Towards the Compression of First-Order Resolution Proofs by Lowering Unit Clauses

J. Gorzny¹ B. Woltzenlogel Paleo²

¹University of Victoria

²Vienna University of Technology

6 August 2015

Proof Compression Motivation

an accessible, good motivational example for proof compression

(Propositional) Proofs

Definition (Proof)

A directed acyclic graph $\langle V, E, \Gamma \rangle$, where

- V is a set of nodes
- E is a set of edges labeled by literals
- Γ (the proof clause) is inductively constructible using axiom and resolution nodes

Definition (Axiom)

A proof with a single node (so $E = \emptyset$)

(Propositional) Resolution

Definition (Resolution)

Given two proofs ψ_L and ψ_R with conclusions Γ_L and Γ_R with some literal I such that $\overline{I} \in \Gamma_L$ and $I \in \Gamma_R$, the resolution proof ψ of ψ_L and ψ_R on I, denoted $\psi = \psi_L \psi_R$ is such that:

- ψ 's nodes are the union of the nodes of ψ_L and ψ_R , and a new root node
- there is an edge from $\rho(\psi)$ to $\rho(\psi_L)$ labeled with \bar{I}
- there is an edge from $\rho(\psi)$ to $\rho(\psi_R)$ labeled with I
- ψ 's conclusion is $(\Gamma_L \setminus \{\overline{I}\}) \cup (\Gamma_R \setminus \{I\})$

A Propositional Proof

Deletion

how deleting subproofs or edges in proofs affect them

Redundancy

types of redundancy we hope to remove, small examples (before/after proofs; not animated)

First-Order Proofs

Definition (First-Order Proof)

A directed acyclic graph $\langle V, E, \Gamma \rangle$, where

- V is a set of nodes
- E is a set of edges labeled by literals and substitutions
- Γ (the proof clause) is inductively constructible using axiom, (first order) resolution, and contraction nodes

Axioms are unchanged

Substitutions and Unifiers

Definition (Substitution)

A mapping $\{X_1 \setminus t_1, X_2 \setminus t_2, \ldots\}$ from variables X_1, X_2, \ldots to terms t_1, t_2, \ldots

Definition (Unifier)

A set of literals in a substitution that makes all literals in the set equal

First Order (Unifying) Resolution

Definition (First Order Resolution)

Given two proofs ψ_L and ψ_R with conclusions Γ_L and Γ_R with some literal I such that $I_L \in \Gamma_L$ and $I_R \in \Gamma_R$, and σ_L and σ_R are substitutions usch that $I_L \sigma_L = \overline{I_R} \sigma_R$, and the variables in $(\Gamma_L \setminus I_L) \sigma_L$ and $(\Gamma_R \setminus I_R) \sigma_R$ are disjoint, then the resolution proof ψ of ψ_L and ψ_R on I, denoted $\psi = \psi_L \psi_R$ is such that:

- ψ 's nodes are the union of the nodes of ψ_L and ψ_R , and a new root node
- there is an edge from $\rho(\psi)$ to $\rho(\psi_L)$ labeled with I_L and σ_L
- there is an edge from $\rho(\psi)$ to $\rho(\psi_R)$ labeled with I_R and σ_R
- ψ 's conclusion is $(\Gamma_L \setminus I_L)\sigma_L \cup (\Gamma_R \setminus I_R)\sigma_R$

Contraction

Definition (Contraction)

If ψ' is a proof and σ is a unifier of $\{I_1,\ldots,I_n\}\subset\Gamma'$, then a contraction ψ is a proof where

- ψ 's nodes are the union of the nodes of ψ' and a new node v
- There is an edge from $\rho(\psi')$ to ν labeled with $\{I_1,\ldots,I_n\}$ and σ
- The conclusion is $(\Gamma' \setminus \{I_1, \dots, I_n\})\sigma \cup \{I\}$, where $I = I_k\sigma$ for $k \in \{1, \dots, n\}$

LowerUnits

brief high level description; complexity probably not pseudo-code

$$a, \bar{b}, \bar{c}$$
 a, \bar{b}, c a, \bar{b}

First Order Challenges I

example 1 demonstrated

First Order Challenges II

example 2 demonstrated; definition of pre-deletion unification property

First Order Challenges III

example 2 demonstrated; definition of post-deletion unification property

First Order Lower Units Ideas/Principles

briefly mention all ideas, e.g. quadratic time naive approach to deal with both properties

Simple/Greedy First Order Lower Units

introduce simpler idea, make compromises explicit and list benefits high level description (probably not pseudo-code, but list # of traversals, complexity, etc)

First Order Example

small, animated example

Experiment Setup

proof sources, systems used, etc.

Results I

at least one or two of the more informative graphs

Results II

text summary of results (numbers, percentages, times, etc)

Conclusion

summary future work (FORPI) source link

