PMI 214 Notes

Sam Fleischer

September 22, 2016

Course Overview

Ecology, Epidemiology, and Control of Vector-Borne Diseases

- Sep 27 Mosquito Control in CA
- Sep 29 Dirofiliaria
- Oct 4 West Nile virus Epidemiology and Ecology
- Oct 6 Impact of Environmental Change on Vector-Borne Desease
- Oct 11 Zika Virus
- Oct 13 Dengue Virus
- Oct 18 Malaria
- Oct 20 African Horse Sickness & Blue Tongue Viruses
- Oct 25 Midterm Review
- Oct 27 MIDTERM (50%)

Surveillance & Control of Vector-Borne Diseases

- Nov 1 Modeling & surveillance of vector-borne diseases
- Nov 3 Integrated VEctor Control
- Nov 8 Genetically modified mosquitoes for malaria control
- Nov 10 Genome evolution of malaria vectors in response to vector control
- Nov 15 Dengue control by Introducing Wolbachia in A. aegypti populations (Turelli !!!)
- Nov 17 Ecology of Rickettsiaceae
- Nov 22 Leishmaniases
- Nov 24 THANKSGIVING
- Dec 3 Mechanisms of Arbovirus
- \bullet Dec 6 FINAL EXAM (50%) (not cumulative)

Lecture 1

Objectives

- Factors affecting efficiency of transmission
- parasite acquisition
- modes of replication and transmission of different parasites

Factors Affecting Efficienct of Transmission

- "Nidus of Transmission" where the host, vector, and parasite come together in a permissive environment
- Transmission
 - Mechanical Transmission (typically bacterial pathogens)
 - * Does not involve biological association between pathogen and vector
 - * typically mouth parts of insects like houseflies
 - · flies eat fecal matter, land on breakfast cereal, and transfer enough to get the kid sick
 - * vector serves only in a physical manner
 - * Maybe this includes copulative transmission?
 - Biological Transmission
 - * ingested parasite either develops and/or reproduces within the arthopod
 - * example is Malaria parasite undergoes changes inside the mosquito
 - · Changes from infective to the mosquito into infective to the vertebrate host
 - \cdot Infected female does not transmit to offspring
 - * vector picks up a low titre of particles, viruses reproduce inside the mosquito into numbers so that it infects the salivary glands inside the mosquito
 - * most successful form of transmission
 - * trophic transmission (S. Solidus) can be considered a subset of biological transmission (but not everything in biology fits into boxes)
 - Horizontal Transmission (includes mechanical and biological)
 - * transmission between hosts
 - * dengue: mosquito \rightarrow human \rightarrow mosquito \rightarrow human $\rightarrow \dots$
 - Vertical Transmission
 - * pretty common, but not east for parasite to cross from female to egg
 - * female ticks pass lyme disease to their offspring

• Incubation

- Intrinsic Incubation Period
 - * Typical period within vertebrate host between infection and onset of disease
 - * Very important from and epidemiological (and even legal) standpoint
 - * Recredescence
 - · parasite becomes sequestered
 - · if the immune system gets compromise, you get old or sick, have a transplant, then the parasite emerges
 - · Record is 75 years.. the Greek woman who moved to Minnesota had Malaria
- Extrinsic Incubation Period
 - * Period within vector between infection and transmission
 - * Mechanical transmission: EIP = 0.
 - * Biological transmission: $EIP \neq 0$.. must infect the salivary glands
- Blood Feeding
 - Blood feeding has evolved independently at least 21 times in arthropods
 - Since they've evolved independently, they have created different methods of blood meal acquisition
 - Types of mouthparts
 - * No penetration (houseflies) sponging mouthparts, can only suck up liquid, can't create a surface wound.
 - * Creates surface wound
 - · rasping, chewing, sponging mouthparts
 - · heavily armored mouthparts
 - · blade-like parts create the wound, then use sponge-like parts to suck up blood.
 - * Penetrate epidermis to find blood vessels
 - · Mouthparts are seringe-like and enter a blood vessel
 - · Bed bugs, "kissing" bugs, and true bugs have evolved an esthetic so the victim doesn't feel the bite