Deciding the topological complexity of Büchi languages

Michał Skrzypczak

Igor Walukiewicz

Highlights 2016 Brussels

Logic Automata

Logic Automata

Weak Monadic Second-Order

- only \exists_x and \exists_X^{fin} quantifiers

(wmso)

Logic

Weak Monadic Second-Order

- only \exists_x and \exists_X^{fin} quantifiers

(wmso)

Automata

weak alternating

Logic

Automata

Weak Monadic Second-Order

- only \exists_x and \exists_X^{fin} quantifiers

(wmso)

weak alternating

Existential Monadic Second-Order

- $\exists_{X_1} \ldots \exists_{X_n} \; \psi \; \; {\sf for} \; \; \psi \in {\sf WMSO}$

(OSME)

Logic

Automata

Weak Monadic Second-Order

- only \exists_x and \exists_X^{fin} quantifiers

(wmso)

weak alternating

Existential Monadic Second-Order

- $\exists_{X_1} \ldots \exists_{X_n} \; \psi \; \; \mathsf{for} \; \; \psi \in \mathsf{WMSO}$

(OSME)

non-deterministic Büchi alternating Büchi

Logic

Automata

Weak Monadic Second-Order

- only \exists_x and \exists_X^{fin} quantifiers

(wmso)

weak alternating

Existential Monadic Second-Order

- $\exists_{X_1} \dots \exists_{X_n} \ \psi$ for $\psi \in \mathsf{wmso}$

(OSME)

non-deterministic Büchi alternating Büchi

Full Monadic Second-Order

- \exists_x , \exists_X^{fin} , and \exists_X quantifiers

(MSO)

Logic

Automata

Weak Monadic Second-Order

- only
$$\exists_x$$
 and \exists_X^{fin} quantifiers

Existential Monadic Second-Order

-
$$\exists_{X_1} \dots \exists_{X_n} \ \psi$$
 for $\psi \in \mathsf{wmso}$

Full Monadic Second-Order

-
$$\exists_x$$
, \exists_X^{fin} , and \exists_X quantifiers

non-deterministic parity alternating parity

Logic

Automata

Weak Monadic Second-Order

- only \exists_x and \exists_X^{fin} quantifiers

(wmso)

weak alternating

Existential Monadic Second-Order

- $\exists_{X_1} \ldots \exists_{X_n} \ \psi$ for $\psi \in \mathsf{wmso}$

(OSME)

 \mathbb{I}

non-deterministic Büchi alternating Büchi

Full Monadic Second-Order

- \exists_x , \exists_X^{fin} , and \exists_X quantifiers

(MSO)

 \mathbb{I}

non-deterministic parity alternating parity

Logic

Automata

Weak Monadic Second-Order

- only \exists_x and \exists_X^{fin} quantifiers

(wmso) ⊮∩

weak alternating

Existential Monadic Second-Order

- $\exists_{X_1} \ldots \exists_{X_n} \; \psi$ for $\psi \in \mathsf{wmso}$

(OSME)

 \mathbb{H}

non-deterministic Büchi alternating Büchi

Full Monadic Second-Order

- \exists_x , \exists_X^{fin} , and \exists_X quantifiers

(MSO)

non-deterministic parity alternating parity

Logic

Weak Monadic Second-Order

- only \exists_x and \exists_X^{fin} quantifiers

Existential Monadic Second-Order

- $\exists_{X_1} \ldots \exists_{X_n} \ \psi$ for $\psi \in \mathsf{wmso}$

Full Monadic Second-Order

- \exists_x , \exists_X^{fin} , and \exists_X quantifiers

(wmso)

weak alternating

Automata

 \mathbb{H}

(OSME)

non-deterministic Büchi alternating Büchi

 \mathbb{H}

(MSO)

non-deterministic parity alternating parity

Theorem (Colcombet, Kuperberg, Löding, Vanden Boom [2013])

It is decidable if a given 3mso formula is equivalent to a wmso formula.

Weak Monadic Second-Order

Logic

(wmso)

weak alternating

Automata

- only \exists_x and \exists_X^{fin} quantifiers

Ж

Existential Monadic Second-Order

 $\exists X_1 \ldots \exists X_n \ \psi \ \text{ for } \ \psi \in \mathsf{WMSO}$

(OSME)

 \mathbb{H}

non-deterministic Büchi alternating Büchi

Full Monadic Second-Order

- \exists_x , \exists_X^{fin} , and \exists_X quantifiers

(MSO)

non-deterministic parity alternating parity

Theorem (Colcombet, Kuperberg, Löding, Vanden Boom [2013])

It is decidable if a given 3mso formula is equivalent to a wmso formula.

Weak Monadic Second-Order

Logic

(wmso)

weak alternating

Automata

- only \exists_x and \exists_X^{fin} quantifiers

₩<u></u>

Existential Monadic Second-Order

- $\exists_{X_1} \ldots \exists_{X_n} \; \psi$ for $\psi \in \mathsf{wmso}$

(osmE) ⊕ non-deterministic Büchi alternating Büchi

Full Monadic Second-Order

- \exists_x , \exists_X^{fin} , and \exists_X quantifiers

(MSO)

non-deterministic parity alternating parity

Theorem (Colcombet, Kuperberg, Löding, Vanden Boom [2013])

It is decidable if a given 3mso formula is equivalent to a wmso formula.

Proof

Weak Monadic Second-Order

Logic

(WMSO) weak alternating

- only \exists_x and \exists_X^{fin} quantifiers

_

Existential Monadic Second-Order

- $\exists_{X_1} \dots \exists_{X_n} \ \psi$ for $\psi \in \mathsf{wmso}$

(OSME)

 \mathbb{H}

 \mathbb{H}

non-deterministic Büchi alternating Büchi

Automata

Full Monadic Second-Order

- \exists_x , \exists_X^{fin} , and \exists_X quantifiers

(MSO)

non-deterministic parity alternating parity

Theorem (Colcombet, Kuperberg, Löding, Vanden Boom [2013])

It is decidable if a given 3MSO formula is equivalent to a WMSO formula.

Proof

Theory of regular cost functions

Logic Weak Monadic Second-Order

Automata

Weak Mondale Second Stack

- only \exists_x and \exists_X^{fin} quantifiers

(wmso)

weak alternating

Existential Monadic Second-Order

- $\exists_{X_1} \dots \exists_{X_n} \ \psi$ for $\psi \in \mathsf{wmso}$

(OSME)

 \mathbb{H}

 \mathbb{H}

non-deterministic Büchi alternating Büchi

Full Monadic Second-Order

- \exists_x , \exists_X^{fin} , and \exists_X quantifiers

(MSO)

non-deterministic parity alternating parity

Theorem (Colcombet, Kuperberg, Löding, Vanden Boom [2013])

It is decidable if a given 3MSO formula is equivalent to a WMSO formula.

Proof

Theory of regular cost functions

Logic Weak Monadic Second-Order

Automata

- only \exists_x and \exists_y quantifiers

(wmso)

 \mathbb{H}

weak alternating

Existential Monadic Second-Order

(OSME)

non-deterministic Büchi alternating Büchi

 $-\exists_{X_1} \ldots \exists_{X_n} \psi$ for $\psi \in \mathsf{WMSO}$

 \mathbb{H}

non-deterministic parity (MSO) alternating parity

Full Monadic Second-Order

 $-\exists_{x}, \exists_{x}^{fin}, \text{ and } \exists_{x} \text{ quantifiers}$

Theorem (Colcombet, Kuperberg, Löding, Vanden Boom [2013])

It is decidable if a given 3mso formula is equivalent to a wmso formula.

Proof

Theory of regular cost functions reduction of Colcombet and Löding to

Logic Weak Monadic Second-Order

(wmso)

weak alternating

Automata

eak Monauic Second-Order

- only \exists_x and \exists_X^{fin} quantifiers

ΉΩ

Existential Monadic Second-Order

- $\exists_{X_1} \dots \exists_{X_n} \ \psi$ for $\psi \in \mathsf{wmso}$

(osmE) ⊕ non-deterministic Büchi alternating Büchi

Full Monadic Second-Order

- \exists_x , \exists_X^{fin} , and \exists_X quantifiers

(MSO)

non-deterministic parity alternating parity

Theorem (Colcombet, Kuperberg, Löding, Vanden Boom [2013])

It is decidable if a given 3MSO formula is equivalent to a WMSO formula.

Proof

Theory of regular cost functions
+
reduction of Colcombet and Löding to
a boundedness problem

$$A^{(\{L,R\}^*)}$$

$$A^{(\{\mathrm{L},\mathrm{R}\}^*)}$$

$$A^{(\{\mathrm{L},\mathrm{R}\}^*)}$$

$$\{0,1\}^\omega$$

$$A^{(\{\mathtt{L},\mathtt{R}\}^{m{*}})}$$
 $\{0,1\}^{\omega}$

$$A^{(\{\mathtt{L},\mathtt{R}\}^*)}$$

$$\{0,1\}^\omega$$

$$A^{(\{\mathtt{L},\mathtt{R}\}^{m{*}})}$$

$$\{0,1\}^{\omega}$$

the Cantor set

Start from simple sets

 \longrightarrow open (Σ_1^0) and closed (Π_1^0)

Start from simple sets

 \leadsto open (Σ_1^0) and closed (Π_1^0)

Apply countable unions (\bigcup) and countable intersections (\bigcap)

Start from simple sets \longrightarrow open (Σ_1^0) and closed (Π_1^0)

Apply countable unions (\bigcup) and countable intersections (\bigcap)

Start from simple sets

 \leadsto open (Σ_1^0) and closed (Π_1^0)

Apply countable unions (\bigcup) and countable intersections (\bigcap)

ightharpoonup Borel sets: Σ_{η}^{0} , Π_{η}^{0} for $\eta<\omega_{1}$

Start from simple sets

ightharpoonup open $\left(\Sigma_1^0 \right)$ and closed $\left(\Pi_1^0 \right)$

Apply countable unions (\bigcup) and countable intersections (\bigcap)

 \longrightarrow Borel sets: Σ_{η}^{0} , Π_{η}^{0} for $\eta < \omega_{1}$

Apply projection and co-projection

Start from simple sets

ightharpoonup open $\left(\Sigma_{1}^{0} \right)$ and closed $\left(\Pi_{1}^{0} \right)$

Apply countable unions (\bigcup) and countable intersections (\bigcap)

 \longrightarrow Borel sets: $\Sigma_{\eta}^{0},~\Pi_{\eta}^{0}$ for $\eta<\omega_{1}$

Apply projection and co-projection $\longrightarrow \mathsf{analytic} \ \left(\Sigma^1_1 \right) \mathsf{and} \ \mathsf{co}\text{-analytic} \ \left(\Pi^1_1 \right)$

Start from simple sets

 \leadsto open (Σ_1^0) and closed (Π_1^0)

Apply countable unions (\bigcup) and countable intersections (\bigcap)

ightharpoonup Borel sets: $\Sigma_{\eta}^{0},~\Pi_{\eta}^{0}$ for $\eta<\omega_{1}$

Apply projection and co-projection \longrightarrow analytic (Σ^1_1) and co-analytic (Π^1_1)

By induction

Start from simple sets

$$ightharpoonup$$
 open $\left(\Sigma_1^0 \right)$ and closed $\left(\Pi_1^0 \right)$

Apply countable unions (\bigcup) and countable intersections (\bigcap)

$$\longrightarrow$$
 Borel sets: $\Sigma_{\eta}^{0},~\Pi_{\eta}^{0}$ for $\eta<\omega_{1}$

Apply projection and co-projection \longrightarrow analytic (Σ_1^1) and co-analytic (Π_1^1)

By induction

$$\leadsto$$
 projective sets: Σ_n^1 , Π_n^1 for $n<\omega$

Upper bounds

Upper bounds

$$L \in \mathbf{WMSO} \implies L \in \mathbf{\Sigma}_n^0 \text{ (for some } n)$$

$$L \in \mathbf{WMSO} \implies L \in \mathbf{\Sigma}_n^0 \text{ (for some } n)$$

$$L \in \mathsf{WMSO} \implies L \in \Sigma_n^0 \text{ (for some } n)$$

$$L \in \mathsf{WMSO} \implies L \in \Sigma_n^0 \text{ (for some } n\text{)}$$

 $L \in \exists \mathsf{MSO} \implies L \in \Sigma^1$

$$L \in \mathsf{WMSO} \implies L \in \Sigma_n^0 \text{ (for some } n\text{)}$$

 $L \in \exists \mathsf{MSO} \implies L \in \Sigma^1$

$$\begin{array}{cccc} L \in \mathsf{WMSO} & \Longrightarrow & L \in \mathbf{\Sigma}_n^0 & \text{(for some n)} \\ \\ L \in \mathsf{\overline{MSO}} & \Longrightarrow & L \in \mathbf{\Sigma}_1^1 \\ \\ L \in \mathsf{MSO} & \Longrightarrow & L \in \mathbf{\Delta}_2^1 \end{array}$$

$$\begin{array}{cccc} L \in \mathsf{WMSO} & \Longrightarrow & L \in \mathbf{\Sigma}_n^0 & \text{(for some n)} \\ \\ L \in \mathsf{\overline{MSO}} & \Longrightarrow & L \in \mathbf{\Sigma}_1^1 \\ \\ L \in \mathsf{MSO} & \Longrightarrow & L \in \mathbf{\Delta}_2^1 \end{array}$$

$$L \in \mathsf{WMSO} \implies L \in \Sigma_n^0 \text{ (for some } n)$$

$$L \in \exists \mathsf{MSO} \implies L \in \Sigma^1$$

$$L \in MSO \implies L \in \Delta_2^1$$

 $wmso \subseteq \exists mso \subseteq mso$

Conjecture (Skurczyński [1993])

A Borel MSO-definable language is WMSO-definable.

Conjecture (Skurczyński [1993])

A Borel MSO-definable language is WMSO-definable.

Conjecture (Skurczyński [1993])

A Borel MSO-definable language is WMSO-definable.

Theorem (Walukiewicz, S. [2016])

An **3mso**-definable language is either:

- wмso-definable and Borel
- **not** wmso-definable and Σ_1^1 -comp.

Conjecture (Skurczyński [1993])

A Borel MSO-definable language is WMSO-definable.

Theorem (Walukiewicz, S. [2016])

An **3mso**-definable language is either:

- wмso-definable and Borel
- **not** wmso-definable and Σ_1^1 -comp.

Conjecture (Skurczyński [1993])

A Borel MSO-definable language is WMSO-definable.

Theorem (Walukiewicz, S. [2016])

An ∃mso-definable language is either:

- wмso-definable and Borel
- **not** wmso-definable and Σ_1^1 -comp.

And the dychotomy is decidable.

Conjecture (Skurczyński [1993])

A Borel MSO-definable language is WMSO-definable.

Theorem (Walukiewicz, S. [2016])

An **3mso**-definable language is either:

- wмso-definable and Borel
- **not** wmso-definable and Σ_1^1 -comp.

And the dychotomy is decidable.

 $L \in \exists MSO$ is effectively either:

- wmso-definable
- Σ_1^1 -complete

 $L \in \exists MSO$ is effectively either:

- wmso-definable
- Σ_1^1 -complete

Proof

 $L \in \exists MSO$ is effectively either:

- wmso-definable
- Σ_1^1 -complete

Proof

Input $\varphi \in \exists MSO$ (or a Büchi automaton) for L

 $L \in \exists MSO$ is effectively either:

- wmso-definable
- Σ_1^1 -complete

Proof

Input $\varphi \in \exists MSO$ (or a Büchi automaton) for L

Construct a finite game $\mathcal F$ with an ω -regular winning condition

 $L \in \exists MSO$ is effectively either:

- wmso-definable
- Σ_1^1 -complete

Proof

```
Input \varphi \in \exists \mathsf{MSO} (or a Büchi automaton) for L Construct a finite game \mathcal F with an \omega-regular winning condition
```

```
✓ If ∀ wins F:
```

 $L \in \exists MSO$ is effectively either:

- wmso-definable
- Σ_1^1 -complete

Proof

```
Input \varphi \in \exists \mathsf{MSO} (or a Büchi automaton) for L Construct a finite game \mathcal F with an \omega-regular winning condition
```

```
\rightsquigarrow If \forall wins \mathcal{F}:
```

 σ_V — finite memory winning strategy

 $L \in \exists MSO$ is effectively either:

- wмso-definable
- Σ_1^1 -complete

Proof

```
Input \varphi \in \exists \mathsf{MSO} (or a Büchi automaton) for L Construct a finite game \mathcal F with an \omega-regular winning condition
```

```
\leadsto If \forall wins \mathcal{F}:
```

 σ_{\forall} — finite memory winning strategy

 $\sigma_{
m V}$ gives a weak alternating automaton for L

 $L \in \exists MSO$ is effectively either:

- wмso-definable
- Σ_1^1 -complete

Proof

```
Input \varphi \in \exists \mathsf{MSO} (or a Büchi automaton) for L Construct a finite game \mathcal F with an \omega-regular winning condition
```

 \rightsquigarrow If \forall wins \mathcal{F} :

 $\sigma_{
m V}$ — finite memory winning strategy $\longrightarrow L \in {
m WMSO}$

 $\sigma_{f V}$ gives a weak alternating automaton for L

 $L \in \exists MSO$ is effectively either:

- wmso-definable
- Σ_1^1 -complete

Proof

```
Input \varphi \in \exists \mathsf{MSO} (or a Büchi automaton) for L Construct a finite game \mathcal F with an \omega-regular winning condition \forall wins \mathcal F:
```

 $\sigma_{\rm V}$ gives a weak alternating automaton for L

 σ_{\forall} — finite memory winning strategy

```
\longrightarrow If \exists wins \mathcal{F}:
```

 $\longrightarrow L \in WMSO$

 $L \in \exists MSO$ is effectively either:

- wмso-definable
- Σ_1^1 -complete

Proof

```
Input \varphi \in \exists \mathsf{MSO} (or a Büchi automaton) for L Construct a finite game \mathcal F with an \omega-regular winning condition
```

```
\longrightarrow If \forall wins \mathcal{F}:
```

```
\sigma_{
m V} — finite memory winning strategy \longrightarrow L \in {
m WMSO}
```

 $\sigma_{
m V}$ gives a weak alternating automaton for L

```
\longrightarrow If \exists wins \mathcal{F}:
```

 σ ∃ — a winning strategy

 $L \in \exists MSO$ is effectively either:

- wмso-definable
- Σ_1^1 -complete

Proof

```
Input \varphi \in \exists \mathsf{MSO} (or a Büchi automaton) for L Construct a finite game \mathcal F with an \omega-regular winning condition
```

```
\sim If \forall wins \mathcal{F}:
\sigma_{\forall} — finite memory winning strategy
```

 \longrightarrow $L \in \mathsf{WMSO}$

 $\sigma_{
m V}$ gives a weak alternating automaton for L

```
\rightsquigarrow If \exists wins \mathcal{F}:
```

 σ_{\exists} — a winning strategy

 σ_{\exists} gives a continuous reduction of IF to L

 $L \in \exists MSO$ is effectively either:

- wмso-definable
- Σ_1^1 -complete

Proof

```
Input \varphi \in \exists MSO (or a Büchi automaton) for L
```

Construct a finite game ${\mathcal F}$ with an ω -regular winning condition

```
\rightsquigarrow If \forall wins \mathcal{F}:
```

 $\sigma_{
m V}$ gives a weak alternating automaton for L

```
\longrightarrow If \exists wins \mathcal{F}:
```

$$\sigma$$
∃ — a winning strategy

$$\longrightarrow L$$
 is Σ_1^1 -comp.

 σ_{\exists} gives a continuous reduction of IF to L

Theorem (CKLV [2013])

It is decidable for $L \in \exists MSO$ if $L \in WMSO$.

Theorem (CKLV [2013])

It is decidable for $L \in \exists MSO$ if $L \in WMSO$.

Proof

Theorem (CKLV [2013])

It is decidable for $L \in \exists MSO$ if $L \in WMSO$.

Proof

Regular cost functions

```
Theorem (CKLV [2013])
```

It is decidable for $L \in \exists MSO$ if $L \in WMSO$.

Proof

Regular cost functions

+

Boundedness problem

```
Theorem (CKLV [2013])
```

It is decidable for $L \in \exists MSO$ if $L \in WMSO$.

Proof

Regular cost functions

+

Boundedness problem

Theorem (Walukiewicz, S. [2016])

 $L \in \exists MSO$ is effectively either:

- wmso-definable
- Σ_1^1 -complete

```
Theorem (CKLV [2013])
```

It is decidable for $L \in \exists MSO$ if $L \in WMSO$.

Proof

Regular cost functions

+

Boundedness problem

Theorem (Walukiewicz, S. [2016])

 $L \in \exists MSO$ is effectively either:

- wmso-definable
- Σ_1^1 -complete

(direct constructions)

```
Theorem (CKLV [2013])
 It is decidable for L \in \exists MSO
                 if L \in \mathsf{wmso}.
Proof
    Regular cost functions
    Boundedness problem
Theorem (Walukiewicz, S. [2016])
L \in \exists MSO is effectively either:
  — wmso-definable
  - \Sigma_1^1-complete
     (direct constructions)
    (EXPTIME algorithm)
```

Theorem (CKLV [2013])

It is decidable for $L \in \exists MSO$ if $L \in WMSO$.

Proof

Regular cost functions

Boundedness problem

Theorem (Walukiewicz, S. [2016]) $L \in \exists MSO$ is effectively either:

- wmso-definable
- Σ_1^1 -complete

(direct constructions)

(EXPTIME algorithm)

