Linear Models and SVMs

Optimization for Machine Learning — Exercise #2

Monday 24th April, 2023

Part I: Theory

I.1. Linear model example

Exercise I.1 (Polynomial Curve Fitting). Given a set of points and their targets $\{x_i, t_i\}_{i=1}^N$ so that for $i \in [N]$, $x_i \in \mathbb{R}$ and $t_i \in \mathbb{R}$, the *curve fitting problem* is loosely defined as finding a function $f : \mathbb{R} \to \mathbb{R}$ such that $f(x_i) \approx t_i$ for all $i \in [N]$.

In order to find such a function, we restrict ourselves to a set of parametrized functions \mathcal{F} : each function can be parametrized with a vector $\mathbf{w} \in \mathbb{R}^{D+1}$.

To quantify the problem further, in this exercise, we limit ourselves to *polynomial functions* of degree D for the set \mathcal{F} , and can therefore write

$$f(x, \mathbf{w}) = w_0 + w_1 x + \dots + w_D x^D = \sum_{k=0}^{D} w_k x^k$$
 (1)

Notice how f is linear in w, the parameter. Such model is called a linear model.

With N samples, we defined the loss (or error, or energy) of our parameter as the point-wise square distance between its estimation and the target:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (f(x_i, \mathbf{w}) - t_i)^2$$
 (2)

1. Is the function E convex in w? How to find the optimal parameter w^* at which the loss is minimum?

$$\text{2. Compute the gradient } \nabla_{\pmb{w}} E(\pmb{w}) = \begin{pmatrix} \partial_{w_0} E(\pmb{w}) \\ \vdots \\ \partial_{w_D} E(\pmb{w}) \end{pmatrix} \in \mathbb{R}^{D+1}.$$

3. Show that the optimal parameter w^* satisfies the following system of equation:

$$\forall k \in [D+1], \quad \sum_{j=0}^{D} A_{kj} w_j^{\star} = T_k,$$

where

$$A_{kj} = \sum_{i=1}^{N} (x_i)^{k+j}, \qquad T_k = \sum_{i=1}^{N} (x_i)^k t_i.$$
 (3)

4. Is such a system of equation solvable? When / not?

Answers

1. Each term in E is convex in w as the composition of a linear function $w \mapsto f(x, w)$ and the convex functions $z \mapsto (z - t)^2$. The function E is then convex as the sum of convex functions in w

Therefore, the optimum w^* can be found with the first-order optimality condition: w^* satisfies $\nabla E(w^*) = 0$.

2. For $k \in [D+1]$, we write $\partial_k := \partial_{w_k}$. The gradient can then be computed as

$$\partial_k E(\boldsymbol{w}) = \partial_k \left(\frac{1}{2} \sum_{i=1}^N \left(f(x_i, \boldsymbol{w}) - t_i \right)^2 \right)$$
 (4)

$$= \sum_{i=1}^{N} (f(x_i, \boldsymbol{w}) - t_i) \partial_k f(x_i, \boldsymbol{w})$$
 (5)

$$= \sum_{i=1}^{N} (f(x_i, \mathbf{w}) - t_i)(x_i)^k,$$
 (6)

$$= \sum_{i=1}^{N} \left(\sum_{j=0}^{D} w_j(x_i)^j - t_i \right) (x_i)^k, \tag{7}$$

and $\nabla E(\boldsymbol{w}) = (\partial_k E(\boldsymbol{w}))_{k \in [D+1]}$.

3. From 1, the minimizer w^* is found by solving the equation $\nabla E(w^*) = 0$, i.e., for all $k \in [D+1]$,

$$\partial_k E(\boldsymbol{w}^*) \stackrel{!}{=} 0 \implies \sum_{i=1}^N \left(\sum_{j=0}^D w_j^*(x_i)^j (x_i)^k - t_i(x_i)^k \right) = 0 \tag{8}$$

- 4. This linear system can be written as $A \boldsymbol{w} = T$, where $A = (A_{kj})_{k,j \in [D+1] \times [D+1]} \in \mathbb{R}^{(D+1) \times (D+1)}$, and $T = (T_k)_{k \in [D+1]}$. Therefore, there are several cases possible.
 - First case: rank A = D + 1 (i.e. A is invertible). In this case, there is a unique solution $\boldsymbol{w}^* = A^{-1}T$.

- Second case: rank A < D + 1. In this case,
 - if $T \in \operatorname{span} A$, there is an infinite number of solutions $\boldsymbol{w}^{\star} = \boldsymbol{w}_{\mathrm{p}} + \boldsymbol{w}_{\mathrm{k}}$, with $\boldsymbol{w}_{\mathrm{p}}$ any particular solution in $(\ker A)^{\perp}$ and $\boldsymbol{w}_{\mathrm{k}} \in \ker A$.
 - if $T \notin \operatorname{span} A$, there are 0 solutions.

Remark: Even when A is invertible, it might be ill-conditioned (meaning its inverse is unstable to compute).

It is usual to add a *regularizer* to the objective, penalizing "complex" models. This also can help selecting a model when several models are solutions to the optimization problem.

One of the most common regularizer is the parameter squared-norm: with a *penalizer weight* $\lambda \in \mathbb{R}_+$, the Equation (2) is modified to give

$$E_{\lambda}(\boldsymbol{w}) = E(\boldsymbol{w}) + \frac{\lambda}{2} \|\boldsymbol{w}\|^{2} = \frac{1}{2} \sum_{i=1}^{N} (f(x_{i}, \boldsymbol{w}) - t_{i})^{2} + \frac{\lambda}{2} \|\boldsymbol{w}\|^{2}.$$
 (10)

- 5. What is the role of λ ?
- 6. Is E_{λ} convex?
- 7. Show that each component of the optimal weight w_i^{\star} is now found by solving

$$\forall k \in [D+1], \quad \sum_{j=0}^{D} A_{kj} w_j + \lambda w_k = T_k,$$

with A_{kj} and T_k defined as in Equation (3).

Answers

- 5. λ is the regularizer weight, and make the error favour weights with small ℓ_2 norm. The higher the λ , the stronger weights with high ℓ_2 norm are avoided.
- 6. E_{λ} is still convex (as long as $\lambda \ge 0$), as a sum of convex functions in w.
- 7. The first order optimality condition still applies, and we find, similarly to 3,

$$\partial_k E_{\lambda}(\boldsymbol{w}^{\star}) \stackrel{!}{=} 0 \implies \sum_{i=1}^{N} \sum_{j=0}^{D} w_j(x_i)^{j+k} - \sum_{i=1}^{N} t_i(x_i)^k + \frac{\lambda}{2} \partial_k \|\boldsymbol{w}\|^2 = 0$$

$$\implies \sum_{j=0}^{D} \sum_{i=1}^{N} (x_i)^{j+k} w_j + \lambda w_k = \sum_{i=1}^{N} t_i(x_i)^k.$$

Remark: Now, the system can be written $(A + \lambda I_{D+1})w^* = T$. Even if A is singular, $(A + \lambda I_{D+1})$ will be invertible, making the problem well-posed.

Matrix expression It is sometimes preferable to deal with vector and matrices, rather than scalar expressions. When the model is linear in w, it is possible to express it as a *linear product* between a matrix and a vector. The expression in Equation (1) can be thought as a dot product

between w and the vector of powers of x, that define as $\phi(x) := \begin{pmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^D \end{pmatrix}$, so that

$$f(x, \boldsymbol{w}) = \boldsymbol{w}^{\top} \boldsymbol{\phi}(x).$$

Stacking all the N examples in a matrix, and denoting $\phi_i := \phi(x_i)$, we define

$$\Phi := egin{pmatrix} | & | & | & | \ oldsymbol{\phi}_1 & oldsymbol{\phi}_2 & \cdots & oldsymbol{\phi}_N \ | & | & | \end{pmatrix} \in \mathbb{R}^{(D+1) imes N}$$

and can therefore compute the model on the whole dataset in one expression: $y(w) = \Phi^{\top} w \in \mathbb{R}^N$. Each entry i of y corresponds to a different sample x_i . Then, stacking the targets into a vector $t \in \mathbb{R}^N$, the error function (2) can equivalently written as

$$E(w) = \frac{1}{2} ||y(w) - t||^2,$$

and the regularized error as

$$E_{\lambda}(\boldsymbol{w}) = \frac{1}{2} \|\boldsymbol{y}(\boldsymbol{w}) - \boldsymbol{t}\|^2 + \frac{\lambda}{2} \|\boldsymbol{w}\|^2$$

8. Show that $\nabla E_{\lambda}(\boldsymbol{w}) = \Phi(\Phi^{\top}\boldsymbol{w} - \boldsymbol{t}) + \lambda \boldsymbol{w}$, so that \boldsymbol{w}^{\star} solves the linear equation

$$(\Phi\Phi^{\top} + \lambda I_{D+1})\boldsymbol{w}^{\star} = \Phi \boldsymbol{t}.$$

Answer

8. Since the unregularized error E is obtained with $\lambda = 0$, we can focus on the regularized objective E_{λ} , for $\lambda \geqslant 0$.

We compute the gradient using the product rule from Exercise Sheet #1:

$$\nabla_{\boldsymbol{w}} E_{\lambda}(\boldsymbol{w}) = \nabla_{\boldsymbol{w}} \left(\frac{1}{2} \| \boldsymbol{y}(\boldsymbol{w}) - \boldsymbol{t} \|^{2} \right) + \nabla_{\boldsymbol{w}} \left(\frac{\lambda}{2} \| \boldsymbol{w} \|^{2} \right)$$

$$= J_{\boldsymbol{y}}(\boldsymbol{w})^{\top} (\boldsymbol{y}(\boldsymbol{w}) - \boldsymbol{t}) + \lambda \boldsymbol{w} \qquad (\boldsymbol{y}(\boldsymbol{w}) = \boldsymbol{\Phi}^{\top} \boldsymbol{w} \implies J_{\boldsymbol{y}}(\boldsymbol{w}) = \boldsymbol{\Phi}^{\top})$$

$$= \boldsymbol{\Phi}(\boldsymbol{\Phi}^{\top} \boldsymbol{w} - \boldsymbol{t}) + \lambda \boldsymbol{w}.$$

Therefore, the first-order optimality condition can be written

$$\nabla E_{\lambda}(\boldsymbol{w}^{\star}) = 0 \implies (\Phi \Phi^{\top} + \lambda I_{D+1}) \boldsymbol{w}^{\star} = \Phi \boldsymbol{t}.$$

I.2. Subgradients

When a convex loss function $E \colon \mathbb{R}^d \to \mathbb{R}$ is not differentiable, its *subgradient* can be used. It is defined as the set, for $x \in \mathbb{R}^d$,

$$\partial E(x) = \{ g \in \mathbb{R}^d \mid \forall y \in \mathbb{R}^d, \, E(y) \geqslant E(x) + \langle g, y - x \rangle \}.$$

If E is differentiable at x, then $\partial E(x) = {\nabla E(x)}.$

For instance, for $E : \mathbb{R} \to \mathbb{R}$, $x \mapsto E(x) = |x|$, E is differentiable at any $x \neq 0$, with gradient -1 on $(-\infty, 0)$ and 1 on $(0, +\infty)$.

At x = 0, we compute, for any $y \in \mathbb{R}$ and $g \in \mathbb{R}$:

$$E(y) \geqslant E(0) + \langle g, y - 0 \rangle \iff |y| \geqslant \langle g, y \rangle$$

 $\iff |y| \geqslant qy$

This condition has to be true for any $y \in \mathbb{R}$. This is only true when $g \in [-1, 1]$. Therefore,

$$\partial E(x) = \begin{cases} \{-1\} & \text{if } x < 0 \\ [-1, 1] & \text{if } x = 0 \\ \{1\} & \text{if } x > 0 \end{cases}$$

Geometrically, this can be interpreted as having, for the absolute value at the origin, any lines with slope between -1 and 1 lower-bounding the graph of the function.

Exercise I.2. Let $E \colon \mathbb{R} \to \mathbb{R}$, $x \mapsto E(x) = \max(0, 1 - x)$.

- 1. Where is *E* differentiable?
- 2. Show that $\partial E(x) = \begin{cases} \{-1\} & \text{if } x < 1 \\ [-1, 0] & \text{if } x = 1 \\ \{0\} & \text{if } x > 1 \end{cases}$

Answer

- 1. E is differentiable on $(-\infty, 1)$ and on $(1, +\infty)$, but not at 1.
- 2. Since E is differentiable on $(-\infty, 1)$, $\partial E(x) = \{\nabla E(x)\} = \{-1\}$ for $x \in (-\infty, 1)$. Likewise, $\partial E(x) = \{0\}$ for $x \in (1, +\infty)$.

For x = 1, we are looking for $g \in \mathbb{R}$ such that, for all $y \in \mathbb{R}$,

$$E(y) \geqslant E(1) + q \cdot (y - 1).$$

Assuming such g exists, it necessarily satisfies, for all $y \in \mathbb{R}$,

$$\max(0, 1 - y) \geqslant g \cdot (y - 1) \tag{1}$$

- For y = 1, g can be arbitrary (since we get $0 = g \cdot 0$ in this case, which is true for all g).
- For y > 1, the necessary condition become

$$0 \geqslant g(y-1) \implies 0 \geqslant g$$
 since $y-1>0$

• For y < 1, the necessary condition becomes

$$1 - y \geqslant g(y - 1) \implies -1 \leqslant g$$

Since the condition (1) has to be true for all $y \in \mathbb{R}$, g has to satisfy $-1 \leqslant g \leqslant 0$.

One verifies that taking $g \in [-1, 0]$ always satisfies (1).

$$\text{Therefore, } \partial E(x) = \begin{cases} \{-1\} & \text{if } x < 1, \\ [-1,0] & \text{if } x = 1, \\ \{0\} & \text{if } x > 1. \end{cases}$$

Part II: Programming

Exercise II.1 (Model fitting). This exercise implements some results found in Exercise I.1.

1. **Generation of the target.** In this toy example, we generate the N points ourselves. The true target t_i will be sinusoidal, with some noise, i.e. $t_i = \sin(2\pi x_i) + \varepsilon$, where $\varepsilon \sim \mathcal{N}(0, \sigma^2)$. The different scales (for σ, x_i) are given as $\sigma = 0.1$, and $x_i \sim \mathcal{U}([0, 1])$, uniform distribution on the segment [0, 1].

The generation of the data is performed by the function gen_sin_data in the file ex02/utils.py.

- 2. Implement the parametrization function (1) as f(x, w), where the dimensions D is implied by the size of w.
- 3. Implement the error function E defined in (2), and its gradient $\nabla E(w)$.
- 4. Find w^* , either by
 - a) gradient descent; or
 - b) solving the linear system of equations (3).