Probability paradoxes

Ivan Murashko

Contents

1	Base definitions of probability theory	1
2	Monty Hall problem	2
3	Waiting time on a bus stop	2

Introduction

The goal for the article is to demonstrate several paradoxes that are related to probability theory and how can they can be solved.

1 Base definitions of probability theory

I am going to provide several definitions. I will give the both formal and informal definitions and show how they are related each other.

We will start with the simplest example.

Figure 1: Probability example

Example 1.

TBD [1]

Figure 2: Probability space. It consists of elementary events: a, b, c and d, each of them has equal probability $p_{a,b,c,d}=\frac{1}{4}$

Figure 3: Condition probability. Original probability space. $P(R)=\frac{5}{6},$ $P(B)=\frac{3}{6},$ $P(G)=\frac{4}{6}$

Figure 4: Condition probability. $P(G|R) = \frac{3}{5}, P(B|R) = \frac{2}{5}$

2 Monty Hall problem

TBD

3 Waiting time on a bus stop

TBD

References

[1] А. Н. Колмогоров. Основные понятия теории вероятностей / А. Н. Колмогоров. — Москва: Наука, 1974.

Figure 5: Condition probability. $P(R|B) = \frac{2}{3}, P(G|B) = \frac{1}{3}$

Figure 6: Condition probability. $P(B|G) = \frac{1}{4}, P(R|G) = \frac{3}{4}$