DIALOG(R)File 347:JAPIO (c) 2006 JPO & JAPIO. All rts. reserv.

Image available 06737723

SEMICONDUCTOR DEVICE AND MANUFACTURE THEREOF

PUB. NO.:

2000-323572 [JP 2000323572 A]

PUBLISHED:

November 24, 2000 (20001124)

INVENTOR(s): SHIMADA SATOSHI

WATANABE HIROYUKI NISHIDA ATSUHIRO **INOUE YASUNORI**

MIZUHARA HIDEKI

APPL. NO.:

APPLICANT(s): SANYO ELECTRIC CO LTD

FILED:

11-251316 [JP 99251316] September 06, 1999 (19990906)

PRIORITY:

10-269598 [JP 98269598], JP (Japan), September 24, 1998

(19980924)

11-063569 [JP 9963569], JP (Japan), March 10, 1999 (19990310)

INTL CLASS:

H01L-021/768; H01L-021/265

ABSTRACT

PROBLEM TO BE SOLVED: To avoid adverse influences of moisture and hydroxide groups in an SOG film by introducing an impurity in an insulation film to it and provide impurity-contg. regions where moisture and hydroxide groups in the film are lessened and the film hardly absorbs moisture.

SOLUTION: On a single crystal Si substrate 1 a silicon oxide film 2 and an org. SOG film 3 are formed, and the SOG film 3 interior is buried. A metal wiring 7 is buried in trenches on the inner walls of which a reformed SOG film 5 is formed such that B ion is introduced in the SOG film 3, org. components in the film are decomposed, moisture and hydroxide groups in the film are lessened, no org. component is contained and moisture and hydroxide groups are contained a little. This prevents the metal wiring 7 from corrosion and a high-reliability layer insulation film with a possibly reduced interwiring capacitance can be obtained and it is adaptable to scale down since only the reformed SOG film 5 exists sideways between the metal wirings 7.

COPYRIGHT: (C)2000, JPO

Family list 1 family member for: JP2000323572 Derived from 1 application.

> SEMICONDUCTOR DEVICE AND MANUFACTURE THEREOF Publication info: JP2000323572 A - 2000-11-24

> > Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(II)特許出願公開番号 特開2000-323572

(P2000-323572A) (43)公開日 平成12年11月24日(2000.11.24)

	(51) Int. C1. 7	識別記号	F I		テーマコート・	(参考)
	H01L 21/768		H01L 21/90	J	5F033	
-	21/265		21/265	Y		
			21/90	P		

		審査請求	未請求 請求項の数20 OL (全21頁)
(21)出願番号	特願平11-251316	(71)出願人	000001889
(22)出願日	平成11年9月6日(1999.9.6)	(72)発明者	三洋電機株式会社 大阪府守口市京阪本通2丁目5番5号 嶋田 聡
(31)優先権主張番号 (32)優先日	特願平10-269598 平成10年9月24日(1998.9.24)		大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内
(33)優先権主張国(31)優先権主張番号	日本 (JP) 特願平11-63569	(72)発明者	渡辺 裕之 大阪府守口市京阪本通2丁目5番5号 三
(32)優先日 (33)優先権主張国	平成11年3月10日(1999.3.10) 日本(JP)	(74)代理人	洋電機株式会社内 100104433
		(1) (1)	弁理士 宮園 博一
			最終百に続く

最終頁に続く

(54) 【発明の名称】半導体装置及び半導体装置の製造方法

(57)【要約】

【課題】 配線の腐食を防止し且つ比誘電率の増加も極力防止された層間絶縁膜を得ることで、信頼性の高い半導体装置を提供すること。

【解決手段】 有機SOG膜3内に実質的にその上面まで埋め込まれた金属配線7と、その有機SOG膜3における金属配線7との接触部のみに形成された改質SOG膜5とを備える。

【特許請求の範囲】

【請求項1】 第1絶縁膜内に実質的にその上面まで埋め込まれた第1配線と、

前記第1絶縁膜における前記第1配線との接触部のみに 形成された第1不純物含有領域とを備えた、半導体装 間。

【請求項2】 前記第1配線及び前記第1絶縁膜の上に - 形成された第2絶縁膜と、この第2絶縁膜に形成され且 つ前記第1配線に通じる埋込用開口部と、この埋込用開口部内に埋め込まれた第2配線とを備え、前記第2絶縁 10 膜における前記第2配線との接触部のみに、第2不純物 含有領域を形成したことを特徴とする請求項1に記載の 半導体装置。

【請求項3】 前記埋込用開口部は、前記第1配線に通じるコンタクトホールとこのコンタクトホールに通じるトレンチとからなることを特徴とした請求項2に記載の半導体装置。

【請求項4】 前記第2絶縁膜は、前記コンタクトホールが形成された第3絶縁膜と前記トレンチが形成された第4絶縁膜とからなることを特徴とした請求項3に記載 20の半導体装置。

【請求項5】 前記第3絶縁膜と第4絶縁膜との間に、 前記コンタクトホールのエッチング用マスクを有することを特徴とした請求項4に記載の半導体装置。

【請求項6】 配線層の上に形成され、前記配線層に通じるコンタクトホールを有する第1 絶縁膜と、

前記第1絶縁膜の上に形成され、前記コンタクトホール に通じるトレンチを有する第2絶縁膜と、

前記コンタクトホールと前記トレンチとを埋め込むとともに、前記配線層に接触するように形成された第1配線 30 と、...

前記第1絶縁膜のうち前記第1配線との接触部のみに形成された第1不純物含有領域とを備えた、半導体装置。

【請求項7】前記第2絶縁膜の誘電率は、3.5以下である、請求項6に記載の半導体装置。

【請求項8】前記第1絶縁膜と前記第2絶縁膜との間に、前記コンタクトホールのエッチング用マスクをさらに備える、請求項6又は7に記載の半導体装置。

【請求項9】 前記絶縁膜が、炭素を1atomic%以上含有するシリコン酸化膜を含むことを特徴とした請求項1、2、4、6又は7に記載の半導体装置。

【請求項10】 前記絶縁膜が、無機SOG膜を含むことを特徴とした請求項1、2、4、6又は7に記載の半導体装置。

【請求項11】 基板上に第1絶縁膜を形成する工程

この第1絶縁膜の一部に不純物を導入して第1不純物含 有領域を形成する工程と、

前記第1絶縁膜における前記第1不純物含有領域内に、 第1埋込用開口部を形成する工程と、 前記第1埋込用開口部内に第1配線を埋め込む工程と、 を含むことを特徴とした半導体装置の製造方法。

【請求項12】 基板上に第1絶縁膜を形成する工程 と、

この第1絶縁膜の上に第1マスクパターンを形成する工程と、

この第1マスクパターンをマスクとして前記第1絶縁膜に不純物を注入することにより、前記第1絶縁膜に、前記第1マスクパターンの開口部よりも大きな第1不純物含有領域を形成する工程と、

前記第1マスクパターンをマスクとして、前記第1不純物含有領域をエッチングすることにより、側壁に第1不純物含有領域を有する第1埋込用開口部を形成する工程と、

前記第1埋込用開口部内に第1配線を埋め込む工程と、 を含むことを特徴とした半導体装置の製造方法。

【請求項13】 前記第1配線及び前記第1絶縁膜の上に、第2絶縁膜を形成する工程と、

この第2絶縁膜に、側壁に第2不純物含有領域を有し且 つ前記第1配線に通じる第2埋込用開口部を形成する工 程と、

前記第2埋込用開口部内に第2配線を埋め込む工程と、 を含むことを特徴とした請求項11又は12に記載の半 導体装置の製造方法。

【請求項14】 前記第1配線及び前記第1絶縁膜の上に、第2絶縁膜を形成する工程と、

この第2絶縁膜の一部に不純物を導入して第2不純物含 有領域を形成する工程と、

前記第2 絶縁膜における前記第2 不純物含有領域内に、 前記第1 配線に通じる第2 埋込用開口部を形成する工程 と、

前記第2埋込用開口部内に第2配線を埋め込む工程と、 を含むことを特徴とした請求項11又は12に記載の半 導体装置の製造方法。

【請求項15】 前記第2埋込用開口部は、前記第1配線に通じるコンタクトホールとこのコンタクトホールに通じるトレンチとからなることを特徴とした請求項13 又は14に記載の半導体装置の製造方法。

【請求項16】 前記第1絶縁膜及び第1配線の上に第 3絶縁膜を形成する第1工程と、

前記第3絶縁膜の上に、第4絶縁膜を形成する第2工程 と、

前記第4絶縁膜の上に第2マスクパターンを形成する第3工程と、

この第2マスクパターンをマスクとして前記第3絶縁膜に不純物を注入することにより、前記第3絶縁膜に、前記第2マスクパターンの開口部よりも大きく且つ前記第1配線上に位置する第3不純物含有領域を形成する第4 T程と

50 第4工程の前又は後に、前記第2マスクパターンをマス

1

クとして、前記第4絶縁膜をエッチングすることにより、前記第3絶縁膜の上に、前記第4絶縁膜からなるエッチング用マスクを形成する第5工程と、

前記第2マスクパターンを除去した後、前記第3絶縁膜 及びエッチング用マスクの上に第5絶縁膜を形成する工 程と、

前記第5絶縁膜の上に前記エッチング用マスクよりも大 ・ きい開口部を有する第3マスクパターンを形成する工程 と、

この第3マスクパターンをマスクとして前記第5絶縁膜 10 に不純物を注入することにより、前記第5絶縁膜に、前記エッチング用マスクの開口部よりも大きく且つ前記第3絶縁膜の第3不純物含有領域上に位置する第4不純物含有領域を形成する工程と、

前記第3マスクパターンに基づいて、前記第4不純物含 有領域をエッチングすることにより、側壁に第4不純物 含有領域を有するトレンチを形成する工程と、

前記エッチング用マスクに基づいて、前記第3不純物含有領域をエッチングすることにより、側壁に第3不純物含有領域を有するコンタクトホールを形成する工程と、前記コンタクトホール及びトレンチ内に第2配線を埋め込む工程と、を含むことを特徴とした請求項11又は12に記載の半導体装置の製造方法。

【請求項17】基板上に形成された配線層を覆うように 第1絶縁膜を形成する工程と、

前記第1絶縁膜の上に第2絶縁膜を形成する工程と、 前記第2絶縁膜の上に第1マスクパターンを形成する工 程と、

前記第1マスクパターンをマスクとして、前記第1絶縁 膜に不純物を注入することにより、前記第1マスクパタ 30 ーンの開口部よりも大きく且つ前記配線層上に位置する 第1不純物含有領域を形成する工程と、

前記第1マスクパターンをマスクとして、前記第2絶縁膜をエッチングすることにより、前記第1絶縁膜の上に、前記第2絶縁膜からなるエッチング用マスクを形成する工程と、

前記第1マスクパターンを除去した後、前記第1絶縁膜 及び前記エッチング用マスクの上に、誘電率が3.5以 下の第3絶縁膜を形成する工程と、

前記第3絶縁膜の上に前記エッチング用マスクよりも大 40 きい開口部を有する第2マスクパターンを形成する工程と、

前記第2マスクパターンをマスクとして、前記第3絶縁 膜をエッチングすることにより、トレンチを形成する工程と、

前記エッチング用マスクをマスクとして、前記第1不純物含有領域をエッチングすることにより、側壁に第1不純物含有領域を有するコンタクトホールを形成する工程

前記コンタクトホール及びトレンチ内に第1配線を埋め 50

込む工程とを備えた、半導体装置の製造方法。

【請求項18】前記絶縁膜への不純物の注入は、前記絶縁膜へ斜め方向から不純物をイオン注入することにより行う、請求項12、16または17に記載の半導体装置の製造方法。

【請求項19】 前記絶縁膜が、炭素を1atomic%以上 含有するシリコン酸化膜を含むことを特徴とした請求項 11乃至17のいずれか1項に記載の半導体装置の製造 方法。

【請求項20】 前記絶縁膜が、無機SOG膜を含むことを特徴とした請求項11乃至17のいずれか1項に記載の半導体装置の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体装置及びその製造方法に係り、詳しくは、デバイス上に絶縁膜を形成する技術に関する。

[0002]

【従来の技術】近年、半導体集積回路の更なる高集積化を実現するために、配線の微細化、多層化を進めることが要求されている。配線を多層化するには、各配線間に層間絶縁膜を設けるが、その層間絶縁膜の表面が平坦でないと、層間絶縁膜の上部に形成された配線に段差が生じて断線などの故障が引き起こされる。

【0003】従って、層間絶縁膜の表面(すなわち、デバイスの表面)は可能な限り平坦化されていなければならない。このように、デバイスの表面を平坦化する技術は、平坦化技術と呼ばれ、配線の微細化、多層化に伴ってますます重要になっている。

【0004】平坦化技術において、よく用いられる層間 絶縁膜としてSOG (Spin On Glass) 膜があり、特に 層間絶縁膜材料のフロー特性を利用した平坦化技術にお いて盛んな検討がなされている。

【0005】SOGとは、シリコン化合物を有機溶剤に溶解した溶液及びその溶液から形成される二酸化シリコンを主成分とする膜の総称である。

【0006】SOG膜を形成するには、まず、シリコン 化合物を有機溶剤に溶解した溶液を基板上に滴下して基 板を回転させる。すると、その溶液の被膜は、配線によ って形成される基板上の段差に対して、その凹部には厚 く、凸部には薄く、段差を緩和するように形成される。 その結果、その溶液の被膜の表面は平坦化される。

【0007】次に熱処理が施されると、有機溶剤が蒸発すると共に重合反応が進行して、表面が平坦なSOG膜が形成される。

【0008】SOG膜には、一般式(1)で表されるように、シリコン化合物中に有機成分を含まない無機SOG膜と、一般式(2)で表されるように、シリコン化合物中に有機成分を含む有機SOG膜とがある。

 $[0009][SiO_t], \cdots (1)$

 $[R_1 S i_1 O_1]$, · · · (2)

(n, X, Y, 2:整数、R:アルキル基又はアリール

無機SOG膜や有機SOG膜は、非常に優れた平坦性を 有するが、無機SOG膜は、水分及び水酸基を多量に含 んでいるために、金属配線などに悪影響を与え、電気的 特性の劣化、腐食などの問題が生じる恐れがある。

【0010】また、無機SOG膜に比べれば少ないもの の、有機SOG膜にも水分及び水酸基が含まれているた め、同様の問題を有する。

【0011】そこで、通常は、SOG膜を層間絶縁膜に 採用する場合において、水分及び水酸基を比較的遮断す る性質に加えて絶縁性及び機械的強度が高い性質を持 つ、例えばプラズマCVD法によって形成されたシリコ ン酸化膜などの絶縁膜をSOG膜と金属配線との間に介 在させることが行われている(例えば、特開平5-22 6334号公報 (H01L21/3205) 参照)。

[0012]

【発明が解決しようとする課題】従来例にあっては、S OG膜に形成されたコンタクトホールやトレンチ内に金 属配線を埋め込んだ場合、コンタクトホールやトレンチ の内壁面には依然としてSOG膜が露出するため、SO G膜中の水分及び水酸基の悪影響を防止することはでき ない。

【0013】本発明は、半導体装置及び半導体装置の製 造方法に関し、斯かる問題点を解消することをその目的 とする。

[0014]

【課題を解決するための手段】請求項1による半導体装 置は、第1配線と、第1不純物含有領域とを備えてい る。第1配線は、第1絶縁膜内に実質的にその上面まで 埋め込まれている。第1不純物含有領域は、第1絶縁膜 における第1配線との接触部のみに形成されている。

【0015】請求項1では、上記のように、第1絶縁膜 に第1不純物含有領域を設けることによって、その第1 不純物含有領域では、不純物の導入により、膜が改質さ れて、膜に含まれる水分や水酸基が減少し且つ膜が吸水 しにくくなっている。これにより、第1絶縁膜中の水分 が第1配線に悪影響を与えない。この結果、第1配線の 腐食などの不都合を有効に防止することができる。ま た、第1不純物含有領域を、第1配線との接触部のみに 形成することによって、不純物の導入によりこの部分の 比誘電率が若干増加した場合であっても、第1絶縁膜に おけるその他の領域の比誘電率は増加しない。したがっ て、請求項1による半導体装置では、第1配線の腐食な どの不都合を有効に防止することができるとともに、配 線間容量も極力低い、信頼性の高い第1絶縁膜からなる 層間絶縁膜を得ることができる。

【0016】請求項2による半導体装置は、請求項1の

線とをさらに備えている。第2絶縁膜は、第1配線及び 第1絶縁膜の上に形成されている。埋込用開口部は、第 2 絶縁膜に形成され且つ第1配線に通じる。第2配線 は、埋込用開口部内に埋め込まれている。また、第2絶 **緑膜における第2配線との接触部のみに、第2不純物含** 有領域が形成されている。

6

【0017】請求項2では、上記のように、第2絶縁膜 に第2不純物含有領域を設けることによって、その第2 不純物含有領域では、不純物の導入により、膜が改質さ 10 れて、膜に含まれる水分や水酸基が減少し且つ膜が吸水 しにくくなっている。これにより、第2絶縁膜中の水分 が第2配線に悪影響を与えない。この結果、第2配線の 腐食などの不都合を有効に防止することができる。ま た、第2不純物含有領域を、第2配線との接触部のみに 形成することによって、不純物導入によりこの部分の比 誘電率が若干増加した場合であっても、第2絶縁膜にお けるその他の領域の比誘電率は増加しない。したがっ て、請求項2による半導体装置では、第2配線の腐食な どの不都合を有効に防止することができるとともに、配 20 線間容量も極力低い、信頼性の高い第2絶縁膜からなる 層間絶縁膜を得ることができる。

【0018】請求項3による半導体装置は、請求項2の 構成において、埋込用開口部は、第1配線に通じるコン タクトホールとこのコンタクトホールに通じるトレンチ とからなる。

【0019】請求項4による半導体装置は、請求項3の 構成において、第2絶縁膜は、コンタクトホールが形成 された第3絶縁膜とトレンチが形成された第4絶縁膜と からなる。

【0020】請求項5による半導体装置は、請求項4の 構成において、第3絶縁膜と第4絶縁膜との間に、コン タクトホールのエッチング用マスクを有する。請求項5 では、このように、コンタクトホールのエッチング用マ スクを介在させておくことにより、コンタクトホール を、トレンチ形成用のエッチング工程に連続してエッチ ング形成することができ、その結果、製造プロセスを簡 略化することができる。

【0021】請求項6による半導体装置は、第1絶縁膜 と、第2絶縁膜と、第1配線と、第1不純物含有領域と 40 を備えている。第1絶縁膜は、配線層の上に形成されて おり、配線層に通じるコンタクトホールを有する。第2 絶縁膜は、第1絶縁膜の上に形成されており、コンタク トホールに通じるトレンチを有する。第1配線は、コン タクトホールとトレンチとを埋め込むとともに、配線層 に接触するように形成されている。第1不純物含有領域 は、第1絶縁膜のうち第1配線との接触部のみに形成さ れている。

【0022】請求項6では、上記のように、第1絶縁膜 に第1不純物含有領域を設けることによって、その第1 構成において、第2絶縁膜と、埋込用開口部と、第2配 50 不純物含有領域では、不純物の導入により、膜が改質さ

れて、膜に含まれる水分や水酸基が減少し且つ膜が吸水しにくくなっている。これにより、第1絶縁膜中の水分が第1配線に悪影響を与えない。この結果、第1配線の腐食などの不都合を有効に防止することができる。また、第1不純物含有領域を、第1絶縁膜のうち第1配線との接触部のみに形成することによって、不純物導入によりこの部分の比誘電率が若干増加した場合であって・も、第1絶縁膜におけるその他の領域の比誘電率は増加しない。したがって、請求項6による半導体装置では、第1配線の腐食などの不都合を有効に防止することができるとともに、配線間容量も極力低い、信頼性の高い第1絶縁膜からなる層間絶縁膜を得ることができる。

【0023】請求項7による半導体装置は、請求項6の構成において、第2絶縁膜の誘電率は、3.5以下である。このように、第2絶縁膜として誘電率が3.5以下の低誘電率の絶縁膜を用いれば、第2絶縁膜からなる層間絶縁膜の配線間容量を低減することができる。この結果、請求項6の第1絶縁膜からなる層間絶縁膜と、請求項7の第2絶縁膜からなる層間絶縁膜とを用いれば、配線間容量をより低減しながら、第1配線の腐食などの不20都合を有効に防止することができる。

【0024】請求項8による半導体装置は、請求項6又は7の構成において、第1絶縁膜と第2絶縁膜との間に、コンタクトホールのエッチング用マスクをさらに備える。このように、コンタクトホールのエッチング用マスクを介在させておくことにより、コンタクトホールを、トレンチ形成用のエッチング工程に連続してエッチング形成することができ、その結果、製造プロセスを簡略化することができる。

【0025】請求項9による半導体装置は、請求項1、2、6または7のいずれかの構成において、絶縁膜が、 炭素を1atomic%以上含有するシリコン酸化膜を含む。 【0026】請求項10による半導体装置は、請求項 1、2、6または7のいずれかの構成において、絶縁膜

は、無機SOG膜を含む。

【0027】請求項11による半導体装置の製造方法は、基板上に第1絶縁膜を形成する工程と、この第1絶縁膜の一部に不純物を導入して第1不純物含有領域を形成する工程と、前記第1絶縁膜における前記第1不純物含有領域内に、第1埋込用開口部を形成する工程と、前40記第1埋込用開口部内に第1配線を埋め込む工程とを備える。

【0028】請求項12による半導体装置の製造方法は、基板上に第1絶縁膜を形成する工程と、この第1絶縁膜の上に第1マスクパターンを形成する工程と、この第1マスクパターンをマスクとして前記第1絶縁膜に不純物を注入することにより、第1絶縁膜に、第1マスクパターンの開口部よりも大きな第1不純物含有領域を形成する工程と、第1マスクパターンをマスクとして、第1不純物含有領域をエッチングすることにより、側壁に 50

第1不純物含有領域を有する第1埋込用開口部を形成する工程と、第1埋込用開口部内に第1配線を埋め込む工程とを備える。

【0029】請求項12では、上記のように、第1絶縁膜に第1不純物含有領域を形成することによって、その第1不純物含有領域では、不純物の導入により、膜が改質されて、膜に含まれる水分や水酸基が減少し且つ膜が吸水しにくくなっている。これにより、第1絶縁膜中の水分が第1配線に悪影響を与えない。その結果、第1配線の腐食などの不都合を有効に防止することができる。また、第1不純物含有領域を、第1配線との接触の部分の比誘電率が若干増加した場合であっても、第1絶縁膜におけるその他の領域の比誘電率は増加しない。したがって、請求項12による半導体装置の製造方法では、第1配線の腐食などの不都合を有効に防止することができるとともに、配線間容量も極力低い、信頼性の高い第1絶縁膜からなる層間絶縁膜を容易に製造することができる。

【0030】また、請求項12では、予め第1絶縁膜に部分的に第1不純物含有領域を形成し、この第1不純物含有領域内に第1埋込用開口部を形成することにより、第1不純物含有領域を第1埋込用開口部の側壁(内壁)にのみ簡単に形成することができる。

【0031】請求項13による半導体装置の製造方法は、請求項11または12の構成において、第1配線及び第1絶縁膜の上に、第2絶縁膜を形成する工程と、この第2絶縁膜に、側壁に第2不純物含有領域を有し且つ第1配線に通じる第2埋込用開口部を形成する工程と、第2埋込用開口部内に第2配線を埋め込む工程とを備える。

【0032】請求項14による半導体装置の製造方法は、請求項11または12の構成において、第1配線及び第1絶縁膜の上に、第2絶縁膜を形成する工程と、この第2絶縁膜の一部に不純物を導入して第2不純物含有領域を形成する工程と、第2絶縁膜における第2不純物含有領域内に、第1配線に通じる第2埋込用開口部を形成する工程と、第2埋込用開口部内に第2配線を埋め込む工程とを備える。

【0033】請求項14では、上記のように、第2絶縁膜に第2不純物含有領域を設けることによって、その第2不純物含有領域では、不純物の導入により、膜が改質されて、膜に含まれる水分や水酸基が減少し且つ膜が吸水しにくくなっている。これにより、第2絶縁膜中の水分が第2配線に悪影響を与えない。その結果、第2配線の腐食などの不都合を有効に防止することができる。また、第2不純物含有領域を、第2配線との接触部のみに形成することにより、不純物導入によりこの部分の比誘電率が若干増加した場合であっても、第2絶縁膜におけるその他の領域の比誘電率は増加しない。したがって、

請求項14による半導体装置の製造方法では、第2配線 の腐食などの不都合を有効に防止することができるとと ・ もに、配線間容量も極力低い、信頼性の高い第2絶縁膜

【0034】また、請求項14では、予め第2絶縁膜に 部分的に第2不純物含有領域を形成し、この第2不純物 含有領域内に第2埋込用開口部を形成することにより、 . 第2不純物含有領域を第2埋込用開口部の側壁(内壁) にのみ簡単に形成することができる。

からなる層間絶縁膜を容易に製造することができる。

【0035】請求項15による半導体装置の製造方法 は、請求項13または14の構成において、第2埋込用 開口部は、第1配線に通じるコンタクトホールとこのコ ンタクトホールに通じるトレンチとからなる。

【0036】請求項16による半導体装置の製造方法 は、請求項11または12の構成において、第1絶縁膜 及び第1配線の上に第3絶縁膜を形成する第1工程と、 第3絶縁膜の上に、第4絶縁膜を形成する第2工程と、 第4絶縁膜の上に第2マスクパターンを形成する第3工 程と、この第2マスクパターンをマスクとして第3絶縁 膜に不純物を注入することにより、第3絶縁膜に、第2 マスクパターンの開口部よりも大きく且つ第1配線上に 位置する第3不純物含有領域を形成する第4工程と、第 4工程の前又は後に、第2マスクパターンをマスクとし て、第4絶縁膜をエッチングすることにより、第3絶縁 膜の上に、第4絶縁膜からなるエッチング用マスクを形 成する第5工程と、第2マスクパターンを除去した後、 第3絶縁膜及びエッチング用マスクの上に第5絶縁膜を 形成する工程と、第5絶縁膜の上に前記エッチング用マ スクよりも大きい開口部を有する第3マスクパターンを 形成する工程と、この第3マスクパターンをマスクとし 30 て第5絶縁膜に不純物を注入することにより、第5絶縁 膜に、エッチング用マスクの開口部よりも大きく且つ第 3 絶縁膜の第3不純物含有領域上に位置する第4不純物 含有領域を形成する工程と、第3マスクパターンに基づ いて、第4不純物含有領域をエッチングすることによ り、側壁に第4不純物含有領域を有するトレンチを形成 する工程と、エッチング用マスクに基づいて、第3不純 物含有領域をエッチングすることにより、側壁に第3不 純物含有領域を有するコンタクトホールを形成する工程 と、コンタクトホール及びトレンチ内に第2配線を埋め 込む工程とを備える。

【0037】請求項16では、上記のように、第3およ び第5絶縁膜に第3および第4不純物含有領域を形成す ることによって、その第3および第4不純物含有領域で は、不純物の注入により、膜が改質されて、膜に含まれ る水分や水酸基が減少し且つ膜が吸水しにくくなってい る。これにより、第3及び第5絶縁膜中の水分が第2配 線に悪影響を与えない。その結果、第2配線の腐食など の不都合を有効に防止することができる。また、第3及 び第4不純物含有領域を、第2配線との接触部のみに形 50 た、第1不純物含有領域を、第1配線との接触部のみに

成することによって、不純物導入によりこの部分の比誘 電率が若干増加した場合であっても、第3及び第5絶縁 膜におけるその他の領域の比誘電率は増加しない。した がって、請求項16による半導体装置の製造方法では、 第2配線の腐食などの不都合を有効に防止することがで きるとともに、配線間容量も極力低い、信頼性の高い第 3および第5絶縁膜からなる層間絶縁膜を容易に製造す ることができる。

10

【0038】また、請求項16では、予め第3絶縁膜に 部分的に第3不純物含有領域を、第5絶縁膜に部分的に 第4不純物含有領域をそれぞれ形成し、この第3及び第 4不純物含有領域内にトレンチとコンタクトホールとを 形成するので、第3及び第4不純物含有領域をトレンチ とコンタクトホールとの側壁(内壁)にのみ簡単に形成 することができる。

【0039】更に、請求項16では、第3絶縁膜と第5 絶縁膜との間に、第2マスクパターンを介在させておく ことにより、コンタクトホールとトレンチとを一度のエ ッチングで形成することができ、その結果、製造プロセ スを簡略化することができる。

【0040】請求項17による半導体装置の製造方法 は、基板上に形成された配線層を覆うように第1絶縁膜 を形成する工程と、第1絶縁膜の上に第2絶縁膜を形成 する工程と、第2絶縁膜の上に第1マスクパターンを形 成する工程と、第1マスクパターンをマスクとして、第 1 絶縁膜に不純物を注入することにより、第1マスクパ ターンの開口部よりも大きく且つ配線層上に位置する第 1不純物含有領域を形成する工程と、第1マスクパター ンをマスクとして、第2絶縁膜をエッチングすることに より、第1絶縁膜の上に、第2絶縁膜からなるエッチン グ用マスクを形成する工程と、第1マスクパターンを除 去した後、第1絶縁膜及びエッチング用マスクの上に、 誘電率が3.5以下の第3絶縁膜を形成する工程と、第 3 絶縁膜の上にエッチング用マスクよりも大きい開口部 を有する第2マスクパターンを形成する工程と、第2マ スクパターンをマスクとして、第3絶縁膜をエッチング することにより、トレンチを形成する工程と、エッチン グ用マスクをマスクとして、第1不純物含有領域をエッ チングすることにより、側壁に第1不純物含有領域を有 するコンタクトホールを形成する工程と、コンタクトホ ール及びトレンチ内に第1配線を埋め込む工程とを備え ている。

【0041】請求項17では、上記のように、第1絶縁 膜に第1不純物含有領域を設けることによって、その第 1不純物含有領域では、不純物の注入により、膜が改質 されて、膜に含まれる水分や水酸基が減少し且つ膜が吸 水しにくくなっている。これにより、第1絶縁膜中の水 分が第1配線に悪影響を与えない。その結果、第1配線 の腐食などの不都合を有効に防止することができる。ま

形成することによって、不純物導入によりこの部分の比 誘電率が若干増加した場合であっても、第1絶縁膜にお けるその他の領域の比誘電率は増加しない。したがっ て、請求項17による半導体装置の製造方法では、第1 配線の腐食などの不都合を有効に防止することができる とともに、配線間容量も極力低い、信頼性の高い第1絶 縁膜からなる層間絶縁膜を容易に製造することができ る。

【0042】また、請求項17では、第3絶縁膜として 誘電率が3.5以下の低誘電率の絶縁膜を用いることに 10 より、第3絶縁膜からなる層間絶縁膜の配線間容量を低 減することができる。この結果、第1絶縁膜からなる層 間絶縁膜と、第3絶縁膜からなる層間絶縁膜とによっ て、配線間容量をより低減しながら、第1配線の腐食な どの不都合を有効に防止することができる。

【0043】また、請求項17では、予め第1絶縁膜に部分的に第1不純物含有領域を形成し、この第1不純物含有領域内にコンタクトホールを形成することにより、第1不純物含有領域をコンタクトホールの側壁(内壁)にのみ簡単に形成することができる。

【0044】更に、請求項17では、第1絶縁膜と第3 絶縁膜との間に、エッチング用マスクを介在させている ので、コンタクトホールとトレンチとを一度のエッチン グで形成することができ、その結果、製造プロセスを簡 略化することができる。

【0045】請求項18による半導体装置の製造方法は、請求項12、16または17の構成において、絶縁膜への不純物の注入は、絶縁膜へ斜め方向から不純物をイオン注入することにより行う。このように、絶縁膜へ斜め方向から不純物をイオン注入することにより、容易 30 にマスクパターンの開口部よりも大きい不純物含有領域を絶縁膜に形成することができる。

【0046】請求項19による半導体装置の製造方法は、請求項11~17のいずれかの構成において、絶縁膜が、炭素を1atomic%以上含有するシリコン酸化膜を含む。

【0047】請求項20による半導体装置の製造方法は、請求項 $11\sim17$ のいずれかの構成において、絶縁膜が、無機SOG膜を含む。

[0048]

【発明の実施の形態】(第1実施形態)本発明を具体化 した第1実施形態を図面に基づいて説明する。

【0049】図1は本第1実施形態における半導体装置の断面図である。図1において、単結晶シリコン基板1の上には、シリコン酸化膜2が形成されている。シリコン酸化膜2の上には有機SOG膜3が形成され、この有機SOG膜3内にはダマシン法を用いて金属配線7がその上面まで埋め込まれている。金属配線7が埋め込まれたトレンチ6の内壁には改質SOG膜5が形成されている。

【0050】有機SOG膜3、改質SOG膜5及び金属配線7の上には、シリコン酸化膜8が形成され、このシリコン酸化膜8には、金属配線7に通じるコンタクトホール9が形成され、このコンタクトホール9内には、接続孔配線10が埋め込み形成されている。シリコン酸化膜8及び接続孔配線10の上には、有機SOG膜3、改質SOG膜5及び金属配線7と同様に、有機SOG膜11、改質SOG膜12及び接続孔配線10と電気的に接続する上層金属配線13が形成されている。

【0051】次に、本実施形態の半導体装置の製造方法を図1~図8に従って説明する。

【0052】工程1(図2参照): (100) p型(又はn型)単結晶シリコン基板1の上にシリコン酸化膜2(膜厚:約200nm)を形成し、その上に有機SOG膜3を形成する。有機SOG膜3の組成は[(CH₃)2Si₄O₇]。で、その膜厚は約600nmである。【0053】シリコン酸化膜2は、プラズマCVD法により形成する。反応ガスとしては、モノシランと亜酸化窒素(SiH₄+N₂O)、モノシランと酸素(SiH₄+O₇)、TEOS(Tetra-ethoxy-silane)と酸素(TEOS+O₇)などを用い、成膜温度は約300~900℃である。

【0054】また、シリコン酸化膜 2 は、プラズマCV D法以外の方法(常圧CVD法、減圧CVD法、ECR プラズマCVD法、光励起CVD法、TEOS-CVD 法、PVD法など)によって形成してもよい。例えば、常圧CVD法で用いられるガスはモノシランと酸素(SiH,+O,)であり、成膜温度は約400℃以下である。また、減圧CVD法で用いられるガスはモノシランと亜酸化窒素(SiH,+N,O)であり、成膜温度は約900℃以下である。

【0055】有機SOG膜3の形成方法は、まず、前記組成のシリコン化合物のアルコール系溶液(例えば、IPA+アセトン)を基板1の上に滴下して基板を回転速度:約2300rpmで約20秒間回転させ、この溶液の被膜を基板1の上に形成する。このとき、そのアルコール系溶液の被膜は、基板1の上の段差に対して、その凹部には厚く、その凸部には薄く、段差を緩和するように形成される。その結果、アルコール系溶液の被膜の表面40 は平坦化される。

【0056】次に、窒素雰囲気中において、約100℃で1分間程度、約200℃で1分間程度、約300℃で1分間程度、約300℃で1分間程度、約300℃で30分間程度、順次熱処理を施すと、アルコール系溶媒が蒸発すると共に重合反応が進行して、表面が平坦な膜厚約300nmの有機SOG膜が形成される。この被膜形成~熱処理作業をもう1回繰り返すことにより、膜厚約600nmの有機SOG膜3を得る。尚、この有機SOG膜3が本発明における「第1絶縁膜」に相当する。

50 【0057】この有機SOG膜3は、下地面が平坦なた

め、基板の全面にわたってほぼ均一な膜厚で塗布形成される。有機SOG膜3は、炭素をlatomic%以上含有するシリコン酸化膜である。

13

【0058】工程2(図3参照):有機SOG膜3の上に、埋め込み孔形成のためのレジストパターン4を形成する。尚、このレジストパターン4が本発明における「第1マスクパターン」に相当する。

【0059】工程3(図4参照):レジストパターン4をマスクとして、有機SOG膜3に対し、斜め方向からホウ素(ポロン)イオン(B')を加速エネルギー:約140KeV、ドーズ量:約2×10¹⁵ atoms/cm¹の条件でドープする。このように、有機SOG膜3にホウ素イオンを導入することで、膜中の有機成分を分解させると共に、膜中に含まれる水分及び水酸基を減少させる。【0060】その結果、有機SOG膜3は、有機成分が含まれず、水分及び水酸基が僅かしか含まれないSOG膜(以下、改質SOG膜という)5に変えられる。この

含まれず、水分及び水酸基が僅かしか含まれないSOG 膜(以下、改質SOG膜という) 5 に変えられる。この 時、ホウ素イオンは斜め方向から注入されるため、この 改質SOG膜5は、レジストパターン4の開口部よりも 大きな径になる。尚、この改質SOG膜5が、本発明に 20 おける「第1不純物含有領域」に相当する。

【0061】またこの時、改質部分がレジストパターン4の開口部に対し均等な割合で大きくなるようホウ素イオンを注入するためには、基板1が形成されたシリコンウェハ(図示略)全体を回転させながら、基板1の表面に立つ法線から概ね15°~60°程度の角度でホウ素イオンを注入することが望ましい。このように、シリコンウェハ全体を回転させながら、シリコンウェハに対して所定の角度でイオン注入を行う方法は、一般に回転斜めイオン注入法と呼ばれる。

【0062】工程4(図5参照):引き続きレジストパターン4をマスクとして、フロロカーボン系のガスをエッチングガスとして用いる異方性エッチングを行い、改質SOG膜5に埋め込み孔としてのトレンチ6を形成する。この時、工程3において、改質SOG膜5の径がレジストパターン4の開口部の径よりも大きく形成されているため、トレンチ6の内壁は改質SOG膜5で構成される。従って、このトレンチ6内に後述するように配線を埋め込んでも、有機SOG膜3に含まれる水分や水酸基が配線に悪影響を与えない。尚、このトレンチ6が本40発明における「埋込用開口部又は第1埋込用開口部」に相当する。

【0063】また、改質SOG膜5の比誘電率は3.5で、有機SOG膜3の比誘電率(2.9)に対し、若干高いが、本実施形態では、改質SOG膜5は、トレンチ6の内壁にのみ存在し、それ以外の個所は有機SOG膜3のままであるため、膜全体の比誘電率が大幅に増加し、配線間容量が大きくなって信号遅延が発生することも極力防止できる。

【0064】工程5(図6参照):レジストパターンを 50 する脱離量を表したものであり、図9から明らかなよう

除去し、必要に応じて、不活性ガス(例えばAr)を用いたスパッタエッチングによって、トレンチ6内をクリーニングした後、トレンチ6内、改質SOG膜5及び有機SOG膜3の上に、マグネトロンスパッタ法やCVD法を用いて、密着層及びパリヤ層としてのTiN膜を形成し、更に、その上に、CVD法又はメッキ法を用いて、Cu膜を形成し、さらに、CMP(Chemical Mechanical Polishing)法を用いて、Cu膜の表面を研磨し、最終的にトレンチ6内にのみTiNとCuからなる金属配線7を埋め込み形成する。この金属配線の埋め込み技術は、一般にはダマシン(damascene)法と呼ばれている。尚、この金属配線7が本発明における「第1配線」に相当する。

【0065】工程6(図7参照):有機SOG膜3、改質SOG膜5及び金属配線7の上に、膜厚約600nmのシリコン酸化膜8を形成する。このシリコン酸化膜8の形成方法は上記シリコン酸化膜2と同様である。

【0066】工程7(図8参照):図示しないレジストパターンをマスクとして、フロロカーボン系のガスをエッチングガスとして用いる異方性エッチングを行い、シリコン酸化膜8に金属配線7に通じるコンタクトホール9を形成する。

【0067】次に、不活性ガス(例えばAr)を用いたスパッタエッチングによって、コンタクトホール9内をクリーニングした後、コンタクトホール9内を含むシリコン酸化膜8の上に、マグネトロンスパッタ法やCVD法を用いて、密着層及びバリヤ層としてのTiN膜を形成し、その上に、CVD法又はメッキ法を用いて、Cu膜を形成し、更に、CMP法を用いて、Cu膜の表面を30 研磨し、最終的にコンタクトホール9内にTiNとCuからなる接続孔配線10を埋め込み形成する。

【0068】尚、この工程6及び工程7においても、工程1~5と同様、シリコン酸化膜8に代えて有機SOG膜を用い、イオン注入により部分的に改質した後、この改質部分にコンタクトホール9内に接続孔配線10を埋め込み形成するようにしても良い。

【0069】工程8 (図1参照):工程1~工程5と同様の手法を用いて、有機SOG膜11、改質SOG膜12を形成し、更に、接続孔配線10と電気的に接続する上層金属配線13 (TiNとCuとの積層)を形成する。

【0070】ここで、図9は有機SOG膜(未処理)及び改質SOG膜(Arイオン注入処理)のそれぞれに窒素雰囲気で30分間の熱処理を施し、TDS法(Thermal Desorption Spectroscopy)を用いて評価した結果を示している。尚、イオン注入条件は、加速エネルギー:140KeV、ドーズ量:1×10¹⁵atoms/cm²である。

【0071】この図9は、H₁O (m/e=18) に関する脱離骨を表したものであり、図9から明らかなよう

に、改質SOG膜は H_1O (m/e=18)に関する脱離が少ないことが分かる。このことは、有機SOG膜にイオン注入を行って、改質SOG膜とすることにより、有機SOG膜に含まれる水分及び水酸基が減少することを示している。

【0072】図10は有機SOG膜及び改質SOG膜の吸湿性を調べる目的で、有機SOG膜(未処理)、有機SOG膜を酸素プラズマに晒したもの(酸素プラズマ処理)及び改質SOG膜(Arイオン注入)をクリーンルーム内で大気中に放置し、膜中の水分を評価した結果を 10元している。膜中の水分量は、FT-IR法(FourierTransform Infrared Spectroscopy)を用いて、赤外吸収スペクトルのO-H基に関する吸収(3500cm⁻¹付近)の面積強度を指標とした。イオン注入条件は、加速エネルギー:140KeV、ドーズ量:1×10¹⁵atoms/cm²である。

【0073】図10を参照して、酸素プラズマに晒した場合、処理前後での水分増加だけでなく、1日後でも水分が増加していることが分かる。一方、改質SOG膜は、イオン注入後に増加していないだけでなく、クリーンルーム内で大気に放置しても、有機SOG膜に比べて水分の増加は小さい。

【0074】即ち、改質SOG膜は、有機SOG膜に比べて吸湿性が低いことが分かる。

【0075】図11は改質SOG膜及び有機SOG膜の水分の透過性を調べる目的で、プレッシャー・クッカー試験(PCT)(加湿試験のことで、本実施形態では、条件として、120℃、2気圧の飽和水蒸気雰囲気で行った)した結果を示している。FT-IR法を用いて、有機SOG膜中のO-Hに関する吸収ピーク(3500cm⁻¹付近)の面積強度を求め、PCT時間との関係をプロットした。

【0076】イオン注入法を用いて表面だけを改質した 試料(Arイオン注入:20KeV)を作製し、膜全体を 改質したもの(Arイオン注入:140KeV)や改質し なかったもの(有機SOG膜:未処理)と比較した結 果、以下のことが分かった。

【0077】 (イ) 改質していない有機SOG膜をPC Tした場合、3500cm⁻¹付近 (O-H基に関する吸 収)の吸収強度が劇的な増加を示す。

【0078】(ロ)改質SOG膜では、3500cm⁻付近(O-H基に関する吸収)の吸収強度の増加は小さい。膜表面だけを改質した試料でも、膜全体を改質したものと同程度である。

【0079】以上の結果から、イオンを注入することで、水分の透過性を抑制する層を形成できることが分かる。

【0080】尚、上記図9~図11に示した実験において、アルゴンイオンを上記第1実施形態と同様のホウ素イオンに置き換えても同様の傾向を示す。

【0081】上記図9〜図11に関する記述を含め、有機SOG膜にホウ素等のイオンを導入することで、膜中の有機成分を分解させると共に、膜中に含まれる水分及び水酸基を減少させ、その結果、金属配線の腐食を防止したり、エッチングにより形成したピアホールの側壁にリセスが発生することを防止することは、本出願人において提案済みである(例えば、特開平9-312339号公報参照)。

【0082】以上、本第1実施形態にあっては、有機SOG膜3において、トレンチ6の内壁にのみ耐水性の高い改質SOG膜5を形成することで、金属配線7の腐食を防止し、且つ配線間容量も極力低い、信頼性の高い層間絶縁膜を得ることができる。

【0083】しかも、各金属配線7の間には、横方向に 有機SOG膜3(改質SOG膜5)のみが存在するた め、更なる微細化にも対応できる。

【0084】(第2実施形態)本発明を具体化した第2 実施形態を図面に基づいて説明する。尚、本第2実施形態において、第1実施形態と同様の構成には同じ符号を 用い、その詳細な説明を省略する。

【0085】図12は本第2実施形態における半導体装置の断面図であり、いわゆるデュアルダマシン(dual-damascene)法を用いて形成された多層配線構造を示している。

【0086】図12において、有機SOG膜3、改質SOG膜5及び金属配線7の上には、有機SOG膜20が形成されている。この有機SOG膜20には、金属配線7に通じるコンタクトホール21が形成されている。有機SOG膜20の上にはコンタクトホール21を形成するためのエッチングマスクとしてのシリコン窒化膜マスク22aが形成され、更にその上に有機SOG膜23が形成され、この有機SOG膜23には、コンタクトホール21に通じるトレンチ24が形成されている。有機SOG膜20におけるコンタクトホール21の内壁には改質SOG膜26が形成されている。

【0087】そして、コンタクトホール21内及びトレンチ24内には、金属配線7と電気的に接続する上層金属配線27が形成されている。なお、この上層金属配線4027が本発明における「第2配線」に相当する。

【0088】次に、本第2実施形態の半導体装置の製造方法を図12~図20に従って説明する。尚、第1実施形態における工程1~工程6(図1~図6)については、本第2実施形態も同様であるので、説明を省略し、ここでは、それ以降の工程につき説明する。

【0089】工程10(図13参照):有機SOG膜3、改質SOG膜5及び金属配線7の上に、膜厚約600nmの有機SOG膜20を形成する。この有機SOG膜20の組成及び形成方法は上記有機SOG膜3と同様である。尚、この有機SOG膜20が本発明における

「第2絶縁膜又は第3絶縁膜」に相当する。

【0090】工程11(図14参照):有機SOG膜2 0の上にシリコン窒化膜22を形成する。尚、このシリコン窒化膜22が、本発明の「第4絶縁膜」に相当する。

【0091】工程12(図15参照):シリコン窒化膜22の上に、レジストパターン28を形成する。尚、このレジストパターン28が、本発明の「第2マスクパターン」に相当する。

【0092】工程13(図16参照):レジストパター 10 ン28をマスクとして、上記工程3と同様の回転斜めイオン注入法を用い、有機SOG膜20に対し、ホウ素(ボロン)イオン(B')を加速エネルギー:約140K eV、ドーズ量:約2×10¹⁵ atoms/cm²の条件でドープする。このように、有機SOG膜20にホウ素イオンを導入することで、膜中の有機成分を分解させると共に、膜中に含まれる水分及び水酸基を減少させる。

【0093】その結果、有機SOG膜20は、有機成分が含まれず、水分及び水酸基が僅かしか含まれない改質SOG膜25に変えられる。この時、ホウ素イオンは斜20め方向から注入されるため、この改質SOG膜25は、レジストパターン28の開口部よりも大きな径になる。尚、この改質SOG膜25が、本発明における「第2不純物含有領域又は第3不純物含有領域」に相当する。

【0094】 工程14 (図17参照): RIE法により、レジストパターン28をマスクとしてシリコン窒化膜22をエッチングすることにより、シリコン窒化膜マスク22aを形成する。尚、このシリコン窒化膜マスク22aが、本発明の「エッチング用マスク」に相当する。

【0095】工程15(図18参照):レジストパターン28を除去した後、改質SOG膜25及びシリコン窒化膜マスク22aの上に、膜厚約600nmの有機SOG膜23を形成する。この有機SOG膜23の組成及び形成方法は上記有機SOG膜3と同様である。尚、この有機SOG膜23は、本発明における「第2絶縁膜又は第5絶縁膜」に相当する。

【0096】工程16(図19参照):有機SOG膜23の上に、ストライプ状のレジストパターン29を形成する。このレジストパターン29の開口部は、シリコン40窒化膜マスク22aの開口部を含み、その面積も、シリコン窒化膜マスク22aのそれよりも大きい。尚、このレジストパターン29が、本発明における「第3マスクパターン」に相当する。

【0097】次に、レジストパターン29をマスクとし は、改質SOG膜25はコンタ て、上記工程3と同様の回転斜めイオン注入法を用い、 のみ存在し、改質SOG膜26 のみ存在し、改質SOG膜26 のみ存在し、改質SOG膜26 のみ存在し、でれ以外の個所に のみ存在し、それ以外の個所に でいまれずー:約140KeV、ドーズ量:約2× 機SOG膜23のままであるだ 大幅に増加し、配線間容量が対 10¹⁵ atoms/cm² の条件でドープする。このように、 大幅に増加し、配線間容量が対 10¹⁵ atoms/cm² の条件でドープする。このように、 大幅に増加し、配線間容量が対 10¹⁵ をすることも極力防止できる。

中の有機成分を分解させると共に、膜中に含まれる水分及び水酸基を減少させる。

【0098】その結果、有機SOG膜23は、有機成分が含まれず、水分及び水酸基が僅かしか含まれない改質SOG膜26に変えられる。この時、ホウ素イオンは斜め方向から注入されるため、この改質SOG膜26は、レジストパターン29の開口部よりも大きな幅になる。尚、この改質SOG膜26が、本発明における「第2不純物含有領域又は第4不純物含有領域」に相当する。

【0099】工程17(図20参照):レジストパターン29及びシリコン窒化膜マスク22aをマスクとして、フロロカーボン系のガスをエッチングガスとして用いる異方性エッチングを行い、改質SOG膜25及び改質SOG膜26をエッチングする。この場合、まずレジストパターン29と同じ開口幅で改質SOG膜26がエッチングされ、シリコン窒化膜マスク22aに到達した時点で改質SOG膜26にトレンチ24が形成される。続いて、シリコン窒化膜マスク22aをマスクとして、このマスクと同じ開口径で改質SOG膜25がエッチングされ、改質SOG膜25に、金属配線7に通じるコンタクトホール21を形成する。

【0100】このように、シリコン窒化膜マスク22a をエッチングストッパとして利用することにより、トレンチ24とコンタクトホール21とを一度のエッチング で形成することができる。

【0101】しかも、まず開口幅の広いトレンチ24を 形成してから、その後にコンタクトホール21を形成す るので、コンタクトホール21を先に形成する手法に比 30 ベてアスペクト比が高くならず、エッチング制御が簡単 である。

【0102】この時、工程13において、改質SOG膜25の径がシリコン窒化膜マスク22aの開口部の径よりも大きく形成され、工程16において、改質SOG膜26の幅がレジストパターン29の開口幅よりも大きく形成されているため、コンタクトホール21の内壁は改質SOG膜25で構成され、トレンチ24の内壁は改質SOG膜26で構成される。従って、このコンタクトホール21及びトレンチ24内に後述するように配線を埋め込んでも、有機SOG膜20、23に含まれる水分や水酸基が配線に悪影響を与えない。

【0103】また、改質SOG膜25,26の比誘電率はそれぞれ3.5で、有機SOG膜20,23の各比誘電率(2.9)に対し、若干高いが、本第2実施形態では、改質SOG膜25はコンタクトホール21の内壁にのみ存在し、改質SOG膜26はトレンチ21の内壁にのみ存在し、それ以外の個所は有機SOG膜20又は有機SOG膜23のままであるため、膜全体の比誘電率が大幅に増加し、配線間容量が大きくなって信号遅延が発生することも極力防止できる。

【0104】工程18(図12参照):不活性ガス(例えばAr)を用いたスパッタエッチングによって、トレンチ24及びコンタクトホール21内をクリーニングした後、トレンチ24及びコンタクトホール21内を含む有機SOG膜23及び改質SOG膜26の上に、マグネトロンスパッタ法やCVD法を用いて、密着層及びパリヤ層としてのTiN膜を形成し、その上に、CVD法又はメッキ法を用いて、Cu膜を形成し、更に、CMP法を用いて、Cu膜の表面を研磨し、最終的にトレンチ24及びコンタクトホール21内にTiNとCuからなる上層金属配線27を埋め込み形成する。尚、この上層金属配線27が、本発明における「第2配線」に相当する。

【0105】以上、本第2実施形態にあっては、いわゆるデュアルダマシン法を用いて形成された多層配線構造においても第1実施形態と同様の作用効果を享受することができる。

【0106】(第3実施形態)本発明を具体化した第3 実施形態を図面に基づいて説明する。尚、本第3実施形態において、第1実施形態又は第2実施形態と同様の構 20 成には同じ符号を用い、その詳細な説明を省略する。

【0107】図21は本第3実施形態における半導体装置の断面図であり、第2実施形態と同様、デュアルダマシン法を用いて形成された多層配線構造を示している。

【0108】図21において、有機SOG膜3、改質SOG膜5及び金属配線7の上には、有機SOG膜30が形成されている。この有機SOG膜30には、金属配線7に通じるコンタクトホール21及びこのコンタクトホール21に通じるトレンチ24が形成されている。コンタクトホール21及びトレンチ24の内壁には改質SO30G膜31が形成されている。

【0109】そして、コンタクトホール21内及びトレンチ24内には、金属配線7と電気的に接続する上層金属配線27が形成されている。

【0110】次に、本実施形態の半導体装置の製造方法を図21~図28に従って説明する。尚、第1実施形態における工程1~工程6(図1~図6)については、本第3実施形態も同様であるので、説明を省略し、ここでは、それ以降の工程につき説明する。

【0111】工程20(図22参照):有機SOG膜3、改質SOG膜5及び金属配線7の上に、膜厚約900mmの有機SOG膜30を形成する。この有機SOG膜30の組成及び形成方法は上記有機SOG膜3と同様であるが、ぞの膜厚は、上述の被膜形成~熱処理作業を合計3回繰り返して所定の値としている。尚、この有機SOG膜30が、本発明における「第2絶縁膜」に相当する。

【0112】工程21(図23参照):有機SOG膜3 0の上に、ストライプ状のレジストパターン29を形成 する。 【0113】工程22(図24参照):レジストパターン29をマスクとして、上記工程3と同様の回転斜めイオン注入法を用い、有機SOG膜30に対し、ホウ素(ポロン)イオン(B')を加速エネルギー:約160K eV、ドーズ量:約2×10'5 atoms/cm'の条件でドープする。このように、有機SOG膜30にホウ素イオンを導入することで、膜中の有機成分を分解させると共に、膜中に含まれる水分及び水酸基を減少させる。

【0115】工程23(図25参照):レジストパターン29をマスクとして、フロロカーボン系のガスをエッチングガスとして用いる異方性エッチングを行い、改質SOG膜31を、その膜厚が約450nmになるまでエッチングし、この改質SOG膜31にトレンチ24を形成する。

【0116】工程24(図26参照):レジストパターン29を除去した後、再び改質SOG膜31の上に、レジストパターン32を形成する。このレジストパターン32の開口部32aは、トレンチ24内に位置する。

【0117】工程25(図27参照):レジストパターン32をマスクとして、フロロカーボン系のガスをエッチングガスとして用いる異方性エッチングを行い、改質SOG膜31をエッチングする。

【0118】工程26(図28参照):レジストパターン32を除去することにより、改質SOG膜31に、金属配線7に通じるトレンチ24及びコンタクトホール21を形成する。

【0119】この時、工程22において、改質SOG膜31の寸法がレジストパターン29の開口幅よりも大きく形成されているため、コンタクトホール21及びトレンチ24の内壁は改質SOG膜31で構成される。従って、このコンタクトホール21及びトレンチ24内に後述するように配線を埋め込んでも、有機SOG膜30に40 含まれる水分や水酸基が配線に悪影響を与えない。

【0120】また、改質SOG膜31の比誘電率は3.5で、有機SOG膜30の比誘電率(2.9)に対し、若干高いが、本第3実施形態では、改質SOG膜31はコンタクトホール21及びトレンチ24の内壁にのみ存在し、それ以外の個所は有機SOG膜30のままであるため、膜全体の比誘電率が大幅に増加し、配線間容量が大きくなって信号遅延が発生することも極力防止できる。

【0121】工程27 (図21参照):不活性ガス(例えばAr)を用いたスパッタエッチングによって、トレ

ンチ24及びコンタクトホール21内をクリーニングし た後、トレンチ24及びコンタクトホール21内を含む 有機SOG膜30及び改質SOG膜31の上に、マグネ トロンスパッタ法やCVD法を用いて、密着層及びパリ ヤ層としてのTiN膜を形成し、その上に、CVD法又 はメッキ法を用いて、Cu膜を形成し、更に、CMP法 を用いて、Cu膜の表面を研磨し、最終的にコンタクト - ホール21及びトレンチ24内にTiNとCuからなる 上層金属配線27を埋め込み形成する。

21

【0122】本第3実施形態から把握できる技術的思想 10 について、以下にその効果と共に記載する。

【0123】:基板上に第1絶縁膜(有機SOG膜3) を形成する工程と、この第1絶縁膜の一部に不純物を導 入して不純物含有領域(改質SOG膜5)を形成する工 程と、前記第1絶縁膜における前記不純物含有領域内 に、第1埋込用開口部(トレンチ6)を形成する工程 と、前記第1埋込用開口部内に第1配線(金属配線7) を埋め込む工程と、前記第1絶縁膜及び第1配線の上に 第6絶縁膜(有機SOG膜30)を形成する工程と、前 記第6絶縁膜の上に第5マスクパターン(レジストパタ ーン29)を形成する工程と、この第5マスクパターン をマスクとして前記第6絶縁膜に斜め方向から不純物を 注入することにより、前記第6絶縁膜に、前記第5マス クパターンの開口部よりも大きく且つ前記第1配線上に 位置する第5不純物含有領域(改質SOG膜31)を形 成する工程と、前記第5マスクパターンに基づいて、第 5 不純物含有領域を部分的に薄膜化する工程と、この薄 膜化した領域の上に第6マスクパターン(レジストパタ ーン32)を形成する工程と、この第6マスクパターン に基づいて、前記第5不純物含有領域に、前記第1配線 30 に通じるコンタクトホールを形成する工程と、少なくと も前記コンタクトホール内に、前記第1配線に電気的に 接続される第2配線を形成する工程と、を含むことを特 徴とした半導体装置の製造方法。

【0124】本第3実施形態にあっては、コンタクトホ ール21及びトレンチ24の内壁にそれぞれ改質SOG 膜31を形成する工程を、上記第2実施形態のように2 度に分けて行う必要がない。しかも、シリコン窒化膜マ スク22を設ける必要がない。その結果、製造工程を第 2 実施形態に比べて簡略化することができる。

【0125】また、まず開口幅の広いトレンチ24を形 成してから、その後にコンタクトホール21を形成する ので、コンタクトホール21を先に形成する手法に比べ てアスペクト比が高くならず、エッチング制御が簡単で ある。

【0126】 (第4実施形態) 本発明を具体化した第4 実施形態を図面に基づいて説明する。尚、第4実施形態 において、第1実施形態~第3実施形態と同様の構成に は同じ符号を用い、その詳細な説明を省略する。

置の断面図である。この第4実施形態では、第2および 第3実施形態と同様、デュアルダマシン法を用いて形成 された多層配線構造を有している。ただし、この第4実 施形態では、第2および第3実施形態と異なり、改質S OG膜は、コンタクトホール21の内壁にのみ形成され ており、トレンチ24の内壁には形成されていない。以 下、第4実施形態の構造について詳細に説明する。

【0128】図29を参照して、単結晶シリコン基板1 の上には、300nm~500nm程度の膜厚を有する 配線層42が形成されている。配線層42の上には、9 00nm~1100nm程度の膜厚を有する有機SOG 膜43が形成されている。この有機SOG膜43には、 配線層42に通じるコンタクトホール(ビアホール)2 1が形成されている。有機SOG膜43の上にはコンタ クトホール21を形成するためのエッチングマスクとし てのシリコン窒化膜マスク44aが20nm~40nm 程度の膜厚で形成されている。このシリコン窒化膜マス ク44aは、有機SOG膜43よりもエッチング速度が 遅い。また、シリコン窒化膜マスク44a上には、誘電 率が3.5以下の低誘電率絶縁膜48が300nm~5 00 n m程度の膜厚で形成されている。

【0129】この低誘電率絶縁膜48としては、たとえ ば、有機SOG膜(誘電率2.9)またはアモルファス カーボン膜(誘電率2.0~2.5)などが用いられ る。また、この低誘電率絶縁膜48としては、シリコン 窒化膜マスク44aよりもエッチング速度が速い材料を 用いる。なお、この低誘電率絶縁膜48には、コンタク トホール21に通じるトレンチ24が形成されている。 有機SOG膜43におけるコンタクトホール21の内壁 には改質SOG膜45が形成されている。

【0130】また、コンタクトホール21内及びトレン チ24内には、デュアルダマシン法を用いて、配線層4 2と電気的に接続する上層金属配線27が埋め込まれて いる。なお、この上層金属配線27が本発明(請求項 6,17)における「第1配線」に相当する。

【0131】ここで、第4実施形態では、上記のよう に、有機SOG膜43に不純物が導入された改質SOG 膜45を設けることによって、その改質SOG膜45で は、不純物の導入により、膜が改質されて、膜に含まれ 40 る水分や水酸基が減少し且つ膜が吸水しにくくなってい る。これにより、有機SOG膜43中の水分が上層金属 配線27に悪影響を与えない。この結果、上層金属配線 27のコンタクトホール21部分における腐食などの不 都合を有効に防止することができる。

【0132】また、改質SOG膜45を、有機SOG膜 43のうち上層金属配線27との接触部のみに形成する ことによって、不純物の導入によりこの部分の比誘電率 が若干増加した場合であっても、有機SOG膜43にお けるその他の領域の比誘電率は増加しない。したがっ

【0127】図29は、第4実施形態における半導体装 50 て、第4実施形態では、上記した第2および第3実施形

態と同様、上層金属配線27のコンタクトホール21部 分における腐食などの不都合を有効に防止することがで きるとともに、配線間容量も極力低い、信頼性の高い有 機SOG膜43(改質SOG膜45)からなる層間絶縁 膜を得ることができる。

【0133】さらに、この第4実施形態では、上層の絶 緑膜として誘電率が3.5以下の低誘電率絶縁膜48を . 用いることにより、低誘電率絶縁膜48からなる層間絶 緑膜の配線間容量を低減することができる。この結果、 有機SOG膜43 (改質SOG膜45) からなる層間絶 10 縁膜と、低誘電率絶縁膜48からなる層間絶縁膜との組 み合わせにより、配線間容量をより低減しながら、コン タクトホール21部分における上層金属配線27の腐食 などの不都合を有効に防止することができる。

【0134】なお、コンタクトホール(ピアホール)2 1のエッチング時に生じるリセスやポイズンドビアなど の不都合は、主にコンタクトホール (ピアホール) 21 で発生する問題であるので、コンタクトホール(ビアホ ール) 21の内壁に改質SOG膜45が形成されていれ ば、これらの不都合は解消でき、有機SOG膜などから なる低誘電率絶縁膜48のトレンチ24の内壁に改質S OG膜が形成されていなくても問題はないと考えられ る。

【0135】次に、第4実施形態の半導体装置の製造方 法を図29~図36に従って説明する。

【0136】工程30(図30参照):(100)p型 (又はn型) 単結晶シリコン基板1の上に配線層42を 300nm~500nm程度の膜厚で形成する。その配 線層42上に有機SOG膜43を900nm~1100 nm程度の膜厚で形成する。この有機SOG膜43の組 30 成及び形成方法は、上記実施の形態1の有機SOG膜3 と同様である。尚、この有機SOG膜43が本発明(請 求項6,17)における「第1絶縁膜」に相当する。ま た、有機SOG膜43の上にシリコン窒化膜44を20 nm~40nm程度の膜厚で形成する。尚、このシリコ ン窒化膜44が、本発明(請求項17)の「第2絶縁 膜」に相当する。

【0137】工程31(図31参照):シリコン窒化膜 44の上に、レジストパターン46を500nm~80 0 nm程度の膜厚で形成する。尚、このレジストパター 40 ン46が、本発明(請求項17)の「第1マスクパター ン」に相当する。

【0138】工程32 (図32参照):レジストパター ン46をマスクとして、上記実施の形態1の工程3と同 様の回転斜めイオン注入法を用い、有機SOG膜43に 対し、ホウ素 (ボロン) イオン (B') を加速エネルギ ー:約300~500KeV、ドーズ量:1×10¹⁵ ato ms/cm²程度以上の条件でドープする。このように、有 機SOG膜43にホウ素イオンを導入することで、膜中 の有機成分を分解させると共に、膜中に含まれる水分及 50 で形成することができ、その結果、製造工程を簡略化す

び水酸基を減少させる。

【0139】その結果、有機SOG膜43のイオン注入 された領域は、有機成分が含まれず、水分及び水酸基が 僅かしか含まれない改質SOG膜45に変えられる。こ の時、ホウ素イオンは斜め方向から注入されるため、こ の改質SOG膜45は、レジストパターン46の開口部 よりも大きな径になる。尚、この改質SOG膜45が、 本発明(請求項6,17)における「第1不純物含有領 域」に相当する。

24

【0140】工程33 (図33参照): RIE法によ り、レジストパターン46をマスクとしてシリコン窒化 膜44を異方性エッチングすることにより、開口部47 を有するシリコン窒化膜マスク44aを形成する。尚、 このシリコン窒化膜マスク44aが、本発明(請求項 8,17)の「エッチング用マスク」に相当する。

【0141】工程34(図34参照):レジストパター ン46を除去した後、改質SOG膜45及びシリコン窒 化膜マスク44aの上に、300nm~500nm程度 の膜厚を有する低誘電率絶縁膜48を形成する。この低 誘電率絶縁膜48として有機SOG膜を用いる場合は、 上記有機SOG膜3と同様の組成および形成方法により 形成する。また、低誘電率絶縁膜48としてアモルファ スカーボンを用いる場合は、CVD法により堆積する。 尚、この低誘電率絶縁膜48は、本発明における「第2 絶縁膜(請求項6.7)または第3絶縁膜(請求項1 7)」に相当する。

【0142】工程35(図35参照):低誘電率絶縁膜 48の上に、レジストパターン49を形成する。このレ ジストパターン49の開口部は、シリコン窒化膜マスク 44 a の 開口部を含み、その 面積も、シリコン窒化膜マ スク44aのそれよりも大きい。尚、このレジストパタ ーン49が、本発明(請求項17)における「第2マス クパターン」に相当する。

【0143】工程36(図36参照):レジストパター ン49及びシリコン窒化膜マスク44aをマスクとし て、フロロカーボン系のガスをエッチングガスとして用 いる異方性エッチングを行い、低誘電率絶縁膜48及び 改質SOG膜45をエッチングする。この場合、まずレ ジストパターン49と同じ開口幅で低誘電率絶縁膜48 がエッチングされ、シリコン窒化膜マスク44aに到達 した時点で低誘電率絶縁膜48のエッチングが終了す る。これにより、低誘電率絶縁膜48にトレンチ24が 形成される。続いて、シリコン窒化膜マスク44aをマ スクとして、このマスクと同じ開口径で改質SOG膜4 5がエッチングされ、改質SOG膜45に、配線層42 に通じるコンタクトホール21を形成する。

【0144】このように、シリコン窒化膜マスク44a をエッチングストッパとして利用することにより、トレ ンチ24とコンタクトホール21とを一度のエッチング ることができる。

【0145】しかも、まず開口幅の広いトレンチ24を 形成してから、その後にコンタクトホール21を形成す るので、コンタクトホール21を先に形成する手法に比 ベてアスペクト比が高くならず、エッチング制御が簡単 である。

【0146】ここで、工程32において、改質SOG膜 【0155 45の径がシリコン窒化膜マスク44aの開口部の径よ 場合、改質 りも大きく形成されているため、工程36において形成 るため、型 されるコンタクトホール21の内壁は改質SOG膜45 10 なくなる。 で構成される。従って、このコンタクトホール21内に 【0156 後述するように配線を埋め込んでも、有機SOG膜43 で表されるに含まれる水分や水酸基が配線に悪影響を与えない。

【0147】また、改質SOG膜45の比誘電率は3.5で、有機SOG膜43の比誘電率(2.9)に対し、若干高いが、この第4実施形態では、改質SOG膜45はコンタクトホール21の内壁にのみ存在し、それ以外の個所は有機SOG膜43のままであるため、膜全体の比誘電率が大幅に増加することにより配線間容量が大きくなって信号遅延が発生するのを有効に防止することが20できる。

【0148】工程37(図29参照):不活性ガス(例えばAr)を用いたスパッタエッチングによって、トレンチ24及びコンタクトホール21内をクリーニングした後、トレンチ24及びコンタクトホール21内を含む低誘電率絶縁膜48の上に、マグネトロンスパッタ法やCVD法を用いて、密着層及びパリヤ層としてのTiN膜を形成し、その上に、CVD法又はメッキ法を用いて、Cu膜を形成し、更に、CMP法を用いて、Cu膜の表面を研磨し、最終的にトレンチ24及びコンタクト30ホール21内にTiNとCuからなる上層金属配線27を埋め込み形成する。尚、この上層金属配線27が、本発明(請求項6,17)における「第1配線」に相当する。

【0149】このように、第4実施形態では、いわゆるデュアルダマシン法を用いて形成された多層配線構造において第1実施形態と同様の作用効果を得ることができる。

【0150】なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。

【0151】たとえば、以下のように実施しても上記した実施形態と同様の作用効果を得ることができる。

【0152】(1)有機SOG膜に代えて、フロロカーボン膜やポリイミドやシロキサン編成されたポリイミドなどを用いる。

【0153】(2)配線材料としてのCuに代えて、ア 50

ルミ、金、銀、シリサイド、高融点金属、ドープドポリシリコン、窒化チタン(TiN)、タングステンチタン (TiW)又はそれらの積層構造で形成する。

【0154】(3) 密着層及びバリヤ層としてのTiNを、Ti, TaN, Ta等との積層構造にする。又は、TiNに代えて、Ti, TaN, Ta等を用いる。

【0155】(4)改質SOG膜に熱処理を施す。この場合、改質SOG膜中のダングリングボンドが少なくなるため、吸湿性が更に小さくなり、水分の透過も更に少なくなる。

【0156】(5)有機SOG膜の組成を一般式(1)で表される無機SOG膜に置き代え、その無機SOG膜にてオン注入を行う。この場合には、無機SOG膜に含まれる水分及び水酸基を減少させることができる。

【0157】(6)上記実施形態では、有機SOG膜に 注入するイオンとしてホウ素イオンを用いたが、結果と して有機SOG膜を改質するものであればどのようなイ オンを用いてもよい。

【0158】具体的には、アルゴンイオン、ホウ素イオン、窒素イオンなどの質量の比較的小さいイオンが適しており、中でもホウ素イオンがもっとも適しているが、これら以外にも以下に示すイオンも十分に効果が期待できる。

【0159】アルゴン以外の不活性ガスイオン(ヘリウムイオン、ネオンイオン、クリプトンイオン、キセノンイオン、ラドンイオン)。不活性ガスは有機SOG膜と反応しないため、イオン注入によって悪影響が生じる恐れが全くない。

【0160】ホウ素及び窒素以外のIII b, IV b, V b, VI b, VII bの各族の元素単体イオン及びそれらの化合物イオン。特に、酸素、アルミ、イオウ、塩素、ガリウム、ゲルマニウム、ヒ素、セレン、臭素、アンチモン、ヨウ素、インジウム、スズ、テルル、鉛、ビスマスの元素単体イオン及びそれらの化合物イオン。

【0161】IVa族、Va族の元素単体イオン及びそれらの化合物イオン。特に、チタン、パナジウム、ニオブ、ハフニウム、タンタルの元素単体イオン及びそれらの化合物イオン。

【0162】各イオンを複数種類組み合わせて用いる。 この場合、各イオンの相乗作用により更に優れた効果を 得ることができる。

【0163】(7)上記実施形態では、有機SOG膜にイオンを注入しているが、イオンに限らず、原子、分子、粒子であればよい(本発明ではこれらを総称して不純物とする)。

【0164】(8)スパッタリングの方法として、マグネトロンスパッタリング以外に、ダイオードスパッタリング、高周波スパッタリング、四極スパッタリング等のようなものであってもよい。

【0165】(9)スパッタエッチングの方法として、

不活性ガスを用いる以外に、反応性ガス(例えばCCl、SF。)を用いた反応性イオンビームエッチング(RIBE、反応性イオンミリングとも呼ばれる)を用いてもよい。

【0166】(10)上記第2実施形態において、工程 14を工程13の前に行う。

【0167】(11)単結晶シリコン基板(半導体基板)に代えて、導電性基板やガラス等の絶縁性基板を用いる。すなわち、以上の実施形態にあっては、単結晶シリコン基板上に層間絶縁膜を形成する例を示しているが、例えばLCDのように絶縁性基板上の半導体層の上に層間絶縁膜を形成するデバイスに対しても十分に適用が可能であり、このような絶縁性基板上に絶縁膜を形成したものであっても本発明における「半導体装置」の概念に属するものとする。

【0168】(12)金属配線7又は上層金属配線27は、それぞれ分離していても、端部で接続されていても良く、任意の場所に置いて、配線間に絶縁膜が介在するものであれば良い。

【0169】(13)以上の実施形態にあっては、トレンチ6,24に金属配線7を埋め込む例を用いて説明したが、その他コンタクトホールやピアホールも「埋め込み孔」の概念に属する。また、以上の実施形態において、コンタクトホールとピアホールとは同義とする。

【0170】(14)第4実施形態の低誘電率絶縁膜として、有機SOG膜またはアモルファスカーボンを示したが、誘電率が3.5以下であれば他の絶縁膜であってもよい。たとえば、HSQ(水素シルセスオキサン:誘電率3.0)やアモルファスフッ素樹脂(誘電率2.

1) なども採用可能である。

[0171]

【発明の効果】以上のように、本発明にあっては、配線の腐食を防止し且つ比誘電率の増加も極力防止された層間絶縁膜を得ることで、信頼性の高い半導体装置を提供することができる。

【図面の簡単な説明】

【図1】本発明を具体化した第1実施形態に係る半導体 装置の概略断面図である。

【図2】本発明を具体化した第1実施形態に係る半導体 装置の製造過程を示す概略断面図である。

【図3】本発明を具体化した第1実施形態に係る半導体 装置の製造過程を示す概略断面図である。

【図4】本発明を具体化した第1実施形態に係る半導体 装置の製造過程を示す概略断面図である。

【図5】本発明を具体化した第1実施形態に係る半導体 装置の製造過程を示す概略断面図である。

【図6】本発明を具体化した第1実施形態に係る半導体 装置の製造過程を示す概略断面図である。

【図7】本発明を具体化した第1実施形態に係る半導体 装置の製造過程を示す概略断面図である。 【図8】本発明を具体化した第1実施形態に係る半導体 装置の製造過程を示す概略断面図である。

【図9】本発明の実施形態を説明するための特性図である。

【図10】本発明の実施形態を説明するための特性図である。

【図11】本発明の実施形態を説明するための特性図で ある

【図12】本発明を具体化した第2実施形態に係る半導 10 体装置の概略断面図である。

【図13】本発明を具体化した第2実施形態に係る半導体装置の製造過程を示す概略断面図である。

【図14】本発明を具体化した第2実施形態に係る半導体装置の製造過程を示す概略断面図である。

【図15】本発明を具体化した第2実施形態に係る半導体装置の製造過程を示す概略断面図である。

【図16】本発明を具体化した第2実施形態に係る半導体装置の製造過程を示す概略断面図である。

【図17】本発明を具体化した第2実施形態に係る半導20 体装置の製造過程を示す概略断面図である。

【図18】本発明を具体化した第2実施形態に係る半導体装置の製造過程を示す概略断面図である。

【図19】本発明を具体化した第2実施形態に係る半導体装置の製造過程を示す概略断面図である。

【図20】本発明を具体化した第2実施形態に係る半導体装置の製造過程を示す概略断面図である。

【図21】本発明を具体化した第3実施形態に係る半導体装置の概略断面図である。

【図22】本発明を具体化した第3実施形態に係る半導 30 体装置の製造過程を示す概略断面図である。

【図23】本発明を具体化した第3実施形態に係る半導体装置の製造過程を示す概略断面図である。

【図24】本発明を具体化した第3実施形態に係る半導体装置の製造過程を示す概略断面図である。

【図25】本発明を具体化した第3実施形態に係る半導体装置の製造過程を示す概略断面図である。

【図26】本発明を具体化した第3実施形態に係る半導体装置の製造過程を示す概略断面図である。

【図27】本発明を具体化した第3実施形態に係る半導40 体装置の製造過程を示す概略断面図である。

【図28】本発明を具体化した第3実施形態に係る半導体装置の製造過程を示す概略断面図である。

【図29】本発明を具体化した第4実施形態に係る半導体装置の概略断面図である。

【図30】本発明を具体化した第4実施形態に係る半導体装置の製造過程を示す概略断面図である。

【図31】本発明を具体化した第4実施形態に係る半導体装置の製造過程を示す概略断面図である。

【図32】本発明を具体化した第4実施形態に係る半導 50 体装置の製造過程を示す概略断面図である。

【図33】本発明を具体化した第4実施形態に係る半導体装置の製造過程を示す概略断面図である。

【図34】本発明を具体化した第4実施形態に係る半導体装置の製造過程を示す概略断面図である。

【図35】本発明を具体化した第4実施形態に係る半導体装置の製造過程を示す概略断面図である。

【図36】本発明を具体化した第4実施形態に係る半導 ・ 体装置の製造過程を示す概略断面図である。

【符号の説明】

1 シリコン基板

3, 20, 23, 30, 43 有機SOG膜

4, 28, 29, 32, 46, 49 レジストパターン

5, 25, 26, 31, 45 改質SOG膜

6,24 トレンチ

7 金属配線

21 コンタクトホール

22a, 44a シリコン窒化膜マスク

27 上層金属配線

42 配線層

10

【図1】

[図3]

【図5】

【図2】

【図4】

【図6】

【図13】

【図15】

【図18】

[図20]

【図33】

【図21】

【図22】

【図23】

【図24】

【図25】

【図26】

【図27】

【図28】

[図29]

[図30]

【図31】

[図32]

【図34】

【図35】

【図36】

フロントページの続き

(72)発明者 西田 篤弘

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(72)発明者 井上 恭典

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

(72)発明者 水原 秀樹

大阪府守口市京阪本通2丁目5番5号 三

洋電機株式会社内

Fターム(参考) 5F033 GG04 HH04 HH08 HH11 HH13

HH14 HH17 HH18 HH21 HH23

HH25 HH33 JJ04 JJ08 JJ11

JJ13 JJ14 JJ17 JJ18 JJ21

JJ23 JJ25 JJ33 KK04 KK08

KK11 KK13 KK14 KK17 KK18

KK21 KK25 KK33 MM01 MM02

MM12 MM13 NN06 NN07 PP06

PP15 PP27 PP28 QQ09 QQ13

QQ14 QQ16 QQ25 QQ28 QQ37

QQ48 QQ60 QQ61 QQ62 QQ63

QQ64 QQ65 QQ66 QQ91 QQ92

RR01 RR04 RR06 RR09 RR12

RR21 RR22 RR24 RR25 SS01

SS02 SS04 SS07 SS11 SS12

SS13 SS14 SS15 SS22 TT04

TT06 TT07 WW04 XX18 XX24

XX27