$2SO_2(g) + O_2(g) \Rightarrow 2SO_3(g)$	$\Delta H = -196 \text{ kJ mol}^{-1}$
This preparation is carried out in the presence of a catalyst.	
Explain the conditions of temperature and pressure that could be used of sulfur trioxide.	sed to obtain the maximum equilibrium yield
Discuss the importance of a compromise between equilibrium yield operational conditions for this process.	and reaction rate when deciding the
	[6]

1. The following reaction is used in industry to make sulfur trioxide gas, SO₃.

	$4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(g)$	$\Delta H = -905 \text{ kJ mol}^{-1}$	Equilibrium 4.1
Predict the equilibriu	e conditions of temperature and pressure for a rum 4.1 .	naximum equilibrium y	ield of nitrogen monoxide in
State	plain your prediction in terms of le Chatelier's printe and explain how these conditions could be challibrium yield, rate and other operational factors.	anged to achieve a cor	mpromise between
			[5]

2. The reaction of ammonia, NH₃, with oxygen to form nitrogen monoxide, NO, is an important industrial process.

The equation for this reaction is shown in **equilibrium 4.1** below.

	$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$	$\Delta H = -92 \text{ kJ mol}^{-1}$
•	An iron catalyst is used which provides several benefits f The chemical industry uses operational conditions that a a maximum equilibrium yield.	
	* Use your understanding of Chemistry to explain the abo	ove statements.
	Your response should be well-developed, showing a line structured.	of reasoning which is clear and logically
-		
		[6]

3. Ammonia, NH₃, is manufactured by the chemical industry from nitrogen and hydrogen gases.

show	n below.		•		Ç	
		$CO_2(g) + 3H_2(g)$	⇒ CH ₃ OH(g) + H ₂	<u>•</u> O(g)	$\Delta H = -49 \text{ kJ mol}^{-1}$	
High	pressures and lov	w temperatures wo	uld give a maximu	ım equilibri	um yield of methanol.	
i.	Explain this stat	tement in terms of	le Chatelier's prind	ciple.		
						[3]
ii.	Explain why the	actual conditions	used by the chem	ical industry	y might be different.	
						[2]
		nufactured by the own in equilibrium		using the re	eaction of methane ar	nd steam. This is a
equilibrium 20.1		CH ₄ (g) +	$H_2O(g) \rightleftharpoons 3H_2(g)$	+ CO(g)	$\Delta H = +210 \text{ kJ m}$	ol ⁻¹
hydro	in, in terms of le ogen from equilib ferent.	Chatelier's principle rium 20.1, and exp	e, the conditions o plain why the oper	of pressure a ational cond	and temperature for a ditions used by the ch	maximum yield of emical industry may
						[4]

4. In the manufacture of methanol, carbon dioxide and hydrogen are reacted together in the reversible reaction