

Session 5.1 - Annotation

Sara Monzón Fernández

<u>BU-ISCIII</u> <u>Unidades Comunes Científico Técnicas - SGSAFI-ISCIII</u>

04-15 Noviembre 2019, 2ª Edición Programa Formación Continua, ISCIII

Bacterial genome characteristics

- A bacterial genome is a single "circular" DNA molecule with several million base pairs in size
- Bacteria can contains plasmids (small and circular DNA molecules, that contain (usually) non-essential genes)
- Genomes contain a few thousand genes.
- "Gene density" is much higher than in humans, one million base pairs of bacterial DNA contains about 500 to 1000 genes.
 - bacterial genes have no introns,
 - the average number of codons in bacterial genes is less than in human genes,
 - neighboring genes are very close together throughout the genome

Annotation

Genome annotation is the process of attaching biological (and positional) information to sequences. It consists of three main steps:

- identifying portions of the genome that do not code for proteins
- Identifying coding elements on the genome, a process called gene prediction
- attaching biological information to these elements

https://galaxyproject.github.io/training-material/topics/genome-annotation/tutorials/genome-annotation/tutorial.html

Main categories

- Structural annotation Finding genes and other biologically relevant sites with specific locations but unknown function
 - ORFs
 - Coding sequences(cds)
 - Promoters and regulatory regions
- Functional annotation Elements are used in database searches to attach biologically relevant information to whole sequence and individual objects

Automatic annotation

- Exponential submission of bacteri genomes
- Databases
 - Uniprot
 - RefSeq
 - Encyclopedia of DNA elements (
 - Entrez Gene
 - Ensembl
 - GENCODE
 - Gene Ontology Consortium
 - GeneRIF
 - Vertebrate and Genome Annotati Project (Vega)
 - Pfam
 - etc

Automatic annotation

Two strategies for identifying coding genes:

- Sequence alignment o find known protein sequences in the contigs
 - transfer the annotation across
 - will miss proteins not in your database
 - may miss partial proteins
- Ab initio gene finding o find candidate open reading frames:
 - Build model of ribosome binding sites
 - predict coding regions
 - may choose the incorrect start codon
 - may miss atypical genes, overpredict small genes

Automatic annotation

- tRNA: easy to find and annotate: anti-codon
- rRNA: easy to find and annotate: 5s 16s 23s
- CDS: straightforward to find candidates
 - false positives are often small ORFs
 - wrong start codon o partial genes
 - Pseudogenes
 - assigning function is the bulk of the workload

- If sequence homologues are found, may not be functional homologues
 - Not truncated
- If no homology found- limited information can be inferred
- Incorrect annotation can be propagated when similarity is over part on sequence not used in annotation
 - Multidomain proteins (HMM)
- Inconsistent annotation (Different names, same protein)
- Same gene name, different product name
- Spelling mistakes
- Looking for new genes, not present in DDBB
- Expression experiments / Manual annotation needed

Richardson and Watson. Briefings in Bioinformatics. 2012

Inconsistent annotation

Figure 2: The six different models present across I7 RefSeq entries for Salmonella species for the eutM/eutN locus. Green indicates normal gene/CDS features, lighter grey indicates gene features annotated as pseudogenes.

- (A) A single intact gene of 690 bp; (B) a single pseudogene of 690 bp; (C) two short intact genes \sim 300 bp in length;
- (D) one pseudogene and one intact gene, each ~300 bp in length; (E) two pseudogenes, each 300 bp in length; and
- (F) two intact genes with the order reversed.

Richardson and Watson. Briefings in Bioinformatics. 2012

Inconsistent annotation

Figure 3: A syntenic block of genes showing inconsistent gene name annotations in E.coli KI2 MGI655 and E. coli 0157:H7 Sakai.

Spelling mistakes

- There are 128 proteins in UniProt that contain the word 'syntase', an incorrect spelling of the word 'synthase'
- If a user was to visit any of these databases and search for 'dihydrofolate synthase' the misspelled entries would be omitted from the search results

herramientas y aplicaciones

- <u>'Same gene name, different product name'</u>
 - The NCBI validation software specifically highlights when this occurs intra-genomically with the description 'Same gene name, different product name'

Table 1: Different product names assigned to features with the gene name 'int' across 17 different RefSeq entries for Salmonella species

Gene name	Product name	Accession
int	bacteriophage integrase	NC.003198, NC.004631, NC.015761
int	Gifsy-I prophage Int	NC.006905
int	hypothetical protein	NC.006905
int	Integrase	NC.003198, NC.004631, NC.006511, NC.012125
int	integrase (fragment)	NC.003I98
int	phage integrase family site specific recombinase	NC.006905
int	putative cytoplasmic protein	NC.006905
Int	Putative integrase	NC.003384
int	putative integrase protein	NC.006905
int	putative P4-type integrase	NC.006905
int	putative phage integrase protein	NC.006905 Richardson and Wats
int	site-specific recombinase, phage integrase family	NC012125 in Bioinformatics. 20.

Hypothetical proteins

- These may be real genes with no known function or they may be artifacts of the gene prediction process.
- Often there are features which are only orthologous to other hypothetical features and do not contain any domains. These could either be regions with no functionality, a relic of the feature prediction software or the domains present have not been discovered yet
- Whether or not to include them is often a decision made by the annotation team and varies between groups
- As experimental data becomes more ubiquitous evidence tags should play a larger role in annotation.

Distinguishing orthologs from paralogs

Figure 4: A diagram displaying the processes that can lead to, and define, orthologs and paralogs. Gene duplication and speciation events create complex evolutionary relationships between genes.

14

14/11/2019

- RefSeq is one attempt to standardize and improve the quality of genome annotation
 - WP_ prefix. All identical proteins regardless of species
 - Standard classification

```
beta-lactamase (conceptual)
   class A beta-lactamase (HMM:NF033103)
   metallo-beta-lactamase (HMM:NF012229)
      subclass B1 metallo-beta-lactamase (HMM:NF033088)
          NDM family subclass B1 metallo-beta-lactamase (HMM:NF000259)
             subclass B1 metallo-beta-lactamase NDM-1 (allele)
             subclass B1 metallo-beta-lactamase NDM-2 (allele)
             subclass B1 metallo-beta-lactamase NDM-3 (allele)
          VIM family subclass B1 metallo-beta-lactamase (HMM:NF012100)
          SPM family subclass B1 metallo-beta-lactamase (HMM:NF012150)
      subclass B2 metallo-beta-lactamase (HMM:NF033087)
      subclass B3 metallo-beta-lactamase (HMM:NF033105)
   class C beta-lactamase (HMM:NF033085)
   class D beta-lactamase (conceptual)
      class D beta-lactamase (main branch) (HMM:NF012161)
      class D beta-lactamase (other branch) (HMM:NF000270)
```


- Optional user-provided set of annotated proteins
- All bacterial proteins in UniProt
- All proteins from finished bacterial genomes in RefSeq
- Hidden Markov model profile databases, Pfam and TIGRFAMs
- Hypothetical protein

https://galaxyproject.github.io/training-material/topics/genome-annotation/tutorials/annotation-with-prokka/slides.html#8

Prokka: Sequence databases

I'll just BLAST against the non-redundant database. -Anonymous

- Which one?
- nucleotide (nt) or protein (nr)
- It's actually quite redundant o only eliminates exact matching sequences
- It's not picky o nearly anything is admitted, garbage in garbage out
- It's too big o searching takes too long

Facts

- searching against smaller databases is faster
- searching against similar sequences is faster ●

• <u>Idea</u>

- start with small set of close proteins
- advance to larger sets of more distant proteins

Prokka

- your own custom "trusted" set (optional)
- core bacterial proteome (default)
- genus specific proteome (optional)
- whole protein HMMs: PRK clusters, TIGRfams
- protein domain HMMs: Pfam

Core Bacterial proteome

- Many bacterial proteins are conserved
 - experimentally validated o small number of them
 - good annotations
- Prokka provides this database
 - derived from UniProt-Swissprot
 - only bacterial proteins
 - only accept evidence level 1 (aa) or 2 (RNA)
 - reject "Fragment" entries
 - extract /gene /EC_number /product /db_xref ●
- First step gets ~50% of the genes
 - BLAST+ blastp, multi-threading to use all CPUs

• Prokka has genus specific databases

- aim to capture "genus specific" naming conventions
- derived from proteins in completed genomes
- proteins are clustered and majority annotation wins
- some annotations are rubbish though

Custom model databases

I took COG/PRK MSAs and made HMMs

Existing model databases

Pfam, TIGRfams are well curated

And if all else fails

- we always have our friend "hypothetical protein"

Automatic annotation: Prokka output

Suffix	Description of file contents	
.fna	FASTA file of original input contigs (nucleotide)	
.faa	FASTA file of translated coding genes (protein)	
.ffn	FASTA file of all genomic features (nucleotide)	
.fsa	Contig sequences for submission (nucleotide)	
.tbl	Feature table for submission	
.sqn	Sequin editable file for submission	
.gbk	Genbank file containing sequences and annotations	
.gff	GFF v3 file containing sequences and annotations	
.log	Log file of Prokka processing output	
.txt	Annotation summary statistics	

Annotation format: gff3

```
##gff-version 3.2.1
       Segid - name
1.
                                      ##sequence-region ctg123 1 1497228
       Source - program
                                      ctg123 . gene
                                                                                   ID=gene00001;Name=EDEN
                                                              1000
                                                                    9000
                                      ctg123 . TF_binding_site 1000
                                                                    1012
                                                                                   ID=tfbs00001;Parent=gene00001
       Type - term or SOFA
                                      ctg123 . mRNA
                                                              1050
                                                                    9000
                                                                                   ID=mRNA00001; Parent=gene00001; Name=EDEN.1
       sequence ontology
                                      ctg123 . mRNA
                                                              1050
                                                                    9000
                                                                                   ID=mRNA00002; Parent=gene00001; Name=EDEN.2
4.
       Start
                                                                    9000
                                      ctg123 . mRNA
                                                              1300
                                                                                   ID=mRNA00003; Parent=gene00001; Name=EDEN.3
5.
       End
                                                              1300
                                                                    1500
                                                                                   ID=exon00001;Parent=mRNA00003
                                      ctg123 . exon
                                      ctg123 . exon
                                                              1050
                                                                    1500
                                                                                   ID=exon00002;Parent=mRNA00001,mRNA00002
6.
       Score
                                                                    3902
                                      ctg123 . exon
                                                              3000
                                                                                   ID=exon00003; Parent=mRNA00001, mRNA00003
       Strand -(+/-)
                                      ctg123 . exon
                                                              5000
                                                                    5500
                                                                                   ID=exon00004; Parent=mRNA00001, mRNA00002, mRNA00003
       Phase -(0/1/2)
8.
                                      ctg123 . exon
                                                              7000
                                                                    9000
                                                                                   ID=exon00005; Parent=mRNA00001, mRNA00002, mRNA00003
                                                                                   ID=cds00001;Parent=mRNA00001;Name=edenprotein.1
                                      ctg123 . CDS
                                                              1201
                                                                    1500
9.
       Attributes
                                      ctg123 . CDS
                                                              3000
                                                                    3902
                                                                                   ID=cds00001;Parent=mRNA00001;Name=edenprotein.1
           Name
                                                                    5500
                                      ctg123 . CDS
                                                              5000
                                                                                   ID=cds00001;Parent=mRNA00001;Name=edenprotein.1
           Alias
                                      ctg123 . CDS
                                                                    7600
                                                              7000
                                                                                   ID=cds00001;Parent=mRNA00001;Name=edenprotein.1
                                      ctg123 . CDS
                                                              1201
                                                                    1500
                                                                                   ID=cds00002;Parent=mRNA00002;Name=edenprotein.2
           Parent
                                                                    5500
                                      ctg123 . CDS
                                                              5000
                                                                                   ID=cds00002;Parent=mRNA00002;Name=edenprotein.2
           Target
                                      ctg123 . CDS
                                                              7000
                                                                    7600
                                                                                   ID=cds00002;Parent=mRNA00002;Name=edenprotein.2
           Gap
                                      ctg123 . CDS
                                                              3301
                                                                    3902
                                                                                   ID=cds00003;Parent=mRNA00003;Name=edenprotein.3
           Derives from
                                                                    5500
                                      ctg123 . CDS
                                                              5000
                                                                                   ID=cds00003;Parent=mRNA00003;Name=edenprotein.3
                                      ctg123 . CDS
                                                              7000
                                                                    7600
                                                                                   ID=cds00003;Parent=mRNA00003;Name=edenprotein.3
           Note
                                                                    3902
                                      ctg123 . CDS
                                                              3391
                                                                                   ID=cds00004;Parent=mRNA00003;Name=edenprotein.4
           Dbxref
                                      ctg123 . CDS
                                                              5000
                                                                    5500
                                                                                   ID=cds00004;Parent=mRNA00003;Name=edenprotein.4
           Ontology term
                                      ctg123 . CDS
                                                              7000
                                                                    7600
                                                                                   ID=cds00004;Parent=mRNA00003;Name=edenprotein.4
```


Annotation format: gbk

- LOCUS Annotated sequence
- DEFINITION
- ACCESION
- FEATURES
 - source
 - gene
 - CDS
 - Locus tag
 - function
 - Product
 - protein_id
 - Translation (sequence)

```
LOCUS
            AF068625
                                     200 bp
                                               mRNA
                                                       linear
                                                                ROD 06-DEC-1999
           Mus musculus DNA cytosine-5 methyltransferase 3A (Dnmt3a) mRNA,
DEFINITION
            complete cds.
ACCESSION
            AF068625 REGION: 1..200
VERSION
            AF068625.2 GI:6449467
KEYWORDS
SOURCE
            Mus musculus (house mouse)
 ORGANISM Mus musculus
            Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
            Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia;
            Sciurognathi; Muroidea; Muridae; Murinae; Mus.
REFERENCE
            1 (bases 1 to 200)
 AUTHORS
           Okano, M., Xie, S. and Li, E.
 TITLE
            Cloning and characterization of a family of novel mammalian DNA
            (cytosine-5) methyltransferases
 JOURNAL
            Nat. Genet. 19 (3), 219-220 (1998)
  PUBMED
            9662389
REFERENCE
            2 (bases 1 to 200)
 AUTHORS
            Xie, S., Okano, M. and Li, E.
 TITLE
            Direct Submission
            Submitted (28-MAY-1998) CVRC, Mass. Gen. Hospital, 149 13th Street,
            Charlestown, MA 02129, USA
REFERENCE
            3 (bases 1 to 200)
 AUTHORS
            Okano, M., Chijiwa, T., Sasaki, H. and Li, E.
 TITLE
            Direct Submission
 JOURNAL
            Submitted (04-NOV-1999) CVRC, Mass. Gen. Hospital, 149 13th Street,
            Charlestown, MA 02129, USA
 REMARK
            Sequence update by submitter
COMMENT
            On Nov 18, 1999 this sequence version replaced gi:3327977.
FFATURES
                     Location/Qualifiers
     source
                     1...200
                     /organism="Mus musculus"
                     /mol_type="mRNA"
                     /db_xref="taxon:10090"
                     /chromosome="12"
                     /map="4.0 cM"
                     1..>200
     gene
                     /gene="Dnmt3a"
ORIGIN
       1 gaattccggc ctgctgccgg gccgcccgac ccgccgggcc acacggcaga gccgcctgaa
      61 gcccagcgct gaggctgcac ttttccgagg gcttgacatc agggtctatg tttaagtctt
      121 agctcttgct tacaaagacc acggcaattc cttctctgaa gccctcgcag ccccacagcg
      181 ccctcgcagc cccagcctgc
```


Annotation format: gbk

- LOCUS Annotated sequence
- DEFINITION
- ACCESION
- FEATURES
 - source
 - gene
 - CDS
 - Locus tag
 - function
 - Product
 - protein_id
 - Translation (sequence)

```
FEATURES
                     Location/Qualifiers
                     /organism="Klebsiella pneumoniae subsp. pneumoniae SA1"
                     /mol type="genomic DNA"
                     /strain="SA1"
                     /sub species="pneumoniae"
                     /db xref="taxon:1379688"
                     /note="contig LPSB1_2557_Contig_49"
                     415..1536
                     /locus_tag="KPST86_490001"
                     415..1536
                     /locus tag="KPST86 490001"
                     /inference="ab initio prediction:AMIGene:2.0"
                     /note="Evidence 4:Homologs of previously reported genes of
                     unknown function"
                     /codon start=1
                     /transl table=11
                     /product="conserved hypothetical protein"
                     /protein id="CDI25656.1"
                     /translation="MAYQLNINWPEFLEKYWQKQPVVLKNAFPDFVDPITPDELAGLA
                     MEPEVDSRLVSLKNGKWOASNGPFEHFDGLGETGWSLLAOAVNHWHMPAAELVRPFRV
                     LPDWRLDDLMISFSVPGGGVGPHIDQYDVFIIQGMGSRRWRVGDKLPMRQFCPHPALL
                     HVDPFPPIIDEDLQPGDILYIPPGFPHDGITHETALNYSVGFRGPNGRDLISSFADYV
                     LENDLGDEHYSDPDLTCREHPGRVEEYELERLRTMMIDMIRQPEDFKQWFGSFVTTPR
                     HELDIAPAEPPYEEEEVLDALLGGEKLSRLSGLRVLHIGDSFFVHSEOLDTTDAEALD
                     ALCRYTSLGOEELGSGLONPAFVSELTRLINOGYWYFEE"
                     complement(1584..2117)
                     /locus tag="KPST86 490002"
                     complement(1584..2117)
                     /locus tag="KPST86 490002"
                     /inference="ab initio prediction:AMIGene:2.0"
                     /note="Evidence 4:Homologs of previously reported genes of
                     unknown function"
                     /codon_start=1
                     /transl table=11
                     /product="conserved hypothetical protein"
                     /protein id="CDI25658.1"
                     /translation="MEQQLTIEMIADAFSYDITGFDCGEEALNTFLKEHLKRQHDGQI
                     LRGYALVSGDTVPRLLGYYTLSGSCFERGMLPSKTQQKKIPYQNAPSVTLGRLAIDKS
                     VQGQGWGEMLVAHAMRVVWGASKAVGIYGLFVEALNEKAKAFYLRLGFIQLVDENSNL
                     LFYPTKSIEOLFTDDES"
                     complement(2128..2394)
    gene
                     /locus tag="KPST86 490003"
                     complement(2128..2394)
     CDS
                     /locus tag="KPST86 490003"
                     /inference="ab initio prediction:AMIGene:2.0"
                     /note="Evidence 4:Homologs of previously reported genes of
                     unknown function"
```


Resistance prediction using WGS

Hendrisken et al. Frontiers in Microbiology. 2019.

	Pathogen	No. of pathogens	AST method	No. of antimicrobials	Bioinformatic tool	Sequencing data	Concordance	Sensitivity	Specificity	Comment	References
2013	S. Typhimurium	49	MIC	17	ResFinder	Assembled, Velvet	99.74%			Disagreement: 7 isolates	(7)
	E. coli	48		14						including 6 E. coli resistent to Spec	
	E. faecalis	50									
	E. faecium	50									
2013	E. coli (ESBL)	74	DD	7	BLASTn, selected panel	Assembled, Velvet		96%	97%	VM rate: 1.2%/M rate: 2.1%	(8)
	K. pneumonia (ESBL)	69									
2014	S. aureus	501	DD/MIC (Vitek)	12	BLASTn, selected panel	Assembled, Velvet		97%	99%	VM rate: 0.5%/M rate: 0.7%	(9)
2016	C. jejuni	32	MIC	9	BLASTx	Assembled,	99.2%			Lower concordance to	(10)
	C. coli	82				CLC-bio				Gen, Azi, Clin, Tel	
2016	S. enterica	104	MIC	14	ResFinder/ ARG-ANNOT/	Assembled, CLC-bio	99.0%	99.2%	99.3%	Lower concordance to	(11)
		536			CARD/BLAST			97.6%	98.0%	aminoglycosides/β-lactams	
2017	E. coli	31	MIC	ARDI	Custom DB based on ARDB/CARD/β-			87%	98%	Neg. predictive value: 97%	(12)
	K. pneumonia	24								Pos. Predictive value: 91%	
	P. aeruginosa	22			lactamase allelles						
	E. cloacae	13			anono						
2017	S. enterica	50	MIC	4	ResFinder/	Assembled, SPAdes	98.4%			Disagreement:	(13)
	E. coli	50		6	PointFinder					2/2 C.jejuni to FQ/ERY	
	C. jejuni	50		4						5 E. coli to COL (pmrB)	
2018	E. faecalis	97	MIC	11	ResFinder/NCBI Pathogen DB/BLAST	Assembled, CLC-bio	96.5%				(14)
	E. faecium	100		12	The state of the s					2.	172
2018	S. aureus	501 491	DD/MIC	12	GeneFinder/ Mykrobe/	FASTQ/assembled, BLAST	98.3%			Disagreements: 0.7% predicted resistant	(15)
		397	MIC		Typewriter					0.6% predicted susceptible	
2018	M. tuberculosis	10,209	MGIT 960	4	Cortex	Assembled	89.5%			97.1%/99.0% predicted R/S 97.5%/98.8% predicted R/S	(16)
				4						94.6%/93.6% predicted R/S	
				4						91.3%/96.8% predicted R/S	
2019	H. pylori	140	MIC (E-test)	5	ARIBA	FASTQ	99%			Phenotype issues to metronidazole	(17)

¹⁾ ESBL: Extended Spectrum Beta-Lactamase, 2) MIC: Minimum Inhibitory Concentration, 3) DD: Disk diffusion, 4) VM: Very Major, 5) M: Major, 6) R/S: Resistant/Susceptible, 7) SPEC: Spectinomycin, 8) GEN: Gentamicin, 9) AZI: Azithromycin, 10) CLIN: Clindamycin, 11) TEL: Telithromycin, 12) FQ: Fluoroquinolone, 13) ERY: Erythromycin, 14) COL: colistin.

Resistance prediction using WGS

Hendrisken et al. Frontiers in Microbiology. 2019.

Resistance prediction using WGS

Hendrisken et al. Frontiers in Microbiology. 2019.

Huge list here:

https://www.frontiersin.org/files/Articles/478239/fpubh-07-00242-HTML/image m/fpubh-07-00242-t002.jpg

Software	Туре
SRST2	Mapping
Ariba	Mapping + assembly
ABRICATE	Assembly
ResFinder	Assembly

Mapping vs Assembly

- Functional annotation based on mapping (srst2)
 - Pro: more resolutive / high quality ddbb
 - Con: Unable to locate genes / no ab initio annotation
- Functional annotation based on assembly (Resfinder)
 - Pro: genes are located / related
 - Depend on assembly (close to repetitive regions)

Annotation visualization using PlasmidID

- Automatic annotation
 - Prokka
 - DDBB plasmid
 - Contigs
 - Gff to bed
- Specific annotation
 - BLAST+
 - ABR & REP
 - User input FASTA

Annotation using PlasmidID

Plasmid Track

Coverage Track

Annotation Track

Contig Track Repeated contig Sequence diference between sample and reference Contigs Incomplete - Represent **ONLY LOCAL** alignment contig alignment - Does not specify if the contig is inverted neither the total length of the contig

Complete contig Track

Complete contig Track

Manual annotation: Artemis

Artemis is a DNA sequence viewer and annotation tool that allows visualisation of sequence features and the results of analyses within the context of the sequence, and its six-frame translation.

