

I Définitions

Définition : Grammaire non-contextuelle

Une grammaire non-contextuelle (ou : hors-contexte) est un quadruplet $G = (\Sigma, V, R, S)$ où :

- ullet V est un ensemble fini de variables
- Σ est un alphabet fini de terminaux
- $R \subset V \times (V \cup \Sigma)^*$ est un ensemble fini de règles de production, chaque règle $(X, \alpha) \in R$ étant notée $X \to \alpha$
- $S \in V$ est le symbole initial

Remarques:

- Par convention, on note les variables en majuscules et les terminaux en minuscules.
- On peut noter $X \to \alpha \mid \beta$ au lieu de $X \to \alpha, X \to \beta$.
- Il existe des grammaires plus générales (contextuelles) mais nous nous limiterons aux grammaires non-contextuelles, qu'on appellera simplement grammaires.

Définition: Dérivation

Soient $\alpha, \beta \in (V \cup \Sigma)^*$.

- On note $\alpha \Rightarrow \beta$ s'il existe une règle $X \to \gamma$ telle que $\alpha = \alpha_1 X \alpha_2$ et $\beta = \alpha_1 \gamma \alpha_2$ avec $\alpha_1, \alpha_2 \in (V \cup \Sigma)^*$. On dit alors qu'on a une dérivation immédiate de α en β .
- On note $\alpha \Rightarrow^{\overline{n}} \beta$ s'il existe des mots $\gamma_0 = \alpha, \gamma_1, \dots, \gamma_n = \beta$ tels que $\gamma_0 \Rightarrow \gamma_1 \Rightarrow \dots \Rightarrow \gamma_n$. On dit alors qu'on a une dérivation de longueur n de α en β .
- On note $\alpha \Rightarrow^* \beta$ si $\alpha \Rightarrow^n \beta$ pour un certain $n \in \mathbb{N}$. On parle alors de dérivation de α en β .

Définition : Langage engendré

Soit $G = (\Sigma, V, R, S)$ une grammaire.

- On dit que G génère un mot $w \in \Sigma^*$ si $S \Rightarrow^* w$.
- L'ensemble $L(G) = \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$ est le langage engendré par G.
- Un langage L est dit non-contextuel (ou : algébrique, hors-contexte) s'il existe une grammaire hors-contexte G telle que L = L(G).

Exemples:

- Soit $G = (\Sigma = \{a, b\}, V = \{S\}, R = \{S \to aaS \mid b\}, S)$. $L(G) = \underline{\hspace{1cm}}$
- Soit $G = (\{a, b\}, \{S\}, \{S \rightarrow aSb \mid \varepsilon\}, S)$. $L(G) = \underline{\hspace{1cm}}$
- Soit $G = (\{x, y, \top, \bot, \lor, \land, \neg\}, \{S\}, R, S)$ avec P contenant les règles suivantes : $S \to \top \mid \bot \mid x \mid y \mid \neg S \mid S \lor S \mid S \land S$. L(G) est ______

Exercice 1.

Donner des grammaires engendrant les langages suivants sur $\{a, b\}$:

- 1. $L_1 = ab^*a$.
- 2. L_2 = ensemble des mots dont la taille est un multiple de 3.
- 3. L_3 = ensemble des mots ayant bbb comme facteur.
- 4. L_4 ensemble des expressions arithmétiques bien formées, comme $4+3\times 2$.
- 5. L_5 = ensembles des palindromes, c'est-à-dire des mots qui se lisent de la même façon de gauche à droite et de droite à gauche.
- 6. L_6 = ensembles des mots qui ne sont pas des palindromes.

Méthode : Si G une une grammaire et L un langage, on p	peut montrer $L(G) = L$ par double inclusion
--	--

- $L(G) \subset L$: montrer que si $S \Rightarrow^n u$ alors $u \in L$, par récurrence sur n.
- $L \subset L(G)$: montrer que si $u \in L$ alors $u \in L(G)$, par récurrence sur |u|.

On utilise alors souvent, implicitement, le théorème « évident » suivant :

Théorème		
Soit $G = (\Sigma, V, R, S)$ une grammaire, $\alpha_1, \alpha_2, \beta \in (V \cup \Sigma)^*$ et $n \in \mathbb{N}$.		
Si $\alpha_1 \alpha_2 \Rightarrow^n \beta$ alors il existe $\beta_1, \beta_2 \in (V \cup \Sigma)^*, k, p \in \mathbb{N}$ tels que :		
$\bullet \beta = \beta_1 \beta_2$		
$ \bullet \alpha_1 \Rightarrow^k \beta_1 \\ \bullet \alpha_2 \Rightarrow^p \beta_2 $		
$\bullet n = k + p$		
Exercice 2. Soit G la grammaire définie par les règles $S \to aSbS \mid bSaS \mid \varepsilon$. Déterminer $L(G)$, en le démontrant.		
II Langages non-contextuels et langages réguliers Théorème L'ensemble des langages non-contextuels est stable par union, concaténation et étoile.		
C'est-à-dire : si L_1 et L_2 sont des langages non-contextuels alors $L_1 \cup L_2$, L_1L_2 et L_1^* sont des langages non-contextuels. Preuve :		
Remarque : les langages non-contextuels ne sont pas stables par intersection, différence, complémentaire.		
Théorème		
Tout langage régulier est non-contextuel.		
<u>Preuve</u> :		
Remarque : la réciproque est fausse, car $\{a^nb^n\mid n\in\mathbb{N}\}$ est algébrique mais pas régulier.		
Définition : Grammaire régulière (HP)		
Une grammaire est dite régulière (à droite) si chaque règle est de la forme $X \to aY, X \to a$ ou $X \to \varepsilon$.		
Théorème		
Un langage est régulier si et seulement s'il est engendré par une grammaire régulière.		

 $\underline{\text{Preuve}}$:

III Arbre de dérivation

Définition : Arbre de dérivation

Soient $G = (\Sigma, V, R, S)$ une grammaire et $u \in L(G)$.

Un arbre de dérivation (ou : arbre syntaxique) pour u est un arbre tel que :

- la racine est étique tée S
- chaque nœud interne est étiqueté par un élément de V
- chaque feuille est étiquetée par un élément de $\Sigma \cup \{\varepsilon\}$
- si un nœud interne est étiqueté X et possède n fils étiquetés $\alpha_1, \ldots, \alpha_n$, alors $X \longrightarrow \alpha_1 \ldots \alpha_n \in R$

Remarque : les étiquettes des feuilles, lues de gauche à droite, forment le mot u.

Exemple : Soit G la grammaire définie par $S \to S + S \mid S \times S \mid 2$ avec $\Sigma = \{+, \times, 2\}$.

 $\overline{\text{Il y a plusieurs façons d'engendrer } 2 + 2 \times 2$, donnant des arbres de dérivation différents :

1.
$$S \Rightarrow S + S \Rightarrow 2 + S \Rightarrow 2 + S \times S \Rightarrow 2 + 2 \times S \Rightarrow 2 + 2 \times 2$$

2.
$$S \Rightarrow S \times S \Rightarrow S + S \times S \Rightarrow 2 + S \times S \Rightarrow 2 + 2 \times S \Rightarrow 2 + 2 \times 2$$

IV Grammaire ambiguë

Définition: Grammaire ambiguë

Soit $G = (\Sigma, V, R, S)$ une grammaire.

- On dit que u est ambigu pour G s'il existe plusieurs arbres de dérivation distincts pour u.
- On dit que la grammaire G est ambiguë s'il existe au moins un mot u ambigu pour G.

Exercice 3.

Montrer que les grammaires suivantes sont ambiguës :

1.
$$S \to S \mid \varepsilon$$

2.
$$S \to aXb$$
, $X \to a \mid b \mid \varepsilon \mid XX$.

<u>Attention</u>: Si $S \to SaS \mid b$, bab peut être engendré de deux façons $(S \Rightarrow SaS \Rightarrow bab)$ et $S \Rightarrow SaS \Rightarrow Sab \Rightarrow bab)$ mais n'est pas ambigü (les deux arbres de dérivation sont les mêmes).

Définition : Dérivation gauche

Soit $G = (\Sigma, V, R, S)$ une grammaire.

Une dérivation gauche pour u est une dérivation où, à chaque étape, on remplace la variable la plus à gauche.

Exemple : $S \Rightarrow S + S \Rightarrow 2 + S \Rightarrow 2 + S \times S \Rightarrow 2 + 2 \times S \Rightarrow 2 + 2 \times 2$ est une dérivation gauche pour $2 + 2 \times 2$.

Théorème

Soient G une grammaire et $u \in L(G)$. Il y a une bijection entre les dérivations gauches de u et les arbres de dérivation de u.

 $\underline{\text{Preuve}}$:

D'où:

Théorème

Soit G une grammaire et $u \in L(G)$.

u est ambigu pour G si et seulement si u possède plusieurs dérivations gauches.

Définition : Faible équivalence

Deux grammaires G_1 et G_2 sont dites faiblement équivalentes si $L(G_1) = L(G_2)$.

Remarque : le terme « faiblement » vient du fait qu'on ne demande que l'égalité sur les langages et pas sur les arbres de dérivation. Ainsi, une grammaire ambiguë peut être faiblement équivalente à une grammaire non ambiguë.

Exemple : la grammaire définie par $S \to S + S \mid S \times S \mid (S) \mid 2$ est ambiguë mais est faiblement équivalente à la grammaire non-ambiguë suivante :

$$S \to S + T \mid T$$
$$T \to T \times F \mid F$$

 $F \rightarrow (S) \mid 2$

On force ici la priorité des opérations.

Remarques:

- Il est indécidable de savoir si une grammaire est ambiguë, c'est-à-dire qu'il n'existe pas d'algorithme qui, étant donnée une grammaire, détermine si elle est ambiguë.
- Un langage non-contextuel qui ne peut être engendré que par une grammaire ambiguë est dit intrinsèquement ambigu.

Exemple $(dangling\ else)$: la grammaire $S \to if\ S$ else S $|if\ S|$... est ambiguë car if ... if ... else ... peut être dérivé de deux façons.

V Analyse syntaxique

La compilation d'un code source permet de passer d'un langage à un autre et comporte deux grandes étapes :

1. Analyse lexicale : découpe le code source en une liste de lexèmes (mots-clés, identifiants, opérateurs...) en vérifiant que le code est bien formé.

Utilise un automate fini déterministe.

2. Analyse syntaxique (parsing) : construit l'arbre de dérivation du code source. Utilise un algorithme top-down ou bottom-up.

Exemple: Une expression arithmique postfixe (ou : polonaise inverse) consiste à écrire les opérateurs après les opérandes : $\overline{34+5\times}$ au lieu $(3+4)\times 5$. Grammaire (non ambiguë) :

On simplifiera l'écriture d'un arbre syntaxique

On utilise le type suivant :

```
type token = I of int | B of char
type arbre = F of int | N of token * arbre * arbre
```

Ainsi, $34 + 5 \times$ est représenté par :

- la liste de tokens [I 3; I 4; B '+'; I 5; B '*']
- l'arbre N (B '*', N (B '+', F 3, F 4), F 5).

On parcourt la liste de tokens en utilisant une pile pour stocker les arbres en cours de construction.

- Si on rencontre un entier k, on ajoute un arbre feuille F k à la pile.
- Si on rencontre un opérateur +, on extrait les deux arbres a1 et a2 de la pile et on ajoute l'arbre N(+, a1, a2).
- Quand on a fini de parcourir la liste, le seul arbre restant dans la pile est l'arbre de dérivation.

Exercice 4. Écrire une fonction parse : token list -> arbre qui prend une liste de tokens et a spondant.	renvoie l'arbre de dérivation corre-