Aula de Inteligencia Artificial

Detección

Detección de caras Color y movimiento, restricciones

Esquema simple

Jones and Rehg [1]

Kruppa [2]

Detección no basada en heurísticas Ventana deslizante Coste temporal del clasificador Mayor velocidad

Clasifica cada ventana

Clasificador

¿Qué caracteriza las X?

Clasifica cada ventana Clasificador ¿Qué caracteriza las X?

Medidas de una imagen

$$x \in \Re^n$$
, $y \in \{\pm 1\}$

Clasificador supervisado Experiencia previa

Clasifica cada ventana

Clasificador en cascada, desecha zonas poco prometedores Cascada clasificadores débiles

Características de cómputo rápido Imagen integral

Características de cómputo rápido Imagen integral

Esquema general

Fuente: Cascade structure for Haar classifiers.

Código python

```
import cv2
# Carga del clasificador para detección
cascada = cv2.CascadeClassifier('./haarcascade_frontalface_alt.xml')
# Cargas la imagen
imagen = cv2.imread("worlds-largest-selfie.jpg")
# Conversión a grises
gris = cv2.cvtColor(imagen, cv2.COLOR_BGR2GRAY)
# Detecta objetos
caras = cascada.detectMultiScale(gris)
# Para cada cara detectada
for (x, y, w, h) in caras:
  # Dibuja contenedor
  imagen = cv2.rectangle(imagen, (x, y), (x + w, y + h), (255, 0, 0), 2)
cv2.imshow("Imagen", imagen)
```

Códigos ejemplo proyecto AulaIA_Detectores

- DetectaVJenimagen
- DetectaVJenimagenysalva
- DetectaVJencam
- DetectaVJcarasyojos
- DetectaFacemarks (no funciona con versión actual opency)

Repositorios clasificadores

- opency
- opencvcontrib

Tarea

Detecta caras con sonrisa y dibuja un sol en su caso

Más que la cara, Zach Lieberman, 2017

Redes profundas

GPUs

Paralelización masiva

Redes profundas

Códigos ejemplo proyecto AulaIA_Detectores

- DetectaDNNcaras
- DetectaDNNedadysexo
- DetectaVJedadysexo

Modelos clasificadores sexo y edad

- Sexo: https://www.dropbox.com/s/iyv483wz7ztr9gh/gender_net.caffemodel?dl=0
- Edad: https://www.dropbox.com/s/xfb20y596869vbb/age_net.caffemodel?dl=0"

Posible tarea: Detección con comportamiento diferenciado por sexo/edad

Redes profundas

Códigos ejemplo proyecto AulaIA_Detectores

- DibujaLluvia
- DetectaDlibcaras (requiere instalar dlib)

Referencias

- P. Viola and M. J. Jones. Rapid Object Detection using a Boosted Cascade of Simple Features. In Computer Vision and Pattern Recognition, 2001
- Rainer Lienhart and Jochen Maydt. An extended set of Haar-like features for rapid object detection. In IEEE International Conference on Image Processing, 2002
- Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu and Alexander C. Berg. SSD: Single Shot MultiBox Detector. In European Confer ence on Computer Vision, 2016