

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

ESTIMATION AND MAPPING OF CLOUD AND RAINFALL AREAS WITH AN INTERACTIVE COMPUTER

by

Cynthia Ann Nelson

December 1982

Thesis Advisor:

C.H. Wash

Approved for public release; distribution unlimited.

SECURITY CLASSIFICATION OF THIS PAGE (Then Date Entered)

REPORT DOCUME	NTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT HUNGER	2. GOVY ACCESSION NO.	1. RECIPIENT'S CATALOG NUMBER
	AD-A126845	
TITLE (and Substitle)		S. TYPE OF REPORT & PERIOD COVERED
Estimation and Mapping of	Cloud and Rainfall	Master's Thesis;
Areas With an Interactive		December 1982
	-	6. PERFORMING ORG. REPORT HUMBER
. AUTHOR(a)		S. CONTRACT OR GRANT NUMBER(s)
Cynthia Ann Nelson		
. PERFORMING ORBANIZATION NAME A	NO ADDRESS	16. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT HUMBERS
Naval Postgraduate School	L	
Monterey, California 939		
I. CONTROLLING OFFICE HAME AND AS	DOMESS	12. REPORT DATE
Naval Postgraduate Schoo	N 1	December 1982
Monterey, California 93		13. NUMBER OF PAGES
I MONITORING AGENCY NAME & AGOR	·	136
6. MONITORING AGENCY NAME & ACCORD	Party Prisonery were comprised anyon	
		Unclassified
		Unclassified ISA. DECLASSIFICATION/DOWNGRADING SCHEDULE
s. DISTRIBUTION STATEMENT (of this Re	open)	
		ISA. DECLASSIFICATION/DOWNGRADING
Approved for public rele		ISA. DECLASSIFICATION/DOWNGRADING
		ISA. DECLASSIFICATION/DOWNGRADING
Approved for public rele	ease; distribution unlimi	ISA. DECLASSIFICATION/DOWNGRADING SCHEDULE
	ease; distribution unlimi	ISA. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public rele	ease; distribution unlimi	ISA. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public rele	ease; distribution unlimi	ISA. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public rele	ease; distribution unlimi	ISA. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public rele	ease; distribution unlimi	ISA. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public rele	ease; distribution unlimi	ISA. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public rele	ease; distribution unlimi	ISA. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public rele	ease; distribution unlimi	TEA. DECLASSIFICATION/DOWNGRADING SCHEDULE ted.
Approved for public rele 7. DISTRIBUTION STATEMENT (of the sh	ease; distribution unlimi	TEA. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public rele	ease; distribution unlimited and an electric second in Block 20, 11 different for second and an electric for block management of the second and an electric for block management of the second and an electric for block management of the second and an electric for the second and all the second and	TEA. DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public rele	Precipitation Intendict Cloud Top Height	TEA. DECLASSIFICATION/DOWNGRADING ted. Report)
Approved for public rele	ease; distribution unlimited and an electric second in Block 20, 11 different for second and an electric for block management of the second and an electric for block management of the second and an electric for block management of the second and an electric for the second and all the second and	TEA. DECLASSIFICATION/DOWNGRADING ted. Report)

An automated cloud analysis program was developed and established on the SPADS computer system at the Naval Environmental Prediction Research Facility (NEPRF). The program evaluates GOES visual and infrared imagery simultaneously. The analysis method produces information on cloud types, cloud amount, precipitation intensity, and cloud top height and temperature through use of threshold tests of radiance, texture, and temperature. A review of current work on the evaluation of satellite information by

(20. ABSTRACT Continued)

computer and by manual analysis is included.

A Maritime region 460 X 460 nautical miles in size was selected for test analysis. The satellite imagery was manually evaluated and compared to the computer generated output. Reasonably good patterns of cloud types, precipitation and cloud amount were produced by the computer, although further testing and verification is needed.

Acce	ssion For	
DTIC Unan	GRA&I TAB nounced ification	
By	ribution/	
Ava	ilability C	odes
Dist	Avail and, Special	/or
Δ		

Approved for public release; distribution unlimited

Estimation and Mapping of Cloud and Rainfall Areas with an Interactive Computer

by

Cynthia Ann Nelson
Lieutenant, United States Havy
B.S., Indiana University, 1971
M.S., State University of New York, Jeneseo, 1972

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN METEDROLOGY AND DEEANOGRAPHY

from the

NAVAL POSTGRADUATE SCHOOL December 1982

Approved by:

Approved by:

Chairman, Department of Metagrology

Chairman, Department of Metagrology

Chairman, Department of Metagrology

ABSTRA CT

An automated cloud analysis program was developed and Schellik Data Processing and Display System) established on the SPADS computer system at the Naval Environmental Prediction Research Facility (NEPRF). The program evaluates GOES visual and infrared satellite imagery simultaneously. The analysis method produces information on cloud types, cloud amount, precipitation intensity, and cloud top height and temperature through use of threshold tests of radiance, texture, and temperature. A review of current work on the evaluation of satellite information by computer and by manual analysis is included.

A maritime region 460 X 460 nautical miles in size was selected for test analysis. The satellite imagery was manually evaluated and compared to the computer generated output. Reasonably good patterns of cloud types, precipitation and cloud amount were produced by the computer, although further testing and verification is needed.

TABLE OF CONTENTS

I.	INTE	ODUC	TI	ON	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	14
II.	CLO	ID CI	LAS	SIPI	C A	rio	N	TE	CH N	IQ	UE	S	•	•	•	•	•	•	•	•	•	•	17
	A.	INTE	ROD	OCT1	:0 N	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	17
	B.	CLO	י סנ	TY PI	N G	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	18
		1.	Cl	ou đ	In	dex		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	19
		2.	Th	[66-	Di	e e n	si	on:	al	Ne	ph	a n	al	y 9	is	: ,	(31) N E	PF	I)	•	•	26
		3.	Sp	ecti	a 1	CI	OS	:s-	COE	re	la	ti	.00	l.	•	•	•	•	•	•	•	•	31
		4.	Tw	o-di	. 2 €	nsi	on	al	Ħi	st	og	ra	. M	•	•	•	•	•	•	•	•	•	37
	c.	CLO	D	H e IG	HT	AN	D	AMO	N DC	T	•	•	•	•	•	•	•	•	•	•	•	•	40
		1.	Cl	oud	In	dex	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	40
		2.	Th	ree-	Di	ne n	si	on:	1	Ne	ph	a n	al	ys.	is	;	(31	N	EPE	I)	•	•	43
		3.	Bi	spec	tr	al	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	52
	D.	PREC	CIP	ITAI	!IO	n .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	58
		1.	Cl	ou d	In	de x	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	61
		2.	Li	fe H	is	tor	y	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	63
		3.	Bi	spec	ti	al	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	66
		4.	Cl	ou d	Mo	del	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7 3
III.	SP A	s ci	LOU	D MC	DE	L D	ES	CR:	IPI	IC	N	•	•	•	•	•	•	•	•	•	•	•	78
	A.	INT	ROD	UCT	O N	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7 8
	B.	CLO	' סנ	TY PI	n G	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	78
	c.	CLO	סנ	TOP	TE	MPE	RA	UT	RES	1	•	•	•	•	•	•	•	•	•	•	•	•	83
	n_	PREC	T D	ተጥ ልባ	י דח	N T	ทร	EN	STP	7	_	_	_	_	_	_	_	_	_	_	_	_	87

	E.	PLO	CHA	RT	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	88
IA.	TH E	HODE	EL TE	ST	ani) 1	RES	UL	TS		•	•	•	•	•	•	•	•	•	•	•	•	93
	λ.	INTE	RODUC	TIC	H	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	93
	В.	DATA	٠.		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	93
	C.	TEST	PRO	CED	URE	25	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	94
	D.	RESU	JLTS		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1	01
		1.	Run	1 .	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	102
			a.	Clo	bud	T	ypi	.ng		•	•	•	•	•	•	•	•	•	•	•	•	•	102
•			b.	Pre	cip)i	tat	:io	D .	•	•	•	•	•	•	•	•	•	•	•	•	•	103
			c.	Clo	uđ	A	n ou	ınt		•	•	•	•	•	•	•	•	•	•	•	•	•	105
			đ.	Clo	uđ	T	op	Te	m p	ei	at	uI	es	3	nd	. 8	ie:	Lgì	its	5	•		105
			e.	Clo	uđ	T	ext	uI	.9	(5	i ta	ná	lar	đ	Dе	٧i	at	ii	n))	•	•	110
		2.	Run	2 .		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		112
			a.	Clo	o uđ	T	ypi	Lng	!	•	•	•	•	•	•	•	•	•	•	•	•		112
			b.	Clo	o ud	A	mot	ınt	•	•	•	•	•	•	•	•	•	•	•	•	•		112
			c.	Clo	bu d	T	оp	Te	g æ	91	at	uı	ce	an	đ	He	ei	g h 1	t	•	•		112
v.	SU M	MARY	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		116
	A.	DISC	cussi	CON	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		116
		1.	Acc	gmc	Lisl	h m	ent	ts	•	•	•	•	•	•	•	•	•	•	•	•	•		116
		2.	Pro	ble	a s	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		117
		3.	Rec	o n e i	a đa t	ti	ons	5	•	•	•	•	•	•	•	•	•	•	•	•	•		118
LIST	OF R	E FE R	ENCE:	5,		•		•	•	•	•	•	•	•	•	•	•		•	•	•		120

APPENDIX	: 1.	SPADS	CLCDD	MODEL	COMP	u t er	PRO	GRAE	•	•	• '	12
INITIAL	DIST	RIBUTIO	ON LIST						•		•	139

LIST OF FIGURES

Figure	1.	Manual Nephanalysis Flow Chart 2	1
Figure	2.	VIS Key to be Used in Manual Wephanalysis 2	2
Pigure	3.	IR Key to be Used in Manual Nephanalysis 2	:3
Figure		Plow Chart for Automated Objective Nephanalysis	
Figure		Graph of Vector Dispersion Technique. (a) represents	
Pigure	6.	Decision Space Using Two Texture Measurements, Standard Deviation and Vector Dispersion 2	!9
Figure	7.	The Decision Space of the 3DNEPH Program 3	12
Figure	8.	An Additional Decision Space of the 3DNEPH Program	32
Figure	9.	Parallelpipedon Classification of Cloud Types by IR and VIS Digital Counts	34
Figure	10.	Two Dimensional Decision Space for Typing Clouds	35
Figure	11.	Two-dimensional Histogram Plot of Albedo Versus Temperature	39
Figure	12.	Ideal Histograms of Cloud Types	19
Figure	13.	Detailed Nephanalysis of an IR Satellite Picture	12
Figure	14.	The 3DNEPH Program Flow Chart for the VIS Satellite Processor	١5
Figure	15.	Graph Used by 3DNEPH VIS Processor to Make a Cloud or No-cloud Decision	١6
Figure	16.	3DNEPH Flow Chart of the IR Satellite Data Processor Program	8
Figure	17.	An IR Bias Correction Curve Used by the	19

Figure	18.	a s	Exa	ie	1 •	pc	f	a nt	n.	IB	t	PI •	•q	ue.	·	;Y	Di •	.51	tI:	ib	ישי י	ti •	.on	. 8	t	50
Pigure	19.	OA6 y C	lou	Br.	Çţ	nt c jh t	f	f Ai	Cu ea	IV S	7 @	•	•	đ	to	į	i.	ait •	t :	Lo	>₩ •	-	10	u d	ls •	51
Figure	20.	The Rad	Reiat	la io	t i n	·	•	hi •	P.	Be	t	Ne	en •		1l	ed •	•	a 1	nd •	E	31:	a c	:kb	•	iy •	59
Figure	21.	The emi	re ssi	la Vi	ti tj	ioi !		hi •	P.	b€	ŧ	Ve	en •		1t	•	•	ar •	ađ •	1	R	•	•	•	•	60
Pigure	22.	Flo Nep	har w (hai	rt Y:	: i	Eo:		a.	Re			t						E .	th •	, 1 e		a n	ı u a	11	62
Figure	23.	Reg Est	I es 1 ma	si	0 I S	1	ì	ag •	ra •	n.	Ū	s e	d	to •	•	·F]	.08	t'	•	Ra	1 1 :	nf •	a]	.1	•	64
Figure	24.	VIS Clo	uđ	(À) C)	aı	ad an	a ^I	R Ec	(t ho	0	tt (A	:0 1) 2	Sa	te a	1] Re	li:	te at	I ic)a)n:	ta sb	ı Li E	S	•	65
Figure	25.	The Use	GI d f	if	f	it i	\ !E	Wo.	bod	18	y	·	ec	hr	ij	[US	•	?10	V	•	:h	ar •	t	•	•	67
Figure	26.	Fre	qu∈ Is	enc fo	Y	Di ti	is ie	ti N	ib O-	ut T3	ii	on n	C3	f se	3 A 1		a:	a d		P	D:	at •	:a.	•	•	71
Figure	27	Pre Pai	que Is	fo	Y	Di ti	ls le	tr R	ib	ut n	ċċ	on as	. o	f	IF.	₹ :	en d	1 1		s •	D:	a t	:a'	•	•	71
Figure	28.	Pro	bat	il	it	Y	0	f	Ra	ir	1	in	P	eı	CE	ent	:	•	•	•	,	•	•	•	•	72
Figure	29.	The	R€	su.	1 t	ir	ıg	S	at	el	.1	it	e	Ra	r <u>i</u> 1	1 3	la	,	•	•	٠ .	•	•	•	•	72
Figure	30.	Rai on	n E IR	Rat Im	e	;	2 V	eī	ag •	ed •	i	• 0	•		:10	u d	i <i>i</i>	_	.	s •	M	ea •	•	ıre	eđ •	75
Figure	31.	Two IR	Di	me:	n s I s	ic S	n Sa	al te	. C	lo it) u	đ	Ty	pi it	n a		ra a	i pl	h •	បទ	5 i :	ng •	•	:01	ES •	81
Figure	32.	Gra Int	ph ens	of sit	i e	P! S.	D	s.		01	ıđ		lođ	e]		•	c:	p:	it •	at	:i	on •	•	•	•	90
Figure	33.	The	SI	AD	s	C]	Lo	uđ	M	lođ	l e	1	Ge	n∈	er:	li	. Z (a d	F	10	¥	C	:ha	ır'		92
Figure	34.	Inf	rar i+	ed de	ŝ	Sa t	e N	11	it Lo	e no	Į	ma t 11	qe	• 1	C€ I 4 1	n t	91	: i	Po	in	ıt	i	.s	at	ŧ.	96

P1	gure	35.	34	fra		đ .	Sa	t	e l	.11	t	e :	Ιı	la ·	g ə	•	Se :	le •	ct •	6	3	f:)	•	i.	•	•	9	7
Pi	gure	36.	Vi:	sua: nte:	1	Sa Pi	te g•	1	1 i 35	te	•	Ia:	a ç	je	•	it •	th.	t •	h €	•	Sa •		e	A		• •	a !	nd •	9:	8
Pi	gure	37.	Maı	nua.	1 (Cl	cu	ıđ	A	ne	1	ys:	is	3 (of	1	?i	3 -	3	5	a	n	đ	3	6	•	•		10	0
Pi	gure	38.	Cle Mod	oud iel	T	y p n	es	n	as 1	. 1	n	al;	y 2	ze (đ	b 3	7.	th •	9	S	PA •	D:	5	C	10	u ć	i .		10	4
Pi	gure	39.	Qua	ali of	ta	ti e	ve SP	A	PI DS	e c	i	pi ou	t a	et:	io od	n e]	I:	at •	• •	s	it •	Y	f	Ē	• •	ı .	R 12.1	n.	10	6
Fi	gure	40.	Clo	oud ADS	T) C	op 10	Ţ bu	'e i	n p M c	de e	a 1	tu:		•	(K •)	f:	•	œ .	R	un •	•	1 -	,	f	ti	•		10	8
Fi	gure	41.	Clo SP	oud ADS	T C	0 p 1 0	ud	le l	ig Mo	ht	:s	• (1	n t)	. £	r	•	R	u n	ì.	1	o :	E .	ŧ	h∈ •	•	•		10	9
Fi	gure	42.	dic	oud gita oud	al	Ç	CU	ın'	e ts	(S -	f:	an ro	d a	R	d un •	đę	V:	ia of	ti t	, o	n e	o:	E Pa	D	S		•		11	1
Fi	gure	43.	Clo	oud iel	T	y p R u	€ S	2	as		n:	al	y 2	ze:	d	b y		th •	e •	S	?A •	D:	5	C	10	• •	i.		11	3
Fi	gure	44.	Clo	oud ADS	À	m o	un	it	(ir	1	10	0 1	:h	s)	1	Er	012	F	l u	n	2	0	þ	t	:he	≥ _		11:	Ц

LIST OF TABLES

TABLE	I.	Alogrithms for the Objective Nephanalysis	28
TABLE	II.	3DNEPH Statistical Equations for the Average Grayshade and Variance	31
TABLE	III.	Cloud Classification to be Used with Fig. 10.	36
TABLE	IV.	Algorithms for Cloud Top Temperature and Cloud Amount	55
TABLE	٧.	The Errors in Cloud Amount (with Hs = 5%) and in Cloud Temperature	56
TABLE	VI.	Comparison of cirrus correction and VTPR results	60
TABLE	VII.	Empirically Derived Rainfall Probabilities and Intensities from Satellite Pictures	63
TABLE	VIII.	Applications of the Griffith/Woodley Technique	68
TABLE	IX.	The Error Statistics from the Applications Listed in Table VIII	68
TABLE	Х.	Threshold Values Describing Precipitation Intensity Levels as Applied in Fig. 10	74
TABLE	XI.	Estimated and Observed Precipitation and Stability Adjustment Factors	76
TABLE	XII.	SPADS Cloud Model's Cloud Types, Least Squares Fit Equations, and Standard Deviation Values (SIGi)	84
TABLE	XIII.	SPADS Cloud Model Precipitation Intensity Categories	91
TABLE	XI V.	FNOC Temperature Profile for 1200 GMT, November 9, 1982 at latitude 440N, longitude	99

TABLE	XV.	Definitions of Symbols Used in Fig. 37	101
TABLE	XAI-	Standard Deviation (SIGi) Values Used for Run 1 and 2	101

ACKNOWLEDG MENTS

I would like to take this opportunity to express my sincere gratitude to Dr. Carlye H. Wash for his time, guidance, and patience. I also wish to express my deepest thanks to my husband, LCDR Craig S. Nelson (NOAA), for his guidance in editing and computer programming. Without both of these gentlemen's expert assistance and encouragement, this thesis would not have been completed. Additionally, I would like to thank Dr. James Mueller for his guidance in editing the manuscript.

Special thanks is given to the staff at the Naval Environmental Prediction Research Facility for their assistance
in modifying computer code. Especially, I would like to
thank Ms. Linda Rodriguez, Supervisor of Computer Operations, for her patience and persistence in data collection.
Also, I wish to thank Mr. Lang Chou for his assistance. Ms.
Kyong H. Lee also deserves thanks for her assistance in
preparation of the graphics.

Finally, I would like to express my deepest appreciation to Craig and Becky for their support, encouragement and understanding.

I. INTRODUCTION

The personnel operating Naval ships, aircraft and weapon systems need near real-time subsynoptic and mesoscale maritime weather information to operate effectively and safely. Current conventional observational data (from surface, ravinsonde, and aircraft observations) do not adequately cover the maritime region or provide for mesoscale analysis of weather phenomena. Specifically needed are detection and monitoring of any adverse weather conditions. This need pertains to phenomena ranging from mesoscale (10-100 km) to synoptic scale (100-1000 km) which are poorly resolved by conventional observations. Satellite observations can solve this problem through the acquisition of global high density data which are available regardless of local influences of geography, surface conditions, or local politics.

Another problem is the need to provide an analyzed product to the user in a short (1-3 hour)—time frame. Manual analysis of satellite data is time consuming and tedious, and it does not provide the information in a real-time fashion. An interactive computer system, on the other hand, can collect, analyze, and produce the required products within the required time limit.

This research effort concentrated on the development of techniques to specifycloud types, cloud amount, cloud height, and precipitation intensity with an emphasis on the maritime regions from satellite images. Information on critical weather parameters such as low visibilities, ceilings, precipitation presence, and intensity can be derived from these cloud characteristics. This work uses Geostationary Operational Environmental Satellite (GOES) Visual-Infrared Spin Scanned Radiometer (VISSR) digital satellite data from visual and infrared channels which have a one-half hour temporal and 0.5 to 4 nautical miles (n mi.) spatial resolution. The data were received and processed at the Naval Environmental Prediction Research Facility (NEPRF) in Monterey, California using the Satellite Data Processing and Display System (SPADS). This interactive computer system was developed at NEPRF for use by the operational Navy to give real-time information about weather phenomena. One system is now operational at the Naval Eastern Oceanography Center (NEOC) at Norfolk, Virginia.

The objective of this thesis is to establish and evaluate a computer program on the SPADS to analyze GOES images to derive cloud types, precipitation intensity, cloud height, and cloud amounts. To accomplish this, an in-depth

study of previous research and analysis techniques was initiated, and, from this study, useful algorithms and techniques were gleaned. These algorithms and techniques were combined to produce the desired computer program. Preliminary tests of the computer program were completed on the SPADS system at NEPRF.

Chapter II begins with a review of previous studies. This includes discussions of four techniques of cloud type classification: (1) cloud index (Harris and Barrett, 1975, 1978), (2) spectral analysis (Liljas, 1981a, 1981b), (3) 3-dimensional nephanalysis (Fye, 1978), and (4) two-dimensional histogram (Platt, 1981). A discussion of the techniques for determining cloud height and cloud amounts used by Reynolds and Vonder Haar (1977) and others, and of procedures for identifying precipitation areas and their associated intensities is also covered. Chapter III describes the set of algorithms selected for implementation on SPADS. Chapter IV presents an outline of the test procedures used and reports the results of these tests (including detected problem areas). Charter V summarizes the research efforts and problems and provides suggestions for future changes and additional research.

II. CLOUD CLASSIFICATION TECHNIQUES

A. INTRODUCTION

provide a wide variety of weather information, including estimates of cloud type, cloud height, cloud amount, and precipitation intensity. In fact, a satellite nephanalysis can produce a spatial summary of these important cloud features. An analyst examines the visual brightness to derive estimates of thickness of the cloud and the cloud texture to differentiate between cumulus and stratus type clouds. By using the IR imagery, cloud top heights can be estimated; the brighter the cloud image, the colder; therefore, the higher it is. With combined visual and infrared, one has a greater ability to pick out the cloud types and, furthermore, to estimate the probability of precipitation.

one of the main problems encountered in the 1960's and early 1970's was the lack of standardization of rules governing the nephanalysis construction. Each country, and sometimes each analyst, has used subjective methods for producing cloud analyses. Some of the specific problems arising from lack of standardization, as discussed in Harris and

Barrett (1975), have been: no minimum size is established as reference for inclusion or exclusion from analysis; cirrus clouds are rarely identified in middle latitudes; significant cloud areas are subjectively delineated at the discretion of the analyst; only four cloud categories are assigned (which consisted of unequal percents of areas); and no standard nephanalysis construction rules have been published.

With these problems in mind, Harris and Barrett (1975, 1978), Barrett and Martin (1981), Platt (1981), Fye and Logan (1977) and Liljas (1981a), to name a few, have been working toward the goal of producing a recommended standard for objective nephanalysis of satellite VIS and IR imagery through manual and computer analysis. The following sections review these representative research efforts in this endeavor. The discussions are divided into three areas of concern to this thesis; cloud typing, cloud height and amounts, and precipitation.

B. CLOUD TYPING

Basically four distinct approaches to effective cloud typing have been proposed in the literature. They are: (1) cloud index (Harris and Barrett, 1975, 1978; Barrett and

Harris, 1977), (2) the U.S. Air Force 3DNEPH program (Fye and Logan, 1977; Fye, 1978), (3) spectral cross-correlation (Liljas, 1981a, 1981b), and (4) two-dimensional histogram (Platt, 1981). These methods are reviewed below.

1. Cloud Index

Harris and Barrett (1975) recognized the need for standardization and for increased information content. As a result, they developed a cloud indexing system which provided specific guidance and rules for analyzing satellite visual imagery manually. For clarity and understanding, they proposed the analysis be composed of three separate layers of analyses; two descriptive and one interpretive. Fig. 1 is the flow chart of the stages in the construction of this nephanalysis. The authors developed a key (Fig. 2) which includes details on the following cloud features; (1) percent of cloud, (2) cloud type (e.g. cumulus), (3) cloud structure (including size, shape, and pattern), and (4) height of cloud tops. The key also gives interpretive weather phenomena.

The first analysis layer contains information on geography and cloud cover. The cloud cover is divided into five equal percent categories with a minimum size reported of a 2 1/2 degree square.

The second descriptive layer includes cloud type and cloud structure. They are classified in the following order: major cloud systems, definite boundaries and finally indefinite boundaries. The analyst uses cloud brightness and texture to discern six types of clouds (see Fig. 2).

The final analysis layer produced is the interpretation of the cloud features using the information from the first two layers. The types of cloud features considered important are displayed in Fig. 2. All three analysis layers combined were designed to be completed within one hour by a skilled analyst.

Barrett and Harris (1977) extended this procedure to include infrared imagery for the purpose of supplementing the visual analysis. This added capabilties for nighttime and high latitude analyses. They mention three possibilities for analyzing IR imagery: (1) use longstanding internationally accepted codes and symbols, (2) follow the visual procedures previously outlined, or (3) use a new procedure which recognizes and represents the special properties of the IR images. The first two methods would be directly comparable to the visual analysis. The third approach would offer additional information to allow identification of

Figure 1. Manual Nephanalysis Flow Chart (from Harris and Barrett, 1975).

Figure 2. VIS Key to be Used in Manual Nephanalysis (from Harris and Barrett, 1975).

cloud height through cloud brightness evaluation and a more specific identification of cloud texture.

The IR analysis technique identifies the following cloud features (see Fig. 3): (1) percent of cloud cover (same as VIS technique), (2) brightness of cloud, (3) cloud texture, and (4) size of clouds (same as VIS), plus interpretive categories with eighteen of them the same as VIS (heights and three cloud descriptions are not included). Barrett and Harris (1977) felt that any of the three methods could produce an analysis in a single hour if ione by a trained analyst.

Figure 3. IR Key to be Used in Manual Nephanalysis (from Barrett and Harris, 1977).

After establishing a manual method for both VIS and IR satellite nephanalysis, Harris and Barrett (1978) developed an automated objective nephanalysis through a cloud racognition scheme. They used an approach which examined quantitative cloud brightness and texture within a small area of the whole picture. The flow chart in Fig. 4 outlines their approach. Cloud brightness was assessed in each

subarray by summing the brightness counts of only cloud pixels and then dividing by the number of cloud pixels (Eq. 1 and 2, Table I). Cloud amount was calculated in each subarray by summing the number of cloud pixels and then dividing by the total number of pixels per subarray. This number was then multiplied by 100 to obtain a percent of cloud cover (Eq. 3 in Table I).

Their assessments of cloud texture used statistical, instead of structural, measures of local variation in image density. One measure they employed was the standard deviation of each subarray (5x5 pixel array) of density values, as calculated with Eq. 4 (Table I).

Their other criterion was vector dispersion, which required that the density values be treated as a set of adjacent triangular planes. The dispersion in three dimensions of the normal to these planes gave another measure of texture. Fig. 5 shows a graphical representation of this method. Eq. 5, 6, and 7 in Table I were used to calculate these estimates of texture.

Once all these values were calculated, boundaries between cloud types had to be established. Three categories were selected: (1) sheet or layered clouds (stratiform),

(2) cellular/tower clouds (cumulus) and (3) broken/mottled cloud (stratocumulus or mixed) (Harris and Barrett,1978). A three-dimensional decision space was set up using two texture measurements and one brightness value. Those areas that had a brightness above the threshold were included in further analyses; those below were not. Fig. 6 shows the decision space based on the two texture measurements. The discriminant lines were developed through analysis of a training set of Defense Military Satellite Program (DMSP) sample brightness and texture measurements of each cloud category.

In assessing the accuracy of this method, Harris and Barrett (1978) found several problem areas. For example, towering cumulus in post frontal areas (especially) were not identified because of the field of view (FOV) size and snow areas were included as clouds. But the overall accuracy was still good with a greater than 72% correct classification. Harris and Barrett (1978) felt that several procedures would improve the output of the model. Among these were increasing the resolution of the data by decreasing the size of scanning spot, decreasing the subarray size, normalizing the image brightness for changes in sun viewing angle, and

increasing the texture parameters to permit identification of more cloud classes.

Figure 4. Flow Chart for Automated Objective Nephanalysis (from Barrett and Harris, 1978).

2. Three-Dimensional Nephanalysis (3DNEPH)

The United States (U.S.) Air Force developed an automated three-dimensional cloud analysis called the "3DNFPH model". It uses satellite imagery from the DMSP and TIROS-N satellite series together with conventional in situ

Figure 5. Graph of Vector Dispersion Technique. (a)
represents a smooth surface (stratiform clouds)
and (b) represents a rough surface (cumulus
clouds). Normal vectors for each case are
included to the left of the diagrams (from Harris
and Barrett, 1978).

data from aircraft, surface, and upper air observations. A cloud analysis is produced in a real-time fashion regardless of ice, snow, desert, or other geographical anomalies (Fye and Logan, 1977). The satellites provide high density data over the entire world, thus permitting a global analysis of clouds. The horizontal resolution of the output is 25 n mi.

The data array has a pixel resolution of 3 n mi.

The satellite data are first formatted, rectified, mapped,

and stored on a computer storage device before running the

3DNEPH program. The rectification corrects for the effects

TABLE I

Alogrithms for the Objective Nephanalysis (from Harris and Barrett, 1978)

(1)
$$B = \frac{\overline{x=1}}{N} \cdot \sum_{i=1}^{j=1} x^{ij} \ \varepsilon^{ij}$$

B = cloud brightness

N = number of rows/columns

X_{ij} = density at each point

$$\delta_{ij} = \text{step function} \begin{cases} -1 & x_{ij} \ge \uparrow \\ = 0 & x_{ij} < \uparrow \end{cases}$$

- density threshold defining the boundary between cloud/no cloud

(2)
$$\mathbf{M} = \sum_{i=1}^{N} \sum_{j=1}^{N} \delta_{ij}$$

(3) $A = 100 (M/N^2)$

A - average cloud amount

(4)
$$\sigma = \left[\sum_{i=1}^{N} \cdot \sum_{j=1}^{N} (x_{ij} - \bar{x})^{2}/N^{2} - 1\right]^{1/2}$$

= standard deviation of each sub-

array density values

X = mean of the subarray density values

(5)
$$\hat{z} = \frac{1}{R} \Sigma \hat{z}_1$$
 (\hat{z}_1, m_1, m_2) = direction cosines of the ith plane $m = \frac{1}{R} \Sigma m_1$ (\hat{z}_1, m_2, m_3) = max likelihood of true polar vector (\hat{z}_1, m_3, m_4) = $m_1 + m_2 + m_3 + m_4 +$

(6)
$$R^2 = (\Sigma l_1)^2 + (\Sigma m_1)^2 + (\Sigma m_1)^2$$

(7)
$$k = \frac{N-1}{N-R}$$

= the sample size

= estimate of the texture of the surface

k-1 = smooth surface (stratiform)

k-0 = uneven surface (cellular cumulus)

Pigure 6. Decision Space Using Two Texture Measurements, Standard Deviation and Vector Dispersion. Line (1) separates stratiform from mixed statocumulus and line (2) separates mixed from cumulus clouds (from Harris and Barrett, 1978).

of limb darkening before storage. Limb darkening is the effect of a decrease in brightness as the edges or "limbs" of the earth scan are approached. The data are not normalized with respect to light (VIS) or longwave radiation (IR) (Fye and Logan, 1977). Each visual and infrared pixel is represented by a single grayshaie value in the range from 1 to 63. In the visual, 1 is dark and 63 is white. Infrared pixels represent temperature in degrees Kelvin (K) from 210 K for a value of 1 to 310 K for 63; each grayshade represents a 1.6 degree change (Fye, 1978). The preliminary processor calculates the average grayshade value per 25 n mi. square using Eq. 1 (Table II) and then uses this to get the variability within the square using Eq. 2 (Table II) (Fye, 1978). Both these calculations are performed separately for IR and VIS images. The VIS and IR grayshade values and variabilities are used to identify the various cloud types. Fig. 7 and 8 represent the cloud typing algorithms used. They were constructed empirically by comparing many grayshades and variabilities to corresponding satellite imagery and surface data (Fye, 1978). The operational algorithms were derived from the figure and then modified to obtain optimum results. One obvious problem with electing

to use the model (given the available documentation) is the lack of graduated values on the axes of these two figures. Only relative values of warm/cold or light/dark are included in the report. Also lacking in the Fye(1978) report are any details of the current algorithms used for cloud typing.

TABLE II

3DNEPH Statistical Equations for the Average Grayshade and Variance (from Fye, 1978)

(1)
$$\bar{G} = 1/N \sum_{i=1}^{N} G_i$$
 , G>0, N>0

G = average gray shade

G_i = individual 3 mmi area grid gray shade

N = total number of G_i per 25 nmi grid space

(2)
$$V = 1/N \sum_{i=1}^{N} |G_i - \overline{G}|$$
, G>0, N>0

V = variability within the 25 nmi grid space

3. Spectral Cross-correlation

The third classification method is the spectral cross-correlation method developed by Erik Liljas (1981a) for use on an interactive computer. Liljas used TIROS-N and National Oceanic and Atmospheric Administration (NOAA) 6 satellite data from three spectral channels; channel 1 (VIS), channel 2 (near-IR) and channel 4 (IR). During the summer time, different cloud types, land and water surfaces

Figure 7. The Decision Space of the 3DNEPH Program. IR and and VIS grayshades are used to determine the cloud type (from Fye, 1978).

Figure 8. An Additional Decision Space of the 3DNEPH Program. IR and VIS variabilities are used for cloud typing (from Fye, 1978).

were analyzed to detect their unique spectral signatures.

The results were used to build a three dimensional parallelepipedon classification, Fig. 9.

Two satellite types were used for the test of the model; polar orbiting (TIROS-N and NOAA-6) and geostationary (Meteosat). The satellite data used for the test of the model were geometrically corrected, but they did not need to be normalized because the mid-day pass of the satellite was (approximate sun elevation of. 45 degrees). used Normalization corrects for the radiance variation caused by the sun location (elevation). Also the amount of data was reduced from 1,024 digital levels to 256 levels, which was considered adequate resolution for the study. Data from channel 2 were primarily used to separate land and water areas. Channels 1 and 4 were the principal cloud identifiers.

Comparison of the spectral cross-correlation method with synoptic observations showed that the 'computer method gave correct indication of cloud types, and also an improved cloud division. As shown in Fig. 10 (see Table III for symbol definitions of cloud types), several cloud types are in the same boxes; Liljas recommends the use of texture

observation to discern between these cloud types. This was done manually and entered interactively. Liljas (1981b) also reports that good information on cloud structure of weather systems can be retrieved. He recommends the use of multiple parallelepipedon classifications, each classification associated with a different sun elevation instead of normalization of the reflected imagery.

Figure 9. Parallelpipedon Classification of Cloud Types by IR and VIS Digital Counts (from Liljas, 1981a).

Figure 10. Two Dimensional Decision Space for Typing Clouds (Table III defines the symbols for clouds) and Precipitation Intensity. It is represented by the area with dark diagonal lines (see Table X for the mathmatical description of the intensity areas) (from Liljas, 1981a).

TABLE III

Cloud Classification to be Used with Fig. 10 (from Liljas, 1981a)

Main and Cloud Types:

1.	Cumulonimbus	a a 1 Storm cloud with high top a 2 Squall cloud with scattered showers
2.	Mimbostratus	b b, Large vertical thickness b, Rather low topside
3.	Cirrostratus	c c c c c Dense cirrostratus c Cirrus c Thin cirrus over water d Dense altostratus d Thin altostratus over water e Thin altostratus
4.	Cumulus congestus	f e 1 Dense altocumulus f 1 Large piled up cumulus f 2 Rather small and flat cumulus
5.	Stratocumulus	h h Dense stratocumulus h Ordinary f Slightly piled up cumulus with clear areas in between i Very dense haze/stratus i Dense haze/stratus
6.	Haze/Stratus	i i ₃ Ordinary haze/stratus g ³ Cumulis humilis
7.	Land	l j Haze over water l 1 Planting season spring or autumn l 2 Warm green season
8.	Water	k k ₁ Cold k ₂ Warm

4. Two-dimensional Histogram

Another spectral method was developed by Platt (1981) using a two-dimensional histogram representation of cloud types. He selected satellite data with typical cloud fields to develop a histogram decision space representation of cloud types. Platt concentrated on evaluating cloud systems instead of isolated clouds and therefore his results are biased toward syncptic features.

The measured visual radiances were compared with the direct radiance from the solar disk on the satellite to produce a calculated isotropic albedo per 2.5 km. These albedoes are expressed as a fraction from 0 to 1. The infrared radiances are converted to blackbody brightness temperatures ranging from 193.3 to 301.5 K. A histogram was then constructed by sorting these data into 988 different bins of temperature and albedo. Each area evaluated was approximately 500 X 500 km, with roughly 40,000 values per histogram. The total bin counts were plotted on a two-dimensional grid and then contoured by same bin count (see Fig. 11). This cloud histogram representation could then be used to classify cloud types by matching plots of the satellite data. After classifying various types of

clouds, Fig. 12 was compiled to give an idealized depiction of the location of clcud types by albedo and temperature.

Platt (1981) discussed several factors that tend to reduce the usefulness of Fig. 12. One cloud problem arises when there are either breaks in a cloud deck, or partially filled field of view (FOV) in the satellite view area. Additionally, clouds of the same optical impth, but exhibiting breaks will have a different albedo measurement than an unbroken cloud of the same optical depth (stratocumulus in Fig. 14 demonstrates this). Another factor that changes the albedo and temperature values is variation in cloud top height. All of these factors create ambiguity in determining the cloud type, amount, optical depth, and cloud top temperature. As a result, the author recommends that additional work should be done with these results before using the two-dimensional histogram approach to identify clouds.

Figure 11. Two-dimensional Histogram Plot of Albedo Versus Temperature (representing cumulus clouds) (from Platt, 1981).

Figure 12. Ideal Histograms of Cloud Types (from Platt, 1981).

C. CLOUD HEIGHT AND AMOUNT

Three methods of deriving cloud height and amount have been proposed in current research. Two methods are an extension of those reviewed in the cloud typing section; cloud index (Harris and Barrett, 1975, 1978; Barrett and Harris, 1977) and the U.S. Air Force 3DNEPH (Fye and Logan, 1977; Fye, 1978). In addition, a new bispectral technique (Reynolds and Wonder Haar, 1977) is discussed.

1. Cloud Index

In two separate studies, Barrett and Harris (1977; Harris and Barrett, 1975) developed a recommended standard cloud height and amount determination procedure for manual analysis of satellite visual and infrared images. The visual method combined brightness, cloud type, and synoptic situation to determine qualitative estimates of cloud height (low, middle, or high level). Later, they developed a system for identifying cloud levels through the degree of cloud brightness in the IR image. IR cloud information specifically lends itself to this task since the radiation temperature of the cloud is a function of the cloud-top altitude (Barrett and Harris, 1977).

Some problems arose with cirrus and cloud elements smaller than the field of view. In this instance, satellite measured temperatures can appear warmer than actual cloud temperature, because the satellite is also receiving the radiation temperature of the surface or lower clouds. This problem can be minimized by using IR and VIS together to identify cirrus clouds and by using higher resolution data, e.q., data from the Advanced Very High Resolution Radiometer (AVHRR) on NOAA satellites.

Fig. 3 is the key for the IR nephanalysis and includes the cloud brightness steps and Fig. 13 is an example of how these are applied. This analysis can be interpreted in terms of qualitative heights, low (dim) to high (very bright) (Barrett and Harris, 1977). Cloud amount determination categories are also delineated in Fig. 2 for VIS and Fig. 3 for IR. It is done in categories of size of cloud element, e.g., 100-150 km. Harris and Barrett's (1978) objective automated method does not specifically address cloud height, but does calculate an average cloud amount for each subarray size (5x5 pixels) using Eq. 3 (Table I).

Figure 13. Detailed Nephanalysis of an IR Satellite Picture. The symbols are defined in Fig. 3 (from Barrett and Harris, 1977).

2. Three-Dimensional Nephanalysis (3DNEPH)

The U.S. Air Force 3DN EPH program's main objective is to produce information on cloud height and cloud amount. It uses a standard vertical grid of 15 layers, which range from the surface to 100 millibars (mb). The IR image is used to determine height and element cloud amounts, and the visual and infrared are used together to determine total cloud amount. This information is then combined with surface, aircraft and rawinsonde data to determine the final cloud height and cloud amount analyses.

The preliminary processor, as described in the cloud type section, prepares the satellite data for height determination. In addition, it sorts, screens, and combines the conventional data received from the Air Force's global weather data base to produce a vertical and horizontal 3DNEPH gridded layered format.

Next, the satellite data goes to the visual and infrared processors. The VIS processor staps are outlined in Fig. 14. Each pixel grayshade is directly compared to a grayshade (background/surface brightness) specified for each 25 n mi. square. This value represents a clear sky earth radiance for each square. The difference between each pixel

grayshade and the background brightness is used in Fig. 15 to decide if there is a cloud or not. The curve in Fig. 15 represents the brightness threshold for clouds; any variability greater than this is a cloud area. This curve incorporates the background brightness and the varying brightness associated with different surfaces (e.g., desert). The total number of cloud decisions divided by the total number of available pixels represents the amount of cloud cover in the square.

The infrared processor incorporates a slightly different analysis method. The major steps of the processor are included in Fig. 16 as a flow chart. The first step is to construct a frequency distribution of the 64 raw grayshades for each 25 n mi. area to detect significant modes (maxima) of 6 or more grayshades or 12 or more adjacent shades. If more then 2 modes are identified, the modes are combined on the basis of relative amplitude (strongest modes are retained) and the differences between modes. If there is no apparent mode, then the processor defaults to a cloud threshold temperature determined from appropriate surface temperatures. Before any cloud decision is made, a correction is applied to the IR temperatures to compensate for

Figure 14. The 3DNEPH Program Flow Chart for the VIS Satellite Processor (from Fye, 1978).

Figure 15. Graph Used by 3DN EPH VIS Processor to Make a Cloud or No-cloud Decision (from Fye, 1978).

atmospheric absorption and other effects such as zenith and local angle which create biases in the IR data. Fig. 17 is an example of a curve used to derive bias correction for a particular satellite. The actual bias correction is the difference between the best fit curve and the diagonal line of perfect correlation. Next a representative temperature is selected for each mode (usually the coldest in the mode) and these data are compared to a gridded, conventionally derived surface temperature data base to make a cloud/no cloud decision. Fig. 18 graphically represents this decision process. The final cloud decision is made by using Fig. 19. compensates for irregularities in the surface temperature data base which limit the reliability of the cloud/no cloud decision. The cloud amount is determined by the number of pixels in the cloudy mode (Fye and Logan, 1977). Additionally, the IR processor determines the cloud height by comparing the coldest temperature in the cloudy mode to a real-time upper air data base.

Other processors include the conventional data processor, the data integration processor, and the manual data processor. The conventional data processor takes the surface, aircraft, and upper air reports and produces a

Figure 16. 3DNEPH Flcw Chart of the IR Satellite Data Processor Program (from Fye, 1978).

Figure 17. An IR Bias Correction Curve Used by the 3DNEPH Computer Frogram (from Fye, 1978).

horizontally gridded, eight mesh data base of cloud information for 15 vertical layers. These layers of data and the output of VIS and IR processors are merged by the data integration processor. The processor also performs meteorological consistency checks. The cloud amounts, heights, and types from VIS and IR data are converted to specific cloud layer amounts and heights. Conflicts are also resolved by this processor by checking age of data, greatest cloud cover, layer amount, and cloud top height. Next, the

Figure 18. An Example of an IR Frequency Distribution at a Single Point (from Fye, 1978).

Figure 19. A Cloud Cutoff Curve Used to Limit Low Clouds Over Bright Areas (from Fye, 1978).

satellite and conventional data are compared and integrated with a continuity field to complete the cloud analysis (Fye, 1978). The continuity field is the previous or latest 3DNEFH analysis which fills in missing data and parameters.

The analyst next enters manually encoded input to alter the 3DNEPH data base as necessary. The manual data processor takes this information and incorporates it into the overall data base. This provides an averue for quality control, correction of errors and improvement of the overall analysis.

3. Bispectral

A bispectral method for determining cloud height and amount was developed by Reynolds and Vonder Haar (1977). Visual and infrared data were each analyzed quantitatively over an array of scan spots. This analysis yielded cloud amount and cloud top temperature, from which cloud height was derived by comparison to a nearby vertical temperature sounding.

The method was based on manipulation and solution of two equations (Eq. 1 and 2, Table IV). These equations are basically comprised of adjustments for the fraction of cloud-covered and clear-sky areas in a single field of view and for backbody emissivity of the clouds. One was the

satellite visual radiance equation (Equation 1, Table IV) and the other was the satellite infrared radiance equation (Eq. 2, Table IV). The equations related the amount of cloud (Acld in tenths) to either cloud albedo (pcld X Hs) in the visual or cloud radiances (Ncld) in the infrared channels (note that Acld plus the amount of clear area, Aclr in tenths, equaled 1.0). The IR radiance equation also accounted for the effect of emissivity (ϵ) of clouds on cloud and surface (Nclr) radiances. In both equations, Aclr was replaced by 1.0- Acld. The rest of the terms in the equations except two (Acld and Ncld) were available. Average values of the cloud and surface albedoes were known and more exact values can be obtained in practice, "from the actual array of satellite measurements" (Reynolds and Vonder Haar, 1977). Measured surface temperatures were converted to IR radiances and used for the surface radiance. The emissivity was initially assumed to be 0.9 for all clouds. This left only the two unknowns to be determined. Eq. 1 (Table IV) was then solved for Acld and Eq. 2 (Table IV) for Nold radiance which resulted in Eq. 3 and 4 (Table IV). The Acld value was derived first from the visual satellite data. Next, Acld was used with the simultaneously received IR data to obtain

the cloud radiance value. The resulting radiance was then converted to cloud top temperature via Plancks' equation. The final step was to use a local upper air sounding and the cloud temperature to obtain the cloud top height.

Reynolds and Vonder Haar (1977) performed an uncertainty analysis on this technique to determine on what the uncertainty (Δ) of the cloud amount (Acld) and cloud temperature (Δ Ncld) measurements depend and how large an uncertainty (Δ) is allowable. It was shown that Δ Acld depends on the magnitude and precision of Hs, Ms, ρ cld, and ρ clr, where Δ Hs and Δ ρ clr will be less than 10% of the error. Ncld depends on the magnitude and uncertainty of Ml, Acld, Nclr and ϵ .

The two quantities \triangle Acld and \triangle Ncld were evaluated using typical mid-latitude values obtained from satellites. Table V gives the absolute \triangle Acld error for given \triangle Hs, Ms, and pcld. These results show that the "uncertainties must stay below the 10% level if reasonable accuracy is to be maintained" (Reynolds and Vonder Haar, 1977). This accuracy is possible through use of ground and cloud truth measurements along with improvements in instrument calibration. At present there is approximately a 3 degree Celcius (°C)

TABLE IV

Algorithms for Cloud Top Temperature and Cloud Amount (after Reynolds and Wonder Haar, 1977)

(1)
$$m_s = A_{clr} \rho_{clr} H_s + A_{cld} \rho_{cld} H_s$$
 cld = cloud
(2) $m_s = A_{clr} N_{clr} + A_{cld} N_{cld} \epsilon$ clr = clear

(2)
$$m_L = A_{clr} N_{clr} + A_{cld} N_{cld} + A_{cld}(1.0 - \epsilon)N_{clr}$$

(3)
$$A_{cld} = \frac{m_s - \rho_{clr} H_s}{H_s(\rho_{cld} - \rho_{clr})}$$

(4)
$$N_{cld} = \frac{m_L - N_{clr}}{\epsilon A_{cld}} + N_{clr}$$

(5)
$$A_{cld} + A_{clr} = 1.00$$

(6)
$$\epsilon = \frac{m - N_{clr}}{N_{cla} - N_{clr}}$$

A_{cld} = area of array covered with

m_s = measured visible radiance ρ_{cld} = bi-directional reflectance

cloud areas

cloud

Hs = solar irradiance reaching the surface (.5 $< \lambda <$.8 μ m)

Pclr = bi-directional reflecting of clear areas

 $N_{cld} = spectral IR (10 < \lambda < 12 \mu m)$

N_{clr} = spectral IR radiance from clear area

m, = measured IR radiance

e = IR emissivity

A_{clr} = area of array clear of clouds

error in satellite derived temperature which is equivalent to approximately 5% Δ in Nclr. Ncld will have a 16°C error if the Acld has 24% error (Table V). This error can be reduced by better Acld determination using higher resolution data and through use of ground truth measurements.

TABLE V

The Errors in Cloud amount (with Δ Hs = 5%) and in Cloud Temperature (NcId = 265 K, after Reynolds and Vonder Haar, 1977)

Uncertainty	$5\% \rho \text{clr}$, ρcld , Ms	10% ρ clr, ρ cld Ms	15% ρ clr ρ cld, Ms
\triangle Acld (Acld = 0.26)	0.09	0.14	0.20
\triangle Acld (Acld = 0.53)	0.13	0.21	0.30
Δ Acld (Acld = 0.83)	0.17	0.29	0.40
	5% ML, Nclr, & 24% in Acld	10% ML, Nc1r, E 40% in Acld	
ΔNc1d	16°	30°	
Δ Z	3 km	4.2 km	

The bispectral method was tested with NOAA satellite coverage in an area that had cloud observations and upper air data available. Three locations were chosen; White Sands Missile Range (WSMR), Denver, and Oklahoma City. A 75 X 75

km area was used because it best corresponded to surface and upper air data. Average values of ρ cld, ρ clr, and Hs were assumed initially and then changed as sun angle and satellite viewing angles varied (Reynolds and Vonder Haar, 1977). The results showed a rms error of 0.2 in cloud amount with a slight underestimation bias. The cloud height error with cirrus included was 4.6 km with a -4.2 km bias. Without cirrus cloud, the rms error improved to 0.5 km with overestimation of 0.27 km.

This problem with cirrus is linked to the use of 0.9 for the emissivity of all clouds. Because of the ice crystals in cirrus, its emissivity is less than the 0.9 value. Two approaches were considered by Reynolds and Vonder Haar (1977) to correct this problem.

One approach was to correlate the visible spectral albedo of a cloud to its emissivity through the blackbody temperature. Fig. 20 shows the scatter diagram of the relationship between the albedo and the blackbody temperature and a sacond order fit which was used to determine the cloud top temperature for a specific albedo. Once this cloud top temperature is known the emissivity can be calculated using Eq. 4, Table IV (derived from Eq. 2 of Table IV).

Fig. 21 is the resulting curve which relates albedo to emissivty. The curve is a second order equation of the best fit curve measured in the bispectral method along with a slight adjustment to pclr and pcld. This cut the error of the old method in half (Reynolds and Vonder Haar, 1977).

The second procedure for determining cirrus cloud height was to compare channels 4 and 8 of the Vertical Temperature Profile Radiometer (VTPR) on the NOAA-4 satellite. This led to a reduction by one half in the apparent error of the old method. Table VI lists the results of using a cirrus correction and the VTPR approach compared with non-adjustment for cirrus.

D. PRECIPITATION

Four approaches for estimating precipitation from satellites are reviewed in this section. They are cloud index (Barrett and Martin, 1981; Barrett, 1981), life history (Barrett and Martin, 1981; Griffith and Woodley, 1981), bi-spectral (Liljas, 1981a, 1981b; Austin and Lovejoy, 1981), and cloud modeling (Wylie, 1979; Simpson and Wiggert, 1969).

Equivalent Blackbody Temperature (*k)

Figure 20. The Relationship Between Albedo and Blackbody Radiation. This was derived from NOAA satellite measurements of cirrus clouds over the Gulf of California (from Reynolis and Vonder Haar, 1977).

Figure 21. The Relationship Between Albedo and IR Emissivity from Empirical Studies (from Reynolds and Vonder Haar, 1977).

TABLE VI

Comparison of cirrus correction and VTPR results (from Reynolds and Vonder Haar, 1977)

CIRRUS CORRECTION RESULTS					
Onto	Uncorrected B1-Spectrel Cloud Top Temp. (K)	Cloud Height Error (Km)	Bi-Spectral Cloud Top Temp. with Cirrus Correction (K)	Cloud Height Error (Km)	Observed Cloud Top Tamp. (K)
8 Jan 75	298	+3.2	246	+1.7	233
8 Jan 75	261	+3.3	242	+1.1	233
3 Oct 75	256	+2.2	229	5	233
9 Oct 75	250	+1.6	231	4	235
	NIS Error + Sias + +	2.6 km 2.6 km	RMS Error • 1 Bias • +	.1 km .48 km	

			VTPR RESULTS		
Dete	Spot	YTPR Determined Cloud Height (Km)	SR Determined Cloud Amount	Observed Cloud Height (Km)	Error (Km)
Jan 75	33N 114W	8.2	.7	8.7	+ .5
3 Jan 75	33.2N 114.3M	8.6	.7	0.7	+ .1
8 Jan 75	33.50 116.3M	5.7	.6	8.7	+3.0
		NAS B1a	Error * 1.75 km s =+1.2 km		

1. Cloud Index

Barrett (1981) developed a cloud index method of determining rainfall (called the 'Bristol Method'). It is a manual method which uses observed rain gage data and the cloud index system (see Section B) to pradict the amount of rainfall accumulated over a specified time period (usually 12 hours) in grid squares of a selected size (1/6° to 1° grid squares). Cloud area and altitude are also taken into account (Barrett and Martin, 1981). Fig. 22 presents the flow diagram of a recent version of the Bristol Method with two stages, preparatory and operational. Both IR and VIS are used whenever possible to identify cloud types. Next, the cloud types of each grid square are assigned an index (see Table VII). The cloud index is generally "evaluated differently for ranges of chosen cloud types and for different regions" (Barrett and Martin, 1981). Then mean cloud indices are calculated along with mean observed rainfall amounts for each cloud field unit. Subsequently, regression techniques are used to relate the observed rainfall to the cloud type, and these help establish rainfall estimates for areas of satellite cells where conventional data are sparse (see Fig. 23). Tests show that the accuracy of this method

is approximately 75% for all cases belonging to a specific category (Barrett and Martin, 1981).

Figure 22. Flow Chart for a Recent Version of the Manual Nephanalysis (from Barrett and Martin, 1981).

TABLE VII

Empirically Derived Rainfall Probabilities and Intensities from Satellite Pictures (from Barrett and Martin, 1981)

1	Academod amphabili	3	
States of the sky (nephanalysis cloud categories)	Assigned probabili- ties of rainfall (relative scale range 0 - 1.00)	Assigned intensities of rainfall (relative scale range 0 - 1.00)	
Cumulonimbus	. 0.90	0.80	
Stratiform	0.50	0.50	
Cumuliform	0.10	0.20	
Stratocumuliform	0.10	0.01	
Cirriform	0.10	0.01	
Clear skies	***		

2. Life History

The Griffith/Woodley (Griffith and Woodley, 1981; Griffith et al., 1978) technique for estimating convective precipitation was developed using a cloud life history model in which satellite imagery is compared to radar echo life history of the cloud area (Griffith and Woodley, 1981; Barrett and Martin, 1981). The basis of the technique is the hypothesis that in the tropics rain occurs with cold (bright) clouds and the intensity of the rain is a function of the stage of development of cumulonimbus clouds. In a study of clouds over Florida, Griffith and Woodley (1981) found that the cumulonimbus cloud area is related to radar

Figure 23. Regression Diagram Used to "Ploat" Rainfall Estimates for Satellite Pictures (from Barrett and Martin, 1981).

echo area (see Fig. 24). Cloud areas (Ac) are evaluated in either VIS or IR satellite imagery and then compared to the radar echo area (Ae). Fig. 24 is a plot of the relationship between cloud and echo areas (Griffith at al., 1978). It was empirically derived using measurements and comparisons of Florida clouds viewed by radar and geosynchronous satellites. The rain cloud threshold (IR) used in the approach was 253 K.

Figure 24. VIS (top) and IR (bottom) Satellite Data Cloud (Ac) and Echo (Ae) Area Relationships for Florida. Both cloud and echo area values are normalized to relative maximum cloud area (Am) (from Griffith et al., 1978).

This technique is fully automated (Figure 25) and has been tested in the Florida area and in extra-tropical convective areas (Barrett and Martin, 1981). There are four major computer modules that together produce a rain map. The

programs are navigation, cloud isolation and tracking, cloud life history compilation and volumetric calculation of rain, and rain mapping (Griffith and Woodley, 1981; Barrett and Martin, 1981).

This model has been applied on several time scales and in different regions as shown in Table VIII. The error statistics (bias (B), root mean square error (Erms), and linear least squares fit (R, slope, and intercept)) for these applications (Table IX) show that on average the model results agree fairly well with the ground truth data (Griffith and Woodley, 1981). The Erms is small except for two locations, with an overall average of 0.85 millimeters per hour. The bias is close to 1.00 which is the value of perfect correspondence. In the linear fits, all correlations (R) are greater than or equal to 0.78, where 1.0 is perfect correlation.

3. Bispectral

Lowejoy and Austin (1979) developed a technique in which visual and infrared wavelength patterns are used to identify clouds with a high probability of rain. These clouds have large optical and physical thickness "as measured by the visible albedo in comparison with their

Figure 25. The Griffith/Woodley Technique Flow Chart Used for GATE (from Barrett and Martin, 1981).

TABLE VIII

Applications of the Griffith/Woodley Fechnique (from Griffith and Woodley, 1981)

AREA

PERIOD

Global Atmospheric Research Project's Atlantic Tropical Experiment (GATE) June 27 to Sept. 28, 1974

Florida Area Cumulus Experiment (FACE)

Selected days June to September 1972 to 1988

Equatorial Pacific Ocean Climate Studies (EPOCS)

2-1/4 days November, 1978 30 days November, 1979

High Plains Experiment (HIPLEX)

CORRESPONDENCE

Selected days, May to July 1976 to 1978

Hurricanes

Selected storms 1969 to present

Flash floods

Big Thompson, CO 7/31 - 8/1, 1976 Johnstown, PA July 19-20, 1977

1.00

1.95

. TABLE IX The Error Statistics from the Applications Listed in Table VIII (from Griffith and Woodley, 1981)

E_{RMS} R SLOPE INTERCEPT В LOCATION N -1.47 0.87 0.97 GATE 0.84 ø. 79 0.07 2.81 0.96 Ø: 62 HIPLEX 15 0.77 (dense) 1.18 -0.23 Ø. 95 FACE 11 9.88 0.42 1.81 -0.Z7 9.78 HIPLEX 0.55 (sparse) 9.18 HURRICANES 1.98 0.96 0.89 23.93 9.48 0.99 0.89 FLASH FLOOD 2 1.39 PERFECT

height, determined by the intensity of the IR emmission" (Austin and Lovejoy, 1981). Liljas (1981a, 1981b) followed this with a similar type of bispectral identification of precipitation area based on VIS and IR imagery. This subsection will first review Austin and Lovejoy's (1981) technique and then Liljas* (1981a, 1981b) technique.

Austin and Lovejoy (1979) first addressed the question, "How well can rain areas be delineated in coincident visible and infared satellite images?" They felt that the problem was to find boundaries between rain and no rain. Estimation of rain amount is assumed to depend on two steps, the delineation of the rain areas and estimation of rain rate once the area is known. The authors used three statistics to characterize errors and from these were able to estimate rain area and rain rate. The first step in rain estimation was to map a frequency matrix for both rain areas and non-rain areas (see Fig. 26 and 27). The ratio of rain to non-rain was found and plotted (see Fig. 28) along with a line of greater then 50% probability of rain. From this, a rain map (see Fig. 29) was produced. The next step was to try to quantitatively estimate the rain rate. Austin and Lovejoy (1981) tried several techniques to do this but met

with little success. They believe this was due to "...the visible and IR wavelengths primarily responding to the relative abundance of cloud droplets and not to precipitation sized particles" (Austin and Lovejoy, 1981). They concluded that a good or even passable quantitative estimate of rainfall rate is not realistic or practical using visual and infrared data. The authors felt their study supported the hypothesis that visual and infrared satellite images are good for estimating rain areas but not for estimating quantitative rain rates.

Liljas' (1981a) main objective was to apply an approach similiar to that used by Lovejoy and Austin (1979) for identifying precipitation areas and intensity using TIROS-N satellite imagery, but without using radar to calibrate it. He decided not to try quantifying intensity, but to instead define it qualitatively by categories of light to heavy rain. This follows the work of Muench and Keegan (1979) on the relation of cloud reflectance and intensity of rain. Pursuing their concepts, Liljas (1981a, 1981b) developed a relative precipitation intensity identification technique which relies on his cloud typing model (see Section B, Chapter II). It can be applied quickly to both frontal and convective type precipitation and gives the

Figure 26. Prequency Distribution of VIS and IR Data Pairs for the No-rain Case (from Barrett and Martin, 1981).

Figure 27. Frequency Distribution of IR and VIS Data Pairs for the Rain Case at the Same Location as Fig. 26 (from Earrett and Martin, 1981).

Figure 28. Probability of Rain in Percent from the Arrays of Fig. 26 and 27 with the 50% Boundary Sketched (from Barrett and Martin, 1981).

Figure 29. The Resulting Satellite Rain Map from the Use of the Same Data as Fig. 26 and 27. The vertical lines are radar rain areas and horizontal lines are satellite rain areas (hatched areas are the agreement areas) (from Barrett and Martin, 1981).

information in a real-time fashion. The first step is to identify the cloud types (see Fig. 9). Hert, the area on the graph representing ctauloniabus and niabostratus is sectioned (see Fig. 10) based on the premise that cold, high and dense clouds give the highest precipitation rate. additional requirement for the cloud top temperature to be colder than -22°C was established (Liljas, 1981a) and supported by investigations of Muanch and Keagan (1979). Table X gives the thresholds determined by summing the infrared and visual digital values that correspond to the precipitation intensity levels. The method gave good information on the distribution of precipitation areas and the relative intensity within the areas for both frontal and scattered showers. In addition, the method detected "intense precipitation in mesoscale cloud clusters between synoptic" observations (Liljas, 1981a).

4. Cloud Model

Wylie (1979) compared tropical and mid-latitude cloud area and rain rates to see if the Griffith/Woodley (Griffith et al., 1978) and other techniques could be applied to non-tropical cloud features, instead of the tropical cloud systems for which they were developed. Six days

TABLE X
Threshold Values Describing Pracipitation Intensity Levels as Applied in Fig. 10 (from Liljas, 1981a)

Ch1 + Ch4	291-310	light rain
	311-330	
	331-350	
	351-370	
•	371-390	
	> 390	very strong rain

of two different types of rain clouds (frontal convective and frontal stratiform) in the Montreal, Quebec, Canada area were chosen for comparison to the 1979 GATE data set of Stout et al. (1979) (see Table VII).

The rain rates of the two areas are shown in Fig. 30. The GATE rain rates are higher than the rain rates of Montreal, even at the colder thresholds. The Montreal rain rates tend to vary considerably, especially the convective cases (June cases). This shows that a scheme based on the GATE data would overestimate rain rate in the midlatitudes, and additionally, if one uses a constant adjustment, there would be a large variance in the rain amounts. Table XI

shows the comparison for GATE and Montreal rates of precipitation. Wylie (1979) found that the precipitable water calleled the difference in the average rain rate with some minor exceptions when the troposphere was exceptionally stable. He decided to use Simpson and Wiggert's (1969) one-dimensional cloud model to assess the effects of stability and to possibly improve his results in the mid-latitudes.

Figure 30. Rain Rates Averaged Over Cloud Areas Measured on IR Images for Various Cloud Threshold Temperatures (from Wylie, 1979).

This model simulates cloud growth by using an ascending 2 km bubble. The model incorporates cloud physics processes in the development of precipitation (Simpson and

TABLE XI
Estimated and Observed Precipitation and Stability Adjustment Factors (after Wylie, 1979)

Case	Observed rainrate ^b (mm h ⁻¹)	Precipi- table water (mm)	(Montreal/GATE)		Precipitation			
			Precipi- table water	Model precipi- tation	Adjusted satellite (197	Reder	Sies.	Error factor
GATE	2-2	54	_		. , ; -	_	_	-
Montreal								
29 June	1.0	38	0-7	0-5	20-6	26-5	99	1-1
2 June	0-9	22	0-4	0-3	8-9	8-0	1-0	1-0
26 Sept.	0-9	27	0-5	0-3	30-8	40-3	0-8	1-3
1 June	0-4	27	0-5	0-3	10-4	7.4	1-4	1.4
20 Sept.	0-4	27	0-5	0.0	3.2	14-6	6 -2	4.6
16 Sept.	0-1	22	0-4	0-0	7-0	7-2	1-0	1.0
				Average	141	17-5	0-9	1.7

Wiggert, 1969). Only one bubble ascent was used although normally the bubble would ascend many times. As a result, the rainfall prediction could not be used directly, but was nevertheless used as an adjustment to correct the montreal data for stability.

the corrected precipitation of the satellite closely matches the radar measured amount of rain. He noted that the overall bias was small, and therefore by using a stability correction (calculated from the one-dimensional cloud model), the technique to measure precipitation by satellite in the tropics could be applied to mid-latitude areas.

III. SPADS CLOUD NO DEL DESCRIPTION

A. INTRODUCTION

The cloud analysis model adapted for the SPADS interactive computer is a combination of procedures drawn from several previously tested techniques. The mainstay of the model is Liljas' (1981a) parallelpipedon (Fig. 9 and 10) classification. Added to this are a texture test for discriminating some cloud types, a non-linear least squares curve fit to discern cirrus and altostratus, Harris and Barrett's (1978) cloud amount calculation, part of Reynolds and Vonder Haar's (1977) cloud top temperature calculation, and Liljas' (1981a) qualitative precipitation intensity model. The following sections describe these parts of the SPADS model and explain why they were selected. The last section of the chapter summarizes with the flow chart of the model's computer program.

B. CLOUD TYPING

The approach selected for cloud typing was developed and tested by Liljas (1981a). It is a multispectral method that uses three channels to type clouds and differentiate

between land and water. The SPADS cloud model uses two channels, thereby becoming bispectral (the near-IR channel was not used due to non-availability in GOES VISSR data). Fig. 10 depicts the bispectral model incorporated in the SPADS Cloud Model. Both the visual and infrared thresholds shown in Fig. 10 were converted from Firos-N Advanced Very High Resolution Radiometer (AVHRR) to GOES VISSR data counts. Liljas' visual data brightness counts ranged from 0 to 255 while the SPADS counts range from 0 to 63. A four to one linear relationship exists in the VIS channel and therefore a direct conversion of thresholds was performed. The IR thresholds were converted to temperatures (K) using an August 1980 TIROS-N AVHRR temperature calibration table. This gave a rain cloud threshold of about 251 K which is in agreement with the Griffith/Woodley (Griffith and Woodley, 1981) and the Liljas (1981a) rain cloud thresholds. temperature thresholds were converted to GOES IR brightness counts. The transformed thresholds used in the SPADS cloud model are depicted in Fig. 31.

One of the reasons for selecting the Liljas model is that it was tested or an interactive computer similiar to SPADS. In addition, the test area selected by Liljas (1981a) included land and ocean areas along with many types of clouds associated with mesoscale and synoptic scale features. A complete description with color pictures is in Liljas' (1981a) technical report. In addition, a combined approach using texture and bispectral counts was suggested by Liljas (1981a), Harris and Barrett (1978) and Reynolds and Vonder Haar (1977). The U.S. Air Force's 3DNEPH program used both these approaches, but documentation of thresholds and tests was not available to us. Thus, the 3DNEPH program could only be used as a qualitative guide.

The GOES IR resolution is approximately 4 n mi. at the subsatellite point, but for the visual channel a higher resolution of 0.5 n mi. is available. This VIS resolution affords an apportunity to get a better estimate of cloud cover. All the studies reviewed highly recommended the use of an array of brightness counts to give an improved representation of the cloud picture. The 0.5 n mi. resolution allowed an 8X8 array of visual pixels per IR pixel. For each grid space an average visual brightness count is calculated (Eq. 1, Table II).

Figure 31. Two Dimensional Cloud Typing Graph Using GOES IR and VIS Satellite Digital Data (after Liljas, 1981a).

At the same time as the visual average brightness is being calculated, the standard deviation of the cloudy visual counts per grid space is determined. The standard deviation (Eq. 4, Table I) is the statistic used to represent texture. As suggested and tested by Harris and Barrett (1978), the standard deviation is used to discriminate between stratiform and cumulus humulus, small and large cumulus congestus, and altostratus and cirrus. The initial standard deviation threshold values for this discriminant analysis were approximated by using information in Fig. 6 and 8. An additional test was used first for the cirrus/altostratus decision. A second order polynomial least squares fit was applied to the cirrus (c) points and also to the altostratus (d) points in Fig. 10. The calculated curves are depicted in Fig. 31, with the associated equations in Table XII. Entering the equations with the average visual brightness, the resulting IR value is compared to the actual IR to determine cloud type. If the calculated value falls between the two curves then an additional test, using the standard deviation threshold, is used to discriminate cloud type.

C. CLOUD TOP TEMPERATURES

The Reynolds and Vonder Haar (1977) study is used as a basis for estimating cloud top temperatures. Their calculation is based on two equations (Eq. 1 and 2, Table IV), one for cloud amount and the other for the cloud top temperature. The resolution of the data used was 4 n mi. but the authors analysis suggested an improved resolution would give better results. As mentioned above, this led to the choice of 0.5 n mi. visual data in this study.

The first step in determining the cloud top temperature is to calculate the amount of cloud per IR pixel. The cloud decision was based on comparing the visual digital count of each pixel in the 8X8 grid to a no cloud threshold. This threshold value (initially 5 VIS counts) was derived from Fig. 31 (after Liljas, 1981a) where it is the lowest VIS count to have clouds. A cloud threshold test was also used by Harris and Barrett (1978). Their threshold value was derived by comparing the visual image with a computer produced density slice, but neither the value nor the formula to obtain the value were included in their report. The U.S. Air Force's 3DNEPH program based the cloud decision on the amount of visual grayshade difference between a 3 n mi.

TABLE XII

SPADS Cloud Model's Cloud Types, Least Squares Fit Equations, and Standard Deviation Values (SIGi)

<u>Cirrus</u> (1)* - Cs

a. $y \ge 158.094 - 6.6076 \times + 4.159 \times^2 **$

b. $\sigma < SIG3$

Altostratus (2) - As

a. $y \le 115.24 + .5246 x + .0395 x^2 **$

b. $\sigma > sig3$

* The number in the parens is the computer cloud type identifier.

**{ y = IR digital value x = average Visual digital value

Fog/stratus (3) - ST

Thick Fog/stratocumulus (4) - Sc

 σ < SIG 1

Cumulus humilis (5) - CuHu

 $\sigma > SIG 1$

Small cumulus congestus (6) - CuCong

 $\sigma < SIG 2$

Large cumulus congestus (7) - CuCong

 σ > SIG 2

Nimbostratus/multilayered (8) - Ns

Cumulonimbus (9) - Cb

pixel and a background brightness (Fig. 15, refer to Chapter II for more complete details). This program uses an extensive global background brightness file that is updated regularly (Fye, 1978). The development and maintenance of such a file for SPADS is not feasible at this time.

The average cloud amount is determined by summing the number of cloud decisions in the grid space and dividing by the total number of pixels per grid space. This calculation followed the Harris and Barrett (1978) Eq. 3 (Table I). This cloud amount fraction is then used in the Reynolds and Vonder Haar (1977) equation for cloud top IR radiance (Eq. 2, Table IV). One of the reasons this cloud amount calculation is used instead of Reynolds and Vonder Haar's equation was that, in the latter, three additional constants would have to be calculated and verified, which is beyond the scope of this thesis. The authors felt that it was essential in using their cloud amount equation that these constants be well determined (Reynolds and Vonder Haar, 1977).

The next parameter of the cloud top radiance equation to be determined is the clear area IR spectral radiance. Fleet Numerical Oceanography Center (FNOC) analyses of surface

temperatures (K) are obtained and a representative temperature profile matching the location of the IR image center point is selected. These temperatures are converted to IR radiances via Planck's function and used in the cloud top temperature equation.

Emissivity of the clouds also must be determined. Reynolds and Vonder Haar (1977), among others, found that the emissivity is nearly constant (approximately equal to 0.9) for all clouds except cirrus, for which it is approximately 0.55. In the program, cirrus clouds are identified by the cloud typing and standard deviation modules so that the lower emissivity can be used in the cloud top temperature equation. In addition, an emissivity of 1.0 was used for cumulonimbus and nimbostratus based on the assumption that these clouds do not allow any surface radiance through.

The cloud top radiance (Ncld) is calculated using Reynolds and Vonder Haar's (1977) equation (Eq. 2, Table III) which consists of the surface temperature field obtained from FNOC (converted to an IR radiance via Planck's law), the emissivity (cirrus or non-cirrus), the satellite IR radiance (Ml) value, and the fractional amount of cloud (Acld). Once Ncld is calculated, a conversion to a cloud top

temperature is made via the inverse of Planck's function. This temperature can then be compared to the latest FNOC upper air data analyses to find the corresponding height in millibars (mb) of the cloud top. The upper air data are available at ten standard levels consisting of 1000, 900, 850, 700, 500, 400, 300, 250, 150, and 100 mb.

D. PRECIPITATION INTENSITY

The precipitation intensity identification technique selected is the Liljas' (1981a) method. It is an extension of his cloud typing method (see Chapter II) and therefore easily fits into the overall SPADS cloud model without adding much time to the process. Wylie's (1979) cloud model, as discussed in Chapter II, used the Griffith/Woodley (Griffith st al., 1978) technique with a stability correction which gave good indication of rain rates. One problem with it is that the Griffith/Woodley technique is based on the development and identification of convective cloud systems' life history through use of radar echoes not available to this study. Another problem with using this scheme is the computer run time it would add to the SPADS cloud model.

Although time is an important factor, it is not the only reason for selecting the Liljas method. Liljas (1981a) reported good success with this technique, obtaining good

indications of relative precipitation over land and sea areas as verified by synoptic reports. He felt that this technique would be useful for sea areas where no synoptic observations were available. In addition, relative precipitation from mesoscale cloud clusters was detected between synoptic observations. This identification scheme was modified for use in the SFADS cloud model by reducing the number of precipitation intensity categories from six (see Fig. 9) to three. Fig. 32 depicts the new categories of precipitation types representing light, moderate, and heavy rainfall and Table XIII includes the equation for the lines separating the categories. The light rainfall category includes the requirement that cloud top temperatures be less than 251 K.

E. FLOW CHART

The SPADS Cloud Model (Fig. 33) begins with obtaining the initial infrared and visual data fields from the GOES satellite and conventional surface and upper air data from FNOC. The IR and VIS satellite data are collocated both in space and time. The upper air and surface temperatures are selected to correspond to the I,J position closest to the center point of the image from the latest FNOC analysis on

the same date as the satellite pictures. Next, the SPADS cloud model computer program (see Appendix A) is run.

As shown in Fig. 33, the first step of the program is to calculate three values based on the 8X8 grid of VIS pixels; the average VIS brightness, standard deviation, and cloud amount as discussed in Section B of this chapter. Once the values are obtained, the cloud typing module (based on Liljas, 1981a) is called. Two tests are performed within this module: one is based on comparison of the IR and average VIS counts and the other supplements the first by using texture (standard deviation) to complete the cloud typing task. If nimbostratus or cumulonimbus clouds are identified; the precipitation module is called and it determines the intensity (qualitatively) of the precipitation.

The cloud top temperature module, in which the temperature and the height of the clouds are calculated, is called for all cloud cases. The FNOC surface temperature value is used in the cloud top temperature calculation, while the FNOC upper air data are used in the height calculation.

Figure 32. Graph of SPADS Cloud Model Precipitation Intensities.

TABLE XIII
SPADS Cloud Model Precipitation Intensity Categories

Equation suml = IR radiance + average VIS brightness

No rain (ϕ) sum1 < 184

Light rain (1) $184 < sum1 \le 195$

Moderate rain (2) 195 < sum1 < 224

Heavy rain (3) 224 < suml

The final step is processing the results. Cloud types (Table XII), precipitation intensities (Table XIII), cloud top temperatures (K), and cloud top heights (mb) are stored in a permanent file for future display. The average visual brightness, standard deviation, and the amount of cloud that correspond to each IR pixel are printed for reference and validation purposes.

Figure 33. The SPADS Cloud Model Generalized Flow Chart.

IV. THE MODEL TEST AND RESULTS

A. INTRODUCTION

A test was conducted to determine if the SPADS Cloud Model concepts were valid. The test was designed: (1) to capture a small area of coincident IR and VIS satellite data in the mid-latitudes and to obtain FNOC fields for the same date-time group and location as the satellite data, (2) to run the SPADS Cloud Model using these data, and (3) to analyze the results of the model to determine the validity of the model's analyses. The following sections describe the input to this test, test procedures, results, and subsequent iterations and adjustments made to improve the model's performance.

B. DATA

November 9, 1982 at 1315 local time, for a site centered at location latitude 44°N, longitude 141°W. The corresponding FNOC data fields were also saved for the same date from 1200 GMT data. Fig. 34 is the GOES IR image from which an area of approximately 460 X 460 n mi. was selected for analysis. This afforded 4096 IR pixels for evaluation. Fig. 35 is the

IR satellite picture of the selected area with the center point matching that in Fig. 34. The IR data resolution was approximately 7 n mi. at this latitude and 4 n mi. at the subsatellite point. The visual data resolution used was 0.9 n mi. (0.5 n mi. at subsatellite point). The visual area (see Fig. 36) is the same area as the infrared giving an 8X8 visual grid of pixels (64 points) per IR pixel.

The FNOC vertical temperature profile was obtained to match the center point of the satellite pictures and the corresponding heights (mb) are listed in Table XIV. Only one set of temperatures was used because the resolution of the FNOC fields (63 X 63 field with 381 km mesh length) is approximately the same as the area of the satellite pictures used in this test.

C. TEST PROCEDURES

The following list is the set of procedures for this test of the SPADS Cloud Model. The steps taken were to:

- 1. Capture coincident VIS and IR satellite images.
- 2. Receive surface and upper air wemperatures from FNOC.
- Manually analyze images for cloud boundaries and types.
- 4. Select the temperature profile closest to satellite image.

- 5. Run SPADS Cloud Model computer program.
- 6. Output results in a format for analysis.
- 7. Compare manual to computer output.
- 8. Adjust computer model as appropriate.
- 9. Repeat steps 5, 6, and 7.

The manual nephanalysis was completed by Dr. C.H. Wash, Assistant Professor in Meteorology at the Naval Postgraduate School. He used both the IR and Visual images (Fig. 34, 35, and 36) to discern the cloud boundaries and types seen in Fig. 37 (see Table XV for symbol definition)

During the first computer run, a cloud threshold of 5 visual digital counts was used. This value corresponded to the lowest visual threshold that could have clouds (see Fig. 33). After analysis of the first run, however, a threshold of 20 counts was selected. This adjustment accounts for our uncertainty in the GCES VISSR visible channel calibration, as compared to that for the TIROS AVHRR visible channel. In normal use, VISSR is a relatively qualitative radiometer, and the engineering data needed to convert values to high-quality calibrated radiances were not readily available. Two sets of standard deviations were used and are presented in Table XVI.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

Figure 34. Infrared Satellite I mage, Center Point is at Latitude 440N, Longitude 1410W.

Figure 35. Infrared Satellite Image Selected from Fig. 34, with an Area of 460 X 460 n mi. (center point is at latitude 440N, longitude 1410W).

Figure 36. Visual Satellite Image with the Same Area and Center Point as Fig. 35.

TABLE XIV

FNOC Temperature Profile for 1200 GMT, November 9, 1982 at latitude 440N, longitude 1418W

Standard level (m	b) Temperature (OK)
100	212.
150	214.
200	216.8
250	221.8
300	229.7
400	244.6
500	254.3
700	267.7
850	275.5
1000	283.4
1010 (SF	289.7

Figure 37. Manual Cloud Analysis of Fig. 35 and 36 (see Table XV for the symbol definitions).

TABLE IV

Definitions of Symbols Used in Fig. 37

Nimbostratus - Multiple layers	NS-ML
Altostratus	AS
Altocumulus	AC
Cirrus	Ci
Cumul us	Cu
Stratus	St
Stratocumulus	SC
Broken	Ø

TABLE XVI

Standard Deviation (SIGi) Values Used for Run 1 and 2 (see Table XII for how they are used)

SIG (i)	Test 1	Test 2
SIG 1	4	2.5
SIG 2	20	20
SIG 3	3	1.5

D. RESULTS

The following subsections discuss the results of the two computer runs as compared to the manual analysis. The results are discussed by the type of product and run number;

where the products are cloud type, precipitation, cloud amount, cloud top temperature and height, and texture (standard deviation).

The state of the s

1. Run 1

a. Cloud Typing

The overall general patterns of the cloud types (see Fig. 38) compared well to the manual analysis (see Fig. 37). The observed cloud structure is most easily discussed by considering the images as four quadrants; northeast (NE), northwest (NW), southwest (SW), and southeast (SE) with north being the Top of the image.

The NE quadrant has mid-level clouds such as altostratus (see Fig. 37). The SPADS cloud model did well here indicating predominatly mid-level clouds (see Fig. 38). The model also matched the manual analysis in the NW quadrant. This area has high cloud tops of nimbostratus and embedded cumulonimbus.

The SW quadrant has a mixture of mid-level and multi-layered thick clouds and again the cloud model is in agreement with the manual analysis (see Fig. 37 and 38). The objective analysis shows more detail than the manual analysis because the computer program is working pixel by

pixel while the manual analysis can only resolve groups of pixel defining cloud areas.

In the SE quadrant, the SPADS cloud model could not resolve the difference between low-level (stratus) and mid-level clouds. The boundary between these is located on the upper border of the SE quadrant. Another discrimination problem is between stratus and cumulus in the lower right quadrant. The amount of cumulus humulus that seems apparent in the visual satellite picture (see Fig. 36) and the manual analysis (see Fig. 37) did not appear in the computer analysis (see Fig. 38). This problem is related to the texture threshold tests, as both stratus and cumulus humulus have the same cloud type thresholds.

b. Precipitation

The patterns of rain intensity (see Fig. 39) in the NW and SW quadrants are based on the premise that the thicker and colder, therefore brighter, clouds (compare Fig. 39 to Fig. 35 and 36) have a greater probability of rain and a higher intensity of rain. Along with this, is the knowledge that the approximate threshold for rain clouds is colder than -22 °C (Liljas, 1981a; Barrett and Martin, 1981). Both computer runs gave the same agreement with the

Figure 38. Cloud Types as Analyzed by the SPADS Cloud Mcdel in Run 1 (see Table XII for numeric definitions).

manual analysis because the areas of rain clouds did not change. At this time, no surface data are available for ground-truth verification of the rain patterns.

c. Cloud Amount

the cloud amount for the first run was 100% for the entire analysis area. The visual, IR, and manual pictures all showed clear and scattered cloud areas in the SE quadrant. In the manual analysis (see Fig. 37), this quadrant has these sections marked Cu, St/Sc, and As (see Table XV for symbol definitions). Further research into the cloud threshold for COES satellite imagery, combined with analysis of the high resolution visual data used in this test, suggested a better cloud threshold value would be 20 visual counts (Nuench and Keegan, 1979, and see discussion in Section C). The results from using this threshold are discussed in the Run 2 section.

d. Cloud Top Temperatures and Heights

The cloud top temperatures (see Fig. 40) and heights (see Fig. 41) look reasonable for the cloud types identified. The NE quadrant had temperatures ranging from 260 to 250 K and a height of approixmately 500 mb, these matching the type of mid-level cloud. The NW quadrant

Figure 39. Qualitative Precipitation Intensity from Run 1 of the SPADS Cloud Model (see Table XIII for numeric definitions).

clouds are mostly nimbostratus with high-level, cold cloud tops. The height is approximately 300 mb and the temperature is 230 K. Again, agreement is good. The mixed clouds in the SW quadrant also have mixed height (mid-level and high-level) and temperatures which compare well (see Fig. 40 and 41)

The SE quadrant's heights, ranging from 850 to 700 mb, define the area reasonably well (see Fig. 41). The division for the low and mid-level clouds (see Fig. 37) appears as the 700 mb contour line (see Fig. 40). The cloud temperature field (see Fig. 40) defines the division of low and mid-level clouds less clearly, but partly cloudy areas (275 K contour) are indicated. The cirrus and altostratus clouds are too cold and high, as compared to the FNOC temperature profile. This error appears to be in the application of the bispectral radiance equation (Eq. 4, Table IV) from Reynolds and Vcnder Haar (1979) in partly cloudy regions. The coefficients in that equation depend strongly on the radiance calibration of the radiometer used. The assumed calibration coefficients used in this study are clearly inadequate and must be improved through empirical validation of GOES VISSR calibration using ground truth data.

Figure 40. Cloud Top Temperature (K) from Run l of the SPADS Cloud Model.

Figure 41. Cloud Top Heights (mb) from Run 1 of the SPADS Cloud Model.

e. Cloud Texture (Standard Deviation)

cloud texture (standard 'deviation) calculation results are presented in Fig. 42. Overall, they show an expected pattern; mixed and broken cloud areas (in the SW and SE quadrants) have the highest variation and uniform stratus type cloud cover areas (in the NW and NE quadrants) have the smallest variation (compare Fig. 36 and 42). The highest deviations (approximately 4.0) were located in the SE quadrant in the areas discussed previously under cloud amount. After contouring, there appeared to be a definite boundary between the highly variable region (SE quadrant) and the nearly uniform areas (NE quadrant, see Fig. 42). The SE quadrant had been manually typed as cumulus, with broken areas, and stratus/stratocumulus clouds Fig. 37). After evaluation, the standard deviation threshold value for discerning cumulus humulus was adjusted along with the value for altostratus. There did not appear to be obvious patterns of different size cumulus congestus and therefore this standard deviation threshold was not adjusted. The standard deviation definitely shows promise in discriminating between cumuloform and stratus cloud types.

Figure 42. Cloud Texture (Standard Deviation of the Digital Counts) from Run 1 of the SPADS Cloud Model.

2. Run 2

The results from the second run are presented below with the revised cloud and standard deviation thresholds.

Only regions where changes from Run 1 occurred are discussed in detail.

a. Cloud Typing

The cloud typing results were changed somewhat because of the new cloud threshold and standard deviation thresholds (see Fig. 43) especially in the lower right quadrant. More cumulus humulus and altostatus types were delineated and the patterns appear closer to those in the manual analysis.

b. Cloud Amount

The cloud amount patterns (see Fig. 44) are more in line with the manual analysis and what can clearly be seen on the satellite images. It appears that the cloud threshold of 20 is better, but this may require additional study.

c. Cloud Top Temperature and Height

The problem in obtaining the correct cloud top temperature and height in a partly cloudy situation using a bispectral technique still remained. This problem stems from uncertainty in calibration of the GOES VISSR. The VISSR

Figure 43. Cloud Types as Analyzed by the SPADS Cloud Model, Run 2 (see Table XII for numeric definitions).

Figure 44. Cloud Amount (in 100ths) from Run 2 of the SPADS Cloud Model (the number in the enclosed areas represents the lowest cloud amount for the area).

infrared channel is not actively calibrated and extensive ground truth is required to accurately interpret its data in terms of temperatures (Maul, 1981). In the present program, temperature calibration would enter into the coefficients of the cloud height Eq. 4 (Table IV) and directly into the cloud top temperatures. Time was not available in this study to make this adjustment.

V. SUMMARY

A. DISCUSSION

This chapter summarizes the thesis accomplishments, the problems encountered, and suggestions for future research.

1. Accomplishments

of cloud and precipitation studies with an emphasis given to those using an interactive computer system. Next, useful techniques and ideas were selected from these studies and used to design the SPADS cloud and precipitation model. This SPADS Cloud Model was then coded and established on the SPADS system. Finally, two test runs on a test case were completed with good success.

Within an hour, detailed information was produced by the SPADS Cloud Model through concurrent analysis of high resolution visual and infrared digital satellite data. Over a maritime region, the SPADS Cloud Model estimated various cloud types, precipitation intensity, cloud amounts, and cloud top temperatures and heights.

2. Problems

Several problems were encountered. The cloud amount threshold needed adjustment and two tests of different thresholds were accomplished. The threshold of 20 was satisfactory but further verification is suggested.

Another area of concern is the threshold values for the texture tests. Two thresholds were adjusted in the tests but all three need further refinement. The separation test (the least square fit equations) for cirrus and altostratus could not be substantiated in this data set and will also need verification in future runs.

An additional problem is in the cloud top temperature and height calculations. As discussed before, the temperatures are too cold and the heights too high in certain partly cloudy areas. The bispectral equation to obtain these values needs further study.

All three of these problems are related, at least in part, to the problem of inter-calibration of AVHRR and GOES VISSR visible and infrared data.

3. Recomendations

The following are recommendations and suggestions for additional research. The SPADS Cloud Model should be:

- a. converted to use temperatures for infrared thresholds and albedoes for visual thresholds to allow easier conversion between different satellites (polar and geostationary) and seasons (this will require development and addition of sensor calibration tables and modules to the SPADS Cloud Model).
- b. converted to a variable resolution so that larger areas could be analyzed in the same time frame but also keep the high resolution capability.
- c. tested and verified in various regions by using surface observations, rawinsondes, aircraft platform observations, ship observations, radar, and, if available, the U.S. Air Force 3DNEPH cloud analysis.

Digital satellite data are currently underutilized, except perhaps for sea surface temperature and temperature sounding applications. Most visual and infrared satellite data are treated as images and are still analyzed manually. Now, with the development of SPADS and similiar systems, new satellite products can be produced in regional forecast sites based on digital satellite data. This thesis illustrates the detailed analysis of the digital satellite information that can be received by the user in a short (1-2 hours) time frame. Specifically, this work was directed to using the SPADS computer system toward process satellite visual and infrared digital data and to produce cloud and precipitation information. As SPADS is placed in the field

forecast sites, this information will, for the first time, be made available in an operational setting instead of being available only to meteorologists at the major satellite centers. In the future, this and other applications will substantially aid the operational forecaster.

LIST OF REFERENCES

Austin, G.L. and Love joy, S., 1981: A combined visible and IR technique for the estimation of rain amounts from GOES data. In, D. Atlas and O.W. Thiele (editors), Precipitation Measurements from Space, Workshop Report, October 1987, NASA, Goddard Space Flight Center, Greenbelt, Md., D141-144.

Barrett, E.C., 1981: The Bristol Method of satelliteimproved rainfall monitoring. In, D. Atlas and O.W. Thiele (editors), <u>Precipitation Measuraments from Space, Workshop</u> Report, October 1981, Goddard Space Flight Center, Greenbelt, Md., D159-169.

Barrett, E.C. and R. Harris, 1977: Satellite infrared nephanalysis. <u>Met.Mag.</u>, <u>106</u>, 11-24.

Barrett, E.C. and D. Martin, 1981: The Use of Satellite Data Rainfall Monitoring. Academic Press, London, 340pp.

Fye, P.K., 1978: The AFGWC automated cloud analysis model. AFGWC Technical Memorandum 78-102, H.Q. Air Force Global Weather Central, Offuitt AFB, Nebraska, 97pp.

Fye, F.K. and G.L. Logan, 1977: AFGWC satellite-based analysis and prediction programs. <u>Proceedings of the 7th Technical Exchange Conference</u>, El Paso, Texas, 30 Nov. - 3 Dec. 1976, 113-121.

Griffith, C.G. and W.L. Woodley, 1981: The estimation of convective precipitation from GJES imagery with the Griffith/Woodley technique. In, D. Atlas and O.W. Theile (editors), Precipitation Measurements from Space, Workshop Report, October 1981, NASA Godiand Space Flight Center, Greenbelt, Md., D154-158

Griffith, C.G., W.L. Woodley, P.G. Grube, D.W. Martin, J. Stout and D.N. Sikdun, 1978: Rain estimation from geosynchronous satellite imager-visible and infrared studies. Mon. Wea. Rev., 106, 1153-1171.

Harris, R. and E.C. Barrett, 1975: An inproved satellite nephanalysis. Met. Mag., 104, 9-16.

Harris, R. and E.C. Barrett, 1978: Toward an objective nephanalysis. J. Appl. Meteorol., 17, 1258-1266.

Liljas, E., 1981a: Analysis of cloud and precipitation through an automated classification of AVHRR data. RMK 32, SMHI (in Swedish), 33 cp.

Liljas, E., 1981b: Automated techniques for satellite imager analysis. Proc. IAMAPS Symposium, Hamburg, 25-28 Aug. 1981, 331-339.

Maul, G.A., 1981: Application of GOES visible-infrared data to quantifying mesoscale ocean surface temperatures. J. Geophys. Rés., 86, 80 C7-8021.

Muench, H.S. and T.J. Keegan, 1979: Development of techniques to specify cloudiness and rainfall rate using GDES imagery data. AFGL-TR-79-3255, AD A384, 757pp.

Platt, C.M.R., 1981: Two dimensional histogram of GMS-1 satellite visible albedo and infared temperature for selected cloud systems. Division of Atmospheric Physics Tech. Paper no, 40. Commonwealth Scientific and Industrial Research Organization, Australia, 43pp.

Payrolds, D.W. and T.H. Vonder Haar, 1977: A bispectral method for cloud parameter determination. Mon. Wea. Rev., 105, 446-457.

Simpson, J. and V. Wiggert, 1969: Models of precipitating cumulus towers. Mon. Wea. Rev., 97, 471-489.

Stout, J., D.W. Martin and S.N. Sikdar, 1979: Estimating GATE rainfall from geostationary satellite images. Mon. Wea. Rev., 107, 585-598.

Wylie, D.P., 1979: An application of a geostatinary satellite rain estimation technique to an extratropical area. J. Appl. Metaorol., 18, 1640-1648.

APPENDIX A

SPADS CLOUD MODEL COMPUTER PROGRAM

```
C
      CLOD - IS DRIVER/MAIN PROGRAM
C
      THIS PROGRAM ANALYZES VIS AND IR TOGETHER TO DERIVE TYPES OF
C
      CLOUDS, CLOUD REIGHTS, CLOUD AMOUNT, CLOUD TOP TEMPERATURE,
C
      AND RELATIVE INTENSITY OF RAIN.
C
      PROGRAMMED BY LT. C. NELSON
C
      INITIALIZATION
C
      COMMON/A/ML(128), CIRRUS, K, KI, ISEL
      COMMON/B/CTYPE(64), PRCIPI(64), MSAVG(64), M
      COMMON/C/SIGMA(64),SIG1,SIG2,SIG3
      COMMON/D/HEIGHT(64), CTEMP(64), ACDAVG(64), E1, E2, ALAT, ALON, J1,
     *TLV(11),E3
      COMMON/F/ZP, XCEN, YCEN, FLIP, A1, BASLON, LVL(11)
      COMMON/G/STDP(11)
      REAL ML, MS2(8,8), MSAVG, SIGMA, E1, E2, E, ACLD, ACDAVG, AMCLD, SUM, SUMSIG,
     *HEIGHT, N, CTEMP, SIG1, SIG2, SIG3
      INTEGER CTYPE, CIRRUS, PRCIPI, M, O, P, L, PCLD1, PCLD2, O, ISEL, MS(256, 3),
     *VISFN(7), IRFN(7), MS1(8)
      Il=1
      ISEL=0
      `{==()
      1=0.0
      E1=0.9
      E2=0.55
      E3=0.0
      Strt=0.0
      SUMSIG=0.0
      AMCLD=0.0
      CIRRUS=0
      ACLD=0.0
      ?=64
      SIG1=2.5
      SIG2=20.0
      SIG3=1.5
      PCLDI=20.0
      0 = 512
```

```
C
      MENU
      TYPE "<15>"
      TYPE "THIS PROGRAM IDENTIFIES CLOUD TYPES"
      TYPE "ADDITIONAL CLOUD DATA CAN ALSO BE OBTAINED"
      TYPE "THESE ARE - "
      TYPE "O NO ADDITIONAL INFORMATION"
      TYPE "1 PRECIPITATION INTENSITY"
      TYPE "2 CLOUD TOP TEMPERATURE"
      TYPE "3 CLOUD TOP HEIGHT"
      TYPE "4 ALL OF THE ABOVE"
      TYPE "8 EXIT PROGRAM"
      ACCEPT "ENTER REQUEST= ", ISEL
      IF(ISEL.EQ.8)GO TO 80
      IF(ISEL. EQ.O.OR. ISEL. EQ.1)GO TO 131
      CALL OPEN(4,"TLVN.0",1, IER)
      IF(IER.EQ.1)GO TO 170
      TYPE "TLV FILE OPEN ERROR, RC= ", IER
  170 CALL RDBLK(4,1,15,1,1ER)
      IF(IER.EQ.1)GO TO 130
      TYPE "TLV FILE READ ERROR, RC= ", IER
      GO TO 70
  130 00 1 I=1,11
      TLV(I)=FLOAT(MS(I))/100.0
    1 CONTINUE
      WRITE(12,826)(TLV(L),L=1,11)
  826 FORMAT(2Y,11F6.2)
    2 FORMAT(S13)
  131 TYPE "<15>"
      ACCEPT "ENTER IR FILENAME"
      READ(11,2)IRFN(1)
      CALL OPEN(2, IRFN, 1, IER)
      IF(IER.EO.1)GO TO 190
      TYPE "IR FILE - OPEN ERROR, RC= ", IER
      ACCEPT "TRY AGAIN?", IX
      IF(IX.EQ.1)GO TO 181
      IF(IX.E0.0)GO TO 70
  190 ACCEPT "ENTER VIS FILENAME"
      READ(11,2)VISFN(1)
```

```
CALL OPEN(1, VISFN, 1, IER)
      IF(IER.EQ.1)GO TO 200
      TYPE "VIS FILE - OPEN ERROR, RC= ", IER
      ACCEPT "TRY AGAIN?", IX
      IF(IX.EQ.1)GO TO 190
      GO TO 69
C
C
      OPEN FILES FOR STORAGE OF CALCULATED VALUES
  200 CALL OPEN(5,"CALCID.O",3,IER)
      IF(IER.EQ.1)GO TO 201
      TYPE "DATA I FILE OPEN ERROR, RC= ", IER
      GO TO 69
  201 CALL OPEN(7,"CALC2D.0",3,IER)
      IF(IER. EQ. 1)GO TO 202
      TYPE "DATA 2 FILE OPEN ERROR, RC= ", IER
      GO TO 69
C
C
      DO LOOP TO CALL IN SERIES OF DATA
      PLOCKS RUN FROM 0 TO 511
C
      LOOP STARTS AT 192,192 FOR IR TO MATCH VIS (COLLOCATED CENTER
C
      POINT). IR IS 2 MILE THEREFORE NEED TO USE EVERY OTHER VALUE
  202 [3=0]
      12=0
      DO 32 I1=1,128,2
      I3=(I1-1)+191
      12=1+12
      DO 6 I=1.P
      HEIGHT(I)=0.0
      PRCIPI(I)=0.0
      ACDAVG(I)=0.0
      SIGMA(I)=0.0
      CTYPE(I)=0
      CTEMP(I)=0.0
    6 CONTINUE
C
      DRIVER MODULE WHICH WILL PREPARE VISUAL DATA TO BE USED IN OTHER
C
      MODULES. THE AVERAGE VISUAL BRIGHTNESS, THE STANDARD DEVIATION OF
C
      VISUAL BRIGHTNESS, AND THE CLOUD AMONT IN 8X8 GRID SETS WILL BE
```

```
C
      DETERMINED.
      IR DIGITAL VALUE FILE
C
      CALL RDBLK(2,13,MS(1,1),1,IER)
      IF(IER.EQ.1)GO TO 203
      TYPE "IR FILE - READ ERROR, RC= ", IER
      GO TO 69
  203 CALL UPK(MS(96,1),MS(1,2),128)
      DO 100 I=1,123
      ML(I) = FLOAT(MS(I,2))
  100 CONTINUE
      K1=0
      J1=(12-1)*3
      CALL RDBLK(1,J1,MS,3,IER)
      IF(IER.EQ.1)GO TO 204
      TYPE "VISUAL FILE READ ERROR, RC= ", IER
      GO TO 69
  204 CONTINUE
      00 30 K2=1,128,2
      ベ1=K1+1
      K=K2+1
C
      THIS LOOP PROCESSES VISUAL DATA BY SX8 GRID
C
С
      DO 8 I=1,3
      MS1(I)=0.0
      on 7 J2=1,8
      '!S2(I,J2)=0.0
    7 CONTINUE
    3 CONTINUE
      L1=(K1-1)*4+1
      DO 11 0=1,8
      CALL UPK(MS(L1,Q),MS1,3)
      00 10 L=1,3
      MS2(L,0)=FLOAT(MS1(L))
   10 CONTINUE
   11 CONTINUE
      41=8
      on 13 %=1,3
      00 12 0=1,31
```

```
N=N+1.0
      SUM=SUM+MS2(L,Q)
      SUMSIG=SUMSIG+(MS2(L,Q))**2.0
      IF(MS2(L,Q).GE.PCLD1)ACLD=1.0
      IF(MS2(L,Q).LT.PCLD1)ACLD=0.0
      AMCLD=ACLD+AMCLD
   12 CONTINUE
   13 CONTINUE
      SIGMA(K1)=SQRT((N*SUMSIG-SUM**2.0)/(N*(N-1.0)))
      MSAVG(K1)=SUM/N
      CALL CLOUD
      ACDAVG(K1)=AMCLD/N
      IF(CTYPE(K1).EQ.8.OR.CTYPE(K1).EQ.9)E3=1.0
      IF(ISEL.EO.O.OR.ISEL.EQ.1)GO TO 18
      CALL TEMPT
      IF(ISEL.EQ.8)GO TO 69
   13 CIRRUS=0
      N=0.0
      ACLD=0.0
      AMCLD=0.0
      SUN!=0.0
      SUMSIG=0.0
      E3=0.0
   30 CONTINUE
C
      STORE ALL VALUES
      VALUES ARE STORED IN CALCI FILE - CTYPF, PRCIPI, CTEMP,
C
C
      HEIGHT(1-256 WD)
      VALUES IN CALC2 -- MSAVG, SIGMA, ACDAVG, O(1-256 MD)
C
      DO 23 I=1.64
      MS(I,1)=CTYPE(I)
      J = I + 64
      MS(J.1)=PRCIPI(I)
      K5=J+64
      MS(K5.1)=IFIX(CTEMP(I)+.5)
      X4=K5+64
      MS(K4,1)=IFIX(HEIGHT(I)+.5)
      MS(I,2)=IFIX(MSAVG(I)+.5)
      MS(J,2)=IFIX(100.0*SIGMA(I)+.5)
```

```
MS(K5,2)=IFIX(100.0*ACDAVG(I)+.5)
  MS(K4,2)=0
23 CONTINUE
  K7 = I2 - 1
   CALL WRBLK(5, K7, MS(1,1),1, IER)
   IF(IER.EQ.1)GO TO 22
   TYPE "WRITE ERROR 5 RE= ", IER
   GO TO 69
22 CALL WRBLK(7,K7,MS(1,2),1,IER)
   IF(IER.EQ.1)GO TO 26
   TYPE "WRITE ERROR 7 RC= ", IER
   GO TO 69
26 WRITE(12,27)(HEIGHT(I), I=1,64)
   WRITE(12,24)(SIGMA(1),I=1,64)
   WRITE(12,27)(CTEMP(I),I=1,64)
   WRITE(12,24)(MSAVG(I),I=1,64)
   WRITE(12,24)(ACDAVG(I),I=1,64)
   URITE(12,25)(CTYPE(I),I=1,64)
   WRITE(12,25)(PRCIPI(I),I=1,64)
   WRITE(12,27)(ML(I),I=2,128,2)
24 FORMAT(/,4(/,16(1X,F7.4)))
25 FORMAT(/,6412)
27 FORMAT(/,4(/,16(1X,F7.2)))
   ACCEPT "CONTINUE?", ISTP
   IF(ISTP.EO.1)GO TO 69
32 CONTINUE
59 CALL CLOSE(1, IER)
70 CALL CLOSE(2, IER)
   CALL CLOSE(4, IER)
   CALL CLOSE(5, IER)
   CALL CLOSE(7, IER)
30 STOP
   END
```

```
C
C
      CLOUD TYPING MODULE, ALSO THE PRECIPITATION MODULE IS CALLED
C
      FROM HERE WHEN PRECIPITATION CLOUDS ARE IDENTIFIED.
C
      COMMON/A/ML(128), CIRRUS, K, K1, ISEL
      COMMON/B/CTYPE(64), PRCIPI(64), MSAVG(64), M
      REAL ML, MSAVG, HEIGHT, CTEMP, SIG, SIG1, SIG2, SIG3
      INTEGER I, CTYPE, PRCIPI, CIRRUS, ISEL
C
C
      THESE ARE LILIAS CONVERTED GOES THRESHOLDS
C
      H2 = 84.0
      H3=100.0
      H4=118.0
      H5=159.0
      H6=255.0
C
C
      THE FOLLOWING IF STATEMENTS CHECK BOTH IR (ML) AND VIS (MSAVG)
C
      VALUES AGAINST THRESHOLDS TO DETERMINE CLOUD TYPE. THE
C
      STANDARD DEVIATION (SIG) OF THE 8X8 VISUAL GRID IS USED.
C
C
      TYPE 1 AND 2 ---- CIRRUS/ALTOSTRATUS
      IF(ML(K).GT.H4.AND.ML(K).LE.H6.AND.MSAVG(K1).GT.5.0.AND.
     *MSAVG(K1).LE.23.0)GO TO 700
C
      TYPE 3 --- FOG/STRATUS/CUMULUS HUMULUS
      IF(ML(K).GT.H2.AND.ML(K).LE.H4.AND.MSAVG(K1).GT.13.0.AND.
     *MSAVG(K1).LE.20.0)GO TO 900
C
      TYPE 4 AND 5 --- THICK FOG/STRATOCUMULUS/CUMULUS MUNULUS
      IF(ML(K).GT.H3.AND.ML(K).LE.H4.AND.MSAVG(K1).GT.20.0.AND.
     *MSAVG(K1).LE.36.0)GO TO 600
      GO TO 601
  600 1=1
      GO TO 800
      TYPE 6 AND 7 --- SMALL/LARGE CUMULUS CONGESTUS
  601 IF(ML(K).GT.H4.AND.ML(K).LE.H5.AND.MSAVG(K1).GT.23.0.AND.
     *\fsavg(K1).LE.39.0)GO TO 605
      GO TO 606
  605 1=2
      GO TO 800
```

SUBROUTINE CLOUD

```
TYPE 8 --- NIMBOSTRATUS (MULTI-LAYERED)
606 IF(ML(K).GT.H5.AND.ML(K).LE.H6.AND.MSAVG(K1).GT.23.0.AND.
  *MSAVG(K1).LE.31.0)GO TO 910
    TYPE 9 ---- CUMULONIMBUS
    IF(ML(K).GT.H5.AND.ML(K).LE.H6.AND.MSAVG(K1).GT.31.0)
  *GO TO 915
    CTYPE(K1)=0
    GO TO 38
    CALL STDDEV MODULE TO FURTHER DISCRIMINATE CLOUD TYPES
700 M=3
300 CALL STDDEV
    GO TO 38
    LABEL TYPES
900 M=4
    GO TO 800
 38 PRCIPI(K1)=0
    GO TO 40
910 CTYPE(K1)=8
    GO TO 920
915 CTYPE(K1)=9
    BOTH 8 AND 9 TYPES ARE CONSIDERED RAIN CLOUDS, SO CALL
    PRECIP MODULE.
920 IF(ISEL.EQ.O.OR.ISEL.EQ.2.OR.ISEL.EQ.3)GO TO 40
    CALL PRECIP
 40 RETURN
    END
```

SUBROUTINE STDDEV

314 CTYPE(K1)=1 CIRRUS=1

C STANDARD DEVIATION TEST MODULE HELPS DISCRIMINATE FURTHER THE C TYPE OF CLOUDS. ALSO IT SETS CIRRUS FLAG FOR USE IN THE TEMPT C MODULE. C COMMON/A/ML(128), CIRRUS, K, K1, ISEL COMMON/B/CTYPE(64), PRCIPI(64), MSAVG(64), M COMMON/C/SIGMA(64),SIG1,SIG2,SIG3 REAL ML, MSAVG, HEIGHT, CTEMP, SIG, Y, SIG1, SIG2, SIG3 INTEGER CTYPE, PRCIPI, CIRRUS, I, M C IF(M.EQ.4)GO TO 818 IF(M.EQ.1)GO TO 810 IF(M.EQ.2)GO TO 813 C CIRRUS VS ALTOSTRATUS, FIRST TEST C THIS EQUATION IS FOR LILJAS CONVERTED GOES THRESHOLDS Y=158.094-6.6076*MSAVG(K1)+4.159*MSAVG(K1)**2.0 IF(Y.LE.ML(K))GO TO 814 SECOND TEST FOR CI/AS THIS EQUATION IS FOR LILJAS CONVERTED GOES THRESHOLDS Y=115.24+0.5246*MSAVG(K1)+0.0395*MSAVG(K1)**2.0 IF(Y.GE.ML(K))GO TO 816 C THIRD TEST FOR CI/AS IF(SIGMA(K1).GT.SIG3)GO TO 814 GO TO 816 310 IF(SIGMA(K1).LT.SIG1)GO TO 811 TYPE 5 - CUMULUS HUMULUS CTYPE(K1)=5GO TO 820 TYPE 4 - THICK FOG/STRATOCUMULUS 311 CTYPE(K1)=4GO TO 820 813 IF(SIGMA(K1).LT.SIG2)GO TO 817 CTYPE(K1)=6TYPE 6 - SMALL CUMULUS CONGESTUS C GO TO 820 TYPE 1 -- CIRRUS

GO TO 820

TYPE 2 — ALTOSTRATUS

816 CTYPE(K1)=2
GO TO 820

TYPE 7 — CUMULUS CONGESTUS - LARGE

817 CTYPE(K1)=7
GO TO 820

818 IF(SIGMA(K1).LT.SIG1)GO TO 819

TYPE 5 — CUMULUS HUMULUS
CTYPE(K1)=5
GO TO 820

TYPE 3 — FOG/STRATUS

819 CTYPE(K1)=3
820 RETURN
END

```
SUBROUTINE PRECIP
C
C
      THIS MODULE IDENTIFIES PRECIPITATION INTENSITY AREAS
C
      1=LIGHT, 2=MODERATE, 3=HEAVY, AND 0=NO RAIN.
      COMMON/A/ML(128), CIRRUS, K, K1, ISEL
      COMMON/B/CTYPE(64), PRCIPI(64), MSAVG(64), M
      REAL ML, HEIGHT, CTEMP, MSAVG
      INTEGER K, CIRRUS, PRCIPI, CTYPE, SUM1
C
C
      THESE ARE LILIAS CONVERTED GOES THRESHOLDS
C
      I1=184
      I2=195
      13 = 224
C
C
      ADD IR (ML) AND AVERAGE VISUAL (MSAVG), THIS SUM WILL BE TESTED
      FOR INTENSITY OF RAIN.
      SUM1=ML(K)+MSAVG(K1)
      IF(SUM1.GE.I1.AND.SUM1.LE.I2)GO TO 43
      IF(SUM1.GT.12.AND.SUM1.LE.13)GO TO 44
      IF(SUM1.GT.I3)GO TO 45
      PRCIPI(K1)=0
      GO TO 49
   43 PRCIPI(K1)=1
      GO TO 49
   44 PRCIPI(K1)=2
      GO TO 49
   45 PRCIPI(K1)=3
   49 RETURN
      END
```

SUBROUTINE TEMHT

```
C
C
      THIS SUBROUTINE CALCULATES THE CLOUD TOP TEMPERATURE (CTEMP)
C
      USING THE IR RADIANCE FOR THE SURFACE (NCLR), THE AMOUNT OF CLOUD
C
      (ACDAVG), EMISSIVITY (E), AND THE MEASURED IR RADIANCE FROM THE
C
      SATELLITE (ML). CTEMP IS THEN CORRELATED TO AN AREA
C
      REPRESENTATIVE UPPER AIR SOUNDING (UALV) TO DETERMINE THE CLOUD
C
      TOP HEIGHT (HEIGHT).
C
      COMMON/A/ML(128), CIRRUS, K, K1, ISEL
      COMMON/D/HEIGHT(64), CTEMP(64), ACDAVG(64), E1, E2, ALAT, ALON, J1,
     *TLV(11),E3
      COMMON/G/STDP(11)
      REAL ML, HEIGHT, CTEMP, E1, E2, NCLR, NCLD, ACDAVG, E, SIG1, SIG2, SIG3,
     *TLV,STDP
      INTEGER I, CTYPE, PRCIPI, CIRRUS
      DATA STDP/1010.0,1000.0,850.0,700.0,500.0,400.0,300.0,250.0,200.0,
      E=0.0
      CHECK TO SEE IF THERE ARE ANY CLOUDS. IF NOT SKIP TO END
      IF(ACDAVG(K1).LT.0.1)GO TO 61
C
      CONVERT SURFACE TEMPERATURE (TSFC) TO NCLR
      IF(TLV(1).GE.242.0)NCLR=2.0*(331.0-TLV(1))
      IF(TLV(1).LT.242.0)NCLR=420.0-TLV(1)
C
      IS CIRRUS FLAG SET? IF YES. USE E2 FOR E. IF NOT. USE E1 FOR E.
      IF(CIRRUS.EO.1)GO TO 850
C
      IS THE CB OR NS CLOUD FLAG SET? IF YES USE E3 FOR E1.
      IF(E3.E0.1.0)GO TO 849
      E=E1
      GO TO 851
  849 E=E3
      GO TO 851
  850 E=E2
      COMPUTE CLOUD RADIANCE
 851 NCLD=ML(K)-NCLR/(E*ACDAYG(K1))+NCLR
      CONVERT TO CTEMP
      IF(NCLD.LE.178.0)CTEMP(K1)=331.0-NCLD*0.5
      IF(NCLD.GT.178.0)CTEMP(K1)=420.0-NCLD
      WRITE(12,853)NCLR,NCLD
  853 FORMAT(/1X,5(1H*,E15.3),"NCLR,NCLD")
```

```
IF(ISEL.EQ.2)GO TO 60
C
C
      INTERPOLATE UPPER AIR SOUNDING TO CONTINUOUS CURVE OF TEMP
C
      VERSUS HEIGHT. THEN COMPARE TO CTEMP TILL GET MATCH. CHECK
C
      FROM TOP DOWN. THEN USE MATCH TO SELECT CORRECT HEIGHT FOR
C
      CLOUD TOP.
      DO 812 IB=2,11
      IA=13-IB
      IF(IA.EQ.11.AND.TLV(11).GT.CTEMP(K1))GO TO 816
      IF(TLV(IA).LT.CTEMP(K1))GO TO 313
      IF(TLV(IA).EQ.CTEMP(K1))GO TO 814
  812 CONTINUE
  813 IF(IA.EQ.2)IA=3
      RHG=EXP(ALOG(STDP(IA+1))-(ALOG(STDP(IA+1))-ALOG(STDP(IA)))*
     *(TLV(IA+1)-CTEMP(K1))/(TLV(IA+1)-TLV(IA)))
      GO TO 815
  816 TYPE "TEMPERATURE IS ABOVE 100 MB"
      ACCEPT "CONTINUE?", ICONT
      IF(ICONT.EQ.O) ISEL=8
  814 RHG=STDP(IA)
  815 HEIGHT(K1)=RHG+0.5
   60 RETURN
   61 \text{ CTEMP}(K1) = TLV(1)
      HEIGHT(K1)=STDP(1)
      RETURN
      END
```

INITIAL DISTRIBUTION LIST

	1	io.	Copies
1.	Defense Technical Information Center Cameron Station Alexandria, VA 22314		2
2.	Library, Code 0142 Naval Postgraduate School Monterey, CA 93940		2
3.	Professor Robert J. Renard, Code 63Rd Department of Meteorology Naval Postgraduate School Monterey, CA 93940		1
4.	Professor Christcpher N. K. Mooers, Code 68 Department of Oceanography Naval Postgraduate School Monterey, CA 93940		1
5.	Assistant Professor Carlyle H. Wash, Code 63Wy Department of Meteorology Naval Postgraduate School Monterey, CA 93940	?	9
6.	Assistant Professor James L. Mueller, Code 686 Department of Oceanography Naval Postgraduate School Monterey, CA 93940	iy	1
7.	Lt. Cynthia Ann Nelson Department of Oceanography U.S. Naval Academy Annapolis, MD 21402		1
8.	Director Naval Oceanography Division Naval Observatory 34th and Massachusetts Avenue NW Washington, D.C. 20390		1
9.	Commander Naval Oceanography Command NSTL Station Bay St. Louis, MS 39522		1
10.	Commanding Officer Naval Oceanographic Office NSTL Station Bay St. Louis, MS 39522		1

11.	Commanding Officer Flaet Numerical Oceanography Center Monterey, CA 93940	1
12.	Commanding Officer Naval Ocean Research and Development Activity NSTL Station Bay St. Louis, MS 39522	1
13.	Commanding Officer Naval Environmental Prediction Research Facility Monterey, CA 93940	,
14.	CDR Don Hinsman Naval Environmental Prediction Research Facility Monterey, CA 93940	1
15.	Chairman, Oceanography Department U.S. Naval Academy Anapolis, MD 21402	1
16.	Chief of Naval Research 800 N. Quincy Street Arlington, VA 22217	1
17.	Chief of Naval Research (Code 480) Naval Ocean Research and Development Activity NSTL Station Bay St. Louis, MS 39522	1
18.	Commander Oceanographic Systems Pacific Box 1390 Pearl Harbor, HI 96860	1
19.	Commanding Officer Naval Eastern Oceanography Center Naval Air Station Norfolk, VA 23511	1
20.	Mr. Larry Breaker, Code 68 Department of Oceanography Naval Postgraduate School Monterey, CA 93940	1

FILMED)

5-83

DIIC