SI-2024 Introduction to CubeSat and Satellite Communication

Satellite Communication System

27th June 2024

SiliconTech

Basic Digital Modulation Methods

- modulation which represents a symbol 1 by a positive square pulse with length T and a symbol 0 by a negative square pulse with length T.
- b) The second one is the unipolar return to zero modulation with a positive pulse of T/2 for symbol 1 and nothing for 0.
- c) The third is **the biphase level or Manchester modulation** which uses a waveform consisting of a positive first-half T pulse and a negative second-half T pulse for 1 and a reversed waveform for 0.

Basic Bandpass Modulation (Carrier Modulation)

- a) Amplitude Shift Keying (ASK), the modulator puts out a burst of carrier for every symbol 1, and no signal for every symbol 0.
- b) FSK, for symbol1 a higher frequency burst is transmitted and for symbol 0 a lower frequency burst is transmitted.
- c) In PSK, a symbol 1 is transmitted as a burst of carrier with 0 initial phase while a symbol 0 is transmitted as a burst of carrier with 180° initial phase

Frequencies	Band	Characteristics	Services	
3 Hz-30 kHz	ELF, VLF	High atmospheric noise, Earth-ionosphere waveguide modes, very inefficient antennas	Submarine, navigation, sonar, long-range navigation	
30–300 kHz	LF	High atmospheric noise, Earth-ionosphere waveguide modes, absorption in the ionosphere	Long-range navigational beacons	
0.3–3 MHz	MF	High atmospheric noise, good ground wave propagation, Earth magnetic field cyclotron noise	Navigation, maritime communication, AM broadcasting	
3–30 MHz	HF	Moderate atmospheric noise, ionosphere reflections that provide long-distance links, affected by solar flux density	International shortwave broad- casting, ship-to-shore, tele- phone, telegraphy, long-range aircraft communication, amateur radio	
30–300 MHz	VHF	Some ionosphere reflections at the lower range, meteor scatter possible, normal propagation basically line of sight	Mobile, television, FM broad- casting, air-traffic control, radio navigation aids, land-mobile communications	
0.3–3 GHz	UHF	Basically line-of-sight propaga- tion, efficient portable antennas	Television, radar, land-mobile communications, satellite com- munications, Global Positioning Satellite (GPS), PCS, wireless lo- cal-area networking, mobile phones	
3–30 GHz	SHF	Line-of-sight propagation, atmospheric absorption at upper frequencies	Radar, microwave links, land-mobile communication, satellite communication, UWB, wireless LANs and PANs, fixed broadband, 3G PCS	
30–300 GHz	EHF	Line-of-sight propagation, very subject to atmospheric absorption	Radar, secure and military communication, satellite links, mm-wave personal-area networking	
300–10 ⁷ GHz	IR—optics	Line-of-sight propagation, very subject to atmospheric absorption	Optical communications, fiber optical links	

Electromagnetic Wave

Atmospheric Attenuation for mmWave Signals

Electron Density Profile of Ionosphere

Carrier Frequency Selection Criteria

- a) Power Efficiency: The bit error rate or bit error probability of a modulation scheme is inversely related to Eb/No, the bit energy to noise spectral density ratio.
- **b) Bandwidth Efficiency**: The bandwidth efficiency is defined as the number of bits per second that can be transmitted in one Hertz of system bandwidth.
- **c) System Complexity**: System complexity refers to the number of circuits involved and the technical difficulty of the system.
- d) Frequency allocation and regulation.

Satellite Orbit Fundamentals

Satellite Orbit follows Kepler Laws:

T: orbit time – period, R_a : major elliptical distance from earth center, μ_{\oplus} : earth gravitation parameter, m_a : ratio of weight earth and satellite

Velocity from a distance r from the center of Earth:

$$v_a = \sqrt{\mu_{\oplus} \left[\frac{2}{n}\right]}$$

• Doppler effect
$$\frac{2 \times 10}{3 + 100} = \frac{103}{136}$$

Path Loss (dB): $F = 32.4479 + 20 \log(fD_s)$

$$F = 32.4479 + 20 \log(fD_s)^{2\times10^{3}}$$
 • Ds in km, f in MHz $f = 400$ MHz $= 32.4479 + 106$

$$= 32.44 + 11$$

$$= 138.468$$

$$\frac{138}{20} = 6.9$$

Four Types of Orbits

Orbital Element	LEO	MEO	GEO	EEO
Satellite	Iridium	GPS	INTELSAT	Molniya
Epoch	2006 231.40822226	2006 230.32290049	2006 230.72851175	2006 230.72851175
(revolution of epoch)	(rev 48,635)	(rev 11,658)	(rev 74,158)	(rev 412)
Orbital inclination	86.4009°	54.76780°	0.01080°	62.08880°
RAAN	171.4706°	263.9384°	1.62870°	214.5329°
Argument of perigee	77.8669°	155.0343°	148.7212°	266.2404°
Eccentricity	0.0002548	0.0097258	0.00026580	0.7242485
Mean anomaly	282.2821°	205.50360°	129.1125°	16.2853°
Mean motion	14.34216969	2.00563941	1.00274158	2.00707324
Drag	-0.00000e-000	-0.00000e-000	-0.00000e-000	0.00000e-000

LoRa Transceiver (Radio) Architecture

2 MHZ

#!/usr/bin/env python3

Appendix

 $f_{S} = \frac{0.5 \, \text{ns}}{256} = \frac{500 \, \text{n} \, \text{n}}{216} = 2 \, \text{ns}$

\$chmod +x <file>

\$./<filename>