Reflective Interrupter with Schmitt-Trigger

Reflexlichtschranke mit Schmitt-Trigger

Version 1.0 (not for new design)

SFH 9240

Features:

- IR-GaAs-emitter in combination with a Schmitt-Trigger IC
- Output: active "low"
- · Daylight cut-off filter
- · Threshold current: typ. 3 mA
- Emitter and detector electrically isolated
- Preconditioning acc. to JEDEC Level 4
- · Replacement: SFH 9245

Applications

- · Optical threshold switch
- Pulse former
- Counter

Besondere Merkmale:

- IR-GaAs-Lumineszenzdiode in Kombination mit einem Schmitt-Trigger IC
- · Ausgang: aktiv "low"
- Tageslichtsperrfilter
- · Einschaltstrom: typ. 3 mA
- Sender und Empfänger galvanisch getrennt
- · Vorbehandlung nach JEDEC Level 4
- Ersatz: SFH 9245

Anwendungen

- Optischer Schalter
- Pulsformer
- Zähler

Ordering Information Bestellinformation

Туре:	Threshold current	Ordering Code
Тур:	Schaltschwelle	Bestellnummer
	Kodak neutral white testcard with 90% reflection; $V_{CC} = 5 \text{ V}$, $d = 1 \text{ mm}$ $I_{F,on}$ [mA]	
SFH 9240	3 (≤ 10)	Q65110A2714

Maximum	Ratings	$(T_A$	= 25	°C)
Grenzwerl	e			

Parameter	Symbol	Values	Unit
Bezeichnung	Symbol	Werte	Einhei
Emitter Sender			
Reverse voltage Sperrspannung	V _R	5	V
Forward current Durchlassstrom	I _F	50	mA
Surge current Stoßstrom (tp ≤ 10 µs)	I _{FSM}	1.5	А
Total power dissipation Verlustleistung	P _{tot}	80	mW
Thermal resistance junction - ambient ^{1) page 14} Wärmewiderstand Sperrschicht - Umgebung ^{1) Seite 14}	R _{thJA}	270	K/W
Detector Empfänger			,
Supply voltage Betriebsspannung	V _{cc}	-0.5 20	V
Output voltage Ausgangsspannung	V _{OUT}	-0.5 20	V
Output current Ausgangsstrom	I _{OUT}	50	mA
Total power dissipation Verlustleistung	P _{tot}	175	mW
Interrupter Lichtschranke			
Operating and storage temperature range Betriebs- und Lagertemperatur	$T_{op};T_{stg}$	-40 100	°C
Total power dissipation Verlustleistung	P _{tot}	150	mW

Characteristics $(T_A = 25 \, ^{\circ}C)$ Kennwerte

Parameter	Symbol	Values	Unit
Bezeichnung	Symbol	Werte	Einheit

Emitter Sender

ociidei			
Emission wavelength Zentrale Emissionswellenlänge	λ_{peak}	950	nm
Forward voltage Durchlassspannung (I _F = 50 mA)	V _F	1.25 (≤ 1.65)	V
Reverse current Sperrstrom (V _R = 5 V)	I _R	0.01 (≤ 1)	μΑ
Capacitance Kapazität $(V_R = 0 \text{ V}, f = 1 \text{ MHz})$	C _o	25	pF

Detector Empfänger

I _{cc}	3.3 (< 5)	mA
I _{cc}	5	mA
V _{OH}	VCC (> 4.0)	٧
V _{OUT low}	0.15 (< 0.4)	٧
t _r	0.02	μs
[]		
t _f	0.01	μs
[]		
	V _{OH} V _{OUT low}	V _{OH} VCC (> 4.0) V _{OUT low} 0.15 (< 0.4) t _r 0.02

Parameter	Symbol	Values	Unit
Bezeichnung	Symbol	Werte	Einheit
Turn-on time Einschaltzeit $(V_{CC} = 5 \text{ V}, I_F = 20 \text{ mA}, R_L = 280 \text{ k}\Omega)$	t _{on}	1	μs
Turn-off time Ausschaltzeit $(V_{CC} = 5 \text{ V}, I_F = 20 \text{ mA}, R_L = 280 \text{ k}\Omega)$	t _{off}	2	μs

Interrupter

Lichtschranke

Threshold current	I _{F.on}	3 (≤ 10)	mA
Schaltschwelle	.,		
(Kodak neutral white testcard with 90% reflection;			
$V_{CC} = 5 \text{ V}, d = 1 \text{ mm}$			
Hysteresis	I _{e,off} / I _{e,on}	0.6 (0.5 0.9)	-
Hysterese	.,,		

Operating Conditions Betriebsbedingungen

Parameter	Symbol	Values	Unit
Bezeichnung	Symbol	Werte	Einheit
Supply voltage Betriebsspannung	V _{cc}	4 18	V
Output current Ausgangsstrom	I _{OUT}	16	mA

Note: A bypass capacitor, 0.1 μ F typical, connected between V_{CC} and GND is recommended in order to stabilize power supply line.

Anm.: Zur Stabilisierung der Versorgung wird ein Stützkondensator (angeschlossen zwischen V_{CC} und GND) von typ. 0.1 μ F empfohlen.

Mechanical test setup Mechanischer Testaufbau

Block Diagram Blockschaltbild

Test Circuit for Switching and Response Time Testschaltkreis für Schalt- und Reaktionszeit

Switching Time Definitions Schaltzeitdefinitionen

Threshold Current vs. Distance Schwellstrom vs. Entfernung

$$I_F = f(d), T_A = 25^{\circ}C$$

Current Consumption Stromaufnahme

$$I_{CC} = f(V_{CC}), T_A = 25^{\circ}C$$

Relative Threshold Relative Schwelle

$$E_{e,on} / E_{e,on \, Vcc=5V} = f(V_{CC}), T_A = 25^{\circ}C$$

Output Voltage Ausgangsspannung

$$V_{OL} = f(I_{OUT}, V_{CC}), T_A = 25^{\circ}C$$

Current Consumption vs. Ambient Temperature Stromaufnahme vs. Umgebungstemperatur

 $I_{CC} = f(T_A, V_{CC})$

Permissible Pulse Handling Capability Zulässige Pulsbelastbarkeit

 $I_F = f(t_D)$, $T_A = 85$ °C, duty cycle D = parameter

Permissible Pulse Handling Capability Zulässige Pulsbelastbarkeit

 $I_F = f(t_p)$, $T_A = 25$ °C, duty cycle D = parameter

Package Outline Maßzeichnung

Dimensions in mm (inch). / Maße in mm (inch).

Pinning

Anschlussbelegung

Pin	Description
Anschluss	Beschreibung
1	Anode
2	OUT
3	V _{cc}
4	-
5	GND
6	Cathode

Recommended Solder Pad Empfohlenes Lötpaddesign

Reflow Soldering Profile Reflow-Lötprofil

Preconditioning: JEDEC Level 4 acc. to JEDEC J-STD-020D.01

					OHA04612
Profile Feature	Symbol	Pb-F	Unit		
Profil-Charakteristik	Symbol	Minimum	Recommendation	Maximum	Einheit
Ramp-up rate to preheat*) 25 °C to 150 °C			2	3	K/s
Time t _s T _{Smin} to T _{Smax}	t _S	60	100	120	s
Ramp-up rate to peak*) T _{Smax} to T _P			2	3	K/s
Liquidus temperature	T _L		217		°C
Time above liquidus temperature	t _L		80	100	s
Peak temperature	T _P		245	260	°C
Time within 5 °C of the specified peak temperature T _P - 5 K	t _P	10	20	30	s
Ramp-down rate* T _P to 100 °C			3	6	K/s
Time 25 °C to T _P				480	S

All temperatures refer to the center of the package, measured on the top of the component

^{*} slope calculation DT/Dt: Dt max. 5 s; fulfillment for the whole T-range

Disclaimer

Attention please!

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved. Due to technical requirements components may contain dangerous substances.

For information on the types in question please contact our Sales Organization.

If printed or downloaded, please find the latest version in the Internet.

Packing

Please use the recycling operators known to you. We can also help you – get in touch with your nearest sales office.

By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose!

Critical components* may only be used in life-support devices** or systems with the express written approval of OSRAM OS.

- *) A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or the effectiveness of that device or system.
- **) Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health and the life of the user may be endangered.

Disclaimer

Bitte beachten!

Lieferbedingungen und Änderungen im Design vorbehalten. Aufgrund technischer Anforderungen können die Bauteile Gefahrstoffe enthalten. Für weitere Informationen zu gewünschten Bauteilen, wenden Sie sich bitte an unseren Vertrieb. Falls Sie dieses Datenblatt ausgedruckt oder heruntergeladen haben, finden Sie die aktuellste Version im Internet.

Verpackung

Benutzen Sie bitte die Ihnen bekannten Recyclingwege. Wenn diese nicht bekannt sein sollten, wenden Sie sich bitte an das nächstgelegene Vertriebsbüro. Wir nehmen das Verpackungsmaterial zurück, falls dies vereinbart wurde und das Material sortiert ist. Sie tragen die Transportkosten. Für Verpackungsmaterial, das unsortiert an uns zurückgeschickt wird oder das wir nicht annehmen müssen, stellen wir Ihnen die anfallenden Kosten in Rechnung.

Bauteile, die in lebenserhaltenden Apparaten und Systemen eingesetzt werden, müssen für diese Zwecke ausdrücklich zugelassen sein!

Kritische Bauteile* dürfen in lebenserhaltenden Apparaten und Systemen** nur dann eingesetzt werden, wenn ein schriftliches Einverständnis von OSRAM OS vorliegt.

- *) Ein kritisches Bauteil ist ein Bauteil, das in lebenserhaltenden Apparaten oder Systemen eingesetzt wird und dessen Defekt voraussichtlich zu einer Fehlfunktion dieses lebenserhaltenden Apparates oder Systems führen wird oder die Sicherheit oder Effektivität dieses Apparates oder Systems beeinträchtigt.
- **) Lebenserhaltende Apparate oder Systeme sind für
- (a) die Implantierung in den menschlichen Körper oder
- (b) für die Lebenserhaltung bestimmt. Falls Sie versagen, kann davon ausgegangen werden, dass die Gesundheit und das Leben des Patienten in Gefahr ist.

Glossary

Thermal resistance: Mounting on PC-board with > 5 mm² pad size

Glossar

Wärmewiderstand: Montage auf PC-Board mit > 5 mm² Padgröße

Published by OSRAM Opto Semiconductors GmbH Leibnizstraße 4, D-93055 Regensburg www.osram-os.com © All Rights Reserved.

HS and China RoHS compliant product

符合欧盟 RoHS 指令的要求;

国的相关法规和标准,不含有毒有害物质或元素。

