The Forest Be Mine: Analyzing the Impact of Mines on Deforestation in Indonesia

Bachelor Thesis supervised by Jesús Crespo Cuaresma and Nikolas Kuschnig

Max Heinze (mheinze@wu.ac.at)

June 23, 2023

View the thesis repo on GitHub

Introduction

- Indonesia has the eighth-largest forest area worldwide
- But it accounts for the third-highest rate of forest loss
- About 6.5% of Indonesia's GDP come from the mining sector
- To what extent do **mines** influence Indonesian **deforestation**?
- I used land use **data** by the European Space Agency (ESA, 2021), socioeconomic data by Indonesia's statistics office (see, e.g., Badan Pusat Statistik [BPS], 2021), mining polygons by Maus et al. (2020), and night light data from VIIRS (Elvidge et al., 2021)

Exploring the Data

- Mining activity is largely concentrated in Kalimantan
- Mining activity as plotted here is an index constructed from mining area and nightlight activity

Modeling Approach

- Dependent: Either tree cover percentage in a given municipality or tree cover area
- Explanatory: Either the presence of a mine (yes/no) or the mining activity as measured by the constructed index More
- Estimated as a linear panel with year and municipality FE
- Effects: Significant and negative in Models (1), (2), and (4); insignificant in Model (3) More

$$tp_{it} = mine_{it}\beta + \boldsymbol{x}'_{it}\boldsymbol{\gamma} + \mu_i + \psi_t + \varepsilon_{it}$$
 (1)

$$ta_{it} = \beta mine_{it} + \boldsymbol{x}'_{it}\boldsymbol{\gamma} + \mu_i + \psi_t + \varepsilon_i t$$
 (2)

$$tp_{it} = \beta activity_{it} + \mathbf{x}'_{it} \boldsymbol{\gamma} + \mu_i + \psi_t + \varepsilon_i t$$
 (3)

$$ta_{it} = \beta activity_{it} + \boldsymbol{x}'_{it}\boldsymbol{\gamma} + \mu_i + \psi_t + \varepsilon_i t$$
 (4)

Attention When Approaching Mines!

- **Top panel:** If we average the mining activity index over all years, by municipality, some stand out to have systematically higher values
- Kutai Kartanegara has a value of about 38, Katai Timur has 46. **But why?**
- Lower panel: But Kutai Kartanegara also has 252 mines, which may explain the high mining value
- What happens if we exclude Katai Timur?
- Re-estimating models (3) and (4) now yields significantly positive coefficients in both cases (5,6) Show me the numbers!

Forest Paths to Continue On

- **Data availability** is an issue: Mining polygons at different points in time, better socioeconomic data, ...
- Spatially explicit extension of the model
- Explicitly accounting for agricultural economic activity, ...

Appendix

Back to Start

Appendix (1) Go Back (Approach) Go Back (Outliers)

	Dependent variable:					
	Tree Cover Area	Tree Cover Pct.	Tree Cover Area	Tree Cover Pct.	Tree Cover Area	Tree Cover Pct.
	(1)	(2)	(3)	(4)	(5)	(6)
Mine	-0.063***	-0.009***				
(Dummy)	(0.007)	(0.001)				
Mining			0.0004	-0.0002**	-0.005***	-0.0004***
Activity			(0.0005)	(0.0001)	(0.001)	(0.0001)
Expenditure	0.00004***	0.00000***	0.00004***	0.00000***	0.00003***	0.00000***
	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00000)	(0.00000)
Expected	0.002	0.003***	0.002	0.003***	0.003	0.003***
Schooling	(0.004)	(0.001)	(0.004)	(0.001)	(0.004)	(0.001)
Life Exp.	0.025***	0.001**	0.025***	0.001**	0.026***	0.001**
at Birth	(0.004)	(0.001)	(0.004)	(0.001)	(0.004)	(0.001)
C/R FE	Yes	Yes	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes	Yes	Yes
Observations	5,587	5,587	5,587	5,587	5,576	5,576
\mathbb{R}^2	0.036	0.022	0.020	0.009	0.036	0.012
Adjusted R ²	-0.065	-0.080	-0.083	-0.095	-0.065	-0.091
F Statistic	46.995***	28.571***	25.242***	10.907***	46.899***	15.811***
	(df = 4; 5059)	(df = 4; 5059)	(df = 4; 5059)	(df = 4; 5059)	(df = 4; 5049)	(df = 4; 5049)

Note:

*p<0.1; **p<0.05; ***p<0.01

Mining activity index by mine:

$$activity_{mt} = area_m \cdot light_{mt},$$

where activity is the mining activity index, area is the mining area from Maus et al. (2020), light is the adjusted median night light value, and m, t are indices for individual mines and years, respectively.

Aggregation of the mining index to city/regency level:

$$activity_{it} = \begin{cases} 0 & \text{if } M = 0\\ \sum_{m=1}^{M} activity_{mt} & \text{if } M > 0 \end{cases},$$

where M is the number of mines in a city or regency and i is an index for the individual cities and regencies.

List of references mentioned in this presentation:

- Badan Pusat Statistik. (2021). *Human Development Index* (Data Set). https://www.bps.go.id/indicator/26/413/1/-new-method-human-development-index.html
- Elvidge, C. D., Zhizhin, M., Ghosh, T., Hsu, F.-C., & Taneja, J. (2021). Annual Time Series of Global VIIRS Nighttime Lights Derived from Monthly Averages: 2012 to 2019. *Remote Sensing*, *13*(5). https://doi.org/10.3390/rs13050922
- European Space Agency. (2021). *Land Cover CCI Product User Guide Version 2.1* (Data Set). https://datastore.copernicus-climate.eu/documents/satellite-land-cover/D5.3.1_PUGS_ICDR_LC_v2.1.x_PRODUCTS_v1.1.pdf
- Maus, V., Giljum, S., Gutschlhofer, J., da Silva, D. M., Probst, M., Gass, S. L. B., Luckeneder, S., Lieber, M., & McCallum, I. (2020). *Global-scale mining polygons (Version 1)* (Data Set). https://doi.org/10.1594/pangaea.910894