COMP S266F

Computer Architecture

Chapter 2.1 Arithmetic and Logic Unit Design: Processing Integers

the arithmetic and logic unit

Arithmetic and Logic Unit (ALU)

Start from a basic ALU

- The requirements and trade-off of ALU for programmable computer
- Typical approaches of ALU designs
- Instruction: E.g. Addition and Subtraction
 - The details of the operation

ALU Requirements

- High Reliability
- Error Free
- Simple Design
- Efficient Operation
- Large Data Range
- Economical Cost

ALU Requirements Trade-off

- Cannot have everything desirable
- Some requirements are inter-related
 - E.g. high reliability means higher cost
- Some requirements are conflicting to each other
 - E.g. high reliability and simple design
- Importance of trade-off
 - Give away the lesser important desires and take the most important ones

Typical approaches of ALU designs

- Digital representation
 - to code data in electrical signals
- Analogue representation
 - To code data in a continuous range
- Binary numeral system
 - to code numbers for arithmetic and logic operation
- Two's complement binary representation
 - a variant of binary numeral system
 - for addition and subtraction of positive and negative numbers

Digital/Analogue Representation

- Physical attribute as a method to encode data
 - Usually represented in a physical attribute
 - The common physical attribute of electronic system is voltage
 - Voltage is continuous and scalar
- Two ways to represent using voltages:
 - Digital representation
 - greater reliability and error tolerance
 - Analogue representation
 - Better flexibility in representing a wide range of possible values
 - Noise sensitive

digital representation

Digital Representation

- Digital representation is discrete
- Voltage range is divided into levels
- Sufficiently small fluctuation is acceptable
 - The small change keeps the signal at the same level, e.g. round the value to the nearest level
- Less prone to errors

Two-level (Binary) Representation

Error tolerance

Voltage (V)	Symbol
[0,4.5)	0
>=4.5	1

We could round the values to nearest levels to withstand the fluctuation of signal

Ten-level Representation

Level	Symbol
0 V	0
1 V	1
2 V	2
3 V	3
4 V	4
5 V	5
6 V	6
7 V	7
8 V	8
9 V	9

We are receiving data stream 90

Ten-level Representation

More levels smaller error tolerance

- Much smaller margins
- 0.5 for Symbols 0
- 1 for Symbols 1-8

Level	Symbol
[0,0.5) V	0
[0.5,1.5) V	1
[1.5, 2.5) V	2
[2.5, 3.5) V	3
[3.5, 4.5) V	4
[4.5, 5.5) V	5
[5.5, 6.5) V	6
[6.5, 7.5) V	7
[7.5, 8.5) V	8
>= 8.5 V	9

Digital Representation

• Question: An electronic system can support voltage from 0V to 5V. If we design a system that requires the representation of integers from 0 to 10, how should we assign the voltage levels to the values?

analogue representation

Analogue Representation

Data value is represented by the voltage level in a continuous manner

For example, we use 0.01 V to represent 1. Thus, 1 V represents 100.

A data value 325 is sent by the sender, using a voltage of 3.25 V

Ine receiver reads from the line and got 3.25 V.
Therefore, receiver interprets the data is 325.

Limitations of Analogue Representation

In transmission, the voltage level may be changed by **noise interference** or simply the **signal degradation (loss)** due to a long signal line

A data value 325 is sent by the sender, using a voltage of 3.25 V

The major limitations are:

- Not tolerant to noise
- Not tolerant to other forms of signal degradation (loss)

binary numeral system

Scenario 1

• How would you represent the following message in a computer?

GOOD GOOD BAD BAD

Hint: how many digital levels (symbols) do we need?

- X to represent 'GOOD'
- O to represent 'BAD'
- The above message can then be represented as: XXOO

Scenario 2 (using three-level digital)

- How would you represent the following message in a computer:
 - GOOD GOOD BAD BAD NEUTRAL
- How many symbols (digital levels) do we need?
 - X to represent GOOD
 - O to represent BAD
 - # to represent NEUTRAL
 - The above message can then be represented as: XXOO#
- Are there other alternatives?
 - Can we use two digital levels (i.e. 2 symbols)?

Scenario 2 (using two-level digital)

- XX to represent GOOD
- XO to represent BAD
- OO to represent NEUTRAL
- The message GOOD GOOD BAD BAD NEUTRAL can now be represented as:
 - XXXXXXOXOOO

Scenario 2 (three-level v.s. two-level)

- Comparing the two solutions:
 - XXOO# (P. 21)
 - XXXXXXOXOOO (P. 22)
- What's the main tradeoff of these two solutions?

Main Approaches of ALU Design

- Create a data representation system for the ALU
 - Digital representation to code data in electrical signals.
 - Binary numeral system to code numbers for arithmetic and logic operations
 - Two's complement binary representation for addition and subtraction of positive and negative numbers

Binary numeral system

- Binary numeral system uses two symbols to represent data '0' and '1'
 - 2-level digital representation
 - Most error tolerant
 - Less technically challenging

What is a numeral system?

- Numeral system supports a systematic and consistent set of rules to represent numbers
 - Examples: decimal, binary, and hexadecimal
- Key characteristics:
 - Define a set of numbers such as integers or positive numbers.
 - Provide each number in the number set a unique representation.
 - Contain of a set of unique symbols
 - Decimal: the ten symbols are 0, 1, 2, ..., 9
 - Provide rules for combining symbols to represent a larger range of numbers

The Base of a Numeral System

Number of unique symbols used in the system

Base	Numeral System
2	Binary
3	Ternary
8	Octal
10	Decimal
12	Duodecimal
16	Hexadecimal
20	Vigesimal
60	Sexagesimal

The Base of a Numeral System

- Binary numeral system has 2 symbols 0 and 1
 - Single digit binary number can represent the values from 0 to 1 (decimal) only
- Hexadecimal numeral system has 16 symbols, from 0, 1, 2, to 9, A, B, C, D, E, and F
 - Single digit hexadecimal number can represent the values from 0 to 15 (decimal)
 - Need to support more symbols
 - Represent a greater range of values with same number of digits
- What's the tradeoff between base-2 and base-16?

Positional Notation

- Positional notation provides rules for combining symbols to represent a larger range of numbers
 - Each digit is related to the next by a multiplier
 - Multiplier is the base or the radix of the number system
 - Number is the sum of all digits multiplied by their multipliers
 - Larger numbers constructed by putting symbols together

Positional Notation (Example 1)

• Why is the number 3456 representing the value 3456 in the decimal numeral system?

Digits	3	4	5	6
Representation	10 ³ or 1000	10 ² or 100	10 ¹ or 10	10º or 1
Value of digit	3000	400	50	6

Total value is the summation of the contribution of each digit,
 which is 3000 + 400 + 50 + 6 = 3456

Positional Notation (Example 2)

 Octal system has 8 symbols from 0 to 7. In the same way, we can sue positional notation to represent larger values in octal.
 What is the value of the octal number 2476 in decimal?

Digits	2	4	7	6
Representation	8 ³ or 512	8 ² or 64	8 ¹ or 8	8 ⁰ or 1
Value of digit	1024	256	56	6

• Total value is the summation of the contribution of each digit, which is 1024 + 256 + 56 + 6 = 1342 (decimal)

Positional Notation

- Range of numbers representable depends on:
 - Number of symbols
 - Number of digits

Base	Numeral system	No. of symbols	Range represented by 8 digits	Range in decimal
2	Binary	2	00000000 to 11111111	0 to 255
3	Ternary	3	00000000 to 2222222	0 to 6560
8	Octal	8	00000000 to 77777777	0 to 16777215
10	Decimal	10	00000000 to 99999999	0 to 99999999
16	Hexadecimal	16	00000000 to	0 to 4294967295

Positional Notation

More about binary and decimal numeral systems

Number of digits	Range	Maximum (Binary)	Maximum (Decimal)
1	0 to 2 ¹ -1	1	1
8	0 to 2 ⁸ -1	11111111	255
16	0 to 2 ¹⁶ -1	1111111111111111	65535
32	0 to 2 ³² -1	111111111111111111111111111111111111111	4294967295

Representing Negative Numbers

- Adding a new symbol
 - For example: the '-' symbol
 - -10
 - 8
 - Cost: an additional symbol for the system
- Use a designated digit
 - For example: designate the left most position
 - 0111 (binary) represents -7 (decimal)
 - 1111 (binary) represents 7 (decimal)
 - Cost: an additional digit in every number

0 -> negative 1 -> positive

Brief Summary

- Use 2-level digital representation
 - Most error tolerant representation
- Binary numeral system uses two symbols 0 and 1 and the positional notation to represent positive values.
 - A digit is a bit
 - There are 8 bits in a byte
 - An 8-bit binary number can represent 256 different values
 - If the smallest value is 0, then the range is from 0 to 255