L'algebra relazionale come linguaggio di interrogazione

P. Rullo

rullo@unical.it

AR per le interrogazioni

- Usando gli operatori dell'AR è possibile costruire delle espressioni che producono come risultato una relazione
- Tali espressioni possono essere utilizzate per formulare interrogazioni sulle BD relazionali

Base di Dati di esempio

- Prodotto(<u>codP</u>, colore, prezzo, forn*)
- Fornitore(<u>codF</u>, nome, città)
- Composizione(prod*, comp*)
- Gli attributi *prod* e *comp* sono chiavi secondarie definite sul codice dei prodotti

Base di Dati di esempio

- Prodotto(<u>codP</u>, colore, prezzo, forn*)
- Fornitore(<u>codF</u>, nomeF, città)
- Composizione(prod*, comp*)

SCHEMA LOGICO

Prodotto

codP	colore	prezzo	forn
p1	giallo	100	f2
p2	verde	50	f2
р3	giallo	60	f1
p4	rosso	150	f1

Fornitore

codF	nome	città
f1	lucio	roma
f2	lucia	parma

Composizione

prod	comp
p1	p2
p1	р3
p2	p3
p2	p4
р3	p4

BASE DI DATI

- Prodotto(<u>codP</u>, colore, prezzo, forn*)
- Fornitore(<u>codF</u>, nome, città)
- Composizione(prod*, comp*)
- Codice dei componenti del prodotto p1

$$\pi_{comp}(\sigma_{prod=p1}(Composizione))$$

 Tutta l'informazione è racchiusa nella relazione Composizione, per cui è sufficiente utilizzare operatori unari

• Codice dei componenti del prodotto p1

- Prodotto(<u>codP</u>, colore, prezzo, forn*)
- Fornitore(<u>codF</u>, nome, città)
- Composizione(prod*, comp*)
- Codice e prezzo dei prodotti rossi oppure forniti da f1

$$\pi_{codP,prezzo}(\sigma_{colore=rosso\ OR\ forn=f1}(Prodotto))$$

Formulazione alternativa

 $\pi_{codP,prezzo}(\sigma_{colore=rosso} Prodotto \cup \sigma_{forn=f1} Prodotto)$

- Prodotto(<u>codP</u>, colore, prezzo, forn*)
- Fornitore(<u>codF</u>, nome, città)
- Composizione(prod*, comp*)
- Colore dei prodotti di cui è componente il prodotto p3
 - Relazioni coinvolte: Prodotto e Composizione

```
\pi_{colore}(\sigma_{comp=p3}(Composizione \bowtie_{prod=codP} Prodotto))
```

$$\pi_{colore}(\sigma_{comp=p3}(Composizione) \bowtie_{prod=codP} Prodotto)$$

 NOTA: Il join tra Prodotto e Composizione si basa su una condizione di uguaglianza tra la chiave primaria codP e la chiave secondaria prod

 $\pi_{colore}(\sigma_{comp=p3}(Composizione \bowtie_{prod=codP} Prodotto))$

Prodotto

col=giallo

codP	colore	prezzo	forn
p1	giallo	100	f2
p2	verde	50	f2
р3	giallo	60	f1
p4	rosso	150	f1

Composizione

prod	comp
p1	p2
p1	р3
p2	р3
p2	p4
рЗ	р4

codP	colore	prezzo	forn	comp
p1	giallo	100	f2	p2
p1	giallo	100	f2	р3
p2	verde	50	f2	р3
p2	verde	50	f2	p4
рЗ	giallo	60	f1	p4

 $Composizione \bowtie_{prod=cod} Prodotto$

comp=p3

- Prodotto(<u>codP</u>, colore, prezzo, forn*)
- Fornitore(<u>codF</u>, nome, città)
- Composizione(prod*, comp*)
- Nome dei fornitori dei prodotti di colore giallo
 - Relazioni coinvolte: Prodotto e Fornitore

```
\pi_{nome}(\sigma_{colore=giallo}Prodotto \bowtie_{forn=codF} Fornitore)
```

ESERCIZIO

Codici dei Fornitori di prodotti che hanno il componente p2

- Prodotto(<u>codP</u>, colore, prezzo, forn*)
- Fornitore(<u>codF</u>, nome, città)
- Composizione(prod*, comp*)
- Codici e nomi dei Fornitori di prodotti che hanno il componente p2

$$\pi_{codF,nome}\left(\left(Prod \bowtie_{codP=prod} \left(\sigma_{comp=p2}Comp\right)\right)\bowtie_{forn=codF}Forn\right)$$

$$\pi_{codF,nome}\left(\left(Prod \bowtie_{codP=prod} \left(\sigma_{comp=p2}Comp\right)\right)\bowtie_{forn=codF}Forn\right)$$

codP	colore	prezzo	forn
p1	giallo	100	f2
p2	verde	50	f2
р3	giallo	60	f1
p4	rosso	150	f1

Fornitore

risultato

1	codF	nome	città
V	f1	lucio	roma
	f2	lucia	parma

prod	comp
p1	p2
p1	p3
p2	р3
p2	p4
р3	p4

Prod che hanno comp=p2

- Prodotto(<u>codP</u>, colore, prezzo, forn*)
- Fornitore(<u>codF</u>, nome, città)
- Composizione(prod*, comp*)
- Nomi dei Fornitori dei componenti di prodotti di colore giallo

$$\pi_{nomeF}(((\sigma_{col=giallo}Prod\bowtie_{codP=prod}Comp)\bowtie_{codP=comp}Prod)\bowtie_{forn=codF}Forn)$$

equivalente a

$$\pi_{nomeF}(\sigma_{col=giallo}Prod \bowtie_{codP=prod} Comp \bowtie_{comp=codP} Prod \bowtie_{forn=codF} Forn)$$

 $\pi_{nomeF}(\sigma_{col=giallo}Prod \bowtie_{codP=prod} Comp \bowtie_{comp=codP} Prod \bowtie_{forn=codF} Forn)$

Prodotti gialli prod comp forn **p1** p2 codP colore prezzo р3 f2 p1 giallo 100 p1 M p2 p3 giallo 60 f1 р3 p2 p4 codP=prod р3

	codP	colore	prezzo	forn	
	p1	giallo	100	f2	\bowtie
\	p2	verde	50	f2	· · · · · · · · · · · · · · · · · · ·
	р3	giallo	60	f1	forn=codF
	p4	rosso	150	f1	

Fornitore

	codF	nome	città
\rightarrow	f1	lucio	roma
F	f2	lucia	parma

M

comp=codP

- Prodotto(<u>codP</u>, colore, prezzo, forn*)
- Fornitore(<u>codF</u>, nome, città)
- Composizione(prod*, comp*)
- Coppie di codici di prodotti con lo stesso prezzo
 - Relazioni coinvolte: Prodotto

```
\pi_{codP,codP'}(\sigma_{codP \neq codP' \land prezzo = prezzo')}(Prodotto \bowtie Prodotto'))
Prodotto' = \rho_{codP' \leftarrow codP,colore' \leftarrow colore,prezzo' \leftarrow prezzo,forn' \leftarrow forn} Prodotto
```

 NOTA: per fare il prodotto cartesiano di Prodotto con se stesso abbiamo dovuto procedere ad una ridenominazione di Prodotto

 \bowtie

Prodotto

codP	colore	prezzo	forn
p1	giallo	100	f2
p2	verde	50	f2
р3	giallo	100	f1
p4	rosso	150	f1

Prodotto'

codP'	colore'	prezzo'	Forn'
p1	giallo	100	f2
p2	verde	50	f2
р3	giallo	100	f1
p4	rosso	150	f1

Prodotto x Prodotto'

codP	colore	prezzo	forn	codP'	colore'	prezzo'	Forn'
p1	giallo	100	f2	p1	giallo	100	f2
p1	giallo	100	f2	p2	verde	50	f2
p1	giallo	100	f2	р3	giallo	100	f1
•	:		••	••		:	
p2	verde	50	f2	p1	giallo	100	f2
••	••	••		••		••	••
р3	giallo	100	f1	p1	giallo	100	f2

codP≠codP' ∧ prezzo=prezzo'

Interrogazioni – uso di Join esterni

Prodotto

codP	colore	prezzo	forn
p1	giallo	100	f2
p2	verde	50	f2
р3	giallo	60	f1
p4	rosso	150	f1

$$\bowtie_{codP=prod}^{L}$$

Composizione

prod	comp
p1	p2
p1	р3
p2	р3
p2	p4
р3	p4

codP	colore	prezzo	forn	comp
p1	giallo	100	f2	p2
p1	giallo	100	f2	р3
p2	verde	50	f2	р3
p2	verde	50	f2	p4
рЗ	giallo	60	f1	p4
p4	rosso	150	f1	NULL

Tutti i prodotti con relativi **eventuali** componenti

Interrogazioni – Unione e Intersezione

- Persona(<u>CF</u>, nome)
- Padre(padre*, figlio*)
- Madre(madre*, figlio*)
- Generare la relazione Genitore

$$Gen(gen, figlio) = \rho_{gen \leftarrow padre} Padre \cup \rho_{gen \leftarrow madre} (Madre)$$

Persona

CF	nome
x	nino
Υ	marta
Z	clara
W	gino

Padre

radic				
padre	figlio			
х	У			
w	Z			

Madre

IVIGGIC				
madre	figlio			
Z	У			

Ger

gen	figlio
Х	У
Z	У
W	Z

Interrogazioni – Unione e Intersezione

- Prodotto(<u>codP</u>, colore, prezzo, forn*)
- Fornitore(<u>codF</u>, nome, città)
- Composizione(prod*, comp*)

Esercizio

- 1. Codici dei fornitori che forniscono sia il prodotto p1 sia il prodotto p2
- 2. Codici dei fornitori che hanno lo stesso nome del fornitore f1 o f2
- 3. Codici dei fornitori che forniscono il prodotto p1 oppure sono di Roma
- 4. Codici dei prodotti che hanno tra i loro component sia p1 che p2

- Prodotto(<u>codP</u>, colore, prezzo, forn*)
- Fornitore(<u>codF</u>, nome, città)
- Composizione(prod*, comp*)
- ➤ Codice dei prodotti che NON hanno componenti
 - Relazioni coinvolte: Prodotto e Composizione

$$\pi_{codP}(Prodotto) - \rho_{codP \leftarrow prod} (\pi_{prod}(Composizione))$$

• NOTA: interrogazione *negativa*. In AR è necessario usare l'operatore "differenza"

➤ Codice dei prodotti che NON hanno componenti

codP	colore	prezzo	forn
p1	giallo	100	f2
p2	verde	50	f2
р3	giallo	60	f1
p4	rosso	150	f1

prod	comp
p1	p2
p1	р3
p2	рЗ
p2	p4
p3	p4

 $= \{p4\}$

Prodotti che non hanno componenti

Tutti I prodotti

Prodotti che hanno qualche componente

- Prodotto(<u>codP</u>, colore, prezzo, forn*)
- Fornitore(<u>codF</u>, nome, città)
- Composizione(prod*, comp*)
- Codici dei fornitori che NON forniscono il prodotto p1
 - Relazioni coinvolte: Prodotto e Fornitore

$$\pi_{codF}Forn - \rho_{codF \leftarrow forn}(\pi_{forn}(\sigma_{codP=p1}Prod))$$

 All'insieme dei codici dei fornitori detraiamo quelli che forniscono p1

- Prodotto(<u>codP</u>, colore, prezzo, forn*)
- Fornitore(<u>codF</u>, nome, città)
- Composizione(prod*, comp*)
- Codici dei prodotti che NON hanno componenti con un prezzo maggiore di 100
- Suddividiamo il problema in due sottoproblemi:
 - codici dei prodotti che hanno qualche componente con un prezzo maggiore di 100

$$R(prod) = \pi_{prod} \left(Composizione \bowtie_{comp=codP} \left(\sigma_{prezzo>100} Prodotto \right) \right)$$

 differenza tra l'insieme dei codici di tutti i prodotti e quello calcolato al passo precedente

$$\pi_{codP} Prodotto - \rho_{codP \leftarrow prod} R$$

- Prodotto(<u>codP</u>, colore, prezzo, forn*)
- Fornitore(<u>codF</u>, nome, città)
- Composizione(prod*, comp*)
- Codici dei prodotti i cui componenti sono *TUTTI* di colore giallo (oppure, codici dei prodotti che hanno SOLO componenti gialli)
 - Riformulazione: codici dei prodotti che NON hanno alcun componente di colore diverso dal giallo
- Negazione implicita

- Codici dei prodotti che NON hanno alcun componente di colore diverso dal giallo
 - codici dei prodotti che hanno qualche componente di colore diverso dal giallo

$$R(prod) = \pi_{prod} \left(Composizione \bowtie_{comp=codP} \left(\sigma_{colore \neq giallo} Prodotto \right) \right)$$

 differenza tra l'insieme dei codici di tutti i prodotti e quello calcolato al passo precedente

$$\pi_{codP} Prodotto - \rho_{codP \leftarrow prod} R$$

Base di Dati di esempio

- Prodotto(<u>codP</u>, colore, prezzo, forn*)
- Fornitore(<u>codF</u>, nomeF, città)
- Composizione(prod*, comp*)

Prodotto

codP	colore	prezzo	forn
p1	giallo	100	f2
p2	verde	50	f2
р3	rosso	60	f1
p4	rosso	150	f1

Composizione

prod	comp	
p1	p2	
p1	р3	
p2	p1	
р3	p2	
р3	p4	

Fornitore

codF	nome	città
f1	lucio	roma
f2	lucia	parma

$$R(prod) = \pi_{prod} \left(C \bowtie_{comp=codP} \left(\sigma_{col \neq giallo} P \right) \right)$$
$$= \{ \rho_{1}, \rho_{3} \}$$

$$S(codP) = \pi_{codP}P - R_{codP \leftarrow prod} = \{p_2, p_4\}$$

- Prodotto(<u>codP</u>, colore, prezzo, forn*)
- Fornitore(<u>codF</u>, nome, città)
- Composizione(prod*, comp*)
- Codici dei prodotti che hanno *SOLO* il componente p3
 - Riformulazione: codici dei prodotti che hanno il componente p3 e NON hanno alcun altro componente
- Negazione implicita

- Codici dei prodotti che hanno il componente p3 e NON hanno alcun altro componente
 - Codici dei prodotti che hanno qualche componente diverso da p3

$$R(prod) = \pi_{prod}(\sigma_{comp \neq p3}Comp)$$

 differenza tra l'insieme dei codici di tutti i prodotti e quello calcolato al passo precedente

$$\pi_{prod}(\sigma_{comp=p3}Comp) - R(prod)$$

Codici dei prodotti che hanno solo il componente p3

$$\pi_{prod}(\sigma_{comp=p3}Comp) - \pi_{prod}(\sigma_{comp\neq p3}Comp)$$

prod	comp	
p1	p2	
p1	р3	
p2	р3	
p3	p2	
р3	p4	

prod	comp
p1	p2
p3	p2
p3	p4
p1	р3
p2	р3

$$= \{p2\}$$

- Prodotto(<u>codP</u>, colore, prezzo, forn*)
- Fornitore(<u>codF</u>, nome, città)
- Composizione(prod*, comp*)
- ➤ Codici dei prodotti componenti di un *UNICO* prodotto
 - Riformulazione: codici dei componenti che NON sono componenti di almeno due prodotti

prod	comp	
p1	p2	
p1	рЗ	
p2	p3	
рЗ	p2	
р3	p4	

Codici dei componenti che NON sono componenti di almeno due prodotti

```
\pi_{comp}Comp - \pi_{comp}(\sigma_{comp=comp' \land prod \neq prod'}(Comp \bowtie Comp'))
Comp' = \rho_{prod' \leftarrow prod, comp' \leftarrow comp}(Comp)
```

- La sotto-espressione di destra della prima espressione calcola, attraverso il prodotto cartesiano, i codici dei componenti di almeno due prodotti
- Con la differenza si individuano quindi i codici dei componenti di un unico prodotto

$$\pi_{comp}Comp - \pi_{comp}(\sigma_{comp=comp'\land prod \neq prod'}(Comp \bowtie Comp'))$$

$$Comp' = \rho_{prod' \leftarrow prod,comp' \leftarrow comp}(Comp)$$

comp'

prod	comp	
p1	p2	
p1	р3	
p2	р3	
рЗ	p2	
рЗ	p4	

prod'

prod	comp	prod'	comp'
p1	p2	p1	p2
p1	p2	p1	рЗ
p1	p2	рЗ	p2
		••	••
p1	рЗ	p2	р3
	••	••	••

$$\pi_{comp}Comp - \pi_{comp}(\sigma_{comp=comp'\land prod \neq prod'}(Comp \bowtie Comp'))$$

$$Comp' = \rho_{prod' \leftarrow prod,comp' \leftarrow comp}(Comp)$$

prod	comp	
p1	p2	
p1	p3	
p2	р3	
p3	p2 /	
р3	p4	

prod'	comp'	
p1	p2	
p1	р3	
p2	р3	
р3	p2	
р3	р4	

=

prod	comp	prod'	comp'
p1	p2	p1	p2
p1	p2	p1	рЗ
p1	p2	р3	p2
••	••	••	••
p1	p3	p2	p3
••		••	••

 π_{comp}

 $\pi_{comp}Comp$

 $\sigma_{comp=comp'\land prod\neq prod'}$

La differenza tra l'insieme blue e quello rosso produce il risultato finale {p4}

- Prodotto(<u>codP</u>, colore, prezzo, forn*)
- Fornitore(<u>codF</u>, nome, città)
- Composizione(prod*, comp*)
- Codici dei prodotti che hanno tra i componenti TUTTI quelli di colore giallo
 - Riformulazione: codici dei prodotti tali per cui NON esiste un prodotto di colore giallo che NON sia loro componente
- (doppia) negazione implicita

- Prodotto(<u>codP</u>, colore, prezzo, forn*)
- Fornitore(codF, nome, città)
- Composizione(prod*, comp*)

$$S(prod,comp) = \left(\pi_{codP}P \bowtie \pi_{comp}\left(\rho_{comp \leftarrow codP}(\sigma_{col=giallo}P)\right) - C\right)$$

$$R(prod) = \pi_{prod}(\rho_{prod \leftarrow codP}P) - \pi_{prod}R$$

dove

- C= Composizione
- P= Prodotto

$$S(prod, comp) = \left(\pi_{codP}P \bowtie \pi_{comp}\left(\rho_{comp \leftarrow codP}(\sigma_{col=giallo}P)\right) - C\right)$$

$$R(prod) = \pi_{prod}(\rho_{prod \leftarrow codP}P) - \pi_{prod}R$$

- La sotto-espressione di destra nella definizione di R calcola una relazione che associa, come componenti, ad ogni codice prodotto i codici dei prodotti di colore giallo
- Se un prodotto con codice p non ha, tra i suoi componenti, tutti quelli gialli, allora una tupla <p, p'> appare in R quindi R contiene i prodotti che NON contengono, tra i loro componenti, tutti quelli gialli
- La relazione S (che è il complemento di R) contiene quindi tutti i prodotti che hanno, tra i loro componenti, tutti quelli di colore giallo

Esercizi - Uso della differenza

- Prodotto(<u>codP</u>, colore, prezzo)
- Fornitore(<u>codF</u>, nome, città)
- Composizione(prod*, comp*)
- Fornitura (prod*, forn*)
- Gli attributi asteriscati sono chiavi secondarie

Esercizi - Uso della differenza

Esercizi (usare la BD della slide precedente)

- codici dei fornitori che forniscono il prodotto p1 e non il prodotto p2
- 2. codici dei fornitori che non forniscono prodotti di colore rosso
- 3. codici dei prodotti che non sono forniti a Cosenza
- 4. codici dei fornitori che non forniscono p1 o p2
- 5. codici dei fornitori che non forniscono p1 e p2

Esercizi - Uso della differenza

- 6. Codici dei fornitori che forniscono *tutti* i prodotti forniti dal fornitore f1
 - NOTA: la query può essere riformulata come segue: codici dei fornitori per cui NON esiste un prodotto fornito da f1 che NON sia fornito anche da loro
- 7. Codici dei fornitori che forniscono *solo* prodotti forniti dal fornitore f1
- 8. Codici dei fornitori che forniscono *tutti e solo* i prodotti forniti dal fornitore f1
- 9. Data una relazione unaria (cioè con un unico attributo) R(A), le cui tuple sono numeri naturali, calcolare il massimo

AR - Conclusioni

- Query positive: proiezione, selezione, join, unione, intersezione
- Query negative: necessario l'uso della differenza
- É un linguaggio procedurale