Criptografia de Curvas Elípticas

Ezequiel S. Dos Santos

Origem

- Criptografia de chave pública
 - Base: estrutura algébrica de curvas elípticas sobre corpos finitos.
- Sugerida por Neal Koblitz e Victor S.Miller em 1985

O que são curvas elípticas?

$$E = \{(x,y)|y^2 = x^3 + ax + b\}$$

 $a,b\in F_p$

 $F_p \Rightarrow \;$ Conjunto de inteiros módulo p (entre 0 e p-1)

 $4a^3+27b^2
eq 0$ De forma simples, essa restrição é para evitar uma singularidade (mais informações, nas referências)

Ponto no infinito: O

F:R,Q,C,Z/pZ

Exemplos de Curvas Elípticas

Exemplos de Curvas Elípticas

Exemplos de Curvas Elípticas

 $\mathbb{Z}/17\mathbb{Z}$

Por que utilizar CCE?

- As chaves de criptografia necessárias são menores do que as do RSA
 - Utiliza menos memória e recursos de CPU

	Symmetric Encryption (Key Size in bits)	RSA and Diffie-Hellman (modulus size in bits)	ECC Key Size in bits	Notice the Ratio
i	56	512	112	
	80	1024	160	1024 ≈ 6.4
	112	2048	224	160 ≈ 1
	128	3072	256	$\frac{3072}{} = \frac{12}{}$
	192	7680	384	256 1
	256	15360	512	$\frac{15360}{512} = \frac{30}{1}$
	Δ	Û	1	312 1
	I			
COMPARABLE SECURITY		$\mathbb{Z}/p\mathbb{Z}$	ELLIPTIC	CURVES

 Os pontos em uma curva elíptica dão forma a um grupo abeliano (E(Fp),+) com O o ponto distinto na infinidade.

$$s = \frac{y_P - y_Q}{x_P - x_Q}$$

$$x_R = s^2 - (x_P + x_Q)$$

$$y_R = s(x_P - x_R) - y_P$$

$$s = \frac{3x_P^2 + a}{2y_P}$$

$$x_R = s^2 - 2x_P$$

$$y_R = s(x_P - x_R) - y_P$$

$$P+Q=O, ext{ se } x_P=x_Q \ P+P=O, ext{ se } y_P=0$$

$$P \in E$$
 $k \in Z$ $Q = kP = P + P + \ldots + P$ k vezes

Problema do Logaritmo Discreto da Curva Elíptica

- A multiplicação escalar é uma função unidirecional.
- Dados:

$$Q,P\in E(Z/pZ)$$

Encontrar:

$$k$$
, tal que $Q = kP$

O Ponto Base (Gerador)

kG = O

$$G \in E(Z/pZ)$$

$$ord(G) = n$$

Parâmetros do Domínio

$$\{p, a, b, G, n, h\}$$

p: campo (módulo p)

a,b: parâmetros da curva

G: Ponto Gerador

n: ord(G)

h: cofator

Chaves

- Chave privada: Escolhe-se um inteiro d tal que: 1 < d < n 1
- Chave pública: D = dG

Criptografia e Descriptografia

$$C = M + d_e D_r \ M = C - d_r D_e$$

Esquema da Criptografia CE

Referências:

- https://pt.wikipedia.org/wiki/Criptografia_de_curva_el%C3%ADptica
- https://www.youtube.com/watch?v=F3zzNa42-tQ&t=36s
- http://www.geometer.org/mathcircles/ecc.pdf
- https://www.researchgate.net/publication/229026452_Elliptic_Curve_Cryptogr aphy
- https://impa.br/wp-content/uploads/2017/04/30CBM_08.pdf
- https://www.sbm.org.br/docs/coloquios/CO-1-04.pdf