

POLITECHNIKA WROCŁAWSKA

Instytut Informatyki, Automatyki i Robotyki Zakład Systemów Komputerowych

Grafika komputerowa i komunikacja człowiek - komputer

Kurs: INEK00012L

Sprawozdanie z ćwiczenia nr 6

TEMAT ĆWICZENIA

OpenGL – teksturowanie powierzchni obiektów

Wykonał:	Karol Pastewski 252798	
Termin:	WT/TP 7.30-10.30	
Data wykonania ćwiczenia:	07.12.2021r.	
Data oddania sprawozdania:	14.12.2021r.	
Ocena:		

Uwagi prowadzącego:		

1. Wstęp teoretyczny

1.1. Teksturowanie

Teksturowanie polega na nanoszeniu na powierzchnię elementów zadanych w postaci map bitowych. Tekstury najczęściej są umieszczane w osobnym pliku (w naszym przypadku w pliku w formacie .tga). Współrzędne tekstury zostają rzutowane na kwadrat o boku długości 1. Następnie tekstura nakładana jest na obiekt w podobny sposób jak wyznaczanie punktów jajka – mapa bitowa jest dzielona na trójkąty i nakładana na obiekt 3D.

Rysunek 1 Wzorzec w układzie współrzędnych tekstury

2. Nowe polecenia OpenGL

- glEnable(GL_CULL_FACE);
 Funkcja pozwalająca ustawić teksturowanie tylko na jednej stronie obiektu.
- glCullFace(GL_FRONT); glCullFace(GL_BACK);
 Po włączeniu GL_CULL_FACE możemy określić, która strona ma być widoczna.
 Domyślnie jest to wartość GL_BACK, ale można ustawić wartość przeciwną GL_FRONT, albo nawet GL_FRONT_AND_BACK, która pokazuje obie strony.
- glEnable(GL_TEXTURE_2D);
 Włącza mechanizm teksturowania 2D.
- **glTexEnvi**(GLenum target, GLenum pname, Glint param);
 Ustawia parametry środowiskowe tekstury, w naszym przypadku ustawia tryb teksturowania. Parametry oznaczają odpowiednio środowisko tekstury (musi być GL_TEXTURE_ENV), nazwę parametru (musi być GL_TEXTURE_ENV_MODE) oraz jej wartość (mogą być wartości GL_MODULATE, GL_DECAL lub GL_BLEND). Domyślna wartość to GL_MODULATE i z własnych testów wynika, że w trybie GL_DECAL na obiekcie nie widać efektu oświetlenia, a w GL_BLEND kolory są odwrócone.
- **glTexParameteri**(GLenum target, GLenum pname, GLinit param); Ustawia parametry tekstury. Parametry oznaczają typ tekstury (może być GL_TEXTURE_1D albo GL_TEXTURE_2D (używana w programie)), nazwę parametru oraz jej wartość.
- glTexImage2D(

```
GLenum target,
GLint level,
GLint internalformat,
GLsizei width,
GLsizei height,
GLint border,
GLint format,
GLenum type,
const GLvoid *pixels);
```

Specyfikuje dwuwymiarowy obraz tektury. Kolejne argumenty oznaczają rodzaj tekstury (zawsze GL_TEXTURE_2D), poziom szczegółowości, ilości składowych koloru, szerokości obrazu, wysokości obrazu, szerokości ramki, format danych pikseli, typ danych pikseli i wskaźnik na teksturę w pamięci.

glTexCoord2f(GLfloat s, GLfloat t);
 Specyfikuje dwuwymiarowe (mogą być jedno- dwu- trój- albo czterowymiarowe) współrzędne tekstury.

3. Rozwiązanie zadania

```
584
                  ---«TEKSTUROWANIE»--
585
586
     // Teksturowanie będzie prowadzone tylko po jednej stronie ściany
587
         glEnable(GL_CULL_FACE);
588
589
     // Włączenie mechanizmu teksturowania
590
         glEnable(GL_TEXTURE_2D);
591
592
593
     // Ustalenie trybu teksturowania
         glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
594
595
     // Określenie sposobu nakładania tekstur
         glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
596
597
         glTexParameteri(GL TEXTURE 2D, GL TEXTURE MAG FILTER, GL LINEAR);
```

Powyższy kod pochodzi z funkcji myInit() i pokazuje wszystkie funkcje potrzebne do zainicjalizowania teksturowania.

```
// Przeczytanie obrazu tekstury z pliku o nazwie tekstura2.tga
pBytes = textures::LoadTGAImage("tekstura2.tga", &ImWidth,

PBytes = textures::LoadTGAImage("tekstura2.tga", &ImWidth,

FIMHeight, &ImComponents, &ImFormat);

//Zdefiniowanie tekstury 2-D
glTexImage2D(GL_TEXTURE_2D, 0, ImComponents, ImWidth, ImHeight,

JOINT OF THE COMPONENT OF THE
```

W linijce 270 i 271 mamy wywołanie funkcji odpowiadającej za załadowanie pliku o nazwie tekstura2.tga (czyli naszego pliku z teksturą) do pamięci programu. Funkcja LoadTGAImage() została zaczerpnięta z instrukcji laboratoryjnej.

```
glBegin(GL TRIANGLES);
101
102
103
                  glNormal3fv(ARRAY[i][j].normalized);
                  glTexCoord2fv(ARRAY[i][j].texture);
104
105
                  glVertex3fv(ARRAY[i][j].point3);
106
107
                  glNormal3fv(ARRAY[i + 1][j + 1].normalized);
108
                  glTexCoord2fv(ARRAY[i + 1][j + 1].texture);
                  glVertex3fv(ARRAY[i + 1][j + 1].point3);
109
110
111
                  glNormal3fv(ARRAY[i][j + 1].normalized);
112
                  glTexCoord2fv(ARRAY[i][j + 1].texture);
113
                  glVertex3fv(ARRAY[i][j + 1].point3);
114
115
                  glEnd();
```

Zamieszczony powyżej fragment kodu odpowiada za opisanie jednej części trójkątów, z których składa się jajko. Za teksturowanie odpowiada funkcja glTexCoord2fv(), która przyjmuje tablicę współrzędnych do wycięcia fragmentu tekstury. Funkcje glCoord2fv() i glNormal3fv() były opisane w poprzednich sprawozdaniach.