المرجح في المستوي (1)

♦ مرجح نقطتين

lpha+eta
eq 0 حيث: lpha حيث lpha حيث lpha حيث lpha حيث lpha lpha مرجح النقطتين lpha و lpha المرفقتين بالمعاملين lpha و lpha

و α عددان حقیقیان α

تسمى الثنائية (A,α) نقطة مثقلة و تسمى الجملة $\{(A,\alpha);(B,\beta)\}$ جملة نقطتين مثقلتين \circ

(lpha=eta=1:اذا كان lpha=eta=1 نحصل: lpha=eta=1 منتصف lpha=eta نحصل: lpha=eta=1 منتصف lpha=eta=1 بذا كان lpha=eta=1 نحصل: lpha=eta=1 منتصف المحالة: lpha=eta=1 بنات: lpha=1 منتصف المحالة: lpha=1

 $lpha \overrightarrow{MA} + eta \overrightarrow{MB} = (lpha + eta) \overrightarrow{MG}$ الدينا: A مرجح $\{(A, lpha); (B, eta)\}$ مرجح G

 $\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MG}$ الدينا: M منتصف AB منتصف AB منتصف AB

خوأ<u>ص:</u>

 $k \in \mathbb{R}^*$: حیث $\{(A, k\alpha); (B, k\beta)\}$ مرجع $G \Leftrightarrow \{(A, \alpha); (B, \beta)\}$ حیث $G \bullet$

ه و G على استقامة واحدة $\{(A, lpha); (B, eta)\}$ مرجح G

احداثيا مرجح نقطتين:

 $:\{(A,lpha);(B,eta)\}$ و G مرجع $G(x_G;y_G)$; $B(x_B;y_B)$; $A(x_A;y_A)$

$$x_G = \frac{\alpha x_A + \beta x_B}{\alpha + \beta}$$
 ; $y_G = \frac{\alpha y_A + \beta y_B}{\alpha + \beta}$

نشاء مرجح نقطتين:

$$lpha\overrightarrow{GA} + oldsymbol{eta}\overrightarrow{GB} = \overrightarrow{\mathbf{0}} \Longleftarrow \{(A, lpha); (B, oldsymbol{eta})\}$$
 مرجح G

$$\overrightarrow{AG} = rac{eta}{lpha + eta} \, \overrightarrow{AB}$$
: نكتب \overrightarrow{AG} بدلالة \overrightarrow{AB} وفق القانون (1

(سمكن الاستعانة بمبرهنة طالس) نقسم القطعة $\frac{\beta}{\alpha+\beta}$ الحروب العالمة أم انطلاقا من الطلاقا من الطلاقا من (2

مرجح 3 نقط

$$lpha \overrightarrow{GA} + eta \overrightarrow{GB} + \gamma \overrightarrow{GC} = \overrightarrow{0} \iff \gamma$$
 و eta , $lpha$ المرفقة بالمعاملات eta و eta مرجح النقط eta

 $lpha+eta+\gamma
eq 0$ و γ أعداد حقيقية حيث: eta , lpha

ABC و B , A و B و النقط A و B و النقط A و B المثلث A و النقط A و الن

<u>مبرهنة:</u>

 $\alpha \overline{MA} + \beta \overline{MB} + \gamma \overline{MC} = (\alpha + \beta + \gamma) \overline{MG}$ مرجح $G \Leftrightarrow \{(A, \alpha); (B, \beta); (C, \gamma)\}$ مرجح خواص:

 $k \in \mathbb{R}^*$ - حيث $\{(A,klpha);(B,keta);(C,k\gamma)\}$ حيث $G \Leftrightarrow \{(A,lpha);(B,eta);(C,\gamma)\}$ حيث $G \Leftrightarrow \{(A,lpha);(B,eta);(C,\gamma)\}$

 $\{(D, \alpha + \beta); (C, \gamma)\}$ مرجح $\{(A, \alpha); (A, \alpha); (B, \beta)\}$, إذا كانت D مرجح $\{(A, \alpha); (B, \beta); (C, \gamma)\}$ فإن: C مرجح C نقط:

 $: \{(A, lpha); (B, eta); (C, \gamma)\}$ و G عرجع $G(x_G; y_G); C(x_C; y_C); B(x_B; y_B); A(x_A; y_A)$

$$x_G = \frac{\alpha x_A + \beta x_B + \gamma x_C}{\alpha + \beta + \gamma}$$
 ; $y_G = \frac{\alpha y_A + \beta y_B + \gamma y_C}{\alpha + \beta + \gamma}$

إنشاء مرجح 3 نقط:

$$lpha\overrightarrow{GA} + eta\overrightarrow{GB} + \gamma\overrightarrow{GC} = \overrightarrow{0} \leftrightharpoons \{(A, lpha); (B, eta); (C, \gamma)\}$$
 مرجح G

$$\overrightarrow{AG} = rac{eta}{lpha + eta + \gamma} \, \overrightarrow{AB} + rac{\gamma}{lpha + eta + \gamma} \, \overrightarrow{AC}$$
: نكتب \overrightarrow{AG} بدلالة \overrightarrow{AG} و فقى القانون (1

$$\frac{\beta}{\alpha+\beta+\gamma} \, \overrightarrow{AB}$$
 و $\frac{\gamma}{\alpha+\beta+\gamma} \, \overrightarrow{AC}$ نرسم الشعاع محصلة مجموع الشعاعين (2

طريقه 2:

- $\alpha + \gamma \neq 0$ ننشيء I مرجح نقطتين بحيث مجموع المعاملين I مثلا I و I
 - G نكتب \overrightarrow{GI} بدلالة \overrightarrow{BI} و ننشيء (2

المرجح في المستوي (2)

* مجموعة النقط

	فإن مجموعة النقط هي	إذا كان	
	$oldsymbol{r}=oldsymbol{k}'$ دائرة مركزها $oldsymbol{G}$ و نصف قطرها	$k'>0$ حيث $\left\ \overrightarrow{MG} ight\ =k'$	
دائرة	r=AB دائرة مركزها G و نصف قطرها $r=AB$ الأن	$\ \overrightarrow{MG}\ = AB$	1
	[GH] و مركزها منتصف $[GH]$	$(MG)\perp(MH)$	
φ	مجموعة خالية	$k' < 0$ حيث $\left\ \overrightarrow{MG} \right\ = k'$	2
نقطة	(G النقطة G (أو هي النقطة M منطبقة على G	$\ \overrightarrow{MG}\ = 0$	3
مستقيم	مستقيم محور القطعة [GH]	$\ \overrightarrow{MG}\ = \ \overrightarrow{MH}\ $	4
جزء من المستوي	كل النقط من المستوي التي تقع داخل و على محيط الدائرة التي مركزها $r=k'$ و نصف قطرها G	$\ \overrightarrow{MG}\ \leq k'$	
	كل النقط من المستوي التي تقع خارج الدائرة التي مركزها G و نصف قطرها $r=k'$	$\ \overrightarrow{MG}\ > k'$	6
	[GH] نصف المستوي في جهة النقطة G و حده محور	$\ \overrightarrow{MG}\ < \ \overrightarrow{MH}\ $	

لله العلاقة: لإثبات أن B تنتمي إلى مجموعة النقط يكفي تعويض M بB في العلاقة المعطاة و نتحصل على علاقة صحيحة $m{\#}$

* ملاحظة 2: لإثبات أن شعاع أو علاقة ما مستقلة عن M يكفي استخدام علاقة شال و خواص الأشعة للتخلص من M

♦ اثبات تلاقى مستقيمات

مثال: ABC مثلث و النقط I , I و ABC معرفة كما يلى:

- B بالنسبة إلى ا [AB] بالنسبة الى ا
 - النقطة I تحقق: $\vec{0} = \vec{0}$
 - $\overrightarrow{BK} = \frac{1}{3}\overrightarrow{BC}$: النقطة K تحقق •
- 1) أرسم شكلا توضح فيه النقط I, I و K مع التبرير.
- 2) أثبت أن كل نقطة من النقط J, J و J هي مرجح لنقطتين من النقط B, A و C يطلب تحديد المعاملين في كل حالة.
 - (3) أثبت أن المستقيمات (CI) , (CI) و متقاطعة.

الحل:

- 1) الإنشاء مع التبرير:
- $\overrightarrow{AI} = \frac{3}{2}\overrightarrow{AB} \iff \overrightarrow{AI} = \overrightarrow{AB} + \frac{1}{2}\overrightarrow{AB}$
- $\overrightarrow{AJ} = 3\overrightarrow{AC} \iff \overrightarrow{AJ} = \frac{-3}{2-3}\overrightarrow{AC} \iff 2\overrightarrow{JA} 3\overrightarrow{JC} = \overrightarrow{0}$
 - $\overrightarrow{BK} = \frac{1}{3}\overrightarrow{BC}$
 - 2) اثبات المرجح وتحديد المعاملات:

$$-2\overrightarrow{IA} + 3\overrightarrow{BI} + 3\overrightarrow{IA} = \overrightarrow{0} \iff 2\overrightarrow{AI} = 3\overrightarrow{AB} \iff \overrightarrow{AI} = \frac{3}{2}\overrightarrow{AB}$$

 $\{A(1), B(-3)\}$ ومنه I مرجح الجملة: $\overline{IA} - 3\overline{IB} = \overline{0} \iff$

 $\{B(2),C(1)\}$: و X مرجع $\{A(2),C(-3)\}$ و X مرجع $\{A(2),C(-3)\}$ و X

اثبات أن المستقيمات (BI) , (CI) متقاطعة: (3

2-6-3=-7
eq G ((A,2)) موجود لأن: G مرجع G , $\{(A,2);(B,-6);(C,-3)\}$ مرجع

$$2\overrightarrow{GA} - 6\overrightarrow{GB} - 3\overrightarrow{GC} = \overrightarrow{0}$$

$$-7\overrightarrow{GI} + 2\overrightarrow{IA} - 6\overrightarrow{IB} - 3\overrightarrow{IC} = \overrightarrow{0}$$

$$-7\overrightarrow{GI} + 2(\overrightarrow{IA} - 3\overrightarrow{IB}) - 3\overrightarrow{IC} = \overrightarrow{0}$$

$$G \in (IC)$$
 و منه $\overrightarrow{GI} = -\frac{3}{7}\overrightarrow{IC}$

 $G \in (AK)$ و $G \in (JB)$ * بنفس الطريقة نجد و منه المستقيمات (CI) , (CI) و منه المستقيمات و منه المستقيمات (BJ)

طريقة 1: (باستعمال خاصية التجميع) $G \in (IC)$ مرجع $\{(I, -4); (C, -3)\}$ و منه G

 $G \in (JB)$ مرجع $\{(J,-1);(B,-6)\}$ و منه G $G \in (AK)$ و منه $\{(K, -9); (A, 2)\}$ مرجع G

و منه المستقيمات (CI) , (CI) و منه المستقيمات

في النقطة G

❖ مستقيم اولار (Euler): هو المستقيم الذي يشمل مركز ثقل مثلث ومركز الدائرة المحيطة به وملتقى الإرتفاعات فيه.