Maths MPSI

Maillet Nathan MP*

Equations différentielles

• Résoudre $x^2y'+(2x-1)y=0$ sur chacun des intervalles \mathbb{R}^{+*} et \mathbb{R}^{-*} . Cette équation a-t-elle des solutions sur \mathbb{R} ? Si oui, les préciser.

Continuité

- Résoudre $f: \mathbb{R} \to \mathbb{R}$ continue / $\forall (x, y), f(x + y) = f(x)f(y)$
- f continue sur \mathbb{R} / $\lim_{+\infty} f = \lim_{-\infty} f = +\infty \implies f$ admet un minimum sur \mathbb{R}
- $f \in C^1([a,b])$, justifier l'existence de $M_1 = \sup_{[a,b]} (|f'|)$

Suites

- Soit $(u_n)_{n \in \mathbb{N}} / u_{n+1} = 1 + \frac{1}{1+u_n}$. Justifier que $|u_{n+1} \sqrt{2}| \leqslant \frac{\sqrt{2}-1}{2} |u_n \sqrt{2}|$
- $b > a > 0, a_0 = a, b_0 = b, a_{n+1} = \frac{1}{2}(a_n + b_n), b_{n+1} = \sqrt{a_{n+1}b_n}$. Calculer la limite de a_n et b_n
- $f(t) = ln(1+t), u_0 > 0, u_{n+1} = f(u_n)$ Limite de u_n ?

Propiétés de R en tout genre

 \bullet Montrer la densité de $\mathbb Q$ dans $\mathbb R$

Dérivabilité

- Taylor-Lagrange ordre 2 : Soit $f \in C^1([a,b]), f \in \mathcal{D}^2(]a,b[)$. Montrer qu'il existe $c \in]a,b[/f(b)=f(a)+(b-a)f'(a)+\frac{(b-a)^2}{2}f"(c)$
- Dérivée n-ième de $e^x \cos(x)$
- $f(x) = \frac{1}{2+x}, u_0 = 1, u_{n+1} = f(u_n)$. Limite de u_n ?

Lois de compositions internes

• Soit $\mathcal{H} = \left\{ \begin{pmatrix} a & -\bar{b} \\ b & \bar{a} \end{pmatrix}, (a,b) \in \mathbb{C}^2 \right\}$ Quelle structure a-t-on?

Arithmétique

• Résoudre
$$\begin{cases} x \equiv 2[7] \\ x \equiv 1[8] \\ x \equiv 3[9] \end{cases}$$

- Prouver que 374935 = 401*17*11*5 divise $3^{400} 1$ et donner le reste de la division euclidienne de $(100^{200})^{300}$ par 23
- $a \wedge b = 1$, prouver que $(a + b) \wedge ab = 1$
- Quelle condition est nécessaire et suffisante sur n pour que $\mathbb{Z}/n\mathbb{Z}$ soit un corps ?

Polynômes

- Déterminer P/(X+3)P(x) = XP(X+1) et $P/P(X^2) = P(X)P(X-1)$ sur $\mathbb{C}[X]$
- Trouver toutes les valeurs de n pour lesquelles $X^2 + X + 1$ divise $(X+1)^n X^n 1$
- Décomposer en facteur irréductibles de $\mathbb{R}[X]X^8 + X^4 + 1$, $\frac{x^3}{(x+1)^4(x+2)^2}$ et calculer $S_n = \sum_{k=1}^n \frac{k}{k^4 + k^3 + 1}$

Intégration

- Convergence, calcul et équivalent de $w_n = \int_0^{\frac{\pi}{2}} \sin^n(t) dt$
- Soit $f \in C^1, I_n = \int_a^b f(t) \sin(nt) dt$. Montrer que $\lim_{\infty} I_n = 0$
- Ensemble de définition et dérivée de $\int_x^{x^2} \frac{dt}{\ln(t)}$
- $\lim_{\infty} n^3 \sum_{k=1}^n \frac{1}{n^4 + k^2 n^2 + k^4}$

Développements limités

- Décrire le graphe au voisinage de x=1 de $f(x)=\frac{\ln(3-2x)}{x}$
- Donner le comportement graphique en + et $-\infty$ de $g(x)=(x-3)e^{\frac{1}{1+2x}}$

Espaces vectoriels

- Soit des réels $(\lambda_k)_1^n$ 2 à 2 distincts. Montrer que la famille de fonctions de \mathbb{R} vers \mathbb{R} définie par $x \mapsto e^{\lambda_k x}$ est une famille libre.
- Soit $f \in L(E)/f^2 7f + 12Id = \omega$. Montrer que $Ker(f-3Id) \oplus Ker(f-4Id) = E$

Applications linéaires

- Soit $(f,h) \in L(E,F) \times L(F,H)$ Montrer que $h \circ f = \omega \iff Im(f) \subset Ker(h)$
- $(u,v) \in L(E)$ prouver $(u \circ v = u, v \circ u = v) \iff (u,v)$ projecteurs et Ker(u) = Ker(v)
- Soit $E = C^0(\mathbb{R}^+, \mathbb{R}), T : E \to E/T(f) = F, F(0) = f(0), F(x) = \frac{1}{x} \int_0^x f(t) dt$ T est-il un endomorphisme? Quels sont ses valeurs et vecteurs propres?
- Soit $A = \{ \varphi \in L(E) / \varphi = u \circ f \circ v, f \in L(E) \}$ A: espace vectoriel? $Ker(\varphi), Im(\varphi)$? $(\dim(A)$?)

Matrices

• Calculer A^n dans chacun des cas : $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ (rec), $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

(binôme),
$$A = \begin{pmatrix} 0 & 4 & -4 \\ 1 & 3 & -1 \\ -3 & 3 & -1 \end{pmatrix}$$
 (polynôme)

•
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$$
 est-elle diagonalisable?

Déterminants

• Soit M = (sup(i, j)), calculer det(M)

• Calcul de :
$$\begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ -1 & 2 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & -1 & 2 \end{vmatrix}$$

• Calcul du déterminant de Van der Monde : $\begin{vmatrix} 1 & \alpha_1 & (\alpha_1)^2 & \cdots & (\alpha_1)^{n-1} \\ 1 & \alpha_2 & (\alpha_2)^2 & \cdots & (\alpha_2)^{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \alpha_n & (\alpha_n)^2 & \cdots & (\alpha_n)^{n-1} \end{vmatrix}$

Systèmes linéaires et espaces affines

• Résoudre :
$$\begin{cases} x + y + \lambda z = 1 \\ x + \lambda y + z = 1 \\ \lambda x + y + z = 1 \end{cases}$$

• Décrire l'intersection des ensembles
$$\begin{cases} x=-1+2\alpha\\ y=-\alpha\\ z=3+4\alpha \end{cases}$$
 et
$$\begin{cases} x=1+\alpha-\beta\\ y=-2\alpha-3\\ z=-1+4\alpha-\beta \end{cases}$$

Séries

• Nature des séries :
$$\sum_{k=1}^{N} \frac{1}{k^{0.8} \ln(k)}$$
, $\sum_{k=2}^{N} \frac{1}{k \ln^{2}(k)}$ et $\sum_{k=1}^{N} \frac{\ln^{5}(k)}{k^{1.1}}$

• Soit
$$G_n = \frac{1}{(2n)!2^{2n}} \prod_{k=1}^{2n} (2k-1)$$
. Donner la nature de la série des G_n

• Montrer que la suite définie par $u_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln(n)$ converge et déterminer la nature de la série $\sum_{n \ge 1} \frac{1}{n} (1 + \frac{1}{2} + \dots + \frac{1}{n})^{-1}$

Espaces euclidiens

• Résoudre $\vec{x} + \vec{a} \wedge \vec{x} = \vec{b}$ dans \mathbb{R}^3

• Caractériser géométriquement
$$A = \frac{1}{3} \begin{pmatrix} 2 & -2 & 1 \\ -2 & -1 & 2 \\ 1 & 2 & 2 \end{pmatrix}$$
 et $B = \frac{1}{3} \begin{pmatrix} -2 & -1 & 2 \\ 2 & -2 & 1 \\ 1 & 2 & 2 \end{pmatrix}$

• Soit $G = \{\vec{x} \in R^4/x_1 + x_2 = x_3 + x_4 = 0\}$ et $\vec{u} = (1, -1, 0, 1)$. Donner la matrice de P_G et de $P_{G^{\perp}}$. $d(\vec{u}, G) = ?$

•
$$f: \mathbb{R}^2 \to \mathbb{R}, f(a,b) = \int_0^1 (t^2 - at - b)^2 e^{-t} dt$$
 minima sur \mathbb{R}^2 ?

Convexité

• Montrer l'inégalité de Hölder : Soit $p,q>0/\frac{1}{p}+\frac{1}{q}=1,(a_i),(b_i)>0$ \Longrightarrow $\sum a_ib_i\leqslant (\sum (a_i)^p)^{\frac{1}{p}}(\sum (b_i)^p)^{\frac{1}{p}}$

• Montrer l'inégalité de Minkowski : Soit $p,q>0/\frac{1}{p}+\frac{1}{q}=1,(a_i),(b_i)>0 \implies (\sum_{i=1}^n(a_i+b_i)^p)^{\frac{1}{p}}\leqslant (\sum_i(a_i)^p)^{\frac{1}{p}}+(\sum_i(b_i)^p)^{\frac{1}{p}}$

• Montrer que la convexité de f est équivalente à :

$$\forall (a, b, c) / a < b < c,$$

$$\frac{f(b) - f(a)}{b - a} \leqslant \frac{f(c) - f(a)}{c - a} \leqslant \frac{f(c) - f(b)}{c - b}$$

$$(1)$$

Probabilités

- Combien y a-t-il de surjections d'un ensemble de cardinal n+2 vers un ensemble de cardinal n?
- n personnes passent le permis avec chacun une probabilité p de l'avoir. Les recalés repassent dans exactement les même conditions. Soient les variables aléatoires X: obtention du permis après 1 passages et X: obtention du permis après 2 passages et X = X + X
- Soit un avion avec 400 places : en moyenne, 8% des passagés ayant réservés sont absents. La compagnie enregistre 420 réservations. Majorer la probabilité qu'il n'y ait pas assez de place.
- Déterminer une probabilité sur $\Omega = \{1, 2, \dots, n\}$ telle que la probabilité de l'événement $1, 2, \dots, k$ soit proportionnelle à k^2 .
- On considère N coffres avec une probabilité p un trésor a été placé dans l'un de ces coffres, chaque coffre pouvant être choisi de façon équiprobable. On a ouvert N-1 coffres sans rien trouver. Quelle est la probabilité pour qu'il figure dans le dernier coffre?
- Soient A₁, A₂, ··· , A_n n évènements indépendants. Montrer que
 P(A₁ ∪ A₂ ∪ ··· ∪ A_n) = 1 − (1 − P(A₁)) ··· (1 − P(A_n)). Une personne atteint le
 centre d'une cible au tire avec une probabilité de 0.04. Combien doit-elle faire
 d'essais pour l'atteindre avec une probabilité supérieure à 0.95 ?