Exercises Chapter 4

- 1. Let (X_1, \ldots, X_n) be a random sample with $X_i \sim N(\mu, \sigma^2)$ for all $i = 1, \ldots, n$, where $\mu = 3$ and $\sigma = 1.5$. Consider different sample sizes of $n = \{2, 4, 6, \ldots, 30\}$.
 - (a) Conduct the following Monte Carlo simulation:
 - 1. Simulate a realization from the random sample (X_1, \ldots, X_n) .
 - 2. Compute the corresponding realizations of the biased maximum likelihood estimator $s_{ml,n}^2$ and the unbiased estimator $s_{ml,n}^2$ for the variance $\sigma^2=1.5^2$:

$$s_{ml,n}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$
$$s_{ub,n}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

where $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$.

Repeat Steps 1-2 B=10,000 times and save all estimates $s^2_{ml,n,(1)},\dots,s^2_{ml,n,(B)}$ and $s^2_{ub,n,(1)},\dots,s^2_{ub,n,(B)}$. Then approximate the Mean Squared Error (MSE), the squared bias (Bias²), and the variance (Var) of $s_{ml,n}$ by

$$\begin{split} & \text{MSE}(s_{ml,n}^2) \approx \frac{1}{B} \sum_{b=1}^R (s_{ml,n,(b)}^2 - \sigma)^2 \\ & \text{Bias}^2(s_{ml,n}^2) \approx \left(\left(\frac{1}{B} \sum_{r=1}^B s_{ml,n,(b)}^2 \right) - \sigma \right)^2 \\ & \text{Var}(s_{ml,n}^2) \approx \frac{1}{B} \sum_{b=1}^B \left(s_{ml,n,(b)}^2 - \left(\frac{1}{B} \sum_{b=1}^B s_{ml,n,(b)}^2 \right) \right)^2 \end{split}$$

where $E(s_{ml,n}^2) pprox B^{-1} \sum_{b=1}^B s_{ml,n,(b)}^2$, and of $s_{ub,n}$ by

$$MSE(s_{ub,n}^2) \approx \frac{1}{B} \sum_{b=1}^{R} (s_{ub,n,(b)}^2 - \sigma)^2$$

$$Bias^2(s_{ub,n}^2) \approx \left(\left(\frac{1}{B} \sum_{r=1}^{B} s_{ub,n,(b)}^2 \right) - \sigma \right)^2$$

$$Var(s_{ub,n}^2) \approx \frac{1}{B} \sum_{b=1}^{B} \left(s_{ub,n,(b)}^2 - \left(\frac{1}{B} \sum_{b=1}^{B} s_{ub,n,(b)}^2 \right) \right)^2$$

where $E(s_{ub,n}) \approx B^{-1} \sum_{b=1}^{B} s_{ub,n,(b)}^{2}$.

Note: The Law of Large Numbers implies that the approximations become arbitrarily precise as $B \to \infty$.

(b) Plot your results (y-axis: MSE, Bias², and Var; x-axis: n) for both estimators $s_{ml,n}$ and $s_{ub,n}$.