

Chapter 4

Block Ciphers and the Data Encryption Standard

Modern Block Ciphers

- now look at modern block ciphers
- > one of the most widely used types of cryptographic algorithms
- provide secrecy /authentication services
- ➤ focus on DES (Data Encryption Standard)
- ➤ to illustrate block cipher design principles

Block vs Stream Ciphers

- block ciphers process messages in blocks, each of which is then en/decrypted
- like a substitution on very big characters
 - 64-bits or more
- stream ciphers process messages a bit or byte at a time when en/decrypting
- many current ciphers are block ciphers
 - better analysed
 - broader range of applications

(a) Stream Cipher Using Algorithmic Bit Stream Generator

(b) Block Cipher

Figure 4.1 Stream Cipher and Block Cipher

Stream Cipher

Encrypts a digital data stream one bit or one byte at a time

Examples:

- Autokeyed Vigenère cipher
- Vernam cipher

In the ideal case, a one-time pad version of the Vernam cipher would be used, in which the keystream is as long as the plaintext bit stream

If the cryptographic keystream is random, then this cipher is unbreakable by any means other than acquiring the keystream

- Keystream must be provided to both users in advance via some independent and secure channel
- This introduces insurmountable logistical problems if the intended data traffic is very large

For practical reasons the bitstream generator must be implemented as an algorithmic procedure so that the cryptographic bit stream can be produced by both users

It must be computationally impractical to predict future portions of the bit stream based on previous portions of the bit stream

The two users need only share the generating key and each can produce the keystream

Block Cipher

Block Cipher Principles

- most symmetric block ciphers are based on a Feistel Cipher Structure
- needed since must be able to decrypt ciphertext to recover messages efficiently
- block ciphers look like an extremely large substitution
- would need table of 2⁶⁴ entries for a 64-bit block
- instead create from smaller building blocks
- using idea of a product cipher

Figure 4.2 General *n*-bit-*n*-bit Block Substitution (shown with n = 4)

Table 4.1

Encryption and Decryption Tables for Substitution Cipher of Figure 4.2

Plaintext	Ciphertext
0000	1110
0001	0100
0010	1101
0011	0001
0100	0010
0101	1111
0110	1011
0111	1000
1000	0011
1001	1010
1010	0110
1011	1100
1100	0101
1101	1001
1110	0000
1111	0111

Ciphertext	Plaintext
0000	1110
0001	0011
0010	0100
0011	1000
0100	0001
0101	1100
0110	1010
0111	1111
1000	0111
1001	1101
1010	1001
1011	0110
1100	1011
1101	0010
1110	0000
1111	0101

^{© 2020} Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Claude Shannon and Substitution-Permutation Ciphers

- Claude Shannon introduced idea of substitution-permutation (S-P) networks in 1949 paper
- > form basis of modern block ciphers
- ➤S-P nets are based on the two primitive cryptographic operations seen before:
 - substitution (S-box)
 - permutation (P-box)
- provide confusion & diffusion of message & key

Diffusion and Confusion

- Terms introduced by Claude Shannon to capture the two basic building blocks for any cryptographic system
 - Shannon's concern was to thwart cryptanalysis based on statistical analysis

Diffusion

- The statistical structure of the plaintext is dissipated into long-range statistics of the ciphertext
- This is achieved by having each plaintext digit affect the value of many ciphertext digits

Confusion

- Seeks to make the relationship between the statistics of the ciphertext and the value of the encryption key as complex as possible
- Even if the attacker can get some handle on the statistics of the ciphertext, the way in which the key was used to produce that ciphertext is so complex as to make it difficult to deduce the key

Feistel Cipher

 Feistel proposed the use of a cipher that alternates substitutions and permutations

Substitutions

 Each plaintext element or group of elements is uniquely replaced by a corresponding ciphertext element or group of elements

Permutation

 No elements are added or deleted or replaced in the sequence, rather the order in which the elements appear in the sequence is changed

- Is a practical application of a proposal by Claude Shannon to develop a product cipher that alternates confusion and diffusion functions
- Is the structure used by many significant symmetric block ciphers currently in use

Figure 4.3 Feistel Encryption and Decryption (16 rounds)

$$LE_{16} = RE_{15}$$

 $RE_{16} = LE_{15} \oplus F(RE_{15}, K_{16})$

On the decryption side,

$$LD_{1} = RD_{0} = LE_{16} = RE_{15}$$

$$RD_{1} = LD_{0} \oplus F(RD_{0}, K_{16})$$

$$= RE_{16} \oplus F(RE_{15}, K_{16})$$

$$= [LE_{15} \oplus F(RE_{15}, K_{16})] \oplus F(RE_{15}, K_{16})$$

Feistel Cipher Design Features

Block size

 Larger block sizes mean greater security but reduced encryption/decryption speed for a given algorithm

Key size

 Larger key size means greater security but may decrease encryption/decryption speeds

Number of rounds

 The essence of the Feistel cipher is that a single round offers inadequate security but that multiple rounds offer increasing security

Subkey generation algorithm

 Greater complexity in this algorithm should lead to greater difficulty of cryptanalysis

Round function F

 Greater complexity generally means greater resistance to cryptanalysis

Fast software encryption/decryption

 In many cases, encrypting is embedded in applications or utility functions in such a way as to preclude a hardware implementation; accordingly, the speed of execution of the algorithm becomes a concern

Ease of analysis

 If the algorithm can be concisely and clearly explained, it is easier to analyze that algorithm for cryptanalytic vulnerabilities and therefore develop a higher level of assurance as to its strength

Feistel Example

Figure 4.4 Feistel Example

Data Encryption Standard (DES)

- Issued in 1977 by the National Bureau of Standards (now NIST) as Federal Information Processing Standard 46
- Was the most widely used encryption scheme until the introduction of the Advanced Encryption Standard (AES) in 2001
- Algorithm itself is referred to as the Data Encryption Algorithm (DEA)
 - Data are encrypted in 64-bit blocks using a 56-bit key
 - The algorithm transforms 64-bit input in a series of steps into a 64-bit output
 - The same steps, with the same key, are used to reverse the encryption

DES Design Controversy

- although DES standard is public
- was considerable controversy over design
 - in choice of 56-bit key (vs Lucifer 128-bit)
 - and because design criteria were classified
- subsequent events and public analysis show in fact design was appropriate
- use of DES has flourished
 - especially in financial applications
 - still standardised for legacy application use

Figure 4.5 General Depiction of DES Encryption Algorithm

(a) Initial Permutation (IP)

58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

(b) Inverse Initial Permutation (\mathbf{IP}^{-1})

40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

(c) Expansion Permutation (E)

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

(d) Permutation Function (P)

16	7	20	21	29	12	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
19	13	30	6	22	11	4	25

Initial Permutation IP

- > first step of the data computation
- ➤IP reorders the input data bits
- right even bits to LH half, odd bits to RH half
- quite regular in structure (easy in h/w)
- >example:

```
IP(675a6967 5e5a6b5a) = (ffb2194d 004df6fb)
```

DES Round Structure

- uses two 32-bit L & R halves
- as for any Feistel cipher can describe as:

$$L_i = R_{i-1}$$

$$R_i = L_{i-1} \oplus F(R_{i-1}, K_i)$$

- F takes 32-bit R half and 48-bit subkey:
 - expands R to 48-bits using perm E
 - adds to subkey using XOR
 - passes through 8 S-boxes to get 32-bit result
 - finally permutes using 32-bit perm P

DES Round Structure

Substitution Boxes S

- have eight S-boxes which map 6 to 4 bits
- each S-box is actually 4 little 4 bit boxes
 - outer bits 1 & 6 (row bits) select one row of 4
 - inner bits 2-5 (col bits) are substituted
 - result is 8 lots of 4 bits, or 32 bits
- row selection depends on both data & key
 - feature known as autoclaving (autokeying)
- example:
 - $S(18\ 09\ 12\ 3d\ 11\ 17\ 38\ 39) = 5fd25e03$

	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7		2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
\mathbf{s}_1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8	\mathbf{s}_5	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0		4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13		11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3
	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10		12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
\mathbf{s}_2	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5	\mathbf{s}_6	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15		9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9		4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13
	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8		4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
\mathbf{s}_3	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1	s_7	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7		1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
	1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12		6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12
								4.0		^		_	1.1	10	4	15		13	2	8	1	6	15	11	1	10	0	3	1.4	_	Λ	12	7
	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	13		13	2	G	7	U	13	11	1	10	,	3	14	3	U		
\mathbf{s}_4	7 13	13 8	14 11	3 5	0 6	6 15	9 0	3	4	7	2	12	1	10	14	9	s_8	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
s_4	7 13 10	13 8 6	14 11 9	3 5 0	0 6 12	6 15 11	9 0 7	10 3 13	1 4 15	2 7 1	2 3	12 14	11 1 5		4 14 8		\mathbf{s}_8	1 7	15 11	13 4	8	10 9	3	7	4 2	12	5	6	11 11 13	0 15	14		2 8
\mathbf{S}_4		13 8 6 15	14 11 9 0	3 5 0 6	0 6 12 10	6 15 11 1	9 0 7 13	10 3 13 8	1 4 15 9	2 7 1 4	8 2 3 5	12 14 11	11 1 5 12			9	\mathbf{s}_8	1	15 11 1	13 4 14	8 1 7	10 9 4	3 12 10	7 14 8	4 2 13	12 0 15	5 6 12	6 10 9	11 13 0		14 3 5		_

	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
S_5	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
	4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
	11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3
'																
	12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
\mathbf{s}_6	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
	9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
	4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13
'																
	4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
s_7	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
	1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
	6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12
,																
	13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
\mathbf{S}_8	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2

Figure 4.5 General Depiction of DES Encryption Algorithm

DES Key Schedule

- > forms subkeys used in each round
 - •initial permutation of the key (PC1) which selects 56-bits in two 28-bit halves
 - ●16 stages consisting of:
 - rotating each half separately either 1 or 2 places depending on the key rotation schedule

 K
 - selecting 24-bits from each half & permuting them by PC2 for use in round function F
- ➤ note practical use issues in h/w vs s/w

(a) Input Key	64	bit
---------------	-----------	-----

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56
57	58	59	60	61	62	63	64

(b) Permuted Choice One (PC-1) 56 bit

57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

(c) Permuted Choice Two (PC-2) 48 bit

14	17	11	24	1	5	3	28
15	6	21	10	23	19	12	4
26	8	16	7	27	20	13	2
41	52	31	37	47	55	30	40
51	45	33	48	44	49	39	56
34	53	46	42	50	36	29	32

(d) Schedule of Left Shifts

Round Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Bits Rotated	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

DES Decryption

- decrypt must unwind steps of data computation
- with Feistel design, do encryption steps again using subkeys in reverse order (SK16 ... SK1)
 - IP undoes final FP step of encryption
 - 1st round with SK16 undoes 16th encrypt round
 - •
 - 16th round with SK1 undoes 1st encrypt round
 - then final FP undoes initial encryption IP
 - thus recovering original data value

Table 4.2

DES Example

(Table can be found on page 106 in the textbook)

Round	Ki	Li	Ri
IP		5a005a00	3cf03c0f
1	1e030f03080d2930	3cf03c0f	bad22845
2	0a31293432242318	bad22845	99e9b723
3	23072318201d0c1d	99e9b723	0bae3b9e
4	05261d3824311a20	0bae3b9e	42415649
5	3325340136002c25	42415649	18b3fa41
6	123a2d0d04262a1c	18b3fa41	9616fe23
7	021f120b1c130611	9616fe23	67117cf2
8	1c10372a2832002b	67117cf2	c11bfc09
9	04292a380c341f03	c11bfc09	887fbc6c
10	2703212607280403	887fbc6c	600f7e8b
11	2826390c31261504	600f7e8b	f596506e
12	12071c241a0a0f08	f596506e	738538b8
13	300935393c0d100b	738538b8	c6a62c4e
14	311e09231321182a	c6a62c4e	56b0bd75
15	283d3e0227072528	56b0bd75	75e8fd8f
16	2921080b13143025	75e8fd8f	25896490
IP-1		da02ce3a	89ecac3b

Note: DES subkeys are shown as eight 6-bit values in hex format

Avalanche Effect

- key desirable property of encryption alg
- where a change of one input or key bit results in changing approx half output bits
- making attempts to "home-in" by guessing keys impossible
- DES exhibits strong avalanche

Round		δ		Round		δ
	02468aceeca86420	1] [9	c11bfc09887fbc6c	32
	12468aceeca86420		Ш		99f911532eed7d94	
1	3cf03c0fbad22845	1		10	887fbc6c600f7e8b	34
	3cf03c0fbad32845		Ш		2eed7d94d0f23094	
2	bad2284599e9b723	5		11	600f7e8bf596506e	37
	bad3284539a9b7a3		Ш		d0f23094455da9c4	
3	99e9b7230bae3b9e	18] [12	f596506e738538b8	31
	39a9b7a3171cb8b3		Ш		455da9c47f6e3cf3	
4	0bae3b9e42415649	34] [13	738538b8c6a62c4e	29
	171cb8b3ccaca55e		Ш		7f6e3cf34bc1a8d9	
5	4241564918b3fa41	37] [14	c6a62c4e56b0bd75	33
	ccaca55ed16c3653		Ш		4bc1a8d91e07d409	
6	18b3fa419616fe23	33		15	56b0bd7575e8fd8f	31
	d16c3653cf402c68		Ш		1e07d4091ce2e6dc	
7	9616fe2367117cf2	32] [16	75e8fd8f25896490	32
	cf402c682b2cefbc				1ce2e6dc365e5f59	
8	67117cf2c11bfc09	33] [IP-1	da02ce3a89ecac3b	32
	2b2cefbc99f91153				057cde97d7683f2a	

Table 4.3 Avalanche Effect in DES: Change in Plaintext

Table 3.6 Avalanche Effect in DES: Change in Plaintext	Table 3.6	Avalanche	Effect in	DES:	Change	in Plaintext
---	-----------	-----------	-----------	------	--------	--------------

Round		δ
	02468aceeca86420 12468aceeca86420	1
1	3cf03c0fbad22845 3cf03c0fbad32845	1
2	bad2284599e9b723 bad3284539a9b7a3	5
3	99e9b7230bae3b9e 39a9b7a3171cb8b3	18
4	0bae3b9e42415649 171cb8b3ccaca55e	34
5	4241564918b3fa41 ccaca55ed16c3653	37
6	18b3fa419616fe23 d16c3653cf402c68	33
7	9616fe2367117cf2 cf402c682b2cefbc	32
8	67117cf2c11bfc09 2b2cefbc99f91153	33

Round		δ
9	c11bfc09887fbc6c 99f911532eed7d94	32
10	887fbc6c600f7e8b 2eed7d94d0f23094	34
11	600f7e8bf596506e d0f23094455da9c4	37
12	f596506e738538b8 455da9c47f6e3cf3	31
13	738538b8c6a62c4e 7f6e3cf34bc1a8d9	29
14	c6a62c4e56b0bd75 4bc1a8d91e07d409	33
15	56b0bd7575e8fd8f 1e07d4091ce2e6dc	31
16	75e8fd8f25896490 1ce2e6dc365e5f59	32
IP ⁻¹	da02ce3a89ecac3b 057cde97d7683f2a	32

Table 3.7 shows a similar test using the original plaintext of with two keys that differ in only the fourth bit position: the original key, 0f1571c947d9e859, and the altered key, 1f1571c947d9e859. Again, the results show that about half of the bits in the ciphertext differ and that the avalanche effect is pronounced after just a few rounds.

Table 3.7 Avalanche Effect in DES: Change in Key

Round		δ
	02468aceeca86420 02468aceeca86420	0
1	3cf03c0fbad22845 3cf03c0f9ad628c5	3
2	bad2284599e9b723 9ad628c59939136b	11
3	99e9b7230bae3b9e 9939136b768067b7	25
4	0bae3b9e42415649 768067b75a8807c5	29
5	4241564918b3fa41 5a8807c5488dbe94	26
6	18b3fa419616fe23 488dbe94aba7fe53	26
7	9616fe2367117cf2 aba7fe53177d21e4	27
8	67117cf2c11bfc09 177d21e4548f1de4	32

Round		δ
9	c11bfc09887fbc6c 548f1de471f64dfd	34
10	887fbc6c600f7e8b 71f64dfd4279876c	36
11	600f7e8bf596506e 4279876c399fdc0d	32
12	f596506e738538b8 399fdc0d6d208dbb	28
13	738538b8c6a62c4e 6d208dbbb9bdeeaa	33
14	c6a62c4e56b0bd75 b9bdeeaad2c3a56f	30
15	56b0bd7575e8fd8f d2c3a56f2765c1fb	33
16	75e8fd8f25896490 2765c1fb01263dc4	30
IP ⁻¹	da02ce3a89ecac3b ee92b50606b62b0b	30

Round		δ	Round		δ
	02468aceeca86420	0	9	c11bfc09887fbc6c	34
	02468aceeca86420			548f1de471f64dfd	
1	3cf03c0fbad22845	3	10	887fbc6c600f7e8b	36
	3cf03c0f9ad628c5			71f64dfd4279876c	
2	bad2284599e9b723	11	11	600f7e8bf596506e	32
	9ad628c59939136b			4279876c399fdc0d	
3	99e9b7230bae3b9e	25	12	f596506e738538b8	28
	9939136b768067b7			399fdc0d6d208dbb	
4	0bae3b9e42415649	29	13	738538b8c6a62c4e	33
	768067b75a8807c5			6d208dbbb9bdeeaa	
5	4241564918b3fa41	26	14	c6a62c4e56b0bd75	30
	5a8807c5488dbe94			b9bdeeaad2c3a56f	
6	18b3fa419616fe23	26	15	56b0bd7575e8fd8f	33
	488dbe94aba7fe53			d2c3a56f2765c1fb	
7	9616fe2367117cf2	27	16	75e8fd8f25896490	30
	aba7fe53177d21e4			2765c1fb01263dc4	
8	67117cf2c11bfc09	32	IP-1	da02ce3a89ecac3b	30
	177d21e4548f1de4			ee92b50606b62b0b	

Table 4.4 Avalanche Effect in DES: Change in Key

Table 4.5

Average Time Required for Exhaustive Key Search

Key Size (bits)	Cipher	Number of Alternative Keys	Time Required at 10 ⁹ Decryptions/s	Time Required at 10 ¹³ Decryptions/s
56	DES	$2^{56} \approx 7.2 \times 10^{16}$	$2^{55} \text{ ns} = 1.125 \text{ years}$	1 hour
128	AES	$2^{128} \approx 3.4 \times 10^{38}$	$2^{127} \text{ ns} = 5.3 \times 10^{21} \text{ years}$	$5.3 \times 10^{17} \text{years}$
168	Triple DES	$2^{168} \approx 3.7 \times 10^{50}$	$2^{167} \text{ns} = 5.8 \times 10^{33} \text{years}$	$5.8 \times 10^{29} \text{years}$
192	AES	$2^{192} \approx 6.3 \times 10^{57}$	$2^{191} \text{ ns} = 9.8 \times 10^{40} \text{ years}$	$9.8 \times 10^{36} \mathrm{years}$
256	AES	$2^{256} \approx 1.2 \times 10^{77}$	$2^{255} \text{ ns} = 1.8 \times 10^{60} \text{ years}$	1.8×10^{56} years
26 characters (permutation)	Monoalphabetic	$2! = 4 \times 10^{26}$	$2 \times 10^{26} \text{ns} = 6.3 \times 10^9 \text{years}$	$6.3 \times 10^6 \text{ years}$

DES Design Criteria

- as reported by Coppersmith in [COPP94]
- 7 criteria for S-boxes provide for
 - non-linearity
 - resistance to differential cryptanalysis
 - good confusion
- 3 criteria for permutation P provide for
 - increased diffusion

Strength of DES

Timing attacks

- One in which information about the key or the plaintext is obtained by observing how long it takes a given implementation to perform decryptions on various ciphertexts
- Exploits the fact that an encryption or decryption algorithm often takes slightly different amounts of time on different inputs
- So far it appears unlikely that this technique will ever be successful against DES or more powerful symmetric ciphers such as triple DES and AES

Strength of DES – Analytic Attacks

- now have several analytic attacks on DES
- >these utilise some deep structure of the cipher
 - by gathering information about encryptions
 - •can eventually recover some/all of the sub-key bits
 - if necessary then exhaustively search for the rest
- right generally these are statistical attacks
 - differential cryptanalysis
 - •linear cryptanalysis
 - related key attacks

Block Cipher Design Principles: Number of Rounds

The greater the number of rounds, the more difficult it is to perform cryptanalysis

In general, the criterion should be that the number of rounds is chosen so that known cryptanalytic efforts require greater effort than a simple brute-force key search attack

If DES had 15 or fewer rounds, differential cryptanalysis would require less effort than a brute-force key search

Block Cipher Design Principles: Design of Function F

- The heart of a Feistel block cipher is the function F
- The more nonlinear F, the more difficult any type of cryptanalysis will be
- The SAC and BIC criteria appear to strengthen the effectiveness of the confusion function

The algorithm should have good avalanche properties

Strict avalanche criterion (SAC)

States that any output bit j of an S-box should change with probability 1/2 when any single input bit i is inverted for all i, j

Bit independence criterion (BIC)

States that output bits j and k should change independently when any single input bit i is inverted for all i, j, and k

Block Cipher Design Principles: Key Schedule Algorithm

- With any Feistel block cipher, the key is used to generate one subkey for each round
- In general, we would like to select subkeys to maximize the difficulty of deducing individual subkeys and the difficulty of working back to the main key
- It is suggested that, at a minimum, the key schedule should guarantee key/ciphertext Strict Avalanche Criterion and Bit Independence Criterion

Summary

- Understand the distinction between stream ciphers and block ciphers
- Present an overview of the Feistel cipher and explain how decryption is the inverse of encryption
- Present an overview of Data Encryption Standard (DES)

- Explain the concept of the avalanche effect
- Discuss the cryptographic strength of DES
- Summarize the principal block cipher design principles