# Medical Image Processing for Diagnostic Applications

Properties of the SVD

Online Course – Unit 5 Andreas Maier, Joachim Hornegger, Markus Kowarschik, Frank Schebesch Pattern Recognition Lab (CS 5)













#### **Topics**

Singular Value Decomposition (SVD) - Part 2 Properties of the SVD III-conditioned Matrix







# Properties of the SVD: Rank and Norm

The singular value decomposition shows many extremely useful properties that are listed here without proof:

• rank of matrix A:

$$\operatorname{rank}(\mathbf{A}) = \#\{\sigma_i > 0\},\$$

numerical *e-rank* of matrix **A**:

$$\operatorname{rank}_{\varepsilon}(\mathbf{A}) = \#\{\sigma_i > \varepsilon\},\$$

• the *Frobenius norm* of the matrix  $\mathbf{A} = (a_{i,j})_{i,j}$  is given by

$$\|\mathbf{A}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n a_{i,j}^2} = \sqrt{\sum_{i=1}^{\min\{m,n\}} \sigma_i^2}.$$







## **Properties of the SVD: Eigenvectors**

The singular value decomposition shows many extremely useful properties that are listed here without proof:

decomposition into rank 1 – matrices:

$$\mathbf{A} = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\mathsf{T}}, \quad r = \mathsf{rank}(\mathbf{A}),$$

- $\mathbf{A}\mathbf{v}_i = \sigma_i \mathbf{u}_i$  and  $\mathbf{A}^\mathsf{T} \mathbf{u}_i = \sigma_i \mathbf{v}_i$ ,
- the column vectors of *U* are the eigenvectors of *AA*<sup>1</sup>:

$$\mathbf{A}\mathbf{A}^{\mathsf{T}}\mathbf{u}_{i}=\sigma_{i}^{2}\mathbf{u}_{i},$$

• the column vectors of V are the eigenvectors of  $A^TA$ :

$$\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{v}_{i}=\sigma_{i}^{2}\mathbf{v}_{i}.$$







# Mapping Effect of a Matrix

We want to find the directional vector **n** which **A** maps to a vector of maximal length compared to other vectors of the unit sphere:

$$\|\boldsymbol{A}\boldsymbol{n}\|_2^2 \longrightarrow \max.$$

A Lagrange multiplier is used to add the constraint  $\|\boldsymbol{n}\|_2^2 = 1$ :

$$\mathscr{L}(\mathbf{n}) = \|\mathbf{A}\mathbf{n}\|_{2}^{2} - \lambda \left(\|\mathbf{n}\|_{2}^{2} - 1\right) = \mathbf{n}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{n} - \lambda \mathbf{n}^{\mathsf{T}}\mathbf{n} - \lambda,$$

which can be solved by setting  $\frac{d\mathcal{L}(n)}{dn} = 0$ :

$$2\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{n} - 2\lambda\mathbf{n} = 0 \quad \Leftrightarrow \quad \mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{n} = \lambda\mathbf{n}.$$

Thus, the solution is an eigenvector of  $\mathbf{A}^{\mathsf{T}}\mathbf{A}$ .







#### Properties of the SVD

- The SVD yields orthonormal bases for the kernel (null-space) and the range of a matrix A:
  - The **kernel** of matrix **A** is spanned by the column vectors  $\mathbf{v}_i$  of  $\mathbf{V}$ , where the corresponding singular values fulfill  $\sigma_i = 0$ .
  - The *range* of matrix **A** is spanned by the column vectors  $\mathbf{u}_i$  of  $\mathbf{U}$ , where  $\sigma_i$ are the corresponding non-zero singular values.
- For the 2-norm of matrix A we get:

$$\|\boldsymbol{A}\|_2^2 = \max_{\|\boldsymbol{x}\|_2 = 1} \boldsymbol{x}^T \boldsymbol{A}^T \boldsymbol{A} \boldsymbol{x} = \sigma_1^2,$$

and if **A** is regular, we even have:

$$\|\mathbf{A}^{-1}\|_2^2 = \frac{1}{\sigma_p^2}.$$







#### Example







#### Example

- Obviously, matrix **A** has a rank deficiency if we select  $\varepsilon = 10^{-3}$ .
- The kernel of A is given by:

$$\ker(\mathbf{\emph{A}}) = \left\{\lambda \cdot \left( egin{array}{c} -0.6743 \\ 0.7384 \\ 0.0024 \end{array} 
ight); \ \lambda \in \mathbb{R} 
ight\}.$$

The range (or image) of A is:

$$\text{im}(\textbf{\textit{A}}) = \left\{\lambda \cdot \left( \begin{array}{c} 0.1285 \\ -0.2396 \\ -0.9623 \end{array} \right) + \mu \cdot \left( \begin{array}{c} 0.8375 \\ 0.5459 \\ -0.0241 \end{array} \right); \ \lambda, \mu \in \mathbb{R} \right\}.$$







#### III-conditioned Matrix

#### Definition

A matrix  $\mathbf{A} \in \mathbb{R}^{m \times n}$  is called *ill-conditioned* if for a given linear system

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

minor changes in  $\mathbf{b} \in \mathbb{R}^m$  cause major changes in  $\mathbf{x} \in \mathbb{R}^n$ .

#### Definition

The *condition number* of a regular matrix  $\mathbf{A} \in \mathbb{R}^{m \times n}$  with respect to a matrix norm ||.|| is defined by

$$\kappa(\mathbf{A}) = \|\mathbf{A}^{-1}\| \cdot \|\mathbf{A}\|.$$

If **A** is singular,  $\kappa(\mathbf{A}) = +\infty$ .







#### III-conditioned Matrix: Remarks

- A matrix with  $\kappa(\mathbf{A})$  close to 1 is called **well-conditioned**.
- A matrix with  $\kappa(\mathbf{A})$  significantly greater than 1 is said to be ill-conditioned
- The condition number is a measure of the stability or sensitivity of a matrix.
- Using the 2-norm, the condition number of a regular matrix  $\mathbf{A} \in \mathbb{R}^{n \times n}$ can be computed by SVD:

$$\kappa(\mathbf{A}) = \frac{\sigma_1}{\sigma_n},$$

where  $\sigma_1$  is the largest, and  $\sigma_n$  is the smallest singular value.

 The SVD allows for the exact computation of the condition number, but this is computationally expensive.







#### III-conditioned Matrix

#### Example

Consider the previous matrix

$$\mathbf{A} = \left(\begin{array}{ccc} 11 & 10 & 14 \\ 12 & 11 & -13 \\ 14 & 13 & -66 \end{array}\right),$$

where we have  $det(\mathbf{A}) = 1$ . The singular value decomposition of  $\mathbf{A}$  results in the singular values:

$$\sigma_1 = 71.3967$$
,  $\sigma_2 = 21.7831$ , and  $\sigma_3 = 0.0006$ .

Thus the condition number is  $\kappa(\mathbf{A}) = 118994.5 \gg 1$ .

**Exercise:** Show that a variation in **b** by 0.1% implies a change in **x** by 240%.







#### **Topics**

Properties of the SVD

Summary Take Home Messages **Further Readings** 







#### Take Home Messages

- We learned about important properties of the SVD, like
  - analytical and numerical rank definition,
  - Frobenius norm and 2-norm.
  - the relation between U, V and the eigenvectors of  $AA^T$ ,  $A^TA$ ,
  - the relation between the kernel/range of **A** and the columns of **V**, **U**.
- For every matrix a condition number can be computed. Ill-conditioned matrices are numerically rather instable.







#### **Further Readings**

#### Read the original:

Gene H. Golub and Charles F. Van Loan. *Matrix Computations*. 3rd ed. Johns Hopkins Studies in the Mathematical Sciences. Baltimore: The Johns Hopkins University Press. Oct. 1996

A very detailed and easy to follow introduction of the SVD can be found in:

Carlo Tomasi's class notes, chapter 3 (a must-read).

The theory is described in an easy to read format in:

Llovd N. Trefethen and David Bau III. Numerical Linear Algebra. Philadelphia: SIAM, 1997

For details about the numerical computation of SVD see:

William H. Press et al. Numerical Recipes - The Art of Scientific Computing. 3rd ed. Cambridge University Press, 2007. Get at http://numerical.recipes/(August 2016).

#### Finally, have a look at:

Kaare Brandt Petersen and Michael Syskind Pedersen. The Matrix Cookbook. Online. Accessed: 25. April 2017. Technical University of Denmark, Nov. 2012. URL: http://www2.imm.dtu.dk/pubdb/p.php?3274

# Medical Image Processing for Diagnostic Applications

SVD in Optimization - Part 1

Online Course – Unit 6 Andreas Maier, Joachim Hornegger, Markus Kowarschik, Frank Schebesch Pattern Recognition Lab (CS 5)













## **Topics**

#### Optimization Problem I







Let us consider the following problem that appears in many image processing and computer vision problems:

We computed a matrix  $\mathbf{A} \in \mathbb{R}^{m \times n}$  out of sensor data, like an image. By theory the matrix **A** must have the singular values  $\sigma_1, \sigma_2, \dots, \sigma_k, k \le p = \min\{m, n\}$ . Of course, in practice **A** does not always satisfy this constraint.

**Problem:** What is the matrix  $\mathbf{A}' \in \mathbb{R}^{m \times n}$  that is closest to  $\mathbf{A}$  (according to the Frobenius norm) and has the required singular values?

**Solution:** Let  $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$ , then

$$\mathbf{A}' = \mathbf{U} \operatorname{diag}(\sigma_1, \sigma_2, \dots, \sigma_k) \mathbf{V}^{\mathsf{T}}.$$







#### Example

Our measurements lead to the following matrix:

$$\mathbf{A} = \begin{pmatrix} 11 & 10 & 14 \\ 12 & 11 & -13 \\ 14 & 13 & -66 \end{pmatrix} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}.$$

Let us assume that by theoretical arguments the matrix **A** is required to have a rank deficiency of one, and the two non-zero singular values are identical. The matrix  $\mathbf{A}'$ that is closest to A w. r. t. the Frobenius norm and fulfills the requirements above is:

$$extbf{A}' = extbf{U} \operatorname{diag} \left( rac{71.3967 + 21.7831}{2}, rac{71.3967 + 21.7831}{2}, 0 
ight) extbf{V}^{\mathsf{T}}.$$







#### **Topics**

#### Optimization Problem II







**Problem:** In image processing we are often required to solve the following optimization problem:

$$\widehat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \, \boldsymbol{x}^{\mathsf{T}} \boldsymbol{A}^{\mathsf{T}} \boldsymbol{A} \boldsymbol{x}, \quad \text{subject to} \quad \left\| \boldsymbol{x} \right\|_2 = 1,$$

or in the extreme:

$$\boldsymbol{A}\boldsymbol{x} = 0$$
, subject to  $\|\boldsymbol{x}\|_2 = 1$ .

**Solution:** The solution can be constructed using the rightmost column of V.

Exercise: Check this!







#### Example

Estimate the matrix  $\mathbf{X} \in \mathbb{R}^{2 \times 2}$  such that for vectors

$$\textbf{\textit{b}}_1 = \left(\begin{array}{c} 1 \\ 1 \end{array}\right), \textbf{\textit{b}}_2 = \left(\begin{array}{c} -1 \\ 2 \end{array}\right), \textbf{\textit{b}}_3 = \left(\begin{array}{c} 1 \\ -3 \end{array}\right), \textbf{\textit{b}}_4 = \left(\begin{array}{c} -1 \\ -4 \end{array}\right),$$

the following optimization problem gets solved:

$$\begin{split} \sum_{i=1}^4 \left( \textbf{\textit{b}}_i^\mathsf{T} \textbf{\textit{X}} \textbf{\textit{b}}_i \right)^2 &\to \mathsf{min}, \qquad \mathsf{subject to} \qquad \| \textbf{\textit{X}} \|_F = 1, \\ \Leftrightarrow \qquad \textbf{\textit{b}}_i^\mathsf{T} \textbf{\textit{X}} \textbf{\textit{b}}_i = 0, \qquad i = 1, ..., 4, \qquad \| \textbf{\textit{X}} \|_F = 1. \end{split}$$







#### Example

The objective function is linear in the components of **X**, thus the whole sum can be rewritten in matrix notation:

$$\mathbf{M}\mathbf{x} = \mathbf{M} \begin{pmatrix} x_{1,1} \\ x_{1,2} \\ x_{2,1} \\ x_{2,2} \end{pmatrix} = 0, \quad \text{subject to} \quad \|\mathbf{x}\|_2 = 1,$$

where the *measurement matrix M* is built from single elements of the sum.







#### Example

Let us consider the *i*-th component:

$$\boldsymbol{b}_{i}^{\mathsf{T}} \boldsymbol{X} \boldsymbol{b}_{i} = \boldsymbol{b}_{i}^{\mathsf{T}} \begin{pmatrix} x_{1,1} & x_{1,2} \\ x_{2,1} & x_{2,2} \end{pmatrix} \boldsymbol{b}_{i} = \begin{pmatrix} b_{i,1}^{2}, b_{i,1} b_{i,2}, b_{i,1} b_{i,2}, b_{i,2}^{2} \end{pmatrix} \begin{pmatrix} x_{1,1} \\ x_{1,2} \\ x_{2,1} \\ x_{2,2} \end{pmatrix}.$$

Using this result we get for the overall measurement matrix:

$$\mathbf{M} = \left(\begin{array}{cccc} b_{1,1}^2 & b_{1,1}b_{1,2} & b_{1,1}b_{1,2} & b_{1,2}^2 \\ b_{2,1}^2 & b_{2,1}b_{2,2} & b_{2,1}b_{2,2} & b_{2,2}^2 \\ b_{3,1}^2 & b_{3,1}b_{3,2} & b_{3,1}b_{3,2} & b_{3,2}^2 \\ b_{4,1}^2 & b_{4,1}b_{4,2} & b_{4,1}b_{4,2} & b_{4,2}^2 \end{array}\right) = \left(\begin{array}{ccccc} 1 & 1 & 1 & 1 \\ 1 & -2 & -2 & 4 \\ 1 & -3 & -3 & 9 \\ 1 & 4 & 4 & 16 \end{array}\right)$$







#### Example

The nullspace of *M* can be computed by SVD and yields the required matrix:

$$\mathbf{X} = \left(\begin{array}{cc} 0 & -0.7071 \\ 0.7071 & 0 \end{array}\right),$$

which satisfies  $\|\boldsymbol{X}\|_F \approx 1$ .







## **Topics**

Summary Take Home Messages **Further Readings** 







#### Take Home Messages

- For a theoretically known rank, we can compute a best approximation of a matrix computed from measurements using SVD.
- SVD can be applied to many optimization problems (see also next unit).
- When it comes to optimization, always check if you can solve it with SVD.







## **Further Readings**

#### Read the original:

Gene H. Golub and Charles F. Van Loan. *Matrix Computations*. 3rd ed. Johns Hopkins Studies in the Mathematical Sciences. Baltimore: The Johns Hopkins University Press. Oct. 1996

A very detailed and easy to follow introduction of the SVD can be found in:

Carlo Tomasi's class notes, chapter 3 (a must-read).

The theory is described in an easy to read format in:

Llovd N. Trefethen and David Bau III. Numerical Linear Algebra. Philadelphia: SIAM, 1997

For details about the numerical computation of SVD see:

William H. Press et al. Numerical Recipes - The Art of Scientific Computing. 3rd ed. Cambridge University Press, 2007. Get at http://numerical.recipes/(August 2016).

#### Finally, have a look at:

Kaare Brandt Petersen and Michael Syskind Pedersen. The Matrix Cookbook. Online. Accessed: 25. April 2017. Technical University of Denmark, Nov. 2012. URL: http://www2.imm.dtu.dk/pubdb/p.php?3274

# Medical Image Processing for Diagnostic Applications

SVD in Optimization - Part 2

Online Course – Unit 7 Andreas Maier, Joachim Hornegger, Markus Kowarschik, Frank Schebesch Pattern Recognition Lab (CS 5)













## **Topics**

Optimization Problem III

**Further Readings** 







Another guite important optimization problem in image processing and pattern recognition is the following:

**Problem:** Given a matrix  $\mathbf{A} \in \mathbb{R}^{n \times n}$ .

Compute the matrix  $\hat{\boldsymbol{B}} \in \mathbb{R}^{n \times n}$  of rank k < n that minimizes:

$$\hat{\boldsymbol{B}} = \underset{\boldsymbol{B}}{\operatorname{arg\,min}} \|\boldsymbol{A} - \boldsymbol{B}\|_2$$
, subject to  $\operatorname{rank}(\boldsymbol{B}) = k$ .

**Solution:** Using SVD, the solution can be computed easily by:

$$\widehat{\boldsymbol{B}} = \sum_{i=1}^{k} \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^{\mathsf{T}}.$$







#### Example

The SVD can be used to compute the image matrix of rank 1 that approximates an image best w. r. t.  $\|.\|_2$ .

Figure 1 shows an image I and its rank 1-approximation  $I' = \sigma_1 u_1 v_1^T$ .





Figure 1: Original X-ray image (left) and its rank 1-approximation (right)







#### **Topics**

Optimization Problem IV

**Further Readings** 







**Problem:** The *Moore–Penrose pseudoinverse* is required to find the solution to the following optimization problem:

$$\| {m A} {m x} - {m b} \|_2 o \min$$
 .

**Solution:** The least squares solution of this optimization problem is given by

$$\mathbf{x} = \mathbf{A}^{\dagger} \mathbf{b},$$

where we get  $\mathbf{A}^{\dagger} \in \mathbb{R}^{n \times m}$  based on the SVD of  $\mathbf{A} \in \mathbb{R}^{m \times n}$  by:

$$\mathbf{A}^{\dagger} = (\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}} = \mathbf{V}\mathbf{\Sigma}^{\dagger}\mathbf{U}^{\mathsf{T}}.$$







**Proof:** We start with the optimization problem:

$$\frac{1}{2} \| \boldsymbol{A} \boldsymbol{x} - \boldsymbol{b} \|_2^2 \to \min,$$

which can be solved analytically by derivation of this functional:

$$\mathbf{A}^{\mathsf{T}}(\mathbf{A}\mathbf{x} - \mathbf{b}) = 0$$

$$\Leftrightarrow \qquad \mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} - \mathbf{A}^{\mathsf{T}}\mathbf{b} = 0$$

$$\Leftrightarrow \qquad \mathbf{x} = (\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{b}.$$







The diagonal matrix  $\Sigma^{\dagger}$  in the SVD of the pseudo-inverse of  $\boldsymbol{A}$  is given by:

$$oldsymbol{\Sigma}^\dagger = \left(egin{array}{ccccc} rac{1}{\sigma_1} & & & & 0 & \dots & 0 \\ & \ddots & & & & & & & \\ & & rac{1}{\sigma_r} & & & dots & & dots \\ & & & 0 & & & & \\ & & & \ddots & & & \\ & & & 0 & \dots & 0 \end{array}
ight) \in \mathbb{R}^{n imes m}$$

where  $\sigma_r > 0$  is the smallest nonzero singular value of **A**.







#### Example

Compute the regression line through the following 2-D points:





Figure 2: Regression line through a set of 2-D points







# Optimization Problem IV

All points  $(x_i, y_i)$ , i = 1, ..., 7, have to fulfill the line equation:

$$y_i = mx_i + t$$
, for  $i = 1, ..., 7$ .

Thus we get the following system of linear equations:

$$\begin{pmatrix} 3 & 1 \\ 2 & 1 \\ 1 & 1 \\ 0 & 1 \\ -1 & 1 \\ -1 & 1 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} m \\ t \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 2 \\ 0 \\ 1 \\ -1 \\ -1 \end{pmatrix}.$$







#### **Optimization Problem IV**

The Moore-Penrose pseudo-inverse for this particular problem is:

$$\boldsymbol{A}^{\dagger} = \left( \begin{array}{ccccc} 0.14 & 0.09 & 0.04 & -0.01 & -0.07 & -0.07 & -0.12 \\ 0.11 & 0.12 & 0.13 & 0.15 & 0.16 & 0.16 & 0.18 \end{array} \right).$$

Therefore, for the regression line we get the equation:

$$y = 0.56x + 0.41$$
.







#### Remarks on SVD Computation

**Further Readings** 







#### Remarks on SVD Computation

- SVD can be computed for every matrix.
- SVD is numerically robust.
- In most practical situations we have more rows than columns:

$$m\gg n$$
.

• The time complexity to decompose  $\mathbf{A} \in \mathbb{R}^{m \times n}$  is:

$$4m^2n + 8mn^2 + 9n^3$$
.

 For us, the SVD is a black box. We do not consider algorithms to compute the SVD numerically.







Summary Take Home Messages **Further Readings** 







# Take Home Messages

- We have studied two additional applications (see also previous unit):
  - low-rank approximation,
  - fitting of a regression line.
- SVD is the tool for linear equations it cannot fail (but in many special cases there may exist better solutions).
- SVD is provided by all standard libraries.







# **Further Readings**

#### Read the original:

Gene H. Golub and Charles F. Van Loan. *Matrix Computations*. 3rd ed. Johns Hopkins Studies in the Mathematical Sciences. Baltimore: The Johns Hopkins University Press. Oct. 1996

A very detailed and easy to follow introduction of the SVD can be found in:

Carlo Tomasi's class notes, chapter 3 (a must-read).

The theory is described in an easy to read format in:

Llovd N. Trefethen and David Bau III. Numerical Linear Algebra. Philadelphia: SIAM, 1997

For details about the numerical computation of SVD see:

William H. Press et al. Numerical Recipes - The Art of Scientific Computing. 3rd ed. Cambridge University Press, 2007. Get at http://numerical.recipes/(August 2016).

#### Finally, have a look at:

Kaare Brandt Petersen and Michael Syskind Pedersen. The Matrix Cookbook. Online. Accessed: 25. April 2017. Technical University of Denmark, Nov. 2012. URL: http://www2.imm.dtu.dk/pubdb/p.php?3274

# Medical Image Processing for Diagnostic Applications

Singular Value Decomposition

Online Course – Unit 4 Andreas Maier, Joachim Hornegger, Markus Kowarschik, Frank Schebesch Pattern Recognition Lab (CS 5)













Singular Value Decomposition (SVD) - Part 1 General Remarks On the Geometry of Linear Mappings Normal Form of Matrices: SVD







# Singular Value Decomposition

- Powerful normal form for matrices that allows for a simple solution of most linear problems in imaging and image processing.
- SVD is a method from linear algebra ...
  - ... invented in the 19th century.
  - ... rediscovered and pushed for practical applications by Gene Golub.
  - ... established in computer vision by Carlo Tomasi's famous factorization algorithm to compute structure and camera motion from image sequences.
  - ... which is extremely robust and simple to use.







#### Singular Value Decomposition

#### SVD is a perfect tool, e.g., for

- the computation of singular values,
- the computation of the null space.
- the computation of the (pseudo-) inverse,
- the solution of overdetermined linear equations.
- the computation of condition numbers,
- enforcing a rank criterion (numerical rank),
- and other applications of matrices.







From linear algebra, we know that a matrix  $\mathbf{A} \in \mathbb{R}^{m \times n}$  maps the unit vectors  $e_i \in \mathbb{R}^n$  of the standard base to the corresponding column vectors  $\mathbf{a}_i \in \mathbb{R}^m$  of the matrix  $\boldsymbol{A}$ ,  $i = 1, \dots, n$ .

#### Example

$$m{A}egin{pmatrix} 0 \ 0 \ 0 \ 1 \ 0 \ 0 \end{pmatrix} = (m{a}_1, m{a}_2, \dots, m{a}_6) egin{pmatrix} 0 \ 0 \ 0 \ 1 \ 0 \ 0 \end{pmatrix} = m{a}_4$$







In the example we have made use of the following notation:

$$m{A} = egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & \ddots & & & \\ \vdots & & & & \\ a_{m1} & & & a_{mn} \end{pmatrix} = (m{a}_1, m{a}_2, \dots, m{a}_n).$$

We can write:

$$\mathbf{A}\mathbf{x} = \mathbf{a}_1 x_1 + \mathbf{a}_2 x_2 + ... + \mathbf{a}_n x_n$$

and for the first two unit vectors  $\mathbf{e}_1 = (1, 0, 0, ..., 0)^T$ ,  $\mathbf{e}_2 = (0, 1, 0, ..., 0)^T$  find:

$$Ae_1 = a_1, Ae_2 = a_2.$$







#### Example

Compute the orthogonal matrix  $\mathbf{R}$ , i. e.,  $\mathbf{R}^{-1} = \mathbf{R}^{\mathsf{T}}$ , that rotates points in the 2-D image plane by the angle  $\theta$ .

#### Solution:

The base vectors are mapped as follows:

$$\left(\begin{array}{c} 1 \\ 0 \end{array}\right) \mapsto \left(\begin{array}{c} \cos\theta \\ \sin\theta \end{array}\right), \quad \left(\begin{array}{c} 0 \\ 1 \end{array}\right) \mapsto \left(\begin{array}{c} -\sin\theta \\ \cos\theta \end{array}\right),$$

and thus the 2-D rotation matrix is:

$$\mathbf{R} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$



Figure 1: Rotation of 2-D unit vectors







If **A** is a real  $m \times n$  matrix of rank r, then **A** maps the unit hyper-sphere in the n-dimensional space to an r-dimensional hyperellipsoid in the *m*-dimensional space.



Figure 2: A rank 2-matrix A maps the 2-D unit sphere to a 2-D ellipse.







#### Normal Form of Matrices: SVD

#### **Theorem**

If **A** is a real  $m \times n$  – matrix, then there exist orthogonal matrices  $\mathbf{U} \in \mathbb{R}^{m \times m}$ and  $\mathbf{V} \in \mathbb{R}^{n \times n}$  such that

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}},$$

where

$$\mathbf{\Sigma} = \mathsf{diag}(\sigma_1, \sigma_2, \dots, \sigma_p) \in \mathbb{R}^{m \times n}$$

with  $p = \min\{m, n\}$ . The diagonal elements  $\sigma_i$  are the singular values that fulfill

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_p \geq 0.$$







Summary Take Home Messages **Further Readings** 







#### Take Home Messages

- SVD is a useful tool to solve a multitude of problems.
- We studied the effect of a matrix on unit vectors and the unit sphere.
- An arbitrary real matrix  $\boldsymbol{A}$  can be decomposed by  $\boldsymbol{A} = \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathsf{T}}$ .







# **Further Readings**

#### Read the original:

Gene H. Golub and Charles F. Van Loan. *Matrix Computations*. 3rd ed. Johns Hopkins Studies in the Mathematical Sciences. Baltimore: The Johns Hopkins University Press. Oct. 1996

A very detailed and easy to follow introduction of the SVD can be found in:

Carlo Tomasi's class notes, chapter 3 (a must-read).

The theory is described in an easy to read format in:

Llovd N. Trefethen and David Bau III. Numerical Linear Algebra. Philadelphia: SIAM, 1997

For details about the numerical computation of SVD see:

William H. Press et al. Numerical Recipes - The Art of Scientific Computing. 3rd ed. Cambridge University Press, 2007. Get at http://numerical.recipes/(August 2016).

#### Finally, have a look at:

Kaare Brandt Petersen and Michael Syskind Pedersen. The Matrix Cookbook. Online. Accessed: 25. April 2017. Technical University of Denmark, Nov. 2012. URL: http://www2.imm.dtu.dk/pubdb/p.php?3274