

Training of convolutional neural networks with simulated image data for logistics object detection

supervisor: Hagen Borstell (ILM)

- Team
- Motivation
- Working methodology
- Implementation
 - Workflow
 - Tools overview
 - Rendering
 - Training
 - Initial Results
- Futurework
- Estimated time

Team

Jagriti Labh Karri Aravind Reddy

Motivation

Working Methodology

Scrum based Agile methodology

Implementation

Tools overview

- Opensource
- Used for creating animated films, visual effects ect
- Written on python

Tools overview

Camara

object

Light

Access each element as object ex: bpy.camara, bpy.object

Rendering

Rotate camera and render images with a particular interval

References: https://stackoverflow.com/questions

Rendering

Variation in light

spot

hemi

point

sun

Lamp Type	Buffer Shadow	Ray Shadow
Point	No	Yes
Sun	No	Yes
Spot	Yes	Yes
Hemi	No	No
Area	No	Yes

OTTO VON GUERICKE UNIVERSITÄT MAGDEBURG

Blender work automation

▼ GenerateMoreData Pa	nnel :::
Levels:	7 🖹
Degrees:	10
Size:	20
CapBuffer:	2.00
	Update Camera

- Levels- Number of height levels
- Degrees-Degrees to rotate camera Ex: (360/10)
- Size- Size of object
- CapBuffer- set the buffer at caps

Rendering

Data

Initial Image DataBase created with simple models (Cube, Sphere) with

- Variation in Light sources and Number of light sources
- Variation in camera angles (pose)
- Variation in material colour

Simple CNN- Algorithm

Created a simple CNN Algorithm in keras(with tensorflow backend) to test our data

With two convolutional layers

Where to find our code

Code: https://github.com/playhard21/Simulated-image-data

Problems with blender

Problems in fully Automating the work

- Blender objects can't be accessed until we invoke them
 - Ex : Adding empty with code
 - Accessing the objects in light variation until we invoke light
- Invoking some objects can't be done through code in python had to be done manually

Future work

- Create Database of logistic objects
- Automate some of the workflow
- Research activities on deep neural networks for the purpose of identification and Localization of logistics objects
- Evaluate Keras Implementation of Yolo-Network
- Compare several parametrization of the neural networks
- Building complex scene Database (Multiple combination of logistic objects)
- Fine tuning of existing neural network (eg Yolo) with virtual data
- Apply and evaluate neural network with real data

Timeline

Thank you

