Wenshan Qu (wq2160)

11/11/2021

Problem 1

We want to prove $\sum_{i=1}^k \sum_{j=1}^{n_i} (y_{ij} - \bar{y})^2 = \sum_{i=1}^k \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_l)^2 + \sum_{i=1}^k \sum_{j=1}^{n_i} (\bar{y}_l - \bar{y})^2$

Which could also be seen as TotalSS = WithinSS + BetweenSS

Note that:

k: number of groups;

 n_i : number of observations in the i^{th} group;

 y_{ij} : denotes the observation of the j^{th} subject from the i^{th} group;

 \bar{y} : grand mean;

 \bar{y}_l : mean from the i^{th} group.

Proof

$$TotalSS = \sum_{i=1}^k \sum_{j=1}^{n_i} (y_{ij} - \bar{\bar{y}})^2 = \sum_{i=1}^k \sum_{j=1}^{n_i} (y_{ij} - \bar{y_l} + \bar{y_l} - \bar{\bar{y}})^2$$

$$= \sum_{i=1}^k \sum_{j=1}^{n_i} [(y_{ij} - \bar{y_l}) + (\bar{y_l} - \bar{\bar{y}})]^2$$

$$=\sum_{i=1}^k\sum_{j=1}^{n_i}[(y_{ij}-\bar{y}_l)^2+(\bar{y}_l-\bar{\bar{y}})^2+2(\bar{y}_l-\bar{\bar{y}})(y_{ij}-\bar{y}_l)]$$

$$=\sum_{i=1}^k [\sum_{j=1}^{n_i} (y_{ij}-\bar{y_l})^2 + \sum_{j=1}^{n_i} (\bar{y_l}-\bar{\bar{y}})^2 + 2(\bar{y_l}-\bar{\bar{y}}) \sum_{j=1}^{n_i} (y_{ij}-\bar{y_l})]$$

(Becasue
$$\bar{y_l} = \frac{\sum_{j=1}^{n_i} y_{ij}}{n_i}$$
, then $\sum_{j=1}^{n_i} (y_{ij} - \bar{y_l}) = \sum_{j=1}^{n_i} y_{ij} - n_i \bar{y_l} = 0$,)

$$=\sum_{i=1}^k [\sum_{j=1}^{n_i} (y_{ij} - \bar{y_l})^2 + \sum_{j=1}^{n_i} (\bar{y_l} - \bar{\bar{y}})^2]$$

$$=\sum_{i=1}^k \sum_{j=1}^{n_i} (y_{ij} - \bar{y_l})^2 + \sum_{i=1}^k \sum_{j=1}^{n_i} (\bar{y_l} - \bar{\bar{y}})^2$$

= WithinSS + BetweenSS

Problem 2

Read data

(a) Descriptive Statistics

First we take a quick look on the raw data:

```
raw_df %>%
knitr::kable(align = "c")
```

pedestrian	bicycle	car
29	29	26
42	32	31
38	39	21
40	28	20
43	31	23
39	31	22
30	28	21
42	35	NA
NA	39	NA
NA	33	NA

Tidy data:

```
crash_df =
  raw_df %>%
    pivot_longer(
      pedestrian:car,
      names_to = "crash_type",
      values_to = "PTSD_score"
    ) %>%
    mutate(
      crash_type = as.factor(crash_type)
    ) %>%
    arrange(crash_type) %>%
    drop_na(PTSD_score)
```

${\bf Boxplot}$ the data:

```
crash_df %>%
  group_by(crash_type) %>%
  ggplot(aes(x = crash_type, y = PTSD_score, color = crash_type)) +
  geom_boxplot() +
  theme(legend.position = "none") +
  labs(
    title = "Boxplot of PTSD Score vs. Crash Type",
    x = "Crash type",
    y = "PTSD score"
)
```

Boxplot of PTSD Score vs. Crash Type

Measures of $\mathbf{Location}$ and $\mathbf{Dispersion}$ for each group:

```
raw_df %>%
  summary() %>%
  knitr::kable(align = "c")
```

pedestrian	bicycle	car
Min. :29.00	Min. :28.0	Min. :20.00
1st Qu.:36.00	1st Qu.:29.5	1st Qu.:21.00
Median $:39.50$	Median $:31.5$	Median $:22.00$
Mean $:37.88$	Mean $:32.5$	Mean $:23.43$
3rd Qu.:42.00	3rd Qu.:34.5	3rd Qu.:24.50
Max. $:43.00$	Max. $:39.0$	Max. $:31.00$
NA's:2	NA	NA's :3

Also we can manually calculate mean, sd like this:

```
crash_df %>%
  group_by(crash_type) %>%
  summarize(
   n = n(),
  mean = mean(PTSD_score),
  sd = sd(PTSD_score),
  sum = sum(PTSD_score)
) %>%
  knitr::kable(align = "c")
```

crash_type	n	mean	sd	sum
bicycle	10	32.50000	4.062019	325
car	7	23.42857	3.866831	164
pedestrian	8	37.87500	5.436320	303

And manually calculate median, quartiles like this:

For pedestrian:

```
## arranged data: 29 30 38 39 40 42 42 43

## Median
(39 + 40)/2
## [1] 39.5

## Q1 (25th percentile)
(30 + 38)/2
## [1] 34

## Q3 (75th percentile)
(42 + 42)/2
## [1] 42
```

For bicycle:

```
## arranged data: 28 28 29 31 31 32 33 35 39 39

## Median
(31 + 32)/2
## [1] 31.5

## Q1 (25th percentile)
29
## [1] 29

## [1] 35
```

For car:

```
## arranged data: 20 21 21 22 23 26 31

## Median
22
## [1] 22

## Q1 (25th percentile)
(21 + 21)/2
## [1] 21

## Q3 (75th percentile)
(23 + 26)/2
## [1] 24.5
```

Comment: based on the boxplot and mean values, we found that the average PTSD scores of 3 crash types are car < bicycle < pedestrian in our samples.

(b) ANOVA Test

Hypothesis:

 $H_0: \mu_1 = \mu_2 = \mu_3$, where μ_1, μ_2, μ_3 represents the mean of PTSD scores of 3 crash types.

 $H_1: at\ least\ two\ means\ are\ not\ equal.$

```
res1 = aov(PTSD_score ~ factor(crash_type), data = crash_df)
summary(res1)
```

```
## Df Sum Sq Mean Sq F value Pr(>F)
## factor(crash_type) 2 790.4 395.2 19.53 1.33e-05 ***
## Residuals 22 445.1 20.2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Based on the test, we can get ANOVA table:

Source	Sum of Square (SS)	Degrees of freedom	Mean Sum of Square	F-Statistics
Between	790.4	k-1=2	395.2	19.53
Within	445.1	n – k = 22	20.2	
Total	1235.5	n – 1 = 24		

Figure 1: anova

The test statistic is 19.53.

And for
$$n = 10 + 7 + 8 = 25$$
, $k = 3$, $\alpha = 0.01$.

Then the F critical value is:

```
qf(0.99, df1 = 2, df2 = 22)
```

[1] 5.719022

$$F_{k-1,n-k,1-\alpha} = F_{2,22,0.99} = 5.719$$

Because $F=19.53>F_{2,22,0.99}=5.719$, reject the null hypothesis, and conclude that with pre-specified significant level of 0.01, at least two types of crash (among car, bicycle and pedestrian) have different mean PTSD scores.

(c) Multiple Comparison

Here is the Bonferroni Multiple Comparison:

Hypothesis is: $H_0: \alpha_1 = \alpha_2$, i.e., the mean of two compared groups are the same., $H_1: \alpha_1 \neq \alpha_2$.

With Bonferroni adjustment: $\alpha^* = \frac{\alpha}{\binom{k}{2}} = \frac{\alpha}{\binom{3}{2}} = \frac{0.01}{3} = 0.0033$

Thus, the critical value is $t_{22.0.9983} = 3.290888$, if $|t| > t_{crit} = 3.29$, reject H_0 .

```
## pedestrian vs. bicycle
var1 = var.test(raw_df$pedestrian, raw_df$bicycle, alternative = "two.sided") ## equal variance
res_pb = t.test(raw_df$pedestrian, raw_df$bicycle, var.equal = TRUE, paired = FALSE)
res_pb$statistic
##
          t
## 2.404384
## pedestrian vs. car
var2 = var.test(raw_df$pedestrian, raw_df$car, alternative = "two.sided") ## equal variance
res_pc = t.test(raw_df$pedestrian, raw_df$car, var.equal = TRUE, paired = FALSE)
res pc$statistic
##
          t
## 5.843901
## car vs. bicycle
var3 = var.test(raw_df$bicycle, raw_df$car, alternative = "two.sided") ## equal variance
res_cb = t.test(raw_df$bicycle, raw_df$car, var.equal = TRUE, paired = FALSE)
res_cb$statistic
##
## 4.619149
```

Thus, we can conclude:

- pedestrian vs. bicycle, $t_{stat} = 2.404384 < t_{crit} = 3.29$, fail to reject H_0 , $\mu_{pedestrian} = \mu_{bicycle}$;
- pedestrian vs. car, $t_{stat} = 5.843901 > t_{crit} = 3.29$, reject H_0 , $\mu_{pedestrian} \neq \mu_{car}$;
- car vs. bicycle, $t_{stat}=4.619149>t_{crit}=3.29,$ reject $H_0,$ $\mu_{bicycle}\neq\mu_{car};$

Alternatively, we can also use pairwise.t.test function to see p-value:

```
# use pairwise.t.test() for Bonferroni
pairwise.t.test(crash_df$PTSD_score, crash_df$crash_type, p.adj = 'bonferroni')
##
##
   Pairwise comparisons using t tests with pooled SD
##
## data: crash_df$PTSD_score and crash_df$crash_type
##
##
              bicycle car
## car
              0.0014 -
## pedestrian 0.0586 9.1e-06
## P value adjustment method: bonferroni
# use Tukey
Tukey_comp = TukeyHSD(res1)
Tukey_comp
```

Tukey multiple comparisons of means

```
##
       95% family-wise confidence level
##
## Fit: aov(formula = PTSD_score ~ factor(crash_type), data = crash_df)
##
## $`factor(crash_type)`
##
                           diff
                                          lwr
                                                     upr
                                                             p adj
                      -9.071429 -14.63967214 -3.503185 0.0013441
## car-bicycle
## pedestrian-bicycle
                                   0.01537946 10.734621 0.0492580
                       5.375000
## pedestrian-car
                      14.446429
                                   8.59860314 20.294254 0.0000088
```

plot(Tukey_comp)

95% family-wise confidence level

Differences in mean levels of factor(crash_type)

Though the accurate p-value may be slightly different among different methods, we can still conclude that:

- 1) The p-value between pedestrian and car group is around $9^{-6} \ll 0.05$, thus the mean PTSD scores between pedestrian crash and car crash are highly significantly different.
- 2) The p-value between pedestrian and bicycle group is around $0.05 \approx 0.05$, thus the mean PTSD scores between pedestrian crash and bicycle crash have NO significant difference.
- 3) The p-value between car and bicycle group is around $0.0014 \ll 0.05$, thus the mean PTSD scores between bicycle crash and car crash are highly significantly different.

(d) Summary

After analyzing the PTSD scores of 25 patients aging from 18-30 suffering from different types of crash (8 pedestrian crash, 10 bicycle crash and 7 car crash), we found that the mean PTSD scores are NOT statistically same among 3 crash types. Specifically, significant differences of mean PTSD scores have shown between car crash and bicycle crash, as well as between car crash and pedestrian crash, while there are NO significant difference between pedestrian crash and bicycle crash. Generally, we can conclude that the mean PTSD score of car crash is lower than other crash types.

Problem 3

(a) Justify Test

I choose Chi-Squared Test to address this problem.

Since

- 1) Three treatment groups are independent random samples;
- 2) No expected cell counts are 0, and expected values in each cell ≥ 5 .

(b) Table

The table is given below:

Drug	Relapse	NOT_Relapse	Total
Desipramine	15 (E = 17.67)	18 (E = 15.33)	33
Lithium	18 (E = 17.67)	15 (E = 15.33)	33
Placebo	20 (E = 17.67)	13 (E = 15.33)	33
Total	53	46	99

About the E calculation process, for Relapse group, both are $\frac{(53\times33)}{99}$; and for NOT Relapse group, both are $\frac{(46\times33)}{99}$.

(c) Hypothesis Test

State the Hypothesis:

 H_0 : the probability of a subject's relapse has NO association with the drug the subject was assigned to. i.e. $p_1 = p_2 = p_3$.

 H_1 : the probability of a subject's relapse is associated with the drug the subject was assigned to.

With significant level $\alpha = 0.05$ pre-specified, compute the test statistic:

$$\begin{split} \chi^2 &= \sum_{i=1}^3 \sum_{i=1}^2 \frac{(O_{ij} - E_{ij})^2}{E_{ij}} \\ &= \frac{(15 - 17.67)^2}{17.67} + \frac{(18 - 17.67)^2}{17.67} + \frac{(20 - 17.67)^2}{17.67} + \frac{(18 - 15.33)^2}{15.33} + \frac{(15 - 15.33)^2}{15.33} + \frac{(13 - 15.33)^2}{15.33} \\ &= 1.543 \end{split}$$

 $follows~\chi^2_{(3-1)\times(2-1)=2}~under~H_0$

Critical Value:

```
qchisq(0.95, df = 2)
```

[1] 5.991465

$$\chi^2_{2.0.95} = 5.991$$

For p-value:

```
##
## Pearson's Chi-squared test
##
## data: drug_data
## X-squared = 1.5431, df = 2, p-value = 0.4623
```

Thus the p-value = 0.4623.

Decision and Interpretation:

Given $\chi^2=1.543<\chi^2_{2,0.95}=5.991$, and p-value=0.4623>0.05, we fail to reject H_0 , and conclude that at the significance level of 0.05, there is no significant association between the probability of a subject's relapse and the drug the subject was assigned to.