Principal Component Analysis

Lưu Trung Tín

Ngày 13 tháng 9 năm 2022

Ma trận hiệp phương sai - Ma trận tương quan

Phân tích thành phần chính

Giới thiệu

- Phân tích thành phần chính (PCA) là một kỹ thuật trong Thống kê, được thiết kế để tóm tắt các thuộc tính quan trọng nhất trong bộ dữ liệu.
- Mục tiêu chung của PCA là giảm chiều dữ liệu. Đôi khi nó còn giúp nhìn ra các mối quan hệ mà dữ liệu gốc không thể hiên được.
- PCA có thể làm giảm sự dư thừa trong tập dữ liệu. Cơ bản nhất, sự dư thừa xảy ra khi các biến có tương quan với nhau.

Trung bình cộng - Phương sai

Xét thuộc tính $\mathbf{x} \in \mathbb{R}^{m \times 1}$. Ta có

► Trung bình cộng (mean)

$$\overline{x} = \frac{1}{m} \sum_{i=1}^{m} x_i.$$

Phương sai (variance) là trung bình của bình phương khoảng cách từ các điểm dữ liệu đến kỳ vọng.

$$\sigma^2 = Var[\mathbf{x}] = \frac{1}{m} \sum_{i=1}^{m} (x_i - \overline{x})^2.$$

Độ lệch chuẩn: σ .

Trung bình cộng - Phương sai

Phương sai là đại lượng để đo lường sự phân tán của dữ liệu xung quanh giá trị trung bình.

- Phương sai nhỏ: các điểm dữ liệu tập trung gần trung bình.
- Phương sai lớn: các điểm dữ liệu phân tán rộng.

Vecto trung bình - Ma trận hiệp phương sai

Xét bộ dữ liệu
$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_n \end{bmatrix} \in \mathbb{R}^{m \times n}$$
. Ta có

Vectơ trung bình (mean vector) là vectơ các giá trị trung bình của mỗi côt

$$\mu = \begin{bmatrix} \overline{x}_1 & \overline{x}_2 & \cdots & \overline{x}_n \end{bmatrix}.$$

Ma trận hiệp phương sai (covariance matrix)

$$\mathbf{S} = cov(\mathbf{X}) = \left[\sigma_{ij}\right]_{n \times n},$$

trong đó

$$\sigma_{ij} = cov(\mathbf{x}_i, \mathbf{x}_j) = \frac{1}{n} (\mathbf{x}_i - \overline{\mathbf{x}}_i)^T (\mathbf{x}_j - \overline{\mathbf{x}}_j).$$

Vecto trung bình - Ma trận hiệp phương sai

Một số tính chất của ma trận hiệp phương sai:

- S là ma trận đối xứng, nửa xác định dương.
- $\sigma_{ij} = cov(\mathbf{x}_i, \mathbf{x}_j)$ là hiệp phương sai của \mathbf{x}_i và \mathbf{x}_j ($i \neq j$), dùng để đo lường sự biến thiên đồng thời của hai biến.
- $\sigma_{ii} = cov(\mathbf{x}_i, \mathbf{x}_i) = Var[\mathbf{x}_i] \ge 0$ là phương sai của \mathbf{x}_i , nằm trên đường chéo của \mathbf{S} .

Nếu ${\bf S}$ là ma trận đường chéo thì các cặp ${\bf x}_i,\,{\bf x}_j$ hoàn toàn không tương quan với nhau.

Ma trận tương quan

► Ma trận tương quan (correlation matrix)

$$\mathbf{R} = corr(\mathbf{X}) = [r_{ij}]_{n \times n},$$

trong đó hệ số tương quan

$$r_{ij} = corr(\mathbf{x}_i, \mathbf{x}_j) = \frac{cov(\mathbf{x}_i, \mathbf{x}_j)}{\sigma_{\mathbf{x}_i}\sigma_{\mathbf{x}_i}}$$

đo lường sự tương quan tuyến tính của \mathbf{x}_i và \mathbf{x}_j . Hệ số tương quan r_{ij} là chuẩn hoá của hiệp phương sai σ_{ij} . Ta có $-1 \le r_{ij} \le 1$, $r_{ii} = 1$.

Phân tích thành phần chính (PCA)

- ▶ PCA tính toán ra các thành phần chính PC₁, PC₂,..., PC_n. Chúng chứa đầy đủ thông tin như các thuộc tính ban đầu, nhưng được thể hiện một cách thuận tiện hơn.
- Mục đích của **PCA** là tìm ra k thành phần chính giải thích được hầu hết thông tin trong bộ dữ liệu $(1 \le k < n)$.

Quy trình PCA

Các bước thực hiện PCA:

- ▶ **B1**: Tính $\hat{\mathbf{X}} = \mathbf{X} \boldsymbol{\mu}$.
- ▶ **B2:** Tìm các cặp trị riêng vectơ riêng $(\lambda_i, \mathbf{e}_i)$ (i = 1, ..., n) của $\mathbf{S} = cov(\mathbf{X}) = cov(\hat{\mathbf{X}})$. Sắp xếp chúng sao cho các trị riêng giảm dần: $\lambda_1 \ge \cdots \ge \lambda_n$.
- ▶ **B3:** Chọn *k* cặp có trị riêng lớn nhất. Đặt

$$\mathbf{B} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \cdots & \mathbf{e}_k \end{bmatrix}$$
.

▶ **B4:** Tính các thành phần chính

$$PC = \hat{X} \cdot B.$$

Quy trình PCA

Chọn k

► Chọn k dựa vào tỷ lệ phương sai tích luỹ:

Tỷ lệ phương sai được giải thích bởi thành phần chính thứ k là

$$\frac{\lambda_k}{\lambda_1 + \lambda_2 + \dots + \lambda_n}.$$

Tỷ lệ phương sai được giải thích bởi k thành phần chính đầu tiên là

$$\frac{\lambda_1 + \lambda_2 + \dots + \lambda_k}{\lambda_1 + \lambda_2 + \dots + \lambda_n}.$$

Thông thường, ta mong muốn tỷ lệ này trong khoảng 70% - 80%.

Chọn k

▶ Chọn k dựa vào phương pháp khuỷu tay (elbow method):

