Resumen

En este apartado recordamos el desarrollo teórico del oscilador armónico cuántico, que constituye el modelo base para sistemas confinados y sirve como punto de partida para métodos numéricos como el de Numerov.

1. Oscilador Harmonico

Al aplicar el metodo de separacion de variables la ecuacion de Schrodinger se obtiene la ecuacion de Schrodinger unidimensional para una funcion $\psi = \psi(x)$

$$\frac{\partial^2 \psi}{\partial x^2} = -\frac{2m}{\hbar^2} (E - V(x))\psi \tag{1}$$

Un sistema de oscilador armonico es cuando el potencial en la ecuación (1) es

$$V(x) = \frac{1}{2}Kx^2.$$

donde K es una constante.

El desarrollo se simplifica en gran medida al hacer el cambio a unidades adimensionales:

- Variable adimensional ξ
- Esta variable se relaciona con x por medio de la longitud λ de modo que $x = \lambda \xi$

$$\frac{\partial^2 \psi}{\partial (\lambda \xi)^2} = \left(-\frac{2mE}{\hbar^2} + \frac{mK\lambda^2}{\hbar^2} \xi^2 \right) \psi$$

$$\frac{\partial^2 \psi}{\partial \xi^2} = \left(-\frac{2mE\lambda^2}{\hbar^2} + \frac{mK\lambda^4}{\hbar^2} \xi^2 \right) \psi$$

• Hacemos $mK\lambda^4/\hbar^2 = 1$, de donde

$$\lambda = (\hbar^2/mK)^{1/4}$$

• Relacionamos la frecuencia angular del oscilador con la constante de fuerza

$$\omega = \sqrt{\frac{K}{m}} \implies K = m\omega^2$$

• La variable adimensional queda

$$\lambda \xi = x \implies \xi = \left(\frac{mK}{\hbar^2}\right)^{1/4} x = \left(\frac{m\omega}{\hbar}\right)^{1/2} x$$

 \blacksquare Introducimos la energia adimensional ϵ

$$\epsilon = \frac{2E}{\hbar\omega}$$

1

Sustituyendo estas expresiones en la ecuación de Schrödinger

$$\begin{split} \frac{\partial^2 \psi}{\partial \xi^2} &= \left(-\frac{2mE\lambda^2}{\hbar^2} + \frac{mK\lambda^4}{\hbar^2} \xi^2 \right) \psi \\ \frac{\partial^2 \psi}{\partial \xi^2} &= \left(-\frac{2m(\epsilon\hbar\omega/2)(\hbar^2/m^2\omega^2)^{1/2}}{\hbar^2} + \xi^2 \right) \psi \end{split}$$

• Finalmente la ecuacion de Schrödinger adimensional es:

$$\frac{\partial^2 \psi}{\partial \xi^2} = -2\left(\epsilon - \frac{\xi^2}{2}\right)\psi$$
(2)

con $V(\xi) = \frac{1}{2}\xi^2$.

1.1. Solucion Exacta

1.1.1. Analisis asintotico

Para grande ξ , las soluciones de (2), donde ϵ se puede despreciar, son de la forma

$$\psi(\xi) \sim \xi^n e^{\pm \xi^2/2},$$

donde n cualquier valor finito. El exponente con signo positivo da lugar a funciones de onda no normalizables por lo que corresponde a soluciones no fisicas. Entonces asumimos que su comportamiento asintotico hace que la funcion de onda sea

$$\psi(\xi) = H(\xi)e^{-\xi^2/2} \tag{3}$$

donde $H(\xi)$ es alguna funcion bien comportada para ξ grande (de modo que el comportamiento asintotico este determinado por el factor $e^{-\xi^2/2}$). En particular $H(\xi)$ no debe crecer como e^{ξ^2} para asi obtener soluciones fisicas. Bajo asumir que la funcion de onda es (3), la ecuacion (2) se convierte en una ecuacion para $H(\xi)$:

$$\begin{split} \frac{\mathrm{d}^2}{\mathrm{d}\xi^2} \Big(H(\xi) e^{-\xi^2}/2 \Big) &= -2 \bigg(\epsilon - \frac{\xi^2}{2} \bigg) H(\xi) e^{-\xi^2/2} \\ \frac{\mathrm{d}^2 H(\xi)}{\mathrm{d}\xi^2} e^{-\xi^2/2} - \xi \frac{\mathrm{d} H(\xi)}{\mathrm{d}\xi} e^{-\xi^2/2} - \xi \frac{\mathrm{d} H(\xi)}{\mathrm{d}\xi} e^{-\xi^2/2} + \xi^2 H(\xi) e^{-\xi^2/2} - H(\xi) e^{-\xi^2/2} = -2 \bigg(\epsilon - \frac{\xi^2}{2} \bigg) H(\xi) e^{-\xi^2/2} \\ \frac{\mathrm{d}^2 H(\xi)}{\mathrm{d}\xi^2} - 2\xi \frac{\mathrm{d} H(\xi)}{\mathrm{d}\xi} + (2\epsilon - 1) H(\xi) = 0 \end{split}$$

Se expande la solucion $H(\xi)$ en una serie de potencias

$$H(\xi) = \sum_{n=0}^{\infty} A_n \xi^n$$

la primer derivada es simplemente

$$\frac{\mathrm{d}H}{\mathrm{d}\xi} = \sum_{n=0}^{\infty} nA_n \xi^{n-1}$$

para la segunda derivada, diferenciamos cada termino

$$\frac{\mathrm{d}^2 H}{\mathrm{d}\xi^2} = \frac{\mathrm{d}}{\mathrm{d}\xi} \Big(A_1 + 2A_2\xi + 3A_3\xi^2 + \dots \Big) = 2A_2 + 2*3A_3\xi + 3*4A_4\xi^2 + \dots = \sum_{n=0}^{\infty} (n+1)(n+2)A_{n+2}\xi^n + \dots \Big)$$

sustituyendo en la ecuación para $H(\xi)$ se tiene

$$\frac{\mathrm{d}^2 H(\xi)}{\mathrm{d}\xi^2} - 2\xi \frac{\mathrm{d}H(\xi)}{\mathrm{d}\xi} + (2\epsilon - 1)H(\xi) = 0$$

$$\sum_{n=0}^{\infty} \{(n+1)(n+2)A_{n+2}\xi^n - 2\xi(nA_n\xi^{n-1}) + (2\epsilon - 1)A_n\xi^n\} = 0$$

$$\sum_{n=0}^{\infty} \{(n+1)(n+1)A_{n+2} + (2\epsilon - 2n - 1)A_n\}\xi^n = 0$$

esta expresion se debe satisfacer para todo ξ por el teorema de existencia y unicidad, entonces los coeficientes de todo orden deben ser cero:

$$(n+2)(n+1)A_{n+2} + (2\epsilon - 2n - 1)A_n = 0$$

asi, dados A_0 y A_1 , se puede determinar por recursion $H(\xi)$ como una serie de potencias

$$A_{n+2} = \frac{(2\epsilon - 2n - 1)A_n}{n^2 + 3n + 2} \tag{4}$$

Para n muy grande, se tiene:

$$A_{n+2} \sim \frac{2A_n}{n}$$

Se resuelve esta recursion para el caso par e impar:

■ Para una potencia par n = 2k:

$$A_{2k+2} \sim \frac{1}{k} A_{2k}$$

• Iterando:

$$A_{2k} \sim \frac{1}{k-1} A_{2k-2} \sim \frac{1}{k-1} \cdot \frac{1}{k-2} A_{2k-4} \sim \frac{A_0}{(k-1)!}$$

• Usando (k-1)! = k!/k, para k muy grande, la solucion a la recursion es

$$A_{2k} \sim \frac{A_0}{k!}$$

• Similarmente, para una potencia impar n = 2k + 1:

$$A_{2k+3} \sim \frac{2}{2k+1} A_{2k+1} \sim \frac{1}{k} A_{2k+1}$$

$$A_{2k+1} \sim \frac{A_1}{k!}$$

 \blacksquare Por lo tanto, para n muy grande, la recursion se comporta como:

$$A_n \sim \frac{1}{(n/2)!}$$

Esto implica:

$$H(\xi) \sim \sum_{k} \left[\frac{A_0}{k!} \xi^{2k} + \frac{A_1}{k!} \xi^{2k+1} \right] = A_0 e^{\xi^2} + A_1 \xi e^{\xi^2}$$

Esta expresion se interpreta como que la recurrencia (4) produce una funcion $H(\xi)$ que crece como e^{ξ^2} y da soluciones divergentes, i.e. no fisicas. Para prevenir este comportamiento, debemos truncar la serie despues de algun n y asi reducir la solucion a un polinomio de grado finito. Entonces, en la recursion (4), para que la serie termine,

$$A_{n+2} = \frac{(2\epsilon - 2n - 1)A_n}{(n+2)(n+1)}$$
$$2\epsilon - 2n - 1 = 0$$
$$\epsilon = n + \frac{1}{2}$$

donde n es un entero positivo. Esta condicion nos da la cuantización de la energia del oscilador harmonico:

$$E_n = (n + \frac{1}{2})\hbar\omega, \quad n \in \mathbb{Z}^+$$
 (5)

Los polinomios correspondientes $H_n(\xi)$ son los polinomios de Hermite, donde $H_n(\xi)$:

- Es de grado n en ξ
- \blacksquare Tiene n nodos
- \blacksquare Es par para n par e impar para n impar

Finalmente, la funcion de onda correspondiente a la energia E_n es

$$\psi_n(\xi) = H_n(\xi)e^{-\xi^2/2}$$