Toric Geometry: Theorems and Definitions

Isaac Martin Lent 2022 Last compiled February 4, 2022

$\boldsymbol{\alpha}$. 4	. 4 .
	nte	ntc
\sim	1110	1163

1	Notation and Preliminaries	2
2	Modular Forms on $SL_2(\mathbb{Z})$	2

1 Notation and Preliminaries

Definition 1.1.

- $\mathfrak{h} = \{ \tau \in \mathbb{C} \mid \operatorname{Im}(\tau) > 0 \}$ is the upper half plane in \mathbb{C}
- $\operatorname{GL}_2(\mathbb{R})^+ = \{g \in \operatorname{GL}_2(\mathbb{R}) \mid \det(g) > 0\}$ is the set of all automorphisms of \mathbb{R}^2 with positive determinant
- $SL_2(\mathbb{R}) = \{g \in GL_2(\mathbb{R}) \mid \det(g) = 1\}$ is the standard special linear subgroup of $GL_2(\mathbb{R})$
- $\bullet \ \operatorname{SL}_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{R}) \;\middle|\; a,b,c,d \in \mathbb{Z} \right\} \text{ is the special linear subgroup of } \operatorname{GL}_2(\mathbb{Z}).$

Lemma 1.2. The group $GL_2(\mathbb{R})^+$ acts transitively on \mathfrak{h} by Möbius transformations (fractional linear transformations). That is, for any $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{R})$ and any $\tau = x + iy \in \mathfrak{h}$,

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \tau = \frac{a\tau + b}{c\tau + d} \in \mathfrak{h}$$

and

$$\tau = x + iy = \begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix} i.$$

Lemma 1.3. Suppose $k \in \mathbb{Z}$, $f : \mathfrak{h} \to \mathbb{C}$ is a meromorphic function, and $g \in GL_2(\mathbb{R})^+$. We define the **weight k** action of g on f to be the right action $(f \mapsto f|_k[g])$ where $f|_k[g] : \mathfrak{h} \to \mathbb{C}$ is a meromorphic function defined

$$f|_k[g](\tau) = \det(g)f(g\tau)j(g,\tau)^k,$$

where if
$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 then $j(g,\tau) = (c\tau + d)$.

Definition 1.4. Let $k \in \mathbb{Z}$ and let $\Gamma \leq SL_2(\mathbb{Z})$ be a subgroup of finite index. A **weakly modular function** of weight k and level Γ is a meromorphic function f on \mathfrak{h} such that for all $\gamma \in \Gamma$, $f|_k[\gamma] = f$. A **modular function** (of weight k and level Γ) is a weakly modular function which is meromorphic at ∞ . A **modular form** is a weakly modular function which is holomorphic in \mathfrak{h} and at ∞ . A **cuspoidal modular form** is a modular form which vanishes at ∞ .

2 Modular Forms on $SL_2(\mathbb{Z})$

Theorem 2.1. We let $\rho = e^{i\frac{2pi}{3}}$ and define

$$\mathcal{F} = \left\{ au \in \mathfrak{h} \;\middle|\; \mathrm{Re}(au) \leq rac{1}{2}, | au| \geq 1
ight\}.$$

Then

(a) Every $\tau \in \mathfrak{h}$ is in the $\overline{\Gamma(1)}$ orbit of an element of \mathcal{F}

(b) If $\tau \in \mathfrak{h}$, then $\operatorname{Stab}_{\overline{\Gamma(1)}}(\tau) = \{1\}$, except

$$\mathrm{Stab}_{\overline{\Gamma(1)}}(i) = \{1, S\}, \quad and \quad \mathrm{Stab}_{\overline{\Gamma(1)}}(\rho) = \{1, S, ST, (ST)^2\}.$$

(c) S, T generate $\overline{\Gamma(1)}$.

Proof:

(a) Suppose
$$\tau \in \mathfrak{h}$$
. If $\gamma \in \overline{\Gamma(1)}$ with $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ then

$$\operatorname{Im}(\gamma \tau) = \frac{\operatorname{Im}(\tau)}{\left|c \tau + d\right|^2}.$$

The set of numbers $c\tau + d$ form a subset of the lattice $\mathbb{Z}\tau \oplus \mathbb{Z}$ in \mathbb{C} , and therefore