# Projet 3: Conception d'application au service de la Santé Publique

Data Scientist Xuefei ZHANG 07/2022

# **Sommaire**

- Contexte et objectif
- Idée d'application
- Traitement et nettoyage de données
- Exploration de données: analyse univariée bivariée - multivariée
- Faisabilité de la mise en production

#### **Contexte**

La Santé Publique a lancé un appel à projets pour trouver des idées innovantes d'applications en lien avec l'alimentation. On y participe et propose une idée d'application.

#### **Objectif**

À partir du jeu de données Open Food Facts et les informations de l'appel à projets:

- 1. Réfléchir une idée d'application et choisir les variables pertinentes conformément à l'application.
- 2. Nettoyage et traitement de données, et automatisation de processus de traitement
- 3. Faire une analyse multivariée pour les hypothèses et effectuer les tests statistiques associés
- 4. Justifier la faisabilité de l'application à partir des données Open Food Facts.
- 5. Pitch de l'idée

# 2. Comment peut-on valoriser les données ?

- Idée d'application de données Open Food Facts

#### Réflexion

#### CE QU'ON A:

- Jeu de données <u>openfoodfacts.org</u> contient des informations couvrant:
  - Les informations générales sur la fiche du produit: nom, date
  - Un ensemble de tags : catégorie, localisation, origine...
  - Les ingrédients et leurs additifs.
  - Informations nutritionnelles par 100g
- Informations sur appels à projets (Santé Publique France)
- 3. Exemples d'application

#### **SITUATION ACTUELLE:**

Manger sain et léger prend le vogue avec l'augmentation du **taux d'obésité** provenant entre autres du **régime alimentaire**.



#### Raisons:

- une augmentation de la consommation d'aliments très caloriques riches en lipides
- une augmentation du manque d'activité physique

#### Quels indicateurs nous-seront utiles?

#### IDÉE D'APPLICATION:

Dans l'hypothèse que les gens ont besoin de manger léger afin de se sortir de l'état surpoids ou prévenir l'éventualité de l'être, on a besoin d'un indicateur qui montre la légèreté des produits alimentaires.

On envisage une application capable d'évaluer le **niveau de légèreté** des produits alimentaires - **lightscore**.

En référant la littérature alimentaire, c'est clair que l'alimentation légère a certainement de caractéristiques ci-après:

- Bas en calorie
- Bas en grasse saturée
- Bas en sucre

En conséquence, on pré-sélectionne à ce titre les indicateurs ci-après:

- energy\_100g,
- saturated-fat\_100g
- sugars\_100g
- fiber\_100g (non-mandatoire)
- vitamins (non-mandatoire)
- nutrition-score-fr (non-mandatoire)

## 3. Traitement de jeux de données

- Choix de variable-indicateurs pertinents
- Nettoyage et transformation
- Visualisation

#### Pré-sélection de variables et constitution de dataframe

RangeIndex: 320772 entries, 0 to 320771

Le choix des indicateurs doit prendre en compte à la fois :

- A quel niveau l'indicateur est associé avec notre cible (pertinence)
- Intégrité statistique des indicateurs (% de null) B.



Data columns (total 9 columns): Column Non-Null Count Dtype 320749 non-null object code 0.000072 code Possible clé primaire 0.055373 product name 303010 non-null object product name categories\_fr 0.736850 categories fr 84411 non-null object 261113 non-null float64 energy 0.185986 energy saturatedfat 229554 non-null float64 saturatedfat 0.284370 sugars 244971 non-null float64 0.236308 sugars fiber 200886 non-null float64 0.373742 fiber vitamins 320772 non-null float64 vitamins 0.000000 nutriscore 221210 non-null float64

nutriscore

0.310382

### 2) nettoyage et transformation

#### A. Conserver seulement les observations qui ont lieu de vente 'France'

```
df= df[df['countries_fr'].str.contains("France", na=False)]
```

```
0 code 98440 non-null object
1 product_name 91247 non-null object
2 category 61955 non-null object
3 countries_fr 98440 non-null object
4 energy 64593 non-null float64
5 saturatedfat 62375 non-null float64
6 sugars 62515 non-null float64
7 fiber 45723 non-null float64
8 vitamins 98440 non-null float64
9 nutriscore 61415 non-null float64
10 nutrigrade 61415 non-null object
```

Suite à cette opération, on a les produits vendus en France (non-exclusive).

#### 2) nettoyage et transformation

#### B. Vérification de null et doublons, enlèvement de null et dédoublonnage

```
df=df.dropna(subset=['code'])
df=df.drop_duplicates(subset=['code'])
```

```
0 code 98436 non-null object
```

- 1 product\_name 91244 non-null object
- 2 category 61952 non-null object
- 3 countries\_fr 98436 non-null object
- 4 energy 64590 non-null float64
- 5 saturatedfat 62372 non-null float64
- 6 sugars 62512 non-null float64
- 7 fiber 45720 non-null float64
- 8 vitamins 98436 non-null float64
- 9 nutriscore 61412 non-null float64
- 10 nutrigrade 61412 non-null object

Suite à cette opération, on obtient [code] unique, qualifié pour être clé primaire

### **Description de data**

|       | energy       | saturatedfat | sugars       | fiber        | vitamins     | nutriscore   |  |
|-------|--------------|--------------|--------------|--------------|--------------|--------------|--|
| count | 6.459000e+04 | 62372.000000 | 62512.000000 | 45720.000000 | 98436.000000 | 61412.000000 |  |
| mean  | 1.171532e+03 | 5.423763     | 13.432775    | 2.559240     | 0.006676     | 8.683124     |  |
| std   | 1.283620e+04 | 8.531269     | 19.087774    | 4.634929     | 0.923874     | 9.046211     |  |
| min   | 0.000000e+00 | 0.000000     | -0.100000    | 0.000000     | 0.000000     | -15.000000   |  |
| 25%   | 4.270000e+02 | 0.300000     | 1.000000     | 0.000000     | 0.000000     | 1.000000     |  |
| 50%   | 1.035000e+03 | 2.000000     | 4.100000     | 1.365000     | 0.000000     | 9.000000     |  |
| 75%   | 1.649000e+03 | 7.400000     | 17.800000    | 3.200000     | 0.000000     | 15.000000    |  |
| max   | 3.251373e+06 | 210.000000   | 105.000000   | 178.000000   | 196.707879   | 40.000000    |  |

- Présence de grand nombre de valeurs aberrantes dans **energy**, **saturatedfat**, **fiber**, **vitamins**
- Valeurs négatives dans **sugars** et **nutriscore**. Mais c'est normal pour nutriscore d'avoir valeur négative.



#### C. conversion de valeurs négatives en positives dans 'sugars'

#### D. enlèvement de valeurs aberrantes dans 'energy, saturatedfat, fiber, vitamins'

df.sugars = df.sugars.abs() df = df.loc[(df.energy <= 3770) & (df.saturatedfat <= 100) & (df.fiber <= 75) & (df.vitamins <= 10)]45286.000000 45286.000000 45198.000000 45286.000000 45286.000000 44677.000000 1112.197626 4.918371 13.460465 2.505576 0.001928 7.588379 mean 774.447680 8.211978 18.631677 4.131543 0.068608 9.036731 std -15.000000 min 0.000000 0.000000 0.000000 0.000000 0.000000 25% 406.250000 0.300000 1.200000 0.000000 0.000000 0.000000 50% 1040.500000 1.600000 4.400000 1.330000 0.000000 7.000000 1661.000000 6.200000 18.400000 3.200000 0.000000 14.000000 75% 3770.000000 100.000000 104.000000 75.000000 7.596194 36.000000 max

Écart-type diminué
Min sugars positive

Max diminué



# 4. Exploration de données

- Analyse univariée
- Analyse bivariée et multivariée:
  - Corrélation
  - ANOVA comment se varient le saturatedfat des produits de différents nutrigrade?
  - Régression linéaire nutriscore peut être prédit par d'autres indicateurs?
  - Imputation de null
  - ACP
- Scoring

### Analyse univariée - barplot



À part 'category', il n'existe pas de grand écart sur la quantité de données de chaque indicateur.



En générale, l'aliment est plus calorique et riche en saturatedfat avec l'augmentation de **nutricore** 

#### **Analyse bivariée**

- corrélation: heatmap



- Heatmap: nutriscore se corrèle fortement et positivement avec energy, saturatedfat et sugars
- Heatmap: il existe de très faible corrélation entre nutriscore et fiber & vitamins

#### **Analyse bivariée**

distribution: jointplot (histogram+scatterplot)



Grande possibilité de faire régression linéaire nutriscore-energy.

- Energy n'a pas possibilité de faire régression linéaire avec ni saturatedfat ni sugars
- La distribution de ces 3 indicateurs varient en fonction de nutrigrade.

### **ANOVA - analyse de variance** des moyennes de groupes

Anova\_grade1= ols('saturatedfat~nutrigrade', data=df2).fit() Anova\_grade1.summary()

1

**OLS Regression Results** 

nutrigrade[T.b]

nutrigrade[T.c]

nutrigrade[T.d]

nutrigrade[T.e] 13.7546

0.4917

1.7668

6.4345

0.104

0.096

0.094

0.103

| OLS Regression Re | esuits                                     |              |                       |                 |        |                |  |       |
|-------------------|--------------------------------------------|--------------|-----------------------|-----------------|--------|----------------|--|-------|
| Dep. Variable     | e: s                                       | saturatedfat |                       | R-squared:      |        | 0.349          |  |       |
| Mode              | l:                                         | OLS          | Adj.                  | Adj. R-squared: |        | dj. R-squared: |  | 0.349 |
| Method            | Method: Least Squares F-statistic:         |              | tic:                  | 5978.           |        |                |  |       |
| Date              | Date: Sat, 23 Jul 2022 Prob (F-statistic): |              | tic):                 | 0.00            |        |                |  |       |
| Time              | <b>)</b> :                                 | 13:17:04     | 17:04 Log-Likelihood: |                 | od: -1 | .4799e+05      |  |       |
| No. Observations  | S:                                         | 44674        | AIC:                  |                 | NC:    | 2.960e+05      |  |       |
| Df Residuals      | S:                                         | 44669        | BIC:                  |                 | BIC:   | 2.960e+05      |  |       |
| Df Mode           | l:                                         | 4            |                       |                 |        |                |  |       |
| Covariance Type   | e:                                         | nonrobust    |                       |                 |        |                |  |       |
|                   | coef                                       | std err      | t                     | P> t            | [0.025 | 0.975]         |  |       |
| Intercept         | 0.5922                                     | 0.069        | 8.577                 | 0.000           | 0.457  | 0.728          |  |       |
|                   |                                            |              |                       |                 |        |                |  |       |

4.719

18.309

68.658

133.074

0.000

0.000

0.000

0.000

0.287

1.578

6.251

13.552 13.957

6.618

Variable catégorielle: nutrigrade Donc on peut essayer de prendre nutrigrade pour variable explicative Anova

**H0**: égalité de moyenne des différents groupes (sous-population) pour une variable dépendante ( saturatedfat).

- nutrigrade peut expliquer la variance de saturatedfat à 34.9 %
- la variance de saturatedfat expliquée par les autres facteurs aléatoire: 65.1 %

**P-values <0.5%,** rejet de H0, donc il exsite au moins une moyenne qui est très différente des moyennes d'autres groupes. => variance parmi les groupes sur saturatedfat peut être mesurée en fonction de différences en nutrisgrade.

### Régression linéaire multiple & tests statistiques associés

reg\_multi4 = smf.ols('nutriscore~energy + saturatedfat + sugars + fiber', data=df2).fit()

| Dep. Variable: |          | nutrisco     | ore           | R-squa         | red:    | 0.6            | 33 |
|----------------|----------|--------------|---------------|----------------|---------|----------------|----|
| Mo             | odel:    | OLS Adj.     |               | R-squared:     |         | 0.633          |    |
| Met            | hod: L   | east Squar   | es            | F-statistic    |         | stic: 1.923e+0 |    |
|                | Date: Sa | t, 23 Jul 20 | 22 Prob       | (F-statistic): |         | 0.00           |    |
| Т              | ime:     | 13:56:       | 40 <b>Log</b> | Log-Likeliho   |         | 1.3936e+       | 05 |
| No. Observati  | ions:    | 446          | 74            |                | AIC:    | IC: 2.787e+05  |    |
| Df Resid       | uals:    | 44669 BIC    |               | BIC:           | 2.788e+ | 05             |    |
| Df Model:      |          |              | 4             |                |         |                |    |
| Covariance 1   | Гуре:    | nonrobu      | ıst           |                |         |                |    |
|                | coef     | std err      | t             | P> t           | [0.025  | 0.975]         |    |
| Intercept      | 0.1681   | 0.047        | 3.599         | 0.000          | 0.077   | 0.260          |    |
| energy         | 0.0040   | 4.44e-05     | 89.546        | 0.000          | 0.004   | 0.004          |    |
| saturatedfat   | 0.4199   | 0.004        | 109.011       | 0.000          | 0.412   | 0.427          |    |
| sugars         | 0.1614   | 0.001        | 108.995       | 0.000          | 0.159   | 0.164          |    |
| fiber          | -0.5063  | 0.007        | -77.042       | 0.000          | -0.519  | -0.493         |    |

**H0:** variables explicatives n'ont pas d'impact sur variable dépendante.

**P-values** sont 0, => rejet de H0: tous ces 4 variables indépendantes ont de l'impact significatif sur nutriscore.

R-squared = 0.63, ces 4 variables dans son ensemble arrivent à expliquer 63% de variance dans nutriscore.



#### Normalité vérifiée

[('Lagrange multiplier statistic', 7854.536269 ('p-value', 0.0), ('f-value', 2382.260935296986), ('f p-value', 0.0)]

Rejet de H0: homoscétasticité vérifiée

### imputation de null - identification de stratégie et 1ère imputation

| category<br>nutrigrade<br>product_na<br>energy<br>saturatedfa | 0.000000 | category<br>nutrigrade<br>energy<br>saturatedfat | 29308<br>44674<br>45283<br>45283 |
|---------------------------------------------------------------|----------|--------------------------------------------------|----------------------------------|
| sugars                                                        | 0.001943 | sugars                                           | 45195                            |
| fiber                                                         | 0.000000 | fiber 4                                          | 5283                             |
| vitamins                                                      | 0.000000 | vitamins                                         | 45283                            |
| nutriscore                                                    | 0.013449 | nutriscore                                       | 44674                            |
| dtype: float                                                  | 64       |                                                  |                                  |

#### Colonnes à imputer: sugars, nutriscore

#### Stratégie d'imputation

- imputer nutriscore selon nutrigrade où se trouvent les produits car nutrigrade se classe en fonction de nutriscore (Anova, histogramme) par moyenne ou médiane, car il n'y a pas grand écart entre ces deux chiffres pour nutriscore, et qu'il n'y a pas bcp d'outliers
- imputer sugars selon category où se trouvent les produits
   par mediane de chaque category: vu omniprésence des outliers et que la moyenne est non-robuste aux outliers





### imputation de null - analyse et 2ème imputation

le nombre de null est énormément diminué

```
Suite à la 1ère imputation
                                     df imputed.sugars = df imputed.groupby(['category'],dropna=False)['sugars'].transform(lambda x:
                                     x.fillna(x.median()))
category
               29308
                                     df imputed.nutriscore =
nutriarade
               44674
                                     df imputed.groupby(['nutrigrade'],dropna=False)['nutriscore'],transform(lambda x: x.fillna(x.mean()))
              45283
energy
saturatedfat
                45283
              45261
sugars
                          Nombre de null énormément diminué
fiber
            45283
vitamins
               45283
                          Nombre de null n'est pas changé
nutriscore
               44674
Suite à la 2ème imputation
               29308
 category
               44674
 nutrigrade
               45283
 energy
 saturatedfat
                45283
              45261
 sugars
 fiber
             45283
               45283
 vitamins
                          Suite à l'imputation groupby category,
```

nutriscore

44899

Cette opération n'a pas fonctionné sur nutriscore (44674 - 44674), et que nutrigrade a aussi 44674 valeurs, ctd. (45283 - 44674) individus n'ont ni de nutriscore ni nutrigrade. c'est ainsi que imputation groupby nutrigrade n'a pas marché.

#### Solution?

Groupby category pour nutriscore.

## Imputation de null - 3ème imputation par K-NN méthode

imputer = KNNImputer(**n\_neighbors=5**).fit(X)

Imputation selon les 5 valeurs les plus proches

On a déjà groupby category et/ou nutriscore, donc c'est raisonnable d'opter pour K-NN méthode qui prend en compte les N valeurs plus proches vu la similarité des produits dans une même catégorie ou un même nutrigrade.

- 0 energy 45283 non-null float64
- 1 saturatedfat 45283 non-null float64
- 2 sugars 45283 non-null float64 Nombre de null réduit à 0
- 3 fiber 45283 non-null float64
- 4 vitamins 45283 non-null float64
- 5 nutriscore 45283 non-null float64

Nombre de null réduit à 0

### Référence - nutriscore: importances des indicateurs

Identifier l'importance de chaque indicateur-variable via RandomForest.



#### **Conclusion:**

- Il exsite de grande différence en terme de l'impact (poids) de ces 5 variables pour nutriscore (model).
- il ne faut pas négliger facilement les 4 première variables, et vitamins n'est pas forcément à prendre en compte.
- Autrement dit, ces 4 variables sont bien pertinentes, alors que vitamins à voir.

### **ACP** sur dataframe imputé

#### ACP consiste à:

- identifier la pertinence de chaque variable-indicateur sur le model
- chercher la possibilité de réduire le nombre de variables en entrée (réduction de dimension)







- On peut réduire jusqu'à 4 dimensions (environ 90% inertie 10% d'info perdue);
- Les inerties de chacune ces 4 dimensions ne se varient pas bcp;
- Toutes les 6 variable-indicateurs sont bien représentées par l'ensemble de ces 4 dimensions (90% inertie)
   => on peut réduire la dimensionnalité, mais on peut pas enlever aucune de ces variables;
- => ces variables pré-sélectionées sont bien pertinentes pour notre algorithme.

# Calculer lightscore - en fonction de résultat RandomForest et à base de df\_imputed2

 Std représente les importances proportionnelles des variable-indicateurs obtenues via RandomForest

|            | energy | saturatedfat | sugars | fiber | vitamins | nutriscore | lightscore |
|------------|--------|--------------|--------|-------|----------|------------|------------|
| nutrigrade |        |              |        |       |          |            |            |
| е          | 3766.0 | 100.0        | 0.0    | 0.0   | 0.0      | 20.0       | -25.07     |
| е          | 3766.0 | 95.0         | 0.0    | 0.0   | 0.0      | 20.0       | -25.02     |
| d          | 3766.0 | 95.0         | 0.0    | 0.0   | 0.0      | 15.0       | -25.02     |
| е          | 3766.0 | 95.0         | 0.0    | 0.0   | 0.0      | 20.0       | -25.02     |
| е          | 3766.0 | 94.0         | 0.0    | 0.0   | 0.0      | 20.0       | -25.01     |

# Calculer lightscore - en fonction de résultat RandomForest et à base de df\_scaled

- df\_scaled = df\_imputed2 centré et réduit via StandardScaler dans ACP
- **std[i]** représente les importances proportionnelles des variable-indicateurs obtenues via RandomForest

|            | energy   | saturatedfat | sugars    | fiber    | vitamins  | nutriscore | lightscore |
|------------|----------|--------------|-----------|----------|-----------|------------|------------|
| nutrigrade |          |              |           |          |           |            |            |
| е          | 3.426776 | 11.578176    | -0.721928 | -0.60643 | -0.028103 | 1.379578   | -0.14      |
| е          | 0.600221 | 10.116924    | 3.037013  | -0.60643 | -0.028103 | 2.709964   | -0.14      |
| е          | 0.465930 | 9.873382     | 2.392624  | -0.60643 | -0.028103 | 1.823040   | -0.13      |
| d          | 3.419029 | 10.482237    | -0.721928 | -0.60643 | -0.028103 | 0.825251   | -0.13      |
| е          | 3.426776 | 10.725779    | -0.721928 | -0.60643 | -0.028103 | 1.379578   | -0.13      |

### Comparaison de 2 résultats lightscore



- Il semble que le résultat lightscore basé sur df\_scaled est plus raisonnable que celui de df\_imputed.
- Normalement, lightscore devrait être négativement corrélée avec les 3 premiers indicateurs et nutriscore, positivement avec fiber et vitamins.

# 5. Faisabilité de la mise en production

### En synthétisant les conclusions ci-dessus:

#### CRITÈRES DE SÉLECTION D'INDICATEUR (de l'ordre séquentielle 1 à 4):

- Pertinence d'indicateur
- 2. **Poids** d'indicateur dans lightscore (si pertinent)
- 3. Facilité de **récupération** de données (% de null)
- 4. Facilité de **traitement** de données

1 & 2 : En règle générale, sauf <u>vitamins</u>, les 5 indicateurs sont bien pertinents.

Et leur poids dans lightscore:

- Energy 0.6
- Saturated-fat 0.7
- Sugars 0.57
- Fiber 0.41
- Vitamins 0.043
- Nutriscore 0.76

- 3. Pour la facilité de récupération, on fait référence au % null dans le jeu de données original:
  - Energy 18.6%
  - Saturated-fat 28.4%
  - Sugars 23.6%
  - Fiber 37.4%
  - Vitamins NaN ou 100%
  - Nutriscore 31%

- 4. il vaut mieux qu'on ignore <u>vitamins</u>, vu que dans la pratique, de divers types de vitamins ne se constatent pas par la somme mais séparément. Ça pénalise le traitement.
- => Ainsi on prend le reste 5 indicateurs dans notre application.

C'est faisable d'effectuer notre application à travers les données OpenFoodFacts.

# A vos questions!