متحانات الشهادة الثانوية العامة الفرع: علوم عامة

زارة التربية والتعليم العالي لمديرية العامة للتربية ائرة الامتحانات

N. 94	-1 -1 11-1 :7-1	m 1:1 11
الاسم:	مسابقة في مادة الرياضيات	عدد المسائل: ست
•\ -	ي چې نو ن	••
7 ti	-1 1 in. 11	
الرقم:	المدة أربع ساعات	
•	(• • • • • • • • • • • • • • • • • • •	

ملاحظة: يسمح باستعمال آلة حاسبة غير قابلة للبرمجة او اختزان المعلومات او رسم البيانات . يستطيع المرشح الإجابة بالترتيب الذي يناسبه (دون الالتزام بترتيب المسائل الوارد في المسابقة).

I - (2 points)

Le plan complexe est muni d'un repère orthonormé direct $(O; \overrightarrow{u}, \overrightarrow{v})$.

Soit z le nombre complexe non nul défini par sa forme exponentielle $z = re^{i\alpha}$ dont le conjugué est noté \bar{z} .

On considère les points A, B et C d'affixes respectives $z_A = z$, $z_B = \frac{1}{z}$ et $z_C = \frac{z^2}{\overline{z}}$.

- 1- Déterminer la forme exponentielle de chacun des nombres z_B et z_C en fonction de r et α .
- 2- Déterminer, en fonction de α , une mesure de l'angle $(\overrightarrow{OB}; \overrightarrow{OC})$. En déduire les valeurs de α pour que O, B et C soient alignés et que O appartienne à [BC].
- 3- On suppose dans cette partie que $\alpha = \frac{\pi}{4}$.
 - a) Vérifier que $z_B \times \overline{z_C} = -1$.
 - b) Soit *D* le point d'affixe z_D telle que $z_D = -\frac{1}{\overline{z}}$.

Calculer chacun des nombres $z_B - z_D$ et $z_A - z_C$ en fonction de r et montrer que les droites (BD) et (AC) sont parallèles.

c) Démontrer que ABDC est un trapèze isocèle.

II - (3 points)

L'espace est muni d'un repère orthonormé direct $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$.

On considère les points A(-1; 2; 0), B(2; 1; 0) et C(0; 0; 3).

- 1- Calculer l'aire du triangle ABC.
- 2- Calculer le volume du tétraèdre OABC. En déduire la distance de O au plan (ABC).
- 3- a) Ecrire une équation du plan (ABC).
 - b) Montrer que le point O' $\left(\frac{18}{23}; \frac{54}{23}; \frac{30}{23}\right)$ est le symétrique de O par rapport au plan (ABC).
 - c) Calculer $\cos(OAO')$ ainsi que le cosinus de l'angle de la droite (AO) et du plan (ABC).
- 4- Soit J le milieu de [AB].
 - a) Vérifier que le plan (COJ) est le plan médiateur de [AB].
 - b) Calculer le cosinus de l'angle aigu des deux plans (COJ) et (xOz).

III – (2 points)

ABCD est un trapèze de bases [AB] et [CD] tel que:

[AB] est fixe et AB = 12;

[CD] est variable et CD = 6.

Soit F le milieu de [AB].

- 1- a) Montrer que si le périmètre de ABCD reste égal à 28, alors *D* varie sur une ellipse (E) de foyers A et F.
 - b) Tracer (E).

Dans tout ce qui suit, le plan est rapporté à un repère orthonormé $(A; \overline{i}, \overline{j})$ tel que B(12;0)

- 2- a) Montrer que $\frac{(x-3)^2}{25} + \frac{y^2}{16} = 1$ est une équation de l'ellipse (E).
 - b) Calculer l'excentricité de (E) et déterminer une équation de la directrice (d) associée à A.
- 3- Soit L l'un des points d'intersection de (E) avec l'axe des ordonnées.
 - a) Déterminer une équation de la tangente (T) à (E) en L.
 - b) Montrer que (T) coupe l'axe focal de (E) en un point appartenant à la directrice (d).

IV - (3 points)

Pour maintenir en bon état de fonctionnement les voitures dans une ville donnée, une société fait contrôler toutes les voitures de cette ville.

On sait que 20 % des voitures sont sous garantie.

Parmi les voitures qui sont sous garantie, la probabilité qu'une voiture ait un défaut est $\frac{1}{100}$.

Parmi les voitures qui ne sont pas sous garantie, la probabilité qu'une voiture ait un défaut est $\frac{1}{10}$.

1- Calculer la probabilité de chacun des événements suivants :

A : « La voiture contrôlée est sous garantie et a un défaut ».

D: « La voiture contrôlée a un défaut ».

2- Montrer que la probabilité qu'une voiture contrôlée soit sous garantie sachant qu'elle a un

défaut est $\frac{1}{41}$.

3- Le contrôle est gratuit si la voiture est sous garantie ;

il coûte 50 000 LL si la voiture n'est pas sous garantie et n'a pas un défaut ;

il coûte 150 000 LL si la voiture n'est pas sous garantie et a un défaut.

On note X la variable aléatoire égale au coût de contrôle d'une voiture.

- a) Quelles sont les valeurs possibles de X?
- b) Déterminer la loi de probabilité de X et calculer l'espérance mathématique de X.
- 4- La société fait contrôler en moyenne 50 voitures par jour. Estimer son coût de contrôle journalier.

2

V - (3 points)

On donne un triangle ABC tel que AB = 6, AC = 4 et $(AB; AC) = \frac{\pi}{2} (2\pi)$.

Soit I le projeté orthogonal de A sur (BC).

1- Soit h l'homothétie de centre I qui transforme C en B. Construire l'image (d) de la droite (AC) par h. Déduire l'image D de A par h.

- 2- Soit S la similitude qui transforme A en B et C en A.
 - a) Déterminer le rapport et un angle de S.
 - b) Déterminer l'image par S de chacune des deux droites (AI) et (CB). En déduire que I est le centre de S.
 - c) Déterminer l'image de (AB) par S. En déduire que S(B) = D.
- 3-a) Déterminer la nature et les éléments caractéristiques de SoS.
 - b) Montrer que SoS(A) = h(A).
 - c) Montrer que SoS = h.
- 4- Soit E le milieu de [AC].
 - a) Déterminer les points F et G tels que F = S(E) et G = S(F).
 - b) Montrer que les points E, I et G sont alignés.

VI - (7 points)

- A- On considère l'équation différentielle (I) : $xy' y = 1 2\ln x$.
- 1- Vérifier que $y_1 = 1 + 2 \ln x$ est une solution particulière de l'équation (I).
- 2- Déterminer la solution générale Y de l'équation différentielle xy'-y=0.
- 3- a) Vérifier que $Y + y_1$ est la solution générale de l'équation différentielle (I).
 - b) Déterminer la solution particulière y de l'équation (I) telle que y(1) = 0.
- B- La figure ci-dessous, montre la courbe représentative (γ) , dans un repère orthonormé, de la fonction h définie sur l'intervalle $]0;+\infty[$ par h(x)=1-x+2lnx.

- 1- a) Montrer que $3,51 < \alpha < 3,52$.
 - b) Déterminer le maximum de h(x).
- 2- a) A l'aide d'une intégration par parties, calculer $\int_{1}^{\alpha} \ln x \, dx$ en fonction de α .
 - b) En déduire l'aire $S(\alpha)$ du domaine hachuré limité par (γ) et l'axe des abscisses.
- C- Soit f la fonction définie sur $]0; +\infty[$ par $f(x) = \frac{1+2\ln x}{x^2}$.

On désigne par (C) la courbe représentative de f dans un repère orthonormé $(O; \vec{i}, \vec{j})$.

- 1- a) Déterminer le point d'intersection de (C) avec l'axe des abscisses.
 - b) Montrer que les axes du repère sont asymptotes à (C).
- 2- a) Dresser le tableau de variations de f et montrer que $f(\alpha) = \frac{1}{\alpha}$.
 - b) Tracer (C).
- 3- a) Montrer que la restriction de f à l'intervalle $[1;+\infty[$ admet une fonction réciproque f^{-1} .
 - b) Déterminer le domaine de définition et le domaine de dérivabilité de f^{-1} .
 - c) Résoudre l'inéquation $f^{-1}(x) > \alpha$.
- D- Soit (I_n) la suite définie, pour $n \ge 4$, par $I_n = \int_n^{n+1} f(x) dx$.
- 1- Démontrer que, pour tout x dans l'intervalle $[4;+\infty[$, $0 \le f(x) \le \frac{1}{x}$.
- 2- En déduire que, pour tout entier nature $n \ge 4$, $0 \le I_n \le \ln\left(\frac{n+1}{n}\right)$.
- 3- Déterminer la limite de la suite (I_n) .

مسابقة في مادة الرياضيات

معيار التصحيح

№ 1- (2 points)

Partie de la Q.	Corrigé	Note
1	$z_{B} = \frac{1}{z} = \frac{1}{r}e^{-i\alpha} ; z_{C} = \frac{z^{2}}{\overline{z}} = \frac{r^{2}e^{i2\alpha}}{re^{-i\alpha}} = re^{i3\alpha}.$	
2	$(OB; OC) = (u; OC) - (u; OB) = 3\alpha - (-\alpha) = 4\alpha$. $O, B \text{ et } C \text{ sont alignés et } O \in [BC] \text{ équivaut à } (\overrightarrow{OB}; \overrightarrow{OC}) = \pi + 2k\pi$	
3a	D'où $\alpha = \frac{\pi}{4} + k \frac{\pi}{2}$ avec $k \in \mathbb{Z}$. $z_{B} \times \overline{z_{C}} = \frac{1}{r} e^{-i \alpha} \times r e^{-i3\alpha} = e^{-i4\alpha} = e^{-i \pi} = -1 .$	0,5
3b	$z_B - z_D = \frac{1}{z} + \frac{1}{\overline{z}} = \frac{z + \overline{z}}{z\overline{z}} = \frac{2r\cos\frac{\pi}{4}}{r^2} = \frac{\sqrt{2}}{r} ;$ $z_A - z_C = z - \frac{z^2}{\overline{z}} = \frac{z}{\overline{z}}(\overline{z} - z) = i(-2ir\sin\frac{\pi}{4}) = \sqrt{2}r .$ $\frac{z_B - z_D}{z_A - z_C} = \frac{1}{r^2} (\text{r\'eel})$ $\frac{z_B - z_D}{z_A - z_C} \text{ \'etant un r\'eel , donc}(BD) \text{ et } (AC) \text{ sont parall\`eles .}$ ou Chacun des nombres $z_B - z_D$ et $z_A - z_C$ est un r\'eel , par suite chacune des droites (BD) et (AC) est parall\`ele à l'axe des abscisses. Elles sont donc parall\`eles	1,5
3c	$OA = OC = r$ et $OB = OD = \frac{1}{r}$. $Z_D = -\frac{z}{z\overline{z}} = -\frac{1}{r^2}z$. Donc O, A et D sont alignés. Donc $ABDC$ est un trapèze isocèle car ses diagonales se coupent en 2 triangles isocèles.	1

№ II-(3 points)

Nº 11-(3) Partie		Note
de la Q.	Corrigé	Note
1	\overrightarrow{AB} (3;-1;0); \overrightarrow{AC} (1;-2;3); $\overrightarrow{AB} \wedge \overrightarrow{AC} = -3 \vec{i} - 9\vec{j} - 5\vec{k}$.	
1	L'aire du triangle <i>ABC</i> est $S = \frac{1}{2}\sqrt{9+81+25} = \frac{1}{2}\sqrt{115}$ unités d'aire.	0,5
	$\overrightarrow{AB} \wedge \overrightarrow{AC} (-3; -9; -5)$ et $\overrightarrow{OA} (-1; 2; 0)$; alors	
	$\overrightarrow{OA} \cdot (\overrightarrow{AB} \wedge \overrightarrow{AC}) = -15$.	
2	Le volume du tétraèdre \overrightarrow{OABC} est $V = \frac{1}{6} \overrightarrow{OA} \cdot (\overrightarrow{AB} \wedge \overrightarrow{AC}) = \frac{5}{2}$ unités	
	de volume.	1
	Si <i>d</i> est la distance de <i>O</i> au plan (<i>ABC</i>), alors $V = \frac{1}{3} d \times S = \frac{d\sqrt{115}}{6}$.	
	D'où $d = \frac{15}{\sqrt{115}} = \frac{3\sqrt{115}}{23}$.	
3a	(ABC): 3x + 9y + 5z - 15 = 0.	1
	$\overrightarrow{u}(3;9;5)$ est un vecteur directeur de la droite (OO') ;	
	(OO'): $x = 3t$; $y = 9t$; $z = 5t$.	1
3b	$(OO') \cap (ABC) : t = \frac{3}{23}; \text{ donc } (OO') \cap (ABC) = \left\{ H\left(\frac{9}{23}; \frac{27}{23}; \frac{15}{23}\right) \right\}$	-
	H étant le milieu de $[OO']$; donc $O'\left(\frac{18}{23}; \frac{54}{23}; \frac{30}{23}\right)$.	
	$\cos (O\hat{A}O') = \frac{\overrightarrow{AO} \cdot \overrightarrow{AO'}}{AO \times AO'} = \frac{5}{23}.$	
3c	Soit α l'angle de (AO) et du plan (ABC) . $\overrightarrow{OAO'} = 2\alpha$.	1,5
	$\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2} = \frac{14}{23}$. Puisque α est aigu, $\cos \alpha = \frac{\sqrt{322}}{23}$.	
4-	$J\left(\frac{1}{2}; \frac{3}{2}; 0\right); \overrightarrow{OJ}.\overrightarrow{AB} = 0 \text{ et } (AB) \perp (OJ) \text{ (ou remarquer que } ABC$	
4a	est isocèle) — — —	0.5
	De plus $(AB) \perp (OC)$ car $OC \cdot AB = 0$ (ou car $(AB) \subset (xOy)$ et $C \in z'z$).	0,5
	Donc le plan (COJ) est le plan médiateur de $[AB]$.	
4b	$\overrightarrow{j} \perp (xOz)$ et $\overrightarrow{AB} \perp (COJ)$; donc $\cos \beta = \frac{\left \overrightarrow{j} \cdot \overrightarrow{AB} \right }{AB} = \frac{1}{\sqrt{10}}$.	O,5

№ III- (2 points)

№ III- (2 Partie		
de la Q.	Corrigé	Note
1a	Si $AB + CD + BC + DA = 28$ alors $12 + 6 + DF + DA = 28$. D'où $DF + DA = 10 > AF$. Le point D varie sur l'ellipse (E) de foyers A et F et de longueur d'axe focal $2a = 10$.	1
1b		0,5
2a	$I(3;0)$ est le centre de (E) ; $a = 5$ et $c = \frac{1}{2}AF = 3$. Alors $b = 4$. L'axe focal de (E) étant $x'x$, alors (E) : $\frac{(x-3)^2}{25} + \frac{y^2}{16} = 1$.	1
2b	$e = \frac{c}{a} = \frac{3}{5} \text{ et } (d): x = x_I - \frac{a^2}{c} = 3 - \frac{25}{3}; \text{ Soit } (d): x = -\frac{16}{3}.$ $L(0; \frac{16}{5}) \cdot (T): 16(x_L - 3)(x - 3) + 25(y_L)y = 400.$	
3a	$L(0; \frac{16}{5}) \cdot (T) : 16(x_L - 3)(x - 3) + 25(y_L)y = 400 .$ $(T) : -3(x - 3) + 5y - 25 : -3x + 5y - 16$	0,5
3b	$(T): -3(x-3)+5y = 25; -3x+5y = 16.$ (T) coupe x'x en $K(-\frac{16}{3}; 0)$ qui appartient à la directrice (d) de (E).	0,5

№ IV- (**3 points**)

Partie de la Q.	Corrigé	Note
	Soit G et D les événements suivants :	
1	G: « La voiture est sous garantie » . On peut construire l'arbre suivant :	1,5

	0.01 D				
		0.2 G	$0.99 \overline{D}$		
		\overline{G}	0.1 D		
			$0.9 \overline{D}$		
	$A = G \cap D \text{ d'où } p(A)$	$= p(G) \times p(D)$	$(G) = 0.2 \times 0.01 =$	0,002.	
	$P(D) = P(G \cap D) + P(C)$	$\overline{G} \cap D) = 0,002$	$4 + 0.8 \times 0.1 = 0.002$	+0.08 = 0.082.	
2	$p(G/D) = \frac{p(G \cap D)}{p(D)} = \frac{0,002}{0,082} = \frac{2}{82} = \frac{1}{41}.$			0,5	
3a	Les valeurs possibles de X sont : 0 ; 50 000 and 150 000.		0,5		
	$p(X = 0) = p(G) = 0, 2.$ $p(X = 50000) = p(\overline{G} \cap \overline{D}) = P(\overline{G}) \times P(\overline{D}/G) = 0, 8 \times 0, 9 = 0, 72$			2 ,5	
3b	$p(x = 150000) = p(\overline{G} \cap D) = 0.1 \times 0.8 = 0.08.$				
	Xi	0	50 000	150 000	
	$P(X=x_i)$	0,2	0,72	0,08	
	$E(X) = \sum p_i x_i = 0 + 0.72 \times 50000 + 0.08 \times 150000 = 36000 + 12000 = 48000LL.$				
4	Le coût moyen de contr Donc si la société fait c $48000 \times 50 = 2400000$	ontrôler 50 voit		mé à :	1

№ V- (3 points)

Partie de la Q.	Corrigé	Note
1	h(C) = B . L'image (d) de (AC) par h est la parallèle à (AC) passant par B . L'image D de A par h est le point d'intersection de (AI) avec (d) .	1

2a	L'angle de S est $\alpha = (\overrightarrow{AC}; \overrightarrow{BA}) = \frac{\pi}{2}$ $[2\pi]$; son rapport est	0,5
	$k = \frac{BA}{AC} = \frac{3}{2}$	
	_	
2b	$S(A) = B$ et $\alpha = \frac{\pi}{2}$, alors $S(AI)$ est la perpendiculaire à (AI) passant	
	par B; S(AI) = (BC).	4.5
	De même, $S(CB) = (AI)$.	1,5
	$S(AI) = (BC)$ et $I \in (AI)$ alors $S(I) \in (BC)$.	
	$S(CB) = (AI)$ et $I \in (BC)$ alors $S(I) \in (AI)$.	
	Alors $S(I) = I$ et I est le centre de S .	
	$S(A) = B$ et $\alpha = \frac{\pi}{2}$, alors $S(AB)$ est la perpendiculaire à (AB) passant	
2c		0,5
20	$\operatorname{par} B \; ; \; \operatorname{S}(\operatorname{AB}) = (\operatorname{d}) \; .$	0,5
	$S(AB) = (d)$ et $B \in (AB)$ alors $S(B) \in (d)$; $B \in (BC)$ et $S(BC) = (AI)$,	
	d'où $S(B)$ ∈ (AI) , $donc S(B) = (AI) ∩ (d)$ alors $S(B) = D$.	
3a	$S \circ S = S(I, \frac{3}{2}, \frac{\pi}{2}) \circ S(I, \frac{3}{2}, \frac{\pi}{2}) = S(I, \frac{9}{4}, \pi)$. Donc $S \circ S$ est	0,5
	l'homothétie $h(I, -\frac{9}{4})$	
3b	$S \circ S(A) = S(S(A)) = S(B) = D.$	0,5
3c	$S \circ S$ et h sont deux homothéties de même centre I et	
	$S \circ S(A) = h(A) = D$ alors $S \circ S = h$.	0,5
	S([AC]) = [BA] et E est le milieu de $[AC]$; alors $S(E)$ est le milieu	0,5
4a	F de [AB].	
	S([AB]) = [BD] et F est le milieu de $[AB]$; alors $S(F)$ est le milieu	
	G de $[BD]$.	
4b	$G = S(F) = S \circ S(E) = h(E)$. Alors E , I et G sont alignés.	0,5

№ VI- (7 points)

Partie de la Q.	Corrigé	Note
A1	$x y'_1 - y_1 = 2 - 1 - 2 \ln x = 1 - 2 \ln x$.	0,5
A2	y = 0 est une solution particulière de l'équation (2): $xy' - y = 0$;	1
112	Si $y \ne 0$, $\frac{y'}{y} = \frac{1}{x}$; $\ln y = \ln x + k$. La solution générale de (2) est $Y = ax$ où $a \in IR$	1
A3a	$Y + y_1 = 1 + ax + 2\ell n x$ dépend d'une constante arbitraire et vérifie l'équation (1).	0,5
	Alors $y = 1 + ax + 2\ell n x$ est la solution générale (1).	
A3b	$y(1) = 0 \text{ ssi } a = -1 ; y = 1 - x + 2\ell n x .$	0,5
	$h(3,51) \times h(3,52) \approx (0,001)(-0,003) < 0$. Alors $3,51 < \alpha < 3,52$.	
B1a		1
B1b	Le maximum de $h(x)$ est $h(2) = -1 + \ell n 4$.	0,5

B2a	$\int_{1}^{\alpha} \ell n x dx = [x \ell n x]_{1}^{\alpha} - \int_{1}^{\alpha} dx = [x \ell n x - x]_{1}^{\alpha} = \alpha \ell n \alpha - \alpha + 1.$	1
B2b	$S = \int_{1}^{\alpha} h(x)dx = \left[x - \frac{1}{2}x^{2}\right]_{1}^{\alpha} + 2(\alpha \ln \alpha - \alpha + 1) = \frac{3}{2} + 2\alpha \ln \alpha - \alpha - \frac{1}{2}\alpha^{2} \text{ unités}$ d'aire.	0,5
Cla	$f(x) = 0$; 1 +2 $lnx = 0$; $x = \frac{1}{\sqrt{2}}$ d'où $(\frac{1}{\sqrt{2}}; 0)$	0,5
C1b	$\lim_{x \to 0^{+}} f(x) = -\infty \text{ et } \lim_{x \to +\infty} f(x) = 0^{+} \text{ alors } x'x \text{ et } y'y \text{ sont asymptotes à } (C).$	0,5
C2a	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,5
	$f'(x) = -\frac{4\ell n x}{x^3} \; ; \; f(\alpha) = \frac{1+2\ell n \alpha}{\alpha^2} = \frac{h(\alpha)+\alpha}{\alpha^2} = \frac{1}{\alpha} \; .$	
C2b		1,5
C3a	f est continue et strictement décroissante $sur[1; +\infty[$; donc f admet une fonction réciproque f^{-1} .	0,5
C3b	f^{-1} est définie sur $f([1; +\infty[) =]0; 1]$. f est dérivable sur $[1; +\infty[$ et l'équation $f'(x) = 0$ admet une seule solution $x = 1$. Alors f^{-1} est dérivable sur $f([1; +\infty[) =]0; 1[$	1
C3c	$f^{-1}(x) > \alpha$ est équivalente à $f(f^{-1}(x)) < f(\alpha)$. D'où $x < \frac{1}{\alpha}$; soit $x \in]0; \frac{1}{\alpha}[$	0,5
D1	La figure tracée en C2b montre que, pour tout $x \in [4; +\infty[$, $f(x) > 0$. De plus, $f(x) - \frac{1}{x} = \frac{1 + 2\ell n x - x}{x^2} = \frac{h(x)}{x^2}$; pour $x \in [4; +\infty[$, $x > \alpha$ et $h(x) < 0$.	1

	Donc pour tout $x \in [4; +\infty[, 0 \le f(x) \le \frac{1}{x}]$.	
D2	Pour tout $n \ge 4$, $0 \le \int_{n}^{n+1} f(x) dx \le \int_{n}^{n+1} \frac{dx}{x}$; alors $0 \le I_n \le \ell n \left(\frac{n+1}{n}\right)$.	1
D3	$\lim_{n \to +\infty} \ell n \left(\frac{n+1}{n} \right) = \ell n (1) = 0 \; ; \; \text{alors } \lim_{n \to +\infty} I_n = 0 \; .$	0,5