Deep Learning

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP Director Semillero TRIAC Ingenieria Electronica Universidad Popular del Cesar

Summary of this lesson

"What people call AI is no more than finding answers to questions we know to ask. Real AI is answering questions we haven't dreamed of yet"

-Tom Golway

How deep can we dig in AI?

Content of this lesson

- Recurrent Neural Networks (RNNs)
- Long Short Term Memories (LSTMs)
- Convolutional Neural Networks (CNNs)
- Generative Adversarial Networks (GANs)

Datasets

Datasets used:

Deep Learning

- Deep Learning is the recent evolution of Neural Networks
- It covers:
 - Feedforward networks with many hidden layers (deep ©)
 - New paradigms, like LSTMs in Recurrent Neural Networks, suitable for time series analysis
 - New topological layers, like convolutional and pooling layers, mainly for image processing
 - New architectures as in Generative Adversarial Networks (GANs)
 - ...
- Improvements are mainly due to:
 - Increased computational power for faster calculations, like GPUs
 - Parallel Computation

Recurrent Neural Networks (RNNs)

What are Recurrent Neural Networks?

- Recurrent Neural Networks (RNNs) are a family of neural networks suitable for processing of sequential data
- RNNs include auto and backward connections

- RNNs are used for all sorts of tasks:
 - Language modeling / Text generation
 - Text classification
 - Neural machine translation
 - Image captioning
 - Speech to text
 - Numerical time series data, e.g. sensor data
 - Time series analysis

- ...

Why do we need RNNs for Sequential Data?

Goal: Translation from German to English

- Option one: Use feed forward network to translate word by word
- But what happens with this question?

"Mag ich Schokolade?" => "Do I like chocolate?"

Input x	Output y
Ich	1
mag	like
Schokolade	chocolate

Why do we need RNNs for Sequential Data?

- Problems with FFNN:
 - Each time step is completely independent
 - For translations we need context
 - More general: we need a network that remembers inputs from the past
 - Handle variable sequence length
- Solution: Recurrent Neural Networks

Unrolling of a RNN over time

time t

- A Recurrent Neural Network is a FFNN with auto and/or backward connections
- Recurrent connections introduce the concept of time in FFNNs

- A Recurrent Neural Network is a FFNN with auto and/or backward connections
- Recurrent connections introduce the concept of time in FFNNs

How can we represent a RNN over time?

- At every time t, FFNN A has two inputs:
 - $-\mathbf{x}(t)$
 - some shape of y(t-1) -> state of network A: C(t-1)
- The recurrent network can then be unrolled over time around A

Unrolling of a RNN over time

The unrolled version of the original network in *m* intermediate steps becomes a FFNN and can be trained with BackPropagation: **Back-Propagation Through Time (BPTT).**

time t

Summarizing: RNNs and BPTT

- Neural network architectures with recurring connections on some units are named Recurrent Neural Networks (RNNs).
- Adding a recurrent connection to one unit might store information about past inputs in the evolving status of the unit.
- An easy trick to represent the recurrent network is to unroll it into m copies of the feedforward internal block "A", each with their set of static weight matrix W. Each copy of "A" receives inputs X(t) and C(t-1) and produces output y(t).
- A modified version of the Back-Propagation algorithm is used to train RNNs: Back-Propagation Through Time (BPTT).

Long Short Term Memory

Simple Recurrent Unit

The simplest possible recurrent unit is a single layer with an auto-connection.

Image Source: Christopher Olah, https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Limitations of Layers with Simple Recurrent Units

The "memory" of simple RNNs is sometimes too limited to be useful:

- "Cars drive on the ____" (road)
- "I love the beach.My favorite sound is the crashing of the _____" (cars? glass? waves?)

Sometimes we need to go back deeper in time

LSTM = Long Short Term Memory

Special type of unit with three gates

Forget gate

Image Source: Christopher Olah, https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM = Long Short Term Memory

This is an engineered type of unit with three gates:

- Forget gate
- Input gate
- Output gate

This is an engineered type of unit with three gates:

- Forget gate
- Input gate
- Output gate

- Forget Gate is trained to forget parts of the cell state.
- At time t, the forget gate decides which item of C(t-1) to keep (and how much of it) in C(t), given input vector x(t) and previous output h(t-1).

- Forget Gate is trained to forget parts of the cell state.
- At time t, the forget gate decides which item of C(t-1) to keep (and how much of it) in C(t), given input vector x(t) and previous output h(t-1).

- Forget Gate is trained to forget parts of the cell state.
- At time t, the forget gate decides which item of C(t-1) to keep (and how much of it) in C(t), given input vector x(t) and previous output h(t-1).

- Forget Gate is trained to forget parts of the cell state.
- At time t, the forget gate decides which item of C(t-1) to keep (and how much of it) in C(t), given input vector x(t) and previous output h(t-1).

- Forget Gate is trained to forget parts of the cell state.
- At time t, the forget gate decides which item of C(t-1) to keep (and how much of it) in C(t), given input vector x(t) and previous output h(t-1).

LSTM = Input Gate

This is an engineered type of unit with three gates:

- Forget gate
- Input gate
- Output gate

LSTM: Input Gate

h(t-1)

- Input Gate is trained to inject significant parts of the current input into the cell state.
- At time t, the input gate decides which item of x(t) to inject (and how much of it) into C(t), given input vector x(t) and previous output h(t-1).

 $C_i(t)$

x(t)

h(t-1)

x(t)

LSTM: Input Gate – create new state candidate

- Input Gate is trained to inject significant parts of the current input into the cell state.
- At time t, the input gate decides which item of x(t) to inject (and how much of it) into C(t), given input vector x(t) and previous output h(t-1).

$$C_i(t)$$

LSTM: Input Gate – inject input

- Input Gate is trained to inject significant parts of the current input into the cell state.
- At time t, the input gate decides which item of x(t) to inject (and how much of it) into C(t), given input vector x(t) and previous output h(t-1).

LSTM: Input Gate – inject input

- Input Gate is trained to inject significant parts of the current input into the cell state.
- At time t, the input gate decides which item of x(t) to inject (and how much of it) into C(t), given input vector x(t) and previous output h(t-1).

LSTM: Input Gate

- Input Gate is trained to inject significant parts of the current input into the cell state.
- At time t, the input gate decides which item of x(t) to inject (and how much of it) into C(t), given input vector x(t) and previous output h(t-1).

LSTM: Input Gate

- Input Gate is trained to inject significant parts of the current input into the cell state.
- At time t, the input gate decides which item of x(t) to inject (and how much of it) into C(t), given input vector x(t) and previous output h(t-1).

LSTM: Input Gate

- Input Gate is trained to inject significant parts of the current input into the cell state.
- At time t, the input gate decides which item of x(t) to inject (and how much of it) into C(t), given input vector x(t) and previous output h(t-1).

LSTM = Input Gate

This is an engineered type of unit with three gates:

- Forget gate
- Input gate
- Output gate

$$\boldsymbol{C}(t) = \boldsymbol{C}_f(t) + \boldsymbol{C}_i(t) = \boldsymbol{f}(t) * \boldsymbol{C}(t-1) + \boldsymbol{i}(t) * \widetilde{\boldsymbol{C}}(t)$$

LSTM = Output Gate

This is an engineered type of unit with three gates:

- Forget gate
- Input gate
- Output gate

LSTM: Output Gate – input inject into status

- Output Gate is trained to output a reasonable result.
- At time t, output gate decides which parts of status C(t) (and how much of it) will be output, given input vector x(t) and previous output h(t-1).

LSTM: Input Gate – input inject into status

- Output Gate is trained to output a reasonable result.
- At time t, output gate decides which parts of status C(t) (and how much of it) will be output, given input vector x(t) and previous output h(t-1).

LSTM: Input Gate – prepare output candidate

- Output Gate is trained to output a reasonable result.
- At time t, output gate decides which parts of status C(t) (and how much of it) will be output, given input vector x(t) and previous output h(t-1).

LSTM: Input Gate – prepare output candidate

- Output Gate is trained to output a reasonable result.
- At time t, output gate decides which parts of status C(t) (and how much of it) will be output, given input vector x(t) and previous output h(t-1).

LSTM = Long Short Term Memory

Special type of unit with three gates:

Forget gate Input gate Output gate

Image Source: Christopher Olah, https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Different Network-Structures and Applications

Many to Many

Language model

Neural machine translation

Different Network-Structures and Applications

Many to one

Language classification

Text classification

One to many

Image captioning

Neural Network: Code-free Example

Neural Network: Code-free Example

Convolutional Neural Networks (CNNs)

AlexNet & friends

- The big breakthrough in deep learning happened in 2012 with deep convolutional neural networks
- Here deep learning based AlexNet network won the ImageNet challenge with an unprecedented margin.
- The top-five error rate of AlexNet was 15 percent, while the next best competitor ended up with 26 percent.
- This victory kicked off the surge in deep learning networks.

https://neurohive.io/en/popular-networks/alexnet-imagenet-classification-with-deep-convolutional-neural-networks/

Convolutional Neural Networks - CNN

- Inspired by the organization of the visual cortex in the human brain, convolutional layers simulate the concept of a receptive field.
- Individual neurons in the convolutional layer respond only when a specific area of the image (the visual field) is active.
- An array of such neurons covers the entire image by responding to slightly overlapping separated areas of the input image.

Image from: Wikimedia commons _

https://commons.wikimedia.org/wiki/File:Receptive field sizes along the ventral cortical stream in the primate.jpg

Numerical Representation of a Black and White Image

0	0	0	0	0
0	0	0.5	1	0
0	0.5	1	0.5	0
0	1	0.5	0	0
0	0	0	0	0

Numerical Representation of a Color Image

0.8	0.6		0.6	0.9		
0.1	0.1	0.5	1	0.5	0.2	
:	0.2	0.1	0.1	10-	0.1	0.3
0.8	:1	0.3	0.2	0.5	0.1	0.1
0.6	0.1	1	0.5	<u></u>	G.	:
٦	0.2	0.8	0.7	0	0.8	0.8
	٦	0.8	0.6		0.6	0.9

Convolutional Neural Networks

Convolutional Neural Networks - CNN

- The idea of convolution relies on a kernel K, a mask to overlap onto a portion P of the image pixels for the convolution operation.
- From the product of the kernel K and the pixels in portion P we get a number, which will be the output of the first neuron in the convolutional layer.
- Then the kernel K moves n steps on the right and goes to cover another portion P of the image possibly slightly overlapping with the previous one; the output for the second unit of the convolutional layer is generated.
- And so on till the whole image has been covered by the kernel K and convoluted into output values.
- The distance in number of pixels n between two adjacent portions P is called stride.

Convolutional Neurons: Example

Convolutional Neural Networks (CNN)

Zero padding

- Artificially increases the input at the boundary
- Helps with preserving the spatial resolution and alignment

Stride

- The *jump* the kernel makes when moving over the input
- Reduces the spatial resolution

Image from: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

Pooling Layers

- Usually a number of convolutional layers are used.
- Each layer provides one further step in the process of extracting highlevel features from the input image (colors, edges, entities, ...).
- Pooling layers are often used to reduce the spatial resolution in between convolutional layers to
 - Increase the receptive field of the following layers
 - Reduce computational complexity
- Two types of Pooling
 - Max Pooling returns the maximum value from the portion of the image covered by the Kernel.
 - Average Pooling returns the average of all values from the portion of the image covered by the Kernel.

Example Pooling

Classification Layers

- After the sequence of convolutional + pooling layers, a classic feedforward multilayer Perceptron network is applied to carry out the classification process.
- Successful examples of CNNs for image recognition : LeNet, AlexNet, VGGNet, GoogLeNet, ResNet, ZFNet.

CNN: Transfer Learning

- Training such networks is a long and complex process, requiring very powerful machines.
- Instead of retraining a new network completely from scratch, we could recycle existing networks, already built and trained by others on similar data.
- This technique is called *Transfer Learning*.
- In Transfer Learning a model developed for a task is reused as the starting point for another model on a second task.
- On top of a previously trained network we add one or more neural layers
- We freeze all or some of the previously trained layers
- And we retrain only the remaining part of the whole network on our new task

Building CNNs with KNIME

Generative-Adversarial Networks (GANs)

- So far: RNNs and CNNs
- Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs) represent probably the biggest contribution of deep learning to the field of neural networks.
- However, deep learning is responsible for other innovations, such as for example Generative Adversarial Networks (GANs).

Can You Tell Real from Fake?

Source: https://thispersondoesnotexist.com

GAN: Generator

- GANs include two neural networks competing with each other: the generator and the discriminator.
- A **generator** G is a transformation that transforms the input noise z into a tensor usually an image x (x=G(z)). The generated image x is then fed into the discriminator network D.
- The discriminator network D compares the real images in the training set and the image generated by the generator network and produces an output D(x), which is the probability that image x is real.

GAN: Training

- Both generator and discriminator are trained using the backpropagation and gradient descent.
- Both networks are trained in alternating steps, competing with each other to improve themselves.
 - The objective of the generator is to fool the discriminator i.e. D(G(z)) = 1
 - The objective of the discriminator is to output D(G(z)) = 0 and $D(x_{real}) = 1$
- The GAN model eventually converges and produces images that look real.
- Given a training set, this technique learns to generate new data under the same statistics as the training set.

GAN: Architecture

GANs

- For example, a GAN trained on photographs can generate new photographs that look at least superficially authentic to human observers, having many realistic characteristics.
- GANs have been successfully applied to image tensors to create anime, human figures, and even van Gogh-like masterpieces.

Image from: Pankaj Kishore, Towards data Science

https://towardsdatascience.com/art-of-generative-adversarial-networks-gan-62e96a21bc35

Summary

- Recurrent Neural Networks (RNNs)
- Long Short Term Memories (LSTMs)
- Convolutional Neural Networks (CNNs)
- Generative Adversarial Networks (GANs)

Practical Examples with KNIME Analytics Platform

RNN Workflow: Text Generation

CNN Workflow: Image Classification using MNIST

Installing Extensions

 Install extension by going to File -> Install KNIME Extension or via Drag & Drop from the KNIME Community Hub

Thank you