باسمه تعالى

سؤالات امتحان نهایی درس: ریاضی (۳) (شتهی : علوم تجربی ساعت شروع: ۸ صبح مدت امتحان : ۱۲۰ دقیقه سؤالات امتحان نهایی درس: ریاضی (۳) (۱۳۹۱ دقیقه سال سوم آموزش متوسطه				
	ریات مرکز سنجش آموزش و پرورش مرکز سنجش آموزش و پرورش مرکز سنجش آموزش و پرورش		انشآموزا	
نمره	http://aee.medu.ir سؤالات		رديف	
1			جاهای خالی را با عبارات مناسب پرکنید.	•
	ر مي ناميم. - مي ناميم.	در فضای نمونه ا <u>ی</u>	الف) هر زیر مجموعه ی فضای نمونه ای را ، یک	
			ب) به پدیده هایی که از به وقوع پیوستن آن اطمینان نداشته با	
			ج) اگر اعضای فضای نمونه ای قابل شمارش باشد، آن را یک فه	
	[$B eq \Phi$ د پیشامد از فضای نمونه ای S باشند و A , B	
			دو پیشامدمی نامیم.	
Y	۳ مهره به تصادف خارج می کنیم،	ه سیاه می باشد،	از جعبه ای که شامل <u>۶</u> مهره سفید و <u>۳</u> مهره سبز و <u>۲</u> مهر	۲
			مطلوب است احتمال آن که :	
	هره سبز باشد.	ب) حداکثر <u>۲</u> م	الف) فقط ٢ مهره سفيد باشد.	
1	قبول شود ۴/۳ می باشد ، احتمال	ه علی در کنکور	احتمال این که رضا در کنکور قبول شود 1/2 و احتمال آن ک	٣
		يد. عير	أن كه حداقل يكي از أنها در كنكور قبول شود را به دست أور	
1/40	مورت بازه بنویسید.	جواب آن را به ص	نامعادله ی $\frac{7x-1}{x+7} \leq x-7$ راحل کنید و سپس مجموعه	٤
+/40	$\sin(\alpha+\beta)-\sin(\alpha-\beta)=7$	$\cos \alpha \sin \beta$	درستی رابطه مقابل را نشان دهید.	٥
1/40	حور بر ها را در نقطه ای به	. که این سهمی	اگر a,b,c را طوری بیابید $f(x) = ax^{7} + bx + c$ را طوری بیابید	7
	۱٫) نیز بگذرد.	و از نقطه ی (۲	عرض $\frac{3}{2}$ و محور x ها را در نقطه ای به طول $\frac{1}{2}$ قطع کند	
1	ا به دست آورید.	ر f(f(-۴)) ر	نمودار $x \geq 0$ $f(x) = \begin{cases} 1+x^{Y} & x \geq 0 \\ -\frac{x}{Y} & x < 0 \end{cases}$ نمودار $x < 0$	٧
1/40		······································	اگر $g(x) = \sqrt{1-x}$ و $f(x) = x+7$ دو تابع باشند:	٨
			الف) دامنه g,f را به دست آورید.	
			ب) دامنه تابع gof را بااستفاده از تعریف محاسبه کنید.	
			ج) ضابطه fog را بنویسید.	
		مفحه بعد»	 «ادامه سوالات در <i>ه</i>	

۱ دقیقه	۸ صبح مدت امتحان: ۲۰	رشتهی: علوم تجربی ساعت شروع: ۱	متحان نهایی درس: ریاضی (۳)	سؤالات اه
۱۳	تاریخ امتحان: ۳/۳/ ۹۱		سال سوم أمو	
ئن	مرکز سنجش آموزش و پروره http://aee.medu.ir	خرداد ماه سال ۱۳۹۱	زان و داوطلبان آزاد سراسرکشور در	دانش آموز
نمره		سؤالات		رديف
+/٧0	مد تابع $f(x)$ وقتی $\pi-\cos$	$f(x) \le f(x) \le f(x)$ داشته باشیم:	$x\in (-\pi\ ,\pi)$ اگر به ازای هر	٩
			را به دست آورید. $x o \frac{\pi}{\gamma}$	
٣		ريد.	حاصل حد های زیر رابه دست آو	١.
	$\lim_{x \to \tau} \frac{x^{\tau} - \tau x}{\tau - \sqrt{x + \gamma}}$ (الف	ب) $\lim_{x \to +\infty} \frac{7x + \sqrt{x+1}}{\Delta x + \sqrt{7x+1}}$		
	$\lim_{x\to\infty}\frac{1-\cos 7x}{x^7}$	s) $\lim_{x\to 1^-} \frac{r}{(x-1)^r}$		
1/40	ئنيد.	را در ۱ = ۱ بورسی $f(x) = \begin{cases} \frac{x^{Y} - 1}{x^{Y} - Yx + 1} \end{cases}$	- x≠۱ بیوستگی تابع x=۱	11
		ید. (ساده کردن مشتق الزامی نیست.)	مشتق توابع زير را به دست أور	١٢
1/40	الف) $f(x) = \frac{1}{7x+1} + (\sqrt{x})(x)$	c+a)		
	ب) $g(x) = f \tan(\frac{x}{r}) + \cos(x)$	r(x)		
١	ه دست أوريد.	ی تابع $x_{\circ} = -1$ را در $f(x) = x^{\circ} + 7x$ با	بااستفاده از تعریف مشتق، مشتز	۱۳
1/40		می باشد. $f(t) = \frac{1}{7}t^7 - 7t + 1$	معادله حرکت متحرکی به صورن	18
	رید.	رادر فاصله زمانی $t=0$ تا $t=t$ به دست أو	الف) سرعت متوسط اين متحرك	
		در $t=V$ بیابید.	ب) آهنگ آنی تغییرات $f(t)$ را	
۲٠	جمع نمره	«موفق باشید»		·

رشتهی : علوم تجربی	راهنمای تصحیح امتحان نهایی درس: ریاضی (۳)
تاریخ امتحان: ۳/۳/۱۳۹۱	سال سوم آموزش متوسطه
مرکز سنجش آموزش و پرورش http://aee.medu.ir	دانش آموزان و داوطلبان آزاد سراسر کشور در خرداد ماه سال ۱۳۹۱

نمره	راهنمای تصحیح	رديف
1	الف)پیشامد (۰/۲۵) ب)پدیده تصادفی (۲/۰) ج)گسسته (۲/۰) د)سازگار (۲/۰)	1
۲	الف)	۲
	$n(s) = \begin{pmatrix} q \\ \gamma \end{pmatrix} = \lambda F (\cdot/Y\Delta)$	
	$n(A) = \binom{\mathfrak{f}}{\mathfrak{f}} \binom{\Delta}{\mathfrak{f}} = \mathfrak{f} \times \Delta = \mathfrak{f} \cdot \binom{1}{\mathfrak{f} \times \Delta} \Rightarrow p(A) = \frac{n(A)}{n(s)} = \frac{\mathfrak{f}}{\lambda \mathfrak{f}} \qquad (1/\mathfrak{f} \Delta)$	
	$n(B') = {r \choose r} = 1 \qquad (\cdot/\Upsilon \delta) \qquad \to p(B') = \frac{n(B')}{n(s)} = \frac{1}{\Lambda \Upsilon} \qquad (\cdot/\Upsilon \delta)$	
	$p(B) = 1 - p(B') = 1 - \frac{1}{\Lambda \Upsilon} = \frac{\Lambda \Upsilon}{\Lambda \Upsilon}$	
•	$p(A \cup B) = p(A) + p(B) - p(A \cap B)$ $p(A \cap B) = p(A) \times P(B) = \frac{1}{ Y } \times \frac{1}{ Y } \times \frac{1}{ Y } = \frac{1}{ Y } \times \frac{1}{ Y } \times \frac{1}{ Y } = \frac{1}{ Y } \times 1$	۳
1/48	$\frac{(x-r)(x+r)-rx+1}{x+r} \ge 0 (\cdot/r\Delta) \Rightarrow \frac{x^r-r-rx+1}{x+r} \ge 0 (\cdot/r\Delta)$ $\frac{x^r-rx-r}{x+r} \ge 0 \Rightarrow \frac{(x+1)(x-r)}{x+r} \ge 0 (\cdot/r\Delta)$	۴
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	(۰/۵) (۳,+∞) : مجموعه جواب « ادامه در صفحه دوم »	

رشتهی : علوم تجربی	راهنمای تصحیح امتحان نهایی درس: ریاضی (۳)
تاریخ امتحان: ۳ / ۱۳۹۱	سال سوم آموزش متوسطه
مرکز سنجش آموزش و پرورش http://aee.medu.ir	دانش آموزان و داوطلبان آزاد سراسر کشور در خرداد ماه سال ۱۳۹۱

نمره	راهنمای تصحیح	رديف	
+/٧۵	$\sin\alpha\cos\beta + \cos\alpha\sin\beta - \sin\alpha\cos\beta + \cos\alpha\sin\beta = 7\cos\alpha\sin\beta (\cdot/7\Delta)$ $(\cdot/7\Delta)$	۵	
1/40	$f(x) = ax^{\Upsilon} + bx + c$ $\begin{vmatrix} \circ & \Rightarrow & \uparrow = \circ + \circ + c & \Rightarrow & \uparrow = c \\ \uparrow & \Rightarrow & \uparrow = \circ + \circ + c & \Rightarrow & \uparrow = c \\ \downarrow & & \Rightarrow & \circ = a - b + \uparrow & \Rightarrow a - b = - \uparrow \\ \downarrow & & & & & & & & & & & & \\ \downarrow & & \Rightarrow & \uparrow = a + b + \uparrow & \Rightarrow a + b = - \uparrow \\ \downarrow & & & & & & & & & & & & \\ \downarrow & & \Rightarrow & & & & & & & & \\ \downarrow & & \Rightarrow & & & & & & & & \\ \downarrow & & \Rightarrow & & & & & & & \\ \downarrow & & & \Rightarrow & & & & & & \\ \downarrow & & & & & & & & \\ \downarrow & & & &$	۶	
•	$f(-\tau) = \tau \qquad (\cdot/\tau\Delta) \qquad \qquad f(\tau) = 10 \qquad (\cdot/\tau\Delta)$	*	
1/40	$D_{g} = 1 - x \ge 0 \longrightarrow x \le 1 (\cdot/\Upsilon\Delta)$ $D_{g} = 1 - x \ge 0 \longrightarrow x \le 1 (\cdot/\Upsilon\Delta)$ $D_{gof} = \{x \in D_{f} \mid f(x) \in D_{g}\} = \{x \in R \mid x + \Upsilon \le 1\} = (-\infty, -\Upsilon]$ $(\cdot/\Upsilon\Delta) (\cdot/\Upsilon\Delta) (\cdot/\Upsilon\Delta)$ $(\cdot/\Upsilon\Delta) (\cdot/\Upsilon\Delta)$ $(\cdot/\Upsilon\Delta) (\cdot/\Upsilon\Delta)$ $(\cdot/\Upsilon\Delta) (\cdot/\Upsilon\Delta)$	٨	
+/٧۵	$Lim_{x o \frac{\pi}{\gamma}} $ $f - tan_{x o \frac{\pi}{\gamma}} = f - 1 = f'(./7\Delta)$ $\Rightarrow Lim_{x o \frac{\pi}{\gamma}} $ $f(x) = f'(./7\Delta)$ $\Rightarrow x o \frac{\pi}{\gamma}$ $\Rightarrow x o \frac{\pi}{\gamma}$	٩	
	« ادامه در صفحه ی سوم »		

رشتهی : علوم تجربی	راهنمای تصحیح امتحان نهایی درس: ریاضی (۳)
تاریخ امتحان: ۳ / ۱۳۹۱	سال سوم آموزش متوسطه
مرکز سنجش آموزش و پرورش http://aee.medu.ir	دانش آموزان و داوطلبان آزاد سراسر کشور در خرداد ماه سال ۱۳۹۱

نمره	راهنمای تصحیح	رديف
٣	$\lim_{x \to Y} \frac{x^{Y} - Yx}{Y - \sqrt{x + Y}} \times \frac{Y + \sqrt{x + Y}}{Y + \sqrt{x + Y}} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(9 - x - Y)} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{x \to Y} \frac{(x^{Y} - Yx)(Y + \sqrt{x + Y})}{(1 + \sqrt{x + Y})} = \lim_{$	1+
	$\lim_{x \to \tau} \frac{x(x-\tau)(\tau \wedge \sqrt{x+\tau})}{-(x-\tau)} = -1\tau (\cdot / \tau \wedge \sqrt{x+\tau})$	
	$\downarrow \lim_{x \to +\infty} \frac{Y_{x} + \sqrt{x+1}}{\delta_{x} + \sqrt{Y_{x}^{Y} + 1}} = \lim_{x \to +\infty} \frac{Y_{x}}{\delta_{x} + Y_{x} } = \lim_{x \to +\infty} \frac{Y_{x}}{\delta_{x} + Y_{x}} = \frac{Y_{x}}{Y_{x}}$ $(\cdot/Y \circ) \qquad (\cdot/Y \circ)$	
	$\lim_{x \to \infty} \frac{1 - \cos 7x}{x^7} = \lim_{x \to \infty} \frac{y \sin^7 x}{x^7} = \lim_{x \to \infty} y \left(\frac{\sin x}{x}\right)^7 = y \times \lim_{x \to \infty} \left(\frac{\sin x}{x}\right)^7 = y \left(\frac$	
,	$\lim_{x \to 1^{-}} \frac{\Upsilon}{(x-1)^{\Upsilon}} = \frac{\Upsilon}{\left(\begin{array}{c} 0\\ 0\end{array}\right)^{\Upsilon}} = \frac{\Upsilon}{0} = +\infty (\cdot/\Upsilon\Delta)$	
1/40	$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{\left(\frac{(\cdot/7\Delta)}{(x-1)(x+1)}\right)}{\left(\frac{(\cdot/7\Delta)}{(x-1)(x-7)}\right)} = -7 (\cdot/7\Delta)$	11
	$f(1)= \gamma$ $(\cdot/\gamma \Delta)$ $(\cdot/\gamma \Delta)$ بنابراین تابع $f(x)$ در $x=1$ پیوسته نیست.	
1/40	$f'(x) = \frac{-\Upsilon}{(\Upsilon x + 1)^{\Upsilon}} + \frac{1}{\Upsilon \sqrt{x}} (x + \Delta) + 1 (\sqrt{x})$ $(\cdot/\Upsilon \Delta)$ $(\cdot/\Upsilon \Delta)$	۱۲
	$g'(x) = f \times \frac{1}{r} \left(1 + \tan^r \left(\frac{x}{r} \right) \right) + r(r) \left(\cos^r \left(rx \right) \right) \left(-\sin(rx) \right)$ (\cdot/Δ)	
	«ادامه در صفحه ی چهارم»	

رشتهی : علوم تجربی	راهنمای تصحیح امتحان نهایی درس: ریاضی (۳)
تاریخ امتحان: ۳ / ۳ / ۱۳۹۱	سال سوم آموزش متوسطه
مرکز سنجش آموزش و پرورش http://aee.medu.ir	دانش آموزان و داوطلبان آزاد سراسر کشور در خرداد ماه سال ۱۳۹۱

نمره	راهنمای تصحیح	
١	$f'(-1) = \lim_{x \to -1} \frac{f(x) - f(-1)}{x + 1} = \lim_{x \to -1} \frac{x^{r} + 7x + 7}{x + 1} = \lim_{x \to -1} \frac{(x + 1)(x^{r} - x + 7)}{(x + 1)} = \delta (1/70)$	۱۳
1/40	الف $\frac{\Delta f}{\Delta t} = \frac{f(\mathfrak{f}) - f(\mathfrak{o})}{\mathfrak{f} - \mathfrak{o}} = \frac{(-\mathfrak{f}) - (\mathfrak{f})}{\mathfrak{f}} = \frac{-\mathfrak{f}}{(\cdot/\mathfrak{f}\mathfrak{d})}$	14
	$f'(t) = t - \forall \Rightarrow f'(\forall) = \forall \{(\cdot/\forall a)\}$	
4+	جمع نمره	

باسلام و خسته نباشید، مصححین محترم ، لطفاً برای راه حل های درست دیگر بارم را به تناسب تقسیم نمائید.