```
df <- read.csv("/content/IBM - IBM_CAO_data_challenge_DS_2021_.csv")</pre>
```

head(df)

A data.frame: 6 × 9

	OKDEK_ID	bkop_tp	PROD_CAT	PRICE_ORIG	PRICE_DISC	CLIENI_ID	INDUSTRY	:
	<chr></chr>	<int></int>	<chr></chr>	<int></int>	<dbl></dbl>	<int></int>	<chr></chr>	< (
1	DS100049976	77563	SW	6882	3303.36	9228913	IT	2
2	DS100049976	19692	SW	4744	2277.12	9228913	IT	2
3	DS100049976	51090	SW	7725	3708.00	9228913	IT	2
4	DS100049976	94654	SAAS	138	66.24	9228913	IT	2
5	DS100049976	77969	SAAS	96	46.08	9228913	IT	2
6	DS100049976	25795	SW	5598	2687.04	9228913	IT	2

```
df['Discount_Percentage'] = ((df['PRICE_ORIG'] - df['PRICE_DISC'])/ df['PRICE_ORIG']) * 100
```

install.packages("superml")

library("superml")

```
label <- LabelEncoder$new()
df$PROD_CAT <- label$fit_transform(df$PROD_CAT)</pre>
```

```
install.packages("jtools")
library("jtools")
```

```
df$INDUSTRY <- label$fit_transform(df$INDUSTRY)
df$SIZE <- label$fit_transform(df$SIZE)
df$STATE <- label$fit_transform(df$STATE)</pre>
```

head(df)

```
lmOut = lm( Discount Percentage ~ PROD ID + PROD CAT + CLIENT ID + INDUSTRY + SIZE + STATE, d
summary(lmOut)
    Call:
    lm(formula = Discount_Percentage ~ PROD_ID + PROD_CAT + CLIENT ID +
        INDUSTRY + SIZE + STATE, data = df)
    Residuals:
       Min
              1Q Median 3Q
    -41.67 -18.66 -3.65 15.83 55.45
    Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
    (Intercept) 4.000e+01 3.499e-01 114.304 < 2e-16 ***
              1.288e-05 3.212e-06 4.009 6.10e-05 ***
    PROD_ID
               2.787e-01 1.048e-01 2.659 0.00784 **
    PROD CAT
    CLIENT_ID -1.777e-07 3.484e-08 -5.100 3.41e-07 ***
    INDUSTRY -4.393e+00 6.278e-02 -69.982 < 2e-16 ***
               -1.924e+00 1.056e-01 -18.217 < 2e-16 ***
    SIZE
    STATE
                3.080e-02 2.014e-02 1.529 0.12616
    Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
    Residual standard error: 23.09 on 65746 degrees of freedom
    Multiple R-squared: 0.07833, Adjusted R-squared: 0.07824
    F-statistic: 931.2 on 6 and 65746 DF, p-value: < 2.2e-16
```

The above results clearly explain that, Prod_id, Prod_Cat, Client_id, Industry, Size and state are the key drivers for discount percentage. The adjusted R2 is 0.8 and P value is < 0.005 which means that the results obtained are statistically significant and not by chance

Now let's check individual drivers for discount.

```
lmOut = lm(Discount_Percentage ~ PROD_ID, data = df)
summary(lmOut)
```

R squared value is very low and P value is also 0.0001 This means that Prod_id and Discount_percentage are slighly correlated

```
lmOut = lm(Discount_Percentage ~ PROD_CAT, data = df)
summary(lmOut)
    Call:
    lm(formula = Discount_Percentage ~ PROD_CAT, data = df)
    Residuals:
       Min
              1Q Median
                             3Q
    -32.894 -20.286 -4.692 15.511 52.714
    Coefficients:
              Estimate Std. Error t value Pr(>|t|)
    PROD CAT
              0.2027
                          0.1089 1.862 0.0626.
    Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
    Residual standard error: 24.05 on 65751 degrees of freedom
    Multiple R-squared: 5.273e-05, Adjusted R-squared: 3.753e-05
    F-statistic: 3.468 on 1 and 65751 DF, p-value: 0.06259
```

R squared value is very low and P value is not less than 0.005 This means that Prod_Cat and Discount_percentage are not correlated

```
lmOut = lm(Discount_Percentage ~ CLIENT_ID, data = df)
summary(lmOut)
```

R squared value is very low and P value is also 0.0001 This means that Client_id and Discount_percentage are slighly correlated

```
lmOut = lm(Discount_Percentage ~ INDUSTRY, data = df)
summary(lmOut)
    Call:
    lm(formula = Discount Percentage ~ INDUSTRY, data = df)
    Residuals:
       Min
              10 Median 30
                                   Max
    -38.379 -18.379 -3.379 15.621 53.638
    Coefficients:
              Estimate Std. Error t value Pr(>|t|)
    INDUSTRY -4.50415 0.06261 -71.94 <2e-16 ***
    Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
    Residual standard error: 23.15 on 65751 degrees of freedom
    Multiple R-squared: 0.07298, Adjusted R-squared: 0.07296
```

F-statistic: 5176 on 1 and 65751 DF, p-value: < 2.2e-16

R squared value is high and P value is also 0.0001 This means that INDUSTRY and Discount_percentage are highly correlated

```
lmOut = lm(Discount_Percentage ~ SIZE, data = df)
summary(lmOut)
```

R squared value is very low and P value is less than 0.05 This means that SIZE and Discount_percentage are slighly correlated

```
Decided and and an CETEA decided at Consider
lmOut = lm(Discount_Percentage ~ STATE, data = df)
summary(lmOut)
    Call:
    lm(formula = Discount Percentage ~ STATE, data = df)
    Residuals:
       Min 1Q Median 3Q Max
    -32.540 -20.467 -4.504 15.511 52.569
    Coefficients:
              Estimate Std. Error t value Pr(>|t|)
    STATE -0.007284 0.020966 -0.347
                                       0.728
    Signif. codes: 0 (***, 0.001 (**, 0.05 (., 0.1 ( , 1
    Residual standard error: 24.05 on 65751 degrees of freedom
    Multiple R-squared: 1.836e-06, Adjusted R-squared: -1.337e-05
```

F-statistic: 0.1207 on 1 and 65751 DF, p-value: 0.7283

R squared value is very low and P value not less than 0.05 This means that Prod_id and Discount_percentage are not correlated

✓ 0s completed at 7:41 AM