70893209, 1.50910355, 7.95231005, 1.91555613,
                                                       0.80717091],
                                         1.914521 ,
 0.70847636, 1.50819995, 7.96151575,
                                                       0.8098638 1.
 0.70814046, 1.50740984, 7.97034636, 1.91358558,
                                                      0.812271521.
              1.5065737 ,
 0.70789298,
                            7.97838619,
                                         1.91277526,
                                                      0.81468439],
 0.70770357, 1.50591279, 7.98587605, 1.9120262,
                                                       0.8170304 ],
                                        1.91138883,
 0.70752166,
              1.50536216, 7.99241057,
                                                      0.819254061.
 0.70734296,
              1.50487616,
                            7.99849196, 1.91084915,
                                                      0.821199011.
 0.70724307,
              1.50444309,
                            8.00451482,
                                                      0.82327046],
                                         1.91033293,
                            8.01011355,
                                         1.9098903 ,
                                                      0.8250587 ],
 0.70719344,
              1.50391791,
 0.70714379, 1.50342997,
                            8.01481494, 1.90951275,
                                                      0.826765 ],
[ 0.70711086, 1.50300182, 8.01992921, 1.90919915, 0.82842365]])
```

```
y_pred=lassocv.predict(X_test_scaled)
plt.scatter(y_test,y_pred)
mae=mean_absolute_error(y_test,y_pred)
score=r2_score(y_test,y_pred)
print("Mean absolute error", mae)
print("R2 Score", score)
```

Mean absolute error 0.619970115826343 R2 Score 0.9820946715928275

Ridge Regression

```
from sklearn.linear_model import Ridge
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import r2_score
ridge=Ridge()
ridge.fit(X_train_scaled,y_train)
y_pred=ridge.predict(X_test_scaled)
mae=mean_absolute_error(y_test,y_pred)
score=r2_score(y_test,y_pred)
print("Mean absolute error", mae)
print("R2 Score", score)
plt.scatter(y_test,y_pred)
```

Mean absolute error 0.5642305340105692
R2 Score 0.9842993364555513
<matplotlib.collections.PathCollection at 0x7aadeab555d0>

from sklearn.linear_model import RidgeCV
ridgecv=RidgeCV(cv=5)
ridgecv.fit(X_train_scaled,y_train)
y_pred=ridgecv.predict(X_test_scaled)
plt.scatter(y_test,y_pred)
mae=mean_absolute_error(y_test,y_pred)
score=r2_score(y_test,y_pred)

```
print("Mean absolute error", mae)
print("R2 Score", score)
```

Mean absolute error 0.5642305340105692 R2 Score 0.9842993364555513

print(ridgecv.alpha_)

→ 1.0

ridgecv.get_params()

```
{'alpha_per_target': False,
    'alphas': (0.1, 1.0, 10.0),
    'cv': 5,
    'fit_intercept': True,
    'gcv_mode': None,
    'scoring': None,
    'store_cv_results': None,
    'store_cv_values': 'deprecated'}
```

ElasticNet Regression

from sklearn.linear_model import ElasticNet
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import r2_score
elastic=ElasticNet()
elastic.fit(X_train_scaled,y_train)
y_pred=elastic.predict(X_test_scaled)
mae=mean_absolute_error(y_test,y_pred)
score=r2_score(y_test,y_pred)
print("Mean absolute error", mae)
print("R2 Score", score)
plt.scatter(y_test,y_pred)

Mean absolute error 1.8822353634896005
R2 Score 0.8753460589519703

<matplotlib.collections.PathCollection at 0x7aadeacb1d50>

from sklearn.linear_model import ElasticNetCV
elasticcv=ElasticNetCV(cv=5)
elasticcv.fit(X_train_scaled,y_train)
y_pred=elasticcv.predict(X_test_scaled)
plt.scatter(y_test,y_pred)
mae=mean_absolute_error(y_test,y_pred)
score=r2_score(y_test,y_pred)
print("Mean absolute error", mae)
print("R2 Score", score)

Mean absolute error 0.6575946731430898 R2 Score 0.9814217587854941

elasticcv.alphas_

```
array([14.11706004, 13.16561744, 12.27829889, 11.45078264, 10.67903821,
            9.95930678, 9.28808283, 8.66209714, 8.07830078, 7.53385034,
                                                  5.6990815 ,
                                    6.11093829,
                                                               5.31498248,
            7.02609405, 6.55255882,
            4.95677045,
                        4.62270071,
                                     4.31114616,
                                                  4.02058933.
                                                               3.74961507,
            3.49690356, 3.26122397,
                                     3.04142839,
                                                 2.83644629,
                                                              2.64527931,
            2.46699633,
                        2.30072904,
                                     2.1456676 ,
                                                  2.00105679,
                                                               1.86619226,
            1.74041714, 1.62311885,
                                     1.51372607,
                                                  1.411706 ,
                                                               1.31656174,
            1.22782989,
                        1.14507826,
                                     1.06790382,
                                                  0.99593068,
                                                               0.92880828,
            0.86620971, 0.80783008,
                                     0.75338503,
                                                  0.7026094 ,
                                                               0.65525588,
                                     0.53149825,
            0.61109383,
                        0.56990815,
                                                  0.49567705,
                                                               0.46227007,
                                                               0.3261224 ,
                        0.40205893,
                                     0.37496151,
                                                  0.34969036,
            0.43111462,
                                                  0.24669963,
                        0.28364463,
                                     0.26452793,
            0.30414284,
                                                               0.2300729
            0.21456676, 0.20010568,
                                     0.18661923,
                                                  0.17404171.
                                                               0.16231189.
                        0.1411706 ,
                                                  0.12278299,
            0.15137261,
                                     0.13165617,
                                                               0.11450783,
            0.10679038,
                        0.09959307,
                                     0.09288083,
                                                  0.08662097,
                                                               0.08078301,
            0.0753385 ,
                        0.07026094,
                                     0.06552559,
                                                  0.06110938,
                                                               0.05699082,
            0.05314982,
                        0.0495677 ,
                                     0.04622701,
                                                  0.04311146,
                                                               0.04020589,
            0.03749615,
                        0.03496904,
                                                               0.02836446,
                                     0.03261224,
                                                  0.03041428,
                        0.02466996,
                                     0.02300729,
                                                  0.02145668,
                                                               0.02001057,
            0.01866192, 0.01740417, 0.01623119, 0.01513726,
                                                               0.01411706])
```

Pickling the machine learning model(Ridge Regressor), Preprocessing Model StandardScaler

