МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра физики

ОТЧЕТ

по лабораторной работе №7 по дисциплине «Физика»

Тема: Маятник Обербека

Студентка гр. 1302	 Новиков Г.В
Преподаватель	Попов Ю.И.

Санкт-Петербург 2021

Цель работы

Экспериментальное исследование законов динамики вращательного движения твердого тела на примере маятника Обербека, определение постоянной части момента

инерции маятника Обербека.

Приборы и принадлежности: Маятник Обербека (рис. 1) представляет собой крестовину 1 с грузами 2, на вращающейся оси 3. На шкив на оси намотана нить с грузиком которая, разматываясь, 5, вызывает вращательное движение крестовины. На четырех перпендикулярных стержнях крестовины располагаются четыре подвижных груза 2 массой т положение которых относительно вращения маятника определяется по измерительной линейке 6. В опыте положения грузов на крестовине меняют с помощью их перемещения по резьбовым спицам крестовины. Фиксация грузов в каждой серии измерений осуществляется путем законтривания двух резьбовых половин каждого груза в выбранном положении. На оси крестовины располагается датчик 4 угловой скорости вращения маятника, подключенный через концентратор к измерительному блоку 7.

Исследуемые закономерности

Вращение маятника описывается основным уравнением динамики вращательного движения $M = I \; \epsilon,$

(1)

Рис. 1

где М – момент сил, действующих на маятник, І – его момент инерции.

Вращательный момент М сил, действующих на маятник, определяется выражением:

$$M = TR - M_{Tp}, (2)$$

где T — сила, действующая на шкив маятника со стороны нити, $M_{\tau p}$ — момент сил трения в оси маятника, R — радиус шкива, на который намотана нить с прикрепленным к ней грузом m_0 .

Движение груза m_0 на нити описывается вторым законом Ньютона

$$m_0 a = m_0 g - T.$$
 (3)

С учетом этого уравнения момент сил, действующих на маятник, можно записать в виде:

$$M = m_0(g - a) R - M_{Tp}. \tag{4}$$

Если подставить (4) в (1), то уравнение вращательного движения маятника примет вид

$$I\varepsilon = m_0(g-a) R - M_{Tp}$$
.

C учетом, что угловое ускорение ϵ вращения маятника связано с ускорением а движения груза m_0 соотношением

$$a = \varepsilon R,$$
 (5)

это уравнение можно привести к виду:

$$(I + m_0 R^2)\varepsilon = m_0 g R - M_{Tp}. \tag{6}$$

В этой формуле правая часть равенства есть постоянная величина. Отсюда следует, что вращение маятника для выбранного в опыте положения грузов является равноускоренным. Кроме того, из формулы (6) следует, что увеличение момента инерции I системы должно приводить в данной работе к уменьшению углового ускорения є ее вращения, и наоборот.

Если m — масса одного из грузов на крестовине, r — его расстояние до оси вращения маятника, то момент инерции крестовины с 4-мя грузами в формуле (6) равен

$$I = I_0 + 4(I_m + mr^2) = I_C + 4mr^2, (7)$$

где I_0 — суммарный момент инерции крестовины без грузов, I_m + mr^2 - момент инерции одного из подвижных грузов, рассчитанный по теореме Гюйгенса-Штейнера, I_m его собственный момент инерции, I_C = I_0 + $4I_m$ — постоянная часть момента инерции маятника Обербека.

Момент инерции I_C в данной работе является экспериментально определяемой величиной. Для его нахождения запишем (6) для двух различных положений r_i и r_j грузов тотносительно оси вращения маятника:

$$(I_C + 4mr_i^2 + m_0R^2)\varepsilon_i = m_0gR - M_{rp},$$
 (8)

$$(I_C + 4mr_i^2 + m_0R^2)\epsilon_i = m_0gR - M_{TP}.$$
 (9)

Равенство правых частей этих равенств означает и равенство их левых частей:

$$(I_C + 4mr_i^2 + m_0R^2)\varepsilon_i = (I_C + 4mr_i^2 + m_0R^2)\varepsilon_i$$
(10)

Отсюда можно найти искомую величину I_C:

$$I_C = 4m \frac{r_j^2 \varepsilon_j - r_i^2 \varepsilon_i}{\varepsilon_i - \varepsilon_j} - m_0 R^2, \tag{11}$$

где $j \neq i$, и при $r_i < r_j$ должно быть $\epsilon_i > \epsilon_j$. В этой формуле величины I_C , R, m, m_0 – константы, поэтому множитель

$$b_{ij} = \frac{r_j^2 \varepsilon_j - r_i^2 \varepsilon_i}{\varepsilon_i - \varepsilon_j} = const$$

при различной геометрии постановки эксперимента.

Для выполнения работы необходимо выполнить три серии измерений угловых ускорений ϵ_1 , ϵ_2 и ϵ_3 маятника при трех различных удаленностях r_1 , r_2 и r_3 грузов на крестовине от оси ее вращения.

Угловое ускорение вращения маятника определяется по формуле $\epsilon = 2\phi / t^2 = 2h / Rt^2$, где $\phi = h / R$ — угол поворота шкива при прохождении грузом на нити расстояния h между двумя метками на установке за время t. Операцию определения времени t и вычисления ϵ в работе выполняет измерительный блок установки. При этом средние значения t и ϵ по четырем измерениям в одном опыте высвечиваются на ЖК дисплее установки.

Una Mattina

Ludovico Einaudi

 ${\small \textcircled{$\circ$}}\ \ Copyright\ 2004\ \ Chester\ Music\ Limited.\ Internacional\ Copyright\ Secured.\ All\ Rights\ Reserved.}$

 $@\ Copyright\ 2004\ Chester\ Music\ Limited.\ Internacional\ Copyright\ Secured.\ All\ Rights\ Reserved,$

