

Rev:05

MEMORIAL TÉCNICO DESCRITIVO

MICROGERAÇÃO DISTRIBUÍDA UTILIZANDO UM SISTEMA SOLAR FOTOVOLTAICO DE 4,50kW CONECTADO À REDE DE ENERGIA ELÉTRICA DE BAIXA TENSÃO EM 380V CARACTERIZADO COMO AUTOCONSUMO LOCAL.

TIAGO BISCARO BONETTI

RG: 74034616

LUIZ ANDRÉ DA SILVA LIMA

Eng. Eletricista

AT ALL WISINA -CAF: 034.134.004-95

REGISTRO: 0205289185/AL

MACEIÓ- AL SETEMBRO - 2025

LISTA DE SIGLAS E ABREVIATURAS

ABNT: Associação Brasileira de Normas Técnicas

ANEEL: Agência Nacional de Energia Elétrica

BT: Baixa tensão (220/127 V, 380/220 V)

C.A: Corrente Alternada

C.C: Corrente Contínua

CD: Custo de disponibilidade (30 kWh, 50kWh ou 100 kWh em sistemas de baixa tensão monofásicos,

bifásicos ou trifásicos, respectivamente)

CI: Carga Instalada

DSP: Dispositivo Supressor de Surto

DSV: Dispositivo de seccionamento visível

FP: Fator de potência

FV: Fotovoltaico

GD: Geração distribuída

HSP: Horas de sol pleno

IEC: International Electrotechnical Commission

I_N: Corrente Nominal

I_{DG}: Corrente nominal do disjuntor de entrada da unidade consumidora em ampéres (A)

Ist: Corrento de curto-circuito de módulo fotovoltaico em ampéres (A)

kW: kilo-watt

kWp: kilo-watt pico kWh: kilo-watt-hora

MicroGD: Microgeração distribuída

MT: Média tensão (13.8 kV, 34.5 kV)

NF: Fator referente ao número de fases, igual a 1 para sistemas monofásicos e bifásicos ou $\sqrt{3}\,$ para

sistemas trifásicos

PRODIST: Procedimentos de Distribuição

PD: Potência disponibilizada para a unidade consumidora onde será instalada a geração distribuída

PR: Pára-raio

QGD: Quadro Geral de Distribuição

QGBT: Quadro Geral de Baixa Tensão

REN: Resolução Normativa

SPDA: Sistema de Proteção contra Descargas Atmosféricas

SFV: Sistema Fotovoltaico

SFVCR: Sistema Fotovoltaico Conectado à Rede

TC: Transformador de corrente

TP: Transformador de potencial

UC: Unidade Consumidora

UTM: Universal Transversa de Mercator

V_N: Tensão nominal de atendimento em volts (V)

Voc: Tensão de circuito aberto de módulo fotovoltaico em volts (V)

SUMÁRIO

1.	OBJETIVO	4
2.	REFERÊNCIAS NORMATIVAS E REGULATÓRIA	4
3.	DADOS DA UNIDADE CONSUMIDORA	5
4.	LEVANTAMENTO DE CARGA	5
5.	PADRÃO DE ENTRADA	6
	5.1. Tipo de Ligação e Tensão de Atendimento	6
	5.2. Disjuntor de Entrada	6
	5.3. Potência Disponibilizada	6
	5.4. Caixa de Medição	7
	5.5. Ramal de Entrada	7
	5.6. Dimensionamento do gerador	8
6.	DIMENSIONAMENTO DO INVERSOR (SE HOUVER)	8
7.	DIMENSIONAMENTO DA PROTEÇÃO	9
	7.1. Disjuntores	9
	7.2. DPS CA	9
	7.3. Aterramento	9
	7.4. Requisitos de Proteção	10
8.	DIMENSIONAMENTO DOS CABOS	10
9.	PLACA DE ADVERTÊNCIA	11
10.	ANEXOS	11

1. OBJETIVO

O presente memorial técnico descritivo tem como objetivo apresentar a metodologia utilizada para elaboração e apresentação à Equatorial Alagoas, dos documentos mínimos necessários, em conformidade com a REN 482, com o PRODIST Módulo 3 secção 3.7, com a NT.020 e com as normas técnicas nacionais (ABNT) ou internacionais (europeia e americana), para SOLICITAÇÃO DO PARECER DE ACESSO de uma microgeração distribuída conectada à rede de distribuição de energia elétrica através sistema solar fotovoltaico de 4,50 kW, composto por 8 módulos de 605W TWMNH Módulo Bifacial Half-Cell do tipo N (66) 66HD600-620W, potência total de 4,84 kWp e 2 micro inversores de TSOL-MX2250 de potência total de 4,50 kW – 4MPPTs tensão de 220Vca, caracterizado como AUTOCONSUMO LOCAL.

2. REFERÊNCIAS NORMATIVAS E REGULATÓRIA

Para elaboração deste memorial técnico descritivo, no âmbito da área de concessão do estado de (o) **ALAGOAS** foram utilizadas as normas e resoluções, nas respectivas revisões vigentes, conforme descritas abaixo:

- a) ABNT NBR 5410: Instalações Elétricas de Baixa Tensão.
- b) ABNT NBR 10899: Energia Solar Fotovoltaica Terminologia.
- c) ABNT NBR 11704: Sistemas Fotovoltaicos Classificação.
- d) ABNT NBR 16149: Sistemas fotovoltaicos (FV) Características da interface de conexão com a rede elétrica de distribuição.
- e) ABNT NBR 16150: Sistemas fotovoltaicos (FV) Características da interface de conexão coma rede elétrica de distribuição Procedimentos de ensaio de conformidade.
- f) ABNT NBR IEC 62116: Procedimento de Ensaio de Anti-ilhamento para Inversores de Sistemas Fotovoltaicos Conectados à Rede Elétrica.
- g) EQUATORIAL ENERGIA NT.00020.EQTL.Normas e Padrões Conexão de Microgeração Distribuída ao Sistema de Baixa Tensão.
- h) EQUATORIAL ENERGIA NT.00001.EQTL.Normas e Padrões Fornecimento de Energia Elétrica em Baixa Tensão.
- i) EQUATORIAL ENERGIA NT.00030.EQTL.Normas e Padrões Padrões Construtivos de Caixas de Medição e Proteção.
- j) ANEEL Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional –
 PRODIST: Módulo 3 Conexão ao Sistema de Distribuição de Energia Elétrica.
- k) ANEEL Resolução Normativa nº 1000, de 07 de dezembro de 2021, que estabelece as regras de prestação do serviço público de distribuição de energia elétrica.
- I) IEC 61727 Photovoltaic (PV) Systems Characteristics of the Utility Interface
- m) IEC 62116:2014 Utility-interconnected photovoltaic inverters Test procedure of islanding prevention measures

LUIZ André da Silva Lim Cilva hima Engenheur Elektriste Silva hima Luiz André da Revostaga - Fers. 034.134.004-95

3. DADOS DA UNIDADE CONSUMIDORA

Número da Conta Contrato: 3000389721

Classe: RESIDENCIAL

Nome do Titular da CC: TIAGO BISCARO BONETTI

Endereço Completo: CD PORTO DI MARE, 31, CEP: 57935-000 COND PORTO DI MARE - PARIPUEIRA

- AL

Número de identificação do poste e/ou transformador mais próximo: Poste S - 00000

Coordenadas georreferenciadas:

ZONA = FUSO 25L

Coord X = 222084.71 m E

Coord Y = 8954768.33 m S

Figura 1: Localização da unidade consumidora.

4. LEVANTAMENTO DE CARGA

QUADRO DE CARGA PARA QUADRO PRELIMINAR DE CARGA INSTALADA

ITEM	DESCRIÇÃO	QUANT	P (W)	CARGA INSTALADA (KW)	FP	CARGA INSTALADA (KVA)	FD	DEMANDA (KW)	DEMAND A (KVA)
1	LAMPADA 9W	30	9	0,27	0,92	0,293	0,8	0,216	0,235
2	LAMPADA 10W	30	10	0,3	0,92	0,326	0,8	0,240	0,261
3	VENTILADOR	4	150	0,6	0,92	0,652	0,8	0,480	0,522
4	GELADEIRA	2	130	0,26	0,92	0,283	0,8	0,208	0,226
5	MICRO-ONDAS	3	700	2,1	0,92	2,283	0,8	1,680	3,835
6	AR COND	3	1800	5,4	0,92	5,870	0,8	4,320	4,696
8	LAVA E SECA	2	1000	2	0,92	2,174	0,8	1,600	1,739
9	CHUVEIRO ELÉTRICO	2	3200	6,4	0,92	6,957	0,8	5,120	5,565
10	MOTOR ELÉTRICO	1	2200	2,2	0,92	2,391	0,8	1,760	1,913
TOTAL				19,53		21,23		15,62	18,99

Tabela 1 – Levantamento de carga

LUIZ André da Silva Lim Collego Inno

5. PADRÃO DE ENTRADA

5.1. Tipo de Ligação e Tensão de Atendimento

A unidade consumidora é (será) ligada em ramal de ligação em baixa tensão, através de um circuito TRIFÁSICO à QUATRO CONDUTORES, sendo TRÊS condutores FASE de seção nominal 6mm² e UM condutor NEUTRO de seção nominal 6mm², com tensão de atendimento em 380V, derivado de uma rede aérea/subterrânea de distribuição secundária da EQUATORIAL ENERGIA no estado de(o) ALAGOAS.

5.2. Disjuntor de Entrada

No ponto de entrega/conexão é (será) instalado um disjuntor termomagnético, em conformidade com a norma NT.00001.EQTL.Normas e Padrões da Equatorial Energia, com as seguintes características:

NÚMERO DE POLOS: 3

TENSÃO NOMINAL: 380V

CORRENTE NOMINAL: 40A

FREQUÊNCIA NOMINAL: 60Hz

ELEMENTO DE PROTECAO: TERMOMAGNÉTICO

CAPACIDADE MAXIMA DE INTERRUPCAO: 3 kA;

ACIONAMENTO: DISJUNTOR

CURVA DE ATUACAO (DISPARO): C

5.3. Potência Disponibilizada

A potência disponibilizada para unidades consumidora onde será instalada a microGD é (será) igual à:

PD [kVA] = (380 [V] X 40 [A] X 1,732)/1000

PD [kW] = PD [kVA] x FP

 $V_N = 380V$

 $I_{DG} = 40A$

NF = 1,732

FP = 0.92

PD (kVA) = 26,326kVA

PD (kW) = 24,220kW

NOTA 1: A potência de geração deve ser menor ou igual a potência disponibilizada PD em kW.

NOTA 2: V_N é a tensão nominal entre fase e neutro para instalações monofásicas ou entre fases para bifásicas e trifásicas.

NOTA 3: NF é um fator referente ao número de fases, igual a 1 para sistemas monofásicos e bifásicos ou $\sqrt{3}$ para sistemas trifásicos.

LUIX André da Silva Lim Sulvey Lim

6

5.4. Caixa de Medição

A caixa de medição existente monofásica em material polimérico tem (terá) as dimensões de **305** mm x **201** mm x **110** mm (comprimento, altura e largura), está (será) instalado no muro, no ponto de entrega caracterizado como o limite da via pública com a propriedade, conforme fotos abaixo, atendendo aos requisitos de localização, facilidade de acesso e layout, em conformidade com as normas da concessionária NT.00001.EQTL e NT.00030.EQTL, conforme a FIGURA 2.

Figura 2: Desenho dimensional detalhado da caixa de medição.

O aterramento da caixa de medição é(será) com 1 haste de aterramento de comprimento 2000 mm e diâmetro 5/8", condutor de 6 mm² com conexão em conector tipo C compressão.

5.5. Ramal de Entrada

O ramal de entrada da unidade consumidora é (será), através de um circuito TRIFÁSICO à QUATRO CONDUTORES, sendo TRÊS condutores FASE de diâmetro nominal 10mm² e UM condutor NEUTRO de diâmetro nominal 10mm², em 380V.

LUIZ André da Silva Lim Silva Discommo

5.6. Dimensionamento do gerador

Descrever o dimensionamento do gerador e informar as características técnicas.

Tabela 3 – Características técnicas do gerador

Fabricante	TONGWEI
Modelo	TWMNH-66HD605
Potência nominal – Pn [W]	605W
Tensão de circuito aberto – Voc [V]	47,70
Corrente de curto circuito – Isc [A]	15,80
Tensão de máxima potência – Vpmp [V]	40,95
Corrente de máxima potência – Ipmp [A]	14,78
Eficiência [%]	22,4
Comprimento [m]	2,384
Largura [m]	1,134
Área [m2]	2,701
Peso [kg]	32,5
Quantidade	8
Potência do gerador [kW]	4,84

6. DIMENSIONAMENTO DO INVERSOR (SE HOUVER)

Descrever o dimensionamento do inversor e informar as características técnicas.

Tabela 4 – Características técnicas do inversor

Fabricante	TSUNESS					
Modelo	TSOL - MX2250					
Quantidade	2					
Entrada						
Potência nominal – Pn [kW]	2.25					
Máxima potência na entrada CC – Pmax-cc [kW]	400~700+					
Máxima tensão CC – Vcc-máx [V]	60					
Máxima corrente CC – Icc-máx [A]	18					
Máxima tensão MPPT – Vpmp-máx [V]	60					
Mínima tensão MPPT – Vpmp-min [V]	16					
Tensão CC de partida – Vcc-part [V]	22					
Quantidade de Strings	4					
Quantidade de entradas MPPT	4					
Saída						
Potência nominal CA – Pca [kW]	2.25					
Máxima potência na saída CA – Pca-máx [kW]	2.25					
Máxima corrente na saída CA – Imáx-ca [A]	11.25					
Tensão nominal CA – Vnon-ca [V]	220/230/240, L/N/PE					
Frequência nominal – Fn [Hz]	50/60					
Máxima tensão CA – Vca-máx [V]	240					
Mínima tensão CA – Vca-min [V]	220					
THD de corrente [%]	<3%					
Fator de potência	0.8					
Tipo de conexão – número de fases + neutro + terra	220 – 1+1+1					
Eficiência máxima [%]	97.0%					

7. DIMENSIONAMENTO DA PROTEÇÃO

7.1. Disjuntores

Dimensionar e descrever as características técnicas dos disjuntores:

Disjuntor CA: Será 1 disjuntor bipolar de 25A, para cada dois micro inversores . (LOCALIZADOS NA STRING BOX CA).

- Número de polos: 2
- Tensão nominal CA ou CC [V]: 220V
- Corrente Nominal [A]: 25A
- Frequência [Hz], para disjuntor CA: 60Hz
- Capacidade máxima de interrupção [kA]: 3kA
- Curva de atuação: C

HAVERÁ NO TOTAL UM DISJUNTORES DE 2P-25A

7.2. **DPS CA**

Dimensionar e descrever as características técnicas dos DPSs CA e CC (LOCALIZADOS NA STRING BOX CA), informando no mínimo as seguintes características:

- Tipo CA
- Classe: II
- Tensão CA [V]: 275V
- Corrente nominal [kA]:10kA
- Corrente máxima [kA]:20kA

7.3. Aterramento

Dimensionar e descrever as características técnicas do aterramento, informando no mínimo as seguintes características:

- Geometria da malha, informando a distância entre cada haste:
- Descrição das hastes de aterramento, informando tipo, camada e dimensões:
- Quantidade de hastes:
- Descrição dos cabos do aterramento da malha, da interligação com a geração e da equipotencialização, informando isolamento, bitola, etc:
- Descrição das conexões:
- Valor da resistência de aterramento: 10 ohms
- Descrição do barramento de equipotencialização, informando material e dimensões

9

7.4. Requisitos de Proteção

Tabela 5 – Características técnicas do gerador

REQUISITOS DE PROTEÇÃO	INDICAR SE POSSUI
Proteção de subtensão (27)	SIM
Proteção de sobretensão (59)	SIM
Proteção de subfrequência (81U)	SIM
Proteção de sobrefrequência (810)	SIM
Proteção contra desequilíbrio de corrente (46)	SIM
Proteção contra reversão e desbalanço de tensão (47)	SIM
Proteção de sobrecorrente (50/51 e 50N/51N)	SIM
Proteção contra perda de rede (proteção anti- ilhamento)	SIM
Check de sincronismo (25)	SIM
Tempo de reconexão – temporizador (62)	OPCIONAL, QUANDO NÃO USAR INVERSOR
Proteção de Sobrecorrente com restrição de tensão (51V)	SIM
Proteção de Sobrecorrente direcional (67- 67N)	SIM
Proteção direcional de potência (32)	SIM, QUANDO NÃO USAR INVERSOR
Proteção contra falha de disjuntor (50BF)	SIM
Proteção LINHA VIVA / BARRA MORTA	SIM

8. DIMENSIONAMENTO DOS CABOS

Dimensionar e descrever as características técnicas dos cabos CA e CC, informando no mínimo as seguintes características:

CABOS CA

Isolação: XLPE

Isolamento: 0,6/1 kVBitola [mm2]: 6mm²

Capacidade de condução de corrente: 36A

CABOS CC

Isolação: XLPE

Isolamento: 0,6/1 kVBitola [mm2]: 4mm²

• Capacidade de condução de corrente: 42A

LUIZ André da Silva Lim Cilva Lim Cilva Luiz Monte de Reside A FEF: 034.134.004-95

9. PLACA DE ADVERTÊNCIA

Descrever forma e local de instalação, conforme modelo abaixo:

Características da Placa:

- Espessura: 2 mm;
- Material: Policarbonato com aditivos anti-raios UV (ultravioleta);
- Gravação: As letras devem ser em Arial Black;
- Acabamento: Deve possuir cor amarela, obtida por processo de masterização com 2%, assegurando opacidade que permita adequada visualização das marcações pintadas na superfície da placa;

Figura 3: Placa de advertência.

10. ANEXOS

- Formulário de Solicitação de Orçamento.
- Documento de responsabilidade técnica (projeto e execução) do conselho profissional competente.
- Diagrama unifilar contemplando, geração, inversor (se houver), cargas, proteção e medição.
- Diagrama de blocos contemplando geração, inversor (se houver), cargas, proteção e medição.
- Relatório de ensaio, em língua portuguesa, atestando a conformidade de todos os conversores de potência para a tensão nominal de conexão com a rede, sempre que houver a utilização de conversores.
- Dados de registro.
- Lista de rateio dos créditos.
- Cópia de instrumento jurídico de solidariedade.
- Para cogeração documento que comprove o reconhecimento pela ANEEL.

LUIZ André da Silva Lim Silva Marina Luiz Mare da Al-Word Mar - Fire: 034.134.004-95

11