Identificación de Sistemas

Diego Milone

Procesamiento Digital de Señales Ingeniería Informática FICH-UNL

2 de mayo de 2013

Organización de la clase

Introducción

Conceptos básicos

Métodos de identificación de sistemas

Sistemas invariantes en el tiempo

Coeficientes de predicción lineal (LPC) Mínimos en la superficie de error Resolución del sistema de Wiener-Hopf Estimación del orden

Sistemas variantes en el tiempo

Método adaptativo de Widrow

Organización de la clase

Introducción

Conceptos básicos
Métodos de identificación de sistemas

Sistemas invariantes en el tiempo

Coeficientes de predicción lineal (LPC) Mínimos en la superficie de error Resolución del sistema de Wiener-Hopf Estimación del orden

Sistemas variantes en el tiempo

Método adaptativo de Widrow

00

Identificación de sistemas: conceptos básicos

•0

Clasificación de los métodos

- Hipótesis generales
 - Métodos convencionales
 - Métodos no-convencionales
- Análisis de la respuesta en sistemas continuos
 - Análisis en el tiempo
 - Análisis en la frecuencia

Sistemas de 1er y 2do orden

¿Cómo analizamos un sistema de orden 34?

Organización de la clase

Introducción

Conceptos básicos Métodos de identificación de sistemas

Sistemas invariantes en el tiempo

Coeficientes de predicción lineal (LPC) Mínimos en la superficie de error Resolución del sistema de Wiener-Hopf Estimación del orden

Sistemas variantes en el tiempo Método adaptativo de Widrow

Métodos de predicción lineal (LPC)

Estructura general:

- El modelo ARMA, el modelo AR
- Cuadrados mínimos
- Sistemas de Wiener-Hopf
- Determinación de la constante de ganancia G
- Procesos de estimación del orden

El modelo LTI más general

$$s_n = -\sum_{k=1}^p a_k s_{n-k} + G \sum_{\ell=0}^q b_\ell u_{n-\ell}$$

$$H(z) = G \frac{1 + \sum_{\ell=1}^{q} b_{\ell} z^{-\ell}}{1 + \sum_{k=1}^{p} a_{k} z^{-k}}$$

Simplificaciones iniciales

$$H(z) = \frac{G}{1 + \sum_{k=1}^{p} a_k z^{-k}}$$

$$s_n = -\sum_{k=1}^p a_k s_{n-k} + Gu_n$$

$$\hat{s}_n = -\sum_{k=1}^p a_k s_{n-k}$$

Notación vectorial...

$$\hat{s}_n = -\sum_{k=1}^p a_k s_{n-k}$$

$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_k \\ \vdots \\ a_p \end{bmatrix} \qquad \mathbf{s}_n = \begin{bmatrix} s_{n-1} \\ s_{n-2} \\ \vdots \\ s_{n-k} \\ \vdots \\ s_{n-p} \end{bmatrix}$$

$$\hat{s}_n = -\mathbf{s}_n^T \mathbf{a}$$

Minimización del error cuadrático

Una medida del error instantáneo:

$$e_n^2 = (s_n - \hat{s}_n)^2 = (s_n + \mathbf{s}_n^T \mathbf{a})^2$$

Una medida del error total (señales determinísticas):

$$\xi^2 = \sum_n e_n^2$$

Buscando el mínimo...

$$\nabla_{\mathbf{a}} \xi^2 = 0$$

Resolviendo obtenemos

Resolviendo el gradiente obtenemos:

$$\left(\sum_{n} \mathbf{s}_{n} \mathbf{s}_{n}^{T}\right) \mathbf{a} = -\sum_{n} \mathbf{s}_{n} s_{n}$$

Conocido como sistema de Wiener-Hopf:

$$Ra = -r$$

Demostrar

- $\mathbf{Ra} = -\mathbf{r}$ a partir de $\nabla_{\mathbf{a}} \ \varepsilon^2 = 0$
- \mathbf{r} es la autocorrelación de \mathbf{s}_n
- R es la matriz de autocorrelación de \mathbf{s}_n
- **R** es Toeplitz $(R_{i,j} = r_{i-j})$

¿Tiene ξ^2 un único mínimo?

Supóngase s_n estacionaria:

$$\boldsymbol{\xi}^2 = \mathcal{E}\left[e_n^2\right] = \mathcal{E}\left[\boldsymbol{s}_n^2\right] + \mathbf{a}^T 2\mathcal{E}\left[\boldsymbol{s}_n \mathbf{s}_n\right] + \mathbf{a}^T \mathcal{E}\left[\mathbf{s}_n \mathbf{s}_n^T\right] \mathbf{a}$$

¿Tiene ξ^2 un único mínimo?

Si el sistema fuera de 2do orden $(\xi^2(a_1, a_2))$

¿Tiene ξ^2 un único mínimo?

Buscando el mínimo:

$$\xi^2 = \mathcal{E}\left[e_n^2\right] = \mathcal{E}\left[s_n^2\right] + \mathbf{a}^T 2\mathcal{E}\left[s_n\mathbf{s}_n\right] + \mathbf{a}^T\mathcal{E}\left[\mathbf{s}_n\mathbf{s}_n^T\right]\mathbf{a}$$

$$\nabla \xi^{2} = \left\{ \begin{array}{l} \frac{\partial \mathcal{E}[e_{n}^{2}]}{\partial a_{1}} \\ \frac{\partial \mathcal{E}[e_{n}^{2}]}{\partial a_{2}} \\ \vdots \\ \frac{\partial \mathcal{E}[e_{n}^{2}]}{\partial a_{p}} \end{array} \right\} = 2\mathcal{E}\left[s_{n}\mathbf{s}_{n}\right] + 2\mathcal{E}\left[\mathbf{s}_{n}\mathbf{s}_{n}^{T}\right]\mathbf{a} = 0$$

Resolución del sistema de Wiener-Hopf

Algoritmo de Levinson-Durbin

•00

A partir de $E_0 = r_0$:

$$\operatorname{Para1} \leq i \leq p \to \begin{cases} k_{i} = -\frac{1}{E_{i-1}} \left[r_{i} + \sum_{j=1}^{i-1} a_{j,i-1} r_{i-j} \right] \\ a_{i,i} = k_{i} \\ a_{j,i} = a_{j,i-1} + k_{i} a_{i-j,i-1}, \quad 1 \leq j \leq i-1 \\ E_{i} = E_{i-1} (1 - k_{i}^{2}) \end{cases}$$

Determinación de la constante de ganancia G

En la simplificación inicial hicimos:

$$s_n = -\sum_{k=1}^p a_k s_{n-k} + Gu_n \approx -\sum_{k=1}^p a_k s_{n-k}$$

por lo tanto al minimizar el error está acodado según:

$$e_n = s_n - \hat{s}_n \ge Gu_n$$

Determinación de la constante de ganancia G

Si consideramos una entrada blanca o impulsiva:

$$h_n = -\sum_{k=1}^p a_k h_{n-k} + G \,\delta_n$$

se puede demostrar que:

$$\mathbf{r}^T \mathbf{a} = -r_0 + G^2$$

de lo que concluimos:

$$G^2 = \mathbf{r}^T \mathbf{a} + r_0 = E_p$$

Estimación del orden: error de predicción final

Se busca p tal que E_p sea mínimo.

Definimos el error normalizado como:

$$V_p = \frac{E_p}{r_0}$$

Incrementamos p hasta satisfacer:

$$1 - \frac{V_{p+1}}{V_p} < \gamma$$

 $(V_p \text{ decrece monotónicamente con } p)$

Estimación del orden: criterio de Akaike

Basado en teoría de la información define:

$$I_p = \log V_p + \frac{2p}{N_e}$$

Este criterio provee un mínimo en el p óptimo.

Estimación del orden: comparación

Organización de la clase

Introducción

Conceptos básicos

Métodos de identificación de sistemas

Sistemas invariantes en el tiempo

Coeficientes de predicción lineal (LPC) Mínimos en la superficie de error Resolución del sistema de Wiener-Hopf Estimación del orden

Sistemas variantes en el tiempo Método adaptativo de Widrow

Método adaptativo de Widrow

Consideremos s_n no-estacionaria y volvamos al error cuadrático instantáneo:

$$e_n^2 = (s_n - \hat{s}_n)^2 = (s_n + \mathbf{s}_n^T \mathbf{a})^2 = \xi_n^2$$

Tenemos que buscar el mínimo en cada instante n:

$$\mathbf{a}_{n+1} = \mathbf{a}_n + \mu(-\nabla \xi_n^2)$$

con $0 < \mu < \frac{1}{T(\mathbf{R})}$

Método adaptativo de Widrow

$$\hat{\nabla}\xi_{n}^{2} = \frac{\partial e_{n}^{2}}{\partial \mathbf{a}_{n}} = \left\{ \begin{array}{l} \frac{\partial e_{n}^{2}}{\partial a_{1,n}} \\ \frac{\partial e_{n}^{2}}{\partial a_{2,n}} \\ \vdots \\ \frac{\partial e_{n}^{2}}{\partial a_{p,n}} \end{array} \right\} = 2e_{n} \frac{\partial \left(s_{n} + \mathbf{a}_{n}^{T} \mathbf{s}_{n}\right)}{\partial \mathbf{a}_{n}}$$

$$\mathbf{a}_{n+1} = \mathbf{a}_n - 2\mu e_n \mathbf{s}_n$$

Bibliografía básica

- J. Makhoul, "Linear Prediction: A Tuturial Review," Proc. IEEE, vol 63, no. 4, pp. 561-580, apr. 1975.
- L. R. Rabiner y B. Gold, Theory and Application of Digital Signal Processing, Prentice Hall, chap. 12, 1975.
- J. R. Deller, J. G. Proakis, J. H. Hansen, Discrete-Time Processing of Speech Signals, Prentice Hall, chap. 5, 1993.