CS/B.TECH/CSE/IT/ODD/SEM-3/CS-301/2017-18

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: CS-301

ANALOG AND DIGITAL ELECTRONICS

Time Allotted: 3 Hours

Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own

words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

(Multiple Choice Type Questions)										
1.		oose owin	the correct alterng:	natives	for any	ten of the $10 \times 1 = 10$				
	i)	Parity generator is used for								
		a)	error detection	b)	amplitud	e detection				
		c)	noise detection	d)	none of t	hese.				
	ii)	Synchronous circuits change their state with								
		a)	input	b)	clock pul	se				
		c)	output	d)	none of t	hese.				
	iii)	The	e efficiency of class A	fier is						
		a)	0.5	b)	1					

d) - 0.1.

30101

0.25

c)

Turn over

CS/B.TECH/CSE/IT/ODD/SEM-3/CS-301/2017-18

iv)	Exc	lusive-OR (XOR) 1	ogic	gates	can	be		
	constructed from what other logic gates?								
	a)	OR gates only					. *		
	b)	AND gates, OR gates and NOT gates							
	c) OR gates and NOT gates								
	d)	none of these.		•					
v)									
	a) .	123	b)	312					
	c)	213	d)	132.	•				
vi)	i) $A + A'B + A'B'C + A'B'C'D + \dots$ equ								
	a)	A + B + C + D	b) .	A'+	B'+C'	+ D'			
	c) ·	1	d)	0.					
vii)	The	The minimum number of NAND gates required to							
	implement an EX-OR gate is								
• .	a)	2	b)	3	. 4.				
	c) ,	4	d)	5.					
viii)	ii) The net phase shift of Wien-bridge oscilla								
around the loop is									
	a)	90°	b)	180°					
	c)	zero	d)	360°	•				
ix)	[AE	[AB'(C+BD)+A'B']C is							
	a)	AB'	b)	BC	•				
	c)	B'C	d)	AB.	•				
x)	If the Q of a single stage single tuned amplifier is								
	doubled, then bandwidth will								
	a)	remain the same	b)	beco	me half	•			
	c)	become double	d)	beco	me four	times	3.		
				•					

- xi) Fastest logic gate family is
 - a) CMOS

b) ECL

c) TTL

- d) RTL.
- xii) The number of flip-flops required to design a Mod 10 counter is
 - a) 3

b) 4

c) 5

d) 6.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Implement the function of D flip-flop using J-K flip-flop.
- 3. Simplify the following functions using K-map:
 - a) $F(A, B, C, D) = \sum_{m} (7, 9, 10, 11, 12, 13, 14, 15)$
 - b) $F(A, B, C, D) = \pi_M(0, 2, 3, 6, 7) + \pi_d(8, 10, 11, 15).$
- 4. Design a 5:32 decoder using 2:4 and 3:8 decoders.
- 5. Draw and explain the operation of monostable multivibrator using 555 timer.
- 6. Describe the working of S-R flipflop using truth table, logic diagram and excitation table.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following. $3 \times 15 = 45$

- 7. a) Design a MOD 4 synchronous counter using J-K flip-flops and implement it.
 - b) Implement a full subtractor using demultiplexer.
 - c) Design a full adder using two half adders.

30101

3

Turn over

- 8. a) Design an asynchronous 3-bit up-down counter using J-K flip-flop which counts up when external signal M = 1 and counts down when M = 0.
 - b) With a neat circuit diagram, explain the operation of a 4-bit Johnson counter implemented using D flip-flop. 7+8
- 9. a) Draw and explain the master-slave J-K flip-flop using NAND gate.
 - b) Write down the excitation table and covert SR to JK flip-flop.
 - c) Describe the operation of a bi-directional universal shift register (with parallel load) with a neat diagram. 5+5+5
- 10. a) What are the conditions necessary for the generation of oscillation?
 - b) Explain the operation of a Wien-bridge oscillator using Op-Amp with a circuit diagram.
 - c) Derive an equation for its frequency of oscillation.
 - d) What is Barkhausen criterion? 2 + 5 + 5 + 3
- 11. Write short notes on any three of the following: 3×5
 - a) Parallel input serial output shift register
 - b) Decimal to BCD encoder
 - c) A/D converter using successive approximation
 - d) Asynchronous ripple counter
 - e) TTL family.