Homework - CS 2020 Problem Sheet #4

Problem 4.1

Let Σ be a finite set (called an alphabet) and let Σ^* be the set of all words that can be created out the symbols in the alphabet Σ . (Σ^* is the Kleene closure of Σ , which includes the empty word \in .) A word $p \in \Sigma^*$ is called a prefix of a word $w \in \Sigma^*$ if there is a word $q \in \Sigma^*$ such that w = pq. A prefix p is called a proper prefix if $p \neq w$.

a) Let $\leq \Sigma^* \times \Sigma^*$ be a relation such that $p \leq w$ for $p, w \in \Sigma^*$ if p is a prefix of w. Show that \leq is a partial order.

For a relation to be partial order, we need to proove that is is reflective, antisymetric and transitive. We proove for each condition as such:

- Reflexive: $\forall p \in \Sigma^*$, $(p, p) \in \leq (meaning q = \epsilon)$
- Antisymmetric: $\forall p \in \Sigma^*, [(p, w) \in \Sigma^* \land (w, p) \in \Sigma^*] => p=w$ $(w = pq \land p = wq => q = \epsilon)$
- Trasitive: \forall p, w, z $\in \Sigma^*$, $[(p, w) \in \Sigma^* \land (w, z) \in \Sigma^*] => (p, z)^* \in \Sigma^*$ $(w = pq \land z = wq => z = pqq$, therefore p is also prefix of z)
- b) Let $<\subset \Sigma^* \times \Sigma^*$ be a relation such that for p < w for $p, w \in \Sigma^*$ if p is a proper prefix of w. Show that < is a strict partial order.
 - Irreflexive: $\forall p \in \Sigma^*$, $(p, p) \notin \leq (\text{not proper prefix})$
 - Asymmetric: $\forall p \in \Sigma^*$, $(p, w) \in \Sigma^* => (w, p) \notin \Sigma^*$ (not proper prefix)
 - Trasitive: \forall p, w, z $\in \Sigma^*$, (p, w) $\in \Sigma^* \land$ (w, z) $\in \Sigma^* = >$ (p, z) $\in \Sigma^*$ (w = pq \land z = wq => z = pqq, therefore p is also prefix of z)
- c) Are the two order relations \leq and \prec total?

Neither relation is total. The \prec relation isn't partial order, so it doesn't even fulfill the first condition to be total, while the \preceq relations fails on the second condition, as not every two elements of the poset (Σ^*, \preceq) are comparable, i.e. if in the poset (p, w), w is an empty word, and p is a proper prefix. (equivalence relation in itself cannot be comparable).

Problem 4.2

Let A,B and C be sets and let $f: A \rightarrow B$ and $g: B \rightarrow C$ be two functions.

- a) Prove the following statement: If gof is bijective, then f is injective and g is surjective. Since gof is bijective, then it is both injective and surjective.
- Let f: A -> B and g: B -> C. Proove that if $g \circ f: A -> C$ is injective, then so is f. Suppose f(x) = f(y), for some $x,y \in A$ (domain of f). (Take g in both sides of equation)

Then g(f(x))=g(f(y)), i.e.

 $(g \circ f)(x) = (g \circ f)(y)$, so since $y \circ f$ is injective, we have x = y.

x and y were arbitrary so this proof holds $\forall x,y$, thus this shows f is injective.

Let f: A - > B and g: B - > C. Prove that if $g \circ f$: A - > C is surjective, then so is g. Take any $y \in C$ (domain of g).

Since $g \circ f$ is surjective, there exists some $a \in A$ such that $(g \circ f)(a) = y$.

This can be writen as g(f(a))=y. Set $b = f(a) \in B$.

Then g(b)=g(f(a))=y Therefore g is surjective.

b) Find an example demonstrating that g of is not bijective even though f is injective and g is surjective.

Take as functions f and g:

$$f(x) = e^x$$
 (injective)

$$g(x) = x^3 - 5x$$
 (surjective)

$$f(g(x)) = e^{3x} - 5e^x$$
 (not bijective)

not bijective -> demolishes proposition

- 5 0 5
- c) Find an example demonstrating that g of is bijective even though f is not surjective and g is not injective.

Take as functions f and g:

$$g(x) = x^{1/2}$$
 (not surjective)

$$f(x) = x^2$$
 (not injective)

$$f(g(x)) = x$$
 (bijective)

bijective -> demonstrates proposition

