

1/21

Fig. 1

2/21

Fig. 2

09/331631

PCT/AU97/00874

WO 98/27805

3/21

Fig. 3

4/21

Mi2a	1	SEFDRQE Y <u>E</u> CKRQ <u>C</u> MQLE-TSG-QMRR <u>C</u> V <u>S</u> QCD	32
Mi2b	1	NQEDPQTE <u>C</u> QQC <u>Q</u> R <u>C</u> RQQE-SGPRQQQYC <u>Q</u> RR <u>C</u> K	34
Mi2c	1	NRQRDPQQQ Y <u>E</u> QC <u>Q</u> KH <u>C</u> QQRRE-TEPRHMQT <u>C</u> Q <u>R</u> CE	35
Mi2d	1	KRDPPQQRE <u>Y</u> <u>E</u> D <u>C</u> RR <u>C</u> E <u>Q</u> QE---PROQHQ <u>C</u> L <u>R</u> CR	32
Cocoa-a	1	YERDPRQQ Y <u>E</u> QC <u>Q</u> R <u>C</u> ESEA-TEERE <u>Q</u> E <u>Q</u> CE <u>Q</u> R <u>C</u> E	34
Cocoa-b	1	LQRQ <u>Y</u> <u>Q</u> QC <u>Q</u> G <u>R</u> <u>C</u> QE <u>Q</u> Q-QG <u>Q</u> RE <u>Q</u> QQ <u>C</u> Q <u>R</u> <u>K</u> CW	30
Cotton-a	1	GDDDPKRY <u>E</u> <u>D</u> <u>C</u> RR <u>C</u> E <u>W</u> DT-R <u>G</u> Q <u>K</u> E <u>Q</u> QQ <u>C</u> E <u>E</u> <u>S</u> <u>C</u> K	34
Cotton-b	1	PEDPQR <u>Y</u> <u>E</u> <u>C</u> QQ <u>E</u> <u>C</u> RR <u>Q</u> E---ER <u>Q</u> QP <u>Q</u> <u>C</u> Q <u>Q</u> R <u>C</u> L	31
Cotton-c	1	SQRQ <u>F</u> <u>Q</u> E <u>Q</u> QH <u>C</u> H <u>Q</u> QE-QR <u>P</u> E <u>K</u> KK <u>Q</u> Q <u>C</u> V <u>R</u> E <u>C</u> R	30
maize glob1_0 fr	1	EDDNHHHHGGHKSGRCVRR <u>C</u> EDR---PWHQPR <u>P</u> <u>R</u> <u>C</u> LE <u>Q</u> <u>C</u> R	36
barley glob fra	1	HDDEDRRGGHSI <u>Q</u> Q <u>C</u> V <u>Q</u> R <u>C</u> ER---PRYS <u>H</u> <u>A</u> <u>R</u> <u>C</u> V <u>Q</u> E <u>C</u> R	37
Peanut-a	1	TENP---CAQR <u>C</u> I <u>Q</u> SC <u>Q</u> QE---PDDLK <u>Q</u> K <u>A</u> <u>C</u> E <u>S</u> <u>R</u> <u>C</u> T	30
alpha conglycin	1	ENP---KHN <u>K</u> <u>C</u> <u>L</u> <u>Q</u> SC <u>N</u> SER---DSYRN <u>Q</u> <u>A</u> <u>CH</u> <u>A</u> <u>R</u> <u>C</u> N	29
SSAMP1 partial	1	VKE <u>D</u> <u>H</u> <u>Q</u> FETR <u>G</u> E <u>I</u> <u>L</u> <u>C</u> Y <u>R</u> <u>L</u> <u>C</u> QQQ	23
SSAMP2 partial	1	QKHRS <u>Q</u> <u>I</u> <u>L</u> <u>G</u> <u>C</u> <u>Y</u> <u>L</u> <u>X</u> <u>C</u> QL	17
SSAMP3 partial	1	LDP <u>I</u> <u>R</u> <u>Q</u> <u>Q</u> <u>Q</u> <u>L</u> <u>C</u> <u>Q</u> <u>M</u> <u>R</u> <u>C</u> <u>Q</u> <u>Q</u> <u>E</u> <u>K</u> D-PR <u>Q</u> <u>Q</u> <u>Q</u> <u>Q</u> <u>C</u> <u>K</u>	28

Fig. 4(1/2)

5/21

Mi2a	33	KR <u>F</u> EEDIDW <u>S</u> KYD	45
Mi2b	35	E <u>I</u> C <u>E</u> E <u>E</u> E <u>Y</u>	43
Mi2c	36	R <u>Y</u> E <u>K</u> E <u>K</u> R <u>K</u> QQ <u>K</u> R <u>Y</u> EE <u>Q</u> QE <u>D</u> E <u>E</u> K <u>Y</u> E <u>E</u> R <u>M</u> KE <u>E</u> DN	69
Mi2d	33	E <u>Q</u> Q <u>R</u> Q <u>H</u> G <u>R</u> G <u>G</u> D <u>M</u> M <u>N</u> P <u>Q</u> R <u>G</u> S <u>G</u> R <u>Y</u> EE <u>E</u> E <u>Q</u> QS	63
Cocoa-a	35	R <u>E</u> Y <u>K</u> E <u>Q</u> Q <u>R</u> Q <u>E</u> E <u>E</u>	47
Cocoa-b	31	E <u>Q</u> <u>Y</u> <u>K</u> E <u>Q</u> ER <u>G</u> E <u>H</u> E <u>N</u> Y <u>H</u> N <u>H</u> K <u>N</u> R <u>S</u> <u>E</u> <u>E</u> <u>E</u> <u>G</u> Q <u>Q</u> R	60
Cotton-a	35	S <u>Q</u> <u>Y</u> <u>G</u> E <u>K</u> D <u>Q</u> Q <u>Q</u> R <u>H</u> R	47
Cotton-b	32	K <u>R</u> <u>F</u> E <u>Q</u> E <u>Q</u> Q <u>Q</u>	40
Cotton-c	31	E <u>K</u> <u>Y</u> <u>Q</u> E <u>N</u> P <u>W</u> R <u>G</u> E <u>R</u>	42
maize glob1	37	E <u>E</u> E <u>R</u> E <u>K</u> R <u>Q</u> E <u>R</u> S <u>R</u> H <u>E</u> A <u>D</u> D <u>R</u> S <u>G</u> E <u>G</u> S <u>S</u>	60
barley glob	38	D <u>D</u> Q <u>Q</u> Q <u>H</u> G <u>R</u> H <u>E</u> Q <u>Q</u> EE <u>Q</u> G <u>R</u> G <u>R</u> G <u>W</u> H <u>G</u> E <u>G</u> E <u>R</u> E <u>E</u>	66
Peanut-a	31	K <u>L</u> E <u>Y</u> D <u>P</u> R <u>C</u> V <u>Y</u> D <u>T</u> G <u>A</u> T <u>N</u> Q <u>R</u> H <u>P</u> P <u>G</u> E <u>R</u> T <u>-</u> R <u>G</u> R <u>Q</u> P	60
alpha conglycin	30	L <u>L</u> K <u>V</u> E <u>K</u> E <u>E</u> <u>C</u> <u>E</u> <u>E</u> <u>G</u> E <u>I</u> P <u>P</u> R <u>P</u> R <u>P</u> Q <u>H</u> P <u>E</u> R	55
SsAMP1	partial	23	23
SsAMP2	partial	17	17
SsAMP3	partial	28	28

Fig. 4 (2/2)

6/21

AACTCTAGAG CGGCCGGTC GACTATTTC ACAACAATTAA CCAACAAACAA CAAACAAACAA 60

ACAAACATTAC ATTACTATT TACAATTACA GGATCCACAA CAATGGCTTG GTTCCACGTT 120

M A W F H V>

↳

TCTGTTGTA ACGCTGTTT CGTTGTTATT ATTATTATA TGCTTCTTAT GTTCGTTCCCT 180

S V C N A V F V V I I I M L L M F V P>

GTTGTTAGAG GTAGACAAAG AGATCCTCAA CAACAATAcg AGCAATGTCA AAAGAGGTGT 210

V V R G R Q R D P Q Q Y E Q C Q K R C>

△

CAAAGGAGAG AGACTGAGCC TAGACACATG CAAATTGTC AGCAAAGGTG TGAAAGGAGG 240

Q R R E T E P R H M Q I C Q R C E R R>

TACGAGAAGG AGAACAGGAA GCAACAAAAG AGGTGAGGAT CCGTCGACGC GGCCGCAGAT 270

Y E K E K R K Q Q K R *

CTAGACAA 278

Fig. 5

7/21

Mi clone 1	1	MAINTSNLCSLLFLSL-FILLSTTVSLAE-----SEFDRQEYEE	38
Mi clone 2	1	MAINTSNLCSLLFLSL-FILLSTTVSLAE-----SEFDRQEYEE	38
Mi clone 3	0		0
cotton vicilin	1	MVRNKSACVVLLFSIIFLSFGLLCSAKDFPGRGDD-----	35
cocoa vicilin	1	MVISKSFPFIVLIFSLLSFALLCSGVSAYGRKQYER----- * . * . * . * . * . * . * . * . * . * .	36
Mi clone 1	39	<u>C</u> KRQ <u>C</u> M <u>Q</u> LETSGQMRR <u>C</u> V <u>S</u> Q <u>C</u> D <u>K</u> R <u>F</u> E <u>E</u> D <u>I</u> D <u>W</u> SKYDN <u>Q</u> E <u>D</u> P <u>Q</u> T <u>E</u> <u>C</u> Q	83
Mi clone 2	39	<u>C</u> KRQ <u>C</u> M <u>Q</u> LETSGQMRR <u>C</u> V <u>S</u> Q <u>C</u> D <u>K</u> R <u>F</u> E <u>E</u> D <u>I</u> D <u>W</u> SKYDN <u>Q</u> d D <u>P</u> QT <u>d</u> <u>C</u> Q	83
Mi clone 3	42	<u>Q</u> CM <u>Q</u> LETSGQMRR <u>C</u> V <u>S</u> Q <u>C</u> D <u>K</u> R <u>F</u> E <u>E</u> D <u>I</u> D <u>W</u> SKYDN <u>Q</u> E <u>D</u> P <u>Q</u> T <u>E</u> <u>C</u> Q	83
cotton vicilin	36	-----	-----
cocoa vicilin	37	-----	-----
Mi clone 1	84	<u>Q</u> C <u>Q</u> RR <u>C</u> R <u>Q</u> Q <u>E</u> S <u>G</u> P <u>R</u> QQ <u>Q</u> <u>C</u> Q <u>R</u> <u>C</u> <u>K</u> E <u>I</u> <u>C</u> EE <u>E</u> E <u>Y</u> N <u>R</u> Q <u>R</u> -----D <u>P</u> QQ <u>Q</u> <u>Y</u>	126
Mi clone 2	84	<u>Q</u> C <u>Q</u> RR <u>C</u> R <u>Q</u> Q <u>E</u> S <u>G</u> P <u>R</u> QQ <u>Q</u> <u>C</u> Q <u>R</u> <u>C</u> <u>K</u> E <u>I</u> <u>C</u> EE <u>E</u> E <u>Y</u> N <u>R</u> Q <u>R</u> -----D <u>P</u> QQ <u>Q</u> <u>Y</u>	126
Mi clone 3	84	<u>Q</u> C <u>Q</u> RR <u>C</u> R <u>Q</u> Q <u>E</u> S <u>d</u> P <u>R</u> QQ <u>Q</u> <u>C</u> Q <u>R</u> <u>C</u> <u>K</u> E <u>I</u> <u>C</u> EE <u>E</u> E <u>Y</u> N <u>R</u> Q <u>R</u> -----D <u>P</u> QQ <u>Q</u> <u>Y</u>	126
cotton vicilin	43	<u>D</u> C <u>U</u> RR <u>C</u> E <u>W</u> D <u>T</u> R <u>Q</u> Q <u>E</u> QQ <u>Q</u> CE <u>S</u> C <u>K</u> S <u>Q</u> <u>Y</u> GE <u>K</u> D <u>Q</u> Q <u>Q</u> R <u>H</u> R <u>P</u> E <u>D</u> P <u>Q</u> R <u>Y</u>	87
cocoa vicilin	44	<u>Q</u> C <u>Q</u> RR <u>C</u> E <u>W</u> E <u>Q</u> E <u>Q</u> C <u>E</u> R <u>E</u> Y KE <u>Q</u> QR <u>Q</u> ----- <u>E</u> <u>E</u> <u>I</u> <u>L</u> Q <u>R</u> <u>Q</u> <u>Y</u>	85

Fig. 6 (1/6)

8/21

Mi	clone 1	127	EQCQKhcQRRETEPRHMQT<u>CQQRCERRYEKEKRKQQKRYEEQQRE</u>	171
Mi	clone 2	127	EQCQERCQRhETEPRHMQT<u>CQQRCERRYEKEKRKQQKRYEEQQRE</u>	171
Mi	clone 3	127	EQCQKRCQRRETEPRHMQT<u>CQQRCERRYEKEKRKQQKRYEEQQRE</u>	171
cotton	vicilin	88	EECQQECRQQEE--RQQPQCQQRC<u>CLKRFEQEQQ</u>--	118
cocoa	vicilin	86	QQ<u>CQQGRCCQEQQQQGOREQQQCQRKC<u>CWEQY</u>-KEQ</u>	116
		..	* * . . . * . . . * . . . *	.
Mi	clone 1	172	DEEKYEERMKEEDNKRDPPQQRE<u>YEDCRRRC<u>CEQQE</u>--PRQQHQ<u>CQ1</u></u>	214
Mi	clone 2	172	DEEKYEERMKEEDNKRDPPQQRE<u>YEDCRRRC<u>CEQQE</u>--PRQQYQ<u>CQR</u></u>	214
Mi	clone 3	172	DEEKYEERMKEgDNKRDPPQQRE<u>YEDCRRRh<u>CEQQE</u>--PR1QYQ<u>CQR</u></u>	214
cotton	vicilin	119	QSQRQFQEC<u>QQHCH<u>QQEQRPEKKRQQ<u>CVR</u></u></u>	146
cocoa	vicilin	117	--	116

Mi clone 1	215	R <u>C</u> REQQRQHGRGGDmMN PQRGGSGRYEEGEE <u>E</u> QSDNPYYF-DERS	258
Mi clone 2	215	R <u>C</u> REQQRQHGRGGDL <u>i</u> N PQRGGSGRYEEGEE <u>K</u> QSDNPYYF-DERS	258
Mi clone 3	215	R <u>C</u> gEQQRQHGRGGDLMN PQRGGSGRYEEGEE <u>K</u> QSDNPYYF-DERS	258
cotton vicilin	147	<u>E</u> C REKY- <u>-</u> QENPWRGEREEAE <u>EE</u> ETEEGE <u>Q</u> EQSHNPFHF-HRRS	188
cocoa vicilin	117	-----ER-GEHENYHNHKKNRSEE <u>E</u> GQQRNNPYYFPKRRS	151
		*****	*

Fig. 6 (2/6)

9/21

Fig. 6 (3/6)

10/21

Mi clone 1	394	SKEILEAALNTQTE K LRGV f -----GQQRE-GVIIIRASQE Q IREL T 433
Mi clone 2	394	SKEILEAALNTQ a ERLRGV V -----GQQRE-GVII S ASQE Q IREL T 433
Mi clone 3	394	SKEILEAALNTQTERLRGV V -----GQQRE-GVIIIRASQE Q IREL T 433
cotton vicilin	324	SREVILLEPAFNTRSEQLDELFGGRQSRRRQQGQG-MERKASQE Q QIR 367
cocoa vicilin	287	SYEVLETVENTQREKLEELLEEQRGQKRQQGMFRKAKPEQ Q IR 331
	*	*.* * . *.* . * . * . * . * . * . * . * . * . * . * . * . * . * .
Mi clone 1	434	RDDSESR h WHIRRGGESSRGPYNLENKRPLYSNKYGQAYEV K PED 478
Mi clone 2	434	RDDSESR R WHIRRGGESSRGPYNLENKRPLYSNKYGQAYEV K PED 478
Mi clone 3	434	RDDSESR R WHIRRGGESSRGPYNLFNKRPLYSNKYGQAYEV K PED 478
cotton vicilin	368	ALSQEATSPREK-SGE--RFAFNLLSQTPRYSNQNNGRFFEA C PPE 409
cocoa vicilin	332	AISQQATSPRHR-G G E--RLAINLLSQSPVYSNQNNGRFFEA C PED 373
	* *.* . * . * . * . * . * . * . * . * . * . * . * . * .
Mi clone 1	479	YRQLQDMD 1 SVFIAN v TQGSMMGPFFNTRSTKVVVVASGEAD V EM 523
Mi clone 2	479	YRQLQDMDVSVFIANITQGSMMGPFFNTRSTKVVVVASGEAD V EM 523
Mi clone 3	479	YRQLQDMDVSVFIANITQGSMMGPFFNTRSTKVVVVASGEAD V EM 523
cotton vicilin	410	FRQLRDINVTVSALQLNQGSIFVPHYNNSKATEVILVTEGNGYAEM 454
cocoa vicilin	374	FSQFQNMDVAVSAFKLNQGAIFVPHYNNSKATEFVVFTDGYGYAQ M 418
	* * * * * * * *

Fig. 6 (4/6)

11/21

Fig. 6 (5/6)

12/21

Mi clone 1	646	QSPRSTKQQQPLVSIIDFVGF	666
Mi clone 2	646	QS S RSTKQQQPLVSIIDFVGF	666
Mi clone 3	646	QSPRSTKQQQPLVSIIDFVGF	666
cotton vicilin	588	ASE	590
cocoa vicilin	515	VIKFTVKASAY	525

Fig. 6 (6/6)

09/331631

WO 98/27805

PCT/AU97/00874

13/21

	1	10	20	30	40	47
MiAMP2c	<u>RQDPQQQE</u>	<u>QCQKRCQRRE</u>	<u>TEPRHMQICO</u>	<u>QRCERRYKE</u>	<u>KRKQQKR</u>	
Gibrat method	CCCCCCCCCH	HHECCCCCCC	CCCCCCEEC	CCCCCCCCHH	HHHHHHHH	
Levin method	CCCCCHCCHH	HHHHHHHCHHT	HCSSCCCCCC	CHHHTHHHHH	HHHHCHHH	
DPM method	CCCCCCCCCH	HHHHHHHHHH	CHCCCHHEEH	HHHHHHHHHH	HHHHHHCC	
SOPMA method	CCCCCHHHHH	HHHHHHECCC	CCCCHEEEE	HHHHHHHHHH	HHHHHHHH	
PhD method	CCCCHHHHHH	HHHHHHHHHH	CCCCCHHHHH	HHHHHHHHHH	HHHHCCCC	
Consensus	<u>CCCCCHCCHH</u>	<u>HHHHHHH-HH-</u>	<u>CCCC--EE-</u>	<u>-HHHHHHHHHH</u>	<u>HHHHHHHH</u>	

Fig. 7

09/331631

WO 98/27805

PCT/AU97/00874

14/21

Fig. 8

09/331631

WO 98/27805

PCT/AU97/00874

15/21

TcAMP1

1 2 3 4 5 6 1 2 3 4 5 6 7 8 9 10 11 12 13

MiAMP2a, b, and d

Fig. 9

16/21

Fig. 10

17/21

Fig. 11

18/21

Fig. 12

09/331631

WO 98/27805

PCT/AU97/00874

19/21

Fig. 13

20/21

Fig. 14

21/21

Fig. 15