Differential expression analysis

RNA-SEQ WITH BIOCONDUCTOR IN R

Mary Piper
Bioinformatics Consultant and Trainer

Home

Install

Help

Home » Bioconductor 3.6 » Software Packages » DESeq2

DESeq2

```
platforms all downloads top 5% posts 353 / 1 / 3 / 60 in Bioc 5 years build warnings
```

DOI: <u>10.18129/B9.bioc.DESeq2</u>

Differential gene expression analysis based on the negative binomial distribution

Bioconductor version: Release (3.6)

Estimate variance-mean dependence in count data from high-throughput sequencing assays and test for differential expression based on a model using the negative binomial distribution.

Author: Michael Love, Simon Anders, Wolfgang Huber

Maintainer: Michael Love <michaelisaiahlove at gmail.com>

Citation (from within R, enter citation("DESeq2")):

Love MI, Huber W and Anders S (2014). "Moderated estimation of fold change and dispersion for RNA-seq

Differential expression analysis: DESeq2 vignette

vignette(DESeq2)

Analyzing RNA-seq data with DESeq2

Michael I. Love, Simon Anders, and Wolfgang Huber 11 November 2017

Abstract

A basic task in the analysis of count data from RNA-seq is the detection of differentially expressed genes. The count data are presented as a table which reports, for each sample, the number of sequence fragments that have been assigned to each gene. Analogous data also arise for other assay types, including comparative ChIP-Seq, HiC, shRNA screening, mass spectrometry. An important analysis question is the quantification and statistical inference of systematic changes between conditions, as compared to within-condition variability. The package DESeq2 provides methods to test for differential expression by use of negative binomial generalized linear models; the estimates of dispersion and logarithmic fold changes incorporate data-driven prior distributions This vignette explains the use of the package and demonstrates typical workflows. An RNA-seq workflow on the Bioconductor website covers similar material to this vignette but at a slower pace, including the generation of count matrices from FASTQ files. DESeq2 package version: 1.18.1

- Standard workflow
 - Quick start
 - How to get help for DESeq2
 - Input data
 - Why un-normalized counts?
 - The DESegDataSet

Bringing in data for DESeq2

```
# Read in raw counts
wt_rawcounts <- read.csv("fibrosis_wt_rawcounts.csv")
View(wt_rawcounts)</pre>
```

*	wt_normal1 [‡]	wt_normal2 [‡]	wt_normal3 [‡]	wt_fibrosis1 [‡]	wt_fibrosis2 [‡]	wt_fibrosis3 [‡]	wt_fibrosis4 [‡]
ENSMUSG00000102693	0	0	0	0	0	0	0
ENSMUSG00000064842	0	0	0	0	0	0	0
ENSMUSG00000051951	3	1	1	42	52	16	35
ENSMUSG00000102851	0	0	0	0	0	0	0
ENSMUSG00000103377	0	0	0	0	0	0	0
ENSMUSG00000104017	0	0	0	0	0	0	0
ENSMUSG00000103025	0	0	0	1	0	0	0
ENSMUSG00000089699	0	0	0	0	0	0	0
ENSMUSG00000103201	0	0	0	0	0	0	0
ENSMUSG00000103147	0	0	0	0	1	1	1
	_	_	_	_	_	_	_

Bringing in data for DESeq2: metadata

```
# Read in metadata
wt_metadata <- read.csv("fibrosis_wt_metadata_unordered.csv")
View(wt_metadata)</pre>
```

_	genotype [‡]	condition [‡]
wt_normal3	wt	normal
wt_fibrosis3	wt	fibrosis
wt_normal1	wt	normal
wt_fibrosis2	wt	fibrosis
wt_normal2	wt	normal
wt_fibrosis4	wt	fibrosis
wt_fibrosis1	wt	fibrosis

Let's practice!

RNA-SEQ WITH BIOCONDUCTOR IN R

Organizing the data for DESeq2

RNA-SEQ WITH BIOCONDUCTOR IN R

Mary Piper
Bioinformatics Consultant and Trainer

Bringing in data for DESeq2: sample order

Metadata

Raw counts

Bringing in data for DESeq2: sample order

rownames(wt_metadata)

```
[1] "wt_normal3" "smoc2_fibrosis2" "wt_fibrosis3" "smoc2_fibrosis3" "smoc2_normal3" "wt_normal1"
[7] "smoc2_normal4" "wt_fibrosis2" "wt_normal2" "smoc2_normal1" "smoc2_fibrosis1" "smoc2_fibrosis4"
[13] "wt_fibrosis4" "wt_fibrosis1"
```

```
colnames(wt_rawcounts)
```

```
[1] "wt_normal1" "wt_normal2" "wt_normal3" "wt_fibrosis1" "wt_fibrosis2" "wt_fibrosis3"
[7] "wt_fibrosis4" "smoc2_normal1" "smoc2_normal3" "smoc2_normal4" "smoc2_fibrosis1" "smoc2_fibrosis2"
[13] "smoc2_fibrosis3" "smoc2_fibrosis4"
```


Bringing in data for DESeq2: sample order

```
all(rownames(wt_metadata) == colnames(wt_rawcounts))
```

FALSE

Matching order between vectors

Using the match() function:

```
match(vector1, vector2)
```

vector1: vector of values with the desired order

vector2: vector of values to reorder

output: the indices for how to rearrange vector2 to be in the same order as vector1

```
match(colnames(wt_rawcounts), rownames(wt_metadata)
```

```
6 9 1 14 8 3 13 10 5 7 11 2 4 12
```

Reordering using match() output:

```
idx <- match(colnames(wt_rawcounts), rownames(wt_metadata))
reordered_wt_metadata <- wt_metadata[idx, ]
View(reordered_wt_metadata)</pre>
```

_	genotype [‡]	condition [‡]
wt_normal1	wt	normal
wt_normal2	wt	normal
wt_normal3	wt	normal
wt_fibrosis1	wt	fibrosis
wt_fibrosis2	wt	fibrosis
wt_fibrosis3	wt	fibrosis
wt_fibrosis4	wt	fibrosis

```
all(rownames(reordered_wt_metadata) == colnames(wt_rawcounts))
```

TRUE

_	wt_normal1 [‡]	wt_normal2 [‡]	wt_normal3 [‡]	wt_fibrosis1 [‡]	wt_fibrosis2 [‡]	wt_fibrosis3 [‡]	wt_fibrosis4 =
ENSMUSG00000102693	0	0	0	0	0	0	0
ENSMUSG00000064842	0	0	0	0	0	0	0
ENSMUSG00000051951	3	1	1	42	52	16	35
ENSMUSG00000102851	0	0	0	0	0	0	0
ENSMUSG00000103377	0	0	0	0	0	0	0
ENSMUSG00000104017	0	0	0	0	0	0	0
ENSMUSG00000103025	0	0	0	1	0	0	0
ENSMUSG00000089699	0	0	0	0	0	0	0
ENSMUSG00000103201	0	0	0	0	0	0	0
ENSMUSG00000103147	0	0	0	0	1	1	1
		_			•	•	_

Creating the DESeq2 object

Let's practice!

RNA-SEQ WITH BIOCONDUCTOR IN R

Count normalization

RNA-SEQ WITH BIOCONDUCTOR IN R

Mary Piper
Bioinformatics Consultant and Trainer

Count normalization

Sample A Reads

Sample B Reads

Gene X

Gene Z

Library depth normalization

Sample A Reads

Sample B Reads

Sample A Reads

Sample B Reads

Library composition effect

DESeq2 normalization

Normalized counts: calculation

```
dds_wt <- estimateSizeFactors(dds_wt)
sizeFactors(dds_wt)</pre>
```

```
wt_normal1 wt_normal2 wt_normal3 wt_fibrosis1 wt_fibrosis2 wt_fibrosis3 wt_fibrosis4
0.9131884 0.7250234 1.0441118 1.1346070 1.2059020 1.1731687 0.9418653
```


Normalized counts: extraction

```
normalized_wt_counts <- counts(dds_wt, normalized=TRUE)
View(normalized_wt_counts)</pre>
```

•	wt_normal1 [‡]	wt_normal2 [‡]	wt_normal3 [‡]	wt_fibrosis1 [‡]	wt_fibrosis2 ‡	wt_fibrosis3 ‡	wt_fibrosis4 [‡]
ENSMUSG00000102693	0.000000	0.000000	0.000000e+00	0.0000000	0.0000000	0.0000000	0.000000
ENSMUSG00000064842	0.000000	0.000000	0.000000e+00	0.0000000	0.0000000	0.0000000	0.000000
ENSMUSG00000051951	3.285193	1.379266	9.577519e-01	37.0172230	43.1212477	13.6382769	37.160301
ENSMUSG00000102851	0.000000	0.000000	0.000000e+00	0.0000000	0.0000000	0.0000000	0.000000
ENSMUSG00000103377	0.000000	0.000000	0.000000e+00	0.0000000	0.0000000	0.0000000	0.000000
ENSMUSG00000104017	0.000000	0.000000	0.000000e+00	0.0000000	0.0000000	0.0000000	0.000000
ENSMUSG00000103025	0.000000	0.000000	0.000000e+00	0.8813625	0.0000000	0.0000000	0.000000
ENSMUSG00000089699	0.000000	0.000000	0.000000e+00	0.0000000	0.0000000	0.0000000	0.000000
ENSMUSG00000103201	0.000000	0.000000	0.000000e+00	0.0000000	0.0000000	0.0000000	0.000000
ENSMUSG00000103147	0.000000	0.000000	0.000000e+00	0.0000000	0.8292548	0.8523923	1.061723
ENSMUSG00000103161	0.000000	0.000000	0.000000e+00	0.0000000	0.0000000	0.0000000	0.000000
ENSMUSG00000102331	1.095064	0.000000	0.000000e+00	5.2881747	6.6340381	8.5239231	7.432060

Let's practice!

RNA-SEQ WITH BIOCONDUCTOR IN R

Unsupervised clustering analyses

RNA-SEQ WITH BIOCONDUCTOR IN R

Mary Piper Instructor

Unsupervised clustering analyses: log transformation

vsd_wt <- vst(dds_wt, blind=TRUE)</pre>

Hierarchical clustering with correlation heatmaps

```
# Extract the vst matrix from the object
vsd_mat_wt <- assay(vsd_wt)
# Compute pairwise correlation values
vsd_cor_wt <- cor(vsd_mat_wt)
View(vsd_cor_wt)</pre>
```

^	wt_normal1 [‡]	wt_normal2 [‡]	wt_normal3 $^{\scriptsize \scriptsize $	wt_fibrosis1 [‡]	wt_fibrosis2 [‡]	wt_fibrosis3 [‡]	wt_fibrosis4 [‡]
wt_normal1	1.0000000	0.9934287	0.9945298	0.9616998	0.9708459	0.9626185	0.9696097
wt_normal2	0.9934287	1.0000000	0.9930148	0.9629644	0.9713154	0.9639685	0.9704541
wt_normal3	0.9945298	0.9930148	1.0000000	0.9678018	0.9758950	0.9683519	0.9750891
wt_fibrosis1	0.9616998	0.9629644	0.9678018	1.0000000	0.9930090	0.9939055	0.9926560
wt_fibrosis2	0.9708459	0.9713154	0.9758950	0.9930090	1.0000000	0.9931793	0.9939010
wt_fibrosis3	0.9626185	0.9639685	0.9683519	0.9939055	0.9931793	1.0000000	0.9922991
wt_fibrosis4	0.9696097	0.9704541	0.9750891	0.9926560	0.9939010	0.9922991	1.0000000

Hierarchical clustering with correlation heatmaps

```
# Load pheatmap libraries
library(pheatmap)

# Plot heatmap
pheatmap(vsd_cor_wt, annotation = select(wt_metadata, condition))
```

Hierarchical clustering with correlation heatmaps

Let's practice!

RNA-SEQ WITH BIOCONDUCTOR IN R

Principal component analysis

RNA-SEQ WITH BIOCONDUCTOR IN R

Mary Piper
Bioinformatics Consultant and Trainer

	Sample 1	Sample 2
Gene A	4	5
Gene B	1	4
Gene C	8	8
Gene D	5	7

Sample 1

	Sample 1	Sample 2	Influence on PC1	Influence on PC2
Gene A	4	5	-2	0.5
Gene B	1	4	-10	1
Gene C	8	8	8	-5
Gene D	5	7	1	6

	Sample 1	Sample 2	Influence on PC1	Influence on PC2
Gene A	4	5	-2	0.5
Gene B	1	4	-10	1
Gene C	8	8	8	-5
Gene D	5	7	1	6

```
Sample1 PC1 score = (4 * -2) + (1 * -10) + (8 * 8) + (5 * 1) = 51

Sample1 PC2 score = (4 * 0.5) + (1 * 1) + (8 * -5) + (5 * 6) = -7

Sample2 PC1 score = (5 * -2) + (4 * -10) + (8 * 8) + (7 * 1) = 21

Sample2 PC2 score = (5 * 0.5) + (4 * 1) + (8 * -5) + (7 * 6) = 8.5
```


	PC1	PC2
Sample1	51	-7
Sample2	21	8.5

PC₁


```
# Plot PCA
plotPCA(vsd_wt, intgroup="condition")
```


Let's practice!

RNA-SEQ WITH BIOCONDUCTOR IN R

