Problem Set Solutions

1. Convexity of $f_{\alpha}(x)$

We want to show that the function $f_{\alpha}(x) = \frac{x^{\alpha}-1}{\alpha-1}$ is convex on \mathbb{R}^+ for $\alpha > 0$. We compute the second derivative $f''_{\alpha}(x)$.

Case 1: $\alpha > 0, \alpha \neq 1$. The first derivative is:

$$f_{\alpha}'(x) = \frac{d}{dx} \left(\frac{x^{\alpha} - 1}{\alpha - 1} \right) = \frac{1}{\alpha - 1} (\alpha x^{\alpha - 1})$$

The second derivative is:

$$f_{\alpha}''(x) = \frac{d}{dx} \left(\frac{\alpha x^{\alpha - 1}}{\alpha - 1} \right) = \frac{\alpha(\alpha - 1)x^{\alpha - 2}}{\alpha - 1} = \alpha x^{\alpha - 2}$$

Since $\alpha > 0$ and $x \in \mathbb{R}^+$ (i.e., x > 0), we have $x^{\alpha-2} > 0$. Therefore, $f''_{\alpha}(x) =$ $\alpha x^{\alpha-2} > 0$ for all x > 0.

Case 2: $\alpha = 1$. We find the limit of $f_{\alpha}(x)$ as $\alpha \to 1$ using L'Hopital's rule (differentiating numerator and denominator with respect to α):

$$f_1(x) = \lim_{\alpha \to 1} \frac{x^{\alpha} - 1}{\alpha - 1} = \lim_{\alpha \to 1} \frac{\frac{d}{d\alpha}(x^{\alpha} - 1)}{\frac{d}{d\alpha}(\alpha - 1)} = \lim_{\alpha \to 1} \frac{x^{\alpha} \ln x}{1} = x \ln x$$

Now, we check the convexity of $f_1(x) = x \ln x$. The first derivative is:

$$f_1'(x) = \frac{d}{dx}(x \ln x) = 1 \cdot \ln x + x \cdot \frac{1}{x} = \ln x + 1$$

The second derivative is:

$$f_1''(x) = \frac{d}{dx}(\ln x + 1) = \frac{1}{x}$$

For x > 0, $f_1''(x) = \frac{1}{x} > 0$. In both cases, $f_{\alpha}''(x) > 0$ for x > 0. Thus, $f_{\alpha}(x)$ is strictly convex on \mathbb{R}^+ for all $\alpha > 0$.

2. Definition of f-Divergence

Let P and Q be probability distributions on a finite sample space $\Omega = \{1, 2, ..., n\}$, with probability mass functions $p_i = P(i)$ and $q_i = Q(i)$. Let $f: \mathbb{R}^+ \to \mathbb{R}$ be a convex function. The f-divergence $D_f(P||Q)$ is defined as:

$$D_f(P||Q) = \sum_{i=1}^n q_i f\left(\frac{p_i}{q_i}\right)$$

We adopt the conventions: 0f(0/0) = 0, and $qf(p/q) = p \lim_{u\to\infty} \frac{f(u)}{u}$ if q =0, p > 0. Assuming $P \ll Q$ (i.e., $p_i = 0$ whenever $q_i = 0$), the sum is effectively over i such that $q_i > 0$:

$$D_f(P||Q) = \sum_{i:q_i>0} q_i f\left(\frac{p_i}{q_i}\right)$$

3. Data Processing Inequality for f-Divergence

Let P,Q on Ω and P',Q' on Ω' be distributions related by a channel $K:\Omega\to\Omega'$, i.e., $p'(y)=\sum_{x\in\Omega}p(x)K(y|x)$ and $q'(y)=\sum_{x\in\Omega}q(x)K(y|x)$. We show $D_f(P'||Q')\leq D_f(P||Q)$ for convex f. Assume $P\ll Q$. If q'(y)=0, then for all x with q(x)>0, K(y|x)=0. Since $P\ll Q$, p(x)>0 only if q(x)>0, so K(y|x)=0 for p(x)>0. Thus p'(y)=0. The term q'(y)f(p'(y)/q'(y)) is 0. We sum over y where q'(y)>0.

$$D_f(P'||Q') = \sum_{y: q'(y) > 0} q'(y) f\left(\frac{p'(y)}{q'(y)}\right) = \sum_{y: q'(y) > 0} q'(y) f\left(\frac{\sum_x p(x) K(y|x)}{\sum_x q(x) K(y|x)}\right)$$

Let $u_x = p(x)/q(x)$. $p(x) = q(x)u_x$.

$$D_f(P'||Q') = \sum_{y:q'(y)>0} q'(y) f\left(\frac{\sum_x q(x) K(y|x) u_x}{q'(y)}\right)$$

Define weights $w_{y,x} = \frac{q(x)K(y|x)}{q'(y)} \ge 0$. $\sum_x w_{y,x} = \frac{\sum_x q(x)K(y|x)}{q'(y)} = \frac{q'(y)}{q'(y)} = 1$. The expression inside f is $\sum_x w_{y,x} u_x$. By Jensen's inequality for convex f:

$$f\left(\sum_{x} w_{y,x} u_{x}\right) \leq \sum_{x} w_{y,x} f(u_{x}) = \sum_{x} \frac{q(x)K(y|x)}{q'(y)} f\left(\frac{p(x)}{q(x)}\right)$$

Substitute back:

$$D_f(P'||Q') \le \sum_{y:q'(y)>0} q'(y) \left[\sum_x \frac{q(x)K(y|x)}{q'(y)} f\left(\frac{p(x)}{q(x)}\right) \right]$$

$$= \sum_{y:q'(y)>0} \sum_x q(x)K(y|x)f\left(\frac{p(x)}{q(x)}\right) = \sum_y \sum_x q(x)K(y|x)f\left(\frac{p(x)}{q(x)}\right)$$

$$= \sum_x q(x)f\left(\frac{p(x)}{q(x)}\right) \left(\sum_y K(y|x)\right)$$

Since $\sum_{y} K(y|x) = 1$,

$$D_f(P'||Q') \le \sum_x q(x) f\left(\frac{p(x)}{q(x)}\right) = D_f(P||Q)$$

4. Rényi Divergence and Data Processing Inequality

The Rényi α -divergence (standard definition, using ln): $R_{\alpha}(P||Q) = \frac{1}{\alpha-1} \ln \left(\sum_{i} p_{i}^{\alpha} q_{i}^{1-\alpha} \right)$ for $\alpha > 0, \alpha \neq 1$. Let $f_{\alpha}(x) = \frac{x^{\alpha}-1}{\alpha-1}$.

$$D_{f_{\alpha}}(P||Q) = \sum_{i} q_{i} f_{\alpha}\left(\frac{p_{i}}{q_{i}}\right) = \sum_{i} q_{i} \frac{(p_{i}/q_{i})^{\alpha} - 1}{\alpha - 1} = \frac{1}{\alpha - 1} \left(\sum_{i} p_{i}^{\alpha} q_{i}^{1 - \alpha} - 1\right)$$

Let $S_{\alpha}(P||Q) = \sum_{i} p_{i}^{\alpha} q_{i}^{1-\alpha}$. Then $D_{f_{\alpha}}(P||Q) = \frac{S_{\alpha}(P||Q)-1}{\alpha-1}$. So $S_{\alpha}(P||Q) = 1 + (\alpha-1)D_{f_{\alpha}}(P||Q)$.

$$R_{\alpha}(P||Q) = \frac{1}{\alpha - 1} \ln S_{\alpha}(P||Q) = \frac{1}{\alpha - 1} \ln(1 + (\alpha - 1)D_{f_{\alpha}}(P||Q))$$

(This differs from the problem statement's $R_{\alpha} = \frac{1}{1-\alpha} \ln(1+(\alpha-1)D_{f_{\alpha}})$ which seems unconventional for $\alpha > 1$).

We show DPI for R_{α} . Let P',Q' be post-channel distributions. From Q1, f_{α} is convex. From Q3, $D_{f_{\alpha}}$ satisfies DPI: $D_{f_{\alpha}}(P'||Q') \leq D_{f_{\alpha}}(P||Q)$. Let $D' = D_{f_{\alpha}}(P'||Q')$ and $D = D_{f_{\alpha}}(P||Q)$. Let $S'_{\alpha} = 1 + (\alpha - 1)D'$ and $S_{\alpha} = 1 + (\alpha - 1)D$. We have $D' \leq D$.

Case 1: $\alpha > 1$. Then $\alpha - 1 > 0$. $D' \leq D \implies S'_{\alpha} \leq S_{\alpha}$. By Jensen's inequality, $S_{\alpha} \geq 1$. $g(S) = \frac{1}{\alpha - 1} \ln S$ is increasing for $S \geq 1$. So $S'_{\alpha} \leq S_{\alpha} \implies R_{\alpha}(P'||Q') \leq R_{\alpha}(P||Q)$.

Case 2: $0 < \alpha < 1$. Then $\alpha - 1 < 0$. $D' \le D \implies S'_{\alpha} \ge S_{\alpha}$. By Jensen's inequality, $S_{\alpha} \le 1$. $g(S) = \frac{1}{\alpha - 1} \ln S$ is decreasing for S > 0. So $S'_{\alpha} \ge S_{\alpha} \implies R_{\alpha}(P'||Q') \le R_{\alpha}(P||Q)$.

In both cases, DPI holds for R_{α} .

5. Limit of $D_{f_{\alpha}}$ and R_{α} as $\alpha \to 1$

Limit of $D_{f_{\alpha}}(P||Q)$:

$$\lim_{\alpha \to 1} D_{f_{\alpha}}(P||Q) = \sum_{i} q_{i} \lim_{\alpha \to 1} f_{\alpha}(p_{i}/q_{i}) = \sum_{i} q_{i} \left(\frac{p_{i}}{q_{i}} \ln \frac{p_{i}}{q_{i}}\right) = \sum_{i} p_{i} \ln \frac{p_{i}}{q_{i}} = D_{KL}(P||Q)$$

(using $\lim_{\alpha \to 1} f_{\alpha}(x) = x \ln x$ from Q1). Limit of $R_{\alpha}(P||Q)$:

$$R_{\alpha}(P||Q) = \frac{1}{\alpha - 1} \ln \left(\sum_{i} p_{i}^{\alpha} q_{i}^{1 - \alpha} \right) = \frac{\ln S(\alpha)}{\alpha - 1}$$

As $\alpha \to 1$, $S(\alpha) \to \sum_i p_i = 1$, so we have $\frac{0}{0}$. Use L'Hopital's rule (differentiate w.r.t. α):

$$\lim_{\alpha \to 1} R_{\alpha}(P||Q) = \lim_{\alpha \to 1} \frac{S'(\alpha)/S(\alpha)}{1}$$

$$S'(\alpha) = \frac{d}{d\alpha} \sum_{i} p_i^{\alpha} q_i^{1-\alpha} = \sum_{i} p_i^{\alpha} q_i^{1-\alpha} \ln(p_i/q_i)$$

$$S'(1) = \sum_{i} p_i \ln(p_i/q_i) = D_{KL}(P||Q)$$

$$\lim_{\alpha \to 1} R_{\alpha}(P||Q) = \frac{S'(1)/S(1)}{1} = \frac{D_{KL}(P||Q)}{1} = D_{KL}(P||Q)$$

Both limits are $D_{KL}(P||Q)$.

6. Rényi Divergence Bound for Hypothesis Testing

 $H_0: X^n \sim Q_X^n, \ H_1: X^n \sim P_X^n.$ Test $Z \in \{0,1\}$. Type I error: $\epsilon_n = Q_X^n(Z=1) \leq \epsilon$. Type II error: $\delta_n = P_X^n(Z=0) = e^{-nE_n}$. Let $P^n = P_X^n, Q^n = Q_X^n$. Let P_Z, Q_Z be distributions of Z. $Q_Z = \operatorname{Ber}(\epsilon_n), \ P_Z = \operatorname{Ber}(1-\delta_n)$. DPI for R_α : $R_\alpha(P^n||Q^n) \geq R_\alpha(P_Z||Q_Z)$. We showed $R_\alpha(P^n||Q^n) = nR_\alpha(P_X||Q_X)$.

$$nR_{\alpha}(P_X||Q_X) \ge R_{\alpha}(\mathrm{Ber}(1-\delta_n)||\mathrm{Ber}(\epsilon_n))$$

The problem statement asks to show $nR_{\alpha}(P_X||Q_X) \geq R_{\alpha}(\mathrm{Ber}(\epsilon)||\mathrm{Ber}(1-e^{-nE_n}))$. This seems non-standard; it swaps the roles of P_Z, Q_Z arguments and potentially uses the bound ϵ instead of ϵ_n . Let's assume the problem meant the inequality derived from standard DPI: $nR_{\alpha}(P_X||Q_X) \geq R_{\alpha}(\mathrm{Ber}(1-e^{-nE_n})||\mathrm{Ber}(\epsilon_n))$.

7. Bound on Error Exponent E_n

Given $\epsilon = 1/2$, so $\epsilon_n \leq 1/2$. Let $\alpha = 1 + 1/\sqrt{n}$. Let $h = 1/\sqrt{n}$. Use the inequality from Q6 derived from standard DPI:

$$nR_{1+h}(P_X||Q_X) \ge R_{1+h}(\operatorname{Ber}(1-\delta_n)||\operatorname{Ber}(\epsilon_n))$$

$$R_{1+h}(\operatorname{Ber}(1-\delta_n)||\operatorname{Ber}(\epsilon_n)) = \frac{1}{h}\ln\left((1-\delta_n)^{1+h}\epsilon_n^{-h} + \delta_n^{1+h}(1-\epsilon_n)^{-h}\right)$$

Substitute $\delta_n = e^{-nE_n}$.

$$RHS = \frac{1}{h} \ln \left((1 - e^{-nE_n})^{1+h} \epsilon_n^{-h} + (e^{-nE_n})^{1+h} (1 - \epsilon_n)^{-h} \right)$$

Assume $E_n \to E > 0$. Then $e^{-nE_n} \to 0$. $(1 - e^{-nE_n})^{1+h} \to 1$. $e^{-nE_n(1+h)} = e^{-(n+\sqrt{n})E_n}$ is very small.

$$RHS = \frac{1}{h} \ln \left((1 - o(1))\epsilon_n^{-h} + e^{-(n + \sqrt{n})E_n} (1 - \epsilon_n)^{-h} \right)$$
$$\approx \frac{1}{h} \ln(\epsilon_n^{-h}) = -\ln \epsilon_n$$

This approximation ignores E_n . Let's try the inequality stated in the problem:

$$nR_{1+h}(P_X||Q_X) \ge R_{1+h}(\operatorname{Ber}(\epsilon_n)||\operatorname{Ber}(1-\delta_n))$$

$$R_{1+h}(\operatorname{Ber}(\epsilon_n)||\operatorname{Ber}(1-\delta_n)) = \frac{1}{h}\ln(\epsilon_n^{1+h}(1-(1-\delta_n))^{-h} + (1-\epsilon_n)^{1+h}(1-\delta_n)^{-h})$$

$$= \frac{1}{h}\ln(\epsilon_n^{1+h}\delta_n^{-h} + (1-\epsilon_n)^{1+h}(1-\delta_n)^{-h})$$

$$= \frac{1}{h}\ln(\epsilon_n^{1+h}e^{nhE_n} + (1-\epsilon_n)^{1+h}(1-e^{-nE_n})^{-h})$$

For large n, $(1 - e^{-nE_n})^{-h} \approx 1$. $nhE_n = \sqrt{n}E_n$.

$$RHS \approx \frac{1}{h} \ln(\epsilon_n^{1+h} e^{\sqrt{n}E_n} + (1 - \epsilon_n)^{1+h})$$

$$= \frac{1}{h} \ln[(1 - \epsilon_n)^{1+h} (1 + (\frac{\epsilon_n}{1 - \epsilon_n})^{1+h} e^{\sqrt{n}E_n})]$$

Since $\epsilon_n \leq 1/2$, $\epsilon_n/(1-\epsilon_n) \leq 1$. The term $x = (\frac{\epsilon_n}{1-\epsilon_n})^{1+h} e^{\sqrt{n}E_n}$ grows exponentially if E > 0. Use $\ln(1+x) \approx \ln x$.

$$RHS \approx \frac{1}{h} \ln[(1 - \epsilon_n)^{1+h} (\frac{\epsilon_n}{1 - \epsilon_n})^{1+h} e^{\sqrt{n}E_n}]$$

$$= \frac{1}{h} \ln[\epsilon_n^{1+h} e^{\sqrt{n}E_n}] = \frac{1+h}{h} \ln \epsilon_n + \frac{\sqrt{n}E_n}{h} = (\sqrt{n}+1) \ln \epsilon_n + nE_n$$

So, $nR_{1+1/\sqrt{n}}(P_X||Q_X) \ge nE_n + (\sqrt{n} + 1) \ln \epsilon_n$.

$$E_n \le R_{1+1/\sqrt{n}}(P_X||Q_X) - \frac{\sqrt{n}+1}{n}\ln\epsilon_n$$

Since $\epsilon_n \leq 1/2$, $\ln \epsilon_n < 0$. Let $C_n = -\ln \epsilon_n \geq \ln 2$.

$$E_n \le R_{1+1/\sqrt{n}}(P_X||Q_X) + \frac{\sqrt{n}+1}{n}C_n$$

The term $\frac{\sqrt{n}+1}{n}C_n=O(1/\sqrt{n})$. Thus $E_n\leq R_{1+1/\sqrt{n}}(P_X||Q_X)+o(1)$. For large enough n, this means E_n is upper bounded by $R_{1+1/\sqrt{n}}(P_X||Q_X)$, potentially with a small positive term. The question likely asks for the leading term behavior.

8. Conclusion on the Error Exponent Limit

We want to show $\lim_{n\to\infty}\frac{1}{n}\log\frac{1}{\beta_{1-\epsilon}(P,Q)}\leq D_{KL}(P||Q)$. Let $\delta_n^*=\beta_{1-\epsilon}(P^n,Q^n)$ be the minimum type II error for $\epsilon_n\leq\epsilon$. Let E_n^* be the corresponding exponent, $\delta_n^*=e^{-nE_n^*}$. From Q7, using the inequality assumed there, for any test with $\epsilon_n\leq\epsilon=1/2$,

$$E_n \le R_{1+1/\sqrt{n}}(P_X||Q_X) + \frac{\sqrt{n}+1}{n}(-\ln \epsilon_n)$$

This holds for the optimal test sequence with error $(\epsilon_n^*, \delta_n^*)$ and exponent E_n^* :

$$E_n^* \le R_{1+1/\sqrt{n}}(P_X||Q_X) + \frac{\sqrt{n+1}}{n}(-\ln\epsilon_n^*)$$

Since $\epsilon_n^* \leq \epsilon = 1/2$, $(-\ln \epsilon_n^*)$ is positive and bounded below by $\ln 2$. The term $\frac{\sqrt{n}+1}{n}(-\ln \epsilon_n^*)$ is $O(1/\sqrt{n})$.

$$E_n^* \le R_{1+1/\sqrt{n}}(P_X||Q_X) + O(1/\sqrt{n})$$

Taking the limit superior as $n \to \infty$:

$$\limsup_{n \to \infty} E_n^* \le \limsup_{n \to \infty} \left(R_{1+1/\sqrt{n}}(P_X||Q_X) + O(1/\sqrt{n}) \right)$$

As $n \to \infty$, $\alpha = 1 + 1/\sqrt{n} \to 1$. From Q5, $\lim_{\alpha \to 1} R_{\alpha}(P_X||Q_X) = D_{KL}(P_X||Q_X)$. Assuming continuity,

$$\lim_{n \to \infty} R_{1+1/\sqrt{n}}(P_X||Q_X) = D_{KL}(P_X||Q_X)$$

The $O(1/\sqrt{n})$ term vanishes.

$$\limsup_{n \to \infty} E_n^* \le D_{KL}(P_X||Q_X)$$

The error exponent is $E=\lim_{n\to\infty}-\frac{1}{n}\log\beta_{1-\epsilon}(P^n,Q^n)=\lim_{n\to\infty}E_n^*$ (if the limit exists). If the limit exists, $E\leq D_{KL}(P_X||Q_X)$. If not, the lim sup result holds. The problem asks to conclude $\lim_{n\to\infty}\frac{1}{n}\log\frac{1}{\beta_{1-\epsilon}(P,Q)}\leq D_{KL}(P||Q)$, which is $E\leq D_{KL}(P_X||Q_X)$ (using P,Q for P_X,Q_X).