SENTIMENT ANALYSIS OF TWEETS

A Project Report on

SENTIMENT ANALYSIS OF TWEETS

Submitted in partial fulfillment of the requirements for the degree of

Bachelor of Technology

in

Computer Science Engineering

BY

KONDAL SRINIDHI SAGAR

```
# House Price Prediction (Supervised Learning - Regression)
# Predict home prices using ML models on California Housing Dataset
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from xgboost import XGBRegressor
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
import pickle
# -----
# 1. Load and Explore the Data
# -----
print("Loading California housing data...")
housing = fetch california housing()
df = pd.DataFrame(housing.data, columns=housing.feature_names)
df['Price'] = housing.target
print("\nFirst few rows of data:")
print(df.head())
print(f"\nDataset shape: {df.shape}")
print(f"Price range: ${df['Price'].min()*100000:,.2f} - ${df['Price'].max()*1000
# -----
# 2. Visualize the Data
# -----
print("\nVisualizing data...")
plt.figure(figsize=(12, 8))
df.hist(bins=30, figsize=(15, 10))
plt.suptitle("Feature Distributions", y=1.02)
plt.tight_layout()
plt.show()
plt.figure(figsize=(10, 8))
sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
plt.title("Feature Correlation Matrix")
plt.show()
# -----
# 3. Feature Selection & Preprocessing
# -----
# Drop Latitude and Longitude for simplicity
X = df.drop(['Price', 'Latitude', 'Longitude'], axis=1)
y = df['Price']
# 4. Train/Test Split
# -----
X_train, X_test, y_train, y_test = train_test_split(
   X, y, test_size=0.2, random_state=42
)
```

```
# -----
# 5. Train Models
# -----
models = {
   "Linear Regression": LinearRegression(),
   "Random Forest": RandomForestRegressor(random state=42),
   "XGBoost": XGBRegressor(random_state=42)
results = []
for name, model in models.items():
   print(f"\nTraining {name}...")
   model.fit(X_train, y_train)
   preds = model.predict(X_test)
   r2 = r2_score(y_test, preds)
   mae = mean_absolute_error(y_test, preds)
   rmse = np.sqrt(mean_squared_error(y_test, preds))
   results.append({
       "Model": name,
       "R<sup>2</sup> Score": r2,
       "MAE ($)": mae * 100000,
       "RMSE ($)": rmse * 100000
   })
   print(f"R<sup>2</sup>: {r2:.3f}, MAE: ${mae*100000:,.2f}, RMSE: ${rmse*100000:,.2f}")
# -----
# 6. Model Evaluation
# ______
print("\nModel Evaluation Summary:")
results df = pd.DataFrame(results)
print(results_df.sort_values("R2 Score", ascending=False))
# -----
# 7. Save Best Model
# -----
best_model = XGBRegressor(random_state=42)
best_model.fit(X_train, y_train)
with open("california_model.pkl", "wb") as f:
   pickle.dump(best_model, f)
print("\nBest model saved as 'california_model.pkl'")
# 8. Streamlit Web App (Optional)
# -----
def run_web_app():
   import streamlit as st
   st.title("California House Price Predictor")
   st.write("Estimate house price based on selected features.")
   st.sidebar.header("Input Features")
   MedInc = st.sidebar.slider("Median Income (in $10,000)", 0.0, 15.0, 3.0)
   HouseAge = st.sidebar.slider("House Age", 0, 100, 30)
   AveRooms = st.sidebar.slider("Average Rooms", 1.0, 15.0, 5.0)
   AveBedrms = st.sidebar.slider("Average Bedrooms", 0.5, 5.0, 1.0)
```

```
Population = st.sidebar.slider("Block Population", 0, 10000, 1500)
       AveOccup = st.sidebar.slider("Average Occupancy", 1.0, 10.0, 3.0)
       if st.sidebar.button("Predict Price"):
             input_features = [[MedInc, HouseAge, AveRooms, AveBedrms, Population, Av
             with open("california_model.pkl", "rb") as f:
                  model = pickle.load(f)
             prediction = model.predict(input_features)[0]
             st.success(f"Estimated House Price: ${prediction*100000:,.2f}")
  # To run the web app:
  # 1. Save this script as app.py
  # 2. Run: streamlit run app.py
  # run_web_app() # Uncomment to Launch
  # End
  # -----
  print("\nYou can now:")
  print("- Use the saved model for predictions")
  print("- Run run_web_app() to launch a Streamlit app")
Loading California housing data...
First few rows of data:
   MedInc HouseAge AveRooms AveBedrms Population AveOccup Latitude \
0 8.3252 41.0 6.984127 1.023810 322.0 2.555556
                                                                                        37.88

      1
      8.3014
      21.0
      6.238137
      0.971880
      2401.0
      2.109842
      37.86

      2
      7.2574
      52.0
      8.288136
      1.073446
      496.0
      2.802260
      37.85

      3
      5.6431
      52.0
      5.817352
      1.073059
      558.0
      2.547945
      37.85

      4
      3.8462
      52.0
      6.281853
      1.081081
      565.0
      2.181467
      37.85
```

Longitude Price 0 -122.23 4.526 1 -122.22 3.585

-122.24 3.521

-122.25 3.413 -122.25 3.422

Dataset shape: (20640, 9)

Visualizing data...

Price range: \$14,999.00 - \$500,001.00

<Figure size 1200x800 with 0 Axes>

1 2

3

Training Linear Regression...

R²: 0.510, MAE: \$57,921.41, RMSE: \$80,136.59

Training Random Forest...

R²: 0.678, MAE: \$46,191.21, RMSE: \$65,005.54

Training XGBoost...

R²: 0.671, MAE: \$46,800.32, RMSE: \$65,639.16

Model Evaluation Summary:

Model R² Score MAE (\$) RMSE (\$)

Random Forest 0.677527 46191.207871 65005.544472

XGBoost 0.671210 46800.316097 65639.155268

Linear Regression 0.509934 57921.406655 80136.585369

Best model saved as 'california_model.pkl'

You can now:

- Use the saved model for predictions
- Run run_web_app() to launch a Streamlit app

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_rep
# 1. Load the dataset
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['species'] = pd.Categorical.from_codes(iris.target, iris.target_names)
# 2. Vis - Pairplot with Set1 palette
print("
              Creating pairplot with Set1
sns.pairplot(df, hue="species", palette="Set1")
plt.suptitle("Pairplot (Set1 Colors)", y=1.02)
plt.show()

    Boxplot with Pastel1 palette (with hue to prevent deprecation w
    Creating boxplot with Pastel1

# 3. Vis
print("
plt.figure(figsize=(10, 6))
sns.boxplot(x="species", y="petal length (cm)", data=df, hue="species", palette=
plt.title("Petal Length by Species (Pastel1)")
plt.show()
             - Violin plot with Dark2 palette
# 4. Vis
print("
               Creating violin plot with Dark2
plt.figure(figsize=(10, 6))
sns.violinplot(x="species", y="sepal width (cm)", data=df, hue="species", palett
plt.title("Sepal Width by Species (Dark2)")
plt.show()
# 5. Prepare features and labels
X = df.drop("species", axis=1)
y = df["species"]
# 6. Split the data
X_train, X_test, y_train, y_test = train_test_split(
```

```
X, y, test_size=0.2, stratify=y, random_state=42
)

# 7. Train the model
model = KNeighborsClassifier(n_neighbors=3)
model.fit(X_train, y_train)

# 8. Evaluate the model
y_pred = model.predict(X_test)
acc = accuracy_score(y_test, y_pred)

print(f"\n Accuracy: {acc:.2%}")
print("\nConfusion Matrix:")
print(confusion_matrix(y_test, y_pred))
print("\nClassification Report:")
print(classification_report(y_test, y_pred))
```

Creating pairplot with Set1 palette...

Creating boxplot with Pastel1 palette...

Creating violin plot with Dark2 palette...

Confusion Matrix:

[[10 0 0] [0 10 0] [0 0 10]]

Classification Report:

	precision	recall	f1-score	support
setosa	1.00	1.00	1.00	10
versicolor	1.00	1.00	1.00	10
virginica	1.00	1.00	1.00	10
accuracy			1.00	30
macro avg	1.00	1.00	1.00	30
weighted avg	1.00	1.00	1.00	30