

TPS60400, TPS60401 TPS60402, TPS60403

SLVS324B - JULY 2001 - REVISED APRIL 2015

TPS6040x Unregulated 60-mA Charge Pump Voltage Inverter

Features

- Inverts Input Supply Voltage
- Up to 60-mA Output Current
- Only Three Small 1-uF Ceramic Capacitors Needed
- Input Voltage Range From 1.6 V to 5.5 V
- PowerSave-Mode for Improved Efficiency at Low-Output Currents (TPS60400)
- Device Quiescent Current Typical 65 µA
- Integrated Active Schottky-Diode for Start-up Into
- Small 5-Pin SOT-23 Package
- Evaluation Module Available TPS60400EVM-178

Applications

- LCD Bias
- GaAs Bias for RF Power Amps
- Sensor Supply in Portable Instruments
- Bipolar Amplifier Supply
- Medical Instruments
- **Battery-Operated Equipment**

Typical Application

3 Description

The TPS6040x family of devices generates an unregulated negative output voltage from an input voltage ranging from 1.6 V to 5.5 V. The devices are typically supplied by a preregulated supply rail of 5 V or 3.3 V. Due to its wide input voltage range, two or three NiCd, NiMH, or alkaline battery cells, as well as one Li-lon cell can also power them.

Only three external 1-µF capacitors are required to build a complete DC-DC charge pump inverter. Assembled in a 5-pin SOT-23 package, the complete converter can be built on a 50-mm² board area. Additional board area and component count reduction is achieved by replacing the Schottky diode that is typically needed for start-up into load by integrated circuitry.

The TPS6040x can deliver a maximum output current of 60 mA with a typical conversion efficiency of greater than 90% over a wide output current range. Three device options with 20-kHz, 50-kHz, and 250fixed-frequency operation are available. TPS60400 comes with a variable switching frequency to reduce operating current in applications with a wide load range and enables the design with lowvalue capacitors.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TPS6040x	SOT-23 (5)	2.90 mm x 1.60 mm

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Output Voltage vs Input Voltage

Table of Contents

1	Features 1		8.4 Device Functional Modes	12
-		9	Application and Implementation	
2	Applications 1	9	• • • • • • • • • • • • • • • • • • • •	
3	Description 1		9.1 Application Information	
4	Revision History2		9.2 Typical Application	
5	Device Comparison Table 3		9.3 System Examples	16
6	Pin Configuration and Functions	10	Power Supply Recommendations	<mark>2</mark> 1
7	Specifications	11	Layout	21
•	7.1 Absolute Maximum Ratings		11.1 Layout Guidelines	21
	3		11.2 Layout Example	21
	7.2 Handling Ratings	12	Device and Documentation Support	
	7.4 Thermal Information		12.1 Device Support	22
	7.5 Electrical Characteristics 4		12.2 Related Links	
	7.6 Typical Characteristics		12.3 Trademarks	<mark>22</mark>
8	Detailed Description 10		12.4 Electrostatic Discharge Caution	22
O	8.1 Overview		12.5 Glossary	22
	8.2 Functional Block Diagram	13	Mechanical, Packaging, and Orderable	
	8.3 Feature Description		Information	22
	0.0 Teature Description			

4 Revision History

Changes from Revision A (November 2004) to Revision B

Page

5 Device Comparison Table

PART NUMBER (1)	MARKING DBV PACKAGE	TYPICAL FLYING CAPACITOR [μF]	FEATURE
TPS60400DBV	PFKI	1	Variable switching frequency 50 kHz-250 kHz
TPS60401DBV	PFLI	10	Fixed frequency 20 kHz
TPS60402DBV	PFMI	3.3	Fixed frequency 50 kHz
TPS60403DBV	PFNI	1	Fixed frequency 250 kHz

⁽¹⁾ The DBV package is available taped and reeled. Add R suffix to device type (for example, TPS60400DBVR) to order quantities of 3000 devices per reel. Add T suffix to device type (for example, TPS60400DBVT) to order quantities of 250 devices per reel.

6 Pin Configuration and Functions

Pin Functions

PIN		1/0	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
$C_{\text{FLY+}}$	5		Positive terminal of the flying capacitor C _(fly)
C _{FLY} -	3		Negative terminal of the flying capacitor C _(fly)
GND	4		Ground
IN	2	I	Supply input. Connect to an input supply in the 1.6-V to 5.5-V range. Bypass IN to GND with a capacitor that has the same value as the flying capacitor.
OUT	1	0	Power output with $V_O = -V_I$ Bypass OUT to GND with the output filter capacitor C_O .

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

		MIN	MAX	UNIT
Voltage	IN to GND	-0.3	5.5	V
range	OUT to GND	-5.5	0.3	V
	C _{FLY-} to GND	0.3	V _O - 0.3	V
	C _{FLY+} to GND	-0.3 V	$V_1 + 0.3$	V
Continuo	us power dissipation	See Power Dissipation		ation
Continuo	Continuous output current		80	mA
Maximum	Maximum junction temperature, T _J		150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 Handling Ratings

			MIN	MAX	UNIT
T _{stg}	Storage temperature rang	ge	-55°C	150°C	°C
V	V _(CCD) Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	-1000	1000	\/
V _(ESD) E		Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)	-500	500	1 V

- (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
- (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

	MIN	NOM	MAX	UNIT
Input voltage range, V _I	1.8		5.25	٧
Output current range at OUT, I _O			60	mA
Input capacitor, C _I	0	$C_{(fly)}$		μF
Flying capacitor, C _(fly)		1		μF
Output capacitor, C _O		1	100	μF
Operating junction temperature, T _J	-40		125	°C

7.4 Thermal Information

		TPS6040x	
	THERMAL METRIC ⁽¹⁾	DBV	UNIT
		5 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	221.2	
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	81.9	
$R_{\theta JB}$	Junction-to-board thermal resistance	39.8	°C/W
ΨЈТ	Junction-to-top characterization parameter	3.3	*C/VV
ΨЈВ	Junction-to-board characterization parameter	38.9	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	n/a	

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

 $C_I = C_{(fly)} = C_O$ (according to Table 1), $T_C = -40^{\circ}C$ to $85^{\circ}C$, $V_I = 5$ V over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TE	ST CONDITIONS	MIN	TYP	MAX	UNIT
V	Owner have a literature of the second		At $T_C = -40$ °C to 85°C, $R_L = 5 \text{ k}\Omega$		1.8		5.25	V
VI	Supply voltage range		At T _C ≥ 0°C, R _I	_= 5 kΩ	1.6			V
Io	Maximum output current at Vo				60			mA
Vo	Output voltage					-V _I		V
		TPS60400		$C_{(fly)} = 1 \mu F, C_O = 2.2 \mu F$		35		
.,	Output valta as simple	TPS60401	, , , , , , , , , , , , , , , , , , ,	$C_{(fly)} = C_O = 10 \ \mu F$		20		\/
V _{P-P}	Output voltage ripple	TPS60402	$I_0 = 5 \text{ mA}$	$C_{(fly)} = C_O = 3.3 \ \mu F$		20		mV_{P-P}
		TPS60403		$C_{(fly)} = C_O = 1 \mu F$		15		

Electrical Characteristics (continued)

 $C_I = C_{(fly)} = C_O$ (according to Table 1), $T_C = -40^{\circ}C$ to $85^{\circ}C$, $V_I = 5$ V over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
		TPS60400			125	270	
		TPS60401	A4.V 5.V		65	190	
		TPS60402	$At V_I = 5 V$		120	270	UNIT μA μA kHz
	Quiescent current (no-load input	TPS60403			425	700	
IQ	current)	TPS60400				210	μA μA kHz
		TPS60401	A+T < 60°C \ \			135	
		TPS60402	At $T \le 60^{\circ}$ C, $V_1 = 5 \text{ V}$			210	μΑ
		TPS60403				640	
		TPS60400	VCO version	30	50-250	350	70 90 70 00 10 35 10 40 50 28 70 00 15 15 15
	Internal autitables fragues au	TPS60401		13	20	28	
fosc	Internal switching frequency	TPS60402		30	50	70	
		TPS60403		150	250	300	
		TPS60400	$C_I = C_{(fly)} = C_O = 1 \mu F$		12	15	
l.e.	Impedance at 25°C, V _I = 5 V	TPS60401	$C_{I} = C_{(fly)} = C_{O} = 10 \ \mu F$		12	15	0
	impedance at 23 C, $V_1 = 5 V$	TPS60402	$C_{I} = C_{(fly)} = C_{O} = 3.3 \ \mu F$		12	15	12
		TPS60403	$C_I = C_{(fly)} = C_O = 1 \mu F$		12	15	

7.6 Typical Characteristics

Table 1. Table of Graphs

			FIGURE
η	Efficiency	vs Output current at 3.3 V, 5 V TPS60400, TPS60401, TPS60402, TPS60403	Figure 1, Figure 2
I	Input current	vs Output current TPS60400, TPS60401, TPS60402, TPS60403	Figure 3, Figure 4
I _S	Supply current	vs Input voltage TPS60400, TPS60401, TPS60402, TPS60403	Figure 5, Figure 6
	Output resistance	vs Input voltage at -40°C, 0°C, 25°C, 85°C TPS60400, $C_I = C_{(fly)} = C_O = 1~\mu\text{F}$ TPS60401, $C_I = C_{(fly)} = C_O = 10~\mu\text{F}$ TPS60402, $C_I = C_{(fly)} = C_O = 3.3~\mu\text{F}$ TPS60403, $C_I = C_{(fly)} = C_O = 1~\mu\text{F}$	Figure 7, Figure 8, Figure 9, Figure 10
Vo	Output voltage	vs Output current at 25°C, V $_{IN}$ =1.8 V, 2.5 V, 3.3 V, 5 V TPS60400, C $_{I}$ = C $_{(fiy)}$ = C $_{O}$ = 1 $_{\mu}$ F TPS60401, C $_{I}$ = C $_{(fiy)}$ = C $_{O}$ = 10 $_{\mu}$ F TPS60402 , C $_{I}$ = C $_{(fiy)}$ = C $_{O}$ = 3.3 $_{\mu}$ F TPS60403, C $_{I}$ = C $_{(fiy)}$ = C $_{O}$ = 1 $_{\mu}$ F	Figure 11, Figure 12, Figure 13, Figure 14
f _{OSC}	Oscillator frequency	vs Temperature at V _I = 1.8 V, 2.5 V, 3.3 V, 5 V TPS60400, TPS60401, TPS60402, TPS60403	Figure 15, Figure 16, Figure 17, Figure 18
f _{OSC}	Oscillator frequency	vs Output current TPS60400 at 2 V, 3.3 V, 5.0 V	Figure 19

8 Detailed Description

8.1 Overview

The TPS60400, TPS60401 charge pumps invert the voltage applied to their input. For the highest performance, use low equivalent series resistance (ESR) capacitors (for example, ceramic). During the first half-cycle, switches S2 and S4 open, switches S1 and S3 close, and capacitor ($C_{(fly)}$) charges to the voltage at V_I . During the second half-cycle, S1 and S3 open, S2 and S4 close. This connects the positive terminal of $C_{(fly)}$ to GND and the negative to V_O . By connecting $C_{(fly)}$ in parallel, C_O is charged negative. The actual voltage at the output is more positive than $-V_I$, since switches S1-S4 have resistance and the load drains charge from C_O .

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Charge-Pump Output Resistance

The TPS6040x devices are not voltage regulators. The charge pump's output source resistance is approximately 15 Ω at room temperature (with V_I = 5 V), and V_O approaches -5 V when lightly loaded. V_O droops toward GND as load current increases.

$$V_O = -(V_I - R_O \times I_O) \tag{1}$$

$$R_{O} \approx \frac{1}{fosc \times C_{(fly)}} + 4(2R_{SWITCH} + ESR_{CFLY}) + ESR_{CO}$$

$$R_O$$
 = output resistance of the converter (2)

8.3.2 Efficiency Considerations

The power efficiency of a switched-capacitor voltage converter is affected by three factors: the internal losses in the converter IC, the resistive losses of the capacitors, and the conversion losses during charge transfer between the capacitors. The internal losses are associated with the internal functions of the IC, such as driving the switches, oscillator, and so forth. These losses are affected by operating conditions such as input voltage, temperature, and frequency. The next two losses are associated with the output resistance of the voltage converter circuit. Switch losses occur because of the on-resistance of the MOSFET switches in the IC. Charge-pump capacitor losses occur because of their ESR. The relationship between these losses and the output resistance is as follows:

 $P_{CAPACITOR LOSSES} + P_{CONVERSION LOSSES} = I_O^2 \times R_O$

$$R_{SWITCH}$$
 = resistance of a single MOSFET-switch inside the converter f_{OSC} = oscillator frequency (3)

The first term is the effective resistance from an ideal switched-capacitor circuit. Conversion losses occur during the charge transfer between $C_{(fly)}$ and C_O when there is a voltage difference between them. The power loss is:

$$P_{\text{CONV.LOSS}} = \left[\frac{1}{2} \times C_{\text{(fly)}} \left(V_{\text{I}}^2 - V_{\text{O}}^2\right) + \frac{1}{2}C_{\text{O}} \left(V_{\text{RIPPLE}}^2 - 2V_{\text{O}}V_{\text{RIPPLE}}\right)\right] \times f_{\text{osc}}$$
(4)

The efficiency of the TPS6040x devices is dominated by their quiescent supply current at low output current and by their output impedance at higher current.

$$\eta \cong \frac{I_O}{I_O + I_Q} \left(1 - \frac{I_O \times R_O}{V_I} \right) \tag{5}$$

Where, I_{O} = quiescent current.

8.4 Device Functional Modes

8.4.1 Active-Schottky Diode

For a short period of time, when the input voltage is applied, but the inverter is not yet working, the output capacitor is charged positive by the load. To prevent the output being pulled above GND, a Schottky diode must be added in parallel to the output. The function of this diode is integrated into the TPS6040x devices, which gives a defined startup performance and saves board space.

A current sink and a diode in series can approximate the behavior of a typical, modern operational amplifier. Figure 21 shows the current into this typical load at a given voltage. The TPS6040x devices are optimized to start into these loads.

Figure 21. Typical Load

Figure 22. Maximum Start-Up Current

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TPS6040x is a family of devices that generate an unregulated negative output voltage from an input voltage ranging from 1.6 V to 5.5 V.

9.2 Typical Application

9.2.1 Voltage Inverter

The design guidelines provide a component selection to operate the device within the recommended operating conditions.

Figure 23. Typical Operating Circuit

9.2.1.1 Design Requirements

The TPS6040x is connected to generate a negative output voltage from a positive input.

9.2.1.2 Detailed Design Procedure

The most common application for these devices is a charge-pump voltage inverter (see Figure 23). This application requires only two external components; capacitors $C_{(fly)}$ and C_{O} , plus a bypass capacitor, if necessary. Refer to the capacitor selection section for suggested capacitor types.

For the maximum output current and best performance, three ceramic capacitors of 1 μ F (TPS60400, TPS60403) are recommended. For lower currents or higher allowed output voltage ripple, other capacitors can also be used. It is recommended that the output capacitors has a minimum value of 1 μ F. With flying capacitors lower than 1 μ F, the maximum output power decreases.

9.2.1.2.1 Capacitor Selection

To maintain the lowest output resistance, use capacitors with low ESR (see Table 2). The charge-pump output resistance is a function of $C_{(fly)}$'s and C_O 's ESR. Therefore, minimizing the charge-pump capacitor's ESR minimizes the total output resistance. The capacitor values are closely linked to the required output current and the output noise and ripple requirements. It is possible to only use 1- μ F capacitors of the same type.

9.2.1.2.2 Input Capacitor (C_I)

Bypass the incoming supply to reduce its ac impedance and the impact of the TPS6040x switching noise. The recommended bypassing depends on the circuit configuration and where the load is connected. When the inverter is loaded from OUT to GND, current from the supply switches between 2 x I_O and zero. Therefore, use a large bypass capacitor (for example, equal to the value of $C_{(fly)}$) if the supply has high ac impedance. When the inverter is loaded from IN to OUT, the circuit draws 2 x I_O constantly, except for short switching spikes. A 0.1- μ F bypass capacitor is sufficient.

Typical Application (continued)

9.2.1.2.3 Flying Capacitor (C(fly))

Increasing the flying capacitor's size reduces the output resistance. Small values increases the output resistance. Above a certain point, increasing $C_{(fly)}$'s capacitance has a negligible effect, because the output resistance becomes dominated by the internal switch resistance and capacitor ESR.

9.2.1.2.4 Output Capacitor (Co)

Increasing the output capacitor's size reduces the output ripple voltage. Decreasing its ESR reduces both output resistance and ripple. Smaller capacitance values can be used with light loads if higher output ripple can be tolerated. Use the following equation to calculate the peak-to-peak ripple.

$$V_{O(ripple)} = \frac{I_{O}}{f_{OSC} \times C_{O}} + 2 \times I_{O} \times ESR_{CO}$$
(6)

Table 2. Recommended Capacitor Values

DEVICE	V ₁ [V]	l _O [mA]	C _ι [μF]	C _(fly) [µF]	C _O [μF]
TPS60400	1.85.5	60	1	1	1
TPS60401	1.85.5	60	10	10	10
TPS60402	1.85.5	60	3.3	3.3	3.3
TPS60403	1.85.5	60	1	1	1

Table 3. Recommended Capacitors

MANUFACTURER	PART NUMBER	SIZE	CAPACITANCE	TYPE
Taiyo Yuden	EMK212BJ474MG	0805	0.47 μF	Ceramic
	LMK212BJ105KG	0805	1 μF	Ceramic
	LMK212BJ225MG	0805	2.2 μF	Ceramic
	EMK316BJ225KL	1206	2.2 μF	Ceramic
	LMK316BJ475KL	1206	4.7 μF	Ceramic
	JMK316BJ106KL	1206	10 μF	Ceramic
TDK	C2012X5R1C105M	0805	1 μF	Ceramic
	C2012X5R1A225M	0805	2.2 μF	Ceramic
	C2012X5R1A335M	0805	3.3 µF	Ceramic

Table 4 contains a list of manufacturers of the recommended capacitors. Ceramic capacitors will provide the lowest output voltage ripple because they typically have the lowest ESR-rating.

Table 4. Recommended Capacitor Manufacturers

CAPACITOR TYPE	MANUFACTURER	WEB ADDRESS
X5R / X7R ceramic	Taiyo Yuden	www.t-yuden.com
X5R / X7R ceramic	TDK	www.component.tdk.com
X5R / X7R ceramic	Vishay	www.vishay.com
X5R / X7R ceramic	Kemet	www.kemet.com

9.2.1.2.5 Power Dissipation

As given in the *Thermal Information*, the thermal resistance of TPS6040x is: $R_{\Theta JA} = 221^{\circ}$ C/W.

The terminal resistance can be calculated using the following equation:

$$R_{\theta JA} = \frac{T_J - T_A}{P_D} \tag{7}$$

where:

 T_J is the junction temperature. T_A is the ambient temperature. P_D is the power that is dissipated by the device.

$$R_{\theta JA} = \frac{T_J - T_A}{P_D} \tag{8}$$

The maximum power dissipation can be calculated using the following equation:

$$P_{D} = V_{I} \times I_{I} - V_{O} \times I_{O} = V_{I(max)} \times (I_{O} + I_{(SUPPLY)}) - V_{O} \times I_{O}$$
(9)

The maximum power dissipation happens with maximum input voltage and maximum output current.

At maximum load the supply current is 0.7 mA maximum.

$$P_D = 5 \text{ V} \times (60 \text{ mA} + 0.7 \text{ mA}) - 4.4 \text{ V} \times 60 \text{ mA} = 40 \text{ mW}$$
 (10)

With this maximum rating and the thermal resistance of the device on the EVM, the maximum temperature rise above ambient temperature can be calculated using the following equation:

$$\Delta T_{J} = R_{\Theta JA} \times P_{D} = 221^{\circ} \text{C/W} \times 40 \text{ mW} = 8.8^{\circ} \text{C}$$

$$\tag{11}$$

This means that the internal dissipation increases T_J by <10°C.

The junction temperature of the device shall not exceed 125°C.

This means the IC can easily be used at ambient temperatures up to:

$$T_A = T_{J(max)} - \Delta T_J = 125^{\circ} \text{C/W} - 10^{\circ} \text{C} = 115^{\circ} \text{C}$$
 (12)

9.2.1.3 Application Curves

TPS60401

Figure 25. Output Voltage vs Time for TPS60401 and TPS60402

9.3 System Examples

To reduce the output voltage ripple, a RC post filter can be used.

An output filter can easily be formed with a resistor (R_P) and a capacitor (C_P). Cutoff frequency is given by:

Figure 26. TPS60400 with RC-Post Filter

The equation refers only to the relation between output and input of the ac ripple voltages of the filter.

$$f_{\rm C} = \frac{1}{2\pi R_{\rm p} C_{\rm p}} \quad (1)$$

and ratio V_O/V_{OUT} is:

$$\left| \frac{V_{O}}{V_{OUT}} \right| = \frac{1}{\sqrt{1 + \left(2\pi f R_{P} C_{P}\right)^{2}}} \quad (2)$$

with R_P = 50
$$\Omega$$
, C_P = 0.1 μ F and f = 250 kHz: $\left| \frac{V_O}{V_{OUT}} \right| = 0.125$ (13)

To reduce the output voltage ripple, a LC post filter can be used.

Figure 27 shows a configuration with a LC-post filter to further reduce output ripple and noise.

Figure 27. LC-Post Filter

The application allows to generate a voltage rail at a level of 1/2 of the input voltage.

A switched-capacitor voltage inverter can be configured as a high efficiency rail-splitter. This circuit provides a bipolar power supply that is useful in battery powered systems to supply dual-rail ICs, like operational amplifiers. Moreover, the SOT23-5 package and associated components require very little board space.

After power is applied, the flying capacitor ($C_{(fly)}$) connects alternately across the output capacitors C_3 and C_O . This equalizes the voltage on those capacitors and draws current from V_I to V_O as required to maintain the output at 1/2 V_I .

The maximum input voltage between V_I and GND in the schematic (or between IN and OUT at the device itself) must not exceed 6.5 V.

Figure 28. TPS60400 as a High-Efficiency Rail Splitter

The application allows to generate a voltage rail at a level of -Vi as well as 2 x Vi (V(pos)).

In the circuit of Figure 29, capacitors C_l , $C_{(fly)}$, and C_O form the inverter, while C1 and C2 form the doubler. C1 and $C_{(fly)}$ are the flying capacitors; C_O and C2 are the output capacitors. Because both the inverter and doubler use part of the charge-pump circuit, loading either output causes both outputs to decline toward GND. Make sure the sum of the currents drawn from the two outputs does not exceed 60 mA. The maximum output current at $V_{(pos)}$ must not exceed 30 mA. If the negative output is loaded, this current must be further reduced.

Figure 29. TPS60400 as Doubler/Inverter

The application generate a voltage rail at a level -2 x Vi.

Two devices can be cascaded to produce an even larger negative voltage (see Figure 30). The unloaded output voltage is normally $-2 \times V_I$, but this is reduced slightly by the output resistance of the first device multiplied by the quiescent current of the second. When cascading more than two devices, the output resistance rises dramatically.

Figure 30. Doubling Inverter

The application allows to increase the output current by using two or more in parallel.

Paralleling multiple TPS6040xs reduces the output resistance. Each device requires its own flying capacitor $(C_{(fly)})$, but the output capacitor (C_O) serves all devices (see Figure 31). Increase C_O 's value by a factor of n, where n is the number of parallel devices. Equation 1 shows the equation for calculating output resistance.

Figure 31. Paralleling Devices

The application adds a shutdown function.

If shutdown is necessary, use the circuit in Figure 32. The output resistance of the TPS6040x typically is 15 Ω plus two times the output resistance of the buffer.

Connecting multiple buffers in parallel reduces the output resistance of the buffer driving the IN pin.

Figure 32. Shutdown Control

The application generates a regulated output voltage for a GaAs bias supply.

A solution for a -2.7-V/3-mA GaAs bias supply is proposed in Figure 33. The input voltage of 3.3 V is first inverted with a TPS60403 and stabilized using a TLV431 low-voltage shunt regulator. Resistor R_P with capacitor C_P is used for filtering the output voltage.

Figure 33. GaAs Supply

A 0.1- μ F capacitor was selected for C_(fly). By this, the output resistance of the inverter is about 52 Ω .

R_{PMAX} can be calculated using the following equation:

$$V_{O} = -\left(1 + \frac{R1}{R2}\right) \times V_{ref} - R1 \times I_{I(ref)}$$
(14)

A 100- Ω resistor was selected for R_P.

The reference voltage across R2 is 1.24 V typical. With 5-µA current for the voltage divider, R2 gets:

$$R_{PMAX} = \left(\frac{V_{CO} - V_{O}}{I_{O}} - R_{O}\right)$$

With: $V_{CO} = -3.3 \text{ V}$; $V_{O} = -2.7 \text{ V}$; $I_{O} = -3 \text{ mA}$

$$R_{PMAX} = 200 \ \Omega - 52 \ \Omega = 148 \ \Omega$$
 (15)

With $C_P = 1 \mu F$ the ratio V_O/V_I of the RC post filter is:

$$\text{R2} = \frac{\text{1.24 V}}{\text{5 }\mu\text{A}} \approx \text{250 k}\Omega$$

$$R1 = \frac{2.7 - 1.24 \text{ V}}{5 \,\mu\text{A}} \approx 300 \,\text{k}\Omega$$
 (16)

$$\left| \frac{V_{O}}{V_{I}} \right| = \frac{1}{\sqrt{1 + (2\pi 125000 \text{Hz} \times 100\Omega \times 1 \,\mu\text{F})^{2}}} \approx 0.01$$
(17)

The application generates an output voltage of 1/2 of the input voltage.

By exchanging GND with OUT (connecting the GND pin with OUT and the OUT pin with GND), a step-down charge pump can easily be formed. In the first cycle S1 and S3 are closed, and $C_{(fly)}$ with C_O in series are charged. Assuming the same capacitance, the voltage across $C_{(fly)}$ and C_O is split equally between the capacitors. In the second cycle, S2 and S4 close and both capacitors with $V_I/2$ across are connected in parallel.

The maximum input voltage between V_1 and GND in the schematic (or between IN and OUT at the device itself) must not exceed 6.5 V. For input voltages in the range of 6.5 V to 11 V, an additional Zener-diode is recommended (see Figure 36).

Figure 34. Step-Down Principle

Figure 35. Step-Down Charge Pump Connection

Figure 36. Step-Down Charge Pump Connection for Higher Input Voltages

10 Power Supply Recommendations

The TPS60400 device family has no special requirements for its power supply. The power supply output needs to be rated according to the supply voltage, output voltage and output current of the TPS6040x.

11 Layout

11.1 Layout Guidelines

All capacitors should be soldered as close as possible to the IC. A PCB layout proposal for a single-layer board is shown in Figure 37. Care has been taken to connect all capacitors as close as possible to the circuit to achieve optimized output voltage ripple performance.

11.2 Layout Example

Figure 37. Recommended PCB Layout for TPS6040x (Top Layer)

12 Device and Documentation Support

12.1 Device Support

12.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

12.1.2 Device Family Products

Other inverting DC-DC converters from Texas Instruments are listed in Table 5.

Table 5. Product Identification

PART NUMBER	DESCRIPTION
TPS6735	Fixed negative 5-V, 200-mA inverting dc-dc converter
TPS6755	Adjustable 1-W inverting dc-dc converter

12.2 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 6. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY
TPS60400	Click here	Click here	Click here	Click here	Click here
TPS60401	Click here	Click here	Click here	Click here	Click here
TPS60402	Click here	Click here	Click here	Click here	Click here
TPS60403	Click here	Click here	Click here	Click here	Click here

12.3 Trademarks

All trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

27-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
TPS60400DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PFKI	Samples
TPS60400DBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PFKI	Samples
TPS60400DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PFKI	Samples
TPS60400DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PFKI	Samples
TPS60401DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PFLI	Samples
TPS60401DBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PFLI	Samples
TPS60401DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PFLI	Sample
TPS60401DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PFLI	Sample
TPS60402DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PFMI	Samples
TPS60402DBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PFMI	Sample
TPS60402DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PFMI	Samples
TPS60402DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PFMI	Sample
TPS60403DBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PFNI	Sample
TPS60403DBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PFNI	Sample
TPS60403DBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PFNI	Sample
TPS60403DBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-40 to 85	PFNI	Sample

⁽¹⁾ The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

27-.lun-2014

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TPS60400, TPS60401, TPS60402, TPS60403:

Automotive: TPS60400-Q1, TPS60401-Q1, TPS60402-Q1, TPS60403-Q1

NOTE: Qualified Version Definitions:

Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects

PACKAGE MATERIALS INFORMATION

www.ti.com 27-Jun-2014

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS60400DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPS60400DBVT	SOT-23	DBV	5	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPS60401DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TPS60401DBVT	SOT-23	DBV	5	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPS60402DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.3	3.2	1.4	4.0	8.0	Q3
TPS60402DBVT	SOT-23	DBV	5	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPS60403DBVR	SOT-23	DBV	5	3000	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3
TPS60403DBVT	SOT-23	DBV	5	250	178.0	9.0	3.23	3.17	1.37	4.0	8.0	Q3

www.ti.com 27-Jun-2014

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS60400DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TPS60400DBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
TPS60401DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TPS60401DBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
TPS60402DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TPS60402DBVT	SOT-23	DBV	5	250	180.0	180.0	18.0
TPS60403DBVR	SOT-23	DBV	5	3000	180.0	180.0	18.0
TPS60403DBVT	SOT-23	DBV	5	250	180.0	180.0	18.0

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-178 Variation AA.

DBV (R-PDSO-G5)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity