TOCS 2018 - Gestion d'un projet IoT

Pascal Bodin - 05/04/2018

sommaire

partie 1 le fonctionnelpartie 2 la techniquepartie 3 la gestion de projet

bio

- Systev consultant indépendant équipements connectés (Sep-2016)
- Orange Labs Ingénieur Logiciel Sénior (Jan-2015)
- auparavant :
 - 2007 2011 cofondateur Systev informatique familiale
 - 2004 2014 chef de projet et développeur à Orange Labs (M2M / IoT)
 - 1997 2001 responsable d'équipe R&D à France Telecom R&D
 - 1990 2004 cofondateur ITEC (systèmes à objets connectés mobiles)
 - 1983 1993 ingénieur logiciel et chef de projet logiciel (McDonnell Douglas, DEC)

(plusieurs périodes avec deux emplois simultanés...)

Telecom Bretagne (maintenant IMT Atlantique) 1982

préambule

- TOCS : réalisation d'un démonstrateur
- pas toutes les contraintes de l'industriel
- cependant :
 - délai de réalisation court
 - équipe pas forcément co-localisée
 - niveaux d'expériences variables
- présentation adaptée à TOCS mais valable assez largement

1. le fonctionnel

- réseau communautaire de capteurs
- distributeur de croquettes connecté pour chiens et chats
- mesure de la qualité de l'environnement
- senseur de particules connecté
- supervision de bornes de recharges pour véhicules électriques
- contrôles et conseils de postures pour musculation
- boîte à lettres connectée
- synchronisation vidéo
- contrôle et automatisation d'appartement
- aide à la diminution d'addictions
- récupération d'énergie pour vélos de salles de sport
- gestion de déshydratation solaire
- surveillance de la qualité de l'air

- très variés!
- => souvent difficile d'avoir des références
- => facile de passer à côté du vrai besoin

- un utilisateur peut ne pas connaître ses vrais besoins
 - force de l'habitude
 - pas le temps de réfléchir
 - influencé par sa connaissance technique

- définir finement les cas d'usages
- déterminer les différents acteurs le cas échéant
- pour cela:
 - se mettre à la place de l'utilisateur et jouer son comportement complet
 - penser aux cas d'erreurs (plus de batterie, pas de réseau...)
 - demander l'avis de son entourage

• se poser la question "pourquoi ?" plutôt que "comment ?"

pour TOCS

- définir précisément un cas d'usage cible
- éventuellement se restreindre à un sous-périmètre

2. la technique

exemple d'architecture

choix techniques à faire

- interfaçage avec le monde réel :
 - capteurs et actionneurs
 - traitements nécessaires (locaux ou distants)
- positionnement [par satellites]
- traitements à effectuer au niveau de l'objet
 - capteurs et actionneurs
 - communication avec le système central
 - décisions de haut niveau

choix techniques à faire

communications objets - système central :

- paramètres ou contraintes :
 - quantité de données (dans les deux sens)
 - distance
 - couverture
 - temps de réaction global
 - temps de latence
 - autonomie énergétique de l'objets
 - -coût

choix techniques à faire

système central :

- plate-forme (?)
- prise en charge du moyen de communication
- accessible depuis l'Internet ou pas
- les choix habituels du domaine PC / serveur

- cartes SODAQ LoRa(WAN)/Bluetooth Orange :
 - peu de données : paquets de 51 à 250 octets avec limitation à 1% du temps
 - consommation faible (si mise en veille) pile ou batt. USB
 - distance : centaines de m à plusieurs km
 - sa propre couverture : carte à carte en LoRa
 - couverture réseau (Orange, TTN...) : LoRaWAN
 - développement : Arduino-like
 - capteur de température
 - plates-formes (Orange, TTN...) avec API
 - session de prise en mains : mar. 17/04

- cartes mangOH Red Sierra Wireless 3G/Wi-Fi/BLE :
 - données 3G
 - alimentation possible sur batterie mise en veille
 - couverture : celle du réseau 3G utilisé
 - développement : Legato librairie logicielle spécifique, audessus de Linux - demande une certaine expérience
 - accéléromètre, gyroscope, pression, lumière, GNSS
 - plate-forme AirVantage avec API màj OTA
 - session de prise en mains : mar. 24/04

- cartes ST LoRa(WAN) :
 - limitations données : idem cartes SODAQ
 - consommation faible (si mise en veille) batt. USB
 - distance : centaines de m à plusieurs km
 - sa propre couverture : carte à carte en LoRa
 - couverture réseau (Orange, TTN...) : LoRaWAN
 - développement : STM32Cube ou ARM mbed demande une certaine expérience
 - pas de session de prise en mains
 - article: http://systev.com/connecting-sts-lorawandevelopment-kit-to-oranges-lorawan-network/

- cartes Pycom SiPy Sigfox/Wi-Fi/Bluetooth:
 - peu de données : paquets de 12 octets avec limitation à 1% du temps
 - consommation faible (si mise en veille) batt. USB
 - distance : centaines de m à plusieurs km
 - couverture réseau : quasiment nationale
 - développement : Python
 - session de prise en mains : jeu. 26/04

éléments proposés - communications

- passerelles LoRaWAN The Things Network :
 - limitations données : voir cartes SODAQ
 - réseau communautaire gratuit
 - couverture partielle Sophia-Antipolis
 - carte Arduino + carte d'extension LoRaWAN, à fournir
 - session de prise en mains : ven. 27/04

éléments proposés - système central + objet

- environnement Hop.js
 - environnement JavaScript multi-plateformes pour le développement d'applications IoT distribuées
 - cibles objets conseillées pour TOCS : Raspberry Pi Zero ou 3, à fournir
 - session de prise en mains : jeu. 12/04

éléments proposés - système central

- plate-forme Busit :
 - connectivité
 - analytique, cartographie
 - orchestration, surveillance
 - session de prise en mains : ven. 06/04

éléments proposés - système central

- plate-forme Orange Live Objects :
 - connectivité LoRaWAN ou Internet
 - stockage
 - session de prise en mains : date à venir

éléments proposés - propriété industrielle

- présentation Hautier IP :
 - quoi protéger
 - comment protéger
 - quand protéger
 - session : ven. 13/04

éléments proposés - les moyens de SoFAB

- découpeuse laser
- scanner 3D, imprimante 3D
- etc.
- session Aspects mécaniques : mar. 15/05
- session OpenSCAD (impression 3D): date à venir
- session LibreCAD (découpage laser) : date à venir

difficultés

• quels domaines sont les plus difficiles ?

difficultés

- ceux que l'on ne connaît pas !
 - que l'on croit difficiles
 - qui se révèlent plus difficiles que prévus

gérer la difficulté

- identifier les difficultés potentielles
 - voir partie gestion de projet
- parmi elles, identifier les difficultés bloquantes
- s'attaquer à chacune d'elle **séparément**

difficultés habituelles - logiciel embarqué

- équivalent de Hello World! souvent assez facile
- enrichissement fonctionnel : peut devenir complexe rapidement

difficultés habituelles - logiciel embarqué

- comprendre le paradigme (voir plus loin)
- écrire un programme séparé pour chaque tâche et tester son élasticité
- assembler les tâches une à une en validant chaque étape
- ne pas hésiter à développer des outils spécifiques (simulateur de capteur, stress pile de protocole, etc.)

difficultés habituelles - paradigme Arduino

- initialisation + boucle
- attention aux éventuels appels bloquants

difficultés habituelles - paradigme bare metal

- asynchronisme : routines d'interruption + tâche de fond
- attention à la configuration des interruptions
- attention à l'accés aux ressources partagées !

difficultés habituelles - paradigme RTOS

- proche d'un OS
- attention à la complexité de l'environnement !

difficultés habituelles - réseau sans fil grande distance

- limitations physiques ou économiques
 - => couverture non globale et non permanente
- technologie différente du filaire
 - => comportement différent de certains protocoles (ex : TCP sur GPRS)

difficultés habituelles - réseau sans fil courte distance

- limitations physiques
 - => couverture non globale et non permanente
- parfois manque de maturité
 - => comportement non prévu (ex : ancienne pile Bluetooth Android)

difficultés habituelles - réseau sans fil

- prévoir dès la conception la non-fiabilité du support de communication :
 - vérifier la connectivité si besoin est (heart beat)
 - reprise sur perte de connectivité
 - tester l'élasticité (portée, débit, etc.)

difficultés habituelles - plate-forme

- c'est du logiciel
 - => la doc peut ne pas être à jour
 - => il peut y avoir des bogues

3. la gestion de projet

- production et gestion du code :
 - chaînes de développement : embarqué et PC
 - gestion de version git, GitHub, GitLab, Framagit...
 - sauvegarde

—

- communication au sein de l'équipe :
 - partage de fichiers : Framadrop, Google Drive, Dropbox...
 - partage d'information : wiki (GitHub, Framagit...)
 - travail collaboratif sur document : Framapad...
 - Framateam
 - Asana
 - Slack

— ...

- gestion de tâches, gestion de projet :
 - Framaboard
 - Trello
 - board de GitLab

— ...

 attention à ne pas passer plus de temps sur les outils que sur la réalisation!

phases habituelles d'un projet

	recueil des besoins	analyse des besoins	prototypage	dév. produit	tests	installation et recette	
--	------------------------	------------------------	-------------	--------------	-------	-------------------------	--

projet IoT

recueil des besoins	analyse des besoins	prototypage	dév. produit	tests	installation et recette
prise en main technos	preuves de concept		outillage		

vue d'ensemble

- un système loT doit être un tout cohérent
 - => un membre de l'équipe doit avoir la vue d'ensemble
 - => produire un système fonctionnel minimum rapidement
 - => jouer avec

agilité

- procéder par itérations, limitées par le temps (sprints)
- pour chaque itération :
 - bien définir la cible en début
 - faire le point en fin (tests, facilité d'utilisation, réorientation techno, etc.)
- premières étapes : poser la charpente

itérer

vu dans la partie précédente

- anticiper les difficultés bloquantes
- s'y attaquer indépendamment
- vérifier l'élasticité de chaque solution

planification pour TOCS

- tenter d'estimer la quantité de travail des premières itérations
- en déduire des dates de livraisons intermédiaires
- prévoir du temps pour
 - travailler l'aspect mécanique
 - préparer la présentation
 - basculer sur un plan B

support TOCS

- les coachs sont là pour vous aider, pas pour vous remplacer :-)
- ne pas hésiter à les contacter, par le forum
- ils ne peuvent pas tout savoir!
 - utiliser les supports des produits concernés
- en juin : sessions sur mesure à la demande

Bon amusement!

- pascal.bodin@systev.com
- http://sofab.tv/tocs
- @PascalBod06
- in www.linkedin.com/in/pascalbodin