제 I8강 네트워크 개요, 라우터 구조

Computer Networking: A Top Down Approach

컴퓨터 네트워크 (2019년 1학기)

박승철교수

한국기술교육대학교 컴퓨터공학부

Pre-study Test:

- 1) 네트워크 계층의 역할이 아닌 것은?
- ① 패킷 전달 경로 결정
- ② 패킷 전달
- ③ TCP 세그먼트 인캡슐레이션(encapsulation)
- ④ 패킷 전달 순서 보장
- 2) 네트워크에서 패킷 전달을 책임지는 프로토콜은?
- (1) IP
- 2 ICMP
- **3** Routing Protocol
- 4 ARP
- 3) 다음 중 인터넷에 대한 설명 중 맞는 것은?
- ① 전송속도를 보장한다.
- ② 오류 복구를 보장한다.
- ③ 전달 순서를 보장한다.
- ④ 패킷 오류 검출을 보장한다.

- 4) 라우터가 패킷의 전송경로를 선택할 때 사용하는 주소 정보는?
- ① 출발지 IP 주소
- ② 목적지 IP 주소
- ③ 출발지 MAC 주소
- ④ 목적지 MAC 주소
- 5) 다음과 같은 라우팅 테이블을 사용한다. 목적지 주소가 11001000 00010111 00010110 10100001 일 때 선택하는 링크는?
- 1 0
- **2** 1
- 3 2
- **4** 3

Destination Address Range	Link interface
11001000 00010111 00010*** *****	0
11001000 00010111 00011000 *****	1
11001000 00010111 00011*** *****	2
otherwise	3

- 6) 링크 전송속도가 1Gbps인 라우터에서 서로 다른 가중치(w1,w2,w3)를 가진 3개의 큐를 사용하고 있다. w1가 20%일 때 해당 큐에 할당되는 최소 대역폭과 최대 대역폭은?
- 1 0Mbps, 200Mbps
- 2 0Mbps, 1Gbps
- 3 200Mbps, 200Mbps
- 4 200Mbps, 1Gbps

Chapter 4: outline

- 4.1 Overview of Network layer
 - data plane
 - control plane
- 4.2 What's inside a router
- 4.3 IP: Internet Protocol
 - datagram format
 - fragmentation
 - IPv4 addressing
 - network address translation
 - IPv6

- 4.4 Generalized Forward and SDN
 - match
 - action
 - OpenFlow examples of match-plus-action in action

Network layer

- transport segment from sending to receiving host
- on sending side encapsulates segments into datagrams
- on receiving side, delivers segments to transport layer
- network layer protocols in every host, router
- router examines header fields in all IP datagrams passing through it

Network layer

Two key network-layer functions

network-layer functions:

- ■Forwarding(전量): move packets from router's input to appropriate router output
- ■Routing(라우팅):
 determine route taken by packets from source to destination
 - routing algorithms

analogy: taking a trip

- forwarding: process of getting through single interchange
- routing: process of planning trip from source to destination

Network layer: data plane, control plane

Data plane

- •local, per-router function
- determines how datagram arriving on router input port is forwarded to router output port
- forwarding function

Control plane

- network-wide logic
- determines how datagram is routed among routers along endend path from source host to destination host
- two control-plane approaches:
 - traditional routing algorithms: implemented in routers
 - software-defined networking (SDN): implemented in (remote) servers

Per-router control plane

Individual routing algorithm components *in each and every router* interact in the control plane

Logically centralized control plane

A distinct (typically remote) controller interacts with local control agents (CAs)

Network layer service models:

	Network	« Service	Guarantees ?				Congestion
Architecture		Model	Bandwidth	Loss	Order	Timing	feedback
	Internet	best effort	none	no	no	no	no (inferred via loss)
	ATM	CBR	constant rate	yes	yes	yes	no congestion
	ATM	VBR	guaranteed rate	yes	yes	yes	no congestion
	ATM	ABR	guaranteed minimum	no	yes	no	yes
	ATM	UBR	none	no	yes	no	no

Chapter 4: outline

- 4.1 Overview of Network layer
 - data plane
 - control plane
- 4.2 What's inside a router
- 4.3 IP: Internet Protocol
 - datagram format
 - fragmentation
 - IPv4 addressing
 - network address translation
 - IPv6

- 4.4 Generalized Forward and SDN
 - match
 - action
 - OpenFlow examples of match-plus-action in action

Router architecture overview

high-level view of generic router architecture:

Network Layer: Data Plane 4-14

Input port functions

data link layer:

e.g., Ethernet see chapter 5

decentralizéd switching:

- using header field values, lookup output port using forwarding table in input port memory ("match plus action")
- goal: complete input port processing at 'line speed'
- queuing: if datagrams arrive faster than forwarding rate into switch fabric

Input port functions

data link layer: e.g., Ethernet see chapter 5

decentralized switching:

- using header field values, lookup output port using forwarding table in input port memory ("match plus action")
- destination-based forwarding: forward based only on destination IP address (traditional)
- generalized forwarding: forward based on any set of header field values

IP 주소

32 bits IP 주소

네트워크(망) 식별자(ID)

호스트 식별자(ID)

이진수 IP 주소

1000000 10011100 00001110 00000111

128 . 156 . 14 . 7

십진수 점 표기법 (dotted decimal notation)

Destination-based forwarding

forwarding table —	
Destination Address Range	Link Interface
11001000 00010111 00010000 00000000 through 11001000 00010111 00010111 11111111	0
11001000 00010111 00011000 00000000 through 11001000 00010111 00011000 11111111	1
11001000 00010111 00011001 00000000 through 11001000 00010111 00011111 11111111	2
otherwise	3

Q: but what happens if ranges don't divide up so nicely?

Longest prefix matching

longest prefix matching

when looking for forwarding table entry for given destination address, use *longest* address prefix that matches destination address.

Destination Address Range			Link interface	
11001000	00010111	00010***	*****	0
11001000	00010111	00011000	*****	1
11001000	00010111	00011***	*****	2
otherwise				3

examples:

DA: 11001000 00010111 00010110 10100001

DA: 11001000 00010111 00011000 10101010

which interface? which interface?

Network Layer: Data Plane 4-19

Switching fabrics

- transfer packet from input buffer to appropriate output buffer
- switching rate: rate at which packets can be transfer from inputs to outputs
 - often measured as multiple of input/output line rate
 - N inputs: switching rate N times line rate desirable
- three types of switching fabrics

Switching via memory

first generation routers:

- traditional computers with switching under direct control of CPU
- packet copied to system's memory
- speed limited by memory bandwidth (2 bus crossings per datagram)

Switching via a bus

- datagram from input port memory to output port memory via a shared bus
- bus contention: switching speed limited by bus bandwidth
- 32 Gbps bus, Cisco 5600: sufficient speed for access and enterprise routers

bus

Switching via interconnection network

- overcome bus bandwidth limitations
- banyan networks, crossbar, other interconnection nets initially developed to connect processors in multiprocessor
- advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric.
- Cisco I 2000: switches 60 Gbps through the interconnection network

Input port queuing

- fabric slower than input ports combined -> queueing may occur at input queues
 - queueing delay and loss due to input buffer overflow!
- Head-of-the-Line (HOL) blocking: queued datagram at front of queue prevents others in queue from moving forward

output port contention:
only one red datagram can be
transferred.
lower red packet is blocked

one packet time later:
green packet
experiences HOL
blocking

Output ports

This slide in HUGELY important!

 buffering required from fabric faster rate

Datagram (packets) can be lost due to congestion, lack of buffers

scheduling datagrams

Priority scheduling – who gets best performance, network neutrality

Output port queueing

- buffering when arrival rate via switch exceeds output line speed
- queueing (delay) and loss due to output port buffer overflow!

Scheduling mechanisms

- scheduling: choose next packet to send on link
- FIFO (first in first out) scheduling: send in order of arrival to queue
 - real-world example?
 - discard policy: if packet arrives to full queue: who to discard?
 - tail drop: drop arriving packet
 - priority: drop/remove on priority basis
 - random: drop/remove randomly

Scheduling policies: priority

priority scheduling: send highest priority queued packet

- multiple classes, with different priorities
 - class may depend on marking or other header info, e.g. IP source/dest, port numbers, etc.
 - real world example?

Scheduling policies: still more

Round Robin (RR) scheduling:

- multiple classes
- cyclically scan class queues, sending one complete packet from each class (if available)
- real world example?

Scheduling policies: still more

Weighted Fair Queuing (WFQ):

- generalized Round Robin
- each class gets weighted amount of service in each cycle
- real-world example?

Network Layer: Data Plane 4-30

Weighted Fair Queuing (WFQ)

■ 링크 전송속도: IGbps, 실시간 서비스 큐의 가중치(wI)가 20%일 때 실시간 서비스에 할당되는 대역폭은? (최소, 최대 대역폭?)

After-study Test:

- 1) 네트워크 계층의 역할이 아닌 것은?
- ① 패킷 전달 경로 결정
- ② 패킷 전달
- ③ TCP 세그먼트 인캡슐레이션(encapsulation)
- ④ 패킷 전달 순서 보장
- 2) 네트워크에서 패킷 전달을 책임지는 프로토콜은?
- (1) IP
- 2 ICMP
- **3** Routing Protocol
- 4 ARP
- 3) 다음 중 인터넷에 대한 설명 중 맞는 것은?
- ① 전송속도를 보장한다.
- ② 오류 복구를 보장한다.
- ③ 전달 순서를 보장한다.
- ④ 패킷 오류 검출을 보장한다.

- 4) 라우터가 패킷의 전송경로를 선택할 때 사용하는 주소 정보는?
- ① 출발지 IP 주소
- ② 목적지 IP 주소
- ③ 출발지 MAC 주소
- ④ 목적지 MAC 주소
- 5) 다음과 같은 라우팅 테이블을 사용한다. 목적지 주소가 11001000 00010111 00010110 10100001 일 때 선택하는 링크는?
- 1 0
- **2** 1
- 3 2
- **4** 3

Destination Address Range	Link interface
11001000 00010111 00010*** *****	0
11001000 00010111 00011000 *****	1
11001000 00010111 00011*** *****	2
otherwise	3

- 6) 링크 전송속도가 1Gbps인 라우터에서 서로 다른 가중치(w1,w2,w3)를 가진 3개의 큐를 사용하고 있다. w1가 20%일 때 해당 큐에 할당되는 최소 대역폭과 최대 대역폭은?
- 1 0Mbps, 200Mbps
- 2 0Mbps, 1Gbps
- 3 200Mbps, 200Mbps
- 4 200Mbps, 1Gbps

