GENERIC SAS® MACRO FOR EVALUATING ACCURACY MEASURES FOR MULTIPLE DIAGNOSTIC TESTS

2022 CDC/ATSDR SAG Statistics Day

October 25, 2022

Outline

Introduction

□ The %diag_test SAS macro

Example application of %diag_test macro

Discussions and conclusion

References

Introduction

- Measures of diagnostic accuracy quantify ability of diagnostic test to detect presence/absence of disease if present/absent compared to standard.
- Common measures of diagnostic accuracy include Sensitivity,
 Specificity, Predictive values, AUC for ROC curves.

Gaps with available tools

- Evaluate a single diagnostic test at a time
- Analyst need to summarize data into a 2x2 contingency table before analysis
- Mostly produce inaccurate confidence interval estimation via normal distribution approximation

The %diag_test SAS macro

- Evaluate multiple diagnostic tests simultaneously.
- Uses patient-level data and creates a 2x2 contingency table as part of output.
- Automated to saves on analysis time, reduces transcription (copypasting) errors, produce publication-quality outputs.
- Easy to use as analyst specifies data, "truth" and "test" variables and cutoff values.
- Produces > 15 different measures of evaluating diagnostic accuracy and ROC curves.
- Provides several methods for computing confidence intervals.
- Generic to use with data from other settings than the laboratory.
- Provides for domain/sub-population level analysis.

The %diag_test macro parameters

parameter	description						
data	name of input dataset						
truthvar	name of reference/truth/gold standard variable e.g., abbott_plasma_vl						
truthcutvalue	cutoff value to use to categorize values of test variable as having disease or not						
	e.g., 1,000 so that if value \geq 1,000 then presence of disease, otherwise absence of						
	disease						
testvarlist	list of diagnostic test variable(s) separated by space e.g., vdbs_vl mdbs_vl ddbs_vl						
testcutvalue	cutoff value to use to categorize values of test variable as having disease or not						
	e.g., 1,000 so that if value \geq 1,000 then presence of disease, otherwise absence of						
	disease						
decimalpoints	(optional) number of decimal places for each estimated measure (default=1)						
alpha	(optional) desired level of significance (default=0.05, for 95% confidence						
	intervals)						
missvaluelabel	(optional) value label for missing values. If missing data have a format, it should						
	be provided, otherwise macro assumes the default format "."						

The %diag_test macro parameters

parameter	description							
varmethod	(optional) method for computing confidence intervals. included here are:							
	"Normal" (default) for normal distribution approximations, "Wilson" (most							
	desired) for Wilson score and "Exact" for exact binomial approximation							
domain	(optional) domain variable for sub-population analysis							
domainvalue	(optional) value of domain/sub-population of interest (should be numeric).							
	Required if domain is specified							
condition	(optional) any conditional statements to create and or fine-tune the final analysis							
	dataset specified using one IF statement							
surveyname	(optional) abbreviation for survey/study to be included in the output							
outputdir	path for directory/folder where output is saved							
tablename	short name of output table							
tabletitle	title of output table							
print	variable for displaying/suppressing the output table on the output window which							
	takes the values (NO=suppress output, YES=show output)							

- Reproduce analysis for "Evaluation of dried blood spots (DBS) compared to plasma as an alternative for HIV-1 viral load (VL) monitoring in resource-limited settings [2]"
- Plasma blood used as gold standard/reference test in VL monitoring
- Plasma VL reagents costly and blood must be prepared in a reference laboratory setting
- DBSs are easy to prepare in a resource-limited setting
- 3 DBSs (1) venous blood (V-DBS), (2) microcapillary blood (M-DBS),
 (3) directly spotting (D-DBS) compared to Plasma all tested on
 Abbott m2000 platform
- □ Virologic failure (VF) threshold of ≥1000 copies/mL for both diagnostic and reference tests

Diagnostic test(s)		Reference test (Abbott Plasma VL copies/ml)			Diagnostic accuracy measures	
Test category	Test result	>=1000	<1000	Total	Measure	Estimate (95 % CI)
V-DBS VL copies/ml	>=1000	219	35	254	Sensitivity (%)	90.1 (85.7 - 93.3)
					Specificity (%)	93.1 (90.6 - 95.0)
	<1000	24	475	499	Positive Predictive Value (PPV) (%)	86.2 (81.4 - 89.9)
					Negative Predictive Value (NPV) (%)	95.2 (92.9 - 96.7)
	Total	243	510	753	Upward Misclassification (%)	6.9 (5.0 - 9.4)
					Downward Misclassification (%)	9.9 (6.7 - 14.3)
					False Omission Rate (FOR) (%)	4.8 (3.3 - 7.1)
					False Discovery Rate (FDR) (%)	13.8 (10.1 - 18.6)
					Positive Likelihood Ratio (LR+)	13.1 (9.5 - 18.1)
					Negative Likelihood Ratio (LR-)	0.1 (0.1 - 0.2)
					Diagnostic Accuracy (%)	92.2 (90.0 - 93.9)
					Disease Prevalence (%)	32.3 (29.0 - 35.7)
					Diagnostic Odds Ratio (DOR)	123.8 (71.9 - 213.3)
					Kappa Agreement	0.8 (0.8 - 0.9)
					Youden's Index	0.8 (0.8 - 0.9)
					F-score	0.9 (0.9 - 0.9)

Diagnostic test(s)		Reference test (Abbott Plasma VL copies/ml)			Diagnostic accuracy measures	
Test category	Test result	>=1000	<1000	Total	Measure	Estimate (95 % CI)
M-DBS VL copies/ml	>=1000	213	26	239	Sensitivity (%)	90.3 (85.8 - 93.4)
					Specificity (%)	94.9 (92.6 - 96.5)
	<1000	23	480	503	Positive Predictive Value (PPV) (%)	89.1 (84.5 - 92.5)
					Negative Predictive Value (NPV) (%)	95.4 (93.2 - 96.9)
	Total	236	506	742	Upward Misclassification (%)	5.1 (3.5 - 7.4)
					Downward Misclassification (%)	9.7 (6.6 - 14.2)
					False Omission Rate (FOR) (%)	4.6 (3.1 - 6.8)
					False Discovery Rate (FDR) (%)	10.9 (7.5 - 15.5)
					Positive Likelihood Ratio (LR+)	17.6 (12.1 - 25.6)
					Negative Likelihood Ratio (LR-)	0.1 (0.1 - 0.2)
					Diagnostic Accuracy (%)	93.4 (91.4 - 95.0)
					Disease Prevalence (%)	31.8 (28.6 - 35.2)
					Diagnostic Odds Ratio (DOR)	171.0 (95.4 - 306.5)
					Kappa Agreement	0.8 (0.8 - 0.9)
					Youden's Index	0.9 (0.8 - 0.9)
					F-score	0.9 (0.9 - 0.9)

Diagnostic test(s)		Reference test (Abbott Plasma VL copies/ml)			Diagnostic accuracy measures	
Test category	Test result	>=1000	<1000	Total	Measure	Estimate (95 % CI)
D-DBS VL copies/ml	>=1000	208	28	236	Sensitivity (%)	88.1 (83.4 - 91.7)
					Specificity (%)	94.5 (92.1 - 96.2)
	<1000	28	480	508	Positive Predictive Value (PPV) (%)	88.1 (83.4 - 91.7)
					Negative Predictive Value (NPV) (%)	94.5 (92.1 - 96.2)
	Total	236	508	744	Upward Misclassification (%)	5.5 (3.8 - 7.9)
					Downward Misclassification (%)	11.9 (8.3 - 16.6)
					False Omission Rate (FOR) (%)	5.5 (3.8 - 7.9)
					False Discovery Rate (FDR) (%)	11.9 (8.3 - 16.6)
					Positive Likelihood Ratio (LR+)	16.0 (11.1 - 23.0)
					Negative Likelihood Ratio (LR-)	0.1 (0.1 - 0.2)
					Diagnostic Accuracy (%)	92.5 (90.4 - 94.2)
					Disease Prevalence (%)	31.7 (28.5 - 35.2)
					Diagnostic Odds Ratio (DOR)	127.3 (73.6 - 220.4)
					Kappa Agreement	0.8 (0.8 - 0.9)
					Youden's Index	0.8 (0.8 - 0.9)
					F-score	0.9 (0.9 - 0.9)

Conclusion

- The %diag_test macro is a powerful and more advanced analytic tool for analysis of data from diagnostic studies.
- It provides a pool of measures to choose from and compare against to make concrete decision to adopt or reject diagnostic tests.
- □ The %diag_test macro adds to pool of tools developed by the authors to automate data analysis techniques.
- Code is easy to modify to include other diagnostic measures and variance estimation methods.
- For results interpretation, user should consult subject matter as importance of diagnostic measures depend on disease prevalence or disease spectrum or both.

References

□ The %diag_test SAS macro source code:

https://github.com/kmuthusi/diagnostic-testing-macro

IMPLEMENTATION SCIENCE

Field Evaluation of Dried Blood Spots for HIV-1 Viral Load Monitoring in Adults and Children Receiving Antiretroviral Treatment in Kenya: Implications for Scale-up in Resource-Limited Settings

Mary E. Schmitz, MPH,* Simon Agolory, MD,† Muthoni Junghae, PhD,* Laura N. Broyles, MD,†
Muthusi Kimeu, MSc,‡ Joseph Ombayo, BSc,§ Mamo Umuro, MSc,§ Irene Mukui, MD,||
Kennedy Alwenya, MA,‡ Moses Baraza, BSc,‡ Kenneth Ndiege, BSc,‡ Samuel Mwalili, PhD,*
Emilia Rivadeneira, MD,† Lucy Ng'ang'a, MD,* Chunfu Yang, PhD,† and Clement Zeh, PhD, MPH,*
for VL-DBS Study Group

Source: JAIDS. 2016, 74(4):399-406. doi: 10.1097/QAI.00000000001275

- Authors: Jacques Muthusi*, Peter Young, Samuel Mwalili
- *Contact : MWJ6@CDC.GOV