CS 255, Spring 2014, SJSU

Greedy algorithms

Fernando Lobo

1/23

Greedy Algorithms

- ► Another algorithm design technique.
- An algorithm is *greedy* when at each step of its execution it takes what seems to be the best option according to some local criterion.
- ▶ Used to solve many optimization problems (when we need to minimize or maximize something).

2/23

Greedy Algorithms

- ► The greedy strategy does not always work.
- ▶ It's possible to have several greedy algorithms for the same problem.
- ▶ It's easy to come up with a greedy algorithm.
- ► The difficult thing it to get a greedy algorithm that solves the problem to optimality.

Example: Activity Selection / Interval Scheduling

Problem definition:

- ▶ Input: n activities $(a_1, a_2, ..., a_n)$. Each a_i has a start time s_i and a finish time f_i .
- Output: a subset of the n activities with the largest possible size such that no two activities overlap in time with each other.
- ► If activities = classes, the problem consists of attending the maximum number of classes.

Example

a_i	Si	f_i
a_1	0	6
a_2	1	4
<i>a</i> ₃	3	5
a_4	3	8
a_5	4	7
<i>a</i> ₆	5	9
a ₇	6	10
a 8	8	11

- ▶ What's the best solution?
- ▶ Answer: $\{a_2, a_5, a_8\}$
- ► Algorithm?

5 / 23

Generic algorithm

- 1. Consider the intervals in some order.
- 2. Pick the first interval from the sequence.
- 3. Remove from the sequence all intervals which are not compatible with the interval chosen in step 2.
- 4. Repeat steps 2 and 3 until the sequence is empty.

6 / 23

Strategies for step 1

- ► Several strategies for step 1.
- ► Any idea?

Choose the interval that starts the earliest first

- ► A possible strategy: choose the interval that starts the earliest first.
- ▶ In our example, we would get the following sequence:

$$a_1 \ a_2 \ a_3 \ a_4 \ a_5 \ a_6 \ a_7 \ a_8$$

► Algorithm's execution:

```
iter 0: a<sub>1</sub> a<sub>2</sub> a<sub>3</sub> a<sub>4</sub> a<sub>5</sub> a<sub>6</sub> a<sub>7</sub> a<sub>8</sub>
iter 1: pick a<sub>1</sub>, remove a<sub>2</sub> a<sub>3</sub> a<sub>4</sub> a<sub>5</sub> a<sub>6</sub>
a<sub>1</sub> a<sub>7</sub> a<sub>8</sub>
iter 2: pick a<sub>7</sub>, remove a<sub>8</sub>
a<sub>1</sub> a<sub>7</sub>
```

fim: Final solution: $\{a_1, a_7\}$. Not optimal.

Another strategy: shortest interval first

aį	si	f_i	d_i
a_1	0	6	6
a_2	1	4	3
a_3	3	5	2
a 4	3	8	5
a ₅	4	7	3
<i>a</i> ₆	5	9	4
a ₇	6	10	4
<i>a</i> ₈	8	11	3

iter 0: sort by
$$d_i$$
 (duration)
 $a_3 \ a_2 \ a_5 \ a_8 \ a_6 \ a_7 \ a_4 \ a_1$

iter 1:
$$a_3$$
, remove a_2 a_5 a_4 a_1 a_3 a_8 a_6 a_7

iter 2:
$$a_8$$
, remove a_6 a_7 a_3 a_8

fim: Final solution:
$$\{a_3, a_8\}$$
.
Not optimal.

Another strategy: earliest finish time first

aį	Si	f_i
a_1	0	6
a_2	1	4
<i>a</i> ₃	3	5
a_4	3	8
<i>a</i> ₅	4	7
a_6	5	9
a ₇	6	10
a 8	8	11

iter 0: sort on
$$f_i$$

 $a_2 \ a_3 \ a_1 \ a_5 \ a_4 \ a_6 \ a_7 \ a_8$

iter 1:
$$a_2$$
, remove a_3 a_1 a_4 a_2 a_5 a_6 a_7 a_8

iter 2:
$$a_5$$
, remove a_6 a_7 a_2 a_5 a_8

fim: We got the optimal solution!

Does it always work? Yes, let's prove it.

9 / 23

10 / 23

Proof

- ► The idea is to show that at any step of the execution, out algorithm is as good as any other algorithm.
- We will use induction.
- Need some notation.

Proof

- ► Let *O* be the set of intervals returned by the greedy algorithm (earliest finish time first).
- ▶ Let *O** be an optimal set of intervals.
- ▶ We could try proving that $O = O^*$, but that's asking too much. There can be several optimal solutions.
- Let's simply try to prove that $|O| = |O^*|$. In other words, we will try to prove that O is also optimal.

11/23 12/23

Proof (cont.)

- Let i_1, i_2, \ldots, i_k , be the ser of intervals in O in the same order in which they were chosen by the greedy algorithm.
- ▶ Likewise, let $j_1, j_2, ..., j_m$, be the set of intervals in O^* .
- ightharpoonup \Rightarrow We must prove that k=m.
- \triangleright Note: The intervals in O^* do not intercept each other. Otherwise they couldn't belong to the final solution.

Proof (cont.)

- ▶ Let us prove that $\forall_{r < k} f(i_r) \leq f(j_r)$.
- ▶ In words, we will prove that the r^{th} interval in O doesn't end later that the r^{th} interval in O^* .
- Proof by induction.
- ▶ Base case: r = 1
 - $ightharpoonup f(i_1) \leq f(j_1)$
 - ► Why?
 - ▶ Because the greedy algorithm always chooses the interval with the least end time.

14 / 23

Proof (cont.)

- ▶ Inductive hypothesis: Assume $f(i_{r-1}) \le f(j_{r-1})$.
- ▶ Inductive step: Prove that $f(i_r) \le f(j_r)$.

- ▶ Is it possible that $f(i_r) > f(j_r)$?
- Answer: No. If that was the case, it would imply that the greedy algorithm was not choosing the interval that ends the earliest.

Proof (cont.)

13 / 23

- \triangleright Note that j_r is available to be chosen by the greedy algorithm (i.e., j_r doesn't intercept any interval in O).
- ▶ $f(i_{r-1}) \le f(j_{r-1}) \le s(j_r)$ The first inequality is justified by the inductive hypothesis, the second inequality because the intervals cannot intercept each other
- ▶ If $f(j_r) < f(i_r)$ then the greedy algorithm would choose j_r instead of i_r .
- ▶ Therefore $f(i_r) < f(i_r)$

Proof (cont.)

- ▶ We only need to prove that k = m.
- ▶ We can do it by contradiction.
- ► Suppose *O* is not optimal.
 - $\implies |O^*| > |O| \iff m > k.$

17 / 23

Proof (cont.)

- ▶ We already proved by induction that $f(i_k) \le f(j_k)$, $\forall_{r < k}$.
- ▶ If m > k, then there must be some interval j_{k+1} in O^* . Such an interval has to start after j_k 's end time, and therefore, after i_k 's end time.
- ▶ This implies that interval j_{k+1} would be available to be chosen by the greedy algorithm.
- ▶ But the greedy algorithm stops with i_k which is a contradiction. Therefore O is optimal. \square

18 / 23

Complexity

- ▶ $\Theta(n \lg n)$ to sort on f_i .
- \triangleright $\Theta(n)$ for the rest of the algorithm.
- ▶ Total: $\Theta(n \lg n)$

Summary

- ▶ We have seen several greedy strategies for the activity selection problem, and we could have thought of many others.
- ▶ Not all strategies result in optimal solutions.

Properties

Problems that can be solved to optimality by a greedy algorithm, have two important properties:

- 1. The greedy-choice property.
- 2. Optimal substructure.

21 / 23

Our greedy algorithm has optimal substructure

- ▶ Can be seen from the induction proof.
- $O' = O \{i_k\}$ is the optimal solution for the subproblem confined to the intervals that start before i_{k-1} ends.

Properties

- ► Greedy-choice property: An optimal solution can be constructed by making a sequence of locally optimal (greedy) choices.
- Optimal substructure: An optimal solution for a problem contains within it optimal solutions to subproblems.