Advance ML

PCA, If your goal is to reduce dimensions without considering class labels (for both classification & regression).

LDA, If you're working on classification problems and need to maximize class separation.

Kernel_PCA, If your data is nonlinear and standard PCA/LDA isn't capturing patterns well.

PCA Dimensionality reduction

PCA	Logistic	SVMI	SVMnl	KNN	Navie	Decision	Random
4	0.97	0.94	0.94	0.97	1.0	0.97	0.97
3	1.0	1.0	1.0	1.0	1.0	0.97	0.97
2	0.97	0.97	0.97	0.97	0.97	0.97	0.97

Based on above table after performing dimensionality reduction selecting 3 components give best results

LDA Discriminant analysis

LDA	Logistic	SVMI	SVMnl	KNN	Navie	Decision	Random
2	1.0	0.97	1.0	0.97	0.97	0.97	1.0
1	0.83	0.83	0.83	0.83	0.83	0.89	0.86

Based on above table after performing discriminant analysis selecting 2 components give best results

Kernel_PCA

Kernel_PCA	Logistic	SVMnl	KNN	Navie
2	1.0	0.86	0.97	1.0
3	0.97	0.86	0.97	0.97

Based on above table after performing for best pattern if your data has no linear then selecting 2 features gives best results