

- 35. Justifique, se é verdadeira ou falsa cada uma das afirmações seguintes:
 - (a) $91 \equiv 0 \pmod{7}$;
 - (b) $-2 \equiv 2 \pmod{8}$;
 - (c) $17 \not\equiv 13 \pmod{2}$.

35) a) 7/91.000 71:7×12 Vorladine

5) 8 / 2+2, Falson

c) 2/17-13 =1 2/14 Falsa

36. Para que valores de n se tem $25 \equiv 4 \pmod{n}$?

m/25-4 = m/21

Dal= {-21,-7,-3,-1,1,3,7,21}

Pala - 21e21
25 [-2]

- 37. Prove que
 - (a) se $a \equiv b \pmod{n}$ e $m \mid n$, então $a \equiv b \pmod{m}$;
 - (b) se $a \equiv b \pmod{n}$ e c > 0, então $ca \equiv cb \pmod{n}$.

37

a)
$$a \equiv b$$
 (recol u) => $n \mid a = b$
 $u = b = a - b$
 $u = b = a - b$
 $u = a -$

b)
$$a \equiv b \pmod{n} \implies ny = a \cdot b$$
 $c > 0$

$$ca - ch = c(a \cdot b) = c(ny) = nx(yxe) - n \text{ enter}, n | ca - cb,$$
ou seja $ca \equiv cb \pmod{n}$

38. Dê um exemplo que mostre que $a^2 \equiv b^2 (\operatorname{mod} n)$ não implica que $a \equiv b \, (\operatorname{mod} n)$.

$$n | \alpha^2 - 5^2$$
 was $n | \alpha - b$
 $n = 5$, $\alpha = 4$, $b = 1$
 $5 | 4^2 - 1^2$ (=1) $5 | 16 - 1 = 15 | 115 - b$ P.V pq $5 \times 3 = 15$
was $5 + 4 - 1 = 15 + 3$.

Restor na divisées por 5: {C,1,2,3,4} 39. Determine quais dos seguintes conjuntos são sistemas completos de resíduos módulo 5:

- (a) $\{-2, -1, 0, 1, 2\}$;
- (b) {0, 5, 10, 15, 20};
- (c) {5, 11, 2, 13, 29};
- (d) $\{-6, -3, 0, 3, 6\}$.

39) a)
$$-2 = 3 \pmod{5}$$

 $-1 = 4 \pmod{5}$
 $0 = 0 \pmod{5}$
 $1 = 1 \pmod{5}$
 $2 = 2 \pmod{5}$

b) $0 = 0 \pmod{5}$, $5 = 5 \pmod{5}$, $10 = 10 \pmod{5}$, $15 = 15 \pmod{5}$, $20 = 20 \pmod{5}$ credo.

d)
$$-6 = 4 \pmod{5}$$
, $-3 = 2 \pmod{5}$ $0 = 0 \pmod{5}$ $3 = 3 \pmod{5}$ $6 = 1 \pmod{5}$ correlo.

- 40. Indique, justificando, caso existam:
 - (a) um inteiro primo x tal que $x \in [-22]_{15} \cap [8]_{15};$
 - (b) dois elementos x,y em $[20]_{15} \times ([39]_{15} + [-80]_{15})$ tais que -40 < x < 0 e y > 80;
 - (c) um número primo x tal que $x \equiv 6 \pmod{12}$;
 - (d) dois elementos distintos em $[-182]_9 \cap [20]_9;$
 - (e) o maior número par n tal que $-89 \equiv 5 \pmod{n}$;
 - (f) o maior inteiro x par, não positivo, tal que $x \equiv 50 \pmod{109}$.

0)

26 [-22] 15 N[8] 15

x= 8 (mod 13)

x=-22(~od 15)=1

1 n = 8 (mod 15)

15/91-8 _ se=23, que é'interco o é prives.

(5) $(20)_{15} \times ((239)_{15} + (-86)_{15}) =$

=
$$[20]_{15} \times [11]_{15} = [5]_{15} \times [11]_{15} = [55]_{15} = [10]_{15}$$

= $[50]_{15} \times [11]_{15} = [5]_{15} \times [11]_{15} = [55]_{15} = [10]_{15}$

= $[50]_{15} \times [11]_{15} = [5]_{15} \times [11]_{15} = [55]_{15} = [10]_{15}$

= $[50]_{15} \times [11]_{15} = [5]_{15} \times [11]_{15} = [55]_{15} = [10]_{15}$

= $[50]_{15} \times [11]_{15} = [5]_{15} \times [11]_{15} = [55]_{15}$

= $[50]_{15} \times [11]_{15} = [53]_{15} \times [11]_{15} = [55]_{15}$

= $[50]_{15} \times [11]_{15} = [53]_{15} \times [11]_{15} = [55]_{15}$

= $[50]_{15} \times [11]_{15} = [53]_{15} \times [11]_{15} = [55]_{15}$

= $[50]_{15} \times [11]_{15} = [53]_{15} \times [11]_{15} = [55]_{15}$

= $[50]_{15} \times [11]_{15} = [53]_{15} \times [11]_{15} = [55]_{15}$

= $[50]_{15} \times [11]_{15} = [53]_{15} \times [11]_{15} = [55]_{15}$

= $[50]_{15} \times [11]_{15} = [53]_{15} \times [11]_{15} = [55]_{15}$

= $[50]_{15} \times [11]_{15} = [53]_{15} \times [11]_{15} = [55]_{15}$

= $[50]_{15} \times [11]_{15} = [53]_{15} \times [11]_{15} = [55]_{15}$

= $[50]_{15} \times [11]_{15} = [53]_{15} \times [11]_{15} = [55]_{15}$

= $[50]_{15} \times [11]_{15} = [53]_{15} \times [11]_{15} = [55]_{15}$

= $[50]_{15} \times [11]_{15} = [53]_{15} \times [11]_{15} = [55]_{15}$

= $[50]_{15} \times [11]_{15} = [53]_{15} \times [11]_{15} = [55]_{15}$

= $[50]_{15} \times [11]_{15} = [53]_{15} \times [11]_{15} = [55]_{15}$

= $[50]_{15} \times [11]_{15} = [50]_{15}$

= $[50]_{15} \times [11]_{15}$

$$d = + (wedq)$$

$$d = 2 (wedq)$$

$$wedq$$

e)
n | 5+89=5 m 194

M-- 94

f) n= 50 (wod 101)

Coule - 109 suà icrepossive). Tetà de ser cone - 109 x 2 = - 218

41. Determine o resto da divisão de $2357 \times 1036 + 499$ por 11.

(2357 × 1036 + 499)/11 2357 = 7+3-x (read 11) (2357 × 1036 + 499) = 3×2+4 (recod 11)

=1 (235) ×1036+499) = 10 (Leod 11)

$$2357 = 7+3-7$$
 (read 11)
 $1636 = 6-4$ (read 11)
 $499 = 9+4-9$ (read 11)

42. Na divisão por 5, um inteiro p admite resto 3. Qual é o resto da divisão de $p^2 + 2p - 1$ por 5?

$$P = 3(\text{veod } 5)$$

$$P = 3(\text{veod } 5)$$

$$P = 59+3$$

$$Sq + 3^{2} + 3(5q+3) - 1 = 5(5q^{2} + 6q + 2q) + 9 + 6 - 1 = 5a + 161$$

$$= 5a + 161$$

$$P^{2} + 2p - 1 = 16(\text{veod } 5) = 1$$

$$P = 3(\text{veod } 5) = P^{2} = 9(\text{veod } 5) = 1$$

$$P = 3(\text{veod } 5) = P^{2} = 9(\text{veod } 5) = 1$$

$$P = 7^{2} + 2p = 9 + 6(\text{veod } 5) = 1$$

$$P = 7^{2} + 2p - 1 = 9 + 6(\text{veod } 5) = 1$$

$$P = 7^{2} + 2p - 1 = 9 + 6(\text{veod } 5) = 1$$

$$P = 7^{2} + 2p - 1 = 9 + 6(\text{veod } 5) = 1$$

43. Indique os restos das divisões de 2^{50} e 41^{63} por 7.

43)
$$\lambda^{3} = 1 \pmod{3} = 1$$

$$\lambda^{3 \times 16} = 1 \pmod{3} = 1$$

$$\lambda^{3 \times 16} \times \lambda^{2} = 1 \times \lambda^{2} \pmod{3} = 1$$

$$\lambda^{3 \times 16} \times \lambda^{2} = 1 \times \lambda^{2} \pmod{3} = 1$$

$$\lambda^{3 \times 16} \times \lambda^{2} = 1 \times \lambda^{2} \pmod{3} = 1$$

$$\lambda^{3 \times 16} \times \lambda^{2} = 1 \times \lambda^{2} \pmod{3} = 1$$

$$\lambda^{3 \times 16} \times \lambda^{2} = 1 \times \lambda^{2} \pmod{3} = 1$$

$$\lambda^{4 \times 16} \times \lambda^{2} = 1 \times \lambda^{2} \pmod{3} = 1$$

$$\lambda^{4 \times 16} \times \lambda^{2} = 1 \times \lambda^{2} \pmod{3} = 1$$

$$\lambda^{4 \times 16} \times \lambda^{2} = 1 \times \lambda^{2} \pmod{3} = 1$$

$$\lambda^{4 \times 16} \times \lambda^{2} = 1 \times \lambda^{2} \pmod{3} = 1$$

$$\lambda^{4 \times 16} \times \lambda^{4} = 1 \times \lambda^{2} \pmod{3} = 1$$

$$\lambda^{4 \times 16} \times \lambda^{4} = 1 \times \lambda^{2} \pmod{3} = 1$$

$$\lambda^{4 \times 16} \times \lambda^{4} = 1 \times \lambda^{2} \pmod{3} = 1$$

$$\lambda^{4 \times 16} \times \lambda^{4} = 1 \times \lambda^{2} \pmod{3} = 1$$

$$\lambda^{4 \times 16} \times \lambda^{4} = 1 \times \lambda^{4} \pmod{3} = 1$$

$$\lambda^{4 \times 16} \times \lambda^{4} = 1 \times \lambda^{4} \pmod{3} = 1$$

$$\lambda^{4 \times 16} \times \lambda^{4} = 1 \times \lambda^{4} \pmod{3} = 1$$

$$\lambda^{4 \times 16} \times \lambda^{4} = 1 \times \lambda^{4} \pmod{3} = 1$$

$$\lambda^{4 \times 16} \times \lambda^{4} = 1 \times \lambda^{4} \pmod{3} = 1$$

$$\lambda^{4 \times 16} \times \lambda^{4} = 1 \times \lambda^{4} \pmod{3} = 1$$

$$\lambda^{4 \times 16} \times \lambda^{4} = 1 \times \lambda^{4} \pmod{3} = 1$$

$$\lambda^{4 \times 16} \times \lambda^{4} = 1 \times \lambda^{4} \pmod{3} = 1$$

$$\lambda^{4 \times 16} \times \lambda^{4} = 1 \times \lambda^{4} \pmod{3} = 1$$

$$\lambda^{4 \times 16} \times \lambda^{4} = 1 \times \lambda^{4} \pmod{3} = 1$$

$$\lambda^{4 \times 16} \times \lambda^{4} = 1 \times \lambda^{4}$$

44. Calcule o resto da divisão de 4²¹⁵ por 9.

4. Calcule o resto da divisao de 4 por 9.

4.
$$4^3 \equiv 1 \pmod{9}$$
 $= 7$
 $4^{3 \times 41} \equiv 1 \pmod{9} = 1 + 213 \times 4^2 \equiv 1 \times 4^2 \pmod{9} = 1$
 $4^3 \equiv 1 \pmod{9} = 1 + 213 \times 4^2 \equiv 1 \times 4^2 \pmod{9} = 1$
 $4^3 \equiv 1 \pmod{9} = 1 + 213 \equiv 1 \pmod{9} = 1$
 $4^3 \equiv 1 \pmod{9} = 1 + 213 \equiv 1 \pmod{9} = 1$
 $4^3 \equiv 1 \pmod{9} = 1 + 213 \equiv 1 \pmod{9} = 1$
 $4^3 \equiv 1 \pmod{9} = 1 + 213 \equiv 1 \pmod{9} = 1$
 $4^3 \equiv 1 \pmod{9} = 1 + 213 \pmod{9} = 1$
 $4^3 \equiv 1 \pmod{9} = 1 + 213 \pmod{9} = 1$
 $4^3 \equiv 1 \pmod{9} = 1 + 213 \pmod{9} = 1$
 $4^3 \equiv 1 \pmod{9} = 1 + 213 \pmod{9} = 1$
 $4^3 \equiv 1 \pmod{9} = 1 + 213 \pmod{9} = 1$
 $4^3 \equiv 1 \pmod{9} = 1 + 213 \pmod{9} = 1$
 $4^3 \equiv 1 \pmod{9} = 1 + 213 \pmod{9} = 1$
 $4^3 \equiv 1 \pmod{9} = 1 + 213 \pmod{9} = 1$
 $4^3 \equiv 1 \pmod{9} = 1 + 213 \pmod{9} = 1$

45. Mostre que $11^{10} \equiv 1 \pmod{100}$. Nevodo da força brute:

45. Mostre que $11^{10} \equiv 1 \pmod{100}$. Télodo da força brute: $(10+1)^{11} = (10+1)^{4} (10+1)^{4} (10+1)^{2}$ 10 cm + 10 ~ resto = 1 (rebliquees o Sinéruie de Newtore) bodesos " no destaccuta Cour as propriededes de ruodn, acumulado" 81×81 = = 6400+1600+1 11 × 9 = -1 (wood 100) 9 = 1 (mod 100) = 8000 + 1, =1 (11 ×9)0 = (1) (read (160) 9 ×9 = 81 (read 100) 19 x 4 = 76 los, podeuer cortae, / Keio Masiada, $= 110^{10} = (-1)^{10} \pmod{\frac{100}{1}} = 1$ =: 110 = 10 (need 100) Lee. d. C (910, 100) = 1 fatoriquel, Verences que a velière de visor cc. une é l.