Technische Universität München

Ferienkurs Mathematik für Physiker 1

(2021/2022)Übungsblatt 4

Yigit Bulutlar

24. März 2022

1 Eigenwerte

1.1

Gegeben sei die reelle Matrix $A=\begin{pmatrix}1&1&1\\-1&3&1\\-1&0&4\end{pmatrix}$ (a) Zeigen Sie, dass der Vektor $v=\begin{pmatrix}2\\1\\1\end{pmatrix}$ ein Eigenvektor von A ist, und geben Sie den

zugehörigen Eigenwert an.

- (b) Berechnen Sie das charakteristische Polynom χ_A und alle Eingewerte von A.
- (c) Bestimmen Sie je eine Basis der Eigenräume von A.
- (d) Ist A diagonalisierbar? Wenn ja, geben Sie eine Matrix $S \in \mathbb{R}3 \times 3$ an sodass $S^{-1}AS$ eine Diagonalmatrix ist.

1.2

Sei $A \in \mathbb{R}^{n \times n}$ eine Matrix mit den paarweise verschiedenen Eigenwerten $\lambda_1, ..., \lambda_n \in \mathbb{R}$. Zeigen Sie: $det(A) = \prod_{i=1}^{n} \lambda_i$

1.3

Sei $A \in \mathbb{R}^{n \times n}$ idempotent, d.h. $A^2 = A$. Beweisen Sie, dass alle Eigenwerte von A in $\{0,1\}$ liegen.

1.4

Gegeben sei die reelle symmetrische Matrix $A = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 \\ -1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$.

- (a) Bestimmen Sie eine orthogonale Matrix $S \in O(4)$, so dass ist.
- (b) Ist durch $(x,y) \longmapsto x^T Ay$ ein Skalarprodukt definiert?

2 Jordan Normalform

2.1

Gegegeben sei die Matrix $A = \begin{pmatrix} 2 & 5 \\ -1 & -2 \end{pmatrix}$

- (a) Nehmen Sie $A \in \mathbb{R}^{2\times 2}$ an. Ist A ähnlich zu einer Matrix J_A in Jordan Normalform? (b) Jetzt nehmen Sie $A \in \mathbb{C}^{2\times 2}$ an. Bestimmen Sie die Eigenwerte und Eigenräume von A.
- (c) Wie lautet die Jordan Normalform von A

2.2

Gegeben Sei die folgende Matrix. Bestimmen Sie die Jordan Normalform J_A von A und die Transformationsmatrix S so dass $S^{-1}AS = J_A$.

$$A = \begin{pmatrix} 2 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ -1 & 0 & 1 & -1 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

2

2.3

Berechnen Sie A^{100} für $A = \begin{pmatrix} 11 & -4 \\ 25 & -9 \end{pmatrix}$

Hinweis: A ist ähnlich zu ihrer Jordan Normalform.