CS280 Fall 2023 Assignment 1 Part A

Basics & MLP

October 22, 2023

Name:

Student ID:

1. Gradient descent for fitting GMM (10 points).

Consider the Gaussian mixture model

$$p(\mathbf{x}|\theta) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

where $\pi_j \geq 0, \sum_{j=1}^K \pi_j = 1$. (Assume $\mathbf{x}, \boldsymbol{\mu}_k \in \mathbb{R}^d, \boldsymbol{\Sigma}_k \in \mathbb{R}^{d \times d}$)

Define the log likelihood as

$$l(\theta) = \sum_{n=1}^{N} \log p(\mathbf{x}_n | \theta)$$

Denote the posterior responsibility that cluster k has for datapoint n as follows:

$$r_{nk} := p(z_n = k | \mathbf{x}_n, \theta) = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{k'} \pi_{k'} \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_{k'}, \boldsymbol{\Sigma}_{k'})}$$

(a) Show that the gradient of the log-likelihood wrt $\boldsymbol{\mu}_k$ is

$$\frac{d}{d\boldsymbol{\mu}_k}l(\theta) = \sum_n r_{nk} \boldsymbol{\Sigma}_k^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_k)$$

(b) Derive the gradient of the log-likelihood wrt π_k without considering any constraint on π_k . (bonus 2 points: with constraint $\sum_k \pi_k = 1$.)

2. Sotfmax & Computation Graph (10 points).

Recall that the softmax function takes in a vector (z_1, \ldots, z_D) and returns a vector (y_1, \ldots, y_D) . We can express it in the following form:

$$r = \sum_{j} e^{z_j} \qquad y = \frac{e^{z_j}}{r}$$

- (a) Consider D = 2, i.e. just two inputs and outputs to the softmax. Draw the computation graph relating z_1, z_2, r, y_1 , and y_2 .
- (b) Determine the backprop updates for computing the $\bar{z_j}$ when given the $\bar{y_i}$. You need to justify your answer. (You may give your answer either for D=2 or for the more general case.)
- (c) Write a function to implement the vector-Jacobian product (VJP) for the softmax function based on your answer from part (b). For efficiency, it should operate on a mini-batch. The inputs are:
 - a matrix Z of size $N \times D$ giving a batch of input vectors. N is the batch size and D is the number of dimensions. Each row gives one input vector $z = (z_1, \ldots, z_D)$.
 - A matrix $\mathbf{Y}_{\mathbf{bar}}$ giving the output error signals. It is also $N \times D$

The output should be the error signal $\mathbf{Z}_{\mathbf{bar}}$. Do not use a for loop.