1. a) Yes, they are part of system call's Application Programming Interface, and they are the only way to interact between computer program and OS kernel.

Notes

- System Calls
 - Is issued by a client
 - Is the only entry points into the kernel system
 - Provides services via API or Application Program Interface
 - Has five different types of calls

Types of System Calls	Windows	Linux
Process Control	CreateProcess() ExitProcess() WaitForSingleObject()	fork() exit() wait()
File Management	CreateFile() ReadFile() WriteFile() CloseHandle()	open() read() write() close()
Device Management	SetConsoleMode() ReadConsole() WriteConsole()	ioctl() read() write()
Information Maintenance	GetCurrentProcessID() SetTimer() Sleep()	getpid() alarm() sleep()
Communication	CreatePipe() CreateFileMapping() MapViewOfFile()	pipe() shmget() mmap()

Example

open(), read(), write(), close(), mkdir() are other examples of system calls

References

- 1) Tutorials Point, Types of System Calls, link
- b) It is user's responsibility to keep track of allocated blocks of heap memory, and memory leak occurs if user fails to deallocate allocated blocks of heap memory

Notes

- Memory API
 - Has two types of memory
 - 1. Stack
 - * Is also called **automatic memory**
 - * Allocations and deallocations are managed by compiler

* Deallocates memory by the end of function call

2. Heap

- * Is long-lived
- * Allocation and deallocation are managed by user
- * Creates memory leak if memory not freed
- * valgrind is a useful heap memoery debugging tool link
- malloc()
 - * Is a C library call
 - * Syntax: void *malloc(size_t size)
 - * Allocates a block of size bytes to **heap memory** and if successful, returns a pointer to it
 - * Returns NULL if memory allocation is unsuccessful

Example

```
int *x = malloc(10 * sizeof(int));
- free()
  * Is a C library call
```

* Frees heap memory that is no longer in use

Example

```
int *x = malloc(10 * sizeof(int));
...
free(x);
```

- brk(), sbrk(), mmap()
 - * Are system calls for memory management

• Buffer overflow

- is an error that occurs when not enough heap memory is allocated

```
char *src = "hello";
char *dst = (char *) malloc(strlen(src)); // too small!
strcpy(dst, src); // work properly
```

c) If the access by two threads are both about reading the stored value (as opposed to write), then concurrency error will not occur.

d) Notes

- Coarse-grained-locking
- Fine-grained-locking
- Hand-over-hand locking
 - Idea: instead of having a single lock for the entire list, a lock per node of the list is added; when traversing the list, the list grabs the next node's lock, and releases the current node's lock
 - Is a fine-grained-locking
 - Holds at most 2 locks at a time

Example

References

1) Techion, Linked Lists: The Role of Locking, link