Towards Quality Assurance of SPLs with Adversarial Configurations

Paul TEMPLE ¹ Mathieu ACHER ² Gilles PERROUIN ¹ Battista BIGGIO ³ Jean-Marc JEZEQUEL ² Fabio ROLI ³

¹PReCISE, NaDI, Université de Namur ; [@]pleupi22 [@]GPerrouin

²Univ Rennes, CNRS, Inria, IRISA; @acherm @jmjezequel

³PRALab, University of Cagliari; @biggiobattista

Published at EMSE'21

Journal: https://doi.org/10.1007/s10664-020-09915-7

Open Access: https://hal.inria.fr/hal-03045797/document > < = >

Configurable systems

Linux Kernel: 15,000 options

Configurable systems

Linux Kernel: 15,000 options

 $2^{15,000} \approx 10^{3,250} >> 10^{1,000} >>$ estimated # of particules

Sébastien Mosser @petitroll · 25 févr.

"the number of atoms in the visible universe is 10^80. There are 2^15000 different versions of the Linux kernel. So astrophysicists works with things way simpler than software engineers". @imiezequel

JHipster

- Generate web app
- Micro-services

JHipster

- Generate web app
- Micro-services
- 26,000+ configurations

Halin et al., https://doi.org/10.1007/s10664-018-9635-4 https://www.jhipster.tech/microservices-architecture

JHipster

- Generate web app
- 26,000+ configurations

Problem:

- Which variants can be build under X seconds?
- Which variants can run with limited resources? (less than Y Watts)

JHipster \rightarrow **26,000**+ configurations

- Exploring all configurations is impossible
- Measuring performances is costly
- Few configurations are acceptable (meet performances)
- \rightarrow How to find the few interesting one?

JHipster \rightarrow **26,000**+ configurations

- Exploring all configurations is impossible
- Measuring performances is costly
- Few configurations are acceptable (meet performances)
- → How to find the few interesting one?

Performance predictions

- $\bullet \ \, \mathsf{Assumption:} \ \, \mathsf{similar} \ \, \mathsf{configuration} \, \to \mathsf{similar} \ \, \mathsf{performances}$
- Train a model on few configurations
- Predict on all the others

JHipster \rightarrow **26,000**+ configurations

- Exploring all configurations is impossible
- Measuring performances is costly
- Few configurations are acceptable (meet performances)
- \rightarrow How to find the few interesting one?

Performance predictions

- $\bullet \ \, \mathsf{Assumption:} \ \, \mathsf{similar} \ \, \mathsf{configuration} \, \to \mathsf{similar} \ \, \mathsf{performances}$
- Train a model on few configurations
- Predict on all the others
- \rightarrow **Filter** to retrieve the interesting ones

Scope the configuration space

- User: "I want technology X and Y but the system should run under S seconds"
- Learn which configurations are ok with that

Scope the configuration space

- User: "I want technology X and Y but the system should run under S seconds"
- Learn which configurations are ok with that

Temple et al., Using machine learning to infer constraints for product lines, SPLC'16 \circ

Improving the classification of software configurations

Impacts

Machine Learning is based on statistics \rightarrow errors

- Over-constraining
- Under-constraining

Improving the classification of software configurations

Impacts

Machine Learning is based on $\underline{\text{statistics}} \rightarrow \underline{\text{errors}}$

- Over-constraining
- Under-constraining

Over-constraining

- Forbid more configurations than necessary
- Lack of flexibity

Improving the classification of software configurations

Impacts

Machine Learning is based on statistics \rightarrow errors

- Over-constraining
- Under-constraining

Over-constraining

- Forbid more configurations than necessary
- Lack of flexibity

Under-constraining

- Allow more configurations than necessary
- Waste of resources

Robustifying the model

- Show new configurations
- Configurations with high risk of misclassification

Goodfellow et al., https://arxiv.org/pdf/1412.6572.pdf

Elsayed et al., https://proceedings.neurips.cc/paper/2018/file/8562ae5e286544710b2e7ebe9858833b-Paper.pdf

Sharif et al., https://dl.acm.org/doi/pdf/10.1145/2976749.2978392

Robustifying the model

- Show new configurations
- Configurations with high risk of misclassification

Robustifying the model

- Show new configurations
- Configurations with high risk of misclassification

"panda'

gibbon"

1.3% confidence

.5 % confider

Robustifying the model

- Show new configurations
- Configurations with high risk of misclassification

Goodfellow et al., https://arxiv.org/pdf/1412.6572.pdf

Elsayed et al., https://proceedings.neurips.cc/paper/2018/file/8562ae5e286544710b2e7ebe9858833b-Paper.pdf

Sharif et al., https://dl.acm.org/doi/pdf/10.1145/2976749.2978392

Adv. configurations, how does it work?

- Configurations of a system = vector of (Binary) options
- Model is trained on few configurations
- Choose a (known) configuration
- ullet Apply gradient descent o **modifications** on the values of options
- Repeat gradient descent until happy

Adv. ML and software systems

Adv ML allows for:

- ullet Automatic generation of new configurations o iterative modifications
- ullet prediction error mitigation o adversarial retraining
- ullet enhanced design space coverage o adversarial configurations

Adv. ML and software systems

Adv ML allows for:

- ullet Automatic generation of new configurations o iterative modifications
- ullet prediction error mitigation o adversarial retraining
- ullet enhanced design space coverage o adversarial configurations

Future works

- Need for better support for domain constraints
- Integration with constraint solvers
- Can adv ML be used as a new sampling strategy?

Sum-up

- Introduce adv ML to variability
- ML models useful to deal with configurable design spaces
- Generate configurations with high risk of misclassification
- Open directions for new sampling strategies?
- Need for better constraint support

Sum-up

- Introduce adv ML to variability
- ML models useful to deal with configurable design spaces
- Generate configurations with high risk of misclassification
- Open directions for new sampling strategies?
- Need for better constraint support

Contact us:

- Journal: https://doi.org/10.1007/s10664-020-09915-7
- Open Access: https://hal.inria.fr/hal-03045797/document

```
Twitter: @pleupi22 / @acherm / @GPerrouin / @biggiobattista / @jmjezequel
```