1. Fonction de densité de probabilité (p.47)

Théorème 1 La fonction de densité de probabilité de la variable continue x, notée $f_X(x)$, est définie par :

$$f_X(x) = \frac{\mathrm{d}}{\mathrm{d}x} [F_X(x)]$$

2. Loi uniforme (p.132)

Théorème 2 Une variable aléatoire continue X est dite de loi uniforme dans l'intervalle $[\alpha, \beta]$ si sa fonction de densité est :

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & \text{si } \alpha \le x \le \beta \\ 0 & \text{sinon} \end{cases}$$

où α et β sont des constantes réelles telles que $\alpha < \beta$. En abrégé, on écrit $X \sim \mathrm{U}(\alpha, \beta)$.

Théorème 3 Dans le cas général décrit précédemment, la moyenne et la variance de la loi uniforme sont :

$$E(X) = \frac{\beta + \alpha}{2}$$
 et $V(X) = \frac{(\beta - \alpha)^2}{12}$

3. Loi géométrique (p.115)

Théorème 4 La variable aléatoire X, représentant le nombre d'épreuves nécessaires pour obtenir un premier succès dans une suite d'épreuves de Bernoulli indépendantes dont la probabilité du succès est p > 0 est dite de loi géométrique de paramètre p, et sa fonction

de masse est donnée par :

$$p(x) = \begin{cases} (1-p)^{x-1}p & \text{si } x = 1, 2, \dots \\ 0 & \text{sinon} \end{cases}$$

En abrégé, on écrit $X \sim \text{Géométrique}(p)$.

Théorème 5 Soit X une variable aléatoire distribuée selon une loi géométrique de paramètre p > 0. Alors :

$$E(X) = \frac{1}{p}$$
 et $V(X) = \frac{1-p}{p^2}$

4. Loi exponentielle (p.134, p.136)

Théorème 6 La variable aléatoire continue X est dite de loi exponentielle de paramètre λ si sa fonction de densité est de la forme :

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{si } x > 0 \\ 0 & \text{sinon} \end{cases}$$

où le paramètre λ est un nombre réel positif. En abrégé, on écrit $X \sim \text{Exp}(\lambda)$.

Théorème 7 Soit X une variable aléatoire distribuée selon une loi exponentielle de paramètre $\lambda > 0$. Alors :

$$E(X) = \frac{1}{\lambda}$$
 et $V(X) = \frac{1}{\lambda^2}$

5. Changement de variable (p.66)

Théorème 8 Soit X une variable aléatoire continue dont la fonction de densité f_X vérifie $f_X(x) > 0$ avec a < x < b. Si y = H(x) définit une fonction continue strictement croissante

ou strictement décroissante de x, alors la variable aléatoire Y=H(X) a pour fonction de densité :

$$f_Y(y) = f_X(x) \cdot \left| \frac{\mathrm{d}x}{\mathrm{d}y} \right|$$

où $x = H^{-1}(y)$, sa valeur exprimée en fonction de y. Si la fonction H est croissante, alors $f_Y(y) > 0$ si H(a) < y < H(b). Si elle est décroissante, alors $f_y(y) > 0$ si H(b) < y < H(a).

Bonus: Changement de variables

Théorème 9 Lorsque la densité jointe de n variables aléatoires $X_1, X_2, ..., X_n$ est donnée et que l'on souhaite trouver la densité jointe de $Y_1, Y_2, ..., Y_n$ où :

$$Y_1 = g_1(X_1, X_2, ..., X_n), \quad Y_2 = g_2(X_1, X_2, ..., X_n), ..., \quad Y_n = g_n(X_1, X_2, ..., X_n)$$

On assumera que les fonctions g_i ont des dérivés partielles continues et que le déterminant du Jacobien $J(x_1,...,x_n) \neq 0$ sur tous les points $(x_1,...,x_n)$ où :

$$J(x_1, ..., x_n) = \begin{vmatrix} \frac{\partial g_1}{\partial x_1} & \frac{\partial g_1}{\partial x_2} & \cdots & \frac{\partial g_1}{\partial x_n} \\ \frac{\partial g_2}{\partial x_1} & \frac{\partial g_2}{\partial x_2} & \cdots & \frac{\partial g_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial g_3}{\partial x_1} & \frac{\partial g_3}{\partial x_2} & \cdots & \frac{\partial g_3}{\partial x_n} \end{vmatrix}.$$

De plus, on supposera que les équations $y_1 = g_1(x_1, x_2, ..., x_n), y_2 = g_2(x_1, x_2, ..., x_n), ..., y_n = g_n(x_1, x_2, ..., x_n)$ ont une solution unique, disons $x_1 = h_1(y_1, ..., y_n), ..., x_n = h_n(y_1, ..., y_n)$. Sous ces hypothèses, la distribution jointe des variables aléatoires Y_i est donné par :

$$f_{Y_1,Y_2,...,Y_n}(y_1,...,y_n) = f_{X_1,X_2,...,X_n}(x_1,...,x_n)|J(x_1,...,x_n)|^{-1}$$

où $x_i = h_i(y_1, ..., y_n)$ pour i = 1, 2, ..., n.