what the heck happened in the 2016 presidential election?

an investigation into the aca

david azaria / dat-nyc-45 / feb 2017

so what was **my** problem statement?

"could **we** have seen the 2016 outcome coming from a mile away?'

and to whom does it even matter?

in reality, **anyone** who has some vested interest in predicting and/or better understanding elections and voter behavior

so what **datasets** did i look at?

2012 and 2016 presidential election data / individual on market aca prices across 2015, 2016, and 2017 plan years (all released the previous year)

and what will be the ML exercise?

could i use a machine learning model to accurately predict if a county will be won by donald trump using aca prices?

but first, a story...

...election night 2016...

...wtf?

2016

← see all that new red?

why didn't it look more like this? →

nb: i do not have an art degree

awful

tremendous

some normalization and parameter setting...nbd

```
sherlock['Huge Price Swing'] = np.where((sherlock.price pct ch > .50), 1, 0)
sherlock['election year'] = np.where(sherlock.year > 2016, 1, 0)
sherlock['Trump Win'] = np.where(sherlock.Trump > sherlock.Clinton, 1, 0)
sherlock['Obama Win'] = np.where(sherlock.Obama > sherlock.Romney, 1, 0)
sherlock['Clinton Win'] = np.where(sherlock.Clinton > sherlock.Trump, 1, 0)
sherlock['Romney Win'] = np.where(sherlock.Romney > sherlock.Obama, 1, 0)
sherlock['Whiter County'] = np.where(sherlock.White > .96, 1,0)
sherlock['Blacker County'] = np.where(sherlock.Black > .11, 1, 0)
sherlock['More Female County'] = np.where(sherlock.SEX255214 > 51, 1, 0)
sherlock['More Hispanic County'] = np.where(sherlock.Hispanic > .09, 1, 0)
sherlock['Immigrant County'] = np.where(sherlock.POP645213 > 6, 1, 0)
sherlock['Educated County'] = np.where(sherlock.Edu batchelors > 23.2, 1,0)
sherlock['Undereducated County'] = np.where(sherlock.Edu highschool < 85, 1, 0)</pre>
sherlock['Sig Population Change'] = np.where(sherlock.population change > 2.2, 1, 0)
sherlock['Older County'] = np.where(sherlock.age65plus > 20, 1, 0)
sherlock['Wealthier County'] = np.where(sherlock.INC110213 > 51000, 1, 0)
sherlock['Poorer County'] = np.where(sherlock.Poverty > 20, 1, 0)
sherlock['Denser County'] = np.where(sherlock.Density > 1000, 1,0)
sherlock['Rural County'] = np.where(sherlock.Density < 20, 1, 0)</pre>
sherlock['County Name'] = sherlock['county name x']
sherlock['State Code'] = sherlock['state code']
sherlock['More Republican'] = np.where(sherlock.votes gop 2016 > sherlock.votes gop 2012, 1, 0)
sherlock['More Democratic'] = np.where(sherlock.votes dem 2016 > sherlock.votes dem 2012, 1, 0)
```

sherlock['Turnout Increase'] = np.where(sherlock.total votes 2016 > sherlock.total votes 2012, 1, 0)

	Trump_Win	Clinton_Win	Obama_Win	Romney_Win	More_Republican	More_Democratic	Trump_Flip	Clinton_Flip	
Trump_Win	1.000000	-1.000000	-0.764808	0.764808	0.372652	-0.308569	0.116812	-0.185268	
Clinton_Win	-1.000000	1.000000	0.764808	-0.764808	-0.372652	0.308569	-0.116812	0.185268	check out "huge price
Obama_Win	-0.764808	0.764808	1.000000	-1.000000	-0.251218	0.175042	0.523178	-0.041366	swing"
Romney_Win	0.764808	-0.764808	-1.000000	1.000000	0.251218	-0.175042	-0.523178	0.041366	3WIII5
More_Republican	0.372652	-0.372652	-0.251218	0.251218	1.000000	-0.224167	0.080190	-0.127191	
More_Democratic	-0.308569	0.308569	0.175042	-0.175042	-0.224167	1.000000	-0.095188	0.184967	
Trump_Flip	0.116812	-0.116812	0.523178	-0.523178	0.080190	-0.095188	1.000000	-0.021642	
Clinton_Flip	-0.185268	0.185268	-0.041366	0.041366	-0.127191	0.184967	-0.021642	1.000000	
Huge_Price_Swing	0.123699	-0.123699	-0.119976	0.119976	0.060100	-0.050002	-0.025855	-0.021116	
Turnout_increase	0.132986	-0.132986	-0.211125	0.211125	0.294265	0.240971	-0.138936	0.046537	
Sig_Population_Change	-0.203048	0.203048	0.094041	-0.094041	-0.170768	0.473339	-0.097448	0.119203	
Educated_County	-0.338145	0.338145	0.268253	-0.268253	-0.254740	0.437223	-0.010309	0.107434	
Undereducated_County	0.008456	-0.008456	-0.067049	0.067049	0.031622	-0.099533	-0.107474	-0.037289	
Whiter_County	0.175768	-0.175768	-0.147909	0.147909	0.168342	-0.173623	-0.004953	-0.044933	
Blacker_County	-0.262642	0.262642	0.220826	-0.220826	-0.175447	0.058812	-0.012625	0.002538	
More_Female_County	-0.180803	0.180803	0.156444	-0.156444	-0.125471	0.073347	-0.013025	-0.035807	
More_Hispanic_County	-0.149045	0.149045	0.083517	-0.083517	-0.151540	0.336514	-0.057129	0.058255	
Older_County	0.161277	-0.161277	-0.123347	0.123347	0.086891	-0.136847	0.017280	-0.034984	
Wealthier_County	-0.153337	0.153337	0.119644	-0.119644	-0.117639	0.292276	0.001739	0.080276	
Poorer_County	-0.135471	0.135471	0.091156	-0.091156	-0.070026	-0.062770	-0.040612	0.009593	what also are you noticing?
Denser_County	-0.409308	0.409308	0.323132	-0.323132	-0.268227	0.310654	-0.023480	0.102315	what else are you noticing?
FIPS	0.023924	-0.023924	-0.012385	0.012385	0.036422	0.014163	0.013993	0.001064	
Rural_County	0.106740	-0.106740	-0.114863	0.114863	-0.052036	-0.120267	-0.044042	-0.029612	
Immigrant_County	-0.306069	0.306069	0.196577	-0.196577	-0.258915	0.468364	-0.076941	0.119634	

```
feature_cols = ['Huge_Price_Swing', 'Obama_Win']
X = sherlock_holmes[feature_cols]
y = sherlock_holmes['Trump_Win']

my original features
my original features
```

my coefficients

```
logreg.fit(X_train_std, y_train)
zip(feature_cols, logreg.coef_[0])

[('Huge_Price_Swing', 0.36036884062608088), ('Obama_Win', -2.2793813743741529)]
```

```
my accuracy score
```

```
from sklearn import metrics
print metrics.accuracy_score(y_test, y_pred_class)
```

0.923772609819

but i wasn't exactly satisfied...

...nor did i know whether that was outcome was significant

```
from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier()
X = sherlock holmes[['Huge Price Swing', 'Obama Win', 'Trump Win',
                     'Whiter County', 'Educated County', 'Turnout Increase']].dropna()
y = X['Trump Win']
X.drop('Trump_Win', axis=1, inplace=True)
model.fit(X, y)
from sklearn.tree import export graphviz
from os import system
def build tree image(model):
    dotfile = open("tree.dot", 'w')
    export graphviz(model,
                              out file = dotfile,
                              feature names = X.columns)
    dotfile.close()
    system("dot -Tpng tree.dot -o tree.png")
build_tree_image(model)
from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier()
X = sherlock holmes[['Huge Price Swing', 'Trump Flip', 'Turnout Increase']].dropna()
y = X['Trump Flip']
X.drop('Trump Flip', axis=1, inplace=True)
model.fit(X, y)
from sklearn.tree import export graphviz
from os import system
def build tree image(model):
    dotfile = open("tree.dot", 'w')
    export graphviz(model,
                              out file = dotfile,
                              feature names = X.columns)
    dotfile.close()
    system("dot -Tpng tree.dot -o tree.png")
build tree image(model)
```

Features	Importance Score			
Turnout_Increase	0.959275			
Huge_Price_Swing	0.040725			
rf not n	articularly			

rf not particularly conclusive or reassuring...

	Features	Importance Score
1	Obama_Win	0.815060
3	Educated_County	0.114795

0.033616

0.019695

0.016834

Whiter_County

Turnout_Increase

Huge_Price_Swing

