1 Categories

Definition 1.1 (Category). A category, \mathcal{A} is defined to have each of the following,

- (i) A collection of objects, denoted by ob(A) and written $A,B,C \in A$. Such that each object has an 'identity', $1_A \in A(A,A), 1_B \in A(B,B), 1_C \in A(C,C)$
- (ii) For each pair of objects, a collection of 'links'/morphisms between them, denoted by $\mathcal{A}(A,B)$ and written as $f \in \mathcal{A}(A,B)$ $g \in \mathcal{A}(B,C)$. Such that,
 - (a) morphisms with matching domain, co-domain can be 'chained'/composed $(g, f) = g \circ f$
 - (b) with this composition being associative, $(h \circ g) \circ f = h \circ (g \circ f)$
 - (c) and they are 'fixed' by the identity $f \circ 1_A = f = 1_B \circ f$

Example 1.1 (Non-trivial Identity). Consider the objects to be groups, and morphisms to be direct product between them:

$$i ob (A) = \{G | G \text{ is a group}\}$$

ii
$$\mathcal{A}(A,B) := A \times B$$

iii
$$\mathcal{A}(A,B) \circ \mathcal{A}(B,C) \mapsto \mathcal{A}(A,C)$$

So, there's a unique morphism between any two objects i.e groups. And the identity morphism,

$$\forall A, B \in \mathcal{A}$$
, if $f \in \mathcal{A}(A, B)$, then $1_A \circ f \in \mathcal{A}(A, A) \times \mathcal{A}(A, B) \mapsto \mathcal{A}(A, B)$

Thus, ob(A) along with \circ is actually a group. And hence has a unique inverse. asd

2 Functors

Example 2.1.

3 Natural Isomorphisms

Example 3.1.