NVIDIA Grace Superchip Early Evaluation for HPC Applications

IWAHPCE24, Nagoya

Fabio Banchelli * (BSC)

Joan Vinyals-Ylla-Catala (BSC)

Josep Pocurull (BSC)

Marc Clascà (BSC)

Kilian Peiro (BSC)

Filippo Spiga (NVIDIA)

Marta Garcia-Gasulla (BSC)

Filippo Mantovani (BSC)

MareNostrum4

General purpose block

Emerging Technology Clusters (CTEs)

Intel Xeon Platinum

CTE Power - IBM POWER9 + NVIDIA Volta GPUs

CTE AMD - AMD Rome + AMD Radeon Instinct MI50

CTE Arm - A64FX processors

Previous experience with Arm-based clusters

- Mont-Blanc EU Project
 - Odroid-XU
 - Nvidia Jetson-TX
 - Cavium ThunderX
 - Marvell ThunderX2
- BSC-Huawei collaboration
 - Kunpeng
- ISC23 Student cluster competition
 - Ampere Altra MAX

MareNostrum5

Goal

- First in the Top500
- Run/Solve diverse scientific problems

Structure

- General purpose partition
 - Intel CPUs
- Accelerated partition
 - Intel CPUs + Nvidia GPUs
- Experimental "Next generation"
 - Nvidia Grace CPUs

MareNostrum4 → MareNostrum5

- How difficult is it for a scientist to transition to a Grace-based system?
- How does the NVIDIA Grace CPU behave with complex scientific codes?
- How does the NVIDIA Grace CPU compare to other HPC systems?

MareNostrum4 → MareNostrum5

Systems under study

Early evaluation cluster

- Provided by Nvidia
- Engineering samples (not final product)
- Two hardware configurations
 - Grace-Grace
 - Three nodes based on the Nvidia Grace CPU Superchip
 - Grace-Hopper
 - Two nodes based on the Nvidia Grace-Hopper GPU Superchip
- Network
 - Infiniband NDR400

Engineering samples: functional parts but only partially reflect the exact final product that will be available to the mass market.

Early evaluation cluster - Software

- MPI Library
 - OpenMPI/4.1.5rc2 + HPCX
- Compilers
 - GNU Compiler/12.3.0
 - Nvidia HPC Compiler/23.9
 - Arm HPC Compiler/23.04.1
- Shared filesystem
 - Home \rightarrow NFS
 - Scratch → DDN Lustre
- Job scheduler
 - SLURM

Early evaluation cluster - Limitations

Engineering samples: functional parts but only partially reflect the exact final product that will be available to the mass market.

- No micro-benchmarking
 - Floating-point performance
 - Cache hierarchy
 - Memory bandwidth
- No access to hardware counters
 - Perf
 - PAPI
 - BSC performance analysis tools

Nvidia Grace CPU Superchip

Architecture: Armv9

Micro-architecture: Neoverse V2

• Frequency: > 3.20 GHz

Number of sockets: 1

CPUs per socket: 2

Cores per CPU: 72

L3 cache per CPU: 117 MB

Memory channels per CPU: 8

• Memory per node: 480 GB

Memory technology: LPDDR5

Nvidia Grace GPU Superchip

Architecture: Armv9

Micro-architecture: Neoverse V2

Frequency: > 3.20 GHz

Number of sockets: 1

CPUs per socket: 1

Cores per CPU: 72

L3 cache per CPU: 117 MB

Memory channels per CPU: 8

Memory per node: 480 GB

Memory technology: LPDDR5

MareNostrum4 General Purpose partition

• Architecture: x86

Micro-architecture: Intel Skylake

• Frequency: 2.10 GHz (locked)

Number of sockets: 2

CPUs per socket: 1

Cores per CPU: 24

L3 cache per CPU: 66 MB

Memory channels per CPU: 6

• Memory per node: 96 GB

Memory technology: DDR4

Apps

Alya

- Computational mechanics
- Developed by BSC
- Written in Fortran
- Parallelized with MPI
- Input case
 - Finite element problem (16M elems.)
 - 1000 timesteps divided into phases
 - Matrix-Assembly
 - Boundary-Assembly
 - Solver

OpenFOAM

- Computational Fluid Dynamics
- Developed by OpenCFD Ltd.
- Written in C++
- Parallelized with MPI
- Input case
 - motorBike benchmark (5.2 million cells)
 - 10 timesteps

NEMO

- Forecasting in ocean and climate services
- Developed by EU consortium
- Written in Fortran
- Parallelized with MPI
- Input case
 - ORCA-1 configuration
 - 700 iterations

LAMMPS

- Molecular dynamics
- Developed by Sandia National Labs and Temple University
- Written in C++
- Parallelized with MPI
- Input case
 - 3d Lennard-Jones melt
 - Grid of 256 million atoms

PhysiCell

- Multi-cellular simulation
- Developed by BSC and Institut Curie
- Written in C++
- Parallelized with OpenMP
- Input case
 - 1 million cells
 - Evenly distributed across rectangular box

Compiler compatibility

- Minor changes to code to be able to compile
 - Alya → Compiler bug with Nvidia compiler
 - NEMO → Use of non-standard intrinsic function
 - PhysiceII → Initialization of static member variables

Coding techniques that do not respect the standard

We were unable to run NEMO compiled with the GNU compiler and the Arm compiler

	Alya	OpenFOAM	NEMO	LAMMPS	PhysiCell
MareNostrum					
GNU Compiler	✓	✓	√	√	√
Intel Compiler	✓	\checkmark	\checkmark	\checkmark	\checkmark
NVIDIA Cluster					
GNU Compiler		✓	×	√	√
NVIDIA Compiler	. 🗸	✓	\checkmark	\checkmark	\checkmark
Arm Compiler	✓	\checkmark	×	\checkmark	\checkmark

Evaluation

Alya

- Alya execution is mostly dominated by the Matrix-Assembly phase (compute bound)
- Grace-Hopper up to 64 cores
- Speedup 1.57x
- Frequency 1.60x wrt. MareNostrum
- Grace-Hopper 64 cores and beyond
- Slight drop in scalability
- Possibly due to memory bandwidth saturation
- Grace-Grace
- Similar behavior as Grace-Hopper
- Higher available bandwidth → Higher speedup

OpenFOAM

- Grace-Hopper and Grace-Grace cores always outperform MareNostrum
- Scalability curve flattens in all three clusters
- MareNostrum first (peak 256 GB/s)
- Grace-Hopper second (peak <= 500 GB/s)
- Grace-Grace third (peak <= 1 TB/s)
- Grace-Grace
 - Diminishing returns with 64 cores and over

NEMO

- Similar behavior as with OpenFOAM
- Saturation point requires more cores → NEMO benefits from the higher memory bandwidth

LAMMPS

- Little core-to-core performance difference between GraceGrace and GraceHopper
- Having more memory channels does not seem to improve performance in LAMMPS
- Perfect strong scaling
- Always above 2.10x speedup wrt.
 MarenNostrum4

PhysiCell

- Overall bad scalability due to the application
- Some regions of the code are not fully parallelized
- Grace-Hopper and Grace-Grace achieve the same performance
- No benefit from higher memory bandwidth?
- Maybe changing the thread mappings can improve performance

PhysiCell

- Close binding
 - Threads are mapped to contiguous cores
- Thread count not balanced
- Spread binding
- Threads are mapped to cores in alternating CPUs
- Thread count is balanced
- Results show that close binding is better in PhysiCell
- Memory allocation is not NUMA-aware
- All threads access the same physical location
- Threads from another CPU have higher latency and lowe bandwidth

Conclusions

How difficult is it for a scientist to transition to a Grace-based system?

- V
- Compilers and libraries are well-prepared to support complex HPC codes
- Minor code changes (mostly due to non-standard coding techniques)
- Issue with binaries for NEMO

How does the NVIDIA Grace CPU behave with complex scientific codes?

- Scientific applications run out-of-the-box
 - High core-count opens the door to more OpenMP parallelism

- Currently lacking tools to explore further
 - Micro-benchmarking to measure performance peak
 - Access to performance counters will give more insight

How does the NVIDIA Grace CPU compare to other HPC systems?

- All applications exhibited performance improvements wrt. MareNostrum
 - Performance enhancement particularly pronounced in memory bound codes
 - A portion of the improvement due to higher CPU frequency

Core-to-core performance improvement out-of-the-box

End

Backup - Summary of hardware

	MareNostrum	NVIDIA Cluster		
		GraceHopper	Grace Grace	
Cluster architecture				
Architecture	x86_64	Armv9	Armv9	
Micro-architecture	Sykylake-X	Neoverse V2	Neoverse V2	
Cores per socket	24	72	144	
Sockets per node	2	1	1	
Frequency [MHz]	2100	>=3200	>=3200	
Full node floating-point perf	ormance	-16		
Vector ISA	AVX512	SVE	SVE	
Peak performance [Flop/cycle]	1536	1152	2304	
Peak performance [GFlop/s]	3225.6	3801.6	7603.2	
Full node main memory				
Number of memory channels	6	8	16	
Size [GB]	96	480	480	
Technology	DDR4-2666	LPDDR5	LPDDR5	
Peak bandwidth [GB/s]	256	600	1200	
Operative System				
OS distribution	SUSE Ent. Server 12 SP2	SP2 Ubuntu 22.04.2 LTS		
Kernel version 4.4.120-92.70-default 6.2.0-10		6.2.0-1009-nvio	09-nvidia-64k	

Backup - Compiler flags

Name	Version	Comments/Flags			
MareNostrum					
GNU Compiler Intel Compiler Math library MPI library NVIDIA Cluster	gcc/12.1.0 intel/2021.4 mkl/2021.4 impi/2018.4	-Ofast -march=skylake-avx512 -Ofast -xCORE-AVX512 -mtune=skylake Provided by environment modules Provided by environment modules			
GNU Compiler NVIDIA Compiler Arm Compiler Math library MPI library	gcc/12.3.0 nvhpc/23.9 acfl/23.04.1 armpl/23.04.1 openmpi/4.1.5-rc2	-Ofast -mcpu=native -O3 -tp=host -Ofast -mcpu=neoverse-v2 Provided by environment modules Provided by environment modules			

