1.	The backtracking approach follows							
	BFS	DFS	Both of the above	None of the above				
2.	Which of these problems can be solved using backtracking approach?							
	Sum of Subsets	N Queens	Hamiltonian Cycle	All of the above				
3.	Backtracking approach is applied on							
	Approximation problems	Optimization problems	Constraint satisfaction problems	None of the above				
4.	Which of these is used in backtracking approach?							
	Binary tree	Binary search	AVL tree	State space tree				
5.	Find the odd one out.							
	Sum of Subsets	N Queens	Hamiltonian Cycle	Merge sort				
6.	For 4*4 chessboard, the total number of arrangements will be							
	2018	1820	1620	2016				
7.	In N*N Queens problems, no two queens should lie in							
	Same Column	Same Row	Same Diagonal	All of the above				
8.	N Queens problem can be efficiently solved using							
	Divide and Conquer	Backtracking	Dynamic Programming	Algebraic Manipulation				
9.	How many unique solutions are there for 8 Queens Problem?							
	8	4	12	16				
10	10. In how many directions do queens attack each other?							
	1	2	3	4				
11	. In m coloring optimization problem, the number of colors required to color the graph are calculated.							
	Minimum	Maximum	Negative	None of the above				
12	2. The smallest number of colors required to color a graph is called							
	Chromatic number	Positive number	Natural number	Real number				

13.	13. In which case, it is not possible to have Hamiltonian Cycle?							
F	Pendant vertices	Articulation points	Disconnected graph	All of the above				
14.	14. The Hamiltonian Cycle problem is							
F	Р Туре	NP Type	NP Hard	NP Complete				
15.	5. The time complexity of graph coloring problem is							
	O (n)	$O(n^2)$	$O(n^3)$	Correct O(3 ⁿ)				
16.	6. In the Hamiltonian Cycle problem, the given graph may be							
С	Directed	Undirected	Either of the above	None of the above				
17. A	7. Which of these is used in backtracking approach?							
Е	Binary tree	Binary search	AVL tree	State space tree				
18. A	3. In how many directions do queens attack each other?							
1		2	3	4				
19.	9. The time complexity of graph coloring problem is							
C	O (n)	O (n2)	O (n3)	O (3n)				
20.	. The graph coloring problem can be efficiently solved using							
E	3acktracking	Divide and Conquer	Branch and Bound	Dynamic Programming				
21. A.	. The complexity of Hamiltonian Cycle problem is							
C	D(1)	O(n)	O(log n)	O(nn)				
22. A.	2. The backtracking approach follows							
Е	BFS	DFS	Both of the above	None of the above				
23.	For 4*4 chessboard, the total number of arrangements will be							