

Modeling infectious diseases in mixed household structures

Shrawan Parajuli

Mathematisches Institut Universität Koblenz

11/01/2024

Contents

Background Study

Objectives

Model and Method

Simulation and Results

Discussion

Conclusion

Background Study

- Emergence of infectious diseases is concerning.
- spread of infectious disease gradually decreases due to immunity or become endemic due to lack of healthcare facilities.
- Study of infectious disease is an interdisciplinary fields is studied with different perspectives and purposes.
- Considering household structure has been an useful way of understanding spread
 of infectious diseases(for eg. Influenza) and it can be done with different
 epidemiological models such as SIS (Susceptible-Infectious-Susceptible).
- Also, the dynamics of infectious diseases is considered by studying equilibria.

Reference- [1],[3]

Objectives

- To analyze equilibria (Disease-Free Equilibrium(DFE) and Endemic Equilibrium(EE)).
- To observe the influence of infection and recovery parameters in Population dynamics.

Model and Method

- Single Household (SHH) using SIS model.
- Master equation describes the time-evolution of P_k , P_k denotes the probability having k infected individuals and (N-k) denotes susceptible in a given household size N,
- lacksquare External infection rate, ϵ = $\tilde{\alpha} rac{I}{T_p}$,
- Homogeneous household, Expectation: $\mathbb{E}I_H = \sum_{k=0}^N k * P_k$.
- In the SHH-N Model we have

$$\epsilon = \frac{\alpha}{N} \mathbb{E} I_H = \frac{\alpha}{N} \sum_{k=0}^{N} k P_k$$

Reference- [1]

Model and Method: State transition

State transition in (SHH)

Figure 1: SHH diagram for state transition

Model and Method: SHH-N

$$\begin{split} \frac{dP_k}{dt} &= (X_{\{\geq 1\}}(k)) \ \left(\frac{\alpha}{\mathbf{N}} \sum_{k=1}^{\mathbf{N}} kP_k\right) \ (N-(k-1)) \ P_{k-1} \\ &+ (X_{\{\geq 2\}}(k)) \ \beta \ (N-(k-1)) \ P_{k-1} \\ &+ (X_{\{\leq N-1\}}(k)) \ \gamma \ (k+1) \ P_{k+1} \\ &- (X_{\{\leq N-1\}}(k)) \ \left(\frac{\alpha}{\mathbf{N}} \sum_{k=1}^{\mathbf{N}} kP_k\right) \ (N-k)P_k \\ &- (X_{\{\geq 1\}}(k))(X_{\{\leq N-1\}}(k)) \ \beta \ (N-k)) \ P_k \\ &- (X_{\{\geq 1\}}(k)) \ \gamma \ (k)P_k \\ & \mathsf{SHH-N} \end{split}$$

Positive Contribution

- (external infection) $S_{k-1} \rightarrow S_k$, $k \in \{1, 2, ... N\}$,
- (internal infection) $S_{k-1} \rightarrow S_k$, $k \in \{2,..N\}$
- (recovery) $S_{k+1} \to S_k$, $k \in \{0, ..N-1\}$,

Negative Contribution

- (external infection) $S_k \to S_{k+1}$, $k \in \{0, ...N-1\}$,
- (internal infection) $S_k \to S_{k+1}$, $k \in \{1, ... N-1\}$
- (recovery) $S_k \to S_{k-1}$, $k \in \{1, ...N\}$,

Model and Method: SHH-N = 1,2

General Master Equation for SHH in case of household size N=1,(SIS Model)

$$\frac{dP_0}{dt} = \gamma P_1 - \alpha P_1 P_0$$

$$\frac{dP_1}{dt} = \alpha P_1 P_0 - \gamma P_1$$

■ General Master Equation for SHH in case of household size N=2,

$$\frac{dP_0}{dt} = \gamma P_1 - 2\left(\frac{\alpha}{2}P_1 + \alpha P_2\right)P_0$$

$$\frac{dP_1}{dt} = 2\left(\frac{\alpha}{2}P_1 + \alpha P_2\right)P_0 + 2\gamma P_2 - \left(\frac{\alpha}{2}P_1 + \alpha P_2\right)P_1 - \beta P_1 - \gamma P_1$$

$$\frac{dP_2}{dt} = \left(\frac{\alpha}{2}P_1 + \alpha P_2\right)P_1 + \beta P_1 - 2\gamma P_2$$

Reference- [1]

Model and Method: Analytical Approach

- Non-linear differential equations is studied with stability analysis, phase portraits and Numerical simulation.
- Total infection rate :

$$\frac{d\mathbb{E}[I_H]}{dt} = \frac{dP_1}{dt} + 2\frac{dP_2}{dt}$$

$$I_{Total} = \int_0^T \mathbb{E}[I_H(t)] dt$$

- Equilibrium
 - DFE, $\lim_{t\to\infty} (P_0(t), P_1(t), P_2(t)) = (1,0,0)$.
 - In EE, $\lim_{t\to\infty} (P_0(t), P_1(t), P_2(t)) \neq (1,0,0)$ (or (1,0,0) does not exist).
- In equilibrium :

$$dP_k/dt = f_k(P_k) = 0$$

Model and Method: Linearization, DFE

- Linearization in SHH-2
- DFE, Jacobian Matrix (J) at (1,0,0)

$$\begin{pmatrix}
0 & -\alpha + \gamma & -2\alpha \\
0 & \alpha - \beta - \gamma & 2\alpha + 2\gamma \\
0 & \beta & -2\gamma
\end{pmatrix}$$

• characteristic equation of the form is $|J - \lambda E| = 0$,

$$\begin{pmatrix} \alpha - \beta - \gamma & 2\alpha + 2\gamma \\ \beta & -2\gamma \end{pmatrix}$$

$$\lambda_i = \frac{Tr - \sqrt{Tr^2 - 4D}}{2}$$

$$\lambda_{ii} = \frac{Tr + \sqrt{Tr^2 - 4D}}{2}$$

Reference- [2]

Model and Method: Trace and Determinant

Let A be 2 X 2 square matrix of form written in

$$\left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right)$$

- $Trace(Tr) = a_{11} + a_{22} = \alpha \beta 3\gamma$
- $Determinant(D) = a_{11}a_{22} a_{12}a_{21} = 2(\gamma^2 \alpha(\beta + \gamma))$

Model and Method: EE

- **E**E, endemic equilibrium point (P_0, P_1, P_2) or $(P_0, P_1, 1 P_0 P_1)$
- \blacksquare P_1 ,

$$P_1 = \frac{2\alpha P_0(1 - P_0)}{(\gamma + \alpha P_0)} \tag{1}$$

• positive root P_0 ,

$$P_0 = \frac{\gamma}{2\alpha\beta} \left(-(\alpha+\beta) + \sqrt{(\alpha+\beta)^2 + 4\beta\gamma} \right) \tag{2}$$

• jacobian at $(P_0, P_1, 1-P_0-P_1)$

$$\begin{pmatrix} -\alpha(2-2P_{0}-P_{1}) & -\alpha P_{0}+\gamma & -2\alpha P_{0} \\ \alpha(2-2P_{0}-P_{1}) & P_{0}(1+\alpha)-1-\beta-\gamma & 2\alpha P_{0}-\alpha P_{1}+2\gamma \\ 0 & \alpha(1-P_{0})+\beta & \alpha P_{1}-2\gamma \end{pmatrix}$$
(3)

Simulation and Results

- Numerical method: Runge-Kutta Method, (RK45)
- Initial conditions, P_0 is $P_0(0) = 0.98$, P_1 is $P_1(0) = 0.02$ and P_2 is $P_2(0) = 0$,
- timestep: [0,50]
- parameters
 - lacksquare α : between-household infection rate.
 - β : within-household infection rate.
 - lacksquare γ : household recovery rate
- vary only one parameter and keep the other two parameter fixed
- regular spaced (0.2,0.3,0.4,0.5,0.6,0.7,0.8) rates
- initial rates , α = 0.4, β = 0.2, γ = 0.2
- for example : Influenza recovered rate 0.2 (takes 5 days to recover)

Probability of household state vs time (α)

Probability of household state vs time (α):cont. University of koblenz

• Probability of household states(P_k)

$$|P_{k_{t_{i+1}}} - P_{k_{t_i}}| < 10^{-3}$$

Total infection rate(I_{Total})

$$\left|I_{Total_{t_{i+1}}} - I_{Total_{t_i}}\right| < 10^{-3}$$

Probabilities of household states	s $\alpha = 0.4$	$\alpha = 0.5$	$\alpha = 0.6$	$\alpha = 0.7$	$\alpha = 0.8$
P_0	0.151	0.106	0.078	0.060	0.048
P_1	0.394	0.375	0.351	0.328	0.307
P_2	0.453	0.518	0.569	0.610	0.644
Name	$\alpha = 0.4$	$\alpha = 0.5$	$\alpha = 0.6$	$\alpha = 0.7$	$\alpha = 0.8$
Total infection rate (I_{Total})	(1.290)	(1.402)	(1.482)	(1.543)	(1.592)
Total recovered rate (R_{Total})	(0.258)	(0.280)	(0.296)	(0.308)	(0.318)
Total Timestep	(35)	(28)	(26)	(23)	(19)

 P_0 , P_1 , P_2 on y-axis and α on x-axis

Probability of household state vs time (β)

Probability of household state vs time (β):cont. University of koblenz

• Probability of household states(P_k)

$$|P_{k_{t_{i+1}}} - P_{k_{t_i}}| < 10^{-3}$$

■ Total infection rate(I_{Total})

$$|I_{Total_{t_{i+1}}} - I_{Total_{t_i}}| < 10^{-3}$$

Probability of HouseHold state	$\beta = 0.2$	$\beta = 0.3$	$\beta = 0.4$	$\beta = 0.5$
P_0	0.151	0.128	0.112	0.100
P_1	0.394	0.356	0.325	0.299
P_2	0.453	0.514	0.561	0.599
Name	$\beta = 0.2$	$\beta = 0.3$	$\beta = 0.4$	$\beta = 0.5$
$\frac{\text{Name}}{\text{Total infection rate }(I_{Total})}$	$\beta = 0.2$ (1.290)	$\beta = 0.3$ (1.375)	$\beta = 0.4$ (1.441)	$\beta = 0.5$ (1.493)
	-	,		,

 P_0, P_1, P_2 on y-axis and β on x-axis

Probability of household state vs time (γ)

Probability of household state vs time (γ):cont. \blacksquare university

Probability of household states(P_k)

$$|P_{k_{t_{i+1}}} - P_{k_{t_i}}| < 10^{-3}$$

Total infection rate(I_{Total})

$$|I_{Total_{t_{i+1}}} - I_{Total_{t_i}}| < 10^{-3}$$

Probability of Household state	$\gamma = 0.3$	$\gamma = 0.4$	$\gamma = 0.5$	$\gamma = 0.6$
P_0	0.327	0.561	0.849	0.9999
P_1	0.408	0.315	0.121	-
P_2	0.264	0.123	0.028	-
Name	$\gamma = 0.3$	$\gamma = 0.4$	$\gamma = 0.5$	$\gamma = 0.6$
Name Total infection rate (I_{Total})	$\gamma = 0.3$ (0.922)	$\gamma = 0.4$ (0.545)	$\gamma = 0.5$ (0.161)	$\gamma = 0.6$
			,	$\gamma = 0.6$

 P_0, P_1, P_2 on y-axis and γ on x-axis

Disease-Free equilibrium

 γ range on y-axis and β range on x-axis with constant α at 0.4.

- eigenvalues : $\lambda_i < 0$, $\lambda_{ii} < 0$
- **case :** Tr < 0 and $Tr > \sqrt{Tr^2 4D}$, where D > 0 and $Tr^2 > 4D$
- Parameter : Tr < 0, means $\alpha < \beta + 3\gamma$ and D > 0 means $\alpha < \frac{\gamma^2}{\beta + \gamma}$

Endemic equilibrium: varying α

Probabilities of household states	$\alpha = 0.4$	$\alpha = 0.5$	$\alpha = 0.6$	$\alpha = 0.7$	$\alpha = 0.8$
P_0	0.151	0.106	0.078	0.060	0.048
P_1	0.394	0.375	0.351	0.328	0.307
P_2	0.453	0.518	0.569	0.610	0.644

Runge-Kutta Method: α

${\bf House Hold\ states}$	$\alpha = 0.4$	$\alpha = 0.5$	$\alpha = 0.6$	$\alpha = 0.7$	$\alpha = 0.8$
P_0	0.151	0.106	0.078	0.060	0.048
P_1	0.394	0.375	0.351	0.328	0.307
P_2	0.454	0.518	0.569	0.610	0.644

Equilibrium: α

- Numerical values: RK method and endemic equilibrium values are similar.
- $P_0 = \frac{\gamma}{2\alpha\beta} \left(-(\alpha+\beta) + \sqrt{(\alpha+\beta)^2 + 4\beta\gamma} \right)$
- $P_1 = \frac{2\alpha P_0(1-P_0)}{(\gamma+\alpha P_0)}$
- $P_2 = 1 P_0 P_1$
- value of P_0 affects value in P_1 and summation of both P_0 and P_1 results change in P_2 .
- linearization: Two negative eigenvalues(stable).

Endemic equilibrium: varying β

Probability of HouseHold state	$\beta = 0.2$	$\beta = 0.3$	$\beta = 0.4$	$\beta = 0.5$
P_0	0.151	0.128	0.112	0.100
P_1	0.394	0.356	0.325	0.299
P_2	0.453	0.514	0.561	0.599

Runge-Kutta Method : β

HouseHold states	$\beta = 0.2$	$\beta = 0.3$	$\beta = 0.4$	$\beta = 0.5$
P_0	0.151	0.128	0.112	0.100
P_1	0.394	0.356	0.325	0.300
P_2	0.454	0.514	0.561	0.600

Equilibrium: β

- Numerical values: RK method and endemic equilibrium values are similar.
- $P_0 = \frac{\gamma}{2\alpha\beta} \left(-(\alpha+\beta) + \sqrt{(\alpha+\beta)^2 + 4\beta\gamma} \right)$
- $P_1 = \frac{2\alpha P_0(1-P_0)}{(\gamma+\alpha P_0)}$
- $P_2 = 1 P_0 P_1$
- value of P_0 affects value in P_1 and summation of both P_0 and P_1 results change in P_2 .
- linearization: Two negative eigenvalues(stable).

Endemic equilibrium: varying γ

Probability of Household state	$\gamma = 0.3$	$\gamma = 0.4$	$\gamma = 0.5$	$\gamma = 0.6$
P_0	0.327	0.561	0.849	0.9999
P_1	0.408	0.315	0.121	-
P_2	0.264	0.123	0.028	-

Runge-Kutta Method : γ

HouseHold states	$\gamma = 0.3$	$\gamma = 0.4$	$\gamma = 0.5$	$\gamma = 0.6$
P_0	0.327	0.561	0.849	-
P_1	0.408	0.315	0.121	-
P_2	0.263	0.123	0.028	-

Equilibrium: γ

- Numerical values: RK method and endemic equilibrium values are similar.
- $P_0 = \frac{\gamma}{2\alpha\beta} \left(-(\alpha+\beta) + \sqrt{(\alpha+\beta)^2 + 4\beta\gamma} \right)$
- $P_1 = \frac{2\alpha P_0(1-P_0)}{(\gamma+\alpha P_0)}$
- $P_2 = 1 P_0 P_1$
- value of P_0 affects value in P_1 and summation of both P_0 and P_1 results change in P_2 .
- linearization: Two negative eigenvalues(stable).

Phase portraits

$$f_{0}(P_{0}) = -\alpha (P_{1} + 2(1 - P_{0} - P_{1}))P_{0} + \gamma P_{1}$$

$$f_{1}(P_{1}) = \alpha (P_{1} + 2(1 - P_{0} - P_{1}))P_{0}$$

$$-((\alpha/2)(P_{1} + 2(1 - P_{0} - P_{1})) + \beta + \gamma)P_{1}$$

$$+ 2\gamma (1 - P_{0} - P_{1})$$
(4)

vector plot and stream plot: α

$$\alpha = 0.8, \beta = 0.2, \gamma = 0.2$$

$$\alpha = 0.8, \beta = 0.2, \gamma = 0.2$$

vector plot and stream plot: β

$$\alpha = 0.4, \beta = 0.5, \gamma = 0.2$$

$$\alpha = 0.4, \beta = 0.5, \gamma = 0.2$$

vector plot and stream plot: γ

$$\alpha = 0.4, \beta = 0.2, \gamma = 0.6$$

$$\alpha = 0.4, \beta = 0.2, \gamma = 0.6$$

Numerical simulation results discussion

- Total Timestep:
 - Gradual **increase** in α and β , **decreases** the **timestep** to reach steady values.
 - In **comparison**, there is **decrease** in the timestep for α but an **increase** in the total timestep β .
 - lacktriangle An **increases** timestep.
- P_0 , P_1 , P_2 and I_{Total} :
 - An **increase** in α and β leads to a **decrease** in P_0 and P_1 but **increase** in P_2 and I_{Total} .
 - when comparing increase in α and β : P_0 decreases more in increase in α and decreases less in increase in β while P_1 decreases less in increase in α and decrease more in β whereas P_2 remains similar for both in α and β .
 - while **comparing** for I_{Total} : increase in α **increases more** in I_{Total} but **increases less** in gradual increase in β .
 - increase in γ increases P_0 while (P_1 , P_2 , I_{Total}) decreases.

Further discussion

- Stability in gradual increase in α , β and γ (till 0.5), EE.
- Stability seen at γ = 0.6, at (P_0 , P_1 , P_2) = (P_0 ,0,0), DFE.
- At Phase portraits,
 - where EE stable (sink), DFE is seen unstable (saddle).
 - where DFE is seen stable (sink), EE is seen unstable (saddle).

Conclusion

- In summary, a transition from EE to DFE is observed, at γ = 0.6, α = 0.4 and β = 0.2.
- Increase in α and β leads to EE and increase in γ leads to DFE.

Limitations and future research

Limitation:

- Mixed household size rather than same household size.
- Larger household size rather than only household of size two.
- Strategies or policies.
- Household structure (space) and behavioural patterns(movement).

Further research :

- Epidemiological models.
- Higher dimension.
- Larger population.
- lower rates in parameters.
- Intervention strategies.

References

- [1] Alex Holmes, Mike Tildesley, and Louise Dyson. Approximating steady state distri- butions for household structured epidemic models. Journal of Theoretical Biology, 534:110974, 2022
- [2] Carl P. Simon and John A. Jacquez. Reproduction numbers and the stability of equilibria of si models for heterogeneous populations. SIAM Journal on Applied Mathematics, 52(2):541576, 1992
- [3] Fred Brauer. Mathematical epidemiology: Past, present, and future. Infectious Disease Modelling, 2(2):113127, 2017

Thank You