General Topology and Fundamental Groups - Homework 2

Philip Warton

January 22, 2021

Problem 1

(a)

Let $\tau = \{A \subset \mathbb{R} | \mathbb{R} \setminus A \text{ is countable or } A = \emptyset\}$. Show that τ forms a topology on \mathbb{R} .

Proof. Clearly we have $\emptyset \in tau$, and since $\mathbb{R} \setminus \mathbb{R} = \emptyset$ is countable, we also have $\mathbb{R} \in \tau$. Then let $\bigcup_{\alpha \in A} U_{\alpha}$ be an arbitrary union of sets in τ . The complement of the union will be the intersection of the complements, so we say

$$\mathbb{R} \setminus \left(\bigcup_{\alpha \in A} U_{\alpha} \right) = \bigcap_{\alpha \in A} \left(\mathbb{R} \setminus U_{\alpha} \right)$$

Of course, an intersection of countable sets is countable, so it follows that $\bigcup_{\alpha \in A} U_{\alpha} \in \tau$. Finally let $\bigcap_{\beta \in B} U_{\beta}$ be a finite intersection of sets in τ . Then the complement of the intersection will be a union of the complements, so we can write

$$\mathbb{R} \setminus \left(\bigcap_{\beta \in B} U_{\beta}\right) = \bigcup_{\beta \in B} \left(\mathbb{R} \setminus U_{\beta}\right)$$

Recall that B is finite, then we have a finite union of countable sets, which therefore must be countable. Since the complement of finite intersections is countable, we say $\bigcap_{\beta \in B} U_{\beta} \in \tau$. Having satisfied each axiom, τ is a topology on \mathbb{R} .

(b)

Let $A \subset \mathbb{R}$ be uncountable. Find \overline{A} in this topology.

We know that \overline{A} is the smallest closed set containing A. By definition of our topology, a set B is closed if either B is countable or $B = \mathbb{R}$. Since it is impossible for any countable set B to contain an uncountable set A, $\mathbb{R} \supset A$ is the only closed set containing A. Therefore $\overline{A} = \mathbb{R}$. As an immediate corollary, in this topology, any uncountable set is dense in (\mathbb{R}, τ) .

(c)

Show that no sequence of distinct real numbers $\{a_n\} \subset \mathbb{R}$ converges in the topology τ .

Proof. Let $\{a_n\} \subset \mathbb{R}$ be a sequence in this topological space. Denote some limit candidate by $a \in \mathbb{R}$. Choose the set defined by $U = \mathbb{R} \setminus \left(\bigcup_{n \in \mathbb{N}} \{a_n\} \setminus \{a\}\right)$. Its complement, $\bigcup_{n \in \mathbb{N}} \{a_n\} \setminus \{a\}$ is countable, so of course U is an open neighborhood of a. However, notice that the every element of the sequence except for a itself is excluded from U. Since we assume that our sequence is not eventually constant, it follows that it cannot be eventually in U. Therefore $\exists U(x)$ such that $\forall N \in \mathbb{N}, \exists n \geqslant N : a_n \notin U$, and we say that this open neighborhood U exists for any sequence, so no sequence of distinct numbers converges.

(**d**)

Let $\iota : \mathbb{R} \to \mathbb{R}$ be the indentity map. Is ι continuous when mapping from the standard topology to τ , or vice versa?

In the case where we are mapping from $(\mathbb{R}, \tau) \to (\mathbb{R}, d)$ where d is the standard metric topology on \mathbb{R} , ι is not continuous. Choose $(0,1) \subset \mathbb{R}$. It is open in the standard topology but since its complement is not countable, it is not open in τ . For the other direction, take the set of all irrational numbers. This set is open in τ , but is not open in the standard topology. So for neither direction is ι continuous.

Problem 2

(a)

Suppose that $G \subset X$ is a G_{δ} set. Show that there is a sequence of sets $G_1 \supset G_2 \supset \cdots$ of open sets such that $G = \bigcap_{k \in \mathbb{N}} G_k$.

Proof. Suppose G is G_{δ} set. Then G is a countable intersection of open sets. Then we say $G = \bigcap_{n \in \mathbb{N}} G_n$. Define $G_k = \bigcup_{n=1}^k G_n$, then for all $k \in \mathbb{N}$, $G_k \supset G_{k+1}$. The limit as $k \to \infty$ of G_k will clearly be $\bigcap_{n \in \mathbb{N}} G_n$. Since finite intersections of open sets are open, G_k is open for every $k \in \mathbb{N}$.

Suppose that $F \subset X$ is a F_{σ} set. Show that there is a sequence of sets $F_1 \subset F_2 \subset \cdots$ such that $F = \bigcup_{k \in \mathbb{N}} F_k$.

Proof. F is an F_{σ} set. Then we say $F = \bigcup_{n \in \mathbb{N}} F_n$ where F_n is closed for every $n \in \mathbb{N}$. Define $F_k = \bigcup_{n=1}^k F_n$, then $F_k \subset F_{k+1} \forall k$. \square

(b)

Let $Z \subset Y \subset X$ with their subspace topologies. Suppose that Z is G_{δ} in Y, and Y is G_{δ} in X. Show Z is G_{δ} in X.

Proof. $Z = \bigcap_{n \in \mathbb{N}} V_n$ where V_n is open in Y, and $Y = \bigcap_{m \in \mathbb{N}} O_n$ where O_n is open in X. Since V_n is open in Y with the subspace topology, we say $V_n = U_n \cap Y$ where U_n is open in X. Finally,

$$Z = \bigcap_{n \in \mathbb{N}} V_n$$

$$= \bigcap_{n \in \mathbb{N}} (U_n \cap Y)$$

$$= \left(\bigcap_{n \in \mathbb{N}} U_n\right) \cap Y$$

$$= \left(\bigcap_{n \in \mathbb{N}} U_n\right) \cap \left(\bigcap_{m \in \mathbb{N}} O_m\right)$$

Thus Z is a countable intersection of open sets in X.

(c)

Suppose that $Z \subset Y$ is G_{δ} in Y. Show that there is a G_{δ} set $W \subset X$ such that $Z = W \cap Y$.

Proof. We say that V_n are open in Y, and $V_n = Y \cap U_n$ where U_n is open in X. Then $Z = \bigcap_{n \in \mathbb{N}} V_n = \bigcap_{n \in \mathbb{N}} (U_n \cap Y) = (\bigcap_{n \in \mathbb{N}} U_n) \cap Y$. Let $W = \bigcap_{n \in \mathbb{N}} U_n$ and clearly W is a G_δ in X

Problem 3

(a)

Show that any closed set in a metric space is G_{δ} .

Proof. Let (X,d) be a metric space and let $A \subset X$ be a closed set. Define the open set $A_n = \bigcup_{a \in A} B_{1/n}(a)$. Then we say that $\bigcap_{n \in \mathbb{N}} A_n = A$. Since every point in A is a limit point (A being closed), it follows that $a \in \bigcap_{n \in \mathbb{N}} A_n$. Then for every $x \notin A$, there is some neighborhood of x not intersecting A (since the complement of A is open). Thus it follows that $x \notin \bigcap_{n \in \mathbb{N}} A_n$, and $A = \bigcap_{n \in \mathbb{N}} A_n$.

(b)

Show that \mathbb{Q} is not G_{δ} in \mathbb{R} .

Proof. Suppose by contradiction that \mathbb{Q} is G_{δ} . Then we must have $\mathbb{Q} = \bigcap_{n \in \mathbb{N}} U_n$. It must be the case that for every $n, U_n \supset \mathbb{Q}$. Then for each n, there exists $\epsilon > 0$ such that $B_{\epsilon}(\mathbb{Q}) \subset U_n$. Let $\epsilon > 0$ be arbitrary, then $\mathbb{Q} \cap B_{\epsilon}(\sqrt{2}) \neq \emptyset$. This means that $\sqrt{2} \in B_{\epsilon}(\mathbb{Q})$, and therefore we have $\sqrt{2} \in \bigcap_{n \in \mathbb{N}} U_n = \mathbb{Q}$ (contradiction).

Problem 4

(a)

Show that a smallest σ -algebra exists, \mathcal{B} .

Proof. Let $\{\mathcal{M}_{i\in I}\}$ be the collection of all σ -algebras on X. We claim that the smallest σ -algebra can be constructed by taking the intersection of this collection. Clearly this will be smaller than any σ -algebra, but we must demonstrate that this intersection is itself a σ -algebra.

- (i) For every $i \in I$, $X \in \mathcal{M}_i$ therefore $X \in \bigcap_{i \in I} \mathcal{M}_i$.
- Suppose $A \in \bigcap_{i \in I} \mathcal{M}_i$, then for all $i, A \in \mathcal{M}_i$, then of course $A^c \in \mathcal{M}_i$, so it follows that $A^c \in \bigcap_{i \in I} \mathcal{M}_i$.
- Suppose for some indexed collection of subsets $A_k \in \bigcap_{i \in I} \mathcal{M}_i$ for every $k \in \mathbb{N}$. Then for every $i \in I$, we have $A_k \in \mathcal{M}_i \Longrightarrow \bigcap_{k \in \mathbb{N}} A_k \in \mathcal{M}_i$. Therefore $\bigcap_{k \in \mathbb{N}} A_k \in \bigcap_{i \in I} \mathcal{M}_i$.

Since each property of the σ -algebra is satisfied, we say that $\bigcap_{i \in I} \mathcal{M}_i$ is a σ -algebra.

(b)

Find a borel set in $\mathbb R$ that is neither F_{σ} or G_{δ} .

Proof. Let the set

$$A = ((-\infty, 0] \cap \mathbb{Q}) \cup ((0, 1) \cap \mathbb{I}) \cup ([1, \infty) \cap \mathbb{Q})$$

Then we we say that