1 複素数平面

1.1 複素数平面の考え方

複素数 a+bi の実部を x 軸, 虚部を y 軸に対応させた平面を複素数平面という.

例

以下の複素数を複素平面上で表せ.

- (1) A(-3+2i)
- (2) B(3i)
- (3) C(-2)
- (4) D(1-3i)

例

以下の複素数を複素平面上で表せ.

- (1) $\alpha = 1 + 2i$
- (2) $\beta = -2 + 3i$
- (3) $\alpha + \beta$
- (4) $\alpha \beta$

例

以下の複素数を複素平面上で表せ.

- (1) $\alpha = 2 + i$
- (2) 3α
- $(3) -2\alpha$
- $(4) \ \frac{1}{2}\alpha$

例

 $\alpha=1+3i,\beta=x-9i$ とする. 2 点 $A(\alpha)$, $B(\beta)$, と原点 O が一直線上にあるとき、実数 x の値を求めよ.

複素数 z について、複素数平面上での原点と点 $\mathbf{P}(x)$ の距離を、複素数 z の距離という.

例

以下の複素数の絶対値を求めよ.

(1) 1 + 2i

 $(2) \ 3-4i$

 $(3) \ 3i$

(4) -5

例

以下の2点間の距離を求めよ.

(1) A(1+2i), B(3+i)

(2) A(3-i), B(-2+i)

共役な複素数 $\cdots z = a + bi$ に対し、 $\overline{z} =$

例

以下の複素数を複素平面上で表せ.

(1) z = 4 + 3i

(2) -z

 $(3) \overline{z}$

 $(4) -\overline{z}$

計算してみる

(1) $z + \overline{z}$

 $(2) z\overline{z}$

共役な複素数の性質について考える.

$$\alpha=3+2i, \ \beta=-2+i$$

とする.

(1)
$$\overline{\alpha + \beta}$$

(2)
$$\overline{\alpha - \beta}$$

(3)
$$\overline{\alpha\beta}$$

$$(4) \ \overline{\left(\frac{\alpha}{\beta}\right)}$$

2 極形式

2.1 極形式とは

例 1

以下の複素数を極形式で表せ. ただし, 偏角 θ の範囲は $0 \le \theta < 2\pi$ とする.

(1) $1 - \sqrt{3}i$

(2) 2 + 2i

例 2

以下の複素数を極形式で表せ. ただし, 偏角 θ の範囲は $-\pi < \theta \le \pi$ とする.

(1) $\sqrt{3} + i$

(2) -i

 $z=r(\cos\theta+i\sin\theta)$ に対し, $\overline{z}=r\{\cos(-\theta)+i\sin(-\theta)\}$ と表せ る. このことを, 図を描いて確かめてみよう. $z = r(\cos\theta + i\sin\theta)$ に対し、 $-z = r\{\cos(\theta + \pi) + i\sin(\theta + \pi)\}$ と表せる. このことを, 図を描いて確かめてみよう.

2.2 極形式の複素数の積と商

具体例

 $\overline{\alpha=1}+\sqrt{3}i, \beta=-\sqrt{3}+i$ のとき, 以下の値を求めよ.

(1) $\alpha\beta$

(2) $\frac{\alpha}{\beta}$

図で見る積と商

一般化

$$\alpha = r_1(\cos\theta_1 + i\sin\theta_1), \beta = r_2(\cos\theta_2 + i\sin\theta_2) \ \mathcal{O} \ \xi \ \xi,$$

$$\alpha\beta =$$

$$\frac{\alpha}{\beta} =$$

<u>問題 1</u> 複素数 $\alpha=1+i,\beta=1+\sqrt{3}i$ について, $\alpha\beta$ を求めよ. また, この結果を用いて, $\cos\frac{7}{12}\pi,\sin\frac{7}{12}\pi$ の値を求めよ.

<u>問題 2</u> 以下の複素数 α,β について, $\alpha\beta,\frac{\alpha}{\beta}$ を求めよ. ただし, 偏角 θ の 範囲は $0 \le \theta < 2\pi$ とする.

$$\alpha = 2\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right), \beta = 2\sqrt{2}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$$

2.3 複素数平面上での積と商

 $2(\cos\frac{1}{4}\pi+i\sin\frac{1}{4}\pi)z$ は, 点 z を, 原点を中心として $\frac{1}{4}\pi$ だけ回転し, 原点からの距離を 2 倍した点である.

<u>例題</u> z=2+3i とする. 点 z を原点を中心として $\frac{\pi}{3}$ だけ回転した点を表す複素数 w を求めよ.

以下の点は、複素数 z をどのように移動した点か.

(1) $(\sqrt{3} + i)z$

(2) (2-2i)z

 $(3) \ 3iz$

例題と同じzに対し、点zを原点を中心として以下の角だけ回転 した点を表す複素数を求めよ.

(1) $\frac{1}{4}\pi$

(2) $-\frac{2}{3}\pi$

(3) $\frac{1}{2}\pi$

問題

 $\alpha=3+2i$ とする. 複素数平面上の 3 点 $0,\alpha,\beta$ を頂点とする三角形が正三角形であるとき, β の値を求めよ.

3 ド・モアブルの定理

31 復習

以下を計算せよ.

$$(1) \left(\cos\frac{1}{6}\pi + i\sin\frac{1}{6}\pi\right)^2$$

$$(2) \left(\cos\frac{1}{6}\pi + i\sin\frac{1}{6}\pi\right)^3$$

$$(3) \left(\cos\frac{1}{6}\pi + i\sin\frac{1}{6}\pi\right)^4$$

$$(4) \left(\cos\frac{1}{6}\pi + i\sin\frac{1}{6}\pi\right)^6$$

3.2 定理

/ ド・モアブルの定理

問題

以下の式を計算せよ.

$$(1) (1 + \sqrt{3}i)^4$$

$$(2) (1-i)^5$$

$$(3) (1 - \sqrt{3}i)^6$$

$$(4) (\sqrt{3}+i)^{-4}$$

復習

1の3乗根を求めよ.

問題

(1) 1の6乗根を求めよ.

(2) 1の8乗根を求めよ.

~1の n 乗根 ー

問題

(1) 方程式 $z^3 = 8i$ を解け

(3) 方程式 $z^4 = -16$ を解け

(2) 方程式 $z^2 = 1 + \sqrt{3}i$ を解け

(4) 方程式 $z^2 = i$ を解け

4 複素数と図形

4.1 いろいろな図形

 $\alpha=2+3i, \beta=4-i, \gamma=3+i$ とする. $\mathbf{A}(\alpha),\,\mathbf{B}(\beta),\,\mathbf{C}(\gamma)$ とする.

(1) 線分 AB の中点を表す複素数を求めよ.

(2) 線分 AB を 2:1 に内分する点を表す複素数を求めよ.

(3) 線分 AB を 2:1 に外分する点を表す複素数を求めよ.

(4) △ABC の重心を表す複素数を求めよ.

(5) $|z-\alpha|=1$ を満たす z 全体の集合が表す図形は何か.

 $|z-\alpha|=|z-\beta|$ を満たす z 全体の集合が表す図形は何か.

4.2 問題

以下の方程式を満たす点z全体の集合は、どのような図形か.

(1)
$$|z - i| = 2$$

(2)
$$|z-3-i|=3$$

(3)
$$|z+4| = |z-2i|$$

4.3 アポロニウスの円

例題

以下の方程式を満たす点 z全体の集合は、どのような図形か.

$$2|z| = |z+3|$$

問題

以下の方程式を満たす点z全体の集合は、どのような図形か.

$$2|z - 3i| = |z|$$

4.4 平行移動した円

例題

w=iz+2 とする. 点 z が原点 O を中心とする半径 1 の円上を動くとき, 点 w はどのような図形を描くか.

問題

w=i(z+2) とする. 点 z が原点 O を中心とする半径 1 の円上を動くとき, 点 w はどのような図形を描くか.

4.5 回転

例題

 $\alpha=2+3i, \beta=4+i$ とする. 点 β を, 点 α を中心として $\frac{1}{3}\pi$ だ け回転した点を表す複素数 γ を求めよ.

例是

3点 A(1), B(-2+2i), C(2-5i) に対して、半直線 AB から半直線 AC までの回転角 θ を求めよ、ただし、 $-\pi<\theta\leq\pi$ とする、

問題

 $\alpha=1+i, \beta=5+3i$ とする. 点 β を, 点 α を中心として $\frac{1}{6}\pi$ だ け回転した点を表す複素数 γ を求めよ.

問題

3点 A(1-i), B(2+i), C(2i) に対して、半直線 AB から半直線 AC までの回転角 θ を求めよ、ただし、 $-\pi < \theta \le \pi$ とする.

例題

3点 A(-1+i), B(3-i), C(x+3i) に対して、以下の問いに答えよ.

(1) 2 直線 AB, AC が垂直に交わるように, 実数 x の値を求めよ.

(2) 3 点 A, B, C が一直線上にあるように, 実数 x の値を求めよ.

問題

3点 A(i), B(2+2i), C(x-i) に対して、以下の問いに答えよ.

(1) 2 直線 AB, AC が垂直に交わるように, 実数 x の値を求めよ.

(2) 3 点 A, B, C が一直線上にあるように, 実数 x の値を求めよ.

3点 $A(\alpha),\,B(\beta),\,C(\gamma)$ を頂点とする $\triangle ABC$ について、等式

$$\gamma = (1 + \sqrt{3}i)\beta - \sqrt{3}i\alpha$$

が成立するとき、以下のものを求めよ.

(1) 複素数
$$\frac{\gamma - \alpha}{\beta - \alpha}$$
 の値.

(2) △ABC の 3 つの角の大きさ.

例題

3点 $A(\alpha)$, $B(\beta)$, $C(\gamma)$ を頂点とする $\triangle ABC$ について、等式

$$\gamma = (1 - i)\alpha + i\beta$$

が成立するとき,以下のものを求めよ.

(1) 複素数 $\frac{\gamma - \alpha}{\beta - \alpha}$ の値.

(2) △ABC の 3 つの角の大きさ.