ECE 275A: Parameter Estimation I The Expectation Maximization Algorithm

Florian Meyer

Electrical and Computer Engineering Department University of California San Diego

Complete and Incomplete Data

- The *complete* data $\mathbf{y} = (y_1, y_2, \cdots, y_M)^T \in \mathbb{R}^M$ are what we would like to have since it leads to an effective ML estimator; unfortunately, it is not available
- ullet The incomplete data ${f x}=ig(x_1,x_2,\cdots,x_Nig)^{\sf T}\in\mathbb{R}^N$ are what we observe
- Complete and incomplete data are related via a many-to-one mapping; the dimension of \mathbf{x} is smaller than the dimension of \mathbf{y} , i.e., N < M

Many-to-one mapping from \mathbf{y} to \mathbf{x}

Many-to-one Mapping: $\mathbf{y} \to \mathbf{x}$

- An complete data point y, uniquely determines an associated incomplete data point x
- An incomplete data point x, however, does not uniquely determine an associated complete data point y; any value of x corresponds to a set of complete datapoints, $\mathcal{Y}(x)$
- The pdf of \mathbf{x} can be expressed as the integral of the pdf of \mathbf{y} over the set $\mathcal{Y}(\mathbf{x})$, i.e.,

$$f(\mathbf{x}; \boldsymbol{\theta}) = \int_{\mathcal{Y}(\mathbf{x})} f(\mathbf{y}; \boldsymbol{\theta}) d\mathbf{y}$$

Example: Nonlinear Signal-in-Noise Model

• Consider the nonlinear signal-in-noise model

$$\mathbf{x} = \sum_{k=1}^{p} \mathbf{s}_{k}(\theta_{k}) + \mathbf{w} \tag{1}$$

where $\mathbf{s}_k(\theta_k) \in \mathbb{R}^N$ is the deterministic signal that depends on the k-th parameter θ_k in some nonlinear manner, $\mathbf{w} \in \mathbb{R}^N$ is a white Gaussian noise with zero mean and variance σ^2 for each element, and $\mathbf{x} \in \mathbb{R}^N$ is the observed data

• Calculation of the ML estimate $\hat{\theta}_{\text{ML}}(\mathbf{x}) = \arg\max_{\theta} \ln f(\mathbf{x}; \theta)$ amounts to the solution of the following linear inverse problem, i.e.,

$$\hat{\boldsymbol{\theta}}_{\mathsf{ML}}(\mathbf{x}) = \arg\min_{\boldsymbol{\theta}} \left\| \mathbf{x} - \sum_{k=1}^{p} \mathbf{s}_{k}(\theta_{k}) \right\|^{2}$$
 (2)

which requires a p-D numerical minimization and is considered too difficult

Example: Nonlinear Signal in Noisel

 A much simpler ML estimation problem would be given by the following p nonlinear signal-in-noise models:

$$\mathbf{y}_k = \mathbf{s}_k(\theta_k) + \mathbf{w}_k, \quad k = 1, 2, \cdots, p$$
 (3)

where all vectors are N-D and \mathbf{w}_k 's are mutually independent white Gaussian noise with zero mean and variance σ_k^2 for each element

• We can combine all data vectors \mathbf{y}_k into a single vector $\mathbf{y} = (\mathbf{y}_1^\mathsf{T}, \mathbf{y}_2^\mathsf{T}, \cdots, \mathbf{y}_p^\mathsf{T})^\mathsf{T} \in \mathbb{R}^M$ with M = pN that is described by a single nonlinear signal model, i.e.,

$$\mathbf{y} = \mathbf{s}(\boldsymbol{ heta}) + \mathbf{w}'$$

where $\mathbf{s}(\theta) = (\mathbf{s}_1^\mathsf{T}(\theta_1), \mathbf{s}_2^\mathsf{T}(\theta_2), \cdots, \mathbf{s}_p^\mathsf{T}(\theta_p))^\mathsf{T}$ and $\mathbf{w}' = (\mathbf{w}_1^\mathsf{T}, \mathbf{w}_2^\mathsf{T}, \cdots, \mathbf{w}_p^\mathsf{T})^\mathsf{T}$; note that the complete data \mathbf{y} has p times as many elements as the incomplete data \mathbf{x}

Example: Nonlinear Signal-in-Noise Model

• As for (3), since each data vector \mathbf{y}_k contains only a single scalar parameter θ_k and the noise are statistically independent for each k, the ML estimate of $\mathbf{0}$ from the complete data \mathbf{y} , i.e., $\hat{\theta}_{\text{ML}}(\mathbf{y}) = \arg\max_{\theta} \ln f(\mathbf{y}; \theta)$, amounts to the solution of the following p nonlinear LS problems, i.e.,

$$\hat{\theta}_{\mathsf{ML},k}(\mathbf{y}_k) = \arg\min_{\theta_k} \left\| \mathbf{y}_k - \mathbf{s}_k(\theta_k) \right\|^2, \quad k = 1, 2, \cdots, p$$
 (4)

 These are p 1-D minimizations, which are much simpler than the original p-D minimization problem

Example: Nonlinear Signal-in-Noise Model

• We can formally establish a relation between the given signal model (1) and the hypothetical signal model (3) as

$$\mathbf{x} = \sum_{k=1}^{p} \mathbf{y}_{k} = \sum_{k=1}^{p} \mathbf{s}_{k}(\theta_{k}) + \mathbf{w}$$
 (5)

where $\mathbf{w} = \sum_{k=1}^{p} \mathbf{w}_{k}$. Since \mathbf{w}_{k} 's are independent, we have $\sigma^{2} = \sum_{k=1}^{p} \sigma_{k}^{2}$

- Note that (5) is a many-to-one mapping $\mathbf{y} \to \mathbf{x}$; while $\mathbf{y} = \left(\mathbf{y}_1^\mathsf{T}, \mathbf{y}_2^\mathsf{T}, \cdots, \mathbf{y}_p^\mathsf{T}\right)^\mathsf{T}$ uniquely specifies \mathbf{x} , \mathbf{x} does not specify \mathbf{y}
- The hypothetical ML estimation problem (4) is much simpler than the original ML estimation problem (2); thus, it would be desirable to solve the hypothetical problem instead of the original problem
- Unfortunately, the hypothetical problem cannot be solved directly since the complete data y is unavailable

The Expectation Maximization (EM) Algorithm

- Maximization of $\ln f(\mathbf{x}; \theta)$ with respect to θ is difficult, so we want to maximize $\ln f(\mathbf{y}; \theta)$ instead; however, \mathbf{y} , is unavailable
- The idea of EM algorithm is the following: instead of maximizing $\ln f(\mathbf{y}; \boldsymbol{\theta})$ directly, we estimate $\ln f(\mathbf{y}; \boldsymbol{\theta})$ from \mathbf{x} and then maximize this estimate of $\ln f(\mathbf{y}; \boldsymbol{\theta})$ with respect to $\boldsymbol{\theta}$
- To estimate $\ln f(\mathbf{y}; \boldsymbol{\theta})$ from \mathbf{x} , we compute the **conditional expectation** of $\ln f(\mathbf{y}; \boldsymbol{\theta})$ given \mathbf{x} , i.e., $E[\ln f(\mathbf{y}; \boldsymbol{\theta}) | \mathbf{x}; \boldsymbol{\theta}]$
- Since θ is unknown for calculation of the conditional expectation, we initialize the parameter with value $\theta^{(0)}$ and then iteratively update the parameter value by maximizing $\ln f(\mathbf{y};\theta)$ with respect to θ

The i-th Iteration of EM Algorithm

E-M Iteration

Given the current parameter estimate $\theta^{(i)}$, the *i*-th iteration of the EM algorithm consists of the following two successive steps:

(E) Calculate an estimate of $\ln f(\mathbf{y}; \boldsymbol{\theta})$, i.e., the expectation of $\ln f(\mathbf{y}; \boldsymbol{\theta})$ using conditional pdf $f(\mathbf{y}|\mathbf{x}; \boldsymbol{\theta})$ with the current parameter estimate $\boldsymbol{\theta}^{(i)}$

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(i)}) \triangleq E\big[\ln f(\mathbf{y}; \boldsymbol{\theta}) | \mathbf{x}; \boldsymbol{\theta}^{(i)}\big] = \int_{\mathcal{Y}(\mathbf{x})} \big(\ln f(\mathbf{y}; \boldsymbol{\theta})\big) f(\mathbf{y} | \mathbf{x}; \boldsymbol{\theta}^{(i)}) d\mathbf{y}$$

(M) Find a new parameter value $heta^{(i+1)}$ that maximizes $Q(heta, heta^{(i)})$ with respect to heta

$$m{ heta}^{(i+1)} riangleq rg \max_{m{ heta}} Q(m{ heta}, m{ heta}^{(i)}) = rg \max_{m{ heta}} Eig[\ln f(\mathbf{y}; m{ heta}) | \mathbf{x}; m{ heta}^{(i)}ig]$$

• This iterative procedure is terminated when $\|\boldsymbol{\theta}^{(i+1)} - \boldsymbol{\theta}^{(i)}\| < \epsilon$ with some small ϵ .

Comments on EM Algorithm

- As shown in class, the EM algorithm is guaranteed to converge to a (possibly only local) maximum of $\ln f(\mathbf{y}; \theta)$
- Since the ML estimate is the *global* maximum of $\ln f(\mathbf{y}; \theta)$, the EM algorithm does not necessarily produce the ML estimate
- However, the EM algorithm does have the desirable property of increasing the likelihood $f(\mathbf{x}; \boldsymbol{\theta}^{(i)})$ at each iteration
- There are two potential challenges related to developing an EM algorithm
 - First, the formulation of a good "hypothetical ML problem" for a given ML problem is not straightforward and requires some intuition and creativity
 - $oldsymbol{Q}$ Second, determining the conditional expectation $Q(oldsymbol{ heta}, oldsymbol{ heta}^{(i)})$ in closed form may be difficult or even impossible

Example: Nonlinear Signal-in-Noise Model (cont.)

- For simplicity, we assume that $\|\mathbf{s}_k(\theta_k)\|^2 = E_s$, i.e., all "signals" have the same energy E_s that is independent of the value of θ_k
- E-step: As derived in class, we obtain

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(i)}) = \sum_{k=1}^{p} \frac{1}{\sigma_k^2} \boldsymbol{s}_k^{\mathrm{T}}(\boldsymbol{\theta}_k) \hat{\boldsymbol{y}}_k(\boldsymbol{x}, \boldsymbol{\theta}^{(i)}) + h(\boldsymbol{x}, \boldsymbol{\theta}^{(i)})$$
(6)

where $\hat{\mathbf{y}}_k(\mathbf{x}, \boldsymbol{\theta}^{(i)}) = E[\mathbf{y}_k | \mathbf{x}, \boldsymbol{\theta}^{(i)}]$ is an estimate of the complete data, \mathbf{y}_k , from the observed incomplete data, \mathbf{x} , and $h(\mathbf{x}, \boldsymbol{\theta}^{(i)})$ is a term that does not depent on $\boldsymbol{\theta}$

• The estimate of the complete data is obtained as

$$\hat{\mathbf{y}}_{k}(\mathbf{x}, \boldsymbol{\theta}^{(i)}) = \mathbf{s}_{k}(\boldsymbol{\theta}_{k}^{(i)}) + \frac{\sigma_{k}^{2}}{\sigma^{2}} \left[\mathbf{x} - \sum_{l=1}^{p} \mathbf{s}_{l}(\boldsymbol{\theta}_{l}^{(i)}) \right]$$
(7)

Example: Nonlinear Signal-in-Noise Model (cont.)

• M-step: Based on (7), we directly obtain

$$\begin{aligned} \boldsymbol{\theta}^{(i+1)} &= \argmax_{\boldsymbol{\theta}} Q\big(\boldsymbol{\theta}, \boldsymbol{\theta}^{(i)}\big) \\ &= \arg\max_{\boldsymbol{\theta}} \sum_{k=1}^{p} \frac{1}{\sigma_{k}^{2}} \boldsymbol{s}_{k}^{\mathrm{T}}(\boldsymbol{\theta}_{k}) \hat{\boldsymbol{y}}_{k}\big(\boldsymbol{x}, \boldsymbol{\theta}^{(i)}\big) \end{aligned}$$