Mathématique - Corrigé Devoir Maison n°13

Exercice 1

- 1. $F \subset E$ par sa définition.
 - La fonction nulle $f_0: x \longmapsto 0$ est indéfiniment dérivable sur \mathbb{R} , telle que $f_0' = f_0'' = 0$. Cette fonction est solution de l'équation différentielle (1). Donc $f_0 \in F$ et $F \neq \emptyset$
 - Soient y_1 , y_2 , deux éléments de F et $\lambda \in \mathbb{R}$.

Alors
$$y_1$$
 et y_2 vérifient :
$$\begin{cases} y_1'' + 2xy_1' + x^2y_1 = 0 & (\ell_1) \\ y_2'' + 2xy_2' + x^2y_2 = 0 & (\ell_2) \end{cases}$$

Avec $\ell_1 + \lambda \ell_2$, on obtient que : $(y_1 + \lambda y_2)'' + 2x(y_1 + \lambda y_2)' + x^2(y_1 + \lambda y_2) = 0$ Ce qui prouve que $y_1 + \lambda y_2 \in F$.

Donc F est un sous-espace vectoriel de E

2. La fonction \widetilde{f} est indéfiniment dérivable car f et f' le sont.

On calcule la dérivée : $\forall x \in \mathbb{R}$, $\widetilde{f}'(x) = f''(x) + f(x) + xf'(x)$

Mais, sachant que f est solution de (1), on a :

$$\forall x \in \mathbb{R}, \ \widetilde{f}'(x) = -2xf'(x) - x^2f(x) + f(x) + xf'(x) = -xf'(x) + (1-x^2)f(x)$$

On dérive à nouveau : $\forall x \in \mathbb{R}$, $\tilde{f}''(x) = -xf''(x) - x^2f'(x) - 2xf(x)$

que l'on remplace dans l'équation (1) :

$$\forall x \in \mathbb{R}, \ \widetilde{f}''(x) + 2x\widetilde{f}'(x) + x^2\widetilde{f}(x)$$

$$= -xf''(x) - x^2f'(x) - 2xf(x) + 2x(-xf'(x) + (1-x^2)f(x)) + x^2(f'(x) + xf(x))$$

$$= -xf''(x) - 2x^2f'(x) - x^3f(x) = -x(f''(x) + 2xf'(x) + x^2f(x)) = 0 \text{ car } f \text{ est solution de } (1).$$

On en déduit que \widetilde{f} vérifie l'équation (1) et donc que $\widetilde{f} \in F$.

De plus, l'application s est linéaire :

$$\forall (f_1, f_2) \in F^2, \ \forall \lambda \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ s(f_1 + \lambda f_2)(x) = \overbrace{f_1 + \lambda f_2}(x)$$

$$= (f_1 + \lambda f_2)(x) + x(f_1 + \lambda f_2)'(x) = f_1'(x) + xf_1(x) + \lambda (f_2'(x) + xf_2(x)) = (s(f_1) + \lambda s(f_2))(x)$$

On en déduit que $s(f_1 + \lambda f_2) = s(f_1) + \lambda s(f_2)$.

s est une application linéaire de F à valeur dans F, donc s est un endomorphisme de F.

Enfin
$$\forall f \in F$$
, $\forall x \in \mathbb{R}$, $s(s(f))(x) = s(\tilde{f})(x) = \tilde{f}'(x) + x\tilde{f}(x)$
= $(f''(x) + xf'(x) + f(x)) + x(f'(x) + xf(x)) = f''(x) + 2xf'(x) + x^2f(x) + f(x) = f(x)$
car f est solution de (1).

s est un endomorphisme de F tel que $s \circ s = id_F$. Donc s est une symétrie de F

- 3. Prenons une application f quelconque dans F:
 - $f \in Ker(s Id_E) \iff s(f) = f \iff \forall x \in \mathbb{R}, f'(x) + xf(x) = f(x)$

 \iff f est solution de $(H_1) \iff$ $f \in F_1$.

• $f \in Ker(s + Id_E) \iff s(f) = -f \iff \forall x \in \mathbb{R}, f'(x) + xf(x) = -f(x)$

 $\iff f$ est solution de $(H_2) \iff f \in F_2$.

Donc s est, dans F, la symétrie par rapport à F_1 et dans la direction de F_2 . On a donc $F = F_1 \oplus F_2$

- 4. Pour des applications f_1 et f_2 dérivables sur \mathbb{R} ,
 - f_1 est solution de (H_1) $f_1' = (-x+1)f_1 \Longleftrightarrow \exists C_1 \in \mathbb{R} ; \forall x \in \mathbb{R}, f_1(x) = C_1 \exp(-\frac{x^2}{2} + x)$

• f_2 est solution de (H_2) $f_2' = (-x-1)f_2 \Longleftrightarrow \exists C_2 \in \mathbb{R} \; ; \; \forall x \in \mathbb{R} \; , \; f_2(x) = C_2 \exp(-\frac{x^2}{2} - x)$

Toute solution de (H_1) est un élément de F, car c'est une application indéfiniment dérivable telle que :

$$y'' + (x - 1)y' + y = 0$$
 (obtenu en dérivant (H_1)), et donc telle que

$$y'' + 2xy' + x^2y = -(x-1)y' - y + 2xy' + x^2y = (x+1)y' + (x^2 - 1)y = (x+1)(y' + (x-1)y) = 0$$

Donc, toutes les solutions $f_1: x \longmapsto C_1 \exp(-\frac{x^2}{2} + x)$ de (H_1) sont dans F_1 (et réciproquement).

De même, toutes les solutions $f_2: x \longmapsto C_2 \exp(-\frac{x^2}{2} - x)$ de (H_2) sont les éléments de F_2 .

On en déduit que l'ensemble des solutions de l'équation différentielle $y'' + 2xy' + x^2y = 0$ (1) est

$$F = F_1 \oplus F_2 = \left\{ f : \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & C_1 \exp(-\frac{x^2}{2} + x) + C_2 \exp(-\frac{x^2}{2} - x) \end{array} \middle| (C_1, C_2) \in \mathbb{R}^2 \right\}.$$

Exercice 2

1. (a) En utilisant les formules :

$$e^{-2x} = 1 - 2x + 2x^2 - \frac{4}{3}x^3 + \frac{2}{3}x^4 - \frac{4}{15}x^5 + x^5\varepsilon(x)$$

$$\sin(2x) = 2x - \frac{4}{3}x^3 + \frac{4}{15}x^5 + x^5\varepsilon(x)$$

(b) D'où:

$$\frac{1}{e^{-2x} - 1} = \frac{1}{-2x + 2x^2 - \frac{4}{3}x^3 + \frac{2}{3}x^4 - \frac{4}{15}x^5 + x^5\varepsilon(x)}$$

et

$$\frac{1}{\sin(2x)} = \frac{1}{2x - \frac{4}{3}x^3 + \frac{4}{15}x^5 + x^5\varepsilon(x)}$$

On utilise $\frac{1}{1-u} = 1 + u + u^2 + u^3 + u^4 + u^4 \varepsilon(u)$ avec u qui tend vers 0.

$$\frac{1}{e^{-2x} - 1} = -\frac{1}{2x} \left(1 + \left(x - \frac{2}{3}x^2 + \frac{1}{3}x^3 - \frac{2}{15}x^4 \right) + \left(x - \frac{2}{3}x^2 + \frac{1}{3}x^3 \right)^2 + \left(x - \frac{2}{3}x^2 \right)^3 + x^4 + x^4 \varepsilon(x) \right)$$

et

$$\frac{1}{\sin(2x)} = \frac{1}{2x} \left(1 + \left(\frac{2}{3}x^2 - \frac{2}{15}x^4\right) + \left(\frac{2}{3}x^2\right)^2 + x^4 \varepsilon(x) \right)$$

On obtient

$$\frac{1}{e^{-2x} - 1} = \frac{1}{2x} \left(-1 - x + \frac{2}{3}x^2 - \frac{1}{3}x^3 + \frac{2}{15}x^4 - x^2 - \frac{4}{9}x^4 + \frac{4}{3}x^3 - \frac{2}{3}x^4 - x^3 + 2x^4 - x^4 \right)$$

et

$$\frac{1}{\sin(2x)} = \frac{1}{2x} \left(1 + \frac{2}{3}x^2 - \frac{2}{15}x^4 + \frac{4}{9}x^4 + x^4\varepsilon(x) \right)$$

On rassemble les deux :

$$f(x) = \frac{1}{0} \frac{1}{2x} \left(-x + \frac{1}{3}x^2 + \frac{1}{3}x^4 + x^4 \varepsilon(x) \right)$$

D'où le $DL_3(0)$ de $f: f(x) = -\frac{1}{2} + \frac{1}{6}x + \frac{1}{6}x^3 + x^3 \varepsilon(x)$

(c) On trouve que $\lim_{x\to 0} f(x) = -\frac{1}{2}$ existe dans \mathbb{R} , donc f se prolonge par continuité en posant $f(0) = -\frac{1}{2}$.

La fonction ainsi prolongée admet un $DL_1(0)$. Par propriété, f est donc dérivable en 0 et $f'(0) = \frac{1}{6}$

La tangente Δ est d'équation cartésienne $y=-\frac{1}{2}+\frac{1}{6}x$. la position relative de \mathscr{C}_f par rapport à Δ est donc déterminée par le signe de $\frac{1}{6}x^3+x^3\varepsilon(x)$.

Au voisinage de 0, lorsque $x<0,~\mathscr{C}_f$ est en-dessous de Δ et lorsque $x>0,~\mathscr{C}_f$ est au-dessus de Δ

Le point de la courbe d'abscisse 0 est un point d'inflexion.

2. (a) On veut que
$$\frac{x+1}{x}$$
 existe et que $\frac{x+1}{x} > 0$. Ce qui donne $D_g =]-\infty, -1[\cup]0, +\infty[$

(b)
$$\lim_{x \to 0} \frac{g(x)}{-\ln(x)} = \lim_{x \to 0} \frac{(x^2 + 1)\ln(\frac{x+1}{x}) + \frac{x^2 + x - 1}{x + 1}}{-\ln(x)}$$

$$= \lim_{x \to 0} \frac{(x^2 + 1)\ln(x + 1)}{-\ln(x)} + \frac{(x^2 + 1)(-\ln(x))}{-\ln(x)} + \frac{x^2 + x - 1}{(x + 1)(-\ln(x))} = 0 + 1 + 0 = 1$$
On en déduit qu' au voisinage de $0 : g(x) \sim -\ln(x)$, et donc $\lim_{x \to 0^+} g(x) = +\infty$

$$\lim_{x \to -1} \frac{g(x)}{\frac{-1}{x+1}} = \lim_{x \to -1} (x^2 + 1)(-x - 1)(\ln(-x - 1) - \ln(-x)) - x^2 - x + 1 = 1$$

 $\operatorname{car} \lim_{x \to -1} (-x - 1) \ln(-x - 1) = \lim_{X \to 0^+} X \ln(X) = 0$

On en déduit qu' au voisinage de $-1: g(x) \sim -\frac{1}{x+1}$, et donc $\lim_{x \to -1^{-}} g(x) = +\infty$

(c)
$$(1+h^2)\ln(1+h) = (1+h^2)(h-\frac{1}{2}h^2+\frac{1}{3}h^3+h^3\varepsilon(h)) = h-\frac{1}{2}h^2+\frac{4}{3}h^3+h^3\varepsilon(h)$$

$$\frac{1+h-h^2}{1+h} = (1+h-h^2)(1-h+h^2-h^3+h^3\varepsilon(h)) = 1-h^2+h^3+h^3\varepsilon(h)$$

(d) En posant $h = \frac{1}{x}$, on en déduit que :

$$g(x) = (x^{2} + 1)\ln\left(\frac{x+1}{x}\right) + \frac{x^{2} + x - 1}{x+1} = \frac{1}{h^{2}}\left((1+h^{2})\ln(1+h)\right) + \frac{1}{h}\left(\frac{1+h-h^{2}}{1+h}\right)$$

$$= \frac{1}{h^{2}}\left(h - \frac{1}{2}h^{2} + \frac{4}{3}h^{3} + h^{3}\varepsilon(h)\right) + \frac{1}{h}\left(1 - h^{2} + h^{3} + h^{3}\varepsilon(h)\right)$$

$$g(x) = \frac{2}{h} - \frac{1}{2} + \frac{1}{3}h + h\varepsilon(h) = 2x - \frac{1}{2} + \frac{1}{3x} + o\left(\frac{1}{x}\right)$$
On obtient donc
$$g(x) = 2x - \frac{1}{2} + \frac{1}{3x} + o\left(\frac{1}{x}\right)$$

Conséquence graphique : la courbe de g admet une asymptote oblique en $\pm \infty$ d'équation $y = 2x - \frac{1}{2}$.

Le signe de $g(x) - 2x + \frac{1}{2}$ est celui de $\frac{1}{3x}$ au voisinage de $\pm \infty$.

La courbe de g est en-dessous de l'asymptote pour $x \to -\infty$ et au dessus pour $x \to +\infty$.