Yoon Kim Carl Denton Luong Hoang Alexander M. Rush

Harvard NLP

ICLR, 2017

Presenter: Chao Jiang

Outline

- Deep Neutral Networks for Text Processing and Generation
- 2 Attention Networks
- Structured Attention Networks
 - Overview
 - Computational Challenges
 - Structured Attention in Practice
- 4 Conclusion and Future Work

Pure Encoder-Decoder Network

Input (sentence, image, etc.)

Fixed-Size Encoder (MLP, RNN, CNN)

 $\mathsf{Encoder}(\mathsf{input}) \in \mathbb{R}^D$

Decoder

Decoder(Encoder(input))

Pure Encoder-Decoder Network

Input (sentence, image, etc.)

Fixed-Size Encoder (MLP, RNN, CNN)

 $\mathsf{Encoder}(\mathsf{input}) \in \mathbb{R}^D$

Decoder

 $\mathsf{Decoder}(\mathsf{Encoder}(\mathsf{input}))$

Pure Encoder-Decoder Network

Encoder-Decoder with Attention

- Machine Translation
- Question Answering
- Natural Language Inference
- Algorithm Learning
- Parsing
- Speech Recognition
- Summarization
- Caption Generation
- and more · · ·

x_1,\dots,x_T	Memory bank	Source RNN hidden states
q	Query	Decoder hidden state
z	Memory selection	Source position $\{1,\ldots,T\}$
p(z=i x,q; heta)	Attention distribution	$\operatorname{softmax}(x_i^\top q)$
f(x,z)	Annotation function	Memory at time z , i.e. x_z
$c = \mathbb{E}[f(x, z)]$	Context Vector	

End-to-End Requirements:

- Need to compute attention $p(z = i \mid x, q; \theta)$ \implies softmax function
- ② Need to backpropagate to learn parameters heta
 - ⇒ Backprop through softmax function

Outline

- Deep Neutral Networks for Text Processing and Generation
- 2 Attention Networks
- Structured Attention Networks
 - Overview
 - Computational Challenges
 - Structured Attention in Practice
- 4 Conclusion and Future Work

Overview

Key difference:

- Replace simple attention with distribution over a combinatorial set of structures
- Attention distribution represented with graph model over multiple latent variables
- Compute attention using embedding infoerence

New Model:

• $P(z|x, q:\theta)$ Attention distribution over structures z

Motivation: Structured Output Prediction

Modeling the structured **output** (i.e. graphical model in top of a neural net) has improved performance

- Given a sequence $x = x_1, \dots, x_T$
- Factored potentials $\theta_{i,i+1}(z_i,z_{i+1};x)$

$$p(z|x;\theta) = softmax(\sum_{i=1}^{T-1} \theta_{i,i+1}(z_i, z_{i+1}; x)) = \frac{1}{Z} exp(\sum_{i=1}^{T-1} \theta_{i,i+1}(z_i, z_{i+1}; x))$$

Outline

- Deep Neutral Networks for Text Processing and Generation
- 2 Attention Networks
- Structured Attention Networks
 - Overview
 - Computational Challenges
 - Structured Attention in Practice
- 4 Conclusion and Future Work

Structured Attention Networks: Notation

x_1,\dots,x_T	Memory bank	-
q	Query	-
z_1,\dots,z_T	Memory selection	Selection over structures
$p(z_i x, q; heta)$	Attention distribution	Marginal distributions
f(x,z)	Annotation function	Neural representation

Challenge: End-to-End Training

Requirements:

- **①** Compute attention distribution (marginals) $p(z_i | x, q; \theta)$
 - ⇒ Forward-backward algorithm
- **②** Gradients wrt attention distribution parameters θ .
 - ⇒ Backpropagation through forward-backward algorithm

Forward-Backward Algorithms

- θ : input potentials (e.g. from NN)
- α, β : dynamic programming tables

procedure STRUCTATTENTION(θ)

Forward

for
$$i=1,\ldots,n;z_i$$
 do
$$\alpha[i,z_i] \leftarrow \sum_{z_{i-1}} \alpha[i-1,z_{i-1}] \times \exp(\theta_{i-1,i}(z_{i-1},z_i))$$

Backward

for
$$i=n,\ldots,1;z_i$$
 do
$$\beta[i,z_i]\leftarrow \sum_{z_{i+1}}\beta[i+1,z_{i+1}]\times \exp(\theta_{i,i+1}(z_i,z_{i+1}))$$

Forward-Backward Algorithms (Log-Space)

$$heta\colon ext{input potentials (e.g. from MLP or parameters)} \ x\oplus y = \log(\exp(x) + \exp(y)) \ x\otimes y = x+y \ ext{procedure } ext{STRUCTATTENTION}(heta) \ ext{Forward} \ ext{for } i=1,\ldots,n;z_i ext{ do } \ ext{} lpha[i,z_i] \leftarrow igoplus_{z_{i-1}} lpha[i-1,y] \otimes heta_{i-1,i}(z_{i-1},z_i) \ ext{Backward} \ ext{for } i=n,\ldots,1;z_i ext{ do } \ ext{} eta[i,z_i] \leftarrow igoplus_{z_{i+1}} eta[i+1,z_{i+1}] \otimes heta_{i,i+1}(z_i,z_{i+1}) \ ext{} \ ext{}$$

Structured Attention Networks for NMT

Backpropagating through Forward-Backward

 $abla_p^{\mathcal{L}}$: Gradient of arbitrary loss \mathcal{L} with respect to marginals p

procedure BackpropStructAtten $(\theta, p, \nabla_{\alpha}^{\mathcal{L}}, \nabla_{\beta}^{\mathcal{L}})$

Backprop Backward

$$\begin{array}{l} \text{for } i=n,\dots 1; z_i \text{ do} \\ \hat{\beta}[i,z_i] \leftarrow \nabla^{\mathcal{L}}_{\alpha}[i,z_i] \oplus \bigoplus_{z_{i+1}} \theta_{i,i+1}(z_i,z_{i+1}) \otimes \hat{\beta}[i+1,z_{i+1}] \end{array}$$

Backprop Forward

$$\begin{array}{l} \text{for } i=1,\ldots,n; z_i \text{ do} \\ \hat{\alpha}[i,z_i] \leftarrow \nabla^{\mathcal{L}}_{\beta}[i,z_i] \oplus \bigoplus_{z_{i-1}} \theta_{i-1,i}(z_{i-1},z_i) \otimes \hat{\alpha}[i-1,z_{i-1}] \end{array}$$

Potential Gradients

$$\begin{array}{l} \text{for } i=1,\ldots,n; z_i, z_{i+1} \text{ do} \\ \nabla^{\mathcal{L}}_{\theta_{i-1,i}(z_i,z_{i+1})} \leftarrow \operatorname{signexp}(\hat{\alpha}[i,z_i] \otimes \beta[i+1,z_{i+1}] \oplus \alpha[i,z_i] \otimes \\ \hat{\beta}[i+1,z_{i+1}] \oplus \ \alpha[i,z_i] \otimes \beta[i+1,z_{i+1}] \otimes -A) \end{array}$$

Outline

- Deep Neutral Networks for Text Processing and Generation
- 2 Attention Networks
- Structured Attention Networks
 - Overview
 - Computational Challenges
 - Structured Attention in Practice
- 4 Conclusion and Future Work

Structured Attention Networks for NMT

Neural Machine Translation Experiments

Data

- Dataset is from WAT 2015)
- Japanese characters to English characters
- Japanese words to English words

Neural Machine Translation Experiments

	Simple	Sigmoid	Structured
$CHAR \rightarrow WORD$	12.6	13.1	14.6
$Word \to Word$	14.1	13.8	14.3

BLEU scores on test set (higher is better).

Models:

- Simple softmax attention
- Sigmoid attention
- Structured attention

Attention Visualization: Ground Truth

Attention Visualization: Simple Attention

Attention Visualization: Structured Attention

Structured Attention Networks for Question Answering

baBi tasks (Weston et al., 2015): 1k questions per task

		Simple		Structured	
Task	K	Ans $\%$	Fact $\%$	Ans $\%$	Fact $\%$
Task 02	2	87.3	46.8	84.7	81.8
Task 03	3	52.6	1.4	40.5	0.1
Task 11	2	97.8	38.2	97.7	80.8
Task 13	2	95.6	14.8	97.0	36.4
Task 14	2	99.9	77.6	99.7	98.2
Task 15	2	100.0	59.3	100.0	89.5
Task 16	3	97.1	91.0	97.9	85.6
Task 17	2	61.1	23.9	60.6	49.6
Task 18	2	86.4	3.3	92.2	3.9
Task 19	2	21.3	10.2	24.4	11.5
Average	_	81.4	39.6	81.0	53.7

Structured Attention Networks for Natural Language Inference

Dataset: Stanford Natural Language Inference (Bowman et al., 2015)

Model	Accuracy %
No Attention	85.8
Hard parent	86.1
Simple Attention	86.2
Structured Attention	86.8

Conclusion and Future Work

Structured Attention Networks

- Generalize attention to incorporate latent structure
- Exact inference through dynamic programming
- Training remains end-to-end

Future work

- Approximate differentiable inference in neural networks
- Incorporate other probabilistic models into deep learning