Module 11: Lesson 4 Lecture Notes

Callum Arnold

21 July, 2021

Contents

Household models	1
How the disease enters a household	1
What happens within a household	2
Longitudinal data	2
Worked example	2
Final outcome data	3
Removing time	3
Discussion	7
Why use this household model vs Reed-Frost	7

Household models

- Many ID studies incorporate households into study design
 - Convenience of collecting data
 - Stability of target pop
 - Get data on within-household spread
- Here, focus on models in which the households are independent
 - May be reasonable if select households that are geographically separated
- \bullet Assume population of N individuals is partitioned into households
 - No requirement that they are the same size
- Household models require 2 key things
 - How the disease enters household
 - * E.g. a community transmission risk
 - What happens within a household

How the disease enters a household

- Typically assume each individual in population has a constant risk per unit time of becoming infected by the community
 - Individually k becomes infected according to a Poisson process of rate b_k
 - * Process that describes events happening randomly through time

- * $P(k \text{ avoids infection for } T \text{ time units}) = \exp(-Tb_k)$
- The rate b_k is typically the same for all individuals
- Can make rate b_k depend on the **type** of individual k
 - * e.g. adult/child, vaccinated/unvaccinated etc
 - * More types require more data

What happens within a household

- Spread via SEIR model within household
- Types may feature
 - Infectivity and susceptibility of an individual may be type-dependent
- Common assumption is that the infection rate β is not scaled by the size of the household
 - Each infective has contacts with each susceptible at rate β
 - Normally, we assume infection rate for each infective individual $\propto \beta/N$
 - * At start of outbreak when $S \approx N$ therefore the overall rate $= \frac{\beta}{N} N = \beta$
 - * Therefore, if look at one individual the overall rate of them having infectious contacts is β , and independent of the population size!
 - · Frequency-dependent contact rate, e.g. don't expect to have many more contacts if you move from a small town to large city
 - Within households, need to move to density-dependent contact rate
 - * Don't scale by N, so assume infection rate for each infective individual $\propto \beta N$

Longitudinal data

- We assume we have data through time e.g. daily observations
- Approach the inference problem in a similar manner to SIR data
- Have modelling process where we write down a likelihood and multiply by the priors of the parameters to get a density up to proportionality
- Assuming households are independent
 - If you can work out the likelihood of what happens in one household, the likelihood can be written
 as a product over all households
 - Still likely have to do data augmentation steps as before
- Now the parameter updates typically require M-H update steps within an MCM algorithm

Worked example

- Single household of n=4 individuals in which we observe 2 removals
- Constant rate of outside infection λ
- Markov SIR model for within-household transmission
- Less constraint on when the infection times can happen

- i.e. Can be infected from outside the household, so infections no longer have to occur before everyone in the household has recovered

- Augmented likelihood for the household
 - Similar to before, but have updated the infection rate to include λ
 - Now neither β nor λ have Gamma distributed full conditional distributions, but γ still does

$$\pi(i_2,r_1,r_2|i_1,\beta,\gamma,\lambda) = (\beta I(i_2-) + \lambda) \exp\left(-\int_{i_1}^{r_2} (\beta S(t)I(t) + \lambda)dt\right) \times \gamma^2 \exp\left(-\gamma(r_1+r_2-i_1-i_2) + \lambda\right) \exp\left(-\frac{1}{2} (\beta S(t)I(t) + \lambda)dt\right)$$

- Augmented likelihood
 - likelihood is the product of the likelihoods in household k
- In constructing the posterior density, only need to include the prior density for the model parameters once (**not once per household**)

Final outcome data

- Suppose now the data consists only of the final number of cases in each household
- Without any temporal data, we can't estimate all of the parameters with respect to real time
- Therefore assume the infectious period is known and $E(T_I) = 1$
- As before, assume households are independent so calculate likelihood for 1 household and take product
- Consider a household with n individuals
- Now let T be the number who ever became infected $(0 \le T \le n)$
- Assume constant rate of outside infection λ and an SIR model for within-household contact with infection rate β
 - Not talking about infectious period any more as assume mean = 1, therefore no gamma term
- Wish to calculate P(T = k), k = 0, ..., n

Removing time

• If we think about the final outcome in the correct way, it's possible to ignore the timing of events e.g. whether infections came first from outside or inside

Ignoring external infections

- To start, let's look at a single household and ignore external infections
- Let's look at individual A.
 - If A ever infected, they remain so for random time T_I , e.g. $T_I = \tau$
 - For a period of time τ , they have contacts with other household individuals according to n-1 independent Poisson processes, each with rate β
 - Can write a list of individuals A would infected if the others were susceptible
- Each individual in the population has a list
 - Who would you infect if you were infective and everyone else was susceptible?
- Can deduce who ends up getting infected!
- Let's imagine we have all the lists below:

$$-1 = \{4,5\}, 2 = \{4,1,5\}, 3 = \{1\}, 4 = \{2\}, 5 = \{\}$$

- 1 is the initial infection
- 1 infects 4 and 5
- 4 infects 2
- 2 only infects 5 as 4 and 1 aren't susceptible
- 5 doesn't infect anyone

- The distribution of the final number infected in the epidemic is the same as the distribution of the number of individuals found on the final list (who ultimately got infected)
- All we care about is if the person gets infected, not who was the cause of each infection

Adding external infections

- Need to find out which individuals become infected from outside the household
 - Again, don't need to know when they become infected
- Treat individuals infected from outside as if they are initial infections within the household
 - Now have SIR model within the household with our calculated number of initial infections

- Probability of avoiding infection from outside the household during time t becomes the probability they avoid infection during the entire epidemic
 - $-p = \exp(-\lambda t)$
 - If looking at seasonal data, effectively assuming epidemic is finished at end of season
- Assuming each individual in household avoids external infection independent of each other, it follows a Binomial distribution
 - $-Y \sim \operatorname{Binom}(n, 1-p)$
- We are interested in P(T = k)

$$-P(T=k) = \sum_{0 \le y \le n} P(T=k|Y=y)P(Y=y)$$

- * Where $P(Y = y) = \frac{n!}{(n-y)!y!} (1-p)^y (p)^{n-y}$
 - · Probability that y number of individuals in the household did get infected
- * Indicates that k-y individuals have to get infected inside the household
- * Sum over all possible values
 - · However, some probabilities can be 0, e.g. when y > k as k is the total number of individuals infected
- -P(T=k|Y=y) is the probability that k-y susceptibles become infected in and SIR model with y initial infectives and n-y susceptibles
 - * We can evaluate with "triangular equations" for an SIR model

Triangular equations for an SIR model

- Consider SIR model with m initial susceptibles, a initial infectives, and α is the infection rate between two individuals
- Define p(k) as the probability k of initial susceptibles ever become infected (k = 0, 1, ..., m)
- Let $f(x) = E[\exp(-xT_I)]$ be the moment generating function of the infectious period distribution
- For $0 \le j \le m$:

$$- \ \textstyle \sum_{k=0}^{j} {m-k \choose j-k} \frac{p(k)}{\left[f(\alpha(m-j))\right]^{k+a}} = {m \choose j}$$

- Evaluate recursively by setting j = 0, j = 1, ..., j = m to get p(0), p(1), ..., p(m)
- For example

- Set
$$T_I = 1$$
, then $f(x) = E[\exp(-x)]$

- Setting j = 0 gives:

$$p(0) = \exp(-3\alpha)$$

- Setting j = 1 gives:

*
$$3p(0) \exp(2\alpha) + p(1) \exp(4\alpha) = 3$$

*
$$p(1) = 3 \exp(-4\alpha)(1 - \exp(-\alpha))$$

• Note that this requires a recursive function

Data and likelihood

- Suppose we have data consisting of the set of numbers $\vec{n} = \{n(j, k)\}$
 - -n(j,k) is the number of household in which j out of k initial susceptibles become infected
- The likelihood takes the form

$$-\pi(\vec{n}|p,\beta) = \prod_{j,k} q(j,k)^{n(j,k)}$$

- * Remember that p is the probability of escaping infection
- * β is used in the triangular equations instead of α
- * q(j,k) = P(T=j) for a household containing k susceptible individuals
 - · It isn't explicitly written down but we can numerically calculate it
- The target density is:
 - $-\pi(p,\beta,|\vec{n}) \propto \pi(\vec{n}|p,\beta)\pi(p,\beta)$
 - -p is a probability and could be updated by Gaussian random walk (p < 0 and p > 1 must be rejected), or an independence sampler (e.g. U[0,1]), for example

*
$$\beta^* \sim \mathcal{N}(\beta, \sigma^2)$$

Fixed infectious periods

- Because we're thinking about final outcome data, there is no time information
- Let's look at the special case where $T_I = 1$
- The triangular equations yield expressions in terms of $f(x) = E[\exp(-xT_I)] = \exp(-x)$
 - The only difference between different choices of T_I is how different are the moment generating functions i.e., if not that different, don't see much difference in the inference for the parameters in the model e.g. p, β

$$- \ \textstyle \sum_{k=0}^{j} {m-k \choose j-k} \frac{p(k)}{\left[f(\beta(m-j))\right]^{k+a}} = {m \choose j}$$

- * Note we've reparamaterized this using β (our infection rate) instead of α
- $\left. \left[f(\beta(m-j)) \right]^{k+a} = \exp\left(-\beta(m-j)(k+a) \right) = q^{(m-j)(k+a)}$
 - * Where $q = \exp(-\beta)$
- Now, we can put our parameters p,q in context (for individual A)
 - * p = P(A avoids external infection)
 - * q = P(A avoids infection from one infected household member)
 - $\cdot\,\,$ This arises from the Poisson process assumption:
 - · How likely is it that there are no points in a Poisson process that you observe for length one time period (because $T_I = 1$) where the rate of events is β
- The within-household model has the same final outcome distribution as the Reed-Frost model
- The whole model has the same final outcome distribution as the Longini-Koopman model

Discussion

Why use this household model vs Reed-Frost

- Reed-frost is discrete case, but has strong assumptions about long latent period and fixed length infection period
- Household model is more general and makes fewer assumptions
 - Can have different infectious period distributions
 - Continuous time so can incorporate other data with temporal data