title title title title title title title title

author author author author author author author author a

 a author auth

author author author

Abstract. abstract ab

Contents

1	section section	1
2	section section section section	4
3	section section section section	5
4	section section section section	8
5	section section	11
\mathbf{A}	section section section	12

1 section section

column 1 [? ? ?] column 1 [? ?] column 1 [? ? ? ?] column 1 [?] column 1 [?] column 1 column 1 column 1 column 1 column 1 [?] column 1 ² column 1 [?] column 1 column 1 column 1 column 1 column 1 i.e., column 1 [? ?] column 1 (??) column 1 [?] column 1 column 1 column 1 Palatini Higgs inflation column 1 column 1 column 1 column 1 column 1 metric Higgs inflation. column 1 column

¹See [?] and [?] for reviews of metric and Palatini Higgs inflation, respectively.

²Note that even if there were no such coupling at tree level, it would be generated by quantum corrections [?].

1 column 1 [?] column 1 [?] column 1 ³ column 1 [?] column 1 [? ?] column 1 column 1 column 1 [?] column 1 column 1 d column 1 [?] column 1 [? ?] column 1 column 1 column 1 column 1 column 1 [? ?] column 1 [? ?] column 1 [?] column 1 [? ? ? ?] column 1 [? ?] column 1 column 1

³See [?] for a review of various inflationary models and their compatibility with measurements.

⁴Also in the metric theory of gravity, there are proposals to increase Λ without introducing new degrees of freedom [? ?]. They rely on higher-dimensional operators. The perturbative cutoff in the theory studied in [?] was further discussed in [? ?].

 $^{^5{\}rm For~earlier}$ studies of preheating in metric Higgs inflation see [? ?].

column 1 column 1 column 1 column 1 column 1 column 1 [?] column 1 column 1 column 1 column 1 [?] column 1 [? ? ? ? ?] column 1 [?] column 1 [? ? ?] column 1 6 column 1 ⁷ column 1 [?] column 1 i.e., column 1 2 column 1 3 column 1 column

⁶See also [???] for early studies of quantum effects in Higgs inflation.

Other aspects of quantum effects in Palatini Higgs inflation have been considered in [???].

Table 1: caption capti

1 column 1 c

2 section section section section

column 1 column 1 column 1 column 1 column 1 column 1 [?] column 1 column 1 column 1 [?] column 1 column 1 column 1 column 1 column 1 ?? column 1 1 column 1 dolumn 1 dolumn 1 column 1 col 1 column 1 ?? column 1 column 1

⁸Also in the metric scenario, Eq. (??) can be integrated exactly, giving χ as a function of h [?].

column 1 column 1

$$\epsilon = \frac{M_P^2}{2} \left(\frac{\mathrm{d}U/\mathrm{d}\chi}{U} \right)^2 , \qquad \eta = M_P^2 \frac{\mathrm{d}^2 U/\mathrm{d}^2 \chi}{U} , \qquad (2.1)$$

column 1 col 1 column 1 column 1 column 1 column 1 column 1 column 1 [? ? ?] column 1 ⁹ column 1 [? column 1 column 1 column 1 column 1 column 1 column 1 1 column 1 c 1 column 1 i.e., column 1 column 1 column 1 column 1 column 1 (??) column 1 1 column 1 [?] column 1

3 section section section section

column 1 co

column 1 col

⁹Because of its smaller preheating temperature, Palatini Higgs inflation is favorable for QCD axion models in which the Peccei-Quinn symmetry is broken before the end of inflation [?].

¹⁰We obtain this result by evaluating the value of y_t at the energy scale $M_P/\sqrt{10^7}$, starting from its low-energy value $y_t^{\text{low}} = 0.92354$; see the discussion below Eq. (??).

column 1 [? ?] column 1 colum

$$column1 \operatorname{Tr} \ln \left(column1 \not \partial column1 \right)$$

$$column1 \frac{y_t^4}{64\pi^2} \left(\frac{2}{\bar{\epsilon}} column1 \ln \frac{y_t^2 F^2}{2\mu^2} column1 \frac{3}{2} \right) column1 column1 \tag{3.1}$$

column 1 column 1 column 1

column 1 column 1 column 1 column 1 column 1 column 1 column 1 column 1 column 1 column 1 column 1 column 1 column 1 column 1 column 1 column 1 [?] column 1 Eq. (??) column 1 1 column 1 1 column 1 Eqs. column 1 ?? column 1 ?? column 1 column

Table 2: caption caption caption caption caption caption caption caption caption

1 column 1 c

column 1 col

column 1 co

column 1 col

¹¹We assume that new heavy particles, if they exist at all, have no impact on inflation beyond changing the β-functions. We also ignore all quadratic divergences associated with these particles (see [? ? ?]).

¹²One can obtain this result by expressing the one-loop contribution to the vertex function in terms of the physical coupling, which is defined in the momentum dependent subtraction scheme at the scale μ and thus accounts for decoupling of heavy degrees of freedom for $\mu \ll m$.

column 1 (??) [? ?] column 1 ¹³ column 1 column 1 column 1 column 1 column 1 column 1 column 1

4 section section section section section

column 1 (??) column 1 column 1 Eq. (??) column 1 ¹⁴ column 1 [?] column 1 equann 1 ?? column 1 ?? 1 (??) column 1 column 1 (??) column 1 i.e., column 1 column 1 column 1 column 1 Eq. (??) column 1 Eq. (??) column 1 ¹⁵

¹³In our approach, we exclude higher-dimensional operators that do not respect the approximate shift symmetry $\chi \to \chi$ +const of the potential $U(\chi)$. Adding those can easily make inflation impossible (or change inflationary predictions) [? ?]. In contrast, quantum corrections that are generated by the theory itself are small [?].

¹⁴We thank Fedor Bezrukov for kindly providing us with a script to do so. The script computes the running of the Standard Model couplings in the $\overline{\rm MS}$ -scheme. It uses two-loop matching of physical and $\overline{\rm MS}$ parameters [?] and three-loop RG evolution of coupling constants [?] (see also [???]). As an input, we use $\alpha_s(M_Z)=0.1181$ and $m_h=125.1\,{\rm GeV}$. The influence of ξ on the running is negligible [?], and we do not consider it.

¹⁵In fact, one should impose the slightly stricter criterion of avoiding eternal inflation because otherwise the classical treatment is not valid. Since it will turn out in the numerical analysis that $dU/d\chi$ never comes

column 1 col

column 1 co

column 1 [?] column 1 column 1 column 1 [?] column 1 column 1 column 1 column 1 column 1 [?] column 1 [?] column 1 e.g., [? ?] column 1 Eq. (??) column 1 column 1 column 1 Fig. 1 column 1 col 1 column 1 (??) column 1 (??) column 1 co

close to 0, this distinction is inessential.

¹⁶This bound only refers to inflation on the plateau. Other scenarios, such as hilltop inflation, can allow for smaller values of ξ ; see [? ?].

¹⁷A lower bound on ξ has already been discussed in a different setup in [?]. There, no connection was made to low-energy data of the Standard Model, i.e., λ_0 , b and q were treated as free parameters. Moreover, only positive values of λ_0 were considered. This led to $\xi_{\rm min} \approx 6 \cdot 10^6$ [?].

¹⁸It is an interesting numerical coincidence that $\delta\lambda$, the magnitude of which is essentially given by a loop factor, and values of λ that can support inflation are of the same order of magnitude.

Figure 1: caption capt

1 column 1 c

column 1 col

column 1 col

column 1 (??) column 1 Eq. (??) column 1 (??) column 1 Eq. (??) column 1 (??) column 1 (??) column 1 column 1

5 section section

column 1 column 1 column 1 column 1 column 1 column 1 [?] column 1 column 1 column 1 [?] column 1 [? column 1 [? ?] column 1 ¹⁹ column 1 column

The spectral of the spectral

1 column 1 ?? column 1 column 1 column 1 ?? column 1 [?] column 1 (??) column 1 [?] column 1 [? ?] column 1 [? ? ?] column 1 column 1

section section

column 1 col

A section section section

column 1 column 1 column 1 column 1 d column 1 c

Figure 2: caption capt

column 1 1 column 1 (??) column 1 Eq. (??) column 1 Fig. 1 column 1 (??) column 1 Fig. 2 column 1 Eq. (??) column 1 1 column 1 column 1 column 1 column 1 column 1 column 1

²⁰We use Mathematica [?] for the numerical analysis.