# Intervalos y Regiones de Confianza

## Ejemplo de duración de baterías

• Los siguientes datos corresponden a la duración en horas de 18 baterías eléctricas (Maronna, 2021):

237 242 232 242 248 230 244 243 254 262 234 220 225 246 232 218 228 240

Queremos estimar la duración media.

## Ejemplo: continuación





## Ejemplo: continuación

- Modelo:  $X_i \sim \mathcal{N}(\mu, \sigma^2)$
- Asumimos por ahora:  $\sigma = \sigma_o = 10$
- Estimación con los datos:  $\bar{x}_n = 237.6111$
- *¡µ* vale 237.6111?
- Objetivo: pasar de la estimación puntual a la estimación por intervalo.
- Daremos un intervalo de valores compatibles con  $\mu$ .

## Intervalos de confianza: definición

Sea  $\mathbf{X}_n = \{X_1, \dots, X_n\}$  una muestra aleatoria.

Diremos que  $(a(\mathbf{X}_n),b(\mathbf{X}_n))$  es un intervalo de confianza de nivel  $1-\alpha$  para el parámetro  $\theta$  sii

$$\mathbb{P}\left(a(\mathbf{X}_n) < \theta < b(\mathbf{X}_n)\right) = 1 - \alpha.$$

## Intervalos de confianza: definición

Sea  $\mathbf{X}_n=\{X_1,\dots,X_n\}$  una muestra aleatoria. Diremos que  $(a(\mathbf{X}_n),b(\mathbf{X}_n))$  es un intervalo de confianza de nivel  $1-\alpha$  para el parámetro  $\theta$  sii

$$\mathbb{P}\left(a(\mathbf{X}_n) < \theta < b(\mathbf{X}_n)\right) = 1 - \alpha.$$

La longitud de 
$$\mathcal{S}(\mathbf{X}_n)=(a(\mathbf{X}_n),b(\mathbf{X}_n))$$
 es  $l=b(\mathbf{X}_n)-a(\mathbf{X}_n)$ 

$$\sigma^2 = \sigma_0^2$$

- ullet Buscamos intervalo de confianza para  $\mu$
- Pivote: función de la muestra y del parámetro de interés, cuya distribución es conocida.

$$\frac{\bar{X}_n - \mu}{\sqrt{\sigma_0^2/n}} \;, \quad \widehat{\mu}_n = \bar{X}_n$$

Distribución del pivote:

$$\frac{\bar{X}_n - \mu}{\sqrt{\sigma_0^2/n}} \sim N(0, 1)$$

• Sea  $z_{\beta}$  con  $P(Z>z_{\beta})=\beta$ : (veamos el gráfico)

$$z_{\beta} = \phi^{-1}(1-\beta) = \mathtt{qnorm(1-beta)}$$

Luego, tenemos que

$$\mathbb{P}\left(-z_{\alpha/2} < \frac{\bar{X}_n - \mu}{\sqrt{\sigma_0^2/n}} < z_{\alpha/2}\right) = 1 - \alpha$$

# Area bajo la N(0,1)



Por lo tanto, tenemos que

$$\mathbb{P}\left(\bar{X}_n - z_{\alpha/2}\sqrt{\frac{\sigma_0^2}{n}} < \mu < \bar{X}_n + z_{\alpha/2}\sqrt{\frac{\sigma_0^2}{n}}\right) = 1 - \alpha$$

Así, obtenemos que

$$\left(\bar{X}_n - z_{\alpha/2} \sqrt{\frac{\sigma_0^2}{n}} \quad , \quad \bar{X}_n + z_{\alpha/2} \sqrt{\frac{\sigma_0^2}{n}}\right)$$

es un intervalo de confianza de nivel  $1-\alpha$  para  $\mu$  bajo el modelo normal cuando la varianza es  $\sigma_0^2$  conocida.



Intervalo de confianza de nivel  $1-\alpha$  para  $\mu$ 

$$\left(\overline{X}_n - z_{\alpha/2}\sqrt{\frac{\sigma_0^2}{n}} \quad , \quad \overline{X}_n + z_{\alpha/2}\sqrt{\frac{\sigma_0^2}{n}}\right)$$

#### Algunas preguntas

- ullet ¿Cuánto vale longitud tiene el intervalo? l=
- ¿Qué ocurre con l a medida que n aumenta?
- ¿Qué ocurre con l cuando el nivel  $1-\alpha$  aumenta?
- ¿Qué ocurre con l cuando aumenta la varianza  $\sigma_0^2$ ?

 $\xi Y$  si queremos que la longitud sea menor a cierto valor  $l_o$ ?

- $X_i \sim \mathcal{N}(\mu, \sigma_o^2)$  i.i.d. Buscamos intervalo de confianza para  $\mu$ .
- $\sigma_o$  conocido: IC nivel  $1-\alpha$  para  $\mu$

$$\left(\bar{X}_n - z_{\alpha/2} \frac{\sigma_o}{\sqrt{n}} , \bar{X}_n + z_{\alpha/2} \frac{\sigma_o}{\sqrt{n}}\right)$$

• longitud  $ightarrow l = 2 \; z_{lpha/2} \; rac{\sigma_o}{\sqrt{n}}$ 

 $\xi Y$  si queremos que la longitud sea menor a cierto valor  $l_o$ ?

- $X_i \sim \mathcal{N}(\mu, \sigma_o^2)$  i.i.d. Buscamos intervalo de confianza para  $\mu$ .
- $\sigma_o$  conocido: IC nivel  $1-\alpha$  para  $\mu$

$$\left(\bar{X}_n - z_{\alpha/2} \frac{\sigma_o}{\sqrt{n}} , \bar{X}_n + z_{\alpha/2} \frac{\sigma_o}{\sqrt{n}}\right)$$

• longitud  $\rightarrow l = 2 \; z_{\alpha/2} \; \frac{\sigma_o}{\sqrt{n}} \leq l_o$ 

- $X_i \sim \mathcal{N}(\mu, \sigma_o^2)$  i.i.d. Buscamos intervalo de confianza para  $\mu$ .
- ullet  $\sigma_o$  conocido: IC nivel 1-lpha para  $\mu$

$$\left(\bar{X}_n - z_{\alpha/2} \frac{\sigma_o}{\sqrt{n}} , \bar{X}_n + z_{\alpha/2} \frac{\sigma_o}{\sqrt{n}}\right)$$

- ullet longitud  $ightarrow l = 2 \; z_{lpha/2} \; rac{\sigma_o}{\sqrt{n}} \leq l_o$
- Si queremos  $l \leq l_o \rightarrow \frac{4z_{\alpha/2}^2\sigma_o^2}{l_o^2} \leq n$

## Regiones de confianza

Dado un vector  $\mathbf{X}$  con distribución perteneciente a la familia  $F(\mathbf{x},\theta)$  con  $\theta \in \Theta$ , una región de confianza  $\mathcal{S}(\mathbf{X})$  para  $\theta$  con nivel de confianza  $1-\alpha$  será una función que a cada  $\mathbf{X}$  le asigne un subconjunto  $\mathcal{S}(\mathbf{X}) \subset \Theta$  de manera que

$$\mathbb{P}_{\theta}(\theta \in \mathcal{S}(\mathbf{X})) = 1 - \alpha, \quad \forall \theta \in \Theta$$

Es decir,  $\mathcal{S}(\mathbf{X})$  cubre el valor verdadero del parámetro con probabilidad  $1-\alpha$ .

Caso particular: Si  $\theta \in \mathbb{R}$  se dirá que  $\mathcal{S}(\mathbf{X})$  es un intervalo de confianza cuando

$$\mathcal{S}(\mathbf{X}) = [a(\mathbf{X}), b(\mathbf{X})]$$

## Procedimiento general: Método del Pivote

Sea  ${\bf X}$  un vector aleatorio cuya distribución pertenece a la familia  $F({\bf x},\theta),\ \theta\in\Theta.$ 

Una función  $G(\mathbf{X},\theta)$  se llama un pivote sii la distribución de  $G(\mathbf{X},\theta)$  no depende de  $\theta.$ 

## Procedimiento general: Método del Pivote

Sea  ${\bf X}$  un vector aleatorio cuya distribución pertenece a la familia  $F({\bf x},\theta)$ ,  $\theta\in\Theta.$ 

Una función  $G(\mathbf{X},\theta)$  se llama un pivote sii la distribución de  $G(\mathbf{X},\theta)$  no depende de  $\theta.$ 

**Teorema** Sea  ${\bf X}$  un vector aleatorio cuya distribución pertenece a la familia  $F({\bf x},\theta),\ \theta\in\Theta$ . Sea

- $U = G(\mathbf{X}, \theta)$  una variable aleatoria cuya distribución es independiente de  $\theta$ .
- $A \ y \ B \ tales \ que \ \mathbb{P}(A \leq U \leq B) = 1 \alpha.$

Luego, si  $S(\mathbf{X}) = \{\theta : A \leq G(\mathbf{X}, \theta) \leq B\}$ ,  $S(\mathbf{X})$  es una región de confianza a nivel  $(1 - \alpha)$  para  $\theta$ .

¿Qué hacemos si  $\sigma$  es desconocida?

Si no conocemos la varianza  $\sigma^2$ , deberemos reemplazar a  $\sigma^2$  por un estimador....

Usemos 
$$S_n^2=\frac{\sum_{i=1}^n(X_i-\bar{X}_n)^2}{n-1}$$
, pero...

$$\frac{X_n - \mu}{\sqrt{S_n^2/n}} \sim ?$$

Veamos los resultados de una simulación

# Distribución $\chi^2_k$

- Sean  $Z_1, ..., Z_k$  i.i.d.,  $Z_i \sim N(0, 1)$ .
- Llamamos  $\chi^2_k$  (chi cuadrado con  $k-{\rm grados}$  de libertad) a la distribución de

$$Z_1^2 + Z_2^2 + \dots + Z_k^2$$

o sea:

$$Z_1^2 + Z_2^2 + \dots + Z_k^2 \sim \chi_k^2$$
.

•  $\chi^2_k$  corresponde a una  $\Gamma(\frac{k}{2},\frac{1}{2})$ 



#### Distribución t

Una variable aleatoria tiene ditribución  $t_k$  de Student con k grados de libertad si para todo  $u \in \mathbb{R}$  su densidad es de la forma

$$f(u,k) = \frac{\Gamma\left(\frac{k+1}{2}\right)}{\sqrt{k\pi}\Gamma\left(\frac{k}{2}\right)} \left(1 + \frac{u^2}{k}\right)^{-\frac{k+1}{2}}$$

### Distribución t

Una variable aleatoria tiene ditribución  $t_k$  de Student con k grados de libertad si para todo  $u \in \mathbb{R}$  su densidad es de la forma

$$f(u,k) = \frac{\Gamma\left(\frac{k+1}{2}\right)}{\sqrt{k\pi}\Gamma\left(\frac{k}{2}\right)} \left(1 + \frac{u^2}{k}\right)^{-\frac{k+1}{2}}$$

¿Cuándo aparece una  $t_k$ ?

 $Z \sim N(0,1)$  y  $U \sim \chi_k^2$  independientes:

$$\frac{Z}{\sqrt{U/k}} \sim t_k$$

## Mirando percentiles...



# Comparando con la normal...



Intervalos para la media  $\mu$  y la varianza de una normal

Buscando un pivote....

## Intervalos para la media $\mu$ y la varianza de una normal

Buscando un pivote....

**Teorema** Sean  $X_1, \ldots, X_n$  variables aleatorias independientes donde  $X_i \sim N(\mu, \sigma^2)$ . Luego

a) 
$$Z = \sqrt{n} \frac{X_n - \mu}{\sigma} \sim N(0, 1)$$
, con  $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ .

b) 
$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$
 es independiente de  $\bar{X}_n$ .

c) 
$$\frac{(n-1)S_n^2}{\sigma^2} \sim \chi_{n-1}^2$$
.

d) 
$$\sqrt{n} \frac{(X_n - \mu)}{S_n} \sim t_{n-1}$$
.

### Recordemos que:

- Si Z es una v.a. con distribución normal standard,  $Z^2 \sim \Gamma(1/2, 1/2)$ , o sea  $\chi_1^2$ .
- Si  $U_1, \ldots, U_k$  independientes.,  $U_i \sim \Gamma(\alpha_i, \lambda)$ , entonces

$$U_1 + U_2 + \dots + U_k \sim \Gamma\left(\sum_{i=1}^k \alpha_i, \lambda\right)$$

- La suma de n v.a. independientes  $\chi_1^2$  tiene distribución  $\chi_n^2$ .
- Si  $Z_1, \ldots, Z_n$  i.i.d.,  $Z_i \sim \mathcal{N}(0,1)$ , entonces

$$Z_1^2 + Z_2^2 + \dots + Z_n^2 \sim \Gamma(n/2, 1/2) = \chi_n^2$$

## Recordemos que:

- Si Z es una v.a. con distribución normal standard,  $Z^2 \sim \Gamma(1/2,1/2)$ , o sea  $\chi_1^2$ .
- Si  $U_1, \ldots, U_k$  independientes.,  $U_i \sim \Gamma(\alpha_i, \lambda)$ , entonces

$$U_1 + U_2 + \dots + U_k \sim \Gamma\left(\sum_{i=1}^k \alpha_i, \lambda\right)$$

- La suma de n v.a. independientes  $\chi_1^2$  tiene distribución  $\chi_n^2$ .
- Si  $Z_1, \ldots, Z_n$  i.i.d.,  $Z_i \sim \mathcal{N}(0,1)$ , entonces

$$Z_1^2 + Z_2^2 + \dots + Z_n^2 \sim \Gamma(n/2, 1/2) = \chi_n^2$$

Consideremos las siguientes v.a.  $Y_i = \frac{\bar{X}_i - \mu}{\sigma_o} \sim N(0,1),$ 

$$V = \sqrt{n}\bar{Y}, \quad W = \sum_{i=1}^{n} (Y_i - \bar{Y})^2, \quad U = \frac{V}{\sqrt{W/(n-1)}}$$

## Bajo Normalidad con $\sigma^2$ desconocida

Buscamos un intervalo de confianza para  $\mu$  con  $\sigma^2$  desconocida.

• Pivote:

$$\frac{\bar{X}_n - \mu}{\sqrt{S_n^2/n}} \sim t_{n-1}$$

• Sea  $t_{k,\beta}$  tal que  $\mathbb{P}(Y > t_{k,\beta}) = \beta$  cuando  $Y \sim t_k$ , entonces

$$\mathbb{P}\left(-t_{n-1,\alpha/2} < \frac{\bar{X}_n - \mu}{\sqrt{S_n^2/n}} < t_{n-1,\alpha/2}\right) = 1 - \alpha$$

Luego,

$$\left(\bar{X}_n - t_{n-1,\alpha/2}\sqrt{\frac{S_n^2}{n}} \quad , \quad \bar{X}_n + t_{n-1,\alpha/2}\sqrt{\frac{S_n^2}{n}}\right)$$

es un intervalo de confianza de nivel  $1-\alpha$  para  $\mu$  bajo el modelo normal, con varianza  $\sigma^2$  desconocida.

