第二組 CMO2013

410631105 王嘉顥

410631106 王士齊

410631116 劉家宇

410631125 李宥德

410631127 張茗洋

1.代數

Determine all polynomials P(x) with real coefficients such that

$$(x+1)P(x-1) - (x-1)P(x)$$

is a constant polynomial.

定義實係數多項式P(x)使得

$$(x+1)P(x-1) - (x-1)P(x)$$
為常數多項式

類似題:

定義實係數多項式P(x)使得

$$(x + 100)P(x - 1) - (x - 999)P(x)$$

為常數多項式

2.數論

有一數列 $a_1, a_2,, a_n$ 由 1,2, ..., n 按順序組成。

試問是否存在正整數n,可以讓

0, a_1 , $a_1 + a_2$, $a_1 + a_2 + a_3$,, $a_1 + a_2 + \cdots + a_n$

3.幾何

令G為直角三角形ABC的重心,且 $\angle BCA = 90$ ° 令P是 \overrightarrow{AG} 上的一點,使得 $\angle CPA = \angle CAB$,令Q 是 \overrightarrow{BG} 上的一點,使得 $\angle CQB = \angle ABC$,證明三 角形AQG的外接圓和三角形BPG相交於AB邊上 的一點

4.代數

Let *n* be a positive integer.

For any positive integer j and positive real number r, define $f_i(r)$ and $g_i(r)$ by

$$f_j(r) = \min(jr, n) + \min(\frac{j}{r}, n)$$

$$g_j(r) = \min(\lceil jr \rceil, n) + \min(\lceil \frac{j}{r} \rceil, n)$$

where [x] denotes the smallest integer greater than or equal to x.

Prove
$$\sum_{j=1}^{n} f_j(r) \le n^2 + n \le \sum_{j=1}^{n} g_j(r)$$

for all positive real numbers r.

4.

令n為一個正整數,

對正整數j,正實數r,定義函數 $f_j(r)$ 、 $g_j(r)$

 $f_j(r) = \min(jr, n) + \min(\frac{j}{r}, n)$

 $g_j(r) = \min(\lceil jr \rceil, n) + \min(\lceil \frac{j}{r} \rceil, n)$

[x]為所有大於等於x的整數的最小值

證
$$\sum_{j=1}^n f_j(r) \leq n^2 + n \leq \sum_{j=1}^n g_j(r)$$

5.幾何

令 0點為銳角三角形ABC的外心。

一個圓 Γ 經過頂點A且分別交 \overline{AB} 及 \overline{AC} 於P、Q兩點

並使得 $\angle BOP = \angle ABC \cdot \angle COQ = \angle ACB \circ$

請證明 \overline{BC} 鏡射於 \overline{PQ} 之線段為 Γ 之切線。

令三角形 OBP 的外接圓與 \overline{BC} 相交於點 R 和點 B ,且令 $\angle A, \angle B, \angle C$ 分別代表 A, B, C 三 頂點的角度。因為 $\angle BOP = \angle B$ 且 $\angle COQ = \angle C$,可得:

 $\angle POQ = 360^{\circ} - \angle BOP - \angle COQ - \angle BOC = 360^{\circ} - (180^{\circ} - \angle A) - 2\angle A = 180^{\circ} - \angle A$ 這意味著 APOQ 是一個圓內接四邊形。因為 BPOR 是圓內接四邊形,所以:

 $\angle QOR = 360^{\circ} - \angle POQ - \angle POR = 360^{\circ} - (180^{\circ} - \angle A) - (180^{\circ} - \angle B) = 180^{\circ} - \angle C$ 這意味著 CQOR 是一個圓內接四邊形。

因為 APOQ 和 BPOR 都是圓內接四邊形,所以:

 $\angle QPR = \angle QPO + \angle OPR = \angle OAQ + \angle OBR = (90^\circ - \angle B) + (90^\circ - \angle A) = \angle C$ 因为 CQOR 是圓內接四邊形,所以 $\angle QRC = \angle COQ = \angle C = \angle QPR$ (圓周角=弦切角),也就意味著三角形 PQR 的外接圓與 \overline{BC} 相切。

此外,因為 $\angle PRB = \angle BOP = \angle B$,

$$\angle PRQ = 180^{\circ} - \angle PRB - \angle QRC = 180^{\circ} - \angle B - \angle C = \angle A = \angle PAQ$$

意味著 PQR 的外接圓是 Γ 過 \overline{PQ} 鏡射。

由 \overline{PQ} 的對稱性,意味著 \overline{BC} 透過 \overline{PQ} 鏡射後是 Γ 的切線