

angles, circles, arcs & sectors-1

answers on next page

4 questions - progressing from 'accessible' to 'discriminating'

- **1.** A circle of radius 8 cm has a sector whose central angle has radian measure of 3. Find the following **exactly**:
 - (a) the length of the arc from A to B passing through C.
 - (b) the area of the shaded sector.

[**no** calculator]

2. O is the centre of a circle with radius 24 cm.

Chord [GH] is 36 cm. Find the area of the shaded region. [calculator allowed]

- 3. The semi-circle with centre O shown at right has an area of exactly 24 cm².
 - (a) Show that the shaded area can be expressed as

$$\frac{24\theta}{\pi} - \frac{24}{\pi}\sin\theta$$

(b) If $\theta = \frac{2\pi}{3}$, find the exact area of the shaded region.

[**no** calculator]

- 4. Two circles with the same radius r intersect as shown. The angle subtended by the common chord (dashed In diagram) at the centre of each circle is 2θ .
 - (a) Find an expression in terms of r and θ for the shaded area.
 - (b) If the shaded area is equal to $\frac{1}{4}$ of the area of one of the two circles show that $8\theta 4\sin 2\theta = \pi$. Hence, find θ accurate to three significant figures. [calculator allowed]

angles, circles, arcs & sectors- 1

Answers

- **1.** (a) 24 cm (b) 96 cm²
- 2. approximately 203 cm²
- 3. $16 \frac{12\sqrt{3}}{\pi}$ cm²
- **4.** (a) $2\theta r^2 r^2 \sin 2\theta$ (b) $\theta \approx 0.883$