Программа редактирования трехмерных тел с использованием логических операций

Цель

Разработать клиент-серверное приложение создания и редактирования трехмерных тел из заданного множества примитивов.

На клиентской стороне выполняется работа с объектами:

- добавление примитивов и источников света на сцену;
- перемещение объектов и источников света по сцене;
- выполнение логических операций над объектами;
- модификация физических свойств объектов и источников света.

На серверной стороне выполняется:

- сохранение и загрузка сцен;
- хранение и пополнение множества примитивов.

Задачи

- Разработка серверной и клиентской архитектуры приложения.
- Организация работы с приложением.
- Разработка и реализация алгоритмов графики и редактирования.

Разработка серверной и клиентской архитектуры приложения.

Сервер:

- Javascript
- Node.js

Клиент:

- Javscript
- HTML5
- CSS3
- WebGL

Организация работы с приложением

Организация работы с приложением

Сцена:

- Объекты (вектор объектов)
- Источники света (вектор источников света)

Объект:

- Функция расстояния (функция)
- Положение (трехмерный вектор)
- Цвет (трехмерный вектор)
- Коэффцициент отражения (число)
- Коэффициент прозрачности (число)

Источник света:

- Положение (трехмерный вектор)
- Цвет (трехмерный вектор)

Javascript:

- Загрузка и компиляция шейдеров
- Передача данных в шейдеры
- Выполнение шейдерного кода

Шейдеры:

- Определение направления в вершинном шейдере
- Определение цвета пикселя в фрагментном шейдере

Передача данных в шейдеры:

- Встраивание констант в код шейдера;
 - Формирование вектора объектов и вектора источников света;
 - Модицикация кода шейдера для оптимизации;
 - Перекомпилирование шейдера с новым кодом;
- Связывание данных через uniforms;
 - Определение объекта и его свойств
 - Передача объекта
 - Дальнейшее изменение свойств объекта в Javascript программе влечет изменение соответствующих переменных в шейдере

Определение цвета пикселя в реймарчинге:

- Входные данные:
 - точка, откуда направлен луч;
 - вектор, в каком направлении следует луч;
- Рендеринг пикселя:
 - поиск точки встречи луча с объектом;
 - анализ свойств объекта:
 - запуск луча сквозь объект, если объект прозрачен;
 - запуск отраженного луча, если объект отражает лучи;

Запуск луча:

- Фиксирование объекта, с которым встретился луч и точки встречи луча;
- Возвращение результата цвета точки, в которую попал луч