By. 3meer & Lorvin

KING SAUD UNIVERSITY
COLLEGE OF COMPUTER AND INFORMATION SCIENCES
DEPARTMENT OF COMPUTER SCIENCE

Theory of Computation (CSC 339) - Spring 2023

Instructor: Prof. M.B. Menai

Tutorial 3 (Nondeterministic Finite Automata)

April, 2023

- 1. Give state diagrams of NFAs with the specified number of states recognizing each of the following languages. In all parts, the alphabet is $\Sigma = \{0, 1\}$.
 - (a) The language $\{w|w \text{ ends with } 00\}$ with three states.
 - (b) The language 1*(001*)* with three states.
 - (c) The language λ with one state.
 - (d) The language 0* with one state.
- 2. Convert the NFAs obtained in the previous question to DFAs.
- 3. Give the state diagrams of NFAs recognizing the concatenation and the star of the following languages. The alphabet is $\Sigma = \{0, 1\}$.
 - (a) The language $\{w|w \text{ ends with } 00\}$.
 - (b) The language 1*(001*)*.

and

- (a) The language λ .
- (b) The language 0^* .
- 4. Convert the following regular expressions to NFAs. The alphabet is $\Sigma = \{0, 1\}$.
 - (a) (0+1)*000(0+1)*
 - (b) (((00)*(11))+01)*
 - (c) ∅*

- 1. Give state diagrams of NFAs with the specified number of states recognizing each of the following languages. In all parts, the alphabet is $\Sigma = \{0, 1\}$.
 - (a) The language $\{w|w \text{ ends with } 00\}$ with three states.

(b) The language 1*(001*)* with three states.

(c) The language λ with one state.

(d) The language 0^* with one state.

2. Convert the NFAs obtained in the previous question to DFAs.

NFA transition table

State	0	1
→ %.	90 91	20
91	92*	
92		

DFA transition table

State	O	1
→ {9.}	{90,9,}	{ 9.}
flo, 2,3	{90,91,92}*	{ 20 }
{lo.l1, l2}*	{90,91,92}*	{ 2.}

NFA transition table

State	0	1
→ 9°*	91	9.*
91	le lo*	
92	9,	2°*

DFA transition table

State	0	1
→ { ? o}	{2,}	{90}*
[21]	{20, 92}*	Ø
{20,92}	{ 21 }	{ 20}*
Ø	Ø	Ø

Accept State

O NFA transition table

State	O	1	9
→9. *			10

DFA transition table

State	O	1
→ {9}*	Ø	Ø
Ø	Ø	Ø

NFA transition table

State	O	1
→ 9.*	9°*	

DFA transition table

State	O	1
→{2j*	{90}*	Ø
Ø	Ø	Ø

- 3. Give the state diagrams of NFAs recognizing the concatenation and the star of the following languages. The alphabet is $\Sigma = \{0, 1\}$.
 - (a) The language $\{w|w \text{ ends with } 00\}$.
 - (b) The language 1*(001*)*.

and

- (a) The language λ .
- (b) The language 0^* .

4. Convert the following regular expressions to NFAs. The alphabet is $\Sigma = \{0, 1\}$.

(a) (0+1)*000(0+1)*

(b) (((00)*(11))+01)*

