法律声明

- □本课件包括演示文稿、示例、代码、题库、视频和声音等内容,小象学院和主讲老师拥有完全知识产权的权利;只限于善意学习者在本课程使用,不得在课程范围外向任何第三方散播。任何其他人或机构不得盗版、复制、仿造其中的创意及内容,我们保留一切通过法律手段追究违反者的权利。
- □ 课程详情请咨询
 - 微信公众号:小象
 - 新浪微博: ChinaHadoop

隐马尔科夫模型实践

主要内容

- □ 实现中文分词
 - 根据语料训练
 - 对新文件分词
 - 副产品:编码转换
- □ 高斯分布隐马尔科夫模型
 - 标记值为离散分布,观测值为连续分布
- □ 股价数据提取隐特征
- □ 数据处理的应用: 电流强度的整流
 - GMHMM
- □ 开源库: Jieba分词、hmmlearn

中文分词

前言 |

近|年来|,|数据|挖掘|和|机器|学习|在|我们|周围|持续|火爆|,|各种|媒体|也|不断|推送|着|海量|的|数据|。|仔细|观察|就|能|发现|,|实际|应用|中|的|那些|机器|学习|算法|与|多|年前|并|没有|什么|两样|;|它们|只|是|在|应用|的|数据|规模|上|有些|不同|。|历数|一|下|产生|数据|的|组织|,|至少|在|我|看来|,|数目|其实|并|不|多|。|无非|是|Google|、|Facebook|、|Twitter|、|NetFlix|以及|其|他|为数|不|多|的|机构|在|使用|若|干学|习算法|和|工具|,|这些|算法|和|工具|使|得|他们|能够|对|数据|进行|测试|分析|。|那么|,|真正|的|问题|是|:|"|对于|其|他人|,|大数|据|框架|下|的|算法|和|工具|的|作用|是|什么|呢|?|"|

我承认|本书|将|多|次|提及|大|数据|和|机器|学习|之间|的|关系|,| 这|是|我|无法|忽视|的|一个|客观|问题|;|但|是|它|只|是|一个|很 |小|的|因素|,|终极|目标|是|如何|利用|可用|数据|获取|数据|的|本质

if __name__ == "__main__":
 pi, A, B = load_train()
 f = file(".\\text\\novel.txt")
 data = f.read()[3:].decode('utf-8')
 f.close()
 decode = viterbi(pi, A, B, data)
 segment(data, decode)

🗉 Console | Frames | Variables | Watches | 🛓 📮 🚡 🚡 🕞 ⋤

道 | 不 | 该 | 阻止 | 道 | 不 | 该 | 阻止 | 近 | 是 | 送 | 送 | 我 | 母亲 | 。 | 我真 | 是 | 多么 | 1 在 | 我 | 心 | | 着 | 一件 | 事 | : ! | 让 | 我 | 发觉 |

Jason Bell. Machine Learning: Hands-On for Developers and Technical Professionals. Wiley.2014

HMM参数训练

■ B.txt - 记事本	A.txt - 记事本				×				x
文件(F) 编辑(E) 格式(O)	文件(F) 编辑(E) 格式(O) 3	≦看(V) 帮助(H)			_				_
-2147483648.0	-2147483648.0	-1.83067512671	-0.174716911355	-2147483648.0	^	47483648.0	-2147483	3648.0	Â
-2147483648.0	-2147483648.0	-1.08489807298	-0.412393396828	-2147483648.0		47483648.0	-2147483	3648.0	
-2147483648.0	-0.713594734755	-2147483648.0	-2147483648.0	-0.673109364681		47483648.0	-2147483	3648.0	
-2147483648.0	-0.538769445485	-2147483648.0	-2147483648.0	-0.875786701336		47483648.0	-2147483	3648.0	
-2147483648.0					T	47483648.0	-2147483	3648.0	
-2147483648.0	-2147483648.0	-2147483648.0	-2147483648.0	-2147483648.0	-21	47483648.0	-2147483	3648.0	
-2147483648.0	-2147483648.0	-2147483648.0	-2147483648.0	-2147483648.0	-21	47483648.0	-2147483	3648.0	
-7.93029908581	-2147483648.0	-2147483648.0	-2147483648.0	-2147483648.0	-21	47483648.0	-2147483	3648.0	
-2147483648.0	-2147483648.0	-2147483648.0	-2147483648.0	-2147483648.0	-21	47483648.0	-2147483	3648.0	
-2147483648.0	-2147483648.0	-2147483648.0	-2147483648.0	-2147483648.0	-21	47483648.0	-2147483	3648.0	
-2147483648.0	-2147483648.0	-2147483648.0	-2147483648.0	-2147483648.0	-21	47483648.0	-2147483	3648.0	
-2147483648.0	-2147483648.0	-2147483648.0	-2147483648.0	-2147483648.0	-21	47483648.0	-2147483	3648.0	
-2147483648.0	-2147483648.0	-2147483648.0	-2147483648.0	-2147483648.0	-21	47483648.0	-2147483	3648.0	
-2147483648.0	-2147483648.0	-2147483648.0	-2147483648.0	-2147483648.0	-21	47483648.0	-2147483	3648.0	
-2147483648.0	-2147483648.0	-2147483648.0	-2147483648.0	-2147483648.0	-21	47483648.0	-2147483	3648.0	
-2147483648.0	-2147483648.0	-2147483648.0	-2147483648.0	-2147483648.0	-21	47483648.0	-2147483	3648.0	
-2147483648.0	-2147483648.0	-2147483648.0	-2147483648.0	-2147483648.0	-21	47483648.0	-2147483	3648.0	
-2147483648.0	-2147483648.0	-2147483648.0	-2147483648.0	-2147483648.0	-21	47483648.0	-2147483	3648.0	
-2147483648.0	-2147483648.0	-2147483648.0	-2147483648.0	-2147483648.0	-21	47483648.0	-2147483	3648.0	
-2147483648.0	-2147483648.0	-2147483648.0	-2147483648.0	-2147483648.0	-21	47483648.0	-2147483	3648.0	
									+

HMM中文分词

```
def viterbi(pi, A, B, o):
   T = len(o) # 观测序列
   delta = [[0 for i in range(4)] for t in range(T)]
   pre = [[0 for i in range(4)] for t in range(T)] # 前一个状态 # pre[t][i]: t时刻的i 状态,它的前一个状态是多少
   for i in range(4):
       delta[0][i] = pi[i] + B[i][ord(o[0])]
   for t in range(1, T):
       for i in range(4):
          delta[t][i] = delta[t-1][0] + A[0][i]
          for j in range(1,4):
              vj = delta[t-1][j] + A[j][i]
              if delta[t][i] < vj:</pre>
                 delta[t][i] = vj
                 pre[t][i] = j
          delta[t][i] += B[i][ord(o[t])]
   decode = [-1 for t in range(T)] # 解码: 回溯查找最大路径
   a = 0
 18.3.HMM 📳 18.2.Segmentation 🗐 18.HMM
  C:\Python27\python.exe D:/Python/18.2. Segmentation.py
  我 | 与 | 地坛 |
  史 | 铁生 |
  - 1
  我 | 在 | 好 | 几 | 篇 | 小说 | 中 | 都 | 提到 | 过 | 一 | 座 | 废弃 | 的 | 古园 | , | 实际 | 就 | 是 | 地坛 | 。 | 许多 | 年前 | 旅游业 | 还 | 没有 | 开展 |
  地坛 | 离 | 我家 | 很 | 近 | 。 | 或者 | 说 | 我家 | 离 | 地坛 | 很 | 近 | 。 | 总之 | , | 只好 | 认为 | 这 | 是 | 缘分 | 。 | 地坛 | 在 | 我出
  它 | 等待 | 我 | 出生 | , | 然后 | 又 | 等待 | 我活 | 到 | 最狂 | 妄 | 的 | 年齢 | 上 | 忽地 | 残废 |
                                                                                   了|双腿|。
                                                                                                 四百二
                                                                                                       多
  自 | 从 | 那个 | 下午 | 我 | 无意 | 中进 | 了 | 这 | 园子 | ,
                                                   | 就 | 再 | 没长 | 久 | 地离 | 开过 | 它
                                                                                        | 我 | - | 下子 | 就 | 理解
  两 | 条 | 腿 | 残废 | 后 | 的 | 最初 | 几年 | , | 我找 | 不 | 到 | 工作 | ,
                                                               | 找 | 不到 | 去路 | ,
                                                                                  │ 忽然 │ 间 │ 几乎 │ 什么 │ 都 │ 找 │ 不到
  除 | 去 | 几 | 座 | 殿堂 | 我 | 无法 | 进去 | , | 除去 | 那
                                                  | 座 | 祭坛 | 我 | 不 | 能 | 上去 | 而 | 只能 | 从 | 各个 | 角度 | 张望
  剩 | 下 | 的 | 就 | 是 | 怎样活 | 的 | 问题 | 了 | , | 这 | 却 | 不 | 是 | 在 | 某 | 一个 | 瞬间 | 就 | 能 | 完全 | 想透 | 的 | 、 | 不 | 是 | 一次性 | 能够
  我 | 才 | 想到 | , | 当年 | 我 | 总是 | 独自 | 跑 | 到 | 地坛 | 去 | ,
                                                           | 曾 | 经给 | 母亲 | 出 | 了 | 一个 | 怎样 | 的 | 难题 | 。
  她 | 不 | 是 | 那种 | 光会 | 疼爱 | 儿子 | 而 | 不 | 懂得 | 理解 | 儿子 | 的 | 母亲 | 。 | 她 | 知道 | 我心 | 里 | 的 | 苦闷 | , | 知道 | 不 | 该 | 阻止 | 我比
  有 | 一 | 回 | 我摇 | 车出 | 了 | 小院 | ;
                                    |想
                                         | 起 | 一件 | 什么 | 事 | 又 | 返身 |
                                                                       回来 | , | 看见 | 母亲 | 仍站 | 在 | 原地 | ,
  有 | 一次 | 与 | 一个 | 作家 | 朋友 | 聊天 | , | 我问 | 他学 | 写作 | 的 | 最 | 初动 | 机是 | 什么 | ? | 他想 | 了 | 一会 | 说
  在 | 我 | 的 | 头 | 一 | 篇 | 小 | 说 | 发表 | 的 | 时候 | , | 在 | 我 | 的 | 小 | 说 | 第一 | 次 | 获奖 | 的 | 那些 | 日子 | 里 | , | 我真 | 是 | 多么 | 希望
```

Jieba分词

```
rainHMM.py × 🔓 18.2.Segmentation.py × 🔓 18.3.jieba_intro.py × 🔓 18.4.GMHMM.py ×
-coding:utf-8-
nport sys
nport jieba
nport jieba.posseg
f name == "__main__":
  reload(sys)
  sys.setdefaultencoding('utf-8')
  f = open('.\\text\\18.novel.txt')
  str = f.read().decode('utf-8')
  f.close()
  seg = jieba.posseg.cut(str)
  for s in seg:
     # print s.word, s.flag,
     print s.word, '|',
我 | 与 | 地坛 |
 | 史铁生 |
 | - |
 | 我 | 在 | 好几篇 | 小说 | 中 | 都 | 提到 | 过 | 一座 | 废弃 |Loading model cost 0.419 seconds.
 Prefix dict has been built successfully.
  的 | 古园 | , | 实际 | 就是 | 地坛 | 。 | 许多年 | 前 | 旅游业 | 还 | 没有 | 开展 | ,
                                                                      | 园子 | 荒芜 | 冷落 | 得 | 如同 | 一片 | 野地 | ,
 | 地坛 | 离 | 我家 | 很 | 近 | 。 | 或者说 | 我家 | 离
                                            | 地坛 | 很
                                                     |近|。
                                                             | 总之 | ,
                                                                      | 只好 | 认为 | 这 | 是 | 缘分 | 。
                出生
                       | 活到 | 最
                                                   | 狂妄 | 的
                                                             | 年龄 | 上
                                                                      | 忽地 | 残废 |
                                                                                   了|双腿
                                                                                                四百多年
 | 自从 | 那个 | 下午 | 我 | 无意 | 中 | 进 | 了 | 这 | 园子 | ,
                                                   | 就 | 再 | 没 | 长久 | 地 | 离开 | 过 | 它
                                                                                          | 我 | 一下子 | 就 | 理解 | 了
                                                                                                                  |它
                                                           | 找 | 不到 | 去路
                                                                               忽然 | 间 | 几乎 | 什么 |
  除去 | 几座 | 殿堂 | 我 | 无法 | 进去 | ,
                                     除去 | 那 |
                                               座 | 祭坛 | 我 | 不能 | 上去 | 而
                                                                         | 只能 | 从 | 各个 | 角度 | 张望 | 它
                                                                                                           | 地坛 | 的
                                                                                                                    毎
 | 剩下 | 的 | 就是 | 怎样 | 活 | 的 | 问题 | 了 | , | 这 | 却 | 不是 | 在 | 某 | 一个 | 瞬间 | 就 | 能 | 完全 | 想透 | 的 | 、 | 不是 | 一次性 | 能够 | 解决 | 的 | 事 |
      才 | 想到 | ,
                                                             曾经 | 给
                                                                     日 母亲
                                                                                   一个 | 怎样
                  | 当年 | 我 |
                             总是
                                       |跑
                                           到
                                              | 地坛
                                                     去
                                                                            出
                                                                                                       | | 知道 | 不该 | 阻止 | 我 | 出去 | 走;
                                       |不
                                          │ 懂得 │ 理解
                                                     | 儿子 | 的
                                                               | 母亲 |
                                                                                               | 苦闷 | ,
                                                     事
                                                             | 返身
                                                                  | 回来 |
                                                                                            站
                                                                                                在
                                                                                                            | 还是 | 送 | 我 | 走时 |
 | 有 | 一次 | 与 | 一个 | 作家 | 朋友 | 聊天 | ,
                                         我一问一他一学
                                                       | 写作 | 的 | 最初 | 动机 | 是 | 什么 | ? | 他 | 想 | 了 |
```

Hmmlearn的安装

D:\Python\Package>pip install hmmlearn-0.2.0-cp27-cp27m-win32.whl Processing d:\python\package\hmmlearn-0.2.0-cp27-cp27m-win32.whl Installing collected packages: hmmlearn Successfully installed hmmlearn-0.2.0

GMHMM

观测值 中心

GMHMM参数估计

```
估计初始概率: [ 0. 0. 1. 0. 0.]
初始概率: 「0.19356424 0.25224431 0.21259213 0.19217803 0.14942128]
转移概率:
                                                                   估计转移概率:
[ O. 25822029 O.
                       0. 35651955 0. 38526017 0.
                                                                   [ 0. 24444444 0.
                                                                                           0. 43333333 0. 32222222 0.
             0.34669639 0.
                                  0.6067387 0.04656491
                                                                    Γ0.
                                                                                0.36082474 0.
                                                                                                      0.60824742 0.03092784]
0.04868208 0.
                       0. 46521279 0.
                                             0. 48610513]
                                                                    [ 0. 03406326 0.
                                                                                           0.47688564 0.
                                                                                                                0.489051097
0.3825259 0.31237801 0.
                                  0.30509609 0.
                                                                    0.43902439 0.27642276 0.
                                                                                                     0. 28455285 0.
0. 0.09539815 0.62865435 0.
                                            0. 2759475 11
                                                                    Γ 0.
                                                                                0. 10071942 0. 6294964 0.
                                                                                                                0. 26978417]]
均值:
                                                                   估计均值:
[[ 3. 3. ]
                                                                   [ 2. 98641153 2. 97594103]
                       ● 观测值
[ 0. 5. ]
                                                                    ◆◆◆ 中心
[-2, 5, 3, 1]
                                                                    [-2, 47643196 2, 99259797]
[-1, 5 \ 0, ]
                                                                    [-1.51986115 -0.0035412 ]
[ 1.5 0. ]]
                                                                    [ 1.50315967 -0.00746037]]
方差:
                                                                   估计方差:
[[[ 0.11979558 0.01093522]
 [ 0. 0.09]]
                                                                     [ 0.01093522 0.09896496]]
[[0.12 0.]
                                                                    [ 0.10760117 0.00087227]
 [ 0. 0.09]]
                                                                     [ 0.00087227 0.07097137]]
[[0, 12 \quad 0, ]]
                                                                    [[ 0.11128863  0.00142049]
 [ 0. 0.03]]
                                                                     [ 0.00142049 0.02646752]]
[[ 0, 09 0, ]
                                                                    [ 0.09187351 -0.00410475]
 [ 0. 0.03]]
                                                                   [-0.00410475 0.03027345]]
[[ 0.03 0. ]
                                                                    [ 0.02501027 0.00066473]
 Γ0.
      0. 03]]]
                                                                     [ 0.00066473  0.02779045]]]
```

SH600000股票: GaussianHMM分解隐变量

提取特征

电流数据的校正

□ 现有电路的测量电流数据如右图(部分),由于电路的系统误差,其电流强度如下图所示。试对其进行整流,得到规则电流。

	3	0.01269	0.000009070
	4	0.01665	0.000009079
	5	0.02069	0.000009224
	6	0.02465	0.000009353
	7	0.02865	0.000009360
	8	0.03278	0.000009353
	9	0.03669	0.000009354
	10	0.04074	0.000009355
	11	0.04465	0.000009080
	12	0.04878	0.000009086
	13	0.0527	0.000009081
	14	0.05823	0.000009075
	15	0.06068	0.000009351
	16	0.06638	0.000009356
	17	0.07269	0.000009358
	18	0.07674	0.000009263
	19	0.08069	0.000009345
	20	0.08469	0.000009353
	21	0.08865	0.000009364
	22	0.09269	0.000009358
	23	0.09669	0.000009354
	24	0.10065	0.000009076
	25	0.10517	0.000009273
	26	0.10863	0.000009075
	27	0.11269	0.000009086
	28	0.11668	0.000009352
	29	0.12079	0.000009357
	30	0.12463	0.000009358
	31	0.12957	0.000009353
	32	0.13665	0.000009358
	33	0.14078	0.000009355
	34	0.14469	0.000009071
	35	0.14865	0.000009342
	36	0.15265	0.000009341
	37	0.15665	0.000009351
	38	0.16065	0.000009076
	39	0.16469	0.000009349
	40	0.16871	0.000009346
	41	0.17281	0.000009340
	42	0.18086	0.000009343
	43	0.18865	0.000009344
	44	0.19269	0.000009352

去除明显的异常

HMM隐状态特征分解

时间

0.0

根据隐状态做整流

Code

```
n components = 3
data = pd.read excel(io='Current.xls', sheetname='Sheet1', header=0)
# data['Current'] = MinMaxScaler().fit transform(data['Current'])
data['Current'] *= 1e6
# 去除明显的异常值
data clean(False)
x = data['Time'].reshape(-1, 1)
y = data['Current'].reshape(-1, 1)
model = hmm.GaussianHMM(n components=n components, covariance type='full', n iter=10)
model.fit(y)
components = model.predict_proba(y)
components state = model.predict(y)
components pd = pd.DataFrame(components, columns=np.arange(n components), index=data.index)
data = pd.concat((data, components pd), axis=1)
print 'data = \n', data
plt.figure(num=1, facecolor='w', figsize=(8, 9))
plt.subplot(n components+1, 1, 1)
plt.plot(x, y, 'r.-', lw=0.2)
plt.ylim(extend(y.min(), y.max()))
plt.grid(b=True, ls=':')
plt.xlabel(u'时间', fontsize=14)
plt.ylabel(u'电流强度', fontsize=14)
plt.title(u'原始电流的变化情况', fontsize=16)
for component in np.arange(n components):
    plt.subplot(n components+1, 1, component+2)
    plt.plot(x, data[component], 'r.')
    plt.ylim((-0.1, 1.1))
    plt.grid(b=True, ls=':')
    plt.ylabel(u'组份概率', fontsize=14)
    plt.xlabel(u'时间', fontsize=14)
    plt.title(u'第%d组份的概率分布'% (component+1), fontsize=16)
plt.suptitle(u'原始电流/组份与时间的变化关系', fontsize=18)
plt.tight layout(pad=1, rect=(0, 0, 1, 0.96))
```

hmmlearn参考文献

- □ 安装包:
 - https://pypi.python.org/pypi/hmmlearn
- □ Github代码:
 - https://github.com/hmmlearn/hmmlearn
- □ 文档:
 - http://hmmlearn.readthedocs.io/en/latest/tutorial.html

结束语

- □ 目前人工智能处于异常火爆的大环境中,尤其以机器学习、深度学习为技术核心的实践应用广受关注。
 - 个人体会:机器学习的真实应用远没有社会鼓吹的那么深入,关于这项技术仍然存在巨大的发展潜力。
 - 以实践应用为目的,建议以"全栈机器学习专家"为目标。
- □ 不限制所处行业
 - 网络安全/金融/生物医药/棋牌/天文/畜牧业/制造维修...
- □ 技术上
 - 不断强化数据敏感度,能够快速选择堪用模型;
 - 在模型解决问题受阻时,能够给出补丁或替代方案;
 - 熟悉机器学习和数学分析开源库。

我们在这里

- □ http://wenda.ChinaHadoop.c
 - 视频/课程/社区
- □ 微博
 - @ChinaHadoop
 - @邹博_机器学习
- □ 微信公众号
 - 小象学院
 - 大数据分析挖掘

感谢大家!

恳请大家批评指正!